## ISU Monarch Data Summary for NCIG

Jarad Niemi, Seth Appelgate, and Nehemias Ulloa 2019-07-19

Table 1 provides average land cover percentage averaged across all data collection events.

Table 1: Daubenmire: average land cover % across all rounds Caption 1234

|                |           | ı       |          | 0         |        | $\dashv$    |          | -        | $\dashv$ | !  | 0       | (      |          |      | - 6     | 5 H   | <b>⊣</b> । | 1    |      |      | 1        |          | -    |      | ا   |          |
|----------------|-----------|---------|----------|-----------|--------|-------------|----------|----------|----------|----|---------|--------|----------|------|---------|-------|------------|------|------|------|----------|----------|------|------|-----|----------|
| transectID   2 | 2016 2017 | .7 2018 | - 1      | 2019   20 | 2016 2 | 2017 20     | .5018    | 2019 2   | - 1      | 20 | 18 2019 | 9 2016 | 5 2017   | 2018 | \$ 2019 | 5016  | 2017       | 2018 | 2019 | 2016 | 2017     |          | 2019 | 7016 | - 1 | 2018     |
| tall1a         |           |         | 56       | na        | က      | 0           | 0        | na       | 47       |    | 80 na   | )<br>မ | 0        | 0    | 0 na    | 0     | 0          | 0    | na   | 6    | 46       | 24       | na   | 42   | 20  | 25       |
| tall2a         | 40 2      | 28      | 56       | na        | 0      | 0           | 0        | na       | 53       | 69 |         | na (   | ·        | _    | 0 na    | 0     | 0          | 0    | na   | 7    | 37       | 43       | na   | 48   | 35  | 26       |
| tappla         |           |         | 44       | 20        | 14     | $\infty$    | 10       | 1        | 17       | 29 | 26 4    | 48 (   | 0        | _    | 0 0     | 0     | 0          | 0    | 0    | 48   | 25       | 15       | 41   | 28   | 29  | 99       |
| tarm1b         |           |         | 32       | 45        | 0      | ಬ           | 3        | 2        | 7        | 56 |         | 49 (   | 0        | _    | 0 (     | 4     | 0          | 0    | 0    | 3    | 21       | 37       | 36   | 96   | 20  | 48       |
| tarm2a         |           | 20      | 21       | 49        | 3      | 38          | 9        | 0        | 19       | 44 | 69 5    | 59 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 2    | 24       | 3        | 16   | 96   | 45  | 78       |
| tbcrla         | 87        |         | 14       | 19        | 0      | 2           | 7        | $\infty$ | $\infty$ | 44 |         | 71 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 4    | 24       | 12       |      | 33   | 53  | 71       |
| tbcr2a         | 93        | 5       | 32       | 2         | 0      | 0           | П        | 3        | 1        | 61 | 2 02    | 02     | 0        | _    | 0 (     | 0     | 0          | 0    | 0    | 2    | 1        | 1        | 10   | 44   | 92  | 98       |
| tber1a         | 14 2      | 20      | 35       | na        | 18     | 14          | 4        | na       | 53       | 40 | 42 n    | na (   | 0        | _    | na (    | 0     | 0          | 0    | na   | 52   | 27       | 29       | na   | 25   | 22  | 31       |
| tber3a         | 39 1      | 11      | 21       | na        | 51     | 11          | 0        | na       | 30       | 99 | 62 n    | na (   | 0        | _    | ) na    | 0     | 0          | 0    | na   | 39   | 30       | 31       | na   | 28   | 54  | 28       |
| tbyd1a         | 20        | 3       | $\infty$ | 25        | 0      | 27          | 0        | 0        | 30       | 40 | 8 06    | 08     | 0        | _    | 0 (     | 0     | 0          | 0    | 0    | 33   | 3        | 17       | 25   | 99   | 38  | 40       |
| tbyd2a         | 99        | 2       | 18       | 44        | 0      | 22          | 0        | 0        | 33       | 48 | 80 5    | 29 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 2    | ಬ    | 33       | 16       | 36   | 59   | 34  | 35       |
| tcrala         | 46 1      | 19      | 11       | 18        | 0      | 7           | 3        | 4        | 23       | 40 | 64 5    | 28 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 14   | 17       | 17       | 38   | 49   | 28  | 70       |
