This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PCT

WELTORGANISATION FUR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

(11) Internationale Veröffentlichungsnummer:

· WO 97/08619

G06F 12/02

(43) Internationales Veröffentlichungsdatum:

6. Marz 1997 (06.03.97)

(21) Internationales Aktenzeichen:

PCT/DE96/01541

A1

(22) Internationales Anmeldedatum: 19. August 1996 (19.08.96)

(81) Bestimmungsstaaten: CN, CZ, HU, JP, KR, PL, SG, US. europäisches Patent (AT. BE, CH. DE, DK. ES. Fl. FR, GB. GR. IE, IT. LU. MC. NL. PT. SE).

(30) Prioritätsdaten:

295 13 792.4

28. August 1995 (28.08.95)

Veröffentlicht DE

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): RENSCHLER, Alben [DE/DE]: Josef-Stöhrer-Weg 11, D-76275 Enlingen (DE).

(54) Title: PROCESSOR UNIT WITH PLUG-IN MEMORY

(54) Bezeichnung: PROZESSOREINHEIT MIT STECKBAREM SPEICHER

(57) Abstract

A processor unit has a processor (7) and a memory module (6) that may be plugged into the processor unit. This processor unit (3) allows a more flexible use of the memory module. For that purpose, the memory module is subdivided into two zones, of which one may be operated as an EPROM and the other as a RAM. The processor unit (3) has means that automatically adjust the limits between both zones depending on instructions that may be given by the processor unit (3). The invention is used in stored-program controllers.

(57) Zusammenfassung

Es wird eine Prozessoreinheit mit einem Prozessor (7) und einem in die Prozessoreinheit steckbaren Speichermodul (6) vorgeschlagen, welche eine flexiblere Nutzung des Speichermoduls ermöglicht. Dazu ist das Speichermodul in zwei Bereiche einteilbar, von denen ein Bereich in einer EPROM-Betriebsart und der andere Bereich in einer RAM-Betriebsart betreibbar ist, wobei die Prozessoreinheit (3) mit Mitteln versehen ist, welche nach Maßgabe von der Prozessoreinheit (3) zuführbaren Anweisungen die Grenze zwischen den Bereichen automatisch einstellen. Die Erfindung wird in speicherprogrammierbaren Steuerungen angewandt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

					=
AM	Amenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
88	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ	Neusceland
15	Burkina Feso	(E	Irland	PL.	Polen
BG	Bulgarien	IT	Italies	PT	Portugal
r.	Benin	JP	Japan	RQ	Rumanien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belanus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kesachstan	SI	Slowenien
CĦ	Schweiz	น	Liechrenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal Senegal
CM	Kamenin	LR	Liberia	SZ	Swasiland
CN	China	LK	Litzoen	TD	Tschad
cs	Tschechoslowakei	LU	Luxenburg	TG	Togo
cz	Tschechische Republik	LV	Lenland	TJ	Tadschikistan
DB	Deutschland	MC	Monaco	TT	Trinidad und Tobego
DK	Dinemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
es	Spanien	ML	Mali	US	Vereinigte Staten von Amerika
ÌΊ	Fontand	MN	Mongolei	UZ	Usbekistan
FR	Prankreich	MR .	Mauretanien	VN	Victnam
GA	Gabon	MW	Malawi		
			-		

PROZESSOREINHEIT MIT STECKBAREM SPEICHER

5 Die Erfindung betrifft eine Prozessoreinheit mit einem Prozessor und einem in die Prozessoreinheit steckbaren Speichermodul.

