Mathematics

Robin Adams

September 13, 2023

Contents

1	Sets	and Functions	5
	1.1	Primitive Terms	5
	1.2	Definitions Used in the Axioms	5
	1.3	The Axioms	6
	1.4	Isomorphisms	7
	1.5	Subsets	7
	1.6	Intersections	7
	1.7	Pullbacks	7
	1.8	Functions	7
	1.9	The Internal Logic	8
	1.10	Functions	9
	1.11	Equalizers	10
	1.12	The Empty Set	10
	1.13	Universal Quantification	11
	1.14	Intersection	11
	1.15	Union	12

4 CONTENTS

Chapter 1

Sets and Functions

1.1 Primitive Terms

Let there be *sets*.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B, and call A the domain of f and B the codomain.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $g\circ f:A\to C$, the *composite* of f and g.

For any set A, let there be a function $id_A:A\to A$, the *identity* function on A.

Let there be a set 1, the terminal set.

For any sets A and B, let there be a set $A \times B$, the *product* of A and B, and functions $\pi_1: A \times B \to A$, $\pi_2: A \times B \to B$, the *projections*.

Given functions $f:A\to B$ and $g:A\to C$, let there be a function $\langle f,g\rangle:A\to B,C.$

1.2 Definitions Used in the Axioms

Definition 1.1 (Element). For any set A, an *element* of A is a function $1 \to a$. We write $a \in A$ for $a: 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for $f \circ a: 1 \to B$.

Definition 1.2 (Injective). A function $f: A \to B$ is *injective* iff, for every set X and functions $x, y: X \to A$, if fx = fy then x = y.

Definition 1.3 (Surjective). A function $f: A \to B$ is *surjective* iff, for every element $b \in B$, there exists $a \in A$ such that f(a) = b.

Definition 1.4 (Retraction, Section). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of A, iff $r \circ s = \mathrm{id}_B$.

Definition 1.5. Given functions $f:A\to B$ and $g:C\to D$, let $f\times g=\langle f\circ\pi_1,g\circ\pi_2\rangle$.

Definition 1.6 (Function Set). Let A and B be sets. A function set from A to B consists of a set B^A and function $\epsilon: B^A \times A \to B$ such that, for any set I and function $q: I \times A \to B$, there exists a unique function $\lambda q: I \to B^A$ such that $\epsilon \circ (\lambda q \times \mathrm{id}_A) = q$.

Definition 1.7 (Pullback). Let $p:A\to B,\ q:A\to C,\ f:B\to D$ and $g:C\to D$. Then we say that $A,\ p$ and q form the pullback of f and g if and only if:

- fp = gq
- For any set X and functions $x: X \to B$, $y: X \to C$ such that fx = gy, there exists a unique function $(x,y): X \to A$ such that p(x,y) = x and q(x,y) = y.

We also say p is the pullback of g along f, or q is the pullback of f along g. In the case g is injective, we also say A and p form the *inverse image* of g under f.

$$\begin{array}{c|c}
A & \xrightarrow{p} & B \\
\downarrow q & & \downarrow f \\
C & \xrightarrow{g} & D
\end{array}$$

1.3 The Axioms

Axiom 1.8 (Associativity). Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h(qf) = (hq)f .$$

Axiom 1.9 (Unit Laws). For any function $f: A \to B$, we have $id_B \circ f = f \circ id_A = f$.

Axiom 1.10 (Terminal Set). For any set X, there is exactly one function $X \to 1$.

Axiom 1.11 (Empty Set). There exists a set that has no elements.

Axiom 1.12 (Extensionality). Let A and B be sets and $f, g : A \to B$. If $\forall a \in A. f(a) = g(a)$ then f = g.

Axiom 1.13 (Products). Let $f: A \to B$ and $g: A \to C$. Then $\langle f, g \rangle$ is the unique function $A \to B \times C$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Axiom 1.14 (Function Sets). Any two sets have a function set.

Axiom 1.15 (Inverse Images). Given any function $f: X \to Y$ and element $y \in Y$, then there exists a pullback of f and y.

