BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

Image from https://seleritysas.com/blog/2019/12/06/preparing-for-the-future-of-data-analytics/ downloaded Jan 2023

Dataset Exploration – Part 4 PROJECT – REPORT

Document Summary

Document Item	Status			
Document Title	Project Report on Dataset Exploration Part 4			
Date Last Modified	4-April-2023			
Status	Final			
Document Description	This document provides a detailed analysis of Covid 19 survey student response dataset – Dataset Overview, Data Dictionary, Research Questions, Univariate Analysis, Coding, Datacleaning, Hypothesis Testing, Inferential Techniques (interpolation & extrapolation), Tracking status.			

Created By

Name & SID	
Ruchika Gupta	
SID: 200559617	

BDAT 1005	
Math For Data Analytics	

Acknowledgement

I'm overwhelmed with gratitude and humility for everyone who has helped me translate these concepts into something concrete that is much above the level of simple.

I want to express my sincere gratitude to my professor Dr. Ehsan Pourjavad for giving me the chance to complete this excellent project on the subject of "Data Exploration". This project also enabled me to conduct extensive research and learn about a variety of new topics. I truly appreciate them.

Any effort, no matter the degree, cannot be successfully performed without my daughter's support and my husband's guidance.

I want to thank my daughter for letting me spend hours gathering data and a variety of facts. Despite his busy schedule, my spouse gave me various suggestions for how to make this endeavor stand out.

Thanking You Ruchika Gupta BDAT 1005-01

Table of Contents

1.	Introduction 4
2.	Dataset Overview
3.	Data Dictionary6
4.	Research Questions
5.	F.I.N.E.R Framework 8
6.	Dependent / Independent Variables
7.	Assumptions
8.	Coding of categorical variables
9.	Univariate Analysis
10.	Data Cleaning
11.	Development of Hypothesis
12.	Hypothesis Testing
•	t – Test 1, ANOVA Testing, t – Test 2, Chi-Square Test, Odds Ratio
13.	Inferential Techniques
•	Linear Regression Analysis (Predictive)
•	Logistic Regression Analysis
14.	Discussion
15.	Conclusion
16.	Project Tracking
17.	References

BDAT 1005	
Math For Data Analytics	

Introduction

COVID-19 and Its Impact on Students

Due to my expertise in education, I am constantly worried about how well students are learning, which is what motivates me to do this analysis.

The COVID-19 epidemic has had a significant impact on students' lives. Their way of life has drastically changed because of switching from traditional classroom instruction to online education during the lockdown.

All students, regardless of age group, have been impacted by this quick evolution on such a huge scale. Students' academic performance, social lives, and mental health would all be significantly impacted by the disease's spread, travel bans, and the shutdown of educational facilities across the nation. The COVID-19 pandemic has had a greater negative impact on kids from less fortunate families.

I will investigate how the COVID-19 pandemic might affect the lives of students in this analysis. I'll try to determine whether there is a significant disparity between ambitions and the actual adoption of these online education rules at the local level. Additionally, I'll try to evaluate the mental health of pupils in various age groups using a variety of criteria, such as sleeping patterns, a daily exercise schedule, and social support. In addition, I will examine several coping techniques employed by pupils to handle the current circumstance.

BDAT 1005	
Math For Data Analytics	

Dataset Overview

Covid19 and its impact on students by Kaggle

(https://www.kaggle.com/kunal28chaturvedi/covid19-and-its-impact-on-students)

1182 students from various age groups and educational institutions in Delhi National Capital Region serve as the sample size for a cross-sectional survey that is being undertaken for this analysis.

This dataset, which is made up of 19 distinct variables, shows students':

- General demographics, such as age and place of residence.
- Details on the daily schedule of online learning in Indian educational
 institutions after the changeover from offline learning, including average
 daily online study time (hours), the average daily online study time (hours),
 and the average daily self-study time (hours).
- Evaluation of the online learning experience to determine the degree of student satisfaction.
- Evaluation of health because of lifestyle changes: average daily sleep time (hours), change in weight, average daily exercise time (hours), number of meals per day, and other factors including family cohesion and stress management techniques used during the epidemic.

BDAT 1005	
Math For Data Analytics	

Data Dictionary

This document will list the names, attributes and description of the various variables used in this dataset.

