Duboko učenje 1- Jesenski ispitni rok (06.09.2023.)

- 1. Koji izraz se koristi za ažuriranje skrivenog stanja povratne ćelije s dugoročnom memorijom (Long Short Term Memory)?
 - a. $h^{(t)} = i^{(t-1)} \circ h^{(t-1)} + (1 i^{(t-1)}) \circ \hat{h}^{(t-1)}$
 - b. $h^{(t)} = \sigma(W_{hh} \cdot h^{(t-1)} + W_{xh} \cdot x^{(t)} + b)$
 - c. $c^{(t)} = f^{(t)} \circ c^{(t-1)} + (g^{(t)}) \circ \hat{c}^{(t)}$
 - d. $h^{(t)} = \tanh (i^{(t-1)} \circ h^{(t-1)} + (1 i^{(t-1)}) \circ h^{(t-1)})$
- 2. Koju tehniku ne ubrajamo u regularizaciju?
 - a. učenje sa zaletom
 - b. usrednjivanje predikcije većeg broja modela
 - c. normalizacija po grupi podataka
 - d. rano zaustavljanje optimizacije
- 3. Funkcija rotira točke ravnine za kut od 35 stupnjeva. Navedi dimenzije Jakobijeve matrice te funkcije.
 - a. ta funkcija nema derivaciju
 - b. 1x2
 - c. 2x2
 - d. 1x1
- 4. Zašto su konvolucijski slojevi ponekad prikladniji od potpuno povezanih slojeva?
 - a. zbog regularizacijskog efekta usred dijeljenja parametara
 - b. zbog povećanja kapaciteta
 - c. zbog usklađenosti s aktivacijom ReLU
 - d. zbog jednostavnije implementacije
- 5. Za koji od parametara običnog povratnog modela postoji mogućnost eksplodirajućeg odnosno nestajućeg gradijenta?
 - a. W_{xh}
 - b. W_{hh}
 - c. b
 - d. W_{hx}

- 6. Kolika je površina ispod krivulje preciznosti i odziva za binarnu klasifikaciju dvaju podataka ako su oznake Y=[0,1], a predikcije P(Y=1|x)=[0.9,0.8].
 - a. 0.5
 - b. 1.0
 - c. 0.8
 - d. 0.4
- 7. Koja inačica kontrasnog gubitka je povezana s unakrsnom entropijom?
 - a. gubitak N parova
 - b. trojni gubitak
 - c. meki trojni gubitak
 - d. trojni gubitak sa skalarnim produktom
- 8. Razmatramo L2 regulariziranu funkciju gubitka dubokog modela tijekom provedbe jednog koraka stohastičkog gradijentnog spusta. negativni gradijent regularizacije pomiče model u smjeru:
 - a. suprotnom od ishodišta prostora modela
 - b. okomitom na gradijent ne-regularizirane funkcije gubitka
 - c. ne utječe na pomak modela
 - d. ishodišta prostora modela
- 9. Razmatramo višerazrednu logističku regresiju s n značajki na ulazu. Ako prilikom učenja tog modela koristimo stohastičko izostavljanje značajki (droput), evaluacijom tako naučenog modela možemo dobiti:
 - a. geometrijsku sredinu predikcije O(2^n) modela
 - b. aritmetičku sredinu predikcije O(n^2) modela
 - c. aritmetičku sredinu predikcije O(2^n) modela
 - d. aritmetičku sredinu predikcije O(n) modela
- 10. Koliko iznosi softmax([ln2, 0])?
 - a. nije definirano jer je jedan d ulaza jednak 0
 - b. -0.55
 - c. [2/3, 1/3]
 - d. 100%

- 11. Za aktivacijsku funkciju latentnog sloja gotovo nikad nećemo koristiti:
 - a. $g(x|\alpha,\beta) = \beta + \alpha \cdot x$
 - b. $g(x|\alpha) = \max(0, x) + 0.001 \cdot \min(0, x)$
 - c. $g(x) = \max(-0.1, x)$
 - d. $g(x) = (1 + e^{-\alpha \cdot x})^{-1}$
- 12. Razmatramo računanje gradijenta funkcije cilja uzorkovanjem manjeg broja podataka (minigrupe) umjesto uporabe čitavog skupa uzoraka za učenje. Ta ideja je opravdana jer preciznost gradijenta:
 - a. raste ispodlinearno s povećanjem broja uzoraka
 - b. raste kvadratno s povećanjem broja uzoraka
 - c. nema nikakvog utjecaja na rad algoritma strojnog učenja
 - d. ne ovisi o broju uzoraka mini-grupe