МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В. Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 1

по дисциплине: Системное моделирование

тема: «Поведение механических системы в статике»

Выполнил: ст. группы ПВ-223

Игнатьев Артур Олегович

Проверил:

доц. Полунин Александр Иванович

Лабораторная работа №1

«Поведение механических системы в статике»

Цель работы: Изучить особенности организации вычислительных процессов, связанные с погрешностями, приближенным характером вычислений на компьютерах современного типа, вычислительной устойчивостью.

Вариант 3

Ход выполнения лабораторной работы:

1. Разработать математическую модель, описывающую поведение элементов механической системы в статике.

$$\begin{split} M_3 &= -F_{y3} * \cos(\phi - \alpha) * L \\ \cos(\phi - \alpha) &= \cos\alpha * \cos\phi + \sin\alpha * \sin\phi \\ \sin\alpha &= \frac{a}{c} \\ \cos\alpha &= \frac{b}{c} \\ c &= \sqrt{a^2 + b^2} \\ a &= n + L \sin\phi - x \\ b &= L(1 - \cos\phi) \\ |F_{y3}| &= |F_{y2}| = k_2 * \Delta l_2 \\ \Delta l_2 &= c - n = \sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2} - n \\ M_3 &= -k_2 \left(\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2} - n\right) * \\ \left(\frac{n + L \sin\phi - x}{\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2}} \sin\phi\right) * L \\ F_{y1} &= k_1 * \Delta l_1 \\ \Delta l_1 &= x \\ F_{y2} &= k_2 * \Delta l_2 * \cos\alpha \\ &= k_2 \left(\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2} - n\right) * \\ * \frac{n + L \sin\phi - x}{\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2}} \\ \left(\frac{F_{803} * L - mg * \sin(\phi) * \frac{L}{2} - k_2 *}{\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2} - n}\right) * \\ \left(\frac{n + L \sin\phi - x}{\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2}} - n\right) * \\ \left(\frac{L(1 - \cos\phi)}{\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2}} \sin\phi\right) * L = 0 \\ -k_1 * x + k_2 \left(\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2} - n\right) * \\ \frac{n + L \sin\phi - x}{\sqrt{(n + L \sin\phi - x)^2 + L^2(1 - \cos\phi)^2}} = 0 \end{split}$$

