Functional Dependencies Tutorial

SWEN 304 Trimester 2, 2017

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Inferring FDs satisfied by Faculty relation
- Eliminating redundant functional dependencies
 - Closure of a set of attributes
 - Finding a minimal cover
- Relation Schema keys as a consequence of functional dependencies
 - A Key Finding Algorithm
 - Inferring additional keys

Universal Relation "Faculty"

StId	StName	NoPts	Courld	CoName	Grd	LecId	LeName
007	James	80	M114	Math	A +	777	Mark
131	Susan	18	C102	Java	B-	101	Ewan
007	James	80	C102	Java	Α	101	Ewan
555	Susan	18	M114	Math	B+	999	Vladimir
007	James	80	C103	Algorithm	A +	99	Peter
131	Susan	18	M214	Math	ω	333	Peter
555	Susan	18	C201	C++	ω	222	Robert
007	James	80	C201	C++	A +	222	Robert
010	John	0	C101	Inet	ω	820	Ray

FDs of the Faculty Relation Schema

 Suppose the rules of behavior in UoD dictate the following functional dependencies are valid

```
F = \{StId \rightarrow StName + NoPts, \\ Courld \rightarrow CoName, \\ LeId \rightarrow LeName, \\ LeId \rightarrow Courld, \\ StId + Courld \rightarrow Grade, \\ StId + Courld \rightarrow LeId \}
```

From the relation, one can infer that the following FDs are not satisfied

```
StName \rightarrow StId, Courld \rightarrow LeId, \not\in F

LeId \rightarrow StId, StId \rightarrow Grade,...
```


Redundant Functional Dependencies

$$U = \{A, B, C, D\}$$

- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, AB \rightarrow D, A \rightarrow C, A \rightarrow D, BC \rightarrow D\}$
- $F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- Use inference rules to show that F can be replaced by F₁
 - This way works fine for small sets of FDs (and F₁ is known)
 - The other way would be to compute closures (and F_1 is known)
 - The best way is to look directly for the minimal cover of F

- Given U, F, and X, Y, Z, $W \subseteq U$
- 1. (Reflexivity) $Y \subseteq X \models X \rightarrow Y$ (trivial FD)
- 2. (Augmentation) $X \rightarrow Y \land W \subseteq Z \models XZ \rightarrow YW$ (partial FD)
- 3. (Transitivity) $X \rightarrow Y \land Y \rightarrow Z \models X \rightarrow Z$ (transitive FD)
- 4. (Decomposition) $X \rightarrow YZ \models X \rightarrow Y \land X \rightarrow Z$
- 5. (Union) $X \rightarrow Y \land X \rightarrow Z \models X \rightarrow YZ$
- 6. (Pseudo transitivity) $X \rightarrow Y \land WY \rightarrow Z \vDash WX \rightarrow Z$ (if $W = \emptyset$, pseudo transitivity turns into transitivity)
- Inference rules 1, 2 and 3 are known as Armstrong's inference rules

Computing the Closure of F

- $F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- F_1 + = { $\varnothing \to \varnothing$, $A \to \varnothing$, $A \to A$, $A \to B$, $A \to C$, $A \to D$, $B \rightarrow \emptyset$, $B \rightarrow B$, $B \rightarrow C$, $B \rightarrow D$, $C \rightarrow \emptyset$, $C \rightarrow C$, $C \rightarrow D$. $D \rightarrow \emptyset$, $D \rightarrow D$, $AB \rightarrow \emptyset$, $AB \rightarrow A$, $AB \rightarrow B$, $AB \rightarrow C$, AB $\rightarrow D$, $AC \rightarrow \emptyset$, $AC \rightarrow A$, $AC \rightarrow B$, $AC \rightarrow C$, $AC \rightarrow D$, AD $\rightarrow \emptyset$, $AD \rightarrow A$, $AD \rightarrow B$, $AD \rightarrow C$, $AD \rightarrow D$, $BC \rightarrow \emptyset$, BC $\rightarrow B$, $BC \rightarrow C$, $BC \rightarrow D$, $BD \rightarrow \emptyset$, $BD \rightarrow D$, $BD \rightarrow C$, BD $\rightarrow D$, $CD \rightarrow \emptyset$, $CD \rightarrow C$, $CD \rightarrow D$, $ABC \rightarrow \emptyset$, $ABC \rightarrow A$, $ABC \rightarrow B$, $ABC \rightarrow C$, $ABC \rightarrow C$, $ABC \rightarrow D$, $ABD \rightarrow \emptyset$, $ABD \rightarrow A$, $ABD \rightarrow B$, $ABD \rightarrow C$, $ABC \rightarrow D$, $BCD \rightarrow \emptyset$, $BCD \rightarrow B_1 BCD \rightarrow C_1 BCD \rightarrow D_1 ABCD \rightarrow \emptyset_1 ABCD \rightarrow A_1$ $ABCD \rightarrow B$, $ABCD \rightarrow C$, $ABCD \rightarrow D$ }

Closure of a Set of Attributes

- Given U, F and $X \subseteq U$
- Closure of X with regard to F, defined as

$$X_{F}^{+} = \{A \in U \mid X \rightarrow A \in F^{+}\}$$

is used in finding the minimal cover of F

Attribute Closure Algorithm

```
X^{+} = X:
                      // according to reflexivity
oldX^+ = \emptyset
while (oldX + \subset X +) {
        OldX^+ = X^+
       for (each FD Y \rightarrow Z \in F) {
              if (Y \subset X^+) {
              X^+ = X^+ \cup Z; //according to
                 // augmentation & transitivity
```


Exercise 1: Computing the Closure of X

- $F = \{D \rightarrow E, BC \rightarrow D, A \rightarrow C, A \rightarrow D\}$, compute closure of
 - A + =
 - *B* + =
 - C + =
 - D + =
 - *E* + =
 - AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, ABC, ABD....

