Exploratory Data Analysis with R

@MatthewRenze
#PrDC16

Motivation

The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that's going to be a hugely important skill in the next decades, ... because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value from it.

Hal Varian, Google's Chief Economist The McKinsey Quarterly, Jan 2009

The New York Times

For Today's Graduate, Just One Word: Statistics

By STEVE LOHR Published: August 5, 2009

MOUNTAIN VIEW, Calif. — At Harvard, Carrie Grimes majored in anthropology and archaeology and ventured to places like Honduras, where she studied Mayan settlement patterns by mapping where artifacts were found. But she was drawn to what she calls "all the computer and math stuff" that was part of the job.

y	TWITTER
in	LINKEDIN
F (58)	COMMENTS
8	SIGN IN TO E- MAIL

AVERAGE SALARY FOR H	h Paying Skills and Exper	ience
----------------------	---------------------------	-------

SKILL	2013	YR/YR CHANGE
R	\$ 115,531	n/a
NoSQL	\$ 114,796	1.6%
MapReduce	\$ 114,396	n/a
PMBok	\$ 112,382	1.3%
Cassandra	\$ 112,382	n/a
Omnigraffle	\$ 111,039	0.3%
Pig	\$ 109,561	n/a
SOA (Service Oriented Architecture)	\$ 108,997	-0.5%
Hadoop	\$ 108,669	-5.6%
Mongo DB	\$ 107,825	-0.4%

Source: Dice 2014 Tech Salary Survey Results

A Flood of Data is Coming...

Source: http://www.dot.gov.nt.ca/

Source: Wikipedia

Sink

or

Swim

Overview

- Introduction to R
- Data Munging
- Descriptive Statistics
- Data Visualization
- Beyond R and EDA

How Does This Apply to Me?

- As a software developer, I often:
 - ☑ Perform log file analysis
 - ☑ Analyze software performance
 - ☑ Analyze code metrics for code quality
 - ☑ Detect anomalies in source data
 - ☑ Transform or clean data files to make them usable
 - ☑ Help decision makers make decisions based on data

About Me

- Independent software consultant
- Education
 - B.S. in Computer Science
 - B.A. in Philosophy
- Community
 - Pluralsight Author
 - ASPInsider
 - Public Speaker
 - Open-Source Software

IOWA STATE UNIVERSITY

SPONSORS

Introduction to R

What is R?

- Open source
- Language and environment
- Numerical and graphical analysis
- Cross platform

What is R?

- Active development
- Large user community
- Modular and extensible
- 6700+ extensions

and best of all...

Code Demo

Data Munging

Data Munging

- Transforming data
- Raw data to usable data
- Data must be cleaned first

Data Munging Tasks

- Renaming variables
- Data type conversion
- Encoding, decoding or recoding data
- Merging data sets
- Transforming data
- Handling missing data (imputing)
- Handling anomalous values

Loading Data in R

- File-based data
- Web-based data
- Databases
- Statistical data
- And many more...

Cleaning Data

- This step is often the:
 - Most difficult
 - Most time consuming
- TIP: Record all steps

- Column with wrong name
- Rows with missing values
- Runtime column has units
- Revenue in multiple scales
- Wrong file format

Code Demo

Descriptive Statistics

Descriptive Statistics

- Describe data
- Provides a summary
- aka: Summary statistics

Movie Runtime				
Statistic	Value (minutes)			
Minimum	38			
1 st Quartile	93			
Median	101			
Mean	104			
3 rd Quartile	113			
Maximum	219			

Statistical Terms

- Observations
- Variables
- Qualitative variable
- Quantitative variable

ID	Date	Customer	Product	Quantity
1	2015-08-27	John	Pizza	2
2	2015-08-27	John	Soda	2
3	2015-08-27	Jill	Salad	1
4	2015-08-27	Jill	Milk	1
5	2015-08-28	Miko	Pizza	3
6	2015-08-28	Miko	Soda	2
7	2015-08-28	Sam	Pizza	1
8	2015-08-28	Sam	Milk	1

Types of Analysis

- Number of variables
 - Univariate
 - Bivariate
 - Multivariate
- Type of variables
 - Qualitative
 - Quantitative

