线性代数笔记

刘承杰 南京大学软件学院

2021年7月23日

目录

1	行列式		1
	1.1	二阶与三阶行列式	1
	1.2	n 阶行列式	2
2	矩阵	· ·,向量	5
	2.1	矩阵和 n 维向量的概念	5
	2.2	矩阵运算	6
	2.3	分块矩阵	7
	2.4	初等变换与初等矩阵	8
	2.5	矩阵的秩	11
	2.6	可逆矩阵与伴随矩阵	11
	2.7	向量组的线性相关与线性无关	13

1 行列式

1.1 二阶与三阶行列式

定义 1.1 (二阶行列式) 将 4 个可以进行乘法与加法运算的元素 a, b, c, d 排成两行两列, 引用记号

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

并称之为二阶行列式。行列式也可简记为 Δ 、D等

定理 1.1 对于方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$
 (1)

记

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} \\ eb_{22} & a_{22} \end{vmatrix} = b_1a_{22} - a_{12}b_2$$

$$\Delta_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = a_{11}b_2 - b_1a_{21}$$

有如下结论:

- 1. 若 $\Delta \neq 0$,则方程组(1) 有唯一解: $x_1 = \frac{\Delta_1}{\Delta}, x_2 = \frac{\Delta_2}{\Delta}$
- 2. 若 $\Delta = 0$, 但 Δ_1, Δ_2 不全为零则方程组(1) 无解
- 3. 若 $\Delta = \Delta_1 = \Delta_2 = 0$, 则方程组(1)有无穷多组解

定义 1.2 (三阶行列式) 设有 9 个可以进行乘法和加法运算的元素排成三行三列, 引用记号

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

并称之为**三阶行列式**,其中 $a_{ij}(i,j=1,2,3)$ 为该行列式的元素。

定理 1.2 对于方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$
 (2)

记

1

有如下结论:

1. 若
$$\Delta \neq 0$$
, 则方程组(2)有唯一解 $x_1 = \frac{\Delta_1}{\Delta}, x_2 = \frac{\Delta_2}{\Delta}, x_3 = \frac{\Delta_3}{\Delta}$

- 2. 若 $\Delta = 0$, 而 $\Delta_1, \Delta_2, \Delta_3$ 不全为 0, 则方程组(2)无解
- 3. 若 $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$, 则方程组(2)可能无解也可能有无穷多组解

1.2 n 阶行列式

定义 1.3 (n 阶行列式) 设有 n^2 个可以进行加法和乘法运算的元素排成 n 行 n 列, 引用记号

$$D_n = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

称它为n 阶行列式, 它是一个算式, 有时也用记号 $|a_{ij}|_{n\times n}$ 表示。

其数值可归纳定义为: 当 n=1 时, 一阶行列式的值定义为 $D_1=\det(a_{11})=a_{11}$; 当 $n\geq 2$ 时,

$$D_n = a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} = \sum_{j=1}^n a_{1j}A_{1j}$$

其中

$$A_{ij} = (-1)^{i+j} M_{ij}$$

而

$$M_{ij} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

并称 M_{ij} 为元素 a_{ij} 的余子式, A_{ij} 为元素 a_{ij} 的代数余子式。显然 M_{ij} 为一个 n-1 阶的行列式,它是在 D_n 中划去元素 a_{ij} 所在的第 i 行和第 j 列后得到的一个行列式。

评论 三角行列式的值为主对角线上元素的乘积。

定义 1.4 (转置行列式) 设

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}, \quad A' = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

称 A' 为行列式 A 的**转置行列式**(也可以表示为 A^{T})。显然 A' 是行列式 A 的行和列互换之后得到的行列式。

定理 1.3 n 阶行列式的性质:

- 行列式与它的转置行列式的值相等。
- 对调两行(列)的位置,行列式的值相差一个负号
- 两行(列)相等的行列式的值为 0
- 行列式可以按任意一行(列)展开
- 行列式的任一行(列)元素的公因子可以提到行列式外面
- 若行列式的某两行(列)成比例,则该行列式的值为零
- 若行列式的第 i 行(列)的每一个元素都可以表示为两数的和,则该行列式可以表示为两个行列式之和
- 行列式任一行(列)的元素与另一行(列)元素的代数余子式对应乘积之和为零即,若设 $A = |a_{ij}|_{n \times n}$,则有

$$\sum_{k=1}^{n} a_{ik} A_{jk} = a_{i1} A_{j1} + a_{i2} A_{j2} + \dots + a_{in} A_{jn} = \begin{cases} A, & i = j \\ 0, & i \neq j \end{cases}$$

