SISTEMA NERVOSO AUTONOMO (SNA)

- E' costituito da strutture anatomicamente e fisiologicamente distinte che lavorano in maniera sinergica.
- Regola attività organi interni agendo a livello di ghiandole, tessuto adiposo, tessuto linfoide, vasi sanguigni, muscolatura liscia e cardiaca.

➤ Regola funzioni involontarie (N.B. Non innerva i muscoli scheletrici, la cui contrazione dipende da motoneuroni a, sottoposto a controllo volontario da parte della corteccia motoria) come pressione arteriosa, frequenza cardiaca, respirazione, temperatura corporea, secrezione ghiandolare, digestione, riproduzione.

Sistema motorio viscerale Effettori viscerali: Ganglio Sistema nervoso autonomo centrale Fibra Muscolo postgangliare liscio (amielinica) Cellula Neurone ghiandolare postgangliare Neurone pregangliare Fibra pregangliare (mielinica) Muscolo cardiaco

Figura. Organizzazione SNA: neurone primario o pregangliare-fibra pregangliare- neurone secondario o postgangliare-fibra postgangliare-effettori viscerali.

Il sistema nervoso autonomo

Figura. Organizzazione in una visione posteriore.

Sistema nervoso simpatico

Da T1 ad L2

GANGLI

- •3 cervicali
- •12 toracici
- •3-4 lombari

Neurone pregangliare nel corno laterale di sostanza grigia (VII lamina)

Fibre pregangliari dai nervi splancnici innervano la midollare del surrene

Rilascio di catecolamine in circolo

Amplificazione dell'azione simpatica

Sistema nervoso parasimpatico

Nucleo di Edinger-Westphal (CN III oculomotore comune)

Nucleo salivatorio superiore (CN VII facciale)

Nucleo salivatorio inferiore (CN IX glossofaringeo)

Nucleo motorio dorsale del vago e nucleo ambiguo (CN X Vago)

Afferenze pre-gangliari prendono origine da neuroni del tratto encefalico e sacrale del midollo spinale

Ganglio del sistema nervoso simpatico

Innervazione **solo** simpatica

- Ghiandole sudoripare
- Midollare del surrene
- Maggior parte delle arterie

→Assone pregangliare lungo, termina in un ganglio situato all'interno o nelle vicinanze dell'organo che innerva.

→Assoni pregangliari corti, terminano in strutture vicine.
Assoni post-gangliari lunghi. Assoni di un ganglio si distribuiscono in maniera diffusa e innervano molti organi.

Neuroni del Sistema Nervoso Autonomo

RICAPITOLANDO...

- → SN simpatico: risposta «lotta o fuga», in caso di stress o pericolo
- → SN parasimpatico: fase di riposo
- Per la maggior parte del tempo il controllo autonomico delle funzioni corporee è finemente regolato da entrambe le divisioni del sistema nervoso autonomo.

Sistema Nervoso Autonomo: ruolo cruciale nel mantenimento dell'OMEOSTASI dell'organismo.

Sistema Nervoso Autonomo

CNS = central nervous system; Pre = preganglionic; Post = postganglionic; ACh = acetylcholine; N = nicotinic receptor; NE = norepinephrine; EPI = epinephrine; D = dopamine; M_z = muscarinic receptor; β = β -adrenoceptor; α = α -adrenoceptor; D, = dopaminergic receptor

 A livello dei gangli del SNA, il trasmettitore rilasciato ai terminali delle fibre pregangliari simpatiche e parasimpatiche è l'Acetilcolina (Ach).

 Terminazioni pregangliari contengono vescicole con Ach, queste terminazioni formano delle sinapsi con neuroni situati nei gangli.

Effetti opposti esercitati dalle sezioni simpatica e parasimpatica del sistema nervoso autonomo su alcuni organi bersaglio

Tessuto bersaglio	Effetto simpatico	Effetto parasimpatico
Muscoli radiali dell'iride	Dilatazione della pupilla	
Muscoli sfinteri dell'iride		Costrizione della pupilla
Muscoli ciliari (che controllano lo spessore della lente)	Rilasciamento (messa a fuoco di oggetti distanti)	Contrazione (messa a fuoco di oggetti vicini)
Ghiandole lacrimali		Stimola la produzione di lacrime
Ghiandole salivari	Stimola la produzione di una piccola quantità di saliva viscosa ("bocca secca")	Stimola la produzione di una grande quantità di saliva diluita
Arteriole	Vasocóstrizione, in particolare delle arteriole che portano il sangue alla	Poco o nessun effetto
Cuore	pelle	
Cellule pace-maker	Aumenta la frequenza del battito cardiaco	Diminuisce la frequenza del battito cardiaco
Miociti ventricolari	Aumenta la forza di contrazione	Diminuisce la forza di contrazione
Tratto gastrointestinale		
Muscoli sfinterici	Contrazione	Rilasciamento
Motilità e tono della muscolatura liscia	Inibizione	Stimolazione
Secrezione delle ghiandole esocrine	Inibizione	Stimolazione
Cistifellea	Inibisce la contrazione	Stimola la contrazione
Fegato	Aumenta la glicogenolisi e, di conseguenza, la concentrazione di glucosio ematico	Nessun effetto
Vescica urinaria	Nessun effetto	Contrazione dei muscoli
Midollare della ghiandola surrenale	Stimola la secrezione	Nessun effetto

Caratteristiche del Sistema nervoso Viscerale

INVOLONTARIO: attività non controllata dal SNC

Neuroni efferenti motori al muscolo liscio degli organi interni come il **tratto digestivo, la vescica, i vasi** sanguigni, le ghiandole, il muscolo ciliare, il cuore

Fondamentale nel mantenimento dell'omeostasi interna

Prepara il corpo alla risposta "combatti o scappa"

Diviso in **SISTEMA N. SIMPATICO** (sistema toracolombare) e **SISTEMA N. PARASIMPATICO** (sistema craniosacrale)

3 tipi di gangli (vertebrali, prevertebrali, terminali) e 2 tipi di neuroni (pregangliari dal SNC al SNA e postgangliari dai gangli autonomi agli effettori viscerali)

Caratteristiche	Sistema Nervoso Somatico	Sistema nervoso Viscerale
Effettori	Muscoli scheletrici (volontari)	Muscolo liscio, cardiaco, ghiandole
Funzione generale	Adattamento all'ambiente esterno	Omeostasi dell'ambiente interno
N. di neuroni dal SNC all'effettore	1	2
Gangli esterni al SNC	0	Catene gangliari, gangli collaterali e terminali
Neurotrasmettitore	ACh	Ach, Noradrenalina, Adrenalina
Effetti del danno neurale sull'effettore	Paralisi del muscolo ed atrofia	Riduzione della velocità di risposta

Recettori colinergici

Recettori	Localizzazione	Effetto	Caratteristica
NICOTINICI	placca motrice e sinapsi gangliari se para e orto-simpatico	empre eccitatori	recettori canale (corrente + in)
MUSCARINICI	sinapsi postgangliari parasimpatico ed fibre simpatiche ghiandole salivari	ccitatori/inibitori	recettori legati a secondi messaggeri (cAMP in muscolo liscio e cardiaco; DAG e IP3 in cellule secernenti)
	M1 sinapsi gangliariM2 fibrocellule miocardiche e	eccitatori	IP3 e DAG
	fibrocellule muscolari lisce M4 fibrocellule muscolari lisce	inibitori	cAMP (chiusura canale per Ca++)
	apparato gastroenterico, genitale,	eccitatori	IP3

Recettori adrenergici

Recettori	Localizzazione	Effetto	Caratte
α1	postsinaptica	generalmente eccitatorio	
α2	presinaptica	inibisce il rilascio di NE	Rece
β	postsinaptica	generalmente inibitorio	lega
β 1	cuore	inotropo e cronotropo positivo	seco
β1 β2 β3	muscolo liscio	rilassamento	messa
β3	cuore tess. Adiposo	inotropo e lusitropico negativo aumento lipolisi	
	1033.7 tarp030	danicito nponsi	

Caratteristica

Recettori legati a secondi messaggeri

Tipo di recettore	Affinità per i neurotrasmettitori	Effettori in cui si trova	Effetto sull'effettore
Nicotinico	ACh dalle fibre autonome pre- gangliari	In tutti i corpi cellulari post-gangliari del sistema autonomo e nella midollare del surrene	Eccitatorio
	ACh dai motoneuroni	Nelle placche motrici delle fibre dei muscoli scheletrici	Eccitatorio
Muscarinico	ACh dalle fibre parasimpatiche post-gangliari	Nel muscolo cardiaco, nella muscolatura l iscia, nella maggior parte delle ghiandole esocrine e in alcune ghiandole endocrine	Eccitatorio o inibitorio, a seconda dell'effettore
α,	Maggiore affinità per la noradre- nalina (dalle fibre post-gangliari simpatiche) che per l'adrenalina (dalla midollare del surrene)	Nella maggior parte dei tessuti bersaglio del sistema simpatico	Eccitatorio
α_{a}	Maggiore affinità per la noradre- nalina che per l'adrenalina	Negli organi del tratto gastrointestinale	Inibitorio
β,	Uguale affinità per la noradrena- lina e per l'adrenalina	Nel cuore	Eccitatorio
$\beta_{\scriptscriptstyle B}$	Affinità solo per l'adrenalina	Nella muscolatura liscia delle arteriole e dei bronchioli	Inibitorio

Circuito dell'arco riflesso

- L'input di attivazione del SNA prevede la variazione di un parametro interno/esterno che si ripercuote sull'organismo. Informazioni sensoriali si hanno grazie a recettori disseminati nel corpo.
- Se l'informazione sensoriale percepita (es. variazioni di un parametro) non passa dalla corteccia cerebrale, non si è consapevoli della risposta, <u>RISPOSTA RIFLESSA</u>.
- SN simpatico e parasimpatico funzionano attraverso il circuito dell'arco riflesso.

→ passaggio diretto dell'impulso da un neurone afferente ad uno efferente (che può innervare, per esempio, un muscolo o una ghiandola)

Archi riflessi viscerali

→ Esempio: diminuzione della temperatura

Fibra afferente sensitiva invia informazioni raccolte a livello cutaneo a interneurone che contatta il neurone pre-gangliare, il quale con il suo assone lascia il SNC e contatta il neurone secondario che prenderà contatto con l'effettore

Confronto archi riflessi viscerali e somatici

Riflessi somatici

Riflesso flessorio: allontanamento di un arto da uno stimolo nocivo

Archi riflessi viscerali e somatici

Arco riflesso simpatico

Arco riflesso parasimpatico

SISTEMA NERVOSO ENTERICO

 Numero cospicuo di neuroni attribuibile al controllo di funzioni gastrointestinali.

 Sistema Nervoso Enterico: una terza divisione del SNA, definita semi-indipendente (attività regolata dal simpatico e dal parasimpatico).

→A livello dell'intestino, pancreas, cistifellea e organi accessori troviamo neuroni non riconducibile al SN simpatico e parasimpatico.

Il sistema nervoso enterico e plessi enterici

Il sistema nervoso enterico

Il plesso submucoso di Meissner è nello strato sottomucoso. Il plesso mienterico di Auerbach è tra lo strato longitudinale (esterno) e quello circolare di muscolo liscio. Ogni plesso è composto da piccoli gangli autonomi connessi da fibre amieliniche

- Segmenti toraco-lombari del midollo spinale innervazione simpatica
- Nucleo motorio dorsale del nervo vago (tronco encefalico e midollo spinale) **innervazione** parasimpatica (I nervo toracico e III lombare)

Connessioni cervello-sistema GI

Il riflesso gastro-colico funziona come un piccolo cervello

Regolazione vasomotilità

Trasmissione adrenergica

Nel surrene

Recettori adrenergici

Recettori β-adrenergici

Influenzano l'attività cardiaca:

- •Nodo SA: incrementano la frequenza
- Nodo AV: incrementano l'automaticità e la velocità di conduzione
- Atri e ventricoli cardiaci: incrementano l'automaticità e la velocità di conduzione

Recettori colinergici

agonisti

Recettori nicotinici

Recettori muscarinici

M3-causa contrazione del muscolo liscio in:

- •Occhio: sfintere dell'iride e muscolo ciliare
- •Polmoni: muscolo bronchiale e tracheale
- •Stomaco ed intestino: incremento motilità e tono parasimpatico
- •Ghiandole (lacrimali, bronchiali, salivari...) incremento secrezione.
- Vescica: muscolo detrusore
- •Organi sessuali: induzione del rilascio di NO nell'endotelio vascolare

M2-induce iperpolarizzazione per apertura di un canale al K+.

- •Nodo SA: decresce la frequenza cardiaca.
- Nodo AV: decresce la velocità di conduzione
- •Atri: decresce la contrattilità

Trasmissione colinergica nel cuore

Cardiomyocyte

Autoregolazione sinapsi autonome

- L'attivazione degli autorecettori blocca la secrezione del neurotrasmettitore.
- L'attivazione dei recettori muscarinici presinaptici blocca il rilascio di NA.
- L'attivazione dei recettori adrenergici presinaptici blocca il rilascio di Ach.

Autoregolazione delle sinapsi adrenergiche

Il rilascio del neurotrasmettitore è regolato da autorecettori (α_2 e β_2) presinaptici.

l'attivazione degli α₂

- riduce il rilascio del neurotrasmettitore adrenergico
- riduce il rilascio parasimpatico di ACh, aumentando la reciprocità
 - β₂ facilitano il rilascio di NE se attivati dall'adrenalina circolante

Anche il numero dei recettori può essere regolato

up-regulation (aggiunta di recettori nella membrana) down-regulation (rimozione di recettori dalla membrana)

Sinapsi colinergiche

Recettore

 M_1

gangli autonomi e cellule esocrine.

Farmaci per lo studio delle sinapsi

Sostanza	Azione
TTX e Saxitossina (STX)	Blocco canali del Na ⁺
TEA	Blocco dei canali del K ⁺
Conotossine ω	Blocco dei canali del Ca ⁺⁺
Acido kainico e Acido quisqualico	Agonisti recettore glutammato
Dizolcipina	Antagonista recettore glutammato
Bungarotossina β	Blocco rilascio presinaptico
Muscimolo	Agonista recettore GABA _A
Bicucullina	Antagonista recettore GABA _A
Muscarina, Pilocarpina	Agonista recettori muscarinici
Atropina	Antagonista recettori muscarinici
Nicotina e Carbacolo	Agonisti recettori nicotinici
D-tubucurarina (curaro)	Antagonista recettori nicotinici
Bungarotossina α	Blocco irreversibile recettori nicotinici
Eserina	Inibitore acetilcolinesterasi

Chi regola le informazioni sensoriali viscerali a livello centrale?

Via
afferente
fibre che
portano gli
impulsi
nervosi dai
recettori
sensoriali che
si trovano in
periferia
verso il SNC

Ipotalamo

Physiological mechanisms underlying hypothalamic function.

Contextual information (Cerebral cortex, amygdala, hippocampal formation)

> Hypothalamus (Compares input to biological set points)

Sensory inputs (Visceral and somatic sensory pathways, chemosensory and humoral signals) Visceral motor, somatic motor, neuroendocrine, behavioral responses

- Situato alla base del prosencefalo
- Occupa una posizione centrale nell'encefalo e confina con la ghiandola pituitaria
- Centro di controllo chiave dell'attività motoria viscerale e dell'omeostasi in generale

Impressionante gamma di funzioni

Controllo flusso sanguigno (regolazione gittata cardiaca, tono vasomotorio, osmolarità plasmatica, clearance renale)

Regolazione metabolismo energetico (glucosio ematico, comportamento alimentare, funzione digestiva, temperatura)

Regolazione attività riproduttiva

Coordina le risposte a situazioni ostili

Sistema a feedback

Rilascio di sostanze attive

Sinergica azione di altre sostanze in circolo

Vie sensoriali ascendenti

Talami (nuclei ventro-

postero-laterali)

Corteccia

Decussazione

dei lemnischi

Neuroni di 2º

sistema spino-

ordine del

talamico

Nuclei di

Goll e Burdach

somatoestesica

Sistema della colonna dorsale

Corteccia

somatoestesica

Lemnischi -

Neuroni

sist. della

mediali

sensoriali del

colonna dorsale

Le fibre trasmettono rapidamente e con molta precisione le informazioni al cervello

1ª sinapsi nel midollo allungato nei nuclei cuneato e gracile.

Decussazione.

Tatto fine
Pressione fine
Sensazioni fasiche
Postura e movimenti

Sistema spinotalamico

Le fibre trasmettono più lentamente e con meno precisione le informazioni al cervello

> 1ª sinapsi nel midollo spinale nel segmento d'ingresso del nervo spinale. Decussazione.

Tatto grossolano
Pressione
grossolana
Dolore
Temperatura

Neuroni sensoriali
del sist. spinotalamico