₹;

1D

In #2: Mass 299
$$(CH_3)_3 - Si - 0 - CH - CH_2 - CH = CH - (CH_2)_4 - C - 0 - CH_3$$

Ion#3: Mass 270 (characteristic rearrangement ion)

$$[CH_2-CH=CH-(CH_2)_7-C-O-CH_3]^+$$

 $S_{i}-(CH_3)_3$

Figure 3

Mass Spectrum of peak 10 from Figure 3B
Abundance Scan 485 (15 203 min)

4B

<u> </u>
##
.

10	20	30	40	50	60
TATTGGCACC	GGCGGCACCA	TTCCAACAAT	GGATCCCTAG	AAAAAGATGA	AGTCTTTGTC
70	80	90	100	110	120
CCACCTAAGA	AAGCTGCAGT	CANATGGTAT	GTCAAATACC	TCAACAACCC	TCTTGGACGC
130	140	150	160	170	180
ATTCTGGTGT	TAACAGTTCA	GTTTATCCTC	GGGTGGCCTT	TGTATCTAGC	CTTTAATGTA
190	200	210	220	230	240
TCAGGTAGAC	CTTATGATGG	TTTCGCTTCA	CATTTCTTCC	CTCATGCACC	TATCTTTAAG
250	260	270	280	290	300
GACCGTGAAC	GTCTCCAGAT	ATACATCTCA	GATGCTGGTA	TTCTAGCTGT	CTGTTATGGT
310	320	330	340	350	360
CTTTACCGTT	ACGCTGCTTC	ACAAGGATTG	ACTGCTATGA	TCTGCGTCTA	CGGAGTACCG
370	380	390	400	410	420
CTTTTGATAG	TGAACTTTTT	CCTTGTCTTG	GTCACTTTCT	TGCAGCACAC	TCATCCTTCA
430	440	450	460	470	480
TTACCTCACT	ATGATTCAAC	CGAGTGGGAA	TGGATTAGAG	GAGCTTTGGT	TACGGTAGAC
490	500	510	520	530	540
AGAGACTATG	GAATCTTGAA	CAAGGTGTTT	CACAACATAA	CAGACACCCA	CGTAGCACAC
550					
CAC					

Figure 5 Nucleotide sequence of pLesq2

	10	20	30	40	50	60
	TATAGGCACC	GGAGGCACCA	TTCCAACACA	GGATCCCTCG	AAAGAGATGA	AGTATTTGTC
	70	80	90	100	110	120
	CCAAAGCAGA	AATCCGCAAT	CAAGTGGTAC	GGCGAATACC	TCAACAACCC	TCCTGGTCGC
	130	140	150	160	170	180
	ATCATGATGT	TAACTGTCCA	GTTCGTCCTC	GGATGGCCCT	TGTACTTAGC	CTTCAACGTT
	190	200	210	220	230	240
	TCTGGCAGAC	CCTACAATGG	TTTCGCTTCC	CATTTCTTCC	CCAATGCTCC	TATCTACAAC
	250	260	270	280	290	300
	GACCGTGAAC	GCCTCCAGAT	TTACATCTCT	GATGCTGGTA	TTCTAGCCGT	CTGTTATGGT
	310	320	330	340	350	360
	CTTTACCGTT	ACGCTGTTGC	ACAAGGACTA	GCCTCAATGA	TCTGTCTAAA	CGGAGTTCCG
	370	380	390	400	410	420
and had	CTTCTGATAG	TTAACTTTTT	CCTCGTCTTG	ATCACTTACT	TACAACACAC	TCACCCTGCG
150	430	440	450	460	470	480
TOTAL	TTGCCTCACT	ATGATTCATC	AGAGTGGGAT	TGGCTTAGAG	GAGCTTTAGC	TACTGTAGAC
	490	500	510	520	530	540
	AGAGACTATG	GAATCTTGAA	CAAGGTGTTC	CATAACATCA	CAGACACCCA	CGTCGCACAC
	550					
	CACT					
i i i						

