PRECAT: OM25

SunBeam Institute of Information & Technology, Hinjwadi, Pune & Karad.

Ketan G Kore

Introduction:

- What is data structure & its classification?
- What is an algorithm?

Array:

- Searching Algorithms: Linear Search & Binary Search
- Sorting Algorithms:
- Selection Sort, Bubble Sort & Insertion Sort: Algorithms & Implementation
 - Merge Sort & Quick Sort: Only Algorithms.
- Limitations of an Array data structure

Linked List:

- Concept & Definition
- -Implementation of Singly Linear Linked List Operations: Addition & Deletion.
- Concepts:
- Singly Circular Linked List
- Doubly Linear Linked List
- Doubly Circular Linked List.
- Difference between Array and Linked List

Stack:

- Concept & Definition
- Implementation of Stack by using an array
- + Stack Application Algorithms:
- Conversion of infix expression into its equivalent postfix expression.
- Conversion of infix expression into its equivalent prefix expression.
- -Conversion of prefix expression into its equivalent postfix expression.
- Evaluation of postfix expression

Queue:

- Concept & Definition
- Types of Queue
- Implementation of Linear Queue & Circular Queue

Tree terminologies

Graph terminologies

Q. What is Data Structure?

Data Structure is a way to store data elements into the memory (i.e. into the main memory) in an organized manner so that operations like addition, deletion, traversal, searching, sorting etc... can be performed on it efficiently.

Two types of **Data Structures** are there:

- 1. Linear/Basic: data elements gets stored into the memory in a linear manner and hence can be accessed linearly.
 - Array
 - Structure & Union
 - Class
 - Linked List
 - Stack
 - Queue

- **2.Non-linear/Advanced:** data elements gets stored into the memory in a non-linear manner and hence can be accessed non-linearly.
 - Tree (Hierarchical)
 - Graph

Array: It is a collection of logically related similar type of elements in which data elements gets stored into the memory at contiguos locations.

Structure: It is a collection of logically related similar and disimmilar type of elements gets stored into the memory collectively (as a single entity/record).

Size of of structure is sum of size of all its members.

Union: Union is same like structure, except, memory allocation i.e. size of union is the size of max size member defined in it and that memory gets shared among all its members for effective memory utilization (can be used in a special case only).

Q. What is a Program?

- A program is a set of instructions written in any programming language (like C, C++, Java, Python, Assembly etc...) given to the machine to do specific task.
- An algorithm is a template whereas a program is an implementation of an algorithm.

Q. What is an Algorithm?

- An algorithm is a finite set of instructions written in human understandable language (like english), if followed, acomplishesh a given task.
- An algorithm is a finite set of instructions written in human understandable language (like english) with some programming constraints, if followed, acomplishesh a given task, such an algorithm also called as pseudocode.

Example: An algorithm to do sum of all array elements

```
Algorithm ArraySum(A, n)//whereas A is an array of size n

{
    sum=0;//initially sum is 0
    for( index = 1 ; index <= size ; index++) {
        sum += A[ index ];//add each array element into the sum
    }
    return sum;
}
```

- In this algorithm, **traversal/scanning** operation is applied on an array. Initially sum is 0, each array element gets added into to the sum by traversing array sequentially from the first element till last element and final result is returned as an output.

- -Analysis of an algorithm is a work of determining how much time i.e. computer time and space i.e. computer memory it needs to run to completion.
- There are two measures of an analysis of an algorithms:
- **1.Time Complexity:** It is the amount of time i.e. computer time required for an algorithm to run to completion.
- **2.Space Complexity:** It is the amount of space i.e. computer memory required for an algorithm to run to completion.
- Asymptotic Analysis: It is a mathematical way to calculate time complexity and space complexity of an algorithm without implementing it in any programming language.
- In this type of analysis, analysis can be done on the basis of basic operation in that algorithm.
- e.g. in searching & sorting algorithms comparison is the basic operation and hence analysis gets done on the basis of no. of comparisons, in addition of matrices algorithms addition is the basic operation and hence on the basis of addition operation.

- "Best case time complexity": if an algo takes min amount of time to complete its execution then it is referred as best case time complexity.
- "Worst case time complexity": if an algo takes max amount of time to complete its execution then it is referred as worst case time complexity.
- "Average case time complexity": if an algo takes neither min nor max amount of time to complete its execution then it is referred as an average case time complexity.

"Asympotic Notations":

- **1.Big Omega (\Omega):** this notation is used to denote best case time complexity
- 2. Big Oh (O): this notation is used to denote worst case time complexity
- 3.Big Theta (0):):this notation is used to denote an average case time complexity

Data Structures: Searching Algorithms

1. Linear Search/Sequential Search:

- In this algorithm, key element gets compared sequentially with each array element by traversing it from first element till either match is found or maximum till the last element.

Data Structures: Searching Algorithms

Best Case: If key is found at very first position in only 1 no. of comparison then it is considered as a best case and running time of an algorithm in this case is $O(1) = \Omega$:(1)

Worst Case: If either key is found at last position or key does not exists, maximum n no. of comparisons takes place, it is considered as a worst case and running time of an algorithm in this case is O(n) = O(n)

Average Case: If key is found at any in between position it is considered as an average case and running time of an algorithm in this case is $O(n/2) = \theta$:(n)