

Design of Intermodal Station

Structural Design and Weight Optimization using Genetic Algorithm

Thierry Sayah

ID Number: 201407104

Advisor: Dr. Caesar Abi Shdid & Co-Advisor: Dr. Danielle Azar

May 28th

Final Year project

Table of contents

- Part 1: Structural Design
 - General overview
 - Software used
 - Materials used
 - Loads used
 - Calculations and software results
- Part 2: Weight Optimization
 - Algorithm vs. Genetic Algorithm
 - Genetic Algorithm: How it works?
 - Terminologies in GA
 - How does it relate to our project?
 - Running the Program
 - Results
 - Conclusion
- References
 - Appendices

Part 1: Structural Design

- General overview
- Software used
- Materials used
- Loads used
- Calculations and software results

General Overview (1/3)

- 3 Storey intermodal station, composed of:
 - 1 Underground parking floor
 - 1 Train floor (ground floor)
 - 1 Light rail transit floor (1st floor)

- Building dimensions:
 - Length of 755 ft.
 - Width of 329 ft.
 - Height of 84.2 ft.

General Overview (2/3)

General Overview (3/3)

Software Used

- Autodesk Revit:
 - Drawing the model

- Autodesk Robot:
 - Structural analysis

- Tekla Tedds:
 - Element Specific Structural analysis

Materials used

- Concrete: 5 KSI
 - Reinforcing bars: Fy = 60 KSI
 - Underground parking & slabs
- Steel members: Fy = 50 KSI
 - Columns & beams
 - Ground and 1st floor
 - Square HSS & W shape

Loads used

• Load and Resistance Factor Design (LRFD) method

Solar Panels	Rain load	Roof Live load
13 Lbsf	25 Lbsf	20 Lbsf

Loads used

- Train floor and Light rail floors:
 - Live load = 40 lbsf
 - o Table 4.3-1
 - Super imposed dead load=166 lbsf
 - International Research Journal of Engineering and Technology
 - Structural Engineering Aspects of Metro Rail Projects 2)
 - Volume: o6 Issue: o6 | June 2019

2) <u>Superimposed Dead Load</u>
As per the design guideline of the metro rail project the superimpose load shall not be taken less than 8.0 Ton/m.

- Parking floor loads:
 - Live load = 40 lbsf
 - o Table 4.3-1

Garages (See Section 4.10)
Passenger vehicles only
40 (1.92)

10

Wind Load (1/2)

- Coastal Structure
 - Powerful winds
 - Devastating effects on the structure

- Libnor was a dead end
 - Catalog for calculation of wind loads on structures
 - No response

Catalogs

Calculation of wind loads on structures 2018

Document Number: NL 137:2018 3rd ed Sector: Construction Materials and Building

TC: NL TC 3015 ICS: 91.040

Wind Load (2/2)

- Procedure in table 27.2-1 in ASCE 7
 - Risk category: Type 2
 - Failure probability = 5*10-6 / year
 - Basic wind speed = 100 Km/hr

Wind load = 11.7 lbsf

Table 27.2-1 Steps to Determine MWFRS Wind Loads for Enclosed, Partially Enclosed, and Open Buildings of All Heights

- Step 1: Determine Risk Category of building; see Table 1.5-1.
- Step 2: Determine the basic wind speed, V, for the applicable Risk Category; see Figs. 26.5-1 and 26.5-2.

Step 3: Determine wind load parameters:

- Wind directionality factor, K_d; see Section 26.6 and Table 26.6-1.
- Exposure category; see Section 26.7.
- Topographic factor, K_{zt} ; see Section 26.8 and table in Fig. 26.8-1.
- Ground elevation factor, K_e; see Section 26.9
- Gust-effect factor, G or G_f; see Section 26.11.
- Enclosure classification; see Section 26.12.
- Internal pressure coefficient, (GC_{pi}); see Section 26.13 and Table 26.13-1.
- Step 4: Determine velocity pressure exposure coefficient, K_z or K_h ; see Table 26.10-1.
- **Step 5:** Determine velocity pressure q_x or q_h , Eq. (26.10-1).

