

A compressed sensing approach for ultrasound imaging

Adrien Besson[†], Rafael E. Carrillo*, Dimitris Perdios[†], Marcel Arditi[†], Yves Wiaux[‡], Jean-Philippe Thiran[†]* [†]Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland *Centre Suisse d'Electronique et de Microtechnique (CSEM), Neuchâtel, Switzerland

[‡]Institute of Sensors, Signals, and Systems, Heriot-Watt University, Edinburgh, United-Kingdom

*Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland

Introduction and objectives

- 1. Ultrasound (US) imaging uses multiple piezo-electric elements to transmit and receive acoustic pulses
- 2. Time-domain beamforming techniques require sampling rates ranging from 3 to 10 times the center frequency to minimize the delay-quantization errors
- 3. Such sampling rates may not be achievable in challenging environment, e.g. portable devices
- 4. We present a compressed-sensing-based US acquisition and reconstruction approach

Notations and model

- Notations:
 - ▶ 1D probe composed of N_{el} transducer elements located at \mathbf{r}_i
 - $\rightarrow m_i(t)$ signal received at i^{th} element
 - $\psi(t) = (e * h_{Tx} * h_{Rx})(t)$ elementary waveform
 - ightharpoonup e(t) excitation
 - \blacktriangleright $h_{T_X}(t)$ impulse response in transmit
 - \blacktriangleright $h_{Rx}(t)$ impulse response in receive
 - Medium composed of K inhomogeneities located at \mathbf{r}_k and with reflectivity $\gamma\left(\mathbf{r}_k\right)$

Figure Standard setting for US imaging

► The signals received at each element follow a **stream of pulses** model and can be written as:

$$m_i(t) = \sum_{k=1}^K a_{ik} \psi(t-t_k)$$

with $(a_{ik}, t_k)_{k=1}^K$ amplitudes and times-of-arrival of the K echo-pulses to the i^{th} transducer-element

▶ The N_t discretized samples obtained by sampling $m_i(t)$ at a frequency f_s obey a *K*-sparse synthesis model in a dictionary $\Psi \in \mathbb{R}^{N_t \times N_t}$ made of all the shifted replicas of the pulse [1]:

$$\boldsymbol{m}_i = \Psi \boldsymbol{a}_i, \text{ with } \|\boldsymbol{a}_i\|_0 = K$$

The proposed acquisition scheme: US compressive multiplexer

► CMUX [2]: Signals from M sensors are modulated and summed:

$$y(t) = \sum_{i=1}^{M} p_i(t) m_i(t)$$

where $p_i(t)$ is a chipping sequence drawn from a Rademacher distribution

- ▶ Signal y(t) sampled at f_s leading to a compression by a factor of M
- ▶ **US-CMUX**: Use L CMUX each of which grouping M sensors and sharing the same chipping sequences to perform signal acquisition

$$Y = [y_1, ..., y_L] \in \mathbb{R}^{N_t \times L}$$

- Compression by a factor of M compared to standard US devices
- Can be achieved using mixed signal blocks [2]

Figure CMUX architecture

Figure US-CMUX architecture

Proposed reconstruction algorithm

• ℓ_{11} -minimization problem is solved:

$$\begin{aligned} \min_{\bar{\mathbf{A}} \in \mathbb{R}^{MN_t \times L}} & \|\bar{\mathbf{A}}\|_{11} \text{ subject to } \|\mathsf{Y} - \Psi_P \bar{\mathbf{A}}\|_F \leq \epsilon \\ \Psi_P &= & [\Psi_{p1}, ..., \Psi_{pM}] \in \mathbb{R}^{N_t \times MN_t}, \ \Psi_{pi} &= & [\boldsymbol{p}_i \otimes \Psi_1, ..., \boldsymbol{p}_i \otimes \Psi_{N_t}] \in \mathbb{R}^{N_t \times N_t} \\ \mathsf{A} &= & \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_{M+1} \cdots & \boldsymbol{a}_{N_{el}-M+1} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{a}_{M} & \boldsymbol{a}_{2M} & \cdots & \boldsymbol{a}_{N_{el}} \end{bmatrix} \end{aligned}$$

$$\begin{bmatrix} \boldsymbol{a}_{M} & \boldsymbol{a}_{2M} & \cdots & \boldsymbol{a}_{N_{el}} \end{bmatrix}$$

Solved with primal dual forward backward algorithm [3]

Experimental setup

- Data acquisition:
 - ▶ In-vitro hyperechoic inclusion phantom (Model 54GS, CIRS Inc., Norfolk, USA) and *in-vivo* carotids
 - ▶ Data acquired with a Verasonics research scanner (V1-128, Verasonics Inc., Redmond, WA)
 - ► ATL L12-5 50 mm ultrasound probe used for the different experiments
 - ▶ 128 active transducer-elements
 - ▶ 5 MHz central frequency with 100 % bandwidth
 - ► 31.2 MHz sampling frequency
 - ► Transmission of plane waves with normal incidence
- US-CMUX architecture
 - Simulated on MATLAB®
 - ▶ 2 cases: L=2 and L=4
 - ▶ Parameters of the reconstruction algorithm: $\epsilon = 10^{-6} \| \mathbf{Y} \|_F$, 1500 iterations
- Image reconstruction:
 - Achieved with standard delay-and-sum algorithm
 - Post-processing pipeline for B-mode image
 - ► Envelope extraction: Hilbert transform
 - ► Normalization and log-compression with a dynamic range of 40 dB

Reconstructed B-mode images

Figure B-mode images of the hyperechoic inclusion and the carotid reconstructed with 100 %of the data ((a) and (c)) and with 25% of the data acquired with US-CMUX ((b) and (d))

Quality metrics of the reconstructed images

▶ PSNR and SSIM against B-mode images reconstructed with 100 % data **Table** Average PSNR [dB] and SSIM [-] over 10 draws for the different images

	Hyperechoic inclusion	<i>In-vivo</i> carotid
PSNR - L = 2	39	36
SSIM - $L=2$	0.94	0.87
PSNR - L = 4	32	29
SSIM - $L=4$	0.81	0.72

 \blacktriangleright High quality reconstruction with 25 % of the data.

Conclusion and perspectives

- 1. We propose a compressed sensing approach for US image recovery
 - Exploits a stream of pulses model for sparsity of US images
 - Uses multiple CMUX for analog compression of the data
 - ightharpoonup Applies a ℓ_{11} -minimization algorithm for image reconstruction
- 2. The proposed approach leads to high-quality reconstruction with far fewer data than standard approaches
- 3. Study of the hardware implementation will be achieved in future work

References

- F. M. Naini, R. Gribonval, L. Jacques, and P. Vandergheynst, "Compressive sampling of pulse trains: Spread the spectrum!", in 2009 IEEE Int. Conf. Acoust. Speech Signal Process., 2009, pp. 2877–2880.
- Y. Kim, W. Guo, B. V. Gowreesunker, N. Sun, and A. H. Tewfik, "Multi-channel sparse data conversion with a single analog-to-digital converter", IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, no. 3, pp. 470–481, 2012.
- P. L. Combettes, L. Condat, J.-C. Pesquet, and B. C. Vu, "A forward-backward view of some primal-dual optimization methods in image recovery", in 2014 IEEE Int. Conf. Image Process., 2014, pp. 4141–4145.

Acknowledgments

This work was supported in part by the UltrasoundToGo RTD project (no. 20NA21 145911), evaluated by the Swiss NSF and funded by Nano-Tera.ch with Swiss Confederation financing. The authors would like to thank Dr Olivier Bernard from CREATIS laboratory for providing the in vitro and in vivo acquisition data.