(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 November 2002 (21.11.2002)

PCT

(10) International Publication Number WO 02/092015 A2

(51) International Patent Classification7:

(21) International Application Number:

IC

(22) International Filing Date: 17 May 2002 (17.05.2002)

(25) Filing Language:

English

A61K

PCT/US02/15982

(26) Publication Language:

English

(30) Priority Data:

60/291,311 17 May 2001 (17.05.2001) US 60/353,058 1 February 2002 (01.02.2002) US 60/361,293 4 March 2002 (04.03.2002) US

(71) Applicants (for all designated States except US):
GENOME THERAPEUTICS CORPORATION
[US/US]; 100 Beaver Street, Waltham, MA 02453 (US).
WYETH [US/US]; Five Giralda Farms, Madison, NJ 07928 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALLEN, Kristina [US/US]; 11 Oliver Lane, Hopkinton, MA 01748-3108

(US). ANISOWICZ, Anthony [US/US]; 50 Upham Street, West Newton, MA 02465 (US). BHAT, Bheem, M. [IN/US]; 1214 Mayapple Lane, West Chester, PA 19380 (US). DAMAGNEZ, Veronique [FR/US]; 125 Water Street, Framingham, MA 01701 (US). ROBINSON, John, Allen [US/US]; 23 Webb Road, Downingtown, PA 19335 (US). YAWORSKY, Paul, J. [US/US]; 13 Hobart Lane, Rockland, MA 02370 (US).

- (74) Agents: REA, Teresa, Stanek et al.; Burns, Doane, Swecker & Mathis L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

- With Wnt1 the TCF-signal generated by LRP5 is greater than that of LRP6.
- LRP5/6 -Wnt1 induced TCF- is efficiently blocked byDkk1

(57) Abstract: The present invention provides reagents, compounds, compositions, and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk, including Dkk-1. The various nucleic acids, polypeptides, antibodies, assay methods, diagnostic methods, and methods of treatment of the present invention are related to and impact on Dkk, LRP5, LRP6, HBM, and Wnt signaling. Dkk, LRP5, LRP6, HBM, and Wnt are implicated in bone and lipid cellular signaling. Thus, the present invention provides reagents and methods for modulating lipid levels and/or bone mass and is useful in the treatment and diagnosis of abnormal lipid levels and bone mass disorders, such as osteoporosis.

) 02/092015 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

FIELD OF THE INVENTION

The present invention relates to signal transduction, bone development, bone loss disorders, modulation of lipid-related conditions, research reagents, methods of screening drug leads, drug development, treatments for bone and/or lipid disorders, screening and development of therapies, molecular, cellular, and animal models of bone and/or lipid development and maintenance, which are mediated by Dkk, including Dkk-1, and/or LRP5, LRP6, HBM or other members of the Wnt pathway.

10

15

20

25

5

BACKGROUND OF THE INVENTION

Two of the most common types of osteoporosis are postmenopausal and senile osteoporosis. Osteoporosis affects both men and women, and, taken with other abnormalities of bone, presents an ever-increasing health risk for an aging population. The most common type of osteoporosis is that associated with menopause. Most women lose between 20-60% of the bone mass in the trabecular compartment of the bone within 3-6 years after the cessation of menses. This rapid bone loss is generally associated with an increase of bone resorption and formation. However, the resorptive cycle is more dominant and the result is a net loss of bone mass. Osteoporosis is a common and serious disease among postmenopausal women. There are an estimated 25 million women in the United States alone who are afflicted with this disease. The results of osteoporosis are personally harmful, and also account for a large economic loss due to its chronicity and the need for extensive and long-term support (e.g., hospitalization and nursing home care) from disease sequelae. This is especially true in elderly patients. Additionally, while osteoporosis is generally not thought of as a life-threatening condition, a 20-30% mortality rate is related to hip fractures in elderly women. A large percentage of this mortality rate can be directly associated with postmenopausal osteoporosis.

The most vulnerable tissue in the bone to the effects of postmenopausal osteoporosis is the trabecular bone. This tissue is often referred to as spongy bone and is particularly concentrated near the ends of the bone, near the joints, and in the vertebrae of the spine. The trabecular tissue is characterized by small structures which inter-connect with each other as well as the more solid and dense cortical tissue which makes up the outer surface and central shaft of the bone. This criscross network of trabeculae gives lateral support to the outer cortical structure and is critical to the biomechanical strength of the overall structure. In postmenopausal osteoporosis, it is primarily the net resorption and loss of the trabeculae which lead to the failure and fracture of the bone. In light of the loss of the trabeculae in postmenopausal women, it is not surprising that the most common fractures are those associated with bones which are highly dependent on trabecular support, e.g., the vertebrae, the neck of the femur, and the forearm. Indeed, hip fracture, Colle's fractures, and vertebral crush fractures are indicative of postmenopausal osteoporosis. Osteoporosis affects cortical as well as trabecular bone. Alterations in endosteal bone resorption and Haversian remodeling with age affect cortical thickness and structural integrity contributing the increased risk for fracture.

5

10

15

20

25

30

One of the earliest generally accepted methods for treatment of postmenopausal osteoporosis was estrogen replacement therapy. Although this therapy frequently is successful, patient compliance is low, primarily due to the undesirable side-effects of chronic estrogen treatment. Frequently cited side-effects of estrogen replacement therapy include reinitiation of menses, bloating, depression, and, potentially, increased risk of breast or uterine cancer. In order to limit the known threat of uterine cancer in women who have not had a hysterectomy, a protocol of estrogen and progestin cyclic therapy is often employed. This protocol is similar to that used in birth control regimens, and often is not tolerated by women because of the side-effects characteristic of progestin. More recently, certain antiestrogens, originally developed for the treatment of breast cancer, have been shown in experimental models of postmenopausal osteoporosis to be efficacious. Among these agents is raloxifene (See, U.S. Patent No. 5,393,763; Black et al., J.

Clin. Invest., 93:63-69 (1994); and Ettinger et al., JAMA 282:637-45 (1999)). In addition, tamoxifen, a widely used clinical agent for treating breast cancer, has been shown to increase bone mineral density in post menopausal women suffering from breast cancer (Love et al., N. Engl. J. Med., 326:852-856 (1992)).

5

10

15

Another therapy for the treatment of postmenopausal osteoporosis is the use of calcitonin. Calcitonin is a naturally occurring peptide which inhibits bone resorption and has been approved for this use in many countries (Overgaard *et al.*, *Br. Med. J.*, 305:556-561 (1992)). The use of calcitonin has been somewhat limited, however. Its effects are very modest in increasing bone mineral density, and the treatment is very expensive. Another therapy for the treatment of postmenopausal osteoporosis is the use of bisphosphonates. These compounds were originally developed for treating Paget's disease and malignant hypercalcemia. They have been shown to inhibit bone resorption. Alendronate, a bisphosphonate, has been approved for the treatment of postmenopausal osteoporosis. These agents may be helpful in the treatment of osteoporosis, but these agents also have potential liabilities which include osteomalacia, extremely long half-life in bone (greater than 2 years), and possible "frozen bone syndrome," e.g., the cessation of normal bone remodeling.

20

Senile osteoporosis is similar to postmenopausal osteoporosis in that it is marked by the loss of bone mineral density and resulting increase in fracture rate, morbidity, and associated mortality. Generally, it occurs in later life, *i.e.*, after 70 years of age. Historically, senile osteoporosis has been more common in females, but with the advent of a more elderly male population, this disease is becoming a major factor in the health of both sexes. It is not clear what, if any, role hormones such as testosterone or estrogen have in this disease, and its etiology remains obscure. Treatment of this disease has not been very satisfactory. Hormone therapy, estrogen in women and testosterone in men, has shown equivocal results; calcitonin and bisphosphonates may be of some utility.

25

The peak mass of the skeleton at maturity is largely under genetic control.

Twin studies have shown that the variance in bone mass between adult monozygotic

twins is smaller than between dizygotic twins (Slemenda *et al.*, *J. Bone Miner. Res.*, 6: 561-567 (1991); Young *et al.*, *J. Bone Miner. Res.*, 6:561-567 (1995); Pocock *et al.*, *J. Clin. Invest.*, 80:706-710 (1987); Kelly *et al.*, *J. Bone Miner. Res.*, 8:11-17 (1993)). It has been estimated that up to 60% or more of the variance in skeletal mass is inherited (Krall *et al.*, *J. Bone Miner. Res.*, 10:S367 (1993)). Peak skeletal mass is the most powerful determinant of bone mass in elderly years (Hui *et al.*, *Ann. Int. Med.*, 111:355-361 (1989)), even though the rate of age-related bone loss in adult and later life is also a strong determinant (Hui *et al.*, *Osteoporosis Int.*, 1:30-34 (1995)). Since bone mass is the principal measurable determinant of fracture risk, the inherited peak skeletal mass achieved at maturity is an important determinant of an individual's risk of fracture later in life. Thus, study of the genetic basis of bone mass is of considerable interest in the etiology of fractures due to osteoporosis.

5

10

15

20

25

30

Recently, a strong interest in the genetic control of peak bone mass has developed in the field of osteoporosis. The interest has focused mainly on candidate genes with suitable polymorphisms to test for association with variation in bone mass within the normal range, or has focused on examination of genes and gene loci associated with low bone mass in the range found in patients with osteoporosis. The vitamin D receptor locus (VDR) (Morrison et al., Nature, 367:284-287 (1994)), PTH gene (Howard et al., J. Clin. Endocrinol. Metab., 80:2800-2805 (1995); Johnson et al., J. Bone Miner. Res., 8:11-17 (1995); Gong et al., J. Bone Miner. Res., 10:S462 (1995)) and the estrogen receptor gene (Hosoi et al., J. Bone Miner. Res., 10:S170 (1995); Morrison et al., Nature, 367:284-287 (1994)) have figured most prominently in this work. These studies are difficult because bone mass (i.e., the phenotype) is a continuous, quantitative, polygenic trait, and is confounded by environmental factors such as nutrition, co-morbid disease, age, physical activity, and other factors. Also, this type of study design requires large numbers of subjects. In particular, the results of VDR studies to date have been confusing and contradictory (Garnero et al., J. Bone Miner. Res., 10:1283-1288 (1995); Eisman et al., J. Bone. Miner. Res., 10:1289-1293 (1995); Peacock, J. Bone Miner. Res., 10:1294-1297 (1995)).

Furthermore, thus far, the art has not determined the mechanism(s) whereby the genetic influences exert their effect on bone mass.

5

10

15

20

25

30

While it is well known that peak bone mass is largely determined by genetic rather than environmental factors, studies to determine the gene loci (and ultimately the genes) linked to variation in bone mass are difficult and expensive. Study designs which utilize the power of linkage analysis, *e.g.*, sib-pair or extended family, are generally more informative than simple association studies, although the latter do have value. However, genetic linkage studies involving bone mass are hampered by two major problems. The first problem is the phenotype, as discussed briefly above. Bone mass is a continuous, quantitative trait, and establishing a discrete phenotype is difficult. Each anatomical site for measurement may be influenced by several genes, many of which may be different from site to site. The second problem is the age component of the phenotype. By the time an individual can be identified as having low bone mass, there is a high probability that their parents or other members of prior generations will be deceased and therefore unavailable for study, and younger generations may not have even reached peak bone mass, making their phenotyping uncertain for genetic analysis.

Thus, there is a need in the art for additional research tools for the elucidation of the molecular mechanism of bone modulation, for the screening and development of candidate drugs, and for treatments of bone development and bone loss disorders. The present invention is directed to these, as well as other, important ends.

In addition to bone modulation, the present invention relates to modulation of lipid levels. Cardiovascular disease is the most common cause of mortality in the United States, and atherosclerosis is the major cause of heart disease and stroke. It is widely appreciated that cholesterol plays an important role in atherogenesis. Normally, most cholesterol serves as a structural element in the walls of cells, whereas much of the rest is in transit through the blood or functions as the starting material for the synthesis of bile acids in the liver, steroid hormones in endocrine cells and vitamin D in skin. The transport of cholesterol and other lipids through the

circulatory system is facilitated by their packaging into lipoprotein carriers. These spherical particles comprise protein and phospholipid shells surrounding a core of neutral lipid, including unesterified ("free") or esterified cholesterol and triglycerides. Risk for atherosclerosis increases with increasing concentrations of low density lipoprotein (LDL) cholesterol, whereas risk is inversely proportional to levels of high-density lipoprotein (HDL) cholesterol. The receptor-mediated control of plasma LDL levels has been well-defined, and recent studies have now provided new insights into HDL metabolism.

5

10

15

20

25

30

The elucidation of LDL metabolism began in 1974 by Michael Brown and Joseph Goldstein. In brief, the liver synthesizes a precursor lipoprotein (very low density lipoprotein, VLDL) that is converted during circulation to intermediate density lipoprotein (IDL) and then to LDL. The majority of the LDL receptors expressed in the body are on the surfaces of liver cells, although virtually all other tissues ("peripheral tissues") express some LDL receptors. After binding, the receptorlipoprotein complex is internalized by the cells via coated pits and vesicles, and the entire LDL particle is delivered to lysosomes, wherein it is dissembled by enzymatic hydrolysis, releasing cholesterol for subsequent cellular metabolism. This wholeparticle uptake pathway is called "receptor-mediated endocytosis." Cholesterolmediated feedback regulation of both the levels of LDL receptors and cellular cholesterol biosynthesis help ensure cellular cholesterol homeostasis. Genetic defects in the LDL receptor in humans results in familial hypercholesterolemia, a disease characterized by elevated plasma LDL cholesterol and premature atherosclerosis and heart attacks. One hypothesis for the deleterious effects of excess plasma LDL cholesterol is that LDL enters the artery wall, is chemically modified, and then is recognized by a special class of receptors called macrophage scavenger receptors, that mediate the cellular accumulation of the LDL cholesterol in the artery, eventually leading to the formation of an atherosclerotic lesion.

The major lipoprotein classes include intestinally derived chylomicrons that transport dietary fats and cholesterol, hepatic-derived VLDL, IDL, and LDL that can be atherogenic, and hepatic- and intestinally-derived HDL that are antiatherogenic.

Apoprotein B (ApoB) is necessary for the secretion of chylomicrons (ApoB48) and VLDL, IDL, and LDL (ApoB100). Plasma levels of VLDL triglycerides are determined mainly by the rates of secretion in LDL lipolytic activity. Plasma levels of LDL cholesterol are determined mainly by the secretion of ApoB100 into plasma, the efficacy with which VLDL are converted to LDL and by LDL receptor-mediated clearance. Regulation of HDL cholesterol levels is complex and is affected by rates of synthesis of its Apo proteins, rates of esterification of free cholesterol to cholesterol ester by LCAT, levels of triglyceride-rich lipoproteins and CETP-mediated transfer of cholesterol esters from HDL, and clearance from plasma of HDL lipids and Apo proteins.

5

10

15

20

25

30

Normal lipoprotein transport is associated with low levels of triglycerides and LDL cholesterol and high levels of HDL cholesterol. When lipoprotein transport is abnormal, lipoprotein levels can change in ways that predispose individuals to atherosclerosis and arteriosclerosis (see Ginsburg, *Endocrinol. Metab. Clin. North Am.*, 27:503-19 (1998)).

Several lipoprotein receptors may be involved in cellular lipid uptake. These receptors include: scavenger receptors; LDL receptor-related protein/α2-macroglobulin receptor (LRP); LDL receptor; and VLDL receptor. With the exception of the LDL receptor, all of these receptors are expressed in atherosclerotic lesions while scavenger receptors are mostly expressed in macrophages, the LRP and VLDL receptors may play an important role in mediating lipid uptake in smooth muscle cells (Hiltunen *et al.*, *Atherosclerosis*, 137 suppl.:S81-8 (1998)).

A major breakthrough in the pharmacologic treatment of hypercholesterolemia has been the development of the "statin" class of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA reductase) inhibitory drugs. 3-hydroxy-3-methylglutaryl-CoA reductase is the rate controlling enzyme in cholesterol biosynthesis, and its inhibition in the liver stimulates LDL receptor expression. As a consequence, both plasma LDL cholesterol levels and the risk for atherosclerosis decrease. The discovery and analysis of the LDL receptor system has had a profound impact on cell biology, physiology, and medicine.

HDL is thought to remove unesterified, or "free" cholesterol (FC) from peripheral tissues, after which most of the cholesterol is converted to cholesterol ester (CE) by enzymes in the plasma. Subsequently, HDL cholesterol is efficiently delivered directly to the liver and steroidogenic tissues via a selective uptake pathway and the HDL receptor, SR-BI (class B type I scavenger receptor) or, in some species, transferred to other lipoproteins for additional transport in metabolism (see Krieger, *Proc. Natl. Acad. Sci. USA*, 95:4077-4080 (1998)).

These issues illustrate a need in the art for additional research tools for the elucidation of the molecular mechanism of lipid modulation, for the screening and development of candidate drugs, and for treatments of lipid levels and lipid level modulation disorders. The present invention is directed to these, as well as other, important ends.

SUMMARY OF THE INVENTION

15

20

25

30

10

5

The present invention provides reagents, compounds, compositions and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk proteins. LRP5 is also referred to as Zmax1 or Zmax. Thus, when discussing methods, reagents, compounds, and compositions of the invention which relate to the interaction between Dkk and LRP5 (or Zmax1). the invention is also to be understood to encompass embodiments relating to interactions between Dkk and LRP6 and Dkk and HBM. Moreover, where Dkk is discussed herein, it is to be understood that the methods, reagents, compounds, and compositions of the present invention include the Dkk family members, including but not limited to Dkk-1, Dkk-2, Dkk-3, Dkk-4 and Soggy. Furthermore, the invention encompasses novel fragments of Dkk-1 which demonstrate a binding interaction between the ligand binding domain (LBD) of LRP5 and additional proteins and/or which can modulate an interaction between LRP5, or a variant or fragment thereof. and a Dkk protein. The invention provides assays, methods, compositions, and compounds relating to Dkk-Wnt signaling. Numerous Wnt proteins are compatible with the present invention, including Wnt1-Wnt19, and particularly, Wnt1, Wnt3,

Wnt3a, and Wnt10b. The present invention further provides reagents, compounds, compositions and methods modulating interactions between one or more other proteins and Dkk-1. The present invention also provides a series of peptide aptamers which bind to Dkk-1 or to LRP5 (or HBM and/or LRP6).

5

10

15

20

25

The polypeptides of the invention, for example in the form of peptide oligomers, aptamers, proteins, and protein fragments as well as the nucleic acids of the invention, for example in the form of nucleic acids which encode the polypeptides of the invention as well as antisense, or complimentary nucleic acids, are useful as reagents for the study of bone mass and lipid level modulation. The polypeptides and nucleic acids of the invention are also useful as therapeutic and diagnostic agents.

The present invention provides useful reagents for the modulation of Dkk proteins with LRP5, LRP6, and/or HBM, the modulation Dkk-1 and/or Dkk-1 interacting protein activity, and modulation of LRP5/Dkk-1, LRP6/Dkk1 and HBM/Dkk-1 interactions and Dkk-1/Dkk-1 interacting protein interactions. The present invention provides a series of peptide aptamers which bind Dkk-1 or LRP5, LRP6, and/or HBM.

An object of the invention is to provide for a method of regulating LRP5/LRP6/HBM/HBM-like activity in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk activity. The subject can be a vertebrate or an invertebrate organism, but more preferably the organism is a canine, a feline, an ovine, a primate, an equine, a porcine, a caprine, a camelid, an avian, a bovine, or a rodent organism. A more preferred organism is a human. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in trabecular

connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. The invention further provides such a method wherein the composition comprises a Dkk, Dkk-1 or a LRP5/LRP6/HBM binding fragment thereof, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The invention further provides such a method wherein the composition comprises one or more of the proteins which interact with Dkk, including Dkk-1, such as those depicted in Figure 5, or a Dkk-binding fragment thereof, or an antisense, siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises an LRP5/LRP6/Zmax1 antibody. Dkk antibody, a Dkk-1 antibody or an antibody to a Dkk-1 interacting protein. The invention further provides such a method wherein the compositions comprise an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188). or a mimetic of such an aptamer. The method further provides that invention further provides such a method wherein the compositions comprise an aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer.

5

10

15

20

25

30

A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk to LRP5/LRP6/Zmax1, particularly Dkk-1, or the binding of Dkk-1 to a Dkk-1 interacting protein, such as those shown in Figure 5. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NOs:189-192) (particularly, peptide (SEQ ID NO:191) and 13 (including SEQ IDNOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies.

Another aspect of the invention is to provide for a method of regulating Dkk-Wnt pathway activity in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk-Wnt pathway activity. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass

and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter. and an increase in inorganic bone content. In another preferred embodiment, the Wnt is Wnt1-Wnt19. In a particularly preferred embodiment, the Wnt is Wnt1, Wn3, Wnt3a, or Wnt10b. Preferred compositions comprise Dkk-modulating or Dkk-1modulating compounds or one or more Dkk interacting or Dkk-1 interacting proteins. or a Dkk-binding fragment thereof. Other preferred Dkk modulating compositions comprise a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk, including Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk, including Dkk-1, to LRP5, LRP6, or HBM or the binding of Dkk, including Dkk-1, to a Dkk interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein the composition comprises an aptamer of Dkk or Dkk-1, such as those depicted. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208). Preferred compositions of the present invention also comprise LRP5 antibodies.

5

10

15

20

25

30

A further aspect of the invention is to provide for a method of modulating Wnt signaling in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk activity or modulates Dkk interaction with LRP5

5

10

15

20

25

30

(or LRP6 or HBM). In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. In another preferred embodiment, the Wnt is Wnt1-Wnt19. In a particularly preferred embodiment, the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b. Preferred Wnt modulating compositions comprise one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active or LRP5/LRP6/HBM binding fragment thereof. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk or Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or blocking the binding of Dkk, including Dkk-1, to LRP5, LRP6, or HBM or the binding of Dkk or Dkk-1 to a Dkk interacting or Dkk-1 interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein compositions comprising an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such an aptamer. The invention further provides such a method wherein the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. The invention further provides such a method wherein compositions of an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NO:189-192

(particularly peptide (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Additional preferred compositions of the present invention also comprise LRP5 antibodies.

5

10

15

20

25

30

Additionally, the invention provides for a method of modulating bone mass and/or lipid levels in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5 in an amount effective to modulate bone mass and/or lipid levels, wherein bone mass and/or lipid levels are in need of modulation. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. Preferred bone mass and/or lipid modulating compositions comprise one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active or LRP5/LRP6/HBM binding fragment thereof. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk, including Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The invention further provides such a method wherein the composition comprises an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk, including Dkk-1, to LRP5, LRP6,

or HBM or the binding of Dkk, including Dkk-1, to a Dkk interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NOs:189-192 (particularly peptide 13 (SEQ ID NO:191)) and 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies. It is a further aspect of the invention that such lipid-modulated diseases include a cardiac condition, atherosclerosis, familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and an elevated lipid level of unknown etiology.

15

10

5

Bone disorders contemplated for treatment and/or diagnosis by the methods and compositions disclosed herein include a bone development disorder, a bone fracture, age related loss of bone, a chondrodystrophy, a drug-induced bone disorder, high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.

20

It is a further object of the invention to provide a method of screening for compounds or compositions which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

25

- (a) exposing Dkk or a LRP5/LRP6/HBM binding fragment thereof to a compound; and
- (b) determining whether said compound binds to Dkk or the LRP5/LRP6/HBM binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1. In a particularly preferred embodiment, the binding of Dkk-1 to LRP5/LRP6/HBM is decreased.

It is a further object of the invention to provide a method of screening compounds or compositions which modulate the interaction of DKK with LRP5, LRP6, HBM, or a DKK-finding fragment thereof comprising:

(a) exposing DKK or a LRP5/LRP6/HBM binding fragment thereof to a compound; and,

(b) determining whether said compound modulates the interaction of Dkk with LRP5, LRP6, or HBM, or the Dkk-binding fragment of LRP5/LRP6/HBM.

In a preferred embodiment, the Dkk is Dkk-1. In a particularly preferred embodiment, the interaction of Dkk-1 with LRP5/LRP6/HBM is decreased.

It is a further object of the invention to provide a method of screening for compounds or compositions which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

- (a) exposing Dkk or a LRP5/LRP6/HBM binding fragment thereof to a compound;
- (b) determining whether said compound binds to Dkk or the LRP5/LRP6/HBM binding fragment thereof; and,
- (c) further determining whether said compound modulates the interaction of Dkk with LRP5, LRP6, or HBM, or the Dkk-binding fragment of LRP5/LRP6/HBM.

In preferred embodiments of such methods, Dkk or a biologically active fragment thereof is attached to a solid substrate. In an alternative embodiment of the invention, LRP5/LRP6/HBM, or a biologically active fragment thereof (such as the ligand binding domain), is exposed to the compound. Another aspect of the invention provides for compounds and compositions identified by the disclosed methods. A preferred embodiment of the invention provides that the compound screened in an afore-mentioned method is one or more proteins which interact with Dkk, particularly Dkk-1, as depicted in Figure 5, or a LRP5/LRP6/HBM-binding fragment thereof. Another preferred embodiment provides that the compound comprises a Dkk or Dkk-1 peptide aptamer, such as those depicted in Figure 3 (SEQ

10

5

15

20

25

ID NOs:171-188), or a mimetic of such aptamers. The compound may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The method further provides that the compound comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk-1 interacting protein. The invention further provides that the compound may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compounds of the present invention also comprise LRP5 antibodies.

10

5

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

15

- (a) exposing a Dkk interacting proteins or a Dkkbinding fragment thereof to a compound; and,
- (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

- (a) exposing Dkk interacting protein(s) or a Dkkbinding fragment thereof to a compounds; and,
- (b) determining whether said compound modulatesthe interaction of Dkk and Dkk interacting proteins.

25

20

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

> (a) exposing a Dkk interacting proteins or a Dkkbinding fragment thereof to a compound;

(b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof; and,

(c) further determining whether said compound modulates the interaction of Dkk and Dkk interacting proteins.

In a preferred embodiment, Dkk is Dkk-1.

5

10

15

20

25

30

In preferred embodiments of such methods, the Dkk interacting proteins, particularly Dkk-1 interacting proteins, or a Dkk-binding fragment thereof are attached to a solid substrate. Another aspect of the invention provides for compounds and compositions identified by the disclosed methods. A preferred embodiment provides that the compound comprises a Dkk or Dkk-1 peptide aptamer, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such aptamers. The compound may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The compound may also comprise an antibody to a Dkk interacting or Dkk-1 interacting protein.

It is another object of the invention to provide for a composition for treating bone mass disorders comprising a LRP5/LRP6/HBM modulating compound and a pharmaceutically acceptable excipient and/or carrier therefor. Preferred LRP5 (or LRP6 or HBM) modulating compounds include Dkk or Dkk-1 or a LRP5/LRP6/HBM binding fragment thereof. Also contemplated are compounds which comprise monoclonal or polyclonal antibodies or immunologically active fragments thereof which bind to Dkk, including Dkk-1, and a pharmaceutically acceptable excipient and/or carrier. Another preferred embodiment provides that the modulating compound comprises one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active fragment thereof. Also contemplated are compounds which comprise monoclonal or polyclonal antibodies or immunologically active fragments thereof which bind to Dkk interacting or Dkk-1 interacting proteins, or a biologically active fragment thereof, and a pharmaceutically acceptable excipient and/or carrier.

Another preferred embodiment provides that the modulating compound comprises an antisense, siRNA, and shRNA molecule which recognizes and binds to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. Another preferred embodiment provides that the modulating compound comprises a Dkk or Dkk-1 peptide aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. Another embodiment provides that the compound comprises an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compounds of the present invention also comprise LRP5 antibodies.

5

10

15

20

25

It is a further object of the invention to provide a pharmaceutical composition for treating a Dkk-mediated disease or condition comprising a compound which modulates Dkk activity and a carrier therefor, including pharmaceutically acceptable excipients. Such compositions include those wherein the compound comprises an antisense, siRNA, and shRNA molecule or an antibody which binds to Dkk, including Dkk-1, and thereby prevents it from interacting with LRP5, LRP6, or HBM. Other such compositions include one or more of Dkk interacting or Dkk-1 interacting proteins, such as those depicted in Figure 5, or a Dkk-binding fragment thereof, or a monoclonal or polyclonal antibody, or immunologically active fragment thereof, which binds to a Dkk interacting or Dkk-1 interacting protein or Dkk-binding fragment thereof. Other contemplated compositions include antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. Further contemplated compositions include Dkk and Dkk-1 peptide aptamers, such as those depicted in Figure 3 (SEQ ID NOs;171-188). mimetics of such aptamers, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. Other contemplated compositions comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191))

and Figure 13 (including SEQ ID NO:204-214), or a mimetic of such an aptamer. Other preferred compositions of the present invention comprise LRP5 antibodies.

A further object of the invention to provide for a method of modulating the expression of a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein in an organism, such as those shown in Figure 5, comprising the step of administering to the organism an effective amount of composition which modulates the expression of a nucleic acid encoding a Dkk-1 interacting protein. In a preferred embodiment, said composition comprises an antisense, siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein.

5

10

15

20

25

One aspect of the invention provides for a method of modulating at least one activity of Dkk or a Dkk-1 interacting protein comprising administering an effective amount of a composition which modulates at least one activity of Dkk or a Dkk-1 interacting protein. The invention provides for a composition comprising a Dkk interacting or Dkk-1 interacting protein, such as those shown in Figure 5, or a biologically active fragment thereof. Other agents contemplated for this method are antisense, siRNA, or shRNA molecules which recognize and bind to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. The method further provides that the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacing or Dkk-1 interacting protein. In another preferred embodiment, the composition comprises a Dkk or Dkk-1 peptide aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The method provides that a composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NO:189-192) (particularly peptide including (SEQ ID NO:191)) and Figure including (SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies. In a further preferred embodiment, the modulated Dkk activity is lipid modulation or bone mass modulation.

In all of the testing/screening embodiments of the present invention discussed below to obtain compounds or compositions which ultimately impact LRP5/LRP6/HBM signaling, one skilled in the art will recognize that HBM can be used as a control in the absence of a test sample or compound. Further, the effect of a test sample of compound on Wnt signaling through the interaction of Dkk with LRP5/LRP6/HBM does not necessarily require a direct measurement of an association or interaction of Dkk and LRP5/LRP6/HBM. Other positive phenotypes/activities established by the High Bone Mass phenotype or by using HBM as a control.

10

5

One aspect of the invention provides for a method of identifying binding partners for a Dkk protein comprising the steps of:

- (a) exposing the Dkk protein(s) or a LRP5/LRP6 binding fragment thereof to a potential binding partner; and
- (b) determining if the potential binding partner binds to a Dkk protein or the LRP5/LRP6 binding fragment thereof.

15

In a preferred embodiment, the Dkk is Dkk-1.

Another aspect of the invention is to provide for a method of identifying a compound that effects Dkk-mediated activity comprising

20

(a) providing a group of transgenic animals having (1) a regulatable one or more Dkk interacting protein genes, (2) a knock-out of one or more Dkk interacting protein genes, or (3) a knock-in of one or more Dkk interacting protein genes;

25

(b) providing a second group of control animalsrespectively for the group of transgenic animals in step (a); and

(c) exposing the transgenic animal group and the control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and

(d) comparing the transgenic animal group and the control animal group and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

5

In a preferred embodiment, the Dkk is Dkk-1.

It is another aspect of the invention to provide for a method for determining whether a compound modulates a Dkk interacting protein, said method comprising the steps of:

10

 (a) mixing the Dkk interacting protein or a Dkk-binding fragment thereof with the ligand binding domain of Dkk in the presence of said at least one compound;

15

(b) measuring the amount of said binding domain of Dkk bound to said Dkk interacting protein or the Dkk-binding fragment thereof as compared to a control without said at least one compound; and

20

25

(c) determining whether the compound reduces the amount of said binding domain of Dkk binding to said Dkk interacting protein or Dkk-binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

In a preferred embodiment, the binding domain is attached to a solid substrate. The invention further provides for compounds identified by this method. In a preferred embodiment, the invention provides that the Dkk interacting or Dkk-1 interacting protein is detected by antibodies. In another preferred embodiment, the solid substrate is a microarray. Another preferred embodiment provides that the ligand binding domain of Dkk and/or Dkk interacting protein is fused or conjugated to a peptide or protein. The invention also provides that the compounds include Dkk

and Dkk-1 peptide aptamers, mimetics of Dkk and Dkk-1 peptide aptamers, Dkk and Dkk-1 interacting proteins peptide aptamers, or mimetics of such aptamers.

5

10

15

20

25

An aspect of the invention provides a composition comprising one or more polypeptide sequences of one or more Dkk-1 interacting proteins, or a biologically active fragment thereof, one or more Dkk proteins, or a biologically active fragment thereof, or LRP5/LRP6/HBM polypeptide sequences or a biologically active fragment thereof (for example, the ligand binding domain) and a pharmaceutically acceptable excipient and/or carrier. Another aspect of the invention provides that the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein and a pharmaceutically acceptable excipient. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. A composition of the present invention may comprise a Dkk peptide aptamer, for example as shown in Figure 3 (SEQ ID NOs:171-188). Preferred compositions of the present invention also comprise LRP5 antibodies.

Another aspect of the invention is to provide an antibody or immunologically active antibody fragment which recognizes and binds to a Dkk-1 amino acid sequence selected from the group consisting of: Asn34-His266 (SEQ ID NO:110), Asn34-Cys245 (SEQ ID NO:111), Asn34-Lys182 (SEQ ID NO:112), Cys97-His266 (SEQ ID NO:113), Val139-His266 (SEQ ID NO:114), Gly183-His266 (SEQ ID NO:115), Cys97-Cys245 (SEQ ID NO:116), or Val139-Cys245 (SEQ ID NO:117) of human Dkk-1. Additional antibodies may bind to any of the sequences depicted in Figures 3 (SEQ ID NOs:171-188) and Figure 4 (SEQ ID NOs:189-192). Another aspect of the invention is to provide for polyclonal antibodies to one or more amino acid sequences: Peptide 1 -GNKYQTIDNYQPYPC (SEQ ID NO:118), Peptide 2 - LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), Peptide 3 - RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), Peptide 4 - RGEIEETITESFGND (SEQ ID NO:121), and Peptide 5 - EIFQRCYCGEGLSCRIQKD (SEQ ID NO: 122).

It is a further object of the invention to provide a nucleic acid encoding a Dkk protein, e.g. Dkk-1, a Dkk interacting or Dkk-1 interacting protein aptamer, or an LRP5 aptamer comprising a nucleic acid encoding a scaffold protein in-frame with the activation domain of Gal4 or LexA that is in-frame with a nucleic acid which encodes for a Dkk or Dkk-1 or Dkk interacting or Dkk-1 interacting protein amino acid sequence. Preferably the scaffold protein is thioredoxin (trxA), S1 nuclease from *Staphylococcus* or M13. Other preferable embodiments include Dkk-1 amino acid sequences selected from Figure 6.

It is yet a further object of the invention to provide a composition comprising a polypeptide sequence of Figure 3 (SEQ ID NOs:171-188), Figure 4 (SEQ ID NO:189-192), or of Dkk-1 interacting proteins identified in Figure 5 and a pharmaceutically acceptable excipient and/or carrier.

Another aspect of the invention includes a method of detecting the modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair that bind through extracellular interaction in their natural environment, comprising:

- (i) culturing at least one eukaryotic cell, wherein the eukaryotic cell comprises;
 - a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

20

15

5

10

c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element produces a selected phenotype;

5

- (ii) incubating a compound with the eukaryotic cell under conditions suitable to detect the selected phenotype; and
- (iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which produces the selected phenotype;

10

wherein (1) said first peptide is a Dkk peptide and said second peptide is a peptide selected from LRP5, HBM, LRP6, and the Dkk-binding portion of LRP5/LRP6/HBM or (2) said first peptide is a Dkk-interacting protein or the Dkk-binding fragment thereof, and said second peptide is a Dkk peptide.

15

20

25

In one embodiment, the eukaryotic cell is a yeast cell. In a preferred embodiment, the yeast cell is Saccharomyces. In a particularly preferred embodiment, the Saccharomyces cell is Saccharomyces cerevisiae. The invention further provides that the compound may comprise a Dkk interacting or Dkk-1 interacting protein, or a biologically active fragment thereof. In one embodiment, the Dkk interacting or Dkk-1 interacting protein, or a Dkk-binding fragment thereof, is added directly to the assay. In another embodiment, the Dkk interacting or Dkk-1 interacting protein, or a Dkk-binding fragment thereof, is recombinantly expressed by the eukaryotic cell in addition to the first and second peptides. In a preferred embodiment the compound comprises a Dkk or Dkk-1 aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a Dkk interacting or Dkk-1 interacting protein aptamer, or a mimetic of a Dkk-1 interacting protein aptamer. Other preferred embodiments provide that the compound comprises an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Alternatively, the present invention also provides that the compound may

comprise LRP5 antibodies or Dkk antibodies. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter element, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In another embodiment, the peptide binding pair comprises a ligand and a receptor to which the ligand binds. In one embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In another embodiment, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In one embodiment, the DNA binding domain comprises a heterologous DNA-binding domain of a transcriptional activation protein. In a preferred embodiment, the DNA binding protein is selected from the group consisting of a mammalian steroid receptor and bacterial LexA protein. In another embodiment, the reporter element is selected from the group consisting of lacZ, a polynucleotide encoding luciferase, a polynucleotide encoding green fluorescent protein (GFP), and a polynucleotide encoding chloramphenicol acetyltransferase. In a particularly preferred embodiment, the reporter element is lacZ

5

10

15

20

25

The invention further provides for a rescue screen for detecting the activity of a compound for modulating the binding interaction of a first peptide and a second peptide of a peptide binding pair, comprising:

- (i) culturing at least one yeast cell, wherein the yeast cell comprises;
 - a) a nucleotide sequence encoding a first heterologous fusion
 protein comprising the first peptide or a segment thereof joined
 to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous

fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

- a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter gene prevents exhibition of a selected phenotype;
- (ii) incubating a compound with the yeast cell under conditions suitable to detect the selected phenotype; and
- (iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which prevents exhibition of the selected phenotype,

wherein said first peptide is a Dkk peptide and said second peptide is a peptide selected from LRP5, HBM, LRP6 and a Dkk-binding fragment of LRP5/LRP6/HBM.

In a preferred embodiment, the invention provides that the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. In one embodiment, the compound comprises one or more Dkk interacting or Dkk-1 interacting proteins, or a Dkk-binding fragment thereof. Compounds used in the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Alternatively, the compound may comprise LRP5 antibodies or Dkk antibodies. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a

10

15

20

25

transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter gene, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In another embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In one embodiment, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In another embodiment, the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

10

5

The invention also provides for a rescue screen for detecting the modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair, comprising:

15

- (i) culturing at least one yeast cell, wherein the yeast cell comprises;
 - a nucleotide sequence encoding a first heterologous fusion a) protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

25

- c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element prevents exhibition of a selected phenotype:
- (ii) incubating a compound with the yeast cell under conditions suitable to detect the selected phenotype; and

(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which prevents exhibition of the selected phenotype,

5

10

15

wherein said first peptide is a Dkk interacting or Dkk-1 interacting protein peptide and said second peptide is a Dkk or Dkk-1 peptide.

In a preferred embodiment of the rescue screen, the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter gene, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In one embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In another embodiment of the rescue screen, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In another embodiment, the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

20

The invention also provides for a method for identifying potential compounds which modulate Dkk activity comprising:

25

- a) measuring the effect on binding of one or more Dkk interacting protein, or a Dkk-binding fragment thereof, with Dkk or a LRP5/LRP6/HBM binding fragment thereof in the presence and absence of a compound; and
- b) identifying as a potential Dkk modulatory compound a compound which modulates the binding between one or more Dkk interacting proteins or Dkk-binding fragment thereof and Dkk or LRP5/LRP6/HBM fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

The invention further provides for any of the Dkk peptide aptamers of Figure 3 (SEQ ID NOs:171-188). The invention also provides for any of the LRP peptide aptamers of Figure 4 (SEQ ID NOs:189-192).

Another aspect of the invention provides for a method of identifying agents which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) injecting mRNA encoding Dkk and an agent into a *Xenopus* blastomere;
- (b) assessing axis duplication or analyzing marker gene expression; and

(c) identifying agents which elicit changes in axis duplication or marker gene expression as agents which modulate the interaction of Dkk with the Wnt signaling pathway. Wherein the agent may be chosen from among mRNA encoding Dkk interacting proteins, fragments thereof, siRNA, shRNA, antisense nucleotides, and antibodies. In a preferred embodiment, Dkk is Dkk-1. In a further embodiment, mRNA of HBM, LRP5/6, any Wnt (including Wnt1-Wnt19, particularly Wnt1, Wnt3, Wnt3a, and Wnt10b), Wnt antagonist, or combination of these is co-injected into the *Xenopus* blastomere. In another embodiment, the marker gene analyzed could include Siamois, Xnr3, slug, Xbra, HNK-1, endodermin, Xlhbox8, BMP2, BMP4, XLRP6, EF-1, or ODC.

The present invention provides for a method for identifying agents which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs encoding Dkk and potential Dkk interacting proteins, mRNA fragments thereof, siRNA, shRNA, or antisense, antibodies to LRP5/HBM/LRP6/Dkk/Dkk-interacting protein;
- (b) assessing changes in expression of a reporter gene linked to a Wntresponsive promoter; and,
- (c) identifying as a Dkk interacting protein any protein which alters reporter gene expression compared with cells transfected with a Dkk construct alone. In a further preferred embodiment, the cells may be HOB-03-CE6, HEK293, or U2OS cells.

5

10

15

20

25

In alternative embodiments, the Wnt-responsive promoter is TCF or LEF. In other preferred embodiments, the cells are co-transfected with CMV beta-galactosidase or tk-Renilla.

The present invention further provides for a LRP5/HBM monoclonal or polyclonal antibody to one or more peptides of amino acid sequences MYWTDWVETPRIE (SEQ ID NO:123), MYWTDWGETPRIE (SEQ ID NO:124), KRTGGKRKEILSA (SEQ ID NO:125), ERVEKTTGDKRTRIQGR (SEQ ID NO:126), or KQQCDSFPDCIDGSDE (SEQ ID NO:127).

Additionally, the present invention provides a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and
- (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HMB using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag.

In one embodiment, the Dkk is Dkk-1. In a preferred embodiment, the epitope tag is alkaline phosphatase, histidine, myc, or a V5 tag.

Another embodiment of the present invention provides for a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) creating an LRP5, LRP6, or HBM fluorescent fusion protein using a first fluorescent tag;
- (b) creating a Dkk fusion protein comprising a second fluorescent tag;
- (c) adding a test compound; and,
- (d) assessing changes in the ratio of fluorescent tag emissions using Fluorescence Resonance Energy Transfer (FRET) or Bioluminescent Resonance Energy Transfer (BRET) to determine whether the compound modulates Dkk and LRP5/LRP6/HBM interactions.
- In a preferred embodiment, the Dkk is Dkk-1.

20

25

30

10

The present invention also provides for a method of diagnosing low or high bone mass and/or low or high lipid levels in a subject comprising examining expression of Dkk, LRP5, LRP6, HBM or HBM-like variant in the subject and determining whether Dkk, LRP5, LRP6, or HBM or a HBM-like variant is over- or under-expressed to determine whether subject has (a) high or low bone mass and/or (b) high or low lipid levels.

The invention further provides for a transgenic animal wherein Dkk is knocked out in a tissue-specific fashion. In a preferred embodiment, the Dkk is Dkk-1. In one preferred embodiment, the tissue specificity is bone tissue. In another preferred embodiment, the tissue specificity is liver or other tissues or cells involved in regulating lipid metabolism or cancer tissue.

The present invention further provides a method of screening for compounds which modulate the interaction of Dkk with LRP5, LRP6, or HBM comprising:

- (a) exposing LRP5, LRP6, or HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM to a compound; and
- (b) determining whether said compound bound to LRP5, LRP6, or HBM or the Dkk-binding fragment of LRP5, LRP6, or HBM and further determining whether said compound modulates the interaction of Dkk and LRP5, LRP6, or HBM.

In one embodiment, the Dkk is Dkk-1. In a preferred embodiment, the compound comprises an LRP5 peptide aptamer. Other preferred compositions include the peptide aptamer, OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NO:189-192) (particularly peptide 13 (SEQ ID NO:191) and Figure 13 (including SEQ ID NO:204-214), or a mimetic of such an aptamer, and an LRP5 antibody.

The present invention also provides a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and

10

5

15

20

(c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag. In a preferred embodiment, the epitope tag is alkaline phosphatase, histidine, myc or a V5 tag.

In a preferred embodiment, the Dkk is Dkk-1.

The invention also provides for a method for identifying compounds which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs containing Dkk and Wnt proteins;
- (b) assessing changes in expression of a reporter element linked to a Wntresponsive promoter; and
- (c) identifying as a Dkk/Wnt interaction modulating compound any compound which alters reporter gene expression compared with cells transfected with a Dkk construct alone.

In one embodiment, the Dkk is Dkk-1. In another embodiment, the Wnt is any of Wnt1-Wnt19. In a preferred embodiment, the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b. In a particularly preferred embodiment, the Wnt construct contains Wnt3a. In another particularly preferred embodiment, the Wnt construct contains Wnt1. In another preferred embodiment, the Wnt construct encodes for a Wnt that signals through the canonical Wnt pathway. In a particularly preferred embodiment, both Wnt3a and Wnt1 constructs are co-transfected into the cells. In another embodiment, the cells may be U2-OS, HOB-03-CE6, or HEK293 cells. In another embodiment, the reporter element used is TCF-luciferase, tk-Renilla, or a combination thereof.

The invention also provides for a method of testing compounds that modulate Dkk-mediated activity in a mammal comprising:

 (a) providing a group of transgenic animals having (1) a regulatable one or more Dkk genes, (2) a knock-out of Dkk genes, or (3) a knock-in of one or more Dkk genes;

10

5

15

20

(b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and

- (c) exposing the transgenic animal group and control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and
- (d) comparing the transgenic animals and the control group of animals and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

In a preferred embodiment, the Dkk is Dkk-1.

5

10

15

20

25

30

The invention further provides variants of LRP5 which demonstrate HBM biological activity, i.e., that are "HBM-like." In preferred embodiments, variants G171F, M282V, G171K, G171Q, A65V, G171V, G171I, and A214V of LRP5 are provided. The invention further provides for the use any of these variants in the forgoing methods.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a schematic of the components of the Wnt signal transduction pathway. Schematic obtained from:

http://www.stanford.edu/~rnusse/pathways/cell2.html

Figure 2 (A-C) show bait sequences (SEQ ID NOs:168-170) utilized in yeast two hybrid (Y2H) screens for protein-protein interactions.

Figure 3 shows a table of peptide aptamer insert sequences (SEQ ID NOs: 171-192) identified in Y2H screen with a Dkk-1 bait sequence.

Figure 4 shows a table of peptide aptamer insert sequences identified in a Y2H screen using a LRP5 ligand binding domain bait sequence.

Figure 5 shows a table of proteins identified in a Y2H screen using a Dkk-1 bait sequence. These proteins are identified by both their nucleic acid and amino acid accession numbers.

Figure 6 shows the results of a minimum interaction domain mapping screen of Dkk-1 with LRP5. At the top, a map of Dkk-1 showing the location of the signal

sequence, and cysteine rich domains 1 and 2. Below, the extent of domains examined using LRP5 LBD baits, LBD1 and LBD4, of Figure 2. To the right, scoring of the binding results observed in the experiment.

Figure 7 shows a diagram of the Xenopus Embryo Assay for Wnt activity.

Figure 8 shows the effects of Zmax/LRP5 and HBM on Wnt signaling in the *Xenopus* embryo assay.

Figure 9 shows the effects of Zmax/LRP5 and HBM on induction of secondary axis formation in the *Xenopus* embryo assay.

Figure 10 shows the effects of human Dkk-1 on the repression of the canonical Wnt pathway.

5

10

15

20

25

30

Figure 11 shows the effects of human Dkk-1 on Zmax/LRP5 and HBM-mediated Wnt signaling.

Figure 12 shows pcDNA3.1 construct names with nucleotide sequences (including SEQ ID NOs:193-203) for LRP5-binding peptide aptamers, Dkk-1 peptides and control constructs.

Figure 13 shows the amino acid sequences (including SEQ ID NOs:204-214) for the corresponding LRP5-binding peptides, Dkk-1 peptide aptamers and control constructs in Figure 12.

Figure 14 shows the effects of Dkk-1 and Dkk-2 on Wnt1 signaling with coreceptors LRP5, HBM, and LRP6 in HOB03CE6 cells.

Figure 15 shows the effects of Dkk-1 and Dkk-2 on Wnt3a signaling with coreceptors LRP5, HBM, and LRP6 in HOB03CE6 cells.

Figure 16 demonstrates that the LRP5-LBD peptide aptamer 262 activates Wnt signaling in the presence of Wnt3a in U2OS cells.

Figure 17 shows the differential binding of an antibody generated to a sequence (a.a. 165-177) containing the HBM mutation in LRP5 in LRP5 and HBM virus-infected cells.

Figure 18 shows data generated from a Y2H interaction trap where a mutant Dkk-1 (C220A) is unable to bind to LRP5 and demonstrating the window of capability of detecting small molecule effects on LRP and Dkk interactions.

Figure 19 shows that Dkk-1 represses Wnt3a-mediated Wnt signaling in U2OS bone cells using the cell-based reporter gene assay for high throughput screening.

5

10

15

20

25

Figure 20 demonstrates that Wnt1-HBM generated signaling is not efficiently inhibited by Dkk-1 in U2OS bone cells while LRP5 and LRP6-mediated signaling are using the cell-based reporter gene assay for high throughput screening.

Figure 21 shows that the TCF signal in the cell-based reporter gene assay for high throughput screening can be modulated by Dkk-1 and Dkk-1-AP without Wnt DNA transfection.

Figure 22 shows the morphological results in the Xenopus assay using aptamers 261 and 262 from the LRP5-LBD to activate Wnt signaling.

Figure 23 demonstrates that LRP5-LBD aptamers 261 and 262 induce Wnt signaling over other LRP5 aptamers.

Figure 24 shows that the mutation G171F in LRP5 produces a greater activation of the Wnt pathway than LRP5 which is consistent with HBM activity.

Figure 25 shows that the mutation M282V in LRP5 produces an activation of the Wnt pathway which is consistent with HBM activity in U2OS cells.

Figure 26 shows the amino acid sequence of the various peptides of dkk-1 selected to generate polyclonal antibodies, their relationship to the Dkk-1 amino acid sequence and identities of polyclonal antibodies generated.

Figure 27 shows a Western blot demonstrating that polyclonal antibody #5521 to amino acids 165-186 of Dkk-1 was able to detect Dkk1-V5 and Dkk1-AP from conditioned medium.

Figure 28 shows a Western blot demonstrating that polyclonal antibody #74397 to amino acids 147-161 was able to detect Dkk1-V5 in both conditioned medium and immunoprecipitated conditioned medium.

DETAILED DESCRIPTION OF THE INVENTION

1. <u>Definitions</u>

5

10

15

20

25

In general, terms in the present application are used consistent with the manner in which those terms are understood in the art. To aid in the understanding of the specification and claims, the following definitions are provided.

"Gene" refers to a DNA sequence that encodes through its template or messenger RNA a sequence of amino acids characteristic of a specific peptide. The term "gene" includes intervening, non-coding regions, as well as regulatory regions, and can include 5' and 3' ends.

By "nucleic acid" is meant to include single stranded and double stranded nucleic acids including, but not limited to DNAs, RNAs (e.g., mRNA, tRNAs, siRNAs), cDNAs, recombinant DNA (rDNA), rRNAs, antisense nucleic acids, oligonucleotides, and oligomers, and polynucleotides. The term may also include hybrids such as triple stranded regions of RNA and/or DNA or double stranded RNA:DNA hybrids. The term also is contemplated to include modified nucleic acids

such as, but not limited to biotinylated nucleic acids, tritylated nucleic acids,

fluorophor labeled nucleic acids, inosine, and the like.

"Gene sequence" refers to a nucleic acid molecule, including DNA which contains a non-transcribed or non-translated sequence, which comprises a gene. The term is also intended to include any combination of gene(s), gene fragment(s), non-transcribed sequence(s) or non-translated sequence(s) which are present on the same DNA molecule.

The nucleic acid sequences of the present invention may be derived from a variety of sources including DNA, cDNA, synthetic DNA, synthetic RNA or combinations thereof. Such sequences may comprise genomic DNA which may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with promoter regions and/or poly (A) sequences. The sequences, genomic DNA or cDNA may be obtained in any of several ways.

Genomic DNA can be extracted and purified from suitable cells by means well

known in the art. Alternatively, mRNA can be isolated from a cell and used to produce cDNA by reverse transcription or other means.

5

10

15

20

25

30

"cDNA" refers to complementary or copy DNA produced from an RNA template by the action of RNA-dependent DNA polymerase (reverse transcriptase). Thus, a "cDNA clone" means a duplex DNA sequence for which one strand is complementary to an RNA molecule of interest, carried in a cloning vector or PCR amplified. cDNA can also be single stranded after first strand synthesis by reverse transcriptase. In this form, it is a useful PCR template and does not need to be carried in a cloning vector. This term includes genes from which the intervening sequences have been removed. Thus, the term "gene", as sometimes used generically, can also include nucleic acid molecules comprising cDNA and cDNA clones.

"Recombinant DNA" means a molecule that has been engineered by splicing in vitro a cDNA or genomic DNA sequence or altering a sequence by methods such as PCR mutagenesis.

"Cloning" refers to the use of *in vitro* recombination techniques to insert a particular gene or other DNA sequence into a vector molecule. In order to successfully clone a desired gene, it is necessary to use methods for generating DNA fragments, for joining the fragments to vector molecules, for introducing the composite DNA molecule into a host cell in which it can replicate, and for selecting the clone having the target gene from amongst the recipient host cells.

"cDNA library" refers to a collection of recombinant DNA molecules containing cDNA inserts which together comprise the entire or a partial repertoire of genes expressed in a particular tissue or cell source. Such a cDNA library can be prepared by methods known to one skilled in the art and described by, for example, Cowell and Austin, "cDNA Library Protocols," *Methods in Molecular Biology* (1997).

"Cloning vehicle" refers to a plasmid or phage DNA or other DNA sequence which is able to replicate in a host cell. This term can also include artificial chromosomes such as BACs and YACs. The cloning vehicle is characterized by one or more endonuclease recognition sites at which such DNA sequences may be cut in

a determinable fashion without loss of an essential biological function of the DNA, which may contain a marker suitable for use in the identification of transformed cells.

5

10

15

20

25

30

"Expression" refers to the process comprising transcription of a gene sequence and subsequent processing steps, such as translation of a resultant mRNA to produce the final end product of a gene. The end product may be a protein (such as an enzyme or receptor) or a nucleic acid (such as a tRNA, antisense RNA, or other regulatory factor). The term "expression control sequence" refers to a sequence of nucleotides that control or regulate expression of structural genes when operably linked to those genes. These include, for example, the lac systems, the trp system, major operator and promoter regions of the phage lambda, the control region of fd coat protein and other sequences known to control the expression of genes in prokaryotic or eukaryotic cells. Expression control sequences will vary depending on whether the vector is designed to express the operably linked gene in a prokaryotic or eukaryotic host, and may contain transcriptional elements such as enhancer elements, termination sequences, tissue-specificity elements and/or translational initiation and termination sites.

"Expression vehicle" refers to a vehicle or vector similar to a cloning vehicle but which is capable of expressing a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) an expression control sequence.

"Operator" refers to a DNA sequence capable of interacting with the specific repressor, thereby controlling the transcription of adjacent gene(s).

"Promoter" refers to a DNA sequence that can be recognized by an RNA polymerase. The presence of such a sequence permits the RNA polymerase to bind and initiate transcription of operably linked gene sequences.

"Promoter region" is intended to include the promoter as well as other gene sequences which may be necessary for the initiation of transcription. The presence of a promoter region is sufficient to cause the expression of an operably linked gene sequence. The term "promoter" is sometimes used in the art to generically indicate a promoter region. Many different promoters are known in the art which direct

expression of a gene in a certain cell types. Tissue-specific promoters can comprise nucleic acid sequences which cause a greater (or decreased) level of expression in cells of a certain tissue type.

"Operably linked" means that the promoter controls the initiation of expression of the gene. A promoter is operably linked to a sequence of proximal DNA if upon introduction into a host cell the promoter determines the transcription of the proximal DNA sequence(s) into one or more species of RNA. A promoter is operably linked to a DNA sequence if the promoter is capable of initiating transcription of that DNA sequence.

5

10

15

20

25

30

"Prokaryote" refers to all organisms without a true nucleus, including bacteria.

"Eukaryote" refers to organisms and cells that have a true nucleus, including mammalian cells.

"Host" includes prokaryotes and eukaryotes, such as yeast and filamentous fungi, as well as plant and animal cells. The term includes an organism or cell that is the recipient of a replicable expression vehicle.

The term "animal" is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages. Preferred animals include higher eukaryotes such as avians, rodents (e.g., mice, rabbits, rats, chinchillas, guinea pigs, hamsters and the like), and mammals. Preferred mammals include bovine, equine, feline, canine, ovine, caprine, porcine, buffalo, humans, and primates.

A "transgenic animal" is an animal containing one or more cells bearing genetic information received, directly or indirectly, by deliberate genetic manipulation or by inheritance from a manipulated progenitor at a subcellular level, such as by microinjection or infection with a recombinant viral vector (e.g., adenovirus, retrovirus, herpes virus, adeno-associated virus, lentivirus). This introduced DNA molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA.

"Embryonic stem cells" or "ES cells" as used herein are cells or cell lines usually derived from embryos which are pluripotent meaning that they are un-

differentiated cells. These cells are also capable of incorporating exogenous DNA by homologous recombination and subsequently developing into any tissue in the body when incorporated into a host embryo. It is possible to isolate pluripotent cells from sources other than embryonic tissue by methods which are well understood in the art.

5

10

15

20

25

30

Embryonic stem cells in mice have enabled researchers to select for transgenic cells and perform gene targeting. This allows more genetic engineering than is possible with other transgenic techniques. For example, mouse ES cells are relatively easy to grow as colonies *in vitro*. The cells can be transfected by standard procedures and transgenic cells clonally selected by antibiotic resistance. See, for example, Doetschman *et al..*, 1994, *Gene transfer in embryonic stem cells*. In Pinkert (Ed.) <u>Transgenic Animal Technology: A Laboratory Handbook</u>. Academic Press Inc., New York, pp.115-146. Furthermore, the efficiency of this process is such that sufficient transgenic colonies (hundreds to thousands) can be produced to allow a second selection for homologous recombinants. Mouse ES cells can then be combined with a normal host embryo and, because they retain their potency, can develop into all the tissues in the resulting chimeric animal, including the germ cells. The transgenic modification can then be transmitted to subsequent generations.

Methods for deriving embryonic stem (ES) cell lines *in vitro* from early preimplantation mouse embryos are well known. See for example, Evans *et al.*, 1981 *Nature* 29: 154-6 and Martin, 1981, *Proc. Nat. Acad. Sci. USA*, 78: 7634-8. ES cells can be passaged in an undifferentiated state, provided that a feeder layer of fibroblast cells or a differentiation inhibiting source is present.

The term "somatic cell" indicates any animal or human cell which is not a sperm or egg cell or is capable of becoming a sperm or egg cell. The term "germ cell" or "germ-line cell" refers to any cell which is either a sperm or egg cell or is capable of developing into a sperm or egg cell and can therefore pass its genetic information to offspring. The term "germ cell-line transgenic animal" refers to a transgenic animal in which the genetic information was incorporated in a germ line cell, thereby conferring the ability to transfer the information to offspring. If such

offspring in fact possess some or all of that information, then they, too, are transgenic animals.

5

10

15

20

25

30

The genetic alteration of genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.

"Fragment" of a gene refers to any portion of a gene sequence. A
"biologically active fragment" refers to any portion of the gene that retains at least
one biological activity of that gene. For example, the fragment can perhaps
hybridize to its cognate sequence or is capable of being translated into a polypeptide
fragment encoded by the gene from which it is derived.

"Variant" refers to a gene that is substantially similar in structure and biological activity or immunological characteristics to either the entire gene or to a fragment of the gene. Provided that the two genes possess a similar activity, they are considered variant as that term is used herein even if the sequence of encoded amino acid residues is not identical. Preferentially, as used herein (unless otherwise defined) the variant is one of LRP5, HBM or LRP6. The variant preferably is one that yields an HBM-like phenotype (i.e., enhances bones mass and/or modulates lipid levels). These variants include missense mutations, single nucleotide polymorphisms (SNPs), mutations which result in changes in the amino acid sequence of the protein encoded by the gene or nucleic acid, and combinations thereof, as well as com in the exon domains of the HBM gene and mutations in LRP5 or LRP6 which result in an HBM like phenotype.

"Amplification of nucleic acids" refers to methods such as polymerase chain reaction (PCR), ligation amplification (or ligase chain reaction, LCR) and amplification methods based on the use of Q-beta replicase. These methods are well known in the art and described, for example, in U.S. Patent Nos. 4,683,195 and 4,683,202. Reagents and hardware for conducting PCR are commercially available. Primers useful for amplifying sequences from the HBM region are preferably complementary to, and hybridize specifically to sequences in the HBM region or in

regions that flank a target region therein. HBM sequences generated by amplification may be sequenced directly. Alternatively, the amplified sequence(s) may be cloned prior to sequence analysis.

5

10

15

20

25

"Antibodies" may refer to polyclonal and/or monoclonal antibodies and fragments thereof, and immunologic binding equivalents thereof, that can bind to the HBM proteins and fragments thereof or to nucleic acid sequences from the HBM region, particularly from the HBM locus or a portion thereof. Preferred antibodies also include those capable of binding to LRP5, LRP6 and HBM variants. The term antibody is used both to refer to a homogeneous molecular entity, or a mixture such as a serum product made up of a plurality of different molecular entities. Proteins may be prepared synthetically in a protein synthesizer and coupled to a carrier molecule and injected over several months into rabbits. Rabbit sera is tested for immunoreactivity to the HBM protein or fragment. Monoclonal antibodies may be made by injecting mice with the proteins, or fragments thereof. Monoclonal antibodies will be screened by ELISA and tested for specific immunoreactivity with HBM protein or fragments thereof. Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988) and Using Antibodies: A Laboratory Manual, Harlow, Ed and Lane, David (Cold Spring Harbor Press, 1999). These antibodies will be useful in assays as well as pharmaceuticals. By "antibody" is meant to include but not limited to polyclonal, monoclonal, chimeric. human, humanized, bispecific, multispecific, primatized™ antibodies.

"HBM protein" refers to a protein that is identical to a Zmax1 (LRP5) protein except that it contains an alteration of glycine 171 to a valine. An HBM protein is defined for any organism that encodes a Zmax1 (LRP5) true homolog. For example, a mouse HBM protein refers to the mouse Zmax1 (LRP5) protein having the glycine 170 to valine substitution.

By "HBM-like" is meant a variant of LRP5, LRP6 or HBM which when expressed in a cell is capable of modulating bone mass, lipid levels, Dkk activity, and/or Wnt activity.

In one embodiment of the present invention, "HBM gene" refers to the genomic DNA sequence found in individuals showing the HBM characteristic or phenotype, where the sequence encodes the protein indicated by SEQ ID NO: 4. The HBM gene and the Zmax1 (LRP5) gene are allelic. The protein encoded by the HBM gene has the property of causing elevated bone mass, while the protein encoded by the Zmax1 (LRP5) gene does not. The HBM gene and the Zmax1 (LRP5) gene differ in that the HBM gene has a thymine at position 582, while the Zmax1 gene has a guanine at position 582. The HBM gene comprises the nucleic acid sequence shown as SEQ ID NO: 2. The HBM gene may also be referred to as an "HBM polymorphism." Other HBM genes may further have silent mutations, such as those discussed in Section 3 below.

5

10

15

20

25

In alternative embodiments of the present invention, "HBM gene" may also refer to any allelic variant of Zmax1 (LRP5) or LRP6 which results in the HBM phenotype. Such variants may include alteration from the wild-type protein coding sequence as described herein and/or alteration in expression control sequences of Zmax1 (LRP5) or contains an amino acid mutation in LRP5 or LRP6, such that the resulting protein produces a phenotype which enhances bone mass and/or modulates lipid levels. A preferred example of such a variant is an alteration of the endogenous Zmax1 (LRP5) promoter region resulting in increased expression of the Zmax1 (LRP5) protein.

"Normal," "wild-type," "unaffected", "Zmax1", "Zmax", "LR3" and "LRP5" all refer to the genomic DNA sequence that encodes the protein indicated by SEQ ID NO: 3. LRP5 has also been referred to LRP7 in mouse. Zmax1, LRP5 and Zmax may be used interchangeably throughout the specification and are meant to be the same gene, perhaps only relating to the gene in a different organism. The Zmax1 gene has a guanine at position 582 in the human sequence. The Zmax1 gene of human comprises the nucleic acid sequence shown as SEQ ID NO: 1. "Normal," "wild-type," "unaffected", "Zmax1" and "LRP5" also refer to allelic variants of the genomic sequence that encodes proteins that do not contribute to elevated bone

mass. The *Zmax1* (*LRP5*) gene is common in the human population, while the *HBM* gene is rare.

"Bone development" generally refers to any process involved in the change of bone over time, including, for example, normal development, changes that occur during disease states, and changes that occur during aging. This may refer to structural changes and dynamic rate changes such as growth rates, resorption rates, bone repair rates, and etc. "Bone development disorder" particularly refers to any disorders in bone development including, for example, changes that occur during disease states and changes that occur during aging. Bone development may be progressive or cyclical in nature. Aspects of bone that may change during development include, for example, mineralization, formation of specific anatomical features, and relative or absolute numbers of various cell types.

5

10

15

20

25

30

"Bone modulation" or "modulation of bone formation" refers to the ability to affect any of the physiological processes involved in bone remodeling, as will be appreciated by one skilled in the art, including, for example, bone resorption and appositional bone growth, by, *inter alia*, osteoclastic and osteoblastic activity, and may comprise some or all of bone formation and development as used herein.

Bone is a dynamic tissue that is continually adapting and renewing itself through the renewal of old or unnecessary bone by osteoclasts and the rebuilding of new bone by osteoblasts. The nature of the coupling between these processes is responsible for both the modeling of bone during growth as well as the maintenance of adult skeletal integrity through remodeling and repair to meet the everyday needs of mechanical usage. There are a number of diseases that result from an uncoupling of the balance between bone resorption and formation. With aging there is a gradual "physiologic" imbalance in bone turnover, which is particularly exacerbated in women due to menopausal loss of estrogen support, that leads to a progressive loss of bone. As bone mineral density falls below population norms there is a consequent increase in bone fragility and susceptibility to spontaneous fractures. For every 10 percent of bone that is lost, the risk of fracture doubles. Individuals with bone mineral density (BMD) in the spine or proximal femur 2.5 or

more standard deviations below normal peak bone mass are classified as osteoporotic. However, osteopenic individuals with BMD between 1 and 2.5 standard deviations below the norm are clearly at risk.

5

10

15

20

25

30

Bone is measured by several different forms of X-ray absorptiometry. All of the instruments measure the inorganic or bone mineral content of the bone. Standard DXA measurements give a value that is an areal density, not a true density measurement by the classical definition of density (mass/unit volume). Nevertheless, this is the type of measurement used clinically to diagnose osteoporosis. However, while BMD is a major contributing factor to bone strength, as much as 40% of bone strength stems from other factors including: 1) bone size (i.e., larger diameters increase organ-level stiffness, even in the face of lower density); 2) the connectivity of trabecular structures; 3) the level of remodeling (remodeling loci are local concentrators of strain); and 4) the intrinsic strength of the bony material itself, which in turn is a function of loading history (i.e., through accumulated fatigue damage) and the extent of collagen cross-linking and level of mineralization. There is good evidence that all of these strength/fragility factors play some role in osteoporotic fractures, as do a host of extraskeletal influences as well (such as fall patterns, soft tissue padding, and central nervous system reflex responsiveness).

Additional analytical instruments can be used to address these features of bone. For example, the pQCT allows measurement of separate trabecular and cortical compartments for size and density and the μ CT provides quantitative information on architectural features such as trabecular connectivity. The μ CT also gives a true bone density measurement. With these tools, the important non-BMD parameters can be measured for diagnosing the extent of disease and the efficacy of treatments. Current treatments for osteoporosis are based on the ability of drugs to prevent or retard bone resorption. Although newer anti-resorptive agents are proving to be useful in the therapy of osteoporosis, they are viewed as short-term solutions to the more definitive challenge to develop treatments that will increase bone mass and/or the bone quality parameters mentioned above.

Thus, bone modulation may be assessed by measuring parameters such as bone mineral density (BMD) and bone mineral content (BMC) by pDXA X-ray methods, bone size, thickness or volume as measured by X-ray, bone formation rates as measured for example by calcien labeling, total, trabecular, and mid-shaft density as measured by pQCT and/or μ CT methods, connectivity and other histological parameters as measured by μ CT methods, mechanical bending and compressive strengths as preferably measured in femur and vertebrae respectively. Due to the nature of these measurements, each may be more or less appropriate for a given situation as the skilled practitioner will appreciate. Furthermore, parameters and methodologies such as a clinical history of freedom from fracture, bone shape, bone morphology, connectivity, normal histology, fracture repair rates, and other bone quality parameters are known and used in the art. Most preferably, bone quality may be assessed by the compressive strength of vertebra when such a measurement is appropriate. Bone modulation may also be assessed by rates of change in the various parameters. Most preferably, bone modulation is assessed at more than one age.

5

10

15

20

25

30

"Normal bone density" refers to a bone density within two standard deviations of a Z score of 0 in the context of the HBM linkage study. In a general context, the range of normal bone density parameters is determined by routine statistical methods. A normal parameter is within about 1 or 2 standard deviations of the age and sex normalized parameter, preferably about 2 standard deviations. A statistical measure of meaningfulness is the P value which can represent the likelihood that the associated measurement is significantly different from the mean. Significant P values are P < 0.05, 0.01, 0.005, and 0.001, preferably at least P < 0.01.

"HBM" refers to "high bone mass" although this term may also be expressed in terms of bone density, mineral content, and size.

The "HBM phenotype" and "HBM-like phenotype" may be characterized by an increase of about 2 or more standard deviations, preferably 2, 2.5, 3, or more standard deviations in 1, 2, 3, 4, 5, or more quantitative parameters of bone modulation, preferably bone density and mineral content and bone strength

parameters, above the age and sex norm for that parameter. The HBM phenotype and HBM-like phenotype are characterized by statistically significant increases in at least one parameter, preferably at least 2 parameters, and more preferably at least 3 or more parameters. The HBM phenotype and the HBM-like phenotype may also be characterized by an increase in one or more bone quality parameters and most preferably increasing parameters are not accompanied by a decrease in any bone quality parameters. Most preferably, an increase in bone modulation parameters and/or bone quality measurements is observed at more than one age. The HBM phenotype and HBM-like phenotype also includes changes of lipid levels, Wnt activity and/or Dkk activity.

5

10

15

20

25

The terms "isolated" and "purified" refer to a substance altered by hand of man from the natural environment. An isolated peptide may be for example in a substantially pure form or otherwise displaced from its native environment such as by expression in an isolated cell line or transgenic animal. An isolated sequence may for example be a molecule in substantially pure form or displaced from its native environment such that at least one end of said isolated sequence is not contiguous with the sequence it would be contiguous with in nature.

"Biologically active" refers to those forms of proteins and polypeptides, including conservatively substituted variants, alleles of genes encoding a protein or polypeptide fragments of proteins which retain a biological and/or immunological activity of the wild-type protein or polypeptide. Preferably the activity is one which induces a change in Dkk activity, such as inhibiting the interaction of Dkk with a ligand binding partner (e.g., LRP5 or LRP6 or Dkk-1 with a Dkk-1 interacting protein such as those shown in Figure 5). By biologically active is also meant to include any form which modulates Wnt signaling.

By "modulate" and "regulate" is meant methods, conditions, or agents which increase or decrease the wild-type activity of an enzyme, inhibitor, signal transducer, receptor, transcription activator, co-factor, and the like. This change in activity can be an increase or decrease of mRNA translation, mRNA or DNA transcription, and/or

mRNA or protein degradation, which may in turn correspond to an increase or decrease in biological activity.

5

10

15

20

25

30

By "modulated activity" is meant any activity, condition, disease or phenotype which is modulated by a biologically active form of a protein. Modulation may be effected by affecting the concentration or subcellular localization of biologically active protein, *i.e.*, by regulating expression or degradation, or by direct agonistic or antagonistic effect as, for example, through inhibition, activation, binding, or release of substrate, modification either chemically or structurally, or by direct or indirect interaction which may involve additional factors.

By "effective amount" or "dose effective amount" or "therapeutically effective amount" is meant an amount of an agent which modulates a biological activity of the polypeptide of the invention.

By "immunologically active" is meant any immunoglobulin protein or fragment thereof which recognizes and binds to an antigen.

By "Dkk" is meant to refer to the nucleic acids and proteins of members of the Dkk (Dickkopf) family. This includes, but is not limited to, Dkk-1, Dkk-2, Dkk-3, Dkk-4, Soggy, and related Dkk proteins. Dkk-1 is a preferred embodiment of the present invention. However, the Dkk proteins have substantial homology and one skilled in the art will appreciate that all of the embodiments of the present invention utilizing Dkk-1 may also be utilized with the other Dkk proteins.

By "Dkk-1" is meant to refer to the Dkk-1 protein and nucleic acids which encode the Dkk-1 protein. Dkk-1 refers to Dickkopf-1, and in *Xenopus* it is related to at least Dkk-2, Dkk-3, and Dkk-4 (see Krupnik *et al.*, *Gene* 238:301-313 (1999)). Dkk-1 was first identified in *Xenopus* (Glinka *et al.*, *Nature* 391:357-62 (1998)). It was recognized as a factor capable of inducing ectopic head formation in the presence of inhibition of the BMP pathway. It was then also found to inhibit the axis-inducing activity of several *Xenopus* Wnt molecules by acting as an extracellular antagonist of Wnt signaling. Mammalian homologs have been found including Dkk-1, Dkk-2, Dkk-3, Dkk-4 and soggy (Fedi *et al.*, 1999 and Krupnick *et al.* 1999). Human Dkk-1 was also referred to as sk (Fedi *et al.* 1999). As used herein, Dkk-1 is

meant to include proteins from any species having a Wnt pathway in which Dkk-1 interacts. Particularly preferred are mammalian species (e.g., murine, caprine, canine, bovine, feline, equine, primate, ovine, porcine and the like), with particularly preferred mammals being humans. Nucleic acid sequences encoding Dkk-1 include, but are not limited to human Dkk-1 (GenBank Accession Nos. AH009834, XM 005730, AF261158, AF261157, AF177394, AF127563 and NM 012242), Mus musculus dickkopf homolog 1 (GenBank Accession No. NM 010051), and Danio rerio dickkopf-1 (GenBank Accession Nos. AF116852 and AB023488). The genomic sequences with exon annotation are GenBank Accession Nos. AF261157 and AF261158. Also contemplated are homologs of these sequences which have Dkk-1 activity in the Wnt pathway. Dkk-1 amino acid sequences include, but are not limited to human dickkopf homolog 1 (GenBank Accession Nos. AAG15544, BAA34651, NP 036374, AAF02674, AAD21087, and XP 005730), *Danio rerio* (zebrafish) dickkopf1 (GenBank Accession Nos. BAA82135 and AAD22461) and murine dickkopf-1 (GenBank Accession Nos. 054908 and NP 034181). Variants and homologs of these sequences which possess Dkk-1 activity are also included when referring to Dkk-1.

5

10

15

20

25

30

By "Dkk mediated" disorder, condition or disease is any abnormal state that involves Dkk activity. The abnormal state can be induced by environmental exposure or drug administration. Alternatively, the disease or disorder can be due to a genetic defect. Dkk mediated diseases, disorders and conditions include but are not limited to bone mass disorders or conditions and lipid disorders and conditions. For example, bone mass disorders/conditions/diseases, which may be mediated by Dkk, include but are not limited to age related loss of bone, bone fractures (e.g., hip fracture, Colle's fracture, vertebral crush fractures), chondrodystrophies, druginduced disorders (e.g., osteoporosis due to administration of glucocorticoids or heparin and osteomalacia due to administration of aluminum hydroxide, anticonvulsants, or glutethimide), high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.

Lipid disorders/diseases/conditions, which may be mediated by Dkk, include but are not limited to familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and elevated lipid levels of unknown etiologies

The term "recognizes and binds," when used to define interactions of antisense nucleotides, siRNAs (small inhibitory RNA), or shRNA (short hairpin RNA) with a target sequence, means that a particular antisense, siRNA, or shRNA sequence is substantially complementary to the target sequence, and thus will specifically bind to a portion of an mRNA encoding polypeptide. As such, typically the sequences will be highly complementary to the mRNA target sequence, and will have no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base mismatches throughout the sequence. In many instances, it may be desirable for the sequences to be exact matches, i.e. be completely complementary to the sequence to which the oligonucleotide specifically binds, and therefore have zero mismatches along the complementary stretch. As such, highly complementary sequences will typically bind quite specifically to the target sequence region of the mRNA and will therefore be highly efficient in reducing, and/or even inhibiting the translation of the target mRNA sequence into polypeptide product.

Substantially complementary oligonucleotide sequences will be greater than about 80 percent complementary (or `% exact-match`) to the corresponding mRNA target sequence to which the oligonucleotide specifically binds, and will, more preferably be greater than about 85 percent complementary to the corresponding mRNA target sequence to which the oligonucleotide specifically binds. In certain aspects, as described above, it will be desirable to have even more substantially complementary oligonucleotide sequences for use in the practice of the invention, and in such instances, the oligonucleotide sequences will be greater than about 90 percent complementary to the corresponding mRNA target sequence to which the oligonucleotide specifically binds, and may in certain embodiments be greater than about 95 percent complementary to the corresponding mRNA target sequence to

which the oligonucleotide specifically binds, and even up to and including 96%, 97%, 98%, 99%, and even 100% exact match complementary to the target mRNA to which the designed oligonucleotide specifically binds.

Percent similarity or percent complementary of any of the disclosed sequences may be determined, for example, by comparing sequence information using the GAP computer program, version 6.0, available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (1970). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess (1986), (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

By "mimetic" is meant a compound or molecule that performs the same function or behaves similarly to the compound mimicked.

By "reporter element" is meant a polynucleotide that encodes a poplypeptide capable of being detected in a screening assays. Examples of polypeptides encoded by reporter elements include, but are not limited to, lacZ, GFP, luciferase, and chloramphenicol acetyltransferase.

2. <u>Introduction</u>

5

10

15

20

25

30

A polymorphism in LRP5 (Zmax), G171V, designated as HBM, has been identified as conferring a high bone mass phenotype in a population of related subjects as described in co-pending applications International Patent Application PCT/US 00/16951, and U.S. Patent Application Nos. 09/543,771 and 09/544,398, which are hereby incorporated by reference in their entirety (Little *et al.*, *Am J Hum Genet*. 70:11-19 (2002)). LRP5 is also described in International Patent Application WO 98/46743, which is incorporated by reference in its entirety. Loss of LRP5

function has been shown to have a deleterious effect on bone (Gong *et al., Cell* 107:513-523 (2001)). Additionally, the HBM polymorphism and LRP5 may also be important in cardiac health and lipid-mediated disorders. Thus, methods of regulating their activity can serve as methods of treating and/or preventing cardiac and lipid-mediated disorders.

Recent studies have indicated that LRP5 participates in the Wnt signal transduction pathway. The Wnt pathway is critical in limb early embryological development. A recently published sketch of the components of Wnt signaling is shown in Figure 1

5

10

15

20

25

30

(Nusse, 2001 http://www.stanford.edu/~rnusse/pathways/cell2.html) (see also, Nusse, Nature 411:255-6 (2001); and Mao et al., Nature 411:321-5 (2001)). Briefly summarized, Wnt proteins are secreted proteins which interact with the transmembrane protein Frizzled (Fz). LRP proteins, such as LRP5 and LRP6, are believed to modulate the Wnt signal in a complex with Fz (Tamai et al., Nature 407:530-5 (2000)). The Wnt pathway acts intracellularly through the Disheveled protein (Dsh) which in turn inhibits glycogen synthetase kinase-3 (GSK3) from phosphorylating β-catenin. Phosphorylated β-catenin is rapidly degraded following ubiquitination. However, the stabilized β-catenin accumulates and translocates to the nucleus where it acts as a cofactor of the T-cell factor (TCF) transcription activator complex.

The protein dickkopf-1 (Dkk-1) is reported to be an antagonist of Wnt pathway. Dkk-1 is required for head formation in early development. Dkk-1 and its function in the Wnt pathway are described in e.g., Krupnik, et al., Gene 238:301-13 (1999); Fedi et al., J. Biol. Chem. 274:19465-72 (1999); see also for Dkk-1 and the Wnt pathway, Wu et al., Curr. Biol. 10:1611-4 (2000), Shinya et al., Mech. Dev. 98:3-17 (2000), Mukhopadhyay et al., Dev Cell 1:423-434 (2001) and in PCT Patent Application No. WO 00/52047, and in references cited in each. It has been known that Dkk-1 acts upstream of Dsh, however the nature of the mechanism of inhibition by Dkk-1 is just beginning to be elucidated. Dkk-1 is expressed in the mouse embryonic limb bud and its disruption results in abnormal limb morphogensis, among

other developmental defects (Gotewold et al., Mech. Dev. 89:151-3 (1999); and, Mukhopadhyay et al., Dev Cell 1:423-434 (2001)).

Related U.S. provisional application 60/291,311 disclosed a novel interaction between Dkk-1 (GenBank Accession No. XM 005730) and LRP5. The interaction between Dkk-1 and LRP5 was discovered by a yeast two hybrid (Y2H) screen for proteins which interact with the ligand binding domain of LRP5, as described in Example 1. The two-hybrid screen is a common procedure in the art, which is described, for example, by Gietz *et al.*, *Mol. Cell. Biochem.* 172:67-79 (1997); Young, *Biol. Reprod.* 58:302-11 (1998); Brent and Finley, *Ann. Rev. Genet.* 31:663-704 (1997); and Lu and Hannon, eds., <u>Yeast Hybrid Technologies</u>, Eaton Publishing, Natick MA, (2000). More recently, other studies confirm that Dkk-1 is a binding partner for LRP and modulates the Wnt pathway via direct binding with LRP (R. Nusse, *Nature* 411:255-256 (2001); A. Bafico *et al.*, *Nat. Cell Biol.* 3:683-686 (2001); M. Semënov, *Curr. Biol.* 11:951-961 (2001); B. Mao, *Nature* 411:321-325 (2001), Zorn, *Curr. Biol.* 11:R592-5 (2001)); and, L. Li *et al.*, *J. Biol Chem.* 277:5977-81 (2002)).

Mao and colleagues (2001) identified Dkk-1 as a ligand for LRP6. Mao *et al.* suggest that Dkk-1 and LRP6 interact antagonistically where Dkk proteins inhibit the Wnt coreceptor functions of LRP6. Using co-immunoprecipitation, the group verified that the Dkk-1/LRP6 interaction was direct. Dkk-2 was also found to directly bind LRP6. Contrary to data contained in provisional application 60/291,311, Mao *et al.* report that no interaction was detected between any Dkk protein and LRP5, as well as no interaction with LDLR, VLDLR, ApoER, or LRP). Additionally, Mao *et al.* demonstrated that LRP6 can titrate Dkk-1's effects of inhibiting Wnt signaling using the commercial TCF-luciferase reporter gene assay (TOPFLASH). A similar conclusion was drawn from analogous studies in *Xenopus* embryos. Deletion analyses of LRP6 functional domains revealed that EGF repeats (beta-propellers) 3 and 4 were necessary for Dkk-1 binding and that the ligand binding domains of LRP6 had no effect on Dkk-1 binding. The findings of Mao *et al.* contrast with data obtained by the present inventors indication that the ligand binding domains of LRP5

were necessary and sufficient for Dkk-1 binding in yeast. Using classical biochemical ligand-receptor studies, Mao *et al.* determined a Kd=0.34 nM for Dkk-1/LRP6 and a Kd=0.73 nM for Dkk-2/LRP6.

