الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 72015

اختبار في مادة: الرياضيات الشعبة: علوم تجريبية المدة: 03 ساعات ونصف

العلامة		i labita dia 1150 ani	
مجموع	مجزأة	ضوع الأول) عناصر الإجابة	-
04,5 نقطة		ين الأوّل: (04,5 نقطة)	
	0,75	ABig(-1;1;2ig)igtimes ACig(1;2;1ig) قط A ، B ، A و C ليست في استقامية لأن	1. الذ
	0,5	x-y+z-1=0 يات النقط تحقق المعادلة	إحداث
	0,5	$AB=AC=BC=\sqrt{6}$ مثقايس الأضلاع ، $ABC=AB$	2. الـ
	0,5	$S_{ABC} = \frac{1}{2}AB \times AC \times \sin A = \frac{3\sqrt{3}}{2}uc$	а
	0,5	$\left\{egin{aligned} x=1+t\ y=1-t\ ;\ ig(t\in\dot{\mathbb{R}}.ig):$ تمثيل الوسيطي للمستقيم $\left(\Delta ight)$ هو $z=4+t$	3ـ الن
	0,5	$E\left(0;2;3 ight)$ ومنه $E\!\in\!\left(\Delta ight)\!\cap\!\left(ABC ight)$ -	1.4
	0,5	$ED = \sqrt{3}$ أو $d(D;(ABC)) = \sqrt{3}$	
	0,25	E المركزان هما D و $D'igl(-1;3;2igr)$ نظيرة D بالنسبة إلى D	ب - ا
	0,5	$V_{ABCD} = \frac{3}{2} uv$	v .5
		ين الثاني: (04,5 نقطة)	التمر
	0,5	$\beta = i\sqrt{3} \cdot \alpha = -\frac{3}{2} + i\frac{\sqrt{3}}{2}$	- (I
	0,75	$z_{C} = \sqrt{3}e^{i\frac{\pi}{2}}, \ z_{A} = \sqrt{3}e^{i\frac{5\pi}{6}}$ -1.1	(II)
04,5 نقطة	0,25	$n=6k+3; k\in\mathbb{N}$ ومنه $\frac{n\pi}{3}=\left(2k+1\right)\pi$ ؛ $\left(\frac{z_A}{z_C}\right)^n=0$	$e^{i\frac{n\pi}{3}}$
	0,25	وهو عدد حقيقي $2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} + \left(\frac{z_B}{\sqrt{3}}\right)^{1962} - \left(\frac{z_C}{\sqrt{3}}\right)^{1435} = -\sqrt{3} - 1$. 4
	0,75	و $\frac{7\pi}{12}$ زاوية له ؛ $\frac{Z_A}{Z_D} = \sqrt{\frac{3}{2}}e^{i\frac{7\pi}{12}} = \frac{\sqrt{6}}{2}e^{i\frac{7\pi}{12}}$ زاوية له	1.2
	0,75	$\frac{z_A}{z_B} = \frac{\sqrt{3} - 3}{4} + i \frac{\sqrt{3} + 3}{4}$	ب -
	1	$\sin\frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4} \cdot \cos\frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{4}}{4}$	
	0,25	$(k\in\mathbb{R}^+$ مع $z=\sqrt{2}ke^{irac{5\pi}{6}})$ $ig[OAig)$ جموعة النقط M هي نصف مستقيم	3. م

تابع للإجابة الموذجية لموضوع امتحاد البكالوريا دورة 2015 منه في

المدة: 03 ساعات ونصف	الشعبة: علوم تجريبية	اختبار في مادة: الرياضيات
----------------------	----------------------	---------------------------

