Quiz #1 Grupo #3

Pregunta 1:

Simule la ejecución del algoritmo de ordenamiento por selección sobre el arreglo A.

Iteración	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]
0	7	8	9	2	3	6
1	2	8	9	7	3	6
2	2	3	9	7	8	6
3	2	3	6	7	8	9

Comentarios:

Selección busca el elemento más pequeño de un subarreglo e intercambia ambas posiciones, los intercambios realizados están marcados para que vean cómo funciona el algoritmo.

Pregunta 2:

Calcule el tiempo de duración T(n) para el siguiente programa donde el costo de ejecución de cada línea de código k es C_k .

```
PROGRAMA(n) {
1    sum = 0;
2    for i=1 to n
3       sum = i
4    for k=1 to n
5    for m=1 to k
6    sum = sum + 1
}
```

Costo	Número de veces ejecutada		
C ₁	1		
C_2	n + 1		
C ₃	n		
C_4	n+1		
<i>C</i> ₅	$\sum_{i=2}^{n+1} i = (\sum_{i=1}^{n+1} i) - 1 = \frac{n(n+1)}{2} + n$		
C ₆	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$		

$$T(n) = C_1 \times 1 + C_2(n+1) + C_3n + C_4(n+1) + C_5(\frac{n(n+1)}{2} + n) + C6(\frac{n(n+1)}{2})$$

$$\Rightarrow T(n) = C_1 + C_2n + C_2 + C_3n + C_4n + C_4 + C_5(\frac{n^2}{2} + \frac{3n}{2}) + C6(\frac{n^2}{2} + \frac{n}{2})$$

$$\Rightarrow T(n) = C_1 + C_2 + C_4 + C_2n + C_3n + C_4n + C_5\frac{3n}{2} + C6\frac{n}{2} + C_5\frac{n^2}{2} + C6\frac{n^2}{2}$$

$$\Rightarrow T(n) = C_1 + C_2 + C_4 + n(C_2 + C_3 + C_4 + C_5\frac{3}{2} + C6\frac{1}{2}) + n^2(C_5\frac{1}{2} + C6\frac{1}{2})$$
 Notemos que se puede reescribir como:
$$T(n) = an^2 + bn + c,$$

$$\cos a = C_1 + C_2 + C_4 \wedge b = C_2 + C_3 + C_4 + C_5\frac{3}{2} + C6\frac{1}{2} \wedge c = C_5\frac{1}{2} + C6\frac{1}{2}$$
 Por lo tanto, T(n) es proporcional a: n^2

Comentarios:

Los ciclos se ejecutan de 1 a n incluyendo el n, entonces el contenido del ciclo de la línea 2 se ejecuta n veces pero la línea 2 en sí se ejecuta n+1 veces, porque se debe verificar una última vez la condición para poder continuar.

Si no desarrollan las sumatorias no van a llegar al \boldsymbol{n}^2 .

Aún no estamos hablando de la notación O(n), entonces la respuesta no es $O(n^2)$.