

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM150100044601

Email: ee.shenzhen@sgs.com Page: 1 of 97

FCC REPORT

Application No: SZEM1501000446CR

Applicant: Changshu Shengtai Imp & Exp Co. Ltd.

Manufacturer: Shenzhen Silver Technology Co. Ltd.

Factory: Changshu Shengtai Imp & Exp. Co. Ltd.

Product Name: Rolling Case with Blue Tooth Speaker

Model No.(EUT): ST-201DHF-G

FCC ID: 2AD57201MDK-1

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-01-29

Date of Test: 2015-01-30 to 2015-02-05

Date of Issue: 2015-02-10

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM150100044601

Page: 2 of 97

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
00		2015-02-10		Original			

Authorized for issue by:		
Tested By	Eric Fu	2015-02-05
	(Eric Fu) /Project Engineer	Date
Prepared By	Hedy Wen	2015-02-10
, ,	(Hedy Wen) /Clerk	Date
Checked By	Emen-Li	2015-02-10
	(Emen Li) /Reviewer	Date

Report No.: SZEM150100044601

Page: 3 of 97

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10 (2009)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Report No.: SZEM150100044601

Page: 4 of 97

4 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3	TE	EST SUMMARY	3
4	CC	ONTENTS	4
5	GI	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST ENVIRONMENT	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	12
	6.2	CONDUCTED EMISSIONS	13
	6.3	CONDUCTED PEAK OUTPUT POWER	17
	6.4	20dB Occupy Bandwidth	24
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.9	SPURIOUS RF CONDUCTED EMISSIONS	
	6.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
	6.11	RADIATED SPURIOUS EMISSION	
		11.1 Radiated Emission below 1 GHz	
		11.2 Transmitter Emission above 1GHz	
	6.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	Pŀ	HOTOGRAPHS - EUT TEST SETUP	96
	7.1	CONDUCTED EMISSION	96
	7.2	RADIATED EMISSION	96
	7.3	RADIATED SPURIOUS EMISSION	97
8	Pŀ	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	97

Report No.: SZEM150100044601

Page: 5 of 97

5 General Information

5.1 Client Information

Applicant:	Changshu Shengtai Imp & Exp Co. Ltd.		
Address of Applicant:	No. 8 Qing Nian Road, D District, Changkun Industrial Park, Sha-jia-bang Town, Changshu Jiangsu.		
Manufacturer:	Shenzhen Silver Technology Co. Ltd.		
Address of Manufacturer:	Building No.2, QiYu Industrial Park, Bao'an Shenzhen.		
Factory:	Changshu Shengtai Imp & Exp. Co. Ltd.		
Address of Factory:	No. 8 Qing Nian Road, D District, Changkun Industrial Park, Sha-jia-bang Town, Changshu Jiangsu.		

5.2 General Description of EUT

Product Name:	Rolling Case with Blue Tooth Speaker
Model No.:	ST-201DHF-G
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V2.1+EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
EUT Function:	Rolling Case with Blue Tooth Speaker
Test Power Grade:	ClassII (manufacturer declare)
Test Software of EUT:	CBT(manufacturer declare)
Antenna Type:	Integral
Antenna Gain:	1.08dBi
Power Supply:	AC 90~220V 50-60Hz
Battery:	DC 3.7V/1200mA
Test Voltage:	AC120V~60Hz

Report No.: SZEM150100044601

Page: 6 of 97

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The Lowest channel	2402MHz	
The Middle channel	2441MHz	
The Highest channel	2480MHz	

Report No.: SZEM150100044601

Page: 7 of 97

5.3 Test Environment

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	1020mbar			

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150100044601

Page: 8 of 97

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150100044601

Page: 9 of 97

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-06-10		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16		
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16		

Report No.: SZEM150100044601

Page: 10 of 97

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24	
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29	
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29	
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29	
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29	
13	Band filter	Amindeon	82346	SEL0094	2015-05-16	
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16	
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24	
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04	

Report No.: SZEM150100044601

Page: 11 of 97

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16
8	Band filter	amideon	82346	SEL0094	2015-05-16
9	POWER METER	R&S	NRVS	SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM150100044601

Page: 12 of 97

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.08dBi.

