Pregunta 1 (3 puntos)

Sea (A, \preceq) un conjunto ordenado con al menos dos elementos distintos. Consideremos las siguientes proposiciones:

p;
$$\forall x \in A \ \exists y \in A \setminus \{x\} \ \text{tal que } x \leq y$$

q;
$$\forall x \in A \ \forall y \in A \setminus \{x\}$$
 se tiene que $x \leq y$

r;
$$\exists x \in A \ \exists y \in A \setminus \{x\} \ \text{tales que } x \leq y$$

s;
$$\exists x \in A \text{ tal que } \forall y \in A \setminus \{x\} \text{ se tiene } x \leq y$$

¿De las siguientes proposiciones condicionales cuáles son siempre verdaderas y cuáles no? Justifique las respuestas en el caso de que el condicional sea siempre verdadero y ponga un contraejemplo en caso contrario.

a)
$$p \to q$$

a)
$$p \to q$$
 b) $q \to p$ c) $p \to r$ d) $r \to p$ e) $p \to s$ f) $s \to p$

c)
$$p \rightarrow r$$

$$d) r \to p$$

e)
$$p \to s$$

f)
$$s \to p$$

Pregunta 2 (2 puntos)

Se define en \mathbb{N} la relación definida para todo $x, y \in \mathbb{N}$ mediante:

$$x \mathcal{R} y$$
 si y sólo si $\exists p, q \in \mathbb{N}^*$ tales que $y = px^q$

Determine si la relación \mathcal{R} es reflexiva, simétrica, antisimétrica o transitiva.

Pregunta 3 (2 puntos)

¿Cuántas aplicaciones biyectivas f del conjunto $\{1, 2, 3, \dots, 12\}$ en sí mismo hay cumpliendo las siguientes propiedades:

- a) Si n es par entonces f(n) es par.
- b) Si n es divisible por 3 entonces f(n) es divisible por 3.
- c) Las aplicaciones bivectivas cumplen las propiedades de a) y b) simultáneamente.
- d) Repita la cuestión a) pero contando el número de aplicaciones distintas (biyectivas o no biyectivas) de $\{1, 2, 3, \dots, 12\}$ en sí mismo.

Pregunta 4 (3 puntos)

- a) Calcule las raíces *n*-ésimas de $z_1 = 1 + i$ y de $z_2 = -i$.
- b) Resuelva en \mathbb{C} la ecuación: $z^2 z + 1 i = 0$.
- c) Resuelva en \mathbb{C} la ecuación: $z^{2n} z^n + 1 i = 0$.