Field dynamics: a new tool to boost mixing results

Weiming Feng
University of Edinburgh

Joint work with: Xiaoyu Chen (Nanjing University)

Yitong Yin (Nanjing University)

Xinyuan Zhang (Nanjing University)

Algorithms and Complexity Theory Seminars
Oxford University
26th May 2022

Sampling, counting and phase transition

Boolean variables set V, weight function $w: \{-, +\}^V \to \mathbb{R}_{\geq 0}$ joint distribution μ :

$$\forall X = (X_v)_{v \in V} \in \{-, +\}^V, \qquad \mu(X) \propto w(X)$$

Sampling problem

Draw (approximate) random samples from distribution μ

Computational phase transition

computational complexity of sampling problem changes sharply around some parameters of μ

Hardcore model

- Graph G = (V, E): n-vertex and max degree Δ ;
- Fugacity parameter $\lambda \in \mathbb{R}_{\geq 0}$;
- Configuration $X \in \{-, +\}^V$
 - $X_v = +$: vertex v is **occupied**
 - $X_v = -$: vertex v is **unoccupied**
- $X \in \Omega$ if occupied vertices form an independent set
- Gibbs distribution μ :

$$\forall X \in \Omega, \qquad \mu(X) \propto w(X) = \lambda^{|X|_+}.$$

 $|X|_{+}$ = number of occupied vertices $(X_v = +)$

$$u\left(\begin{array}{c} \lambda^2 \\ 1 + 4\lambda + \lambda^2 \end{array}\right)$$

 σ : boundary configuration at level ℓ each leaf $\sigma_v \in +$ or $\sigma_v = -$

conditional probability

 $P_{\text{root}}^{\sigma} = \Pr[X(\text{root}) = + | \sigma]$

Computational phase transition

- $\lambda < \lambda_c$: poly-time algorithm for sampling[Weitzo6]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

 σ : boundary configuration at level ℓ each leaf $\sigma_v \in +$ or $\sigma_v = -$

Uniqueness Threshold

 $\Pr[X(\text{root}) = + | \sigma]$ is independent of σ if $\ell \to \infty$

iff
$$\lambda \le \lambda_c(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$$

Δ: maximum degree

Computational phase transition

- $\lambda < \lambda_c$: poly-time algorithm for sampling [Weitzo6]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

 σ : boundary configuration at level ℓ each leaf $v \in S$ or $v \notin S$

Uniqueness Threshold

 $\Pr[X(\text{root}) = + | \sigma]$ is independent of σ if $\ell \to \infty$

iff
$$\lambda \le \lambda_c(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$$

Δ: maximum degree

Computational phase transition

- bounded degree $\Delta = O(1)$
- δ in the exponent of n
- $\lambda \leq (1 \delta)\lambda_c$: $\lambda^{O\left(\frac{\log \Delta}{\delta}\right)}$ -time algorithms for sampling (via approx. counting) [Weitzo6]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

Problem: *fixed parameter trackable* sampling algorithm for hardcore model

Let $\delta > 0$ be an arbitrary gap. For any hardcore model with $\lambda \leq (1 - \delta)\lambda_c(\Delta)$, can we sample from Gibbs distribution in time $C(\delta) \cdot \text{poly}(n)$?

Start from an arbitrary independent set *X*;

For each transition step do

- Pick a vertex *v* uniformly at random;
- If $X_u = -$ for all neighbors u then $X_v = \begin{cases} + & \text{w. p. } \lambda/(1+\lambda) \\ & \text{w. p. } 1/(1+\lambda) \end{cases}$
- Else $X_v \leftarrow -$

Start from an arbitrary independent set *X*;

For each transition step do

- Pick a vertex *v* uniformly at random;
- If $X_u = -$ for all neighbors u then $X_v = \begin{cases} + & \text{w. p. } \lambda/(1+\lambda) \\ & \text{w. p. } 1/(1+\lambda) \end{cases}$
- Else $X_{v} \leftarrow -$

Mixing time: $T_{\text{mix}} = \max_{X_0 \in \Omega} \min\{t \mid d_{TV}(X_t, \mu) \le 0.001\}$,

 $d_{TV}(X_t, \mu)$: the *total variation distance* between X_t and μ .

Start from an arbitrary independent set *X*;

For each transition step do

- Pick a vertex *v* uniformly at random;
- If $X_u = -$ for all neighbors u then $X_v = \begin{cases} + & \text{w. p. } \lambda/(1+\lambda) \\ & \text{w. p. } 1/(1+\lambda) \end{cases}$
- Else $X_{v} \leftarrow -$

Mixing time: $T_{\text{mix}} = \max_{X_0 \in \Omega} \min\{t \mid d_{TV}(X_t, \mu) \le 0.001\}$,

 $d_{TV}(X_t, \mu)$: the *total variation distance* between X_t and μ .

Start from an arbitrary independent set *X*;

For each transition step do

- Pick a vertex v uniformly at random;
- If $X_u = -$ for all neighbors u then $X_{v} = \begin{cases} + & \text{w. p.} \quad \lambda/(1+\lambda) \\ - & \text{w. p.} \quad 1/(1+\lambda) \end{cases}$
- Else $X_v \leftarrow -$

Mixing time (continuous version) T_{mix}

 $T_{\text{mix}} = \max_{X_0 \in \Omega} \min\{t \mid d_{TV}(X_N, \mu) \le 0.001, \text{ where } N \sim \text{Poisson}(t) \}$

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \leq \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$

$$\lambda_c(\Delta) \approx \frac{e}{\Delta}$$
hard
regime

 $\frac{1}{\Delta - 1} \, [\text{Dob}_{70}]$

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \le \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \le \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$
Efthymiou <i>et al</i> , 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta), \text{ girth } \geq 7$	$O\left(\frac{1}{\delta}n\log n\right)$

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \leq \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$
Efthymiou <i>et al</i> , 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta)$, girth ≥ 7	$O\left(\frac{1}{\delta}n\log n\right)$
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$\lambda \le (1 - \delta)\lambda_c(\Delta)$	$n^{O(1/\delta)}$
Chen, Liu, Vigoda, 2021	$\lambda \le (1 - \delta)\lambda_c(\Delta)$	$\Delta^{O(\Delta^2/\delta)} n \log n$
	$\lambda_c(\Delta) \approx \frac{e}{\Lambda}$	
$\frac{2}{\Delta - 2} \left[LV \right]$	99]	hard regime
$\frac{1}{\Delta - 1} [\text{Dob} 70]$	special graph [EHŠ) general graph [ALO	-

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_C$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	- Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_{\mathcal{C}}$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n$ polylog n time sampling algorithms	Entropic Independence (EI) & Field Dynamics

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_{\mathcal{C}}$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	- Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n$ polylog n time sampling algorithms	Entropic Independence (EI) & Field Dynamics
Chen, F., Yin, Zhang, 2022	$e^{O(1/\delta)}n\log n$	

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_C$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n$ polylog n time sampling algorithms	Entropic Independence (EI) & Field Dynamics
Chen, F., Yin, Zhang, 2022	$e^{O(1/\delta)}n\log n$	
Chen, Eldan, 2022	$e^{O(1/\delta)}n\log n$	Localization Scheme

 $[\]triangleright \Omega(n \log n)$ mixing time lower bound (Hayes, Sinclair, 2005)

Anti-ferro two-spin systems

- Hardcore model
- Ising model
- ...

Joint distribution defined by external fields and local interactions

Anti-ferro two-spin systems [Chen, Feng, Yin, Zhang, 2021 & 2022]

For anti-ferro two-spin system that is up-to- Δ unique,

- $O(n^3)$ mixing time
- $O(n \log n)$ mixing time if β , $\gamma < 1$ or G is regular

Applications for Ising model:

 $O(n \log n)$ for anti-ferro *Ising models* in the uniqueness regime.

Hardcore model in uniqueness regime

If λ is *close* to $\lambda_c(\Delta)$, e.g., $\lambda = 0.999 \lambda_c$ (near-critical) analyzing mixing time is *hard*

• If λ is *far-away* from $\lambda_c(\Delta)$, e.g., $\lambda \leq 0.1\lambda_c$ (sub-critical) analyzing mixing time is *easy*

General technical results (informal)

Boosting mixing results from sub-critical regime to near-critical regime

for general distributions with certain conditions.

General technical results

- Distributions satisfying complete spectral independence
 Boost spectral gap (Poincaré constant) polynomial mixing time
- Distributions satisfying complete spectral independence + marginal ratio bound Boost modified log-Sobolev constant \longrightarrow optimal $O(n \log n)$ mixing time

Application to Hardcore model

uniqueness
condition

complete spectral
independence

marginal ratio
bound

General technical result (I)

Boost the **spectral gap**

for completely spectrally independence distributions

 $O(n^2 \log n)$ mixing time for hardcore model

Markov chain analysis background

Transition matrix of Glauber dynamics for $\mu : P : \Omega \times \Omega \to \mathbb{R}_{\geq 0}$

Reversibility: $\mu(x)P(x,y) = \mu(y)P(y,x)$;

Eigenvalues : P has $|\Omega|$ non-negative real eigenvalues

$$1 = \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{|\Omega|} \ge 0$$

Spectral gap (Poincaré constant) $\lambda_{gap}(P) = 1 - \lambda_2$

$$T_{\min}(P) = O\left(\frac{1}{\lambda_{\text{gap}}}\log\frac{1}{\mu_{\min}}\right), \qquad \mu_{\min} = \min_{\sigma \in \Omega}\mu(\sigma)$$

Influence matrix and spectral independence

a disagreement on u

 μ : a distribution over $\Omega \subseteq \{-1, +1\}^V$ $|V| \times |V|$ influence matrix $\Psi \in \mathbb{R}^{V \times V}$ such that

$$\Psi(u, v) = \left| \Pr_{\mu} [v = + | u = +] - \Pr_{\mu} [v = + | u = -] \right|$$

Influence matrix and spectral independence

Influence from u to v for conditional distribution

For any subset $S \subseteq V$, any feasible $\sigma \in \{-1, +1\}^{V \setminus S}$ μ_S^{σ} distribution on S conditional on σ

influence matrix $\Psi_s^{\sigma} \in \mathbb{R}^{S \times S}$ for conditional distribution

$$\Psi_{S}^{\sigma}(u,v) = \left| \Pr_{\mu_{S}^{\sigma}}[v = + | u = +] - \Pr_{\mu_{S}^{\sigma}}[v = + | u = -] \right|$$

Spectral independence (SI) [ALO20, CGŠV21, FGYZ21]

There is a constant C > 0 s.t. for all conditional distribution μ_S^{σ} , spectral radius of influence matrices $\rho(\Psi_S^{\sigma}) \leq C$.

Complete spectral independence

Magnetizing joint distribution with local fields

Joint distribution μ over $\{-,+\}^V$, local fields $\phi = (\phi_v)_{v \in V} \in \mathbb{R}^V_{>0}$

$$(\boldsymbol{\phi} * \mu)(\sigma) \propto \mu(\sigma) \prod_{v \in V: \sigma_v = +} \phi_v$$

Hardcore model: $\mu(S) \propto \lambda^{|S|}$

Hardcore mode with local fields $\mu^{(\phi)}(S) \propto \lambda^{|S|} \prod_{v \in S} \phi_v = \prod_{v \in S} \lambda \phi_v$

Complete spectral independence

Complete Spectral independence [Chen, F., Yin, Zhang, 2021]

There are constant C > 0 s.t.

for all local fields $\phi \in (0,1]^V$ (for all $v \in V$, $0 < \phi_v \le 1$), $(\phi * \mu)$ is spectrally independent with parameter C

Example: hardcore model (G, λ) is **completely spectrally independent** if

any hardcore models $(G, (\lambda_v)_{v \in V})$ with $\lambda_v \leq \lambda$ are **spectrally independent**

Boosting result of spectral gap [Chen, F., Yin, Zhang, 2021]

If μ is C-completely spectrally independent, for any $\theta \in (0,1)$

$$\lambda_{\text{gap}}^{\text{GD}}(\mu) \ge \theta^{O(C)} \cdot \lambda_{\text{gapmin}}^{\text{GD}}(\boldsymbol{\theta} * \mu), \qquad \boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

 $\lambda_{\text{mingap}}^{\text{GD}}(\boldsymbol{\theta} * \boldsymbol{\mu})$: minimum spectral gap of Glauber dynamics for all conditional distributions induced by $\boldsymbol{\theta} * \boldsymbol{\mu}$.

Boosting result of spectral gap [Chen, F., Yin, Zhang, 2021]

If μ is C-completely spectrally independent, for any $\theta \in (0,1)$

$$\lambda_{\text{gap}}^{\text{GD}}(\mu) \ge \theta^{O(C)} \cdot \lambda_{\text{mingap}}^{\text{GD}}(\boldsymbol{\theta} * \mu), \qquad \boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

Near-Critical Regime

Boosting with cost O(1) Impose local fields \rightarrow Easy Regime

Boosting result of spectral gap [Chen, F., Yin, Zhang, 2021]

If μ is C-completely spectrally independent, for any $\theta \in (0,1)$

$$\lambda_{\text{gap}}^{\text{GD}}(\mu) \ge \theta^{O(C)} \cdot \lambda_{\text{gap}}^{\min}(\boldsymbol{\theta} * \mu), \qquad \boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

Application: polynomial mixing of hardcore model

$$\lambda \le (1 - \delta)\lambda_c(\Delta)$$

correlation decay
[Weitzo6,LLY13, ALO20 CLV20]

 $O\left(\frac{1}{\delta}\right)$ -completely SI

$$\theta \lambda \leq \frac{1}{2\Delta} \ll \lambda_c$$
Dobrushin
condition

path coupling [BD97] coupling v.s. spectral gap [Chen98]

$$\lambda_{\mathrm{mingap}}^{\mathrm{GD}}(\boldsymbol{\theta} * \mu) \geq \frac{1}{2n}$$

$$\lambda_{\rm gap}^{\rm GD}(\mu) = \Omega(1/n)$$

$$T_{\min} = O(n^2 \log n)$$

Proof of boosting results

New Markov chain: field dynamics

Field Dynamics

Input: a distribution μ over $\{-1, +1\}^V$, a parameter $\theta \in (0, 1)$

Start from an arbitrary feasible configuration $X \in \{-, +\}^V$

For each *t* from 1 to *T* **do**

• Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_v = \begin{cases} 1 & \text{if } X_v = -\\ \theta & \text{if } X_v = + \end{cases}$$

• Resample $X_S \sim (\theta * \mu)_S (\cdot | X_{V \setminus S})$ conditional distribution induced from $(\theta * \mu)$

Field Dynamics

Input: a distribution μ over $\{-1, +1\}^V$, a parameter $\theta \in (0, 1)$

Start from an arbitrary feasible configuration $X \in \{-, +\}^V$

For each transition step $X \rightarrow X'$

• Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_v = \begin{cases} 1 & \text{if } X_v = -\\ \theta & \text{if } X_v = + \end{cases}$$

• Resample $X_S \sim (\boldsymbol{\theta} * \mu)_S (\cdot | X_{V \setminus S})$ conditional distribution induced from $(\boldsymbol{\theta} * \mu)$

Proposition (Field Dynamics): for any $\theta \in (0,1)$

The Field Dynamics $P_{FD}(\theta)$ is irreducible, aperiodic and reversible with respect to μ .

 $P_{FD}(\theta)$ has the unique stationary distribution μ .

Comparison lemma of spectral gap

For any distribution μ over $\{-, +\}^V$

$$\lambda_{\mathrm{gap}}^{GD}(\mu) \ge \lambda_{\mathrm{gap}}^{\mathrm{Field}}(\mu, \theta) \cdot \lambda_{\mathrm{mingap}}^{\mathrm{GD}}(\boldsymbol{\theta} * \mu), \qquad \boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

Spectral gap of field dynamics

If μ is C-completely spectrally independent, for any $\theta \in (0,1)$

$$\lambda_{\rm gap}^{\rm Field}(\mu, \theta) \ge \theta^{O(C)}$$

Comparison lemma + Spectral gap Boosting spectral gap

$$\lambda_{\text{gap}}^{\text{GD}}(\mu) \ge \theta^{O(C)} \cdot \lambda_{\text{mingap}}^{\text{GD}}(\boldsymbol{\theta} * \mu)$$

Comparison lemma of spectral gap

For any distribution μ over $\{-, +\}^V$

$$\lambda_{\mathrm{gap}}^{GD}(\mu) \ge \lambda_{\mathrm{gap}}^{\mathrm{Field}}(\mu, \theta) \cdot \lambda_{\mathrm{mingap}}^{\mathrm{GD}}(\boldsymbol{\theta} * \mu), \qquad \boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

