

07 Multiple Lineare Regression

Dominic Schmitz & Janina Esser

Beispieldaten

• Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Stressed Vowels sind k\u00fcrzer je nachdem wie viele Konsonanten ihnen folgen:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Unabhängig von diesem Vowel Shortening gilt, dass offene Vokale länger sind als halb-offene Vokale, und halb-offene Vokale sind länger als geschlossene Vokale:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Einfache Lineare Regression

(Zu) Einfache Lineare Regression

Einfache Lineare Regression

Multiple Lineare Regression: Formel

Multiple Lineare Regression in R

- Mehr Variablen = mehr Zeitaufwand
- Typische Schritte bei Multipler Linearer Regression sind
 - 1. Verteilung der abhängigen Variable überprüfen
 - 2. "volles" Modell erstellen
 - 3. "bestes" Modell finden
 - 4. Annahmen überprüfen
 - 5. Modell interpretieren

1. Verteilung der abhängigen Variable

- Wie wir bereits wissen, nutzen wir hierzu den Shapiro-Wilk Test
- Die abhängige Variable in unserem Beispiel, duration, ist nicht normalverteilt
- Daher nutzen wir wieder eine log-transformierte Version der Variable, durationLog

2. "Volles" Modell

- Unsere abhängige Variable ist durationLog
- Als nächstes müssen wir die unabhängigen Variablen identifizieren, die wir nutzen möchten
- In diesem Beispiel sind es die folgenden Variablen:
 - structure = coda structure
 - vowe1 = vowel quality
 - rate = speech rate
 - number = slide number during experiment

2. "Volles" Modell

Erstellen des "vollen" Modells:

- Theoretisch müssten wir nun alle möglichen Variabel-Kombinationen testen um das "beste" Modell zu finden
- Allerdings ist dieser Vorgang manuell durchgeführt fehleranfällig und zeitaufwendig (und macht wirklich keinen Spaß)
- Zum Glück gibt es eine Funktion, die diesen Schritt übernimmt:

step(model)

> step(model)

> step(model)

Start: AIC=-1167.31

Akaike Information CriterionJe niedriger, desto besser der Fit

durationLog ~ structure + vowel + rate + number

> step(model)

Start: AIC=-1167.31

Akaike Information Criterion je niedriger, desto besser der Fit

durationLog ~ structure + vowel + rate + number

	Df	Sum of Sq	RSS	AIC	
- number	1	0.0536	31.839	-1168.55	ein Model ohne number
<none></none>			31.786	-1167.31	110.1110 C1
- rate	1	0.8500	32.636	-1157.48	
- vowel	4	3.4109	35.197	-1129.64	ein Model ohne vowe1
- structure	2	14.9708	46.756	-998.41	

Step: AIC=-1168.55

durationLog ~ structure + vowel + rate

bestes gefundenes Model und sein AIC-Wert

zusätzlicher Beweis dafür, dass eine weitere Reduzierung den Fit des Modells nicht verbessert

bestes gefundenes Model und seine Struktur

Call:

lm(formula = durationLog ~ structure + vowel + rate, data = data)

Coefficients:

(Intercept) structuresingle vowele structureopen -1.50620.4340 0.1219-0.1441vowelo voweli vowelu rate -0.2374-0.1229-0.2365-0.2532

Koeffizienten des Models – mehr dazu bei Schritt 5

- Multiple Lineare Regression folgt den gleichen Annahmen, denen auch Simple Lineare Regression folgt
 - Linearität / Linearity
 - Homoskedastizität / Homoscedasticity
 - Normalität / Normality
 - Unabhängigkeit / Independence

Annahme: Linearität

Die Beziehung zwischen X und dem Mittelwert von Y ist linear.

• Die Linie sollte horizontal und flach verlaufen.

Annahme: Homoskedastizität

Die Varianz der Residuen ist für jeden Wert von X gleich.

 Die Daten sollten gleichmäßig über die Linie verteilt sein und keine offensichtlichen Muster aufweisen.

Annahme: Normalität

Für jeden festen Wert von X ist Y normalverteilt.

 Die Verteilung der Residuen eines linearen Modells sollte einer Normalverteilung folgen.