Report No.: SZEM150100044601

Page: 13 of 97

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2009			
Test Frequency Range:	150kHz to 30MHz			
Limit:	Fraguenov rango (MIII-)	Limit (c	lBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithr	n of the frequency.		_
Test Procedure:	The mains terminal disturb room.	pance voltage test was	conducted in a shi	elded
	 The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the result of the second reference plane. A placed on the horizontal ground reference plane. A placed on the horizontal ground reference with the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and born mounted on top of the ground reference plane in the closest points of the Land associated equipments. In order to find the maximum and all of the interface C63.10: 2009 on conducted. 	letwork) which provides cables of all other SN 2, which was bonde as the LISN 1 for the was used to connect rating of the LISN was raced upon a non-metal and for floor-standing alround reference plane. It has vertical ground reference plane was bonded to a ground refund reference plane. To LISN 1 and the EUT. At was at least 0.8 m from the relative cables must be chain	is a 500/50µH + 50 I units of the EUT and to the ground reference unit being measure multiple power cables not exceeded. Ilic table 0.8m above rrangement, the EUT erence plane. The result of the horizontal graph from the boundary of the erence plane for Lend his distance was betall other units of the mather LISN 2.	e the cound of the LISNs ween EUT

Report No.: SZEM150100044601

Page: 14 of 97

Report No.: SZEM150100044601

Page: 15 of 97

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition : 47 CFR PART 15 B AV CE LINE

Job.No : 0446CR

	Freq		LISN Factor					
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.23533	0.02	9.70	33.89	43.60	52.26	-8.66	Peak
2 @	0.39344	0.01	9.79	34.26	44.06	47.99	-3.93	Peak
3	0.70096	0.02	9.80	30.21	40.03	46.00	-5.97	Peak
4	1.888	0.02	9.80	30.42	40.24	46.00	-5.76	Peak
5	3.779	0.02	9.87	28.35	38.23	46.00	-7.77	Peak
6	8.062	0.01	9.90	23.22	33.13	50.00	-16.87	Peak

Report No.: SZEM150100044601

Page: 16 of 97

Neutral line:

Site : Shielding Room

Condition : 47 CFR PART 15 B AV CE NEUTRAL

Job.No : 0446CR

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.23533	0.02	9.70	32.19	41.90	52.26	-10.36	Peak
2 @	0.47360	0.01	9.80	33.08	42.89	46.45	-3.56	Peak
3	0.95313	0.02	9.80	28.52	38.34	46.00	-7.66	Peak
4	1.888	0.02	9.80	29.09	38.91	46.00	-7.09	Peak
5	3.779	0.02	9.87	30.40	40.29	46.00	-5.71	Peak
6	10.905	0.01	10.00	25.19	35.20	50.00	-14.80	Peak

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM150100044601

Page: 17 of 97

6.3 Conducted Peak Output Power

Report No.: SZEM150100044601

Page: 18 of 97

Measurement Data

	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	5.82	20.00	Pass			
Middle	5.62	20.00	Pass			
Highest	5.63	20.00	Pass			
	π/4DQPSK m	node				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	4.90	20.00	Pass			
Middle	4.70	20.00	Pass			
Highest	4.69	20.00	Pass			
	8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	4.84	20.00	Pass			
Middle	4.62	20.00	Pass			
Highest	4.60	20.00	Pass			

