Отчет по лабораторной работе №2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Бичина Марина группа Б04-005 1 курса $\Phi \Theta \Phi M$ 15.04.2021

1 Аннотация

Цель работы:

- 1. Измерить температурную зависимость коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта;
- 2. Определить полную поверхностную энергию и теплоту, необходимые для изотермического образования единицы поверхности жидкости при различной температуре

Оборудование:

- 1. прибор Ребиндера с термостатом и микроманометром
- 2. исследуемые жидкости
- 3. стаканы

2 Теоретическая часть

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r} \tag{1}$$

где

- 1. σ коэффициент поверхностного натяжения
- 2. $P_{\text{внутри}}, P_{\text{снаружи}}$ давление внутри пузырька и снаружи
- $3. \ r$ радиус кривизны поверхности раздела двух фаз

Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

2.1 Описание установки:

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (см рисунок 1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (по формуле 1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения

Разряжение в системе создается с помощью аспиратора А. Кран K_2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K_2 заполняется водой. Затем кран K_2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K_1 , когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром Полное давление, измеренное при этом микроманометром, равно $P = \Delta P + \rho gh$

2.2 Контрольные вопросы:

- 1. Если пропускать несколько пузырьков в секунду, манометр показывает практически постоянное давление. Почему бы не измерять его? Если пропускать несколько пузырьков в секунду, то на манометре будет показано разряжение, при котором в равновесие приходит количество вещества, приходящее с пузырьками, и скорость создания разряжения. Для того, чтобы пузырьки быстро образовывались друг за другом, необходимо, чтобы воздух, приносимых одним пузырьком не уменьшал разряжение до уровня, недостаточного для создания пузырька, значит в этот момент будет создано разряжение большее, чем необходимо для создание одного пузырька
- 2. Почему следует измерять именно максимальное давление? При максимальном давлении идет образование пузырька, поскольку при меньших давлениях не преодолевается разность между гидростатическим давлением и лаплассовым. Далее энергия, которую пузырек несет в себе рассеивается, давление падает и мы не можем в таком случае точно установить коэффициент поверхностного натяжения.
- 3. Почему погружение иглы уменьшает влияние теплового расширения?

Гидростатическое давление ρgh от температуры практически не зависит, поскольку подъем уровня жидкости компенсируется уменьшением ее плотности (из закона сохранения массы)

4. Почему пузырьки не должны касаться дна?

В этом случае:

- а) происходят деформации пузырька, которые усложнят расчеты (например, придется учитывать коэффициент смачивания стекла водой)
- б) придется учитывать трение, которые может возникнуть между стенками сосуда и оболочкой пузырька
- 5. Можно ли не зная глубины погружения иглы, определить σ , измеряя максимальное и минимальное давление при проталкивании пузырька?
- 6. Пользуясь полученными результатами, оценить критическую температуру воды.

Критическую температуру можно расчитать по формуле:

$$T_{kr} = T_1 - \frac{\sigma}{\frac{d\sigma}{dT}} = 294 + \frac{62,01}{0,09} = 980 \ K$$

(На основании наших экспериментальных данных)

7. Позволяет ли проведенный эксперимент заметить нелинейность зависимости $\sigma(T)$?

Нет, в данном диапазоне температур данные хорошо аппроксимируются прямой $\sigma=a+bT$, поскольку температура довольна далека от критического значения

8. Какие погрешности преобладают в эксперименте: случайные или систематические?

Случайные погрешности могут играть роль только в случае, если у нас всего 3 измерения. Если брать хотя бы 5 измерений, роль случайных погрешностей становится совсем невелика, поскольку мы не учитываем:

- а) неидельность формы пузырька
- б) тепловое расширение иглы
- в) эффекты, связанные с теплопроводностью трубки, из-за которых температура на конце трубки заметно ниже, чем в глубине жидкости
- г) неполное тепловое равновесие воды и термостата

А значения почти не отклонялись друг от друга, поэтому случайная погрешность невелика

9. Какая величина должна стоять в формуле для высоты поднятия воды в стеклянном капилляре: $\sigma_{\text{вода-воздух}}$ или $\sigma_{\text{вода-стекло}}$?

$$h = \frac{2\sigma_{\text{вода - воздух}}cos\theta}{r_0(\rho - \rho_0)g}$$

где:

 ρ – плотность жидкости

 ho_0 – плотность пара над жидкостью

 r_0 — радиус капилляра

3 Ход работы:

- 1. Чистую сухую иглу установим в сосуд со спиртом так, чтобы кончик иглы лишь касался поверхности спирта. Плотно закроем обе колбы В и Е пробками. Откроем кран K_1 аспиратора и добьемся пробулькивания пузырьков воздуха в колбе.
- 2. Начнем измерения. Откроем кран K_1 . Подберем частоту падения капель из аспиратора так, чтобы максимальное давление манометра не зависело от этой частоты (не чаще, чем 1 капля в 5 секунд)
- 3. Измерим максимальное давление $P_{\text{спирт}}$ при пробулькивании пузырьков воздуха через спирт. Перевод в паскали осуществим позже (таблица 1)

