

K-Flares: A K-Adapter based approach for the FLARES challenge

Joel Pardo¹, JiaYun¹, Virginia Ramón¹, Elvira Amador^{1,2} y Pablo Calleja¹

¹Ontology Engineering Group, Departamento de Inteligencia Artificial, ETSI Informáticos,

²Departamento de Sistemas Informáticos, ETSI Sistemas Informáticos,

Universidad Politécnica de Madrid

{joel.pardof, jiayun.liu, virginia.ramon, elvira.amador, p.calleja}@upm.es

FLARES dataset:

- Spanish news extracts annotated with WHAT, WHO, WHERE, WHEN, WHY, and HOW and "reliable", "semi-reliable" or "unreliable" ("confiable", "semiconfiable" or "no confiable" in Spanish)
- ~ 9,034 5W1H annotations across 190 news articles
- 70% for training (6,934 annotations) and 30% for testing (2,100 annotations)

Dos dias	s, exactamen	te han pasado (dos días desde que Sáno	hez compareciera en rued	la de prensa en la Moncloa
			WHO		WHERE
			Confi	iable	Confiable
afirmand	do que a Esp	aña llegarían, e	ntre abril y septiembre, u	ın total de 87 millones de	vacunas para darnos cuenta
	WHO		WHEN	WHAT	
	Confiable		Confiable	Confiable	
de que la	as mentiras (de Sánchez hac	en bueno ese refrán que	dice que "la mentira tiene	e las patas muy cortas".
	WHAT	WHO	WHAT		
1	No confiable	Confiable	Semiconfial	ole	

R. Sepúlveda-Torres, A. Bonet-Jover, I. Diab, I. Guillén-Pacho, I. Cabrera-de Castro, C. BadenesOlmedo, E. Saquete, M. T. Martín-Valdivia, P. Martínez-Barco, L. A. Ureña-López, *Overview of FLARES at IberLEF 2024: Fine-Grained Language-based Reliability Detection in Spanish News*, Procesamiento del Lenguaje Natural 73 (2024).

Flares challenge

Subtask 1 → Detection of 5W1H

afirmando que a España llegarían, entre abril y septiembre, un total de 87 millones de vacunas para darnos cuenta

WHO

WHAT

WHAT

WHO

WHAT

Subtask 2 → Reliability classification

Dos días, exactamente han pasado	dos días desde que Sánch	nez compareciera en ruec	da de prensa en la Moncloa
	WHO	0	WHERE
	Confia	ble	Confiable
afirmando que a España llegarían, e	entre abril y septiembre, ur	n total de 87 millones de	vacunas para darnos cuenta
WHO	WHEN	WHAT	
Confiable	Confiable	Confiable	
de que las mentiras de Sánchez had	en bueno ese refran que c	dice que "la mentira tiene	e las patas muy cortas".
WHAT WHO	WHAT		
No confiable Confiable	Semiconfiable	e	

Corpus nature

- No syntactical consistency
- Regular interconnection in the 5W1H instances in each individual text
 - Graph-like structure → inject information to the model

Example of graph

Graph extracted from data

Purpose: Knowledge Injection for pretrained language models to improve their performance without fine-tuning the entire model.

Adapters: neural network to encode knowledge from external sources. Added to the layers of a pretrained language model. The adapters are trained separately on the knowledge sources. The adapter modules are designed to be plug-and-play

Wang, R., Tang, D., Duan, N., Wei, Z., Huang, X., Cao, G., & Zhou, M. (2020). K-adapter: Infusing knowledge into pre-trained models with adapters. *arXiv preprint arXiv:2002.01808*.

Figure 2: Structure of the adapter layer (left). The adapter layer consists of two projection layers and N=2 transformer layers, and a skip-connection between two projection layers.

