	СМ	Ens	TD	Ens	TP	Ens
1	UT-UC- Langage, Graphe CDGF, C + DFG	C.W				
2	UT-UC- Langage, Graphe CDGF, C + DFG	C.W				
3	Algebre de BOOLE / FPGA	J.B	UT-UC- Langage, Graphe CDGF, C + DFG	C.W		
4	Représentation des valeurs	J.B	UT-UC- Langage, Graphe CDGF, C + DFG	J.B		
5	CC - Modelisation du système UT-UC	C.W	Algebre de BOOLE /représentations	J.B		
6	Circuits combinatoires / Mémoires	J.B	Algebre de BOOLE /représentations	J.B		
7	Circuits séquentiels	J.B	Circuits séquentiels	J.B	Apprentissage Max2Plus	P.H.
8	modelisation /Ut-UC/ réalisation	C.W	Circuits séquentiels	J.B	Circuits combinatoires	P.H.
	-		FSM relaisation / Examlpes : modelisation /Ut-UC/ réalisation	J.B	Circuits séquentiels	C.W
			FSM relaisation / Examlpes : modelisation /Ut-UC/ réalisation	J.B	UT-UC- Langage, Graphe CDGF, C + DFG	C.W
					Projet - Processeurs	C.W
					Projet - Processeurs	C.W
					Projet - Processeurs	C.W
					Soutenance Projet	C.W

Outline:

ARC1 - Cours n°3

ALGEBRE DE BOOLE / FPGA

A. ALGEBRE DE BOOLE

- 1. Variables et fonctions binaires
- 2. Les 3 fonctions de base en algèbre de Boole
- 3. Autres fonctions courantes de 2 variables
- 4. Propriétés des opérateurs ET, OU, NON
- 5. Fonctions quelconques
- 6. Ecritures canoniques d'une fonction logique quelconque
- 7. Simplification de l'écriture des fonctions logiques

B. CIRCUITS LOGIQUES PROGRAMMABLES

- 1. Généralités sur les circuits programmables
- 2. Les FPGA (Field Programmable Gate Array)

A. ALGEBRE DE BOOLE

1. Variables et fonctions binaires

- Machines traitant l'information constituées de circuits ne possédant que **2 états** électriques **stables** (2 niveaux de tension possibles)
- Correspondance entre **niveaux de tension** et **niveaux logiques**
- Information (nombres, symboles, caractères..etc) représentée par une combinaison de ces deux états.
- Information représentée sous forme « binaire », par un ensemble de chiffres binaires (binary digits = bits) : 0 ou 1

- Calcul de fonctions de sortie binaires à partir de variables d'entrée binaires
- Etude et conception de ces fonctions de variables binaires : algèbre de Boole (ou « booléenne »)

2. Les 3 fonctions de base en algèbre de Boole

2.1. La fonction NON

- Aussi appelée « Négation », « inversion » ou « complément »
- Notée : $f(x) = \bar{x}$ (x barre)
- Table de vérité (donne la valeur de la fonction, 0 u 1 pour l'ensemble des combinaisons des variables)

variable	Fonction NON
X	\bar{x}
0	1
1	0

2.2. La fonction OU

- Fonction de 2 variables f(x,y)
- Aussi appelée addition logique, somme logique
- Notée avec le signe + de l'arithmétique traditionnelle f(x,y) = x + y (on prononce x ou y)
- Autre notation parfois utilisée :

$$f(x,y) = x V y$$

• Table de vérité et symboles :

Variables		Fonction OU	
x y		x+y	
0	0	0	
0	1	1	
1 0		1	
1 1		1	

2.3. La fonction ET

- Fonction de 2 variables f(x,y)
- Aussi appelée multiplication logique, produit logique
- Notée avec le signe . de l'arithmétique traditionnelle $f(x,y) = x \cdot y$ (on prononce xy) ou même sans le . entre les 2 variables s'il n'y a pas de doute possible
- Autre notation parfois utilisée : f(x, y) = x / y
- Table de vérité et symboles :

	Varia	ables	Fonction ET		
	X	y	x.y		
	0	0	0		
	0	1	0		
	1	0	0		
	1	1	1		
A)—	-A.B	<u>A</u> _B	&	A.B

