Álgebra Lineal

 $Tema\ 2:\ Estructuras\ Algebraicas$

ingenierocontracabrones.blogspot.com
 mclnaranjito@gmail.com

Copyright © (2016 - 2016) Manuel Castillo López. GPL GNU General Public License

25 de agosto de 2016

Índice general

2 .	Esti	ructuras algebraicas
	2.1.	Operación interna
	2.2.	Operación externa
	2.3.	Homomorfismos
	2.4.	Grupo
	2.5.	Anillo

4 Índice general

Capítulo 2

Estructuras algebraicas

2.1. Operación interna

Sea A un conjunto no vacío. Se llama operación interna definida en A a cualquier aplicación de $A \times A$ en A que asocia a cada par (a, b) de elementos de A un único elemento c, resultado de operar a con b. Mátemáticamente, para el operador "*", se expresa de la siguiente forma:

$$A \times A \xrightarrow{*} A$$

$$(a,b) \to c := a * b$$

$$\operatorname{con} a, b, c \in A$$

Ejemplo:

El producto de números reales (\mathbb{R},\cdot) es una operación interna del conjunto de los números reales, ya que cualquier producto de números reales da como resultado otro número real.

$$x \cdot y \in \mathbb{R} \quad \forall x, y \in \mathbb{R}$$

Propiedades

Sea (A, *) un conjunto no vacío (A) donde hay definida una operación interna (*). Diremos que la operación es:

- Asociativa $\Leftrightarrow a*(b*c) = (a*b)*c \quad \forall a,b,c \in A$
- Conmutativa $\Leftrightarrow a * b = b * a \quad \forall a, b \in A$

Añadamos una nueva operación interna a nuestro par, obteniendo $(A, *, \circ)$. Diremos que \circ es **distributiva** respecto de * si

$$\forall a, b, c \in A, \begin{cases} a \circ (b * c) = (a \circ b) * (a \circ c), \\ (a * b) \circ c = (a \circ c) * (b \circ c) \end{cases}$$

Elementos particulares

- Elemento neutro e: a * e = e * a = a
- Elemento simétrico a': a*a'=a'*a=e

Ejemplo:

Sea $(\mathbb{R}, +, \cdot)$ el conjunto de los números reales con las operaciones internas de producto y suma. Podemos comprobar que tanto el producto como la suma son asociativos y conmutativos. Además el producto es distributivo respecto de la suma ya que:

$$\forall a, b, c \in \mathbb{R}, \begin{cases} a \cdot (b+c) = (a \cdot b) + (a \cdot c), \\ (a+b) \cdot c = (a \cdot c) + (b \cdot c) \end{cases}$$

2.2. Operación externa

Dados dos conjuntos A y K, se llama operación externa definida en A y con dominio de escalares K, a cualquier aplicación:

$$K \times A \xrightarrow{\perp} A$$
 con $k \in K$
 $(k, a) \to b := k \perp a$ $a \in A$

Ejemplo:

Sea $V_3 \equiv \{v = (x, y, z) \mid \forall x, y, z \in \mathbb{R}\}$ el conjunto de los vectores reales de tres dimensiones y el conjunto de los escalares enteros $K \equiv \{k \mid \forall k \in \mathbb{Z}\}$. El producto de escalares por vectores es operación externa ya que $k \cdot v \in V_3$.

2.3. Homomorfismos

Sean (A, *) y (B, \circ) dos conjuntos con operaciones internas definidas. Una aplicación $f: A \to B$ es un **homomorfismo** si

$$f(a*b) = f(a) \circ f(b), \quad \forall a, b \in A$$

Grupo 7

Si f es un homomorfismo y además

- es inyectivo se llamará monomorfismo.
- es sobreyectivo se llamará epimorfismo.
- es biyectivo se llamará isomorfismo.
- A = B se llamará endomorfismo.
- es endomorfismo biyectivo se llamará automorfismo

Ejemplo:

Sean $G = (\mathbb{R}, +)$ y $H = (\mathbb{R}^+, \cdot)$. Definamos una aplicación

$$f: G \leftarrow H$$

 $x \mapsto e^x$

Podemos afirmar que se trata de un homomorfismo ya que

$$f(x+y) = f(x) \cdot f(y)$$
$$e^{x+y} = e^x + e^y$$

2.4. Grupo

Un **grupo** es una pareja (G, *), donde G es un conjunto en el que está definida una operación interna * que verifica:

- 1. Asociativa.
- 2. Existencia de elemento neutro e, es decir, g * e = g
- 3. Todo elemento g posee simétrico g', es decir, g * g' = e

Si además la operación interna * es conmutativa, el grupo se llamara **abeliano**.

Propiedades de un grupo

- El elemento neutro es único
- (a*b)' = b'*a'
- (a')' = a
- $a * x = a * y \Rightarrow x = y$

Orden de un grupo

Sea (G, *) un grupo. El **orden** de un elemento $a \in G$ es el menor entero positivo $k \in \mathbb{N}^*$ para el que $a^k = e$. Si no existe k, el orden es infinito o cero.

Al número de elementos de un grupo se le llama **orden** de G y se denota por |G|.

Ejemplo:

El conjunto de los números enteros con la suma $(\mathbb{Z}, +)$ es un grupo abeliano ya que:

- 1. La suma de numeros enteros es otro número entero.
- 2. El elemento neutro de los enteros con la suma es el cero: z + 0 = z.
- 3. Todo z posee un simétrico -z: z + (-z) = 0.
- 4. La suma de enteros es conmutativa: $z_1 + z_2 = z_2 + z_1$.

