Build a Regression Model

by Mei Chiao Lin

import pandas as pd
import numpy as np

Jun/3rd/2020

Part C -- One hidden layer, normalized data, 100 epochs

```
In [1]:
import keras
Using TensorFlow backend.
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/tensorfl
ow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of nump
y, it will be understood as (type, (1,)) / (1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/tensorfl
ow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of nump
y, it will be understood as (type, (1,)) / (1,)type'.
  np quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/tensorfl
ow/python/framework/dtypes.py:521: FutureWarning: Passing (type, 1) or
'ltype' as a synonym of type is deprecated; in a future version of nump
y, it will be understood as (type, (1,)) / (1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/tensorfl
ow/python/framework/dtypes.py:522: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of nump
y, it will be understood as (type, (1,)) / (1,)type'.
  np quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/tensorfl
ow/python/framework/dtypes.py:523: FutureWarning: Passing (type, 1) or
'ltype' as a synonym of type is deprecated; in a future version of nump
y, it will be understood as (type, (1,)) / (1,)type'.
  np qint32 = np.dtype([("qint32", np.int32, 1)])
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/tensorfl
ow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of nump
y, it will be understood as (type, (1,)) / (1,)type'.
  np resource = np.dtype([("resource", np.ubyte, 1)])
In [2]:
```

In [3]:

from sklearn.model_selection import train_test_split

In [4]:

concrete_data = pd.read_csv('https://s3-api.us-geo.objectstorage.softlayer.net/cf-c
ourses-data/CognitiveClass/DL0101EN/labs/data/concrete_data.csv')
concrete_data.head()

Out[4]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30

In [5]:

concrete_data.shape

Out[5]:

(1030, 9)

In [6]:

concrete_data.describe()

Out[6]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Aggı
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.0
mean	281.167864	73.895825	54.188350	181.567282	6.204660	972.918932	773.5
std	104.506364	86.279342	63.997004	21.354219	5.973841	77.753954	80.1
min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594.0
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.9
50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779.5
75%	350.000000	142.950000	118.300000	192.000000	10.200000	1029.400000	824.0
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.6

In [7]:

```
concrete_data.isnull().sum()
```

Out[7]:

Cement 0 Blast Furnace Slag 0 Fly Ash 0 Water 0 Superplasticizer 0 Coarse Aggregate 0 Fine Aggregate 0 Age 0 Strength 0 dtype: int64

In [8]:

```
concrete_data_columns = concrete_data.columns
X = concrete_data[concrete_data_columns[concrete_data_columns != 'Strength']] # all
columns except Strength
y = concrete_data['Strength'] # Strength column
n_cols=X.shape[1]
```

Normalization

In [9]:

```
#Normalization part by mean and standard deviation
X_nor = (X-np.mean(X))/np.std(X)
y_nor = (y-np.mean(y))/np.std(y)
```

In [10]:

```
X_nor.head()
```

Out[10]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age
0	2.477915	-0.856888	-0.847144	-0.916764	-0.620448	0.863154	-1.217670	-0.279733
1	2.477915	-0.856888	-0.847144	-0.916764	-0.620448	1.056164	-1.217670	-0.279733
2	0.491425	0.795526	-0.847144	2.175461	-1.039143	-0.526517	-2.240917	3.553066
3	0.491425	0.795526	-0.847144	2.175461	-1.039143	-0.526517	-2.240917	5.057677
4	-0.790459	0.678408	-0.847144	0.488793	-1.039143	0.070527	0.647884	4.978487

```
In [11]:
y_nor.head()
Out[11]:
0
     2.645408
1
     1.561421
2
     0.266627
3
     0.313340
     0.507979
Name: Strength, dtype: float64
Splitting the data
In [12]:
#Split the data into training dataset and testing dataset with 30% test dataset
X train nor, X test nor, y train nor, y test nor = train test split(X nor, y nor, t
est size=0.3)
Building the model
In [13]:
from keras.models import Sequential
from keras.layers import Dense
In [14]:
#One hidden layer with 10 nodes and relu function
#adam optimizer and mean squared error as loss function
def regression model():
    # create model
    model = Sequential()
    model.add(Dense(10, activation='relu', input shape=(n cols,)))
```

Training

model.add(Dense(1))

compile model

return model

```
In [15]:
```

```
#build the model
model = regression_model()
```

model.compile(optimizer='adam', loss='mean squared error')

In [16]:

#fitting data to the model with 50 epoch
model.fit(X_train_nor, y_train_nor, epochs=50)

```
Epoch 1/50
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
0s - loss:
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
2s -
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
0s - 1
Epoch 19/50
721/721 [=============== ] - 1s 2ms/step - loss: 0.3489
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
721/721 [=============== ] - 1s 2ms/step - loss: 0.2964
Epoch 27/50
```

```
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
0s - lo - 2s 2ms/step - loss: 0.2695
Epoch 32/50
Epoch 33/50
Epoch 34/50
Epoch 35/50
Epoch 36/50
Epoch 37/50
Epoch 38/50
Epoch 39/50
Epoch 40/50
Epoch 41/50
Epoch 42/50
Epoch 43/50
Epoch 44/50
Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
Epoch 49/50
Epoch 50/50
```

Out[16]:

<keras.callbacks.History at 0x7f69a9dc8be0>

```
In [17]:
#evaluate the model
evaluated score = model.evaluate(X test nor, y test nor, verbose=1)
309/309 [============ ] - 1s 2ms/step
In [18]:
y predict=model.predict(X test nor)
In [19]:
from sklearn.metrics import mean_squared_error
In [20]:
squared error score = mean squared error(y test nor, y predict)
Repeat 50 times
In [21]:
#Train and evaluate the model for 50 times using 100 epochs.
error score nor 100=[]
for i in range (50):
    model.fit(X train nor, y train nor, epochs=100, verbose=0)
    y predict nor=model.predict(X test nor)
    error score nor 100.append(mean squared error(y test nor, y predict nor))
In [22]:
Mean nor 100 = np.mean(error score nor 100)
Std nor 100 = np.std(error score nor 100)
In [24]:
print('The mean of mean squared error nor using 50 epochs is: 0.134, while using 1
00 epochs is {:.3f}\nThe standard deviation of mean squared error nor using 50 epoc
hs is: 0.005, while using 100 epochs is {:.3f}'.format(Mean_nor_100, Std_nor_100))
The mean of mean squared error nor using 50 epochs is: 0.134, while us
ing 100 epochs is 0.112
```

How does the mean squared of error compared to Part B?

0.005, while using 100 epochs is 0.010

The accuracy is increased as the epochs increased by applying equation accuracy=1-loss.

The standard deviation of mean squared error nor using 50 epochs is:

The behaviour is more uniform as we can see from the standard deviation of Part C is less than Part B.