Step 6: Determine external pressure coefficient, C_p or C_N :

- · Fig. 27.3-1 for walls and flat, gable, hip, monoslope, or mansard roofs.
- Fig. 27.3-2 for domed roofs.
- · Fig. 27.3-3 for arched roofs.
- · Fig. 27.3-4 for monoslope roof, open building.
- Fig. 27.3-5 for pitched roof, open building.
- Fig. 27.3-6 for troughed roof, open building.
- Fig. 27.3-7 for along-ridge/valley wind load case for monoslope, pitched, or troughed roof, open building.

Step 7: Calculate wind pressure, p, on each building surface:

- · Eq. (27.3-1) for rigid and flexible buildings.
- Eq. (27.3-2) for open buildings.

Calculations and software results (1/8)

Purlin design

- **1. Load** = 55.6 lbsf
 - 0.012*D + 1.6(Lr or R) + 1(L or W)
- 2. Tributary Area = $16.4 * 7.3 = 120.38 ft^2$
- 3. Wu = 408.1 lb/ft
- **4.** Mu = $\frac{0.4081 * 16.4^2}{8} = 13.72 \ k. ft$
- 5. Cb = 1.14 $\rightarrow \frac{Mu}{Cb}$ = 12.04 k. ft
- **6.** Section selected:
 - Try W8*15 and add Self weight : $\phi Mn = 16.42 * 1.14 = 18.42 k. ft$
 - New Wu = $426.1 \, lb/ft$
 - o New Mu = $14.32 K.ft < \phi Mn$

- Allowable: L/360 = 0.546 in.
- Max deflection = $\frac{W*L^4}{384*EI}$ = 0.057 in.
- 8. Shear check:
 - \circ ϕ Vn = 59.6 kips
 - \circ Vu = 3.5 kips $< \phi Vn$

$$\frac{fiMn}{Mu} \ge 1$$

Calculations and software results (2/8)

- Steel Joist selection
 - Load of 1227 lb/ft (including purlin weight)
 - Span of 161.7 ft
 - Using SJI tables
 - Select 104 DLH 23
 - Capacity = 1332 lb/ft
 - Depth of Joist = 104 in.

E				< 105	105-138	139	142	145	148	151	155	160	165
1	04DLH18	59	104	1100	115470	831	798	768	734	708	674	635	601
ш						426	400	375	353	332	307	279	255
1	04DLH19	67	104	1337	140430	1011	971	933	897	861	819	770	727
						484	453	426	401	377	349	317	289
1	04DLH20	75	104	1504	157890	1146	1107	1071	1032	992	944	886	833
						548	513	483	453	427	395	359	327
1	04DLH21	90	104	1890	198480	1434	1376	1322	1271	1220	1160	1091	1028
L						673	632	593	558	525	486	442	403
1	04DLH22	104	104	2119	222540	1607	1551	1499	1449	1401	1340	1261	1189
						783	734	689	648	610	564	513	488
1	04DLH23	109	104	2334	245100	1772	1712	1644	1578	1514	1437	1348	1267
						819	768	721	678	638	590	536	489

DLH: Type of Steel Joist

In: Inch

Lb/Ft: Pound per linear Foot

Calculations and software results (3/8)

Beam-Column design

- Length = 33.28 ft
- Wind load = 192 lb/ft
- Pu = 107.4 kips

Includes: weight of steel joist and purlin

• Moment due wind load = 27.12 K.ft

•
$$B_1 = \frac{1}{1 - \frac{Pu}{Pex}}$$
; $Pex = \frac{\Pi^2 * E * Ix}{(0.65 * 33.28 * 12)^2} = 4.24 Ix$; $Try HSS 10 * 10 * \frac{5}{8}$; $Ix = 304 in^4$

