AI-Based Spacecraft Operations Assistant (AI-SOA)

ITAI 2372 Artificial Intel Applications

Violetta Basden

Nicolas Giot Chad Jones

Project Overview

- Space missions face challenges like real-time decision-making, resource management, and anomaly detection. These challenges are amplified when communication with Earth is delayed, requiring autonomous systems to ensure mission success.
- Solution Overview: AI-SOA is an AI-driven system that autonomously detects anomalies, optimizes resource usage, and makes real-time decisions to improve spacecraft operations and reduce reliance on Earth-based control.

Key Features of AI-SOA

- Anomaly Detection: Uses supervised learning to detect and flag irregularities in spacecraft telemetry data (e.g., unexpected temperature spikes, power failures).
- Resource Optimization: Implements reinforcement learning to optimize resource allocation (e.g., fuel, power) based on real-time mission needs and constraints.
- Decision Support: Rule-based system automates decisions during critical events (e.g., re-routing spacecraft, adjusting power to essential systems).

Testing Plan

 Test Scenarios: Simulating anomalies in telemetry data (e.g., sudden spike in temperature or power loss). Resource optimization under constrained conditions (e.g., limited fuel). Decision-making during critical events (e.g., sensor failure). Testing Metrics: Accuracy: Precision, recall for anomaly detection. Efficiency: Resource usage improvements. Response Time: Time taken for automated actions.

Evaluation Methods

 Metrics for Success: Confusion Matrix for anomaly detection performance. ROC-AUC Curve for evaluating classification performance. Energy savings metrics to measure efficiency in resource optimization. Tools: Simulated data sets, Python unittest framework, and evaluation metrics like precision, recall, and F1 score.

Expected Benefits

- Autonomy: Reduces reliance on Earth-based control, enabling quicker responses in deep space.
- Efficiency: Optimizes resource usage, ensuring spacecraft can operate within limited resources.
- Safety: Early detection of anomalies helps prevent catastrophic system failures, improving mission safety.

Future Possibilities

- Expansion to Other Missions: AI-SOA can be applied to other space missions, from lunar exploration to Mars rovers.
- Human Spaceflight: Integration with human spaceflight missions to support astronauts' decision-making in critical situations.
- Scalability: The AI-SOA framework can be adapted for larger fleets of spacecraft or larger missions with more complex data requirements.

Conclusion

- Summary:
 - AI-SOA provides a crucial solution for autonomous spacecraft operations, with benefits in anomaly detection, resource optimization, and decision support.
- Final Thoughts:
 - This AI system paves the way for more autonomous, efficient, and safe space missions, reducing human intervention and ensuring mission success in challenging environments.

References

1. "Artificial Intelligence for Space Applications"

A paper discussing AI's role in space exploration, focusing on anomaly detection and optimization techniques.

Source: IEEE Xplore Digital Library

2. NASA's Autonomous Spacecraft Initiatives

NASA's work on Al-powered systems for spacecraft autonomy and efficiency.

Source: NASA Jet Propulsion Laboratory (JPL)

3. "Reinforcement Learning for Resource Optimization"

A research article on applying AI for resource management in space missions.

Source: Elsevier

4. ChatGPT by OpenAl

Used for generating ideas, refining grammar, and structuring content for this presentation and the overall project.

Source: OpenAI