

Код Рида-Маллера

Илья Коннс

Введение

Кодирование

Свойства ко,

Декодирова

Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук Высшая Школа Экономики

9 февраля 2022 г.

Введение

Код Рида-Маллера

илья кон

Введение

Кодирование

Декодирова-

Описаны Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года. Обозначаются как $\mathrm{RM}(r,m)$, где r- ранг, а 2^m- длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит.

Традиционно, считается что коды работают над битами, т.е. \mathbb{Z}_2 .

Булевы функции и многочлен Жегалкина

Код Рида-Маллера

Илья Конн

Введение

Кодирование

Свойства код

Декодирова ние Всякую булеву функцию можно записать при помощи таблицы истинности

x	y	f(x, y)
0	0	1
0	1	0
1	0	0
1	1	0

И при помощи многочлена Жегалкина:

$$f(x, y) = xy + x + y + 1$$

Многочлены Жегалкина

Код Рида-Маллера

Илья Кон

Введение

Кодирование

Декодирова-

В общем случае, многочлены будут иметь следующий вид:

$$f(x_1, x_2, ..., x_m) = \sum_{S \subseteq \{1, ..., m\}} c_S \prod_{i \in S} x_i$$

Например, для m=2: $f(x_1,x_2)=c_1\cdot x_1x_2+c_2\cdot x_1+c_3\cdot x_2+c_4\cdot 1$ Всего $n=2^m$ коэффициентов для описания каждой функции.

Функции небольшой степени

Код Рида-Маллера

илья конно

Введение

Кодирование

Декодирование Рассмотрим функции, степень многочленов которых не больше r:

$$\{f(x_1, x_2, ..., x_m) \mid \deg f \le r\}$$

Каждую можно записать следующим образом:

$$f(x_1, x_2, ..., x_m) = \sum_{\substack{S \subseteq \{1, ..., m\} \\ |S| \le r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше r переменных.

Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^2 + \dots + C_m^r = \sum_{i=0}^r C_m^i$$

Идея кодирования

Код Рида-Маллера

илья кон

Введени

Кодирование

Декодирование Пусть каждое сообщение (длины k) — коэффициенты некоторого многочлена от m переменных степени не больше r.

Тогда мы можем его представить при помощи 2^n бит, подставив все возможные комбинации переменных (ведь рассматриваем многочлены над \mathbb{Z}_2).

Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

Пример

Код Рида-Маллера

Илья Конн

Введени

Кодирование

Декодирова-

r = 1 (степень многочлена), m = 2 (переменных). Это RM(1, 2).

■ Тогда наш многочлен: $f(x, y) = c_1 x + c_2 y + c_3$.

■ Сообщение: 101, тогда f(x, y) = x + 0 + 1.

■ Подставим всевозможные комбинации:

X	y	f(x, y)
0	0	1
0	1	1
1	0	0
1	1	0

🔳 Получили код: 1100.

Линейность

Код Рида-Маллера

HON RULLIN

Введени

Кодирование

Свойства кода

Декодирова ние Линейный (блоковый) код — такой код, что множество его кодовых слов образует k-мерное линейное подпространство в n-мерном линейном пространстве, изоморфное пространству k-битных векторов.

Слова —

Потерь нет

Рида-Маллера

Илья Конн

Введения

Кодирование

Свойства кол

Декодирование