Similar to Encoders Layers

ORIGINAL WORK

Language Model:

Roberta-large language model

Adapters:

- 1- Factual: T-REX dataset. Trained for relation classification
- 2- *Linguistic*: Dataset from dependency parser from Book Corpus. Trained for dependency relation prediction (predict the head index of each token in the sentence)

Tasks for evaluation:

- Entity Typing (Type of NER/Classification)
- Question Answering
- Relation extraction

OUR WORK

- Language Model: Roberta MarlA bsc-bne (Spanish)
- Adapters: Two factual adapters (5W1H labels, Wikidata labels) with the same training dataset
- Task for evaluation: Named Entity Recognition (Token Sequence Classification)

The factual adapters for the challenge

mREBEL:

Given a text input, directly output triplets

Triplets example

5W1H TRIPLETS:

un total de 87 millones de vacunas

Sánchez

WIKIDATA TRIPLETS:

2- Wikidata Factual Adapter

Using mREBEL

1- REBEL: relation extraction architecture trained with Wikidata + Wikipedia information

2- mREBEL: Multilingual training dataset

"This Must Be the Place" is a song by new wave band Talking Heads, released in November 1983 as the second single from its fifth album "Speaking in Tongues"

(This Must Be the Place, performer, Talking Heads)
(Talking Heads, genre, new wave)
(This Must Be the Place, part of, Speaking in Tongues)
(Speaking in Tongues, performer, Talking Heads)

<triplet> This Must Be the Place
<subj> Talking Heads <obj> performer
<subj> Speaking in Tongues <obj> part of
<triplet> Talking Heads <subj> new
wave <obj> genre <triplet> Speaking in
Tongues <subj> Talking Heads <obj>
performer

Figure 1: Example of the triplet linearization process for REBEL.

Cabot, P. L. H., Tedeschi, S., Ngomo, A. C. N., & Navigli, R. (2023). REDFM: a Filtered and Multilingual Relation Extraction Dataset arXiv preprint arXiv:2306.09802.

K-Adapter Best Hyperparameters (Subtask 1):

Table 1Comparison of hyperparameters across 5W1H labels and Wikidata Factual Adapters, and Complete K-Adapter configurations.

Parameter	5W1H labels adapter	Wikidata adapter	Complete K-Adapter
epochs	5	10	8
model	roberta-large	Roberta-large	roberta-large
per_gpu_train_batch_size	64	32	8
per_gpu_eval_batch_size	64	8	8
max_seq_length	64	64	512
scheduler	WarmupLinearSchedule	WarmupLinearSchedule	WarmupLinearSchedule
optimizer	AdamW	AdamW	AdamW
learning_rate	5e-5	2e-5	5e-5
warmup_steps	1200	500	120
freeze_adapter	False	False	True
adapter_size	768	768	768
adapter_list	"0,11,22"	"0,11,22"	"0,11,22"
adapter_transformer_layers	2	2	-
fusion_mode	-	-	add

Experiments with Prompt Engineering

Subtask 1

	Submitted (Ranking)	Adapters	30% split test set	70% split test set	Training epochs
,	K-adapter KG (1st)	5W1H	0.65957	0.66544	8
	K-adapter KG 2A (3rd)	5W1H + Wikidata	0.39649	0.40070	8
	K-adapter KG+ (3rd)	5W1H	0.39578	0.39572	12

Subtask 2

Submitted (Ranking)	30% split test set	70% split test set
Mistral-7B Fine-tuning (4rd)	0.30585	0.29063

K-Flares: A K-Adapter based approach for the FLARES challenge

Joel Pardo¹, JiaYun¹, Virginia Ramón¹, Elvira Amador^{1,2} y Pablo Calleja¹

¹Ontology Engineering Group, Departamento de Inteligencia Artificial, ETSI Informáticos,

²Departamento de Sistemas Informáticos, ETSI Sistemas Informáticos,

Universidad Politécnica de Madrid

{joel.pardof, jiayun.liu, virginia.ramon, elvira.amador, p.calleja}@upm.es

24/09/24

