

- Until now, the heat transfer from solid boundaries have been in the same direction as the heat transfer in the solid (by conduction).
- For an extended surface, the direction from the solid boundaries are perpendicular to the direction of the heat transfer in the solid.
- Consider a strut:
 - Connects two walls at different temperature.
 - Fluid flows across strut.
 - $T_1 > T_2 > T_{\infty}$

- Main purpose is to enhance heat transfer between solid and fluid.
- An extended surface is known as a n.

A 1st Law look at an extended surface shows

$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c}\frac{dA_c}{dx}\right)\frac{dT}{dx} - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dx}\right)(T - T_{\infty}) = 0$$
 where A_c is the cross sectional area, A_s is the surface area.

- If the fin has a uniform cross section
 - $-A_c$ is constant

$$-A_{s}=Px$$

- P is the fin perimeter $\frac{d^2T}{dx^2} - \left(\frac{hP}{kA_c}\right)(T - T_{\infty}) = 0$

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

where
$$\theta \equiv T(x) - T_{\infty}$$
 and $m^2 \equiv hP/kA_c$

- Consider the two fins shown to the right.
- The rectangular fin has

$$P=2w+2t$$

$$A_c = wt$$

• The cylindrical fin has

$$P = \pi D$$

$$A_c = \frac{\pi}{4}D^2$$

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

The solution to governing differential equation is

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

where C_1 and C_2 are constants determined by boundary conditions.

• 1st Boundary Condition: Constant temperature at base, T_b

$$\theta(0) = T_b - T_\infty \equiv \theta_b$$

- 2nd Boundary Condition: At tip
 - Convection
 - Adiabatic
 - Constant Temperature
 - Infinite Long Fin

Tip Conditions

Case	Tip Condition	Temperature Distribution $ heta/ heta_b$	Fin Heat Transfer Rate $q_{\!\scriptscriptstyle f}$
A	Convection	$\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$	$M \frac{\sinh mL + (h/mk) \cosh mL}{\cosh mL + (h/mk) \sinh mL}$
В	Adiabatic	$\frac{\cosh m(L-x)}{\cosh mL}$	M tanh mL
С	Constant Temperature	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L-x)}{\sinh mL}$	$M \frac{\cosh mL - \theta_L / \theta_b}{\sinh mL}$
D	Infinite Fin $(L \rightarrow \theta)$	e^{-mx}	M
$\theta(x)$:	$=T(x)-T_{\infty}$	$\theta_b = \theta(0) = T_b - T_\infty$ $m^2 = \frac{1}{2}$ ENGT 320 – Applied Thermal Systems	$= \frac{hP}{k A_c} \qquad M = \sqrt{hPkA_c} \theta_b$

ENGT 320 – Applied Thermal Systems

7/21

Example 1

A very long rod 5 mm in diameter has one end maintained at $100 \,^{\circ}C$. The surface of the rod is exposed to ambient air at $25 \,^{\circ}C$ with a convection heat transfer coefficient of $100 \, W/m^2K$.

- (a)Determine the temperature distributions along rods constructed from pure copper, 2024 aluminum alloy, and type AISI 316 stainless steel. What are the corresponding heat losses from the rods?
- (b) Estimate how long the rods must be for the assumption of infinite length to yield an accurate estimate of the heat loss.

Fin Performance

- A fin does not guarantee an increase of heat transfer.
- A fin adds a conduction resistance and needs to be less than the gains of the increased convection effects.
- Fin performance may be defined in terms of effectiveness.
- The effectiveness $\varepsilon_{\scriptscriptstyle f}$ of a single n fin may be defined as

$$\varepsilon_f = \frac{q_f}{h A_{c,b} \theta_b}$$

where A_{ch} is the fin cross-sectional area at the base.

- Effectiveness is the ratio of the actual heat transfer over heat transfer without fin.
- Generally, fins are rarely justified unless $\varepsilon_f > 2$.

Fin Effectiveness

- For case D (infinite long fin), the effectiveness is $\varepsilon_f = \sqrt{\frac{kP}{LA}}$
- This illustrates that fin performance is due to:
 - Material properties
 - Geometry
- For geometry, the ratio of perimeter to cross sectional area is important.
- For this reason, thin but closely spaced fins is typically preferred.
- However, too closely spaced fins may start to impact convection.

Fin Effectiveness

- The effectiveness of a fin may also be expressed in terms of thermal resistances.
- The thermal resistance of a fin is

$$R_{t,f} = \frac{\theta_b}{q_f}$$

The thermal resistance of the convection if the fin was not present is

$$R_{t,b} = \frac{1}{h A_{c,b}}$$

• The effectiveness in terms of thermal resistance is then

$$\varepsilon_f = \frac{R_{t,b}}{R_{t,f}}$$

- Another measure of fin performance is fin efficiency.
- Fin efficiency is defined in terms of the maximum heat transfer possible.
- The maximum heat transfer possible would occur if the entire fin, not just the base, was at the base temperature.
- This is written as

$$\eta_f \equiv \frac{q_f}{q_{max}} = \frac{q_f}{h A_f \theta_b}$$

where A_f is the surface area of the fin.

