LE MASTER THEOREM

Algorithme diviser-pour-régner

- 1) Diviser le problème en plusieure sous-problèmes
- 2) Régner: Résulve chaque sous-probleme de manière récursive
- 3) Compiner les solusions des sous-problèmes pour produire une solution du problème initial

loupléxite d'un tel algorithme : $T(u) = a \cdot T(\frac{1}{b}) + f(u)$

- ·) T(n): N > N : coût d'execution sur un problème de taille n
- e) a : nombre de sous-problèmes
- ·) n/b : taille de cha que sous-problème
- ·) f(u): coût de 1)+3) (diviser+combaier)

remarque: n/b veut dire [\frac{h}{5}] ou [\frac{h}{9}]. Dans les deux cas
le résultat est le nième (asympotiquement).

Exemple:
$$T(u) = gT(\frac{h}{3}) + u$$

 $a = g, b = 3, f(u) = u$

=>
$$n \log_b a = n \log_3 g = \Theta(n^2)$$

On a $f(n) = O(n \log_3 g - \varepsilon)$ pour $\varepsilon = 1 > 0$, on est donc
dans le cas 1)
Alors $T(n) = \Theta(n^2)$

Exemple:
$$T(u) = 3T(\frac{u}{4}) + n \lg n$$

 $a = 3, b = 4, f(u) = n \lg n$

$$\Rightarrow u^{\log_3 a} = u^{\log_4 3} = O(u^{0,793})$$

$$\Rightarrow f(u) = \Omega(u^{\log_4 3} + \varepsilon) \text{ avec } \varepsilon \approx 0,2$$
on est donc dans le cas 3)

Il fant vérifier la condition de regularité:
$$af(n/b) = 3 \frac{n}{4} lg(\frac{n}{4}) \leq \frac{3}{4} n lg n = c f(n)$$

Exemple:
$$T(n) = 2T(\frac{\pi}{2}) + n \lg n$$

 $\alpha = 2, b = 2, f(n) = n \lg n$

$$n \log 6 = n \log 2^2 = n = n \log n = f(n)$$

of
$$(n) = n \log n \neq \Omega(n^{1+\varepsilon})$$
 pour tout $\varepsilon > 0$