Алгебра. Экзамен

Бобень Вячеслав @darkkeks, GitHub

2020

"Какой-то ты слишком идеальный, редуцируем ero!".

— Bottom text

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$	9
2	Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы	5
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа	6
4	Пять следствий из теоремы Лагранжа	7
5	Нормальные подгруппы и факторгруппы	8
6	Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства	g
7	Теорема о гомоморфизме для групп	10
8	Классификация циклических групп	11
9	Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп	12
10	Экспонента конечной абелевой группы и критерий цикличности	13
11	Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи Хелмана обмена ключами. Криптосистема Эль-Гамаля	л- 14
12	Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем	15
13	Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец	16
14	Кольцо многочленов от одной переменной над полем: деление с остатком, наибольший общий делитель двух многочленов, теорема о его существовании и линейном выражении	17
15	Теорема о том, что кольцо многочленов от одной переменной над полем является кольцом главных идеалов	18
16	Неприводимые многочлены. Факториальность кольца многочленов от одной переменной над по- лем	19

17 Критерий того, что факторкольцо $\mathbb{K}[x]/(h)$ является полем. Базис и размерность факторкольц $\mathbb{K}[x]/(h)$ как векторного пространства над полем \mathbb{K}	(a 20
18 Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма конечности убывающих цепочек одночленов	o 21
19 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных редукций относительн системы многочленов	
20 Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций	e- 23
21 S-многочлены. Критерий Бухбергера	24
22 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трёх эквива лентных условиях. Решение задачи вхождения многочлена в идеал	a- 25
23 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала	и 26
24 Теорема Гильберта о базисе идеала	27
25 Редуцируемость к нулю S -многочлена двух многочленов с взаимно простыми старшими членами	z 28
26 Характеристика поля. Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений	2 9
27 Присоединение корня неприводимого многочлена. Существование конечного расширения исход ного поля, в котором заданный многочлен (a) имеет корень; (б) разлагается на линейные множи тели	
28 Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства	e- 31
29 Подполе в расширении полей, порождённое алгебраическим элементом	32
30 Порядок конечного поля. Автоморфизм Фробениуса	33
31 Теорема существования для конечных полей	34
32 Цикличность мультипликативной группы конечного поля и неприводимые многочлены над \mathbb{Z}_p	35

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$

Определение 1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция *ассоциативна*, то есть

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a, b, c \in M$.

Не все естественно возникающие операции ассоциативны. Например, если $M = \mathbb{N}$ и $a \circ b = a^b$, то

$$2^{(1^2)} = 2 \neq (2^1)^2 = 4.$$

Другой пример неассоциативной бинарной операции: $M=\mathbb{Z}$ и $a\circ b:=a-b$.

Полугруппу обычно обозначают (S, \circ) .

Определение 3. Полугруппа (S, \circ) называется моноидом, если в ней есть нейтральный элемент, то есть такое элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Замечание. Если в полугруппе есть нейтральный элемент, то он один. В самом деле, $e_1 \circ e_2 = e_1 = e_2$.

Определение 4. Моноид (S, \circ) называется *группой*, если для каждого элемента $a \in S$ найдется *обратный элемент*, то есть такой $b \in S$, что $a \circ b = b \circ a = e$.

Обратный элемент обозначается a^{-1} .

Группу принято обозначать (G, \circ) или просто G, когда понятно, о какой операции идёт речь. Обычно символ \circ обозначения операции опускают и пишут просто ab.

Определение 5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, то есть ab = ba для любых $a, b \in G$.

Если в случае произвольной группы G принято использовать мультипликативные обозначения для групповой операции $-gh, e, g^{-1}$, то в теории абелевых групп чаще используют аддитивные обозначения, то есть a+b, 0, -a.

Определение 6. *Порядок* группы G — это число элементов в G. Группа называется *конечной*, если её порядок конечен, и *бесконечной* иначе.

Порядок группы G обозначается |G|.

Приведем несколько серий примеров групп.

1. Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +).$$

2. Числовые мультипликативные группы:

$$(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_p\setminus\{\overline{0}\},\times), p$$
— простое.

3. Группы матриц:

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) \mid \det A \neq 0 \};$$

$$\mathrm{SL}_n(\mathbb{R}) = \{ A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A = 1 \}.$$

4. Группы перестановок:

симметрическая группа S_n — все перестановки длины $n, |S_n| = n!;$

знакопеременная группа
$$A_n$$
 — чётные подстановки длины $n, |A_n| = \frac{n!}{2}$.

5. Группы преобразований: симметрия, движение.

Определение 7. Подмножество H группы G называется noderpynnoй, если выполнены следующие три условия:

- 1. $e \in H$;
- $2. \ ab \in H$ для любых $a,b \in H$;
- 3. $a^{-1} \in H$ для любого $a \in H$.

В каждой группе G есть несобственные подгруппы $H = \{e\}$ и H = G. Все прочие подгруппы называются собственными. Например, чётные числа $2\mathbb{Z}$ образуют собственную подгруппу в $(\mathbb{Z}, +)$.

Предложение. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого целого неотрицательного k.

 \mathcal{A} оказательство. Очевидно, что все подмножества вида $k\mathbb{Z}$ являются подгруппами в \mathbb{Z} .

- 1. Пусть $H\subseteq \mathbb{Z}$ подгруппа. Если $H=\{0\},$ то $H=0\mathbb{Z}.$ Иначе положим $k=\min(H\cap\mathbb{N})\neq 0.$ Тогда $k\mathbb{Z}\subseteq H.$
- 2. Покажем, что $k\mathbb{Z}=H$. Пусть $a\in H$. Поделим на k с остатком. a=qk+r, где $q\in H,$ $0\leqslant r\leqslant k\implies r=a-qk\in H.$ В силу выбора k получаем $r=0\implies a=qk.$

2 Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы

Пусть G — группа, $g \in G$ и $n \in \mathbb{Z}$. Определим степень следующим образом:

$$g^{n} = \begin{cases} \underbrace{g \cdots g}_{n}, & n > 0, \\ e, & n = 0 \\ \underbrace{g^{-1} \cdots g^{-1}}_{n}, & n < 0. \end{cases}$$

Свойства:

1.
$$g^m \cdot g^n = g^{m+n}, \forall n, m \in \mathbb{Z};$$

$$2. \left(g^k\right)^{-1} = g^{-k}, \, \forall k \in \mathbb{Z};$$

3.
$$(q^n)^m = q^{nm}, \forall n, m \in \mathbb{Z}.$$

Определение 8. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$ в G.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется nopoждающим или образующим для подгруппы $\langle g \rangle$.

Например, подгруппа $2\mathbb{Z}$ в $(\mathbb{Z},+)$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z}=\langle 2\rangle=\langle -2\rangle$.

Определение 9. Группа G называется $uu\kappa nuveckou$, если найдется такой элемент $g \in G$, что $G = \langle g \rangle$.

Определение 10. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности.

Порядок элемента обозначается $\operatorname{ord}(g)$. Заметим, что $\operatorname{ord}(g)=1$ тогда и только тогда, когда g=e.

Следующее предложение объясняет, почему для порядка группа и порядка элемента используется одно и то же слово.

Предложение. Пусть G — группа и $g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k=g^s$, то $g^{k-s}=e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элементы $e=g^0, g=g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n=mq+r, где $0 \leqslant r \leqslant m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$ и $|\langle g \rangle| = m$.

Ясно, что всякая циклическая группа коммутативна и не более чем счётна. Примерами циклических группа являются группы $(\mathbb{Z},+)$ и $(\mathbb{Z}_n,+)$, $n\geqslant 1$.

3 Смежные классы. Индекс подгруппы. Теорема Лагранжа

Определение 11. Пусть G — группа, $H \subseteq G$ — подгруппа и $g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in G\}.$$

Наряду с левым смежным классом можно определить правый смежный класс элемента g:

$$Hg = \{hg \mid h \in G\}.$$

Все дальнейшие доказательства для правых смежный классов формулируются и доказываются аналогично.

Лемма 3.1. Пусть G — группа, $H \subseteq G$ — её подгруппа и $g_1, g_2 \in G$.

Тогда либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \varnothing$.

Доказательство. Предположим, что $g_1H \cap g_2H \neq \emptyset$, то есть $g_1h_1 = g_2h_2$ для некоторых $h_1, h_2 \in H$. Нужно доказать, что $g_1H = g_2H$. Заметим, что $g_1H = g_2h_2h_1^{-1}H \subseteq g_2H$. Обратное включение доказывается аналогично.

Тогда |qH| = |H| для любого $q \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 12. Пусть G — группа и $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема 3.3 (Теорема Лагранжа). Пусть G- конечная группа $u\ H\subseteq G-$ подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

Пять следствий из теоремы Лагранжа

Нормальные подгруппы и факторгруппы

6	Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства
	9

Теорема о гомоморфизме для групп

8 Классификация циклических групп

9	Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп
	12

10	Экспонента	конечной	абелевой	группы	и критерий	цикличности	

11	Криптография с открытым клю рования. Система Диффи Хелл	очом. Задача дискретн мана обмена ключами.	ого логарифми- Криптосистема
	Эль-Гамаля		
		14	
		14	

12	Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем

13	Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец

15	Теорема о том, что кольцо многочленов от одной переменной над полем является кольцом главных идеалов

16	Неприводимые многочлены. Ф одной переменной над полем	Ракториальность	кольца	многочленов от
	operation and morein			
		19		

17 Критерий того, что факторкольцо $\mathbb{K}[x]/(h)$ является полем. Базис и размерность факторкольца $\mathbb{K}[x]/(h)$ как векторного пространства над полем \mathbb{K}

18	Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма о конечности убывающих цепочек одночленов				
	21				

19 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных редукций относительно системы многочленов

20	Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочен элементарных редукций				

21 S-многочлены. Критерий Бухбергера

22 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трёх эквивалентных условиях. Решение задачи вхождения многочлена в идеал

23 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится ни на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала

24	Теорема Гильберта о базисе идеала

25	Редуцируемость	к нулю	S-многочлена	двух	многочленов	с взаимно
	простыми старш	ими член	ами			

26	Характеристика поля. Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений
	29

27 Присоединение корня неприводимого многочлена. Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители

28	Алгебраические и трансцендентные элементы. член алгебраического элемента и его свойства	Минимальный	много-

29	Подполе том	В	расширении	полей,	порождённое	алгебраическим	элемен-
					32		

30 Порядок конечного поля. Автоморфизм Фробениуса

Теорема существования для конечных полей

32	Цикличность мультипликативной	группы	конечного	поля	и неприво-
	димые многочлены над \mathbb{Z}_p				
	35				