ДЗ 12 (Непротиворечивая трансфинитность)

Владимир Латыпов donrumata03@gmail.com

Содержание

1 Распространение противоречия	3
2 Перенос индукции из метатеории в \mathcal{S}_{∞}	3
3 Бесконечное доказательство	4
/ Modus Ponans	5

1 Распространение противоречия

Условие 1: Покажите, что, если
$$\mathop{}_{\!\!\!\!\!-}^{\!\!\!\!\!\!\!\!-}$$
 $(\alpha \vee \neg \alpha)$, то $\mathop{}_{\!\!\!\!-}^{\!\!\!\!\!-} 1=0.$

 α и $\neg \alpha$ получаем через обращение правила Де Моргана.

Показаваем с помощью схемы аксиом 10 и которая доказуема в ФА, а значит её аналог из \mathcal{S}_{∞} :

$$\frac{\alpha \quad \neg \alpha}{\beta}$$

доказуем в \mathcal{S}_{∞} .

Теперь применим это правило к α и $\neg \alpha$, и $\beta = ,1 = 0$ "

2 Перенос индукции из метатеории в \mathcal{S}_{∞}

Условие 2: Покажите
$$\mathop{\vdash}\limits_{\infty} \forall a. \forall b. a+b=b+a.$$

Сначала покажем, что при каждом $a \equiv \overline{x}$,

$$\mathop{\vdash}\limits_{\infty} \forall b.\overline{x} + b = b + \overline{x}$$

.

Для этого докажем для всех y утверждения вида $\vdash \overline{x}+\overline{y}=\overline{y}+\overline{x}$. И воспользуемся бесконечной индукцией для формулы $\varphi_{x(y)}=\overline{x}+\overline{y}=\overline{y}+\overline{x}$.

Теперь воспользуемся бесконечной индукцией ещё раз - по a: получим требуемое.

3 Бесконечное доказательство

НЕПРАВИЛЬНО: может быть доказательство конечного порядка с бесконечной индукцией (так как посылки могут иметь одинаковый номер)!

Идея от Штукена: использовать ту же формулу, но сказать, что раз мы хотим перебрать все доказательства, получив квантор всеобщности, нужно следовать за ходом каждого и опровергнуть его, а доказательства могут быть неограниченной длины. \rightarrow суммарная длина будет бесконечна.

Условие 3: Постройте утверждение, доказательство которого не может иметь порядок, меньший ω .

То есть нужно утверждение, которое не докать без бесконечной индукции.

Заметим, что доказательство, использующее только остальные, легко передалать в доказательство в формальной арифметике:

• Каждое из верных арифметических (предметных) выражений легко доказывается за конечное число шагов.

$$\frac{\neg \alpha[x \coloneqq \theta] \vee \delta}{(\neg \forall x. \alpha) \vee \delta}$$

- транслируется в

$$\frac{\alpha[x \coloneqq \theta] \to \delta}{(\forall x . \alpha) \to \delta}$$

или

$$\frac{\neg \delta \to \neg \alpha[x \coloneqq \theta]}{\neg \delta \to \neg (\forall x.\alpha)}$$

- , а тут дедукция + дедукция обратно + контрапозиция + схема аксиом 11.
- Слабые правила, сечение, ... полнота КИВ.

Тогда возьмём утверждение $\forall x. \neg \omega(x, \overline{\neg \sigma})$.

Оно не доказуемо в формальной арифметике, так как она непротиворечива.

4 Modus Ponens

Условие 4: Покажите, что если $\vdash \alpha$ и $\vdash \neg \alpha \lor \beta$, то $\vdash \beta$. (правило Modus Ponens — источник появления сечений в перенесённых доказательствах из формальной арифметики).

$$\frac{\frac{\alpha}{a\vee\alpha} \quad \neg\alpha\vee\beta}{a\vee\beta}$$