APPLICATIONS LINÉAIRES

1 Préliminaires

Définition.

Soient E, F deux ensembles et $f: E \longrightarrow F$ une application quelconque. On dit que :

1. f est injective si:

$$\forall (u, u') \in E^2, \ f(u) = f(u') \implies u = u'$$

2. f est surjective si

$$\forall v \in F, \exists w \in E \ v = f(w)$$

Définition.

Soient E, F deux \mathbb{R} -espaces vectoriels et $f \in \mathcal{L}(E, F)$.

1. On appelle noyau de f l'ensemble :

$$Ker(f) = \{u \in E, \ f(u) = 0_F\}$$

2. On appelle image de f l'ensemble :

$$Im(f) = \{ v \in F, \exists w \in E \ v = f(w) \}$$

Remarques:

1. Soit $u \in E$. Dire que $u \in \text{Ker}(f)$ signifie que $f(u) = 0_F$:

$$u \in \operatorname{Ker}(f) \iff f(u) = 0_F$$

2. Soit $v \in F$. Dire que $v \in \text{Im}(f)$ signifie que v = f(w) avec $w \in E$.

$$v \in \text{Im}(f) \iff v = f(w) \text{ avec } w \in E \iff \exists w \in E, \ v = f(w)$$

3. $\operatorname{Ker}(f) = f^{-1}(\{0_F\}) \text{ et } \operatorname{Im}(f) = \{f(u), u \in E\} = f(E).$

2 Structure d'espaces vectoriels du noyau et de l'image d'une application linéaire

Proposition (Noyau et image).

Soient E, F deux \mathbb{R} -espaces vectoriels et $f \in \mathcal{L}(E, F)$.

- 1. Ker(f) est un sous-espace vectoriel de E.
- 2. Im(f) est un sous-espace vectoriel de F.

Preuve:

- 1. On a $Ker(f) \subset E$ et comme f est linéaire de E vers F, $f(0_E) = 0_F$. D'où, $0_E \in Ker(f)$.
 - Soient $(u, v) \in (\text{Ker}(f))^2$ et $\alpha \in \mathbb{R}$.

$$f(\alpha u + v) = \alpha f(u) + f(v)$$
 par linéarité de f
= $\alpha 0_F + 0_F$
= 0_F

Donc, $\alpha u + v \in \text{Ker}(f)$. Ker(f) est bien un sev de E.

- 2. On a $\text{Im}(f) \subset F$ et comme f est linéaire de E vers F, $0_F = f(0_E)$. D'où, $0_F \in \text{Im}(f)$.
 - Soient $(v, v') \in (\operatorname{Im}(f))^2$ et $\alpha \in \mathbb{R}$.

$$\alpha v + v' = \alpha f(w) + f(w') \text{ avec } (w, w') \in E^2$$

= $f(\alpha w + w')$ par linéarité de f

Comme $\alpha w + w' \in E$, $\alpha v + v' \in \text{Im}(f)$. Im(f) est bien un sev de F.

3 Lien avec l'injectivité et la surjectivité

Proposition (Caractérisation de l'injectivité et la surjectivité).

Soient E, F deux \mathbb{R} -espaces vectoriels et $f \in \mathcal{L}(E, F)$.

- 1. f injective \iff $Ker(f) = \{0_E\}.$
- 2. f surjective \iff Im(f) = F.

Preuve:

1. \Longrightarrow Supposons f injective. On sait que

$$\forall (u, u') \in E^2, f(u) = f(u') \implies u = u'$$

• Soit $u \in \text{Ker}(f)$.

 $f(u) = 0_F$ et $0_F = f(0_E)$ (car f linéaire) $\Longrightarrow f(u) = f(0_E) \implies u = 0_E$ par injectivité de f. On a montré que $\text{Ker}(f) \subset \{0_E\}$.

• Comme, $\{0_E\} \subset \operatorname{Ker}(f)$, on a $\operatorname{Ker}(f) = \{0_E\}$.

 \leftarrow Supposons que $Ker(f) = \{0_E\}.$

Soit $(u, u') \in E^2$ tel que f(u) = f(u'). On a

$$f(u) = f(u') \implies f(u) - f(u') = 0_F$$

$$\implies f(u - u') = 0_F \text{ par linéarité de } f$$

$$\implies u - u' \in \text{Ker}(f)$$

$$\implies u - u' \in \{0_E\} \text{ par notre hypothèse}$$

$$\implies u - u' = 0_E$$

$$\implies u = u'$$

f est donc injective.

2. On a

$$f \text{ surjective } \iff \forall \, v \in F, \, \exists \, u \in E \, \, v = f(u) \\ \iff \forall \, v \in F, \, \, v \in \operatorname{Im}(f) \\ \iff F \subset \operatorname{Im}(f) \text{ car l'inclusion } \operatorname{Im}(f) \subset F \text{ est toujours vraie}$$