

Técnicas de análisis cuantitativas y cualitativas Sesión 2

Eduardo Corbelle Rico

Máster Universitario en Xestión Sustentable da Terra e o Territorio Universidade de Santiago de Compostela

Curso 2015-2016

Contenidos

- f 1 Pruebas χ^2 y análisis de correspondencias
- 2 Práctica 3
- Modelos lineales 1: correlación y regresión
- 4 Práctica 4

Variables categóricas

Pruebas χ^2 y análisis de correspondencias

Tablas de frecuencias

Ejemplo: Personas a bordo del Titanic

Clase					
Primera	Segunda	Tercera	Tripulación		
325	285	706	885		
N = 2201)				

Tablas de contingencia

Ejemplo: Supervivencia a bordo del Titanic

Sobrevivió	Clase			
	1 ^a	2 ^a	3 ^a	Tripulación
No	122	167	528	673
Sí	203	118	178	212
(N = 2201)				

00000000000000

Tablas de contingencia (% por filas)

Ejemplo: Supervivencia a bordo del Titanic

Sobrevivió	Clase			Total	
	1 ^a	2 ^a	3 ^a	Tripulación	
No	8	11	35	45	100%
Sí	29	17	25	30	100%
(N = 2201)					

Tablas de contingencia (% por columnas)

Pruebas χ^2 y análisis de correspondencias

Ejemplo: Supervivencia a bordo del Titanic

Sobrevivió	Clase			
	1 ^a	2 ^a	3 ^a	Tripulación
No	38	59	75	76
Sí	62	41	25	24
Total	100%	100%	100%	100%
(N = 2201)				

Pruebas χ^2

Contrastes de...

- bondad de ajuste
- homogeneidad de muestras
- independencia de caracteres

Contraste de bondad de ajuste

Pruebas χ^2 y análisis de correspondencias

 H_0 La variable observada procede de una determinada distribución modelo

Contraste de bondad de ajuste

H₀ La variable observada procede de una determinada distribución modelo

Ejemplo: determinar si un dado está trucado

Resultado 1 2 3 4 5 6 Observaciones 4 3 4 3 1 5

(N=20)

Contraste de bondad de ajuste

H₀ La variable observada procede de una determinada distribución modelo

Ejemplo: determinar si un dado está trucado

```
Resultado 1 2 3 4 5 6
Observaciones 4 3 4 3 1 5
(N = 20)
> chisq.test(table(lanz), p = rep(1/6, 6))
Chi-squared test for given probabilities
data: table(lanz)
X-squared = 2.8, df = 5, p-value = 0.7308
```

Contraste de homogeneidad de muestras

H₀ Las muestras proceden de poblaciones con iguales características

Ejemplo: partidarios de la independencia, 3 CCAA

Indiferente

A 40 45 15 B 37 39 24 C 43 51 6

No

Si

Contraste de homogeneidad de muestras

H₀ Las muestras proceden de poblaciones con iguales características

Ejemplo: partidarios de la independencia, 3 CCAA

```
Si
      No
         Indiferente
A 40 45
            15
B 37 39
            24
 43 51
```

```
chisq.test(tabla)
```

Pearson's Chi-squared test

data: tabla

X-squared = 12.85, df = 4, p-value = 0.01203

Contraste de independencia de caracteres

 H_0 Las dos variables (caracteres) son independientes

Contraste de independencia de caracteres

 H_0 Las dos variables (caracteres) son independientes

Ejemplo: Nivel de denuncias de consumidores y sector de actividad

	Nulo	вајо	Medio	Alto
G.almacenes	12	6	4	2
Bancos	6	12	16	6
Agencias de viajes	12	20	36	16
Telefonía	0	0	2	10

Contraste de independencia de caracteres

H₀ Las dos variables (caracteres) son independientes

Ejemplo: Nivel de denuncias de consumidores y sector de actividad

	Nulo	Bajo	Medio	Alto
G.almacenes	12	6	4	2
Bancos	6	12	16	6
Agencias de viajes	12	20	36	16
Telefonía	0	0	2	10

> chisq.test(taboa2)

Pearson's Chi-squared test

data: taboa2

X-squared = 49.0191, df = 9, p-value = 1.646e-07

Análisis de correspondencias

Método exploratorio para representar la asociación entre los niveles de dos variables categóricas Normalmente asociado a un contraste de independencia de caracteres

- Simple (2 variables)
- Múltiple (máis de 2)

- Tablas de contingencia
- Contraste de independencias de caracteres
- Análisis de correspondencias

lacktriangle Pruebas χ^2 y análisis de correspondencias

2 Práctica 3

- 3 Modelos lineales 1: correlación y regresión
- 4 Práctica 4

Correlación

Correlación (definición: RAE)

- f. Correspondencia o relación recíproca entre dos o más cosas o series de cosas
- 2 f. Fon. Conjunto de dos series de fonemas opuestas por los mismos rasgos distintivos
- 3 f. Fon. Relación que se establece entre estas series
- f. Mat. Medida de la dependencia existente entre variantes aleatorias

Correlación

Correlación (definición: RAE)

- f. Correspondencia o relación recíproca entre dos o más cosas o series de cosas
- 2 f. Fon. Conjunto de dos series de fonemas opuestas por los mismos rasgos distintivos
- 3 f. Fon. Relación que se establece entre estas series
- 4 f. Mat. Medida de la dependencia existente entre variantes aleatorias

Exploración visual

Pruebas χ^2 y análisis de correspondencias

Coef. de correlación de Pearson

Pruebas χ^2 y análisis de correspondencias

(Imagen: en.wikipedia.org)

Cuarteto de Anscombe

(r = 0, 816)

Anscombe's 4 Regression data sets

Modelos lineales 1: correlación y regresión

0000000000000000

Correlación no implica causa

Divorce rate in Maine correlates with Per capita consumption of margarine

Fuente: Spurious Correlations, http://www.tylervigen.com/

Regresión lineal simple

Objetivo: inferir una relación lineal entre dos variables

$$Y = \alpha + \beta X + e$$

Finalidad: explicativa / predictiva.

Habitualmente mediante mínimos cadrados: $Min(\sum e_i^2)$

Regresión lineal simple

Objetivo: inferir una relación lineal entre dos variables

$$Y = \alpha + \beta X + e$$

Modelos lineales 1: correlación y regresión

Finalidad: explicativa / predictiva.

Habitualmente mediante mínimos cadrados: $Min(\sum e_i^2)$

Supuestos de partida

- La relación entre las variables es lineal
- Varianza de e independiente de x (homocedasticidad)
- El residuo e sigue una distribución normal

Regresión lineal múltiple

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + e$$

Regresión lineal múltiple

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + e$$

Tamaño muestral deseable

- $> 20 \text{ y} < 1{,}000 \text{ observaciones}$
- 15–20 observaciones por cada variable independiente
 (< 5 obs. por variable pueden causar sobreajuste)

Sobreajuste (overfitting)

Pruebas χ^2 y análisis de correspondencias

Sobreajuste (*overfitting*)

Sobreajuste (overfitting)

000000000000000

Sobreajuste (*overfitting*)

Variables de entrada

- Para introducir variables no numéricas
- Para mejorar (linearizar) la relación
- Para hacer más simétrica su distribución
- Para estandarizar los coeficientes de la regresión

Variables de entrada

Transformación de las variables

- Para introducir variables no numéricas
- Para mejorar (linearizar) la relación
- Para hacer más simétrica su distribución
- Para estandarizar los coeficientes de la regresión

Multicolinearidad

Correlación entre variables independientes

- Omitir una o varias
- Emplear sólo para predicción

000000000000000

000000000000000

Transformación de variables

Pruebas χ^2 y análisis de correspondencias

Datos anómalos (outliers) y apalancamiento

Datos anómalos (outliers) y apalancamiento

Datos anómalos (outliers) y apalancamiento

Datos anómalos: orígenes posibles

- Error en la toma o manipulación de datos
- Observación excepcional explicable por una situación extraordinaria
- Observación excepcional sin explicación plausible (preferible no eliminarla)

Regresión para fines predictivos

Residuo de ajuste y error de predicción

- Validación con una submuestra
- Validación cruzada

- Regresión lineal simple
- Regresión lineal múltiple