KINGSWAY CHRISTIAN COLLEGE

000

Comments:	
Parent/ Guardian sig	
	-
Teacher signature:	
	1
Comments:	
Деяг Зсоге:	
Assessment Score:	05 /
Date:	23 rd & 24 th March 2017
Student Name:	·hay with o
Аѕѕеѕѕтепі Таѕк:	Test 2
Course:	Math Methods unit 3
HIGHLS VOOD	MATHS DEPARTMENT
	KINGSWAT CHRISTIAN COLLECT

Question 2 (6 marks)

Determine the maximum and minimum value for f(x) and the value of x at which they occur, for the function $f(x) = 3x^4 - 16x^3 + 18x^2$ over the domain $-1 \le x \le 2$.

$$f(-1) = 3+16+18$$
 $f(z) = 48-128+72$
= 37 = -8

$$f'(x) = 12x^3 - 48x^3 + 36x$$

$$= 12x(x^3 - 4x + 3)$$

$$= 12x(x - 3)(x - 1)$$

for max|mn: $f'(x) = 0 \implies x = 0 \text{ or } x = 1 \text{ or } x = 3$ $f(0) = 0 \qquad f(1) = 5 \qquad \text{N.A.}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $f''(0) = 0 \qquad f''(0) < 0 \qquad \qquad \downarrow$ p = 0 if |x of x or x = 3

Question 3 (7 marks)

Determine the coordinates of all intercepts, stationary points and points of inflection of the function $\ y=x\ e^{\lambda x}$.

Justify the nature of the stationary points found using a standard test.

$$(x\xi+1)^{x} \Im \xi = \psi^{\xi}$$

$$(x\xi+1)^{x} \Im \xi =$$

Question 4

(3 marks)

Determine the equation of the normal to the curve $y = x(3-x)^2$ at (2,2).

$$\frac{dy}{dx} = 1 (3-x)^{3} + x (-2)(3-x).$$

$$\frac{dy}{dx} = (3-x)^{3} - 2x(3-x)$$

$$\frac{dy}{dx} = (3-x)^{3} - 2(2)(3-x)$$

$$= (3-x)^{3} - 2(2)(3-x)$$

$$= 1-4$$

$$= -3.$$

$$y = -30+C$$

$$tangert m = -3$$

$$x = \frac{1}{3}(x) + C = \frac{4}{3}$$
Question 5
$$y = \frac{1}{3}x + \frac{1}{3}.$$

Find the equation of the tangent to the curve $y = 2x + \cos 2x$ at the point $(\frac{\pi}{2}; \frac{2\pi}{2} - \frac{1}{2})$

$$\frac{dy}{dx} = 2 - 2\sin 2x$$

$$\frac{dy}{dx} = 2 - 2\sin 2x$$

$$= 2 - 2\cos 2x$$

$$= 2 - 2\cos$$

Question 9 (5 marks)

A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m.

(a) Proof that the volume of the tank is given by the following formula:
$$V(h) = \frac{1}{12}\pi h^3 \qquad V = \frac{1}{3}\pi\Gamma^2 h \quad \text{and} \quad \Gamma = \frac{h}{2} \quad (1 \text{ mark})$$

$$= \frac{1}{3}\pi\Gamma\left(\frac{h}{2}\right)^2 \times h$$

$$V = \frac{1}{12}\pi h^3$$

If water is being pumped into the tank at a rate of 2 m³/min, find the rate at which the water level is rising when the water is 3 m deep. Answer to the nearest cm/min.

$$\frac{dV}{dh} = \frac{3}{12} \text{ Trh}^{2} \qquad \frac{dV}{dt} = 2m^{3} \text{ lmin}$$

$$= \frac{1}{4} \text{ Trh}^{2} = \frac{mh^{2}}{4} \qquad \frac{dh}{dt} = \frac{3}{5} \quad h = 3m.$$

$$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$$

$$= \frac{4}{\pi h^{2}} \times 2V$$

$$= \frac{8}{\pi h^{2}}$$

$$\frac{dh}{dt} = \frac{8}{\pi h^{2}} \times 2V$$

$$= \frac{$$

7- NEN + X (EN-B)= N.

corresponding to a change in its volume from 200 cm3 to 195 cm3. Answer to 4 decimal Use derivatives to find the approximate change in the radius of a spherical balloon

$$S = -S$$

$$S$$

Math Methods Unit 3 Test 2 2017 Differentiation

Resource Assumed

Time: 25 minutes

Marks: / 23

CAS calculator and a formula sheet are allowed for this section

Question 6

(5 marks)

A cylindrical can is to be made to hold 1 000 cm³ of oil. Find the dimensions that will minimise the amount of the metal to make the can. Assume the can is made with a lid

$$h = \frac{1000}{\pi r^2} : SA = 2\pi r^3 + 2\pi r \left(\frac{1000}{\pi r^4}\right)$$

:
$$SA = 2\pi r^2 + 2000$$

and
$$h = \frac{1000}{\pi r^2} = \frac{r000}{\pi (5.142)^2} = \frac{10.84 \text{ cm}}{10.84 \text{ cm}}$$

Question 7 (9 marks)

The cost in dollars of producing x items is given by: C(x) = (3000 + 5x).

The revenue per item sold is given by (40 - 0.02x).

(a) State the revenue function R(x) for the number of items sold.

(1 mark)

$$R(x) = x(40 - 0.02x)$$

(b) Give an expression for the profit function P(x).

(1 mark)

P(x) = R(x) - C(x)= x(40 - 402x) - (3000 + 5x)

Determine how many items are needed to make a maximum profit and state the

$$\frac{1.9!(x) = -0.04x +35=0}{1.00 = 875.}$$

(d) Explain clearly if a loss occurred and when it occurred.

(875)
3
 +35[875] 3 -3000

(2 marks)

(Solve
$$(-0.02x^3 + 35x - 300 < 0, x)$$
).

(e) Determine the marginal profit of the 250th item sold.

$$P'(x) = -0.04x + 35$$

$$P'(249) = $25.045$$