Class 05: Data Visualization with GGPLOT

Nicholas Pacia

#Our first ggplot ggplot2 package must be downloaded to computer first

To install any package we use the install.packages() command.

Now can I use it? No, we must first call library(ggplot2)

```
library(ggplot2)
head(mpg)
```

A tibble: 6 x 11

	manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr>></chr>	<chr></chr>
1	audi	a4	1.8	1999	4	auto(15)	f	18	29	р	compa~
2	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compa~
3	audi	a4	2	2008	4	manual(m6)	f	20	31	р	compa~
4	audi	a4	2	2008	4	auto(av)	f	21	30	р	compa~
5	audi	a4	2.8	1999	6	auto(15)	f	16	26	р	compa~
6	audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compa~

First plot of displ vs hwy. All ggplot graphs are made in the same way (data+aes+geom)

```
ggplot(mpg) + aes(displ,hwy) + geom_point()
```


Adding more layers

```
ggplot(mpg) + aes(displ,hwy) + geom_point() +
   geom_smooth(method="lm",se=F, color="green")
```

[`]geom_smooth()` using formula 'y ~ x'

#Plot of gene expression data First read the data from online

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Q. How many genes are in this dataset?

```
nrow(genes)
```

[1] 5196

What are column names?

```
colnames(genes)
```


Adding colors: add another aes() mapping of color to the ${\tt State}$ column.

```
ggplot(genes, aes(Condition1, Condition2, color=State)) +geom_point()
```


Q. How many genes are up regulated and down regulated?

```
table(genes$State)
```

down	unchanging	up
72	4997	127

More customization of plot. Plot saved to object n. Use scale_color_manual to manually set color values. We can then update our object with the new changes so that they are saved for future plots.

```
n <- ggplot(genes, aes(Condition1,Condition2, color=State)) +geom_point()
n <- n + scale_color_manual(values = c("red", "grey", "blue"))
n</pre>
```


Now we need to add titles and descriptors with labs().

Gene Expression Changes upon Drug Treatment

