Clase 02 - Lógica Digital

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl

Resumen de la clase pasada

Sistema posicional de base genérica

- s: símbolo
- k: = Posición del símbolo en la secuencia, siendo 0 la posición del extremo derecho.
- b: base
- n: cantidad de símbolos en la secuencia
- Notación típica: ()b

$$\sum_{k=0}^{n-1} s_k \times b^k$$

Método de conversión: binaria hacia hexa

- Ocuparemos un método aprovechando concatenación
- Agrupamos los términos numéricos para obtener el resultado

Converting Hex to Binary

3AB2₁₆ = 11101010110010₂

Método de conversión: decimal hacia binario

- Se obtiene el resto entre el número en base decimal y el divisor 2.
- Se obtiene el resto entre el número en base decimal y el divisor 2.
- Para obtener el siguiente símbolo de la secuencia, realizar la misma operación con el resultado de la división entera del número

Complemento 2 (C2)

- Sumar una unidad al complemento al C1
- Ahora el cero es intuitivo
- Contra: Tenemos una representación desbalanceada
- Overflow: Si una operación aritmética resulta en un valor no representable, nos dará un valor erróneo

string	unsigned	sign & magnitude	1's complement	2's complement
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	- 7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

¿Dudas?

Introducción:

- Un computador lo definimos como una máquina programable que ejecuta programas.
- Para programar necesitamos:
 - Datos: números (enteros, reales) , texto, imágenes, etc

- Variables: simples, arreglos
- Control de flujo: comparaciones, manejo de ciclos
- La clase de hoy veremos con lo básico que sería los datos, específicamente cómo **representar datos en un computador!**

Introducción:

- Un computador lo definimos como una máquina programable que ejecuta programas.
- Para programar necesitamos:
 - Datos: números (enteros, reales) , texto, imágenes, etc
 - Operaciones: suma, resta, multiplicación, división, etc
 - Variables: simples, arreglos
 - Control de flujo: comparaciones, manejo de ciclos
- La clase de hoy veremos con lo básico que sería los datos, específicamente cómo ¡representar datos en un computador!

Objetivos de la clase

- Conocer lógica booleana y circuitos digitales
- Conocer operaciones aritméticas y lógicas
- Entender el manejo de un sumador

Lógica Digital

Lógica Digital

- Un computador por dentro son múltiples circuitos digitales
- Cada circuito puede ser descompuesto en una unidad básica llamada compuerta lógica

Compuerta lógica

- Los elementos físicos que utilizamos en la modernidad son los transistores
- Es un semiconductor que permite amplificar o bloquear señales eléctricas

Compuerta lógica: NOT

- Tiene una entrada que llamaremos A
- Su salida será OUT que se comportará como su inverso

¿Dudas?

Lógica Boleana

Compuerta Boleana: NOT

- Tiene una entrada que llamaremos A
- Su salida será **OUT** que se comportará como su inverso

Input	Output
А	Y
0	1
1	0

Compuerta Boleana: OR

- Tiene dos entradas que llamaremos A y B
- Su salida será **Q** que será 0 si ambas entradas son cero

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Compuerta Boleana: AND

- Tiene dos entradas que llamaremos A y B
- Su salida será **Q** que será 1 si ambas entradas son uno

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

Compuerta Boleana: XOR

- Tiene dos entradas que
 Ilamaremos A y B
- Su salida será **Q** que será 1 si ambas entradas son distintas

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

Compuerta Boleana: NOR

- Tiene dos entradas que llamaremos A y B
- Su salida será **Q** que será 1 solo si ambas entradas son cero

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Compuerta Boleana: NAND

- Tiene dos entradas que llamaremos A y B
- Su salida será Q que será 0
 solo si ambas entradas son uno

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Algebra booleana

Equivalence	Name of Identity
$p \land T \equiv p$ $p \lor F \equiv p$	Identity Laws
$p \land F \equiv F$ $p \lor T \equiv T$	Domination Laws
$p \land p \equiv p$ $p \lor p \equiv p$	Idempotent Laws
$\neg(\neg p) \equiv p$	Double Negation Law
$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$	Commutative Laws
$(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative Laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Ditributive Laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's Laws
$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$	Absorption Laws
$p \land \neg p \equiv F$ $p \lor \neg p \equiv T$	Negation Laws

¿Dudas?

Sumador

Half Adder

Α	В	s	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(a) Half Adder

Half Adder

Α	В	s	С
0	0	0	0 0
1	0	1	0
1	1	0	1

(a) Half Adder

Full Adder

Sumador

Restador

¿Dudas?

Clase 02 - Lógica Digital

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl