MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention (arxiv)

Key Highlights

問題

- **主要問題**:本文旨在建立一個高效的大型推理模型,能夠在測試時間有效地擴展計算規模,同時保持與當前先進推理模型相媲美的性能。
- 現有方法及限制:當前的大型推理模型(LRM)如OpenAI o1和DeepSeek-R1依賴於傳統的變壓器架構,其注意力機制具有二次計算複雜性。雖然存在各種提高效率的技術(稀疏注意力、線性注意力、狀態空間模型),但這些技術尚未在大規模推理模型中得到驗證,幾乎所有具競爭力的LRM仍然使用傳統的注意力設計。

解決方案

- 提出的解決方案: MiniMax-M1,一種混合專家模型(MoE)架構,搭配 Lightning Attention(線性注意力)變體。該模型使用1個包含軟注意力的變壓器 模塊,其後跟隨7個包含Lightning Attention的變壓器模塊。
- **靈感來源**:基於他們之前的MiniMax-Text-01模型,受到高效測試時間計算擴展需求和線性注意力機制成功的啟發。
- **理論基礎**: Lightning Attention提供接近線性的計算複雜性,比傳統注意力的二次複雜性更高效,能夠有效地擴展到數十萬個tokens。混合設計在效率與性能維持之間取得平衡。

實驗

- 性能: MiniMax-M1在多個開放權重模型如DeepSeek-R1和Qwen3-235B上取得了競爭性結果。特別是在軟體工程(SWE-bench得分56.0%)、長上下文任務(MRCR 4-needle得分73.4%)和工具使用(TAU-bench得分62.8%)方面表現強勁。與DeepSeek R1相比,在100K tokens生成時顯示25%的FLOP消耗。
- 限制/假設:
 - 。需要謹慎處理精度(LM head需FP32)以防止訓練不穩定
 - 。 對混合架構中優化器超參數較為敏感
 - 。 需要專門的解決方案,如提前截斷重複生成
 - 。與最新的DeepSeek-R1-0528相比,在某些數學基準測試中存在性能差距

創新

- 新發現:
 - 首個具有混合注意力機制,支持1M上下文長度的開放權重大型推理模型

- 。CISPO算法在重要性抽樣權重而非token更新上進行剪輯,相比現有RL方法 提高了2倍速度
- 。成功擴展混合架構的RL訓練,在512個H800 GPUs上於3週內完成完整訓練
- 。 發現並解決混合架構RL訓練中的精度不匹配問題

評論/批評

- 限制:本文承認多個架構挑戰需要專門解決方案,表明相比傳統架構,混合方法可能更複雜且維護困難。
- **主張的佐證**:本文在多個基準測試中提供了全面的實驗驗證,詳細進行了CISPO的 消融研究,並透明報告了優勢與不足之處。效率主張在理論FLOP分析和實證訓練 成本數據(完整RL訓練費用為\$534,700)上得到了充分支持。

Comprehensive Analysis

MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention

總結

本節介紹了聲稱是世界上首個開放權重、大規模混合注意力推理模型—— MiniMax-M1。

架構與效率:-構建於混合專家模型(MoE)架構上,並採用"閃電注意力"。-總參數為 4560億,每個token啟動45.9億參數。-支持100萬token上下文長度(比DeepSeek R1大8倍)。-在長文本生成方面,比DeepSeek R1計算效率高75%。

訓練創新:-使用大規模增強學習,涵蓋各種領域進行訓練。-引入了**CISPO**,這是一種新穎的增強學習算法,透過裁剪重要性取樣權重(而非token更新)來提高效率。-全部訓練在512個H800 GPU上完成,耗時三週,花費約535,000美元。

性能與發佈: - 發佈了兩種模型變體(40K和80K"思考預算")。 - 與DeepSeek-R1和Qwen3-235B相比,具有競爭力甚至更優的性能。 - 在軟件工程、工具使用和長上下文任務方面表現特別強勁。 - 模型已公開作為開放權重發佈。

• 該工作的定位是將MiniMax-M1作為新一代推理代理的高效基礎,能夠處理複雜的 長上下文任務。

'MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism... the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute – For example, compared to DeepSeek R1, M1 consumes 25% of the FLOPs at a generation length of 100K tokens.'

