Раздел: Экономика и управление

УДК 681.5

В.А. СУХАНОВ

ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», г. Москва

ОРГАНИЗАЦИЯ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ДЛЯ ЛИЦ, ПРИНИМАЮЩИХ РЕШЕНИЕ, НА ОСНОВЕ ПРОДУКЦИОННОЙ СИСТЕМЫ

Ключевые слова: база данных; база знаний; интеллектуальные модули; лицо, принимающее решение; продукционная система; продукционные правила; С-технология; сети Петри.

Аннотация. Рассматривается подход к построению автоматизированных систем управления развития и поддержки профессиональной интеллектуальной деятельности лиц, принимающих решение. Этот подход опирается на технологию систем, основанных на знаниях (С-технологию). Организация и структурирование знаний в подобных системах (С-системах) осуществляется на основе интеграции продукционных систем и математического аппарата двудольных ориентированных графов (сетей Петри).

Цель С-системы – повысить эффективность управления сложными объектами посредством обеспечения лиц, принимающих решение, квалифицированной поддержкой в их профессиональной интеллектуальной деятельности при принятии оперативных решений.

Предложен подход к построению автоматизированной системы для лиц, принимающих решение.

Рассмотрен способ формализации знаний о предметной области, который предполагает оперирование совокупностью элементарных единиц знаний (продукционных правил), организация и структурирование которых осуществляется на основе сетей Петри.

Современные объекты управления, технические объекты, технологические процессы и обеспечивающие управление ими информационно-измерительные и исполнительные средства, представляют собой сложные многофунк-

циональные, многорежимные, распределенные автоматизированные системы управления [8].

В процессах принятия решений в подобных системах участвуют операторы, диспетчеры, члены экипажа в бортовых системах, руководители различных уровней. Осуществляется совместная обработка сложноорганизованных данных и знаний [5; 9].

Сложность объектов управления влечет за собой необходимость освоения лицом, принимающим решение (ЛПР), огромного количества информации и знаний о принципах и особенностях работы оборудования, особенностях функционирования. При этом ключевой становится не только задача обеспечения ЛПР полной информацией о состоянии подсистем и всей системы в целом, но и задача обеспечения его минимально достаточным количеством информации, актуальной для текущего момента, позволяющей принимать необходимые оперативные решения [3].

Поэтому при разработке такого рода систем должны учитываться и использоваться выводы и результаты, полученные в одном из актуальных современных направлений в информатике и управлении — технологии систем, основанной на знаниях (С-технология, С-система).

Одной из главных задач С-системы является обеспечение ЛПР соответствующими априорными знаниями, которые формируются и закладываются экспертами – специалистами в конкретных предметных областях (ПРО), понятными как ЛПР, так и С-системе. Это позволит ЛПР повышать свою квалификацию, используя возможность обращаться к С-системе за необходимыми знаниями о вариантах оперативных действий и получать ответы на такие запросы ЛПР [2; 6].

Необходимо отметить, что если эксперты могут непосредственно воспринимать весь ком-

SCIENCE AND BUSINESS: DEVELOPMENT WAYS

Section: Economics and Management

плекс входной сенсорной информации, будь то визуальная, речевая/звуковая, осязательная и др., то С-система воспринимает только ту информацию, которая может быть воспринята ее логико-вычислительным ядром. Поэтому сенсорную информацию необходимо анализировать и преобразовывать в форму, приемлемую для С-системы.

Целесообразно сформировать такое описание (модель) предметной области, которое бы достаточно легко воспринималось ЛПР и средствами С-системы, позволяло бы использовать квалифицированную помощь непосредственно от экспертов, либо интерактивно взаимодействуя с С-системой.

Для решения такой задачи предлагается использовать математический аппарат, обладающий исключительной общностью, что бы он был применим к самым различным предметным областям.

В системах представления знаний, использующих продукционные правила, может осуществляться формализация представления рекомендаций, указаний или стратегий, выраженных в виде структур «Условие применимости — Действие» («ЕСЛИ условие, ТО действие») [1].

Такой способ предпочтителен в тех случаях, когда необходимо формализовать знания специалиста о предметной области, накопленные за годы работы в данной области. Важно, что представление знаний осуществляется на подмножестве естественного языка. Поэтому правила легко читаются, их просто понять и модифицировать, эксперты без труда могут сформулировать новое правило или указать на ошибочность какого-либо существующего.

База данных в продукционной системе — это структура данных, анализируемая и преобразуемая. Она, с одной стороны, является основой применимости правил, а с другой — выступает как объект, изменяемый этими правилами [12].

База знаний (**Б3**), по своей сути, представляет собой модель некоторой предметной области [4]. Она должна разрабатываться как открытая система, в которую могут быть достаточно легко вложены структура, состав и все особенности рассматриваемой ПРО, а также все необходимые функции управления и контроля. В то же время это должна быть развиваемая система.

Естественно, что при формировании достаточно больших по объему Б3 становятся весьма актуальными вопросы автоматизации этапов ее формирования.

В связи с этим далее рассматриваются варианты построения гибких управляемых сетевых структур [11], обеспечивающих возможность автоматизации представления и обработки знаний о ПРО, а также построения и оперативной модификации содержимого базы знаний. Отметим наиболее важные.

- 1. Графическое представление сети: наглядность, активное участие в анализе и синтезе сети человека (особенно если имеется возможность сформировать макропозиции и/или макропереходы в сети).
- 2. Описание в виде рекуррентного соотношения, позволяющего определить векторсостояние сетевой структуры в любой текущий момент времени.
- 3. Табличное представление сети, получаемое в результате декомпозиции сформированной сетевой структуры, которое обеспечивает возможность анализа поведения сети не только в целом, но и каждой элементарной структуры.

База знаний — наиболее важный компонент ядра С-системы, совокупность знаний о предметной области, записанная в форме, понятной ЛПР и эксперту. В продукционной системе она формируется в виде иерархии: разделы, источники знаний, продукционные правила. В ней можно выделить разделы, связанные с описанием непосредственно предметной области, и связанные с использованием сопровождающей информации при анализе предметной области.

Построение механизмов функционирования БЗ осуществляется на основе интеграции продукционных систем и аппарата двудольных ориентированных графов (сетей Петри). Одним из преимуществ такой модели является многообразие форм ее представления с возможностью взаимнооднозначного преобразования друг в друга (графическая, матричная в двух вариантах (на основе метода декомпозиции), алгебраическая в виде рекуррентного уравнения, позволяющего моделировать функционирование модели).

Так же важно отметить, что сетевая структура БЗ представляет собой как модель предметной области (знания о которой концентрируются в базе знаний), так и схему управления этой структурой. Ее можно создавать по частям, контролировать в динамике взаимодействие отдельных элементарных структур знаний (минимально — это одно продукционное правило, как четкое, так и нечеткое, одна элементарная сеть Петри), отслеживая перемещение специальных объектов — меток [7]. Метки могут иметь допол-

Раздел: Экономика и управление

нительные атрибуты, позволяющие различать их и использовать эти различия для управления функционированием системы (раскрашенные сети Петри).

Использование разделов базы знаний, предназначенных для автоматического или автоматизированного поиска и анализа отдельных узлов и компонентов модели предметной области, предполагает наличие механизмов вывода на знаниях. В качестве такого механизма будем использовать динамические рекуррентные процедуры описания функционирования сети, определяющие изменение разметки сети в результате срабатывания переходов. Соотношение в виде рекуррентного векторно-матричного уравнения позволяет определить вектор состояния модели предметной области в любой текущий момент времени [10]:

$$M(k+1) = M(k) + \Phi V(k), M(0) = M_0,$$
 (1)

где k – номер шага функционирования модели; M(k) – текущий вектор состояния сети, его компоненты представляют собой разметки соответствующих позиций; M(k+1) – новый вектор состояния; V – вектор запуска (размерность m — число переходов), с помощью которого указывается переход, который будет срабатывать в текущий момент времени; Ф – матрица, характеризующая сетевую структуру базы знаний, ее компоненты могут заполняться либо человекомэкспертом, либо автоматически (например, программой на основании анализа левых и правых частей совокупности продукционных правил). Ее значения являются постоянными до тех пор, пока не возникнет необходимость модификации сети и введения новых единиц знаний:

$$\Phi = I - O; \ \Phi(t_i) = I(t_i) - O(t_i),$$

где I, O — матрицы инциденций; $I(t_i)$ и $O(t_i)$ — векторы размерности n (n — число позиций), содержащие соответственно сведения о количестве входных и выходных дуг для перехода t_i .

Представив вектор V в виде:

$$V(k) = W(M(k), I(k))U(k)$$
(2)

и подставив его в (1), получим:

$$M(k+1) = M(k) + \Phi W(M(k), I(k))U(k),$$
 (3)

где $W(\cdot)$ – матрица размерности $m \times m$: ее эле-

менты, лежащие вне главной диагонали, равны 0, а единичные значения диагональных элементов определяют переходы, которые активизированы в данный момент, т.е. она определяет набор готовых к срабатыванию (активизированных) переходов; условием срабатывания перехода является неравенство $M(k) \ge I(t_i), j = 1, m$, оно должно выполняться попарно для всех компонент векторов М и І, а для его проверки необходимо использовать соответствующий алгоритм; таким образом, $W_{ij} = 1$, если M(k) $\geq I(t_i)$, т.е. если i-й переход готов к срабатыванию; в противном слу<u>чае</u> $W_{ii} = 0$; кроме того $W_{ii} = 0$, если $i \neq j$; i = 1, m; j = 1, m; U(k) — вектор управления, с помощью которого можно указать только один переход, который должен сработать в данный момент времени (результат разрешения конфликта конкурирующих переходов; решение о запуске процесса принимается вне формализма обычных сетей Петри).

Приведенное соотношение (3) дает возможность описать функционирование сетевой структуры базы знаний в форме многошагового управляемого динамического процесса в реальном времени. Шагом функционирования сети называют изменение разметки в результате срабатывания одного перехода.

Это соотношение соответствует протеканию процесса в прямом направлении — от условий к действиям (от данных к цели). По аналогии с (3) можно получить соотношение, позволяющее анализировать эти процессы в обратном направлении (при выборе стратегии логического вывода от цели к данным).

Ниже приведено векторно-матричное уравнение динамики (4), конкретизированное для фрагмента сети (макропозиции p_i), приведенной на рис. 16, для шага, соответствующего начальной разметке фрагмента сети.

На основе (4) разработан алгоритм управления срабатыванием переходов. При полученной на очередном шаге разметке необходимо осуществить выбор и запуск одного из двух активизированных переходов (t_1 , t_2). Выбран t_2 .

Управление заключается в том, что на множестве переходов сети задается порядок срабатывания конкурирующих переходов.

Подобный механизм (алгоритм) можно реализовать в виде отдельного программного модуля. При этом матрицы I и O, как составные компоненты матрицы Φ , представляют собой целочисленные матрицы и при необходимости

Section: Economics and Management

Рис. 1. Обобщенная сеть Петри (макропозиции и макропереходы): а) для всего процесса; б) для отдельной макропозиции p_i

могут заполняться либо человеком, либо автоматически (например, программой на основа-

нии анализа левых и правых частей совокупности продукционных правил).

Важной особенностью сетевой модели является возможность ее иерархического построения. Каждая сеть может рассматриваться как макропереход или макропозиция модели более высокого уровня. С другой стороны переход или позиция могут детализироваться в форме отдельной подсети для более углубленного исследования (рис. 1).

Повысить эффективность интерактивного анализа модели БЗ можно введением дополнительных (внешних относительно исходной сети) позиций, которые позволят применять механизмы обработки знаний и подготовки принятия решений, не заложенные в математическом аппарате сетей Петри и ее модификациях.

Некоторые вопросы применения подобной сетевой модели базы знаний в конкретной

предметной области (анализ структурных схем сложных систем автоматического регулирования) рассмотрены в [10].

Таким образом, предложен подход к построению системы развития и поддержке профессиональной интеллектуальной деятельности лиц, принимающих решение. Этот подход опирается на технологию систем, основанных на знаниях (С-технологию).

Рассмотрен способ формализации знаний о предметной области, который предполагает оперирование совокупностью элементарных единиц знаний (в частности совокупностью продукционных правил), организация и структурирование которых осуществляются на основе математического аппарата ориентированных двудольных графов (сетей Петри).

НАУКА И БИЗНЕС: ПУТИ РАЗВИТИЯ

Раздел: Экономика и управление

Список литературы

- 1. Баймухамедов, М.Ф. Построение автоматизированной системы управления технологическими процессами на базе продукционной экспертной системы / М.Ф. Баймухамедов // Аграрный вестник Урала. -2013.- N 8(114). -C. 26-28.
- 2. Башлыков, А.А. Роль человека-оператора как лица, принимающего решения, и элемента интеллектуальной системы управления сложными технологическими объектами / А.А. Башлыков // Автоматизация, телемеханизация и связь в нефтяной промышленности. 2016. № 12. С. 10–18.
- 3. Бондарев, В.А. Применение технологий, основанных на знаниях, в управлении пилотируемыми космическими аппаратами / В.А. Бондарев, Ю.Н. Жигулевцев, В.А. Суханов // XL Академические чтения по космонавтике посвященные памяти академика С.П. Королева и других выдающихся отечественных ученых-пионеров освоения космического пространства : сборник тезисов. М., 2015. С. 356.
- 4. Борисова, В.В. Проблематика моделирования предпочтений лиц, принимающих решения / В.В. Борисова // Вестник университета. 2014. № 14. С. 100–110.
- 5. Гаврилов, А.И. Методы исследования и анализ сложных систем управления и обработки информации / А.И. Гавилов, Т.Ю. Цибизова, В.Я. Родионов. М. : РАДЭКОН, 2006. 48 с.
- 6. Глухих, И.Н. Компьютерные технологии для формирования компетенций лица, принимающего решения / И.Н. Глухих, Е.Н. Пряхина // В мире научных открытий. -2014. -№ 11-7(59). -C. 2704–2716.
- 7. Карпенко, А.П. Нейросетевая аппроксимация функции предпочтений лица, принимающего решения, в задаче многокритериальной оптимизации / А.П. Карпенко, Д.Т. Мухлисуллина, В.А. Овчинников // Информационные технологии. -2010. -№ 10. C. 2-9.
- 8. Неусыпин, К.А. Системы управления летательными аппаратами и алгоритмы обработки информации : монография / К.А. Неусыпин, А.В. Пролетарский, Т.Ю. Цибизова. М. : Издательство МГОУ, $2006.-220~\rm c.$
- 9. Полищук, Ю.В. Группа лиц, принимающих решения в процессах управления большими и сложными техническими системами / Ю.В. Полищук // Информатизация и связь. -2013. -№ 2. С. 111-114.
- 10. Суханов, В.А. Анализ структурных схем сложных САР на основе СОЗ-технологии / В.А. Суханов // Наука и бизнес: пути развития. М. : ТМБпринт. 2018. № 11(89). С. 79–85.
- 11. Суханов, В.А. Формирование сетевой модели системы управления дискретными объектами / В.А. Суханов // Интеллектуальные системы : Труды 10-го международного симпозиума. М. : РУСАКИ, 2012. С. 134–137.
- 12. Титенко, Е.А. Проектирование экспертных систем на основе продукционного подхода / Е.А. Титенко, Т.И. Лапина, В.А. Ханис, Т.А. Мирталибов // Информационно-измерительные и управляющие системы. -2015. Т. 13. № 6. С. 15–19.

References

- 1. Bajmuhamedov, M.F. Postroenie avtomatizirovannoj sistemy upravlenija tehnologicheskimi processami na baze produkcionnoj jekspertnoj sistemy / M.F. Bajmuhamedov // Agrarnyj vestnik Urala. − 2013. − № 8(114). − S. 26–28.
- 2. Bashlykov, A.A. Rol' cheloveka-operatora kak lica, prinimajushhego reshenija, i jelementa intellektual'noj sistemy upravlenija slozhnymi tehnologicheskimi ob#ektami / A.A. Bashlykov // Avtomatizacija, telemehanizacija i svjaz' v neftjanoj promyshlennosti. − 2016. − № 12. − S. 10−18.
- 3. Bondarev, V.A. Primenenie tehnologij, osnovannyh na znanijah, v upravlenii pilotiruemymi kosmicheskimi apparatami / V.A. Bondarev, Ju.N. Zhigulevcev, V.A. Suhanov // XL Akademicheskie chtenija po kosmonavtike posvjashhennye pamjati akademika S.P. Koroleva i drugih vydajushhihsja otechestvennyh uchenyh-pionerov osvoenija kosmicheskogo prostranstva : sbornik tezisov. M., 2015. S. 356.

SCIENCE AND BUSINESS: DEVELOPMENT WAYS

Section: Economics and Management

- 4. Borisova, V.V. Problematika modelirovanija predpochtenij lic, prinimajushhih reshenija / V.V. Borisova // Vestnik universiteta. − 2014. − № 14. − S. 100−110.
- 5. Gavrilov, A.I. Metody issledovanija i analiz slozhnyh sistem upravlenija i obrabotki informacii / A.I. Gavilov, T.Ju. Cibizova, V.Ja. Rodionov. M.: RADJeKON, 2006. 48 s.
- 6. Gluhih, I.N. Komp'juternye tehnologii dlja formirovanija kompetencij lica, prinimajushhego reshenija / I.N. Gluhih, E.N. Prjahina // V mire nauchnyh otkrytij. − 2014. − № 11−7(59). − S. 2704−2716.
- 7. Karpenko, A.P. Nejrosetevaja approksimacija funkcii predpochtenij lica, prinimajushhego reshenija, v zadache mnogokriterial'noj optimizacii / A.P. Karpenko, D.T. Muhlisullina, V.A. Ovchinnikov // Informacionnye tehnologii. − 2010. − № 10. − S. 2−9.
- 8. Neusypin, K.A. Sistemy upravlenija letatel'nymi apparatami i algoritmy obrabotki informacii : monografija / K.A. Neusypin, A.V. Proletarskij, T.Ju. Cibizova. M. : Izdatel'stvo MGOU, 2006. 220 s.
- 9. Polishhuk, Ju.V. Gruppa lic, prinimajushhih reshenija v processah upravlenija bol'shimi i slozhnymi tehnicheskimi sistemami / Ju.V. Polishhuk // Informatizacija i svjaz'. − 2013. − № 2. − S. 111−114.
- 10. Suhanov, V.A. Analiz strukturnyh shem slozhnyh SAR na osnove SOZ-tehnologii / V.A. Suhanov // Nauka i biznes: puti razvitija. M. : TMBprint. 2018. № 11(89). S. 79–85.
- 11. Suhanov, V.A. Formirovanie setevoj modeli sistemy upravlenija diskretnymi ob#ektami / V.A. Suhanov // Intellektual'nye sistemy : Trudy 10-go mezhdunarodnogo simpoziuma. M. : RUSAKI, 2012. S. 134–137.
- 12. Titenko, E.A. Proektirovanie jekspertnyh sistem na osnove produkcionnogo podhoda / E.A. Titenko, T.I. Lapina, V.A. Hanis, T.A. Mirtalibov // Informacionno-izmeritel'nye i upravljajushhie sistemy. − 2015. − T. 13. − № 6. − S. 15−19.

© В.А. Суханов, 2019