2.4. Extension des fonctions ET et OU

- Les fonctions ET et OU s'étendent à plus de deux variables
- Table de vérité :

Va	Variables		Fonction ET	Fonction OU
X	y	Z	x.y.z	x+y+z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3. Autres fonctions courantes de 2 variables

3.1. Fonction NON-OU (NI, NOR)

- Fonction OU inversée
- Notée : $f(x,y) = \overline{x+y}$ (x ou y barre)
- Table de vérité :

Variables		Fonction OU	Fonction NOR
X	y	x+y	$\overline{x+y}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

3.2. Fonction NON-ET (NAND)

• Fonction ET inversée

• Notée : $f(x, y) = \overline{x \cdot y}$ (x et y barre)

• Table de vérité :

Variables		Fonction ET	Fonction NOR
X	y	x.y	\overline{x} . y
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

3.3. Fonction OU exclusif (XOR)

- Fonction de deux variables vaut 1 si et seulement si une seule des 2 variables vaut 1
- Notée : $f(x, y) = x \oplus y$ (x ou exclusif y)
- Table de vérité et symboles :

Variables		Fonction OU exclusif
X	y	x⊕y
0	0	0
0	1	1
1	0	1
1	1	0

• Propriétés du OU EXCLUSIF:

$$a \oplus b = \overline{a}.b + a.\overline{b}$$
 $a \oplus 0 = a$ $a \oplus 1 = \overline{a}$ $a \oplus a = 0$ $a \oplus \overline{a} = 1$

$$a \oplus 0 = a$$

$$a \oplus 1 = \bar{a}$$

$$a \oplus a = 0$$

$$a \oplus \bar{a} = 1$$

• OU EXCLUSIF à 3 variables

4. Propriétés des opérateurs ET, OU, NON

- Identités utiles dans l'étude de fonctions complexes
- Peuvent être démontrées à partir des tables de vérité des fonctions ET, OU, NON
- Parfois proches de l'algèbre classique....: x+0=x; x.0=0
- Mais pas toujours : x+1=1 ; x.x=x ; x+x=x

Fonctions	Propriétés	Observation
1 variable	$\bar{\bar{x}} = x$	
	$x + 0 = x$ et $x \cdot 0 = 0$	
	$x + 1 = 1$ et $x \cdot 1 = x$	
	$x + x = x$ et $x \cdot x = x$	
	$x + \bar{x} = 1 \text{ et } x.\bar{x} = 0$	
2 variables	x + y = y + x	Commutativité
	x.y = y.x	
3 variables	x + y + z = (x + y) + z = x + (y + z)	Associativité
	x.y.z = x.(y.z) = (x.y).z	
	x.(y+z) = x.y + x.z	Distributivité
	$x + y \cdot z = (x + y) \cdot (x + z)$	
Nb quelconque de variables	$\overline{x+y+z+\cdots} = \bar{x}.\bar{y}.\bar{z}$	Théorème de
		De Morgan
	$\overline{x.y.z} = \overline{x} + \overline{y} + \overline{z} + \cdots$	
Fonction quelconque	Elle peut s'exprimer avec les seuls	
	opérateurs ET, OU, NON	

Exercice d'application

Réaliser les fonctions NON, ET, OU, avec des NAND uniquement et avec des NOR uniquement

- a) Fonction NON avec des NAND
- b) Fonction NON avec des NOR
- c) Fonction ET (à deux entrées) avec des NAND
- d) Fonction ET (à deux entrées) avec des NOR
- e) Fonction OU (à deux entrées) avec des NAND
- f) Fonction OU (à deux entrées) avec des NOR

Correction

Réaliser les fonctions NON, ET, OU, avec des NAND et des NOR

a) Fonction NON avec des NAND

- b) Fonction NON avec des NOR
- c) Fonction ET (à deux entrées) avec des NAND

- d) Fonction ET (à deux entrées) avec des NOR
- e) Fonction OU (à deux entrées) avec des NAND

f) Fonction OU (à deux entrées) avec des NOR

5. Fonctions quelconques

5.1. Fonctions complètement définies

- Fonctions élémentaires ont des noms particuliers car elles sont très fréquemment utilisées
- Existent sous forme de circuits logiques dans les catalogues des constructeurs (NON, ET, OU, NOR, NAND...)
- Autres fonctions = fonctions quelconques, sans nom, définies par une table de vérité
- Exemple d'une table de vérité pour une fonction quelconque de 3 variables :