MiniMax-M1 採用了混合專家模型 (Mixture-of-Experts, MoE) 架構,結合了快速注意力機制...在測試時,這種快速注意力機制使得 MiniMax-M1 可以有效擴展計算能力 – 例如,與 DeepSeek R1 相比,M1 在生成長度為 100K tokens 的情況下僅消耗 25%的浮點運算次數。

'We propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants.'

我們提出 CISPO,一種新穎的強化學習 (RL) 算法,以進一步提高 RL 的效率。CISPO 剪斷的是重要性抽樣權重,而不是 token 更新,在性能上超過了其他競爭的 RL 變體。

'Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just \$534,700.'

結合混合注意力和 CISPO,使 MiniMax-M1 的完整強化學習訓練能在 512 顆 H800 GPU 上僅用三週完成,租賃成本僅為 \$534,700。

1. Introduction

第一節摘要。介紹

• 本介紹介紹了**MiniMax-M1**,一種新型開源大型推理模型,旨在有效地擴展測試時間計算,以應對擴展的推理任務。

解決的主要問題:-像OpenAI o1和DeepSeek-R1這樣的大型推理模型(LRMs)通過更長的推理過程實現更好的性能,但傳統的變壓器架構面臨著二次計算複雜性的問題,限制了可擴展性。

主要貢獻 - MiniMax-M1: - 架構:456B參數混合專家網絡(MoE)模型,採用 Lightning Attention(線性注意力變體) - 效率:在64K個標記處使用的FLOPs少於 DeepSeek R1的50%,在100K個標記處約佔25% - 上下文長度:支持最多100萬個標記(比DeepSeek R1大8倍) - 設計:每7個Lightning Attention塊中包含1個 softmax注意力塊的混合注意力

技術創新: 1. **CISPO算法**:一種新的RL方法,通過剪切重要性採樣權重,實現了比現有方法快2倍 2. **高效的RL訓練**:使用512個H800 GPU在3周內完成了全部訓練(成本約\$0.53M) 3. **多樣化的訓練數據**:包括可驗證的問題(數學、編碼、邏輯推理)和不可驗證的任務(問答、創意寫作)

性能結果: - 兩個變體: MiniMax-M1-40k 和 MiniMax-M1-80k(最大生成長度) - 在軟件工程、工具使用和長上下文任務上優於領先的開源模型 - 在特定基準測試中,性能

與或超過Gemini 2.5 Pro和OpenAI o3 - 該模型在GitHub和Hugging Face上公開提供,並具有完整的部署支持

"However, continuously extending the reasoning process is challenging within the traditional transformer architecture (Vaswani et al., 2017), due to the inherent quadratic computational complexity of the softmax attention mechanism."

然而,由於 softmax 注意力機制固有的二次計算複雜性,在傳統 Transformer 架構 (Vaswani et al., 2017) 中不斷擴展推理過程是具有挑戰性的。

"We introduce MiniMax-M1, a reasoning model with a hybrid Mixture-of-Experts (MoE) architecture and Lightning Attention (Qin et al., 2024b), an I/O-aware implementation of a linear attention variant (Qin et al., 2022a)."

我們介紹了 MiniMax-M1,一種具有混合專家網 (MoE) 結構和閃電注意力機制 (Lightning Attention) (Qin et al., 2024b) 的推理模型,這是一種 I/O 感知的線性注意力變種的實現 (Qin et al., 2022a)。

"We propose a novel RL algorithm, CISPO, which abandons the trust region constraint and instead clips the importance sampling weights to stabilize training. This approach always leverages all tokens for gradient computations, achieving enhanced efficiency compared to GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) empirically – For example, on a controlled study based on Qwen2.5-32B models (Qwen et al., 2025), CISPO achieves a 2x speedup compared to DAPO"

我們提出了一種新的強化學習 (RL) 演算法,CISPO,放棄信任區域限制,而是剪裁重要性抽樣權重來穩定訓練。這種方法總是利用所有標記進行梯度計算,實證上比 GRPO (Shao et al., 2024) 和 DAPO (Yu et al., 2025) 更有效率——例如,在基於Qwen2.5-32B 模型 (Qwen et al., 2025) 的控制研究中,相較於 DAPO,CISPO 實現了 2 倍的加速。

2. Preparation for Scalable RL: Continual Pretraining and SFT

摘要

• 本節描述了一個兩階段的準備過程,旨在實現大規模強化學習以提升Minimax-Text-01模型的推理能力:

- 持續預訓練:基礎模型經過額外的預訓練來增強其基本推理能力
- 冷啟動監督微調 (SFT) : 隨後利用監督學習來微調模型,以納入具體的推理模式
- 作者將這些準備階段定位為在大規模應用強化學習之前創建更強大基礎的必要步驟,並指出如果沒有這些準備直接進行RL訓練會使推理能力的開發效果較差。
- 無圖片摘要提供。

'In this work, we focus on scaling up reinforcement learning to enhance reasoning capabilities of Minimax-Text-01.'

在這項工作中,我們專注於擴展強化學習,以增強 Minimax-Text-01 的推理能力。

'To facilitate scalable RL training, we first carry out continual pretraining of our base model to strengthen its intrinsic reasoning abilities.'

為了促進可擴展的強化學習訓練,我們首先對基礎模型進行持續的預訓練,以加強其內在的推理能力。

'Subsequently, we perform a cold-start supervised fine-tuning (SFT) stage to inject specific reasoning patterns to the model, thereby providing a stronger foundation for the subsequent RL phase.'

隨後,我們進行冷啟動監督微調 (SFT) 階段,向模型注入特定的推理模式,從而為後續的強化學習階段提供更強的基礎。

2.1. Continual Pre-Training: Foundation for RL Scaling

- 這部分描述了用於增強 MiniMax-Text-01 基礎模型的持續預訓練方法,為強化學習擴展做準備。
- 使用 7.5T 額外的標記進行擴展訓練,並使用優化的數據質量和混合。
- 改進了網頁/PDF 解析和清理,以更好地捕捉數學和代碼內容。
- 專注於從多種來源提取自然的問答對,避免使用合成數據。
- 增加 STEM(科學、技術、工程和數學)、代碼和推理數據至混合的 70%,以提高複雜任務的性能。
- 降低 MoE(專家混合)輔助損失係數,並優化並行訓練以適應更大的批處理。
- 兩階段學習速率計劃:對於 2.5T 標記使用恆定的 8e-5, 然後在 5T 標記期間衰減 至 8e-6。
- 當在混合-閃電架構中積極擴展上下文長度時,發現了梯度爆炸問題。
- 根本原因是早期和後期層在閃電注意力中的優化速率不匹配。

- 解決方案:逐步進行四階段上下文擴展,從 32K 標記到 1M 標記,以確保訓練穩定性。
- 整體目標是創建一個具有增強推理和長上下文能力的更強基礎模型,同時保持訓練 穩定性。

"We prioritize the extraction of natural Question-Answer (QA) pairs from a diverse range of sources, including webpages, forums, and textbooks, while strictly avoiding the use of synthetic data."

我們優先從多種來源(包括網頁、論壇和教科書)中提取自然的問題-答案(QA)對,同時嚴格避免使用合成數據。

"Furthermore, we increase the proportion of STEM (Science, Technology, Engineering, and Mathematics), code, book, and reasoning-related data to 70%. This significantly enhances the foundation model's ability to handle complex tasks without compromising its other general capabilities."

此外,我們將STEM(科學、技術、工程和數學)、代碼、書籍和推理相關的數據比例提高到70%。這顯著增強了基礎模型處理複雜任務的能力,同時不會削弱其其他一般能力。

"For a hybrid-lightning architecture model with higher convergence complexity, we have observed that excessively aggressive extensions of the training length can lead to a sudden gradient explosion that may occur during the training process... We attribute this to the parameter optimization of the earlier layers not keeping up with the changes in the later layers."

