

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 April 2002 (04.04.2002)

PCT

(10) International Publication Number
WO 02/026968 A2

- (51) International Patent Classification⁷: **C12N 15/11**
- (21) International Application Number: PCT/CA01/01379
- (22) International Filing Date:
27 September 2001 (27.09.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/672,717 28 September 2000 (28.09.2000) US
- (71) Applicants: **UNIVERSITY OF OTTAWA** [CA/CA]; Suite 2213, 451 Smyth Road, Ottawa, Ontario K1H 8M5 (CA). **AEGERA THERAPEUTICS, INC.** [CA/CA]; 810 Chemin du Golf, Verdun, Quebec H3E 1A8 (CA).
- (72) Inventors: **KORNELUK, Robert, G.**; 1901 Tweed Avenue, Ottawa, Ontario K1G 2L8 (CA). **LACASSE, Eric**; 1727 Featherston Drive, Ottawa, Ontario K1H 6P3 (CA). **BAIRD, Stephen**; 20 Julian Avenue, Ottawa, Ontario K1Y 0S5 (CA). **HOLCIK, Martin**; Apartment 9, 210 Stewart Street, Ottawa, Ontario K1N 6K2 (CA). **YOUNG, Sean**; 1903 West 14th Avenue, Vancouver, British Columbia V6J 2K1 (CA).
- (74) Agents: **ROBINSON, J., Christopher et al.**; Smart & Biggar, Box 11560, Suite 2200, 650 West Georgia Street, Vancouver, British Columbia V6B 4N8 (CA).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

(48) Date of publication of this corrected version:
15 August 2002

(15) Information about Correction:
see PCT Gazette No. 33/2002 of 15 August 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/026968 A2

(54) Title: ANTISENSE IAP NUCLEIC ACIDS AND USES THEREOF

(57) Abstract: The present invention features antisense IAP nucleic acids and other negative regulators of the IAP anti-apoptotic pathway, and methods for using them to enhance apoptosis.

5

ANTISENSE IAP NUCLEIC ACIDS AND USES THEREOFField of the Invention

The invention relates to antisense IAP nucleic acids and methods of using them to increase apoptosis.

10

Background of the Invention

One way by which cells die is referred to as apoptosis, or programmed cell death. Apoptosis often occurs as a normal part of the development and maintenance of healthy tissues. The process may occur 15 so rapidly that it is difficult to detect.

The apoptosis pathway is now known to play a critical role in embryonic development, viral pathogenesis, cancer, autoimmune disorders, and neurodegenerative diseases, as well as other events. The failure of an apoptotic response has been implicated in the development of 20 cancer, autoimmune disorders, such as lupus erythematosis and multiple sclerosis, and in viral infections, including those associated with herpes virus, poxvirus, and adenovirus.

Baculoviruses encode proteins that are termed inhibitors of apoptosis (IAPs) because they inhibit the apoptosis that would otherwise 25 occur when insect cells are infected by the virus. These proteins are thought to work in a manner that is independent of other viral proteins. The baculovirus IAP genes include sequences encoding a ring zinc finger-like motif (RZF), which is presumed to be directly involved in DNA binding, and two N-terminal domains that consist of a 70 amino acid 30 repeat motif termed a BIR domain (Baculovirus IAP Repeat).

The role of apoptosis in cancer has only recently been appreciated.

The identification of growth promoting "oncogenes" in the late 1970's gave rise to an almost universal focus on cellular proliferation that dominated research in cancer biology for many years. Long-standing

- 5 dogma held that anti-cancer therapies preferentially targeted rapidly dividing cancer cells relative to "normal" cells. This explanation was not entirely satisfactory, since some slow growing tumors are easily treated, while many rapidly dividing tumor types are extremely resistant to anti-cancer therapies. Progress in the cancer field has now led to a new
- 10 paradigm in cancer biology wherein neoplasia is viewed as a failure to execute normal pathways of programmed cell death. Normal cells receive continuous feedback from their neighbors through various growth factors, and commit "suicide" if removed from this context. Cancer cells somehow ignore these commands and continue inappropriate proliferation.
- 15 Cancer therapies, including radiation and many chemotherapies, have traditionally been viewed as causing overwhelming cellular injury. New evidence suggests that cancer therapies actually work by triggering apoptosis.

Both normal cell types and cancer cell types display a wide range of susceptibility to apoptotic triggers, although the determinants of this resistance are only now under investigation. Many normal cell types undergo temporary growth arrest in response to a sub-lethal dose of radiation or cytotoxic chemical, while cancer cells in the vicinity undergo apoptosis. This provides the crucial treatment "window" of appropriate toxicity that allows successful anti-cancer therapy. It is therefore not surprising that resistance of tumor cells to apoptosis is emerging as a major category of cancer treatment failure.

Compared to the numerous growth-promoting oncogenes identified to date (>100), relatively few genes have been isolated that regulate

apoptosis. The Bcl-2 gene was first identified as an oncogene associated with the development of follicular lymphomas. In contrast to all other oncogenes identified to date, Bcl-2 displays no ability to promote cell proliferation, and instead has been demonstrated to suppress apoptosis by 5 a variety of triggers. Elevated Bcl-2 expression is associated with a poor prognosis in neuroblastoma, prostate and colon cancer, and can result in a multidrug resistant phenotype *in vitro*. Although the study of Bcl-2 has helped revolutionize cancer paradigms, the vast majority of human malignancies do not demonstrate aberrant Bcl-2 expression.

10 In contrast to the findings with Bcl-2, mutation of the p53 tumor suppresser gene has been estimated to occur in up to 50% of human cancers and is the most frequent genetic change associated with cancer to date. The p53 protein plays a crucial role in surveying the genome for DNA damage. The cell type and degree of damage determines whether 15 the cell will undergo growth arrest and repair, or initiate apoptosis.

Mutations in p53 interfere with this activity, rendering the cell resistant to apoptosis by a wide range of cellular insults. Some progress has been made in understanding the molecular biology of p53, but many questions remain. p53 is known to function as a transcription factor, with the ability 20 to positively or negatively regulate the expression of a variety of genes involved in cell cycle control, DNA repair, and apoptosis (including the anti-apoptotic Bcl-2 gene described above and the related pro-apoptotic gene Bax). The drug resistant phenotype conferred by p53 alterations has been linked to Bcl-2/Bax regulation, but this correlation does not hold for 25 most cancer types, leaving open the possibility that other critical genes regulated by p53 remain to be identified.

Summary of the Invention

We have discovered that inhibitor of apoptosis (IAP) protein overexpression is associated with a wide range of cancer types including ovarian cancer, adenocarcinoma, lymphoma, and pancreatic cancer. In 5 addition, we have found that nuclear localization, fragmentation of the IAPs, and overexpression of the IAPs in the presence of p53 mutations correlate with a cancer diagnosis, a poor prognosis, and resistance to numerous chemotherapeutic cancer drugs. These discoveries provide diagnostic, prognostic, and therapeutic compounds and methods for the 10 detection and treatment of proliferative diseases. One way in which the expression of an IAP in a cell can be decreased is by administering to the cell a negative regulator of the IAP apoptotic pathway, for example, an antisense nucleic acid.

In general, the invention features methods and reagents useful for 15 inducing apoptosis in a cell. The methods and reagents of the invention are useful in treating cancers, and other proliferative diseases.

In a first aspect, the invention features an inhibitor of apoptosis (IAP) antisense nucleic acid that inhibits IAP biological activity, regardless of the length of the antisense nucleic acid. In preferred 20 embodiments, the IAP is XIAP, HIAP1, or HIAP2. In other preferred embodiments, the antisense nucleic acid is mammalian, for example, mouse or human. In yet another embodiment, the antisense nucleic acid is between 8 and 30 nucleotides in length.

In still other further preferred embodiments, the XIAP antisense is 25 chosen from any one of SEQ ID NOS: 1 through 96, and the HIAP1 antisense is chosen from any one of SEQ ID NOS: 97 through 194. Preferably the IAP biological activity is inhibition of apoptosis or inhibition of IAP RNA or polypeptide expression. The antisense nucleic acid may comprise at least one modified internucleoside linkage.

Preferably the modified internucleoside linkage is a phosphorothioate, a methylphosphonate, a phosphotriester, a phosphorodithioate, or a phosphoselenate linkage. In addition, the antisense nucleic acid may comprise at least one modified sugar moiety. Preferably this modified sugar moiety is a 2'-O methoxyethyl group or a 2'-O methyl group. In still another preferred embodiment, the antisense nucleic acid is a chimeric nucleic acid. Preferably the chimeric nucleic acid comprises DNA residues linked together by phosphorothioate linkages, and the DNA residues are flanked on each side by at least one 2'-O methyl RNA residue 10 linked together by a phosphorothioate linkage. More preferably the DNA residues are flanked on each side by at least three 2'-O methyl RNA residues. In yet another embodiment, the antisense nucleic acid is a ribozyme.

In a second aspect, the invention features a method of enhancing apoptosis in a cell, involving administering to the cell a negative regulator 15 of the IAP-dependent antiapoptotic pathway. In preferred embodiments the negative regulator is an antisense IAP nucleic acid, an antibody that specifically binds an IAP polypeptide, an IAP polypeptide comprising a ring zinc finger, said polypeptide having no more than two BIR domains, a 20 nucleic acid encoding the ring zinc finger domain of an IAP polypeptide, or a compound that prevents cleavage of the IAP polypeptide.

In preferred embodiments of the second aspect of the invention, the cell is in a mammal diagnosed with a proliferative disease, for example, cancer. The cell may comprises a mucosa-associated lymphoid tissue 25 (MALT), a tissue in which the IAP gene HIAP1 is frequently involved in a translocation, resulting in marginal zone cell lymphomas. The cell may also be a breast cancer cell, where increased HIAP1 expression is known to correlate with tumor progression. The cell may also be a cell in which NFkB expression or activity is increased, for example, cell of head and

neck carcinomas, adult T-cell lymphomas, nasopharyngeal carcinomas, and Hodgkin's disease. The cell may also be an acute myelogenous leukemia cell, where increased XIAP levels correlate with poor patient prognosis. In addition, the cell may be a small cell lung carcinoma cell, 5 where increased levels of XIAP correlates with increased resistance to radiation treatment.

In preferred embodiments of the second aspect of the invention, the IAP is XIAP, HIAP1, or HIAP2. Preferably the antisense nucleic acid is mammalian, for example, mouse or human. In still other preferred 10 embodiments, the XIAP antisense is chosen from any one of SEQ ID NOS: 1 through 96, and the HIAP1 antisense is chosen from any one of SEQ ID NOS: 97 through 194.

In still other embodiments of the second aspect of the invention, the antisense nucleic acid comprises at least one modified internucleoside 15 linkage. Preferably the modified internucleoside linkage is a phosphorothioate, a methylphosphonate, a phosphotriester, a phosphorodithioate, or a phosphoselenate linkage. In addition, the antisense nucleic acid may comprise at least one modified sugar moiety. Preferably this modified sugar moiety is a 2'-O methoxyethyl group or a 20 2'-O methyl group. In still another preferred embodiment, the antisense nucleic acid is a chimeric nucleic acid. Preferably the chimeric nucleic-acid comprises DNA residues linked together by phosphorothioate linkages, and the DNA residues are flanked on each side by at least one 2'-O methyl RNA residue linked together by a phosphorothioate linkage. 25 More preferably the DNA residues are flanked on each side by at least three 2'-O methyl RNA residues. In still further embodiments, administration of the antisense nucleic acid sensitizes the cell to chemotherapy or radiotherapy. In addition, the cell may be *in vitro* or *in vivo*.

In a third aspect, the invention features a pharmaceutical composition comprising a mammalian IAP antisense nucleic acid. In one preferred embodiment, the mammalian antisense IAP nucleic acid is a human antisense nucleic acid. Preferably the antisense nucleic acid binds
5 a target sequence of the human XIAP gene or mRNA, the human HIAP1 gene or mRNA, the human HIAP2 gene or mRNA, the murine XIAP gene or mRNA, the murine HIAP1 gene or mRNA, or the murine HIAP2 gene or mRNA. More preferably the composition comprises an antisense nucleic acid chosen from any one of SEQ ID NOS: 1 through 96 (XIAP)
10 or SEQ ID NOS: 97 through 194 (HIAP1).

In another aspect, the invention features an IAP gene nucleic acid fragment or antisense RNA sequence for use in suppressing cell proliferation. Such nucleic acids of the invention and methods for using them may be identified according to a method involving: (a) providing a
15 cell sample; (b) introducing by transformation into the cell sample a candidate IAP nucleic acid; (c) expressing the candidate IAP nucleic acid within the cell sample; and (d) determining whether the cell sample exhibits an altered apoptotic response, whereby decreased apoptosis identifies an anti-proliferative compound. Preferably the cell is a cancer
20 cell.

In another aspect, the invention features a method of treating a patient diagnosed with a proliferative disease. In the method, apoptosis may be induced in a cell to control a proliferative disease either alone or in combination with other therapies by administering to the cell a negative
25 regulator of the IAP-dependent or anti-apoptotic pathway. The negative regulator may be, but is not limited to, an IAP ring zinc finger, and an IAP polypeptide that includes a ring zinc finger and lacks at least one BIR domain. Alternatively, apoptosis may be induced in the cell by administering a nucleic acid encoding an IAP antisense RNA molecule

administered directly or via gene therapy (see U.S. Pat. No. 5,576,208 for general parameters that may be applicable in the selection of IAP antisense RNAs). In yet another method, the negative regulator may be a purified antibody, or a fragment thereof, that binds specifically to an IAP polypeptide. For example, in one preferred embodiment, the antibody may bind to an approximately 26 kDa cleavage product of an IAP polypeptide that includes at least one BIR domain but lacks a ring zinc finger domain.

In two additional aspects, the invention features a transgenic animal and methods of using the mammal for detection of anti-cancer therapeutics. Preferably the mammal overexpresses an IAP polypeptide and/or expresses an IAP antisense RNA or IAP fragment. In one embodiment, the animal also has a genetic predisposition to cancer or has cancer cells under conditions that provide for proliferation absent the transgenic construct encoding either the antisense RNA or fragment.

“Protein” or “polypeptide” or “polypeptide fragment” means any chain of more than two amino acids, regardless of post-translational modification (e.g., glycosylation or phosphorylation), constituting all or part of a naturally-occurring polypeptide or peptide, or constituting a non-naturally occurring polypeptide or peptide.

“Apoptosis” means the process of cell death wherein a dying cell displays a set of well-characterized biochemical hallmarks that include cell membrane blebbing, cell soma shrinkage, chromatin condensation, and DNA laddering. Cells that die by apoptosis include neurons (e.g., during the course of neurodegenerative diseases such as stroke, Parkinson’s disease, and Alzheimer’s disease), cardiomyocytes (e.g., after myocardial infarction or over the course of congestive heart failure), and cancer cells (e.g., after exposure to radiation or chemotherapeutic agents).

Environmental stress (e.g., hypoxic stress) that is not alleviated may cause

a cell to enter the early phase of the apoptotic pathway, which is reversible (i.e., cells at the early stage of the apoptotic pathway can be rescued). At a later phase of apoptosis (the commitment phase), cells cannot be rescued, and, as a result, are committed to die.

- 5 Proteins and compounds known to stimulate and inhibit apoptosis in a diverse variety of cells are well known in the art. For example, intracellular expression and activation of the caspase (ICE) family induces or stimulates apoptotic cell death, whereas expression of the IAPs or some members of the Bcl-2 family inhibits apoptotic cell death. In addition, 10 there are survival factors that inhibit cell death in specific cell types. For example, neurotrophic factors, such as NGF inhibit neuronal apoptosis.

In some situations it may be desirable to artificially stimulate or inhibit apoptotic cell death by gene therapy or by a compound that mimics a gene therapeutic effect. For example, a cell that is susceptible to 15 apoptosis induced by disease or environmental stress may be made more resistant to apoptosis by introducing an expression vector encoding an anti-apoptotic protein (such as an IAP, a Bcl-2 family member, or a neurotrophin) into the cell. Conversely, a cancer cell may be made less resistant to apoptosis by introducing into it an expression vector encoding 20 a pro-apoptotic protein (such as a caspase) or by introducing into it an antisense nucleic acid, for example, an IAP antisense nucleic acid, regardless of its length. In addition, placement of the encoded protein of interest under the translational regulation of a XIAP IRES ensures that copious quantities of the protein are produced, especially under cellular 25 conditions during which most protein translation (i.e., cap-dependent protein translation) is down-regulated, e.g., when a cell is under environmental stress, and when a cell is at a threshold for entering the apoptotic pathway.

By "IAP gene" is meant a gene encoding a polypeptide having at least one BIR domain and a ring zinc finger domain that is capable of modulating (inhibiting or enhancing) apoptosis in a cell or tissue when provided by other intracellular or extracellular delivery methods (see, e.g.,

- 5 U.S. Patent No. 5,919,912, U.S.S.N. 08/576,965, and PCT/IB96/01022).

In preferred embodiments, the IAP gene is a gene having about 50% or greater nucleotide sequence identity to at least one of the IAP amino acid encoding sequences of Figs. 1 through 6, or portions thereof. Preferably the region of sequence over which identity is measured is a region

- 10 encoding at least one BIR domain and a ring zinc finger domain.

Mammalian IAP genes include nucleotide sequences isolated from any mammalian source. Preferably the mammal is a human.

The term "IAP gene" is meant to encompass any member of the family of genes that encode inhibitors of apoptosis. An IAP gene may 15 encode a polypeptide that has at least 20%, preferably at least 30%, and most preferably at least 50% amino acid sequence identity with at least one of the conserved regions of one of the IAP members described herein (i.e., either the BIR or ring zinc finger domains from human or murine XIAP, HIAP1, and HIAP2). Representative members of the IAP gene 20 family include, without limitation, the human and murine XIAP, HIAP1, and HIAP2 genes.

By "IAP protein" or "IAP polypeptide" is meant a polypeptide, or fragment thereof, encoded by an IAP gene.

By "BIR domain" is meant a domain having the amino acid 25 sequence of the consensus sequence: Xaal-Xaal-Xaal-Arg-Leu-Xaal-Thr-Phe-Xaal-Xaal-Trp-Pro-Xaa2-Xaal-Xaal-Xaa2-Xaa2-Xaal-Xaal-Xaal-Xaal-Leu-Ala-Xaal-Ala-Gly-Phe-Tyr-Tyr-Xaal-Gly-Xaal-Xaal-Asp-Xaal-Val-Xaal-Cys-Phe-Xaal-Cys-Xaal-Xaal-Xaal-Xaal-Xaal-Xaal-Trp-Xaal-Xaal-Xaal-Asp-Xaal-Xaal-Xaal-Xaal-Xaal-His-Xaal-Xaal-Xaal-Xaal-

Pro-Xaal-Cys-Xaal-Phe-Val, wherein Xaal is any amino acid and Xaa2 is any amino acid or is absent (SEQ ID NO: 216). Preferably the sequence is substantially identical to one of the BIR domain sequences provided for XIAP, HIAP1, or HIAP2 herein.

5 By "ring zinc finger" or "RZF" is meant a domain having the amino acid sequence of the consensus sequence: Glu-Xaal-Xaal-Xaal-Xaal-Xaal-Xaa2-Xaal-Xaal-Xaal-Cys- Lys-Xaa3-Cys-Met-Xaal-Xaal-Xaal-Xaal-Xaa3-Xaal-Phe-Xaal-Pro-Cys-Gly-His-Xaal-Xaal-Xaal-Cys-Xaal-Xaal-Cys-Ala- Xaal-Xaal-Xaal-Xaal-Cys-Pro-Xaal-
10 Cys, wherein Xaal is any amino acid, Xaa2 is Glu or Asp, and Xaa3 is Val or Ile (SEQ ID NO: 217).

Preferably the sequence is substantially identical to the RZF domains provided in U.S.S.N. 08/800,929, incorporated herein by reference, for the human or murine XIAP, HIAP1, or HIAP2.

15 By "enhancing apoptosis" is meant increasing the number of cells that apoptose in a given cell population. Preferably the cell population is selected from a group including ovarian cancer cells, breast cancer cells, pancreatic cancer cells, T cells, neuronal cells, fibroblasts, or any other cell line known to proliferate in a laboratory setting. It will be appreciated
20 that the degree of apoptosis enhancement provided by an apoptosis-enhancing compound in a given assay will vary, but that one skilled in the art can determine the statistically significant change in the level of apoptosis that identifies a compound that enhances apoptosis otherwise limited by an IAP. Preferably "enhancing apoptosis" means that the
25 increase in the number of cells undergoing apoptosis is at least 25%, more preferably the increase is 50%, and most preferably the increase is at least one-fold. Preferably the sample monitored is a sample of cells that normally undergo insufficient apoptosis (i.e., cancer cells). Methods for

detecting a changes in the level of apoptosis (i.e., enhancement or reduction) are described herein.

By "proliferative disease" is meant a disease that is caused by or results in inappropriately high levels of cell division, inappropriately low levels of apoptosis, or both. For example, cancers such as lymphoma, leukemia, melanoma, ovarian cancer, breast cancer, pancreatic cancer, and lung cancer are all examples of proliferative disease.

By "IAP biological activity" is meant any activity known to be caused *in vivo* or *in vitro* by an IAP polypeptide.

By "transformed cell" is meant a cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a DNA molecule encoding (as used herein) an IAP polypeptide.

By "transgene" is meant any piece of DNA that is inserted by artifice into a cell, and becomes part of the genome of the organism that develops from that cell. Such a transgene may include a gene that is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism.

By "transgenic" is meant any cell that includes a DNA sequence that is inserted by artifice into a cell and becomes part of the genome of the organism that develops from that cell. As used herein, the transgenic organisms are generally transgenic mammals (e.g., rodents, such as rats or mice) and the DNA (transgene) is inserted by artifice into the nuclear genome.

By "transformation" is meant any method for introducing foreign molecules, for example, an antisense nucleic acid, into a cell. Lipofection, calcium phosphate precipitation, retroviral delivery, electroporation, biolistic transformation, and penetratin are just a few of the teachings that may be used. For example, biolistic transformation is a method for

introducing foreign molecules into a cell using velocity driven microprojectiles such as tungsten or gold particles. Such velocity-driven methods originate from pressure bursts that include, but are not limited to, helium-driven, air-driven, and gunpowder-driven techniques. Biolistic transformation may be applied to the transformation or transfection of a wide variety of cell types and intact tissues including, without limitation, intracellular organelles (e.g., and mitochondria and chloroplasts), bacteria, yeast, fungi, algae, animal tissue, and cultured cells. In another example, a foreign molecule (e.g., an antisense nucleic acid) can be translocated into a cell using the penetratin system as described, for example, by Prochiantz (Nature Biotechnology 16: 819-820, 1998; and Derossi et al. (Trends Cell Biol. 8: 84-87, 1998). In this system a penetratin peptide contains a transduction sequence that carries the peptide and a conjugated partner, for example, a phosphorothioate antisense nucleic acid (that is cross-linked through a disulfide bridge to the peptide) across the plasma membrane into the cell. The disulfide band is reduced inside the cell, releasing the partner.

By "antisense," as used herein in reference to nucleic acids, is meant a nucleic acid sequence, regardless of length, that is complementary to the coding strand or mRNA of an IAP gene. Preferably the antisense nucleic acid is capable of enhancing apoptosis when present in a cell that normally does not undergo sufficient apoptosis. Preferably the increase is at least 10%, relative to a control, more preferably 25%, and most preferably 1-fold or more. Preferably an IAP antisense nucleic acid comprises from about 8 to 30 nucleotides. An IAP antisense nucleic acid may also contain at least 40, 60, 85, 120, or more consecutive nucleotides that are complementary to a IAP mRNA or DNA, and may be as long as a full-length IAP gene or mRNA. The antisense nucleic acid may contain a modified backbone, for example, phosphorothioate, phosphorodithioate, or

other modified backbones known in the art, or may contain non-natural internucleoside linkages.

By "ribozyme" is meant an RNA that has enzymatic activity, possessing site specificity and cleavage capability for a target RNA molecule. Ribozymes can be used to decrease expression of a polypeptide. Methods for using ribozymes to decrease polypeptide expression are described, for example, by Turner et al., (Adv. Exp. Med. Biol. 465:303-318, 2000) and Norris et al., (Adv. Exp. Med. Biol. 465:293-301, 2000).

By "substantially identical" is meant a polypeptide or nucleic acid exhibiting at least 50%, preferably 85%, more preferably 90%, and most preferably 95% homology to a reference amino acid or nucleic acid sequence. For polypeptides, the length of comparison sequences will generally be at least 16 amino acids, preferably at least 20 amino acids, more preferably at least 25 amino acids, and most preferably 35 amino acids. For nucleic acids, the length of comparison sequences will generally be at least 50 nucleotides, preferably at least 60 nucleotides, more preferably at least 75 nucleotides, and most preferably 110 nucleotides.

Sequence identity is typically measured using sequence analysis software with the default parameters specified therein (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). This software program matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

By "substantially pure polypeptide" is meant a polypeptide that has been separated from the components that naturally accompany it.

Typically, the polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules

- 5 with which it is naturally associated. Preferably the polypeptide is an IAP polypeptide that is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, pure. A substantially pure IAP polypeptide may be obtained, for example, by extraction from a natural source (e.g., a fibroblast, neuronal cell, or lymphocyte) by expression of a
- 10 recombinant nucleic acid encoding an IAP polypeptide, or by chemically synthesizing the protein. Purity can be measured by any appropriate method, e.g., by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

A protein is substantially free of naturally associated components

- 15 when it is separated from those contaminants that accompany it in its natural state. Thus, a protein that is chemically synthesized or produced in a cellular system different from the cell from which it naturally originates will be substantially free from its naturally associated components.

Accordingly, substantially pure polypeptides include those derived from

- 20 eukaryotic organisms but synthesized in *E. coli* or other prokaryotes.

By "substantially pure DNA" is meant DNA that is free of the genes that, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a

- 25 vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other

sequences. It also includes a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.

By "positioned for expression" is meant that the DNA molecule is positioned adjacent to a DNA sequence, that directs transcription and
5 translation of the sequence (i.e., facilitates the production of, e.g., an IAP polypeptide, a recombinant protein or an RNA molecule).

By "reporter gene" is meant a gene whose expression may be assayed; such genes include, without limitation, glucuronidase (GUS), luciferase, chloramphenicol transacetylase (CAT), and Beta-galactosidase.

10 By "promoter" is meant a minimal sequence sufficient to direct transcription. Also included in the invention are those promoter elements that are sufficient to render promoter-dependent gene expression controllable for cell type-specific, tissue-specific or that are inducible by external signals or agents; such elements may be located in the 5' or 3'
15 regions of the native gene.

By "operably linked" is meant that a gene and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.

20 By "conserved region" is meant any stretch of six or more contiguous amino acids exhibiting at least 30%, preferably 50%, and most preferably 70% amino acid sequence identity between two or more of the IAP family members, (e.g., between human HIAP1, HIAP2, and XIAP). Examples of preferred conserved regions include, without limitation, BIR
25 domains and ring zinc finger domains.

By "detectably-labelled" is meant any means for marking and identifying the presence of a molecule, e.g., an oligonucleotide probe or primer, a gene or fragment thereof, or a cDNA molecule. Methods for detectably-labelling a molecule are well known in the art and include,

without limitation, radioactive labelling (e.g., with an isotope such as ^{32}P or ^{35}S) and nonradioactive labelling (e.g., chemiluminescent labeling or fluorescein labelling).

By "purified antibody" is meant an antibody that is at least 60%, by weight, free from proteins and naturally occurring organic molecules with which it is naturally associated. Preferably the preparation is at least 75%, more preferably 90%, and most preferably at least 99%, by weight, antibody, e.g., an IAP-specific antibody. A purified antibody may be obtained, for example, by affinity chromatography using recombinantly-produced protein or conserved motif peptides and standard techniques.

By "specifically binds" is meant an antibody that recognizes and binds a protein but that does not substantially recognize and bind other molecules in a sample, e.g., a biological sample, that naturally includes protein.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Brief Description of the Drawings

Fig. 1 is the human XIAP cDNA sequence (SEQ ID NO: 218) and the XIAP polypeptide sequence (SEQ ID NO: 219).

Fig. 2 is the human HIAP1 cDNA sequence (SEQ ID NO: 220) and the HIAP1 polypeptide sequence (SEQ ID NO: 221).

Fig. 3 is the human HIAP2 cDNA sequence (SEQ ID NO: 222) and the HIAP2 polypeptide sequence (SEQ ID NO: 223). The sequence absent in the HIAP2 variant is boxed.

Fig. 4 is the murine XIAP (also referred to as "miap-3") cDNA sequence (SEQ ID NO: 224) and encoded murine XIAP polypeptide sequence (SEQ ID NO: 225).

Fig. 5 is the murine HIAP1 (also referred to as "miap-1") cDNA sequence (SEQ ID NO: 226) and the encoded murine HIAP1 polypeptide sequence (SEQ ID NO: 227).

Fig. 6 is the murine HIAP2 (also referred to as "miap-2") cDNA sequence (SEQ ID NO: 228) and the encoded murine HIAP2 polypeptide (SEQ ID NO: 229).

Figs. 7A through 7L are graphs showing the effect of antisense XIAP oligonucleotides on XIAP protein expression, relative to total protein (Figs. 7A, 7C, 7E, 7G, 7I, and 7K). Figs. 7B, 7D, 7F, 7H, 7J, and 7L are the total protein concentration values for each oligonucleotide transfection compared to mock transfection results that were used to normalize the above XIAP protein results.

Figs. 8A through 8C are graphs showing the effects of various antisense XIAP oligonucleotides, alone or in combination, on XIAP RNA (Fig. 8A) and protein (Fig. 8B). Fig. 8C is a graph of the total protein concentration values for each oligonucleotide transfection compared to mock transfection results, which were used to normalize the XIAP protein results shown in Fig. 8B.

Figs. 9A through 9D are graphs of the effects of antisense XIAP oligonucleotides on cell viability (Figs. 9A, 9C, and 9D), and chemosensitization in the presence of adriamycin (Fig. 9B).

Fig. 10 is a graph showing the effects of HIAP1 antisense oligonucleotides on HIAP1 RNA levels.

Fig. 11A is a densitometric scan of a Western blot showing the effects of HIAP1 antisense oligonucleotides on a cell's ability to block cycloheximide-induced upregulation of HIAP1 protein.

Fig. 11 is a graph showing the effects of HIAP1 antisense oligonucleotides on a cell's ability to block cycloheximide-induced upregulation of HIAP1 protein.

Fig. 12 is a graph showing the effects of HIAP1 antisense oligonucleotides on cytotoxicity, as measured by total protein.

Fig. 13 is a graph showing the validation of the sequence specificity for HIAP1 antisense oligonucleotide APO 2.

5 Fig. 14 is a graph showing the effect of HIAP1 antisense oligonucleotides on the chemosensitization of drug-resistant SF295 glioblastomas.

Fig. 15 is the human XIAP sequence containing a 5' UTR, the coding region, and a 3' UTR (SEQ ID NO: 230).

10 Fig. 16 is the human HIAP1 sequence containing a 5' UTR, the coding region, and a 3' UTR (SEQ ID NO: 231).

Detailed Description of the Invention

The present invention provides IAP antisense nucleic acid sequences that inhibit IAP biological activity, regardless of length, and methods for using them to induce apoptosis in a cell. The antisense nucleic acids of the present invention may also be used to form pharmaceutical compositions. The invention also features methods for enhancing apoptosis in a cell by administering a negative regulator of the IAP anti-apoptotic pathway other than antisense. Such negative regulators include, for example, an IAP polypeptide comprising a ring zinc finger having no more than two BIR domains, and a compound that prevents cleavage of an IAP polypeptide. Such negative regulators may also be used to form a pharmaceutical composition. These pharmaceutical compositions may be used to treat, ameliorate, improve, sustain, or prevent a proliferative disease, for example, cancer, or a symptom of a proliferative disease.

