Bellman - Ford Algorithm

- It is a Dynamic Programming approach. (It will be finding out all possible solutions and gives we best answer (solution).
- Like Dijkston, it also find the shortest path from source verten to all other reathers of a graph.
 - Dijkston jails if there is a negative edge weight but bellman ford algorithm works for such graph.
 - Here we will not be deleting the vertex with least key value, but we will be performing iterations.

No. of iterations = No. of vertices - 1

- No deletion is required, therefore not considering minheap.
 - If $d[u] + \omega(u,v) < d[v]$ then $d[v] = d[u] + \omega(u,v)$

This is known as edge relaxation.

	BELLMAN-FORD (G, W, S)
	1. INITIALIZE - SINGLE - SOURCE (G,S)
	2. for i < 1 to V(6) -1
	3. do jor each edge (4,v) E E(G)
	4. do RELAX (4,Y, W)
	5. for each edge (4,v) & E[G] 6. do if d[v] > d[u] + w(4,v)
	2. then return FALSE
	& return TRUE
	INITIALIZE - SINGLE - SOURCE (G, S)
-	1. for each verten v E V[G]
	2. $ds d[v] \leftarrow co$
	3. T(V) < NIL
	4. d[s] <0
	RELAX (U,V,W)
	1. if d[v]> d[u]+ w(u,v)

then d[v] & d[u]+ w(4,v) 2. 3. T(V) Lu.

Ex:
V = 4
A -48 90 D :. No. of iteration = 4-1=5
50
> C 7
Edgellist: (A,B), (A,C), (B,D), (B,C), (C,D), (C,B)
05 to 2
>BXXX
0 A -48 90 D & 125 N B B
50 70
95 50
XA
1st literation: Agresse A:0 Suppose we take edge-
$B:2 \qquad \text{list as } (B,D),(C,D),$
$C: SD \qquad (B, C), (C, B), (A, D), (A, C).$ $D: 13$
D 113 (m
2nd iteration: 9:0 : solution ?
g: 2
C:50
D: 5
A) -48 D
god iteration: Aio
Same as
and ideration C:50 D:5
<i>ن.</i> ن

Time Complexity For each edge we are performing edge relaration V times. 1. T.C = O(EXV) g Elsn and Visn $1.7.C = O(n^2)$ For complete graphy (E=V2) : T-C= O(V2+,V) =0(N3) Limitations of Dellman Food Algorithm Sols edge list: (A,B) (B,C) (C,D) (C,D) :. No. of Pterations = 4-1=3 1st Proation: A:D 1:5 C: 60 D: 120

2nd Prevation: A: D 3rd ?teration: A: 0 B: 0 B: -5 C: 55 C : 50 D: 115 D: 110 Since we have completed all iterations, let do 4th iteration just to check our answer (to see correctness of the recult). 9th Reportion! 9:0

B:-10 | values getting updated

C: 45 NOTE: if in 14th liferation, values changes means that in [v]th iteration, if any value change then we can say that it will change forever. 80+(-55) =-5 <0 1. those is no possible Edulion exist.

