

Ortogonalistas pada Ruang Vektor Euclidean

Pertemuan ke 13 – 14

Diadopsi dari sumber:

Sub-CPMK

 Mahasiswa mampu melakukan operasi hitung dengan konsep ortogonalitas untuk menentukan sudut, proyeksi vektor, dan panjang proyeksinya (C3, A3)

Materi

- 1. Vektor-vektor ortogonal
- 2. Proyeksi vektor
- 3. Proyeksi skalar
- 4. Penerapan Ortogonalitas

1. Vektor-Vektor Ortogonal

1. Vektor-Vektor Ortogonal

Dari perkalian titik, diperoleh rumus menentukan sudut \(\theta \) antara dua vektor \(\mathbf{u} \) dan \(\mathbf{v} \) sebagai berikut

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

- Berdasarkan definisi diatas, $\theta = \pi/2$ jika dan hanya jika $\mathbf{u} \cdot \mathbf{v} = 0$.
- Dua vektor tak nol \mathbf{u} dan \mathbf{v} di \mathbb{R}^n dikatakan **ortogonal** (atau **tegak lurus**) jika $\mathbf{u} \cdot \mathbf{v} = 0$.
- Vektor nol $\mathbf{0}$ di \mathbb{R}^n ortogonal terhadap setiap vektor di \mathbb{R}^n .

CONTOH SOAL

Contoh 1.1. Tunjukkan bahwa $\mathbf{u} = (-2, 3, 1, 4)$ dan $\mathbf{v} = (1, 2, 0, -1)$ ortogonal di \mathbb{R}^4 .

Solusi. Karena $\mathbf{u} \cdot \mathbf{v} = (-2)(1) + 3(2) + 1(0) + 4(-1) = 0$, maka kedua vektor saling ortogonal.

Contoh 1.2. Andaikan $S = \{i, j, k\}$ merupakan himpunan vektor satuan standar di \mathbb{R}^3 . Tunjukkan bahwa setiap pasangan vektor di S saling ortogonal.

Solusi. Setiap pasangan vektor ortogonal jika $\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0$.

$$\mathbf{i} \cdot \mathbf{j} = (1, 0, 0) \cdot (0, 1, 0) = 0$$

$$\mathbf{i} \cdot \mathbf{k} = (1, 0, 0) \cdot (0, 0, 1) = 0$$

$$\mathbf{j} \cdot \mathbf{k} = (0, 1, 0) \cdot (0, 0, 1) = 0$$

1.1. Garis dan Bidang dengan Titik dan Vektor Normal (1)

- Dalam geometri analitik persamaan suatu garis di \mathbb{R}^2 dapat ditentukan oleh kemiringan dan salah satu titiknya.
- Persamaan suatu bidang di \mathbb{R}^3 juga dapat ditentukan dengan menggunakan kemiringan dan salah satu titiknya.
- Salah satu cara menentukan kemiringan adalah dengan menggunakan vektor tak nol n, disebut vektor normal, yang ortogonal terhadap garis atau bidang tersebut.

1.1. Garis dan Bidang dengan Titik dan Vektor Normal (2)

- Sebagai contoh, gambar disamping menunjukkan suatu garis yang melalui titik $P_0(x_0, y_0)$ yang memiliki vektor normal $\mathbf{n} = (a, b)$ dan bidang yang melalui titik $P_0(x_0, y_0, z_0)$ yang memiliki vektor normal $\mathbf{n} = (a, b, c)$.
- Garis dan bidang tersebut diwakili oleh persamaan vektor

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$

dimana P adalah sembarang titik (x, y) pada garis atau sembarang titik (x, y, z) pada bidang.

1.1. Garis dan Bidang dengan Titik dan Vektor Normal (2)

• Elemen vektor $\overline{P_0P}$ dapat dituliskan sebagai berikut

$$\overrightarrow{P_0P} = (x - x_0, y - y_0)$$
 [garis]
 $\overrightarrow{P_0P} = (x - x_0, y - y_0, z - z_0)$ [bidang]

 Sehingga persamaan garis dan bidang dengan titik dan vektor normal dapat dituliskan sebagai

$$a(x - x_0) + b(y - y_0) = 0$$
 [garis]
 $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ [bidang]

Contoh 1.3. Persamaan 6(x-3)+(y+7)=0 di \mathbb{R}^2 merupakan garis yang melalui titik (3,-7) dengan vektor normal $\mathbf{n}=(6,1)$. Persamaan 4(x-3)+2y-5(z-7) di \mathbb{R}^3 merubakan bidang yang melalui titik (3,0,7) dengan vektor normal $\mathbf{n}=(4,2,-5)$.

