WASTE IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

NAVDEEP RAJ | DATA SCIENCE FINAL CAPSTONE | MENTOR: MAX SOP

ABSTRACT/BUSINESS PROBLEM

- In today's fast-growing economy, rapid advancement and industrialization have led to an enormous generation of waste which has become a matter of great concern resulting in environmental pollution and hazardous health problems.
- It is important to have an advanced waste filtration management system which can separate waste into different categories for better recycling and environmental cleaning.
- Objective of this project is to establish a smart waste classification system which can separate waste from images using CNNs.
- This project uses TrashNet dataset for generating CNN models with six classes to classify the waste into.
- Various transfer learning architectures like VGG, DenseNet, MobileNet, Inception, etc. have been used to train the data and achieve accuracy.

PROJECT GOALS

- Data pre-processing of trash images and create augmented data to obtain high classification accuracy.
- To train data on various architectures like VGG-16, ResNet-50, DenseNet, Inception, Custom layering, MobileNet, etc.
- Evaluate models majorly on accuracy metrics and class prediction probability.

DATASET

- Dataset was created by Thung and Young.
- This dataset spans six categories and consists of 2527 images in total
- We used approximately 75% from each category as training data, and 25% as development data. Therefore, our training set had 1894 images in total, and our development set had 633 images in total.
- Cardboard Training 302, Test 101, Total 403
- Glass Training 376, Test 125, Total 501
- Metal Training 307, Test 103, Total 410
- Paper Training 445, Test 149, Total 594
- Plastic Training 361, Test 121, Total 482
- Trash Training 103, Test 34, Total 137
- Total Training 1894, Test 633, Total 2527

SOME IMAGE SAMPLES

METHODOLOGY/STEPS

CNN - AN INTRODUCTION

- A Convolutional neural network (CNN) is a neural network that has one or more convolutional layers and are used mainly for image processing, classification, segmentation and also for other auto correlated data
- The traditional CNN structure is mainly composed of convolution layers, pooling layers, fully connected layers, and some activation functions.
- Each convolution kernel is connected to the part of feature maps. The input is connected to all of the output elements in the fully connected layer.

 $Source: \underline{https://www.researchgate.net/figure/Architecture-of-a-Convolutional-Neural-Network-CNN-The-traditional-CNN-structure-is_fig1_330106889$

MODELLING

- Note: All transfer Models used pretrained weights i.e layers were frozen with weights from Imagenet data
- For all models
 - a) Output Activation Softmax
 - b) Layer Activation Relu
 - c) Learning rate = .00005
 - d) Optimizer Adam
 - e) Loss CategoricalCrossentropy
 - f) Epochs 20-25

MODEL 1/CUSTOME SEQUENTIAL MODEL

3 Convolutional Layers & 2 Fully Connected Layers

MODEL 1 PERFORMANCE

Model's performance – Average with accuracy of 0.48, predicted Well for carboard, metal & plastic class

Classificatio	n Report			
	precision	recall	f1-score	support
cardboard	0.85	0.69	0.76	100
glass	0.36	0.26	0.30	125
metal	0.41	0.50	0.45	102
paper	0.45	0.58	0.51	148
plastic	0.46	0.53	0.49	120
trash	0.00	0.00	0.00	34
accuracy			0.48	629
macro avg	0.42	0.43	0.42	629
weighted avg	0.47	0.48	0.47	629

MODEL 2 – SEQUENTIAL 4 CONV & 2 FC LAYERS WITH DROPOUT

MODEL 2 PERFORMANCE

Classificatio	n Report			
	precision	recall	f1-score	support
cardboard	0.80	0.78	0.79	100
glass	0.45	0.34	0.39	125
metal	0.63	0.25	0.36	102
paper	0.43	0.58	0.50	148
plastic	0.40	0.65	0.49	120
trash	0.00	0.00	0.00	34
accuracy			0.49	629
macro avg	0.45	0.43	0.42	629
weighted avg	0.50	0.49	0.47	629

Model's performance – Average with accuracy of 0.49, predicted Well for carboard and paper

MODEL 3 – INCEPTION V3 TRANSFER LEARNING MODEL

MODEL 3 PERFORMANCE

Model's performance – Good with accuracy of 0.75, predicted Well on most of the classes, even on trash which has very less test samples.

Classificatio	n Report			
	precision	recall	f1-score	support
cardboard	0.89	0.85	0.87	100
glass	0.78	0.67	0.72	125
metal	0.66	0.72	0.69	102
paper	0.74	0.89	0.81	148
plastic	0.71	0.78	0.74	120
trash	1.00	0.15	0.26	34
accuracy			0.75	629
macro avg	0.80	0.68	0.68	629
weighted avg	0.77	0.75	0.74	629

MODEL 4 - MOBILENET TRANSFER LEARNING MODEL

MODEL 4 PERFORMANCE

Model's performance – Good with accuracy of 0.74, predicted Well on all classes, pretty good prediction, even recall is high which means more positive predictions are correct

Classificatio	n Report			
	precision	recall	f1-score	support
cardboard	0.95	0.82	0.88	100
glass	0.74	0.59	0.66	125
metal	0.70	0.80	0.75	102
paper	0.76	0.90	0.82	148
plastic	0.66	0.75	0.70	120
trash	0.46	0.18	0.26	34
accuracy			0.74	629
macro avg	0.71	0.67	0.68	629
weighted avg	0.74	0.74	0.73	629