S.No.	Variables	Categorical / Numerical	Туре	Missing/ Invalid Values	Description
1	ID	Categorical	Nominal Polytomous	0	Unique alpha numeric word represents the identity of a student
2	Region of residence	Categorical	Nominal Dichotomous	0	represents region where student resides
3	Age of Subject	Numerical	Ratio Discrete	0	It shows the age of the student
4	Time spent on Online Class	Numerical	Ratio Continuous	0	It shows number of hours a student spent on Online classes
5	Rating of Online Class experience	Categorical	Ordinal Polytomous	24	represents the level of satisfaction a student had with Online Classes
6	Medium for online class	Categorical	Nominal Polytomous	51	shows the device used by a student to attend online classes
7	Time spent on self-study	Numerical	Ratio Continuous	0	It displays number of hours a student spent on Self learning during Covid 19
8	Time spent on fitness	Numerical	Ratio Continuous	0	It shows number of hours a student gave for his/her fitness during pandemic
9	Time spent on sleep	Numerical	Ratio Continuous	0	It displays number of hours a student took the sleep during pandemic
10	Time spent on social media	Numerical	Ratio Continuous	0	It shows number of hours a student spent on Social media platforms during epidemic era
11	Preferred social media platform	Categorical	Nominal Polytomous	0	It shows, which social media platform liked by a student most
12	Time spent on TV	Numerical	Ratio Continuous	0	It displays number of hours a student spent in watching TV throughout Covid 19 era
13	Number of meals per day	Numerical	Ratio Discrete	0	It shows how many times a student took his/her meal
14	Change in your weight	Categorical	Ordinal Polytomous	0	represents change in the weight of a student during pandemic
15	Health issue during lockdown	Categorical	Nominal Dichotomous	0	shows whether a student faced any health issue or not during lockdown

BDAT 1005	
Math For Data Analytics	

16	Stress busters	Categorical	Nominal Polytomous	0	Represents activities chosen by students to release their stress
17	Time utilized	Categorical	Nominal Dichotomous	0	shows whether that time was actually utilized by a student or not
18	Do you find yourself more connected with your family, close friends, relatives?	Categorical	Nominal Dichotomous	0	displays if student felt more connected to their family and pals
19	What you miss the most	Categorical	Nominal Polytomous	1	shows what students missed the most during pandemic

Research Questions

If we do not understand what conclusions to draw from the data, the analysis will be ineffective. By interpreting a dataset incorrectly, we run the risk of making a poor choice regarding a crucial matter. Therefore, it is critical for the analyst to create solid (F.I.N.E.R) research questions.

For this analysis my research questions would be the following:

Question 1

What kind of learning environment do pupils currently have to deal with due to the epidemic?

Supporting Question:

• How pandemic affected the level of satisfaction among students?

BDAT 1005	
Math For Data Analytics	

• What are the psychological effects on students due to Covid 19 outbreak?

Question 2

In this epidemic era, how are students' online class situations?

Supporting Questions:

- What are the main worries about online learning?
- What is the level of availability of digital infrastructure and skill set for online learning during epidemic era?

Question 3

How are each school level's students behaving in terms of their health?

Supporting Question:

 How can the stress levels of children at each level of school be measured during the pandemic?

F.I.N.E.R Framework

Feasible: The above research questions are <u>Feasible</u> enough as their scope leads to an attainable objective using adequate pool of sampling.

Interesting: The above research questions are for sure <u>Interesting</u> as they serve the immediate needs of education domain.

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

Novel: The above research questions are <u>Novel</u> as they will make meaningful contribution to the current situation of education domain.

Ethical: The above research questions are <u>Ethical</u> as there is no risk to participate under this analysis.

Relevance: The above research questions are <u>Relevant</u> as they guide future research endeavors.

Dependent / Independent Variables

My analysis will be based on the following factors, which are based on my research questions:

Independent Variable:

1. Student's level of School

Dependent Variables:

- 1. Time spent on Online Class
- 2. Time spent on Self Study
- 3. Time spent on sleep
- 4. time spent on social media
- 5. Rating on Online Class
- 6. Student's self study vs social media orientation
- 7. Is there enough time for the student to study?
- 8. Does the student have a regular sleeping pattern?

BDAT 1005	
Math For Data Analytics	

9. Do students spend more time on social media and TV than on independent study and online classes?

Assumptions

1. Dummy variable: Level of School

Created a dummy variable <u>"Level of School"</u> classified by the age of students as per the need of research questions.

Classified students by age

- 0 11 (Elementary School Students)
- 12-14 (Junior High School Students)
- 15-17 (Senior High School Students)
- 18 > (College Students)

2. Removed Following Columns as they don't have any relevance to the research questions

- Do you find yourself more connected with your family, close friends, relatives?
- What you miss the most

BDAT 1005	
Math For Data Analytics	

Coding

1. Rating of online class experience

Rating	Code
Average	3
Excellent	5
Good	4
Poor	2
Very poor	1

2. Medium for online class

Device	Code
Any Gadget	1
Laptop/Desktop	2
Smartphone	3
Smartphone or Laptop/Desktop	4
Tablet	5

3. Change in Weight

Weight	Code
Decreased	1
Increased	3

BDAT 1005	
Math For Data Analytics	

Remain Constant 2

4. Preferred social media platform

Social Media	Code
Elyment	1
Facebook	2
Instagram	3
Linkedin	4
None	5
Omegle	6
Quora	7
Reddit	8
Snapchat	9
Talklife	10
Telegram	11
Twitter	12
Whatsapp	13
Youtube	14

