淇江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 1

双变量不等式基本类型 1 —— 中点型

1. 【解答】解: ①函数 f(x) 的定义域为 $(0,+\infty)$, $f'(x) = \frac{1}{x} - 2ax + (2-a) = -\frac{(2x+1)(ax-1)}{x}$,

(i) 当
$$a > 0$$
 时,则由 $f'(x) = 0$,得 $x = \frac{1}{a}$,当 $x \in (0, \frac{1}{a})$ 时, $f'(x) > 0$,当 $x \in (\frac{1}{a}, +\infty)$ 时, $f'(x) < 0$,

 $\therefore f(x)$ 在 $(0,\frac{1}{a})$ 单调递增,在 $(\frac{1}{a}, +\infty)$ 上单调递减;

(*ii*) 当 *a*≤0 时, f(x)>0 恒成立, ∴ f(x) 在 $(0,+\infty)$ 单调递增;

②设函数
$$g(x) = f(\frac{1}{a} + x) - f(\frac{1}{a} - x)$$

 $\text{III} \ g(x) = [\ln(\frac{1}{a} + x) - a(\frac{1}{a} + x)^2 + (2 - a)(\frac{1}{a} + x)] - [\ln(\frac{1}{a} - x) - a(\frac{1}{a} - x)^2 + (2 - a)(\frac{1}{a} - x)] = \ln(1 + ax) - \ln(1 - ax) - 2ax \text{ }$

$$g'(x) = \frac{a}{1+ax} + \frac{a}{1-ax} - 2a = \frac{2a^3x^2}{1-a^2x^2}$$
,

 $\stackrel{\text{def}}{=} x \in (0, \frac{1}{a})$ $\stackrel{\text{def}}{=} g'(x) > 0$, $\stackrel{\text{def}}{=} g(0) = 0$, $\therefore g(x) > g(0) = 0$,

故当
$$0 < x < \frac{1}{a}$$
时, $f(\frac{1}{a} + x) > f(\frac{1}{a} - x)$;

③由①可得,当 $a \le 0$ 时,函数 y = f(x) 的图象与x轴至多有一个交点,

故a>0,从而f(x)的最大值为 $f(\frac{1}{a})$,且 $f(\frac{1}{a})>0$,

不妨设 $A(x_1, 0)$, $B(x_2, 0)$, $0 < x_1 < x_2$, 则 $0 < x_1 < \frac{1}{a} < x_2$,

由②得, $f(\frac{2}{a}-x_1) = f(\frac{1}{a}+\frac{1}{a}-x_1) > f(x_1) = f(x_2) = 0$,又 f(x) 在 $(\frac{1}{a}, +\infty)$ 上单调递减,

$$\therefore \frac{2}{a} - x_1 < x_2$$
,于是 $x_0 = \frac{x_1 + x_2}{2} > \frac{1}{a}$,由①知, $f'(x_0) < 0$.

2.
$$\text{ #: } (1) \ f'(x) = 2 + \frac{1-2a}{x} - \frac{a}{x^2} = \frac{2x^2 + (1-2a)x - a}{x^2} = \frac{(x-a)(2x+1)}{x^2} (x > 0)$$

①当 $a \le 0$ 时, $x \in (0,+\infty)$,f'(x) > 0,f(x)单调递增;

②当a>0时, $x\in(0,a)$, f'(x)<0, f(x)单调递减;

 $x \in (a, +\infty)$, f'(x) > 0, f(x) 单调递增,

综上, 当 a≤0 时, f(x) 在 (0,+∞) 单调递增;

当a > 0时,f(x)在(0,a)单调递减,在 $(a,+\infty)$ 单调递增.

(2) 由 (1) 知, 当 a≤0 时, f(x) 在 (0,+∞) 单调递增, f(x) = m 至多一个根, 不符合题意;

当a > 0时,f(x)在(0,a)单调递减,在 $(a,+\infty)$ 单调递增,则f'(a) = 0.

不妨设 $0 < x_1 < a < x_2$,

要证
$$f'(\frac{x_1+x_2}{2}) > 0$$
,即证 $\frac{x_1+x_2}{2} > a$,即证 $x_2+x_1 > 2$,即证 $x_2 > 2a-x_1$.

因为 f(x) 在 $(a,+\infty)$ 单调递增,即证 $f(x_2) > f(2a-x_1)$,

因为 $f(x_2) = f(x_1)$,所以即证 $f(x_1) > f(2a - x_1)$,即证 f(a + x) < f(a - x),

$$=4x+(1-2a)ln(a+x)-(1-2a)ln(a-x)+\frac{a}{a+x}-\frac{a}{a-x}.$$

$$g'(x) = 4 + \frac{1 - 2a}{a + x} + \frac{1 - 2a}{a - x} - \frac{a}{(a + x)^2} - \frac{a}{(a - x)^2}$$

$$=4+\frac{2a(1-2a)}{a^2-x^2}-\frac{2a(a^2+x^2)}{(a+x)^2(a-x)^2}=\frac{4x^2(x^2-a^2-a)}{(a+x)^2(a-x)^2}$$

当 $x \in (0,a)$, 时,g'(x) < 0,g(x) 单调递减,又g(0) = f(a+0) - f(a-0) = 0,

所以 $x \in (0,a)$, 时, g(x) < g(0) = 0, 即 f(a+x) < f(a-x),

 $\mathbb{P} f(x) > f(2a-x)$,

又
$$x_1 \in (0,a)$$
,所以 $f(x_1) > f(2a - x_1)$,所以 $f(\frac{x_1 + x_2}{2}) > 0$.

3. 解: (1) 函数 $f(x) = x^2 - 2ax + 2lnx(a > 0)$ 的定义域为 $(0, +\infty)$,

又
$$f'(x) = 2x - 2a + \frac{2}{x} = 2 \cdot \frac{x^2 - ax + 1}{x} (a > 0, x > 0)$$
,对于方程 $x^2 - ax + 1 = 0$, $\triangle = a^2 - 4(a > 0)$,

①若 $\triangle = a^2 - 4 \le 0$, 即 $0 < a \le 2$ 时,则 $f'(x) \ge 0$ 恒成立,

所以 f(x) 在 $(0,+\infty)$ 上单调递增;

②若
$$\triangle = a^2 - 4 > 0$$
,即 $a > 2$ 时,令 $f'(x) = 0$,解得 $x = \frac{a - \sqrt{a^2 - 4}}{2}$,或 $x = \frac{a + \sqrt{a^2 - 4}}{2}$,

当
$$x \in (0, \frac{a-\sqrt{a^2-4}}{2})$$
和 $(\frac{a+\sqrt{a^2-4}}{2}, +\infty)$ 时, $f'(x) > 0$,

$$\stackrel{\text{def}}{=} x \in (\frac{a - \sqrt{a^2 - 4}}{2}, \frac{a + \sqrt{a^2 - 4}}{2}) \text{ iff}, f'(x) < 0,$$

所以
$$f(x)$$
 在 $(0, \frac{a-\sqrt{a^2-4}}{2})$ 和 $(\frac{a+\sqrt{a^2-4}}{2}, +\infty)$ 上单调递增,

在
$$(\frac{a-\sqrt{a^2-4}}{2})$$
 , $\frac{a+\sqrt{a^2-4}}{2}$) 上单调递减.

综上所述, 当 $0 < a \le 2$ 时, f(x)的单调递增区间为 $(0,+\infty)$, 无单调递减区间;

当
$$a > 2$$
 时, $f(x)$ 的单调递增区间为 $(0, \frac{a-\sqrt{a^2-4}}{2})$ 和 $(\frac{a+\sqrt{a^2-4}}{2}, +\infty)$,单调递减区间为 $(\frac{a-\sqrt{a^2-4}}{2}, \frac{a+\sqrt{a^2-4}}{2})$;

(2) 由(1) 可知, 当a > 2时, $x_1 + x_2 = a$, $x_1x_2 = 1(x_1 < x_2)$,

曲
$$g(x_1) = g(x_2) = 0$$
,可得
$$\begin{cases} lnx_1 - bx_1 - cx_1^2 = 0 \\ lnx_2 - bx_2 - cx_2^2 = 0 \end{cases}$$
,两式相减,可得 $ln\frac{x_1}{x_2} = b(x_1 - x_2) + c(x_1^2 - x_2^2)$,

$$\text{FTU} \ y = (x_1 - x_2)g'(\frac{x_1 + x_2}{2}) = \frac{2(x_1 - x_2)}{x_1 + x_2} - b(x_1 - x_2) - c(x_1^2 - x_2^2) = \frac{2(x_1 - x_2)}{x_1 + x_2} - \ln \frac{x_1}{x_2} = \frac{2(\frac{x_1}{x_1} - 1)}{\frac{x_1}{x_2} + 1} - \ln \frac{x_1}{x_2} \ ,$$

令
$$\frac{x_1}{x_2} = t \in (0,1)$$
, 所以 $y = \frac{2(t-1)}{t+1} - lnt$, 则 $y' = \frac{-(t-1)^2}{t(t+1)^2} < 0$, 所以 $y = \frac{2(t-1)}{t+1} - lnt$ 在 $(0,1)$ 上单调递减,

由 y 的取值范围为[ln3-1 , $+\infty$) ,可得 t 的取值范围为 $(0,\frac{1}{3}]$,所以 $a^2=(x_1+x_2)^2=\frac{x_1}{x_2}+\frac{x_2}{x_1}+2=t+\frac{1}{t}+2\in[\frac{16}{3},+\infty)$,

又因为a > 2, 故实数a的取值范围是[$\frac{4\sqrt{3}}{3}$,+ ∞).

4.解: (1) 依题意, 得
$$f'(x) = \frac{1}{x} - a = \frac{1 - ax}{x} (x > 0)$$
,

$$\therefore a > 1$$
,由 $1-ax > 0$,解得 $x < \frac{1}{a}$,即当 $0 < x < \frac{1}{a}$ 时, $f'(x) > 0$, $f(x)$ 单调递增,

由
$$1-ax<0$$
,解得 $x>\frac{1}{a}$,即当 $x>\frac{1}{a}$ 时, $f'(x)<0$, $f(x)$ 单调递减,

 \therefore 当 a > 1 时, f(x) 的单调递增区间为 $(0, \frac{1}{a})$, f(x) 的单调递减区间为 $(\frac{1}{a}, +\infty)$.

(2) :
$$g(x) = 2f(x) + x^2 = 2lnx - 2ax + x^2$$
,

$$\therefore g'(x) = \frac{2(x^2 - ax + 1)}{x} = 0$$
的两根为 x_1 , x_2 , 即方程 $x^2 - ax + 1 = 0$ 的两根为 x_1 , x_2 ,

$$\therefore a \geqslant \frac{3\sqrt{2}}{2}, \quad \therefore \triangle = a^2 - 4 > 0, \quad \therefore x_1 + x_2 = a, \quad x_1 x_2 = 1,$$

令
$$m = \frac{x_1}{x_2} (0 < m < 1)$$
,由韦达定理,得 $(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2 = a^2$,

$$\therefore \frac{x_1^2 + 2x_1x_2 + x_2^2}{x_1x_2} = m + \frac{1}{m} + 2 = a^2, \quad \therefore a \geqslant \frac{3\sqrt{2}}{2}, \quad \therefore m + \frac{1}{m} = a^2 - 2 \geqslant \frac{5}{2}, \quad \therefore m \leqslant \frac{1}{2} \text{ iff } m \geqslant 2, \quad \therefore 0 < m \leqslant \frac{1}{2}, \quad \therefore m \leqslant \frac{1}{2} \text{ iff } m \geqslant 2, \quad \therefore 0 < m \leqslant \frac{1}{2}, \quad \therefore m \leqslant \frac{1}{2} \text{ iff } m \geqslant 2, \quad \therefore 0 \leqslant m \leqslant \frac{1}{2}, \quad \therefore m \leqslant \frac{1}{2} \text{ iff } m \geqslant 2, \quad \therefore 0 \leqslant m \leqslant \frac{1}{2}, \quad \therefore m \leqslant \frac{1}{2} \text{ iff } m \geqslant 2, \quad \therefore 0 \leqslant m \leqslant \frac{1}{2}, \quad \therefore m \leqslant \frac{1}{2} \text{ iff } m \geqslant 2, \quad \therefore 0 \leqslant m \leqslant \frac{1}{2}, \quad \longleftrightarrow 0 \leqslant m$$

$$\diamondsuit h(m) = 2 \cdot \frac{m-1}{m+1} - lnm + \frac{2}{3}, \quad \therefore h'(m) = \frac{-(m-1)^2}{m(m+1)^2} < 0,$$

$$\therefore h(m)$$
 在 $0 < m \le \frac{1}{2}$ 上递减, $\therefore y_{min} = h(m)_{min} = h(\frac{1}{2}) = ln2$,

5. 解: (1)
$$f'(x) = x + \frac{1}{x} + m$$
, $(x > 0)$, 若 $f(x)$ 存在两个极值点,则 $f'(x) = 0$ 在 $(0, +\infty)$ 上有两个根,所以 $m = -(x + \frac{1}{x})$

有两个根,即
$$y = m$$
与 $y = -(x + \frac{1}{r})$, $(x > 0)$ 有两个交点, $y' = -1 + \frac{1}{r^2} = \frac{-x^2 + 1}{r^2}$,

所以在(0,1)上,y'>0,y单调递增,在 $(1,+\infty)$ 上,y'<0,y单调递减,

所以 x=1时, $y_{max}=-2$, 所以 m<-2 , 所以 m 的取值范围为 $(-\infty,-2)$.

(2) 证明: 由(1) 知
$$a < -2$$
,且 $x_1 + x_2 = -a$, $x_1x_2 = 1$,

所以
$$\frac{f(x_1) + f(x_2)}{2} - f(\frac{x_1 + x_2}{2}) = \frac{\ln x_1 + \frac{1}{2}x_1^2 + ax_1 + \ln x_2 + \frac{1}{2}x_2^2 + ax_2}{2} - \ln \frac{x_1 + x_2}{2} - \frac{(\frac{x_1 + x_2}{2})^2}{2} - a(\frac{x_1 + x_2}{2})$$

$$=-ln(-\frac{a}{2})-\frac{1}{2}+\frac{a^2}{8}$$
,所以只需证明 $-ln(-\frac{a}{2})-1-\frac{a}{2}>0$,

令
$$t = -\frac{a}{2}$$
 , 故 $t > 1$, 原不等式等价于 $lnt < t-1$ 对 $t > 1$ 成立,令 $g(t) = lnt - (t-1)$,

$$g'(t) = \frac{1-t}{t} < 0$$
,所以 $g(t) = lnt - (t-1)$ 单调递减,则有 $g(t) = lnt - (t-1) < g$ (1) = 0.

6.
$$M: (1)$$
 $f(x)$ 的定义域为 $(0,+\infty)$, $f'(x) = -\frac{1}{x^2} - 1 + \frac{2a}{x} = -\frac{x^2 - 2ax + 1}{x^2}$,

(i) 若
$$a \le 1$$
,则 $f'(x) \le 0$,当且仅当 $a = 1$, $x = 1$ 时, $f'(x) = 0$

(ii) 若
$$a > 1$$
, 令 $f'(x) = 0$ 得 $x_1 = a - \sqrt{a^2 - 1}$, $x_2 = a + \sqrt{a^2 - 1}$,

$$\stackrel{\text{def}}{=}$$
 x ∈ (0, $a - \sqrt{a^2 - 1}$) \bigcup ($a + \sqrt{a^2 - 1}$, +∞) \bowtie , $f'(x) < 0$,

$$\stackrel{\text{\tiny def}}{=}$$
 x ∈ $(a - \sqrt{a^2 - 1})$, $a + \sqrt{a^2 - 1}$) \forall , $f'(x) > 0$,

故当 $a \le 1$ 时,f(x)单调递减区间为 $(0,+\infty)$,无单调递增区间,

当
$$a > 1$$
时, $f(x)$ 单调递减区间为 $(0, a - \sqrt{a^2 - 1})$, $(a + \sqrt{a^2 - 1}, +\infty)$,

单调递增区间为 $(a-\sqrt{a^2-1}, a+\sqrt{a^2-1})$.

(2)
$$\pm$$
 (1) \pm (2) \pm (1) \pm (2) \pm (2) \pm (3) \pm (4) \pm (5) \pm (6) \pm (7) \pm (8) \pm (9) \pm (1) \pm (1) \pm (2) \pm (3) \pm (4) \pm (5) \pm (6) \pm (7) \pm (8) \pm (8) \pm (9) \pm (9) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (1) \pm (2) \pm (2) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (8) \pm (9) \pm (1) \pm (1)

曲
$$g(x_1) = g(x_2) = 0$$
得: $ln \frac{x_1}{x_2} = b(x_1 - x_2) + c(x_1^2 - x_2^2)$,

$$\therefore y = (x_1 - x_2)g'(\frac{x_1 + x_2}{2}) = \frac{2(x_1 - x_2)}{x_1 + x_2} - b(x_1 - x_2) - c(x_1^2 - x_2^2) = \frac{2(x_1 - x_2)}{x_1 + x_2} - \ln \frac{x_1}{x_2} = \frac{2(\frac{x_1}{x_2} - 1)}{\frac{x_1}{x_2} + 1} - \ln \frac{x_1}{x_2},$$

$$\Rightarrow \frac{x_1}{x_2} = t \in (0,1), \quad \therefore y = \frac{2(t-1)}{t+1} - lnt,$$

$$y' = \frac{-(t-1)^2}{t(t+1)^2} < 0$$
, $y \in (0,1)$ 上单调递减,由 y 的取值范围是 [$\ln 3 - 1$, $+\infty$), 得 t 的取值范围是 (0 , $\frac{1}{3}$],

$$\therefore x_1 + x_2 = 2a , \quad \therefore (2a)^2 = (x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2 = \frac{x_1^2 + 2x_1x_2 + x_2^2}{x_1x_2} = 4a^2 = \frac{x_1}{x_2} + \frac{x_2}{x_1} + 2 ,$$

$$\therefore 4a^2 = \frac{x_1}{x_2} + \frac{x_2}{x_1} + 2 = t + \frac{1}{t} + 2 \in \left[\frac{16}{3}, +\infty\right),$$

$$\therefore a > 1$$
, ∴实数 a 的取值范围是 $[\frac{2\sqrt{3}}{3}, +\infty)$.

7解: (1) 由题意得:
$$f(1) = e + a + b = e - 2$$
, 即 $a + b = -2$,

又
$$f'(x) = a + e^x$$
, 即 $f'(1) = e + a = e$, 则 $a = 0$, 解得: $b = -2$, 则 $f(x) = e^x - 2$.

$$\Rightarrow h(x) = f(x) - x + 1 = e^x - x - 1$$
, $h'(x) = e^x - 1$, $\Rightarrow h'(x) = 0$, $\neq h'(x) = 0$, $\neq h'(x) = 0$,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 2

则函数 h(x) 在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增,

∴ $h(x) \geqslant h(0) = 0$, $\bigcup f(x) \geqslant x - 1$.

(2) 要证
$$f(x_0) < g$$
 (1) $< y_0$ 成立,只需证: $e^{\frac{x_1 + x_2}{2}} - 2 < k - 2 < \frac{e^{x_1} + e^{x_2} - 4}{2}$,

即证:
$$e^{\frac{x_1+x_2}{2}} < k < \frac{e^{x_1}+e^{x_2}}{2}$$
, 即证: $e^{\frac{x_1+x_2}{2}} < \frac{e^{x_2}-e^{x_1}}{x_2-x_1} < \frac{e^{x_1}+e^{x_2}}{2}$, 只需证: $e^{\frac{x_2-x_1}{2}} < \frac{e^{x_2-x_1}-1}{x_2-x_1} < \frac{e^{x_2-x_1}+1}{2}$,

不妨设
$$t = x_2 - x_1 > 0$$
,即证: $e^{\frac{t}{2}} < \frac{e^t - 1}{t} < \frac{e^t + 1}{2}$,要证 $e^{\frac{t}{2}} < \frac{e^t - 1}{t}$,只需证: $e^{\frac{t}{2}} - e^{-\frac{t}{2}} > t$,

令
$$F(t) = e^{\frac{t}{2}} - e^{-\frac{t}{2}} - t$$
,则 $F'(t) = \frac{1}{2}(e^{\frac{t}{2}} + e^{-\frac{t}{2}}) - 1 > 0$, $\therefore F(t)$ 在 $(0, +\infty)$ 上为增函数,

$$\therefore F(t) > F(0) = 0, \quad \mathbb{P} e^{\frac{t}{2}} < \frac{e^{t} - 1}{t} 成立;$$

要证
$$\frac{e^t-1}{t} < \frac{e^t+1}{2}$$
,只需证: $\frac{e^t-1}{e^t+1} < \frac{t}{2}$, $\Leftrightarrow G(t) = \frac{e^t-1}{e^t+1} - \frac{t}{2}$,则 $G'(t) = \frac{2e^t}{(e^t+1)^2} - \frac{1}{2} = \frac{4e^t-(e^t+1)^2}{2(e^t+1)^2} = \frac{-(e^t-1)^2}{2(e^t+1)^2} < 0$,

$$\therefore G(t)$$
 在 $(0,+\infty)$ 上为减函数, $\therefore G(t) < G(0) = 0$, 即 $\frac{e^t - 1}{t} < \frac{e^t + 1}{2}$ 成立.

8. 解: (1) 由于
$$f(x) = 2lnx - 2mx + x^2$$
 的定义域为 $(0, +\infty)$, $f'(x) = \frac{2(x^2 - mx + 1)}{x}$.

对于方程 $x^2 - mx + 1 = 0$, 其判别式 $\triangle = m^2 - 4$.

当 $m^2-4 \leqslant 0$,即 $0 < m \leqslant 2$ 时, $f'(x) \geqslant 0$ 恒成立,故f(x)在 $(0,+\infty)$ 内单调递增.

当
$$m^2 - 4 > 0$$
,即 $m > 2$,方程 $x^2 - mx + 1 = 0$ 恰有两个不相等是实根 $x = \frac{m \pm \sqrt{m^2 - 4}}{2}$,

令
$$f'(x) > 0$$
, 得 $0 < x < \frac{m - \sqrt{m^2 - 4}}{2}$ 或 $x > \frac{m + \sqrt{m^2 - 4}}{2}$, 此时 $f(x)$ 单调递增;

令
$$f'(x) < 0$$
, 得 $\frac{m - \sqrt{m^2 - 4}}{2} < x < \frac{m + \sqrt{m^2 - 4}}{2}$, 此时 $f(x)$ 单调递减.

综上所述, 当 $0 < m \le 2$ 时, f(x)在 $(0,+\infty)$ 内单调递增;

当
$$m>2$$
时, $f(x)$ 在 $(\frac{m-\sqrt{m^2-4}}{2},\frac{m+\sqrt{m^2-4}}{2})$ 内单调递减,

在
$$(0, \frac{m-\sqrt{m^2-4}}{2})$$
, $(\frac{m+\sqrt{m^2-4}}{2}, +\infty)$ 内单调递增.

(2) 证明: 由 (1) 知,
$$f'(x) = \frac{2(x^2 - mx + 1)}{x}$$
,

所以 f'(x) 的两根 x_1 , x_2 即为方程 $x^2 - mx + 1 = 0$ 的两根.

因为
$$m \geqslant \frac{3\sqrt{2}}{2}$$
,所以 $\triangle = m^2 - 4 > 0$, $x_1 + x_2 = m$, $x_1 x_2 = 1$.

又因为 x_1 , x_2 为 $h(x) = lnx - cx^2 - bx$ 的零点,

所以
$$\ln x_1 - cx_1^2 - bx_1 = 0$$
, $\ln x_2 - c_2^2 - bx_2 = 0$, 两式相减得 $\ln \frac{x_1}{x_2} - c(x_1 - x_2)(x_1 + x_2) - b(x_1 - x_2) = 0$,

得
$$b = \frac{\ln \frac{x_1}{x_2}}{x_1 - x_2} = c(x_1 + x_2)$$
. 面 $h'(x) = \frac{1}{x} - 2cx - b$,

所以
$$(x_1 - x_2)h'(x_0) = (x_1 - x_2)(\frac{1}{x_0} - 2cx_0 - b)$$

$$=(x_1-x_2)\left[\frac{2}{x_1+x_2}-c(x_1+x_2)-\frac{\ln\frac{x_1}{x_2}}{x_1-x_2}+c(x_1+x_2)\right]=\frac{2(x_1-x_2)}{x_1+x_2}-\ln\frac{x_1}{x_2}=2\cdot\frac{\frac{x_1}{x_2}-1}{\frac{x_1}{x_2}+1}-\ln\frac{x_1}{x_2}.$$

$$\Leftrightarrow \frac{x_1}{x_2} = t(0 < t < 1)$$
, $\boxplus (x_1 + x_2)^2 = m^2 \notin x_1^2 + x_2^2 + 2x_1x_2 = m^2$,

因为
$$x_1x_2 = 1$$
,两边同时除以 x_1x_2 ,得 $t + \frac{1}{t} + 2 = m^2$,

因为
$$m \geqslant \frac{3\sqrt{2}}{2}$$
, 故 $t + \frac{1}{t} \geqslant \frac{5}{2}$, 解得 $0 < t \le \frac{1}{2}$ 或 $t \ge 2$, 所以 $0 < t \le \frac{1}{2}$.

设
$$G(t) = 2 \cdot \frac{t-1}{t+1} - lnt$$
,所以 $G'(t) = \frac{-(t-1)^2}{t(t+1)^2} < 0$,则 $y = G(t)$ 在 $(0, \frac{1}{2}]$ 上是减函数,

所以
$$G(t)_{min} = G(\frac{1}{2}) = -\frac{2}{3} + ln2$$
,即 $y = (x_1 - x_2)h'(x_0)$ 的最小值为 $-\frac{2}{3} + ln2$.

所以
$$(x_1-x_2)h'(x_0) \geqslant -\frac{2}{3} + \ln 2$$
.

双变量不等式基本类型 2——极值和差商积问题

1. 证明: (1) 当 a=1时, $f(x)=lnx-\frac{1}{2}(x-\frac{1}{x})$, 定义域为 $\{x\mid x>0\}$,

$$f'(x) = \frac{1}{x} - \frac{1}{2} - \frac{1}{2x^2} = \frac{-(x-1)^2}{2x^2}$$
, $f'(x) \le 0$ 在定义域上恒成立,所以 $f(x)$ 在 $(0,+\infty)$ 上单调递减,

$$\stackrel{\text{def}}{=} 0 < x < 1 \text{ fb}, \quad f(x) > f \quad (1) = 0,$$

当 x > 1 时, f(x) < f(1) = 0, 原命题得证.

(2)
$$f'(x) = \frac{1}{x} - \frac{1}{2}(a + \frac{1}{x^2}) = \frac{-ax^2 + 2x - 1}{2x^2}$$
, 若存在两个极值点,则 $\begin{cases} a > 0 \\ \triangle = 4 - 4a > 0 \end{cases}$, 解得 $0 < a < 1$,

由韦达定理可知, $x_1 + x_2 = \frac{2}{a}$, $x_1 x_2 = \frac{1}{a}$ (*),

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(\ln x_1 - \ln x_2) - \frac{1}{2}a(x_1 - x_2) + \frac{1}{2}(\frac{1}{x_1} - \frac{1}{x_2})}{x_1 - x_2} = \frac{\ln x_1 - \ln x_2}{x_1 - x_2} - \frac{1}{2}a - \frac{1}{2x_1x_2}, \text{ 原命题即证: } \frac{\ln x_1 - \ln x_2}{x_1 - x_2} - \frac{1}{2x_1x_2} < \frac{1}{2},$$

不妨设
$$x_1 > x_2$$
,原命题即证: $ln\frac{x_1}{x_2} - \frac{x_1 - x_2}{2x_1x_2} < \frac{x_1 - x_2}{2}$,

曲(*) 知,
$$\frac{1}{x_1} + \frac{1}{x_2} = 2$$
,即证: $\ln \frac{x_1}{x_2} - \frac{x_1 - x_2}{x_1 + x_2} < \frac{x_1 - x_2}{2} \cdot (\frac{1}{2x_1} + \frac{1}{2x_2})$,不妨令 $t = \frac{x_1}{x_2} > 1$,

原命题即证:
$$lnt - \frac{t-1}{t+1} - \frac{t}{4} + \frac{1}{4t} < 0$$
, 记 $g(t) = lnt - \frac{t-1}{t+1} - \frac{t}{4} + \frac{1}{4t}$, $(t > 1)$

$$\mathbb{II} g'(t) = \frac{1}{t} - \frac{2}{(t+1)^2} - \frac{1}{4} - \frac{1}{4t^2} = \frac{-(t-1)^2(t^2+1)}{4t^2(t+1)^2},$$

当 t > 1时, g'(t) < 0, g(t) 在 $(1,+\infty)$ 上单调递减,

g(t) < g (1) = 0, 原命题得证.

2.

(1) 解: 因为
$$f(x) = \frac{1}{x} - x + alnx(x > 0)$$
,则 $f'(x) = \frac{-x^2 + ax - 1}{x^2}$,

当
$$a=0$$
 时, $f'(x)=\frac{-x^2-1}{x^2}$, 所以 $f'(1)=-2$,

则 f(x) 在 (1,0) 处的切线方程为 y = -2x + 2;

(2) 解:函数的定义域为
$$(0,+\infty)$$
,且 $f'(x) = \frac{-x^2 + ax - 1}{x^2}$,

$$\Rightarrow g(x) = -x^2 + ax - 1$$
, $\coprod g(0) = -1$,

- ①当 $a \le 0$ 时, g(x) < 0 恒成立,此时 f'(x) < 0,则 f(x) 在 $(0, +\infty)$ 上单调递减;
- ②当 a > 0时,判别式 $\triangle = a^2 4$,
- (*i*) 当 0 < *a*≤2 时,△≤0,即 g(x)≤0,所以 f(x)≤0 恒成立,此时函数 f(x) 在 (0,+∞) 上单调递减;

(ii)
$$\stackrel{.}{=} a > 2$$
 时, $\stackrel{.}{\Rightarrow} g(x) > 0$, 解得 $\frac{a - \sqrt{a^2 - 4}}{2} < x < \frac{a + \sqrt{a^2 - 4}}{2}$,

令
$$g(x) < 0$$
,解得 $0 < x < \frac{a - \sqrt{a^2 - 4}}{2}$ 或 $x > \frac{a + \sqrt{a^2 - 4}}{2}$,

所以
$$f(x)$$
 在 $(\frac{a-\sqrt{a^2-4}}{2})$, $\frac{a+\sqrt{a^2-4}}{2}$)上单调递增,在 $(0,\frac{a-\sqrt{a^2-4}}{2})$ 和 $(\frac{a+\sqrt{a^2-4}}{2})$, $+\infty$)上单调递减.

综上所述, 当 $a \le 2$ 时, f(x) 在 $(0,+\infty)$ 上单调递减;

当
$$a > 2$$
时, $f(x)$ 在 $(\frac{a-\sqrt{a^2-4}}{2}$, $\frac{a+\sqrt{a^2-4}}{2}$)上单调递增,在 $(0,\frac{a-\sqrt{a^2-4}}{2})$ 和 $(\frac{a+\sqrt{a^2-4}}{2}$, $+\infty$)上单调递减.

(3) 证明: 由(2) 可知, a > 2, $0 < x_1 < 1 < x_2$, $x_1 x_2 = 1$,

$$\iiint f(x_1) - f(x_2) = \frac{1}{x_1} - x_1 + alnx_1 - \left[\frac{1}{x_2} - x_2 + alnx_2\right] = (x_2 - x_1)(1 + \frac{1}{x_1 x_2}) + a(lnx_1 - lnx_2)$$

$$=2(x_2-x_1)+a(\ln x_1-\ln x_2), \quad \text{if } \frac{f(x_1)-f(x_2)}{x_1-x_2}=-2+\frac{a(\ln x_1-\ln x_2)}{x_1-x_2}$$

故问题转化为证明
$$\frac{lnx_1-lnx_2}{x_1-x_2} < 1$$
即可,即证明 $lnx_1-lnx_2 > x_1-x_2$,则 $lnx_1-ln\frac{1}{x_1} > x_1-\frac{1}{x_1}$,

即证
$$lnx_1 + lnx_1 > x_1 - \frac{1}{x_1}$$
,即证 $2lnx_1 > x_1 - \frac{1}{x_1}$ 在 $(0,1)$ 上恒成立,

$$\diamondsuit h(x) = 2lnx - x + \frac{1}{x}(0 < x < 1), \quad \sharp \vdash h \quad (1) = 0,$$

则
$$h'(x) = \frac{2}{x} - 1 - \frac{1}{x^2} = \frac{x^2 - 2x + 1}{x^2} = -\frac{(x - 1)^2}{x^2} < 0$$
,故 $h(x)$ 在 $(0,1)$ 上单调递减,

则
$$h(x) > h$$
 (1), 即 $2lnx - x + \frac{1}{x} > 0$, 故 $2lnx > x - \frac{1}{x}$, 所以 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} < a - 2$.

3. 解: (1) f(x) 的定义域为 $(0,+\infty)$,

$$f'(x) = \frac{1}{x} + ax - (a+1) = \frac{ax^2 - (a+1)x + 1}{x} = \frac{(x-1)(ax-1)}{x},$$

①当 $a \le 0$ 时,令 f'(x) > 0,得 0 < x < 1,

令 f'(x) < 0,得 x > 1,

所以 f(x) 在 (0,1) 上单调递增,在 $(1,+\infty)$ 上单调递减,

②当
$$0 < a < 1$$
时,令 $f'(x) > 0$,得 $0 < x < 1$ 或 $x > \frac{1}{a}$,

令
$$f'(x) < 0$$
, 得 $1 < x < \frac{1}{a}$,

所以
$$f(x)$$
 在 $(0,1)$, $(\frac{1}{a}$, $+\infty$) 上单调递增,在 $(1,\frac{1}{a})$ 上单调递减,

③当 a=1时,则 $f'(x) \ge 0$,

所以 f(x) 在 $(0,+\infty)$ 上 f(x) 单调递增,

④当
$$a > 1$$
时,令 $f'(x) > 0$,得 $0 < x < \frac{1}{a}$ 或 $x > 1$,

$$f'(x) > 0$$
, $\theta = \frac{1}{a} < x < 1$,

所以 f(x) 在 $(0,\frac{1}{a})$, $(1,+\infty)$ 上单调递增,在 $(\frac{1}{a}$, 1) 上单调递减,

综上所述, 当 $a \le 0$ 时, f(x) 在 (0,1) 上单调递增, 在 $(1,+\infty)$ 上单调递减,

当
$$0 < a < 1$$
时, $f(x)$ 在 $(0,1)$, $(\frac{1}{a}$, $+\infty)$ 上单调递增,在 $(1,\frac{1}{a})$ 上单调递减,

当 a=1时, f(x) 在 $(0,+\infty)$ 上单调递增,

当 a > 1 时, f(x) 在 $(0, \frac{1}{a})$, $(1, +\infty)$ 上单调递增,在 $(\frac{1}{a}$, 1) 上单调递减.

(2) 证明:
$$g(x) = f(x) + x = \ln x + \frac{a}{2}x^2 - ax$$
, 则 $g(x)$ 的定义域为 $(0, +\infty)$, $g'(x) = \frac{1}{x} + ax - a = \frac{ax^2 - ax + 1}{x}$,

若 g(x) 有两个极值点 x_1 , x_2 (0 < x_1 < x_2),

则方程
$$ax^2 - ax + 1 = 0$$
 的判别式 $\triangle = a^2 - 4a > 0$,且 $x_1 + x_2 = 1$, $x_1x_2 = \frac{1}{a} > 0$,

解得
$$a > 4$$
,又 $0 < x_1 < x_2$,所以 $x_1^2 < x_1 x_2 = \frac{1}{a}$,即 $0 < x_1 < \frac{1}{\sqrt{a}}$,

所以
$$g(x_1) - g(x_2) = lnx_1 + \frac{a}{2}x_1^2 - ax_1 - lnx_2 - \frac{a}{2}x_2^2 + ax_2 = lnx_1 - ln\frac{1}{ax_1} + \frac{a}{2}(x_1 + x_2)(x_1 - x_2) - a(x_1 - x_2)$$

$$= \ln x_1 + \ln(ax_1) - \frac{a}{2}(2x_1 - 1) = \ln x_1 + \ln(ax_1) + \frac{a}{2} - ax_1,$$

设
$$h(t) = lnt + ln(at) + \frac{a}{2} - at$$
,其中 $t = x_1 \in (0, \frac{1}{\sqrt{a}})$, $a > 4$,由 $h'(t) = \frac{2}{t} - a = 0$,解得 $t = \frac{2}{a}$,又 $\frac{2}{a} - \frac{1}{\sqrt{a}} = \frac{2 - \sqrt{a}}{a} < 0$,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 3

所以 h(t) 在区间 $(0,\frac{2}{a})$ 内单调递增,在区间 $(\frac{2}{a},\frac{1}{\sqrt{a}})$ 内单调递减,

即 h(t) 的最大值为 $h(\frac{2}{a}) = 2ln2 - lna + \frac{a}{2} - 2 < \frac{a}{2} - lna$,所以 $g(x_1) - g(x_2) < \frac{a}{2} - lna$ 恒成立.

