

10 • 2014

MATEMATUKA

УДК 514.774.2

Член-корреспондент НАН Украины А. А. Борисенко, С. В. Мирошниченко

О полной кривизне кривых в несимметричных пространствах Минковского

Получены оценки на полную кривизну кривых несимметричных пространств Минковского, доказаны обобщения теорем Фенхеля и Фари-Милнора. Также приведена оценка длины замкнутых кривых, содержащихся в шаре пространства Минковского заданного paduyca.

Пространством Минковского M^{n+1} называется пара (V^{n+1}, F) , где V^{n+1} — это (n+1)-мерное векторное пространство с декартовыми координатами y^1, \dots, y^{n+1} . Норма Минковского $F \colon V^{n+1} \to [0,\infty)$ обладает свойствами:

- 1) $F \in C^{\infty}(V^{n+1} \setminus \{0\});$

Индикатрисой пространства Минковского называется компактная выпуклая гиперповерхность F_0 , определяемая как $F_0 = \{y \colon F(y) = 1\}$. Шаром пространства Минковского радиуса R называется множество точек, для которых $F(y) \leqslant R$. Пусть для нормальной кривизны k индикатрисы F_0 в наложенном евклидовом пространстве E^{n+1} выполнены неравенства $0 < k_1 \leqslant k \leqslant k_2$.

Параметризовав F_0 как r(e)e, где e принадлежит единичной сфере S^n , коэффициентом несимметричности λ будем называть $\lambda = \max_{e \in S^n} \frac{r(e)}{r(-e)}$.

Для кривой L в M^{n+1} , параметризованной длиной дуги в пространстве Минковского, кривизна определяется как $k_M = F\left(\frac{d^2X}{ds^2}\right)$. Тогда полной кривизной кривой есть $\omega_M(L) =$ $=\int_{-\infty}^{\infty}k_{M}ds.$

Имеют место следующие оценки на полную кривизну.

[©] А. А. Борисенко, С. В. Мирошниченко, 2014

Теорема 1. Пусть M^{n+1} — пространство Минковского с коэффициентом несимметричности λ . Пусть евклидова нормальная кривизна k индикатрисы данного пространства удовлетворяет неравенствам

$$0 < k_1 \leqslant k \leqslant k_2$$
.

Тогда для полной кривизны в пространстве Минковского $\omega_M(L)$ и евклидовой полной кривизны $\omega_E(L)$ простой замкнутой кривой L выполнены неравенства

$$\frac{1}{\lambda} \left(\frac{k_1}{k_2} \right) \omega_E(L) \leqslant \omega_M(L) \leqslant \frac{\lambda(\lambda+1)}{2} \left(\frac{k_2}{k_1} \right)^2 \omega_E(L).$$

Для симметричного пространства Минковского неравенства доказаны в [1].

Для кривых евклидового пространства известна следующая теорема.

Теорема Фенхеля [2]. Для полной кривизны ω_E простой замкнутой кривой L в \mathbb{E}^n имеет место неравенство

$$\omega_E(L) \geqslant 2\pi$$
.

Следствие 1. Для полной кривизны $\omega_M(L)$ простой замкнутой кривой L в пространстве Минковского верно неравенство

$$\omega_M(L) \geqslant \frac{2\pi}{\lambda} \frac{k_1}{k_2}.$$

Также для кривых евклидового пространства известна

Теорема Фари–**Милнора** [3, 4]. Если для полной кривизны ω_E простой замкнутой кривой L в \mathbb{E}^3 выполнено неравенство

$$\omega_E(L) \leqslant 4\pi$$
,

то кривая L незаузлена (L является границей вложенного диска).

Следствие 2. Если для полной кривизны простой замкнутой кривой L в пространстве Минковского M^3 выполнено неравенство

$$\omega_M(L) \leqslant \frac{4\pi}{\lambda} \left(\frac{k_1}{k_2}\right),$$

то кривая является незаузленной.

Для кривых евклидового пространства известна

Теорема 2. Для евклидовой длины $\ell_E(L)$ простой замкнутой кривой L, содержащейся в шаре радиуса R пространства \mathbb{E}^{n+1} , u ее полной кривизны выполнено неравенство

$$\ell_E(L) \leqslant R\omega_E(L)$$
.

Аналогичный результат имеет место в пространстве Минковского.

Теорема 3. Если простая замкнутая кривая L в пространстве Минковского содержится в шаре Минковского радиуса R, то для ее длины Минковского выполнено неравенство

$$\ell_M(L) \leqslant R \frac{\lambda^2 (1+\lambda)}{2} \left(\frac{k_2}{k_1}\right)^4 \omega_M(L).$$

Для доказательства основных результатов потребуются:

Лемма 1 [5–7]. Пусть M^n является компактной выпуклой гиперповерхностью в \mathbb{E}^{n+1} . Пусть O — это точка внутри области, ограниченной M^n , и h является расстоянием от O до M^n . Пусть нормальные кривизны k гиперповерхности M^n удовлетворяют неравенствам $0 < k_1 \le k \le k_2$. Тогда для угла α между радиусом-вектором M^n и внешней нормалью выполнено неравенство

$$\cos \alpha \geqslant hk_1$$
.

