Sistemas Dinâmicos - Solitões

Laboratório de Física Experimental Avançada

Diogo Miguez 90057, Rita Santos 93414, Thomas Gaehtgens 86809

24 de Março de 2021

Introdução

Objetivos

- 1. Verificação experimental da existência de solitões aquando de perturbações numa tina de água para diferentes condições iniciais.
- 2. Estudo da validade da teoria de Korteweg de Vries (doravante KdV).
- 3. Cálculo da velocidade de solitões com vários métodos.
- 4. Estudo das componentes lineares e não-lineares dos solitões.

Modelo KdV

Equação KdV:

$$\frac{\partial \eta}{\partial t} + v_0 \frac{\partial \eta}{\partial x} + \frac{3v_0}{2h} \eta \frac{\partial \eta}{\partial x} + \frac{v_0 h^2}{6} \frac{\partial^3 \eta}{\partial x^3} = 0$$

Solução para 1 solitão:

$$\eta(t) = \eta_0 \operatorname{sech}^2\left(\frac{x - vt}{L}\right)$$

onde,

$$v_0 = \sqrt{gh}$$
 , $L = \sqrt{\frac{4h^3}{3\eta_0}}$

Condições de validade do modelo:

$$\epsilon_1 = \frac{\eta}{h} \ , \quad \epsilon_2 = \left(\frac{h}{I}\right)^2 \ , \quad U = \frac{\epsilon_1}{\epsilon_2}, \epsilon_1 \ll 1 \ , \quad \epsilon_2 \ll 1 \ , \quad U \simeq 1$$

A velocidade teórica dos solitões e o seu erro são calculados através de:

$$v_{
m teo} = \sqrt{gh} \left(1 + \frac{A}{4h} \right)$$

$$\sigma_{v_{\rm teo}} = \frac{1}{2} \sqrt{\frac{g}{h}} \sqrt{\left(1 - \frac{A}{4h}\right)^2 \sigma_h^2 + \left(\frac{\sigma_A}{2}\right)^2}$$

$$N=1+{
m Int}\left(rac{S}{\pi}
ight) \quad , \quad S=\sqrt{rac{3A}{h}}rac{B}{h}$$

Modelo KdV

Para 2 solitões obteve-se o seguinte modelo:

$$\eta(t) = \frac{\mathit{n}(\mathit{v}_1 - \mathit{v}_2) \big(\mathit{v}_1 \cosh^2 \big(\sqrt{\mathit{c}}_2 \xi_2 / 2 \big) + \mathit{v}_2 \sinh^2 \big(\sqrt{\mathit{c}}_1 \xi_1 / 2 \big) \big)}{\big(\big(\sqrt{\mathit{c}}_1 - \sqrt{\mathit{c}}_2 \big) \cosh \big(\big(\sqrt{\mathit{c}}_1 \xi_1 + \sqrt{\mathit{c}}_2 \xi_2 \big) / 2 \big) + \big(\sqrt{\mathit{c}}_1 + \sqrt{\mathit{c}}_2 \big) \cosh \big(\big(\sqrt{\mathit{c}}_1 \xi_1 - \sqrt{\mathit{c}}_2 \xi_2 \big) / 2 \big) \big)^2}$$

onde,

$$\begin{cases} v_1 > v_2 > 0, \\ \xi_1 = x_1 - c_1 \times t \\ \xi_2 = x_2 - c_2 \end{cases}$$

Esquema de montagem e incidência do laser

$$\overrightarrow{n_i} = (\sin\theta, 0, -\cos\theta)$$

$$\overrightarrow{n} = (0, \sin\beta, \cos\beta)$$

$$\overrightarrow{n_r} = (\sin(\theta), \cos(\theta)\sin(2\beta), \cos(\theta)\cos(2(\beta)))$$

$$\overrightarrow{n_r} = (\sin(\theta), \cos(\theta)\sin(2\beta), \cos(\theta)\cos(2\beta))$$

$$r_z = cot(\theta)cos(2\beta)r_x$$
 , $r_y = cot(\theta)sin(2\beta)r_x$

$$r_{x0} = r_{z0} tan(\theta)$$
 , $r_x = (r_{z0} + \eta + (h - h_0))tan(\theta)$

