Fonctions vectorielles de la variable réelle

Dans ce chapitre I désigne un intervalle d'intérieur non vide, a un point de I et E un \mathbb{K} -espace vectoriel de dimension finie non nulle.

On s'intéresse aux fonctions définies de I dans E.

I Dérivation

I. A Dérivée en un point

Définition 1.1

On appelle taux d'accroissement en a l'application :

$$\tau_a(f)$$
 : $I \setminus \{a\} \longrightarrow E$

$$t \longmapsto \frac{f(t) - f(a)}{t - a}$$

L'application f est dite **dérivable en** a lorsque son taux d'accroissement en a admet une limite dans E quand t tend vers a. Dans ce cas cette limite est appelée **dérivée de** f **en** a et elle est notée f'(a).

Remarque 1.2 : La fonction taux d'accroissement étant à valeurs dans un espace vectoriel normé, une limite éventuelle est nécessairement finie.

Théorème 1.3

La fonction f est dérivable en $a \in I$ si et seulement si il existe $\ell \in E$ et une fonction $\varepsilon : I \longrightarrow E$ telle que :

$$\forall t \in I, f(t) = f(a) + (t - a)\ell + (t - a)\varepsilon(t), \text{ avec } \varepsilon(t) \xrightarrow[t \to a]{} 0_E.$$

Interprétation cinématique : Si f désigne la position d'un point en fonction du temps, le vecteur f'(a) représente la vitesse instantanée du point à l'instant a.

Proposition 1.4

Si la fonction f est dérivable en a, alors elle est continue en a.

Notation : Si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E, on appelle **fonctions coordonnées** de $f: I \longrightarrow E$ dans la base \mathcal{B} les fonctions f_1, \dots, f_n définies de I dans \mathbb{K} telles que :

$$\forall t \in I, f(t) = \sum_{k=1}^{n} f_k(t)e_k.$$

Rappel : Une fonction $f: I \longrightarrow E$ est continue en $a \in I$ si et seulement si chacune de ses fonctions coordonnées est continue en a.

Proposition 1.5

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $f: I \longrightarrow E$.

La fonction f est dérivable en a si et seulement si chacune de ses fonctions coordonnées dans la base \mathcal{B} est dérivable en a.

Dans ce cas, si l'on note f_k ces fonctions coordonnées :

$$f'(a) = \sum_{k=1}^{n} f'_k(a)e_k.$$

Remarques 1.6 : • On retrouve ainsi que $f: I \longrightarrow \mathbb{C}$ est dérivable en a si et seulement si les fonctions $\operatorname{Re} f$ et $\operatorname{Im} f$ le sont : ce sont les fonctions coordonnées de f dans la base (1,i) du \mathbb{R} -espace vectoriel \mathbb{C} .

• En particulier pour $f: I \longrightarrow \mathbb{R}^n$ avec $f = (f_1, \dots, f_n)$, f est dérivable en a si et seulement si $\forall i \in [1, n]$, f_i est dérivable en a et dans ce cas, $f'(a) = (f'_1(a), \dots, f'_n(a))$.

Définition 1.7

- Si a n'est pas l'extrémité droite de I, f est dite **dérivable à droite** en a lorsque la restriction de f à $I \cap [a; +\infty[$ est dérivable en a. Dans ce cas on appelle **dérivée à droite** en $a: (f_{|I\cap[a;+\infty[)})'(a)$, notée $f'_d(a)$.
- Si a n'est pas l'extrémité gauche de I, f est dite **dérivable à gauche** en a lorsque la restriction de f à $I \cap]-\infty$; a] est dérivable en a. Dans ce cas on appelle **dérivée à gauche** en a: $\left(f_{|I\cap [-\infty;a]}\right)'(a)$, notée $f_a'(a)$.

Proposition 1.8

Soit a un point intérieur de I et $f: I \longrightarrow E$.

La fonction f est dérivable en a si et seulement si elle est dérivable à gauche et à droite en a et $f'_d(a) = f'_d(a)$; et dans ce cas $f'(a) = f'_d(a) = f'_d(a)$.

I. B Fonction dérivée

(Définition 1.9)

Une fonction $f: I \longrightarrow E$ est dite **dérivable** sur I lorsqu'elle est dérivable en tout point de I.

On appelle **dérivée de** f et on note f' la fonction $t \mapsto f'(t)$.

Proposition 1.10

Soit \mathcal{B} une base de E. La fonction $f:I\longrightarrow E$ est dérivable sur I si et seulement si ses fonctions coordonnées dans \mathcal{B} sont dérivables sur I.

Dans ce cas, les fonctions coordonnées de f' sont les dérivées des fonctions coordonnées de f.

Théorème 1.11

Une fonction $f: I \longrightarrow E$ est constante sur l'intervalle I si et seulement si elle est dérivable sur I et que sa dérivée est nulle sur I.

Opérations sur les fonctions dérivables

(Proposition 1.12)

Soit $f: I \longrightarrow E$ et $g: I \longrightarrow E$ deux fonctions dérivables en $a \in I$ et $\lambda, \mu \in \mathbb{K}$. Alors $\lambda f + \mu g$ est dérivable en a et :

$$(\lambda f + \mu g)'(a) = \lambda f'(a) + \mu g'(a).$$

Proposition 1.13

Soit $f: I \longrightarrow E$ et $g: I \longrightarrow E$ deux fonctions dérivables sur I et $\lambda, \mu \in \mathbb{K}$. Alors $\lambda f + \mu g$ est dérivable sur I et :

$$(\lambda f + \mu g)' = \lambda f' + \mu g'.$$

Remarque 1.14: L'ensemble $\mathcal{D}(I, E)$ des fonctions dérivables sur I à valeurs dans E est donc un sous-espace vectoriel de $\mathcal{F}(I,E)$ et $f\mapsto f'$ est une application linéaire de $\mathcal{D}(I, E)$ dans $\mathcal{F}(I, E)$.

Proposition 1.15

Soit L une application linéaire de E dans un espace vectoriel F de dimension finie. Si f est dérivable en $a \in I$, alors $L \circ f$ est dérivable en a et :

$$(L \circ f)'(a) = L(f'(a)).$$

Proposition 1.16

Soit L une application linéaire de E dans un espace vectoriel F de dimension finie. Si f est dérivable sur I, alors $L \circ f$ est dérivable sur I et :

$$(L \circ f)' = L \circ f'.$$

Notation : La fonction $L \circ f$ est notée L(f) et de même si $M : E_1 \times \cdots \times E_p \longrightarrow F$ est multilinéaire, on note :

$$M(f_1, \dots, f_p)$$
 : $I \longrightarrow F$
 $t \longmapsto M(f_1(t), \dots, f_p(t)).$

Proposition 1.17

Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire de $E \times F$ dans G.

Si $f: I \longrightarrow E$ et $q: I \longrightarrow F$ sont dérivables en $a \in I$, alors B(f,q) est dérivable en a et :

$$B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),g'(a)).$$

(Proposition 1.18)

Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire de $E \times F$ dans G.

Si $f: I \longrightarrow E$ et $g: I \longrightarrow F$ sont dérivables sur I, alors B(f,g) est dérivable sur Iet:

$$B(f,g)' = B(f',g) + B(f,g').$$

Exemples 1.19: • Soit $\varphi: I \longrightarrow \mathbb{K}$ et $g: I \longrightarrow E$, alors $\varphi \cdot g$ est dérivable sur Iet $(\varphi q)' = \varphi' q + \varphi q'$.

- Soit f et g dérivables de I dans un espace euclidien (F, \langle , \rangle) , montrer que : $t \mapsto \langle f(t), g(t) \rangle$ est dérivable sur I.
- Soit f dérivable de I dans un espace euclidien (F, \langle , \rangle) . Montrer que si ||f||est constante sur I, alors pour tout $t \in I$, f(t) et f'(t) sont orthogonaux.

Proposition 1.20

Soit E_1, \ldots, E_p et F des espaces vectoriels de dimension finie $(p \ge 1)$ et M une application multilinéaire de $E_1 \times \cdots \times E_p$ dans F.

Si f_1, \ldots, f_p sont des fonctions de I dans E_1, \ldots, E_p respectivement, dérivables en $a \in I$, alors $M(f_1, \ldots, f_p)$ est dérivable en a et :

$$M(f_1, ..., f_p)'(a) = M(f'_1, f_2, ..., f_p)(a) + M(f_1, f'_2, ..., f_p)(a) + ... + M(f_1, f_2, ..., f'_p)(a).$$

Remarque 1.21 : De même pour la dérivabilité sur un intervalle.

Exemple 1.22 : Si f_1, \ldots, f_n sont des fonctions dérivables de I à valeurs dans un K-espace vectoriel E de dimension n, alors $\det_{\mathcal{B}}(f_1,\ldots,f_n)$ est dérivable sur I

$$\left(\det_{\mathcal{B}}(f_1,\ldots,f_n)\right)' = \det_{\mathcal{B}}(f'_1,f_2,\ldots,f_n) + \det_{\mathcal{B}}(f_1,f'_2,\ldots,f_n) + \cdots + \det_{\mathcal{B}}(f_1,f_2,\ldots,f'_n).$$

Si A est une fonction dérivable de I dans mrn, alors $\det(A)$ est dérivable sur I et en notant C_1, \ldots, C_n les fonctions colonnes de A:

$$(\det \circ A)' = \det(C'_1, C_2, \dots, C_n) + \det(C_1, C'_2, \dots, C_n) + \dots + \det(C_1, C_2, \dots, C'_n).$$

Proposition 1.23

Soit I et J des intervalles, $f:I\longrightarrow E$ et $\varphi:J\longrightarrow \mathbb{R}$ deux fonctions telles que $\varphi(J)\subset I$.

Si φ est dérivable en $a \in J$ et f est dérivable en $b = \varphi(a)$, alors $f \circ \varphi$ est dérivable en a et :

$$(f \circ \varphi)'(a) = \varphi'(a)f'(\varphi(a)).$$

Proposition 1.24

Soit I et J des intervalles, $f:I\longrightarrow E$ et $\varphi:J\longrightarrow \mathbb{R}.$ Si :

- 1. φ est dérivable sur J,
- 2. f est dérivable sur I,
- 3. $\varphi(J) \subset I$;

alors $f \circ \varphi$ est dérivable sur J et :

$$(f \circ \varphi)' = \varphi' \cdot (f' \circ \varphi).$$

I. D Fonctions de classe C^k

Définition 1.25

Une fonction $f: I \longrightarrow E$ est dite 1 fois dérivable sur I lorsqu'elle est dérivable sur I et la dérivée d'ordre 1 de f est $f^{(1)} = f'$, puis par récurrence, pour tout $k \in \mathbb{N}$ avec $k \ge 2$, on dit que $f: I \longrightarrow E$ est k fois dérivable sur I lorsqu'elle est dérivable sur I et que sa dérivée est k-1 fois dérivable sur I. Dans ce cas on appelle **dérivée d'ordre** k et on note $f^{(k)}$ la dérivée d'ordre k-1 de f'.

Remarque 1.26: Toute fonction $f: I \longrightarrow E$ est 0 fois dérivable sur I et $f^{(0)} = f$.

Définition 1.27

Soit $f: I \longrightarrow E$.

- Soit $k \in \mathbb{N}$, la fonction f est dite **de classe** \mathcal{C}^k **sur** I lorsque f est k fois dérivable sur I et $f^{(k)}$ est continue sur I.
- La fonction f est dite **de classe** \mathcal{C}^{∞} **sur** I lorsqu'elle est de classe \mathcal{C}^k sur I pour tout $k \in \mathbb{N}$.

Notation : Pour $k \in \mathbb{N} \cup \{\infty\}$, on note $C^k(I, E)$ l'ensemble des fonctions de classe C^k sur I à valeurs dans E.

Dans la suite de cette partie, $k \in \mathbb{N} \cup \{\infty\}$.

Proposition 1.28

Soit $f, g \in C^k(I, E)$ et $\lambda, \mu \in \mathbb{K}$. Alors $\lambda f + \mu g \in C^k(I, E)$ et si $k \in \mathbb{N}$:

$$(\lambda f + \mu g)^{(k)} = \lambda f^{(k)} + \mu g^{(k)}.$$

Proposition 1.29

Soit L une application linéaire de E dans un espace vectoriel F de dimension finie. Si $f \in \mathcal{C}^k(I, E)$, alors $L \circ f \in \mathcal{C}^k(I, E)$ et si $k \in \mathbb{N}$:

$$(L \circ f)^{(k)} = L \circ f^{(k)}.$$

Proposition 1.30

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $f: I \longrightarrow E$.

La fonction f est de classe \mathcal{C}^k sur I si et seulement si chacune de ses fonctions coordonnées dans la base \mathcal{B} est de classe \mathcal{C}^k sur I.

Dans ce cas, si l'on note f_i ces fonctions coordonnées :

$$f^{(k)} = \sum_{i=1}^{n} f_i^{(k)} e_i.$$

Proposition 1.31 (Formule de Leibniz)

Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire de $E \times F$ dans G.

Si $f: I \longrightarrow E$ et $g: I \longrightarrow F$ sont de classe \mathcal{C}^k sur I, alors B(f,g) est de classe \mathcal{C}^k sur I et :

$$B(f,g)^{(k)} = \sum_{i=0}^{k} {k \choose j} B(f^{(j)}, g^{(k-j)}).$$

Proposition 1.32

Soit E_1, \ldots, E_p et \bar{F} des espaces vectoriels de dimension finie $(p \ge 1)$ et M une application multilinéaire de $E_1 \times \cdots \times E_p$ dans F.

Si f_1, \ldots, f_p sont des fonctions de I dans E_1, \ldots, E_p respectivement, de classe \mathcal{C}^k sur I, alors $M(f_1, \ldots, f_p)$ de classe \mathcal{C}^k sur I.

Proposition 1.33

Soit I et J deux intervalles, et deux fonctions $f \in \mathcal{C}^k(I, E)$ et $\varphi \in \mathcal{C}^k(J, \mathbb{R})$ telles que $\varphi(J) \subset I$.

Alors $f \circ \varphi$ est de classe C^k sur J à valeurs dans E.

II Intégration sur un segment

Dans cette section, les fonctions sont définies sur un segment [a;b] (avec a < b) et à valeurs dans E.

II. A Fonctions continues par morceaux

(Définition 2.1)

Une fonction $f:[a;b] \to E$ est dite **continue par morceaux** sur [a;b] lorsqu'il existe une subdivision (a_0,\ldots,a_p) de [a;b] telle que pour tout $i\in [0;p-1]$, $f_{|]a_i;a_{i+1}[}$ est prolongeable en une fonction continue sur $[a_i;a_{i+1}]$. Une telle subdivision est dite **adaptée** à f.

- **Remarque 2.2:** Une fonction est continue par morceaux si et seulement si il existe une subdivision (a_0, \ldots, a_p) de [a; b] telle que :
 - pour tout $i \in [0; p-1], f$ est continue sur $a_i; a_{i+1}[$;
 - pour tout $i \in [1; p-1], f$ a des limites (finies) à gauche et à droite en a_i ;
 - f a une limite (finie) à droite en $a = a_0$ et à gauche en $b = a_p$.

Notation L101: on note $C_m([a;b], E)$ l'ensemble des fonctions continues par morceaux sur [a;b] à valeurs dans E.

- **Exemples 2.3 :** Les fonctions continues sur [a;b] sont continues par morceaux sur [a;b];
 - les fonctions en escalier sur [a;b] sont continues par morceaux sur [a;b];

Proposition 2.4

Une fonction $f:[a;b] \longrightarrow E$ est continue par morceaux sur [a;b] si et seulement si chacune de ses fonctions coordonnées est continue par morceaux sur [a;b].

Proposition 2.5

Soit $f \in \mathcal{C}_m([a;b], E)$, alors f est bornée sur [a;b].

Proposition 2.6

L'ensemble $C_m([a;b], E)$ est un sous-espace vectoriel de $\mathcal{F}([a;b], E)$. L'application $f \mapsto \|f\|_{\infty} = \sup_{t \in [a;b]} \|f(t)\|$ définit une norme sur $C_m([a;b], E)$.

II. B Intégrale d'une fonction continue par morceaux

Définition/Proposition 2.7

Soit $f \in \mathcal{C}_m([a;b], E)$ et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. On note f_1, \ldots, f_n les fonction coordonnées de f dans \mathcal{B} .

Alors : le vecteur $I = \sum_{i=1}^{n} \left(\int_{a}^{b} f_{i}(t) dt \right) \cdot e_{i}$ ne dépend pas de la base de E choisie. On l'appelle **l'intégrale de** f sur [a; b].

