Математический анализ. Подготовка к экзамену

1 Определения

Определение 1 (Множество натуральных чисел). \mathbb{N} – множество натуральных чисел. Состоит из чисел, возникающих при счёте.

Определение 2 (Множество целых чисел). \mathbb{Z} – множество целых чисел. Состоит из натуральных чисел, нуля и чисел, противоположных натуральным.

Определение 3 (Множество рациональных чисел). \mathbb{Q} – множество рациональных чисел. Состоит из чисел, представимых в виде $\frac{z}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$.

Определение 4 (Множество иррациональных чисел). \mathbb{I} — множество иррациональных чисел. Состоит из чисел, которые не представимы в виде $\frac{z}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$.

Определение 5 (Множество действительных чисел). \mathbb{R} – множество действительных чисел. Состоит из рациональных и иррациональных чисел.

Определение 6 (Окрестность точки). Окрестностью S(x) точки x называется любой интервал, содержащий эту точку.

Определение 7 (ε -окрестность точки). ε -окрестностью точки x называется интервал с центром в точке x и длиной 2ε .

$$S(x,\varepsilon) = (x - \varepsilon, x + \varepsilon)$$

Определение 8 (δ -окрестность точки). δ -окрестностью точки x называется интервал с центром в точке x и длиной 2δ .

$$S(x, \delta) = (x - \delta, x + \delta)$$

Определение 9 (Окрестность $+\infty$). Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a, +\infty), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 10 (Окрестность $-\infty$). Окрестностью $-\infty$ называется любой интервал вида:

$$S(-\infty) = (-\infty, -a), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 11 (Окрестность ∞). Окрестностью ∞ называется любой интервал вида:

$$S(\infty) = (-\infty, -a) \cup (a, +\infty), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 12 (Числовая последовательность). Числовой последовательностью называется бесконечное множество числовых значений, которое можно упорядочить (перенумеровать)

Определение 13 (Ограниченная последовательность). Последовательность x_n называется *ограниченной*, если она ограничена и сверху, и снизу, т.е.

$$\forall n \in \mathbb{N}, m \le x_n \le M$$
 или $|x_n| \le M$

Определение 14 (Предел последовательности). Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{x \to \infty} x_n = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \implies |x_n - a| < \varepsilon$$

Определение 15 (Сходящаяся последовательность). Числовая последовательность называется сходящейся, если существует предел это последовательности, и он конечен.

Определение 16 (Предел функции по Коши). Число a называется пределом функции y=f(x) в точке x_0 , если $\forall \varepsilon>0$ найдется δ , зависящее от ε такое что $\forall x\in \mathring{S}(x_0;\delta)$ будет верно неравенство $|f(x)-a|<\varepsilon$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0) (\exists \delta(\varepsilon) > 0) (\forall x \in \mathring{S}(x_0; \delta) \implies |f(x) - a| < \varepsilon)$$

Определение 17 (Предел функции по Гейне). Число a называется пределом y = f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти x_n из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \iff (\forall x_n \in D_f)(\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = a)$$

Определение 18 (Локальная ограниченность функции). Функция называется локально ограниченной при $x \to x_0$, если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

Определение 19 (Бесконечно малые функции). Функция называется бесконечно малой при $x \to x_0$, если предел функции в этой точке равен 0.

$$\lim_{x \to x_0} f(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta(\varepsilon)) (\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| < \varepsilon)$$

Определение 20 (Бесконечно большие функции). Функция называется бесконечно большой при $x \to x_0$, если предел функции в этой точке равен ∞ .

Определение 21 (Бесконечно малые более высокого порядка). Функцию $\alpha(x)$ называют бесконечно малой более высокого порядка малости по сравнению с $\beta(x)$ при $x \to x_0$ и записывают $\alpha(x) = o(\beta(x))$, если существует и равен нулю предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$.

$$\alpha(x) = o(\beta(x))x \to x_0 \iff \exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$$

Определение 22 (Эквивалентные бесконечно малые функции). Функции $\alpha(x)$ и $\beta(x)$ называют эквивалентными бесконечно малыми при $x \to x_0$, если предел их отношения при $x \to x_0$ равен 1.

$$\alpha(x) \sim \beta(x)x \to x_0 \iff \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Определение 23 ((опр. 1) Непрерывность функции в точке). Функция f(x), определённая в некоторой окрестности точки x_0 , называется непре-

рывной в этой точке если:

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Определение 24 ((опр. 2) Непрерывность функции в точке). Функция y=f(x) называется непрерывной в точке x_0 , если бесконечно малому приращению аргумента $\Delta x=x_0-x$ соответствует бесконечно малое приращение функции $\Delta y=f(x_0+\Delta x)-f(x_0)$.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Определение 25 (Непрерывность функции в точке справа). Функция y=f(x) определённая в правосторонней окрестности точки x_0 ($[x_0,x_0+\delta)$) называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 +} = f(x_0)$$

Определение 26 (Непрерывность функции в точке слева). Функция y=f(x) определённая в левосторонней окрестности точки x_0 $((x_0-\delta,x_0])$ называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 -} = f(x_0)$$

Определение 27 (Непрерывность функции на отрезке). Функция y=f(x) называется непрерывной на отрезке [a,b], если:

- 1. Непрерывна на интервале (a, b)
- 2. Непрерывна в точке a справа
- 3. Непрерывна в точке b слева

Определение 28 (Точка разрыва функции). Пусть функция y=f(x) определена в некоторой точке проколотой окрестности точки x_0 непрерывна в любой точке этой окрестности (за исключением самой точки x_0). Тогда точка x_0 называется точкой разрыва функции.