Eine derartige Prozessoreinheit ist aus dem Siemens-Katalog 10 ST 54.1, Ausgabe 1994, bekannt. Das Speichermodul weist entweder einen RAM- oder einen EPROM-Baustein auf und ist zur Speicherung eines Steuerprogramms zur Steuerung eines technischen Prozesses vorgesehen. Ein Anwender erstellt mit einem Programmiergerät nach Maßgabe einer zu lösenden Steuerungs-15 aufgabe das Steuerprogramm, welches, für den Fall, daß das Speichermodul mit einem RAM-Baustein bestückt ist, direkt in das in die Prozessoreinheit gesteckte Speichermodul eingegeben wird (on-line-Programmierung). Ist dagegen das Speichermodul mit einem EPROM-Baustein bestückt, programmiert der 20 Anwender zunächst das in das Programmiergerät gesteckte Speichermodul und steckt anschließend das Modul in die Prozessoreinheit (off-line-Programmierung). Zu Beginn des Steuerbetriebs überträgt der Prozessor das Steuerprogramm vom Speichermodul in einen RAM-Arbeitsspeicher der Prozessoreinheit, auf welchen der Prozessor während des Steuerbetriebs lesend 25 und schreibend zugreift. Die Bestückung des Speichermoduls mit einem EPROM-Baustein hat den Vorteil, daß beim Ausfall der zur Versorgung des Speichermoduls erforderlichen Spannung das Steuerprogramm erhalten bleibt und nach der Wiederkehr dieser Versorgungsspan-30 nung nicht erneut in das Speichermodul geladen werden muß. Allerdings ist es nicht möglich, weitere Software-Bausteine, z. B. Bausteine in Form von Rezeptur-Bausteinen, in das Steuerprogramm rasch einzubinden. Das Steuerprogramm muß wie-35 derum off-line im Programmiergerät erstellt, in das EPROM hinterlegt und das Speichermodul erneut in die Prozessoreinheit gesteckt werden.

Ist das Speichermodul mit einem RAM-Baustein bestückt, so ist das Steuerprogramm zwar leicht on-line änderbar, das Steuerprogramm geht aber verloren, falls die Versorgungsspannung ausfällt. Es ist erforderlich, das Steuerprogramm nach Wiederkehr der Versorgungsspannung erneut in den RAM-Baustein zu laden.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Prozessoreinheit der eingangs genannten Art anzugeben, deren 10 Speichermodul flexibler einsetzbar ist.

Diese Aufgabe wird durch eine Prozessoreinheit mit den im Anspruch 1 angegebenen Maßnahmen gelöst.

- Durch die Aufteilung des Speichermoduls in einen RAM- und einen EPROM-Bereich kann ein Anwender wählen, welcher Bereich RAM- oder EPROM-Verhalten aufweisen soll. Der Anwender konfiguriert sich sein "Mischmodul" selbst; dabei ist die Aufteilung der Bereiche dynamisch änderbar.
- Vorteilhaft weist das Speichermodul einen Kennspeicher auf, in welchem eine Kennung über die Aufteilung des Moduls in Bereiche hinterlegt ist und die anzeigt, wo die Grenze zwischen RAM- und EPROM-Bereich liegt. Dadurch kann das Speichermodul aus der Prozessoreinheit gezogen und in eine andere Prozessoreinheit gesteckt werden.
 - Das Speichermodul ist mit einem aus dem Datenbuch "Flash Memory Products", 1992/93, der Firma Advanced Micro Devices bekannten FLASH-EPROM oder einem ebenfalls an sich bekannten FRAM bestückt.
- Die erfindungsgemäße Prozessoreinheit wird insbesondere in einer speicherprogrammierbaren Steuerung eingesetzt, in welcher Software-Funktionsbausteine in ein Steuerprogramm häufig eingekettet oder gelöscht werden müssen. Die Änderungen des Steuerprogramms erfolgen in der RAM-Betriebsart. Sind die Änderungen abgeschlossen, schaltet die Prozessoreinheit in die EPROM-Betriebsart, wodurch das Steuerprogramm auch nach einem

Ausfall der Versorgungsspannung erhalten bleibt.

Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung veranschaulicht ist, werden im folgenden die Erfindung, deren Ausgestaltungen sowie Vorteile näher erläutert.

5 Es zeigen:

Figur 1 ein Blockschaltbild einer speicherprogrammierbaren Steuerung und

Figur 2a bis Figur 2h Speicheraufteilungen eines FLASH-EPROMs.

10

15

20

25

In Figur 1 ist mit 1 ein Programmiergerät bezeichnet, mit welchem ein Anwender in einer geeigneten Programmiersprache ein Steuerprogramm zur Lösung einer Steueraufgabe erstellt. Über Leitungen 2 überträgt das Programmiergerät 1 on-line das Steuerprogramm in Form von Daten-, Adreß- und Steuerinformationen an ein in eine Prozessoreinheit 3 gestecktes, mit einem FLASH-EPROM 4 und einem Kennspeicher 5 versehenes Speichermodul 6. Die Prozessoreinheit 3 weist ferner einen Prozessor 7, einen Arbeitsspeicher 8, eine Anschaltung 9 und einen internen Bus 10 auf, der die Komponenten der Prozessoreinheit 3 miteinander verbindet und über den die Komponenten Daten austauschen. Die Prozessoreinheit 3 ist über die Anschaltung 9 und einen externen Bus 11 mit Peripherieeinheiten 12 gekoppelt, z. B. Peripherieeinheiten in Form von digitalen oder analogen Ein-/Ausgabeeinheiten, an welche Leitungen 13 zum Anschluß von hier nicht dargestellten Meßwertgebern geführt sind. Die Prozessoreinheit 3 und die Peripherieeinheiten 12 sind Bestandteile der speicherprogrammierbaren Steuerung.