X	y	Z	Fonction F(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

5.2. Fonctions incomplètement définies

- Pour l'instant : toutes les fonctions vues prenaient une valeur pour toutes les combinaisons des variables d'entrée
- Pour n variables, il y a 2ⁿ combinaisons
- Pour certaines combinaisons :
 - ✓ Combinaison impossible (en fonction du sens physique des variables)
 - ✓ Fonction peut prendre la valeur 0 ou 1 sans importance
- Fonction f incomplètement définie
- Dans table de vérité : on note X (f peut prendre la valeur 1 ou 0), exemple :

X	y	Z	Fonction $F(x,y,z)$
0	0	0	0
0	0	1	X
0	1	0	1
0	1	1	0
1	0	0	X
1	0	1	1
1	1	0	0
1	1	1	X

6. Ecritures canoniques d'une fonction logique

- Toute expression booléenne peut être convertie en l'une des deux formes standard :
 - ✓ Somme de produits
 - ✓ Produit de sommes
- Standardisation permet de :
 - ✓ Evaluer
 - ✓ Simplifier
 - ✓ Mettre en œuvre

..de manière simple et méthodique (ex : circuits programmables)

6.1. Forme canonique Somme de produits

• Une forme canonique Somme de produits ne contient que des produits incluant **toutes les variables ou leur complément** (ex : pour une fonction à 3 variables, tous les produits de la somme comportent 3 variables représentées sous **forme normale** ou **complémentée**).

Ex : $f(a, b, c) = a\bar{b}c + \bar{a}\bar{b} + ab\bar{c}d$ peut s'écrire sous la forme canonique somme de produits :

$$a\bar{b}cd + abcd + \bar{a}\bar{b}cd + \bar{a}\bar{b}c\bar{d} + \bar{a}\bar{b}\bar{c}d + \bar{a}\bar{b}\bar{c}\bar{d} + ab\bar{c}d$$

- Chaque produit (appelé **minterme**) comporte les 4 variables d'entrées de la fonction (forme normale a, b, c ou d ou forme complémentée $\bar{a}, \bar{b}, \bar{c}, \bar{d}$)
- Construction de la forme canonique Somme de produits à partir de la table de vérité :
 - ✓ Nombre de produits = nombre de 1 dans la table de vérité de la fonction
 - ✓ Produit = produit des variables pour lesquelles la fonction vaut 1 (avec variable normale si elle vaut 1 et complémentée sinon)

Exercice d'application :

Donner la forme canonique somme de produits de la fonction dont la table de vérité est :

	Sortie		
A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Correction

- Il y a 4 produits car la fonction vaut 1 pour 4 combinaisons des entrées.
- Les produits sont :

$$\bar{a}\bar{b}c$$
, $\bar{a}b\bar{c}$, $a\bar{b}\bar{c}$, abc

• La fonction F est donc une somme de ces termes :

$$F = \bar{a}\bar{b}c + \bar{a}b\bar{c} + a\bar{b}\bar{c} + abc$$

- Construction de la forme canonique Somme de produits à partir d'une expression quelconque :
 - ✓ Toute expression logique peut être convertie sous la forme canonique d'une somme de produits en appliquant les techniques de l'algèbre de Boole.
 - ✓ Si un terme de l'expression ne contient pas toutes les variables, les variables manquantes sont introduites en utilisant la règle : $a + \bar{a} = 1$.
 - ✓ Méthode : multiplier chaque terme de la forme non standard par la somme de la variable manquante et de son complément (cette somme valant 1, cela ne change rien).
 - ✓ Exemple : Montrez par cette méthode que la fonction $f(a,b,c) = a\bar{b}c + \bar{a}\bar{b} + ab\bar{c}d$ peut s'écrire sous la forme canonique somme de produits :

$$a\bar{b}cd + abcd + \bar{a}\bar{b}cd + \bar{a}\bar{b}c\bar{d} + \bar{a}\bar{b}\bar{c}d + \bar{a}\bar{b}\bar{c}\bar{d} + ab\bar{c}d$$

Rm : on commencera par multiplier le premier terme par $(d + \overline{d})$ et ainsi de suite.

6.2. Forme canonique Produit de sommes

- Cette forme canonique est moins utilisée que la précédente
- Pour l'obtenir à partir d'une table de vérité :
 - ✓ Associer à chaque ligne de la table de vérité où la fonction vaut 0, une somme construite à partir des compléments des variables de la ligne (pour la ligne x=0 y=0 z=0, la somme est x+y+z)
 - ✓ Faire le produit de toutes ces sommes
- Exemple 1 : forme canonique somme de produits de la fonction dont la table de vérité est la suivante

	Entrées				
A	В	С	F		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	1		

On trouve : $F = (A + B + C)(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + C)$

• Exemple 2 : forme canonique produit de sommes de la fonction dont la forme générale est la suivante :

$$f = a + bc$$

- ✓ Distributivité : f = a + bc = (a + b)(a + c)
- ✓ Lorsqu'il manque une variable dans une somme : on l'ajoute en utilisant la **propriété** $\mathbf{x}.\bar{\mathbf{x}} = \mathbf{0}$

$$f = (a+b)(a+c) = (a+b+c\overline{c})(a+c+b\overline{b})$$

✓ **Distributivité** à nouveau :

$$f = (a + b + c\bar{c})(a + c + b\bar{b}) = (a + b + c)(a + b + \bar{c})(a + c + b)(a + c + \bar{b})$$

7. Simplification de l'écriture de fonctions logiques

- Algèbre classique : simplifier une fonction = rechercher écriture plus condensée ou plus facile à calculer
- Exemple: $f(a,b) = \frac{a^2 b^2}{a+b}$ devient f(a,b) = a b (si $a + b \neq 0$)
- Algèbre de Boole : simplifier = trouver une **forme plus condensée**, avec moins de symboles, dont la **réalisation matérielle est plus compacte**

• Méthodes de simplification basées essentiellement sur propriétés suivantes :

$$x + \bar{x} = 1$$
, $x\bar{x} = 0$, $1 + x = 1$

- Principalement 2 méthodes :
 - ✓ Simplification par manipulation algébrique
 - ✓ Simplification par tableaux de Karnaugh

7.1. Simplification algébrique

• Simplification de la fonction définie par la table de vérité :

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• Forme canonique somme de produits :

$$f = \bar{x}yz + x\bar{y}z + xy\bar{z} + xyz$$

• Nouvelle écriture (en utilisant la **propriété** x + x = x):

$$f = (\bar{x}yz + xyz) + (x\bar{y}z + xyz) + (xy\bar{z} + xyz)$$

• Simplification:

$$f = yz(x + \bar{x}) + xz(y + \bar{y}) + xy(z + \bar{z})$$

• Forme simplifiée:

$$f = yz + xz + xy$$

Exercice d'application :

Simplifier par la méthode algébrique la fonction suivante :

$$f = \bar{a}bcd + a\bar{b}\bar{c}d + ab\bar{c}\bar{d} + acd + \bar{a}b + c\bar{d} + \bar{b}c\bar{d} + a\bar{c} + \bar{a}b\bar{c}d + \bar{b}c + abc$$

Correction:

$$\bullet \ f = a + b + c$$

• Repose beaucoup sur astuce et chance de voir les bons regroupements à faire

• Risque de s'y perdre!

• Au-delà de 3 variables, calculs difficiles, méthode assez longue à appliquer

7.2. Simplification par la méthode de Karnaugh

- Construction des tableaux
- Méthode utilise l'identité : $ax + a\bar{x} = a$
- Mettre en évidence graphiquement les termes d'une fonction qui ne diffèrent que par l'état d'une variable (ex : $x\bar{y}zt$ et xyzt). Le regroupement de ces deux termes permet de simplifier.
- N variables $\Rightarrow 2^n$ produits de variables
- Chaque produit représenté par une case du tableau
- Le tableau est construit de telle façon que l'état d'une seule variable change entre une ligne et la suivante, idem en colonne.
- Exemples :

ху				
Z	00	01	11	10
0	$\bar{x}\bar{y}\bar{z}$	$\bar{x}y\bar{z}$	$xy\bar{z}$	$x\bar{y}\bar{z}$
1	$\bar{x}\bar{y}z$	$\bar{x}yz$	xyz	$x\bar{y}z$

