Attorney Docket Number

040316

af

20

Sheet

06/08/2004 SSANDARA 00000002 10017235

U.S. PATENT DOCUMENTS								
Examined	Cite	U.S. Patent Document Kind Code ² (if known)			Name of Patentee or Applicant	Date of Publication of	Pages, Columns, Lines.	
Initials	No.1			(mm	of Cited Document	Cited Document MM-OD-YYYY	Where Relevant Passages or Relevant Figures Appear	
		SEE	ATT	AC	HED SHEETS			
				_				
				_	·			
				_				
				-				
				-				
				_				
	-		-	_				
	_		_	-				
				-				
	-			4				
	_		\rightarrow	-				
				_				
_				4				
			_	4				
				4				
				4				
	_		_	4				
				_				

					IGN PATENT DOCUMENT	TS				
Examiner Initials	Cite No. ¹		Foreign Patent Do	tument	Name of Patentee or	Date of Publication of Pages, Columns, Lines.				
		Office ³	Number	Kind Code ³ (if knawn)	Applicant of Cited Document	Cited Document MM-DD-YYYY	Where Relevant Passages or Relevant Foures Appear	7		
								Т		
								十		
								+		
								+		
								+		
								+		
								+		
								╁		
								+		
								+-		

Examiner Signature /Paul Ward/ (08/19/2010) Oate Considered			
Signature Considered		/Paul Ward/ (08/19/2010)	Date
	Signature	// dai **dia (00/15/2010)	Considered

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 509. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Liftings calation designation number ** See statistics (FLS, Planta Occuments. ** Elser Office that issued the document, by the two-letter code (WPIO Statistics of S.1.) ** Fer impresse patient opcuments, the indication of the system of the ellipse or must preced be seried number of the patient document. ** Hight of document by the appropriate symbols as indicated or comment under WFIO** Oblicated ST.1. if a proposition. ** Application is to place a clerk create here in Repair Plantations in attached.

Burden Now Statement: This form is estimated to base 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chair Information Officer, Platent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THAI ADDRESS. SEND TO: Assistant Commissioner for Platent, Washington, DC 20231.

PTO/SB/17 (10-03)
Approved for use through 07/31/2006. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

collection of information unless it displays a valid OMB control number Complete if Known FEE TRANSMITTAL 10/017,235 Application Number for FY 2004 Filing Date December 18, 2001 MICHAEL A. MURPHY First Named Inventor Effective 10/01/2003. Patent fees are subject to annual revision **Examiner Name** WEBMAN X Applicant claims small entity status. See 37 CFR 1.27 Art Unit 1617

TOTAL AMOUNT OF PAYMENT (\$) 180.00 Attorney Docket No. 040316								
METHOD OF PAYMENT (check all that apply)	FEE CALCULATION (continued)							
Check Credit card Money Order None	3. ADDITIONAL FEES Large Entity Small Entity							
Deposit Account: Deposit	Fee	Fee	Fee	Fee	Fee Description			
Account Number	1051	(\$) 130	Code 2051	(\$) 65	Surcharge - late filing fee or oath	Fee Paid		
Deposit Account	1052	50	2052	25	Surcharge - late provisional filing fee or			
Name	1053	130	1053		cover sheet Non-English specification			
The Director is authorized to: (check ell that apply) Charge fee(s) indicated below Credit any overpayments	1812	2,520	1812 2	,520	For filling a request for ex perte reexamination			
Charge any additional fee(s) or any underpayment of fee(s)	1804	920*	1804	920°	Requesting publication of SIR prior to Examiner action			
Charge fee(s) indicated below, except for the filing fee	1805	1,840*	1805		Requesting publication of SIR after Examiner action			
to the above-identified deposit account.	1251	110	2251	55	Extension for reply within first month			
FEE CALCULATION 1. BASIC FILING FEE	1252	420	2252	210	Extension for reply within second month			
Large Entity Small Entity	1253	950	2253	475	Extension for reply within third month			
Fee Fee Fee Fee Fee Description Fee Paid Code (\$) Code (\$)	1254	1,480	2254	740	Extension for reply within fourth month			
1001 770 2001 385 Utility filing fee	1255	2,010	2255	1,005	Extension for reply within fifth month			
1002 340 2002 170 Design filing fee	1401	330	2401	165	Notice of Appeal			
1003 530 2003 265 Plant filing fee	1402	330	2402	165	Filing a brief in support of an appeal			
1004 770 2004 385 Reissue filing fee	1403	290	2403	145	Request for oral hearing			
1005 160 / 2005 80 Provisional filing fee	1451	1,510	1451	1,510	Petition to institute a public use proceeding			
SUBTOTAL (1) (\$)	1452	110	2452	55	Petition to revive - unavoidable			
2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE	1453	1,330	2453	665	Petition to revive - unintentional			
Fee from	1501		2501		Utility issue fee (or reissue)			
Total Claims	1502	480	2502		Design issue fee			
Independent	1503	640	2503		Plant issue fee			
Claims -3 " A T T T T T T T T T T T T T T T T T T	1460 1807	130	1460 1807		Petitions to the Commissioner			
Large Entity 1 Small Entity		180	1806		Processing fee under 37 CFR 1.17(q) Submission of Information Disclosure Stmt	180		
Fee Fee Fee Fee <u>Fee Description</u> Code (\$) Code (\$)	1806				Recording each patent assignment per	100		
1202 18 2202 9 Claims in excess of 20	8021	40	8021		property (times number of properties)			
1201 86 2201 43 Independent claims in excess of 3	1809	770	2809	385	Filing a submission after final rejection (37 CFR 1.129(a))			
1203 290 2203 145 Multiple dependent claim, if not paid	1810	770	2810	385	For each additional invention to be examined (37 CFR 1.129(b))			
1204 86 2204 43 ** Reissue independent claims over original patent	1801	770	2801	385	Request for Continued Examination (RCE)			
1205 18 2205 9 "Reissue claims in excess of 20 and over original patent	1802	900	1802	900	Request for expedited examination of a design application			
SUBTOTAL (2) (\$)	Other fee (specify)							
**or number previously paid, if greater, For Reissues, see above Reduced by Basic Filing Fee Paid SUBTOTAL (3) (\$) 180.00								

