

杉数科技教学平台



# 第二章线性规划及单纯形法

第一节 介绍线性规划

郭加熠 | 助理教授



#### 回顾: 优化问题介绍

#### 优化问题三个要素:

- ▶ 决策变量
- ▶ 目标函数
- ▶ 约束条件

优化问题一般形式:

minimize 
$$f(x)$$
 subject to  $g_i(x) \leq 0, \quad \forall i=1,...,s$   $h_i(x)=0, \quad \forall j=1,...,t$ 

▶ 很多问题可以构造为优化问题,例如:运输问题,排产问题,最短路径问题, 顶点覆盖问题,支持向量机问题。





- ▶ 有约束 vs 无约束
- ▶ 线性 vs 非线性
- ▶ 连续 vs 离散

下面将研究最基础的一类优化问题——线性规划。



# 目录



## 定义与标准型

线性规划建模练习

可线性化的非线性形式

## 讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

## 一般形式

线性规划问题一般可以写为

minimize/maximize<sub>x</sub> 
$$c^T x$$
subject to  $a_i^T x \ge b_i \quad \forall i \in M_1$ 
 $a_i^T x \le b_i \quad \forall i \in M_2$ 
 $a_i^T x = b_i \quad \forall i \in M_3$ 
 $x_i \ge 0 \quad \forall i \in N_1$ 
 $x_i \le 0 \quad \forall i \in N_2$ 
 $x_i \text{ 无约束} \quad \forall i \in N_3$ 

 $M_1$ 、 $M_2$ 、 $M_3$  为  $\{1,...,n\}$  的子集, $N_1$ 、 $N_2$ 、 $N_3$  为  $\{1,...,n\}$  的子集



# 矩阵形式

可以将线性规划问题写成更紧凑的形式:

minimize/maximize
$$_{\pmb{x}}$$
  $\pmb{c}^{T}\pmb{x}$  subject to  $A_1\pmb{x} \geq \pmb{b}_1$   $A_2\pmb{x} \leq \pmb{b}_2$   $A_3\pmb{x} = \pmb{b}_3$   $x_i \geq 0 \quad \forall i \in N_1$   $x_i \leq 0 \quad \forall i \in N_2$ 

 $A_1$ 、 $A_2$  和  $A_3$  都是矩阵(维度为  $m_1 \times n$ 、 $m_2 \times n$  和  $m_3 \times n$ ), $\boldsymbol{b}_1$ 、 $\boldsymbol{b}_2$  和  $\boldsymbol{b}_3$  为向量

 $x_i$  无约束  $\forall i \in N_3$ 

(维度为  $m_1 \times 1$ 、 $m_2 \times 1$  和  $m_3 \times 1$ )。 x 是 n 维列向量





### 线性规划标准型

为了更系统地研究线性规划问题,我们需要将问题写成标准型 线性规划问题的标准型如下:

minimize 
$$c^T x$$
  
subject to  $Ax = b$  (1)  
 $x > 0$ 

 $x \in \mathbb{R}^n$ .  $A \to m \times n$  的矩阵,  $b \in \mathbb{R}^m$ .

任意线性规划问题都能写成标准型

通常假设 A 为行满秩 (m < n)



# 标准型转换

若目标函数是最大化问题

▶ 用 -c 替代 c 并将其转换为最小化问题

消除不等式约束  $Ax \leq b$  或  $Ax \geq b$ 

- ▶ 将不等式改写为  $A\mathbf{x} + \mathbf{s} = \mathbf{b}, \mathbf{s} \ge 0$  或  $A\mathbf{x} \mathbf{s} = \mathbf{b}, \mathbf{s} \ge 0$
- ▶ 称 *s* 为松弛变量或剩余变量

若存在  $x_i \leq 0$ 

▶ 定义  $y_i = -x_i$ 

消除自由变量  $x_i$   $(x_i$  无约束)

▶ 定义  $x_i = x_i^+ - x_i^-$ ,并且  $x_i^+ \ge 0$ 、 $x_i^- \ge 0$ 





| 产品      | ı | П  | 限量 |
|---------|---|----|----|
| 单位产能消耗  | 4 | 4  | 40 |
| 单位原材料消耗 | 5 | 10 | 60 |
| 利润      | 6 | 8  |    |

目标: 求利润最大化方案

设 x<sub>1</sub>, x<sub>2</sub> 为产品 I, II 的生产数量

maximize 
$$6x_1 +8x_2$$
 subject to  $4x_1 +4x_2 \le 40$  
$$5x_1 +10x_2 \le 60$$
 
$$x_1, x_2 \ge 0$$





$$\begin{array}{lllll} \text{maximize} & 6x_1 & +8x_2 \\ \\ \text{subject to} & 4x_1 & +4x_2 & \leq 40 \\ \\ & 5x_1 & +10x_2 & \leq 60 \\ \\ & x_1, & x_2 & \geq 0 \end{array}$$

