$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

$f_{1}^{#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	\$\frac{t_2}{3}	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
•	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{\#_1} + \alpha \beta$	$a_{1}^{*1} + a_{1}^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$\frac{1}{1}$	$\frac{1}{1}$ $\pm \alpha$

Source constraints			
SO(3) irreps	#		
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} - i k \sigma_{1}^{\#1\alpha} == 0$	3		
$\tau_{1}^{\#1\alpha} == 0$	3		
$\sigma_{1}^{\#1\alpha} + 2 \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#1\alpha\beta} == 0$	3		
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3		
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5		
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5		
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5		
Total #:	32		

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

$\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ σ_{2}	0 0	0 0	0 0 ;
	$\sigma_2^{\#1} + ^{lphaeta}$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

	Massive particle		
? /	Pole residue:	$-\frac{1}{r_2}$ >	
$J^P = 0^-$	Polarisations:	1	
k^{μ}	Square mass:	$-\frac{t_2}{r_2}$ >	
?	Spin:	0	
	Parity:	Odd	

	Massive particle			
?	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

(No massless particles)