Dijkstra!

Time Limit: 1 Second Memory Limit: 2048 MB

Given a directed graph G with n vertices and m edges $(1 \le n, m \le 10^5)$. For each vertex $v = 1 \dots n$, calculate the distance from vertex 1 to v. If v is not reachable from 1, output -1.

Input

The first line of input contains two integers n and m $(1 \le n, m \le 10^5)$ - the number of vertices and edges.

The next m lines describe the graph. The i-th line contains three integers u_i , v_i , and w_i ($1 \le u_i, v_i \le n$, $1 \le w_i \le 10^5$), denoting there is an edge from u_i to v_i in G with weight w_i . It is guaranteed that the graph doesn't contain self-loops or multiple edges.

Output

Output one line with n integers denoting the distance from vertex 1 to each vertex in G, or -1 if the vertex is unreachable from 1.

Sample Outputs

0 2 5 -1 9
0 2 5 -1 9