B_{1=1.09>1} \longrightarrow Mu = 1.09*27.12 = 29.58 K.ft & Pu = 107.4 kips

Calculations and software results (4/8)

- Beam-Column design
 - φMn calculation:
 - 1. Yielding

- 2. Local Buckling
 - Ht = Bt = 14.2

•
$$\lambda = 2.42 * \sqrt{\frac{E}{Fy}} = 58.28 > 14.2 \Rightarrow No Local Buckling$$

•
$$Lp = 0.13 * E * ry \frac{\sqrt{J*Ag}}{Mp} = 33.35 > Lb \Rightarrow No LTB$$
• Mn = 347 > Mp; Use Mp

Result:
$$\phi Mn = 274.5 > 29.58$$
; $\frac{Pu}{\phi Pn} = 0.258 > 0.2$

$$\frac{Pu}{\Phi Pn} + \frac{8*Mu}{9*\Phi Mn} = 0.258 + \frac{8*29.58}{9*274.5} = 0.36 < 1$$
; not very efficient

• Select HSS 6*6*5/8,
$$\frac{Pu}{\varphi Pn} + \frac{8*Mu}{9*\varphi Mn} = 1.83 > 1 !!$$

$$\frac{Pu}{\varphi Pn} + \frac{8 * Mu}{9 * \varphi Mn} \le 1$$
or
$$\frac{Pu}{2\varphi Pn} + \frac{Mu}{\varphi Mn} \le 1$$
₁₆

Calculations and software results (5/8)

- Concrete Beam design
 - Interior Beams
 - Tributary area = 760 ft²
 - Length = 32.8 ft
 - Dimensions = 20 * 35 in.
 - o Loads:
 - Dead = 5.34 K/ft
 - Live = 1.31 K/ft

Load	combination:	1 2D + 1 6I	(Strength)
Loau	Compination.	1.2D . 1.0L	(Juengui)

Node	For	Moment	
	Fx	Fx Fz	
	(kips)	(kips)	(kip_ft)
1	0	153.816	-840.859
2	0	153.816	840.859

Calculations and software results (6/8)

Procedure

- Calculate Mu
- 2. $\rho \text{ required} : \frac{Mu}{\varphi} = \rho \text{ req* b* d}^2 * \text{Fy*} (1 0.59*\rho)$ $\text{req*} \frac{Fy}{F'c})$
- 3. Area of steel required > As min
 - As required = 6.124 in²
 - As prov = 7.217 in²
 - As min = 2.3 in^2
- 4. Depth of equivalent rectangular stress block: $a = \frac{As \ prov *Fy}{0.85 *F'c*b} = 5.095 \text{ in.}$
- 5. Depth to neutral axis: $c = \frac{a}{\beta 1} = 6.3$ in.

Reinforcement

type

Deformed bars or

wires

- 6. $\phi Mn = A_{s,prov} * fy * (d a / 2) = 973.5 \text{ K.ft} > Mu = 840 \text{ K.ft}$
- 7. Spacing check: Sprov = 2.67 in (c/c); Smax = 10.31 in.

 Table 24.3.2—Maximum spacing of bonded

Lesser

reinforcement in nonprestressed and Class C prestressed one-way slabs and beams

Maximum spacing s

Results

Calculations and software results (7/8)

- Slab on ground design (ACI 36oR-o6)
 - Parking Floor
 - Portland Cement Association (PCA) design method
 - Wheel specifications
 - Single axle
 - Single wheel
 - Wheel spacing = 40 in.
 - Loading detail
 - Wheel contact area = $25 in^2$
 - Axle load = 25 kips
 - Factor of safety = 2
 - Material properties
 - Concrete F'c = 5 KSI
 - o MOR = $9 * \sqrt{F'c} = 636.4 \ psi$
 - Allowable stress in concrete = $\frac{636.1}{2}$ = 318.2 *psi*

