Question Number	Scheme	Marks
10.	(a) $\frac{dy}{dx} = 4x^3 - 12x^2 - 4x + 13$	M1 A1
	at R , $\frac{dy}{dx} = 4 - 12 - 4 + 13 = 1$	
	l_1 has equation $y-13 = 1(x-1)$ [$y = x+12$]	M1 A1
	(b) $4x^3 - 12x^2 - 4x + 13 = 1$	
		M1
	$4(x-1)(x^2-2x-3) = 0$	
	4(x-1)(x+1)(x-3) = 0	M1
	x = -1, x = 1, x = 3	
	At P , $x = -1$, $y = 1+4-2-13+5 = -5$ so $P(-1,-5)$	A1
	At Q , $x = 3$, $y = 81 - 108 - 18 + 39 + 5 = -1$ so $Q(3, -1)$	A1
	(c) Gradient of $PQ = \frac{-5+1}{-1-3} = 1$	
	Equation of l_2 is $y+1=1(x-3)$ [$y=x-4$] or $y+5=1(x+1)$	M1 A1
	$y + 3 = \mathbf{I}(x + 1)$	
	(d) Gradient of l_2 = gradient of C at P = gradient of C at Q [= 1] [Since l_2 passes through P and Q with the same gradient as the curve at these points, it must be a tangent to C at P and at Q .]	B1
	(e) Normal at R has equation $y-13=-1(x-1)$	
	At intersection with l_2 , $(x-4)-13=-1(x-1)$ or $y-13=-1(y+4-1)$	M1
	$\Rightarrow 2x = 18$ or $2y = 10$	M1
	$\Rightarrow x = 9$ and $y = 5$	A1
	$RS^2 = (13-5)^2 + (1-9)^2$	M1
	$RS = \sqrt{64 + 64} = 8\sqrt{2}$	A1
	(f) $PQ = \sqrt{(-1-3)^2 + (-5+1)^2} = \sqrt{16+16} = 4\sqrt{2}$	
	Area $PQR = \frac{1}{2} \times 8\sqrt{2} \times 4\sqrt{2} = 32$	M1 A1 (18)
	alternative	
	(f) Area $PQR = \frac{1}{2} \begin{vmatrix} -1 & 3 & 1 & -1 \\ -5 & -1 & 13 & -5 \end{vmatrix} = \frac{1}{2} [(1+39-5)-(-15-1-13)]$ M1	
	$=\frac{1}{2}(35+29)=32$ A1	

N	nte
_ 1.4	ULC

(a)

- M1 for an attempt at differentiation (usual rules reducing the power of at least one term, the disappearance the constant is insufficient for this mark)
- A1 for a complete correct differentiated expression
- M1 for finding and using a numerical value of the gradient, derived only from using $\frac{dy}{dx}$ into either y
 - -13 = (their m) (x 1), or by applying y = mx + c including finding a value for c
- A1 for any correct equation y-13=1 (x-1) [y=x+12, y-x-12=0] etc

(b)

- M1 for setting their $\frac{dy}{dx} = 1$ and re-arranging to give a cubic equation (=0)
- M1 for factorising their equation leading to three values of x
- A1 for either of the correct coordinates (-1, -5) or (3, -1) (x = -1, y = -5) or x = 3, y = -1
- A1 for both (-1, -5) and (3, -1) correct, (x = -1, y = -5 and x = 3, y = -1)

(c)

- M1 for finding the numerical gradient of l_2 using their coordinates of P and Q, and attempting to form an equation using their gradient and the points P or Q
- A1 for a correct equation eg y+5=1(x+1) or y+1=1(x-3) [y=x-4]

(d)

B1 please refer to ms

(e)

- M1 for forming the equation of the normal at R. They must use a numerical gradient derived from their gradient of the tangent in part (a) using the rule $m_t \times m_n = -1$, and use the given coordinate of R. y-13=-1(x-1) oe (y=-x+14)
- M1 for finding the point of intersection of the Normal at R and l_2 , by any acceptable method eg., simultaneous equations
- A1 for the point of intersection of S, either x = 9 and y = 5, or gives coords (9, 5)
- M1 for using Pythagoras with point R and their S
- A1 for $8\sqrt{2}$, $\sqrt{128}$ oe exact answer only

(f)

- M1 for any method to find the area of triangle PQR ft their P and Q
- A1 for area $PQR = 32 \text{ (units}^2)$