2013 – 2014 学年度第一学期期末考试

高三数学试卷

注意事项:

- 1. 答卷前, 考生务必将姓名、班级等填写清楚, 解题时要认真审题, 规范作答.
- 2. 本试卷共 21 道试题, 满分 150 分, 考试时间 120 分钟.

得分 评卷人 一

一. 选择题: 本大题共 10 题, 满分 50 分. 请选择你认为最正确的答案(每小题有且只有一个)写在括号内. 每题填写正确得 5 分, 否则得 0 分.

1. 已知集合 $A = \{-1, 0, 1\}, B = \{x | -1 \le x < 1\}$,则 $A \cap B =$

().

 $(A) \{0\}$

(B) $\{-1, 0\}$

 $(C) \{0,1\}$

(D) $\{-1, 0, 1\}$

2. 复数 $z = \frac{(1-i)^2}{1+i}$ (i 为虚数单位) 的虚部为

().

(A) 1

(B) 0

 $(C) \pm 1$

(D) -1

3. 已知椭圆 $\frac{x^2}{16} + \frac{y^2}{m} = 1$ 的一个焦点为 F(3,0) , 则 m =

().

(A) 3

(B) 7

(C) 9

(D) 25

4. 下列函数中, 既是奇函数又是定义域上的增函数的是

().

(A) y = 2x + 1

(B) $y = e^x - e^{-x}$

(C) $y = \frac{-2}{r}$

(D) $y = x \sqrt{x}$

5. 设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 若 $S_3 = 18$, 则 a_2

().

(A) 7

(B) 5

(C) 6

(D) 4

6. 函数 $f(x) = A \sin(\omega x + \varphi)(A, \omega, \varphi)$ 是常数, $A > 0, \omega > 0$ 的部分图象如图所示,则函数 f(x) 的单调增区间可能为 ().

(B) $\left[-\frac{\pi}{3}, \frac{\pi}{6}\right]$

$$(C) \left[\frac{\pi}{12}, \frac{7\pi}{12} \right]$$

 $(D) \left[-\frac{\pi}{12}, \frac{5\pi}{12} \right]$

().

$$(A) -3$$

(B) $-\frac{1}{2}$

(C) 2

(D) $\frac{1}{3}$

- 8. 下列有关命题的说法正确的是
 - (A) 命题"若 x = y, 则 $\sin x = \sin y$ "的逆否命题为真命题
 - (B) 函数 $f(x) = \tan x$ 的定义域为 $\{x \mid x \neq k\pi, k \in Z\}$
 - (C) 命题 " $\exists x \in R$ 使得 $x^2 + x + 1 < 0$ "的否定是: " $\forall x \in R$, 均有 $x^2 + x + 1 < 0$ ".
 - (D) "a = 2" 是"直线 y = -ax + 2 与 $y = \frac{a}{x}x 1$ 垂直"的必要不充分条件.
- 9. 设函数 $y = x^3$ 与 $y = \left(\frac{1}{2}\right)^{x-2}$ 的图象的交点为 (x_0, y_0) , 则 x_0 所在的区间是
 - (A) (0,1)

(B) (1,2)

(C)(2,3)

- (D) (3,4)
- 10. 一个空间几何体的三视图如图,则该几何体的体积为(
 - (A) $2\sqrt{3}$

(B) $2\sqrt{5}$

(C) $\frac{4\sqrt{3}}{2}$

(D) $\frac{5\sqrt{3}}{2}$

).

评卷人 得分

二. 填空题: 本大题共 4 题,满分 20 分. 请在横线上方填写最终的、最准确的、最完整 的结果. 每题填写正确得 5 分, 否则一律得 0 分.

