

Relations and Their Properties

Section 9.1

Section Summary

- Relations and Functions
- Properties of Relations
 - Reflexive Relations
 - Symmetric and Antisymmetric Relations
 - Transitive Relations
- Combining Relations

Binary Relations

Definition: A *binary relation*(二元关系) R from a set A to a set B is a subset $R \subseteq A \times B$.

Use aRb to denote $(a, b) \in R$

Example:

- Let $A = \{0,1,2\}$ and $B = \{a,b\}$
- $-\{(0,a),(0,b),(1,a),(2,b)\}$ is a relation from A to B.
- We can represent relations from a set A to a set B graphically or using a table:

Relations are more general than functions. A function is a relation where exactly one element of *B* is related to each element of *A*.

Binary Relation on a Set

Definition: A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A.

Example:

- Suppose that $A = \{a,b,c\}$. Then $R = \{(a,a),(a,b),(a,c)\}$ is a relation on A.
- Let $A = \{1, 2, 3, 4\}$. The ordered pairs in the relation $R = \{(a,b) \mid a \text{ divides } b\}$ are (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), and (4,4).

Binary Relation on a Set

Discrete Mathematics

(cont.)

Question: How many relations are there on a set A?

Solution: Because a relation on A is the same thing as a subset of $A \times A$, we count the subsets of $A \times A$. Since $A \times A$ has n^2 elements when A has n elements, and a set with m elements has 2^m subsets, there are $2^{|A|^2}$ subsets of $A \times A$. Therefore, there are $2^{|A|^2}$ relations on a set A.

Binary Relations on a Set (cont.)

Example: Consider these relations on the set of integers:

$$R_1 = \{(a,b) \mid a \le b\},\ R_2 = \{(a,b) \mid a > b\},\ R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\ R_6 = \{(a,b) \mid a + b \le 3\}.$$

Note that these relations are on an infinite set and each of these relations is an infinite set.

Which of these relations contain each of the pairs

$$(1,1)$$
, $(1,2)$, $(2,1)$, $(1,-1)$, and $(2,2)$?

Solution: Checking the conditions that define each relation, we see that the pair (1,1) is in R_1 , R_3 , R_4 , and R_6 : (1,2) is in R_1 and R_6 : (2,1) is in R_2 , R_5 , and R_6 : (1,-1) is in R_2 , R_3 , and R_6 : (2,2) is in R_1 , R_3 , and R_4 .

Example

$$A=\{1,2\}$$
,则
$$R=\{(1,1),(1,2),(2,1),(2,2)\}$$

$$I=\{(1,1),(2,2)\}$$

Reflexive Relations

Definition: R is reflexive(自反) iff $(a,a) \in R$ for every element $a \in A$. R is reflexive if and only if $\forall x[x \in A \longrightarrow (x,x) \in R]$

- Let $A = \{1,2,3\}$, $R \subseteq A \times A$
 - $-\{(1,1),(1,3),(2,2),(2,1),(3,3)\}$
 - $-\{(1,2),(2,3),(3,1)\}$
 - $-\{(1,2),(2,2),(2,3),(3,1)\}$

Example

The following relations on the integers are reflexive:

$$R_1 = \{(a,b) \mid a \le b\},\$$

 $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\$
 $R_4 = \{(a,b) \mid a = b\}.$

The following relations are not reflexive:

$$R_2 = \{(a,b) \mid a > b\}$$
 (note that $3 \neq 3$),
 $R_5 = \{(a,b) \mid a = b+1\}$ (note that $3 \neq 3+1$),
 $R_6 = \{(a,b) \mid a+b \leq 3\}$ (note that $4+4 \not\leq 3$).

Symmetric Relations

Definition: R is symmetric(対称) iff $(b,a) \in R$ whenever $(a,b) \in R$ for all $a,b \in A$. R is symmetric if and only if $\forall x \forall y \ [(x,y) \in R \longrightarrow (y,x) \in R]$

Example: The following relations on the integers are symmetric:

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\$$
 $R_4 = \{(a,b) \mid a = b\},\$
 $R_6 = \{(a,b) \mid a + b \le 3\}.$
The following are not symmetric:
 $R_1 = \{(a,b) \mid a \le b\} \text{ (note that } 3 \le 4, \text{ but } 4 \le 3),\}$
 $R_2 = \{(a,b) \mid a > b\} \text{ (note that } 4 > 3, \text{ but } 3 \ne 4),\}$
 $R_5 = \{(a,b) \mid a = b + 1\} \text{ (note that } 4 = 3 + 1, \text{ but } 3 \ne 4 + 1).\}$

Antisymmetric Relations

Definition:A relation R on a set A such that for all $a,b \in A$ if $(a,b) \in R$ and $(b,a) \in R$, then a = b is called *antisymmetric*(反对称). Written symbolically, R is antisymmetric if and only if

$$\forall x \forall y [(x,y) \in R \land (y,x) \in R \longrightarrow x = y]$$

• **Example**: The following relations on the integers are antisymmetric:

$$R_1 = \{(a,b) \mid a \le b\},\$$
 $R_2 = \{(a,b) \mid a > b\},\$
 $R_4 = \{(a,b) \mid a = b\},\$
 $R_5 = \{(a,b) \mid a = b + 1\}.$
For any integer, if a $a \le b$ and $b \le a$, then $a = b$.