Axiom 1.16 (Subset Classifier). There exists a set 2 and element $T \in 2$ such that, for any sets A and X and injective function $j: A \rightarrowtail X$, there exists a unique function $\chi: X \to 2$ such that j and the unique function $A \to 1$ form the pullback of T and X.

Axiom 1.17 (Natural Numbers Set). There exists a set \mathbb{N} , an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for any set A, element $a \in A$ and function $f : A \to A$, there exists a unique function $r : \mathbb{N} \to A$ such that r(0) = a and $f \circ r = r \circ s$.

Axiom 1.18 (Choice). Every surjective function has a section.

1.4 Isomorphisms

Definition 1.19 (Isomorphism). Let $f: A \to B$. Then f is an *isomorphism* or bijection, $f: A \cong B$, iff there exists a function $f^{-1}: B \to A$, the inverse of f, such that $f^{-1}f = \mathrm{id}_A$ and $ff^{-1} = \mathrm{id}_B$.

1.5 Subsets

Definition 1.20 (Subset). Let $i: U \to A$. Then we say that (U, i) is a *subset* of A iff i is injective.

Definition 1.21. Let (U,i) and (V,j) be subsets of A. Then we say (U,i) and (V,j) are equal, and write (U,i)=(V,j), iff there exists an isomorphism $\phi:U\cong V$ such that $j\phi=i$.

1.6 Intersections

Definition 1.22 (Intersection). Let (U, i) and (V, j) be subsets of a set A. Let $p: W \to U$ and $q: W \to V$ form the pullback of i under j. Then the *intersection* of (U, i) and (V, j) is defined to be (W, ip) = (W, jq).

1.7 Pullbacks

1.8 Functions

Proposition 1.23. Let $f: A \to B$. Then f is injective if and only if, for all $x, y \in A$, if f(x) = f(y) then x = y.

Proof:

 $\langle 1 \rangle 1$. If f is injective then, for all $x, y \in A$, if f(x) = f(y) then x = y.

```
PROOF: Immediate from the definition of injective.  \langle 1 \rangle 2. \text{ If } \forall x,y \in A.f(x) = f(y) \Rightarrow x = y \text{ then } f \text{ is injective.}   \langle 2 \rangle 1. \text{ ASSUME: } \forall x,y \in A.f(x) = f(y) \Rightarrow x = y   \langle 2 \rangle 2. \text{ Let: } X \text{ be a set and } s,t:X \to A   \langle 2 \rangle 3. \text{ ASSUME: } fs = ft   \langle 2 \rangle 4. \ \forall x \in X.s(x) = t(x)   \langle 3 \rangle 1. \text{ Let: } x \in X   \langle 3 \rangle 2. \ f(s(x)) = f(t(x))   \text{PROOF: } \langle 2 \rangle 3   \langle 3 \rangle 3. \ s(x) = t(x)   \text{PROOF: } \langle 2 \rangle 1   \langle 2 \rangle 5. \ s = t   \text{PROOF: Axiom of Extensionality }
```

1.9 The Internal Logic

Proposition 1.24. Let $i: U \rightarrow A$ be injective. Let $\chi: A \rightarrow 2$ be its characteristic function. Then, for all $a \in A$, we have $\chi(a) = \top$ if and only if there exists $u \in U$ such that i(u) = a.

Proof:

```
\begin{split} \langle 1 \rangle 1. & \text{ If } \chi(a) = \top \text{ then there exists } u \in U \text{ such that } i(u) = a. \\ & \text{PROOF: If } \chi \circ a = \top = \top \circ !_1 \text{ then there exists a unique } u: 1 \to U \text{ such that } i \circ u = a \text{ and } !_U \circ u = !_1. \\ \langle 1 \rangle 2. & \text{ For all } u \in U \text{ we have } \chi(i(u)) = \top. \\ & \text{PROOF: Since } \chi \circ i = \top \circ !_U. \\ & \Box \end{split}
```

Proposition 1.25. Subsets of a set A are equal if and only if they have the same characteristic function.