或

$$\sum_{k=1}^{n} a_{ki} A_{kj} = a_{1i} A_{1j} + a_{2i} A_{2j} + \dots + a_{ni} A_{nj} = \begin{cases} A, & i = j \\ 0, & i \neq j \end{cases}$$

定理 1.4 (克莱姆法则) 对于 n 元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_3 = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
(3)

若系数行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0$$

则方程组(3)有解,且解是唯一的,这个解可以表示为

$$x_j = \frac{D_j}{D} \qquad (j = 1, 2, \cdots, n)$$

其中 $D_j(j=1,2,\cdots,n)$ 是将 D 的第 j 列元素 $a_{1j},a_{2j},\cdots,a_{nj}$ 换成方程组右端的常数项 b_1,b_2,\cdots,b_n 所得到的行列式,即

$$D_{j} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & b_{1} & a_{1,j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,j-1} & b_{2} & a_{2,j+1} & \cdots & a_{2n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_{n} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$
 $(j = 1, 2, \dots, n)$

考虑方程组(3)的一个特殊情形,方程组(3)右端的常数项 b_1,b_2,\cdots,b_n 全部为零,即

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_3 = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_3 = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

$$(4)$$

这样的方程组称为齐次线性方程组,而方程组(3)称为非齐次线性方程组。

定理 1.5 含有 n 个未知数 n 个方程的齐次线性方程组(4)若有非零解,则它的系数行列式等于零。

2 矩阵,向量

2.1 矩阵和 n 维向量的概念

定义 **2.1** (矩阵) 有 $m \times n$ 个数 $a_{ij}(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$ 排成 m 行 n 列数表,外加括号,写成

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

叫做m行n列矩阵,简称 $m \times n$ **矩阵**。

定义 2.2 (n 维向量) n 个数 $a_1, a_2 \cdots, a_n$ 组成的有序数组

$$(a_1, a_2, \cdots, a_n)$$
 或 $\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$

称为n 维向量,前者称为行向量,后者称为列向量。

评论 几个特殊的矩阵:

设 $\mathbf{A} = (a_{ij})_{n \times n}$ 为 n 阶方阵,如果当 $i \neq j$ 时, $a_{ij} = 0$,即

$$m{A} = \left(egin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ dots & dots & dots \\ 0 & \cdots & 0 & a_{nn} \end{array}
ight)$$

则称 A 为对角矩阵。为了书写简洁起见,也经常用 $\operatorname{diag}(a_{11},a_{22},\cdots,a_{nn})$ 表示此对角矩阵 A。

如果对角矩阵 ${\bf A}$ 中的 $a_{11},a_{22},\cdots,a_{nn}=k$,则称 ${\bf A}$ 为数量矩阵,当 k=1 时,称为单位矩阵,记为 ${\bf E}$ 或 ${\bf I}$

设 $\mathbf{A} = (a_{ij})_{n \times n}$ 为 n 阶方阵,如果当 i > j 时, $a_{ij} = 0$,即

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

则称 A 为上三角形矩阵。类似地,可定义下三角形矩阵

$$\boldsymbol{B} = \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ b_{21} & b_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

设 $A = (a_{ij})_{n \times n}$ 为 n 阶方阵,如果矩阵的元素满足 $a_{ij} = a_{ji}(i, j = 1, 2, \dots, n)$,则称 A 为 对称矩阵;如果矩阵的元素满足 $a_{ij} = -a_{ji}(i, j = 1, 2, \dots, n)$,则称 A 为反对称矩阵。例如

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 5 \\ -1 & 5 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & -6 \\ -1 & 0 & -7 \\ 6 & 7 & 0 \end{pmatrix}$$

依次是对称矩阵和反对称矩阵。

定义 2.3 (转置矩阵) 把 $m \times n$ 矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

