# Санкт-Петербургский Государственный Университет Saint-Petersburg State University

Кафедра теории упругости

## ОТЧЕТ

По лабораторной работе 1

«Испытание на растяжение»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 ${
m Cahkt-}\Pi{
m erep}{
m fypr}$  2021

#### 1 Цель работы

При малых деформациях и нагрузках почти все материалы обнаруживают свойство упругости, то есть деформации образца обратимы и исчезают после снятия нагрузки. Многие материалы подчиняются при этом закону Гука, то есть удлинение образца прямо пропорционально приложенной нагрузке. При больших нагрузках деформации становятся необратимыми, и начинают работать сложные механизмы развития деформаций. Изучение закономерностей поведения материалов за пределами упругости очень важно для практики, так как оно дает ответ на вопрос о допустимых напряжениях в деталях из данного материала. В данной работе испытываются металлические образцы при комнатной температуре, когда основным механизмом развития деформаций за пределами упругости является пластичность.

В данной лабораторной работе производится испытание образцов на растяжение с деформациями за пределами упругости. Строятся условная и истинная диаграммы растяжения и находятся механические характеристики материалов.

# 2 Характеристики напряженно-деформированного состояния образца

Рассмотрим стержень длины  $l_0$  с площадью поперечного сечения  $F_0$ . Пусть стержень растягивается силой P и при этом удлиняется на  $\Delta l$ . При удлинении стержня происходит его поперечное сужение, поэтому площадь его поперечного сечения становится равной  $F < F_0$ . Условным напряжением  $\sigma$  называют отношение нагрузки к первоначальной площади поперечного сечения:

$$\sigma = \frac{P}{F_0}. (1)$$

Истинным напряжением называют величину S – отношение нагрузки к текущей площади поперечного сечения, рассчитывается по формуле:

$$S = \frac{P}{F}. (2)$$

Поле деформаций в образце характеризуется относительным удлинением образца и относительным сужением образца, рассчитываются соответственно:

$$\epsilon = \frac{\Delta l}{l_0} \cdot 100\%, \qquad \psi = \frac{F_0 - F}{F_0} \cdot 100\%.$$
 (3)

В формулах (3) изменение длины и площади поперечного сечения относятся к первоначальным значениям длины и площади сечения. Для характеристики больших деформаций по аналогии с истинным напряжением целесообразно ввести истинные удлинения и истинные сужения:

$$de = \frac{dl}{l} \quad \Rightarrow \quad e = \int_{l_0}^{l} \frac{dl}{l} = \ln\left(\frac{l}{l_0}\right) = \ln(1 + \epsilon),$$

$$d\overline{\psi} = -\frac{dF}{F} \quad \Rightarrow \quad \overline{\psi} = \int_{F}^{F_0} \frac{dF}{F} = \ln\left(\frac{F_0}{F}\right).$$
(4)

В отличие от относительного удлинения  $\epsilon$ , логарифмическая деформация обладает свойством аддитивности. Кроме того, формулой (4) можно пользоваться и при малых деформациях: разлагая логарифмы в ряд и удерживая первый член, в этом случае найдём, что  $e \approx \epsilon$ .

В нашей задаче сечение стержня представляет из себя круг диаметра d. Расчет площади F поперечного сечения в таком случае производится по формуле:

$$F = \frac{\pi \cdot d^2}{4}.\tag{5}$$

## 3 Описание аппаратуры

#### 3.1 Машина ИМ-4Р

Машина ИМ-4Р предназначена для испытания цилиндрических и плоских образцов на растяжение прямым нагружением. Кроме того, при помощи специальных приспособлений можно проводить испытания на сжатие, изгиб и срез. Машина позволяет прикладывать к образцу нагрузку до 4 т. В процессе испытания автоматически строится диаграмма в координатах «нагрузка—деформация».



Рис. 1: Машина ИМ-4Р.

Устройство машины показано на рис. 1. Машина состоит из нагружающего и измерительного механизмов, смонтированных на станине. Станина состоит из нижней (1) и верхней (2) частей, соединенных четырьмя вертикальными стойками (3). В нижней части станины установлен электродвигатель.

При работе электродвигателя движение через коробку передач передается шпинделю (5). Движение шпинделя вниз соответствует рабочему ходу (нагрузке), а движение вверх – холостому ходу (разгрузке). На шпинделе установлен нижний захват (6) для крепления образца (7). верхний конец образца крепится в захвате (8), связанном с механизмом силоизмерителя.

Силоизмерительный механизм состоит из рычага (4), связанного тягой (10) с маятником (9). Отклонение маятника через поводок (11) передается на каретку (12) самописца.

Машина снабжена самописцем (14), позволяющим в процессе испытания строить диаграмму «нагрузка – абсолютное удлинение». Валик самописца связан через систему шестерен со шпинделем нагружающего механизма, поэтому по продольной оси диаграммы откладывается перемещение нижнего захвата (то есть абсолютное удлинение образца). Перо самописца укреплено в каретке (12), соединенной с силоизмерителем. Таким образом, по поперечной оси диаграммы откладывается есть действующее на образец усилие. Цена деления самописца: 1 мм диаграммы по продольной оси соответствует удлинению образца на 0.01 мм, 1 мм диаграммы по поперечной оси соответствует нагрузке 10 кг. Для измерения диаметра образца в процессе испытания служит окуляр—микрометр (15).

#### 3.2 Окуляр-микрометр

Окуляр-микрометр (рис. 2) состоит из зрительной трубки (1), которую можно поднимать и опускать по вертикали рифленой гайкой (3) и наводить по горизонтали винтом (5). Замеры выполняются по шкале (а) и барабану (2). Для удобства наблюдения образец подсвечивается лампой, снабженной металлическими шторками.



Рис. 2: Окуляр-микрометр.

Для снятия показаний с окуляр-микрометра требуется вычислить коэффициент K по следующей формуле:

$$K = \frac{d_0}{d_0'} \tag{6}$$

Здесь диаметр  $d'_0$  – диаметр, измеренный окуляр—микрометром. Теперь диаметр образца в момент времени t будет вычисляться по формуле:

$$d_t = K \cdot d_t' \tag{7}$$

### 4 Эксперимент

Работа проводилась на испытательной установке ИМ-4Р. Производилась деформация железного стержня (рис. 3), начальные размеры которого равны  $d_0 = 5.4$  мм и  $l_0 = 43$  мм. Важно отметить, что все вычисления и построения производились с помощью пакета Matlab, с исходным кодом программы можно ознакомиться отдельно.



Рис. 3: Эскиз стержня.

Регистрация диаметра стержня в процессе нагружения осуществлялась окулярмикрометром (все результаты измерений представлены в таблице 3). Для снятия показаний с данного прибора нужно использовать формулу (7), требуется также найти коэффициент пропорциональности по формуле (6), и для предоставленного окуляр-микрометра он равен K=0.63. Составим таблицу начальных данных:

| d   | 0   | l    | K  |      |  |
|-----|-----|------|----|------|--|
| M   | M   | M    | 11 |      |  |
| 5.3 |     | 42.8 |    |      |  |
| 5.6 | 5.4 | 43.0 | 43 | 0.63 |  |
| 5.2 |     | 43.2 |    |      |  |

Таблица 1: Начальные данные.

Пользуясь средствами пакета Matlab, построим графики напряженнодеформированного состояния в разных координатах (рис. 4). Данные во всех отмеченных на графиках точках указаны в таблице 3.

Снятая с машины диаграмма в координатах  $P-\Delta l$  изображена на графике (4a). Отчетливо виден линейный участок и участок упрочнения. В ходе эксперимента образец после небольшой пластической деформации разгружался, этот этап также изображен на диаграмме. При повторном нагружении материал обнаружил более высокий предел пропорциональности и меньшие пластические деформации, такое изменение механических характеристик называется наклепом.

Следующая диаграмма (4b) представлена в координатах  $\sigma - \epsilon$ . Она совпадает с предыдущей диаграммой с точностью до сжатия (растяжения) осей.

Далее изображена диаграмма (4c) в координатах  $S-\psi$ . Здесь S – отношение нагрузки к текущей площади поперечного сечения,  $\psi$  – относительное сужение образца.

Следующий график (4d) представлен в координатах S-e. Здесь e – истинное относительное удлинение. Видно, что напряжение в самой узкой части стержня растет, несмотря на уменьшение прилагаемой растягивающей силы.



Рис. 4: Диаграммы растяжения в различных координатах.

Используем полученные диаграммы для того, чтобы найти предел пропорциональности  $\sigma_{\rm np}$  при первом и повторном нагружениях, предел текучести  $\sigma_{0.2}$ , предел временного сопротивления разрыву  $\sigma_{\rm вp}$ , остаточное относительное сужение  $\psi$  при разрыве образца, упругую и пластическую деформации в узловой точке диаграммы.

Таблица 2: Пределы нагружения.

| $\sigma$ | пр | σ <sub>a a</sub> | σ                        | 2/,  |  |  |
|----------|----|------------------|--------------------------|------|--|--|
| 1        | 2  | $\sigma_{0.2}$   | $\sigma_{	ext{	iny Bp}}$ | Ψ    |  |  |
|          | %  |                  |                          |      |  |  |
| -        | _  | -                | -                        | 55.1 |  |  |

Таблица 3: Результаты измерений и расчеты.

| <del> </del> | %                                | 0    | 0    | 0    | 0    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 7.7  | 16.9 | 20.2 | 30.6 | 39.6 | 55    | 8.79 | 80   |
|--------------|----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|
| е            | %                                | 0    | 1.1  | 1.5  | 2.1  | 2.6  | 3.1  | 2.8  | 2.2  | 1.4  | 2.2  | 2.8  | 3.1  | 3.9  | 4.4  | 4.9  | 5.3  | 5.9  | 6.4   | 6.7  | 7.1  |
| $\psi$       | %                                | 0    | 0    | 0    | 0    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 7.4  | 15.5 | 18.3 | 26.4 | 32.7 | 42.3  | 49.2 | 55.1 |
| E            | %                                | 0    | 1.1  | 1.5  | 2.1  | 2.6  | 3.1  | 2.8  | 2.2  | 1.4  | 2.2  | 2.8  | 3.1  | 3.9  | 4.5  | 5.1  | 5.4  | 9    | 9.9   | 6.9  | 7.4  |
| $\infty$     | $\mathrm{K}\Gamma/\mathrm{CM}^2$ | 0    | 2475 | 3535 | 4861 | 5353 | 5576 | 4104 | 2855 | 1071 | 2855 | 4104 | 2576 | 5964 | 6541 | 6029 | 7204 | 7616 | 8506  | 9055 | 9052 |
| σ            | $\mathrm{K}\Gamma/\mathrm{CM}^2$ | 0    | 2475 | 3535 | 4861 | 5303 | 5524 | 4066 | 2828 | 1001 | 2828 | 4066 | 5524 | 5524 | 5524 | 5480 | 5303 | 5126 | 4905  | 4596 | 4066 |
| Ĺ            | $_{ m MM}^2$                     | 22.6 | 22.6 | 22.6 | 22.6 | 22.4 | 22.4 | 22.4 | 22.4 | 22.4 | 22.4 | 22.4 | 22.4 | 21   | 19.1 | 18.5 | 16.7 | 15.2 | 13    | 11.5 | 10.2 |
| p            | MM                               | 5.4  | 5.4  | 5.4  | 5.4  | 5.3  | 5.3  | 5.3  | 5.3  | 5.3  | 5.3  | 5.3  | 5.3  | 5.2  | 4.9  | 4.9  | 4.6  | 4.4  | 4.1   | 3.8  | 3.6  |
| d'           | MM                               | 8.52 | 8.52 | 8.52 | 8.52 | 8.48 | 8.48 | 8.48 | 8.48 | 8.48 | 8.48 | 8.48 | 8.48 | 8.2  | 7.83 | 7.7  | 7.31 | 6:99 | 6.47  | 6.07 | 5.71 |
| 1\( \sqrt{1} | MM                               | 0    | 0.47 | 0.65 | 6.0  | 1.12 | 1.34 | 1.2  | 0.96 | 9.0  | 96.0 | 1.2  | 1.34 | 1.69 | 1.93 | 2.18 | 2.33 | 2.6  | 2.83  | 2.98 | 3.18 |
| Ъ            | Kľ                               | 0    | 260  | 800  | 1100 | 1200 | 1250 | 920  | 640  | 240  | 640  | 920  | 1250 | 1250 | 1250 | 1240 | 1200 | 1160 | 11110 | 1040 | 920  |
| 92           |                                  | T    | 2    | ಣ    | 4    | 2    | 9    | 2    | ~    | 6    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18    | 19   | 20   |