In²: Inch square KSI: 1000 psi

Psi: Pound per square inch MOR: Modulus of Rupture

Calculations and software results (8/8)

- 1.Stress/1000 lb of axle load = $\frac{Allowable\ stress}{contact\ area} = \frac{318.2}{25} = 12.7\ psi$
- 2. Wheel contact area = $25 in^2$
- 3. Wheel spacing = 40 in.
- 4. Result:
 - H min = 8.75 in.
 - H actual = 10 in.
- 5. Reinforcement:
 - Section 2.2.2 Slabs reinforced for crack width control
 - Reinforcement in top third of the slab to control shrinkage cracks
 - Minimum steel
 - PCA requires 0.5% of slab cross-section for crack width control
 - Area of steel min = $0.005*h = 0.525 in^2$
 - Area of steel provided: #6 at 6 inch each way. Aprov = 0.88 in^2

In: Inch
In²:Inch square
Psi: Pound per square inch

Fig. A1.1—PCA design chart for axles with single wheels.

- Algorithm vs. Genetic Algorithm
- Genetic Algorithm: How it works?
- Terminologies in GA
- How does it relate to our project?
- Running the Program
- Results
- Conclusion

Algorithm versus Genetic Algorithm

- Algorithm
 - List of step by step instructions in order to solve a problem.
- Genetic Algorithms
 - a search technique
 - inspired by the theory of natural evolution.
 - \rightarrow natural selection \rightarrow only the fittest individuals are selected for reproduction.

"If a population wants to thrive, it must improve by itself constantly, it's the survival of the fittest"

Charles Darwin

Genetic Algorithms: How it works?

Terminologies in GA

Objects Function Operations

Generation	Initial population	Individual (Chromosome)	Fitness function	Selection	Crossover	Mutation
Contains 2 populations	Set of individuals	Set of variables, known as genes	Gives a fitness score to each individual	Try to select the fittest individuals and let them pass their genes to the next generation.	Exchanging the genes of parents among themselves	Some of the genes can be subjected to a mutation: They can be flipped
Each population is different	Each being a solution to the problem	Ind1 (G1,G2,G3,G4)	An individual will be selected for reproduction is based on its fitness score.	Individuals with high fitness have more chance to be selected for reproduction.	Ind1 (G1,G2,G3) Ind2 (G4,G5,G6) Ind1 (G4,G5,G3)	Before Mutation: Ind1 (G1,G2,G3) After Mutation: Ind1 (G1,G4,G5)

How does it relate to the project? (1/2)

What are we optimizing?

How does it relate to the project? (2/2)

Genetic Algorithm terminology	Engineering terminology	Illustration	Description
Gene	1 Steel Section (W-shape OR square HSS)	Wide Flange HSS or	 5 types of genes: 1. Purlin 2. Tension member 3. Compression member 4. Chord 5. Column (HSS)
Individual	Steel Structure (Group of W-Shape and HSS)		Each individual is composed of 5 genes which are a combination of the above genes
Population	A list of different individuals	1 st Ind Nth Ind	Each individual with its own Fitness Value
Fitness function	Total weight of the Structure (of 1 individual)	\sum Length $*$ Weight of each member	Minimize the weight

Running the Program (1/4)

1.	Creating	g the i	nitial	Gene	ration
----	----------	---------	--------	------	--------

2. Assigning its Fitness Value			Gene: Purlin	Gene: Tension member	Gene: Compression member	Gene: Chord	Gene: HSS Column	Fitness (weight, lbs)
	Population 1	Structure /Individual 1	W4*13	W8*10	W16*57	W12*16	HSS7*7*1/2	23,979.742
		Structure /Individual 2	W10*19	W4*13	W6*12	W6*12	HSS9*9*5/16	18,090.404
Generation		Structure /Individual 3	W36*330	W8*15	W6*12	W16*57	HSS9*9*5/16	141,128.17
Generation	Population 2	Structure /Individual 1	W8*31	W8*15	W6*12	W4*13	HSS8*8*1/8	20,741.604
		Structure /Individual 2	W24*84	W12*16	W8*15	W18*65	HSS8*8*1/8	58,410.582
		Structure /Individual 3	W24*84	W10*19	W16*45	W12*16	HSS12*12*3/8	49,100.465

