APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

KR 399201B Div ex

2000KR-0070869 November 27, 2000

KR 399201B N/A

2001KR-0071753 November 19, 2001

JP 10326515A N/A

1997JP-0351794 December 19, 1997

CN 1195118A N/A

1998CN-0105185 March 27, 1998

KR 98080826A N/A

1998KR-0010912 March 28, 1998

KR 312275B N/A

1998KR-0010912 March 28, 1998

KR 312275B Previous Publ.

N/A

KR 336602B Div ex

1998KR-0010912 March 28, 1998

KR 336602B N/A

2000KR-0070869 November 27, 2000

TW 505812A N/A

1998TW-0103965 March 17, 1998

INT-CL (IPC): F21V008/00, G02B006/00, G02F001/1335,

KR 98080826

G09F009/00

RELATED-ACC-NO: 2003-105906, 2003-702618, 2003-738817

ABSTRACTED-PUB-NO:/JP 10326515A

BASIC-ABSTRACT:

The system consists of a light source (26) to emit light towards an incident

plane (25) of a light guide (24). A boundary surface (28) of the light guide

guides the light from the light source to an object to be illuminated.

A boundary surface (23) of the light guide guides the light reflected from the

object to the boundary surface (28) through a ramp (22). A flat section (21)

with several steps is provided in the boundary surface (23)

to transmit the light reflected from the object.

ADVANTAGE - Improves utilisation efficiency of light source. Prevents leakage of light from light guide. Enables uniform brightness distribution to object. Prevents fuzziness of image of illuminated object. Suppresses manufacturing cost due to usage of commercially available antireflection film.

CHOSEN-DRAWING: Dwg.1/52

DERWENT-CLASS: LO3 P81 P85 Q71 U14

CPI-CODES: L03-G05A;

EPI-CODES: U14-K01A1C;

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-326515

(43)公開日 平成10年(1998)12月8日

		ΡI	識別記号		(51) Int.C1.8
8/00 6 0 1 A	8/00	F21V	601	8/00	F 2 1 V
601G	-			-	
6/00 3 3 1	6/00	G02B	3 3 1	6/00	G02B
1/1335 5 3 0	1/1335	G02F	5 3 0	1/1335	G02F
9/00 3 3 6 B	9/00	G09F	3 3 6	9/00	G09F
求 未請求 請求項の数44 OL (全 43 頁)	未請求	審査請求			
L 000005049	0000050	(71)出顧人	特顧平9-351794	•	(21)出願番号
シャープ株式会社					
大阪府大阪市阿倍野区長池町22番22号	大阪府		平成9年(1997)12月19日		(22)出顧日
香料 中央	海山 豊	(72)発明者			
大阪府大阪市阿倍野区長池町22番22号 シ	大阪府		特顧平9-78211	張番号	(31)優先権主
ャープ株式会社内	ャープを		平 9 (1997) 3 月28日		(32)優先日
皆 角田 行広	角田 有	(72)発明者	日本 (JP)	張国	(33)優先權主
大阪府大阪市阿倍野区長池町22番22号 シ	大阪府力				
ャープ株式会社内	ャープを				
肾增田 · 岳志	増田 岳	(72)発明者			
大阪府大阪市阿倍野区長池町22番22号 シ	大阪府力				
ャープ株式会社内	ャープを				
人 弁理士 原 静三	弁理士	(74)代理人			
最終頁に続く					

(54) 【発明の名称】 前方照明装置およびこれを備えた反射型液晶表示装置

(57)【要約】

【課題】 反射型LCD等の被照明物の前面に配置して 使用する前方照明装置において、光源光の利用効率を向 上させる。

【解決手段】 フロントライト20の夢光体24の界面23を、界面28に対して略平行な平坦部21と、この平坦部21に対して同方向にほぼ等しい角度で傾斜する傾斜部22とが交互に配置された階段状に形成する。

【特許請求の範囲】

【請求項1】光源および導光体を備え、被照明物の前方 に配置されて使用される前方照明装置において、

上記導光体が、光源から光を入射する入射面と、被照明 物へ向けて光を出射する第1の出射面と、上記第1の出 射面に対向し、被照明物からの反射光を出射する第2の 出射面とを備え、

上記第2の出射面が、主として光源からの光を第1の出 射面へ向けて反射する傾斜部と、主として被照明物から の反射光を透過する平坦部とが交互に配置された階段状 10 に形成されていることを特徴とする前方照明装置。

【請求項2】上記導光体を第1の導光体とすると、上記第1の出射面からの出射光の輝度分布を平均化する第2の導光体をさらに備えたことを特徴とする請求項1記載の前方照明装置。

【請求項3】第2の導光体が、第1の導光体の第1の出射面に対向する第1の表面と、上記第1の表面に対向し、第1の導光体から上記第1の表面を通って入射した光を被照明物へ出射する第2の表面とを備えると共に、上記第1の表面と第2の表面とが、第1の導光体の第2 20の出射面における各傾斜部から上記第2の表面までの距離が略均一になるように形成されていることを特徴とする請求項2記載の前方照明装置。

【請求項4】第1の導光体の屈折率と、第2の導光体の 屈折率とがほぼ等しいことを特徴とする請求項3記載の 前方照明装置。

【請求項5】第1の導光体と第2の導光体とが一体に形成されていることを特徴とする請求項3記載の前方照明装置。

【請求項6】上記第2の導光体における第2の表面には、第1の導光体における第2の出射面からの光が該第2の表面で反射されることを抑制する光学手段を、第3の導光体として備えていることを特徴とする請求項3、4または5記載の前方照明装置。

【請求項7】上記光学手段は反射防止膜であることを特 徴とする請求項6記載の前方照明装置。

【請求項8】上記光学手段は、上記第2の導光体が有する屈折率とほぼ等しい屈折率を有する接着剤により第2の導光体と接着されていることを特徴とする請求項6または7記載の前方照明装置。

【請求項9】第2の導光体が、第1の導光体における第 1の出射面からの出射光を散乱させる光散乱体であることを特徴とする請求項2記載の前方照明装置。

【請求項10】上記光散乱体が、所定の角度範囲から入射した光のみを散乱する異方性散乱体であり、第1の導光体からの出射光が第2の導光体へ入射する角度範囲の少なくとも一部が、上記所定の角度範囲に含まれることを特徴とする請求項9記載の前方照明装置。

【請求項11】上記光散乱体が、前方散乱体であることを特徴とする請求項9記載の前方照明装置。

【請求項12】上記第2の導光体は、第1の導光体における第2の出射面からの光が該第1の導光体における第1の出射面で反射することを抑制する光学手段であることを特徴とする請求項2記載の前方照明装置。

【請求項13】上記光学手段は反射防止膜であることを 特徴とする請求項12記載の前方照明装置。

【請求項14】上記光学手段は、上記第2の導光体が有する屈折率とほぼ等しい屈折率を有する接着剤により第2の導光体と接着されていることを特徴とする請求項12または13記載の前方照明装置。

【請求項15】第1の導光体と第2の導光体との間に、 これらの導光体の間に存在する光学的界面での屈折率差 を緩和する充填剤が導入されていることを特徴とする請 求項2記載の前方照明装置。

【請求項16】光源と入射面との間に、入射面から第1 の導光体における第1の出射面へ直接入射する成分がほ ばなくなる範囲に光源からの光の広がりを制限する光制 御手段をさらに備えたことを特徴とする請求項15記載 の前方照明装置。

20 【請求項17】上記入射面が、導光体の側面に存在する ことを特徴とする請求項1記載の前方照明装置。

【請求項18】第1の出射面に垂直な平面への上記傾斜部の射影の総和が、上記平面への入射面の射影にほぼ等しいことを特徴とする請求項17記載の前方照明装置。 【請求項19】上記入射面と上記第1の出射面とが鈍角をなして配されていることを特徴とする請求項17記載の前方照明装置。

【請求項20】光源からの光を上記入射面のみに入射させる集光手段をさらに備えたことを特徴とする請求項1 30 記載の前方照明装置。

【請求項21】上記傾斜部の上記第1の出射面への射影の総和が、上記平坦部の上記第1の出射面への射影の総和よりも面積が小さいことを特徴とする請求項1記載の前方照明装置。

【請求項22】上記平坦部が、上記第1の出射面と平行であるか、あるいは、上記第1の出射面に対して10°以下の傾斜角度を有することを特徴とする請求項1記載の前方照明装置。

【請求項23】導光体の屈折率をn2、上記傾斜部に接 0 する外部媒質の屈折率をn1とすると、光源から傾斜部 へ入射する光の入射角のが下記の不等式を満足すること を特徴とする請求項1記載の前方照明装置。

 $\theta \geq \arcsin(n_1/n_2)$

【請求項24】上記傾斜部の表面に、光を反射させる反射部材が設けられたことを特徴とする請求項1記載の前方照明装置。

【請求項25】導光体の屈折率を n2、上記傾斜部に接する外部媒質の屈折率を n1とすると、光源から傾斜部へ入射する光の入射角 のが下記の不等式を満足することを特殊とよる意味項の 4 記載の並士 原理社会

50 を特徴とする請求項24記載の前方照明装置。

 $\theta < arcsin(n_1/n_2)$

【請求項26】上記反射部材の表面に、遮光部材が設けられたことを特徴とする請求項24記載の前方照明装置。

【請求項27】第2の出射面における平坦部からの出射 光と傾斜部からの出射光との出射方向をそろえる補償手 段をさらに備えたことを特徴とする請求項1記載の前方 照明装置。

【請求項28】上記補償手段が、導光体の第2の出射面 に対向する第1の表面と、上記第1の表面に対向する第 10 2の表面とを備えると共に、

補償手段の第1の表面が、導光体の第2の出射面の傾斜 部と略平行な傾斜面と、上記第2の出射面の平坦部と略 平行な平坦面とが交互に配置されて、上記第2の出射面 と相補する階段状に形成され、

上記補償手段の第2の表面が、導光体の第1の出射面と 略平行に配置されていることを特徴とする請求項27記 載の前方照明装置。

【請求項29】上記補償手段において、主として第2の 出射面の傾斜部からの出射光が入射する領域と、主とし 20 表示装置。 て第2の出射面の平坦部からの出射光が入射する領域と が、互いに異なる屈折率を有することを特徴とする請求 項27記載の前方照明装置。 539の何

【請求項30】上記補償手段において、主として第2の 出射面の傾斜部からの出射光が入射する領域に、回折素 子が設けられたことを特徴とする請求項27記載の前方 照明装置。

【請求項32】光源と入射面との間に光源からの光の広がりを制限する光制御手段をさらに備えたことを特徴とする請求項1記載の前方照明装置。

【請求項33】光制御手段が、入射面から第2の出射面の傾斜部へ直接入射する光の入射角が臨界角よりも大きくなる範囲に光源からの光の広がりを制限することを特徴とする請求項32記載の前方照明装置。

【請求項34】光源および導光体を備え、被照明物の前方に配置されて使用される前方照明装置において、

上記導光体が、平面状の底面と、上記底面に対向する表面と、光源からの光が入射する入射面とを備え、

上記表面が、底面に対して略平行な平坦部と、上記平坦 部に対して同方向に傾斜した傾斜部とが交互に配置され た階段状に形成されていることを特徴とする前方照明装 置。

【請求項35】上記導光体に形成されている平坦部のピッチと傾斜部のピッチとの和は、上記入射面から遠ざかるに伴い小さくなっていることを特徴とする請求項1記載の前方照明装置。

【請求項36】反射板を有する反射型液晶素子を備える と共に、

上記反射型液晶素子の前面に、請求項1記載の前方照明 装置が配置されたことを特徴とする反射型液晶表示装 置。

【請求項37】反射型液晶素子が走査線を備え、

上記走査線のピッチと、前方照明装置の第2の出射面に おける平坦部のピッチとがほば等しく、走査線の上方に 平坦部が配置されていることを特徴とする請求項36記 載の反射型液晶表示装置。

【請求項38】反射型液晶素子が走査線を備え、

上記走査線のピッチよりも、前方照明装置の第2の出射 面における平坦部のピッチと傾斜部のピッチとの和の方 が小さいことを特徴とする請求項36記載の反射型液晶 表示装置。

【請求項39】反射型液晶素子が走査線を備え、

上記走査線のピッチよりも、前方照明装置の第2の出射 面における平坦部のピッチと傾斜部のピッチとの和の方 が大きいことを特徴とする請求項36記載の反射型液晶 表示装置。

【請求項40】上記反射型液晶素子が表面に凹凸部を有 する反射板を備えていることを特徴とする請求項36か ら39の何れか1項に記載の反射型液晶表示装置。

【請求項41】上記反射板は、反射型液晶素子の液晶層を駆動する液晶駆動電極を兼ねた反射電極であり、該液晶層に隣接して設けられていることを特徴とする請求項40記載の反射型液晶表示装置。

【請求項42】前方照明装置が、反射型液晶素子に対して開閉自在に設けられたことを特徴とする請求項36記10 載の反射型液晶表示装置。

【請求項43】反射板を有する反射型液晶素子の前面 に、請求項27記載の前方照明装置を備えた反射型液晶 表示装置であって、

上記補償手段が、所定の圧力に対して可撓性を有すると 共に、

上記補償手段および第2の出射面のそれぞれに、互いに 接触することによって圧力が加えられた位置を検出する 一対の位置検出手段が設けられたことを特徴とする反射 型液晶表示装置。

40 【請求項44】反射型液晶素子が走査線を備え、

上記位置検出手段が第2の出射面の平坦部に形成された透明電極を含み、

上記走査線のピッチと、上記透明電極のピッチとがほぼ 等しく、走査線の上方に透明電極が配置されていること を特徴とする請求項43記載の反射型液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、被照明物と観察者 との間に配置されて使用され、被照明物に光を照射する 50 と共に、被照明物からの反射光を観察者が視認できるよ

うに該反射光を透過させるべく構成された前方照明装置 と、この前方照明装置を補助光源として備えた反射型液 晶表示装置に関するものである。

[0002]

【従来の技術】液晶表示装置は、CRT(Cathode Ray Tube)、PDP(Plasma Display Panel)、あるいはEL(Electro Luminescence)といった他のディスプレイとは異なり、液晶そのものは発光せずに、特定の光源からの光の透過光量を調節することによって文字や画像を表示する。

【0003】従来の液晶表示装置(以下、LCD: Liquid Crystal Displayと称する)は、透過型LCDと、反射型LCDとに大別することが可能である。透過型LCDは、液晶セルの背面に、光源(バックライト)としての、蛍光管やEL等の面発光光源が配置される。

【0004】一方、反射型LCDは、周囲光を利用して表示を行うため、バックライトを必要とせず、消費電力が少ないという利点がある。さらに、直射日光の当たるような非常に明るい場所では、発光型ディスプレイや透過型LCDは表示がほとんど見えなくなるのに対し、反 20射型LCDではより鮮明に見える。このため、反射型LCDは、近年益々需要が高まっている携帯情報端末やモバイルコンピュータに適用されている。

【0005】ただし、反射型LCDは、以下のような問題点を有している。つまり、反射型LCDは周囲光を利用するので、表示輝度が周辺環境へ依存する度合いが非常に高く、特に、夜間などの暗闇では、表示が全く認識できないこともある。特に、カラー化のためにカラーフィルタを用いた反射型LCDや、偏光板を用いた反射型LCDにおいて、上述の問題は大きく、十分な周囲光が30得られない場合に備えて補助照明が必要となる。

【0006】しかし、反射型LCDは液晶セルの背面に 反射板が設置されており、透過型LCDのようなバック ライトを用いることはできない。反射板としてハーフミ ラーを用いた半透過型LCDと呼ばれる装置も提案され ているが、その表示特性は透過型とも反射型ともいえな い中途半端なものとなり、実用化は難しいと考えられ る。

【0007】そこで、周囲が暗い場合の反射型LCDの補助照明として、液晶セルの前面に配置するためのフロ 40 ントライトシステムが、従来から提案されている。このフロントライトシステムは、一般的に、導光体と、導光体の側面に配置された光源とを備える。導光体側面から入射した光源光は導光体内部を進行し、導光体表面につくられた形状で反射して液晶セル側へ出射する。出射した光は、液晶セルを透過しながら表示情報に応じて調光され、液晶セルの背面側に配置された反射板で反射されることによって、再び導光体を透過して観察者側へ出射される。これにより、観察者は、周囲光量が不十分なときでも、表示の認識が可能となる。 50

【0008】なお、このようなフロントライトは、例えば特開平5-158034号公報、SID DIGEST P.375(1995)等に開示されている。

6

[0009]

【発明が解決しようとする課題】ここで、SID DIGEST P.375(1995)に開示されたフロントライトシステムの動作原理について、図51を参照しながら簡単に説明する。上記フロントライトシステムにおいて、平坦部101aおよび傾斜部101bから形成される界面101を10有する導光体104の一方の側面を、光源106からの光が入射する入射面105とする。すなわち、光源106は、導光体104の入射面105に対向する位置に配置されている。

【0010】光源106から入射面105を通って導光体104に入射した光のうち、あるものは直進し、あるものは導光体104とその周辺媒質との界面101・108に入射する。このとき、導光体104の周辺媒質が空気であるものとし、導光体104の屈折率が1.5程度であるとすると、スネルの法則(式1)から、界面101・108に対する入射角が約41.8°以上の光は、界面101・108で全反射することが分かる。【0011】 $n_1 \cdot sin\theta_1 = n_2 \cdot sin\theta_2$ $\theta_c = arcsin(n_2 / n_1) \cdot \cdot \cdot \cdot (式1)$ ただし、 n_1 は第1の媒質(ここでは導光体104)の屈折率、 n_2 は第2の媒質(ここでは空気)の屈折率、 θ_1 は導光体104から界面101への入射角、 θ_2 は界面101から第2の媒質への出射角、 θ_c は臨界角、である

【0012】界面101・108に入射した光の中で、 反射面である傾斜部101bで全反射した光と、界面1 08で全反射した後、界面101の傾斜部101bで反射した光は、液晶セル110に入射する。液晶セル11 0に入射した光は、図示しない液晶層により調光された後、液晶セル110の背面に設けられた反射板111により反射され、導光体104に再び入射して平坦部101aを透過し、観察者109側へ出射される。

【0013】また、光源106から入射面105を通り、傾斜部101bではなく平坦部101aに入射した光は、界面101と界面108との間で、傾斜部101bに到達するまで全反射を繰り返しつつ伝搬する。なお、観察者109側から見た傾斜部101bの面積は、平坦部101aの面積に比べて、十分に小さく形成されている。

【0014】上記従来のフロントライトシステムは、以下の問題を有する。

(1)図52に示すように、全反射を繰り返しても傾斜 部101bに到達できない光や、入射面105に対して 略垂直に入射した光は、入射面105に対向する面10 7から導光体104の外へ出射する光114となり、表 50 示に利用され得ない。すなわち、光の利用効率が悪い。

(2) 傾斜部101bと平坦部101aとから構成され る界面101の形状は、ちょうどプリズムシートの頂点 を平らにした形状に似ており、図52に示すように、周 囲光115が観察者109個へ反射され易く、表示品位 の低下につながる。

【0015】これらの問題は、従来のフロントライトシ ステムの大半に共通しており、光源光の利用効率の向上 が望まれている。

【0016】本発明は、上記問題点に鑑みてなされたも のであって、その目的は、光源光の利用効率を向上させ 10 るとともに、被照明物に対して均一且つより明るい照明 を可能とする前方照明装置と、この前方照明装置を用い た反射型の液晶表示装置を提供することにある。

[0017]

【課題を解決するための手段】上記の課題を解決するた めに、請求項1記載の前方照明装置は、光源および導光 体を備え、被照明物の前方に配置されて使用される前方 照明装置において、上記導光体が、光源から光を入射す る入射面と、被照明物へ向けて光を出射する第1の出射 面と、上記第1の出射面に対向し、被照明物からの反射 20 光を出射する第2の出射面とを備え、上記第2の出射面 が、主として光源からの光を第1の出射面へ向けて反射 する傾斜部と、主として被照明物からの反射光を透過す る平坦部とが交互に配置された階段状に形成されている ことを特徴とする。

【0018】上記の構成では、第1の出射面から被照明 物へ照明光が出射され、被照明物からの反射光は、上記 第1の出射面から再び導光体内へ戻り、第2の出射面の 平坦部を透過して観察者側へ到達する。上記の構成の導 光体は、第1の出射面に対向する第2の出射面が、傾斜 30 部および平坦部が交互に配置された階段状に形成され、 さらに、平坦部と平坦部との間に位置する傾斜部が主と して光源からの光を第1の出射面へ向けて反射するの で、光源から入射した光のうち、平坦部に平行な成分の すべてが、上記傾斜部にて反射して第1の出射面から被 照明物へ照射されることとなる。これにより、略平板状 に形成された導光体を有する従来の構成と比較すると、 本発明の前方照明装置では、平坦部に平行に進行する光 の成分が導光体の外へ漏れることなく、被照明物へ照射 される。従って、光源光の利用効率が向上し、より明る 40 する光学手段を、第3の導光体として備えていることを い前方照明装置を提供できる。

【0019】請求項2記載の前方照明装置は、請求項1 記載の構成において、上記導光体を第1の導光体とする と、上記第1の出射面からの出射光の輝度分布を平均化 する第2の導光体をさらに備えたことを特徴とする。

【0020】本発明の前方照明装置は、第1の導光体が 階段状に形成されていることから、第2の出射面の傾斜 部から第1の出射面までの距離が、光源からの距離に比 例して小さくなる。それゆえ、第1の出射面から出射す る光の輝度分布が均一でないことがある。上記の構成

は、第2の導光体を備えたことにより、被照明物への出 射光の輝度分布が平均化される。この結果、輝度むらの ない面光源として機能する前方照明装置を提供できる。

【0021】請求項3記載の前方照明装置は、請求項2 記載の構成において、第2の導光体が、第1の導光体の 第1の出射面に対向する第1の表面と、上記第1の表面 に対向し、第1の導光体から上記第1の表面を通って入 射した光を被照明物へ出射する第2の表面とを備えると 共に、上記第1の表面と第2の表面とが、第1の導光体 の第2の出射面における各傾斜部から上記第2の表面ま での距離が略均一になるように形成されていることを特 徴とする。

【0022】上記の構成では、第2の導光体を備えたこ とにより、第1の導光体において光源からの光が反射す る第2の出射面の傾斜部のそれぞれから、被照明物への 出射面となる第2の導光体の第2の表面までの距離が均 一化され、上記第2の表面からの出射光の輝度分布が平 均化される。この結果、輝度むらのない面光源として機 能する前方照明装置が実現される。

【0023】請求項4記載の前方照明装置は、請求項3 記載の構成において、第1の導光体の屈折率と、第2の 導光体の屈折率とがほぼ等しいことを特徴とする。

【0024】上記の構成によれば、第1の導光体の屈折 率と第2の導光体の屈折率とがほぼ等しいことにより、 第1の導光体において第2の斜面の傾斜部で反射した光 が、そのままの角度で被照明物に向かって出射すること となる。この結果、第2の導光体への入射時または第2 の導光体からの出射時の屈折による光の軌跡の変化を考 慮しなくて済み、設計が容易となるという利点がある。

【0025】請求項5記載の前方照明装置は、請求項3 記載の構成において、第1の導光体と第2の導光体とが 一体に形成されていることを特徴とする。

【0026】上記の構成によれば、第1の導光体と第2 の導光体とが一体に形成されたことにより、製造が容易 であるという利点がある。

【0027】請求項6記載の前方照明装置は、請求項 3、4または5記載の構成において、上記第2の導光体 における第2の表面には、第1の導光体における第2の 出射面からの光が該第2の表面で反射されることを抑制 特徴とする。

【0028】通常、第2の導光体における第2の表面で は、第1の導光体の第2の出射面に形成されている傾斜 部からの光の一部が反射されて反射光となる。この反射 光の発生により、第1の導光体における第1の出射面か ら第2の出射面へ反射像が形成される。その結果、この 反射像と、上記傾斜部における像とが互いに干渉または 回折し、観察者から見て、被照明物の表面に輝度分布の ムラや虹色の分光が生じることになる。

【0029】しかしながら、上記の構成によれば、前方

照明装置が第3の導光体として上記光学手段を備えているため、傾斜部からの入射光が第2の表面で反射されて生ずる反射光の発生を抑制することができる。それゆえ、微小光源部として作用する傾斜部における像と、反射光による反射像との干渉または回折を防止することができる。そのため、観察者側(第2の出射面)にて観察される表示上の輝度分布のムラや虹色の分光の発生を防止することができる。

【0030】請求項7記載の前方照明装置は、請求項6 記載の構成において、上記光学手段が反射防止膜である 10 ことを特徴とする。

【0031】上記の構成によれば、光学手段として、市 販されている反射防止膜(反射防止フィルム)をそのま ま用いることができるため、前方照明装置の製造コスト の上昇を抑制することができる。そのため、安価な前方 照明装置を提供することができる。

【0032】請求項8記載の前方照明装置は、請求項6 または7記載の構成において、上記光学手段は、上記第 2の導光体が有する屈折率とほぼ等しい屈折率を有する 接着剤により第2の導光体と接着されていることを特徴 20 とする。

【0033】上記の構成によれば、光学手段は、第2の 導光体の屈折率とほぼ等しい屈折率の接着剤にて接着さ れているため、第2の導光体内の光の入出力条件をほぼ 変えることなく反射防止効果を向上することができる。

【0034】請求項9記載の前方照明装置は、請求項2 記載の構成において、第2の導光体が、第1の導光体に おける第1の出射面からの出射光を散乱させる光散乱体 であることを特徴とする。

【0035】上記の構成では、第2の導光体としての光 30 散乱体が、第1の導光体からの出射光を散乱させること により、被照明物への出射光の輝度分布が平均化され る。この結果、輝度むらのない面光源として機能する前 方照明装置が実現される。

【0036】請求項10記載の前方照明装置は、請求項9記載の構成において、上記光散乱体が、所定の角度範囲から入射した光のみを散乱する異方性散乱体であり、第1の導光体からの出射光が第2の導光体へ入射する角度範囲の少なくとも一部が、上記所定の角度範囲に含まれることを特徴とする。

【0037】上記の構成によれば、例えば観察者の方向へ出力する光など、上記所定の角度範囲以外の入射光には、上記光散乱体としての異方性散乱体は作用しないので、不要な散乱光によって被照明物の像が劣化することが抑制される。また、第2の導光体としての光散乱体が散乱させる入射光の角度範囲に、第1の導光体からの出射光が入射することにより、効率的に入射光を散乱させることができる。この結果、輝度むらがなく明るい面光源として機能すると共に、被照明物の鮮明な像が得られる前方照明装置が実現される。

【0038】請求項11記載の前方照明装置は、請求項 9記載の構成において、上記光散乱体が、前方散乱体で

9記載の構成において、上記光散乱体が あることを特徴とする。

方照明装置が実現される。

【0039】上記の構成によれば、第2の導光体としての光散乱体が、第1の導光体から入射した光を、この光の進行方向側へのみ散乱させる前方散乱体であることにより、第1の導光体から入射した光の後方散乱がなくなる。これにより、光の利用効率がさらに向上すると共に、後方散乱光によって被照明物の像が劣化することが防止される。この結果、輝度むらがなく明るい面光源として機能すると共に、被照明物の鮮明な像が得られる前

10

【0040】請求項12記載の前方照明装置は、請求項 2記載の構成において、上記第2の導光体は、第1の導 光体における第2の出射面からの光が該第1の導光体に おける第1の出射面で反射することを抑制する光学手段 であることを特徴とする。

【0041】通常、第1の導光体における第1の出射面では、第2の出射面に形成されている傾斜部からの光が反射されて反射光となる。この反射光の発生により、第1の導光体における第1の出射面から第2の出射面へ反射像が形成される。その結果、この反射像と、上記傾斜部における像とが互いに干渉または回折し、観察者から見て、被照明物の表面に輝度分布のムラや虹色の分光が生じることになる。

【0042】しかしながら、上記の構成によれば、前方 照明装置が第2の導光体として、上記光学手段を備えて いるため、傾斜部からの入射光が第1の出射面で反射さ れて生ずる反射光の発生を抑制することができる。それ ゆえ、微小光源部として作用する傾斜部における像と、 反射光による反射像との干渉または回折を防止すること ができる。そのため、観察者側(第2の出射面)にて観 察される表示上の輝度分布のムラや虹色の分光の発生を 防止することができる。

【0043】請求項13記載の前方照明装置は、請求項 12記載の構成において、上記光学手段が反射防止膜で あることを特徴とする。

【0044】上記の構成によれば、光学手段として、市 販されている反射防止膜(反射防止フィルム)をそのま 40 ま用いることができるため、前方照明装置の製造コスト の上昇を抑制することができる。そのため、安価な前方 照明装置を提供することができる。

【0045】請求項14記載の前方照明装置は、請求項12または13記載の構成において、上記光学手段は、第1の導光体が有する屈折率とほぼ等しい屈折率を有する接着剤により第1の導光体と接着されていることを特徴とする。

【0046】上記の構成によれば、光学手段は、第1の 導光体の屈折率とほぼ等しい屈折率の接着剤にて接着さ 50 れているため、第1の導光体内の光の入出力条件をほぼ 変えることなく反射防止効果を向上することができる。 【0047】請求項15記載の前方照明装置は、請求項 2記載の構成において、第1の導光体と第2の導光体と の間に、これらの導光体の間に存在する光学的界面での 屈折率差を緩和する充填剤が導入されていることを特徴 とする。

【0048】上記の構成によれば、第1の導光体と第2の導光体との間に空気層が存在する場合と比較して、第1の導光体と第2の導光体との間に存在する光学的界面での反射による光の減衰が抑制される。この結果、光源 10光の利用効率がさらに向上し、より明るい面光源としての前方照明装置が実現される。なお、第1の導光体および第2の導光体の少なくとも一方の屈折率と、充填剤の屈折率とを等しくすれば、第1の導光体と第2の導光体との間の光学的界面の数を減らすことができるので、より効果的である。

【0049】請求項16記載記載の前方照明装置は、請求項15記載の構成において、光源と入射面との間に、入射面から第1の導光体における第1の出射面へ直接入射する成分がほぼなくなる範囲に光源からの光の広がり 20を制限する光制御手段をさらに備えたことを特徴とする。

【0050】上記の構成では、第1の導光体と第2の導光体との間に存在する光学的界面での屈折率差を緩和する充填剤が導入されていることにより、第1の導光体と第2の導光体との間に空気層が存在する場合と比較して、光源から第1の出射面へ直接入射する光のうち、第1の出射面を透過して第2の導光体へ入射する成分が多くなる。この成分の中には、比較的大きな入射角で第2の導光体へ入射し、被照明物の照明に寄与し得ないものも存在する。このため、上記の構成は、光制御手段が光源からの光の広がりを制限することにより、入射面から導光体へ入射する光のうち、第1の出射面へ直接入射する成分をほとんどなくすことができる。これにより、第1の出射面から第2の導光体へ比較的大きな入射角で入射する成分を少なくすることができる。この結果、光の利用効率がさらに向上され、明るい前方照明装置が実現される

【0051】請求項17記載の前方照明装置は、請求項 1記載の構成において、上記入射面が、導光体の側面に 40 存在することを特徴とする。

【0052】上記の構成によれば、導光体の側面から光が入射することにより、観察者からは光源が直接見えないという利点がある。これにより、光源からの直接光が被照明物の像に影響を及ぼさず、鮮明な被照明物像が得られる前方照明装置が実現される。

【0053】請求項18記載の前方照明装置は、請求項 17記載の構成において、第1の出射面に垂直な平面へ の上記傾斜部の射影の総和が、上記平面への入射面の射 影にほぼ等しいことを特徴とする。 12

【0054】上記の構成によれば、導光体の入射面から入射した光のうち、第1の出射面に平行な成分のすべてが傾斜部へ入射し、第1の出射面へ向けて反射する。これにより、光源光の利用効率がさらに向上し、より明るい前方照明装置を提供することができる。

【0055】請求項19記載の前方照明装置は、請求項 17記載の構成において、上記入射面と上記第1の出射 面とが鈍角をなして配されていることを特徴とする。

【0056】上記の構成によれば、入射面と第1の出射面とが鈍角をなして配されていることにより、入射面から入射した光源光のうち、第1の出射面へ直接入射する成分が少なくなる。これにより、光源光の利用効率がさらに向上し、より明るい前方照明装置が実現される。

【0057】請求項20記載の前方照明装置は、請求項 1記載の構成において、光源からの光を上記入射面のみ に入射させる集光手段をさらに備えたことを特徴とす る。

【0058】上記の構成によれば、光源光の損失をさらに少なくできるので、光源光の利用効率がさらに向上し、より明るい面光源としての前方照明装置が実現される。

【0059】請求項21記載の前方照明装置は、請求項 1記載の構成において、上記傾斜部の上記第1の出射面への射影の総和が、上記平坦部の上記第1の出射面への射影の総和よりも面積が小さいことを特徴とする。

【0060】第1の出射面へ入射する被照明物からの反射光は、第2の出射面における平坦部を通って観察者側へ出射するので、明るく鮮明な像を得るためには、傾斜部の射影の総和が平坦部の射影の総和よりも極力小さいことが好ましい。上記の構成によれば、主として被照明物の像の表示に寄与する平坦部の面積が見かけ上増加する。この結果、明るく鮮明な像が得られる前方照明装置が実現される。

【0061】請求項22記載の前方照明装置は、請求項 1記載の構成において、上記平坦部が、上記第1の出射 面と平行であるか、あるいは、上記第1の出射面に対し て10°以下の傾斜角度を有することを特徴とする。

【0062】被照明物の像の表示品位に対する影響を考慮すれば、第2の出射面における平坦部の、第1の出射面に対する傾斜角度を0~10°の範囲とすることが好ましい。

【0063】請求項23記載の前方照明装置は、請求項 1記載の構成において、導光体の屈折率をn2、上記傾 斜部に接する外部媒質の屈折率をn1とすると、光源か ら傾斜部へ入射する光の入射角のが下記の不等式を満足 することを特徴とする。

【0064】 *θ*≥arcsin(n1/n2) 光源から第2の出射面の傾斜部へ入射する光は、この傾 斜部で全反射することが好ましい。傾斜部への入射角*θ* 50 が上記の条件を満たせば、傾斜部への入射光は全反射す

る。これにより、光源からの光が傾斜部から観察者側へ 漏れることがなく、光の利用効率がさらに向上する。こ の結果、明るい面光源として機能する前方照明装置が実 現される。

【0065】請求項24記載の前方照明装置は、請求項 1記載の構成において、上記傾斜部の表面に、光を反射 させる反射部材が設けられたことを特徴とする。

【0066】光源から第2の出射面の傾斜部へ入射する 光は、この傾斜部で全反射することが好ましい。上記傾 斜部に反射部材を設けることにより、傾斜部への入射光 10 は、その入射角に関わらず全反射する。これにより、光 源からの光が傾斜部から観察者側へ漏れることがなく、 光の利用効率がさらに向上する。この結果、明るい面光 源として機能する前方照明装置が実現される。

【0067】請求項25記載の前方照明装置は、請求項 24記載の構成において、導光体の屈折率をn2 、上記 傾斜部に接する外部媒質の屈折率を n1 とすると、光源 から傾斜部へ入射する光の入射角のが下記の不等式を満 足することを特徴とする。

 $[0068]\theta < \arcsin(n_1/n_2)$ 光源から傾斜部へ入射する光の入射角のは、平坦部に対 する傾斜部の傾斜角度が大きくなるほど小さくなる。第 2の出射面の傾斜部に反射部材を設ければ、傾斜部への 入射光は、その入射角に関わらず全反射し、傾斜部を透 過して観察者側へ出射することはない。これにより、光 源から傾斜部へ入射する光の入射角のが上記の不等式を 満たす範囲まで、平坦部に対する傾斜部の傾斜角度を大 きく設計することが可能となる。この結果、平坦部の法 線方向から見た場合に、被照明物の像の表示に寄与しな い傾斜部が視認されにくくなり、被照明物の像の表示品 30 位の向上が図れる。

【0069】請求項26記載の前方照明装置は、請求項 24記載の構成において、上記反射部材の表面に、遮光 部材が設けられたことを特徴とする。

【0070】上記の構成では、傾斜部の表面に反射部材 が設けられているので、周囲光がこの反射部材で反射し て観察者の目に入り、被照明物の像の表示品位を劣化さ せるおそれがある。このため、上記反射部材の表面に、 周囲光が観察者へ向けて反射することを防止する遮光部 材を設けたことにより、鮮明な被照明物像が得られる前 40 方照明装置を提供することができる。

【0071】請求項27記載の前方照明装置は、請求項 1記載の構成において、第2の出射面における平坦部か らの出射光と傾斜部からの出射光との出射方向をそろえ る補償手段をさらに備えたことを特徴としている。

【0072】第2の出射面は、平坦部および傾斜部が交 互に配置された階段状に形成されているので、第1の出 射面から導光体へ入射した被照明物からの反射光は、第 2の出射面の平坦部および傾斜部のそれぞれから互いに 異なる方向へ出射することとなり、被照明物の像のにじ 50 て、傾斜部および平坦部のそれぞれからの出射方向が揃

14

みやボケを招来するおそれがある。このため、第2の出 射面の平坦部からの出射光と、傾斜部からの出射光との 出射方向をそろえる補償手段を備えることにより、被照 明物の鮮明な像を得ることが可能となる。

【0073】請求項28記載の前方照明装置は、請求項 27記載の構成において、上記補償手段が、導光体の第 2の出射面に対向する第1の表面と、上記第1の表面に 対向する第2の表面とを備えると共に、補償手段の第1 の表面が、導光体の第2の出射面の傾斜部と略平行な傾 斜面と、上記第2の出射面の平坦部と略平行な平坦面と が交互に配置されて、上記第2の出射面と相補する階段 状に形成され、上記補償手段の第2の表面が、導光体の 第1の出射面と略平行に配置されていることを特徴とす る。

【0074】上記の構成によれば、導光体の第1の出射 面から被照明物へ向けて出射した光は、被照明物で反射 して、上記第1の出射面から再び導光体内部へ戻り、図 21に示すように、第2の出射面の平坦部(21)およ び傾斜部(22)のそれぞれから、互いに異なる方向へ 20 出射する。ここで、上記第2の出射面に対向する位置に 配置された補償手段(64)の第1の表面(64a) が、導光体の第2の出射面と相補する階段状に形成され ていることにより、平坦部(21)から出射する光(6 9a) は補償手段の第1の表面の平坦面へ入射し、傾斜 部(22)から出射する光(68a)は第1の表面の傾 斜面へ入射し、ほぼ等しい方向へ出射する光 (68b・ 69b)となって第2の表面から出射する。このよう に、平坦部からの出射光の出射方向と、傾斜部からの出 射光の出射方向とがそろえられることにより、にじみや ボケのない鮮明な被照明物像を得ることが可能となる。 【0075】請求項29記載の前方照明装置は、請求項 27記載の構成において、上記補償手段において、主と して第2の出射面の傾斜部からの出射光が入射する領域 と、主として第2の出射面の平坦部からの出射光が入射

【0076】上記の構成では、主として傾斜部からの出 射光が入射する領域と、主として平坦部からの出射光が、 入射する領域とが、互いに異なる屈折率を有する補償手 段によって、傾斜部および平坦部のそれぞれからの出射 方向がそろえられる。この結果、にじみやボケのない鮮 明な被照明物像が得られる前方照明装置を提供すること が可能となる。

する領域とが、互いに異なる屈折率を有することを特徴

とする。

【0077】請求項30記載の前方照明装置は、請求項 27記載の構成において、上記補償手段において、主と して第2の出射面の傾斜部からの出射光が入射する領域 に、回折素子が設けられたことを特徴とする。

【0078】上記の構成では、主として傾斜部からの出 射光が入射する領域に回折素子が設けられたことによっ

えられる。この結果、にじみやボケのない鮮明な被照明 物像が得られる前方照明装置が実現される。

【0079】請求項31記載の前方照明装置は、請求項27記載の構成において、上記補償手段において、主として第2の出射面の傾斜部からの出射光が入射する領域に、遮光部材が設けられたことを特徴とする。

【0080】上記の構成では、主として傾斜部からの出射光が入射する領域に、光を透過させない遮光部材が設けられたことによって、導光体の第2の出射面から出射する光は、平坦部からの出射光のみとなる。これにより、にじみやボケのない鮮明な被照明物像が得られる前方照明装置が実現される。

【0081】請求項32記載の前方照明装置は、請求項 1記載の構成において、光源と入射面との間に光源から の光の広がりを制限する光制御手段をさらに備えたこと を特徴とする。

【0082】光源からの光は、主として第2の出射面の傾斜部にて反射するが、傾斜部にて全反射せずに導光体外部へ漏れる成分を少なくするためには、光源からの光にある程度の指向性を持たせて、上記傾斜部に臨界角よ 20 りも小さい角度で入射する成分を少なくすることが好ましい。このため、上記の構成は、光源からの光の広がりを制限する光制御手段を備えたことにより、傾斜部からの漏れ光が少なくなり、光の利用効率がさらに向上すると共に、被照明物の像のにじみやボケが防止される。この結果、明るく且つ鮮明な被照明物像が得られる面光源としての前方照明装置が実現される。

**【0083】請求項33記載の前方照明装置は、請求項32記載の構成において、光制御手段が、入射面から第2の出射面の傾斜部へ直接入射する光の入射角が臨界角30よりも大きくなる範囲に光源からの光の広がりを制限することを特徴とする。

【0084】上記の構成によれば、光制御手段が光源からの光の広がりを制限することにより、入射面から傾斜部へ直接入射する光のうち、臨界角よりも小さい入射角で入射する成分をなくすことができる。これにより、傾斜部からの漏れ光が少なくなり、光の利用効率がさらに向上すると共に、被照明物の像のにじみやボケが防止される。この結果、明るく且つ鮮明な被照明物像が得られる面光源としての前方照明装置が実現される。

【0085】請求項34記載の前方照明装置は、光源および導光体を備え、被照明物の前方に配置されて使用される前方照明装置において、上記導光体が、平面状の底面と、上記底面に対向する表面と、光源からの光が入射する入射面とを備え、上記表面が、底面に対して略平行な平坦部と、上記平坦部に対して同方向に傾斜した傾斜部とが交互に配置された階段状に形成されていることを特徴とする。

【0086】上記の構成によれば、導光体の表面が、傾 斜部および平坦部が交互に配置された階段状に形成され 50 ている。これにより、本発明の前方照明装置では、平坦 部に平行に進行する光の成分が導光体の外へ漏れること がなく、傾斜部で反射して被照明物へ照射される。それ

ゆえ、略平板状に形成された導光体を有する従来の構成 と比較して、光源光の利用効率が向上する。この結果、

16

明るい前方照明装置が実現される。

【0087】請求項35記載の前方照明装置は、請求項 1記載の構成において、上記導光体に形成されている平 坦部のピッチと傾斜部のピッチとの和は、上記入射面か 10 ら遠ざかるに伴い小さくなっていることを特徴とする。 【0088】上記の構成によれば、平坦部のピッチと傾 斜部のピッチとの和が光源から遠ざかるに伴って小さく なっているため、上記傾斜部の単位面積当たりの数が光 源から遠ざかるに伴い増加することになる。この傾斜部 の増加に伴い、被照明物の表面における輝度は、光源か ら遠ざかる位置ほど向上する。通常、光源から遠い位置 ほど輝度は低下する傾向にあるので、上記の構成では、 この傾斜部の増加によって、光源からの遠ざかることに よる被照明物の輝度の低下を相殺し、光源からの光を高 角度で効率よく被照明物全体に導くことができる。その 結果、被照明物の表面における輝度分布を平均化するこ とができる。

【0089】請求項36記載の反射型液晶表示装置は、 反射板を有する反射型液晶素子を備えると共に、上記反 射型液晶素子の前面に、請求項1記載の前方照明装置が 配置されたことを特徴とする。

【0090】これにより、例えば日中の屋外等のように十分な周囲光量がある場合には、前方照明装置を消灯した状態で使用する一方、十分な周囲光量が得られないときには、前方照明装置を点灯して使用することができる。この結果、周囲環境に関わらず、常に明るい高品位な表示を実現し得る反射型液晶表示装置を提供することが可能となる。

【0091】請求項37記載の反射型液晶表示装置は、 請求項36記載の構成において、反射型液晶素子が走査 線を備え、上記走査線のピッチと、前方照明装置の第2 の出射面における平坦部のピッチとがほぼ等しく、走査 線の上方に平坦部が配置されていることを特徴とする。 【0092】上記の構成によれば、液晶素子で実際に表 のでか行われる画素領域上に平坦部を配置することができる。この結果、画素領域からの反射光が平坦部へ無駄なく入射するので、光の利用効率がさらに向上し、高品位な表示を実現し得る反射型液晶表示装置を提供することが可能となる。

【0093】請求項38記載の反射型液晶表示装置は、 請求項36記載の構成において、反射型液晶素子が走査 線を備え、上記走査線のピッチよりも、前方照明装置の 第2の出射面における平坦部のピッチと傾斜部のピッチ との和の方が小さいことを特徴とする。

50 【0094】上記の構成によれば、上記平坦部と傾斜部

とのピッチの和が走査線のピッチの和よりも小さいこと から、前方照明装置の傾斜部のピッチと反射型液晶素子 の画素の周囲に形成されているブラックマトリクスのピ ッチとがずれることになる。その結果、ブラックマトリ クスと傾斜部との干渉によるモアレ縞の発生を抑制する ことができるため、得られる反射型液晶表示装置の表示

【0095】請求項39記載の反射型液晶表示装置は、 請求項36記載の構成において、反射型液晶素子が走査 線を備え、上記走査線のピッチよりも、前方照明装置の 10 を検出する一対の位置検出手段が設けられたことを特徴 第2の出射面における平坦部のピッチと傾斜部のピッチ との和の方が大きいことを特徴とする。

品位を向上させることができる。

【0096】上記の構成によれば、前方照明装置の傾斜 部のピッチと反射型液晶素子の画素の周囲に形成されて いるブラックマトリクスのピッチとがずれることにな る。その結果、ブラックマトリクスと傾斜部との干渉に よるモアレ縞の発生を抑制することができるため、得ら れる反射型液晶表示装置の表示品位を向上させることが できる。

【0097】請求項40記載の反射型液晶表示装置は、 請求項36から39の何れか1項に記載の構成におい て、上記反射型液晶素子が、表面に凹凸部を有する反射 板を備えていることを特徴とする。

【0098】上記の構成によれば、反射板が凹凸部を有 しているため、液晶分子の配向および液晶素子のセル厚 とに影響を及ぼすことなく入射光を拡散する。そのた め、正反射方向以外から光が入射しても、画像の観察が 可能となる。 📉

【0099】請求項41記載の反射型液晶表示装置は、 請求項40記載の構成において、上記反射板は、反射型 30 液晶素子の液晶層を駆動する液晶駆動電極を兼ねた反射 電極であり、該液晶層に隣接して設けられていることを

【0100】上記の構成によれば、反射板が液晶層に隣 接して設けられていない場合と比較して、反射型液晶素 子を構成する電極基板による視差の発生を解消できる。 そのため、得られる反射型液晶表示装置において、画像 。の2重写りを抑制することができる。さらに、反射板が 液晶駆動電極を兼ねていることから、反射型液晶表示装 置の構成を簡素化することもできる。

【0101】請求項42記載の反射型液晶表示装置は、 請求項36記載の構成において、前方照明装置が、反射 型液晶素子に対して開閉自在に設けられたことを特徴と している。

【0102】上記の構成によれば、前方照明装置を点灯 した状態でこの反射型液晶表示装置を用いる場合は、液 晶素子に前方照明装置を被せた状態で使用し、前方照明 装置を必要としない場合は、液晶素子に対して前方照明 装置を開いた状態で使用することができる。これによ り、前方照明装置を必要としない場合に、前方照明装置 50 が、交互に配置されて形成されている。すなわち、導光

18

によって周囲光の入射が妨げられることがなく、常に明 るい表示を実現し得る反射型液晶表示装置を提供するこ とが可能となる。

【0103】請求項43記載の反射型液晶表示装置は、 反射板を有する反射型液晶素子の前面に、請求項27記 載の前方照明装置を備えた反射型液晶表示装置であっ て、上記補償手段が、所定の圧力に対して可撓性を有す ると共に、上記補償手段および第2の出射面のそれぞれ に、互いに接触することによって圧力が加えられた位置 とする。

【0104】上記の構成では、前方照明装置がいわゆる タッチパネルとして機能する。すなわち、例えばペン等 によって補償手段の表面のある位置を押圧すると、補償 手段が撓むことによって、補償手段および第2の出射面 にそれぞれ設けられた一対の位置検出手段が上記の位置 において互いに接触する。この位置を上記位置検出手段 が座標として認識すれば、液晶素子に表示された内容に 対してペン入力が可能な反射型液晶表示装置が実現され 20 る。

【0105】請求項44記載の反射型液晶表示装置は、 請求項43記載の構成において、反射型液晶素子が走査 線を備え、上記位置検出手段が第2の出射面の平坦部に 形成された透明電極を含み、上記走査線のピッチと、上 記透明電極のピッチとがほぼ等しく、走査線の上方に透 明電極が配置されていることを特徴とする。

【0106】上記の構成では、液晶素子で実際に表示が 行われる画素領域上に、位置検出手段の透明電極を配置 することができる。この結果、タッチパネルの解像度と 液晶素子の解像度とがほぼ等しくなる。これにより、タ ッチパネルで入力を行う際の、入力像と表示像との一体 感が向上するという効果がある。

[0107]

【発明の実施の形態】

〔実施の形態1〕本発明の実施の一形態について図1な いし図7に基づいて説明すれば、以下のとおりである。 【0108】本実施の形態に係る反射型LCDは、図1 . に示すように、反射型液晶セル10(反射型液晶素子) の前面に、フロントライト20(前方照明装置)を備え 40 た構成である。

【0109】フロントライト20は、主として光源26 および導光体24によって構成されている。光源26 は、例えば蛍光管等の線状光源であり、導光体24の側 面(入射面25)に沿って配置される。 導光体24は、 液晶セル10側の界面28 (第1の出射面) が平坦に形 成されている。一方、導光体24において上記界面28 と対向する界面23 (第2の出射面)は、界面28と平 行あるいは略平行に形成された平坦部21と、平坦部2 1に対して同方向に一定の角度で傾斜した傾斜部22と

体24は、図1から明らかなように、光源26の長手方 向を法線とする断面において、光源26から遠ざかるほ ど下がってゆく階段状に形成されている。

【0110】傾斜部22は、主として、光源26からの 光を界面28へ向けて反射する面として作用する。 一 方、平坦部22は、主として、フロントライト20から の照明光が、液晶セル10から反射光として戻ってきた ときに、この反射光を観察者側へ透過させる面として作 用する。

【0111】ここで、図2(a)ないし(c)を参照し 10 ながら、導光体24の形状について、さらに詳細に説明 する。図2(a)は、導光体24を平坦部21の法線方 向上方から見た平面図、図2(b)は、導光体24を入 射面25の法線方向から見た側面図、図2(c)は、導 光体24を、入射面25および界面28の双方に対して 垂直な面で切断した断面図である。

【0112】導光体24は、例えばPMMA(polymethy 1metacrylate) 等を用い、射出成形により形成すること ができる。この実施形態に係る導光体24は、幅W=1 の厚みh: =2.0mm、平坦部21の幅w: =1.9 mmとする。また、傾斜部22の段差h2 = 50μm、 平坦部21に対する傾斜部22の傾斜角α=30°とす ることにより、傾斜部22の幅w2 は約87µmであ

【0113】導光体24が階段状に形成されていること により、フロントライト20は下記の利点を有する。ま ず、図2(b)に示すように、入射面25の法線方向か ら見た場合、平坦部21が界面28に対して完全に平行 に形成されていれば、この平坦部21は視認されず、傾 30 45°をなすように偏光軸が設定された偏光板18を設 斜部22のみが視認される。 すなわち、傾斜部22の入 射面25への射影の総和が、入射面25に等しい。

【0114】このような場合、入射面25から入射した 光源光のうち、入射面25に垂直な成分は、すべて、傾 斜部22に直接入射して界面28へ向けて反射する。こ れにより、前述した従来のフロントライトシステムで見 られるような、入射面に対向する面から多量の光が導光 体外部へ出射してしまうという問題は発生しない。すな わち、フロントライト20は、階段状の導光体24を備 えたことにより、光の利用効率が従来の構成よりも大幅 40

【0115】次に、液晶セル10の構成およびその製造 方法について説明する。液晶セル10は、図1に示すよ うに、基本的に、一対の電極基板11a・11bが液晶 層12を挟持した構成である。電極基板11aは、光透 過性を有するガラス基板14a上に、透明電極15a (走査線)が設けられ、この透明電極15aを覆うよう に液晶配向膜16aが形成されてなる。

【0116】上記ガラス基板14aは、例えばコーニン グ社製のガラス基板(商品名:7059)で実現され

20

る。透明電極15aは、例えばITO(Indium Tin Oxid e)を材料とする。液晶配向膜16aは、例えば、日本合 成ゴム社製の配向膜材料(商品名:AL-4552) を、透明電極15aが形成されたガラス基板14aの上 にスピンコータで塗布し、配向処理としてラビング処理 を施すことにより作成される。

【0117】電極基板11bも、上記電極基板11aと 同様に、ガラス基板14b、透明電極15b、および液 晶配向膜16bを順次積層することにより作成される。 なお、電極基板11a・11bに対し、必要に応じて絶 縁膜等を形成しても良い。

【0118】電極基板11a・11bは、液晶配向膜1 6a・16bが対向するように、且つ、ラビング処理の 方向が平行且つ逆向き (いわゆる反平行) になるように 配置され、接着剤を用いて貼り合わされる。このとき、 電極基板11a・11bの間には、粒径4.5μmのガ ラスビーズスペーサ (図示せず) が予め散布されたこと により、均一な間隔で空隙が形成されている。

【0119】この空隙に、真空脱気により液晶を導入す 10.0mm、長さL=80.0mm、入射面25部分 20 ることにより、液晶層12が形成される。なお、液晶層 12の材料としては、例えばメルク社製の液晶材料(商 品名: ZLI-3926) を用いることができる。 な お、この液晶材料の Δ nは0.2030である。ただ し、液晶材料はこれに限られるものではなく、種々の液 晶を用いることができる。

> 【0120】さらに、ガラス基板14bの外面に、反射 板17として、ヘアーライン加工を施したアルミ板を、 例えばエポキシ系の接着剤により接着すると共に、ガラ ス基板14aの外面に、液晶層12の液晶の配向方向と 置する。

> 【0121】以上の工程により、反射型の液晶セル10 が製造される。この液晶セル10に、下記のとおりにフ ロントライト20を組み合わせることにより、前方照明 装置付の反射型LCDが製造される。まず、液晶セル1 0の偏光板18上に、導光体24を積層する。なお、液 晶セル10の偏光板18と導光体24との間には、粒径 50 µmのスペーサ (図示せず) が予め散布されること により、このスペーサの粒径にほぼ等しい均一な厚みで 空隙29が形成されている。つまり、導光体24の界面 28は、光学的には、PMMAと空気層との界面に相当 する。なお、この空隙29は、光の波長の約100倍程 度の厚みを持つため、空隙29による干渉等の発生は抑 えられている。

【0122】次に、導光体24の入射面25に対向する ように、光源26として蛍光管を設置し、光源26と入 射面25とを反射鏡27 (集光手段)で囲む。反射鏡2 7は、光源26からの光を入射面25のみに集光させ る。なお、反射鏡27としては、例えばアルミテープ等 50 を用いることができる。以上の工程により、補助照明と

してのフロントライト20を備えた反射型LCDが完成 する。

【0123】この反射型LCDは、周囲光が不十分なと きは、フロントライト20を点灯した照明モードで使用 し、十分な周囲光が得られるときは、フロントライト2 0を消灯した反射モードで使用することができる。

【0124】ここで、フロントライト20の動作原理に ついて、図3 (a) ないし (c) を参照しながら説明す る。前述したように、導光体24は、入射面25への傾 斜部22の射影の総和が、入射面25と等しい。このた 10 の利用効率が向上されている。 め、光源26からの入射光のうち、入射面25に垂直な 成分は、図3(a)に示すように、傾斜部22により反 射され、界面28から、図3(a)中には図示しない液 晶セル10へ向けて出力される。

【0125】また、図3(b)に示すように、光源26 からの入射光のうち、まず界面23に入射する成分は、 導光体24内での挙動により、二通りに分類される。一 つは、図3(b)に示す光31aのように、傾斜部22 へ直接入射して反射され、液晶セル10への出力光31 bとなる光である。二つめは、図3(b)に示す光32 20 aのように、平坦部21と界面28との間で全反射しつ つ導光体24内を伝搬し、最終的に傾斜部22へ到達し て反射され、出力光32bとなる光である。

【0126】また、図3(c)に示すように、光源26 からの入射光のうち、まず界面28に入射する成分は、 界面28と界面23の平坦部21との間で全反射しつつ*

 $\theta_1 \ge \theta_c = \arcsin(n_2 / n_1) \cdot \cdot \cdot (\sharp 2)$

 τ で表される入射角 θ 1 で傾斜部 22へ入射すればよい。 【0131】ただし、上記式2において、

 θ_1 :傾斜部22への入射角、

n1: 導光体24の屈折率

n2 : 傾斜部22において導光体24と接する物質の屈 折率

 θ 。:傾斜部22の臨界角、である。

【0132】以上のように、傾斜部22への光の入射角 θ1 が式2を満たすように傾斜部22を形成すれば、傾 斜部22から導光体24の外部への光の漏れが抑制さ れ、光の利用効率をさらに向上させることができる。

【0133】2. 平坦部21について

平坦部21が主として光を透過させる領域であることは 40 先に述べたが、平坦部21を透過する光としては、

(イ)液晶セル10からの反射光、(ロ)反射モードで 使用する場合の周囲光、が存在する。

【0134】上記(イ)の出力光は、液晶セル10の液 晶層12で調光され、反射板17で反射されて再度導光 体24へ入射した後に界面23から観察者側へ出射する が、このとき、主として平坦部21から出力される。な お、反射板17で反射される光は拡散光となる。この拡 散光は、平坦部21において反射することが極めて少な く透過するためには、平坦部21に臨界角以下で入射す※50 21で反射する光の量が多くなる。これにより、光源光

22

*導光体24内を伝搬し、最終的に傾斜部22へ到達して 反射され、界面28から液晶セル10へ向けて出力す る。

【0127】以上の説明から分かるように、光源26か ら導光体24への入射光のほとんどすべての成分は、傾 斜部22で反射され、界面28を通って液晶セル10へ 出射する。 すなわち、 本実施形態のフロントライト20 は、階段状の界面23を持つ導光体24を備えたことに より、光源26からの光の損失が極めて少なく、光源光

【0128】次に、光源光の利用効率をさらに向上させ るための傾斜部22または平坦部21の条件1.~3. について説明する。

【0129】1. 傾斜部22について

導光体24において、界面23の傾斜部22は、主とし て、光源26からの入射光を反射する反射面として機能 する。一方、界面23の平坦部21は、主として、液晶 セル10の背面に設けられた反射板17にて反射した 光、および周囲光を透過する透過面として機能する。

【0130】傾斜部22にて光源26からの入射光が全 反射するためには、次のような条件が満たされる必要が ある。つまり、異なる屈折率を有する物質が接する面 (界面)に入射した光は、入射角が臨界角以上のときに 界面で全反射する。このため、傾斜部22に入射する光 が傾斜部22で全反射するためには、

※ることが好ましい。臨界角は、導光体24の屈折率によ り変化するが、導光体24の材料としてPMMAを用い

30 た場合はおよそ42°前後である。つまり、液晶セル1 0からの出力光は、導光体24の平坦部21に約40° 以下で入射することが好ましい。

【0135】また、平坦部21は、必ずしも界面28と 平行でなくても良い。平坦部21への入射角は、反射板 17における光の散乱範囲にも依存する。このため、反 射板17の特性についても考慮すれば、図4に示すよう に、例えば、反射板17において光が散乱する主な範囲 が、反射板17の法線に対して±30°程度であるとす ると、平坦部21の反射板17に対する傾斜角度るをお よそ±10°以内とすれば、平坦部21で反射される光 の成分33を極めて少なくできる。なお、図4では、平 坦部21が界面28に対して傾斜していることを分かり やすくするため、傾斜角度δを上記の好ましい範囲より も大きく示した。

【0136】このように、平坦部21が界面28に対し て平行または±10°以内の傾きで形成されていれば、 光源26からの入射光は、傾斜部22への入射角よりも 大きな入射角で平坦部21に入射するので、光源26か ら平坦部21へ入射する光が外部へ漏れにくく、平坦部 のロスが抑えられる。

【0137】さらに、上記(ロ)の反射モードで使用す る場合の周囲光を考慮すれば、本反射型LCDをフロン トライト20を消灯した反射モードで使用する場合に、 十分な周囲光を液晶セル10へ取り込むためには、平坦 部21の面積は大きければ大きいほど好ましい。

【0138】3. 界面23における傾斜部22と平坦部 21との配置

界面23の傾斜部22と平坦部21との配置について は、(a)使用者が界面23個から反射型LCDを見た 10 ときに、傾斜部22の面積が小さく、平坦部21の面積 が大きいこと、(b)入射面25に対する傾斜部22の 射影の総和が大きく、平坦部21の射影の総和が小さい こと、の二つの条件が重要である。

【0139】上記(a)の条件は、すなわち、界面28 への平坦部21の射影の総和が、傾斜部22の射影の総 和よりも大きいことを意味する。界面28への傾斜部2 2の射影の大きさは、図2(c)に示す傾斜部22の界 面28に対する傾斜角αによって決まる。従って、傾斜 斜部22の面積を、平坦部21の面積に比べて非常に小 さくすることが可能である。

【0140】さらに、傾斜部22および平坦部21のピ ッチを液晶セル10の走査線の抜きまたはバスラインに 合わせることによって、液晶セル10で実際に表示が行 われる領域上全体に平坦部21を配置することができ、 光の利用効率がさらに向上する。

【0141】上記(b)の条件は、前述のように、光源 26からの入射光を有効利用するためには、入射面25 視認されることが好ましい、ということを意味する。

【0142】次に、フロントライト20の照明光強度の 測定結果について説明する。フロントライト20の照明 光強度を測定するために、図5に示すような測定系を用 いた。つまり、フロントライト20の界面28の法線方 向を0°とし、0°から±90°の範囲における光強度 を、検出器34にて測定した。

【0143】この結果を図6に示す。図6から明らかな ように、フロントライト20において、光源26から入 射面25を通って導光体24へ入射した光は、導光体2 40 4の作用により、界面28の略法線方向へ出射されてい ることが分かる。すなわち、フロントライト20は、導 光体24の側面に配置された光源26からの光を液晶セ ル10に対して略垂直に入射させることができ、明るい 補助照明として機能する。

【0144】さらに、本実施形態の反射型LCDは、透 過型LCDやCRT、PDP等の自発光型のディスプレ イと比較して、より明るい表示が可能であるという利点 がある。 すなわち、 図7 (a) に示すように、 自発光型 のディスプレイ35からの光36aは、周囲光37に対 50 10の偏光板18との間は、両者の屈折率を一致させる

して進行方向が逆向きとなる。このため、光36 aから

周囲光37を差し引いた成分36bが、観察者に認識さ na.

24

【0145】これに対して、本実施形態の反射型LCD では、照明モードで使用する場合、図7(b)に示すよ うに、フロントライト20からの補助光39aと、周囲 光37とが、液晶セル10の反射板 (図示せず) にて反 射され、補助光39aと周囲光37との和に相当する成 分39bが、観察者に認識される。これにより、暗い場 所だけでなく例えば日中の屋外のような明るい場所で も、より明るい表示が実現される。

【0146】以上のように、本実施の形態に係る構成 は、フロントライト20が階段状の導光体24を備えた ことによって、光源26から出射される光の利用効率が 向上されている。これにより、周囲光が十分でない場合 に、液晶セル10に十分な照明光を与えることができ、 周囲環境によらず常に明るい表示が可能な反射型LCD を提供することが可能となる。

【0147】 〔実施の形態2〕 本発明の他の実施形態に 角αの大きさを調整することにより、使用者から見た傾 20 ついて、図8ないし図11に基づいて説明すれば以下の とおりである。なお、前述の実施の形態1にて説明した 構成と同様の機能を有する構成には、同一の符号を付記 し、その説明を省略する。

> 【0148】本実施の形態に係る反射型LCDは、図8 に示すように、液晶セル10の前面に、実施の形態1で 説明したフロントライト20(第1の導光体)と楔型の 第2の導光体40とによって構成されるフロントライト "システム51を備えたことを特徴とする。

【0149】上記第2の導光体40は、フロントライト を法線方向から見た場合に界面23の傾斜部22のみが 30 20の導光体24と液晶セル10との間に配置され、導 光体24の界面28に対して平行な斜面41と、液晶セ ル10の表面に対して平行な底面42とを有する。底面 42に対する斜面41の傾斜角は、図9(a)に示すよ うに、導光体24の界面23において傾斜部22と平坦 部21とが尾根状に接する部分を互いに結ぶ線49が、 底面42と平行になるように設計することが好ましい。 【0150】また、第2の導光体40は、第1の導光体 である導光体24と少なくとも屈折率が等しい材質で形 成することが好ましい。言うまでもなく、第2の導光体 40を導光体24と全く同じ材質で形成しても良い。ま た、導光体24と第2の導光体40とを、例えば射出成 形等によって一体的に形成するように構成すれば、製造 工程を簡略化することができる。

> 【0151】導光体24と第2の導光体40との間隙に は、粒径50μmのスペーサ (図示せず) が予め散布さ れる。これにより、導光体24と第2の導光体40との 間隙には、上記スペーサの粒径にほぼ等しい空隙43が 形成される。

> 【0152】第2の導光体40の底面42と、液晶セル

充填剤 (図示せず) で満たされている。これにより、第 2の導光体40と偏光板18との界面での反射による光 の減衰が防止され、光源光の損失がさらに抑制される。 なお、上記充填剤としては、例えばUV硬化性樹脂また はサリチル酸メチル等を用いることができる。

【0153】ここで、導光体24と液晶セル10との間 に第2の導光体40を設けたことによる効果について説 明する。図9(b)に示すように、第2の導光体40が 設けられていない構成(実施の形態1)では、傾斜部2 2から、液晶セル10への出射面としての界面28まで 10 の距離 1 。 (図中 1 1 、 1 2)は、光源 2 6 からの距離 xn (図中x1 、x2)が大きくなるほど小さくなる。 これに対して、本実施形態のフロントライトシステム5 1では、図9 (a) に示すように、第2の導光体40を 備えたことにより、傾斜部22から、液晶セル10への 出射面である第2の導光体40の底面42までの距離1 nは、光源26からの距離xnに関わらず、ほぼ等し

【0154】すなわち、第2の導光体40が、フロント ライト20の傾斜部22から液晶セル10までの距離を 20 一定にする役割を果たすことにより、フロントライトシ ステム51は、光源26からの距離によらず一定の輝度 で光を出射する面光源として作用する。

【0155】ここで、第2の導光体40による効果を確 かめるために、図10(a)に示すように、検出器44 を、第2の導光体40の底面42に対して平行に移動さ せながら、フロントライトシステム51の出力光の輝度 分布を測定した。なお、入射面25の近傍を測定開始位 置Ps とし、底面42において光源26から最も遠い位 置を測定終了位置 P & とした。 測定の結果は、 図11 (a) に示すとおりである。

【0156】同様に、比較のために、第2の導光体40 が設けられていない構成 (実施の形態1)の出力光の輝 度分布を測定するために、図10(b)に示すように、 検出器44を、フロントライト20の界面28に対して 平行に移動させながら、測定を行った。 なお、入射面2 6の近傍を測定開始位置Ps とし、界面28において光 源26から最も違い位置を測定終了位置Ps とした。測 定結果は、図11(b)に示すとおりである。

から明らかなように、第2の導光体40が設けられてい ない場合、図11(b)に示すように、輝度のピークの ピッチpが、光源26に近いほど大きく、光源26から 遠ざかるほど小さくなるのに対し、本実施形態のフロン トライトシステム51は、図11(a)に示すように、 輝度のピークのピッチpが第2の導光体40の底面42 全体にわたってほぼ等しく、輝度のピークも一様であ る。

【0158】以上のように、本実施形態の反射型LCD

を備え、このフロントライトシステム51が、第1の導 光体としての導光体24と、液晶セル10との間に、導 光体24の傾斜部22から液晶セル10までの距離を一 定にするための第2の導光体40を備えたことにより、 フロントライトシステム51が液晶セル10をむらなく 照明し、十分な周囲光が得られない場合でも、明るく且 つむらのない高品位な表示が実現されるという効果を奏 する。

【0159】 〔実施の形態3〕 本発明のさらに他の実施 形態について、図5、図12ないし図14に基づいて説 明すれば以下のとおりである。なお、前記した各実施の 形態で説明した構成と同様の機能を有する構成には、同 一の符号を付記し、その説明を省略する。

【0160】本実施形態の反射型LCDは、図12に示 すように、液晶セル10の前面に、フロントライト20 と第2の導光体45とによって構成されるフロントライ トシステム52が配置された構成である。

【0161】上記第2の導光体45は、図13に示すよ うに、導光体24からの入射光を、その進行方向側への み散乱させる機能を有する前方散乱板であると共に、所 定の角度範囲から入射した光のみを散乱させ、上記所定 の角度範囲以外からの入射光を透過する性質を有する異 方性散乱板である。このような条件を満たす第2の導光 体45としては、例えば住友化学株式会社製の視角制御 板(商品名:ルミスティー)等が、市販品として入手可 能である。

【0162】なお、第2の導光体45が入射光を散乱さ せる角度範囲は、導光体24からの出射光が入射する角 度範囲を完全に含むことが好ましい。これにより、導光 30 体24からの出射光をむだなく散乱させることができ、 光源光の利用効率を向上させることができる。また、第 2の導光体45が、所定の角度範囲から入射した光のみ を散乱させ、上記所定の角度範囲以外からの入射光を透 過する性質を有する異方性散乱であることにより、上記 所定の角度範囲以外からの入射光には、第2の導光体4 5が作用しないので、不要な散乱光によって表示品位が 劣化することが防止される。

、【0163】導光体24と第2の導光体45との間隙に は、粒径50μmのスペーサ(図示せず)が予め散布さ 【0157】図11 (a)および (b)を比較すること 40 れる。これにより、図12に示すように、導光体24と 第2の導光体45との間隙には、上記スペーサの粒径に ほぼ等しい空隙46が形成される。

> 【0164】第2の導光体45と液晶セル10の偏光板 (図示せず)との間は、両者の屈折率を一致させる充填 剤(図示せず)で満たされている。これにより、第2の 導光体45と液晶セル10との界面での反射による光の 減衰が防止され、光源光の損失がさらに抑制される。

【0165】ここで、フロントライトシステム52の照 明光強度の測定結果について説明する。フロントライト は、液晶セル10の前面にフロントライトシステム51 50 システム52の照明光強度を測定するために、前記した

実施の形態1で用いた測定系(図5参照)と同様の測定系を使用した。ここでは、フロントライトシステム52の第2の導光体45の法線方向を0°とし、0°から±90°の範囲において、第2の導光体45の液晶セル10側に位置する面からの光強度を、検出器34にて測定した。測定の結果を図14に示す。

【0166】図14から明らかなように、本実施形態のフロントライトシステム52は、第2の導光体45によって第1の導光体としての導光体24からの出射光が散乱することにより、実施の形態1に比較して、フラット 10な角度特性を有していることが分かる。

【0167】以上のように、本実施形態で説明した構成は、導光体24からの出射光を散乱させる第2の導光体45を備えたことにより、液晶セル10へ出射する光の輝度分布が平均化され、液晶セル10をむらなく照射することが可能となる。

【0168】なお、上記第2の導光体45として、異方性散乱板の他に、ホログラム等を使用することも可能である。

【0169】〔実施の形態4〕本発明のさらに他の実施 20 形態について、図15ないし図19に基づいて説明すれば以下のとおりである。なお、前記した各実施の形態で説明した構成と同様の機能を有する構成には、同一の符号を付記し、その説明を省略する。

【0170】前述の実施の形態1で説明したように、導 光体24の観察者側の界面23が、傾斜部22および平 坦部21によって形成されている場合、液晶セル10に て反射されて再び導光体24へ入射した光が界面23を 透過する際に、像のにじみやボケが生じることがある。

【0171】つまり、図15に示すように、液晶セル1 0からの出力光48aは、必ずしも平坦部21のみから でなく、傾斜部22からも観察者側へ透過する。このと き、傾斜部22からの出射光48bと、平坦部21から の出射光48cとが、互いに異なる方向へ出射して交差 することにより、表示すべき像ににじみやボケが表れる ことがある。

【0172】このような問題を解決するために、本実施 形態の反射型LCDは、図16に示すように、導光体2 4の界面23において、傾斜部22の表面に、光を反射 する金属反射膜47(反射部材)が付加された構成であ 40 る。上記金属反射膜47は、図16に示すように、傾斜 部22へ入射する光のすべてを、その入射角に関わらず 反射する。これにより、界面23から観察者側へ出射す る光は、平坦部21を透過した光のみとなる。この結 果、にじみやボケのない鮮明な表示像を得ることができ る。

【0173】以下に、上記金属反射膜47を製造する方法の一例について、アルミニウムを材料とする場合を例に挙げて説明する。なお、金属反射膜47の材料は、アルミニウムに限らず、例えば銀等の金属を用いても良

63.

【0174】まず、図17(a)に示すように、導光体24の界面23の表面全体に、スパッタリングによってアルミニウム膜61を成膜する。さらに、図17(b)に示すように、アルミニウム膜61の表面にフォトレジスト62を塗布する。次に、露光工程を経て、図17(c)に示すように、フォトレジスト62をパターニングする。そして、図17(d)に示すように、パターニングされたフォトレジスト62をマスクとして、アルミニウム膜61のエッチングを行う。その後、フォトレジスト62を剥離することにより、図17(e)に示すように、界面23の傾斜部22の表面に、アルミニウムからなる金属反射膜47が形成される。

【0175】以上のように、傾斜部22の表面に金属反射膜47が設けられたことにより、図16に示すように、平坦部21に対する傾斜部22の傾斜角度αを大きくとることが可能である。例えば、図18に示すように、傾斜部22に金属反射膜47を設けない構成では、傾斜角度αを60°と大きくとった場合、臨界角θ。よりも小さい入射角で傾斜部22へ入射した光49aが、傾斜部22を通って観察者側へ透過する光49bとなる。このような光49bは、表示品位を劣化させるので好ましくない。

【0176】これに対して、本実施形態の構成では、傾斜部22に金属反射膜47が形成されたことにより、傾斜角度αを大きくとったとしても、上記の光49bのように傾斜部22を透過する光は存在せず、傾斜部22においてすべての光が反射される。

透過する際に、像のにじみやボケが生じることがある。 【0177】このように、傾斜部22の傾斜角度αを大【0171】つまり、図15に示すように、液晶セル1 30 きくとることができることにより、平坦部21の法線方0からの出力光48aは、必ずしも平坦部21のみから 向から見た場合に、傾斜部22が視認されにくくなり、でなく、傾斜部22からも観察者側へ透過する。このと 表示品位の向上が図れるという利点がある。

【0178】なお、図19に示すように、上記金属反射 膜47の表面に、周囲光の反射を防止するブラックマト リクス47b(遮光部材)を積層すれば、周囲光が観察 者側へ反射されることを防止できる。これにより、周囲 光が観察者側へ反射することによる表示品位の劣化が防止されるので、さらに好ましい。

【0179】以上のように、本実施形態に係るフロントライト20は、傾斜部22から観察者側への透過光を無くすための金属反射膜47が、傾斜部22に形成されていることを特徴としている。これにより、界面23から観察者側へ出射する光は、平坦部21からの出射光のみとなるので、このフロントライト20を液晶セル10の前面に備えた反射型LCDにおいて、にじみやボケのない鲜明な表示像を得ることが可能となる。

【0180】〔実施の形態5〕本発明のさらに他の実施 形態について、図15、および図20ないし図22に基 づいて説明すれば以下のとおりである。なお、前記した 50 各実施の形態で説明した構成と同様の機能を有する構成 には、同一の符号を付記し、その説明を省略する。

【0181】本実施の形態に係る反射型LCDは、図2 0に示すように、液晶セル10の前面に、実施の形態1 で説明したフロントライト20と、このフロントライト 20の界面23上に設けられた光学補償板64(補償手 段) とによって構成されるフロントライトシステム53 を備えたことを特徴とする。

【0182】上記光学補償板64において、フロントラ イト20の導光体24に対向する面である底面64a する階段形状をなす。 すなわち、 底面 6 4 a は、 導光体 24の傾斜部22に対向する位置に、傾斜部22に平行 な傾斜部65が形成され、導光体24の平坦部21に対 向する位置に、平坦部21に平行な平坦部66が形成さ れている。一方、光学補償板64において、観察者側に 位置する面である表面64bは、導光体24の界面28 に平行な平面として形成されている。

【0183】光学補償板64は、導光体24と同様に、 例えば、PMMAを用いて射出成形にて作成できる。光 学補償板64と導光体24とは、上述のように、それぞ 20 れの傾斜部および平坦部が対向するように配置され、粒 径約20μmのスペーサ (図示せず) を介して接着され る。これにより、光学補償板64の底面64aと、導光 体24の界面23との間には、略均一な厚みの空気層6 7が介在することとなる。

【0184】このように、導光体24の前面に光学補償 板64を設け、導光体24と光学補償板64との間に空 気層67が存在することにより、下記のような効果が得 られる。

5を参照しながら説明したように、液晶セル10から導 光体24へ再び入射した光48a・48aは、導光体2 4内部で同じ方向に進んだとしても、界面23の傾斜部 22または平坦部21をそれぞれ透過することにより、 導光体の界面23から互いに異なる方向へ出射し、像の にじみやボケを招来する。

【0186】これに対して、本実施形態のフロントライ トシステム53では、図21に示すように、液晶セル1 0から導光体24へ同じ方向へ入射した光68a・69 aは、導光体24から出射した後に、空気層67と光学 40 補償板64との界面としての底面64aで屈折すること で、再び同じ方向へ進む光となり、光686・696と して示すように、光学補償板64の表面64bから同じ 方向へ出射する。これにより、観察者側から見たとき に、にじみやボケのない鮮明な像が得られる。

【0187】なお、上述の光学補償板64の他に、図2 2(a)に示すように、平板状に形成された光学補償板 71を導光体24の前面に配置しても良い。この場合、 上記光学補償板71は、図22(b)に示すように、導 光体24の傾斜部22から出射した光が入射する領域7 50 る。 3.0

1aと、導光体24の平坦部21から出射した光が入射 する領域71bとが、互いに異なる屈折率を有すること により、領域71a・71bのそれぞれの表面から観察 者側への光の出射角 θ a \cdot θ b がほぼ等しくなる。また は、領域71aを、この領域71aを透過する光を、領 域71bを透過する光と同じ方向へ回折するために、回 折機能を有する部材 (例えば回折素子) で形成しても良

【0188】あるいは、図22(c)に示すように、光 は、図20に示すように、導光体24の界面23と相補 10 学補償板71において、導光体24の傾斜部22から出 射した光が入射する領域を、光を遮るブラックマスクフ 1 c で形成することにより、傾斜部22から出射した光 が観察者側へ届かないようにしても良い。

> 【0189】以上のように、本実施形態の構成によれ ば、光学補償板64(または光学補償板71)によっ て、導光体24の界面23の傾斜部22および平坦部2 1のそれぞれからの光の出射方向をそろえることによ り、にじみやボケのない鮮明な表示が可能な反射型LC Dが実現される。

【0190】 〔実施の形態6〕 本発明のさらに他の実施 形態について、図20、図23ないし図26に基づいて 説明すれば以下のとおりである。なお、前記した各実施 の形態で説明した構成と同様の機能を有する構成には、 同一の符号を付記し、その説明を省略する。

【0191】本実施の形態に係る反射型LCDは、前記 した実施の形態5で説明した反射型LCDのフロントラ イトシステム53 (図20参照) に、タッチパネル機能 **~ を付加したものである。**

【0192】上記のタッチパネル機能を実現するため 【0185】すなわち、前記実施の形態4において図1 30 に、本実施形態の反射型LCDは、図23に示すよう に、光学補償板64の底面64aに、例えばITOから なる透明電極72を備えると共に、導光体24の傾斜部 22に、例えばアルミニウムのように、光を反射し且つ 導電性を有する材料からなる反射電極73が設けられて いる。上記透明電極72および反射電極73が、位置検

出手段を構成する。

【0193】図24の下部に示す図は、導光体24の平 坦部21の法線方向から見た場合の上記反射電極73の 形状を示す平面図である。 図24に示すように、反射電 極73は、導光体23の傾斜部22の全面に設けられて いるので、導光体24の平坦部21の法線方向から見る とストライプ状である。また、光学補償板64に形成さ れた透明電極72も、図25に示すように、ストライプ 状に形成され、反射電極73および透明電極72は、互 いに直交してマトリクスをなす。

【0194】なお、導光体24の反射電極73と、光学 補償板64の透明電極72との間には、粒径10μm程 度のプラスチックビーズスペーサ(図示せず)が散布さ れており、この粒径にほぼ等しい空隙が形成されてい

【0195】この光学補償板64は可撓性を有し、図2 6に示すように、ペン74で押圧されることにより、透 明電極72と反射電極73とが接触する。ペン74で押 された座標の認識は、下記のとおりに行われる。図25 に示すように、透明電極72および反射電極73のそれ ぞれに、線順次で信号を走査することにより、接触点7 5のX座標およびY座標が検出され、タッチパネルの平 面内において、ペン74で押された位置の座標を特定す ることができる。

【0196】なお、ここでは、光学補償板64にストラ 10 イプ状の透明電極72を形成した構成を例に挙げて説明 したが、光学補償板64の底面64aの全面に透明電極 を形成しても良い。しかしながら、上述のように、透明 電極72をストライプ状に形成した方が、光の利用効率 が高いという利点がある。

【0197】以上のように、本実施形態の構成によれ ば、光学補償板64がタッチパネルとして機能するの で、液晶セル10に表示された内容に対してペン入力が 可能な反射型LCDを提供することが可能となる。

【0198】〔実施の形態7〕本発明のさらに他の実施 20 形態について、図27ないし図30に基づいて説明すれ ば以下のとおりである。なお、前記した各実施の形態で 説明した構成と同様の機能を有する構成には、同一の符 号を付記し、その説明を省略する。

【0199】本実施の形態に係る反射型LCDが備える フロントライトは、図27に示すように、前記した実施 の形態1で説明した構成にさらに加えて、光源26と導 光体24の入射面25との間に、光源26から入射面2 5へ入射する光の広がり角を制御するための光制御手段 として、プリズムシート81および拡散板82を備えた 30 ことを特徴とする。なお、ここでは、プリズムシート8 1のプリズムの頂角は100°とする。また、導光体2 4と液晶セル10の偏光板18との間には、屈折率差を 緩和するための充填剤84が導入されている。

【0200】光源26は、例えば蛍光管にて実現される が、蛍光管からの出力光は、特に指向性を持つわけでな く、ランダムに発生する。このため、導光体24の傾斜 部22へ臨界角よりも大きい角度で入射する光が存在 し、傾斜部22からの漏れ光となって表示品位の低下を 招く恐れがある。

【0201】 導光体24の材料として好適に用いられる PMMAの屈折率が約1.5であることを考慮すると、 傾斜部22への入射角が臨界角(約42°)以下の光 は、漏れ光となる。このような漏れ光をなくすために は、漏れ光成分となる入射光が導光体24へ入射しない ように、光源26からの出力光の広がり角を予め制御す れば良い。

【0202】ここで、図28に示すように、界面28に 対する傾斜部22の傾斜角をαとする。なお、図28 は、説明の便宜上、導光体24における傾斜部22、界 50 記した各実施の形態で説明した構成と同様の機能を有す

面28、および入射面25の位置関係を抽出して示した ものであり、導光体24が実際にこのような形状をなし ているわけではない。

【0203】また、導光体24の入射面25から入射す る光の広がり角を $\pm \beta$ とし、傾斜部22の臨界角を θ 。 とすると、上記の光の傾斜部22への入射角 θ は、 $\theta = 90^{\circ} - \alpha - \beta$ で表される。

【0204】従って、入射面25から傾斜部22へ入射 した光が傾斜部22を透過しないための条件は、

 $\theta_{\rm c} < \theta = 90^{\circ} - \alpha - \beta$ すなわち、

 $\beta < 90^{\circ} - (\theta_c + \alpha)$ · · · (式3) で表される。

【0205】なお、この実施形態では、傾斜部22の傾 斜角 α を10°とする。これと、臨界角 θ 。が42°で あることから、上記の式3に基づいて、β<38°が導

【0206】光源26からの出力光は、拡散板82で一 旦拡散されてプリズムシート81へ入射する。 プリズム シート81は、拡散光を特定の角度範囲に集光する機能 を有し、プリズムの頂角が100°の場合、図29に示 すように、約±40°の角度範囲内に拡散光を集光させ る。約±40°の角度範囲に集光された光は、導光体2 4へ入射するときに、入射面25での屈折によってさら に集光されることにより、約±25.4°の範囲の広が り光となる。すなわち、入射面25から入射する光の広 がり角は、上記の β <38°の範囲に十分に収まり、傾 斜部22からの漏れ光が生じないことが分かる。

【0207】以上のように、本実施形態に係る反射型し CDは、光源光の広がりを抑制するために、光源26と 導光体24の入射面25との間にプリズムシート81を 設置したことにより、傾斜部22からの漏れ光がなくな り、表示品位がさらに向上される。

【0208】なお、本実施形態では、プリズムシート8 1の頂角を100°としたが、必ずしもこの角度に限定 されるものではない。また、光源光の広がりを制限する 光制御手段として、プリズムシート.81を用いたが、同 様の効果が得られるのであればこれに限定されず、例え 40 ばコリメータ等を用いても良い。また、図30(a)に 示すように、光源26の周囲を楕円体ミラー98で覆 い、この楕円体ミラー98の焦点に光源26を設置した 構成によっても同様の効果が得られる。さらに、SID DI CEST P.375(1995)に記載されているように、図30 (b) に示すライトパイプ99を用いて、光源26から の入射光の広がりを制御しても良い。

【0209】 (実施の形態8) 本発明のさらに他の実施 形態について、図1、図3、および、図31ないし図3 3に基づいて説明すれば以下のとおりである。なお、前 る構成には、同一の符号を付記し、その説明を省略す

【0210】本実施の形態に係る反射型LCDは、前記 した各実施の形態で説明した反射型LCDにおいて、フ ロントライト (またはフロントライトシステム)と液晶 セル10との間が、屈折率の差による光の減衰を防ぐ充 填剤(マッチング剤)で満たされている。

【0211】ここで、実施の形態1で説明した反射型L CDに上記の充填剤を適用した構成を例に挙げて説明す る。実施の形態1では、図1を参照しながら説明したよ 10 うに、フロントライト20の導光体24は、液晶セル1 0の偏光板18上に、粒径約50 mmのスペーサを介し て積層されている。これにより、液晶セル10と導光体 24との間には、上記スペーサの粒径にほぼ等しい均一 な厚みで空隙29が形成されている。

【0212】本実施の形態の反射型LCDは、上記の空 隙29に、図32に示すように、充填剤84を満たした ものである。なお、充填剤84としては、例えばUV硬 化性樹脂や、サリチル酸メチル等を用いることができ る。これにより、導光体24の界面28は、空気ではな 20 状に形成されていることを特徴とする。 く、空気よりも高い屈折率を有する充填剤84に接する こととなる。上記の充填剤84は、導光体24の屈折率 とほぼ等しい屈折率を有することが好ましい。

【0213】このように、導光体24の界面28が充填 剤84に接している場合と、前記した各実施の形態のよ うに導光体24の界面28が空気に接している場合と は、界面28における光の挙動が異なる。

【0214】光源26からの入射光のうち、図31 (a) に示すように、入射面25へ略垂直入射する成分 は、入射面25から傾斜部22へ直接入射して反射した 30 表示が暗くなってしまう場合がある。 後、界面28および充填剤84を通って、液晶セル10 へ入射する。このときの界面28における光の挙動は、 界面28が空気に接している場合(図3(a)参照)と 同様である。

【0215】一方、光源26からの入射光のうち、図3 1 (b) に示すように、入射面25からまず界面23へ 入射する成分の中には、光85aのように、平坦部21 で反射した後に界面28へ入射するものもある。このよ うな光85aや、光源26からの入射光のうち、図31 (c) に示すように、入射面25からまず界面28へ入 40 射する成分は、界面28が導光体24とほぼ等しい屈折 率を有する充填剤84に接しているので、界面28にお いて何の作用も受けずに透過する。

【0216】これらの光は、液晶セル10の液晶層12 に対して非常に大きな入射角で入射することとなるが、 反射板17で反射され、導光体24の界面28に対して 上記の大きな入射角で再び入射するので、観察者へ届く ことはない。

【0217】しかしながら、光源光の利用効率を向上さ せるためには、光源26から界面28へ直接入射する成 50 説明したが、フロントライト20を完全にユニット化

34

分をなくすことが好ましい。このため、図32に示すよ うに、入射面25を、この入射面25と界面28とが鈍 角をなすように傾けることにより、入射面25から界面 28へ直接入射する成分をなくすことができる。

【0218】なお、入射面25と界面28とがなす角₇ の大きさは、図33に示すように、光源26からの光が 入射面25へ入射した後の広がり角8を考慮すれば、 $\gamma \geq 90^{\circ} + \beta$

であることがより好ましい。これにより、入射面25か ら入射した光源光のほとんどすべてが界面23方向へ入 射することとなり、光源光の利用効率をさらに向上させ ることができる。

【0219】 〔実施の形態9〕 本発明のさらに他の実施 形態について、図34に基づいて説明すれば以下のとお りである。なお、前記した各実施の形態で説明した構成 と同様の機能を有する構成には、同一の符号を付記し、 その説明を省略する。

【0220】本実施の形態に係る反射型LCDは、フロ ントライト20が、液晶セル10に対して開閉自在な蓋

【0221】前記した各実施の形態において、前方照明 装置としてのフロントライトまたはフロントライトシス テムの種々の形態を説明したが、特に実施の形態4に記 載した構成のように、導光体24の傾斜部22に金属反 射膜47を設けたような場合、金属反射膜47が導光体 24への周囲光の入射を妨げる。このため、周囲環境 が、反射型LCDを照明モードで使用する必要がある程 * 暗くはないが、反射モードで使用するに十分な周囲光量 が得られないような状況において特に、反射モードでの

【0222】このため、図34に示すように、本実施の 形態の反射型LCD91は、フロントライト20が、そ の一辺が例えば蝶番 (図示せず) 等で固定されたことに より、液晶セル10に対して開閉自在に設けられてい る。このフロントライト20は、液晶セル10およびフ ロントライト20を覆う蓋92とは独立に開閉できる内 蓋として形成されている。

【0223】従って、反射型LCD91を照明モードで 用いる場合は、液晶セル10の表面にフロントライト2 0を被せた状態、すなわち蓋92のみを開けた状態で使 用し、反射型LCD91を反射モードで用いる場合は、 液晶セル10に対してフロントライト20を開いた状態 で使用することができる。

【0224】これにより、反射モードで使用する場合 に、フロントライト20によって光のロスが生じること がなく、常に明るい表示を実現し得る反射型LCDが実 現される。

【0225】なお、上記では、フロントライト20の少 なくとも一部が液晶表示装置に対して固定された構成を

し、液晶セル10に対して脱着自在な構成としても良 い。ただし、この場合には、液晶セル10から取り外し たときのフロントライト20の保管方法について考慮す る必要は生じる。

【0226】なお、ここでは、フロントライト20を内 蓋状に備えた反射型LCDについて説明したが、前記し た各実施の形態で説明したフロントライトシステムが内 蓋状に設けられた構成としても良い。

【0227】 〔実施の形態10〕 本発明のさらに他の実 施形態について、図35および図36に基づいて説明す 10 れば以下のとおりである。なお、前記した各実施の形態 で説明した構成と同様の機能を有する構成には、同一の 符号を付記し、その説明を省略する。

【0228】前記した各実施の形態では、前方照明装置 としてのフロントライトまたはフロントライトシステム と、被照明物としての反射型液晶セルを組み合わせた構 成としての反射型LCDについて説明した。しかし、本 発明の前方照明装置としてのフロントライトまたはフロ ントライトシステムは、反射型液晶セルとの組合せのみ で使用されるものではない。例えば、図35に示すよう 20 に、本実施形態に係る照明装置95は、前記した各実施 形態で説明したフロントライトまたはフロントライトシ ステムが、独立したユニットとして形成されたものであ り、種々の対象物を照明することが可能である。

【0229】例えば、上記の照明装置95は、図35に 示すように、本96の上に配置して使用することができ る。これにより、図36に示すように、照明装置95の 略直下の領域のみを照明することができるので、例えば 寝室などでの読書の際に、周囲の人に迷惑をかけること がないという効果がある。

【0230】なお、上記した各実施の形態は本発明を限 定するものではなく、発明の範囲で種々の変更が可能で ある。例えば、導光体の材料として、具体的にPMMA を例示したが、均一に減衰無く導光でき、屈折率が適当 な値であれば、例えばガラス、ポリカーボネイト、ポリ 塩化ビニル、またはボリエステル等の材料を用いても構 わない。また、上記した導光体の傾斜部および平坦部の 寸法等は、あくまでも一例であり、同等の効果が得られ る範囲で自由に設計することができる。

【0231】さらに、液晶セルとしては、単純マトリク 40 ス型LCD、アクティブマトリクス型LCD等の種々の LCDを用いることができる。また、上記では、偏光子 と検光子とを兼ねた偏光板を一枚使用したECBモード (単偏光板モード)の液晶セルを使用したが、その他 に、偏光板を使用しないPDLCやPC-GH等を適用 しても良い。

【0232】 (実施の形態11) 本発明のさらに他の実 施形態について、図37ないし図48に基づいて説明す れば以下のとおりである。なお、前記した各実施の形態 で説明した構成と同様の機能を有する構成には、同一の 50 ついて、図38(a)ないし(c)に加えて、図39に

符号を付記し、その説明を省略する。

【0233】本実施の形態の反射型LCDは、図37に 示すように、反射型液晶セル10aの前面にフロントラ イト20 aを備えている構成については、前記実施の形 態1と同様であるが、反射型液晶セル10aとフロント ライト20 aとの間に第2の導光体 (光学手段) である 反射防止フィルム (反射防止膜) 13を配置している 点、導光体24aに形成されている平坦部21および傾 斜部22の幅(ピッチ)が異なっている点、および、反 射型液晶セル10a内部に反射電極(反射板)17aを 形成している点が前記実施の形態1とは異なっている。 【0234】まず、フロントライト20aについて具体 的に説明すると、このフロントライト20aは、前記実 施の形態1と同様に主として光源26および導光体24 aによって構成されており、導光体24aの入射面25 に接するように反射鏡27で覆われた線状光源としての 光源26が設けられている。

【0235】導光体24aの液晶セル10a側の界面 (第1の出射面) 28は平坦に形成されており、この界 面に対向する界面(第2の出射面)23は、界面28と 平行あるいは略平行に形成された平坦部21と、平坦部 21に対して同方向に一定の角度で傾斜した傾斜部22 とが、交互に配置されて形成されている。

【0236】このように、導光体24aは、前記実施の 形態1における導光体24と同様に、図37に示すよう に、光源26の長手方向を法線とする断面において、光 源26から遠ざかるほど下がってゆく階段状に形成され

【0237】 ここで、 図38 (a) ないし (c) を参照 しながら、導光体24 aの形状について、さらに詳細に 説明する。図38(a)は、導光体を平坦部の法線方向 上方から見た平面図であり、図38(b)は、導光体を 入射面の法線方向から見た側面図であり、図38(c) は、導光体を入射面および界面の双方に対して垂直な面 で切断した断面図である。

【0238】導光体24aの材質としては、本実施の形 態ではアクリル板を用いており、このアクリル板を金型 成形することで導光体24 aを階段状に加工することが できる。この導光体24aは、本実施の形態では、幅W =75mm、長さL=170mm、入射面25部分の厚 みh: =2.0mm、平坦部21の幅w: =0.2mm とする。また、傾斜部22の段差h2 = 10 μm、平坦 部21に対する傾斜各α=45°とすることにより、傾 斜部の幅w2 は約10μmである。

【0239】さらに、本実施の形態では、導光体24a は、入射面25、すなわち光源26から遠ざかる方向に おいて、平坦部21の幅w1 と傾斜部22の幅w2 との 和w3 = 0.21 mmが徐々に小さくなるような構成を 有している。この平坦部21および傾斜部22の構成に

基づいてさらに具体的に説明する。なお、導光体24a において、光源26から遠ざかる側の方向である光源2 6の長手方向を法線とする方向を、以下、第1方向と し、図38・図39中に矢印Aで示す。

【0240】図39に示すように、平坦部21と傾斜部22とを1本ずつ組み合わせて1組とし、光源26に最も近い側からの平坦部21と傾斜部22の100組を第1ブロックB1とする。そして、この第1ブロックB1における第1方向に沿った方向の間隔w4を21mmとなるように形成する。

【0241】次の100組のブロックである第2ブロックB2 における上記間隔w4 は20mmとなるように形成する。さらに、次の第3ブロックB3 における間隔w4 は19mmとなるように形成し、第4ブロックB4 における間隔w4 を18mmとなるように形成し、第5ブロックB5 における間隔w4 を17mmとなるように形成し、第5ブロックB5 における間隔w4 を17mmとなるように形成する。

【0242】従って、本実施の形態では、導光体24aにおいて、光源26側の端面から第1方向に沿って光源26が配置されていない側の端面まで1ブロック毎に、各ブロックの間隔w4が1mmずつ減少するようになっている。すなわち、光源26から遠ざかるに伴って、平坦部21および傾斜部22の100組毎に、平坦部21のピッチおよび傾斜部22のピッチの和(平坦部21の幅w1と傾斜部22の幅w2との和w3)が、10μm(1/100mm)ずつ減少していくように形成されている。なお、図38(a)ないし(c)では、説明の便宜上、平坦部21および傾斜部22のピッチの減少については図示していない。

【0243】上記導光体24aにおいては、上記傾斜部 3022は、主として、光源26からの光を界面28へ向けて反射する面である微小光源部として作用する。一方、平坦部21は、主として、フロントライト20aからの照明光が、液晶セル10aから反射光として戻ってきたときに、この反射光を観察者側へ透過させる面として作用する。これら各部の作用については、前記実施の形態1と同様である。

【0244】さらに、上記フロントライト20aにおける導光体24aは、この階段状の構成に加えて、平坦部21および傾斜部22の100組毎に、1組のピッチを40たとえば10μmずつ小さくする、すなわち、階段のピッチを光源26から遠ざかるに伴って小さくする構成を備えている。そのため、図40(a)に示すように、傾斜部22の単位面積当たりの数が光源26から遠ざかるに伴い増加することになる。

【0245】光源26から入射面25した入射光は、微小光源部として作用する傾斜部22によって反射されるが、傾斜部22の単位面積当たりの数は光源26から遠ざかるに伴い増加しているため、フロントライト20aで照明される被照明物である反射型液晶セル10aは、

光源26から遠ざかる位置ほど輝度が向上することになる。通常、光源26から遠い位置であるほど輝度は低下する傾向にあるので、本実施の形態の夢光体24aの構成であれば、界面28 (第1の出射面)において、光源26からの遠ざかることによる輝度の低下を相殺し、光源26からの光を高角度で効率よく被照明物全体に導くことができる。その結果、被照明物側の界面 (第1の出射面)である界面28側におけるの輝度分布を平均化することができる。

10 【0246】これに対して、図40(b)に示すような、導光体124が楔型平板状に形成されている従来のフロントライト120では、光源26から入射面125に入射した入射光は、そのまま界面123によって反射されることになる。それゆえ、第1の出射面(フロントライト120では界面128)における輝度は、光源26から遠ざかるほど低下する。

【0247】さらに、第1の出射面における輝度の分布 状態は、図41に示すように、従来のフロントライト1 20の輝度分布を示すグラフFに比べて、本実施の形態 のフロントライト20 aの輝度分布を示すグラフEの方 が、光源26からの距離が大きい位置でも略一定となっ ている。そのため、本実施の形態のフロントライト20 aの方が、第1の出射面(界面28)における輝度分布 の均一性において優れていることがわかる。

【0248】また、上記構成の導光体24aでは、階段のピッチが0.21mmであるために、導光体24aに対応する反射型液晶セル10aの画素の周囲に形成されているブラックマトリクスのピッチと上記傾斜部22の溝のピッチがずれることになる。その結果、ブラックマトリクスと傾斜部22との干渉によるモアレ縞の発生を抑制することができるため、得られる反射型LCDの表示品位を向上させることができる。なお、この点については後述する。

【0249】上記導光体24aの出射角度特性についての結果を示すと、図42に示すように、被照明物である反射型LCD側(界面28側)のグラフGでは、受光角が-10°から-5°の間をピークとして2,000cd/m²に達する程度までに輝度が上昇している。これに対して、観察者側(界面23側)のグラフHでは、受光角が-60°のときに最高500cd/m²の輝度となる程度で、反射型LCDを観察する角度である0°近傍では輝度は100cd/m²以下となっている。

【0250】このように、導光体24aの端面に配置された光源26からの光は、界面28から被照明物(反射型LCD)に対して略垂直な角度で出射できる。同時に、界面23側である観察者側には光の漏れがほとんどなく、光源26からの光を高角度で効率よく被照明物に導くことができる。

【0251】なお、本実施の形態では、光源26として 50 蛍光管を用いているが、光源26としてはこれに限定さ

れるものではなく、たとえば、LED (発光ダイオー ド)、EL素子、またはタングステンランプを用いるこ とができる。

【0252】次に、液晶セル10aについて説明する と、この液晶セル10aは、図37に示すように、基本 的な構成としては前記実施の形態1の液晶セル10と同 様であるが、反射板17aを液晶セル10a内に形成し ている点が異なっている。

【0253】この液晶セル10aは、図43にも示すよ うに、一対の電極基板11a・11cにより液晶層12 10 を挟持し、さらに、表示面側である電極基板11a側に 位相差板49と偏光板18とを備えている構成である。 なお、位相差板49 (図37には図示せず) は図43で は1枚のみ備えられているが、2枚以上であってもよ く、また、備えられていなくてもよい。

【0254】上記電極基板11aは、光透過性を有する ガラス基板14a上に、カラーフィルタ38が設けら れ、その上に透明電極15a (走査線) が設けられ、こ の透明電極15aを覆うように液晶配向膜16aが形成 に応じて絶縁膜等を形成しても良い。なお、カラーフィ ルタ38は、図37には図示していない。

【0255】一方、電極基板11cは、ガラス基板14 b上に絶縁膜19が形成され、さらにその上に反射電極 (反射板) 17aが形成され、この反射電極17aを覆 うように液晶配向膜16bが形成されてなっている。上 記絶縁膜19の表面には複数の凹凸部が形成されてお り、この絶縁膜19を覆っている反射電極17aの表面 にも複数の凹凸部が形成されている。

【0256】上記反射電極17aは、液晶層12を駆動 30 する液晶駆動電極と反射板とを兼ねている。この反射電 極17aとしては、反射特性の優れたアルミニウム(A 1) 反射電極が用いられている。また、上記絶縁膜19 は有機レジストにて形成されており、この絶縁膜19に おけるコンタクトホールや凹凸部は後述するフォトリソ グラフィーにより形成される。上記ガラス基板14a・ 14b、透明電極15a・15b、および液晶配向膜1 6a・16bの材質や形成方法などは、前記実施の形態 1と同様である。

【0257】上記電極基板11cの形成方法について、 図44(a)~(e)に基づいて、さらに詳しく説明す る。まず、図44(a)に示すように、ガラス基板14 b上に有機レジストを全面に塗布し、焼成することに絶 縁膜19を形成する。この後、図44(b)に示すよう に、マスク30を介して絶縁膜19に紫外線30aを照 射する。これによって、絶縁膜19における紫外線30 aの照射部を除去し、図44(c)に示すように、紫外 線30aの被照射部を所定のパターンに形成する。

【0258】次に、図44(d)に示すように、所定の パターンに形成された絶縁膜19に対して、180°で 50 電極17aの反射特性は、図45に示すような特性に限

加熱処理を施して焼成することにより、有機レジストに 熱だれを生じさせる。この熱だれにより、凹凸部19a を形成する。

40

【0259】最後に、図44(e)に示すように、この 凹凸部19aを覆うように、アルミニウム(A1)を真 **空蒸着させる。これによって、凹凸部19aに沿ってそ** の表面に凹凸部が形成された反射電極17aが形成され る。なお、図44(a)~図44(e)では、絶縁膜1 9は所定のパターンとなる凹凸部19aとして形成され ているが、図37や図43に示すように、絶縁膜19の 表面のみに凹凸部が形成されているような構成であって もよい。

【0260】このようにして得られる電極基板11cと 上記電極基板11aとは、互いの液晶配向膜16a・1 6 bが対向するように、且つ、ラビング処理の方向が反 平行になるように配置され、接着剤を用いて貼り合わさ れる。また、電極基板11a・11cの間には、この電 極基板11 a・11 cにより形成される空隙の間隔を均 一にするために、粒径4.5μmのガラスビーズスペー されてなっている。なお、電極基板11aに対し、必要 20 サ(図示せず)が予め散布されている。そして、この空 隙に、真空脱気により液晶を導入することによって、液 晶層12が形成される。なお、液晶層12の材料も前記 実施の形態1と同様である。

> 【0261】上記のようにして本実施の形態の反射型液 晶セル10aが製造されるが、上記の説明以外の製造工 程や製造条件などは、前記実施の形態1における反射型 液晶セル10と同様であるため省略する。

【0262】上記電極基板11cにおける反射電極17 a上に形成されている凹凸部のパターン(すなわち、絶 縁膜19の凹凸部19aのパターン)は、不規則に形成 することによって、反射型液晶セル10aに入射する入 射光を特定方向に拡散反射するように形成している。

【0263】上記絶縁膜19における凹凸部は、凸部の 頂点と凹部の底面との差が 0.1μ mないし 2μ mの範 囲内であることが好ましい。凹凸部における凸部の頂点 と凹部の底面との差がこの範囲内であれば、液晶分子の 配向および液晶セルのセル厚とに影響を及ぼすことなく 入射光を拡散することができる。

【0264】このように形成された上記反射電極17a 40 の反射特性をほぼ紙と同様の拡散反射特性を示す標準白 色板 (MGO) の反射特性と比較した場合について図4 5に基づいて説明する。上記MGO(および紙など) は、図中破線のグラフMで示すように等方性を示す反射 特性を示している。これに対して、上記反射電極17a (MRS)は、図中実線のグラフNで示すように±30 * の角度に指向性を示す拡散反射特性を有している。

【0265】このような反射電極17aを備えている反 射型液晶セル10aに対して、正反射方向以外から光が 入射しても、画像の観察が可能となる。なお、上記反射 定されるものではなく、反射電極17aの設計を適宜変 更することによって、反射型LCDの使用される機器の 種類に応じた特性に対応させることが可能である。

【0266】また、上記反射電極17aは、反射型液晶セル10a内の液晶層12に隣接するように形成されているため、反射板が反射型液晶セル10aの背面側(導光体24aと接する側の面に対向する側の面)に形成されている場合と比較して、ガラス基板14bによる視差の発生を解消できる。そのため、得られる反射型LCDにおいて、画像の2重写りを抑制することができる。ま 10た、反射型液晶セル10aの構成を簡素化することもできる。

【0267】なお、本実施の形態における反射電極17 aは、図37および図43に示すように、反射型液晶セル10aの表示モードが偏光板18を備えている偏光モードであってもよく、また、図46に示すように、ゲストホストモード(偏光板なし)の反射型液晶セルであってもよい。なお、この反射型液晶セルについては、基本的な構成が反射型液晶セル10aとほとんど同一であるため、詳しい説明については省略する。

【0268】次に、上記液晶セル10aに配置されている画素構造について説明すると、図47に示すように、上記反射型液晶セル10aは、該反射型液晶セル10aの長手方向に沿って複数の走査線54…が形成されており、この走査線54…が形成されている方向に直交する方向に複数の信号線55…が形成されている。そして、この走査線54…と信号線55…とによって形成される格子状のパターンに対応するように、複数の画素56…が形成されている。

【0269】1つの画素56は、赤(R)・緑(G)・青(B)の3つのカラーフィルタに対応した画素電極56aからなっている。これら画素電極56aは、走査線54…が形成されている方向に沿って、R・G・Bの順に配置されている。

【0270】上記反射型液晶セル10aの形状としては、本実施の形態では、対角6.5型サイズ(縦 $W_L=58$ mm、横 $L_L=154.5$ mm)、走査線54数Xm=240本、信号線55数Yn=640本となっている。また、反射型液晶セル10aに配置されている画素56のピッチ $P_L=0.24$ mm(R、G、B)である。上記画素56…の周辺には図示しないブラックマトリクス(以下、BMと略す)が幅 8μ mとなるように形成されている。

【0271】本実施の形態にかかる反射型LCDでは、 上述した反射型液晶セル10aとフロントライト20a とを組み合わせてなっている。ここで、フロントライト 20aにおいて、導光体24aの平坦部21および傾斜 部22のピッチが、上述したように0.21mmで、走 査線54…、すなわちBMのピッチよりも小さくなって いる。そのため、上記反射型液晶セル10aにおけるB 42

Mのピッチと上記傾斜部22の溝のピッチとをずらすことができる。これら各ピッチがずれると、BMと傾斜部22との干渉によるモアレ縞の発生を抑制することができる。そのため、得られる反射型LCDの表示品位を向上させることができる。

【0272】上述した導光体24aの構成では、平坦部21および傾斜部22のピッチが走査線54…のピッチよりも小さくなっているが、上記ピッチを走査線54…のピッチよりも大きくしてもよい。すなわち、モアレ稿の発生を抑制するためには、傾斜部22の溝のピッチとBMのピッチとがずれておればよい。

【0273】ここで、平坦部21の幅w1 と傾斜部22の幅w2 との和w3 を傾斜部22の溝のピッチとする。また、上記BMは、走査線54…および信号線55…を連蔽するように形成されているが、傾斜部22の溝と平行となるのは走査線54…であるため、走査線54…のピッチP1 をBMのピッチとする。

【0274】上記傾斜部22の溝のピッチとBMのピッチとがずれるためには、上記w3 とP1 とが一致しない20 (w3 ≠P1)状態であればよいが、このw3 とP1 との関係としては、w3 がP1 の2倍よりも大きい幅であるか(w3 >2P1)、あるいは、w3 がP1 の半分よりも小さい幅である(w3 <1/2P1)ことが特に好ましい。

【0275】上記w3 とP1 との関係が上記の範囲より 外れる場合は、傾斜部22の溝のピッチとBMのピッチ とがずれるといっても、光学的に判断した場合、概ね一 致すると見なすことが可能である。そのため、モアレ稿 の発生を効果的に抑制することができなくなるため好ま 30 しくない。

【0276】なお、本実施の形態における平坦部21の幅w1 と傾斜部22の幅w2 や、これらw1 とw2 との和w3、傾斜部22の角度などは、上記の数値に限定されるものではなく、使用される反射型液晶セル10aの画素構造に合わせて形成すればよい。

【0277】また、本実施の形態では、輝度分布を平均化するために、光源26から遠ざかる方向(第1方向)に平坦部21のピッチを減少させることで対応しているが、ピッチの代わりに傾斜部22の角度を変化させるこむとで、平坦部21と傾斜部22とのピッチの和を減少させてもよい。たとえば、平坦部21を小さくするとともに、平坦部21と傾斜部22とのなす角度αを光源26から遠ざかる方向(第1方向)に小さくすることで平坦部21と傾斜部22とのピッチの和を小さくできる。この場合でも、傾斜部22に対して進入光を光源26から遠ざかる方向(第1方向)に効率良く出射できるため輝度分布を平均化できる。

【0278】さらに、本実施の形態にかかる反射型LC Dは、上記構成のフロントライト20aおよび上記構成 50 の反射型液晶セル10aに加えて、該フロントライト2 0 a と 反射型液晶セル10 a との間に、第2の導光体と しての反射防止膜が配置されている構成である。

【0279】この反射防止膜について説明すると、上記 反射型LCDでは、図37に示すように、反射型液晶セ ル10 aに配置された偏光板18と導光体24 aの界面 (第1の出射面)に、上記反射防止膜としての反射防止 フィルム13が接着される。

【0280】この反射防止フィルム13は、本実施の形 態では、日東電工株式会社製の反射防止フィルム(商品 名: TAC-HC/AR) を用いている。この反射防止 10 フィルム13は4層の構成を有する多層構造膜となって いる。具体的には、基材層としてトリアセチルセルロー ス(TAC)フィルムを用い、その上に、第1層として MgF2層、第2層としてCeF3層、第3層としての TiOz層、第4層としてMgFz層をそれぞれ形成し た反射防止フィルム13となっている。

【0281】上記TACフィルムは、屈折率nt = 1. 51で厚さ100μmとなっている。また、第1層のM gF2 層は、屈折率n_■ = 1.38で厚さ約100 n m、第2層のCe F3 層は、屈折率nc = 2.30で厚 20 さ約120nm、第3層のTiOz層は、屈折率nti= 1.63で厚さ約120nm、第4層のMgF2層は、 屈折率 n=1.38で厚さ約100 nmとなっている。 これら第1層ないし第4層は、基材層のTACフィルム 上に順次、真空蒸着法によって形成される。

【0282】さらに、フロントライト20aとの接着の 際には、導光体24aに用いられているアクリル材の屈 折率 n₂と略同一の屈折率 n₁を有するアクリル系の接 ** 着剤の層を形成している。そのため、導光体24a内の 光の入出力条件をほぼ変えることなしに反射防止効果を 30 向上することができるとともに、輝度分布のムラや虹色 の分光の発生も防止することができる。

【0283】なお、上記第1層のTACフィルムは、反 射防止フィルム13の構成としては必須の構成ではな く、たとえば、第1層を除いて、第2層ないし第4層を 導光体24aに直接積層してもよい。 ただし、この場合 には、製造コストが若干上昇するおそれがある。

【0284】上記多層構造膜の反射防止フィルム13 は、波長 $\lambda = 550 \text{ nm}$ の入射光に対して、 $\lambda / 4 - \lambda$ /2-入/4-入/4波長板となる構成となっている。 そのため、該反射防止フィルム13は、広波長帯域で反 射防止フィルム13として作用することができる。

【0285】上述した導光体24aでは、該導光体24 aの表面(界面23)に形成されている傾斜部22は、 反射型液晶セル10 aに対する微小光源部として機能す ることになる。そのため、傾斜部22から反射型液晶セ ル10 aに対して光が照射されることになるが、導光体 24 a と 反射型液晶セル10 a との界面、すなわち、界 面23に対向する面である界面28において、傾斜部2 2からの光のうちの約4%程度が反射されて反射光とな 50 記傾斜部22で反射される反射光量を、従来よりも光源

る。

【0286】この反射光の発生により、界面28から界 面23個へ反射像が形成されることになる。そのため、 この反射像と、上記傾斜部22における像とが互いに干 渉または回折し、観察者から見て、反射型LCDの表面 に輝度分布のムラや虹色の分光が生じることになる。 【0287】しかしながら、本実施の形態にかかる反射 型LCDでは、反射型液晶セル10aとフロントライト 20 aとの間、すなわち、導光体24 aの界面28側 に、上記反射防止膜(反射防止フィルム13)を配置し ているため、傾斜部22からの入射光が界面28で反射 されて生ずる反射光の発生を抑制することができる。 【0288】それゆえ、微小光源部として作用する傾斜 部22における像と、界面28側で反射された反射像と の干渉または回折を防止することができる。そのため、 観察者側(界面23側)にて観察される表示上の輝度分 布のムラや虹色の分光の発生を防止することができる。 【0289】この反射防止フィルム13を配置している 場合と配置していない場合とについて、本実施の形態の 反射型LCDにおける表示の輝度分布を比較すると、図 48に示すように、反射防止フィルム13を配置してい ない場合のグラフDよりも反射防止フィルム13を配置 している場合のグラフCの方が、輝度分布にムラがなく 一定であり、且つ、輝度そのものも向上していることが

【0290】また、上記構成の反射防止フィルム13 は、市販されているものをそのまま用いることができる ため、フロントライト20aの製造コストの上昇を抑制 することができる。そのため、安価なフロントライト2 Oaおよびこれを備えた反射型LCDを得ることができ

【0291】さらに、第1の導光体である導光体24a の屈折率 n2 とほぼ等しい屈折率 n1 を有する接着剤に て上記反射防止フィルム13を接着しているため、導光 体24a内の光の入出力条件をほぼ変えることなく反射 防止効果を向上することができる。

【0292】なお、上記反射防止フィルム13の構成お よび材質に関しては、上記の構成および材質に限定され るものではない。たとえば、波長板の構成として、入/ 40 $4-\lambda/2-\lambda/2-\lambda/2-\lambda/4$ の構成となっても よい。このような波長板の構成とすることで、さらに広 い波長帯域で反射防止効果が得られる。また、入/4波 長板の単層構成の反射防止フィルムであってもよい。た だし、この場合は、反射防止効果の得られる波長帯域が 狭くなるおそれがある。

【0293】以上のように、導光体24aの表面(界面 23) に形成されている平坦部21と傾斜部22とのビ ッチを、光源26から遠ざかる方向(第1方向)に向か うに伴って小さくなるように形成することによって、上

から遠ざかる方向へ増加させることができる。そのた め、導光体24aの界面23 (第1の出射面) における 輝度分布を平均化することができる。

【0294】また、フロントライト20aにおける導光 体24aの界面23に形成された平坦部21と傾斜部2 2とのピッチを反射型液晶セル10aのピッチよりも小 さく形成することにより、画素56…の周囲に形成され ているBMと上記傾斜部22の溝とによる光の干渉のた めに生ずるモアレ縞の発生を抑制できる。そのため、反 射型LCDの表示品位の劣化を防止することができる。 【0295】さらに、反射型液晶セル10aとフロント ライト20 a との間に、反射防止膜 (反射防止フィルム 13)を設けることによって、導光体24aの界面23 における輝度分布のムラや虹色の分光の発生を防止する ことができる。そのため、より明るく、且つより表示品 位の高い反射型液晶LCDを得ることができる。

【0296】加えて、反射型液晶セル10aにおける反 射電極17aに凹凸部を形成することにより、液晶分子 の配向およびセル厚に影響を及ぼすことなく入射光を拡 散する。そのため、正反射方向以外から反射型液晶セル 20 10 a に光が入射しても画像の観察が可能となる。

【0297】 〔実施の形態12〕 本発明のさらに他の実 施形態について、図49および図50に基づいて説明す れば以下のとおりである。なお、前記した各実施の形態 で説明した構成と同様の機能を有する構成には、同一の 符号を付記し、その説明を省略する。

【0298】本実施の形態の反射型LCDは、図49に 示すように、基本的な構成は前記実施の形態2と同様で あるが、反射型液晶セル10とフロントライトシステム フィルム (反射防止膜) 13を配置している点が異なっ ている。

【0299】上記反射防止フィルム13は、前記実施の 形態1で用いたものと同一である。なお、反射防止フィ ルム13、反射型液晶セル10、およびフロントライト システム51の説明については、前記実施の形態2およ び11において行っているため省略する。

【0300】本実施の形態では、上記反射防止フィルム。 13は、第1の導光体である導光体24および第2の導 光体である導光体40に加えて、第3の導光体として機 40 する傾斜部と、主として被照明物からの反射光を透過す

【0301】この反射防止フィルム13が形成されてい ない場合、第1の導光体24の界面23(第1の出射 面) に形成されている傾斜部22からの光が第2の導光 体40の底面 (第2の表面) 42で4%程度反射されて 反射光となる。この反射光により形成される傾斜部22 の像と上記導光体24における傾斜部22とは互いに干 渉することになり、その結果、導光体24の界面28 (第2の出射面)で輝度分布のムラが生じることにな る。

46

【0302】そこで、本実施の形態にかかる反射型LC Dでは、第2の導光体40の底面42と反射型液晶セル 10の表示面側の面との間に、前記実施の形態11にお けるものと同一の反射防止フィルム13を配置してい る。この反射防止フィルム13の配置によって、上記反 射光の発生を効果的に抑制することができる。それゆ え、界面28における輝度分布のムラを抑制し、高品位 の表示を実現可能とする反射型LCDを実現することが できる。

10 【0303】上記反射防止フィルム13を反射型LCD に配置した場合と、配置しなかった場合とを比較する と、図50(a)・(b)に示すように、配置しなかっ た場合における輝度分布を示す図50(b)に比べて、 上記反射防止フィルム13を配置した場合における輝度 分布を示す図50(a)の方が、輝度のピークのピッチ pが第2の導光体40の底面42全体にわたってほぼ等 しい上に、輝度のピークがなだらかで輝度分布のムラが 少なくなっている。それゆえ、輝度分布の状態が向上し ていることがわかる。なお、このときの測定条件は、前 記実施の形態2において、図10に基づいて説明してい るので省略する。

【0304】また、上記反射防止フィルム13は、第2 の導光体40の屈折率n3とほぼ等しい屈折率n4の接 着剤にて上記反射防止フィルム13を接着している。そ のため、第2の導光体40内の光の入出力条件をほぼ変 えることなく反射防止効果を向上することができる。

【0305】さらに、上記構成の反射防止フィルム13 としては、市販されているものをそのまま用いることが できるため、フロントライトシステム51の製造コスト 51との間に第3の導光体(光学手段)である反射防止 30 の上昇を抑制することができる。そのため、安価なフロ ントライトシステム51およびこれを備えた反射型LC Dを得ることができる。

[0306]

【発明の効果】以上のように、請求項1記載の発明に係 る前方照明装置は、導光体が、光源から光を入射する入 射面と、被照明物へ向けて光を出射する第1の出射面 と、上記第1の出射面に対向し、被照明物からの反射光 を出射する第2の出射面とを備え、上記第2の出射面 が、主として光源からの光を第1の出射面へ向けて反射 る平坦部とが交互に配置された階段状に形成されている 構成である。

【0307】これにより、平坦部に平行に進行する光の 成分が導光体の外へ漏れることなく、無駄なく被照明物 へ照射される。従って、略平板状に形成された導光体を 有する従来の構成と比較して、光源光の利用効率が向上 し、より明るい前方照明装置が実現されるという効果を 奏する。

【0308】請求項2記載の発明に係る前方照明装置 50 は、上記導光体を第1の導光体とすると、上記第1の出

射面からの出射光の輝度分布を平均化する第2の導光体 をさらに備えた構成である。

【0309】これにより、被照明物への出射光の輝度分 布が平均化される。この結果、輝度むらのない面光源と して機能する前方照明装置を提供することができるとい う効果を奏する。

【0310】請求項3記載の発明に係る前方照明装置 は、第2の導光体が、第1の導光体の第1の出射面に対 向する第1の表面と、上記第1の表面に対向し、第1の 導光体から上記第1の表面を通って入射した光を被照明 10 物へ出射する第2の表面とを備えると共に、上記第1の 表面と第2の表面とが、第1の導光体の第2の出射面に おける各傾斜部から上記第2の表面までの距離が略均一 になるように形成された構成である。

【0311】これにより、第1の導光体において光源か らの光が反射する第2の出射面の傾斜部のそれぞれか ら、被照明物への出射面となる第2の導光体の第2の表 面までの距離が均一化されるので、上記第2の表面から の出射光の輝度分布が平均化される。この結果、輝度む らのない面光源として機能する前方照明装置が実現され 20 るという効果を奏する。

【0312】請求項4記載の発明に係る前方照明装置 は、第1の導光体の屈折率と、第2の導光体の屈折率と がほぼ等しい構成である。

【0313】 これにより、第1の導光体において第2の 斜面の傾斜部で反射した光が、そのままの角度で被照明 物に向かって出射することとなる。この結果、第2の導 光体への入射時または第2の導光体からの出射時の屈折 による光の軌跡の変化を考慮しなくて済み、設計が容易 となるという効果を奏する。

【0314】請求項5記載の発明に係る前方照明装置 は、第1の導光体と第2の導光体とが一体に形成された

【0315】これにより、製造工程が簡略化されるとい う効果を奏する。

【0316】請求項6記載の発明に係る前方照明装置 は、第2の導光体における第2の表面には、第1の導光 体における第2の出射面からの光が該第2の表面で反射 されることを抑制する光学手段を、第3の導光体として 備えている構成である。

【0317】これにより、第1の導光体の傾斜部からの 入射光が第2の表面で反射されて生ずる反射光の発生を 抑制することができる。それゆえ、傾斜部における像と 反射光による反射像との干渉または回折を防止すること ができる。その結果、表示上の輝度分布のムラや虹色の 分光の発生を防止することができるという効果を奏す る。

【0318】請求項7の発明に係る前方照明装置は、上 記光学手段が反射防止膜である構成である。

48

とができるので、前方照明装置の製造コストの上昇を抑 制することができるという効果を奏する。

【0320】請求項8の発明に係る前方照明装置は、上 記光学手段は、上記第2の導光体が有する屈折率とほぼ 等しい屈折率を有する接着剤により第2の導光体と接着 されている構成である。

【0321】これにより、第2の導光体内の光の入出力 条件をほぼ変えることなく反射防止効果を向上すること ができる効果を奏する。

【0322】請求項9記載の発明に係る前方照明装置 は、第2の導光体が、第1の導光体における第1の出射 面からの出射光を散乱させる光散乱体である構成であ る。

【0323】これにより、第1の導光体からの出射光が 散乱され、被照明物への出射光の輝度分布が平均化され る。この結果、輝度むらのない前方照明装置を提供でき るという効果を奏する。

【0324】請求項10記載の発明に係る前方照明装置 は、光散乱体が、所定の角度範囲から入射した光のみを 散乱する異方性散乱体であり、第1の導光体からの出射 光が第2の導光体へ入射する角度範囲の少なくとも一部 が、上記所定の角度範囲に含まれる構成である。

【0325】これにより、第1の導光体からの出射光が 無駄なく散乱されると共に、不要な散乱光によって被照 明物の像が劣化することが防止される。この結果、光の 利用効率がさらに向上し、被照明物の鮮明な像が得られ る前方照明装置を提供できるという効果を奏する。

【0326】請求項11記載の発明に係る前方照明装置 は、光散乱体が、前方散乱体である構成である。

30 【0327】これにより、第1の導光体から入射した光 の後方散乱がなくなるので、光の利用効率がさらに向上 すると共に、後方散乱光によって被照明物の像が劣化す ることが防止される。この結果、被照明物の鮮明な像が 得られる前方照明装置を提供できるという効果を奏す

【0328】請求項12記載の発明にかかる前方照明装 置は、上記第2の導光体が、第1の導光体における第2 の出射面からの光が該第1の導光体における第1の出射 面で反射することを抑制する光学手段である構成であ る。

【0329】これにより、第1の導光体の傾斜部からの 入射光が第1の出射面で反射されて生ずる反射光の発生 を抑制することができる。それゆえ、傾斜部における像 と反射光による反射像との干渉または回折を防止するこ とができる。その結果、表示上の輝度分布のムラや虹色 の分光の発生を防止することができるという効果を奏す る。

【0330】請求項13の発明に係る前方照明装置は、 上記光学手段が反射防止膜である構成である。

【0319】これにより、市販の反射防止膜を用いるこ 50 【0331】これにより、市販の反射防止膜を用いるこ

とができるので、前方照明装置の製造コストの上昇を抑 制することができるという効果を奏する。

【0332】請求項14の発明に係る前方照明装置は、 上記光学手段は、上記第1の導光体が有する屈折率とほ ぼ等しい屈折率を有する接着剤により第1の導光体と接 着されている構成である。

【0333】これにより、第1の導光体内の光の入出力 条件をほぼ変えることなく反射防止効果を向上すること ができるという効果を奏する。

【0334】請求項15記載の発明に係る前方照明装置 10 は、第1の導光体と第2の導光体との間に、これらの導 光体の間に存在する光学的界面での屈折率差を緩和する 充填剤が導入された構成である。

【0335】これにより、第1の導光体と第2の導光体 との間に存在する光学的界面での反射による光の減衰が 抑制される。この結果、光源光の利用効率がさらに向上 し、より明るい前方照明装置を提供できるという効果を

【0336】請求項16記載記載の発明に係る前方照明 体における第1の出射面へ直接入射する成分がほぼなく なる範囲に光源からの光の広がりを制限する光制御手段 を備えた構成である。

【0337】これにより、入射面から導光体へ入射する 光のうち、第1の出射面へ直接入射する成分をほとんど なくすことができるので、第1の出射面から第2の導光 体へ比較的大きな入射角で入射する成分を少なくするこ とができる。この結果、光の利用効率をさらに向上する。 ことができ、明るい前方照明装置を提供できるという効 果を奏する。

【0338】請求項17記載の発明に係る前方照明装置 は、入射面が、導光体の側面に存在する構成である。

【0339】これにより、観察者からは光源が直接見え ないので、光源からの直接光が被照明物の像に影響を及 ぼさない。この結果、鮮明な被照明物像が得られる前方 照明装置を提供できるという効果を奏する。

【0340】請求項18記載の前方照明装置は、請求項 11記載の構成において、第1の出射面に垂直な平面へ の上記傾斜部の射影の総和が、上記平面への入射面の射 影にほぼ等しい構成である。

【0341】上記の構成によれば、導光体の入射面から 入射した光のうち、第1の出射面に平行な成分のすべて が傾斜部へ入射し、第1の出射面へ向けて反射する。こ れにより、光源光の利用効率がさらに向上し、より明る い面光源としての前方照明装置を提供できるという効果

【0342】請求項19記載の発明に係る前方照明装置 は、入射面と上記第1の出射面とが鈍角をなして配され ている構成である。

【0343】これにより、入射面から入射した光源光の 50 に寄与しない傾斜部が視認されにくくなり、被照明物の

5.0

うち、第1の出射面へ直接入射する成分が少なくなる。 この結果、光源光の利用効率がさらに向上し、より明る い前方照明装置を提供できるという効果を奏する。

【0344】請求項20記載の発明に係る前方照明装置 は、光源からの光を上記入射面のみに入射させる集光手 段をさらに備えた構成である。

【0345】これにより、光源光の損失をさらに少なく できる。この結果、光源光の利用効率がさらに向上し、 明るい前方照明装置を提供できるという効果を奏する。

【0346】請求項21記載の発明に係る前方照明装置 は、傾斜部の上記第1の出射面への射影の総和が、上記 平坦部の上記第1の出射面への射影の総和よりも面積が 小さい構成である。

【0347】これにより、主として被照明物の像の表示 に寄与する平坦部の面積が見かけ上増加する。この結 果、明るく鮮明な像が得られる前方照明装置を提供でき るという効果を奏する。

【0348】請求項22記載の発明に係る前方照明装置 は、上記平坦部が、上記第1の出射面と平行であるか、 装置は、光源と入射面との間に、入射面から第1の導光 20 あるいは、上記第1の出射面に対して10°以下の傾斜 角度を有する構成である。

> 【0349】これにより、被照明物の像の表示品位に対 する影響を与えず、明るく鮮明な像が得られる前方照明 装置を提供できるという効果を奏する。

> 【0350】請求項23記載の発明に係る前方照明装置 は、導光体の屈折率をn2、上記傾斜部に接する外部媒 質の屈折率をn1 とすると、光源から傾斜部へ入射する 光の入射角のが下記の不等式を満足する構成である。

 $[0351]\theta \geq \arcsin(n_1/n_2)$

30 これにより、光源からの光が傾斜部から観察者側へ漏れ ることがなく、光の利用効率がさらに向上する。この結 果、明るい前方照明装置を提供できるという効果を奏す

【0352】請求項24記載の発明に係る前方照明装置 は、傾斜部の表面に、光を反射させる反射部材が設けら れた構成である。

【0353】これにより、光源からの光が傾斜部から観 察者側へ漏れることがなく、光の利用効率がさらに向上 する。この結果、明るい前方照明装置を提供できるとい う効果を奏する。

【0354】請求項25記載の発明に係る前方照明装置 は、導光体の屈折率をn2、上記傾斜部に接する外部媒 質の屈折率をniとすると、光源から傾斜部へ入射する 光の入射角のが下記の不等式を満足する構成である。

 $[0355]\theta < \arcsin(n_1/n_2)$ これにより、光源から傾斜部へ入射する光の入射角 θ が 上記の不等式を満たす範囲まで、平坦部に対する傾斜部 の傾斜角度を大きくすることが可能となる。この結果、 平坦部の法線方向から見た場合に、被照明物の像の表示

像の表示品位の向上が図れるという効果を奏する。

【0356】請求項26記載の発明に係る前方照明装置 は、上記反射部材の表面に、連光部材が設けられた構成 である。

【0357】これにより、周囲光が反射部材で反射して 観察者の目に入ることがない。この結果、鮮明な被照明 物像が得られる前方照明装置を提供できるという効果を 奏する。

【0358】請求項27記載の発明に係る前方照明装置 からの出射光との出射方向をそろえる補償手段をさらに 備えた構成である。

【0359】これにより、被照明物の像のにじみやボケ がなく、鮮明な像を得ることが可能となるという効果を

【0360】請求項28記載の発明に係る前方照明装置 は、補償手段が、導光体の第2の出射面に対向する第1 の表面と、上記第1の表面に対向する第2の表面とを備 えると共に、補償手段の第1の表面が、導光体の第2の の平坦部と略平行な平坦面とが交互に配置されて、上記 第2の出射面と相補する階段状に形成され、上記補償手 段の第2の表面が、導光体の第1の出射面と略平行に配 置されている構成である。

【0361】これにより、平坦部から観察者側へ出射す る光の出射方向と、傾斜部から観察者側へ出射する光の 出射方向とがそろえられる。この結果、被照明物の鮮明 な像を得ることが可能となるという効果を奏する。

【0362】請求項29記載の発明に係る前方照明装置 からの出射光が入射する領域と、主として第2の出射面 の平坦部からの出射光が入射する領域とが、互いに異な る屈折率を有する。

【0363】これにより、導光体の第2の出射面の平坦 部から観察者側へ出射する光の出射方向と、傾斜部から 観察者側へ出射する光の出射方向とがそろえられる。こ の結果、にじみやボケのない鮮明な被照明物像が得られ る前方照明装置を提供できるという効果を奏する。

【0364】請求項30記載の発明に係る前方照明装置 は、補償手段において、主として第2の出射面の傾斜部 40 からの出射光が入射する領域に、回折素子が設けられた 構成である。

【0365】これにより、導光体の第2の出射面の平坦 部から観察者側へ出射する光の出射方向と、傾斜部から 観察者側へ出射する光の出射方向とがそろえられる。こ の結果、にじみやボケのない鮮明な被照明物像が得られ る前方照明装置を提供できるという効果を奏する。

【0366】請求項31記載の発明に係る前方照明装置 は、補償手段において、主として第2の出射面の傾斜部 からの出射光が入射する領域に、遮光部材が設けられた 50 十分な周囲光量がある場合には、前方照明装置を消灯し

構成である。

【0367】これにより、導光体の第2の出射面から観 察者側へ出射する光が、平坦部からの出射光のみとなる この結果、にじみやボケのない鮮明な被照明物像が得ら れる前方照明装置を提供できるという効果を奏する。

【0368】請求項32記載の発明に係る前方照明装置 は、光源と入射面との間に光源からの光の広がりを制限 する光制御手段をさらに備えた構成である。

【0369】これにより、傾斜部からの漏れ光が少なく は、第2の出射面における平坦部からの出射光と傾斜部 10 なり、光の利用効率がさらに向上すると共に、被照明物 の像のにじみやボケが防止される。この結果、明るく且 つ鮮明な被照明物像が得られる面光源としての前方照明 装置を提供できるという効果を奏する。

> 【0370】請求項33記載の発明に係る前方照明装置 は、光制御手段が、入射面から第2の出射面の傾斜部へ 直接入射する光の入射角が臨界角よりも大きくなる範囲 に光源からの光の広がりを制限する構成である。

【0371】これにより、傾斜部からの漏れ光が少なく なり、光の利用効率がさらに向上すると共に、被照明物 出射面の傾斜部と略平行な傾斜面と、上記第2の出射面 20 の像のにじみやボケが防止される。この結果、明るく且 つ鮮明な被照明物像が得られる面光源としての前方照明 装置を提供できるという効果を奏する。

> 【0372】請求項34記載の発明に係る前方照明装置 は、導光体が、平面状の底面と、上記底面に対向する表 面と、光源からの光が入射する入射面とを備え、上記表 面が、底面に対して略平行な平坦部と、上記平坦部に対 して同方向に傾斜した傾斜部とが交互に配置された階段 状に形成された構成である。

【0373】これにより、本発明の前方照明装置では、 は、補償手段において、主として第2の出射面の傾斜部 30 平坦部に平行に進行する光の成分が導光体の外へ漏れる ことがなく、傾斜部で反射して被照明物へ照射される。 それゆえ、略平板状に形成された導光体を有する従来の 構成と比較して、光源光の利用効率が向上する。この結 果、明るい前方照明装置が実現されるという効果を奏す

> 【0374】請求項35記載の発明にかかる前方照明装 置は、導光体に形成されている平坦部のピッチと傾斜部 のピッチとの和が上記入射面から遠ざかるに伴い小さく なっている構成である。

【0375】これにより、光源から遠ざかることによる 被照明物の輝度の低下を相殺し、光源からの光を高角度 で効率よく被照明物全体に導くことができる。その結 果、被照明物の表面における輝度分布を平均化すること ができるという効果を奏する。

【0376】請求項36記載の発明に係る反射型液晶表 示装置は、反射板を有する反射型液晶素子を備えると共 に、上記反射型液晶素子の前面に、請求項1記載の前方 照明装置が配置された構成である。

【0377】これにより、例えば日中の屋外等のように

た状態で使用する一方、十分な周囲光量が得られないと きには、前方照明装置を点灯して使用することができ る。この結果、周囲環境に関わらず、常に明るい高品位 な表示を実現し得る反射型液晶表示装置を提供できると いう効果を奏する。

【0378】請求項37記載の発明に係る反射型液晶表示装置は、反射型液晶素子が走査線を備え、上記走査線のピッチと、前方照明装置の第2の出射面における平坦部のピッチとがほぼ等しく、走査線の上方に平坦部が配置された構成である。

【0379】これにより、液晶素子の画素領域からの反射光が平坦部へ無駄なく入射するので、光の利用効率がさらに向上する。この結果、高品位な表示を実現し得る反射型液晶表示装置を提供できるという効果を奏する。

【0380】請求項38記載の発明に係る反射型液晶表示装置は、反射型液晶表示装置が走査線を備え、上記走査線のピッチよりも、前方照明装置の第2の出射面における平坦部のピッチと傾斜部のピッチとの和の方が小さい構成である。

【0381】これにより、ブラックマトリクスと傾斜部 20 との干渉によるモアレ縞の発生を抑制することができるため、得られる反射型液晶表示装置の表示品位を向上させることができるという効果を奏する。

【0382】請求項39記載の発明に係る反射型液晶表示装置は、反射型液晶表示装置が走査線を備え、上記走査線のピッチよりも、前方照明装置の第2の出射面における平坦部のピッチと傾斜部のピッチとの和の方が大きい構成である。

【0383】これにより、ブラックマトリクスと傾斜部との干渉によるモアレ縞の発生を抑制することができる 30ため、得られる反射型液晶表示装置の表示品位を向上させることができるという効果を奏する。

【0384】請求項40記載の発明に係る反射型液晶表示装置は、上記反射型液晶素子が、表面に凹凸部を有する反射板を備えている構成である。

【0385】これにより、液晶分子の配向および反射型 液晶素子のセル厚とに影響を及ぼすことなく入射光を拡 散する。そのため、正反射方向以外から光が入射して も、画像の観察が可能となるという効果を奏する。

【0386】請求項41記載の発明に係る反射型液晶表 40 示装置は、上記反射板は、反射型液晶素子の液晶層を駆動するための液晶駆動電極を兼ねた反射電極であり、該液晶層に隣接して設けられている構成である。

【0387】これにより、反射型液晶素子を構成する電極基板による視差の発生を解消できる。そのため、得られる反射型液晶表示装置において、画像の2重写りを抑制することができる。また、反射型液晶表示装置の構成を簡素化することができるという効果を奏する。

【0388】請求項42記載の発明に係る反射型液晶表示装置は、前方照明装置が、反射型液晶素子に対して開 50

閉自在に設けられた構成である。

【0389】これにより、前方照明装置を必要としない場合に、前方照明装置によって周囲光の入射が妨げられることがない。この結果、常に明るい表示を実現し得る反射型液晶表示装置を提供できるという効果を奏する。

【0390】請求項43記載の発明に係る反射型液晶表示装置は、反射板を有する反射型液晶素子の前面に、請求項27記載の前方照明装置を備えた反射型液晶表示装置であって、上記補償手段が、所定の圧力に対して可撓10性を有すると共に、上記補償手段および第2の出射面のそれぞれに、互いに接触することによって圧力が加えられた位置を検出する一対の位置検出手段が設けられた構成である。

【0391】これにより、前方照明装置がいわゆるタッチパネルとして機能する。この結果、液晶素子に表示された内容に対してペン入力が可能な反射型液晶表示装置を提供できるという効果を奏する。

【0392】請求項44記載の発明に係る反射型液晶表示装置は、反射型液晶素子が走査線を備え、上記位置検 0 出手段が第2の出射面の平坦部に形成された透明電極を 含み、上記走査線のピッチと、上記透明電極のピッチと がほぼ等しく、走査線の上方に透明電極が配置された構成である。

【0393】これにより、タッチバネルの解像度と液晶素子の解像度とがほぼ等しくなる。この結果、タッチバネルで入力を行う際の、入力像と表示像との一体感が向上し、操作性に優れた反射型液晶表示装置を提供できるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施の一形態に係る反射型LCDの構成を示す断面図である。

【図2】上記反射型LCDが備えるフロントライトの導 光体の形状を示すものであり、同図(a)は、導光体を 平坦部の法線方向上方から見た平面図、同図(b)は、 導光体を入射面の法線方向から見た側面図、同図(c) は、導光体を、光源の長手方向を法線とする断面で切断 した断面図である。

【図3】同図(a)ないし(c)は、光源からの光の導 光体内での挙動を示す説明図である。

0 【図4】反射型LCDの反射板で反射した光の挙動を示す説明図である。

【図5】上記フロントライトの光強度を測定するための 測定系の説明図である。

【図6】上記フロントライトの光強度の測定結果を示す グラフである。

【図7】同図(a)は、発光型ディスプレイからの出射 光と周囲光との関係を示す説明図であり、同図(b) は、上記反射型LCDからの出射光と周囲光との関係を 示す説明図である。

50 【図8】本発明の実施の他の形態に係る反射型LCDの

構成を示す断面図である。

【図9】同図(a)は、図8に示す反射型LCDが備え るフロントライトシステムにおいて、導光体の傾斜部か ら、上記フロントライトシステムの出射面となる面まで の距離が均一であることを示す断面図、同図 (b) は、 比較のために、前記した実施形態の反射型LCDが備え るフロントライトにおいて、傾斜部からフロントライト の出射面となる面までの距離が均一でないことを示す断 面図である。

【図10】同図(a)および(b)は、図9(a)およ 10 シートの集光特性を示すグラフである。 び(b)にそれぞれ示した構成による照明光の輝度分布 を測定するための測定系をそれぞれ示す説明図である。

【図11】同図(a)および(b)は、図9(a)およ び(b)にそれぞれ示した構成による照明光の輝度分布 の測定結果をそれぞれ示すグラフである。

【図12】本発明の実施に係るさらに他の形態としての 反射型LCDの構成を示す断面図である。

【図13】図12に示す反射型LCDが備えるフロント ライトシステムにおける光の挙動を示す模式図である。

【図14】図12に示す反射型LCDが備えるフロント 20 ライトシステムの照明光の輝度分布の測定結果を示すグ ラフである。

【図15】本発明の実施に係るさらに他の形態としての 反射型LCDにおいて、像のにじみやボケが生じる原理 を示す説明図である。

【図16】上記反射型LCDの導光体の傾斜部の一部を 拡大して示す断面図であり、上記傾斜部に金属反射膜が 設けられた構成を示す。

【図17】同図(a)ないし(e)は、上記金属反射膜 を形成する工程を示す断面図である。

【図18】上記金属反射膜がない場合の光の挙動を示す 模式図である。

【図19】図16に示した構成の変形例を示す断面図で ある。

【図20】本発明の実施に係るさらに他の形態としての 反射型LCDの構成を示す断面図である。

【図21】上記反射型LCDにおける導光体と光学補償 板との間の光の挙動を示す模式図である。

【図22】図20に示した構成の変形例としての反射型 LCDの構成を示すものであり、同図(a)は、この反 40 射型LCDの断面図、同図(b)および(c)は、この 反射型LCDの光学補償板の構成例をそれぞれ示す断面 図である。

【図23】本発明の実施に係るさらに他の形態としての 反射型LCDが備えるタッチパネルの構成を示す断面図

【図24】上記タッチパネルの断面図、およびこのタッ チパネルに設けられた反射電極の平面図である。

【図25】上記タッチパネルにおいて、ペンで押圧され た位置の座標を検出するための構成を示す平面図であ

る。

【図26】 上記タッチパネルの一部が、ペンで押圧され ているときの状態を示す断面図である。

56

【図27】本発明の実施に係るさらに他の形態としての 反射型LCDの構成を示す断面図である。

【図28】図27に示す反射型LCDの導光体におい て、入射面から入射した光が傾斜部で全反射されるため の条件を説明するための説明図である。

【図29】図27に示す反射型LCDが備えるプリズム

【図30】同図(a) および(b)は、図27に示す反 射型LCDに対して、入射光の広がりを制限するために 適用できる他の構成例を示す説明図である。

【図31】同図(a)ないし(c)は、本発明の実施に 係るさらに他の形態としての反射型LCDが備える導光 体の構成と共に、この導光体内の光の挙動を示す断面図 である。

【図32】本発明の実施に係るさらに他の形態としての 反射型LCDの構成を示す断面図である。

【図33】図32に示す反射型LCDのフロントライト の入射面の傾き角の条件を説明するための説明図であ る。

【図34】本発明の実施に係るさらに他の形態としての 反射型LCDの構成を示す斜視図である。

【図35】本発明の実施に係るさらに他の形態としての 照明装置の使用例を示す斜視図である。

【図36】図35に示す照明装置の使用例を示す平面図

【図37】本発明の実施に係るさらに他の形態としての 30 反射型LCDの構成を示す断面図である。

【図38】図37に示す反射型LCDが備えるフロント ライトの導光体の形状を示すものであり、同図(a) は、導光体を平坦部の法線方向上方から見た平面図、同 図(b)は、導光体を入射面の法線方向から見た断面 図、同図(c)は、導光体を、光源の長手方向を法線と する断面で切断した断面図である。

【図39】図38に示す導光体における平坦部および傾 斜部の構成を説明する説明図である。

【図40】同図(a)および(b)は、光源からの光の 導光体内での挙動を示す説明図である。

【図41】図37に示す反射型LCDが備えるフロント ライトにおける光源からの距離と輝度との関係を示すグ ラフである。

【図42】図37に示す反射型LCDが備えるフロント ライトにおける出射光の角度の特性を示すグラフであ

【図43】図37に示す反射型LCDが備える反射型液 晶セルの構成を示す断面図である。

【図44】同図(a)ないし(e)は、図43に示す反 50 射型液晶セルにおける反射電極の形成方法を示す工程図

である。

【図45】図43に示す反射型液晶セルにおける反射電 極の反射率角度依存性を示すグラフである。

【図46】図43に示す反射型液晶セルの他の例を示す 断面図である。

【図47】図43に示す反射型液晶セルにおける画素、 走査線および信号線の構成を示す平面図である。

【図48】図37に示す反射型LCDが備えるフロント ライトにおける出射光の輝度および輝度分布特性を示す グラフである。

【図49】本発明の実施に係るさらに他の形態としての 反射型LCDの構成を示す断面図である。

【図50】同図(a)および(b)は、図49に示す反 射型LCDが備えるフロントライトおよび従来のフロン トライトにおける照明光の輝度分布を測定結果をそれぞ れ示すグラフである。

【図51】従来の補助照明付き反射型LCDの概略構成 と共に、この反射型LCDにおける光の挙動を示す断面 図である。

【図52】上記従来の反射型LCDにおける光の挙動を 20 73 反射電極(位置検出手段) 示す断面図である。

【符号の説明】

- 10 液晶セル (反射型液晶素子)
- 12 液晶層
- 13 反射防止フィルム (反射防止膜、光学手段)
- 17 反射板
- 18 偏光板
- 19 絶縁膜
- 20 フロントライト(前方照明装置)
- 21 平坦部
- 10 22 傾斜部
 - 23 界面(第2の出射面)
 - 24 導光体 (第1の導光体)
 - 25 入射面
 - 26 光源
 - 27 反射鏡(集光手段)
 - 28 界面(第1の出射面)
 - 45 第2の導光体
 - 64 光学補償板(補償手段)
 - 72 透明電極(位置検出手段)

【図6】

【図29】

【図13】

【図9】

【図10】

【図12】

【図23】

【図11】

【図17】

【図18】

【図25】

【図27】

24 84 18

【図32】

【図33】

【図36】

【図41】

【図45】

拡散角 []

【図37】

【図38】

【図46】

【図40】

【図43】

【図44】

【図47】

【図49】

【図50】

【図52】

【図51】

フロントページの続き

(72)発明者 海老 毅

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] This invention relates to the front lighting system constituted in order to have made this reflected light penetrate so that an observer can check the reflected light from an illuminated object by looking, and the reflective mold liquid crystal display equipped with this front lighting system as a source of a fill-in flash while it is arranged and used between an illuminated object and an observer and irradiates light at an illuminated object.

[0002]

[Description of the Prior Art] Unlike other displays, such as CRT (Cathode Ray Tube), PDP (Plasma Display Panel), or EL (Electro Luminescence), a liquid crystal display displays an alphabetic character and an image by adjusting the amount of transmitted lights of the light from the specific light source, without the liquid crystal itself emitting light.

[0003] The conventional liquid crystal display (LCD:Liquid Crystal Display is called hereafter) can be divided roughly into the transparency mold LCD and the reflective mold LCD. As for the transparency mold LCD, the field luminescence light sources, such as fluorescence tubing as the light source (back light) and EL, are arranged at the tooth back of a liquid crystal cell.

[0004] On the other hand, in order that the reflective mold LCD may display using an ambient light, it does not need a back light but has the advantage that there is little power consumption. Furthermore, as for a luminescence mold display or the transparency mold LCD, in a very bright location where direct sunlight hits, a display looks more vividly in the reflective mold LCD to almost disappearing. For this reason, the reflective mold LCD is applied to a Personal Digital Assistant and a mobile computer with need increasingly increasing in recent years.

[0005] However, the reflective mold LCD has the following troubles. That is, since the reflective mold LCD uses an ambient light, its degree for which display brightness depends to a circumference environment is dramatically high, and a display may be unable to recognize it at all in darkness, such as night, especially. In the reflective mold LCD using the reflective mold LCD and polarizing plate with which the light filter was especially used for colorization, an above-mentioned problem is large and supplemental lighting is needed in preparation for the case where sufficient ambient light is not obtained.

[0006] However, the reflecting plate is installed in the tooth back of a liquid crystal cell, and the reflective mold LCD cannot use a back light like the transparency mold LCD. Although the equipment called the transflective type LCD using the half mirror as a reflecting plate is also proposed, the display property becomes the halfway thing which cannot be called a transparency mold and reflective mold, either, and it is thought that utilization is difficult.

[0007] Then, the front light system for arranging in the front face of a liquid crystal cell is proposed from the former as supplemental lighting of the reflective mold LCD in the case of being dark in a perimeter. Generally this front light system is equipped with a transparent material and the light source arranged on the side face of a transparent material. It goes on, it reflects in the configuration built by the transparent material front face, and the light source light which carried out incidence from the transparent material side face carries out outgoing radiation of the interior of a transparent material to a liquid crystal cell side. By modulating the light according to display information, penetrating a liquid crystal cell, and being reflected with the reflecting plate arranged at the tooth-back side of a liquid crystal cell, the light which carried out outgoing radiation penetrates a transparent material again, and outgoing radiation is carried out to an observer side. Thereby, even when an observer's amount of ambient lights is inadequate, the recognition of a display of him is attained.

[0008] In addition, such a front light is indicated by JP,5-158034,A, SID DIGEST P.375 (1995), etc. [0009]

[Problem(s) to be Solved by the Invention] Here, the principle of operation of the front light system indicated by SID DIGEST P.375 (1995) is explained briefly, referring to <u>drawing 51</u>. In the above-mentioned front light system, the light from the light source 106 makes one side face of the transparent material 104 which has the interface 101 formed from flat part 101a and ramp 101b the plane of incidence 105 which carries out incidence. That is, the light source 106 is arranged in the location which counters the plane of incidence 105 of a transparent material 104.

[0010] A certain thing goes straight on among the light which carried out incidence to the transparent material 104 through plane of incidence 105 from the light source 106, and incidence of a certain thing is carried out to the interface 101-108 of a transparent material 104 and its circumference medium. Supposing the circumference medium of a transparent material 104 shall be air and the refractive index of a transparent material 104 is about 1.5 at this time, a Snell's law (formula 1) shows that the incident angle over an interface 101-108 carries out total reflection of light about 41.8 degrees or more by the interface

101-1Q8.

[0011] n1, sintheta1 = n2, and sintheta2thetac = arcsin(n2/n1)...(formula 1)

n1 [however,] The refractive index of the 1st medium (here transparent material 104), and n2 The refractive index of the 2nd medium (here air), and theta 1 The incident angle from a transparent material 104 to an interface 101, and theta 2 The outgoing radiation angle from an interface 101 to the 2nd medium, and thetac a critical angle -- it comes out.

[0012] Incidence of the light which carried out total reflection by ramp 101b which is a reflector in the light which carried out incidence to the interface 101-108, and the light reflected by ramp 101b of an interface 101 after carrying out total reflection by the interface 108 is carried out to a liquid crystal cell 110. After the light is modulated by the liquid crystal layer which is not illustrated, it is reflected by the reflecting plate 111 formed in the tooth back of a liquid crystal cell 110, and incidence of the light which carried out incidence to the liquid crystal cell 110 is again carried out to a transparent material 104, it penetrates flat part 101a and outgoing radiation is carried out to an observer 109 side.

[0013] Moreover, the light which passed along plane of incidence 105 from the light source 106, and carried out incidence to flat part 101a instead of ramp 101b is spread, repeating total reflection between an interface 101 and an interface 108, until it reaches ramp 101b. In addition, the area of ramp 101b seen from the observer 109 side is formed small enough compared with the area of flat part 101a.

[0014] The above-mentioned conventional front light system has the following problems.

(1) the light which cannot reach ramp 101b even if it repeats total reflection, as shown in <u>drawing 52</u>, and plane of incidence 105 -- receiving -- abbreviation -- the light which carried out incidence vertically turns into the light 114 which carries out outgoing radiation out of a transparent material 104 from the field 107 which counters plane of incidence 105, and must have been used for a display. That is, the utilization effectiveness of light is bad.

(2) The configuration of the interface 101 which consists of ramp 101b and flat part 101a resembles the configuration which made the top-most vertices of a prism sheet common exactly, and as shown in <u>drawing 52</u>, an ambient light 115 is easy to be reflected in an observer 109 side, and it leads to deterioration of display grace.

[0015] These problems are common to most conventional front light systems, and improvement in the utilization effectiveness of light source light is desired.

[0016] This invention is made in view of the above-mentioned trouble, and that object is to offer the front lighting system which enables homogeneity and brighter lighting to an illuminated object, and the liquid crystal display of the reflective mold using this front lighting system while raising the utilization effectiveness of light source light.

[Means for Solving the Problem] In order to solve the above-mentioned technical problem, a front lighting system according to claim 1 In the front lighting system used equipping with the light source and a transparent material, and arranging ahead of an illuminated object The plane of incidence to which the above-mentioned transparent material carries out incidence of the light from the light source, and the 1st outgoing radiation side which carries out outgoing radiation of the light towards an illuminated object, The ramp which counters the outgoing radiation side of the above 1st and is equipped with the 2nd outgoing radiation side which carries out outgoing radiation of the reflected light from an illuminated object, and the outgoing radiation side of the above 2nd mainly turns the light from the light source to the 1st outgoing radiation side, and reflects, It is characterized by the thing by which the flat part which mainly penetrates the reflected light from an illuminated object has been arranged by turns and which is formed stair-like.

[0018] With the above-mentioned configuration, outgoing radiation of the illumination light is carried out from the 1st outgoing radiation side to an illuminated object, and the reflected light from an illuminated object penetrates the flat part of return and the 2nd outgoing radiation side into a transparent material again from the outgoing radiation side of the above 1st, and reaches to an observer side. The 2nd outgoing radiation side where the transparent material of the above-mentioned configuration counters the 1st outgoing radiation side is formed for a ramp and a flat part in the shape of [which has been arranged by turns] a stairway. Furthermore, since the ramp located between flat parts mainly turns the light from the light source to the 1st outgoing radiation side and reflects, all the components parallel to a flat part among the light which carried out incidence from the light source will reflect in the above-mentioned ramp, and it will be irradiated from the 1st outgoing radiation side to an illuminated object. It irradiates to an illuminated object, without the component of the light which advances to parallel at a flat part leaking out of a transparent material with the front lighting system of this invention as compared with the conventional configuration which has by this the transparent material formed in abbreviation plate-like. Therefore, the utilization effectiveness of light source light improves and a brighter front lighting system can be offered. [0019] In a configuration according to claim 1, a front lighting system according to claim 2 will be characterized by having further the 2nd transparent material which equalizes the luminance distribution of the outgoing radiation light from the outgoing radiation side of the above 1st, if the above-mentioned transparent material is made into the 1st transparent material. [0020] Since the 1st transparent material is formed stair-like, as for the front lighting system of this invention, the distance from the ramp of the 2nd outgoing radiation side to the 1st outgoing radiation side becomes small in proportion to the distance from the light source. So, the luminance distribution of the light which carries out outgoing radiation from the 1st outgoing radiation side is not sometimes uniform. When the above-mentioned configuration was equipped with the 2nd transparent material, the luminance distribution of the outgoing radiation light to an illuminated object is equalized. Consequently, the front lighting system which functions as the surface light source without brightness unevenness can be offered.

[0021] The 1st front face where, as for a front lighting system according to claim 3, the 2nd transparent material counters the

http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cg

Ist outgoing radiation side of the 1st transparent material in a configuration according to claim 2, While having the 2nd front face which carries out outgoing radiation of the light which countered the 1st front face of the above and carried out incidence through the 1st front face of the above from the 1st transparent material to an illuminated object It is characterized by being formed so that the distance from each ramp [in / in the 1st front face of the above and the 2nd front face / the 2nd outgoing radiation side of the 1st transparent material] to the 2nd front face of the above may become abbreviation homogeneity. [0022] With the above-mentioned configuration, by having had the 2nd transparent material, the distance to the 2nd front face of the 2nd transparent material used as the outgoing radiation side from each of the ramp of the 2nd outgoing radiation side which the light from the light source reflects in the 1st transparent material to an illuminated object is equalized, and the luminance distribution of the outgoing radiation light from the 2nd front face of the above is equalized. Consequently, the front lighting system which functions as the surface light source without brightness unevenness is realized.

[0023] A front lighting system according to claim 4 is characterized by the refractive index of the 1st transparent material and the refractive index of the 2nd transparent material being almost equal in a configuration according to claim 3.

[0024] According to the above-mentioned configuration, the light reflected by the ramp of the 2nd slant face in the 1st transparent material will carry out outgoing radiation toward an illuminated object at an include angle as it is according to the refractive index of the 1st transparent material and the refractive index of the 2nd transparent material being almost equal. Consequently, it is not necessary to take into consideration change of the locus of the light by the refraction at the time of the incidence to the 2nd transparent material, or the outgoing radiation from the 2nd transparent material, and there is an advantage that a design becomes easy.

[0025] A front lighting system according to claim 5 is characterized by forming the 1st transparent material and 2nd transparent material in one in a configuration according to claim 3.

[0026] According to the above-mentioned configuration, there is an advantage that manufacture is easy, by having formed the 1st transparent material and 2nd transparent material in one.

[0027] A front lighting system according to claim 6 is characterized by having the optical means which controls that the light from the 2nd outgoing radiation side in the 1st transparent material is reflected in the 2nd front face in the 2nd transparent material of the above on this 2nd front face as the 3rd transparent material in a configuration according to claim 3, 4, or 5. [0028] Usually, on the 2nd front face in the 2nd transparent material, a part of light from the ramp currently formed in the 2nd outgoing radiation side of the 1st transparent material is reflected, and it becomes the reflected light. Of generating of this reflected light, a reflected image is formed in the 2nd outgoing radiation side from the 1st outgoing radiation side in the 1st transparent material. Consequently, this reflected image and the image in the above-mentioned ramp will interfere or diffract mutually, it will see from an observer, and the nonuniformity and the rainbow-colored spectrum of luminance distribution will arise on the front face of an illuminated object.

[0029] However, according to the above-mentioned configuration, since the front lighting system is equipped with the above-mentioned optical means as the 3rd transparent material, generating of the reflected light which it is reflected on the 2nd front face and the incident light from a ramp produces can be controlled. So, interference or diffraction with the image in the ramp which acts as the minute light source section, and the reflected image by the reflected light can be prevented. Therefore, generating of the nonuniformity of the luminance distribution on the display observed in an observer side (2nd outgoing radiation side) and a rainbow-colored spectrum can be prevented.

[0030] A front lighting system according to claim 7 is characterized by the above-mentioned optical means being an antireflection film in a configuration according to claim 6.

[0031] Since the antireflection film (acid-resisting film) marketed can be used as it is as an optical means according to the above-mentioned configuration, lifting of the manufacturing cost of a front lighting system can be controlled. Therefore, a cheap front lighting system can be offered.

[0032] It is characterized by the front lighting system according to claim 8 having pasted up the above-mentioned optical means with the 2nd transparent material in a configuration according to claim 6 or 7 with the adhesives which have a refractive index almost equal to the refractive index which the 2nd transparent material of the above has.

[0033] According to the above-mentioned configuration, since it has pasted up with the adhesives of a refractive index almost equal to the refractive index of the 2nd transparent material, an optical means can improve the acid-resisting effectiveness, without changing mostly the I/O conditions of the light in the 2nd transparent material.

[0034] A front lighting system according to claim 9 is characterized by being the light-scattering object over which the 2nd transparent material scatters the outgoing radiation light from the 1st outgoing radiation side in the 1st transparent material in a configuration according to claim 2.

[0035] With the above-mentioned configuration, when the light-scattering object as the 2nd transparent material scatters the outgoing radiation light from the 1st transparent material, the luminance distribution of the outgoing radiation light to an illuminated object is equalized. Consequently, the front lighting system which functions as the surface light source without brightness unevenness is realized.

[0036] A front lighting system according to claim 10 is anisotropy scatterer scattered about in a configuration according to claim 9 only in the light in which the above-mentioned light-scattering object carried out incidence from the predetermined include-angle range, and it is characterized by including a part of include-angle range [at least] as for which the outgoing radiation light from the 1st transparent material carries out incidence to the 2nd transparent material in the above-mentioned predetermined include-angle range.

[0037] Since the anisotropy scatterer as the above-mentioned light-scattering object does not act on incident light other than

the above-mentioned predetermined include-angle range, such as light outputted, for example in the direction of an observer, according to the above-mentioned configuration, it is controlled that the image of an illuminated object deteriorates by the unnecessary scattered light. Moreover, when the outgoing radiation light from the 1st transparent material carries out incidence, incident light can be efficiently scattered over the include-angle range of incident light on which the light-scattering object as the 2nd transparent material makes it scattered. Consequently, while there is no brightness unevenness and functioning as the bright surface light source, the front lighting system with which the clear image of an illuminated object is obtained is realized.

[0038] A front lighting system according to claim 11 is characterized by the above-mentioned light-scattering object being a forward-scattering object in a configuration according to claim 9.

[0039] According to the above-mentioned configuration, the backscattering of the light which carried out incidence disappears from the 1st transparent material by being the forward-scattering object over which the light in which the light-scattering object as the 2nd transparent material carried out incidence from the 1st transparent material is scattered only to the travelling direction side of this light. Thereby, while the utilization effectiveness of light improves further, it is prevented that the image of an illuminated object deteriorates by the back scattered light. Consequently, while there is no brightness unevenness and functioning as the bright surface light source, the front lighting system with which the clear image of an illuminated object is obtained is realized.

[0040] It is characterized by a front lighting system according to claim 12 being an optical means which controls that the 2nd transparent material of the above reflects in respect of the 1st [in / in the light from the 2nd outgoing radiation side in the 1st transparent material / this 1st transparent material] outgoing radiation in a configuration according to claim 2.

[0041] Usually, in respect of the 1st [in the 1st transparent material] outgoing radiation, the light from the ramp currently formed in the 2nd outgoing radiation side is reflected, and it becomes the reflected light. Of generating of this reflected light, a reflected image is formed in the 2nd outgoing radiation side from the 1st outgoing radiation side in the 1st transparent material. Consequently, this reflected image and the image in the above-mentioned ramp will interfere or diffract mutually, it will see from an observer, and the nonuniformity and the rainbow-colored spectrum of luminance distribution will arise on the front face of an illuminated object.

[0042] However, according to the above-mentioned configuration, since the front lighting system is equipped with the above-mentioned optical means as the 2nd transparent material, generating of the reflected light which it is reflected in respect of the 1st outgoing radiation, and the incident light from a ramp produces can be controlled. So, interference or diffraction with the image in the ramp which acts as the minute light source section, and the reflected image by the reflected light can be prevented. Therefore, generating of the nonuniformity of the luminance distribution on the display observed in an observer side (2nd outgoing radiation side) and a rainbow-colored spectrum can be prevented.

[0043] A front lighting system according to claim 13 is characterized by the above-mentioned optical means being an antireflection film in a configuration according to claim 12.

[0044] Since the antireflection film (acid-resisting film) marketed can be used as it is as an optical means according to the above-mentioned configuration, lifting of the manufacturing cost of a front lighting system can be controlled. Therefore, a cheap front lighting system can be offered.

[0045] It is characterized by the front lighting system according to claim 14 having pasted up the above-mentioned optical means with the 1st transparent material in a configuration according to claim 12 or 13 with the adhesives which have a refractive index almost equal to the refractive index which the 1st transparent material has.

[0046] According to the above-mentioned configuration, since it has pasted up with the adhesives of a refractive index almost equal to the refractive index of the 1st transparent material, an optical means can improve the acid-resisting effectiveness, without changing mostly the I/O conditions of the light in the 1st transparent material.

[0047] A front lighting system according to claim 15 is characterized by introducing the bulking agent which mitigates the refractive-index difference in the optical interface which exists among these transparent materials between the 1st transparent material and the 2nd transparent material in a configuration according to claim 2.

[0048] According to the above-mentioned configuration, as compared with the case where an air space exists between the 1st transparent material and the 2nd transparent material, attenuation of the light by the echo by the optical interface which exists between the 1st transparent material and the 2nd transparent material is controlled. Consequently, the utilization effectiveness of light source light improves further, and the front lighting system as the brighter surface light source is realized. In addition, if one [at least] refractive index of the 1st transparent material and the 2nd transparent material and the refractive index of a bulking agent are made equal, since the number of the optical interfaces between the 1st transparent material and the 2nd transparent material can be reduced, it is more effective.

[0049] A front lighting system given in claim 16 written is characterized by having further the optical control means which restricts the breadth of the light from the light source to the range whose component which carries out direct incidence to the 1st outgoing radiation side in the 1st transparent material is mostly lost from plane of incidence between the light source and plane of incidence in a configuration according to claim 15.

[0050] With the above-mentioned configuration, the component which penetrates the 1st outgoing radiation side among the light which carries out direct incidence from the light source to the 1st outgoing radiation side between the 1st transparent material and the 2nd transparent material as compared with the case where an air space exists, and carries out incidence to the 2nd transparent material increases by introducing the bulking agent which mitigates the refractive-index difference in the optical interface which exists between the 1st transparent material and the 2nd transparent material. In this component,

http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cg_

incidence is carried out to the 2nd transparent material by the comparatively big incident angle, and what cannot contribute to the lighting of an illuminated object exists. For this reason, the above-mentioned configuration can lose most components which carry out direct incidence to the 1st outgoing radiation side among the light which carries out incidence from plane of incidence to a transparent material, when an optical control means restricts the breadth of the light from the light source. Thereby, the component which carries out incidence from the 1st outgoing radiation side by the comparatively big incident angle to the 2nd transparent material can be lessened. Consequently, the utilization effectiveness of light improves further and a bright front lighting system is realized.

[0051] A front lighting system according to claim 17 is characterized by the above-mentioned plane of incidence existing in the side face of a transparent material in a configuration according to claim 1.

[0052] According to the above-mentioned configuration, when light carries out incidence from the side face of a transparent material, from an observer, there is an advantage that the light source does not have direct vanity. Thereby, the direct light from the light source does not affect the image of an illuminated object, but the front lighting system with which a clear illuminated object image is acquired is realized.

[0053] It is characterized by a front lighting system according to claim 18 having total of the projection of the above-mentioned ramp to a flat surface vertical to the 1st outgoing radiation side almost equal to the projection of the plane of incidence to the above-mentioned flat surface in a configuration according to claim 17.

[0054] According to the above-mentioned configuration, all the components parallel to the 1st outgoing radiation side among the light which carried out incidence from the plane of incidence of a transparent material carry out incidence to a ramp, and it reflects in it towards the 1st outgoing radiation side. Thereby, the utilization effectiveness of light source light can improve further, and a brighter front lighting system can be offered.

[0055] A front lighting system according to claim 19 is characterized by for the above-mentioned plane of incidence and the outgoing radiation side of the above 1st making an obtuse angle, and allotting them in a configuration according to claim 17. [0056] According to the above-mentioned configuration, the component which carries out direct incidence to the 1st outgoing radiation side among the light source light which carried out incidence from plane of incidence decreases by plane of incidence and the 1st outgoing radiation side making an obtuse angle, and allotting them. Thereby, the utilization effectiveness of light source light improves further, and a brighter front lighting system is realized.

[0057] A front lighting system according to claim 20 is characterized by having further a condensing means to carry out incidence of the light from the light source only to the above-mentioned plane of incidence in a configuration according to claim 1.

[0058] According to the above-mentioned configuration, since loss of light source light can be lessened further, the utilization effectiveness of light source light improves further, and the front lighting system as the brighter surface light source is realized.

[0059] Total of the projection to the outgoing radiation side of the above 1st of the above-mentioned ramp is characterized by a front lighting system according to claim 21 having an area smaller than total of the projection to the outgoing radiation side of the above 1st of the above-mentioned flat part in a configuration according to claim 1.

[0060] Since outgoing radiation is carried out to an observer side through the flat part in the 2nd outgoing radiation side, in order to obtain a bright clear image, as for the reflected light from the illuminated object which carries out incidence to the 1st outgoing radiation side, it is desirable that total of the projection of a ramp is smaller than total of the projection of a flat part as much as possible. According to the above-mentioned configuration, the area of the flat part which contributes mainly to the display of the image of an illuminated object increases seemingly. Consequently, the front lighting system with which a bright clear image is obtained is realized.

[0061] It is characterized by a front lighting system according to claim 22 having [as opposed to / the above-mentioned flat part is parallel to the outgoing radiation side of the above 1st, or / the outgoing radiation side of the above 1st] whenever tilt-angle / of 10 degrees or less] in a configuration according to claim 1.

[0062] If the effect to the display grace of the image of an illuminated object is taken into consideration, it is desirable to make whenever [to the 1st outgoing radiation side of the flat part in the 2nd outgoing radiation side / tilt-angle] into the range of 0-10 degrees.

[0063] A front lighting system according to claim 23 is the refractive index of the external medium which touches n2 and the above-mentioned ramp in the refractive index of a transparent material in a configuration according to claim 1 n1 If it carries out, the incident angle theta of the light which carries out incidence from the light source to a ramp will be characterized by satisfying the following inequality.

[0064] Theta \geq =arcsin (n1 / n2)

As for the light which carries out incidence from the light source to the ramp of the 2nd outgoing radiation side, it is desirable to carry out total reflection by this ramp. If the incident angle theta to a ramp fulfills the above-mentioned conditions, total reflection of the incident light to a ramp will be carried out. Thereby, the light from the light source does not leak from a ramp to an observer side, and the utilization effectiveness of light improves further. Consequently, the front lighting system which functions as the bright surface light source is realized.

[0065] A front lighting system according to claim 24 is characterized by preparing the reflective member which reflects light in the front face of the above-mentioned ramp in a configuration according to claim 1.

[0066] As for the light which carries out incidence from the light source to the ramp of the 2nd outgoing radiation side, it is desirable to carry out total reflection by this ramp. By preparing a reflective member in the above-mentioned ramp, total

reflection of the incident light to a ramp is concerned and carried out to the incident angle. Thereby, the light from the light source does not leak from a ramp to an observer side, and the utilization effectiveness of light improves further. Consequently, the front lighting system which functions as the bright surface light source is realized.

[0067] A front lighting system according to claim 25 is the refractive index of the external medium which touches n2 and the above-mentioned ramp in the refractive index of a transparent material in a configuration according to claim 24 n1 If it carries out, the incident angle theta of the light which carries out incidence from the light source to a ramp will be characterized by satisfying the following inequality.

[0068] Theta<arcsin (n1 / n2)

The incident angle theta of the light which carries out incidence from the light source to a ramp becomes so small that whenever [tilt-angle / of the ramp to a flat part] becomes large. If a reflective member is prepared in the ramp of the 2nd outgoing radiation side, total reflection of the incident light to a ramp is concerned and carried out to the incident angle, and it will penetrate a ramp and it will not carry out outgoing radiation to an observer side. It becomes possible to design greatly whenever [tilt-angle / of the ramp to a flat part] to the range where the incident angle theta of the light which carries out incidence from the light source to a ramp fills the above-mentioned inequality by this. Consequently, when it sees from [of a flat part] a normal, the ramp which does not contribute to the display of the image of an illuminated object becomes is hard to be checked by looking, and improvement in the display grace of the image of an illuminated object can be aimed at. [0069] A front lighting system according to claim 26 is characterized by preparing a protection-from-light member in the front face of the above-mentioned reflective member in a configuration according to claim 24.

[0070] With the above-mentioned configuration, since the reflective member is prepared on the surface of the ramp, an ambient light reflects by this reflective member, it goes into an observer's eyes, and there is a possibility of degrading the display grace of the image of an illuminated object. For this reason, the front lighting system with which a clear illuminated object image is acquired can be offered by having prepared the protection-from-light member which prevents that an ambient light reflects in the front face of the above-mentioned reflective member towards an observer.

[0071] The front lighting system according to claim 27 is characterized by having further a compensation means to arrange the direction of outgoing radiation of the outgoing radiation light from the flat part in the 2nd outgoing radiation side, and the outgoing radiation light from a ramp in the configuration according to claim 1.

[0072] Outgoing radiation of the reflected light from the illuminated object which carried out incidence from the 1st outgoing radiation side to the transparent material since it was formed stair-like by which, as for the 2nd outgoing radiation side, the flat part and the ramp have been arranged by turns will be carried out in the mutually different direction from each of the flat part of the 2nd outgoing radiation side, and a ramp, and it has a possibility of inviting a blot and dotage of the image of an illuminated object. For this reason, it becomes possible to obtain the clear image of an illuminated object by having a compensation means to arrange the direction of outgoing radiation of the outgoing radiation light from the flat part of the 2nd outgoing radiation side, and the outgoing radiation light from a ramp.

[0073] While the above-mentioned compensation means is equipped with the 1st front face which counters the 2nd outgoing radiation side of a transparent material, and the 2nd front face which counters the 1st front face of the above in a configuration according to claim 27, a front lighting system according to claim 28 the 1st front face of a compensation means -- the ramp of the 2nd outgoing radiation side of a transparent material, and abbreviation -- with an parallel inclined plane the flat part of the outgoing radiation side of the above 2nd, and abbreviation -- it is formed stair-like and the 2nd front face of the above-mentioned compensation means is characterized by the thing which an parallel flat side is arranged by turns and carries out the complementation to the outgoing radiation side of the above 2nd and which is arranged at the 1st outgoing radiation side of a transparent material, and abbreviation parallel.

[0074] According to the above-mentioned configuration, it reflects by the illuminated object, and as again shown in return and drawing 21 inside a transparent material from the outgoing radiation side of the above 1st, outgoing radiation of the light which carried out outgoing radiation towards the illuminated object from the 1st outgoing radiation side of a transparent material is carried out in the mutually different direction from each of the flat part (21) of the 2nd outgoing radiation side, and a ramp (22). The 1st front face (64a) of the compensation means (64) arranged here in the location which counters the outgoing radiation side of the above 2nd by [which carry out the complementation to the 2nd outgoing radiation side of a transparent material] being formed stair-like The light (69a) which carries out outgoing radiation from a flat part (21) turns into light (68band69b) which carries out incidence to the inclined plane of the 1st front face and which carries out outgoing radiation in the almost equal direction, and carries out outgoing radiation of the light (68a) which carries out incidence to the flat side of the 1st front face of a compensation means and which carries out outgoing radiation from a ramp (22) from the 2nd front face. Thus, it becomes possible by arranging the direction of outgoing radiation of the outgoing radiation light from a flat part, and the direction of outgoing radiation of the outgoing radiation light from a clear illuminated object image without a blot or dotage.

[0075] It is characterized by a front lighting system according to claim 29 having the refractive index from which the field as for which the outgoing radiation light from the ramp of the 2nd outgoing radiation side mainly carries out incidence, and the field the outgoing radiation light from the flat part of the 2nd outgoing radiation side mainly carries out [a field] incidence differ mutually in the above-mentioned compensation means in a configuration according to claim 27.

[0076] With the above-mentioned configuration, the direction of outgoing radiation from each of a ramp and a flat part is arranged by compensation means to have the refractive index from which the field as for which the outgoing radiation light from a ramp mainly carries out incidence, and the field the outgoing radiation light from a flat part mainly carries out [a field

l incidence differ mutually. Consequently, it becomes possible to offer the front lighting system with which a clear illuminated object image without a blot or dotage is acquired.

[0077] A front lighting system according to claim 30 is characterized by preparing a diffraction component in the field as for which the outgoing radiation light from the ramp of the 2nd outgoing radiation side mainly carries out incidence in the above-mentioned compensation means in a configuration according to claim 27.

[0078] With the above-mentioned configuration, the direction of outgoing radiation from each of a ramp and a flat part is arranged by having prepared the diffraction component in the field as for which the outgoing radiation light from a ramp mainly carries out incidence. Consequently, the front lighting system with which a clear illuminated object image without a blot or dotage is acquired is realized.

[0079] A front lighting system according to claim 31 is characterized by preparing a protection-from-light member in the field as for which the outgoing radiation light from the ramp of the 2nd outgoing radiation side mainly carries out incidence in the above-mentioned compensation means in a configuration according to claim 27.

[0080] With the above-mentioned configuration, the light which carries out outgoing radiation from the 2nd outgoing radiation side of a transparent material turns into only outgoing radiation light from a flat part by having prepared the protection-from-light member which does not make light penetrate in the field as for which the outgoing radiation light from a ramp mainly carries out incidence. The front lighting system with which a clear illuminated object image without a blot or dotage is acquired by this is realized.

[0081] A front lighting system according to claim 32 is characterized by having further the optical control means which restricts the breadth of the light from the light source between the light source and plane of incidence in a configuration according to claim 1.

[0082] Although it reflects mainly in the ramp of the 2nd outgoing radiation side, in order to lessen the component which leaks to the transparent material exterior, without carrying out total reflection in a ramp, as for the light from the light source, it is desirable to give a certain amount of directivity to light from the light source, and to lessen the component which carries out incidence to the above-mentioned ramp at an include angle smaller than a critical angle. For this reason, while the leakage light of the above-mentioned configuration from a ramp decreases and its utilization effectiveness of light improves further by having had the optical control means which restricts the breadth of the light from the light source, a blot and dotage of the image of an illuminated object are prevented. Consequently, the front lighting system as the surface light source with which a bright and clear illuminated object image is acquired is realized.

[0083] It is characterized by a front lighting system according to claim 33 restricting the breadth of the light from the light source to the range in which the incident angle of the light in which an optical control means carries out direct incidence from plane of incidence to the ramp of the 2nd outgoing radiation side becomes larger than a critical angle in a configuration according to claim 32.

[0084] According to the above-mentioned configuration, when an optical control means restricts the breadth of the light from the light source, the component which carries out incidence by the incident angle smaller than a critical angle among the light which carries out direct incidence from plane of incidence to a ramp can be lost. While the leakage light from a ramp decreases and the utilization effectiveness of light improves further by this, a blot and dotage of the image of an illuminated object are prevented. Consequently, the front lighting system as the surface light source with which a bright and clear illuminated object image is acquired is realized.

[0085] In the front lighting system used equipping a front lighting system according to claim 34 with the light source and a transparent material, and arranging ahead of an illuminated object the front face where the above-mentioned transparent material counters plane base and above-mentioned base, and the plane of incidence in which the light from the light source carries out incidence -- having -- the above-mentioned front face -- a base -- receiving -- abbreviation -- it is characterized by the thing by which the parallel flat part and the ramp which inclined in this direction to the above-mentioned flat part have been arranged by turns and which is formed stair-like.

[0086] According to the above-mentioned configuration, the front face of a transparent material is formed in the shape of [by which the ramp and the flat part have been arranged by turns] a stairway. Thereby, in the front lighting system of this invention, the component of the light which advances to parallel at a flat part does not leak out of a transparent material, and it reflects by the ramp, and irradiates to an illuminated object. So, the utilization effectiveness of light source light improves as compared with the conventional configuration which has the transparent material formed in abbreviation plate-like. Consequently, a bright front lighting system is realized.

[0087] The sum of the pitch of a flat part and the pitch of a ramp by which the front lighting system according to claim 35 is formed in the above-mentioned transparent material in the configuration according to claim 1 is characterized by following on keeping away from the above-mentioned plane of incidence, and being small.

[0088] Since according to the above-mentioned configuration the sum of the pitch of a flat part and the pitch of a ramp follows on keeping away from the light source and is small, the number per unit area of the above-mentioned ramp will follow on keeping away from the light source, and will increase. The brightness in the front face of an illuminated object improves with the increment in this ramp as the location which keeps away from the light source. Usually, since brightness tends to fall like a location distant from the light source, with the above-mentioned configuration, phase murder and the light from the light source can be efficiently led to the whole illuminated object for lowering of the brightness of the illuminated object by keeping away from the light source by the increment in this ramp by whenever [angle-of-elevation]. Consequently, the luminance distribution in the front face of an illuminated object can be equalized.