Proved by a calculation

$$\boldsymbol{\theta}_{v} = \theta$$
 for all $v \in V$

Stationary distribution is μ

Transition uses $(\boldsymbol{\theta} * \mu)$

Comparison lemma of spectral gap

For any distribution μ over $\{-, +\}^V$

$$\lambda_{\mathrm{gap}}^{GD}(\mu) \ge \lambda_{\mathrm{gap}}^{\mathrm{Field}}(\mu, \theta) \cdot \lambda_{\mathrm{mingap}}^{\mathrm{GD}}(\boldsymbol{\theta} * \mu), \qquad \boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

$$\boldsymbol{\theta}_{v} = \theta \text{ for all } v \in V$$

Spectral gap of field dynamics

If μ is C-completely spectrally independent, for any $\theta \in (0,1)$

$$\lambda_{\text{gap}}^{\text{Field}}(\mu, \theta) \ge \theta^{O(C)}$$

Comparison lemma + Spectral gap

Boosting spectral gap

$$\lambda_{\text{gap}}^{\text{GD}}(\mu) \ge \theta^{O(C)} \cdot \lambda_{\text{mingap}}^{\text{GD}}(\boldsymbol{\theta} * \mu)$$

Block dynamics

Standard Markov chain: θ -fractional block dynamics on μ

Transition step: given configuration $X \in \{-, +\}^V$

- pick θ fraction of variables $S \subseteq V$ uniformly at random *Non-Adaptive*
- resample $X_S \sim \mu_S(\cdot | X_{\overline{S}})$ Conditional distribution induced by μ

Step-1: *k*-transformation

Transform μ into a sequence $(\mu_k)_{k\geq 1}$ $(\mu_k \text{ over } \{-1,+1\}^{V_k})$

Step-2: Connect field dynamics on μ to the block dynamics on μ_k when $k \to \infty$

spectral gap of **block dynamics** on μ_k when $k \to \infty$

Step-3: analyze θ -fractional **block dynamics** on μ_k

 μ is completely SI

all large k

Spectral gap lower bound of the block dynamics on μ_k

$$\mu$$
 over $\{-, +\}^V$ integer $k \ge 1$

k-transformation

$$\mu_k \text{ over } \{-,+\}^{V_k}$$

$$V_k = \{u_1,u_2,\dots,u_k \mid u \in V\}$$

 $Y \sim \mu_k$

For each variable $u \in V$ do

$$X \sim \mu$$

- If X(u) = -, then $Y(u_i) = -$ for all $i \in [k]$;
- If X(u) = +, then
 - Sample $j \in \{1,2,...,k\}$ uniformly at random;
 - $Y(u_i) = +$ and $Y(u_i) = -$ for all $i \in [k] \setminus \{j\};$

Original distribution μ over $\{-, +\}^V$

k-transformation

Transformed distribution μ_k over $\{-, +\}^{V_k}$

$$V_k = \{u_1, u_2, \dots, u_k \mid u \in V\}$$

 $X \sim \mu$

inverse *k*-transformation

 $Y \sim \mu_k$

X = inverse(Y) is uniquely fixed by Y

Theorem [Chen, F., Yin, Zhang, 2021]

Field dynamics is the projected process when $k \to \infty$

$$\forall \epsilon > 0, \exists K_0 \text{ s.t. } \forall k \geq K_0$$

$$\forall \sigma, \tau \in \{-, +\}^V, \left| P^{FD}(\sigma, \tau) - P_{\mu_k}^{\text{Proj}}(\sigma, \tau) \right| \leq \epsilon$$

Theorem [Chen, F., Yin, Zhang, 2021]

Field dynamics is the projected process when $k \to \infty$

Block dynamics spectral gap Field dynamics spectral gap

Analysis of block dynamics

 \triangleright k-transformation **preserve** spectral independence (SI)

C-Complete SI of μ

10C-SI of μ_k

Spectral gap of the block [CLV21]

For *C*-SI distribution μ_k , θ -fractional block dynamics

$$\lambda_{gap}^{\theta-BD}(\mu_k) \ge \left(\frac{\theta}{2}\right)^{2C+2}$$

General technical result (II)

Boost the **modified log-Sobolev constant**for *completely spectrally independence distributions*with marginal ratio bounds

Why does the spectral gap lower bound imply rapid mixing?