4. $\Re: (I) \oplus f(x) = \ln x - \frac{a}{x+1} \Re f'(x) = \frac{1}{x} + \frac{a}{(x+1)^2}, (2 \%)$

由题 $f'(x) = \frac{1}{x} + \frac{a}{(x+1)^2} \ge 0$ 在 $x \in (0,+\infty)$ 恒成立,即 $a \ge -(x+\frac{1}{x}+2)$ 在 $x \in (0,+\infty)$ 恒成立,

而 $-(x+\frac{1}{x}+2) \leqslant -4$,所以 $a \geqslant -4$;(5 分)

(II) $f'(x) = \frac{1}{x} + \frac{a}{(x+1)^2} = \frac{x^2 + (2+a)x + 1}{x(x+1)^2} (x > 0)$,由题意知 x_1 , x_2 是方程 f'(x) = 0 在 $(0, +\infty)$ 内的两个不同实数解,

令 $g(x) = x^2 + (2+a)x + 1(x > 0)$, 注意到 g(0) = 1 > 0, 其对称轴为直线 x = -2 - a,

故只需 $\left\{ \begin{array}{ll} -2-a>0 \\ (2+a)^2-4>0 \end{array} \right.$,解得 a<-4,即实数 a的取值范围为 $(-\infty,-4)$;

由 x_1 , x_2 是方程 $x^2 + (2+a)x + 1 = 0$ 的两根,得 $x_1 + x_2 = -2 - a$, $x_1x_2 = 1$,

因此 $f(x_1) + f(x_2) = (\ln x_1 - \frac{a}{x_1 + 1}) + (\ln x_2 - \frac{a}{x_2 + 1}) = \ln(x_1 x_2) - a \cdot \frac{x_1 + x_2 + 2}{x_1 x_2 + x_1 + x_2 + 1} = -a \cdot \frac{-2 - a + 2}{1 - 2 - a + 1} = -a$,(10 分)

又 $x_1 + x_2 = -2 - a$,所以 $f(x_1) + f(x_2) - (x_1 + x_2) = 2 > 0$,即 $f(x_1) + f(x_2) > x_1 + x_2$ 得证.

5. \mathbf{M} : (1) 由题得 $f'(x) = ax - 2 + \frac{1}{x} = \frac{ax^2 - 2x + 1}{x}$, 其中 x > 0,

令 $g(x) = ax^2 - 2x + 1$, x > 0, 对称轴为 $x = \frac{1}{a}$, $\triangle = 4 - 4a$,

若 $a \ge 1$,则 $\triangle \le 0$,此时 $g(x) \ge 0$,则 $f'(x) \ge 0$,所以 f(x) 在 $(0,+\infty)$ 上单调递增,

若 0 < a < 1,则 $\triangle > 0$,此时 $ax^2 - 2x + 1 = 0$ 在 R 上有两个根,即 $x_1 = \frac{1 - \sqrt{1 - a}}{a}$, $x_2 = \frac{1 + \sqrt{1 - a}}{a}$,

且 $0 < x_1 < 1 < x_2$,所以当 $x \in (0, x_1)$ 时, g(x) > 0,

则 f'(x) > 0, f(x) 单调递增,

当 $x \in (x_1, x_2)$ 时,g(x) < 0,则f'(x) < 0,f(x)单调递减,

当 $x ∈ (x, +\infty)$ 时, g(x) > 0 ,则 f'(x) > 0 , f(x) 单调递增,

综上, 当 $a \ge 1$ 时, f(x) 在 $(0,+\infty)$ 上单调递增,

当 0 < a < 1 时, f(x) 在 $(0, \frac{1 - \sqrt{1 - a}}{a})$ 上单调递增,

在 $(\frac{1-\sqrt{1-a}}{a}, \frac{1+\sqrt{1-a}}{a})$ 上单调递减,在 $(\frac{1+\sqrt{1-a}}{a}, +\infty)$ 上单调递增.

(2) 证明: 由 (1) 知, 当
$$0 < a < 1$$
 时, $f(x)$ 有两个极值点 x_1 , x_2 , 且 $x_1 + x_2 = \frac{2}{a}$, $x_1 x_2 = \frac{1}{a}$,

所以
$$f(x_1) + f(x_2) = \frac{1}{2}ax_1^2 - 2x_1 + lnx_1 + \frac{1}{2}ax_2^2 - 2x_2 + lnx_2 = \frac{1}{2}a(x_1^2 + x_2^2) - 2(x_1 + x_2) + (lnx_1 + lnx_2)$$

$$=\frac{1}{2}a[(x_1+x_2)^2-2x_1x_2]-2(x_1+x_2)+ln(x_1x_2)=\frac{1}{2}a[(\frac{2}{a})^2-\frac{2}{a}]-\frac{4}{a}+ln\frac{1}{a}=-lna-\frac{2}{a}-1,$$

$$\Rightarrow h(x) = -\ln x - \frac{2}{x} - 1$$
, $0 < x < 1$, $\text{diff} h'(x) = -\frac{1}{x} + \frac{2}{x^2} = \frac{2 - x}{x^2}$,

故 h(x) 在 (0,1) 上单调递增,所以 h(x) < h (1) = -3,

所以
$$h(a) = -lna - \frac{2}{a} - 1 < -3$$
,即 $f(x_1) + f(x_2) < -3$.

6. #\ f(x) =
$$lnx + mx, m \in R, f'(x) = \frac{1}{x} + m, x > 0$$
,

 $m \ge 0$ 时, f'(x) > 0, f(x) 在 $(0,+\infty)$ 递增,

$$m < 0$$
 时,令 $f'(x) > 0$,解得: $0 < x < -\frac{1}{m}$,令 $f'(x) < 0$,解得: $x > -\frac{1}{m}$,

故
$$f(x)$$
 在 $(0,-\frac{1}{m})$ 递增,在 $(-\frac{1}{m},+\infty)$ 递减,

综上: 当 $m \ge 0$ 时, f(x)递增区间为 $(0,+\infty)$;

当 m < 0 时, f(x) 递增区间为 $(0, -\frac{1}{m})$, 通减区间是 $(-\frac{1}{m}, +\infty)$.

(2) 证明:
$$g(x) = f(x) + \frac{1}{2}x^2, g'(x) = \frac{x^2 + mx + 1}{x}$$
,

当 $-2 \le m \le 2$ 时, g'(x) > 0, g(x)在 $(0,+\infty)$ 递增,无极值点,

当
$$m < -2$$
 或 $m > 2$ 时,由 $g'(x) = 0$,得 $x_1 = \frac{-m - \sqrt{m^2 - 4}}{2}, x_2 = \frac{-m + \sqrt{m^2 - 4}}{2}$,

若 m>2,则 $x_1 < x_2 < 0$, g(x) 在 $(0,+\infty)$ 递增,无极值点,

若
$$m < -2$$
,则 $x_1 + x_2 = -m$, $x_1 x_2 = 1$, 不妨设 $0 < x_1 < 1 < x_2$.

此时
$$g(x)$$
 有两个极值点 x_1 , x_2 , $g(x_1) + g(x_2) = lnx_1 + mx_1 + \frac{1}{2}x_1^2 + lnx_2 + mx_2 + \frac{1}{2}x_2^2$

=
$$ln(x_1x_2) + m(x_1 + x_2) + \frac{1}{2}(x_1^2 + x_2^2) = -\frac{1}{2}m^2 - 1$$
,

因为
$$m < -2$$
, 故 $-\frac{1}{2}m^2 - 1 < -3$, 即 $g(x_1) + g(x_2) + 3 < 0$.

7. 解: (I) 函数 f(x) 的定义域是 $(0,+\infty)$,

$$f'(x) = ? \frac{a}{x^2} \frac{2lnx}{x} = ? \frac{2xlnx + a}{x^2}, \Leftrightarrow h(x) = 2xlnx + a, \quad \text{if } h'(x) = 2(lnx + 1),$$

$$\Rightarrow h'(x) > 0$$
, 解得 $x > \frac{1}{e}$, $\Rightarrow h'(x) < 0$, 解得 $0 < x < \frac{1}{e}$,

故
$$h(x)$$
 在 $(0,\frac{1}{e})$ 上单调递减,在 $(\frac{1}{e},+\infty)$ 上单调递增,故 $h(x)_{min} = h(\frac{1}{e}) = -\frac{2}{e} + a$,

①
$$-\frac{2}{e} + a \ge 0$$
 即 $a \ge \frac{2}{e}$ 时, $f'(x) \le 0$, $f(x)$ 在 $(0, +\infty)$ 递减,

②
$$-\frac{2}{e} + a \le 0$$
 即 $a \le \frac{2}{e}$ 时, $f'(x) \ge 0$, $f(x)$ 在 $(0,+\infty)$ 递增;

(II)
$$f'(x) = \frac{a}{x^2} \frac{2lnx}{x} \frac{2xlnx + a}{x^2}$$
, $f(x)$ 有两个极值点, x_1 , $x_2(x_1 < x_2)$, $\begin{cases} 2x_1lnx_1 + a = 0 \\ 2x_2lnx_2 + a = 0 \end{cases}$

 $\Leftrightarrow g(x) = 2x \ln x$, $\bigcup g'(x) = 2 \ln x + 2$,

易知, 当
$$x \in (0, \frac{1}{e})$$
时, $g'(x) < 0$, 当 $x \in (\frac{1}{e}, +\infty)$ 时, $g'(x) > 0$,

$$\therefore g(x)$$
 在 $(0,\frac{1}{e})$ 上递减,在 $(\frac{1}{e},+\infty)$ 上递增,

$$\therefore g(x)_{min} = g(\frac{1}{e}) = ?\frac{2}{e}, \quad g(0) = g \quad (1) = 0, \quad \text{iff } ?a \in (?\frac{2}{e},_{0}), \quad \text{iff } a \in (0,\frac{2}{e}),$$

曲
$$\begin{cases} 2x_1 lnx_1 + a = 0 \\ 2x_2 lnx_2 + a = 0 \end{cases}, \quad$$
可得
$$\begin{cases} 2lnx_1 = -\frac{a}{x_1} \\ 2lnx_2 = -\frac{a}{x_2} \end{cases}, \quad \therefore 2(lnx_1 + lnx_2) = ?a(\frac{1}{x_1}, \frac{1}{x_2}), \quad$$
则 $x_1 + x_2 = \frac{2x_1x_2 ln(x_1x_2)}{-a}$,

$$2(\ln x_2?\ln x_1) = a(\frac{1}{x_1}?\frac{1}{x_2}) = \frac{a(x_2 - x_1)}{x_1 x_2}, \quad \text{if } \frac{\ln x_2 - \ln x_1}{x_2 - x_1} = \frac{a}{2x_1 x_2},$$

$$f(x_1)$$
? $f(x_2) = \frac{a}{x_1} ? \ln^2 x_1 ? \frac{a}{x_2} + \ln^2 x_2$, $= \ln^2 x_2 ? \ln^2 x_1 + 2 \ln x_2 ? 2 \ln x_1 = (\ln x_2 ? \ln x_1)(\ln x_1 x_2 + 2)$,

曲
$$x_1 < x_2$$
,得 $0 < x_1 < \frac{1}{e} < x_2 < 1$,下证 $x_1 x_2 < \frac{1}{e^2}$,即证 $x_1 < \frac{1}{x_2 e^2} < \frac{1}{e}$,即证 $g(x_1) > g(\frac{1}{x_2 e^2})$,

$$\therefore g(x_1) = g(x_2), \quad \therefore 等价于证 g(x_2) > g(\frac{1}{x_2 e^2}),$$

$$\Rightarrow G(x) = g(x) ? g(\frac{1}{xe^2}) = x \ln x + \frac{1}{e^2 x} \ln(e^2 x), \quad x \in (\frac{1}{e}, 1),$$

$$\iiint G'(x) = (\ln x + 1)(1? \frac{1}{x^2 e^2}) > 0 , \quad \text{iff } G(x) > G(\frac{1}{e}) = 0 , \quad \therefore g(x_2) > g(\frac{1}{x_2 e^2}) , \quad \text{iff } x_1 x_2 < \frac{1}{e^2} ,$$

$$\Leftrightarrow t = x_1 x_2 \in (0, \frac{1}{e^2}), \quad \text{III} \quad \frac{1}{k} \frac{f(x_1) - f(x_2)}{x_1 - x_2}?e^2(x_1 + x_2) + 2e^2(x_1 + x_2) + 2e$$

$$= ?\frac{a}{k} \cdot \frac{ln(x_1x_2) + 2}{2x_1x_2} + e^2 \cdot \frac{2x_1x_2ln(x_1x_2)}{a} + 2e > ?\frac{2}{ek} \cdot \frac{ln(x_1x_2) + 2}{2x_1x_2} + e^2 \cdot \frac{2x_1x_2ln(x_1x_2)}{a} + 2e = ?\frac{1}{k} \cdot \frac{lnt + 2}{et} + e^3tlnt + 2e ,$$

令
$$h(t) = ? \frac{lnt + 2}{et} + e^3 t lnt + 2e$$
 ,则 $h'(t) = (1 + lnt)(\frac{1}{et^2} + e^3)$, $\therefore h(t)$ 在 $(0, \frac{1}{e^2})$ 上递减, $\therefore h(t) \geqslant h(\frac{1}{e^2}) = 0$,

:: 正实数 k 的最大值为 1.

8.
$$\Re: (1) \quad f(x) = \frac{1}{2}x^2 - bx + \ln x$$
, $\iint f'(x) = x - b + \frac{1}{x} = \frac{x^2 - bx + 1}{x}(x > 0)$.

令 $\varphi(x) = x^2 - bx + 1$,若 $\triangle = b^2 - 4 \le 0$,即 $-2 \le b \le 2$ 时,则 $\varphi(x) \ge 0$ 恒成立,即 $f'(x) \ge 0$ 恒成立,

可得 f(x) 在 $(0,+\infty)$ 上单调递增;

若
$$\triangle = b^2 - 4 > 0$$
,则 $b < -2$ 或 $b > 2$,

当
$$b < -2$$
 时,函数 $\varphi(x) = x^2 - bx + 1$ 的对称轴方程为 $x = \frac{b}{2} < -1$, $\varphi(0) = 1$, 则当 $x \in (0, +\infty)$ 时,

 $\varphi(x) > 0$ 恒成立,即 f'(x) > 0 恒成立,可得 f(x) 在 $(0,+\infty)$ 上单调递增;

当
$$b > 2$$
 时,函数 $\varphi(x) = x^2 - bx + 1$ 的对称轴方程为 $x = \frac{b}{2} > 1$, $\varphi(0) = 1$,

由
$$\varphi(x) = x^2 - bx + 1 = 0$$
, 得 $x = \frac{b \pm \sqrt{b^2 - 4}}{2}$,

∴
$$\stackrel{.}{=} x \in (0, \frac{b - \sqrt{b^2 - 4}}{2}) \cup (\frac{b + \sqrt{b^2 - 4}}{2}, +\infty)$$
 財, $\varphi(x) > 0$, $f'(x) > 0$,

$$\stackrel{\text{def}}{=} x \in (\frac{b - \sqrt{b^2 - 4}}{2}, \frac{b + \sqrt{b^2 - 4}}{2}) \text{ Iff}, \varphi(x) < 0, f'(x) < 0,$$

$$\therefore f(x)$$
在 $(0, \frac{b-\sqrt{b^2-4}}{2})$, $(\frac{b+\sqrt{b^2-4}}{2}$, +∞)上单调递增,

在
$$(\frac{b-\sqrt{b^2-4}}{2}$$
 , $\frac{b+\sqrt{b^2-4}}{2}$) 上单调递减.

综上所述, 当 b≤2时, f(x) 在 (0,+∞) 上单调递增;

当
$$b > 2$$
 时, $f(x)$ 在 $(0, \frac{b - \sqrt{b^2 - 4}}{2})$, $(\frac{b + \sqrt{b^2 - 4}}{2}$, $+\infty$) 上单调递增,

在
$$(\frac{b-\sqrt{b^2-4}}{2}$$
 , $\frac{b+\sqrt{b^2-4}}{2}$) 上单调递减.

(2) 函数
$$f(x) = \ln x + \frac{1}{2}x^2 - bx$$
, $f'(x) = \frac{1}{x} + x - b = \frac{x^2 - bx + 1}{x}$,

由 f'(x) = 0,得 $x^2 - bx + 1 = 0$, x_1 , $x_2(x_1 < x_2)$ 是函数 f(x) 的两个极值点, $x_1 + x_2 = b$, $x_1 x_2 = 1$,

$$\therefore x_2 = \frac{1}{x_1}, \quad b \geqslant \frac{5}{2}, \quad x_1 + x_2 = x_1 + \frac{1}{x_1} = b \geqslant \frac{5}{2}, \quad 0 < x_1 < x_2 = \frac{1}{x_1}, \quad \text{if } 0 < x_1 \leqslant \frac{1}{2},$$

$$\therefore f(x_1) - f(x_2) = \ln \frac{x_1}{x_2} + \frac{1}{2}(x_1^2 - x_2^2) - b(x_1 - x_2) = 2\ln x_1 - \frac{1}{2}(x_1^2 - \frac{1}{x_1^2}),$$

构造函数
$$F(x) = 2lnx - \frac{1}{2}(x^2 - \frac{1}{x^2})(x \in (0, \frac{1}{2}])$$
, $F'(x) = \frac{2}{x} - x - \frac{1}{x^3} = \frac{-(x^2 - 1)^2}{x^3} < 0$,

$$\therefore F(x)$$
在(0, $\frac{1}{2}$]上单调递减. \therefore 当 $x_1 = \frac{1}{2}$ 时, $F(x)_{min} = F(\frac{1}{2}) = \frac{15}{8}$? $2ln2$,

故 k 的最大值为 $\frac{15}{8}$?2ln2.

双变量不等式基本类型 3——剪刀模型

1. (1) 解:由题意可知,函数 f(x) 的定义域为 $(0,+\infty)$,则 $f'(x) = ax^2 - 2lnx - a = a(x^2 - 1) - 2lnx$,

令 $g(x) = a(x^2 - 1) - 2lnx$,因为函数 f(x) 有两个极值点 x_1 , x_2 ,

则函数
$$g(x)$$
 有两个零点 x_1 , x_2 , 又 $g'(x) = \frac{2(ax^2-1)}{x}$,

当 $a \le 0$ 时,g'(x) < 0,则g(x)在 $(0,+\infty)$ 上单调递减,函数g(x)至多有一个零点,不符合题意;

当
$$a > 0$$
 时,令 $g'(x) = 0$,可得 $x = \sqrt{\frac{1}{a}}$,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 4

所以当 $x \in (0, \sqrt{\frac{1}{a}})$ 时,g'(x) < 0,则g(x)单调递减,当 $x \in (\sqrt{\frac{1}{a}}, +\infty)$ 时,g'(x) > 0,则g(x)单调递增,

又 g (1) = 0, 所以当 $\sqrt{\frac{1}{a}}$ = 1, 即 a = 1 时, g(x) 有唯一的零点 x = 1, 故符合题意;

当
$$\sqrt{\frac{1}{a}} \neq 1$$
, 即 $a \neq 1$ 时, $g(\sqrt{\frac{1}{a}}) < g$ (1) =0,

当
$$\sqrt{\frac{1}{a}} > 1$$
,即 $0 < a < 1$ 时, $g(x)$ 在 $(0, \sqrt{\frac{1}{a}})$ 上有唯一的零点 $x = 1$,

$$g(\sqrt{\frac{1}{a}}) = \frac{1}{a} + 2lna - a ,$$

设G (a) $=\frac{1}{a}+2lna-a$, 0 < a < 1 , 则G' (a) $=-\frac{1}{a^2}+\frac{2}{a}-1 < 0$,所以G (a) 在(0,1) 上单调递减,

则
$$G$$
 (a) >0, 即 $g(\frac{1}{a})>0$,

又 $\frac{1}{a}$ > $\sqrt{\frac{1}{a}}$, 所以g(x)在($\sqrt{\frac{1}{a}}$, + ∞)上有唯一的零点,此时g(x)有两个零点,符合题意;

当
$$\sqrt{\frac{1}{a}}$$
<1,即 a >1时, $g(x)$ 在($\sqrt{\frac{1}{a}}$,+∞)上有唯一的零点 x =1,

$$\overrightarrow{\text{m}} g(e^{-\frac{a}{2}}) = ae^{-a} > 0 , \quad e^{-\frac{a}{2}} = \sqrt{\frac{1}{e^a}} < \sqrt{\frac{1}{a}} ,$$

所以 g(x) 在 $(0,\sqrt{\frac{1}{a}})$ 上有唯一的两点,此时 g(x) 有两个零点,符合题意.

