INTRO TO DATA SCIENCE K-NEAREST NEIGHBORS

AGENDA

I. CLASSIFICATION WITH K-NEAREST NEIGHBORS II. DISTANCE MEASURES III. THE CURSE OF DIMENSIONALITY

CLASSIFICATION WITH KNN

CLASSIFICATION PROBLEMS

	continuous	categorical
supervised	???	???
unsupervised	???	???

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

Sounds scary, but we work with it every day!

Here is some 5-dimensional data:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Target

Sounds scary, but we work with it every day!

Here are four features with a target we are trying to build a predictor for:

Fisher's Iris Data Sepal length

Sepal width

Petal length

Petal width Species 4 5.1 3.5 1.4 0.2 I. setosa 3.0 4.9 1.4 0.2 I. setosa 4.7 3.2 1.3 0.2 I. setosa 4.6 3.1 1.5 0.2 L setosa 5.0 3.6 1.4 0.2 L setosa 5.4 3.9 1.7 0.4 I. setosa

Sounds scary, but we work with it every day!

Here are four features with a target we are trying to build a predictor for:

Fisher's Iris Data

data =				
[((5.1,	3.5,	1.4,	0.2),	0),
((4.9,	3.0,	1.4,	0.2),	0),
((4.7,	3.2,	1.3,	0.2),	0),
• • •				
1				

Sepal length \$	Sepal width ♦	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	2.4	1.4	0.2	Lootooo

CLASSIFICATION PROBLEMS

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

independent variables

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

class labels (categorical)

independent variables

CLASSIFICATION PROBLEMS

Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

```
Welcome to R! Thu Feb 28 13:07:25 2013
> summary(iris)
  Sepal.Length
                Sepal.Width
                                 Petal.Length
                                                 Petal.Width
 Min.
       :4.300
                 Min.
                        :2.000
                                Min.
                                       :1.000
                                                Min.
                                                       :0.100
                1st Qu.:2.800
                                1st Qu.:1.600
 1st Qu.:5.100
                                                1st Qu.:0.300
 Median :5.800
                 Median :3.000
                                Median :4.350
                                                Median :1.300
       :5.843
                        :3.057
                                       :3.758
 Mean
                 Mean
                                Mean
                                                Mean
                                                       :1.199
 3rd Qu.:6.400
                 3rd Qu.:3.300
                                 3rd Qu.:5.100
                                                3rd Qu.:1.800
        :7.900 max
                        :4.400
                                        :6.900
                                                       :2.500
                                Max.
                                                Max.
 Max.
       Species
 setosa
 versicolor:50
 virginica:50
```

CLASSIFICATION PROBLEMS

Q: How does a classification problem work?

Q: How does a classification problem work?

A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

QUESTION:

What are the features? What are the labels?

1) Pick a value for k.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

NOTE:

Our definition of "nearest" implicitly uses the *Euclidean distance function*.

DISTANCE MEASURES

COMMON DISTANCE MEASURES

Manhattan Distance

 $d(x,y) = \sum_{k=1}^{n} |x_k - y_k|$

- Also known as "Taxicab Distance".
- Here, two vectors X and Y are passed in. Each individual coordinate is compared.

Harry Potter (Book 1)'s rating

http://www.mickaellegal.com/blog/2014/1/30/how-to-build-a-recommender

K-NEAREST NEIGHBORS

Euclidean Distance

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

Make sure you understand how X and Y are defined:

$$X = (1, 2, 3)$$

 $Y = (4, 5, 6)$

$$d(X, Y) = (1 - 4)^2 + (2 - 5)^2 + (3 - 6)^2$$

http://www.mickaellegal.com/blog/2014/1/30/how-to-build-a-recommender

K-NN REGION VISUALIZATION

• The regions that make up k-NN can be visualized using Voronoi diagrams.

https://en.wikipedia.org/wiki/Voronoi_diagram

Jaccard Distance

- Suppose A and B are sets of words in two different news articles.
- The Jaccard Distance between the news articles is the proportion of words they do not have in common.
- So, if two articles contained exactly the same words, the distance would be zero.

$$d_J(A,B) = 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}.$$

K-NEAREST NEIGHBORS

Hamming Distance

- Here, we have two bit strings X and Y.
- Each bit is either 0 or 1.
- So, if the bits are the same: |0-0| = |1-1| = 0.
- If the bits are different: |0-1| = |1-0| = 1.