Лемма 2. Пусть для евклидовой нормальной кривизны k индикатрисы F_0 пространства Минковского M^{n+1} с коэффициентом несимметричности λ выполнено $0 < k_1 \le k \le k_2$. Тогда для евклидовой длины ρ единичного вектора пространства Минковского верны оценки

$$\frac{2}{(1+\lambda)k_2} \leqslant \rho \leqslant \frac{2\lambda}{(\lambda+1)k_1}.$$

1. Доказательство вспомогательных утверждений. Для доказательства леммы 2 нам понадобится

Лемма 3 [8, § 24]. Пусть для нормальной кривизны k_n выпуклой компактной гиперповерхности N^m в \mathbb{E}^{m+1} выполнены неравенства

$$0 < k_1 \leqslant k_n \leqslant k_2$$
.

Тогда наибольшая сфера, которой N^m может касаться внутренним образом и полностью содержаться в шаре, ограниченном данной сферой, имеет радиус $\geqslant 1/k_1$; наименьшая сфера, которой N^m может касаться внешним образом и полностью содержать в себе шар, ограниченный данной сферой, имеет радиус $\leqslant 1/k_2$.

Используем данный результат для оценки евклидовой длины единичных векторов в норме Минковского.

Доказательство леммы 2. Обозначим через O центр индикатрисы F_0 . Пусть в точках $p,q \in F_0$ достигается минимум и максимум соответственно евклидовых длин единичных векторов нормы Минковского, тогда Op и Oq ортогональны в евклидовой норме T_pF_0 и T_qF_0 соответственно. Обозначим $p',q' \in F_0$ диаметрально противоположные точки относительно O точкам p,q соответственно.

По лемме 3 сфера радиуса $r=1/k_2$ касается F_0 внутренним образом и полностью содержится в области, ограниченной поверхностью, а сфера радиуса $R=1/k_1$ индикатрисы F_0 касается внутренним образом и полностью содержится в шаре, ограниченном данной сферой. Из данных условий следует

$$\begin{cases} \frac{|Op'|}{|Op|} \leq \lambda, \\ |Op| + |Op'| \geq \frac{2}{k_2}, \end{cases} \begin{cases} \frac{|Oq'|}{|Oq|} \geq \frac{1}{\lambda}, \\ |Oq| + |Oq'| \leq \frac{2}{k_1}. \end{cases}$$

Тогда из систем получаем

$$\frac{2}{(1+\lambda)k_2} \leqslant |Op| \leqslant \rho \leqslant |Oq| \leqslant \frac{2}{\left(1+\frac{1}{\lambda}\right)k_1}.$$

2. Доказательство основных результатов. Доказательство теоремы **1.** Пусть s и σ — натуральные параметры длины кривой I соответственно в пространстве Минковского и евклидовом пространстве [2]. Тогда $X(s) = X(\sigma(s))$ и по определению $ds = F(X_{\sigma})d\sigma$, где $X_{\sigma} = dX/d\sigma$, т.е. $d\sigma/ds = 1/F(X_{\sigma})$. Рассмотрим параметризацию индикатрисы F_0 в виде r(e)e, где $e \in S^n$, и параметризуем сферу координатными углами $\varphi_1, \ldots, \varphi_n$. Так как параметризация кривой натуральная, то кривая $X_s = dX/ds$ является кривой на $F_0, X_s = r(X_{\sigma})X_{\sigma}$ и X_{σ} — кривая на единичной евклидовой сфере с параметризацией $X_{\sigma}(\sigma(s)) = (\varphi_1(s), \ldots, \varphi_n(s))$.

Непосредственным дифференцированием с использованием положительной однородности нормы получаем

$$\frac{d\sigma}{ds} = r(X_{\sigma}) = r, \qquad \frac{d^2\sigma}{ds^2} = \frac{d}{ds}(r(X_{\sigma})) = \frac{\partial r}{\partial \varphi_i} \frac{\partial \varphi_i}{\partial \sigma} \frac{d\sigma}{ds} = r \langle \operatorname{grad} r, X_{\sigma\sigma} \rangle_{S^n}. \tag{1}$$

Предполагая, что $k_E \neq 0$ для L, рассмотрим теперь два ортонормированных векторных поля τ и ν вдоль кривой: $\tau = X_{\sigma}$ и ν такое, что $X_{\sigma\sigma} = k_E \nu$. Дифференцируя радиус-вектор и подставляя полученные выражения из (1), получаем

$$\frac{d^2X}{ds^2} = \frac{d^2X}{d\sigma^2} \left(\frac{d\sigma}{ds}\right)^2 + \frac{dX}{d\sigma} \frac{d^2\sigma}{ds^2} = rk_E(r\nu + |\operatorname{grad} r|_{S^n} \cos \beta \tau),\tag{2}$$

где β — угол между ν и grad r.