Определение 29 (Производная функции). Производной функции y=f(x) в точке x_0 называется предел отношения приращения функции $\Delta y=f(x_0+\Delta x)-f(x_0)$ и предел приращения аргумента $\Delta x=x_0-x$

при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Определение 30 (Правосторонняя производная функции). Производной функции y=f(x) в точке x_0 справа или правосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа.

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x}$$

Определение 31 (Левосторонняя производная функции). Производной функции y=f(x) в точке x_0 слева или левосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю слева.

$$y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

Определение 32 (Дифференцируемость функции в точке). Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0, \ \Delta x > 0.$

Определение 33 (Дифференциал функции в точке). Дифференциалом функции $y = f(x_0)$ называется главная часть приращения функции Δy .

$$dy = f'(x_0)\Delta x \tag{2}$$

Определение 34 (Точка локального максимума и минимума). Пусть y = f(x) определана на интервале $(a,b), \quad x_0 \in (a,b)$. Тогда:

- 1. Если $\exists \mathring{S}(x_0), \quad \forall x \in \mathring{S}(x_0), \quad f(x) \leq f(x_0),$ то x_0 точка локального максимума $y=y(x_0)$ локальный максимум.
- 2. Если $\exists \mathring{S}(x_0): \forall x \in \mathring{S}(x_0), f(x) \geq f(x_0)$, то x_0 точка локального минимума. $y = y(x_0)$ локальный минимум.

Определение 35 (Наклонная асимптота). Прямая y=kx+b называется наклонной ассимптотой графика функции y=f(x) при $x\to\pm\infty$, если сама функция представима в виде $f(x)=kx+b+\alpha(x)$, где $\alpha(x)$ – б.м.ф при $x\to\pm\infty$.

2 Теория

Вопрос 1. Сформулируйте и докажите теорему о единственности предела сходящейся последовательности.

Ссылки. Используются определения №12, №14, №15.

Теорема (О существовании единственности предела последовательности). Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Пусть $\{x_n\}$ – сходящаяся последовательность. Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a \quad \lim_{n \to \infty} = b \quad a \neq b$$

$$\lim_{n \to \infty} = a \iff (\forall \varepsilon_1 > 0)(\exists N_1(\varepsilon_1) \in N)(\forall n > N_1(\varepsilon_1) \implies |x_n - a| < \varepsilon_1)$$

$$\lim_{n \to \infty} = b \iff (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \implies |x_n - b| < \varepsilon_2)$$
(2)

Выберем $N = max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}.$ Пусть

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{|b-a|}{3}$$

$$3\varepsilon = |b - a| = |b - a + x_n - x_n| =$$

$$= |(x_n - a) - (x_n - b)| \le |x_n - a| + |x_n - b| < \varepsilon_1 + \varepsilon_2 = 2\varepsilon$$

$$3\varepsilon < 2\varepsilon$$

Противоречие. Значит, предоположение не является верным \implies последовательность x_n имеет единственный предел. \square

Вопрос 2. Сформулируйте и докажите теорему об ограниченности сходящейся последовательности.

Ссылки. Используются определения №12, №13, №14, №15.

Теорема. Об ограниченности сходящейся последовательности. Любая сходящаяся последовательность ограничена.

Доказательство. По определению сходящейся последовательности

$$\implies \lim_{n \to \infty} = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \implies |x_n - a| < \varepsilon).$$

Выберем в качестве $M=\max\{|x_1|,|x_2|,\dots|x_n|,|a-\varepsilon|,|a+\varepsilon|\}.$ Тогда для $\forall n\in\mathbb{N}$ будет верно $|x_n|\leq M$ – это и означает, что последовательность x_n – ограниченная.

Вопрос 3. Сформулируйте и докажите теорему о локальной ограниченности функции, имеющей конечный предел.

Ссылки. Используются определения №16, №18.

Теорема (О локальной ограниченности функции, имеющей конечный предел). Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a$$
 $\iff (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$

Распишем:

$$-\varepsilon < f(x) - a < \varepsilon$$

$$a - \varepsilon < f(x) < a + \varepsilon$$

$$\forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M=\max\{|a-\varepsilon|,|a+\varepsilon|\}$ $|f(x)|\leq M,\quad \forall x\in \mathring{S}(x_0,a)$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Вопрос 4. Сформулируйте и докажите теорему о сохранении функцией знака своего предела.

Ссылки. Используются определения №16.

Теорема (О сохранении функцией знака своего предела). Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x\to x_0} f(x) = a \neq 0 \to \begin{cases} a>0 \\ a<0 \end{cases} \Longrightarrow \begin{cases} f(x)>0 \\ f(x)<0 \end{cases} \quad \forall x \in \mathring{S}(x_0,\delta)$$

Доказательство. Пусть a > 0. Выберем $\varepsilon = a > 0$.

$$\lim_{x \to x_0} = a \iff (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$
$$0 < f(x) < 2a$$

Знак у функции f(x) и числа a - одинаковые.

Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$

$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые. Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Вопрос 5. Сформулируйте и докажите теорему о предельном переходе в неравенстве.

