A linear regression model $y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$ has a matrix-vector representation $\mathbf{y} = \mathbf{X}^T \boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is a $p \times N$ matrix whose *i-th* column is \mathbf{x}_i . This representation will be used frequently.

In the least square regression, we estimate $\boldsymbol{\beta}$ as the minimizer of $\sum_{i=1}^{N}(y_i - \mathbf{x}_i^T\boldsymbol{\beta})^2$ and in matrix notation, the objective function becomes $(\mathbf{y} - \mathbf{X}^T\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}^T\boldsymbol{\beta})$ (they are the same as $\mathbf{a}^T\mathbf{a} = \sum_i a_i^2$).

Expanding this expression we have, $(\mathbf{y} - \mathbf{X}^T \boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}^T \boldsymbol{\beta}) = \mathbf{y}^T \mathbf{y} + \boldsymbol{\beta}^T \mathbf{X} \mathbf{X}^T \boldsymbol{\beta} - 2 \boldsymbol{\beta}^T \mathbf{X} \mathbf{y}$. Now to minimize, we take the derivative of this objective function with respect to $\boldsymbol{\beta}$ which gives $2(\mathbf{X}\mathbf{X}^T \boldsymbol{\beta} - \mathbf{X}\mathbf{y})$ and equate it to zero.

Thus, we need to solve $\mathbf{X}\mathbf{X}^T\boldsymbol{\beta} = \mathbf{X}\mathbf{y}$ which gets us $\hat{\boldsymbol{\beta}} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{y}$. From matrix algebra, a useful result is that $\mathbf{A}\mathbf{B}^T = \sum_{i=1}^N \mathbf{a}_i \mathbf{b}_i^T$, where \mathbf{A} is a matrix with N columns with \mathbf{a}_i is the entry on the i-th columns and \mathbf{B} is a matrix with N rows whose i-th row is \mathbf{b}_i . Thus, $\mathbf{X}\mathbf{X}^T = \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T, \mathbf{X}\mathbf{y} = \sum_{i=1}^N y_i \mathbf{x}_i$.

We know that $Var(\mathbf{z}) = \Sigma$, then $Var(\mathbf{Az}) = \mathbf{A} \Sigma \mathbf{A}^T$.

Then, $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\operatorname{Var}(\mathbf{y})\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}$. We have $\operatorname{Var}(\mathbf{y}) = \sigma^2\mathbf{I}_N$, in case of homoscedastic errors.

Thus,
$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\operatorname{Var}(\mathbf{y})\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\sigma^2\mathbf{I}_N\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1} = \sigma^2(\mathbf{X}\mathbf{X}^T)^{-1}(\mathbf{X}\mathbf{X}^T)(\mathbf{X}\mathbf{X}^T)^{-1} = \sigma^2(\mathbf{X}\mathbf{X}^T)^{-1}.$$

If $\mathbf{z} \sim \text{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we have $\mathbf{A}\mathbf{z} \sim \text{MVN}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$.

Thus, under normality assumption, $\mathbf{y} \sim \text{MVN}(\mathbf{X}^T \boldsymbol{\beta}_0, \sigma^2 \mathbf{I})$ which leads to $\hat{\boldsymbol{\beta}} \sim \text{MVN}(\boldsymbol{\beta}_0, \sigma^2 (\mathbf{X} \mathbf{X}^T)^{-1})$.

Expression for estimation error: $\hat{\mathbf{e}} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{X}^T \hat{\boldsymbol{\beta}} = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X} \mathbf{y} = \{\mathbf{I}_N - \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X} \} \mathbf{y}.$

Let $\mathbf{H}_{\mathbf{X}} = \mathbf{I} - \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X}$. There are many nice properties of $\mathbf{H}_{\mathbf{X}}$.

- $\mathbf{H}_{\mathbf{X}}^2 = \mathbf{H}_{\mathbf{X}} \mathbf{H}_{\mathbf{X}} = \mathbf{H}_{\mathbf{X}}$ (Verify!)
- $\bullet \ \mathbf{H}_{\mathbf{X}}\mathbf{X}^T = \mathbf{0}.$

The above two properties make $\mathbf{H}_{\mathbf{X}}$ the **Orthogonal projection matrix** with respect to \mathbf{X}^{T} .

Additional references They all convey the same message, but good to read as many references on this topic as possible. It is a super important concept and useful to solve various problems.

• https://online.stat.psu.edu/stat462/node/132/

- $\bullet \ \, \text{https://bookdown.org/josiesmith/qrmbook/introduction-to-multiple-regression.} \\ \text{html}$
- https://www.stat.purdue.edu/~lingsong/teaching/2018spring/topic3.pdf
- \bullet In the current note, page 115 has a detailed matrix-vector representation for linear regression.