Integrals as anti-derivatives

Sarang S. Sane

Let f be a function defined on a domain containing the interval [a,b] to \mathbb{R} .

Let f be a function defined on a domain containing the interval [a,b] to \mathbb{R} .

Let P consist of (i) a partition $a = x_0 < x_1 < \dots x_n = b$ of [a, b] and (ii) a choice of $x_i^* \in [x_{i-1}, x_i]$.

Let f be a function defined on a domain containing the interval [a,b] to \mathbb{R} .

Let P consist of (i) a partition $a = x_0 < x_1 < \dots x_n = b$ of [a, b] and (ii) a choice of $x_i^* \in [x_{i-1}, x_i]$.

Define $\Delta x_i = x_i - x_{i-1}$ and $||P|| = \max_i {\Delta x_i}$.

Let f be a function defined on a domain containing the interval [a,b] to \mathbb{R} .

Let P consist of (i) a partition $a = x_0 < x_1 < \dots x_n = b$ of [a, b] and (ii) a choice of $x_i^* \in [x_{i-1}, x_i]$.

Define
$$\Delta x_i = x_i - x_{i-1}$$
 and $||P|| = \max_i {\Delta x_i}$.

The Riemann sum of f w.r.t. the above data is defined as

$$S(P) = \sum_{i=1}^{n} f(x_i^*) \Delta x_i.$$

Let f be a function defined on a domain containing the interval [a,b] to \mathbb{R} .

Let P consist of (i) a partition $a = x_0 < x_1 < \dots x_n = b$ of [a, b] and (ii) a choice of $x_i^* \in [x_{i-1}, x_i]$.

Define
$$\Delta x_i = x_i - x_{i-1}$$
 and $||P|| = \max_i {\Delta x_i}$.

The Riemann sum of f w.r.t. the above data is defined as

$$S(P) = \sum_{i=1}^{n} f(x_i^*) \Delta x_i.$$

The (definite) integral of f from a to b is defined as

Let f be a function defined on a domain containing the interval [a,b] to \mathbb{R} .

Let P consist of (i) a partition $a = x_0 < x_1 < \dots x_n = b$ of [a, b]and (ii) a choice of $x_i^* \in [x_{i-1}, x_i]$.

Define
$$\Delta x_i = x_i - x_{i-1}$$
 and $||P|| = \max_i {\Delta x_i}$.

The Riemann sum of f w.r.t. the above data is defined as

$$S(P) = \sum_{i=1}^{n} f(x_i^*) \Delta x_i.$$

The (definite) integral of f from a to b is defined as

$$\int_{a}^{b} f(x)dx = \lim_{||P|| \to \infty} S(P) = \lim_{||P|| \to 0} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i}.$$

Let f be a function defined from a domain D in \mathbb{R} to \mathbb{R} .

Let f be a function defined from a domain D in \mathbb{R} to \mathbb{R} .

An anti-derivative of the function f is a function F defined on the domain D such that F'(x) = f(x) for all $x \in D$.

Let f be a function defined from a domain D in \mathbb{R} to \mathbb{R} .

An anti-derivative of the function f is a function F defined on the domain D such that F'(x) = f(x) for all $x \in D$.

Example : An anti-derivative of
$$f(x) = x^7 + 2x^6 - \pi x^5 + 0.5x^4 - 9$$
 is $F(x) = \frac{x^8}{8} + 2\frac{x^7}{7} - \pi \frac{x^6}{6} + 0.5\frac{x^5}{5} - 9x$

Let f be a function defined from a domain D in \mathbb{R} to \mathbb{R} .

An anti-derivative of the function f is a function F defined on the domain D such that F'(x) = f(x) for all $x \in D$.

Example : An anti-derivative of
$$f(x) = x^7 + 2x^6 - \pi x^5 + 0.5x^4 - 9$$
 is $F(x) = \frac{x^8}{8} + 2\frac{x^7}{7} - \pi \frac{x^6}{6} + 0.5\frac{x^5}{5} - 9x$

Fact : If F is an anti-derivative of f, then so is $F_1(x) = F(x) + c$ where c is any constant (i.e. a real number).

Let f be a function defined from a domain D in \mathbb{R} to \mathbb{R} .

An anti-derivative of the function f is a function F defined on the domain D such that F'(x) = f(x) for all $x \in D$.

Example : An anti-derivative of
$$f(x) = x^7 + 2x^6 - \pi x^5 + 0.5x^4 - 9$$
 is $F(x) = \frac{x^8}{8} + 2\frac{x^7}{7} - \pi \frac{x^6}{6} + 0.5\frac{x^5}{5} - 9x$

Fact : If F is an anti-derivative of f, then so is $F_1(x) = F(x) + c$ where c is any constant (i.e. a real number). In fact, every anti-derivative has this form.

Let f be a function defined from a domain D in \mathbb{R} to \mathbb{R} .

An anti-derivative of the function f is a function F defined on the domain D such that F'(x) = f(x) for all $x \in D$.

Example : An anti-derivative of
$$f(x) = x^7 + 2x^6 - \pi x^5 + 0.5x^4 - 9$$
 is $F(x) = \frac{x^8}{8} + 2\frac{x^7}{7} - \pi \frac{x^6}{6} + 0.5\frac{x^5}{5} - 9x + C$

Fact : If F is an anti-derivative of f, then so is $F_1(x) = F(x) + c$ where c is any constant (i.e. a real number). In fact, every anti-derivative has this form.

Because of this, We will use the instead of an for the anti-derivative, since any two anti-derivatives only differ by a constant.

The anti-derivative for a function f is more often called the (indefinite) integral of f and denoted by $\int f(x)dx$.

The anti-derivative for a function f is more often called the (indefinite) integral of f and denoted by $\int f(x)dx$.

This is explained by:

The fundamental theorem of calculus

The anti-derivative for a function f is more often called the (indefinite) integral of f and denoted by $\int f(x)dx$.

This is explained by:

The fundamental theorem of calculus

Suppose f is continuous on the domain D which includes the interval [a,b]. Then an anti-derivative for f on (a,b) is given by

$$F(x) = \int_{a}^{x} f(t)dt.$$

The anti-derivative for a function f is more often called the (indefinite) integral of f and denoted by $\int f(x)dx$.

This is explained by:

The fundamental theorem of calculus

Suppose f is continuous on the domain D which includes the interval [a,b]. Then an anti-derivative for f on (a,b) is given by

$$F(x) = \int_{a}^{x} f(t)dt.$$

Conversely, if f is continuous on the domain D which includes the interval [a,b] and F is the (indefinite) integral of f, then the (definite) integral from a to b of f can be computed by

$$\int_a^b f(x)dx = F(b) - F(a).$$

Tables of derivatives and integrals

Function	Derivative	Integral
1	0	x
x ^r	rx^{r-1}	$\frac{x^{r+1}}{r+1} r \neq 1$
		$\frac{1}{\ln x } r = 1$
sin(x)	cos(x)	-cos(x)
cos(x)	-sin(x)	sin(x)
tan(x)	$sec^2(x)$	In sec(x)
sec(x)	sec(x)tan(x)	$ln \mid sec(x) + tan(x) \mid$
cot(x)	$sec^2(x)$	In sin(x)
cosec(x)	$sec^2(x)$	$ln \mid cosec(x) - cot(x) \mid$

Tables (contd.)

Function	Derivative	Integral
$e^{\lambda x}$	$\lambda e^{\lambda x}$	$\frac{e^{\lambda x}}{\lambda}$
a ^x	a [×] In(a)	$\frac{a^{x}}{In(a)}$
In(x)	$\frac{1}{x}$	$\times ln(x) - x$
$\frac{1}{\sqrt{a^2-x^2}}$		$\sin^{-1}\left(\frac{x}{a}\right)$
$\frac{1}{\sqrt{a^2 + x^2}}$		$tan^{-1}\left(\frac{x}{a}\right)$
$\frac{1}{a^2 - x^2}$		$\frac{1}{2a} ln \left \frac{x+a}{x-a} \right $

Examples
$$\int_{1}^{2} x dx = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{1}^{2} = \frac{2^{\frac{1}{2}}}{2} - \frac{1^{\frac{2}{2}}}{2} \\
-\frac{4}{2} - \frac{1}{2} - \frac{2}{2} \\
-\frac{4}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} - \frac{2}{2} \\
-\frac{4}{2} - \frac{2}{2} -$$

Thank you