的行与列互换后得到一个 $n \times m$ 矩阵, 称为 A 的转置矩阵, 记为 A^{T} 或 A'。

定义 2.4 (方阵的行列式) 行列式

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

称为方阵 $A=(a_{ij})_{n\times n}$ 的行列式,记为 |A|。如果 $|A|\neq 0$,则称矩阵 A 是非异矩阵,如果 |A|=0,则称矩阵 A 是奇异矩阵或退化矩阵。

2.2 矩阵运算

定义 2.5 (矩阵的加法) 设 $\mathbf{A} = (a_{ij})_{m \times n}$ 与 $\mathbf{B} = (b_{ij})_{m \times n}$ 是两个同型矩阵, 矩阵 \mathbf{A} 和矩阵 \mathbf{B} 的和定义为 $(a_{ij} + b_{ij})_{m \times n}$, 记为 $\mathbf{A} + \mathbf{B}$:

$$\boldsymbol{A} + \boldsymbol{B} = (a_{ij} + b_{ij})_{m \times n}$$

定理 2.1 矩阵加法的性质:

1. 交換律: A + B = B + A

- 2. 结合律: (A+B)+C=A+(B+C)
- 3. 零矩阵:对任一矩阵 A, A+O=A=O+A (O与 A 是同型矩阵)
- 4. 负矩阵:对任一矩阵 $A=(a_{ij})$,可定义 $-A=(-a_{ij})$,称 -A 为 A 的负矩阵。显然 A+(-A)=O

定义 2.6 (矩阵的数乘) 数 k 与矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 相乘的积的定义为 $(ka_{ij})_{m \times n}$, 记为 $k\mathbf{A}$:

$$k\mathbf{A} = (ka_{ij})_{m \times n}$$

定理 2.2 (方阵的数乘与其行列式) 若 A 是 n 阶方阵, k 为任意数,则有 $|kA|=k^n|A|$

定义 2.7 (矩阵的乘法) 设 $A=(a_{ij})_{m\times l}$, $B=(b_{ij})_{l\times n}$, 则 A 与 B 的乘积 AB 定义为 $C=(c_{ij})_{m\times n}$, 其中

$$c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{il} b_{lj} \quad (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

评论 只有当 A 的列数和 B 的行数相等时,乘积 AB 才有意义,且乘积矩阵 C 的行数与矩阵 A 的行数相同,C 的列数与矩阵 B 的列数相同。

矩阵乘法不满足交换律和消去律,但满足结合律,数乘结合律和分配律。

定义 2.8 (矩阵多项式) 设 A 是 n 阶方阵,定义 $A^0 = E_n$, $A^1 = A$, $A^2 = AA$, \dots , $A^{k+1} = A^kA$ 其中 k 为正整数,这也就是说 A^k 是 k 个 A 连乘,称 A^k 是 k 产阵 A 的 k 次幂。再任取 m+1 个实数 a_0, a_1, \dots, a_m ,显然

$$f(\mathbf{A}) = a_0 \mathbf{E} + a_1 \mathbf{A} + \dots + a_m \mathbf{A}^m$$

仍为 n 阶矩阵。称 f(A) 为矩阵多项式

定理 2.3 转置矩阵的性质:

- 1. $(A^{T})^{T} = A; |A^{T}| = |A|$
- $2. (A + B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}$
- 3. $(k\mathbf{A})^{\mathrm{T}} = k\mathbf{A}^{\mathrm{T}}$
- 4. $(\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}$,该式还可以推广为 $(\boldsymbol{A}_{1}\boldsymbol{A}_{2}\cdots\boldsymbol{A}_{k})^{\mathrm{T}} = \boldsymbol{A}_{k}^{\mathrm{T}}\cdots\boldsymbol{A}_{2}^{\mathrm{T}}\boldsymbol{A}_{1}^{\mathrm{T}}$

2.3 分块矩阵

定义 2.9 (分块矩阵) 对于一个 $m \times n$ 矩阵,如果在行的方向分成 s 块,在列的方向分成 t 块,就得到 A 的一个 $s \times t$ 分块矩阵,记作

$$oldsymbol{A} = (oldsymbol{A}_{kl})_{s imes t} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} & \cdots & oldsymbol{A}_{1t} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} & \cdots & oldsymbol{A}_{2t} \ dots & dots & dots \ oldsymbol{A}_{s1} & oldsymbol{A}_{s2} & \cdots & oldsymbol{A}_{st} \end{pmatrix} & oldsymbol{m}_1 ilde{ au} \ oldsymbol{m}_2 ilde{ au} \ oldsymbol{n}_3 ilde{ au} \ oldsymbol{m}_3 ilde{ au} \ oldsymbol{m}_3 ilde{ au} \ oldsymbol{m}_3 ilde{ au} \ oldsymbol{m}_4 ilde{ au} \ oldsymbol{m}_5 ilde{ au} \ oldsymbol{$$

其中 $m_1+m_2+\cdots+m_s=m, n_1+n_2+\cdots+n_t=n$, 而 $\boldsymbol{A}_{kl}(k=1,2,\cdots,s;l=1,2,\cdots,t)$ 称 为 \boldsymbol{A} 的子块。

定理 2.4 分块矩阵的运算:

1. 分块矩阵的加法。设分块矩阵 $m{A}=(m{A}_{kl})_{s\times t}, m{B}=(m{B}_{kl})_{s\times t}$ 如果 $m{A}$ 与 $m{B}$ 对应的子块 $m{A}_{kl}$ 和 $m{B}_{kl}$ 都是同型矩阵,则

$$\boldsymbol{A} + \boldsymbol{B} = (\boldsymbol{A}_{kl} + \boldsymbol{B}_{kl})_{s \times t}$$

2. 分块矩阵的数乘。设分块矩阵 $A = (A_{kl})_{s \times t}$, k 是数,则

$$k\mathbf{A} = (k\mathbf{A}_{kl})_{s \times t}$$

3. 分块矩阵的乘法。设 $\mathbf{A} = (a_{ij})_{m \times n}$, $\mathbf{B} = (b_{ij})_{n \times p}$ 如果把 \mathbf{A} , \mathbf{B} 分别分块为 $r \times s$ 和 $s \times t$ 分块矩阵,且 \mathbf{A} 的列的分块法与 \mathbf{B} 的行的分块法完全相同,则

$$egin{aligned} oldsymbol{AB} = \left(egin{array}{cccc} oldsymbol{A}_{11} & oldsymbol{A}_{12} & \cdots & oldsymbol{A}_{1s} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} & \cdots & oldsymbol{A}_{2s} \ dots & dots & dots & dots \ oldsymbol{A}_{r1} & oldsymbol{A}_{r2} & \cdots & oldsymbol{A}_{rs} \end{array}
ight) \left(egin{array}{cccc} oldsymbol{B}_{11} & oldsymbol{B}_{12} & \cdots & oldsymbol{B}_{2t} \ dots & dots & dots & dots \ oldsymbol{B}_{s1} & oldsymbol{B}_{s2} & \cdots & oldsymbol{B}_{st} \end{array}
ight) = oldsymbol{C} = (oldsymbol{C}_{kl})_{r imes t} \end{aligned}$$

其中C是 $r \times t$ 分块矩阵,且

$$C_{kl} = A_{k1}B_{1l} + A_{k2}B_{2l} + \dots + A_{ks}B_{sl} = \sum_{i=1}^{s} A_{ki}B_{il}(k = 1, 2, \dots, r; l = 1, 2, \dots, t)$$

4. 分块矩阵的转置。 $s \times t$ 分块矩阵 $m{A} = (m{A}_{kl})_{s \times t}$ 的转置矩阵 $m{A}^{\mathrm{T}}$ 为 $t \times s$ 分块矩阵,如果记 $m{A}^{\mathrm{T}} = (m{B}_{lk})_{t \times s}$,则

$$\boldsymbol{B}_{lk} = \boldsymbol{A}_{kl}^{\mathrm{T}}(l=1,2,\cdots,t;k=1,2,\cdots,s)$$

5. 分块对角矩阵。设n 阶矩阵 A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即

$$oldsymbol{A} = \left(egin{array}{cccc} oldsymbol{A}_1 & & & & & \ & oldsymbol{A}_2 & & & \ & & \ddots & & \ & & & oldsymbol{A}_s \end{array}
ight)$$