$$\begin{cases} x_L = r_y \\ y_L = \eta + r_z - r_{z0} - (h - h_0) \end{cases}$$

$$\left\{ egin{aligned} \eta &= rac{ extbf{x}_L}{ extsf{sin}(2eta)} - extsf{r}_{z0} - (h - h_0) \ eta &= extsf{arctan}igg(rac{ extbf{x}_L}{ extsf{y}_L + 2(extsf{r}_{z0} + (h - h_0))}igg) \end{aligned}
ight.$$

div 0:
$$\eta(x_L = 0) = \frac{y_L}{2}$$

$$\delta \eta = |\frac{\partial \eta}{\partial x_L}|\delta x_L + |\frac{\partial \eta}{\partial y_L}|\delta y_L + |\frac{\partial \eta}{\partial h}|\delta h + |\frac{\partial \eta}{\partial h_0}|\delta h_0 + |\frac{\partial \eta}{\partial r_0}|\delta r_{z_0}|$$

Previsões Teóricas

Previsões Teóricas

A (± 0,2 cm)	B (\pm 0,2 cm)	h (\pm 0,2 cm)	Nº Solitões	v_{teo} (cm/s)	$\epsilon_1 << 1$	$\epsilon_2 << 1$	$U \approx 1$
2.0	10.0	8.0	1	94.08 ± 1.18	0.125	0.16	0.781
2.0	20.0	6.0	2	83.07 ± 1.33	0.167	0.023	7.261
2.0	40.0	6.0	3	83.07 ± 1.33	0.167	0.006	27.833
2.0	40.0	6.0	3	83.07 ± 1.33	0.167	0.006	27.833
2.0	40.0	6.0	3	83.07 ± 1.33	0.167	0.006	27.833
6.0	10.0	6.0	1	95.85 ± 1.15	0.500	0.09	5.556
4.0	10.0	5.0	1	84.00 ± 1.32	0.400	0.063	6.349
2.0	10.0	5.0	1	77.00 ± 1.44	0.200	0.063	3.175
1.0	40.0	4.0	3	66.52 ± 1.66	0.125	0.003	41.667
6.0	40.0	4.0	7	86.09 ± 1.25	0.750	0.003	250
6.0	40.0	4.0	7	86.09 ± 1.25	0.750	0.003	250
6.0	10.0	4.0	2	86.09 ± 1.25	0.750	0.04	18.75
6.0	10.0	4.0	2	86.09 ± 1.25	0.750	0.04	18.75
4.0	10.0	4.0	2	78.26 ± 1.41	0.500	0.04	12.5
4.0	10.0	4.0	2	78.26 ± 1.41	0.500	0.04	12.5
2.0	20.0	4.0	2	70.44 ± 1.58	0.250	0.01	25
6.0	40.0	2.0	20	77.48 ± 1.24	1.500	0.001	1500
6.0	30.0	2.0	15	77.48 ± 1.24	1.500	0.001	1500
6.0	10.0	2.0	5	77.48 ± 1.24	1.500	0.01	150
4.0	40.0	2.0	16	66.41 ± 1.57	1.000	0.001	1000
2.0	40.0	2.0	12	55.34 ± 2.00	0.500	0.001	500

Aquisição de Dados

Cálculo da altura da água

Fizeram-se 9 medições equidistantes ao longo da tina.

Incerteza é o maior dos desvios à média.

Medições de A e B feitas por zoom, pelo que se considerou incerteza maior.

h (\pm 0.2 cm)	média h (cm)
3.5	
3.6	
3.8	
4.0	
3.9	3.7 ± 0.2
3.8	
3.8	
3.7	
3.5	

Correção da altura do laser

Parâmetro	Valor
h_0	$6.0\pm0.1~cm$
r_{z0}	2.1 ± 0.1 cm
$r_{\times 0}$	$2.8\pm0.2~cm$
θ	$0.927\pm0.057~ extit{rad}$

Exemplo para o ensaio h5p5a4b10

Tracker

Os valores para o perfil do solitão foram obtidos reccorendo a um tracker. Assumiu-se como erro metade do intervalo mínimo de espaço percorrido detetado pelo software (*Cinéris*).