• Utilisation du code Gray pour remplir les entrées des tableaux

Le code GRAY

- Permet l'incrémentation ou la décrémentation d'une valeur par la modification d'un bit unique
- Permet donc de réaliser ces opérations très rapidement (et avec une logique très simple) car n'aura pour effet que de changer un bit (∀ longueur du code)
- Encore appelé code binaire réfléchi (construction)
- Exemple du code Gray à 3 variables :

Binaire pur

0	0	0	1 changement
0	0	1	
0	1	0	2 changements
0	1	1	1 changement
1	0	0	3 changements
1	0	1	1 changement
1	1	0	2 changements
1	1	1	1 changement

Gray - Binaire réfléchi

• Tableau de Karnaugh à 4 variables (x, y, z, t):

xy				
zt	00	01	11	10
00				
01				
11				
10				

• Tableau de Karnaugh à 5 variables (x, y, z, t, u)

u=0	u=1
xy	zt 00 01 11 10
00	00
01	01
11	11
10	10

• Tableau de Karnaugh à 5 variables (x, y, z, t, u) / Autre possibilité (utiliser le code Gray pour remplir les entrées de façon à garantir qu'une seule variable change):

ztu	000	001	011	010	110	111	101	100
хy								
00								
01								
11								
10								

• Cases adjacentes:

ху				
zt	00	01	11	10
00				
01			X	
11		X		X
10			X	

xy				
zt	00		11	10
00		X		X
01	X			
11				
10	X			

Xy				
zt	00	01	11	10
00		X	IIII	X
01			X	
11				
10			X	

• Passage de la table de vérité au tableau de Karnaugh : écrire des 1 dans les cases correspondant aux combinaisons où la fonction vaut 1, et des zéros ailleurs

xyzt	F
0000	1
0001	0
0010	1
0011	0
0100	0
0101	1
0110	0
0111	0
1000	1
1001	1
1010	1
1011	1
1100	0
1101	1
1110	0

zt	00	01	11	10
00	1	0	0	1
01	0	1	0	0
11	0	1	0	0
10	1	1	1	1

1111 0

- Passage de l'expression de la fonction au tableau de Karnaugh : écrire des 1 dans les cases correspondant à chaque terme de la somme, et des zéros ailleurs :
- Exemple : $f = ab\bar{c} + ab + cb$ Tableau :

С	0	1
ab		
00	0	0
01	1	1
11	1	1
10	0	0

- Simplification par la **méthode** de Karnaugh :
 - ✓ Transposer la table de vérité (ou l'expression non simplifiée de la fonction) dans un tableau de Karnaugh
 - ✓ Regrouper les cases comprenant des 1
 - ✓ Les regroupements ont les tailles 2, 4, 8... (puissance de 2)

- ✓ On cherche à faire le moins de regroupements possible (donc chaque regroupement doit rassembler un maximum de cases)
- ✓ Si une case ne peut pas être regroupée, le terme correspondant apparaît tel quel dans l'expression
- ✓ Dans un groupement de 2 termes (2 cases), on élimine la variable qui change d'état, et on conserve le produit des variables (directes ou inverses) qui n'ont pas changé d'état dans le groupement (car $(ax + a\bar{x}) = a$)
- ✓ Dans un groupement de 4 termes, on élimine les deux variables qui changent d'état et l'on conserve le produit des variables directes ou inverses qui n'ont pas changé d'état
- ✓ L'expression logique finale (simplifiée) est un OU entre l'expression des groupements.

Exercice d'application n°1 :

Donner l'expression simplifiée des fonctions F, G, H de 4 variables (x, y, z, t), représentées par les tableaux de Karnaugh suivants :

F:					G:				H:					
zt					zt					zt				
xy	00	01	11	10	xy	00	01	11	10	xy	00	01	11	10
00	0	0	0	0	00	1	0	0	1	00	0	1	1	0
01	0	1	1	0	01	0	1	1	1	01	1	1	1	0
11	0	0	0	0	11	0	1	1	0	11	1	1	1	0
10	1	1	1	1	10	1	0	0	1	10	0	1	1	0

Correction:

$$F = x\bar{y} + \bar{x}yt$$