其中 $oldsymbol{A}_i(i=1,2,\cdots.s)$ 都是方阵,则称 $oldsymbol{A}$ 为分块对角矩阵,也称**准对角矩阵**。

2.4 初等变换与初等矩阵

定义 2.10 (初等变换) 下面三种对矩阵的变换, 统称为矩阵的初等变换:

- 1. 对调变换: 互换矩阵 i,j 两行 (列), 记为 $r_i \leftrightarrow r_i (c_i \leftrightarrow c_i)$
- 2. 数乘变换: 用任意数 $k \neq 0$ 去乘矩阵的第 i 行 (列), 记为 $kr_i(kc_i)$

3. 倍加变换: 把矩阵的第i 行(列)的k 倍加到第j 行(列), 其中k 为任意数, 记为 $r_i + kr_i(c_i + kc_i)$

定义 2.11 (初等矩阵) 将单位矩阵 E 做一次初等变换得到的矩阵称为初等矩阵。

1. 初等对调矩阵

即是将单位矩阵的第 i 行与第 j 行对调后所得的矩阵。

2. 初等倍乘矩阵

$$m{E}(i(k)) = egin{pmatrix} 1 & & & & & \\ & \ddots & & & \\ & & k & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} & \leftarrow 第i行$$

其中 $k \neq 0$ 是任意数。既是将单位矩阵的第i个1换成k后所得的矩阵。

3. 初等倍加矩阵

$$m{E}(i,j(k)) = egin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & \cdots & k & & \\ & & & \ddots & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix} \leftarrow \hat{\pi}j \hat{\tau}$$

即是将单位矩阵的第i行第j列的元素换成k后所得的矩阵。

定理 2.5 (初等变换与初等矩阵) 设 A 是一个 $m \times n$ 矩阵, 对 A 施行一次初等行变换, 相当于在 A 的左边乘以一个相应的 m 阶初等矩阵; 对 A 施行一次初等行变换, 相当于在 A 的右边乘以一个相应的 n 阶初等矩阵。

评论 定理说法中"相应"的含义, 具体来说, 就是

- E(i,j)A:表示A的第i行与第j行互换;
- E(i(k))A: 表示 A 的第 i 行乘以 k;
- E(i, j(k))A: 表示 A 的第 j 行乘以 k 加到第 i 行上;
- AE(i,j): 表示 A 的第 i 列与第 j 列互换;
- AE(i(k)): 表示 A 的第 i 列乘以 k;
- AE(i, j(k)): 表示 A 的第 i 列乘以 k 加到第 j 列上.

定义 2.12 (行 (列) 等价矩阵,等价矩阵)如果矩阵 A 经过有限次初行等变换变成矩阵 B,则称矩阵 A 与 B 行等价,记作 $A \xrightarrow{r} B$;如果矩阵 A 经过有限次初等列变换变成矩阵 B,则称矩阵 A 与 B 列等价,记作 $A \xrightarrow{c} B$;如果矩阵 A 经过有限次初等变换变成矩阵 B,则称矩阵 A 与 B 等价,记作 $A \longrightarrow B$ 。

定理 2.6 具有行等价关系的矩阵所对应的线性方程组有相同的解。

定义 2.13 (梯形矩阵) 若矩阵 A 满足下面两个条件:

- (1) 若有零行,则零行全部在下方;
- (2) 从第一行起,每行第一个非零元素前面的零的个数逐行增加。

则称矩阵 A 为行梯形矩阵。若 A 还满足:

(3) 非零行的第一个非零元素为 1, 且"1" 所在列的其余元素全为零,则称 A 为行简化梯形矩阵。

类似可定义列梯形矩阵与列简化梯形矩阵。

定理 2.7 (矩阵的标准型) 若矩阵 A 既是行简化矩阵,又是列简化矩阵,则称 A 是标准形矩阵。 矩阵的标准型可写为

$$\left(\begin{array}{cc} E & O \\ O & O \end{array}\right)$$

即左上角为单位矩阵, 其余都是零矩阵。

定理 2.8 (矩阵的化简) 设 $A \rightarrow m \times n$ 矩阵, 则

- (1) 存在 m 阶初等矩阵 P_1, P_2, \cdots, P_s 使 $P_s P_{s-1} \cdots P_2 P_1 A$ (即对 A 施加有限次的初等行变换) 成为 $m \times n$ 阶行简化梯形矩阵。
 - 也存在 n 阶初等矩阵 Q_1, Q_2, \dots, Q_t 使 $AQ_1Q_2 \dots Q_{t-1}Q_t$ (即对 A 施加有限次的初等行变换) 成为 $m \times n$ 阶列简化梯形矩阵。
- (2) 可以经过有限次初等行变换和初等列变换, 将矩阵 A 化为标准型。