Ссылки. Используются определения №16.

Теорема (О предельном переходе в неравенстве). Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in \mathring{S}(x_0, \delta)$ верно f(x) < g(x). Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Доказательство. По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta)$. Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(X) имеет конечный предел в точке x_0 (как разность f(x) и g(x)).

По следствию из предыдущей теоремы $\implies \lim_{x \to x_0} F(x)$ Подставим F(x) = f(x) - g(x):

$$\lim_{x \to x_0} (f(x) - g(x)) \le 0 \implies \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \le 0 \implies$$
$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Вопрос 6. Сформулируйте и докажите теорему о пределе промежуточной функции.

Ссылки. Используются определения №16.

Теорема (О пределе промежуточной функции). Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = a, \ \forall x \in \mathring{S}(x_0, \delta)$ верно неравенство $f(x) \le h(x) \le g(x)$. Тогда $\lim_{x \to x_0} h(x) = a$.

Доказательство. По условию:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$
(1)

$$\lim_{x \to x_0} g(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |g(x) - a| < \varepsilon)$$
(2)

Выберем $\delta_0 = min\{\delta, \delta_1, \delta_2\}$, тогда (1), (2) и $f(x) \leq h(x) \leq g(x)$ верны одновременно $\forall x \in \mathring{S}(x_0, \delta_0)$.

(1)
$$a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$\begin{split} f(x) & \leq h(x) \leq g(x) \\ \implies a - \varepsilon_1 < f(x) \leq h(x) \leq g(x) < a + \varepsilon_2 \\ \implies \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon \end{split}$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_0(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_0) \implies |h(x) - a| < \varepsilon)$$
 \implies по определению предела $\lim_{x \to x_0} h(x) = a$

Вопрос 7. Сформулируйте и докажите теорему о пределе произведения функций.

Ссылки. Используются определения №16, №19, теорема "О произведении бесконечно малой функций на локально ограниченную".

Теорема (О пределе произведения функций). *О пределе произведения функций*.

Предел произведения функций равен произведению пределов.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Доказательство. Пусть:

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = b \tag{2}$$

По теореме о связи функции, её предела и бесконечно малой функции:

$$(1) \implies f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф.

$$(2) \implies f(x) = b + \beta(x)$$
, где $\beta(x)$ - б.м.ф.

Рассмотрим:

$$f(x) \cdot g(x) = (a + \alpha(x))(b + \beta(x))$$

$$= ab + \underbrace{a \cdot \beta(x) + b\alpha(x) + \alpha(x) \cdot \beta(x)}_{\gamma(x)}$$

$$= ab + \gamma(x)$$

По следствию из теоремы "O произведении бесконечно малой функций на локально ограниченную":

$$a\cdot eta(x)=$$
 б.м.ф. при $x\to 0$ $b\cdot lpha(x)=$ б.м.ф. при $x\to 0$ $lpha(x)\cdot eta(x)=$ б.м.ф. при $x\to 0$

По теореме о сумме конечного числа с б.м.ф.:

$$\gamma(x)=$$
б.м.ф. при $x o 0$

Далее расписываем предел:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} (f(x) \cdot g(x))$$

$$= \lim_{x \to x_0} ab + \lim_{x \to x_0} \gamma(x)$$

$$= ab + 0$$

$$= ab$$

Вопрос 8. Сформулируйте и докажите теорему о пределе сложной функции.

Ссылки. Используются определения №14, №17.

Теорема (О пределе сложной функции). Если функция y=f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тода сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$y = f(x)$$

$$\lim_{x \to x_0} f(x) = a$$

$$\lim_{y \to a} \varphi(y) = C$$

$$\implies \lim_{x \to x_0} \varphi(f(x)) = C$$

Доказательство.

$$\lim_{y \to a} \varphi(y) \iff (\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall y \in \mathring{S}(a, \delta_1) \implies |\varphi(y) - a| < \varepsilon) \quad (1)$$

Выберем в качестве ε в пределе найденное δ_1 :

$$\lim_{x \to x_0} f(x) = a$$

$$\iff (\forall \delta_1 > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |f(x) - a| < \delta_1)$$
(2)

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |\varphi(f(x)) - c| < \varepsilon)$$

Что равносильно:

$$\lim_{x \to x_0} \varphi(f(x)) = c$$

Вопрос 9. Докажите, что:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 0$$

Ссылки. Используется теорема о промежуточной функции.

Доказательство. Пусть $0 < x < \frac{\pi}{2}$. Рассмотрим окружность радиуса R с центром в начале координат, пересекающую ось абцисс в точке A, и пусть угол $\angle AOB$ равен x. Пусть, далее, CA — перпендикуляр к этой оси, C точка пересечения с этим перпендикуляром продолжения отрезка OB за точку B. Тогда

$$\begin{split} S_{\triangle AOB} &< S_{secOAB} < S_{\triangle OAC} \\ \frac{1}{2}R^2\sin(x) &< \frac{1}{2}R^2x < \frac{1}{2}R^2\operatorname{tg}(x) \\ \sin(x) &< x < \operatorname{tg}(x) \\ 1 &< \frac{x}{\sin(x)} < \frac{1}{\cos(x)} \\ 1 &> \frac{x}{\sin(x)} > \cos(x), \text{ при } x \in \left(0, \frac{\pi}{2}\right) \end{split}$$

