MEMORANDUM

To: All BA members From: Yuchen Liu Date: Nov 16, 2016

Subject: Trump's Linguistic Effectiveness Report

Introduction

In this report, we are going to select four speeches to analyze Trump's speech style. Our object is to find the insights on Trump's linguistic effectiveness.

Methods

```
1. Create a Corpus for the Speeches
```

a. Create Corpus

b. Explore the Corpus:

```
> summary(newscorpus2) #summary of corpus
Corpus consisting of 4 documents.

Text Types Tokens Sentences
Speech1 536 1910 170
Speech2 1469 6426 453
Speech3 1129 8613 639
Speech4 959 2783 138

Source: /Users/apple/* on x86_64 by apple
Created: Mon Nov 14 22:01:04 2016
```

2. Complete a frequency analysis of word usage

a. Generate (DFM):

```
to create a custom dictionary list of stop words:
```

swlist2 = c("thank", "much", "can", "will", "just", "trump")

Reviewing top features:

view(dfm2)

	everybody	sorry	keep	waiting [‡]	complicated	business	received	call	secretary [‡]	clinton	congratulated	us	victory	family	hard- fought	campaign	mean [‡]	fought	hard [‡]	hillary
Speech1	1	1	ı	1	1	2	2	1 .	4		1	2	7	2	5		5 2	2 1	1	3 1
Speech2		3 ()	4	1	1	1		4	2 1-	4	0	6	0	0		0 3	3 () !	5 15
Speech3	10) 1	1	2	0	0	1)	5		1	0 2	7	1	7)	1 1	1 ()	1 (
Speech4) ()	0	0	0	0	1		1	3	0	5	0	0)	2 () () (0 11

topfeatures(dfm2, 100)

displays 100 features

> topfeatures(df	m2. 100)	# displays 100 fe	eatures				
people	going		know	re	country	now	one
121	102	73	72	72	70	54	50
want	don	say	us	said	get	immigration	right
50	50	46	45	42	40	36	35
like	back	clinton	take	even	states	make	number
33	32	29	29	29	29	29	29
need	many	really	new	11	hillary	world	illegal
29	28	28	28	28	27	27	27
jobs	time	united	also	billion	military	american	big
27	26	26	26	25	25	24	24
years	china	president	believe	got	never	good	work
24	24	23	23	22	22	22	21
happen	tell	think	love	way	mexico	border	money
21	21	21	20	20	20	20	20
audience	come	administration	immigrants	defense	america	law	member
20	19	19	19	19	18	18	18
million	ve	plan	go	ever	office	bring	build
18	18	17	17	17	17	17	17
things	first	countries	system	obama	day	put	nothing
16	16	16	16	16	16	15	15
thousands	iraq	everybody	call	job	look	lot	place
15	15	14	14	14	14	14	14
needs	criminal	nice	support	folks	end	two	state
14	14	14	13	13	13	13	13
today	politicians	leaders	family				
13	13	13	12				

Analysis of DFM:

First, because the texts are speeches, so I choose to create new dictionary to screen out some common words in speeches, such as "can", "thank", "will", "much" and "just". In the DFM, we can see that Mr. Trump's most frequent words are "people", "going", "great", "know", "re-"," country", "now", "one", "want". These words are all simple monosyllables. In addition, besides the top 10 frequent words, we can also see some common topics, such as "immigration", "military", "jobs", "Mexico", "China", "criminal". Furthermore, he also mentioned his competitors Hillary a lot in his speeches.

b. Find Root words:

topfeatures.stem2 <-topfeatures(dfm.stem2, n=50) #fifty common words topfeatures.stem2

> topfeati	ures.stem	12										
peopl	go	countri	know	great	re	want	immigr	now	say	one	don	get
121	119	87	75	74	72	59	58	54	54	54	50	48
need	us	said	state	job	take	make	right	work	like	year	clinton	american
46	45	42	42	41	38	38	35	34	34	34	32	32
back	illeg	number	come	even	build	happen	law	mani	realli	new	11	hillari
32	31	31	30	30	30	29	29	28	28	28	28	27
time	world	unit	thing	also	tell	border	think	billion	militari	call		
. 27	27	26	26	26	26	26	26	25	25	24		

