Problemas de Maximo Flujo comp-420

 Ejemplo de flujo clásico, capacidades en un grafo dirigido def. funcion de capacidad

- Si existe una arista (u,v) entonces no existe (v,u).
- Todos los vértices están en el camino de s a t.

Como convertir grafos

• Ejemplo de flujo clásico, flujo / capacidad

- Para un flujo f
- Restricción de Capacidad:

For all $u, v \in V$, we require $0 \le f(u, v) \le c(u, v)$.

Conservación de Flujo

For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$$

When $(u, v) \notin E$, there can be no flow from u to v, and f(u, v) = 0.

• El valor |f| de un flujo f es:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) ,$$

• En muchos problemas nos interesa encontrar el máximo flujo

Abtracción de problemas diferentes

Casos con multiples fuentes o sumideros


```
FORD-FULKERSON-METHOD (G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network G_f

3 augment flow f along p

4 return f
```

- -Este método se basa en redes residuales, caminos de aumento y cortes.
- -La linea 3 puede implica incrementar flujo en algunas aristas [f(u,v)] y disminuirlo en otras.

• La red residual G_f: con las aristas de capacidad residual (las

positivas),
$$G_f = (V, E_f)$$
 $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$.

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E, \\ f(v, u) & \text{if } (v, u) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

$$|E_f| \leq 2 |E|$$
.

• La red residual, con su flujo f' nos indica como aumentar el flujo de la red original mediante una "función de aumento"

$$(f \uparrow f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Cancelación

Lemma 26.1

Let G = (V, E) be a flow network with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f' be a flow in G_f . Then the function $f \uparrow f'$ defined in equation (26.4) is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

Ver la demostración

- Caminos de aumento p, son caminos simples
- La capacidad residual de un camino

$$c_f(p) = \min \{c_f(u, v) : (u, v) \text{ is on } p\}$$
.

• de $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$.

Lemma

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p : V \times V \to \mathbb{R}$ by

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ is on } p, \\ 0 & \text{otherwise}. \end{cases}$$

Then, f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

Corollary 26.3

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Let f_p be defined as in equation (26.8), and suppose that we augment f by f_p . Then the function $f \uparrow f_p$ is a flow in G with value $|f \uparrow f_p| = |f| + |f_p| > |f|$.

Demostración inmediata por lo lemas anteriores

Un corte (S,T) en el grafo con flujo f

• El flujo neto y la capacidad del corte son:

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u) . = 19$$

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v) . = 26$$

Nos interesa el mínimo corte, aquel con capacidad mínima de todos.

Lemma 26.4

Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|.

Corollary 26.5

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Nos esta llevando a que el flujo máximo esta acotado por la capacidad del corte mínimo.

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

El algoritmo

ullet El algoritmo de Ford Fulkerson básico, reemplazamos f por f \uparrow f $_{p}$

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

(cada arista residual es una arista en el grafo original o bien un regreso en una arista original)

Detalles de implementación

- Necesitamos buscar el camino de aumento con, por ejemplo, busqueda en anchura.
- Si f* denota el fujo maximo y estamos trabajando con capacidades enteras, el ciclo principal se ejecuta a lo mas f* veces
- El tiempo de buscar el camino de aumento O(V+2E) = O(E), entonces todo el algoritmo tiene $O(E|f^*|)$
- Cuando las capacidades son enteras y |f*| es pequeño, el algoritmo funciona muy bien.

Casos complicados

 ¿Problemas? suponiendo capacidades enteras, la complejidad del algoritmo es O(E |f*|)

capacidad residual de 1

siguiente red residual con camino de capacidad residual 1

siguiente red residual con camino de capacidad residual 1

Extensiones

- Por supuesto que necesitamos extensiones de este algoritmo
- The Edmonds-Karp algorithm, cuando busca el camino en le grafo residual de s a t, busca el camino de distancia mas corto.
- Su complejidad es O(VE²)