Tabel 2. Kualitas Gambar yang Telah direkonstruksi (PSNR 1) dan Gambar yang Didekripsi secara langsung (PSNR 2)

	DHS1		DHS2		DHS3	
	PSNR 1	PSNR 2	PSNR 1	PSNR 2	PSNR 1	PSNR 2
Gambar 1	69,16	31,95	69,1607	28,57165	69,1607	26,40822
Gambar 2	69,19	26,52	69,19602	25,51501	69,19602	25,40996
Gambar 3	69,12	26,4	69,12931	25,50724	69,12931	25,42543
Gambar 4	69,18	25,22	69,18861	25,19485	69,18861	25,19485
Gambar 5	69,11	25,98	69,1189	25,98612	69,1189	25,98992
Gambar 6	69,41	28,83	69,41586	27,96458	69,41586	26,85564
Gambar 7	69,01	28,12	69,01511	27,35289	69,01511	26,48029
Gambar 8	69,29	28,33	69,29398	26,7831	69,29398	25,23355
Gambar 9	69,19	28,2	69,19284	26,62274	69,19284	25,09933
Gambar 10	69,17	25,91	69,177	25,61252	69,177	25,61252
Gambar 11	69,21	26,14	69,21086	25,78227	69,21086	25,78227
Gambar 12	69,15	25,54	69,15702	25,00996	69,15702	25,00996

5. Kesimpulan

Dalam tulisan ini, kami menyajikan metode enkripsi gambar di mana enkripsi gambar digabungkan dengan permutasi dinamis. Setelah enkripsi, korelasi antara piksel yang berdekatan dipertahankan dan skema RDH dapat dilakukan dalam gambar terenkripsi secara langsung. Selanjutnya, metode kami menyediakan kapasitas penyisipan besar dan kita dapat secara terbalik menanamkan pesan rahasia besar (diagnosis) ke dalam gambar terenkripsi secara langsung menggunakan skema RDH kami dan aman karena paling banyak N! pola yang berbeda harus dapat ditebak oleh penyerang untuk mendapatkan pengaturan asli dari sub-blok. Dengan menggunakan metode ini, proses enkripsi juga dapat dilakukan secara terpisah.

Daftar Pustaka

- [1] J. M. Barton. Method and apparatus for embedding authentication information within digital data, July 8 1997. US Patent 5,646,997.
- [2] F. Huang, J. Huang, and Y.-Q. Shi. New framework for reversible data hiding in encrypted domain. *IEEE Transactions on Information Forensics and Security*, 11(12):2777–2789, 2016.
- [3] S.-K. Lee, Y.-H. Suh, and Y.-S. Ho. Reversiblee image authentication based on watermarking. In *Multimedia* and *Expo*, 2006 IEEE International Conference on, pages 1321–1324. IEEE, 2006.
- [4] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su. Reversible data hiding. *IEEE Transactions on circuits and systems for video technology*, 16(3):354–362, 2006.
- [5] R. Ramaswamy and V. Arumugam. Lossless data hiding based on histogram modification. *Int. Arab J. Inf. Technol.*, 9(5):445–451, 2012.
- [6] J. Tian. Reversible data embedding using a difference expansion. *IEEE transactions on circuits and systems for video technology*, 13(8):890–896, 2003.
- [7] Z. Yin, B. Luo, and W. Hong. Separable and error-free reversible data hiding in encrypted image with high payload. *The Scientific World Journal*, 2014, 2014.

Lampiran

Lampiran dapat berupa detil data dan contoh lebih lengkapnya, data-data pendukung, detail hasil pengujian, analisis hasil pengujian, detail hasil survey, surat pernyataan dari tempat studi kasus, screenshot tampilan sistem, hasil kuesioner dan lain-lain.