

Radiometric Responsivity or Calibration Coefficient Determination and Data Calibration

2019

WG4

Sensor Calibration and Characterisation: Measurement Process and its Inversion

Calibration and Characterisation

Straight Line Calibration per Band

This is the instrument responsivity.

DN = gain x L + o

$$L = (DN - o) / gain$$

Instrument Responsivity: Gain and Offset

Determination of Calibration Coefficients

$$L = DN \times c1 + c0$$

Determination of Calibration Coefficients

Data Calibration

This is the inversion of the instrument model: get L from measured DN

$$L = (DN - o) / gain$$

Data Calibration

Data calibration applied to all DN levels and comparison to sphere radiance

Is there something wrong with our calibration?

Errors for very low light levels: instrument is likely non-linear for low lights.

Possible solutions:

- Calibrate instrument in linear range
- Create a more complex model,
 e.g. 2nd order polynomial