

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Crop Science No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CopScience.

proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amound, or renew a registration document unless them. authority. Other registration authorities should not grant, amound, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data continued.

Version history

Date Data points containing amendments or additions' and brief description Suggested that applicants adopt a similar approach to showing revisions and version highly as politined in CO/10180/2013 Chapter 4 How to revise an Assessment Report	Date	Data points containing amendments or additions ¹ and	Document identifier and Sversion number
suggested that applicants adopt a similar approach to showing revision and version history as potlined in CO/10180/2013 Chapter 4 How to revise an Assessment Report	_ ****	brief description	Sversion number
suggested that applicants adopt a similar approach to showing revisions and version holory as pottlined in CO/10180/2013 Chapter 4 How to revise an Assessment Report			
suggested that applicants adopt a similar approach to showing revisions and version higher as outlined in CO/10180/2013 Chapter 4 How to revise an Assessment Report		- Ca	
CO/10180/2013 Chapter 4 How to revise an Assessment Report A A A A A A A A A A A A A A A A A A A	is suggested that	at applicants adopt a similar approach to showing revision on	d version history as outlined in
	NCO/10180/20	13 Chapter 4 How to revise an Assessment Report	
			(, , , , , , , , , , , , , , , , , , ,
			V
			\$\bar{g}\$
	KG [*]		
	4		
	, ~		
	~		
		A.F	

Table of Contents

		1
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT	5
CP 9 1	Fate and behaviour in soil	
CP 9.1	Rate of degradation in soil	9) ? 5
CP 9.1.1	Laboratory studies	. <i>5</i>
CD 0.1.1.1	Field studies	. IQ
CD 0 1 1 2 1	Soil discinction studies	
CF 9.1.1.2.1	Soil googypulation studies	%. U
CP 9.1.1.2.2	Mobility in the soil	. 0
CP 9.1.2 CD 0.1.2.1	I abordony studios	. W
CP 9.1.2.1	Laboratory studies	<i>j</i> , 0
CP 9.1.2.2	FATE AND BEHAVIOUR IN THE ENVIRONMENT Fate and behaviour in soil Rate of degradation in soil Laboratory studies Field studies Soil dissipation studies Mobility in the soil Laboratory studies Lysimeter studies Field leaching studies Estimation of concentrations in soil	0
CP 9.1.2.3	Field leacning studies	o
CP 9.1.3	Estimation of concentrations in soilQQQQQQ	≯ 0
CP 9.2	Fate and behaviour in water and sediment.	11
CP 9.2.1	Aerobic mineralisation in surface water	12
CP 9.2.2	Water/sediment study	12
CP 9.2.3	Irradiated water/sediment study	12
CP 9.2.4	Estimation of concentrations in groundwater	12
CP 9.2.4.1	Calculation of concentrations in groundwater	13
CP 9.2.4.2	Additional field tests	18
CP 9.2.5	Estimation of concentration on surface water and sediment	18
CP 9.3	Fate and behaviour in air	47
CP 9.3.1	Route and rate of degradation in air and transport in air.	47
CP 9.4	Estimation of concentrations for other routes of exposure	47
	FATE AND BEHAVIOUR IN THE ENVIRONMENT Fate and behaviour in soil Rate of degradation in soil Laboratory studies Field studies Soil dissipation studies Mobility in the soil Laboratory studies Lysimeter studies Field leaching studies Estimation of concentrations in soil Fate and behaviour in water and sediment Aerobic mineralisation in surface water Water/sediment study Irradiated water/sedimentf study Estimation of concentrations in groundwater Calculation of concentrations in groundwater Additional field fests. Estimation of concentrations in groundwater Route and rate of degradation in air and transport of a airt, Estimation of concentrations for other routes of exposure	

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

CP 9.1 Fate and behaviour in soil

For information on the fate and behaviour in soil please refer to MCA Section 7 data point 7.1

CP 9.1.1 Rate of degradation in soil

The proposed degradation pathway of deltamethrin in soils shown in Figure 9.1.1-1 Major metabolites are highlighted in bold writing.

For further information on the fate and behaviour in soft please refer to MCA Section 7, data points 7.1 and 7.1.2.

Figure 9.1.1-1: Proposed degradation pathway of destamethrin in soil

CP 9.1.1.1 SLaboratory studies

For information on laboratory stodies please refer to MCA Section 7, data point 7.1.2.1.

CP 9.1.1.2 Field studies

For information on field studies please refer to MCA Section 7, data point 7.1.2.2.

CP 9.1.1.2.1 Soil dissipation studies

For information on field dissipation studies please refer to MCA Section 7, data point 7.1.2.2.1.

CP 9.1.1.2.2 Soil accumulation studies

For information on field accumulation studies please refer to MCA Section, data point 2.2.2

CP 9.1.2 Mobility in the soil

For information on mobility studies please refer to MCA Section 7 data point 7. DA

CP 9.1.2.1 Laboratory studies

For information on laboratory studies please refer to MCA Section 7, data point 7.1.4.1

CP 9.1.2.2 Lysimeter studies

For information on lysimeter studies Please refer to MCA Section 7, data point 3.1.4.2

CP 9.1.2.3 Field leaching studies

For information on field leaching studies prease refer to MCA Section 7, data point 7.1.4.3

CP 9.1.3 Estimation of concentrations in soil

For the PEC calculations, the following representative uses were considered

\sim	* · · · · · · · · · · · · · · · · · · ·		, <i>k</i>	
N 1		Application		s* @1
	Representative 4	Rate/per	Interyal	BBCH Stage
(crops 0	Season		S CH Stage
Ø		(g) a.s./[Qa]	[days]	
)	Sugarbe)	4 2	10-49
	Sugar Devis	#@* 7.5 € *	* *	10-49
) C	Cauliflower	2 × 75	% 14	10 -49
,	Wood and A	7 2 6 250	14	10-83
a	Wheat S	D 0.230	14	10-83

PEC modelling approach

The predicted environmental concentration on soil (PEC_{soil}) for the active substance deltamethrin were calculated based on a simple first tier approach (Microsoft® Excel spreadsheet) assuming even distribution of the compound in the upper 0-5 cm soil layer. A standard soil density of 1.5 g/cm³ was assumed Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the recommendations of the FOCUS groundwater guidance paper (FOCUS 2002) for sugarbeet, cauliflower and spring and winter wheat (Table 9.2.4- 1). Derivation of kinetic modelling input values for deltamethrin and its metabolites is presented in MCA Section 7, data point 7.1.2, a summary of modelling input parameters is given in the report M-470168-02-1 (KCP 9.1.3/01).

Predicted environmental concentrations in soil (PECs) of deltamethrin and its metabolites

For deltamethrin, the metabolites Br₂CA and mPBacid were considered.

Report:	KCP 9.1.3/01, ; 2013
Title:	
	Use in sugar beets, cauliflower and cereals in Europe
Document No.:	M-470168-02-1 (EnSa-13-0650)
Guidelines:	M-470168-02-1 (EnSa-13-0650)
	Directive 91/414/EEC concerning the placing of plant protection products on
	the market
	- EU Commission, 2000, Guidance Document on Persistence in Soil (Working
	- FOCUS, 1997, Soil persistence models and EU registration - FOCUS, 2002, Generic Condance for FOCUS Groundwater Scenarios, Version 1.1
	- FOCUS, 1997, Soil persistence models and EU registration of the FOCUS, 2002, Generic Condance for FOCUS Groundwater Scenarios, Version 1.1
GLP:	No (calculation)

Methods and Materials: The predicted environmental concentrations in soil (PECoil) of deltamethrin and its metabolites Br₂CA and and Bacid were calculated based on a first tier approach using a Microsoft® Excel spreadsheet. The use of deltamethring sugar beets, cauliflower and spring and winter cereals was assessed according to Good Agricultural Practice (GAP) under European cropping conditions. Detailed application data used for simulation of PEC_{soft} were compiled in Table 9.1.3-1.

Substance Specific Carameters: PEC_{seir} Calculations were based on the DT₅₀ of 231 days (worst case of laboratory studies) for the parent compound deltamethring

Table 9.1.3- 1: Application pattern used for PEC soil calculations of deltamethrin

Individual Crop	FOCTS crope (seed for forterception	Rate per Season Interval	interception	BBCH Stage	Amount reaching the soil per application [g a.s./ha]
Sugarbeets	Sugarbeets	. 7. 5	5 20	10-49	1 × 6.0
Cauliflower	Cabbage 2	2,0,5	2 × 25	2 × 10-69*	2 × 5.63
Spring wheat	Spring cereals	2 × 6 25 24	25 + 50	10-19 20-83	4.69 3.13
Winter wheat	Winter Sereals		2 × 50	2 × March- BBCH 83	2 × 3.13

(*) PEC soil applicable to BBOH 10-49

Findings: The maximum EC_{sot} value for deltamethrin and its metabolites Br₂CA and mPBacid are summarised in Table 9 © 3-2.

Table 9.1.3- 2: Maximum PECsoil of deltamethrin and its metabolites for the uses assessed

Use pattern	Deltamethrin	Br ₂ CA	mPBacid
Ose pattern	PE	Ccsoil [µg/kg]	
Sugarbeets	8.0	1.085	0.190
Cauliflower	14.69	1.589	0.178
Spring wheat	10.16	1.041	0.148
Winter wheat	8.162	0.883	0.099

	Deitametiiriii	Dr ₂ CA	mPBacid	
ose pattern	PEC	Csoil [µg/kg]		
Sugarbeets	8.0	1.085	0.190	
Cauliflower	14.69	1.589	0.178	
Spring wheat	10.16	1.041	0.148	
Winter wheat	8.162	0.883	0.09	
he maximum, ΓWAC _{soil}) of dable 9.1.3-6.	short-term and long leltamethrin and its	g-term PEC _s , metabolites	Br ₂ CA and n	the time weighted average values in Pacial are presented in Table 9.1.3-3 to metabolite metabolite metabolite Macalla Swac soil
able 9.1.3- 3:	PECsoil and TWACso	ii of deltarite	thrin and its it	netabolite 2 mg Bacid 2 2
Days after	PEC TWAC	Z PEC	TYPAC	O PEC ZWAC
maximum		soil	ősőil (soil S
	[µg/kg] {µg/kg		_ 3/ /////	he/kgl [µg/kg]
Initial 0	8.000	1.042 1.042		0.190
Short 1 term 2	7.976 7.988	1.042 0.999		0.031 0.085
term 2	7.976 7.975 7.955	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.042	0.001 0.026
Long 7	7.917	0.813	.0.943	< 0.001
term 14	7.834	(k) 0.609	(.824 [©]	<.0.001 0.007
21	7.50M \Q7.753	O 0456	0.726	0.005
28 ₀	7.955 7.673 7.053 7.516	0.342	0.644	0.064 0.002 0.002
43/ 80	(000	0.192	0.310	©.001 0.002 0.002 0.002
100	5,926 6.91	J 0018	0.259	
	6.880 J.429 5.26 J.6.918 J. J. J			

Cauliflower, 2×7.5 g a.s./ha, $2 \times 25\%$ interception, 14 d app. interval

Table 9.1.3-4: PECsoil and TWACsoil of deltamethrin and its metabolite

	ethrin E	× 7.5 g a.s.	/ha, 2 × 25	% intercep	otion, 14 d :	app. interv	al	
Table 9.1	1.3- 4: P	ECsoil and T	WACsoil of d	leltamethrin	and its met	abolite	ð	
		Deltan	nethrin	Br ₂		mPE	Bacid	
Days		PEC	TWAC	PEC	TWAC	PEC	TWAC	
maxi	mum	soil	soil	soil	soil	soil	≫soil	
		[µg/kg]	[µg/kg]	[µg/kg]	[μg/kg	[µg/kg]	[μg/kg]	
Initial	0	14.69		1.589	- ₹7	0.1780	🐇	
Short	1	14.65	14.67	1.524	₫.556	0.029	0.082°	
term	2	14.60	14.65	1.463	ั้วไ.525	Q,005 @	9 0.0 4	
	4	14.52	14.60	1.347 1.196	1.465	\$ 0.001	9.0024 7	
Long	7	14.39	14.54	1.196	_1 ©3 80 💉	~(0. 00 1	3 0.014	
term	14	14.09	14.39	0.892	€1.207©	< 00001	© 0.0 <u>0</u> 7	
	21	13.79	14.24	Ø.668 ×	× 1.063	≈0.001	0.005	
	28	13.51	14.09	Ø0.500√	. 9942 √	<0.001	©.003 S	
	42	12.95	13.80	0.28	, Ø.75 <i>5</i> , Ø	<0.001	Ů0.00 2	
	50	12.64	13.64	0.202	⁷⁹ 0.672	30 .0010	0.002	S, Y
	100	10.88	12,69	, © .026	Q . \$79	(×0.0 g)	9 .0010	
		2 × 6.25 g ;	\$s./ha,25%	\(\frac{1}{4}\)	Terception	* 🗸	interval	
Stable 9.1	1.3- 5: P	ECsoil and T	WACsoil of c	leltamethrin	and its met	abolite 💍	* 4"	
		Deltan	nethrin/	Pr2	CA, C	MPE	Baeid	
Days	after	PE	TWAC	PEC	ÆWA C [™]		TWAC	

Table 9.1.3-5: PECsoil and TWACsoil of deltamethrin and its metabolite

	Dalta	nethrin/	B _{r2}	CA Q	M PB	
Davis often	// .	TWAC	~ ~	EWAC S	KOEC *	TWAC
Days after maximum	PE S		PEC Søil	WAC soil	48	⊗ I WAC soil
, Ø		 [μg/kg]	Δμg/kg	[µ g /kg]	Son [μg/kg/	[µg/kg]
Initial 6	10.1	<u> </u>	1.041	\$ \$	0.148	
Short VI	10.53	0.14	0.0999 %	1.020		0.068
term 2	39 .10	10.40	9.959 ×	0.999	0.024 0.004	0.040
4	\$10.04 4	16,10	0.883	0.900	× < 0.001	0.020
Long 7	, `9.9 4% /	9.949 0	0.780	∂ ⁵ 0.904∂ ⁵	< 0.001	0.012
term 14 $^{\circ}$	9.042	9.949	% 584 %	0.791	< 0.001	0.006
2 <u>k</u> 28 42	9.539	9: 89 6	4 0.438€	00696	< 0.001	0.004
28 "	9.341	\$744 [©]	U 0.328	5 0.617	< 0.001	0.003
[*] 42	8.957	9.545	0.984 .^	Q [*] 0.495	< 0.001	0.002
50	8 7 44 .c	9.4 3 47	0.132	0.441	< 0.001	0.002
100	୍ଦ _ଏ 7.526 ^ଫ	8. 0 17	0.017	0.248	< 0.001	< 0.001
		8 017 8 017				

ð

Document MCP: Section 9 Fate and behaviour in the environment Deltamethrin EW 15

Winter wheat, 2×6.25 g a.s./ha, $2 \times 50\%$ interception, 14 d app. interval

Table 9.1.3- 6: PECsoil and TWACsoil of deltamethrin and its metabolite

Deltamethrin	Dania aftan	Deltan	nethrin	Br ₂	2CA	mPB	acid
maximum Soil Soil Soil Soil Soil Soil Soil Soil Ing/kg	Days after	PEC	TWAC	PEC	TWAC	PEC	TWAC
Ing/kg Ing/	maximum	soil	soil	soil	soil	soil	≪ soil
nitial 0 8.162 0.883		[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	🏸 [μg/kg]
Short 1 8.137 8.150 0.847 0.865 0.948 0.0045 0.0026	nitial 0	8.162		0.883	Æ;	0.099	%
erm 2	Short 1	8.137	8.150	0.847	№ 865	0.046	.0.045 C
4 8.065 8.113 0.748 0.814 0.001 0.00	term 2	8.113	8.137	0.813	⊕ 0.847	0.003	0.026
ang 7	4	8.065	8.113	0.748	0.81,4	₹0.00 °	0,014
erm 14 7.826 7.993 0.495 0.670 0.0001 0.0003 28 7.504 7.828 0.278 0.595 0.0001 0.0003 0.0002 28 7.504 7.828 0.278 0.595 0.0001 0.0003 0.0002 0.0001 0.0003 0.0002 0.0001 0.0003 0.0003 0	Long 7	7.992	8.077	0.661%	0.767	~~0.00°Y	9 .008 S
21	term 14	7.826	7.993	0.495	₹ 0.670 ©	<0.001	©0.004°
22	21	7.663	7.910	0.51	0.590	<0.001	0.003
120 7.025 7.579 0.142 70.373 2.0001 2.0005 100 6.046 7.055 0.0014 7.055 0.0015 2.0001	28 42	7.304	7.828 7.660	0.156	0.323 10 %	× 0.00m, 1	\$0,002 \$0,001
	42 50	7.193	7.009	0.130	373	<0.0001 <00001	0.001
	100	6.046	7.05	0.712	0.210	0001	< 0.000 < 0.001
		0.0.0	7.000				
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Y . ~.			
			&' (L)			\$ _%	? , Q
		٥,					
		,				¥ (4,	
						o ^v &	
					y J	<i>w</i> .	~~
				\$\tag{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tinit}\\ \text{\texi}\tint{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\tin}\tint{\tin}\text{\text{\text{\text{\text{\text{\texit{\texi}\tint{\text{\texit{\text{\texi}\tint{\text{\texi}\tint{\texit{\text{\ti}\}\tittt{\ti}\tint{\text{\texi{\texi{\texi{\texi}\texit{\texi{\			
	~ (~ × ×				(J ^v
	Õ			¥		0	
	, Q	≪ 1	L. Q		'		
					\$ 29		
	4				Y 6		
					′ 0 ×	~) 	
)°	
				_ O' %			
		2					
	4(X 1		
		(\mathcal{O})		U ~ 1	٥, ۵		

CP 9.2 Fate and behaviour in water and sediment

The proposed degradation pathway of deltamethrin in water and sediment is shown in Figure 9.2. Major metabolites are highlighted in bold writing.

For information on the fate and behaviour in water and sediment please refer to MCA Section 7, day point 7.2.

Figure 9.2-1: Proposed degradation pathway of deltamethrin in water and sediment

CP 9.2.1 Aerobic mineralisation in surface water

For information on aerobic mineralisation in surface water studies please refer to MCA Section. That a point 7.2.2.2.

CP 9.2.2 Water/sediment study

For information on water/sediment studies please refer to MCA Section 4 data point 7.2

CP 9.2.3 Irradiated water/sediment study

For information on irradiated water/sediment studies please refer to point 7.2.2.4.

CP 9.2.4 Estimation of concentrations in

For the PEC calculations, the following representation

roote mineralisation in surface water studies please refer to MCA Section grada
er/sediment study hter/sediment studies please refer to MCA Section 7, data point 7,2/2.3, https://doi.org/10.1001/10.
er/sediment study
ater/sediment studies please refer to MCA Section 1, data point 7,2.2.3
liated water/sediment study
adiated water/sediment studies please refer to MGA Section 7, data
adiated water/sediment studies please refer to MCA Section 7. Onto
liated water/sediment study adiated water/sediment study adiated water/sediment studies please refer to MCA Section 7, data nation of concentrations in groundwater ons, the following representative uses were considered. Representative Rate per Season gars./haj/ ldays Sugarbeets 1 × 10
Representative Rate per Season [gass./ha] [days]
Cauliflower 2/×7.5 10 10 44
Wheat 2 × 5.25 14 10-83

PECgw modelling approach

The predicted environmental concentrations in groundwater (PECgw) for the active substance deltamethrin were calculated using the simulation models PEARL and PELMO following the recommendations of the FQEUS working group on groundwater scenarios.

The leaching calculations were run over to years, as proposed for pesticides which may be applied every year. The simulation length increases to 46 and 66 years for pesticides which are applied only every second and third year, respectively. The first six years are a 'warm up' period; only the last 20 years were considered for the assessment of the leaching potential. The 80th percentile of the average annual groundwater concentrations in the percolate st 1 m depth under a treated plantation were evaluated and were taken as the relevant FEC values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater layer.

According to OCUS, the Calculations were conducted based on mean soil half-lives, referenced to standard temperature and moisture conditions. Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the FOCUS recommendations (Table 9.2.4-1).

Table 9.2.4-1: FOCUS groundwater crop interception values

			Crop stage Interception [%	<u>o</u>]		
Crop	Bare – emergence	Leaf development	Stem elongation	Flowering	Senescence Ripening	
			ВВСН	4	Q	
	00 - 09	10 - 19	20 - 39	40 - 89	90 - 92 [©]	
Cabbage	0	25	40 💍	70	90∜″ ^	
Spring and winter cereals	0	25	50 (tillering) 70 (eløng.)			
Sugar beets	0	20	703(rosette)	Ø 90 °	√ 90 _€	O "O"
Derivation of kineticummary of modell CP 9.2.4.1 Carredicted environmetabolites or deltamethrin, the	lculation o	f concentration	ous in ground	water	1 (KCP 9.2.4.1/(
redicted environ netabolites	mental conc	centrations in a	groundwater (P	Eyw) of delt	amethring and it	S ?
4 - 14 41	4 - 1 1 % .					

Report:	KCP 9.2,4.1/01, 2013 2013 2013 2013 2013 2013 2013 2013
Title:	Deltamethrin and metabolites PECgW FOCUS PEARL, PDLMO EUR Use in Gugar beets, cauliflower and cereals in Europe M-47017201-1 (EnSa-13-0651) - FOCUS 2000, SANCO/32 1/2000 x 2.0
	Use in Sugar beets, cauliflower and cereals in Europe
Document No:	M-470172001-1 (Basa-13-0651)
Guidelines:	-\FOCUS 2000, SANCØ/32 [72000 x 2.0
	© FOCUS 2009, SANCO/121/44/2010 v. 15°
	FOCUS 2012, Generic Guidance for FOCUS Groundwater Assessments, v. 2.1
GLP:	No (calculation)

Methods and Materials: Predicted environmental concentrations of the active substance deltamethrin and its metabolites in groundwater recharge (PEC_{gw}) over calculated for the use in Europe, using the simulation models FOCUS PEARL 404.4 (Leistra et al. 2001) and FOCUS PELMO 5.5.3 (Jene 1998; Klein 1995, 1999, 2011). PEC_{gw} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. Model parameters and scenarios consisting of weather, soil, and crop data were ised as proposed by POCUS (2009).

GAP) under European cropping of REC_{gw} were compiled in Table 9.2.4.1-1. The use of deltamethrin on sugar beets, cautiflower and wheat was assessed according to Good Agricultural Practice (GAP) under European cropping conditions. Detailed application data used for simulation of REC

Application pattern used for PECgw calculations of deltamethrin Table 9.2.4.1-1:

			Amount				
Individual Crop	FOCUS crop used for	Rate per Season	Interval	Plant Interception	BBCHStage	Amount reaching the soil per application	
•	Interception	[g a.s./ha]	[days]	[%]		[g a.s./hal	
Sugarbeets	Sugarbeets	1 × 7.5	-	20	10 - 49	1 × 25.0	
Cauliflower (1st and 2nd season)	Cabbage	2 × 75	14	7 2 × 25	$2 \times 10 - 69$	5.62°	\$ \$
Spring wheat	Spring cereals	2 × 6.25	140	25 + 50	10-18 ° 20- \$ 3	4.69 3.13	
Winter wheat	Winter cereals	2 × 6.25	\$\tilde{\pi_14} \tilde{\pi_0}	250	2 × March BBCH 88	3.13	

^(*) PEC soil applicable to BBCH 10-49.

Ince source it.

Ing to the BBC M (*) PEC soil applicable to BBCH 10-49.

Application dates for the simulation runs were defined following the expression dates of the respective Application dates for the simulation runs were defined following the exop event dates of the respective crop and scenario Error! Reference seurce not found as given by FOCUS (2009). Crop interseption was taken into account according to the BBCH growth stage, as recommended by FOCUS (2012).

Table 9.2.4.1- 2: First application dates and related information for deltamethrin as used for the simulation runs; offset is relevant only for relative application dates, two sets of data are provided for crops with two seasons

Sugar Beets	Cauliflower 1st Season	Cauliflower 2nd Season	Spring Wheat	Winter Wheat
Every Year	Every Year	Every Year	Every Year	Every Sear
Spray	Spray	Spray	Spray	, Spray O
Emergence	Emergence	&Emergence	O Emergence	Absolute
1st App. Date			1st App. Date	18t App Date
,				(Julian day)
Offset	Offset *		Object N	Offset
17 Apr	21 A pr	0 Maug	Mar Mar	11 Mar
` . ′		(213) Q	(69)	
1	21.40		MAnr &	4, 04 A
		(2)(3)	(91) ©	(9 Q)
1 0	y Si S			©- ^{a)}
	21 May	-27	0 18 M ay	ô1 Mar
(146)	(1419)		38)	(70)
16 Anr .	I (C)		U 🔘 01 Apr	31 Mar
(106)	(111)	© (213)		(90)
% 1 4		√ √ √		_a)
26			01 Apo	17 Mar
(D)(6)	- Ş		(91)	(76)
				21 Mar
(80) %		r 5 <u>*</u> 2"		(80)
		\ \tag{\frac{1}{2}} - \tag{\frac{1}{2}}		_a)
16 Mar	01 May	\$ 01 Aug	🍏 10 Mar	25 Mar
	(69)	(24/3)	(69)	(84) _a)
O Mar			0	10 Mar
) 93/Viai () (64) C	(6L)	167	<u>-</u>	(69)
4 -a0 ×			-	_a)
02 M ay C	Ĵ6∕Aug ∫	\$\disp\{\pi_x\}\rightarrow\righta	-	25 Mar
) (Y22)	(228)		-	(84)
	\$ 6°	<u> </u>	-	_a)
mum PAZ refri				
able \$2.4.1-34.				
	Every Year Spray Emergence 1st App. Date (Julian day) Offset 17 Apr (107) 1 16 Apr (106) 1 26 May (146) 1 26 Apr (106) 1 26 Apr (106) 1 26 Apr (107) 1 26 Apr (108) 1 26 Apr (108) 1 27 May (80) 1 28 May (80) 1 29 May (80) 1 20 May (80) 1 21 May (80) 1 21 May (80) 1 22 May (80) 1 24 May (80) 1 25 Mar (80) 1 26 Apr (106) 1 27 May (80) 1 28 May (80) 1 29 May (80) 1 20 May (80) 1 20 May (80) 1 21 May (80) 1 21 May (80) 1 22 May (80) 1 24 May (80) 1 25 Mar (80) 1 26 Apr (106) 1 27 May (80) 1 28 May (80) 1 29 May (80) 1 40 May (80)	Every Year Spray Emergence 1st App. Date (Julian day) Offset 17 Apr (107) 1 16 Apr (106) 1 26 May (146) 1 16 Apr (106) 1 26 May (146) 1 16 Apr (106) 1 1 26 Apr (106) 1 1 27 May (144) 1 18 Apr (106) 1 28 Apr (111) 1 1 29 Apr (106) 1 1 20 May (146) 1 1 21 May (146) 1 22 May (146) 1 23 Apr (111) 24 Apr (111) 25 Apr (106) 1 26 Apr (106) 1 27 May (140) 1 28 Apr (111) 29 Mar (140) 1 20 Mar (140) 1 21 May (140) 1 22 Mar (140) 1 23 Apr (140) 1 24 Aug (140) 1 25 Aug (140) 1 26 Apr (111) 1 27 Aug (140) 1 28 Aug (140) 1 29 Mar (140) 1 20 Mar (140) 1 20 Mar (140) 1 21 Apr (111) 22 Apr (111) 23 Apr (111) 24 Aug (140) 25 Aug (140) 26 Aug (140) 27 Aug (140) 28 Aug (140) 29 Mar (140) 20 Mar (140) 2	Every Year Every Year Spray Spray Emergence 1st App. Date (Julian day) Offset 17 Apr (107) 1 1 16 Apr (106) 1 21 Apr (106) 1 21 Apr (106) 1 21 May (146) 1 26 May (146) 1 26 May (146) 1 26 Apr (106) 1 27 Apr (106) 1 28 Apr (106) 1 29 Apr (107) 1 1 20 Apr (108) 1 21 May (148) 1 22 Apr (109) 1 24 Apr (100) 1 25 Apr (106) 1 26 Apr (107) 1 26 Apr (108) 1 27 May (148) 1 28 Apr (108) 1 29 May (149) 1 20 May (149) 1 21 May (149) 1 22 Apr (107) 1 24 Apr (108) 1 25 Apr (107) 1 26 Apr (108) 1 27 May (149) 1 28 Apr (109) 1 29 May (140) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Every Year Spray

Table 9.2.4.1- 3: Maximum FOCUS PEARL PEC_{gw} results of deltamethrin and its metabolites in μg/L for the uses assessed

Use Pattern	Deltamethrin	Br ₂ CA	mPBacid
Sugar beets, 1×7.5 g a.s./ha	< 0.001	< 0.001	< 0.0010
Cauliflower 1st season, 2×7.5 g a.s./ha	< 0.001	< 0.001	< 0.00
Cauliflower 2nd season, 2×7.5 g a.s./ha	< 0.001	< 0.001	< 0,001
Spring wheat, 2×6.25 g a.s./ha	< 0.001	< 0.001	€0.0 01
Winter wheat, 2×6.25 g a.s./ha	< 0.001	O.001	№ 0.001

Overview of the maximum PEC_{gw} values for all uses obtained with FOCUS PELMO is given in Table 9.2.4.1-4.

Table 9.2.4.1- 4:

Maximum FOCUS PELMO PECgw results of deltamethrin and metabolites in µg/D for the uses assessed

Use Pattern	Déltamethrin	Ø Br₂CQ	mPBacid
Sugar beets, 1×7.5 g a.s./ha	<0.001	<0.9 01	[™] <0.001
Cauliflower 1st season, 2×7.5 g a.s./ha	© ≤0√001 °	№ 0.001 ○	€0,001
Cauliflower 2nd season, 2×7.5 g a.s./ha	0.001 €	×20.00	&0.001&
Spring wheat, 2×6.25 g a.s./ha	©<0.00N	<0. 00 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Winter wheat, 2×6.25 g a.s./ha	<0,001	< Q .001 (<0.001

Sugar beets, 1×7.5 g a.s./ha

Table 9.2.4.1- 5: FOCUS PEARL PEC_{gw} results of reltamethrin and its metabolites in μg/L (Sugar beets, 1, 7.5 g a.S./ha. 20% interception)

	31 00 01	- 10	
Scenario	Del@methrin	Br2CA %	₩ mP®Pacid 🖇
	<0.001 <0.001	1 20 :001	<0.001
	<0.001	√0.001©	<0.000 <0.001 <0.001
Ò	<0.001	A <0.00Y	<0.001
	\$0.0QL	<0.001 <0.001 \$0.001	
	$\mathcal{O}_{\mathcal{I}} < 0.000$	₹ <00001 (O)*	0.00
	\$\frac{0.001}{0.001}	©<0.001, ^y	<0.001
	<0.001 <0.001 0.001	<0.0001	O' <0.001
	\$\int_0.00\frac{1}{2}\tag{0.00\frac{1}{2}\tag{0.00}	Q.001 Q	Ø.001
	/ 0 *< 0.001	00.001	○ €0.001

Table 9.2.41-6: FOCUS PELMO PCCgw results of deltamethrin and its metabolites in μ g/L (Sugar beets, 1 × 7.5 g as/ha, 20% interception)

Scenario	Deltamethrin	Q Br ₂ CX	mPBacid
	<0.00	∑ ∮ .001	< 0.001
	A \ <0,001 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ 0.001	< 0.001
	20001	<0.001	< 0.001
	Ø.0015°	<0.001	< 0.001
	′ <0.000	< 0.001	< 0.001
67		< 0.001	< 0.001
	% <0.001 \$0.001	< 0.001	< 0.001
	₹ 0.001	< 0.001	< 0.001
	< 0.001	< 0.001	< 0.001

Cauliflower 1^{st} and 2^{nd} season, 2×7.5 g a.s./ha

Cauliflower 1st and 2nd season, 2×7.5 g a.s./na

Table 9.2.4.1-7: FOCUS PEARL PECgw results of deltamethrin and its metabolites in μ g/L (Cauliflower 2) 15 - 20 / hg 2×25% intercention. 14 d app. interval)

Scenario	Deltamethrin	Br ₂ CA	mPBacid	ts metabolites in µg/L (Cauliffower app. interval) its metabolites in µg/L ception, 14 d app. interval)
	< 0.001	< 0.001	< 0.001	
	< 0.001	< 0.001	<0.001	
	< 0.001	< 0.001	© 0.001	
	< 0.001	< 0.001	0.001	
	< 0.001	< 0.001	<0.001 _€	P' & & & &
	< 0.001	<0.001	<0.001	
	< 0.001	<0.001	<0.001	
able 9.2.4.1- 8:	FOCUS PELMO PE	Target Transfer of d	Hamethrin and	its matabolitas in ug/I
abic 7.2.4.1- 0.	(Cauliflower 1st seaso	on 2×75 σ a∞/h	12. 2825% isoter	cention 14 d ann Onterval
	(Caumiower 1st seaso	, 11, 2 2 5 a	2025 / 0 Heyer	ception, 14 d app. intervally
Scenario	Deltamethrin	S Br ₂ CA	mPBacid /	
	< 0.001	2 <0.901 ≾	Ø.001 ×	
	<0.001	Ø.001 ×	₹0.00 1	
	<0.001	<0.001	<0.QQ*	
	<0.001	∡, [©] <0.0 00 1	> <0 ,9 001 ∴	
	<0.000	y ≤0,001 ©	″ ≰9.001 <i>‰</i>	
	<0.001 %	3 9.001 L	_∞ <0.00₺	
	<0.001 & <0.001 O	<0.001 <0.001 <0.001 <0.001	<0.001	9' _Z' _ ?
				⟨ .
Enning wheat 1	× 605 a a s /ba 50	O S		ts metabolites in μg/L (Spring
spring wheat, 2	^ 0223 g a.s./11a			. 01
Гаble 9.2.4.1- 9: 🐔	FOCINS PEAKL PEC	w results of del	fametorin an Vi	ts metabolites in ug/L (Spring
	wheat, 2×625 g a.s.h	a. 25/50% inter	centrion. 14 al an	n, interval)
<u> </u>			.(>)	©
Scenario 🧞	Deltamethrio	△ Br ₂ €A	mPBacid *	₽
	1 %// ~//			
	<0.00)	Ø ≤0.001 O	Ø.0010	
		0.001°¥	$(x) < 0.001^{y}$	
	\$\begin{align*} \(\frac{0.001}{0.001} \\ \frac{0.001}{0.001} \end{align*}	<0.001 <0.901	○ <0.001 <0.001	
	76 ∧ \~A A A 16\°	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- M M A 1	

Scenario	Deltamethrin	Br ₂ CA	mPBacid /
	< 0.001	Q <0.901 ×	0 .001 🗸
	<0.001	6 0.001	≪\$0.001
	<0.001 Q	<0.001	~ <0.00r
	<0.001	(<0.00)	<0.001
	<0.000	2 0,001 [™]	¶ .001 @ ¥
	<0.001	Ø.001 L	©<0.00₹\
	< 6 5001 O	~<0.00¥	<0.001

Scenario 6	Deltamethrin	△ Br ₂ CA	mPBacid 8
	0.50 08 S	<0.001 S	\$0.0010
	<0.000 <0.001 %	\$0.001	<0.001°
	<0.001 °	<0.001	< 0.001
		\$0.901 \$0.001	©0.001
	© <00001 ~	×0.001	<0.001
			V.

Table 9,2.4.1-10: FQCUS PALMO PECgg wesults of deltamethrin and its metabolites in μg/L (Spring wheat, 2.6.25 g x.s./ha, 25/50% interception, 14 d app. interval)

Scenario	<i></i>	Deltamet hrin	RD2CA	mPBacid
e		\$.001 \(\)	<0.001	< 0.001
		* \$0.0015* 4 <0.045	<0.001 <0.001	<0.001 <0.001
		<0.001	< 0.001	< 0.001
	3	© \$0.001 <0.001	<0.001 <0.001	<0.001 <0.001

Winter wheat, 2×6.25 g a.s./ha

Table 9.2.4.1-11: FOCUS PEARL PEC_{gw} results of deltamethrin and its metabolites in μg/L (Winterwheat, 2×6.25 g a.s./ha 2 × 50% intercention 14 Jan. wheat, 2×6.25 g a.s./ha, $2 \times 50\%$ interception, 14 d app. interval).

Scenario	Deltamethrin	Br ₂ CA	mPBacid
	< 0.001	< 0.001	< 0.001
	< 0.001	< 0.001	< 0.001
	< 0.001	< 0.001	© 0.001
	< 0.001	< 0.001	₹ 0.001
	< 0.001	< 0.001	< 0.001
	< 0.001	< 0.001	© <0.001
	< 0.001	< 0.001	< 0.001
	< 0.001	<0.001	<0.001
	< 0.001	<0.001	© <0.0001

	< 0.001	< 0.001	© <0.001			
		4 . %				
Table 9.2.4.1- 1	2: FOCUS PELMO PE wheat, 2×6.25 g a.s./l	Cgw results of d 1a , ½ × 50% inte	eltámethrin and erecption 14 d a	d its metaboli 166. interval)	tes in μg/L (Wi	inter
Scenario	<0.001 2: FOCUS PELMO PE wheat, 2×6.25 g a.s./I Deltamethrin <0.001 <0.001 <0.001 <0.000	BizCA &	p P Bacid			
	<0.001	<0.001	<0.00			
	<0.001 <0.001 <0.000 <0.000	<0.001 <0.001 <0.001				
	<0.06M	0.001	<0.001 <0.001 <0.001 <0.001	6 4 6	_	
	$\approx \alpha \cap 1$	0.001 <0.001	<0.001			
	<0.000 × × × × × × × × × × × × × × × × ×	<00001 5 60.001 5	9.001 20.001			
	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 0.001 <0.001	<0.001	1. <i>O</i> 1		
		. ~ ~ .	y s e	y		

No additional field studies were performed

Essimation of concentrations in surface water and sediment **CP 9.2.5**

For the PEC calculations, the following representative uses were considered.

)°	
		Application	,	
	Representative crops	Rate per Season	Interval	BBCH Stage
***		[gas./ha]	[days]	
, 4, °	Sugar eets	$\sqrt[8]{1} \times 7.5$	-	10-49
	Guliflower P	2 ×7.5	14	10 -49
4	Wheat	2 × 6.25	14	10-83
M ^y	~	•		•

PEC_{sw} modelling approach

Calculation of PEC values for the active substance according to FOCUS

FOCUS_{sw} is a four step tiered approach:

Step 1: In this, the most conservative step, all inputs are considered as a single loading to the water body and a worst-case PEC_{sw} and PEC_{sed} is calculated.

Step 2: Individual loadings into the water body from different entry routes are considered. Scenarios are also considered for Northern and Southern Europe separately but no specific crop scenarios are defined. Step 3: An exposure assessment using realistic worst-case scenarios is made. The scenarios are representative of agricultural conditions in Europe and consider weather, soil, crop and different water-bodies. Simulations use the models PRZM, MACRO and TOXSWA.

Step 4: PEC values are refined by considering mitigation measures or specific scenario descriptions on a case-by-case basis.

Derivation of kinetic modelling input values is presented in MCA Section 7, data poin 7.1.2 a summary of modelling input parameters is given in the report M_47017603-14 KCP 92.5/00.

Predicted environmental concentrations in surface water (PEC_{sw}) and sediment (PEC_{sw}) of deltamethrin and its metabolites

For deltamethrin, the metabolites, alpha-R-isomer of deltamethrin, trans isomer of deltamethrin, Br₂CA, BrCA isomer 1, BrCA isomer 2, Serinyl-BrCA, 4 OH-Deltamethrin and mPBacid were considered.

Report: KCP 9.2.5/01, 2018, 2018

Title: Deltamethra (DLD) and petabolites: PECsw, sed FOCOS EUR

Use in sugar beets, caulatower and cereals in Europe

Document No: M-470\$76-03-\$P(EnS\array{2}13-0\array{2}9)

FOCUS 2006, SANCO 1,0058 2005 v 2.0

FOCUS 2007&SANCO/10422/2005 v. 2.0

GLP: No (colculation)

Methods and Materials. Predicted environmental concentrations of the active substance deltamethrin and its metabolites alpha-R-isomer of deltamethrin trans-isomer of deltamethrin, Br₂CA, BrCA isomer 1, BrCA isomer 2, Serinyl BrCA 2 OH Deltamethrin and mPBacid in surface water (PEC_{sw}) and sediment (PEC_{sed}) were calculated for the use in Europe employing the tiered FOCUS Surface Water (SW) approach (FOCUS), 2003). All relevant entrypoutes of a compound into surface water (principally a combination of spray drift and runoff/erosion or drain flow) were considered in these calculations.

The use of the insectivide deltamethrin in sugar beets, cauliflower, spring wheat and winter wheat was assessed according to the Good Agricultural Practice (GAP) in Europe. Detailed application parameters are presented in Table 9.23-1.

Table 9.2.5-1: General and FOCUS-specific data on the use pattern of deltamethrin in Europe (for FOCUS Step 1&2)

	FOCUS crop			Application	
Individual Crop	used for interception	Rate per season [g a.s./ha]	Interval [days]	Plant Interception	BBCH stage
Sugar beets	Sugar beets (Arable crops)	1 × 7.5	- (Minimal crop cover	710-49 70-49
Cauliflower	Leafy vegetables (Arable crops)	2 × 7.5	14	Minimal crop cover (40%)	10.69
Spring wheat	Spring cereals (Arable crops)	2 × 6.25		Minimal crop cover	10-83
Winter wheat	Winter cereals (Arable crops)	2 × 6.25 ¢	14,0	Ayerage crop cover	March BBC 1283

For the use in sugar beets, cauliflower, spring wheat and winter wheat in addition to POCUS Step & 2 values, FOCUS Step 3 and Step 4 values were conducted.

In FOCUS Step 3 and Step 4 varies were conducted.

In FOCUS Step 3, the application date for each scenario is determined by the Pedrcide Application Timer (PAT), which is part of the FOCUS W Scenarios The user may only define an application time window. The actual application date is then set by the PAP in such a way that there are at least 10 mm of rainfall in the first 10 days after application, and with some time less than 2 mm of rain per 10 mm of rainfall in the first 10@ays.after application? and Africa can be found within the application time window, the above rules are step-wise relaxed. Information on application dates can be found in Table 9.2.5-2? day in a five day period around the date of application. If no such date can be found within the

Table 9.2.5- 2: Application dates of deltamethrin for the FOCUS Step 3 calculations

				JCUS Step 3 ca		
Parameter	Sugai	r beets	Caulif	lower	Spring	wheat (1)
PAT start date rel./absolute Appl. method (appl. type)	ground (CA	+4 days d spray M 2)	Emg., -	l spray XV M 2) V	groun	d spray
No of appl. PAT window		1	2	.0 .		
range	1	30	4	1 Q °		
Appl. interval		1	1	4 ~ Ø		4 6
Crop	Sugai	r beets	Caulif	lower	To Spring	cereals 9
	PAT Start		PAT®tart	N/ 2 V	PAT Start	4
Application	Date	Appl. Daté∢	Date O	Appl. Date	Date O	Appl. Date
Details	(Julian Day)		(Julian Day)		(Julian Day)	
D1 (1st)	-	- 07	-0		7 05-May	√ 14 % May
()	-	Q (J25)	1 7 Jun
D2 (1st)	-			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\$\int \text{3" - \(\text{5"} \)	
	-	Q' &	& - &			/
D3 (1st)	29-Apr	04- Ma y	26-Apr (196)	99 04 M ay 🖔	OJOApr 🎉	04-Apr
	(119)		(196)		(91) O	20-Apr
D3 (2nd)		& - D'	% 6-Aug	% 8-Aûg√	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-
D4 (1-4)	- 🔎 08-May		(218) 11-May (31)	17-Sep		26 1
D4 (1st)	08-May (₩28) 🍕	14-May	II- y kay ô	₹ 16-May ≪ \$%-May	28 Apr	26-Apr 30-May
D5 (1st)				O - IVIA	\$15-Mar	08-Apr
D3 (18t)	Ø' - 4.				74)	22-Apr
D6 (1st)		14-May	16-Avug	192 Aug 🛇	-	- -
			(228)	Ø7-Sep ₩	-	
D6 (2nd)	\$ - Q	0_ %	. 5 - 2	- 0	-	-
, Ø			- 7 - 7 - 7		-	
R1 (15t)	20-Apr	26 -89 ř	21 A pr	26-Apr	-	-
	(010)		(C)(11)	• Po-May	-	
R1 (2nd)	20°- 4"	~ , O'	ØI-A@	△ 04-Aug	-	-
D2 (1gt)			(2199) &	20-Aug 01-Mar	-	
K2 (18t)				22-Mar	-	-
R2 (2nd)		26-86r	01-A	01-Aug	_	_
<u> </u>	_ 🎾		(2,18)	14-Sep	-	
R3 (1907)	2 ₄-⊗ 1ar ∡	🥈 28- M ar 🏅	02-Mar	02-Mar	-	-
	(83) ₄		,~9(61)	28-Mar	-	
R3 (2nd)	~ ~ ~	- N	16-Jun	16-Jun	-	-
y	- O'		©" (167)	06-Jul	-	
R4 (1st) @			√ 02-Mar	05-Mar	15-Mar	21-Mar
D4 (2::1)		\\\\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(61)	03-Apr	(74)	24-Apr
K4 (2nd)		₩ -Ø	10-Jun (167)	23-Jun 12-Jul	-	-
)		(107)	12 341	<u> </u>	
R1 (1st) R1 (2nd) R2 (1st) R2 (2nd) R3 (1st) R4 (2nd) R4 (2nd)						

Findings:

FOCUS Step 1 and 2: The maximum PEC_{sw} and 21 d TWA_{sw} values for FOCUS Step 2 are given in the Table 9.2.5-3 below for deltamethrin and its metabolites. Detailed results at the Steps 1-2 are given in the Table 9.2.5-4.

Table 9.2.5-3: Maximum PEC_{sw} and 21 d TWA values of deltamethrin and its metabolites according to FOCUS SW Step 2 calculations

Crop	Deltamethrin		alpha-R-isomer of deltamethrin		trans-Komer of deltamethrin		D Bry	ĆA Į
	PECsw [μg/L]	21 d TWA _{sw} [μg/L]	PECsw [μg/L]	20∕d TWAsw ©[μg/L]	PEČsw [jug/L]	21 d C ØrWA Ø [µg/L]	PECsw pg/LJ	TWA _{sw}
Sugar beets Cauliflower	0.0690 0.0690	0.0033 0.0033	0.0080 0.012 ©	0.0 % 5 9. % 101 &	50.011≇√ 0.02 0 ¥	0.0114 0.0200	© 0.07 0 2	*0.0383 < 0.0420
Spring wheat Winter wheat	0.0575 0.0575	0.0027 0.0027	0.0103 020103	0.0084 0.0084	0. 00 68 20,0168	0.0167 0.0667	©0641 √0.0461	0.03\$0 0.0252
Maximum	0.0690	0.0033	0.0124~	0,0201	\$0.020 6	0.0200	0.0769	.0420

Table 9.2.5-3 (contd.): Maximum PEC_{sw} and 21 d TWA values of deltamethrin and its metabolites according to FQCUS SWStep 2 calculations

т.	BrCA isomer 1	**************************************			0, 9		
Crop	Br A i PEC [μg/L] 0.6023	somer 2	Seriny Seriny	l B rCA	4-OH-Del	tameth	
				~	Y SQ	Ò	
	21 d ^O		21 d TWAsw		ZV d YWA,		21
	PECsw TWAsw	PEC	Toy Asw	PEC _{sw}	1 WAsy	PECsw	TW
	μg/L [*] μg/L	J [μg/L]	µg/L]	Lug/L	<u>μg/ΙΝ</u>	[μg/L]	[μg/
Sugar beets	0.0061 0.0061	0 9023	O.0033	0.0033	0.0032	0.0007	0.00
Cauliflower	0.0107	20 .0041	0.0040	© 0.005 V	020057	0.0013	0.00
Spring wheat	0.0089 0.0089	0.0034	0,0034 ≈	0.0048	0.0047	0.0011	0.00
Winter wheat	© 0.00 89	0.0094	30.003	0.0048	0.0047	0.0010	0.00
Maximum	0.00007	0.0041	0.0040	9 .0057	0.0057	0.0013	0.00
***				@			
W.							
				>			
	~ Q" J" .		\$ \$	Y			
			, O . 'O'				
, 4							
			*				
	,		**************************************				
,			Q				
			y y				
¥		0 _x					
6							
9.		¥					

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							
	PECsw μg/L 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (

Table 9.2.5- 4: Summary of the maximum PEC_{sw} and PEC_{sed} values in μg/L of deltamethrin and its metabolites (FOCUS Steps 1-2)

Sugar beets 1 × 7.5 g a.s./ha Sugar beets 2 × 7.5 g a.s./ha Sugar beets Suga	Scenario Step 1 Step 2 N-EU Single S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single Step 1 Step 2 N-EU Multi N-EU Single Step 1 Step 2 N-EU Multi S-EU Multi S-EU Multi	PECsw [μg/L] 0.0692 0.0690 0.0690 0.1383 0.0610 0.0610 0.0690 0.1153 0.0688	PECsed [μg/kg] 19.01 3.336 6.188 38.02 5.701 (6.61) 3.158 5.832	alpha-Rof deltar PECsw [µg/L] 0.0080 0.0080 0.0161 0.0120 0.0124 0.0080 0.0130		trans-ii of deltan PECsw [µg/L] 0.0115 0.0114 0.0229 0.0201 0.0201 0.0114 0.0194	PECseθ μg/kg θ 9860 0.0856 0.0856 0.1506 0.1506 0.1506 θ 9856
Sugar beets 1 × 7.5 g a.s./ha Sugar beets 2 × 7.5 g a.s./ha Sugar beets Suga	Step 2 N-EU Single S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	[μg/L] 0.0692 0.0690 0.0690 0.1383 0.0610 0.0610 0.0690 0.0690	[μg/kg] 19.01 3.336 6.188 38.02 5.701 9.61 3.158 5.832	[μg/L] 0.0080 0.0080 0.0161 0.0124 0.0080 0.0124 0.0080	[μg/kg] 0.18\$2 0.1719 0.1719 0.3704 0.2691 0.2681 0.1519	PECsw [μg/L] 0.0115 0.0114 0.0229 0.0201 0.0201 0.0114	PECsed [μg/kg] 0.0856 0.0856 0.0720 0.1506 0.1506 0.9856
Sugar beets 1 × 7.5 g a.s./ha Sugar beets 2 × 7.5 g a.s./ha Sugar beets Suga	Step 2 N-EU Single S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	[μg/L] 0.0692 0.0690 0.0690 0.1383 0.0610 0.0610 0.0690 0.0690	[μg/kg] 19.01 3.336 6.188 38.02 5.701 9.61 3.158 5.832	[μg/L] 0.0080 0.0080 0.0161 0.0124 0.0080 0.0124 0.0080	[μg/kg] 0.18\$2 0.1719 0.1719 0.3704 0.2691 0.2681 0.1519	[μg/L] 0.0115 0.0114 0.0114 0.0229 0.0201 0.0201	μg/kg 0.0856 0.0856 0.1506 0.1506 0.856
Sugar beets 1 × 7.5 g a.s./ha Sugar beets 2 × 7.5 g a.s./ha Sugar beets Suga	Step 2 N-EU Single S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	0.0692 0.0690 0.0690 0.1383 0.0610 0.0610 0.0690 0.0690	19.01 3.336 6.188 38.02 5.701 6.61 3.158 5.832	0.0080 0.0080 0.0161 0.0124 0.0080 0.0080	0.18\$2 0.1719 0.1719 0.3704 0.2691 0.26\$1 0.1519	0.0118, 0.0114 0.0114 0.0229 0.0201 0.02114	0.0856 0.0856 0.0856 0.4720 0.1506 0.1506 0.9856
Sugar beets 1 × 7.5 g a.s./ha Sugar beets 2 × 7.5 g a.s./ha Sugar beets Suga	Step 2 N-EU Single S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	0.0690 0.0690 0.1383 0.0610 0.0610 0.0690 0.0690	3.336 6.188 38.02 5.701 6.61 3.158 5.832	0.0080 0.0080 0.0161 0.0120 0.0124 0.0080 0.0080	0.1719 0.1719 0.3704 0.2691 0.2691 0.1519	0.0114 0.0114 0.0229 0.0201 0.0201	0.0856 0.0856 0.0720 0.1506 0.1506 0.856
1 × 7.5 g a.s./ha Cauliflower 2 × 7.5 g a.s./ha	N-EU Single S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	0.0690 0.1383 0.0610 0.0610 0.0690 0.0690	6.188 38.02 5.701 60.61 3.158 5.832	0.0080 0.0161 0.0124 0.0124 0.0080 0.0080	0.1719 0.3704 0.2691 0.2691 0.1519	0.0229 0.0201 0.0201 0.0114	0.0856 0.1720 0.1506 0.1506 0.856
Cauliflower 2 × 7.5 g a.s./ha	S-EU Single Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	0.1383 0.0610 0.0610 0.0690 0.0690	38.02 \$\\ 5.701 \$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0.0080 0.0161 0.0124 0.0124 0.0080 0.0080	0.3704 0.2691 0.2691 0.1519	0.0229 0.0201 0.0201 0.0114	0.0856 0.1720 0.1506 0.1506 0.856
Cauliflower 2 × 7.5 g a.s./ha	Step 2 N-EU Multi S-EU Multi N-EU Single S-EU Single	0.0610 0.0610 0.0690 0.0690	5.701 5.701 5.61 3.158 5.832	0.0124 0.0124 00080	0.2691 0.2691 0.15919	0.0201 0.0201 0.0201	0.1506 0.1506 0.1506 0.856
Cauliflower 2 × 7.5 g a.s./ha	N-EU Multi S-EU Multi N-EU Single S-EU Single	0.0610 0.0690 0.0690	5.701 69.61 3.158 3.5.832	0.0124 00080 8.0080	0.2691 0.2691 0.15919	0.0201 0 0.0114	♥ 0.1506 0.1506 ₽₩856
2 × 7.5 g a.s./ha	S-EU Multi N-EU Single S-EU Single	0.0610 0.0690 0.0690	\$0.61 3.158 \$5.8320	0.0124 00080 8.0080	0.26 9 0.1 5 19	0.0201 0 0.0114	0,1506 0,0856
-	N-EU Single S-EU Single	0.0690 0.0690	3.158 5.832	00080 9.0080 9.0080	0.1319	©0.0114	0.1506 0.856
	S-EU Single	0.0690	5.832	Ø.0080 Q	0.619 0.1719 Q	0.0174	0.56
Spring wheat 2 × 6.25 g a.s./ha		W		. //	W.1/19	Y 0.0174	
Spring wheat 2 × 6.25 g a.s./ha	Step 1 Step 2 N-EU Multi S-EU Multi N-EU Single	0.1133	31309	>> U.U I.29€	√0°3086 [©]	6¢0101	0.085
Spring wheat 2 × 6.25 g a.s./ha	N-EU Multi S-EU Multi N-EU Single	0.0588		D' . ~	0 4	% 0191	0.1483
2 × 6.25 g a.s./ha	S-EU Multi N-EU Single		% 4 751 €	00103	0.2942	0.01	0.1255
	N-EU Single	0:0508	8.845	0.0103	10 2242 × S	0.0568	(0.1255
		8.0575	26632	© 0.0067	©0.1432	QC0095 °	
	S-EU Single	@ 0.05 ∜ 5	Ø.860 Å	0.00067	0.1493	S.0095	0.0714
S	Step 1	0.1133	© 31.69	0.0134 ©	0.3086	0.0191	0.1433
S	Step 2			%		Ø .0168	
Winter wheat	N-EU Murti	T.0508	3086	0.0103	©0.22 4Q		0.1254
2×6.25 g a.s./ha	S-EU Multi	0.0508	6.116 C	0.0103	0.2242	0.0168	0.1255
	N-EU Single	0:05/5 ***********************************	1.889	0,00670	0.432 9.1433	0.0095 0.0095	0.0713 0.0713
Spring wheat 2 × 6.25 g a.s./ha Winter wheat 2 × 6.25 g a.s./ha							

Table 9.2.5- 4 (contd.): Summary of the maximum PECsw and PECsed values in μ g/L of deltamethrin and its metabolites (FOCUS Steps 1-2)

Crop	Scenario	Br ₂	CA	BrCA is	somer 1	BrCA iso	mer 2
		PECsw	PECsed	PECsw	PECsed _	PECsw	PE Csed
		[µg/L]	[µg/kg]	[µg/L]	[µg/kg] 🗞	" [μg/L] "	μg/kg
	Step 1	0.3411	0.0840	0.0061	0.0416	0.0023	0:0027
Sugar beets	Step 2			۵.	W ^y	**	
1×7.5 g a.s./ha	N-EU Single	0.0400	0.0104	0.0061	0 <i>5</i> 7414	0.0023	√0.012 7
	S-EU Single	0.0702	0.0177	0.0061	Q 0414	000023	0.0127
	Step 1	0.6822	0.1679	0.0122	0.0831	Ø.0046Q	0.6255
	Step 2		1	4	D,	ζ '	
Cauliflower	N-EU Multi	0.0446	0.01 17 0°	0.0107	° 0 √9 728 ≪	0.0 6 41 ₆	0.022 3
2×7.5 g a.s./ha	S-EU Multi	0.0769	0.0195	。0.010 7 6	~9.0728 _@	2,0041 4	0.0223
	N-EU Single	0.0381	0.0100	© 0.000 ©	0.0414	0.0023	0.0127
	S-EU Single	0.0664	0.0168	0.0061	0.0494	© 0.0 0 23	4 0127
	Step 1	0.5685	₽ 0.139 ©	~0.0102 [∞]	Q.0693 🔊	0.0039	©0.0212°
	Step 2	L.			, O'	*	
Spring wheat	N-EU Multi	0.037	Ø. 6 098 🎺	© 0. 908 9	©"0.0 607	\$0.003 4 ₹	0.57185
2×6.25 g a.s./ha	S-EU Multi	0.06₹₹	&0.0162©	9.0 0089 🌋	0. 06 07 <u>4</u>	0.0034	0.0186
	N-EU Single	0.40318	®′0.00 8³ У́	9.005 <u>1</u>	10 345	0. © 019 🔏	[©] 0.0105
	S-EU Single	0.0553 ₀	0.0440	© 0.005°	© 0.0345	© .0019°%	0.0106
	Step 1	@0.568 \$ J	0.07399	× 0.9 © 02 ,	o 0.06 9 3	~ 0.00 3 9	0.0212
	Step 2	7 . Y	~ · · · · · · · · · · · · · · · · · · ·	~ ~	Y &	o o	
Winter wheat	N-EU Multi	0,0282	© 0.00 %	№.0089	20x0607	2 0034	0.0185
2×6.25 g a.s./ha		9.04616°	0.019	9.0089	&J0.06 ₽ Ø	40 .0034	0.0186
	N-EU Single	♣, 0.0239 °	2. 0064 @	0. 995 1 🖔	0.0345	0.0019	0.0105
	S-EU Single	0. Q3 96	0.0102	Ø Ø Ø 051 O	0%0345 🎠	0.0019	0.0105

Table 9.2.5- 4 (contd.): Summar of the maximum PEC, and PEC, alues in μg/L of deltamethrin and its metabolites (FOCUS Steps 12)

Crop 🖔	Scenario	🎾 Ser in yl	l-Br©a	₹4'-QH-Del	tamethrin	mPBa	cid
		PECSW	PECsed(>	PKCsw ^	PECsed	PECsw	PECsed
		[µg/L] ,	⊘[μg/kgP	μg/Ll	[µg/kg]	[µg/L]	[µg/kg]
	Step 1 🐬	0.0033	0.0480	×0.000 7	0.0260	0.0522	0.0817
Sugar beets	Step 2 🔏		4				
1×7.5 g a.s./ha	N-EU Single	0.0093	≫ 9.0179\$	0.9007	0.0259	0.0032	0.0042
~0	S-F Single	0.9033 ~	0.0179	©.0007	0.0259	0.0032	0.0042
4	Step 1	20.0066Q	0 ,03 59	$^{\circ}_{2}$ 0.0015	0.0520	0.1045	0.1635
Cauliflow	Step 2						
2 × 7.5 g a.s./ha	N-EU Multi	0.0057	0.03147	0.0013	0.0455	0.0053	0.0074
2 ^ 7.3 g a.s./11a	S-ES Multi	9057 g	× 0.03174	0.0013	0.0455	0.0053	0.0074
	N-EU Single	<i>`</i> ů.0033Q,	029779	0.0007	0.0258	0.0032	0.0042
	S-EU Single	[©] 0.00 3 3	0.0179	0.0007	0.0259	0.0032	0.0042
	Step 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0,60055	₽ 0.0299	0.0012	0.0434	0.0871	0.1362
 0′	Step 2 St	l »					
Spring wheat		₹ 0.00489	0.0262	0.0010	0.0379	0.0044	0.0061
2 × 6.25 ga.s./ha	Š-EU M ulti 🖔	0.0048	0.0262	0.0011	0.0379	0.0044	0.0061
	N-EL Single	0.0027	0.0149	0.0006	0.0215	0.0027	0.0035
	S-EU Single	0.0027	0.0149	0.0006	0.0216	0.0027	0.0035

	Step 1	0.0055	0.0299	0.0012	0.0434	0.0871	0.1362
	Step 2						w i
Winter wheat	N-EU Multi	0.0048	0.0262	0.0010	0.0379	0.0044	0.0061
2×6.25 g a.s./ha	S-EU Multi	0.0048	0.0262	0.0010	0.0379	0.0044	0000061
	N-EU Single	0.0027	0.0149	0.0006	0.0215	0.0044	(%.0035©)
	S-EU Single	0.0027	0.0149	0.0006	0.0215	0.0027	0.0035

FOCUS Step 3 and 4: The maximum PEC values for FOCUS Step 3 and 4 are given jin the tables below for deltamethrin considering the application in sugar beets, cauligower, spring and water wheat.

Sugar beets, 1×7.5 g a.s./ha

FOCUS SW Step 3 values for the application in sugar peets are presented in

PECsw and PECsed values of deltamethrin in sugar beets for all calculated scenarios Table 9.2.5- 5: according to FOCUS SW Step 3: letters D, and R before correspond to the dominant entry path - spray drift drainage, and runoff

	Single Application								
Scenario	Entry PECS PECS PECS								
	route [µg/L] a) Trug/L] [µg/kg] [µg/kg]								
D3 (ditch, 1st)	S 0.0125 0 0 1460								
D4 (pond, 1st)	0.0004 0 0.0024								
D4 (stream, 1st)									
R1 (pond, 1st)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
R1 (stream, 1st)	S 0.0016 0.0004 0.0032 0.0272 0.0085 0.8290 0.3370								
R3 (stream, 1st)	\$\int_{\infty} \sqrt{0.0382} \text{0.00122} 0.3970								

- a) maximum PEC values including the amount of deltamethrin sorbed to suspended solids b) maximum PEC w values not including the amount of deltamethrin sorbed to suspended
- solids, i.e. the concentration of dissolved deltamethrin only

for the application in sugar beets are presented in Table 9.2.5- 6 and Table FOCUS SW Step 4 value Table 9.2.5-7.

Step 4 PE (Sw values of destamethrin after application in sugar beet **Table 9.2.5-6:** SD and BO denote speay drift and repoff buffer, respectively

		- 0		-200	. 1			1)		
Buffer	~Q~ U		"" PElj [μg/🎉 (^{ra)} (ð, l		PEC _{sw} [μg/L] ^{b)}		
Width	Scenario	0° .\$	Drift Re	dection @	1	Drift Reduction				
& Type		0%	5 0% &	× 75%	90%	0%	50%	75%	90%	
-// -	D3 (ditch, 1st)	0.0128	>0.006 6	0:0033	0.0013	0.0039	0.0019	0.0009	0.0004	
	D4 (pond, fst)	0 .0014	0.0007	100 0004	0.0001	0.0004	0.0002	0.0001	< 0.0001	
5m ″		©0.013©″	0,0070	©.0035	0.0015	0.0041	0.0020	0.0010	0.0004	
SD	R1 (pond, 1st), \	0.06)/4	~ 00007.€	0.0004	0.0001	0.0004	0.0002	0.0001	< 0.0001	
	R1 (stream, 15t)	00 114	√ 0.0058 '	0.0029	0.0012	0.0034	0.0017	0.0008	0.0003	
	R3 (Stream(1st)	% .016 1	0.00\$2	0.0041	0.0017	0.0049	0.0024	0.0012	0.0005	
	De (ditch, 1st)	0.0069	0.0033	0.0016	0.0007	0.0020	0.0009	0.0004	0.0002	
10m 🔏	1934 (pond, 1st)	0.0010	0.0005	0.0003	0.0001	0.0003	0.0001	< 0.0001	< 0.0001	
	D4 (spream, Ast)	°€0073	0.0035	0.0017	0.0006	0.0021	0.0010	0.0005	0.0001	
SD &	R lopond, 19t)	≨ Ø.0010	0.0005	0.0003	0.0001	0.0003	0.0001	< 0.0001	< 0.0001	
NOS	(stream, 1st)	0.0061	0.0029	0.0015	0.0005	0.0018	0.0008	0.0004	0.0001	
Ĉ	R3 (stream, 1st)	0.0086	0.0041	0.0021	0.0007	0.0025	0.0012	0.0006	0.0002	

	D3 (ditch, 1st)	0.0036	0.0016	0.0010	0.0003	0.0010	0.0004	0.0003	< 0.0001
20	D4 (pond, 1st)	0.0007	0.0003	0.0002	0.0001	0.0002	< 0.0001	< 0.0001	<000001
20m	D4 (stream, 1st)	0.0038	0.0017	0.0009	0.0003	0.0011	0.0005	0.0002	≈ 0 .0001√
SD &	R1 (pond, 1st)	0.0007	0.0003	0.0002	0.0001	0.0002	< 0.0001	< 0.0001	₿0.000P
RO	R1 (stream, 1st)	0.0032	0.0015	0.0007	0.0002	0.0009	0.0004	0.0002	<0.0 0 91
	R3 (stream, 1st)	0.0045	0.0021	0.0010	0.0003	0.0013	939 006	0.0003°	<0.0001
	D3 (ditch, 1st)	0.0023	0.0013	0.0007	0.0003	0.0006	₫ 0.0004	0.0002	30.000
30m	D4 (pond, 1st)	0.0005	0.0003	0.0001	0.0001	0.0001		<0,0001 _%	£0.00 6 ¥
SD &	D4 (stream, 1st)	0.0026	0.0012	0.0006	0.0003	0.000	0.0003	\$\text{9.000}	<0.0001
RO	R1 (pond, 1st)	0.0005	0.0003	0.0001	0.0001	0.0001	<0.0001@	<0.0 00 1	< 0.0001
KO	R1 (stream, 1st)	0.0022	0.0010	0.0005	√ 0.0002	Q _E 9006	0.0003	0.00001	80.000g
	R3 (stream, 1st)	0.0031	0.0014	0.000	0.0003	Q .0009	0.0004	0.0002	~0.00 % 1

a) maximum PEC_{sw} values including the amount of delimethrin sorbed to suspended solids. O

Table 9.2.5-7:

concentrat	ion of dissolved del	tamethrin only					<u>~</u>	
Table 9.2.5	5- 7: Summary SD and RO	of <u>FOCUS So</u> O denote speay	p 4 PFC,	sed values of drynoff by	deltam@hri	in affer application	Acation in	sugar beet;
Duffon			PFCeed	lug/kgl	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			S
Buffer Width	Scenario	Q Q	Drift 9	lμg/kg]		~0	Ö 'n	,
& Type	Scenario	200/2 % J	50%	750/ 1	00.62	0 8		
ж турс	D3 (ditch, 1st)	× 0.468	0.6070	6 0 0117	050046 %	Q M	0	
	D4 (pond, 1st)	0.0400	0@23/ / ഹിn108 ©	0.01	0.9040 %		Ò	
5m	D4 (stream, 1st)	0.0290	0.0100	0.0001	> 0.0013 *		\$\display \tag{1}{\display \tag{1}}\display \tag{1}{\display \tag{1}{\display \tag{1}}\display \tag{1}}}}}}}}}}}}}}}}}}}}}}}} \entildet\tag{1}	
SD	R1 (pond, 1st)	0.0001 .0.0415 ©	0.002	3013 O	0.0000		y)	
SD	R1 (stream st)	0 8270 T	0.0552	© 0.82\$0°	0.0270			
	R3 (stream, 1st)	0.39240	®3930 ~	0.3930	. ©0 3920	, , ,		
	D3 (ditch, 1st)		0.0117/	Ø Ø 057 .~	0.0022			
	D4 (pond, 1st)	0.0154	0,0077	0.0046	0.0015			
10m	D4 Otream Fst)	90.0031	0.9015	0.000	€0002 @	•		
SD & RO	Ra (pond, 1st)	0.9464	0.0090	0.0071	0.0053			
, ,	R∕ľ (stream, 1st)	Q. 250 D	0.1240	0,1240	0.1240			
	R3 (stream, 18t)		0,0594	Ö0.059¥√ ^v	0.9590			
· ·	D3 (ditch st)	0.0128	60057 ₄	[≫] 0.0 ⁄03 4	2 0.0011			
	D4 (pond) st) 4	0.00,08	0 .004 ©	0.0031 %	0.0015			
20m	D4 (stream, 1st)	25 016	0.0007	Q .0003	0.0001			
SD & RO	R1 (pond, 150)	80.0111°	0.00050 👡	00.003 ©	0.0024			
	R f (stream, 1st)	0.0416	0.0415	0.00415	0.0414			
	K3 (stream, 1st)	039201	Ø.019 %	0.0198	0.0197			
	D3 (ditch, 1st)		0.0036	0.0022	0.0011			
20 % //	D4 (pond, 1st)	0.0077 0.0001		0.0015	0.0015			
30m, RO	D4 (stream 1st)		9.0005 0.00 50	0.0002 0.0024	0.0001 0.0024			
	R1 (pond, 1st) 💞 R1 (stogam, 1st)	26.00 41 C (V	0.00,475	0.0024	0.0024			
	R3 (Stream Act)	0.0200	0.0198	0.0414	0.0414			
	pes gereatify age;	(.0.02 ()	0.0178	0.0177	0.0177			
	R1 (steam, 1st) R3 (stream, 1st)							

b) maximum PECsw values not including the amount of deltamethring orbed to suspended solids, i.e. the concentration of dissolved deltamethrin only

Cauliflower, 2×7.5 g/ha

FOCUS SW Step 3 values for the application in cauliflower are presented in Table 9.2.5- 8.

PEC_{sw} and PEC_{sed} values of deltamethrin in cauliflower for all calculated scenarios according to FOCUS SW Step 3; letters SpD, and R before correct entry path – spray defer a according to FOCUS SW Step 3; letters D, and R before correspond to the dominant entry path – spray drift, drainage, and monoff

Single Application Table 9.2.5- 8:

			, 6			<u> </u>		
		Single A	pplication		4		Application	
Scenario	Entry	PECsw	PECsw	PEC _{sed}	Entry	PECsw Qµg/L]	PECsw	₽EC
	route	$[\mu g/L]^{a)}$	[μg/L] ^b /Ω	[μg/kg]	Toute .	©μg/L] औ⁄	[µg/L] b)	🏿 [μg/kg
D3 (ditch, 1st)	S	0.0475	0.0153	0 4 ,760 ,	."0" a .	0.0497	~ 1 22 ~ ~	0.01/40
D3 (ditch, 2nd)	S	0.0476	0.0153	I @/1750.≪		0009415 g	0.0133	0:2140 0.1750 0.0400 0.0400
D4 (pond, 1st)	S	0.0016	0.0004	0.025		₩.0017	0.6005	®0.040€
D4 (stream, 1st)	S	0.0378	√0.0 120°≈	0,0190	Š	0.0327	0.0103	0.018
D6 (ditch, 1st)	S	0.0464	0.0149	0.0701	$S \stackrel{\circ}{\sim} S$	0.0408	0.0130	0.091
R1 (pond, 1st)	S	0.0016	0.0004	40 .1150°	8	, 0.0408 5,6017 Q	<i>ኒ</i> " በ በውጪ≾	P .232
R1 (stream, 1st)	S	0.0314	0,0099	0.0190 0.0701 0.1150 2.884 0.0859 1.970 0.245 3.560 2.160	S	0.02745 0.00006	0.0085	
R1 (pond, 2nd)	S	0.0016		0.0859	SS	P 0.0006	0.0085 0.0085	0.177
R1 (stream, 2nd)	S	0.0315	©0.0004 ©0.009	19 70 g	SA	0.0000	\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.29
R2 (stream, 1st)	S	~0.0414~\)	0.0132	01.245C		0.0358	0.0144	2.507
R2 (stream, 2nd)	S	√0.0422 ´	Ø 135 J	3.560	L LS .	©0.0365	0.0116	5.190
R3 (stream, 1st)	S	0.0410	39 .0141@	2.160	″S ≪	0.0381	., © .0121	4.120
R3 (stream, 2nd)	S	0.0442	$\bigcirc 0.0142$	Ø\$4980 £	s 💖	0.0384 🗸	0.0122	1.060
R4 (stream, 1st)	$\sim S_n$	€0.0313¢	0.0099	3.0410	S /	0.0272	0.0085	5.820
R4 (stream, 2nd)	Š	® 0.03 12°	g,0098 A	1.44)	©Ś	0.027	0.0085	3.20
a) maximum PEC _{sv}	alues inc	ludin g the a	mount of d	eltamethrin s	Sobbed to s	suspended so	olids	
b) maximum PEC	valueSho	t including i	he amount	of deltameth	rin sorbed	tospende	d solids, i.e.	the
concentration of di	ssolved del	tamethrin ø	nly.					
						71		
Ĉ	10x ~	, Q	1 ×)		
	, Ø .	Si Si	a. 0		, O"			
* ¥		Y W		, Q.	4			
				Ŏ ×	• •			
Q					P			
Q _I	.64							
~~~	Ŭ "o							
	Ö		Q 53	. W				
(C)	Ď			~~				
				) ^y				
, <del>«</del>		>		,				
~								
01) \	)	L W						
A T	A \ &		4					
Q.	Y D	*	W .					
		<b>*</b>	9					
, Q' , Õ'	. 0							
	4 ~	Ş						
		9						
A SA								
Ö								
R2 (stream, 1st) R2 (stream, 2nd) R3 (stream, 1st) R3 (stream, 2nd) R4 (stream, 1st) R4 (stream, 2nd) a) maximum PECs concentration of m								

a) maximum PECs values including the amount of deltamethrin sorbed to suspended solids b) maximum PECs values not including the amount of deltamethrin sorbed to suspended solids, i.e. the concentration of dissolved deltamethrin only

FOCUS SW Step 4 values for the application in cauliflower are presented in Table 9.2.5-9 to

FOCUS SW Step 4 values for the application in cauliflower are presented in 1 able 9.2.5- 9 to Table 9.2.5- 12.

Single application

Table 9.2.5- 9: Summary of FOCUS Step 4 PECsw values of deltamethrin after single application in cauliflower SD and RO denote spray drift and runoff buffer, respectively

D CC			DECarr	[~/[ ] a)	(%)		DECarr	<u>Б</u> А/Т 1 <b>6</b> %.	
Buffer Width	Camaria			[µg/L] ^{a)} ¿ eduction	V	w'	PECsw	altg/Ll	
& Type	Scenario	0%	50%	75%	90%	20%	50%	78%	90%
с турс	D3 (ditch, 1st)	0.0128	0.0066	0.0033	0.0013	\$0.00 <b>3</b> 9°	0.0019	Q.0009	0.0004
	D3 (ditch, 1st) D3 (ditch, 2nd)	0.0128	0.0066	Ø \$6033	0.0013	0.0039	0.0019	0.0009	0.0004
	D4 (pond, 1st)	0.0128	0.0007	0.0004	0.0013	0.0004	©0.0002	0.0001	Ø.0001
	D4 (polid, 1st) D4 (stream, 1st)	0.0014	0.0007	0.0004 0.00 <b>35</b>	0.00015	Ø.0042	0.00021	0.0010	0.0004
	D6 (ditch, 1st)	0.0136	0.0071	0.0033	0.0013	0.003	0.0019	Ø.0009	0.0004
	R1 (pond, 1st)	0.00123	0.0007	Q.0004 ~	0.0001	0.000	Q:0002	0.000	<0.00003
	R1 (stream, 1st)	0.0014	0.0059	0.0029	0.0001	0.0034 %		0.0008	<b>20</b> .0003
5m	R1 (stream, 1st) R1 (pond, 2nd)	0.0014	Ø.0007.	0.00237 0.0004	0.0042	9.0004	0.0002	<b>Q</b> 0001	0.0001
SD	R1 (stream, 2nd)	0 0 1 1 -	0.0059	0.6029	\$0.0012 \$0.0012		0.0017	Ø.0008	0.0003
	R2 (stream, 1st)	0.0115	0.0097	0.0039	0.0016	0.0034	0.00235	0.000	0.0003
	R2 (stream, 2nd)	0.0154	0.0077	©0.003	0.0016		0.0029	0.0011	0.0004
	R3 (stream, 1st)	0.0461	Ø.0082	0.00	0.0017	0.0049 [©]	0.0624	\$0,0012	0.0005
	R3 (stream, 2nd)	0.0161	0.0082	0.0041	0.0017	0.0049	0.0024	Q _{0.0012}	0.0005
	R4 (stream, 1st)	0.0114	0.0038		0.0012	0.0034	Ø.00176	0.0008	0.0003
	R4 (stream, 2nd)	0.0114	000058	0.0029	0.0012	0.0034	1 // //	0.0008	0.0003
	D3 (ditch, 1st)		2 1	0.004/6	<b>6</b> 00007 &	^// ^	0.0009	0.0004	0.0002
	D3 (ditch, 2md)	0.0069 0.0069 0.0069	0.0033	0.0016	, Ø.0007O	0.0020	Ø.0009	0.0004	0.0002
	D4 (pond, (st)	0.00	0.0005	0.0003		0.0003	0.0001	< 0.0001	< 0.0001
	D4 (stream, 1st)	0.0073	€0035~	, 0.00 <b>1</b>	0.00006	Ø.0022		0.0005	0.0002
	D6 (ditch, 1st)	0.0067		0.0016	0.0006	0.0020	0.0009	0.0004	0.0002
	R1 (pond, 1st)	<b>3</b> .0010	0.0003	0.9003	0.0004	0.0003	0.0001	< 0.0001	< 0.0001
1.0	R1 (stream@1st)	0.0061	0,0029	©0015©	0.00	Q. <b>0</b> 018	0.0008	0.0004	0.0001
10m	R\$ (pond, 2nd)	0.0010	Ø0005 C	0.0003	0.0001	<b>%</b> .0003	0.0001	< 0.0001	< 0.0001
SD & RO	R1 (stream, 2nd)	<b>Q</b> 9061 A	0.0029	0.0015	20.0005		0.0008	0.0004	0.0001
	R2 (stream, 1st)	0.0081	0.0639	0.0019	0.000	0.0024	0.0011	0.0005	0.0002
	R2 (stream 2nd)	0.0082	0.0039	<b>₹</b> 0.002 <b>0</b>	0.0007	0.0024	0.0011	0.0005	0.0002
	R3 (stream, 1st)	0,0086	<b>40</b> .0041 <u></u>	0.0021	0 <b>0</b> 007	0.0025	0.0012	0.0006	0.0002
	R3 (stream, 200)	Ø086 ×	0.0041	0,0021	<b>3</b> .0007	0.0025	0.0012	0.0006	0.0002
	R4 (stream (st)	9.0061×	0.0029	20,0015	0.0005	0.0018	0.0008	0.0004	0.0001
	R4 (stream, 2nd)	0.0061	0.0029	Ø0.001	0.0005	0.0018	0.0008	0.0004	0.0001
	(ditch, 1st)	0.0036	Ø.0016	0.0000	0.0003	0.0010	0.0004	0.0003	< 0.0001
4	D3 (ditch, 2nd)	0.0036	0.0046	0.0010	0.0003	0.0010	0.0004	0.0003	< 0.0001
. 📞	D4 (pond 1st)	10.0007	0.0003	<b>%9</b> .0002	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
	D4 (stream, 1st)	0.0038	Ø9018 ĝ	\$0.0009	0.0003	0.0011	0.0005	0.0002	< 0.0001
	D6 (ditch, 1st)	0,0035	$_{\mathbb{Z}}0.001$	0.0010	0.0003	0.0010	0.0004	0.0003	< 0.0001
	R1 (grond, 1st)	<b>20</b> .0007		0.0002	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
20m		$0.0032^{\circ}$	0.0015	0.0007	0.0002	0.0009	0.0004	0.0002	< 0.0001
CD & DO	RF (pond, 2nd)	0.0007	°990003	0.0002	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
DD & KO	R1 (stream, 2nd)	030032	0.0015	0.0007	0.0002	0.0009	0.0004	0.0002	< 0.0001
	R2 (stream, 1st)	©.0042	0.0019	0.0010	0.0003	0.0012	0.0005	0.0003	< 0.0001
	R2 (stream 2nd)	90.0043	0.0020	0.0010	0.0003	0.0012	0.0005	0.0003	< 0.0001
	(stream, 1st)	0.0045	0.0021	0.0010	0.0003	0.0013	0.0006	0.0003	< 0.0001
, ,	R3 (stream, 2nd)	0.0045	0.0021	0.0010	0.0003	0.0013	0.0006	0.0003	< 0.0001
	R4 (stream, 1st)	0.0032	0.0015	0.0007	0.0002	0.0009	0.0004	0.0002	< 0.0001
1	R4 (stream, 2nd)	0.0031	0.0015	0.0007	0.0002	0.0009	0.0004	0.0002	< 0.0001

Buffer Width	Scenario			[µg/L] ^{a)} eduction				[µg/L] b) eduction	Q° >
& Type		0%	50%	75%	90%	0%	50%	75%	<b>\$90%</b>
	D3 (ditch, 1st)	0.0023	0.0013	0.0007	0.0003	0.0006	0.0004	0.0002	P≥0.0001
	D3 (ditch, 2nd)	0.0023	0.0013	0.0007	0.0003	0.0006	000004	0.0002	<0,0001
	D4 (pond, 1st)	0.0005	0.0003	0.0001	0.0001	0.0001	<b>%</b> .0001	<0.0001	<b>20,0</b> 001
	D4 (stream, 1st)	0.0026	0.0012	0.0006	0.0003	0.0007 🚄	0.0003	0,0002	<b>3</b> 0.000
	D6 (ditch, 1st)	0.0022	0.0013	0.0006	0.0003	0.0006	0.0003	<b>0</b> 20002%	<0.0001
	R1 (pond, 1st)	0.0005	0.0003	0.0001	<b>3</b> .0001	0.000	<0.0001	₹0.00 <b>0</b> ¥	<0. <b>0</b> 001   @
30m	R1 (stream, 1st)	0.0022	0.0010	0.0005	[™] 0.0002	0.00006	0.000 <b>3</b> ©	0.0001	<0.0001
	R1 (pond, 2nd)	0.0005	0.0003	0.0001	0.0001	0.0001	<0.0001	<0.0001	₹0.00¢4
SD & RO	R1 (stream, 2nd)	0.0022	0.0010	0.0005	0.0002	Q0.00 <b>06</b> °	0.0003	@.0001 [©]	
	R2 (stream, 1st)	0.0029	0.0013	<b>9</b> 0006	0.000%	0.0008	0.0003	0.00	<0.00001
	R2 (stream, 2nd)	0.0029	0.0013	0.0007	0.000	0.0008	©0.000 <b>%</b> √	0.0602	£0.0001
	R3 (stream, 1st)	0.0031	0.0014	√0.00 <b>9</b>	0.0003	£0.0009	0.0004	0.0002	<b>0.0001</b>
	R3 (stream, 2nd)	0.0031	0.0014	0.0007	©0003	0.00	0.0004	Ø.0002	<0.0001
	R4 (stream, 1st)	0.0022	0.00 <del>1</del> 0	Q.9005 A	9.0002	0.0006	<b>Q</b> :0003	0.00	<000001
	R4 (stream, 2nd)	0.0022	0.0010	9.000 <u>\$</u>	0.0002	QQ0006 %	90.00g\$\square	0.0001	<b></b>

R4 (stream, 2nd) 0.0022 0.0010 1 9.0005 0.0002 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00

Table 9.2.5- 10: Summary of PEC_{sed} values of deltamethrin after single application in cauliflower with mitigation options according to FOCUS SW Step 4

Buffer Width	Scenario			[µg/kg] eduction	
& Type	Section 10	0%	50%	75%	90%
<u>J p -</u>	D3 (ditch, 1st)	0.0462	0.0234	0.0115	0.0045
	D3 (ditch, 2nd)	0.0459	0.0231	0.0113	0.0045
	D4 (pond, 1st)	0.0215	0.0107	0.00 🚳	0.0015
	D4 (stream, 1st)	0.0066	0.0033	0.0016	0.0006
	D6 (ditch, 1st)	0.0180	0.0090	0.0040 0.0044	0.000
	R1 (pond, 1st)	0.1130	0.1070	4 9.1040	0.6020
	R1 (stream, 1st)	2.883	2.882	2.882	2.882
5m	R1 (pond, 2nd)	0.0834	0.0762	0.0731	0.0704
SD	R1 (stream, 2nd)	1.968	1.968,	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.967
	R2 (stream, 1st)	1.245	1.295	/ 244 P	1.244 ×
	R2 (stream, 2nd)	3.559	3.559 @	3.5 <b>9</b>	<b>Q</b> ,559
	R3 (stream, 1st)	2.156	2.155	2 185	2.154
	R3 (stream, 2nd)	0.4930	0.4920	<b>2</b> 4910 4	0.4910
	R4 (stream, 1st)	3.039Q	3.039	3.039	3.4039 (
	R4 (stream, 1st) R4 (stream, 2nd)	1.440	440	1.440	~ \$440~ \$
	D3 (ditch, 1st)	0.0246	0.0115	0,057	0.0022
	D3 (ditch, 1st) D3 (ditch, 2nd)	0.0244 ×	0.01	<b>1</b> 0.0056	0.0022
	D4 (pond, 1st)	\$\int_0244\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0104	0.0046	0.0022 00015 2
	D4 (pond, 1st) D4 (stream, 1st)	0.0134	0.00164	0.0048	Ø.0002√
	D6 (ditch, 1st)	0.0095	0.0010	0.0021	0.0002
		0.0293 20.0251	0.0428	0.0021 20.0179\$	0.0008
θm	R1 (pond, 1st)	©0.433®	0.4330	0.4330	0.0101 0.4330@
	R1 (stream, 1st) R1 (pond, 25d)	0.0209	Ø.0157\$	0.0436	0.01150
SD & RO		0.02960	©.01375 ©0.2960	0.0\so 2960 _0	0.011
	R1 (stream, 2nd)	0.1870	0.2900	900 9.1870	
	R2 (stream, 1st)	0.5350	0,0,5340	0.5340	0. <b>18</b> 70 <b>3</b> 3340
	R2 (stream, 20d)	0.3340	Ø.3240	0.3240	0.323 <b>@</b>
	R3 (Stream, 1st) (Stream, 2nd)	0.3240 0.99751 a	0.0743	0,0\$40 000740	0.0238
	18/4 (stream, 1st)	2.4570.0	0.4570	~0.4560°	0.4560
	R4 (stream, 20od)	0.2170	Q.2160 C	0.2160	©.2160
		0.0127	0.0057	0,2190	\$ 0.0011
	D3 (ditch st) D3 (ditch 2nd)	0.9127 @0126	7 0.0036	Q.0034	0.0011
	D4 (pond, 1st)	9.0107	0.0026	~0.003d	0.0011
	D4 (gream, Ot)	0.0019	©0008 C	0.0004	0.0013
	D6 ditch, 1st)	0:0048	0.002	0.0004	0.0004
	Rul (pond, 1st)	1590125 A	0.0026	©.0069	0.0060
	R1 (stream, 1st)	0.1440	0.0440 %	0.1440	0.1440
20m 🗳	R1 (pond, 2nd)	0.01140	0.0067	0.0056	0.0046
SD & RO	R1 (stream 2nd)	0.01\$2	0.0986	0.0986	0.0985
$\sim$	R2 (stream, 1st)	0,0624	$0.0\mathbf{\Omega}^{4}$	0.0623	0.0623
	R2 (stream, 1st)	\$0.178 <b>©</b>	0.780	0.1780	0.1780
	R3 (stream, Ast)	0.1680	0.1080	0.1080	0.1080
	R& (stream, 2nd)	0.1250	0.1000	0.0247	0.0246
	184 (stream, 1st)	9.9233 9.1520	0.1520	0.1520	0.0240
~	R4 (stream, 2nd)	0.0723	0.0722	0.1320	0.0721
<del></del>		y	<i>-</i>	/ <b></b>	/ <del>-</del>
***	R4 (steam, 2nd)				
) ۾	$)_{_{\Lambda}}$				
$\cup$					

Buffer			PECsed	[µg/kg]		
Width	Scenario		Drift Ro	eduction		ļ
& Type		0%	50%	75%	90%	
	D3 (ditch, 1st)	0.0080	0.0045	0.0022	0.0011	
	D3 (ditch, 2nd)	0.0080	0.0045	0.0022	0.0011	l
	D4 (pond, 1st)	0.0077	0.0046	0.0015	0.0015	ı
	D4 (stream, 1st)	0.0012	0.0005	0.0002	0.0001	1
	D6 (ditch, 1st)	0.0030	0.0017	0.0008	0.0004	,^ ₩
	R1 (pond, 1st)	0.0102	0.0080	0.0000	0.0060@	ĺ
30m	R1 (stream, 1st)	0.1440	0.1440	0.1440	0.1446	l
SD & RO	R1 (pond, 2nd)	0.0089	0.0067	\$ 00006	0.0046	
	R1 (stream, 2nd)	0.0987	0.0986	0.0986	0.0632	P
	R2 (stream, 1st)	0.0024	0.0023	0.0023	20.0023@)	@w
	R2 (stream, 2nd)	0.1780	0.1780	0.1980 2 0.1980 2	0.1780	
	R3 (stream, 1st)	0.1080	0.1980	# 1000 J	0.100	Ø
	R3 (Stream, 2nd)	0.0231	0.0248	0.024	04520	) ^y
	R4 (stream 2nd)	0.1320	1 0720 Y	(1) 4 2 2 U	0.1324	
	K4 (sucam, 2nd)	0.0722	0.0 <u>1</u> 2 2 9 1	0.4/21	/ 0.072g	
		Q				
			0° °			`
		Q,	à à	8		~0
		0 .4	j" O"	Ş Ç		0 >
	8			.0 🐴		) ~
	R ₀			~ ~~		~ Q
		, 0		4 ~	,	
	√.				Q, ,	
					0, %	
	Ø'		J J	Ď (	91 ·	~
		~ 4		4" \\		)
		0 0	\$ B			
		. Ø .				
•	Ž į		A Ox			
	, Ø	S S	~ (	T' 17	, O"	
* *		1		· & , .	<u> </u>	
				Ö »	- ~	
			o, c			
				~		
	<b>A</b> . <b>O</b>	29° 4		, Ø		
	Ď, Ý			***		
		~ ~	_\$~~	)"		
		,				
, A			a O			
	, - _U		<i>~</i>			
			D ^v			
	R1 (stream, 2nd) R2 (stream, 1st) R2 (stream, 2nd) R3 (stream, 1st) R3 (stream, 2nd) R4 (stream, 1st) R4 (stream, 2nd)		Q"			
4			Q,* Q Q			
	Scenario  D3 (ditch, 1st) D3 (ditch, 2nd) D4 (pond, 1st) D4 (stream, 1st) R1 (pond, 1st) R1 (pond, 2nd) R1 (stream, 2nd) R2 (stream, 2nd) R3 (stream, 2nd) R3 (stream, 2nd) R4 (stream, 1st) R4 (stream, 2nd)					

## Multiple application

Table 9.2.5-11: Summary of FOCUS Step 4 PECsw values of deltamethrin after multiple application in cauliflower SD and RO denote spray drift and runoff buffer, respectively

Buffer

D ce			DEC	[/T 1 a)			PPC	Luc/IIK	
Buffer	C			[µg/L] ^{a)}			PECsw		
Width	Scenario	00/		eduction	000/	00/ 2	W.	eduction	90%
& Type	D2 (4:4-1-1-4)	0%	50%	75%	90%	0% 🖔	50%	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/
	D3 (ditch, 1st)	0.0109	0.0053	0.0026	0.0010	0.0033	0.0015	Ø.0007	0.0603
	D3 (ditch, 2nd)	0.0109	0.0053	0.0026	0.0010	0.0032	0.0015@		0.0003
	D4 (pond, 1st)	0.0015	0.0008	0.0004		0.0004	0.000	<0.0001	80.000g
	D4 (stream, 1st)	0.0115	0.0059	0.0020	0.0012	0.0034	0.0017		0.000
	D6 (ditch, 1st)	0.0107	0.0052	0.0026	0.0010	0.0032	0:0015	0.0007	0.0003
	R1 (pond, 1st)	0.0015	0.0008	0.0004	0.0000	0,0004	0.0002	<0.0001	<0.0001
5m	R1 (stream, 1st)	0.0095	0.0049	9.0024 0	YX. //	Ø.0028	0.001	0.0007	0.0003
SD	R1 (pond, 2nd)	0.0015	0.0007	0.000	00001	00.000 <b>₽</b> ®	0.0002	\$0.0001 <del>-</del>	
	R1 (stream, 2nd)	0.0095	0.0049	0.0024	Ø.0010 [©]	0.0028	0.0014	0.000	0.0003
	R2 (stream, 1st)	0.0126	0.0064	0.0032	0.00	0,0038	@.0019 70.004@	0.0009	00003
	R2 (stream, 2nd)	0.0128	0.0066	>ø.003 <i>3</i> ©	0.0013	<b>©</b> 00382		0.0009	0.0004
	R3 (stream, 1st)	0.0134	<b>\$</b> 0068¢	0.0034	00014	0.0040	0.0020	<b>Ø</b> .0010	0.0004
	R3 (stream, 2nd)	0.0134	0.0069	0.0034	9.0014	0.00041		0.0016	0.0004
	R4 (stream, 1st)	0.0095		₯0024℃		0.0028	0.0014	0.0007	0.0003
	R4 (stream, 2nd)	0.0095	040049	®ð.002 <b>4</b> ₹	0.00010	<b>0</b> .0028 C		<b>Q</b> .0007	0.0003
	D3 (ditch, 1st)	0.0956	0.0030	0.0013	0.0007	\$\text{0.00}	0.0008	<b>©</b> .0004	0.0002
	D3 (ditch, 2nd)	0.0056	0.0030	0.0013	<i>®</i> 0.0007 [™]	0.0016	~ \$20008	0.0004	0.0002
	D4 (pond, 1st)	©0.0010 [©]	0.0005	0.0003	0.0001	Q.0003 ×	\$0.00 <b>04</b>	< 0.0001	< 0.0001
	D4 (stream, 1st)	0.0029	0.0029	\$0.001\$\disp\disp\disp\disp\disp\disp\disp\disp	0,0006	0.0017	0.0008	0.0004	0.0002
	D6 (ditch, 1st)	0,0055	©.0029 [©]			√0.00 <b>4</b> 6	0.0008	0.0003	0.0002
	R1 (pond, 1st)	0.0010		0.0003	0.0001	0.0003	0.0001	< 0.0001	< 0.0001
10m	R1 (stream st)	\$0.00 <b>49</b> )	0,0024	0.00120	0.0005	0.0014		0.0003	0.0001
SD &	R1 (pond; 2nd)	0.0010	<b>€</b> 0.0005	0.0002	0.0001	<b>2</b> 0.00035	0.0001	< 0.0001	< 0.0001
RO	R1 (stream, 2nd)	0.0049	0.00 <b>2</b> 40	0.0012	0.0005	° 0.0014 €	0.0007	0.0003	0.0001
	R2 (stream, 🍪)	<b>40</b> .0064	0.0032		<b>\$0.0006</b>	0,00/19	0.0009	0.0004	0.0002
	R2@stream, 2nd)	0.006	0.0033	∂Ø.0016®		<b>6</b> 0019	0.0009	0.0004	0.0002
	R3 (stream, 1st)	0. <b>00</b> 68	00034	0.0047	<b>9:00</b> 007	≫0.0020	0.0010	0.0005	0.0002
	R3 (stream, 2pd)	Q.90069	0.0034	0.0917	0.0007	0.0020	0.0010	0.0005	0.0002
	R4 (stream tst)	Q.0049	0.0024	<b>2</b> 00012 [©]	•	0.0014	0.0007	0.0003	0.0001
	R4 (stream 2nd) 4	0.0049	0,0024	, ©0.0012 [©]	0.0005	0.0014	0.0007	0.0003	0.0001
	D3 (ditch, 1st)	0.0030	<b>0</b> :0013	0.0007	<b>@</b> \$0003	0.0008	0.0004	0.0002	< 0.0001
	D3 (di@h, 2nd)	€00030%		0,0007	°0.0003	0.0008	0.0004	0.0002	< 0.0001
	D4 (pond, 1st)	\$9.0006\right	0.0004	<b>6</b> 0001		0.0002	< 0.0001	< 0.0001	< 0.0001
	D4 (stream, 1st)	0.00	0°0015 s	©0.0009	0.0003	0.0008	0.0004	0.0002	< 0.0001
	🗗 (ditch, 1st)	0.0029	0.0013	0.0096	0.0003	0.0008	0.0003	0.0002	< 0.0001
.,,	Ř1 (pond, 1sto)	0.0006	≱ 0.00 <b>0</b>	0.0001	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
20m	R1 (stream, 4st)	©0.0024°	0.0012	<b>0</b> .0007	0.0002	0.0007	0.0003	0.0002	< 0.0001
SD &	R1 (pond, 2nd)	0.0006	0.0004	0.0001	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
RO	R1 (stream, 2nd)	0.00024 &	0.0004 0.0012	0.0007	0.0002	0.0007	0.0003	0.0002	< 0.0001
	R2 (stream, 15t)	<b>40</b> €0032 ™	0.0016	0.0010	0.0003	0.0009	0.0004	0.0003	< 0.0001
	R2 (Stream (2nd)	\$0.00 <b>3</b> 3,	0.0016	0.0010	0.0003	0.0009	0.0004	0.0003	< 0.0001
	Ra (stream, 1st)	0.0034	0.0017	0.0010	0.0003	0.0010	0.0005	0.0003	< 0.0001
×	3 (stream, 2nd)	Q: <b>0</b> 034	0.0017	0.0010	0.0003	0.0010	0.0005	0.0003	< 0.0001
	R4 (stream, 15t)	<b>40</b> .0024	0.0012	0.0007	0.0002	0.0007	0.0003	0.0002	< 0.0001
	R4%stream, 2nd)	[≫] 0.0024	0.0012	0.0007	0.0002	0.0007	0.0003	0.0002	< 0.0001
# # T		p							

D3 (ditch, 1st)	Buffer Width	Scenario			[μg/L] ^{a)} eduction				[µg/L] b)	Q° >
D3 (ditch, 1st)		occuario	00/			Q00/	Λ0/:			
D3 (ditch, 2nd)		D3 (ditch 1st)								
D4 (pond, 1st)										<0.0001
D4 (stream, 1st)										-0.2921 -0.001
D6 (ditch, 1st)										
R1 (pond, 1st)							0.0000	0.0002	0.0002   <800001%	20.000 20.000 20.000
0m         R1 (stream, 1st)         0.0017         0.0007         0.0005         0.0002         0.0002         0.0002         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0001         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0.0002         0										
R1 (pond, 2nd)					0.0005	0002				≤00001
R1 (stream, 2nd)					0.0003	2 < 0.0002 2 < 0.0001				80 0001 J
R2 (stream, 1st)					0.000	0.0001				U<0.0081
R2 (stream, 2nd) 0.0023 0.0010 0.0007 0.0000 0.0006 0.0000 0.0002 0.0000 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0					0.000	0.0002				
R3 (stream, 1st)					0 0007	_ ∩ ∩∩∩?≫ <u>°</u>	0.0006	@9 000 <b>%</b> .		\$0.0001
R3 (stream, 2nd)   0.0024   0.0010   0.0007   0.0003   0.0005   0.0003   0.0002   <0.0007   <0.0007   <0.0007   0.0007   0.0007   0.0007   0.0007   0.0007   0.0007   0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <0.0007   <					Ø.000%	1 A 18		4 · · · · · · ·		< 0.0001
R4 (stream, 1st) 0.0017 0.0007 0.0007 0.0002 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00						00003	00.000	0.0003		
R4 (stream, 2nd) 0.0017 0.0007 0.0005 0.0002 0.0000 0.0001 \$5000  ) maximum PEC_w values including the agricum of deltamethrin adsorbed to suspended selfds, i.e., the oncentration of dissolved deltamethring only and the control of deltamethring only and the co		R4 (stream, 1st)	0.0017	0.000	0.0905	Ø.0002	0.0005	<b>©</b> 0002	$\bigcirc_{0.000}$	<0000001
maximum PEC values including the affount of deltamethrin action of suspended solids.  maximum PEC values not including the affount of deltamethrin action of suspended solids, i.e., the oncentration of dissolved deltamethrin of solid s		R4 (stream, 2nd)	0.0017	0.0007	~0,0005^	0.0000	0.0005	@.000 <b>%</b>	0.0001	<b>©</b> .0001
naximum PEC values not including after amount of deltamethrin assorbed to suspended solids, i.e., the oncentration of dissolved deltamethring only	a) maxin	num PEC _{sw} values i	ncluding th	e affount@	of deltamet	hrin adsort	ed to sust	ended Rollid	s ®	
oncentration of dissolved deltamether only	h) maxin	num PEC _{sw} values r	ot includin	Ohe amo	unt of Welta	methrin ad	Sorbed 16 s	uspended s	and dsignal	the
	concentr	ation of dissolved d	eltamethræ	Yonly				C C		
		attori or atoport va a	**************************************	. Ø			- 10 - 2	<del>Õ Õ</del>		
					"O" ~~	"Q"			W ₂	
				· 7	,	A.	V , Q	Ža.	0	
				4 Z	Ø)	Ø .,			)	
		%	Y A	٨	S &			Ğ, M		
		√ n	″ Å	à						
				Ŭ "		* C	) ×	1. Y		
		Ŵ ^v	1. Š		S ^y	Š 0,	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		Ş, Ç			~, ~?			v		
			4	4	Y L			/		
			.0			O D	Ø,			
		~		4		Ž O	W)			
		× .	, D		0	'	~ 0			
	É			Q,			) _X			
	4	A				,				
		\$	4 8	°~~		Y A				
		& A	, ,	& ' ×		Ď				
		., `Q'	Ď							
						<u>.</u>				
		4		.Q`		) ^y				
	é		- Q		, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
	. «	4	A 0							
	~	i i		Q,						
				0 4	, <b>©</b> ∤					
		4 1	_&' ^	Ģ Q	•					
				W .						
				~Q						
	~	y 2 A	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							
	L.		*\)							
	Æ.									
	*	Õ"								
	C	Ī								

b) maximum PECsw values not including the amount of Weltamethrin adsorbed sounds, i.e. the

Table 9.2.5- 12: Summary of PEC_{sed} values of deltamethrin after multiple application in <u>cauliflower</u> with mitigation options according to <u>FOCUS SW Step 4</u>

Buffer			PECsed	l [μg/kg]	
Width	Scenario		Drift Ro	eduction	
& Type		0%	50%	75%	90%
* *	D3 (ditch, 1st)	0.0546	0.0261	0.0129	0.0047
	D3 (ditch, 2nd)	0.0445	0.0212	0.0104	0.0038
	D4 (pond, 1st)	0.0357	0.0178	0.0089	0.0030
	D4 (stream, 1st)	0.0054	0.0027	0.0013	0.0005
	D6 (ditch, 1st)	0.0229	0.0108	0.0053	0.00190
	R1 (pond, 1st)	0.2290	0.2190	0 <u>,</u> 2130	0.2160
<i>5</i>	R1 (stream, 1st)	5.947	5.947	<b>8</b> .946	5.946
5m	R1 (pond, 2nd)	0.1740	0.1620	90.1560	<b>9</b> ₹520 %
SD	R1 (stream, 2nd)	4.288	4.287📞	4. <b>2</b> 87	.⊅4.28 <i>6</i> √′
	R2 (stream, 1st)	2.505	2.50 <b>©</b> ″	2.505 E	2.56
	R2 (stream, 2nd)	5.193	5,193	\$5.193@	5: <b>P</b> 92
	R3 (stream, 1st)	4.112	#410 ~ °	4.109	🕰 109.4%
	R3 (stream, 2nd)	1.053	(1.052~)	1,0051	√√1.056°
	R4 (stream, 1st)	5.824	Q 5. <b>8⁄23</b> √	\$.823	7 5.8 <b>23</b>
	R4 (stream, 2nd)	3.198 ₄	3497	×3.197	3 997 s
	D3 (ditch, 1st)	0.0278	0.0145	0.0964	0.0031
	D3 (ditch, 2nd)	0.0326	∠0.01185°	0,4 <b>0,</b> 051	0.0025
	D4 (pond, 1st)	%Q0238 °	0.0119	Ø.0059 √§	0.0630
	D4 (stream, 1st)	0.002 <b>%</b>	0.0013	<a>\$\text{0.000}</a>	0:9002 ≥
	D6 (ditch, 1st)	🤈 0.01🗭 🌷	0.0060	0.0026	0.0013
	R1 (pond, 1st)	0 <u>.0</u> 466	0.0386	0,0350	© 0.0332°
10m	R1 (stream, 18t)	<b>©</b> 8930, ©	0.8990	<b>3</b> .8930	0.8930
SD & RO	R1 (pond, 2nd)	0.0389	0@309 4	\$*0.02 <b>69</b> *	0.0249 @
SD & KO	R1 (stream, 2nd)		<b>9</b> .6440	0.6340	<b>_</b> @.6440
	R2 (stream, 1st)	0,3,760	0.3760	Ø: <b>3</b> 760 ≈	0.3760
	R2 (stream, 20rd)	0.7800	0,7890	√JØ.7800 Ì	0.7800
	R3 (Stream Fst)	0.6190	0.6/180	0.6176	<b>6</b> 6170, €
	Ra (stream, 2nd)	0.1 <b>59</b> 0	<b>△</b> 0.159 <b>0</b>	0.17580	_{2,1} 0.158 <b>0</b>
	RA (stream, 1st)	0.8750	Ø 0.8750	<b>0.8750</b>	0.8740
	R4 (stream, 200d)	<b>.</b> Ø 4810	0.4800 、	©0.480€	0.4800
·	D3 (ditch st)	0.0145	©000064 × (	0.0031	<b>20</b> .0015
	D3 (ditch) 2nd)	0.0478	<b>, 70</b> .00510°	0. <b>@</b> 25 %	0.0012
	D4 (pond, 1st)	QQ149 @	0.0089	@0030	0.0030
	D4 (@ream, Ot)	00.0013 [©]	0.0006 °	©0.000 <b>4</b> 0°	0.0001
	D6 ditch, 1st)	0.0060	0.0026	0.0013	0.0006
	<b>1</b> (pond, 1st)	0.0207	<b>4</b> 0.01,6 <b>4</b> ⊘	0.0123	0.0123
20m	R1 (stream, 1st)	Ø2980 [©]	0.2980	20.2980	0.2980
SD & RO	R1 (pond, 2nd)	0.0179	0.0138 .	©0.0097	0.0097
	R1 (stream 2nd)	0.2150	Ø.2150	0.2150	0.2150
<i>y</i>	R2 (stream, 1st)	0.1260	Ø.12500°	0.1250	0.1250
	R2 (steam, 2nd)	0.2600	0.2600	0.2600	0.2600
	R3 (stream, Ast)	©0.2070)	0.2060	0.2060	0.2060
	R& (stream, 2nd)	0.0535	<b>9</b> .0530	0.0528	0.0527
(	R4 (stream, 1st)	0.2920	0.2920	0.2920	0.2920
	R4 (stream, 2nd)	<b>9</b> .1600	0.1600	0.1600	0.1600



Buffer			PECsed	l [μg/kg]	
Width	Scenario		Drift Ro	eduction	
& Type		0%	50%	75%	90%
	D3 (ditch, 1st)	0.0096	0.0047	0.0015	0.0015
	D3 (ditch, 2nd)	0.0078	0.0038	0.0012	0.0012
	D4 (pond, 1st)	0.0119	0.0059	0.0030	< 0.0001
	D4 (stream, 1st)	0.0009	0.0004	0.0002	0.0001
	D6 (ditch, 1st)	0.0039	0.0019	0.0006	0.0006
	R1 (pond, 1st)	0.0185	0.0142	0.0006 0.0123	0.0105
30m	R1 (stream, 1st)	0.2980	0.2980	0.2980	0.2980
SD & RO	R1 (pond, 2nd)	0.0158	0.0117	0. <b>G</b> 997	0.0077
SD & KO	R1 (stream, 2nd)	0.2150	0.2150	<b>4</b> 2150	0.21 <b>S</b> Ø
	R2 (stream, 1st)	0.1260	0.1250	0.1250	0.1250
	R2 (stream 2nd)	0.2600	0.2600	1 0 2600	<i>®</i> ∞2600. [™]
	R3 (stream, 1st)	0.2060	0.2060	02,660 🕺	~0.20 <b>60</b>
	R3 (stream, 2nd)	0.0532	0.0528	<b>1</b> 000528	0.05027
	R4 (stream, 1st)	0.2920	0, <b>29</b> 20 -	(°0.2920°	0.2920 4
	R3 (stream, 1st) R3 (stream, 2nd) R4 (stream, 1st) R4 (stream, 2nd)  wheat, 2 × 6.25 g  SW Step 3 values  5-13: PEC _{sw} 2	0.1600	<b>Q</b> 1600	0.1 <b>69</b> 0	©.1600€
				~ ~	% % <u>0</u>
		ۣ Ô		, Ş [*] , Ş	,
Spring v	whoat 2 × 6.25	x/ha △	<i>®</i>	~ ~	
Spring v	viieat, 2 ^ 0.25 §	g/11a ~			
					V Ž
FOCUS S	SW Sten 3 values	for the ann	ication in	Saring wher	otare,nrese
rocost	values.		incaugh in s	spring value	ii are prese
Table 0.2	5 12. DEC	O DEC		tamethrin ir	
<b>Table 9.2.</b> :	5-15: PECsw 8		aiues orbei	lametarcoc 3. Pottorcoc	spring wn

PECswand PECsed values of deltamethrin in spring wheat for all calculated scenarios Table 9.2.5- 13: according to FOCIS SW Step 3: lotters S. D., and R before correspond to the dominant entry path spray drift drainage, and runoff

2	5 ,0	Single A	pplication			Muttiple A	Application	
Scenario	Entry	PECsw	/ PEASsw	PEC sed	Entry	PEC _{sw}	<b>PECsw</b>	<b>PEC</b> sed
\(\tag{5}\)	route 🐰	Jug/L]	[μg//L] ^{b)} (	) [μg/kg	Foute @	/ _/ [μg/L] ^{a)}	$[\mu g/L]^{b)}$	[µg/kg]
D1 (ditch, bot)	S	0.0491	△0.012 <b>8</b>	0.1 <b>8</b> 90	y S	0.0359	0.0114	0.2860
D1 (stream, 1st)	S	<b>9</b> @316 _	<b>©</b> 0.0100	0.0150	5 <b>5</b>	0.0306	0.0096	0.1160
D3 (dire), 1st)	, <b>S</b> Ū ,	, <b>@</b> 0399 ^	0,94,27 .	©0.1466	~ <b>\$</b>	0.0351	0.0111	0.1810
D4 (pond, 1st)	~03 L	, 0.00, <b>1</b>	(000004 ×	0.0218	△S	0.0013	0.0003	0.0340
D4 (stream, 1st)		0.0321	<b>~</b> ~~010,10~~	0. <b>©</b> 77 🦠	S	0.0286	0.0090	0.0252
D5 (pond, 1st)	S	0,0014	0.0004	@0219	S	0.0014	0.0004	0.0353
D5 (stream, 1s@	`® _A	Ø.0313 [©]	Q. <b>@</b> 98 👡	00.008D	S	0.0296	0.0093	0.0170
R4 (stream, 1st)	\( \s \)	0.0263	(A.0082 6)	^{&gt;} 0.9 <b>%</b> 0	S	0.0228	0.0071	1.760

a) maximum PECsw values including the amount of deltamethrin adsorbed to suspended solids

FOCUS SW Step 4 values for the application in spring wheat are presented in Table 9.2.5- 14 and Table 9.2.5- 16.



## Single application

Table 9.2.5-14: Summary of FOCUS Step 4 PECsw values of deltamethrin after single application in soring wheat SD and RO denote spray drift and runoff buffer, respectively

Buffer			PECsw	[µg/L] ^{a)}			PÆČsw	[µg/L] ^{b)} 🦠	
Width	Scenario		Drift Re	eduction			_ Drift Re	eduction	W. A.
& Type		0%	50%	75%	90%	0% 🗴	√850%	75%	\$90% ×
	D1 (ditch, 1st)	0.0109	0.0053	0.0026	<b>0</b> 0010	0.0033	0.0015	Ø <u>.</u> 0007^	√0.00 <b>@}</b>
	D1 (stream, 1st)	0.0114	0.0059	0.0029	0.0012	0.0034	0.0017	70.000 <b>8</b> 9	0.0003
	D3 (ditch, 1st)	0.0109	0.0053	0.0026	ø 0.0010	0,0032	0.0015	0.0007	Ø003 ⊈
5m	D4 (pond, 1st)	0.0012	0.0006	0.0003	0.0001	<b>.0</b> .0003	0.000	< 0.0001	Ğ0.000₽
SD	D4 (stream, 1st)	0.0116	0.0059	0.000	0.0012	0.0035	0.0017	<b>⊕</b> .0008€	0.0003
	D5 (pond, 1st)	0.0012	0.0006	0.0003	0.0001	0.0003	0002	<b>\&lt;0.000</b>	< <b>0.0</b> 001
	D5 (stream, 1st)	0.0113	0.0058	Øy.0029 €		0.0034	<b>⊘</b> 0.001 <b>7</b>	0.0008	0.0003
	R4 (stream, 1st)	0.0095	0.0049	$\circ_{0.002}$	0.0010	Ø.0028		0,0007	<b>⊈</b> 0.0003 ∘
	D1 (ditch, 1st)	0.0056	0.0030	0,00013	<b>~</b> 00007 ^	\$0.0016	0,0008	@.0004	0.0002
	D1 (stream, 1st)	0.0061	0.0029	<b>2</b> 0015 ≈	√0.000 <b>©</b>	0.001/8	° ∑00008≪		0.0001
	D3 (ditch, 1st)	0.0056	0.00030	<b>№</b> .0013©		000016 🐰	J0.000 <b>\$</b>	0.0004	0.0002
10m	D4 (pond, 1st)	0.0009	<b>\$</b> 0004 <u>/</u>	¥0.00 <b>@</b> ⊋″	0.0001	\$9.000 <u>2</u>	0.0001	<0.0001	<0.0001
SD & RO	D4 (stream, 1st)	0.0062	Ç0.003 <b>©</b> *	0.0015	<b>%</b> 0006	0.00	0.0008	©.0004 [©]	0.0002
	D5 (pond, 1st)	0.0009	0.0004	<b>№</b> 0002 ?	~0.000g°	0,00002	@.0001£	<0.0 <b>00</b> 1	< 0.0001
	D5 (stream, 1st)	0.0061	0.40029	Ø.0014♥	0.0006	Ø018 °	©0.00 <b>©</b>	000004	0.0001
	R4 (stream, 1st)	0.0051	0.0024	0.0012	0.0005	<b>©0</b> .001 <b>5</b>	0.0007	₩0003	0.0001
	D1 (ditch, 1st)	0.0030 🖔		0,0007	<b>№</b> .0003 [™]	ØØØ.0 7	.0.9004	0.0002	< 0.0001
	D1 (stream, 1st)	$@0.0032^{\circ}$	0.0015	<b>6</b> 0009	0.0003	0.0009	©.0004¢	0.0002	< 0.0001
	D3 (ditch, 1st)	0.0030	0.0016	\$0.000\$\frac{1}{2}	0.0003	_℃ 0.0008 %	(( )(	0.0002	< 0.0001
20m	D4 (pond, 1st)	0,0006	Ø.0003 [©]	0.0001	<b>0.9</b> 001	0.0002	<0;20001	< 0.0001	< 0.0001
	D4 (stream@rst)	0.0033		0,0009	<b>%</b> 0003	0.0009	0.0004	0.0002	< 0.0001
	D5 (pond st)	\$0.00 <b>Q</b> \$\)	0.0003	0.0001		0,0002	$\mathcal{O}_0.0001$	< 0.0001	< 0.0001
	D5 (stream, 1st)	0.0432	€0.0014	0.0009	0.0003	<b>Ø</b> :0009		0.0002	< 0.0001
	R4 (stream, 197)	0.0027	O.001 <i>2</i> O	0.0007	2,0002 s	§0.000₹	0.0003	0.0002	< 0.0001
	D1 (ditch, 15t)	<b>40</b> .0020	0.0010	Q. <b>©</b> 007	©.0003©	0.9995	0.0003	0.0002	< 0.0001
,	DØ (stream, 1st)	0.0026	0.0012	<b>%</b> .0006 [©]		00006	0.0003	0.0001	< 0.0001
<u> </u>	193 (ditch, 1st)	0.0020	00010	0.0007	0.0003	<b>9</b> .0005	0.0003	0.0002	< 0.0001
30m 🗬	D4 (pond, 1,50)	Q.90004	0.0002	0.0001	<0.0001	f	< 0.0001	< 0.0001	< 0.0001
SD & RO	D4 (stream) 1st)	LØ.0021	0.00	QC0006 S	<b>√</b> 0.000 <b>3</b> €′	0.0006	0.0003	0.0002	< 0.0001
	D5 (pond, 1st)	0.00	0.0002	, <b>%</b> 0.0001 [©]	(( ))	0.0001	< 0.0001	< 0.0001	< 0.0001
	D5 (stream, 150)	0.0020	<b>@</b> :0012	0.000	0.0003	0.0006	0.0003	0.0001	< 0.0001
	R4 (Aream, St)	<b>©</b> 0017‰	\$\text{0.0010}\tag{0}	0.0905	0.0002	0.0005	0.0003	0.0001	< 0.0001

a) maximum PECsw values reluding the amount of deltamethrin adsorbed to suspended solids

a) maximum PECsw values including the amount of deltamethrin adsorbed to suspended solids b) maximum PECsw values not including the amount of deltamethrin adsorbed to suspended solids, i.e. the concentration of dissolve deltamethrin only

Table 9.2.5-15: Summary of PEC_{sed} values of deltamethrin after single application in <u>spring wheat</u> with mitigation options according to <u>FOCUS SW Step 4</u>

Buffer Width	Scenario		PEC _{sed} Drift Re	[μg/kg] eduction	
& Type	Scenario	0%	50%	75%	90%
ш турс	D1 (ditch, 1st)	0.0508	0.0244	0.0121	0.0045
	D1 (atten, 1st) D1 (stream, 1st)	0.0052	0.0244	0.0121	0.0045
	D3 (ditch, 1st)	0.032	0.0020	0.0012	0.000
5m	D4 (pond, 1st)	0.0380	0.0095	<b>8</b> .0047	Ø 0016
SD	D4 (stream, 1st)	0.0061	0.0030		.0006
SD	D5 (pond, 1st)	0.0190	0.0095	0.0047	0.0016
	D5 (stream, 1st)	0.0028	0.0014	0.0007	0.0003
	R4 (stream, 1st)	0.9970	0.996	0.9960	0 <b>99</b> 03 4 2 <b>9</b> 9960
	D1 (ditch, 1st)	0.0260	0.0437	© 0.0060	£0.0030
	D1 (stream, 1st)	0.0027	0.9012	0.0006	0.0002
	D3 (ditch, 1st)	0.0196	△0.0102	@0045 Q	0.0022
10m	D4 (pond, 1st)	0.0142	₩0.0 <b>063</b>	0.003	<b>20</b> 0016 0
	D4 (stream, 1st)	0.0032	0,0015	© 0.Q0 <b>∮</b> 7	0.0003
	D5 (pond, 1st)	0.0143	1 % ~ ~ %	0.0032	0.0016
	D5 (stream, 1st)	0.0015	0.0007 0.1500	<b>%</b> .0003~,	<b>6</b> 29001 🔊
	R4 (stream, 1st)	0.1500	0.1500	> 0.150€°	0.1500
	D1 (ditch, 1st)	0,0137 ⊀	0.0075	0.0030	\$ 0.00 B
	D1 (stream, 1st)	~ <b>©</b> 7.0014°∀	Q,0006 ®	0.69003 🕏	× 0. <b>99</b> 01
	D3 (ditch, 1st)	0.01902	©0.005€ _√	₽.0022 ∜	Ø <b>.</b> Ø011, Ø
20m	D4 (pond, 1st) 📡 🧔	0.01 <b>9</b> 95 /	© 0.00 <b>4</b> 7	0.0016	Ø.0016
SD & RO	D4 (stream, 1st)	<u>0</u> 0016	0.0007	× 0.0 <b>00</b> 4	0.0001
	D5 (pond, 1st)  ✓	Ø.009 <i>5</i> ©	0.0047	0.0016	/ 0 <u>@</u> 0016 %
	D5 (stream st)	0.0007	<b>₩</b> 0.000	<b>20</b> .0002	<b>◆</b> 0.0001 <b>♣</b>
	R4 (stream, 1st)	Q.0900 ~	© 0.0499 ×	∂ [™] 0.04 <b>%</b>	0.049 <b>%</b> _
	D1 (diteh, 1st)	<b>,0</b> ,0091	Ø 0045 Å	v" 0. <b>06</b> 30	©″0.0 <b>%</b> \$
	D1 (stream, 10x)	0.000	( 10005 )	0,0002	0.0001
	D3 (ditch, 1st) «	$\int_{0.0067}$	0.003	Ø.00220	<b>@</b> 0011
30m	Dog (pond, Ist)	0,6063	0.0031	0.0016	©<0.0001
SD & RQ	D4 (stream, 1st)	<b>6</b> .0010	0.0006	0.0003 ^	0.0001
Ky'	D5 (pond, 150)	©0.0063°°	0.00320°	6.0016	< 0.0001
	D5 (stream) lst)	0.0005	0.0003	\$\langle 0.0004\delta^\gamma	< 0.0001
	R4 (stream, 1st)	000500	0.00099	0 0.0499	0.0499
	a Q"	Ş S		Ğ	
	~ °			<b>%</b> .	
	. 1 °				
	5 b				
		, 🖏 🤍			
,«					
	. T				
	A A		<b>*</b>		
(C					
, Ç		~Q			
		, J ^y			
		•			
	<b>A</b>				
/( )	,				
Õ					



## Multiple application

Table 9.2.5-16: Summary of <u>FOCUS Step 4</u> PEC_{sw} values of deltamethrin after multiple application in <u>spring wheat</u> SD and RO denote spray drift and <u>museful</u> section.

Buffer			PECsw [	по/[ ] а)			PEČsw	ug/Ll b	
Width	Scenario		Drift Re				« Drift Re		
& Type		0%	50%	75%	90%	0% 🔏	50%	75%	<b>\$90%</b> \$
	D1 (ditch, 1st)	0.0095	0.0047	0.0024	<b>Q9</b> 010	0.0028	0.0014	Ø.0007	0.0003
	D1 (stream, 1st)	0.0108	0.0056	0.0026	0.0010	0.0002	0.0016@	0.00	0,0003
	D3 (ditch, 1st)	0.0093	0.0046	0.0023	<b>√</b> 0.0010	Qc.9027	0.0013	0.0006	Ø:0003%
5m	D4 (pond, 1st)	0.0012	0.0006	0.0002	0.0001	Q.0003 °	0.0001	<0.0001	£0.000
SD	D4 (stream, 1st)	0.0101	0.0052	0.0024	$0.0009_{\sim}$	0.00 <b>20</b>	0:0015	Ø.000₹	0.0002
	D5 (pond, 1st)	0.0013	0.0006	0.0003	@1000.0 ₀	0.0003	Ø.000 <b>2</b>	<0.0001	<
	D5 (stream, 1st)	0.0105	0.0054	<b>%</b> 0.0025	× 1	0.0031	0.0016°	0.0007	0.0002
	R4 (stream, 1st)	0.0081	0.0042	0.0020	0.0007	<b>79</b> .002 <b>4</b>	0.0002	0,0005	- 0.0002∘
	D1 (ditch, 1st)	0.0047	0.0024	0.0074	~0.0003 <i>"</i>	₩0.0 <b>0</b> 14	0.9007	©.000 <b>4</b>	<0.0001
	D1 (stream, 1st)	0.0056	0.0029	<b>40,0013</b> ^	√0.000°	0.0016	@.000 <b>%</b>	0.0003	0.0002
10m	D3 (ditch, 1st)	0.0046	0.0023	~ø.0013®		©00013×	, 0.00 <b>0</b>	0,00004	<b>3</b> 0.0001
SD &	D4 (pond, 1st)	0.0008	<b>6</b> 0003&	0.0002	<b>0.0</b> 001	6.0002	<0.0001	<b>20</b> .0001	< 0.0001
RO	D4 (stream, 1st)	0.0052	√0.002®″	0.0012	0.0006	0.00		0.0003	
l l	D5 (pond, 1st)	0.0009			>0.000°€	0.0002	60.000C	<0.0001	< 0.0001
	D5 (stream, 1st)	0.0054		<b>20</b> .001 <b>3</b> \$	0.0006	6.0016		0.0003	0.0002
	R4 (stream, 1st)	0.0042	0.0022	0.0010	0.0005	©0.00125	0.0006	<b>©</b> .0003	0.0001
	D1 (ditch, 1st)	0.0024	<b>√</b> 0.001 <b>€</b> ″	0.0007	<b>%</b> .0003	0.0007	~ 0.0004	0.0002	< 0.0001
	D1 (stream, 1st)	©.0029		0.0007	0.0003	0.0008 ~	\$0.000 <b>3</b>	0.0002	< 0.0001
20m	D3 (ditch, 1st)	0.0028	0.0013	30.000 T	0.0003	0.0006	0.0004	0.0002	< 0.0001
SD &	D4 (pond, 1st)	0.0006	©.0002	0.0001	<0,0001	0.0001	<0.9001	< 0.0001	< 0.0001
RO	D4 (stream, byt)		© 0.001@	0.0006	50.0003	0.0008	0.0003	0.0002	< 0.0001
	D5 (pond, 1st)	9.0006	0.0003	0.0001			<b>2</b> <0.0001	< 0.0001	< 0.0001
	D5 (stream, 1st)	0.0029	0.0013	0.0006	0.0003	Ø.0008		0.0002	< 0.0001
	R4 (stream, 1st)	0,0022	0.00100		20002		0.0003	0.0001	< 0.0001
	D1 (ditch, 150)	<b>1</b> 00017	0.0007		$\bigcirc 0.000$	0.0905	0.0002	< 0.0001	< 0.0001
	D1@stream, 1st)	, 0.0020 J	0.0 <del>0</del> 10	©9.0003 ⁽⁽⁾	0.0003	<b>%</b> 0005	0.0003	< 0.0001	< 0.0001
30m	(ditch, 1st)	0.0007	0007	0.000	< 0.0001	0.0004	0.0002	< 0.0001	< 0.0001
SD &	D4 (pond, 1st)	0.0003	0.0002	0:0001	<0.0001	и	< 0.0001	< 0.0001	< 0.0001
RO	D4 (stream ost)	<b>40</b> .0018			√0.0003 °  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.00001  1.000	0.0005	0.0002	< 0.0001	< 0.0001
_	D5 (pond 1st)	0.000	0.0003	©.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	D5 (stream, 1st)	0.0699	Ø0010°		0.0003	0.0005	0.0002	< 0.0001	< 0.0001
	R4 (stream, 1st)	0 <b>.0</b> 015 °	0.00QP	0,0002	0.0002	0.0004	0.0002	< 0.0001	< 0.0001

a) maximum PECsw values including the appount of deltamenhrin adsorbed to suspended solids

une appount of a control of a c b) maximum PECsw values not including the amount of deltamethrin adsorbed to suspended solids, i.e. the concentration of dissolved deltamethrin only



	with mitigat			methrin aft to <u>FOCUS S</u>	er multiple SW Step 4	e application in spring wheat
Buffer				[µg/kg]		
Width	Scenario	22/		eduction	2021	
& Type		0%	50%	75%	90%	
	D1 (ditch, 1st)	0.0752	0.0376	0.0188	0.0080	
	D1 (stream, 1st)	0.0400	0.0203	0.0094	0.0034	
<del>-</del>	D3 (ditch, 1st)	0.0467	0.0230	0.0114© 0.0066	0.0048	
5m SD	D4 (pond, 1st)	0.0301	0.0150	0.0060	0.0030	
שא	D4 (stream, 1st) D5 (pond, 1st)	0.0085 0.0313	0.0043 0.0156	0.0019 0.0062	0.000	
	D5 (polid, 1st) D5 (stream, 1st)	0.0313	0.0136	6.0013	0.0001	
	R4 (stream, 1st)	1.758	1.757	1.757	0.0003	
	D1 (ditch, 1st)	0.0376	0.018	0.00007		
	D1 (ditch, 1st) D1 (stream, 1st)	0.0376	0.018	0.907 0.0046	0.004	
	D3 (ditch, 1st)	0.0203	0.0104	©0.00640 ©	0.016 0.40016	
10m	D4 (pond, 1st)	0.0230	0.0090	0.0060	%0.0030.2°	
	D4 (stream, 1st)	0.0043	@10.0022 ^Y	0.0009	\$0.0005	
22 210	D5 (pond, 1st)	0.0210		0.0062	0.0031	
	D5 (stream, 1st)	0.0029	0.0015	0.000	0,0003 %	Þ 5° 6° .9
	R4 (stream, 1st)	U.20°40	0.2640	0.2640	26400	
	D1 (ditch, 1st)	0.0188	∠,0.01075°	0.0053	0.002	
	D1 (stream, 1st)	<b>~</b> 00106 ~		0.0023∜	0.0011	
	D3 (ditch, 1st)	0.0114	00064	√ 0.0032	0.0016	
20m	D4 (pond, 1st) D4 (stream, 1st)	0.01\$0	Ø.0060	0.0030	<0.0001 ³	
SD & RO		0.0022	0.000	0.0005 0.0031	× 0.0002	
	D5 (pond, 1st)	0.0156	0.0062	© 0031 ×	<0.0001	
	D5 (stream st)			0.0003	0.0001	) · · · · · · · · · · · · · · · · · · ·
	R4 (stream, 1st)	0.0883	9.0881	0.6880	©0.0880	
	DI (diten, 1st)	0.00134	0.0053	Ø 0011	<0.0001	
	DI (Stream, IST)	0.00/05	0.0034	0.00	040011	
20m	De (nond let)	U.UU81	0.0032 °	U.UUCNO	©.0001© \(0.000)	
SD & DO	DVA (stream 1 ch	0.0090 ann 14	$\approx$ 0.0000 $^{\circ}$	0.0003U ⊕.0003 ≈	0.0001 0 maga	
ש א ענ	154 (Sucalli, 150)	0 0014 C	) DUUU/ () AMA?	0,0002	0.0092 <0.0001 20.0001	
« ¥	D5 (stream let)	0.0034	©0002 °	0.0031	\$0,0001 \$0,0001	
	R4 (stream 1st)	0.00882	~~0.0884m	0.0880 ~	0.0880	
	(St. (St. St.), 15t)		y 0.009.00		0.0000	J
	R4 (stream, 1st) D1 (ditsh, 1st) D1 (stream, 1st) D3 (ditch, 1st) D3 (pond, 1st) D5 (pond, 1st) D5 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st)		, O .	0, 0,		
				¥ %		
	4			V.		
	<i>)</i> '	Q, (				
. //		1 × 2		<b>Q</b> `		
	V Š	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		7		
/		.°Č″	, % °C,			
			, Q,			
			(I)			
		, M	Q"			
	' D'A	~\$``				
		ý ,				
		•				
,	\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right					
Ü						

## Winter wheat, $2 \times 6.25$ g/ha

Table 9.2.5- 18:

Winter wheat,	$2 \times 6.25$	g/ha							,
FOCUS SW Step	3 values	for the app	lication in	winter whe	at are pre	sented in T	<b>Sable 9.2.5-</b> 1	18.	
Table 9.2.5- 18:	accordi	ng to <u>FOCU</u>		3; letters S, ge, and run	D, and R		calculated espond to		
		Single A	pplication	N.		Multiple	Application		4
Scenario	Entry route	PEC _{sw} [μg/L] ^{a)}	PEC _{sw} [μg/L] b)	PE©sed	Entry rout	PECsw [µg/L] a)	PECsw Q Lug/Ll b)	PEC sed [µ@/kg]	WO'
D1 (ditch, 1st)	S	0.0400	0.0128	<b>%</b> 1760	~S,	Ø 0356 [©]	0.003	Ø0.2730€	ľ
D1 (stream, 1st)	S	0.0307	0.0097,	[™] 0.0117		°∕0.029⁄6	<b>0.0</b> 093.*	√0.0464°	İ
D2 (ditch, 1st)	S	0.0402	0.0128	0, <b>2</b> 930 ,	J'S L	0.0358	@.0113 [©]	0.2780	İ
D2 (stream, 1st)	S	0.0332	0.0105	<b>Q</b> 0272 C		0.6311	©0.00 <b>%</b>	<b>9<del>.</del>1</b> 860 (	0
D3 (ditch, 1st)	S	0.0399	0.0127	©.1510	_ \$₩	0.0351		<b>8</b> .191 <b>6</b>	İ
D4 (pond, 1st)	S	0.0014	0.0004~	,″ 0.0 <b>2</b> 2 <b>,</b> 4	SO'S	(70.00 ₁ P)	<b>&amp;</b> 9004_	0.03\$7	İ
D4 (stream, 1st)	S	0.0317	Ø.01007	Q.0454 ×		° 0. <b>№</b> 77	Ø.0087	0.0780	İ
D5 (pond, 1st)	S	0.0014	<b>8</b> 0.0 <b>6</b> 0¥	<b>, 0</b> ,0220,©	, S	0.9014	0.00004	0.0355	İ
D5 (stream, 1st)	S	0.0321	0. <b>©</b> 001	°>0.0099°			0,0095	J0.0225	
D6 (ditch, 1st)	S	0.040	<b>₽</b> 0128 ₽		S	0.03	<b>©</b> 00119 [™]		
R1 (pond, 1st)	S	0.0014	<b>₹</b> 0.00040°	0,0255	O'S SO'	0.0014	€0.000 <b>4</b>	0.0466	
R1 (stream, 1st)	S	0,0263	0.0082	0.2860	′Ş©"	0,0228	© 0.00®	0.6430	
R3 (stream, 1st)	S	0.036 €	0.0117	° 0.1336 €	<b>*</b>	©0.0322°	0.0101	0.2610	1
R4 (stream, 1st)	S	0.0263	<b>49.</b> 0082	0.5600	NS K	y 0.02 <b>29</b>	<b>Q</b> 0071	1.154	1

a) maximum PECsw values including the amount of delomethrin adsorbed to suspended solids

wheat are presented in Table 9.2.5- 19 and Table 9.2.5-

Single applic

Table 9.2.5-19: Summary of FOCIS Step PEC, values of delta nethrin after single application in winter whoat SD and RO denote spray drift and runoff buffer, respectively

	<u> </u>	A	,	<b>W</b>					
Buffer	<i>Q1</i> . (		PE Csw	Hug/L] a	F		<b>PECsw</b>	$[\mu g/L]^{b)}$	
Width	Scenario C		Drift R	// ₂ *	<b>*</b>		Drift Re	eduction	
& Type	. 1	<b>0%</b> «	⊃ [™] 50%	· //	_V 90%	0%	50%	75%	90%
	D1 witch, 1st)	Ø9.0109 ^{≈3}	0.0 <b>05</b> 3	<b>3</b> 0.0026	0.0010	0.0033	0.0015	0.0007	0.0003
	D' (stream, 1st)	y 0.0111 y	Q,0057 A	~0.00 <b>23</b> 8″	0.0011	0.0033	0.0016	0.0008	0.0003
18	D2 (ditch, 1st)	0.0199	<b>№</b> .0053©	0,0027	0.0010	0.0033	0.0015	0.0007	0.0003
	D2 (stream, 1st)	ُم 120 <b>آ</b> ھ	¥0.006¥	000031	0.0012	0.0036	0.0018	0.0009	0.0003
	D3 (ditch, dst)	0.0109	0.00/53	Ø.0026	0.0010	0.0032	0.0015	0.0007	0.0003
	D4 (pond 1st) 🗳	0.00	, <b>0</b> ,0006 '	[♥] 0.0003	0.0001	0.0003	0.0002	< 0.0001	< 0.0001
5m	D4 (stream, 1st)	0.6114	0.0059	0.0029	0.0012	0.0034	0.0017	0.0008	0.0003
SD	D5 (pond, let)	9.0012	90.0006	0.0003	0.0001	0.0003	0.0002	< 0.0001	< 0.0001
	D5 stream (1st)	0.0110	0.0060	0.0030	0.0012	0.0035	0.0017	0.0008	0.0003
	106 (ditch 1 st)	0.0109	0.0053	0.0027	0.0010	0.0033	0.0015	0.0007	0.0003
1	R1 (pood, 1st)	0.0012	0.0006	0.0003	0.0001	0.0003	0.0002	< 0.0001	< 0.0001
	R1 (stream, 1st)	0.0095	0.0049	0.0024	0.0010	0.0028	0.0014	0.0007	0.0003
	RXOstream, 1st)	0.0133	0.0068	0.0034	0.0014	0.0040	0.0020	0.0010	0.0004
	R4 (stream, 1st)	0.0095	0.0049	0.0024	0.0010	0.0028	0.0014	0.0007	0.0003

b) maximum PECsw valves not including the amount of deltamethring dsorbed to suspended solids, i.e. the concentration of dissolved deltamethan only



Buffer			PECsw					[µg/L] b)	۰
Width	Scenario		Drift Re	eduction			Drift Ro	eduction	<u> </u>
& Type		0%	50%	75%	90%	0%	50%	75%	×90% &
	D1 (ditch, 1st)	0.0056	0.0030	0.0013	0.0007	0.0016	0.0098	0.0004	©0.0002°
	D1 (stream, 1st)	0.0060	0.0028	0.0014	0.0006	0.0017	0.0008	0.0004	0.0000
	D2 (ditch, 1st)	0.0056	0.0030	0.0013	0.0007	0.0016	0.0008	0.0004	0.0002
	D2 (stream, 1st)	0.0064	0.0031	0.0015	0.0006	0.0019	<b>△</b> 0.0009	0.0004	\$0002\$
	D3 (ditch, 1st)	0.0056	0.0030	0.0013	0.0007	0.0016	[©] 0.0008	0.0004 %	0.0002
10	D4 (pond, 1st)	0.0009	0.0004	0.0002	0.0001	0.0002	0.0001	80.000Î>	<0.00001
10m	D4 (stream, 1st)	0.0062	0.0029	0.0015	0.0006	0.00	0.0008	0.000	0.0002
SD &	D5 (pond, 1st)	0.0009	0.0004	0.0002	0.0001	0.0002	0.000	<0.0001	©0.000 K
RO	D5 (stream, 1st)	0.0062	0.0030	0.0015🗳	0.0006	00018	0.0008	0.0004	0.000
	D6 (ditch, 1st)	0.0056	0.0030	0.001300	0.0007 🗈	0.001 <b>6</b>	0.0008	00.0004	0.00002
	R1 (pond, 1st)	0.0009	0.0004	0,0002	0.0001		<b>6</b> 00001%	\^<0.0 <b>0</b> 07	<i>\$</i> 0€0001
	R1 (stream, 1st)	0.0051	0.0024	0.0012	,0.00Q5	0.0015	₹0.000 <b>%</b>	0.0003	0.0001
	R3 (stream, 1st)	0.0072	0.0034	. 0.0017	0.0007	@0021	0.0010	6,0005	0.0002
	R4 (stream, 1st)	0.0051	0.0024	$\sqrt[8]{0.001}$	0.0005	0.001/5	0.0007	0.0003	0.00001
	D1 (ditch, 1st)	0.0030	0.0016	0.0007	~0003©	0.0008	° \$\\\0004\%	0.0002	<b>©</b> .0001
	D1 (stream, 1st)	0.0031	0.004	Ø.0009 _«		0.0009	0.000	0.60002	©0.0001
	D2 (ditch, 1st)	0.0030	0.00¥7	&Ø.0007\$	0.0003	<b>3</b> 0008	0.0094	0.0002	< 0.0001
	D2 (stream, 1st)	0.0034	Ø 0015	0.000	0.0003	×0.000	0:0004	\$0.00 <b>9</b> 2	< 0.0001
	D3 (ditch, 1st)	0.0030	©.0016	0.0007	Ø1.00035	0.0008	Ø.0004		< 0.0001
	D4 (pond, 1st)	0.0006		0.0001	0.00 <b>%</b>	000002	©<0.0 <b>⊘</b>	< 0.0001	< 0.0001
20m	D4 (stream, 1st)	0.0032	0.0015	©0.0009	0.0003	©.0009©		©.0002	< 0.0001
SD &	D5 (pond, 1st)	0.0006	00003		<b>9000001</b>	0.0002	<b>≤0.0</b> 001 @	< 0.0001	< 0.0001
RO	D5 (stream, 1st)	0.0033	0.0015		€.0.0003.	0.0009	©.0004		< 0.0001
	D6 (ditch, 1st)	0.0030	0.0017	Ø.0007. €	0.0063	¢0.0008 °	0.00	0.0002	< 0.0001
	R1 (pond, 1st)	0.000	0:0003	0.000	0,0001	0.0002	<0.0001	< 0.0001	< 0.0001
	R1 (stream, 1st)		©.0012	0.0007			0.0003	0.0002	< 0.0001
	R3 (stream, 15)	0.0038	0.00k7	0.0010	\$0002 \$0.000 <b>3</b>	0.4011	<b>©</b> 0.0005	0.0003	< 0.0001
	R4 (stream (1st)	0.0027	0.0012	%.0007.C	0.0002	Ø0007,	0.0003	0.0002	< 0.0001
	D1 (ditch 9st)	0.0020		0.0067		0.0005	0.0003	0.0002	< 0.0001
	D1 (stream, 1st)		0.001,1	0:0006	©0.0003		0.0003	0.0001	< 0.0001
	D2 (dirch, 1st)	\$0,0020 ×	0.0010	000007	0.0003	000005	0.0003	0.0002	< 0.0001
	D20 stream, 1st)	©0.0023©	0.0012	0.0006		0.0006	0.0003	0.0002	< 0.0001
	Dy (ditch, 1st)		0.0010		0.0003	(U )/	0.0003	0.0002	< 0.0001
	D4 (pond, 1st)	0.6004	$0.0092^{\circ}$	0.0001	×0.0003		< 0.0001	< 0.0001	< 0.0001
30m	D4 (atmassm (D)	A 0021 @	0.000	20,0006	0.0003	0.0001	0.0003	0.0001	< 0.0001
SD &	D5 (nond 1st)	Or 0002	0.0002	\$0.000 \$0.000	<0.0003	0.0001	< 0.0003	< 0.0002	< 0.0001
RO	D5 (stream 1st)		%0012 %0012	0.0006	0.0003	0.0001	0.0003	0.0001	< 0.0001
	D5 (pond, 1st) D5 (stream, 1st) D6 (ditch, 1st)	0.0021	0.001 <b>Q</b>	0.00007	0.0003	0.0005	0.0003	0.0002	< 0.0001
	R1 (pond, 1st)	0.0004	0.0002	20:0001z	<0.0003	0.0003	< 0.0003	< 0.0002	< 0.0001
	Racestream, 1st)	$\sqrt{0.0004}$	0.0010	\$0.000 \$0.000\$	0.0001	0.0001	0.0001	0.0001	< 0.0001
	R3 (stream, 1st)	0.001%	0.0010 0.0014	0.000	0.0002	0.0003	0.0003	0.0001	< 0.0001
_ &	R4 (stream, 1st)		$\sqrt[6]{0.0012}$	0.0007 0.0005	0.0003	0.0007	0.0004		< 0.0001
	rt4 (Sueam, ISt)	V.MO1/	V 0.004Q	T.A002	0.0002	0.0003	0.0003	0.0001	\0.0001

a) maximum PECsw values including the amount of deltamethrin adsorbed to suspended solids b) maximum PECsw values not including the amount of deltamethrin adsorbed to suspended solids, i.e. the concentration of deltamethrin only

Table 9.2.5- 20: Summary of PEC_{sed} values of deltamethrin after multiple application in winter wheat with mitigation options according to FOCUS SW Step 4

O1 (ditch, 1st) O1 (stream, 1st) O2 (ditch, 1st) O2 (stream, 1st) O3 (ditch, 1st) O4 (pond, 1st) O5 (pond, 1st) O5 (stream, 1st) O5 (stream, 1st) O6 (ditch, 1st) O1 (stream, 1st) O2 (stream, 1st) O3 (stream, 1st) O4 (stream, 1st) O5 (pond, 1st) O5 (pond, 1st) O6 (ditch, 1st) O7 (stream, 1st) O7 (ditch, 1st) O7 (stream, 1st) O7 (stream, 1st) O7 (stream, 1st) O7 (stream, 1st)	0%  0.0471 0.0040 0.0576 0.0094 0.0399 0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580 0.0240 0.0020	0.0226 0.0020 0.0278 0.0047 0.0191 0.0097 0.0026 0.001% 0.0294 0.0163 0.2840 0.1290 0.05880 0.0626	75%  0.0112 0.0010 0.0139© 0.0029 0.0094 0.0048 0.0008 0.0130 0.0048 0.0008 0.0130 0.01300 0.0240 0.0250	90%  0.0041 0.0004 0.0052 0.0009 0.0034 0.0005 0.0005 0.0003 0.0003 0.0003 0.0003
O1 (stream, 1st) O2 (ditch, 1st) O2 (ditch, 1st) O3 (ditch, 1st) O4 (pond, 1st) O4 (stream, 1st) O5 (pond, 1st) O5 (stream, 1st) O6 (ditch, 1st) O1 (ditch, 1st) O3 (stream, 1st) O4 (stream, 1st) O5 (stream, 1st) O6 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st)	0.0471 0.0040 0.0576 0.0094 0.0399 0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580 0.0240	0.0226 0.0020 0.0278 0.0047 0.0191 0.0097 0.0026 0.001% 0.0290 0.0256 0.0163 0.0260 0.0250 0.0250 0.0250 0.0250 0.0250	0.0112 0.0010 0.0139 0.0023 0.0094 0.0094 0.0013 0.0048 0.0008 0.0147 0.01300 0.1290	0.0041 0.0004 0.0052 0.0009 0.0034 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
O1 (stream, 1st) O2 (ditch, 1st) O2 (ditch, 1st) O3 (ditch, 1st) O4 (pond, 1st) O4 (stream, 1st) O5 (pond, 1st) O5 (stream, 1st) O6 (ditch, 1st) O1 (ditch, 1st) O3 (stream, 1st) O4 (stream, 1st) O5 (stream, 1st) O6 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st) O7 (ditch, 1st)	0.0040 0.0576 0.0094 0.0399 0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580	0.0020 0.0278 0.0047 0.0191 0.0097 0.0026 0.001% 0.0294 0.0263 0.2840 0.1290 0.5589 0.0426	0.0010 0.0139 0.0023 0.0094 0.0049 0.0013 0.0048 0.0008 0.0130 0.0130 0.1290	0.0004 0.0052 0.0009 0.0034 0.0056 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
D2 (ditch, 1st) D2 (stream, 1st) D3 (ditch, 1st) D4 (pond, 1st) D4 (stream, 1st) D5 (pond, 1st) D5 (stream, 1st) D6 (ditch, 1st) D7 (ditch, 1st) D8 (stream, 1st) D8 (stream, 1st) D9 (ditch, 1st) D9 (ditch, 1st) D9 (ditch, 1st) D9 (ditch, 1st) D9 (ditch, 1st) D9 (ditch, 1st) D9 (ditch, 1st)	0.0576 0.0094 0.0399 0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580	0.0278 0.0047 0.0191 0.0097 0.0026 0.0017 0.0294 0.02,63 0.2,840 0.1290 0.55,89 0.04,26	0.0139 0.0023 0.0094 0.0049 0.0013 0.0048 0.0008 0.01300 0.1290 0.1290	0.0052 0.0009 0.0034 0.0056 0.0005 0.0003 0.0003 0.0005 0.0009 0.2840
D2 (stream, 1st) D3 (ditch, 1st) D4 (pond, 1st) D4 (stream, 1st) D5 (pond, 1st) D5 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R3 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0094 0.0399 0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580	0.0047 0.0191 0.0097 0.0026 0.0096 0.001% 0.0290 0.0163 0.2840 0.1290 0.5580 0.0426	0.002\$\footnote{0.0094} 0.0094 0.0013 0.0048 0.0008 0.01300 0.02840 0.1290	0.0009 0.0034 0.0066 0.0005 0.0003 0.0003 0.0009 0.2840 0.1296
O3 (ditch, 1st) O4 (pond, 1st) O4 (stream, 1st) O5 (pond, 1st) O5 (stream, 1st) O6 (ditch, 1st) O1 (stream, 1st) O3 (stream, 1st) O3 (stream, 1st) O4 (stream, 1st) O5 (ditch, 1st) O5 (ditch, 1st) O5 (ditch, 1st) O5 (ditch, 1st) O5 (ditch, 1st) O5 (ditch, 1st) O5 (ditch, 1st)	0.0399 0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580	0.0191 0.0097 0.0026 0.0096 0.001% 0.0290 0.0163 0.2840 0.1290 0.5580 0.0126	0.0094 0.0049 0.0013 0.0048 0.0008 0.0147 0.0130 0.2840 0.1290	0.0034 0.0066 0.0005 0.0003 0.0063 0.0063 0.0064 0.02840