Report No.: SZEM150100044601

Page: 19 of 97

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM150100044601

Page: 20 of 97

Test mode: GFSK Test channel: Highest

Report No.: SZEM150100044601

Page: 21 of 97

Test mode: π/4DQPSK Test channel: Middle

Report No.: SZEM150100044601

Page: 22 of 97

Test mode: 8DPSK Test channel: Lowest

Test mode:	8DPSK	Test channel:	Middle
	02. 0		

Report No.: SZEM150100044601

Page: 23 of 97

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 24 of 97

6.4 20dB Occupy Bandwidth

Measurement Data

Toot channel	2	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4DQPSK	8DPSK		
Lowest	1052.885	1125.000	1221.154		
Middle	1052.885	1129.808	1221.154		
Highest	1052.885	1120.192	1221.154		

Report No.: SZEM150100044601

Page: 25 of 97

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 26 of 97

Test mode: GFSK Test channel: Highest

Report No.: SZEM150100044601

Page: 27 of 97

Test mode: π/4DQPSK Test channel: Middle

Report No.: SZEM150100044601

Page: 28 of 97

Test mode: 8DPSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 29 of 97

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 30 of 97

6.5 Carrier Frequencies Separation

Report No.: SZEM150100044601

Page: 31 of 97

Measurement Data

	GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1002	≥702	Pass			
Middle	1002	≥702	Pass			
Highest	1002	≥702	Pass			
	π/4DQPSK m	node				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1002	≥753	Pass			
Middle	1002	≥753	Pass			
Highest	1002	Pass				
	8DPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1002	≥814	Pass			
Middle	1002	≥814	Pass			
Highest	1002	≥814	Pass			

Note: According to section 6.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	1052.885	702
π/4DQPSK	1129.808	753
8DPSK	1221.154	814

Report No.: SZEM150100044601

Page: 32 of 97

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM150100044601

Page: 33 of 97

Test mode: GFSK Test channel: Highest

Report No.: SZEM150100044601

Page: 34 of 97

Test mode: π/4DQPSK Test channel: Middle

Report No.: SZEM150100044601

Page: 35 of 97

Test mode: 8DPSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 36 of 97

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 37 of 97

6.6 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Report No.: SZEM150100044601

Page: 38 of 97

Test plot as follows:

Test mode: GFSK

Report No.: SZEM150100044601

Page: 39 of 97

Test mode: 8DPSK

Report No.: SZEM150100044601

Page: 40 of 97

6.7 Dwell Time

Report No.: SZEM150100044601

Page: 41 of 97

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.12	0.4
	DH3	0.21	0.4
	DH5	0.29	0.4
π/4DQPSK	2-DH1	0.11	0.4
	2-DH3	0.15	0.4
	2-DH5	0.17	0.4
8DPSK	3-DH1	0.13	0.4
	3-DH3	0.17	0.4
	3-DH5	0.17	0.4

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

On (ms)*total number=dwell time (ms)

The middle channel (2441MHz), as below:

DH1 time slot=0.393(ms)*total number=121.83(ms)

DH3 time slot=1.611(ms)* total number =209.43(ms)

DH5 time slot=2.885(ms)* total number =288.50(ms)

2-DH1 time slot=0.397(ms)*total number=111.16(ms)

2-DH3 time slot= $1.631(ms)^*$ total number =146.79(ms)

2-DH5 time slot=2.881(ms)* total number =172.86(ms)

3-DH1 time slot=0.401(ms)*total number=128.32(ms)

3-DH3 time slot=1.651(ms)* total number =165.10(ms)

3-DH5 time slot=2.901(ms)* total number =174.06(ms)

Report No.: SZEM150100044601

Page: 42 of 97

Test plot as follows:

Test Packet:	DH1

Report No.: SZEM150100044601

Page: 43 of 97

Test Packet: DH3

Report No.: SZEM150100044601

Page: 44 of 97

Report No.: SZEM150100044601

Page: 45 of 97

Test Packet: 2-DH1

Report No.: SZEM150100044601

Page: 46 of 97

Test Packet: 2-DH3

Report No.: SZEM150100044601

Page: 47 of 97

Test Packet: 2-DH5

Report No.: SZEM150100044601

Page: 48 of 97

Report No.: SZEM150100044601

Page: 49 of 97

Test Packet: 3-DH3

Report No.: SZEM150100044601

Page: 50 of 97

Test Packet: 3-DH5

Report No.: SZEM150100044601

Page: 51 of 97

6.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009	
Test Setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

