

- **4.6** Ευθύγραμμος αγωγός απείρου μήκους, που συμπίπτει με τον άξονα z, διαρρέεται από εναλλασσόμενο ρεύμα i(t), χαμηλής συχνότητας. Στο επίπεδο xz υπάρχει ορθογωνικός συρμάτινος βρόχος $ABI\Delta$, με τις πλευρές $A\Delta = B\Gamma = a$ παράλληλες με τον άξονα z και την πλευρά $I\Delta = b$ πάνω στον άξονα x, όπως φαίνεται στο $\Sigma \chi$. Α6. Ο βρόχος κινείται με σταθερή ταχύτητα $\bar{v} = \hat{x}v$. Τη χρονική στιγμή t=0 είναι $O\Delta = x_0$.
- α) Να βρεθούν για $0 \le t < \infty$ η μαγνητική ροή ψ_m που περνάει από τον βρόχο και η ηλεκτρεγερτική δύναμη που επάγεται σε αυτόν. Να γίνει αριθμητική εφαρμογή για $i(t) = I_{\max} \sin(\omega t)$ ($I_{\max} = 100A$, $\omega = 100\pi$ rad/s, t = 10s), a = 10cm, b = 20cm, $x_0 = 15cm$ και v = 0.5m/s.
- β) Αν απομακρυνθεί ο ευθύγραμμος αγωγός και ο παραπάνω βρόχος κινηθεί σε ομοιόμορφο μαγνητικό πεδίο $\overline{B}=\hat{y}B_0$ ($B_0=0.5T$) με την ίδια σταθερή ταχύτητα $\overline{v}=\hat{x}v$, όπως και πριν, ποια θα είναι τώρα η ηλεκτρεγερτική δύναμη που επάγεται σε αυτόν; Ποια είναι η φυσική σημασία του αποτελέσματος;

$$V_{m} = \frac{a \left(5 \right) \left[m \left(x_{0} + Ve + b \right) - \ln \left(x_{0} + Ve \right) \right]}{2\pi i} = \frac{a V_{0}}{2\pi i} \ln \left(\frac{x_{0} + Ve + b}{x_{0} + Ve} \right)$$

$$\frac{a V_{0}}{2\pi i} = \frac{a V_{0}}{2\pi i} \ln \left(1 + \frac{b}{x_{0} + Ve} \right), e \geq 0$$

$$0 \text{ Zinto's fta Zuv Wiercrephorish Structure Evan } V_{e} = -\frac{d V_{0}}{dt}$$

$$\frac{d V_{0}}{dt} = \frac{d}{dt} \frac{a V_{0}}{2\pi i} \left[\frac{1}{V_{0}} \left(\frac{1}{V_{0}} + \frac{b}{V_{0}} \right) - \frac{a V_{0}}{2\pi i} \left[\frac{1}{V_{0}} \left(\frac{b V_{0}}{v_{0} + Ve \left(V_{0} + Ve + b \right)} \right) \right]$$

$$V_{e} = -\frac{d V_{0}}{dt} = \frac{a V_{0}}{2\pi i} \left[\frac{1}{V_{0}} \left(\frac{b V_{0}}{v_{0} + Ve \left(V_{0} + Ve + b \right)} \right) - \frac{a V_{0}}{v_{0}} \left(\frac{b V_{0}}{v_{0} + Ve \left(V_{0} + Ve \left(V_{0} + Ve + b \right)} \right) \right) \right]$$

$$V_{e} = -\frac{a V_{0}}{2\pi i} \left[\frac{1}{V_{0}} \left(\frac{b V_{0}}{v_{0} + Ve \left(V_{0} + Ve \left(V_{0} + Ve + b \right)} \right) - \frac{a V_{0}}{v_{0}} \left(\frac{a V_{0}}{v_{0} + Ve \left(V_{0} + Ve \left(V_{0} + Ve + b \right)} \right) \right) \right]$$

$$V_{e} = -\frac{a V_{0}}{2\pi i} \left[\frac{1}{V_{0}} \left(\frac{a V_{0}}{v_{0} + Ve \left(V_{0} + Ve \left(V_{0} + Ve \left(V_{0} + Ve + b \right)} \right) \right) - \frac{a V_{0}}{v_{0}} \left(\frac{a V_{0}}{v_{0} + Ve \left(V_{0} + Ve \left(V$$