1.1. Garis dan Bidang dengan Titik dan Vektor Normal (3)

• Jika a dan b adalah konstanta yang tak nol, maka persamaan ax + bx + c = 0

merupakan sebuah garis di \mathbb{R}^2 dengan vektor normal $\mathbf{n} = (a, b)$.

• Jika a, b dan c adalah konstanta yang tak nol, maka persamaan ax + bx + cz + d = 0

merupakan sebuah bidang di \mathbb{R}^2 dengan vektor normal $\mathbf{n} = (a, b, c)$.

2. Proyeksi Vektor

2.1. Proyeksi Ortogonal (1)

- Dalam berbagai penerapan, vektor u perlu "didekomposisi " menjadi jumlahan dua suku, satu suku merupakan kelipatan skalar dari vektor bukan nol a dan suku lainnya ortogonal ke a.
- Misalkan vektor u dan a adalah vektor di R² yang sedemikian sehingga titik awalnya berada di Q, maka dapat dibentuk dekomposisi sebagai berikut:

Buat proyeksi dari ujung vektor **u** tegak lurus terhadap vektor **a**

Bentuk vektor \mathbf{w}_1 dari Q ke ujung proyeksi vektor \mathbf{u}

2.1. Proyeksi Ortogonal (2)

Karena w₁ + w₂ = w₁ + (u - w₁) = u, maka vektor u dapat didekomposisi menjadi jumlahan dua vektor ortogonal dengan suku pertama perkalian skalar dari a dan suku kedua ortogonal terhadap a.

Teorema Proyeksi. Jika \mathbf{u} dan \mathbf{a} merupakan vektor di \mathbb{R}^n , dan jika $\mathbf{a} \neq 0$, maka \mathbf{u} dapat dituliskan dalam bentuk $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, dimana \mathbf{w}_1 adalah perkalian skalar dari \mathbf{a} dan \mathbf{w}_2 ortogonal terhadap \mathbf{a} .

2.1. Proyeksi Ortogonal (3)

- Vektor w₁ dan w₂ dalam teorema proyeksi memiliki sebutan khusus, vektor w₁ disebut proyeksi ortogonal dari u pada a atau komponen vektor u sepanjang a, dan vektor w₂ disebut komponen vektor u ortogonal ke a.
- Vektor \mathbf{w}_1 biasanya dilambangkan dengan simbol proj_a \mathbf{u} , yang berarti $\mathbf{w}_2 = \mathbf{u} \text{proj}_a\mathbf{u}$.
- Singkatnya

$$proj_{a}u = \frac{u \cdot a}{\|a\|^{2}}a$$
$$u - proj_{a}u = u - \frac{u \cdot a}{\|a\|^{2}}a$$

CONTOH SOAL

Contoh 2.1. Misalkan $\mathbf{u} = (2, -1, 3)$ dan $\mathbf{a} = (4, -1, 2)$. Cari komponen vektor \mathbf{u} sepanjang \mathbf{a} dan komponen vektor \mathbf{u} ortogonal ke \mathbf{a} .

Solusi.
$$\mathbf{u} \cdot \mathbf{a} = 2(4) + (-1)(-1) + 3(2) = 15$$

 $\|\mathbf{a}\| = 4^2 + (-1)^2 + 2^2 = 21$

Maka komponen vektor **u** sepanjang **a** adalah

$$\operatorname{proj}_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{15}{21} (4, -1, 2) = \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right)$$

dan komponen vektor **u** ortogonal ke **a** adalah

$$\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u} = (4, -1, 2) - \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right) = \left(-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right)$$

Dapat dicek bahwa vektor $\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}$ dan \mathbf{a} saling ortogonal.