Report No.: SZEM150100044601

Page: 52 of 97

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 53 of 97

Test mode: GFSK Test channel: Highest

Report No.: SZEM150100044601

Page: 54 of 97

Test mode: π/4DQPSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 55 of 97

Test mode: π/4DQPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 56 of 97

Test mode: 8DPSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 57 of 97

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 58 of 97

6.9 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

Report No.: SZEM150100044601

Page: 59 of 97

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 60 of 97

Report No.: SZEM150100044601

Page: 61 of 97

Test mode: GFSK Test channel: Middle

Report No.: SZEM150100044601

Page: 62 of 97

Report No.: SZEM150100044601

Page: 63 of 97

Test mode: GFSK Test channel: Highest

Report No.: SZEM150100044601

Page: 64 of 97

Report No.: SZEM150100044601

Page: 65 of 97

Test mode: π/4DQPSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 66 of 97

Report No.: SZEM150100044601

Page: 67 of 97

Test mode: π/4DQPSK Test channel: Middle

Report No.: SZEM150100044601

Page: 68 of 97

Report No.: SZEM150100044601

Page: 69 of 97

Test mode: π/4DQPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 70 of 97

Report No.: SZEM150100044601

Page: 71 of 97

Test mode: 8DPSK Test channel: Lowest

Report No.: SZEM150100044601

Page: 72 of 97

Report No.: SZEM150100044601

Page: 73 of 97

Test mode: 8DPSK Test channel: Middle

Report No.: SZEM150100044601

Page: 74 of 97

Report No.: SZEM150100044601

Page: 75 of 97

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM150100044601

Page: 76 of 97

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM150100044601

Page: 77 of 97

6.10 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM150100044601

Page: 78 of 97

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SZEM150100044601

Page: 79 of 97

6.11 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15.	.205						
Test Method:	ANSI C63.10: 2009									
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)					
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	Z	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	Z	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	3MHz	Peak				
	Above Tariz		Peak	1MHz	10Hz	Average				
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n				
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30				
	1.705MHz-30MHz		30	-	-	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz		200	46.0	Quasi-peak	3				
	960MHz-1GHz 500		500	54.0	Quasi-peak	3				
	Above 1GHz		500	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequence emissions is 20dB above the maximum permitted average emission limapplicable to the equipment under test. This peak limit applies to the top peak emission level radiated by the device.									

Report No.: SZEM150100044601

Page: 80 of 97

Test Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Report No.: SZEM150100044601

Page: 81 of 97

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case. Transmitting mode. For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM150100044601

Page: 82 of 97

6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)						
Test mode:	Transmitting	Vertical				

Condition: 47 CFR PART 15B 3m 3142C Vertical

Job No. : 446CR Test mode: TX mode

3 4 5

Freq			Preamp Factor				
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
31.90	0.60	17.64	27.35	47.80	38.69	40.00	-1.31
82.38	1.10	7.94	27.23	51.31	33.12	40.00	-6.88
101.81	1.21	9.01	27.19	49.67	32.70	43.50	-10.80
139.85	1.30	8.09	26.96	52.60	35.03	43.50	-8.47
480.00	2.53	17.80	27.60	48.14	40.87	46.00	-5.13
671.79	2.85	21.30	27.45	38.10	34.80	46.00	-11.20

Report No.: SZEM150100044601

Page: 83 of 97

Test mode: Transmitting Horizontal

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL

Job No. : 446CR Test mode: TX mode

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	0.60	17.61	27.35	38.11	28.97	40.00	-11.03
2	94.10	1.14	8.86	27.21	42.12	24.91	43.50	-18.59
3	173.81	1.36	9.65	26.80	38.87	23.08	43.50	-20.42
4	287.99	1.85	13.37	26.43	40.54	29.33	46.00	-16.67
5	383.93	2.16	16.11	27.03	39.36	30.60	46.00	-15.40
6	480.53	2.53	17.80	27.60	48.07	40.80	46.00	-5.20

Report No.: SZEM150100044601

Page: 84 of 97

6.11.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH1	I) Tes	t channel:	Lowes	Lowest Remark: Pe		Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	Polarization
3641.878	6.89	33.03	38.80	47.31	48.43	74	ļ	-25.57	Vertical
4804.000	6.42	34.70	39.24	48.81	50.69	74	ŀ	-23.31	Vertical
6069.413	8.06	36.22	39.18	47.45	52.55	74	ļ	-21.45	Vertical
7206.000	8.92	35.63	39.07	45.68	51.16	74	ļ	-22.84	Vertical
9608.000	9.99	37.33	37.93	42.96	52.35	74	ŀ	-21.65	Vertical
11438.810	10.38	38.18	38.44	42.93	53.05	74	ŀ	-20.95	Vertical
3537.998	6.95	32.93	38.76	47.45	48.57	74	ļ	-25.43	Horizontal
4804.000	6.42	34.70	39.24	48.68	50.56	74	ŀ	-23.44	Horizontal
6034.386	8.07	36.26	39.18	48.64	53.79	74	ļ	-20.21	Horizontal
7206.000	8.92	35.63	39.07	44.95	50.43	74	ļ.	-23.57	Horizontal
9608.000	9.99	37.33	37.93	42.32	51.71	74	l	-22.29	Horizontal
11438.810	10.38	38.18	38.44	43.29	53.41	74	1	-20.59	Horizontal

Worse case	mode:	GFSK(DH1)		st channel:	Midd	le	Re	emark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit I (dBu\		Over Limit (dB)	Polarization
3641.878	6.89	33.03	38.80	47.17	48.29	74	ļ	-25.71	Vertical
4882.000	6.59	34.78	39.26	48.74	50.85	74	ļ	-23.15	Vertical
6034.386	8.07	36.26	39.18	48.64	53.79	74	ļ	-20.21	Vertical
7323.000	9.08	35.50	39.06	46.69	52.21	74	ļ	-21.79	Vertical
9764.000	9.90	37.81	37.84	42.12	51.99	74	ļ	-22.01	Vertical
11274.500	10.34	38.13	38.36	42.60	52.71	74	ļ	-21.29	Vertical
3737.975	6.83	33.10	38.84	46.62	47.71	74	ļ	-26.29	Horizontal
4882.000	6.59	34.78	39.26	48.50	50.61	74	ŀ	-23.39	Horizontal
5982.226	8.05	36.27	39.19	47.75	52.88	74	ļ	-21.12	Horizontal
7323.000	9.08	35.50	39.06	44.89	50.41	74	l.	-23.59	Horizontal
9764.000	9.90	37.81	37.84	41.36	51.23	74		-22.77	Horizontal
11339.940	10.36	38.14	38.39	42.81	52.92	74		-21.08	Horizontal

Report No.: SZEM150100044601

Page: 85 of 97

Worse case	mode:	GFSK(DH1) Test channel:		Highe	est	Re	emark:	Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Pream Factor (dB)		Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	Polarization
3808.951	6.79	33.17	38.87	48.01	49.10	74	ļ	-24.90	Vertical
4960.000	6.76	34.86	39.29	48.10	50.43	74	ļ	-23.57	Vertical
5947.702	8.00	36.20	39.19	47.56	52.57	74	ļ	-21.43	Vertical
7440.000	9.23	35.43	39.05	46.74	52.35	74	ļ	-21.65	Vertical
9920.000	9.81	38.27	37.75	41.66	51.99	74	ļ	-22.01	Vertical
11538.550	10.41	38.25	38.48	41.83	52.01	74	ļ	-21.99	Vertical
3716.403	6.84	33.09	38.84	47.29	48.38	74	ļ	-25.62	Horizontal
4960.000	6.76	34.86	39.29	48.23	50.56	74	ļ	-23.44	Horizontal
5999.562	8.08	36.30	39.18	47.22	52.42	74	ļ	-21.58	Horizontal
7440.000	9.23	35.43	39.05	44.87	50.48	74	ļ	-23.52	Horizontal
9920.000	9.81	38.27	37.75	41.66	51.99	74	ļ	-22.01	Horizontal
11389.270	10.37	38.15	38.41	42.93	53.04	74	ļ.	-20.96	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM150100044601