Figure 6 Nucleotide sequence of pLesq3

Probe Probe Probe plesq3 plesq2
S L S L

Figure 7

AT GAA GCT TTA TAA GAA GTT AGT TTT CTC TGG TGA CAG AGA AAT TNT 47 GTC AAT TGG TAG TGA CAG TTG AAG CAA CAG GAA CAA CAA GGA TGG TTG 95 GTG NTG ATG CTG ATG TGG TGA TGT GTT ATT CAT CAA ATA CTA AAT ACT 143 ACA TTA CTT GTT GCT GCC TAC TTC TCC TAT TTC CTC CGC CAC CCA TTT 191 TGG ACC CAC GAN CCT TCC ATT TAA ACC CTC TCT CGT GCT ATT CAC CAG 239 AAG AGA AGC CAA GAG AGA GAG AGA GAG AAT GTT CTG AGG ATC ATT GTC 287 TTC TTC ATC GTT ATT AAC GTA AGT TTT TTT TGA CCA CTC ATA TCT AAA 335 ATC TAG TAC ATG CAA TAG ATT AAT GAC TGT TCC TTC TTT TGA TAT TTT 383 Met Gly Ala Gly Gly Arg Ile Met Val Thr 10 CAG CTT CTT GAA TTC AAG ATG GGT GCT GGT GGA AGA ATA ATG GTT ACC 431 Pro Ser Ser Lys Lys Ser Glu Thr Glu Ala Leu Lys Arg Gly Pro Cys 26 CCC TCT TCC AAG AAA TCA GAA ACT GAA GCC CTA AAA CGT GGA CCA TGT 479 Glu Lys Pro Pro Phe Thr Val Lys Asp Leu Lys Lys Ala Ile Pro Gln 42 GAG AAA CCA CCA TTC ACT GTT AAA GAT CTG AAG AAA GCA ATC CCA CAG 527 His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Leu Thr 58 CAT TGT TTC AAG CGC TCT ATC CCT CGT TCT TTC TCC TAC CTT CTC ACA 575 Asp Ile Thr Leu Val Ser Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe 74 GAT ATC ACT TTA GTT TCT TGC TTC TAC TAC GTT GCC ACA AAT TAC TTC 623 Ser Leu Leu Pro Gln Pro Leu Ser Thr Tyr Leu Ala Trp Pro Leu Tyr 90 TCT CTT CTT CCT CAG CCT CTC TCT ACT TAC CTA GCT TGG CCT CTC TAT 671 Trp Val Cys Gln Gly Cys Val Leu Thr Gly Ile Trp Val Ile Gly His 106 TGG GTA TGT CAA GGC TGT GTC TTA ACC GGT ATC TGG GTC ATT GGC CAT 719 Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Val Asp Asp Thr 122 GAA TGT GGT CAC CAT GCA TTC AGT GAC TAT CAA TGG GTA GAT GAC ACT 767 Val Gly Phe Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp 138 GTT GGT TTT ATC TTC CAT TCC TTC CTT CTC GTC CCT TAC TTC TCC TGG 815 Lys Tyr Ser His Arg Arg His His Ser Asn Asn Gly Ser Leu Glu Lys 154 AAA TAC AGT CAT CGT CGT CAC CAT TCC AAC AAT GGA TCT CTC GAG AAA 863 Asp Glu Val Phe Val Pro Pro Lys Lys Ala Ala Val Lys Trp Tyr Val 170 GAT GAA GTC TTT GTC CCA CCG AAG AAA GCT GCA GTC AAA TGG TAT GTT 911 Lys Tyr Leu Asn Asn Pro Leu Gly Arg Ile Leu Val Leu Thr Val Gln 186 AAA TAC CTC AAC AAC CCT CTT GGA CGC ATT CTG GTG TTA ACA GTT CAG 959

Figure 8A

:

Phe Ile Leu Gly 1	Trp Pro Leu TGG CCT TTG	Tyr Leu TAT CTA	Ala Phe GCC TTT	Asn Val AAT GTA	Ser Gly	/ Arg [AGA	202 1007
Pro Tyr Asp Gly F CCT TAT GAT GGT 1							218 1055
Lys Asp Arg Glu A AAA GAC CGA GAA (-		•	-		234 1103
Ala Val Cys Tyr (GCT GTC TGT TAT (_		250 1151
Ala Met Ile Cys V GCT ATG ATC TGC (• •						266 1199
Leu Val Leu Val 1 CTT GTC TTG GTA A							282 1247
Tyr Asp Ser Thr (•	•				298 1295
Asp Arg Asp Tyr (GAC AGA GAC TAT (•	314 1343
Thr His Val Ala H ACA CAT GTG GCT (•	_	330 1391
Met Glu Ala Thr (ATG GAA GCT ACA (_		•	•		346 1439
Phe Asp Gly Thr E	• -		•	•	•		362 1487
Cys Leu Tyr Val (TGT CTC TAT GTA (·		•	•	•	•	378 1535
Tyr Tyr Asn Asn 1	•	GGC TGA	TAG GGC	GAG AGA	AGT GC	A ATT	384 1583
ATC AAT CTT CAT	TTC CAT GTT	TTA GGT	GTC TTG	TTT AAG	AAG CT	A TGC	1631
TTT GTT TCA ATA	ATC TCA GAG	TCC ATN	TAG TTG	TGT TCT	GGT GC	4 TTT	1679
TGC CTA GTT ATG	TGG TGT CGG	AAG TTA	GTG TTC	AAA CTG	CTT CC	T GCT	1727
GTG CTG CCC AGT	GAA GAA CAA	GTT TAC	GTG TTT	AAA ATA	CTC GG	4 ACG	1775
AAT TGA CCA CAA	NAT ATC CAA	AAC CGG	CTA TCC	GAA TTC	CAT AT	C CGA	1823
AAA CCG GAT ATC	CAA ATT TCC	AGA GTA	CTT AG				1855