3. Proyeksi Skalar

3. Proyeksi Skalar (1)

- Terkadang norm suatu komponen vektor u sepanjang a lebih menarik dari pada komponen vektor itu sendiri.
- Norm atau panjang proyeksi sering disebut sebagai proyeksi skalar.
- Rumus norm vektor ini dapat diperoleh dari

$$\|\text{proj}_{\mathbf{a}}\mathbf{u}\| = \left\|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a}\right\| = \left|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\right| \|\mathbf{a}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|^2} \|\mathbf{a}\|$$

Maka

$$\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|}$$

3. Proyeksi Skalar (2)

 Jika θ sudut antara u dan a, maka u · a = ||u|||a|| cos θ, sehingga

$$\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \|\mathbf{u}\| |\cos \theta|$$

CONTOH SOAL

Contoh 3.1. Diketahui vektor $\mathbf{u} = (0,2,-1,3,7)$ dan $\mathbf{v} = (3,4,1,-2,0)$. Tentukan proyeksi vektor \mathbf{u} pada \mathbf{v} dan panjang proyeksinya.

Solusi. Proyeksi vektor **u** pada **v**

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{1}{30} (3,4,1,-2,0) = \left(\frac{1}{10}, \frac{2}{15}, \frac{1}{30}, \frac{-1}{15}, 0\right)$$

Panjang proyeksi

$$\|\operatorname{proj}_{\mathbf{v}}\mathbf{u}\| = \frac{1}{30}$$

4. Penerapan Ortogonalitas

4. Penerapan Ortogonalitas

Ortogonalitas dapat digunakan untuk menyelesaikan tiga masalah jarak berikut:

- 1. Mencari jarak antara titik dan garis di \mathbb{R}^2 .
- 2. Mencari jarak antara titik dan bidang di \mathbb{R}^3 .
- 3. Mencari jarak antara dua bidang sejajar di \mathbb{R}^3 .

4.1. Jarak Titik dan Garis di \mathbb{R}^2

Dalam \mathbb{R}^2 jarak D antara titik $P_0(x_0, y_0)$ dan garis ax + by + c = 0adalah

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Contoh 4.1. Tentukan jarak titik (3, -1) dan garis 3x + 4y = 1.

Solusi. Persamaan garis dapat dituliskan sebagai 3x + 4y - 1 = 0, sehingga

$$D = \frac{|3(3) + 4(-1) - 1|}{\sqrt{3^2 + 4^2}} = \frac{|9 - 4 - 1|}{\sqrt{25}} = \frac{4}{5}$$

VERSITAS BUNDA MUL

4.2. Jarak Titik dan Bidang di \mathbb{R}^3

Dalam \mathbb{R}^3 jarak D antara titik $P_0(x_0,y_0,z_0)$ dan bidang ax+by+cz+d=0 adalah

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Contoh 4.2. Tentukan jarak titik (1, -4, -3) dan bidang 2x - 3y + 6z = -1.

Solusi. Persamaan bidang dapat dituliskan sebagai 2x - 3y + 6z + 11 = 0, sehingga

$$D = \frac{|2(1) - 3(-4) + 6(-3) + 1|}{\sqrt{2^2 + (-3)^2 + 6^2}} = \frac{|2 + 12 - 18 + 1|}{\sqrt{49}} = \frac{|-3|}{7} = \frac{3}{7}$$

4.3. Jarak Dua Bidang Sejajar

• Jarak dua bidang sejajar $a_1x + b_1y + c_1z + d_1 = 0$ dan $a_2x + b_2y + c_2z + d_2 = 0$ dapat dicari dengan menentukan sembarang titik di bidang 1 dan mencari jarak titik tersebut dengan bidang yang lain.

