

520142: ALGEBRA y ALGEBRA LINEAL

Segundo Semestre 2002, Universidad de Concepción

CAPITULO 13. VALORES Y VECTORES PROPIOS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas

Notación: Por V se denota un espacio vectorial sobre el cuerpo \mathbb{K} , donde $\mathbb{K} = \mathbb{R}$ o bien $\mathbb{K} = \mathbb{C}$, y por $T: V \longrightarrow V$ un operador lineal.

Definición: Valor propio. Un escalar $\lambda \in \mathbb{K}$ es un *valor propio de T* si

existe $v \in V$, $v \neq \theta$, tal que:

$$Tv = \lambda v$$
.

Si λ es un valor propio de T, a cada $v \in V$, $v \neq \theta$, que satisface la igualdad anterior se llama un *vector propio de T asociado a* λ .

Observaciones:

Los valores propios también se llaman valores característicos o valores espectrales de T.

Observaciones:

- El conjunto $\sigma(T) := \{\lambda \in \mathbb{K} : \lambda \text{ es valor propio de } T \}$ se llama el espectro de T.
- lacksquare Para λ valor propio de T se define $S_{\lambda} := \{v \in V: Tv = \lambda v\}.$

Teorema

Si $\lambda \in \mathbb{K}$ un valor propio de T, entonces

$$S_{\lambda} = Ker(T - \lambda I).$$

Observaciones:

- $m{\blacksquare}$ $\theta \in S_{\lambda}$, pero θ no es un vector propio de T.
- lacksquare S_{λ} se llama espacio propio asociado a λ .

Teorema

Si V tiene dimensión finita y B es una base para V, entonces

$$\lambda \in \sigma(T) \iff Det([T - \lambda I]_B) = 0.$$

Definición: Valor propio de matriz.

Sea $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Un escalar

 $\lambda \in \mathbb{C}$ es un *valor propio de* A si existe $x \in \mathbb{C}^n$, $x \neq \theta$, tal que:

$$Ax = \lambda x$$
.

Cada $x \in \mathbb{C}^n$, $x \neq \theta$, que satisface la igualdad anterior se llama un *vector* propio de A asociado a λ .

Notaciones:

Teorema

Si $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ y $\lambda \in \mathbb{C}$, entonces

Observaciones:

- La expresión $Det(A \lambda I)$ es un polinomio de grado n en la variable λ , se llama polinomio característico de A y $Det(A \lambda I) = 0$ es la ecuación característica de A.
- Cada matriz $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ tiene n valores propios en \mathbb{C} (contando su multiplicidad).

Teorema

Si $A, B \in \mathcal{M}_{n \times n}(\mathbb{C})$ son similares, entonces $\sigma(A) = \sigma(B)$.

Teorema

Si V tiene dimensión finita y B es cualquier base de V, entonces

 $\lambda \in \sigma(T) \iff \lambda \in \sigma([T]_B).$

 $\forall v \in S_{\lambda}(T) : Tv = \lambda v \iff [T]_{B}[v]_{B} = \lambda[v]_{B}.$

Ejemplo

El operador $T:\mathbb{K}^2\longrightarrow\mathbb{K}^2$ definido por

$$T\left[egin{array}{c} x \ y \end{array}
ight] = \left[egin{array}{c} y \ -x \end{array}
ight]$$

tiene como matriz asociada (respecto a la base canónica de \mathbb{K}^2) a

$$A = \left[egin{array}{ccc} 0 & 1 \ -1 & 0 \end{array}
ight].$$

La ecuación característica de A es $p(\lambda):=Det(A-\lambda I)=\lambda^2+1=0$ y tiene raices $\lambda_1=-i$ y $\lambda_2=i$, luego $\sigma(A)=\{-i,i\}$.

Si $\mathbb{K} = \mathbb{C}$, entonces λ_1 y λ_2 son también los valores propios T.

Sin embargo, si $\mathbb{K} = \mathbb{R}$ entonces, T no tiene valores propios.

