CE 3354 Engineering Hydrology Exercise Set 5

Exercises

1. a 50-acre single-family residential subdivision receives a rainfall intensity of 3 inches per hour for one hour. The average runoff coefficient is 0.50. Using a rational triangular hydrograph ¹

Determine:

- a) Maximum (peak) discharge rate for the watershed.
- b) A plot of the discharge hydrograph in 6-minute intervals.
- c) The total volume of runoff from the subdivision for the entire storm.

Solution(s): Entire problem as Jupyter Notebook (ENGR-1330) on following pages.

ES5 Page 1 of 26

¹Essentially apply the Modified Rational Method with t_c equal to the storm duration

es5-worksheet

August 4, 2025

```
[64]: # Rational Method Tools
      def qpeak(c,i,a,k=1):
          qpeak = k*c*i*a
          return qpeak
      ####################################
      def triangle_hydrograph(qp, time, tc):
          if time < 0:</pre>
              triangle_hydrograph = 0.0
          elif 0 <= time <= tc:</pre>
              triangle_hydrograph = (qp / tc) * time
          elif tc < time <= 2 * tc:</pre>
              triangle_hydrograph = (qp / tc) * time - ( (qp / tc) * (time - tc) ) -__
       \hookrightarrow ( (qp / tc) * (time - tc) )
          else:
              triangle_hydrograph = 0.0
          return triangle_hydrograph
      #############################
      # Problem 1
      a = 50 # acres given
      I = 3 \# in/hr \ qiven
      c = 0.5 \# given
      tc = 1.0 #hr implied(given)
      k = 1.008 #unit conversion 1.008 for US 1/360 for SI
      qp=qpeak(c,i,a,k)
      print("Rational Method for Peak Discharge")
      print(f"Area: {a:.2f} acres")
      print(f"Intensity: {i:.2f} inches per hour")
      print(f"Runoff Coefficient: {a:.2f} dimensionless")
      print(f"Peak Discharge Rate: {qpeak(c, I, a, k):.2f} CFS")
      # Recalculate discharge and cumulative runoff
      qp = qpeak(c,I,a,k)
      time = [] # empty list
      discharge = [] #empty list
      deltat = 0.1 # 6 minutes in hours
      howmanysteps = 26
      time.append(0.0)
      discharge.append(0.0)
```

```
for i in range(1,howmanysteps):
    time.append(time[i-1]+deltat)
    discharge.append(triangle_hydrograph(qp,time[i],tc))
# Trapezoidal integration to compute cumulative volume
cumulative_volume = [0.0]
for i in range(1, howmanysteps):
    deltaV = 0.5 * (discharge[i] + discharge[i-1]) * deltat * 3600 # <math>ft^{3}
    cumulative_volume.append(cumulative_volume[i-1] + deltaV)
# Plotting both discharge and accumulated volume
fig, ax1 = plt.subplots(figsize=(8, 5))
color = 'tab:blue'
ax1.set_xlabel("Time (hours)")
ax1.set_ylabel("Discharge (CFS)", color=color)
ax1.plot(time, discharge, color=color, label="Discharge (CFS)")
ax1.tick_params(axis='y', labelcolor=color)
ax1.grid(True)
ax2 = ax1.twinx() # instantiate second axes sharing the same x-axis
color = 'tab:red'
ax2.set_ylabel("Cumulative Volume (ft3)", color=color)
ax2.plot(time, cumulative_volume, color=color, linestyle='--',_
 ⇔label="Accumulated Volume")
ax2.tick params(axis='y', labelcolor=color)
fig.tight_layout()
plt.title("Runoff Hydrograph and Accumulated Runoff Volume")
plt.show()
# Final print
print(f"Total Runoff: {cumulative_volume[-1]:.2f} cubic feet")
```

Rational Method for Peak Discharge

Area: 50.00 acres

Intensity: 25.00 inches per hour

Runoff Coefficient: 50.00 dimensionless

Peak Discharge Rate: 75.60 CFS

Total Runoff: 272160.00 cubic feet

2. a 50-acre single-family residential subdivision receives a rainfall intensity of 3 inches per hour for one hour. The average runoff coefficient is 0.50. Using the NRCS triangular hydrograph 2

Determine:

- a) Maximum (peak) discharge rate for the watershed.
- b) A plot of the discharge hydrograph in 6-minute intervals.
- c) The total volume of runoff from the subdivision for the entire storm.