The following relations are not antisymmetric:

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$$
 (note that both (1,-1) and (-1,1) belong to R_3), $R_6 = \{(a,b) \mid a+b \le 3\}$ (note that both (1,2) and (2,1) belong to R_6).


```
\forall x \forall y (xRy \land yRx \rightarrow x=y)
```

 $\equiv \forall x \forall y (xRy \land x \neq y \rightarrow_{7} yRx)$

Proof: $\forall x \forall y (xRy \land yRx \rightarrow x=y)$

 $\equiv \forall x \forall y (\uparrow (xRy \land yRx) \lor x=y)$

 $\equiv \forall x \forall y (\gamma(xRy) \lor \gamma(yRx) \lor x=y)$

 $\equiv \forall x \forall y ((xRy \land x \neq y) \lor yRx)$

 $\equiv \forall x \forall y (xRy \land x \neq y \rightarrow_{\exists} yRx)$

Antisymmetry is not the negative of symmetry

Examples

- Let $A = \{1, 2, 3\}$, $R \subseteq A \times A$
 - $-\{(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)\}$ (symmetric)
 - $-\{(1,2),(2,3),(2,2),(3,1)\}$ (antisymmetric)
 - $-\{(1,2),(2,3),(3,1)\}$ (antisymmetric)
 - $-\{(1,2),(2,1),(2,2),(3,1)\}$

(not symmetric and not antisymmetric)

- $-\{(1,1),(2,2)\}$ (symmetric and antisymmetric)
- $-\phi$ (symmetric and antisymmetric)

Transitive Relations

Definition: A relation R on a set A is called **transitive**(传递) if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$. Written symbolically, R is transitive if and only if $\forall x \forall y \ \forall z [(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R]$

• **Example**: The following relations on the integers are transitive:

```
R_1 = \{(a,b) \mid a \le b\},\ For every integer, a \le b and b \le c, then b \le c. R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\ R_4 = \{(a,b) \mid a = b\}.
```

The following are not transitive:

 $R_5 = \{(a,b) \mid a = b+1\}$ (note that both (3,2) and (4,3) belong to R_5 , but not (3,3)),

 $R_6 = \{(a,b) \mid a+b \le 3\}$ (note that both (2,1) and (1,2) belong to R_6 , but not (2,2)).

- Let $A = \{1,2,3\}, R \subseteq A \times A$
 - $-\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)\}$ is transitive
 - $-\{(1,2),(2,3),(3,1)\}$ is not transitive.
 - $-\{(1,3)\}$? ϕ ? (transitive)

Combining Relations

- Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \cap R_2$, and $R_2 R_1$.
- **Example**: Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined using basic set operations to form new relations: $R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$ $R_1 \cap R_2 = \{(1,1)\}$ $R_1 R_2 = \{(2,2),(3,3)\}$ $R_2 R_1 = \{(1,2),(1,3),(1,4)\}$

Composition

Definition: Suppose

- $-R_1$ is a relation from a set A to a set B.
- $-R_2$ is a relation from B to a set C.

Then the composition(合成) (or composite) of R_1 and R_2 , is a relation from A to C where

– if (a,b) is a member of R_1 and (b,c) is a member of R_2 , then (a,c) is a member of $R_2 \circ R_1$.

$$R_2R_1=R_2 \circ R_1$$

={ $(a,c) \mid \exists b [b \in B \land (a,b) \in R_1 \land (b,c) \in R_2]$ }

Representing the Composition of anthematics

$$R_2 \circ R_1 = \{(b,x),(b,z)\}$$

• Let $A=\{a,b,c,d\}$, R_1 , R_2 are relations on A:

$$R_{1} = \{(a,a),(a,b),(b,d)\}$$

$$R_{2} = \{(a,d),(b,c),(b,d),(c,b)\}$$
then:
$$R_{2} \circ R_{1} = \{(a,d),(a,c)\}$$

$$R_{1} \circ R_{2} = \{(c,d)\}$$

$$R_{1} \circ R_{1} = \{(a,a),(a,b),(a,d)\}$$

$$R_{2} \circ R_{2} = \{(b,d),(c,c),(c,d)\}$$

Powers of a Relation

Definition: Let R be a binary relation on A. Then the powers R^n of the relation R can be defined inductively by:

- Basis Step: $R^1 = R$
- − Inductive Step: $R^{n+1} = R^n \circ R$

The powers of a transitive relation are subsets of the relation. This is established by the following theorem:

Theorem 1: The relation R on a set A is transitive iff $R^n \subseteq R$ for n = 1,2,3...

(see the text for a proof via mathematical induction)

Homework

- 9.1 P608
- 3, 4, 5, 6(a,c,e), 10, 26, 32, 33,47