2019440102_이진우_HW02

1.a.

우선 original signal flow graph를 그립니다. ($G=rac{1-e^{-Ts}}{s}G_p$)

이때 샘플러의 input은 E, output은 E^* 입니다.

E와 Y를 나타냅니다.

$$E = R - HGE^*$$

$$Y = GE^*$$

위 두 식의 양 변에 모두 starred transform을 취합니다.

$$E^* = R^* - \overline{HG}^*E^* \ E^* = rac{R^*}{1 + \overline{HG}^*}$$

$$Y^* = G^*E^*$$

이 두 식을 정리하여 $\frac{Y^*}{R^*}$ 전달함수를 만듭니다.

$$\frac{Y^*}{R^*} = \frac{G^*}{1 + \overline{H}\overline{G}^*} \tag{1}$$

이 식을 z-transform하기 위해 각 G,\overline{HG} 를 z-transform해줍니다.

$$G(s) = \frac{1 - e^{-Ts}}{s} \cdot \frac{1}{s}$$

$$G^{d}(z) = (1 - z^{-1}) \mathcal{Z} \left[\frac{1}{s^{2}} \right]$$

$$= \frac{z - 1}{z} \cdot \frac{0.2z}{(z - 1)^{2}}$$

$$= \frac{0.2}{z - 1}$$
(2)

$$HG(s) = \frac{1}{\tau s + 1} \cdot \frac{1 - e^{-Ts}}{s} \cdot \frac{1}{s}$$

$$\overline{HG}^{d}(z) = (1 - z^{-1}) \mathcal{Z} \left[\frac{1/\tau}{s^{2}(s + 1/\tau)} \right]$$

$$= \frac{z - 1}{z} \frac{z \left[(0.2/\tau - 1 + e^{-0.2/\tau})z + (1 - e^{-0.2/\tau} - 0.2/\tau e^{-0.2/\tau}) \right]}{(1/\tau)(z - 1)^{2}(z - e^{-0.2/\tau})}$$

$$= \frac{(0.2/\tau - 1 + e^{-0.2/\tau})z + (1 - e^{-0.2/\tau} - (0.2/\tau)e^{-0.2/\tau})}{(1/\tau)(z - 1)(z - e^{-0.2/\tau})}$$
(3)

식 (1), (2), (3)에 따라 전달함수의 z-transform은 다음과 같습니다.

$$\begin{split} Y^d(z)/R^d(z) &= \frac{G^d(z)}{1 + \overline{HG}^d(z)} \\ &= \frac{\frac{0.2}{z-1}}{1 + \frac{(0.2/\tau - 1 + e^{-0.2/\tau})z + (1 - e^{-0.2/\tau})}{(1/\tau)(z-1)(z-e^{-0.2/\tau})}} \\ &= \frac{0.2(1/\tau)(z - e^{-0.2/\tau})}{(1/\tau)(z-1)(z - e^{-0.2/\tau})} \\ &= \frac{0.2(1/\tau)(z - e^{-0.2/\tau})}{(1/\tau)(z-1)(z - e^{-0.2/\tau}) + ((0.2/\tau) - 1 + e^{-0.2/\tau})z + (1 - e^{-0.2/\tau} - (0.2/\tau)e^{-0.2/\tau})}{(z-1)(z - e^{-0.2/\tau}) + (0.2 - \tau + \tau e^{-0.2/\tau})z + (\tau - \tau e^{-0.2/\tau} - 0.2e^{-0.2/\tau})} \\ &= \frac{0.2(z - e)}{z^2 + (-(0.8 + \tau) + (\tau + 1)\epsilon)z + (\tau + (0.8 - \tau)\epsilon)}, \quad \left(\epsilon = e^{-0.2/\tau}\right) \end{split}$$

1.b.

전달함수의 분모와 분자에 $V^d(z)$ 를 곱하고 각 $Y^d,\ R^d$ 에 분자, 분모를 할당합니다. 또한, 그 식에 inverse z-transform을 취합니다.

$$\begin{split} Y^d(z) &= 0.2(z-\epsilon)V^d(z) \\ &\to y^d(k) = 0.2v^d(k) - 0.2\epsilon v^d(k+1) \\ R^d(z) &= \{z^2 + (-(0.8+\tau) + (\tau+1)\epsilon)z + (\tau+(0.8-\tau)\epsilon)\}V^d(z) \\ &\to r^d(k) = v^d(k+2) + (-(0.8+\tau) + (\tau+1)\epsilon)v^d(k+1) + (\tau+(0.8-\tau)\epsilon)v^d(k) \\ v^d(k+2) &= ((0.8+\tau) - (\tau+1)\epsilon)v^d(k+1) + (-\tau+(\tau-0.8)\epsilon)v^d(k) + r^d(k) \end{split}$$

위 식을 토대로 이산 시간 상태변수 모델을 만듭니다.

$$egin{aligned} igg(x^d(k) &= igg[v^d(k) \ v^d(k+1) igg], \ x^d(k+1) &= igg[v^d(k+1) \ v^d(k+2) igg] igg) \end{aligned} \ x^d(k+1) &= igg[egin{aligned} 0 & 1 \ - au + (au - 0.8)\epsilon & (0.8+ au) - (au + 1)\epsilon \ \end{bmatrix} x^d(k) + igg[0 \ 1 \ \end{bmatrix} r^d(k) \ y^d(k) &= igg[0.2 & -0.2\epsilon igg] x^d(k) \end{aligned} \ A^d &= igg[egin{aligned} 0 & 1 \ - au + (au - 0.8)e^{-0.2/ au} & (0.8+ au) - (au + 1)e^{-0.2/ au} \ \end{bmatrix} \ B^d &= igg[0 \ 1 \ \end{bmatrix} \ C^d &= igg[0.2 & -0.2e^{-0.2/ au} \ \end{bmatrix}$$

1.c.

 A^d 의 특성방정식을 구합니다.

$$egin{aligned} 0 &= \det(A^d - I\lambda) \ &= -\lambda \left((0.8 + au) - (au + 1)e^{-0.2/ au} - \lambda
ight) + au + (0.8 - au)e^{-0.2/ au} \ &= \lambda^2 - \left((0.8 + au) - (au + 1)e^{-0.2/ au}
ight) \lambda + au + (0.8 - au)e^{-0.2/ au} \end{aligned}$$

이때 이 시스템이 안정하려면 A^d 의 모든 eigenvalue가 단위원에 들어와야 합니다. 따라서, 위 이차식의 근의 크기가 1보다 작아야 합니다. 이 조건을 식으로 나타내면 다음과 같습니다.

$$egin{aligned} \left(b = -(0.8 + au) + (au + 1)e^{-0.2/ au}
ight) \ \left(c = au + (0.8 - au)e^{-0.2/ au}
ight) \ \lambda = -rac{b}{2} \pm \sqrt{c} \ \ c \geq 0: \left|-rac{b}{2} \pm \sqrt{c}
ight| \leq 1 \ \ c < 0: rac{b^2}{4} + c^2 \leq 1 \end{aligned}$$

1.d.

au=1 일 때 $b=-0.16254,\ c=0.83625$ 로 1.c의 조건을 만족합니다. 따라서 $H(s)=rac{1}{s+1}$ 을 사용하였습니다.

폐루프 시스템 :

출력 파형 :

2.a.

matlab을 이용해 $G^d(z)$ 를 구하면 다음과 같습니다.

```
Gp_tf = tf(1,[1 1 0]);
T = 0.2;
Gd_tf = c2d(Gp_tf,T,'zoh')
```

```
Gd_tf =

0.01873 z + 0.01752

z^2 - 1.819 z + 0.8187

샘플 시간: 0.2 seconds
이산시간 전달 함수입니다.
```

그러면 다음과 같은 폐루프 시스템과 같습니다

따라서 이것의 전달함수는 다음과 같습니다.

다음과 같습니다.
$$\begin{split} Y^d(z)/R^d(z) &= \frac{KG^d(z)}{1+KG^d(z)} \\ &= \frac{K\frac{0.01873z+0.01752}{z^2-1.819z+0.8187}}{1+K\frac{0.01873z+0.01752}{z^2-1.819z+0.8187}} \\ &= \frac{K(0.01873z+0.01752)}{z^2-1.819z+0.8187+K(0.01873z+0.01752)} \\ &= \frac{K(0.01873z+0.01752)}{z^2+(K0.01873z+0.01752)} \end{split}$$

2.b.

K=1일 때 final value theorem을 사용하여 정상상태 추종 오차를 구합니다.

$$y^{d}(\infty) = \lim_{z \to 1} (z - 1) \frac{0.01873z + 0.01752}{z^{2} - 1.80027z + 0.83622} \cdot \frac{z}{z - 1}$$
$$= \frac{0.03625}{0.03595}$$
$$= 1.0083$$

$$e_{ss} = 1 - y^d(\infty) = -0.0083$$

K=10일 때 final value theorem을 사용하여 정상상태 추종 오차를 구합니다.

$$y^d(\infty) = \lim_{z \to 1} (z - 1) \frac{0.1873z + 0.1752}{z^2 - 1.6317z + 0.9939} \cdot \frac{z}{z - 1} = \frac{0.3625}{0.3622} = 1.00083$$

$$e_{ss} = 1 - y^d(\infty) = -0.00083$$

2.c.

final value theorem을 사용하여 정상상태 추종 오차를 구합니다.

$$\begin{split} e_{ss} &= \lim_{k \to \infty} \left(r^d(k) - y^d(k) \right) \\ &= \lim_{z \to 1} (z - 1) \left(1 - Y^d(z) / R^d(z) \right) R^d(z) \\ &= \lim_{z \to 1} (z - 1) \left[1 - \frac{K(0.01873z + 0.01752)}{z^2 + (K0.01873 - 1.819)z + (0.8187 + 0.01752K)} \right] \cdot \frac{Tz}{(z - 1)^2} \\ &= \lim_{z \to 1} \frac{z^2 + (K0.01873 - 1.819)z + (0.8187 + 0.01752K) - K(0.01873z + 0.01752)}{(z^2 + (K0.01873 - 1.819)z + (0.8187 + 0.01752K))(z - 1)} Tz \\ &= \lim_{z \to 1} \frac{(z^2 - 1.819z + 0.8187)Tz}{(z^2 + (K0.01873 - 1.819)z + (0.8187 + 0.01752K))(z - 1)} \\ &= \lim_{z \to 1} \frac{(z - 1)(z - 0.817)Tz}{(z^2 + (K0.01873 - 1.819)z + (0.8187 + 0.01752K))(z - 1)} \\ &= \lim_{z \to 1} \frac{(z - 0.817)Tz}{(z^2 + (K0.01873 - 1.819)z + (0.8187 + 0.01752K))} \\ &= \frac{0.183T}{0.03625K + 0.0004} \end{split}$$

최소값 $a_1(a_1 = \frac{0.183T}{0.03625K_1 + 0.0004}, K_1 \in \mathbf{R})$ 가 존재한다고 가정해봅니다.

이때 $K_2 > K_1$ 인 어떤 K_2 는 항상 있으므로 최소값 a_1 보다 작은 a_2 가 언제나 존재합니다. 따라서 최소값이 존재한다는 가정은 모순입니다.

따라서 최소값은 존재하지 않습니다.

대신 $K \rightarrow \infty$ 일 때 $e_{ss} \rightarrow 0$ 으로 수렴합니다.

3.a.

$$F^{d}(z) = z^{4} + Kz^{3} - 0.4z^{2} + 0.5K = 0$$

$$\frac{z^{0}}{0.5K} \qquad z^{1} \qquad z^{2} \qquad z^{3} \qquad z^{4}$$

$$1 \qquad K \qquad -0.4 \qquad 0 \qquad 0.5K$$

$$\frac{1}{4}K^{2} - 1 \qquad -K \qquad -\frac{1}{5}K + \frac{2}{5} \qquad \frac{1}{2}K^{2}$$

$$\frac{1}{2}K^{2} \qquad -\frac{1}{5}K + \frac{2}{5} \qquad -K \qquad \frac{1}{4}K^{2} - 1$$

$$-\frac{3}{16}K^{4} - \frac{1}{2}K^{2} + 1 \qquad -\frac{3}{20}K^{3} - \frac{1}{5}K^{2} + K \qquad \frac{9}{20}K^{3} + \frac{1}{10}K^{2} + \frac{1}{5}K - \frac{2}{5}$$

$$|0.5K/1| < 1 \rightarrow |K| < 2$$

$$\rightarrow K < 2$$

$$\left| \left(\frac{1}{4}K^{2} - 1 \right) \middle/ \left(\frac{1}{2}K^{2} \right) \right| > 1$$

$$\rightarrow \left| \frac{1}{2} - \frac{2}{K^{2}} \right| > 1$$

$$\rightarrow 0 < K < \frac{2}{\sqrt{3}} \approx 1.1547$$

$$\left| \left(-\frac{3}{16}K^{4} - \frac{1}{2}K^{2} + 1 \right) \middle/ \left(\frac{9}{20}K^{3} + \frac{1}{10}K^{2} + \frac{1}{5}K - \frac{2}{5} \right) \right| > 1$$

$$\rightarrow (0 < K < 0.989183) \lor (2 < K)$$

$$\therefore 0 < K < 0.989183$$

3.b.

$$F^{d}(z) = z^{4} + Kz^{3} - 0.4z^{2} + 0.5K = 0$$

bilinear transform하여 w에 대해 특성다항식을 정리합니다.

이때 시스템의 안정성은 T>0에 독립합니다. 따라서 T=2를 넣어 생각합니다.

$$z = \frac{1 + \frac{T}{2}w}{1 - \frac{T}{2}w}$$

$$F^{d}\left(\frac{1+w}{1-w}\right) = 0$$

$$\left(\frac{1+w}{1-w}\right)^{4} + K\left(\frac{1+w}{1-w}\right)^{3} - 0.4\left(\frac{1+w}{1-w}\right)^{2} + 0.5K = 0$$

$$(1+w)^{4} + K(1+w)^{3}(1-w) - 0.4(1+w)^{2}(1-w)^{2} + 0.5K(1-w)^{4} = 0$$

$$(0.6 - 0.5K)w^{4} + (4-4K)w^{3} + (6.8 + 5K)w^{2} + 4w + (0.6 + 1.5K) = 0$$

정리된 특성다항식에 Routh-Hurwitz 판별법을 사용합니다.

$$\begin{array}{c|cccc} w^4 & 0.6 - 0.5K & 6.8 + 5K & 0.6 + 1.5K \\ w^3 & 4 - 4K & 4 & 0 \\ w^2 & a & 0.6 + 1.5K \\ w^1 & b & 0 \\ w^0 & 0.6 + 1.5K \\ a = \frac{(0.6 - 0.5K)4 - (6.8 + 5K)(4 - 4K)}{-(4 - 4K)} \\ b = \frac{(4 - 4K)^2(0.6 + 1.5K)}{(0.6 - 0.5K)4 - (6.8 + 5K)(4 - 4K)} + 4 \end{array}$$

첫 열에 있는 수들이 모두 양수이도록 하는 K(K > 0)를 찾습니다.

$$\begin{array}{l} 0.6 - 0.5K > 0 \\ \rightarrow K < 1.2 \\ \\ 4 - 4K > 0 \\ \rightarrow K < 1 \\ \\ a > 0 \\ \rightarrow (0 < K < 0.9911) \lor (1 < K) \\ \\ b > 0 \\ \rightarrow 0.850 < K \\ \\ \therefore 0.850 < K < 0.9911 \end{array}$$

3.c.

특성방정식은 다음과 같이 정리될 수 있습니다.

$$z^4 + Kz^3 - 0.4z^2 + 0.5K = 0$$

 $\rightarrow 1 + K \frac{z^3 + 0.5}{z^4 - 0.4z^2} = 0$

따라서 이것의 root locus를 MATLAB을 사용하여 그리면 다음과 같이 나옵니다.

```
T = 0.2;
num = [1 0 0 0.5];
den = [1 0 -0.4 0 0];
F_tf = tf(num,den,T);

rlocus(F_tf)
```


이때 단위원 위에서의 이득(K)는 위의 사진과 같이 0.989이며, 여기에서 이득(K)가 증가하게 되면, 근 하나가 단위원을 완전히 벗어납니다.

따라서 $F^d(z)$ 가 안정하도록 하는 K의 범위는 다음과 같습니다.

0 < K < 0.989

3.d.

위에서 구한 K=0.989일 때의 nyquist plot을 그리면 다음과 같습니다.

```
T = 0.2;
num = [1 0 0 0.5];
den = [1 0 -0.4 0 0];
F_tf = tf(num,den,T);

K = 0.989;
nyquist(K*F_tf)
```


이를 보면 경로가 정확히 -1을 지나는 것을 알 수 있습니다.

K=2일 때는 다음과 같이 그려집니다.

-1을 경로가 시계방향으로 한 번 감쌉니다. 따라서 K=0.989보다 크면 시스템이 안정하지 않음을 알 수 있습니다.

K=0.5일 때는 다음과 같이 그려집니다.

```
K = 0.5;
nyquist(K*F_tf)
```


-1을 경로가 감싸지 않습니다. 따라서 K=0.989보다 작으면 시스템이 안정함을 알 수 있습니다. 따라서 $F^d(z)$ 가 안정하도록 하는 K의 범위는 다음과 같습니다.

0 < K < 0.989

3.e.

위에서 구한 K=0.989일 때의 bode plot을 그리면 다음과 같습니다.

```
T = 0.1;
num = [1 0 0 0.5];
den = [1 0 -0.4 0 0];
F_tf = tf(num,den,T);
K = 0.989;
bode(K*F_tf)
```


위상이 -180일 때 gain(dB)이 0에 가깝고, gain이 0에 가까운 모든 지점에서는 phase margin이 0 이상 있습니다.

K=0.5일 때의 bode plot을 그려봅니다.

```
K = 0.5;
bode(K*F_tf)
```


위상이 -180일 때 gain(dB)이 -6으로 gain margin이 충분하고, phase margin도 충분한 것을 볼 수 있습니다. 따라서 이 상황에서는 시스템은 안정합니다.

K=2일 때의 bode plot을 그려봅니다.

```
K = 2;
bode(K*F_tf)
```


위상이 -180일 때 gain(dB)이 양수이므로 시스템이 안정하지 않음을 알 수 있습니다.

따라서 $F^d(z)$ 가 안정하도록 하는 K의 범위는 다음과 같습니다.

0 < K < 0.989