Contoh 4.3. Tentukan dua bidang sejajar berikut:

$$x + 2y - 2z = 3 \operatorname{dan} 2x + 4y - 4z = 7$$

Solusi. Diambil sembarang titik di bidang pertama, misalkan y=z=0, maka diperoleh $P_0(3,0,0)$. Persamaan bidang kedua dapat dituliskan dengan 2x+4y-4z-7=0. Sehingga

$$D = \frac{|2(3) + 4(0) - 4(0) - 7|}{\sqrt{2^2 + 4^2 + (-4)^2}} = \frac{|6 - 7|}{\sqrt{36}} = \frac{|-1|}{6} = \frac{1}{6}$$

SOAL 1

Tentukan apakah vektor **u** dan **v** saling ortogonal.

a.
$$\mathbf{u} = (2,3), \mathbf{v} = (5,-7)$$

b.
$$\mathbf{u} = (6, 1, 4), \mathbf{v} = (2, 0, -3)$$

c.
$$\mathbf{u} = (4, 1, -2, 5), \mathbf{v} = (-1, 5, 3, 1)$$

SOAL 2

Tentukan persamaan bidang yang melalui titik P dan memiliki vektor normal \mathbf{n} berikut.

a.
$$P(1,1,4)$$
; $\mathbf{n} = (1,9,8)$ b. $P(-1,3,-2)$; $\mathbf{n} = (-2,1,-1)$

SOAL 3

Tentukan apakah bidang berikut sejajar.

a.
$$4x - y + 2z = 5 \operatorname{dan} 7z - 3y + 4z = 8$$

b.
$$x - 4y - 3z - 2 = 0 \text{ dan } 3x - 12y - 9z - 7 = 0$$

c.
$$2y = 8x - 4z + 5 \operatorname{dan} x = \frac{1}{2}z + \frac{1}{4}y$$

SOAL 4

Tentukan apakah bidang berikut saling tegak lurus.

a.
$$3x - y + z - 4 = 0 \operatorname{dan} x + 2z = -1$$

b.
$$x - 2y + 3z = 4 \operatorname{dan} -2x + 5y + 4z = -1$$

SOAL 5

Tentukan ||proj_au||, jika

a.
$$\mathbf{u} = (1, -2), \ \mathbf{a} = (-4, -3)$$

b.
$$\mathbf{u} = (3, -2, 6), \mathbf{a} = (1, 2, -7)$$

SOAL 6

Tentukan komponen vektor **u** sepanjang **a** dan komponen vektor **u** ortogonal ke **a**.

a.
$$\mathbf{u} = (-1, -2), \ \mathbf{a} = (-2, 3)$$

b.
$$\mathbf{u} = (2, 0, 1), \mathbf{a} = (1, 2, 3)$$

c.
$$\mathbf{u} = (5, 0, -3, 7), \mathbf{a} = (2, 1, -1, -1)$$

SOAL 7

Carilah jarak antara titik dan garis berikut

a.
$$(1,8)$$
; $3x + y = 5$

b.
$$(-1,4)$$
; $x-3y+2=0$

SOAL 8

Carilah jarak antara titik dan bidang berikut.

a.
$$(3,1,-2)$$
; $x + 2y - 2z = 4$

b.
$$(-1, -1, 2)$$
; $2x + 5y - 6z = 4$

SOAL 9

Carilah jarak kedua bidang sejajar berikut:

$$2x - y - z = 5 \operatorname{dan} -4x + 2y + 2z = 12$$

RINGKASAN

- Dua vektor tak nol dikatakan ortogonal atau tagak lurus jika hasil kali titik kedua vektor sama dengan nol.
- Persamaan suatu garis di \mathbb{R}^2 atau bidang di \mathbb{R}^3 dapat dicari dengan menggunakan **vektor normal** dan salah satui titik pada garis atau bidang tersebut.
- Suatu vektor u dapat didekomposisi menjadi dua suku, suku pertama merupakan kelipatan suatu vektor tak nol a dan suku lainnya ortogonal ke a.
- Suku yang pertama disebut komponen vektor u sepanjang a atau proyeksi ortogonal u pada a dan suku kedua disebut komponen vektor u ortogonal ke a

RINGKASAN

- Norm atau panjang proyeksi ortogonal disebut sebagai proyeksi skalar.
- Konsep ortogonal dapat digunakan untuk menyelesaikan tiga masalah jarak; yakni jarak antara titik dan garis di \mathbb{R}^2 , jarak antara titik dan bidang di \mathbb{R}^3 , serta jarak antara dua bidang yang sejajar di \mathbb{R}^3 .

Terima Kasih