- 1. Suppose that a one-celled organism can be in one of two states either A or B. An individual in state A will change to state B at an exponential rate α ; an individual in state B divides into two new individuals of type A at an exponential rate β . Define an appropriate CTMC for a population of such organisms and determine the appropriate parameters for this model.
- 2. Potential customers arrive at a single-server station in accordance with a Poisson process with rate λ . However, if the arrival finds n customers already in the station, then he will enter the system with probability α_n . Assuming an exponential service rate μ , set this up as a birth and death process and determine the birth and death rates.
- 3. There are N individuals in a population, some of whom have a certain infection that spreads as follows. Contacts between two members of this population occur in accordance with a Poisson process having rate λ . When a contact occurs, it is equally likely to involve any of the $\binom{N}{2}$ pairs of individuals in the population. If a contact involves an infected and a noninfected individual, then with probability p the noninfected individual becomes infected. Once infected, an individual remains infected throughout. Let X(t) denote the number of infected members of the population at time t. Is $\{X(t); t \geq 0\}$ a CTMC?