Lista de Exercícios Avaliativa 1

MC458 - 2s2020

Tiago de Paula Alves

187679

CORRIGIR A QUESTÃO 1.

1.

a) Vale a pena notar aqui que $\ln(n) \in o(n^{\varepsilon})$ para qualquer $\varepsilon > 0$, pois

$$\lim_{n\to\infty} \frac{\ln(n)}{n^{\varepsilon}} = \lim_{n\to\infty} \frac{n^{-1}}{\varepsilon n^{\varepsilon-1}} = \frac{1}{\varepsilon} \lim_{n\to\infty} \frac{1}{n^{\varepsilon}} = 0$$

Com isso, podemos escolher $g(n)=\frac{n^k}{\ln n}$ como contraexemplo, pois $g\in o(n^k)$ e $g\in \omega(n^{k-\varepsilon})$.

Demonstração. Suponha $k \ge 1$. Seja $g : \mathbb{R}^{>1} \mapsto \mathbb{R}^+$ dada por $g(x) = \frac{x^k}{\ln x}$. Logo,

$$\lim_{x \to \infty} \frac{g(x)}{x^k} = \lim_{x \to \infty} \frac{x^k / \ln x}{x^k}$$
$$= \lim_{x \to \infty} \frac{1}{\ln x}$$
$$= 0$$

Como g é contínua e monotônica para x > ke, então o limite também vale para os naturais, ou seja, $g \in o(n^k)$.

Suponha agora um $\varepsilon > 0$. Como x^{ε} e $\ln x$ são contínuas, diferenciáveis e crescem indefinidamente, então comparando g(x) com $x^{k-\varepsilon}$, teremos que

$$\lim_{x \to \infty} \frac{g(x)}{x^{k-\varepsilon}} = \lim_{x \to \infty} \frac{x^k / \ln x}{x^k / x^{\varepsilon}}$$

$$= \lim_{x \to \infty} \frac{x^{\varepsilon}}{\ln x}$$

$$= \lim_{x \to \infty} \frac{\varepsilon x^{\varepsilon - 1}}{x^{-1}}$$

$$= \lim_{x \to \infty} \varepsilon x^{\varepsilon}$$

$$= \infty$$

Novamente, como as funções são contínuas e monotônicas, a comparação continua válida para os naturais. Então, podemos afirmar que para todo $\varepsilon > 0$, $g \in \omega\left(n^{k-\varepsilon}\right)$ e, por isso, $g \notin O\left(n^{k-\varepsilon}\right)$.

Por fim, considerando $g^* : \mathbb{N} \to \mathbb{R}$ a restrição de g aos naturais dada por:

$$g^{\star}(n) = \begin{cases} 0 & \text{se } n = 0 \text{ ou } n = 1\\ \frac{n^k}{\ln(n)} & \text{se } n > 1 \end{cases}$$

Como $g^*(n) = g(n)$ para n > 1, o crescimento assintótico delas é o mesmo. Logo, teremos que $g^* \in o(n^k)$, mas não existe $\varepsilon > 0$ tal que $g^* \in O(n^{k-\varepsilon})$. Portanto, Chorãozinho está errado.

b)

Demonstração. Suponha uma função $g: \mathbb{N} \mapsto \mathbb{R}$ tal que $g \in O\left(n^{k-\varepsilon}\right)$, para um real $\varepsilon > 0$. Logo, temos um $\varepsilon \in \mathbb{R}^+$, uma constante $c_1 \in \mathbb{R}^+$ e um $n_1 \in \mathbb{N}$ tal que para todo natural $n > n_1$, sabemos que $0 \le g(n) \le c_1 n^{k-\varepsilon}$. Suponha ainda uma constante $c_2 \in \mathbb{R}^+$ qualquer e considere o natural $n_2 = \left\lceil (c_1/c_2)^{1/\varepsilon} \right\rceil$.

