Evaluating linear model assumptions

Max Joseph

March 14, 2017

Recap

1. Linear relationship between x and y:

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

2. Normal error in y (variation around line):

$$y_i \sim \mathsf{Normal}(\hat{y}_i, \sigma)$$

- 3. Homoskedasticity (errors have constant variance)
- 4. Observations are independent

Today: evaluating assumptions

1. Linear relationship between x and y:

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

2. Normal error in y (variation around line):

$$y_i \sim \text{Normal}(\hat{y}_i, \sigma)$$

- 3. Homoskedasticity (errors have constant variance)
- 4. Observations are independent

Evaluating linearity

Evaluating linearity

Adding residuals

Show residuals on y-axis

Look for patterns in the residuals

A real example

Rodent birth weight residuals

Recap: evaluating linearity

- 1. Plot x vs. y
- 2. Plot x vs. $y \hat{y}$ (residuals)

Evaluating homoskedasticity

$$y_i \sim \mathsf{Normal}(\hat{y}_i, \sigma)$$

 $\hat{y}_i = \alpha_i + \beta x_i$

For all y_i , σ is assumed constant

_

plot y_i vs. residuals

Activity

Drawing heteroskedasticity

- pair up
- draw 2 different cartoon examples of heteroskedasticity on the board in two coordinate systems (4 graphs total):
- 1. x vs. y
- 2. \hat{y} vs. ϵ

Evaluating homoskedasticity

Simualted example

Evaluating homoskedasticity

Rodent example

Pearson residuals

Rescaling o force standard deviation =1

Dealing with heteroskedasticity

Most of the time:

▶ figure out what is causing the extra variation and model it

Example: Rodents in different families

Transformations of *y*

- ▶ log(y): variance increases with \hat{y}
- $y^{1/c}$: variance increases with \hat{y}
- y^c : variance decreases with \hat{y}

Problems with transformations

- 1. Inflexible
- 2. Consequences for model interpretation

Natural scale

$$\hat{\mathbf{y}} = \alpha + \beta \mathbf{x}$$

Log scale

$$\log(\hat{\mathbf{y}}) = \alpha + \beta \mathbf{x}$$

$$\rightarrow \hat{\mathbf{y}} = \mathbf{e}^{\alpha} \mathbf{e}^{\beta \mathbf{x}}$$

Recap: evaluating homoskedasticity

Diagnostics

▶ plot \hat{y} vs. ϵ and look for "funnels"

Solutions

- model the source of extra variance
- consider transformations

Last: evaluating normality

Histogram of residuals

Simulated data

Histogram of residuals

Rodent data

Common misconception

The normality assumption should be checked for y:

Crux

Normality assumption applies to:

Error

$$y_i = \alpha + \beta x + \epsilon_i$$

$$\epsilon_i \sim \mathsf{Normal}(\mathsf{0}, \sigma)$$

y after adjusting for the effect of x

$$y_i \sim \text{Normal}(\alpha + \beta x, \sigma)$$

but NOT y alone.

Simple example

Plotting residuals

Distribution of residuals

Distribution of y

$$y_i = 10x_i + \epsilon_i$$

All together now

Quantile plots (Q-Q plots)

Another tool for evaluating residual normality

compare quantiles of (Pearson) residuals to Normal quantiles

qqnorm(pearson_resid)

Normal Q-Q Plot

Theoretical Quantiles

What to do when Normality fails

Generalized linear models (GLM)

- counts
- proportions
- zero-inflation
- long tails
- and more!

Evaluating assumptions for the rodent data

Demo: 3-model-checking/checking-assumptions.R