NOTES ON ETLING VELOCITY PROFILE FOR EKMAN/PRANDTL LAYER

CEDRICK ANSORGE

1. Basic velocity profiles

1.1. Velocity profile in the Prandtl layer.

(1)
$$u_p(z) = \frac{u_{\star}}{\kappa} \log \frac{z^+}{z_0^+}$$

In coordinates of the geostrophic wind (for a veering angle of $\alpha_0 = \alpha(z=0)$

(2)
$$u_p(z) = \frac{u_{\star}}{\kappa} \log \frac{z^+}{z_0^+} \begin{pmatrix} \cos \alpha_0 \\ \sin \alpha_0 \end{pmatrix}$$

1.2. Velocity profile in the Ekman layer.

(3)
$$\begin{pmatrix} u_{\rm ek} \\ v_{\rm ek} \end{pmatrix}(z) = G\sqrt{2}\sin\alpha_0 \begin{pmatrix} \frac{1}{\sqrt{2}\sin\alpha_0} - e^{-\tilde{z}}\cos(\tilde{z} + \frac{\pi}{4} - \alpha_0) \\ e^{-\tilde{z}}\sin(\tilde{z} + \frac{\pi}{4} - \alpha_0) \end{pmatrix}$$

with the scaled Ekman height

$$\tilde{z} = \frac{z - z_P}{D},$$

where z_P is the Prandtl layer thickness (here assumed as 10% of the BL thicknes) and D the Ekman layer thickness. For D, there exists a matching based on the constant diffusivity within the Prandtl layer

(4)
$$D = \sqrt{2\frac{K_m}{f}} = \sqrt{2\frac{\kappa u_{\star} z_p}{f}} = \sqrt{2\kappa \delta z_p}$$

with $\delta = u_{\star}/f$. Using $z_p = 0.1\delta$, we obtain

$$D = \sqrt{0.2\kappa}\delta \approx 0.3\delta$$

2. Matching point

The profiles shall be matched at the upper end of the Prandtl layer $(z = z_P)$. Given the geostrophic wind, Prandtl layer height z_p and height offset (in the case of a rough surface, the roughness height; for aerodynamically smooth surfaces a scaled version of the profile offset parameter), the profiles can be matched to yields the remaining parameters u_{\star} and α_0 .

(5a)
$$\frac{u_{\star}}{\kappa} \log \frac{z_{P}}{z_{0}} \cos \alpha_{0} = G\sqrt{2} \sin \alpha_{0} \left[\frac{1}{\sqrt{2} \sin \alpha_{0}} - e^{-\tilde{z}} \cos \phi \right]$$
(5b)
$$\frac{u_{\star}}{\kappa} \log \frac{z_{P}}{z} \sin \alpha_{0} = G\sqrt{2} \sin \alpha_{0} e^{-\tilde{z}} \sin \phi$$

(5b)
$$\frac{u_{\star}}{\kappa} \log \frac{z_P}{z_0} \sin \alpha_0 = G\sqrt{2} \sin \alpha_0 e^{-\tilde{z}} \sin \phi$$

Date: November 18, 2023.

where – utilizing the condition $z = z_P$, it is $\phi = \pi/4 - \alpha_0$. We can then eliminate $\sin \alpha_0$ from the equation for the span-wise component to obtain

(6a)
$$\cos \alpha_0 = \frac{G}{u_{\star}} \sqrt{2} \lambda_z \sin \alpha_0 \qquad \left[\frac{1}{\sqrt{2} \sin \alpha_0} - \cos \phi \right]$$

(6b)
$$\frac{u_{\star}}{C} = \sqrt{2}\lambda_z$$
 $\sin q$

where

$$\lambda_z = \frac{\kappa}{\log \frac{z_P}{z_0}}.$$

Next, we rewrite Eq. (6a) using Eq. (6b) as

(7a)
$$\cos \alpha_0 = \sqrt{2}\lambda_z \frac{G}{u_\star} \left(\frac{1}{\sqrt{2}\sin\phi} - \frac{\sin\alpha_0\cos\phi}{\sin\phi} \right)$$

(7b)
$$\sin \phi \cos \alpha_0 + \cos \phi \sin \alpha_0 = \frac{1}{\sqrt{2}}$$

The LHS of the latter equation can be rewritten as

$$\sin(\phi + \alpha_0) = \sin(\pi/4)$$

such that the equation holds for any α_0 . Thus, α_0 becomes a parameter of the solution, and we can simply write

(7c)
$$\frac{u_{\star}}{G} = \frac{\sqrt{2}\kappa}{\log(z_P/z_0)} \sin\left(\frac{\pi}{4} - \alpha_0\right)$$

2.1. **Relation to the Reynolds number.** In a smooth flow, the scaling parameter of the logarithmic height is

$$\frac{1}{\kappa} \log z^+ + A = \frac{1}{\kappa} \left[\log z^+ - (-\kappa A) \right] = \frac{1}{\kappa} \left[\log z^+ - \log(e^{-\kappa A}) \right] = \log(z^+/z_0^+)$$

where $z_0^+=e^{-\kappa A}\approx 1/8$. This implies that $z_P/z_0=z_P^+/z_0^+=e^{\kappa A}z_P^+=e^{\kappa A}\gamma_P Re_{\tau}$. Hence, the ratio z_P/z_0 implicitly defines the Reynolds number Re_{τ} as

(8)
$$Re_{\tau} = \frac{z_P}{z_0} \frac{1}{e^{\kappa A} \gamma_P} \sim Re_{\tau}.$$

2.2. Linearization for α_0 in the trigonometric terms. Based on a first guess for u_{\star} and α_0 , we can then estimate u_{\star}/G from Eq. (6b) and α_0 from Eq. (6a) and iterate this procedure to arrive at a solution for α_0 and u_{\star} .

A fist guess may be obtained from a linearized version of the equations in the trigonometric terms. It is

(9a)
$$\sin \phi = \sin(\pi/4 - \alpha_0) \approx \sin(\pi/4) - \cos(\pi/4)\alpha_0 = \frac{1}{\sqrt{2}}(1 - \alpha_0)$$

(9b)
$$\cos \phi = \cos(\pi/4 - \alpha_0) \approx \cos(\pi/4) + \sin(\pi/4)\alpha_0 = \frac{1}{\sqrt{2}}(1 + \alpha_0)$$

(9c)
$$\sin \alpha_0 \approx \sin(0) + \alpha_0 = \alpha_0$$

We thus obtain

(10)
$$-1 = \frac{G\lambda_z}{u_\star} \left[\frac{1}{\alpha_0} - (1 - \alpha_0) \right]$$

(11)
$$\Rightarrow 0 = \alpha_0 + \frac{G\lambda_z}{u} \left[1 - (\alpha_0 - \alpha_0^2) \right]$$