

Universidade federal de Campina Grande Centro de engenharia elétrica e informática Departamento de engenharia elétrica

Departamento de engenharia elétrica Disciplina: Técnicas de medição

Professor: Célio Anésio

Aluno: Athus Fortunato Souto Maior

Matrícula: 119111275

Análise inspecional de transformador de 225KVA

1. Dados do Transformador

Marca: Super Watts Tensões de A.T. 13.800 a Corrente A.T: 9,41 A Potência: 225 KVA 11.400 (V) Corrente B.T: 341,850 A Série: 45783 Tensões de B.T. 380/220 Data de Reforma: 08/06/2019 Fases: 3 (V) Ligação: Triângulo/Estrela Frequência: 60 (HZ) Peso: 1144 Kg Tipos: Aéreo Derivações: 5 convencional A.T. Ligado em: Delta B.T. Ligado em: Estrela

2. Análise das correntes

Corrente nominal: 341,850 A;

Corrente média: ia = 36,15 A; ib = 50,02 A; ic = 50,10 A; Corrente máxima: ia = 67,72 A; ib = 117,03 A; ic = 157,94 A;

Ao se observar o Gráfico 1 e as correntes médias de cada fase pode-se afirmar que existe um pequeno desequilíbrio, com uma diferença da fase **A** para as outras duas fases, o que é considerado normal devido ao comportamento do uso das cargas durante o dia. Ao observar o Gráfico 2 é possível afirmar que as cargas da fase **b** e **c** possuem comportamento semelhante, e que caso futuramente seja necessário a adição de novas cargas elas podem ser posicionadas na fase **a** sem causar maior

desequilíbrio ao sistema. Por fim, as correntes máximas de cada fase também estão dentro dos parâmetros, abaixo da corrente nominal, não oferecendo risco de dano aos equipamentos.

Amplitude das correntes de fase

Gráfico 1: Correntes das fases do transformador

Comportamento das correntes de fase

Gráfico 2: Curvas de comportamento das correntes de fase

3. Análise de potência

Potência nominal: 225 KVA;

Potência Máxima medida: 58.118,19 VA;

Situação de carga: (58,188 KVA)/(225 KVA) = 0,259 OU 25,9% (Carga leve)

Fator de Potência mínimo: 0,91;

Pode-se afirmar que trafo está sobre situação de carga leve e trabalhando predominantemente com um bom fator de potência (acima de 0,92 at.) como pode ser visto no gráfico 3, atingindo por um curto momento valores abaixo desta faixa sendo o menor valor registrado 0,91 at o que não corresponde a um valor absurdo e pode ser considerado como funcionamento normal.

Gráfico 3: Fator de potência da carga

4. Análise de tensão

Tensão média: Van = 211,98 V /Vbn = 213,95 V /Vcn = 213,34 V

Desvio padrão = Da = 2,116527304 V / Db = 1,990913737 V / Dc = 2,020986042 V (Pouca variação)

Observando as curvas dos gráficos 4, 5 e 6 pode-se afirmar que a tensão está em níveis adequados (201 < TL < 231) sem a necessidade de intervenção para ajuste do tap do transformador.

Gráfico 4: Tensão da fase A

Gráfico 5: Tensão da fase B

Gráfico 6: Tensão da fase C

5. Considerações finais

A partir dos dados levantados verifica-se que o transformador está trabalhando em condições normais de funcionamento, alimentando uma carga leve, sem a necessidade de intervenção no TAP do mesmo, notando-se apenas um leve desequilíbrio entre as correntes de fase, o que pode ser considerado normal devido a variação do funcionamento das cargas. Recomenda-se que se houver a necessidade de adição de novas cargas, que as mesmas sejam inseridas na fase A diminuindo o desequilíbrio das correntes.