Ausgabe: 23. Mai 2023 _____

Kleingruppenübungen: vom 06.06 bis zum 09.06

Einführung in die angewandte Stochastik

Kleingruppenübung 6

Aufgabe 22

Seien X und Y stochastisch unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) und es gelte $X \sim U[0, 6]$ und $Y \sim \operatorname{Exp}\left(\frac{1}{2}\right)$. Berechnen Sie

- (a) E(X+Y)
- (b) Var(X Y)
- (c) E(XY)
- (d) $P(X \ge 6, Y \le 2)$
- (e) $P(X \le 4, Y \le \ln(4))$

Aufgabe 23

Seien X, Y Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f_c(x,y) = \begin{cases} cy^2(2-x-y), & 0 < x < 1, \ 0 < y < 1, \\ 0, & \text{sonst.} \end{cases}$$

- (a) Zeigen Sie: f_c ist nur für c=4 eine Dichtefunktion.
- (b) Berechnen Sie die Randdichten f_X und f_Y von X und Y.
- (c) Berechnen Sie E(X) und E(Y).
- (d) Berechnen Sie Var(X) und Var(Y).
- (e) Berechnen Sie Cov(X, Y).
- (f) Berechnen Sie Cor(X, Y).
- (g) Sind X und Y stochastisch unabhängig?

Aufgabe 24

Seien $Y \sim \text{Bin}\left(10, \frac{1}{2}\right)$ und $Z \sim \text{Poi}(2)$ mit Cov(Y, Z) = 1 gelte. Weiterhin betrachten wir den 3-dimensionalen Zufallsvektor $\mathbf{X} = (X_1, X_2, X_3)'$, dessen Komponenten durch

$$X_1 := 4Y$$
, $X_2 := 2Y - 3Z$ und $X_3 := -Z$

definiert sind. Berechnen Sie den Erwartungswertvektor $\mu_{\mathbf{X}}$ und die Kovarianzmatrix $\mathrm{Cov}(\mathbf{X})$ von \mathbf{X} .

Aufgabe 25

Sei $\mathbf{X}=(X_1,X_2)'$ ein 2-dimensionaler normalverteilter Zufallsvektor mit Erwartungswertvektor $\mu_X=0\in\mathbb{R}^2$ und Kovarianzmatrix

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Berechnen Sie die Kovarianzmatrix des Zufallsvektors $\mathbf{Y}=(Y_1,Y_2)',$ dessen Komponenten durch

$$Y_1 = X_1 - X_2$$
 und $Y_2 = X_1 + X_2$

gegeben sind. Sind die Zufallsvariablen Y_1 und Y_2 stochastisch unabhängig?