Solution(s): Entire problem as Jupyter Notebook (ENGR-1330) on following pages.

ES5 Page 5 of 26

 $^{^{2}}t_{c}$ is set equal to the storm duration

es5-ws1-Copy1

August 4, 2025

```
[6]: # NRCS Method Tools
     import matplotlib.pyplot as plt
     def qpeak(c,i,a,k=1):
         qpeak = k*c*i*a
         return qpeak
     ####################################
     def nrcs_triangle_hydrograph(qp, time, tc):
         if time < 0:</pre>
             nrcs_triangle_hydrograph = 0.0
         elif 0 <= time <= tc:</pre>
             nrcs_triangle_hydrograph = (qp / tc) * time
         elif tc < time <= 2.34 * tc:
             nrcs_triangle_hydrograph = (qp / tc) * time - ( (qp / tc) * (time - tc)_
      \rightarrow) - ( (qp /1.34*tc) * (time - tc) )
         else:
             nrcs_triangle_hydrograph = 0.0
        return nrcs_triangle_hydrograph
     # Problem 2
     # NRCS Triangular uses same meanings, but recession limb is 1.34 tc
     a = 50 \# acres given
     I = 3 \# in/hr \ qiven
     c = 0.5 \# given
     tc = 1.0 #hr implied(given)
     k = 1.008 #unit conversion 1.008 for US 1/360 for SI
     qp=qpeak(c,I,a,k)
     print("NRCS Triangle Method for Peak Discharge (Duration == Tc)")
     print(f"Area: {a:.2f} acres")
     print(f"Intensity: {I:.2f} inches per hour")
     print(f"Runoff Coefficient: {a:.2f} dimensionless")
     print(f"Peak Discharge Rate: {qpeak(c, I, a, k):.2f} CFS")
     # Recalculate discharge and cumulative runoff
     qp = qpeak(c,I,a,k)
     time = [] # empty list
     discharge = [] #empty list
     deltat = 0.1 # 6 minutes in hours
```

```
howmanysteps = 26
time.append(0.0)
discharge.append(0.0)
for i in range(1,howmanysteps):
    time.append(time[i-1]+deltat)
    discharge.append(nrcs_triangle_hydrograph(qp,time[i],tc))
# Trapezoidal integration to compute cumulative volume
cumulative_volume = [0.0]
for i in range(1, howmanysteps):
    deltaV = 0.5 * (discharge[i] + discharge[i-1]) * deltat * 3600 # <math>ft^3
    cumulative volume.append(cumulative volume[i-1] + deltaV)
# Plotting both discharge and accumulated volume
fig, ax1 = plt.subplots(figsize=(8, 5))
color = 'tab:blue'
ax1.set_xlabel("Time (hours)")
ax1.set_ylabel("Discharge (CFS)", color=color)
ax1.plot(time, discharge, color=color, label="Discharge (CFS)")
ax1.tick_params(axis='y', labelcolor=color)
ax1.grid(True)
ax2 = ax1.twinx() # instantiate second axes sharing the same x-axis
color = 'tab:red'
ax2.set_ylabel("Cumulative Volume (ft3)", color=color)
ax2.plot(time, cumulative_volume, color=color, linestyle='--',_
⇔label="Accumulated Volume")
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout()
plt.title("Runoff Hydrograph and Accumulated Runoff Volume")
plt.show()
# Final print
print(f"Total Runoff: {cumulative_volume[-1]:.2f} cubic feet")
```

NRCS Triangle Method for Peak Discharge (Duration == Tc)

Area: 50.00 acres

Intensity: 3.00 inches per hour

Runoff Coefficient: 50.00 dimensionless

Peak Discharge Rate: 75.60 CFS

Total Runoff: 318670.93 cubic feet

3. A watershed is comprised of sandy soil with a 500 foot path to an outlet. The slope on that path is 5-percent. The soil has a high water table limiting the potential watershed storage to 0.5 inches. Using the NRCS Lag Equation method³

$$T_c = L^{0.8} \frac{(S_r + 1)^{0.7}}{1140Y^{0.5}} \tag{1}$$

where:

 $T_c = \text{time of concentration, hr}$

L = flow length, ft

 $S_r = \text{Potential storage (in.)}; S_r = \frac{1000}{CN} - 10$

CN = NRCS runoff curve number

Y = average watershed slope, %

Determine:

a) Time of concentration (T_c) .

Solution(s): Entire problem as Jupyter Notebook (ENGR-1330) on following pages.

ES5 Page 9 of 26

³https://directives.nrcs.usda.gov/sites/default/files2/1712930818/31754.pdf

es5-ws3

August 4, 2025

```
[3]: # NRCS Method Tools
     import matplotlib.pyplot as plt # in case we need to plot
     def nrcs_lag(L,Sr,Y):
         term1 = (Sr+1.0)**(0.7)
         term2 = 1140*Y**(0.5)
         term3 = L**(0.8)
         nrcs_lag = term3*term1/term2
         return nrcs_lag
     # Problem 3
     # NRCS Lag Equation
     length = 500 # feet given
     slope = 5 # percent given
     retention = 0.5 # inches given
     tc=nrcs_lag(length,retention,slope)
     print("NRCS Lag Equation")
     print(f"Length: {length:.2f} feets")
     print(f"Slope: {slope:.2f} percent")
     print(f"Retention Capacity: {retention:.2f} inches")
     print(f"Time of concentration: {tc:.2f} hours")
    NRCS Lag Equation
    Length: 500.00 feets
```

Slope: 5.00 percent

Retention Capacity: 0.50 inches Time of concentration: 0.08 hours

[]:

4. The runoff hydrograph below was produced by a 100 acre watershed.

Table 1: Somewhere USA Runoff Data

Time (hours)	Runoff (CFS)
0.0	0.0
1.0	70.0
2.0	160.
3.0	110.
4.0	80.0
5.0	60.0
6.0	45.0
7.0	30.0
8.0	20.0
9.0	12.0
10.	5.0
11.	0.0

Determine:

- a) Excess precipitation in watershed inches for the hydrograph.
- b) A unit hydrograph for the watershed.
- c) A plot of the unit hydrograph.

Solution(s): Entire problem as Jupyter Notebook (ENGR-1330) on following pages.

ES5 Page 11 of 26

es5-ws4

August 4, 2025

```
[15]: # Somewhere USA
import matplotlib.pyplot as plt
time = [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0]
runoff=[0.0,70.0,160.0,110.0,80.0,60.0,45.0,30.0,20.0,12.0,5.0,0.0]
# Excess precip == runoff (in watershed inches)
area = 100 #acres given
excess = 12.0*(sum(runoff)*3600)/(area*43560) #excess in inches
print(f"Excess precipitation: {excess:.2f} inches")
```

Excess precipitation: 5.87 inches

Here is the data in the Excel worksheet - we will have to assume the response is to a single hour of precipitation (or experiment a bit, we will need unit weights greater than zero)


```
[16]: import matplotlib.pyplot as plt
```



```
[17]: # After Modeling using the Excel sheet - rendering results
import matplotlib.pyplot as plt

# === Data Lists ===
excess_rain = [5.871, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
direct_runoff = [0, 70, 160, 110, 80, 60, 45, 30, 20, 12, 5, 0]
model_runoff = [0, 70, 160, 110, 80, 60, 45, 30, 20, 12, 5, 0]
time = list(range(len(excess_rain)))

# === Create figure and axes ===
fig, ax1 = plt.subplots(figsize=(10, 6))
```

```
# --- Left Y-axis: Rainfall ---
ax1.set_xlabel("Time Step")
ax1.set_ylabel("Excess Rain (in)", color='blue')
rain_line = ax1.step(time, excess_rain, where='post', color='blue', __
⇒linewidth=2, label="Excess Rain")[0]
ax1.tick_params(axis='y', labelcolor='blue')
# --- Right Y-axis: Runoff and Model ---
ax2 = ax1.twinx()
ax2.set_ylabel("Runoff (cfs)", color='darkred')
runoff_line, = ax2.plot(time, direct_runoff, 'ro-', label="Observed Runoff", u
 \hookrightarrowlinewidth=1.5)
model_line, = ax2.plot(time, model_runoff, 'g-', label="Model Prediction", u
 →linewidth=2)
ax2.tick_params(axis='y', labelcolor='darkred')
# --- Title and Grid ---
fig.suptitle("Excess Rainfall vs Runoff and Model Prediction", fontsize=14)
fig.tight_layout()
ax1.grid(True)
# --- Combined Legend ---
lines = [rain_line, runoff_line, model_line]
labels = [line.get_label() for line in lines]
ax1.legend(lines, labels, loc='upper right')
plt.show()
```


