Number System Assignment-1

1. Write a Binary values table for 0 to 10 decimal values?

Decimal	Binary
0	0
1	01
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001

- 2. Convert the below numbers from Decimal to Binary:
 - a. 12

$$(12)_{10} = (1100)_2$$

b. 20

$$(20)_{10} = (10100)_2$$

c. 45

 $(45)_{10} = (101111)_2$

c. 77

 $(77)_{10} = (1001101)_2$

d. 103

 $(103)_{10} = (1100111)_2$

3. What is the Octal equivalent of $(9910)_{10} = (23266)_8$

$$(9910)_{10} = (23266)_8$$

4. Convert the below numbers from Binary to Decimal:

a. $(1101)_2 = (13)_{10}$

1	1	0	1
2 ³ x 1	2 ² x 1	2 ¹ x 0	2º x 1

b. $1110 = (14)_{10}$

1	1	1	0
2 ³ x 1	2 ² x 1	2 ¹ x 1	2° x 0

c. $11110101 = (246)_{10}$

1	1	1	1	0	1	0	1
2 ⁷ x 1	2 ⁶ x 1	2 ⁵ x 1	24 x 1	2 ³ x 0	2 ² x 1	2 ¹ x 0	2º x 0

d. $01010101 = (75)_{10}$

0	1	0	1	0	1	0	1
2 ⁷ x 0	2 ⁶ x 1	2 ⁵ x 0	24 x 1	2 ³ x 0	2 ² x 1	2 ¹ x 0	2º x 1

0+64+0+16+0+4+0+1= 85

e. 1000 1111 = (143)₁₀

1	0	0	0	1	1	1	1
2 ⁷ x 1	2 ⁶ x 0	2⁵x 0	2 ⁴ x 0	2 ³ x 1	2 ² x 1	21 x 1	2ºx 1

128+0+0+0+8+4+2+1= 143

5. Convert the following numbers to base indicated and vice-versa (Cross-Verify)

1	1	0	1
2 ³ x 1	2 ² x 1	2 ¹ x 0	2° x 1

8+4+0+1= 13

 \rightarrow (1101)₂ = (13)₁₀

8	13
8	8 -5
	1

 \rightarrow (13)₁₀ = (15)₈

Cross Verification

 $(15)_8$

$$(8^1 x1) + (8^0 x5) = (13)_{10}$$

$$\rightarrow$$
 (15)₈ = (13)₁₀

2	13
2	6 -1
2	3-0
	1 -1

$$\rightarrow$$
 (13)₁₀ = (1101)₂

b. $(1111\ 1111\ 1110)_2 => (4094)_{10}$

1	1	1	1	1	1	1	1	1	1	1	1
2 ¹¹ x 1	2 ¹⁰ x 1	29 x 1	28 x 1	2 ⁷ x 1	2 ⁶ x 1	2 ⁵ x 1	24 x 1	2 ³ x 1	2 ² x 1	2 ¹ x 1	2° x 0

 $(2^{11} \times 1) + (2^{9} \times 1) + (2^{8} \times 1) + (2^{7} \times 1) + (2^{6} \times 1) + (2^{5} \times 1) + (2^{4} \times 1) + (2^{3} \times 1) + (2^{2} \times 1) + (2^{1} \times 1) +$

c. (221201) ₃ => (649) ₁₀

2	2	1	2	0	1
3 ⁵ x 2	3 ⁴ x 2	3 ³ x 1	3 ² x 2	3 ¹ x 0	3º x 1

 $(3^5 \times 2)+(3^4 \times 2)+(3^3 \times 1)+(3^2 \times 1)+(3^1 \times 0)+(3^0 \times 1)$

→SUM=(649)₁₀

d. $(76)_8 => (62)_{10}$

7	6
8 ¹ x7	8° x6

SUM: 56+6→(62)₁₀

$$(8^2 \times 2) + (8^1 \times 3) + (8^0 \times 1) = (153)_{10}$$

 \Rightarrow (231) ₈ = (153)₁₀

2	153
2	76 -1
2	38-0
2	19 -0
2	9 -1
2	4-1
2	2-0
2	1-0

 \rightarrow (153)₁₀ = (10011001)