WARNING: information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

This collection of information is required by 37 CFR 1.17 and 1.27. The information is required to obtain or retain a benefit by the public which is to file fand by the USFFO to proceed) an application. Confidentially is opened by 3.5 U.S.C. 122 and 37 CFR 1.41. This collection is estimated to take 1.2 mixets to complete, including gathering, preparing, and submitting the completed application form to the USFFO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form andrea suggestions for declaring this business, should be sent to the Chief Information Claric, U.S. Patent and Trademark Office, U.S. Patent and Crademark U.S. Patent U.S. Patent Crad

References Cited

Abraham A.S. Brooks B.A., Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism: Clin. Exper. (1992) Jul, 41(7):768-71.

Abraham C.R., Driscoll J., Potter H., Van Nostrand W.E., Tempst P. A calcium-activated protease from Alzheimer's disease brain cleaves at the N-terminus of the amyloid B-protein. Biochem. Biophys. Res. Commun. (1991), 174, 790 - 96.

Abraham C.R., Razzaboni B.L., Sisodia S.S., Koo E.H., Price D.L., Van Nostrand W.E., Papastoitsis G. Studies on the proteolytic degradation of the B-protein precursor by proteases purified from Alzheimer's brain. Ann. New York Acad. Sci. (1991), 640, 161 - 65.

Abraham C.R., Razzaboni B.I., Papastoitsis G., Picard E., Kanemaru K., Meckelein B., Mucke L. Purification and cloning of brain proteases capable of degrading the B-amyloid precursor protein. Ann. New York Acad. Sci. (1992) 674, 174 - 179.

Aldrich, P., Hermann, E.C., Meier, W. E., Antiviral Agents. Structure-Activity Relationships of Compounds Related to 1-Adamantanamine, Jour. Med. Chem., (1971), 14, 535-543.

Anand-Srivastava M.B., McNeill J.H. Yang X.P. Reversal of defective G-proteins and adenyl cyclase/cAMP signal transduction in diabetic rats by vanadyl sulphate therapy. Molec. Cell. Biochem. (1995), Dec 6-20, 153(1-2):113-9.

Arbustini, E; Diegoli, M; Fasani, R; Grasso, M; Morbini, P; Banchieri, N; Bellini, O; Dal Bello, B; Pilotto, A; Magrini, G; Campana, C; Fortina, P; Gavazzi, A; Narula, J; Vigano, M. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Amer. Jour. Path. (1998), Nov, 153(5), 1501-10.

Baeza I., Ibanez M, Wong C., Chavez P., Gariglio P. Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA. Orig. Life Evol. Spec. (1992), 21, 225 - 42.

Barefield, K., Wagner, F., Metal Complexes of 1,4,8,11-Tetramethyl-1,4,8,11-tetraazacyclotetradecane, N-Tetramethylcyclam, Inorg. Chem., (1973), 12, 2435-2436.

Barefield, E.K., Wagner, F., Hodges, K.D., Synthesis of Macrocyclic Tetramines by Metal Ion Assisted Cyclization Reactions. Inorg. Chem., (1976), 15, 1370-1377.

Barrera-Hernandez G., Wanke I.E., Wong N.C. Phlorizin or vanadate treatment hepatocyte nuclear factor 1 in diabetic rats. Diabetes (1996), Sep, 45(9):1217-22.

Barrett, G.M., et al., Dissolving Metal Reduction of Esters to Alkanes. Jour. Chem. Soc., Perkin I, (1981), 1501-1509.

Beneviste M., Mayer M.L. Multiple effects of spermine on n-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurons. Jour. Physiol. (1993), 464, 131 - 63.

Black R.A., Kronheim S., Merriam J., March C., Hopp T.A. Preaspartate protease from human leukocytes that cleaves prointerleukin-1B. Jour. Biol. Chem. (1989), 264, 5323 - 26.

Blomgren K., Nilsson E., Karlsson J. Calpain and calpastatin levels in different organs of the rabbit. Compar. Biochem. Physiol. B. (1989), 93, 403 - 07.

Bonte, CA; Matthijs, GL; Cassiman, JJ; Leys, AM. Macular pattern dystrophy in patients with deafness and diabetes. Retina (1997), 17(3):216-21.

Bradley W.G., Krasin F. A new hypothesis of the etiology of amyotrophic lateral sclerosis. Arch. Neurol. (1982), 39, 677 -80

Borthwick, GM; Johnson, MA; Ince, PG; Shaw, PJ; Turnbull, DM. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann. Neurol. (1999), Nov. 46(5):787-90.

. Waldenside

Brabenboer B., Kappelle A.C. Harmers FPT, van Buren T., Erkelens D.W., Gispen W.H. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia (1992), 35, 813 - 17

Brantl V., Gramsch C., Lottspeich F., Henschen A., Jager R.A., Herz A. Novel opioid peptides derived from mitochondrial cytochrome b: cytocrophins. Eur. Jour. Pharmacol. (1985), III, 293 - 94.

Bu, X, Rotter, J.I. Wolfram syndrome: a mitochondrial-mediated disorder? Lancet, (1993) Sep 4, 342(8871):598-600.

Bush, AI; Pettingell, WH; Multhaup, G; d Paradis, M; Vonsattel, JP; Gusella, JF; Beyreuther, K; Masters, CL; Tanzi, RE. Rapid induction of Alzheimer A D amyloid formation by zinc [see comments] Science (1994), Sep 2, 265(5177):1464-7.

Cam M.C., Rodrigues B., McNeill J.H. Distinct glucose lowering and beta cell protective effects of vanadium and food restriction in streptozotocin-diabetes. Eur. Jour. Endocrin. (1999), Nov, 141(5):546-54.

Cam M.C., Pederson R.A., Brownsey R.W., McNeill J.H., Long-term effectiveness of oral vanadyl sulphate in streptozotocin-diabetic rats. Diabetologia (1993), 36, 218 - 24.

Cam M.C. Brownsey, RW, McNeill, JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can. Jour. Physiol. Pharmacol. (2000) Oct, 78(10):829-47.

Cameron N.E.., Cotter M.A., Maxfield E.K. Anti-oxidant treatment prevents the development of peripheral nerve dysfunction in streptozotocin-diabetic rats. Diabetologia (1993), 36, 299 - 304.

Cameron N.E., Cotter M.A., Archoibald V., Dines K.C., Maxfield E.K., Anti-oxidant and Pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia (1994), 37, 449 - 59.

Cavanaugh P.F., Pavelic Z. P., Porter C.W. enhancement of 1,3-Bis(2-chloroethy1)-1-nitrosurea-induced cytotoxicity and DNA damage by D-difluoromethylornithine in L1210 leukemia cells. Cancer Res. (1984), 44, 3856 - 61.

Committee of the same of

Chakrabarti A.K., Banik N., Powers J., Hogan E. The regional and subcellular distribution of calcium activated neutral proteinase (CANP) in the bovine central nervous system. Neurochem. Res. (1989), 14, 259 - 66.

Chen H., Carlson EC., Pellet L., Moritz, J.T., Epstein P.N. Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 2001 Sep, 50(9):2040-6.

Chen J., Jin K., Chen M., Pei w., Kawaguchi K., Greenberg D.A., Simon R.P. early detection of DNA strand breaks in the brain after focal transient ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. Jour. Neurochem. (1997), 69, 232 - 45.

Chen, SJ; Bradley, ME; Lee, TC. Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: modulation by calcium-regulated proteases and protein kinases. Molec. Cellul. Biochem. (1998), Jan, 178 (1-2), 141-9.

Chu P., CC; Huang, CC; Fang, W; Chu, NS; Pang, CY; Wei, YH. Peripheral neuropathy in mitochondrial encephalomyopathies. Eur. Neurol. (1997), 37(2):110-15.

Chu P., Saito H., Abe K. Polyamines promote regeneration of injured axons of cultured rat hippocampal neurons. Brain Res. (1995), 673, 233-41.

Clark, A; de Koning, EJ; Hattersley, AT; Hansen, BC; Yajnik, CS; Poulton, J. Pancreatic pathology in non-insulin dependent diabetes (NIDDM). Diabetes Res. Clin. Prac. (1995), Aug, 28 Suppl., S39-47.

Clayton D.A., Doda J.N., Friedberg E.C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. (1974), 71, 2777 - 81.

Clopath P., Smith V.C., McCully K.S. Growth promotion by homocysteic acid. Science (1976), 373 - 74.

Cohen N., Halberstam M., Shlimovich P., Chang C.J., Shamoon H., Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. Jour. Clin. Invest. (1995), Jun, 95(6):2501-9.

Comi, GP; Bordoni, A; Salani, S; Franceschina, L; Sciacco, M; Prelle, A; Fortunato, F; Zeviani, M; Napoli, L; Bresolin, N; Moggio, M; Ausenda, CD; Taanman, JW; Scarlato, G. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann.Neurol. (1998), Jan, 43(1):110-6.

Corral-Debrinski, M; Shoffner, JM; Lott, MT; Wallace, DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat. Res. (1992), Sep, 275(3-6), 169-80.

Corral-Debrinski M. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. (1992), Dec;2(4):324-9.

Corral-Debrinski, M; Horton, T; Lott, MT; Shoffner, JM; McKee, AC; Beal, MF; Graham, BH; Wallace, DC. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics (1994), Sep 15, 23(2):471-6.

Cotter M.A., Cameron N.E. Neuroprotective effects of carvidilol in diabetic rats, prevention of defective peripheral nerve perfusion and conduction velocity. Nauyn Schmiedbergs Arch. Pharmacol. (1995), 351, 630 - 35.

Craven P.A., DeRubertis F.R., Kagan V.E., Melhem M., Studer R.K., Effects of supplementation with vitamin C or E on albuminuria, glomerular TGF-Ol and glomerular size in diabetes. Jour. Amer. Soc. Nephrol. (1997), 8, 1405 - 11.

Cui, J; Holmes, EH; Greene, TG; Liu, PK.Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. Faseb Journal (2000) May, 14(7):955-67.

Dawson G., Glaser P. Apparent cathepsin B deficiency in neuronal ceroid lipofuscinosis can be explained by peroxide inhibition. Biochem. Biophys. Res. Commun. (1987), 147, 267 - 74.

Dawson G., Glaser P. Abnormal cathepsin B activity in Batten's disease. Amer. Jour. Med. Genet. Suppl. (1988), 5, 209 - 20.

Domingo J.L., Gomez M., Sanchez D.J., Llobet JM., Keen, C.L. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Molec. Cell. Biochem. (1995), Dec 6-20, 153(1-2):233-40.

The second secon

Dreyer E.B., Pan Z., TORM s., Lipton S.A. Greater sensitivity of larger retinal ganglion cells to NMDA-mediated cell death. NeuroReport (1994), 5, 629 - 31.

Dreyer E.B., Zurakowski D., Schumer R.A., Podos S.M., Lipton S.A. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol. (1996), 114, 299 – 305.

Duara R., Lopez-Alberola R.F., Barker W.W. A comparison of familial and sporadic Alzheimer's disease. Neurology. (1993), Jul;43(7):1377-84.

Dubin D.T. Evidence for conjugation between glutathione and polyamines in E. Coli. Biochem. Biophys. Res. Commun. (1959), 1 (5), 262 - 65.

Dyer G.D., Dunn J.A., Thorpe S.R., Accumulation of Maillard reaction products in skin collagen I diabetics and aging. Jour. Clin. Invest. . (1993), Jun, 91(6):2463-9.