Page: 86 of 97

6.12Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2009								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						
Test Setup:									

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM150100044601

Page: 87 of 97

Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Transmitting mode. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM150100044601

Page: 88 of 97

Test plot as follows:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 0446CR

Mode: : 2402 Band edge

Ant Preamp Cable Read Limit 0ver Freq Loss Factor Factor Level Le∨el line limit MHz dΒ dBuV dBuV/m dBuV/m dB/m dΒ 2390.00 4.90 32.35 38.46 57.04 55.83 74.00 - 18.17 2 pp 2402.19 4.92 32.41 38.46 102.98 101.85 74.00 27.85

Report No.: SZEM150100044601

89 of 97 Page:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Limit

: chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 0446CR

Mode: : 2402 Band edge

Cable Ant Preamp Read 0∨er Freq Loss Factor Factor Level Level Line Limit MHz dBuV dBuV/m dBuV/m dB dB/m dΒ dB 2390.00 4.90 32.35 38.46 56.23 55.02 74.00 -18.98 2402.19 4.92 32.41 38.46 102.33 101.20 74.00 27.20

Report No.: SZEM150100044601

Page: 90 of 97

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Vertical

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 0446CR

Mode: : 2402 Band edge Cable Ant

	Freq			Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp	2390.00 2401.80							

Report No.: SZEM150100044601

Page: 91 of 97

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Horizontal

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 0446CR

Mode: : 2402 Band edge

	Freq			Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp	2390.00 2401.80							

Report No.: SZEM150100044601

Page: 92 of 97

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 0446CR

Mode: : 2480 Band edge

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit MHz dBuV dBuV/m dBuV/m dB dB/m dΒ dB 2480.01 5.02 32.44 38.47 99.32 98.31 74.00 24.31 32.44 38.47 55.79 54.79

Report No.: SZEM150100044601

Page: 93 of 97

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 0446CR

Mode: : 2480 Band edge

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Le∨el Level Line Limit MHz dB dΒ dBuV dBuV/m dBuV/m dΒ dB/m 1 pp 2479.81 5.02 32.44 38.47 101.08 100.07 74.00 26.07 32.44 38.47 56.63 55.63 74.00 -18.37

Report No.: SZEM150100044601

Page: 94 of 97

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Vertical

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Cable

Job No: : 0446CR

Mode: : 2480 Band edge

Freq Loss Factor Factor Le∨el Le∨el Line Limit MHz dB dΒ dBuV dBuV/m dBuV/m dΒ dB/m 1 pp 2480.20 5.02 32.44 38.47 68.87 67.86 54.00 13.86 32.44 38.47 43.77 42.77 54.00 - 11.23

Read

Limit

0ver

Ant Preamp

Report No.: SZEM150100044601

Page: 95 of 97

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Horizontal

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 0446CR

Mode: : 2480 Band edge

		Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Loss	Factor	Factor	Le∨el	Level	Line	Limit
	_							
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
							-	
1 рр	2479.71	5.02	32.44	38.47	67.48	66.47	54.00	12.47
2	2483.50	5.03	32.44	38.47	44.66	43.66	54.00	-10.34

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM150100044601

Page: 96 of 97

7 Photographs - EUT Test Setup

Test model No.: ST-201DHF-G

7.1 Conducted Emission

7.2 Radiated Emission

Report No.: SZEM150100044601

Page: 97 of 97

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Test model No.: ST-201DHF-G

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1501000446CR.