2.5 矩阵的秩

定义 2.14 (矩阵的子式) 设 A 是一个 $m \times n$ 矩阵, 任取 A 的 k 行和 k 列 ($0 < k \le \min\{m, n\}$), 位于这些行列交叉处的 k^2 个元素, 按原来的顺序排成的 k 阶行列式, 称为矩阵 A 的k 阶子式。

评论 例如, 在2×3的矩阵

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 2 & -3 & 1 \end{array}\right)$$

中,1阶子式是由其中一个元素所构成,共有6个1阶子式,它的3个2阶子式是:

$$\left|\begin{array}{c|c} 1 & 2 \\ 2 & -3 \end{array}\right|, \quad \left|\begin{array}{c|c} 1 & -1 \\ 2 & 1 \end{array}\right|, \quad \left|\begin{array}{cc} 2 & -1 \\ -3 & 1 \end{array}\right|,$$

一般地, $m \times n$ 矩阵 A 的 k 阶子式共有 $C_m^k C_n^k$ 个。

定义 2.15 (矩阵的秩) 设 A 是一个 $m \times n$ 矩阵,如果 A 中至少存在一个非零的 r 阶子式 D,且 所有 r+1 阶子式 (如果存在的话) 全为零,则称 D 为矩阵 A 的最高阶非零子式,数 r 称为矩阵 A 的秩,记为 rank A = r(或 r(A) = r)。并规定零矩阵的秩等于 0.

评论 与上述概念有关的结论为:

- (1) rA 是 A 的非零子式的最高阶数;
- (2) $0 \le \operatorname{r}(\boldsymbol{A}_{m \times n}) \le \min(m, n)$;
- (3) $r(A^{T}) = r(A)$;
- (4) 对于 n 阶方阵 A, 有 $\mathbf{r}(A) = n$ (即 A 为满秩矩阵) $\Leftrightarrow |A| \neq 0 \Leftrightarrow A$ 非异。

定理 2.9 初等行、列变换不改变矩阵的秩。

定理 2.10 行梯形矩阵的秩等于它的非零行的行数。

定理 2.11 任一满秩矩阵都可以经过若干次初等行变换为单位矩阵,也可以经过若干次初等列变换为单位矩阵。

定理 2.12 (求矩阵的秩的方法) 先用初等行、列变换将矩阵化为梯形矩阵, 其非零行的行数就是 矩阵的秩。

2.6 可逆矩阵与伴随矩阵

定义 2.16 (逆矩阵) 对于 n 阶方阵 A, 如果存在同阶方阵 B, 使得

$$AB = BA = E$$

则称矩阵 A 是可逆矩阵,并称 B 是矩阵 A 的逆矩阵,记为 A^{-1}

定理 2.13 可逆矩阵的性质:

- (1) 可逆矩阵的逆矩阵是唯一的。
- (2) 若 A 可逆,则 A^{-1} 也可逆,且 $(A^{-1})^{-1} = A$; 还有 $|A^{-1}| = |A|^{-1}$
- (3) 若 A 可逆,数 $k \neq 0$,则 kA 可逆,且 $(kA)^{-1} = k^{-1}A^{-1}$
- (4) 若 \boldsymbol{A} 可逆,则 $\boldsymbol{A}^{\mathrm{T}}$ 也可逆,且 $(\boldsymbol{A}^{\mathrm{T}})^{-1} = (\boldsymbol{A}^{-1})^{\mathrm{T}}$
- (5) 若 A、B 为同阶可逆矩阵,则 AB 也可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$