Earle K.E., Archer A.G., Baillie, JE. Circulating and excreted levels of chromium after an oral glucose challenge: influence of body mass index, hypoglycemic drugs, and presence and absence of diabetes mellitus. Amer. Jour. Clin. Nutr. (1989), Apr, 49(4):685-9.

Ebihara I., Nakamura T., Shimada N., Koide, H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. [Comment In: Am J Kidney Dis. (1998), Oct;32(4):669-71] Amer. Jour. Kidney Dis. (1998) Oct, 32(4):544-50.

Edelstein C., Kaiser M., Piras G., Scanu A. Demonstration that the enzyme that converts precursor of apolipoprotein A-1 is secreted by the hepatocarcinoma cell line hep G2. Arch. Biochem. Biophys. (1988), 267, 23 - 30.

Edland S.D., Silverman J. Peskind E.R., Tsuan G D., Wijsman E., Morris J.C. Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance. Neurology (1996), Jul;47(1):254-6.

Egawhary, DN; Swoboda, BE; Chen, J; Easton, AJ; Vince, FP. Diabetic complications and the mechanism of the hyperglycaemia-induced damage to the mt DNA of cultured vascular endothelial cells: (I) Characterization of the 4977 base pair deletion and

the work of the boundary to the property of

13 bp flanking repeats. Biochemical Soc. Trans. (1995), Nov, 23(4), 518S.

Eizirik D.L., Welsh N., Niemann A., Velloso L.A., Malaisse W.J. Succinic acid monomethyl ester protects rat pancreatic islet secretory potential against interleukin-1 \square (IL-1 \square) without affecting glutamate decarboxylase expression or nitric oxide production. FEBS Lett. (1994), 337, 298 - 302.

Englander, EW; Greeley, GH Jr; Wang, G; Perez-Polo, JR; Lee, HM. Hypoxia-induced mitochondrial and nuclear DNA damage in the rat brain. Jour. Neurosci. Res. (1999), Oct 15, 58(2):262-9.

Failla, M.L., Kiser R.A. Altered tissue content and cytosol distribution of trace metals in experimental diabetes. Jour. Nutr. (1981), Nov, 111(11):1900-9.

Fantus I.G., Tsiani E. Multifunctional actions of vanadium compounds on insulin signaling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects. Molec. Cell Biochem. (1998), May 182(1-2):109-19.

Fawcett, T.G., Rudich, S.M., Toby, B.H., LaLancette, R.A., Potenza, J.A., Schugar, H.J. Studies of Chelation Therapy. Inorg. Chem. (1980), 19, 940.

Ferrari, R.The role of mitochondria in ischemic heart disease. Jour. Cardiovasc. Pharmacol. (1996), 28 Suppl 1, S1-10.

Fischer, H.R., Hodgson, D.J., Michelsen, K., Pedersen, E., Synthesis and Characterization of the Dimeric Cr(III) Complex Di--hydroxobis[{N,N'-bis(2-pyridylmethyl)-1,3-propanediamine}chromium (III)] Perchlorate, Inorg. Chim. Acta, (1984), 88, 143-150.

Gai W.P., Blumbergs P.C., Blesing W.W. The ultrastructure of Lewy neurites. Mov. Disord. (1977), 12, Supl.1:5.

Gerbitz, KD. Does the mitochondrial DNA play a role in the pathogenesis of diabetes? Diabetologia (1992), Dec, 35(12), 1181-6.

and the state of t

White the same of the same

Gilad G., Dornay M., Gilad V. Polyamines induce precocious development in rats. Possible interaction with growth factors. Int. Jour. Devl. Neurosci. (1989), 7(6), 641 - 53.

Goering P.L., Tandon S.K., Klaassen C.D. Induction of hepatic metallothionein in mouse liver following administration of chelating agents. Toxicol. Appl. Pharmacol. (1985), 80, 467 - 72.

Goldfine A.B., Simonson D.C., Folli F., Patti, ME., Kahn C.R. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Molec. Cell. Biochem. (1995) Dec 6-20, 153(1-2):217-31.

Goldfine A.B., Patti M.E., Zuberi L., Goldstein B.J., LeBlanc R., Landaker E.J., Jiang Z.Y., Willsky G.R., Kahn C.R.. Metabolic effects of vanadyl sulfate in humans with non-insulindependent diabetes mellitus: in vivo and in vitro studies. Metabolism: Clin. Experim. (2000) Mar, 49(3):400-10.

Golub, G., Cohen, H., Meyerstein, D., The Stabilization of Monovalent Copper Ions by Complexation with Saturated Tertiary Amine Ligands in Aqueous Solutions. Jour. Chem. Soc., Chem. Commun., (1992), 397-398.

Goodwin, H.A., Lions, F., Quadridentate Chelate Compounds, Jour. Amer. Chem. Soc., (1960), 82, 5013-5023.

Goodman Y., Bruce A.J., Cheng B., Mattson M.P., Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury and amyloid O-peptide toxicity in hippocampal neurons. Jour. Neurochem. (1996), 66, 1836 - 44.

Grankvist, K; Marklund, SL. Opposite effects of two metal-chelators on alloxan-induced diabetes in mice. Life Sci. (1983), Dec 19, 33(25):2535-40.

Hagglof B., Hallmans G., Holmgren G., Ludvigsson J., Falkmer S. Prospective and retrospective studies of zinc concentration in serum, blood clots, hair and urine in young patients with insulin-dependent diabetes mellitus. Acta Endocrin. (Copenh) (1983), 102, 88 - 95.

Haglund, B; Ryckenberg, K; Selinus, O; Dahlquist, G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care 1996 Aug, 19(8):873-5.

- The state of the second of the second

The second second

Hamakubo T., Kannagi R., Murachi T., Matus A. Distribution of calpain I and II in rat brain. Jour. Neurosci. (1986), 6, 3103 - 11.

Hambidge, KM; Rodgerson, DO; O'Brien, D. Concentration of chromium in the hair of normal children and children with juvenile diabetes mellitus. Diabetes 1968 Aug, 17(8):517-9.

Hay, R.W., Gidney, P.M., Lawrance, G.A., Cobalt Complexes of 3,7-Dithianonane-1,9-diamine. Jour. Chem. Soc., Dalton, (1975), 779-784.

Heyliger C.E., Tahiliani A.G., McNeill J.H.. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science (1985), Mar 22, 227(4693):1474-7.

Husain S., Hadi S.M. Strand scission in DNA induced by L-DOPA in the presence of Cu(II). FEBS Lett. (1995), 364, 75 - 78.

Husain S., Hadi S.M. DNA breakage by L-DOPA and Cu(II): breakage by melanin and bacteriophage inactivation. Mutat. Res. (1998), 397, 161 - 68.

Isobe, K; Ito, S; Hosaka, H; Iwamura, Y; Kondo, H; Kagawa, Y; Hayashi, JI. Nuclear-recessive mutations of factors involved in mitochondrial translation are responsible for age-related respiration deficiency of human skin fibroblasts. Jour. Biol. Chem. (1998), Feb 20, 273(8):4601-6.

Jiang Z.Y., Zhou Q.L., Eaton J.W., Koppenol W.H., Hunt J.V., Wolff S.P. Spirohydantoin inhibitors of aldose reductase inhibit iron- and copper-catalysed ascorbate oxidation in vitro. Biochem. Pharmacol. (1991), Aug 22, 42(6):1273-8.

Johns, DR, Sadun, AA, Cuban epidemic optic neuropathy. Mitochondrial DNA analysis. Jour. Neuro-Ophthalmol., (1994), Sep, 14(3):130-4.

Karasu C., Dewhurst M., Stevens E.J., Tomlinson D.R., Effects of anti-oxidant treatment on sciatic nerve dysfunction in streptozotocin-diabetic rats; comparison with essential fatty acids. Diabetologia (1995), 38, 129 - 34. Kelner M.J., Bagnell R., Hale B., Alexander N.M. Inactivation of intracellular copper-zinc superoxide dismutase by chelating agents without glutathione depletion and methemoglobin formation. Free

Radical Biol. Med. (1989), 6 (4), 355 - 60.

and the second

Figure Section Section Security

Khan A.U., DiMascio P., Medeiros M. H., Wilson T. Spermine and spermidine protect ion of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc. Natl. Acad. Sci. (1992), 89, 11428 - 30.

Kinlaw W.B., Levine A.S., Morley J.E., Silvs S.E., McClain C.J. Abnormal zinc metabolism in type II diabetes mellitus. Amer. Jour. Med. (1983), 75, 273 - 7.

Kodama, H; Murata, Y; Iitsuka, T; Abe, T. Metabolism of administered triethylene tetramine dihydrochloride in humans. Life Sciences, (1997), 61(9):899-907.

Kooistra T., Van Hinsbergh V., Havekes L., Jan Kempen H. In vitro studies on origin and site of action of enzyme activity responsible for conversion of human proapoprotein A-1 into apoprotein A-1. FEBS Lett. (1984), 170, 109 - 13.

Kristal B.S., Koopmans S.J., Jackson Y., Ikeno B.J., Park B.J.,
Yu B.P. Oxidant-mediated repression of mitochondrial
transcription in diabetic rats. Free Radical Biol. Med. (1997),
813 - 22.

Kruman, II; Culmsee, C; Chan, SL; Kruman, Y; Guo, Z; Penix, L; Mattson, M.P. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. Journal of Neuroscience (2000), Sep 15, 20(18):6920-26.

Krumkalns, E.V., Pfeifer, W., Adamantylamines by Direct Amination of 1-Bromoadamantane, Jour. Med. Chem., (1968), 11, 1103.

Langsjoen, PH; Folkers, K; Lyson, K; Muratsu, K; Lyson, T; Langsjoen, P. Effective and safe therapy with coenzyme Q10 for cardiomyopathy. Klinische Wochenschrift (1988), Jul 1, 66(13):583-90.

Leclerq-Meyer V., Malaisse W.J., Enhancement by succinic acid dimethylester of insulin release evoked by D-glucose and glimepiride in the perfused pancreas of normoglycemic and hyperglycemic rats. Biochem. Pharmacol. (1993), 47, 1519 - 24.

Lee T.S., Saltsman K.A., Ohashi H. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc. Natl. Acad. Sci. (1989); Jul; 86(13):5141-5.

The state of the second

Maria Charles

- I STATE BOOK BOOK BOOK

Lee, HK; Song, JH; Shin, CS; Park, DJ; Park, KS; Lee, KU; Koh, CS. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res.Clin. Prac. (1998) Dec, 42(3):161-7.

Levay G., Ye Q., Bodell W.J. Formation of DNA adducts and oxidative base damage by copper mediated oxidation of dopamine and 6-hydroxydopamine. Exper. Neurol. (1997), 146, 570 - 74.

Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. Copper, iron, and zinc in Alzheimer's disease senile plaques. Jour. Neur. Sci. (1998), 158, 47 - 52.

Lynch J.J. Ferro T.J., Blumenstock F.A. Increased endothelial albumin permeability mediated by protein kinase C activation. Jour. Clin. Invest. (1990), Jun;85(6):1991-98.

Low, PA; Nickander, KK; Tritschler, HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes (1997), Sep, 46 Suppl 2:S38-42.

MacDonald M.J., Fahien L.A. Glyceraldehyde phosphate and methyl esters of succinic acid. Two "new" potent insulin secretagogues. Diabetes. (1988), Jul;37(7):997-9.

Malaisse W.J, Sener A. Metabolic effects and fate of succinate esters in pancreatic islets. Amer. Jour. Physiol.(1993), Mar;264(3 Pt 1):E434-40.