P: Transition matrix of the Glauber dynamics for distribution μ

Spectral gap captures the **decay rate of the** χ^2 **-divergence** for Glauber dynamics

$$D_{\chi^2}(\nu P \parallel \mu) \le (1 - \lambda_{\text{gap}})D_{\chi^2}(\nu, \mu)$$

$$D_{\chi^2}(\nu \parallel \mu) = \sum_{\sigma} \frac{\nu^2(\sigma)}{\mu(\sigma)} - 1$$

$$D_{KL}(\nu \parallel \mu) = \sum_{\sigma} \nu(\sigma) \log \frac{\nu(\sigma)}{\mu(\sigma)}$$

Modified log-Sobolev constant ρ_{mls}

captures the **decay rate of the** *KL***-divergence** for Glauber dynamics

Continuous-time Glauber dynamics $D_{KL}(\nu_t \parallel \mu) \leq \exp(-2\rho_{\text{mls}})D_{KL}(\nu_0 \parallel \mu)$ Mixing time $T_{\text{mix}} = O\left(\frac{1}{\rho_{\text{mls}}}\log\log\frac{1}{\mu_{\text{min}}}\right)$

Formal Definition (don't need to know)

$$\rho_{\mathrm{mls}}(P) = \inf \left\{ \frac{\mathcal{E}_{P}(f, \log f)}{\mathrm{Ent}_{\mu}(f)} \,\middle|\, \mathrm{Ent}_{\mu}(f) \neq 0, f \colon \Omega \to \mathbb{R}_{+} \right\}$$

- $\mathcal{E}_P(f, \log f) = \frac{1}{2} \sum_{xy \in \Omega} \mu(x) P(x, y) (f_x f_y) (\log f_x \log f_y)$
- Ent_{\(\mu(f)\)} = $\sum_{x \in \Omega} \mu(x) f_x \log f_x + (\sum_{x \in \Omega} \mu(x) f_x) \log(\sum_{x \in \Omega} \mu(x) f_x)$

(C, ϵ) -Complete SI

There are constants C > 0 and $\epsilon \ge 0$ s.t. for all local fields $\phi \in (0,1+\epsilon]^V$ $(\forall,\ v \in V,\ 0 < \phi_v \le 1+\epsilon),$ $(\phi * \mu)$ is SI with parameter C

$$\epsilon = \frac{\delta}{10} \qquad \qquad \boxed{\left(O\left(\frac{1}{\delta}\right), \epsilon\right)\text{-CSI}}$$

For any pinning $\sigma \in \{-, +\}^{\Lambda}$ and $v \notin \Lambda$, let

marginal ratio
$$R_v^{\sigma} = \frac{\mu_v^{\sigma}(+)}{\mu_v^{\sigma}(-)},$$

For any pinning $\sigma \in \{-, +\}^{\Lambda}$ and $v \notin \Lambda$, let

marginal ratio
$$R_v^{\sigma} = \frac{\mu_v^{\sigma}(+)}{\mu_v^{\sigma}(-)},$$

• Bound on the ratio $R_{\nu}^{\sigma} \leq \zeta$

For any pinning $\sigma \in \{-, +\}^{\Lambda}$ and $v \notin \Lambda$, let

marginal ratio
$$R_v^{\sigma} = \frac{\mu_v^{\sigma}(+)}{\mu_v^{\sigma}(-)},$$

- Bound on the ratio $R_v^{\sigma} \leq \zeta$
- Stability of the ratio $R_v^{\sigma} \leq \zeta R_v^{\sigma_S}$

For any pinning $\sigma \in \{-, +\}^{\Lambda}$ and $v \notin \Lambda$, let

marginal ratio
$$R_v^{\sigma} = \frac{\mu_v^{\sigma}(+)}{\mu_v^{\sigma}(-)},$$

- Bound on the ratio $R_v^{\sigma} \leq \zeta$
- Stability of the ratio $R_v^{\sigma} \leq \zeta R_v^{\sigma_S}$

Complete Marginal stability [Chen, F., Yin, Zhang, 2022]

 $(\phi * \mu)$ is marginally stable for all $\phi \in (0,1]^V$

Main result: boosting modified log-Sobolev constant

Boosting result of modified log-Sobolev constant [Chen, F., Yin, Zhang, 2022]

