Une approche matricielle des nombres complexes

April 2, 2021

1 Construction matricielle de $\mathbb C$

Soit $E \subset \mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices de la forme $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

On vérifie facilement que cet ensemble est un sous-anneau unitaire et commutatif de $\mathcal{M}_2(\mathbb{R})$.

Montrons que c'est en fait en corps.

Soit $M = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \in E$. On sait que $M \neq 0$ si et seulement si $a^2 + b^2 \neq 0$, qui

est aussi son déterminant, ainsi, M est inversible avec $M^{-1} = \frac{1}{a^b + b^2} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$

En remarquant que le sous-corps de E $\left\{\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} \mid a \in \mathbb{R} \right\}$ est isomorphe à \mathbb{R} , on peut noter x la matrice $\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix}$ et I la matrice $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (matrice de rotation d'un angle de $\frac{\pi}{2}$), et en remarquant que $I^2 = -1$ on obtient:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = a + Ib$$

D'où
$$\mathbb{C} = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}) \right\}$$