Univariate Analysis

- One variable
- Qualitative
 - Frequency
- Quantitative
 - Central tendency
 - Dispersion

Bivariate Analysis

- Qualitative
 - Joint frequency
- Quantitative
 - Two variables
 - Predictor
 - Outcome
 - Measures
 - Covariance
 - Correlation

Eruptions at Old Faithful

Code Demo

Data Visualization

Data Visualization

- Visual data representation
- For human pattern recognition
- Map dimensions to visual characteristics

Data Visualization

ID	Date	Customer	Product	Quantity
1	2015-08-27	John	Pizza	2
2	2015-08-27	John	Soda	2
3	2015-08-27	Jill	Salad	1
4	2015-08-27	Jill	Milk	1
5	2015-08-28	Miko	Pizza	3
6	2015-08-28	Miko	Soda	2
7	2015-08-28	Sam	Pizza	1
8	2015-08-28	Sam	Milk	1

Types of Data Visualizations

- Number of variables
 - Univariate
 - Bivariate
 - Multivariate
- Type of variable(s)
 - Qualitative
 - Quantitative

Code Demo

Feature Length

Beyond R and EDA

Advanced Data Analysis with R

- Cluster Analysis
- Statistical Modeling
- Dimensionality Reduction
- Analysis of Variance (ANOVA)

Source: Nathan Yau (www.flowingdata.com)

Data Mining and Machine Learning with R

Alternatives to R for EDA


```
Sentiment Analysis.py - C:\Pluralsight\Sentiment Analysis.py
File Edit Format Run Options Windows
  ef getSentiments(sentiment_file):
   scores = {}
   for line in sentiment_file:
       term, score = line.split("\t")
       scores[term] = int(score)
  ef getTweets(tweet_file):
   tweets = []
       tweet = ison.loads(line)
       text = tweet.get("text")
       tweets.append(text)
  ef getAllTerms(tweets, sentiments):
    allTermScores = ()
   for tweet in tweets:
        tweetTerms = getTweetTerms(tweet, sentiments)
        for tweetTerm in tweetTerms:
           if sentiments.has_key(tweetTerm)
           if not allTermScores.has_key(tweetTerm):
               allTermScores[tweetTerm] = []
            termScores.append(tweetTerms[tweetTerm])
```


Source: Microsoft

Sentiment Analysis.py - C:\Pluralsight\Sentiment Analysis.py

```
File Edit Format Run Options Windows
import sys
import json
import re
def getSentiments(sentiment file):
    scores = {}
   for line in sentiment file:
      term, score = line.split("\t")
      scores[term] = int(score)
    return scores
def getTweets(tweet file):
   tweets = []
   for line in tweet file:
      tweet = json.loads(line)
      text = tweet.get("text")
       tweets.append(text)
    return tweets
def getAllTerms(tweets, sentiments):
   allTermScores = {}
    for tweet in tweets:
        tweetTerms = getTweetTerms(tweet, sentiments)
        for tweetTerm in tweetTerms:
           if sentiments.has key(tweetTerm):
                continue
           if not allTermScores.has key(tweetTerm):
                allTermScores[tweetTerm] = []
            termScores = allTermScores[tweetTerm]
            termScores.append(tweetTerms[tweetTerm])
    return allTermScores
```

Where to Go Next...

- R website: http://www.cran.r-project.org
- R Studio: http://www.rstudio.com
- Revolutions: http://blog.revolutionanalytics.com
- Flowing Data: http://flowingdata.com
- R-Blogger: http://www.r-bloggers.com

Exploratory Data Analysis with R

Matthew Renze
@matthewrenze | www.matthewrenze.com

www.pluralsight.com/authors/matthew-renze

Conclusion

Conclusion

- Introduction to R
- Data munging
- Descriptive statistics
- Data visualization
- Beyond R & EDA

Feedback

- Feedback is very important to me!
- One thing you liked?
- One thing I could improve?

Contact Info

Matthew Renze

• Twitter: omatthewrenze

• Email: <u>matthew@renzeconsulting.com</u>

• Website: www.matthewrenze.com