标准型

minimize 
$$-6x_1 -8x_2$$
 subject to  $4x_1 +4x_2 +s_1 = 40$   $5x_1 10x_2 +s_2 = 60$   $x_1, x_2, s_1, s_2 \geq 0$ 



# 支持向量机问题

$$\begin{array}{ll} \text{minimize}_{\pmb{a},b,\delta,\sigma} & \sum_i \delta_i + \sum_j \sigma_j \\ \\ \text{subject to} & \pmb{x}_i^T \pmb{a} + b + \delta_i \geq 1 \quad \forall i \\ \\ \pmb{y}_j^T \pmb{a} + b - \sigma_j \leq -1 \quad \forall j \\ \\ \delta_i \geq 0 \quad \forall i \\ \\ \sigma_j \geq 0 \quad \forall j \end{array}$$

定义 
$$\mathbf{a} = \mathbf{a}^+ - \mathbf{a}^-$$
,  $b = b^+ - b^-$ , 并且  $\mathbf{a}^+$ ,  $\mathbf{a}^-$ ,  $b^+$ ,  $b^- \ge 0$ 。

添加松弛变量到不等式约束中



# 标准型

minimize 
$$\sum_{i} \delta_{i} + \sum_{j} \sigma_{j}$$
 subject to 
$$\mathbf{x}_{i}^{T} \mathbf{a}^{+} - \mathbf{x}_{i}^{T} \mathbf{a}^{-} + b^{+} - b^{-} + \delta_{i} - s_{i} = 1 \quad \forall i$$
 
$$\mathbf{y}_{j}^{T} \mathbf{a}^{+} - \mathbf{y}_{j}^{T} \mathbf{a}^{-} + b^{+} - b^{-} - \sigma_{j} + t_{j} = -1 \quad \forall j$$
 
$$\mathbf{a}^{+}, \mathbf{a}^{-}, b^{+}, b^{-} \geq 0$$
 
$$\delta_{i}, s_{i} \geq 0 \qquad \forall i$$
 
$$\sigma_{j}, t_{j} \geq 0 \qquad \forall j$$





标准型主要用于分析的目的。通常不需要改写为标准型,只需要写成易于理解的方式即可。

然而,能够改写标准型是一项重要的技能,这有助于分析和利用软件求解线性规划问题。

下面,我们将通过几个例子,展示如何将问题转化为线性规划问题。



# 目录



定义与标准型

线性规划建模练习

可线性化的非线性形式

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

# 排班问题

一家医院想制定周期为一周的护士夜班值班表。

- ▶ 第 j 天需要  $d_j$  个护士来值夜班, j = 1, ..., 7
- ▶ 每个护士连续值班 5 天
- ▶ 在满足所有需求的情况下,最小化值班护士人数
- ▶ 忽略整数约束(即,可以出现半个护士的情况)



# 排班问题

决策变量如何选择?

变量 xi 设作为第 i 天护士的总人数可以吗?

▶ 不能构造护士必须连续工作 5 天的约束

更好的方法是定义 xi 为护士在第 i 天开始工作

目标函数为

minimize 
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$



# 排班问题

#### 线性规划问题为:

minimize
 
$$x_1$$
 $+x_2$ 
 $+x_3$ 
 $+x_4$ 
 $+x_5$ 
 $+x_6$ 
 $+x_7$ 
 $\geq$ 
 $d_1$ 

 subject to
  $x_1$ 
 $+x_2$ 
 $+x_4$ 
 $+x_5$ 
 $+x_6$ 
 $+x_7$ 
 $\geq$ 
 $d_2$ 
 $x_1$ 
 $+x_2$ 
 $+x_3$ 
 $+x_5$ 
 $+x_6$ 
 $+x_7$ 
 $\geq$ 
 $d_3$ 
 $x_1$ 
 $+x_2$ 
 $+x_3$ 
 $+x_4$ 
 $+x_5$ 
 $+x_7$ 
 $\geq$ 
 $d_4$ 
 $x_1$ 
 $+x_2$ 
 $+x_3$ 
 $+x_4$ 
 $+x_5$ 
 $+x_7$ 
 $\geq$ 
 $d_5$ 
 $x_1$ 
 $+x_2$ 
 $+x_3$ 
 $+x_4$ 
 $+x_5$ 
 $+x_6$ 
 $=$ 
 $\geq$ 
 $d_5$ 
 $x_1$ 
 $+x_2$ 
 $+x_3$ 
 $+x_4$ 
 $+x_5$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 
 $=$ 

## 矩阵形式

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad A = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \\ d_7 \end{bmatrix}$$