Straight Fins

Rectangular

$$A_f = 2wL_c$$

$$L_c = L + (t/2)$$

$$A_p = tL$$

$$\eta_f = \frac{\tanh mL_c}{mL_c}$$

Triangular

$$A_f = 2w[L^2 + (t/2)^2]^{1/2}$$

$$A_p = (t/2)L$$

$$\eta_f = \frac{1}{mL} \frac{I_1(2mL)}{I_0(2mL)}$$

Parabolic

$$A_f = w[C_1 L + (L^2/t) \ln (t/L + C_1)]$$

$$C_1 = [1 + (t/L)^2]^{1/2}$$

$$A_p = (t/3)L$$

$$\eta_f = \frac{2}{\left[4(mL)^2 + 1\right]^{1/2} + 1}$$

Pin Fins

Rectangular

$$A_f = \pi D L_c$$

$$L_c = L + (D/4)$$

$$V = (\pi D^2/4)L$$

$$\eta_f = \frac{\tanh mL_c}{mL_c}$$

Triangular

$$A_f = \frac{\pi D}{2} [L^2 + (D/2)^2]^{1/2}$$
$$V = (\pi/12)D^2L$$

$$\eta_f = \frac{2}{mL} \frac{I_2(2mL)}{I_1(2mL)}$$

Parabolic

$$A_f = \frac{\pi L^3}{8D} \left\{ C_3 C_4 - \frac{L}{2D} \ln \left[(2DC_4/L) + C_3 \right] \right\}$$

$$C_3 = 1 + 2(D/L)^2$$

 $C_4 = [1 + (D/L)^2]^{1/2}$
 $V = (\pi/20)D^2 L$

$$\eta_f = \frac{2}{[4/9(mL)^2 + 1]^{1/2} + 1}$$

Overall Surface Efficiency

- η_f denotes the efficiency of a single fin.
- An arrangement of fins may be described by the overall surface efficiency

$$\eta_o = \frac{q_t}{q_{max}} = \frac{q_t}{h A_t \theta_b}$$

where q_t is the total heat rate from the surface A_t associated with both the fin and the exposed portion at the base.

- The exposed portion is known as the prime surface, A_b .
- If there are N fins in an array, then the total area is $A_t = N A_f + A_b$
- The total rate of heat transfer is $q_t = N \eta_f h A_f \theta_b + h A_b \theta_b$

Overall Surface Efficiency

After some manipulation, the overall surface efficiency becomes

$$\eta_o = 1 - \frac{N A_f}{A_t} (1 - \eta_f)$$

• It may also be related to thermal resistance of the fin array.

$$R_{t,o} = \frac{\theta_b}{q_t} = \frac{1}{\eta_o h A_t}$$

Example 2

The engine cylinder of a motorcycle is constructed of 2024-T6 aluminum alloy is of height H=0.15 m and outside diameter D=50 mm. Under typical operating conditions the outer surface of the cylinder is at a temperature of 500~K and is exposed to ambient air at 300~K, with a convection coefficient of $50~W/m^2K$. Annular fins are integrally cast with the cylinder to increase heat transfer to the surroundings. Consider five such fins, which are of thickness t=6 mm, length L=20 mm, and equally spaced. What is the increase in heat transfer due to use of the fins?

Example 3, part 1

To generate a power of P = 9 W, the temperature of a fuel cell must be maintained at $T_c = 56.4$ °C, which requires removal of 11.25 W from the fuel cell and a cooling air velocity of V = 9.4 m/s for $T_{\infty} = 25 \text{ }^{\circ}\text{C}$. To provide these convective conditions, the fuel cell is centered in a 50 mm \times 26 mm rectangular duct, with 10 mm gaps between the exterior of the $50 \text{ } mm \times 50$ $mm \times 6 \ mm$ fuel cell and the top and bottom of the well insulated duct wall. A small fan, powered by the fuel cell, is used to circulate the cooling air. Inspection of a particular fan vendor's data sheets suggests that the ratio of the fan power consumption to the fan's volumetric flow rate is $P_f/V_f = C =$ 1000 W/(m^3/s) for the range of $10^{-4} \le V_f \le 10^{-2} \ m^3/s$. Determine the net electric power produced by the fuel cell fan system, $P_{net} = P - P_{f}$

Example 3, part 2

Consider the effect of attaching an aluminum (k = 200 W/mK) finned heat sink, of identical top and bottom sections, onto the fuel cell body. The base of the heat sink is of thickness $t_b = 2 \text{ mm}$. Each of the N rectangular fins is of length $L_f = 8 \ mm$ and thickness $t_f = 1 \ mm$, and spans the entire length of the fuel cell, $L_c = 50 \ mm$. With the heat sink in place, radiation losses are negligible and the convective heat transfer coefficient may be related to the size and geometry of a typical air channel by an expression of the form $h = 1.78 k_{air} (L_f + a)/(L_f a)$, where a is the distance between fins. Draw an equivalent thermal circuit for part 2 and determine the total number fins needed to reduce the fan power consumption to half of the value found in part 1.