· · · · · · · · · · · · · · · · · · ·	_						
±		10	20	- 1 30	40	50-	-
LFFAH12.AMI	1	MGAGGRIM	VTPSSKKS	ETEALKRG	PCEKPPFTVK	DLKKAIPQHC	50
FAH12.AMI	1	MGGGGRMSTV	ITSNNSEKKG	GSSHLKRA	PHTKPPFTLG	DLKRAIPPHC	50
ATFAD2.AMI	1	MGAGGRMP	VPTSSKKS	ETDTTKRV	PCEKPPFSVG	DLKKAIPPHC	50
BNFAD2.AMI	1	MGAGGRMQ	VSPPSKKS	ETDNIKRV	PCETPPFTVG	ELKKAIPPHC	50
D2-1.AMI	1	MGLA-KETTM	GGRGRVAKVE	VQGKKPLSRV	PNTKPPFTVG	QLKKAIPPHC	50
GMFAD2-2.AMI	1	MGAGGR	TDVPPANRKS	EVDPLKRV	PFEKPQFSLS	QIKKAIPPHC	50
ZMFAD2.AMI	1	MGAGGRMTEK	EREKQEQLAR	ATGGAAMQRS	PVEKPPFTLG	QIKKAIPPHC	50
RCFAD2.AMI	1						50
		60	70	80	90	100	
LFFAH12.AMI	51	FKRSIPRSFS	ALTADIATIONS	CFYYVATNYF	SLLPQPLSTY	LAWPLYWVCQ	100
FAH12.AMI	51	FERSFVRSFS	YVAYDVCLSF	LFYSIATNFF	PYISSPLS-Y	VAWLVYWLFQ	100
ATFAD2.AMI	51	FKRSIPRSFS	YLISDIIIAS	CFYYVATNYF	SLLPQPLS-Y	LAWPLYWACQ	100
BNFAD2.AMI	51	FKRSIPRSFS	HLIWDIIIAS	CFYYVATTYF	PLLPNPLS-Y	FAWPLYWACQ	100
GMFAD2-1.AMI	51	FQRSLLTSFS	YVVYDLSHAF	IFY-IATTYF	HLLPQPFS-L	IAWPIYWVLQ	100
GMFAD2-2.AMI	51	FQRSVLRSFS	YVVYDLTIAF	CLYYVATHYF	HLLPGPLS-F	RGMAIYWAVQ	100
ZMFAD2.AMI	51	FERSVLKSFS	YVVHDLVIAA	ALLYFALAII	PALPSPLR-Y	AAWPLYWIAQ	100
RCFAD2.AMI	51						100
• • • • • • • • • • • • • • • • • • •		110	120	130	140	150	
LFFAH12.AMI	101		GHECGHHAFS	DYQWVDDTVG	FIFHSFLLVP	YFSWKYSHRR	150
FAH12 AMI			CHECCHHAFS				150
ATFAD2.AMI			AHECGHHAFS				150
BNFAD2.AMI			AHECGHAAFS				150
GMFAĎŽ-1.AMI			AHECGHHAFS				150
GMFAD2-2.AMI			AHECGHHAFS				150
ZMFADZ .AMI			AFS				150
RCFAD2.AMI	101		AHDCGHHAFS				150
RCPAD. APIL	TOT	160	170	180	190	200	130
LFFAH12.AMI	151		DEVFVPPKKA				200
FAH12.AMI		1 1	DEVFVPKSKS				200
ATFAD2.AMI		1 (DEVFVPKQKS				200
BNFAD2.AMI		t)	DEVFVPR-RS				200
in spiritual		1 1	DEVFVPKPKS				200
GMFAD2-1.AMI		4 4	DEVFVPKPKS				200
GMFAD2-2.AMI		()	DEVFVPKKKE				200
ZMFAD2.AMI		, ,	DEVFVPKKKS				200
RCFAD2.AMI	121	_		230	240	250	200
	2.04	210		_		ILAVCYGLYR	. 250
LFFAH12.AMI				, , ,			250
FAH12.AMI			YDR-FACHYD	((250
ATFAD2.AMI		 	-YDG -FACHFF	1 1			250
BNFAD2.AMI			YDGGFACHFH	4 !			250
GMFAD2-1.AMI			YDS-FASHYH	f 5			250
GMFAD2-2.AMI			YDR-FACHYD	l i			250
ZMFAD2.AMI			YPR-FACHFD	7 5			250
RCFAD2.AMI	201		YDR-FACHYD				230
		260					3.0.0
LFFAH12.AMI			ICVYGVPLLI				300
FAH12.AMI			MRIYGVPLLI				300
ATFAD2.AMI			I ICLYGVPLLI				300
BNFAD2.AMI		_	1 VCFLRVPLLI				300
C'FAD2-1.AMI			. LCVYGVPLLI				300
AD2-2.AMI			/ VCVYGVPLLV				300
ZMFAD2.AMI	25	LAAAFGVWW	/ VRVYAVPLLI	VIAWLVLITY	LQHTHPSLPH	YDSSEWDWLR	300

