

RNA-seq Bioinformatics: Read Quantification

functional genomics center zurich

Falko Noé

Expression quantification

• Read quantification (count models)

- Normalization
- Explorative analysis of the quantification

Expression quantification

• Expression quantification = finding the amount of sequenced reads assigned to a specific gene/transcript

- What to count
 - Gene level: Reads belong to a gene locus
 - Isoform level: Reads belong to an isoform

- How to count
 - Unique mapped reads
 Multi-reads are ignored potentially biased quantification
 - All mapped reads
 Assignment of multi-reads need abundance estimation of overlapped genes/isoforms

RNA-seq quantification: "Alignment independent/free"

K-mer indexing and counting

· Alignment dependent	 Alignment free 			
Pre-process transcripts (e.g. build BWT)	Pre-process transcripts (e.g. build k-mer index)			
Align reads to transcripts	Count k-mers in reads			
Shuffle / allocate reads	Shuffle / allocate k-mers			
Compute abundance	Compute abundance			

• Tools: kallisto, salmon and sailfish

RNA-seq quantification: K-mer indexing and counting

Allocate k-mers to transcripts – EM estimation

Patro R. Sailfish

Count multi-reads via iterative estimation

- 1. Estimate abundances based on uniquely mapping reads only
- 2. For each multi-read, divide it between the transcripts to which it maps, proportionally to their abundances estimated in the first step
- 3. Re-compute abundances based on updated counts for each transcript
- 4. Continue with Step 2
- 5. Expectation-Maximization estimation

Alignment free counting

- Pros
 - Accurate and fast in quantifying known transcripts
 - Counts can be aggregated to get gene-level quantification

- Cons
 - Less well annotated genomes less accurate results
 - RNA-seq is more than counting

Expression quantification

- Read quantification (count models)
- Normalization
- Explorative analysis of the quantification

functional genomics center zurich

Number of reads ≠ Expression level

	Sample 1	Sample 2	Sample 3	
Gene A	5	3	8	
Gene B	17	23	42	
Gene C	10	13	27	
Gene D	752	615	1203	>
Gene E	1507	1225	2455	

Gene D in the sample 3 have about twice as many reads aligned to it as in sample 2. What does it mean?

- 1) The gene is two times more expressed in sample 3 than in sample 2
- 2) Difference in sequencing depth between samples sequencing depth
- 3) Longer isoform was expressed in sample 3 transcript length

Normalization

Correction multiplicative factor - scales the counts for each sample j .

Correction multiplicative factor - scales the counts for each sample j

functional genomics

	Gene 3	92	161	76	70	140	88	70	
	C_{j}	1.1	1.6	0.6	0.7	1.4	0.7	8.0	
Normalized counts	Gene 3	101.2	257.6	45.6	49	196	61.6	56	_ x

Normalization

After normalization, the sequencing depth is almost equal

$$C_j = \frac{10^6}{D_j}$$

D_i: total number of reads in sample j

Total read count normalization: drawback

Example: 100 very highly expressed genes in one condition

The small fraction of highly expressed genes will skew the counts of lowly expressed genes.

Upper quantile normalization

 $C_j = rac{1}{D_i Q_i^{(p)}}$ median normalized upper quantile (p-th percentile) of sample j

D_i: total number of reads in sample j

RPKM (FPKM) normalization

Reads (or Fragments, in the case of paired-end) per Kilobase per Million mapped reads

Counts per gene

$$\mathrm{FPKM}_i = \frac{X_i}{\left(\frac{\widetilde{l}_i}{10^3}\right)\left(\frac{N}{10^6}\right)} = \frac{X_i}{\widetilde{l}_i N} \cdot 10^9$$
 Counts per Sample length of transcript

Transcripts per million (TPM) normalization

$$\text{TPM}_{i} = \frac{X_{i}}{\widetilde{l}_{i}} \cdot \left(\frac{1}{\sum_{j} \frac{X_{j}}{\widetilde{l}_{j}}}\right) \cdot 10^{6}$$

RPKM normalization

- Corrects for total library coverage
- Corrects for gene length
- Comparable between different genes within the same sample

FPKM normalization

- Only relevant for paired end libraries
- Effectively halves the raw counts

TPM normalization

- Normalizes to transcript copies instead of reads
- Corrects for cases where the average transcript length differs

Expression quantification

- Read quantification (count models)
- Normalization
- Explorative analysis of the quantification

How do samples' expression values correlate?