العلامة		تابع للموضوع الأول عناصر الإجابة
مجموع	مجزأة	
		التمرين الثالث: (04,5 نقطة)
	1	$u_3 = e^{-4} - 1$ $u_2 = e^{-2} - 1$ $u_1 = 0$ $\cdot 1$
	0,75	2. إثبات أن: $u_n > 0$ باستعمال البرهان بالتراجع
	0,5	ومنه (u_n) متناقصة تماما $u_{n+1} - u_n = (e^{-2} - 1)(1 + u_n) < 0$.3
4,50	0,25	-1 متقاربة لأنها متناقصة تماما ومحدودة من الأسفل بالعدد (u_n)
نقطة	01	$\cdot v_0 = 3e^2$ ، $q = e^{-2}$ ، متتالية هندسية (v_n) ومنه $v_{n+1} = e^{-2} v_n$ - أ
	0,25	$v_n = 3e^{-2n+2} - \cdot \cdot$
	0,25	$u_n = e^{-2n+2} - 1$
	0,25	$\lim_{n\to +\infty} u_n = -1$
	0,25	$\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2 - n)$
		التمرين الرابع: (06,5 نقطة)
	0,5	الوضع النسبي لـ (γ) و (Δ)
	0,5	$g(\alpha) = 0$ و $\alpha \in]\alpha;+\infty[$ لمّا $\alpha \in]0;\alpha[$ لمّا $\alpha \in]0;\alpha[$ لمّا $\alpha \in]0;\alpha[$ لمّا ي
	1	$g(2,2) \times g(2,3) < 0$ ومنه $g(2,3) \approx 0.13$ ، $g(2,2) \approx -0.0115$.3
	0,5	$\lim_{x \to 0} f(x) = +\infty \cdot \lim_{x \to +\infty} f(x) = +\infty \cdot 1 \text{ (II)}$
	0,5	$f'(x) = \frac{g(x)}{x^2}$ التحقق من .2
06,5	0,25	جدول التغيرات
نقطة	0,5	$f(\alpha) = \frac{-(\alpha - 1)^2}{\alpha} \cdot 3$
	0,25	يقبل أي حصر صحيح $-0,768 < f(lpha) < -0,626$
	0.75	$\left]1;e^2 ight[$ و تحته على $\left]0;1 ight[$ و الفواصل على كل من $\left[0;1 ight]$ و الفواصل على $\left[0;1 ight]$
	0,75	$\cdot e^2$ ويتقاطعان في النقطتين ذات الفاصلتين $\cdot 1$ و
	0,5	$\left]0\;;\;e^{2} ight]$ المنحنى على المجال
	0,25	$x = e^2$ ومنه $x = 1$ ومنه $F'(x) = f(x) = 0$.1 (III
	0,5	$u'(x) = \ln x$ ومنه $u(x) = x \ln x - x$.2
	0,5	$F(x) = (2+x)\ln x - \frac{1}{2}(\ln x)^2 - 3x : F(x)$ عبارة

تابع للإجابة الموذجية لموضوع امتحان البكالوريا دورة: 15 2015 التحال المحالة الموذجية لموضوع امتحان المحالة: 03 ساعات ونصف اختبار في مادة: الرياضيات الشعبة: علوم تجريبية

العلامة		(الموضوع الثاني) عناصر الإجابة
مجموع	مجزأة	
04 ئقاط		التمرين الأوّل: (04 نقاط)
	0,75	$AB(-2;0;-4) \times AC(1;-3;-4)$.1.
	0,75	2x + 2y - z - 11 = 0صحيح : إحداثيات النقط تحقق المعادلة $2x + 2y - z - 11 = 0$
	0,75	(ABC) ليس ناظميا للمستوي $\overrightarrow{DE}(2;2;1)$ خطأ : الشعاع $\overrightarrow{DE}(2;2;1)$
	0,5	(ABC) خطأ : D لا تتتمي إلى المستوي (ABC)
	0,75	حصحيح: إحداثيات النقطتين C و D تحقق التمثيل الوسيطي 5.
	0,5	(3IA+7IB=0) صحيح : لأن النقط B A في استقامية أو I ، B
		التمرين الثاني: (05 نقاط)
	1	$z_{C}=2e^{i\frac{3\pi}{2}}=2e^{-i\frac{\pi}{2}}$, $z_{B}=2e^{i\frac{5\pi}{6}}$ - i . 1
	0,5	ب - $z_A \models z_B \mid z_A \mid z_B$ إذاً $z_A \mid z_B \mid z_C \mid z_A$ التي مركزها $z_A \mid z_B \mid z_C \mid z_B \mid z_C \mid z_B$
	0,5	ج - الإنشاء
05 نقاط	0,75	$\frac{z_B - z_C}{z_B - z_A} = e^{-i\frac{\pi}{3}}$: أ - التحقق أن 2
	0,5	$(AB;CB) = -\frac{\pi}{3}$ و $AB = BC$) و المثلث متقايس الأضلاع
	0,25	مركز ثقله $z_A + z_B + z_C = 0$ أو مركز الدائرة المحيطة به هي مركز ثقله O
	0,75	جـ - (E) هي محور $[OA]$ مع الإنشاء
	0,5	$\frac{2\pi}{3}$ إذاً $\frac{z_A}{z_C}=e^{irac{2\pi}{3}}$. أ $\frac{z_A}{z_C}=e^{irac{2\pi}{3}}$. 1. 3
	0,25	ب - $r(A) = B$ و $r(O) = 0$ و $r(O) = 0$ و بيحافظ على المنتصفات وعلى التعامد ومنه صورة
		هي محور $[OB]$ به r أو أية طريقة أخرى.
		التمرين الثالث: (05 نقاط)
03 نقاط	0,5	$[0;+\infty[$ متزایدة تماما علی f . $1(\mathbf{I})$
	0,5	، $]0;\alpha[$ علی $]0;\alpha[$
		A(lpha;lpha) فوق $A(lpha;lpha)$ ؛ وعلى $A(lpha;lpha)$ ، $A(lpha;lpha)$ تحت $A(lpha;lpha)$ فوق $A(lpha;lpha)$
	0,75	3. الرسم
	0,75	1 (II). أ - تمثيل الحدود
	0,5	(u_n) متزایدة تماما ومتقاربة ؛ (v_n) متناقصة تماما ومتقاربة
<u> </u>		**

تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة (2015 الموذجية لموضوع امتحان البكالوريا دورة (03 ساعات ونصف اختبار في مادة: الرياضيات الشعبة: علوم تجريبية

العلامة		
مجموع	مجزأة	تابع للموضوع الثاني عناصر الإجابة
02 نقاط	0,5	و کا - اثبات بالتراجع لکل n من $\alpha < u_n < 2$ و کا $\alpha < v_n \leq 5$ أو أية طريقة أخرى .2
	0,5	ب - استنتاج اتجاه التغير
	0,25	$v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n)$ آ البات (3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3
	0,25	$0 < v_n - u_n \le \left(\frac{1}{3}\right)^{n-1}$ تبیان - ب
	0,25	$\lim_{n\to+\infty} (v_n - u_n) = 0 \rightarrow$ استنتا ج
	0,25	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \alpha$
		التمرين الرابع (06 نقاط)
	0,75	ومنه g متناقصة تماما على $g'(x) = -2(1+e^{2x-2}) < 0$.1(I
	0,5	$g(\div)=\div$ مستمرة متناقصة تماما على $g(\div)=\div$ و و $g(\div)=\pm$
	0,5	$g(0,37) \approx -0.02 : g(0,36) \approx 0.002$
	0,5	$g(\alpha)=0$ لمّا α ; المّا α
	0,5	$f'(x) = e^{2x+2} g(-x) - 1$ (II)
	0,25	f'(-lpha)=0 يمّا $g(-x)>0$ يمّا $g(-x)>0$ يمّا $g(-x)>0$ يمّا ورمين $g(-x)<0$ يمّا ورمين ور
	0,25	$-\alpha;+\infty$ متناقصة تماما على $]-\infty;-lpha$ ومتزايدة تماما على f
06	0,5	$\lim_{x \to -\infty} f(x) = +\infty \cdot \lim_{x \to +\infty} f(x) = +\infty \cdot .2$
نقاط	0,25	جدول التغيرات
	0,25	$\lim_{x \to -\infty} \left(f(x) + x - 1 \right) = 0 .3$
	0,25	$y\!=\!-x\!+\!1$ يقبل مستقيما مقاربا معادلته (C_f)
	0,25	$]-\infty;0]$ فوق (Δ) على $[0;+\infty[$ وتحته على $[0;+\infty[$
	0,5	$(C_{_f})$ و (Δ) انشاء (Δ) و (Δ) و (Δ)
	0,5	$2f(x)+f'(x)-f''(x)=1-2x-3e^{2x+2}$ أ لكل x من $x \in \mathcal{C}$.6
	0,25	$F(x) = \frac{1}{2} \left[-f(x) + f'(x) + x - x^2 - \frac{3}{2}e^{2x+2} \right] - 4$
		. تو f دالة أصلية ل f على $F(x) = \frac{1}{2} \left(x - \frac{1}{2} \right) e^{2x+2} - \frac{1}{2} x^2 + x - 1$ أي

ملاحظة: تقبل وتراعى جميع الطرق الصحيحة الأخرى مع التقيد التام بسلم التنقيط.