PROOF: Follows from the fact that pullbacks are unique up to isomorphism and the uniqueness of the characteristic function. \Box

Proposition 1.26. There are exactly two subsets of 1.

```
PROOF:  \langle 1 \rangle 1. \text{ PICK a set } E \text{ with no elements.} \\ \langle 1 \rangle 2. \ !_E : E \to 1 \text{ is injective.} \\ \text{PROOF: Vacuously, } \forall x,y \in E.!_E(x) = !_E(y) \Rightarrow x = y. \\ \langle 1 \rangle 3. \ (E,!_E) \neq (1,\operatorname{id}_1) \\ \text{PROOF: Since there cannot be an isomorphism } 1 \cong E. \\ \langle 1 \rangle 4. \text{ For any subsets } (U,i) \text{ and } (V,j) \text{ of } 1, \text{ if } (U,i) \neq (U,i) \cap (V,j) \text{ then } (U,i) = (1,\operatorname{id}_1) \\ \langle 2 \rangle 1. \text{ Let: } (U,i) \text{ and } (V,j) \text{ be subsets of } 1. \\ \langle 2 \rangle 2. \text{ Let: } p : W \to U \text{ and } q : W \to V \text{ form the intersection of } (U,i) \text{ and } (V,j)
```

1.10. FUNCTIONS 9

```
\langle 2 \rangle 3. Assume: (U, i) \neq (W, k)
   \langle 2 \rangle 4. Let: (U, \mathrm{id}_U) \neq (W, p) as subsets of U.
   \langle 2 \rangle5. Let: \chi_U, \chi_W : U \to 2 be the characteristic functions of (U, \mathrm{id}_U) and
                     (W, p) respectively.
   \langle 2 \rangle 6. \ \chi_U \neq \chi_W
   \langle 2 \rangle 7. Pick x \in U
       Proof: By the Axiom of Extensionality, there exists x \in U such that
       \chi_U(x) \neq \chi_W(x).
    \langle 2 \rangle 8. \ ix = id_1
   \langle 2 \rangle 9. \ x:1 \cong U
   \langle 2 \rangle 10. \ (U,i) = (1, id_1)
\langle 1 \rangle 5. For any subset (U,i) of 1, either (U,i)=(E,!_E) or (U,i)=(1,\mathrm{id}_1).
    \langle 2 \rangle 1. Let: (U, i) be a subset of 1.
   \langle 2 \rangle 2. Assume: (U, i) \neq (E, !_E)
   \langle 2 \rangle 3. \ (U,i) \neq (U,i) \cap (E,!_E) \text{ or } (E,!_E) \neq (U,i) \cap (E,!_E)
   \langle 2 \rangle 4. (U, i) = (1, id_1) or (E, !_E) = (1, id_1)
       Proof: \langle 1 \rangle 4
   \langle 2 \rangle 5. \ (U,i) = (1, id_1)
       Proof: \langle 1 \rangle 3
```

Corollary 1.26.1. There are exactly two elements of 2.

Definition 1.27 (Falsehood). Let *falsehood* \bot be the element of 2 that is not \top .

Corollary 1.27.1. 2 is the coproduct of 1 and 1 with injections \top and \bot .

1.10 Functions

Proposition 1.28. Let $f: A \to B$, $g: B \to C$ and $a \in A$. Then

$$(g \circ f)(a) = g(f(a))$$
.

PROOF: Immediate from the Axiom of Associativity.

Proposition 1.29. For any set A, any function $1 \rightarrow A$ is injective.

PROOF: Since there is only one function $X \to 1$ for any set X. \sqcup

Proposition 1.30. Let $f: A \to B$. Then the following are equivalent:

- 1. f is surjective.
- 2. f is a retraction (i.e. f has a section).
- 3. For any set X and functions $x, y : B \to X$, if xf = yf then x = y.