Administration

An IAP antisense nucleic acid, or other negative regulator of the IAP anti-apoptotic pathway may be administered within a pharmaceutically-acceptable diluent, carrier, or excipient, in unit dosage form. Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer the compounds to patients suffering from a disease that is caused by excessive cell proliferation. Administration may begin before the patient is symptomatic. Any appropriate route of administration may be employed, for example, administration may be parenteral, intravenous, intraarterial, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, aerosol, suppository, or oral administration. For example, therapeutic formulations may be in the form of liquid solutions or suspensions; for oral administration, formulations may be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols.

Methods well known in the art for making formulations are found, for example, in "Remington's Pharmaceutical Sciences." Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated naphthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for IAP modulatory compounds include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example,

polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.

The formulations can be administered to human patients in therapeutically effective amounts (e.g., amounts which prevent, eliminate, 5 or reduce a pathological condition) to provide therapy for a disease or condition. The preferred dosage of therapeutic agent to be administered is likely to depend on such variables as the type and extent of the disorder, the overall health status of the particular patient, the formulation of the compound excipients, and its route of administration.

10 If desired, treatment with an IAP antisense nucleic acid, IAP fragments, or other negative regulator of the anti-apoptotic pathway may be combined with more traditional therapies for the proliferative disease such as surgery or chemotherapy.

15 For any of the methods of application described above, the therapeutic antisense IAP nucleic acid or other negative regulator of the IAP anti-apoptotic pathway is preferably applied to the site of the needed apoptosis event (for example, by injection). However, it may also be applied to tissue in the vicinity of the predicted apoptosis event or to a blood vessel supplying the cells predicted to require enhanced apoptosis.

20 The dosage of an antisense IAP nucleic acid, or a negative regulator of the IAP anti-apoptotic pathway, for example, an IAP fragment, IAP mutant protein or an IAP antibody depends on a number of factors, including the size and health of the individual patient, but, generally, between 0.1 mg and 100 mg inclusive are administered per day to an adult 25 in any pharmaceutically acceptable formulation. In addition, treatment by any IAP-modulating gene therapy approach may be combined with more traditional therapies.

Antisense Therapy

Anti-cancer therapy may be accomplished by direct administration of a therapeutic antisense IAP nucleic acid to a cell that is expected to require enhanced apoptosis. The antisense nucleic acid may be produced 5 and isolated by any one of many standard techniques. Administration of IAP antisense nucleic acids to malignant cells can be carried out by any of the methods for direct nucleic acid administration, as described herein.

Retroviral vectors, adenoviral vectors, adeno-associated viral vectors, or other viral vectors with the appropriate tropism for cells likely 10 requiring enhanced apoptosis (for example, breast cancer and ovarian cancer cells) may be used as a gene transfer delivery system for a therapeutic antisense IAP gene construct. Numerous vectors useful for this purpose are generally known (Miller, Human Gene Therapy 15:14, 1990; Friedman, Science 244:1275-1281, 1989; Eglitis and Anderson, 15 BioTechniques 6:608-614, 1988; Tolstoshev and Anderson, Current Opinion in Biotechnology 1:55-61, 1990; Sharp, The Lancet 337:1277-1278, 1991; Cornetta et al., Nucleic Acid Research and Molecular Biology 36:311-322, 1987; Anderson, Science 226:401-409, 1984; Moen, Blood Cells 17:407-416, 1991; Miller et al., BioTechniques 7:980-990, 1989; Le 20 Gal La Salle et al., Science 259:988-990, 1993; and Johnson, Chest 107:77S-83S, 1995).

Retroviral vectors are particularly well developed and have been used in clinical settings (Rosenberg et al., N. Engl. J. Med 323:370, 1990; Anderson et al., U.S. Patent No. 5,399,346). Non-viral approaches may 25 also be employed for the introduction of therapeutic DNA into cells otherwise predicted to undergo apoptosis. For example, IAPs may be introduced into a cell by lipofection (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413, 1987; Ono et al., Neurosci. Lett. 117:259, 1990; Brigham et al., Am. J. Med. Sci. 298:278, 1989; Staubinger et al., Meth. Enz. 101:512,

1983), the penetratin system (Allinquant et al., J. Cell Biol. 128:919-927, 1995; Prochiantz, Curr. Opin. Neurobiol. 6:629-634, 1996), asialorosonucoid-polylysine conjugation (Wu et al., J. Biol. Chem. 263:14621, 1988; Wu et al., J. Biol. Chem. 264:16985, 1989); or, less 5 preferably microinjection under surgical conditions (Wolff et al., Science 247:1465, 1990).

In the therapeutic nucleic acid constructs described, nucleic acid expression can be directed from any suitable promoter (e.g., the human cytomegalovirus (CMV), simian virus 40 (SV40), or metallothionein 10 promoters), and regulated by any appropriate mammalian regulatory element. For example, if desired, enhancers known to preferentially direct gene expression in ovarian cells, breast tissue, neural cells, T cells, or B cells may be used to direct expression. Enhancers include, without limitation, those that are characterized as tissue- or cell-specific in their 15 expression. Alternatively, if a clone is used as a therapeutic construct, regulation may be mediated by the cognate regulatory sequences or, if desired, by regulatory sequences derived from a heterologous source, including any of the promoters or regulatory elements described above.

20 Therapeutic Products

For IAP related therapies one may employ the paradigms utilized for Bcl-2 and Ras antisense development, although accommodation of an IAP mutation is not required (in contrast to Ras antisense). Most useful are antisense constructs that enhance apoptosis at least 10%, preferably by 25 enhancing degradation of the RNA in the nucleus.

Manipulation of cancer chemotherapeutic drug resistance using an antisense oligonucleotide and fragment approaches

We have documented that overexpression of the IAPs renders cell

lines resistant to serum growth factor withdrawal, tumor necrosis factor

5 alpha (TNF) and menadione exposure, all of which are treatments that normally induce apoptosis. Herein, we describe the extension of these studies to cancer cell lines using apoptotic triggers used in clinical situations, such as doxorubicin, adriamycin, and methotrexate. Our

findings have led up to the design of antisense RNA therapeutics. Rapid

10 screening of multiple cell lines for apoptotic response has been made feasible through the generation of a series of sense and antisense adenoviral IAP and expression vectors, as well as control lacZ viruses.

One may now show enhanced drug resistance using the expression constructs. In addition, anti-sense adenovirus constructs may be

15 developed and used to test reversal of the drug resistant phenotype of appropriate cell lines. We have designed a series of antisense oligonucleotides to various regions of each of the *iaps*. These oligonucleotides may be used to enhance drug sensitivity after testing in an assay system, i.e., with the adenoviral vectors system. Animal

20 modeling of the effectiveness of antisense IAP oligonucleotides may also be employed as a step in testing and appropriate transgenic mammals for this are described in U.S.S.N. 08/800,929, incorporated herein by reference, and are also generally available in the art.

25 Characterization of IAP Activity and Intracellular Localization Studies

The ability of IAPs to modulate apoptosis can be defined *in vitro* systems in which alterations of apoptosis can be detected. Mammalian expression constructs carrying IAP cDNAs, which are either full-length, truncated, or antisense constructs can be introduced into cell lines, such as

CHO, NIH 3T3, HL60, Rat-1, or Jurkat cells. In addition, SF21 insect cells may be used, in which case the IAP gene is preferentially expressed using an insect heat shock promoter. Following transfection, apoptosis can be induced by standard methods, which include serum withdrawal, or 5 application of staurosporine, menadione (which induces apoptosis via free radical formation), or anti-Fas antibodies. As a control, cells are cultured under the same conditions as those induced to undergo apoptosis, but either not transfected, or transfected with a vector that lacks an IAP insert. The ability of each IAP related construct to inhibit or enhance apoptosis 10 upon expression can be quantified by calculating the survival index of the cells, i.e., the ratio of surviving transfected cells to surviving control cells. These experiments can confirm the presence of apoptosis inhibiting activity and, as discussed below, can also be used to determine the functional region(s) of an IAP that may be employed to achieve 15 enhancement of apoptosis. These assays may also be performed in combination with the application of additional compounds in order to identify compounds that enhance apoptosis via IAP expression.

Apoptosis Assays

20 Specific examples of apoptosis assays are provided in the following references. Assays for apoptosis in lymphocytes are disclosed by: Li et al., "Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein", Science 268:429-431, 1995; Gibellini et al., "Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, 25 including acute human immunodeficiency virus-type 1 (HIV-1) infection", Br. J. Haematol. 89:24-33, 1995; Martin et al., "HIV-1 infection of human CD4⁺ T cells *in vitro*. Differential induction of apoptosis in these cells." J. Immunol. 152:330-342, 1994; Terai et al., "Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1", J.

Clin. Invest. 87:1710-1715, 1991; Dhein et al., "Autocrine T-cell suicide mediated by APO-1/Fas/CD95", Nature 373:438-441, 1995; Katsikis et al., "Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals", J. Exp. Med.

- 5 1815:2029-2036, 1995; Westendorp et al., "Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120", Nature 375:497, 1995; and DeRossi et al., Virology 198:234-44, 1994.

Assays for apoptosis in fibroblasts are disclosed by: Vossbeck et al., "Direct transforming activity of TGF-beta on rat fibroblasts", Int. J.

- 10 Cancer 61:92-97, 1995; Goruppi et al., "Dissection of c-myc domains involved in S phase induction of NIH3T3 fibroblasts", Oncogene 9:1537-1544, 1994; Fernandez et al., "Differential sensitivity of normal and H-ras transformed C3H mouse embryo fibroblasts to tumor necrosis factor: induction of bcl-2, c-myc, and manganese superoxide dismutase in 15 resistant cells", Oncogene 9:2009-2017, 1994; Harrington et al., "c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines", EMBO J., 13:3286-3295, 1994; and Itoh et al., "A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen", J. Biol. Chem. 268:10932-10937, 1993.

20 Assays for apoptosis in neuronal cells are disclosed by: Melino et al., "Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells", Mol. Cell. Biol.

14:6584-6596, 1994; Rosenbaum et al., "Evidence for hypoxia-induced, programmed cell death of cultured neurons", Ann. Neurol. 36:864-870,

- 25 1994; Sato et al., "Neuronal differentiation of PC12 cells as a result of prevention of cell death by bcl-2", J. Neurobiol. 25:1227-1234, 1994; Ferrari et al., "N-acetylcysteine D- and L-stereoisomers prevents apoptotic death of neuronal cells", J. Neurosci. 15:2857-2866, 1995; Talley et al., "Tumor necrosis factor alpha-induced apoptosis in human neuronal cells:

protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA”, Mol. Cell Biol. 15:2359-2366, 1995; and Walkinshaw et al., “Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease.”, J. Clin. Invest. 95:2458-2464, 1995.

Assays for apoptosis in insect cells are disclosed by: Clem et al., “Prevention of apoptosis by a baculovirus gene during infection of insect cells”, Science 254:1388-1390, 1991; Crook et al., “An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif”, J. Virol. 67:2168-2174, 1993; Rabizadeh et al., “Expression of the baculovirus p35 gene inhibits mammalian neural cell death”, J. Neurochem. 61:2318-2321, 1993; Birnbaum et al., “An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs”, J. Virol. 68:2521-2528, 1994; and Clem et al., “Control of programmed cell death by the baculovirus genes p35 and IAP”, Mol. Cell. Biol. 14:5212-5222, 1994.

The following examples are to illustrate the invention. They are not meant to limit the invention in any way.

20

Example 1: Testing of antisense oligonucleotides

1. *Complete panel of adenovirus constructs.* The panel may consist of approximately four types of recombinant virus. A) Sense orientation viruses for each of the IAP open reading frames. These viruses are designed to massively overexpress the recombinant protein in infected cells. XIAP, HIAP1, HIAP2, and NAIP. B) Antisense orientation viruses in which the viral promoter drives the synthesis of an mRNA of opposite polarity to the *iap* mRNA, thereby shutting off host cell synthesis of the

targeted protein coding region. XIAP, HIAP1, HIAP2, and NAIP “antisense” constructs are used for production of such antisense IAPs. C)

Sub-domain expression viruses. These constructs express only a partial IAP protein in infected cells. We have data indicating that deletion of the

- 5 zinc finger of XIAP renders the protein more potent in protecting cell against apoptotic triggers. This data also indicates that expression of the zinc finger alone will indicate apoptosis by functioning as a dominant-negative repressor of XIAP function. XIAP- ZF and XIAP- BIR viruses are required. D) Control viruses. Functional analysis of the IAPs requires
10 suitable positive and negative controls for comparison. Bcl-2 sense, Bcl-2 antisense, p53 sense, and Lac Z (negative control) viruses may be utilized.

2. *Confirmation of recombinant adenovirus function.* Verification of the sense adenovirus function involves infection of tissue culture cells and

- 15 determination of protein expression levels. We have performed Western blot analysis of several of the recombinant adenoviruses, including NAIP, XIAP and XIAP- ZF. The remaining viruses may be readily assessed for protein expression using the polyclonal IAP antibodies. Functional analysis of the antisense viruses may be done at the RNA level using
20 either Northern blots of total RNA harvested from infected tissue culture cells or ribonuclease protection assays. Western blot analysis of infected cells will be used to determine whether the expressed antisense RNA interferes with IAP expression in the host cell.

- 25 3. *Documentation that IAP overexpression results in increased drug resistance.* We have optimized cell death assays to allow high through-put of samples with minimal sample variation. Testing of the sense IAP adenoviruses for their ability to alter drug sensitivity of breast and pancreatic adenocarcinoma cell lines may be accomplished as follows.

Cancer cell lines are infected with the recombinant viruses, cultured for 5 days, then subdivided into 24 well plates. Triplicate cell samples each receive increasing concentrations of the anti-cancer drug under investigation. Samples are harvested at 24, 48, and 72 hours post-exposure, and assayed for the number of viable cells in the well. The dose response curve is then compared to uninfected and control virus (both positive and negative) infected cells. One may document a dramatic increase in the relative resistance of the cancer cell lines when infected with the sense viruses, confirming our hypothesis that overexpression of the IAP proteins contributes to the anti-apoptotic phenotype of cancer cells. Initial experiments utilize the drugs doxorubicin and adriamycin.

- 10 *4. Documentation that antisense IAP overexpression results in increased drug sensitivity.* Having confirmed that IAP overexpression renders cancer cells more resistant to chemotherapeutic drugs, one may examine whether the antisense adenoviruses render the same cells more sensitive. The effectiveness of antisense IAP viruses relative to antisense Bcl-2 virus will also be assessed as a crucial milestone.
- 15 *5. Identification of antisense oligonucleotides.* Concomitant to the adenovirus work, we have designed a series of antisense oligonucleotides to various regions of each of the IAPs. A generally accepted model of how antisense oligonucleotides function proposes that the formation of RNA/DNA duplexes in the nucleus activates cellular RnaseH enzymes which then enzymatically degrade the mRNA component of the hybrid. Virtually any region of the mRNA can be targeted, and therefore choosing an appropriate sequence to target is somewhat empirical.

6. *Optimization of oligonucleotides.* A secondary round of oligonucleotides may be made when effective target regions have been identified. These oligonucleotides target sequences in the immediate vicinity of the most active antisense oligonucleotides identified using 5 methods such as those provided above. A second round of testing by Northern blot analysis may be required.

7. *Testing antisense oligonucleotides in vitro.* Following successful identification and optimization of targeting oligonucleotides, one may test 10 these in the tissue culture model system using the optimal cell lines such as those described in the cancer survey described in U.S.S.N. 08/800,929, incorporated herein by reference. Experimental procedures may parallel those used in the recombinant antisense adenovirus work. Negative control oligonucleotides with miss-match sequences are used to establish 15 base line or non-specific effects. Assisted transfection of the oligonucleotides using cationic lipid carriers may be compared to unassisted transfection. Confirmation of the effectiveness of specific antisense oligonucleotides prompts synthesis of oligonucleotides with modified phosphodiester linkages, such as phosphorothioate or 20 methylimino substituted oligonucleotides. These may also be tested *in vitro*.

8. *Animal modeling of antisense oligonucleotide therapies.* Animal modeling of the effectiveness of the antisense IAP approach is described 25 here. Cell lines are routinely assessed for their tumorigenic potential in "nude" mice, a hairless strain of mouse that is immunocompromised, and thus extremely susceptible to developing tumors. In the nude mouse assay, cancer cells are grown in tissue culture and then injected under the skin at multiple sites. The frequency with which these cells give rise to

palpable tumors within a defined period of time provides an index of the tumorigenic potential of the cell line in the absence of interference by a functional immune system. Preliminary assessment of an antisense IAP therapeutic involves injection of cancer cells infected with the recombinant adenoviruses (sense, antisense, and control viruses) under the skin, and the tumorigenic index compared to that of untreated cells. One may also use this model to assess the effectiveness of systemic administration of antisense oligonucleotides in increasing the efficacy of anti-cancer drugs in the nude mouse model. Phosphorothioate or methylimino substituted oligonucleotides will be assessed at this stage. This type of antisense oligo has demonstrated enhanced cell permeability and slower clearance rates from the body in experimental animal models.

Example 2: Antisense oligonucleotide (ODN) selection

We selected 96 or 98, mostly non-overlapping, 19-mer antisense oligonucleotide (ODN) sequences for XIAP and HIAP1, respectively, based on the selection criteria listed below. In the case of XIAP, we selected 96 sequences (each being 19 nucleobases in length) (SEQ ID NOS: 1 through 96; Table 1), from a region approximately 1 kb upstream of the start codon to approximately 1 kb downstream of the stop codon of the cDNA sequence (Fig. 15). This blanketed approximately 50% of the coding region, and immediate 5' and 3' UTR sequences (i.e., 96 19-mers span 1.8 kb of sequence, while the targeted region is approximately 3.5 kb in length, comprised of a coding region of 1.5 kb plus 1 kb at either side of UTR sequences).

Table 1. XIAP Antisense Oligonucleotides

SEQ ID NO:	Code	Position in XIAP Sequence	Antisense Oligonucleotide Sequence
1	A1	2	AAAATTCTAAGTACCTGCA
2	B1	21	TCTAGAGGGTGGCTCAGGA
3	C1	44	CAGATATATATGTAACACT
4	D1	78	TGAGAGCCCTTTTTGTT
5	E1	110	AGTATGAAATATTCGTGAT
6	F1	134	ATTGGTTCCAATGTGTTCT
7	G1	160	TTAGCAAAATATGTTTAA
8	H1	185	TGAATTAATTTTAATATC
9	A2	238	ATTCAAGGCATCAAAGTTG
10	B2	326	GTCAAATCATTAATTAGGA
11	C2	370	AATATGTAAACTGTGATGC
12	D2	411	GCAGAATAAAACTAATAAT
13	E2	430	GAAAGTAATATTTAACGAG
14	F2	488	TTACCACATCATTAAGTC
15	G2	508	CTAAATACTAGAGTTCGAC
16	H2	535	ACACGACCGCTAACAAACA
17	A3	561	TATCCACTTATGACATAAA
18	B3	580	GTTATAGGAGCTAACAAAT
19	C3	607	AATGTGAAACACAAGCAAC
20	D3	638	ACATTATATTAGGAATCC
21	E3	653	CTTGTCCACCTTTCTAAA
22	F3	673	ATCTTCTCTTGAAAATAGG
23	G3	694	CCTTCAAAACTGTTAAAAG
24	H3	721	ATGTCTGCAGGTACACAAG
25	A4	759	ATCTATTAACACTCTCTAC

SEQ ID NO:	Code	Position in XIAP Sequence	Antisense Oligonucleotide Sequence
26	B4	796	ACAGGACTACCACITGGAA
27	C4	815	TGCCAGTGTGATGCTGAA
28	D4	835	GTATAAAGAAACCTGCTC
29	E4	856	CGCACGGTATCTCCTTCAC
30	F4	882	CTACAGCTGCATGACAAC
31	G4	907	GCTGAGTCTCCATATTGCC
32	H4	930	ATACTTCTGTGTCTTCC
33	A5	950	GATAAAATCTGCAATTGGG
34	B5	990	TTGTAGACTGCGTGGCACT
35	C5	1010	ACCATTCTGGATACCAGAA
36	D5	1029	AGTTTTCAACTTTGTACTG
37	E5	1059	ATGATCTCTGCTTCCCAGA
38	F5	1079	AGATGGCCTGTCTAAGGCA
39	G5	1100	AGTTCTCAAAAGATAAGTCT
40	H5	1126	GTGTCTGATATATCTACAA
41	A6	1137	TCGGGTATATGGTGTCTGA
42	B6	1146	CAGGGTTCCCTCGGGTATAT
43	C6	1165	GCTTCTTCACAATACATGG
44	D6	1192	GGCCAGTTCTGAAAGGACT
45	E6	1225	GCTAACTCTCTGGGGTTA
46	F6	1246	GTGTAGTAGAGTCCAGCAC
47	G6	1273	AAGCACTGCACITGGTCAC
48	H6	1294	TTCAGTTTCCACCAAC
49	A7	1316	ACGATCACAAGGTTCCCAA
50	B7	1337	TCGCCTGTGTTCTGACCAG
51	C7	1370	CCGGCCCCAAAACAAAGAAG

SEQ ID NO:	Code	Position in XIAP Sequence	Antisense Oligonucleotide Sequence
52	D7	1393	GATTCACCTCGAATATTAA
53	E7	1413	TATCAGAAACTCACAGCATC
54	F7	1441	GGAAGATTTGTTGAATTG
55	G7	1462	TCTGCCATGGATGGATTTC
56	H7	1485	AAGTAAAGATCCGTGCTTC
57	A8	1506	CTGAGTATATCCATGTCCC
58	B8	1525	GCAAGCTGCTCCITGTTAA
59	C8	1546	AAAGCATAAAATCCAGCTC
60	D8	1575	GAAAGCACTTTACTTTATC
61	H8	1610	ACTGGGCTTCCAATCAGTT
62	E8	1629	GTTGTTCCCAAGGGTCTTC
63	F8	1650	ACCCTGGATACCATTAGC
64	G8	1669	TGTTCTAACAGATATTGC
65	A9	1688	TATATATTCTTGTCCCTTC
66	B9	1696	AGTTAAATGAATATTGTTT
67	C9	1725	GACACTCCTCAAGTGAATG
68	D9	1745	TTTCTCAGTAGTTCTTACC
69	E9	1759	GTTAGTGATGGTGTTCCT
70	F9	1782	AGATGGTATCATCAATTCT
71	G9	1801	TGTACCATAGGATTTGGA
72	H9	1820	CCCCATTCCGTATAGCTTCT
73	A10	1849	ATTATTTCTTAATGTCCT
74	B10	1893	CAAGTGATTTATAGTTGCT
75	C10	1913	TAGATCTGCAACCAGAACCC
76	D10	1945	CATCTTGCATACTGTCTTT
77	E10	1997	CCTTAGCTGCTCTCAGTA

SEQ ID NO:	Code	Position in XIAP Sequence	Antisense Oligonucleotide Sequence
78	F10	2018	AAGCTTCTCCTCTTGAGG
79	G10	2044	ATATTCTATCCATACAGA
80	H10	2076	CTAGATGTCCACAAGGAAC
81	A11	2096	AGCACATTGTTACAAGTG
82	B11	2123	AGCACATGGGACACTTGTC
83	C11	2144	CTTGAAAGTAATGACTGTG
84	D11	2182	CCTACTATAGAGTTAGATT
85	E11	2215	ATTCAATCAGGGTAATAAG
86	F11	2234	AAGTCAGITCACATCACAC
87	G11	2375	CAGTAAAAAAATGGATAA
88	H11	2428	TTCAGTTATAGTATGATGC
89	A12	2471	TACACTTAGAAATTAAATC
90	B12	2630	TCTCTATCTTCCACCAGC
91	C12	2667	AGAACCTAAACACAACA
92	D12	2709	ATTCGCACAAGTACGTGTT
93	E12	2785	TGTCAGTACATGTTGGCTC
94	F12	2840	ACATAGTGTGTTGCCACTT
95	G12	2861	CTTGATCTGGCTCAGACT
96	H12	2932	GAAACCACATTTAACAGTT

Note that the three most 5' and the three most 3' nucleobases may comprise DNA residues, or RNA residues, such as 2'-O methyl RNA residues. For example, the antisense oligonucleotide sequence of SEQ ID NO: 3 may be CAGATATATATGTAACACT or CAGATATATATGTAACACU.

A similar approach was taken for designing antisense oligonucleotides against HIAP1. Ninety-eight 19-mer sequences were chosen, with some of the latter sequences picked using less stringent criteria than the originally defined selection criteria (listed below), to increase the number of candidate sequences to study (SEQ ID NOS: 97 through 194; Table 2). Of these 98 sequences targeted to the HIAP1 sequence of Fig. 16, 15 (SEQ ID NOS: 97 through 104, 107, 113, 136, 156, 157, 181, and 193) were selected to evaluate the efficacy of decreasing HIAP1 expression. These 15 candidate sequences consisted of 4 sequences targeting the coding region (SEQ ID NOS: 136, 156, 157, and 181), 1 sequence targeting the 3' UTR (SEQ ID NO: 193), and 7 sequences targeting the 5'UTR (SEQ ID NOS: 100 through 104, 107, and 113; one of the 7 oligonucleotides overlapped the start codon), and 3 other oligonucleotides (SEQ IDs 97 through 99) that were designed to target an intronic segment of the 5'UTR (the value of which is discussed in Example 7). These above-described 15 HIAP1 antisense oligonucleotides were synthesized and tested.

Table 2. HIAP1 Antisense Oligonucleotides

SEQ ID NO	Code	Position in HIAP1 Sequence	Antisense Oligonucleotide Sequence
97	APO 1	1152	TCATTTGAGCCTGGGAGGU
98	APO 2	1172	CGGAGGCTGAGGCAGGAGA
99	APO 3	1207	GGTGTGGTGGTACGCCCT
100	APO 4	1664	ACCCATGCACAAAATCACC
101	APO 5	1865	AGAATGTGCCAGTAGGAGA
102	APO 6	2440	TCTCACAGACGTTGGCCTT
103	APO 7	2469	CCAGTGGTTGCAAGCATG
104	APO 8	3695	GAAATTAGTGGCCAGGAA
105		4013	AGAAATACACAATTGCACC
106		4032	TACTGATAACATTTAACCA
107	APO 9	4057	TTCAACATGGAGATTCTAA
108		4076	ATTTCTATGCATTTAGAGT
109		4121	AATACTAGGCTGAAAAGCC
110		4142	GGCTTGCTTTATCAGTT
111		4165	TCTAGGGAGGTAGTTTGT

SEQ ID NO	Code	Position in HIAP1 Sequence	Antisense Oligonucleotide Sequence
112		4189	GGGAAGAAAAGGGACTAGC
113	APO 10	4212	GTTCATATGAAATGAATG
114		4233	ATAAGAATATGCTGTTTC
115		4265	TTCAAACGTGTTGGCGCTT
116		4283	ATGACAAAGTCGTATTCAG
117		4317	AAGTGGAAATACGTAGACAT
118		4338	AGACAGGAACCCCAGCAGG
119		4357	CGAGCAAGACTCCTTCTG
120		4376	AGTGTAA TAGAAACCAGCA
121		4395	TGACCTTGTCAATTACACC
122		4426	TTATCCAGCATCAGGCCAC
123		4445	ACTGTCTCCTCTTTCCAG
124		4464	TTTATGCTTTCAGTAGG
125		4489	ACGAATCTGCAGCTAGGAT
126		4517	CAAGTTGTTAACGGAATT
127		4536	TAGGCTGAGAGGTAGCTTC
128		4555	GTTACTGAAGAAGGAAAAG
129		4574	GAATGAGTGTGTGGAATGT
130		4593	TGTTTCTGTACCCGGAAG
131		4612	GAGCCACGGAAATATCCAC
132		4631	TGATGGAGAGTTGAATAA
133		4656	GATTTGCTCTGGAGTTAC
134		4670	GGCAGAAAATTCTTGATTT
135		4696	GGACAGGGTAGGAACCTTC
136	APO 11	4714	GCATTTTCGTTATTCAATTG
137		4733	CTGAAAAGTAAGTAATCTG
138		4759	GGCGACAGAAAAGTCAATG
139		4812	CCACTCTGCTCCAGGTCC
140		4831	CCACCACAGGCAAAGCAAG
141		4855	ITCGGTTCCAATTGCTCA
142		4874	TTCTGACATAGCATTATCC
143		4893	TGGGAAAATGTCTCAGGTG
144		4907	TATAAATGGCATTGGGA
145		4926	TGTCTGAAGCTGATTTC
146		4945	GAAACTGTGTATCTTGAAG
147		4964	TGTCTGCATGCTCAGATTA
148		4988	GAATGTTTAAAGCGGGCT
149		5007	CACTAGAGGGCCAGTTAAA
150		5040	CCGCACCTGCAAGCTGCTC
151		5070	CATCATCACTGTTACCCAC
152		5095	CCACCATCACAGCAAAAGC
153		5117	TCCAGATTCCAACACCTG
154		5130	CCCATGGATCATCTCCAGA
155		5149	AACCACTGGCATGTTGAA
156	APO 12	5168	CAAGTACTCACACCTTGGA
157	APO 13	5187	CCTGTCCTTAAATTCTTAT
158		5206	TGAACCTTGACGGATGAAC
159		5225	TAGATGAGGGTAACTGGCT
160		5244	TGGATAGCAGCTGTTCAAG
161		5271	CATTTTCATCTCCTGGGCT

SEQ ID NO	Code	Position in HIAP1 Sequence	Antisense Oligonucleotide Sequence
162		529	TGGATAATTGATGACTCTG
163		5309	GTCITCTCCAGGTTCAAAA
164		5337	TATTCATCATGATTGCATC
165		5366	CATTTCCACGGCAGCATT
166		5367	CCAGGCTTCTACTAAAGCC
167		5416	GCTAGGATTTTCTCTGAA
168		5435	TCTATAATTCTCTCCAGTT
169		5454	ACACAAGATCATTGACTAG
170		5473	TCTGCATTGAGTAAGTCTA
171		5492	CTCTTCCCTTATTTCATCT
172		5515	TCCTCAGTTGCTCTTCTC
173		5560	GCCATTCTATTCTCCGGA
174		5579	AGTCAAATGTTGAAAAAGT
175		5598	CCAGGATTGGAATTACACA
176		5622	ATTCCGGCAGTTAGTAGAC
177		5646	TAACATCATGTTCTGTTC
178		5675	GTCTGTGTCCTCTGTTAA
179		5684	TTCTCTGCTTGAAAGAC
180		5703	CTAAAATCGTATCAATCAG
181	APO 14	5723	GGCTGCAATATTCCCTTT
182		5742	GAGAGTTCTGAATAACAGT
183		5761	ACAGCTTCAGCTTCTGCA
184		5780	AAATAAATGCTCATATAAC
185		5821	GAAACATCTCTGTGGAA
186		5841	GTTCTTCCACTGGTAGATC
187		5862	CTTCTTGAGTCTCCCAA
188		5890	TTGTCCATACACACTTTAC
189		6097	AACCAAATTAGGATAAAA G
190		6181	ATGTTCATATGGTTAGAT
191		6306	TAAGTTTACTTCACTTAC
192		6369	ATGTTCCCGGTATTAGTAC
193	APO 15	6432	GGGCTCAAGTAATTCTCTT
194		6455	GCCCAGGATGGATTCAAAC

Oligonucleotide selection criteria

The computer program OLIGO (previously distributed by National

- 5 Biosciences Inc.) was used to define suitable antisense oligonucleotides based on the following criteria: 1) no more than 75% GC content, and no more than 75% AT content; 2) preferably no oligonucleotide with 4 or more consecutive G residues (due to reported toxic effects, although one was chosen as a toxicity control); 3) no oligonucleotides with the ability

to form stable dimers or hairpin structures; and 4) sequences around the translation start site are a preferred region. In addition, accessible regions of the mRNA were predicted with the help of the RNA secondary structure folding program mfold, by M. Zuker (website 1999-2000:

- 5 <http://mfold2.wustl.edu/~mfold/rna/form1.cgi>). Sub-optimal folds with a free energy value within 5% of the predicted most stable fold of the mRNA were predicted using a window of 200 bases within which a residue can find a complimentary base to form a base pair bond. Open regions that did not form a base pair were summed together with each
10 suboptimal fold and areas that consistently were predicted as open were considered more accessible to the binding of antisense oligonucleotides. Additional oligonucleotides that only partially fulfilled some of the above selection criteria (1-4), were also chosen as possible candidates if they recognized a predicted open region of the target mRNA.

15

Example 3: Antisense oligonucleotide synthesis

The antisense oligonucleotides were synthesized by IDT (Integrated DNA Technologies, USA) as chimeric, second-generation oligonucleotides, consisting of a core of phosphodiester DNA residues flanked on either side by two 2'-O methyl RNA residues with a phosphorothioate linkage between the flanking RNA residues. The oligonucleotides were provided in a 96-well plate, as well as matching tubes, with a minimum of 12 ODs of oligo DNA, which provided ample material for transfections (greater than a hundred assays in the 96-well format) when the detection method is a sensitive method, such as TaqMan quantitative PCR, or an ELISA. Once the positive hits were identified (see below), the antisense oligonucleotides were re-synthesized with 3, instead of 2, flanking RNA residues to further increase stability/nuclease resistance. In addition, for validation purposes, appropriate controls (such

as scrambled, 4-base mismatch, and reverse polarity oligonucleotides) were synthesized for some of the antisense targets that yielded the highest antisense activity.

5 Example 4: Screening assays and optimization of antisense oligonucleotide sequences

Our approach to identifying IAP antisense oligonucleotides was to screen the above-described antisense oligonucleotide libraries for specific decreases (knock-down) of the RNA and protein for the specific 10 IAP gene targeted. Any number of standard assays may be used to detect RNA and protein levels in cells that have been administered an IAP antisense nucleic acid. For example, RNA levels can be measured using standard Northern blot analysis or RT-PCR techniques. In addition, 15 protein levels can be measured, for example, by standard Western blot analyses or immunoprecipitation techniques. Alternatively, cells administered an antisense IAP nucleic acid may be examined for cell viability, according to methods described for example, in U.S. Patent No. 5,919,912, or U.S.S.Ns. 08/576,956, 08/800,929, incorporated herein by reference.

20 We used TaqMan quantitative PCR conditions (described below) to assay for changes in mRNA levels after antisense oligonucleotide treatment, as well as our ELISA method for XIAP and Western blotting (described below) for changes in XIAP1 protein levels, using a polyclonal anti-XIAP1 antibody (rat XIAP1 ortholog; AEgera Therapeutics, Inc.) in the latter case. Transfection conditions were optimized with LipofectAMINE PLUS (Life Technologies, Canada) on T24 bladder carcinoma cells, or lipofectin on SF-295 glioblastoma cells, using a fluorescein-tagged control sense oligo from XIAP spanning the start codon (mGmAG AAG ATG ACT GGT AAmC mA; SEQ ID NO:

195). The results were visualized and gauged by epi-fluorescence microscopy. In addition, in the case of T24 cells, transfections were further optimized based on the ability of a published antisense oligonucleotide to downregulate survivin expression (Li et al., Nat. Cell Biol. 1:461-466, 1999) (U/TGT GCT ATT CTG TGA AU/TU/T SEQ ID NO: 196). We optimized the transfection conditions based on the TaqMan results of survivin RNA knock-down detected with PCR primers and fluorescent probe, described in detail below. Optimal conditions for oligo uptake by the cells were found to be 940 nM oligonucleotide and 40 µL PLUS reagent and 0.8 µL LipofectAMINE in a total of 70 µL for 3 hours. We then applied these conditions to screen for XIAP protein knock-down using the oligo library against T24 cells.

HIAP1 knock-down was studied in SF-295 cells because these cells had easily detectable and discernable 70 kDa HIAP1 protein, while many cell lines do not express high levels of the protein, or are not distinguishable from the large amounts of the similarly sized 68 kDa HIAP2 protein. In fact, there are a number of published errors involving HIAP1 and HIAP2 in the literature because of naming errors in the databases, and because of the poor quality and high crossreactivity, of the various commercial antibodies to HIAP1/cIAP2. The best way to distinguish HIAP1 from HIAP2 is to perform an immunoprecipitation experiment with an IAP antibody (Aegera Therapeutics, Inc.), separate the proteins by 2-dimensional gel electrophoresis, and to then carry out mass spectroscopy analysis of the spots migrating in the 68 to 70 kDa range to verify the identity of the HIAP1 and HIAP2 bands, using standard methods known in the art. This method determines if HIAP1 and HIAP2 co-migrate at the 68 kDa position, and if the 70 kDa form of HIAP1 results from a splice variant or a post-translational modification.

Real-time PCR

RNA was extracted from cells lysed in RLT buffer (QIAGEn, Inc., Canada), and purified using QIAGEN RNeasy columns/kits. Real-time quantitative PCR was performed on a Perkin-Elmer ABI 7700 Prism PCR machine. RNA was reverse transcribed and amplified according to the TaqMan Universal PCR Master Mix protocol of PE Biosystems, using primers and probes designed to specifically recognize XIAP, HIAP1, survivin, or GAPDH. For human survivin, the forward primer was 5'-TCT GCT TCA AGG AGC TGG AA-3', the reverse primer 10 was 5'-GAA AGG AAA GCG CAA CCG-3', and the probe was 5'-(FAM) AGC CAG ATG ACG ACC CCA TAG AGG AAC ATA(TAMRA)-3' (SEQ ID NOS: 197 through 199). For human HIAP1, the forward primer was 5'-TGG AGA TGA TCC ATG GGT TCA-3', the reverse primer was 5'-GAA CTC CTG TCC TTT AAT TCT TAT CAA 15 GT-3', and the probe was 5'-(FAM) CTC ACA CCT TGG AAA CCA CTT GGC ATG(TAMRA)-3' (SEQ ID NOS: 200 through 202). For human XIAP, the forward primer was 5'-GGT GAT AAA GTA AAG TGC TTT CAC TGT-3', the reverse primer was 5'-TCA GTA GTT CTT ACC AGA CAC TCC TCA A-3', and the probe was 5'-(FAM) CAA CAT 20 GCT AAA TGG TAT CCA GGG TGC AAA TAT C(TAMRA)-3' (SEQ ID NOS: 203 through 205). For human GAPDH, the forward primer was 5'-GAA GGT GAA GGT CGG AGT C-3', the reverse primer was 5'-GAA GAT GGT GAT GGG ATT C-3', and the probe was 5'-(JOE) CAA GCT TCC CGT TCT CAG CC(TAMRA)-3' (SEQ ID NOS: 206 through 25 208).

Relative quantitation of gene expression was performed as described in the PE Biosystems manual using GAPDH as an internal standard. The comparative Ct (cycle threshold) method was used for relative quantitation of IAP mRNA levels compared to GAPDH mRNA

levels. Briefly, real-time fluorescence measurements were taken at each PCR cycle and the threshold cycle (Ct) value for each sample was calculated by determining the point at which fluorescence exceeded a threshold limit of 30 times the baseline standard deviation. The average 5 baseline value and the baseline SD are calculated starting from the third cycle baseline value and stopping at the baseline value three cycles before the signal starts to exponentially rise. The PCR primers and/or probes for specific IAPs were designed to span at least one exon-intron boundary 10 of 1 or more kb of genomic DNA, to reduce the possibility of amplifying and detecting genomic DNA contamination. The specificity of 15 the signal, and possible contamination from DNA, were verified by annealing RNA samples with either DNase or RNase, prior to 20 the reverse transcription and PCR reaction steps.

15 *XIAP ELISA and HIAP1 Western immunoblots*

A standard colorimetric XIAP ELISA assay was performed using an affinity-purified rabbit polyclonal antibody to XIAP (Aegera Therapeutics, Inc.) as a capture antibody, and was detected with a XIAP monoclonal antibody (MBL, Japan) and a biotinylated anti-mouse Ig 20 antibody and horseradish peroxidase-conjugated streptavidin and TMB substrate. Alternatively, a polyclonal XIAP or HIAP1 antibody may be used to measure XIAP or HIAP1 protein levels, respectively.

HIAP1 was detected on a Western immunoblot using an affinity-purified anti-RIAP1 rabbit polyclonal antibody as a primary 25 antibody and was detected by ECL (Amersham) on X-ray film with a secondary horseradish-peroxidase-conjugated anti-rabbit Ig antibody and a chemiluminescent substrate. The anti-RIAP1 polyclonal antibody is raised against a GST-fusion of the rat ortholog of HIAP1. This antibody cross-reacts with both human and murine HIAP1 and HIAP2.

Example 5: Antisense XIAP oligonucleotides decrease XIAP RNA and polypeptide expression

The XIAP synthetic library of 96 antisense oligonucleotides was

- 5 first screened for decreases in XIAP protein levels. Specifically, T24 cells (1.5×10^4 cells/well) were seeded in wells of a 96-well plate on day 1, and were cultured in antibiotic-free McCoy's medium for 24 hours. On day 2, the cells were transfected with XIAP antisense oligonucleotides as described above (oligonucleotides are labeled according to their plated position, i.e., A1 to H12, and include 2 repeats, A13 and B13 that contain lyophilized DNA pellets that stuck to the sealing membrane). Briefly, the oligos were diluted in 10 μ l/well of serum-free, antibiotic-free McCoy's medium and then PLUS reagent was added. LipofectAMINE was diluted in 10 μ l/well of serum-free, antibiotic-free McCoy's medium, and both
- 10 mixes were incubated for 15 minutes at room temperature. The mixes were then combined and incubated for 15 minutes at room temperature.
- 15

In the meantime, the complete medium was removed from the cells

and 50 μ l/well of serum-free, antibiotic-free medium was added to the cells. The transfection mixes were added to the well, and the cells were incubated for 3 hours. Then 30 μ l/well of serum-free, antibiotic-free medium and 100 μ l/well of antibiotic-free complete medium, containing 2X fetal bovine serum were added to each well.

At day 3, XIAP RNA levels were measured using quantitative real-

time PCR techniques, as described above. At day 4, XIAP protein levels were measured by ELISA (Figs. 7A, 7C, 7E, 7G, 7I, and 7K), and total cellular protein was measured biochemically (Figs. 7B, 7D, 7F, 7H, 7J, and 7L; used to normalize the XIAP protein levels). The results were compared to a mock transfection sample (treated with the transfection agent but no oligonucleotide DNA was added, and then processed as for

the other samples). Time course experiments determined that the optimal time for protein knock-down to be around 12 to 24 hours.

The library was also screened for decreases in RNA levels, using TaqMan- specific PCR primers and fluorescent probes at the appropriate 5 optimal time, using the primers and probes described above. Time course experiments determined mRNA to be optimally decreased at 6 to 9 hours. These results agree well with the protein results.

The first screen (although performed at a sub-optimal time point when XIAP levels are returning to normal, possibly due to an outgrowth 10 of non-transfected cells) identified 16 antisense oligonucleotides (ODNs C2, E2, E3, F3, C4, D4, E4, F4, G4, C5, D5, B6, F6, D7, D8, F8) out of the total 96 antisense oligonucleotides tested that showed some decrease in XIAP protein levels relative to total protein, compared to mock (no ODN) transfection levels (Fig. 7A, 7C, 7E, 7G, 7I, and 7K). Interestingly, total 15 protein was decreased for each of these 16 ODNs, which indicates a toxic or cytostatic effect of these ODNs (Fig. 7B, 7D, 7F, 7H, 7J, 7L). Note that ODNs B9 and C9 showed a clear drop in total protein but no relative drop in XIAP protein levels. These 16 hits were then validated more rigorously at more optimal time points XIAP protein and RNA knock-down results at 20 12 hours after the start of transfection.

The 16 antisense ODNs that showed some decrease in relative XIAP protein levels compared to mock transfection, were re-tested alone or in combination, with one control oligo (D2) included, for their ability to knock-down XIAP protein at a more optimal time point (12 hours) based 25 on the above described time course studies (Fig. 8B). these ODNs were also examined for their ability to decrease XIAP mRNA levels at 12 hours, normalized against GAPDH levels, and compared to mock transfection. Total protein concentrations at 12 hours were also determined (Fig. 8C).

There was a good correlation between the ability of an antisense ODN to decrease XIAP protein levels (Fig. 8B) with its ability to decrease XIAP mRNA levels (Fig. 8A). In addition, there is no major loss of total protein at this early time point, and the decrease in XIAP mRNA and protein precede the decrease in total protein that is seen at later time points. The ODNs that showed greater than 50% loss of XIAP protein or mRNA levels alone, or in a combination of two ODNs added at a 0.5:0.5 ratio, were identified as the best ODNs and validated further. Of these 16 oligonucleotides, 10 of them (ODNs E2, E3, F3, E4, F4, G4, C5, B6, D7, 10 F8) showed a consistent ability to decrease XIAP protein or RNA levels by more than 50%, depending on the transfection conditions used, or when used in combination, as for ODNs C5 and G4.

Interestingly, these 16 oligonucleotides that demonstrated antisense activity clustered in 4 different target regions of the XIAP mRNA, with adjacent ODNs showing some knock-down activity. No antisense activity was observed by oligonucleotides that target sequences between these regions or islands of sensitivity. Presumably, these regions represent open areas on the mRNA that are accessible to antisense ODNs inside the cell. Two antisense oligonucleotides, E3 and F3, target XIAP just upstream of the start codon in the intervening region between the IRES and the translation start site, and partially overlap the end of the IRES element. ODNs C2, D2, and E2 target a XIAP region upstream of the minimal IRES element, providing further evidence that the minimal IRES region is a highly structured region of RNA which is not readily accessible to antisense ODNs *in vivo*. All the other antisense ODN hits fall within the coding region, including a cluster of activity at positions 856-916 of the XIAP sequence of Fig. 15 (ODNs E4, F4, and G4) and smaller separate areas, as demonstrated by ODNs C5 and D5, for example.

Example 6: XIAP antisense oligonucleotides increase cytotoxicity and chemosensitization

We also investigated if XIAP antisense ODNs could chemosensitize the highly drug resistant T24 cells to traditional 5 chemotherapeutic drugs, such as adriamycin or cisplatin. Antisense ODNs were chosen to represent some of the different XIAP target regions and were tested for their cytotoxic effects, alone or in combination with other ODNs or drugs. Five of the ten best XIAP antisense oligonucleotides were tested for their ability to kill or chemosensitize T24 bladder 10 carcinoma cells, and were compared to the effects of three corresponding scrambled control ODNs.

T24 cells were transfected with XIAP antisense oligonucleotides, scrambled oligonucleotides, no oligonucleotides (mock transfected), or were left untreated. The cells were tested for viability 20 hours after 15 transfection (with the exception of the untreated control) using the WST-1 tetrazolium dye assay in which WST-1 tetrazolium dye is reduced to a colored formazan product in metabolically active cells (Fig 9A). Alternatively, cell viability is tested using any one of the above described apoptosis methods.

The occurrence of cytotoxicity induced by the antisense XIAP ODN E4 was examined by visually inspecting T24 cells that were left untreated, mock transfected, or transfected with E4 antisense ODNs, E4 scrambled ODNs, E4 reverse polarity, or E4 mismatched ODNs. Twenty hours after transfection, the cells were examined for morphology (Fig. 9D). Only the 25 cell transfected with antisense E4 ODNs showed signs of toxicity.

To examine the effects of the oligonucleotides on the chemosensitization of the T24 cells to cisplatin or adriamycin, oligonucleotides were tested for their ability to further kill T24 cells in the presence of a fixed dose of adriamycin (0.5 µg/ml). Cells were first

transfected with the oligonucleotides, then adriamycin was added for another 20 hours. Viability was measured by WST-1 at the end of the 20 hour drug treatment (Fig. 9B). Values are shown as percentage viability compared to their ODN treatment alone results shown in Fig. 9C. Fig. 9C
5 is essentially a repeat of Fig. 9A, but with the actual corresponding values used in calculating the results for the chemosensitization experiment in Fig. 9B.

All 5 oligonucleotides tested (ODNs F3, E4, G4, C5, D7, or the combinations of E4+C5, or G4+C5) killed the T24 cells, leaving only
10 10-15% surviving cells after 24 hours, as compared to the mock (no ODN) transfected cells, or to cells transfected with 3 corresponding scrambled controls to F3 (mCmAmG AGA TTT CAT TTA AmCmG mU; SEQ ID NO: 209), E4 (mCmUmA CgC TCg CCA TCg TmUmC mA; SEQ ID NO: 210) and C5 (mUmGmC CCA AGA ATA CTA GmUmC mA; SEQ 15 ID NO: 211)(Figs. 9A and C). Therefore, the toxicity is sequence-specific to those ODNs that reduce XIAP levels, and not to a non-sequence specific toxicity due to ODNs of this chemistry in general, as three scrambled controls did not show any more toxicity compared to the mock transfected control. This cytotoxicity may result from the combined effect
20 of XIAP protein knock-down (and the expected loss of anti-apoptotic protection afforded by XIAP) and the cytotoxicity of the transfection itself. Both mock (no ODN) and scrambled ODN transfections resulted in an approximately 40% decrease in survival as compared to untreated cells (Fig. 9A). This is not unexpected, as the opposite is true (i.e.,
25 overexpression of IAPs protect insect cells from cytofectin-mediated cell death, a liposomal transfection agent similar to the ones used in these studies (Jones et al., J. Biol. Chem. 275:22157-22165, 2000)

The addition of a fixed dose of adriamycin or cisplatin at the end of the 3 hour transfection period resulted in a further decrease in survival for

some of the tested oligonucleotides, a further 40% drop in survival after 20 hours for ODNs F3, D7 and G4+C5 combination (Fig. 9B), compared to their corresponding ODNs treated values (Fig. 9C). Note that the values in Fig. 9B (ODN plus drug) are compared to their corresponding

- 5 ODN survival (ODN alone) in Fig. 9C, which is set at 100% for each ODN. Only the results for adriamycin chemosensitization are shown; however, similar results were obtained when the cells were chemosensitized with cisplatin. At the fixed doses used, the mock and scrambled control transfections did not show any increased loss of
- 10 survival when either treated with adriamycin (Fig. 9B).

Chemosensitization is only seen when XIAP levels are decreased by a specific antisense ODN.

Example 7: Antisense HIAP1 oligonucleotides decrease HIAP1 RNA and

polypeptide expression

The smaller library of 15 HIAP1 antisense oligonucleotides was screened for protein knock-down by Western and for RNA knock-down by TaqMan, using the primers and probes described above, under two different conditions. Alternatively, HIAP1 RNA levels may be detected

- 20 using standard Northern blot analyses or RT-PCR techniques. The antisense oligonucleotides were administered to cells under basal conditions or under cycloheximide-induction conditions (24 hour treatment with sub-toxic doses). We have discovered that cycloheximide (CHX) can lead to a 10- to 200-fold induction of HIAP1 mRNA
- 25 depending on the cell line treated. This in turn leads to an increase in HIAP1 protein, as seen on a Western blot (70 kDa band). We have also discovered that this effect of CHX is via two distinct mechanisms of action. First, CHX activates NFkB, a known transcriptional inducer of HIAP1, by blocking the *de novo* synthesis of a labile protein, I kB, which

is an inhibitor of NFkB. This effect is mimicked by puromycin, another protein synthesis inhibitor, and by TNF-alpha, which induces a signaling cascade leading to the phosphorylation, ubiquination, and degradation of I kB. However, only CHX leads to a further stabilization of the HIAP1

- 5 mRNA, as seen by the decreased rate of disappearance of HIAP1 message in the presence of actinomycin D, to block *de novo* transcription, and CHX, as opposed to actinomycin D and puromycin or TNF-alpha combined.

SF295 glioblastoma cells were transfected with lipofectin and ODN
10 (scrambled survivin, no oligo or mock, antisense APO1 to APO15) or left untreated. RNA was isolated from the cells 6 hours after transfection and the level of HIAP1 mRNA was measured by quantitative PCR (TaqMan analysis), normalized for GAPDH mRNA, with the value for the scrambled survivin ODN transfection set as 1.0.

15 The results of this experiment, a compilation of three separate experiments, are shown in Fig. 10. The scrambled survivin ODN, the mock transfection, and untreated (non-transfected) cells, all showed similar HIAP1 mRNA levels. Of the 15 antisense ODNs, 7
oligonucleotides (ODNs APO 1, -2, -7, -8, -9, -12, -15) showed an almost
20 50% decrease when compared to mock transfection or survivin scrambled control (mUmAmA GCT GTT CTA TGT GmUmU mC; SEQ ID NO:
212) ODN transfection (Fig. 10). Some of the ODNs led to an induction
in HIAP1 mRNA, which may be a stress response to a non-specific toxic ODN. The antisense ODN, however, may still be effective at knocking
25 down HIAP1 protein levels even if the message is increased if the ODN is able to interfere with the translation process.

The effect of HIAP1 antisense oligonucleotides on HIAP1 protein and mRNA expression was also examined in cells induced to express HIAP1. SF295 cells were transfected with ODNs, or were mock

transfected. The transfected cells were then treated with 10 µg/ml cycloheximide for 24 hours to induce 70 kDa HIAP1 mRNA and protein. Protein levels were measured by Western immunoblot analysis with an anti-RIAP1 polyclonal antibody, and normalized against actin protein in a 5 re-probing of the same blots. Scans of the Western blot results are shown in Fig. 11A. The densitometric scan results were plotted against the mock results (set at 100%) in Fig. 11B. A line is drawn at 50% to easily identify the most effective antisense ODNs. The transfection process itself (e.g., mock or scrambled survivin) induces HIAP1 protein compared to the 10 untreated sample as shown on the Western immunoblot.

Of the 15 tested ODNs, 6 of them (APO 1, -2, -7, -8, -12, and -15) showed the strongest activity, or had significant activity in both the protein and mRNA assays, and did not cause a stress-induced increase in HIAP1 mRNA, such as that seen with ODNs APO 4, -6, -11, -13, -14 (Fig. 10), 15 and by control ODNs to APO 2 (mismatch or reverse polarity, see text below and Figs. 12 and 13). Note that APO 6 also showed evidence of toxicity as seen by the general decrease in total protein (Fig. 12).

To further investigate the efficacy of HIAP1 antisense oligonucleotides under cycloheximide induction conditions, changes in 20 HIAP1 mRNA were measured by TaqMan real time PCR 6 hours after transfection with ODN APO 2, which targets an Alu repeat within an intron of HIAP1 and results in the greatest block of CHX-induced upregulation of HIAP1 mRNA and protein. Controls for this experiment were three ODNs for APO 2: one scrambled sequence (same base 25 composition but random order, AAG GGC GGC GGA GTG AGA C; SEQ ID NO: 213), one reverse polarity (same base composition, same sequential order but in the opposite direction, AGA GGA CGG AGT CGG

AGG C; SEQ ID NO: 214), and one mismatch sequence (containing 4 base mismatches out of 19 bases, CGG AGC GTG AGG ATG GAG A; SEQ ID NO: 215).

Transfection of the APO 2 antisense into cells resulted in a 50%
5 decrease in mRNA compared to a scrambled survivin control and matched perfectly with the protein results, while the scrambled control for APO 2 (H1 sc apo 2 in Fig. 13) did not change HIAP1 mRNA levels at all (repeated twice here, and in two different experiments). However, the mismatch control ODN (H1 mm apo 2) and the reverse polarity control
10 ODN (H1 RV apo 2) showed an induction of 6 to 7 fold in HIAP1 mRNA at 6 hours. These ODNs no longer targeted HIAP1, as expected, but may still target Alu repeats because of the degeneracy and repeat nature of these sequences. Therefore, it is possible that these two controls are toxic to the cell and cause a stress response that leads to the induction of
15 HIAP1. This effect may also occur with the antisense APO 2 ODN, but in this case, the APO 2 ODN also causes the degradation of the induced HIAP1 mRNA which results in a relative decrease of HIAP1 mRNA, compared to a scrambled survivin control, as well as decreasing the relative fold induction of HIAP1 protein after transfection and CHX
20 treatment, compared to scrambled survivin control ODN.

The 6 optimal antisense HIAP1 ODNs include two very effective antisense ODNs against an intronic sequence (APO 1, and -2; with APO 2 demonstrating the best activity). These oligonucleotides have some interesting properties that could be of great use therapeutically for cancer or autoimmune disorders. The oligonucleotides against an intronic sequence would likely only target pre-mRNA (very short-lived target) and not the mature, processed form of HIAP1. Typically, introns are not targeted for antisense except when one wants to alter splicing by targeting the intron-exon boundaries or the branching point. These usually result in
25

the skipping of an exon rather than RNase-mediated degradation of the message. Both mechanisms would likely be favorable for the enhancement of apoptosis, as the skipping would result in the loss of the exon encoding the first two important BIR domains of HIAP1. The APO-
5 2 antisense oligo also targets an intron of survivin for 18 consecutive bases out of 19, but we did not see any loss of survivin protein; only HIAP1 was decreased after the oligo treatment, demonstrating the specificity of the HIAP1 antisense oligonucleotide. These antisense oligonucleotides hit Alu sequences in the HIAP1 intron and potentially in many other genes,
10 and induce the cancer cells to die (see below), which may be as a result of down regulating HIAP1 and some other critical genes, and thus of therapeutic value if it is not too toxic to normal cells.

Cancer cells have reportedly more Alu-containing transcripts and may therefore be more sensitive to apoptosis induction with an Alu
15 targeting antisense ODN. Furthermore, this killing effect of APO 1 and APO 2 ODNs may be due to the combined effect of both targeting Alu sequences and HIAP1 simultaneously. This dual effect would result in an effective way to prevent the normal stress response of HIAP1 induction through the NFkB pathway, when the cell is exposed to certain toxic
20 agents. This stress response is most likely part of the cancer cell's anti-apoptotic program. By blocking HIAP1 expression, we counter this anti-apoptotic stress response and precipitate the cancer cell's demise.

Example 8: HIAP1 antisense oligonucleotides increase cytotoxicity and chemosensitization
25

The effect of HIAP1 antisense oligonucleotides on the chemosensitization of SF295 cells was also evaluated. Cells were transfected with one of 3 different antisense ODNs (APO 7, APO 15, and Scrambled APO 2 (control)). Twenty-four hours after transfection with the

ODNs, the cells were incubated with adriamycin for an additional 24 hours before assaying for cell survival by assaying WST-1.

The WST-1 survival curves for SF295 cells transfected with the above-described HIAP1 ODNs and then treated with increasing concentrations of adriamycin are shown in Fig. 14. The two ODNs that resulted in a decrease in HIAP1 mRNA also showed a decrease in survival when treated with adriamycin compared to cells treated with an ODN which did not reduce HIAP1 mRNA levels. Therefore, reducing HIAP1 levels by antisense, or other means, can chemosensitize a glioblastoma cell line that is highly resistant to the cytotoxic action of many chemotherapeutic drugs.

Example 9: *In vivo* analyses of IAP antisense oligonucleotides

Antisense oligonucleotides that decrease expression of IAP in cell culture models can be tested in animals. For example, the antisense oligonucleotide can be tested in mice according to the method of Lopes de Menezes et al. (Clin. Cancer Res. 6: 2891-2902, 2000) or Klasa et al. (Clin. Cancer Res. 6: 2492-2500, 2000). Antisense and control ODNs are tested, for example, in sub-cutaneous human xenografts of breast cancer, colon cancer, lung cancer, squamous cell carcinoma or prostate cancer in SCID mice. The antisense oligonucleotides are also tested in an orthotopic model for the prostate, as well as in a disseminated non-Hodgkin's lymphoma model. The mouse's tolerance to cisplatin, taxol, doxorubicin, and cyclophosphamide is known for each of these models.

In vivo testing of the antisense oligonucleotides involves 15 intraperitoneal injections (once a day, on days 3 through 7, 10 through 14, and 17 through 21) of naked ODN of (5 mg/kg), with or without a chemotherapeutic drug. Alternatively, liposomal type carriers for the ODNs may also be employed. Oligos are injected shortly after tumors

cells have been seeded in the mouse, or when the tumor has established and grown to a size of 0.1-0.15 g. Tumor size is then monitored to determine if the ODN treatments or ODN plus drug treatments reduce the growth rate of the tumor, lead to regression, or have no effect at all. In 5 another alternative, ODNs in liposomal formulation are injected directly into the tumors.

Example 10: Anti-IAP antibodies

In order to generate IAP-specific antibodies, an IAP coding sequence (e.g., amino acids 180-276) can be expressed as a C-terminal fusion with glutathione S-transferase (GST; Smith et al., Gene 67:31-40, 10 1988). The fusion protein can be purified on glutathione-Sepharose beads, eluted with glutathione, and cleaved with thrombin (at the engineered cleavage site), and purified to the degree required to successfully 15 immunize rabbits. Primary immunizations can be carried out with Freund's complete adjuvant and subsequent immunizations performed with Freund's incomplete adjuvant. Antibody titres are monitored by Western blot and immunoprecipitation analyses using the thrombin-cleaved IAP fragment of the GST-IAP fusion protein. Immune sera are 20 affinity-purified using CNBr-Sepharose-coupled IAP protein. Antiserum specificity is determined using a panel of unrelated GST proteins (including GSTp53, Rb, HPV-16 E6, and E6-AP) and GST-trypsin (which was generated by PCR using known sequences).

As an alternate or adjunct immunogen to GST fusion proteins, 25 peptides corresponding to relatively unique hydrophilic regions of IAP may be generated and coupled to keyhole limpet hemocyanin (KLH) through an introduced C-terminal lysine. Antiserum to each of these peptides is similarly affinity-purified on peptides conjugated to BSA, and specificity is tested by ELISA and Western blotting, using peptide

conjugates, and by Western blotting and immunoprecipitation using IAP expressed as a GST fusion protein.

Alternatively, monoclonal antibodies may be prepared using the IAP proteins described above and standard hybridoma technology (see, 5 e.g., Kohler et al., *Nature* 256:495, 1975; Kohler et al., *Eur. J. Immunol.* 6:511, 1976; Kohler et al., *Eur. J. Immunol.* 6:292, 1976; Hammerling et al., In Monoclonal Antibodies and T Cell Hybridomas, Elsevier, New York, NY, 1981; Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1994). Once produced, monoclonal 10 antibodies are also tested for specific IAP recognition by Western blot or immunoprecipitation analysis (by the methods described in Ausubel et al., *supra*).

Antibodies that specifically recognize IAPs or fragments of IAPs, such as those described in U.S.S.N. 08/800,929, incorporated herein by 15 reference, containing one or more BIR domains (but not a ring zinc finger domain), or that contain a ring zinc finger domain (but not a BIR domain) are considered useful in the invention. They may, for example, be used in an immunoassay to monitor IAP expression levels or to determine the subcellular location of an IAP or IAP fragment produced by a mammal. 20 Antibodies that inhibit the 26 kDa IAP cleavage product described herein (which contains at least one BIR domain) may be especially useful in inducing apoptosis in cells undergoing undesirable proliferation.

Preferably antibodies of the invention are produced using IAP sequence that does not reside within highly conserved regions, and that 25 appears likely to be antigenic, as analyzed by criteria such as those provided by the Peptide structure program (Genetics Computer Group Sequence Analysis Package, Program Manual for the GCG Package, Version 7, 1991) using the algorithm of Jameson and Wolf (CABIOS 4:181, 1988). Specifically, these regions, which are found between BIR1

and BIR2 of all IAPs, are: from amino acid 99 to amino acid 170 of HIAP1, from amino acid 123 to amino acid 184 of HIAP2, and from amino acid 116 to amino acid 133 of either XIAP or m-XIAP. These fragments can be generated by standard techniques, e.g., by the PCR, and
5 cloned into the pGEX expression vector (Ausubel et al., *supra*). Fusion proteins are expressed in *E. coli* and purified using a glutathione agarose affinity matrix as described in Ausubel et al. (*supra*). In order to minimize the potential for obtaining antisera that is non-specific, or exhibits low-affinity binding to IAP, two or three fusions are generated for each
10 protein, and each fusion is injected into at least two rabbits. Antisera are raised by injections in series, preferably including at least three booster injections.

15 Example 11: Comparison of cell survival following transfection with full length vs. partial IAP constructs

In order to investigate the mechanism whereby human IAPs, including XIAP, HIAP1, and HIAP2, afford protection against cell death, expression vectors were constructed that contained either: (1) full-length IAP cDNA (as described in U.S.S.N. 08/800,929), (2) a portion of an IAP gene that encodes the BIR domains, but not the RZF, or (3) a portion of an IAP gene that encodes the RZF, but not the BIR domains. Human and murine XIAP cDNAs were tested by transient or stable expression in HeLa, Jurkat, and CHO cell lines. Following transfection, apoptosis was induced by serum withdrawal, application of menadione, or application of an anti-Fas antibody. Cell death was then assessed by trypan blue exclusion. As a control for transfection efficiency, the cells were co-transfected with a Beta-gal expression construct. Typically,
20 approximately 20% of the cells were successfully transfected.
25

When CHO cells were transiently transfected, constructs containing full-length human or mouse XIAP cDNAs conferred modest but definite protection against cell death. In contrast, the survival of CHO cells transfected with constructs encoding only the BIR domains (i.e., lacking the RZF domain) was markedly enhanced 72 hours after serum deprivation. Furthermore, a large percentage of cells expressing the BIR domains were still viable after 96 hours, at which time no viable cells remained in the control, i.e. non-transfected, cell cultures, and less than 5% of the cells transfected with the vector only, i.e., lacking a cDNA insert, remained viable. Deletion of any of the BIR domains results in the complete loss of apoptotic suppression, which is reflected by a decrease in the percentage of surviving CHO cells to control levels within 72 hours of serum withdrawal.

Stable pools of transfected CHO cells, which were maintained for several months under G418 selection, were induced to undergo apoptosis by exposure to 10 µM menadione for 2 hours. Among the CHO cells tested were those that were stably transfected with: (1) full-length murine XIAP cDNA (miap), (2) full-length XIAP cDNA (XIAP), (3) full-length bcl-2 cDNA (Bcl-2), (4) cDNA encoding the three BIR domains (but not the RZF) of murine XIAP (BIR), and (5) cDNA encoding the RZF (but not BIR domains) of m-XIAP (RZF). Cells that were non-transfected (CHO) or transfected with the vector only (pcDNA3), served as controls for this experiment. Following exposure to 10 µM menadione, the transfected cells were washed with phosphate buffered saline (PBS) and cultured for an additional 24 hours in menadione-free medium. Cell death was assessed, as described above, by trypan blue exclusion. Less than 10% of the non-transfected or vector-only transfected cells remained viable at the end of the 24 hour survival period. Cells expressing the RZF did not fare significantly better. However, expression of full-length

murine XIAP, human XIAP, or bcl-2, and expression of the BIR domains, enhanced cell survival. When the concentration of menadione was increased from 10 µM to 20 µM (with all other conditions of the experiment being the same as when 10 µM menadione was applied), the 5 percentage of viable CHO cells that expressed the BIR domain cDNA construct was higher than the percentage of viable cells that expressed either full-length murine XIAP or bcl-2.

10 Example 12: Analysis of the subcellular location of expressed RZF and BIR domains

The assays of cell death described above indicate that the RZF acts as a negative regulator of the anti-apoptotic function of IAPs. One way in which the RZF, and possibly other IAP domains, may exert their regulatory influence is by altering the expression of genes, whose products 15 function in the apoptotic pathway.

In order to determine whether the subcellular locations of expressed RZF and BIR domains are consistent with roles as nuclear regulatory factors, COS cells were transiently transfected with the following four constructs, and the expressed polypeptide was localized by 20 immunofluorescent microscopy: (1) pcDNA3-6myc-xiap, which encodes all 497 amino acids of SEQ ID NO:219, (2) pcDNA3-6myc-m-xiap, which encodes all 497 amino acids of mouse XIAP (SEQ ID NO:225), (3) pcDNA3-6myc-mxiap-BIR, which encodes amino acids 1 to 341 of m-xiap (SEQ ID NO:225), and (4) pcDNA3-6myc-mxiap-RZF, which 25 encodes amino acids 342-497 of murine xiap (SEQ ID NO:225). The cells were grown on multi-well tissue culture slides for 12 hours, and then fixed and permeabilized with methanol. The constructs used (here and in the cell death assays) were tagged with a human Myc epitope tag at the N-terminus. Therefore, a monoclonal anti-Myc antibody and a secondary

goat anti-mouse antibody, which was conjugated to FITC, could be used to localize the expressed products in transiently transfected COS cells. Full-length XIAP and MIAP were located in the cytoplasm, with accentuated expression in the peri-nuclear zone. The same pattern of 5 localization was observed when the cells expressed a construct encoding the RZF domain (but not the BIR domains). However, cells expressing the BIR domains (without the RZF) exhibited, primarily, nuclear staining. The protein expressed by the BIR domain construct appeared to be in various stages of transfer to the nucleus.

10

Other Embodiments

All publications and patent applications mentioned in this specification, including U.S. Patent No. 5,919,912 and U.S.S.Ns. 08/576,956 and 08/800,929 are herein incorporated by reference to the 15 same extent as if each independent publication or patent application was specifically and individually indicated to be incorporated by reference.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, 20 uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known or customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth.

25

Claims

1. An inhibitor of apoptosis (IAP) antisense nucleic acid that inhibits IAP biological activity, regardless of length of said antisense
5 nucleic acid.
2. The antisense IAP nucleic acid of claim 1, wherein said IAP is XIAP.
- 10 3. The antisense IAP nucleic acid of claim 1, wherein said IAP is HIAP1.
4. The antisense IAP nucleic acid of claim 1, wherein said IAP is HIAP2.
- 15 5. The antisense IAP nucleic acid of claim 1, wherein said antisense nucleic acid is mammalian.
6. The antisense IAP nucleic acid of claim 5, wherein said
20 antisense nucleic acid is human.
7. The antisense nucleic acid of claim 1, wherein said antisense nucleic acid is between 8 and 30 nucleotides in length.
- 25 8. The antisense IAP nucleic acid of claim 2, wherein said antisense is chosen from any one of SEQ ID NOS: 1 through 96.
9. The antisense IAP nucleic acid of claim 3, wherein said antisense is chosen from any one of SEQ ID NOS: 97 through 194.

10. The antisense IAP nucleic acid of claim 1, wherein said IAP biological activity is inhibition of apoptosis.

11. The antisense IAP nucleic acid of claim 1, wherein said IAP
5 biological activity is inhibition of IAP polypeptide expression.

12. The antisense IAP nucleic acid of claim 1, wherein said antisense nucleic acid comprises at least one modified internucleoside linkage.

10

13. The antisense IAP nucleic acid of claim 12, wherein said modified internucleoside linkage is selected from the group consisting of phosphorothioate, methylphosphonate, phosphotriester, phosphorodithioate, and phosphoselenate linkages.

15

14. The antisense IAP nucleic acid of claim 1, wherein said antisense nucleic acid comprises at least one modified sugar moiety.

20

15. The antisense IAP nucleic acid of claim 14, wherein said modified sugar moiety is a 2'-O methyl group.

16. The antisense IAP nucleic acid of claim 1, wherein said antisense nucleic acid is a chimeric nucleic acid.

25

17. The antisense IAP nucleic acid of claim 16, wherein said chimeric nucleic acid comprises DNA residues linked together by phosphorothioate linkages, said DNA residues flanked on each side by at least one 2'-O methyl RNA residues linked together by phosphorothioate linkages.

18. The antisense IAP nucleic acid of claim 17, wherein said DNA residues are flanked on each side by at least 3 2'-O methyl RNA residues.

19. The antisense nucleic acid of claim 1, wherein said antisense 5 nucleic acid is a ribozyme.

20. A method of enhancing apoptosis in a cell, said method comprising administering a negative regulator of the IAP anti-apoptotic pathway to said cell.

10

21. The method of claim 20, wherein said negative regulator is an antisense IAP nucleic acid.

22. The method of claim 21, wherein said IAP is XIAP.

15

23. The method of claim 21, wherein said IAP is HIAP1.

24. The method of claim 21, wherein said IAP is HIAP2.

20

25. The method of claim 21, wherein said antisense nucleic acid is mammalian.

26. The method of claim 25, wherein said antisense nucleic acid is human.

25

27. The method of claim 22, wherein said antisense is chosen from any one of SEQ ID NOS: 1 through 96.

28. The method of claim 23, wherein said antisense is chosen from any one of SEQ ID NOS: 97 through 194.

29. The method of claim 21, wherein said antisense nucleic acid
5 comprises at least one modified internucleoside linkage.

30. The method of claim 29, wherein said modified internucleoside linkage is selected from the group consisting of phosphorothioate, methylphosphonate, phosphotriester, phosphorodithioate, and
10 phosphoselenate linkages.

31. The method of claim 21, wherein said antisense nucleic acid comprises at least one modified sugar moiety.

15 32. The method of claim 31, wherein said modified sugar moiety is a 2'-O methyl group.

33. The method of claim 21, wherein said antisense nucleic acid is a chimeric nucleic acid.

20 34. The method of claim 33, wherein said chimeric nucleic acid comprises DNA residues linked together by phosphorothioate linkages, said DNA residues flanked on each side by at least one 2'-O methyl RNA residues linked together by phosphorothioate linkages.

25 35. The method of claim 34, wherein said DNA residues are flanked on each side by at least 3 2'-O methyl RNA residues.

36. The method of claim 21, wherein said administration sensitizes said cell to chemotherapy.

37. The method of claim 21, wherein said administration sensitizes
5 said cell to radiotherapy.

38. The method of claim 20, wherein said negative regulator is an antibody that specifically binds an IAP polypeptide.

10 39. The method of claim 20, wherein said negative regulator is an IAP polypeptide comprising a ring zinc finger, said polypeptide having no more than two BIR domains.

15 40. The method of claim 20, wherein said negative regulator is a nucleic acid encoding the ring zinc finger domain of an IAP polypeptide.

41. The method of claim 20, wherein said negative regulator is a compound that prevents cleavage of the IAP polypeptide.

20 42. The method of claim 20, wherein said cell is *in vitro*.

43. The method of claim 20, wherein said cell is *in vivo*.

25 44. The method of claim 43, wherein said cell is in a mammal diagnosed with a proliferative disease.

45. A pharmaceutical composition comprising a mammalian IAP antisense nucleic acid.

46. The pharmaceutical composition of claim 45, wherein said antisense nucleic acid binds a target sequence of the human XIAP gene or mRNA.

5 47. The pharmaceutical composition of claim 45, wherein said antisense nucleic acid binds a target sequence of the human HIAP1 gene or mRNA.

10 48. The pharmaceutical composition of claim 45, wherein said antisense nucleic acid binds a target sequence of the human HIAP2 gene or mRNA.

15 49. The pharmaceutical composition of claim 45, wherein said antisense nucleic acid binds a target sequence of the murine XIAP gene or mRNA.

50. The pharmaceutical composition of claim 45, wherein said antisense nucleic acid binds a target sequence of the murine HIAP1 gene or mRNA.

20 51. The pharmaceutical composition of claim 45, wherein said antisense nucleic acid binds a target sequence of the murine HIAP2 gene or mRNA.

25 52. The pharmaceutical composition of claim 45, wherein said mammalian antisense IAP nucleic acid is human antisense nucleic acid.

53. The pharmaceutical composition of claim 46, wherein said antisense is chosen from any one of SEQ ID NOS: 1 through 96.

54. The pharmaceutical composition of claim 47, wherein said antisense is chosen from any one of SEQ ID NOS: 97 through 194.

5

FIG. 1A

HUMAN xiap

1/67

	gaaaagggtggacaaggtcctaatttcaagagaatgtgacttttaacagtttttgaaggatct	60
a	M T F N S F E G S -	
	aaaacttgttacccgtcagacataaaaggaaaggatgttagaaaggatataaga	120
61	- - - - + - - - - + - - - - + - - - - + - - - - + - - - - + -	
a	K T C V P A D I N K E E F V E E F N R -	
	ttaaaaacttttgcataattttccaatgttgttagtcctgtttcagcatcaaactggcacga	180
121	- - - - + - - - - + - - - - + - - - - + - - - - + - - - - + -	
a	L K T F A N F P S G S P V S A S T L A R -	
	gcagggtttttatactggtaaggagataccgtcggtgccttagttgtcatgcagct	240
181	- - - - + - - - - + - - - - + - - - - + - - - - + - - - - + -	
a	A G F L Y T G E G D T V R C F S C H A A -	
	gtagatagatggcaataatggagactcagcgttggaaagacacagaaatccccaaat	300
241	- - - - + - - - - + - - - - + - - - - + - - - - + - - - - + -	
a	V D R W Q Y G D S A V G R H R K V S P N -	
	tgcagatttatcaacggctttatcttggaaaatagtgccacgcagtctacaatctgtt	360
301	- - - - + - - - - + - - - - + - - - - + - - - - + - - - - + -	
a	C R F I N G F Y L E N S A T Q S T N S G -	

2/67

FIG. 1B

HUMAN xiap

atccagaatggtcagtaaaaactctggaaaggcaggatcattttgccctta
 361 -+-----+-----+-----+-----+-----+-----+-----+-----+ 420
 a I Q N G Q Y K V E N Y L G S R D H F A L -

 gacaggccatctgagacacatgcagactatcttggagaactggcagggttgttagatata
 421 -+-----+-----+-----+-----+-----+-----+-----+-----+ 480
 a D R P S E T H A D Y L L R T G Q V V D I -

 tcagacaccatataccggaaaccctgccatgttatgtgaagaaggcttagattaaaggcc
 481 -+-----+-----+-----+-----+-----+-----+-----+-----+ 540
 a S D T I Y P R N P A M Y C E E A R L K S -

 tttcagaactggccagactatgctcacctaaccccaagagatgttagcaagtgtggactc
 541 -+-----+-----+-----+-----+-----+-----+-----+-----+ 600
 a F Q N W P D Y A H L T P R E L A S A G L -

 tactacacaggatattggtagccaaggcgtgttttgtgtggaaaactgaaaaat
 601 -+-----+-----+-----+-----+-----+-----+-----+-----+ 660
 a Y Y T G I G D Q V Q C F C C G G K L K N -

 tggaaaccttgtatcgccgtggcagaacacaggcgacactttccataattgtgttttt
 661 -+-----+-----+-----+-----+-----+-----+-----+-----+ 720
 a W E P C D R A W S E H R R H F P N C F F -

3/67

FIG. 1C

HUMAN xiap

gtttggccggaaattttaatattcgaagtgttatctgttatctgttgaggatctgttataggaaat
 721 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 780

a V L G R N L N I R S E S D A V S S D R N -

ttccccaaatttcaacaaatttccaagaaatccatccatggcagattatgaaggcaacggatc
 781 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 840

a F P N S T N L P R N P S M A D Y E A R I -

ttacttttggacatggatatactcaggatcaaacaaggcaggcttgcaagagctggattt
 841 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 900

a F T F G T W I Y S V N K E Q L A R A G F -

tatgttttaggttgaagggttatcaaagttaaagtgttttcactgtggaggaggcttaactgtat
 901 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 960

a Y A L G E G D K V C F H C G G L T D -

tggaaaggccaggtaagacccttgggaaacaacatgtctaaatggatccagggtggcaaatat
 961 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1020

a W K P S E D P W E Q H A K W Y P G C K Y -

ctgttagaaacagaaggcacaaatataaaacaatattcatttacttcattttacttgag
 1021 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1080

a L L E Q K G Q E Y I N N I H L T H S L E -

4/67

FIG. 1D

HUMAN xiap

gagggtctggtaagaactactgagaaaaacaccatcaactaacttagaagaattgtatcacc
1081 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1140

a E C L V R T T E K T P S L T R R I D D T -
1141 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1200

a I F Q N P M V Q E A I R M G F S F K D I -
1201 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1260

a aaaaataatggggaaaaattcagatatctggagcaactataatcacttgaggtt
1261 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1320

a K K I M E E K I Q I S G S N Y K S L E V -
1321 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1380

a ctggttcgagatcttagtgaatgtcagaaagacagtatgcaagatgaggtcagact
1381 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440

a tcattacagaaagagatttagtactgaaagcagctaaaggccctgc当地
1381 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440

a a C K I C M D R N I A I V F V P C G H L V -

5/67

JMAN xiap

6/67

FIG. 1 F

HUMAN xiap

8/67

FIG. 2A

HUMAN hiap-1

TCC TTGAGATGTACAGTATTAGGATTCTCCATGTTGGAACTCTAAATGCATAGA
 1 - - - +-----+-----+-----+-----+-----+-----+ 60

C

AATGGAAATAATGGAATTTCATTGGCTTTAGCCTAGTATTAAACTGATAAAA
 61 - - - +-----+-----+-----+-----+-----+-----+ 120

C

GCAAAGCCATGGCACAAAACCTACCTCCCTAGAGAAAGGCCATGTTCCCCATTG
 121 - - - +-----+-----+-----+-----+-----+-----+ 180

C

ATTTCATTATGAAACATAGTAGAAAAACAGCATATTCTTATCAAAATTGATGAAAAGGCCA
 181 - - - +-----+-----+-----+-----+-----+-----+ 240

C

M N I V E N S I F L S N L M K S A N -

CACACGTTGAACTGAAATTACGGACTTGTCATGTGAACTGTACGTATTCCA
 241 - - - +-----+-----+-----+-----+-----+-----+ 300

C

T F E L K Y D L S C E L Y R M S T Y S T -

CT TTTCTGGGGTTCCCTGTCAGAAAGGAGTCTTGCTCGTGTCTTCTATTACA
 301 - - - +-----+-----+-----+-----+-----+-----+ 360

C

F P A G V P V S E R S L A R A G F Y Y T -

9/67

FIG. 2B

HUMAN hiap-1

C	G	V	N	D	K	V	K	C	F	C	C	G	L	M	L	D	N	W	K	R	-															
361	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	+	420																	
C	G	A	G	A	C	A	G	T	C	T	A	C	T	G	A	A	T	G	C	T	G	A	A	A												
421	---	---	---	---	---	---	---	---	---	---	---	---	---	---	+	480																				
C	G	D	S	P	T	E	K	H	K	K	L	Y	P	S	C	R	F	V	Q	S	-															
481	G	T	C	T	A	A	C	T	G	A	G	C	T	C	T	C	T	C	T	A	G	T	C	A	G	T	A	T	T	C	T	G	A	A	A	A
541	L	N	S	V	N	N	L	E	A	T	S	Q	P	T	F	P	S	S	V	T	-															
541	C	C	A	C	A	C	T	A	C	G	A	A	A	C	G	T	C	C	G	T	C	T	C	A	C	T	G	A	A	A	A	A				
601	H	S	T	H	S	L	L	P	G	T	E	N	S	G	Y	F	R	G	S	Y	-															
601	C	A	T	C	T	C	T	G	T	A	A	C	G	A	A	T	C	T	G	C	C	T	G	A	A	A	A	A	A							
661	S	N	S	P	S	N	P	V	N	S	R	A	N	Q	E	F	S	A	L	M	-															
661	C	T	G	A	G	T	C	C	T	G	A	A	A	C	G	A	A	T	C	T	G	A	A	A	A	A	A									
720	R	S	S	Y	P	C	P	M	N	N	E	N	A	R	L	L	T	F	Q	T	-															

10/67

FIG. 2C

HUMAN hiap-1

	CATGCCATTGACTTTCCTGGCCAACAGATCTGGACGGCTTTACTACATAG	780
C	W P L T F L S P T D L A R A G F Y Y I G -	
	GACCTGGAGACAGAGTGCTTGCCTGTGGAAATTGAGCAATTGGGAACCGA	840
C	P G D R V A C F A C G G K L S N W E P K -	
	AGGATAATGCTATGTCAGAACACCTGAGACATTCCCAAATGCCATTATAGAAAATC	900
C	D N A M S E H L R H F P K C P F I E N Q -	
	AGCTTCAAGGACACTCAAGATACACAGTTCTAACAGTCTGAGCATGCAGCCC	960
C	L Q D T S R Y T V S N L S M Q T H A A R -	
	GCTTTAAACATTCTTAACTGGCCCTCTAGTGTCTAGTTAATCCTGAGCCTTGCAA	1020
C	F K T F F N W P S S V L V N P E Q L A S -	
	GTGGGGTTTATTAGTGGTAACAGTGTCAAATGCTTGTGATGGTG	1080
C	A G F Y Y V G N S D D V K C F C C D G G -	

721 781 841 901 961 1021

FIG. 2D

HUMAN hiap-1

11/67

	GACTCAGGTGGAAATCTGGAGATGATCCATGGGTTCAACATGCCAAGTGGTTCCAA																					
1081	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1140
C	L	R	C	W	E	S	G	D	D	P	W	V	Q	H	A	K	W	F	P	R	-	
	GGTGTGAGTACTTGATAAGATTAAAGGACAGGAGTTCATCGTCAAGTTCAAGCCAGTT																					
1141	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1200	
C	C	E	Y	L	I	R	I	K	G	Q	E	F	I	R	Q	V	Q	A	S	Y	-	
	ACCCTCATCTACTTGAAACAGCTGCTTATCCACATCAGACAGCCCCAGGAGATGAAATGCAG																					
1201	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1260	
C	P	H	L	L	E	Q	L	L	S	T	S	D	S	P	G	D	E	N	A	E	-	
	AGTCATCAATTATCATTGGAAACCTGGAGAACGACATTAGAAAGATGCAATCATGATGA																					
1261	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1320	
C	S	S	I	I	H	L	E	P	G	E	D	H	S	E	D	A	I	M	M	N	-	
	ATACTCCCTGTGATTAATGCTGCCGTGGAAATGGGCTTTAGTAGAAAGCCTGGAAACAGA																					
1321	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1380	
C	T	P	V	I	N	A	A	V	E	M	G	F	S	R	S	L	V	K	Q	T	-	
	CAGTTCAAGAAAATCCTAGCAACTGGAGAGAAATTAGACTAGTCATGATCTTGTGT																					
1381	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1440	
C	V	Q	R	K	I	L	A	T	G	E	N	Y	R	L	V	N	D	L	V	L	-	

FIG. 2E

HUMAN hiap-1

1441 TAGACTTACTCAATGCCAGAAGATGAAATAACGGAAAGAGGAGAGAGAAAGGCAACTGAGG
c D L L N A E D E I R E E E R E R A T E E -
1501 AAAAGAAATCAAATGATTATTAAATCCGGAAAGAATAGAAATGGCACTTTAACATTT
c K E S N D L L I R K N R M A L F Q H L -
1561 TGACTTGTGTAATTCCAATCCTGGATAGTCTACTAACTGCCGGAAATTATAATGAACAAG
c T C V I P I L D S L L T A G I I N E Q E -
1621 AACATGATGTTATTAAACAGAACACAGACAGCTTTACAAGGAAGAGAAACTGATTGATA
c H D V I K Q K T Q T S L Q A R E L I D T -
1681 CGATTTAGTAAAGGAAATATTGCAGGCCACTGTATTCAAGAAACTCTCTGCAAGAACGCTG
c I L V K G N I A A T V F R N S L Q E A E -
1741 AAGCTGTGTTATATGAGCATTATTGTGCAACAGGACATAAAATAATTCCCACAGAAG
c A V L Y E H L F V Q Q D I K Y I P T E D -

13/67

FIG. 2F

HUMAN hiap-1

	ATGTTTCAGATCTACCACTGGAAAGAACAAATTGGGGGAGACTACCAGAAGAAACATGTA	1860
1801	V S D L P V E E Q L R R L P E E R T C K -	
	AAGTGTGTATGGACAAAGAACAGTGTCCATAGTGTATTCCCTTGTTGTCATCTAGTAGTAT	
1861		1920
C	V C M D K E V S I V F I P C G H L V V C -	
	GCAAAGATTTGTGCTCCTTCAAGAAAGTGTCCATTGAGGTACAATCAAGGGTA	
1921		1980
C	K D C A P S L R K C P I C R S T I K G T -	
	CAGTTCTGTCATTCTCATGAAGAAGAACAAAACATCGTCCTAAACTTGTAAATTAAAT	
1981		2040
C	V R T F L S *	
	TATTTAAATGTATTATAACTTTAACCTTAATTCTTAATTGTAAACATTTATATGTATCTAAACCATA	
2041		2100
C	TATTTCAACTCAAAAAACATTTGTTTGTGTAACATTTATATGTATCTAAACCATA	
2101		2160

14/67

HUMAN hiap-1

FIG. 2G

15/67

FIG. 2H

HUMAN hiap-1

CAGTGTCCATACATCGAAGGTGTGCATATATGTTGAATCACATTAGGGACATGGTGT
2521 ---+-----+-----+-----+-----+-----+-----+-----+-----+-----+
C

TTTTATAAGAAATTCTGTGAGXAAAAATTAAATAAAGCAACCAACXXAAATTACTCTTAAAAA
2581 ---+-----+-----+-----+-----+-----+-----+-----+-----+-----+
C

AAAAAAAAAAACTCGAGGGGCCGTACCAAT
2641 ---+-----+-----+-----+-----+-----+-----+-----+-----+
C

2580 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
C

2640 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
C

2676 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
C

FIG. 3A

HUMAN hiap-2

1 TRAGGTTAACCTGAAAGAGTTACTACAACCCCAAAGAGTTCTTAAGTAGTATCTTG 60
 a - +-----+-----+-----+-----+-----+-----+
 61 TAATTCAAGAGATACTCATCCTACCTGAATATAAACTGAGATAATCCAGTAAGAAAG 120
 a - +-----+-----+-----+-----+-----+-----+
 121 TGTAGTAAATTCTACATAAGAGTCTATCATTGATTCTTTAGCTATCAAAACAGTAGTT 180
 a - +-----+-----+-----+-----+-----+-----+
 181 CATGTGAAGAAATTTCATGTGAATGTTTAGCTATCAAAACAGTAGTACTGTACCTCATG 240
 a - +-----+-----+-----+-----+-----+-----+
 241 CACAAAACCTGCCTCCCCAAAGACTTTCCAGGTCCCTCGTATCAAAACATTAAGAGTATA 300
 a H K T A S Q R L F P G P S Y Q N I K S I -
 301 ATGGAAAGATAAGCACCGATCTGTCAAGATTGGACAAACAGCAACAAAAATGAAAGTAT 360
 a M E D S T I L S D W T N S N K Q K M K Y -

17/67

FIG. 3B

HUMAN hiap-2

GACTTTTCCCTGTGAACTCTACAGAATTGCTTACATATTCAACTTTCCCCGGGGTGGCT
 361 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 420

a D F S C E L Y R M S T Y S T F P A G V P -
 GTCTCAGAAAGGACTCTTGCTCGTGCCTGGTTTATTATACTGGTGTGAATGACAAGGTC
 421 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 480

a V S E R S L A R A G F Y Y T G V N D K V -
 AAATGCTTCCTGTTGGCCTGATGCTGATAACTGGAAACAGTCCTATTCAA
 481 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 540

a K C F C C G L M L D N W K L G D S P I Q -
 AAGCATAAACAGCTATATCCTAGCTGTAGCTTATTCAAGAATCTGGTTTAGTCTG
 541 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 600

a K H K Q L Y P S C S F I Q N L V S A S L -
 GGATCCACCTCTAAGAAATAACGCTCCAATGAGAAACAGTTTGACATTATCTCCC
 601 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 660

a G S T S K N T S P M R N S F A H S L S P -
 ACCTGGAAACATAGTAGCTTGTTCAGTGGTTCTACTCCAGCCTTCCTCCAAACCCCTCTT
 661 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 720

a T L E H S S L F S G S Y S S L P P N P L -

18/67

FIG. 3C

HUMAN hiap-2

AATTCTAGAGCAGTGTAAAGACATCTCTTCATCGAGGACTAACCCCTACAGTTATGCAAATG
721 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 780

a N S R A V E D I S S R T N P Y S Y A M -
AGTAAGTGAAGCCAGATTCTTACCTACCATATGTGGCCATTAACCTTTTGTCACCA
781 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 840

a S T E E A R F L T Y H M W P L T F L S P -
TCAGAATTGGCAAGAGCTGGTTTTATTATAGGACCTGGAGATAAGGGTAGGCCGTGCTTT
841 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 900

a S E L A R A G F Y Y I G P G D R V A C F -
GCCTGTGGAAAGCTCAGTAACCTGGAAACCAAAAGGATGATGCTATGCTAGAACACCGG
901 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 960

a A C G G K L S N W E P K D D A M S E H R -
AGGCATTTCACACTGTCCATTGGAAAATTCTAGAAACTCTGAGGGTTAGCATT
961 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1020

a R H F P N C P F L E N S L E T L R F S I -
TCAAATCTGAGCATGCAGACACATGCGAATGAGAACATTATGTAAGGCCATCT
1021 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1080

a S N L S M Q T H A A R M R T F M Y W P S -

19/67

FIG. 3D

HUMAN hiap-2

AGTGGTCCAGTTCAAGCCTGAGCAGCTTGCAAGTGCCTGGTTTATTATGTGGGTGGCAAT
1081 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1140

a' S V P V Q P E Q L A S A G F Y Y V G R N -

GATGATGTCAAATGCTTGGTTGTGATGGTGGCTTGAGGTGTTGGAAATCTGGAGATGAT
1141 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1200

a D D V K C F G C D G G L R C W E S G D D -

CCATGGGTAGAACATGCCAAGTGGTTCCAAGGTGTGAGTTCTTGATAACGAATGAAAGGC
1201 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1260

a P W V E H A K W F P R C E F L I R M K G -

CAAGAGTTGGTAGATTCAAGGTAGATATCCTCATCTTCTGAAACAGCTGTGTCA
1261 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1320

a Q E F V D E I Q G R Y P H L L E Q L L S -

ACTTCAGATACCACTGGAGAAAATGCTGACCCACCAAATTATCATTGGACCTGGAA
1321 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1380

a T S D T T G E E N A D P P I I H F G P G -

GAAAGTTCTTCAGAAGATGCTGTCATGATGAATAACACCTGTTAAATCTGCCTTGAA
1381 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440

a E S S S E D A V M M N T P V V K S A L E -

20/67

FIG. 3E

HUMAN hiap-2

1441	ATGGGCTTTAATAGAGAACCTGGTGAACAAACAGTTCTAAGTAAAATCCTGACAACTGGAA	1500
a	M G F N R D L V K Q T V L S K I L T T G -	
1501	GAGAACTATAAAACAGTTAATGATATTGTGTCAAGCACTTCTTAATGCTGAAGATGAAAAA	1560
a	E N Y K T V N D I V S A L L N A E D E K -	
1561	AGAGAAGAGGAGAAGGAAACAAAGCTGAAGAAATGGCATCGATGATTGTCTATTAAATT	1620
a	R E E K E K Q A E E M A S D D L S L I -	
1621	CGGAACAGAAATGGCTCTCTTCAACAATTGACATGTTCTATCCTTCCTGATAAT	1680
a	R K N R M A L F Q Q L T C V L P I L D N -	
1681	CTTTAAAGGCCAATGTAATAAACAGGAACATGATATTAAACAAACACAG	1740
a	L L K A N V I N K Q E H D I I K Q K T Q -	
1741	ATACCTTTACAAGGCAGAGAAACTGATTGATAACCATTGGGTTAAGGAAATTGCTGGGCC	1800
a	I P L Q A R E L I D T I W V K G N A A A A -	

21/67

FIG. 3F

HUMAN hiap-2

1801	AACATCTTCAAAACTGtCTAAAGAAATTGACTCTACATTGTATAAGAACTTATTGTTGTC	1860
a	N I F K N C L K E I D S T L Y K N L F V -	
	GATAAGAATATGAAGTATATCCAAACAGAACGAAAGATGTTCAAGGTCTGTCACTGGAAAGAACAA	1920
1861	D K N M K Y I P T E D V S G L S L E E Q -	
a	TtGAGGAGTTGCAAGAAGAACGAAACTTGTAAAGTGTATGGACAAAGAACAGTTCTGT	1980
	L R R L Q E E R T C K V C M D K E V S V -	
1921	GTATTATCCTTGTGGTCATCTGGTAGTATGCCAGGAATGTGCCCTTCTCTAAAGAAAA	2040
a	V F I P C G H L V V C Q E C A P S L R K -	
	TGCCCTATTGCAAGGGTATAATCAAGGGTACTGTTGTACATTCTCTTAAGAAAA	2100
1981	C P I C R G I I K G T V R T F L S * -	
a	ATAGTCTATTTAACCTGCATAAAAAGGTCTTTAAATAATTGTTGAAACACTTGAAGGCC	2160
2041		
a		
2101		

22/67

FIG. 3G

HUMAN hiap-2

ATCTAAAGTAAAAGGGAAATTATGACTTTCAATTAGTAAACATTCATGTTCTAGTCCTGC
 2161 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2220

a

TTTGGTACTAATAATCTTGTTCTGAAAAGATGGTATCATATAATTAAATCTGTT
 2221 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2280

a

TATTTACAAGGGAAACGATTATGTTGGTAACATAATTAGTATGTATGTGTAACCTAACGGG
 2281 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2340

a

AGTAGCGTCXCTGCTGTTATGCCATCATTCAAGGAGTTACTGGATTGTTGTTCTTCAG
 2341 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2400

a

AAAAGCTTTGAAAXACTAAATTATAGTGTAGAAAAGAAACTGGAAACCCAGGAACCTCTGGAGGT
 2401 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2460

a

CATCAGAGTTATGGTGCCGAATTGTCCTTGGTGCCTTCACTTGTGTTAAATAAGGA
 2461 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2520

a

TTTTTCCTTATTTCCTCCCCCTAGTTGAGAAACATCTCAATAAGTGTCTTAAAGAAG
 2521 ---+---+---+---+---+---+---+---+---+---+---+---+---+ 2580

a

23/67

FIG. 4A

MOUSE xiap
 GACACTCTGGGGGGGGCCCTCCGGACCTCCCTCGGGAACCGTCCCC
 1 - - - - + - - - - + - - - - + - - - - + - - - - + 60
 a -
 GGGCGCTTAGTTAGGACTGGAGTGCTTGGCGAAAAGGTGGACAAGTCCTATTTCCA
 61 - - - - + - - - - + - - - - + - - - - + - - - - + 120
 a -
 GAGAAGATGACTTTAACAGCTTGAAGGAACTAGAACTTTGTACTTGCAGACACCAAT
 121 - - - - + - - - - + - - - - + - - - - + - - - - + 180
 a M T F N S F E G T R T F V L A D T N -
 AGGATGAAAGATTGTAGAAGAGTTAACATAGATTAAAAACATTGCTAACTTCCCAGT
 181 - - - - + - - - - + - - - - + - - - - + - - - - + 240
 a K D E E F V E F N R L K T F A N F P S -
 AGTAGTCCTGTTCAACATGGCGCGAGCTGGTTCTTATACCGGTGAAGGA
 241 - - - - + - - - - + - - - - + - - - - + - - - - + 300
 a S S P V S A S T L A R A G F L Y T G E G -
 GACACCGTGCATGTTCAAGTTGTCTATGGCGCAATAGATAGATGGGACTCA
 301 - - - - + - - - - + - - - - + - - - - + - - - - + 360
 a D T V Q C F S C H A A I D R W Q Y G D S -

FIG. 4B

MOUSE xiap

24/67

	GCTGTGGAAGCACAGGAGAAATCCCCAATTGCAGATTATCAAATGGTTTTTATT	420
a	A V G R H R R I S P N C R F I N G F Y F -	
	GAAAATGGTGGCACAGTCTACAAATCTGGTATCCAAAATGCCAGTACAAATCTGAA	480
a	E N G A A Q S T N P G I Q N G Q Y K S E -	
	AACTGTGTTGGAAATAAGAAATCCTTTGCCCTGACAGGGCACCTGAGACTCATGCTGAT	540
a	N C V G N R N P F A P D R P P E T H A D -	
	TATCTCTTGAGAACACTGGACAGGGTTGAGATATTTCAGACACCATAACCGAGGAACCCCT	600
a	Y L L R T G Q V V D I S D T I Y P R N P -	
	GCCATGTGTTAGTGAAGAACGATTGAAGTCATTTCAGAACTGGCCGGACTATGCTCAT	660
a	A M C S E E A R L K S F Q N W P D Y A H -	
	TTAACCCCCAGAGAGTTAGCTAGTGCTGGCCTCTACTACACAGGGCTGATGATCAAGTGT	720
a	L T P R E L A S A G L Y Y T G A D D Q V -	

25/67

FIG. 4C

MOUSE xiap

	CAATGCTTTGTGTGGGGAAACACTGAAAAATTGGGAACCCCTGTGATCGTGCCTGGTCA	780
a	Q C F C C G K L K N W E P C D R A W S -	721
a	GAACACAGGAGACACTTCCCAATTGCTTTGTGGCCGGAACGTTAATGTTCGA	840
a	E H R R H F P N C F F V L G R N V N V R -	841
a	AGTGAATCTGGTGTGAGTTCTGATAGGAATTCCCATTCAACAAACTCTCAAAGAAAT	900
a	S E S G V S S D R N F P N S T N S P R N -	901
a	CCAGCCATGGCAGAAATATGAAGCACGGATCGTTACCTTGTGAACATGGATACTCAGTT	961
a	P A M A E Y E A R I V T F G T W I Y S V -	1020
a	AACAAGGAGCAGCTTGCAAGAGCTGGATTATGCCATTAGGTGAAGGGATAAAAGTGAAG	1021
a	TGCTTCACTGTGGAGGGCTCACGGATTGGAAAGCCAAGTGAAGGACCCCTGGGACCAAG	1080
a	C F H C G G L T D W K P S E D P W D Q -	

26/67

Fig. 4D

MOUSE xiaop

FIG. 4E

MOUSE xiap

28/67

FIG. 4F MOUSE xiap

1801	TAGCCAGTGT'TTACTCGATTGAAACCTTAGACAGAGAAGCATTATAGCTTTACAT a	-	1860
1861	GTATATTGGTAGTACACTGACTTGATTCTATATGTAAGTGAATTCACTACCTGCATGTT a	-	1920
1921	TCATGCCCTTTGCATAAGCTTAACAAATTGGAGTGTCTGTATAAGCATGGAGATGTGATG a	-	1980
1981	GAATCTGCCAATGACTTTAACCTGGCTTATTGTAAACACGGAAAGAACTGCCCAACGGCTG a	-	2040
2041	CTGGGAGGATAAAGATGT'TTACATGCTCACTTCTGTGTTTAGGATTCTGCCCATTTA a	-	2100

29/67

FIG. 5A

M-hiap-1

GAATTCCGGAGACTACACCCCCGGAGATCAGAGGTCAATTGCTGGCGTTCAAGAGCCTAG
 1 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 60
 GAAGTGGGCTTGCGGTATCAGGCCTAGCAGTAATAACCGACCAGAACCCATGCCACAAAACATAC
 61 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 120
 ATCCCCAGAGAAAGACTTGTCCCTTCCCTGTCACTCTACCATGAAACATGGTTCAA
 121 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 180
 M N M V Q -
 a.

GACAGGCCCTTCTAGCCAAGCTGATGAAGAGTGTGACACCTTGAGTTGAAGTATGAC
 181 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 240
 D S A F L A K L M K S A D T F E L K Y D -
 a.

TTTCCTGTGAGCTGTACCGATTGTCCACGTATTGCTTTCCCAGGGAGTTCCCTGTG
 241 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 300
 F S C E L Y R L S T Y S A F P R G V P V -
 a.

TCAGAAAGGAGTCTGGCTCGTGCTGGCTTTACTACACTGGCTCAATGACAAGGTCAAG
 301 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 360
 S E R S L A R A G F Y Y T G A N D K V K -
 a.

TGCTTCTGCTGTGGCCTGATGCTAGACAACCTGGAAACAAGGGGACAGTCCCATTGGAGAAG
 361 - - - - + - - - + - - - + - - - + - - - + - - - + - - - + 420
 C F C C G L M L D N W K Q G D S P M E K -
 a.

30/67

FIG. 5B

M-hiap-1

CACAGAAAGTTGACCCAGCTGCCAACTTGTACAGACTTGAATCCAGCCAACAGTCTG
 421 - - - + - - + - - + - - + - - + - - + - - + - - + - - + 480
 a H R K L Y P S C N F V Q T L N P A N S L -

GAAGCTAGTCCCGGCCCTTCCTCCTCACGGCGATGAGGCCATGCCATTGAGCTTT
 481 - - - + - - + - - + - - + - - + - - + - - + 540
 a E A S P R P S L P S T A M S T M P L S F -

GCAAGTCTGAGAATACTGGCTATTCAAGTGGCTTACTCGAGCTTCCCTCAGACCCCT
 541 - - - + - - + - - + - - + - - + - - + - - + 600
 a A S S E N T G Y F S G S Y S S F P S D P -

GTGAACCTTCCGAGCAAATTCAAGATTGTCTGCTTGAGCAAGTCCCTACCACTTGCA
 601 - - - + - - + - - + - - + - - + - - + - - + 660
 a V N F R A N Q D C P A L S T S P Y H F A -

ATGAAACAGAGAAAGGCCAGATTACTCACCTATGAAACATGGCCATTGTCTTCTGTCA
 661 - - - + - - + - - + - - + - - + - - + - - + 720
 a M N T E K A R L L T Y E T W P L S F L S -

CCAGCAAAGCTGGCCAAGCAGGCTTCACTACATAGGACCTGGAGATAAGTGGCCTGCG
 721 - - - + - - + - - + - - + - - + - - + 780
 a P A K L A K A G F Y I G P G D R V A C -

31/67

FIG. 5C

M-hiap-1

TTTGGTGGATGGAAACTGAGCAACTGGGAACGTAAGGATGATGCTATGTAGAGCAC
 781 F A C D G K L S N W E R K D D A M S E H - + 840

CAGAGGCATTCCCCAGCTGTCCGGTCTTAAAGACTTGCGTCAGTCTGCTCGAGATAAC
 841 Q R H F P S C P F L K D L G Q S A S R Y - + 900

ACTGGTCTCTAACCTGAGCATGGCAGACACAGCAGCCCGTATTAGAACATTCTAAGTGG
 901 T V S N L S M Q T H A A R I R T F S N W - + 960

CCTTCTAGTGCCTACTAGTTCAATCCCAGGAACITGCAAAGTGGCTTTATTATAAGGA.
 961 P S S A L V H S Q E L A S A G F Y Y T G - + 1020

CACAGTGTGTTAAGTGTCAAGTGTGTTATGCTGTGATGGTGGCTGAGGTGGAAATCTGGA
 1021 H S D D V K C L C C D G G L R C W E S G - + 1080

GATGACCCCTGGTGGAACATGCCAAGTGGTCCAGGTGTGAGTACTTGCTCAGAAC
 1081 D D P W V E H A K W F P R C E Y L L R I - + 1140

AAAGGCCAAGAATTGTCAAGCCAAAGTCAAGCTGGCTATCCTCATCTACTTGAGCAGCTA.
 1141 K G Q E F V S Q V Q A G Y P H L L E Q L - + 1200

FIG. 5D

M-hiap-1

TTATCTACGTCAAGACTCCCCAACAAAGATGAGAATGCAGAACGGCAGCAATCGTGCATTGGC
1201 L S T S D S P E D E N A D A A I V H F G - + 1260

CCTGGAGAAAGTTCTCGGAAGATGTCGTCAATGATGAGCACGCCCTGTGGTTAACGGCCCTTG
1261 P G E S S E D V V M M S T P V V K A A L - + 1320

GAATGGGCTTCAGTAGGAGGCCCTGGTGGACAGACGGTTCAAGTGGCAGATCCTGCCACT
1321 E M G F S R S L V R Q T V Q W Q I L A T - + 1380

GGTGGAGAACTACAGGACC GTCAAGTGACCTCGTTATAGGCTTACTCGATGCCAGAACGGAG
1381 G E N Y R T V S D L V I G L L D A E D E - + 1440

ATGAGAGGAGGAGATGGAGCAGGGGGCGAGGGAGGTCAAGATCTAGCACTA
1441 M R E E Q M E Q A A E E E S D D L A L - + 1500

ATCCGGAAGAACAAATGGTGCCTTTCCAACATTGACCGTGTGACACCAATGCTGTAT
1501 I R K N K M V L F Q H L T C V T P M L Y - + 1560

33/67

FIG. 5E

M-hiap-1

TGCCTCCTAAGTGC_aAGGCCATCACTGAAACAGGAGTGCAATGCTGTGAAACAGAACCA
1561 C L L S A R A I T E Q E C N A V K Q K P - +-----+ 1620

CACACCTTACAAGCAAGCACACTGATTGATACTGTGTTAGCAAAAGGAAACACTGCAGCA
1621 H T L Q A S T L I D T V L A K G N T A A - +-----+ 1680

ACCTCATTAGAAACTCCCTTCGGAAATTGACCCCTGGTTATACTAGAGATATTTGTG
1681 T S F R N S L R E I D P A L Y R D I F V - +-----+ 1740

CAACAGGACATTAGGAGTCCTCCACAGATGACATTGCGCTCTACCAAATGGAAGAACAG
1741 Q Q D I R S L P T D I A A L P M E E Q - +-----+ 1800

TTGGGGCCCTCCGGAGGACAGAAATGTGTAAGTGTATGGACCGAGGGTATCCATC
1801 L R P L P E D R M C K V C M D R E V S I - +-----+ 1860

GTGTTCATTCCTGTGGCCATCTGGTCGTGTGCAAAGACTGGCTCCCTCTCTGAGGAAG
1861 V F I P C G H L V V C K D C A P S L R K - +-----+ 1920

34/67

FIG. 5F

35/67

FIG. 6A

FIG. 6A

M-hiap-2	<pre> CTGTGGAGATCTATTGTCCAAGTGGTGAGAAACTTCATCTGGAAGTTAACCGGGTCA 1 +-----+-----+-----+-----+-----+-----+-----+-----+ GAAATACTTACTACTCATGGACAAAACCTGTCTCCCAGAGACTGCCAACGGTACCTTA 61 +-----+-----+-----+-----+-----+-----+-----+-----+ CACCCAAAAACTTAAACGTATAATGGAGAAGAGCACAAATCTTGTCAAATTGGACAAAGGA 121 +-----+-----+-----+-----+-----+-----+-----+-----+ M E K S T I L S N W T K E - </pre>
b	<pre> GAGCGAAAGAAAAATGAAGTTGACTTTCTGTGAACTTACCGAACATGGTCTACATATTC 181 +-----+-----+-----+-----+-----+-----+-----+-----+ S E K M K F D F S C E L Y R M S T Y S - </pre>
b	<pre> AGCTTTCCAGGGAGTTCTGTCTCAGAGGGAGTCTGGCTCGTGGCTTTATTA 241 +-----+-----+-----+-----+-----+-----+-----+-----+ A F P R G V P V S E R S L A R A G F Y Y - </pre>
b	<pre> TACAGGTGTGAATGACAAGTCAAGTCTCTGCTGTGGCTGATGTTGATAACTGGAA 301 +-----+-----+-----+-----+-----+-----+-----+-----+ T G V N D K V K C F C C G L M L D N W K - </pre>
b	<pre> ACAAGGGACIAGTCCCTGTTGAAAAGCACAGACAGTTCTATCCAGCTGGAGCTTGTACA 361 +-----+-----+-----+-----+-----+-----+-----+-----+ Q G D S P V E K H R Q F Y P S C S F V Q - </pre>

36/67

FIG. 6B

M-hiap-2

GACTCTGCTTTCAGCCAGTCTGCAGTCTCCATCTAAGAATAATGTCTCTGTGAAAAGTAG
 421 ---+---+---+---+---+---+---+---+---+---+---+ 480
b T L L S A S L Q S P S K N M S P V K S R -

ATTGCACATTCGTCACCTCTGGAACCGAGGTGGCATTCACCTCCAACCTGTCTAGGCC
 481 ---+---+---+---+---+---+---+---+---+---+ 540
b F A H S S P L E R G G I H S N L C S S P -

TCTTAATTCTAGGCCAGTGGAAAGACTTCTCATCAAGGATGGATCCCTGCAGCTATGCCAT
 541 ---+---+---+---+---+---+---+---+---+---+ 600
b L N S R A V E D F S S R M D P C S Y A M -

GAGTACAGGAAGGCCAGATTCTACTAACAGTATGTGGCCTTAAGTTCTGTCAACC
 601 ---+---+---+---+---+---+---+---+---+---+ 660
b S T E E A R F L T Y S M W P L S F L S P -

AGCAGAGCTGGCCAGAGCTGGCTCTTATTACATAGGGCCTGGAGACAGGGTGGCCTGTT
 661 ---+---+---+---+---+---+---+---+---+---+ 720
b A E L A R A G F Y Y I G P G D R V A C F -

TGCCCTGTTGGAAACTGAGCAACTGGAAACCAAGGATTATGCTATGTCAAGAGCACCG
 721 ---+---+---+---+---+---+---+---+---+---+ 780
b A C G G K L S N W E P K D Y A M S E H R -

37/67

FIG. 6C

M-hiap-2

CAGACATTCCCACTGTCCATTCTGGAAAATACTTCAGAAACACAGGTTAGAT
b 781. R H F P H C P F L E N T S E T Q R F S I - 840

ATCAAATCTAAGTATGCCAGACACACTCTGCTCGATTGAGGACATTCCTGTACTGGCCACC
b 841. S N L S M Q T H S A R L R T F L Y W P P - 900

TAGTGTTCCTGTTAGCCCCGAGCAGCTTGCAAGTGCTGGATTCTATTACGTGGATCGCAA
b 901. S V P V Q P E Q L A S A G F Y Y V D R N - 960

TGATGATGTCAGGCCCTTGTGATGGCTTGAGATGTTGGAACCTGGAGATGA
b 961. D D V K C L C C D G G L R C W E P G D D - 1020

CCCTGGATAGAACACGCCAAATGGTTCCAAGGTGAGTTCTTGATAACGGATGAAGGG
b 1021. P W I E H A K W F P R C E F L I R M K G - 1080

TCAGGAGTTGGTGTGAGATTCAAGCTAGATATCCTCATCTTGGCAGCTGTTGTC
b 1081. Q E F V D E I Q A R Y P H L L E Q L L S - 1140

38/67

FIG. 6D

M-hiap-2

CACTTCAGACACCCCAGGAGAAGAAAATGCTGACCCCTACAGAGACAGTGGCATTTTGG
 1141 - - - + - + - + - + - + - + - + - + - + - + - + - + - + 1200
b T S D T P G E E N A D P T E T V V H F G -

CCCCTGGAGAAAGTTCGAAAGATGTGCGTCATGATGAGCACGGCCTGTGGTTAACGCAGCCTT
 1201 - - - + - + - + - + - + - + - + - + - + - + - + - + - + 1260
b P G E S S K D V V M M S T P V V K A A L -

GGAATGGCTTCACTAGGAGCCTGGTGAGACAGACGGTTCAAGGCCAGATCCTGGCAC
 1261 - - - - + - - + - - + - - + - - + - - + - - + - - + - - + 1320
b E M G F S R S L V R Q T V Q R Q I L A T -

TGGTGAGAACTACAGGACCGTCAATTGATAATTGTCAGTACTTTGAATGCTGAAGATGA
 1321 - - - - + - - + - - + - - + - - + - - + - - + - - + - - + 1380
b G E N Y R T V N D I V S V L L N A E D E -

GAGAAGAGAAGGGAGAAGGAAAGACAGACTGAAGAGAGATGGCATCAGGTGACTTATCACT
 1381 - - - - + - - + - - + - - + - - + - - + - - + - - + - - + 1440
b R R E E K E R Q T E E M A S G D L S L -

GATTGGAAAGAAATAGAATGGCCCTCTTCAACAGTGCACATGTCCCTATCCTGGAA
 1441 - - - - + - - + - - + - - + - - + - - + - - + - - + - - + 1500
b I R K N R M A L F Q Q L T H V L P I L D -

39/67

FIG. 6E

M-hiap-2

TAATCTTGTGAGGCCAGTGTAAATTACAAAACAGGAACATGATAATTAGACAGAAAC
1501 ---+---+---+---+---+---+---+---+---+---+ 1560

b N L L E A S V I T K Q E H D I I R Q K T -

ACAGATAACCCTTACAAGCAAGAGCTTATTGACACCCGTTTAGTCAACGGAAATGCTGC
1561 ---+---+---+---+---+---+---+---+---+---+ 1620

b Q I P L Q A R E L I D T V L V K G N A A -

AGCCAACATCTTCAAAACTCTCTGAAGGAAATTGACTCCACGTTATATGAAAACTTATT
1621 ---+---+---+---+---+---+---+---+---+---+ 1680

b A N I F K N S L K G I D S T L Y E N L F -

-
TGTGGAAAAGAATATGAAGTATAATTCCAACAGAACGTTTCAGGCCTGTCAATTGGAAGA
1681 ---+---+---+---+---+---+---+---+---+---+ 1740

b V E K N M K Y I P T E D V S G L S L E E -

GCAGTTGCCGAGATTACAAGAACGAAACTTGCAAAGTGTATGGACAGAGGTTTC
1741 ---+---+---+---+---+---+---+---+---+---+ 1800

b Q L R R L Q E E R T C K V C M D R E V S -

TATTGTGTTCAATTCCGTTGTGGTCATCTAGTAGTCTGCCAGGAATGTGCCCTTCTCTAAG
1801 ---+---+---+---+---+---+---+---+---+---+ 1860

b I V F I P C G H L V V C Q E C A P S L R -

FIG. 6F

M-hiap-2

	M-hiap-2									
	GAAGTCCCCATCTGCAGGGACAAATCAAGGGGACTGTGGCACATTCTCATGAGT									
1861	-	-	-	-	-	-	-	-	-	-
b	K	C	P	I	R	G	T	I	K	G
	T	V	R	T	F	L	S	*	-	-
1921	-	-	-	-	-	-	-	-	-	-
	GAAGAATGGTCTGAAGTATTGTTGGACATCAGAACAGCTGTCAAGAACAAAGAAATGAACTAC									
1981	-	-	-	-	-	-	-	-	-	-
	TGATTTCAGCTCTCAGGACATTCTACTCTTCAAGATTAGTAATCTTGCTTTAT									
2041	-	-	-	-	-	-	-	-	-	-
	GAAGGGTAGCATTGTATAATTAAAGCTTAGTCTGGCAAGGGAAAGGTCTATGCTGTTGAG									
2101	-	-	-	-	-	-	-	-	-	-
	CTACAGGACTGTGTCTGGTCCAGGCAAGGAGTGGGATGCTTGCTGTATGTCCTCAGGA									
2161	-	-	-	-	-	-	-	-	-	-
	CTTCTGGATTGGAAATTGGGAAAGCTTGGAAATCCAGTGTGGAGCTCAGAAA									
2221	-	-	-	-	-	-	-	-	-	-
	TCCTGGAACCACTGACTCTGGTACTCAGTAGATAGGGTACCCCTGTACTCTTGGTGTCTT									
2281	-	-	-	-	-	-	-	-	-	-
	TCCAGTCGGAAATAAGGAGGAATCTGGCTGGTAAAAATTGCTGGATGTGAGAAAT									
2341	-	-	-	-	-	-	-	-	-	-
	AGATGAAAGTGTGGGTGGGGCTGCATCACTGTAGTGTGGCATGGGATGTATGCCAG									
2401	-	-	-	-	-	-	-	-	-	-
	GCCAAACACTGTGTAG									
	2416									

41/67

FIG. 7A

FIG. 7B

42/67

FIG. 7C

FIG. 7D

43/67

FIG. 7E

FIG. 7F

44/67

FIG. 7G

FIG. 7H

45/67

FIG. 7I

FIG. 7J

46/67

FIG. 7K

FIG. 7L

47/67

FIG. 8A

FIG. 8B

FIG. 8C

48/67

FIG. 9A

49/67

FIG. 9B

FIG. 9C

50/67

FIG. 9D

51/67

FIG. 10

52/67

FIG. 11A

FIG. 11B

53/67

FIG. 12

54/67

FIG. 13

55/67

FIG. 14

56/67

FIG. 15A

1 TTGCAGGTAC TTAGAATTT TCCTGAGCCA CCCTCTAGAG GGCAGTGTAA
51 CATATATATC TGTAATTATC CAGTTACAAC AAAAAAAGGG CTCTCATTCA
101 TGCATGAAAA TCAGAAATAT TTCATACTCT TAAAGAACAC ATTGGAACCA
151 ATATTATGAT TAAAACATAT TTTGCTAAGC AAAGAGATAT TAAAAATTAA
201 TTCATTAACA TTCTGAACAT TTTTTAACTT GTAAAAACAA CTTTGATGCC
251 TTGAATATAT AATGATTCAT TATAACAATT ATGCATAGAT TTTAATAATC
301 TGCATATTTT ATGCTTCAT GTTTTCCTA ATTAATGATT TGACATGGTT
351 AATAATTATA ATATATTCTG CATCACAGTT TACATATTTA TGTAAAATAA
401 GCATTTAAAA ATTATTAGTT TTATTCTGCC TGCTTAAATA TTACTTCCCT
451 CAAAAAGAGA AAACAAAAAT GCTAGATTT ACTTTATGAC TTGAATGATG
501 TGGTAATGTC GAACTCTAGT ATTTAGAATT AGAATGTTTC TTAGCGGTCG
551 TGTAGTTATT TTATGTCAT AAGTGGATAA TTTGTTAGCT CCTATAACAA
601 AAGTCTGTTG CTTGTGTTTC ACATTTGGA TTTCCTAATA TAATGTTCTC
651 TTTTAGAAA AGGTGGACAA GTCCTTTT CAAGAGAAGA TGACTTTAA
701 CAGTTTGAA GGATCTAAAA CTTGTGTACC TGCAGACATC AATAAGGAAG
751 AAGAATTGT AGAAGAGTTT AATAGATTAA AAACTTTGC TAATTTC
801 AGTGGTAGTC CTGTTTCAGC ATCAACACTG GCACGAGCAG GGTTCTTA
851 TACTGGTGAA GGAGATACCG TGCAGTGCTT TAGTTGTCAT GCAGCTGTAG
901 ATAGATGGCA ATATGGAGAC TCAGCAGTTG GAAGACACAG GAAAGTATCC
951 CCAAATTGCA GATTTATCAA CGGCTTTAT CTTGAAAATA GTGCCACGCA

57/67

FIG. 15B

1001 GTCTACAAAT TCTGGTATCC AGAATGGTCA GTACAAAGTT GAAAACATAC
1051 TGGGAAGCAG AGATCATTG GCCTTAGACA GGCCATCTGA GACACATGCA
1101 GACTATCTT TGAGAACTGG GCAGGTTGTA GATATATCAG ACACCATA
1151 CCCGAGGAAC CCTGCCATGT ATTGTGAAGA AGCTAGATTA AAGTCCTTC
1201 AGAACTGGCC AGACTATGCT CACCTAACCC CAAGAGAGTT AGCAAGTGCT
1251 GGACTCTACT ACACAGGTAT TGGTGACCAA GTGCAGTGCT TTTGTTGTGG
1301 TGGAAAAC TG AAAAATTGGG AACCTTGTGA TCGTGCCTGG TCAGAACACA
1351 GGCACACTT TCCTAATTGC TTCTTGTGTT TGGGCCGGAA TCTTAATATT
1401 CGAAGTGAAT CTGATGCTGT GAGTTCTGAT AGGAATTCC CAAATTCAAC
1451 AAATCTCCA AGAAATCCAT CCATGGCAGA TTATGAAGCA CGGATCTTA
1501 CTTTGGGAC ATGGATATAAC TCAGTTAACCA AGGAGCAGCT TGCAAGAGCT
1551 GGATTTATG CTTAGGTGA AGGTGATAAA GTAAAGTGCT TTCACTGTGG
1601 AGGAGGGCTA ACTGATTGGA AGCCCAGTGA AGACCCTTGG
GAACAAACATG
1651 CTAAATGGTA TCCAGGGTGC AAATATCTGT TAGAACAGAA
GGGACAAGAA
1701 TATATAAACAA ATATTCAATT AACTCATTCA CTTGAGGAGT GTCTGGTAAG
1751 AACTACTGAG AAAACACCAT CACTAACTAG AAGAATTGAT GATACCATCT
1801 TCCAAAATCC TATGGTACAA GAAGCTATAAC GAATGGGGTT CAGTTCAAG
1851 GACATTAAGA AAATAATGGA GGAAAAAATT CAGATATCTG
GGAGCAACTA
1901 TAAATCACTT GAGGTTCTGG TTGCAGATCT AGTGAATGCT CAGAAAGACA
1951 GTATGCAAGA TGAGTCAAGT CAGACTTCAT TACAGAAAGA GATTAGTACT
2001 GAAGAGCAGC TAAGGCGCCT GCAAGAGGAG AAGCTTGCA
AAATCTGTAT

58/67

FIG. 15C

2051 GGATAGAAAT ATTGCTATCG TTTTGTTC TTGTGGACAT CTAGTCACTT
2101 GTAAACAATG TGCTGAAGCA GTTGACAACT GTCCCATGTG CTACACAGTC
2151 ATTACTTCA AGCAAAAAAT TTTATGTCT TAATCTAATCT ATAGTAGG
2201 CATGTTATGT TGTTCTTATT ACCCTGATTG AATGTGTGAT GTGAACGTGAC
2251 TTTAAGTAAT CAGGATTGAA TTCCATTAGC ATTTGCTACC AAGTAGGAAA
2301 AAAAATGTAC ATGGCAGTGT TTTAGTTGGC AATATAATCT TTGAATTCT
2351 TGATTTTCA GGGTATTAGC TGTATTATCC ATTTTTTTA CTGTTATTAA
2401 ATTGAAACCA TAGACTAAGA ATAAGAAGCA TCATACTATA ACTGAACACAA
2451 ATGTGTATTTC ATAGTATACT GATTTAATTCT CTAAGTGTAA GTGAATTAAT
2501 CATCTGGATT TTTTATTCTT TTCAGATAGG CTTAACAAAT GGAGCTTTCT
2551 GTATATAAAAT GTGGAGATTA GAGTTAATCT CCCAACAC ATAATTGTT
2601 TTGTGTGAAA AAGGAATAAA TTGTTCCATG CTGGTGGAAA GATAGAGATT
2651 GTTTTAGAG GTGGTTGTT GTGTTTAGG ATTCTGTCCA TTTTCTTTA
2701 AAGTTATAAA CACGTACTTG TCGAATTAT TTTTAAAG TGATTGCCA
2751 TTTTGAAAG CGTATTTAAT GATAGAATAC TATCGAGCCA ACATGTACTG
2801 ACATGGAAAG ATGTCAAAGA TATGTTAAGT GTAAAATGCA
AGTGGCAAAA
2851 CACTATGTAT AGTCTGAGCC AGATCAAAGT ATGTATGTT TTAATATGCA
2901 TAGAACAAAA GATTGGAAA GATATACACC AAACGTAA ATGTGGTTTC
2951 TCTTCGGGGA GGGGGGGATT GGGGGAGGGG CCCCATAGGG GTTTATAGG

59/67

FIG. 16A

1 TTGCTCTGTC ACCCAGTTG GAGTGCAGTT ATGCAGTCTC
ACACTGCAAG

51 CTCTGCCTCA TGGGCTCAAG TGAACCTCCT GCCTCAGCCT
CTCAAGTAGC

101 TGGGACCACA GGCAGGTGCC ACCATGTCTG GCTAATTTT
GAGTTTCTT

151 GTAGAGATGG TGTTTGCCA AGTCACCCAG TTTGAGGCTG
GTCTCAAACA

201 CCTGGGCTCA AGCAATCCAT CTACCTCAGC CTCCCAAAGT
GCTGGGATTAA

251 CAGGAGTGAG CCATGGCATG AGGCCTTGTG GGGTGTCTCT
TTTAAATGAA

301 AGCATACTCT GTTACGTAT TTGATATGAA GGAATATCCT
TCCTTTCCAC

351 AAAGACAAAA ATTATCCTAT TTTCTCAAA ACATATGTCC
TTTTCTCTA

401 CTTTCATTT TTGTTACTTT TGATGGACAC ATGTGTTACA
TTGATTCAC

451 TTTCTCATAA TTCTGCTGTA AGAAAAACAA TAGTGCCAGT
TCAATGACAA

501 ATAGCAACAG TCTGTTATTG CTAGACTGTT ACTGTTAGTG
GAGACTACCA

551 GAACAGTCAG TCCCAGTGTC AGGGAATCAA AGAGAACATG
TTCCCTCTCT

601 AAAGGGCACA GCTGCTGCTC AGCTTAGCT GATTGCTGCC
CTGCAGGACT

651 ATAGGCCAG TGTTGCTAGA TCTTTGATG TTTCAAGAGA
AGCTTGGAAAT

701 CTAGAATGTG ATGGGAAGTC TCTTACATT AAACATGTTG
GCAATTAATG

60/67

FIG. 16B

751 GTAAGATTAA AAAATACTGT GGTCCAAGAA AAAAATGGAT
TTGGAAACTG

801 GATTAATTC AAATGAGGCA TGCAGATTAA TCTACAGCAT
GGTACAATGT

851 GAATTTCTG GTTCTTTAA TTGCACTGTA ATTAGGTAAG
ATGTTAGCTT

901 TGGGAAGCT AAGTGCAGAG TATGCAGAAA CTATTATTT
TGTAAGTTT

951 CTCTAAGTAT AAATAAATT CAAAATAAAA ATAAAAACTT
AGTAAAGAAC

1001 TATAATGCAA TTCTATGTAACCCAG GCTGGAGTGT AGTGGCACTA TTTGGGCCA
CAGTTGAAA

1051 CCTCTGGGTT TTATTTATT TTATTTATT TTTGAGACAG
AGTCTTGCTG

1101 TGTCACCCAG GCTCAAATGA TTCTCCTGCC TCAGCCTCCG
CTGCAACCTC

1151 CACCTCCCAG GCTCAAATGA TTCTCCTGCC TCAGCCTCCG
GAGTAGCTGG

1201 GATTACAGGC GCGTACCAACC ACACCCAGCT AATTTTGTA
TTTTAGTAG

1251 AGATGGGGTT TCACCATTTC GGCCAGGCTG GTTTGAAC
CCTGACCTCA

1301 AGTGATCCAC TTGTCTGGC CTCCAAAAT GCTGGGATTA
CAGGCGTGAG

1351 CCACTGCACC AGGCAGAGGC CTCTGTTTT TATCTCTTT
TGGCCTCTAC

1401 AGTGCCTAGT AAAGCACCTG ATACATGGTA AACGATCAGT
AATTACTAGT

1451 ACTCTATTTC GGAGAAAATG ATTTTTAAA AAGTCATTGT
GTTCCATCCA

FIG. 16C

61/67

1501 TGAGTCGTTT GAGTTTAAA ACTGTCTTT TGTTGTTT
TGAACAGGTT

1551 TACAAAGGAG GAAAACGACT TCTTCTAGAT TTTTTTTCA
GTTTCTTCTA

1601 TAAATCAAAA CATCTCAAAA TGGAGACCTA AAATCCTTAA
AGGGACTTAG

1651 TCTAATCTCG GGAGGTAGTT TTGTGCATGG GTAAACAAAT
TAAGTATTAA

1701 CTGGTGTTT ACTATCCAAA GAATGCTAAT TTTATAAAC
TGATCGAGTT

1751 ATATAAGGTA TACCATAATG AGTTTGATTT TGAATTGAT
TTGTGGAAAT

1801 AAAGGAAAAG TGATTCTAGC TGGGGCATAT TGTAAAGCA
TTTTTTTCAG

1851 AGTTGGCCAG GCAGTCTCCT ACTGGCACAT TCTCCCATT
TGTAGAATAG

1901 AAATAGTACC TGTGTTGGG AAAGATTTA AAATGAGTGA
CAGTTATTG

1951 GAACAAAGAG CTAATAATCA ATCCACTGCA AATTAAAGAA
ACATGCAGAT

2001 GAAAGTTTG ACACATTAAA ATACTTCTAC AGTGACAAAG
AAAAATCAAG

2051 AACAAAGCTT TTTGATATGT GCAACAAATT TAGAGGAAGT
AAAAAGATAA

2101 ATGTGATGAT TGGTCAAGAA ATTATCCAGT TATTTACAAG
GCCACTGATA

2151 TTTAAACGT CCAAAGTTT GTTAAATGG GCTGTTACCG
CTGAGAATGA

2201 TGAGGATGAG AATGATGGTT GAAGGTTACA TTTAGGAAA
TGAAGAAACT

2251 TAGAAAATTA ATATAAAGAC AGTGATGAAT ACAAAGAAGA

62/67

FIG. 16D

TTTTTATAAC

2301 AATGTGTAAA ATTTTGGCC AGGGAAAGGA ATATTGAAGT
TAGATACAAT

2351 TACTTACCTT TGAGGGAAAT AATTGTTGGT AATGAGATGT
GATGTTCTC

2401 CTGCCACCTG GAAACAAAGC ATTGAAGTCT GCAGTTGAAA
AGCCCAACGT

2451 CTGTGAGATC CAGGAAACCA TGCTTGCAAA CCACTGGTAA
AAAAAAAAAA

2501 AAAAAAAAAAA AAAGCCACAG TGACTTGCTT ATTGGTCATT
GCTAGTATTA

2551 TCGACTCAGA ACCTCTTAC TAATGGCTAG TAAATCATAA
TTGAGAAATT

2601 CTGAATTTG ACAAGGTCTC TGCTGTTGAA ATGGTAAATT
TATTATTTT

2651 TTTGTCATGA TAAATTCTGG TTCAAGGTAT GCTATCCATG
AAATAATTTC

2701 TGACCAAAAC TAAATTGATG CAATTGATT ATCCATCTTA
GCCTACAGAT

2751 GGCATCTGGT AACTTTGAC TGTTTAAAAA AATAAATCCA
CTATCAGAGT

2801 AGATTTGATG TTGGCTTCAG AACATTTAG AAAAACAAAAA
GTTCAAAAAT

2851 GTTTCAGGA GGTGATAAGT TGAATAACTC TACAATGTTA
GTTCTTTGAG

2901 GGGGACAAAAA AATTTAAAAT CTTGAAAGG TCTTATTTA
CAGCCATATC

2951 TAAATTATCT TAAGAAAATT TTAAACAAAG GGAATGAAAT
ATATATCATG

3001 ATTCTGTTT TCCAAAAGTA ACCTGAATAT AGCAATGAAG
TTCAGTTTG

63/67

FIG. 16E

3051 TTATTGGTAG TTTGGGCAGA GTCTCTTTT GCAGCACCTG
TTGTCTACCA

3101 TAATTACAGA GGACATTTCC ATGTTCTAGC CAAGTATACT
ATTAGAATAA

3151 AAAAACCTAA CATTGAGTTG CTTCAACAGC ATGAAACTGA
GTCCAAAAGA

3201 CCAAATGAAC AAACACATTA ATCTCTGATT ATTATTTTA
AATAGAATAT

3251 TTAATTGTGT AAGATCTAAT AGTATCATTA TACTTAAGCA
ATCATATTCC

3301 TGATGATCTA TGGGAAATAA CTATTATTTA ATTAATATTG
AAACCAGGTT

3351 TTAAGATGTG TTAGCCAGTC CTGTTACTAG TAAATCTCTT
TATTGGAGA

3401 GAAATTTAG ATTGTTTGT TCTCCTTATT AGAAGGATTG
TAGAAAGAAA

3451 AAAATGACTA ATTGGAGAAA AATTGGGGAT ATATCATATT
TCACTGAATT

3501 CAAAATGTCT TCAGTTGTAATCTTACCAT TATTTACGT
ACCTCTAAGA

3551 AATAAAAGTG CTTCTAATTAA AAATATGATG TCATTAATTAA
TGAAATACCT

3601 CTTGATAACA GAAGTTTAA AATAGCCATC TTAGAATCAG
TGAAATATGG

3651 TAATGTATTAA TTTTCCTCCT TTGAGTNAGG TCTTGTGCTT
TTTNTTCCTG

3701 GCCACTAAAT NTCACCATNT CCAANAAGCA AANTAAACCT
ATTCTGAATA

3751 TTTTGCTGT GAAACACTTG NCAGCAGAGC TTTCCCNCCA
TGNNAAGAC

FIG. 16F

64/67

3801 TTCATGAGTC ACACATTACA TCTTGCGTT GATTGAATGC
CACTGAAACA

3851 TTTCTAGTAG CCTGGAGNAG TTGACCTACC TGTGGAGATG
CCTGCCATTA

3901 AATGGCATCC TGATGGCTTA ATACACATCA CTCTTCTGTG
NAGGGTTTA

3951 ATTTCAACA CAGCTTACTC TGTAGCATCA TGTTTACATT
GTATGTATAA

4001 AGATTATAACN AAGGTGCAAT TGTGTATTC TTCCCTAAAAA
TGTATCAGTA

4051 TAGGATTTAG AATCTCCATG TTGAAACTCT AAATGCATAG
AAATAAAAAT

4101 AATAAAAAAAT TTTTCATTT GGCTTTCAAG CCTAGTATTAA
AAACTGATAA

4151 AAGCAAAGCC ATGCACAAAAA CTACCTCCCT AGAGAAAGGC
TAGTCCCTT

4201 TCTTCCCCAT TCATTCATT ATGAACATAG TAGAAAACAG
CATATTCTTA

4251 TCAAATTGTA TGAAAAGCGC CAACACGTT GAACTGAAAT
ACGACTTGTC

4301 ATGTGAACGT TACCGAATGT CTACGTATT CACTTTCC
GCTGGGGTTC

4351 CTGTCTCAGA AAGGAGCTT GCTCGTGCTG GTTTCTATTAA
CACTGGTGTG

4401 AATGACAAGG TCAAATGCTT CTGTTGTGGC CTGATGCTGG
ATAACTGGAA

4451 AAGAGGAGAC AGTCCTACTG AAAAGCATAA AAAGTTGTAT
CCTAGCTGCA

4501 GATTGTTCA GAGTCTAAAT TCCGTTAACCA ACTTGGAAAGC
TACCTCTCAG

4551 CCTACTTTTC CTTCTTCAGT AACACATTCC ACACACTCAT

65/67

FIG. 16G

TACTTCCGGG

4601 TACAGAAAAC AGTGGATATT TCCGTGGCTC TTATTCAAAC
TCTCCATCAA

4651 ATCCTGTAAA CTCCAGAGCA AATCAAGAAT TTTCTGCCTT
GATGAGAAGT

4701 TCCTACCCCT GTCCAATGAA TAACGAAAAT GCCAGATTAC
TTACTTTCA

4751 GACATGGCCA TTGACTTTTC TGTCGCCAAC AGATCTGGCA
CGAGCAGGCT

4801 TTTACTACAT AGGACCTGGA GACAGAGTGG CTTGCTTTGC
CTGTGGTGGAA

4851 AAATTGAGCA ATTGGGAACC GAAGGATAAT GCTATGTCAG
AACACCTGAG

4901 ACATTTCCC AAATGCCAT TTATAGAAAAA TCAGCTTCAA
GACACTTCAA

4951 GATACACAGT TTCTAATCTG AGCATGCAGA CACATGCAGC
CCGCTTTAAA

5001 ACATTCTTA ACTGGCCCTC TAGTGTCTA GTTAATCCTG
AGCAGCTTGC

5051 AAGTGCAGGT TTTTATTATG TGGGTAAACAG TGATGATGTC
AAATGCTTT

5101 GCTGTGATGG TGGACTCAGG TGTTGGGAAT CTGGAGATGA
TCCATGGGTT

5151 CAACATGCCA AGTGGTTCC AAGGTGTGAG TACTTGATAA
GAATTAAAGG

5201 ACAGGAGTTC ATCCGTCAAG TTCAAGCCAG TTACCCCTCAT
CTACTTGAAC

5251 AGCTGCTATC CACATCAGAC AGCCCAGGAG ATGAAAATGC
AGAGTCATCA

5301 ATTATCCATT TTGAACCTGG AGAAGACCAT TCAGAAGATG
CAATCATGAT

66/67

FIG. 16H

5351 GAATACTCCT GTGATTAATG CTGCCGTGGA AATGGGCTTT
AGTAGAAGCC

5401 TGGTAAAACA GACAGTCAG AGAAAAATCC TAGCAACTGG
AGAGAATTAT

5451 AGACTAGTCA ATGATCTTGT GTTAGACTTA CTCAATGCAG
AAGATGAAAT

5501 AAGGGAAGAG GAGAGAGAAA GAGCACTGA GGAAAAAGAA
TCAAATGATT

5551 TATTATTAAT CCGGAAGAAC AGAATGGCAC TTTTCAACA
TTGACTTGT

5601 GTAATTCCAA TCCTGGATAG TCTACTAACT GCCGGAATTAA
TTAATGAACA

5651 AGAACATGAT GTTATTAAAC AGAAGACACA GACGTCTTAA
CAAGCAAGAG

5701 AACTGATTGA TACGATTTTA GTAAAAGGAA ATATTGCAGC
CACTGTATTTC

5751 AGAAAATCTC TGCAAGAAC TGAAGCTGTG TTATATGAGC
ATTTATTGT

5801 GCAACAGGAC ATAAAATATA TTCCCACAGA AGATGTTCA
GATCTACCAAG

5851 TGGAAGAACAA ATTGCGGAGA CTACAAGAAC AGAACATG
TAAAGTGTGT

5901 ATGGACAAAG AAGTGTCCAT AGTGTATT CCTTGTGGTC
ATCTAGTAGT

5951 ATGCAAAGAT TGTGCTCCTT CTITAAGAAA GTGTCCTATT
TGTAGGAGTA

6001 CAATCAAGGG TACAGTCGT ACATTCTTT CATGAAGAAC
AACCAAAACA

6051 TCGTCTAAAC TTTAGAATTAA ATTTATTAAA TGTATTATAA
CTTTAACTTT

67/67

FIG. 16I

6101 TATCCTAATT TGGTTTCCIT AAAATTTITA TTTATTACAA
ACTCAAAAAAA

6151 CATTGTTTG TGTAACATAT TTATATATGT ATCTAAACCA
TATGAACATA

6201 TATTTTTAG AAACTAAGAG AATGATAGGC TTTTGTCTT
ATGAACGAAA

6251 AAGAGGTAGC ACTACAAACA CAATATTCAA TCAAAATTC
AGCATTATTG

6301 AAATTGTAAG TGAAGTAAAA CTTAAGATAT TTGAGTTAAC
CTTTAAGAAT

6351 TTTAAATATT TTGGCATTGT ACTAATACCG GGAACATGAA
GCCAGGTGTG

6401 GTGGTATGTG CCTGTAGTCC CAGGCTGAGG CAAGAGAATT
ACTTGAGCCC

6451 AGGAGTTGA ATCCATCCTG GGCAGCATACTGAGACCCCTG
CCTTTAAAAAA

6501 CAAACAGAAC AAAAACAAAA CACCAGGGAC ACATTTCTCT
GTCTTTTTG

6551 ATCAGTGTCC TATACATCGA AGGTGTGCAT ATATGTTGAA
TCACATTITA

6601 GGGACATGGT GTTTTATAA AGAATTCTGT GAGAAAAAAAT
TTAATAAAGC

6651 AACCAAAAAA AAAAAAAA

SEQUENCE LISTING

<110> University of Ottawa
Aegera Therapeutics, Inc.

<120> Antisense IAP Nucleic Acids and Uses
Thereof

<130> 07891/025WO1

<150> US 09/672,717
<151> 2000-09-28

<160> 231

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 1
aaaattctaa gtacctgca 19

<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 2
tctagagggt ggctcagga 19

<210> 3
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 3
cagatatata tgtaacact 19

<210> 4
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 4
tgagagccct tttttgtt 19

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 5
agtatgaaat atttctgat 19

<210> 6
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 6
attggttcca atgtgttct 19

<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 7
ttagcaaaaat atgttttaa 19

<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 8
tgaattaatt tttaatatc 19

<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 9
attcaaggca tcaaagttg 19

<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 10
gtcaaatcat taatttagga 19

<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 11
aatatgtaaa ctgtgatgc 19

<210> 12
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 12
gcagaataaaa actaataat 19

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 13
gaaagtataa tttaaggcag 19

<210> 14
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 14
ttaccacatc attcaagtc 19

<210> 15
<211> 19
<212> DNA

<213> Artificial Sequence
<220>
<223> based on Homo sapiens

<400> 15
ctaaatacta gagttcgac 19

<210> 16
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 16
acacgaccgc taagaaaaca 19

<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 17
tatccactta tgacataaaa 19

<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 18
gtttaggag ctaacaaat 19

<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 19
aatgtgaaac acaagcaac 19

<210> 20
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 20

acattatattt agggaaatcc

19

<210> 21

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 21

cttgtccacc ttttctaaa

19

<210> 22

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 22

atcttctttt gaaaatagg

19

<210> 23

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 23

ccttc当地 ctttggaaag

19

<210> 24

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 24

atgtctgcag gtacacaag

19

<210> 25

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 25

atcttattaaa ctcttctac	19
<210> 26	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 26	
acaggactac cacttgaa	19
<210> 27	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 27	
tgccagttt gatgtgaa	19
<210> 28	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 28	
gtataaaagaa accctgctc	19
<210> 29	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 29	
cgcacggtat ctccttcac	19
<210> 30	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 30	
ctacagctgc atgacaact	19
<210> 31	

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 31
gctgagtc tc catattgcc 19

<210> 32
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 32
atacttcc ct gtgtcttcc 19

<210> 33
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 33
gataaaatctg caatttggg 19

<210> 34
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 34
tttgtagactg cgtggcact 19

<210> 35
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 35
accattctgg ataccagaa 19

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 36
agttttcaac tttgtactg 19

<210> 37
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 37
atgatctctg cttcccaaga 19

<210> 38
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 38
agatggcctg tctaaggca 19

<210> 39
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 39
agttctcaaa agatagtct 19

<210> 40
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 40
gtgtctgata tatctacaa 19

<210> 41
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 41
tcgggtatat ggtgtctga 19

<210> 42
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 42
cagggttcct cgggtatat 19

<210> 43
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 43
gcttcttac aatacatgg 19

<210> 44
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 44
ggccagtct gaaaggact 19

<210> 45
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 45
gctaactctc ttggggtta 19

<210> 46
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 46
gtgttagtaga gtccagcac 19

<210> 47
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 47
aagcactgca cttggtcac 19

<210> 48
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 48
ttcagtttgc caccacaac 19

<210> 49
<211> 19
<212> DNA
<213> Artificial Sequence >

<220>
<223> based on Homo sapiens

<400> 49
acgatcacaa ggttccaa 19

<210> 50
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 50
tcgcctgtgt tctgaccag 19

<210> 51
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 51
ccggccccaaa acaaagaag 19

<210> 52
<211> 19
<212> DNA

<213> Artificial Sequence
<220>
<223> based on Homo sapiens
<400> 52
gattcacttc gaatattaa 19

<210> 53
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 53
tatcagaact cacagcata 19

<210> 54
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 54
ggaagatttg ttgaatttg 19

<210> 55
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 55
tctgccatgg atggatttc 19

<210> 56
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 56
aagtaaagat ccgtgcttc 19

<210> 57
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 57
ctgagtatat ccatgtccc 19

<210> 58
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 58
gcaagctgct ccttggtaaa 19

<210> 59
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 59
aaagcataaaa atccagctc 19

<210> 60
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 60
gaaaggactt tactttatc 19

<210> 61
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 61
actgggcattt caatcgatt 19

<210> 62
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 62

gttggccca agggcttc 19
<210> 63
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 63
accctggata ccatttgc 19
<210> 64
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 64
tggttctaaca gatatttgc 19
<210> 65
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 65
tatatatattct tgtcccttc 19
<210> 66
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 66
agttaaatga atattgtt 19
<210> 67
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 67
gacactcctc aagtgaatg 19
<210> 68

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 68
tttctcagta gttcttacc 19

<210> 69
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 69
gttagtgatg gtgtttct 19

<210> 70
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 70
agatggatc atcaaattct 19

<210> 71
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 71
tgtaccatag gatTTTgga 19

<210> 72
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 72
ccccattcgt atagcttct 19

<210> 73
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 73
attatttctt taatgtcct 19

<210> 74
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 74
caagtgattt atagttgct 19

<210> 75
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 75
tagatctgca accagaacc 19

<210> 76
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 76
catcttgcat actgtcttt 19

<210> 77
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 77
ccttagctgc tcttcagta 19

<210> 78
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 78
aagcttctcc tcttcagg 19

<210> 79
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 79
atatttctat ccatacaga 19

<210> 80
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 80
ctagatgtcc acaaggaac 19

<210> 81
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 81
agcacatgtt ttacaagtg 19

<210> 82
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 82
agcacatggg acacttgtc 19

<210> 83
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 83
cttgaaagta atgactgtg 19

<210> 84
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 84
cctactatag agtagatt 19

<210> 85
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 85
attcaatcag ggtaataag 19

<210> 86
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 86
aagtcaatcag acatcacac 19

<210> 87
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 87
cagtaaaaaa aatggataaa 19

<210> 88
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 88
ttcagttata gtatgatgc 19

<210> 89
<211> 19
<212> DNA

<213> Artificial Sequence
<220>
<223> based on Homo sapiens

<400> 89
tacacttaga aattaaatc 19

<210> 90
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 90
tctctatctt tccaccagg 19

<210> 91
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 91
agaatccataa aacacaaca 19

<210> 92
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 92
attcgcacaa gtacgtgtt 19

<210> 93
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 93
tgtcagtaca tgtggctc 19

<210> 94
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 94
acatagtgtt ttgccactt 19

<210> 95
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 95
ctttgatctg gctcagact 19

<210> 96
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 96
gaaaccacat ttaacagtt 19

<210> 97
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 97
tcatttgagc ctgggaggu 19

<210> 98
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 98
cgaggagctga ggcaggaga 19

<210> 99
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 99

ggtgtggtgg tacgcgcct 19
<210> 100
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 100
acccatgcac aaaactacc 19
<210> 101
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 101
agaatgtgcc agtaggaga 19
<210> 102
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 102
tctcacagac gttgggctt 19
<210> 103
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 103
ccagtggttt gcaaggatg 19
<210> 104
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 104
gaaatttagt ggccaggaa 19

<210> 105

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 105
agaaaatacac aattgcacc 19

<210> 106
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 106
tactgataca ttttaagga 19

<210> 107
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 107
ttcaacatgg agattctaa 19

<210> 108
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 108
atttctatgc atttagagt 19

<210> 109
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 109
aataactaggc tgaaaagcc 19

<210> 110
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 110
ggctttgctt ttatcagtt 19

<210> 111
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 111
tctaggagg tagtttgt 19

<210> 112
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 112
gggaagaaaa gggactagc 19

<210> 113
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 113
gttcataatg aaatgaatg 19

<210> 114
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 114
ataagaatat gctgtttc 19

<210> 115
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 115
ttcaaacgtg ttggcgctt 19

<210> 116
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 116
atgacaagtc gtatttcag 19

<210> 117
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 117
aagtggaaata cgttagacat 19

<210> 118
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 118
agacaggAAC cccAGCAGG 19

<210> 119
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 119
cgagcaagAC tcctttctG 19

<210> 120
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 120
agtgtaatAG aaaccAGCA 19

<210> 121
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 121
tgaccttgc attcacacc 19

<210> 122
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 122
ttatccagca tcaggccac 19

<210> 123
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 123
actgtctcct ctttccag 19

<210> 124
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 124
tttatgctt ttcaagg 19

<210> 125
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 125
acgaatctgc agctaggat 19

<210> 126
<211> 19
<212> DNA

<213> Artificial Sequence
<220>
<223> based on Homo sapiens

<400> 126
caagttgtta acggaattt 19

<210> 127
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 127
taggctgaga ggttagcttc 19

<210> 128
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 128
gttactgaag aaggaaaaag 19

<210> 129
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 129
gaatgagtgt gtggaatgt 19

<210> 130
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 130
tgttttctgt acccggaag 19

<210> 131
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 131

gagccacggaa aatatccac

19

<210> 132

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 132

tgatggagag tttgaataa

19

<210> 133

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 133

gatttgcctt ggagtttac

19

<210> 134

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 134

ggcagaaaaat tccttgattt

19

<210> 135

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 135

ggacagggtt aggaacttc

19

<210> 136

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 136

gcatttcgt tattcattg	19
<210> 137	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 137	
ctgaaaagta agtaatctg	19
<210> 138	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 138	
ggcgacagaa aagtcaatg	19
<210> 139	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 139	
ccactctgtc tccaggtcc	19
<210> 140	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 140	
ccaccacagg caaagcaag	19
<210> 141	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 141	
ttcgggtccc aattgctca	19
<210> 142	

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 142
ttctgacata gcattatcc 19

<210> 143
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 143
tgggaaaatg tctcaggtg 19

<210> 144
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 144
tataaatggg catttggga 19

<210> 145
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 145
tgtcttgaag ctgatttc 19

<210> 146
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 146
gaaaactgtgt atcttgaag 19

<210> 147
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 147
tgtctgcatg ctcagatta 19

<210> 148
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 148
gaatgttta aaggcggct 19

<210> 149
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 149
cactagaggg ccagttaaa 19

<210> 150
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 150
ccgcacttgc aagctgctc 19

<210> 151
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 151
catcatcaact gttacccac 19

<210> 152
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 152
ccaccatcac agcaaaagc 19

<210> 153
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 153
tccagattcc caacacctg 19

<210> 154
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 154
cccatggatc atctccaga 19

<210> 155
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 155
aaccacctgg catgttgaa 19

<210> 156
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 156
caagtactca caccttgga 19

<210> 157
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 157
cctgtccttt aattcttat 19

<210> 158
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 158
tgaacttgac ggatgaact 19

<210> 159
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 159
tagatgaggg taactggct 19

<210> 160
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 160
tggatagcag ctgttcaag 19

<210> 161
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 161
cattttcattc tcctgggct 19

<210> 162
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 162
tggataattg atgactctg 19

<210> 163
<211> 19
<212> DNA

<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 163
gtcttctcca ggttcaaaa 19

<210> 164
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 164
tattcatcat gattgcattc 19

<210> 165
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 165
catttccacg gcagcatta 19

<210> 166
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 166
ccaggcttct actaaagcc 19

<210> 167
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 167
gcttaggattt ttctctgaa 19

<210> 168
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<400> 168
tctataattc tctccagtt

19

<210> 169
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 169
acacaagatc attgactag

19

<210> 170
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 170
tctgcattga gtaagtcta

19

<210> 171
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 171
ctcttcctt atttcatct

19

<210> 172
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 172
tcctcagg ctctttctc

19

<210> 173
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 173

gccattctat tcttcggaa	19
<210> 174	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 174	
agtcaaatgt tgaaaaagt	19
<210> 175	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 175	
ccaggattgg aattacaca	19
<210> 176	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 176	
attccgcag tttagtagac	19
<210> 177	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 177	
taacatcatg ttcttgttc	19
<210> 178	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> based on Homo sapiens	
<400> 178	
gtctgtgtct tctgtttaa	19
<210> 179	

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 179 ttctcttgct tgtaaagac 19

<210> 180
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 180 ctaaaatcgt atcaaatcag 19

<210> 181
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 181 ggctgcaata tttcctttt 19

<210> 182
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 182 gagagttctt gaatacagt 19

<210> 183
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 183 acagcttcag ctctttgca 19

<210> 184
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 184
aaataatgc tcatataac 19

<210> 185
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 185
gaaacatctt ctgtggaa 19

<210> 186
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 186
gttcttccac tgtagatc 19

<210> 187
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 187
cttcctttag tctccgcaa 19

<210> 188
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 188
ttgtccatac acactttac 19

<210> 189
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 189
aaccaaatta ggataaaag 19

<210> 190
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 190
atgttcatat ggtttagat 19

<210> 191
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 191
taagtttac ttcacttac 19

<210> 192
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 192
atgttcccg tattagtag 19

<210> 193
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 193
gggctcaagt aattctttt 19

<210> 194
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 194
gcccgaggatg gattcaaac 19

<210> 195
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<221> modified_base
<222> 1
<223> y=gm

<221> modified_base
<222> 18
<223> y=cm

<400> 195
yagaagatga ctggtaaya 19

<210> 196
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<221> misc_feature
<222> 1,17,18
<223> y=u or t

<400> 196
ygtgctattc tgtgaayy 18

<210> 197
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 197
tctgctcaa ggagctggaa 20

<210> 198
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 198
gaaaggaaag cgcaaccg 18

<210> 199
<211> 30

<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 199
agccagatga cgacccata gaggaacata 30

<210> 200
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 200
tggagatgat ccatgggttc a 21

<210> 201
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 201
gaactcctgt cctttaattc ttatcaagt 29

<210> 202
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 202
ctcacacacctt gcaaaccact tggcatg 27

<210> 203
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 203
ggtgataaag taaagtgcct tcactgt 27

<210> 204
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 204
tcagtagttc ttaccagaca ctccctcaa 28

<210> 205
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 205
caacatgcta aatggtatcc agggtgcaaa tatac 34

<210> 206
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 206
gaagggtgaag gtcggagtc 19

<210> 207
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 207
gaagatggtg atgggattc 19

<210> 208
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 208
caagcttccc gttctcagcc 20

<210> 209
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> modified_base
<222> 1,17

<223> y= cm
<221> modified_base
<222> 3,18
<223> y=gm

<221> modified_base
<222> 19
<223> y=um

<223> based on Homo sapiens

<400> 209
yayagatttc atttaaayyy 19

<210> 210
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> modified_base
<222> 1,18
<223> y=cm

<221> modified_base
<222> 2,17
<223> y=um

<223> based on Homo sapiens

<400> 210
yyacgctcgc catcgtyya 19

<210> 211
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> modified_base
<222> 3,18
<223> y=cm

<221> modified_base
<222> 1,17
<223> y=um

<221> modified_base
<222> 2,16
<223> y=gm

<223> based on Homo sapiens

<400> 211
yycccaagaa tactagyya 19

<210> 212

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<221> modified_base
<222> 1,17,18
<223> y=um

<221> modified_base
<222> 19
<223> y=cm

<223> based on Homo sapiens

<400> 212
yaagctgttc tatgtgyyy 19

<210> 213
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 213
aagggcggcg gagtgagac 19

<210> 214
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 214
agaggacgga gtcggaggc 19

<210> 215
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<400> 215
cgagacgtga ggatggaga 19

<210> 216
<211> 68
<212> PRT
<213> Artificial Sequence

<220>
<223> based on Homo sapiens

<221> VARIANT

<222> 1-3, 6, 9, 10, 14, 15, 18-20, 24, 30, 32, 33, 35, 37, 40, 42-47, 49-51,
53-57, 59-62, 64, 66

<223> Xaa=any amino acid

<221> VARIANT

<222> 13, 16, 17

<223> Xaa=any amino acid or is absent

<400> 216

Xaa Xaa Xaa Arg Leu Xaa Thr Phe Xaa Xaa Trp Pro Xaa Xaa Xaa Xaa
1 5 10 15
Xaa Xaa Xaa Xaa Leu Ala Xaa Ala Gly Phe Tyr Tyr Xaa Gly Xaa
20 25 30
Xaa Asp Xaa Val Xaa Cys Phe Xaa Cys Xaa Xaa Xaa Xaa Xaa Trp
35 40 45
Xaa Xaa Xaa Asp Xaa Xaa Xaa Xaa His Xaa Xaa Xaa Xaa Pro Xaa
50 55 60
Cys Xaa Phe Val
65

<210> 217

<211> 46

<212> PRT

<213> Artificial Sequence

<220>

<223> based on Homo sapiens

<221> VARIANT

<222> 2-7, 9-11, 17-21, 23, 25, 30-32, 34-35, 38-42, 45

<223> Xaa=any amino acid

<221> VARIANT

<222> 8

<223> Xaa=Glu or Asp

<221> VARIANT

<222> 14, 22

<223> Xaa=Val or Ile

<400> 217

Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Lys Xaa Cys Met
1 5 10 15
Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Pro Cys Gly His Xaa Xaa Xaa
20 25 30
Cys Xaa Xaa Cys Ala Xaa Xaa Xaa Xaa Cys Pro Xaa Cys
35 40 45

<210> 218

<211> 2540

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(2540)
<223> n=a,t,c, or g

<400> 218

aaaaagggtgg acaagtccctt tttcaagag aagatgactt ttaacagttt tgaaggatct 60
aaaacttgt tacctgcaga catcaataag gaagaagaat ttgtagaaga gtttaataga 120
ttaaaaacctt ttgctaattt tccaagtgg agtcctgtt cagcatcaac actggcacga 180
gcagggtttc tttatactgg tgaaggagat accgtgcgg gctttagtt tcatgcagct 240
gtagatagat ggcaaatatgg agactcagca gttggaaagac acaggaaagt atccccaaat 300
tgcagattt tcaacggctt ttatcttggaa aatagtgcctt cgcagtctac aaattctgtt 360
atccagaatg gtcagtacaa agttggaaaac tatctggaa gcagagatca ttttgctta 420
gacaggccat ctgagacaca tgcagactat cttttggaa ctgggcagg ttagatata 480
tcagacacca tatacccgag gaaccctggc atgttattgtt aagaagctag attaaagtcc 540
tttcagaact ggccagactt tgctcaccta accccaaagag agttagcagtg tgctggactc 600
tactacacag gtattggta ccaagtgcag tgctttgtt gtggtgaaactgaaaaat 660
tgggaacctt gtatcgctgc ctggtcagaa cacaggcgcac actttcttaa ttgtctt 720
gttttggcc ggaatcttaa tattcgaagt gaatctgat ctgtgagtt tgtaggaat 780
ttcccaaatt caacaaatct tccaagaaaat ccattccatgg cagattatga agcacggatc 840
tttacttttgg gacatggat atactcagtt aacaaggagc agcttgcagagctggattt 900
tatgctttag gtgaaggtga taaagtaaag tgcttcact gtggaggagg gctaactgt 960
tggaaagccca gtgaagaccc ttggaaacaa catgctaaat ggtatccagg gtgcaaatat 1020
ctgttagaac agaagggaca agaatatata aacaatatttctttaactca ttcaactttag 1080
gagtgtctgg taagaactac tgagaaaaca ccatcactaa ctagaagaat tgatgatacc 1140
atcttccaaa atccatgtgt acaagaagct atacgaatgg gtttcagttt caaggacatt 1200
aagaaaataa tggaggaaaaa aattcagata tctggggagca actataaatttctttaggtt 1260
ctgggtcag atcttagtggaa tgctcagaaaa gacagtatgc aagatgagtc aagtcagact 1320
tcattacaga aagagattag tactgaagag cagcttaaggc gcctgcaaga ggagaagctt 1380
tgcaaaatct gtatggatag aaatattgtt atcgttttttgc ttccttgc acatctagtc 1440
acttgtaaac aatgtgcgtga aagcgttgc aagtgtccca tgcgtacac agtcattact 1500
ttcaagccaa aaatttttat gtcttaatctt aactctatag taggcattgtt atgttgcct 1560
tattaccctg attgaatgtg tgatgtgaac tgactttaag taatcaggat tgaattccat 1620
tagcatttgc taccaaagtag gaaaaaaaaat gtacatggca gtgttttagt tggcaatata 1680
atctttaat ttcttgattt ttccagggtat tagctgtattt atccattttt tttactgtta 1740
ttaatttggaa accatagact aagaataaga agcatcatac tataactgaa cacaatgtgt 18000
attcatagta tactgattta atttcttaatgtt gtaagtgaat taatcatctg gatttttat 1860
tcctttcaga taggtttaac aaatggagct ttctgtatataa atatgtggag attagagtt 1920
atctcccaa tcacataattt tggtttgtt gaaaaaggaa taaattgttc catgctgggt 1980
gaaagataga gattttttt agagggttgg tggttgtt taggattctg tccattttct 2040
tgtaaaggga taaacacggc cgtgtgcggaa atatgtttgtt aaagtgttattt gcccatttttg 2100
aaagcgtttaat taatgtataga atactatgc gccaacatgtt actgcacatgg aaagatgtca 2160
gagatatgtt aagtgtaaaaa tgcaagtggc gggacactat gtatgtctg agccagatca 2220
aagtatgttat gttgttataa tgcatagaaac gagagatttg gaaagatata caccaaactg 2280
ttaaatgtgg ttctcttcg gggggggggg gatttttttttgg gggggcccaag aggggttttt 2340
gaggggcctt ttcaatttcg acttttttca ttgttgcggat ttcggattttt ttataatgtt 2400
gttagaccccg aagggtttta tgggaactaa catcagtaac ctaacccccc gtagatctt 2460
gtgtcttcc tagggagctg tggttgcggat caccacccac cttccctctt gaaacaaatgc 2520
ctgagtgcgtt gggcactttt 2540

<210> 219

<211> 497

<212> PRT

<213> Homo sapiens

<400> 219

```

Met Thr Phe Asn Ser Phe Glu Gly Ser Lys Thr Cys Val Pro Ala Asp
   1          5          10          15
Ile Asn Lys Glu Glu Glu Phe Val Glu Glu Phe Asn Arg Leu Lys Thr
   20         25          30

```

Phe Ala Asn Phe Pro Ser Gly Ser Pro Val Ser Ala Ser Thr Leu Ala
 35 40 45
 Arg Ala Gly Phe Leu Tyr Thr Gly Glu Gly Asp Thr Val Arg Cys Phe
 50 55 60
 Ser Cys His Ala Ala Val Asp Arg Trp Gln Tyr Gly Asp Ser Ala Val
 65 70 75 80
 Gly Arg His Arg Lys Val Ser Pro Asn Cys Arg Phe Ile Asn Gly Phe
 85 90 95
 Tyr Leu Glu Asn Ser Ala Thr Gln Ser Thr Asn Ser Gly Ile Gln Asn
 100 105 110
 Gly Gln Tyr Lys Val Glu Asn Tyr Leu Gly Ser Arg Asp His Phe Ala
 115 120 125
 Leu Asp Arg Pro Ser Glu Thr His Ala Asp Tyr Leu Leu Arg Thr Gly
 130 135 140
 Gln Val Val Asp Ile Ser Asp Thr Ile Tyr Pro Arg Asn Pro Ala Met
 145 150 155 160
 Tyr Cys Glu Ala Arg Leu Lys Ser Phe Gln Asn Trp Pro Asp Tyr
 165 170 175
 Ala His Leu Thr Pro Arg Glu Leu Ala Ser Ala Gly Leu Tyr Tyr Thr
 180 185 190
 Gly Ile Gly Asp Gln Val Gln Cys Phe Cys Cys Gly Gly Lys Leu Lys
 195 200 205
 Asn Trp Glu Pro Cys Asp Arg Ala Trp Ser Glu His Arg Arg His Phe
 210 215 220
 Pro Asn Cys Phe Phe Val Leu Gly Arg Asn Leu Asn Ile Arg Ser Glu
 225 230 235 240
 Ser Asp Ala Val Ser Ser Asp Arg Asn Phe Pro Asn Ser Thr Asn Leu
 245 250 255
 Pro Arg Asn Pro Ser Met Ala Asp Tyr Glu Ala Arg Ile Phe Thr Phe
 260 265 270
 Gly Thr Trp Ile Tyr Ser Val Asn Lys Glu Gln Leu Ala Arg Ala Gly
 275 280 285
 Phe Tyr Ala Leu Gly Glu Gly Asp Lys Val Lys Cys Phe His Cys Gly
 290 295 300
 Gly Gly Leu Thr Asp Trp Lys Pro Ser Glu Asp Pro Trp Glu Gln His
 305 310 315 320
 Ala Lys Trp Tyr Pro Gly Cys Lys Tyr Leu Leu Glu Gln Lys Gly Gln
 325 330 335
 Glu Tyr Ile Asn Asn Ile His Leu Thr His Ser Leu Glu Glu Cys Leu
 340 345 350
 Val Arg Thr Thr Glu Lys Thr Pro Ser Leu Thr Arg Arg Ile Asp Asp
 355 360 365
 Thr Ile Phe Gln Asn Pro Met Val Gln Glu Ala Ile Arg Met Gly Phe
 370 375 380
 Ser Phe Lys Asp Ile Lys Lys Ile Met Glu Glu Lys Ile Gln Ile Ser
 385 390 395 400
 Gly Ser Asn Tyr Lys Ser Leu Glu Val Leu Val Ala Asp Leu Val Asn
 405 410 415
 Ala Gln Lys Asp Ser Met Gln Asp Glu Ser Ser Gln Thr Ser Leu Gln
 420 425 430
 Lys Glu Ile Ser Thr Glu Glu Gln Leu Arg Arg Leu Gln Glu Glu Lys
 435 440 445
 Leu Cys Lys Ile Cys Met Asp Arg Asn Ile Ala Ile Val Phe Val Pro
 450 455 460
 Cys Gly His Leu Val Thr Cys Lys Gln Cys Ala Glu Ala Val Asp Lys
 465 470 475 480
 Cys Pro Met Cys Tyr Thr Val Ile Thr Phe Lys Gln Lys Ile Phe Met
 485 490 495

Ser

ttttataaaag aattctgtga gnaaaaat tt aataaagcaa ccaaattact cttaaaaaaa 2640
 aaaaaaaaaa aaaaaactcg aggggcccgt accaat 2676

<210> 221
 <211> 604
 <212> PRT
 <213> Homo sapiens

<400> 221
 Met Asn Ile Val Glu Asn Ser Ile Phe Leu Ser Asn Leu Met Lys Ser
 1 5 10 15
 Ala Asn Thr Phe Glu Leu Lys Tyr Asp Leu Ser Cys Glu Leu Tyr Arg
 20 25 30
 Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val Pro Val Ser Glu Arg
 35 40 45
 Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys Val
 50 55 60
 Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Arg Gly Asp
 65 70 75 80
 Ser Pro Thr Glu Lys His Lys Lys Leu Tyr Pro Ser Cys Arg Phe Val
 85 90 95
 Gln Ser Leu Asn Ser Val Asn Asn Leu Glu Ala Thr Ser Gln Pro Thr
 100 105 110
 Phe Pro Ser Ser Val Thr His Ser Thr His Ser Leu Leu Pro Gly Thr
 115 120 125
 Glu Asn Ser Gly Tyr Phe Arg Gly Ser Tyr Ser Asn Ser Pro Ser Asn
 130 135 140
 Pro Val Asn Ser Arg Ala Asn Gln Glu Phe Ser Ala Leu Met Arg Ser
 145 150 155 160
 Ser Tyr Pro Cys Pro Met Asn Asn Glu Asn Ala Arg Leu Leu Thr Phe
 165 170 175
 Gln Thr Trp Pro Leu Thr Phe Leu Ser Pro Thr Asp Leu Ala Arg Ala
 180 185 190
 Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala Cys Phe Ala Cys
 195 200 205
 Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asn Ala Met Ser Glu
 210 215 220
 His Leu Arg His Phe Pro Lys Cys Pro Phe Ile Glu Asn Gln Leu Gln
 225 230 235 240
 Asp Thr Ser Arg Tyr Thr Val Ser Asn Leu Ser Met Gln Thr His Ala
 245 250 255
 Ala Arg Phe Lys Thr Phe Phe Asn Trp Pro Ser Ser Val Leu Val Asn
 260 265 270
 Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Asn Ser Asp
 275 280 285
 Asp Val Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser
 290 295 300
 Gly Asp Asp Pro Trp Val Gln His Ala Lys Trp Phe Pro Arg Cys Glu
 305 310 315 320
 Tyr Leu Ile Arg Ile Lys Gly Gln Glu Phe Ile Arg Gln Val Gln Ala
 325 330 335
 Ser Tyr Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp Ser Pro
 340 345 350
 Gly Asp Glu Asn Ala Glu Ser Ser Ile Ile His Leu Glu Pro Gly Glu
 355 360 365
 Asp His Ser Glu Asp Ala Ile Met Met Asn Thr Pro Val Ile Asn Ala
 370 375 380
 Ala Val Glu Met Gly Phe Ser Arg Ser Leu Val Lys Gln Thr Val Gln

385	390	395	400
Arg Lys Ile Leu Ala Thr Gly Glu Asn Tyr Arg Leu Val Asn Asp Leu			
405	410	415	
Val Leu Asp Leu Leu Asn Ala Glu Asp Glu Ile Arg Glu Glu Glu Arg			
420	425	430	
Glu Arg Ala Thr Glu Glu Lys Glu Ser Asn Asp Leu Leu Leu Ile Arg			
435	440	445	
Lys Asn Arg Met Ala Leu Phe Gln His Leu Thr Cys Val Ile Pro Ile			
450	455	460	
Leu Asp Ser Leu Leu Thr Ala Gly Ile Ile Asn Glu Gln Glu His Asp			
465	470	475	480
Val Ile Lys Gln Lys Thr Gln Thr Ser Leu Gln Ala Arg Glu Leu Ile			
485	490	495	
Asp Thr Ile Leu Val Lys Gly Asn Ile Ala Ala Thr Val Phe Arg Asn			
500	505	510	
Ser Leu Gln Glu Ala Glu Ala Val Leu Tyr Glu His Leu Phe Val Gln			
515	520	525	
Gln Asp Ile Lys Tyr Ile Pro Thr Glu Asp Val Ser Asp Leu Pro Val			
530	535	540	
Glu Glu Gln Leu Arg Arg Leu Pro Glu Glu Arg Thr Cys Lys Val Cys			
545	550	555	560
Met Asp Lys Glu Val Ser Ile Val Phe Ile Pro Cys Gly His Leu Val			
565	570	575	
Val Cys Lys Asp Cys Ala Pro Ser Leu Arg Lys Cys Pro Ile Cys Arg			
580	585	590	
Ser Thr Ile Lys Gly Thr Val Arg Thr Phe Leu Ser			
595	600		

<210> 222
<211> 2580
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(2580)
<223> n=a,t,c, or g

<400> 222
ttagggttacc tgaaaagagtt actacaaccc caaaagagttt tggcttaagt agtatcttgg 60
taattcagag agatactcat cctacacctaa tataaactga gataaaatcca gtaaaagaaaag 120
tgttagtaat tctacataag agtctatcat tgatttcttt ttgtgggtgaa aatcttagtt 180
catgtgaaga aatttcatgt gaatgtttt gctatcaaac agtactgtca cctactcatg 240
cacaaaaactg cctcccaaag acctttccca ggtccctcgat atcaaaaacat taagagtata 300
atggaagata gcacgatctt gtcagattgg acaaacagca acaaacaacaa aatgaagtat 360
gactttcct gtgaactcta cagaatgtct acatattcaa ctccccccgc cgggggtgcct 420
gtctcagaaaa ggagtcttgc tcgtgctgg ttttattata ctgggtgtgaa tgacaaggc 480
aaatgcttct gttgtggcct gatgctggat aactggaaac taggagacag tcctattcaa 540
aagcataaac agctataatcc tagctgtac tttattcaga atctgggttc agctagtctg 600
ggatccaccc ctaagaatac gtctccaatg agaaacagtt ttgcacattc attatctccc 660
accttggAAC atagtagctt gttcagtgtt tcttactcca gccttccccc aaaccctctt 720
aattctagag cagttgaaga catctctca tcgaggacta acccctacag ttatgcaatg 780
agtaactgaag aagccagatt tcttacccatcatgtggc cattaactt tttgtcacca 840
tcagaattgg caagagctgg tttttattat ataggacctg gagatgggt agcctgctt 900
gcctgtggtg ggaagcttag taactggaa ccaaaggatg atgctatgtc agaacaccgg 960
aggcatttc ccaactgtcc atttttggaa aatttcttag aaactcttag gtttagcatt 1020
tcaaatactga gcatgcagac acatgcagct cgaatgagaa catttatgta ctggccatct 1080

agtgttccag ttcagcctga gcagcttgc a gtgctggtt ttattatgt gggtcgcaat 1140
 gatgatgtca aatgccttgg ttgtgatggt ggcttgagggt gttggaaatc tggagatgt 1200
 ccatgggttag aacatgccaa gtggttcca aggtgtgagt tcttgcatacg aatgaaaaggc 1260
 caagagtttgc ttgatgagat tcaaggtaga tattcctcatc ttcttgcaca gctgttgtca 1320
 acttcagata ccactggaga agaaaatgtc gaccaccaa ttattcattt tggaccttgg 1380
 gaaagttctt cagaagatgc tgcattgtg aatacacctg tggttaaattc tgccttggaa 1440
 atgggcttta atagagacct ggtgaaacaa acagttctaa gtaaaatcct gacaacttgg 1500
 gagaactata aaacagttaa tgatattgtg tcagcactc ttaatgtcga agatgaaaaa 1560
 agagaagagg agaagaaaaa acaagctgaa gaaatggcat cagatgattt gtcattaatt 1620
 cggagaaca gaatggctct cttaaccaa ttgacatgtg tgcttcctat cctggataat 1680
 cttaaaagg ccaatgttaat taataaacag gaacatgata ttataaaca aaaaacacag 1740
 ataccccttac aagcgagaga actgattgt accatttggg taaaaggaaa tgctgcggcc 1800
 aacatcttca aaaactgtc aaaaagaaat gactctacat tgatataagaa cttatttgc 1860
 gataagaata tgaagttat tccaacagaa gatgttgc gtcgtcact ggaagaacaa 1920
 ttgaggaggt tgcaagaaga acgaacttgt aaagtgtgta tgacaaaaga agtttctgtt 1980
 gtatttattt ctgttgtca tctggtagta tgccagaaat tgcccccttc tctaagaaaa 2040
 tgcccttattt gcaggggtat aatcaagggt actgttcgtt catttctc ttaaagaaaa 2100
 atagtctata tttaacctg cataaaaagg tctttaaat attgttgaac acttgaagcc 2160
 atctaaagta aaaagggaaat tatgagttt tcaatttagt acattcatgt tctagtctgc 2220
 ttgtgtacta ataatcttgc ttctgaaaag atggatcat atatttaatc ttaatctgtt 2280
 tatttacaag ggaagattt tttttgggtga actatattag tatgtatgtg tacctaagg 2340
 agtagcgtcn ctgttgttgc tgcattttttt caggagttac tggattttttt gttcttcag 2400
 aaagcttgc aactaaattt atagtgttaga aaagaactgg aaaccaggaa ctctggagtt 2460
 catcagagtt atggtgccga attgtcttttgc tgcctttca cttgtgtttt aaaataagga 2520
 ttttcttctt atttctcccc ctatgttgc agaaaacatct caataaaatgtt cttaaaaag 2580

<210> 223
 <211> 618
 <212> PRT
 <213> Homo sapiens

<400> 223
 Met His Lys Thr Ala Ser Gln Arg Leu Phe Pro Gly Pro Ser Tyr Gln
 1 5 10 15
 Asn Ile Lys Ser Ile Met Glu Asp Ser Thr Ile Leu Ser Asp Trp Thr
 20 25 30
 Asn Ser Asn Lys Gln Lys Met Lys Tyr Asp Phe Ser Cys Glu Leu Tyr
 35 40 45
 Arg Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val Pro Val Ser Glu
 50 55 60
 Arg Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys
 65 70 75 80
 Val Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Leu Gly
 85 90 95
 Asp Ser Pro Ile Gln Lys His Lys Gln Leu Tyr Pro Ser Cys Ser Phe
 100 105 110
 Ile Gln Asn Leu Val Ser Ala Ser Leu Gly Ser Thr Ser Lys Asn Thr
 115 120 125
 Ser Pro Met Arg Asn Ser Phe Ala His Ser Leu Ser Pro Thr Leu Glu
 130 135 140
 His Ser Ser Leu Phe Ser Gly Ser Tyr Ser Ser Leu Pro Pro Asn Pro
 145 150 155 160
 Leu Asn Ser Arg Ala Val Glu Asp Ile Ser Ser Ser Arg Thr Asn Pro
 165 170 175
 Tyr Ser Tyr Ala Met Ser Thr Glu Ala Arg Phe Leu Thr Tyr His
 180 185 190
 Met Trp Pro Leu Thr Phe Leu Ser Pro Ser Glu Leu Ala Arg Ala Gly

195	200	205													
Phe	Tyr	Tyr	Ile	Gly	Pro	Gly	Asp	Arg	Val	Ala	Cys	Phe	Ala	Cys	Gly
210						215					220				
Gly	Lys	Leu	Ser	Asn	Trp	Glu	Pro	Lys	Asp	Asp	Ala	Met	Ser	Glu	His
225						230				.235					240
Arg	Arg	His	Phe	Pro	Asn	Cys	Pro	Phe	Leu	Glu	Asn	Ser	Leu	Glu	Thr
						245				250					255
Leu	Arg	Phe	Ser	Ile	Ser	Asn	Leu	Ser	Met	Gln	Thr	His	Ala	Ala	Arg
						260			265						270
Met	Arg	Thr	Phe	Met	Tyr	Trp	Pro	Ser	Ser	Val	Pro	Val	Gln	Pro	Glu
						275			280						285
Gln	Leu	Ala	Ser	Ala	Gly	Phe	Tyr	Tyr	Val	Gly	Arg	Asn	Asp	Asp	Val
						290			295						300
Lys	Cys	Phe	Gly	Cys	Asp	Gly	Gly	Leu	Arg	Cys	Trp	Glu	Ser	Gly	Asp
305						310				315					320
Asp	Pro	Trp	Val	Glu	His	Ala	Lys	Trp	Phe	Pro	Arg	Cys	Glu	Phe	Leu
						325				330					335
Ile	Arg	Met	Lys	Gly	Gln	Glu	Phe	Val	Asp	Glu	Ile	Gln	Gly	Arg	Tyr
						340				345					350
Pro	His	Leu	Leu	Glu	Gln	Leu	Leu	Ser	Thr	Ser	Asp	Thr	Thr	Gly	Glu
						355				360					365
Glu	Asn	Ala	Asp	Pro	Pro	Ile	Ile	His	Phe	Gly	Pro	Gly	Glu	Ser	Ser
						370				375					380
Ser	Glu	Asp	Ala	Val	Met	Asn	Thr	Pro	Val	Val	Lys	Ser	Ala	Leu	
						385			390			395			400
Glu	Met	Gly	Phe	Asn	Arg	Asp	Leu	Val	Lys	Gln	Thr	Val	Leu	Ser	Lys
						405				410					415
Ile	Leu	Thr	Thr	Gly	Glu	Asn	Tyr	Lys	Thr	Val	Asn	Asp	Ile	Val	Ser
						420				425					430
Ala	Leu	Leu	Asn	Ala	Glu	Asp	Glu	Lys	Arg	Glu	Glu	Glu	Lys	Glu	Lys
						435				440					445
Gln	Ala	Glu	Glu	Met	Ala	Ser	Asp	Asp	Leu	Ser	Leu	Ile	Arg	Lys	Asn
						450				455					460
Arg	Met	Ala	Leu	Phe	Gln	Gln	Leu	Thr	Cys	Val	Leu	Pro	Ile	Leu	Asp
						465				470			475		480
Asn	Leu	Leu	Lys	Ala	Asn	Val	Ile	Asn	Lys	Gln	Glu	His	Asp	Ile	Ile
						485				490					495
Lys	Gln	Lys	Thr	Gln	Ile	Pro	Leu	Gln	Ala	Arg	Glu	Leu	Ile	Asp	Thr
						500				505					510
Ile	Trp	Val	Lys	Gly	Asn	Ala	Ala	Asn	Ile	Phe	Lys	Asn	Cys	Leu	
						515				520					525
Lys	Glu	Ile	Asp	Ser	Thr	Leu	Tyr	Lys	Asn	Leu	Phe	Val	Asp	Lys	Asn
						530				535					540
Met	Lys	Tyr	Ile	Pro	Thr	Glu	Asp	Val	Ser	Gly	Leu	Ser	Leu	Glu	Glu
						545				550					560
Gln	Leu	Arg	Arg	Leu	Gln	Glu	Glu	Arg	Thr	Cys	Lys	Val	Cys	Met	Asp
						565				570					575
Lys	Glu	Val	Ser	Val	Val	Phe	Ile	Pro	Cys	Gly	His	Leu	Val	Val	Cys
						580				585					590
Gln	Glu	Cys	Ala	Pro	Ser	Leu	Arg	Lys	Cys	Pro	Ile	Cys	Arg	Gly	Ile
						595				600					605
Ile	Lys	Gly	Thr	Val	Arg	Thr	Phe	Leu	Ser						
						610				615					

<210> 224

<211> 2100

<212> DNA

<213> Mus musculus

<400> 224

gacactctgc tggcgccgccc gcccgcctcc tccgggacct cccctcgaaa accgtcgccc 60
 cgccgcgtta gtttagactg gagtgcttgg cgcgaaaagg tgacaagtc ctatttcca 120
 gagaagatga ctttaaacag tttgaagga actagaactt ttgtacttgc agacaccaat 180
 aaggatgaag aatttgtaga agagttaat agattaaaaa catttgctaa cttcccaagt 240
 agtagtcctg tttcagcatc aacattggcg cgagctgggt ttctttatac cggtaagga 300
 gacaccgtgc aatgtttcag ttgtcatgc gcaatagata gatggcagta tggagactca 360
 gctgttggaa gacacaggag aatatccccca aattgcagat ttatcaatgg tttttat 420
 gaaaatgggt ctgcacagtc tacaaaatccctt ggtatccaaa atggccagta caaatctgaa 480
 aactgtgtgg gaaatagaaa tccttttgc cctgacaggc cacctgagac tcatgctgat 540
 tatctcttga gaactggaca gttttagat atttcagaca ccatatacc gaggaaccct 600
 gccatgtgtga gtgaagaaggc cagattgaag tcatttcaga actggccgga ctatgctcat 660
 ttaaccccca gagagtttc tagtgcttgc ctctactaca caggggctga tgatcaagt 720
 caatgccttt gttgtggggg aaaactgaaa aattggaaac cctgtgatcg tgcctggta 780
 gaacacagga gacacttcc caattgtttt tttgtttgg gccggAACGT taatgttcga 840
 agtgaatctg gtgtgagttc tgataggaat ttcccaaattt caacaaactc tccaagaaat 900
 ccagccatgg cagaatatga agcacggatc gttactttt gAACATGGAT atactcagtt 960
 aacaaggagc agcttgcag agctggattt tatgttttag gtgaaggcga taaagtgaag 1020
 tgcttccact gtggaggagg gctcacggat tggaaagccaa gtgaagaccc ctgggaccag 1080
 catgctaagt gctaccagg gtgcaatac ctattggatg agaaggggca agaatatata 1140
 aataatattc atttaaccca tccacttggat gaatcttgg gaagaactgc tgaaaaaaca 1200
 ccaccgctaa ctaaaaaaat cgatgatacc atcttccaa atccatgtgt gcaagaagct 1260
 atacgaatgg gattnagctt caaggaccc aagaaaaacaa tggaaagaaaa aatccaaaca 1320
 tccgggagca gctatctatc acttgagggtc ctgattgcag atcttggatg tgctcagaaa 1380
 gataatacgg aggatgagtc aagtcaaaact tcatttcaga aagacattag tactgaagag 1440
 cagctaaggc gcctacaaga ggagaagctt tccaaaatct gtatggatag aaatattgct 1500
 atcgaaaaat ttccttggt acatctggcc acttgcacac cgtcatttc ttcaacccaa aaatttttat gtcttagtgg 1560
 aaatgtccca tgtgtcacac cgtcatttc ttcaacccaa aaatttttat gtcttagtgg 1620
 ggcaccacat gttatgttct tcttgctcta attgaatgtg taatgggagc gaactttaag 1680
 taatcctgca tttgcattcc attagcatcc tgctgttcc aaatggagac caatgctaac 1740
 agcactgttt ccgtctaaac attcaatttc tggatcttc gagttatcag ctgtatcatt 1800
 tagccagtgt ttactcgat tgaaacctt gacagagaag cattttatag ctttcacat 1860
 gtatattgtt agtacactga cttgatttct atatgtaaatgtaatgttcaatgcattt 1920
 tcatacgccctt tgcataagct taacaaatgg agtgtctgt ataagcatgg agatgtgatg 1980
 gaatctgccc aatgacttta attggcttat tgtaaacacg gaaagaactg ccccacgctg 2040
 ctgggaggat aaagattgtt ttagatgctc acttctgtgt tttaggattc tgcccatat 2100

<210> 225

<211> 496

<212> PRT

<213> Mus musculus

<400> 225

Met	Thr	Phe	Asn	Ser	Phe	Glu	Gly	Thr	Arg	Thr	Phe	Val	Leu	Ala	Asp
1															15
Thr	Asn	Lys	Asp	Glu	Glu	Phe	Val	Glu	Glu	Phe	Asn	Arg	Leu	lys	Thr
															30
Phe	Ala	Asn	Phe	Pro	Ser	Ser	Ser	Pro	Val	Ser	Ala	Ser	Thr	Leu	Ala
															45
Arg	Ala	Gly	Phe	Leu	Tyr	Thr	Gly	Glu	Gly	Asp	Thr	Val	Gln	Cys	Phe
															50
															55
															60
Ser	Cys	His	Ala	Ala	Ile	Asp	Arg	Trp	Gln	Tyr	Gly	Asp	Ser	Ala	Val
															65
															70
															75
															80
Gly	Arg	His	Arg	Arg	Ile	Ser	Pro	Asn	Cys	Arg	Phe	Ile	Asn	Gly	Phe
															85
															90
															95

Tyr Phe Glu Asn Gly Ala Ala Gln Ser Thr Asn Pro Gly Ile Gln Asn
 100 105 110
 Gly Gln Tyr Lys Ser Glu Asn Cys Val Gly Asn Arg Asn Pro Phe Ala
 115 120 125
 Pro Asp Arg Pro Pro Glu Thr His Ala Asp Tyr Leu Leu Arg Thr Gly
 130 135 140
 Gln Val Val Asp Ile Ser Asp Thr Ile Tyr Pro Arg Asn Pro Ala Met
 145 150 155 160
 Cys Ser Glu Glu Ala Arg Leu Lys Ser Phe Gln Asn Trp Pro Asp Tyr
 165 170 175
 Ala His Leu Thr Pro Arg Glu Leu Ala Ser Ala Gly Leu Tyr Tyr Thr
 180 185 190
 Gly Ala Asp Asp Gln Val Gln Cys Phe Cys Cys Gly Gly Lys Leu Lys
 195 200 205
 Asn Trp Glu Pro Cys Asp Arg Ala Trp Ser Glu His Arg Arg His Phe
 210 215 220
 Pro Asn Cys Phe Phe Val Leu Gly Arg Asn Val Asn Val Arg Ser Glu
 225 230 235 240
 Ser Gly Val Ser Ser Asp Arg Asn Phe Pro Asn Ser Thr Asn Ser Pro
 245 250 255
 Arg Asn Pro Ala Met Ala Glu Tyr Glu Ala Arg Ile Val Thr Phe Gly
 260 265 270
 Thr Trp Ile Tyr Ser Val Asn Lys Glu Gln Leu Ala Arg Ala Gly Phe
 275 280 285
 Tyr Ala Leu Gly Glu Gly Asp Lys Val Lys Cys Phe His Cys Gly Gly
 290 295 300
 Gly Leu Thr Asp Trp Lys Pro Ser Glu Asp Pro Trp Asp Gln His Ala
 305 310 315 320
 Lys Cys Tyr Pro Gly Cys Lys Tyr Leu Leu Asp Glu Lys Gly Gln Glu
 325 330 335
 Tyr Ile Asn Asn Ile His Leu Thr His Pro Leu Glu Glu Ser Leu Gly
 340 345 350
 Arg Thr Ala Glu Lys Thr Pro Pro Leu Thr Lys Lys Ile Asp Asp Thr
 355 360 365
 Ile Phe Gln Asn Pro Met Val Gln Glu Ala Ile Arg Met Gly Phe Ser
 370 375 380
 Phe Lys Asp Leu Lys Lys Thr Met Glu Glu Lys Ile Gln Thr Ser Gly
 385 390 395 400
 Ser Ser Tyr Leu Ser Leu Glu Val Leu Ile Ala Asp Leu Val Ser Ala
 405 410 415
 Gln Lys Asp Asn Thr Glu Asp Glu Ser Ser Gln Thr Ser Leu Gln Lys
 420 425 430
 Asp Ile Ser Thr Glu Glu Gln Leu Arg Arg Leu Gln Glu Glu Lys Leu
 435 440 445
 Ser Lys Ile Cys Met Asp Arg Asn Ile Ala Ile Val Phe Phe Pro Cys
 450 455 460
 Gly His Leu Ala Thr Cys Lys Gln Cys Ala Glu Ala Val Asp Lys Cys
 465 470 475 480
 Pro Met Cys Tyr Thr Val Ile Thr Phe Asn Gln Lys Ile Phe Met Ser
 485 490 495

<210> 226
 <211> 2474
 <212> DNA
 <213> Mus musculus

<400> 226

gaattccggg agacctacac ccccgagat cagaggtcat tgctggcgtt cagagcctag 60
gaagtgggc tgcgttatcg cctagcaga aaaccgacca gaagccatgc acaaaaactac 120
atccccagag aaagacttgt ccctccct ccctgtcatc tcaccatgaa catgttcaa 180
gacagcgct ttctagccaa gctgatgaag agtgcgtaca ccttgagtt gaagtatgac 240
tttcctgtg agctgtaccg attgtccacg tatttagctt ttcccagggg agttctgtg 300
tcagaaagga gtctggctcg tgctggctt tactacactg gtgccaatga caaggtcaag 360
tgcttctgtc gtggcctgt gctagacaac tgaaacaag gggacagttc catggagaag 420
cacagaaagt tgtaccccg ctgcaactt gtacagactt tgaatccagc caacagtctg 480
gaagctagtc ctcggccttc tcttccttc acggcgatg gcacatgcc tttgagctt 540
gcaagtctg agaatactgg ctatttcagt ggctctact cgagctttcc tcagaccct 600
gtgaacttc gagaaatca agattgtcact gctttgagca caagttccctt ccactttgca 660
atgaacacag aagaaggccag attactcacc tatgaaacat ggccattgtc ttttctgtca 720
ccagaaagg tggccaaagg aggcttctac tacataggac ctggagatag agtgcctgc 780
tttgcgtcg atggaaact cagaggcatt tccccagctg tccggttta aaagacttgg gtcagtcgc ttcgagatac 900
actgtctcta acctgagcat ccttctagtg cactagttca cacagtgtat atgtcaagtg tttagtgcgt gatgggtggc tgaggtgtc ggaatctgga 1080
gatgaccctt gggtggaaaca aaaggccaag aatttgtcag ttatctacgt cagactcccc ccaagttcaa gctggctatc tgtagtactt gctcagaatc 1140
cctggagaaa gttcggaaaga gaaatgggct tcagtaggg ggtgagaact acaggaccgt atgagagagg agcagatggc atccggaa acaaattgtt tgcccaaggt ctcatctact tgaggcagcta 1200
tgcctcttaa gtcaaggcc cacaccttac aagaagcac acctcattca gaaactccct caacaggaca ttaggagtct tgctgtcatg atgagcacgc cagcaatctgt gcattttggc 1260
cctgggatc cccggagga gtgttcatc cctgtggcca tgcggaaatt gacccctgcgt ctgtggtaa agcagcctt 1320
tgcggatctt gtagagggac tcccacagat gacattgcag agtggcagat cctggccact 1380
ctaatggtcc atggctgcaa cttcagccag gaggaaagtt tactcgatgc agaagacgag 1440
tcgggacttgg aggccagct cagaatgtgt aaagtgtta tgtagtactt gtcagatgtc ttcagacta 1500
gtgttcatc tgcggatctt gatggat gactgtgttag tgcggatccaa catttgacat tgtagacacc aatgtgtat 1560
tgcggatctt gtagagggac actgattgtat actgtgttag tgcggatccaa catttgacat atgctgtgaa acagaaacca 1620
tgcggatctt gtagagggac actgattgtat actgtgttag tgcggatccaa catttgacat ctttcttc acactggcact 1680
ctaatggtcc atggctgcaa cttcagccag gaggaaagtt tgcggatccaa catttgacat tatacagaga tatattgtg 1740
tcgggacttgg aggccagct cagaatgtgt aaagtgtta tgtagtactt gtcagatgtc ttcagacta 1800
gtgttcatc tgcggatctt gatggat gactgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 1860
tgcggatctt gtagagggac actgattgtat actgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 1920
ctaatggtcc atggctgcaa cttcagccag gaggaaagtt tgcggatccaa catttgacat tgcggatccaa catttgacat 1980
tcgggacttgg aggccagct cagaatgtgt aaagtgtta tgtagtactt gtcagatgtc ttcagacta 2040
gtgttcatc tgcggatctt gatggat gactgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 2100
tgcggatctt gtagagggac actgattgtat actgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 2160
ctaatggtcc atggctgcaa cttcagccag gaggaaagtt tgcggatccaa catttgacat tgcggatccaa catttgacat 2220
tcgggacttgg aggccagct cagaatgtgt aaagtgtta tgtagtactt gtcagatgtc ttcagacta 2280
gtgttcatc tgcggatctt gatggat gactgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 2340
tgcggatctt gtagagggac actgattgtat actgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 2400
ctaatggtcc atggctgcaa cttcagccag gaggaaagtt tgcggatccaa catttgacat tgcggatccaa catttgacat 2460
tgcggatctt gtagagggac actgattgtat actgtgttag tgcggatccaa catttgacat tgcggatccaa catttgacat 2474

<210> 227

<211> 602

<212> PRT

<213> Mus musculus

<400> 227

Met	Asn	Met	Val	Gln	Asp	Ser	Ala	Phe	Leu	Ala	Lys	Leu	Met	Lys	Ser
								5				10		15	
Ala	Asp	Thr	Phe	Glu	Leu	Lys	Tyr	Asp	Phe	Ser	Cys	Glu	Leu	Tyr	Arg
							20			25			30		
Leu	Ser	Thr	Tyr	Ser	Ala	Phe	Pro	Arg	Gly	Val	Pro	Val	Ser	Glu	Arg
							35			40		45			
Ser	Leu	Ala	Arg	Ala	Gly	Phe	Tyr	Tyr	Thr	Gly	Ala	Asn	Asp	Lys	Val
							50			55		60			
Lys	Cys	Phe	Cys	Cys	Gly	Leu	Met	Leu	Asp	Asn	Trp	Lys	Gln	Gly	Asp

65	70	75	80
Ser Pro Met Glu Lys His Arg Lys Leu Tyr Pro Ser Cys Asn Phe Val			
85	90	95	
Gln Thr Leu Asn Pro Ala Asn Ser Leu Glu Ala Ser Pro Arg Pro Ser			
100	105	110	
Leu Pro Ser Thr Ala Met Ser Thr Met Pro Leu Ser Phe Ala Ser Ser			
115	120	125	
Glu Asn Thr Gly Tyr Phe Ser Gly Ser Tyr Ser Ser Phe Pro Ser Asp			
130	135	140	
Pro Val Asn Phe Arg Ala Asn Gln Asp Cys Pro Ala Leu Ser Thr Ser			
145	150	155	160
Pro Tyr His Phe Ala Met Asn Thr Glu Lys Ala Arg Leu Leu Thr Tyr			
165	170	175	
Glu Thr Trp Pro Leu Ser Phe Leu Ser Pro Ala Lys Leu Ala Lys Ala			
180	185	190	
Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala Cys Phe Ala Cys			
195	200	205	
Asp Gly Lys Leu Ser Asn Trp Glu Arg Lys Asp Asp Ala Met Ser Glu			
210	215	220	
His Gln Arg His Phe Pro Ser Cys Pro Phe Leu Lys Asp Leu Gly Gln			
225	230	235	240
Ser Ala Ser Arg Tyr Thr Val Ser Asn Leu Ser Met Gln Thr His Ala			
245	250	255	
Ala Arg Ile Arg Thr Phe Ser Asn Trp Pro Ser Ser Ala Leu Val His			
260	265	270	
Ser Gln Glu Leu Ala Ser Ala Gly Phe Tyr Tyr Thr Gly His Ser Asp			
275	280	285	
Asp Val Lys Cys Leu Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser			
290	295	300	
Gly Asp Asp Pro Trp Val Glu His Ala Lys Trp Phe Pro Arg Cys Glu			
305	310	315	320
Tyr Leu Leu Arg Ile Lys Gly Gln Glu Phe Val Ser Gln Val Gln Ala			
325	330	335	
Gly Tyr Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp Ser Pro			
340	345	350	
Glu Asp Glu Asn Ala Asp Ala Ala Ile Val His Phe Gly Pro Gly Glu			
355	360	365	
Ser Ser Glu Asp Val Val Met Met Ser Thr Pro Val Val Lys Ala Ala			
370	375	380	
Leu Glu Met Gly Phe Ser Arg Ser Leu Val Arg Gln Thr Val Gln Trp			
385	390	395	400
Gln Ile Leu Ala Thr Gly Glu Asn Tyr Arg Thr Val Ser Asp Leu Val			
405	410	415	
Ile Gly Leu Leu Asp Ala Glu Asp Glu Met Arg Glu Glu Gln Met Glu			
420	425	430	
Gln Ala Ala Glu Glu Glu Glu Ser Asp Asp Leu Ala Leu Ile Arg Lys			
435	440	445	
Asn Lys Met Val Leu Phe Gln His Leu Thr Cys Val Thr Pro Met Leu			
450	455	460	
Tyr Cys Leu Leu Ser Ala Arg Ala Ile Thr Glu Gln Glu Cys Asn Ala			
465	470	475	480
Val Lys Gln Lys Pro His Thr Leu Gln Ala Ser Thr Leu Ile Asp Thr			
485	490	495	
Val Leu Ala Lys Gly Asn Thr Ala Ala Thr Ser Phe Arg Asn Ser Leu			
500	505	510	
Arg Glu Ile Asp Pro Ala Leu Tyr Arg Asp Ile Phe Val Gln Gln Asp			
515	520	525	
Ile Arg Ser Leu Pro Thr Asp Asp Ile Ala Ala Leu Pro Met Glu Glu			

530	535	540
Gln Leu Arg Pro Leu Pro Glu Asp Arg Met Cys Lys Val Cys Met Asp		
545	550	555
Arg Glu Val Ser Ile Val Phe Ile Pro Cys Gly His Leu Val Val Cys		
	565	570
Lys Asp Cys Ala Pro Ser Leu Arg Lys Cys Pro Ile Cys Arg Gly Thr		
	580	585
Ile Lys Gly Thr Val Arg Thr Phe Leu Ser		
	595	600

<210> 228
<211> 2416
<212> DNA
<213> Mus musculus

<400> 228
ctgtggtgg aacttattgt ccaagtggtg agaaacttca tctggaaaggtaaagccgtca 60
gaaatactat tactactcat ggacaaaact gtctccaga gactcgccca aggtaccta 120
cacccaaaaa cttaaacgtta taatggagaa gaggcacaatc ttgtcaaattt ggacaaagga 180
gagcgaagaa aaaatgaagt ttgacttttc gtgtgaactc taccgaatgt ctacatattc 240
agctttcccc aggggagttc ctgtctcaga gaggagtctg gctctgtctg gcttttatta 300
tacagggtgt aatgacaaaag tcaagtgttctt ctgtctgtggc ctgtatgttgg ataaactggaa 360
acaaggggac agtccctgttgg aaaaggcacag acagttctat cccagctgcgca gctttgtaca 420
gactctgttctt tcagccagtc tgcaagtctccatctaaatgttcttggatggaaatgttgg 480
atitgcacat tcgtcaccc tggAACCGGG tggcattcac tccaacccgtt gctctagccc 540
tcttaatttctt agagcagtgg aagacttcttca atcaaggatg gatccctgcgca gctatgccat 600
gagttacagaa gaggccatgtt ttcttactta cagttatgtgg cctttaatgtt ttctgtcacc 660
agcagagctg gcccagagctg gcttcttattatcatagggcctt ggagacagggg tggcctgtttt 720
tgcctgtgttgg gggaaacttgc gcaacttgggaccatggat tatgtctatgtt cagagcaccg 780
cagacattttt ccccaactgtc cattttcttggaaatatacttca gaaacacaga ggttttagtat 840
atcaaaatcta agtatgcaga cacactctgc tcgatttggg acatttctgtt actggccacc 900
tagtgttctt gttcagcccg agcagcttgc aagtgttgcgatggatggatggatggatggatgg 960
tgatgtatgtc aagtgcctt gttgtatggatggatggatggatggatggatggatggatggatgg 1020
ccccctggata gaacacgcacaatggttttcc aagggtgttgcgatggatggatggatggatgg 1080
tcaggagttt gttgtatggatggatggatggatggatggatggatggatggatggatggatggatgg 1140
cacttcagac accccaggag aagaaaaatgc tgacccttaca gagacagggttggatggatggatgg 1200
ccctggagaa agttcgaaatgttgcgatggatggatggatggatggatggatggatggatggatgg 1260
ggaaatgggc ttcttgcgatggatggatggatggatggatggatggatggatggatggatggatgg 1320
tggatggatggatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 1380
gagaagagaa gaggagaagg aaagacagac tgaagagatg gcatcaggatg acttattact 1440
gattcggaaatgttgcgatggatggatggatggatggatggatggatggatggatggatggatgg 1500
taatcttctt gaggccatgttgcgatggatggatggatggatggatggatggatggatggatgg 1560
acagataccctt tacaagccaa gagagcttgcgatggatggatggatggatggatggatggatgg 1620
agccaaacatcttcaaaaaacttcttgcgatggatggatggatggatggatggatggatggatgg 1680
tgtggaaaatgttgcgatggatggatggatggatggatggatggatggatggatggatggatgg 1740
gcagggttgcgg agattacaatgttgcgatggatggatggatggatggatggatggatggatgg 1800
tattgttgcgatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 1860
gaagtgcggccatgttgcgatggatggatggatggatggatggatggatggatggatggatggatgg 1920
gaagaatgttgcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 1980
tgatgttgcgatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 2040
gaagggttgcgatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 2100
ctacaggacttgcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 2160
cttcttgcgatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 2220
tcctggaaaccatgttgcgatggatggatggatggatggatggatggatggatggatggatggatgg 2280
tccaggatgttgcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 2340
agatgttgcgatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 2400
gccaacactgttgcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 2416

<210> 229
<211> 591
<212> PRT
<213> Mus musculus

<400> 229
Met Glu Lys Ser Thr Ile Leu Ser Asn Trp Thr Lys Glu Ser Glu Glu
1 5 10 15
Lys Met Lys Phe Asp Phe Ser Cys Glu Leu Tyr Arg Met Ser Thr Tyr
20 25 30
Ser Ala Phe Pro Arg Gly Val Pro Val Ser Glu Arg Ser Leu Ala Arg
35 40 45
Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys Val Lys Cys Phe Cys
50 55 60
Cys Gly Leu Met Leu Asp Asn Trp Lys Gln Gly Asp Ser Pro Val Glu
65 70 75 80
Lys His Arg Gln Phe Tyr Pro Ser Cys Ser Phe Val Gln Thr Leu Leu
85 90 95
Ser Ala Ser Leu Gln Ser Pro Ser Lys Asn Met Ser Pro Val Lys Ser
100 105 110
Arg Phe Ala His Ser Ser Pro Leu Glu Arg Gly Gly Ile His Ser Asn
115 120 125
Leu Cys Ser Ser Pro Leu Asn Ser Arg Ala Val Glu Asp Phe Ser Ser
130 135 140
Arg Met Asp Pro Cys Ser Tyr Ala Met Ser Thr Glu Glu Ala Arg Phe
145 150 155 160
Leu Thr Tyr Ser Met Trp Pro Leu Ser Phe Leu Ser Pro Ala Glu Leu
165 170 175
Ala Arg Ala Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala Cys
180 185 190
Phe Ala Cys Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Tyr Ala
195 200 205
Met Ser Glu His Arg Arg His Phe Pro His Cys Pro Phe Leu Glu Asn
210 215 220
Thr Ser Glu Thr Gln Arg Phe Ser Ile Ser Asn Leu Ser Met Gln Thr
225 230 235 240
His Ser Ala Arg Leu Arg Thr Phe Leu Tyr Trp Pro Pro Ser Val Pro
245 250 255
Val Gln Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Asp Arg
260 265 270
Asn Asp Asp Val Lys Cys Leu Cys Cys Asp Gly Gly Leu Arg Cys Trp
275 280 285
Glu Pro Gly Asp Asp Pro Trp Ile Glu His Ala Lys Trp Phe Pro Arg
290 295 300
Cys Glu Phe Leu Ile Arg Met Lys Gly Gln Glu Phe Val Asp Glu Ile
305 310 315 320
Gln Ala Arg Tyr Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp
325 330 335
Thr Pro Gly Glu Glu Asn Ala Asp Pro Thr Glu Thr Val Val His Phe
340 345 350
Gly Pro Gly Glu Ser Ser Lys Asp Val Val Met Met Ser Thr Pro Val
355 360 365
Val Lys Ala Ala Leu Glu Met Gly Phe Ser Arg Ser Leu Val Arg Gln
370 375 380
Thr Val Gln Arg Gln Ile Leu Ala Thr Gly Glu Asn Tyr Arg Thr Val
385 390 395 400
Asn Asp Ile Val Ser Val Leu Leu Asn Ala Glu Asp Glu Arg Arg Glu
405 410 415

Glu	Glu	Lys	Glu	Arg	Gln	Thr	Glu	Glu	Met	Ala	Ser	Gly	Asp	Leu	Ser
									420						430
										425					
Leu	Ile	Arg	Lys	Asn	Arg	Met	Ala	Leu	Phe	Gln	Gln	Leu	Thr	His	Val
									435				445		
										440					
Leu	Pro	Ile	Leu	Asp	Asn	Leu	Leu	Glu	Ala	Ser	Val	Ile	Thr	Lys	Gln
									450				460		
										455					
Glu	His	Asp	Ile	Ile	Arg	Gln	Lys	Thr	Gln	Ile	Pro	Leu	Gln	Ala	Arg
									465				475		480
										470					
Glu	Leu	Ile	Asp	Thr	Val	Leu	Val	Lys	Gly	Asn	Ala	Ala	Ala	Asn	Ile
									485				490		495
															.
Phe	Lys	Asn	Ser	Leu	Lys	Gly	Ile	Asp	Ser	Thr	Leu	Tyr	Glu	Asn	Leu
									500				510		
										505					
Phe	Val	Glu	Lys	Asn	Met	Lys	Tyr	Ile	Pro	Thr	Glu	Asp	Val	Ser	Gly
									515				525		
										520					
Leu	Ser	Leu	Glu	Glu	Gln	Leu	Arg	Arg	Leu	Gln	Glu	Glu	Arg	Thr	Cys
									530				540		
										535					
Lys	Val	Cys	Met	Asp	Arg	Glu	Val	Ser	Ile	Val	Phe	Ile	Pro	Cys	Gly
									545				555		560
										550					
His	Leu	Val	Val	Cys	Gln	Glu	Cys	Ala	Pro	Ser	Leu	Arg	Lys	Cys	Pro
										565			570		575
Ile	Cys	Arg	Gly	Thr	Ile	Lys	Gly	Thr	Val	Arg	Thr	Phe	Leu	Ser	
									580				590		
										585					

<210> 230
<211> 6669
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(6669)
<223> n=a,t,c, or g
```

<400> 230
ttgctctgtc acccagttt gagtgcagtt atgcagtctc acactgcaag ctctgcctca 60
tgggctcaag tgaacccct gcctcaggct ctcaagtagc tgggaccaca ggcagggtgcc 120
accatgtctg gctaattttt gagtttcttt gtagagatgg tggggccca agtcacccag 180
tttggggctg gtctcaaaca cctgggctca agcaatccat ctacccatcagc ctcccaaagt 240
gctgggattt caggagtgag ccatggcatg aggccctgtg ggggtgtctt tttaaatgaa 300
agcatactct gtttacgtat ttgatatgaa ggaatatccct tcctttccac aaagacaaaa 360
attatccat ttttctcaaaca atatgtcc ttttctctaa cttttcattt ttgttacttt 420
tgatggacac atgttgtaca ttgatttccat ttcttcataa ttctgtgtt agaaaaacaa 480
tagtgccagt tcaatgacaa atagcaacag tctgttattt ctagactgtt actgttagtg 540
gagactacca gaacagtcag tcccagtgtc agggaaatcaa agagaacatg ttccctctct 600
aaagggcaca gctgctgctc agcttttagct gattgctgccc ctgcaggact ataggcccag 660
tggtagtca tctttgtat tttcaagaga agcttggaaat ctagaatgtg atggaaagtc 720
tccttacattt aaacatgttg gcaattaatg gtaagattt aaaatactgt ggtccaagaa 780
aaaaatggat ttgaaaactg gattaaattt aaatgaggca tgccagattt tctacagcat 840
ggtacaatgt gaattttctg gtttctttaa ttgcactgtt attaggttaag atgttagctt 900
tggggaaact aagtgcagag tatgcagaaa ctattattt tgtaagttt ctctaaatgt 960
aaataaaattt caaaaataaaa ataaaaactt agtaaagaac tataatgcaa ttctatgtaa 1020
gccaacata atatgtctc cagtttggaaa cctctgggtt ttattttattt ttatttttt 1080
tttggagacag agtttgcgtg tgccacccag gctggagatgt agtggcacta ttccggccca 1140
ctgcaaccc taccctcccg gctcaatga ttctccgtcc tcagccctccg gagtagctgg 1200
gattacaggc gctgtaccacc acacccagct aattttgtt ttttttagtag agatgggggtt 1260
tcaccattt ggcaggctg gtttgaact cctgacccat agtgatccac ttgttcttggc 1320
ctccccaaat gctgggattt caggcgttag ccactgcacc aggcagagggc ctctgttttt 1380

attgggaacc gaaggataat gctatgtcag aacacctgag acatttccc aaatgccccat 4920
 ttatagaaaa tcagctcaa gacacttcaa gatacacagt ttctaatctg agcatgcaga 4980
 cacatgcagc ccgccttaaa acattctta actggccctc tagtgttcta gttaatcctg 5040
 agcagcttcg aagtgcgggt ttttattatg tggtaacag ttagatgtc aaatgcttt 5100
 gctgtgatgg tggactcagg tggtggaaat ctggagatga tccatgggtt caacatgcca 5160
 agtggttcc aagggtgag tacttgataa gaattaaagg acaggagttc atccgtcaag 5220
 ttcaagccag ttacccctcat ctacttgaac agctgctatc cacatcgac agcccaggag 5280
 atgaaaatgc agagtcatca attatccatt ttgaacctgg agaagaccat tcagaagatg 5340
 caatcatgat gaataactcct gtgattaatg ctggcggtt aatgggctt agtagaaagcc 5400
 tggtaaaaca gacagttcag agaaaaatcc tagcaactgg agagaattat agactagtca 5460
 atgatcttgt gtttagactta ctcacatgcag aagatgaaat aagggaagag gagagagaaa 5520
 gagcaactga gggaaaagaa tcaaatgatt tattataat cccgaaagat agaatggcac 5580
 ttttcaaca tttgacttgt gtaattccaa tcctggatag tctactaact gccggaattt 5640
 ttaatgaaca agaacatgat gttattaaac agaagacaca gacgtcttta caagcaagag 5700
 aactgattga tacgatTTTA gtaaaaaggaa atattgcagc cactgttattc agaaactctc 5760
 tgcaagaagc tgaagctgtg ttagatgac atttattttt gcaacaggac ataaaatata 5820
 ttcccacaga agatgttca gatctaccag tggagaaca attgcggaga ctacaagaag 5880
 aaagaacatg taaagtgtgt atggacaaaag aagtgtccat agtgttttatt cttgtggtc 5940
 atctagtagt atgcaaagat tggctccctt cttaagaaa gtgtcctatt tggaggagta 6000
 caatcaaggg tacagttcgt acatTTTCTT catgaagaag aaccaaaaaca tcgtctaaac 6060
 tttagaatta atttattaaa tggattataa cttaacttt tatcctaatt tggttccctt 6120
 aaaatttttta ttattttaca actcaaaaaa cattgttttgg tggatcatat ttatatatgt 6180
 atctaaacca tatgaacata tatttttttag aaactaagag aatgataggc ttttgttctt 6240
 atgaacgaaa aagaggttagc actacaaaaca caatattca tcaaaaatttc agcattattt 6300
 aaattgttaag tgaagtaaaa cttagatggaa ttgagtttac ctttaagaaat tttaaatatt 6360
 ttggcattgt actaataccg ggaacatgaa gccaggtgtg gtggatgtg cctgtatgcc 6420
 caggctgagg caagagaattt acttgagccc aggaggttga atccatcctg ggcagcatac 6480
 tgagaccctg cttttaaaaaa caaacagaac aaaaacaaaaa caccaggac acatttctct 6540
 gtcttttttgg atcagtgtcc tatacatgaa aggtgtcat atatgttggaa tcacattttt 6600
 ggacatgggt gttttataa agaattctgt gggaaaaat ttaataaagc aaccaaaaaa 6660
 aaaaaaaaaa 6669

<210> 231
 <211> 3000
 <212> DNA
 <213> Homo sapiens

<400> 231
 ttgcagggtac ttggatTTTT tcctgagcca ccctctagag ggcagtgtt cataatataatc 60
 tggatTTTT cagttacaac aaaaaaagggtt ctctcattca tggatggaaa tcagaaatata 120
 ttcatactct taaaagaaacac attggacca atattatgtat taaaacatata tttgctaagc 180
 aaagagatata taaaattaa ttcatTTAA ttctgaacat tttttaactt gtaaaaaacaa 240
 ctttgcattttt ttggatTTTT aatgattcat tataacaattt atgcataatgtt ttttataatc 300
 tgcattttttt atgcTTTcat gtttttccca attaatgtt tgacatgggtt aataattata 360
 atatattctg catcacatTTT tacatatttt tggatggaaa ttggatTTTT attattatgtt 420
 ttattctgtcc tgctaaata ttactttcctt caaaaagaga aacaaaaat gctgatTTTT 480
 actttatgtac ttggatgttggatgtc gaaactttagt atttggatattt agaatgtttc 540
 ttggcggtcg tggatTTTT ttggatgtc aatggatggaa ttggatgttgc cctataacaa 600
 aagtctgtt cttgtgtttc acatTTTggaa ttggatgttgc ttttttagaaaa 660
 aggtggacaa gtcctttttt caagagaaga tgactttttaa cagtttggaa ggatctaaaa 720
 ctgtgttacc tggatgttgc aataaggaa aagaatttttggt agaagatgtt aatagattaa 780
 aaacttttgc taattttcca agtggatgtc ctgtttcagc atcaacactg gcacgagcag 840
 ggTTTCTTta tactggatggaa ggagataccg tggatgttgc tggatgttgc tggatgttgc 900
 atagatggca atatggagac tcagcgttgc gaagacacag gaaagtatcc ccaaatttgc 960
 gatttatcaa cggcttttat cttggaaaata gtcacacgca gtctacaaat tctggatcc 1020
 agaattggtca gtacaaagttt gaaaactatc tggatggatggc agatcattttt gccttagaca 1080

ggccatctga gacacatgca gactatcitt tgagaactgg gcaggttgc gatatatcag 1140
acaccatata cccgaggaac cctgccatgt attgtgaaga agtagatta aagtcccttc 1200
agaactggcc agactatgct cacctaacc caagaggtt agcaagtgc ggactctact 1260
acacaggat tggtgaccaa gtgcagtgc ttttgtgg tggaaaactg aaaaattggg 1320
aaccttgc tgcgtgcctgg toagaacaca ggcacactt tcctaattgc ttctttgttt 1380
tggggccggaa tcttaattt cgaagtgaat ctgatgtgt gagttctgat aggaatttcc 1440
caaattcaac aaatcttcca agaaatccat ccatggcaga ttatgaagca cggatctta 1500
cttttgggac atggatatac tcagttaca aggagcagct tgcaagagct ggattttatg 1560
ctttaggtga aggtgataaa gtaaagtgc ttcactgtgg aggagggcta actgatttgg 1620
agcccagtga agacccttgg gaacaacatg ctaaatggta tccagggtgc aaatatctgt 1680
tagaacagaa gggacaagaa tatataaaca atattcattt aactcattca cttgaggagt 1740
gtctggtaag aactactgag aaaacaccat cactaactag aagaatttat gataccatct 1800
tccaaaatcc tatggtacaa gaagctatac gaatgggtt cagtttcaag gacattaaga 1860
aaataatgga ggaaaaattt cagatatctg ggagcaacta taaatcactt gaggttctgg 1920
ttgcagatct agtgaatgct cagaagaca gtatgcaga tgagtcaagt cagacttcat 1980
tacagaaaga gattagtaact gaagagcagc taaggcgctt gcaagaggag aagctttgca 2040
aaatctgtat ggatagaat attgtatcg tttttttcc ttgtggacat ctatgtcattt 2100
gtaaacaatg tgcgtgaagca gttgacaagt gtccccatgtg ctacacagtc attacttca 2160
agcaaaaaat ttttatgtct taatctaact ctatagtagg catgttatgt ttttttttattt 2220
accctgattt aatgtgtat gtgactgac tttaaagtaat caggattgaa ttccatttagc 2280
atttgctacc aagtaggaaa aaaaatgtac atggcagtgt ttttagttggc aatataatct 2340
tgcatttttca gggattttgc tgcattttcc atttttttta ctgttattta 2400
attgaaacca tagactaaga ataagaagca tcataactata actgaacaca atgtgtattc 2460
atagtataact gatttaattt ctaagtgtaa gtgaaattat catctggatt ttttattttt 2520
ttcagatagg cttaacaaat ggagctttct gtatataaat gtggagatta gagttatct 2580
cccccaatcac ataatttgc ttgtgtgaaa aaggaataaa ttgttccatg ctggtgaaaa 2640
gatagagatt gtttttagag gttgggttgc ttgttttagg attctgtcca ttttctttta 2700
aagttataaa cacgtacttg tgcgaattat ttttttaaag tgattttgcca tttttgaaaag 2760
cgtatTTTat gatagaatac tatcgagcca acatgtactg acatggaaaag atgtcaaaaga 2820
tatgttaagt gtaaaatgca agtggaaaaa cactatgtat agtctgagcc agatcaaagt 2880
atgtatgtttt ttaatatgca tagaacaaaaa gattttggaaa gatatacacc aaactgttaa 2940
atgtggtttcc ttccggggaa gggggggatt gggggagggg ccccataggg gttttatagg 3000