Figure9A

RCFAD2.AMI	251 LATAKGLAW	Y - VCVYGVPLLV	VNSFLVLITF	LQHTHPALPH	YDSSEWDWLR	300
	310	320	330	340	350	
LFFAH12.AMI	301 GALVIVORD	GILNKVFHNI	TDTHVAHHLF	Ariphyname	ATEAIKPILG	350
F>H12.AMI	301 GAMVIVDRD	GVLNKVFHNI	ADTHVAHHLF	ALLAHAHE	ATKAIKPIMG	350
. 'D2.AMI	301 GALATVORD	GILNKVFHNI	TDTHVAHHLF	SEMPHYNAME	ATKAIKPILG	350
BNFAD2.AMI	301 GALATVORD	GILNQGFHNI	TOTHEAHHLF	STMPHYHAME	ATKAIKPILG	350
GMFAD2-1.AMI	301 GALATMORD	GILNKVFHHI	TDTHVAHHLF	SCMPHYHAME	ATNAIKPILG	350
GMFAD2-2.AMI	301 GALATVORD	GILNKVFHNI	TDTHVAHHLF	SEMPHYHAME	ATKAIKPILG	350
ZMFAD2.AMI	301 GALAFMORD	GILNRVFHNI	TDTHVAHHLF	SТМРНУНАМЕ	ATKAIRPILG	350
RCFAD2.AMI	301 GALATVDRD	GILNKVFHNI	TDTQVAHHLF	-TMP		350
	369	370	380	390	400	
LFFAH12.AMI	351 DYYHFDGTP	V YVAMYREAKE	CLYVEPDTER	GKKGVYYYNN	K-L	400
FAH12.AMI	351 EYYRYDGTP	F YKALWREAKE	CLFVEPDEGA	PTQGVFWYRN	KY	400
ATFAD2.AMI	351 DYYQFDGTP	V YVAMYREAKE	CIYVEPDREG	DKKGVYWYNN	K-L	400
BNFAD2.AMI	351 EYYQFDGTP	VKAMWREAKE	CIYVEPDRQG	EKKGVFWYNN	KL*	400
GMFAD2-1.AMI	351 EYYQFDDTP	F YKALWREARE	CLYVEPDEGT	SEKGVYWYRN	KY	400
GMFAD2-2.AMI	351 EYYRFDETP	F VKAMWREARE	CIYVEPDQST	ESKGVFWYNN	KL	400
ZMFAD2.AMI	351 DYYHFDPTP	V AKATWREAGE	CIYVEPE	DRKGVFWYNK	KF*	400
RCFAD2.AMI	351					400
4 CA ST. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41	0 420	430	440	450	
LFFAH12.AMI	401	<i>.</i>				450
FAH12.AMI	401					450
ATFAD2.AMI	401					450
BNFAD2.AMI	401					450
GMFAD2-1.AMI	401					450
GMFAD2-2.AMI	401					450
ZMFAD2.AMI	401					450
**						

Molecular weight markers

 $\sqrt{}$

EHX

1.8 -

1.5 -

Figure 10

