Campi e sistemi lineari - Sommario

Sommario sui campi e sui sistemi lineari.

A. Campi

Campi

Definizione di un campo; le proprietà caratterizzanti dei campi; esempi di campi e non-campi.

O. Preambolo

Questo capitolo ci serve per riflettere sui *fondamenti* che abbiamo usato finora, in particolare quando abbiamo parlato di equazioni, sistemi lineari, matrici, spazi vettoriali, come quando parliamo delle matrici a *coefficienti reali*; oppure dei \mathbb{R} -spazi vettoriali. Tutte le proprietà di cui abbiamo visto valgono in quanto \mathbb{R} è un *campo* con le sue operazioni $+, \cdot$.

Infatti avevamo implicitamente fatto una *meta-operazione* in cui usavamo le proprietà di questo campo. Ora definiamo rigorosamente un *campo*.

1. Definizione

DEF 1. Sia *K* un *insieme* (Teoria degli Insiemi) si cui sono definite delle operazioni (o funzioni) (Funzioni) di *somma* e *moltiplicazione*, ovvero:

$$egin{aligned} +: & K imes K \longrightarrow K \ & (a,b) \mapsto a+b \ & \cdot: & K imes K \longrightarrow K \ & (a,b) \mapsto a \cdot b \end{aligned}$$

tali per cui vengono soddisfatte le seguenti proprietà K:

 $\mathrm{K}_1: orall a, b \in K; a+b=b+a \mid a \cdot b=b \cdot a$

 $\mathrm{K}_2: orall a, b, c \in K; a+(b+c)=(a+b)+c \mid a\cdot (b\cdot c)=(a\cdot b)\cdot c$

 $\mathrm{K}_3:\exists 0\in K: orall a\in K, a+0=0+a=a$

 $\mathrm{K}_{3.1}:\exists 1\in K: orall a\in K, a\cdot 1=1\cdot a=a$

 $\mathrm{K}_4: orall a \in K, \exists (-a) \in K: a+(-a)=-a+a=0$

 $\mathrm{K}_{4.1}: orall a \in K \diagdown, \{0\} \exists a^{-1}: a \cdot a^{-1} = a^{-1} \cdot a = 1$

 $\mathrm{K}_5: orall a, b, c \in K, (a+b) \cdot c = a \cdot c + b \cdot c$

Queste regole si chiamo rispettivamente nei seguenti modi:

K1: Commutatività rispetto alla somma e prodotto

K2: Associatività rispetto alla somma prodotto

K3: Esistenza degli elementi neutri 0,1 dove $0 \neq 1$

K4: Esistenza degli opposti (somma) e inversi (prodotto)

K5: Distributività

Allora un tale insieme si dice campo.

1.1. Esempi

ESEMPIO 1.1.a. Gli insiemi $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sono dei *campi infiniti*, invece \mathbb{N}, \mathbb{Z} *non* sono *campi*.

OSS 1.1.a. Osserviamo che possono esistere anche dei *campi finiti*, che hanno una rilevanza fondamentale nella *crittografia*. L'esempio **1.1.c.** sarà l'esempio di un *campo finito*.

ESEMPIO 1.1.b. L'insieme delle funzioni razionali ovvero

$$\{\frac{p}{q}: p, q \text{ sono polinomi in una variabile}\}$$

può essere dotata di *somma* e *prodotto* in modo tale da rendere questa un *campo*.

ESEMPIO 1.1.c. Sia

$$\mathbb{Z}_2:=\{0,1\}$$

su cui definiamo una operazione di somma e prodotto $(+,\cdot)$. Definiamo queste mediante delle tabelle di somma e di moltiplicazione.

+	0	1
0	0	1
1	1	0
•	0	1
0	o 0	0

Allora concludo che

$$(\mathbb{Z}_2,+,\cdot)$$

è un campo finito.

2. Conclusione

Pertanto la precedente nozione di \mathbb{R} -spazio vettoriale sarà da ora in poi sostituita da quella di K-spazio vettoriale, con K un campo. Analogo il discorso per le matrici a coefficienti in K, ovvero $M_{m,n}(K)$.

