131072-word × 8-bit High Speed CMOS Pseudo Static RAM

HITACHI

ADE-203-188H (Z) Rev. 8.0 Jun. 5, 1995

Description

The Hitachi HM658128A is a pseudo-static RAM organized as 131,072-word \times 8-bit. HM658128A realizes low power consumption and high speed access time by employing $1.3~\mu m$ CMOS process technology. The HM658128A supports 3 refresh functions: address refresh, auto refresh and self refresh. Low power version dissipates only 350 μW (typ)/500 μW (typ) in self refresh mode and retains the data with battery. The HM658128A is pin-compatible with 1-Mbit static RAM.

Features

- Single 5 V (± 10%)
- High speed
 - Access time

CE Access time: 80/100/120 ns

- Cycle time

Random read/

Write cycle time: 130/160/190 ns

- Low power:
 - Active: 300 mW (typ)
 - Standby: 350 μW (typ) (LL-version)

500 μW (typ) (L-version)

- All inputs and outputs TTL compatible
- Non multiplexed address
- 512 refresh cycles (8 ms)
- Refresh functions
 - Address refresh
 - Automatic refresh
 - Self refresh

Ordering Information

Type No.	Access Time	Package
HM658128ALP-8	80 ns	600-mil 32-pin plastic DIP (DP-32)
HM658128ALP-10	100 ns	
HM658128ALP-12	120 ns	
HM658128ALP-8L	80 ns	
HM658128ALP-10L	100 ns	
HM658128ALP-12L	120 ns	
HM658128ALFP-8	80 ns	32-pin plastic SOP (FP-32D)
HM658128ALFP-10	100 ns	
HM658128ALFP-12	120 ns	
HM658128ALFP-8L	80 ns	
HM658128ALFP-10L	100 ns	
HM658128ALFP-12L	120 ns	
HM658128ALT-8	80 ns	8 mm × 20 mm 32-pin plastic TSOP (TFP-32D)
HM658128ALT-10	100 ns	
HM658128ALT-12	120 ns	
HM658128ALT-8L	80 ns	
HM658128ALT-10L	100 ns	
HM658128ALT-12L	120 ns	
HM658128ALR-8	80 ns	8 mm × 20 mm 32-pin plastic TSOP reverse type (TFP-32DR)
HM658128ALR-10	100 ns	
HM658128ALR-12	120 ns	_
HM658128ALR-8L	80 ns	
HM658128ALR-10L	100 ns	
HM658128ALR-12L	120 ns	

Pin Arrangement

Pin Arrangement (cont)

Pin Description

Pin Name	Function					
A0 to A16	Address input					
I/O0 to I/O7	Data input/output					
RFSH	Refresh					
CE	Chip enable					
ŌĒ	Output enable					
WE .	Write enable					
CS	Chip select					
V _{cc}	Power supply					
V _{ss}	Ground					

Block Diagram

627

Truth Table

CE	CS at CE going low	RFSH	OE	WE	I/O pin	Mode
L	Н	×*1	L	Н	Low-Z	Read
L	Н	×	×	L	High-Z	Write
L	Н	×	Н	Н	High-Z	
L	L	×	×	×	High-Z	CS Standby
Н	×	L	×	×	High-Z	Refresh
Н	×	Н	×	×	High-Z	Standby

Notes: 1. × means H or L.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Terminal voltage with respect to V _{cc}	V _T	-1.0 to + 7.0	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Recommended DC Operating Conditions ($Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{cc}	4.5	5.0	5.5	٧	
	V _{ss}	0	0	0	٧	
Input voltage	V _{IH}	2.2	_	6.0	٧	
	V _{IL}	-0.5	_	0.8	٧	1

Note: 1. V_{iL} min = -3.0 V for pulse width \leq 10 ns.

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%)

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions	Note
Operating power supply current	I _{CC1}		60	85	mA	$I_{VO} = 0 \text{ mA}$ $t_{cyc} = \text{min.}$	
Standby power supply current	I _{SB1}	MARKET .	1	2	mA	CE = V _{IH} RFSH = V _{IH} , Vin ≥ 0 V	
Standby power supply current	I _{SB2}		100	200	μА	$\frac{\overline{CE} \ge V_{cc} -0.2 \text{ V}}{\overline{RFSH} \ge V_{cc} -0.2 \text{ V, Vin } \ge 0 \text{ V}}$	1
		_	70	100	μА	$\overline{CE} \ge V_{cc} -0.2 \text{ V}$ $\overline{RFSH} \ge V_{cc} -0.2 \text{ V, Vin } \ge 0 \text{ V}$	2
Operating power supply current in self refresh mode	CCS		1	2	mA	$\overline{CE} = V_{IH}$ $\overline{RFSH} = V_{IL}$, $Vin \ge 0 V$	1, 2
	I _{CC3}	_	100	200	μΑ	$\overline{CE} \ge V_{cc} -0.2 \text{ V}$ $\overline{RFSH} \le 0.2 \text{ V, Vin } \ge 0 \text{ V}$	1
		_	70	100	μА	$\frac{\overline{CE} \ge V_{cc} -0.2 \text{ V}}{\overline{RFSH} \le 0.2 \text{ V, Vin } \ge 0 \text{ V}}$	2
Input leakage current	i _{Li}	-10		10	μА	$V_{cc} = 5.5 \text{ V}$ Vin = V_{ss} to V_{cc}	
Output leakage current	I _{LO}	-10		10	μА	$\overline{OE} = V_{IH}$ $V_{VO} = V_{SS}$ to V_{CC}	
Output voltage	Vol	_	_	0.4	٧	I _{OL} = 2.1 mA	
	V _{OH}	2.4			٧	I _{OH} = -1 mA	

Notes: 1. This characteristics is guaranteed only for L-version.

2. This characteristics is guaranteed only for LL-version.

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin		_	8	pF	Vin = 0 V
Input/output capacitance	C _{vo}		_	10	pF	V _{1/0} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%)

Test Conditions

Input pulse levels: 2.4 V, 0.4 V
Input rise and fall times: 5 ns

Timing measurement levels: 2.2V, 0.8 V
 Reference level: V_{OH} = 2.0 V, V_{OL} = 0.8 V

• Output load: 1 TTL and 100 pF (Including scope and jig)

HM658128A

		-8		-10		-12		-	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130	garantippes	160	_	190	_	ns	
Random read-modify-write cycle time	t _{RWC}	190		220	_	260	_	ns	
Chip enable access time	t _{CEA}		80		100		120	ns	
Output enable access time	t _{oea}		30		30		40	ns	
Chip disable to output in high-Z	t _{cHZ}	0	30	0	30	0	35	ns	1, 2
Chip enable to output in low-Z	t _{CLZ}	20		20	_	20	_	ns	2
Output disable to output in high-Z	t _{oHZ}		25		25		30	ns	1, 2
Output enable to output in low-Z	toLZ	0		0		0	_	ns	2
Chip enable pulse width	t _{CE}	80 n	10 μ	100 n	10 μ	120 n	10 μ	S	
Chip enable precharge time	t _P	40		50		60		ns	
Address setup time	t _{AS}	0		0		0	_	ns	
Address hold time	t _{ah}	30		30		35	_	ns	
Read command setup time	t _{RCS}	0	_	0		0		ns	
Read command hold time	t _{RCH}	0		0	_	0	_	ns	
RFSH hold time	t _{RHC}	15		15	_	15	_	ns	
RFSH delay time for standby	t _{RCD}	-	5		5	-	5	ns	10
Chip select setup time	t _{css}	0	_	0	_	0		ns	
Chip select hold time	t _{CSH}	30		30	_	35		ns	
Write command pulse width	t _{wP}	30	_	30		35		ns	
Chip enable to end of write	t _{cw}	80		100		120	_	ns	
Data in to end of write	t _{DW}	25	_	25		30		ns	
Data in hold time for write	t _{DH}	0	_	0		0		ns	

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%) (cont)

HM	658	128A
----	-----	------

		-8		-10		-12		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Output active from end of write	tow	5		5	_	5		ns	2
Write to output in high-Z	t _{wHZ}		25		25	_	30	ns	1, 2
Transition time (rise and fall)	t _T	3	50	3	50	3	50	ns	6
Refresh command delay time	t _{RFD}	40		50	_	60	***	ns	
Refresh precharge time	t _{FP}	40		40		40	_	ns	
Refresh command pulse width for automatic refresh	t _{FAP}	80 n	8 μ	80 n	8 μ	80 n	8 μ	s	
Automatic refresh cycle time	t _{FC}	130	_	160	_	190		ns	
Refresh command pulse width for self refresh	t _{FAS}	8	_	8	_	8		μs	
Refresh reset time for self refresh	t _{RFS}	130		160		190		ns	
Refresh reset time for auto refresh	t _{RFA}	0	_	0	~~~	0		ns	
Refresh period (512 cycles)	t _{REF}		8		8	_	8	ms	

Notes: 1. t_{CHZ}, t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions.

- 2. t_{CHZ} , t_{CLZ} , t_{OHZ} t_{OLZ} , t_{WHZ} and t_{OW} are sampled under the condition of $t_T = 5$ ns and not 100% tested.
- 3. A write occures during the overlap of a low $\overline{\text{CE}}$ and a low $\overline{\text{WE}}$. Write ends at the earlier of $\overline{\text{WE}}$ going high $\overline{\text{CE}}$ going high.
- 4. If the CE low transition occurs simultaneously with or latter from the WE low transition, the output buffers remain in high impedance state.
- 5. In write cycle, \overline{OE} or \overline{WE} must disable output buffers prior to applying data to the device and at the end of write cycle data inputs must be floated prior to \overline{OE} or \overline{WE} turning on output buffers.
- 6. Transition time t_T is measured between t_H min and t_{tL} max.
- 7. After power-up, pause more than 100 µs and execute at least 8 initialization cycles.
- 512 cycles of burst refresh or the first cycle of distributed automatic refresh must be executed within 15 μs after self refresh, in order to meet the refresh specification of 8 ms and 512 cycles.
- 9. At the end of self refresh, refresh reset time (t_{RFS}) is required to reset the internal self refresh operation of the RAM. During t_{RFS}, OE and RFSH must be kept high. If auto refresh follows self refresh, low transition of RFSH at the beginning of auto refresh must not occur during t_{RFS} period.
- 10. If t_p is larger than 60 ns, t_{BCD} can be 8 μ s maximum.

Timing Waveform

Read Cycle

Write Cycle 1 (OE clock)

Write Cycle 2 (OE Low Fix)

Read-Modify-Write Cycle

Auto Refresh Cycle

Self Refresh Cycle

CS Standby Mode