Proof:

```
\langle 1 \rangle 1. 1 \Rightarrow 2
    PROOF: Immediate from the Axiom of Choice.
\langle 1 \rangle 2. \ 2 \Rightarrow 3
    \langle 2 \rangle 1. Let: s: B \to A be a section of f.
   \langle 2 \rangle 2. Let: X be a set and x, y : B \to X satisfy xf = yf.
   \langle 2 \rangle 3. \ x = y
       PROOF: x = xfs = yfs = y
\langle 1 \rangle 3. \ 3 \Rightarrow 1
    \langle 2 \rangle 1. Assume: 3
    \langle 2 \rangle 2. Let: b \in B
    \langle 2 \rangle 3. Assume: for a contradiction \forall a \in A. f(a) \neq b
   \langle 2 \rangle 4. Let: \psi_1 : B \to 2 be the characteristic function of b.
    \langle 2 \rangle5. Let: \psi_2 = \bot \circ !_B : B \to 2
    \langle 2 \rangle 6. \ \forall x \in A. \psi_1(f(x)) = \psi_2(f(x))
       \langle 3 \rangle 1. Let: x \in A
       \langle 3 \rangle 2. \ \psi_1(f(x)) \neq \top
           PROOF: Proposition 1.24, \langle 2 \rangle 3, \langle 2 \rangle 4.
       \langle 3 \rangle 3. \ \psi_1(f(x)) = \bot
       \langle 3 \rangle 4. \ \psi_1(f(x)) = \psi_2(f(x))
    \langle 2 \rangle 7. \ \psi_1 \circ f = \psi_2 \circ f
       PROOF: Axiom of Extensionality
    \langle 2 \rangle 8. \ \psi_1 = \psi_2
       Proof: \langle 2 \rangle 1
    \langle 2 \rangle 9. \ \psi_1(b) \neq \psi_2(b)
       PROOF: Since \psi_1(b) = \top and \psi_2(b) = \bot.
    \langle 2 \rangle 10. Q.E.D.
       Proof: This is a contradiction
```

Corollary 1.30.1. A function is bijective iff it is injective and surjective.

1.11 Equalizers

Theorem 1.31. Any two functions $f, g: A \to B$ have an equalizer.

PROOF: Take the inverse image of $\delta_B = \langle \mathrm{id}_B, \mathrm{id}_B \rangle : B \rightarrow B^2$ and $\langle f, g \rangle : A \rightarrow B^2$. \square

1.12 The Empty Set

Theorem 1.32. If E is a set with no elements, then E has no proper subsets.

PROOF: A proper subset of E would give a proper subset of 1 that is different from $(E,!_E)$. \square

Theorem 1.33. If E is a set with no elements, then for any set X there exists exactly one function $E \to X$.

Proof:

 $\langle 1 \rangle 1$. Let: E be a set with no elements.

 $\langle 1 \rangle 2$. Let: X be a set.

 $\langle 1 \rangle 3$. There exists a function $E \to X$.

 $\langle 2 \rangle$ 1. Let: $t: 1 \to 2^X$ be the name of the characteristic function of $\mathrm{id}_X: X \to X$.

 $\langle 2 \rangle 2$. Let: $\sigma: X \to 2^X$ be the lambda of the characteristic function of $\delta = \langle \operatorname{id}_X, \operatorname{id}_X \rangle : X \to X \times X$.

 $\langle 2 \rangle 3.$ Let: $p:P \to E$ and $q:P \to X$ be the pullback of $t \circ !_E$ and $\sigma.$

PROOF: $t \circ !_E$ is vacuously injective.

 $\langle 2 \rangle 4$. p is injective.

PROOF: It is the pullback of the injective function σ .

 $\langle 2 \rangle 5$. p is bijective.

 $\langle 2 \rangle 6. \ q \circ p^{-1} : E \to X$

 $\langle 1 \rangle 4$. For any functions $f, g : E \to X$ we have f = g.

 $\langle 2 \rangle 1$. Let: $f, g : E \to X$

 $\langle 2 \rangle 2$. Let: $m: M \to E$ be the pullback of f and g.

 $\langle 2 \rangle 3.$ $(M,m) = (E, \mathrm{id}_E)$

PROOF: Since E has no proper subsets.

