Lecture #11: Hierarchical Models

AM 207: Advanced Scientific Computing

Stochastic Methods for Data Analysis, Inference and Optimization

Fall, 2020

Outline

- 1. Review of Statistical Modeling
- 2. Motivation for Hierarchical Models
- 3. Hierarchical Models and Empirical Bayes

Review of Statistical Modeling

What We Can Do So Far: Models

- 1. (Likelihood Models with Observed Variables) When we have observed data $Y_{\rm Obs}$, we can model $Y_{\rm Obs}$ as a random variable $Y_{\rm Obs} \sim p(Y|\theta)$ with a known distribution p.
 - \bullet if Y_{Obs} is a label, we can model it as a Categorical or Bernoulli variable
 - if Y_{Obs} is a count, we can model it as a Binomial, Multinomial or Poisson
 - ullet if Y_{Obs} is continuous, we can model it as a Gaussian, Exponential, Dirichlet etc
- 2. (Likelihood Models with Latent Variables) When we also have unobserved data Z_{Latent} , we can model Z_{Latent} and Y_{Obs} jointly $p(Y_{\text{Obs}}, Z_{\text{Latent}} | \theta)$.
- 3. (Bayesian Models) When we are being Bayesian, we assume a prior for θ , encoding our knowledge and uncertainty about θ . We model parameters and data jointly $p(Y_{\text{Obs}}, \theta)$ or $p(Y_{\text{Obs}}, Z_{\text{Latent}}, \theta)$.

What We Can Do So Far: Inference

We can make statements about θ by performing:

- **I.** Maximum Likelihood Estimation: for likelihood models, we compute a fixed value θ_{MLE} that maximizes the likelihood of the observed data Y.
- II. Bayesian Inference: for Bayesian models, we compute the posterior distribution $p(\theta|Y)$.

We choose an *inference algorithm or method* to perform inference:

I. Maximum Likelihood Estimation:

- **A.** For models with observed variables, we analytically solve an unconstrained or contrained optimization problem to obtain $\theta_{\rm MLE}$.
- **B.** For latent variable models, we use **expectation maximization** to approximately find $\theta_{\rm MLE}$.

II. Bayesian Inference:

- **A.** If the prior and likelihood are *conjugate*, *analytically* derive the posterior distribution
- **B.** If the posterior distribution does not have a known form, sample from it using a *sampler*.
- **C.** If the posterior distribution does not have a known form, approximate it using **variational inference**.

What Can We Not Do?

- 1. (Regression Models) We don't have any models where some observed variables $Y_{\rm Obs}$ depend on other observed variables $X_{\rm Obs}$, i.e. none of our models have covariates that we condition on.
- **2.** (*Gradient Descent Methods*) Analytically optimizing the log-likelihood is not always possible, and when possible it is extremely annoying to do by hand. Can we find a way to black-box optimize any objective function?
- **3.** (Hamiltonian Monte Carlo) MCMC samplers can be extremely inefficient in high-dimensions where the samplers struggle to find area of high mass in the target distribution. Can we build a proposal distribution with an indicator of where the target distribution mass is located?
- **4.** (*Black-box Variational Inference etc*) Variational inference sounds like a great idea but maximizing the ELBO using coordinate ascent is an artisenal process that requires a massive amount of derivations per model. Can we find an algorithm to compute/estimate the gradient of the ELBO that is model independent? Can we perform black-box variational inference?

What Happens After Inference?

- 1. **(Predictive Evaluation)** In practice, we do not know the true model θ_{True} ! Thus, θ_{MLE} and $p(\theta|Y)$ cannot be evaluated by comparison to θ_{True} .
 - Maximimum Likelihood Estimation: we compute $\theta_{\rm MLE}$ on multiple bootstrap samples of the data; for each $\theta_{\rm MLE}$ we sample $Y \sim p(Y|\theta_{\rm MLE})$. We compare these samples with observed data $Y_{\rm Obs}$.
 - Bayesian Inference: we sample θ 's from the posterior, for each $\theta \sim p(\theta \mid Y^{ors})$ sample $Y \sim p(Y \mid \theta)$. We compare these posterior predictive samples with the observed data Y_{Obs} .
- 2. **(Uncertainty Evaluation)** Before making decisions with real-life consequence based on your model, you should check the precision of your estimate or uncertainty of you model.
 - Maximimum Likelihood Estimation: repeat the MLE computation on many bootstrap samples of $Y_{\rm Obs}$. Compute the confidence interval of θ and the predictive interval for Y. These intervals indicate precision.
 - Bayesian Inference: Compute credible intervals for the posterior $p(\theta|Y)$ and the predictive intervals of the posterior predictive. These intervals indicate model uncertainty.

The Modeling Process

Interpreting the Data Log-Likelihood

```
In [5]: fig, ax = plt.subplots(1, 2, figsize=(15, 5))
    prior_var = 10.
    ax, log_likelihood_bayes = mle_vs_bayesian(x_2, y_2, ax, prior_var=prior_var)
    plt.tight_layout()
    plt.show()
```


Evaluating and Quantifying Uncertainty

How do we know our model uncertainties (confidence intervals, credible intervals, predcitive intervals, posterior predictive intervals) are any good? What information about the data/model do we want our uncertainties to capture?

Epistemic Uncertainty: uncertainty due to small number of samples across all scenarios. This can be reduced by more samples!

Aleatoric Uncertainty: uncertainty due to the underlying randomness of the data generation process. This cannot be reduced no matter what.

Can we use log-likelihood of as a metric for the quality of predictive uncertainty?

```
In [6]: fig, ax = plt.subplots(1, 2, figsize=(15, 3))
    ax = mle_vs_bayesian(x_1, y_1, ax, prior_var=prior_var)
    plt.tight_layout()
    plt.show()
```


Motivation for Hierarchical Models

A Binomial Model for Movie Rankings

We model the number of likes Y_n received by the n-th movie as a binomial variable $Y_n | \theta_n \sim Bin(R_n, \theta_n)$, where R_n is the number of times the n-th movies was rated and θ_n is the "likeability" of the movie.

```
In [11]: #Print results of ranking
         print('Top 10 Movies')
         print('*************************')
         for movie, likes, total ratings, likable in top movies:
             print (movie, ':', likable, '({}/{})'.format(likes, total ratings))
         Top 10 Movies
         *******
         French Twist (Gazon maudit) (1995) : 1.0 (2.0/2.0)
         Exotica (1994): 1.0 (2.0/2.0)
         Three Colors: Red (1994): 1.0 (12.0/12.0)
         Three Colors: White (1994): 1.0 (8.0/8.0)
         Shawshank Redemption, The (1994): 1.0 (39.0/39.0)
         Brother Minister: The Assassination of Malcolm X (1994): 1.0 (1.0/1.0)
         Carlito's Way (1993): 1.0 (4.0/4.0)
         Robert A. Heinlein's The Puppet Masters (1994): 1.0 (2.0/2.0)
         Horseman on the Roof, The (Hussard sur le toit, Le) (1995): 1.0 (2.0/2.0)
         Wallace & Gromit: The Best of Aardman Animation (1996): 1.0 (6.0/6.0)
```


A Beta-Binomial Model for Movie Rankings

We model the number of likes Y_n received by the n-th movie as a binomial variable $Y_n | \theta_n \sim Bin(R_n, \theta_n)$, we model our prior beliefs and uncertainty about θ using a beta distribution $\theta_n \sim Beta(\alpha, \beta)$.

```
In [13]: print('{}: {} ({}/{})'.format(movie_name, likability, likes, total_ratings))
    fig, ax = plt.subplots(2, n, figsize=(18, 6))
    ax = plot_priors_with_posteriors(ax, beta_shapes, likes, total_ratings, samples)
    plt.tight_layout()
    plt.show()
```

French Twist (Gazon maudit) (1995): 1.0 (2.0/2.0)

Credible Intervals for Movies with the Most and the Least Number of Ratings

```
In [15]: fig, ax = plt.subplots(1, 1, figsize=(10, 5))
    ax = plot_credible_intervals(a, b, ax)
    plt.show()
```


Emprirical Bayes (ML-II) For the Beta-Binomial Model

Since the prior has a significant impact on the posterior when the number of ratings is small, we want to choose a prior that is appropriate for the data.

Idea: choose the hyperparameters α , β for the beta prior such that the expected likelihood of the data, over $\theta_n \sim Beta(\alpha, \beta)$, is maximized:

$$p(Y_1, \dots, Y_N | \alpha, \beta) = \prod_{n=1}^N \int_0^1 Bin(Y_n | R_n, \theta_n) Beta(\theta_n | \alpha, \beta) d\theta_n = \prod_{n=1}^N \binom{R_n}{Y_n} \frac{B(\alpha + Y_n, \beta + R_n - Y_n)}{B(\alpha, \beta)}$$

where B is the beta function. The marginal likelihood of the data $p(Y_1, \ldots, Y_N | a, b)$ is called **evidence**.

This method of choosing the hyperparameters of the prior based on the data is called *empirical Bayes* or *type-II maximum likelihood*.

Question: doens't this violate the principle of choosing the prior independent of the data?

Method of Moments for Empirical Bayes (ML-II)

Since each marginal $p(Y_n | \alpha, \beta)$ is a Beta-Binomial distribution, we know its first two moments:

$$\mathbb{E}[Y_n] = R_n \frac{\alpha}{\alpha + \beta}$$

$$\text{Var}[Y_n] = \frac{R_n \alpha \beta}{(\alpha + \beta)^2} \frac{\alpha + \beta + R_n}{\alpha + \beta + 1}$$

Now we can make the simplyfying approximations that the Y_n 's are iid data from the *same* binomial, i.e. all have the same moments as above. Then we can use empirical moments to approximate the theoretical moments and solve for α , β :

$$\widehat{\mathbb{E}}\left[\frac{Y_n}{R_n}\right] = \frac{\alpha}{\alpha + \beta}$$

$$\widehat{\text{Var}}\left[\frac{Y_n}{R_n}\right] = \frac{\alpha\beta}{\overline{R}_n(\alpha + \beta)^2} \frac{\alpha + \beta + \overline{R}_n}{\alpha + \beta + 1}$$

where $\widehat{\mathbb{E}}$ is sample mean and $\widehat{\mathrm{Var}}$ is sample variance and \overline{R}_n is the average total number of ratings.

Empirical Bayes and Shrinkage

Computing the hyperparameters α , β of the beta prior on θ from the data, allows the ratings rich movies to influence the prior of ratings poor movies, since all movies contribute to the empirical Bayes estimate.

As a result, the estimates from ratings poor movies tend to *shrink* towards the population mean more so than ratings rich movies.

```
In [17]: fig, ax = plt.subplots(1, 1, figsize=(10, 5))
    ax = plot_credible_intervals(alpha_eb, beta_eb, ax)
    plt.show()
```


Hierarchical Models and Empirical Bayes

A Hierarchical Model for Movie Rankings

We model the number of likes Y_n received by the n-th movie as a binomial variable $Y_n | \theta_n \sim Bin(R_n, \theta_n)$, we model our prior beliefs and uncertainty about θ using a beta distribution $\theta_n \sim Beta(\alpha, \beta)$; finally, we model our uncertainty about α , β using uniform distributions α , $\beta \sim U(0.5, 100)$:

$$\alpha, \beta \sim U(0.5, 100)$$
 $\theta_n | \alpha, \beta \sim Beta(\alpha, \beta)$
 $Y_n | \theta_n \sim Bin(R_n, \theta_n)$

This is an example of a *hierarchical model* -- a model with multiple layers of unknown variables.

There are overlaps between hierarchical models and latent variable models. Generally, we want the hiearchy in a *hierarchical model* to express scientifically meaningful conditional relationships. In *latent variable models* we want the latent variable to represent unknown aspects of the data rather than unknown parameters of our model.

Point Estimate Approximations of Inference in Hierachical Models (MAP-II)

The posterior of the hierarchical model for movie ratings is $p(\alpha, \beta, \theta_1, \dots, \theta_N | Y_1, \dots, Y_N)$, but since we know how θ_n is conditioned on α, β , it is often easier to marginalize out θ_n and work with $p(\alpha, \beta | Y_1, \dots, Y_N)$.

The central idea is that by infering the posterior $p(\alpha, \beta | Y_1, ..., Y_N)$, α and β are influenced by the entire data set and thus ratings poor movies can **borrow statistical strength** from ratings rich movies through the way θ_n depends on α , β .

However, performing full Bayesian inference on hierarchical models can be difficult. Thus, we can make a point estimate approximation of $p(\alpha, \beta | Y_1, ..., Y_N)$:

$$\alpha^*, \beta^* = \operatorname{argmax}_{\alpha,\beta} p(\alpha, \beta | Y_1, \dots, Y_N).$$

When we perform the usual Bayesian inference on $p(Y_n|\theta_n)p(\theta_n|\alpha^*,\beta^*)$, this is called the **type-II MAP method**.

But when α , β are uniform random varibles, the above becomes:

$$\alpha^*, \beta^* = \operatorname{argmax}_{\alpha,\beta} p(Y_1, \dots, Y_N | \alpha, \beta),$$

When we perform the usual Bayesian inference on $p(Y_n|\theta_n)p(\theta_n|\alpha^*,\beta^*)$, this is just our empirical Bayes or type-II MLE method!

