			Created with Osdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Cleat Angle Beam to Beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion	
Cleat Angle	Pass
Cleat Angle	
Connection Properties	
Connection	
Connection Title	Double Angle Web Cleat
Connection Type	Shear Connection
Connection Category	
Connectivity	Beam-Beam
Beam Connection	Bolted
Column Connection	Bolted
Loading (Factored Load)	
Shear Force (kN)	100.0
Components	
Column Section	ISMB 450
Material	Fe 410
Beam Section	ISMB 300
Material	Fe 410
Hole	STD
Cleat Section	ISA 90X90X8
Thickness (mm)	8
Cleat Leg Size B (mm)	90
Cleat Leg Size A (mm)	90
Hole	STD
Bolts on Beam	
Туре	Black Bolt
Grade	4.8
Diameter (mm)	16
Bolt Numbers	5
Columns (Vertical Lines)	1
Bolts Per Column	5

Gauge (mm)	0	
Pitch (mm)	40	
End Distance (mm)	30	
Edge Distance (mm)	30	
Bolts on Column	·	
Туре	Black Bolt	
Grade	4.8	
Diameter (mm)	16	
Bolt Numbers	8	
Columns (Vertical Lines)	1	
Bolts Per Column	4	
Gauge (mm)	0	
Pitch (mm)	40	
End Distance (mm)	50	
Edge Distance (mm)	30	
Assembly		
Column-Beam Clearance (mm)	20	

			Created with OSdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Cleat Angle Beam to Beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Check	Required	Provided	Remark
Bolt shear capacity (kN)		V_{dsb} = ((2*400*0.6126*16*16)/($\sqrt{3}$ *1.25*1000) = 58.012 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V _{dpb} = (2.5*0.491*16*7.7*400)/(1.25*1000) = 48.393 [cl. 10.3.4]	
Bearing capacity of beam web (kN)		V_{dpb} = (2.5*0.491*16*7.7*410)/(1.25*1000) = 49.603 [cl. 10.3.4]	
Bearing capacity of cleat (kN)		V_{dpb} = (2.5*0.491*16*8*410)/(1.25*1000) = 51.535 [cl. 10.3.4]	
Bearing capacity (kN)		Min (48.393, 49.603, 51.535) = 48.393	
Bolt capacity (kN)		Min (58.012, 48.393) = 48.393	
Critical bolt shear (kN)	≤ 48.393	18.028	Pass
No. of bolts		5	
No.of column(s)	≤ 2	1	
No. of bolts per column		5	
Bolt pitch (mm)	$\geq 2.5^* \ 16 = 40, \leq Min(32^*7.7, 300) = 247$ [cl. 10.2.2]	40	Pass
Bolt gauge (mm)	\geq ;2.5*16 = 40, \leq Min(32*7.7, 300) = 247 [cl. 10.2.2]	0	
	≥ 1.7*18.0 = 30.6, ≤ 12*7.7 =		

End distance (mm)	92.4 [cl. 10.2.4]	30	Pass
Edge distance (mm)	≥ 1.7*18.0 = 30.6, ≤ 12*7.7 = 92.4 [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥ 100.0	V _{db} = 203.164 [cl. 6.4.1]	Pass
Cleat height (mm)	≥ 0.6*300.0=180.0, ≤ 300.0- 13.1-14.0-17.4-15.0- 5=235.5 [cl. 10.2.4, Insdag Detailing Manual, 2002]	220	Pass
Cleat moment capacity (kNm)	(2*58.012*40 ²)/(40*1000) = 3.0	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 116.16 [cl. 8.2.1.2]	Pass

			Created with Osdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Cleat Angle Beam to Beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check: Pri	Design Check: Primary Beam Connectivity			
Check	Required	Provided	Remark	
Bolt shear capacity (kN)		$V_{\rm dsb}$ = ((400*0.6126*16*16)/($\sqrt{3}$ *1.25*1000) = 29.006 [cl. 10.3.3]		
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.491*16*8.0*400)/(1.25*1000) = 50.278 [cl. 10.3.4]		
Bearing capacity of beam web (kN)		V_{dpb} = (2.5*0.491*16*9.4*410)/(1.25*1000) = 60.554 [cl. 10.3.4]		
Bearing capacity of cleat (kN)		V_{dpb} = (2.5*0.491*16*8*410)/(1.25*1000) = 51.535 [cl. 10.3.4]		
Bearing capacity (kN)		Min (50.278, 60.554, 51.535) = 51.535		
Bolt capacity (kN)		Min (29.006, 51.535) = 29.006		
Critical bolt shear (kN)	≤ 29.006	27.01	Pass	
No. of bolts		8		
No.of column(s) per angle	≤ 2	1		
No. of bolts per column per angle		4		
Bolt pitch (mm)	≥ 2.5* 16 = 40, ≤ Min(32*8.0, 300) = 256 [cl. 10.2.2]	40	Pass	
Bolt gauge (mm)	≥ 2.5*16 = 40, ≤ Min(32*8.0, 300) = 256 [cl. 10.2.2]	0		

End distance (mm)	≥ 1.7*18.0 = 30.6, ≤ 12*8.0 = 96.0 [cl. 10.2.4]	50	Pass
Edge distance (mm)	≥1.7*18.0 = 30.6, ≤12*8.0 = 96.0 [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥100.0	$V_{\rm db}$ = 200.437 [cl. 6.4.1]	Pass
Cleat height (mm)	≥ 0.6*300.0=180.0, ≤ 300.0- 13.1-14.0-17.4-15.0- 5=235.5 [cl. 10.2.4, Insdag Detailing Manual, 2002]	220	Pass
Cleat moment capacity (kNm)	(2*29.006*40 ²)/(40*1000) = 3.192	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 116.16 [cl. 8.2.1.2]	Pass

			Created with OSdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Cleat Angle Beam to Beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Views	

			Created with Osdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Cleat Angle Beam to Beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments
