Micro II, Dominic Rohner, Spring 2005

Problem Set 1

1. We analyze a contract between an employer (the Principal) and an employee (the Agent) in a context of moral hazard. The agent can exert two levels of effort, e^H and e^L , which have costs $c^H = 1$ and $c^L = 0$. The employee's reservation utility is $\overline{U} = 1$. The Principal is risk-neutral, and the Agent is risk-averse, with a utility function $u(w) = \sqrt{w}$.

There are two possible outcomes, $x^L = 2$ and $x^H = 10$. The probabilities of these outcomes depending on the Agent's effort levels are given in the following table:

	x^L	x^H
e^{L}	1	0
e^{H}	$\frac{1}{2}$	$\frac{1}{2}$

- (a) First, assume that the Principal can observe the Agent's effort level and chooses to pay a wage w^H for effort level e^H and w^L for effort level e^L .
 - i. Write the expected profit of the Principal when the agent chooses effort level e^H , Π^H , and when they choose effort level e^L , Π^L .
 - ii. Write the participation constraints of the Agent when choosing effort level e^H and effort level e^L .
 - iii. What are the wages paid by the Principal in the optimal contract? What is the expected profit of the Principal when choosing to implement effort level e^L and effort level e^H ? Show that the Principal prefers to implement effort level e^H .

- (b) Now assume that the Principal cannot observe the Agent's effort and pays wage w^H when the *outcome* is x^H and wage w^L when the *outcome* is x^L . First, assume that the Principal chooses to implement effort level e^H .
 - i. Write the expected profit of the Principal
 - ii. Write the participation constraint of the Agent choosing effort e^H
 - iii. Write the incentive constraint of the Agent
 - iv. Plot the participation and incentive constraints of the Agent and the Principal's isoprofit curves in the space (t^H, t^L) where $t^H = \sqrt{w^H}, t^L = \sqrt{w^L}$.
 - v. What is the optimal contract? Compute the expected profit of the Principal.
- (c) Now, suppose that the Principal chooses to implement the effort level e^L .
 - i. Write the expected profit of the Principal:
 - ii. Write the participation constraint of the Agent who chooses the effort level e^L :
 - iii. Deduce the optimal wage and the expected profit of the Principal. Show that the Principal is indifferent between the two effort levels.

2. We now study a contract between a seller and a buyer. The buyer has a utility function given by $\theta q - pq$, where q is the quantity purchased and p is the unit price. There are two types of buyers: low-demand buyers $(\theta = 1)$ and high-demand buyers $(\theta = 2)$. It is assumed that there is a fraction $\frac{2}{3}$ of low-demand buyers and a fraction $\frac{1}{3}$ of high-demand buyers. Each buyer has a reservation utility of 0. Finally, the seller has a quadratic production cost given by $c(q) = q^2$.

The seller cannot distinguish between low-demand and high-demand buyers and offers two contracts, (p^H, q^H) and (p^L, q^L) , to separate them.

- (a) Write the expected profit of the seller when buyers of type H and type L self-select:
- (b) Write the participation constraints for both types of agents:
- (c) Write the incentive constraints for both types of agents:
- (d) Use the participation constraint of L-type agents and the incentive constraint of H-type agents to express p^Lq^L and p^Hq^H only as functions of q^L and q^H .
- (e) By substituting these expressions into the seller's expected profit, determine the optimal contract quantities q^H and q^L .
- (f) Verify that the quantity q^H corresponds to the efficient quantity (which maximizes total surplus), whereas the quantity q^L is below the efficient level.
- (g) Which of the two prices, p^H or p^L , is higher?

Multiple Choice Question Tick all boxes with correct answers.

Adverse selection is about hidden actions
In the Spence signalling model the Principal moves first.
In Adverse Selection, the bad type is pushed to the reservation utility level, whereas the good type collects an informational rent
In Moral Hazard models, the relation between effort and the result is deterministic.
In the context of Expected Utility Theory, strict risk-aversion and strict concavity of the utility function are equivalent

Short Question: Describe the Independence Axiom of Expected Utility Theory