Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 17 du lundi 26 avril 2021

Exercice 1.

Déterminer les extrema – en précisant leur type – de la fonction f définie pour tout $(x,y) \in \mathbb{R}^2$ par

$$f(x,y) = e^{xy} + x^2 + 2y^2. (1)$$

Exercice 2.

Considérons la matrice $A \in \mathbb{R}^{n \times n}$ dont les coefficients $(A_{ij})_{i,j=1}^n$ sont définis par

$$A_{ij} = \begin{cases} 0 \text{ si } |i-j| \ge 2, \\ -1 \text{ si } |i-j| = 1, \\ 2 \text{ si } i = j. \end{cases}$$
 (2)

Soit $\boldsymbol{b} \in \mathbb{R}^n$; définissons $f: \mathbb{R}^n \to \mathbb{R}$ pour tout $\boldsymbol{x} \in \mathbb{R}^n$ par :

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\top} A \boldsymbol{x} - \boldsymbol{b}^{\top} \boldsymbol{x}. \tag{3}$$

Démontrer que A est inversible et que f atteint son minimum en $a := A^{-1}b$.

Exercice 3.

Considérons la fonction f définie pour tout $(x,y) \in \mathbb{R}^2$ par

$$f(x,y) = e^{x^2 + y^2} - 8x^2 - 4y^4. (4)$$

- 1) Caractériser les points stationnaires de f.
- 2) f a-t-elle un minimum global?

Exercice 4.

Soient $E \subset \mathbb{R}^n$ compact, convexe et non-vide, et $\mathbf{y} \in E^{\mathbb{C}}$. Considérons la fonction $f_{\mathbf{y}} : E \to \mathbb{R}$, définie pour tout $\mathbf{x} \in E$ par $f_{\mathbf{y}}(\mathbf{x}) = \|\mathbf{x} - \mathbf{y}\|$.

1) Montrer qu'il existe un unique $x_{y} \in E$ tel que

$$\forall \boldsymbol{x} \in E, \quad f_{\boldsymbol{y}}(\boldsymbol{x}_{\boldsymbol{y}}) \leqslant f_{\boldsymbol{y}}(\boldsymbol{x}). \tag{5}$$

Montrer de plus que $x_y \in \partial E$.

2) Montrer que $\boldsymbol{x_y}$ satisfait

$$\forall \boldsymbol{x} \in E, \quad \langle \boldsymbol{y} - \boldsymbol{x}_{\boldsymbol{v}}, \boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{v}} \rangle \leqslant 0, \tag{6}$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire usuel sur \mathbb{R}^n .

Remarque. Le point $\boldsymbol{x_y}$ est appelé la « projection de \boldsymbol{y} sur E ».