5

10

15

20

25

30

Semenov *et al.* (2001) verified the Mao group's results and confirmed by coimmunoprecipitation that Dkk-1 does not directly bind to Wnt or Frizzled but rather interacts with LRP6. Their Scatchard analyses found a Kd=0.5 nM for Dkk-1/LRP6. Semenov *et al.* also demonstrated that Dkk-1 could abolish an LRP5/Frizzled8 complex implying that Dkk-1 can also repress Wnt signaling via interactions with LRP5. A Dkk-1 mutant where cysteine 220 was changed to alanine abolished LRP6 binding and was unable to repress Wnt signaling. Studies in *Xenopus* embryos confirmed the results and revealed a functional consequence of Dkk-1/LRP6: repression of Wnt signaling. Their *Xenopus* work also suggested that LRP6/Dkk-1 may be specific for the canonical, β-catenin-mediated, Wnt pathways as opposed to the Wnt Planar Cell Polarity pathway.

Bafico *et al.* (2001) employed a ¹²⁵I-labeled Dkk-1 molecule to identify LRP6 as its sole membrane receptor with a Kd=0.39 nM. Again, the functional consequences of the Dkk-1/LRP6 interaction was a repression of the canonical Wnt signaling even when Dkk-1 was added at extremely low concentrations (30 pM).

Not wishing to be bound by theory, it is believed that the present invention provides an explanation for the mechanism of Dkk-1 inhibition of the Wnt pathway and provides a mechanism whereby the Wnt pathway may be modulated. The present application and related provisional application 60/291,311 describe Dkk-1/LRP5 interactions and demonstrate that the interaction between LRP5/LRP6/HBM and Dkk can be used in a method as an intervention point in the Wnt pathway for an anabolic bone therapeutic or a modulator of lipid metabolism.

As detailed below, in the section "Methods to Identify Binding Partners" and Examples 6 and 7, Dkk-1 is able to repress LRP5-mediated Wnt signaling but not HBM-mediated Wnt signaling. This observation is of particular interest because the HBM mutation in LRP5 is a gain of function or activation mutation. That is, Wnt signaling, via the canonical pathway, is enhanced with HBM versus LRP5. The

present data suggest the mechanism of this functional activation: the inability of Dkk-1 to repress HBM-mediated Wnt signaling. Further investigations of other Wnt or Dkk family members show differential activities in the canonical Wnt pathway that demonstrate the complexity and variability in Wnt signaling that can be achieved depending on the LRP/Dkk/Wnt/Frizzled repertoire that is expressed in a particular cell or tissue. This may attest to the apparent bone specificity of the HBM phenotype in humans and in the HBM transgenic animals.

Furthermore, the present data reveal the importance and functional consequence for the potential structural perturbation of the first beta-propeller domain of LRP5. Our data identified the ligand binding domain of LRP5 as the interacting region with Dkk-1 while the Mao *et al.* publication demonstrated the functional role of propellers 3 and 4 in their LRP6/Dkk-1 studies. In the present invention, we implicate the first beta propeller domain, via the HBM mutation at residue 171, as having a functional consequence in the Dkk-1-mediated Wnt pathway. The involvement of position 171 of propeller 1 may be direct or indirect with Dkk-1. Direct involvement could arise from perturbations of the 3-dimensional structure of the HBM extracellular domain that render Dkk-1 unable to bind. Alternatively, residue 171 of propeller 1 may directly interact with Dkk-1; however, by itself, it is insufficient to bind and requires other LRP5 domains. Potential indirect candidate molecules may be among the proteins identified the Dkk-1 yeast-two-hybrid experiments.

It may be that the disruption of Dkk activity is not necessarily mediated by enhancing or preventing the binding of Dkk to LRP5/LRP6/HBM. More than one mechanism may be involved. Indeed, the inventors have observed that Dkk-1 binds LRP5, LRP6, and HBM. It is able to effectively inhibit LRP6, and to a slightly lesser extent, LRP5 activity. Further, has been observed that different members of the Dkk family differentially affect LRP5/LRP6/HBM activity. For example, Dkk-1 inhibits LRP5/LRP6/HBM activity while another Dkk may enhance LRP5/LRP6/HBM activity. An endpoint to consider is the modulation of the LRP5/LRP6/HBM activity, not simply binding.

The present disclosure shows that targeting the disruption of the Dkk-1/LRP5 interaction is a therapeutic intervention point for an HBM mimetic agent. A therapeutic agent of the invention may be a small molecule, peptide or nucleic acid aptamer, antibody, or other peptide/protein, etc. Methods of reducing Dkk-1 expression may also be therapeutic using methodologies such as: RNA interference, antisense oligonucleotides, morpholino oligonucleotides, PNAs, antibodies to Dkk-1 or Dkk-1 interacting proteins, decoy or scavenger LRP5 or LRP6 receptors, and knockdown of Dkk-1 or Dkk-1 interactor transcription.

5

10

15

20

25

30

In an embodiment of the present invention, the activity of Dkk-1 or the activity of a Dkk-1 interacting protein may be modulated for example by binding with a peptide aptamer of the present invention. In another embodiment, LRP5 activity may be modulated by a reagent provided by the present invention (e.g., a peptide aptamer). In another embodiment, the Dkk-1/LRP5 interaction may be modulated by a reagent of the present invention (e.g., a Dkk-1 interacting protein such as those identified in Figure 5). In another embodiment, the Wnt signal transduction pathway may be modulated by use of one or more of the above methods. In a preferred embodiment of the present invention, the Dkk-1 mediated activity of the Wnt pathway may be specifically modulated by one or more of the above methods. In another preferred embodiment of the present invention, the Wnt signal transduction pathway may be stimulated by down-regulating Dkk-1 interacting protein activity; such down-regulation could, for example, yield greater LRP5 activity. In a more preferred embodiment, by stimulating LRP5 activity, bone mass regulation may be stimulated to restore or maintain a more optimal level. In another preferred embodiment, by stimulating LRP5 activity, lipid metabolism may be stimulated to restore or maintain a more optimal level. Alternative embodiments provide methods for screening candidate drugs and therapies directed to correction of bone mass disorders or lipid metabolism disorders. And, preferred embodiments of the present invention provide drugs and therapies developed by the use of the reagents and/or methods of the present invention. One skilled in the art will understand that the present invention provides important research tools to develop an effective model of

osteoporosis, to increase understanding of bone mass and lipid modulation, and to modulate bone mass and lipid metabolism.

Previous investigation of a large family in which high bone mass is inherited as a single gene (autosomal dominant) trait (HBM-1) has provided important insight into the mechanism by which bone density might be modulated. Members of this family have significantly increased spinal and hip BMD (>3 standard deviations above the norm) which affects young adults as well as elderly family members into the ninth decade. The bones of affected members, while appearing very dense radiographically, have normal external shape and outer dimensions. Cortical bone is thickened on endosteal surfaces and "affected" individuals are asymptomatic without any other phenotypic abnormalities. Assays of biochemical markers that reflect skeletal turnover suggest that the disorder is associated with a normal rate of bone remodeling. Affected individuals have achieved a balance in bone turnover at a density that is significantly greater than necessary for normal skeletal stresses. Importantly, the bones most affected are load-bearing bones which are subjected to the greatest mechanical and gravitational stresses (spine and hip). These are the most important bones to target fir therapeutic interventions in osteoporosis. The gene identified as being responsible for this phenotype, Zmax or LRP5, was not previously associated with bone physiology. The fact that modification of this gene, such as that produced by the polymorphism leading to the autosomal dominant inheritance of the HBM family phenotype, identifies Zmax/LRP5 and the pathway by which it is regulated, including Dkk/Wnt pathways discussed above, as an important target for developing modulators of bone density. Modulation of Zmax/LRP5 to mimic the gain in function provided by the HBM polymorphism would be expected to provide an important therapy for bone wasting conditions. Additionally, such modulation in young adults could enhance peak bone mass and prevent or delay fracture risk later in life. Alternatively, modulation to reduce function could be employed to treat conditions where bone is being inappropriately produced.

5

10

15

20

25

3. <u>Polypeptides</u>

5

10

15

30

Polypeptides contemplated for use in this invention include those which modulate Dkk and Dkk interacting protein activities. Preferred polypeptides and peptides include those which modulate the Wnt pathway. Examples of preferred sequences include the Y2H baits exemplified in Figure 2, peptide aptamers of Figure 3 (SEQ ID NOs:171-188) and Figure 4 (SEQ ID NOs:189-192), the polypeptides of the Dkk-1 interacting proteins identified in Figure 5, those polypeptides shown in Figure 6, the LRP binding domain of Dkk (amino acids 138-266 of hDkk1), the cysteine-rich domain 2 (a.a. 183-245 of hDkk-1), the cysteine-rich domain 1 (a.a. 97-138 of hDkk), and LRP5 binding aptamers of Figure 13 (including SEQ ID NOs:204-213). Although Dkk-1 is exemplified, the other Dkk proteins contain substantially similar regions and may also be used according to the present invention.

For example, the baits depicted in Figure 2 were used in a yeast two hybrid (Y2H) screen. The Y2H screen was performed as described in Example 2 to determine the minimum required binding domain for Dkk-1 to bind LRP5. The minimum binding domain constructs (*i.e.*, residues 139-266 in bold below and residues 97-245 which are underlined, of Dkk-1) include the second cysteine rich domain which has sequence homology to a colipase fold.

20 mmalgaagat rvfvamvaaa lgghpllgvs atlnsvlnsn aiknlppplg gaaghpgsav 60 saapgilypg gnkyqtidny qpypcaedee cgtdey<u>casp trqqdagvqi clacrkrrkr</u> 120 <u>cmrhamccpg nyckngicvs sdqnhfrgei eetitesfqn dhstldgysr rttlsskmyh</u> 180 <u>tkgqegsvcl rssdcasqlc carhfwskic kpvlkeqqvc tkhrrkgshq leifqrcycg</u> 240 <u>eglscriqkd hhqasnssrl htcqrh</u> (GenBank Accession No. XP_005730) (SEQ ID NO:128).

This homology suggests a lipid-binding function and may facilitate Dkk-1 interactions at the plasma membrane (van Tilbeurgh, H., *Biochim. Biophys. Acta.* 1441:173-84 (1999)). An interaction domain of Dkk-1 that is able to interact with the ligand binding domain (LBD) of LRP5 is a useful reagent in the modulation of LRP5 activity

and modulation of Dkk-1/LRP5 complex formation. Similar screens can be prepared for Dkk-1 and Dkk-1 interacting proteins or polypeptides.

5

10

15

20

25

30

A set of peptide aptamers was identified from a library of random peptides constrained and presented in a thioredoxin A (trxA) scaffold as described in Example 3. Peptide aptamers are powerful new tools for molecular medicine as reviewed by Hoppe-Seyler & Butz, J. Mol. Med., 78:426-430 (2000); Brody and Gold, Rev. Mol. Biotech., 74:5-13 (2000); and Colas, Curr. Opin. in Chem. Biol. 4:54-9 (2000) and the references cited therein. Briefly, peptide aptamers have been shown to be highly specific reagents capable of binding in vivo. As such, peptide aptamers provide a method of modulating the function of a protein and may serve as a substitute for conventional knock-out methods, knock-down or complete loss of function. Peptide aptamers are also useful reagents for the validation of targets for drug development and may be used as therapeutic compounds directly or provide the necessary foundation for drug design. Once identified, the peptide insert may be synthesized and used directly or incorporated into another carrier molecule. References reviewed and cited by Brody and Gold (2000, supra) describe demonstrated therapeutic and diagnostic applications of peptide aptamers and would be known to the skilled artisan.

The peptide aptamers of the present invention are useful reagents in the binding of Dkk-1 to its ligands and thereby modulation of the Wnt pathway and may be used to prevent Dkk-1 from inhibiting LRP5 modulation or Dkk-1 interacting protein modulation of the Wnt pathway. The sequence of these peptide aptamers is shown in Figure 3 (SEQ ID NOs:171-188). The peptide aptamers refers to the peptide constrained by the thioredoxin scaffold. The aptamers are also contemplated as therapeutic agents to treat Dkk-1 mediated diseases and conditions. Such aptamers are useful structural guides to chemists, for the design of mimetic compounds of the aptamers.

Peptide aptamers were likewise developed to the LRP5 ligand binding domain (LBD) bait sequences. The sequences of these peptide aptamers is shown in Figure 4 (SEQ ID NOs:189-192). These are useful reagents which may be used to disrupt

the Dkk-1/LRP5 binding interface while leaving Dkk-1 undisturbed. These can be used as comparative controls for Wnt signaling, thus, a control is provided for the specificity of any drug or therapy screened. The aptamers are also useful therapeutic agents to treat LRP mediated diseases and conditions. Such aptamers may also be used as structural guides to chemists, for the design of mimetic compounds of the aptamers.

Thirty proteins were identified which interact with Dkk-1, Dkk-1 interacting proteins, were identified in a yeast-two-hybrid screen using the Dkk-1 bait and are shown in Figure 5. It was noted that these results suggest an interaction of Dkk-1 with Notch-2. It has been suggested that cross-talk exists between the Wnt and Notch signaling pathways. For instance, Presenilin1 (Ps1) is required for Notch processing and inhibits the downstream Wnt pathway. The extracellular domain of Notch is thought to interact with Wnt. Furthermore, the Notch intracellular domain is thought to interact with disheveled and in signal induced processing, the intracellular domain is thought to interact with presenilin. (Soriano et al., J. Cell Biol. 152:785-94 (2001)). For additional information regarding the relationships between Notch and Wnt signaling, see Wesley, Mol. Cell. Biol. 19:5743-58 (1999) and Axelrod et al., Science 271:1826-32 (1996).

An interaction between Dkk-1 and chordin has also been noted; suggesting that cross-talk exists between the Wnt and TGF-beta/BMP signaling pathways (Letamendia *et al., J. Bone Joint Surg. Am.* 83A:S31 (2001); Labbe *et al., Proc. Natl. Acad. Sci. USA* 97:8358-63 (2000); Nishita *et al., Nature* 403:781-5 (2000); DeRobertis *et al., Int. J. Dev. Biol.* 45:1389-97 (2001); and Saint-Jeannet *et al., Proc. Natl. Acad. Sci. USA* 94:13713-8 (1997)). The BMP signaling pathway has an established role in bone and connective tissue development, repair and homeostasis (review in Rosen and Wozney "Bone Morphogenetic Proteins" In: Principles of Bone Biology, 2nd Edition, Eds. J. Bilezikian, L. Raisz and G. Rodan, Academic Press, pp. 919-28 (2002)). Chordin is an important molecule during development which also modulates BMP signaling in adults by sequestering BMPs in latent complexes (Piccolo *et al., Cell* 86:589-98 (1996) reviewed in Reddi, *Arthritis Res.* 3:1-5 (2001);

DeRobertis *et al.*, *Int. J. Dev. Biol.* 45:189-97 (2001)). It may be that Dkk effects bone mass modulation through both the Wnt signaling pathway via LRP and the BMP pathway via chordin.

Moreover, a number of putative growth factors, growth factor related proteins, and extracellular matrix proteins have been identified as Dkk-1 interacting proteins. Additional information regarding Dkk-1 interacting proteins identified in the Y2H assay may be obtained from publicly available databases such as PubMed via the use of the accession numbers provided in the present application. In a preferred embodiment of the invention, the amino acid sequences of these Dkk-1 interacting proteins or biologically active fragments thereof be used to modulate Dkk, Dkk-1, LRP5, LRP6, HBM, or Wnt activity. Although these proteins were identified as interacting with Dkk-1, due to the substantial homology between the various Dkk proteins, such interacting proteins are contemplated to interact with the other Dkk family members.

15

20

25

30

10

5

4. Aptamer Mimetics

The present invention further provides for mimetics of Dkk, particularly Dkk-1, and LRP5 peptide aptamers. Such aptamers may serve as structural guides to chemists for the design of mimetic compounds of the aptamers. The aptamers and their mimetics are useful as therapeutic agents to treat LRP- or Dkk-mediated diseases and conditions.

5. Nucleic Acid Molecules

The present invention further provides nucleic acid molecules that encode polypeptides and proteins which interact with Dkk and Dkk interacting proteins, and/or LRP5 (also LRP6 and HBM) to modulate biological activities of these proteins. Preferred embodiments provide nucleic acids encoding for fragments of Dkk-1 protein, including the nucleic acids of Figure 7, the Dkk-1 interacting proteins listed in Figure 5, polypeptide aptamers of Dkk-1 (Figure 3 - SEQ ID NOs:171-188), LRP5 (Figure 4 - SEQ ID NOs:189-192), Figure 13 peptide aptamers (including SEQ

ID NO:204-214) encoded by Figure 12 polynucleotides (including SEQ ID NO:193-203), LRP6 and HBM and the related fusion proteins herein described, preferably in isolated or purified form. As used herein, "nucleic acid" is defined as RNA. DNA. or cDNA that encodes a peptide as defined above, or is complementary to a nucleic acid sequence encoding such peptides, or hybridizes to either the sense or antisense strands of the nucleic acid and remains stably bound to it under appropriate stringency conditions. The nucleic acid may encode a polypeptide sharing at least about 75% sequence identity, preferably at least about 80%, and more preferably at least about 85%, with the peptide sequences; at least about 90%, 95%, 96%, 97%, 98%, and 99% or greater are also contemplated. Specifically contemplated are genomic DNA, cDNA, mRNA, antisense molecules, enzymatically active nucleic acids (e.g., ribozymes), as well as nucleic acids based on an alternative backbone or including alternative bases, whether derived from natural sources or synthesized. Such hybridizing or complementary nucleic acids, however, are defined further as being novel and nonobvious over any prior art nucleic acid including that which encodes, hybridizes under appropriate stringency conditions, or is complementary to a nucleic acid encoding a protein according to the present invention.

5

10

15

20

25

30

As used herein, the terms "hybridization" (hybridizing) and "specificity" (specific for) in the context of nucleotide sequences are used interchangeably. The ability of two nucleotide sequences to hybridize to each other is based upon the degree of complementarity of the two nucleotide sequences, which in turn is based on the fraction of matched complementary nucleotide pairs. The more nucleotides in a given sequence that are complementary to another sequence, the greater the degree of hybridization of one to the other. The degree of hybridization also depends on the conditions of stringency which include temperature, solvent ratios, salt concentrations, and the like. In particular, "selective hybridization" pertains to conditions in which the degree of hybridization of a polynucleotide of the invention to its target would require complete or nearly complete complementarity. The complementarity must be sufficiently high so as to assure that the polynucleotide of

the invention will bind specifically to the target nucleotide sequence relative to the binding of other nucleic acids present in the hybridization medium. With selective hybridization, complementarity will be about 90-100%, preferably about 95-100%, more preferably about 100%.

5

10

"Stringent conditions" are those that (1) employ low ionic strength and high temperature for washing, for example: 0.015 M NaCl, 0.0015 M sodium titrate, 0.1% SDS at 50°C; or (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, 75 mM sodium citrate at 42°C. Another example is use of 50% formamide, 5X SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5X Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2X SSC and 0.1% SDS. A skilled artisan can readily determine and vary the stringency conditions appropriately to obtain a clear and detectable hybridization signal.

15

As used herein, a nucleic acid molecule is said to be "isolated" or "purified" when the nucleic acid molecule is substantially separated from contaminant nucleic acid encoding other polypeptides from the source of nucleic acid. Isolated or purified is also meant to include nucleic acids which encode Dkk or fragments thereof which lack surrounding genomic sequences that flank the *Dkk* gene. Isolated or purified is further intended to include nucleic acids which encode Dkk interacting proteins or biologically active fragments thereof which lack surrounding genomic sequences that flank the Dkk interacting protein genes.

25

20

The present invention further provides fragments of the encoding nucleic acid molecule. As used herein, a fragment of an encoding nucleic acid molecule refers to a small portion of the entire protein encoding sequence. The size of the fragment will be determined by the intended use. For example, if the fragment is chosen so as to encode an active portion of the protein, the fragment will need to be large enough to encode the functional region(s) of the protein. If the fragment is to be used as a

30

nucleic acid probe or PCR primer, then the fragment length is chosen so as to obtain a relatively small number of false positives during probing/priming.

Fragments of the encoding nucleic acid molecules of the present invention (*i.e.*, synthetic oligonucleotides) that are used as probes or specific primers for the polymerase chain reaction (PCR), or to synthesize gene sequences encoding proteins of the invention can easily be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci *et al.* (*J. Am. Chem. Soc.* 103:3185-3191 (1981)) or using automated synthesis methods. In addition, larger DNA segments can readily be prepared by well known methods, such as synthesis of a group of oligonucleotides that define various modular segments of the gene, followed by ligation of oligonucleotides to build the complete modified gene.

5

10

15

20

25

The polypeptide encoding nucleic acid molecules of the present invention may further be modified to contain a detectable label for diagnostic and probe purposes. A variety of such labels are known in the art and can readily be employed with the encoding molecules herein described. Suitable labels include, but are not limited to, biotin, radiolabeled nucleotides and the like. A skilled artisan can employ any of the art known labels to obtain a labeled encoding nucleic acid molecule.

Modifications to the primary structure itself by deletion, addition, or alteration of the amino acids incorporated into the protein sequence during translation can be made without destroying the activity of the protein. Such substitutions or other alterations result in proteins having an amino acid sequence encoded by a nucleic acid falling within the contemplated scope of the present invention.

Antisense molecules corresponding to the polypeptide coding or complementary sequence may be prepared. Methods of making antisense molecules which bind to mRNA, form triple helices or are enzymatically active and cleave TSG RNA and single stranded DNA (ssDNA) are known in the art. See, e.g., Antisense and Ribozyme Methodology:Laboratory Companion (Ian Gibson, ed., Chapman & Hall, 1997) and Ribozyme Protocols: Methods in Molecular Biology (Phillip C. Turner, ed., Humana Press, Clifton, NJ, 1997).

Also contemplated is the use of compounds which mediate postranscriptional gene silencing (PTGS), quelling and RNA interference (RNAi). These compounds typically are about 21 to about 25 nucleotides and are also known as short interfering RNAs or short inhibitory RNAs (siRNAs). The siRNAs are produced from an initiating double stranded RNA (dsRNA). Although the full mechanism by which the siRNAs function is not fully elucidated, it is known that these siRNAs transform the target mRNA into dsRNA, which is then degraded. Preferred forms are 5' phosphorylated siRNAs, however, hydroxylated forms may also be utilized. For additional background regarding the preparation and mechanism of siRNAs generally, see, e.g., Lipardi et al., Cell 107(3): 297-307 (2001); Boutla et al., Curr. Biol. 11(22): 1776-80 (2001); Djikeng et al., RNA 7(11): 1522-30 (2001); Elbashir et al., EMBO J. 20(23): 6877-88 (2001); Harborth et al., J. Cell. Sci. 114(Pt. 24): 4557-65 (2001); Hutvagner et al., Science 293(5531): 811-3 (2001); and Elbashir et al., Nature 411:494-98 (2001).

Also contemplated are short hairpin RNAs (shRNAs). shRNAs are a modification of the siRNA method described above. Instead of transfecting exogenously synthesized dsRNA into a cell, sequence-specific silencing can be achieved by stabling expressing siRNA from a DNA template as a fold-back stemloop, or hairpin. This approach is known as shRNA. This method permits the analysis of loss of function phenotypes due to sequence-specific gene silencing in mammalian cells by avoiding many of the problems associated with siRNAs, such as RNase degradation of the reagents, expensive chemical synthesis, etc. For additional background regarding the preparation and mechanism of shRNAs generally, see, e.g., Yu et al., PNAS 99:6047-6052 (2002); Paddison et al., Genes and Devel. 16:948-58 (2002); and Brummelkamp et al., Science 296:550-553 (2002). For additional background on the use of this method in mammalian gene knockdown methodologies, see Tuschl, Nature Biotech. 20:446-448 (2002) (and references therein).

In one preferred embodiment, the siRNA or shRNA is directed to a Dkk encoding mRNA, wherein a preferred Dkk is Dkk-1. In another embodiment, the

siRNA or shRNA is directed towards a protein which binds to and modulates the activity of or is modulated by a Dkk; these proteins include LRP5, LRP6 and HBM as well as other members of the Wnt pathway.

6. <u>Isolation of Other Related Nucleic Acid Molecules</u>

5

10

15

20

25

30

The identification of the nucleic acid molecule of Dkk allows a skilled artisan to isolate nucleic acid molecules that encode other members of the Dkk family (see, Krupnik et al., 1999). Further, the presently disclosed nucleic acid molecules allow a skilled artisan to isolate nucleic acid molecules that encode Dkk-1-like proteins, in addition to Dkk-1. The presently disclosed Dkk-1 interacting proteins and their corresponding nucleic acid molecules allows a skilled artisan to further isolate other related protein family members which interact with Dkk-1.

A skilled artisan can readily use the amino acid sequence of Dkk and Dkk interacting proteins to generate antibody probes to screen expression libraries prepared from appropriate cells. Typically, polyclonal antiserum from mammals such as rabbits immunized with the purified protein (as described below) or monoclonal antibodies can be used to probe a mammalian cDNA or genomic expression library, such as a human macrophage library, to obtain the appropriate coding sequence for other members of the protein family. The cloned cDNA sequence can be expressed as a fusion protein, expressed directly using its own control sequences, or expressed by constructions using control sequences appropriate to the particular host used for expression of the desired protein.

Alternatively, a portion of the coding sequence herein described can be synthesized and used as a probe to retrieve DNA encoding a member of the protein family from any mammalian organism. Oligomers containing approximately 18-20 nucleotides (encoding about a 6-7 amino acid stretch) are prepared and used to screen genomic DNA or cDNA libraries to obtain hybridization under stringent conditions or conditions of sufficient stringency to eliminate an undue level of false positives.

Additionally, pairs of oligonucleotide primers can be prepared for use in a polymerase chain reaction (PCR) to selectively clone an encoding nucleic acid

molecule. A PCR denature/anneal/extend cycle for using such PCR primers is well known in the art and can readily be adapted for use in isolating other encoding nucleic acid molecules. For example, degenerate primers can be utilized to obtain sequences related to Dkk-1 or Dkk-1 interacting proteins. Primers can be designed that are not perfectly complementary and can still hybridize to a portion of a target sequence or flanking sequence and thereby provide for amplification of all or a portion of a target sequence. Primers of about 20 nucleotides or less, preferably have about one to three mismatches located at the 5' and/or 3' ends. Primers of about 20 to 30 nucleotides have up to about 30% mismatches and can still hybridize to a target sequence. Hybridization conditions for primers with mismatch can be determined by the method described in Maniatis et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982) or by reference to known methods. The ability of the primer to hybridize to a sequence of either Dkk-1, a Dkk-1 interacting protein, or a related sequence under varying conditions can be determined using this method. Because a target sequence is known, the effect of mismatches can be determined by methods known to those of skill in the art. Degenerate primers would be based on putative conserved amino acid sequences of the Dkk-1 and Dkk-1 interacting protein genes.

7. <u>rDNA Molecules for Polypeptide Expression</u>

5

10

15

20

25

30

The present invention further provides recombinant DNA molecules (rDNAs) that contain a polypeptide coding sequence. As used herein, a rDNA molecule is a DNA molecule that has been subjected to molecular manipulation *in situ*. Methods for generating rDNA molecules are well known in the art, for example, see Sambrook *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In the preferred rDNA molecules, a coding DNA sequence is operably linked to expression control sequences and/or vector sequences.

The choice of vector and/or expression control sequences to which one of the protein family encoding sequences of the present invention is operably linked depends directly, as is well known in the art, on the functional properties desired, *e.g.*, protein

expression, and the host cell to be transformed. A vector contemplated by the present invention is at least capable of directing the replication and/or insertion into the host chromosome, and preferably also expression, of the structural gene included in the rDNA molecule.

5

10

15

20

Expression control elements that are used for regulating the expression of an operably linked protein encoding sequence are known in the art and include, but are not limited to, inducible promoters, constitutive promoters, secretion signals, and other regulatory elements. Preferably, the inducible promoter is readily controlled, such as being responsive to a nutrient in the host cell's medium. Preferred promoters include yeast promoters, which include promoter regions for metallothionein, 3phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3-phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. Vectors and promoters suitable for use in yeast expression are further described in EP 73,675A. Appropriate non-native mammalian promoters might include the early and late promoters from SV40 (Fiers et al. Nature. 273:113 (1978)) or promoters derived from Moloney murine leukemia virus, mouse tumor virus, avian sarcoma viruses, adenovirus II, bovine papilloma virus or polyoma. In addition, the construct may be joined to an amplifiable gene (e.g., DHFR) so that multiple copies of the gene may be made. For appropriate enhancer and other expression control sequences, see also Enhancers and Eukaryotic Gene Expression (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1983). Preferred bone related promoters include CMVbActin or type I collagen promoters to drive expression of the human HBM, Zmax1/LRP5 or LRP6 cDNA. Other preferred promoters for mammalian expression are from cytomegalovirus (CMV), Rous sarcoma virus (RSV), Simian virus 40 (SV40), and EF-1a (human elongation factor 1a-subunit).

25

In one embodiment, the vector containing a coding nucleic acid molecule will include a prokaryotic replicon, *i.e.*, a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a prokaryotic host cell, such as a bacterial host cell, transformed therewith. Such replicons are well known in the art. In addition, vectors with a

30

prokaryotic replicon may also include a gene whose expression confers a detectable marker such as a drug resistance. Typical bacterial drug resistance genes are those that confer resistance to ampicillin or tetracycline.

Vectors that include a prokaryotic replicon can further include a prokaryotic or bacteriophage promoter capable of directing the expression (transcription and translation) of the coding gene sequences in a bacterial host cell, such as *E. coli*. A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention. Typical of such vector plasmids are pUC8, pUC9, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA), and pPL and pKK223 available from Pharmacia (Piscataway, NJ).

Expression vectors compatible with eukaryotic cells, preferably those compatible with vertebrate cells, can also be used to form a rDNA molecule that contains a coding sequence. Eukaryotic cell expression vectors are well known in the art and are available from several commercial sources. Typically, such vectors are provided containing convenient restriction sites for insertion of a desired DNA segment. Typical of such vectors are pSVL and pKSV-10 (Pharmacia), pBPV-1/pML2d (International Biotechnologies, Inc.), vector systems that include Histidine Tags and periplasmic secretion, or other vectors described in the art.

Eukaryotic cell expression vectors used to construct the rDNA molecules of the present invention may further include a selectable marker that is effective in an eukaryotic cell, preferably a drug resistance selection marker. A preferred drug resistance marker is the gene whose expression results in neomycin resistance, *i.e.*, the neomycin phosphotransferase (*neo*) gene (Southern *et al.*, *J. Mol. Anal. Genet.* 1:327-341 (1982)). Alternatively, the selectable marker can be present on a separate plasmid, and the two vectors introduced by co-transfection of the host cell, and selected by culturing in the appropriate drug for the selectable marker.

30

5

10

15

20

25

8. <u>Host Cells Containing an Exogenously Supplied rDNA Nucleic Acid</u> Molecule

5

10

15

20

25

30

The present invention further provides host cells transformed with a nucleic acid molecule that encodes a polypeptide or protein of the present invention. The host cell can be either prokaryotic or eukaryotic. Eukaryotic cells useful for expression of a protein of the invention are not limited, so long as the cell line is compatible with cell culture methods and compatible with the propagation of the expression vector and expression of the gene product. Preferred eukaryotic host cells include, but are not limited to, yeast, insect and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human cell line but also can include invertebrates with, for example, cartilage. Preferred eukaryotic host cells include but are not limited to Chinese hamster ovary (CHO) cells (ATCC No. CCL61), NIH Swiss mouse embryo cells NIH/3T3 (ATCC No. CRL 1658), baby hamster kidney cells (BHK), HOB-03-CE6 osteoblast cells, and other like eukaryotic tissue culture cell lines.

Any prokaryotic host can be used to express a rDNA molecule encoding a protein of the invention. A preferred prokaryotic host is *E. coli*.

Transformation of appropriate cell hosts with a recombinant DNA (rDNA) molecule of the present invention is accomplished by well known methods that typically depend on the type of vector used and host system employed. With regard to transformation of prokaryotic host cells, electroporation and salt treatment methods are typically employed; see, for example, Cohen et al., Proc. Natl. Acad. Sci. USA 69: 2110 (1972); Maniatis et al. (1982); and Sambrook et al. (1989). With regard to transformation of vertebrate cells with vectors containing rDNAs, electroporation, cationic lipid or salt treatment methods are typically employed; see, for example, Graham et al., Virol. 52: 456 (1973); Wigler et al., Proc. Natl. Acad. Sci. USA 76: 1373-76 (1979).

Successfully transformed cells, *i.e.*, cells that contain a rDNA molecule of the present invention, can be identified by well known techniques including the selection for a selectable marker. For example, cells resulting from the introduction of an rDNA of the present invention can be cloned to produce single colonies. Cells from those

colonies can be harvested, lysed and their DNA content examined for the presence of the rDNA using a method such as that described by Southern, *J. Mol. Biol.* 98: 503 (1975), or Berent *et al.*, *Biotech.* 3: 208 (1985). Alternatively, the cells can be cultured to produce the proteins encoded by the rDNA and the proteins harvested and assayed, using for example, any suitable immunological method. See, *e.g.*, Harlow *et al.*, (1988).

Recombinant DNA can also be utilized to analyze the function of coding and non-coding sequences. Sequences that modulate the translation of the mRNA can be utilized in an affinity matrix system to purify proteins obtained from cell lysates that associate with the Dkk-1 or Dkk-1 interacting protein or expression control sequence. Synthetic oligonucleotides would be coupled to the beads and probed with the lysates, as is commonly known in the art. Associated proteins could then be separated using, for example, a two dimensional SDS-PAGE system. Proteins thus isolated could be further identified using mass spectroscopy or protein sequencing. Additional methods would be apparent to the skilled artisan.

15

20

25

30

10

5

9. <u>Production of Recombinant Peptides and Proteins using a cDNA or Other</u> Recombinant Nucleic Acids

The invention also relates to nucleic acid molecules which encode a Dkk protein and polypeptide fragments thereof, and proteins and polypeptides which bind to Dkk (e.g., LRP5, LRP6 and HBM, Dkk interacting proteins such as the proteins of Figure 5) and molecular analogues. The polypeptides of the present invention include the full length Dkk and polypeptide fragments thereof, Dkk binding proteins and polypeptides thereof. Preferably these proteins are mammalian proteins, and most preferably human proteins and biologically active fragments thereof. Alternative embodiments include nucleic acid molecules encoding polypeptide fragments having a consecutive amino acid sequence of at least about 3, 5, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acid residues from a common polypeptide sequence; amino acid sequence variants of a common polypeptide sequence wherein an amino acid residue has been inserted N- or C-terminal to, or within, the polypeptide sequence or its fragments; and amino acid sequence variants of the common

polypeptide sequence or its fragments, which have been substituted by another conserved residue. Recombinant nucleic acid molecules which encode polypeptides include those containing predetermined mutations by, e.g., homologous recombination. site-directed or PCR mutagenesis, and recombinant Dkk proteins or polypeptide fragments of other animal species, including but not limited to vertebrates (e.g., rabbit, rat, murine, porcine, camelid, reptilian, caprine, avian, fish, bovine, ovine, equine and non-human primate species) as well as invertebrates, and alleles or other naturally occurring variants and homologs of Dkk binding proteins of the foregoing species and of human sequences. Also contemplated herein are derivatives of the commonly known Dkk, Dkk interacting proteins, or fragments thereof, wherein Dkk, Dkk interacting proteins, or their fragments have been covalently modified by substitution. chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example a detectable moiety such as an enzyme or radioisotope) and soluble forms of Dkk. It is further contemplated that the present invention also includes nucleic acids with silent mutations which will hybridize to the endogenous sequence and which will still encode the same polypeptide.

The nucleic acid molecules encoding Dkk binding proteins, the LRP5 binding domain fragment of Dkk, or other polypeptides of the present invention are preferably those which share a common biological activity (e.g., mediate Dkk activity such as its interaction with LRP5, HBM or LRP6). The polypeptides of the present invention include those encoded by a nucleic acid molecule with silent mutations, as well as those nucleic acids encoding a biologically active protein with conservative amino acid substitutions, allelic variants, and other variants of the disclosed polypeptides which maintain at least one Dkk activity.

25

20

5

10

15

The amino acid compounds of the invention are polypeptides which are partially defined in terms of amino acid residues of designated classes. Polypeptide homologs would include conservative amino acid substitutions within the amino acid classes described below. Amino acid residues can be generally sub-classified into four major subclasses as follows:

Acidic: The residue has a negative charge due to loss of H⁺ ion at physiological pH, and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium, at physiological pH.

5

Basic: The residue has a positive charge due to association with H⁺ ion at physiological pH, and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.

10

Neutral/non-polar: The residues are not charged at physiological pH, but the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium. These residues are also designated "hydrophobic."

15

<u>Neutral/polar:</u> The residues are not charged at physiological pH, but the residue is attracted by aqueous solution so as to seek the outer positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.

20

It is understood, of course, that in a statistical collection of individual residue molecules some molecules will be charged, and some not, and there will be an attraction for or repulsion from an aqueous medium to a greater or lesser extent. To fit the definition of "charged", a significant percentage (at least approximately 25%) of the individual molecules are charged at physiological pH. The degree of attraction or repulsion required for classification as polar or nonpolar is arbitrary and, therefore, amino acids specifically contemplated by the invention have been classified as one or the other. Most amino acids not specifically named can be classified on the basis of known behavior.

25

Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or non-aromatic, self-explanatory classifications with respect to the side chain substituent groups of the residues, and as small or large. The residue is considered small if it contains a total of 4 carbon atoms or less, inclusive of the carboxyl carbon. Small residues are, of course, always nonaromatic.

The gene-encoded secondary amino acid proline, although technically within the group neutral/nonpolar/large/cyclic and nonaromatic, is a special case due to its known effects on the secondary conformation of peptide chains, and is not, therefore, included in this defined group.

5

Other amino acid substitutions of those encoded in the gene can also be included in peptide compounds within the scope of the invention and can be classified within this general scheme according to their structure.

10

All of the compounds of the invention may be in the form of the pharmaceutically acceptable salts or esters. Salts may be, for example, Na⁺, K⁺, Ca⁺², Mg⁺² and the like; the esters are generally those of alcohols of 1-6 carbons.

The present invention further provides methods for producing a protein of the invention using nucleic acid molecules herein described. In general terms, the production of a recombinant form of a protein typically involves the following steps.

15

First, a nucleic acid molecule is obtained that encodes Dkk, such as a nucleic acid molecule encoding human Dkk or any other Dkk sequence, or that encodes a Dkk binding protein, a Dkk aptamer or a biologically active fragment thereof. Particularly for Dkk binding peptides, the nucleotides encoding the peptide are incorporated into a nucleic acid in the form of an in-frame fusion, insertion into or appended to a thioredoxin coding sequence. The coding sequence (ORF) is directly suitable for expression in any host, as it is not interrupted by introns.

20

25

These DNAs can be transfected into host cells such as eukaryotic cells or prokaryotic cells. Eukaryotic hosts include mammalian cells and vertebrate (e.g., osteoblasts, osteosarcoma cell lines, Drosophila S2 cells, hepatocytes, tumor cell lines and other bone cells of any mammal, as well as insect cells, such as Sf9 cells using recombinant baculovirus). For example, a DNA expressing an open reading frame (ORF) under control of a type I collagen promoter, or such osteoblast promoters as osteocalcin histone, type I collagen, TGFβ1, MSX2, cfos/cJun and Cbfa1, can be used to regulate the Dkk in animal cells. Alternatively, the nucleic acid can be placed downstream from an inducible promoter, which can then be placed into vertebrate or invertebrate cells or be used in creating a transgenic animal model.

Alternatively, proteins and polypeptides of the present invention can be expressed in an heterologous system. The human cell line GM637, SV-40 transformed human fibroblasts, can be transfected, with a plasmid containing a Dkk ligand binding domain coding sequence under the control of the chicken actin promoter (Reis *et al.*, EMBO J. 11: 185-193 (1992)). Such transfected cells could be used as a source of Dkk binding domain in functional assays. Alternatively, polypeptides encoding only a portion of Dkk or any of the disclosed Dkk binding peptides Dkk aptamers or a polypeptide encoding a Dkk interacting protein can be expressed alone or in the form of a fusion protein. For example, Dkk derived peptides can be expressed in bacteria (*e.g.*, *E. coli*) as GST- or His-Tag fusion proteins. These fusion proteins are then purified and can be used to generate polyclonal antibodies or can be used to identify other Dkk ligands.

The nucleic acid coding sequence is preferably placed in operable linkage with suitable control sequences, as described above, to form an expression unit containing the protein encoding open reading frame. The expression unit is used to transform a suitable host and the transformed host is cultured under conditions that allow the production of the recombinant protein. Optionally the recombinant protein is isolated from the medium or from the cells; recovery and purification of the protein may not be necessary in some instances where some impurities may be tolerated.

Each of the foregoing steps can be done in a variety of ways. For example, the desired coding sequences may be obtained from genomic fragments and used directly in appropriate hosts. The construction of expression vectors that are operable in a variety of hosts is accomplished using appropriate replicons and control sequences, as set forth above. The control sequences, expression vectors, and transformation methods are dependent on the type of host cell used to express the gene and were discussed in detail earlier. Suitable restriction sites can, if not normally available, be added to the ends of the coding sequence so as to provide an excisable gene to insert into these vectors. A skilled artisan can readily adapt any host/expression system known in the art for use with the nucleic acid molecules of the invention to produce recombinant protein.

10. <u>Methods to Identify Binding Partners</u>

5

10

15

20

25

30

Another embodiment of the present invention provides methods for use in isolating and identifying binding partners of Dkk or Dkk interacting proteins. Dkk or a Dkk interacting protein or a polypeptide fragment thereof can be mixed with a potential binding partner or an extract or fraction of a cell under conditions that allow the association of potential binding partners with Dkk or with Dkk interacting proteins. After mixing, the peptides, polypeptides, proteins or other molecules that have become associated with Dkk or a Dkk interacting protein are separated from the mixture. The binding partner that bound to the polypeptide then can be purified and further analyzed. Determination of binding partners of Dkk and Dkk interacting proteins as well as agents which prevent the interaction of Dkk with one of its interacting proteins (e.g., LRP5, LRP6, HBM, or those proteins listed in Figure 5) can be performed using a variety of different competition assays as are known in the art. For example, the minimal sequence of Dkk, as described herein, can be used to identify antibodies which compete with LRP5 (or LRP6, HBM or other ligand binding partners) for binding to Dkk-1 and vice versa. The minimal Dkk sequence can be bound to the bottom of a 96-well plate (or other solid substrate), and antibodies or other potential binding agents (e.g., polypeptides, mimetics, homologs, antibody fragments and the like) can be screened in a competition assay to identify agents with binding affinities, for example, greater than the natural ligand binding partner of Dkk.

