Billionaires Analysis using Python

Sreeparna Ray

The number of billionaires in a country says a lot about the business environment, startup success rate, and many other economic features of a Country. So I want to find more about how we can find relationships among billionaires around the world. Here I will walk you through the task of billionaires analysis with Python.

```
In [1]: # The dataset that I am using to analyze the data about billionaires around the
# and is downloaded from Kaggle. The dataset contains information about global

# Names
# Net Worth
# Country
# Source
# Rank
# Age
# Industry
```

Start with the task of billionaires analysis usin python

```
In [2]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

%matplotlib inline
```

Data Collection

```
In [3]: data = pd.read_csv(r".\Billionaries Analysis.csv")
   data.head()
```

Out[3]:

	Name	NetWorth	Country	Source	Rank	Age	Industry
0	Jeff Bezos	\$177 B	United States	Amazon	1	57.0	Technology
1	Elon Musk	\$151 B	United States	Tesla, SpaceX	2	49.0	Automotive
2	Bernard Arnault & family	\$150 B	France	LVMH	3	72.0	Fashion & Retail
3	Bill Gates	\$124 B	United States	Microsoft	4	65.0	Technology
4	Mark Zuckerberg	\$97 B	United States	Facebook	5	36.0	Technology

```
In [4]: print(data.head())
```

```
Name NetWorth
                                              Country
                                                                Source
                                                                        Rank
                                                                              \
0
                  Jeff Bezos
                                $177 B
                                        United States
                                                               Amazon
                                                                           1
1
                   Elon Musk
                                $151 B
                                        United States
                                                                           2
                                                        Tesla, SpaceX
2
   Bernard Arnault & family
                                $150 B
                                               France
                                                                  LVMH
                                                                           3
3
                  Bill Gates
                                $124 B
                                        United States
                                                            Microsoft
                                                                           4
4
            Mark Zuckerberg
                                $97 B
                                        United States
                                                             Facebook
                                                                           5
    Age
                  Industry
0
   57.0
               Technology
   49.0
1
               Automotive
   72.0
         Fashion & Retail
   65.0
               Technology
3
   36.0
                Technology
```

In [5]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2755 entries, 0 to 2754
Data columns (total 7 columns):
```

#	Column	Non-N	Null Count	Dtype		
0	Name	2755	non-null	object		
1	NetWorth	2755	non-null	object		
2	Country	2755	non-null	object		
3	Source	2755	non-null	object		
4	Rank	2755	non-null	int64		
5	Age	2676	non-null	float64		
6	Industry	2755	non-null	object		
<pre>dtypes: float64(1),</pre>		int64(1),	object(5)			
memory usage: 150.8+ KB						

In [6]: print(data.info())

None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2755 entries, 0 to 2754
Data columns (total 7 columns):

```
Non-Null Count
 #
     Column
                               Dtype
     -----
               -----
                               ____
               2755 non-null
                               object
 0
     Name
     NetWorth 2755 non-null
                               object
 1
                               object
 2
     Country
               2755 non-null
 3
     Source
               2755 non-null
                               object
               2755 non-null
                               int64
 4
     Rank
 5
     Age
               2676 non-null
                               float64
 6
     Industry 2755 non-null
                               object
dtypes: float64(1), int64(1), object(5)
memory usage: 150.8+ KB
```

		J -
count	2755.000000	2676.000000
mean	1345.663521	63.113602
std	772.669811	13.445153
min	1.000000	18.000000
25%	680.000000	54.000000
50%	1362.000000	63.000000
75%	2035.000000	73.000000
max	2674.000000	99.000000

Check whether or not this dataset contains missing values or null values

So this dataset has 79 missing values in the Age column, Remove these rows

```
In [10]: data = data.dropna()
```

The NetWorth column in this dataset has a \$ sign at the beginning of Billionaires' Net worth and B at the end. So we need to remove these signs and convert the NetWorth column to float:

```
In [11]: data["NetWorth"] = data["NetWorth"].str.strip("$")
    data["NetWorth"] = data["NetWorth"].str.strip("B")
    data["NetWorth"] = data["NetWorth"].astype(float)
```

Check the top 10 billionaires according to their NetWorth:

```
In [12]: df = data.sort_values(by= ["NetWorth"], ascending = False).head(10)
    plt.figure(figsize=(20,10))
    sns.histplot(x="Name", hue="NetWorth", data=df)
    plt.show()
```


Now let's have a look at the top 5 domains with the most number of billionaires

```
In [13]: a = data["Source"].value_counts().head()
    index = a.index
    sources = a.values
    custom_colors = ["skyblue", "yellowgreen", "tomato", "blue", "red"]
    plt.figure(figsize=(10,10))
    plt.pie(sources, labels=index, colors=custom_colors)
    central_circle = plt.Circle((0,0), 0.5, color="white")
    fig = plt.gcf()
    fig.gca().add_artist(central_circle)
    plt.rc('font', size=14)
    plt.title("Top 5 Domains to Become a Billionaire", fontsize=28)
    plt.show()
```

Top 5 Domains to Become a Billionaire

Now let's have a look at the top 5 industries with the most number of billionaires

```
In [14]: a = data["Industry"].value_counts().head()
    index = a.index
    industtries = a.values
    custom_colors = ["skyblue", "yellowgreen", "tomato", "blue", "red"]
    plt.figure(figsize=(10,10))
    plt.pie(industtries, labels=index, colors=custom_colors)
    central_circle = plt.Circle((0,0), 0.5, color="white")
    fig = plt.gcf()
    fig.gca().add_artist(central_circle)
    plt.rc('font', size=14)
    plt.title("Top 5 Industries with Most Number of Billionaires", fontsize=28)
    plt.show()
```

Top 5 Industries with Most Number of Billionaires

Now let's have a look at the top 5 Name with the most number of billionaires

```
In [15]:
    a = data["Name"].value_counts().head()
    index = a.index
    names = a.values
    custom_colors = ["skyblue", "yellowgreen", 'tomato', "blue", "red"]
    plt.figure(figsize=(10,10))
    plt.pie(names, labels=index, colors=custom_colors)
    central_circle = plt.Circle((0,0), 0.5, color="white")
    fig = plt.gcf()
    plt.gca().add_artist(central_circle)
    plt.rc("font", size=14)
    plt.title("Top 5 Name with Most Number of Billionaires", fontsize=28)
    plt.show()
```

Top 5 Name with Most Number of Billionaires

Now let's have a look at the top 5 countries with the most number of billionaires

```
In [16]: a = data["Country"]. value_counts().head()
    index = a.index
    countries = a.values
    custom_colors = ["skyblue", "yellowgreen", 'tomato', "blue", "red"]
    plt.figure(figsize=(10,10))
    plt.pie(countries, labels=index, colors=custom_colors)
    central_circle = plt.Circle((0,0), 0.5, color="white")
    fig = plt.gcf()
    plt.gca().add_artist(central_circle)
    plt.rc('font', size=14)
    plt.title("Top 5 Countries with Most Number of Billionaires", fontsize=28)
    plt.show()
```

Top 5 Countries with Most Number of Billionaires

