3.14 Soient $v \in F$, $w \in F$ et $\alpha \in \mathbb{R}$.

Comme $v \in \mathcal{F}$, il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda \cdot u$. Puisque $w \in \mathcal{F}$, il existe $\mu \in \mathbb{R}$ tel que $w = \mu \cdot u$.

1)
$$v + w = \lambda \cdot u + \mu \cdot u = (\underbrace{\lambda + \mu}_{\nu}) \cdot u = \nu \cdot u \in F$$

2)
$$\alpha \cdot v = \alpha \cdot (\lambda \cdot u) = \underbrace{(\alpha \lambda)}_{\nu} \cdot u = \nu \cdot u \in F$$