The Research Assistant for Maniplexes and Polytopes

0.3

28 July 2020

Gabe Cunningham

Gabe Cunningham

 $Email: \verb|gabriel.cunningham@umb.edu|\\$

Homepage: http://www.gabrielcunningham.com

Address: Gabe Cunningham

Department of Mathematics University of Massachusetts Boston 100 William T. Morrissey Blvd.

Boston MA 02125

Copyright

© 1997-2020 by Gabe Cunningham

RAMP package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by GAP users and developers.

Contents

1	Constructions	4
	1.1 Extensions, amalgamations, and quotients	4
	1.2 Duality	5
	1.3 Products	6
2	Databases	7
	2.1 Regular polyhedra	7
3	Combinatorics and Structure	8
	3.1 Faces	8
	3.2 Posets	9
4	Families of Polytopes	12
	4.1 Classical Polytopes	12
5	Groups	15
	5.1 Groups	15
6	Properties	17
	6.1 Orientability	17
7	Basics	18
	7.1 Constructors	18
8	Comparing maniplexes	19
	8.1 Quotients and covers	19
In	dex	20

Constructions

1.1 Extensions, amalgamations, and quotients

1.1.1 UniversalPolytope (for IsInt)

▷ UniversalPolytope(n)

(operation)

Returns the universal polytope of rank n.

1.1.2 FlatRegularPolyhedron (for IsInt, IsInt, IsInt, IsInt)

▷ FlatRegularPolyhedron(p, q, i, j)

(operation)

Returns the flat regular polyhedron with automorphism group [p, q] / (r2 r1 r0 r1 = (r0 r1) i (r1 r2) j). This function does not currently validate the inputs to make sure that the output makes sense.

1.1.3 QuotientPolytope (for IsManiplex, IsList)

▷ QuotientPolytope(M, rels)

(operation)

Returns the quotient of M by rels, which may be given as either a list of Tietze words, such as [[1,2,1,0,1,2,1,0]] or as a string like $(r0 r1 r2 r1)^2$, $(r0 r1 r2)^4$.

1.1.4 UniversalExtension (for IsManiplex)

▷ UniversalExtension(M)

(operation)

Returns the universal extension of M, i.e. the maniplex with facets isomorphic to M that covers all other maniplexes with facets isomorphic to M. Currently only defined for reflexible maniplexes.

1.1.5 UniversalExtension (for IsManiplex, IsInt)

 \triangleright UniversalExtension(M, k)

(operation)

Returns the universal extension of M with last entry of Schlafli symbol k. Currently only defined for reflexible maniplexes.

1.1.6 TrivialExtension (for IsManiplex)

▷ TrivialExtension(M)

(operation)

Returns the trivial extension of M, also known as $\{M/, 2\}$.

1.1.7 FlatExtension (for IsManiplex, IsInt)

 \triangleright FlatExtension(M, k)

(operation)

Returns the flat extension of M with last entry of Schlafli symbol k. (As defined in "Flat Extensions of Abstract Polytopes".) Currently only defined for reflexible maniplexes.

1.1.8 Amalgamate (for IsManiplex, IsManiplex)

▷ Amalgamate(M1, M2)

(operation)

Returns the amalgamation of M1 and M2. Implicitly assumes that M1 and M2 are compatible. Currently only defined for reflexible maniplexes.

1.1.9 Medial (for IsManiplex)

<u>-</u>

(operation)

Given a 3-maniplex M, returns its medial.

1.2 Duality

▷ Medial(M)

1.2.1 **Dual (for IsManiplex)**

Dual(M)

(attribute)

Returns: The maniplex that is dual to *M*.

1.2.2 IsSelfDual (for IsManiplex)

▷ IsSelfDual(P)

(property)

Returns: Whether this polytope is isomorphic to its dual.

1.2.3 Petrial (for IsManiplex)

▷ Petrial(P)

(attribute)

Returns: The Petrial (Petrie dual) of P. Note that this is not necessarily a polytope.

1.2.4 IsSelfPetrial (for IsManiplex)

▷ IsSelfPetrial(P)

(property)

Returns: Whether this polytope is isomorphic to its Petrial.

1.3 Products

1.3.1 PyramidOver (for IsManiplex)

▷ PyramidOver(M) (operation)

Returns the pyramid over M. Currently only works for finite maniplexes.

1.3.2 PrismOver (for IsManiplex)

PrismOver(M) (operation)

Returns the prism over M. Currently only works for finite maniplexes.

