PCA

August 27, 2021

1 Principal Component Analysis

```
[88]: import pandas as pd
import numpy as np
#Loading the data
df=pd.read_csv('cars.csv',sep=';',decimal=',')
display(df)
```

	Country	Car	MPG	Weight	Drive_Ratio	Horsepower	\
0	U.S.	Buick Estate Wagon	16.9	4.360	2.73	155	
1	U.S.	Ford Country Squire Wagon	15.5	4.054	2.26	142	
2	U.S.	Chevy Malibu Wagon	19.2	3.605	2.56	125	
3	U.S.	Chrysler LeBaron Wagon	18.5	3.940	2.45	150	
4	U.S.	Chevette	30.0	2.155	3.70	68	
5	Japan	Toyota Corona	27.5	2.560	3.05	95	
6	Japan	Datsun 510	27.2	2.300	3.54	97	
7	U.S.	Dodge Omni	30.9	2.230	3.37	75	
8	Germany	Audi 5000	20.3	2.830	3.90	103	
9	Sweden	Volvo 240 GL	17.0	3.140	3.50	125	
10	Sweden	Saab 99 GLE	21.6	2.795	3.77	115	
11	France	Peugeot 694 SL	16.2	3.410	3.58	133	
12	U.S.	Buick Century Special	20.6	3.380	2.73	105	
13	U.S.	Mercury Zephyr	20.8	3.070	3.08	85	
14	U.S.	Dodge Aspen	18.6	3.620	2.71	110	
15	U.S.	AMC Concord D/L	18.1	3.410	2.73	120	
16	U.S.	Chevy Caprice Classic	17.0	3.840	2.41	130	
17	U.S.	Ford LTD	17.6	3.725	2.26	129	
18	U.S.	Mercury Grand Marquis	16.5	3.955	2.26	138	
19	U.S.	Dodge St Regis	18.2	3.830	2.45	135	
20	U.S.	Ford Mustang 4	26.5	2.585	3.08	88	
21	U.S.	Ford Mustang Ghia	21.9	2.910	3.08	109	
22	Japan	Mazda GLC	34.1	1.975	3.73	65	
23	Japan	Dodge Colt	35.1	1.915	2.97	80	
24	U.S.	AMC Spirit	27.4	2.670	3.08	80	
25	Germany	VW Scirocco	31.5	1.990	3.78	71	
26	Japan	Honda Accord LX	29.5	2.135	3.05	68	
27	U.S.	Buick Skylark	28.4	2.670	2.53	90	
28	U.S.	Chevy Citation	28.8	2.595	2.69	115	

29	U.S.	Olds Omega	26.8	2.700	2.84	115
30	U.S.	Pontiac Phoenix	33.5	2.556	2.69	90
31	U.S.	Plymouth Horizon	34.2	2.200	3.37	70
32	Japan	Datsun 210	31.8	2.020	3.70	65
33	Italy	Fiat Strada	37.3	2.130	3.10	69
34	Germany	VW Dasher	30.5	2.190	3.70	78
35	Japan	Datsun 810	22.0	2.815	3.70	97
36	Germany	BMW 320i	21.5	2.600	3.64	110
37	Germany	VW Rabbit	31.9	1.925	3.78	71

	Displacement	Cylinders
0	350	8
1	351	8
2	267	8
3	360	8
4	98	4
5	134	4
6	119	4
7	105	4
8	131	5
9	163	6
10	121	4
11	163	6
12	231	6
13	200	6
14	225	6
15	258	6
16	305	8
17	302	8
18	351	8
19	318	8
20	140	4
21	171	6
22	86	4
23	98	4
24	121	4
25	89	4
26	98	4
27	151	4
28	173	6
29	173	6
30	151	4
31	105	4
32	85	4
33	91	4
34	97	4
35	146	6
36	121	4

