ECSE 343 Numerical Methods in Engineering

Roni Khazaka

Dept. of Electrical and Computer Engineering

McGill University

Number Representation

ECSE 343 Numerical Methods in Engineering

Number Representation

Abstract Quantity

Stored Quantity

$$7x = 4$$

$$x = 4/7$$

$$ilde{x} \left\{ egin{array}{l} 0.6 \\ 0.57 \\ 0.57143 \\ 0.571429 \\ 0.57142857 \end{array}
ight.$$

Unsigned Integers

$$\boxed{d_7 \mid d_6 \mid d_5 \mid d_4 \mid d_3 \mid d_2 \mid d_1 \mid d_0} \quad \rightarrow \quad \sum_{i=0}^{7} d_i 2^i \qquad \text{Range: } 0-255$$

Unsigned Integers

uint8() has a range from 0 to 255

Signed Integers: Sign Bit

Sign bit: 4-bit example

Unsigned Value (d)	Stored Bits	Signed Value	Unsigned Value (d)	Stored Bits	Signed Value
0	0000	+0	8	1000	-0
1	0001	+1	9	1001	-1
2	0010	+2	10	1 010	-2
3	0011	+3	11	1 011	-3
4	0100	+4	12	1 100	-4
5	0101	+5	13	1101	- 5
6	0110	+6	14	1 110	-6
7	0111	+7	15	1 111	

One's complement

Unsigned Value (d)	Stored Bits	Signed Value
0	0000	+0
1	0001	+1
2	0010	+2
3	0011	+3
4	0100	+4
5	0101	+5
6	0110	+6
7	0111	+7

	Unsigned Value (d)	Stored Bits	Signed Value
$7 + 8 = 2^4 - 1$	8	1000	- 7
$6 + 9 = 2^4 - 1$	9	1001	- 6
$5 + 10 = 2^4 - 1$	10	1010	- 5
$4 + 11 = 2^4 - 1$	11	1011	-4
$3 + 12 = 2^4 - 1$	12	1100	- 3
$2 + 13 = 2^4 - 1$	13	1101	-2
$1 + 14 = 2^4 - 1$	14	1110	-1
$0 + 15 = 2^4 - 1$	15	1111	-0

One's complement

Unsigned Value (d)	Stored Bits	Signed Value		Unsigned Value (d)	Stored Bits	Signed Value
0	0000	+0	$7 + 8 = 2^4 - 1$	8	1000	- 7
1	0001	+1	$6 + 9 = 2^4 - 1$	9	1001	-6
2	0010	+2	$5 + 10 = 2^4 - 1$	10	1010	- 5
3	0011	+3	$4 + 11 = 2^4 - 1$	11	1011	-4
4	0100	+4	$3 + 12 = 2^4 - 1$	12	1100	-3
5	0101	+5	$2 + 13 = 2^4 - 1$	13	1101	-2
6	0110	+6	$1 + 14 = 2^4 - 1$	14	1110	-1
7	0111	+7	$0 + 15 = 2^4 - 1$	15	1111	-0

<u> </u>
0011 → 3 ₁₀
+ 1010 → -5 ₁₀
1101 → - 2 ₁₀
0111 → 7 ₁₀
+ 1010 → -5 ₁₀
10001 → +1 ₁₀
1101 → - 2 ₁₀
+ 1100 → −3 ₁₀
11001 → -6 ₁₀

Two's complement

Unsigned Value (d)	Stored Bits	Signed Value
0	0000	0
1	0001	+1
2	0010	+2
3	0011	+3
4	0100	+4
5	0101	+5
6	0110	+6
7	0111	+7

	Unsigned Value (d)	Stored Bits	Signed Value
$8 + 8 = 2^4$	8	1000	-8
$7 + 9 = 2^4$	9	1001	- 7
$6 + 10 = 2^4$	10	1010	- 6
$5 + 11 = 2^4$	11	1011	- 5
$4 + 12 = 2^4$	12	1100	-4
$3 + 13 = 2^4$	13	1101	-3
$2 + 14 = 2^4$	14	1110	- 2
$1 + 15 = 2^4$	15	1111	-1

Two's complement

Unsigned Value (d)	Stored Bits	Signed Value		Unsigned Value (d)	Stored Bits	Signed Value
0	0000	0	$8 - 2^4 = -8$	8	1000	-8
1	0001	+1	$9 - 2^4 = -7$	9	1001	- 7
2	0010	+2	$10 - 2^4 = -6$	10	1010	-6
3	0011	+3	$11 - 2^4 = -5$	11	1011	- 5
4	0100	+4	$12 - 2^4 = -4$	12	1100	-4
5	0101	+5	$13 - 2^4 = -3$	13	1101	-3
6	0110	+6	$14 - 2^4 = -2$	14	1110	-2
7	0111	+7	$15 - 2^4 = -1$	15	1111	-1

$0011 \rightarrow 3_{10}$
+ 1010 → -6 ₁₀
1101 → -6 ₁₀
0111 → 7 ₁₀
+ 1010 → -6 ₁₀
10001 → +1 ₁₀
1101 → -3 ₁₀
+ 1100 → -4 ₁₀
11001 → -7 ₁₀

Two's Complement

↓ Flip all bits and add 1

$$\rightarrow 165 - 2^8 = -91_{two's complement}$$

Signed Integers: Two's Complement

Integers

Туре	Number of Bits	Range
uint8()	8	0 → 255
uint16()	16	0 → 65,535
uint32()	32	0 → 4,294,967,295
uint64()	64	0 → 18,446,744,073,709,551,615
int8()	8	-128 → 127
int16()	16	-32768 → 32767
int32()	32	-2,147,483,648 → 2,147,483,647
int64()	64	-9,223,372,036,854,775,808 → 9,223,372,036,854,775,807

Set of Signed/Unsigned Integers

Distance between two adjacent stored values: 1

Number Representation

Abstract Quantity

$$x \in \mathbb{R}$$
 $0 \le x \le 4,294,967,295$

$$\tilde{x} = uint32(x)$$

$$\tilde{x} \in uint32$$

Error

Absolute Error:
$$\epsilon = |x - \tilde{x}|$$

Relative Error:
$$\eta = \left| \frac{x - \tilde{x}}{x} \right|$$

Rounding scheme → Round to nearest integer.

$$\epsilon = |x - \tilde{x}| \le 0.5$$

What about relative error?

Fixed-Point Arithmetics

Distance between two adjacent stored values : 10^{-3}

Distance between two adjacent stored values : 2^{-4}

→ Difficulty with dynamic range

Fixed-Point Arithmetics

- ✓ Can use similar (same) hardware as integer arithmetic.
- ✓ Fast computation.
- ✓ Numbers are equally spaced.

Numbers are equally spaced.

Loss of precision.

Limited Dynamic Range.

Floating Point Arithmetics

Example: Planck's Law

$$B_{\nu}(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{\kappa_B T}} - 1}$$

Planck's Constant: $h = 6.626070 \times 10^{-34} J. s$

Speed of light: c = 299,792,458m/s

Boltzmann's constant: $\kappa_B = 1.380649 \times 10^{-23} J/K$

For an IR wavelength of 1000nm: $v \cong 300THz = 3 \times 10^{14}Hz$

Scientific Notation

Normalized value

1123 →

 1.123×10^3

11.23

 1.123×10^{1}

0.1123

 1.123×10^{-1}

 1.123×10^{30}

 1.123×10^{-30}

Floating Point Example: Binary

Floating Point: Binary

Float: Single Precision 32-bit

 $e = b_{30}b_{29}b_{28}b_{27}b_{26}b_{25}b_{24}b_{23} - 127 = E - 127$

Except for special cases (00000000 and 111111111)

→
$$-126 \le e \le 127$$

Float: Single Precision 32-bit

Special Cases, IEEE 754

	M	
b_{31} b_{30} b_{29} b_{28} b_{27} b_{26} b_{25} b_{24} b_{23} b_{22} b_{21} b_{20} b_{19} b_{18} b_{17} b_{16} b_{15}	b_{14} b_{13} b_{12} b_{11} b_{10} b_{9} b_{8} b_{7} b_{6} b_{5}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
E		