[]:

5. An agricultural watershed was urbanized over a 20 year interval. A triangular one-hour unit hydrograph was developed for this watershed for an excess rainfall duration of one hour.

Before urbanization, the average loss rate was 0.30 in/hr.

Figure 1 is the unit hydrograph that has a peak discharge of 400 cfs/in occurring at 3 hours, and a base time of 9 hours.

Figure 1: Pre-Urbanization unit hydrograph for excess rainfall of 1 in/hr for 1 hour.

ES5 Page 16 of 26

After urbanization the loss rate was reduced to 0.15 in/hr and the peak discharge of the unit hydrograph increased to 600 cfs/in occurring at 1 hour, and the base time reduced to 6 hours. Figure 2 is the unit hydrograph with a peak discharge of 600 cfs occurring at 1 hours, and a time base of 6 hours.

Figure 2: Post-Urbanization unit hydrograph for excess rainfall of 1 in/hr for 1 hour.

For a two hour storm in which 1 inch of rain fell in the first hour and 0.5 inch in the second hour, determine the direct runoff hydrographs before and after urbanization.⁴

ES5 Page 17 of 26

⁴This exercise is the same as problem 7.5.7, pg. 238 in Chow, Maidment, Mays

Solution

a) Using Figure 1 as a template, the two increments of rainfall are directly plotted onto the template, then loss is applied to each increment. The resulting unitgraphs from each increment are plotted (in magenta/purple) and then ordinate-by-ordinate addition is used to construct the composite direct runoff hydrograph, as depicted in Figure 3

Figure 3: Pre-Urbanization unit hydrograph for excess rainfall of 1 in/hr for 1 hour.

ES5 Page 18 of 26

b) Using Figure 2 as a template, the two increments of rainfall are directly plotted onto the template, then loss is applied to each increment. The resulting unitgraphs from each increment are plotted (in magenta/purple) and thenordinate-by-ordinate addition is used to construct the composite direct runoff hydrograph, as depicted in Figure 4

Figure 4: Post-Urbanization unit hydrograph for excess rainfall of 1 in/hr for 1 hour.

ES5 Page 19 of 26

c) Alternatively (and more usefully) the responses can be incorporated into a spreadsheet as depicted in Figure 5.

Figure 5: Spreadsheet solution

The working spreadsheet is located at http://54.243.252.9/ce-3354-webroot/2-Exercises/ES-6/ES6-SourceCode/ES6-Solution.xlsx. Figure 5 is captures from Tab Sheet "P1."

ES5 Page 20 of 26

6. A storm on April 16, 1977, on the Shoal Creek watershed at Northwest Park in Austin, Texas, resulted in the rainfall-runoff values in Figure 6.

Use the linear regression method to determine the half-hour unit hydrograph for the watershed. The watershed drainage area is $7.03 \ mi^2$. Assume that a uniform loss rate (constant loss model) is valid.⁵

(SH) WILL (IN) WILL (SH) W			
1.0 0.12 67.0 1.5 0.13 121.0 2.0 0.14 189.0 2.5 0.18 279.0 3.0 0.14 290.0 3.5 0.07 237.0 4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 444.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0			
1.5 0.13 121.0 2.0 0.14 189.0 2.5 0.18 279.0 3.0 0.14 290.0 3.5 0.07 237.0 4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	0.5	0.28	32.0
2.0 0.14 189.0 2.5 0.18 279.0 3.0 0.14 290.0 3.5 0.07 237.0 4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0		0.12	67.0
3.0 0.14 290.0 3.5 0.07 237.0 4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	1.5	0.13	121.0
3.0 0.14 290.0 3.5 0.07 237.0 4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	2.0	0.14	189.0
3.0 0.14 290.0 3.5 0.07 237.0 4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	2.5	0.18	279.0
4.0 160.0 4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	3.0	0.14	290.0
4.5 108.0 5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0		0.07	
5.0 72.0 5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0			160.0
5.5 54.0 6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	4.5		108.0
6.0 44.0 6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0			
6.5 33.0 7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0	5.5		54.0
7.0 28.0 7.5 22.0 8.0 20.0 8.5 18.0			44.0
7.5 22.0 8.0 20.0 8.5 18.0			
8.0 20.0 8.5 18.0			
8.5 18.0			
9.0 16.0			
	9.0		16.0

