EEE 313 - Lab 4 - Wideband Dual-stage BJT Amplifier Tuna Şahin 22201730

Table of Contents:

1) Preliminary Recap:	1
2) Hardware Implementation:	1
3) Component List:	2
4) Criteria Measurements:	2
1. Criterion 1:	2
2. Criterion 2:	2
3. Criterion 3:	3
5) Determinations and Measurements:	4
1. Determination 1:	4
2. Determination 2:	4
6) Conclusion:	5

1) Preliminary Recap:

In this lab, we designed a wideband two stage BJT amplifier. We also used a feedback loop to stabilise the gain. The circuit was designed to have a gain of 20dB.

It was observed that decreasing the values of R_4 and R_9 while preserving their ratio increased the corner frequency for high frequencies.

2) Hardware Implementation:

Figure 2: Circuit Breadboard Implementation

3) Component List:

- $1 \times 12\Omega$ - $1 \times 39\Omega$ - $1 \times 120\Omega$ - $4 \times 10 \mu F$

4) Criteria Measurements:

1. Criterion 1:

The current consumption is less than 70mA

Figure 4.1: 1.96 V_{pp} (20dB) at 200kHz with 48mA current consumption

2. Criterion 2:

The bandwidth is at least 2KHz-2MHz while the mid-band gain is 20dB±0.5dB (measure at 2KHz, 200KHz and 2MHz).

Figure 4.2.1: 2.06 V_{pp} (20.2dB) at 2MHz with 46mA current consumption

Figure 4.2.2: $2.02V_{pp}$ (20.1dB) at 2kHz with 46mA current consumption

.....

3. Criterion 3:

The harmonic content of the output voltage is better than -30dBc at 200KHz.

Figure 4.3: FFT of the output voltage

5) Determinations and Measurements:

1. Determination 1:

The small-signal input impedance of the amplifier at 200KHz (with RL=47 Ω , adjusted value of RS until the voltage gain drops to half its value compared to RS=0)

Figure 5.1: Output voltage at half gain

When $R_{_S}$ was chosen as 39k Ω , output voltage was observed to be $1V_{_{PP}}$.

2. Determination 2:

The small-signal output impedance of the amplifier at 200KHz

Figure 5.2.1: 260mV $_{pp}$ when V $_{in}=~0.02V _{pp}$ and $R_{_L}=~\infty$

Figure 5.2.1: $124mV_{pp}$ when $V_{in}=0.02V_{pp}$ and $R_{L}=6.8\Omega$

When $R_L=6.8\Omega$ we observe half the voltage gain with respect to $R_L=\infty$.

6) Conclusion:

To summarise, the three criteria were satisfied. The circuit has a gain of 20dB at 2kHz, 200kHz, and 2MHz. The amplifier has a band wider than the required band.

- The input impedance was determined to be $39k\Omega$
- The output impedance was determined to be 6.8Ω