27

Color coding Key:

Genes / Steel section

Running the Program (2/4)

- 3. Selecting the fittest individuals for reproduction
 - Roulette Wheel Selection

Individual 1: W4*13, W8*10, W16*57, W12*16, HSS7*7*1/2

Weight: 23,979.742 lbs.

Individual 2: W24*84, W12*16, W8*15, W18*65, HSS8*8*1/8

Weight: 58,410.582 lbs.

Selection Probability of individual 1 > Selection Probability of individual 2

30 % > 20%

Running the Program (3/4)

4. Reproduction

	Gene	Purlin	Tension Member	Compression Member	Chord	HSS Column	Fitness (weight, lbs)
	Factor	$\frac{fiMn}{Mu} \ge 1$	$Ag + Ry \ge 3.38$	$\frac{fiPn}{Pu} \ge 1$	$Ag \ge 0.34$	$\frac{Pu}{\varphi Pn} + \frac{8 * Mu}{9 * \varphi Mn} \le 1$ or $\frac{Pu}{2\varphi Pn} + \frac{Mu}{\varphi Mn} \le 1$	$\sum_{Weight\ of\ each\ member}^{Length\ *}$
	Individual pop 1	1.163	3.801	2.95	4.71	1.263	23,979.742
Factors	Individual pop 2	43.36	5.483	1.21	19.1	2.65	58,410.582
	Resulting Child Individual pop 1/2	1.163	3.801	1.21	4.71	1.263	17,196.742
	Individual pop 1	W4*13	W8*10	W16*57	W12*16	HSS7*7*1/2	23,979.742
Sections	Individual pop 2	W24*84	W12*16	W8*15	W18*65	HSS8*8*1/8	58,410.582
	Resulting Child Individual pop 1/2	W4*13	W8*10	W8*15	W12*16	HSS7*7*1/2	17,196.742

29

Color coding Key:

Fitness: Weight of individual

Running the Program (4/4)

5. Mutation

- Mutation probability = 0.1 %
- Before mutation:
 - W4*13, W8*10, W8*15, W12*16, HSS7*7*1/2
 - Fitness = 17196.742 lbs
- After mutation (if it does occur):
 - W4*13, W8*10, W8*15, W12*16, HSS10*10*5/8
 - Fitness = 19501.73 lbs

Study Results

	Purlin	Tension member	Compression member	Chords	HSS Column	Fitness (weight, lbs)
Hand Calculation	W8*15	W4*13	W8*31	W4*13	HSS 6*6*5/8	22,757.25
Checks Value	1.196	4.83	4.53	3.83	1.83 (>1 !!)	
Genetic Algorithm	W4*13	W8*10	W6*12	W8*10	HSS9*9*5/16	17,557.729
Checks Value	1.16	3.80	1.035	2.96	0.85 (<1)	
Gene/Steel section	Gene/Steel secti	Improvement	22.8%			

Conclusion

- 1. GA creates pseudo-random combinations
 - → Calculates their *fitness*
 - → Checks structural integrity
 - → Returns best individual it has encountered
- 2. Optimization of section efficiency led to weight optimization
- 3. Final structure has sufficient strength with minimum weight
- 4. The Weight of the structure is lower due to the pseudo-random assignments