對於具有較高收斂複雜度的混合閃電架構模型,我們觀察到在訓練過程中過度延長訓練時間可能會導致突然的梯度爆炸...我們將此歸因於較早層的參數優化無法跟上較晚層的變化。

2.2. Supervised Fine-Tuning: Focused Alignment for Efficient RL

- 本節描述了在持續預訓練之後的監督微調(Supervised Fine-Tuning, SFT)階段。
- **目的**:教導模型所需的行為,特別是基於反思的連鎖思維(Chain-of-Thought, CoT)推理,為後續階段的更有效強化學習做好準備。
- 數據組成:訓練使用經過精選的高質量範例,涵蓋多個領域的擴展型CoT回應:
 - ∘ 數學和編碼(佔數據集的60%)
 - 。STEM、寫作、問答和多輪對話(其餘40%)
- **策略角色**:SFT作為一個中間對齊步驟,為強化學習階段創造更好的基礎,使其從一開始就由已經展示出一些期望推理行為的模型開始,更加高效和穩定。

'After continual pretraining, we conduct Supervised Fine-Tuning (SFT) to instill desired behaviors like reflection-based Chain-of-Thought (CoT) reasoning using high-quality examples, creating a strong starting point for more efficient and stable RL in the next stage.'

持續預訓練之後,我們進行監督微調(SFT),通過高質量範例灌輸所需行為,例如基於 反思的思維鏈(CoT)推理,為下一階段更高效、穩定的強化學習(RL)創建一個強大 的起點。

'Specifically, we curate data samples with long CoT responses. These data samples cover diverse domains such as math, coding, STEM, writing, QA, and multi-turn chat.'

具體而言,我們整理了具有長思維鏈(CoT)回應的數據範例。這些數據範例涵蓋多個領域,如數學、編程、STEM、寫作、問答和多輪聊天。

'Math and coding samples account for around 60% of all the data.'

數學和編程範例大約佔所有數據的60%。

3. Efficient RL Scaling: Algorithms and Lightning Attention

• 本節介紹了使用M1混合架構擴展增強學習(RL)的挑戰和解決方案。

主要貢獻: - M1 架構在推理效率上顯示出明顯的優勢,使得能夠擴展到更長的響應生成。 - 作者開發了一種新的RL算法,在效率方面優於現有方法。 - 他們創造了針對性的解決方案,以解決在使用混合架構擴展RL時遇到的特殊穩定性問題。

規模和成本: - 全部訓練需要3週的時間,使用512個H800 GPU,大約耗費0.53百萬美元出租成本。 - 這代表了在研究RL擴展方面的一個重要的計算投入。

章節結構: - 本節將涵蓋: 1. 一般的RL背景及其新算法。 2. 使用混合架構擴展RL的特定挑戰。 3. 為克服這些挑戰而開發的解決方案。

• 這似乎是擴展混合模型架構RL的基礎工作,涉及算法改進和實際工程挑戰。

"However, as pioneers in scaling up RL with this hybrid architecture, we encounter unique challenges during the process, and the RL procedure can become unstable or even fail due to various issues."

然而,作為使用這種混合架構來擴展強化學習的先驅,我們在過程中面臨獨特的挑戰,強化學習過程可能會因各種問題而變得不穩定甚至失敗。

"In addition, we propose a new RL algorithm that achieves greater RL efficiency compared to existing methods."

此外,我們提出了一種新型強化學習算法,其強化學習效率優於現有方法。

"These dual contributions yield an efficient and scalable RL framework for training M1, where the complete training cycle requires 3 weeks on 512 H800 GPUs—equivalent to a rental cost of approximately \$0.53M USD."

這兩個貢獻產生了一個高效且可擴展的強化學習框架,用於訓練M1,完整的訓練週期需要 3 週,在 512 個 H800 GPU 上進行,相當於約 53 萬美金的租賃成本。

3.1. Efficient RL Scaling with CISPO

總結

• 本節透過比較兩種強化學習方法,介紹了CISPO(一個高效的強化學習方法)的背景:

PPO(近端策略優化):-使用裁剪的目標函數來優化策略參數,同時保持訓練穩定性-採用重要性抽樣權重來處理異策略更新-需要使用一個獨立的價值模型來計算優勢估計-包含KL散度正則化項,以防止策略偏離參考策略過多

GRPO(群體相對策略優化):-消除對獨立價值模型的需求,使其更高效-通過比較每個回應的獎勵與群體平均值來計算優勢,並用群體標準差進行標準化-對每個問題生成多個回應並使用它們的相對表現來估計優勢-獎勵可來自基於規則的驗證器(例如針對數學問題)或學習的獎勵模型

• 強調的主要創新是GRPO通過移除價值模型依賴來簡化強化學習訓練過程,同時仍可通過基於群體比較提供有效的優勢估計。

"PPO (Schulman et al., 2017) adopts the following objective to optimize the policy to maximize the expected return, and a clipping operation is applied to stabilize training"

PPO(Schulman et al., 2017)採用以下目標來優化策略以最大化期望收益,並應用裁剪操作來穩定訓練。

"GRPO (Shao et al., 2024) eliminates the value model and defines the advantage as the output reward relative to other responses in the group"

GRPO (Shao et al., 2024) 消除價值模型,並將優勢定義為相對於群組中其他反應的輸出獎勵。

"The reward is either from rule-based verifiers such as in mathematical problem solving, or from a reward model"

獎勵要麼來自於規則基驗證器,如數學問題解決中,或來自獎勵模型。

3.2. Efficient RL Scaling with Lightning Attention - Challenges and Recipes

摘要

- 本節描述了在使用新穎的 "Lightning Attention" 架構擴展強化學習(RL)時遇到的三個關鍵挑戰及其相應的解決方案。
- **1. 計算精度不匹配** 問題:訓練與推理模式期間的標記概率顯著差異,阻礙了回報的增長。 根本原因:訓練/推理內核的精度不匹配,特別是語言模型頭中的高幅度激活。 解決方案:將語言模型輸出頭的精度提高到 FP32,將訓練與推理概率的相關性從約0.9 提高到0.99。
- **2. 優化器超參數敏感性** 問題:標準 AdamW 配置(如 VeRL 預設值)導致訓練無法收斂。 觀察:梯度幅度變化範圍廣泛(從 1e-18 到 1e-5),大部分非常小(<1e-14),且在迭代之間相關性較弱。 解決方案:調整超參數至 $\beta_1=0.9$, $\beta_2=0.95$ 和 eps=1e-15。
- **3. 病態文本生成** 問題:複雜提示觸發了過長且重複的回應,致使訓練不穩定。 解決方案:根據標記概率模式實施早期截斷——如果連續3,000個標記的概率均超過0.99,則停止生成。
 - 作者自稱為使用該架構進行大規模 RL 的先驅,強調其混合注意力設計提供了內在的效率優勢,得益於減少了 rollout 計算瓶頸,有助於擴展 RL。

"RL training is highly sensitive to computational precision. During our RL training, we observed a significant discrepancy in the probabilities of rolled-out tokens between training-mode and inference-mode... Through layer-by-layer analysis, we identified high-magnitude activations in the LM head at the output layer as the primary source of error."

在強化學習 (RL) 訓練中,模型對計算精度非常敏感。在我們的RL訓練過程中,我們觀察到在訓練模式和推理模式之間展開的 token 概率有顯著差異... 通過逐層分析,我們確定在輸出層的語言模型 (LM) 頭部出現的高幅度激活是主要的錯誤來源。

"We have observed that the gradient magnitudes in MiniMax-M1 training span a wide range, from 1e-18 to 1e-5, with the majority of the gradients being smaller than 1e-14. Furthermore, the correlation between the gradients of adjacent iterations is weak."

我們觀察到MiniMax-M1訓練中的梯度幅值範圍很大,從1e-18到1e-5,大部分梯度小於1e-14。此外,相鄰迭代之間梯度的相關性很弱。

"We observed that once a model enters a repetitive cycle, the probability for each token soars. Consequently, we implemented an early truncation rule: generation is halted if 3,000 consecutive tokens each have a probability above 0.99."

我們觀察到一旦模型進入重複循環,每個 token 的概率會急劇上升。因此,我們實施了一個早期截斷規則:如果連續3,000個 token 的概率都高於0.99,則停止生成。

4. Scaling Reinforcement Learning with Diverse Data

有組織的摘要

- 本節介紹了通過使用多樣化的訓練數據來擴展強化學習的方法。
- 作者描述了將多種類型的環境納入他們的強化學習(RL)訓練流程中:
 - 。 **基於規則的驗證任務**:通過明確的規則來確定成功的任務
 - 。 **基於獎勵模型的任務:**需要學習獎勵模型來進行評估的一般任務
- 主要貢獻是通過結構化課程學習方法將這些不同類型的環境整合到統一的強化學習訓練階段中。
- 這允許模型從更廣範圍的任務類型和反饋機制中學習。

未提供圖片摘要。

'We incorporate a diverse set of environments in our RL training pipeline, including tasks that can be verified by rules and general tasks that need to be verified through reward models.'

我們在強化學習訓練管道中融入了多樣化的環境,包括可以通過規則驗證的任務和需要通 過獎勵模型驗證的通用任務。

'All these environments are integrated into the RL stage using a carefully designed curriculum.'

所有這些環境都通過精心設計的課程整合到強化學習階段中。

4.1. Reasoning-Intensive Tasks with Rule-based Verification

- 這部分描述了為強化學習(RL)訓練創建數學推理數據集的過程,並使用基於規則 的驗證。
- 作者從公共來源獲取了數十萬條競賽級數學問題,並應用了一個全面的數據清洗流程。

主要清洗步驟: - 移除不完整/格式不良的樣本。 - 應用基於嵌入的去重方法。 - 嚴格分離 監督微調(SFT)數據,以防止重疊。 - 使用n-gram和嵌入方法消除基準測試集的污 染。 - 過濾掉多部分問題、證明題以及易於猜測的二元問題。 - 將多選題轉換為開放式格 式,以適應RL需求。

質量控制: - 使用內部模型從參考解答中提取答案。 - 只保留那些可以被基於規則的答案檢查器解析成功的樣本。 - 應用pass@10過濾器,只保留成功率在0-90%之間的問題。

• 最終結果是一個精選的數據集,約有50,000條高質量數學問題,適合RL訓練,其中正確性可以通過規則而非人工判斷來確定。

"We employ rule-based final correctness as the correctness reward, complemented by a format reward."

我們採用基於規則的最終正確性作為正確性獎勵,並輔以格式獎勵。

"We subsequently apply embedding-based deduplication across the RL data sources and enforce a strict separation from the SFT dataset to avoid any overlap, as leakage from the SFT phase into the RL stage hinders exploration and undermines training effectiveness."

我們隨後在RL數據來源中應用基於嵌入的重複數據刪除,並強制與SFT數據集嚴密分離,以避免任何重疊,因為SFT階段的泄漏進入RL階段會阻礙探索並削弱訓練效果。

"Finally, we use a strong reasoning model to compute the pass@10 for each question and retain only those samples with a pass rate strictly between 0 and 0.9, resulting in a curated dataset of nearly 50K high-quality mathematical samples for our RL training."

最後,我們使用強大的推理模型來計算每個問題的pass@10並只保留通過率嚴格在0到 0.9之間的樣本,從而形成了一個包含近50K高質量數學樣本的精選數據集供我們的RL訓練使用。

5. Evaluations

Note Translation into Traditional Chinese

- 此部分概述 MiniMax-M1 模型在八個主要能力領域的全面評估方法。
- 評估使用標準化的採樣參數(溫度 1.0, top-p 0.95) 並涵蓋:

核心測試領域:-數學:使用競賽級基準測試(MATH-500,AIME 2024/2025)進行 32 次樣本平均。 - 一般編程:通過 LiveCodeBench 和 FullStackBench 測試編程熟練度,進行 16 次樣本平均。 - 推理與知識:使用 GPQA-Diamond、MMLU-Pro、HLE 和 ZebraLogic 基準測試領域專業知識。 - 軟體工程:使用 SWE-bench Verified進行 GitHub 真實問題解決,採用自定義兩階段定位方法。 - 長文本上下文理解:通過 OpenAI-MRCR 和 LongBench-v2 測試理解擴展文本上下文(8k-2M 字)。 - 工具使用代理:在動態對話中通過 TAU-bench 測試 API 工具的使用(限 40 步)。 - 事實性:使用 SimpleQA 基準測試事實性問題的準確性。 - 一般助手能力:通過 MultiChallenge 測試多輪對話能力,由 GPT-4o 進行評判。

• 評估框架強調多種採樣策略,並使用已建立的基準測試,提供對模型在多樣化 AI 任 務中能力的全面評估。

"We conduct a comprehensive evaluation of MiniMax-M1 across several key domains: mathematics, general coding, software engineering, reasoning & knowledge, long context, agentic tool use, factuality, and general assistant ability."

我們對 MiniMax-M1 在數學、一般編程、軟件工程、推理與知識、長上下文、代理工具使用、事實性以及一般助理能力等幾個關鍵領域進行了全面評估。

"Departing from the original pipeline, our methodology employs a twostage localization process (without any embedding-based retrieval mechanisms): initial coarse-grained file localization followed by finegrained localization to specific files and code elements."

我們的方法脫離了原始管道,採用了兩階段的定位過程(不使用任何基於嵌入的檢索機制):初步粗粒度文件定位,然後進行精細定位到特定文件和代碼元素。

"We evaluate long context understanding using OpenAI-MRCR (OpenAI, 2024b), which tests retrieval and disambiguation of multiple similar items within extended contexts, and LongBench-v2 (Bai et al., 2024), a challenging benchmark with 503 multiple-choice questions across contexts ranging from 8k to 2M words."

我們使用 OpenAI-MRCR(OpenAI, 2024b)評估長上下文理解,該方法檢測在擴展上下文中對多個類似項目的檢索和消歧,並使用 LongBench-v2(Bai et al., 2024),這是一個具有挑戰性的基準,包含503道多選題,範圍從8k到2M字的上下文。

7. Conclusion and Future work

摘要

這部分的結論介紹了 MiniMax-M1 作為一個突破性的開放權重推理模型,並做出了幾個關鍵貢獻:

主要成就: - 第一個具備「閃電注意力」機制的開放權重大型推理模型 - 出色的上下文處理能力: 一百萬個輸入標記和八萬個生成標記(超越其他開放模型) - 在軟體工程、工具使用和長上下文基準測試中性能優異 - 在排名中與頂級模型如 DeepSeek-R1 和Qwen3-235B 並駕齊驅

技術創新: - 高效的閃電注意力架構 - 新穎的 CISPO 強化學習算法加速訓練 - 使用 512 個 H800 GPU 在三週內高效完成訓練

未來展望:作者認為 MiniMax-M1 適用於以下實際應用: - 多代理交互和工具使用 - 跨 多輪對話的拓展推理 - 整合來自多種來源的長上下文信息 - 工作流程自動化和科學研究中 的應用

這項工作強調了該模型作為複雜的、多輪推理任務的基礎潛力,這些任務需要長上下文理 解和高效計算。

'In this work, we introduce and release MiniMax-M1, the world's first open-weight, large-scale reasoning model featuring a lightning attention mechanism.'

在這項工作中,我們介紹並發布了 MiniMax-M1,這是全球首個開放權重的大規模推理模型,具有快速注意力機制。

'Beyond the inherent efficiency advantages of lightning attention for RL training, this work contributes a novel RL algorithm, CISPO, to accelerate training.'

除了快速注意力機制對強化學習訓練的內在效率優勢之外,這項工作還貢獻了一種新穎的 強化學習算法 CISPO,以加速訓練。

'Real-world applications particularly demand LRMs that function as agents interacting with environments, tools, computers, or other

agents—requiring reasoning across dozens to hundreds of turns while integrating long-context information from diverse sources.'

現實世界的應用特別需要作為代理與環境、工具、計算機或其他代理進行交互的長距離記憶模型——需要進行數十到數百回合的推理,同時整合來自不同來源的長期上下文信息。

References

No references found.