2. Разработать программу на основании математической модели и произвести расчёты.

```
clc; close all; clear;
fig = uifigure;
F = uislider(fig, "Position", [100 400 400 3], "ValueChangedFcn",@(F,event) Up-
date(F.Value));
F.Limits = [0,10000];
F.Value = 0;
Update(F.Value);
GetBifurcationPoint();
T = uitable(fig, "Data", GetT);
function SetBP(newBP)
global BP
BP = newBP;
end
function x = GetBP
global BP
x = BP;
end
function SetT(newT)
global T
T = newT;
function x = GetT
global T
x = T;
end
function x = GetK1
x = 20000;
end
function x = GetK2
x = 40000;
end
function x = GetMass
x = 5;
end
function x = GetL
x = 1.2;
function x = GetN
x = 10;
end
function GetBifurcationPoint()
F = 0;
e = 0.00001;
step = 1000;
x0 = 0;
phi0 = 0;
[xr, phir, ex] = Newton(F, [x0 phi0]);
F_i = [F];
X_i = [xr];
Phi_i = [phir];
i = 2;
while (step > e)
F = F + step;
[xr, phir, ex] = Newton(F, [x0 phi0]);
if (ex)
F i = [F_i;F];
X_i = [X_i;xr];
```

```
Phi_i = [Phi_i;phir];
while (ex)
F = F + step;
[xr, phir, ex] = Newton(F, [x0 phi0]);
i = i + 1;
if (ex)
F_i = [F_i;F];
X i = [X i;xr];
Phi_i = [Phi_i;phir];
end
end
F = F - step;
step = step / 2;
end
SetT(table(F_i, X_i, Phi_i));
SetBP([F xr phir]);
end
function Update(F)
syms x phi;
DrawPlots(F, [x phi]);
[xr, phir, ex] = Newton(F, [0 0]);
if (ex)
DrawPoint([xr phir], "g");
title("Static")
else
BP = GetBP;
str = "Bifurcation at F=" + string(BP(1)) + " x=" + string(BP(2)) + " phi=" +
string(BP(3));
title(str, "Color", "r");
end
hold off;
OutputInf(F, [xr, phir]);
function OutputInf(F, PointR)
Fr = GetFunctions(F, PointR(1), PointR(2));
str = "F=" + string(F) + " R=" + string(Fr(1)) + " M=" + string(Fr(2));
xlabel(str);
end
function DrawPlots(F, Args)
Fun = GetFunctions(F, Args(1), Args(2));
Draw(Fun(1), "r", [0 pi/2]);
Draw(Fun(2), "b", [0 pi/2]);
end
function Fun = GetFunctions(F, x, phi)
Fun = [GetR(F, x, phi); GetM(F, x, phi)];
function R = GetR(F, x, phi)
L=GetL;
m=GetMass;
k2=GetK2;
k1=GetK1;
n=GetN;
sin phi = sin(phi);
cos_phi = cos(phi);
a = n + L * sin_phi - x;
b = L * (1 - cos_phi);
c = sqrt(a^2+b^2);
cos_alpha = a / c;
dl1 = x;
d12 = c - n;
Fy1 = k1 * dl1;
Fy2 = k2 * d12;
```

```
R = -Fy1 + Fy2 * cos_alpha;
function M = GetM(F, x, phi)
L=GetL;
m=GetMass;
k2=GetK2;
k1=GetK1;
n=GetN;
sin phi = sin(phi);
cos_phi = cos(phi);
a = n + L * sin_phi - x;
b = L * (1 - \cos phi);
c = sqrt(a^2+b^2);
cos alpha = a / c;
sin_alpha = b / c;
cos_phi_minus_alpha = cos_alpha * cos_phi + sin_alpha * sin_phi;
d12 = c - n;
mg = m * 9.81;
Fy2 = k2 * d12;
M1 = -mg * sin phi * L / 2;
M2 = F * L;
M3 = -Fy2 * cos_phi_minus_alpha * L;
M = M1 + M2 + M3;
end
function Draw(Fun, Color, Range)
graph(1) = ezplot(Fun, Range); hold on; grid on;
set(graph(1), "Color", Color);
end
function DrawPoint(Point, Color)
str = "(" + string(Point(1)) + ";" + string(Point(2)) + ")";
text(Point(2), Point(1), str);
plot(Point(2), Point(1), "*", "Color", Color);
end
function Der = GetDeriviativeRx(F, Point)
e = 0.000000001;
Der = (GetR(F, Point(1) + e, Point(2)) - GetR(F, Point(1), Point(2))) / e;
function Der = GetDeriviativeRphi(F, Point)
e = 0.000000001;
Der = (GetR(F, Point(1), Point(2) + e) - GetR(F, Point(1), Point(2))) / e;
end
function Der = GetDeriviativeMx(F, Point)
e = 0.000000001;
Der = (GetM(F, Point(1) + e, Point(2)) - GetM(F, Point(1), Point(2))) / e;
end
function Der = GetDeriviativeMphi(F, Point)
e = 0.000000001;
Der = (GetM(F, Point(1), Point(2) + e) - GetM(F, Point(1), Point(2))) / e;
function w = GetW(F, Point0)
dRx = GetDeriviativeRx(F, Point0);
dRphi = GetDeriviativeRphi(F, Point0);
dMx = GetDeriviativeMx(F, Point0);
dMphi = GetDeriviativeMphi(F, Point0);
w = [dRx dRphi; dMx dMphi];
end
function LessEps = IsLessEps(A, Eps)
LessEps = abs(A) <= Eps;</pre>
function GreaterEps = IsGreaterEps(A, Eps)
GreaterEps = abs(A) > Eps;
end
function Delta = GetDelta(F, Point0)
```

```
Delta = linsolve(GetW(F, Point0),GetFunctions(F, Point0(1), Point0(2)));
function [xr, phir, ex] = Newton(F, Point0)
e = 0.00000001;
Point(1) = Point0(1);
Point(2) = Point0(2);
k = 1;
Delta = GetDelta(F, Point);
while and(and(not(and(IsLessEps(GetM(F, Point(1), Point(2)), e), Is-
LessEps(GetR(F, Point(1), Point(2)), e))), Point(1) \Rightarrow 0), Point(2) \Rightarrow 0), Point(2)
<= pi/2)
Point = Point - Delta;
Delta = GetDelta(F, Point);
k = k + 1;
if (k > 1000)
break;
end
end
xr = Point(1);
phir = Point(2);
ex = and(IsLessEps(GetM(F, Point(1), Point(2)), e), IsLessEps(GetR(F, Point(1),
Point(2)), e));
end
```

Работа программы:

			Q	
0 40	0 800 1200 1600 20	00 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600 8000 8400 8800 9200 960		
ji		X_i	Phi_i	
	0	0	0	
	1000	0.0500	0.0626	
	2000	0.1006	0.1261	
	3000	0.1525	0.1918	
	4000	0.2065	0.2610	
	5000	0.2638	0.3358	
	6000	0.3265	0.4199	
	7000	0.3994	0.5215	
	8000	0.4998	0.6714	
	8250	0.5418	0.7388	
	8375	0.5840	0.8104	
	8.3828e+03	0.5926	0.8255	
	8.3838e+03	0.5948	0.8294	
	8.3843e+03	0.5966	0.8327	
	8.3844e+03	0.5975	0.8342	
	8.3844e+03	0.5979	0.8349	
	8.3844e+03	0.5981	0.8353	
	8.3845e+03	0.5983	0.8357	
	8.3845e+03	0.5985	0.8360	
	8.3845e+03	0.5985	0.8361	
	8.3845e+03	0.5986	0.8362	
	0.204502	0.5000	0.0202	

Вывод: в ходе выполнения лабораторной работы были изучены особенности организации вычислительных процессов, связанные с погрешностями, приближенным характером вычислений на компьютерах современного типа, вычислительной устойчивостью.