 $\langle 2 \rangle 4. \ m: M \cong E$

 $\langle 2 \rangle 5.$ f = g

Corollary 1.33.1. If E and E' are sets with no elements then there exists a unique isomorphism $E \cong E'$.

Definition 1.34 (Empty Set). Let the *empty set* \emptyset be the set with no elements.

Theorem 1.35. For any set A, if there exists a function $A \to \emptyset$ then $A \cong \emptyset$.

PROOF: If $f:A\to\varnothing$ then A has no elements, because for any $a\in A$ we have $f(a)\in\varnothing$. \square

1.13 Universal Quantification

Definition 1.36. For any set A, let $t_A: 1 \to 2^A$ be the name of the characteristic function of $T \circ !_A: A \to 2$. Define universal quantification $\forall_A: 2^A \to 2$ to be the characteristic function of t_A .

1.14 Intersection

Theorem 1.37. Let X be a set. There exists a function $\bigcap : 2^{2^X} \to 2^X$ such that, for all $S \in 2^{2^X}$ and $a \in X$, we have

$$\epsilon(\bigcap S, a) = \top \Leftrightarrow \forall A \in 2^X. (\epsilon(S, A) = \top \Rightarrow \epsilon(A, a) = \top)$$

Proof:

- $\langle 1 \rangle 1$. Let: X be a set.
- $\langle 1 \rangle 2$. Let: $\phi_2: X \to 2^{2^X}$ be the lambda of $\epsilon: 2^X \times X \to 2$
- $\langle 1 \rangle 3$. Let: F be the function

$$2^{2^X} \times X \xrightarrow{\langle \operatorname{id}_{2^{2^X}}, \phi_2 \rangle} 2^{2^X} \times 2^{2^X} \xrightarrow{\cong} (2 \times 2)^{2^X} \xrightarrow{\Rightarrow} 2^{2^X} \xrightarrow{\forall} 2^X$$

 $\langle 1 \rangle$ 4. Let: \bigcap be the lambda

1.15Union

Theorem 1.38. Any two subsets of a set have a union.

Proof:

- $\langle 1 \rangle 1$. Let: A and B be subsets of X
- $\langle 1 \rangle 2$. Let: $\chi_A \in 2^X$ be the name of the characteristic function of A.
- $\langle 1 \rangle$ 3. Let: $t_X \in 2^X$ be the name of $\top \circ !_X : X \to 2$
- $\langle 1 \rangle 4$. Let: C be the pullback of t_X and $\chi_A \Rightarrow -: 2^X \to 2^X$
- $\langle 1 \rangle$ 5. Let: D be the pullback of t_X and $\chi_B \Rightarrow -$
- $\langle 1 \rangle 6$. $\bigcap (C \cap D)$ is the union of A and B.

Theorem 1.39. Any two sets have a coproduct.

Proof:

- $\langle 1 \rangle 1$. Let: X and Y be sets.
- $\langle 1 \rangle 2$. Let: $\sigma_X : X \to 2^X$ be the lambda of the characteristic function of $\langle \mathrm{id}_X, \mathrm{id}_X \rangle : X \to X \times X$
- $\langle 1 \rangle 3$. Let: $\chi_0 : 1 \to Y$ be the characteristic function of the unique function
- $\langle 1 \rangle 4$. Let: $i_X = \langle \sigma_X, \chi_0 \circ !_X \rangle : X \to 2^X \times 2^Y$ $\langle 1 \rangle 5$. Let: $i_Y : Y \to 2^X \times 2^Y$ be defined similarly.
- $\langle 1 \rangle 6$. i_X and i_Y are monic.
- $\langle 1 \rangle 7$. \varnothing is the pullback of i_X and i_Y (i.e. $(X,i_X) \cap (Y,i_Y) = \varnothing$). $\langle 1 \rangle 8$. Let: $j: Z \to 2^X \times 2^Y$ be the union of i_X and i_Y
- $\langle 1 \rangle 9$. Z is the coproduct of X and Y.