5. Interpretation

- Generell sind wir an zwei Dingen interessiert:
 - 1. den p-Werten der einzelnen Prädiktoren
 - 2. den Effekten der einzelnen Prädiktoren

5. Interpretation – *p*-Werte

1. Mit der anova() Funktion erhalten wir *p*-Werte

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
structure	2	15.131	7.5654	104.4874	< 2.2e-16	***
vowel	4	3.507	0.8767	12.1079	2.41e-09	***
rate	1	0.842	0.8416	11.6241	0.0007112	***
Residuals	439	31.786	0.0724			

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	-1.506		0.105	-14.364	0.000	***
structureopen	0.434		0.031	13.947	0.000	* * *
structuresingle	0.122		0.031	3.910	0.000	***
vowele	-0.144		0.040	-3.572	0.000	***
voweli	-0.237		0.040	-5.883	0.000	* * *
vowelo	-0.123		0.040	-3.048	0.002	**
vowelu	-0.237		0.040	-5.864	0.000	***
rate	-0.253		0.074	-3.410	0.001	***

2. Mit der summary () Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

Estimate Std. Error t value Pr(>|t|)0.105 * * * (Intercept) -1.506-14.3640.000 structureopen structure:double + vowel:a + rate:start structuresing e vowele geschätzter Durchschnitt von durationLog voweli vowelo vowelu rate

 Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

Estimate Std. Error t value Pr(>|t|)0.105 * * * (Intercept) -1.506-14.3640.000structureopen structure:double + vowel:a + rate:start structuresingle Standardfehler des geschätzten Durchschnitts vowele voweli vowelo vowelu rate

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktor structure:double + vowel:a + rate:start Estimate Std. Error t value Pr(>|t|)0.105 * * * (Intercept) -1.506-14.364 0.000 structureopen structuresingle 0.122 0.0313.910 0.000 * * * vowele um den geschätzten Durchschnitt von durationLog in structure:single Wörtern zu berechnen, wird der voweli Schätzwert von structure: single zum Estimatevowelo Schätzwert addiert, d.h. vowelu -1.506 + 0.122 = -1.384rate

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktor structure:double + vowel:a + rate:start

	Estimate S	ta. Error	t value	Pr(> t)	
(Intercept)	-1.506	0.105	-14.364	0.000	***
structureopen	0.434	0.031	13.947	0.000	
structuresingle	0.122	0.031	3.910	0.000	***
vowele	-0.144	0.040	-3.572	0.000	
voweli	-0.237	0.040	-5.883	0.000	***
				•	

vowelo

vowelu

rate

um den geschätzten Durchschnitt von durationLog in structure:single Wörtern mit vowel: i zu berechnen, wird ebenfalls die Summe gebildet, d.h.

$$-1.506 + 0.122 - 0.237 = -1.621$$

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktor structure:double + vowel:a + rate:start Estimate Std. Error t value Pr(>|t|)-1.506* * * (Intercept) durationLogist structureopen * * * 0.434 signifikant höher in Silben ohne Coda * * * structuresingle 0.122 signifikant höher in Silben mit vowele einfacher Coda voweli im Vergleich zu Silben mit komplexer vowelo Coda vowelu rate

Effekte der Prädiktoren werfen								
structure:double + vowel:a + rate:start								
	Estimate	Sta. Error	t value	Pr(> t)				
(Intercept)	-1.506	0.105	-14.364	0.000	***			
structureopen	0.434	0.031	13.947	0.000				
structuresingle	0.122	0.031	3.910	0.000				
vowele	-0.144	durationLog	0	***				
voweli	-0.237	- signifikant r	Silben mit 0	***				
vowelo	-0.123	/e, i, o, u/	2	**				
vowelu	-0.237	als in Silben mi	0	***				
rate	-0.253	0.074	0.001					

		Estimate	Std.	Error	t value	Pr(> t)	
(Interce	ept)	-1.506		0.105	-14.364	0.000	
structur	eopen	0.434		0.031	13.947	0.000	
structur	esingle	0.122		0.031	3.910	0.000	
vowele		-0.144		0.040	-3.572	0.000	
voweli		0 227		0 040	-5.883	0.000	
vowelo	je höher die Sprechgeschwindigkeit, desto niedriger durationLog			-3.048	0.002		
vowelu		-0.237		0.040	-5.864	0.000	
rate		-0.253		0.074	-3.410	0.001	***

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	-1.506		0.105	-14.364	0.000	***
structureopen	0.434		0.031	13.947	0.000	***
structuresingle	0.122		0.031	3.910	0.000	***
vowele	-0.144		0.040	-3.572	0.000	***
voweli	-0.237		0.040	-5.883	0.000	***
vowelo	-0.123		0.040	-3.048	0.002	**
vowelu	-0.237		0.040	-5.864	0.000	***
rate	-0.253		0.074	-3.410	0.001	***

Der s.g. Tukey-Contrast zeigt uns die Unterschiede innerhalb eines kategorischen Prädiktors

```
> tukey(model = mdl_fin, predictor = structure)
```

```
Estimate Std. Error t value Pr(>|t|) open - double == 0 0.43395 0.03112 13.95 < 1e-04 *** single - double == 0 0.12186 0.03117 3.91 0.00031 *** single - open == 0 -0.31209 0.03111 -10.03 < 1e-04 ***
```