1.1

a

The sample space would be a sequence of four digits, where each digit can either be H or T

b

Any natural number

C

Any real number above 0

d

Any real number above 0

e

Any rational number between 0 and 1

1.4

a

$$P(A \cup B)$$

= $P(A) + P(B) - P(A \cap B)$

b

$$\begin{split} &P((A \setminus B) \cup (B \setminus A)) \\ &= P(A \setminus B) + P(B \setminus A) \\ &= P(A \cap B^C) + P(B \cap A^C) \\ &= P(A) - P(A \cap B) + P(B) - P(A \cap B) \\ &= P(A) + P(B) - 2P(A \cap B) \end{split}$$

C

$$P(A \cup B)$$
= $P(A) + P(B) - P(A \cap B)$

d

$$P((A \setminus B) \cup (B \setminus A))$$

$$= P(A \setminus B) + P(B \setminus A)$$

$$= P(A \cap B^{C}) + P(B \cap A^{C})$$

$$= P(A) - P(A \cap B) + P(B) - P(A \cap B)$$

= $P(A) + P(B) - 2P(A \cap B)$

1

Let (S, B, P) be a probability model and let $A, B \in B$. Using only the Kolmogorov axioms and Theorem 1 on slide 9 in Lecture 2.1 show the following:

1.
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

2. $P(A \setminus B) = P(A) - P(A \cap B)$
3. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
4. If $A \subseteq B$ then $P(A) \le P(B)$

You may prove the four parts in any order you like. Just make sure you don't go in a circle, e.g. use (b) to prove (a) and then use (a) to prove (b)

a

$$P(A) = P(A \cap B) + P(A \cap B^C)$$
 Since B and B^C are disjoint, $A \cap B$ and $A \cap B^C$ are also disjoint Define $B_1^* = B$ and $B_2^* = B^C$
$$P(A \cap B) + P(A \cap B^C)$$

$$= P(A \cap B_1^*) + P(A \cap B_2^*)$$

$$= \sum_{i=1}^2 P(A \cap B_1^*)$$

$$= P(\bigcup_{i=1}^2 A \cap B_i^*)$$

$$= P((A \cap B_1^*) \cup ((A \cap B_2^*)))$$

$$= P((A \cap B) \cup (A \cap B^C))$$

$$= P(A \cap (B \cup B^C))$$

$$= P(A)$$

b

$$P(A \setminus B) = P(A) - P(A \cap B)$$

$$A \setminus B = \{x : x \in A : x \notin B\}$$

$$= A \cap B^{C}$$

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$= P(A \cap B) + P(A \setminus B)$$

$$P(A \setminus B) = P(A) - P(A \cap B)$$

C

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P((A \cup B) \cap B) + P((A \cup B) \cap B^{C})$$

$$= P(B) + P((A \cap B^{C}) \cup (B \cap B^{C}))$$

$$= P(B) + P(A \cap B^{C})$$

$$= P(B) + P(A \cap B^{C}) + P(A \cap B) - P(A \cap B)$$

$$= P(B) + P(A) - P(A \cap B)$$

d

If
$$A \subseteq B$$
 then $P(A) \leq P(B)$

If
$$A = B$$
 then $P(A) = P(B)$

$$A = \{x : x \in A\}$$

$$A=\{x:x\in A:x\in B\}$$

$$A\cap B=\{x:x\in A:x\in B\}$$

$$A \cap B = A$$

$$P(A \cap B) = P(A)$$

$$P(B) = P(A \cap B) + P(A^C \cap B)$$

= $P(A) + P(A^C \cap B)$

$$P(A^C \cap B) > 0$$

2

Draw Venn diagrams to illustrate DeMorgan's laws

$$(A \cup B)^C = A^C \cap B^C$$
 and $(A \cap B)^C = A^C \cup B^C$