Cross verification

$$\rightarrow$$
 (2⁷ x 1)+ (2⁴ x 1)+ (2³ x 1)+ (2⁰ x 1) = (153)₁₀

8	153
8	19 -1
	2-3

f. (0xF00) ₁₆ => (7400) ₈ (3840)₁₀

(F) 15 x 16 ²	0 x 16 ¹	0 x 16 ⁰
(L) 12 X 10	0 X 10	0 X 10

 \Rightarrow SUM: (0xF00) ₁₆ = (3840)₁₀

8	3840
8	480 -0
8	60-0
8	7-4

$$(3840)_{10} = (7400)_8$$

Cross Verification

$$\rightarrow$$
 (83 x7)+(82 x4)+(81 x0) + (80 x0) = (3840)₁₀

16	3840
16	240-0
16	15-0

$$\rightarrow$$
 (3840)₁₀ = (F00)₁₆

g. (0xDACE) $_{16} => (284BA)_{12}$

D(13)	A(10)	C(12)	E (14)
16 ³ x 13	16 ² x 10	16 ¹ x 12	16° x 14

$$\Rightarrow$$
SUM = (56014)₁₀

12	56014
12	4667-10
12	388-11
12	32-4
12	2-8

→(56014)₁₀ = (284BA)₁₂

Cross Verification

2	8	4	B(11)	A (10)
12 ⁴ x 2	12 ³ x 8	12 ² x 4	12¹ x 11	12 ⁰ x 10

→SUM = (56014)₁₀

16	56014
16	3500-14
16	218-12
	13-10

h.
$$(0x2B)_{16} => ()_8$$

$$\rightarrow$$
 (16¹ x 2)+ (16⁰ x 11) = (43)₁₀

Cross verification

$$\rightarrow$$
 (8¹ x 5)+ (8⁰ x 3) = (43)₁₀

$$\rightarrow$$
 (43)₁₀ = (2B)₁₆

- 6. Convert the following numbers to the base 10:
 - a. (3312)₈

(00==/0				
8 ³ x 3	8 ² x 3	8 ¹x 1	8° x 2	
X				

→SUM =(1738)₁₀

b. (167)₈

8 ² x 1	8 ¹x 6	8° x 7
→SUM =(119) ₁₀		

c. (202103)₉

9⁵ x 2	9 ⁴ x 0	9³x 2	9 ² x 1	9 ¹ x 0	9° x 3
→SUM =(11864	40) 10				_

d. (3132334)₁₆

16 ⁶ x 3	16 ⁵ x 1	16 ⁴ x 3	16 ³ x 2	16 ² x 3	16 ¹ x 3	16° x 4
→SUM =(832	2730)10					

e. (0xF2)₁₆

(F) 15 x 16 ¹	2 x 16 ⁰
• •	

→SUM =(242)₁₀

- 7. Convert the following base 10 numbers to the base Indicated:
- a. (5610)₁₀ => (1001100010)₂

2	5610
2	285-0
2	152-1
2	76-0
2	38-0
2	19-0
2	9-1
2	4-1
2	2-0
2	1-0

b.	(5610)	10 =>	(21200212)	2
-----------	--------	-------	-------------	---

3	5610
3	1870
3	623-2
3	207-2
3	69-0
3	23-0
3	7-2
3	2-1

8	5610
8	701-2
8	87-5
8	10-7
8	1-2

d.
$$(5610)_{10} => (32116)_{12}$$

12	5610
12	467-6
12	38-11
12	3-2

16	5610
16	350-
	10
16	21-14
16	1-5

f. $(22110)_{10} = > (101010011001110)_2$

2	22110
2	11055-0
2	5527-1
2	2713-1
2	1356-1
2	678-0
2	339-0
2	169-1
2	84-1
2	42-0
2	21-0
2	10-1
2	5-0
2	2-1
2	1-0
·	

g.
$$(22110)_{10} => (1010022220)_3$$

3	22110
3	7370-0
3	2456-2
3	818-2
3	272-2
3	90-2
3	30-0
3	10-0
3	3-1
3	1-0

h.
$$(22110)_{10} => (53103)_8$$

8	22110
8	2760-3
8	345-0
8	43-1
8	5-3

i. $(22110)_{10} => (10966)_{12}$

12	22110
12	1842-6
12	153-6
12	12-9
	1-0

j. $(22110)_{10} => (565E)_{16}$

16	22110	
16	1381-14	
16	86-5	
16	5-6	

8. Perform Binary Addition on the below numbers:

a.
$$9+12$$

$$(9)_{10}=7(1001)_{2} 1001$$

$$(12)_{10}=7(1100)_{2} +1100$$

$$(21)_{10}=(10101)_{2} \frac{10101}{10101}$$

9. Perform Binary Subtraction on the below numbers:

a. 8-3
$$(8)_{10} = 1000$$

$$-(3)_{10} = -0011$$

$$(5)_{10}$$

b. 17-11
$$x | 1$$

 $17 = 1838$
 $-\frac{11}{6} = \frac{1071}{0110}$

c.
$$25-7$$
 0 1 1 $18 = 10010$ //

- 10. Perform Binary Multiplication on the below numbers:

a.
$$12x3$$

$$12 = 1100$$

$$x^{3} = 011$$

$$1100$$

$$1100$$

$$0000$$

$$100100$$

c. 0111 x 0010

d. 0110 0111 x 101

b. $45/5 = 9 \rightarrow 101101/101 = 1001$

0111 x 0010	0110 0111 x 101
0000	0110 0111
0111x	0000 0000x
0000xx	0110 0111xx
0000xxx	
	100000011
1110	

e. 1010 1010 x 0101 → 170 x 5 = 850

1010	1010	
x	0101	
10101	1010	
00000	000x	
10101010xx		
0000000xxx		
01101010010 → 850		

11. Perform Binary Division on the below numbers:

a. $15/2 = 7 \Rightarrow 1111/10 = 111$ remainder = 1

10)1111(1110	101) 101101 (1001
10	101
11	01
10	00
11	10
10	0
1	101
	101
	0

d. 1101 0100 / 101 → 212/5 =42 remainder =2

1110) 1111001 (1000	101) 11010100 (101010
1110	101
10	11
0	00
100	110
0	101
1001	110
0	101
1001	10
	0

e. 1010 1010 / 0111 → 11000 ==→ 170/7 =24 remainder= 2

- 12. Convert the following floating numbers to binary, base 3, octal, and hexadecimal. Any fractions that do not terminate should be truncated to 4 digits in the fractional part.
- a. $(34.34)_{10} \rightarrow (100010.01011)_2 \rightarrow (1021.1000)_3 \rightarrow (42.2560)_8 \rightarrow (22.570)_{16}$

$$34 = (100010)_2$$

$$0.34 \times 2 = 0.68 \Rightarrow 0$$

34=(1021)3

0.34x3	= 1.02	1
0.02x3	=0.06	0
0.06x3	=0.18	0
0.18x3	= 0.54	0

$$34 = (42)_8$$

0.34x8	= 2.72	2
0.72x8	=5.76	5
0.76x8	=6.08	6
0.08x8	= 0.64	0

0.34x16	= 5.44	5
0.44x16	=7.06	7
0.06x16	=0.96	0

- b. (125.125)₁₀
- . $(125.125)_{10} \rightarrow (1111101.001)_2 \rightarrow (1122.0100)_3 \rightarrow (158.0767)_8 \rightarrow (7D.1F7C)_{16}$

125 = (1111101)₂

0.125x2	=	0
	0.250	
0.250x2	=0.500	0
0.500x2	=1.00	1

0.123x3	=	0
	0.369	
0.369x3	=1.107	1
0.107x3	=0.321	0
0.321x3	=	0
	0.963	

$$125 = (175)_8$$

0.123x8	=	0
	0.984	
0.984x8	=7.872	7
0.872x8	=6.976	6
0.976x8	=	7
	7.808	

$$125 = (7D)_{16}$$

0.123x16	= 1.968	1
0.968x16	=15.488	F
0.488x16	=7.808	7
0.808x16	=	С
	12.928	

- c. (10.16)₁₀
- . $(10.16)_{10} \rightarrow (1010.0010)_2 \rightarrow (31.1000)_3 \rightarrow (12.2212)_8 \rightarrow (A.570A)_{16}$

$$10 = (1010)_2$$

0.16x2	= 0.32	0
0.32x2	=0.64	0
0.64x2	=1.28	1
0.28x2	= 0.56	0

$$10 = (101.)_3$$

0.16x3	= 0.48	0
0.48x3	=1.44	1
0.44x3	=1.32	1
0.32x3	= 0.96	0

$$10 = (12)_8$$

0.34x8	= 2.27	2
0.27x8	=2.16	2
0.16x8	=1.28	1
0.18x8	= 2.24	2

$$10 = (A)_{16}$$

0.34x16	= 5.44	5
0.44x16	=7.04	7
0.04x16	=0.64	0
0.64x16	=	10
	10.24	

13. What is the largest positive number one can represent in a 12-bit 2's complement code? Write your result in binary and decimal?

