Time Series Cheat Sheet

Plot Time Series

1. tsplot(x=time, y=data)

2. plot(ts(data, start=start_time, frequency=gap))

3. ts.plot(ts(data, start=start_time, frequency=gap))

Simulation

Autoregression of Order p

 $X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{n}X_{t-n} + W_{t}$

Moving Average of Order q

$$\mathbf{X_t} = \mathbf{Z_t} + \theta_1 \mathbf{Z_{t-1}} + \theta_2 \mathbf{Z_{t-2}} + \ldots + \theta_q \mathbf{Z_{t-p}}$$
 ARMA (p, q)

$$\begin{split} \boldsymbol{X}_t &= \phi_1 \boldsymbol{X}_{t-1} + \phi_2 \boldsymbol{X}_{t-2} + \ldots + \phi_p \boldsymbol{X}_{t-p} + \\ \boldsymbol{Z}_t &+ \theta_1 \boldsymbol{Z}_{t-1} + \theta_2 \boldsymbol{Z}_{t-2} + \ldots + \theta_q \boldsymbol{Z}_{t-p} \end{split}$$

Simulation of ARMA (p, q)

arima.sim(model=list(ar= $c(\phi_1, ..., \phi_p)$, ma= $c(\theta_1, ..., \theta_q)$), n=n)

Filters

Linear Filter: filter()

filter(data, filter=filter_coefficients, sides=2, method="convolution", circular=F)

Differencing Filter: diff()

diff(data, lag=4, differences=1)

Auto-correlation

Use ACF and PACF to detect model

(Complete) Auto-correlation function: acf()

acf(data, type='correlation', na.action=na.pass)

Partial Auto-correlation function: pacf()

pacf(data, na.action=na.pass)

OR: acf(data, type='partial', na.action=na.pass)

Parameter Estimation

Fit an ARMA time series model to the data

ar(): To estimate parameters of an AR model
ar(x=data, aic=T, order.max = NULL,
 c("yule-walker", "burg", "ols", "mle", "yw"))

arima(): To estimate parameters of an AM or ARMA model, and build model arima(data, order=c(p, o, q),method=c('ML'))

AICc(): Compare models using AICC AICc(fittedModel)

Forecasting

R

Forecasting future observations given a fitted ARMA model

predict(): Predict future observations given a fitted ARMA model

predict(arima_model, number_to_predict)

Plot Predicted values and Confidence Interval:

fit<-predict(arima_model, number_to_predict)
ts.plot(data,</pre>

$$\label{eq:condition} \begin{split} xlim = & c(1, length(data) + number_to_predict), \\ ylim = & c(0, max(fit\$pred + 1.96*fit\$se))) \\ \\ lines(length(data) + 1:length(data) + 1:length(data)$$

SampleData

SampleData

0 0000

30000

0 100

150

number_to_predict, fit\$pred)

OR: autoplot(forecast(arima_model, level=c(95), h=number_to_predict))

Predicted value and Conf Interval of ARIMA

40000
20000
10000 -