Package 'TDAvec'

July 30, 2022

out 5 00, 2022
Type Package
Title Vector Persistense Block
Version 0.1.0
Author Kit C. Chan, Umar Islambekov, Alexey Luchinsky, Rebecca Sanders
Maintainer Alexey Luchinsky <aluchi@bgsu.edu></aluchi@bgsu.edu>
Description Caclaulates the Vector Persistense Block. See paper <arxiv:2109.08239> for more details.</arxiv:2109.08239>
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports Rcpp (>= 1.0.9), TDAstats, TDA
LinkingTo Rcpp
Suggests knitr
VignetteBuilder knitr
NeedsCompilation yes
RoxygenNote 7.2.0
R topics documented:
computePL
computePS
computeVAB
computeVPB
rcpp_hello
Index

2 computePI

COM	nu	+ 4	ÞΤ

Calculates the Persistence Image

Description

Calculates the Persistence Image

Usage

```
computePI(D, homDim, res, sigma, minB, maxB, minP, maxP)
```

Arguments

D	N by 3 matrix (columns contain dimension, birth and persistence values respectively)
homDim	homological dimension (0 for H0, 1 for H1, etc.)
res	resolution parameter
sigma	sigma parameter
minB	minimal birth value
maxB	maximal birth value
minP	minimal persistance value
maxP	maxzimal persistance value

Examples

```
N <- 100
set.seed(123)
X <- TDA::circleUnif(N) + rnorm(2*N,mean = 0,sd = 0.2)
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
D[,3] <- D[,3] - D[,2]
colnames(D)[3] <- "Persistence"
res <- 5 # resolution or grid size

minPH0 <- min(D[D[,1]==0,3]); maxPH0 <- max(D[D[,1]==0,3])
sigma <- 0.5*(maxPH0-minPH0)/res
computePI(D,homDim=0,res,sigma,minB=NA,maxB=NA,minPH0,maxPH0)

minBH1 <- min(D[D[,1]==1,2]); maxBH1 <- max(D[D[,1]==1,2])
minPH1 <- min(D[D[,1]==1,3]); maxPH1 <- max(D[D[,1]==1,3])
sigma <- 0.5*(maxPH1-minPH1)/res # default way of selecting sigma - can be overridden
computePI(D,homDim=1,res,sigma,minBH1,maxBH1,minPH1,maxPH1)</pre>
```

computePL 3

Description

Calculates the Persistence Landscape

Usage

```
computePL(D, homDim, k, scaleSeq)
```

Arguments

D N by 3 matrix (columns contain dimension, birth and persistence values respec-

tively)

homDim homological dimension (0 for H0, 1 for H1, etc.)

k order of landscape function

scaleSeq sequence of scale values for vectorization

Examples

```
N <- 100
set.seed(123)
X <- TDA::circleUnif(N) + rnorm(2*N,mean = 0,sd = 0.2)
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11) # sequence of scale values
computePL(D,homDim=0,k=1,scaleSeq)</pre>
```

Description

Calculates the Persistence Silhouettes

Usage

```
computePS(D, homDim, p, scaleSeq)
```

Arguments

D	N	by 3 matrix	(columns contain	dimension,	birth and	persistence valu	ies respec-
---	---	-------------	------------------	------------	-----------	------------------	-------------

tively)

homDim homological dimension (0 for H0, 1 for H1, etc.)
p power of the weights for the silhouette function

scaleSeq sequence of scale values for vectorization

4 compute VPB

Examples

```
N <- 100
set.seed(123)
X <- TDA::circleUnif(N) + rnorm(2*N,mean = 0,sd = 0.2)
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11) # sequence of scale values
computePS(D,homDim=0,p=1,scaleSeq)</pre>
```

computeVAB

Vector Persistense Blocks

Description

Calculates the Vector Persistence Block

Usage

```
computeVAB(D,homDim,scaleSeq)
```

Arguments

D N by 3 matrix (columns contain dimension, birth and persistence values respec-

tively)

homDim homological dimension (0 for H0, 1 for H1, etc.)

scaleSeq sequence of scale values for vectorization

Examples

```
N <- 100
set.seed(123)
X <- TDA::circleUnif(N) + rnorm(2*N,mean = 0,sd = 0.2)
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11)
computeVAB(D,homDim = 0,scaleSeq)
computeVAB(D,homDim = 1,scaleSeq)</pre>
```

computeVPB

Vector Persistense Blocks

Description

Calculates the Vector Persistence Block

Usage

```
computeVPB(D, homDim, xSeq, ySeq, tau)
```

rcpp_hello 5

Arguments

N by 3 matrix (columns contain dimension, birth and persistence values respectively)

homDim homological dimension (0 for H0, 1 for H1, etc.)

xSeq sequence of x (birth) values of the grid vertices

ySeq sequence of y (persistence) values of the grid vertices

tau parameter (between 0 and 1) controlling block width. weight function w(x,y) =

Examples

```
X <- TDAstats::circle2d + rnorm(200,mean = 0,sd = 0.1)
D <- TDAstats::calculate_homology(X,dim = 1,threshold = 2)
D[,3] <- D[,3] - D[,2]
xSeq <- unique(quantile(D[D[,1]==1,2],probs = seq(0,1,by=0.1)))
ySeq <- unique(quantile(D[D[,1]==1,3],probs = seq(0,1,by=0.1)))
computeVPB(D,homDim = 0, xSeq=xSeq, ySeq,tau = 0.5)</pre>
```

rcpp_hello

Hello, Rcpp!

Description

Returns an R list containing the character vector c("foo","bar") and the numeric vector $c(\emptyset,1)$.

Usage

```
rcpp_hello()
```

Examples

rcpp_hello()

Index

computePI, 2 computePL, 3 computePS, 3 computeVAB, 4 computeVPB, 4 rcpp_hello, 5