CS281B/Stat241B (Spring 2008) Statistical Learning Theory

Lecture: 15

Rademacher averages and Vapnik-Chervonenkis dimension

Lecturer: Peter Bartlett Scribe: Taylor Berg-Kirkpatrick

1 Intro

Risk bounds, complexity

- Rademacher averages
- Vapnik-Chervonenkis dimension

Last time: Choose $\hat{f} \in F$ so that sample average of the loss is minimized.

$$\hat{f} = \operatorname*{arg\,min}_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i)$$

Interested in how the risk of f compares to the best risk in our class.

$$R(\hat{f}) - \inf_{f \in F} R(f)$$
?

One approach is to find bound that holds uniformly over class.

$$\sup_{f \in F} \left| R(f) - \hat{R}(f) \right| \le \dots$$

2 Rademacher averages

Rademacher averages are a measure of the complexity of a class.

Definition. For a class $F \subseteq \mathbb{R}^{\mathcal{X}}$, i.i.d. X_1, \ldots, X_n , and Rademacher R.V.s $\epsilon_1, \ldots, \epsilon_n$ (i.e. i.i.d. taking on ± 1 with equal probability), define the Rademacher averages of F as

$$R_n(F) = \mathbb{E} \sup_{f \in F} \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i)$$

Want to bound

$$\sup_{f \in F} \left(\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right)$$

 $McDiarmid \Rightarrow$

$$\sup_{f \in F} \left(\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right) \le \mathbb{E} \sup_{f \in F} \left(\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right) + c \sqrt{\frac{\log \frac{1}{\delta}}{n}}$$

We saw this idea in the GC theorem, dealt with awkward expectation using symmetrization.

But for $F \subseteq \mathbb{R}^{\mathcal{X}}$,

$$\mathbb{E}\sup_{f\in F} \left(\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right) = \mathbb{E}\sup_{f\in F} \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} f(X_i') - \frac{1}{n} \sum_{i=1}^{n} f(X_i) | X_1, \dots, X_n \right]$$

$$\leq \mathbb{E}\sup_{f\in F} \frac{1}{n} \sum_{i=1}^{n} \left(f(X_i') - f(X_i) \right)$$

$$= \mathbb{E}\sup_{f\in F} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i \left(f(X_i') - f(X_i) \right)$$

$$\leq \mathbb{E}\left[\sup_{f\in F} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i') \right) + \sup_{f\in F} \left(-\frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right) \right]$$

$$= 2R_n(F)$$

$$(1)$$

Combining yeilds:

Theorem 2.1. For $F \subseteq [-1,1]^{\mathcal{X}}$, $w.p. \geq 1 - \delta$

$$\sup_{f \in F} \left(\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right) \le 2R_n(F) + c\sqrt{\frac{\log \frac{1}{\delta}}{n}}$$

Hence, for

$$\hat{f} = \underset{f \in F}{\operatorname{arg \, min}} \, \hat{\mathbb{E}} \ell_f$$

$$f^* = \underset{f \in F}{\operatorname{arg \, min}} \, \mathbb{E} \ell_f$$

 $w.p. \geq 1 - \delta$,

$$\mathbb{E}\ell_{\hat{f}} \leq \hat{\mathbb{E}}\ell_{\hat{f}} + 2R_n(\ell_F) + c\sqrt{\frac{\log\frac{1}{\delta}}{n}}$$

$$\leq \hat{\mathbb{E}}\ell_{f^*} + 2R_n(\ell_F) + c\sqrt{\frac{\log\frac{1}{\delta}}{n}}$$

$$\leq \mathbb{E}\ell_{f^*} + 2R_n(\ell_F) + c'\sqrt{\frac{\log\frac{1}{\delta}}{n}}$$

(2)

where the last inequality follows from an application of Hoeffding's inequality to ℓ_{f^*} . i.e.

$$R(\hat{f}) \le \inf_{f \in F} R(f) + 2R_n(\ell_F) + c'\sqrt{\frac{\log \frac{1}{\delta}}{n}}$$

Example. (Rademacher average of binary class versus Rademacher average of discrete loss class) Classification

Let
$$F \subseteq \{\pm 1\}^{\mathcal{X}}$$
, $\ell = 0\text{-}1$ loss, $\ell_f(x, y) = \frac{1 - y f(x)}{2}$, so

$$R_{n}(\ell_{F}) = \mathbb{E}\left[\sup_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \left(\frac{1 - Y_{i}f(X_{i})}{2}\right)\right]$$

$$= \mathbb{E}\mathbb{E}\sup_{f \in F} \left[\frac{\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}}{2} - \frac{\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}Y_{i}f(X_{i})}{2} | X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{n}\right]$$

$$= \frac{1}{2}\mathbb{E}\sup_{f \in F} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}f(X_{i})\right)$$

$$= \frac{1}{2}R_{n}(F)$$
(3)

Recall:

Lemma 2.2. For $A \subseteq \mathbb{R}^n$ with $\max_{a \in A} \frac{1}{n} \sum_{i=1}^n a_i^2 = R^2$,

$$\mathbb{E} \max_{a \in A} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i a_i \le R \sqrt{\frac{2 \log |A|}{n}}$$

Hence for finite $F \subseteq [-1, 1]^{\mathcal{X}}$,

$$R_n(F) \le \sqrt{2 \frac{\log |F|}{n}}.$$

For example, consider a class that is parameterized by k bits,

$$F = \{x \mapsto f(x, \theta) : \theta \in \{0, 1\}^k\}.$$

Then $R_n(F) \leq \sqrt{2(k/n)\log 2}$.

3 Growth function & Vapnik-Chervonenkis dimension

Pattern classification: $F \subseteq \{\pm 1\}^{\mathcal{X}}$, $\ell = 0$ -1 loss,

$$R_{n}(F) = \mathbb{EE}\left[\max_{a \in F \upharpoonright X_{1}^{n}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} a_{i} | X_{1}^{n}\right]$$

$$\leq \sqrt{\frac{2}{n}} \mathbb{E}\sqrt{\log |F \upharpoonright X_{1}^{n}|}$$

$$\leq \sqrt{\frac{2 \log \mathbb{E}|F \upharpoonright X_{1}^{n}|}{n}}$$
(4)

Example. $F = \{x \mapsto 1[x \leq \theta] : \theta \in \mathbb{R}\}$, and $x_{(1)} \leq x_{(2)} \leq x_{(3)} \leq \ldots$, so F can only split the $x_{(i)}$'s n+1 ways.

Definition. The growth function of $F \subseteq \{\pm 1\}^{\mathcal{X}}$ is

$$\Pi_F(n) = \max\{|F\upharpoonright_{x_1^n}| : \{x_1, \dots, x_n\} \subseteq \mathcal{X}\}$$

For the example above, the growth function is n + 1.

Some observations:

$$\Pi_F(n) \leq |F|$$

(and for
$$|F| < \infty$$
, $\lim_{n \to \infty} \Pi_F(n) = |F|$)

$$\Pi_F(n) < 2^n$$

Also

$$R(\hat{f}) \le R(f^*) + 2R_n(F) + \frac{c}{\sqrt{n}}$$

where

$$2R_n(F) \le c \mathbb{E} \sqrt{\frac{\log |F| \chi_1^n}{n}}$$

$$\le c \sqrt{\frac{\log \Pi_F(n)}{n}}$$

(5)

e.g. We'll see that linear threshold functions on \mathbb{R}^d have growth function

$$\Pi_F(n) = 2\sum_{k=0}^d \binom{n-1}{k}$$

Definition. We say F shatters $S \subseteq \mathcal{X}$ if $|F|_S = 2^{|S|}$. The VC dimension of F is

$$d_{VC}(F) = \max\{|S| : S \subseteq \mathcal{X}, F \text{ shatters S}\}$$

= \text{max}\{n : \Pi_F(n) = 2^n\}

(6)

e.g. For linear threshold functions

$$2\sum_{k=0}^{d} \binom{n-1}{k} = \begin{cases} 2\sum_{k=0}^{n-1} \binom{n-1}{k} - 2\sum_{k=d+1}^{n-1} \binom{n-1}{k} & \text{where } d < n-1, \\ 2^n - (\dots) & \text{when } d \ge n-1. \end{cases}$$

$$\Pi_f(n) \le 2^n \Leftrightarrow n > d+1, \text{ i.e. } d_{VC}(F) = d+1$$

We can calculate the VC-dimension more directly, as follows.

$$\{x_1,\ldots,x_n\}$$
 shattered by $\{x\mapsto sign(\theta'x+\theta_0)\}\Leftrightarrow \left\{\binom{x_1}{1},\ldots,\binom{x_n}{1}\right\}$ linearly independent.

Therefore, since max basis of $\mathbb{R}^d + 1$ has size d + 1, $d_{VC}(F) = d + 1$.

Note:

$$\Pi_F(n) = 2\sum_{k=0}^d \binom{n-1}{k} = \Theta(n^d)$$

Lemma 3.1. [Sauer's Lemma]

$$d_{VC}(F) \le d \Rightarrow \Pi_F(n) \le \sum_{i=0}^d \binom{n}{i}$$

and for
$$n \ge d$$
, this is $\le \left(\frac{en}{d}\right)^d$