Quantification of human exposure to antimicrobial resistant *E. coli* using a farm-to-fork model in broiler chicken production.

Subhasish Basak₁, Nunzio Sarnino₂, Roswitha Merle₂, Lucie Collineau₁
1. ANSES – Laboratoire de Lyon, France 2. Freie Universität Berlin, Germany

CONTEXT

PROJECT ENVIRE

CONSORTIUM AND FUNDING

- Project duration: 2022-2025
- Germany, France, Lithuania, Poland, Tunisia
- Funded by the European Transnational Programme JPIAMR-ACTION

OBJECTIVES

- Reduce antimicrobial-resistant (AMR) bacteria spread from broiler chickens
- Investigate the potential of various on-farm intervention measures
- Reduce transmission and human exposure to ESBL E. coli from broiler chicken

WORKFLOW – WP 3

• Quantitative Risk Assessment with pathways:

FOOD-BORNE

ENVIRONMENTAL

OCCUPATIONAL

Incorporate on-farm intervention measures

MATERIALS & METHODS FOOD-BORNE FARM-TO-FORK PATHWAY

FARM MODULE

DYNAMICS of ESBL *E. coli* in farm environment

Transmisson model Dame-Korevaar et al. (2020) Horizontal Gene Transfer Fisher at al. (2019) Susceptible-Infected model Becker et al. (2022)

FOOD-BORNE MODULE

DYNAMICS of ESBL *E. coli* in processing

Collineau et al. (2020) in ESBL *E. coli* setup Updated with EU poultry farming practices Simulates the processing of 1 chicken flock

Flock Risk from 1 chicken portion consumed

- Prob. of ESBL *E. coli* carriage by consumer
 - Conditional on Pprev, Cload after cooking
- Pdr: Dose-Response Furusawa et al. (2024)

RESULTS & PERSPECTIVES

Average risk of ESBL *E. coli* carriage by consumer from 1 chicken portion consumed

$$R_{ heta}^{ ext{portion}} = \int P_{ ext{DR}}(c_{ ext{load}}) \cdot p_{ ext{prev}} \cdot p(p_{ ext{prev}}, c_{ ext{load}}) \cdot ext{dp}_{ ext{prev}} ext{dc}_{ ext{load}}$$

To estimate: 10k independent flocks simulated with Monte Carlo runs Average risk in a baseline scenario defined by input parameters Θ : 1.4e-4

Food-borne QRA module perspectives

Validation: Simulation results are comparable with Faverjon et al. (2022) **Calibration:** Input parameters Θ can be adapted to different EU country protocols **Work in Progress:** Integration of ENVIRE experimental data on interventions