Analysis of Root Words:

The root words can be used to justify the conclusion showed in the "Analysis of DFM", which indicate the most frequent root words and the most likely topics in Mr. Trump's speeches.

c. Analyzing DFM with bigrams:

topfeatures.bigram2 <-topfeatures(dfm.bigram2, n=50)
topfeatures.bigram2</pre>

>	topfeatures.bigram2				
	united_states	hillary_clinton	audience_member	illegal_immigrants	middle_east
	25	24	17	13	11
	re_going	law_enforcement	criminal_aliens	president_obama	bring_back
	re_goting	tuw_enforcement	Criminal_attens	prestdent_obdilid	Dring_back
	11	9	9	7	7
	ll_say	net_worth	missile_defense	take_care	right_now
	6	6	6	5	5
	great_job	immigration_system	special_interests	open_borders	number_one
	5	5	5	5	5
	right_people	islamic_terrorism	web_site	make_america	member_yes
	5	5	5	5	5
	saudi_arabia	nice_person	foreign_policy	great_people	american_people
	5	5	5	4	4
	many_many	sanctuary_cities	air_force	billion_dollars	one_thing
	4	4	4	4	4
	day_one	even_know	common_sense	need_somebody	re_gonna
	4	4	4	4	4
	common_core	radical_islamic	tremendous_potential	inner_cities	truly_great
	4	4	3	3	3
	talented_people	new_york	four_years	white_house	illegal_immigration
		3	3	3	3

Analysis of bigrams:

The bigrams provide more detailed information. Mr. Trump's speeches focus on making United States a great country, his most frequent topic would be "illegal immigrants" and "jobs".

3. Complete a sentiment analysis

```
mydict2<- dictionary(list(negative = c("detriment*", "bad*", "awful*", "terrib*",
"horribl*", "stupid", "weak", "loser", "tough", "dangerous", "zeor", "hate", "worse"),

postive = c("fantastic", "classy", "good", "great", "super*", "excellent",
"yay", "win", "smart", "amazing", "terrific"))) ###create your own dictionary</pre>
```

dfm.sentiment2 <- dfm(cleancorpus2, dictionary = mydict2) topfeatures(dfm.sentiment2) View(dfm.sentiment2)</pre>

	negative $^{\hat{\circ}}$	postive [‡]
Speech1	6	34
Speech2	20	28
Speech3	24	53
Speech4	2	3

Sentiment analysis:

The outcomes indicate that speech 1 (victory speech) used more positive words; speech 2 used more positive words but the difference between negative words and positive words is

	negative	positive
Speech1	15%	85%
Speech2	41.67%	58.33%
Speech3	31.17%	68.83%
Speech4	40%	60%

small; speech 3 use more positive words; speech 4 is more neutral because there are few emotional words.

4. Common topics in the corpus

Common topic analysis:

According to the two charts shown above, the common topics are:

- 1. Immigration Issue
- 2. How to make America to be great
- 3. Trump will bring jobs to the country

Context analysis (the screen shots below are just two sample words):

