1.
$$\mathcal{L}^{-1} \left\{ \frac{1}{s^3} \right\}$$

2
$$\mathscr{L}^{-1} \left\{ \frac{1}{s^4} \right\}$$

3.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2}-\frac{48}{s^5}\right\}$$

3.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{48}{s^5}\right\}$$
 4. $\mathcal{L}^{-1}\left\{\left(\frac{2}{s} - \frac{1}{s^3}\right)^2\right\}$

5.
$$\mathscr{L}^{-1}\left\{\frac{(s+1)^3}{s^4}\right\}$$

5.
$$\mathscr{L}^{-1}\left\{\frac{(s+1)^3}{s^4}\right\}$$
 6. $\mathscr{L}^{-1}\left\{\frac{(s+2)^2}{s^3}\right\}$

7.
$$\mathscr{L}^{-1}\left\{\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s-2}\right\}$$

7.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s-2}\right\}$$
 8. $\mathcal{L}^{-1}\left\{\frac{4}{s} + \frac{6}{s^5} - \frac{1}{s+8}\right\}$

$$y'' + y = \sqrt{2} \sin \sqrt{2}t$$
, $y(0) = 10$, $y'(0) = 0$