References

- ASCE-7 minimum design loads and associated criteria for buildings and other structures
- AISC steel manual 15th edition
- Genetic Algorithms in search optimization and machine learning, David E. Goldberg
- International Research Journal of Engineering and Technology
- https://www.metalroofnet.com/metal-roofing-blog/bid/97731/The-Most-Common-Metal-Roof-Materials
- https://www.englertinc.com/blog/weighing-in-metal-roofs-versus-other-roof-choices/
- https://sunmetrix.com/is-my-roof-suitable-for-solar-panels-and-what-is-the-weight-of-a-solar-panel/
- https://up.codes/s/truck-and-bus-garages
- https://pavementinteractive.org/reference-desk/design/design-parameters/equivalent-single-axle-load/
- https://www.tesla.com/en_JO/blog/solar-roof?redirect=no

Calculations and software results

- Tension member design
 - 1. Check for yielding

•
$$\varphi Pn = \varphi * Fy * Ag \Rightarrow Ag \ge \frac{98.7}{0.9*50} = 2.19 \ in^2$$

2. Check for fracture

•
$$\varphi Pn = \varphi * Fu * U * Ag \Rightarrow Ag \ge \frac{98.7}{0.75*65*0.85} = 2.38 in^2$$

3. Slenderness check

•
$$\frac{L}{ry} \le 300 \Rightarrow ry \ge \frac{11.45 * 12}{300} = 0.458$$

- Choose W4*13 :
 - Ag = 3.83 in^2
 - Ry = 1 in.

 $Ag \ge 2.38 \& ry \ge 0.458$

- Compression member design
 - Distance between Purlins = 7.3 ft
 - Pu = 78.8 kips
 - Using Tables 4-1 in AISC steel construction manual
 - Select W8*31
 - $\varphi Pn = 357 \text{ kips}$

fiPn	/	1
\overline{Pu}	_	1

- Chord at point load design
 - Length = 8.8 ft
 - Load = 6.7 kips

$$-Ag = \frac{6.7}{0.9*50} = 0.15 in^2 \Rightarrow Try W4*13$$

$$- 4.71 * \sqrt{\frac{29000}{50}} = 113.4 > \frac{KL}{r} = \frac{1*8.78*12}{1} = 105.36 \Rightarrow Inelastic Flexural Bu$$

$$- Fe = \frac{\pi^2 * 29000}{105.36^2} = 25.78 \text{ ksi} \Rightarrow Fcr = (0.658)^{\frac{50}{25.78}} * 50 = 22.2 \text{ ksi}$$

$$-Ag = \frac{6.7}{0.9*22} = 0.34 \text{ in}^2 \Rightarrow Use W4*13$$

- Check LB and FTB
 - Lb<Lp<Lr

No Lateral Torsional Buckling

• $\lambda \varphi \varphi < \lambda \rho \varphi$ • $\lambda \varphi \omega < \lambda \rho \omega$ — No Local Buckling

Slab design: Ground & 1st floor

$$-\frac{L}{S} = 1 < 2 \Rightarrow Two \ way \ slab$$

- Minimum thickness:
 - Average Stiffness ratio = 0.2

•
$$h \ge \begin{cases} 5 \text{ in.} \\ \text{or} \\ 11.6 \text{ in.} \end{cases}$$

- Calculate total factored load Wu: 263 lbsf
- Determine the total factored static Moment

•
$$Mu = \frac{Wu*L2*Ln^2}{8} = 1090 \text{ kips.ft}$$

Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

$\alpha_{fm}^{[1]}$	Minimum h, in.		
$\alpha_{fm} \leq 0.2$	8.3.1.1 applies		(a)
$0.2 < \alpha_{fm} \le 2.0$	Greater of:	$\frac{\iota_n \left(0.8 + \frac{f_y}{200,000}\right)}{36 + 5\beta \left(\alpha_{fm} - 0.2\right)}$	(b) ^{[2].[3]}
		5.0	(c)
$lpha_{ ilde{\it fm}} > 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{200,000}\right)}{36 + 9\beta}$	(d) ^{[2],[3]}
		3.5	(e)

