

Fonction d'onde d'un objet quantique - Equation de Schrödinger

ERWIN SCHRÖDINGER (1887-1961)

PLAN DU CHAPITRE

I	Fon	adements de la mécanique quantique : la fonction d'onde complexe	3
	I.1	L'expérience de Davisson et Germer (1927)	3
	I.2	Emergence de la fonction d'onde complexe	4
		a - Le premier prostulat de la mécanique quantique	4
		b - Dualité onde corpuscule	5
	I.3	Calcul de l'action : "critère" quantique	6
	I.4	Densité de probabilité de présence - normalisation de la fonction d'onde	7
		a - Définition	7
		b - Condition de normalisation - exemple d'exploitation	7

		c - Mesure d'une valeur moyenne d'"observable"	8	
II	L'équation de Schrödinger 1D non relativiste (ES1D)			
	II.1	Cas d'une particule libre	9	
	II.2	Cas général : l'ES1D - particule en présence d'un champ de force (postulat $n^\circ 2)$	10	
	II.3	Linéarité de l'ES- superposition des états quantiques	11	
III	Rec	herche des états stationnaires 1D	13	
	III.1	Recherche par séparation de variables - Equation de Schrödinger indépendante du		
		temps (ESIT1D) (à retenir!!!)	13	
	III.2	Etats stationnaires classiques et quantiques : différence de signification	15	
	III.3	Superposition d'ES : construction d'un état non nécessairement station naire	16	
IV	Etu	de complète de la particule libre	17	
	IV.1	Fonction d'onde d'une particule libre non localisée : caractère non physique des ondes		
		de De Broglie	17	
	IV.2	Construction d'une onde "physique" pour la particule libre : le paquet d'onde !!!	18	
	IV.3	Relation de dispersion de la particule libre - vitesse de groupe du paquet - étalement		
		de $\rho(x,t)$	19	
	IV.4	Principe d'incertitude d'Heisenberg	20	
		a - Enoncé	20	
		b - Interprétation physique	21	
	IV.5	Courant de probabilité - analogie avec l'EM	22	

