- Theorem: For every CFG G, there is a PDA A s.t. L(A) = L(G).
- Given a CFG $G = \langle \Sigma, V, R, S \rangle$, the equivalent PDA $A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle$, where $\Gamma = \Sigma \cup V \cup \{\bot\}$, $Q = \{p, q, r\}, q_0 = p, F = \{r\}$, and δ is the set of:
 - \circ $(p, \epsilon, pop(\epsilon)) \rightarrow (q, push(S \perp))$
 - $\circ (q, a, pop(a)) \rightarrow (q, push(\epsilon)) \forall a \in \Sigma$
 - $\circ (q, \epsilon, pop(A)) \to (q, push(w)) \ \forall A \in V, A \to w \in R$
 - $\circ (q, \epsilon, pop(\bot)) \rightarrow (r, push(\epsilon))$
- Recall the CFG $G = \langle \Sigma, V, R, S \rangle$, and its PDA $A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle$, where $\Sigma = \{a, b\}, V = \{S\}$, $R = \{S \to aSb | \epsilon\}, \Gamma = \{a, b, S, \bot\}$, and $Q = \{p, q, r\}, q_0 = p$, and $F = \{r\}$, and δ is the set of:
 - \circ $(p, \epsilon, pop(\epsilon)) \rightarrow (q, push(S \perp))$
 - \circ $(q, a, pop(a)) \rightarrow (q, push(\epsilon))$
 - \circ $(q, b, pop(b)) \rightarrow (q, push(\epsilon))$
 - \circ $(q, \epsilon, pop(S)) \rightarrow (q, push(aSb))$
 - \circ $(q, \epsilon, pop(S)) \rightarrow (q, push(\epsilon))$
 - \circ $(q, \epsilon, pop(\bot)) \rightarrow (r, push(\epsilon))$
- Claim: For every word $u \in \Sigma \cup V$, for every word $v \in \Sigma$, if there is a derivation $u \to^* w$, then there is a run $(q, wu) \vdash^* (q, w)$ on v for every $w \in \Gamma^*$.
- Theorem: For every PDA A, there is a CFG G s.t. L(G) = L(A).
- Assumptions for the proof of PDA to CFG:
 - For every $w \in L(A)$, there is an accepting run of A on w that ends with a configuration with empty stack.
 - For every transition, A can only push or pop symbol, but not both.
- Given a PDA $A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle$, the equivalent CFG $G = \langle \Sigma, V, R, S \rangle$, where $V = \{A_{p,q} | p, q \in Q\}$, and R is the set of:
 - $A_{p,q} \to aA_{r,s}b$ for every pair of transitions $(p, a, pop(\epsilon)) \to (r, push(z))$, and $(s, b, pop(z)) \to (q, push(\epsilon))$.
 - $A_{p,r} \to aA_{q,r}$ for every transition $(p, a, pop(\epsilon)) \to (q, push(\epsilon))$.
 - $\bullet A_{p,q} \to A_{p,r}A_{r,q}$.
 - $\bullet A_{p,p} \to \epsilon$.
- Claim: For every $w \in \Gamma^*$, for every word $u \in \Sigma \cup V$, for every word $v \in \Sigma$, if there is a run $(q, wu) \vdash^* (q, w)$ on v, then there is a derivation $u \to^* v$.