Осуществим перевод в паскали по формуле:

$$P = C \cdot h \cdot \frac{\gamma_{\text{спирт залитый}}}{\gamma_{\text{спирт приборный}}} \cdot K \cdot 9,80665 \tag{2}$$

где:

- 1) Р давление в Па
- (2) C поправочный множитель, (2) (3)
- 3) h отсчет по шкале
- 4) K постоянная угла наклона, K = 0.2
- 5) $\gamma_{\text{спирт залитый}}$ плотность спирта, залитого в прибор (из таблицы) $\gamma_{\text{спирт залитый}} =$ $0,80798\frac{\Gamma}{2003}$
- 6) $\gamma_{\text{спирт приборный}}$ плотность спирта, указанная на приборе, $\gamma_{\text{спирт приборный}} =$ $0,80950\frac{\Gamma}{CM^3}$

$$\begin{split} P_1 &= 1,00 \cdot 44 \cdot \frac{0,80798}{0,80950} \cdot 0, 2 \cdot 9,80665 = 86,1365 \;\; \Pi \mathrm{a} \\ P_2 &= 1,00 \cdot 45 \cdot \frac{0,80798}{0,80950} \cdot 0, 2 \cdot 9,80665 = 88,0941 \;\; \Pi \mathrm{a} \\ P_{\text{спирт}} &= \frac{\Sigma P}{N} = \frac{2 \cdot 86,1365 + 88,0941}{3} = 86,7890 \;\; \Pi \mathrm{a} \approx 86,79 \;\; \Pi \mathrm{a} \end{split}$$

Далее перевод в Паскали будем осуществлять по формуле $P_{\Pi a}=kP$, где $k=C\cdot \frac{\gamma_{\text{спирт залитый}}}{\gamma_{\text{спирт приборный}}}\cdot K\cdot 9,80665=1,9583$

По разбросу результатов оценим случайную погрешность измерения.

$$\sigma_{\text{случР}} = \sqrt{\frac{1}{n-1} \sum (x_i - x_{\text{ср}})^2}$$

$$\sigma_{\text{случР}} = \sqrt{\frac{1}{2} \cdot [2 \cdot (86, 14 - 86, 79)^2 + (88, 9 - 86, 79)^2]} = 1.6274 \approx 1,63 \text{ Па}$$

$$\sigma_{\text{систР}} = k\Delta h = 1,9583 \cdot 0,5 = 0,9791 \approx 0,98 \text{ Па}$$

Тогда:

$$\sigma_{\text{полнP}} = \sqrt{\sigma_{\text{систP}}^2 + \sigma_{\text{случP}}^2} = \sqrt{1,63^2 + 0,98^2} = 1,9$$
 Па $\varepsilon_P = \frac{\sigma_{\text{полнP}}}{P} = \frac{1,9}{86,79} \approx 0,02$

Пользуясь табличным значением коэффициента поверхностного натяжения спирта, определим по формуле (1) диаметр иглы. При комнатной температуре $\sigma=22,8~\mathrm{mH/m}$

$$d = \frac{4\sigma}{\Delta P};$$
 $d = \frac{4 \cdot 22, 8}{86, 79} = 1,0508 \text{ mm} \approx 1,05 \text{ mm}$ (3)

Рассчитаем погрешность по формуле

$$\sigma_d = d \cdot \varepsilon_P; \quad \sigma_d = 1,05 \cdot 0,02 \approx 0,02 \text{ MM}$$
 (4)

Окончательно:

$$d = 1.05 \pm 0.02$$
 mm

Сравним полученный результат с диаметром иглы, измеренным по микроскопу.

$$d = 0,92 \pm 0,25 \text{ mm}$$

4. Перенесем предварительно промытую и просушенную от спирта иглу в колбу с дистиллированной водой. Измерим максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды. Аспиратор должен быть предварительно заполнен водой почти доверху.

Отрегулируем скорость поднятия уровня спирта в манометре и сохраним её в течение всех экспериментов.

Измерим расстояние между верхним концом иглы и любой неподвижной часть прибора.

$$h_1 = 19 \text{ MM}$$

5. Утопим иглу до предела. в данном положении:

$$h_2 = 6 \text{ MM}$$

Измерим максимальное давление в пузырьках P_2 :

По разности давлений определим глубину погружения Δh иглы

$$\Delta P = k(P_2 - P_1) = 1,9583(183 - 122) = 1,9583 \cdot 61 \approx 119,46 \;\; \Pi a$$

$$\Delta h = \frac{\Delta P}{\rho q} = \frac{119,46}{1000 \cdot 9,81} = 12,2 \;\; \text{mm}$$

Погрешность:

$$\sigma_h = h \cdot \varepsilon_p = 12, 2 \cdot 0, 02 = 0, 244 \approx 0, 24$$

 $\Delta h = 12, 20 \pm 0, 24$

Сравним ее с измеренным значением $\Delta h=h_1-h_2=12$ мм. Тогда значение $\rho gh=1000\cdot 9, 81\cdot 12\cdot 10^{-3}=117, 72$ Па