Q

[0089] A reflective mold liquid crystal display according to claim 36 is characterized by having arranged the front lighting system according to claim 1 in the front face of the above-mentioned reflective mold liquid crystal device while it is equipped with the reflective mold liquid crystal device which has a reflecting plate.

[0090] While using it where a front lighting system is switched off when there is sufficient amount of ambient lights like the outdoors in the daytime by this, when sufficient amount of ambient lights is not obtained, a front lighting system can be turned on and used. Consequently, it is not concerned with a perimeter environment but it becomes possible to offer the reflective mold liquid crystal display which can realize an always bright high-definition display.

[0091] In a configuration according to claim 36, a reflective mold liquid crystal device is equipped with the scanning line, and a reflective mold liquid crystal display according to claim 37 has the pitch of the above-mentioned scanning line, and the almost equal pitch of the flat part in the 2nd outgoing radiation side of a front lighting system, and is characterized by arranging the flat part above the scanning line.

[0092] According to the above-mentioned configuration, a flat part can be arranged on the pixel field where a display is actually performed by the liquid crystal device. Consequently, since the reflected light from a pixel field carries out incidence without futility to a flat part, the utilization effectiveness of light improves further and becomes possible [offering the reflective mold liquid crystal display which can realize a high-definition display].

[0093] In a configuration according to claim 36, a reflective mold liquid crystal device is equipped with the scanning line, and a reflective mold liquid crystal display according to claim 38 is characterized by the sum of the pitch of a flat part and the pitch of a ramp in the 2nd outgoing radiation side of a front lighting system being smaller than the pitch of the above-mentioned scanning line.

[0094] According to the above-mentioned configuration, since the sum of the pitch of the above-mentioned flat part and a ramp is smaller than the sum of the pitch of the scanning line, the pitch of the ramp of a front lighting system and the pitch of the black matrix currently formed in the perimeter of the pixel of a reflective mold liquid crystal device will shift. Consequently, since generating of the Moire fringe by interference with a black matrix and a ramp can be controlled, the display grace of the reflective mold liquid crystal display obtained can be raised.

[0095] In a configuration according to claim 36, a reflective mold liquid crystal device is equipped with the scanning line, and a reflective mold liquid crystal display according to claim 39 is characterized by the sum of the pitch of a flat part and the pitch of a ramp in the 2nd outgoing radiation side of a front lighting system being larger than the pitch of the above-mentioned scanning line.

[0096] According to the above-mentioned configuration, the pitch of the ramp of a front lighting system and the pitch of the black matrix currently formed in the perimeter of the pixel of a reflective mold liquid crystal device will shift. Consequently, since generating of the Moire fringe by interference with a black matrix and a ramp can be controlled, the display grace of the reflective mold liquid crystal display obtained can be raised.

[0097] A reflective mold liquid crystal display according to claim 40 is characterized by equipping the above-mentioned reflective mold liquid crystal device with the reflecting plate which has the concavo-convex section on a front face in a configuration given in any 1 term of claims 36-39.

[0098] According to the above-mentioned configuration, since the reflecting plate has the concavo-convex section, incident light is diffused, without affecting the orientation of a liquid crystal molecule, and the cel thickness of a liquid crystal device. Therefore, it becomes observable [an image] even if light carries out incidence from other than the direction of regular reflection.

[0099] In a configuration according to claim 40, the above-mentioned reflecting plate is the reflector which served as the liquid crystal actuation electrode which drives the liquid crystal layer of a reflective mold liquid crystal device, and a reflective mold liquid crystal display according to claim 41 is characterized by adjoining this liquid crystal layer and being prepared.

[0100] According to the above-mentioned configuration, as compared with the case where a reflecting plate adjoins a liquid crystal layer and is not formed, generating of the parallax by the electrode substrate which constitutes a reflective mold liquid crystal device is cancelable. Therefore, double projection of an image can be controlled in the reflective mold liquid crystal display obtained. Furthermore, since the reflecting plate serves as the liquid crystal actuation electrode, the configuration of a reflective mold liquid crystal display can also be simplified.

[0101] The reflective mold liquid crystal display according to claim 42 is characterized by forming a front lighting system free [closing motion] to a reflective mold liquid crystal device in the configuration according to claim 36.

[0102] When it is used where a front lighting system is put on a liquid crystal device, when this reflective mold liquid crystal display is used according to the above-mentioned configuration, where a front lighting system is turned on, and you do not need a front lighting system, it can use it, where a front lighting system is opened to a liquid crystal device. Thereby, when you do not need a front lighting system, it becomes possible to offer the reflective mold liquid crystal display which the incidence of an ambient light is not barred by the front lighting system, and can realize an always bright display.

[0103] A reflective mold liquid crystal display according to claim 43 is a reflective mold liquid crystal display which equipped with the front lighting system according to claim 27 the front face of the reflective mold liquid crystal device which has a reflecting plate, and while having flexibility to a predetermined pressure, the above-mentioned compensation means It is characterized by establishing the location detection means of the couple which detects the location where the pressure was applied by contacting mutually each of the above-mentioned compensation means and the 2nd outgoing radiation side.

[0104] With the above-mentioned configuration, a front lighting system functions as the so-called touch panel. That is, if a

location with the front face of a compensation means is pressed, for example with a pen etc., when a compensation means bends, the location detection means of a couple formed in a compensation means and the 2nd outgoing radiation side, respectively will contact mutually in an above location. If the above-mentioned location detection means recognizes this location as a coordinate, the reflective mold liquid crystal display in which a pen input is possible will be realized to the content displayed on the liquid crystal device.

[0105] In a configuration according to claim 43, including the transparent electrode with which the reflective mold liquid crystal device was equipped with the scanning line, and the above-mentioned location detection means was formed in the flat part of the 2nd outgoing radiation side, a reflective mold liquid crystal display according to claim 44 has the pitch of the above-mentioned scanning line, and the almost equal pitch of the above-mentioned transparent electrode, and is characterized by arranging the transparent electrode above the scanning line.

[0106] With the above-mentioned configuration, the transparent electrode of a location detection means can be arranged on the pixel field where a display is actually performed by the liquid crystal device. Consequently, the resolution of a touch panel and the resolution of a liquid crystal device become almost equal. It is effective in the sense of togetherness of the input image and display image at the time of inputting by the touch panel improving by this.

[0107]

[Embodiment of the Invention]

[Gestalt 1 of operation] It will be as follows if one gestalt of operation of this invention is explained based on <u>drawing 1</u> thru/or drawing 7.

[0108] The reflective mold LCD concerning the gestalt of this operation is the configuration which equipped the front face of the reflective mold liquid crystal cell 10 (reflective mold liquid crystal device) with the front light 20 (front lighting system), as shown in drawing 1.

[0109] The front light 20 is mainly constituted by the light source 26 and the transparent material 24. The light source 26 is a linear light source of for example, fluorescence tubing etc., and is arranged along the side face (plane of incidence 25) of a transparent material 24. As for the transparent material 24, the interface 28 (1st outgoing radiation side) by the side of a liquid crystal cell 10 is formed evenly. On the other hand, in the transparent material 24, the ramp 22 which inclined at the fixed include angle in this direction is arranged by turns to the flat part 21 formed in an interface 28, parallel, or abbreviation parallel, and a flat part 21, and the above-mentioned interface 28 and the interface 23 (2nd outgoing radiation side) which counters are formed. namely,, so that from drawing 1 and a transparent material 24 keeps away from the light source 26 in the cross section which makes the longitudinal direction of the light source 26 a normal -- the bottom -- **** -- it dies -- it is formed stair-like.

[0110] A ramp 22 acts mainly as a field which turns the light from the light source 26 to an interface 28, and is reflected. On the other hand, a flat part 22 acts as a field which makes this reflected light penetrate to an observer side, mainly when the illumination light from a front light 20 has returned from the liquid crystal cell 10 as the reflected light.

[0111] Here, the configuration of a transparent material 24 is further explained to a detail, referring to drawing 2 (a) thru/or (c). The side elevation where the top view where drawing 2 (a) looked at the transparent material 24 from the direction upper part of a normal of a flat part 21, and drawing 2 (b) looked at the transparent material 24 from [of plane of incidence 25] the normal, and drawing 2 (c) are the sectional views which cut the transparent material 24 in respect of being vertical to the both sides of plane of incidence 25 and an interface 28.

[0112] a transparent material 24 -- for example, PMMA (polymethylmetacrylate) etc. -- it can use and can form with injection molding. The transparent material 24 concerning this operation gestalt may be thickness h1 =2.0mm of width of face of W= 110.0mm, die length of L= 80.0mm, and plane-of-incidence 25 part, and width-of-face w1 =1.9mm of a flat part 21. Moreover, it is the width of face w2 of a ramp 22 by considering as the tilt angle of alpha= 30 degrees of the ramp 22 to level difference h2 =50micrometer of a ramp 22, and a flat part 21. It is about 87 micrometers.

[0113] By forming the transparent material 24 stair-like, a front light 20 has the following advantage. First, if the flat part 21 is thoroughly formed in parallel to the interface 28 when it sees from [of plane of incidence 25] a normal as shown in drawing 2 (b), this flat part 21 will not be checked by looking but only a ramp 22 will be checked by looking. That is, total of the projection to the plane of incidence 25 of a ramp 22 is equal to plane of incidence 25.

[0114] In such a case, direct incidence of all the components vertical to plane of incidence 25 among the light source light which carried out incidence from plane of incidence 25 is carried out to a ramp 22, and they are reflected towards an interface 28. The problem that a lot of light will carry out outgoing radiation to the transparent material exterior from the field which counters plane of incidence which is seen by the conventional front light system mentioned above by this is not generated. That is, the utilization effectiveness of a front light 20 of light improves by having had the stair-like transparent material 24 more nearly substantially than the conventional configuration.

[0115] Next, the configuration and its manufacture approach of a liquid crystal cell 10 are explained. A liquid crystal cell 10 is the configuration in which electrode substrate 11a and 11b of a couple pinched the liquid crystal layer 12 fundamentally, as shown in <u>drawing 1</u>. Transparent electrode 15a (scanning line) is prepared on glass substrate 14a which has light transmission nature, liquid crystal orientation film 16a is formed, and electrode substrate 11a becomes so that this transparent electrode 15a may be covered.

[0116] The above-mentioned glass substrate 14a is realized by the glass substrate (trade name: 7059) for example, by Corning, Inc. Transparent electrode 15a is made from ITO (Indium Tin Oxide). Liquid crystal orientation film 16a applies the orientation film ingredient (trade name: AL-4552) for example, by Japan Synthetic Rubber Co., Ltd. by the spin coater on

glass.substrate 14a in which transparent electrode 15a was formed, and is created by performing rubbing processing as orientation processing.

[0117] Electrode substrate 11b as well as the above-mentioned electrode substrate 11a is created by carrying out the laminating of glass substrate 14b, transparent electrode 15b, and the liquid crystal orientation film 16b one by one. In addition, an insulator layer etc. may be formed to electrode substrate 11a and 11b if needed.

[0118] Electrode substrate 11a and 11b are arranged so that the direction of rubbing processing may become parallel and the reverse sense (the so-called anti-parallel), and is stuck using adhesives so that liquid crystal orientation film 16a and 16b may counter. At this time, the opening is formed at uniform spacing between electrode substrate 11a and 11b by having sprinkled beforehand the glass bead spacer (not shown) with a particle size of 4.5 micrometers.

[0119] The liquid crystal layer 12 is formed in this opening by introducing liquid crystal by the vacuum deairing. In addition, as an ingredient of the liquid crystal layer 12, the liquid crystal ingredient (trade name: ZLI-3926) by Merck Co. can be used, for example. In addition, deltan of this liquid crystal ingredient is 0.2030. However, a liquid crystal ingredient is not restricted to this and can use various liquid crystal.

[0120] Furthermore, as a reflecting plate 17, while pasting up with the adhesives of an epoxy system, the polarizing plate 18 with which the polarization shaft was set as the outside surface of glass substrate 14a so that the direction of orientation of the liquid crystal of the liquid crystal layer 12 and 45 degrees might be made is installed in the outside surface of glass substrate 14b for the aluminum plate which performed hairline processing.

[0121] According to the above process, the liquid crystal cell 10 of a reflective mold is manufactured. The reflective mold LCD with a front lighting system is manufactured by combining a front light 20 with this liquid crystal cell 10 as follows. First, the laminating of the transparent material 24 is carried out on the polarizing plate 18 of a liquid crystal cell 10. In addition, between the polarizing plate 18 of a liquid crystal cell 10, and the transparent material 24, the opening 29 is formed by uniform thickness almost equal to the particle size of this spacer by sprinkling a spacer (not shown) with a particle size of 50 micrometers beforehand. That is, optically, the interface 28 of a transparent material 24 is equivalent to the interface of PMMA and an air space. In addition, since this opening 29 has about about 100 times [of the wavelength of light] thickness, generating of interference by the opening 29 etc. is suppressed.

[0122] Next, fluorescence tubing is installed as the light source 26, and the light source 26 and plane of incidence 25 are surrounded with a reflecting mirror 27 (condensing means) so that the plane of incidence 25 of a transparent material 24 may be countered. A reflecting mirror 27 makes only plane of incidence 25 condense the light from the light source 26. In addition, as a reflecting mirror 27, an aluminium tape etc. can be used, for example. According to the above process, the reflective mold LCD equipped with the front light 20 as supplemental lighting is completed.

[0123] This reflective mold LCD can be used in the reflective mode which switched off the front light 20, when it is used in the lighting mode which turned on the front light 20 when an ambient light was inadequate and sufficient ambient light is obtained.

[0124] Here, the principle of operation of a front light 20 is explained, referring to drawing 3 (a) thru/or (c). As mentioned above, a transparent material 24 has total of the projection of the ramp 22 to plane of incidence 25 equal to plane of incidence 25. For this reason, it is reflected by the ramp 22 and a component vertical to plane of incidence 25 among the incident light from the light source 26 is outputted towards the liquid crystal cell 10 which is not illustrated from an interface 28 into drawing 3 (a), as shown in drawing 3 (a).

[0125] Moreover, as shown in drawing 3 (b), the component which carries out incidence to an interface 23 first among the incident light from the light source 26 is classified into two kinds according to the behavior within a transparent material 24. One is a light which carries out direct incidence to a ramp 22, is reflected in it, and is set to output light 31b to a liquid crystal cell 10 like optical 31a shown in drawing 3 (b). The second is a light which spreads the inside of a transparent material 24 like optical 32a shown in drawing 3 (b), carrying out total reflection between a flat part 21 and an interface 28, reaches to a ramp 22, is eventually reflected in it, and is set to output light 32b.

[0126] Moreover, as shown in drawing 3 (c), it spreads the inside of a transparent material 24, carrying out total reflection of the component which carries out incidence to an interface 28 first among the incident light from the light source 26 between the flat parts 21 of an interface 28 and an interface 23, and eventually, it reaches to a ramp 22, and is reflected in it, and it outputs it to it towards a liquid crystal cell 10 from an interface 28.

[0127] It is reflected by the ramp 22 and outgoing radiation of almost all the components of the incident light from the light source 26 to a transparent material 24 is carried out to a liquid crystal cell 10 through an interface 28 so that the above explanation may show. That is, by having had the transparent material 24 with the stair-like interface 23, the front light 20 of this operation gestalt has very little loss of the light from the light source 26, and its utilization effectiveness of light source light is improving.

[0128] Next, condition 1.-3. of the ramp 22 for raising the utilization effectiveness of light source light further or a flat part 21 is explained.

[0129] 1. In a transparent material 24, the ramp 22 of an interface 23 functions mainly as a reflector in which the incident light from the light source 26 is reflected about a ramp 22. On the other hand, the flat part 21 of an interface 23 functions as a transparency side which penetrates the light reflected mainly with the reflecting plate 17 formed in the tooth back of a liquid crystal cell 10, and an ambient light.

[0130] The following conditions need to be fulfilled in order for the incident light from the light source 26 to carry out total reflection by the ramp 22. That is, when an incident angle is beyond a critical angle, total reflection of the light which carried

0

out incidence to the field (interface) where the matter which has a different refractive index touches is carried out by the interface. For this reason, in order for the light which carries out incidence to a ramp 22 to carry out total reflection by the ramp 22, it is. theta1 >=thetac = arcsin(n2/n1) ... (formula 2)

Incident angle theta 1 come out of and expressed What is necessary is just to carry out incidence to a ramp 22.

[0131] however, the above-mentioned formula 2 -- setting -- theta 1: The incident angle to a ramp 22, and n1: Refractive index n2 of a transparent material 24: Refractive-index thetac of the matter which touches a transparent material 24 in a ramp 22: the critical angle of a ramp 22 -- it comes out.

[0132] As mentioned above, incident angle theta 1 of the light to a ramp 22 If a ramp 22 is formed so that a formula 2 may be filled, the leakage of the light from a ramp 22 to the exterior of a transparent material 24 is controlled, and the utilization effectiveness of light can be raised further.

[0133] 2. Although it said previously that a flat part 21 is the field which makes light mainly penetrate about the flat part 21, as a light which penetrates a flat part 21, ambient-light ** in the case of using it in the reflected light from the (b) liquid crystal cell 10 and (b) reflective mode exists.

[0134] Although outgoing radiation of it is carried out from an interface 23 to an observer side after modulating the light in the liquid crystal layer 12 of a liquid crystal cell 10, being reflected with a reflecting plate 17 and carrying out incidence of the output light of the above-mentioned (b) to a transparent material 24 again, it is outputted mainly from a flat part 21 at this time. In addition, the light reflected with a reflecting plate 17 turns into the diffused light. In order for reflecting in a flat part 21 to penetrate very few, as for this diffused light, it is desirable to carry out incidence to a flat part 21 below by the critical angle. Although a critical angle changes with the refractive indexes of a transparent material 24, when PMMA is used as an ingredient of a transparent material 24, it is around about 42 degrees. That is, as for the output light from a liquid crystal cell 10, it is desirable to carry out incidence to the flat part 21 of a transparent material 24 at about 40 degrees or less.

[0135] Moreover, a flat part 21 may not necessarily be parallel to an interface 28. It depends for the incident angle to a flat part 21 also on the dignersion range of the light in a reflecting plate 17. For this reason, to the normal of a reflecting plate 17.

part 21 also on the dispersion range of the light in a reflecting plate 17. For this reason, to the normal of a reflecting plate 17, if it takes into consideration also about the property of a reflecting plate 17, as shown in <u>drawing 4</u>, supposing the main range on which light is scattered in a reflecting plate 17 is about **30 degrees, it can lessen extremely the component 33 of light reflected in delta by less than about **10 degrees, then the flat part 21 whenever [to the reflecting plate 17 of a flat part 21 / tilt-angle]. In addition, by <u>drawing 4</u>, in order to make it intelligible that the flat part 21 inclines to an interface 28, it was shown whenever [tilt-angle] more greatly than the desirable range of the above [delta].

[0136] Thus, if the flat part 21 is formed with parallel or the inclination of less than **10 degrees to the interface 28, since incidence of the incident light from the light source 26 is carried out to a flat part 21 by the bigger incident angle than the incident angle to a ramp 22, the light which carries out incidence to a flat part 21 cannot leak from the light source 26 to the exterior easily, and its amount of light reflected by the flat part 21 will increase. Thereby, the loss of light source light is suppressed.

[0137] Furthermore, if the ambient light in the case of using it in the reflective mode of the above-mentioned (b) is taken into consideration, when using this reflective mold LCD in the reflective mode which switched off the front light 20, in order to incorporate sufficient ambient light to a liquid crystal cell 10, as the area of a flat part 21 is large, it is more desirable. [0138] 3. About arrangement with the ramp 22 of the arrangement interface 23 of the ramp 22 and flat part 21 in an interface 23, and a flat part 21, when the (a) user looks at the reflective mold LCD from an interface 23 side, two conditions of thing ** with large total of the projection of the ramp 22 to that the area of a flat part 21 is large and the (b) plane of incidence 25 and total of the projection of a flat part 21 small [the area of a ramp 22 is small, and] are important.

[0139] Total of the projection of the flat part 21 of the conditions 28 of the above (a), i.e., an interface, means that it is larger than total of the projection of a ramp 22. The magnitude of the projection of the ramp 22 to an interface 28 is decided by the tilt angle alpha to the interface 28 of a ramp 22 shown in <u>drawing 2</u> (c). Therefore, it is possible by adjusting the magnitude of the tilt angle alpha to make very small area of the ramp 22 seen from the user compared with the area of a flat part 21. [0140] Furthermore, by the scanning line of a liquid crystal cell 10 extracting the pitch of a ramp 22 and a flat part 21, or doubling with a bus line, a flat part 21 can be arranged on [whole] the field where a display is actually performed by the liquid crystal cell 10, and the utilization effectiveness of light improves further.

[0141] As mentioned above, the conditions of the above (b) mean that it is desirable that only the ramp 22 of an interface 23 is checked by looking when plane of incidence 25 is seen from a normal, in order to use the incident light from the light source 26 effectively.

[0142] Next, the measurement result of the illumination-light reinforcement of a front light 20 is explained. In order to measure the illumination-light reinforcement of a front light 20, system of measurement as shown in <u>drawing 5</u> was used. That is, the direction of a normal of the interface 28 of a front light 20 was made into 0 degree, and the optical reinforcement in the range of 0 to **90 degrees was measured with the detector 34.

[0143] This result is shown in drawing 6. In a front light 20, it turns out that outgoing radiation of the light which carried out incidence from the light source 26 to the transparent material 24 through plane of incidence 25 is carried out by the operation of a transparent material 24 in the direction of an abbreviation normal of an interface 28 so that clearly from drawing 6. That is, a front light 20 can carry out incidence of the light from the light source 26 arranged on the side face of a transparent material 24 to an abbreviation perpendicular to a liquid crystal cell 10, and functions as bright supplemental lighting.

[0144] Furthermore, the reflective mold LCD of this operation gestalt has the advantage that a brighter display is possible, as compared with a spontaneous light [, such as the transparency molds LCD, CRT, and PDP,] type display. Namely, as shown

U/

in <u>drawing 7</u> (a), as for optical 36a from the spontaneous light type display 35, a travelling direction serves as reverse sense to an ambient light 37. For this reason, component 36b which deducted the ambient light 37 from optical 36a is recognized by the observer.

[0145] On the other hand, in the reflective mold LCD of this operation gestalt, when using it in lighting mode, as shown in drawing 7 (b), fill-in flash 39a from a front light 20 and an ambient light 37 are reflected with the reflecting plate (not shown) of a liquid crystal cell 10, and component 39b equivalent to the sum of fill-in flash 39a and an ambient light 37 is recognized by the observer. Thereby, a brighter display is realized not only in a dark location but in a bright location like the outdoors in the daytime.

[0146] As mentioned above, when the front light 20 was equipped with the stair-like transparent material 24, the utilization effectiveness of the configuration concerning the gestalt of this operation of the light by which outgoing radiation is carried out from the light source 26 is improving. Thereby, when an ambient light is not enough, it becomes possible to be able to give sufficient illumination light for a liquid crystal cell 10, and not to be based on a perimeter environment, but to offer the reflective mold LCD in which an always bright display is possible.

[0147] [Gestalt 2 of operation] It will be as follows if other operation gestalten of this invention are explained based on drawing 8 thru/or drawing 11. In addition, the same sign is appended to the configuration explained with the gestalt 1 of the above-mentioned operation, and the configuration which has the same function, and the explanation is omitted.

[0148] It is characterized by equipping the reflective mold LCD concerning the gestalt of this operation with the front light system 51 constituted by the front light 20 (the 1st transparent material) explained to the front face of a liquid crystal cell 10 with the gestalt 1 of operation, and the 2nd transparent material 40 of a wedge action die, as shown in drawing 8.

[0149] The 2nd transparent material 40 of the above is arranged between the transparent material 24 of a front light 20, and a liquid crystal cell 10, and has the parallel base 42 to the parallel slant face 41 and the front face of a liquid crystal cell 10 to the interface 28 of a transparent material 24. As shown in <u>drawing 9</u> (a), as for the tilt angle of the slant face 41 to a base 42, it is desirable to design so that the line 49 which connects the part of each other which a ramp 22 and a flat part 21 touch in the shape of a ridge in the interface 23 of a transparent material 24 may become a base 42 and parallel.

[0150] Moreover, as for the 2nd transparent material 40, it is desirable to form with the transparent material 24 which is the 1st transparent material, and construction material with an equal refractive index at least. Needless to say, the 2nd transparent material 40 may be formed with the completely same construction material as a transparent material 24. Moreover, a production process can be simplified, if a transparent material 24 and the 2nd transparent material 40 are constituted so that it may form in one with injection molding etc.

[0151] A spacer (not shown) with a particle size of 50 micrometers is beforehand sprinkled by the gap of a transparent material 24 and the 2nd transparent material 40. Thereby, the opening 43 almost equal to the particle size of the above-mentioned spacer is formed in the gap of a transparent material 24 and the 2nd transparent material 40. [0152] It is filled with the bulking agent (not shown) which makes both refractive index in agreement between the base 42 of the 2nd transparent material 40, and the polarizing plate 18 of a liquid crystal cell 10. Thereby, attenuation of the light by the echo by the interface of the 2nd transparent material 40 and a polarizing plate 18 is prevented, and loss of light source light is controlled further. In addition, as the above-mentioned bulking agent, UV hardenability resin or a methyl salicylate can be used, for example.

[0153] Here, the effectiveness by having formed the 2nd transparent material 40 between the transparent material 24 and the liquid crystal cell 10 is explained. As shown in <u>drawing 9</u> (b), with the configuration (gestalt 1 of operation) that the 2nd transparent material 40 is not formed, the distance ln (the inside 11 of drawing and 12) to the interface 28 as an outgoing radiation side from a ramp 22 to a liquid crystal cell 10 becomes so small that the distance xn (the inside x1 of drawing and x2) from the light source 26 becomes large. On the other hand, distance ln to the base 42 of the 2nd transparent material 40 which is an outgoing radiation side from a ramp 22 to a liquid crystal cell 10 by having had the 2nd transparent material 40 in the front light system 51 of this operation gestalt as shown in <u>drawing 9</u> (a) Distance xn from the light source 26 It is not concerned but is almost equal.

[0154] That is, when the 2nd transparent material 40 plays the role which makes regularity distance from the ramp 22 of a front light 20 to a liquid crystal cell 10, the front light system 51 acts as the surface light source which is not based on distance from the light source 26, but carries out outgoing radiation of the light by fixed brightness.

[0155] The luminance distribution of the output light of the front light system 51 was measured moving a detector 44 to parallel to the base 42 of the 2nd transparent material 40 here, as shown in drawing 10 (a), in order to confirm the effectiveness by the 2nd transparent material 40. In addition, it is the measurement starting position PS near the plane of incidence 25. It carries out, it sets on a base 42, and is the measurement termination location PE about the most distant location from the light source 26. It carried out. The result of measurement is as being shown in drawing 11 (a).
[0156] It measured moving a detector 44 to parallel to the interface 28 of a front light 20, as shown in drawing 10 (b), in order similarly to measure the luminance distribution of the output light of a configuration (gestalt 1 of operation) of that the 2nd transparent material 40 is not formed for the comparison. In addition, it is the measurement starting position PS near the plane of incidence 26. It carries out, it sets to an interface 28, and is the measurement termination location PE about the most distant location from the light source 26. It carried out. A measurement result is as being shown in drawing 11 (b).

[0157] When the 2nd transparent material 40 is not formed so that clearly from comparing drawing 11 (a) and (b), as shown in drawing 11 (b) As opposed to becoming so small [it is so large that the pitch p of the peak of brightness is close to the light source 26, and] that it keeping away from the light source 26 the front light system 51 of this operation gestalt As shown in

drawing 11 (a), the pitch p of the peak of brightness is almost equal over the base 42 whole of the 2nd transparent material 40, and the peak of brightness is also uniform.

[0158] As mentioned above, the reflective mold LCD of this operation gestalt The front face of a liquid crystal cell 10 is equipped with the front light system 51. This front light system 51 between the transparent material 24 as the 1st transparent material, and a liquid crystal cell 10 By having had the 2nd transparent material 40 for making regularity distance from the ramp 22 of a transparent material 24 to a liquid crystal cell 10 Even when the front light system 51 illuminates a liquid crystal cell 10 uniformly and sufficient ambient light is not obtained, the effectiveness that the high-definition display which is brightly uniform is realized is done so.

[0159] [Gestalt 3 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on <u>drawing 5</u>, <u>drawing 12</u>, or <u>drawing 14</u>. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.

[0160] The reflective mold LCD of this operation gestalt is the configuration that the front light system 52 constituted by the front face of a liquid crystal cell 10 by the front light 20 and the 2nd transparent material 45 has been arranged, as shown in drawing 12.

[0161] The 2nd transparent material 45 of the above is an anisotropy scattered plate which has the property which only the light which carried out incidence from the predetermined include-angle range is scattered, and penetrates the incident light from other than the above-mentioned predetermined include-angle range while being a forward-scattering plate which has the function to scatter the incident light from a transparent material 24 only to the method opposite side of progress, as shown in drawing 13. As the 2nd transparent material 45 which fulfills such conditions, the viewing-angle control strip (trade name: RUMISU tee) by Sumitomo Chemical Co., Ltd. etc. is available as a commercial item, for example.

[0162] In addition, as for the include-angle range over which the 2nd transparent material 45 scatters incident light, it is desirable to include thoroughly the include-angle range as for which the outgoing radiation light from a transparent material 24 carries out incidence. Thereby, the outgoing radiation light from a transparent material 24 can be scattered without futility, and the utilization effectiveness of light source light can be raised. Moreover, since the 2nd transparent material 45 does not act on incident light from other than the above-mentioned predetermined include-angle range by being anisotropy dispersion which has the property in which the 2nd transparent material 45 scatters only the light which carried out incidence from the predetermined include-angle range, and penetrates the incident light from other than the above-mentioned predetermined include-angle range, it is prevented that display grace deteriorates by the unnecessary scattered light.

[0163] A spacer (not shown) with a particle size of 50 micrometers is beforehand sprinkled by the gap of a transparent material 24 and the 2nd transparent material 45. Thereby, as shown in drawing 12, the opening 46 almost equal to the particle size of the above-mentioned spacer is formed in the gap of a transparent material 24 and the 2nd transparent material 45. [0164] It is filled with the bulking agent (not shown) which makes both refractive index in agreement between the 2nd transparent material 45 and the polarizing plate (not shown) of a liquid crystal cell 10. Thereby, attenuation of the light by the echo by the interface of the 2nd transparent material 45 and a liquid crystal cell 10 is prevented, and loss of light source light is controlled further.

[0165] Here, the measurement result of the illumination-light reinforcement of the front light system 52 is explained. In order to measure the illumination-light reinforcement of the front light system 52, the system of measurement (refer to drawing 5) used with the above mentioned gestalt 1 of operation and the same system of measurement were used. Here, the direction of a normal of the 2nd transparent material 45 of the front light system 52 was made into 0 degree, and the optical reinforcement from the field located in the liquid crystal cell 10 side of the 2nd transparent material 45 was measured with the detector 34 in the range of 0 to **90 degrees. The result of measurement is shown in drawing 14.

[0166] As for the front light system 52 of this operation gestalt, when the outgoing radiation light from the transparent material 24 as the 1st transparent material is scattered about by the 2nd transparent material 45 shows having the flat include-angle property as compared with the gestalt 1 of operation so that clearly from drawing 14.

[0167] As mentioned above, by having had the 2nd transparent material 45 over which the outgoing radiation light from a transparent material 24 is scattered, the luminance distribution of the light which carries out outgoing radiation to a liquid crystal cell 10 is equalized, and the configuration explained with this operation gestalt becomes possible [irradiating a liquid crystal cell 10 uniformly].

[0168] In addition, it is also possible as the 2nd transparent material 45 of the above to use a hologram etc. besides an anisotropy scattered plate.

[0169] [Gestalt 4 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on drawing 15 thru/or drawing 19. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted. [0170] In case the light which it was reflected by the liquid crystal cell 10, and carried out incidence to the transparent material 24 again penetrates an interface 23 when the interface 23 by the side of the observer of a transparent material 24 is formed of the ramp 22 and the flat part 21 as the gestalt 1 of the above-mentioned operation explained, a blot and dotage of an image may arise.

[0171] That is, as shown in drawing 15, output light 48a from a liquid crystal cell 10 is not necessarily only from a flat part 21, and is penetrated also from a ramp 22 to an observer side. At this time, when outgoing radiation light 48b from a ramp 22 and outgoing radiation light 48c from a flat part 21 carry out outgoing radiation in the mutually different direction and cross

to it, a blot and dotage may appear in the image which should be displayed.

[0172] In order to solve such a problem, the reflective mold LCD of this operation gestalt is the configuration that the metallic reflection film 47 (reflective member) which reflects light in the front face of a ramp 22 was added, in the interface 23 of a transparent material 24, as shown in <u>drawing 16</u>. As shown in <u>drawing 16</u>, the above-mentioned metallic reflection film 47 is not concerned with the incident angle to a ramp 22, but reflects in it all the light that carries out incidence. Thereby, the light which carries out outgoing radiation to an observer side turns into only light which penetrated the flat part 21 from an interface 23. Consequently, a clear display image without a blot or dotage can be obtained.

[0173] Below, about an example of an approach which manufactures the above-mentioned metallic reflection film 47, the case of being made from aluminum is mentioned as an example, and is explained. In addition, metals, such as not only aluminum but silver, may be used for the ingredient of the metallic reflection film 47.

[0174] First, as shown in drawing 17 (a), the aluminum film 61 is formed by sputtering on the whole front face of the interface 23 of a transparent material 24. Furthermore, a photoresist 62 is applied to the front face of the aluminum film 61 as shown in drawing 17 (b). Next, through an exposure process, as shown in drawing 17 (c), patterning of the photoresist 62 is carried out. And as shown in drawing 17 (d), the aluminum film 61 is etched by using as a mask the photoresist 62 by which patterning was carried out. Then, by exfoliating a photoresist 62, as shown in drawing 17 (e), the metallic reflection film 47 which consists of aluminum is formed in the front face of the ramp 22 of an interface 23.

[0175] As mentioned above, by having formed the metallic reflection film 47 in the front face of a ramp 22, as shown in drawing 16, it is possible to take large alpha whenever [tilt-angle / of the ramp 22 to a flat part 21]. For example, as shown in drawing 18, when large alpha is taken with 60 degrees whenever [tilt-angle] with the configuration which does not form the metallic reflection film 47 in a ramp 22, it is critical angle thetac. It is set to optical 49b which optical 49a which carried out incidence penetrates through a ramp 22 to an observer side to a ramp 22 by the small incident angle. Since such optical 49b degrades display grace, it is not desirable.

[0176] On the other hand, with the configuration of this operation gestalt, even if it takes large alpha whenever [tilt-angle] by having formed the metallic reflection film 47 in the ramp 22, the light which penetrates a ramp 22 like the above-mentioned optical 49b does not exist, but all light is reflected in a ramp 22.

[0177] Thus, when it sees from [of a flat part 21] a normal by the ability taking large alpha whenever [tilt-angle / of a ramp 22], a ramp 22 becomes is hard to be checked by looking, and there is an advantage that improvement in display grace can be aimed at.

[0178] In addition, as shown in <u>drawing 19</u>, it can prevent that an ambient light will be reflected in it to an observer side if the laminating of the black matrix 47b (protection-from-light member) which prevents the echo of an ambient light is carried out to the front face of the above-mentioned metallic reflection film 47. Since degradation of the display grace by an ambient light reflecting in an observer side is prevented by this, it is still more desirable.

[0179] As mentioned above, it is characterized by forming the metallic reflection film 47 for the front light 20 concerning this operation gestalt losing the transmitted light from a ramp 22 to an observer side in a ramp 22. Thereby, since the light which carries out outgoing radiation from an interface 23 to an observer side turns into only outgoing radiation light from a flat part 21, it becomes possible [obtaining a clear display image without a blot or dotage] in the reflective mold LCD which equipped the front face of a liquid crystal cell 10 with this front light 20.

[0180] [Gestalt 5 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on <u>drawing 15</u> and <u>drawing 20</u> thru/or <u>drawing 22</u>. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.

[0181] It is characterized by equipping the reflective mold LCD concerning the gestalt of this operation with the front light system 53 constituted by the optical compensating plate 64 (compensation means) formed in the front face of a liquid crystal cell 10 on the interface 23 of the front light 20 explained with the gestalt 1 of operation, and this front light 20, as shown in drawing 20.

