Computer Science Department CS675 – Introduction to Data Science (CRN: 73405) Fall 2024

Project #2 / Due 12-Nov-2024

This is a continuation of project #1 (EDA).

Implement a Linear Regression algorithm (model) in Python, by using the Scikit-learn module. The **regression model** should be able to predict the progression of a disease (diabetes in our case) by using the least-squares regression.

The modeling of the data should be focus on predicting the <u>progression of a disease</u>.

Get the data from **Stanford U's** Machine Learning Repository: https://web.stanford.edu/~hastie/Papers/LARS/diabetes.dat a

Here is a sample of the dataset (out of 442 records):

TICIC I	J a Janik	or cric	. aatase	cioaco	1 772 100	Ji usi.			,	
AGE	SEX	BMI	BP	S1	52	S3	54	S5	56	Y
59	2	32.1	101	157	93.2	38	4	4.8598	87	151
48	1	21.6	87	183	103.2	70	3	3.8918	69	75
72	2	30.5	93	156	93.6	41	4	4.6728	85	141
24	1	25.3	84	198	131.4	40	5	4.8903	89	206
50	1	23	101	192	125.4	52	4	4.2905	80	135
23	1	22.6	89	139	64.8	61	2	4.1897	68	97
36	2	22	90	160	99.6	50	3	3.9512	82	138
66	2	26.2	114	255	185	56	4.55	4.2485	92	63
60	2	32 1	83	170	110 /	12	Λ	1 1773	0.1	110

For some background information on the data, see this seminal paper:

Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499.

https://projecteuclid.org/euclid.aos/1083178935

Write **Python** scripts in order to complete the following tasks along with their output. All work should be done and submitted in a single **Notebook** (Jupyter or Colab).

- 1) Predict the feature 'y' using a single feature of 'X' (in the entire dataset) Find out which feature from 'X' should be used for the best prediction of 'y'.
- << Output >>:
 - Model's coefficients (slope, y-intercept)
 - The Linear Regressor Model (graph) plotting
 - The MSE (Mean Square Error)
- 2) Predict the feature 'y' using a pair feature of 'X' (in the entire dataset) Find out which pair feature from 'X' should be used for the best prediction of 'y'.
- << Output >>:
 - Model's coefficients (slope, y-intercept)
 - The Linear Regressor Model (graph) plotting.
 - The MSE (Mean Square Error)
- 3) Predict the feature 'y' using all (10) features of 'X' (in the entire dataset)
- << Output >>: Model's coefficients & The MSE (Mean Square Error)

4) Compute the training MSE and validation MSE when fitting the regressor in all features, for the following training set sizes: n_train = 20, n_train = 50, n_train = 100, n_train = 200

Extra Credit: Create another model by using the **XGBoost** library. Compare and contrast its results with the linear regressor (tasks 1-4).

Useful metadata information for each of the features of the dataset, listed below. Make sure you review it:

```
:Number of Attributes: First 10 columns are numeric predictive values
```

:Target: Column 11 is a quantitative measure of disease progression one year after baseline

:Attribute Information:

- age age in years
- sex
- bmi body mass index
- bp average blood pressure
- s1 tc, T-Cells (a type of white blood cells)
- s2 ldl, low-density lipoproteins
- s3 hdl, high-density lipoproteins
- s4 tch, thyroid stimulating hormone
- s5 ltg, lamotrigine
- s6 glu, blood sugar level

Based on Project #1