MODEL 5 – DENSENET121 TRANSFER LEARNING MODEL

MODEL 5 PERFORMANCE

Model's performance – Good with accuracy of 0.73, predicted Well on all classes, pretty good prediction,

Classificatio	n Report			
	precision	recall	f1-score	support
cardboard	0.88	0.81	0.84	100
glass	0.68	0.77	0.72	125
metal	0.78	0.73	0.75	102
paper	0.70	0.89	0.78	148
plastic	0.71	0.61	0.65	120
trash	0.56	0.15	0.23	34
accuracy			0.73	629
macro avg	0.72	0.66	0.66	629
weighted avg	0.73	0.73	0.72	629

MODEL 6 – VVG16 TRANSFER LEARNING MODEL

MODEL 6 PERFORMANCE

Model's performance – OK with accuracy of 0.65, predicted Well on paper, plastic & Cardboard,

	precision	recall	f1-score	support
cardboard	0.72	0.69	0.70	100
glass	0.71	0.54	0.62	125
metal	0.64	0.69	0.66	102
paper	0.71	0.78	0.74	148
plastic	0.55	0.65	0.59	120
trash	0.45	0.26	0.33	34

0.63

0.65

0.65

0.61

0.65

629

629

629

Classification Report

accuracy

macro avg

weighted avg

0.60

0.65

MODEL 7 – RESNET50 TRANSFER LEARNING MODEL

MODEL 7 PERFORMANCE

Model's performance – poor with accuracy of 0.27, predicted Only glass and paper classes nothing in other classes,

Classificatio	n Report			
	precision	recall	f1-score	support
cardboard	0.00	0.00	0.00	100
glass	0.23	0.67	0.35	125
metal	0.00	0.00	0.00	102
paper	0.33	0.59	0.42	148
plastic	0.00	0.00	0.00	120
trash	0.00	0.00	0.00	34
accuracy			0.27	629
macro avg	0.09	0.21	0.13	629
weighted avg	0.12	0.27	0.17	629

MODEL 8 - XCEPTION TRANSFER LEARNING MODEL

MODEL 8 PERFORMANCE

Model's performance – Best so far with accuracy of 0.79, predicted most classes with best recall so far.

Classification	n Report			
	precision	recall	f1-score	support
cardboard	0.91	0.85	0.88	100
glass	0.81	0.77	0.79	125
metal	0.76	0.79	0.78	102
paper	0.77	0.89	0.82	148
plastic	0.72	0.78	0.75	120
trash	0.88	0.21	0.33	34
accuracy			0.79	629
macro avg	0.81	0.72	0.73	629
weighted avg	0.79	0.79	0.78	629

MODEL 9 – HYPER MODEL USING RANDOM SEARCH WITH MULTIPLE PARMATERS

- 2 TRIALS & 2 EXCUTIONS PER TRIAL WERE RUN
- Range for Dropout 0.0 to 0.5
- Range for Activation Relu, Tanh
- Range for learning rate 0.0001 to 0.01
- Range for filters 32, 64
- Range for Dense Units 32 to 256

MODEL 9 PARAMETERS LIST & RESULT

```
Results summary
Results in .\untitled_project
Showing 10 best trials
Objective(name='accuracy', direction='max')
Trial summary
Hyperparameters:
num filters 1: 32
dropout 1: 0.25
dropout 2: 0.300000000000000004
units: 128
dense activation: tanh
dropout 3: 0.150000000000000000
learning rate: 0.00016355245798526342
Score: 0.5640147626399994
Trial summary
Hyperparameters:
num filters 1: 32
dropout 1: 0.5
dropout 2: 0.1
units: 96
dense activation: tanh
dropout 3: 0.4
learning rate: 0.0004442889681244208
Score: 0.3727607876062393
```

- 1st Trial Performance 0.56 accuracy score
- 2nd Trial Performance 0.372 accuracy score
- Final Best Model performance on Test set 62% accuracy score

MODEL COMPARISON

MODEL	Training Accuracy	Validation Accuracy
Custom Model 1 using 3 Conv layers and 2 FC layers	0.475	0.482
Custom Model 2 using 4 Conv and 2 FC layers	0.454	0.494
InceptionV3	0.722	0.752
MobileNetV2	0.756	0.742
DenseNet121	0.700	0.731
VGG16	0.562	0.652
Resnet50	0.263	0.273
Xception	0.759	0.787
HyperModel using Random Search – Best Model	0.564	0.622

CONCLUSION/SUMMARY

- We tried a lot of models to see which models worked best on our data, Xception & Inception proved to be the best, but maybe with more tuning we can achieve an improvement in accuracy by 4-5%.
- We achieved the best accuracy of 79% for validation accuracy with Xception model
- Even with limited challenges, the overall performance of the models is satisfactory and the results obtained are accurate and sufficient enough to use in similar applications.
- Project was conducted with full genuineness and according to the findings it can be seen that the transfer learning models
 outperformed custom models.
- Scope can be widened by using techniques like object detection algorithm and segmentation for achieving higher accuracy with a balanced dataset and more data size for scalability
- Further data are needed to achieve higher accuracy rates. In the context of our proposed model, we have achieved high classification success.

REFERENCES

- G. Thung and M. Yang. "Dataset of images of trash"
- https://github.com/KhazanahAmericasInc
- https://github.com/frankplus/trash-cnn
- Himanshu Gupta, http://norma.ncirl.ie/
- https://sicara.ai/blog/author/julie-prost