6. Занесем значения давления для различных температур в таблицу 1:

$T_1 = 30, 1^0 c$	P_1/k	183	182	183	183	183	183
$T_2 = 35^0 c$	P_2/k	183	183	183	183	183	183
$T_3 = 40^0 c$	P_3/k	181	181	182	182	182	182
$T_4 = 45^0 c$							
$T_5 = 50^0 c$	P_5/k	180	180	180	180	180	180
$T_6 = 55^0 c$	P_6/k	179	179	179	179	178	179
$T_7 = 60^0 c$	P_7/k	178	178	178	178	178	178

Таблица 1: снятые показания

Переведем в Паскали и вычтем значение $\rho g \Delta h$:

$P_1 - \rho g \Delta h \Pi a$	240,65	238,69	240,65	240,65	240,65	240,65
$P_2 - \rho g \Delta h \ \Pi a$	240,65	240,65	240,65	240,65	240,65	240,65
$P_3 - \rho g \Delta h \ \Pi a$	236,73	236,73	238,69	238,69	238,69	238,69
$P_4 - \rho g \Delta h \Pi a$	236,73	236,73	236,73	236,73	234,77	236,73
$P_5 - \rho g \Delta h \Pi a$	234,77	234,77	234,77	234,77	234,77	234,77
$P_6 - \rho g \Delta h \Pi a$						
$P_7 - \rho g \Delta h \ \Pi a$	230,86	230,86	230,86	230,86	230,86	230,86

Средние значения давлений для каждой из температур запишем в таблицу 2:

T , 0 c	30,1	35	40	45	50	55	60
$\langle P \rangle$, Πa	$240,\!32$	$240,\!65$	238,04	236,40	234,77	232,49	230,86

Таблица 2: зависимость среднего давления от температуры

По формуле (1) найдем $\sigma = \frac{d}{4} \cdot \langle \Delta P \rangle$. Результаты занесем в таблицу 3:

T , 0 c	30,1	35	40	45	50	55	60
σ , MH/M	63.08	63.17	62.48	62.06	61.63	61.03	60.60

Таблица 3: Зависимость коэффициента поверхностного натяжения от температуры

Расчитаем погрешность измерений для

$$\sigma_{\sigma} = \sigma \sqrt{\left(\frac{\varepsilon_p}{P}\right)^2 + \left(\frac{\varepsilon_d}{d}\right)^2} = 63,08 \cdot \sqrt{\frac{0,02^2}{230,86^2} + \frac{0,02^2}{1,05^2}} = 0,02 \cdot 63,08 = 1,26$$

7. Построим график зависимости $\sigma(T)$, пользуясь методом наименьших квадратов y=a+bx

$$b = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} \quad a = \langle y\rangle - b \cdot \langle x\rangle \tag{5}$$

Погрешность в этом случае можно найти по формуле:

$$\sigma_b \approx \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2}} - b^2; \quad \sigma_a \approx \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$
 (6)

Для графика $\sigma(T)$ $x \to T$, $y \to \sigma$

$\langle T \rangle$	$\langle T \rangle \mid \langle \sigma \rangle$		$\langle \sigma^2 \rangle$	$\langle T\sigma \rangle$	
45,01	62,01	2126	3846	2782	

$$b = \frac{2782 - 45,01 \cdot 62,01}{2126 - 45,01^2} = -0,09 \qquad a = 62,01 + 0,09 \cdot 45,01 = 66,06$$

Константа b в данной задаче определяет температурный коэффициент $\frac{d\sigma}{dT}$, $\frac{d\sigma}{dT}=-0,09\frac{{}^{\rm M}{}^{\rm H}}{{}^{\rm M}}\frac{1}{c}$

- 8. На другом графике построим зависимость от температуры
 - 1) теплоты образования единицы поверхности жидкости $q = -T \cdot \frac{d\sigma}{dT}$
 - 2) поверхностной энергии U единицы площади F: $\frac{U}{F} = \sigma T \cdot \frac{d\sigma}{dT}$

4 Вывод:

1. Рассчитали диаметр иглы по формуле (1) и по известному коэффициенту поверхностного натяжения спирта

$$d = 1,05 \pm 0,02$$
 mm

- 2. Установили линейную зависимость коэффициента поверхностного натяжения от температуры в данном диапазоне температур с погрешностью $\varepsilon=2\%$
- 3. Рассчитали температурных коэффициент

$$\frac{d\sigma}{dT} = -0.09 \frac{\text{MH}}{\text{M} \cdot K}$$

Табличное значение данного коэффициента равняется

$$\frac{d\sigma_T}{dT} = -0,17 \frac{\text{MH}}{\text{M} \cdot K}$$

Расхождение в $\approx 50\%$, вероятно, вызвано из-за того, что у нас не устанавливалось тепловое равновесие воды в термостате и воды, где происходил опыт. Также мы могли неточно рассчитать диаметр иглы или микроманометр был неисправен