Exercise 1: Computing the Closure of X

•
$$F = \{D \rightarrow E, BC \rightarrow D, A \rightarrow C, A \rightarrow D\}$$

•
$$A + = ACDE$$

•
$$B^+ = B$$

•
$$C^{+} = C$$

•
$$D^{+} = DE$$

•
$$E^+ = E$$

•
$$(BC)^+ = BCDE$$

•
$$(AB)^+ = ABCDE$$

 Note: we need to compute closures for all subsets of attributes of relation R to determine keys for R. Here there are 31 subsets.

Minimal Cover of a Set of FDs F

- A set of FDs G is a minimal cover of a set F if:
 - each FD in G has a single attribute on its right hand side
 - 2. G is left reduced (no one FD in G has any superfluous attribute on its left hand side, (a left reduced FD = total FD, a not reduced FD = partial FD))

$$(\forall X \rightarrow A \in G)(\forall B \in X)((X - B) \rightarrow A \notin G^+)$$

3. G is non redundant (doesn't contain any trivial or pseudo transitive FD)

$$(\forall X \rightarrow A \in G)((G - \{X \rightarrow A\})^+ \subset G^+)$$

4. $F^+ = G^+$

Finding a Minimal Cover Algorithm

- 1. **Set** G := F
- 2. Replace each FD $X \rightarrow \{A_1, A_2, ..., A_n\}$ in G with the following n FDs $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n$
- 3. Do left reduction

for each FD
$$X \rightarrow A$$
 in G do
for each B in X do
if $A \in (X - B)^+_G$ then
 $G := (G - \{X \rightarrow A\}) \cup \{(X - B) \rightarrow A\}$

4. Eliminate redundant FDs

for each FD
$$X \rightarrow A$$
 in G do
if $A \in (X)^+_{G - \{X \rightarrow A\}}$ then $G := G - \{X \rightarrow A\}$

Computing a Minimal Cover Example 1

- $U = \{A, B, C, D, E\}$
- $F = \{A \rightarrow B, AC \rightarrow B, A \rightarrow A, AD \rightarrow CE, B \rightarrow DE\}$
- After step 2 of the algorithm

$$G = \{A \rightarrow B, AC \rightarrow B, A \rightarrow A, AD \rightarrow C, AD \rightarrow E, B \rightarrow D, B \rightarrow E\}$$

After step 3 of the algorithm

$$G = \{A \rightarrow B, A \rightarrow A, A \rightarrow C, A \rightarrow E, B \rightarrow D, B \rightarrow E\}$$

After step 4 of the algorithm

$$G = \{A \rightarrow B, A \rightarrow C, B \rightarrow D, B \rightarrow E\}$$

Exercise 2: Computing a Minimal Cover

• Given:

$$U = \{A, B, C, D, E\}$$

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}$$

- Compute the two possible minimal covers of F
- In the fourth step of the minimal cover algorithm:
 - first consider whether FD $A \rightarrow B$ is redundant
 - then consider whether FD $A \rightarrow C$ is redundant
- In the second attempt
 - consider FD $A \rightarrow C$ first, and
 - then FD $A \rightarrow B$

A Key Finding Algorithm

$$X := R$$
 (*X is initialized as a super key*) for each A in X do
if $R \subseteq (X - A)^+_F$ then
$$X := X - A$$

Example

•
$$R = \{A, B, C\}, F = \{A \rightarrow B, B \rightarrow C\}$$

•
$$X = ABC$$

•
$$(X - A)^+_F = BC$$
 (* The superkey is still $X = ABC$ *)

•
$$(X - B)^+_F = ABC$$
 (* The superkey is now $X = AC$ *)

•
$$(X - C)^+_F = ABC$$
 (* The superkey is now $X = A$ *)

•
$$K(R) = A$$

Exercise 3: Finding Keys

- $R = \{A, B, C\}, F = \{A \to B, B \to C, C \to A\}$
- $R = \{D, E, F\}, F = \{D \to E, E \to D, D \to F\}$
- $R = \{G, H, I\}, F = \{G \rightarrow H, G \rightarrow I\}$
- $R = \{C, E, J\}, F = \{CE \rightarrow J\}$
- $R = \{C, E, G\}, F = \{\}$
- $R = \{ 1, L \}, F = \{ 1 \rightarrow L \}$

Inferring Additional Keys

- Let $X = \{A_1, ..., A_j, ..., A_k\}$ be a relation schema (R, F) key, where $X \subseteq R$,
 - If there is $W \rightarrow Z \in F(Z \not\subseteq W, Z \subseteq X \text{ and } W \not\subseteq X)$
 - Then $Y = (X Z) \cup W$ is also a relation schema (R, F) key,
- Example:

$$R = \{A, B, C, D\}, F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow B\}$$

 $X = AB$ is a key of (R, F)

- since $D \rightarrow B \in F$ Y = AD is another key of (R, F)
- since $C \rightarrow D \in F$ Z = AC is a key of (R, F), as well

Victoria UNIVERSITY OF WILLINGTON TO WHATEVER WHATEVER o to Dipoles o to Bus a Maiul

Exercise 4: Finding Keys

```
R = { StdId, StName, NoPts, CourId, CoName,
      LecId, LeName, Grade }
F = \{StdId \rightarrow StName + NoPts, \}
       Courld \rightarrow CoName
       LecId \rightarrow LeName.
       LecId \rightarrow CourId
       StdId + Courld \rightarrow Grade
       StdId + Courld \rightarrow LecId
```

- $K_1(Faculty) = StdId + Courld$
- $K_2(Faculty) = StdId + LeId$