- 11. 已知向量 $\vec{a} = (3,1), \vec{b} = (1,3), \vec{c} = (k,7)$,若 $(\vec{a} \vec{c}) \parallel \vec{b}$,则 k = ______

- 14. 设 f(x) 表示 x + 2 与 $x^2 + 3x + 2$ 中的较大者,则 f(x) 的最小值为
- 15. 设 $a \in R, f(x) = \cos(a\sin x \cos x) + \sin^2 x$ 的定义域是 $\left| \frac{\pi}{4}, \frac{11}{24} \pi \right|, f(\frac{\pi}{4}) = \sqrt{3}$. 给出下列几个命题:
 - ① f(x) 在 $x = \frac{\pi}{4}$ 处取得最小值; ② $\left[\frac{5}{12}\pi, \frac{11}{24}\pi\right]$ 是 f(x) 的一个单调递减区间;
 - ③ f(x) 的图象向左平移 $\frac{\pi}{12}$ 个单位,将得到函数 $y = 2\sin 2x$ 的图象;

得分	评卷人		

三. 简答题: 本大题共 6 题, 满分 80 分. 请在题后空处写出必要的推理计算过程.

- 16. 在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c ,已知 $A = \frac{\pi}{2} + C, \sin(A + C) = \frac{3}{5}$.
 - (1) 求 $\cos C$ 的值;

(2) 若 $a+c=3\sqrt{5}$, 求 $\triangle ABC$ 的面积.

17. 有甲乙两个班级进行数学考试,按照大于等于分为优秀,分以下为非优秀统计成绩后,得到如下的列 联表.

	优秀	非优秀	总计
甲班	10		
乙班		30	
合计			105

已知在全部 105 人中抽到随机抽取 1 人为优秀的概率为 $\frac{2}{7}$.

- (1) 请完成上面的列联表;
- (2) 根据列联表的数据, 若按 95% 的可靠性要求, 能否认为"成绩与班级有关系";
- (3) 若按下面的方法从甲班优秀的学生抽取一人: 把甲班优秀的 10 名学生从 2 到 11 进行编号, 先后两次抛掷一枚均匀的骰子, 出现的点数之和为被抽取人的序号. 试求抽到 6 或 11 号的概率.

下面临界值表仅参考: -

$P(K^2 \geqslant k_0)$	0.15	0.10	0.05	0.025	0.010	0.005	0.001
k_0	2.072	2.706	3.841	5.024	6.635	7.879	10.828

(参考公式: $K^2 = \frac{k_0 \quad | 2.072 \mid 2.706 \mid 3.841 \mid 5.024 \mid 6.635}{(a+b)(c+d)(a+c)(b+d)}$, 其中 n = a+b+c+d)

- 18. 已知数列 $\{a_n\}$ 是公差不为 0 的等差数列, $a_1=2$ 且 a_2,a_3,a_4+1 成等比数列.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = \frac{2}{n \cdot (a_n + 2)}$, 求数列 $\{b_n\}$ 的前 n 项和 S_n .

- 19. 如图,在直三棱柱 $ABC -A_1B_1C_1$ 中, $AA_1 = 2, AB = AC = 1, \angle BAC = 90^\circ$,点 M 是 BC 的中点,点 N 在侧棱 CC_1 上.
 - (1) 求证: $A_1C \parallel$ 面 AB_1M ;
 - (2) 当线段 CN 的长度为多少时, $NM \perp AB_1$.

- 20. 已知 E(2,2) 是抛物线 $C: y^2 = 2px(p>0)$ 上一点, 经过点 (2,0) 的直线 l 与抛物线 C 交于 A,B 两点 (不同于点 E), 直线 EA,EB 分别交直线 x=-2 于点 M,N.
 - (1) 求抛物线方程及其焦点坐标;
 - (2) 已知 O 为原点,求证: $\overrightarrow{OM} \cdot \overrightarrow{ON} = 0$

- 21. 已知函数 $f(x) = x a \ln x, g(x) = \frac{1+a}{x} (a \in R)$.
 - (1) 当 a=1 时,求曲线 f(x) 在 x=1 处的切线方程;
 - (2) 设函数 h(x) = f(x) g(x) , 求函数 h(x) 的单调区间.