Malaisse W.J., Rassachaert J., Villaneuva-Penacarrillo M.I., Valverde I. Respiratory, ionic, and functional effects of succinate esters in pancreatic islets. Amer. Jour. Physiol. (1993), Mar; 264 (3 Pt 1): E428-33.

Malaisse, WJ. The □ cell in NIDDM: giving light to the blind. Diabetologia (1994), Sep, 37 Suppl 2:S36-42.

Matus A., Green G. Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated proteins. Biochemistry (1987), 26, 8083 - 86.

Maechler, P; Wollheim, CB. Mitochondrial signals in glucosestimulated insulin secretion in the □ cell. Jour. Physiol. (2000) Nov 15. 529 Pt 1:49-56.

a subject to the subj

Company of the Compan

Maedler, K; Spinas, GA; Dyntar, D; Moritz, W; Kaiser, N; Donath, MY. Distinct effects of saturated and monounsaturated fatty acids on \square -cell turnover and function. Diabetes (2001), Jan, 50(1):69-76.

Mateo M.C.M., Bustamante J.B., Cantalapiedra M.A.G. Serum zinc, copper and insulin in diabetes mellitus. Biomed. (1978), 29, 56 - 58.

Mattson, MP; Culmsee, C; Yu, ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. (2000), Jul, 301(1):173-87.

McCance D.R., Dyer D.G., Dunn J.A., Bailie K.E., Thorpe S.R., Baynes J.W., Lyons T.J. .Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. Jour. Clin. Invest. (1993), Jun 91(6):2470-8.

McCully K.S. Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature (1971), 23, 391 - 92.

McCully K.S., Vezeridis M.P., Histopathological effects of homocysteine thiolactone on epithelial and stromal tissues. Exp. Molec. Pathol. (1989), 51, 159 - 70.

McCully K.S., Olszewski A.J., Vezeridis M.P. Homocysteine and lipid metabolism in atherogenesis: effect of the homocysteine thiolactonyl derivatives, thioretinaco and thioretinamide. Atherosclerosis (1990), Aug. 83(2-3):197-206.

McCully, K.S. Tzanakakis G.N., Vezeridis M.P. Effect of the synthetic N-homocysteine thiolactonyl derivatives, thioretinaco, thioretinamide, and thioco on growth and lactate production by malignant cells. Res. Commun. Chem. Pathol. Pharmacol. (1992), Jul, 77(1):125-8.

McCully K.S. Chemical pathology of homocysteine. III. Cellular function and aging. Ann. Clin. Lab. Sci. (1994a), Mar-Apr, 24(2):134-52.

The state of the s

سراء المستريوة والهيدا والمجا والمجادا المراجي

McCully, KS. Chemical pathology of homocysteine. II. Carcinogenesis and homocysteine thiolactone metabolism. Ann. Clin. Lab.Sci. (1994b), Jan-Feb, 24(1):27-59.

McGurk J.F., Bennett M.V., Zukin R.S. Polyamines potentiate responses of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. (1990), 87, 9971 - 74.

McLaren G.D. Muir WA. Kellermeyer R.W. Iron overload disorders: natural history, pathogenesis, diagnosis and therapy. Crit. Rev. Clin. Lab. Sci. (1983), 19, 205 - 266.

Mecocci, P; Polidori, MC; Ingegni, T; Cherubini, A; Chionne, F; Cecchetti, R; Senin, U. Oxidative damage to DNA in lymphocytes from AD patients. Neurology (1998), Oct, 51(4):1014-7.

Mecocci P., MacGarvey U., Kaufman A.E. Oxidative damage to mitochondrial DNA shows marked age dependent changes increases in human brain. Ann. Neurol (1993), 34, 609 - 16.

Mecocci, P; MacGarvey, U; Beal, MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Annals Neurol. (1994), Nov, 36(5):747-51.

Mezzetti G., Monti M.G., Moruzzi M.S. Polyamines and the catalytic domain of protein kinase C. Life Sci. (1988), 42, 2293 - 98.

Mizukami, F., Metal Complexes Containing Six-Membered Chelate Rings. The Preparation and Structure of Dichlorocobalt(III) Complexes with Tetramines Derived from 2,4-Pentanedimaine, Bull. Chem. Soc. Jpn., (1975), 48, 1205-1212.

Mikukami, F., Metal Complexes Containing Six-Membered Chelate Rings. IV. The Preparation and Structure of Dichlorocobalt(III) Complexes with Tetramines Derived from 2,4-Pentanediamine. Bull. Chem. Soc, Japn., (1975), 48, 1205-1212.

Miyako, K; Kai, Y; Irie, T; Takeshige, K; Kang, D. The content of intracellular mitochondrial DNA is decreased by 1-methyl-4-phenylpyridinium ion (MPP+). Jour. Biol. Chem. (1997), Apr 11, 272(15):9605-8.

Miyako, K; Irie, T; Muta, T; Umeda, S; Kai, Y; Fujiwara, T; Takeshige, K; Kang, D.1-Methyl-4-phenylpyridinium ion (MPP+) selectively inhibits the replication of mitochondrial DNA. Eur. Jour. Biochem. (1999), Jan, 259(1-2):412-8.

- Ly ... year wage fool - the

- Wallet College

A COMMENT OF THE PARTY.

de la Monte, SM; Luong, T; Neely, TR; Robinson, D; Wands, JR. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. Lab. Invest. (2000), Aug, 80(8):1323-35.

Morgan J.M. Hepatic chromium content in diabetic subjects. Metabolism: Clin. Exper. (1972), Apr, 21(4):313-6.

Moruzzi M.S, Monti M.G., Piccinini G., Marverti G., Tadolini B. Effect of spermine on association of protein kinase C with phospholipid vesicles. Life Sci. (1990), 47(16), 1475 - 82.

Moruzzi M.S., Marverti G., Piccinini G., Frassineti C., Monti M.G. The effect of spermine on calcium requirement for protein kinase C association with phospholipid vesicles. International Jour. Biochem. Cell Biol. (1995), 27(8), 783 - 8.