Рассмотрим $x \in \left(-\frac{\pi}{2}, 0\right)$. Сделаем замену $\beta = -x$, таким образом $\beta \in \left(0, \frac{\pi}{2}\right)$, а значит, справедливо следующее неравенство:

$$1 > \frac{\sin(\beta)}{\beta} > \cos(\beta)$$

Вернёмся к замене $\beta = -x$:

$$1>\frac{\sin(-x)}{-x}>\cos(-x)$$

$$1>\frac{-\sin(x)}{-x}>\cos(x),\ \text{при }x\in\left(0,\frac{\pi}{2}\right)$$

Таким образом, полученное неравенство справедливо для $x \in \left(-\frac{\pi}{2},0\right) \cup$

$$\left(0,\frac{\pi}{2}\right)$$
. Перейдём к пределу при $x\to 0$:
$$\lim_{x\to 0}\cos(x)=1\\ \lim_{x\to 0}1=1 \qquad \Longrightarrow \lim_{x\to 0}\frac{\sin(x)}{x}=1$$
 по теореме "О пределе промежуточной функции".

Вопрос 10. Сформулируйте и докажите теорему о связи функции, ее предела и бесконечно малой.

Ссылки. Используются определения №16, №19.

Теорема (О связи функции, её предела и бесконечно малой). Функция y = f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

$$\lim_{x o x_0}f(x)=a\iff f(x)=a+lpha(x),$$
где $lpha(x)$ – б.м.ф при $x o x_0$

Необходимость. Дано:

$$\lim_{x \to x_0} f(x) = a$$

Доказать:

$$f(x)=a+lpha(x),$$
где $lpha(x)$ - б.м.ф. при $x o x_0$

Распишем:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

Обозначим $f(x) - a = \alpha(x)$, тогда:

$$\lim_{x\to x_0} f(x) = a \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

По определению бесконечно малой функции $\alpha(x)$ - бесконечно малая функция. Из обозначения следует, что:

$$f(x) = a + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to x_0$.

Достаточность. Дано:

$$f(x)=a+lpha(x),$$
где $lpha(x)$ - б.м.ф. при $x o x_0$

Доказать:

$$\lim_{x \to x_0} f(x) = a$$

По определению б.м.ф.:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

С учётом введённого обозначения:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon \iff \lim_{x \to x_0} f(x) = a)$$

Вопрос 11. Сформулируйте и докажите теорему о произведении бесконечно малой функции на ограниченную.

Ссылки. Используются определения №18, №19.

Теорема (О произведении бесконечно малой функции на ограниченную). Произведение бесконечно малой функции на локальной ограниченную есть величина бесконечно малая.

Доказательство. Пусть $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, а функция f(x) при $x \to x_0$ является локально ограниченной. Доказываем, что:

$$\alpha(x) \cdot f(x) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0$$

$$\iff (\forall \varepsilon_1 = \frac{\varepsilon}{M} > 0)(\exists \delta_1 > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |\alpha(x)| < \varepsilon_1 = \frac{\varepsilon}{M})$$

$$M \in \mathbb{R}, M > 0$$

$$\forall x \in \mathring{S}(x_0, \delta_2) \implies |f(x)| < M$$
(2)

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда (1) и (2) верны одновременно. В итоге получаем:

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in \mathring{S}(x_0, \delta) \implies$$

$$|\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{\varepsilon}{M} \cdot M < \varepsilon)$$

Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) \cdot f(x) = 0$$

Вопрос 12. Сформулируйте и докажите теорему о связи между бесконечно большой и бесконечно малой.

Ссылки. Используются определения №16, №19, №20.

Теорема (О связи между бесконечно большой и бесконечно малой). Если $\alpha(x)$ - бесконечно большая функция при $x \to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x \to x_0$.

Доказательство. По условию $\alpha(x)$ - б.б.ф при $x \to x_0$. По определению:

$$\lim_{x \to x_0} \alpha(x) = \infty \iff$$

$$(\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| > M)$$

Рассмотрим неравенство:

$$|\alpha(x)| > M, \forall x \in \mathring{S}(x_0, \delta)$$

Обозначим $\varepsilon = \frac{1}{M}$.

$$|\alpha(x) > M| \implies \frac{1}{|\alpha(x)|} < \frac{1}{M}$$

$$\implies |\frac{1}{\alpha(x)}| < \frac{1}{M} < \varepsilon$$

В итоге получаем:

$$\forall x \in \mathring{s}(x_0, \delta) \implies \left| \frac{1}{\alpha(x)} \right| < \varepsilon$$

Что по определению является бесконечно малой функцией.

Вопрос 13. Сформулируйте и докажите теорему о замене бесконечно малой на эквивалентную под знаком предела.

Ссылки. Используются определения №19, №22.

Теорема (О замене бесконечно малой на эквивалентную под знаком предела). Предел **отношения** двух б.м.ф. (б.б.ф) не изменится, если заменить эти функции на эквивалентные.

$$\left. \begin{array}{l} \alpha(x),\beta(x) \text{ - б.м.ф. при } x \to x_0 \\ \alpha(x) \sim \alpha_0(x) \\ \beta(x) \sim \beta_0(x) \end{array} \right\} \implies \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \frac{\alpha_0(x)}{\beta_0(x)}$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \alpha_0(x) \cdot \beta_0(x)}{\beta(x) \cdot \alpha_0(x) \cdot \beta_0(x)}$$

$$= \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_0(x)} \cdot \lim_{x \to x_0} \frac{\beta_0(x)}{\beta(x)} \cdot \lim_{x \to x_0} \frac{\alpha_0(x)}{\beta_0(x)}$$

$$= 1 \cdot 1 \cdot 1 \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Вопрос 14. Сформулируйте и докажите теорему о необходимом и достаточном условии эквивалентности бесконечно малых.

Ссылки. Используются определения №19, №21, №22.

Теорема (Необходимое и достаточное условие эквивалентности бесконечно малых). Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

$$\alpha(x),\beta(x)$$
 - б.м.ф при $x\to x_0$
$$\alpha(x)\sim\beta(x)\iff \alpha(x)-\beta(x)=o(\alpha(x)) \\ \alpha(x)-\beta(x)=o(\beta(x))$$
при $x\to x_0$

Необходимость. Дано:

$$\alpha(x), \beta(x)$$
 - б.м.ф при $x \to x_0$

Доказать:

$$\alpha(x) - \beta(x) = o(\alpha(x))$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = \lim_{x \to x_0} \left(1 - \frac{\beta(x)}{\alpha(x)} \right)$$
$$= 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} = 1 - \frac{1}{1} = 0$$

Достаточность. Дано:

$$\alpha(x) - \beta(x) = o(\beta(x))$$
, при $x \to x_0$

Доказать:

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 = 0$$

$$\implies \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

$$\implies \alpha(x) \sim \beta(x), \text{при } x \to x_0$$

Вопрос 15. Сформулируйте и докажите теорему о сумме конечного числа бесконечно малых разных порядков.

Ссылки. Используются определения №19, №22.

Теорема (О сумме конечного числа бесконечно малых разных порядков). Сумма бесконечно малых функций разных порядком малости эквивалентно слагаемому низшего порядка малости.

$$\left. \begin{array}{l} \alpha(x),\beta(x) \text{ - б.м.ф при } x \to x_0 \\ \alpha(x) = o(\beta(x)), \text{ при } x \to x_0 \end{array} \right\} \implies \alpha(x) + \beta(x) \sim \beta(x), \text{ при } x \to x_0$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x) + \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} + 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} + 1$$
$$= 0 + 1 = 1$$

Вопрос 16. Сформулируйте и докажите теорему о непрерывности суммы, произведения и частного непрерывных функций.

Ссылки. Используются определения №23.

Теорема (О непрерывности суммы, произведения и частного непрерывных функций). Если функции f(x) и g(x) непрерывны в точке x_0 , то функции (последняя с учётом $g(x) \neq 0$):

$$f(x) + g(x)$$

$$(f \cdot g)(x)$$

$$\frac{f(x)}{g(x)}$$

также непрерывны в точке x_0 .

Доказательство. По определению непрерывной функции:

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Рассмотрим:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) + f(x_0) = g(x_0)$$

$$\implies f(x) + g(x) \in C(x_0)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$$

$$\implies (f \cdot g)(x) \in C(x_0)$$

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x_0)}$$

Вопрос 17. Сформулируйте и докажите теорему о непрерывности сложной функции.

Ссылки. Используются определения №23, теорема "О пределе сложной функции".

Теорема (О непрерывности сложной функции). Если функция y=f(x) непрерывна в точке x_0 , а функция g(y) непрерывна в соответствующей точке $y_0=f(x_0)$, то сложная функция g(f(x)) непрерывна в точке x_0 .

Доказательство. Т.к. функция $g\left(y\right)\in C(y_0)$, то $\lim_{y\to y_0}g(y)=g(y_0)$. С другой стороны, по условию $\lim_{x\to x_0}f(x)=y_0$. По теореме "О пределе сложной функции" $\exists \lim_{x\to x_0}g(f(x))$. Подставим в последнее равенство $y_0=\lim_{x\to x_0}f(x)$:

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x))$$

Вопрос 18. Сформулируйте и докажите теорему о сохранении знака непрерывной функции в окрестности точки.

Ссылки. Используются определения $\mathbb{N}^2 23$, теорема "О сохранении функции знака своего предела".

Теорема (О сохранении знака непрерывной функции в окрестности точки). Если функция $f(x) \in C(x_0)$ и $f(x_0) \neq 0$, то $\exists S(x_0)$, в которой знак значения функции совпадает со знаком $f(x_0)$.

Доказательство. Т.к. функция $y = f(x) \in C(x_0)$, то $\lim_{x \to x_0} f(x) = f(x_0)$. По теореме о сохранении функции знака своего предела $\Longrightarrow \exists S(x_0)$, в которой знак значений функции совпадает со знаком $f(x_0)$.

Вопрос 19. Дайте определение функции, непрерывной в точке. Сформулируйте теорему о непрерывности элементарных функций. Докажите непрерывность функций $y = \sin x$, $y = \cos x$

Ссылки. Используются определения №23, теорема "Об произведении ограниченной функции на бесконечно малую"

Теорема (О непрерывности элементарных функций). Основные элементарные функции непрерывны в области определения.

Доказательство (Для y = sin(x) и y = cos(x)). Докажем её для функций y = sin(x), y = cos(x):

$$y=\sin(x), D_y=\mathbb{R}$$
 $x_0=0, \lim_{x\to x_0}\sin(x)=\sin(0) \implies y=\sin(x)\in C(0)$ $\forall x\in D_y=\mathbb{R}, \quad \Delta x$ — приращение функции
$$x=x_0+\Delta x, \quad x\in D_f=\mathbb{R}$$
 $\Delta y=y(x)-y(x_0)=y(x_0+\Delta x)-y(x_0)$
$$=\sin(x_0+\Delta x)-\sin(x_0)=2\sin\left(\frac{x_0+\Delta x-x_0}{2}\right)\cos\left(\frac{x_0+\Delta x+x_0}{2}\right)$$

$$=2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)$$

$$\lim_{\Delta x\to 0}\Delta y=\lim_{\Delta x\to 0}2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)=0$$

Т.к. $\lim_{\Delta x \to 0} \Delta y = 0$ по опр. непр. функции $\Longrightarrow y = \sin(x)$ непрерывна в точке x_0 . Т.к. x_0 – произвольная точка из области определения, то $y = \sin(x)$ непрерывна на всей области произведения.

Вопрос 20. Сформулируйте свойства функций, непрерывных на отрезке.

Ссылки. Используются определения №27

Теорема (Первая теорема Вейерштрасса). Если функция y = f(x) непрерывна на отрезке ab, то она на этом отрезке ограниченна.

$$f(x) \in C[a,b] \implies \exists M \in \mathbb{R}, M > 0, \forall x \in [a,b] : |f(x)| \le M$$

Теорема (Вторая теорема Вейерштрасса). Если функция $y = f(x) \in C[a,b]$, то она достигает на этом отрезке своего наибольшего и наименьшего значения.

$$f(x) \in C[a,b] \\ \Longrightarrow \\ \exists x_*, x^* \in [a,b] : \forall x \in [a,b] \implies m = f(x_*) \le f(x) \le f(x^*) = M$$

Теорема (Первая теорема Больцано-Коши). Если функция $y = f(x) \in C[a,b]$, и на концах отрезка принимает значения разных знаков, то $\exists c \in (a,b): f(c) = 0$.

$$f(x) \in S[a,b] \land f(a) \cdot f(b) < 0 \implies \exists c \in (a,b) : f(c) = 0$$

Теорема (Вторая теорема Больцано-Коши). Если функция $y=f(x)\in C[a,b]$ и принимает на границах отрезка различные значения $f(a)=A\neq f(b)=B,$ то $\forall C\in [A,B]\exists c\in (a,b),$ в которой f(c)=C.

$$f(x) \in C[a,b] \land f(a) = A \neq f(b) = B$$

$$\Longrightarrow$$

$$\exists C \in (A,B) \implies \exists c \in (a,b) : f(c) = C$$

Теорема (Теорема о непрерывности обратной функции). Пусть $y = f(x) \in C(a,b)$ и строго монотонна на этом интервале. Тогда в соответствующем (a,b) интервале значений функции существует обратная функция $x = f^{-1}(y)$, которая так же строго монотонна и непрерывна.

Bonpoc 21. Сформулируйте определение точки разрыва функции и дайте классификацию точек разрыва. На каждый случай приведите примеры.

Ссылки. Используются определения №28

Ответ 1. Классификация точек разрыва:

- Первого рода
 - Устранимого разрыва

$$\lim_{x \to x_0 +} = \lim_{x \to x_0 -} \neq f(x_0)$$

– Неустранимого разрыва

$$\lim_{x o x_0+}
eq \lim_{x o x_0-}$$
 или $ot
ot = f(x_0)$

• Второго рода

$$\exists \lim_{x \to x_0 \pm}$$

Примеры точек разрыва:

• Устранимого разрыва:

$$y = \frac{\sin(x)}{x} \quad x_0 = 0$$

• Неустранимого разрыва:

$$\begin{cases} y = x, x > 0 \\ y = x - 1, x < 0 \end{cases} \quad x_0 = 0$$

• Второго рода:

$$y = \frac{1}{x} \quad x_0 = 0$$

Вопрос 22. Сформулируйте и докажите необходимое и достаточное условие существования наклонной асимптоты.

Ссылки. Используются определения №19, №35

Теорема (Необходимое и достаточное условие существования наклонной асимптоты). График функции y=f(x) имеет при $x\to\pm\infty$ наклонную ассимптоту тогда и только тогда, когда существуют два конечных предела:

$$\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} \\ \lim_{x \to \pm \infty} (f(x) - kx) \end{cases}$$
 (*)

Необходимость. Дано y = kx + b наклонная ассимптота.

Доказать \exists пределов.

По условию y=kx+b — наклонная ассимптота \implies по определению $f(x)=kx+b+\alpha(x),$ где $\alpha(x)$ — б.м.ф. при $x\to\pm\infty.$ Рассмотрим:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{kx + b + \alpha(x)}{x} =$$

$$= \lim_{x \to \pm \infty} (k + b \cdot \frac{1}{x} + \frac{1}{x}\alpha(x))$$

$$= k + b \lim_{x \to \pm \infty} \frac{1}{x} + \lim_{x \to \pm \infty} \frac{1}{x}\alpha(x)$$

$$= k + b \cdot 0 + 0 = k$$

Рассмотрим выражение:

$$f(x) - kx = kx + b + \alpha(x) - kx = b + \alpha(x)$$
$$\lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} (b + \alpha(x)) = b$$

Достаточность. Дано \exists конечные пределы (*). Доказать y=kx+b – наклонная ассимптота.

 \exists конечный предел $\lim_{x\to\pm\infty}(f(x)-kx)=b$ По теореме о связи функции, её предела и б.м.ф. \Longrightarrow

$$f(x) - kx = b + \alpha(x)$$

при $x \to \pm \infty$. Выразим f(x):

$$f(x) = kx + b + \alpha(x)$$

где $\alpha(x)$ б.м.ф при $x\to\pm\infty$. По определению $\implies y=kx+b-$ наклонная ассимптота к графику функции y=f(x)

Вопрос 23. Сформулируйте и докажите необходимое и достаточное условие дифференцируемости функции в точке.

Ссылки. Используются определения №29, №32

Теорема (Необходимое и достаточное условие дифференцируемости функции в точке). Функция y = f(x) в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

Необходимость. Дано: y = f(x) – дифференцируема в точке x_0 . Доказать: $\exists y'(x)$ – конечное число

Т.к. y = f(x), то $\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где $\alpha(\Delta x)$ – бесконечно малая функция при $\Delta x \to 0$.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A \Delta x + \alpha(\Delta x) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \alpha(\Delta x) \right) =$$

$$A + \lim_{\Delta x \to 0} \alpha(\Delta x) = A + 0 = A$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0) - \text{по определению}$$

$$\implies y'(x_0) = A = const \implies \exists y'(x_0) - \text{конечное число.}$$

Достаточность. Дано: $\exists y'(x_0)$ – конечное число.

Доказать: y = f(x) – дифференцируема в этой точке.

Доказательство:

Т.к. $\exists y'(x)$, то по определению производной

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

По теореме "О связи функции, её предела и некоторой бесконечно малой функции":

$$\frac{\Delta y}{\Delta x} = y'(x_0) + \alpha(\Delta x)$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$.

$$\Delta y = y'(x_0)\Delta x + \alpha(\Delta x)\Delta x$$

 $\Delta y = y'(x_0) \Delta x + \alpha(\Delta x) \Delta x$ где $A=y'(x_0) \implies y=f(x)$ дифференцируема в данной точке.

Вопрос 24. Сформулируйте и докажите теорему о связи дифференцируемости и непрерывности функции.

Ссылки. Используются определения №24, №32

Теорема (О связи дифференцируемости и непрерывности функции). Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

Доказательство. Т.к. y=f(x) дифференцируема в точке x_0 , то $\Delta y=y'(x_0)\Delta x+\alpha(\Delta x)\Delta x$, где $y'(x_0)=const,\ \alpha(\Delta x)$ – бесконечно малая функция при $\Delta x\to 0$. Вычислим:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (y'(x)\Delta x + \alpha(\Delta x)\Delta x)$$

$$= y'(x_0) \lim_{\Delta x \to 0} \Delta x + \lim_{\Delta x \to 0} \alpha(\Delta x) \lim_{\Delta x \to 0} \Delta x$$

$$= y'(x_0) \cdot 0 + 0 \cdot 0 = 0$$

По определению непрерывной функции y=f(x) является непрерывной в точке x_0 .

Вопрос 25. Сформулируйте и докажите теорему о производной произведения двух дифференцируемых функций.

Ссылки. Используются определения №29, №32

Теорема (О производной произведения двух дифференцируемых функций). Если функции u(x) и v(x) дифференцируемы в точке x_0 , то функция $u(x) \cdot v(x)$ также дифференцируема в точке x_0 :

$$(u(x) \cdot v(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Доказательство. Пусть y = uv, тогда:

$$\begin{split} \Delta y &= y(x+\Delta x) - y(x) = u(x+\Delta x)v(x+\Delta x) - u(x)v(x) = \\ &= (\Delta u + u(x))(\Delta v + v(x)) - u(x)v(x) = \Delta u \Delta v + \Delta u v(x) + \\ &\quad + \Delta v u(x) + u(x)v(x) = \\ &\quad \Delta u \Delta v + \Delta u v(x) + \Delta v u(x). \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u \Delta v + \Delta u v(x) + \Delta v u(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\Delta u \frac{\Delta v}{\Delta x} + v(x) \frac{\Delta u}{\Delta x} + u(x) \frac{\Delta v}{\Delta x} \right) =$$

$$= \lim_{\Delta x \to 0} \Delta u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \Delta u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} =$$

$$= v(x)u'(x) + v'(x)u(x) + v'(x) \cdot 0 =$$

$$= \left[v(x)u'(x) + u(x)v'(x) \right]$$

Т.к. функции $u=u(x),\ v=v(x)$ дифференцируемы в точке x, то по теореме о связи дифференцируемости и непрерывности функции $\implies u=u(x)$ и v=v(x) непрерывны в точке $x\implies$ по определению непрерывности функции:

$$\begin{cases} \lim_{\Delta x \to 0} \Delta u = 0 \\ \lim_{\Delta x \to 0} \Delta v = 0 \end{cases}$$

Вопрос 26. Сформулируйте и докажите теорему о производной частного двух дифференцируемых функций.

Ссылки. Используются определения №29, №32

Теорема (О производной частного двух дифференцируемых функций). Если функции u(x) и v(x) дифференцируемы в точке x_0 и $v(x_0) \neq 0$, то функция $\frac{u(x)}{v(x)}$ также дифференцируема в точке x_0 :

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}$$

Доказательство. Пусть $y = \frac{u}{v}$, тогда:

$$\begin{split} \Delta y &= y(x + \Delta x) - y(x) = \\ &= \frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)} = \\ &= \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{v(x + \Delta x)v(x)} = \\ &= \frac{(u(x) + \Delta u)v(x) - u(x)(v(x) + \Delta v)}{(\Delta v + v(x))v(x)} = \\ &= \frac{u(x) + \Delta uv(x) - u(x)v(x) - u(x)\Delta v}{v^2(x) + v(x)\Delta v} = \\ &= \frac{\Delta uv(x) - \Delta vu(x)}{v^2(x) + v(x)\Delta v} \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\frac{\Delta u v(x) - \Delta v u(x)}{v^2(x) + v(x) \Delta v}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{v(x) \frac{\Delta u}{\Delta x} - v(x_0) \frac{\Delta v}{\Delta x}}{v^2(x) + v(x) \Delta v} =$$

$$= \frac{v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v^2(x) - v(x) \lim_{\Delta x \to 0} \Delta v} =$$

$$= \frac{v(x) u'(x) - u(x) v'(x)}{v^2(x)}$$

Вопрос 27. Сформулируйте и докажите теорему о производной сложной функции.

Ссылки. Используются определения №24 №29, №32

Теорема (О производной сложной функции). Пусть функция u=g(x) дифференцируема в точке x=a, а функция y=f(u) дифференцируема в соответствующей точке b=g(a). Тогда сложная функция F(x)=f(g(x)) дифференцируема в точке x=a.

$$F'(x)|_{x=a} = (f(g(x))')_{x=a} = f'_u(b) \cdot g'_x(a)$$

Доказательство. Т.к. функция u=g(x) дифференцируема в точке x=a, то по определению \Longrightarrow

$$\Delta u = g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Т.к. функция y = f(x) дифференцируема в точке b, то по определению дифференцируемости \Longrightarrow

$$\Delta y = f'(b) \cdot \Delta u + \beta(\Delta u) \cdot \Delta u \tag{2}$$

где $\beta(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Подставим (1) в (2). Тогда:

$$\Delta y = f'(b) \cdot (g'(a)\Delta x + \alpha(\Delta x)\Delta x) + \beta(\Delta u) (g'(a)\Delta x + \alpha(\Delta x)\Delta x) =$$

$$= f'(b) \cdot g'(a)\Delta x + \Delta x (f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(\Delta x)) = \Delta F$$

Обозначим: $\gamma(\Delta x) = f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(x)$. В итоге получаем $\Delta F = f'(b)g'(a)\Delta x + \gamma(\Delta x)\Delta x$.

 $f(b)\alpha(\Delta x)$ — б.м.ф при $\Delta x \to 0$ (как производная постоянной на б.м.ф.). Т.к. u=g(x) дифференцируема в точке x=a, то по теореме о связи дифференцируемости и непрерывности функции u=g(x) непрерывна в точке $x=a \Longrightarrow$ по определению непрерывности $\lim_{\Delta x \to 0} \Delta u = 0$ или при $\Delta x \to 0$, $\Delta u \to 0$. $g'(a)\beta(\Delta u)$ — б.м.ф при $\Delta x \to 0$ как производная на б.м.ф. $\beta(\Delta u)\alpha(\Delta x)$ — б.м.ф при $\Delta x \to 0$ (как производная двую б.м.ф). Следовательно, $\gamma(x)$ — б.м.ф при $x \to 0$ как сумма конечного числа б.м.ф.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = \lim_{\Delta x \to 0} \left(f'(b)g'(a) + \gamma(\Delta x) \right) = f(b)g'(a) + 0 = f'(b)g'(a).$$

Вопрос 28. Сформулируйте и докажите теорему о производной обратной функции.

Ссылки. Используются определения №29, №29

Теорема (О производной обратной функции). Пусть функция y=f(x) в точке x=0 имеет конечную и отличную от нуля производную f'(a) и пусть для неё существует однозначная обратная функция x=g(y), непрерывная в соответствующей точке b=f(a). Тогда существует производная обратной функции и она равна:

$$g'(b) = \frac{1}{f'(a)}$$

Доказательство. Т.к. функция x=g(y) однозначно определена, то соответственно при $\Delta y \neq 0, \, \Delta x \neq 0$. Т.к. функция x=g(y) непрерывна в соответствующей точке b, то $\lim_{\Delta y \to 0} \Delta x = 0$ или $\Delta x \to 0$ при $\Delta y \to 0$.

$$g'(b) = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(a)}$$

Вопрос 29. Сформулируйте и докажите свойство инвариантности формы записи дифференциала первого порядка.

Ссылки. Используются определения №33

Теорема (Инвариантность формы записи дифференциала первого порядка). Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

Доказательство. Пусть $y=f(x),\, x=\varphi(t).$ Тогда можно задать сложную функцию:

$$F(t) = y = f(\varphi(t))$$

По определению дифференциала функции:

$$dy = F'(t)dt (6)$$

По теореме о производной сложной функции:

$$F'(t) = f'(x) \cdot \varphi'(t) \tag{7}$$

Подставим (7) в (6):

$$dy = f'(x)\varphi'(t)dt \tag{8}$$

По определению дифференциала функции $dx=\varphi'(t)dt$ (9). Подставим (9) в (8):

$$dy = f'(x)dx$$