

Prof. Dr. Knut Reinert Sandro Andreotti FB Mathematik und Informatik

Fortgeschrittene Algorithmen in der Bioinformatik (P4): Sequence and Structure Analysis Abschlussklausur SS 08

Name:	Matrikelnummer:								
Viel Erfolg!	A1 10	A2 12	A3 16	A4 13	A5 16	A6 12	A7 11	90	

Aufgabe 1: Horspool, Wu-Manber

3 + 3 + 4 = 10 Punkte

Beschreiben Sie den Algorithmus von Wu-Manber zum multiple string matching. Gehen Sie dabei auf folgende Punkte ein:

- (a) Was ist, wie benutzt man, und wozu dient die SHIFT table?
- (b) Was ist, wie benutzt man, und wozu dient die (erste) HASH table?
- **(c)** Was ist der Vorteil des Wu-Manber Algorithmus gegenüber dem trivialen Erweiterung des Horspool Algorithmus für multiple strings?

Aufgabe 2: PEX, Pidgeonhole Principle

3 + 3 + 6 = 12 Punkte

Ein Text T der Länge 1000 enthält ein Vorkommnis Occ eines Patterns P der Länge 50 mit höchstens 6 Fehlern. In wieviele Stücke muss man P zerlegen (also $P=P_1P_2\dots P_k$), um sicherzustellen, dass ...

- (a) *T* eines der Stücke exakt (ohne Fehler) enthält?
- **(b)** *T* eines der Stücke mit höchstens drei Fehlern enthält?
- (c) Beweisen sie das Lemma:

Sei Occ ein approximatives Vorkommen eines strings in einem pattern P mit k Fehlern. Sei weiter $P=p^1,\ldots,p^j$ die Konkatenation von Teilen von P sowie a_1,\ldots,a_j nichtnegative, ganze Zahlen so dass $A=\sum_{i=1}^j a_i$. Dann existiert ein $i\in 1,\ldots,j$, so dass es einen substring in Occ gibt der p^i mit $|a_ik/A|$ Fehlern matched.

Aufgabe 3: Komparative RNA-Analyse

3 + 3 + 3 + 7 = 16 Punkte

- (a) Was ist eine stochastische, kontextfreie Grammatik (SCFG)?
- **(b)** Was ist die Chomsky-Normal Form?
- (c) Gegeben eine SCFG, was berechnet der Inside-Algorithmus?

(d) Geben sie den inside-Algorithmus in pseudocode an.

Aufgabe 4: Quasar

5 + 3 + 5 = 13 Punkte

- (a) Formulieren sie und beweisen sie das q-gram Lemma für ungapped shape?
- (b) Gilt das q-gram Lemma auch für gapped shapes?
- (c) Falls ja, ist das Lemma dann auch scharf? Begründen sie ihre Antwort mit einem Beispiel?
- (d) Falls nein, geben sie ein Gegenbeispiel an.

Aufgabe 5: Suffix arrays

3 + 3 + 4 + 6 = 16 Punkte

- (a) Definieren sie ein suffix array für einen string und die lcp Tabelle.
- **(b)** Geben sie an, wie man in einem Suffix array mit Hilfe der lcp Tabelle effizient sucht.
- (c) Wie ist die Laufzeit für die Suche eines Patterns der Länge m in einem string der Länge n?
- (d) Geben sie den Algorithmus von Kasai zur Linearzeitberechnung der lcp Tabelle an.

Aufgabe 6: Chaining

5 + 7 = 12 Punkte

- (a) Welche Operationen unterstützt die beim Chaining-Algorithmus verwendete Datenstruktur? Beschreiben Sie jeweils kurz, was sie bewirken bzw. was ihr Ergebnis ist.
- **(b)** Beschreiben Sie den Chaining-Algorithmus für L_1 -Gap-Kosten. *Alternativ (halbe Punktzahl)*: Beschreiben Sie den Chaining Algorithmus ohne Gap-Kosten.

Aufgabe 7: Multiple Match refinement

3 + 8 = 11 Punkte

- (a) Welches Problem adressiert man beim Multiple Match Refinement?
- (b) Gegeben sei die untige Menge von Segment Matches $\{S_1, S_2, S_3\}$. Geben Sie das eine minimale Menge von refined segment matches grafisch an, wobei sie passende Projektionen wählen dürfen. Begründen sie ihre Lösung kurz.

