Klausur Computergraphik (WS 2017/18)

Prüfer: Bearbeitungszeit: Zugelassene Hilfsmittel: Datum:	Prof. Dr. R. Dörner, Prof. Dr. C. Schulz, HS RheinMain 90 min ein beidseitig handbeschriebenes DIN A4 Blatt, Stifte. (insbesondere Taschenrechner und eigenes Papier ist verboten) 22. Februar 2018
Name:	Vorname:
MatrNr.	
	Unterschrift
verwenden Sie die ein leeres Blatt be Hinweis der Art "v unleserlich oder gi Punkte vergeben.	en im dafür vorgesehenen Raum. Wenn der Platz nicht ausreicht, Rückseiten - wenn alle Rückseiten beschrieben sind, fordern Sie ist der Aufsicht an. Schreiben Sie im vorgesehenen Raum einen weiter siehe S. 3 Rückseite". Fehlt dieser Hinweis, ist die Lösung bt es mehrere Lösungen zu derselben Aufgabe, so werden keine
	nungsversuch begeht oder einem Täuschungsversuch Vorschub ete "nicht bestanden".
• Es darf nicht mit B "schwarz" zulässig.	eleistift geschrieben werden. Es sind nur Schreibfarben "blau" oder
• Starten Sie mit der	Bearbeitung der Klausur nur, wenn Sie prüfungsfähig sind.
• Die Klausur ist in je	edem Fall bestanden mit 44 Punkten.
Es wurden Pu	ankte erreicht.
Note, Handzeichen:	

Gegeben sind die Stützpunkte A, B, C, D einer Beziér-Kurve Q(t), $t \in [0,1]$.

D• B

 $\mathbf{C} \bullet$

Α •

- 2 P. (a) Zeichnen Sie die konvexe Hülle der Stützpunkte ein.
- 3 P. (b) Skizzieren Sie den Verlauf der Kurve.
 - (c) Nennen Sie vier Aspekte, die man bei der Skizze beachten muss:

-					
- 3	1.				

(d) Die Koordinaten der Punkte lauten: A(1,2,3), B(4,5,6), C(7,8,9), D(10,11,12). Geben Sie eine Formel aus nicht ausmultiplizierten Matrizen an, mit der man Q(0,4) berechnet.

$$M_{Bezier} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

3 P.

Gegeben ist folgende VRML-Szene:

```
DEF T1 Transform {
  translation 1 2 3
 children[
             DEF T2 Transform{
              scale 3 1 1
              children[
                          DEF T3 Transform{
                           translation -1 0 1
                           children[
                                       DEF S Shape{
                                        geometry Sphere{} }
                          ] }
             1}
             DEF T4 Transform{
              translation 1 0 1
              rotation
                            1 0 0 3.14
              children[
                         DEF K Viewpoint{
                           fieldOfView 0.7
                           position 5 0 1
                           orientation 1 0 0 1.57}
             1}
1}
```

(a) Zeichnen Sie den Szenengraph (nur Transform-, Shape- und Viewpoint-Nodes, keine Fields)

4.5 P.

(b) Wie lauten die Koordinaten des Mittelpunkts der Kugel S in Weltkoordinaten?

5,5 P.

 Σ_3 : Seite 3

	(c)	Wie lauten die Koordinaten des Mittelpunkt	s der Kugel S in Kamerakoordinaten der Kamera K?
6 P.			
~	(d)	Wie lauten die Koordinaten des Augpunkts	der Kamera K in Objektkoordinaten der Kugel S?
7 P.			

 $\Sigma 4$: Seite 4

Gegeben ist folgender Ausschnitt aus einem WebGL-Javascript, wobei die in der Lehrveranstaltung vorgestellten Hilfsfunktionen verwendet werden:

```
mat4() "erzeugt eine 4x4 Einheitsmatrix",
mult(m1, m2) "berechnet das Matrixprodukt der Matrizen m1 und m2",
transpose(m1) "transponiert die Matrix m1", inverse(m1) "invertiert die Matrix m1",
rotate(alpha, [x,y,z]) "erzeugt eine 4x4 Rotationsmatrix um die Achse (x,y,z)<sup>T</sup> um den Winkel alpha",
translate(x,y,z) "erzeugt eine 4x4 Translationsmatrix für den Translationsvektor (x,y,z)^T",
scale(sx,sy,sz) "erzeugt eine 4x4 Skalierungsmatrix für die Skalierungswerte sx, sy, sz",
perspective(fov, aspect, near, far) "erzeugt eine Projektionsmatrix"
         // Projektionsmatrix
         var projection = perspective(50.0, 1.0, 0.01, 300.0);
         // Zeile A: hier die Model-Matrix mA anlegen
         var mA =
         // Zeile B: hier die View-Matrix mB anlegen
         var mB =
         // Zeile C: hier Matrix mC anlegen, die Objektkoordinaten in Clipping-Koordinaten umrechnet
         var mC =
         // Zeile D: hier Matrix mD anlegen, die Normalen von Objektkoordinaten in Kamerakoordinaten
         // umrechnet
         var mD =
```

- 4 P. (a) Ergänzen Sie das Programm nach Zeile A so, dass alle Modelle zuerst um die Achse durch die Punkte A(2,2,2) und B(4,2,1) um 30° gedreht und dann um das 2-fache in z-Richtung skaliert werden.
- 3 P. (b) Ergänzen Sie das Programm nach Zeile B so, dass entsprechend lookAt(0,5,1,0,1,1,0,0,-1) die Kamera positioniert wird (verwenden Sie dabei nur die oben angegebenen Hilfsfunktionen)
- 2 P. (c) Ergänzen Sie das Programm nach Zeile C so, dass eine Matrix mC angelegt wird, die Vertices von Objektkoordinaten in Clipping-Koordinaten umrechnet
- 2 P. (d) Ergänzen Sie das Programm nach Zeile D so, dass eine Matrix mD angelegt wird, die Normalen von Objektkoordinaten in Kamerakoordinaten umrechnet

 Σ_5 : Seite 5

(e)		sich das Bild, wenn pers 20.0, 1.0, 100.0, 300.0); ?	spective(50.0, 1.0, 0.01, 300.0) abgeändert wird in:
(f)	um eine Ph Ist der Punl erscheinen.	ong-Beleuchtungsrechn kt mehr als eine Distanz	GLSL Vertex-Shader und Fragment-Shader möglichst einfach, ung zu realisieren, die nur den diffusen Anteil berücksichtigt. d von der Lichtquelle entfernt, soll der Punkt schwarz ih die Beleuchtungsrechnung ermittelten Farbwerten soll ein rden.
	void main(){	// Vertex-Shader uniform mat4 clipMat; uniform mat4 worldMat; uniform vec3 lightPos; uniform float d; uniform vec 3 lightColor; attribute vec3 diffColor; attribute vec3 normal; attribute vec3 position;	// Matrix zur Umrechnung von Welt- in Clippingkoordinaten // Matrix zur Umrechnung von Objekt- in Weltkoordinaten // Position einer Punktlichtquelle L in Weltkoordinaten // maximale Reichweite von L in Weltkoordinaten // Farbe/Intensität des Lichts (in RGB) von L // Koeffizient für diffuse Reflektion (in RGB) // die dem Vertex zugeordnete Normale // die dem Vertex zugeordnete Position in Objektkoordinaten
	} void main() {	// Fragment-Shader	
_	}		

Σ6:

8 P.

3 P.

Der Punkt P(2, 1, 0) soll mit einer Kamera, die sich an Punkt A(0,5,0) befindet, auf die Projektionsebene mit der Gleichung y = -2 perspektivisch projiziert werden. Die Bildkoordinaten P' von P sind mit der aus der Vorlesung bekannten Matrix $M_{per}(d)$ zu berechnen.

	voli r s	ind thit der aus der vorlesung bekannten Matrix M _{per} (d) zu berechnen.
	(a)	Um M_{per} anwenden zu können, muss eine Standardsituation eingehalten werden: Wo muss sich die Kamera befinden?
		Wohin muss die Kamera schauen?
		Wo muss sich die Projektionsebene befinden?
3 P.	(b)	Wie kann man die Standardsituation für $M_{\text{per}}(d)$ erreichen?
3 P.		
	(c)	Berechnen Sie die Bildkoordinaten von Punkt P.
4 P.	(d)	Geben Sie die Ebenengleichung der verbotenen Ebene an.
2 P.		
	Aufga	be 5
	(a)	Nennen Sie zwei prinzipielle Ansätze zur Realisierung von Anti-Aliasing
		1
2 P.		2

Seite 7

	(b)	Welche Informationen benötigt man um normalisierte Gerätekoordinaten in Bildkoordinaten umzurechnen?
2 P.	(c)	Nennen Sie zwei Vorteile der Parallelprojektion gegenüber der perspektivischen Projektion:
		1
2 P.		2
	(d)	Was bezeichnet man in der Computergraphik mit "spekularem Licht"?
3 P.	(e)	Was versteht man in der Computergraphik unter "Culling"? Nennen Sie zwei Beispiele und erläutern Sie diese kurz.
4 P.	(6)	
	(1)	Gegeben ist folgender Ausschnitt eines GLSL – Shaders: vec4 v = vec4(1.0, 2.0, 3.0, 4.0); vec4 u = vec4(1.5, 2.5, 3.5, 4.5); v = u.baba; v.s = u.q;
2 P.		Welchen Wert hat V nach Ausführung der letzten Zeile? V = (,,)
	(g)	Nennen Sie zwei Möglichkeiten, wie das Texturmapping realisiert werden kann:
		1.
		2
3 P.		

 $\Sigma 8$: Seite 8