Gated End-to-End Memory Networks

Fei Liu, Julien Perez

Improvements

This paper referes to the High-Way networdk idea and introduce the gated mechanism. By this way, it can utilize the information of memory dynamically.

Shotcut Connections

High-Way Network

$$y = H(x) \odot T(x) - x \odot C(x)$$

Here, T is the transform gate and C is the carry gate. Usually, C = 1 - T. So

$$y = H(x) \odot T(x) + x \odot (1 - T(x))$$

Residual Network

Residual Netword is a specially case of high-way network. T and C is

$$y = H(x) + x$$

Both of them can relief the gradient vanishing problem.

End-to-End Memory Networks

input context: $x_1,...,x_n$

context representation: $m_i = A\Phi(x_i) \ c_i = C\Phi(x_i)$

A and C are two embedding matrics.

 Φ is a function that maps the input into a bag of dimension |V|. question representation: $u=B\Phi(q)$

Attention Counting

$$p_i = softmax(u^T m_i)$$

Output

$$o = \sum_i p_i c_i$$

The next layer question input

$$u^{k+1} = o^k + u^k$$

The final output

$$\hat{a} = softmax(Ww(o^K + u^K))$$

Here, $W \in R^{|V|*d}$

Gated-End-to-End Network

$$egin{aligned} u^{k+1} &= o^k \odot T^k(u^k) + u^k \odot (1 - T^k(u^k)) \ T^k(u^k) &= \sigma(W_T^k u^k + b_T^k) \end{aligned}$$

Model

