# Chapter 13 Wired LANs: Ethernet

#### 13-1 IEEE STANDARDS

In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment from a variety of manufacturers. Project 802 is a way of specifying functions of the physical layer nd the data link layer of major LAN protocols.

Topics discussed in this section:

Data Link Layer Physical Layer

#### Figure 13.1 IEEE standard for LANs

LLC: Logical link control MAC: Media access control



#### Figure 13.2 HDLC frame compared with LLC and MAC frames



#### 13-2 STANDARD ETHERNET

The original Ethernet was created in 1976 at Xerox's Palo Alto Research Center (PARC). Since then, it has gone through four generations. We riefly discuss the Standard (or traditional) thernet in this section.

Topics discussed in this section:

MAC Sublayer

Physical Layer

#### Figure 13.3 Ethernet evolution through four generations



#### Figure 13.4 802.3 MAC frame

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)

| Preamble                 | SFD    | Destination<br>address | Source<br>address | Length<br>or type | Data and padding | CRC     |
|--------------------------|--------|------------------------|-------------------|-------------------|------------------|---------|
| 7 bytes                  | 1 byte | 6 bytes                | 6 bytes           | 2 bytes           |                  | 4 bytes |
| Physical layer<br>header |        |                        |                   |                   |                  |         |

#### Figure 13.5 Minimum and maximum lengths





Note

# Frame length:

Minimum: 64 bytes (512 bits)

Maximum: 1518 bytes (12,144 bits)

#### Figure 13.6 Example of an Ethernet address in hexadecimal notation

06:01:02:01:2C:4B

6 bytes = 12 hex digits = 48 bits

#### Figure 13.7 Unicast and multicast addresses



# Note

The least significant bit of the first byte defines the type of address.

If the bit is 0, the address is unicast; otherwise, it is multicast.

# Note

The broadcast destination address is a special case of the multicast address in which all bits are 1s.

## Example 13.1

- Define the type of the following destination addresses:
- a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE
- c. FF:FF:FF:FF:FF

#### Solution

- To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are F's, the address is broadcast. Therefore, we have the following:
  - a. This is a unicast address because A in binary is 1010.
  - b. This is a multicast address because 7 in binary is Q1,1,1.

a brandonat addresa bassusa all digita

# Example 13.2

Show how the address 47:20:1B:2E:08:EE is sent out on line.

#### Solution

The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:



11100010 00000100 11011000 01110100 00010000 01110111

#### Figure 13.8 Categories of Standard Ethernet



#### Figure 13.10 10Base5 implementation



#### Figure 13.11 10Base2 implementation



#### Figure 13.12 10Base-T implementation



#### Figure 13.13 10Base-F implementation





#### Table 13.1 Summary of Standard Ethernet implementations

| Characteristics | 10Base5                | 10Base2            | 10Base-T   | 10Base-F   |
|-----------------|------------------------|--------------------|------------|------------|
| Media           | Thick<br>coaxial cable | Thin coaxial cable | 2 UTP      | 2 Fiber    |
| Maximum length  | 500 m                  | 185 m              | 100 m      | 2000 m     |
| Line encoding   | Manchester             | Manchester         | Manchester | Manchester |

#### 13-3 CHANGES IN THE STANDARD

The 10-Mbps Standard Ethernet has gone through several changes before moving to the higher data rates. These changes actually opened the road to the evolution of the Ethernet to become compatible with other high-data-rate LANs.

### Topics discussed in this section:

Bridged Ethernet Switched Ethernet Full-Duplex Ethernet

#### Figure 13.14 Sharing bandwidth



a. First station



b. Second station

#### Figure 13.15 A network with and without a bridge



a. Without bridging



b. With bridging

#### Figure 13.16 Collision domains in an unbridged network and a bridged netw



a. Without bridging



b. With bridging

## Figure 13.17 Switched Ethernet



#### Figure 13.18 Full-duplex switched Ethernet



#### 13-4 FAST ETHERNET

Fast Ethernet was designed to compete with LAN protocols such as FDDI or Fiber Channel. IEEE created Fast Ethernet under the name 802.3u. Fast Ethernet is backward-compatible with Standard Ethernet, but it can transmit data 10 times faster at rate of 100 Mbps.

#### Topics discussed in this section:

MAC Sublayer Physical Layer

#### Figure 13.19 Fast Ethernet topology



a. Point-to-point



b. Star

# Note

In the full-duplex mode of Gigabit Ethernet, there is no collision; the maximum length of the cable is determined by the signal attenuation in the cable.

#### 13-5 GIGABIT ETHERNET

The need for an even higher data rate resulted in the design of the Gigabit Ethernet protocol (1000 Mbps). The IEEE committee calls the standard 302.3z.

### Topics discussed in this section:

MAC Sublayer
Physical Layer
Ten-Gigabit Ethernet

# Note

In the full-duplex mode of Gigabit Ethernet, there is no collision; the maximum length of the cable is determined by the signal attenuation in the cable.