EME 152 Discussion 9

November 24, 2021

Agenda

- Derivation of slider velocity
- Input/output torque example
- Three-position synthesis example

Derivation of Slider Velocity

Input/output Torque Example

- Setting US/SI units is now very important!
 - Set the unit system with uscUnit(true) for US units and false for SI units.
- In the CFourbar class:
 - Use the function setGravityCenter() to set the gravity center properties (including r_g and delta) of links 2, 3, and 4.
 - Use the function setInertia() to set inertial properties of links 2, 3, and 4.
 - Use the function setMass() to set the masses of links 2, 3, and 4.
 - Use the functions forceTorque(), forceTorques(), and plotForceTorques() to calculate or plot forces on joints in the four bar linkage mechanism.
- Visit the Ch Mechanism Toolkit file in C-STEM Studio > My Workspace >
 LearnMechanism > chmechanism.pdf for the parameters and return value of
 these functions.

01_forceTorque.ch

02_plotForceTorques.ch

Four Bar Linkage Position Synthesis

- Need to have phi₁, phi₂, phi₃ and psi₁, psi₂, psi₃ in radians.
- In the CFourbar class:
 - The function synthesis() requires an empty array for the length of links r[1:4], an array of the input angles phi[1:3], and an array of the output angles psi[1:3]. This function synthesizes the four bar linkage and generates the array r[1:4] which you can then use in the function setLinks().
 - After using setLinks(), you can treat the CFourbar class like a normal four bar mechanism and you can call any other function (e.g. calculating forces and torques, animating, etc.)

03_synthesis.ch

Thank you!

Questions? Email!

Fourbar Slider Acceleration Derivation

David Ko Mechanical and Aerospace Engineering

March 22, 2010

1 Derivation

$$\vec{r_6} = \vec{r_2} + \vec{r_3} + \vec{r_5} \tag{1}$$

$$r_6 e^{i\theta_6} = r_2 e^{i\theta_2} + r_3 e^{i\theta_3} + r_5 e^{i\theta_5} \tag{2}$$

$$\dot{r_6} = r_2 i\omega_2 e^{i\theta_2} + r_3 i\omega_3 e^{i\theta_3} + r_5 i\omega_5 e^{i\theta_5} \tag{3}$$

The unknowns in the previous equation are \dot{r}_6 and ω_5 . We assume that ω_3 has already been found, since it is part of the four-bar mechanism. If we use the equality $i = e^{i\pi/2}$ in the above equation, we may rewrite it as

$$\dot{r_6} = r_2 \omega_2 e^{i(\theta_2 + \pi/2)} + r_3 \omega_3 e^{i(\theta_3 + \pi/2)} + r_5 \omega_5 e^{i(\theta_5 + \pi/2)} \tag{4}$$

The above equation may be readily solved with complexsolve(), or using analytical methods discussed in previous discussions.

Taking a derivative one more time, we get

$$\ddot{r_6} = r_2 i e^{i\theta_2} (\alpha_2 - i\omega_2^2) + r_3 i e^{i\theta_3} (\alpha_3 - i\omega_3^2) + r_5 i e^{i\theta_5} (\alpha_5 - i\omega_5^2)$$
 (5)

Again, we assume the only unknowns in the above equation are \ddot{r}_6 and α_5 , since we found ω_5 in the last step. We assume all other angular velocities and accelerations have been solved for during the analysis of the fourbar part of the mechanism.