In the present invention, suitable cells are used for preparing assays, for the expression of a LRP and/or Dkk or proteins that interact therewith. The cells may be made or derived from mammals, yeast, fungi, or viruses. A suitable cell for the purposes of this invention is one that includes but is not limited to a cell that can exhibit a detectable Dkk-LRP (or HBM) interaction, and preferably, the differential interaction between Dkk-1-LRP5 and Dkk-1-HBM. For the desired assay, the cell type may vary. In several embodiments, bone cells are preferred, for example, a human osteoblast cell (e.g. hOB-03-CE6) or osteosarcoma cell (e.g. U2OS). Additional hOB cells are hOB-03-C5, hOB-02-02 and, an immortalized pre-osteocytic cell line referred to as hOB-01-C1-PS-09 cells (which are deposited with American Type Culture Collection in

Manassas, Va. with the designation PTA-785), Examples of osteosarcoma cells would include SaoS2, MG63 and HOS TE85. Immortalized refers to a substantially continuous and permanently established cell culture with substantially unlimited cell division potential. That is, the cells can be cultured substantially indefinitely, i.e., for at least about 6 months under rapid conditions of growth, preferably much longer under slower growth conditions, and can be propagated rapidly and continually using routine cell culture techniques. Alternatively stated, preferred cells can be cultured for at least about 100, 150 or 200 population doublings. These cells produce a complement of proteins characteristic of normal human osteoblastic cells and are capable of osteoblastic differentiation. They can be used in cell culture studies of osteoblastic cell sensitivity to various agents, such as hormones, cytokines, and growth factors, or in tissue therapy. Certain non bone cells such as HEK 293 cells that exhibit detectable Dkk-LRP (or HBM) interaction are also be useful for the assays of this invention.

To identify and isolate a binding partner, the entire Dkk protein (*e.g.*, human Dkk-1, GenBank Accession No. BAA34651) or a Dkk interacting protein (Genbank Accession Nos. for some Dkk-1 interacting proteins are given in Figure 5) can be used. Alternatively, a polypeptide fragment of the protein can be used. Suitable fragments of the protein include at least about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150 or more contiguous amino acid residues of any Dkk or Dkk interactor sequence. Preferable sequences of Dkk include portions or all of one or both of the cysteine rich domains (*e.g.*, Cys-1 and Cys-2 of Dkk-1) or the conserved sequences at the amino terminus of Dkk-1 (See Krupnik *et al.*, *Gene* 238: 301-313 (1999)). Alternatively, portions of LRP5, LRP6, HBM and other Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk activity.

As used herein, a cellular extract refers to a preparation or fraction which is made from a lysed or disrupted cell. A variety of methods can be used to obtain cell

extracts. Cells can be disrupted using either physical or chemical disruption methods. Examples of physical disruption methods include, but are not limited to, sonication and mechanical shearing. Examples of chemical lysis methods include, but are not limited to, detergent lysis and enzyme lysis. A skilled artisan can readily adapt methods for preparing cellular extracts in order to obtain extracts for use in the present methods.

Once an extract of a cell is prepared, the extract is mixed with the protein of the invention under conditions in which association of the protein with the binding partner can occur. A variety of conditions can be used, the most preferred being conditions that closely resemble conditions found in the cytoplasm of a human cell. Features such as osmolarity, pH, temperature, and the concentration of cellular extract used, can be varied to optimize the association of the protein with the binding partner.

After mixing under appropriate conditions, the bound complex is separated from the mixture. A variety of techniques can be utilized to separate the mixture. For example, antibodies specific to a protein of the invention can be used to immunoprecipitate the binding partner complex. Alternatively, standard chemical separation techniques such as chromatography and density/sediment centrifugation can be used. For example, a protein of the invention is expressed with an affinity tag such as a His tag. The His labeled protein and any bound molecule may be retained and selectively eluted from a Ni-NTA column.

After removal of non-associated cellular constituents found in the extract, the binding partner can be dissociated from the complex using conventional methods. For example, dissociation can be accomplished by altering the salt concentration or pH of the mixture.

To aid in separating associated binding partner pairs from the mixed extract, the protein of the invention can be immobilized on a solid support. For example, the protein can be attached to a nitrocellulose matrix or acrylic beads. Attachment of the protein to a solid support aids in separating peptide/binding partner pairs from other constituents found in the extract. The identified binding partners can be either a single protein or a complex made up of two or more proteins.

5

10

15

20

Alternatively, the nucleic acid molecules of the invention can be used in a Y2H system. The Y2H system has been used to identify other protein partner pairs and can readily be adapted to employ the nucleic acid molecules herein described. Methods of performing and using Y2H systems are known. See, e.g., Finley et al., "Two-Hybrid Analysis of Genetic Regulatory Networks," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Meijia Yang, "Use of a Combinatorial Peptide Library in the Two-Hybrid Assay," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Gietz et al., "Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system," Mol. & Cell. Biochem. 172: 67-9 (1997); K. H. Young, "Yeast Two-Hybrid: So Many Interactions,(in) so Little Time," Biol. Reprod. 58: 302-311 (1998); R. Brent et al., "Understanding Gene and Allele Function with Two-Hybrid Methods," Annu. Rev. Genet. 31:663-704 (1997) and U.S. Patent No. 5,989,808. The Dkk-1 interacting proteins identified in Figure 5 were identified using the Y2H interacting system using Dkk-1 as bait.

5

10

15

20

25

30

One preferred in vitro binding assay for Dkk modulators would comprise a mixture of a LRP binding domain of Dkk and one or more candidate binding targets or substrates. After incubating the mixture under appropriate conditions, one would determine whether Dkk or a fragment thereof bound with the candidate modulator present. For cell-free binding assays, one or more of the components usually comprises or is coupled to a label. The label may provide for direct detection, such as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be employed to detect the label depending on the nature of the label and other assay components. For example, the label may be detected bound to the solid substrate or a portion of the bound complex containing the label may be separated from the solid substrate, and the label thereafter detected. Fluorescence resonance energy transfer may be utilized to monitor the interaction of two labeled molecules. For example, a fluorescence label on Dkk and another label on LRP5 or a soluble fragment thereof such as the extracellular domain will exchange fluorescence resonance energy when in close proximity indicating that the two molecules are bound. A preferred binding partner for Dkk will

increase or decrease the affinity between Dkk and LRP5 which will be readily observable in a fluorescence spectrometer. Alternatively, an instrument, such as a surface plasmon resonance detector manufactured by BIAcore (Uppsala, Sweden), may be used to observe interactions with a fixed target. One skilled in the art knows of many other methods which may be employed for this purpose.

Thereby, the present invention provides methods for screening candidates including polypeptides of the present invention for activity which identifies these candidates as valuable drug leads. Other suitable methods are also known in the art and are suitable for use herein, including *Xenopus* oocyte injection studies and TCF luciferase assays.

Additional assays can be used to identify the activity of Dkk and Dkk interacting proteins in the Wnt pathway, as well as the impact of modulators of Dkk and Dkk interacting proteins on the Wnt pathway. These include, for example, a *Xenopus* embryo assay and a TCF-luciferase reporter gene assay to monitor Wnt signaling modulation.

Xenopus embryos are an informative *in vivo* assay system to evaluate the modulation of Wnt signaling. Ectopic expression of certain Wnts or other activators of the Wnt signaling pathway results in a bifurcation of the anterior neural plate. This bifurcation results in a duplicated body axis, which suggests a role for Wnt signaling during embryonic development (McMahon *et al.*, *Cell* 58: 1075-84 (1989); Sokol *et al.*, *Cell* 67: 741-52 (1991)). Since these original observations, the *Xenopus* embryo assay has been extensively used as an assay system for evaluating modulation of the Wnt signaling pathway. One preferred embodiment of the present invention is demonstrated in Example 6.

Constructs for *Xenopus* expression can be prepared as would be known in the art. For example, a variety of cDNAs have been engineered into the vector pCS2+ (Turner *et al.*, *Genes Devel.* 8: 1434-1447 (1994)) to facilitate the *in vitro* generation of mRNA for use in *Xenopus* embryo injection experiments. DNA inserts are subcloned in the sense orientation with respect to the vector SP6 promoter. Downstream of the insert, the vector provides an SV40 virus polyadenlylation signal and a T3 promoter

5

10

15

20

sequence (*i.e.*, for the generation of antisense mRNA). Constructs can be generated for various Dkk family members, LRP5, LRP6, HBM, Dkk-1 interactors, etc. Constructs could be generated in pCS2⁺ that contain the nucleic acid sequence encoding for the peptide aptamers that were identified in yeast screens. These sequences would be fused to a 5' synthetic translation initiation sequence followed by a canonical signal sequence to ensure that the peptide aptamer would be translated and secreted from the cell.

5

10

15

20

25

30

Once these constructs are made then mRNA can be synthesized and injected into *Xenopus* oocytes. mRNA for microinjection into *Xenopus* embryos is generated by *in vitro* transcription using the cDNA constructs in the pCS2⁺ vector described above as template. Various amounts of RNA can be injected into the ventral blastomere of the 4-or 8-cell *Xenopus* embryo substantially as described in Moon *et al.*, *Technique-J. of Methods in Cell and Mol. Biol.* 1: 76-89 (1989), and Peng, *Meth. Cell. Biol.* 36: 657-62 (1991).

Previous data has shown that expression of LRP5, in the presence of Wnt5a, results in a Wnt-induced duplicated axis formation in *Xenopus* embryos (Tamai *et al.*, *Nature* 407: 530-535 (2000)). The roles of Dkk-1 and Dkk-2, and Dkk-1 interacting proteins, in modulating the LRP5-mediated Wnt response *in vivo* can be analyzed using, for example, the *Xenopus* embryo. In addition, the peptide aptamers, Dkk

interacting proteins, or combinations of the above can be evaluated in a similar manner.

Experiments can also be conducted wherein RNA is injected into the dorsal blastomere to ensure the specificity of the observed phenotypes. Lineage tracing experiments can be performed where a marker gene such as green fluorescent protein (GFP) or LacZ is co-injected with the experimental RNAs. Detecting marker gene expression would identify the targeted cells of the microinjection and aid in elucidating the mechanism of action. In addition to the Wnt signaling components listed above, the point at which HBM acts upon the Wnt pathway can also be analyzed. This can be done by co-injections of various dominant-negative constructs. For example, a dominant negative TCF-3 construct would be useful to demonstrate that the observed axis duplication (and Wnt activation) is mediated via the β-catenin-TCF response. If so,

such a construct would be expected to abolish the observed duplicated axis phenotype. Another example would include a dominant negative Dsh construct. Since Dsh is far upstream in the Wnt signaling pathway, a dominant negative construct should abolish the activation of the Wnt response and the observed axis duplication. If it does not, this would suggest that axis duplication is being induced via a different signaling pathway.

The marker genes of the injected *Xenopus* embryos can be analyzed as follows. Representative embryos are collected at stage 10.5 (11 hours post fertilization) for marker gene analysis. RNA is extracted and purified from the embryos following standard protocols (Sambrook *et al.*, 1989 at 7.16). Marker genes could include the following: Siamois (*i.e.*, Wnt responsive gene), Xnr3 (*i.e.*, Wnt responsive gene), slug (*i.e.*, neural crest marker), Xbra (*i.e.*, early mesoderm marker), HNK-1 (*i.e.*, ectodermal/neural marker), endodermin (*i.e.*, endoderm), Xlhbox8 (*i.e.*, pancreatic), BMP2 and BMP4 (*i.e.*, early mesoderm), XLRP6 (*i.e.*, maternal and zygotic expression, it is also the LRP6 homolog in the frog), EF-1 (*i.e.*, control) and ODC (*i.e.*, control). Induction of marker genes is analyzed and quantitated by RT-PCR/TagMan®.

This type of marker analysis is excellent to monitor changes in gene expression that result very early in the embryo as a direct result of signaling perturbation. Other experiments could be designed that would monitor changes in gene expression in a more tissue or spatially-restricted fashion. Examples would include the generation of a transgenic *Xenopus* model. For example, Zmax/LRP5 and HBM expression could be under the control of the brachyury or cardiac-actin promoters directing gene expression transiently in the mesoderm or in the somites, respectively. Phenotype analyses of these transgenic *Xenopus* animals would include marker gene analysis/transcriptional profiling (from a restricted tissue source) and histologic examination of the tissue.

A TCF-luciferase assay system such as that described in Example 7 can also be used to monitor Wnt signaling activity, Dkk activity and Dkk interacting protein activity. Constructs for the TCF-luciferase assays can be prepared as would be known in the art. For example, Dkk and Dkk interacting protein peptides, LRP5/LRP6, among others, can be expressed in pcDNA3.1, using Kozak and signal sequences to target peptides for secretion.

5

10

15

20

Once constructs have been prepared, cells such as osteoblasts and HEK293 cells are seeded in well plates and transfected with construct DNA, CMV betagalactosidase plasmid DNA, and TCF-luciferase reporter DNA. The cells are then lysed and assayed for beta-galactosidase and luciferase activity to determine whether Dkk, Dkk interacting proteins, or other molecules such as antibodies affect Wnt signaling.

Additional assays for monitoring Wnt signaling activity, Dkk activity, and Dkk interacting protein activity include:

5

10

15

20

25

30

Modulation of another Wnt-responsive transcription factor, LEF, as visualized by a reporter gene activity. One example includes the activation of the LEF1 promoter region fused to the luciferase reporter gene (Hsu *et al.*, *Mol. Cell. Biol.* 18: 4807-18 (1999)).

Alterations in cell proliferation, cell cycle or apoptosis. There are numerous examples describing Wnt-mediated cellular transformations including Shimizu *et al.*, *Cell. Growth Differ.* 8: 1349-58 (1997).

Stabilization and cellular localization of de-phosphorylated β -catenin as an indicator of Wnt activation (Shimizu et al., 1997).

Additional methods of assaying Wnt signaling, through either the canonical or non-canonical pathways, would be apparent to the artisan of ordinary skill.

11. Methods to Identify Agents that Modulate the Expression of a Nucleic Acid Encoding the Dkk and/or LRP5 Proteins and/or Dkk interacting proteins

Another embodiment of the present invention provides methods for identifying agents that modulate the expression of a nucleic acid encoding Dkk. Such assays may utilize any available means of monitoring for changes in the expression level of the nucleic acids of the invention. As used herein, an agent is said to modulate the expression of Dkk, if it is capable of up- or down-regulating expression of the nucleic acid in a cell (e.g., mRNA).

In one assay format, cell lines that contain reporter gene fusions between the nucleic acid encoding Dkk (or proteins which modulate the activity of Dkk) and any

assayable fusion partner may be prepared. Numerous assayable fusion partners are known and readily available, including but not limited to the firefly luciferase gene and the gene encoding chloramphenicol acetyltransferase (Alam *et al.*, *Anal. Biochem.* 188: 245-254 (1990)). Cell lines containing the reporter gene fusions are then exposed to the agent to be tested under appropriate conditions and time. Differential expression of the reporter gene between samples exposed to the agent and control samples identifies agents which modulate the expression of a nucleic acid encoding Dkk or other protein which modulates Dkk activity. Such assays can similarly be used to determine whether LRP5 and even LRP6 activity is modulated by regulating Dkk activity.

10

15

5

Additional assay formats may be used to monitor the ability of the agent(s) to modulate the expression of a nucleic acid encoding Dkk, alone or Dkk and LRP5, and/or Dkk interacting proteins such as those identified in Figure 5. For instance, mRNA expression may be monitored directly by hybridization to the nucleic acids of the invention. Cell lines are exposed to the agent to be tested under appropriate conditions and time and total RNA or mRNA is isolated by standard procedures such those disclosed in Sambrook *et al.* (1989); Ausubel *et al.*, Current Protocols in Molecular Biology (Greene Publishing Co., NY, 1995); Maniatis *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982); and Short Protocols in Molecular Biology; A Compendium of Methods from Current Protocols in Molecular Biology (Frederick M. Ausubel *et al.*, April 1999).

20

25

Probes to detect differences in RNA expression levels between cells exposed to the agent and control cells may be prepared from the nucleic acids of the invention. It is preferable, but not necessary, to design probes which hybridize only with target nucleic acids under conditions of high stringency. Only highly complementary nucleic acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.

Probes may be designed from the nucleic acids of the invention through methods known in the art. For instance, the G+C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available. See for example, Sambrook *et al.* (1989) or Ausubel *et al.* (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995).

5

10

15

20

25

30

Hybridization conditions are modified using known methods, such as those described by Sambrook et al. (1989) and Ausubel et al. (1995), as suitable for each probe. Hybridization of total cellular RNA or RNA enriched for polyA RNA can be accomplished in any available format. For instance, total cellular RNA or RNA enriched for polyA RNA can be affixed to a solid support and the solid support exposed to at least one probe comprising at least one, or part of one of the nucleic acid sequences of the invention under conditions in which the probe will specifically hybridize. Alternatively, nucleic acid fragments comprising at least one, or part of one of the sequences of the invention can be affixed to a solid support, such as a porous glass wafer. The glass or silica wafer can then be exposed to total cellular RNA or polyA RNA from a sample under conditions in which the affixed sequences will specifically hybridize. Such glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/11755). By examining for the ability of a given probe to specifically hybridize to an RNA sample from an untreated cell population and from a cell population exposed to the agent, agents which up- or downregulate the expression of a nucleic acid encoding Dkk, a Dkk interacting protein, and/or LRP5 can be identified.

Microarray technology and transcriptional profiling are examples of methods which can be used to analyze the impact of putative Dkk or Dkk interacting protein modulating compounds. For transcriptional profiling, mRNA from cells exposed *in vivo* to a potential Dkk modulating agent, such as the Dkk interacting proteins identified in the present invention (e.g., those identified in Figure 5), agents which modulate Dkk interacting proteins, and mRNA from the same type of cells that were not exposed to the agent could be reverse transcribed and hybridized to a chip containing DNA from

numerous genes, to thereby compare the expression of genes in cells treated and not treated with the agent. If, for example a putative Dkk modulating agent down-regulates the expression of Dkk in the cells, then use of the agent may be undesirable in certain patient populations. For additional methods of transcriptional profiling and the use of microarrays, refer to, for example, U.S. Patent No. 6,124,120 issued to Lizardi (2000).

5

10

15

20

25

30

Additional methods for screening the impact of Dkk and Dkk interacting protein modulating compounds or the impact of Dkk or Dkk interacting proteins on modulation of LRP5, LRP6, HBM or the Wnt pathway include the use of TaqMan PCR, conventional reverse transcriptase PCR (RT-PCR), changes in downstream surrogate markers (*i.e.*, Wnt responsive genes), and anti-Dkk Western blots for protein detection. Other methods would be readily apparent to the artisan of ordinary skill.

12. <u>Methods to Identify Agents that Modulate at Least One Activity of Dkk, a</u> <u>Dkk Interacting Protein, or LRP5/LRP6/HBM</u>

Another embodiment of the present invention provides methods for identifying agents that modulate at least one activity of Dkk, Dkk interacting proteins, and/or LRP5/LRP6/HBM proteins or preferably which specifically modulate an activity of a Dkk/Dkk interacting protein complex or an LRP5(or LRP6/HBM)/Dkk complex, or a biologically active fragment of Dkk (e.g., comprising the domain which binds LRP5/LRP6/HBM) or a Dkk interacting protein complex. Such methods or assays may utilize any means of monitoring or detecting the desired activity as would be known in the art (See, e.g., Wu et al., Curr. Biol. 10:1611-4 (2000); Fedi et al., J. Biol. Chem. 274:19465-72 (1991); Grotewold et al., Mech. Dev. 89:151-3 (1999); Shibata et al., Mech. Dev. 96:243-6 (2000); Wang et al., Oncogene 19:1843-8 (2000); and Glinka et al., Nature 391:357-62 (1998)). Potential agents which modulate Dkk include, for example, p53, the tumor suppressor protein, which can induce Dkk-1. Damage to DNA has also been observed to up-regulate Dkk-1 expression via a stabilization and activation of p53 (Wang et al., Oncogene 19:1843-48 (2000)); and, Shou et al., Oncogene 21:878-89 (2002)). Additionally, Fedi et al. (1999) purportedly showed that Dkk-1 can block the Wnt2-induced oncogenic transformation of NIH-3T3 cells.

Furthermore, it has been suggested that Dkk expression can be modulated by BMP signaling in the developing skeleton (Mukhopadhyay et al., Dev. Cell. 1:423-34 (2001); and Grotewold et al., EMBO J. 21:966-75 (2002)). Grotewold et al. additionally describe altered Dkk expression levels in response to stress signals including UV irradiation and other genotoxic stimuli. They propose that Dkk expression is proapoptotic. In animals expressing HBM constructs conferring high bone mass, a reduced osteoblast apoptosis effect was observed. Thus, HBM and HBM-like variants may control/alter Dkk's role in programmed cell death. Other agents which potentially modulate Dkk activity include the Dkk interacting proteins identified in Figure 5.

In one embodiment, the relative amounts of Dkk or a Dkk interacting protein of a cell population that has been exposed to the agent to be tested is compared to an unexposed control cell population. Antibodies can be used to monitor the differential expression of the protein in the different cell populations. Cell lines or populations are exposed to the agent to be tested under appropriate conditions and time. Cellular lysates may be prepared from the exposed cell line or population and a control, unexposed cell line or population. The cellular lysates are then analyzed with the probe, as would be known in the art. See, e.g., Ed Harlow and David Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor, NY, 1988) and Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual (Cold Spring Harbor, NY, 1998).

For example, N- and C- terminal fragments of Dkk can be expressed in bacteria and used to search for proteins which bind to these fragments. Fusion proteins, such as His-tag or GST fusion to the N- or C-terminal regions of Dkk (or to biologically active domains of Dkk-1) or a whole Dkk protein can be prepared. These fusion proteins can be coupled to, for example, Talon or Glutathione-Sepharose beads and then probed with cell lysates to identify molecules which bind to Dkk. Prior to lysis, the cells may be treated with purified Wnt proteins, RNA, or drugs which may modulate Wnt signaling or proteins that interact with downstream elements of the Wnt pathway. Lysate proteins binding to the fusion proteins can be resolved by SDS-PAGE, isolated and identified by, for example protein sequencing or mass spectroscopy, as is known in the art. See, e.g., Protein Purification Applications: A Practical Approach (Simon Roe, ed., 2nd ed.

Oxford Univ. Press, 2001) and "Guide to Protein Purification" in *Meth. Enzymology* vol. 182 (Academic Press, 1997).

5

10

15

20

25

The activity of Dkk, a Dkk interacting protein, or a complex of Dkk with LRP5/LRP6/HBM may be affected by compounds which modulate the interaction between Dkk and a Dkk interacting protein (such as those shown in Figure 5) and/or Dkk and LRP5/LRP6/HBM. The present invention provides methods and research tools for the discovery and characterization of these compounds. The interaction between Dkk and a Dkk interacting protein and/or Dkk and LRP5/6/HBM may be monitored in vivo and in vitro. Compounds which modulate the stability of a Dkk -LRP5/LRP6/HBM complex are potential therapeutic compounds. Example in vitro methods include: Binding LRP5/6/HBM, Dkk, or a Dkk interacting protein to a sensor chip designed for an instrument such are made by Biacore (Uppsala, Sweden) for the performance of an plasmon resonance spectroscopy observation. In this method, the chip with one of Dkk, a Dkk interacting protein, or LRP5/6 is first exposed to the other under conditions which permit them to form the complex. A test compound is then introduced and the output signal of the instrument provides an indication of any effect exerted by the test compound. By this method, compounds may be rapidly screened. Another, in vitro, method is exemplified by the SAR-by-NMR methods (Shuker et al., Science. 274:1531-4 (1996)). Briefly, a Dkk-1 binding domain and/or LRP 5 or 6 LBD are expressed and purified as ¹⁵N labeled protein by expression in labeled media. The labeled protein(s) are allowed to form the complex in solution in an NMR sample tube. The heteronuclear correlation spectrum in the presence and absence of a test compound provides data at the level of individual residues with regard to interactions with the test compound and changes at the protein-protein interface of the complex. One of skill in the art knows of many other protocols, e.g. affinity capillary electrophoresis (Okun et al. J Biol Chem 276:1057-62 (2001); Vergun and Chu. Methods, 19:270-7 (1999)), fluorescence spectroscopy, electron paramagnetic resonance, etc. which can monitor the modulation of a complex and/or measure binding affinities for complex formation.

In vitro protocols for monitoring the modulation of a Dkk/LRP5/LRP6/HBM complex include the yeast two hybrid protocol. The yeast two hybrid method may be used to monitor the modulation of a complex in vivo by monitoring the expression of genes activated by the formation of a complex of fusion proteins of Dkk and LRP ligand binding domains. Nucleic acids according to the invention which encode the interacting Dkk and LRP LBD domains are incorporated into bait and prey plasmids. The Y2H protocol is performed in the presence of one or more test compounds. The modulation of the complex is observed by a change in expression of the complex activated gene. It will be appreciated by one skilled in the art that test compounds can be added to the assay directly or, in the case of proteins, can be coexpressed in the yeast with the bait and prey compounds. Similarly, fusion proteins of Dkk and Dkk interacting proteins can also be used in a Y2H screen to identify other proteins which modulate the Dkk/Dkk interacting protein complex.

Assay protocols such as these may be used in methods to screen for compounds, drugs, treatments which modulate the Dkk/Dkk interacting protein and/or Dkk/LRP5/6 complex, whether such modulation occurs by competitive binding, or by altering the structure of either LRP 5/6 or Dkk at the binding site, or by stabilizing or destablizing the protein-protein interface. It may be anticipated that peptide aptamers may competitively bind, although induction of an altered binding site structure by steric effects is also possible.

12.1 Antibodies and Antibody Fragments

5

10

15

20

25

30

Polyclonal and monoclonal antibodies and fragments of these antibodies which bind to Dkk or LRP5/LRP6/HBM can be prepared as would be known in the art. For example, suitable host animals can be immunized using appropriate immunization protocols and the peptides, polypeptides or proteins of the invention. Peptides for use in immunization are typically about 8-40 residues long. If necessary or desired, the polypeptide immunogens can be conjugated to suitable carriers. Methods for preparing immunogenic conjugates with carriers such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), or other carrier proteins are well known in the art (See,

Harlow *et al.*, 1988). In some circumstances, direct conjugation using, for example, carbodiimide reagents, may be effective; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, may be desirable to provide accessibility to the polypeptide or hapten. The hapten peptides can be extended at either the amino or carboxy terminus with a cysteine residue or interspersed with cysteine residues, for example, to facilitate linking to a carrier. Administration of the immunogens is conducted generally by injection over a suitable time period and with use of suitable adjuvants, as is generally understood in the art. During the immunization schedule, titers of antibodies are taken to determine adequacy of antibody formation.

5

10

15

20

25

30

Anti-peptide antibodies can be generated using synthetic peptides, for example, the peptides derived from the sequence of any Dkk, including Dkk-1, or LRP5/LRP6/HBM. Synthetic peptides can be as small as 2-3 amino acids in length, but are preferably at least 3, 5, 10, or 15 or more amino acid residues long. Such peptides can be determined using programs such as DNAStar. The peptides are coupled to KLH using standard methods and can be immunized into animals such as rabbits. Polyclonal anti-Dkk or anti-LRP5/LRP6/HBM peptide antibodies can then be purified, for example using Actigel beads containing the covalently bound peptide.

While the polyclonal antisera produced in this way may be satisfactory for some applications, for pharmaceutical compositions, use of monoclonal preparations is preferred. Immortalized cell lines which secrete the desired monoclonal antibodies may be prepared using the standard method of Kohler and Milstein or modifications which effect immortalization of lymphocytes or spleen cells, as is generally known (See, e.g., Harlow *et al.*, 1988 and 1998). The immortalized cell lines secreting the desired antibodies can be screened by immunoassay in which the antigen is the peptide hapten, polypeptide or protein. When the appropriate immortalized cell culture secreting the desired antibody is identified, the cells can be cultured either *in vitro* or by production in ascites fluid.

The desired monoclonal antibodies are then recovered from the culture supernatant or from the ascites supernatant. Fragments of the monoclonal antibodies

which contain the immunologically significant portion can be used as agonists or antagonists of Dkk activity. Use of immunologically reactive fragments, such as the Fab, scFV, Fab', of F(ab')₂ fragments are often preferable, especially in a therapeutic context, as these fragments are generally less immunogenic than the whole immunoglobulin.

5

10

15

20

25

The antibodies or fragments may also be produced, using current technology, by recombinant means. Regions that bind specifically to the desired regions of Dkk or LRP5/LRP6/HBM can also be produced in the context of chimeras with multiple species origin. Antibody reagents so created are contemplated for use diagnostically or as stimulants or inhibitors of Dkk activity.

In one embodiment, antibodies against Dkk, bind Dkk with high affinity, i.e., ranging from 10⁻⁵ to 10⁻⁹ M. Preferably, the anti-Dkk antibody will comprise a chimeric, primate, Primatized®, human or humanized antibody. Also, the invention embraces the use of antibody fragments, *e.g.*, Fab's, Fv's, Fab's, F(ab)₂, and aggregates thereof.

Another embodiment contemplates chimeric antibodies which recognize Dkk or LRP5/LRP6/HBM. A chimeric antibody is intended to refer to an antibody with non-human variable regions and human constant regions, most typically rodent variable regions and human constant regions.

A "primatized® antibody" refers to an antibody with primate variable regions, e.g., CDR's, and human constant regions. Preferably, such primate variable regions are derived from an Old World monkey.

A "humanized antibody" refers to an antibody with substantially human framework and constant regions, and non-human complementarity-determining regions (CDRs). "Substantially" refers to the fact that humanized antibodies typically retain at least several donor framework residues (*i.e.*, of non-human parent antibody from which CDRs are derived).

Methods for producing chimeric, primate, primatized®, humanized and human antibodies are well known in the art. See, e.g., U.S. Patent 5,530,101, issued to Queen et al.; U.S. Patent 5,225,539, issued to Winter et al.; U.S. Patents 4,816,397 and

4,816,567, issued to Boss *et al.* and Cabilly *et al.* respectively, all of which are incorporated by reference in their entirety.

The selection of human constant regions may be significant to the therapeutic efficacy of the subject anti-Dkk or LRP5/LRP6/HBM antibody. In a preferred embodiment, the subject anti-Dkk or LRP5/LRP6/HBM antibody will comprise human, gamma 1, or gamma 3 constant regions and, more preferably, human gamma 1 constant regions.

Methods for making human antibodies are also known and include, by way of example, production in SCID mice, and *in vitro* immunization.

The subject anti-Dkk or LRP5/LRP6/HBM antibodies can be administered by various routes of administration, typically parenteral. This is intended to include intravenous, intramuscular, subcutaneous, rectal, vaginal, and administration with intravenous infusion being preferred.

The anti-Dkk or LRP5/LRP6/HBM antibody will be formulated for therapeutic usage by standard methods, *e.g.*, by addition of pharmaceutically acceptable buffers, *e.g.*, sterile saline, sterile buffered water, propylene glycol, and combinations thereof.

Effective dosages will depend on the specific antibody, condition of the patient, age, weight, or any other treatments, among other factors. Typically effective dosages will range from about 0.001 to about 30 mg/kg body weight, more preferably from about 0.01 to 25 mg/kg body weight, and most preferably from about 0.1 to about 20 mg/kg body weight.

Such administration may be effected by various protocols, e.g., weekly, biweekly, or monthly, depending on the dosage administered and patient response. Also, it may be desirable to combine such administration with other treatments.

Antibodies to Dkk-1 interacting proteins, such as those identified in Figure 5, are also contemplated according to the present invention, and can be used similarly to the Dkk-1 antibodies mentioned in the above methodology.

The antibodies of the present invention can be utilized in experimental screening, as diagnostic reagents, and in therapeutic compositions.

5

10

15

20

12.2 Chemical Libraries

5

10

15

20

25

30

Agents that are assayed by these methods can be randomly selected or rationally selected or designed. As used herein, an agent is said to be randomly selected when the agent is chosen randomly without considering the specific sequences involved in the association of Dkk-1 alone, Dkk-1 interacting proteins alone, or with their associated substrates, binding partners, etc. An example of randomly selected agents is the use of a chemical library or a peptide combinatorial library, or a growth broth of an organism.

The agents of the present invention can be, as examples, peptides, small molecules, vitamin derivatives, as well as carbohydrates. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of the present invention.

12.3 Peptide Synthesis

The peptide agents of the invention can be prepared using standard solid phase (or solution phase) peptide synthesis methods, as is known in the art. In addition, the DNA encoding these peptides may be synthesized using commercially available oligonucleotide synthesis instrumentation and produced recombinantly using standard recombinant production systems. The production of polypeptides using solid phase peptide synthesis is necessitated if non-nucleic acid-encoded amino acids are to be included.

13. <u>Uses for Agents that Modulate at Least One Activity of Dkk, a Dkk</u> <u>Interacting Protein, a Dkk/Dkk Interacting Protein Complex, or a Dkk/LRP5 or Dkk/LRP6 Complex</u>

The proteins and nucleic acids of the invention, such as the proteins or polypeptides containing an amino acid sequence of LRP5, Dkk, and Dkk interacting proteins are involved in bone mass modulation and lipid modulation of other Wnt pathway mediated activity. Agents that modulate (*i.e.*, up and down-regulate) the expression of Dkk or Dkk interacting proteins, or agents, such as agonists and

antagonists respectively, of at least one activity of Dkk or a Dkk interacting protein may be used to modulate biological and pathologic processes associated with the function and activity of Dkk or a Dkk interacting protein.

As used herein, a subject can be preferably any mammal, so long as the mammal is in need of modulation of a pathological or biological process modulated by a protein of the invention. The term "mammal" means an individual belonging to the class *Mammalia*. The invention is particularly useful in the treatment of human subjects.

5

10

15

20

25

30

As used herein, a biological or pathological process modulated by Dkk or a Dkk interacting protein may include binding of Dkk to a Dkk interacting protein, Dkk to LRP5 or LRP6 or release therefrom, inhibiting or activating Dkk or a Dkk interacting protein mRNA synthesis or inhibiting Dkk or Dkk interacting protein modulated inhibition of LRP5 or LRP6 mediated Wnt signaling. Further bone-related markers may be observed such as alkaline phosphatase activity, osteocalcin production, or mineralization.

Pathological processes refer to a category of biological processes which produce a deleterious effect. For example, expression or up-regulation of expression of LRP5 or LRP6 and/or Dkk and/or a Dkk interacting protein may be associated with certain diseases or pathological conditions. As used herein, an agent is said to modulate a pathological process when the agent statistically significantly (p < 0.05) alters the process from its base level in the subject. For example, the agent may reduce the degree or severity of the process mediated by that protein in the subject to which the agent was administered. For instance, a disease or pathological condition may be prevented, or disease progression modulated by the administration of agents which reduce or modulate in some way the expression or at least one activity of a protein of the invention.

As LRP5/6 and Dkk are involved both directly and indirectly in bone mass modulation, one embodiment of this invention is to use Dkk or Dkk interacting protein expression as a method of diagnosing a bone condition or disease. Certain markers are associated with specific Wnt signaling conditions (e.g., TCF/LEF activation). Diagnostic tests for bone conditions may include the steps of testing a sample or an

extract thereof for the presence of Dkk or Dkk interacting protein nucleic acids (*i.e.*, DNA or RNA), oligomers or fragments thereof or protein products of TCF/LEF regulated expression. For example, standard *in situ* hybridization or other imaging techniques can be utilized to observe products of Wnt signaling.

10

5

This invention also relates to methods of modulating bone development or bone loss conditions. Inhibition of bone loss may be achieved by inhibiting or modulating changes in the LRP5/6 mediated Wnt signaling pathway. For example, absence of LRP5 activity may be associated with low bone mass. Increased activity LRP5 may be associated with high bone mass. Therefore, modulation of LRP5 activity will in turn modulate bone development. Modulation of the Dkk/LRP5/6 or Dkk/Dkk interacting protein complex via agonists and antagonists is one embodiment of a method to regulate bone development. Such modulation of bone development can result from inhibition of the activity of, for example, a Dkk/LRP(5/6) protein complex, a Dkk/Dkk interacting protein complex, upregulated transcription of the *LRP5* gene or inhibited translation of Dkk or Dkk interacting protein mRNA.

15

The agents of the present invention can be provided alone, or in combination with other agents that modulate a particular pathological process. As used herein, two agents are said to be administered in combination when the two agents are administered simultaneously or are administered independently in a fashion such that the agents will act at the same time.

20

The agents of the present invention can be administered via parenteral, subcutaneous (sc), intravenous (iv), intramuscular (im), intraperitoneal (ip), transdermal or buccal routes. Alternatively, or concurrently, administration may be by the oral route. The dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

25

The present invention further provides compositions containing one or more agents which modulate expression or at least one activity of a protein of the invention. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. Typical dosages of the active agent which

mediate Dkk or Dkk interacting protein activity comprise from about 0.0001 to about 50 mg/kg body weight. The preferred dosages comprise from about 0.001 to about 50 mg/kg body weight. The most preferred dosages comprise from about 0.1 to about 1 mg/kg body weight. In an average human of 70 kg, the range would be from about 7 µg to about 3.5 g, with a preferred range of about 0.5 mg to about 5 mg.

5

10

15

20

25

30

In addition to the pharmacologically active agent, the compositions of the present invention may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically for delivery to the site of action. Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, (e.g., ethyl oleate or triglycerides). Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran. Optionally, the suspension may also contain stabilizers. Liposomes and other non-viral vectors can also be used to encapsulate the agent for delivery into the cell.

The pharmaceutical formulation for systemic administration according to the invention may be formulated for enteral, parenteral, or topical (top) administration. Indeed, all three types of formulations may be used simultaneously to achieve systemic administration of the active ingredient.

Suitable formulations for oral administration include hard or soft gelatin capsules, pills, tablets, including coated tablets, elixirs, suspensions, syrups or inhalations and controlled release forms thereof.

Potentially, any compound which binds Dkk or a Dkk interacting protein or modulates the Dkk/LRP5 or Dkk/LRP6 or Dkk/Dkk interacting protein complex may be a therapeutic compound. In one embodiment of the invention, a peptide or nucleic acid aptamer according to the invention is used in a therapeutic composition. Such compositions may comprise an aptamer, or a LRP5 or LRP6 fragment unmodified or

modified. In another embodiment, the therapeutic compound comprises a Dkk-1 interacting protein, or biologically active fragment thereof.

5

10

15

20

25

30

Nucleic acid aptamers have been used in compositions for example by chemical bonding to a carrier molecule such as polyethylene glycol (PEG) which may facilitate uptake or stabilize the aptamer. A di-alkylgylcerol moiety attached to an RNA will embed the aptamer in liposomes, thus stabilizing the compound. Incorporating chemical substitutions (i.e. changing the 2'OH group of ribose to a 2'NH in RNA confers ribonuclease resistance) and capping, etc. can prevent breakdown. Several such techniques are discussed for RNA aptamers in Brody and Gold (Rev. Mol. Biol. 74:3-13 (2000)).

Peptide aptamers may by used in therapeutic applications by the introduction of an expression vector directing aptamer expression into the affected tissue such as for example by retroviral delivery, by encapsulating the DNA in a delivery complex or simple by naked DNA injection. Or, the aptamer itself or a synthetic analog may be used directly as a drug. Encapsulation in polymers and lipids may assist in delivery. The use of peptide aptamers as therapeutic and diagnostic agents is reviewed by Hoppe-Syler and Butz (*J. Mol. Med.* 78:426-430 (2000)).

In another aspect of the invention. The structure of a constrained peptide aptamer of the invention may be determined such as by NMR or X-ray crystallography. (Cavanagh et al., Protein NMR Spectroscopy: Principles and Practice, Academic Press, 1996; Drenth, Principles of Protein X-Ray Crystallography, Springer Verlag, 1999) Preferably the structure is determined in complex with the target protein. A small molecule analog is then designed according to the positions of functional elements of the 3D structure of the aptamer. (Guidebook on Molecular Modeling in Drug Design, Cohen, Ed., Academic Press, 1996; Molecular Modeling and Drug Design (Topics in Molecular and Structural Biology), Vinter and Gardner Eds., CRC Press, 1994) Thus the present invention provides a method for the design of effective and specific drugs which modulate the activity of Dkk, Dkk interacting proteins, Dkk/Dkk interacting protein complex and the Dkk/LRP complex. Small molecule mimetics of the peptide aptamers of the present invention are encompassed within the scope of the invention.

In practicing the methods of this invention, the compounds of this invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this invention may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice. For example, the compounds of this invention can be administered in combination with other therapeutic agents for the treatment of bone loss. Bone loss mediating agents include bone resorption inhibitors such as bisphosphonates (e.g., alendronic acid, clodronic acid, etidronic acid, pamidronic acid, risedronic acid and tiludronic acid), vitamin D and vitamin D analogs, cathepsin K inhibitors, hormonal agents (e.g., calcitonin and estrogen), and selective estrogen receptor modulators or SERMs (e.g., raloxifene). And bone forming agents such as parathyroid hormone (PTH) and bone morphogenetic proteins (BMP).

Additionally contemplated are combinations of agents which regulate Dkk-1 and agents which regulate lipid levels such as HMG-CoA reductase inhibitors (*i.e.*, statins such as Mevacor®, Lipitor® and other inhibitors such as Baycol®, Lescol®, Pravachol® and Zocor®), bile acid sequestrants (e.g., Colestid® and Welchol®), fibric acid derivatives (Atromid-S®, Lopid®, Tricor®), and nicotinic acid.

[0001] The compounds of this invention can be utilized *in vivo*, ordinarily in vertebrates and preferably in mammals, such as humans, sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

14. <u>Transgenic Animals</u>

5

10

15

20

25

30

Transgenic animal models can be created which conditionally express Dkk and/or LRP5 or LRP6 and/or Dkk interacting proteins, such as those shown in Figure 5. These animals can be used as research tools for the study of the physiological effects of the Dkk-1/Dkk-1 interacting protein interaction and/or the LRP5 / Dkk interaction. Alternatively, transgenic animals can be created which express a transgenic form of Dkk alone or in addition to a transgenic form of HBM or express Dkk interacting proteins alone or in addition to a transgenic form of Dkk. Transgenic animals expressing HBM or LRP5 can be crossed with transgenic animals expressing Dkk or

Dkk interacting proteins to obtain heterozygote as well as homozygote animals which express both desired genes.