37 89 4

[43]: import matplotlib.pyplot as plt

plt.grid(True)

plt.plot(np.arange(6),coude, marker='o')
plt.title('Regle de coude', fontsize=14)

plt.ylabel('Variance expliquee', fontsize=14)

plt.xlabel('Number of principal components', fontsize=14)

```
[89]: df.set_index(['Country', 'Car'],inplace=True)
     1.0.1 Pour faire l'analys il faut scandardiser les donnees
[90]: from sklearn.preprocessing import StandardScaler
[91]: scaler = StandardScaler()
      Z=(scaler.fit(df))
[92]: res=scaler.transform(df)
     ### Checking that the data is prepared correctly
[29]: import math
      M=np.mean(res.round(3),axis=0)
      print('The mean of the standerdised variables Xsc \n', M.round(3))
      print('Standart deviation of variables Xsc \n', np.std(res,axis=0,ddof=0))
     The mean of the standerdised variables Xsc
      \begin{bmatrix} 0 & -0 & 0 & -0 & -0 & -0 \end{bmatrix}
     Standart deviation of variables Xsc
      [1. 1. 1. 1. 1. 1.]
     1.0.2 Doing the decomposition
[24]: from sklearn.decomposition import PCA
      pca = PCA(n_components=None)
      pca.fit(res)
[24]: PCA()
[42]: print('Explained variance ratio: ',pca.explained_variance_ratio_)
      coude=pca.explained_variance_
     Explained variance ratio:
                                  [0.83999614 0.10819696 0.0221887 0.01836637
     0.00815936 0.00309248]
     1.0.3 Regle de coude
```

plt.show()
None

1.0.4 Singular values

```
[44]: print(pca.singular_values_)

[13.83904328  4.96678024  2.24922725  2.046346  1.3639407  0.83969387]

[93]: print('number of components =',pca.n_components_)

number of components = 6
```

1.0.5 Matrice de correlation

```
[50]: M=pd.DataFrame(res) #Matrice de correlation des variables#
M.corr()
```

```
[50]: 0 1 2 3 4 5
0 1.000000 -0.903071 0.417225 -0.871282 -0.786048 -0.805511
1 -0.903071 1.000000 -0.687880 0.917220 0.950765 0.916678
2 0.417225 -0.687880 1.000000 -0.588906 -0.798273 -0.692150
3 -0.871282 0.917220 -0.588906 1.000000 0.871799 0.863847
```

```
[76]: import seaborn as sb
dataplot = sb.heatmap(M.corr(), cmap="Blues", annot=True)
plt.show()
```


1.0.6 Valuers propres (diagonalisation):

```
[72]: eig_vals, eig_vecs = np.linalg.eig(M.corr())
eig_vals
```

[72]: array([5.03997681, 0.64918174, 0.01855489, 0.04895616, 0.11019821, 0.13313219])

```
[94]: print('combien composants a garder (nombre des valuers qui sont > 1) = 1 \n ', □ 

⇔eig_vals*((df.shape[0]-1)/df.shape[0]))
```

combien composants a garder (nombre des valuers qui sont > 1) = 1 [4.90734584 0.63209801 0.0180666 0.04766784 0.10729826 0.12962871]

1.1 Valuers propres a partir de singular values

```
[75]: print(pca.singular_values_**2/df.shape[0])
```

[5.03997681 0.64918174 0.13313219 0.11019821 0.04895616 0.01855489]

```
[52]: Summa=sum(eig_vals)
print('La somee de valeurs propres de la matrice de correlation = ',Summa)
```

La somee de valeurs propres de la matrice de correlation = 5.99999999999997

1.1.1 Projection des individus sur les 2 premieres composantes principales

```
[58]: coords=pca.fit_transform(res)

[116]: plt.scatter(coords[:,0],coords[:,1])
    plt.title('Var1 vs Var2')
    for i in range(df.shape[0]):
        plt.annotate(df.index[i][1],(coords[i,0],coords[i,1]))
    None
```


[]: