Norm

Jiaxin Hu

06/15/2020

FROBENIUS NORM

Lemma 1 (Frobenius norm of product of matrices). For arbitrary two matrices, $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, we have

$$||AB||_F \le ||A||_2 ||B||_F$$

where $\|A\|_2$ is the spectral norm or operator norm of A.

Proof. First, the spectral norm of $A \in \mathbb{R}^{m \times r}$ is defined as:

$$\|A\|_2 = \max_{x \in \mathbb{R}^r \|x\|_2 \le 1} \|Ax\|_2$$
.

Therefore, we have $||Ax||_2 \le ||A||_2 ||x||_2$ for $\forall x \in \mathbb{R}^r$. Let $B = [b_1, \dots, b_n] \in \mathbb{R}^{r \times n}$, where $b_j \in \mathbb{R}^r$, $j \in [n]$ are the columns of B. Then we have

$$\|AB\|_F = \sum_{j=1}^n \|Ab_j\|_2 \le \|A\|_2 \sum_{j=1}^n \|b_j\|_2 = \|A\|_2 \|B\|_F \,.$$