Moruzzi M.S, Piccinini G., Tadolini B., Monti M.G., Barbiroli B., Mezzetti G. In: Progress in polyamine research. Effect of polyamines on protein kinase C activation process. Adv. Exp. Med. Biol. (1988), 250:469-80.

Moustaid N., Sul H.S., Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells by differentiation and triiodothyronine. Jour. Biol. Chem. (1991), 18550 - 554.

Naviaux, RK. Mitochondrial DNA disorders. Eur. Jour. Ped. (2000), Dec, 159 Suppl 3:S219-26.

Noto R., Alicata R., Sfogliano L. A study of cupremia in a group of elderly diabetics. Acta Diabetol. Latina (1983), 20, 81-85.

Oberholzer, M.R., Neuburger, M., Zehnder, M., Kaden, T.A., Steric Effects in the $\operatorname{Cu}(II)$ and $\operatorname{Ni}(II)$ Complexes with Tetra-N-alkylated 1,4,8,11-Tetraazacyclotetradecanes. Helv. Chim Acta, (1995), 78, 505.

Odawara, M; Yamashita, K. Mitochondrial gene abnormalities and \Box - and \Box -cell dysfunction. Diabetes Care (1996), Oct, 19(10):1166-7.

Oka Y., Katagiri H., Yazaki Y., Murase T., Kobayashi T. Mitochondrial gene mutation in islet-autoantibody-positive patients who were initially non-insulin-dependent diabetics. Lancet (1993), 342, 527 - 28.

designation of the second section of the second second

Oka, Y.NIDDM--genetic marker; glucose transporter, glucokinase, and mitochondria gene. Diabetes Res. Clin. Prac. (1994), Oct, 24 Suppl., S117-21.

Ozawa, T. Mitochondrial DNA mutations in myocardial diseases. European Heart Journal (1995), Dec, 16 Suppl O, 10-14.

Ozawa, T; Hayakawa, M; Katsumata, K; Yoneda, M; Ikebe, S; Mizuno, Y. Fragile mitochondrial DNA: the missing link in the apoptotic neuronal cell death in Parkinson's disease. Biochem. Biophys. Res. Commun. (1997), Jun 9, 235(1):158-61.

Olszewski A.J., McCully K.S. Homocysteine metabolism and the oxidative modification of proteins and lipids. Free Rad. Biol. Med. (1993), Jun. 14(6):683-93.

Papadopoulou, LC; Theophilidis, G; Thomopoulos, GN; Tsiftsoglou, AS. Structural and functional impairment of mitochondria in adriamycin-induced cardiomyopathy in mice: suppression of cytochrome c oxidase II gene expression. Biochem. Pharmacol. (1999), Mar 1, 57(5):481-9.

Park, KS; Lee, KU; Song, JH; Choi, CS; Shin, CS; Park, DJ; Kim, SK; Koh, JJ; Lee, HK. Peripheral blood mitochondrial DNA content is inversely correlated with insulin secretion during hyperglycemic clamp studies in healthy young men. Diabetes Res. Clin. Prac. (2001), May, 52(2):97-102.

Perlmutter L.S., Siman R., Gall C., Seubert P., Lynch G. The ultrastructural localization of calcium- activated protease "calpain" in rat brain. Synapse (1988), 2, 78 - 88.

Press E.M., Porter R., Cebra J. The isolation and properties of a proteolytic enzyme, cathepsin D, from bovine spleen. Biochem. Jour. (1960), 74, 501 - 14.

Quigley H.A. Ganglion cell death in glaucoma: Pathology recapitulates ontogeny. Aust. NZ J. Ophthalmol. (1995), 23, 85 - 91.

Razzaboni B.L., Papastoitsis G., Koo E.H., Abraham C.R., A calcium-stimulated serine protease from monkey brain degrades the B-amyloid precursor protein. Brain Res. (1992), 589, 207 - 16.

Reul, B.A., Amin S.S., Buchet, J.P., Ongemba L.N., Crans D.C., Brichard S.M. Effects of vanadium complexes with organic ligands

The second second

The second secon

on glucose metabolism: a comparison study in diabetic rats. Brit. Jour. Pharmacol. (1999) Jan, 126(2):467-77.

Rose C., Camus A., Schwartz J.C. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain. Proc. Natl. Acad. Sci. (1988), 85(21), 8326 - 30.

Rose C., Camus A., Schwartz J. Protection by serine peptidase inhibitors of endogenous cholecystokinin released from brain silces. Neuroscience (1989), 29 (3), 583 - 94. Sadun, A. Acquired mitochondrial impairment as a cause of optic nerve disease. Trans. Amer. Ophthalmol. Soc. (1998), 96:881-923.

Scanu A.M. Proapolipoprotein-converting enzymes and high density lipoprotein early events in biogenesis. Amer. Heart Jour. (1987), 113, 527 - 33.

Schapira, AH. Evidence for mitochondrial dysfunction in Parkinson's disease--a critical appraisal. Movement Disorders (1994), Mar., 9(2):125-38.

Schapira, AH. Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Acta (1998), Aug 10, 1366(1-2):225-33.

Schmitz C; Axmacher B; Zunker U; Korr H. Age-related changes of DNA repair and mitochondrial DNA synthesis in the mouse brain. Acta Neuropath. (1999), Jan, 97(1):71-81.

Schroeder H.A. Cadmium, chromium, and cardiovascular disease. Circulation 1967 Mar, 35(3):570-82.

Schroeder H.A. Chromium deficiency as a factor in atherosclerosis. Jour. Chronic Dis. (1970), 23, 123 - 42.

Seidman MD; Khan MJ; Bai U; Shirwany N; Quirk WS. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Amer. Jour. Otol. (2000), Mar, 21(2):161-7.