综上所述, a的取值范围为(0, 1) $\cup (1, +\infty)$;

(2) 证明: 由 (1) 可知, 当 $0 < a < \frac{1}{e-1}$ 时, f(x)有两个极值点 x_1 , x_2 ,

不妨设 $x_1 < x_2$,则 $x_1 = 1$, $x_2 > 1$,因为 $g(x_2) = a(x_2^2 - 1) - 2lnx_2 = 0$,所以 $a = \frac{2lnx_2}{x_2^2 - 1}$,设 $\varphi(x) = \frac{2lnx}{x^2 - 1}$, x > 1 ,

則
$$\varphi'(x) = \frac{2x(1-\frac{1}{x^2}-2lnx)}{(x^2-1)^2}$$
, 设 $F(x) = 1-\frac{1}{x^2}-2lnx$, $x > 1$, 则 $F'(x) = \frac{2(1-x^2)}{x^3} < 0$,

所以F(x)在 $(1,+\infty)$ 上单调递减,F(x)<0,即 $\varphi'(x)<0$,所以 $\varphi(x)$ 在 $(1,+\infty)$ 上单调递减,

因为
$$\varphi(\sqrt{e}) = \frac{1}{e-1}$$
, $0 < a < \frac{1}{e-1}$, 所以 $x_2 > \sqrt{e}$, $x_2 - 1 > \sqrt{e} - 1$, 故 $|x_2 - x_1| > \sqrt{e} - 1$.

2. 解: (1) 将x=-1代入切线方程(e-1)x+ey+e-1=0中,有y=0,

所以
$$f(-1) = 0$$
,即 $f(-1) = (b-1)(\frac{1}{a} - a) = 0$,又 $f'(x) = e^x(x+b+1) - a$,

所以
$$f'(-1) = \frac{b}{e} - a = -\frac{e-1}{e} = -1 + \frac{1}{e}$$
. 若 $a = \frac{1}{e}$, 则 $b = 2 - e < 0$, 与 $b > 0$ 矛盾,故 $a = b = 1$.

(2) 证明: 由(1) 可知 $f(x) = (x+1)(e^x-1)$, 令 f(x) = 0, 有 x = -1 或 x = 0,

故曲线 y = f(x) 与 x 轴负半轴的唯一交点 P 为 (-1,0) . 曲线在点 P(-1,0) 处的切线方程为 y = h(x) ,

则
$$h(x) = f'(-1)(x+1)$$
, $\Leftrightarrow F(x) = f(x) - h(x)$, 则 $F(x) = f(x) - f'(-1)(x+1)$,

所以 $F'(x) = f'(x) - f'(-1) = e^x(x+2) - \frac{1}{e}$, F'(-1) = 0.

当x < -1时,若 $x \in (-\infty, -2]$,F'(x) < 0,

若 $x \in (-2,-1)$, $F''(x) = e^x(x+3) > 0$, F'(x) 在 $x \in (-2,-1)$ 时单调递增, F'(x) < F'(-1) = 0.

故F'(x) < 0,F(x)在 $(-\infty, -1)$ 上单调递减,

当 x > -1 时,由 $F''(x) = e^x(x+3) > 0$ 知 F'(x) 在 $x \in (-1, +\infty)$ 时单调递增, F'(x) > F'(-1) = 0 , F(x) 在 $(-1, +\infty)$ 上单调递增. 所以 F(x) > F(-1) = 0 ,即 f(x) > h(x) 成立.

(3) 证明:
$$h(x) = (\frac{1}{e} - 1)(x + 1)$$
, 设 $h(x) = m$ 的根为 $x_{1'}$, 则 $x_{1'} = -1 + \frac{me}{1 - e}$,

又h(x)单调递减,且 $m = h(x_1) = f(x_1) \geqslant h(x_1)$,所以 $x_1 \leqslant x_1$,

设曲线 y = f(x) 在点 (0,0) 处的切线方程为 y = t(x),有 t(x) = x,

$$\Rightarrow T(x) = f(x) - t(x) = (x+1)(e^x - 1) - x$$
, $T'(x) = (x+2)e^x - 2$,

$$\stackrel{\text{def}}{=}$$
 x≤-2 \text{ if } T'(x) = (x+2)e^x - 2 ≤ -2 < 0,

故函数T'(x)在($-2,+\infty$)上单调递增,

又T'(0) = 0,所以当 $x \in (-\infty,0)$ 时,T'(x) < 0,当 $x \in (0,+\infty)$ 时,T'(x) > 0,

所以函数T(x)在区间 $(-\infty,0)$ 上单调递减,在区间 $(0,+\infty)$ 上单调递增,

所以 $T(x) \geqslant T(0) = 0$, 即 $f(x) \geqslant t(x)$,

设t(x) = m的根为 x_2 ,则 $x_2 = m$,又函数t(x)单调递增,故 $m = t(x_2) = f(x_2) \ge t(x_2)$,故 $x_2 \ge x_2$.

又
$$x_1 \leqslant x_1$$
,所以 $x_2 - x_1 \leqslant x_{2'} - x_{1'} = m - (-1 + \frac{me}{1 - e}) = 1 + \frac{m(1 - 2e)}{1 - e}$.

3. 解: (1) 将
$$x = -\frac{1}{2}$$
 代入切线方程 $(e-1)x + ey + \frac{e-1}{2} = 0$ 中,得 $y = 0$,

所以
$$f(-\frac{1}{2}) = 0$$
, 又 $f(-\frac{1}{2}) = (b - \frac{1}{2})(\frac{1}{e} - a) = 0$, 解得 $b = \frac{1}{2}$ 或 $a = \frac{1}{e}$,

又
$$f'(x) = e^{2x}(2x+2b+1)-a$$
,所以 $f'(-\frac{1}{2}) = \frac{2b}{a}-a = -\frac{e-1}{a} = -1 + \frac{1}{a}$

若
$$a = \frac{1}{e}$$
,则 $b = \frac{2-e}{2}$ (舍去);所以 $b = \frac{1}{2}$,则 $a = 1$;

(2) 由 (1) 可知,
$$a=1$$
, $b=\frac{1}{2}$, 所以 $f(x)=(x+\frac{1}{2})(e^{2x}-1)$, 令 $f(x)=0$, 有 $x=-\frac{1}{2}$ 或 $x=0$,

故曲线 y = f(x) 与 x 轴负半轴的唯一交点 P 为 $(-\frac{1}{2},0)$,

曲线在点 $P(-\frac{1}{2},0)$ 处的切线方程为 y = h(x) ,则 $h(x) = f'(-\frac{1}{2})(x + \frac{1}{2})$,

因为F(x) = f(x) - h(x),所以 $F(x) = f(x) - f'(-\frac{1}{2})(x + \frac{1}{2})$,

所以 $F'(x) = f'(x) - f'(-\frac{1}{2}) = 2e^{2x}(x+1) - \frac{1}{e}, F'(-\frac{1}{2}) = 0$

若 $x \leq -1$,F'(x) < 0,

若 $x \in (-1, -\frac{1}{2}), x+1 \in (0, \frac{1}{2}), e^{2x} \in (\frac{1}{e^2}, \frac{1}{e})$, 所以 $2(x+1)e^{2x} \in (0, \frac{1}{e}), F'(x) < 0$,

若 $x \in (-\frac{1}{2}, +\infty), x+1 \in (\frac{1}{2}, +\infty), e^{2x} \in (\frac{1}{e}, +\infty), 2(x+1)e^{2x} \in (\frac{1}{e}, +\infty)$,F'(x) > 0,所以 y = F'(x) 在 $(-\frac{1}{2}, +\infty)$ 上单调递增,

:. $F'(x) > F'(-\frac{1}{2}) = 0$,

∴函数 y = F(x) 在 $(-\frac{1}{2}, +\infty)$ 上单调递增. 所以 $F(x)_{min} = F(-\frac{1}{2}) = 0$;

(3) 证明: $h(x) = (\frac{1}{e} - 1)(x + \frac{1}{2})$, 设h(x) = m的根为 $x_{1'}$, 则 $x_{1'} = -\frac{1}{2} + \frac{me}{1 - e}$,

又 y = h(x) 单调递减,由(2)知 $f(x) \ge h(x)$ 恒成立.

又 $m = h(x_{1'}) = f(x_1) \geqslant h(x_1)$, 所以 $x_{1'} \leqslant x_1$,

设曲线 y = f(x) 在点 (0,0) 处的切线方程为 y = t(x),则 t(x) = x,

当 $x \le -1$ 时, $T'(x) = 2(x+1)e^{2x} - 2 \le -2 < 0$,

故函数 y = T'(x) 在 $(-1, +\infty)$ 上单调递增,又 T'(0) = 0 ,

所以当 $x \in (-\infty,0)$ 时,T'(x) < 0,当 $x \in (0,+\infty)$ 时,T'(x) > 0,

所以函数 y = T(x) 在区间 $(-\infty,0)$ 上单调递减,在区间 $(0,+\infty)$ 上单调递增,

所以 $T(x) \geqslant T(0) = 0$, 即 $f(x) \geqslant t(x)$,

设t(x) = m的根为 $x_{2'}$,则 $x_{2'} = m$,

又函数 y = t(x) 单调递增,故 $m = t(x_2) = f(x_2) \ge t(x_2)$,故 $x_2 \ge x_2$.

又 $x_1 \leqslant x_1$,所以 $x_2 - x_1 \leqslant x_2' - x_1' = m - (-\frac{1}{2} + \frac{me}{1-e}) = \frac{1+2m}{2} - \frac{me}{1-e}$.

۸. ۸

- 4. (I) 解: $f'(x) = a e^x$; 由题意知, $f'(\ln 3) = a e^{\ln 3} = 0$; $\therefore a = 3$;
- (II) 证明: 设曲线 y = f(x) 在 $P(x_0, 0)$ 处切线为直线 $l: y = (3 e^{x_0})(x x_0)$;

$$\therefore F'(x) = 3 - e^x - (3 - e^{x_0}) = e^{x_0} - e^x; \quad \therefore F(x) \, \text{在}(-\infty, x_0) \, \text{上单调递增,在}(x_0, +\infty) \, \text{上单调递减;}$$

$$\therefore F(x)_{max} = F(x_0) = f(x_0) - g(x_0) = 0;$$

 $\therefore F(x) = f(x) - g(x) \le 0$, 即 $f(x) \le g(x)$, 即 y = f(x)上的点都不在直线 l 的上方;

(III) 由(II) 设方程 g(x) = m 的解为 x_5' ;

则有
$$(3-e^{x_0})(x_2'-x_0)=m$$
,解得 $x_2'=\frac{m}{3-e^{x_0}}+x_0$;由题意知, $\ln 3 < x_2 < x_2'$;

$$\Rightarrow r(x) = 2x - f(x) = e^x - x - 1$$
, $(x > 0)$; $r'(x) = e^x - 1 > 0$;

 $\therefore r(x)$ 在 $(0,+\infty)$ 上单调递增; $\therefore r(x) > r(0) = 0$; $\therefore y = 2x$ 的图象不在 f(x) 的下方;

$$\therefore y = 2x$$
 与 $y = m$ 交点的横坐标为 $x_1' = \frac{m}{2}$;

则有 $0 < x_1' < x_1 < ln3$,即 $0 < x_1' < x_1 < ln3 < x_2 < x_2'$;

$$\therefore x_2 - x_1 < x_2' - x_1' = \frac{m}{3 - e^{x_0}} + x_0 - \frac{m}{2};$$

:: 关于 x_0 的函数 $y = \frac{m}{3 - e^{x_0}} + x_0 - \frac{m}{2}$ 在 $(\ln 3, 2)$ 上单调递增;

$$\therefore x_2 - x_1 < \frac{m}{3 - e^2} + 2 - \frac{m}{2} < \frac{m}{2 - 7} + 2 - \frac{m}{2} = 2 - \frac{7m}{10}.$$

5. 解:(I)由已知得: $f'(x) = 6(1-x^5)$ 由 f'(x) = 0得: x = 1

又当x < 1时,f'(x) > 0,f(x)单调递增,

当x > 1时,f'(x) < 0,f(x)单调递减,

 \therefore 当 x=1 时 f(x) 取得极大值,极大值为 f(1)=5,无极小值....(3分)

(II)
$$\Re P(x_0, 0)$$
, $\Re x_0 = \sqrt[5]{6}$, $f'(x_0) = -30$,

曲线 f(x) 在点 P 处的切线方程为: $y = f'(x_0)(x - x_0) = -30(x - \sqrt[5]{6})$,

即曲线在点 P 处的切线方程为: $y = -30(x - \sqrt[5]{6})...$ (6分)

(III)
$$\forall g(x) = -30(x - \sqrt[5]{6}), \Leftrightarrow F(x) = f(x) - g(x)$$

即
$$F(x) = f(x) + 30(x - \sqrt[5]{6})$$
,则 $F'(x) = f'(x) + 30$

由于 $f'(x) = 6 - 6x^5$ 在 R 单调递减,故 F'(x) 在 R 单调递减,又 : $F'(x_0) = 0$, $(x_0 = \sqrt[5]{6})$

∴
$$\exists x \in (-\infty, x_0)$$
 时 $F'(x) > 0$, $\exists x \in (x_0, +\infty)$ 时, $F'(x) < 0$,

 $\therefore F(x)$ 在 $(-\infty, x_0)$ 单调递增,在 $(x_0, +\infty)$ 单调递减,

∴
$$\forall x \in R$$
, $F(x) \leq F(x_0) = 0$, $\square \forall x \in R$, $\exists A \in A$, $\exists A \in$

淇江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 5

设方程 g(x) = a 的根为 x_2 , $\therefore x_2' = 6^{\frac{1}{5}} - \frac{a}{30}$.

:: g(x) 在 R 单调递减,且 $g(x_2) \geqslant f(x_2) = a = g(x_2')$ $:: x_2 < x_2'$,

设曲线 y = f(x) 在点原点处的切线方程为: y = h(x) ,则易得 h(x) = 6x ,

 $\forall x \in R$, $f(x) - h(x) = -x^6 \le 0$, $f(x) \le h(x)$,

设方程 h(x)=a 的根为 x_1' ,则 $x_1'=\frac{a}{6}$, $\because h(x)$ 在 R 单调递增,且 $h(x_1')=a=f(x_1)\leqslant h(x_1)$, $\therefore x_1'\leqslant x_1$

$$\therefore x_2 - x_1 \leqslant x_2' - x_1' = (a^{\frac{1}{5}} - \frac{a}{30}) - \frac{a}{6} = a^{\frac{1}{5}} - \frac{a}{5}, \quad \text{If } x_2 - x_1 \leqslant a^{\frac{1}{5}} - \frac{a}{5}.$$

6. (I) 解: 由 $f(x) = 4x - x^4$, 可得 $f'(x) = 4 - 4x^3$.

当 f'(x) > 0, 即 x < 1时, 函数 f(x) 单调递增;

当 f'(x) < 0,即 x > 1时,函数 f(x) 单调递减.

 $\therefore f(x)$ 的单调递增区间为 $(-\infty,1)$,单调递减区间为 $(1,+\infty)$.

(II)证明:设点 p 的坐标为 $(x_0, 0)$,则 $x_0 = 4^{\frac{1}{3}}$, $f'(x_0) = -12$,

曲线 y = f(x) 在点 P 处的切线方程为 $y = f'(x_0)(x - x_0)$, 即 $g(x) = f'(x_0)(x - x_0)$,

令函数 F(x) = f(x) - g(x), 即 $F(x) = f(x) - f'(x_0)(x - x_0)$,

则 $F'(x) = f'(x) - f'(x_0)$.

 $F'(x_0) = 0$, $\therefore \stackrel{\omega}{=} x \in (-\infty, x_0)$ $\forall f$, F'(x) > 0; $\stackrel{\omega}{=} x \in (x_0, +\infty)$ $\forall f$, F'(x) < 0,

 $\therefore F(x)$ 在 $(-\infty, x_0)$ 上单调递增,在 $(x_0, +\infty)$ 上单调递减,

::对于任意实数 x , $F(x) \le F(x_0) = 0$, 即对任意实数 x , 都有 $f(x) \le g(x)$;

(III) 证明: 由(II)知, $g(x) = -12(x - 4^{\frac{1}{3}})$, 设方程 g(x) = a 的根为 x_2' , 可得 $x_2' = -\frac{a}{12} + 4^{\frac{1}{3}}$.

g(x) g(x)

类似地,设曲线 y = f(x) 在原点处的切线方程为 y = h(x),可得 h(x) = 4x,

对于任意的 $x \in (-\infty, +\infty)$,有 $f(x) - h(x) = -x^4 \leq 0$,即 $f(x) \leq h(x)$.

设方程 h(x) = a 的根为 x_1' , 可得 $x_1' = \frac{a}{4}$,

 $\therefore h(x) = 4x$ 在 $(-\infty, +\infty)$ 上单调递增,且 $h(x, ') = a = f(x,) \leq h(x, ')$,因此 $x, ' \leq x, '$

由此可得 $x_2 - x_1 \leqslant x_2' - x_1' = -\frac{a}{3} + 4^{\frac{1}{3}}$.

双变量不等式方法 1——主元法

1.
$$M: (1) : f'(x) = 1 + lnx$$
, $\Leftrightarrow f'(x) \ge 0$ $\#: lnx \ge -1 = lne^{-1}$, $e > 1$, $x \ge \frac{1}{e}$

令
$$f'(x) < 0$$
 得: $0 < x < \frac{1}{e}$;

$$\therefore f(x)$$
在 $\left[\frac{1}{e}, +\infty\right)$ 上为增函数;在 $\left(0, \frac{1}{e}\right]$ 上为减函数

(2) 由 (1) 知: 当
$$b > 0$$
时,有 f (b) $\geqslant f(x)_{mix} = f(\frac{1}{e}) = -\frac{1}{e}$

$$\therefore blnb \geqslant -\frac{1}{e}, \quad \text{即:} \quad lnb^b \geqslant ln(\frac{1}{e})^{\frac{1}{n}}, \quad \therefore b^b \geqslant (\frac{1}{e})^{\frac{1}{n}}. \quad ----- \quad (8 \, \%)$$

(3) 将
$$f$$
 (a) +($a+b$) $ln2 \ge f(a+b)-f$ (b) 变形为:

$$f(a) + f(b) \ge f(a+b) - (a+b)\ln 2 - \cdots$$

即只证:
$$f(a) + f(a+b-a) \ge f(a+b) - (a+b) \ln 2$$

设函数
$$g(x) = f(x) + f(k-x)(k>0) - - - - -$$

$$\therefore g(x) = x \ln x + (k - x) \ln(k - x) , \quad \therefore 0 < x < k$$

$$\therefore g'(x) = \ln x + 1 - \ln(k - x) - 1 = \ln \frac{x}{k - x} \Leftrightarrow g'(x) > 0 , \ \ \ \ \ \ \\ \ \ \frac{x}{k - x} > 1 \Rightarrow \frac{2x - k}{k - x} > 0 \Rightarrow \frac{k}{2} < x < k \ . \ \ \therefore g(x) \times \mathbb{E}\left[\frac{k}{2}, \quad k\right) \perp \mathring{=}$$

调递增; 在 $(0, \frac{k}{2}]$ 上单调递减; $\therefore g(x)$ 的最小值为: $g(\frac{k}{2})$, 即总有: $g(x) \geqslant g(\frac{k}{2})$.

$$g(\frac{k}{2}) = f(\frac{k}{2}) + f(k - \frac{k}{2}) = k \ln \frac{k}{2} = k (\ln k - 2) = f(k) - k \ln 2 : g(x) \geqslant f(k) - k \ln 2, \quad \text{(i)} : f(x) + f(k - x) \geqslant f(k) - k \ln 2, \quad \text{(ii)} : f(x) + f(k - x) \geqslant f(k) - k \ln 2, \quad \text{(ii)} : f(x) + f(k - x) \geqslant f(k) - k \ln 2, \quad \text{(iii)} : f(x) + f(k) - k \ln 2, \quad \text{(iii)} :$$

$$\therefore f$$
 (a) $+(a+b)\ln 2 \geqslant f(a+b) - f$ (b) 成立.