| tcrela         |           |         | $\infty$ | 15        | 4      | 40          | 2        | $\infty$ | 24       | 28 |         | 08     | 0        | _    | 1       | 0 0   | 0          | 0    | 0    | 2    | 4        | 11       | 6    | 85   | 84  | 22       |
| tdav1a         | 76 1      | 10      | 53       | 62        | 2      | 13          | 0        | 0        | သ        | 38 | 48 1    | 11 (   | .,       | ~1   | 0       | 0     | 0          | 0    | 0    | 7    | 13       | 26       | 9    | 85   | 22  | 37       |
| tdun2a         | 81 1      | 14      | 46       | 99        | 2      | 32          | 0        | 0        | 6        | 32 | 54 5    | 20 (   | 0        | 0    | 0       | 0 1   | 0          | 0    | 0    | 12   | 28       | 10       | 7    | 72   | 54  | 38       |
| tdun3a         |           |         | 36       | 44        | 0      | 0           | 0        | П        | 4        | 88 | 9 29    | ) 89   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | ಸಂ   | 14       | 11       | 10   | 78   | 44  | 30       |
| tfis1a         |           |         | na       | na        | 0      | 0           | na       | na       | 0        |    | na n    | na (   | ·        | ) na | a na    | 0     | 0          | na   | na   | 2    | 2        | na       | na   | 85   | 29  | na       |
| tgrola         | 70 1      | 15      | 49       | 44        | ರ      | П           | 0        | 0        | 24       | 80 | 44 5    | 28     | _        | _    | 1 0     | 0     | 0          | 0    | 0    | 16   | 19       | 20       | 4    | 09   | 22  | 73       |
| tgro2a         | 71        | П       | 15       | 22        | 7      | 0           | 0        | 0        | 27       | 91 | 81 7    | )   82 | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 19   | 20       | 27       | 20   | 64   | 47  | 09       |
| tharla         | 34        |         | 26       | 27        | 10     | 25          | 1        | 0        | 31       | 47 | 89      | ) 92   | 0        | _    | 0       | 0     | 0          | 0    | 0    | 13   | 16       | 27       | 17   | 51   | 30  | 61       |
| tjonla         | 23        | 2       | က        | 17        | 2      | $\infty$    | $\infty$ | 9        | 46       | 46 | 2 22    | ) 92   | ;        | ~    | 0       |       | 2          | 1    | Т    | 14   | 12       | 40       | 43   | 29   | 52  | 52       |
| tniela         |           |         | 34       | 18        | 0      | 21          | 4        | 22       | သ        |    |         | 28 (   |          | _    | 2 4     | 0 1   | 0          | 0    | 0    | 3    | 13       | 6        | 7    | 22   | 22  | 80       |
| tnknla         |           |         | 23       | 54        | 0      | 1           | 2        | 0        | 16       |    |         | 42 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 7    | 40       | 11       | 32   | 22   | 38  | 70       |
| tnkn2a         |           |         | 46       | 65        | 0      | 7           | 0        | 0        | 19       |    |         | 40 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 10   | 47       | 9        | 15   | 73   | 30  | 99       |
| tnor1b         |           |         | 15       | 48        | 0      | $\infty$    | 0        | 0        | က        |    |         | 65     | _        | _    | ~1      | 0     | 0          | 0    | П    | ಬ    | 24       | 14       | ∞    | 75   | 63  | 72       |
| tpio1a         |           |         | 75       | 84        | 28     | 14          | က        | 0        | 11       |    |         | 9      | .,       | ~1   | _       | 0 0   | 0          | 0    | 0    | ∞    | 10       | 9        | က    | 73   | 71  | 46       |
| tpio2a         |           |         | 99       | 84        | 12     | 12          | 2        | 0        | က        |    |         | 17 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    |      | 14       | 19       | 2    | 86   | 29  | 28       |
| tprd1a         |           |         | 43       | 13        | 13     | 54          | 40       | 43       | 0        | 6  |         | 21 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    |      | $\infty$ | വ        |      | 84   | 80  | 45       |
| tprd2a         |           | 46      | 92       | 36        | 18     | 12          | 10       | 19       | ಬ        | 56 |         | 24 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | _    | 2        | $\infty$ |      | 88   | 82  | 62       |
| tprela         | 69        | 0       | $\infty$ | 33        | 22     | 0           | 0        | 0        | 27       | 92 |         | ) 29   | 0        | _    | ;<br>(  | 2 0   | 0          | 0    | 0    | က    | 20       | 7        | 38   | 53   | 27  | 20       |
| $^{ m tpre2a}$ | 91        |         | 15       | 22        | П      | 0           | 0        | 0        | 12       | 64 |         | ) 22   | <u> </u> | _    | 0       | 0 0   | 0          | 0    | 0    | 1    | 14       | 4        | 44   | 61   | 74  | 21       |
| tpre3a         | 71        |         | ഹ        | <u>∞</u>  | _      | П           | 0        | 0        | 24       |    |         | 83     | <u> </u> | _    | 0       | 0 0   | 0          | 0    | 0    | 2    | 34       | П        | 45   | 92   | 45  | 33       |
| tpre4a         | 71        | 0       | 11       | -         | 16     | 0           | 0        | 2        | 16       |    |         | 85 (   | <u> </u> | _    | 0       | 0 0   | 0          | 0    | 0    | 9    | 37       | 2        | 36   | 80   | 46  | 19       |
| tpre5a         | 20        |         | 7        | 13        | 0      | <del></del> | 0        | 0        | 31       |    |         | 73     | <u> </u> | _    | 0       | 0 0   | 0          | 0    | 0    | 2    | 22       | 2        | 32   | 29   | 09  | 23       |
| tpre6a         | 74        |         | 46       | 26        | 2      | 4           | 0        | $\infty$ | 15       |    |         | 41 (   | <u> </u> | _    | 0       | 0 0   | 0          | 0    | 0    | 26   | 30       | 12       | 19   | 62   | 09  | 4        |
| tpre7a         | 78        | 2       | 9        | ಣ         | 0      | 0           | 0        | 7        | 42       |    |         | ) 22   | ·        | _    | 0       | 0 0   | 0          | 0    | 0    | 2    | 27       | $\infty$ | 22   | 46   | 45  | 15       |
| tpre8a         | 64        | 0       | 14       | 23        | 21     | 0           | 0        | 17       | 30       |    |         | 72     | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 7    | 17       | 1        | 23   | 64   | 65  | 15       |
| tsut2a         | 0         | 3       | 3        | 9         | 0      | 0           | က        | ಬ        | 98       | 57 | 8 99    | )   98 | 0        | 0    | 0       | 0     | 0          | 0    | 0    | 28   | 78       | 20       | 89   | 0    | 6   | $\infty$ |
| ttiela         | 92        | 3       | 6        | 9         | 0      | 0           | 4        | 0        | က        | 09 |         | 94 (   | 0        | _    | 0       | 0 0   | 0          | 0    | 0    | 2    | 41       | 45       | 85   | 33   | 49  | 38       |
| tuth3b         | 63 1      | Τ.      | 31       | 59        | 3      | 14          | 11       | Π        | 16       | 29 | 34 	 5  | 25     |          | ~    | 0       | 0 0   | 0          | 0    | 0    | 9    | 12       | 30       | 18   | 22   | 37  | 47       |
| tvanla         | 34        | 9       | 21       | 25        | 14     | 16          | 34       | 17       | 22       | 56 | 40 6    | )   09 | 0        | _    | 0 0     | 0 0   | 0          | 0    | 0    | 2    | 4        | 10       | 12   | 85   | 53  | 88       |
| tverla         | 12        | ಬ       | 6        | na        | 4      | 16          | 16       | na       | 69       | 52 |         | na (   | 0        | _    | ) na    | 0     | П          | П    | na   | 33   | 18       | 32       | na   | 28   | 64  | 51       |
| tvosla         |           | 0       | 6        | 21        | 1      | 0           | 3        | 6        | 3        | 27 |         |        | 0        | _    | 0 0     | 0     | 0          | 0    | 0    | 2    | 35       | 29       | 38   | 92   | 64  | 27       |
| Mean           | 59 1      | 12      | 56       | 33        | 9      | 10          | 4        | <u>v</u> | 22       | 53 | 64 5    | 29 (   | 0        | 0    | 0       | 0   0 | 0          | 0    | 0    | 11   | 22       | 19       | 22   | 63   | 25  | 45       |



Figure 1: This plots the mean percentage of land cover by year and is faceted by class. The colors correspond to the different trasects. Caption 1111



Figure 2: This plots the mean percentage of land cover by year and is faceted by class. The colors correspond to the different trasects. Caption 1112



Figure 3: This plots the mean percentage of land cover by year and is faceted by class. The colors correspond to the different transects. Caption 1113

Table 2: Daubenmire Milkweed: average ramet stems across all rounds Caption 1115

| transectID      | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 |
|-----------------|------|------|------|------|------|------|------|------|------|
| tallla          | 0.0  | 0.0  | na   | 0.0  | 0.3  | na   | 0.0  | 0.0  | na   |
| tall2a          | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   |
| tappla          | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tarm1b          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  |
| tarm2a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  | 0.0  |
| tbcr1a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.2  | 0.1  | 0.0  | 0.0  |
| $_{ m tbcr2a}$  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tber1a          | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   |
| $_{\rm tber3a}$ | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   |
| tbyd1a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tbyd2a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tcra $1$ a      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  |
| tcrela          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tdavla          | 0.0  | 0.0  | 0.0  | 0.8  | 0.0  | 0.2  | 0.0  | 0.0  | 0.0  |
| tdun2a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tdun3a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tfisla          | 0.0  | na   | na   | 0.0  | na   | na   | 0.0  | na   | na   |
| tgrola          | 0.0  | 0.0  | 0.0  | 0.1  | 0.2  | 0.2  | 0.0  | 0.0  | 0.0  |
| tgro2a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.2  | 0.0  | 0.0  | 0.0  |
| tharla          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tjon1a          | 0.0  | 0.0  | 0.0  | 0.3  | 0.0  | 0.2  | 0.0  | 0.0  | 0.0  |
| tniela          | 0.0  | 0.0  | 0.0  | 0.2  | 0.3  | 0.5  | 0.0  | 0.0  | 0.0  |
| tnkn1a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tnkn2a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tnor1b          | 0.0  | 0.0  | 0.0  | 0.0  | 0.3  | 0.2  | 0.2  | 0.1  | 0.0  |
| tpio1a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.1  | 0.0  | 0.0  |
| tpio2a          |      | 0.0  | 0.0  | 0.0  | 0.2  | 0.1  | 0.0  | 0.0  | 0.0  |
| tprd1a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tprd2a          |      | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tprela          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  |
| $_{ m tpre2a}$  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| $_{ m tpre3a}$  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| $_{ m tpre4a}$  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| $_{ m tpre5a}$  |      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| $_{ m tpre6a}$  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tpre7a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| $_{\rm tpre8a}$ | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tsut2a          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  | 0.0  | 0.1  |
| ttiela          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tuth3b          | 0.0  | 0.0  | 0.0  | 9.0  | 0.1  | 0.0  | 0.0  | 0.0  | 0.0  |
| tvanla          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| tverla          | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   | 0.0  | 0.0  | na   |
| tvosla          | 0.0  | 0.0  | 0.0  | 0.3  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  |
| Moon            | 0.0  | 0.0  | 0 0  | 0.1  | 0 0  | 1    | 0    | 0    |      |



Figure 4: This plots the mean ramets by year and is faceted by species. The colors correspond to the different transects. Caption 1115

|               | Df | Sum of Sq | RSS       | AIC     | F value | Pr(>F) |
|---------------|----|-----------|-----------|---------|---------|--------|
| <none></none> |    |           | 373842.69 | 6701.59 |         |        |
| class         | 6  | 524340.70 | 898183.39 | 7702.00 | 266.96  | 0.0000 |
| year          | 3  | 4092.68   | 377935.36 | 6708.17 | 4.17    | 0.0060 |
| grant         | 3  | 1029.22   | 374871.91 | 6698.77 | 1.05    | 0.3704 |