5. <u>Health issues / Time Utilized</u>

Health/Time Utilized	Code
No	0

BDAT 1005	
Math For Data Analytics	

Var	1
res	1

Univariate Analysis

a) Categorical (Qualitative) Variables

1. Level of School

Level of Student	Count of Level of Student
College	880
Senior High School	162
Junior High School	125
Elementary School	15
Grand Total	1182

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

2. Rating of online class experience

Rating of Online Class	Count of Rating of
experience	Online Class experience
Very poor	413
Average	387
Good	230
Excellent	98
Poor	30
NA	24
Grand Total	1182

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

3. Medium for online class

Medium for online class	Count of Medium for online class
Laptop/Desktop	545
Smartphone	539
NA	51
Tablet	37
Any Gadget	5
Smartphone or	
Laptop/Desktop	5
Grand Total	1182

BDAT 1005	
Math For Data Analytics	

4. Preferred social media platform

Preferred s	ocial media	Count of Preferred social
platform		media platform
Instagram		352
Whatsapp		337
Youtube		314
Linkedin		61
Facebook		52
Twitter		28
None		17
Snapchat		8
Reddit		5
Telegram		3
None		1
Talklife		1
Elyment		1
Omegle		1
Quora		1
Grand Tota	n l	1182

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

5. Change in Weight

	Count of Change in
Change in your weight	your weight
Remain Constant	45.26%
Increased	37.06%
Decreased	17.68%
Grand Total	100.00%

BDAT 1005	
Math For Data Analytics	

6. Health issues during Lockdown

Health issue during lockdown	Count of Health issue during lockdown
NO	1021
YES	161
Grand Total	1182

7. Time Utilized

Time utilized	Count of Time utilized
NO	608
YES	574
Grand Total	1182

BDAT 1005	
Math For Data Analytics	

b) Numerical Variables

1. Time spent on online classes

Time spent on Online Classes	
Mean	3.208840948
Standard Error	0.061132705
Median	3
Mode	4
Standard Deviation	2.101756274
Sample Variance	4.417379434
Kurtosis	-0.281460036
Skewness	0.366112449
Range	10
Minimum	0
Maximum	10
Sum	3792.85
Count	1182

- High Variance
- Positive Skewness
- Low Kurtosis

BDAT 1005	
Math For Data Analytics	

2. Time spent on self-study

Time Spent on Self study	
Mean	2.911590525
Standard Error	0.062262247
Median	2
Mode	2
Standard Deviation	2.140590185
Sample Variance	4.582126342
Kurtosis	5.451284331
Skewness	1.732713865
Range	18
Minimum	0
Maximum	18
Sum	3441.5
Count	1182

- High Variance
- Positive Skewness
- High Kurtosis

BDAT 1005	
Math For Data Analytics	

3. Time spent on fitness

Time Spent on fitness	
Mean	0.765820643
Standard Error	0.021071748
Median	1
Mode	1
Standard Deviation	0.724451472
Sample Variance	0.524829936
Kurtosis	1.582343265
Skewness	0.968172909
Range	5
Minimum	0
Maximum	5
Sum	905.2
Count	1182

- Low Variance
- Positive Skewness
- Low Kurtosis

BDAT 1005	
Math For Data Analytics	

4. Time spent on sleep

Time Spent on Sleep		
Time Spent o	п зіеер	
Mean	7.871235195	
Standard Error	0.046996846	
Median	8	
Mode	8	
Standard Deviation	1.61576222	
Sample Variance	2.61068755	
Kurtosis	1.007620845	
Skewness	0.735499394	
Range	11	
Minimum	4	
Maximum	15	
Sum	9303.8	
Count	1182	

- Low Variance
- Positive Skewness
- Low Kurtosis

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

5. Time spent on social media

Time Spent on Social media	
Mean	2.365693739
Standard Error	0.051405599
Median	2
Mode	1
Standard Deviation	1.767336142
Sample Variance	3.123477037
Kurtosis	3.86399237
Skewness	1.699306818
Range	10
Minimum	0
Maximum	10
Sum	2796.25
Count	1182

- High Variance
- Positive Skewness
- Low Kurtosis

BDAT 1005	
Math For Data Analytics	

6. Time spent on TV

Time Spent on TV	
N.4	4 024572604
Mean	1.021573604
Standard Error	0.036766156
Median	1
Mode	0
Standard Deviation	1.26402877
Sample Variance	1.597768733
Kurtosis	16.05917791
Skewness	2.690825489
Range	15
Minimum	0
Maximum	15
Sum	1207.5
Count	1182

- Low Variance
- Positive Skewness
- High Kurtosis

BDAT 1005	
Math For Data Analytics	

Data Cleaning

a) Handling of Missing Values or Invalid Values

Variable	Missing Value
Rating of Online Class Experience	24
Medium of Online Class	51