Notation : L'intégrale de f sur [a;b] est notée : $\int_{[a;b]} f$ ou $\int_a^b f$ ou $\int_a^b f(t) dt$. On étend les notations $\int_a^b f$ et $\int_a^b f(t) dt$ pour un couple $(a,b) \in I^2$ avec f continue par morceaux sur I par :

$$\int_a^a f = 0 \quad \text{et} \quad \int_a^b f = -\int_b^a f \text{ si } a > b.$$

II. C Propriétés

Proposition 2.8 (Linéarité)

L'application $f \mapsto \int_a^b f$ est linéaire de $\mathcal{C}_m([a;b],E)$ dans E:

$$\forall f, g \in \mathcal{C}_m([a;b], E), \forall \lambda, \mu \in \mathbb{K}, \int_a^b \lambda f(t) + \mu g(t) \, \mathrm{d}t = \lambda \int_a^b f(t) \, \mathrm{d}t + \mu \int_a^b g(t) \, \mathrm{d}t.$$

Proposition 2.9 (Relation de Chasles)

Soit $f: I \longrightarrow E$ continue par morceaux sur I et $a, b, c \in I$, alors :

$$\int_a^c f(t) dt = \int_a^b f(t) dt + \int_b^c f(t) dt.$$

Proposition 2.10

Si $f \in \mathcal{C}_m([a;b], E)$ et $L \in \mathcal{L}(E, F)$ avec F un espace vectoriel de dimension finie, alors $L(f) \in \mathcal{C}_m([a;b], F)$ et :

$$L\left(\int_{a}^{b} f\right) = \int_{a}^{b} L(f).$$

Définition 2.11

Soit $f \in \mathcal{C}_m([a;b], E)$ et $n \in \mathbb{N}^*$, on appelle somme de Riemann d'ordre n associée à f le vecteur :

$$\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+k\frac{b-a}{n}\right).$$

Théorème 2.12

Soit $f \in \mathcal{C}_m([a;b], E)$, alors:

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_a^b f.$$

Méthode 2.13

On peut toujours se ramener au cas particulier $[a\,;b]=[0\,;1]$ qui est plus simple à mettre en oeuvre :

$$\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \xrightarrow[n \to +\infty]{} \int_0^1 f(t) \, \mathrm{d}t.$$

Il suffit alors de :

- faire apparaître $\frac{1}{n}$ en tête;
- se ramener à une somme de 0 à n-1;
- faire apparaître les $\frac{k}{n}$;
- en déduire la fonction f associée.

Exemples 2.14: Calculer

$$\lim_{n \to +\infty} \frac{1}{n^3} \sum_{k=0}^{n-1} k^2 \text{ et } \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{n+k}$$

Proposition 2.15 (Inégalité triangulaire)

Soit $f \in \mathcal{C}_m([a;b], E)$ (avec a < b), alors:

$$\left\| \int_{a}^{b} f \right\| \leqslant \int_{a}^{b} \|f\|.$$

Corollaire 2.16

Soit $f \in \mathcal{C}_m([a;b], E)$, alors:

$$\left\| \int_{a}^{b} f \right\| \leqslant (b - a) \|f\|_{\infty}.$$

II. D Intégrale fonction de sa borne supérieure

Théorème 2.17

Soit $f \in \mathcal{C}(I, E)$ et $a \in I$. Alors l'application

$$F: x \mapsto \int_{a}^{x} f(t) \, \mathrm{d}t$$

est de classe C^1 sur I et $\forall x \in I, F'(x) = f(x)$.

Remarques 2.18 : • F est la primitive de f qui s'annule en a.

• Si g est une primitive de f sur I et $a,b\in I,$ alors

$$\int_{a}^{b} f(t) dt = g(b) - g(a).$$

• Si $f \in \mathcal{C}^1(I, E)$ et $a, x \in I$, alors :

$$f(x) = f(a) + \int_a^x f'(t) dt.$$

$(M\'{e}thode~2.19)$

Pour étudier une fonction du type : $x \mapsto \int_{u(x)}^{v(x)} \varphi(t) dt$, définie par une intégrale dont seules les bornes (et non l'intégrande) dépendent de la variable, on introduit une primitive de l'intégrande.

