Conventions:

- Ik be alg. closed, $R \sim n DVR$ with residue field Ik, fraction field IF IF \sim separable closure of IF, $V \sim$ normalized Valuation on IF $s.t. V(IF*) = \mathbb{Z}$
- · Graphs: ~ finite connected with the usual notations.
- · Curves: (C,D) ~ complete curves with marked pts (91,---9101)

 Over IF, & (CRU, DRU) be the nodal model.

Tropical curve [is a topological graph w/ complete possibly deg. metric:

- (S.) vertices of [are divided into finite vertices
- (S2) $V^{\infty}(\Gamma)$ is equipped with a tobal order f $V^{\Gamma}(\Gamma)$ is just a set.
- (P.) Thos finitely many vertices & edges
- (Pr) any infinite vertex has valency 1 & is connecte to a finite vertex by an edge called unbounded edges of Eb(T) edges b/w finite vertices

E ^{\alpha} (r) edger b/\omega a hinite of an infinite
(P3) any bounded edge e is isometric to [0,1e1];
1el e 12/20 f an unbounded edge is isométric
to [0, ∞] where o Hot finik verkx
on hinite vertex
· Q tropical curve ~ lele Q for any ec [b(r)
· iccedencible if l's connected
• genus $g(\Gamma) = 1 - V(\Gamma) + E(\Gamma) $
· Stable if all finite vertices have valency at least
Algorithm:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
step1: divide each bounded edge einte finitely many
pieces
step 2: divide each unbounded edge into finitely many
steps: attach rooted metric trees at some finite vertices
s.t. all edges but maybe some leaves of that
metric tree are bounded

Claim: Left be an irreducible hopical curve satisfying $g(r) + \frac{|v_{\infty}(r)|}{2} + \frac{|v_{\infty}(r)|}{2}$ then $g(r) = \int_{-\infty}^{\infty} \int_{-\infty}^$

TSt is called the stubilization of

tropical care attached to (C,D) (CRILI DRIL) be a nodal model CRLL Speck CRIL - Speck icreducible comps (v - finite vertices edges blu finite nodes Vertice Dry's that specialize infinite edges from ?. = 1- \V([)] + |E([)| +\Z g(vi)) $\left(x^2 + y^2 + w' + rc \right) xy = t^{ret}$ [~(L*): ~(F*)]

(C,D) is stable if 3 a nodal model

(RILIDRIL) Sit its special liber is stable (C,D) to the hopical curve associated to the distinguished stable model-Parametrized hopical cures. N be lattice MIR paramerized hopical curve (T, hp) hr: V(T) --) NID S.t. h_(n) eN for ve voct) balancing condition: $\frac{1}{101}\left(h_{\Gamma}(\nu)-h_{\Gamma}(\nu')\right)+\sum_{\nu'\in V^{\alpha}(\Gamma)}h_{\Gamma}(\nu')_{=0}$ $\nu'\in V^{\beta}(\Gamma), e\in E_{\nu\nu'}(\Gamma)$ v e v f (t) ef Evvi(r)

$$\frac{1}{16!}\left(h_{\Gamma}(1)-h_{\Gamma}(1)\right)\in N_{R} \quad \text{for any bounded}$$

$$\frac{1}{16!}\left(h_{\Gamma}(1)-h_{\Gamma}(1)\right)\in N_{R} \quad \text{for any bounded}$$

$$\frac{1}{16!}\left(h_{\Gamma}(1)-h_{\Gamma}(1)\right)=1$$

$$\frac{1}{16!}\left(h_{\Gamma}(1)-h_{\Gamma}(1)-h_{\Gamma}(1)\right)=1$$

$$\frac{1}{16!}\left(h_{\Gamma}(1)-h_{\Gamma}(1)-h_{\Gamma}(1)-h_{\Gamma}(1)\right)=1$$

$$\frac{1}{16!}\left(h_{\Gamma}(1)-h_{\Gamma}($$