A modo de ejemplo diremos que el orden del grupo es infinito $|\mathbb{Z}| = \infty$. El orden de los elementos son

$$\begin{aligned} |1| &= 1 \\ |-1| &= 2 \\ |z| &= \infty \quad \forall z \in \mathbb{Z} - \{-1, 1\} \end{aligned}$$

Subgrupo

Sea (G,*) un grupo y $H \subset G$, un subconjunto suyo no vacío. (H,*) es **subgrupo** si también posee estructura de grupo.

Caracterización

Un subconjunto H es subgrupo si se cumple que

$$\forall a, b \in H \Rightarrow a * b \in H \tag{2.1}$$

$$\forall a \in H \Rightarrow a' \in H \tag{2.2}$$

Las ecuaciones 2.1 y 2.2 se pueden resumir en la siguiente

$$\forall a, b \in H \Rightarrow a * b' \in H$$

Grupo 9

Clases de un grupo

Dado un grupo G, un subgrupo H y un elemento $a \in G$ arbitrario fijo, a los conjuntos

$$aH = \{x/x \in G, x = a * h, h \in H\}$$

 $Ha = \{x/x \in G, x = h * a, h \in H\}$

se les denomina respectivamente **clases** del grupo G a la izquierda y a la derecha módulo el subgrupo H. Se les llama así por ser clases de cierta relación de equivalencia 1 y, por tanto, forman particiones del grupo G.

Si aH = Ha entonces, H es un subgrupo **normal o invariante**.

Supongamos que el grupo G es finito y que posee n clases a la izquierda módulo H. Entonces,

$$G = a_1 H \cup a_2 H \cup \cdots \cup a_n H$$

$$|G| = |a_1H| + |a_2H| + \dots + |a_nH| = n|H|$$

por lo que el orden de un grupo finito G será múltiplo del orden de cualquier subgrupo suyo (**teorema de Lagrange**).

Al cociente n = |G|/|H| se le denomina **índice del subgrupo** H.

Un grupo G se dice **finitamente generado** si existe una parte finita A de G que engendra todo G. Si A se reduce a un elemento, el grupo G se llama **monógeno**.

El grupo G es **cíclico** si es monógeno y finito.

$$G = \langle a \rangle = \{a^n : n \in \mathbb{Z}\}\$$

Nota: Con a^n nos referimos a aplicar n veces el operador * sobre a. Ésto coincidirá con la potencia en el caso de que la operación sea el producto pero, en general, no es así.

¹La relación es $x \sim y \Leftrightarrow x' * y \in H$, aunque no es de interés para ésta explicación.

Homomorfismo de grupos

Al igual que en la sección anterior, dos grupos $(G_1,*)$, (G_2,\circ) y una aplicación $f:G_1\to G_2$ es **homomorfismo** si

$$f(a*b) = f(a) \circ f(b), \quad \forall a, b \in G_1$$

Llamamos **núcleo** de f, representándose por Ker(f), al conjunto de los elementos del dominio cuya imagen es el elemento neutro de G_2 .

$$Ker(f) = \{x \in G_1 : f(x) = e_2\} = f^{-1}(e_2)$$

Llamamos **imagen** de f, denotándose por Im(f), como el subconjunto de G_2 formado por aquellos elementos que son imagen de algún elemento de G_1 . Es decir,

$$Im(f) = \{ y \in G_2 : \exists x \in G_1, f(x) = y \}$$

Por tanto, podemos decir que

$$f \ es \ inyectiva \Leftrightarrow Ker(f) = \{e_1\}$$

 $f \ es \ sobreyectiva \Leftrightarrow Im(f) = G_2$

2.5. Anillo

Un anillo es un conjunto dotado con dos operaciones internas llamadas suma y producto. El anillo $(R, +, \cdot)$ cumple que:

- 1. (R, +) es un grupo abeliano.
- 2. El producto es asociativo.
- 3. Existe un elemento neutro para la multiplicación.
- 4. El producto es distributivo respecto a la suma.

Si el producto es conmutativo se dice que el anillo es conmutativo. Si el producto posee elemento neutro es unitario.

El elemento neutro de la suma será 0 y el del producto 1.

Anillo 11

Subanillo

Cuerpo

Un cuerpo es un anillo conmutativo y unitario en el que todo elemento distinto de cero es invertible respecto del producto, es decir, un anillo de división conmutativo.

Por ejemplo, los números reales con la suma y el producto algebraicos $(\mathbb{R}, +, \cdot)$ es un cuerpo ya que:

- 1. $(\mathbb{R}, +)$ es un grupo abeliano (siendo 0 el elemento neutro de la suma)
- 2. El producto de números reales es asociativo.
- 3. El elemento neutro de la multiplicación es el 1.
- 4. El producto es distributivo respecto de la suma (propiedades de anillo cumplidas).
- 5. El anillo es conmutativo, ya que el producto de números reales lo es.
- 6. El anillo es unitario ya que el neutro de la multiplicación es distinto del de la suma.
- 7. Todo elemento distinto de cero es invertible respecto del producto: Sea $r \in \mathbb{R}$ y $r \neq 0$, entonces $\frac{1}{r} \in \mathbb{R}$.

Así lo serían también $(\mathbb{C}, +, \cdot)$, $(\mathbb{Z}, +, \cdot)$ y $(\mathbb{Q}, +, \cdot)$.