Análise de Dados

Cálculo da velocidade dos solitões

1. Utilizando o intervalo de tempo entre deteção nos lasers

$$egin{align} v_{ ext{laser}} &= rac{d}{\Delta t} = rac{d}{t_{ ext{azul}} - t_{ ext{verde}}} \ & \ \sigma_{ ext{v}_{ ext{laser}}} &= rac{\sqrt{\sigma_d^2 + v_{ ext{laser}}^2 \left(\sigma_{t_{ ext{azul}}^2} + \sigma_{t_{ ext{verde}}^2}
ight)}}{\Delta t} \ & \ d = 213.7 \pm 0.2 mm \ \end{array}$$

2. Extraindo a velocidade como uma parâmetro do ajuste

Ensaios dentro do regime de validade da teoria KdV

Ensai	$\Delta t (\pm 0.05)$	s) $v_{laser}(cm/s)$	$\delta_{v_{laser}}$ (%	$\delta_{v_{laser}}(\sigma)$	ϵ_1	ϵ_2	U	
h6B20, h5p5a2b1 h5p5a4b1	0_2b 2.722	79.590 ± 4.193 78.508 ± 4.080 84.500 ± 4.726	4.189 2.075 7.973	0.830 0.392 1.320	0.167 0.200 0.400	0.023 0.063 0.063	7.261 3.175 6.349	-

Ensaios fora do regime de validade da teoria KdV

Ensaios fora do regime de validade da teoria KdV

Ensaio	$\Delta t (\pm~0.05~\text{s})$	$v_{laser}(cm/s)$	$\delta_{v_{laser}}(\%)$	$\delta_{v_{laser}}(\sigma)$	ϵ_1	ϵ_2	U
h4a6b10_5b	3.106	68.802 ± 3.133	20.088	5.518	0.75	0.04	18.75
h6a6b10_3b	2.574	83.023 ± 4.562	13.382	2.812	0.5	0.09	5.556
h4a4b10_5b	2.959	72.220 ± 3.452	7.718	1.75	0.5	0.04	12.5
h4a2b20_5b	3.107	68.780 ± 3.131	2.357	0.53	0.25	0.01	25
h4B40A1	3.381	63.206 ± 2.644	4.982	1.253	0.125	0.003	41.667

Influência de ϵ_1 , ϵ_2 e U nas grandezas experimentais

- ightharpoonup menor $\epsilon_1 =>$ menor desvio da velocidade ao teórico
- $ightharpoonup \epsilon_2$ é quase sempre uma ordem de grandeza abaixo de ϵ_1 e é quase constante: logo não é possível avaliar a sua influência
- hipótese de U menor conduzir a uma melhor estimativa do número de solitões: não foi possível corroborar

Ajustes à solução para 1 solitão

Ensaio h6B20A2

Solitão	η_0 (cm)	x (m)	$v (cm \cdot s^{-1})$	$\chi^2/{\rm g.l}$
1º	0.6 ± 2 e- 05	1.223 ± 0.0049	84.13 ± 0.33	3.186
2º	0.4 \pm 3e-05	6.229 ± 0.0576	79.52 ± 0.73	9.170

Ajustes à solução para 2 solitões

Ensaio h4a2b20_5b

Solitão	x ₁ (m)	x ₂ (m)	c_1 (m/s)	c ₂ (m/s)	n	$\chi^2/{\rm g.l}$
1º 2º	7.28 ± 0.04 49.78 ± 0.33	4.97 ± 0.05 34.42 ± 0.28	6.52 ± 0.06 5.62 ± 0.04	3.81 ± 0.03 3.83 ± 0.03	0.0039 ± 2.41 e-05 0.0027 ± 1.62 e-05	2.85
	45.10 ± 0.55	34.42 ± 0.20	3.02 ± 0.04	3.03 ± 0.03	0.0027 ± 1.026 03	1.20

