Taxes and Corporate Distributions *

Clinton Tepper, Ivo Welch

10/1/17

e-mail here

2017 Project

^{*}Footnote here

 ${\bf Table\ 1:\ Campbell\ Shiller\ Regressions}$

	2	3	4	5	6	7
intercept	-0.0^{***} (0.0)	-0.0^{***} (0.0)	$0.0 \\ (0.0)$	0.0*** (0.0)	0.0*** (0.0)	0.0*** (0.0)
ϕ	-0.55^{***} (0.05)				-1.65^{***} (0.06)	
N	13594	13594	13594	13594	13594	13594

Notes: *p < 0.1, **p < 0.05, ***p < 0.01 s.t. p=Pr(>|T|)

Table 2: Cochrane Piazzesi Regressions (longest maturity=5) $\gamma_0=-0.0~\gamma_1=-3.5~\gamma_2=4.0~\gamma_3=-0.9~\gamma_4=-1.7~\gamma_5=2.0$

	2	3	4	5
b_n	0.44*** (0.01)	0.84*** (0.02)	1.19*** (0.02)	1.53*** (0.03)
R^2	0.14	0.17	0.19	0.2
N	13594	13594	13594	13594

Notes: p < 0.1, p < 0.05, p < 0.01 s.t. p = Pr(>|T|)

Table 3: Cochrane Piazzesi Regressions (longest maturity=7) $\gamma_0=-0.0~\gamma_1=-4.7~\gamma_2=5.7~\gamma_3=-15.8~\gamma_4=86.5~\gamma_5=-206.6~\gamma_6=215.7~\gamma_7=-80.9$

	2	3	4	5	6	7
b_n	0.33*** (0.01)	0.63*** (0.01)	0.9*** (0.01)	1.15*** (0.02)	1.39*** (0.02)	1.62*** (0.02)
R^2	0.16	0.19	0.22	0.24	0.25	0.26
N	13594	13594	13594	13594	13594	13594

Notes: p < 0.1, p < 0.05, p < 0.01 s.t. p = Pr(>|T|)