Nº A55171 Nome: Ting John Forein de Conceiper Turma: TPS

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efectuar no verso da folha; o não cumprimento desta regra equivale à não entrega do trabalho.

1. (A)Converta cada um dos valores para os seguintes sistemas:

	Valor a converter	Resultado		Valor a converter	Resultado
a) decimal	1101.012	13,25(10)		10.012	2,25(10)
b) octal	110 111 011 1012	6735(8)		11 111.112	37,6(8)
c) hexadecimal	10 1100 1011.0012	268,2 (16)			
d) binário	0xFF1F	1111 1111 0001 1111	2)		1877 F 2 MV 180
e) ternário	174	20110 (3)			

2. ^(A)Converta –233 para uma representação binária usando 10-bits, com as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
a) sinal e amplitude	1	0	1	1	1	0	1	0	0	1
b) complemento p/ 1	1	1	0	0	0	1	0	1	1	0
c) complemento p/ 2	1	1	0	0	0	1	D	1	1	1
d) excesso 2 ⁿ⁻¹	0	1	0	0	0	1	0	1	1	1

3. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂, considerando as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codificação em binário	1	0	0	1	1	1	0	1	0	1	
a) inteiro sem sinal	512+	0+	0+	64+	32+	16+	0+	4+	0+	1=	629
b) sinal e amplitude	-	0+	0+	64+	32+	16+	0+	4+	0+	1 =	-117
c) complemento p/ 1		256+	128+	0+	0+	O+	8+	0+	2+	0 =	-314
d) complemento p/ 2	-	256+	128+	0+	0+	0+	8+	0+	2+	1=	315
e) excesso 2 ⁿ⁻¹	0+	0+	0+	64+	32+	16+	0+	4+	D+	1=	117

6. ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:

	(i)	(ii)	(iii)	
a) 6 bits	3-25,25[1-25,25[[-25,25]	
b) 12 bits	3-214, 211	1-211,211	[-211,211]	

1) 0xFF1F 2) 174 13 058 3 0774 (10) = 20110 (3)
1111) 11111 0001 1111 (2)
1 10 13 1 10 13 1 10 13

Z-a) 233(40) = 0011101001(2) => -233 = 1011101001; b) (orgl. p/1 - involentity: -233 = 1011101001 => -233 = 1100010110

c) length, p/2 - somen 1 as longth p/2: -233+1 = 1100010111 ; d) Somen 24-1 as longth p/2: -233+512=279 = 01000101112)

3-a) 1001110101(e)=-(64+32+16+4+1)=-(17; 6) 1110001010(2)=-(256+128+8+2)=-394; 6) 1110001011(e)=-(256+128+8+2+1)=-395

d) 000 111 0101 = 64+32+16+4+1=117

t-n) te 210-1=1023 ; b) [-24, 24-1]=[-29, 24[

Expressão	Decimal	Binário
Joro	0	00 0000
	6	111000
- 0	18	01 0010
hx	-47	101111
У	-3	111101
X>71	-8	111000
Thax	-31?	100001
-Thin	Al. (32)	overflow
TmintTmin	1-64	overflow

Jose: Q₍₁₀₎ = 00 0000₍₂₎
-6₍₁₀₎ = 90 0110₍₂₎ -0 6mpl, p/2 = 11100 0

01 0010₍₂₎ = (6+2 = 18₍₁₀₎

UX = X = -17₍₁₀₎ = 11000 1₍₂₎ -0 6mpl p/2 = 101111₍₂₎ = -3₍₁₀₎

Y = 5Y = -3₍₁₀₎ = 100011₍₂₎ -0 6mpl p/2 = 111101₍₂₎ = -3₍₁₀₎

7(771 =7 x1= x/2 =7 -17/2 =-8(10)=101000(2) -> Comple p/2=111000(2) =-8(10)

Thax (essume & valor máxime in 6 lits) = 26-1-1=31(10)=011111(2) -> Confl p/2=100001=31(10)

Thin = -2 - 34(10) - (0000010) -> Confl p/2=100001=31(10)

-TMin=-(-26-1) = -(-32)(10) = 32(10) = 4 que nos existe, logo, overflow TMin+TMin = -3Z+-3Z = -64, que timbém é overflow

6-a) i) $[-2^{b-1}+1, *2^{b-1}-1] = [-2^5, 2^5[$ iii) $[-2^{b-1}, *2^{b-1}-1] = [-2^5, 2^5[$ iii) $[-2^{b-1}, 2^{b-1}-1] = [-2^5, 2^5[$

b) à) [-211+1,211-1]=]211,211[; ā) [-211,211[; āā) [-211,211[

7 - a) 4,120 store too

d)-100-270 10011100 on? 10011100 00011011- 11100101+ 10000001