Since missing values are less than 25% and these are categorical variables, so these values are **replaced by mode (most frequent value).**

b) Handling of Outliers

1. Time spent on online classes

Outlier	Positive
3Q + 1.5IQR	9.5
IQR	3

BDAT 1005	
Math For Data Analytics	

2. Time spent on self-study

IQR	2
3Q + 1.5IQR	7
Outlier	Positive

3. Time spent on fitness

IQR	1
3Q + 1.5IQR	2.5
Outlier	Positive

BDAT 1005	
Math For Data Analytics	

Dataset Exploration - Part 4

4. Time spent on sleep

1Q - 1.5IQR Outlier	3.5 Positive and
3Q + 1.5IQR	12.5
IQR	2

5. Time spent on social media

Outlier	Positive
3Q + 1.5IQR	6.5
IQR	2

BDAT 1005	
Math For Data Analytics	

6. Time spent TV

IQR	2
3Q + 1.5IQR	5.5
Outlier	Positive

Data After Cleaning

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

Hypothesis Development

Research Question:

In this epidemic era, how are students' online class situations?

1. Hypothesis:

Time spent by a student on online classes during lockdown has a significant impact on the actual time utilization of the student.

Null Hypothesis (H₀):

There is no significant difference among time spent on online classes and actual time utilised by the student.

Research Question:

How are each school level's students behaving in terms of their learning?

2. Hypothesis:

Time spent by a student on social media during lockdown will depend on the school/college level of the student.

Null Hypothesis (H₀):

Level of a student have no impact on time spent by him/her on social media platforms.

BDAT 1005	
Math For Data Analytics	

3. Hypothesis:

Time spent by a student on his/her fitness during lockdown will be a factor for the occurrence of health issues.

Null Hypothesis (H₀):

There is no significant impact on health due to time spent on fitness and mean difference among groups of health issues occurred by chance.

Research Question:

How pandemic affected the level of satisfaction among students?

4. Hypothesis:

Actual time utilised by a student during pandemic is effected by the occurrence of health issues with the student.

Null Hypothesis (H₀):

There is no significant difference among actual time utilisation and occurrence of health issues.

5. **Hypothesis:**

Region of residence of a student is one the cause for the occurrence of health issues in student.

Null Hypothesis (H₀):

Region of residence has no impact on the occurrence of health issues.

BDAT 1005	
Math For Data Analytics	

Hypothesis Testing

1. Hypothesis:

Time spent by a student on online classes during lockdown has a significant impact on the actual time utilization of the student.

Null Hypothesis (H₀):

There is no significant difference among time spent on online classes and actual time utilised by the student.

This hypothesis consist one categorical (dichotomous) variable and one quantitative variable, also both groups have different number of observations and variance, therefore we will perform <u>t-Test</u> <u>assuming unequal variance</u> on it.

t- Test:

t	-Test: Two	-Samnle	Δssiiming I	Inequal '	Variances

	No	Yes
Mean	3.015460526	3.36489547
Variance	4.553096657	3.895593619
Observations	608	574
Hypothesized Mean Difference	0	
df	1180	
t Stat	-2.924639066	
P(T<=t) one-tail	0.001757236	
t Critical one-tail	1.646145977	
P(T<=t) two-tail	0.003514473	
t Critical two-tail	1.961976413	

BDAT 1005	
Math For Data Analytics	

Since p-value is less than alpha, i.e. p-value < 0.05, we will reject the null hypothesis.

Which means a student's actual time utilisation will get effected by his/her time spent on online classes.

2. **Hypothesis:**

Time spent by a student on social media during lockdown will depend on the school/college level of the student.

Null Hypothesis (H₀):

Level of a student have no impact on time spent by him/her on social Media platform.

Since this hypothesis consist one categorical (Polytomous) variable (Independent) and one quantitative variable (Dependent), we will perform ANOVA Test on it.

Note: Level of student is self-categorised variable using age.

BDAT 1005	
Math For Data Analytics	

ANOVA Testing:

Anova: SingleFactor

SUMMARY

Groups	Count	Sum	Average	Variance
College	880	2071.9	2.35443182	1.85355827
Elementary School	15	17.5	1.16666667	0.70238095
Junior High School	125	191.05	1.5284	1.18469097
Senior High School	162	273.8	1.69012346	1.59356644

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	133.698693	3	44.566231	25.7023466	4.16024E-16	2.61245726
Within Groups	2042.57693	1178	1.73393627			
Total	2176.27562	1181				

Since p-value is less than alpha, i.e. p-value < 0.05, we will reject the null hypothesis.

Which means time spent by a student on social media during lockdown will be impacted by the school/college level of the student.

BDAT 1005	
Math For Data Analytics	

3. **Hypothesis:**

Time spent by a student on his/her fitness during lockdown will be a factor for the occurrence of health issues.

