King Fahd University of Petroleum & Minerals, Information & Computer Science Department

ICS-254 Discrete Structures 2, Quiz 02, Section 01, First Semester 2020-21 [Online]

Name:	, ID:
Q.1:	It can be shown that every integer can be uniquely represented in the form
	$e_k 3^k + e_{k-1} 3^{k-1} + \dots + e_1 3 + e_0,$
	where $e_j = -1, 0$, or 1 for $j = 0, 1, 2,, k$.
	Expansions of this type are called balanced ternary expansions.
Find t	ne balanced ternary expansion for 71 [Show your work]
Q. 2: P	rove or disprove the following statement: There exists an integer n such that $n^2 \equiv 2 \pmod{4}$.