Neptun kód:	UW0FDO	Név:	Szász Roland
Beadás verziószáma:	1		

Feladat

Leghidegebb hőmérséklet a Balatonon

N nap során minden délben megmértük a Balaton hőmérsékletét Siófoknál.

Írj programot, amely megadja a leghidegebb nap hőmérsékletét!

Bemenet

A standard bemenet első sorában a napok száma van (1≤N≤100). A következő N sor mindegyike egy-egy egész számot tartalmaz, az egyes napok hőmérsékletét (0≤H≤50).

Kimenet

A standard kimenet első sorába egyetlen egész számot kell írni, a leghidegebb nap hőmérsékletét!

Adatreprezentáció

1	2	3	4	5
# Bemenet	# Bemenet n: 1	# Bemenet	# Bemenet	Bemenet
n: 6	h: [51]	n: 5	n: 4	n: 0
h: [18, 21, 21,	# Kimenet	h: [30, 20, 15, 20,	h: [50, 40, 30,	h: []
22, 20, 23]	min: -	30]	10]	#Kimenet
# Kimenet min:		#Kimenet min:	# Kimenet min:	min: -
18		15	10	
Megadva	Hibás	Helyes	Helyes	Előfeltétel hiba

Specifikáció

```
Be: n \in N, h \in N[1..n]

Ki: min \in N

Ef: 1 \le n \le 100 és \forall i \in [1..n]: (0 \le h[i] \le 50)

Uf: (,min) = MIN(i=1..n, h[i])
```

Link: Specification editor

Sablon

Maximumkiválasztás sablon

Feladat

Adott az egész számok egy [e..u] intervalluma és egy f:[e..u]→H függvény. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az f függvény hol veszi fel az [e..u] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték!

Specifikáció

```
Be: e∈Z, u∈Z
```

Ki: maxind∈Z, maxért∈H

Ef: e<=u

```
Uf: maxind∈[e..u] és
  ∀i∈[e..u]:(f(maxind)>=f(i)) és
  maxért=f(maxind)
```


Algoritmus

Rövidítve:

```
Uf: (maxind, maxért) = MAX(i = e...u, f(i))
```


54

Visszavezetés

	Minimumkiválasztás	
minind, minért	~	• , min
eu	~	1n
f(i)	~	h[i]

Algoritmus

Local declarations

n: Egész

h: Tömb[1..n:Egész]

min: Egész

i: Egész

Link: Structogram editor

2. fázishoz

Kód

```
// Név: Szász Roland
// Neptun kód: UW0FD0
// Inf-es e-mail: UW0FD0@inf.elte.hu
using System;
class Program {
    static void Main(string[] args) {
         #region Deklaráció
         int n;
         int[] h;
         int min;
         int i;
         #endregion
         #region Beolvasás
         n = int.Parse(Console.ReadLine());
         h = new int[n];
         for (i = 0; i < n; ++i) {
              h[i] = int.Parse(Console.ReadLine());
         #endregion
         #region Feldolgozás
         min = h[0];
for (i = 1; i < n; ++i) {
    if (h[i] < min) {
        min = h[i];
    }</pre>
         }
         #endregion
         #region Kiírás
         Console.WriteLine($"{min}");
         #endregion
    }
}
```

Bíró eredmény

Verzió: 1.0

Total points: 100/100

Test#	Point	Verdict	CPU time
1.1	3/3	Helyes	0.032 sec
2.1	3/3	Helyes	0.034 sec
3.1	3/3	Helyes	0.043 sec
4.1	3/3	Helyes	0.030 sec
5.1	3/3	Helyes	0.030 sec
6.1	3/3	Helyes	0.030 sec
7.1	3/3	Helyes	0.029 sec
8.1	3/3	Helyes	0.030 sec
9.1	4/4	Helyes	0.030 sec
10.1	4/4	Helyes	0.031 sec
11.1	4/4	Helyes	0.032 sec
12.1	4/4	Helyes	0.032 sec
13.1	4/4	Helyes	0.029 sec
14.1	4/4	Helyes	0.029 sec
15.1	4/4	Helyes	0.030 sec
16.1	4/4	Helyes	0.030 sec
17.1	4/4	Helyes	0.029 sec
18.1	4/4	Helyes	0.030 sec
19.1	4/4	Helyes	0.029 sec
20.1	4/4	Helyes	0.030 sec
21.1	4/4	Helyes	0.028 sec
22.1	4/4	Helyes	0.029 sec
23.1	4/4	Helyes	0.030 sec
24.1	4/4	Helyes	0.030 sec
25.1	4/4	Helyes	0.028 sec
26.1	4/4	Helyes	0.030 sec
27.1	4/4	Helyes	0.030 sec

Date of submission: 2025-10-27 19:54:16.0