5

10

15

20

25

30

Animal models may be created to directly modulate the Dkk/Dkk interacting protein or Dkk/ LRP5 interaction activity in vivo to serve as a research tool for determining the efficacy of candidate compounds which modulate the Dkk/Dkk interacting protein or LRP5 / Dkk interaction activity in vitro. Animals, such as transgenic mice, can be created using the techniques employed to make transgenic mice that express for example, human Dkk or a Dkk interacting protein, or knockouts (KO), which may be conditional, of the gene encoding mouse Dkk or Dkk interacting protein. Knock-in animals include animals wherein genes have been introduced and animals wherein a gene that was previously knocked-out is reintroduced into the animal. Other transgenic animals can be created with inducible forms of Dkk or a Dkk interacting protein to study the effects of the gene on bone mass development and loss as well as lipid level regulation. These animals can also be used to study long term effects of Dkk or Dkk interacting protein modulation. Transgenic animals may be created to express peptide aptamers, or produce RNA aptamers. The transgenic vectors may direct expression in a tissue specific manner by the use of tissue specific promoters. In a preferred embodiment, a peptide aptamer fusion protein is expressed using a bone specific promoter. Such systems can provide a tissue specific knock-out of Dkk or Dkk interacting protein activity.

General methods for creating transgenic animals are known in the art, and are described in, for example, Strategies in Transgenic Animal Science (Glenn M. Monastersky and James M. Robl eds., ASM Press; Washington, DC, 1995); Transgenic Animal Technology: A Laboratory Handbook (Carl A. Pinkert ed., Academic Press 1994); Transgenic Animals (Louis Marie Houdebine, ed., Harwood Academic Press, 1997); Overexpression and Knockout of Cytokines in Transgenic Mice (Chaim O. Jacob, ed., Academic Press 1994); Microinjection and Transgenesis: Strategies and Protocols (Springer Lab Manual) (Angel Cid-Arregui and Alejandro Garcia-Carranca, eds., Springer Verlag 1998); and Manipulating the Mouse Embryo: A Laboratory Manual (Brigid Hogan et al., eds., Cold Spring Harbor Laboratory Press 1994).

15. Peptide and Nucleotide Aptamers and Peptide Aptamer Mimetics

Another embodiment contemplates the use of peptide and nucleotide aptamer technology to screen for agents which interact with Dkk, which block Dkk from interacting with LRP5 or LRP6, or which block any other Dkk ligand interaction, or which interact with Dkk interacting proteins, such as those shown in Figure 5. Peptide aptamers are molecules in which a variable peptide domain is displayed from a scaffold protein. Thioredoxin A (trxA) is commonly used for a scaffold. The peptide insert destroys the catalytic site of trxA. It is recognized that numerous proteins may also be used as scaffolding proteins to constrain and/or present a peptide aptamer. Other scaffold proteins that could display a constrained peptide aptamer could include staphylococcal nuclease, the protease inhibitor eglin C, the *Streptomyces tendea* alphaamylase inhibitor Tendamistat, Sp1, and green fluorescent protein (GFP) (reviewed in Hoppe-Seyler *et al.*, *J. Steroid Biochem Mol. Biol.* 78:105-11 (2001)), and the S1 nuclease from *Staphylococcus* or M13 for phage display. Any molecule to which the aptamer could be anchored and presented in its bioactive conformation would be suitable.

Aptamers can then specifically bind to a given target protein *in vitro* and *in vivo* and have the potential to selectively block the function of their target protein. Peptide aptamers are selected from randomized expression libraries on the basis of their *in vivo* binding capacity to the desired target protein. Briefly, a target protein (e.g., Dkk, a Dkk interacting protein, or LRP5/6) is linked to a heterologous DNA binding domain (BD) and expressed as bait in a yeast test strain. Concomitantly, a library coding for different peptides (e.g., 16-mers) of randomized sequence inserted in a scaffold protein sequence, which are linked to a heterologous transcriptional activation domain (AD) is expressed as prey. If a peptide binds to a target protein, a functional transcription factor is reconstituted, in which the BD and AD are bridged together by interacting proteins. This transcription factor is then able to activate the promoter of a marker gene which can be monitored by colorimetric enzymatic assays or by growth selection. Additional variation, methods of preparing and screening methodologies are described in, for example, Hoppe-Seyler *et al.*, *J. Mol. Med.* 78: 426-430 (2000).

Nucleotide aptamers are described for example in Brody et al., Trends Mol. Biotechnol. 74: 5-13 (2000). Additional methods of making and using nucleotide aptamers include SELEX, i.e., Systematic Evolution of Ligands by Exponential Enrichment. SELEX is a process of isolating oligonucleotide ligands of a chosen target molecule (see Tuerk and Gold, Science 249:505-510 (1990); U.S. Pat. Nos. 5,475,096, 5,595,877, and 5,660,985). SELEX, as described in Tuerk and Gold, involves admixing the target molecule with a pool of oligonucleotides (e.g., RNA) of diverse sequences; retaining complexes formed between the target and oligonucleotides; recovering the oligonucleotides bound to the target; reverse-transcribing the RNA into DNA; amplifying the DNA with polymerase chain reactions (PCR); transcribing the amplified DNA into RNA; and repeating the cycle with ever increasing binding stringency. Three enzymatic reactions are required for each cycle. It usually takes 12-15 cycles to isolate aptamers of high affinity and specificity to the target. An aptamer is an oligonucleotide that is capable of binding to an intended target substance but not other molecules under the same conditions.

5

10

15

20

25

30

In another reference, Bock et al., Nature 355:564-566 (1990), describe a different process from the SELEX method of Tuerk and Gold in that only one enzymatic reaction is required for each cycle (i.e., PCR) because the nucleic acid library in Bock's method is comprised of DNA instead of RNA. The identification and isolation of aptamers of high specificity and affinity with the method of Bock et al. still requires repeated cycles in a chromatographic column.

Other nucleotide aptamer methods include those described by Conrad *et al.*, *Meth. Enzymol.* 267:336-367 (1996). Conrad *et al.* describe a variety of methods for isolating aptamers, all of which employ repeated cycles to enrich target-bound ligands and require a large amount of purified target molecules. More recently described methods of making and using nucleotide aptamers include, but are not limited to those described in U.S. Patent Nos. 6,180,348; 6,051,388; 5,840,867; 5,780,610, 5,756,291 and 5,582,981.

Potentially, any compound which binds Dkk or a Dkk interacting protein or modulates the Dkk/Dkk interacting protein or Dkk/LRP5 or Dkk/LRP6 complex may be

a therapeutic compound. In one embodiment of the invention, a peptide or nucleic acid aptamer according to the invention is used in a therapeutic composition. Such compositions may comprise an aptamer, or a LRP5 or LRP6 fragment unmodified or modified.

5

Nucleic acid aptamers have been used in compositions for example by chemical bonding to a carrier molecule such as polyethylene glycol (PEG) which may facilitate uptake or stabilize the aptamer. A di-alkylglycerol moiety attached to an RNA will embed the aptamer in liposomes, thus stabilizing the compound. Incorporating chemical substitutions (*i.e.*, changing the 2'-OH group of ribose to a 2'-NH in RNA confers ribonuclease resistance) and capping, etc. can prevent breakdown. Several such techniques are discussed for RNA aptamers in Brody and Gold *Rev. Mol. Biol.* 74:3-13 (2000).

15

10

Peptide aptamers may by used in therapeutic applications by the introduction of an expression vector directing aptamer expression into the affected tissue such as for example by retroviral delivery, by encapsulating the DNA in a delivery complex or simple by naked DNA injection. Or, the aptamer itself or a synthetic analog may be used directly as a drug. Encapsulation in polymers and lipids may assist in delivery. The use of peptide aptamers as therapeutic and diagnostic agents is reviewed by Hoppe-Syler and Butz *J. Mol. Med.* 78:426-430 (2000).

20

In another aspect of the invention, the structure of a constraine'd peptide aptamer of the invention may be determined such as by NMR or X-ray crystallography. (Cavanagh et al., Protein NMR Spectroscopy: Principles and Practice, Academic Press, 1996; Drenth, Principles of Protein X-Ray Crystallography, Springer Verlag, 1999) Preferably the structure is determined in complex with the target protein. A small molecule analog is then designed according to the positions of functional elements of the 3D structure of the aptamer. (Guidebook on Molecular Modeling in Drug Design, Cohen, Ed., Academic Press, 1996; Molecular Modeling and Drug Design (Topics in Molecular and Structural Biology), Vinter and Gardner Eds., CRC Press, 1994) Thus, a method is provided for the design of effective and specific drugs which modulate the activity of Dkk, Dkk interacting proteins, Dkk/Dkk interacting protein

30

complex, and the Dkk/LRP complex. Small molecule mimics of the peptide aptamers of the present invention are also encompassed within the scope of the invention.

16. <u>Alternative Variants of LRP5/LRP6 Having HBM Activity</u>

A structural model of the LRP5/Zmax1 first beta-propeller module was generated based on a model prediction in Springer et al., (1998) *J. Molecular Biology*, 283:837-862. Based on the model, certain amino acid residues were identified as important variants of LRP5/HBM/Zmax1. The following three categories provide examples of such variants:

10

5

The shape of the beta-propeller resembles a disk with inward-sloping sides and a hole down the middle. Residue 171 is in a loop on the outer or top surface of the domain in blade 4 of propeller module 1. Thus, variants comprising changed residues in structurally equivalent positions in other blades; as well as residues that are slightly more interior to the binding pocket, but still accessible to the surface, are important embodiments of the present invention for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention. The following are examples of such variants:

20

15

A214V (a position equivalent to 171 in blade 5; alanine is not conserved in other propellers),

E128V (a position equivalent to 171 in blade 3; glutamate is not conserved in other propellers),

A65V (a position equivalent to 171 in blade 2; alanine is conserved in propellers 1-3 but not 4),

25

30

G199V (an accessible interior position in blade 5; glycine is conserved in propellers 1-3 but not 4), and M282V (accessible interior position in blade 1; methionine is conserved in propellers 1-3 but not 4).

LRP5/Zmax1 has four beta-propeller structures; the first three beta-propeller modules conserve a glycine in the position corresponding to residue 171 in human

LRP5/Zmax1. Therefore, variants bearing a valine in the equivalent positions in the other propellers are important embodiments of the present invention. The following variants are useful for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention: G479V, G781V, and Q1087V.

The G171V HBM polymorphism results in "occupied space" of the beta-propeller 1, with the side-chain from the valine residue sticking out into an open binding pocket and potentially altering a ligand/protein interaction. The glycine residue is conserved in LRP5/Zmax1 propellers 1, 2 and 3 but is a glutamine in propeller 4. Therefore, the following variants of LRP5/HBM are important embodiments of the present invention for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention:

G171K (which introduces a charged side-chain),

G171F (which introduces a ringed side-chain),

5

10

15

20

25

G1711 (which introduces a branched side-chain), and

G171Q (which introduces the propeller 4 residue).

Furthermore, LRP6 is the closest homolog of LRP5/Zmax1. LRP6 has a betapropeller structure predicted to be similar, if not identical to Zmax1. The position
corresponding to glycine 171 in human LRP5/Zmax1 is glycine 158 of human LRP6.
Thus, corresponding variants of LRP6 are an important embodiment of the present
invention for the study of the specificity of LRP5/Zmax1 versus its related family
member, for the development of pharmaceuticals and treatments of bone mass
disorders, and for other objectives of the present invention. Specifically, for example, a
glycine to valine substitution at the structurally equivalent position, residue 158, of
human LRP6 and similar variants of other species' LRP6 homologs represent important
research tools.

Site-directed mutants of LRP5 were generated in the full-length human LRP5 cDNA using the QuikChange XL-Site-Directed Mutagenesis Kit (catalog #200516,

Stratagene, La Jolla, CA) following the manufacturer's protocol. The mutant sequences were introduced using complementary synthetic oligonucleotides:

A65V: TGGTCAGCGGCCTGGAGGATGTGGCCGCAGTGGACTTCC (SEQ ID NO:129) and GGAAGTCCACTGCGGCCACATCCTCCAGGCCGCTGACCA (SEQ ID NO:130)
E128V: AAGCTGTACTGGACGGACTCAGTGACCAACCGCATCGAGG (SEQ ID NO:131) and CCTCGATGCGGTTGGTCACTGAGTCCGTCCAGTACAGCTT (SEQ ID NO:132)
G171K: ATGTACTGGACAGACTGGAAGGAGACGCCCCGGATTGAGCG

G171K: ATGTACTGGACAGACTGGAAGGAGACGCCCCGGATTGAGCG (SEQ ID NO: 133) and CGCTCAATCCGGGGCGTCTCCTTCCAGTCTGTCCAGTACAT (SEQ ID NO:134)

15 G171F: ATGTACTGGACAGACTGGTTTGAGACGCCCCGGATTGAGCG (SEQ ID NO:135) and CGCTCAATCCGGGGCGTCTCAAACCAGTCTGTCCAGTACAT (SEQ ID

NO:136)

G1711: ATGTACTGGACAGACTGGATTGAGACGCCCCGGATTGAGCG (SEQ

20 ID NO:137) and

5

10

25

CGCTCAATCCGGGGCGTCTCAATCCAGTCTGTCCAGTACAT (SEQ ID

NO:138)

G171Q: ATGTACTGGACAGACTGGCAGGAGACGCCCCGGATTGAGCG (SEQ ID NO:139) and

CGCTCAATCCGGGGCGTCTCCTGCCAGTCTGTCCAGTACAT (SEQ ID NO:140)

G199V: CGGACATTTACTGGCCCAATGTACTGACCATCGACCTGGAGG (SEQ ID NO:141) and

CCTCCAGGTCGATGGTCAGTACATTGGGCCAGTAAATGTCCG (SEQ ID

30 NO:142)

A214V: AGCTCTACTGGGCTGACGTCAAGCTCAGCTTCATCCACCG (SEQ ID NO: 143) and CGGTGGATGAAGCTGAGCTTGACGTCAGCCCAGTAGAGCT (SEQ ID NO:144) 5 M282V: GAGTGCCCTCTACTCACCCGTGGACATCCAGGTGCTGAGCC (SEQ ID NO:145) and GGCTCAGCACCTGGATGTCCACGGGTGAGTAGAGGGCACTC (SEQ ID NO:146) G479V: CATGTACTGGACAGACTGGGTAGAGAACCCTAAAATCGAGTGTGC 10 (SEQ ID NO:147) and GCACACTCGATTTTAGGGTTCTCTACCCAGTCTGTCCAGTACATG (SEQ ID NO:148) G781V: CATCTACTGGACCGAGTGGGTCGGCAAGCCGAGGATCGTGCG (SEQ ID NO:149) and 15 CGCACGATCCTCGGCTTGCCGACCCACTCGGTCCAGTAGATG (SEQ ID NO:150) Q1087V: GTACTTCACCAACATGGTGGACCGGGCAGCCAAGATCGAACG (SEQ ID NO:151) and CGTTCGATCTTGGCTGCCCGGTCCACCATGTTGGTGAAGTAC (SEQ ID 20 NO:152) LRP6 G158V: GTACTGGACAGACTGGGTAGAAGTGCCAAAGATAGAACGTGC (SEQ ID NO:153) and GCACGTTCTATCTTTGGCACTTCTACCCAGTCTGTCCAGTAC (SEQ ID 25 NO:154). All constructs were sequence verified to ensure that only the engineered modification was present in the gene. Once verified, each variant was functionally evaluated in the TCF-luciferase assay in U2OS cells (essentially as described in Example 7. Other functional evaluations could also be performed, such as the Xenopus

embryo assay (essentially as described in Example 6), or other assays to evaluate Wnt

signaling, Dkk modulation, or anabolic bone effect. Binding of these mutants to Dkk, LRP-interacting proteins, Dkk-interacting proteins, or peptide aptamers to any of the preceding could also be investigated in a variety of ways such as in a two-hybrid system (such as in yeast as described in this application), or other methods.

5

Figure 24 shows the effects of the G171F mutation in propeller 1 of LRP5. This mutation is at the same position as HBM's G171V substitution. Expression of G171F results in an HBM effect. That is, in the presence of Wnt, G171F is able to activate the TCF-luciferase reporter construct. In fact, it may activate the reporter to a greater extent than either LRP5 or HBM. Furthermore, in the presence of Dkk1 and Wnt1, G171F is less susceptible than LRP5 to modulation by Dkk. These data exemplify that the G171F variant modulates Wnt signaling in a manner similar to HBM. In addition, this data confirms that HBM's valine residue at 171 is not the only modification at 171 that can result in an HBM effect. Together these data support an important role for LRP5 propeller 1 in modulating Wnt pathway activity; in responding to Dkk modulation; and, in the ability to generate an HBM effect.

15

10

Figure 25 shows the effects of the M282V mutation in propeller 1 of LRP5. M282 expression results in an HBM-effect. That is, in the presence of Wnt, M282 is able to activate the TCF-luciferase reporter construct. Furthermore, in the presence of Dkk1 and Wnt1, M282V is less susceptible than LRP5 to modulation by Dkk. These data show that the M282V variant modulates Wnt signaling in a manner similar to HBM. In addition, this data confirms that modifications of other residues in propeller 1 of LRP5 can result in an HBM effect.

20

These data support an "occupied space" model of the HBM mutation in propeller 1 and show that multiple mutations of propeller 1 are capable of generating an HBM effect; the original G171V HBM mutation is not unique in this ability. Moreover, various perturbations in propeller 1 can modulate Dkk activity.

25

These data illustrate the molecular mechanism of Dkk modulation of LRP signaling. Using the methods disclosed herein and in U.S. Application 60/290,071, generation of a comprehensive mutant panel will reveal residues in LRP that function in Dkk modulation of Wnt signaling. Such variants of LRP5 and LRP6 that modulate Dkk

activity and the residues which distinguish them from LRP5 and LRP6 are points for therapeutic intervention by small molecule compound, antibody, peptide aptamer, or other agents. Furthermore, models of each HBM-effect mutation/polymorphism may be used in rational drug design of an HBM mimetic agent.

5

10

15

20

25

These are only a few illustrative examples presented to better describe the present invention. Variants of LRP5 which have demonstrated HBM activity in assays include G171F, M282V, G171K, G171Q and A214V. Clearly, other variants may be contemplated within the scope of the present invention. Furthermore, wherever HBM is recited in the methods of the invention, it should be understood that any such alternative variant of LRP which demonstrates HBM biological activity is also encompassed by those claims.

17. <u>Screening Assays</u>

The two-hybrid system is extremely useful for studying protein:protein interactions. See, e.g., Chien et al., Proc. Natl Acad. Sci. USA 88:9578-82 (1991); Fields et al., Trends Genetics 10:286-92 (1994); Harper et al., Cell 75:805-16 (1993); Vojtek et al., Cell 74:205-14 (1993); Luban et al., Cell 73:1067-78 (1993); Li et al., FASEB J. 7:957-63 (1993); Zang et al., Nature 364:308-13 (1993); Golemis et al., Mol. Cell. Biol. 12:3006-14 (1992); Sato et al., Proc. Natl Acad. Sci. USA 91:9238-42 (1994); Coghlan et al., Science 267:108-111 (1995); Kalpana et al., Science 266:2002-6 (1994); Helps et al., FEBS Lett. 340:93-8 (1994); Yeung et al., Genes & Devel. 8:2087-9 (1994); Durfee et al., Genes & Devel. 7:555-569 (1993); Paetkau et al., Genes & Devel. 8:2035-45; Spaargaren et al., 1994 Proc. Natl. Acad. Sci. USA 91:12609-13 (1994); Ye et al., Proc. Natl Acad. Sci. USA 91:12629-33 (1994); and U.S. Patent Nos. 5,989,808; 6,251,602; and 6,284,519.

Variations of the system are available for screening yeast phagemid (see, e.g., Harper, Cellular Interactions and Development: A Practical Approach, 153-179 (1993); Elledge et al., Proc. Natl Acad. Sci. USA 88:1731-5 (1991)) or plasmid (Bartel, 1993 and Bartel, Cell 14:920-4 (1993)); Finley et al., Proc. Natl Acad. Sci. USA 91:12980-4

(1994)) cDNA libraries to clone interacting proteins, as well as for studying known protein pairs.

The success of the two-hybrid system relies upon the fact that the DNA binding and polymerase activation domains of many transcription factors, such as GAL4, can be separated and then rejoined to restore functionality (Morin *et al.*, *Nuc. Acids Res.* 21:2157-63 (1993)). While these examples describe two-hybrid screens in the yeast system, it is understood that a two-hybrid screen may be conducted in other systems such as mammalian cell lines. The invention is therefore not limited to the use of a yeast two-hybrid system, but encompasses such alternative systems.

10

5

15

20

25

30

Yeast strains with integrated copies of various reporter gene cassettes, such as for example GAL.fwdarw.LacZ, GAL.fwdarw.HIS3 or GAL.fwdarw.URA3 (Bartel, in Cellular Interactions and Development: A Practical Approach, 153-179 (1993); Harper et al., Cell 75:805-16 (1993); Fields et al., Trends Genetics 10:286-92 (1994)) are cotransformed with two plasmids, each expressing a different fusion protein. One plasmid encodes a fusion between protein "X" and the DNA binding domain of, for example, the GAL4 yeast transcription activator (Brent et al., Cell 43:729-36 (1985); Ma et al., Cell 48:847-53 (1987); Keegan et al., Science 231:699-704 (1986)), while the other plasmid encodes a fusion between protein "Y" and the RNA polymerase activation domain of GAL4 (Keegan et al., 1986). The plasmids are transformed into a strain of the yeast that contains a reporter gene, such as lacZ, whose regulatory region contains GAL4 binding sites. If proteins X and Y interact, they reconstitute a functional GAL4 transcription activator protein by bringing the two GAL4 components into sufficient proximity to activate transcription. It is well understood that the role of bait and prey proteins may be alternatively switched and thus the embodiments of this invention contemplate and encompass both alternative arrangements.

Either hybrid protein alone must be unable to activate transcription of the reporter gene, the DNA-binding domain hybrid, because it does not provide an activation function, and the activation domain hybrid, because it cannot localize to the GAL4 binding sites. Interaction of the two test proteins reconstitutes the function of GAL4 and results in expression of the reporter gene. The reporter gene cassettes

consist of minimal promoters that contain the GAL4 DNA recognition site (Johnson *et al.*, *Mol. Cell. Biol.* 4:1440-8 (1984); Lorch *et al.*, *J. Mol. Biol.* 186:821-824 (1984)) cloned 5' to their TATA box. Transcription activation is scored by measuring either the expression of β-galactosidase or the growth of the transformants on minimal medium lacking the specific nutrient that permits auxotrophic selection for the transcription product, *e.g.*, URA3 (uracil selection) or HIS3 (histidine selection). See, *e.g.*, Bartel, 1993; Durfee *et al.*, *Genes & Devel.* 7:555-569 (1993); Fields *et al.*, *Trends Genet.* 10:286-292 (1994); and U.S. Pat. No. 5,283,173.

5

10

15

20

25

30

Generally, these methods include two proteins to be tested for interaction which are expressed as hybrids in the nucleus of a yeast cell. One of the proteins is fused to the DNA-binding domain (DBD) of a transcription factor and the other is fused to a transcription activation domain (AD). If the proteins interact, they reconstitute a functional transcription factor that activates one or more reporter genes that contain binding sites for the DBD. Exemplary two-hybrid assays which have been used for Dkk-1/LRP5 are presented in the Examples below.

Additional methods of preparing two hybrid assay systems for Dkk-1 interactors would be evident to one of ordinary skill in the art. See for example, Finley *et al.*, "Two-Hybrid Analysis of Genetic Regulatory Networks," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Meijia Yang, "Use of a Combinatorial Peptide Library in the Two-Hybrid Assay," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Gietz *et al.*, "Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system," *Mol. & Cell. Biochem.* 172:67-9 (1997); K. H. Young, "Yeast Two-Hybrid: So Many Interactions,(in) so Little Time," *Biol. Reprod.* 58:302-311 (1998); R. Brent *et al.*, "Understanding Gene and Allele Function with Two-Hybrid Methods," *Annu. Rev. Genet.* 31:663-704 (1997). It will be appreciated that protein networks can be elucidated by performing sequential screens of activation domain-fusion libraries.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The

following working examples therefore, specifically point out preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

5

EXAMPLES

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well-known in the art or the techniques specifically described below were utilized.

10

For routine practice of the protocols referenced below, one of skill in the art is directed to the references cited in this application as well as the several <u>Current Protocol</u> guides, which are continuously updated, widely available and published by John Wiley and Sons, (New York). In the life sciences, <u>Current Protocols</u> publishes comprehensive manuals in Molecular Biology, Immunology, Human Genetics, Protein Science, Cytometry, Neuroscience, Pharmacology, Cell Biology, Toxicology, and Nucleic Acid Chemistry. Additional sources are known to one of skill in the art.

15

Example 1

Yeast Two Hybrid Screen Using LRP5 Ligand Binding Domain (LBD) Bait Sequences

20

In a screen against human osteoblast library (*i.e.*, HOB03C5, a custom Gibco generated Y2H compatible cDNA library from a human osteoblast cell line as described by Bodine and Komm, *Bone* 25:535-43 (1999)), an interaction with Dkk-1 was identified. The LRP5 ligand binding domain (LBD) baits used for this screen are depicted in Figures 2B and C. The basic protocol is as follows:

25

An overnight culture of the yeast strain containing the bait of interest is grown in 20 ml of appropriate selective medium containing 2% glucose at 30°C. The overnight culture is diluted by a 10 fold factor into YPDmedia supplemented with 40 mg/l of adenine, and grown for 4 hours at 30°C.

30

For each mating event, an aliquot of the frozen prey library is grown in 150 ml YAPD medium for 5 hours at 30°C.

Appropriate volumes calculated by measuring the OD600 of each culture are combined into a tube. The number of diploids to be screened is typically ten times the number of clones originally present in the prey library of interest. Assuming a mating efficiency of 20% minimum, fifty times (*i.e.*, ten times coverage multiplied by 20% mating efficiency) as many haploid cells containing the bait and as many cells containing the prey are used in any given mating event. The mixture is filtered over a 47 mm, 0.45 mm sterile Metricel filter membrane (Gelman).

Using sterile forceps, the filter is transferred onto a 100 mm² YAPD agar plate with the cell side up, removing all air bubbles underneath the filter. The plate is incubated overnight at room temperature.

The filter is transferred into a 50 ml Falcon tube using sterile forceps and 10 ml SD medium containing 2% glucose are added to resuspend the cells. The filter, once free of cells, is removed and the cell suspension is spun for 5 min. at 2,000 xg.

The cells are resuspended in 10 ml SD medium containing 2% glucose. An aliquot of 100 μ l is set aside for titration.

The cells are plated onto large square plates containing appropriate selective media and incubated at 30°C for three to five days.

To calculate the mating efficiency and to determine the total number of diploid cells screened, the 100 μ l aliquot set aside for titration is diluted and plated onto different selective media. The mating efficiency is calculated by dividing the number of diploids/ml by the lowest number of haploids/ml, either bait or prey, and multiplied by 100. For example, if 2 million diploids were obtained by mating 10 million of haploids containing a bait and 12 million of haploids containing a prey, then the mating efficiency is calculated by dividing 2 million by 10 million, which equals 0.2 and multiplied by 100 which equals 20%. Typical mating efficiencies under the above conditions are within about 20 to about 40%. The total number of diploids screened in a mating event is obtained by multiplying the number of diploids/ml by the total number of ml plated, typically about 10.

5

10

15

20

Isolation of colonies containing pairs of interacting proteins.

Yeast colonies from the interaction selection (large square) plates are picked with a sterile toothpick and patched onto plates containing the appropriate selective media and incubated at 30°C for two days.

To further ensure purity of the yeast, the plates are replicated onto another plate containing the same media and incubated at 30°C for another two days.

Yeast patches are scraped using a sterile toothpick and placed into a 96-well format plate containing 100 μ l SD –L –W –H with 2% glucose liquid medium.

Half the volume of the plate is transferred to a 96-well plate containing 50 μ l of 40% glycerol for storage. The other half is set aside for replication and galactosidase-activity assay (see below).

Cells are replicated onto a SD –L –W –H plate with 2% glucose plate to create a master plate, and incubated two days at 30°C. The master plate is replicated onto different selective media to score the strength of each interaction.

Cells are also replicated onto media selecting for the prey vector only for colony PCR and incubated two days at 30°C.

Galactosidase activity assay

Ten microliters from the 96-well plate (set aside from above) are transferred into another 96-well plate containing 100 μ l SD and 2% glucose media. The cell density is measured at OD₆₀₀ using a spectrophotometer, the OD₆₀₀ is usually between 0.03 and 0.1. Fifty microliters of Galactosidase reaction mixture (Tropix) are added to microplates (Marsh) specifically designed for the luminometer (Hewlett Packard Lumicount). Fifty microliters of the diluted cells are then added and mixed by pipetting. The reaction is incubated sixty to one hundred twenty minutes at room temperature. Relative Light Units (RLUs) are read by the luminometer. Each plate contains a negative control, constituted by diploid yeast containing the bait of interest and an empty prey vector. To be scored as positive, the diploids tested have to have an RLU number at least twice as high as the negative control.

25

5

10

15

Example 2

Minimum interaction domain mapping

Further analysis of yeast two hybrid (Y2H) interacting proteins includes the dissection of protein motifs responsible for the interaction. Sequence alignment of multiple clones identified in the Y2H screens can help identify the smallest common region responsible for the interaction. In the absence of appropriate clones, deletion mapping of interacting domains is necessary.

PCR primers containing restriction sites suitable for cloning are designed to cover multiple sub-domains of the protein of interest (bait or prey). The methods involved in cloning, sequencing, yeast transformation, mating, and scoring of interactions are readily performed by one of ordinary skill in the art of molecular biology and genetic engineering.

Materials and Methods

15

5

10

Minimum interaction domain: primers were designed for PCR of the Dkk-1 clone isolated by screening a primary osteoblast cell strain (HOB03C5) library with pooled Zmax1/LRP5 ligand binding domain (LBD) baits: LBD1 (Leu969-Pro1376) and LBD4 (Arg1070-Pro1376). The primers, which are presented in 5' to 3' orientation, were as follows:

	SEQ ID NO	<u>Primer</u>	<u>Sequence</u>
	155	Forward 1	TTTTTTGTCGACCAATTCCAACGCTATCAAG
	156	Forward 2	TTTTTTGTCGACCTGCGCTAGTCCCACCCGC
25	157	Forward 3	TTTTTTGTCGACCGTGTCTTCTGATCAAAATC
	158	Forward 4	TTTTTTGTCGACCGGACAAGAAGGTTCTGTTTG
	159	Reverse 1	TTTTTTGCGGCCGCTTATTTGGTGTGATACATTTTTG
	160	Reverse 2	TTTTTTGCGGCCGCTTAGCAAGACAGACCTTCTCC
	161	Reverse 3	TTTTTTGCGGCCGCTTAGTGTCTCTGACAAGTGTG

PCR was performed using PfuTurbo® polymerase (Stratagene). The PCR products were gel purified, digested with *Sall/Not*l and ligated to pPC86 (Gibco/BRL) which had been linearized with *Sall/Not*l. Clones were recovered and sequenced to ascertain that the structure was as expected and that the Gal4 activation domain and Dkk-1 were in-frame. The ORF of Dkk-1 was Met1-His266, as in human Dkk-1 (GenBank Accession No. XM_005730).

The clones used were as follows: D5 (F1/R3: Asn34-His266), D4 (F1/R2: Asn34-Cys245), D3 (F1/R1: Asn34-Lys182), D9 (F2/R3: Cys97-His266), D12 (F3/R3, val139-His266), D14 (F4/R3: Gly183-His266), D8 (F2/R2: Cys97-Cys245), and D11 (F3/R2: Val139-Cys245). F1, F2, F3 and F4 refer respectively to Forward primers 1, 2, 3 and 4. R1, R2 and R3 refer respectively to reverse primers 1, 2 and 3.

These clones were transformed into yeast and mated with each of three yeast strains containing pDBleu (Gibco/BRL), pDBleuLBD1, and pDBleuLBD4. Positive interactions were detected by growth of the hybrids on appropriate selective media.

Results

5

10

15

20

25

Minimum interaction domain: Figure 6 shows that while growth was observed in diploids of D4, D5, D8, D9, and D12, no growth was observed in hybrids of D3, D11, and D12. Carboxy terminal (C-terminal) deletions indicated that while the C-terminal amino acids of Dkk-1 containing the potential N-glycosylation site (Arg246-His266) are not required for interaction with Zmax1/LRP5 LBD baits, the Cys2 domain, Gly183-Cys245, is required. N-terminal deletions also demonstrated that the region between the two cysteine domains, *i.e.* Val139 to Lys182, is also required. Two minimum interaction domain constructs were isolated: D12 (Val139-His266) and D8 (Cys97-Cys245). Similar constructs could be prepared for Dkk-1 interactors.

Example 3

Yeast-2 Hybrid screen for peptide aptamer sequences to Dkk-1
Peptide aptamer library construction

A peptide aptamer library, Tpep, was constructed, which provides a means to identify chimeric proteins that bind to a protein target (or bait) of interest using classic yeast two hybrid (Y2H) assays. The Tpep library is a combinatorial aptamer library composed of constrained random peptides, expressed within the context of the disulfide loop of *E. coli* thioredoxin (trxA), and as C-termini fusion to the *S. cerevisiae* Gal4 activation domain. The Tpep library was generated using a restriction enzyme modified recombinant Y2H prey vector, pPC86 (Gibco), which contains the trxA scaffold protein.

Generation of aptamer-encoding sequences

5

10

15

20

25

Aptamer-encoding sequences were produced as follows. DNA encoding random stretches of approximately sixteen amino acids surrounded by appropriate restriction sites were generated by semi-random oligonucleotide synthesis. The synthetic oligonucleotides were PCR-amplified, restriction digested, and cloned into the permissive sites within the trxA scaffold protein. The cloning strategy was to insert the random oligonucleotide sequence is in-frame with the scaffold protein coding sequence, resulting in expression of a scaffold protein-aptamer chimera. The scaffold protein is itself in-frame with the activation domain of Gal4, within the pPC86 vector that is appropriate for the aptamer to be expressed and functional in a regular Y2H assay. Additional methods of preparing aptamers would be apparent to the skilled artisan.

Generation of a permissive recombinant pPC86 vector containing the trxA coding sequence

First the *Rsr*II restriction site located within the Gal4 activation domain of pPC86 (Gibco) was eliminated by site-directed mutagenesis (Quickchange™ kit, Stratagene). The amino acid sequence of the Gal4 activation domain was unchanged by this modification. The strength of different control interactions was verified to be unchanged by the modification.

Second, the *E. coli* trxA coding sequence was cloned into the *Sal*I and *Not*I sites of the *Rsr*II-modified pPC86. *Eco*RI and *Spe*I sites were then introduced within the trxA

RsrII site. The oligonucleotides encoding the peptide aptamers were cloned into the EcoRI and Spel sites of the resulting vector.

Example 4

Yeast-2 Hybrid screen for Dkk-1 interacting proteins

5

10

15

20

25

30

A Dkk-1 bait sequence was utilized in a yeast two hybrid screen to identify Dkk-1 interacting proteins. The procedure for the Y2H was carried out similarly to that employed in Example 1, except that the Dkk-1 bait from Figure 2C was used instead of LRP baits. The screen was performed using Hela and fetal brain libraries (Invitrogen Corporation, Carlsbad, CA). Multiple libraries were used to identify additional Dkk-1 interacting proteins and to confirm interactions found in other libraries.

The list of Dkk-1 interacting proteins uncovered in these Y2H screens are listed in Figure 5.

The interacting proteins identified in the Dkk-1 bait screen can be used in other Y2H screens with LRP baits and other Dkk-1 interacting proteins to determine more complex interactions which may modulate Dkk-1/LRP interactions and/or Wnt signaling.

Example 5

Generation of antibodies

In each of the following antibody-generating examples, the synthesis of these linear peptides is followed by injection into two New Zealand Rabbits. Subsequent boosts and bleeds are taken according to a standard ten-week protocol. The end-user receives back 5 mgs of peptide, aliquots of pre-bleeds, roughly 80 ml of crude sera from each of the two rabbits and, and ELISA titration data is obtained.

Generation of LRP5 Polymorphism-specific antibodies

Antibodies were generated to the following peptides to obtain antibodies which distinguish the HBM polymorphism versus wild-type LRP5/Zmax: MYWTDWVETPRIE

(SEQ ID NO:123) (mutant peptide) and MYWTDWGETPRIE (SEQ ID NO:124) (wild-type peptide for negative selection). Immunofluorescence data confirmed that the antibody, after affinity purification, is specific for HBM and does not recognize LRP5 (Figure 17).

5

10

15

20

25

Generation of LRP5 Monospecific antibodies

LRP5 monospecific polyclonal antibodies were generated to the following amino acid sequences of LRP5: Peptide 1 (a.a. 265-277) - KRTGGKRKEILSA (SEQ ID NO:125), Peptide 2 (a.a. 1178-1194) - ERVEKTTGDKRTRIQGR (SEQ ID NO:126), and Peptide 3 (a.a. 1352-1375) - KQQCDSFPDCIDGSDE (SEQ ID NO:127). Immunofluorescence confirmed that the antibody generated detects LRP5.

Generation of Dkk-1 monospecific polyclonal antibodies

Dkk-1 monospecific polyclonal antibodies were generated to the following amino acid sequences of Dkk-1: Peptide 1 (a.a. 71-85) - GNKYQTIDNYQPYPC (SEQ ID NO:118), Peptide 2 (a.a. 165-186) - LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), Peptide 3 (a.a. 246-266) - RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), Peptide 4 (a.a. 147-161) - RGEIEETITESFGND (SEQ ID NO:121), and Peptide 5 (232-250) - EIFQRCYCGEGLSCRIQKD (SEQ ID NO:122) of human Dkk-1. Figure 26 shows the location of the various peptides selected, their relationship to the Dkk-1 amino acid sequence and polyclonal antibodies generated.

Western blots demonstrated that the antibodies generated against peptides 2 (Antibody #5521) (Figure 27) and 4 (Antibody #74397) (Figure 28) are specific toward Dkk-1. Figure 27 shows Western blots using 500 μ l of conditioned medium (CM) from non-transfected 293 cells or from 293 cells transfected with Dkk1-V5 that were immunoprecipitated by anti-V5 antibody. Bead elutes were separated by non-reducing SDS-PAGE (lanes #4, 5 of Figure 27). 20 μ l of conditioned medium from both samples (lanes #2, 3 of Figure 27) and from Dkk1-AP transfected 293 cells (lane #6 of Figure 27) were additionally separated on the gel. The Western was performed using

antibodies Anti-V5/AP (1:10,000) and Ab#5521 (10 μ g/ml). Ab#5521 detected Dkk1-V5 and Dkk1-AP from conditioned medium.

Figure 28 shows Western blot results using Ab#74397. Anti-V5/AP was tested at a 1:4000 dilution and Ab#74397 was tested at a 1:500 dilution. Ab#74397 was able to detect Dkk1-V5 in both conditioned medium and immunoprecipitated conditioned medium.

The results obtained with antibodies #5521 and #74397 are summarized in the following table:

Rabbit No.	Peptide Position	Peptide Sequence	Purified (Y/N)	Western	Immuno- precipitation	Location
5521	165-186	LDGYSR RTTLSSK MYHTKG QEG	Y (Protein G purified)	Y	N/A	Between Cy1 and Cys2 domain
74397	147-161	RGEIEETI TESFGN D	N	Y	N/A	Between Cy1 and Cys2 domain

15 <u>Example 6</u>

5

10

20

25

Effects of exogenous Dkk-1 on Wnt-mediated signaling in the Xenopus embryo assay

Xenopus embryos are an informative and well-established *in vivo* assay system to evaluate the modulation of Wnt signaling (McMahon *et al.*, *Cell* 58: 1075-84 (1989); Smith and Harland, 1991; reviewed in Wodarz and Nusse 1998).

Modification of the Wnt signaling pathway can be visualized by examining the embryos for a dorsalization phenotype (duplicated body axis) after RNA injection into the ventral blastomere at the 4- or 8-cell stage. On the molecular level, phenotypes can be analyzed by looking for expression of various marker genes in stage 10.5 embryos. Such markers would include general endoderm, mesoderm, and ectoderm markers as well as a variety of tissue-specific transcripts.

Analysis can be done by RT-PCR/TaqMan® and can be done on whole embryo tissue or in a more restricted fashion (microdissection). Because this system is very flexible and rapid, by injecting combinations of transcripts, such as HBM and different Wnts or Wnt antagonists, the mechanism of HBM in the Wnt pathwaycan thereby be dissected. Furthermore, investigations are conducted to determine whether Zmax/LRP5 and HBM differentially modulate Wnt signaling either alone, or in combination with other components. Previous studies have demonstrated that LRP6 alone or LRP5 + Wnt5a were able to induce axis duplication (dorsalization) in this system (Tamai et al., Nature 407: 530-35 (2000)).

10

15

20

25

30

5

Constructs for Xenopus Expression (Vector pCS2⁺)

Constructs were prepared using the vector pCS2⁺. DNA inserts were subcloned in the sense orientation with respect to the vector SP6 promoter. The pCS2⁺ vector contains an SV40 virus polyadenylation signal and T3 promoter sequence (for generation of antisense mRNA) downstream of the insert.

Full length Zmax/LRP5 and HBM ORF cDNA: Insert cDNA was isolated from the full length cDNA retrovirus constructs (with optimized Kozak sequences) by *Bg/II-EcoRI* digestion and subcloned into the *BamHI-EcoRI* sites of the pCS2⁺ vector.

Full length XWnt8: This cDNA was PCR amplified from a Xenopus embryo cDNA library using oligos 114484 (SEQ ID NO:162) (5'-CAGTGAATTCACCATGCAAAACACCACTTTGTTC-3') and 114487 (SEQ ID NO:163) (5'-CAGTTGCGGCCGCTCATCTCCGGTGGCCTCTG-3'). The oligos were designed to amplify the ORF with a consensus Kozak sequence at the 5' end as determined from GenBank #X57234. PCR was carried out using the following conditions: 96°C, 45 sec.; 63°C, 45 sec.; 72°C, 2 min. for 30 cycles. The resulting PCR product was purified, subcloned into pCRII-TOPO (Invitrogen Corp.), sequence verified, and digested with BamHI/Xhol. This insert was subcloned into the vector at the BamHI-Xhol sites.