Databases

2.1 Regular polyhedra

2.1.1 DegeneratePolyhedra (for IsInt)

▷ DegeneratePolyhedra(maxsize)

(operation)

Returns all degenerate polyhedra (of type {2, q} and {p, 2}) with up to maxsize flags.

2.1.2 FlatRegularPolyhedra (for IsInt)

⊳ FlatRegularPolyhedra(maxsize)

(operation)

Returns all nondegenerate flat regular polyhedra with up to maxsize flags. Currently supports a maxsize of 4000 or less.

2.1.3 SmallRegularPolyhedra (for IsInt)

▷ SmallRegularPolyhedra(maxsize)

(operation)

Returns all regular polyhedra with up to maxsize flags. Currently supports a maxsize of 4000 or less. You can also set options "nondegenerate" and "nonflat".

```
L1 := SmallRegularPolyhedra(500);;
L2 := SmallRegularPolyhedra(1000 : nondegenerate);;
L3 := SmallRegularPolyhedra(2000 : nondegenerate, nonflat);;
```

Combinatorics and Structure

3.1 Faces

3.1.1 NumberOfIFaces (for IsManiplex, IsInt)

▷ NumberOfIFaces(M, i)

(operation)

Returns The number of i-faces of M.

3.1.2 NumberOfVertices (for IsManiplex)

▷ NumberOfVertices(M)

(attribute)

Returns the number of vertices of M.

3.1.3 NumberOfEdges (for IsManiplex)

▷ NumberOfEdges(M)

(attribute)

Returns the number of edges of M.

3.1.4 NumberOfFacets (for IsManiplex)

▷ NumberOfFacets(M)

(attribute)

Returns the number of facets of M.

3.1.5 NumberOfRidges (for IsManiplex)

▷ NumberOfRidges(M)

(attribute)

Returns the number of ridges ((n-2)-faces) of M.

3.1.6 Fvector (for IsManiplex)

Returns the f-vector of M.

3.1.7 Facets (for IsManiplex)

→ Facets (M) (attribute)

Returns the facet-types of M (i.e. the maniplexes corresponding to the facets). Currently only works for reflexible maniplexes.

3.1.8 VertexFigures (for IsManiplex)

VertexFigures (M) (attribute)

Returns the types of vertex-figures of M (i.e. the maniplexes corresponding to the vertex-figures). Currently only works for reflexible maniplexes.

3.2 Posets

3.2.1 PosetFromFaceListOfFlags (for IsList)

▷ PosetFromFaceListOfFlags(list)

(operation)

Returns: *IsPosetOfFlags*. Not that the function is INTENTIONALLY agnostic about whether it is being given full poset or not.

Given a list of lists of faces in increasing rank, where each face is described by the incident flags, gives you a IsPosetOfFlags object back.

3.2.2 IsFull (for IsPoset)

▷ IsFull(poset)

(attribute)

Returns: *true* or *false*

Checks or creates the value of the attribute IsFull for an IsPoset.

3.2.3 IsFlaggable (for IsPoset)

▷ IsFlaggable(arg)

(attribute)

3.2.4 IsFlaggablePoset (for IsPosetOfFlags)

▷ IsFlaggablePoset(poset)

(operation)

Returns: true or false

Given a *poset* (whose elements are lists of flags) corresponding to a maniplex, this function will tell you if it is flaggable, i.e., if the flags can be recovered from the poset or not.

3.2.5 ListIsFullPoset (for IsList)

▷ ListIsFullPoset(list)

(operation)

Returns: true or false

Given list, a poset as a list of faces ordered by rank, each face listing the flags on the face, this function will tell you if the poset is full or not.

3.2.6 RankOfPoset (for IsPoset)

▷ RankOfPoset(poset)

(operation)

Returns: integer

Given a poset, returns the rank of the poset. Note: There may be hidden assumptions here to untangle later.

3.2.7 IsNotFull (for IsPoset)

▷ IsNotFull(poset)

(operation)

Returns: true or false

Lets me check to see if a poset is NOT full. For use in certain filtering operations.

3.2.8 PosetOfConnectionGroup (for IsPermGroup)

▷ PosetOfConnectionGroup(g)

(operation)

Returns: *IsPosetOfFlags* with *IsFull*=false.

Given a group, returns a poset with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function does not include the minimal (empty) face nor the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

3.2.9 FullPosetOfConnectionGroup (for IsPermGroup)

▷ FullPosetOfConnectionGroup(g)

(operation)

Returns: *IsPosetOfFlags* with *IsFull*=true.

Returns a full poset corresponding to the connection group g with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. This function does include the minimal (empty) face nor the maximal face of the maniplex, so the list has n+2 ranks if the maniplex is of rank n. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

3.2.10 PosetOfManiplex (for IsManiplex)

▷ PosetOfManiplex(mani)

(operation)

Returns: IsPosetOfFlags

Given a maniplex, returns a poset of the maniplex with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function does not include the minimal (empty) face nor the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

3.2.11 FullPosetOfManiplex (for IsManiplex)

▷ FullPosetOfManiplex(mani)

(operation)

Returns: IsPosetOfFlags

Given a maniplex, returns a poset with the internal representation be a list of lists of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function does include the minimal (empty) face and the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

3.2.12 AreIncidentFaces (for IsObject,IsObject)

▷ AreIncidentFaces(object1, object2)

(operation)

Returns: true or false

Given two faces, will tell you if they are incident. Currently only supports faces as list of their incident flags.

3.2.13 FlagsAsListOfFacesFromPoset (for IsPoset)

⊳ FlagsAsListOfFacesFromPoset(poset)

(operation)

Returns: IsList

Given a poset, this will give you a version of the list of flags in terms of the faces described in the poset. Note that the flag list does not include the empty face or the maximal face.

3.2.14 AdjacentFlag (for IsPosetOfFlags,IsList,IsInt)

▷ AdjacentFlag(poset, flag, i)

(operation)

Returns: flag(s)

Given a flag (represented as chains of faces comprised of lists of flags) and a poset and a rank, this function will give you the *i*-adjacent flag. Note that adjacencies are listed from ranks 0 to one less than the dimension. You can replace *flag* with the integer corresponding to that flag. Adjacent-Flag(*poset*,*i*,*j*) returns the *j*-adjacent flag to the *i*th flag in *poset*. AdjacentFlag(*poset*,*i*,*j*,*true*) will give the position of the flag.

3.2.15 ConnectionGeneratorOfPoset (for IsPoset,IsInt)

▷ ConnectionGeneratorOfPoset(poset, i)

(operation)

Returns: A permutation on the flags.

Given a *poset* and an integer *i*, this function will give you the associated permutation for the rank *i*-connection.

3.2.16 ConnectionGroupOfPoset (for IsPoset)

▷ ConnectionGroupOfPoset(poset)

(operation)

Returns: *IsPermGroup*

Given a poset corresponding to a maniplex, this function will give you the connection group.

Families of Polytopes

4.1	Classical Polytopes			
4.1.1	Vertex			
<pre> Vertex()</pre>				
4.1.2	Edge			
<pre>▷ Edge()</pre>		(operation)		
4.1.3	Pgon (for IsInt)			
<pre>Pgon(p)</pre>		(operation)		
4.1.4	Cube (for IsInt)			
▷ Cube(n)		(operation)		
4.1.5	HemiCube (for IsInt)			
⊳ Hemi	iCube(n)	(operation)		
4.1.6	CrossPolytope (for IsInt)			
⊳ Cros	$\operatorname{ssPolytope}(n)$	(operation)		

4.1.7	HemicrossPolytope (for IsInt)	
⊳ Hemi	CrossPolytope(n)	(operation)
4.1.8	Simplex (for IsInt)	
⊳ Simp	lex(n)	(operation)
4.1.9	CubicTiling (for IsInt)	
⊳ Cubi	cTiling(n)	(operation)
4.1.10	Dodecahedron	
⊳ Dode	cahedron()	(operation)
4.1.11	HemiDodecahedron	
⊳ Hemi	Dodecahedron()	(operation)
4.1.12	Icosahedron	
⊳ Icos	ahedron()	(operation)
4.1.13	HemiIcosahedron	
⊳ Hemi	<pre>Icosahedron()</pre>	(operation)
4.1.14	24Cell	
⊳ 24Ce	11()	(operation)
4.1.15	Hemi24Cell	
⊳ Hemi	24Cell()	(operation)
4.1.16	120Cell	
⊳ 120C	dell()	(operation)

4.1.17 Hemi120Cell

4.1.18 600Cell

4.1.19 Hemi600Cell

Groups

5.1 Groups

5.1.1 AutomorphismGroup (for IsManiplex)

▷ AutomorphismGroup(M)

(attribute)

Returns the automorphism group of M. This group is not guaranteed to be in any particular form.