• Is the intra-group correlation much higher than the inter-group?

functional genomics center zurich

• How does this change if only the most varying genes are considered?

How do samples cluster?

functional genomics

What does a principal components analysis (PCA) reveal?

unctional oenomics

- How do the samples group?
- Are there specific separation zones (e.g., half-planes, quadrants)?
- If not, can we identify possible cause (mis-labeling/sample swapping, hidden confounders) for sample outliers

functional genomics center zurich

How do the genes with high variance behave?

- Do they separate the groups?
- How do the genes cluster
- Are there dominant cluster?
- Are there very small clusters which might represent very strong effects?

Expression quantification: Summary

- Alignment dependent quantification = counting reads per gene
 - Different models: union, intersect with different level of stringency
- Alignment free quantification kmer indexing and counting
 - Accuracy depends on annotation quality
- Shuffling of reads/kmers belong to multiple genes/transcripts
 - Expectation-Maximization Estimation
- Normalization
 - Needed to correct for varied sequencing depth and transcript length when necessary
 - RPKM is not effective, relative RPKM is TPM
- Explorative analysis of the counts
 - Identify outliers (samples, genes/transcripts)
 - Possible causes (mis-labeling, hidden confounders, GC, length)

Supplementary slides

RPKM vs. TPM

- TPM values can be compared across samples
- RPKM values are not effectively normalized thus not comparable across samples
- Relative RPKM are TPM

$$TPM_i = \left(\frac{FPKM_i}{\sum_j FPKM_j}\right) \cdot 10^6$$

- 1.43/(1.43+1.43+1.43)*10=3.33

Gene Name	Rep1 RPKM	Rep2 RPKM	Rep3 RPKM 1.42	
A (2kb)	1.43	1.33		
B (4kb)	1.43	1.39	1.42	
C (1kb)	1.43	1.78	1.42	
D (10kb)	0	0	0.009	
C Total:	4.29	4.5	4.25	

... the sums of each column are very different.

TPM

RPKM

Gene Name	Rep1 TPM	Rep2 TPM	Rep3 TPM	
A (2kb)	3.33	2.96	3.326	
B (4kb)	3.33	3:09	3.326	
C (1kb)	3.33	3.95	3.326	
D (10kb)	0	0	0.02	
C Total:	10	10	10	

Normalization: EdgeR

- Trimmed Mean of M-values (TMM)
- Reference samples: samples with average expressions closest to mean of all samples
- Test samples: all others
- For each test sample
 - Remove genes
 - with highest/lowest expression
 - with highest/lowest fold changes /log2 ratios
 - Normalization factor: Mean of log2 ratios between the test and reference, weighted by asymptotic variance estimated when the sample size approaches infinity

normalization_factor_sampleA <- median(c(1.28, 1.3, 1.39, 1.35, 0.59))

Normalization: DESeq2

normalization_factor_sampleB <- median(c(0.78, 0.77, 0.72, 0.74, 1.35))

Median of ratios

Geometric mean: sqrt(1489*906)=1161.5

gene	sampleA	sampleB	pseudo-reference sample	ratio of sampleA/ref	ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72
BAG1	76	42	56.5	76/56.5 = 1.35	42/56.5 = 0.74
MOV10	521	1196	883.7	521/883.7 = 0.590	1196/883.7 = 1.35
***	***				

Compare individual samples to the mean of the group

• Try to identify possible causes (GC content, gene length, etc.) for expression outliers