[0182] In the above-mentioned optical compensating plate 64, base 64a which is the field which counters the transparent material 24 of a front light 20 makes the stairway configuration which carries out the complementation to the interface 23 of a transparent material 24, as shown in drawing 20. That is, the flat part 66 with the ramp [parallel to a ramp 22] 65 parallel to a flat part 21 in the location which is formed and counters the flat part 21 of a transparent material 24 is formed in the location where base 64a counters the ramp 22 of a transparent material 24. On the other hand, in the optical compensating plate 64, surface 64b which is located in an observer side and which is a field is formed as a flat surface parallel to the interface 28 of a transparent material 24.

[0183] The optical compensating plate 64 can be created with injection molding like a transparent material 24 using PMMA. As mentioned above, the optical compensating plate 64 and a transparent material 24 are arranged so that each ramp and flat part may counter, and they are pasted up through a spacer (not shown) with a particle size of about 20 micrometers. thereby -between base 64a of the optical compensating plate 64, and the interfaces 23 of a transparent material 24 -- abbreviation -- the air space 67 of uniform thickness will intervene.

[0184] Thus, the following effectiveness is acquired, when the optical compensating plate 64 is formed in the front face of a transparent material 24 and an air space 67 exists between a transparent material 24 and the optical compensating plate 64. [0185] That is, though optical 48a and 48a which carried out incidence again to the transparent material 24 progress in the same direction in the transparent material 24 interior from a liquid crystal cell 10 as explained referring to drawing 15 in the

gestalt 4 of said operation, by penetrating the ramp 22 or flat part 21 of an interface 23, respectively, outgoing radiation is carried out in the direction which is mutually different from the interface 23 of a transparent material, and a blot and dotage of an image are invited.

[0186] on the other hand, in the front light system 53 of this operation gestalt As shown in <u>drawing 21</u>, optical 68a and 69a which carried out incidence in the same direction from the liquid crystal cell 10 to the transparent material 24 After carrying out outgoing radiation from a transparent material 24, as it becomes the light which progresses in the again same direction and is shown as optical 68band69b by being refracted by base 64a as an interface of an air space 67 and the optical compensating plate 64, outgoing radiation is carried out in the same direction from surface 64b of the optical compensating plate 64. Thereby, when it sees from an observer side, a clear image without a blot or dotage is obtained.

[0187] In addition, as shown in drawing 22 (a) other than the above-mentioned optical compensating plate 64, the optical compensating plate 71 formed in plate-like may be arranged in the front face of a transparent material 24. In this case, the above-mentioned optical compensating plate 71 is outgoing radiation angle thetaa -thetab of the light from each front face of field 71a and 71b to an observer side, when field 71a in which the light which carried out outgoing radiation from the ramp 22 of a transparent material 24 carries out incidence, and field 71b the light which carried out outgoing radiation from the flat part 21 of a transparent material 24 carries out [b] incidence have a mutually different refractive index, as shown in drawing 22 (b). It becomes almost equal. Or in order to diffract the light which penetrates this field 71a for field 71a in the same direction as the light which penetrates field 71b, you may form by the member (for example, diffraction component) which has a diffraction function.

[0188] Or you may make it the light which carried out outgoing radiation from the ramp 22 not reach an observer side in the optical compensating plate 71 by forming the field as for which the light which carried out outgoing radiation from the ramp 22 of a transparent material 24 carries out incidence by black mask 71c which interrupts light, as shown in drawing 22 (c). [0189] As mentioned above, according to the configuration of this operation gestalt, the reflective mold LCD in which the clear display without a blot or dotage is possible is realized by the optical compensating plate 64 (or optical compensating plate 71) by arranging the direction of outgoing radiation of the light from each of the ramp 22 of the interface 23 of a transparent material 24, and a flat part 21.

[0190] [Gestalt 6 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on <u>drawing 20</u>, <u>drawing 23</u>, or <u>drawing 26</u>. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.

[0191] The reflective mold LCD concerning the gestalt of this operation adds a touch panel function to the front light system 53 (refer to drawing 20) of the reflective mold LCD explained with the above mentioned gestalt 5 of operation.

[0192] In order to realize the above-mentioned touch panel function, as shown in drawing 23, while the reflective mold LCD of this operation gestalt equips base 64a of the optical compensating plate 64 with the transparent electrode 72 which consists of ITO, the reflector 73 which consists of an ingredient which reflects light and has conductivity like aluminum is formed in the ramp 22 of a transparent material 24. The above-mentioned transparent electrode 72 and a reflector 73 constitute a location detection means.

[0193] Drawing shown in the lower part of <u>drawing 24</u> is a top view showing the configuration of the above-mentioned reflector 73 at the time of seeing from [of the flat part 21 of a transparent material 24] a normal. As shown in <u>drawing 24</u>, since it is prepared all over the ramp 22 of a transparent material 23, when a reflector 73 is seen from [of the flat part 21 of a transparent material 24] a normal, it is a stripe-like. Moreover, as the transparent electrode 72 formed in the optical compensating plate 64 is also shown in <u>drawing 25</u>, it is formed in the shape of a stripe, and a reflector 73 and a transparent electrode 72 intersect perpendicularly mutually, and make a matrix.

[0194] In addition, between the reflector 73 of a transparent material 24, and the transparent electrode 72 of the optical compensating plate 64, the plastics bead spacer (not shown) with a particle size of about 10 micrometers is sprinkled, and the opening almost equal to this particle size is formed.

[0195] This optical compensating plate 64 has flexibility, and as shown in drawing 26, a transparent electrode 72 and a reflector 73 contact by being pressed with a pen 74. Recognition of the coordinate pushed with the pen 74 is performed as follows. As shown in drawing 25, the coordinate of the location which the X coordinate and Y coordinate of a point of contact 75 were detected by each of a transparent electrode 72 and a reflector 73, and was pushed on it with the pen 74 into the flat surface of a touch panel by scanning a signal by line sequential can be specified.

[0196] In addition, although the configuration which formed the stripe-like transparent electrode 72 in the optical compensating plate 64 was mentioned as the example and explained, a transparent electrode may be formed all over base 64a of the optical compensating plate 64 here. However, there is an advantage that it is [the utilization effectiveness of light] higher to form a transparent electrode 72 in the shape of a stripe, as mentioned above.

[0197] As mentioned above, according to the configuration of this operation gestalt, since the optical compensating plate 64 functions as a touch panel, it becomes possible to offer the reflective mold LCD in which a pen input is possible to the content displayed on the liquid crystal cell 10.

[0198] [Gestalt 7 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on drawing 27 thru/or drawing 30. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.

[0199] Further in addition to the configuration explained with the above mentioned gestalt 1 of operation, the front light with

which the reflective mold LCD concerning the gestalt of this operation is equipped is characterized by having the prism sheet 81 and the diffusion plate 82 as an optical control means for controlling the angle of divergence of the light which carries out incidence from the light source 26 to plane of incidence 25 between the light source 26 and the plane of incidence 25 of a transparent material 24, as shown in <u>drawing 27</u>. In addition, the vertical angle of the prism of the prism sheet 81 is made into 100 degrees here. Moreover, between the transparent material 24 and the polarizing plate 18 of a liquid crystal cell 10, the bulking agent 84 for easing a refractive-index difference is introduced.

[0200] Although for example, fluorescence tubing realizes, the light source 26 does not necessarily have directivity and generates especially the output light from fluorescence tubing at random. For this reason, the light which carries out incidence at a larger include angle than a critical angle to the ramp 22 of a transparent material 24 exists, and there is a possibility of becoming the leakage light from a ramp 22 and causing deterioration of display grace.

[0201] If it takes into consideration that the refractive index of PMMA suitably used as an ingredient of a transparent material 24 is about 1.5, as for the light below a critical angle (about 42 degrees), the incident angle to a ramp 22 will serve as leakage light. What is necessary is just to control beforehand the angle of divergence of the output light from the light source 26 so that the incident light used as a part for leakage Mitsunari does not carry out incidence to a transparent material 24 in order to lose such a leakage light.

[0202] Here, as shown in <u>drawing 28</u>, the tilt angle of the ramp 22 to an interface 28 is set to alpha. In addition, for convenience, physical relationship of the ramp 22 in a transparent material 24 of explanation, an interface 28, and plane of incidence 25 is not extracted, it is not shown, and, as for <u>drawing 28</u>, the transparent material 24 is not necessarily making such a configuration actually.

[0203] Moreover, the angle of divergence of the light which carries out incidence from the plane of incidence 25 of a transparent material 24 is set to **beta, and it is thetac about the critical angle of a ramp 22. When it carries out, the incident angle theta to the ramp 22 of the above-mentioned light is expressed with theta= 90 degree-alpha-beta.

[0204] Therefore, conditions for the light which carried out incidence from plane of incidence 25 to the ramp 22 not to penetrate a ramp 22 are thetac <theta= 90-degree-alpha-beta (thetac+alpha), i.e., beta< 90 degree-. ... (formula 3) It is come out and expressed.

[0205] In addition, the tilt angle alpha of a ramp 22 is made into 10 degrees with this operation gestalt. This and critical angle thetac From it being 42 degrees, beta 38 degrees is drawn based on the above-mentioned formula 3.

[0206] The output light from the light source 26 is once diffused with the diffusion plate 82, and carries out incidence to the prism sheet 81. The prism sheet 81 has the function which condenses the diffused light in the specific include-angle range, and when the vertical angle of prism is 100 degrees, it makes the diffused light condense to include-angle within the limits of about **40 degrees, as shown in drawing 29. When carrying out incidence of the light condensed by the include-angle range of about **40 degrees to a transparent material 24, and further condensed by refraction by plane of incidence 25, it turns into breadth light of the range of about **25.4 degrees. Namely, as for the angle of divergence of the light which carries out incidence from plane of incidence 25, it turns out that it fully fits in the above-mentioned range of beta< 38 degrees, and the leakage light from a ramp 22 does not arise.

[0207] As mentioned above, in order to control the breadth of light source light, by having installed the prism sheet 81 between the light source 26 and the plane of incidence 25 of a transparent material 24, the leakage light from a ramp 22 of the reflective mold LCD concerning this operation gestalt is lost, and its display grace improves further.

[0208] In addition, with this operation gestalt, although the vertical angle of the prism sheet 81 was made into 100 degrees, it is not necessarily limited to this include angle. Moreover, as an optical control means which restricts the breadth of light source light, although the prism sheet 81 was used, as long as the same effectiveness is acquired, it is not limited to this, for example, a collimator etc. may be used. Moreover, as shown in <u>drawing 30</u> (a), the same effectiveness is acquired in the perimeter of the light source 26 also by the configuration which installed the light source 26 in the focus of a bonnet and this ellipsoid mirror 98 by the ellipsoid mirror 98. Furthermore, the breadth of the incident light from the light source 26 may be controlled using the light pipe 99 shown in drawing 30 (b) as indicated by SID DIGEST P.375 (1995).

[0209] [Gestalt 8 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on drawing 1, drawing 3 and drawing 31 thru/or drawing 33. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.

[0210] The reflective mold LCD concerning the gestalt of this operation is filled with the bulking agent (matching agent) with which between a front light (or front light system) and liquid crystal cells 10 prevents attenuation of the light by the difference of a refractive index in the reflective mold LCD explained with the above mentioned gestalt of each operation.

[0211] Here, the configuration which applied the above-mentioned bulking agent to the reflective mold LCD explained with the gestalt 1 of operation is mentioned as an example, and is explained. With the gestalt 1 of operation, as explained referring to <u>drawing 1</u>, the laminating of the transparent material 24 of a front light 20 is carried out through the spacer with a particle size of about 50 micrometers on the polarizing plate 18 of a liquid crystal cell 10. Thereby, between the liquid crystal cell 10 and the transparent material 24, the opening 29 is formed by uniform thickness almost equal to the particle size of the above-mentioned spacer.

[0212] To the above-mentioned opening 29, the reflective mold LCD of the gestalt of this operation fills a bulking agent 84, as shown in drawing 32. In addition, as a bulking agent 84, UV hardenability resin, a methyl salicylate, etc. can be used, for example. By this, the interface 28 of a transparent material 24 will touch the bulking agent 84 which has a refractive index

higher than the air instead of air. As for the above-mentioned bulking agent 84, it is desirable to have a refractive index almost equal to the refractive index of a transparent material 24.

[0213] Thus, when the interface 28 of a transparent material 24 is in contact with the bulking agent 84, and when the interface 28 of a transparent material 24 is in contact with air like the above mentioned gestalt of each operation, the behavior of the light in an interface 28 differs.

[0214] As shown in drawing 31 (a) among the incident light from the light source 26, after carrying out direct incidence to a ramp 22 and reflecting from plane of incidence 25, the component which carries out abbreviation vertical incidence to plane of incidence 25 passes along an interface 28 and a bulking agent 84, and they carry out incidence to a liquid crystal cell 10. The behavior of the light in the interface 28 at this time is the same as that of the case (refer to drawing 3 (a)) where the interface 28 is in contact with air.

[0215] On the other hand, as shown in <u>drawing 31</u> (b) among the incident light from the light source 26, after reflecting by the flat part 21 like optical 85a into the component which is not involved plane-of-incidence 25 but carries out incidence to an interface 23, some which carry out incidence to an interface 28 are. As shown in <u>drawing 31</u> (c) among such optical 85a and the incident light from the light source 26, since the interface 28 is in contact with the bulking agent 84 which has a refractive index almost equal to a transparent material 24, the component which is not involved plane-of-incidence 25 but carries out incidence to an interface 28 is penetrated without also receiving an operation of what in an interface 28.

[0216] Although incidence of such light will be carried out by the very big incident angle to the liquid crystal layer 12 of a liquid crystal cell 10, since it is reflected with a reflecting plate 17 and incidence is again carried out by the above-mentioned big incident angle to the interface 28 of a transparent material 24, they does not reach an observer.

[0217] However, in order to raise the utilization effectiveness of light source light, it is desirable to lose the component which carries out direct incidence from the light source 26 to an interface 28. For this reason, as shown in <u>drawing 32</u>, the component which carries out direct incidence from plane of incidence 25 to an interface 28 can be lost by leaning plane of incidence 25 so that this plane of incidence 25 and interface 28 may make an obtuse angle.

[0218] In addition, if angle-of-divergence beta after the light from the light source 26 carries out incidence to plane of incidence 25 is taken into consideration as shown in <u>drawing 33</u>, as for the magnitude of the angle gamma which plane of incidence 25 and an interface 28 make, it is more desirable that it is gamma>=90degree+beta. the light source light which carried out incidence from plane of incidence 25 by this -- all will carry out incidence in the interface 23 direction for almost, and the utilization effectiveness of light source light can be raised further.

[0219] [Gestalt 9 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on <u>drawing 34</u>. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.

[0220] The reflective mold LCD concerning the gestalt of this operation is characterized by forming the front light 20 to a liquid crystal cell 10 in the shape of [which can be opened and closed freely] a lid.

[0221] In the above mentioned gestalt of each operation, although the various gestalten of the front light as a front lighting system or a front light system were explained, when the metallic reflection film 47 is formed in the ramp 22 of a transparent material 24, the metallic reflection film 47 bars the incidence of the ambient light to a transparent material 24 like a configuration of having indicated in the gestalt 4 of operation especially. For this reason, although a perimeter environment is not so dark as it needs to use the reflective mold LCD in lighting mode, especially in a situation from which sufficient amount of ambient lights to use it in reflective mode is not obtained, a display with reflective mode may become dark.

[0222] For this reason, as shown in drawing 34, as for the reflective mold LCD 91 of the gestalt of this operation, the front light 20 is formed free [closing motion] to the liquid crystal cell 10 by having been fixed on the hinge (not shown) etc. for one of them. This front light 20 is formed as an inner lid which can open and close a liquid crystal cell 10 and a front light 20 independently [the wrap lid 92].

[0223] Therefore, when using the condition 92 which put the front light 20 on the front face of a liquid crystal cell 10 when the reflective mold LCD 91 was used in lighting mode, i.e., a lid, in the state of an open beam and using the reflective mold LCD 91 in reflective mode, it can be used where a front light 20 is opened to a liquid crystal cell 10.

[0224] Thereby, when using it in reflective mode, the reflective mold LCD which the loss of light does not arise with a front light 20, and can realize an always bright display is realized.

[0225] In addition, although the above explained the configuration to which some front lights [at least] 20 were fixed to the liquid crystal display, unitization of the front light 20 is carried out thoroughly, and it is good to a liquid crystal cell 10 also as a configuration in which desorption is free. However, it will be necessary to take into consideration in this case about the storage approach of the front light 20 when removing from a liquid crystal cell 10.

[0226] In addition, although the reflective mold LCD equipped with the front light 20 in the shape of an inner lid was explained here, it is good also as a configuration in which the front light system explained with the above mentioned gestalt of each operation was formed in the shape of an inner lid.

[0227] [Gestalt 10 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on drawing 35 and drawing 36. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted.
[0228] The above mentioned gestalt of each operation explained the reflective mold LCD as a configuration which combined the reflective mold liquid crystal cell as the front light or the front light system, and the illuminated object as a front lighting system. However, the front light or front light system as a front lighting system of this invention is not used only in

combination with a reflective mold liquid crystal cell. For example, as shown in <u>drawing 35</u>, as for the lighting system 95 concerning this operation gestalt, it is possible for the front light or front light system explained with each above mentioned operation gestalt to be formed as an independent unit, and to illuminate various objects.

[0229] For example, the above-mentioned lighting system 95 can be arranged and used on a book 96, as shown in drawing 35. Since only the field directly under abbreviation of a lighting system 95 can be illuminated by this as shown in drawing 36, there is effectiveness of not making a surrounding man trouble, for example in the case of reading in a bedroom etc. [0230] In addition, the above-mentioned gestalt of each operation does not limit this invention, and various modification is possible for it in the range of invention. For example, as an ingredient of a transparent material, although PMMA was illustrated concretely, a light guide can be carried out that there is no attenuation in homogeneity, and as long as a refractive index is a suitable value, ingredients, such as glass, a polycarbonate, a polyvinyl chloride, or polyester, may be used, for example. Moreover, the dimension of the above-mentioned ramp of a transparent material and the above-mentioned flat part etc. is an example to the last, and can be freely designed in the range in which equivalent effectiveness is acquired. [0231] Furthermore, as a liquid crystal cell, various LCD, such as the passive-matrix mold LCD and the active-matrix mold LCD, can be used. Moreover, although the liquid crystal cell in the ECB mode (single polarizing plate mode) which used above one polarizing plate which served both as the polarizer and the analyzer was used, PDLC, PC-GH, etc. which do not use a polarizing plate may be applied.

[0232] [Gestalt 11 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on drawing 37 thru/or drawing 48. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted. [0233] Although the reflective mold LCD of the gestalt of this operation is the same as that of the gestalt 1 of said operation about the configuration which equips the front face of reflective mold liquid crystal cell 10a with front light 20a as shown in drawing 37 The point which arranges the acid-resisting film (antireflection film) 13 which is the 2nd transparent material (optical means) between reflective mold liquid crystal cell 10a and front light 20a, The point that the width of face (pitch) of the flat part 21 currently formed in transparent material 24a and a ramp 22 differs differs from the point which forms reflector (reflecting plate) 17a in the interior of reflective mold liquid crystal cell 10a in the gestalt 1 of said operation. [0234] First, if front light 20a is explained concretely, this front light 20a is mainly constituted by the light source 26 and transparent material 24a like the gestalt 1 of said operation, and the light source 26 as a linear light source covered with the reflecting mirror 27 so that the plane of incidence 25 of transparent material 24a might be touched is established. [0235] The interface 28 by the side of liquid crystal cell 10a of transparent material 24a (1st outgoing radiation side) is formed evenly, the ramp 22 which inclined at the fixed include angle in this direction is arranged by turns to the flat part 21 formed in an interface 28, parallel, or abbreviation parallel, and a flat part 21, and the interface (2nd outgoing radiation side) 23 which counters this interface is formed.

[0236] thus -- as shown in drawing 37, so that transparent material 24a keeps away from the light source 26 like the transparent material 24 in the gestalt 1 of said operation in the cross section which makes the longitudinal direction of the light source 26 a normal -- the bottom -- **** -- it dies -- it is formed stair-like.

[0237] Here, the configuration of transparent material 24a is further explained to a detail, referring to drawing 38 (a) thru/or (c). Drawing 38 (a) is the top view which looked at the transparent material from the direction upper part of a normal of a flat part, drawing 38 (b) is the side elevation which looked at the transparent material from [of plane of incidence] the normal, and drawing 38 (c) is the sectional view which cut the transparent material in respect of being vertical to the both sides of plane of incidence and an interface.

[0238] As construction material of transparent material 24a, with the gestalt of this operation, the acrylic board is used and transparent material 24a can be processed stair-like by carrying out metal mold shaping of this acrylic board. This transparent material 24a may be thickness h1 =2.0mm of width of face of W= 75mm, die length of L= 170mm, and plane-of-incidence 25 part, and width-of-face w1 =0.2mm of a flat part 21 with the gestalt of this operation. moreover, the dip to level difference h2 =10micrometer of a ramp 22, and a flat part 21 -- each -- considering as alpha= 45 degrees -- width of face w2 of a ramp It is about 10 micrometers.

[0239] Furthermore, at the gestalt of this operation, it sets in the direction which keeps away from plane of incidence 25 26, i.e., the light source, and transparent material 24a is the width of face w1 of a flat part 21. Width of face w2 of a ramp 22 It has a configuration to which sum w3 =0.21mm becomes small gradually. In addition to drawing 38 (a) thru/or (c), the configuration of this flat part 21 and a ramp 22 is explained still more concretely based on drawing 39. In addition, in transparent material 24a, hereafter, the direction which makes a normal the longitudinal direction of the light source 26 which is the direction of the side which keeps away from the light source 26 is made into the 1st direction, and an arrow head A shows it in drawing 38 and drawing 39.

[0240] As shown in drawing 39, it makes one at a time into 1 set combining a flat part 21 and a ramp 22, and they are 100 sets of the flat part 21 from the side nearest to the light source 26, and a ramp 22 the 1st block B1 It carries out. and this 1st the] -- block B1 Spacing w4 of the direction which met in the 1st direction which can be set It forms so that it may be set to 21 mm.

[0241] 2nd block B-2 which are 100 sets of following blocks The above-mentioned spacing w4 which can be set It forms so that it may be set to 20mm. Furthermore, a degree is B3 the 3rd block. Spacing w4 which can be set It forms so that it may be set to 19mm, and it is 4th block B4. Spacing w4 which can be set It forms so that it may be set to 18mm, and it is 5th block B5. Spacing w4 which can be set It forms so that it may be set to 17mm.

[0242] Therefore, spacing w4 of each block [to a near end face] in every block with which the light source 26 is not arranged along the 1st direction in transparent material 24a with the gestalt of this operation from the end face by the side of the light source 26 It decreases by every 1mm. That is, it follows on keeping away from the light source 26, and every 100 sets of a flat part 21 and a ramp 22, the sum (sum w3 of the width of face w1 of a flat part 21 and the width of face w2 of a ramp 22) of the pitch of a flat part 21 and the pitch of a ramp 22 is formed so that it may decrease by 10 micrometer (1/100mm) every. In addition, in drawing 38 (a) thru/or (c), it is not illustrating about reduction of the pitch of the flat part 21 after [expedient] explaining, and a ramp 22.

[0243] In the above-mentioned transparent material 24a, the above-mentioned ramp 22 acts mainly as the minute light source section which is the field which turns the light from the light source 26 to an interface 28, and is reflected. On the other hand, a flat part 21 acts as a field which makes this reflected light penetrate to an observer side, mainly when the illumination light from front light 20a has returned from liquid crystal cell 10a as the reflected light. About an operation of these each part, it is the same as that of the gestalt 1 of said operation.

[0244] furthermore, transparent material 24a in the above-mentioned front light 20a -- this stair-like configuration -- in addition, 1 set per 100 sets of pitches of a flat part 21 and a ramp 22 -- for example, it makes 10 micrometers small at a time, i.e., it has the configuration which follows the pitch of a stairway on keeping away from the light source 26, and makes it small. Therefore, as shown in <u>drawing 40</u> (a), the number per unit area of a ramp 22 will follow on keeping away from the light source 26, and will increase.

[0245] Brightness will improve from the light source 26 as the location where reflective mold liquid crystal cell 10a which is the illuminated object illuminated by front light 20a plane-of-incidence 25 since the number per unit area of a ramp 22 was followed on keeping away from the light source 26 and the incident light carried out is increasing it, although reflected by the ramp 22 which acts as the minute light source section keeps away from the light source 26. Usually, since brightness tends to fall so that it is a location distant from the light source 26, if it is the configuration of transparent material 24a of the gestalt of this operation, in an interface 28 (1st outgoing radiation side), phase murder and the light from the light source 26 can be efficiently led to the whole illuminated object for lowering of the brightness by keeping away from the light source 26 by whenever [angle-of-elevation]. Consequently, the thing luminance distribution by the side of the interface 28 which is an interface by the side of an illuminated object (1st outgoing radiation side) can be equalized.

[0246] On the other hand, in the conventional front light 120 with which the transparent material 124 as shown in drawing 40 (b) is formed in wedge-action-die plate-like, the incident light which carried out incidence to plane of incidence 125 from the light source 26 will be reflected according to an interface 123 as it is. So, the brightness in the 1st outgoing radiation side (a front light 120 interface 128) falls, so that it keeps away from the light source 26.

[0247] Furthermore, as shown in <u>drawing 41</u>, compared with the graph F which shows the luminance distribution of the conventional front light 120, as for the distribution condition of the brightness in the 1st outgoing radiation side, the direction of the graph E which shows the luminance distribution of front light 20a of the gestalt of this operation serves as abbreviation regularity also in the location where the distance from the light source 26 is large. Therefore, it turns out that the direction of front light 20a of the gestalt of this operation is excellent in the homogeneity of the luminance distribution in the 1st outgoing radiation side (interface 28).

[0248] Moreover, in transparent material 24a of the above-mentioned configuration, since the pitch of a stairway is 0.21mm, the pitch of a black matrix and the pitch of the slot of the above-mentioned ramp 22 which are formed in the perimeter of the pixel of reflective mold liquid crystal cell 10a corresponding to transparent material 24a will shift. Consequently, since generating of the Moire fringe by interference with a black matrix and a ramp 22 can be controlled, the display grace of the reflective mold LCD obtained can be raised. In addition, about this point, it mentions later.

[0249] When the result about the outgoing radiation include-angle property of the above-mentioned transparent material 24a is shown, with the graph G by the side of the reflective mold LCD which is an illuminated object as shown in drawing 42 (interface 28 side), light-receiving angles are 2,000 cd/m2 with a peak of for -10 to -5 degrees. Brightness is rising to reaching extent. On the other hand, when a light-receiving angle is -60 degrees in the graph H by the side of an observer (interface 23 side), they are a maximum of 500 cd/m2. At about 0 degree which is the include angle which observes the reflective mold LCD with extent used as brightness, brightness is 100 cd/m2. It has become the following.

[0250] thus, the light from the light source 26 arranged at the end face of transparent material 24a -- the illuminated object (reflective mold LCD) from an interface 28 -- receiving -- abbreviation -- outgoing radiation can be carried out at a vertical include angle. There is almost no leakage of light in the observer side who is an interface 23 side simultaneously, and the light from the light source 26 can be efficiently led to an illuminated object by whenever [angle-of-elevation].

[0251] In addition, with the gestalt of this operation, although fluorescence tubing is used as the light source 26, as the light source 26, it is not limited to this, and LED (light emitting diode), an EL element, or a tungsten lamp can be used.
[0252] Next, although this liquid crystal cell 10a is the same as that of the liquid crystal cell 10 of the gestalt 1 of said operation as a fundamental configuration as shown in drawing 37 if liquid crystal cell 10a is explained, the points which form

reflecting plate 17a in liquid crystal cell 10a differ.

[0253] This liquid crystal cell 10a is a configuration which pinched the liquid crystal layer 12 by electrode substrate 11a and 11c of a couple, and equips with the phase contrast plate 49 and the polarizing plate 18 further the electrode substrate 11a side which is a screen side, as shown also in <u>drawing 43</u>. In addition, although it has one sheet in <u>drawing 43</u>, the phase contrast plate 49 (not shown to <u>drawing 37</u>) may be two or more sheets, and it is not necessary to have it.

[0254] A light filter 38 is formed on glass substrate 14a which has light transmission nature, transparent electrode 15a

(scanning line) is prepared on it, liquid crystal orientation film 16a is formed, and the above-mentioned electrode substrate 11a has become so that this transparent electrode 15a may be covered. In addition, an insulator layer etc. may be formed to electrode substrate 11a if needed. In addition, the light filter 38 is not illustrated to drawing 37.

[0255] On the other hand, an insulator layer 19 is formed on glass substrate 14b, reflector (reflecting plate) 17a is further formed on it, liquid crystal orientation film 16b is formed, and electrode substrate 11c has become so that this reflector 17a may be covered. Two or more concavo-convex sections are formed in the front face of the above-mentioned insulator layer 19, and two or more concavo-convex sections are formed also in the front face of reflector 17a which has covered this insulator layer 19.

[0256] The above-mentioned reflector 17a serves both as the liquid crystal actuation electrode and reflecting plate which drive the liquid crystal layer 12. As this reflector 17a, the aluminum (aluminum) reflector which was excellent in the reflection property is used. Moreover, the above-mentioned insulator layer 19 is formed in the organic resist, and the contact hole and the concavo-convex section in this insulator layer 19 are formed by the photolithography mentioned later. Construction material, the formation approach, etc. of of above-mentioned glass substrate 14aand14b, transparent electrode 15aand15b, and liquid crystal orientation film 16a and 16b are the same as that of the gestalt 1 of said operation. [0257] The formation approach of the above-mentioned electrode substrate 11c is explained in more detail based on drawing 44 (a) - (e). First, as shown in drawing 44 (a), an insulator layer 19 is formed in applying and calcinating an organic resist on glass substrate 14b on the whole surface. Then, as shown in drawing 44 (b), ultraviolet-rays 30a is irradiated through a mask 30 at an insulator layer 19. As the exposure section of ultraviolet-rays 30a in an insulator layer 19 is removed and it is shown in drawing 44 (c) by this, the irradiated section of ultraviolet-rays 30a is formed in a predetermined pattern. [0258] next, the thing heat-treated and calcinated at 180 degrees to the insulator layer 19 formed in the predetermined pattern as shown in drawing 44 (d) -- an organic resist -- heat -- who is made to be generated this heat -- concavo-convex section 19a is formed by whom.

[0259] Finally, as shown in drawing 44 (e), vacuum deposition of the aluminum (aluminum) is carried out so that this concavo-convex section 19a may be covered. Reflector 17a by which the concavo-convex section was formed in the front face along with concavo-convex section 19a of this is formed. In addition, although the insulator layer 19 is formed as concavo-convex section 19a used as a predetermined pattern in drawing 44 (a) - drawing 44 (e), as shown in drawing 37 or drawing 43, you may be the configuration that the concavo-convex section is formed only in the front face of an insulator layer 19.

[0260] Thus, electrode substrate 11c and the above-mentioned electrode substrate 11a which are obtained are arranged so that the direction of rubbing processing may become anti-parallel, and are stuck using adhesives so that mutual liquid crystal orientation film 16a and 16b may counter. Moreover, between electrode substrate 11a and 11c, in order to make into homogeneity spacing of the opening formed of this electrode substrate 11a and 11c, the glass bead spacer (not shown) with a particle size of 4.5 micrometers is sprinkled beforehand. And the liquid crystal layer 12 is formed in this opening by introducing liquid crystal by the vacuum deairing. In addition, the ingredient of the liquid crystal layer 12 is the same as that of the gestalt 1 of said operation.

[0261] Although reflective mold liquid crystal cell 10a of the gestalt of this operation is manufactured as mentioned above, since it is the same as that of the reflective mold liquid crystal cell 10 in the gestalt 1 of said operation, a production process, manufacture conditions, etc. other than the above-mentioned explanation are omitted.

[0262] By forming irregularly, the pattern (namely, pattern of concavo-convex section 19a of an insulator layer 19) of the concavo-convex section currently formed on reflector 17a in the above-mentioned electrode substrate 11c is formed so that diffuse reflection of the incident light which carries out incidence to reflective mold liquid crystal cell 10a may be carried out in the specific direction.

[0263] As for the concavo-convex section in the above-mentioned insulator layer 19, it is desirable that the difference of the top-most vertices of heights and the base of a crevice is within the limits of 0.1 micrometers thru/or 2 micrometers. If the difference of the top-most vertices of heights and the base of a crevice in the concavo-convex section is this within the limits, incident light can be diffused without affecting the orientation of a liquid crystal molecule, and the cel thickness of a liquid crystal cell.

[0264] Thus, the reflection property of the formed above-mentioned reflector 17a is explained based on drawing 45 about the case where it compares with the reflection property of the standard white plate (MGO) in which the almost same diffuse reflection property as paper is shown. Above MGO(s) (and paper etc.) shows the reflection property which shows isotropy as the graph M of a drawing destructive line shows. On the other hand, the above-mentioned reflector 17a (MRS) has the diffuse reflection property which shows directivity in the include angle of **30 degrees as the graph N of a drawing solid line shows. [0265] It becomes observable [an image] even if light carries out incidence from other than the direction of regular reflection to reflective mold liquid crystal cell 10a equipped with such reflector 17a. In addition, as for the reflection property of the above-mentioned reflector 17a, it is possible by not being limited to a property as shown in drawing 45, and changing the design of reflector 17a suitably to make it correspond to the property according to the class of device by which the reflective mold LCD is used.

[0266] Moreover, since the above-mentioned reflector 17a is formed so that the liquid crystal layer 12 in reflective mold liquid crystal cell 10a may be adjoined, it can cancel generating of the parallax by glass substrate 14b as compared with the case where the reflecting plate is formed in the tooth-back side (field of the side which counters the field of the side which touches transparent material 24a) of reflective mold liquid crystal cell 10a. Therefore, double projection of an image can be

controlled in the reflective mold LCD obtained. Moreover, the configuration of reflective mold liquid crystal cell 10a can also be simplified.

[0267] In addition, as shown in drawing 37 and drawing 43, reflector 17a in the gestalt of this operation may be in polarization mode in which the display mode of reflective mold liquid crystal cell 10a is equipped with the polarizing plate 18, and as shown in drawing 46, it may be the reflective mold liquid crystal cell in guest host mode (with no polarizing plate). In addition, since the fundamental configuration is almost the same as that of reflective mold liquid crystal cell 10a about this reflective mold liquid crystal cell, it omits about detailed explanation.

[0268] Next, explanation of the pixel structure arranged at the above-mentioned liquid crystal cell 10a forms two or more signal-line 55 -- in the direction in which the above-mentioned reflective mold liquid crystal cell 10a intersects perpendicularly in the direction in which two or more scanning-line 54 -- is formed in along with the longitudinal direction of this reflective mold liquid crystal cell 10a, and this scanning-line 54 -- is formed, as shown in drawing 47. And two or more pixel 56 -- is formed so that it may correspond to the pattern of the shape of this scanning-line 54 -- and a grid formed of signal-line 55 --.

[0269] One pixel 56 consists of pixel electrode 56a corresponding to three light filters of (Red R), green (G), and blue (B). These pixel electrode 56a is arranged in order of R-G-B along the direction in which scanning-line 54 -- is formed. [0270] As a configuration of the above-mentioned reflective mold liquid crystal cell 10a, it has Yn=640 become the Xm=240 signal line more than 55 with the gestalt of this operation diagonal 6.5 mold size (vertical WL =58mm, horizontal LL =154.5mm) and the scanning line more than 54. Moreover, it is pitch PL =0.24mm (R, G, B) of the pixel 56 arranged at reflective mold liquid crystal cell 10a. It is formed so that the black matrix (it abbreviates to BM hereafter) of above-mentioned pixel 56 -- which is not illustrated on the outskirts may serve as width of face of 8 micrometers. [0271] It has come to combine reflective mold liquid crystal cell 10a and front light 20a which were mentioned above in the reflective mold LCD concerning the gestalt of this operation. Here, in front light 20a, the pitch of the flat part 21 of transparent material 24a and a ramp 22 is smaller than the pitch of scanning-line 54 --, i.e., BM, by 0.21mm, as mentioned above. Therefore, the pitch of BM and the pitch of the slot of the above-mentioned ramp 22 in the above-mentioned reflective mold liquid crystal cell 10a can be shifted. If each [these] pitch shifts, generating of the Moire fringe by interference with BM and a ramp 22 can be controlled. Therefore, the display grace of the reflective mold LCD obtained can be raised. [0272] With the configuration of transparent material 24a mentioned above, although the pitch of a flat part 21 and a ramp 22 is smaller [scanning-line 54 --] than a pitch, scanning-line 54 -- is larger than a pitch, and the above-mentioned pitch may be carried out. Namely, in order to control generating of a Moire fringe, the pitch of the slot of a ramp 22 and the pitch of BM have just shifted.