Null Hypothesis (H₀):

There is no significant impact on health due to time spent on fitness and mean difference among groups of health issues occurred by chance.

This hypothesis consist one categorical (dichotomous) variable and one quantitative variable, also both groups have different number of observations and variance, therefore we will perform <u>t-Test</u> <u>assuming unequal variance</u> on it.

t- Test:

t-Test: Two-Sample Assuming Unequal	Variances
-------------------------------------	-----------

No	Yes
0.730264447	0.637267081
0.386646891	0.436227484
1021	161
0	
207	
1.67347496	
0.047872137	
1.652248086	
0.095744273	
1.971490392	
	0.730264447 0.386646891 1021 0 207 1.67347496 0.047872137 1.652248086 0.095744273

Since p-value is more than alpha, i.e. p-value > 0.05, we cannot reject the null hypothesis.

Which means there is no significant difference among health issues and time spent on fitness, i.e. mean differences occurred by chance. BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

4. Hypothesis:

Actual time utilised by a student during pandemic is effected by the occurrence of health issues with the student.

Null Hypothesis (H₀):

There is no significant difference among actual time utilisation and occurrence of health issues.

Since this hypothesis consist both categorical (dichotomous) variables, we will perform Chi-square Test on it.

Chi-square Testing:

Actual values			
Count of ID	Time Utilized		
Health Issues	YES	NO	Grand Total
YES	59	102	161
NO	515	506	1021
Grand Total	574	608	1182

BDAT 1005	
Math For Data Analytics	

Expected values			
Row Labels	Yes	No	Grand Total
Yes	78.18443316	82.81556684	161
No	495.8155668	525.1844332	1021
Grand Total	574	608	1182

Chi-square			
Row Labels	Yes	No	Grand Total
Yes	4.70736259	4.444121919	
No	0.742297137	0.7007871	
Grand Total			10.59456875

0.001134204

p-value for Chi-square

Since p-value is less than alpha, i.e. p-value < 0.05, we will reject the null hypothesis.

Which means if a student face a health issue during pandemic his/her actual time utilised will be effected.

BDAT 1005	
Math For Data Analytics	

5. **Hypothesis:**

Region of residence of a student is one the cause for the occurrence of health issues in student.

Null Hypothesis (H₀):

Region of residence has no impact on the occurrence of health issues.

Since this hypothesis consist both categorical (dichotomous) variables, we will perform Chi-square Test on it.

Odds Ratio Testing:

Count of ID	Health Issues			
Region of Residence	NO	YES	Grand Total	
Delhi-NCR	635	86	721	
Outside Delhi-NCR	386	75	461	
Grand Total	1021	161	1182	

Odds Ratio	(a*d)/(b*c)	1.4346608	0.697028871	Inverted
Odds Mallo	(a u)/(b b)	1.7370000	0.037020071	IIIVEILEG

Confidence Interval of OR

 $exp(In(OR\pm(Z_{\alpha/2})^*SE(In(OR))))$ WHERE SE(In(OR)) is sqrt(1/a+1/b+1/c+1/d)) In(OR) = 0.360928447 SE(In(OR)) = 0.170665512 $for CL 95\%, Z_{\alpha/2}$ is $Z_{\alpha/2} = 1.96$ 1.96 SDLower
bound: 1.026776253 Upper bound: 2.004576568

BDAT 1005	
Math For Data Analytics	

Odds ratio = 1.43

Confidence Interval with 95% confidence: 1.02 - 2.00

Which means a student belongs to Delhi-NCR is 1.43 times more likely to have a health issue during lockdown.

BDAT 1005	
Math For Data Analytics	

Inferential Techniques

Inferential statistics allow us to make predictions based on observed data.

- Generalizing about a population based on sample data (interpolation)
- Predicting future results from historical data (extrapolation)

Here, I am using Multivariate Regression analysis on my dataset.

1. Linear Regression Analysis (Predictive)

In this analysis, I will find how different factors are affecting a student's time spent on self-study and later I will, make the prediction for this attribute.

Dependent variable : Time spent on self-study (y) – Continuous in nature

Independent variables:

- Time spent on online classes (x₁)
- Time spent on social media (x₂)
- Time spent on $TV(x_3)$

Regression Statistics:

Regression Statistics	
Multiple R	0.22584656
R Square	0.05100667
Adjusted R Square	0.04858988
Standard Error	1.51234044
Observations	1182

BDAT 1005	
Math For Data Analytics	

ANOVA

	df	SS	MS	F	Significance F
Regression	3	144.813227	48.2710756	21.105121	2.5486E-13
Residual	1178	2694.2905	2.2871736		
Total	1181	2839.10373			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	<i>Upper</i> 95.0%
Intercept	2.59843306	0.11938577	21.7650143	1.504E-88	2.36420058	2.83266554	2.36420058	2.83266554
Time spent on online study	0.11766154	0.02154168	5.46204144	5.7381E-08	0.0753972	0.15992588	0.0753972	0.15992588
Time spent on social media	-0.1356919	0.03282497	-4.1338022	3.8208E-05	-0.2000939	-0.07129	-0.2000939	-0.07129
Time spent on TV	-0.1115714	0.04200917	-2.655882	0.00801691	-0.1939926	-0.0291503	-0.1939926	-0.0291503

From the above statistics, we can see:

p-value is less than alpha, i.e. p-value < 0.05, we can say that variables Time spent on online classes, Time spent on social media, Time spent on TV has a significant impact on **Time spent on self-study.**

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

Also,

Intercept $(b_0) = 2.5984331$

Coeff. of time spent on online classes $(b_1) = 0.11766154$

Coeff. of time spent on social media $(b_2) = -0.135691949$

Coeff. of time spent on TV $(b_3) = -0.111571404$

Regression linear equation is:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + ... + b_n x_n$$

So, in this case regression linear equation becomes:

 $y = 2.5984331 + 0.11766154*(x_1) - 0.135691949*(x_2) - 0.111571404*(x_3)$

Prediction

Prediction for Time spent on self-study if:

Time spent on online class = 4 hrs

Time spent on social media = 2 hrs

Time spent on TV = 1 hr

BDAT 1005	
Math For Data Analytics	

Time spent on self-study

- = 2.5984331 + 0.11766154*(4) 0.135691949*(2) 0.111571404*(1)
- = 2.450800878
- **= 2.5 Hours**

Assumption of Linear Regression Model:

• **Linearity:** There is a linear relationship between dependent variable, Time spent on self-study and independent variables, time spent on online classes, time spent on social media, time spent on TV.

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

• **Homoscedasticity:** The variance of residual is constant across all values of Time spent on online classes, Time spent on social media, Time spent on TV.

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

BDAT 1005	
Math For Data Analytics	

- **Independence:** From the above charts we can see all the observations are independent of each other.
- **Normality:** The values of Time spent on self-study are normally distributed across all values of Time spent on online classes, on social media and on TV.

BDAT 1005	
Math For Data Analytics	

2. Logistic Regression Analysis

In this analysis, I will find how Change in weight impacted Health issues occurred in student's during lockdown.

Dependent variable : Health Issues (y) – Binary in nature

Independent variables: Change in weight (x)

Since we are supposed to use MS Excel as a tool for this course, so to get the results of logistic regression, we need to do the linear regression analysis on this first and then we can **tune the values of intercept and slope** accordingly.

Regression Statistics:

Regression Statistics					
Multiple R	0.07665731				
R Square	<mark>0.00587634</mark>				
Adjusted R Square	0.00503387				
Standard Error	0.34229162				
Observations	1182				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	0.81722444	0.81722444	6.97507377	0.00837445
Residual	1180	138.252996	0.11716356		
Total	1181	139.07022			

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.2169945	0.03216775	6.74571577	2.3797E-11	0.15388213	0.28010686	0.15388213	0.28010686
Change in weight	-0.0368251	0.01394343	-2.6410365	0.00837445	-0.0641818	-0.0094684	-0.0641818	-0.0094684

From the above statistics, we can see:

p-value is less than alpha, i.e. p-value < 0.05, we can say that variable **Change in weight** has a significant impact on **Health Issues** occurred in students during Lockdown.

Also,

Intercept = $b_0 = 0.2169945$

Coeff. of Change in weight = $b_1 = -0.0368251$

Regression linear equation is:

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + b_3 * x_3 + ... + b_n * x_n$$

So, in this case regression linear equation becomes:

Regression score (y) = 0.2169945 - 0.0368251 * (x)

BDAT 1005	
Math For Data Analytics	

But we need to calculate Logit score. To get that score in MS Excel, I followed the steps stated below:

- We first calculate regression score for all the observations.
- Then calculate **Probability value** for all the observations as

$$\mathbf{P} = \mathbf{e}^{\mathbf{y}} / (1 + \mathbf{e}^{\mathbf{y}})$$

- Then calculate **Likelihood value** as if student has health issue, then insert value of y, else (1 y).
- Next, calculate **Log Likelihood** as Log of Likelihood value.
- Then, calculate maximum sum of Log-Likelihood and tune the values of Intercept & coeff. of change in weight by using Solver tool under Data Analysis tab.

