Classification, Halfspaces, the Perceptron algorithm

Chris Cornwell

Feb 25, 2025

Outline

Classification tasks

Polynomial fitting

Outline

Classification tasks

Polynomial fitting

Example of a classification task

Use a model to predict if an image of a handwritten digit is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

If x is the image (converted to a vector in some way), then your model's output $\hat{y}(x)$, is the predicted digit. In the data you work with, you have an "observation" y for which digit was, in fact, being written.

Example of a classification task

Use a model to predict if an image of a handwritten digit is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

If x is the image (converted to a vector in some way), then your model's output $\hat{y}(x)$, is the predicted digit. In the data you work with, you have an "observation" y for which digit was, in fact, being written. While y and \hat{y} are numbers, they are more like labels than something on the number line. Getting $\hat{y}=4$, when y=5, is not any better than

the number line. Getting $\hat{y}=4$, when y=5, is not any better than getting $\hat{y}=0$.

Close only counts in ...Regression

When performing linear regression, on independent variables

$$x_0, x_1, \ldots, x_{d-1}$$
, had (affine) linear function

$$\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d;$$

values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$.

¹Should not think of this as (deterministic) function; rather, Y_x is random variable, e.g., simple linear regression: $Y_{x_0} = p_0 x_0 + p_1 + \varepsilon$.

Close only counts in ... Regression

When performing linear regression, on independent variables x_0, x_1, \dots, x_{d-1} , had (affine) linear function

$$\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d;$$

values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$.

In other words, observation $Y_{\boldsymbol{x}}$ for each data point

 $\mathbf{x} = (x_0, x_1, \dots, x_{d-1}) \in \mathbb{R}^d$. Have a linear "model" $\mathbf{x} \mapsto \hat{\mathbf{y}}$ that approximates $\mathbf{x} \mapsto \mathbf{y_x}$.¹

¹Should not think of this as (deterministic) function; rather, Y_x is random variable, e.g., simple linear regression: $Y_{x_0} = p_0 x_0 + p_1 + \varepsilon$.

Close only counts in ... Regression

When performing linear regression, on independent variables

$$x_0, x_1, \ldots, x_{d-1}$$
, had (affine) linear function

$$\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d;$$

values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$.

In other words, observation $Y_{\boldsymbol{x}}$ for each data point

 $\mathbf{x}=(x_0,x_1,\dots,x_{d-1})\in\mathbb{R}^d$. Have a linear "model" $\mathbf{x}\mapsto\hat{y}$ that approximates $\mathbf{x}\mapsto Y_{\mathbf{x}}$.1

Would expect $|Y_x - \hat{y}|$ to almost never be exactly 0; good model: one where $|Y_x - \hat{y}|$ is small (but positive), on average.

"Regression"

¹Should not think of this as (deterministic) function; rather, Y_x is random variable, e.g., simple linear regression: $Y_{x_0} = p_0 x_0 + p_1 + \varepsilon$.

Close only counts in ... Regression

When performing linear regression, on independent variables

$$x_0, x_1, \ldots, x_{d-1}$$
, had (affine) linear function

$$\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d;$$

values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$.

In other words, observation $Y_{\mathbf{x}}$ for each data point

$$\mathbf{x}=(x_0,x_1,\dots,x_{d-1})\in\mathbb{R}^d$$
. Have a linear "model" $\mathbf{x}\mapsto\hat{y}$ that approximates $\mathbf{x}\mapsto \mathbf{y}_{\mathbf{x}}$.1

Would expect $|Y_x - \hat{y}|$ to almost never be exactly 0; good model: one where $|Y_x - \hat{y}|$ is small (but positive), on average.

"Regression"

In a "Classification" task, the value Y_x is more like a *label*. It might not even be a number and, if so, a \hat{y} is just wrong or not; close doesn't count. That is, you want

\hat{y} to be the same as Y_x , as much as possible with your model.

¹Should not think of this as (deterministic) function; rather, Y_x is random variable, e.g., simple linear regression: $Y_{x_0} = p_0 x_0 + p_1 + \varepsilon$.

Half-space model

Assume data is from \mathbb{R}^d for some d > 0 and we only have two labels (e.g., this is Spam (S) or it is Not spam (N)).

Half-space model

Assume data is from \mathbb{R}^d for some d > 0 and we only have two labels (e.g., this is Spam (S) or it is Not spam (N)).

A hyperplane in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two. Perhaps we get lucky and can find a hyperplane H so that data points with label S are on one side of H and data with label S are on the other side.

Half-space model

Assume data is from \mathbb{R}^d for some d > 0 and we only have two labels (e.g., this is Spam (S) or it is Not spam (N)).

A hyperplane in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two. Perhaps we get lucky and can find a hyperplane H so that data points with label S are on one side of H and data with label S are on the other side. Using coordinates (x_1, x_2, \ldots, x_d) in \mathbb{R}^d , a hyperplane H may be determined from d+1 numbers w_1, w_2, \ldots, w_d , and b. It consists of solutions to

$$w_1x_1 + w_2x_2 \dots + w_dx_d + b = 0.$$

- ▶ Rewriting in vector form: $\mathbf{w} = (w_1, w_2, \dots, w_d)$, look for solutions $\mathbf{x} \in \mathbb{R}^d$ to the equation $\mathbf{w} \cdot \mathbf{x} + b = 0$.
- w is a vector that is orthogonal to a (d-1)-dimensional subspace of \mathbb{R}^d ; |b| corresponds to a translation away from the origin.

Half-space model, continued

Using the notation from last slide: a half-space model in \mathbb{R}^d is determined by d+1 parameters w_1, w_2, \ldots, w_d, b ; the first d parameters grouped into a vector: $\mathbf{w} = (w_1, w_2, \ldots, w_d)$.

Half-space model, continued

Using the notation from last slide:

a half-space model in \mathbb{R}^d is determined by d+1 parameters

 w_1, w_2, \ldots, w_d, b ; the first d parameters grouped into a vector:

$$\mathbf{w}=(\mathsf{w}_1,\mathsf{w}_2,\ldots,\mathsf{w}_\mathsf{d}).$$

Given $\mathbf{x} \in \mathbb{R}^d$, the side of the hyperplane it is on is determined by the sign of $\mathbf{w} \cdot \mathbf{x} + b$.

- (Positive side) Say that $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} + b > 0$.
- ► (Negative side) Say that $h(\mathbf{x}) = -1$ if $\mathbf{x} \cdot \mathbf{x} + \mathbf{b} < 0$.

Half-space model, continued

Using the notation from last slide:

a half-space model in \mathbb{R}^d is determined by d+1 parameters

 w_1, w_2, \ldots, w_d, b ; the first d parameters grouped into a vector:

$$\mathbf{w} = (\mathsf{w}_1, \mathsf{w}_2, \dots, \mathsf{w}_d).$$

Given $\mathbf{x} \in \mathbb{R}^d$, the side of the hyperplane it is on is determined by the sign of $\mathbf{w} \cdot \mathbf{x} + b$.

- ▶ (Positive side) Say that $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} + b > 0$.
- (Negative side) Say that $h(\mathbf{x}) = -1$ if $\mathbf{x} \cdot \mathbf{x} + b < 0$.

If there exists a hyperplane, given by some w, b, so that x has one of the labels if and only if it is on the positive side, the labeled data are called **linearly separable**.

Perceptron algorithm

Assuming that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.

Perceptron algorithm

Assuming that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.