04 (pond, 1st) 04 (stream, 1st) 05 (pond, 1st) 05 (stream, 1st) 06 (ditch, 1st) R1 (pond, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0195 0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580	0.0097 0.0026 0.0096 0.001% 0.0294 0.0163 0.2840 0.1290 0.5589 0.0426	0.0049 0.0013 0.0048 0.0008 0.0008 0.01300 0.2840 0.1290	0.0066 0.0005 0.0003 0.0003 0.0063 0.0009 0.2840
04 (stream, 1st) 05 (pond, 1st) 05 (stream, 1st) 06 (ditch, 1st) R1 (pond, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0053 0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580 0.0240 0.0020	0.0026 0.0096 0.001% 0.0290 0.0163 0.2840 0.1290 0.5580 0.0426	0.0013 0.0048 0.0008 0.0008 0.01300 0.2840 0.1290	0.0005 0.0005 0.00055 0.00055 0.0009 0.2840
05 (pond, 1st) 05 (stream, 1st) 06 (ditch, 1st) R1 (pond, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0192 0.0034 0.0606 0.0230 0.2840 0.1300 0.5580 0.0240 0.0020	0.0096 0.001% 0.0290 0.0263 0.2840 0.1290 0.5580 0.0426	0.0048 0.0008 0.01300 0.01300 0.2840 0.0290	0.0003 0.0003 0.0053 0.0009 0.2840 40.1296
25 (stream, 1st) 26 (ditch, 1st) 21 (pond, 1st) 23 (stream, 1st) 24 (stream, 1st) 24 (stream, 1st) 20 (ditch, 1st) 21 (ditch, 1st) 22 (ditch, 1st)	0.0034 0.0606 0.0230 0.2840 0.1300 0.5580 0.0240 0.0020	0.001% 0.0294 0.0163 0.2840 0.1290 0.5589 0.0426	0.00008 990147 70.01300 70.2840 0.10090	0.0003 0.0053 0.009 0.2840 40.1296
06 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0606 0.0230 0.2840 0.1300 0.5580 0.0240 0.0020	0.0294 0.0163 0.2840 0.1290 2 0.5589 0.0126	0.0147 & 0.01300 0.01300 0.2840 0.0290	0.00\$3 0.0009 9.2840 40.1296
R1 (pond, 1st) R1 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0230 0.2840 0.1300 0.5580 0.0240 0.002	0.0163 0.2840 0.1290 0.5580 0.0126	0.0130 0.2840 0.0290	0. <b>Q</b> 09 22840 40.1296
R1 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.2840 0.1300 0.5580 0.0240 0.002	052840 05.1290 0.5580 0.0126	0.2840 0.1 <b>2</b> 90	%2840 %0.1296
R3 (stream, 1st) R4 (stream, 1st) D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.1300 0.5580 0.0240 0.002	Ø5.1290 Q, 0.5580 0.0126	0,12290 ,	√0.1296 ×
24 (stream, 1st) 21 (ditch, 1st) 21 (stream, 1st) 22 (ditch, 1st)	0.5580 0.0240 0.0020	Q, 0.5580° 0.0√26		
D1 (ditch, 1st) D1 (stream, 1st) D2 (ditch, 1st)	0.0240C 0.002Q	0.0126	A 7/	Ø 0.5 <b>5</b> 80
D1 (stream, 1st) D2 (ditch, 1st)	$0.002 Q^{"}$	- 10)	~0.005 <b>%</b> ″	0.0027 s
O2 (ditch, 1st)		0.0010	0.0005	0.0002
	0.0296	∠B.0156	0. <b>0</b> 069	7,0.0034
- (Du vuill, 10t)				0.0004
			<a>€ 0.004€</a>	0.9023 %
	0.01 <b>4</b>	Ø.0065.	b. 4 "())	0.0016
04 (stream, 1st)	0 <u>0</u> 028	0.001	0,0006	$\circ 0.0002$
O5 (pond, 1st)	0,0144,0	0.0064	<b>3</b> 0.0032	0.0016
O5 (stream st)	©.0018	0@008 ್	\$70.00 <b>64</b>	0.0001 @
O6 (ditch@st)	√ 0. <b>03</b> ŶŹ	, 0.0165 °	0.0674	<b>2</b> 0.0037
R1 (popul, 1st) 🔍	0.0143	0.0066		0.0026
R1 (stoeam, Ist)	0.0430	0,0428	<b>7</b> 9.0427	0.0427
R3 (Stream Fst) 🦼	0.0201	0.0/197	∂0.01 <b>95</b> ″	60194 €
(stream, 1st)		<b>△</b> 0.083 <b>9</b>		₇ , 0.083
		Ø 0.0069		0.00\3
				<0.9001
				<b>2</b> 0.0017
				0.0002
		* * */		0.0011
04 ( <b>©</b> ond, 150) *	Ø.0097♥	0.0049	©0.00160°	0.0016
	0.0014	Ø.0006	0.0004	0.0001
	0.0996	<b>2</b> 0.00480	0.0016	0.0016
	<i>1</i> 00009 «	0.0004		< 0.0001
				0.0018
				0.0017
CI (stream, 1st)	0.0144	ا مالم ا		0.0142
(Stepam, 1st)	020009	0.0000		0.0065 0.0279
(4 Stream, Ast)	30.0200	0.0280	0.0280	0.0279
		~Q		
	Ţ			
	<i>"</i>			
	22 (stream, 1st) 23 (ditch, 1st) 24 (pond, 1st) 25 (pond, 1st) 25 (stream, 1st) 26 (ditch, 1st) 27 (ditch, 1st) 28 (stream, 1st) 29 (ditch, 1st) 20 (ditch, 1st) 20 (ditch, 1st) 21 (stream, 1st) 22 (ditch, 1st) 23 (ditch, 1st) 24 (stream, 1st) 25 (stream, 1st) 26 (ditch, 1st) 27 (stream, 1st) 28 (ditch, 1st) 29 (stream, 1st) 20 (ditch, 1st) 20 (ditch, 1st) 21 (pond, 1st) 22 (ditch, 1st) 23 (ditch, 1st) 24 (stream, 1st) 25 (stream, 1st) 26 (ditch, 1st) 27 (ditch, 1st) 28 (ditch, 1st) 29 (ditch, 1st) 20 (ditch, 1st) 20 (ditch, 1st) 21 (pond, 1st) 22 (ditch, 1st) 23 (ditch, 1st) 24 (pond, 1st) 25 (pond, 1st) 26 (ditch, 1st) 27 (ditch, 1st) 28 (ditch, 1st) 29 (ditch, 1st) 20 (ditch, 1st) 20 (ditch, 1st) 21 (pond, 1st)	22 (stream, 1st) 23 (ditch, 1st) 24 (pond, 1st) 25 (pond, 1st) 26 (ditch, 1st) 27 (pond, 1st) 28 (pond, 1st) 29 (stream, 1st) 20 (ditch, 1st) 21 (ditch, 1st) 22 (stream, 1st) 23 (ditch, 1st) 24 (pond, 1st) 25 (pond, 1st) 26 (pond, 1st) 27 (pond, 1st) 28 (pond, 1st) 29 (pond, 1st) 29 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 21 (pond, 1st) 22 (pond, 1st) 23 (pond, 1st) 24 (pond, 1st) 25 (pond, 1st) 26 (pond, 1st) 27 (pond, 1st) 28 (pond, 1st) 29 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 21 (pond, 1st) 22 (pond, 1st) 23 (pond, 1st) 24 (pond, 1st) 25 (pond, 1st) 26 (pond, 1st) 27 (pond, 1st) 28 (pond, 1st) 29 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 21 (pond, 1st) 22 (pond, 1st) 23 (pond, 1st) 24 (pond, 1st) 25 (pond, 1st) 26 (pond, 1st) 27 (pond, 1st) 28 (pond, 1st) 29 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond, 1st) 20 (pond,	0.0296 0.0156 0.0203 0.0106 0.0203 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0108 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0008 0.0143 0.0008 0.0143 0.0008 0.0143 0.0008 0.0143 0.0008 0.0143 0.0008 0.0143 0.0006 0.00197 0.00197 0.00197 0.0018 0.0008 0.00197 0.0008 0.0008 0.0008 0.00197 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.00	0.0296

Buffer			PECsed	l [μg/kg]		o
Width	Scenario		Drift Ro	eduction		
& Type		0%	50%	75%	90%	
	D1 (ditch, 1st)	0.0083	0.0041	0.0027	0.0013	
	D1 (stream, 1st)	0.0007	0.0004	0.0002	< 0.0001	
	D2 (ditch, 1st)	0.0104	0.0052	0.0034	0.0017	
	D2 (stream, 1st)	0.0016	0.0009	0.0004	0.0002	LA Ô'Ş' Q
	D3 (ditch, 1st)	0.0070	0.0034	0.0023	0.0011	
	D4 (pond, 1st)	0.0065	0.0032	0.001	< 0.0001	
30m	D4 (stream, 1st)	0.0009	0.0005	0.0002	0.0001	
SD & RO	D5 (pond, 1st)	0.0064	0.0032	0,9916	<0.0001	
	D5 (stream, 1st)	0.0006	0.0003	<b>4</b> 0001	<0.0001	
	D6 (ditch, 1st)	0.0110	0.0055	0.0037	0.0001 0.0018 0.0005 0.0142	
	R1 (pond, 1st)	0.0063	0.0034	[₩] 0.001•7	<b>@</b> :0005,*^>	
	R1 (stream, 1st)	0.0143	0.0143	0	~0.01 <b>4</b> 2~	
	R3 (stream, 1st)	0.0067	0.0966	*W0065 U	() ()(1)(65)	
	R4 (stream, 1st)	0.0280	0, <b>0</b> 2,80 -	(©n 02&n(V)	0.0279 4	
			. \\		S X	
		.e		~ ~	*	
Multiple a	application_	Ő				

Table 9.2.5-21: Summary of FOCUS Step 4 PEC values of detramethron after multiple application in winter wheat SD and RO denote spray drift and runoff buffer, respectively

Buffer			PEC w	[μ <b>g</b> /L] ^{a)}	~ ~		ECsw	[μg/L] ^{b)}	
Width	Scenario 📡			duction,		13 ×	DriffRe	eduction	
& Type	.// .	0%	<b>50%</b> 6	75%	<b>90%</b> &	0%	50%	75%	90%
	D1 (ditch, 1,0)	<b>®</b> 094 ≴	J 0.0047		Ø.0010©	0.0028	0.0013	0.0006	0.0003
	D1 (stream (1st)	0.010	0.0054	0.0025	0.0010	0.0031	0.0016	0.0007	0.0002
	D2 (ditch 1st), O	0.0094	0%00047 ≈	$\sqrt{0.0024}$	0.00010	<b>№</b> 0028	0.0014	0.0007	0.0003
	D2 (stream, 1st)	0.0710	& 0.005 <b>7</b>	0.0927	0.0010	0.0033	0.0016	0.0007	0.0003
	D3 partch, low		0.0046	0.0023	∂0.001@\$ ³	0.0027	0.0013	0.0006	0.0003
	D4 (pond, Øst)	₹0.001 <u>2</u>	0.0006	×0.0003	0.000	QQ003	0.0002	< 0.0001	< 0.0001
5m ·	D4 (stream, 1st)	0.0098		$90.0024^{\circ}$	0,00009	<b>%</b> .0029	0.0014	0.0007	0.0002
SD 🔊	D5 (pond, 1st)	0.0013	©.0006 _{\sqrt}	0.0003	0,0001	$^{9}0.0003$	0.0002	< 0.0001	< 0.0001
	D5 (stream, st)	<b>%9</b> .0107 <u>/</u>	0.00\$3	0.003 0.0026 40.0025	0.0010	0.0032	0.0016	0.0007	0.0003
	D6 (ditch Pst)	У0.00 <b>99</b> >	0.0850	9.0025	0.0011	0.0029	0.0014	0.0007	0.0003
	R1 (pom, 1st) 🗐	0.00 2	0.0000 0.0006 0.004	0.0002	0.0001	0.0003	0.0002	< 0.0001	< 0.0001
	R1 (stream, 150)	Q <b>X</b> 00080	90.004 Y	0.0079	0.0007	0.0024	0.0012	0.0005	0.0002
	R3 (stream() st)	Ø.0114\square	0.0059	0.0028	0.0010	0.0034	0.0017	0.0008	0.0003
	R4 (stream, 1st) 2	0.0081	0,40,42	Ø.0020 [©]	0.0007	0.0024	0.0012	0.0005	0.0002
0	Ot (ditch, 1st)	0.0047	Ø.0023°	0.Q043	0.0003	0.0013	0.0006	0.0004	< 0.0001
	D1 (stream, 1st)	0.0054	0.0029	0.0013	0.0006	0.0016	0.0008	0.0003	0.0002
, W	D2 (ditch, 1st)	<b>4</b> 0.0047	0.0024	00013	0.0003	0.0014	0.0007	0.0004	< 0.0001
~	D2 (stream, 1st)	0.00 <b>5</b> 7	0.0030	\$0.0013	0.0007	0.0016	0.0008	0.0004	0.0002
	D3 (ditch, 1st)	0,0046	@.0023	0.0013	0.0003	0.0013	0.0006	0.0004	< 0.0001
	D4 (fond, 1st)	<b>Ø</b> 0009. [≈]	©0.000°	0.0003	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
10m	D49stream (st)	0.0050	0.0027	0.0012	0.0006	0.0014	0.0007	0.0003	0.0002
SD & RO	DS (pond 1st)	0.000	0.9004	0.0003	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
	D5 (sto am, 1st)	0,0055	0.0029	0.0013	0.0006	0.0016	0.0008	0.0003	0.0002
	D6 (ditch, lst)	<b>^0</b> ,0050	0.0025	0.0014	0.0004	0.0014	0.0007	0.0004	< 0.0001
\$	R (pond st) %	0.0009	0.0004	0.0002	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
	🕅 (stream, 1st)	0.0041	0.0022	0.0010	0.0005	0.0012	0.0006	0.0003	0.0001
Ò, 🔻	Ř3 (stream, 1st)	0.0059	0.0031	0.0014	0.0007	0.0017	0.0009	0.0004	0.0002
l C	R4 (stream, 1st)	0.0042	0.0022	0.0010	0.0005	0.0012	0.0006	0.0003	0.0001



Buffer			PECsw	[μg/L] ^{a)}			PECsw	[μg/L] ^{b)}	o
Width	Scenario		Drift Re	eduction			Drift Re	eduction	Q j
& Type		0%	50%	75%	90%	0%	50%	75%	<b>&gt;90%</b>
	D1 (ditch, 1st)	0.0023	0.0013	0.0007	0.0003	0.0006	0.0004	0.0002	P≥0.0001
	D1 (stream, 1st)	0.0029	0.0013	0.0006	0.0003	0.0008	0.00003	0.0002	<0,0001
	D2 (ditch, 1st)	0.0024	0.0013	0.0007	0.0003	0.0007	<b>©</b> .0004	0.0002	< 0.0001
	D2 (stream, 1st)	0.0030	0.0013	0.0007	0.0003	0.0008,2	0.0004	0.0002	<b>\$</b> 0.000 <b>₽</b>
	D3 (ditch, 1st)	0.0023	0.0013	0.0007	0,0003	0.000	0.0004	°0×0002°×	<0.0001
	D4 (pond, 1st)	0.0006	0.0003	0.0001	<b>3</b> 0.0001	0.00002	<0.0001	×0.0001	<0.0001
20m	D4 (stream, 1st)	0.0027	0.0012	0.0006	0.0003	0.0007	0.0003	0.0002	<0.0001
SD & RO	D5 (pond, 1st)	0.0006	0.0003	0.0000	< 0.0001	0,0002	<0.0001	<0.0001	Ø0.00Ø4√
	D5 (stream, 1st)	0.0029	0.0013	0.00	0.0003	Qó.000& °	0.0003	* 💖	/<0.0 <b>00</b> 1
	D6 (ditch, 1st)	0.0025	0.0014	0.0007	0.0004	0.0007	0.0004	$\bigcirc 0.00$	<000001
	R1 (pond, 1st)	0.0006	0.0002	0.0001	°<0.00001	0.0002	&0.00 <b>%</b> √	< 0.0001	£0.0001
	R1 (stream, 1st)	0.0022	0.0010	0.000 <i>5</i> ,	0.0002	0.0006	^J 0.00 <b>03</b>	0.0001	<0.0001
	R3 (stream, 1st)	0.0031	0.0014	0.0007	00003	00.000	0.0004	Ø.0002	<0.0001
	R4 (stream, 1st)	0.0022	0.00 <b>.td</b>	<b>0,0</b> 0005 ₽	\$.0002	0.0006	<b>Q</b> 0003	0.00	<000001
	D1 (ditch, 1st)	0.0017	0.0007	<b>%</b> .0003	<0.0001	0.00005 %	<b>9</b> 0.000	<0.0001	<b>20</b> .0001
	D1 (stream, 1st)	0.0019	<b>Q</b> Ø010&	>0.00 <b>Q</b> 3	020003	_√ 9.0005≪	0.0 <b>00</b> 2		<b>○</b> 0.0001
	D2 (ditch, 1st)	0.0017	Ø⁄.000 <b>%</b> /	0,0003	<b>\$0</b> .0001@		0.0002	<b>Ç</b> Ó.000 <b>1</b>	< 0.0001
	D2 (stream, 1st)	0.0020		0.0003	0.0003	0.0005	0.0003	<0.0001	< 0.0001
	D3 (ditch, 1st)	0.001%	0.0007	Ø.0003©		<b>9</b> .9004	$\bigcirc 0.000$	<0.0001	< 0.0001
	D4 (pond, 1st)	0.0004	. 0.0003 ⁴	0.00	<0.0001	$30.0001^{\circ}$	<0.0001	<b>\$0</b> .0001	< 0.0001
30m	D4 (stream, 1st)	0.0018	0.0000	0.0003	0.0003		0.0002	@0.0001	< 0.0001
SD & RO	D5 (pond, 1st)	0.0004	0.0093	<b>9.0</b> 001	©<0.000°1 ³	<0.0001	‰#0000 €	< 0.0001	< 0.0001
	D5 (stream, 1st)	0.0019	0.00010	Ø.000 <b>3</b>	0.0003	<b>10</b> 0005	0.00 <b>03</b>	< 0.0001	< 0.0001
	D6 (ditch, 1st)	0.0 <del>0</del> )18	0.0007	0.0004	<0.0003 <0.0001 <0.0001	0.0005	0.0002	< 0.0001	< 0.0001
	R1 (pond, 1st)	<b>9</b> 9004 ≰	√0.00 <u>0</u> 2 ¯	0,0001	[/×0.00010]	<0.00001	<b>\$0</b> 0001	< 0.0001	< 0.0001
	R1 (stream@st)	, 0.001 <b>5</b> \$	0.0007	Ø0002 <u>~</u>	0.0002	0.0004	<b>7</b> .0002	< 0.0001	< 0.0001
	R3 (stream, 1st)	0.0 <b>02</b>	<b>0€0</b> 010 ∧	_0.00@ <b>\$</b> Q	0.00003	<b>0</b> ,0006	0.0003	< 0.0001	< 0.0001
	R4 (stream, 1st)	0.0015	(0.0007)	0.0002	0:0002	©0.00 <b>0</b>	0.0002	< 0.0001	< 0.0001

a) maximum PS sw varies including the amount of deltamethin adsorbed to suspended solids

a) maximum PECsw values including the amount of detamethin adsorbed to suspended solids
b) maximum PECsw values not including the amount of detamethin adsorbed to suspended solids, i.e. the concentration of dissolved detamethrin only





Buffer Width	Scenario		PECsed Drift Re	[µg/kg]  eduction	
& Type		0%	50%	75%	90%
	D1 (ditch, 1st)	0.0717	0.0358	0.0178	0.0076
	D1 (stream, 1st)	0.0157	0.0079	0.0036	0.0013
	D2 (ditch, 1st)	0.0734	0.0367	0.0183	0.0079
	D2 (stream, 1st)	0.0656	0.0338	0.0159	0.0060
	D3 (ditch, 1st)	0.0495	0.0244	0.0121	0.0051
	D4 (pond, 1st)	0.0317	0.0158	0.0063	0.0032
5m	D4 (stream, 1st)	0.0061	0.0031	0.0014	0.0005
SD	D5 (pond, 1st)	0.0315	0.0157	0.0063	0.0031
	D5 (stream, 1st)	0.0076	0.0038	0.0017	0.000 🚱
	D6 (ditch, 1st)	0.0991	0.0495	Ø.0248	0.01,06
	R1 (pond, 1st)	0.0438	0.0329 //	0.0264	0.0243
	R1 (stream, 1st)	0.6410	0.6400	0.6400	Ø.6400\$
	R3 (stream, 1st)	0.2550	0.2540	0.2530	0.2530
	R4 (stream, 1st)	1.152	1,15	9.151 C	1.154
	D1 (ditch, 1st)	0.0358	0:0178.	× 0.0102	0.0025
	D1 (atten, 1st) D1 (stream, 1st)	0.0338	Ø.004k	0.0102	0.0008°
	D2 (ditch, 1st)	0.0079	0.0183	0. <b>30</b> 17	0.0026
	D2 (ditch, 1st) D2 (stream, 1st)	0.0338	0.0199	0.0080	0.0040
	D3 (ditch, 1st)	0.03340	0.0199 0@0121 _@	0.0080	0.0017
		0.0244	0.0095		©0.003®
10m	D4 (pond, 1st)			0.6963	
SD &	D4 (stream, 1st)	0.00031	0.000	0.0007	0.0003
RO	D5 (pond, 1st)	0.0220	0.0094	©0.0063©	0.0031
	D5 (stream, 1st) %	y %	Ø0020 S	0.0008	0.0004
	D6 (ditch, 1st)	0.0495	0.0248	0.041 0.070 ×	0.0035
	R1 (pond, 1st)	ØØ225 ≪	0.0105	0.0078	0.0055
	R1 (stream, 184)	0.096	0.6964	√0.0962°	0,0962
	R3 (stream 1st)	0.0393	<b>10</b> /0387	0.0382	Ø.0381
	R4 (stream, 1st)	0.1730	0.1730	0.1.730	0.1730
	D1 (ditch, 1st)	<b>⊘</b> 0178 ℂ	0.0002	9.0051	0.0025
	D1 (stream, 18t)	0.0041	0.0017	0.0008	0.0004 ×
	D2 (ditch, 1st)	0.0183	<b>5</b> 0105 ○	0.0052	Ø0.00260
Ž	Q2 (stream, 1st)	07779	0.0080	80040	0.0030
·	D3 (ditch, 1st)	%00121 <u></u>	0.0088	0.0034	0.0917
20m	D4 (pond, 19)	0.0158	0.0063	V 0.003 <b>2</b>	<0.0001
SD &	D4 (stream, 1st)	0.0096	<b>40</b> .0007	0.0003	0.0002
RO	D4 (stream, 1st) A D5 (pond, 1st) Q D5 (stream, 1st)	0.0157	0.0063/	0.0003 00031 0.0004	× < 0.0001
	D5 (stream, lst)	9.0020	0.49008		0.0002
	D6 (ditch, 1st)	0.0248 0.0056 0.0324	19901141 <u>                                  </u>	0.0097 0.0035	0.0035
	R (pond, 1st)	0.0086	Ø.0065	0.40035	0.0012
d	tel (stream, 1st)	0.6324	0.0322	0.0321	0.0321
	R3 (stream, 1st)	0.0134	0.6030	0.0128	0.0127
	R4 (stream, 1st)	× 0.0389	640378	0.05//	0.0577
	R3 (stream, 1st) R4 (stream, 1st)		\$\partial \partial .0577	0.0577	



Buffer		PECsed [μg/kg]			
Width	Scenario	00/	Drift Re	Eduction	000/
& Type	D1 (1'; 1 1 1)	0%	50%	75%	90%
Buffer Width & Type  30m SD & RO  CP 9.3 For info  CP 9.4 There at Therefo	D1 (ditch, 1st)	0.0127	0.0051	0.0025	<0.0001
	D1 (stream, 1st)	0.0027	0.0013	0.0004	0.0004 <0.0001
	D2 (ctream 1ct)	0.0131	0.0032	0.0020	0.0001
	D3 (ditch 1st)	0.0119	0.0000	0.0020	<0.0020
	D4 (nond 1st)	0.0086	0.0054	0.0017	<0.0001
	D4 (stream 1st)	0.0033	0.0005	0.0032	0.0001
	D5 (pond 1st)	0.0010	0.0063	0.0034	<0.0002
	D5 (stream 1st)	0.0031	0.0005	0.0002	0.000
	D6 (ditch 1st)	0.0013	0.0000	Ø0035	<0%0001
	R1 (pond. 1st)	0.0095	0.0065	0.0035	0.0012
	R1 (stream, 1st)	0.0323	0.0322	0.0321	20.0321C
	R3 (stream, 1st)	0.0131	0.0129	040127	0.0120
	R4 (stream, 1st)	0.0579	0.0 <del>5/</del> 7	∞ <b>9</b> .0577	0.0577
For info	rmation on the fat	te and belfa	VIOOT IN AIF	please refe	er to MCA
CI 9.3.	.i Koute al		uegrauai	igh III au	anu tran
For info	rmation on route	and rate of	degradation	n in air∕and	l tramsport
Section	7, data points 🔊	.1 ality /.3.2			A O
		L . 8			, O
<b>CP 9.4</b>	Estimat	on of con	centration	ns for oth	ex routes
There a	ra no at Par roupe	of exposure	if the arou	disk tic use	d according
Therefo	re no further estin	or Oxposuc	considered	necessay	
THETETO			Considered	successary.	
,	J Ö			\$ 1	
Ø.					
	\$°	4 5			<u>a</u>
	<u> </u>	<b>V</b>		<i>y</i>	
		, J			Ş
	(7/ n (( )) *		I ()	, O '0	r
				<b>*</b>	
		nåtions age			
	re no furthefæstin			duer is use.	

There are no other routes of exposure if the product is used according to good agricultural practice. Therefore no further estimations are considered pecessary.