Definición |

Sea $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ y sean $\lambda_1, \ldots, \lambda_k$ sus valores propios

diferentes tales que

$$Det(A - \lambda I) = (\lambda_1 - \lambda)^{r_1} \cdots (\lambda_k - \lambda)^{r_k}$$

donde $r_1 + \cdots + r_k = n$. Para cada $i = 1, \ldots, k$ se definen la multiplicidad algebraica de λ_i por r_i y la multiplicidad geométrica de λ_i por $g_i := dim(S_{\lambda_i})$.

Observaciones Sea $A \in \mathcal{M}_{n \times n}(\mathbb{C})$.

- lacksquare Para cada $\lambda_i \in \sigma(A), \ \ g_i \leq r_i$
- $Det(A) = \lambda_1^{r_1} \cdots \lambda_k^{r_k}$
- lacksquare A es inversible \iff $0 \notin \sigma(A)$
- lacksquare Si A es inversible, entonces $\lambda \in \sigma(A) \iff \frac{1}{\lambda} \in \sigma(A^{-1})$

Teorema

Sea $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ y sean $\lambda_1, \ldots, \lambda_k$ valores propios de A

diferentes. Si x_1, \ldots, x_k son vectores propios correspondientes, entonces $\{x_1, \ldots, x_k\}$ es linealmente independiente.

Teorema

Sean $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ simétrica. Entonces:

- lacksquare los valores propios de A son reales
- vectores propios asociados a valores propios diferentes son ortogonales
- lacksquare existe una base para \mathbb{R}^n formada por vectores propios de A

Observación

El teorema anterior vale también para matrices complejas hermitianas, es decir, que verifican $A = \bar{A}^t$.

Definición Sea V un espacio de dimensión finita. Un operador lineal $T:V\longrightarrow V$ se dice *diagonalizable* si existe una base B para V tal que $[T]_B$ sea diagonal.

Teorema Sean V un espacio de dimensión finita n. Si $T:V\longrightarrow V$ es un operador lineal entonces,

- los vectores propios de T asociados a valores propios diferentes son linealmente independientes.
- lacksquare Si T tiene n valores propios diferentes, T es diagonalizable.

Teorema Sea V un espacio de dimensión finita y $T:V\longrightarrow V$ un operador lineal. Sean $\lambda_1,\ldots,\lambda_k$ los valores propios de T diferentes, B_i una base para el espacio propio S_{λ_i} asociado a λ_i . Entonces $B=B_1\cup\cdots\cup B_k$ es una base para $W:=S_{\lambda_1}+\cdots+S_{\lambda_k}$.

Teorema Sea V un espacio de dimensión finita y $T:V\longrightarrow V$ un operador lineal. Sean $\lambda_1,\ldots,\lambda_k$ los valores propios de T diferentes y S_{λ_i} el espacio propio asociado a λ_i . Son equivalentes:

- T es diagonalizable
- Para cada valor propio, las multiplicidades algebraica y geométrica son iguales
- $dim(V) = dim(S_{\lambda_1}) + \dots + dim(S_{\lambda_k})$
- lacksquare V tiene una base formada por vectores propios de T

Observación

Sea V un espacio de dimensión finita.

Si B es una base de V formada por vectores propios de T, entonces $[T]_B = diag(\lambda_1, \dots, \lambda_n)$ para $\lambda_1, \dots, \lambda_n$ los valores propios de T.

Definición Una matriz A de orden n se dice *diagonalizable* si es similar a una matriz diagonal.

Observación Resultados análogos a los vistos para un operador diagonalizable valen para matrices diagonalizables. A modo de ejemplo considere los dos teoremas que siguen.

Teorema Una matriz A de orden n es diagonalizable si, y sólo si, tiene n vectores propios linealmente independientes. En tal caso, la forma diagonal de A es $D:=diag(\lambda_1,\ldots,\lambda_n)$ donde $\lambda_1,\ldots,\lambda_n$ son los valores propios de A.

Teorema Si una matriz A de orden n tiene n valores propios diferentes, entonces A es diagonalizable.