	А	В	С	D	E	F	G	Н
1	Intercept	Change in weight					-337.0238475	
2	-1.08483	-0.292823472					Maximum sum of Log-Likelyhood	
		Change in your	Health issue during					
3	ID	weight(x)	lockdown	Logit Score (y1)	Probality Value	Likelihood	Log-Likelyhood	
4	R0001	3	0	-1.96330042	0.12311031	0.87688969	-0.131374076	
5	R0002	1	0	-1.377653475	0.201386126	0.79861387	-0.224877712	
6	R0003	2	0	-1.670476948	0.1583606	0.8416394	-0.172403622	
7	R0004	1	0	-1.377653475	0.201386126	0.79861387	-0.224877712	
8	R0005	2	0	-1.670476948	0.1583606	0.8416394	-0.172403622	
9	R0006	1	1	-1.377653475	0.201386126	0.20138613	-1.602531187	
10	R0007	3	0	-1.96330042	0.12311031	0.87688969	-0.131374076	
11	R0008	3	1	-1.96330042	0.12311031	0.12311031	-2.094674496	
12	R0009	3	0	-1.96330042	0.12311031	0.87688969	-0.131374076	
13	R0010	1	1	-1.377653475	0.201386126	0.20138613	-1.602531187	
14	R0011	2	0	-1.670476948	0.1583606	0.8416394	-0.172403622	
15	R0012	3	1	-1.96330042	0.12311031	0.12311031	-2.094674496	

BDAT 1005	
Math For Data Analytics	

By doing so, we get maximum sum of Log-Likelihood as -337.023

After tunning we get the values of Intercept & Coeff. as

Intercept
$$(b_0) = -1.08483$$

Coeff. of Change in weight $(b_1) = -0.292823472$

Now, equation becomes:

Logit score
$$(y1) = -1.08483 - 0.292823472(x)$$

Assumption of Regression Model:

• Linearity: There is a linear relationship between dependent variable, Health Issues, and independent variable Change in weight.

BDAT 1005	
Math For Data Analytics	

• **Homoscedasticity:** The variance of residual is constant across all values of Change in weight.

- **Independence:** From the above charts we can see all the observations are independent of each other.
- Normality: The values of variable Health Issues are normally distributed across all values of Change in weight.

BDAT 1005	
Math For Data Analytics	

Discussion

In this analysis, first research question was:

What kind of learning environment do pupils currently have to deal with due to the epidemic?

Assessment of Online Learning

Time spent on Online Classes

Groups	Count	Sum	Average	Variance
College	880	2454.3	2.78897727	3.77546994
Elementary School	15	48	3.2	2.02857143
Junior High School	125	506.75	4.054	3.12256452
Senior High School	162	755.8	4.6654321	4.41153056

By looking at the analysis, which states:

Elementary School - Mean: 3.2 hours

Junior High School - Mean: 4.1 hours

Senior High School - Mean: 4.6 hours

College - Mean: 2.8 hours

College students, who are supposedly enrolled in a higher level of education, spend the least amount of time in online classes—even less than kids in elementary school—so the relationship between level of education and time spent online is ambiguous.

We can observe that schools do not place a high priority on online learning, and students spend a wide range of amounts of time in online classes.

BDAT 1005	
Math For Data Analytics	

Meaning that there are different amounts of time that each student spends engaging in online learning depending on the level of education.

	Online Class experience					
Level of school	Average	Excellent	Good	Poor	Very poor	Grand Total
College	32.4%	4.4%	16.0%	3.0%	<mark>44.2%</mark>	100.0%
Elementary School	33.3%	33.3%	33.3%	0.0%	0.0%	100.0%
Junior High School	25.6%	32.0%	<mark>36.0%</mark>	0.0%	6.4%	100.0%
Senior High School	<mark>40.1%</mark>	8.6%	24.1%	2.5%	24.7%	100.0%

When the distribution of ratings for online learning was examined, the data was homogenous, indicating that the data had a significant trend value.

Online learning is of higher quality at lower grade levels.

College students spend the least amount of time learning online, and they rate online classes the worst.

Based on the amount of time spent in an online class and the rating given, it causes college students to have the worst online class quality.

Based on the amount of time spent in the online class and the rating it received, elementary school students had the best online class quality.

BDAT 1005	
Math For Data Analytics	

In this analysis, second research question was:

In this epidemic era, how are students' online class situations?

		Device used to attend online classes					
Level of School	Any Gadget	Laptop/Desktop	Smartphone	Smartphone or Laptop/Desktop	Tablet	Grand Total	
College	0.3%	<mark>57.6%</mark>	40.6%	0.0%	1.5%	100.0%	
Elementary School	0.0%	40.0%	<mark>46.7%</mark>	6.7%	6.7%	100.0%	
Junior High School	0.8%	22.4%	<mark>63.2%</mark>	1.6%	12.0%	100.0%	
Senior High School	0.6%	34.0%	<mark>59.3%</mark>	1.2%	4.9%	100.0%	

If we talk about the medium used for online study, the majority of students at College level used Laptop/Desktop and students at the lower level used Smartphone to study online. A very less percentage of students used Tablets to attend classes.