Учитывая условие ортонормированности полей ν и $\tau,\,k_M$ можно переписать в виде

$$k_M = F\left(\frac{d^2X}{ds^2}\right) = rk_E\sqrt{r^2 + |\operatorname{grad} r|_{S^n}^2 \cos^2\beta}F(e), \qquad e \in S^n.$$
(3)

Используя условие однородности нормы Минковского и оценки из леммы 2, получим

$$\frac{(1+\lambda)k_1}{2\lambda} \leqslant F(e) = \frac{1}{r(e)} \leqslant \frac{(1+\lambda)k_2}{2}.$$
(4)

Рассмотрим полярную систему координат в \mathbb{E}^{n+1} . Пусть $u=u(\varphi_1,\ldots,\varphi_n)\in S^n$ и обозначим $u^i=\partial u/\partial\varphi_i$. Существует такая параметризация S^n , что в окрестности произвольной точки u,u^1,\ldots,u^n образуют ортонормированный базис \mathbb{E}^{n+1} . В таком случае для внешней евклидовой нормали n индикатрисы F_0 существуют $\{a_i\}_{i=1}^n$ и b такие, что $n=a_iu^i+bu$. Для точки $p\in F_0$, соответствующей u, получаем $y=\frac{\partial}{\partial\varphi_i}(r(u)u)=r_j(u)u+r(u)u^j\in T_pF_0$.

Из условия $\langle n,y\rangle=0$ непосредственной подстановкой получаем, что $a_j=-br_j/r$. Тогда $n=b\bigg(u-\frac{r_i}{r}u^i\bigg)$. Так как $b\neq 0$, то будем искать угол α между векторами u и $u-\frac{r_i}{r}u^i$. Из условия ортонормированности базиса следует, что

$$\left| u - \frac{r_i}{r} u^i \right| = \sqrt{|u|^2 + \left| \frac{r_i}{r} u^i \right|^2} = \sqrt{1 + \frac{|\operatorname{grad} r|_{S^n}^2}{r^2}}, \qquad \langle u, u - \frac{r_i}{r} u^i \rangle = 1, \qquad |u| = 1.$$

Тогда для α верно

$$\cos \alpha = \frac{r}{\sqrt{r^2 + |\text{grad } r|_{S^n}^2}}.$$

Из лемм 1 и 2 получаем

$$\frac{2k_1}{(1+\lambda)k_2} \leqslant \frac{r}{\sqrt{r^2 + |\operatorname{grad} r|_{S^n}^2}} \leqslant 1. \tag{5}$$

Используя оценки (4), (5) для (3), получаем

$$k_E r \frac{1}{\lambda} \left(\frac{k_1}{k_2} \right) \leqslant k_M \leqslant k_E r \frac{\lambda(1+\lambda)}{2} \left(\frac{k_2}{k_1} \right)^2.$$

Теперь, используя выражение для r из (1) и интегририруя по s неравенства, находим оценки на полную кривизну.

Работа С. В. Мирошниченко выполнена при поддержке фонда имени Н. И. Ахиезера.

- 1. Borisenko A. A., Tenenblat K. On the total curvature of curves in the Minkowski space // Isr. J. Math. 2012. - No 191. - P. 755-769.
- 2. Fenchel W. Über Krümmung und Winding geschlossener Raumkurven // Math. Ann. 1929. No 101. P. 238-252.
- 3. Fàry I. Sur la courbure totale d'une courbe gauche faisant un noeud // Bull. Soc. Math. France 1949. No 77. - P. 128-138.
- 4. Milnor J. W. On the total curvature of knots // Ann. Math. 1950. No 52. P. 248-257.
- 5. Borisenko A. A. Convex sets in Hadamard manifolds // Different. Geom. and its Appl. 2002. No 17. -
- 6. Борисенко А. А., Драч К. Д. О теореме сравнения углов для замкнутых кривых // Докл. НАН Украины. – 2011. – № 6. – С. 7–11.
- 7. Борисенко А.А., Драч К.Д. О сферичности гиперповерхностей с ограниченной снизу нормальной кривизной // Мат. сб. – 2013. – **204**, № 4. – С. 20–41.
- 8. *Бляшке В.* Круг и шар. Москва: Наука, 1967. 232 с.

Сумской государственный университет Харьковский национальный университет им. В. Н. Каразина

Поступило в редакцию 11.04.2014

Член-кореспондент НАН України О. А. Борисенко, С. В. Мірошниченко

Про повну кривину кривих у несиметричних просторах Мінковського

Одержано оцінки на повну кривину замкнених кривих несиметричних просторів Мінковського, доведено узагальнення теорем Фенхеля і Фарі-Мілнора. Дано також оцінку на довжину замкнених кривих, які розташовані в кулі фіксованого радіуса простору Мінковського.

Corresponding Member of the NAS of Ukraine A. A. Borisenko, S. V. Miroshnichenko

On the total curvature of curves in nonsymmetric Minkowski spaces

The estimations of the total curvature of closed curves in nonsymmetric Minkowski spaces are obtained. Generalizations of the Fenchel and Fary-Milnor theorems are proved. The evaluation of the lengths of closed curves in a ball with fixed radius in the Minkowski space is presented.