<u>Full length Wnt5a:</u> A murine Wnt5a cDNA clone was purchased from Upstate Biotechnology (Lake Placid, NY) and subcloned into the *EcoRI* site of the vector. Sequencing confirmed insert orientation.

Full length human Dkk-1: A human cDNA with GenBank accession number AF127563 was available in the public database. Using this sequence, PCR primers were designed to amplify the open reading frame with a consensus Kozak sequence immediately upstream of the initiating ATG. Oligos 117162 (SEQ ID NO:164) (5'-CAATAGTCGACGAATTCACCATGGCTCTGGGCGCAGCGG-3') and 117163 (SEQ ID NO:165) (5'-GTATTGCGGCCGCTCTAGATTAGTGTCTCTGACAAGTGTGAA-3') were used to screen a human uterus cDNA library by PCR. The resulting PCR product was purified, subcloned into pCRII-TOPO (Invitrogen Corp.), sequence verified, and digested with *EcoRI/XhoI*. This insert was subcloned into the pCS2⁺ vector at the *EcoRI-XhoI* sites.

5

10

15

20

25

30

Full length human Dkk-2: A full length cDNA encoding human Dkk-2 was isolated to investigate the specificity of the Zmax/LRP5/HBM interaction with the Dkk family of molecules. Dkk-1 was identified in yeast as a potential binding partner of Zmax/LRP5/HBM. Dkk-1 has also been shown in the literature to be an antagonist of the Wnt signaling pathway, while Dkk-2 is not (Krupnik et al., 1999). The Dkk-2 full length cDNA serves as a tool to discriminate the specificity and biological significance of Zmax/LRP5/HBM interactions with the Dkk family (e.g., Dkk-1, Dkk-2, Dkk-3, Dkk-4, Soggy, their homologs and variant, etc.). A human cDNA sequence for Dkk-2 (GenBank Accession No. NM 014421) was available in the public database. Using this sequence, PCR primers were designed to amplify the open reading frame with a consensus Kozak sequence immediately upstream of the initiating ATG. Oligos 51409 (SEQ ID NO:166) (5'- CTAACGGATCCACCATGGCCGCGTTGATGCGG-3') and 51411 (SEQ ID NO:167) (5'-GATTCGAATTCTCAAATTTTCTGACACACATGG-3') were used to screen human embryo and brain cDNA libraries by PCR. The resulting PCR product was purified, subcloned into pCRII-TOPO, sequence verified, and digested with BamHI/EcoRI. This insert was subcloned into the pCS2+vector at the BamHI-EcoRI sites.

Full length LRP6 was isolated from the pED6dpc4 vector by Xhol-Xbal digestion. The full length cDNA was reassembled into the Xhol-Xbal sites of pCS2⁺. Insert orientation was confirmed by DNA sequencing.

mRNA Synthesis and Microinjection Protocol

5

10

15

20

25

30

mRNA for microinjection into *Xenopus* embryos is generated by *in vitro* transcription using the cDNA constructs in the pCS2⁺ vector described above as template. RNA is synthesized using the Ambion mMessage mMachine high yield capped RNA transcription kit (Cat. #1340) following the manufacturer's specifications for the Sp6 polymerase reactions. RNA products were brought up to a final volume of 50 µl in sterile, glass-distilled water and purified over Quick Spin Columns for Radiolabelled RNA Purification G50-Sephadex (Roche, Cat. #1274015) following the manufacturer's specifications. The resulting eluate was finally extracted with phenol:chloroform:isoamyl alcohol and isopropanol precipitated using standard protocols (Sambrook et al., 1989). Final RNA volumes were approximately 50 µl. RNA concentration was determined by absorbance values at 260 nm and 280 nm. RNA integrity was visualized by ethidium bromide staining of denaturing (formaldehyde) agarose gel electrophoresis (Sambrook et al., 1989). Various amounts of RNA (2 pg to 1 ng) are injected into the ventral blastomere of the 4- or 8-cell Xenopus embryo. These protocols are described in Moon et al., Technique-J. of Methods in Cell and Mol. Biol. 1: 76-89 (1989), and Peng, Meth. Cell. Biol. 36: 657-62 (1991).

Screening for Duplicated Body Axis

In vitro transcribed RNA is purified and injected into a ventral blasomere of the 4-or 8-cell Xenopus embryo (approx. 2 hours post-fertilization). At stage 10.5 (approx. 11 hours post-fertilization), the injected embryos are cultured for a total of 72 hours and then screened for the presence of a duplicated body axis (dorsalization) (Figure 7). Using XWnt8-injected (2-10 pg) as a positive control (Christian et al. (1991)) and water-injected or non-injected embryos as negative controls, we replicated the published observation that Zmax(LRP5) + Wnt5a (500 and 20 pg, respectively) could induce axis duplication. Wnt5a (20 pg) alone could not induce axis duplication (as previously reported by Moon et al. (1993)). We have also injected GFP RNA (100-770 pg) as a negative control to show that the amount of RNA injected is not perturbing embryo development (not shown). Strikingly, HBM + Wnt5a (500 and 20 pg, respectively)

yielded an approximately 3.5 fold more robust response of the phenotype (p=0.043 by Fisher's exact test) compared to Zmax(LRP5) + Wnt5a, suggesting that the HBM mutation is activating the Wnt pathway (Figures 8 and 9). The HBM/Wnt5a embryos also appear to be more "anteriorized" than the Zmax(LRP5)/Wnt5a embryos, again suggestive of a gain-of-function mutation.

The role of Dkk-1 as a modulator of Zmax/LRP5- and HBM-mediated Wnt signaling was investigated. Literature reports have previously characterized *Xenopus* and murine Dkk-1 as antagonists of the canonical Wnt pathway in the *Xenopus* system (Glinka *et al.*, *Nature* 391:357-362 (1998)). Using the human Dkk-1 construct, a doseresponse assay was performed to confirm that our construct was functional and to identify the optimal amount of RNA for microinjection. Using 250 pg/embryo of hDkk-1 RNA, over 90% (p<0.001) of the embryos were observed to display enlarged anterior structures (big heads) as anticipated from the published reports (Figure 10).

The mechanism of hDkk-1 modulation of Wnt signaling in the presence of Zmax/LRP5 or HBM was also investigated. Without any hDkk-1 present, it was confirmed that HBM + Wnt5a was a more potent activator of Wnt signaling than Zmax/LRP5 + Wnt5a (p<0.05). Interestingly, in the presence of hDkk-1 (250 pg), Zmax/LRP5-mediated Wnt signaling was repressed (p<0.05) but hDkk-1 was unable to repress HBM-mediated Wnt signaling (p<0.01) (Figure 11). The specificity of this observation can be further addressed by investigating other members of the Dkk family, other Wnt genes, LRP6, additional Zmax/LRP5 mutants, and the peptide aptamers.

Example 7

Effects of exogenous Dkk and LRP5 on Wnt signaling in the TCF-luciferase Assay

25

30

5

10

15

20

Wnt activity can be antagonized by many proteins including secreted Frizzled related proteins (SFRPs), Cerberus, Wnt Inhibitory Factor-1 and Dkk-1 (Krupnik *et al.*, 1999). The Dkk family of proteins consists of Dkk-1-4 and Soggy, a Dkk-3-like protein. Dkk-1 and Dkk-4 have been shown to antagonize Wnt mediated *Xenopus* embryo development, whereas Dkk-2, Dkk-3, and Soggy do not. Unlike many of these proteins

that antagonize Wnt activity by directly interacting with Wnt proteins, Dkk-1 acts by binding to two recently identified Wnt coreceptors, LRP5 and LRP6. (Mao *et al.*, 2001; Bafico *et al.*, 2001). The details of this interaction have been examined by the present inventors and Mao et al. using deletion constructs of LRP6, which demonstrated that EGF repeats 3 and 4 are important for Dkk-1 interaction. Accordingly, the activity of two Dkk proteins, Dkk-1 and Dkk-2, were investigated with various Wnt members, LRP5, LRP6, and the mutant form of LRP5, designated HBM. The present invention explores whether there is any functional difference between LRP5 and HBM with regard to Dkk action on Wnt mediated signaling. Various reagents were developed, including Dkk-1 peptides, constrained LRP5 peptide aptamers, constrained Dkk-1 peptide aptamers and polyclonal antibodies to Dkk-1 (in Example 5 above) to identify factors that mimic HBM mediated Wnt signaling.

Methods

5

10

15

20

25

30

Various LRP5 constrained peptides were developed. Specifically, four peptides that interact with the LBD of LRP5 (Figure 4,constructs OST259-262 in Figure 12) and three peptides that interact with the cytoplasmic domain of LRP5 (constructs OST266-OST268 in Figure 12). In addition two Dkk-1 peptides were developed: constructs OST264 and OST265 in Figure 12, corresponding to Dkk-1 amino acids 139-266 and 96-245, containing the smallest region of Dkk-1 that interacts with LRP5 (Figure 6). The cDNA clones encoding the LRP5 LBD interacting peptides and the Dkk-1 peptides were subcloned into pcDNA3.1 with the addition of a Kozak and signal sequence to target the peptide for secretion. The constructs encoding the three peptides interacting with the cytoplasmic domain of LRP5 were also subcloned into pcDNA3.1. However, these latter constructs do not contain a signal sequence.

HOB-03-CE6 osteoblastic cells developed by Wyeth Ayerst (Philadelphia, PA) were seeded into 24-well plates at 150,000 cells per well in 1 ml of the growth media (D-MEM/F12 phenol red-free) containing 10% (v/v) heat-inactivated FBS, 1X penicillin streptomycin, and 1X Glutamax-1, and incubated overnight at 34°C. The following day, the cells were transfected using Lipofectamine 2000® (as described by the

manufacturer, Invitrogen) in OptiMEM (Invitrogen) with 0.35 μ g /well of LRP5, HBM, or control plasmid DNA (empty vector pcDNA3.1) and either Wnt1 or Wnt3a plasmid DNA. Similar experiments were performed with LRP6 plasmid DNA (0.35 μ g/well) or a control pEDdpc4 empty vector. Furthermore, each of these groups were then divided into three groups, those receiving 0.35 μ g/well Dkk-1, Dkk-2, or pcDNA3.1 control DNA. All wells were transfected with 0.025 μ g/well of CMV beta-galactosidase plasmid DNA and 0.35 μ g/well 16X TCF(AS)-luciferase reporter DNA (developed by Ramesh Bhat, Wyeth-Ayerst (Philadelphia, PA)). After 4 hours of incubation, the cells were rinsed and 1 ml of fresh growth media was added to each well. The cells were cultured overnight at 34°C, followed by a wash and a change of media. Cells were cultured for an additional 18-24 hours at 37°C. Cells were then lysed with 50 μ l/well of 1X lysis buffer. The extracts were assayed for beta-galactosidase activity (Galacto Reaction Buffer Diluent & Light Emission Accelerator, Tropix) using 5 μ l extract + 50 μ l beta-galactosidase diluent and luciferase activity (Luciferase Assay Reagent, Promega) using 20 μ l extract.

U2OS human osteosarcoma cells were also utilized. U2OS cells (ATCC) were seeded into 96-well plates at 30,000 cells per well in 200ul of the growth media (McCoy's 5A) containing 10% (v/v) heat-inactivated FBS, 1X penicillin streptomycin, and 1X Glutamax-1, and incubated overnight at 37°C. The following day, the nmedia was replaced with OptiMEM (Invitroge) and cells were transfected using Lipofectamine 2000® (as described by the manufacturer, Invitrogen) with 0.005μg/well of LRP5, HBM, LRP6 or contol plasmid DNA (empty vector pcDNA3.1) and either Wnt1 (.0025ug/well) or Wnt3a (.0025ug/well) plasmid DNA. In addition, the 16x-(AS) TCF-TK-firefly-luciferase (Ramesh Bhat, WHRI, Wyeth) and control TK-renilla luciferase (Promega Corp.) were co-transfected at 0.3ug/well and 0.06ug/well respectively in all experiments. Futhermore, each of these groups was then divided into different groups, those receiving 0.05ug/well Dkk-1, Dkk-2, Dkk3, Dkk1-Alkaline Phosphatase (AP), mutant Dkk-1 (C220A), Soggy or pcDNA3.1 control DNA. In other experiments, cells were co-transfected with 0.005 μg/well of LRP5, 0.0025ug/well of Wnt1 or Wnt3a (using 0.0025 μg/well of a control pcDNA3.1) with LRP5-interacting aptamers (0.05ug/well).

Cells were cultured for an additional 18-20 hours at 37°C. Culture medium was removed. Cells were cultured for an additional 18-20 hours at 37°C. Culture medium was removed. Cells were then lysed with 100 μ l/well of 1X Passive Lysis Buffer (PLB) of Dual Luciferase Reagent kit (DLR-kit-Promega Corp.) 20 μ l of the lysates were combined with LARII reagent of DLR-kit and assayed for TCF-firefly luciferase signal in Top Count (Packard) instrument. After measuring the Firefly readings, 100 μ l of the "Stop and Glo" reagent of DLR kit that contains a quencher and a substrate for renilla luciferase was added into each well. Immediately the renilla luciferase reading was measured using the Top Count (Packard) Instrument. The ratios of the TCF-firefly luciferase to control renilla readings were calculated for each well and the mean ratio of triplicate or more wells was expressed in all data.

Results

5

10

15

20

25

30

The results of these experiments demonstrate that Dkk-1, in the presence of Wnt1 and LRP5, significantly antagonized TCF-luciferase activity (Figure 14). In marked contrast, Dkk-1 had no effect on HBM/Wnt1 mediated TCF-luciferase activity (Figure 14). In similar experiments, Dkk-1 was also able to antagonize LRP5/Wnt3a but not HBM/Wnt3a mediated TCF-luciferase activity (Figure 15). These results indicate that the HBM mutation renders Dkk-1 inactive as an antagonist of Wnt1 and Wnt3a signaling in HOB03CE6 osteoblastic cells. In other experiments with Wnt1, Dkk-1 had no effect on LRP5 or HBM mediated TCF-luciferase activity (Figure 14). In contrast, with either LRP5 or HBM in the presence of Wnt3a, Dkk-2 was able to antagonize the TCF-luciferase activity (Figure 15). These latter results indicate that the HBM mutation has no effect on Dkk-2 action in the presence of Wnt3a. Experiments were also performed using the closely related LRP6 cDNA in HOB-03-CE6 cells. In these experiments, LRP6/Wnt1 and LRP6/Wnt3a mediated TCF-luciferase were regulated in the same manner as LRP5. Specifically, Dkk-1 antagonized LRP6/Wnt1 mediated TCF-luciferase activity, whereas Dkk-2 had no effect (Figure 14). However, similar to the action of Dkk-2 with LRP5/Wnt3a, Dkk-2 was able to antagonize LRP6/Wnt3a mediated TCF-luciferase activity (Figure 15).

The results in the U2OS cells show a robust effect of the OST262 LRP5 peptide aptamer activation of Wnt signaling in the presence of Wnt3a (Figure 16). These functional results are confirmed by the results shown below in Example 11 using LRP5 peptide aptamers in the Xenopus assay. Such results affirmatively demonstrate that the effects of small molecules on LRP5/LRP6/HBM signaling can be detected using the TCF-luciferase assay.

These data demonstrate that there is a functional difference between LRP5 and HBM regarding the ability of Dkk-1 to antagonize Wnt1 and Wnt3a signaling. These data and previous data showing that Dkk-1 directly interacts with LRP5 suggests that the inability of Dkk-1 to antagonize HBM/Wnt signaling may in part contribute to the HBM phenotype. These experiments further demonstrate the ability to test various molecules (e.g., small molecules, aptamers, peptides, antibodies, LRP5 interacting proteins or Dkk-1 interacting proteins, and the like) for a LRP5 ligand that mimics HBM mediated Wnt signaling or factors that block Dkk-1 interaction with LRP5.

15

20

25

30

10

5

Example 8

Yeast-2 Hybrid Interaction Trap

Small molecule inhibitors (or partial inhibitors) of the Dkk-LRP interaction may be an excellent osteogenic therapeutic. One way to investigate this important protein-protein interaction is using Y2H techniques substantially as described above and as is well known in the art. Regions of LRP5, such as LRP5 LBD, have been found to functionally interact with Dkk. This interaction is quantitated using a reporter element known in the art, e.g., LacZ or luciferase, which is only activated when bait and prey interact. The Y2H assay is used to screen for compounds which modulate the LRP-Dkk interaction. Such a modulation would be visualized by a reduction in reporter element activation signifying a weaker or disrupted interaction, or by an enhancement of the reporter element activation signifying a stronger interaction. Thus, the Y2H assay can be used as a high-throughput screening technique to identify compounds which disrupt or enhance Dkk interaction with LRP5/LRP6/HBM, which may serve as potential therapeutics.

For example, the Interaction Trap methodology can be used as follows. The LRP5 LBD, for example, was fused with LexA and Dkk-1 was fused with either Gal4-AD or B42. With the LRP5LBD-LexA bait and the Gal4AD-Dkk prey, over a 20-fold activation of a lacZ reporter (under the control of a single LexA operator) was detected over the background. Using a Dkk-1 mutant (C220A) that is unable to bind to LRP, the interaction was reduced in yeast, showing the specificity of this interaction and system (Figure 18). As a result, small molecules may be identified that modulate this interaction between LRP and Dkk.

10

15

20

5

Example 9

Cell-Based Functional High-Throughput Assay

To develop a high throughput assay, the TCF-luciferase assay described in Example 7 was modified utilizing low level expression of endogenous LRP5/6 in U2OS and HEK293 cells. However, HOB-03-CE6 cells and any other cells which show a differential response to Dkk depending on whether LRP5, LRP6 or HBM are expressed. Using U2OS (human osteosarcoma) and HEK293 (ATCC) cells, the TCF-luciferase and tk-Renilla reporter element constructs were co-transfected along with Wnt3a/1 and Dkk. Wnt3a alone, by using endogenous LRP5/6, was able to stimulate TCF reporter gene activation. When Dkk, is co-transfected with Wnt3a/Wnt 1 and reporters (TCF-luci and tk-Renilla), Dkk represses reporter element activity. In addition, the TCF-luci signal is activated by Wnt3a/Wnt1 can be repressed by the addition of Dkk-enriched conditioned media to the cells containing Wnt3a/Wnt1 and reporters. The assay is further validated by the lack of TCF-reporter inhibition by a point mutant construct (C220A) of Dkk1.

25

The Dkk-mediated repression of the reporter is dependent upon the concentration of transfected Dkk cDNA or on the amount of Dkk-conditioned media added. In addition, the Dkk-mediated reporter suppression can be altered by the cotransfection of LRP5, LRP6, and HBM cDNAs in the U2OS or HEK293 cells. In general, U2OS cells show greater sensitivity to Dkk-mediated reporter suppression than that in HEK-293 cells. In U2OS cells, the transfection of LRP5/LRP6/HBM cDNA leads

to moderate activation of TCF-luci in the absence of Wnt3a/Wnt1 transfection. This activation presumably utilizes the endogenous Wnts present in U2OS cells. Under this condition, Dkk1 can repress TCF-luci and shows a differential signal between LRP5 and HBM. By co-transfecting Wnt3a/Wnt1, there is a generalized increase in the TCF-luci signal in the assay. Further, one can detect Dkk-mediated differential repression of the reporter due to LRP5 and HBM cDNA expression as well as between LRP5 and LRP6 cDNA. The repression is maximal with LRP6, moderate with LRP5, and least with HBM cDNA expression. In addition, the assay can detect the functional impact of the LRP5 interacting peptide aptamers (Figure 4), Dkk1 interacting aptamers and binding domains of Dkk-1 (Figure 6; OST264 and OST265 of Figures 12 and 13).

Using this system with a suppressed Wnt-TCF signal due to the presence of both Dkk and Wnt3a, one can screen for compounds that could alter Dkk modulation of Wnt signaling, by looking for compounds that activate or the TCF-luciferase reporter, and thereby relieve the Dkk-mediated repression of the Wnt pathway. Such compounds identified may potentially serve as HBM-mimetics and be useful, for example, as osteogenic therapeutics. Data generated from this high throughput screen are demonstrated in Figures 19-21. Figure 19 shows that Dkk1 represses Wnt3a-mediated signaling in U2OS bone cells. Figure 20 demonstrates the functional differences between LRP5, LRP6, and HBM. Dkk-1 represses LRP6 and LRP5 but has little or no effect on HBM-generated Wnt1 signaling in U2OS cells. Figure 21 demonstrates the differential effects of various Dkk family members and modified Dkks, including Dkk-1, a mutated Dkk-1 (C220A), Dkk-1-AP (modified with alkaline phosphatase), Dkk-3, and Soggy.

25

30

5

10

15

20

Example 10

DKK/LRP5/6/HBM ELISA Assay

A further method to investigate Dkk binding to LRP is via ELISA assay. Two possible permutations of this assay are exemplified. LRP5 is immobilized to a solid surface, such as a tissue culture plate well. One skilled in the art will recognize that other supports such as a nylon or nitrocellulose membrane, a silicon chip, a glass slide,

beads, etc. can be utilized. In this example, the form of LRP5 used is actually a fusion protein where the extracellular domain of LRP5 is fused to the Fc portion of human IgG. The LRP5-Fc fusion protein is produced in CHO cell extracts from stable cell lines. The LRP5-Fc fusion protein is immobilized on the solid surface via anti-human Fc antibody or by Protein-A or Protein G-coated plates, for example. The plate is then washed to remove any non-bound protein. Conditioned media containing secreted Dkk protein or secreted Dkk-epitope tagged protein (or purified Dkk or purified Dkk-epitope tagged protein) is incubated in the wells and binding of Dkk to LRP is investigated using antibodies to either Dkk or to an epitope tag. Dkk-V5 epitope tagged protein would be detected using an alkaline phosphatase tagged anti-V5 antibody.

Alternatively, the Dkk protein could be directly fused to a detection marker, such as alkaline phosphatase. Here the detection of the Dkk-LRP interaction can be directly investigated without subsequent antibody-based experiments. The bound Dkk is detected in an alkaline phosphatase assay. If the Dkk-alkaline phosphatase fusion protein is bound to the immobilized LRP5, alkaline phosphatase activity would be detected in a colorimetric readout. As a result, one can assay the ability of small molecule compounds to alter the binding of Dkk to LRP using this system.

Compounds, when added with Dkk (or epitope-tagged Dkk) to each well of the plate, can be scored for their ability to modulate the interaction between Dkk and LRP based on the signal intensity of bound Dkk present in the well after a suitable incubation time and washing. The assay can be calibrated by doing cold competition experiments with unlabeled Dkk or with a second type of epitope-tagged Dkk. Any small molecule that is able to modulate the Dkk-LRP interaction may be a suitable therapeutic candidate, more preferably an osteogenic therapeutic candidate.

25

5

10

15

20

Example 11

Functional Evaluation of Peptide Aptamers in Xenopus

The constrained peptide aptamers constructs OST258-263 (where 258 contains the signal sequence by itself and 263 contains an irrelevant constrained peptide)

(Figures 12 and 13) were used to generate RNA substantially as described in Example

7, except the vector was linearized by restriction endonuclease digestion and RNA was generated using T7 RNA polymerase.

Aptamer RNA was injected at 250 pg per blastomere using the protocol of Example 7. Wnt signaling was activated, as visualized by embryo dorsalization (duplicated body axis) with aptamers 261 and, more strongly, 262. The results of this assay are shown in Figures 22 and 23. These results suggest that aptamers 261 and 262 are able to activate Wnt signaling possibly by binding to the LBD of LRP, thereby preventing the modulation of LRP-mediated signaling by Dkk.

5

10

15

20

25

30

The aptamers of the present invention can serve as HBM-mimetics. In the Xenopus system they are able to induce Wnt signaling all by themselves. They may also serve as tools for rational drug design by enhancing the understanding of how peptides are able to interact with LRP and modulate Wnt signaling at the specific amino acid level. Thus, one would be able to design small molecules to mimic their effects as therapeutics. In addition, the aptamers identified as positives in this assay may be used as therapeutic molecules themselves.

Example 12

Homogenous Assay

An excellent method to investigate perturbations in protein-protein interactions is via Fluorescence Resonance Energy Transfer (FRET). FRET is a quantum mechanical process where a fluorescent molecule, the donor, transfers energy to an acceptor chromophore molecule which is in close proximity. This system has been successfully used in the literature to characterize the intermolecular interactions between LRP5 and Axin (Mao et al., *Molec. Cell Biol.* 7:801-809). There are many different fluorescent tags available for such studies and there are several ways to fluorescently tag the proteins of interest. For example, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein) can be used as donor and acceptor, respectively. Fusion proteins, with a donor and an acceptor, can be engineered, expressed, and purified.

For instance, purified LRP protein, or portions or domains thereof, fused to CFP and purified Dkk protein, or portions or domains thereof that interact with Dkk or LRP

respectively, fused to YFP can be generated and purified using standard approaches. If LRP-CFP and Dkk-YFP are in close proximity, the transfer of energy from CFP to YFP will result in a reduction of CFP emission and an increase in YFP emission. Energy is supplied with an excitation wavelength of 450 nm and the energy transfer is recorded at emission wavelengths of 480 nm and 570 nm. The ratio of YFP emission to CFP emission provides a guage for changes in the interaction between LRP and Dkk. This system is amenable for screening small molecule compounds that may alter the Dkk-LRP protein-protein interaction. Compounds that disrupt the interaction would be identified by a decrease in the ratio of YFP emission to CFP emission. Such compounds that modulate the LRP-Dkk interaction would then be considered candidate HBM mimetic molecules. Further characterization of the compounds can be done using the TCF-luciferase or Xenopus embryo assays to elucidate the effects of the compounds on Wnt signaling.

While the above example describes a cell-fee, solution-phase assay using purified components, a similar cell-based assay could also be performed. For example, LRP-CFP fusion protein can be expressed in cells. The Dkk-YFP fusion protein then could be added to the cells either as purified protein or as conditioned media. The interaction of LRP and Dkk is then monitored as described above.

All references cited herein are hereby incorporated by reference in their entirety for all purposes. The following applications are also incorporated by reference in their entirety herein for all purposes: U.S. Application No. 60/290,071, filed May 11, 2001; U.S. Application No. 09/544,398, filed on April 5, 2000; U.S. Application No. 09/543,771, filed April 5, 2000; 09/578,900; U.S. Application No. 09/229,319, filed January 13, 1999; U.S. Provisional Application 60/071,449, filed January 13, 1998; and International Application PCT/US00/16951, filed June 21, 2000; International PCT Application entitled "HBM Variants That Modulate Bone Mass and Lipid Levels," filed May 13, 2002; and International PCT Application entitled "Transgenic Animal Model of Bone Mass Modulation," filed May 13, 2002. Additionally, this application claims priority to U.S. provisional applications 60/291,311, filed May 17, 2001; 60/353,058, filed

February 1, 2002; and 60/361,293, filed March 4, 2002; the texts of which are herein incorporated by reference in their entirety for all purposes.

CLAIMS

We claim:

A method of regulating LRP5, LRP6, or HBM activity in a subject
 comprising administering a composition which modulates a Dkk activity in an amount effective to regulate LRP5, LRP6, or HBM activity.

2. The method of any of Claims 1, 24, 28, 33, 36, 37, 48, 64, 65, 93, 98, 101, 105, 107, 111, or 112, wherein the Dkk is Dkk-1.

10

- 3. The method of any of Claims 1, 24, 28, or 33, wherein the Dkk is Dkk-1 and the Dkk activity is inhibited.
- 4. The method of Claims 1 or 24, wherein the Dkk activity modulates bone mass and/or lipid levels.
 - 5. The method of Claim 4, wherein bone mass is increased and/or lipid levels are decreased.

20

6. The method of Claim 5, wherein the increase in bone mass is determined via one or more of a decrease in fracture rate, an increase in bone strength, an increase in bone density, an increase in bone mineral density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density, an increase in bone diameter, and an increase in inorganic bone content.

25

7. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises one or more compounds selected from the group consisting of Dkk interacting proteins, or a Dkk-binding fragment thereof.

	8.	The method of any of Claims 1, 24, 28, or 33, wherein said				
composition comprises an antisense, a siRNA, or shRNA molecule which						
recognizes and binds to a nucleic acid encoding one or more Dkk interacting						
protei	ns.					

5

- 9. The method of any of Claims 1, 24, 28, or 33, and wherein said composition comprises a Dkk peptide aptamer.
- 10. The method of any of Claims 1, 24, 28, or 33, wherein said 10 composition comprises a mimetic of a Dkk peptide aptamer.
 - 11. The method of any of Claims 1, 24, 28, or 33, wherein said composition inhibits Dkk binding to LRP5, LRP6, or HBM.

15

- 12. The method of any of Claims 1, 24, 28, or 33, wherein said composition enhances binding of Dkk to LRP5, LRP6, or HBM.
- 13. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a Dkk interacting protein peptide aptamer.

20

14. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a mimetic of a Dkk interacting protein peptide aptamer.

25

30

15. The method of any of Claims 1, 24, 28 or 33, wherein said composition inhibits Dkk interacting protein or Dkk-binding fragment thereof binding to Dkk.

The method of any of Claims 1, 24, 28, or 33, wherein said

- 16. composition enhances binding of Dkk interacting protein or Dkk-binding
 - fragment thereof to Dkk.

17. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a vertebrate or an invertebrate organism.

- 18. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a mammal.
 - 19. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a canine, a feline, an ovine, a primate, an equine, a porcine, a caprine, a camelid, an avian, a bovine, or a rodent.

20. The method of Claim 19, wherein said primate is a human.

10

15

- 21. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises an LRP5 peptide aptamer.
- 22. The method of Claim 21, wherein said peptide aptamer is OST262 (SEQ ID NO:208).
- 23. The method of any of Claims 1, 24, 28 or 33, wherein the composition comprises an LRP5 antibody or an immunologically active fragment thereof.
 - 24. A method of regulating Dkk-Wnt pathway activity in a subject comprising administering a composition which modulates Dkk activity in an amount effective to regulate Dkk-Wnt pathway activity.
 - 25. The method of Claims 24, 101, or 107, wherein the Wnt is one or more of Wnt1-Wnt19.

26. The method of Claim 25, wherein the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b.

27. The method of Claim 24 wherein said composition which modulates Dkk activity or modulates Dkk interaction with LRP5/LRP6/HBM is administered in an amount effective to modulate Wnt signaling.

5

10

25

- 28. A method of modulating bone mass in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM in an amount effective to modulate bone mass in the subject.
 - 29. The method of Claim 28, wherein bone mass is increased.
- 30. The method of the previous claim, wherein the increase in bone mass is determined via one or more of a decrease in fracture rate, an increase in bone strength, an increase in bone density, an increase in bone mineral density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density, an increase in bone diameter, and an increase in inorganic bone content.
 - 31. The method of Claims 28 or 36, wherein said subject has a bone mass disorder selected from the group consisting of a bone development disorder, a bone fracture, age-related loss of bone, chrondrodystrophy, druginduced bone disorder, high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.
 - 32. The method of Claim 28, wherein the composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM is

administered in an amount effective to modulate the amount of trabecular and/or cortical tissue.

- 33. A method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM in an amount effective to modulate lipid levels in the subject.
 - 34. The method of Claim 33, wherein lipid levels are decreased.

10

15

5

35. The method of Claim 33 or 36, wherein the subject has a lipid-modulated disorder and wherein the lipid-modulated disorder is selected from the group consisting of a cardiac condition, atherosclerosis, familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and elevated lipid levels of unknown etiology.

20

- 36. A method of diagnosing low or high bone mass and/or high or low lipid levels in a subject comprising examining expression of Dkk, LRP5, LRP6, HBM, or and HBM-like variant in the subject and determining whether Dkk, LRP5, LRP6, HBM, or an HBM-like variant is over- or under-expressed to determine whether subject has (a) high or low bone mass and/or (b) has high or low lipid levels.
- 37. A method of screening for a compound which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

(a) exposing Dkk and a LRP5, LRP6, and/or HBM binding fragment thereof to a compound; and

(b) determining whether said compound modulates Dkk interaction with the LRP5/LRP6/HBM binding fragment.

5

38. The method of Claim 37, wherein said modulation is determined by whether said compound binds to Dkk or the LRP5, LRP6, or HBM binding fragment thereof.

10

15

- 39. The method of Claim 37, wherein Dkk or a LRP-binding fragment thereof is attached to a substrate.
- 40. The method of Claim 37, wherein said compound comprises one or more compounds selected from the group consisting of Dkk interacting proteins, or a Dkk-binding fragment thereof.
- 41. The method of Claim 37 or 48, wherein said compound comprises

20

a Dkk peptide aptamer.

- 42. The method of Claim 37 or 48, wherein said compound comprises a mimetic of a Dkk peptide aptamer.
- 43. The method of Claim 37 or 48, wherein said compound comprises a Dkk interacting protein peptide aptamer.

- 44. The method of Claim 37 or 48, wherein the compound comprises an LRP5 peptide aptamer.
- 45. The method of Claim 44, wherein the peptide aptamer is OST262 (SEQ ID NO:208).

46. The method of Claim 37 or 48, wherein the compound comprises an LRP5 antibody.

- 47. The method of Claim 37 or 48, wherein said compound is a mimetic of a Dkk interacting protein peptide aptamer.
 - 48. A method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting protein comprising:
 - (a) exposing a Dkk interacting protein or a Dkk-binding fragment thereof to a compound; and
 - (b) determining whether said compound bound to a Dkk interacting protein or the Dkk-binding fragment thereof; and
 - (c) further determining whether said compound modulates the interaction of Dkk interacting protein and Dkk.
 - 49. The method of Claim 48, wherein the Dkk interacting protein or a Dkk-binding fragment thereof is attached to a substrate.
 - 50. A composition comprising a LRP5, LRP6, or HBM activity-modulating compound and a pharmaceutically acceptable carrier therefor.
 - 51. The composition of Claim 50, wherein said LRP5, LRP6, or HBM activity-modulating compound comprises a compound which binds to Dkk thereby modulating the interaction of Dkk with LRP5, LRP6, or HBM.
 - 52. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises one or more Dkk interacting proteins and Dkk-binding fragments thereof.

5

10

15

53. The composition of Claim 50, wherein said LRP5, or LRP6, or HBM modulating compound is a monoclonal antibody or an immunologically active fragment thereof which binds to a Dkk interacting protein, or a Dkk-binding fragment thereof.

5

15

- 54. The composition of Claim 53, wherein the monoclonal antibody is human, chimeric, humanized, primatized®, or bispecific.
- 55. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises an antisense, a siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting proteins.
 - 56. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a Dkk peptide aptamer.
 - 57. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a mimetic of a Dkk peptide aptamer.
- 58. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a Dkk interacting protein peptide aptamer.
 - 59. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a mimetic of a Dkk interacting protein peptide aptamer.
 - 60. The composition of Claim 50, wherein the compound comprises an LRP5 peptide aptamer.

61. The composition of Claim 60, wherein the peptide aptamer is OST262.

- 62. The composition of Claim 50, wherein the compound comprises an LRP5 antibody.
 - 63. A pharmaceutical composition comprising a compound which modulates Dkk activity and a pharmaceutically acceptable carrier therefor.
- 10 64. A method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:
 - (a) creating an LRP5, LRP6, or HBM fluorescent fusion protein using a first fluorescent tag; and
 - (b) creating a Dkk fusion protein comprising a second fluorescent tag;
 - (c) adding a test compound; and
 - (d) assessing changes in the ratio of fluorescent tag emissions using Fluorescence Resonance Energy Transfer (FRET) or Bioluminescence Resonance Energy Transfer (BRET) to determine whether the compound modulates Dkk and LRP5/LRP6/HBM interactions.

20

25

- 65. A method of identifying binding partners for a Dkk protein comprising the steps of:
- (a) exposing the Dkk protein(s) or a LRP5/LRP6 binding fragment thereof to a potential binding partner; and
- (b) determining if the potential binding partner binds to a Dkk protein or the LRP5/LRP6 binding fragment thereof.
 - 66. A nucleic acid encoding a Dkk interacting protein peptide aptamer comprising a nucleic acid encoding a scaffold protein in-frame with the activation

domain of Gal4 or LexA that is in-frame with a nucleic acid that encodes a Dkk interacting protein amino acid sequence.

67. A vector comprising the nucleic acid of Claim 66.

5

- 68. The nucleic acid of Claim 66, wherein the scaffold protein is trxA.
- 69. A method of detecting a modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair that bind through extracellular interaction in their natural environment, comprising:
 - (i) culturing at least one eukaryotic cell comprising:
 - a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a transcriptional activation protein DNA binding domain;
 - a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation protein transcriptional activation domain;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

- a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element produces a selected phenotype;
- (ii) incubating the eukaryotic cell in the presence of a compound under conditions suitable to detect the selected phenotype; and

15

10

20

(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which produces the selected phenotype;

wherein (1) said first peptide is a Dkk peptide and the second peptide is a peptide selected from LRP5, HBM, LRP6 and the Dkk-binding portion of LRP5/LRP6/HBM or (2) said first peptide is a Dkk interacting protein or the Dkk-binding fragment thereof and said second peptide is a Dkk peptide.

70. The method of Claim 69, wherein the eukaryotic cell is a yeast cell.

71. The method of Claim 70, wherein the yeast cell is Saccharomyces.

15

10

- 72. The method of Claim 71, wherein the *Saccharomyces* cell is *Saccharomyces cerevisiae*.
- 73. The method of Claim 69, wherein the Dkk is Dkk-1 and wherein the compound comprises one or more Dkk interacting proteins or a Dkk-binding fragment thereof.
 - 74. The method of Claim 73, wherein the compound is directly added to assay.

- 75. The method of Claim 73, wherein the compound is recombinantly expressed by said eukaryotic cell in addition to said first and second peptides.
- 76. The method of Claim 69, wherein the compound comprises a Dkk peptide aptamer.

77. The method of Claim 69, wherein the compound comprises a mimetic of a Dkk peptide aptamer.

- 78. The method of Claim 69, wherein the compound comprises a Dkk interacting protein peptide aptamer.
- 79. The method of Claim 69, wherein the compound comprises a mimetic of a Dkk interacting protein peptide aptamer.
- 80. The method of Claim 69, wherein the eukaryotic cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter element, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion.
 - 81. The method of Claim 69, wherein the peptide binding pair comprises a ligand and a receptor to which the ligand binds.
 - 82. The method of Claim 69, wherein the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor.
 - 83. The method of Claim 69, wherein at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid.
 - 84. The method of Claim 69, wherein the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

5

10

15

20

85. The method of Claim 84, wherein the DNA binding protein is selected from the group consisting of a mammalian steroid receptor and bacterial LexA protein.

5

86. The method of Claim 69, wherein the reporter element is selected from the group consisting of *lacZ*, a polynucleotide encoding luciferase, a polynucleotide encoding green fluorescent protein (GFP), and a polynucleotide encoding chloramphenicol acetyltransferase.

10

- 87. The method of Claim 86, wherein the reporter element is LacZ.
- 88. The method of Claim 69, wherein the test sample comprises an LRP5 peptide aptamer.

15

- 89. The method of Claim 88, wherein the peptide aptamer is OST262 (SEQ ID NO:208).
- 90. The method of Claim 69, wherein the test sample comprises an LRP5 antibody.

20

91. A transgenic animal wherein Dkk-1 is knocked out in a tissuespecific fashion.

25

92. The transgenic animal of Claim 91, wherein the tissue specificity is bone tissue, cancer tissue, or liver tissue.

93. A method for identifying potential compounds which modulate Dkk activity comprising:

a) measuring the effect on binding of one or more Dkk interacting proteins, or a Dkk-binding fragment thereof, with Dkk or a

fragment thereof in the presence and absence of a compound; and

b) identifying as a potential Dkk modulatory compound a compound which modulates the binding between one or more Dkk interacting proteins or Dkk-binding fragment thereof and Dkk or fragment thereof.

94. A peptide aptamer of Figure 3 (SEQ ID NOs:171-188) or Figure 4 (SEQ ID NOs:189-192).

10

15

20

5

- 95. An antibody or antibody fragment which recognizes and binds to one or more peptides of amino acid sequences GNKYQTIDNYQPYPC (SEQ ID NO:118), LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), RGEIEETITESFGND (SEQ ID NO:121), EIFQRCYCGEGLSCRIQKD (SEQ ID NO:122), MYWTDWVETPRIE (SEQ ID NO:123), MYWTDWGETPRIE (SEQ ID NO:124), KRTGGKRKEILSA (SEQ ID NO:125), ERVEKTTGDKRTRIQGR (SEQ ID NO:126), KQQCDSFPDCIDGSDE (SEQ ID NO:127), or a Dkk-1 amino acid sequence selected from the group consisting Asn34-His266 (SEQ ID NO:110), Asn34-Cys245 (SEQ ID NO:111), Asn34-Lys182 (SEQ ID NO:112), Cys97-His266 (SEQ ID NO:113), Val139-His266 (SEQ ID NO:114), Gly183-His266 (SEQ ID NO:115), Cys97-Cys245 (SEQ ID NO:116), or Val139-Cys245 (SEQ ID NO:117).
- 25
- 96. The antibody or antibody fragment of Claim 95, wherein the antibody is a monoclonal antibody.
- 97. The antibody or antibody fragment of Claim 95, wherein the antibody is a polyclonal antibody

98. A method of identifying Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) injecting Dkk and potential Dkk interacting protein mRNA into a *Xenopus* blastomere; and
- (b) assessing axis duplication or analyzing marker gene expression; and
- (c) identifying compositions which elicit changes in axis duplication or marker gene expression as Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway.

10

5

99. The method of Claim 98, wherein the mRNA of HBM, LRP5/6, any Wnt, Wnt antagonist, Wnt pathway modulator, or combination of these is coinjected into the *Xenopus* blastomere.

15

- 100. The method of Claim 98, wherein the marker gene analyzed is Siamois, Xnr3, slug, Xbra, HNK-1, endodermin, Xlhbox8, BMP2, BMP4, XLRP6, EF-1, or ODC.
- 101. A method for identifying Dkk interacting proteins which modulate
 the interaction of Dkk with the Wnt signaling pathway comprising:
 - (a) transfecting cells with constructs containing Dkk and potential Dkk interacting proteins; and
 - (b) assessing changes in expression of a reporter gene linked to a Wnt-responsive promoter; and

- (c) identifying as a Dkk interacting protein any protein which alters reporter gene expression compared with cells transfected with a Dkk construct alone.
- 102. The method of Claim 101, wherein the cells are HOB-03-CE6, HEK293, or U2OS cells.