B. Sistemi lineari

Sistemi Lineari

Definizione rigorosa di sistema lineare. Nesso tra sistemi lineari, matrici e campi. Teoremi sui sistemi lineari.

O. Preambolo

Avevamo accennato che cosa sono i *sistemi lineari* nel capitolo sulle Equazioni e Proprietà Lineari; però avendo definito i Campi, ora è opportuno definirli in una maniera rigorosa e formale. Inoltre rendiamo nota la seguente notazione:

NOTAZIONE O. Andiamo a identificare i due seguenti spazi vettoriali:

la matrice colonna $M_{m,1}(K)$ di tipo

$$egin{pmatrix} b_1 \ b_2 \ \dots \ b_m \end{pmatrix}$$

e la m-tupla K^m di tipo

$$\begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

e questi due spazi vettoriali sono *isomorfi* (ovvero che presentano gli stessi comportamenti).

1. Definizione formale

DEF 1. Sia K un campo (Campi, **DEF 1.**); definiamo un **sistema di** m **equazioni** in n **incognite a coefficienti in** K come un *sistema di* equazioni nella forma seguente:

$$egin{cases} a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n=b_2\ dots\ a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n=b_m \end{cases}$$

dove $a_{ij}\in K$, $orall i\in\{1,\dots,m\}$ e $orall j\in\{1,\dots,n\}$; inoltre $orall b_i\in K, orall i\in\{1,\dots,m\}.$

1.a. Incognite

SUBDEF 1.a. Gli elementi x_1, x_2, \ldots, x_n sono dette **incognite**.

1.b. Termini noti

SUBDEF 1.b. Gli elementi b_1, b_2, \ldots, b_m sono detti **termini noti**.

1.c. Coefficienti

SUBDEF 1.c. Gli elementi a_{ij} sono detti **coefficienti** del *sistema lineare*.

1.1. Soluzione di un sistema

DEF 1.1. La **soluzione** di un *sistema lineare* è una n-upla ordinata di elementi di K, che rappresentiamo come un vettore-colonna, $S \in K^n$, ovvero

$$S = egin{pmatrix} s_1 \ s_2 \ dots \ s_n \end{pmatrix}$$

ove $s_i \in K$, tali per cui se ad ogni s_i sostituiamo x_i (dove $i \in \{1, 2, ..., n\}$), allora tutte le *uguaglianze* del *sistema lineare* diventano *vere*.

1.2. Omogeneità di un sistema

DEF 1.2. Un *sistema lineare* si dice **omogeneo** se tutti i *termini noti* sono nulli: ovvero se $b_1, b_2, \ldots, b_m = 0, 0, \ldots, 0$.

Analogamente, un *sistema lineare* si dice **non omogeneo** se questo sistema non è omogeneo. (Lo so, informazione sorprendentemente non ovvia)

1.3. Compatibilità di un sistema

DEF 1.3. Un *sistema lineare* si dice **compatibile** se ammette almeno una *soluzione S*; altrimenti si dice **incompatibile**.

OSS 1.1. Se un *sistema lineare* è *omogenea*, allora essa dev'essere anche *compatibile*. Infatti la n-upla nulla è *sempre* soluzione di un sistema *omogeneo*.

1.4. Forma compatta di un sistema

DEF 1.4. Dato un *sistema lineare* come in **DEF 1.**, definiamo la la matrice A dei *coefficienti*

$$A = (a_{ij}); egin{aligned} i \in \{1, \dots, m\} \ j \in \{1, \dots, n\} \end{aligned}; A \in M_{m,n}(K)$$

e X la n-upla delle incognite, b la n-upla dei termini noti, ovvero $X,b\in M_{m,1}(K)$ dove

$$X = egin{pmatrix} x_1 \ x_2 \ dots \ x_m \end{pmatrix}; b = egin{pmatrix} b_1 \ b_2 \ dots \ b_m \end{pmatrix}$$

allora posso scrivere il sistema lineare in forma compatta come

$$A \cdot X = b$$

DEF 1.5. Dato due *sistemi lineari*, queste si dicono **equivalenti** se ammettono le *medesime soluzioni*; ovvero se i loro insiemi delle soluzioni sono uguali.

OSS 1.2. Questa nozione è molto utile per risolvere dei sistemi lineari, quindi uno degli obbiettivi principali di questo corso sarà di trovare le operazioni che trasformano dei sistemi lineari in un altro mantenendoli *equivalenti*.

2. Esempi

Tentiamo di applicare queste nozioni mediante degli esempi.

ESEMPIO 2.1. Consideriamo il seguente sistema.

$$egin{cases} x_1 + 2x_2 = 3 \ x_1 + 2x_2 = 5 \end{cases}$$

che in forma compatta si scrive

$$egin{pmatrix} 1 & 2 \ 1 & 2 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \end{pmatrix} = egin{pmatrix} 3 \ 5 \end{pmatrix}$$

- 1. Questo è un sistema *non omogeneo*, in quanto *almeno uno* termine noto è *non-nullo*.
- 2. Si può immediatamente stabilire che questo sistema è incompatibile; infatti se si suppone che esiste una soluzione $S={s_1\choose s_2}$ allora varrebbe che $s_1+2s_2=3=5$, il che è un assurdo.

ESEMPIO 2.2. Consideriamo il seguente sistema.

$$egin{cases} x_1 + 2x_2 = 3 \ x_1 - x_2 = 1 \end{cases}$$

- 1. Chiaramente questo sistema è non-omogeneo
- Qui non è possibile stabilire a priori se questo sistema sia compatibile o meno. Allora mediante delle trasformazioni tentiamo di trovare una soluzione.
 Quindi

$$egin{cases} x_1 + 2x_2 = 3 \sim x_1 = 3 - 2x_2 \ x_1 - x_2 = 1 \end{cases} \implies egin{cases} x_1 = 3 - 2x_2 \ 3 - 2x_2 - x_2 = 1 \sim x_2 = \end{cases}$$

allora

$$x_1 = 3 - 2x_2 \implies x_1 = 3 - 2\frac{2}{3} = \frac{5}{3}$$

quindi il sistema ha un'unica soluzione

$$S = \begin{pmatrix} rac{5}{3} \\ rac{2}{3} \end{pmatrix}$$

Perciò abbiamo stabilito che il sistema è anche compatibile.

OSS 2.1. Qui diciamo che la *soluzione* non solo esiste, ma è addirittura *unica* in quanto per ottenere il *sistema finale* abbiamo trasformato il *sistema iniziale* tramite delle operazioni che mantengono i due sistemi *equivalenti*.

ESEMPIO 2.3. Consideriamo il sistema lineare

$$egin{cases} x_1 + 2x_2 = 3 \ 2x_1 + 4x_2 = 6 \end{cases}$$

e tentiamo di trovare una soluzione. Iniziamo dunque effettuando delle manipolazioni;

$$egin{cases} x_1 + 2x_2 = 3 \ (ext{a}) \ 2x_1 + 4x_2 = 6 \implies 2(x_1 + 2x_2) = 2(3) \stackrel{(a)}{\Longrightarrow} \ 2(3) = 2(3) \end{cases}$$

vediamo che la seconda equazione è sempre vera; allora ciò significa

che anche l'equazione

$$x_1 + 2x_2 = 3 \iff x_1 = 3 - 2x_2$$

è sempre vera.

Perciò posso trovare una soluzione fissando un valore di x_2 preciso per poter determinare x_1 ; quindi generalizzando fisso $x_2=t\in\mathbb{R}$ ed esprimo le soluzioni così:

$$x_1 = 3 - 2t$$

Ovvero le soluzioni sono della forma

$$S=\{t\in\mathbb{R}:inom{3-2t}{t}\}$$

da cui discende che abbiamo infinite soluzioni.

OSS 2.2. Possiamo riscrivere l'insieme delle soluzioni come

$$S=\{t\in\mathbb{R}:inom{3}{0}+tinom{-2}{1}\}$$

che geometricamente corrisponde ai punti di una retta passante per (3,0) e (1,1).

Teoremi sui Sistemi Lineari

Teoremi sui sistemi lineari; teorema di Cramer; teoremi di strutture per i sistemi lineari; da continuare

1. Teoremi sui sistemi lineari

Presentiamo dei teoremi importanti sui Sistemi Lineari.