Medium Used	Number	Mean	Lower 95%	Upper 95%	P-value
Laptop/Desktop	545	3.4347706	3.2541536	3.6153877	
Smartphone	539	3.0688312	2.9007125	3.2369499	0.0002*
Tablet	37	4.2972973	3.6310902	4.9635044	

BDAT 1005	
Math For Data Analytics	

With regard to the time spent in online classes, there was a statistically significant difference between the various mediums used (P=0.0002). As shown above, 4.29 hours was the average time spent on online classes using tablets, 3.43 hours when using laptop/desktop, and 3.06 hours when using smartphones.

In this analysis, third research question was:

How are each school level's students behaving in terms of their health?

Average Time spent on sleep								
College		Elementary School		Junior High School		Senior High School		
Mean Standard	7.821454629	Mean	8.37777778	Mean	8.1463332	Mean	7.53298345	
Error	0.069120624	Standard Error	0.232006811	Standard Error	0.0954707	Standard Error	0.0120939	
Median Standard	7.761006289	Median Standard	8.33333333	Median Standard	8.2033898	Median Standard	7.54166667	
Deviation	0.119720432	Deviation	0.401847585	Deviation	0.1653601	Deviation	0.02094726	
Minimum	7.744010417	Minimum	8	Minimum	7.96	Minimum	7.50909091	
Maximum Confidence	7.959347181	Maximum Confidence	8.8	Maximum Confidence	8.2756098	Maximum Confidence	7.54819277	
Level(95.0%)	0.29740204	Level(95.0%)	0.99824474	Level(95.0%)	0.4107773	Level(95.0%)	0.05203587	

If we examined the average amount of time spent sleeping, all pupils slept for the recommended amount of time.

However, if we examined the minimum, maximum, errors, and distribution of the data, we found that a small number of students tended to spend more time sleeping. (bigger than 8 hours).

BDAT 1005	
Math For Data Analytics	

Change in Weight	Number of students
Decreased	17.7%
Increased	37.1%
Remain Constant	45.3%

Further if we analyse the change in body weight within this period, 37.1% reported an increase in weight, 17.7% reported a decrease in weight, and 45.3% reported no change in weight.

Alarmingly, 51.4% of respondents said they wasted time while the school was under lockdown. Additionally, their regular physical routines, social interactions, and sleeping patterns all had a big impact on their health.

Conclusion

Our findings in this study suggested that the Covid-19 outbreak has had a substantial effect on students' mental health, education, and everyday routines.

The Covid-19-related pauses highlight important issues and give a chance to better assess potential solutions in the educational field.

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

Project Tracking

Project		Deliverables				
TASK	DESCRIPTI ON	DELIVERABLE	% DONE	PRIORITY	DEADLIN E	STATUS
Task 1	Collection of Dataset	Explored many data sources like Git Hub, Google Datasets, Kaggle and finally landed to https://www.kaggle.com/kunal28chatur vedi/covid19-and-its-impact-on-students and selected a dataset Impact of Covid 19 on students	100%	High	25th January 2023	Complete
Task 2	Dataset Overview	Dataset consisting of 1182 records with 19 separate variables	100%	Medium	26th January 2023	Complete
Task 3	Data Dictionary	Described each variable in detail along with its type, missing values, units, etc.	100%	Medium	29th January 2023	Complete
Task 4	Research Questions	Defined at least three Research questions along with the supportive questions to start the analysis	100%	High	1st February 2023	Complete
Task 5	Project Report	Created a detailed Project report of the analysis done on the initial stage	100%	High	5th February 2023	Complete
Task 6	Univariate Analysis	Univariate analysis of both categorical and numerical variables	100%	Medium	15th February 2023	Complete

BDAT 1005

Math For Data Analytics

Dataset Exploration - Part 4

Task 5	Data Cleaning	Cleaning of data by handling missing values and outliers	100%	High	20th February 2023	Complete
Task 7	Coding	Coding of categorical variables according to the research questions	100%	High	22nd February 2023	Complete
Task 8	Developm ent of Hypothesis	Develop five hypothesis related to the research questions.	100%	High	2nd March 2023	Complete
Task 9	Hypothesis Testing	Perform OR, RR, Chi-square test, t-test, ANOVA and MANOVA accordingly.	100%	High	19 th March 2023	Complete
Task 10	Inferential Technique s	Perform any 2 Inferential techniques in which at least one should be predictive.	100%	Medium	16 th April 2023	Complete
Task 11	Discussion /Conclusio n	Discuss the whole analysis with respect to the research questions	100%	High	16 th April 2023	Complete

References

- 1. https://www.researchgate.net/publication/347935769_COVID-19_and_its_impact_on_education_social_life_and_mental_health_of_studen_ts_A_Survey
- 2. https://www.kaggle.com/kunal28chaturvedi/covid19-and-its-impact-on-students
- 3. https://seleritysas.com/blog/2019/12/06/preparing-for-the-future-of-data-analytics/
- 4. https://www.smartsheet.com/top-project-management-excel-templates