Então, para um natural $n > n_2$, teremos que

$$n > n_2 = \left\lceil (c_1/c_2)^{1/\varepsilon} \right\rceil \ge \left(\frac{c_1}{c_2}\right)^{1/\varepsilon}$$

Como x^{ε} é estritamente crescente, já que $\varepsilon > 0$, então $n^{\varepsilon} > \frac{c_1}{c_2}$. Logo,

$$c_1 n^{k-\varepsilon} = c_1 \frac{n^k}{n^{\varepsilon}} < c_1 \frac{n^k}{c_1/c_2} = c_2 n^k$$

Assim, seja $n_0 = \max\{n_1, n_2\}$ e suponha $n > n_0$, ou seja, $n > n_1$ e $n > n_2$. Logo,

 $0 \le g(n) \le c_1 n^{k-\varepsilon} < c_2 n^k$

Ou seja, para qualquer c_2 positivo, existe n_0 tal que $0 \le g(n) < c_2 n^k$ para $n > n_0$. Portanto, $g \in o(n^k)$. Como $g \in O(n^{k-\varepsilon})$ era arbitrária, Xitoró está correto.

2. Aplicando a fórmula de recorrência iterativamente, podemos ver que

$$T(n) = 2n - 1 + T(n - 1)$$

$$= 2n - 1 + 2(n - 1) - 1 + T(n - 2)$$

$$= 2[n + (n - 1)] - [1 + 1] + T(n - 2)$$

$$= 2[n + (n - 1)] - [1 + 1] + 2(n - 2) - 1 + T(n - 3)$$

$$= 2[n + (n - 1) + (n - 2)] - [1 + 1 + 1] + T(n - 3)$$

$$= \cdots$$

$$= 2[n + (n - 1) + \cdots + 2] - [1 + \cdots + 1] + T(1)$$

$$= 2\sum_{i=2}^{n} i - \sum_{i=2}^{n} 1 + 1$$

$$= 2\left[\frac{n(n+1)}{2} - 1\right] - (n-1) + 1$$

$$= n^{2}$$

Demonstração de $T(n) = n^2$.

Caso base: Para n = 1, temos que $T(1) = 1 = 1^2$, como esperado.

Passo indutivo: Suponha que $T(n) = n^2$ para algum $n \ge 1$. Assim, podemos aplicar o método da substituição em T(n+1).

$$T(n+1) = T(n) + 2(n+1) - 1$$

$$= n^{2} + 2n + 2 - 1$$

$$= n^{2} + 2n + 1$$

$$= (n+1)^{2}$$

Portanto, como a fórmula fechada é válida para T(n) quando n = 1 ou quando $T(n-1) = (n-1)^2$, o princípio da indução finita nos permite afirmar que $T(n) = n^2$ no domínio proposto.

3. Observando o tempo do algoritmo A, como o expoente crítico é $\log_2 8 = 3$ e $n^2 \in O(n^{3-\varepsilon})$ com $\varepsilon = 1 > 0$, o teorema Master nos diz que a recorrência determina a ordem de crescimento do tempo do algoritmo, isto é, $T_A(n) \in \Theta(n^3)$.

Agora, para o algoritmo B, como $f(n) = n^2$, então $T_B(n) \in \Omega(n^2)$. Pelo teorema Master, para que α determine o crescimento da função queremos que o expoente crítico seja $2 < \log_3 \alpha$, isto é, $\alpha > 3^2 = 9$. Com essa condição, $T_B(n) \in \Theta(n^{\log_3 \alpha})$.

Considerando as variáveis que temos controle, para que $T_B(n) \in o(T_A(n))$, α deve ser escolhido de modo que $n^{\log_3 \alpha} \in o(n^3)$. Logo, teremos que $\log_3 \alpha < 3$, ou seja, $\alpha < 3^3 = 27$. Como α deve ser inteiro, a escolha de maior valor é $\alpha = 26$.