Therefore only a finite number of spectral projections \mathbf{P}_n are distinct from 0 and we have the following characterization.

Corollary 5.5. Let $T = (T(t))_{t \geq 0}$ be a semigroup with bounded generator on some Banach space E. This semigroup has period τ/k for some $k \in \mathbb{N}$ if and only if there exist finitely many pairwise orthogonal projections P_n , $-m \leq n \leq m$, $P_{-m} \neq 0$ or $P_m \neq 0$, such that

(i)
$$\sum_{-m}^{+m} P_n = Id ,$$

(ii)
$$T(t) = \sum_{-m}^{+m} \exp(2\pi i n t / \tau) P_n,$$

(iii)
$$A = \sum_{-m}^{+m} (2\pi i n/\tau) P_n$$
.

Example 5.6. From A-I,2.5 we recall briefly the rotation group $R_{\tau}(t) f(z) := f(\exp(2\pi i n t/\tau) \cdot z)$ on $E = C(\Gamma)$, resp. $E = L^p(\Gamma,m)$ for $1 \le p < \infty$. The spectrum of the generator

$$Af(z) = (2\pi i/\tau) z \cdot f'(z)$$

is $\sigma(A) = (2\pi i/\tau) \cdot \mathbb{Z}$.

The eigenfunctions $\epsilon_n(z) := z^n$ yield the projections

$$\begin{array}{lll} P_n = & (1/2\pi i) \cdot \epsilon_{-(n+1)} \stackrel{\otimes}{} \epsilon_n \text{ , i.e.} \\ P_n f(z) = & (1/2\pi i) \cdot (\int_{\Gamma} f(w) \, w^{-(n+1)} \, dw) \cdot z^n \end{array}.$$

It is left as an exercise to compute the norms of $Q_m := \sum_{-m}^{+m} P_n$ in $L^p(\Gamma)$ for various p and then check the assertions of Theorem 5.4. Clearly, this proves some classical convergence theorems for Fourier series (compare Davies (1980), Chap.8.1).

6. SPECTRAL MAPPING THEOREMS

We now return to the question posed in the introduction to this chapter: In which form and under which conditions is it true that the spectrum $\sigma(T(t))$ of the semigroup operators is obtained - via the exponential map - from the spectrum $\sigma(A)$ of the generator, or briefly

$$\sigma(T(t)) = \exp(t\sigma(A))$$
?

This and similar statements will be called <u>spectral</u> <u>mapping</u> theorems for the semigroup $T = (T(t))_{t>0}$ and its generator A.