

considerations

Presented by Rob Rodrigues

Prepared by Hao Zheng

Clock generator overview

Frequency calculation

Frequency calculation (cont.)

One PLL, two output frequencies

One PLL, two output frequencies (cont.)

To find more clocks and timing technical resources and search products, visit ti.com/clocks

1. True or False:

The relationship between f_{VCO} (VCO frequency), D (output divider value) and f_{out} (output frequency) is $f_{out} = f_{VCO} * D$

1. True or False:

The relationship between f_{VCO} (VCO frequency), D (output divider value) and f_{out} (output frequency) is $f_{out} = f_{VCO} * D$

2. Choose one:

The relationship between f_{PD} (phase detector frequency), N (N divider value), NUM (numerator of fractional divider), DEN (denominator of fractional divider) and f_{VCO} for fractional PLL is

(a)
$$f_{VCO} = f_{PD} * (N - NUM/DEN)$$
 (b) $f_{VCO} = f_{PD} * (N + NUM/DEN)$ (c) $f_{VCO} = f_{PD} / (1/N + NUM/DEN)$

2. Choose one:

The relationship between f_{PD} (phase detector frequency), N (N divider value), NUM (numerator of fractional divider), DEN (denominator of fractional divider) and f_{VCO} for fractional PLL is

(a)
$$f_{VCO} = f_{PD}^* (N - NUM/DEN)$$
 (b) $f_{VCO} = f_{PD}^* (N + NUM/DEN)$ (c) $f_{VCO} = f_{PD}^* (1/N + NUM/DEN)$

3. True or False:

There is only one combination of reference input frequency, phase detector frequency and divider values that can generate the desired output frequency f_{out},

3. True or False:

There is only one combination of reference input frequency, phase detector frequency and divider values that can generate the desired output frequency f_{out},

4. Choose all that apply:

Which constraints determine the relationship between f_{VCO} , f_{out1} (frequency of output 1), f_{out2} (frequency of output 2) f_{VCO_min} and f_{VCO_max} for generating 0ppm outputs?

- a) f_{VCO} is common multiple of f_{out1} and f_{out2}
- b) $f_{VCO}/N = integer$
- c) $f_{VCO_min} < f_{VCO} < f_{VCO_max}$

4. Choose all that apply:

Which constraints determine the relationship between f_{VCO} , f_{out1} (frequency of output 1), f_{out2} (frequency of output 2) $f_{VCO\ min}$ and $f_{VCO\ max}$ for generating 0ppm outputs?

- a) f_{VCO} is common multiple of f_{out1} and f_{out2}
- b) $f_{VCO}/N = integer$
- c) $f_{VCO_min} < f_{VCO} < f_{VCO_max}$

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com