- Determine column and middle strip widths
 - One column strip width = $\frac{L}{4} = 8.2 ft$
 - Middle strip width = $\frac{L}{2}$ = 16.4 ft
- Distribute Moment into positive and negative moments
 - +ve Moment = 0.35*Mu = 376.95 K. ft
 - Portion of positive moment in column strip = 0.6 * 377 = 226.2 K. ft
 - Portion of positive moment in Middle strip = 150.8 K. ft
 - -ve Moment = 0.65*Mu = 700 K. ft
 - Portion of negative moment in column strip = 0.75 * 700 = 525 K.ft
 - Portion of negative moment in middle strip = 175 K.ft
- Design reinforcements for the moments
 - ρ
 - Area of steel required

Table 8.10.5.5—	Portion of po	ositive M_u in	column strip
		ℓ_2/ℓ_1	

	ℓ_2/ℓ_1			
$\alpha_{j1}\ell_2/\ell_1$	0.5	1.0	2.0	
0	0.60	0.60	0.60	
≥1.0	0.90	0.75	0.45	

Table 8.10.5.1—Portion of interior negative M_u in column strip

	ℓ_2/ℓ_1			
$a_{f1}\ell_2/\ell_1$	0.5	1.0	2.0	
0	0.75	0.75	0.75	
≥1.0	0.90	0.75	0.45	

	Column Strip (X- direction)	Column Strip (Y- direction)	Middle Strip (X-direction)	Middle Strip (Y-direction)
Moment +ve (kip*ft)	227.46	227.46	149.8	149.8
Moment -ve (kip*ft)	525.51	525.51	175.17	175.17
ρ required +ve (Bottom)	0.00167	0.00180	0.00205	0.00214
ρ required –ve (Top)	0.004	0.0044	0.00123	0.00133
Area of steel required (Top)	0.605 0.638		0.16	0.167
Area of steel Provided (Top) in ²	0.614; #5 @ 6 in	6 in 0.736; #5 @ 5 0.337		0.337; #4 @ 7
Area of steel required (Bottom) in ²	0.256	0.267 0.188		0.196
Area of steel Provided (Bottom) in ²	0.337; #4 @ 7 in	0.337; #4 @ 7	0.337; #4 @ 7	0.337; #4 @ 7

Visualizing the results

- Shear design of beam:
 - 1. Shear force at "d" inches from support:
 - d = 32.28 in.
 - Shear Force at d:

$$varrow Vu = 128.587 kips$$

$$-\phi Vc = 0.75 * 2 * \sqrt{F'c} * b * d = 68.474 kips$$

$$-\phi Vs = Vu - \phi Vc = 60.113 kips$$

• Area of shear reinforcement required:

$$- \phi Vs = \frac{\phi * Asv * Fy*d}{s} \Rightarrow Asv = 0.497 in^{2}$$

- $Asmin = 0.212 in^2$
- As provided = $0.589 \text{ in}^2 \Rightarrow 2#4 @ 8 \text{ in}$

$$-Smax \le min \left(12 in, \frac{d}{2} = 16.14\right) = 12 in$$

- Smin =
$$\frac{4}{3}$$
*D agg = 1.33 in.

—No reinf. reg'd—

108.6 kips

Min reinf.

Min reinf.

139.8 kips

139.8 kips

-153.8

Reinforcement detail for edge beam:

Main reinforcement

Shear reinforcement

- Column Design
 - Side column
 - 1. Assume short column
 - 2. Calculate Pu = 673 kips

3. Assume
$$\rho = \frac{A \, steel}{A \, gross} = 0.02$$

1.
$$Pn = 0.85 * F'c * (Ag - Ast) + Fy * Ast; \Rightarrow get Ag = 600 in^2 (20 in * 30 in)$$

