Lecture 9. Phases of matter & Phase transitions

ice/water

liquid water

Phases of Matter

- Matter can exist in different phases (or states), corresponding to qualitatively different configurations of the molecules in the material
- The common phases are solid, liquid, and gas

Phase Transitions

- A phase transition occurs when matter changes from one phase to another
- One way to make a material undergo phase transition: Changing the temperature

Phase Transitions

- Changing the pressure applied to a material can also induce a phase transition!
 - > Take some molecules
 - > Put them in a container at some temperature & vary the pressure
 - ➤ Significant changes in configuration of molecules can occur
 - For example, a gas can become a liquid as the pressure is increased, or a liquid can become a gas as the pressure is decreased.

Demo: boiling water by reducing the pressure

Demo: boiling water by reducing the pressure

Mt. Everest:

 $\succ T_{\text{boil}} = 77 \,^{\circ}\text{C}$

Boiling eggs:

> Yolk: ~65 °C

➤ White: ~85 °C

atm

P [pa]

Phase Diagram

displays phases and phase transition curves as a function of T and P

pressure normally here

Note non-linear scale of the axes

Phase Changes: Micro and Macro.

• Macroscopic properties change dramatically across phase boundaries...

• ...along with the microscopic structure of the substance

Phase Changes: Happen at a fixed temperature.

 At a transition temperature, transition occurs due to heat added / removed with no temperature change!

Amount of heat required for transition per mass of material is called the latent heat

Latent heat

• Heat required to melt/boil a mass m of material (at melting/boiling T) is:

- Hence, L is the energy required to melt/freeze 1 kg of material
- Units of L are $\frac{J}{kg}$ > Use $L_{\mathbf{f}}$ for melting (add Q)/freezing (remove Q) latest heat of fusion
- \succ Use $L_{\mathbf{v}}$ for boiling (add Q)/condensing (remove Q) \mathbf{v} \mathbf{v} vaporitation

TABLE 17.4 Heats of Fusion and Vaporization

Substance	Normal Melting Point		Heat of Fusion, $L_{ m f}$	Normal Boiling Point		Heat of Vaporization, $L_{ m v}$
	K	°C	(J/kg)	K	°C	(J/kg)
Helium	*	*	*	4.216	-268.93	20.9×10^{3}
Hydrogen	13.84	-259.31	58.6×10^{3}	20.26	-252.89	452×10^{3}
Nitrogen	63.18	-209.97	25.5×10^{3}	77.34	-195.8	201×10^{3}
Oxygen	54.36	-218.79	13.8×10^{3}	90.18	-183.0	213×10^{3}
Ethanol	159	-114	104.2×10^3	351	78	854×10^{3}
Mercury	234	-39	11.8×10^{3}	630	357	272×10^{3}
Water	273.15	0.00	334×10^{3}	373.15	100.00	2256×10^{3}
Sulfur	392	119	38.1×10^{3}	717.75	444.60	326×10^{3}
Lead	600.5	327.3	24.5×10^{3}	2023	1750	871×10^{3}
Antimony	903.65	630.50	165×10^{3}	1713	1440	561×10^{3}
Silver	1233.95	960.80	88.3×10^{3}	2466	2193	2336×10^{3}
Gold	1336.15	1063.00	64.5×10^3	2933	2660	1578×10^{3}
Copper	1356	1083	134×10^3	1460	1187	5069×10^{3}

Temperature (in deg C) as a function of time

The graph shows the temperature vs time in an experiment where heat is supplied to ice water at a power of 240 W

(1 Watt = 1 Joule / second)

Q: Why does the graph look like this?

Temperature (in deg C) as a function of time

- A. 0.05 kg
- B. 0.5 kg
- C. 5 kg
- D. 50 kg

The graph shows the temperature vs time in an experiment where heat is supplied to ice water at a power of 240 W

(1 Watt = 1 Joule / second)

Q: Roughly how much ice was present initially?

$$L_f = 334 \times 10^3 \, \text{J/kg}$$

$$Q = m L$$

$$M = \frac{Q}{L}$$

Temperature (in deg C) as a function of time

A 0.05 l

A. 0.05 kg

B. 0.5 kg

C. 5 kg

D. 50 kg

The graph shows the temperature vs time in an experiment where heat is supplied to ice water at a power of 240 W

(1 Watt = 1 Joule / second)

Q: Roughly how much ice was present initially?

$$L_f = 334 \times 10^3 \, \text{J/kg}$$

$$Q = m L$$
 gives $m = {}^{Q}/_{L}$

$$Q = 240 \text{ J/s} \times 700 \text{ s} \approx 168,000 \text{ J}$$

$$m = Q/L \approx 0.5 kg$$

T vs heat added (e.g., water at atmospheric pressure)

Q: A mass M of ice at temperature $T_1 < 0$ is heated until we have water at temperature $T_2 > 0$. How much heat has been added?

A.
$$M c_{ice} (T_2 - T_1)$$

B.
$$M c_{\text{water}} (T_2 - T_1)$$

 $\mathsf{C}.\,M\,L_f$

D.
$$M c_{ice}(-T_1) + M c_{water}(T_2)$$

$$(E. M c_{ice} (-T_1) + M L_f + M c_{water} (T_2)$$

$$T_{1}$$

$$M$$

$$T_{2}$$

$$\Delta T = T_{f} - T_{i}$$

Q: A mass M of ice at temperature $T_1 < 0$ is heated until we have water at temperature $T_2 > 0$. How much heat has been added?

