### Unit 4 Advanced Wireless Networks

6GZ71004 ADVANCED COMPUTER NETWORKS & OPERATING SYSTEMS

DR MOHAMMAD HAMMOUDEH

## Unit Outline

#### Introduction

#### Wireless

- 1. Wireless links, characteristics
  - i. CDMA
- 2. IEEE 802.11 wireless LANs ("wi-fi")
- 3. Cellular Internet Access
  - i. architecture
  - ii. standards (e.g., GSM)

### Mobility

- Principles: addressing and routing to mobile users
- 2. Mobile IP
- 3. Handling mobility in cellular networks
- Mobility and higher-layer protocols

### **Summary**



### wireless hosts

- Laptop, smart phone
- run applications
- may be stationary (non-mobile) or mobile
  - wireless does not always mean mobility



#### base station

- typically connected to wired network
- relay responsible for sending packets between wired network and wireless host(s) in its "area"
  - e.g., cell towers, 802.11 access points



### wireless link

- typically used to connect mobile(s) to base station
- also used as backbone link
- multiple access protocol coordinates link access
- various data rates, transmission distance

### Characteristics of selected wireless link standards





infrastructure mode

- base station connects mobiles into wired network
- handoff: mobile changes base station providing connection into wired network



- ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

# Wireless network taxonomy

|                               | single hop                                                                              | multiple hops                                                                                                                         |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| infrastructure<br>(e.g., APs) | host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet | host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>                                  |  |  |
| no<br>infrastructure          | no base station, no<br>connection to larger<br>Internet (Bluetooth,<br>ad hoc nets)     | no base station, no<br>connection to larger<br>Internet. May have to<br>relay to reach other<br>a given wireless node<br>MANET, VANET |  |  |

### Wireless Link Characteristics

#### Differences from wired link ....

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

### Wireless Link Characteristics

#### SNR: signal-to-noise ratio

 larger SNR – easier to extract signal from noise (a "good thing")

#### SNR versus BER tradeoffs

- given physical layer: increase power increase SNR->decrease BER
- given SNR: choose physical layer that meets BER requirement, giving highest thruput
  - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)



### Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):



### Hidden terminal problem

- B, A hear each other
- □ B, C hear each other
- A, C cannot hear each other means A, C unaware of their interference at B



### Signal attenuation:

- □ B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

## Code Division Multiple Access (CDMA)

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique "code" assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

## Unit Outline

#### Introduction

#### Wireless

- 1. Wireless links, characteristics
  - i. CDMA

## IEEE 802.11 wireless LANs ("wifi")

- 1. Cellular Internet Access
  - i. architecture
  - ii. standards (e.g., GSM)

### Mobility

- Principles: addressing and routing to mobile users
- Mobile IP
- 3. Handling mobility in cellular networks
- Mobility and higher-layer protocols

#### Summary

## IEEE 802.11 Wireless LAN

#### 802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps

#### 802.11ac

- 1.3Gbps
- to replace 802.11n by 2018

#### 802.11a

- 5-6 GHz range
- up to 54 Mbps

### 802.11g

- 2.4-5 GHz range
- up to 54 Mbps

### 802.11n: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

## 802.11 LAN architecture



- wireless host communicates with base station
  - base station = accesspoint (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
  - wireless hosts
  - access point (AP): base station
  - o ad hoc mode: hosts only

# 802.11: Channels, association

# 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies

- AP admin chooses frequency for AP
- interference possible: channel can be same as that chosen by neighboring AP!

### host: must associate with an AP

- scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
- selects AP to associate with
- may perform authentication
- will typically run DHCP to get IP address in AP's subnet

# 802.11: passive/active scanning



### Passive Scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent:H1 to selected AP
- (3) association Response frame sent: H1 to selected AP



### Active Scanning

- (1) Probe Request frame broadcast from H1
- (2) Probes response frame sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent: H1 to selected AP

# IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
  - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
  - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
  - can't sense all collisions in any case: hidden terminal, fading
  - goal: avoid collisions: CSMA/C(ollision)A(voidance)





### IEEE 802.11 MAC Protocol: CSMA/CA

### 802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

### 2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat

### 802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)



# Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
  - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
  - sender transmits data frame
  - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

## Collision Avoidance: RTS-CTS exchange



# 802.11 frame: addressing



Frame control field expanded (numbers indicate field length in bits):

| 2                | 2    | 4       | 1        | 1          | 1            | 1     | 1            | 1            | 1   | 1    |
|------------------|------|---------|----------|------------|--------------|-------|--------------|--------------|-----|------|
| Protocol version | Туре | Subtype | To<br>AP | From<br>AP | More<br>frag | Retry | Power<br>mgt | More<br>data | WEP | Rsvd |

Address 1: MAC address of wireless host or AP to receive this frame

Address 2: MAC address of wireless host or AP transmitting this frame

Address 3: MAC address of router interface to which AP is attached

Address 4: used only in ad hoc mode

# 802.11 frame: addressing



## 802.11 frame: more



## 802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
  - self-learning: switch will see frame from H1 and "remember" which switch port can be used to reach H1



# 802.11: advanced capabilities

### Rate Adaptation

dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies





- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

# 802.11: advanced capabilities

### Power Management

- node-to-AP: "I am going to sleep until next beacon frame"
  - AP knows not to transmit frames to this node
  - o node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-tomobile frames waiting to be sent
  - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

# 802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
  - slaves request permission to send (to master)
  - master grants requests
- 802.15: evolved from Bluetooth specification
  - 2.4-2.5 GHz radio band
  - up to 721 kbps



## Bluetooth

- An IEEE 802.15.1 network operates over a short range, at low power, and at low cost
- operate in the 2.4 GHz unlicensed radio band in a TDM manner,
   with time slots of 625 microseconds
- transmits on one of 79 channels,
- frequency-hopping spread spectrum (FHSS), spreads transmissions in time over the frequency spectrum. 802.15.1 can provide data rates up to 4 Mbp
- ad hoc networks
- devices are first organized into a piconet

# Zigbee

- standardized by the IEEE is the 802.14.5
- Technological Standard Created for Control and Sensor Networks
- Based on the IEEE 802.15.4 Standard
- Created by the ZigBee Alliance
- Zigbee is targeted at lower powered, lower-data-rate, lower-duty-cycle applications than Bluetooth

### IEEE 802.15.4 & ZigBee In Context



Stack

App

Silicon



### **ZigBee Alliance**

- "the software"
- Network, Security & Application layers
- Brand management

#### **IEEE 802.15.4**

- "the hardware"
- Physical & Media Access
   Control layers

Source:
http://www.zigbee.org/resources/documents/IWAS\_presentation\_M
ar04\_Designing\_with\_802154\_and\_zigbee.ppt

# Reading

**Dedicated Short-Range Communication** 

## 802.16: WIMAX

- like 802.11 & cellular: base station model
  - transmissions to/from base station by hosts with omni-directional antenna
  - base station-to-base station backhaul with point-to-point antenna
- unlike 802.11:
  - range ~ 6 miles ("city rather than coffee shop")
  - ~14 Mbps





## 802.16: WiMAX: downlink, uplink scheduling

- transmission frame
  - down-link subframe: base station to node
  - uplink subframe: node to base station



 WiMAX standard provide mechanism for scheduling, but not scheduling algorithm