Supporting Information

A Combined Experimental and Computational Approach Towards the

Structural Design of Borosilicate-Based Bioactive Glasses

Nicholas Stone-Weiss, ¹ Henrik Bradtmüller, ² Mariagrazia Fortino, ³ Marco

Bertani,³ Randall E. Youngman,⁴ Alfonso Pedone,³ Hellmut Eckert,^{2,5,*} Ashutosh

Goel^{1,1}

¹Department of Materials Science and Engineering, Rutgers, The State University of New Jersey,

Piscataway, NJ 08854, United States

²Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, D48149 Münster,

Germany.

³Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via

G. Campi 103, 41125, Modena, Italy

⁴Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States

⁵São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador Saocarlense 400,

São Carlos, SP 13566-590, Brazil

* Corresponding authors:

Email: eckert@ifsc.usp.br; Ph: +55-16-3373-8775 (H. Eckert)

Email: ag1179@soe.rutgers.edu; Ph: +1-848-333-1523 (A. Goel)

S1

^{*} XRD peaks associated with tetrasodium diphosphate crystals

Figure S1. X-ray diffraction patterns of PB, MB, and PA glass compositions, respectively. All samples shown, with the exception of PA1-P5, were used in this study due to their amorphous / visually non-phase-separated nature. PA1-P5 displays an example of a glass which developed crystalline phases upon quenching, as was seen in all x = 5 PA glasses.

Figure S2. ¹¹B MAS NMR spectra of all Series "1" and "2" glasses in the perboric and metaboric regimes, in addition to Series "1" and "3" in the peralkaline regime. Spectra on the perboric, metaboric, and peralkaline glasses were collected at 16.4 T, 14.1 T, and 11.7 T, respectively.

Figure S3. ³¹P MAS NMR spectra of Series "1" PB and MB samples and all PA samples.

Figure S4. Overall spectral range of ¹¹B MAS NMR spectra of PB3-P7 and MB3-P5 samples, which was used to estimate ¹¹B quadrupolar coupling constants, based on the spinning sideband pattern of the satellite transition.

Figure S5. ²⁹Si MAS NMR spectra of Series "1" and "2" samples.

Figure S6. T-Na (T=Si, B(III), B(IV), P) pair distribution functions of the glasses investigated. x is the content of P_2O_5 in the glass.

Figure S7. T-Na coordination numbers (computed using a cutoff = 4.5 Å) as a function of P_2O_5 content. The black line represents the coordination numbers for models in which sodium is homogeneously distributed.

Table S1. Summary of measurement conditions for all samples and nuclei studied by MAS NMR.

Single Resonance Parameters		Perboric	Metaboric	Peralkaline	
	Magnetic field (T) / Resonance frequency (MHz)	16.4 / 185.1	5.7 / 64.1	5.7 / 64.1	
	Spinning frequency (kHz)	22.0	15.0	15.0	
^{23}Na	Pulse length (μs) / Tip angle	$0.6 / (\pi/12)$	$0.8 \text{-} 1.2 / (\pi/6)$	$0.8-1.2 / (\pi/6)$	
	Recycle delay (s)	2	0.25-0.5	0.25-0.5	
	Number of acquisitions	200	≥2000	≥2000	
	Reference standard	NaCl (aq.) (0.0 ppm)	NaCl (7.2 ppm)	NaCl (7.2 ppm)	
	Magnetic field (T) / Resonance frequency (MHz)	16.4 / 224.6	14.1 / 192.6	11.7 / 160.5 or 14.1 / 192.6	
	Spinning frequency (kHz)	20.0	15.0	14.0 or 15.0	
¹¹ B	Pulse length (μs) / (Tip Angle)	$0.6 / (\pi/12)$	$0.5 \text{-} 1.0 / (\pi/6)$	$0.4\text{-}1.0 / (\pi/6)$	
	Recycle delay (s)	2	1-5	1-15	
	Number of acquisitions	200	≥400	≥400	
	Reference standard	H ₃ BO ₃ (aq.) (19.6 ppm)	BPO ₄ (-3.5 ppm)	BPO ₄ (-3.5 ppm)	
	Magnetic field (T) / Resonance frequency (MHz)	16.4 / 283.3	5.7 / 98.1	5.7 / 98.1	
	Spinning frequency (kHz)	20.0	12.0	12.0	
³¹ P	Pulse length (μs) / (Tip angle)	$1.0 / (\pi/6)$	$4.0-5.2 / (\pi/2)$	$4.0-5.2 / (\pi/2)$	
	Recycle delay (s)	45	90-150	90-150	
	Number of acquisitions	160-800	80	80	
	Reference standard	85 % H ₃ PO ₄ (0.0 ppm)	BPO ₄ (-29.3 ppm)	BPO ₄ (-29.3 ppm)	
	Magnetic Field (T) / Resonance frequency (MHz)	11.7 / 99.3	5.7 / 48.2	5.7 / 48.2	
	Spinning frequency (kHz)	6.0	5.0	5.0	
²⁹ Si	Pulse length (μs) / (Tip angle)	$1.6 / (\pi/6)$	$5.0 / (\pi/2)$	$5.0 / (\pi/2)$	
	Recycle delay (s)	300	150	150	
	Number of acquisitions	300-800	150	150	
	Reference standard	Tetramethylsilane (0.0 ppm)	CaSi ₂ O ₅ (-71.3 ppm)	CaSi ₂ O ₅ (-71.3 ppm)	

Experimental Parameters of Double Resonance Experiments									
	ν _{nut.} , observed (kHz)	71.0							
	ν _{nut.} , non-observed (kHz)	161.0							
	Spinning frequency (kHz)	15.0							
$^{11}{ m B}\{^{31}{ m P}\}$	π -Pulse length, observed (μs)	5.6-6.0							
	π -Pulse length, non-observed (μs)	3.1							
	Recycle delay (s)	1							
	Number of acquisitions (per point)	≥112							
	$v_{\text{nut.}}$, observed (kHz)	31.3							
	$v_{nut.}$, non-observed (kHz)	62.5							
	Spinning frequency (kHz)	11.0							
$^{23}Na\{^{31}P\}$	π -Pulse length, observed (μs)	6.0							
	π -Pulse length, non-observed (μs)	6.4							
	Recycle delay (s)	0.5							
	Number of acquisitions (per point)	512							
	$v_{\text{nut.}}$, observed (kHz)	62.5							
	ν _{nut.} , non-observed (kHz)	31.3							
	Spinning frequency (kHz)	11.0							
$^{31}P\{^{23}Na\}$	π -Pulse length, observed (μs)	6.4							
	π -Pulse length, non-observed (μs)	6.0							
	Recycle delay (s)	40-100							
	Number of acquisitions (per point)	256							
	$v_{\text{nut.}}$, observed (kHz)	161.0							
	$v_{nut.}$, non-observed (kHz)	71.0							
	Spinning frequency (kHz)	15.0							
$^{31}P\{^{11}B\}$	π -Pulse length, observed (μs)	3.1							
	π -Pulse length, non-observed (μs)	22.0							
	Recycle delay (s)	90							
*7.75	Number of acquisitions (per point)	192							

^{*7.75} µs used for B(III) and 11.25 µs for B(IV)

Table S2. Number of atoms in the simulation cells of the investigated glasses.

Glass	В	Si	P	0	Na	# atoms
PB0	600	450	-	2050	500	3600
PB2-P1	590	440	20	2060	490	3600
PB2-P3	580	430	60	2120	480	3670
PB2-P5	570	420	100	2180	470	3740
MB0	500	500	-	2000	500	3500
MB2-P1	490	500	20	2030	490	3530
MB2-P3	480	490	60	2090	480	3600
MB2-P5	470	480	100	2150	470	3670
PA0	400	550	-	1950	500	3400
PA2-P1	390	540	20	1910	490	3350
PA2-P3	380	530	60	2020	480	3470
55 Na ₂ O – 45 P ₂ O ₅	-	-	72	224	88	384
40 Na ₂ O - 18 B2O3 - 42 P ₂ O ₅	27	-	63	228	60	378

Table S3. Shell model interatomic potential parameters used in this work.

		Buckingham		Ref.					
Pairs	A (eV)	ρ (Å)	C (eV Å ⁶)						
O_s - O_s	22764.30	0.1490	27.88	1					
$Si-O_s$	1283.91	0.32052	10.661580	1					
Na - O_s	56465.345	0.193931	0.000000	2					
$B-O_s$	511.0	0.3310	0.0	this work					
$P-O_s$	1120.09	0.33477	0.0	3					
	Thi	ree-body potential							
	k _b (eV rad ⁻²)	θ_0 (deg)	ρ (Å)	Ref.					
O-Si-O	100.0	109.47	1.0	3					
O-P-O	50.0	109.47	1.0	3					
	Core-shell potential								
	k _s (eV Å-2)	Y(e)	m _{shell} (uma)						
O_c - O_s	74.92	-2.8482	3.0						

- (1) Sanders, M. J.; Leslie, M.; Catlow, C. R. A. Interatomic Potentials for SiO₂. *J. Chem. Soc. Chem. Commun.* **1984**, No. 19, 1271–1273.
- (2) Tilocca, A.; De Leeuw, N. H.; Cormack, A. N. Shell-Model Molecular Dynamics Calculations of Modified Silicate Glasses. *Phys. Rev. B Condens. Matter* **2006**, *73* (10), 1–14.
- (3) Tilocca, A.; Cormack, A. N.; De Leeuw, N. H. The Structure of Bioactive Silicate Glasses: New Insight from Molecular Dynamics Simulations. *Chem. Mater.* **2007**, *19* (1), 95–103.

Table S4. Fitting parameters of ¹¹B MAS NMR in the studied glasses, including fraction of each species $f(\pm 1.0\%)$, isotropic chemical shift, $\delta_{\text{CS}}^{\text{iso}}$ (± 0.5 ppm), quadrupolar coupling constant, C_{Q} (± 0.2 MHz), η_{Q} (± 0.05), and overall N_4 fractions ($\pm 1\%$) where N_4 as simulated from MD models are displayed in brackets.

	B(III) Ring				B(III) Non-Ring				B(IV)-I		B(IV)-II		
Sample ID	f(%)	$\delta_{ ext{CS}}^{ ext{iso}}$ (ppm)	C _Q (MHz)	$\eta_{ m Q}$	f(%)	$\delta_{\mathrm{CS}}^{\mathrm{iso}}$ (ppm)	C _Q (MHz)	$\eta_{ m Q}$	f(%)	$\delta_{\mathrm{CS}}^{\mathrm{iso}}$ (ppm)	f(%)	$\delta_{ ext{CS}}^{ ext{iso}} \ ext{(ppm)}$	N_4
PB0	27.8	18.5	2.7	0.3	9.3	16.2	2.6	0.3	59.3	-0.1	3.6	-2.1	62.9 [59.5]
PB1-P1	25.7	18.2	2.7	0.3	9.5	16.1	2.6	0.3	60.2	-0.2	4.6	-2.2	64.8
PB1-P3	28.2	18.1	2.7	0.3	10.1	15.8	2.6	0.3	55.3	-0.2	6.4	-2.2	61.7
PB1-P5	29.9	18.0	2.7	0.3	11.3	15.7	2.6	0.3	47.4	-0.1	11.4	-2.1	58.8
PB2-P1	26.2	18.4	2.7	0.3	10.3	16.4	2.7	0.3	60.1	-0.1	3.4	-2.1	63.5 [60.5]
PB2-P3	28.6	18.1	2.7	0.3	9.3	16.1	2.6	0.3	54.7	-0.1	7.4	-2.1	62.1 [58.6]
PB2-P5	28.7	18.1	2.7	0.3	12.2	16.1	2.6	0.3	49.9	-0.1	9.2	-2.1	59.1 [54.6]
PB3-P1	27.0	18.3	2.7	0.3	9.6	16.3	2.6	0.3	58.5	-0.1	4.9	-2.1	63.4
PB3-P4	29.4	18.2	2.7	0.3	10.6	16.1	2.6	0.3	53.8	-0.1	6.2	-2.2	60.0
PB3-P7	31.2	18.0	2.7	0.3	12.4	16.0	2.6	0.3	48.4	-0.1	8.0	-2.2	56.4 [53.8]
MB0	25.1	17.7	2.6	0.3	5.9	14.6	2.5	0.5	62.4	-0.5	6.6	-2.4	67.2 [61.7]
MB1-P1	23.6	17.7	2.6	0.3	6.5	14.6	2.5	0.5	61.9	-0.5	8.0	-2.4	69.9
MB1-P3	26.3	17.5	2.6	0.4	5.6	14.1	2.6	0.4	56.9	-0.6	11.2	-2.4	68.1
MB1-P4	26.8	17.4	2.6	0.3	7.7	14.0	2.5	0.5	50.6	-0.6	14.9	-2.4	65.5
MB2-P1	25.8	17.6	2.6	0.3	6.7	14.6	2.6	0.5	62.4	-0.6	5.1	-2.5	67.5 [63.4]
MB2-P3	25.5	17.4	2.6	0.3	7.3	14.8	2.6	0.5	59.6	-0.7	7.6	-2.6	67.2 [60.9]
MB2-P5	26.1	17.3	2.6	0.3	8.4	14.1	2.5	0.5	54.6	-0.7	10.9	-2.6	65.5 [60.3]
MB3-P1	23.1	17.5	2.6	0.3	9.3	15.2	2.6	0.5	62.6	-0.9	5.0	-2.8	67.6
MB3-P3	23.0	17.4	2.6	0.3	10.0	15.3	2.6	0.5	59.6	-0.9	7.4	-2.8	67.0
MB3-P5	26.6	17.2	2.6	0.3	9.4	14.2	2.4	0.5	56.0	-0.9	8.0	-2.9	64.0
PA0	21.7	18.2	2.6	0.4	6.4	15.2	2.6	0.4	60.8	-0.1	11.1	-1.9	71.0 [67.2]
PA1-P1	22.5	18.0	2.5	0.4	8.9	11.4	2.5	0.5	62.1	-0.2	6.4	-1.8	68.5
PA1-P3	22.0	18.0	2.5	0.4	10.1	11.4	2.5	0.5	59.3	-0.2	8.6	-1.8	67.9
PA2-P1	21.2	18.1	2.5	0.4	6.5	14.4	2.6	0.4	58.0	-0.1	14.3	-1.8	71.4 [58.9]
PA2-P3	21.9	18.0	2.6	0.4	5.5	14.4	2.6	0.4	57.7	-0.3	14.9	-2.1	71.9 [66.6]
PA3-P1	24.6	18.4	2.5	0.4	8.2	10.0	2.4	0.5	62.6	0.0	4.6	-1.7	67.2
PA3-P3	23.5	18.2	2.5	0.4	9.1	10.3	2.4	0.5	61.7	-0.2	5.8	-1.8	67.4

Table S5. Fitting parameters of ³¹P MAS NMR in all studied glasses, including species designations, fraction of each species $f(\pm 1.0 \%)$, isotropic chemical shift, $\delta_{\text{CS}}^{\text{iso}}(\pm 0.2 \text{ ppm})$ and FWHM ($\pm 0.1 \text{ ppm}$). Average number of B next nearest neighbors around P and total average P coordination are also displayed.

Sample ID		³¹ P MAS NMR										
		PB1-P1	PB1-P3	PB1-P5	PB2-P1	PB2-P3	PB2-P5	PB3-P1	PB3-P4	PB3-P7*		
	f (%)	2.0	0.6	0.0	3.3	0.9	0.0	2.7	0.5	0.0/0.0		
P ⁰	δ _{CS} ^{iso} (ppm)	16.0	16.0		16.3	15.9		16.0	16.0			
	FWHM (ppm)	3.9	4.6		3.9	4.6		3.9	3.9			
	f (%)	11.3	6.2	4.3	12.0	7.8	4.7	12.0	10.2	3.2/4.2		
P^1_{1B}	δ _{CS} iso (ppm)	6.6	6.6	6.1	6.9	6.6	6.1	6.6	6.2	6.2/4.6		
1 1B	FWHM (ppm)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.9/3.8		
	f (%)	59.9	45.5	32.3	60.5	50.8	33.2	60.8	45.0	25.7/21.6		
$\mathbf{P^1_{1P}}$	δ _{CS} ^{iso} (ppm)	3.4	3.1	2.6	3.6	3.2	2.6	3.5	2.8	2.3/1.6		
1 1P	FWHM (ppm)	5.8	5.8	5.8	5.8	5.8	5.8	5.7	5.7	5.8/5.7		
	f (%)	8.7	11.7	12.4	9.1	12.0	12.1	9.7	12.4	16.6/32.7		
P^2_{2B}	δ _{CS} ^{iso} (ppm)	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.7	-2.7/-4.6		
	FWHM (ppm)	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1/8.0		
	f (%)	15.1	26.5	36.5	12.8	23.4	36.1	12.7	25.6	40.4/26.8		
$P^{2}_{1B,1P}$	δ _{CS} ^{iso} (ppm)	-6.4	-6.2	-6.3	-6.6	-6.5	-6.3	-6.6	-6.6	-6.8/7.4		
- 1B,1F	FWHM (ppm)	6.3	6.3	6.4	6.3	6.4	6.4	6.3	6.3	6.4/7.1		
	f (%)	3.1	8.6	12.9	2.2	5.1	12.4	2.1	6.3	12.5/12.0		
P ³ _{2B,1P}	δ _{CS} ^{iso} (ppm)	-12.4	-11.5	-11.7	-12.4	-12.4	-11.7	-12.4	-12.4	-12.4/-12.1		
25,11	FWHM (ppm)	6.4	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4/6.4		
	f (%)	0.0	0.8	1.7	0.0	0.0	1.4	0.0	0.0	1.5/2.8		
P^2_{2P}	δ _{CS} ^{iso} (ppm)		-18.7	-18.7			-18.7			-18.7/-17.5		
1 2P	FWHM (ppm)		5.9	5.9			5.9			5.9/6.2		
	> Av. # of B bors per P	0.50	0.73	0.91	0.47	0.65	0.90	0.48	0.73	1.02/1.20		
	<n></n>	1.28	1.56	1.77	1.23	1.45	1.74	1.24	1.50	1.83/1.86		

^{*}two separate sets of measurements with fits constrained by refocused INADEQUATE experiments

Sample ID		³¹ P MAS NMR									
		MB1-P1	MB1-P3	MB1-P4	MB2-P1	MB2-P3	MB2-P5	MB3-P1	МВЗ-РЗ	MB3-P5	
	f (%)	3.2	1.3	1.0	3.7	1.4	1.2	3.7	1.7	1.1	
P ⁰	δ _{CS} ^{iso} (ppm)	16.4	16.3	16.3	16.4	16.3	15.6	16.4	16.3	15.8	
	FWHM (ppm)	4.1	4.2	4.2	4.1	4.2	4.9	4.1	4.2	4.2	
	f (%)	29.6	20.4	18.1	31.6	22.5	14.5	32.5	23.4	15.2	
P^1_{1B}	δ _{CS} ^{iso} (ppm)	6.0	6.0	5.9	6.0	6.0	6.2	6.0	6.0	6.2	
- 1B	FWHM (ppm)	4.5	4.5	4.5	4.5	4.5	3.9	4.5	4.5	3.9	
	f (%)	39.7	35.6	34.5	40.1	37.1	36.6	39.5	37.6	37.4	
P^1_{1P}	δ _{CS} ^{iso} (ppm)	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	
ı ır	FWHM	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
	(ppm)	10.2	12.1	13.4	9.0	10.4	1 / 1	9.5	12.5	12.5	
	f (%)	10.3 -0.9	13.1 -0.9			12.4 -0.9	14.1 -0.9		12.5 -0.9	13.5 -1.0	
P^2_{2B}	δ _{CS} ^{iso} (ppm) FWHM		-0.9	-0.5	-1.1	-0.9		-0.8	-0.9		
	(ppm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	f (%)	12.8	21.4	22.9	12.0	19.5	23.8	11.8	18.4	23.7	
$P^{2}_{1B,1P}$	δ _{CS} ^{iso} (ppm)	-5.8	-5.8	-5.6	-5.6	-5.8	-5.8	-5.8	-5.8	-5.8	
1 1B,1P	FWHM (ppm)	6.5	6.5	6.5	6.5	6.5	6.4	6.5	6.5	6.5	
	f (%)	4.4	8.2	10.1	3.6	7.1	9.8	3.0	6.4	9.2	
$P_{2B,1P}^{3}$	δ _{CS} ^{iso} (ppm)	-10.9	-10.9	-10.9	-10.9	-10.9	-10.9	-10.9	-10.9	-10.9	
1 2B,1P	FWHM (ppm)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	
	f (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
P^2_{2P}	δ _{CS} ^{iso} (ppm)										
21	FWHM (ppm)										
			0.69	0.80	0.84						
	<n></n>	1.29	1.50	1.56	1.25	1.45	1.56	1.24	1.42	1.55	

Sample ID		³¹ P MAS NMR									
		PA1-P1	PA1-P3	PA2-P1	PA2-P3	PA3-P1	PA3-P3				
	f (%)	4.7	7.4	4.8	4.7	5.5	3.2				
\mathbf{P}^0	δ _{CS} ^{iso} (ppm)	16.0	14.8	16.4	15.3	16.5	16.3				
	FWHM (ppm)	4.1	3.8	4.5	4.5	4.6	4.5				
	f (%)	27.6	16.5	26.8	21.1	29.0	23.1				
P^1_{1B}	δ _{CS} ^{iso} (ppm)	6.4	6.2	6.3	5.8	6.4	6.2				
- 1B	FWHM (ppm)	4.6	4.3	4.6	4.6	4.6	4.6				
	f (%)	45.5	46.7	42.7	40.6	42.2	43.1				
P^1_{1P}	$\delta_{\mathrm{CS}}^{\mathrm{iso}}(\mathrm{ppm})$	3.1	2.8	3.1	2.9	3.1	3.1				
- Ir	FWHM (ppm)	4.6	4.2	4.6	4.6	4.6	4.6				
	f (%)	8.0	7.9	11.1	12.2	9.9	11.7				
P^2_{2B}	$\delta_{\mathrm{CS}}^{\mathrm{iso}}(\mathrm{ppm})$	-1.0	-1.2	-0.5	-0.3	-0.7	-0.5				
	FWHM (ppm)	5.0	5.0	5.0	5.0	5.0	5.0				
	f (%)	10.8	13.6	10.9	14.4	9.6	13.2				
$P^2_{1B,1P}$	$\delta_{\mathrm{CS}}^{\mathrm{iso}}(\mathrm{ppm})$	-5.8	-5.8	-5.8	-5.8	-5.8	-5.8				
- 16,11	FWHM (ppm)	6.5	6.5	6.5	6.5	6.5	6.5				
	f (%)	3.4	7.9	3.6	7.1	3.8	5.7				
$P^3_{2B,1P}$	$\delta_{\mathrm{CS}}^{\mathrm{iso}}(\mathrm{ppm})$	-10.9	-10.9	-10.9	-10.9	-10.9	-10.9				
- 26,11	FWHM (ppm)	6.5	6.5	6.5	6.5	6.5	6.5				
	f (%)	0.0	0.0	0.0	0.0	0.0	0.0				
P^2_{2P}	δ _{CS} ^{iso} (ppm)										
- 2₽	FWHM (ppm)										
</th <th>$m_{\rm B}({\rm P})>$</th> <th>0.61</th> <th>0.62</th> <th>0.67</th> <th>0.74</th> <th>0.66</th> <th>0.71</th>	$m_{\rm B}({\rm P})>$	0.61	0.62	0.67	0.74	0.66	0.71				
	<n></n>	1.21	1.30	1.24	1.39	1.21	1.33				