EE-224: Digital Design Common Functions & Implementation

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

Digital System

Digital Logic Design

- Express input output relationship using Truth table
- Generate the logical expression by disjunction (OR) of terms (conjunction of variables – AND) where system evaluates to true
- Replace all operators by the logic gates
- Replace logic gates by equivalent switching network (e.g., transistor level circuit)

Specification: Logic Expression

Truth Table

XYZ	F
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	1

Logic Expression

$$F = \overline{X}.\overline{Y}.Z + X.\overline{Y}.\overline{Z} + X.\overline{Y}.Z$$

$$+ X.\overline{Y}.Z + X.Y.Z$$

Common Functions

Enabling Function

- Enabling permits an input signal to pass through to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- When disabled, 0 output
- When disabled, 1 output

EN	X	Y
0	0	0
0	1	0
1	0	0
1	1	1

Decoding Function

- Decoding the
 - Conversion of *n*-bit input to *m*-bit output
 - Given $n \le m \le 2^n$
- Circuits that perform decoding are called decoders
 - Called *n*-to-*m* line decoders, where $m \leq 2^n$, and
 - Generate 2ⁿ (or fewer) 1's in output for the n input variables

Decoder

• 1-to-2-Line Decoder

A	$\mathbf{D_0}$	\mathbf{D}_1	D_0	$\overline{\Delta}$
0	1	0	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	11
1	0	1	$A \longrightarrow D_1$	A

• 2-to-4-Line Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1
(a)					

Encoding Function

- Encoding the opposite of decoding
 - Conversion of m-bit input to n-bit output
- Circuits that perform encoding are called encoders
 - An encoder has 2ⁿ (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
 - Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corres-ponding to the position in which the 1 appears.

Encoder

- A decimal-to-BCD encoder
 - Inputs: 10 bits corresponding to decimal digits 0 through 9, $(D_0, ..., D_9)$
 - Outputs: 4 bits with BCD codes
 - Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Encoder

 Input D_i is a term in equation A_i if bit A_i is 1 in the binary value for i.

Equations:

$$A_3 = D_8 + D_9$$

 $A_2 = D_4 + D_5 + D_6 + D_7$
 $A_1 = D_2 + D_3 + D_6 + D_7$
 $A_0 = D_1 + D_3 + D_5 + D_7 + D_9$

Selection Function

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers

Multiplexers

- A multiplexer selects one input line and transfers it to output
 - n control inputs (S_{n-1} , ... S_0) called *selection* inputs
 - $m \le 2^n$ information inputs $(I_2^n_{-1}, ... I_0)$
 - output Y

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:

- Truth Table
- Symbolic equation:

$$Y = I_0 . \overline{S} + S . I_1$$

Logic expression

$$Y = \overline{S}.I_0.\overline{I}_1 + \overline{S}.I_0.I_1$$

$$+ S.\overline{l}_{0}.l_{1} + S.l_{0}.l_{1}$$

S	I _o	l ₁	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

2-to-1-Line Multiplexer

- The single selection variable S has two values:
 - -S = 0 selects input I_0
 - -S = 1 selects input I_1
- The logic equation:

$$Y = I_0 \overline{S} + S.I_1$$

Implementation

Using Logic Gates

• 2x1 Multiplexer

Truth Table			ble
S	I _o	l ₁	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Using Storage Elements

Optimization

Specification: Logic Function

Truth Table

XYZ	F
000	0
001	1
010	0
011	0
1 00	1
1 01	1
1 10	1
1 11	1

$$F = \overline{X}. \overline{Y}. Z + X. \overline{Y}. \overline{Z} + X. \overline{Y}. Z + X. \overline{Y}. Z + X. \overline{Y}. Z + X. \overline{Y}. Z$$

Optimization Parameters

- Area: # Switches (Gates)
- Performance (Delay): # Switches in series
- Power: # Switches
- Testability: Interconnect network
- Security
- Intelligence

Thank You