	E = 0	0 < E < 255	E=255
M = 0	<u>±</u> 0	$(-1)^{b_{31}}1.0\times 2^{E-127}$	±∞
$M \neq 0$	Denormalized	$(-1)^{b_{31}}1.M\times 2^{E-127}$	NaN


```
\begin{array}{c} \textbf{23-bit mantissa} \\ +1.100101011100101010010 \times \textbf{2}^{0} \\ +1.1001010111001010101011 \times \textbf{2}^{0} \end{array} Next higher number
```

Difference is $\epsilon_m = 2^{-23} \times 2^0 \cong 1.1921 \times 10^{-7}$

Valid for all x where 1 < x < 2

Difference is $\epsilon_m = 2^{-23} \times 2^1 \cong 2.3842 \times 10^{-7}$

Valid for all x where 2 < x < 4


```
\begin{array}{c} \textbf{23-bit mantissa} \\ +1.100101011100101010010 \times \textbf{2}^2 \\ +1.1001010111001010101011 \times \textbf{2}^2 \end{array} Next higher number
```

Difference is $\epsilon_m = 2^{-23} \times 2^2 \cong 4.7684 \times 10^{-7}$

Valid for all x where 4 < x < 8


```
\begin{array}{c} \textbf{23-bit mantissa} \\ +1.10010101110010101010010 \times 2^{127} \\ +1.1001010111001010101011 \times 2^{127} \end{array} Next higher number
```

Difference is $|\Delta| = 2^{-23} \times 2^{127} \cong 2.0282 \times 10^{31}$ Valid for all x where $2^{127} < x < 2^{128}$

Smallest Normalized Value

23-bit mantissa

Difference is
$$\epsilon_m = 2^{-23} \times 2^{-126} \cong 1.1013 \times 10^{-45}$$

What about next smaller number?

Next number is zero if we do not de-normalize.

$$\rightarrow |\Delta| = 2^{-126} \cong 1.1755 \times 10^{-38}$$

Smallest Normalized Value

()

$$2^{-23} \times 2^{-126} \cong 1.4013 \times 10^{-45}$$

 $+1.00000000000000000001 \times 2^{-126}$

Denormalize E=0

$$\begin{array}{c}
2^{-23} \times 2^{-126} \cong 1.4013 \times 10^{-45}
\end{array}$$

 $+1.00000000000000000001 \times 2^{-126}$

Denormalized values E=0

 $+0.0000000000000000001 \times 2^{-126}$

Half-Precision 16-bit

Except for special cases (00000 and 11111) $\rightarrow -14 \le e \le 15$

→
$$-14 \le e \le 15$$

$$(-1)^{b_{15}}1.M\times 2^{E-15}$$

Quarter Precision 8-bit (non-standard)

Except for special cases (000 and 111) $\rightarrow -2 \le e \le 3$

→
$$-2 \le e \le 3$$

$$(-1)^{b_7}1.M\times 2^{E-3}$$

Spacing (Powers of 2)

$$M = 0000$$
 $(-1)^0 1.0000 \times 2^e$ $-2 \le e \le 3$

$$E = 110 \rightarrow e = 6 - 3 = 3 \rightarrow 2^3 = 8$$

$$E = 101 \rightarrow e = 5 - 3 = 2 \rightarrow 2^2 = 4$$

$$F = 0.10 \implies a = 2 = 3 = -1 = -1$$

$$E = 010 \rightarrow e = 2 - 3 = -1 \rightarrow 2^{-1} = 0.5$$

$$E = 001 \rightarrow e = 1 - 3 = -2 \rightarrow 2^{-2} = 0.25$$

Spacing (E = 110)

$$(-1)^0 1.M \times 2^3 = 1b_3b_2b_1.b_0$$

$$0000 \le M \le 1111$$

$$1000.0 \le \tilde{x} \le 1111.1$$

$$|\Delta| = 0.1_2 = 0.5_{10}$$

$$+1.0000 \times 2^3 = 1000.0_2 = 8_{10}$$

$$+1.0001\times2^3 = 1000.1_2 = 8.5_{10}$$

$$+1.0010 \times 2^3 = 1001.0_2 = 9_{10}$$

$$+1.0011 \times 2^3 = 1001.1_2 = 9.5_{10}$$

$$+1.0100 \times 2^3 = 1010.0_2 = 10_{10}$$

$$+1.11111 \times 2^3 = 1111.1_2 = 15.5_{10}$$

Spacing (E = 101)

$$(-1)^0 1.M \times 2^2 = 1b_3b_2.b_1b_0$$

 $0000 \le M \le 1111$

$$100.00 \le \tilde{x} \le 111.11$$

$$|\Delta| = 0.01_2 = 0.25_{10}$$

$$+1.00000 \times 2^2 = 100.00_2 = 4_{10}$$

$$+1.0001 \times 2^2 = 100.01_2 = 4.25_{10}$$

$$+1.0010 \times 2^2 = 100.10_2 = 4.5_{10}$$

$$+1.0011 \times 2^2 = 100.11_2 = 4.75_{10}$$

$$+1.0100 \times 2^2 = 101.00_2 = 5_{10}$$

$$+1.11111 \times 2^2 = 111.11_2 = 7.75_{10}$$

Spacing (E = 100)

$$(-1)^0 1. M \times 2^1 = 1b_3. b_2 b_1 b_0$$
 00

$$0000 \leq M \leq 1111$$

$$10.000 \le \tilde{x} \le 11.111$$
 $|\Delta| = 0.001_2 = 0.125_{10}$

$$+1.0000 \times 2^1 = 10.000_2 = 2_{10}$$

$$+1.0001\times2^{1} = 10.001_{2} = 2.125_{10}$$

$$+1.0010 \times 2^1 = 10.010_2 = 2.25_{10}$$

$$+1.0011 \times 2^1 = 10.011_2 = 2.375_{10}$$

$$+1.0100 \times 2^{1} = 10.100_{2} = 2.5_{10}$$

$$+1.11111 \times 2^2 = 11.111_2 = 3.875_{10}$$

Spacing (E = 011)

$$(-1)^0 1. M \times 2^1 = 1. b_3 b_2 b_1 b_0$$

$$0000 \leq M \leq 1111$$

$$1.0000 \le \tilde{x} \le 1.1111$$
 $|\Delta| = 0.0001_2 = 2^{-4} = 0.0625_{10}$

$$+1.00000 \times 2^0 = 1.0000_2 = 1_{10}$$

$$+1.0100 \times 2^0 = 1.0100_2 = 1.25_{10}$$

$$+1.0001 \times 2^0 = 1.0001_2 = 1.0625_{10}$$

$$+1.0001 \times 2^{0} = 1.0001_{2} = 1.0625_{10}$$

 $+1.0010 \times 2^{0} = 1.0010_{2} = 1.125_{10}$

$$+1.0011 \times 2^0 = 1.0011_2 = 1.1875_{10}$$

$$+1.0011 \times 2^{0} = 1.0011_{2} = 1.1875_{10} +1.11111 \times 2^{0} = 1.1111_{2} = 1.9375_{10}$$

Spacing (E = 010)

$$(-1)^0 1.M \times 2^{-1} = 0.1b_3b_2b_1b_0$$

$$0000 \le M \le 1111$$

$$0.10000 \le \tilde{x} \le 0.11111$$

$$|\Delta| = 0.00001_2 = 2^{-5} = 0.03125_{10}$$

$$1.0000 \times 2^{-1} = 0.10000_2 = 0.5_{10}$$

$$1.0100 \times 2^{-1} = 0.10100_2 = 0.625_{10}$$

$$1.0001 \times 2^{-1} = 0.10001_2 = 0.53125_{10}$$

$$\begin{vmatrix} 1.0100 \times 2 & -0.10100_2 & -0.023 \\ \end{vmatrix}$$

$$1.0010 \times 2^{-1} = 0.10010_2 = 0.5625_{10}$$

$$1.0011 \times 2^{-1} = 0.10011_2 = 0.59375_{10}$$
 $1.1111 \times 2^{-1} = 0.11111_2 = 0.96875_{10}$

Spacing (E = 001)

$$(-1)^0 1.M \times 2^{-2} = 0.01 b_3 b_2 b_1 b_0$$
 $0000 \le M \le 1111$

$$0.010000 \le \tilde{x} \le 0.011111$$

$$|\Delta| = 2^{-4}2^{-2} = 2^{-6} = 0.015625_{10}$$

$$1.0000 \times 2^{-2} = 0.010000_2 = 0.25_{10}$$

$$0.10100 \times 2^{-2} = 0.25 + 4 \times 2^{-6}$$

$$1.0001 \times 2^{-2} = 0.010001_2 = 0.25 + 2^{-6}$$

$$1.0010 \times 2^{-2} = 0.010010_2 = 0.25 + 2 \times 2^{-6}$$

$$1.0011 \times 2^{-2} = 0.010011_2 = 0.25 + 3 \times 2^{-6}$$

$$0.111111 \times 2^{-2} = 0.25 + 15 \times 2^{-6}$$

Spacing (E = 001)

$$(-1)^0 1. M \times 2^{-2}$$

$$0000 \le M \le 1111$$

$$0.0100000 \le \tilde{x} \le 0.0111111$$

$$|\Delta| = 2^{-4}2^{-2} = 2^{-6} = 0.015625_{10}$$

$$1.0000 \times 2^{-2} = 0.010000_2 = 0.25_{10}$$

$$0.10100 \times 2^{-2} = 0.25 + 4 \times 2^{-6}$$

$$1.0001 \times 2^{-2} = 0.010001_2 = 0.25 + 2^{-6}$$

$$1.0010 \times 2^{-2} = 0.010010_2 = 0.25 + 2 \times 2^{-6}$$

$$0.11111 \times 2^{-2} = 0.25 + 15 \times 2^{-6}$$

$$1.0011 \times 2^{-2} = 0.010011_2 = 0.25 + 3 \times 2^{-6}$$

Normalized Positive Values

- Smallest normalized value: 0.25
- Largest normalized value: 15.5
- Spacing is the same between powers of 2
- There are 16 equally spaced values at each value of E
- There are $6 \times 16 = 96$ normalized positive floating-point values
- There is a 'large' gap between zero and the smallest normalized value

Subnormal Positive Values (E = 000)

$$(-1)^0 0.M \times 2^{-2} = 0.00 b_3 b_2 b_1 b_0$$
 $0001 \le M \le 1111$

$$0.000001 \le \tilde{x} \le 0.001111$$

$$|\Delta| = 2^{-4}2^{-2} = 2^{-6} = 0.015625_{10}$$

Special Cases, "8-bit Floating Point"

	E = 0	0 < E < 7	E = 7
M = 0	<u>±</u> 0	$(-1)^{b_7}1.0\times 2^{E-3}$	±∞
$M \neq 0$	Subnormal	$(-1)^{b_7} 1. M \times 2^{E-3}$	NaN

Set of Floating-Point Values F

Abstract Quantity

Stored Quantity

Туре	Bits	Exponent	Mantissa	Exponent Bias	e_{min}	e_{max}
half()	16	5 bits	10 bits	15	-14	15
single()	32	8 bits	23 bits	127	-126	127
double()	64	11 bits	52 bits	1,023	-1,022	1,023

Double() Largest Value

M =
$$\underbrace{111 \cdots 11}_{52 \text{ bits}}$$
 $E = \underbrace{111 \cdots 10}_{11 \cdots 10}$ $e = 2046 - 1023 = 1023$

$$+1.111 \cdots 11 \times 2^{1023} = +1111 \cdots 11 \times 2^{971} =$$

$$53 \text{ bits}$$

$$= 1.797693134862316 \times 10^{308}$$

Double() Smallest Normal Value

M =
$$000 \cdots 00$$
 $E = 000 \cdots 01$ $e = 1 - 1023 = -1022$

$$+1.000 \cdots 00 \times 2^{-1022} = 2.225073858507201 \times 10^{-308}$$

Double() Smallest Subnormal Value

$$M = 000 \cdots 01$$
 $E = 000 \cdots 00$ $e = -1022$

$$+0.000 \cdots 01 \times 2^{-1022} = 2^{-1074}$$

= $4.940656458412465 \times 10^{-324}$