MTH302: INTEGERS, POLYNOMIALS AND MATRICES LECTURE 3

VARADHARAJ R. SRINIVASAN

Keywords: Boolean ring, opposite ring, direct products, characteristic of a ring.

1. OPPOSITE RING AND BOOLEAN RING

Opposite ring: Let $(R, +, \cdot)$ be a ring. On R, define addition and multiplication as follows: $a \dotplus b = a + b$ and $a * b = b \cdot a$. Then $R^0 := (R, \dotplus, *)$ forms a ring called the *opposite ring*¹ of R. Clearly, $(R^0)^0 = R$.

Idempotents: Let R be a ring. An element $a \in R$ is called an *idempotent* of R if $a^2 = a$. The elements 0 and 1 (if 1 exists) are called the *trivial idempotents*.

Boolean Ring: A ring *R* is called a *Boolean* ring if every element of *R* is an idempotent.

2. DIRECT PRODUCTS

Let R and S be rings. Form the Cartesian product $R \times S := \{(r, s) \mid r \in R, s \in S\}$. Then $R \times S$ forms a ring, which we call the *direct product* of rings R and S, under the following operation:

Addition: $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$ **Multiplication:** $(r_1, s_1) \cdot (r_2, s_2) = (r_1 \cdot r_2, s_1 \cdot s_2)$.

The additive identity is (0,0), the additive inverse of (r,s) is (-r,-s). If R and S are rings with 1 then multiplicative identity $1_{R\times S}=(1_R,1_S)$. If $I=\{1,2,\cdots,n\}$ and R_1,\cdots,R_n are rings then the product

$$\prod_{i=1}^{n} R_{i} = \{ (r_{1}, \cdots, r_{n}) \mid r_{i} \in R_{i} \}$$

is a ring under the coordinate-wise addition $(r_1, \cdots, r_n) + (s_1, \cdots, s_n) = (r_1 + s_1, \cdots, r_n + s_n)$ and coordinate-wise multiplication $(r_1, \cdots, r_n) \cdot (s_1, \cdots, s_n) = (r_1 \cdot s_1, \cdots, r_n \cdot s_n)$.

In general, for a nonempty set I and a family of rings $\{R_{\alpha} \mid \alpha \in I\}$, we define direct product as follows: Let

$$\prod_{\alpha \in I} R_{\alpha} = \{ f : I \to \cup_{\alpha \in I} R_{\alpha} \mid f \text{ is a function such that } f(\alpha) \in R_{\alpha} \}.$$

Addition: $(f+g)(\alpha) = f(\alpha) + g(\alpha)$. Multiplication: $(f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha)$.

¹Addition operation remains the same and the order of multiplication is reversed.

It is easy to show that $\prod_{\alpha \in I} R_{\alpha}$ is a ring. An element $f \in \prod_{\alpha \in I} R_{\alpha}$ will be denoted by (r_{α}) if $f(\alpha) = r_{\alpha}$ for all $\alpha \in I$.

Direct Sum: Let $\{R_{\alpha} \mid \alpha \in I\}$ be a family of rings. The subset

$$\bigoplus_{i \in I} R_i := \{ (r_\alpha) \in \prod_{\alpha \in I} R_\alpha \ \Big| \ r_\alpha = 0 \text{ for all but finitely many } \ \alpha \}$$

forms a subring of $\prod_{\alpha \in I} R_{\alpha}$ and is called the *direct sum* of the family of rings $\{R_{\alpha} \mid \alpha \in I\}$.

If *I* is an infinite set then direct sum and direct product of a family of rings need not be equal (as sets).

Example.

(1) Let $F = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, $I = \{1, 2, \dots, n\}$ and for each i, $R_i = F$ be the ring of real numbers. Then $F^n = \prod_{i=1}^n R_i$ is a ring under the coordinate-wise addition and multiplication.

3. CHARACTERISTIC OF A RING

Characteristic of a Ring: Let $n \in \mathbb{N}$. A ring R is said to of characteristic n, denoted by char(R) = n, if n is the least positive integer such that na = 0 for all $a \in R$. If no such n exists for a ring R then R is said to be of characteristic 0.

Remark 3.1. If *R* is a ring with 1 then char(R) = n if and only if n1 = 0.

Examples.

- (1) The rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are of characteristic 0.
- (2) The ring \mathbb{Z}_n is of characteristic n.
- (3) Let R be a Boolean ring having at least two elements. Then $a+a=(a+a)^2=a^2+a+a+a^2=a+a+a+a$. Thus 2a=a+a=0 for all $a\in R$ and this implies char(R)=2.

Theorem 3.2. If R is an integral domain of characteristic $n \neq 0$ then n is a prime number.

Proof. Suppose that n is not prime and write n=pm for $2 \le p, m \le n-1$. There are elements $a,b \in R$ such that $pa \ne 0$ and $mb \ne 0$ (why?). Since R is an integral domain, $(pa) \cdot (mb) \ne 0$. Now, $n(a \cdot b) = (pm)(a \cdot b) = (pa) \cdot (mb) \ne 0$. This contradicts the fact that char(R) = n.

Theorem 3.3. Suppose that R is a ring with 1 such that the set of all nonunits in R forms a subgroup of (R, +). Then char(R) = 0 or char(R) is a power of a prime number.

Proof. Let $char(R) \neq 0$ and suppose that there are two distinct prime numbers p,q dividing n = char(R). Then n = pqm for some $2 \leq m \leq n-1$. We know that $p1_R \neq 0$, $qm1_R \neq 0$ and $pm1_R \neq 0$ (why?). Since $0 = n1_R = pqm1_R$, we obtain

$$0 = (p1_R) \cdot (qm1_R)$$
$$= (q1_R) \cdot (pm1_R).$$

Thus $p1_R$ and $q1_R$, being zero-divisors, are nonunits. Since the set of all nonunits forms a subgroup of (R,+), we have $l(p1_R)+k(q1_R)$ is a nonunit for any $l,k\in\mathbb{Z}$.

Choose integers l,k such that pl+qk=1 (why such l,k exist?). Then $1_R=11_R=(pl+qk)1_R=l(p1_R)+k(q1_R)$ becomes a nonunit, which is absurd! Thus n has only one prime divisor, which makes $n=p^t$ for some $t\in\mathbb{N}$.