Sistemi e Architetture per Big Data

1º Progetto - Electricity Maps

Giuseppe Marseglia, matricola n. 0350066

◆ Electricity Maps

Datetime (UTC),Country,Zone name,Zone id,Carbon intensity gCO2eq/kWh ... 222021-01-01 00:00:00,Italy,Italy,IT,317.69,401.21,38.61,36.51,,false, 222021-01-01 01:00:00,Italy,Italy,IT,320.21,403.67,38.89,37.38,,false, 222021-01-01 02:00:00,Italy,Italy,IT,314.39,397.0,40.11,37.97,,false, 2021-01-01 03:00:00,Italy,Italy,IT,311.25,393.58,40.54,37.95,,false,

Architettura

HDFS e InfluxDB per **storage**. Spark per **processamento batch**. Grafana per la **visualizzazione** dei dati.

Le frecce rappresentano flussi di dati.

Data ingestion automatica, ma senza pre-processamento e framework specifico.

Panoramica del sistema Deployment

Deployment tramite **Docker Compose**, su un nodo singolo con Windows 11 e Windows Linux Subsystem (**WSL**).

HDFS e Spark in modalità **cluster**. InfluxDB e Grafana in modalità **standalone**.

Data ingestion è eseguita dal master di HDFS che comunica con il file system locale tramite Bind Mounts.

Il client è un container di Spark.

Confronto Query 1

```
base = combined.map
                                                lambda x: (
                                                    (get country(x), get year(x)),
                                                    (get co2 intensity(x), get c02 free(x), 1),
                                                     (('Italy', '2021'), (317.69, 38.61, 1))
      avg by country = base.reduceByKey
lambda x, y: (
   x[0] + y[0], x[1] + y[1], x[2] + y[2]
                                                        min by country = base.reduceByKey
                                                                                                           max by country = base.reduceByKey
                     .map
lambda x: (
                                                                                                       lambda x, y: (
                                                    lambda x, y: (
   x[0],
                                                                                                           \max(x[0], y[0]), \max(x[1], y[1])
                                                        min(x[0], y[0]), min(x[1], y[1])
   (x[1][0] / x[1][2], x[1][1] / x[1][2])
 (('Italy', '2022'), (321.61797, 41.24412))
                                                      (('Italy', '2022'), (121.38, 13.93))
                                                                                                         (('Italy', '2022'), (447.33, 77.44))
                                        .join
                                                                  .join
                                                                 .sortBv
                                                 ('2021', 'IT', 280.084, 121.24, 439.06,
                                                         46.305, 15.41, 77.02)
```

```
result = base.groupBy("Country", "Year").agg

F.avg("CO2_intensity_direct").alias(...),
F.min("CO2_intensity_direct").alias(...),
F.max("CO2_intensity_direct").alias(...),
F.avg("Carbon_free_energy_percent").alias(...),
F.min("Carbon_free_energy_percent").alias(...),
F.max("Carbon_free_energy_percent").alias(...),

Row(date='2021', country='IT',
carbon-man=280.08424, carbon-min=121.24,
carbon-max=439.06, cfe-man=46.30593,
cfe-min=15.41, cfe-max=77.02)
```

```
result = spark.sql
SELECT
   YEAR(Datetime) AS year, Country AS country,
   AVG(CO2_intensity_direct) AS `carbon-mean`,
   MIN(CO2 intensity direct) AS `carbon-min`,
   MAX(CO2_intensity_direct) AS `carbon-max`,
   AVG(Carbon free energy percent) AS 'cfe-mean'
   MIN(Carbon free energy percent) AS `cfe-min`,
   MAX(Carbon free energy percent) AS `cfe-max`
FROM carbon data
GROUP BY country, year
ORDER BY country, year
        Row(year=2021, country='Italy',
    carbon-mean=280.084, carbon-min=121.24,
      carbon-max=439.06, cfe-mean=46.305,
         cfe-min=15.41, cfe-max=77.02)
```

Confronto Query 2

Valutare l'impatto sul tempo di processamento di:

- 1) Le differenti API: RDD, DataFrame e SparkSQL.
- 2) I **differenti formati**: CSV, Avro e Parquet.
- 3) L'uso del caching.

Per ogni esperimento è stato condotto anche uno studio dell'impatto della **variazione della grandezza del dataset***. Questo porta il totale a **6 esperimenti condotti**.

*: Il dataset più piccolo conta 35064 entry per Italia e Svezia, mentre quello più grande conta 210384 entry per Italia, 140256 entry per Svezia. Il dataset per la Q1 aumenta di 5 volte, mentre quello per la Q2 aumenta di 6 volte.

Le misurazioni sono:

- Raccolte dentro il driver, utilizzando le funzioni built-in di Python.
- Calcolati da prima dell'inizio della query fino a dopo una .collect().
- Salvati e analizzati direttamente in InfluxDB tramite query in Flux.

Esperimento 1: API

Setup

- · Formato CSV.
- Caching, dove possibile.

'Baseline' è un'implementazione in Python nativo, senza nessun framework aggiuntivo.

Considerazioni

- La baseline è notevolmente più veloce delle implementazioni in Spark, ma anche la più sensibile alla grandezza del dataset.
- L'implementazione con RDD è la più veloce tra quelle di Spark.
- Le implementazioni di Spark scalano meglio.

Query	API	Dataset	Run	Media in s	StdDev
1	baseline	country	10	0.772	0.6
1	baseline	region	10	3.294	0.812
1	rdd	country	10	7.262	0.568
1	rdd	region	10	7.654	0.295
1	sql	country	10	12.607	0.471
1	sql	region	10	14.394	0.818
1	df	country	10	13.535	0.795
1	df	region	10	15.408	0.888
2	baseline	country	10	0.303	0.034
2	baseline	region	10	1.523	0.064
2	rdd	country	10	7.348	0.132
2	rdd	region	10	7.797	0.475
2	sql	country	10	13.372	0.431
2	sql	region	10	15.709	0.65
2	df	country	10	17.448	0.549
2	df	region	10	19.603	0.805

TABLE II: Risultati dell'esperimento 1.b

Esperimento 2: Formato

Setup

- No caching.
- In 2.a: Dataset per paese.
- In 2.b: SparkSQL.

Considerazioni

- Avro e Parquet hanno sempre performance migliori di CSV.
- · Avro e Parquet scalano meglio di CSV.
- Avro e Parquet hanno un impatto positivo anche per lo storage, ad esempio per Q2:
- Dataset piccolo, da 2.4 MB in CSV a
 996 KB per Avro e 674 KB per Parquet.
- Dataset grande, da 19 MB in CSV a
 6.1 MB per Avro e 2.6 MB per Parquet.

Query	API	Formato	Run	Media in s	StdDev
1	df	avro	10	9.855	0.409
1	df	parquet	10	10.977	0.396
1	df	CSV	10	13.948	0.765
1	sql	avro	10	9	0.181
1	sql	parquet	10	9.708	0.437
1	sql	CSV	10	12.607	0.471
2	df	avro	10	11.54	1.091
2	df	parquet	10	11.614	0.69
2	df	CSV	10	13.713	0.843
2	sql	parquet	10	11.565	0.848
2	sql	avro	10	11.875	0.441
2	sql	CSV	10	13.372	0.431

TABLE III: Risultati dell'esperimento 2.a

2	CSV	country	10	13.372	0.431
2	CSV	region	10	15.709	0.65
2	avro	country	10	11.875	0.441
2	avro	region	10	12.186	0.596
2	parquet	country	10	11.565	0.848
2	parquet	region	10	12.626	0.965

TABLE IV: Risultati dell'esperimento 2.b

Esperimento 3: Cache

Setup

- Formato CSV.
- In 3.b: RDD.

Considerazioni

- L'effetto del caching dipende dalla specifica implementazione della query.
- Quando l'effetto è positivo, il caching può aiutare a ridurre il degrado delle performance.

Query	API	Caching	Run	Media in s	StdDev
1	rdd	TRUE	10	7.262	0.568
1	rdd	FALSE	10	7.398	0.421
2	df	FALSE	10	13.713	0.843
2	df	TRUE	10	17.448	0.549
2	rdd	TRUE	10	7.348	0.132
2	rdd	FALSE	10	7.497	0.2

TABLE V: Risultati dell'esperimento 3.a

Query	Caching	Dataset	Run	Media in s	StdDev
1	FALSE	country	10	7.398	0.421
1	FALSE	region	10	8.12	0.253
1	TRUE	country	10	7.262	0.568
1	TRUE	region	10	7.654	0.295
2	FALSE	country	10	7.497	0.2
2	FALSE	region	10	7.844	0.4
2	TRUE	country	10	7.348	0.132
2	TRUE	region	10	7.797	0.475

TABLE VI: Risultati dell'esperimento 3.b

CSV e grafici

```
date, country, carbon-mean, carbon-min, carbon-max, cfe-mean, cfe-min, cfe-max

2021, IT, 280.084, 121.24, 439.06, 46.305, 15.41, 77.02

2022, IT, 321.617, 121.38, 447.33, 41.244, 13.93, 77.44

2023, IT, 251.819, 74.44, 429.93, 51.596, 20.39, 85.02
...
```

carbon-intensity	,cfe
360.51999,	35.83831
347.35907,	35.82221
346.72851,	33.07668
335.78474,	39.16716
330.48989,	38.98059
	360.51999, 347.35907, 346.72851, 335.78474,

Viene riportato il link al repository di GitHub con l'implementazione del progetto e la relazione completa.

• Link al repository su GitHub

Grazie per l'attenzione