Zur Verdeutlichung der Erfindung wird auf Figur 2 verwiesen, in welcher verschiedene Speicheraufteilungen des FLASH-EPROMS 4 (Figur 1) dargestellt sind. Es ist angenommen, daß das FLASH-EPROM vier Segmente 14a ... 14d aufweist (Figur 2a) und daß das FLASH-EPROM 4 byteweise beschrieben, der Inhalt des FLASH-EPROMS 4 allerdings nur segmentweise gelöscht werden kann. Das FLASH-EPROM 4 ist mit fünf Software-Funktionsbausteinen a ... e eines Steuerprogramms zu belegen, die das

Programmiergerät 1 on-line zum FLASH-EPROM 4 überträgt (Figur 2b). Dazu gibt ein Anwender in das Programmiergerät 1 eine geeignete Anweisung ein, z. B. eine Anweisung "Baustein a, Baustein b, ... laden (RAM) ". Diese Anweisung überträgt das Programmiergerät 1 der Prozessoreinheit 3, deren Prozessor 7 den Kennspeicher 5 des Speichermoduls ausliest, um festzustellen, welcher Bereich des FLASH-EPROMs 4 in der RAM- bzw. EPROM-Betriebsart betreibbar ist. Im vorliegenden Beispiel ist das FLASH-EPROM 4 leer, wodurch alle vier Segmente 14a ... 14d als RAM-Baustein genutzt werden können. Ein in einem 10 hier nicht dargestellten ROM der Prozessoreinheit 3 hinterlegter Verwaltungsalgorithmus, den der Prozessor 7 bearbeitet, teilt den Software-Funktionsbausteinen a ... e Adressen zu, unter welchen diese Bausteine im FLASH-EPROM 4 abgespei-15 chert werden. Um zu verhindern, daß das die Software-Funktionsbausteine a ... e umfassende Steuerprogramm durch Ausfall der Versorgungsspannung nicht verlorengeht, ist es erforderlich, mit einer weiteren Anweisung, z. B. mit einer Anweisung "Datenträger ein", das FLASH-EPROM 4 in die EPROM-20 Betriebsart zu schalten. Dabei hinterlegt der Verwaltungsalgorithmus die Software-Punktionsbausteine a ... e, ausgehend von einer Adresse 0, lückenlos in das FLASH-EPROM 4 und stellt die Grenze ein, die anzeigt, bis zu welcher Adresse das FLASH-EPROM 4 im EPROM-Modus und welcher verbleibende 25 Bereich im RAM-Modus ist. Diese Grenze hinterlegt der Prozessor 7 im Kennspeicher 5 des Speichermoduls 4. Es ist auch möglich, die Software-Funktionsbausteine a ... e mit einer Anweisung "Baustein a, Baustein b, ... laden (EPROM) direkt in einen EPROM-Bereich des FLASH-EPROMs 4 zu hinterlegen. Der Verwaltungsalgorithmus löscht alle Segmente 14a ... 14d des FLASH-EPROMs 4 und schreibt die Software-Funktionsbausteine a ... e ab einer Adresse O lückenlos in das FLASH-EPROM 4 ein, wobei der Bereich ab der Adresse 0 bis zur Bereichsgrenze, die in den Kennspeicher 5 abgespeichert 35 wird, als EPROM-Bereich und der verbleibende Bereich des FLASH-EPROMs 4 als RAM-Bereich eingestellt ist.