In a n-bit 2's complement, the most significant bit represents the sign of the number

Thus, the MSB of the 12 bit number will be 0(positive sign)

→ the largest positive number one can represent in a 12-bit 2's complement code is

0111 1111 1111 = $(1023)_{10}$

14. What are the 8-bit patterns used to represent each of the characters in the string "CODE/THS 2022"?

(Only represent the characters between the quotation marks.)

**Note: There is space between THS and 2022.

Char	HEX()	Dec	Binary
С	43	67	01000011
0	4F	79	01001111
D	44	68	01000100
E	45	69	01000101
1	2F	47	00101111
T	54	84	01010100
Н	48	72	01001000
S	53	83	01010011
	20	32	00100000
2	32	50	00110010
0	48	30	00110000
2	32	50	00110010
2	32	50	00110010

The 8 bit pattern:

15. What is the biggest binary number you can write with 5 bits?

2 ⁴ x 1 2 ³ x 1 2 ² x 1 2 ¹ x 1	2º x 1
---	--------

Biggest binary number with 5 bits is $(11111)_2 = (31)_{10}$

16. In hex, 2BFC + 54A7?

17. Convert the hex number ABC7 to binary?

$$(ABC7)_{16} => (1111100101111)_2$$

 $(43975)_{10}$

Α	В	С	7	SUM
16 ³ X 10	16 ² X 11	16¹ X 12	16° X 7	(43975) ₁₀

2	43975
2	21987-1
2	1993-1
2	996-1
2	498-1
2	249-0
2	124-1
2	62-0
2	31-0
2	15-1
2	7-1
2	3-1
2	1-1

18. In hex, AC74 - B3F?

A C 7 4
$$(AC74)_{16} = (44148)_{10}$$
- B 3 F $(B3F)_{16} = -(2879)_{10}$

 $(A 1 3 5)_{16} = = = = \Rightarrow$ $(41269)_{10}$

19. Convert the following binary fractions to ordinary fractions

a.
$$(0.1001)_2 = (0.5625)_{10} \rightarrow 9/16$$

0	•	1	0	0	1
0		1 x 1/2 ¹	0 x 1/2 ²	0 x 1/2 ³	1 x 1/2 ⁴

 \rightarrow 0.5+0+0+0.0625 = (0.5625)₁₀

b. $1.0011 = (1.1875)_{10} \rightarrow 19/16$

1	•	0	0	1	1
1		0 x 1/2 ¹	0 x 1/2 ²	1 x 1/2 ³	1 x 1/2 ⁴

- \rightarrow 2°x1 = 1
- **→** 0+0+0.125+0.0625 = 1.1875
- c. 1.1111= (1.9375)₁₀

1	•	1	1	1	1
1		1 x 1/2 ¹	1 x 1/2 ²	1 x 1/2 ³	1 x 1/2 ⁴

- \rightarrow 2°x1 = 1
- **→** 0.5+0.25+0.125+0.0625 = 1.9375

20. The decimal expansion of 11/17 is 0.647. Find the binary expansion of the fraction 11/17.

$$0.647 \times 2 = 1.294 \rightarrow 1$$

$$0.294 \times 2 = 0.588 \Rightarrow 0$$

$$0.588 \times 2 = 1.176 \rightarrow 1$$

$$0.176 \times 2 = 0.352 \Rightarrow 0$$

$$0.352 \times 2 = 0.704 \Rightarrow 0$$

$$0.704 \times 2 = 1.408 \rightarrow 1$$

$$0.408 \times 2 = 0.816 \implies 0$$

$$0.816 \times 2 = 1.632 \rightarrow 1$$

Binary expansion up to 8 digits = 0.10100101

21. The decimal expansion of 3/11 is 0.2727. Find the binary expansion of the fraction 3/11.

$$0.2727 \times 2 = 0.5454 \Rightarrow 0$$

$$0.5454 \times 2 = 1.0908 \Rightarrow 1$$

$$0.0908 \times 2 = 0.1816 \rightarrow 0$$

$$0.1816 \times 2 = 0.3632 \rightarrow 0$$

$$0.3632 \times 2 = 0.7264 \Rightarrow 0$$

$$0.7264x 2 = 1.4528 \rightarrow 1$$

$$0.4528x\ 2 = 0.9056 \implies 0$$

$$0.9056x 2 = 1.8112 \rightarrow 1$$

Binary expansion up to 8 digits = 0.01000101