ECE 606, Fall 2019, Assignment 11

Zhijie Wang, Student ID number: 20856733

zhijie.wang@uwaterloo.ca

November 26, 2019

1. Proof.

For the NP-hard part, we reduce from VertexCover. Given an instance $\langle G = \langle V, E \rangle, k \rangle$ of VertexCover, we output our instance of proposed problem DistinctSkills, $\langle |E|, |V|, k \rangle$, where every vertex in V represent an application, and every edge in E represent a skill. Hence, each applicant have a skill if and only if the corresponding edge incident on the corresponding vertex. Then we need to prove VertexCover \leq_k DistinctSkills.

For the only-if direction, suppose G has a vertex cover of size k, then, there must exist a subset of applicants of size $\leq k$ for DISTINCTSKILLS because all the edges which represent skills are incident of the vertex cover. For the if direction, suppose G doesn't have a vertex cover of size k, then there exists a edge which is not incident on any vertexes of a vertex set which has a size $\leq k$, then, there must exists a skill which is not included.

For the **NP** part, given a true instance < n, m, k >, we could adopt as certificate < r >, where r is a subset of m applications. Our verification algorithm first check that if all n skills are included in these applications, then check if the size of the subset is $\le k$. The certificate is linear in the size of the instance, and the verification algorithm is at worst polynomial-time.

Therefore, DISTINCTSKILLS is a \mathbf{NP} -complete problem.

2. Proof.

For the NP-hard part, we reduce from Independent Set. Given a instance $\langle G = \langle V, E \rangle, k \rangle$ of Independent Set, we output our instance for Disjoint Path as following. Let's said our new graph H. For every edge $e_i \in E$, we give H a vertex q_i . Then, for every vertex $v_j \in E$, we create a path $p_j \in P$ which constructed by $q_n \to \cdots \to q_m$, where e_n, \ldots, e_m are edges incident on v_j . Also, we give all these paths' edges to H. Hence, we output $\langle H, P, k \rangle$ as our instance of Disjoint Path. Then we need to prove Independent Set \leq_k Disjoint Path.

For the only-if direction, suppose G has a independent set with a size of k, then, any two of these k vertexes don't have a edge, therefore, there must be k paths in P that no vertex appears in more than one path. For the if direction, suppose G doesn't have a independent set with a size of k, then, for any subset of V with size of k, there must be two distinct vertexes have a edge, let's said e', incident on both of them. Therefore, there must be two paths in H share one vertex q' which is corresponding to e'.

For the **NP** part, given a true instance < G, P, k >, we could adopt as certificate < r >, where r is a subset of P. Our verification algorithm first check that if no vertex appears more than one time in paths of r, then check if the size of the subset r is k. The certificate is linear in the size of the instance, and the verification algorithm is at worst polynomial-time.

Therefore, DISJOINTPATH is a **NP**-complete problem.

3. Proof.

For the NP-hard part, we reduce from HamCycle. Given an instance $\langle G = \langle V, E \rangle \rangle$ of HamCycle, we first turn all the edges in G into two edges with different directions, then, for a vertex $a \in V$, we weight all the edge incident on a as (|V|-2)/2, and -1 for all the other edges. Let's say this new graph $\langle H = \langle V, E' \rangle, w \rangle$, which is our instance for ZeroWeightCycle. Then we need to prove HamCycle \leq_k ZeroWeightCycle.

For the only-if direction, suppose G has a hamiltonian cycle, then, there must exists a zero weight cycle for H because the hamiltonian cycle in G must have vertex a, therefore this cycle in H must have 2 edges

weighted as (|V|-2)/2 and (|V|-2) edges weighted as -1, which could construct a zero weight cycle. For the if direction, suppose G doesn't have a hamiltonian cycle, for any cycle in H, here we do a case analysis. 1) If this cycle include vertex a, it is zero weight cycle if and only if this cycle has another (|V|-2) edges weighted as -1, then, for a simple cycle it must have another |V|-1 vertexes, which means this is a hamiltonian cycle. Hence, this is a contradiction. 2) If this cycle doesn't include vertex a, then, it cannot be zero weight cycle because any cycle would have a weight < 0.

For the **NP** part, given a true instance < G = < V, E >, w >, we could adopt as certificate < m >, where m is a cycle in G. Our verification algorithm will check that if cycle is zero-weight. The certificate is linear in the size of the instance, and the verification algorithm is at worst polynomial-time.

Therefore, ZEROWEIGHTCYCLE is a NP-complete problem.

4. Proof.

For the NP-hard part, we reduce from VertexCover. Given an instance $\langle G = \langle V, E \rangle, k \rangle$ of VertexCover, for $e_m \in E$, where $m \in \{1, ..., |E|\}$, we introduce a new vertex q_m , then connect it to v_i, v_j , where $e_m = \langle v_i, v_j \rangle$. Let's say this new graph $H = \langle V', E' \rangle$, and our instance for NoCycles is $\langle H, k \rangle$. Then we need to prove VertexCover \leq_k NoCycles.

For the only-if direction, suppose G have a vertex cover with a size of k, then, if we remove all the vertexes and edges incident on them in this vertex cover in H, all the edges of G has been removed. We notice that every $< q_m, v_i, v_j >$ is a cycle, however, $e_m = < v_i, v_j >$ has been removed, therefore, there must be no cycles in H after removal. For the if direction, suppose G doesn't have a vertex cover with a size of k, then, we remove any subset of vertexes with a size < k, there must exists a edge $e_m = < v_i, v_j >$ from G, then, there must exists a cycle $< q_m, v_i, v_j >$.

For the **NP** part, given a true instance $\langle G = \langle V, E \rangle, k \rangle$, we could adopt as certificate $\langle X \rangle$, where X is a set $\subset V$. Our verification algorithm will first check that if the size of X is k, then check if remove all the vertexes and edges incident on vertexes in X, there is still a cycle in G. The certificate is linear in the size of the instance, and the verification algorithm is at worst polynomial-time.

Therefore, NoCycles is a NP-complete problem.