Figure 6: Observed storm rainfall incremental depths and observed direct runoff hydrograph

ES5 Page 21 of 26

 $^{^5}$ This exercise is a hybrid of problems 7.6.2 and 7.6.5, pg 239 in Chow, Maidment, and Mays.

Solution

a) Using data from Figure 6 and the supplied watershed area, the rainfall is converted into watershed input volume in same units as watershed runoff volume. A constant loss is applied to the rainfall increments until the ratio of output to input is unity. as a template, the two increments of rainfall are directly plotted onto the template, then loss is applied to each increment. Predict-and-correct or Goal Seek is sufficient as depicted in Figure 7

Figure 7: Volume Balance for Shoal Creek data to infer constant loss rate

ES5 Page 22 of 26

b) Use the Matrix-Vector representation and ordinary-least-squares to construct a unit hydrograph for the watershed as depicted in Figure 8.6

Figure 8: Spreadsheet solution

The working spreadsheet is located at http://54.243.252.9/ce-3354-webroot/2-Exercises/ES-6/ES6-SourceCode/ES6-Solution.xlsx. Figure 5 is captured from Tab Sheet "P2-UH-CL-LOSS-FIT"

ES5 Page 23 of 26

⁶This watershed will yield two negative ordinates; a SOLVER result is also shown. Recall negative ordinates are not physically relevant, and require addressing. They may simply be artifacts, or (more likely) sample aliasing.

7. Table 2 is a 15-minute unit hydrograph for Somewhere Else USA. Table 3 is a precipitation input time-series for the watershed

Table 2: Somewhere Else USA Unit Hydrograph Tabulation

Time (hours)	Runoff (CFS)	
0.00	0	
0.25	70	
0.50	182	
0.75	137	
1.00	68	
1.25	33	
1.50	16	
1.75	9	
2.00	5	
2.25	2	
2.50	1	
2.75	0.0	

Table 3: Somewhere Else USA Excess Rain Input

Time (hours)	Rainfall Excess (inches)
0.00	0
0.25	0.50
0.50	1.25
0.75	0.75

Determine:

- a) The design (direct runoff hydrograph) for the excess rainfall input time series.
- b) A plot of the design hydrograph.

Solution(s): Entire problem as Jupyter Notebook (ENGR-1330) on following pages.

ES5 Page 24 of 26

es5-ws7

August 4, 2025

Simply perform the matrix multiplication (Q = PU).

The screen capture below uses an Excel worksheet. Extends the data range with zero post-padding.

08		- :	×	,	/ fx	0																					
4	Α	В	С	D	Е	F	G	н	I	J	K	L	М	N	0	Р	Q	R	S	т	U	V	W	X	Υ	Z	AA
1					P (mat	rix)																					
2	Tim e(hours)	UH_weight	Excess Rain			2	6	4	S	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	Q=PU
3	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0.25	70	0.5		0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0.5	182	1.25		1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35
6	0.75	137	0.75		0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	178.5
7	1	68	0		0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	348.5
8	1.25	33	0		0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	341.75
9	1.5	16	0		0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	204.25
10	1.75	9	0		0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100.25
11	2	5	0		0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	49.25
12	2.25	2	0		0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	25.75
13	2.5	1	0		0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	0	14
14	2.75	0	0		0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	0	6.75
15	3	0	0		0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0	2.75
16	3.25	0	0		0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0	0.75
17	3.5	0	0		0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0	0
18	3.75	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0	0
19	4	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0	0
20	4.25	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0	0
21	4.5	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0	0
22	4.75	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0	0
23	5	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0	0
24	5.25	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75	1.25	0.5	0	0
25																											
20																											

Then plot the results

[]: