TODO

TODO

March 21, 2020

Abstract

1 Algorithm notes

• Graph convolution:

$$h_{v_i}^{(l+1)} = softmax(\sum_{j \in N_i} h_{v_j}^{(l)})$$
 (1)

with N_i the infection-weighted neighbours of node v_i .

- From A and I where I is the infection matrix.
 - The infection matrix as

$$I = \begin{pmatrix} 0 & 0 & p_a & 0 \\ 0 & 0 & p_a & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{2}$$

with I_{ij} so that *i* corresponds to host and *j* to contact person and ordering unknown, susceptible, infected, recovered. p_a denotes the probability of infection (also known as attack rate) after contact.

- The adjacency matrix A is time dependent, A(t), and inferred from data. In our use case, $A_{ij} = 1$ if nodes v_i and v_j , hence persons i and j, have been in contact. This corresponds to $dist(v_i, v_j) \leq \epsilon$ with $\epsilon = 0$ in the discrete case that we consider here.