Hamming Distance

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

$$x = y \Rightarrow D = 0$$

$$x = y \Rightarrow D = 0$$

 $x \neq y \Rightarrow D = 1$

X	Υ	Distance
Male	Male	0
Male	Female	1

DISTANCES THAT SCALE

- Cosine Distance is popular because the magnitude of each vector is irrelevant.
- This is useful since biases in ratings are irrelevant.
- For example, suppose User 1 and User 2 both enjoy two books equally, but User 2 never gives 5. Then, User 1 and User 2 will have the same Cosine Distance.

Cosine Distance

$$cos(\theta) = \frac{x \cdot y}{||x|| * ||y||}$$

http://www.mickaellegal.com/blog/2014/1/30/how-to-build-a-recommender

DISTANCES THAT SCALE

- For some i, S_i is the standard deviation of the x_i and y_i over the sample set.
- This can alternatively be achieved by normalizing the features first then taking the standard Euclidean distance (subtract the mean and divide by the standard deviation): $x \mu$

Normalized Euclidean Distance

$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{N} \frac{(x_i - y_i)^2}{s_i^2}},$$

- Neighbors are far apart with high dimensionality.
- Overfitting may easily occur.
- Some features may require weighting.
- Some particular features may be correlated to others
- Many unknowns may result in poor Jaccard overlap
- Scaling problem with Euclidean distance, particularly with binary values
- Measurement error can affect result in unknown ways
- Calculation cost, since every data point must be compared

THE CURSE OF DIMENSIONALITY

$$x^2 < R^2$$

I-dimensional

 $x^2 + y^2 < R^2$

2-dimensional

$$x^2 + y^2 + z^2 < R^2$$

3-dimensional

As the number of dimensions increases with fixed radius, the hypersphere volume approaches zero.

 $V_1(R) = 2R, V_2(R) = \pi R^2, \text{ and } V_n(R) = \frac{2\pi R^2}{n} V_{n-2}(R), \text{ for } n \ge 3.$

Source: http://divisbyzero.com/2010/05/09/volumes-of-n-dimensional-balls/

CURSE OF DIMENSIONALITY

You may hear that most volume of an *N*-dimensional feature space is concentrated at the edges. To see this, define a hypersphere of radius 1:

$$x_1^2 + x_2^2 + \dots + x_N^2 < 1$$

Then, for n = 100, the point of equilibrium where all x are equal is x = 0.1, as follows:

$$N\overline{x}^2 = 1$$
 $\overline{x} = \sqrt{1/N}$

Hence, the edge of the "average" hypersphere is far away from the edge of the feature space.

Let's roughly estimate the effect of high dimensionality on k-NN. Doing this, we'll see that to hold a steady error rate, **exponentially more data is needed with each dimension added.**

- ightharpoonup Suppose we have n features.
- ightharpoonup Then, our "feature space" is n-dimensional.
- We will scale each feature to make it an n-dimensional unit cube, with a total volume of 1.

K-NN CURSE OF DIMENSIONALITY

We will use k-NN with N data points.

- ightharpoonup So, each neighborhood will require k/N fraction of the data points.
- On average, this is k/N of the total feature space.

To simplify calculations, suppose each neighborhood is an n-dimensional cube with side length b. Then:

$$b^n = k/N$$

Assuming the total feature space has sides 1, how is *b* affected by larger feature sets?

From Norvig & Russell, "Artificial Intelligence: A Modern Approach"

K-NN CURSE OF DIMENSIONALITY

Knowing the total *n*-dimensional feature space has unit sides, how is the side length b of each neighborhood affected by more features?

$$b^n = k/N$$

Suppose N = 1,000,000 data points.

k = 3 nearest neighbors.

To encircle the 3 nearest neighbors, each neighborhood requires:

1% of feature space

If n=3 features, then $b\sim 0.01$.

If n = 100 features, then $b \sim 0.88$. 88% of feature space!

INTRO TO DATA SCIENCE