Exemple 2.20 : On considère la fonction f définie par :

$$f: x \mapsto \int_{x-1}^{x^2} \frac{1}{\ln(t)} \, \mathrm{d}t.$$

- 1. Déterminer l'ensemble de définition \mathcal{D} de f.
- 2. Montrer que f est de classe C^1 sur \mathcal{D} et calculer f'.

Proposition 2.21 (Changement de variable)

Soit $f \in \mathcal{C}(I, E)$ et $\varphi \in \mathcal{C}^1(J, \mathbb{R})$ telles que $\varphi(J) \subset I$. Pour tous $a, b \in I$:

$$\int_{a}^{b} \varphi'(s) f(\varphi(s)) ds = \int_{\varphi(a)}^{\varphi(b)} f(t) dt.$$

Théorème 2.22 (Inégalité des accroissements finis)

Soit $f \in \mathcal{C}(I, E)$ telle que f est de classe \mathcal{C}^1 sur l'intérieur de I et $M \in \mathbb{R}^+$. Si : $\forall t \in \mathring{I}, ||f'(t)|| \leq M$, alors :

$$\forall a, b \in I, ||f(b) - f(a)|| \leq M |b - a|.$$

Attention : L'égalité des accroissements finis, valable pour $f \in \mathcal{C}^1(I, \mathbb{R})$, ne se généralise pas aux fonctions à valeurs complexes ou vectorielles.

Contre exemple 2.23: $f: \mathbb{R} \longrightarrow \mathbb{C}, t \mapsto e^{it}$.

III Formules de Taylor

Théorème 3.1 (Formule de Taylor avec reste intégral)

Soit $f \in \mathcal{C}^{p+1}(I, E)$ et $a, b \in I$, alors :

$$f(b) = \sum_{k=0}^{p} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-t)^p}{p!} f^{(p+1)}(t) dt.$$

Théorème 3.2 (Inégalité de Taylor-Lagrange)

• Soit $f \in \mathcal{C}^{p+1}(I, E)$ et $a, b \in I$

$$f(b) = \sum_{k=0}^{p} \frac{(b-a)^k}{k!} f^{(k)}(a) + R_p$$

avec $||R_p|| \le \frac{|b-a|^{p+1}}{(p+1)!} M_{p+1}$ où M_{p+1} est un majorant de $||f^{(p+1)}||$ sur [a;b] (ou sur [b;a]).

• Soit $f \in \mathcal{C}^p(I, E)$ et $a, b \in I$

$$f(b) = \sum_{k=0}^{p} \frac{(b-a)^k}{k!} f^{(k)}(a) + R_p$$

avec $||R_p|| \leq \frac{|b-a|^p}{(p)!} K_p$ où K_p est un majorant de $||f^{(p)} - f^{(p)}(a)||$ sur [a;b] (ou sur [b;a]).

Remarque 3.3 : $||f^{(p+1)}||$ est continue sur le segment [a;b] (ou [b;a]) donc majorée.

Théorème 3.4 (Formule de Taylor-Young)

Soit $\overline{f \in \mathcal{C}^p(I, E)}$ et $a \in I$, alors :

$$f(x) = \sum_{k=0}^{p} \frac{(x-a)^k}{k!} f^{(k)}(a) + \underset{x \to a}{o} ((x-a)^p).$$

Remarques 3.5 : • La conclusion du théorème peut se traduit par : il existe une fonction $\varepsilon: I \longrightarrow E$ telle que $\varepsilon(x) \xrightarrow[x \to a]{} 0_E$ et

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + (x-a)^p \cdot \varepsilon(x).$$

• Pour $p \ge 1$, le résultat reste vrai sous l'hypothèse (plus faible) : f est p fois dérivable sur I.

Méthode 3.6

- La formule de Taylor-Young décrit le comportement local de la fonction f autour de a. Elle peut servir dans un calcul de limite en a.
- Les formules de Taylor avec reste intégral et l'inégalité de Taylor-Lagrange sont des résultats globaux : valables pour tout $b \in I$.

IV Fonctions à valeurs réelles (rappels)

IV. A Dérivabilité et extremum

Théorème 4.1

Soit $f:I\longrightarrow \mathbb{R}$, si

- x_0 est un point intérieur de I (pas une extrémité);
- f est dérivable en x_0 ;
- f admet un extremum local en x_0 ;

alors $f'(x_0) = 0$.

Attention : 1. La réciproque est fausse :

 $f'(x_0) = 0 \Rightarrow f$ a un extremum local en x_0 .

Contre exemple : la fonction . . .

2. Le théorème ne s'applique pas aux extrémités des I.

Méthode 4.2

Pour chercher les extrema d'une fonction f dérivable sur I, il faut s'assurer que ces extrema existent (ce qui est le cas par exemple si I est un segment); puis on considère les points d'annulation de la dérivée <u>et les extrémités</u>.

IV. B Théorème de Rolle et égalité des accroissements finis

Théorème 4.3 (de Rolle)

Soit a et b deux réels avec a < b et $f : [a; b] \longrightarrow \mathbb{R}$ une fonction continue sur [a; b] et dérivable sur [a; b].

Si f(a) = f(b), alors il existe $c \in [a; b]$ tel que f'(c) = 0.

Interprétation géométrique : sous les hypothèses du théorème, le graphe de f a au moins une tangente horizontale.

Interprétation cinématique : si l'on se déplace sur une route rectiligne et que l'on revient à son point de départ, alors il y a un moment où la vitesse est nulle.

Théorème 4.4 (Égalité des accroissements finis)

Soit a et b deux réels avec a < b et $f : [a;b] \longrightarrow \mathbb{R}$ une fonction continue sur [a;b] et dérivable sur [a;b].

Alors il existe $c \in [a; b[$ tel que f(b) - f(a) = f'(c)(b - a).

Interprétation géométrique : sous les hypothèses du théorème, le graphe de f a au moins une tangente parallèle à la corde reliant les points du graphe d'abscisses a et b.

Interprétation cinématique : si l'on se déplace sur une route rectiligne, alors il y a un moment où la vitesse est égale à la vitesse moyenne. Par exemple, si l'on parcours 5 km en une heure, alors à un instant donné la vitesse est égale à 5 km/h.

IV. C Théorème de la limite de la dérivée

Lemme 4.5

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur I et dérivable sur $I \setminus \{a\}$ et $\ell \in \overline{\mathbb{R}}$. Si $f'(x) \xrightarrow[x \neq a \\ x \neq a]{} \ell$, alors $f(x) \xrightarrow[x \neq a]{} \ell$.

Théorème 4.6

Soit $f: I \longrightarrow \mathbb{R}$, si:

- f est continue sur I,
- f est dérivable sur $I \setminus \{a\}$,
- $f'(x) \xrightarrow[x \neq a]{x \to a} \ell \in \mathbb{R},$

alors f est dérivable en a et $f'(a) = \ell$.

(Théorème 4.7)

Soit $f: I \longrightarrow \mathbb{R}$, si:

- f est continue sur I,
- f est dérivable sur $I \setminus \{a\}$,
- $f'(x) \xrightarrow[x \neq a \\ x \neq a]{} \pm \infty$,

alors f n'est pas dérivable en a et le graphe de f a une tangente verticale en a.

Exemple 4.8 : Étudier la dérivabilité de $x \mapsto x\sqrt{x}$.

Théorème 4.9

Soit $f: I \longrightarrow \mathbb{R}$, si:

- f est continue sur I,
- f est de classe C^1 sur $I \setminus \{a\}$,
- $f'(x) \xrightarrow[x \neq a]{x \to a} \ell \in \mathbb{R},$

alors

Exemple 4.10 : Montrer que $f: \begin{bmatrix}]0\,; +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{\ln(1+x)}{x} \end{bmatrix}$ est prolongeable par continuité en 0, on note encore f le prolongement sur $[0\,; +\infty[$. Montrer que f est de classe \mathcal{C}^1 sur $[0\,; +\infty[$.

Théorème 4.11

Soit $f: I \longrightarrow \mathbb{R}$, si:

- f est continue sur I,
- f est de classe C^k sur $I \setminus \{a\}$,
- $\forall j \in [1; k], f^{(j)}(x) \xrightarrow[\substack{x \to a \\ x \neq a}]{} \ell_j \in \mathbb{R},$

alors

Exemple 4.12 : Montrer que la fonction f de l'exemple précédent est de classe C^{∞} sur $[0; +\infty[$.