5.1.2 AutomorphismGroupFpGroup (for IsManiplex)

(attribute)

Returns the automorphism group of M as a finitely presented group.

5.1.3 AutomorphismGroupPermGroup (for IsManiplex)

(attribute)

Returns the automorphism group of M as a permutation group.

5.1.4 ConnectionGroup (for IsManiplex)

▷ ConnectionGroup(M)

(attribute)

Returns the connection group of M as a permutation group. We may eventually allow other types of connection groups.

5.1.5 EvenConnectionGroup (for IsManiplex)

▷ EvenConnectionGroup(M)

(attribute)

Returns the even-word subgroup of the connection group of M as a permutation group.

5.1.6 RotationGroup (for IsManiplex)

Returns the rotation group of M. This group is not guaranteed to be in any particular form.

5.1.7 ExtraRelators (for IsReflexibleManiplex)

For a reflexible maniplex M, returns the relators needed to define its automorphism group as a quotient of the string Coxeter group given by its Schlafli symbol. Not particularly robust at the moment.

5.1.8 IsStringC (for IsGroup)

▷ IsStringC(G) (operation)

For an sggi G, returns whether the group is a string C group. It does not check whether G is an sggi.

Properties

6.1 Orientability

6.1.1 IsOrientable (for IsManiplex)

▷ IsOrientable(p)

(property)

Returns: true or false

A polytope is orientable if its flag graph is bipartite. Currently only implemented for regular polytopes.

6.1.2 IsIOrientable (for IsManiplex, IsList)

 \triangleright IsIOrientable(p, I)

(operation)

For a subset I of {0, ..., n-1}, a polytope if I-orientable if every closed path in its flag graph contains an even number of edges with colors in I. Currently only implemented for regular polytopes.

6.1.3 IsVertexBipartite (for IsManiplex)

▷ IsVertexBipartite(p)

(property)

Returns: true or false

A polytope is vertex-bipartite if its 1-skeleton is bipartite. This is equivalent to being I-orientable for $I = \{0\}$.

6.1.4 IsFacetBipartite (for IsManiplex)

▷ IsFacetBipartite(p)

(property)

Returns: true or false

A polytope is facet-bipartite if the 1-skeleton of its dual is bipartite. This is equivalent to being I-orientable for $I = \{n-1\}$.

Basics

7.1 Constructors

7.1.1 UniversalSggi

```
▷ UniversalSggi(n) (operation)
▷ UniversalSggi(sym) (operation)
```

In the first form, returns the universal Coxeter Group of rank n. In the second form, returns the Coxeter Group with Schlafli symbol sym.

7.1.2 ReflexibleManiplex (for IsGroup)

```
\triangleright ReflexibleManiplex(g) (operation)
```

Given a group g (which should be a string C-group), returns the abstract regular polytope with that automorphism group, where the privileged generators are those returned by GeneratorsOfGroup(g).

7.1.3 ReflexibleManiplex (for IsList, IsList)

```
▶ ReflexibleManiplex(symbol, relations) (operation)
```

Returns an abstract regular polytope with the given Schlafli symbol and with the given relations. The formatting of the relations is quite flexible. All of the following work:

```
Example

q := ReflexibleManiplex([4,3,4], "(r0 r1 r2)^3, (r1 r2 r3)^3");

q := ReflexibleManiplex([4,3,4], "(r0 r1 r2)^3 = (r1 r2 r3)^3 = 1");

p := ReflexibleManiplex([infinity], "r0 r1 r0 = r1 r0 r1");
```

7.1.4 ReflexibleManiplex (for IsString)

```
▶ ReflexibleManiplex(name) (operation)
```

Returns the regular polytope with the given symbolic name. Examples: ReflexibleManiplex("{3,3,3}"); ReflexibleManiplex("{4,3}_3");

Comparing maniplexes

8.1 Quotients and covers

8.1.1 IsQuotientOf (for IsManiplex, IsManiplex)

▷ IsQuotientOf(M1, M2)

(operation)

Returns whether M1 is a quotient of M2.

8.1.2 IsCoverOf (for IsManiplex, IsManiplex)

▷ IsCoverOf(M1, M2)

(operation)

Returns whether M1 is a cover of M2.

8.1.3 IsIsomorphicTo (for IsManiplex, IsManiplex)

▷ IsIsomorphicTo(M1, M2)

(operation)

Returns whether M1 is isomorphic to M2.

8.1.4 SmallestRegularCover (for IsManiplex)

▷ SmallestRegularCover(M)

(attribute)

Returns the smallest regular cover of M, which is the maniplex whose automorphism group is the connection group of M.

Index

120Cell, 13	for IsReflexibleManiplex, 16
24Cell, 13	В
600Cell, 14	Facets
	for IsManiplex, 9
AdjacentFlag	FlagsAsListOfFacesFromPoset
for IsPosetOfFlags,IsList,IsInt, 11	for IsPoset, 11
Amalgamate	FlatExtension
for IsManiplex, IsManiplex, 5	for IsManiplex, IsInt, 5
AreIncidentFaces	FlatRegularPolyhedra
for IsObject, IsObject, 11	for IsInt, 7
AutomorphismGroup	${ t Flat Regular Polyhedron}$
for IsManiplex, 15	for IsInt, IsInt, IsInt, 4
AutomorphismGroupFpGroup	${\tt FullPosetOfConnectionGroup}$
for IsManiplex, 15	for IsPermGroup, 10
AutomorphismGroupPermGroup	FullPosetOfManiplex
for IsManiplex, 15	for IsManiplex, 11
	Fvector
ConnectionGeneratorOfPoset	for IsManiplex, 9
for IsPoset,IsInt, 11	
ConnectionGroup	Hemi120Cell, 14
for IsManiplex, 15	Hemi24Cell, 13
ConnectionGroupOfPoset	Hemi600Cell, 14
for IsPoset, 11	${\tt HemiCrossPolytope}$
CrossPolytope	for IsInt, 13
for IsInt, 12	HemiCube
Cube	for IsInt, 12
for IsInt, 12	HemiDodecahedron, 13
CubicTiling	HemiIcosahedron, 13
for IsInt, 13	T 12
,	Icosahedron, 13
DegeneratePolyhedra	IsCoverOf
for IsInt, 7	for IsManiplex, IsManiplex, 19
Dodecahedron, 13	IsFacetBipartite
Dual	for IsManiplex, 17
for IsManiplex, 5	IsFlaggable
	for IsPoset, 9
Edge, 12	${\tt IsFlaggablePoset}$
EvenConnectionGroup	for IsPosetOfFlags, 9
for IsManiplex, 15	IsFull
ExtraRelators	for IsPoset, 9

IsIOrientable	for IsManiplex, 6
for IsManiplex, IsList, 17	PyramidOver
IsIsomorphicTo	for IsManiplex, 6
for IsManiplex, IsManiplex, 19	
IsNotFull	QuotientPolytope
for IsPoset, 10	for IsManiplex, IsList, 4
IsOrientable	D 1- O f D +
for IsManiplex, 17	RankOfPoset
IsQuotientOf	for IsPoset, 10
for IsManiplex, IsManiplex, 19	ReflexibleManiplex
IsSelfDual	for IsGroup, 18
for IsManiplex, 5	for IsList, IsList, 18
IsSelfPetrial	for IsString, 18
for IsManiplex, 5	RotationGroup
IsStringC	for IsManiplex, 16
for IsGroup, 16	C:]
IsVertexBipartite	Simplex
for IsManiplex, 17	for IsInt, 13
Tot isivampiex, 17	SmallestRegularCover
License, 2	for IsManiplex, 19
ListIsFullPoset	SmallRegularPolyhedra
for IsList, 10	for IsInt, 7
*	TrivialExtension
Medial	for IsManiplex, 5
for IsManiplex, 5	for iswampiex, 5
	UniversalExtension
NumberOfEdges	for IsManiplex, 4
for IsManiplex, 8	for IsManiplex, IsInt, 4
NumberOfFacets	UniversalPolytope
for IsManiplex, 8	for IsInt, 4
NumberOfIFaces	UniversalSggi
for IsManiplex, IsInt, 8	for IsInt, 18
NumberOfRidges	for IsList, 18
for IsManiplex, 8	101 152150, 10
NumberOfVertices	Vertex, 12
for IsManiplex, 8	VertexFigures
D	for IsManiplex, 9
Petrial	•
for IsManiplex, 5	
Pgon	
for IsInt, 12	
PosetFromFaceListOfFlags	
for IsList, 9	
PosetOfConnectionGroup	
for IsPermGroup, 10	
PosetOfManiplex	
for IsManiplex, 10	
PrismOver	