kwic(cleancorpus2, "believe", 5)
kwic(cleancorpus2, "great", window = 3)

```
contextPre keyword
[Speech1, 1163]
                         A very special person who [ believe ] me I read reports that
[Speech2, 1791]
[Speech2, 1794]
                              are we doing Hard to [ believe ] Hard to believe Now that
                           Hard to believe Hard to [ believe ] Now that you've heard about
[Speech2, 2089]
                             work with us I really [ believe ] it Mexico will work with
[Speech2, 2098]
                         work with us I absolutely [ believe ] it And especially after meeting
[Speech2, 2112] wonderful president today I really [ believe ] they want to solve this
                             so great It's hard to [ believe ] people don't even talk about
[Speech2, 2258]
[Speech2, 2847]
                             And they will go face [ believe ] me They're going to go
[Speech2, 4080]
                         the right people doing it [ believe ] me very very few will
[Speech2, 4362]
                            take them back Hard to [ believe ] with the power we have
[Speech2, 4370]
                             power we have Hard to [ believe ] We're like the big bully
[Speech2, 4735]
                        If people around the world [ believe ] they can just come on
                                                                me But they re killing
 [Speech3, 242]
                           They are not our friend [ believe ]
 [Speech3, 457]
                            hotel in Syria Can you [ believe ] this They built a hotel
[Speech3, 794]
                             from to percent Don t [ believe ] the Don t believe it
                               t believe the Don t [ believe ] it That s right A
[Speech3, 798]
[Speech3, 1138]
                            They will not bring us [ believe ] me to the promised land
[Speech3, 1274]
                           level that you wouldn t [ believe ] It makes it impossible for
[Speech3, 3190]
                          my opinion the new China [ believe ] it or not in terms
[Speech3, 3460]
                         them one for each country [ Believe ] me folks We will do
[Speech3, 4236]
                           there except for us And [ believe ] me you look at the
[Speech3, 5671]
                                   I don t have to [ believe ] it or not I {\tt m}
[Speech3, 5894]
                       builds walls better than me [ believe ] me and I ll build
```

```
contextPre keyword
                                                                                contextPost
                    and unify our [ great ] country As I've
an incredible and [ great ] movement made up
[Speech1, 196]
 [Speech1, 214]
                                                great ] movement made up
                      care of our [
 [Speech1, 421]
                                                areat 1 veterans who have
 [Speech1, 505]
                                We have a [
                                               great ] economic plan We
                             We will have [ great ] relationships We expect
[Speech1, 546]
                                               great ] great relationships No
 [Speech1, 552]
                                                great ] relationships No dream
[Speech1, 553]
                            to have great [
                       challenge is too [
                                                great ] Nothing we want
[Speech1, 709]
                            me right now Γ
                                               Great | people I've learned
                   every regard Truly [
 [Speech1, 724]
                                               great ] parents I also
                        brother Robert my [
                                                great ] friend Where is
[Speech1, 757]
[Speech1, 779]
                    that's okay They're [
                                               great ] And also my
                     late brother Fred [
                                               great ] guy Fantastic guy
Great ] brothers sisters great
[Speech1, 786]
                           was very lucky [
[Speech1, 796]
 [Speech1, 799] Great brothers sisters [
                                                great ] unbelievable parents To
                     much What a [
[Speech1, 876]
                                               great ] group You've all
[Speech1, 1034]
                                 is Jeff A [
                                                great ] man Another great
[Speech1, 1037]
                     great man Another [
                                                areat 1 man very tough
[Speech1, 1432]
                                   to do a [
                                               great ] job and I
                               will do a [
                                               great ] job We will
great ] job I look
[Speech1, 1449]
[Speech1, 1455]
                   also discussed the [
many of the [
Force veteran a [
                                                great ] contributions of Mexican-American
 [Speech2, 209]
 [Speech2, 679]
                                              great ] parents who lost
                                                great ] woman according to
[Speech2, 998]
[Speech2, 1536]
                                                great ] dignity So important
                         our country with [
[Speech2, 1911] Immigration offices very [
[Speech2, 1976] will build a [
                                                great ] people Among the
                                               great ] wall along the
                        it And they're [
[Speech2, 2006]
                                                great ] people and great
                         great people and [ great ] leaders but they're
[Speech2, 2009]
```

The outcomes indicate that Mr. Trump applied catchphrases, which are the speech styles that salesmen use, such as "believe me", "many people are saying" and "great".

Summary

Mr. Trump usually applies simple monosyllables in his speeches; he basically just uses casual speech in a public setting. In addition, Mr. Trump's speeches are filled with sentiments when the speech topics are relating immigration and jobs, which indicates that he is adept in connecting audiences on an emotional level. He often uses catchphrases, which are actually versions of speech mechanisms that salesmen use. Furthermore, the topics he often targets in his speeches are "immigration" and "jobs".

I will be glad to discuss these conclusions and follow through on how to compute statistical significance between Trump's and other presidents' speech styles.

Thank you.