CS101 Introduction to computing

Problem Solving (Computing)

A. Sahu and P. Mitra

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- Problem Solving: Process involves
 - Definition, Analysis, Solution Approaches,
 Correctness, Programming, Testing
- Loop invariant and loop termination
- Many Problem Solving Examples
 - -7 Problems (Solution Method not given)
 - -3 problems (Solution Method given)

Reference: R G Dromey, "How to solve it by Computer", Pearson Education India, 2009

Fibonacci Computation

- Problem: Given a number n, generate nth member of Fibonacci sequence
- Definition of Fibonacci sequence f_n is

$$f_1=0, f_2=1, f_n=f_{n-1}+f_{n-2}$$

So sequence is

f_1	f ₂	f_3	f ₄	f ₅	f ₆	f ₇	f ₈	f_9	F ₁₀
0	1	1	2	3	5	8	13	21	34
		1+0	1+1	2+1	3+2	5+3	8+5	13+8	21+13

Nth Fibonacci Approach-1

Start from f1 and f2, go upto nth

```
fnm2=0; fnm1=1; n=2;
while(n<=N) {
    fn = fnm2 + fnm1;
    fnm2=fnm1;
    fnm1=fn;
    n = n + 1;
}</pre>
```

- How good it is ?
- Number of iteration in while loop: N-2

Nth Fibonacci Approach-2

Is there any better approaches?

-			f ₄		*	•	~	•	F ₁₀
0	1	1	2	3	5	8	13	21	34

Observations

$$-f_8 = f_5^2 + f_4^2 = 3^2 + 2^2 = 13,$$
 $f_{10} = f_6^2 + f_5^2$
= $5^2 + 3^2 = 34$

- If we look at closely
- $-f_{2n}=f_{n+1}^2+f_n^2$ and $f_{2n+1}=2f_nf_{n+1}+f_{n+1}^2$
- -So f_{2n} and f_{2n+1} depends on f_n , f_{n+1}
- -Omitting prove for this as of now

Nth Fibonacci

$$f_n = f_{n-1} + f_{n-2}$$
, with $f_1 = 1$, $f_0 = 1$

$$\begin{pmatrix} f_n \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{n-1} \\ f_{n-2} \end{pmatrix}$$

$$\begin{pmatrix} f_n \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} f_1 \\ f_0 \end{pmatrix}$$

Nth Fibonacci Approach-2

— Can you think : Log time approach ?

```
int n, fn, fnpl, f2n, f2np1;
// Put code for Input n
                               Will be discussed after
                                  covering Arrays
```

Problem 7

GCD of two integer number

Greatest Common Divisor

- Given two numbers n and m find their greatest common divisor
- possible approach
 - find the common primes in the prime factorizations
- Basic Approaches

C Code: GCD using substraction

```
int n1, n2;;
// Put code for Input n1 and n2
while (n1!=n2) {
 while (n1 > n2) n1 = n1 - n2;
 while (n2 > n1) n2 = n2 - n1;
//Put code to Display GCD=n1
```

C Code: GCD using substraction

```
int n1, n2;;
// Put code for Input n1 and n2
while (n1!=n2) {
  if (n1 > n2)    n1 = n1- n2;
  else    n2 = n2 - n1;
}
//Put code to Display GCD=n1
```

Same behavior as earlier code

Euclid's Algorithm

- Euclid's algorithm: one of the oldest algorithms
- Based on simple observation (assume n > m)

```
gcd(n,m) = gcd(n-m,m) (and hence)
gcd(n,m) = gcd(m, modulo(n,m))
```

- uses this property to reduce the smaller number repeatedly
- until the smaller number is 0
- larger number then is the gcd

C Code: GCD using reminder

```
int n1, n2, GCD;
// Put code for Input n1 and n2
while (!(n1==0 | n2==0)) {
  //while (n1 > n2) n1 = n1 - n2;
  if (n1>n2) n1=n1%n2;
  //while (n2 > n1) n2 = n2 - n1;
  else n2=n2%n1;
if (n1==0) GCD=n2; else GCD=n1;
//Put code to Display GCD
```

Euclid's Algorithm

- A fixed number of operations performed in each iteration
- Time depends on number of iterations
- after every 2 iterations, value of m is reduced by at least half
 - if modulo(n,m) > m/2 then
 modulo(m,modulo(n,m)) < m/2</pre>
- number of iterations is at most 2(log₂m+1)

Problem Solving Example

- Set B (Solution Method given)
 - 1. Value of PI
 - 2. Finding values sin(x) using series
 - 3. Finding root of a function/equation using Bisection Methods

Set B Problem 1

Estimating π using Randomized Method

Estimating π using Randomized Method

- Area of Circle: π . r^2
- If r = 1, $A = \pi$
- Area of circle in (+,+) quadrant : $\pi/4$
- Area of unit square[x=0 to 1][y=0 to 1] is 1
- Generate N random points
 - Point have x, y values
 - Between [x=0 to 1][y=0 to 1]

Estimating π using Randomized

Method

 The probability of a random point lying inside the unit circle:

$$\mathbf{P}\left(x^2 + y^2 < 1\right) = \frac{A_{circle}}{A_{square}} = \frac{\pi}{4}$$

• If pick a random point *N* times and *M* of those times the point lies inside the unit circle:

$$\mathbf{P}^{\diamond}\left(x^{2}+y^{2}<1\right)=\frac{M}{N}$$

• If N becomes very large, P=P⁰

$$\pi = \frac{4 \cdot M}{N}$$

Value of PI: Randomized Method

```
#define N 10000
  int M=0, i;
   double x,y,z;
   for ( i=0; i<N; i++) {
      x = (double) rand() / RAND_MAX;
      y = (double)rand()/RAND MAX;
      z = x*x+y*y;
      if (z <= 1) M++;
   pi=4.0*(double)M/N;
// Display value of PI
```

Set B Problem 2

Finding values Sin(x) using series sum

Finding values Sin(x) using series sum

 Problem: Design an efficient approach to evaluate the function sin(x) as defined by infinite series of expansion

$$sin(x) = x/1! - x^3/3! + x^5/5! - x^7/7! + ...$$

- Approach 1
 - For every term to be used : calculate the value of ith term : Suppose we want to calculate xⁱ/i!
 - Sum all the terms uptoterm > accuracy

```
Ti=1; j=1;
while(j<=i) {
   Ti=Ti * x/j;
   j = j+1;
}
```

Finding values Sin(x) using series sum

- $\sin(x) = x/1! x^3/3! + x^5/5! x^7/7! + ...$
- Approach 2
 - Current ith term = $-x^2/(i^*(i-1))$ * Previous i-1th Term
 - Sum all the terms upto term > accuracy

Finding values Sin(x) using series sum

- $\sin(x) = x/1! x^3/3! + x^5/5! x^7/7! + ...$
- Approach 2
 - Current ith term = $-x^2/(i^*(i-1))$ * Previous i-1th Term
 - Sum all the terms upto term > accuracy

Each iteration

```
i = i+2;
term = - term * x*x/(i*(i-1));
SinxVal= SinxVal+ term;
```

C Code Sin(x) using series sum

```
int i=1;
float SinXVal=0, term;
float x, sqr0fx, accuracy;
// Put code for Input x & accuracy
while (term < accuracy) {</pre>
   i = i + 2i
    term = - term * x*x/(i*(i-1));
    SinxVal= SinxVal+ term;
//Put code to Display SinxVal
```

Set B Problem 3

Finding root of a function Bisection Methods

Bisection Method

- Bisection Method is a numerical method in Mathematics to find a root of a given function
- Root of a function f(x) is value a such that:

$$f(a) = 0$$

• Example:

Function:
$$f(x) = x^2 - 4$$

Roots:
$$x = -2, x = 2$$

Because:

$$f(-2) = (-2)^2 - 4 = 4 - 4 = 0$$

$$f(2) = (2)^2 - 4 = 4 - 4 = 0$$

A Mathematical Property

- If a function f(x) is continuous on the interval [a..b] and sign of f(a) ≠ sign of f(b), then
- There is a value $c \in [a..b]$ such that: f(c) = 0I.e., there is a root c in the interval [a..b]

Bisection Method

- Is a successive approximation method that narrows down an interval
 - —that contains a root of the function f(x)
- Given an initial interval [a..b]
 - Contains a root
 - -sign of f(a) ≠ sign of f(b)

Bisection Method

- Bisection Method will
 - Cut the interval into 2 halves and check which half interval contains a root of the function
 - will keep cut the interval in halves until the resulting interval is extremely small

The root is then approximately equal to any value in the final (very small) interval.

Bisection Method Example

Suppose the interval [a..b] is as follows:

Bisection Method Example

We cut the interval [a..b] in the middle: m = (a+b)/2

Bisection Method Example

 Because sign of f(m) ≠ sign of f(a), we proceed with the search in the new interval [a..b]:

C Code: Bisection Method

For Function : x^3+2x-5 , a=2, b=3

```
float a, b, Fa, Fb, Fx;
//Code for Input a, b and accuracy
Fa=a*a*a-2*a-5; Fb=b*b*b-2*b-5;
x=a;x1=b;
while( abs(x-x1)>accuracy) {
     x1=x; x=(a+b)/2;
     Fx=x*x*x-2x-5;
     if(Fa*Fx<0) b=x; else a=x;
//Code print root X
```