Computer Science & Information Technology Database Management System Transaction and Concurrency Control

DPP: 1

- **Q1** How many serial schedules can be formed with 4 transactions?
- Q2 How many concurrent schedules can be formed with 3 transactions having 4, 3 & 2 operations respectively?
- Q3 Consider the following schedule S: R₁(A); R₃(A); R₂(A); W₁(B); R₂(B); R₃(A); W₂(C); $R_3(C)$ over the transactions T1, T2 & T3. If transaction T_1 fails just after R_3 (C) by transaction T₃, then which transactions need to be rolled back along with T₁?
 - (A) T₂
 - (B) T_3
 - (C) Both $T_2 \& T_3$
 - (D) None
- **Q4** Consider the following transactions:

 T_1 : W_1 (A); W_1 (B); R_1 (C); C_1 ;

T₂; W₂ (B); R₂ (B); C₂:

How many schedules of T_1 & T_2 are irrecoverable?

Q5 Two schedules S₁ and S₂ are called conflict equivalent if S₁ can be derived from S₂ by a sequence of swaps of non-conflicting operations.

Consider the two statements:

- I If two schedule are conflict equivalent, then their precedence graphs are identical.
- II If two schedules involve same set of transactions, and their precedence graphs are identical. Then they are conflict equivalent, (A) Both I & II are correct

- (B) Only I is correct
- (C) Only II is correct
- (D) Neither I nor II is correct
- **Q6** Which of the following schedules is/are irrecoverable.

(A) $R_1(A)$, $R_2(C)$, $R_1(C)$, $R_3(A)$, $R_3(B)$, $W_1(A)$, C_1 , W_3 (B), C_3 , R_2 (B), W_2 (C), W_2 (B), C_2

(B) $R_1(A)$, $R_2(C)$, $R_1(C)$, $R_3(A)$, $R_3(B)$, $W_1(A)$,

 $W_3(B)$, $R_2(B)$, $W_2(C)$, $W_2(B)$, C_1 , C_2 , C_3

(C) R₁(A), R₂ (C), R₃(A), R₁ (C), R₂(B), R₃ (B), $W_1(A), C_1, W_2(C), W_3(B), W_2(B), C_3, C_2$

- (D) All are recoverable
- **Q7** Which of the following schedules is/are conflict serializable?
 - (A) $R_1(x)$, $W_1(y)$, $R_2(y)$, $W_2(z)$, $R_3(z)$, $W_3(x)$
 - (B) $W_3(x)$, $R_1(x)$, $W_1(y)$, $R_2(y)$, $W_2(z)$, $R_3(z)$
 - (C) $R_1(x)$, $R_2(x)$, $W_1(y)$, $W_2(y)$, $R_1(y)$, $R_2(y)$, $W_2(z)$
 - (D) $R_1(x)$, $R_2(x)$, $R_1(y)$, $R_2(y)$, $R_3(x)$, $W_1(x)$, $W_2(y)$
- **Q8** Consider the following schedule S.

 T_1 T_2 Tą $R_1(x)$ $R_2(x)$ $R_3(y)$

 $W_1(x)$ $R_2(z)$ $R_2(y)$

 $W_2(y)$

 $W_1(z)$

Schedule S is conflict equivalent to which of the following serial schedule.

(A) T1 T3 T2

- T2 (B) T3 T1 (C) T3 T1 T2
- (D) T2 T1 T3
- **Q9** Consider the following schedule S.

S T_1 T_2 T_3 $R_2(B)$ $W_2(A)$ $R_1(A)$ $R_3(A)$ $W_1(B)$ $W_2(B)$ $W_3(B)$

Which of the following options is/are correct?

- (A) The schedule is conflict serializable schedule
- (B) The schedule is view serializable schedule
- (C) T2 T1 T3 is conflict equivalent serial schedule to S.
- (D) T2 T1 T3 is view equivalent serial schedule to S.
- **Q10** Consider the following schedule S. S: $R_1(A)$, $W_2(B)$, $R_2(C)$, $W_3(B)$, $W_2(A)$, $W_1(A)$, $R_3(B)$, $R_1(A)$, $R_2(C)$, $R_3(C)$, $W_2(C)$, C_1 , C_3 , C_2 , Schedule S suffers from which of the following problems?
 - (A) Irrecoverability
 - (B) Cascading Roll back
 - (C) Lost update problem
 - (D) RW Problem

Answer Key

Q1 24

Q2 1260

Q3 C

Q4 6

Q5 В Q6 В

Q7 A

Q8 C

Q9 B,D

Q10 C,D

Hints & Solutions

Q1 Text Solution:

No of serial schedules = 4! = 24

Q2 Text Solution:

No of concurrent schedules = $\frac{9!}{4! \ 3! \ 2!} = 1260$

Q3 Text Solution:

 W_1 (B) R_2 (B)

Uncommited dirty read by T₂

So, T₂ rollbacks.

 $W_2(C)$ $R_3(C)$

Uncommited dirty read by T₃

So, T_3 roll backs.

Q4 Text Solution:

 W_1 (B) R_2 (B)

Uncommited dirty read by T₂

Before this W_1 (A) and W_2 (B) can be ordered in 2 ways.

Now for remaining part there are 3 possibilities:

 W_1 (B) R_1 (C)

(i) W₁ (B) $\boxed{\mathrm{R}_2(\mathrm{B})}$ $\boxed{\mathrm{C}_2}$ $\boxed{\mathrm{R}_1}$ (c) $\boxed{\mathrm{C}_1}$

(ii) W $_1$ (B) $\boxed{R_2$ $(B)}$ $\boxed{R_1$ (c) $\boxed{C_2}$ $\boxed{C_1}$

(iii) W_1 (B) R_1 (c) $R_2(B)$

 $2 \times 3 = 6$

Q5 Text Solution:

T_1	T_2	T_1	T_2
R(A)		R(A)	
R(A) R(B)	W(A)	R(A)	
$\mathbf{R}(\mathbf{D})$	W(D)		W(A)
D (D)	W(B)	R(B)	W(B)
R(B)		R(B)	

Same set of transactions,

Same precedence graph,

But not conflict equivalent, as one can not be converted into another.

Hence, statement II is incorrect.

Q6 Text Solution:

In option B we have W₃(B) $R_2(B)$, so T2 is doing uncommitted dirty read operation and thus it should commit after T3.

Q7 **Text Solution:**

No cycle

Q8 Text Solution:

Q9 Text Solution:

Cycle

Not conflict serializable

Initial read

B: T₂

Updated read

 T_2 T_1

 T_2 T_3

Final write

 $B:T_3$

 T_2 T_1 T_3 is a view equivalent serial schedule to S.

Q10 Text Solution:

T_1	T_2	T_3
R(A)		
	W(B)	
	R(C)	
	W(A)	W(B)
W(A)		D (D)
R(A)		R(B)
	R(C)	
	W(C)	R(C)
C_1		C_3
57	C_2	
(c) W ₂ (A)	W ₁ (A)	
(d) R ₃ (C)	$W_2(C)$	

Android App | iOS App | PW Website