4. Check if slender:

1.
$$\frac{K*L}{r} = \frac{1*10*12}{0.3*30} = 13.34 \le 22$$

5. Find
$$\gamma h = h - 2 * cover - 2 * d. stirrup - d. bar = 24.625$$

1.
$$\gamma = \frac{24.625}{30} = 0.82$$

2.
$$\frac{\phi Mn}{b*h^2} = \frac{1262*12}{20*30^2} = 0.84; \frac{\phi Pn}{b*h} = \frac{826}{20*30} = 1.3767$$

- 6. Using P-M diagrams
 - γ required = 0.049
 - Area of steel required = 29.4 in^2
- 7. Spacing requirement
 - S provided = 4 in (center to center)
 - 2. S min = max (1.5* db = 2.06 in., 1.5 in, 0.75* Daggregate = 1.33in.) = 2.06 < 4 in
- 8. Transverse reinforcement:
 - 1. #4 bars at 6 inches
 - 2. Max Spacing = 16 inches

Side column reinforcement detail

Center column reinforcement detail

Corner column reinforcement detail

Steel Beam design

- Length = 32.8 ft
- Wu = 8.55 Kips/ft
- $Mu = \frac{Wu*L^2}{8} = 1150 \text{ K. ft; Cb} = 1.14$
- Try W27*178 $\rightarrow \Phi$ Mn = 1435 K.ft
 - Mu new = 1179 K.ft $< \phi$ Mn
- $\phi Vn = 605 \text{ kips} > Vu = 143.5 \text{ kips}$
- Deflection check:
 - Allowable Live load deflection = $\frac{L}{360}$ = 1.1 in.
 - Max. Live load deflection = $\frac{5*1.32*(32.812)^4}{384*29000*5660} = 0.21$ in. < Allowable deflection

Steel Column design

- Tributary Area = $1076 \text{ ft}^2 = 32.8 * 32.8$
- Wu = 8.5 K/ft.
- Pu = 292 kips (including beam self weight)
- Column Height = 32.2 ft.
- Use HSS10*10*1/2
 - $\phi Pn = 361.8$

Base Plate Design

Pu = 214.8 kips

1. Check for concrete crushing

$$- Pn = \phi * 0.85 * F'c * A1 * \sqrt{\frac{A2}{A1}} = 0.65 * 0.85 * 5 * A1 * \sqrt{\frac{326.851}{A1}}$$

- A2: Concrete column area
- A1: Plate area = $18.49 in^2$

$$- \sqrt{\frac{A2}{A1}} = 4.2 > 2 \text{ !!} \Rightarrow use \sqrt{\frac{A2}{A1}} = 2$$

• 214.8 = 0.65 * 0.85 * 5 * A1 * 2 \Rightarrow A1 = 38.87 $in^2 \Rightarrow B = N = 6.23 in. (Not good, HSS 10 * 10 * <math>\frac{1}{2}$, use B = N = 12 in.)

2. Check for plate bending

1.
$$m = \frac{N - 0.95 * d}{2} = \frac{12 - 0.95 * 10}{2} = 1.25$$

2.
$$n = \frac{B - 0.8 * b}{2} = \frac{12 - 0.8 * 10}{2} = 2$$

3.
$$n' = \frac{\sqrt{d*b}}{4} = \frac{\sqrt{10*10}}{4} = 2.5$$

$$l = 2.5$$

Plate Thickness t =
$$\sqrt{\frac{2*214.8*2.5^2}{0.9*50*144}} = 0.6437 in$$

Use
$$PL 12 * 12 * 3/_{4}$$

Software and Coding Language

- Software used
 - IntelliJ Idea
- Coding language
 - Java

Elitism

Forcing the best of the previous population into the next population

# of Generations	# of individuals	Crossover rate	Mutation Prob.	Elitism	Average fitness
500	250	100%	0.1%	Best 20%	13,402.2312
500	250	100%	0.1%	Best 10%	13,114.412
500	250	100%	0.1%	Best individual	12,687.0103

Results