1.1. Teorema di Cramer

TEOREMA 1.1. (*di Cramer*) Considero un sistema lineare con n equazioni ed n incognite, di forma

$$A \cdot X = b$$

Ovvero $A \in M_n(K)$.

Ora supponiamo che A sia anche *invertibile* (Matrice, **DEF 2.6.**); allora da qui discende che esiste un'*unica soluzione* S del sistema lineare ed essa è data da

$$S = A^{-1} \cdot b$$

OSS 1.1.1. Questo teorema è molto importante in quanto ci dà due dati importanti:

- 1. Da un lato ci dice quando un *sistema lineare* è *compatibile*, quindi c'è questa componente "esistenziale" di questo teorema.
- 2. Dall'altro lato ci fornisce una formula per *calcolare* la soluzione. L'unico problema di questo teorema è che **per ora** non abbiamo gli strumenti per *invertire una matrice* o *determinare se una matrice sia invertibile o meno*.

DIMOSTRAZIONE 1.1. La dimostrazione si struttura in due parti:

- 1. Una parte in cui devo dimostrare che la soluzione effettivamente esiste ed equivale a $A^{-1} \cdot b$
- 2. Un'altra parte in cui devo dimostrare che essa è effettivamente l'unica soluzione
- 3. Supponendo che $A^{-1} \cdot b$ sia *soluzione*, allora per tale definizione devo essere in grado di sostituirla ad X per poter ottenere un'uguaglianza vera; quindi faccio

$$A \cdot X = b$$
 $A \cdot (A^{-1} \cdot b) = b$
 $(A \cdot A^{-1}) \cdot b = b$
 $\mathbb{1}_n \cdot b = b \iff b = b$

e l'ultima uguaglianza è vera.

4. Ora supponiamo per assurdo che esiste un'altra soluzione S' sia un'altra soluzione; allora per definizione questa verifica

$$A \cdot S' = b$$
 $A^{-1} \cdot (A \cdot S') = A^{-1} \cdot b \ (!)$
 $(A^{-1} \cdot A) \cdot S' = A^{-1} \cdot b$
 $S' = A^{-1} \cdot b$

che è esattamente uguale alla soluzione proposta dal teorema di Cramer; quindi esiste solo la soluzione $S = A^{-1} \cdot b$.

OSS 1.1.2. Focalizziamoci sulla parte contrassegnata con (!); notiamo che abbiamo moltiplicato da ambo le parti per A^{-1} a *SINISTRA*, e non a *DESTRA*; infatti nel contesto delle *matrici* la moltiplicazione a *sinistra* può comportarsi diversamente da quella a *destra*; infatti se avessimo moltiplicato a *destra*, tutta l'espressione avrebbe perso senso in quanto avremmo ottenuto $b \cdot A^{-1}$ in quanto moltiplichiamo una matrice $n \times 1$ per $n \times n$, che non è definita.

1.2. Teorema di struttura per i sistemi lineari omogenei

TEOREMA 1.2. (di struttura per le soluzioni dei sistemi lineari omogenei)

Considero un sistema lineare omogeneo di m equazioni in n incognite. Ovvero

$$A \cdot X = 0$$

dove $A=M_{m,n}(K)$ e $X=K^n$, 0 è la matrice nulla (Matrice, **DEF. 2.2.**). Poi siano $s,s'\in K^n$ due soluzioni distinte e sia $\lambda\in K$, allora:

- 1. s + s' è soluzione
- 2. $\lambda \cdot s$ è soluzione

Pertanto ricordandoci che il vettore (o la matrice) nullo/a è sempre soluzione di un sistema omogeneo, ottengo che l'l'insieme delle soluzioni di questo sistema è l'insieme

$$S = \{r \in K^n : A \cdot r = 0\}$$

allora si verifica che S è un sottospazio vettoriale (Sottospazi Vettoriali, **DEF 1.**) di K^n .

OSS 1.2.1. Notiamo che in questo teorema ci interessa *il sistema lineare* sé stesso, invece nel **TEOREMA 1.1.** (di Cramer) ci interessava solo la *matrice* dei coefficienti *A*

DIMOSTRAZIONE 1.2.

Dimostriamo la prima parte del teorema

1. Dato che s e s' sono soluzioni, allora devono valere che:

$$\begin{cases} A \cdot s = 0 \\ A \cdot s' = 0 \end{cases}$$

E supponendo che s + s' sia soluzione, deve valere anche che:

$$A\cdot(s+s')=0$$

e sviluppandolo, otterremo

$$A \cdot (s + s') = 0$$

 $A \cdot s + A \cdot s' = 0$
 $0 + 0 = 0 \iff 0 = 0$

che è vera.

Prima di dimostrare la seconda parte del teorema ci occorre fare un'osservazione:

OSS 1.2.2. Dati un $A \in M_{m,n}(K)$ e un $s = K^n$ e un $\lambda \in K$ allora abbiamo

$$A \cdot (\lambda \cdot s) = \lambda \cdot (A \cdot s)$$

Ora siamo pronti per concludere la dimostrazione.

2. Se s è soluzione, allora è vera che

$$A \cdot s = 0$$

allora supponendo che λs sia soluzione abbiamo

$$A\cdot(\lambda\cdot s)=0$$

e sviluppandola otterremo

$$A \cdot (\lambda \cdot s) = 0$$

 $\lambda \cdot (A \cdot s) = 0$
 $\lambda \cdot 0 = 0 \iff 0 = 0$

11

il che è vera. ■

1.3. Osservazione

OSS 1.3. Osserviamo che possiamo "combinare" questi due teoremi e verificare un fenomeno:

Sia $A \in M_n(K)$ e supponiamo che questa matrice sia anche *invertibile*; ora consideriamo il sistema lineare *omogeneo*

$$A \cdot X = 0$$

Allora da qui discende che 0 è *l'unica* soluzione di questo sistema (per il **TEOREMA 1.1.** (di Cramer)).

Infatti $\lambda \cdot 0 = 0$ e 0 + 0 = 0 sono anche *soluzioni* in quanto sono uguali all'*unica soluzione* 0.

1.4. Teorema di struttura per i sistemi lineari

TEOREMA 1.4. (di struttura per le soluzioni dei sistemi lineari) Considero un sistema lineare

$$A \cdot X = b$$

con $A\in M_{m,n}(K)$ e $b\in K^n$. Sia \tilde{s} una soluzione; allora un elemento $s\in K^n$ è soluzione di questo sistema lineare se e solo se possiamo scrivere

$$s = \tilde{s} + s_0$$

dove s_0 è una soluzione del sistema lineare omogeneo

$$A \cdot X = 0$$

In altre parole l'insieme delle soluzione di $A \cdot X = b$ è

$$S = \{s \in K^n : s = \tilde{s} + s_0 \; ext{ per un qualche } x_0 ext{ sia soluzione} \}$$

DEF 1.4.1. Il sistema lineare omogeneo $A \cdot X = 0$ si dice il **sistema** lineare omogeneo associato al sistema $A \cdot X = b$.

DIMOSTRAZIONE 1.4. Per pianificare la struttura di questo teorema, facciamo due considerazioni sulla logica formale, in particolare sulla *doppia implicazione* (Connettivi).

Questo teorema, da un punto di vista logico, vuole dire che

s è soluzione
$$\iff s = \tilde{s} + s_0$$

12

allora vogliamo dimostrare che entrambe le *implicazioni* sono vere; ovvero nel senso che valgono

$$\begin{cases} s \text{ è soluzione} &\Longrightarrow s = \tilde{s} + s_0 \ s = \tilde{s} + s_0 \implies s \text{ è soluzione} \end{cases}$$

... [DA FARE IN CLASSE]

C. Sistemi lineari a scala

Sistemi lineari a scala

Definizione dei sistemi lineari a scala; elementi di pivot; compatibilità dei sistemi lineari gradinizzati.

D. Algoritmo di Gauß

Algoritmo di Gauß

Definizioni preliminari per la descrizione dell'algoritmo di Gauß (Matrice completa e le operazioni elementari OE). Descrizione dell'algoritmo di Gauß per rendere un sistema lineare in un sistema lineare equivalente a scala come un programma.