If μ is (C, ϵ) -completely spectrally independent and ζ -completely marginally stable,

then for any $\theta \in (0,1)$

$$\rho_{\text{mls}}^{\text{GD}}(\mu) \ge f(\theta, C, \epsilon, \zeta) \cdot \rho_{\text{minmls}}^{\text{GD}}(\theta * \mu),$$

$$\boldsymbol{\theta}_{v} = \theta$$
 for all $v \in V$

Boosting modified log-Sobolev constant with cost O(1)

optimal mixing time bound

Marginal stability condition:

strong: guarantee the modified log-Sobolev constant bound

mild: verifiable for general 2-spin systems

Application: Optimal mixing of hardcore model

 $\lambda \leq (1 - \delta)\lambda_c(\Delta)$

correlation decay marginal recursion

[Weitzo6,LLY13, ALO20 CLV20]

Complete SI & complete marginal stable with

•
$$C = O(1/\delta)$$

•
$$\epsilon = \Theta(1/\delta)$$

•
$$\eta = O(1)$$

 $\theta = 1/50$

$$\theta \lambda \leq \frac{1}{2\Delta} \ll \lambda_c$$

Ricci curvature [EHMT17]

$$\rho_{\min}^{\text{GD}}(\boldsymbol{\theta} * \mu) \ge \frac{1}{4n}$$

$$\rho_{\text{mls}}^{\text{GD}}(\mu) = \Omega(1/n)$$
$$T_{\text{mix}} = O(n \log n)$$

$$T_{\min} = O(n \log n)$$

Field dynamics: Mixing lemma

Complete Spectral independence

Spectral gap of field dynamics $\lambda_{\text{gap}}^{\text{Field}}(\mu, \theta) = \Omega(1)$

$$\lambda_{\text{gap}}^{GD}(\mu) \ge \lambda_{\text{gap}}^{\text{Field}}(\mu, \theta) \cdot \lambda_{\text{mingap}}^{\text{GD}}(\boldsymbol{\theta} * \mu)$$

Field dynamics: Mixing lemma

Complete Spectral independence

$$\lambda_{\text{gap}}^{GD}(\mu) \ge \alpha(\mu, \theta) \cdot \lambda_{\text{mingap}}^{GD}(\boldsymbol{\theta} * \mu)$$

Boosting MLS constant

Field dynamics: Mixing lemma

Complete Spectral independence

field dynamics has some χ^2 -divergence decay with rate $\alpha(\mu, \theta) = \lambda_{\rm gap}^{\rm Field}(\mu, \theta) = \Omega(1)$

Field dynamics: Mixing lemma

Complete Spectral independence Marginal stability

field dynamics has some *KL*-divergence decay with rate $\beta(\mu, \theta) = \Omega(1)$

Field dynamics: Comparison lemma

$$\lambda_{\text{gap}}^{GD}(\mu) \ge \alpha(\mu, \theta) \cdot \lambda_{\text{mingap}}^{GD}(\boldsymbol{\theta} * \mu)$$

$$\rho_{\text{mls}}^{GD}(\mu) \ge \beta(\mu, \theta) \cdot \rho_{\text{minmls}}^{GD}(\boldsymbol{\theta} * \mu)$$

Boosting MLS constant

Field dynamics: Mixing lemma

Complete Spectral independence

field dynamics has some χ^2 -divergence decay with rate $\alpha(\mu, \theta) = \lambda_{\rm gap}^{\rm Field}(\mu, \theta) = \Omega(1)$

Field dynamics: Mixing lemma

Complete Spectral independence Marginal stability

field dynamics has some *KL*-divergence decay with rate $\beta(\mu, \theta) = \Omega(1)$

main contribution

Field dynamics: Comparison lemma

$$\lambda_{\text{gap}}^{GD}(\mu) \ge \alpha(\mu, \theta) \cdot \lambda_{\text{mingap}}^{GD}(\boldsymbol{\theta} * \mu)$$

$$\rho_{\text{mls}}^{GD}(\mu) \ge \beta(\mu, \theta) \cdot \rho_{\text{minmls}}^{GD}(\boldsymbol{\theta} * \mu)$$

Summary

- New Markov chain: field dynamics
 Boost mixing results for Glauber dynamics
- Applications Optimal $O(n \log n)$ mixing for hardcore / Ising model in the uniqueness regime

Thank you!

Open problem

- Optimal mixing for all anti-ferro two spin systems in the uniqueness regime
- General distributions beyond the Boolean domain i.e., q-coloring
- More applications of the field dynamics [algorithmic application AJKPV21]
- Other version of field dynamics?