Meritev magnetnega polja z indukcijo

Urh Trinko

10. december 2020

1 UVOD

Gostoto magnetnega polja lahko merimo s pomočjo indukcije. To lahko naredimo s pomočjo manjše tuljave, ki jo premikamo v megnatnem polju in tako induciramo napetost. Če to tuljavo priključimo še na integrator nam ta naprava poda napetost integrerano po nekem času. Za to izhodno napetost velja:

$$U_{out} = \frac{NS}{RC}(B_2 - B_1)\cos\alpha \tag{1}$$

(kjer je N - število ovojev male tuljave, S - ploščina male tuljave, RC - integratorska konstanta, B_2 - magnetno polje male tuljave, B_1 - zunanje magnetno polje, α - kot med osjo male in velike tuljave)

Ker meritve opravljamo tako, da sta osi tuljav vzporedni in predpostavimo, da je zunanje magnetno polje enako 0, se enačba poenostavi v:

$$U_{out} = \frac{NS}{RC}B\tag{2}$$

2 POTREBŠČINE

- \bullet dve merilni tuljavi, 2r=18 mm, $N_1=2000,\,N_2=200$
- integrator, RC = 0.01 s
- voltmeter, amperemeter, šolski usmernik
- tuljava z navpičnim nosilcem, $2r_0 = 250$ mm, $N_3 = 200$
- elektromagnet na lesenem nosilcu

3 NALOGA

- 1. Izmeri odvisnost gostote magnetenega polja od oddaljenosti od središča velike tuljave ter jo primerjaj s teoretičnimi vrednostimi.
- 2. Izmeri relacijo med gosototo magnetenga polja in tokom v elektromagnetu.

4 MERITVE

Napetost na integratorju pri določeni oddaljenosti merilne tuljave od središča

Lega tuljave [cm]	napetost [V]
0	0.2438
1	0.2303
2	0.2122
3	0.1951
4	0.177
5	0.1598
6	0.1429
7	0.1264
8	0.1144
9	0.1011
10	0.0903
11	0.081
12	0.0711
13	0.0638
14	0.0576
15	0.051
16	0.0458

17	0.0414
18	0.0372
19	0.0344
20	0.0312
21	0.0262
22	0.0243
23	0.0226
24	0.0204
25	0.0186
26	0.0178
27	0.0169
28	0.0149
29	0.014
30	0.0133
31	0.0123
32	0.0117
33	0.0108
34	0.0101
35	0.0097
36	0.0088
37	0.0077
38	0.0071
39	0.0066
40	0.0061

PODATKI OD DIMENZIJAH TULJAV:

- $\bullet\,$ debelina velike tuljave: (20.38 \pm 0.02) mm
- \bullet debelina plastičnega ohišja velike tuljave: (3.50 \pm 0.02) mm
- $\bullet\,$ oddaljenost zgornjega roba merilne tuljave od ohišja velike tuljave: (20.72 $\pm\,0.02)$ mm
- \bullet debelina merilne tuljave: (9.44 ± 0.02) mm

Tok in ustrezna napetost v reži

Tok [A]	Napetost [V]
0	0.06
0.51	0.553
0.99	0.998
1.49	1.479
2	1.963
2.49	2.418
3.01	2.903
3.49	3.349
4	3.829
4.5	4.277
4.99	4.694

5 IZRAČUNI

5.1 Gostota magnetnega polja v odvisnosti od oddaljenosti od središča

V danih podatkih je bila navedena napetost, ki jo je prikazal integrator pri določeni postavitvi merilne tuljavice. To napetost sem moral prevesti v gostoto magnetenga polja, za kar sem uporabil enčbo (2), ki preurejena znaša:

$$B = \frac{RC}{N_1 \pi r_1^2} \cdot U_{out}$$

Po tem ko sem z rdeče obarvanim faktorjem pomnožil vsako napetost integratorja pri dani legi tuljave, sem laho narisal odvisnost B od lege.

Slika 1: Odvisnost gostote magnetenga polja od oddaljenosti merilne tuljave od središča velike tuljave.

K krivulji na sliki 1 sem dodal še teoretični potek odvisnosti B od lege, ki je bil v navodilih podan z enačbo:

$$B(h) = \frac{N_3 \mu_0 I_0 r_0^2}{2(r_0^2 + h^2)^{3/2}}$$

Teoretična krivulja je na sliki 1 označena z oranžno barvo. Pri risanju pa sem moral biti pozoren tudi na dejstvo, da v podatkih lega 0 cm ni predstavljala oddaljenost od središča, pač pa minimalno lego, ki jo eksperiment dopušča. Zato sem moral iz danih podatkov razbrati, za koliko moram meritveno krivuljo dodatno premakniti v desno.

5.2 Relacija med električnim tokom in gostoto magnetnega polja v elektromagnetu

Dane podatke sem moral ponovno preurediti, tako, da sem iz napetosti integratorja in enačbe (2) določil gostoto magnetnega polja v reži elektromagneta. Nato sem lahko prikazal relacijo B(I).

Slika 2: Odvisnost gostote magnetenga polja v reži elektromagneta od jakosti električnega toka.

Naklon premice, ki se najbolje prilega podatkom sem določil s kodo, znašal pa je $(1.837 \pm 0.003) \ 10^{-1} \frac{Vs}{Am^2}$. Prav tako velja za začetno vredost, ki pa je bila $(1.53 \pm 0.04) \ 10^{-2} \frac{Vs}{m^2}$.

Določil sem tudi kakšno bi moralo biti število ovojev na dolžinsko enoto dolge prazne tuljave, da bo razmerje B in I enako kot pri elektromagnetu na sliki 2. Uporabil sem enačbo za gostoto magnetnega polja v prazni tuljavi z N ovoji dolžine L:

$$B = \frac{\mu_0 I N}{L}$$

$$\downarrow \downarrow$$

$$\frac{N}{L} = \frac{1}{\mu_0} \cdot \frac{B}{I} = \frac{1}{\mu_0} \cdot k$$

(kjer je k naklon grafa na sliki 2)

Število ovojev na dolžinsko gostoto je znašalo $(146000 \pm 200) m^{-1}$, kjer sem napako pridobil, tako, da sem vzel kar relativno napako naklona k.

6 ZAKLJUČEK IN KOMENTAR

V prvem delu naloge sem iz slike 1 razbral, da se izmerjena in teoretična krivulja B(h) najbolj razlikujeta, pri majhnih oddaljenostih od središča, ko pa se oddaljenost veča se tudi krivulji čedalje bolj ujemata.

V drugem delu naloge sem izračunal naklon premice na grafu B(I) v reži elektromagneta. Opazil pa sem tudi, da začetna vrednost ni bila povsem enaka nič. V tem delu naloge pa sem izračunal tudi dolžinsko gostoto navojev, ki bi jo imela dolga prazna tuljava, da bi bile vrednost $\frac{B}{I}$ enaka kot v reži elektromagneta. Vrednost je znašala (146000 ± 200) m^{-1} , za primerjavo pa sem izračunal še $\frac{N}{L}$ za prvo merilno tuljavico ter veliko tuljavo, ki se uporablja v prvi nalogi. Vrednost za malo tuljavo je zašala (212000 ± 500) m^{-1} in za veliko (9810 ± 10) m^{-1} (napake pa sem izračunal iz relativnih napak podanih dimenzij tuljav). Iz teh podatkov je razvidno, da je izračunana dolžinska gostota bolj podobna tisti, ki pripada mali tuljavi.