定义 2.17 (方阵的伴随矩阵) 设 $\mathbf{A} = (a_{ij})$ 为 n 阶方阵, A_{ij} 是 $|\mathbf{A}|$ 中元素 a_{ij} 的代数余子式,则 称矩阵

$$m{A}^* = \left(egin{array}{ccccc} m{A}_{11} & m{A}_{12} & \cdots & m{A}_{1n} \ m{A}_{21} & m{A}_{22} & \cdots & m{A}_{2n} \ oldsymbol{\ddots} & \ddots & \ddots & \ddots \ m{A}_{n1} & m{A}_{n2} & \cdots & m{A}_{nn} \end{array}
ight)^{
m T} = \left(egin{array}{ccccc} m{A}_{11} & m{A}_{21} & \cdots & m{A}_{n1} \ m{A}_{12} & m{A}_{22} & \cdots & m{A}_{n2} \ oldsymbol{\ddots} & \ddots & \ddots & \ddots \ m{A}_{1n} & m{A}_{2n} & \cdots & m{A}_{nn} \end{array}
ight)$$

为 A 的伴随矩阵。

评论 处理遇到 A^* 的题目时常用 $(A^*)^{-1} = \frac{1}{|A|}A$

定理 2.14 (矩阵可逆的条件) 矩阵 A 可逆的充要条件是 $|A| \neq 0$, 且 $A^{-1} = \frac{1}{|A|}A^*$.

定理 2.15 矩阵 A 可逆的充要条件是 A 为满秩矩阵。

定理 2.16 设 $A \setminus B$ 都是 n 阶方阵, 若 AB = E, 则 BA = E, 且 $A^{-1} = B$, $B^{-1} = A$

评论 判断矩阵 B 是否是矩阵 A 的逆矩阵,只需要验证 AB = E 和 BA = E 中一个等式成立即可。

定理 2.17 (矩阵的分解) 设 A 为 $m \times n$ 矩阵, $\mathbf{r}(A) = r$, 则存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q, 使得 $A = P \Lambda Q$, 其中

$$\Lambda = \left(egin{array}{cc} oldsymbol{E}_r & oldsymbol{O} \ oldsymbol{O} & oldsymbol{O}_{(m-r) imes(n-r)} \end{array}
ight)$$

定理 2.18 任一n 阶可逆矩阵 A 均可以表示成有限个n 阶初等矩阵的乘积。进一步,任一可逆矩阵可以只经过行的初等变换化为单位阵,也可以只经过列的初等变换化为单位阵。

评论 该定理告诉我们一个求逆矩阵的方法: 将 $n \times 2n$ 矩阵 (A E) 经过一系列行的初等变换 化为 $n \times 2n$ 矩阵 (E B), 则 $B = A^{-1}$ 。

也可以用列的初等变换来求逆矩阵,即

$$\left(egin{array}{c} A \ E \end{array}
ight)$$
 仅用初等列变换 $\left(egin{array}{c} E \ A^{-1} \end{array}
ight)$

这种求逆的方法也可用于一类矩阵方程的求解。设A, B均为n阶方阵,且A可逆,则矩阵方程AX = B有解 $X = A^{-1}B$,可通过只做初等行变换将

$$\left(egin{array}{ccc} oldsymbol{A} & oldsymbol{B} \end{array}
ight) \longrightarrow \left(egin{array}{ccc} oldsymbol{E} & oldsymbol{A}^{-1} oldsymbol{B} \end{array}
ight)$$

来得到方程的具体解 $X = A^{-1}B$

类似地,对矩阵方程 XA = B 的解 $X = BA^{-1}$,可通过只做初等列变换

$$\left(egin{array}{c} A \ B \end{array}
ight) \longrightarrow \left(egin{array}{c} E \ BA^{-1} \end{array}
ight)$$

来得到。

定理 2.19 设 A 是 $m \times n$ 矩阵, P, Q 分别是 m 和 n 阶可逆矩阵, 则

$$r(\boldsymbol{A}) = r(\boldsymbol{P}\boldsymbol{A}) = r(\boldsymbol{A}\boldsymbol{Q}) = r(\boldsymbol{P}\boldsymbol{A}\boldsymbol{Q})$$

2.7 向量组的线性相关与线性无关