- ▶ 目标函数为  $c^T x = x_1 + x_2 + \cdots + x_7$
- ▶ 约束为 Ax > d, x > 0





航空交通管理需要控制 n 架飞机的着陆时间

- ▶ 航班必须按照 1,...,n 的顺序降落
- ▶ 航班 j 必须在  $[a_j, b_j]$  时间内降落
- ▶ 目标是最大化最小间隔时间,即两家航班着陆时间间隔。





#### 决策变量

▶ 设  $t_i$  为航班 j 的着陆时间

#### 优化问题

maximize 
$$\min_{j=1,...,n-1}\{t_{j+1}-t_j\}$$
 subject to  $a_j\leq t_j\leq b_j, \qquad j=1,...,n$   $t_j\leq t_{j+1}, \qquad j=1,...,n-1$ 

目标函数不是线性函数,称之为最大最小化问题。



### 线性规划模型

定义

$$\Delta = \min_{j=1,...,n-1} \{t_{j+1} - t_j\}$$

因此, $t_{j+1}-t_j \geq \Delta$ ,  $\forall j$ 。

构造线性规划模型:

subject to 
$$t_{j+1}-t_j-\Delta\geq 0, \ \ j=1,...,n-1$$

maximize

$$a_j \leq t_j \leq b_j, \qquad j = 1, ..., n$$

$$t_j \le t_{j+1}, \qquad j = 1, ..., n-1$$

在最优解处, $\Delta$  应当等于最小间隔时间(因为问题的目标是最大化  $\Delta$ )。



# 目录



定义与标准型

线性规划建模练习

可线性化的非线性形式

讲 员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

# 最

### 最小最大化问题

#### 与前一个例子相似,下面研究最小最大化问题:

minimize<sub>$$\mathbf{x}$$</sub>  $\max_{i=1,...,n} \{ \mathbf{c}_i^T \mathbf{x} + d_i \}$   
subject to  $A\mathbf{x} = \mathbf{b}$   
 $\mathbf{x} \ge 0$ 

#### 通过类似的方式解决

東文 
$$y = \max_{i=1,...,n} \{ \boldsymbol{c}_i^T \boldsymbol{x} + d_i \}$$
 minimize $\boldsymbol{x}, y$   $y$  subject to  $y \ge \boldsymbol{c}_i^T \boldsymbol{x} + d_i \ \forall i$   $A\boldsymbol{x} = \boldsymbol{b}$   $\boldsymbol{x} > 0$ 





### 解决绝对值问题

绝对值问题也可以通过线性规划来解决。

minimize 
$$\sum_{i=1}^{n} |x_i|$$

subject to 
$$Ax = b$$

也可以等价写为如下形式(为什么?)

minimize 
$$\sum_{i=1}^{n} y_i$$

subject to 
$$y_i \ge x_i$$

$$y_i \geq -x_i$$

$$Ax = b$$

类似的想法可以用于以下约束  $|\mathbf{a}^T\mathbf{x} + \mathbf{b}| \le c$ 



# 绝对值

考虑类似问题

maximize 
$$\sum_{i=1}^{n} |x_i|$$
  
subject to  $A\mathbf{x} = \mathbf{b}$  (2)

能否用类似的想法将问题转化为:

maximize 
$$\sum_{i=1}^{n} y_i$$
 subject to  $y_i \ge x_i$   $y_i \ge -x_i$   $A\mathbf{x} = \mathbf{b}$ 

答案是不能的。一般来说,问题 (2) 是非凸的,不能将其转化为线性规划处理。



# 线性分式规划

minimize<sub>$$\mathbf{x}$$</sub>  $\frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f}$  subject to  $A\mathbf{x} \leq \mathbf{b}$ 

假设对于所有满足  $Ax \leq b$  的 x 都有  $e^Tx + f > 0$  成立

如何将其转化为线性规划问题?

▶ 定义

$$y = \frac{x}{e^T x + f}, \qquad z = \frac{1}{e^T x + f}$$





可以将问题写成

minimize 
$$\mathbf{y}_{,z}$$
  $\mathbf{c}^T \mathbf{y} + d\mathbf{z}$  subject to  $A\mathbf{y} - \mathbf{b}\mathbf{z} \le 0$   $\mathbf{e}^T \mathbf{y} + f\mathbf{z} = 1$   $\mathbf{z} \ge 0$ 

#### 这是一个线性规划问题

- ▶ 为什么两者相等?
- ▶ 详见 Boyd and Vandenberghe (P151)



# 为什么使用线性规划?

#### 最容易求解

- ▶ 理论上来说,线性规划是多项式时间可解的,和其他所有优化问题相比,复杂度低
- ► 从实践的角度,商业软件可以轻松解决数千万变量的线性规划问题,如果存在 结构,可以解决上亿量级变量。

#### 用途广泛。

▶ 无论是精确还是估计,都可以对实际问题建模

#### 基础

▶ 线性规划理论是其他大多数优化理论的基础

下节课, 将介绍如何利用线性规划建模排产中的实际问题



# 感谢聆听!

Thank You!