6)	70 Ym	B=1	Bo ŷ	ower 3 d S =	zvis	B, dx	:dz =	: B ₀ .0	a. b = (e).ST)	(O.1m)	(O.2m)
												zejestu	
la	mzka	i pov	<i>&</i>	kai Elvai	०टवरी _ट	gxorf	ore Zo ne W	s vos	6 i(+) Ze <i>u</i>	ζ ω χρουοι	Ym, Si v ap	njadi o n d	n
) O	Eller	1 100	νε	hnger,	σρα (N3 V	}3 oK	μφανιδ	Secon W	HC (1	stov l	рехо	

4.9 Επιφανειακό ρεύμα \overline{K} ρέει στην απέραντη επίπεδη επιφάνεια με z=0. Η ροή αυτού του ρεύματος δημιουργεί ηλεκτρομαγνητικό πεδίο στον αέρα. Η ένταση του ηλεκτρικού πεδίου στην περιοχή 1 (z<0) είναι

$$\overline{E}_{1} = -\hat{y} \frac{K_{0} \omega \mu_{0}}{2\beta} \sin \frac{\pi x}{\ell} \cos(\omega t + \beta z),$$

ενώ η ένταση του μαγνητικού πεδίου στην περιοχή 2 (z>0) είναι

$$\overline{H}_2 = \hat{x} \frac{K_0}{2} \sin \frac{\pi x}{\ell} \cos(\omega t - \beta z) + \hat{z} \frac{\pi K_0}{2\beta \ell} \cos \frac{\pi x}{\ell} \sin(\omega t - \beta z),$$

όπου

 $\omega > \pi I(\ell \sqrt{\varepsilon_0 \mu_0})$ είναι η κυκλική συχνότητα, $\beta = \sqrt{\omega^2 \varepsilon_0 \mu_0 - (\pi/\ell)^2}$ και K_0 , ℓ γνωστές σταθερές. Στον αέρα δεν υπάρχουν πουθενά φορτία και ρεύματα. Να υπολογιστούν:

- α) Η ένταση \overline{H}_1 του μαγνητικού πεδίου στην περιοχή 1 και η ένταση \overline{E}_2 του ηλεκτρικού πεδίου στην περιοχή 2.
- β) Οι επιφανειακές πυκνότητες ρεύματος \overline{K} και φορτίου σ για z=0. Να επιβεβαιωθεί ότι ικανοποιούν την οριακή συνθήκη του νόμου διατήρησης του φορτίου.

$$\vec{R} = \hat{n} \times (\vec{R}_{2} - \vec{R}_{1})$$

$$\vec{R}_{1} = -\hat{x} \frac{1}{2} \sin^{2} \cos(\omega + \delta x) + \hat{x} \frac{i\pi k}{2!\delta} \cos^{2} \sin(\omega + \delta x)$$

$$\vec{R}_{2} = \hat{x} \frac{1}{2} \sin^{2} \cos(\omega + \delta x) + \hat{x} \frac{i\pi k}{2!\delta} \cos^{2} \sin(\omega + \delta x)$$

$$\vec{R}_{1} = -\hat{x} \frac{1}{2} \sin^{2} \cos(\omega + \delta x) + \hat{x} \frac{i\pi k}{2!\delta} \cos^{2} \sin(\omega + \delta x)$$

$$\vec{R}_{2} = \hat{y} \frac{1}{2} \cos^{2} \sin^{2} \cos(\omega + \delta x)$$

$$\vec{R}_{3} = -\hat{y} \frac{1}{2} \cos^{2} \sin^{2} \cos(\omega + \delta x)$$

$$\vec{R}_{3} = -\hat{y} \frac{1}{2} \cos^{2} \sin^{2} \cos(\omega + \delta x)$$

$$\vec{R}_{3} = -\hat{y} \frac{1}{2} \cos^{2} \sin^{2} \cos(\omega + \delta x)$$

$$\vec{R}_{3} = -\hat{y} \frac{1}{2} \cos^{2} \cos^{2$$