

Appl. No. — : 10/619,796
Filed : July 15, 2003

AMENDMENTS TO THE SPECIFICATION

IN THE SPECIFICATION:

Please amend the specification as follows. Insertions appear as underlined text (e.g., insertions) while deletions appear as strikethrough text (e.g., ~~strike~~).

Please amend the paragraph beginning on page 11 at line 4 as follows:

Rather than selecting three specific locations for $E(\bar{R})$, it is known that the accuracy of the solution is often improved by integrating known values of $E(\bar{R})$ using a weighting function over the region of integration. For example, assuming that $E(\bar{R})$ is known along the surface of the wire 100, then choosing three weighting functions $\underline{g_1(\ell)}, \underline{g_2(\ell)}$, and ~~g₂(ℓ)~~ g₁(ℓ), g₂(ℓ), and g₃(ℓ), the desired three equations in three unknowns can be written as follows (by multiplying both sides of the equation by $g_i(\ell)$ and integrating):

$$\begin{aligned} \int E(\ell') g_1(\ell') d\ell' &= I_1 \int \int f_1(\ell) g_1(\ell') G(\ell, \ell') d\ell d\ell' + I_2 \int \int f_2(\ell) g_1(\ell') G(\ell, \ell') d\ell d\ell' \\ &\quad + I_3 \int \int f_3(\ell) g_1(\ell') G(\ell, \ell') d\ell d\ell' \\ \int E(\ell') g_2(\ell') d\ell' &= I_1 \int \int f_1(\ell) g_2(\ell') G(\ell, \ell') d\ell d\ell' + I_2 \int \int f_2(\ell) g_2(\ell') G(\ell, \ell') d\ell d\ell' \\ &\quad + I_3 \int \int f_3(\ell) g_2(\ell') G(\ell, \ell') d\ell d\ell' \\ \int E(\ell') g_3(\ell') d\ell' &= I_1 \int \int f_1(\ell) g_3(\ell') G(\ell, \ell') d\ell d\ell' + I_2 \int \int f_2(\ell) g_3(\ell') G(\ell, \ell') d\ell d\ell' \\ &\quad + I_3 \int \int f_3(\ell) g_3(\ell') G(\ell, \ell') d\ell d\ell' \end{aligned}$$

Note that the above double-integral equations reduce to the single-integral forms if the weighting functions $g_i(\ell)$ are replaced with delta functions.

Please amend the paragraph beginning on page 12 at line 1 as follows:

where

$$V_i = \int E(\ell') g_i(\ell') d\ell'$$

and

$$Z_{ij} = \int \int f_j(\ell) g_i(\ell') G(\ell, \ell') d\ell d\ell'$$

Appl. No. : **10/619,796**
Filed : **July 15, 2003**

$$Z_{ij} = \int \int f_j(\ell) g_i(\ell') G(\ell, \ell') d\ell d\ell'$$

Please amend the paragraph beginning on page 12 at line 5 as follows:

Solving the matrix equation yields the values of I_1 , I_2 , and I_3 . The values I_1 , I_2 , and I_3 can then be inserted into the equation $I(\ell) \approx I_1 f_1(\ell) + I_2 f_2(\ell) + I_3 f_3(\ell)$ $I(\ell) \approx I_1 f_1(\ell) + I_2 f_2(\ell) + I_3 f_3(\ell)$ to give an approximation for $I(\lambda)$. If the basis functions are triangular functions as shown in Figure 1B, then the resulting approximation for $I(\lambda)$ is a piecewise linear approximation as shown in Figure 1C. The I_i are the unknowns and the V_i are the conditions (typically, the V_i are knowns). Often there are the same number of conditions as unknowns. In other cases, there are more conditions than unknowns or less conditions than unknown.