Serradas P., Girox M.H., Saulnier C., Mitochondrial deoxyribonucleic acid content is specifically decreased in adult but not fetal pancreatic islets of the Goto-Kakizaki rat, a genetic model of insulin-dependent diabetes. Endocrinology (1995), 136, 5623 - 31.

K. Sales Sec

Shoffner, JM; Brown, MD; Torroni, A; Lott, MT; Cabell, MF; Mirra, SS; Beal, MF; Yang, CC; Gearing, M; Salvo, R; et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics (1993), Jul, 17(1):171-84.

Smith M.A., Harris P.L., Sayre L.M., Perry G. Iron Accumulation in Alzheimer's disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. (1997), 94, 9866 - 9868.

Snyder R.D. Inhibition of X-ray-induced DNA strand break repair
in polyamine depleted HeLa cells. Int. Jour. Radiat. Biol.
(1989), 15(5), 773 - 79.

Soong N.W., Hinton D.R., Cortopassi G., and Arnheim N. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet. (1992), Dec;2(4):318-23.

Strout H.V., Vicario P.P., Biswas C., Saperstein R., Brady E.J., Pilch P.F., Berger J. Vanadate treatment of streptozotocin diabetic rats restores expression of the insulin responsive glucose transporter in skeletal muscle. Endocrin. (1990), 126, 2728 - 32.

Sucher N.J., Lipton S.A., Dreyer E.B., (1997), Molecular pathology of glutamate toxicity in retinal ganglion cells. Vision Res. (1997), 37, 3483 - 93.

Suzuki Y., Kadowaki H., Atsumi Y., A case of diabetic amyotrophy associated with 3243 mitochondrial tRNA (Leu UUR) mutation and successful therapy with coenzyme Q10. Endoc. Jour. (1995), 42, 141 - 45.

Suzuki S; Hinokio Y; Komatu K; Ohtomo M; Onoda M; Hirai S; Hirai M; Hirai A; Chiba M; Kasuga S; Akai H; Takahashi T., Hiratani K, Kimura E., N₂-Binding Mononuclear Ru(II) Tertiary Polyamine Complex, Chemistry Letters, (1993), 1329-1332.

Swoboda BE; Egawhary DN; Chen J; Vince FP. Diabetic complications and the mechanism of the hyperglycaemia-induced damage to the mt DNA of cultured vascular endothelial cells: (II) The involvement of protein kinase C. Biochem. Soc. Trans. (1995), Nov, 23(4):519S.

Tagami M., Ikeda K., Yamagata K., Nara Y., Fujino H., Kubota A., Numano F., Yamori Y. Vitamin E prevents apoptosis in hippocampal neurons caused by cerebral ischemia and reperfusion in stroke-

- majazza eri alla la la

prone spontaneously hypertensive rats. Lab. Invest. (1999), 79, 609 - 15.

Tasker R.C., Sahota S.K., Cotter F.E., Williams S.R. Early post-ischemic dantrolene induced amelioration of poly(ADP-ribose) polymerase-related bioenergetic failure in neonatal rat brain slices. Jour. Cereb. Blood Flow Metab. (1998), 18, 1346 - 56.

Trachtman H., Futterweit S., Maesake J. Taurine ameliorates chronic streptozotocin-induced diabetic nephropathy in rats. Amer. Jour. Physiol. (1995), 269, F429 - F438.

Tsuji A., Sakurai H. Vanadyl ion suppresses nitric oxide production from peritoneal macrophages of streptozotocin-induced diabetic mice. Biochem. Biophys. Res. Commun. (1996), Sep 13, 226(2):506-11.

Uemura, S; Matsushita, H; Li, W; Glassford, AJ; Asagami, T; Lee, KH; Harrison, DG; Tsao, PS. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circul. Res. (2001), Jun 22, 88(12):1291-8.

Umeda S; Muta T; Ohsato T; Takamatsu C; Hamasaki N; Kang D. The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a Parkinsonism-causing toxin. Eur. Jour. Biochem. (2000), Jan, 267(1):200-6.

Uriu-Hare J.Y., Stern, J.S., Keen C.L. The effect of diabetes on the molecular localization of maternal and fetal zinc and copper metalloprotein in the rat. Biol. Trace Element Res. (1988), Dec, 18:71-9.

Van Alphen J. On aliphatic polyamines III. Jour. Rec. Trav. Chim. (1936), 55, 835 - 40.

Valera A., Rodriguez-Gil J.E., Bosch F. Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. Jour. Clin. Invest. (1992), 92, 4 -11.

Vicent D., Villaneuva-Penacarillo M.L., Valverde I., Malaisse W.J. enhancement of the insulinotropic action of glibenclamide by succinnic acid methyl esters in anaesthetized rats. Med. Sci. Res. (1993), 21, 517 - 18.

And the second second

Wallace, D.C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science (1992), May 1, 256(5057):628-32.

Whitaker J.N., Seyer J. Isolation and characterization of bovine brain cathepsin D. Jour. Neurochem. (1979), 32, 325 - 33.

Yang, J; Cherian, MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci. (1994), 55(1):43-51.

Yoshimoto, S; Sakamoto, K; Wakabayashi, I; Masui, H. Effect of chromium administration on glucose tolerance in stroke-prone spontaneously hypertensive rats with streptozotocin-induced diabetes. Metabolism: Clin. Exper.(1992), Jun. 41(6):636-42

Yu Z.F., Bruce-Keller A.J., Goodman Y., Mattson M.P. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. Jour. Neurosci. Res. (1998), 53, 613 - 25.
Zeviani, M; Mariotti, C; Antozzi, C; Fratta, GM; Rustin, P; Prelle, A. OXPHOS defects and mitochondrial DNA mutations in

Zeviani M., Amati P., Comi G., Fratta G., Mariotti C., Tiranti V. Searching for genes affecting the structural integrity of the mitochondrial genome. Biochim. Biophys. Acta (1995), 1271, 153 - 58.

cardiomyopathy. Muscle and Nerve (1995), 3, S170-4.

- method with intilling with the