Ensaio h6B20A2

Solitão	η_0 (cm)	x (cm)	$v (cm \cdot s^{-1})$	χ^2
1º Incidente 2º Incidente 3º Incidente	0.2 ± 2e-03 0.3 ± 3e-03 0.4 ± 3e-03	-492 ± 10.0 -437.3 ± 10.5 -274.6 ± 2.8	132.8 ± 2.6 153.6 ± 3.4 108.1 ± 1.2	0.706
1º Refletido 2º Refletido 3º Refletido	0.4 ± 3e-03 0.1 ± 1e-03 0.2 ± 4e-03 0.3 ± 2e-03	-274.0 ± 2.8 -755.2 ± 26.9 -1955.4 ± 71.4 -1288.5 ± 15.5	$ \begin{array}{c} 106.1 \pm 1.2 \\ 64.4 \pm 2.2 \\ 177.8 \pm 6.5 \\ 124.2 \pm 1.5 \end{array} $	0.624

Tabela: Parâmetros do ajuste ao ensaio h6B20A2

Comparação das velocidades - solitões dentro da teoria

Ensaio	v_{teo} (cm/s)	v_{fit} (cm/s)	$\delta_{v_{fit}}$ (%)	$\delta_{v_{fit}}$ (σ)	η_0 (cm)	× (cm)
h6B20A2 h5p5a2b10_2b h5p5a4b10_2b	79.590 ± 0.41 78.508 ± 4.080 84.500 ± 4.726	83.56 ± 0.41 106.80 ± 1.32 85.74 ± 0.43	5.0 36.0 1.5	9.68 21.43 2.88	0.6 ± 0.003 0.3 ± 0.004 0.8 ± 0.004	-121.5 ± 0.61 -119.1 ± 1.50 -51.2 ± 0.27
<u> </u>						

Conclusões

- Número de solitões observados e velocidade (e consequentemente amplitude) tendem a aumentar com o aumento de A e B, de acordo com a teoria.
- Medimos experimentalmente a velocidade dos solitões através de 2 métodos distintos. As incertezas experimentais tendem a não cobrir o valor teórico. Maior influência de ϵ_1 e ϵ_2 . Os dois métodos usados revelaram igual sucesso.
- Sugere-se manter a tina perfeitamente na horizontal, usar uma comporta que isole melhor os 2 compartimentos e calcular a velocidade do solitão por outros métodos (cronómetro).

Bibliografia

Material disponibilizado pelos docentes alguém que enumere se acharem que faz sentido

Github
https://github.com/AthomsG/LFEA

KdV 2-Soliton Solution

http://lie.math.brocku.ca/sanco/solitons/kdv_solitons.php

Anexos

Ensaio h5p5a2b10

η_0 (cm)	x (m)	$v (cm \cdot s^{-1})$	$\chi^2/{ m g.l}$
0.6 ± 2 e- 05	1.223 ± 0.0049	84.13 ± 0.33	17.14

Ensaio h5p5a4b1

η_0 (cm)	x (m)	$v \; (cm \cdot s^{-1})$	$\chi^2/{ m g.l}$
0.6 ± 3 e- 05	-1.22 ± 0.00609	$\text{-0.84}\pm0.00414$	163.54

Ensaio h6a6b10

η_0 (cm)	x (m)	$v \; (\mathit{cm} \cdot \mathit{s}^{-1})$	$\chi^2/{\rm g.l}$	
0.8 ± 4 e- 05	$\text{-0.51}\pm0.00271$	$\text{-0.86}\pm0.00431$	19.30	

Ensaio h6B20A2

η_0 (cm)	x (m)	$v (cm \cdot s^{-1})$	$\chi^2/{ m g.l}$
$0.3\pm$ 4e-05	-1.19 ± 0.01504	-1.07 ± 0.01318	38.04

Ensaio h2a2b40_3b

Ensaio h2a4b40_4b

Ensaio h2a6b10_2b

Ensaio h2a6b30_2b

Ensaio h2a6b40_3b

Ensaio h4a2b20_5b

Ensaio h4a4b10_5b_

Ensaio h4a4b10_barreira25_5b_

Ensaio h4a6b10_5b_

Ensaio h4a6b10_5b_ensaio2

Ensaio h4a6b40_3b_ensaio2

Ensaio h4a6b40_3b

Ensaio h4B40A1

Ensaio h5p5a2b10_2b

Ensaio h5p5a4b10_2b

Ensaio h6a6b10_3b

Ensaio h6am2b40_4b_ensaio2

Ensaio h6am2b40_4b_ensaio3

Ensaio h6am2b40_4b

Ensaio h6B20A2

Ensaio h6B10A2