Bs ist angenommen, daß das Steuerprogramm modifiziert werden muß und die Software-Funktionsbausteine b, e durch den Software-Punktionsbaustein f zu ersetzen sind. Dies bedeutet, daß die Software-Funktionsbausteine b, e zu löschen sind (in Figur 2c durch unterbrochene Linie angedeutet) und der Software-Funktionsbaustein neu zu laden ist. Dazu gibt der Anwender zunächst die Anweisung "Datenträger aus" in das Programmiergerät 1 ein, die der Prozessoreinheit 3 übertragen und von dieser Einheit bearbeitet wird. Alle Segmente 14a ... 14d werden in den RAM-Modus versetzt, und der Inhalt des FLASH-EPROMs 4 kann geändert werden. Mit den Anweisungen "Software-Funktionsbaustein b löschen", "Software-Funktionsbaustein e löschen" und "Software-Funktionsbaustein f laden" leitet der Prozessor 7 zunächst den Löschvorgang ein (Figur 2c). Nach den eingangs gemachten Voraussetzungen ist nur ein segmentweises Löschen möglich, wodurch die Verwaltungssoftware zunächst lediglich Zugriffe auf die Software-Funktionsbausteine b, e sperrt, diese aber nicht löscht, da beim Löschen auch Teile der Software-Funktionsbausteine a, c im 20 Segment 14a und Teile der Software-Funktionsbausteine c, d im Segment 14b gelöscht werden würden. Anschließend hinterlegt der Prozessor den Software-Funktionsbaustein f ab der Grenze in das FLASH-EPROM 4 (Figur 2d) und leitet einen Komprimiervorgang ein, um "Lücken" im FLASH-EPROM zu beseitigen. Dabei 25 kopiert der Prozessor 7 die Software-Funktionsbausteine d, f in das Segment 14d (in Figur 2e mit d:, f: gekennzeichnet) und löscht anschließend das Segment 14c, wodurch Teile des Software-Funktionsbausteins e und der Software-Funktionsbaustein f vollständig gelöscht werden (Figur 2f). Im nächsten Schritt kopiert der Prozessor 7 den Software-Funktionsbaustein a in das Segment 14c und Teile des Software-Funktionsbausteins c in das Segment 14c und 14d (in Figur 2g mit a:, c: gekennzeichnet) und löscht die Segmente 14a, 14b. Der Komprimiervorgang ist damit abgeschlossen. Mit der Anweisung 35 "Datenträger ein" schaltet das FLASH-EPROM 4 wiederum in die EPROM-Betriebsart, und der Prozessor 7 legt die eingeketteten

Software-Funktionsbausteine a ... e in den Bereich ab der

WO 97/08619 PCT/DE96/015

6

Adresse 0 lückenlos ab (Figur 2h Software-Funktionsbausteine a ... e). Ferner schreibt der Prozessor 7 in den Kennspeicher 5 des Speichermoduls 4 die Grenze ein, die wiederum anzeigt, bis zu welcher Adresse das FLASH-BPROM 4 im EPROM-Modus und welcher verbleibende Bereich im RAM-Modus betreibbar ist.

25

Patentansprüche

- 1. Prozessoreinheit mit einem Prozessor (7) und einem in die Prozessoreinheit steckbaren Speichermodul (6),
- 5 dadurch gekennzeichnet,
 - daß das Speichermodul (6) in zwei Bereiche einteilbar ist, von denen ein Bereich in einer EPROM-Betriebsart und der andere Bereich in einer RAM-Betriebsart betreibbar ist, und
- daß die Prozessoreinheit (3) mit Mitteln versehen ist, 10 welche nach Maßgabe von der Prozessoreinheit (3) zuführbaren Anweisungen die Grenze zwischen den Bereichen automatisch einstellen.
- Prozessoreinheit nach Anspruch 1, dadurch gekenn zeichnet, daß das Speichermodul (6) einen Kennspeicher
 aufweist, in welchem eine Kennung über die Aufteilung des Moduls (6) in Bereiche hinterlegt ist.
- Prozessoreinheit nach Anspruch 1 oder 2, dadurch ge kennzeichnet, daß das Speichermodul (6) ein FLASH EPROM (4) aufweist.
 - 4. Prozessoreinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Speichermodul (6) ein FRAM aufweist.
 - 5. Speicherprogrammierbare Steuerung mit einer Prozessoreinheit (3) nach einem der Ansprüche 1 bis 4, wobei
- ein auf einem Programmiergerât (1) erstelltes Steuer programm im Speichermodul (6) hinterlegt ist,
 - zu Beginn des Steuerbetriebs der Prozessor (7) das Steuerprogramm in einen Arbeitsspeicher (8) der Prozessoreinheit
 (3) überträgt und
- während des Steuerbetriebs der Prozessor (7) auf den Ar-35 beitsspeicher (8) zugreift.