[0273] Here, it is the width of face w1 of a flat part 21. Width of face w2 of a ramp 22 Sum w3 It considers as the pitch of the slot of a ramp 22. Moreover, for becoming parallel to the slot of a ramp 22, although it is formed so that scanning-line 54 -- and signal-line 55-- may be covered, since it is scanning-line 54 --, scanning-line 54 -- is [Above BM] a pitch P1. It considers as the pitch of BM.

[0274] In order for the pitch of the slot of the above-mentioned ramp 22 and the pitch of BM to shift Above w3 P1 Although what is necessary is just in a conflicting condition (w3 !=P1), it is this w3. P1 As relation w3 P1 It is larger width of face than twice, or (w3 >2P1) is w3. P1 Especially the thing that it is width of face smaller than one half (w3 <1/2P1) is desirable. [0275] Above w3 P1 Although the pitch of the slot of a ramp 22 and the pitch of BM shifted when separating from the range of the above [relation], when it judges optically, it is possible to consider that it is in agreement in general. Therefore, since it becomes impossible to control generating of a Moire fringe effectively, it is not desirable.

[0276] In addition, the width of face w1 of a flat part 21 and width of face w2 of a ramp 22 in the gestalt of this operation. These [w1] w2 What is necessary is not to limit the include angle of the sum w3 and a ramp 22 etc. to the above-mentioned numeric value, and just to form it according to the pixel structure of reflective mold liquid crystal cell 10a used.

[0277] Moreover, although it corresponds in the direction (the 1st direction) which keeps away from the light source 26 by decreasing the pitch of a flat part 21 with the gestalt of this operation in order to equalize luminance distribution, the sum of the pitch of a flat part 21 and a ramp 22 may be decreased by changing the include angle of a ramp 22 instead of a pitch. For example, while making a flat part 21 small, the sum of the pitch of a flat part 21 and a ramp 22 can be made small by making the include angle alpha of a flat part 21 and a ramp 22 to make small in the direction (the 1st direction) which keeps away from the light source 26. Even in this case, since the outgoing radiation of the penetration light can be efficiently carried out in the direction (the 1st direction) which keeps away from the light source 26 to a ramp 22, luminance distribution can be equalized.

[0278] Furthermore, the reflective mold LCD concerning the gestalt of this operation is the configuration that the antireflection film as the 2nd transparent material is arranged between this front light 20a and reflective mold liquid crystal cell 10a in addition to front light 20a of the above-mentioned configuration, and reflective mold liquid crystal cell 10a of the above-mentioned configuration.

[0279] In the above-mentioned reflective mold LCD, explanation of this antireflection film pastes up the acid-resisting film 13 as the above-mentioned antireflection film on the interface (1st outgoing radiation side) of the polarizing plate 18 arranged at reflective mold liquid crystal cell 10a, and transparent material 24a, as shown in drawing 37.

[0280] With the gestalt of this operation, the acid-resisting film (trade name: TAC-HC/AR) by NITTO DENKO CORP. is used for this acid-resisting film 13. This acid-resisting film 13 serves as multilayer-structure film which has the configuration of four layers. A triacetyl cellulose (TAC) film is used as a base material layer, and, specifically, it is MgF2 as the 1st layer on

it. It is CeF3 as a layer and the 2nd layer. TiO2 as a layer and the 3rd layer It is MgF2 as a layer and the 4th layer. It is the acid-resisting film 13 which formed the layer, respectively.

[0281] The above-mentioned TAC film has become 100 micrometers in thickness by refractive-index nt =1.51. Moreover, MgF2 of the 1st layer A layer is the thickness of about 100nm, and CeF3 of the 2nd layer at refractive-index nm =1.38. A layer is the thickness of about 120nm, and TiO2 of the 3rd layer at refractive-index nC =2.30. A layer is the thickness of about 120nm, and MgF2 of the 4th layer at refractive-index nti=1.63. The layer has become about 100nm in thickness with the refractive index n= 1.38. These 1st layer thru/or the 4th layer are formed by the vacuum deposition method one by one on the TAC film of a base material layer.

[0282] Furthermore, refractive index n2 of the acrylic material used for transparent material 24a in the case of adhesion with front light 20a Refractive index n1 of abbreviation identitas The layer of the acrylic adhesives which it has is formed. Therefore, while being able to improve the acid-resisting effectiveness, without changing mostly the I/O conditions of the light in transparent material 24a, generating of the nonuniformity of luminance distribution and a rainbow-colored spectrum can also be prevented.

[0283] In addition, the TAC film of the 1st above-mentioned layer may carry out the direct laminating of the 2nd layer thru/or the 4th layer to transparent material 24a not except for a configuration indispensable as a configuration of the acid-resisting film 13 but except for the 1st layer. However, there is a possibility that a manufacturing cost may rise a little, in this case. [0284] The acid-resisting film 13 of the above-mentioned multilayer-structure film has composition used as lambda/4-lambda/4-lambda/4 wavelength plate to incident light with a wavelength of lambda= 500nm. Therefore, this acid-resisting film 13 can act as an acid-resisting film 13 in an extensive wavelength band.

[0285] In transparent material 24a mentioned above, the ramp 22 currently formed in the front face (interface 23) of this transparent material 24a will function as the minute light source section to reflective mold liquid crystal cell 10a. Therefore, although light will be irradiated from a ramp 22 to reflective mold liquid crystal cell 10a, in the interface 28 which is the interface of transparent material 24a and reflective mold liquid crystal cell 10a, i.e., the field which counters an interface 23, about 4% of the light from a ramp 22 is reflected, and it becomes the reflected light.

[0286] Of generating of this reflected light, a reflected image will be formed in an interface 23 side from an interface 28. Therefore, this reflected image and the image in the above-mentioned ramp 22 will interfere or diffract mutually, it will see from an observer, and the nonuniformity and the rainbow-colored spectrum of luminance distribution will arise on the front face of the reflective mold LCD.

[0287] However, in the reflective mold LCD concerning the gestalt of this operation, generating of the reflected light which the incident light from a ramp 22 is reflected by the interface 28, and is produced since the above-mentioned antireflection film (acid-resisting film 13) is arranged between reflective mold liquid crystal cell 10a and front light 20a (i.e., the interface 28 side of transparent material 24a) can be controlled.

[0288] So, interference or diffraction with the image in the ramp 22 which acts as the minute light source section, and the reflected image reflected by the interface 28 side can be prevented. Therefore, generating of the nonuniformity of the luminance distribution on the display observed in an observer side (interface 23 side) and a rainbow-colored spectrum can be prevented.

[0289] It has [the direction of the graph C in the case of arranging the acid-resisting film 13] nonuniformity in luminance distribution and is more fixed than the graph D when not arranging the acid-resisting film 13 as it is shown in <u>drawing 48</u>, when the luminance distribution of the display in the reflective mold LCD of the gestalt of this operation is compared about the case where it does not arrange with the case where this acid-resisting film 13 is arranged, and it turns out that the brightness itself is improving.

[0290] Moreover, since what is marketed can be used for the acid-resisting film 13 of the above-mentioned configuration as it is, it can control lifting of the manufacturing cost of front light 20a. Therefore, the reflective mold LCD equipped with cheap front light 20a and this cheap can be obtained.

[0291] Furthermore, refractive index n2 of transparent material 24a which is the 1st transparent material Almost equal refractive index n1 Since the above-mentioned acid-resisting film 13 is pasted up with the adhesives which it has, the acid-resisting effectiveness can be improved without changing mostly the I/O conditions of the light in transparent material 24a.

[0292] In addition, about the configuration and construction material of the above-mentioned acid-resisting film 13, it is not limited to an above-mentioned configuration and construction material. For example, you may become the configuration of lambda/4-lambda/2-lambda/2-lambda/4 as a configuration of a wavelength plate. By considering as the configuration of such a wavelength plate, the acid-resisting effectiveness is acquired in a still larger wavelength band. Moreover, you may be the acid-resisting film of the monolayer configuration of lambda/4 wavelength plate. However, there is a possibility that the wavelength band where the acid-resisting effectiveness is acquired may become narrow in this case. [0293] As mentioned above, the amount of reflected lights reflected by the above-mentioned ramp 22 can be made to increase in the direction which keeps away from the light source conventionally by forming so that it may be accompanied by the pitch of the flat part 21 and ramp 22 which are formed in the front face (interface 23) of transparent material 24a toward the direction (the 1st direction) which keeps away from the light source 26 and may become small. Therefore, the luminance distribution in the interface 23 (1st outgoing radiation side) of transparent material 24a can be equalized. [0294] Moreover, generating of a Moire fringe produced for interference of the light by BM of pixel 56 -- currently formed in the perimeter and the slot of the above-mentioned ramp 22 can be controlled by forming smaller than the pitch of reflective

mold liquid crystal cell 10a the pitch of the flat part 21 and ramp 22 which were formed in the interface 23 of transparent material 24a in front light 20a. Therefore, degradation of the display grace of the reflective mold LCD can be prevented. [0295] Furthermore, generating of the nonuniformity of luminance distribution and a rainbow-colored spectrum in the interface 23 of transparent material 24a can be prevented by preparing an antireflection film (acid-resisting film 13) between reflective mold liquid crystal cell 10a and front light 20a. Therefore, it is more bright and the high reflective liquid crystal LCD with more high display grace can be obtained.

[0296] In addition, incident light is diffused by forming the concavo-convex section in reflector 17a in reflective mold liquid crystal cell 10a, without affecting the orientation and cel thickness of a liquid crystal molecule. Therefore, it becomes observable [an image] even if light carries out incidence to reflective mold liquid crystal cell 10a from other than the direction of regular reflection.

[0297] [Gestalt 12 of operation] It will be as follows if the operation gestalt of further others of this invention is explained based on drawing 49 and drawing 50. In addition, the same sign is appended to the configuration explained with the above mentioned gestalt of each operation, and the configuration which has the same function, and the explanation is omitted. [0298] Although the fundamental configuration is the same as that of the gestalt 2 of said operation as the reflective mold LCD of the gestalt of this operation is shown in drawing 49, the points which arrange the acid-resisting film (antireflection film) 13 which is the 3rd transparent material (optical means) between the reflective mold liquid crystal cell 10 and the front light system 51 differ.

[0299] The above-mentioned acid-resisting film 13 is the same as that of what was used with the gestalt 1 of said operation. In addition, about explanation of the acid-resisting film 13, the reflective mold liquid crystal cell 10, and the front light system 51, since it is carrying out in the gestalten 2 and 11 of said operation, it omits.

[0300] In addition to the transparent material 40 which is the transparent material 24 and the 2nd transparent material which are the 1st transparent material, with the gestalt of this operation, the above-mentioned acid-resisting film 13 is functioning as the 3rd transparent material.

[0301] When this acid-resisting film 13 is not formed, it is reflected about 4% on the base (the 2nd front face) 42 of the 2nd transparent material 40, and the light from the ramp 22 currently formed in the interface 23 (1st outgoing radiation side) of the 1st transparent material 24 turns into the reflected light. It will interfere in the image of the ramp 22 formed of this reflected light, and the ramp 22 in the above-mentioned transparent material 24 mutually, consequently the nonuniformity of luminance distribution will produce them in the interface 28 (2nd outgoing radiation side) of a transparent material 24.

[0302] So, in the reflective mold LCD concerning the gestalt of this operation, the same acid-resisting film 13 as the thing in the gestalt 11 of said operation is arranged between the base 42 of the 2nd transparent material 40, and the field by the side of the screen of the reflective mold liquid crystal cell 10. By arrangement of this acid-resisting film 13, generating of the above-mentioned reflected light can be controlled effectively. So, the nonuniformity of the luminance distribution in an interface 28 can be controlled, and the reflective mold LCD which gives a high-definition indication realizable can be realized.

[0303] If the case where the above-mentioned acid-resisting film 13 has been arranged in the reflective mold LCD is compared with the case where it has not arranged, as shown in drawing 50 (a) - (b) It compares with drawing 50 (b) which shows the luminance distribution when having not arranged. The direction of drawing 50 (a) which shows the luminance distribution in the case of having arranged the above-mentioned acid-resisting film 13 has [the pitch p of the peak of brightness] the gently-sloping peak of brightness to an almost equal top over the base 42 whole of the 2nd transparent material 40, and the nonuniformity of luminance distribution has decreased. So, it turns out that the condition of luminance distribution is improving. In addition, in the gestalt 2 of said operation, since it is explaining based on drawing 10, the Measuring condition at this time is omitted.

[0304] Moreover, the above-mentioned acid-resisting film 13 is the refractive index n3 of the 2nd transparent material 40. Almost equal refractive index n4 The above-mentioned acid-resisting film 13 is pasted up with adhesives. Therefore, the acid-resisting effectiveness can be improved, without changing mostly the I/O conditions of the light in the 2nd transparent material 40.

[0305] Furthermore, since what is marketed can be used as it is as an acid-resisting film 13 of the above-mentioned configuration, lifting of the manufacturing cost of the front light system 51 can be controlled. Therefore, the reflective mold LCD equipped with the cheap front light system 51 and this cheap can be obtained.

[0306]

[Effect of the Invention] As mentioned above, the front lighting system concerning invention according to claim 1 The plane of incidence to which a transparent material carries out incidence of the light from the light source, and the 1st outgoing radiation side which carries out outgoing radiation of the light towards an illuminated object, The ramp which counters the outgoing radiation side of the above 1st and is equipped with the 2nd outgoing radiation side which carries out outgoing radiation of the reflected light from an illuminated object, and the outgoing radiation side of the above 2nd mainly turns the light from the light source to the 1st outgoing radiation side, and reflects, It is the configuration currently formed stair-like that the flat part which mainly penetrates the reflected light from an illuminated object has been arranged by turns.

[0307] It irradiates without futility to an illuminated object, without the component of the light which advances to parallel at a flat part leaking out of a transparent material by this. Therefore, as compared with the conventional configuration which has the transparent material formed in abbreviation plate-like, the utilization effectiveness of light source light improves and the effectiveness that a brighter front lighting system is realized is done so.

1_web_cg

[0308] The front lighting system concerning invention according to claim 2 is the configuration further equipped with the 2nd transparent material which equalizes the luminance distribution of the outgoing radiation light from the outgoing radiation side of the above 1st, when the above-mentioned transparent material is made into the 1st transparent material.

[0309] Thereby, the luminance distribution of the outgoing radiation light to an illuminated object is equalized. Consequently, the effectiveness that the front lighting system which functions as the surface light source without brightness unevenness can be offered is done so.

[0310] The 1st front face where, as for the front lighting system concerning invention according to claim 3, the 2nd transparent material counters the 1st outgoing radiation side of the 1st transparent material, While having the 2nd front face which carries out outgoing radiation of the light which countered the 1st front face of the above and carried out incidence through the 1st front face of the above from the 1st transparent material to an illuminated object The 1st front face of the above and the 2nd front face are the configurations formed so that the distance from each ramp in the 2nd outgoing radiation side of the 1st transparent material to the 2nd front face of the above might become abbreviation homogeneity.

[0311] Since the distance to the 2nd front face of the 2nd transparent material which turns into an outgoing radiation side from each of the ramp of the 2nd outgoing radiation side which the light from the light source reflects in the 1st transparent material to an illuminated object by this is equalized, the luminance distribution of the outgoing radiation light from the 2nd front face of the above is equalized. Consequently, the effectiveness that the front lighting system which functions as the surface light source without brightness unevenness is realized is done so.

[0312] The front lighting system concerning invention according to claim 4 is a configuration with almost equal refractive index of the 1st transparent material and refractive index of the 2nd transparent material.

[0313] By this, the light reflected by the ramp of the 2nd slant face in the 1st transparent material will carry out outgoing radiation toward an illuminated object at an include angle as it is. Consequently, it is not necessary to take into consideration change of the locus of the light by the refraction at the time of the incidence to the 2nd transparent material, or the outgoing radiation from the 2nd transparent material, and the effectiveness that a design becomes easy is done so.

[0314] The front lighting system concerning invention according to claim 5 is the configuration that the 1st transparent material and 2nd transparent material were formed in one.

[0315] This does so the effectiveness that a production process is simplified.

[0316] The front lighting system concerning invention according to claim 6 is a configuration equipped with the optical means which controls that the light from the 2nd outgoing radiation side in the 1st transparent material is reflected in the 2nd front face in the 2nd transparent material on this 2nd front face as the 3rd transparent material.

[0317] Generating of the reflected light which it is reflected on the 2nd front face and the incident light from the ramp of the 1st transparent material produces by this can be controlled. So, interference or diffraction with the image in a ramp and the reflected image by the reflected light can be prevented. Consequently, the effectiveness that generating of the nonuniformity of the luminance distribution on a display and a rainbow-colored spectrum can be prevented is done so.

[0318] The front lighting system concerning invention of claim 7 is the configuration that the above-mentioned optical means is an antireflection film.

[0319] Thereby, since a commercial antireflection film can be used, the effectiveness that lifting of the manufacturing cost of a front lighting system can be controlled is done so.

[0320] The front lighting system concerning invention of claim 8 is a configuration pasted up with the 2nd transparent material with the adhesives which have a refractive index with the above-mentioned optical means almost equal to the refractive index which the 2nd transparent material of the above has.

[0321] Thereby, the effectiveness which can improve the acid-resisting effectiveness is done so, without changing mostly the I/O conditions of the light in the 2nd transparent material.

[0322] The front lighting system concerning invention according to claim 9 is a configuration which is the light-scattering object over which the 2nd transparent material scatters the outgoing radiation light from the 1st outgoing radiation side in the 1st transparent material.

[0323] Thereby, the outgoing radiation light from the 1st transparent material is scattered about, and the luminance distribution of the outgoing radiation light to an illuminated object is equalized. Consequently, the effectiveness that a front lighting system without brightness unevenness can be offered is done so.

[0324] The front lighting system concerning invention according to claim 10 is anisotropy scatterer scattered about only in the light in which the light-scattering object carried out incidence from the predetermined include-angle range, and a part of include-angle range [at least] as for which the outgoing radiation light from the 1st transparent material carries out incidence to the 2nd transparent material is the configuration included in the above-mentioned predetermined include-angle range. [0325] While the outgoing radiation light from the 1st transparent material is scattered about without futility by this, it is prevented that the image of an illuminated object deteriorates by the unnecessary scattered light. Consequently, the utilization effectiveness of light improves further and the effectiveness that the front lighting system with which the clear image of an illuminated object is obtained can be offered is done so.

[0326] The front lighting system concerning invention according to claim 11 is the configuration that a light-scattering object is a forward-scattering object.

[0327] Since the backscattering of the light which carried out incidence disappears from the 1st transparent material by this, while the utilization effectiveness of light improves further, it is prevented that the image of an illuminated object deteriorates by the back scattered light. Consequently, the effectiveness that the front lighting system with which the clear image of an

illuminated object is obtained can be offered is done so.

[0328] It is the configuration which is the optical means which controls that the light from the 2nd outgoing radiation side [in / in the 2nd transparent material of the above / the 1st transparent material] reflects the front lighting system concerning invention according to claim 12 in respect of the 1st [in this 1st transparent material] outgoing radiation.

[0329] Generating of the reflected light which it is reflected in respect of the 1st outgoing radiation, and the incident light from the ramp of the 1st transparent material produces by this can be controlled. So, interference or diffraction with the image in a ramp and the reflected image by the reflected light can be prevented. Consequently, the effectiveness that generating of the nonuniformity of the luminance distribution on a display and a rainbow-colored spectrum can be prevented is done so. [0330] The front lighting system concerning invention of claim 13 is the configuration that the above-mentioned optical means is an antireflection film.

[0331] Thereby, since a commercial antireflection film can be used, the effectiveness that lifting of the manufacturing cost of a front lighting system can be controlled is done so.

[0332] The front lighting system concerning invention of claim 14 is a configuration pasted up with the 1st transparent material with the adhesives which have a refractive index with the above-mentioned optical means almost equal to the refractive index which the 1st transparent material of the above has.

[0333] Thereby, the effectiveness that the acid-resisting effectiveness can be improved is done so, without changing mostly the I/O conditions of the light in the 1st transparent material.

[0334] The front lighting system concerning invention according to claim 15 is the configuration that the bulking agent which mitigates the refractive-index difference in the optical interface which exists among these transparent materials between the 1st transparent material and the 2nd transparent material was introduced.

[0335] Thereby, attenuation of the light by the echo by the optical interface which exists between the 1st transparent material and the 2nd transparent material is controlled. Consequently, the utilization effectiveness of light source light improves further, and the effectiveness that a brighter front lighting system can be offered is done so.

[0336] The front lighting system concerning invention given in claim 16 written is the configuration equipped with the optical control means which restricts the breadth of the light from the light source to the range whose component which carries out direct incidence to the 1st outgoing radiation side in the 1st transparent material is mostly lost from plane of incidence between the light source and plane of incidence.

[0337] Since most components which carry out direct incidence to the 1st outgoing radiation side by this among the light which carries out incidence from plane of incidence to a transparent material can be lost, the component which carries out incidence from the 1st outgoing radiation side by the comparatively big incident angle to the 2nd transparent material can be lessened. Consequently, the utilization effectiveness of light can be improved further and the effectiveness that a bright front lighting system can be offered is done so.

[0338] The front lighting system concerning invention according to claim 17 is the configuration that plane of incidence exists in the side face of a transparent material.

[0339] Thereby, from an observer, since the light source does not have direct vanity, the direct light from the light source does not affect the image of an illuminated object. Consequently, the effectiveness that the front lighting system with which a clear illuminated object image is acquired can be offered is done so.

[0340] A front lighting system according to claim 18 is a configuration with total of the projection of the above-mentioned ramp to a flat surface vertical to the 1st outgoing radiation side almost equal to the projection of the plane of incidence to the above-mentioned flat surface in a configuration according to claim 11.

[0341] According to the above-mentioned configuration, all the components parallel to the 1st outgoing radiation side among the light which carried out incidence from the plane of incidence of a transparent material carry out incidence to a ramp, and it reflects in it towards the 1st outgoing radiation side. Thereby, the utilization effectiveness of light source light improves further, and the effectiveness that the front lighting system as the brighter surface light source can be offered is done so.

[0342] The front lighting system concerning invention according to claim 19 is the configuration that plane of incidence and the outgoing radiation side of the above 1st make an obtuse angle, and are allotted.

[0343] The component which carries out direct incidence to the 1st outgoing radiation side by this among the light source light which carried out incidence from plane of incidence decreases. Consequently, the utilization effectiveness of light source light improves further, and the effectiveness that a brighter front lighting system can be offered is done so.

[0344] The front lighting system concerning invention according to claim 20 is the configuration further equipped with a condensing means to carry out incidence of the light from the light source only to the above-mentioned plane of incidence. [0345] Thereby, loss of light source light can be lessened further. Consequently, the utilization effectiveness of light source light improves further, and the effectiveness that a bright front lighting system can be offered is done so.

[0346] The total of the projection to the outgoing radiation side of the above 1st of a ramp of the front lighting system concerning invention according to claim 21 is a configuration with an area smaller than total of the projection to the outgoing radiation side of the above 1st of the above-mentioned flat part.

[0347] Thereby, the area of the flat part which contributes mainly to the display of the image of an illuminated object increases seemingly. Consequently, the effectiveness that the front lighting system with which a bright clear image is obtained can be offered is done so.

[0348] The above-mentioned flat part of the front lighting system concerning invention according to claim 22 is parallel to the outgoing radiation side of the above 1st, or it is the configuration of having whenever [tilt-angle / of 10 degrees or less] to

the outgoing radiation side of the above 1st.

[0349] Thereby, it does not have effect to the display grace of the image of an illuminated object, but the effectiveness that the front lighting system with which a bright clear image is obtained can be offered is done so.

[0350] The front lighting system concerning invention according to claim 23 is the refractive index of the external medium which touches n2 and the above-mentioned ramp in the refractive index of a transparent material n1 When it carries out, the incident angle theta of the light which carries out incidence from the light source to a ramp is the configuration of satisfying the following inequality.

[0351] Theta \geq =arcsin (n1 / n2)

Thereby, the light from the light source does not leak from a ramp to an observer side, and the utilization effectiveness of light improves further. Consequently, the effectiveness that a bright front lighting system can be offered is done so.

[0352] The front lighting system concerning invention according to claim 24 is the configuration that the reflective member in which light is reflected was prepared on the surface of the ramp.

[0353] Thereby, the light from the light source does not leak from a ramp to an observer side, and the utilization effectiveness of light improves further. Consequently, the effectiveness that a bright front lighting system can be offered is done so.

[0354] The front lighting system concerning invention according to claim 25 is the refractive index of the external medium which touches n2 and the above-mentioned ramp in the refractive index of a transparent material n1 When it carries out, the incident angle theta of the light which carries out incidence from the light source to a ramp is the configuration of satisfying the following inequality.

[0355] Theta<arcsin (n1 / n2)

It becomes possible to enlarge whenever [tilt-angle / of the ramp to a flat part] to the range where the incident angle theta of the light which carries out incidence from the light source to a ramp fills the above-mentioned inequality by this.

Consequently, when it sees from [of a flat part] a normal, the ramp which does not contribute to the display of the image of an illuminated object becomes is hard to be checked by looking, and the effectiveness that improvement in the display grace of the image of an illuminated object can be aimed at is done so.

[0356] The front lighting system concerning invention according to claim 26 is the configuration that the protection-from-light member was prepared in the front face of the above-mentioned reflective member.

[0357] Thereby, an ambient light reflects by the reflective member and does not go into an observer's eyes. Consequently, the effectiveness that the front lighting system with which a clear illuminated object image is acquired can be offered is done so. [0358] The front lighting system concerning invention according to claim 27 is the configuration further equipped with a compensation means to arrange the direction of outgoing radiation of the outgoing radiation light from the flat part in the 2nd outgoing radiation side, and the outgoing radiation light from a ramp.

[0359] Thereby, there are no blot and dotage of the image of an illuminated object, and the effectiveness of becoming possible to obtain a clear image is done so.

[0360] The front lighting system concerning invention according to claim 28 While a compensation means is equipped with the 1st front face which counters the 2nd outgoing radiation side of a transparent material, and the 2nd front face which counters the 1st front face of the above the 1st front face of a compensation means -- the ramp of the 2nd outgoing radiation side of a transparent material, and abbreviation -- with an parallel inclined plane the flat part of the outgoing radiation side of the above 2nd, and abbreviation -- it is the configuration which an parallel flat side is arranged by turns and carries out the complementation to the outgoing radiation side of the above 2nd that it is formed stair-like and the 2nd front face of the above-mentioned compensation means is arranged at the 1st outgoing radiation side of a transparent material, and abbreviation parallel.

[0361] Thereby, the direction of outgoing radiation of the light which carries out outgoing radiation from a flat part to an observer side, and the direction of outgoing radiation of the light which carries out outgoing radiation from a ramp to an observer side are arranged. Consequently, the effectiveness of becoming possible to obtain the clear image of an illuminated object is done so.

[0362] The front lighting system concerning invention according to claim 29 has the refractive index from which the field as for which the outgoing radiation light from the ramp of the 2nd outgoing radiation side mainly carries out incidence, and the field the outgoing radiation light from the flat part of the 2nd outgoing radiation side mainly carries out [a field] incidence differ mutually in a compensation means.

[0363] Thereby, the direction of outgoing radiation of the light which carries out outgoing radiation from the flat part of the 2nd outgoing radiation side of a transparent material to an observer side, and the direction of outgoing radiation of the light which carries out outgoing radiation from a ramp to an observer side are arranged. Consequently, the effectiveness that the front lighting system with which a clear illuminated object image without a blot or dotage is acquired can be offered is done so.

[0364] The front lighting system concerning invention according to claim 30 is the configuration that the diffraction component was prepared in the field as for which the outgoing radiation light from the ramp of the 2nd outgoing radiation side mainly carries out incidence, in a compensation means.

[0365] Thereby, the direction of outgoing radiation of the light which carries out outgoing radiation from the flat part of the 2nd outgoing radiation side of a transparent material to an observer side, and the direction of outgoing radiation of the light which carries out outgoing radiation from a ramp to an observer side are arranged. Consequently, the effectiveness that the front lighting system with which a clear illuminated object image without a blot or dotage is acquired can be offered is done

[0366] The front lighting system concerning invention according to claim 31 is the configuration that the protection-from-light member was prepared in the field as for which the outgoing radiation light from the ramp of the 2nd outgoing radiation side mainly carries out incidence, in a compensation means.

[0367] As a result of [this] the light which carries out outgoing radiation to an observer side turning into only outgoing radiation light from a flat part from the 2nd outgoing radiation side of a transparent material by this, the effectiveness that the front lighting system with which a clear illuminated object image without a blot or dotage is acquired can be offered is done so.

[0368] The front lighting system concerning invention according to claim 32 is the configuration further equipped with the optical control means which restricts the breadth of the light from the light source between the light source and plane of incidence.

[0369] While the leakage light from a ramp decreases and the utilization effectiveness of light improves further by this, a blot and dotage of the image of an illuminated object are prevented. Consequently, the effectiveness that the front lighting system as the surface light source with which a bright and clear illuminated object image is acquired can be offered is done so.

[0370] The front lighting system concerning invention according to claim 33 is the configuration that the incident angle of the light in which an optical control means carries out direct incidence from plane of incidence to the ramp of the 2nd outgoing radiation side restricts the breadth of the light from the light source to the range which becomes larger than a critical angle.

[0371] While the leakage light from a ramp decreases and the utilization effectiveness of light improves further by this, a blot and dotage of the image of an illuminated object are prevented. Consequently, the effectiveness that the front lighting system as the surface light source with which a bright and clear illuminated object image is acquired can be offered is done so.

[0372] the front face where, as for the front lighting system concerning invention according to claim 34, a transparent material counters plane base and above-mentioned base, and the plane of incidence in which the light from the light source carries out incidence -- having -- the above-mentioned front face -- a base -- receiving -- abbreviation -- it is the configuration formed stair-like that the parallel flat part and the ramp which inclined in this direction to the above-mentioned flat part have been arranged by turns.

[0373] Thereby, in the front lighting system of this invention, the component of the light which advances to parallel at a flat part does not leak out of a transparent material, and it reflects by the ramp, and irradiates to an illuminated object. So, the utilization effectiveness of light source light improves as compared with the conventional configuration which has the transparent material formed in abbreviation plate-like. Consequently, the effectiveness that a bright front lighting system is realized is done so.

[0374] The front lighting system concerning invention according to claim 35 is the configuration that the sum of the pitch of a flat part and the pitch of a ramp which are formed in the transparent material follows on keeping away from the above-mentioned plane of incidence, and is small.

[0375] Thereby, phase murder and the light from the light source can be efficiently led to the whole illuminated object for lowering of the brightness of the illuminated object by keeping away from the light source by whenever [angle-of-elevation]. Consequently, the effectiveness that the luminance distribution in the front face of an illuminated object can be equalized is done so.

[0376] The reflective mold liquid crystal display concerning invention according to claim 36 is the configuration that the front lighting system according to claim 1 has been arranged in the front face of the above-mentioned reflective mold liquid crystal device while being equipped with the reflective mold liquid crystal device which has a reflecting plate.

[0377] While using it where a front lighting system is switched off when there is sufficient amount of ambient lights like the outdoors in the daytime by this, when sufficient amount of ambient lights is not obtained, a front lighting system can be turned on and used. Consequently, it is not concerned with a perimeter environment but the effectiveness that the reflective mold liquid crystal display which can realize an always bright high-definition display can be offered is done so.

[0378] A reflective mold liquid crystal device is equipped with the scanning line, and the reflective mold liquid crystal display concerning invention according to claim 37 has the pitch of the above-mentioned scanning line, and the almost equal pitch of the flat part in the 2nd outgoing radiation side of a front lighting system, and is the configuration that the flat part has been arranged above the scanning line.

[0379] Thereby, since the reflected light from the pixel field of a liquid crystal device carries out incidence without futility to a flat part, the utilization effectiveness of light improves further. Consequently, the effectiveness that the reflective mold liquid crystal display which can realize a high-definition display can be offered is done so.

[0380] A reflective mold liquid crystal display is equipped with the scanning line, and the reflective mold liquid crystal display concerning invention according to claim 38 is a configuration with the sum of the pitch of a flat part and the pitch of a ramp in the 2nd outgoing radiation side of a front lighting system smaller than the pitch of the above-mentioned scanning line.

[0381] Thereby, since generating of the Moire fringe by interference with a black matrix and a ramp can be controlled, the effectiveness that the display grace of the reflective mold liquid crystal display obtained can be raised is done so. [0382] A reflective mold liquid crystal display is equipped with the scanning line, and the reflective mold liquid crystal display concerning invention according to claim 39 is a configuration with the larger sum of the pitch of a flat part and the pitch of a ramp in the 2nd outgoing radiation side of a front lighting system than the pitch of the above-mentioned scanning line.

[0383] Thereby, since generating of the Moire fringe by interference with a black matrix and a ramp can be controlled, the effectiveness that the display grace of the reflective mold liquid crystal display obtained can be raised is done so. [0384]. The reflective mold liquid crystal display concerning invention according to claim 40 is the configuration that the above-mentioned reflective mold liquid crystal device equips the front face with the reflecting plate which has the concavo-convex section.

[0385] Thereby, incident light is diffused, without affecting the orientation of a liquid crystal molecule, and the cel thickness of a reflective mold liquid crystal device. Therefore, even if light carries out incidence from other than the direction of regular reflection, the effectiveness of becoming observable [an image] is done so.

[0386] The above-mentioned reflecting plate is the reflector which served as the liquid crystal actuation electrode for driving the liquid crystal layer of a reflective mold liquid crystal device, and the reflective mold liquid crystal display concerning invention according to claim 41 is a configuration which adjoins this liquid crystal layer and is prepared.

[0387] Thereby, generating of the parallax by the electrode substrate which constitutes a reflective mold liquid crystal device is cancelable. Therefore, double projection of an image can be controlled in the reflective mold liquid crystal display obtained. Moreover, the effectiveness that the configuration of a reflective mold liquid crystal display can be simplified is done so.

[0388] The reflective mold liquid crystal display concerning invention according to claim 42 is the configuration that the front lighting system was formed free [closing motion] to the reflective mold liquid crystal device.

[0389] Thereby, when you do not need a front lighting system, the incidence of an ambient light is not barred by the front lighting system. Consequently, the effectiveness that the reflective mold liquid crystal display which can realize an always bright display can be offered is done so.

[0390] The reflective mold liquid crystal display concerning invention according to claim 43 Are the reflective mold liquid crystal display which equipped with the front lighting system according to claim 27 the front face of the reflective mold liquid crystal device which has a reflecting plate, and while having flexibility to a predetermined pressure, the above-mentioned compensation means It is the configuration that the location detection means of the couple which detects the location where the pressure was applied was established, by contacting mutually each of the above-mentioned compensation means and the 2nd outgoing radiation side.

[0391] Thereby, a front lighting system functions as the so-called touch panel. Consequently, the effectiveness that the reflective mold liquid crystal display in which a pen input is possible can be offered to the content displayed on the liquid crystal device is done so.

[0392] The reflective mold liquid crystal display concerning invention according to claim 44 is the configuration that the pitch of the above-mentioned scanning line and the pitch of the above-mentioned transparent electrode were almost equal, and the transparent electrode has been arranged above the scanning line including the transparent electrode with which the reflective mold liquid crystal device was equipped with the scanning line, and the above-mentioned location detection means was formed in the flat part of the 2nd outgoing radiation side.

[0393] Thereby, the resolution of a touch panel and the resolution of a liquid crystal device become almost equal. Consequently, the sense of togetherness of the input image and display image at the time of inputting by the touch panel improves, and the effectiveness that the reflective mold liquid crystal display excellent in operability can be offered is done so.

[Translation done.]

DERWENT-ACC-NO: 1999-091587

DERWENT-WEEK: 200416

COPYRIGHT 1999 DERWENT INFORMATION LTD

Front illumination system for TITLE:

reflected LCD device - has

flat section with several steps and

is provided in one

boundary surface of light guide to

transmit light

reflected from illuminated object

PATENT-ASSIGNEE: SHARP KK[SHAF]

PRIORITY-DATA: 1997JP-0078211 (March 28, 1997)

PATENT-FAMILY:

PUB-NO			PUB-DATE	
LANGUAGE		PAGES	MAIN-IPC	
KR	399201 B		September 26, 2003	N/A
	000	G02F	001/1335	
JP	10326515 A		December 8, 1998	N/A
	043			
CN	1195118 A		October 7, 1998	N/A
	000	F21V	008/00	
KR	98080826 A		November 25, 1998	N/A
	000	G02F	001/1335	
KR	312275 B		December 12, 2001	N/A
	000			
KR	336602 B		May 16, 2002	N/A
	000	G02F	001/1335	
TW	505812 A		October 11, 2002	N/A
	000			

G02F 001/1335

G02F 001/1335

G02F 001/1335