1 Group

Definition: group

A **group** is a binary structure (G, *) s.t.

- 1) (G, *) is associative
- 2) (G,*) has an identity: there exists $e \in G$ s.t.

$$e * g = g * e = g \quad \forall g \in G.$$

3) (G,*) has two-sided inverses for all $x \in G$, there exists a $y \in G$ s.t.

$$x * y = y * x = e.$$

Example. $(\mathbb{Z},+)$ is a group.

Definition: abelian group

A group in which * is commutative is called abelian.

Example. • \mathbb{Z}^+ under +: has no identity.

- N_0 under +: 1 doesn't have an inverse.
- (\mathbb{Q}^*, x) nonzero rationals under \times : yes
- (\mathbb{Q}, \times) : 0 doesn't have an inverse.
- $(\mathbb{Z}^{\times}, \times)$ nonzero integers under \times : 2 doesn't have an inverse.
- $(\mathbb{Z}_n, +_n)$ integers mod n under addition mod n is a group. Associativity is not obvious yet.
- $(\mathbb{Z}_7^*, \times_7)$ is a group.
- $(M_n(\mathbb{R}), +)$ $n \times n$ matrices with real entries under matrix addition: is a group.
- $(M_n(\mathbb{R}), \times)$ under matrix multiplication. The zero matrix have no inverse.
- $(GL_n(\mathbb{R}), \times)$ the invertible $n \times n$ matrices in the general linear group under \times .

• $GL_2(\mathbb{R})$ is nonabelian.

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Proof

Suppose a * b = b * c, then

$$a^{-1} * (a * b) = a^{-1} * (a * c)$$

 $(a^{-1} * a) * b = (a^{-1} * a) * c$
 $e * b = e * c$
 $b = c$

Example (group with 3 elements). $(\mathbb{Z}_3, +_3)$.

 $G=\{e,a,b\}.$

Remark. Any group with 3 elements is $\rightarrow (\mathbb{R}_3, +_3)$.

Example (groups of order 4). See iPad.

Example. (U, \times) (all complex numbers that form unit circle) and (U_n, \times) are groups.