2.解: (I) 函数
$$f(x)$$
 的定义域为 $(0,+\infty)$,其导数为 $f'(x) = a \cdot \frac{e^x(x-1)}{x^2} - \frac{x-1}{x} = \frac{e^x(x-1)}{x^2} (a - \frac{x}{e^x})$.

由
$$f'(x) = 0 \Rightarrow x = 1$$
 或 $a = \frac{x}{a^x}$, 设 $u(x) = \frac{x}{a^x}$, $u'(x) = \frac{1-x}{a^x}$,

$$\therefore \stackrel{.}{=} x \in (0,1)$$
 时, $u'(x) > 0$; $\stackrel{.}{=} x \in (1,+\infty)$ 时, $u'(x) < 0$.

即
$$u(x)$$
 在区间 $(0,1)$ 上递增,在区间 $(1,+\infty)$ 上递减, $:: u(x)_{\text{Wt}} = u(1) = \frac{1}{\rho}$

又当 $x \to 0$ 时, $u(x) \to 0$,当 $x \to +\infty$ 时, $u(x) \to 0$ 且u(x) > 0恒成立.

:. 当
$$a \le 0$$
 或 $a > \frac{1}{e}$ 时,方程 $a = \frac{x}{e^x}$ 无根,函数 $f(x)$ 只有 $x = 1$ 一个极值点.

当
$$a = \frac{1}{e}$$
时,方程 $a = \frac{x}{e^x}$ 的根也为 $x = 1$,此时 $f'(x)$ 的因式 $a - \frac{x}{e^x} \geqslant 0$ 恒成立,

故函数 f(x) 只有 x=1 一个极值点.

当
$$0 < a < \frac{1}{e}$$
 时,方程 $a = \frac{x}{e^x}$ 有两个根 x_1 、 x_2 且 $x_1 \in (0,1)$, $x_2 \in (1,+\infty)$,

∴函数 f(x) 在区间 $(0,x_1)$ 单调递减; $(x_1, 1)$ 单调递增; $(1,x_2)$ 单调递减; $(x_2, +\infty)$ 单调递增,此时函数 f(x) 有 x_1 、

1、x,三个极值点.

综上所述, 当 $a \le 0$ 或 $a \ge \frac{1}{a}$ 时, 函数f(x)只有一个极值点.

(II) 依题意得
$$lnx - x \le kx + m$$
,令 $\varphi(x) = lnx - (k+1)x - m$,则对 $\forall x \in (0, +\infty)$,都有 $\varphi(x) \le 0$ 成立.

 $\therefore \varphi'(x) = \frac{1}{x} - (k+1) , \therefore \pm k + 1 \leq 0 \text{ 时,函数 } \varphi(x) \text{ 在 } (0,+\infty) \text{ 上单调递增},$

注意到 $\varphi(e^m) = -(k+1)e^m \geqslant 0$, .. 若 $x \in (e^m, +\infty)$,有 $\varphi(x) > 0$ 成立,这与 $\varphi(x) \leqslant 0$ 恒成立矛盾;

当 k+1>0 时,因为 $\varphi'(x)$ 在 $(0,+\infty)$ 上为减函数,且 $\varphi'(\frac{1}{k+1})=0$,

∴函数 $\varphi(x)$ 在区间 $(0,\frac{1}{k+1})$ 上单调递增,在 $(\frac{1}{k+1},+\infty)$ 上单调递减, ∴ $\varphi(x)\leqslant \varphi(\frac{1}{k+1})=-ln(k+1)-1-m$,

若对 $\forall x \in (0,+\infty)$,都有 $\varphi(x) \leq 0$ 成立,则只需 $-\ln(k+1) - 1 - m \leq 0$ 成立, $\therefore \ln(k+1) \geqslant -1 - m \Rightarrow k + 1 \geqslant e^{-1 - m}$,

当m > 0时,则(k+1)m的最小值 $h(m) = me^{-1-m}$,

 $:: h'(m) = e^{-1-m}(1-m)$, :. 函数 h(m) 在 (0,1) 上递增, 在 $(1,+\infty)$ 上递减,

 $\therefore h(m) \leqslant \frac{1}{e^2}$,即 (k+1)m 的最小值 h(m) 的最大值为 $\frac{1}{e^2}$;

综上所述,(k+1)m 的最小值 h(m) 的最大值为 $\frac{1}{e^2}$.

3. (I) 函数 $f(x) = x \ln x$, 则 $f'(x) = 1 + \ln x$, (x > 0)

令 f'(x) = 0,解得: $x = \frac{1}{e}$,且当 $x \in (0, \frac{1}{e})$ 时, f'(x) < 0, $x \in (\frac{1}{e}, +\infty)$ 时, f'(x) > 0

因此: f(x) 的极小值为 $f(\frac{1}{e}) = -\frac{1}{e}$

(II) g(x) = f(x+1) = (x+1)ln(x+1)

 $\Rightarrow h(x) = (x+1)ln(x+1) - mx$, $\bigcup h'(x) = ln(x+1) + 1 - m$

注意到: h(0) = 0, 若要 $h(x) \ge 0$, 必须要求 $h'(0) \ge 0$, 即 $1-m \ge 0$, 亦即 $m \le 1$

另一方面: 当 $m \le 1$ 时, $h'(x) = ln(x+1) + 1 - m \ge 0$ 恒成立;

故实数 m 的取值范围为: m≤1

(III) 构造函数 $F(x) = alna + xlnx - (a+x)ln\frac{a+x}{2}$, x > a, $F'(x) = 1 + lnx - ln\frac{a+x}{2} - 1 = ln\frac{2x}{a+x}$,

 $\because x > a$, $\therefore 0 < a + x < 2x$, F'(x) > 0, $F(x) \div (a, +\infty)$ 上是单调递增的;

故
$$F$$
 (b) $> F$ (a) $= 0$, 即: $f(a) + f(b) - 2f(\frac{a+b}{2}) > 0$

另一方面,构造函数 $G(x) = alna + xlnx - (a+x)ln\frac{a+x}{2} - (x-a)ln2$,

 $G'(x) = \ln \frac{2x}{a+x} - \ln 2 = \ln \frac{x}{a+x} < 0$, G(x) 在 $(a, +\infty)$ 上是单调递减的

故G (b) < G (a) = 0即: $f(a) + f(b) - 2f(\frac{a+b}{2}) < (b-a)\ln 2$

综上, $0 < f(a) + f(b) - 2f(\frac{a+b}{2}) < (b-a)\ln 2$.

4. 解: (1) :: 函数 $f(x) = e^x - x$, $g(x) = (x+k)\ln(x+k) - x$. $\therefore f'(x) = e^x - 1$, $g'(x) = \ln(x+k)$,

由 k=1, f'(t)=g'(t), 得 $e^t-ln(t+1)-1=0$,

令 $\varphi(t) = e^t - \ln(t+1) - 1$,则 $\varphi'(t) = e^t - \frac{1}{t+1}$, $\varphi''(t) = e^t + \frac{1}{(t+1)^2} > 0$, $\varphi'(t)$ 在 $(-1, +\infty)$ 单调递增,

又 $\varphi'(0) = 0$, \therefore 当-1 < x < 0时, $\varphi'(t) > 0$, $\varphi(t)$ 单调递增,

当x > 0时, $\varphi'(t) < 0$, $\varphi(t)$ 单调递减, $\therefore \varphi(t) \leqslant \varphi(0) = 0$,

当且仅当t=0时等号成立,:: 方程 f'(t)=g'(t) 有且仅有唯一解t=0,实数t 的值为 0.

(2)
$$\Rightarrow h(x) = f(x) - bx + g$$
 (b) $-f(0) - g(0)$, $x > 0$,

则 $h'(x) = e^x - (b+1)$, :: 当 x > ln(b+1) 时, h'(x) > 0, h(x) 单调递增.

当0 < x < ln(b+1)时,h'(x) < 0,h(x)单调递减,

故 $h(x) \ge h(\ln(b+1)) = f(\ln(b+1)) + g$ (b) $-f(0) - g(0) - b\ln(b+1)$

=(b+k)ln(b+k)-(x+1)ln(x+1)-klnk, (x>0),

- (i) 若 k > 1 时, t'(x) > 0 , t(x) 在 $(0,+\infty)$ 单调递增, $\therefore t(x) > t(0) = 0$,满足题意;
- (ii) 若 k = 1 时, t(x) = 0 , 满足题意;
- (iii) 若 0 < k < 1 时, t'(x) < 0, t(x) 在 $(0,+\infty)$ 单调递减, $\therefore t(x) < t(0) = 0$, 不满足题意.

综上,正实数k的取值范围是[1,+ ∞).

5.
$$\mathbb{M}$$
: (1) $\stackrel{\text{def}}{=} a = -\frac{3}{4} \mathbb{M}$, $f(x) = -\frac{3}{4} \ln x + \sqrt{1+x}$, $x > 0$, $f'(x) = -\frac{3}{4x} + \frac{1}{2\sqrt{1+x}} = \frac{(\sqrt{1+x}-2)(2\sqrt{1+x}+1)}{4x\sqrt{1+x}}$,

 \therefore 函数 f(x) 的单调递减区间为(0,3),单调递增区间为 $(3,+\infty)$.

(2)
$$ext{d} f$$
 (1) $\leq \frac{1}{2a}$, $ext{40} < a \leq \frac{\sqrt{2}}{4}$,

当
$$0 < a \le \frac{\sqrt{2}}{4}$$
时, $f(x) \le \frac{\sqrt{x}}{2a}$,等价于 $\frac{\sqrt{x}}{a^2} - \frac{2\sqrt{1+x}}{a} - 2lnx \ge 0$,

$$\diamondsuit t = \frac{1}{a} , \quad \emptyset \ \, t \ge 2\sqrt{2} , \quad \textcircled{2} \ \, g(t) = t^2 \sqrt{x} - 2t\sqrt{1+x} - 2lnx \, , \quad t \ge 2\sqrt{2} \, , \quad \emptyset \ \, g(t) = \sqrt{x}(t - \sqrt{1+\frac{1}{x}})^2 - \frac{1+x}{\sqrt{x}} - 2lnx \, ,$$

$$(i) \stackrel{\underline{}}{=} x \in [\frac{1}{7}, +\infty) \text{ ft}, \quad \sqrt{1+\frac{1}{r}} \leq 2\sqrt{2},$$

$$\iiint p'(x) = \frac{2}{\sqrt{x}} - \frac{\sqrt{2}}{\sqrt{x+1}} - \frac{1}{x} = \frac{2\sqrt{x}\sqrt{x+1} - \sqrt{2}x - \sqrt{x+1}}{x\sqrt{x+1}} = \frac{(x-1)[1 + \sqrt{x}(\sqrt{2}x+2-1)]}{x\sqrt{x+1}(\sqrt{x}+1)(\sqrt{x+1}+\sqrt{2}x)},$$

列表讨论:

x	$\frac{1}{7}$	$(\frac{1}{7}, 1)$	1	(1,+∞)
<i>p</i> ′(<i>x</i>)		_	0	+
P(x)	$p(\frac{1}{7})$	单调递减	极小值 p (1)	单调递增

$$\therefore p(x) \ge p \ (1) = 0, \ \therefore g(t) \ge g(2\sqrt{2}) = 2p(x) = 2p(x) \ge 0.$$

淇江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 6

$$(ii) \stackrel{\underline{w}}{=} x \in [\frac{1}{e^2}, \frac{1}{7}) \; \exists t \in [\frac{1}{e^2}, \frac{1}{7}) \; \exists t \in [\frac{1}{e^2}, \frac{1}{7}] \; \exists t \in [\frac{1}{e^2}, \frac{1}{4}] \;$$

则
$$q'(x) = \frac{\ln x + 2}{\sqrt{x}} + 1 > 0$$
, 故 $q(x)$ 在 $[\frac{1}{e^2}, \frac{1}{7}]$ 上单调递增, $\therefore q(x) \leqslant q(\frac{1}{7})$,

由(i)(ii)知对任意 $x \in [\frac{1}{e^2}, +\infty)$, $t \in [2\sqrt{2}, +\infty)$, $g(t) \geqslant 0$,

即对任意
$$x \in [\frac{1}{e^2}, +\infty)$$
,均有 $f(x) \leqslant \frac{\sqrt{x}}{2a}$,

综上所述,所求的a的取值范围是 $(0, \frac{\sqrt{2}}{4}]$.

6. **]**
$$\mathbf{M}$$
: (1) $\because a = b = c$, $\therefore f(x) = (x - a)^3$, $\because f(4) = 8$, $\therefore (4 - a)^3 = 8$, $\therefore 4 - a = 2$, \mathbf{M} ? \mathbf{M} ? \mathbf{M} ?

(2)
$$a \neq b$$
, $b = c$, $\[\[\] f(x) = (x-a)(x-b)^2 \]$. $\[\[\] f(x) = (x-a)(x-b)^2 = 0 \]$, $\[\] \# \[\] x = a \]$, $\[\] x = b \]$.

$$f'(x) = (x-b)^2 + 2(x-a)(x-b) = (x-b)(3x-b-2a)$$
. $\Leftrightarrow f'(x) = 0$, $\Re = x = b$, $\Re = x = b$.

 $\therefore f(x)$ 和 f'(x)的零点均在集合 $A = \{-3, 1, 3\}$ 中,

若:
$$a=-3$$
, $b=1$, 则 $\frac{2a+b}{3}=\frac{-6+1}{3}=-\frac{5}{3}\notin A$, 舍去.

$$a=1$$
, $b=-3$, 则 $\frac{2a+b}{3}=\frac{2-3}{3}=-\frac{1}{3} \notin A$, 舍去.

$$a=-3$$
, $b=3$, $y = \frac{2a+b}{3} = \frac{-6+3}{3} = -1 \notin A$, 舍去..

$$a=3$$
, $b=1$, 则 $\frac{2a+b}{3}=\frac{6+1}{3}=\frac{7}{3} \notin A$, 舍去.

$$a=1$$
, $b=3$, 则 $\frac{2a+b}{3}=\frac{5}{3}\notin A$, 舍去.

$$a=3$$
, $b=-3$, $\iiint \frac{2a+b}{3} = \frac{6-3}{3} = 1 \in A$,

因此
$$a=3$$
 , $b=-3$, $\frac{2a+b}{3}=1 \in A$,

可得:
$$f(x) = (x-3)(x+3)^2$$
. $f'(x) = 3[x-(-3)](x-1)$.

可得 x = 1 时,函数 f(x) 取得极小值, $f(1) = -2 \times 4^2 = -32$.

(3) 证明: a=0, $0 < b \le 1$, c=1, f(x) = x(x-b)(x-1).

$$f'(x) = (x-b)(x-1) + x(x-1) + x(x-b) = 3x^2 - (2b+2)x + b.$$

$$\triangle = 4(b+1)^2 - 12b = 4b^2 - 4b + 4 = 4(b-\frac{1}{2})^2 + 3 \geqslant 3$$
.

$$x_1 + x_2 = \frac{2b+2}{3}$$
, $x_1 x_2 = \frac{b}{3}$,

可得 $x = x_1$ 时, f(x)取得极大值为M,

$$∴ f'(x_1) = 3x_1^2 - (2b+2)x_1 + b = 0, \Leftrightarrow x_1 = t \in (0, \frac{1}{3}], \exists f = \frac{3t^2 - 2t}{2t - 1}.$$

$$\therefore M = f(x_1) = x_1(x_1 - b)(x_1 - 1) = t(t - b)(t - 1) = \frac{-t^4 + 2t^3 - t^2}{2t - 1}, \quad M' = \frac{-6t^4 + 12t^3 - 8t^2 + 2t}{(2t - 1)^2}.$$

$$\Rightarrow g(t) = -6t^3 + 12t^2 - 8t + 2$$
, $g'(t) = -18t^2 + 24t - 8 = -2(3t - 2)^2 < 0$,

∴函数 g(t) 在 $t \in (0, \frac{1}{3}]$ 上单调递减, $g(\frac{1}{3}) = \frac{4}{9} > 0$. ∴ $t \cdot g(t) > 0$. ∴ M' > 0 . ∴ 函数 M(t) 在 $t \in (0, \frac{1}{3}]$ 上单调递增,

$$\therefore M(t) \leqslant M(\frac{1}{3}) = \frac{4}{27}.$$

7. (1)
$$f'(x) = \frac{1}{x^2} + \frac{a}{x} = \frac{1+ax}{x^2}$$
, (1 $\frac{4}{37}$)

当 $a \ge 0$ 时, f'(x) > 0, ∴ f(x) 的单调递增区间为 $(0,+\infty)$, (2 分)

 $\therefore f(x)$ 的单调递增区间为 $(0,-\frac{1}{a})$,单调递减区间为 $(-\frac{1}{a},+\infty)$. (4分)

(2)
$$g(x) = 2(x+1) + x - 1 + axlnx = 3x + 1 + axlnx(x > 0)$$
.

方法一: 直接求导
$$g'(x) = 3 + a(\ln x + 1) = a\ln x + 3 + a$$
 , 令 $g'(x) = 0 \Rightarrow x = e^{\frac{-(3+a)}{a}}$, (5分)

$$\therefore g(x) \geqslant g(e^{\frac{-(3+a)}{a}}), \quad g(e^{\frac{-(3+a)}{a}}) = 3 \cdot e^{\frac{-(3+a)}{a}} + 1 + a \cdot e^{\frac{-(3+a)}{a}} \cdot \frac{-(3+a)}{a}, \quad (7 \%)$$

下面证明 $3 \cdot e^t + 1 + \frac{-3t}{t+1} \cdot e^t > 0$,即证 $1 + \frac{3e^t}{t+1} > 0$,令 $h(t) = 1 + \frac{3e^t}{t+1}, (t \leqslant -4)$,(9分)

则
$$h'(t) = \frac{3te^t}{(t+1)^2} < 0$$
, $\therefore h(t)$ 在 $(-\infty, -4)$ 递减, $\therefore h(t) \geqslant h(-4) = 1 - \frac{1}{e^4} > 0$, $\therefore 1 + \frac{3e^t}{t+1} > 0$, $(11 分)$

∴ 当
$$0 < a \le 1$$
时, $g(x) > 0$ 恒成立. (12 分)

方法二: $g(x) = 3x + 1 + axlnx = x(3 + \frac{1}{x} + alnx), (x > 0)$, 要证 g(x) > 0, 只需证 $3 + \frac{1}{x} + alnx > 0$, (5 分)

$$\Leftrightarrow h(x) = 3 + \frac{1}{x} + alnx, \text{ M}h'(x) = -\frac{1}{x^2} + \frac{a}{x} = \frac{ax - 1}{x^2}, (6 \text{ }\%)$$

$$\diamondsuit h'(x) > 0 \Rightarrow x > \frac{1}{a}, h'(x) < 0 \Rightarrow 0 < x < \frac{1}{a}, (7 \%)$$

$$h(x)$$
 $\not=$ $\left(0,\frac{1}{a}\right)$ \downarrow , $\left(\frac{1}{a},+\infty\right)$ \uparrow , $\therefore h(x) \geqslant h(\frac{1}{a}), h(\frac{1}{a}) = 3 + a - alna$, (8%)

证明方式1::: $h(x)_{min} = h(\frac{1}{a}) = 3 + a - alna$, :: $a \in (0, 1]$, :: $lna \leq 0$, (9分)

 \therefore -alna \geqslant 0, (10分), \therefore 3+a-alna>0, (11分)

∴ 当 $0 < a \le 1$ 时, g(x) > 0 恒成立. (12 分)

证明方式 2:: $h(\frac{1}{a}) = 3 + a - alna = a(\frac{3}{a} + 1 - lna)$ 下面只需证明 $\frac{3}{a} + 1 - lna > 0$

$$\diamondsuit r(a) = \frac{3}{a} + 1 - \ln a, (0 < a \le 1), \text{ } \forall r'(a) = -\frac{3}{a^2} - \frac{1}{a} < 0,$$

∴r (a) 在(0,1) 递减, (10 分)

∴
$$r$$
 (a) $\geqslant r$ (1) = 4 > 0, ∴ $\frac{3}{a} + 1 - lna > 0$, (11 $\frac{1}{2}$)

∴ 当 $0 < a \le 1$ 时, g(x) > 0 恒成立. (12 分)

8.
$$\Re: (I)(i) \stackrel{\text{def}}{=} k = 6 \, \text{fb}, \quad f(x) = x^3 + 6 \ln x, \quad \text{in } f'(x) = 3x^2 + \frac{6}{x}, \quad \therefore f'(1) = 9,$$

$$:: f(1) = 1$$
, :: 曲线 $y = f(x)$ 在点(1, $f(1)$)处的切线方程为 $y - 1 = 9(x - 1)$, 即 $9x - y - 8 = 0$.

$$(ii)g(x) = f(x) - f'(x) + \frac{9}{x} = x^3 + 6lnx - 3x^2 + \frac{3}{x}, \quad x > 0, \quad \therefore g'(x) = 3x^2 - 6x + \frac{6}{x} - \frac{3}{x^2} = \frac{3(x-1)^3(x+1)}{x^2},$$

$$\stackrel{\text{def}}{=} 0 < x < 1$$
, $g'(x) < 0$,

$$\stackrel{\text{def}}{=} x > 1$$
, $g'(x) > 0$,

:.函数 g(x) 在 (0,1) 上单调递减,在 $(1,+\infty)$ 上单调递增,

x=1是极小值点,极小值为g(1)=1,无极大值

(II) 证明: 由
$$f(x) = x^3 + k \ln x$$
, 则 $f'(x) = 3x^2 + \frac{k}{x}$,

对任意的 x_1 , $x_2 \in [1, +\infty)$, 且 $x_1 > x_2$, 令 $\frac{x_1}{x_2} = t$, t > 1 ,

$$\mathbb{P}[(x_1-x_2)[f'(x_1)+f'(x_2)]-2[f(x_1)-f(x_2)]=(x_1-x_2)(3x_1^2+\frac{k}{x_1}+3x_2^2+\frac{k}{x_2})-2(x_1^3-x_2^3+k\ln\frac{x_1}{x_2}),$$

$$=x_1^3-x_2^3-3x_1^2x_2+3x_1x_2^2+k(\frac{x_1}{x_2}-\frac{x_2}{x_1})-2kln\frac{x_1}{x_2}=x_2^3(t^3-3t^2+3t-1)+k(t-\frac{1}{t}-2lnt), \quad \textcircled{1}$$

令
$$h(x) = x - \frac{1}{r} - 2lnx$$
 , $x > 1$, 当 $x > 1$ 时 , $h'(x) = 1 + \frac{1}{r^2} - \frac{2}{r} = (1 - \frac{1}{r})^2 > 0$, $\therefore h(x)$ 在 $(1, +\infty)$ 单调递增,

∴
$$\pm t > 1$$
, $h(t) > h$ (1) = 0, $\Box t - \frac{1}{t} - 2lnt > 0$, $\therefore x_2 \ge 1$, $t^3 - 3t^2 + 3t - 1 = (t - 1)^3 > 0$, $k \ge -3$,

$$\therefore x_2^3(t^3 - 3t^2 + 3t - 1) + k(t - \frac{1}{t} - 2lnt) \ge t^3 - 3t^2 + 3t - 1 - 3(t - \frac{1}{t} - 2lnt) = t^3 - 3t^2 + 6lnt + \frac{3}{t} - 1, \quad \textcircled{2},$$

由(I)(ii)可知当 $t \ge 1$ 时, g(t) > g(1)

$$\mathbb{E}[t^3 - 3t^2 + 6lnt + \frac{3}{t} > 1], \quad (3),$$

由①②③可得 $(x_1-x_2)[f'(x_1)+f'(x_2)]-2[f(x_1)-f(x_2)]>0$,

.. 当 $k \geqslant -3$ 时,对任意的 x_1 , $x_2 \in [1$, $+\infty$),且 $x_1 > x_2$,有 $\frac{f'(x_1) + f'(x_2)}{2} > \frac{f(x_1) - f(x_2)}{x_1 - x_2}$.

双变量不等式方法 2——消元法

 $\because a > 0$, ∴ 对称轴 $x = \frac{1}{4a} > 0$

①当 $a \geqslant \frac{1}{8}$ 时, $\triangle \leqslant 0$, $g(x) \geqslant 0$, $\therefore f'(x) \leqslant 0$,故f(x)在 $(0,+\infty)$ 单调递减.

②当 $0 < a < \frac{1}{8}$ 时, $\triangle > 0$,方程 $2ax^2 - x + 1 = 0$ 有两个不相等的正根 x_1 , x_2

不妨设 $x_1 < x_2$,则当 $x \in (0, x_1) \bigcup (x_2 + \infty)$ 时,f'(x) < 0,

当 $x \in (x_1, x_2)$)时,f'(x) > 0,这时f(x)不是单调函数.

综上, a 的取值范围是 $a \ge \frac{1}{8}$.

(II) 由(I)知,当
$$a \in (0,\frac{1}{8})$$
, $f(x)$ 有极小值点 x_1 和极大值 x_2 ,且 $x_1 + x_2 = \frac{1}{2a}$, $x_1 x_2 = \frac{1}{2a}$,

$$f(x_1) + f(x_2) = -\ln x_1 - ax_1^2 + x_1 - \ln x_2 - ax_2^2 + x_2 + 2 = -(\ln x_1 + \ln x_2) - \frac{1}{2}(x_1 - 1) - \frac{1}{2}(x_2 - 1) + (x_1 + x_2) + 2$$

$$= -ln(x_1x_2) + \frac{1}{2}(x_1 + x_2) + 3 = ln(2a) + \frac{1}{4a} + 3, \quad \Leftrightarrow g(a) = ln(2a) + \frac{1}{4a} + 3, a \in (0, \frac{1}{8}],$$

则当
$$a \in (0, \frac{1}{8})$$
时, $g'(x) = \frac{1}{a} - \frac{1}{4a^2} = \frac{4a-1}{4a^2} < 0$, $\therefore g$ (a) 在 $(0, \frac{1}{8})$ 单调递减,所以 $g(a) > g(\frac{1}{8}) = 5 - 2ln2$,

故 $f(x_1) + f(x_2) > 5 - 2ln2$.

2.
$$M: (1)$$
 $a=1, f(1)=-\frac{1}{2}$, $M = \frac{1}{2}x^2 - x + alnx (a>0)$, $M = f'(x) = x-1+\frac{1}{x}$,

 $\therefore f'(1) = 1$, \therefore 切线方程为 2x - 2y - 3 = 0;

(2)
$$f'(x) = x - 1 + \frac{a}{x}$$
 依题意有 $f'(x) \ge 0$ 或 $f'(x) \le 0$ 在 $(0, +\infty)$ 上恒成立,

即 $a \le -x^2 + x$ 或 $a \ge -x^2 + x$ 在 $(0,+\infty)$ 上恒成立,

显然 $a \le -x^2 + x$ 不可能恒成立, $\therefore a \ge -x^2 + x$, 解得 $a \ge \frac{1}{4}$;

(3) 由
$$f'(x) = x - 1 + \frac{a}{x}$$
, $f'(x) = 0$ 得 $x^2 - x + a = 0$, 即 x_1 , x_2 是 $f'(x) = 0$ 的两根, $\therefore x_1 + x_2 = -1$, $x_1 x_2 = a$,

$$f(x_1) + f(x_2) = \frac{1}{2}x_1^2 - x_1 + alnx_1 + \frac{1}{2}x_2^2 - x_2 + alnx_2 = \frac{1}{2}(x_1 + x_2)^2 - (x_1 + x_2) - x_1x_2 + alnx_1x_2 = \frac{1}{2} - 1 - a + alna = -\frac{1}{2} - a$$

由已知
$$a < \frac{1}{4}$$
 , $\therefore -a > -\frac{1}{4} lna > ln \frac{1}{4} = -2 ln2$, $\therefore alna > -2 aln2 > -\frac{ln2}{2}$, $\therefore f(x_1) + f(x_2) > -\frac{3 + 2 ln2}{4}$.

3. **A**: (1)
$$f'(x) = -\frac{2x^2 - ax + 1}{x}(x > 0, a > 0)$$
, $\forall g(x) = 2x^2 - ax + 1$.

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 7

① $\triangle = a^2 - 8 \le 0$,即 $0 < a \le 2\sqrt{2}$ 时, $g(x) \ge 0$ 恒成立, $\therefore f'(x) \le 0$, $\therefore f(x)$ 在 $(0, +\infty)$ 上为减函数;

② $\triangle>0$,即 $a>2\sqrt{2}$ 时,g(x)=0在 $(0,+\infty)$ 上有两相异实根,∴f(x)在 $(0,+\infty)$ 上不是单调函数,不合题意,

综上, $0 < a \le 2\sqrt{2}$;

(2) 由 (1) 知,
$$x_1$$
, x_2 为 $2x^2 - ax + 1 = 0$ 的两根, $x_1 + x_2 = \frac{a}{2}$, $x_1x_2 = \frac{1}{2}$

$$\therefore f(x_1) + f(x_2) = \ln \frac{1}{a^4 x_1} - x_1^2 + a x_1 + \ln \frac{1}{a^4 x_2} - x_2^2 + a x_2 = \ln 2 - 8 \ln a + \frac{a^2}{4} + 1.$$

设
$$h$$
 (a) = $ln2 - 8lna + \frac{a^2}{4} + 1$, 则 h' (a) = $\frac{(a+4)(a-4)}{2a}$,

 $\therefore h$ (a) 在($2\sqrt{2}$, 4) 上单调递减,在(4,+ ∞) 上单调递增,

$$\therefore h$$
 (a) $\min_{\min} = h$ (4) = 5-15 $\ln 2$, $\therefore f(x_1) + f(x_2)$ 的最小值为5-15 $\ln 2$.

4.
$$\Re: (1) : f(x) = 2\ln x + \frac{1}{2}x^2 - ax(x > 0), : f'(x) = \frac{2}{x} + x - a = \frac{x^2 - ax + 2}{x},$$

设 $g(x) = x^2 - ax + 2$, $x \in (0, +\infty)$,

:: f(x) 是定义域上的单调函数,函数 g(x) 的图象为开口向上的抛物线,

 $\therefore f'(x) \geqslant 0$ 在定义域上恒成立, 即 $g(x) \geqslant 0$ 在 $(0,+\infty)$ 上恒成立.

又二次函数图象的对称轴为 $x = \frac{a}{2}$, 且图象过定点(0,2),

$$\therefore \frac{a}{2} \le 0$$
 或 $\begin{cases} \frac{a}{2} > 0 \\ a^2 - 8 \le 0 \end{cases}$,解得: $a \le 2\sqrt{2}$. ∴实数 a 的取值范围为($-\infty$, $2\sqrt{2}$];

(2) 由 (1) 知 f(x) 的两个极值点 x_1 , x_2 满足 $x^2-ax+2=0$, 所以 $x_1 \cdot x_2=2$, $x_1+x_2=a$,

不妨设 $0 < x_1 < \sqrt{2} < x_2$,则f(x)在 (x_1, x_2) 上是减函数, $\therefore f(x_1) > f(x_2)$,

$$||f(x_1) - f(x_2)| = f(x_1) - f(x_2) = 2lnx_1 + \frac{1}{2}x_1^2 - ax_1 - (2lnx_2 + \frac{1}{2}x_2^2 - ax_2)$$

$$=\frac{1}{2}(x_1^2-x_2^2)-(x_1+x_2)(x_1-x_2)+2ln\frac{x_1}{x_2}=\frac{1}{2}(x_2^2-x_1^2)+2ln\frac{x_1}{x_2}=\frac{1}{2}x_2^2-\frac{2}{x_2^2}-2lnx_2^2+2ln2$$

令
$$t = x_2^2$$
,则 $t > 2$,又 $|x_1 - x_2| = x_2 - \frac{2}{x_2} \le 1$,即 $x_2^2 - x_2 - 2 \le 0$,解得 $\sqrt{2} < x_2 \le 2$, $\therefore 2 < t = x_2^2 \le 4$.

设 $h(t) = \frac{1}{2}t - \frac{2}{t} - 2lnt + 2ln2(2 < t \le 4)$,则 $h'(t) = \frac{(t-2)^2}{2t^2} > 0$, ∴ h(t) 在 (2 , 4] 上单调递增,

 $\therefore h (2) = 0, h (4) = \frac{3}{2} - 2ln2, \therefore h(t) \in (0, \frac{3}{2} - 2ln2], \quad \exists |f(x_1) - f(x_2)| \in (0, \frac{3}{2} - 2ln2],$

所以 $|f(x_1)-f(x_2)|$ 的取值范围为) $(0, \frac{3}{2}-2ln2]$.

5. 解: (I) 函数 f(x) 的定义域为 $(-\infty,1)$,求导: $f'(x) = 2x - \frac{a}{1-x} = \frac{-2x^2 + 2x - a}{1-x}$, x < 1 ,

当 $4-8a \leqslant 0$ 时,即 $a \geqslant \frac{1}{2}$,则 $-2x^2 + 2x - a \leqslant 0$ 恒成立,

则 f(x) 在 $(-\infty,1)$ 上单调减函数,

当 4-8a>0 时,即 $a<\frac{1}{2}$,则 $-2x^2+2x-a=0$ 的两个根为 $x_1=\frac{1-\sqrt{1-2a}}{2}$, $x_2=\frac{1+\sqrt{1-2a}}{2}$,

当 $x \in (-\infty, x_1)$ 时,f'(x) < 0,函数f(x)单调递减,

当 $x \in (x_1, 1)$, f'(x) > 0, 函数f(x)单调递增,不符合题意,

综上可知:函数 f(x) 为定义域上的单调函数,则实数 a 的取值范围 $[\frac{1}{2}, +\infty)$;

(II)证明:由函数有两个极值点,则 f'(x)=0,在 x<1 上有两个不等的实根,

即 $-2x^2 + 2x - a = 0$,在 x < 1 有两个不等式的实根, x_1 , x_2 ,

曲
$$0 < a < \frac{1}{2}$$
,则 $\begin{cases} x_1 + x_2 = 1 \\ x_1 x_2 = \frac{a}{2} \end{cases}$, 且 $x_1 \in (0, \frac{1}{2})$, $x_2 \in (\frac{1}{2}, 1)$,

$$\text{III} \frac{f(x_1)}{x_2} = \frac{x_1^2 - 1 + aln(1 - x_1)}{x_2} = \frac{(x_1 - 1)(x_2 + 1) + 2x_1x_2ln(1 - x_1)}{x_2} = -(1 + x_1) + 2x_1ln(1 - x_1) ,$$

同理可得: $\frac{f(x_2)}{x_1} = -(1+x_2) + 2x_2 \ln(1-x_2)$,

$$\iiint \frac{f(x_1)}{x_2} - \frac{f(x_2)}{x_1} = (x_2 - x_1) + 2x_1 \ln(1 - x_1) - 2x_2 \ln(1 - x_2) = 2x_2 - 1 + 2(1 - x_2) \ln x_2 - 2x_2 \ln(1 - x_2) ,$$

$$\Leftrightarrow g(x) = 2x - 1 + 2(1 - x)lnx - 2xln(1 - x), \quad x \in (\frac{1}{2}, 1),$$

求导,
$$g'(x) = -2ln[x(1-x)] + \frac{2}{x} + \frac{2x}{1-x}$$
, $x \in (\frac{1}{2}, 1)$,

$$\pm x \in (\frac{1}{2}, 1), \quad \boxed{2} + \frac{2x}{1-x} > 0, \quad \boxed{2} = g'(x) > 0,$$

则 g(x) 在 $x \in (\frac{1}{2}, 1)$, 上单调递增,则 $g(x) > g(\frac{1}{2}) = 0$,则 $\frac{f(x_1)}{x_2} - \frac{f(x_2)}{x_1} > 0$, $\therefore \frac{f(x_1)}{x_2} > \frac{f(x_2)}{x_1}$ 成立.

6. (1)
$$\Re$$
: $g(x) = \ln x + \frac{a}{x} - 1$, $g'(x) = \frac{1}{x} - \frac{a}{x^2}$

g(x) 在点(2, g(2)) 处的切线与直线 x+2y-1=0 平行, $g'(2)=\frac{1}{2}-\frac{a}{4}=-\frac{1}{2}$ $\Rightarrow a=4$

(2)
$$\text{iii:} \quad \text{iii:} \quad \text{iii:} \quad h(x) = \ln x - \frac{b(x-1)}{x+1}$$
 $\text{if:} \quad h'(x) = \frac{1}{x} - \frac{b(x+1) - b(x-1)}{(x+1)^2} = \frac{x^2 + 2(1-b)x + 1}{x(x+1)^2}$

 $\therefore h(x)$ 在定义域上是增函数, $\therefore h'(x) > 0$ 在 $(0,+\infty)$ 上恒成立 $\therefore x^2 + 2(1-b)x + 1 > 0$,即 $b < \frac{x^2 + 2x + 1}{2x}$ 恒成立(6 %)

$$\because \frac{x^2 + 2x + 1}{2x} = \frac{x}{2} + \frac{1}{2x} + 1 \geqslant 2\sqrt{\frac{x}{2} \cdot \frac{1}{2x}} + 1 = 2 \\ \text{当且仅当} \\ \frac{x}{2} = \frac{1}{2x}, x = \frac{1}{2} \\ \text{时,等号成立}$$

 $∴ b \le 2$,即b的取值范围是($-\infty$, 2](8分)

(3) 证: 不妨设
$$m > n > 0$$
,则 $\frac{m}{n} > 1$ 要证 $\frac{m-n}{m+n} < \frac{lnm-lnn}{2}$ |,即证 $\frac{m-n}{m+n} < \frac{lnm-lnn}{2}$,即 $\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1} < ln\frac{m}{n}$ (10 分)

设
$$h(x) = lnx - \frac{2(x-1)}{x+1}(x>1)$$
 由 (2) 知 $h(x)$ 在 $(1,+\infty)$ 上递增, $\therefore h(x) > h$ (1) = 0

故
$$\ln \frac{m}{n} - \frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1} > 0$$
, $\therefore \frac{m-n}{m+n} < \frac{\ln m - \ln n}{2} \mid$ 成立(12 分)

双变量单调问题

1.解:(I) $f'(x) = xe^x - ax$. 假设函数 f(x) 的图象与 x 轴相切于点 (t,0),

则有
$$\begin{cases} f(t) = 0 \\ f'(t) = 0 \end{cases}$$
,即 $\begin{cases} (t-1)e^t - \frac{a}{2}t^2 = 0 \\ te^t - at = 0 \end{cases}$.显然 $t \neq 0$, $e^t = a > 0$,代入方程 $(t-1)e^t - \frac{a}{2}t^2 = 0$ 中得, $t^2 - 2t + 2 = 0$.

 $: \triangle = -4 < 0$, :: 方程 $t^2 - 2t + 2 = 0$ 无解. 故无论 a 取何值, 函数 f(x) 的图象都不能与 x 轴相切;

(II) 依题意,
$$f(x_1+x_2)-f(x_1-x_2)>(x_1-x_2)-(x_1+x_2) \Leftrightarrow f(x_1+x_2)+(x_1+x_2)>f(x_1-x_2)+(x_1-x_2)$$
 恒成立.

设 g(x) = f(x) + x, 则上式等价于 $g(x_1 + x_2) > g(x_1 - x_2)$,

要使 $g(x_1+x_2)>g(x_1-x_2)$ 对任意 $x_1\in R$, $x_2\in (0,+\infty)$ 恒成立,即使 $g(x)=(x-1)e^x-\frac{a}{2}x^2+x$ 在 R 上单调递增,

∴ $g'(x) = xe^x - ax + 1 \ge 0$ 在 R 上恒成立.

 $:: g'(1) = e - a + 1 \ge 0$,则 $a \le e + 1$, $:: g'(x) \ge 0$ 在 R 上成立的必要条件是: $a \le e + 1$.

下面证明: 当 a=3 时, $xe^x-3x+1 \ge 0$ 恒成立. 设 $h(x)=e^x-x-1$, 则 $h'(x)=e^x-1$,

当 x < 0 时, h'(x) < 0 , 当 x > 0 时, h'(x) > 0 , ∴ $h(x)_{min} = 0$, 即 $\forall x \in R$, $e^x \geqslant x + 1$.

那么,当 $x \ge 0$ 时, $xe^x \ge x^2 + x$, $xe^x - 3x + 1 \ge x^2 - 2x + 1 = (x - 1)^2 \ge 0$;

因此, a的最大整数值为 3.

2. (1)
$$g(x) = x - a \ln x$$
 的定义域为 $(0,+\infty)$, $g'(x) = 1 - \frac{a}{x} = \frac{x - a}{x}$,

(*i*) 若 a≤0,则g'(x)≥0,所以g(x)在(0,+∞)单调递增;

(ii) 若 a > 0, 当 $x \in (0,a)$ 时, g'(x) < 0;

当 $x \in (a, +\infty)$ 时, g'(x) > 0 . 所以 g(x) 在 (0, a) 单调递减,在 $(a, +\infty)$ 单调递增;

证明: (2) 因为
$$f(x)$$
 存在两个极值点且 $a > 2$, $f'(x) = -\frac{x^2 - ax + 1}{x^2}$,

所以 f(x) 的两个极值点 x_1 , x_2 满足 $x^2 - ax + 1 = 0$, 所以 $x_1x_2 = 1$, 不妨设 $x_1 < x_2$, 则 $x_2 > 1$,

$$\text{III} \frac{f(x_1) - f(x_2)}{x_1 - x_2} = -\frac{1}{x_1 x_2} - 1 + a \frac{\ln x_1 - \ln x_2}{x_1 - x_2} = -2 + a \frac{\ln x_1 - \ln x_2}{x_1 - x_2} = -2 + a \frac{-2 \ln x_2}{\frac{1}{x_2} - x_2},$$

要证
$$\frac{f(x_1)-f(x_2)}{x_1-x_2}$$
 < $a-2$,只需证 $\frac{1}{x_2}-x_2+2lnx_2<0$,

$$\stackrel{\square}{\vee} h(x) = \frac{1}{x} - x + 2lnx(x > 1)$$
 ,则 $h'(x) = -\frac{(x-1)^2}{x^2} < 0$,

知 h(x) 在 $(1,+\infty)$ 单调递减,又 h(1)=0 ,

$$\stackrel{\underline{}}{=}$$
 $x \in (1,+\infty)$ 时, $h(x) < 0$, 故 $\frac{1}{x_2} - x_2 + 2lnx_2 < 0$, 即 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} < a - 2$,

所以 $f(x_1) - f(x_2) > (a-2)(x_1 - x_2)$.

3. 解: (I)
$$f(x)$$
 的定义域为(0, +∞). $f'(x) = \frac{a+1}{x} + 2ax = \frac{2ax^2 + a + 1}{x}$.

当 $a \ge 0$ 时, f'(x) > 0, 故 f(x) 在 $(0,+\infty)$ 单调递增;

当 $a \le -1$ 时, f'(x) < 0 ,故 f(x) 在 (0,+∞) 单调递减;

当-1<
$$a$$
<0时,令 $f'(x)$ =0,解得 $x = \sqrt{-\frac{a+1}{2a}}$.

则当
$$x \in (0, \sqrt{-\frac{a+1}{2a}})$$
时, $f'(x) > 0$; $x \in (\sqrt{-\frac{a+1}{2a}}, +\infty)$ 时, $f'(x) < 0$.

故
$$f(x)$$
 在 $(0, \sqrt{-\frac{a+1}{2a}})$ 单调递增,在 $(\sqrt{-\frac{a+1}{2a}}, +\infty)$ 单调递减.

(II) 不妨假设 $x_1 \ge x_2$, 而a < -1, 由(I) 知在 $(0,+\infty)$ 单调递减,

从而
$$\forall x_1, x_2 \in (0,+\infty), |f(x_1) - f(x_2)| \ge 4|x_1 - x_2|$$

等价于
$$\forall x_1$$
 , $x_2 \in (0,+\infty)$, $f(x_2) + 4x_2 \ge f(x_1) + 4x_1$ ①

$$\Leftrightarrow g(x) = f(x) + 4x$$
, $\bigvee g'(x) = \frac{a+1}{x} + 2ax + 4$

①等价于 g(x) 在 $(0,+\infty)$ 单调递减,即 $\frac{a+1}{x} + 2ax + 4 \le 0$.

$$\text{Me} \ a \leqslant \frac{-4x-1}{2x^2+1} = \frac{(2x-1)^2 - 4x^2 - 2}{2x^2+1} = \frac{(2x-1)^2}{2x^2+1} - 2$$

故a的取值范围为($-\infty$, -2]. (12 分)

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 8

4.
$$\text{M}: (1) \stackrel{\text{def}}{=} m = e \text{ print}, \quad f(x) = 2lnx + \frac{e}{r}, \quad f'(x) = \frac{2x - e}{r^2},$$

$$\stackrel{\text{def}}{=} x < \frac{e}{2} \text{ ft}, \quad f'(x) < 0; \quad x = \frac{e}{2} \text{ ft}, \quad f'(x) = 0; \quad \stackrel{\text{def}}{=} x > \frac{e}{2} \text{ ft}, \quad f'(x) > 0.$$

所以,
$$x = \frac{e}{2}$$
时, $f(x)$ 取得最小值 $f(\frac{e}{2}) = 2ln\frac{e}{2} + 2 = 4 - 2ln2$.

(2)
$$g(x) = f(x) - x = 2lnx + \frac{m}{x} - x(x > 0)$$
, $g'(x) = \frac{2}{x} - \frac{m}{x^2} - 1 = \frac{-x^2 + 2x - m}{x^2} = \frac{-(x - 1)^2 + 1 - m}{x^2}$,

 $1m \ge 12$ 时, $g'(x) \le 03$, g(x) = f(x) - x4 在 $(0, +\infty)$ 5 单调递减.

(3) 证明:
$$0 < m < 1$$
 时, $1 - m > 0$, $1 - \sqrt{1 - m} > 0$, $g'(x) = \frac{-(x - 1 + \sqrt{1 - m})(x - 1 - \sqrt{1 - m})}{x^2}$,

$$\stackrel{\text{\tiny def}}{=} x \geqslant 1 + \sqrt{1-m}$$
 时, $g'(x) \leqslant 0$.

即
$$0 < m < 1$$
 时, $g(x) = f(x) - x$ 在 $(0, 1 - \sqrt{1 - m})$ 和 $[1 + \sqrt{1 - m}, +\infty)$ 上单调递减,

在
$$[1-\sqrt{1-m},1+\sqrt{1-m})$$
上单调递增.

由(2)知,当
$$m \ge 1$$
时, $g(x) = f(x) - x$ 在 $(0,+\infty)$ 上单调递减,

所以, 当
$$m \ge 1$$
时, 对任意 $b > a > 0$, f (b) $-b < f$ (a) $-a$,

即对任意
$$b > a > 0$$
, $\frac{f(b) - f(a)}{b - a} < 1$.

5. 【解答】解: (1) 由题意知,
$$f'(x) = 2 \cdot \frac{x^2 - ax + a + 1}{x} (x > 0)$$
,

因为函数 f(x) 有两个极值点, 所以 $\frac{x^2 - ax + a + 1}{x} = 0$ 有两个不等的正根,

即 $x^2 - ax + a + 1 = 0$ 有两个不等的正根,

所以
$$\begin{cases} a^2 - 4(a+1) > 0 \\ a > 0 \end{cases}$$
 ,解得 $a > 2 + 2\sqrt{2}$,所以 a 的取值范围是 $(2 + 2\sqrt{2}, +\infty)$. $(6 分)$ $a + 1 > 0$

(2) 证明: 构造函数 $g(x) = f(x) - 2x = x^2 - 2ax + 2(a+1)ln \quad x - 2x$,

$$\text{If } g'(x) = 2x - 2(a+1) + 2 \cdot \frac{a+1}{x} \geqslant 4 \sqrt{x \cdot \frac{a+1}{x}} - 2(a+1) = 4\sqrt{a+1} - 2(a+1) = 2\sqrt{a+1}(2-\sqrt{a+1}) \text{ .}$$

由于
$$-1 < a < 3$$
, $0 < \sqrt{a+1} < 2$,故 $g'(x) > 0$,即 $g(x)$ 在 $(0,+\infty)$ 上单调递增,

从而当
$$0 < x_2 < x_1$$
时,有 $g(x_1) - g(x_2) > 0$,

当 $0 < x_1 < x_2$ 时,同理可证 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 2$.

综上,对于任意的 x_1 , $x_2 \in (0,+\infty)$, $x_1 \neq x_2$, 有 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 2...$ (12 分)

6. 【解答】(本小题满分 12 分)

解: (I) 当a=2时, $f(x)=3lnx+2x^2+1$, $f'(x)=\frac{3}{x}+4x$.

f(1) = 3, f'(1) = 7,

:. 曲线 y = f(x) 在 (1, f(1)) 处的切线方程为 y = 7x - 4.

(II) ::
$$a \le -2$$
, $f(x)$ 的定义域为 $(0,+\infty)$, $f'(x) = \frac{a+1}{x} + 2ax = \frac{2ax^2 + a + 1}{x} < 0$,

 $\therefore f(x)$ 在 $(0,+\infty)$ 上单调递减.

不妨假设 $x_1 \ge x_2$,那么 $|f(x_1) - f(x_2)| \ge 4|x_1 - x_2|$ 等价于 $f(x_2) - f(x_1) \ge 4x_1 - 4x_2$,

$$\Rightarrow g(x) = f(x) + 4x$$
, $\bigcup g'(x) = \frac{a+1}{x} + 2ax + 4 = \frac{2ax^2 + 4x + a + 1}{x}$.

$$\therefore a \le -2$$
, $x > 0$, $\therefore g'(x) \le \frac{-4x^2 + 4x - 1}{x} = \frac{-(2x - 1)^2}{x} \le 0$.

从而 g(x) 在 $(0,+\infty)$ 单调减少,故 $g(x_1) \leqslant g(x_2)$,即 $f(x_1) + 4x_1 \leqslant f(x_2) + 4x_3$,

故对任意 x_1 , $x_2 \in (0,+\infty)$, $|f(x_1) - f(x_2)| \ge 4|x_1 - x_2|$.

7. 【解答】解(1)由题意得 $f'(x) = \frac{-2 - 2a + 4lnx}{x^3}$, (x > 0),

点(1, f (1))处的切线与直线 y = -4x + 1 平行. 又 f' (1) = -4, 即 $\frac{-2-2a}{1}$ = -4, 解得 a = 1.

令
$$f'(x) = \frac{-2 - 2a + 4lnx}{x^3} = \frac{-4 + 4lnx}{x^3} = 0$$
,解得: $x = e$,

当 f'(x) > 0,解得: x > e,函数 f(x) 在 $(e, +\infty)$ 上单调递增,

当 f'(x) < 0,解得: 0 < x < e,函数 f(x) 在 (0,e) 上单调递减,

 $\therefore f(x)$ 在 x = e 时取极小值,极小值为 $f(e) = -\frac{1}{e^2}$. (6分)

(2) 由
$$|\frac{f(x_1) - f(x_2)}{x_1^2 - x_2^2}| > \frac{k}{x_1^2 \cdot x_2^2}$$
,可得 $|\frac{f(x_1) - f(x_2)}{\frac{1}{x_1^2} - \frac{1}{x_2^2}}| > k$,

$$♦ g(\frac{1}{x^2}) = f(x), \quad \text{if } g(x) = x + x \ln x, \quad \text{if } r = (e^2, +\infty)g'(x) = 2 + \ln x,$$

又
$$x \in [e^2, +\infty)$$
,则 $g'(x) = 2 + lnx \geqslant 4$,即 $|\frac{f(x_1) - f(x_2)}{\frac{1}{x_1^2} - \frac{1}{x_2^2}}| > 4$,

∴实数k的取值范围是($-\infty$, 4]. (12分)

8. 解: (1) 函数 f(x) 的定义域为 $(0,+\infty)$.

$$\stackrel{\text{def}}{=} b = 2$$
 $\stackrel{\text{def}}{=} f(x) = alnx + x^2 (a \neq 0)$. $f'(x) = \frac{a}{x} + 2x = \frac{2x^2 + a}{x}$,

①当a>0时,f'(x)>0, : 函数 f(x) 在 $(0,+\infty)$ 单调递增;

 $x \to 0$ 时, $f(x) \to -\infty$, $x \to +\infty$ 时, $f(x) \to +\infty$,此时函数 f(x) 恰有一个零点.

②当
$$a < 0$$
时,令 $f'(x) = 0$, $x = \sqrt{-\frac{a}{2}}$,或 $x = -\sqrt{-\frac{a}{2}}$ (舍去),

$$x \in (0, \sqrt{-\frac{a}{2}})$$
 时, $f'(x) < 0$, $x \in (\sqrt{-\frac{a}{2}}, +\infty)$ 时, $f'(x) > 0$

$$\therefore$$
函数 $f(x)$ 在 $(0,\sqrt{-\frac{a}{2}})$ 单调递减,在 $(\sqrt{-\frac{a}{2}},+\infty)$ 单调递增;

要使函数
$$f(x)$$
 恰有一个零点,则 $f(\sqrt{-\frac{a}{2}}) = aln\sqrt{-\frac{a}{2}} - \frac{a}{2} = 0$,解得 $a = -2e$

: 实数 a 的取值范围为: $\{a \mid a = -2e, \, \text{或} \, a > 0\}$

(2) : 对任意
$$x_1$$
, $x_2 \in [\frac{1}{e}, e]$, 有 $|f(x_1) - f(x_2)| \leqslant e - 2$ 成立, $|f(x_1) - f(x_2)| \leqslant f(x)_{max} - f(x)_{min}$,

$$\therefore f(x)_{max} - f(x)_{min} \leq e - 2$$
 成立

当0 < x < 1时,f'(x) < 0,当x > 1时,f'(x) > 0,

 $\therefore f(x)$ 在[$\frac{1}{e}$,1] 单调递减,在[1, e] 单调递增,

$$f(x)_{min} = f$$
 (1) =1, $f(\frac{1}{e}) = b + e^{-b}$, f (e) = $-b + e^{b}$,

设
$$g(b) = f(e) - f(\frac{1}{e}) = e^b - e^{-b} - 2b, (b > 0), \quad g'(b) = e^b + e^{-b} - 2 > 2\sqrt{e^b \cdot e^{-b}} - 2 = 0.$$

$$\therefore g$$
 (b) 在 (0,+∞) 递增, $\therefore g$ (b) > $g(0) = 0$, $\therefore f(e) > f(\frac{1}{e})$.

可得
$$f(x)_{max} = f(e) = -b + e^b$$
, $\therefore -b + e^b - 1 \le e - 2$, 即 $e^b - b - e + 1 \le 0$,

设
$$\varphi$$
 (b) = $e^b - b - e + 1$, $(b > 0)$, φ' (b) = $e^b - 1 > 0$ 在 $b \in (0, +\infty)$ 恒成立.

 $\therefore \varphi$ (b) 在(0,+∞) 单调递增,且 φ (1) =0, \therefore 不等式 $e^b - b - e + 1 \le 0$ 的解集为(0, 1].

:: 实数b的取值范围为(0,1]

双参数问题

1.
$$\Re: \ \diamondsuit \ y = \ln(x+1) - ax - b - 1$$
, $\ \emptyset \ y' = \frac{1}{1+x} - a$,

若 $a \le 0$,则y' > 0恒成立,x > -1时函数递增,无最值.

若
$$a > 0$$
,由 $y' = 0$ 得: $x = \frac{1-a}{a}$,

当
$$-1 < x < \frac{1-a}{a}$$
时, $y' > 0$,函数递增;

当
$$x > \frac{1-a}{a}$$
 时, $y' < 0$,函数递减.则 $x = \frac{1-a}{a}$ 处取得极大值,也为最大值 $-\ln a + a - b - 2$,

$$\therefore -lna + a - b - 2 \leq 0$$
, $\therefore b \geqslant -lna + a - 2$,

$$\therefore \frac{b}{a} \geqslant \frac{-\ln a + a - 2}{a}, \quad \Leftrightarrow t = \frac{-\ln a + a - 2}{a}, \quad \therefore t' = \frac{\ln a + 1}{a^2}, \quad \therefore (0, e^{-1}) \perp, \quad t' < 0, \quad (e^{-1}, +\infty) \perp, \quad t' > 0,$$

$$\therefore a = e^{-1}$$
, $t_{min} = 1 - e$. $\therefore \frac{b}{a}$ 的最小值为 $1 - e$.

2. 解: 由于
$$lnx + (2e-a-1)x + b + 1 \le 0 \Leftrightarrow lnx + 2ex - 1 \le (a+1)x - (b+2)$$
.

此不等式对任意 $x \in (0,+\infty)$ 恒成立,则需要保证 a+1>0.

令
$$x = \frac{1}{e}$$
 , 则 $\ln \frac{1}{e} + 2 - 1 \le (a+1) \frac{1}{e} - b - 2$ 从而 $(a+1) \frac{1}{e} \ge b + 2$, 从而 $\frac{b+2}{a+1} \le \frac{1}{e}$.

另一方面, 当
$$a=3e-1$$
, $b=1$ 时, $lnx+(2e-a-1)x+b+1 \le 0$ 即为 $lnx-ex+2 \le 0$,

设
$$f(x) = \ln x - ex + 2(x > 0)$$
,则 $f'(x) = \frac{1}{x} - e = \frac{1 - ex}{x} \ge 0$ 得 $0 < x \le \frac{1}{e}$,

故
$$f(x)$$
 在 $(0, \frac{1}{e}]$ 上单调递增,在 $(\frac{1}{e}, +\infty)$ 上单调递减,从而 $f(x) \leqslant f(\frac{1}{e}) = 0$

即
$$a=3e-1$$
, $b=1$ 可使不等式恒成立,从而 $\frac{b+2}{a+1}$ 可取 $\frac{1}{e}$.

综合上述,当
$$\frac{b+2}{a+1}$$
取最大值 $\frac{1}{e}$ 时, $a=3e-1$.

如图,
$$y = lnx - \frac{e}{x}$$
与 x 轴交于点 $(e,0)$, 直线 $y = 2m(x - \frac{n}{2m})$ 在曲线 $y = lnx - \frac{e}{x}$ 上方,

则直线
$$y = 2m(x - \frac{n}{2m})$$
 与 x 轴交点小于等于 e ,

即
$$\frac{n}{2m} \leqslant e$$
, 所以 $\frac{n}{m} \leqslant 2e$, $\frac{n}{m}$ 的最大值为 $2e$,

$$i$$
) 当 a ≤0 时, $h'(x)$ ≤0 恒成立, $h(x)$ 在 $(0,+∞)$ 上单调递减,

且
$$x \to +\infty$$
, $h(x) \to -\infty$,不符合题意,

$$ii$$
) 当 $a > 0$ 时, 令 $h'(x) = 0$, 可得 $x = \frac{1}{a}$, 可得 $h(x)_{min} = h(\frac{1}{a}) = lna - a + 2 + b \geqslant 0$,

可得
$$b \geqslant a - \ln a - 2$$
,所以 $\frac{b}{a} \geqslant 1 - \frac{\ln a}{a} - \frac{2}{a}(a > 0)$,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——双变量问题答案 9

令
$$G$$
 (a) =1- $\frac{lna}{a}$ - $\frac{2}{a}$, $a>0$, 则 G' (a) = $\frac{1+lna}{a^2}$, $a>0$, 令 G' (a) =0, 可得 $a=\frac{1}{e}$,

 $a \in (0, \frac{1}{\rho})$, G'(a) < 0, G(a) 单调递减,

$$a \in [\frac{1}{e}, +\infty)$$
, G' (a) > 0 , G (a) 单调递增,所以 $a \in (0, +\infty)$, G (a) $\min_{\min} = G(\frac{1}{e}) = 1 - e$,

5.
$$\mathbf{M}$$
: (I) \mathbf{M} \mathbf{M}

 $f'(x) = e^x + x - 1$ 在 R 上递增,且 f'(0) = 0, f'(x) < 0,

∴当x>0时,f'(x)>0,故x=0为极值点: f(0)=1

(II)
$$g(x) = \frac{1}{2}x^2 + ax + b$$
, $f(x) \geqslant g(x)$, $\mathbb{P} e^x - x + \frac{1}{2}x^2 \geqslant \frac{1}{2}x^2 + ax + b$, $\text{$\frac{4}{5}$} \text{$\frac{1}{5}$} \text{$f(x) = $e^x - x(a+1) - b \geqslant 0$,}$

得: $h'(x) = e^x - (a+1)$

①当(a+1)<0时,h'(x)在R上单调性递增, $x \in -\infty$ 时, $h(x) \to -\infty$ 与 $h(x) \geqslant 0$ 相矛盾.

②当(a+1)>0时,h'(x)>0,此时x>ln(a+1),h'(x)<0,此时x<ln(a+1),

当 x = ln(a+1) 时, h(x) 取得最小值为 $h(x)_{min} = (a+1) - (a+1)ln(a+1) - b$ 即 $(a+1) - (a+1)ln(a+1) \ge b$

那么: $b(a+1) \le (a+1)^2 - (a+1)^2 \ln(a+1)$

令 $F(x) = (a+1)x^2 - x^2 lnx$, (x>0),则 F'(x) = x(1-2lnx) ∴ F'(x) > 0,可得 $0 < x < \sqrt{e}$,

 $F'(x)<0\,,\, \text{可得}\,x>\sqrt{e}\,\,.\,\, \\ \exists\,\,x=\sqrt{e}\,\,\text{时},\,\,F(x)\,\text{取得最大值为}\frac{e}{2}\,\,.\,\, \\ \text{即当}\,a=\sqrt{e}\,-1\,,\,\,b=\frac{\sqrt{e}}{2}\,\,\text{时},\,\,b(a+1)\,\text{取得最大值为}\frac{e}{2}\,\,.$

故得b(a+1)的最大值为 $\frac{e}{2}$.

6. 解: (1) $f'(x) = e^x - 1 + x$, $f''(x) = e^x + 1 > 0$, $\therefore f'(x)$ 单调递增,又 f'(0) = 0,

 $\therefore f(x)$ 在($-\infty$,0)上单调递减,在(0,+ ∞)上单调递增,

要证 $f'(\frac{x_1+x_2}{2}) < 0$, 不妨设 $x_1 < x_2$, 则 $x_1 < 0$, 下证 $x_2 > 0$, 下证 $x_2 < -x_1$, 即证 $f(x_1) = f(x_2) < f(-x_1)$,

构造函数 $h(x) = f(x) - f(-x) = e^x - x + \frac{1}{2}x^2 - (e^{-x} + x + \frac{1}{2}x^2) = e^x - e^{-x} - 2x(x < 0)$,

 $h'(x) = e^x + e^{-x} - 2$, $h''(x) = e^x - e^{-x}(x < 0) < 0$,

即 h'(x) 在 $(-\infty,0)$ 上递减,而 h'(0) = 0 , $\therefore h'(x) > 0$, $\therefore h(x)$ 为单调递增,

 $\therefore h(0) = 0$, $\therefore h(x) < 0$, $(x \in (-\infty, 0))$, \therefore 原命题成立.

(2) ::
$$f(x) \geqslant \frac{1}{2}x^2 + ax + b$$
 , :: $e^x - x \geqslant ax + b$ 恒成立, 令 $G(x) = e^x - x - ax$, 则 $G'(x) = e^x - 1 - a$,

①当a < -1时,G(x)在R上单调递增,且 $x \to -\infty$ 时, $G(x) \to -\infty$,不符合题意,

②当a = -1时,ab + b = 0,

③当a > -1时,令G'(x) > 0,得x > ln(1+a),

 $\therefore G(x)$ 在 $(\ln(1+a), +\infty)$ 单调递增, $(-\infty, \ln(1+a))$ 单调递减, $\therefore b(a+1) \leq (1+a)^2 - (1+a)^2 \ln(1+a)$,

令 t=1+a>0, $\varphi(t)=t^2-t^2lnt$, $\varphi'(t)=t(1-2lnt)$, $\therefore \varphi(t)$ 在 $(0,\sqrt{e})$ 递增, $(\sqrt{e},+\infty)$ 递减,

$$\varphi(t)_{max} = \varphi(\sqrt{e}) = \frac{e}{2}$$
.

7. $\text{M}: (1) \ f(x) = e^x - x + \frac{t}{2}x^2, \ f'(x) = e^x - 1 + tx, \ \text{MU} \ f'(1) = e - 1 + t = e, \ \text{M} \ \# \ t = 1;$

所以
$$f(x) = e^x - x + \frac{1}{2}x^2$$
, $f'(x) = e^x - 1 + x$, 又 $f''(x) = e^x + 1 > 1 > 0$,

故 $f'(x) = e^x - 1 + x$ 为 R 上的增函数,而 f(0) = 0,

所以当 $x \ge 0$ 时, $f'(x) \ge 0$,f(x)在 $[0, +\infty)$ 上为增函数,

当x < 0时,f'(x) < 0,f(x)在 $(-\infty,0)$ 上为减函数,

所以x=0时,f(x)取得极小值 1,无极大值.

(2)
$$f(x) \ge g(x) \Leftrightarrow e^x - (a+1)x - b \ge 0$$
, $\Leftrightarrow h(x) = e^x - (a+1)x - b$, $\emptyset h'(x) = e^x - (a+1)$,

①当 $a+1 \le 0$ 时,h'(x) > 0,故y = h(x)在R上递增,

 $x \to -\infty$ 时, $h(x) \to -\infty$ 与 $h(x) \geqslant 0$ 矛盾;

②当a+1>0时,由h'(x)>0,得: x>ln(a+1),

由 h'(x) < 0, 得 x < ln(a+1), 故 x = ln(a+1) 时, $h(x)_{min} = (a+1) - (a+1)ln(a+1) - b \ge 0$,

$$\therefore F'(x) > 0$$
,解得: $0 < x < \sqrt{e}$, $F'(x) < 0$, 解得: $x > \sqrt{e}$, $x = \sqrt{e}$ 时, $F(x)_{max} = \frac{e}{2}$,

即当
$$a=\sqrt{e}-1$$
, $b=\frac{\sqrt{e}}{2}$ 时, $(a+1)b$ 的最大值为 $\frac{e}{2}$, $\therefore \frac{b(a+1)}{2}$ 的最大值为: $\frac{e}{4}$.

8.
$$M: (1) \oplus f'(x) = f'(1) e^{x-1} - f(0) + x$$
, $\Leftrightarrow x = 1$, $\# f'(1) = f'(1) - f(0) + 1$, $M \lor f(0) = 1$;

令 x = 0, 得 $f(0) = f'(1) e^{-1}$, 所以 f'(1) = e. 所以 f(x) 的解析式为 $f(x) = e^x - x + \frac{1}{2}x^2$.

因为 $f'(x) = e^x - 1 + x$ 单调递增,且 f'(0) = 0,所以当 x < 0 时, f'(x) < 0; 当 x > 0 时, f'(x) > 0.

所以 f(x) 的单调递增区间为 $(0,+\infty)$, 单调递减区间为 $(-\infty,0)$.

(2)
$$f(x) \ge \frac{1}{2}x^2 + ax + b \Leftrightarrow h(x) = e^x - (a+1)x - b \ge 0$$
, $h'(x) = e^x - (a+1)$

①当 $a+1 \le 0$ 时,h'(x) > 0恒成立,所以h(x)在R上单调递增,当 $x \to -\infty$ 时, $h(x) \to -\infty$,与 $h(x) \ge 0$ 矛盾.

②当a+1>0时,h(x)在 $(-\infty$,ln(a+1))上递减,在(ln(a+1), $+\infty$)上递增,

所以 $h(x)_{min} = h(ln(a+1)) = (a+1) - (a+1)ln(a+1) - b \ge 0$, 所以 $b \le (a+1) - (a+1)ln(a+1)$, 又 a+1 > 0,

所以 F(x) 在 $(0,\sqrt{e})$ 上递增, $(\sqrt{e},+\infty)$ 上递减,即 $F(x)_{max}=F(\sqrt{e})=\frac{e}{2}$.

所以当 $a = \sqrt{e} - 1, b = \sqrt{e}$ 时,(a+1)b取到最大值,为 $\frac{e}{2}$.

9. 解:(I)函数的定义域是R, g'(x) = (2x+2)(x-a),

令 g'(x) = 0, 解得: x = -1或 x = a,

①a < -1时,令g'(x) > 0,解得: x > -1或x < a,

令 g'(x) < 0,解得: a < x < -1,故 g(x) 在 $(-\infty, a)$ 递增,在 (a, -1) 递减,在 $(-1, +\infty)$ 递增,

② a = -1 时, $g'(x) \ge 0$, g(x) 在 R 递增,

③当a > -1时,令g'(x) > 0,解得: x > a或x < -1,

令 g'(x) < 0 ,解得: -1 < x < a 故 g(x) 在 $(-\infty, -1)$ 递增,在 (-1, a) 递减,在 $(a, +\infty)$ 递增;

(II) $f(x) \leq g(x) \Leftrightarrow g(x) - f(x) \geq 0$, $\forall F(x) = g(x) - f(x)$,

$$\iiint F'(x) = (2x+1)lnx + (x^2+x)\frac{1}{x} + 2x^2 + 2(1-a)x - a = (2x+1)(lnx+x+1-a),$$

 \therefore x ∈ (0,+∞), \diamondsuit F'(x) = 0, \lozenge lnx + x + 1 - a = 0,

设 h(x) = lnx + x + 1 - a,由于 h(x) 在 $(0, +\infty)$ 递增,

故存在唯一 $x_0 \in (0,+\infty)$, 使得 $h(x_0) = 0$, 即 $a = x_0 + lnx_0 + 1$,

当 $0 < x < x_0$ 时,F'(x) < 0,故F(x)在 $(0,x_0)$ 递减,

当 $x > x_0$ 时,F'(x) > 0,F(x)在 $(x_0, +\infty)$ 递增,

$$\stackrel{\text{\tiny Δ}}{=}$$
 x ∈ (0,+∞) $\stackrel{\text{\tiny D}}{=}$, $F(x)_{min} = F(x_0) = (x_0^2 + x_0) ln x_0 + \frac{2}{3} x_0^3 + (1-a) x_0^2 - a x_0 + b$

$$=(x_0^2+x_0)lnx_0^2+\frac{2}{3}x_0^3+(-x_0-lnx_0)x_0^2-(x_0+lnx_0+1)x_0^2+b=-\frac{1}{3}x_0^3-x_0^2-x_0^2+b,$$

$$b - 2a \ge \frac{1}{3}x_0^3 + x_0^2 + x_0 - 2a = \frac{1}{3}x_0^3 + x_0^2 - x_0 - 2lnx_0 - 2 , \quad ∀h(x) = \frac{1}{3}x^3 + x^2 - x - 2lnx - 2 , \quad x ∈ (0, +∞) ,$$

则
$$h'(x) = \frac{(x-1)(x^2+3x+2)}{x}$$
,令 $h'(x)$ θ ,解得: $x=1$,故 $h(x)$ 在 $(0,1)$ 递减,在 $(1,+\infty)$ 递增,故 $h(x)_{min} = h$ $(1) = -\frac{5}{3}$,

故
$$x_0 = 1$$
 即 $a = 1 + x_0 + \ln x_0 = 2$, $b = \frac{1}{3}x_0^3 + x_0^2 + x_0 = \frac{7}{3}$ 时, $(b - 2a)_{min} = -\frac{5}{3}$.

10. 解: (1) 函数
$$f(x) = \ln(ax+b) - x$$
 的导数为 $f'(x) = \frac{a}{ax+b} - 1$,

可得
$$y = f(x)$$
 在点 $(1, f(1))$ 处的切线斜率为 $\frac{a}{a+b}-1$

切线方程为
$$y = -2x+1$$
,可得 $ln(a+b)-1=-1$, $\frac{a}{a+b}-1=-2$, 解得 $a=-1$, $b=2$;

(2) 由
$$y = ln(x+1) - x$$
 的导数为 $y' = \frac{1}{x+1} - 1 = \frac{-x}{x+1}$,

当x>0时,函数y递减; 当-1< x<0时,函数y递增; 可得y的最大值为0,即 $\ln(x+1) \leqslant x$,

当a > 0时, $f(x) \le 0$ 恒成立,即 $x \ge \ln(ax + b)$ 恒成立,只要 $\ln(ax + b) \le \ln(x + 1)$ 恒成立,

即 a=1, $b \le 1$, 可得 $ab \le 1$, 即 ab 的最大值为 1.

11. \mathbb{M} : (1) $\stackrel{.}{=} a = 1 \, \text{bf}$, $F(x) = f(x) - g(x) = e^x + x^2 - x - x^2 - x - b = e^x - 2x - b$, $\therefore F'(x) = e^x - 2$,

令 F'(x) = 0,解得 x = ln2, 当 x < ln2 时, F'(x) < 0, 当 x > ln2 时, F'(x) > 0,

 $\therefore F(x)$ 在 $(-\infty, ln2)$ 上单调递减,在 $(ln2, +\infty)$ 上单调递增;

(2)
$$y = f(x) - g(x) = e^x - (a+1)x - b$$
, $\therefore y' = e^x - (a+1)$,

:. 切线斜率 $k = y'|_{x=1} = e - (a+1) = -1$, 解得 a = e,

当 x=1 时, y=0, 即 e-(a+1)-b=0, 解得 b=-1;

(3) 由 $f(x) \geqslant g(x)$ 恒成立,可得 $e^x + x^2 - x \geqslant x^2 + ax + b$,即 $e^x - (a+1)x - b \geqslant 0$,

 $\Rightarrow h(x) = e^x - (a+1)x - b$, $\emptyset h'(x) = e^x - (a+1)$,

当 a+1≤0,即 a≤-1时, h'(x)>0,函数 h(x) 单调递增,

当 $x \to -\infty$ 时, $h(x) \to -\infty$,故不满足题意,

当a > -1时,令 $h'(x) = e^x - (a+1) = 0$,解得 $x = \ln(a+1)$,

当x < ln(a+1)时,h'(x) < 0,当x > ln(a+1)时,h'(x) > 0,

 $\therefore h(x)$ 在 ($-\infty$, $\ln(a+1)$)上单调递减,在 ($\ln(a+1)$, $+\infty$)上单调递增;

 $\therefore h(x)_{min} = h(\ln(a+1)) = e^{\ln(a+1)} - (a+1)\ln(a+1) - b = a+1-b-(a+1)\ln(a+1) \ge 0$ 恒成立,

 $\therefore b \le a+1-(a+1)ln(a+1)$, $\therefore a+b \le 2a+1-(a+1)ln(a+1)=2(a+1)-1-(a+1)ln(a+1)$

 $\Rightarrow \varphi(x) = 2x - 1 - x \ln x$, x > 0, $\therefore \varphi'(x) = 1 - \ln x$,

 $\phi'(x) = 1 - lnx = 0$,解得x = e,

当x > e时, $\varphi'(x) < 0$,函数 $\varphi(x)$ 单调递减,

当0 < x < e时, $\varphi'(x) > 0$,函数 $\varphi(x)$ 单调递增,

 $\therefore \varphi(x)_{max} = \varphi \quad (e) = 2e - 1 - elne = e - 1,$

从而当a=e-1,b=0时,a+b 的最大值为e-1,综上a+b的最大值为e-1.