103. The method of Claim 101, wherein the Wnt-responsive promoter is TCF or LEF.

- 104. The method of Claim 101, wherein the cells are co-transfected with CMV β-galactosidase.
 - 105. A method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:
 - (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
 - (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and
 - (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag.

106. The method of Claim 105, wherein the epitope tag is alkaline phosphatase, histidine, or a V5 tag.

- 107. A method for identifying compounds which modulate the interaction of Dkk with the Wnt signaling pathway comprising:
 - (a) transfecting cells with constructs containing Dkk and Wnt proteins;
- (b) assessing changes in expression of a reporter element linked to a Wnt- responsive promoter; and
- (c) identifying as a Dkk/Wnt interaction modulating compound any compound which alters reporter gene expression compared with cells transfected with a Dkk construct alone.
- 108. The method according to Claim 107, wherein Wnt3a and Wnt1 constructs are co-transfected into the cells.

5

10

15

20

109. The method according to Claim 107, wherein the cells are U2-OS, HOB-03-CE6, or HEK293 cells.

- 110. The method according to Claim 107, wherein the reporter element used is TCF-luciferase, tk-Renilla, or a combination thereof.
 - 111. A method of testing compounds that modulate Dkk-mediated activity in a mammal comprising
 - (a) providing a group of transgenic animals having (1) a regulatable one or more Dkk genes, (2) a knock-out of Dkk genes, or (3) a knock-in of one or more Dkk genes;
 - (b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and
 - (c) exposing the transgenic animal group and control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and
 - (d) comparing the transgenic animals and the control group of animals and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.
 - 112. A method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:
 - (a) exposing a Dkk interacting proteins or a Dkkbinding fragment thereof to a compound; and
 - (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof.

20

15

10

113. The method of Claim 112, wherein said modulation is determined by whether said compound binds to the Dkk interacting protein or the Dkk-binding fragment thereof.

5 114. An antibody or antibody fragment which recognizes and binds to a sequence depicted in Figure 3 (SEQ ID NOs:171-188) or Figure 4 (SEQ ID NOs:189-192).

Model of Wnt signaling

FIG. 1

Sequence of baits used in Y2H screens >DKK1 (SEQ ID N0: 168)

FIG. 2A

3/30

>zmax1 LBD1 (SEQ ID NO: 169)

CTCATCCTGCCCTGCATGGACTGAGGAACGTCAAAGCCATCGACTAT GACCCACTGGACAAGTTCATCTACTGGGTGGATGGGCGCCAGAACATC AAGCGAGCCAAGGACGACGGGACCCAGCCCTTTGTTTTGACCTCTCTG AGCCAAGGCCAAAACCCAGACAGGCAGCCCCACGACCTCAGCATCGA CATCTACAGCCGGACACTGTTCTGGACGTGCGAGGCCACCAATACCAT CAACGTCCACAGGCTGAGCGGGGAAGCCATGGGGGTGGTGCTGCGTG GGGACCGCGACAAGCCCAGGGCCATCGTCGTCAACGCGGAGCGAGGG TACCTGTACTTCACCAACATGCAGGACCGGGCAGCCAAGATCGAACGC GCAGCCCTGGACGCACCGAGCGCGAGGTCCTCTTCACCACCGGCCTC ATCCGCCCTGTGGCCCTGGTGGTAGACACACACTGGGCAAGCTGTTC TGGGTGGACGCGGACCTGAAGCGCATTGAGAGCTGTGACCTGTCAGG GGCCAACCGCCTGACCCTGGAGGACGCCAACATCGTGCAGCCTCTGGG CCTGACCATCCTTGGCAAGCATCTCTACTGGATCGACCGCCAGCAGCA GATGATCGAGCGTGTGGAGAAGACCACCGGGGACAAGCGGACTCGCA TCCAGGGCCGTGTCGCCCACCTCACTGGCATCCATGCAGTGGAGGAAG TCAGCCTGGAGGAGTTCTCAGCCCACCCATGTGCCCGTGACAATGGTG GCTGCTCCCACATCTGTATTGCCAAGGGTGATGGGACACCACGGTGCT CATGCCCAGTCCACCTCGTGCTCCTGCAGAACCTGCTGACCTGTGGAG AGCCGCCCACCTGCTCCCCGGACCAGTTTGCATGTGCCACAGGGGAGA TCGACTGTATCCCCGGGGCCTGGCGCTGTGACGGCTTTCCCGAGTGCG ATGACCAGAGCGACGAGGAGGGCTGCCCCGTGTGCTCCGCCGCCCAGT TCCCCTGCGCGCGGGTCAGTGTGTGGACCTGCGCCTGCGCTGCGACG GCGAGGCAGACTGTCAGGACCGCTCAGACGAGGCGGACTGTGACGCC ATCTGCCTGCCCAACCAGTTCCGGTGTGCGAGCGGCCAGTGTGTCCTC ATCAAACAGCAGTGCGACTCCTTCCCCGACTGTATCGACGGCTCCGAC GAGCTCATGTGTGAAATCACCAAGCCGCCC

FIG. 2B

>zmax1 LBD4 (SEQ ID NO: 170)

AGGGCCATCGTCAACGCGGAGCGAGGGTACCTGTACTTCACCAA CATGCAGGACCGGCAGCCAAGATCGAACGCGCAGCCCTGGACGGCA CCGAGCGCGAGGTCCTCTTCACCACCGGCCTCATCCGCCCTGTGGCCC TGGTGGTAGACACACACTGGGCAAGCTGTTCTGGGTGGACGCGGAC CTGAAGCGCATTGAGAGCTGTGACCTGTCAGGGGCCAACCGCCTGAC CCTGGAGGACGCCAACATCGTGCAGCCTCTGGGCCTGACCATCCTTGG CAAGCATCTCTACTGGATCGACCGCCAGCAGCAGATGATCGAGCGTG TGGAGAAGACCACCGGGGACAAGCGGACTCGCATCCAGGGCCGTGTC GCCCACCTCACTGGCATCCATGCAGTGGAGGAAGTCAGCCTGGAGGA GTTCTCAGCCCACCCATGTGCCCGTGACAATGGTGGCTGCTCCCACAT CTGTATTGCCAAGGGTGATGGGACACCACGGTGCTCATGCCCAGTCCA CCTCGTGCTCCTGCAGAACCTGCTGACCTGTGGAGAGCCGCCCACCTG CTCCCGGACCAGTTTGCATGTGCCACAGGGGAGATCGACTGTATCCC CGGGGCCTGGCGCTGTGACGGCTTTCCCGAGTGCGATGACCAGAGCG ACGAGGAGGGCTGCCCCGTGTGCTCCGCCGCCCAGTTCCCCTGCGCGC GGGGTCAGTGTGGACCTGCGCCTGCGCTGCGACGGCGAGGCAGAC CAACCAGTTCCGGTGTGCGAGCGGCCAGTGTGTCCTCATCAAACAGC AGTGCGACTCCTTCCCCGACTGTATCGACGGCTCCGACGAGCTCATGT GTGAAATCACCAAGCCGCCCTAAGCGGCCGC

FIG. 2C

Screen of DKK1 X Peptide Library

1 option Library			SEQ ID
name	motif	# hits	NO:
252-1	SVGCLLCAGLGVWSLS	3	171
252-2	WCCCGLFRGVCVWSCGAD	2	172
	D		
252-3	GWRRCDWCGCVSWCWV	1	173
252-4	MPGSVSHCWGGICEAL	8	174
252-15	SCCAVDVCLRCGGWFR	1	175
252-16	SVLGTCCCCGGWILCE	2	176
252-17	VLSVCEVCGGVFVRRC	1	177
252-18	GMWYWSGRDCALCWL	1	178
252-19	CTAVMWGVGSVAYLGE	1	179
252-20	WCWWCGCRGVVWR	1	180
252-21	CVCASFCCCVCGLRLL	1	181
252-23	TYEVCEECGGRVRMWV	6	182
252-25	VVVCASCGQVWHGSGA	2	183
252-26	CCRCCHCWDCEWHMCV	1	184
252-27	FCASCCWCGCDCFGWV	2	185
252-32	CDYCWSCGVWCPSSWL	3	186
252-47	VYLCVWCGAARFGCYG	1	187
252-48	FCVCGCCWCWCAACWC	1	188
			,

FIG. 3

peptide #	peptide seq	# hits	SEQ ID NO:
9	VVLCSRCGRLWRWSCG	1	189
12	EVRQVTCIRCRRGFLL	1	190
13	GGGGMWEAWSCYACG	1	191
14	GWRWCGRCGALWWRRV	3	192

FIG. 4

	Genbank	Protein
Gene	Accession #	Accession #
granulin	M75161	AAA58617
similar to cys/His rich protein	BC004544	AAH04544
IGF-BINDING PROTEIN 6	M69054	AAA88070
latent TGFb binding protein 4	AF051344	AAC39879
NOTCH 2	AF315356	AAG37073
fibulin 1	X53743	CAA37772
MDC15 (ADAM15)	U46005	AAC51112
DKFZp761G02121(notch1 Ca++ binding like)	AL137311	CAB70690
chordin	AF076612	AAC69835
fibronectin 1	U42594	AAD00019
MG50(melanoma associated antigen)	AF200348	AAF06354
unknown (notch 4-like)	AX068260	CAC27245
Slit 1	AB017167	BAA35184
tomoregulin (agarin repeat homology)	AB004064	BAA90820
sprouty 1	AF041037	AAC39566
sprouty 2	AF039843	AAC04258
NOV1	X96584	CAA65403
agrin	AF016903	AAC39776
fibrillin 1	L13923	AAB02036
thrombospondin1	X04665	CAA28370
ADAM19	AF134707	AAF22162
Nafl alpha	AJ011895	CAA09855
laminin alpha 5	Z95636	CAB09137
CRIM1	AF167706	AAF34409
nidogen	M30269	AAA59932
fibulin-2	X82494	CAA57876
thrombospondin 2	L12350	AAA03703
KIAA1323	AB037744	BAA92561
fibrillin-2	U03272	AAA18950
MEGF9	AB011542	BAA32470
integrin beta 1	X07979	CAA30790
matrilin-2 precursor	U69263	AAC51260
tenascin	X56160	A32160

FIG. 5

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Both Zmax and HBM1, in the presence of Wnt5a, induce secondary axis formation in Xenopus (photos at 48 hrs post-injection) HBM1 + Wnt5a Zmax + Wnt5a XWnt8 Wnt5a **HBM1** Zmax FIG. 9

SUBSTITUTE SHEET (RULE 26)

•Reproduces reported dose-response.

Listed are the pcDNA3.1 construct names followed by the DNA sequence OST258 (control for OST 259-OST262 and OST264, OST265)

AAGCTTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCC

OST259 (SEQ ID NO: 193)

AAGCTTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACGACTTTTGACACGGATGTACTCAAAGCGGACGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAATTCCGTGGTTCTGTGTTCGCGTTGTGGGCGTTTGTGGCGTGG
TCGTGTGGGACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

.OST260 (SEQ ID NO: 194)

AAGCTTGCCACCATGGAGACAGACACCTCTGCTATGGGTACTGCTGCTGTTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAAATTCCGGGTGGGGGTGTGGTGGTGGGGGCTTTGTGGTGG
CGGCGTGTTACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST261 (SEQ ID NO: 195)

^ AAGCTTGCCACCATGGAGACAGACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCC
TCGTCGATTTCMCCCTCCCACACACTGCCCACACACTTCCGGGGTTACGTGTATTAGGTGTCGTCGGGGT
TTTCTGTTGACTAGTGGTCCGTGCAAAATGATCGCCCCGGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST262 (SEQ ID NO: 196)

AAGCTTGCCACCATGAGACAGACACCTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAAATTCCGGTGGTGGGGGGATGATTTGGGAGGCTTGGAGTTGTTAT
GCGTGTGGGACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST263 (SEQ ID NO: 197)

AAGCTTGCCACCATGAGACAGACACCCTCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAATTCCTTGTGGATTGGGCCGGGTGATCAGGGTCTGTTTCGGCGT
TTTGTTTTTACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACCGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

FIGURE 12A

OST264 (SEQ ID NO: 198)

AAGCTTGCCACCATGGAGACAGACACTCCTGCTATGGGTACTGCTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCGTGTCTTCTGATCAAAATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGATCATA
GCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTT
TGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTAGACACTTCTGGTCCAAGATCTGTAAACCTGTCCT
GAAAGAAGGTCAAGTGTGTACCAAGCATAGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTG
GAGAAGGTCTGTCTTGCCGGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGGAA
CACTAAGCGCCGCC

OST265 (SEQ ID NO: 199)

OST266 (SEQ ID NO: 200)

OST267 (SEQ ID NO: 201)

OST268 (SEQ ID NO: 202)

FIGURE 12B

Listed Delow are the amino acid sequences corresponding to the pcDNA3.1 constructs in Appendix 1A

OST258 METDTLLLWVLLLWVPGSTGDGS

OST259 (SEQ ID NO: 204)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSVVLCSRCGRLWRWSCGT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST260 (SEQ ID NO: 205)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSGWRWCGRCGALWWRRVT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST261 (SEQ ID NO: 206)

METDILLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSEVRQVTCIRCRRGFLLT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPILLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST262 (SEQ ID NO: 207)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSGGGGMIWEAWSCYACGT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST263 (SEQ ID NO: 208)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSLWIGPGDQGLFRRFVFT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST264 (SEQ ID NO: 209)

METDTLLLWVLLLWVPGSTGDGSVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRS SDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQKDHHQASNSSRLHTCQRH

OST265 (SEQ ID NO: 210)

METDTLLLWVLLLWVFGSTGDGSCASPTRGGDAGVQICLACRKRRKRCMRHAMCCFGNYCKNGICVSSDQNHFRGEI EETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKG SHGLEI

FORCYCGEGLSC.

OST256 (SEQ ID NO: 211) .

MGDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSYAWLFSCSRCRWWLPWTSGPCKMIAPILDEIADEYQGKLT VAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGOLKEFLDANLA

OST267 (SEQ ID NO: 212)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAENCGPNSICEVVRLWSRYFWSWVTSGPCKMIAPILDEIADEYQGKLT VAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST268 · (SEQ ID NO: 213)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSGCTSAVCGAWAEAGRFYCTSGPCKMIAPILDEIADEYQGK LTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST269 (SEQ ID NO: 214)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSLWIGPGDQGLFRRFVFTSGPCKMIAPILDEIADEYQGKLT VAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

FIGURE 13

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Antibody to: aa 165-177 (Mutation)

SUBSTITUTE SHEET (RULE 26)

• Interaction LBD-DKK1 20 fold above background
• Interaction LBD-DKK1 C220A 2 to 3 fold above background
• Interaction LBD-DKK1 10 fold above LBD-DKK1 C220A mutant

FIG. 18

• A mutant DKK1,C220A, unable to bind to LRP5, was cloned in GalAD and B42 and tested for its ability to bind to LBD in Y2H

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 20

Wnt1 - HBM generated TCF-luci is not efficiently inhibited

• With Wnt1 the TCF-signal generated by LRP5 is greater than that of LRP6.

• LRP5/6 -Wnt1 induced TCF- is efficiently blocked byDkk1

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 22

261 - LBD-Binding Peptide

262 - LBD-Binding Peptide

262 - LBD-Binding Peptide

263 - Negative Control

FIG. 23

LRP5 Peptide Aptamers 261 and 262 Induce Wnt Signaling

• G171E mutation involves the ringed R group (F) alteration and leads to marginally greater TCF-luci activation than that with HBM1 mutation G171V

FIG. 24

• In blade 1, propeller 1, M282 is at the accessible interior position.

• It is conserved in propellers 1-3 FIG. 25

5523/ 5524 266 70624/25 245 Cys-2 5521/5522 147-161† 165-186* 183 DKK1 Protein Polyclonal Antibodies 74396/74397 FIG. 26 138 No titer 71-85* 87-103* 97 5505/5506 * Sigma/Genosys 31 † ResGen Signal Peptides Selected Rabbits Amino Acid

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> Allen, Kristina M.
Anisowicz, Anthony
Bhat, Bheem
Damagnez, Veronique
Robinson, John
Yaworsky, Paul

<120> Reagents and Method for Modulating DKK-Mediated Interactions

<130> 032796-132

<150> US 60/291,311

<151> 2001-05-17

<150> US 60/353,058

<151> 2002-02-01

<150> US 60/361,293

<151> 2002-03-04

<160> 214

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 5120

<212> DNA

<213> Homo sapiens

<400> 1

actaaagcgc cgccgccgcg ccatggagcc cgagtgagcg cggcgcgggc ccgtccggcg	60
gccggacaac atg gag gca gcg ccg ccc ggg ccg ccg tgg ccg ctg ctg	109
Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu	
1 5 10	
ctg ctg ctg ctg ctg ctg gcg ctg tgc ggc tgc ccg gcc ccc gcc	157
Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala	
15 20 25	
gcg gcc tcg ccg ctc ctg cta ttt gcc aac cgc cgg gac gta cgg ctg	205
Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu	
30 35 40 45	
gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc	253
Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly	
50 55 60	
ctg gag gat gcg gcc gca gtg gac ttc cag ttt tcc aag gga gcc gtg	301
Leu Glu Asp Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val	
65 70 75	
tac tgg aca gac gtg agc gag gag gcc atc aag cag acc tac ctg aac	349
Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn	3.5
80 85 90	
	397
cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct	391

Gln	Thr 95	Gly	Ala	Ala	Val	Gln 100	Asn	Val	Val	Ile	Ser 105	Gly	Leu	Val	Ser	
ccc	gac	ggc	ctc	σcc	tac	gac	taa	ata	aac	aaσ	aad	cta	tac	taa	асп	445
Pro	Ásp	Gĺv	Leu	Ala	Cvs	Asn	Trn	Val	Glv	Lue	Lvs	T.e.ii	Tur	Trn	The	443
110	_P	- 2	204			изр	пр	Vai	Gry		цуз	пеа	TAT	пр		
	.		_		115	_				120					125	
	tca															493
Asp	Ser	Glu	Thr	Asn	Arg	Ile	Glu	Val	Ala	Asn	Leu	Asn	Gly	Thr	Ser	
				130					135					140		
cqq	aag	ata	ctc	ttc	taa	caq	gac	ctt	gac	cag	cca	ασσ	acc	atc	acc	541
	Lys															241
••••	-,,		145	2110	115	0111	nop	150	nop	OI	110	nry	155	116	VIQ	
++							- 4		.							
	gac															589
ren	Asp	Pro	Ala	His	Gly	Tyr		Tyr	Trp	Thr	Asp	Trp	Gly	Glu	Thr	
		160					165					170				
ccc	cgg	att	gag	cqq	qca	ggg	atq	gat	qqc	agc	acc	caa	aaq	atc	att	637
Pro	Arg	Ile	Glu	Ara	Ála	Glv	Met	Asp	Giv	Ser	Thr	Ara	T.vs	Tle	Tla	•••
	175					180			0_,		185	9	2,5	110	*16	
~+ ~		+			.											
	gac															685
	Asp	Ser	Asp	Ile	-	Trp	Pro	Asn	Gly	Leu	Thr	Ile	Asp	Leu	Glu	
190					195					200					205	
gag	cag	aag	ctc	tac	tgg	gct	gac	gcc	aag	ctc	agc	ttc	atc	cac	cqt	733
	Gln															
		•		210	•				215					220	9	
acc	aac	cta	~~~		+00	++0	000	~~~		~+~	~+~	~~~	~~~			201
																781
ATA	Asn	Leu		GIA	Ser	Pne	Arg		гĀ2	vai	vaı	GIU	_	Ser	Leu	
			225					230					235			
acg	cac	CCC	ttc	gcc	ctg	acg	ctc	tcc	ggg	gac	act	ctg	tac	tgg	aca	829
	His															
		240					245		-	•		250	-	•		
gac	tgg		acc	cac	tcc	atc		acc	tac	220	220		act	~~~	~~~	877
300	T-2	Cla	Th-	7	200	Tlo	uic	710	Cuc	7	Tue	n	mb-	999	999	011
vaħ	Trp	GIII	1111	ALG	Ser		пто	Ala	Cys	ASII	-	Arg	THE	GIA	GIÀ	
	255					260					265					
	agg															925
Lys	Arg	Lys	Glu	Ile	Leu	Ser	Ala	Leu	Tyr	Ser	Pro	Met	Asp	Ile	Gln	
270					275					280					285	
ata	ctg	agc	cag	gag	caa	cag	cct	ttc	ttc	cac	act	cac	tat	gag	σασ	973
	Leu															
	200	002	·	290	•••	01		- 11.0	295		****	nry	Cys		GIU	
	+													300		
	aat									ctg	T ~ ~	CCA	200	gag	cct	1021
Asp	Asn	Gly	Gly	Cys	Ser	His	Tan									
				-			пеп	Cys	Leu					Glu		
			305	-			Leu	310	Leu							
LLC	tac	aca						310		Leu	Ser	Pro	Ser 315	Glu	Pro	
	tac Tvr		tgc	gcc	tgc	ccc	acg	310 ggt	gtg	Leu cag	Ser ctg	Pro cag	Ser 315 gac	Glu	Pro ggc	1069
	tac Tyr	Thr	tgc	gcc	tgc	ccc	acg Thr	310 ggt	gtg	Leu cag	Ser ctg	Pro cag Gln	Ser 315 gac	Glu	Pro ggc	
Phe	Tyr ·	Thr 320	tgc Cys	gcc Ala	tgc Cys	ccc Pro	acg Thr 325	310 ggt Gly	gtg Val	Leu cag Gln	Ser ctg Leu	Pro cag Gln 330	Ser 315 gac Asp	Glu aac Asn	Pro ggc Gly	1069
Phe agg	Tyr acg	Thr 320 tgt	tgc Cys aag	gcc Ala gca	tgc Cys gga	ccc Pro	acg Thr 325 gag	310 ggt Gly gag	gtg Val gtg	Leu cag Gln ctg	Ser ctg Leu ctg	Pro cag Gln 330 ctg	Ser 315 gac Asp	Glu aac Asn cgg	Pro ggc Gly cgg	
Phe agg	Tyr acg Thr	Thr 320 tgt	tgc Cys aag	gcc Ala gca	tgc Cys gga	ccc Pro gcc Ala	acg Thr 325 gag	310 ggt Gly gag	gtg Val gtg	Leu cag Gln ctg	Ser ctg Leu ctg Leu	Pro cag Gln 330 ctg	Ser 315 gac Asp	Glu aac Asn cgg	Pro ggc Gly cgg	1069
Phe agg	Tyr acg	Thr 320 tgt	tgc Cys aag	gcc Ala gca	tgc Cys gga	ccc Pro	acg Thr 325 gag	310 ggt Gly gag	gtg Val gtg	Leu cag Gln ctg	Ser ctg Leu ctg	Pro cag Gln 330 ctg	Ser 315 gac Asp	Glu aac Asn cgg	Pro ggc Gly cgg	1069
Phe agg Arg	Tyr acg Thr 335	Thr 320 tgt Cys	tgc Cys aag Lys	gcc Ala gca Ala	tgc Cys gga Gly	ccc Pro gcc Ala 340	acg Thr 325 gag Glu	310 ggt Gly gag Glu	gtg Val gtg Val	Leu cag Gln ctg Leu	Ser ctg Leu ctg Leu 345	Pro cag Gln 330 ctg Leu	Ser 315 gac Asp gcc Ala	Glu aac Asn cgg Arg	Pro ggc Gly cgg Arg	1069
Phe agg Arg acg	Tyr acg Thr 335 gac	Thr 320 tgt Cys cta	tgc Cys aag Lys cgg	gcc Ala gca Ala agg	tgc Cys gga Gly atc	ccc Pro gcc Ala 340 tcg	acg Thr 325 gag Glu	310 ggt Gly gag Glu gac	gtg Val gtg Val acg	Leu cag Gln ctg Leu ccg	Ser ctg Leu ctg Leu 345 gac	Pro cag Gln 330 ctg Leu	Ser 315 gac Asp gcc Ala acc	Glu aac Asn cgg Arg	Pro ggc Gly cgg Arg	1069 1117
Phe agg Arg acg Thr	Tyr acg Thr 335	Thr 320 tgt Cys cta	tgc Cys aag Lys cgg	gcc Ala gca Ala agg	tgc Cys gga Gly atc Ile	ccc Pro gcc Ala 340 tcg	acg Thr 325 gag Glu	310 ggt Gly gag Glu gac	gtg Val gtg Val acg	Leu cag Gln ctg Leu ccg Pro	Ser ctg Leu ctg Leu 345 gac	Pro cag Gln 330 ctg Leu	Ser 315 gac Asp gcc Ala acc	Glu aac Asn cgg Arg	Pro ggc Gly cgg Arg atc Ile	1069 1117
Phe agg Arg acg Thr 350	Tyr acg Thr 335 gac Asp	Thr 320 tgt Cys cta Leu	tgc Cys aag Lys cgg Arg	gcc Ala gca Ala agg Arg	tgc Cys gga Gly atc Ile 355	ccc Pro gcc Ala 340 tcg Ser	acg Thr 325 gag Glu ctg Leu	310 ggt Gly gag Glu gac Asp	gtg Val gtg Val acg Thr	Leu cag Gln ctg Leu ccg Pro 360	Ser ctg Leu ctg Leu 345 gac Asp	Pro cag Gln 330 ctg Leu ttc Phe	Ser 315 gac Asp gcc Ala acc Thr	Glu aac Asn cgg Arg gac Asp	Pro ggc Gly cgg Arg atc Ile 365	1069 1117 1165
Phe agg Arg acg Thr 350 gtg	Tyr acg Thr 335 gac Asp	Thr 320 tgt Cys cta Leu	tgc Cys aag Lys cgg Arg	gcc Ala gca Ala agg Arg	tgc Cys gga Gly atc Ile 355 gac	ccc Pro gcc Ala 340 tcg Ser	acg Thr 325 gag Glu ctg Leu	310 ggt Gly gag Glu gac Asp	gtg Val gtg Val acg Thr	Leu cag Gln ctg Leu ccg Pro 360 att	Ser ctg Leu ctg Leu 345 gac Asp	Pro cag Gln 330 ctg Leu ttc Phe	Ser 315 gac Asp gcc Ala acc Thr	Glu aac Asn cgg Arg gac Asp tac	Pro ggc Gly cgg Arg atc Ile 365 gac	1069 1117
Phe agg Arg acg Thr 350 gtg	Tyr acg Thr 335 gac Asp	Thr 320 tgt Cys cta Leu	tgc Cys aag Lys cgg Arg	gcc Ala gca Ala agg Arg	tgc Cys gga Gly atc Ile 355 gac	ccc Pro gcc Ala 340 tcg Ser	acg Thr 325 gag Glu ctg Leu	310 ggt Gly gag Glu gac Asp	gtg Val gtg Val acg Thr gcc	Leu cag Gln ctg Leu ccg Pro 360 att	Ser ctg Leu ctg Leu 345 gac Asp	Pro cag Gln 330 ctg Leu ttc Phe	Ser 315 gac Asp gcc Ala acc Thr	Glu aac Asn cgg Arg gac Asp tac Tyr	Pro ggc Gly cgg Arg atc Ile 365 gac	1069 1117 1165
agg Arg acg Thr 350 gtg Val	Tyr acg Thr 335 gac Asp ctg Leu	Thr 320 tgt Cys cta Leu cag Gln	tgc Cys aag Lys cgg Arg gtg Val	gcc Ala gca Ala agg Arg gac Asp 370	tgc Cys gga Gly atc Ile 355 gac Asp	ccc Pro gcc Ala 340 tcg Ser atc	acg Thr 325 gag Glu ctg Leu cgg Arg	310 ggt Gly gag Glu gac Asp cac	gtg Val gtg Val acg Thr gcc Ala 375	Leu cag Gln ctg Leu ccg Pro 360 att Ile	Ser ctg Leu ctg Leu 345 gac Asp gcc Ala	Pro cag Gln 330 ctg Leu ttc Phe atc Ile	Ser 315 gac Asp gcc Ala acc Thr gac Asp	Glu aac Asn cgg Arg gac Asp tac Tyr 380	Pro ggc Gly cgg Arg atc Ile 365 gac Asp	1069 1117 1165
agg Arg acg Thr 350 gtg Val	Tyr acg Thr 335 gac Asp	Thr 320 tgt Cys cta Leu cag Gln	tgc Cys aag Lys cgg Arg gtg Val	gcc Ala gca Ala agg Arg gac Asp 370	tgc Cys gga Gly atc Ile 355 gac Asp	ccc Pro gcc Ala 340 tcg Ser atc	acg Thr 325 gag Glu ctg Leu cgg Arg	310 ggt Gly gag Glu gac Asp cac	gtg Val gtg Val acg Thr gcc Ala 375	Leu cag Gln ctg Leu ccg Pro 360 att Ile	Ser ctg Leu ctg Leu 345 gac Asp gcc Ala	Pro cag Gln 330 ctg Leu ttc Phe atc Ile	Ser 315 gac Asp gcc Ala acc Thr gac Asp	Glu aac Asn cgg Arg gac Asp tac Tyr 380	Pro ggc Gly cgg Arg atc Ile 365 gac Asp	1069 1117 1165
Phe agg Arg acg Thr 350 gtg Val	Tyr acg Thr 335 gac Asp ctg Leu cta	Thr 320 tgt Cys cta Leu cag Gln	tgc Cys aag Lys cgg Arg gtg Val	gcc Ala gca Ala agg Arg gac Asp 370 tat	tgc Cys gga Gly atc Ile 355 gac Asp	ccc Pro gcc Ala 340 tcg Ser atc Ile	acg Thr 325 gag Glu ctg Leu cgg Arg	310 ggt Gly gag Glu gac Asp cac His	gtg Val gtg Val acg Thr gcc Ala 375 gat	Leu cag Gln ctg Leu ccg Pro 360 att Ile gac	Ser ctg Leu ctg Leu 345 gac Asp gcc Ala	Pro cag Gln 330 ctg Leu ttc Phe atc Ile gtg	Ser 315 gac Asp gcc Ala acc Thr gac Asp	Glu aac Asn cgg Arg gac Asp tac Tyr 380 gcc	Pro ggc Gly cgg Arg atc Ile 365 gac Asp	1069 1117 1165 1213
Phe agg Arg acg Thr 350 gtg Val	Tyr acg Thr 335 gac Asp ctg Leu	Thr 320 tgt Cys cta Leu cag Gln	tgc Cys aag Lys cgg Arg gtg Val	gcc Ala gca Ala agg Arg gac Asp 370 tat	tgc Cys gga Gly atc Ile 355 gac Asp	ccc Pro gcc Ala 340 tcg Ser atc Ile	acg Thr 325 gag Glu ctg Leu cgg Arg	310 ggt Gly gag Glu gac Asp cac His	gtg Val gtg Val acg Thr gcc Ala 375 gat	Leu cag Gln ctg Leu ccg Pro 360 att Ile gac	Ser ctg Leu ctg Leu 345 gac Asp gcc Ala	Pro cag Gln 330 ctg Leu ttc Phe atc Ile gtg	Ser 315 gac Asp gcc Ala acc Thr gac Asp cgg Arg	Glu aac Asn cgg Arg gac Asp tac Tyr 380 gcc	Pro ggc Gly cgg Arg atc Ile 365 gac Asp	1069 1117 1165 1213
Phe agg Arg acg Thr 350 gtg Val ccg Pro	Tyr acg Thr 335 gac Asp ctg Leu cta	Thr 320 tgt Cys cta Leu cag Gln gag Glu	tgc Cys aag Lys cgg Arg gtg Val ggc Gly 385	gcc Ala gca Ala agg Arg gac Asp 370 tat Tyr	tgc Cys gga Gly atc Ile 355 gac Asp gtc Val	ccc Pro gcc Ala 340 tcg Ser atc Ile tac	acg Thr 325 gag Glu ctg Leu cgg Arg	310 ggt Gly gag Glu gac Asp cac His aca Thr 390	gtg Val gtg Val acg Thr gcc Ala 375 gat Asp	Leu cag Gln ctg Leu ccg Pro 360 att Ile gac Asp	ctg Leu ctg Leu 345 gac Asp gcc Ala gag Glu	Cag Gln 330 ctg Leu ttc Phe atc Ile gtg Val	Ser 315 gac Asp gcc Ala acc Thr gac Asp cgg Arg 395	Glu aac Asn cgg Arg gac Asp tac Tyr 380 gcc Ala	Pro ggc Gly cgg Arg atc Ile 365 gac Asp atc Ile	1069 1117 1165 1213

		400			_	_	405		Ala			410					
									gtc Val								1357
									cgc Arg								1405
									tcg Ser 455								1453
									ggc Gly								1501
									gcc Ala								1549
									ggg Gly								1597
									tgg Trp								1645
									acg Thr 535								1693
	-	_		_					ttc Phe	_	_	_		-			1741
									agc Ser								1789
									gac Asp								1837
									gtc Val							-	1885
gcg Ala	gac Asp	agg Arg	aac Asn	ggg Gly 610	ggg Gly	tgc Cys	agc Ser	cac His	ctg Leu 615	tgc Cys	ttc Phe	ttc Phe	aca Thr	ccc Pro 620	cac His		1933
									ctg Leu								1981
									ttg Leu								2029
									aat Asn								2077
	ctc					gag			gcc Ala		gac						2125
aac					tgg				agc Ser 695	ctg					cgc Arg		2173
gcc	ttc	atg	aac		agc	tcg	gtg	gag	cac	gtg	gtg	gag	ttt				2221

Ala	Phe	Met	Asn 705	Gly	Ser	Ser	Val	Glu 710	His	Val	Val	Glu	Phe	Gly	Leu	
Asp	tac Tyr	Pro 720	Glu	Gly	Met	Ala	Val 725	Asp	Trp	Met	Gly	Lys 730	Asn	Leu	Tyr	2269
Trp	gcc Ala 735	Asp	Thr	Gly	Thr	Asn 740	Arg	Ile	Glu	Val	Ala 745	Arg	Leu	Asp	Gly	2317
Gln 750	ttc Phe	Arg	Gln	Val	Leu 755	Val	Trp	Arg	Asp	Leu 760	Asp	Asn	Pro	Arg	Ser 765	2365
Leu	gcc Ala	Leu	Asp	Pro 770	Thr	Lys	Gly	Tyr	Ile 775	Tyr	Trp	Thr	Glu	Trp 780	Gly	2413
	aag Lys	-					-		_	_				-		2461
_	ctg Leu		_	_				-		_				-		2509
	gac Asp 815															2557
	tcc Ser															2605
_	cac His	_			-	-	_		-	-						2653
Asp	tgg Trp	Asn	Leu 865	His	Ser	Ile	Glu	Arg 870	Ala	Asp	Lys	Thr	Ser 875	Gly	Arg	2701
	cgc Arg															2749
	ttc Phe 895															2797
	GJÁ ādā															2845
	ggc Gly															2893
	ccg Pro															2941
	atg Met															2989
	gga Gly 975															3037
	atc Ile										Lys					3085
gac	ggg	acc	cag	ccc	ttt	gtt	ttg	acc	tct	ctg	agc	caa	ggc	caa	aac	3133

Asp																
	Gly	Thr	Gln	Pro 1010		Val	Leu	Thr	Ser 1015		Ser	Gln	Gly	Gln 1020		
cca	gac	agg	caq	ccc	cac	gac	ctc	aσc	atc	gac	atc	tac	agc	caa	aca	3181
											Ile					JIOI
		3	1025			nop	Dea	1030		r.op		1 Y L	1035	_	1111	
	++-			-										•		
											aac					3229
Leu	Phe			Cys	Glu	Ala	Thr	Asn	Thr	Ile	Asn	Val	His	Arg	Leu	
		1040)				1045	5				1050)			
agc	ggg	qaa	qcc	atq	aga	ata	ata	ctq	cat	aaa	gac	cac	gac	aaσ	ccc	3277
											Asp					32
	105				1	1060			9	0_1	1065	-		טעט	110	
											ctg					3325
		тте	vai.	val			GIu	Arg	GTA	-	Leu	Tyr	Phe	Thr	Asn	
107					1075					1080					1085	
atg	cag	gac	cgg	gca	gcc	aag	atc	gaa	cgc	gca	gcc	ctq	gac	qqc	acc	3373
Met	Gln	Asp	Arq	Ala	Ala	Lvs	Ile	Glu	Arg	Ala	Ala	Leu	Āsp	Ğĺv	Thr	
		•	_	1090		- .			1095					1100		
~~~	000	~~~	ata			366	200	~~~			cgc					2401
																3421
GIU	Arg	GIU			Pne	Thr	Thr	_		TTE	Arg	Pro			Leu	
			1105					1110					1115			
gtg	gtg	gac	aac	aca	ctg	ggc	aag	ctg	ttc	tgg	gtg	gac	gcg	gac	ctq	3469
Val	Val	Asp	Asn	Thr	Leu	Glv	Lvs	Leu	Phe	Trp	Val	Asp	Ala	Asp	Leu	
		1120					1125			•		1130		-1-6		
220	cac			200	tat	~~~			~~~	~~~	aac				a+ =	2517
																3517
гуѕ			GIU	ser	Cys			Ser	GIA	Ата	Asn		Leu	Thr	Leu	
	1135					1140					1145					
gag	gac	gcc	aac	atc	gtg	cag	cct	ctg	ggc	ctg	acc	atc	ctt	ggc	aag	3565
Glu	Asp	Ala	Asn	Ile	Val	Gln	Pro	Leu	Gly	Leu	Thr	Ile	Leu	Glv	Lvs	
115					1155			•	-	1160					1165	
											•				1100	
cat	ctc	tac	taa	atc	Tac.	COC	Car	C20	Can	ata	atc	~~~	cat	ata	a2a	2612
											atc					3613
				Ile	Asp				Gln	Met	atc Ile			Val	Glu	3613
His	Leu	Tyr	Trp	Ile 1170	Asp )	Arg	Gln	Gln	Gln 1175	Met	Ile	Glu	Arg	Val 1180	Glu )	
His aag	Leu	Tyr	Trp ggg	Ile 1170 gac	Asp ) aag	Arg cgg	Gln act	Gln cgc	Gln 1175 atc	Met cag	Ile ggc	Glu cgt	Arg gtc	Val 1180 gcc	Glu ) cac	3613 3661
His aag	Leu	Tyr	Trp ggg	Ile 1170 gac	Asp ) aag	Arg cgg	Gln act	Gln cgc	Gln 1175 atc	Met cag	Ile	Glu cgt	Arg gtc	Val 1180 gcc	Glu ) cac	
His aag	Leu	Tyr	Trp ggg	Ile 1170 gac Asp	Asp ) aag	Arg cgg	Gln act	Gln cgc	Gln 1175 atc Ile	Met cag	Ile ggc	Glu cgt	Arg gtc	Val 1180 gcc Ala	Glu ) cac	
His aag Lys	Leu acc Thr	Tyr acc Thr	Trp 999 Gly 1185	Ile 1170 gac Asp	Asp ) aag Lys	Arg cgg Arg	Gln act Thr	Gln cgc Arg 1190	Gln 1175 atc Ile )	Met cag Gln	Ile ggc Gly	Glu cgt Arg	Arg gtc Val 1195	Val 1180 gcc Ala	Glu cac His	3661
His aag Lys ctc	Leu acc Thr	Tyr acc Thr ggc	Trp ggg Gly 1185 atc	Ile 1170 gac Asp cat	Asp ) aag Lys gca	Arg cgg Arg gtg	Gln act Thr gag	Gln cgc Arg 1190 gaa	Gln 1175 atc Ile ) gtc	Met cag Gln agc	Ile ggc Gly ctg	Glu cgt Arg gag	Arg gtc Val 1199 gag	Val 1180 gcc Ala ttc	Glu cac His	
His aag Lys ctc	Leu acc Thr	Tyr acc Thr ggc Gly	Trp ggg Gly 1185 atc Ile	Ile 1170 gac Asp cat	Asp ) aag Lys gca	Arg cgg Arg gtg	Gln act Thr gag Glu	Gln cgc Arg 1190 gaa Glu	Gln 1175 atc Ile ) gtc	Met cag Gln agc	Ile ggc Gly	Glu cgt Arg gag Glu	gtc Val 1195 gag Glu	Val 1180 gcc Ala ttc	Glu cac His	3661
His aag Lys ctc Leu	acc Thr act Thr	Tyr acc Thr ggc Gly 1200	Trp ggg Gly 1185 atc Ile	Ile 1170 gac Asp cat His	Asp aag Lys gca Ala	Arg cgg Arg gtg Val	Gln act Thr gag Glu 1205	Gln cgc Arg 1190 gaa Glu	Gln 1175 atc Ile ) gtc Val	Met cag Gln agc Ser	ggc Gly ctg Leu	Glu cgt Arg gag Glu 1210	gtc Val 1199 gag Glu	Val 1180 gcc Ala ttc Phe	Glu cac His tca Ser	3661 3709
His aag Lys ctc Leu gcc	acc Thr act Thr	acc Thr ggc Gly 1200 cca	ggg Gly 1185 atc Ile tgt	Ile 1170 gac Asp cat His	Asp aag Lys gca Ala	Arg cgg Arg gtg Val	Gln act Thr gag Glu 1205 aat	Gln cgc Arg 1190 gaa Glu ggt	Gln 1175 atc Ile ) gtc Val	Met cag Gln agc Ser	Ile ggc Gly ctg Leu tcc	Glu cgt Arg gag Glu 1210	gtc Val 1195 gag Glu atc	Val 1180 gcc Ala ttc Phe	Glu cac His tca Ser	3661
His aag Lys ctc Leu gcc	acc Thr act Thr	acc Thr ggc Gly 1200 cca	ggg Gly 1185 atc Ile tgt	Ile 1170 gac Asp cat His	Asp  aag Lys  gca Ala  cgt	Arg cgg Arg gtg Val	Gln act Thr gag Glu 1205 aat	Gln cgc Arg 1190 gaa Glu ggt	Gln 1175 atc Ile ) gtc Val	Met cag Gln agc Ser	Ile ggc Gly ctg Leu tcc	Glu cgt Arg gag Glu 1210	gtc Val 1195 gag Glu atc	Val 1180 gcc Ala ttc Phe	Glu cac His tca Ser	3661 3709
His aag Lys ctc Leu gcc	acc Thr act Thr	Tyr acc Thr ggc Gly 1200 cca Pro	ggg Gly 1185 atc Ile tgt	Ile 1170 gac Asp cat His	Asp  aag Lys  gca Ala  cgt	Arg cgg Arg gtg Val	Gln act Thr gag Glu 1205 aat Asn	Gln cgc Arg 1190 gaa Glu ggt	Gln 1175 atc Ile ) gtc Val	Met cag Gln agc Ser	ggc Gly ctg Leu	Glu cgt Arg gag Glu 1210 cac	gtc Val 1195 gag Glu atc	Val 1180 gcc Ala ttc Phe	Glu cac His tca Ser	3661 3709
His aag Lys ctc Leu gcc Ala	acc Thr act Thr cac His 1215	Tyr acc Thr ggc Gly 1200 cca Pro	ggg Gly 1185 atc Ile ) tgt Cys	Ile 1170 gac Asp cat His gcc Ala	Asp aag Lys gca Ala cgt	cgg Arg gtg Val gac Asp 1220	Gln act Thr gag Glu 1205 aat Asn	Gln cgc Arg 1190 gaa Glu ggt Gly	Gln 1175 atc Ile ) gtc Val ggc Gly	Met cag Gln agc Ser tgc Cys	Ile ggc Gly ctg Leu tcc Ser 1225	Glu cgt Arg gag Glu 1210 cac His	gtc Val 1195 gag Glu atc Ile	Val 1180 gcc Ala ttc Phe tgt Cys	cac His tca Ser att	3661 3709 3757
His aag Lys ctc Leu gcc Ala	acc Thr act Thr cac His 1215	Tyr acc Thr ggc Gly 1200 cca Pro	ggg Gly 1185 atc Ile tgt Cys	Ile 1170 gac Asp cat His gcc Ala	Asp aag Lys gca Ala cgt Arg	cgg Arg gtg Val gac Asp 1220 cca	Gln act Thr gag Glu 1205 aat Asn cgg	Gln cgc Arg 1190 gaa Glu ggt Gly	Gln 1175 atc Ile ) gtc Val ggc Gly	Met cag Gln agc Ser tgc Cys	Ile ggc Gly ctg Leu tcc Ser 1225 cca	Glu cgt Arg gag Glu 1210 cac His	gtc Val 1195 gag Glu atc Ile	Val 1180 gcc Ala ttc Phe tgt Cys	cac His tca Ser att Ile	3661 3709
His aag Lys ctc Leu gcc Ala gcc Ala	acc Thr act Thr cac His 1215 aag Lys	Tyr acc Thr ggc Gly 1200 cca Pro	ggg Gly 1185 atc Ile tgt Cys	Ile 1170 gac Asp cat His gcc Ala	Asp aag Lys gca Ala cgt Arg aca Thr	cgg Arg gtg Val gac Asp 1220 cca Pro	Gln act Thr gag Glu 1205 aat Asn cgg	Gln cgc Arg 1190 gaa Glu ggt Gly	Gln 1175 atc Ile ) gtc Val ggc Gly	Met cag Gln agc Ser tgc Cys	Ile ggc Gly ctg Leu tcc Ser 1225 cca Pro	Glu cgt Arg gag Glu 1210 cac His	gtc Val 1195 gag Glu atc Ile	Val 1180 gcc Ala ttc Phe tgt Cys	cac His tca Ser att Ile gtg Val	3661 3709 3757
His aag Lys ctc Leu gcc Ala gcc Ala 123	acc Thr act Thr cac His 1215 aag Lys	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly	ggg Gly 1185 atc Ile tgt Cys gat Asp	Ile 1170 gac Asp cat His gcc Ala	Asp aag Lys gca Ala cgt Arg aca Thr 1235	cgg Arg gtg Val gac Asp 1220 cca Pro	Gln act Thr gag Glu 1205 aat Asn cgg Arg	cgc Arg 1190 gaa Glu ggt Gly tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser	Met cag Gln agc Ser tgc Cys tgc Cys	ggc Gly ctg Leu tcc Ser 1225 cca Pro	cgt Arg gag Glu 1210 cac His gtc Val	gtc Val 1195 gag Glu atc Ile cac	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu	cac His tca Ser att Ile gtg Val 1245	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala gcc Ala 123 ctc	Leu acc Thr act Thr cac His 1215 aag Lys ctg	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag	Trp  ggg Gly 1185 atc Ile Cys gat Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly	Asp aag Lys gca Ala cgt Arg aca Thr 1235	cgg Arg gtg Val gac Asp 1220 cca Pro	Gln act Thr gag Glu 1205 aat Asn cgg Arg	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser	Met cag Gln agc Ser tgc Cys tgc Cys 124(	ggc Gly ctg Leu tcc Ser 1225 cca Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val	gtc Val 1195 gag Glu atc Ile cac His	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu	cac His tca Ser att Ile gtg Val 1245 ccg	3661 3709 3757
His aag Lys ctc Leu gcc Ala gcc Ala 123 ctc	Leu acc Thr act Thr cac His 1215 aag Lys ctg	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag	Trp  ggg Gly 1185 atc Ile Cys gat Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly	Asp aag Lys gca Ala cgt Arg aca Thr 1235	cgg Arg gtg Val gac Asp 1220 cca Pro	Gln act Thr gag Glu 1205 aat Asn cgg Arg	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser	Met cag Gln agc Ser tgc Cys tgc Cys 124(	ggc Gly ctg Leu tcc Ser 1225 cca Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val	gtc Val 1195 gag Glu atc Ile cac His	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu	cac His tca Ser att Ile gtg Val 1245 ccg	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala gcc Ala 123 ctc	Leu acc Thr act Thr cac His 1215 aag Lys ctg	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag	Trp  ggg Gly 1185 atc Ile Cys gat Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu	cgg Arg gtg Val gac Asp 1220 cca Pro	Gln act Thr gag Glu 1205 aat Asn cgg Arg	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser	Met cag Gln agc Ser tgc Cys tgc Cys 1240 ccg Pro	ggc Gly ctg Leu tcc Ser 1225 cca Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val	gtc Val 1195 gag Glu atc Ile cac His	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala gcc Ala 123 ctc Leu	acc Thr act Thr cac His 1215 aag Lys Octg Leu	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln	ggg Gly 1185 atc Ile tgt Cys gat Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu	cgg Arg gtg Val gac Asp 1220 cca Pro acc	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys	cgc Arg 1190 gaa Glu ggt Gly tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255	Met cag Gln agc Ser tgc Cys tgc Cys 1240 ccg Pro	ggc Gly ctg Leu tcc Ser 1225 cca Pro	gag Glu 1210 cac His gtc Val acc	gtc Val 1195 gag Glu atc Ile cac His tgc Cys	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc Ser 1260	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala gcc Ala 123 ctc Leu gac	Leu acc Thr act Thr cac His 1215 aag Lys 0 ctg Leu cag	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt	Trp ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250 tgt	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu )	cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Gly gag	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc	Met cag Gln agc Ser tgc Cys tgc Cys 1240 ccg Pro	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr	gtc Val 1195 gag Glu atc Ile cac His tgc Cys	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc Ser 1260 ggg	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala gcc Ala 123 ctc Leu gac	Leu acc Thr act Thr cac His 1215 aag Lys 0 ctg Leu cag	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt	Trp  ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250 tgt Cys	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu )	cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Gly gag Glu	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile	Met cag Gln agc Ser tgc Cys tgc Cys 1240 ccg Pro	ggc Gly ctg Leu tcc Ser 1225 cca Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr	gtc Val 1195 gag Glu atc Ile cac His tgc Cys	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc Ser 1260 ggg Gly	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp	acc Thr act Thr cac His 1215 aag Lys octg Leu cag Gln	acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt	Trp  ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala 1265	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250 tgt Cys	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu gcc Ala	cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Gly	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Gly gag Glu 1270	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile	Met cag Gln agc Ser tgc Cys tgc Cys 124( ccg Pro gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro	ttc Phe tgt Cys ctc Leu tcc Ser 1260 ggg Gly	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805 3853
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp	acc Thr act Thr cac His 1215 aag Lys Ctg Leu cag Gln cgc	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt Phe	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala 1265 gac	Ile 1170 gac Asp cat His gcc Ala ggg Ctg Leu 1250 tgt Cys	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu gcc Ala	cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr aca Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Gly gag	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile )	Met cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro tgt Cys	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ser 1260 ggg Gly	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp	acc Thr act Thr cac His 1215 aag Lys Ctg Leu cag Gln cgc	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gly ttt Phe tgt Cys	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala 1265 gac Asp	Ile 1170 gac Asp cat His gcc Ala ggg Ctg Leu 1250 tgt Cys	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu gcc Ala	cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr aca Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Gly gag Glu	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile )	Met cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ser 1260 ggg Gly	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805 3853
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp	acc Thr act Thr cac His 1215 aag Lys Ctg Leu cag Gln cgc	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt Phe	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala 1265 gac Asp	Ile 1170 gac Asp cat His gcc Ala ggg Ctg Leu 1250 tgt Cys	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu gcc Ala	cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr aca Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Gly gag	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile )	Met cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro tgt Cys	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac Asp	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ser 1260 ggg Gly	cac His tca Ser att Ile gtg Val 1245 ccg Pro	3661 3709 3757 3805 3853
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp	acc Thr act Thr cac His 1215 aag Lys Ctg Leu cag Gln cgc Arg	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt Phe tgt Cys 1280	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala 1265 gac Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250 tgt Cys ggc Gly	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu gcc Ala ttt Phe	gtg Val gac Asp 1220 cca Pro acc Thr aca Thr	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Gly gag Glu 1285	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc Cys	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile ) gat Asp	cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro tgt Cys	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile agc Ser 1290	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac Asp	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ser 1260 ggg Gly gag Glu	cac His tca Ser att Ile gtg Val 1245 ccg Pro gcc Ala gag Glu	3661 3709 3757 3805 3853 3901
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp tgg Trp	Leu acc Thr act Thr cac His 1215 aag Lys ctg Leu cag Gln cgc Arg	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt Phe tgt Cys 1280 ccc	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala65 gac Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250 tgt Cys ggc Gly	Asp aag Lys gca Ala cgt Arg aca Thr 1235 Ctg Leu gcc Ala ttt Phe	Arg cgg Arg gtg Val gac Asp 1220 cca Pro acc Thr aca Thr ccc pro	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Gly gag Glu 1285 gcc	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc Cys cag	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile ) gat Asp	Met cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro tgt Cys cag Gln tgc	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile agc Ser 1290 gcg	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac Asp	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ser 1260 ggg Gly gag Glu ggt	cac His tca Ser att Ile gtg Val 1245 ccg Pro gcc Ala gag Glu cag	3661 3709 3757 3805 3853
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp tgg Trp	Leu acc Thr act Thr cac His 1215 aag Lys Ctg Leu cag Gln cgc Arg	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt Phe tgt Cys 1280 ccc Pro	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala65 gac Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg Leu 1250 tgt Cys ggc Gly	Asp aag Lys gca Ala cgt Arg aca Thr 1235 Ctg Leu gcc Ala ttt Phe	gtg Val gac Asp 1220 cca Pro acc Thr aca Thr ccc Ala	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Glu 1285 gcc Ala	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc Cys cag	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile ) gat Asp	Met cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro tgt Cys	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc Ile agc Ser 1290 gcg Ala	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac Asp	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ser 1260 ggg Gly gag Glu ggt	cac His tca Ser att Ile gtg Val 1245 ccg Pro gcc Ala gag Glu cag	3661 3709 3757 3805 3853 3901
His aag Lys ctc Leu gcc Ala 123 ctc Leu gac Asp tgg Trp	Leu acc Thr act Thr cac His 1215 aag Lys Ctg Leu cag Gln cgc Arg tgc Cys 1295	Tyr acc Thr ggc Gly 1200 cca Pro ggt Gly cag Gln ttt Phe tgt Cys 1280 ccc Pro	ggg Gly 1185 atc Ile tgt Cys gat Asp aac Asn gca Ala65 gac Asp	Ile 1170 gac Asp cat His gcc Ala ggg Gly ctg tgt Cys ggc Gly tgc Cys	Asp aag Lys gca Ala cgt Arg aca Thr 1235 ctg Leu gcc Ala ttt Phe tcc Ser	gtg Val gac Asp 1220 cca Pro acc Thr aca Thr ccc Ala 1300	Gln act Thr gag Glu 1205 aat Asn cgg Arg tgt Cys ggg Glu 1285 gcc Ala	Gln cgc Arg 1190 gaa Glu ggt Gly tgc Cys gga Glu 1270 tgc Cys cag Gln	Gln 1175 atc Ile ) gtc Val ggc Gly tca Ser gag Glu 1255 atc Ile ) gat Asp	Met cag Gln agc Ser tgc Cys 1240 ccg Pro gac Asp gac Asp	ggc Gly ctg Leu tcc Ser 1225 cca Pro ccc Pro tgt Cys cag Gln tgc	Glu cgt Arg gag Glu 1210 cac His gtc Val acc Thr atc 11e agc Ser 1290 gcg Ala	gtc Val 1195 gag Glu atc Ile cac His tgc Cys ccc Pro 1275 gac Asp	Val 1180 gcc Ala ttc Phe tgt Cys ctc Leu tcc ggg Gly gag Gly ggt Gly	cac His tca Ser att Ile gtg Val 1245 ccg Pro gcc Ala gag Glu cag Gln	3661 3709 3757 3805 3853 3901

Cys Val Asp Leu 1310	Arg Leu Arg C	ys Asp Gly Glu Al 1320	a Asp Cys Gln Asp 1325	
			g ccc aac cag ttc eu Pro Asn Gln Phe 1340	4093
	Gly Gln Cys V		ng cag tgc gac tcc n Gln Cys Asp Ser 1355	4141
	Ile Asp Gly S		g tgt gaa atc acc t Cys Glu Ile Thr 1370	4189
		ro Ala His Ser Se	rt gcc atc ggg ccc er Ala Ile Gly Pro 185	4237
			t ggt gtc tat ttt y Gly Val Tyr Phe 1405	4285
			gg gcc aac ggg ccc y Ala Asn Gly Pro 1420	4333
	Tyr Val Ser G		g ccc ctc aat ttc 1 Pro Leu Asn Phe 1435	4381
	Gly Ser Gln H		ea ggc atc gca tgc or Gly Ile Ala Cys 1450	4429
gga aag tcc atg		al Ser Leu Met Gl	gg ggc cgg ggc ggg .y Gly Arg Gly Gly 165	4477
			cc tcg tcc agc agc La Ser Ser Ser Ser 1485	4525
tcg tcc agc acg			cc ctg aac ccg ccg Le Leu Asn Pro Pro 1500	4573
	Thr Asp Pro S		g gac atg ttc tac et Asp Met Phe Tyr 1515	4621
tct tca aac att	ccg gcc act g Pro Ala Thr A		gg ccc tac atc att cg Pro Tyr Ile Ile 1530	4669
cga gga atg gcg	ccc ccg acg a	acg ccc tgc agc ac Thr Pro Cys Ser Th	cc gac gtg tgt gac or Asp Val Cys Asp	4717
age gae tae age	gcc agc cgc t	gg aag gcc agc aa	ag tac tac ctg gat ys Tyr Tyr Leu Asp 1565	4765
ttg aac tcg gac	tca gac ccc t	at cca ccc cca co	cc acg ccc cac agc ro Thr Pro His Ser 1580	4813
Gln Tyr Leu Ser	gcg gag gac a Ala Glu Asp S	age tgc ccg ccc to	eg cee gee ace gag er Pro Ala Thr Glu	4861
		ecg ccc cct ccg to	1595 cc ccc tgc acg gac	4909
1600		Pro Pro Pro Pro Se 1605	er Pro Cys Thr Asp 1610	

Ser Ser 1615 5025 taaaaacatg agaaatgtga actgtgatgg ggtgggcagg gctgggagaa ctttgtacaq 5085 tqqaqaaata tttataaact taattttgta aaaca 5120 <210> 2 <211> 5120 <212> DNA <213> Homo sapiens <400> 2 actaaagcgc cgccgccqcq ccatqgagcc cgaqtgagcg cqqcqcqqqc ccqtccqqcc 60 geoggacaac atg gag gea geg eeg eeg eeg eeg tgg eeg etg etg 109 Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu ctg ctg ctg ctg ctg ctg ctg gcg ctg tgc ggc tgc ccg gcc ccc gcc 157 Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala 20 geg gec teg eeg ete etg eta ttt gee aac ege egg gae gta egg etg 205 Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc 253 Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly 50 ctg gag gat gcg gcc gca gtg gac ttc cag ttt tcc aag gga gcc gtg 301 Leu Glu Asp Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val 70 tac tgg aca gac gtg agc gag gcc atc aag cag acc tac ctg aac 349 Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn 85 397 cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct Gln Thr Gly Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser 100 ccc gac ggc ctc gcc tgc gac tgg gtg ggc aag aag ctg tac tgg acg 445 Pro Asp Gly Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr 120 115 gac toa gag acc aac cgc atc gag gtg gcc aac ctc aat ggc aca tcc 493 Asp Ser Glu Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser 130 135 egg aag gtg ete tte tgg eag gae ett gae eag eeg agg gee ate gee 541 Arg Lys Val Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala 150 589 ttg gac ccc gct cac ggg tac atg tac tgg aca gac tgg gtt gag acg Leu Asp Pro Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Val Glu Thr 165 ccc cgg att gag cgg gca ggg atg gat ggc agc acc cgg aag atc att 637 Pro Arg Ile Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile 175 180 185 685 gtg gac tcg gac att tac tgg ccc aat gga ctg acc atc gac ctg gag Val Asp Ser Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu 195 200 733 gag cag aag ctc tac tgg gct gac gcc aag ctc agc ttc atc cac cgt

Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg

				210					215					220		
qcc	aac	ctq	gac	-	tcg	ttc	caa	caq		gtg	gtg	gag	qqc		cta	781
					Ser											
			-	•					-				-			
			225					230					235			
					ctg											829
Thr	His		Phe	Ala	Leu	Thr		Ser	Gly	Asp	Thr		Tyr	Trp	Thr	
		240					245					250				
					tcc											877
Asp		Gln	Thr	Arg	Ser		His	Ala	Cys	Asn		Arg	Thr	Gly	Gly	
	255					260					265				•	
					ctg											925
шуs 270	Arg	гаг	GIU	TIE	Leu 275	Ser	Ата	ren	Tyr	280	Pro	met	Asp	TTE		
	cta	200	C2.0	~~~	cgg	~~~	cot	++-	++~		20+	~~~	+ ~+	~~~	285	973
					Arg											313
• • • •	200	001	O	290	nr 9	O I II	110	1110	295		****	*****	Cys	300	GIU	
gac	aat	aac	aac		tcc	cac	cta	tac		cta	tcc	cca	agc		cct	1021
					Ser											
•		•	305	-				310					315			
ttc	tac	aca	tgc	gcc	tgc	ccc	acg	ggt	gtg	cag	ctg	cag	gac	aac	ggc	1069
					Cys											
		320			_		325	_				330	_		_	
agg	acg	tgt	aag	gca	gga	gcc	gag	gag	gtg	ctg	ctg	ctg	gcc	cgg	cgg	1117
Arg	Thr	Cys	Lys	Ala	Gly	Ala	Glu	Glu	Val	Leu	Leu	Leu	Ala	Arg	Arg	
	335					340					345					
					atc											1165
	Asp	Leu	Arg	Arg	Ile	Ser	Leu	Asp	Thr		Asp	Phe	Thr	Asp		
350	-+-		~+~	~~~	355					360	~~~				365	1012
					gac Asp											1213
AGT	Deu	GIII	Val	370	vaħ	TTE	ALY	ura	375	116	nia	TIE	vah	380	nsp	
CCa	cta	aaa	aac		gtc	tac	taa	aca		aac	aaa	ata	caa		atc	1261
					Val											1001
			385	-1-		- , -		390					395			
cqc	agg	qcq	tac	ctq	gac	aaa	tct	qqq	qcq	cag	acq	ctq	qtc	aac	acc	1309
					Ásp											
_	_	400	_		•	_	405	_				410				
gag	atc	aac	gac	ccc	gat	ggc	atc	gcg	gtc	gac	tgg	gtg	gcc	cga	aac	1357
Glu	Ile	Asn	Asp	Pro	Asp	Gly	Ile	Ala	Val	Asp	Trp	Val	Ala	Arg	Asn	
	415					420					425					
					acg											1405
	Tyr	Trp	Thr	Asp	Thr	Gly	Thr	Asp	Arg		Glu	Val	Thr	Arg		
430					435					440					445	
					aag											1453
Asn	GTA	Thr	Ser	_	Lys	ire	Leu	vaı		GIU	Asp	Leu	Asp		Pro	
			~~~	450			~+~	2+~	455	a+ a	- t- ~	+	+~~	460	~~~	1501
					cac His											1301
ALY	ATA	TIE	465	neu	1113	FIO	Val	470	GLY	neu	Hec	ı yı	475	1111	vaħ	
taa	gga	gag		cct	aaa	atc	gaø		acc	aac	tta	gat		car	gag	1549
					Lys											
- 2		480			- 4		485	•				490		_		
cgg	cgt		ctg	gtc	aat	gcc	tcc	ctc	ggg	tgg	ccc	aac	ggc	ctg	gcc	1597
					Asn											
-	495					500			-	=	505		-			
ctg	gac	ctg	cag	gag	ggg	aag	ctc	tac	tgg	gga	gac	gcc	aag	aca	gac	1645

510		Leu			515					520					525	
Lys	Ile	gag Glu	Val	Ile 530	Asn	Val	Asp	Gly	Thr 535	Lys	Arg	Arg	Thr	Leu 540	Leu	1693
		aag Lys														1741
		tgg Trp 560														1789
		gcc Ala														1837
		aaa Lys														1885
		agg Arg														1933
		cgg Arg														1981
		tgc Cys 640														2029
		cac His														2077
		acg Thr														2125
		cac His														2173
		atg Met														2221
		ccc Pro 720														2269
		gac Asp														2317
		cgg Arg														2365
-	_	ctg Leu	-			-										2413
		ccg Pro														2461
		gtg Val 800														2509
gct	gac	cag	cgc	ctc	tac	tgg	acc	gac	ctg	gac	acc	aac	atg	atc	gag	2557

Ala A	Asp 815	Gln	Arg	Leu	Tyr	Trp 820	Thr	Asp	Leu	Asp	Thr 825	Asn	Met	Ile	Glu	
tcg t Ser S																2605
ccg c															aca	2653
gac t Asp T																2701
aac c Asn A																2749
gtg t Val F																2797
aac g Asn G 910																2845
tgc g Cys G																2893
agc c Ser F																2941
cgg a Arg M																2989
cat g His G																3037
ttc a Phe I 990											Lys					3085
gac g Asp G					Phe					Leu					Asn	3133
cca g Pro A				Pro					Ile					Arg		3181
ctg t Leu F			Thr					Asn					His			3229
agc g Ser G		Glu					Val					Arg				3277
agg g Arg A						Ala					Leu					3325
atg o					Ala					Ala					Thr	3373
gag c Glu A				ctc Leu	ttc				Leu					gcc Ala	ctg	3421
gtg g	gtg	gac	aac	aca	ctg	ggc	aag	ctg	ttc	tgg	gtg	gac	gcg	gac	ctg	3469

Val Val Asp Asn 1120		1125	113)
aag cgc att gag Lys Arg Ile Glu 1135	agc tgt gac of Ser Cys Asp 1 1140	ctg tca ggg Leu Ser Gly	gcc aac cgc Ala Asn Arg 1145	ctg acc ctg 3517 Leu Thr Leu
gag gac gcc aac Glu Asp Ala Asn 1150	Ile Val Gln 1 1155	Pro Leu Gly	Leu Thr Ile 1160	Leu Gly Lys 1165
cat ctc tac tgg His Leu Tyr Trp	Ile Asp Arg (Gln Gln Gln 117	Met Ile Glu 5	Arg Val Glu 1180
aag acc acc ggg Lys Thr Thr Gly 118	Asp Lys Arg 1 5	Thr Arg Ile 1190	Gln Gly Arg	Val Ala His 1195
ctc act ggc atc Leu Thr Gly Ile 1200	His Ala Val (Glu Glu Val 1205	Ser Leu Glu 121	Glu Phe Ser
gcc cac cca tgt Ala His Pro Cys 1215	Ala Arg Asp A	Asn Gly Gly	Cys Ser His 1225	Ile Cys Ile
gcc aag ggt gat Ala Lys Gly Asp 1230	Gly Thr Pro 1 1235	Arg Cys Ser	Cys Pro Val 1240	His Leu Val 1245
ctc ctg cag aac Leu Leu Gln Asn	ctg ctg acc t Leu Leu Thr (1250	tgt gga gag Cys Gly Glu 125	Pro Pro Thr	tgc tcc ccg 3853 Cys Ser Pro 1260
gac cag ttt gca Asp Gln Phe Ala 126	Cys Ala Thr			
tgg cgc tgt gac Trp Arg Cys Asp 1280	Gly Phe Pro (gag tgc gat Glu Cys Asp 1285	gac cag agc Asp Gln Ser 129	Asp Glu Glu
ggc tgc ccc gtg Gly Cys Pro Val 1295				
tgt gtg gac ctg Cys Val Asp Leu 1310				
cgc tca gac gag Arg Ser Asp Glu			Cys Leu Pro	
cgg tgt gcg agc Arg Cys Ala Ser 134	Gly Gln Cys V			
ttc ccc gac tgt Phe Pro Asp Cys 1360	Ile Asp Gly			Glu Ile Thr
aag ccg ccc tca Lys Pro Pro Ser 1375		Pro Ala His		
gtc att ggc atc Val Ile Gly Ile 1390				
gtg tgc cag cgc Val Cys Gln Arg	gtg gtg tgc		Ala Gly Ala	aac ggg ccc 4333
ttc ccg cac gag	tat gtc agc	ggg acc ccg	cac gtg ccc	ctc aat ttc 4381

Phe	Pro	His	Glu 1425	_	Val	Ser	Gly	Thr 1430		His	Val	Pro	Leu 143		Phe		
ata	acc	ccg	aac	aat	ticc	cag	cat	aac	ccc	ttc	aca	ggc	atc	gca	tac	442	۵
		Pro	Gly				His	Gly				Gly	Ile			342	, ,
		1440	-				144	-				1450	•				•
gga	aag	tcc	atg	atg	agc	tcc	gtg	agc	ctg	atg	ggg	ggc	cgg	ggc	ggg	447	7
Glv	Lys	Ser	Met	Met	Ser	Ser	Val	Ser	Leu	Met	Gly	Glv	Ara	Glv	Glv		
-	145					1460					146	_		2	1		
			+							~~~		•				450	
		ctc														452	.5
		Leu	Tyr	Asp	Arg	Asn	His	Val	Thr	GLY	Ala	Ser	Ser	Ser	Ser		
147	0				1475	5				1480)				1485		
tcg	tcc	agc	acg	aag	gcc	acq	ctg	tac	ccg	ccg	atc	ctq	aac	ccq	ccq	457	3
		Ser															-
				1490				- 1 -	1499					1500			
															-		
		ccg														462	. 1
Pro	Ser	Pro	Ala	Thr	Asp	Pro	Ser	Leu	Tyr	Asn	Met	Asp	Met	Phe	Tyr		
			1505	5				1510)				1515	5			
tct	tca	aac	att	cca	acc	act	aca	aga	cca	tac	аσσ	ccc	tac	atc	att	466	. 9
		Asn														100	
261	Ser			FLO	MIG	TIIL		_	FIU	TAT	Arg		•	TIE	TIE		
		1520					1525					1530					
		atg														471	, 7
Arg	Gly	Met	Ala	Pro	Pro	Thr	Thr	Pro	Cys	Ser	Thr	Asp	Val	Cys	Asp		
_	153	5				1540)		_		1549	5		-	•		
200		tac	200	000	200			220	acc	200			tac	cta	ast	476	: 5
																470	
	_	Tyr	ser	Ата		_	Trp	гÀг	AIA		-	Tyr	Tyr	Leu	•		
155					1555					1560					1565		
ttg	aac	tcg	gac	tca	gac	CCC	tat	cca	ccc	cca	CCC	acg	ccc	cac	agc	481	.3
Leu	Asn	Ser	Asp	Ser	Asp	Pro	Tvr	Pro	Pro	Pro	Pro	Thr	Pro	His	Ser		
				1570	-		-1-		1579					1580			
	+				-						.				-	400	٠.,
		ctg														486	1
GIn	Tyr	Leu			Glu	Asp	Ser	-		Pro	Ser	Pro	Ala	Thr	Glu		
			1585	5				1590)				1599	5			
agg	agc	tac	ttc	cat	ctc	ttc	ccq	CCC	cct	ccq	tcc	ccc	tac	acq	gac	490	19
	-	Tyr					-			-			_		_		
9		1600		0			160					1610	-		· · · · ·		
		tgad	CCCC	ggc o	cggg	ccacı	ic to	ggcti	CCC	t gt	gccc	ctgt	aaaı	cagti	בככ	496	10
Ser	Ser																
	161	5															
aaat	atgaa	ac aa	agga	aaaa	a ata	atati	tta	tgat	tttaa	aaa a	ata	aatai	ta at	ttaa	gattt	502	25
	-		_					-							tacag	508	
										- yy	July	yaya	aa Ci	LLLG	Lacag		
tgga	gaaa	ta t	tata	aaac	c taa	attt	tgta	aaad	ca							512	Ü

<210> 3 <211> 1615 <212> PRT <213> Homo sapiens

<400> 3

	50					55					60				
Ala 65	Ala	Ala	Val	Asp	Phe 70	Gln	Phe	Ser	Lys	Gly 75	Ala	Val	Tyr	Trp	Thr 80
Asp	Val	Ser	Glu	Glu 85	Ala	Ile	Lys	Gln	Thr 90	Tyr	Leu	Asn	Gln	Thr 95	Gly
Ala	Ala	Val	Gln 100	Asn	Val	Val	Ile	Ser 105	Gly	Leu	Val	Ser	Pro 110	Asp	Gly
Leu	Ala	Cys 115	Asp	Trp	Val	Gly	Lys 120	Lys	Leu	Tyr	Trp	Thr 125	Asp	Ser	Glu
Thr	Asn 130	Arg	Ile	Glu	Val	Ala 135	Asn	Leu	Asn	Gly	Thr 140	Ser	Arg	Lys	Val
145					150	_				155			Leu	_	160
				165					170				Pro	175	
			180					185					Val 190	-	
_		195	-			-	200			-		205	Glu		•
	210			_		215					220	_	Ala		
225				_	230	_				235			Thr		240
				245		-	_		250				Asp	255	
			260			_		265	-		-	_	Lys 270	-	-
		275				_	280			-		285	Val		
	290	_				295			_	-	300		Asp		-
305					310					315			Phe	_	320
				325	_				330	-		_	Arg	335	_
		_	340					345				_	Thr 350	_	
	_	355			_		360	_			_	365	Val		
	370			_		375				_	380	_	Pro		
385	-		_	_	390	_	-			395			Arg	_	400
_		_	•	405	_				410				Glu	415	
_			420					425					Leu 430	•	-
	_	435	_			_	440				_	445	Asn	_	
	450	-				455		_		_	460		Arg		
465					470					475		_	Trp	_	480
				485					490	_			Arg	495	
Leu	Val	Asn	Ala 500	Ser	Leu	Gly	Trp	Pro 505	Asn	Gly	Leu	Ala	Leu 510	Asp	Leu

Gln	Glu	Gly	Lys	Leu	Tyr	Trp	Gly	Asp	Ala	Lys	Thr	Asp	Lys	Ile	Glu
Val	Ile	515 Asn	Val	Asn	Gly	Thr	520	Δτα	Ara	Thr	ī.en	525 Leu	Glu	Asn	T.ve
	530				_	535	-				540			-	-
Leu 545	Pro	His	Ile	Phe	Gly 550	Phe	Thr	Leu	Leu	Gly 555	Asp	Phe	Ile	Tyr	Trp 560
	Asp	Trp	Gln	Arg 565	Arg	Ser	Ile	Glu	Arg 570		His	Lys	Val	Lys 575	
Ser	Arg	Asp	Val 580		Tle	Asp	Gln	Leu 585	Pro	Asp	Leu	Met	Gly 590		Lys
Ala	Val	Asn 595	Val	Ala	Lys	Val	Val 600	Gly	Thr	Asn	Pro	Cys 605	Ala	Asp	Arg
Asn	Gly 610	Gly	Cys	Ser	His	Leu 615	Cys	Phe	Phe	Thr	Pro 620	His	Ala	Thr	Arg
Cys 625	Gly	Cys	Pro	Ile	Gly 630	Leu	Glu	Leu	Leu	Ser 635	Asp	Met	Lys	Thr	Cys 640
Ile	Val	Pro	Glu	Ala 645	Phe	Leu	Val	Phe	Thr 650	Ser	Arg	Ala	Ala	Ile 655	His
Arg	Ile	Ser	Leu 660		Thr	Asn	Asn	Asn 665		Val	Ala	Ile	Pro 670		Thr
Gly	Val	Lys 675	Glu	Ala	Ser	Ala	Leu 680	Asp	Phe	Asp	Val	Ser 685	Asn	Asn	His
Ile	Tyr 690	Trp	Thr	Asp	Val	Ser 695	Leu	Lys	Asn	Ile	Ser 700	Arg	Ala	Phe	Met
Asn 705	Gly	Ser	Ser	Val	Glu 710	His	Val	Val	Glu	Phe	Gly	Leu	Asp	Tyr	Pro 720
	Gly	Met	Ala	Val 725	Asp	Trp	Met	Gly	Lys 730		Leu	Tyr	Trp	Ala 735	
Thr	Gly	Thr	Asn 740		Ile	Glu	Val	Ala 745		Leu	Asp	Gly	Gln 750		Arg
Gln	Val	Leu 755		Trp	Arg	Asp	Leu 760		Asn	Pro	Arg	Ser 765		Ala	Leu
Asp	Pro 770	Thr	Lys	Gly	Tyr	Ile 775	Tyr	Trp	Thr	Glu	Trp 780	Gly	Gly	Lys	Pro
Arg 785		Val	Arg	Ala	Phe 790		Asp	Gly	Thr	Asn 795		Met	Thr	Leu	Val 800
	Lys	Val	Gly	Arg 805	Ala	Asn	Asp	Leu	Thr 810		Asp	Tyr	Ala	Asp 815	
Arg	Leu	Tyr	Trp 820		Asp	Leu	Asp	Thr 825		Met	Ile	Glu	Ser 830		Asn
Met	Leu	Gly 835		Glu	Arg	Val	Val 840		Ala	Asp	Asp	Leu 845		His	Pro
Phe	Gly 850		Thr	Gln	Tyr	Ser 855		Tyr	Ile	Tyr	Trp		Asp	Trp	Asn
Leu 865		Ser	Ile	Glu	Arg 870		Asp	Lys	Thr	Ser 875	Gly	Arg	Asn	Arg	Thr 880
	Ile	Gln	Gly	His 885	Leu	Asp	Phe	Val	Met 890		Ile	Leu	Val	Phe 895	
Ser	Ser	Arg	Gln 900		Gly	Leu	Asn	Asp 905		Met	His	Asn	Asn 910		Gln
Cys	Gly	Gln 915		Cys	Leu	Ala	Ile 920		Gly	Gly	His	Arg 925		Gly	Cys
Ala	Ser 930		Tyr	Thr	Leu	Asp 935		Ser	Ser	Arg	Asn 940		Ser	Pro	Pro
Thr 945	_	Phe	Leu	Leu	Phe 950		Gln	Lys	Ser	Ala 955	-	Ser	Arg	Met	Ile 960
-	Asp	Asp	Gln	His	Ser	Pro	Asp	Leu	Ile		Pro	Leu	His	Gly	

	965			970		975	
Arg Asn Val	Lys Ala 980	Ile Asp	Tyr Asp 985	Pro Leu	Asp Lys	Phe Ile Ty	yr
Trp Val Asp 995	Gly Arg	Gln Asn	Ile Lys 1000	Arg Ala	Lys Asp		hr
Gln Pro Phe 1010	Val Leu	Thr Ser		Gln Gly	Gln Asn 1020	Pro Asp A	rg
Gln Pro His 1025	Asp Leu	Ser Ile 1030	Asp Ile	Tyr Ser 103	-		rp 040
Thr Cys Glu	Ala Thr 1045		Ile Asn	Val His 1050	Arg Leu	Ser Gly GI 1055	lu
Ala Met Gly	Val Val 1060	Leu Arg	Gly Asp		Lys Pro	Arg Ala II	le
Val Val Asn 107		Arg Gly	Tyr Leu 1080	Tyr Phe	Thr Asn 1085		sp
Arg Ala Ala 1090	Lys Ile	Glu Arg 109		Leu Asp	Gly Thr 1100	Glu Arg Gl	lu
Val Leu Phe 1105	Thr Thr	Gly Leu 1110	Ile Arg	Pro Val			sp 120
Asn Thr Leu	1125	5	-	1130	-	1135	
Glu Ser Cys	1140		114	5		1150	
Asn Ile Val	5	_	1160		116	·	
Trp Ile Asp 1170	_	117	5	_	1180	_	
Gly Asp Lys 1185		1190		1199	5	12	200
Ile His Ala	Val Glu 1205		Ser Leu	Glu Glu 1210	Phe Ser	Ala His Pr 1215	ro
Cys Ala Arg	Asp Asn 1220	Gly Gly	Cys Ser 122		Cys Ile	Ala Lys GI 1230	Ly
Asp Gly Thr 123	5.		1240		124	5	
Asn Leu Leu 1250		125	5		1260		
Ala Cys Ala 1265		1270		127	5	12	280
Asp Gly Phe	Pro Glu 1285		Asp Gln	Ser Asp 1290	Glu Glu	Gly Cys Pr 1295	ro
Val Cys Ser	1300		130	5	_	1310	-
Leu Arg Leu 131		Asp Gly	Glu Ala 1320	Asp Cys	Gln Asp 132	-	ge
Glu Val Asp 1330		133	5		1340		
Ser Gly Gln 1345	Cys Val	Leu Ile 1350	Lys Gln	Gln Cys 135			sp 360
Cys Ile Asp	1365	5		1370		1375	
Ser Asp Asp	Ser Pro 1380	Ala His	Ser Ser 138		Gly Pro	Val Ile G	ly
Ile Ile Leu 139	5		1400	-	140	5	
Arg Val Val 1410	Cys Gln	Arg Tyr	Ala Gly	Ala Asn	Gly Pro 1420	Phe Pro H	is

WO 02/092015 PCT/US02/15982

032796-132.ST25

Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe Ile Ala Pro 1435 1430 Gly Gly Ser Gln His Gly Pro Phe Thr Gly Ile Ala Cys Gly Lys Ser 1445 1450 Met Met Ser Ser Val Ser Leu Met Gly Gly Arg Gly Gly Val Pro Leu 1465 Tyr Asp Arg Asn His Val Thr Gly Ala Ser Ser Ser Ser Ser Ser Ser 1475 1480 1485 Thr Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro Pro Ser Pro 1490 1495 1500 Ala Thr Asp Pro Ser Leu Tyr Asn Met Asp Met Phe Tyr Ser Ser Asn 1510 1515 Ile Pro Ala Thr Ala Arg Pro Tyr Arg Pro Tyr Ile Ile Arg Gly Met 1530 Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp Ser Asp Tyr 1545 1550 Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr Leu Asp Leu Asn Ser 1560 1565 Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser Gln Tyr Leu 1575 1580 Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu Arg Ser Tyr 1590 1595 Phe His Leu Phe Pro Pro Pro Pro Ser Pro Cys Thr Asp Ser Ser 1610

<210> 4 <211> 1615 <212> PRT <213> Homo sapiens

<400> 4

Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu Leu Leu 10 Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala Ala Ala Ser 25 Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala 40 Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly Leu Glu Asp 55 Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val Tyr Trp Thr 75 Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly 85 90 Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser Pro Asp Gly 105 Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr Asp Ser Glu 115 120 125 Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg Lys Val 135 140 Leu Phe Trp Gln Asp Leu Asp Gln Pro Lys Ala Ile Ala Leu Asp Pro 150 155 Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Val Glu Thr Pro Arg Ile 170 Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile Val Asp Ser 180 185

Asp	Ile	Tyr 195	Trp	Pro	Asn	Gly	Leu 200	Thr	Ile	Asp	Leu	Glu 205	Glu	Gln	Lys
Leu	Tyr 210	Trp	Ala	Asp	Ala	Lys 215	Leu	Ser	Phe	Ile	His 220	Arg	Ala	Asn	Leu
Asp 225	Gly	Ser	Phe	Arg	Gln 230	Lys	Val	Val	Glu	Gly 235	Ser	Leu	Thr	His	Pro 240
Phe	Ala	Leu	Thr	Leu 245	Ser	Gly	Asp	Thr	Leu 250	Tyr	Trp	Thr	Asp	Trp 255	Gln
Thr	Arg	Ser	Ile 260	His	Ala	Суз	Asn	Lys 265	Arg	Thr	Gly	Gly	Lys 270	Arg	Lys
	Ile	275				-	280			•		285			
	Glu 290	_				295			_	-	300		_		-
305	Trp				310					315				-	320
	Ala			325	_				330	-		_	_	335	-
_	Ala	_	340					345			-	•	350	•	
	Arg	355			_		360	_			_	365			
	370	_		•		375				-	380	-			
385	Tyr		_	_	390	_	=			395			_		400
	Leu	_	_	405	_				410					415	
	Pro		420				_	425					430	-	-
	Asp	435	_		-	_	440				•	445		-	
	Arg 450	_				455		-		-	460		_		
465	Leu				470	_			_	475		-	_	-	480
	Pro			485	_				490	_			_	495	
	Val		500					505					510	_	
	Glu	515	_		_	_	520	_		•		525	_		
	11e 530			_	_	535			_		540			-	-
545	Pro				550					555					560
	Asp	_		565	_				570			-		575	
	Arg		580					585					590		
• •	Val	595					600					605			
	Gly 610					615	_				620				-
625	Gly				630					635	_		_		640
ile	Val	Pro	Glu	Ala	Phe	Leu	Val	Phe	Thr	Ser	Arg	Ala	Ala	Ile	His

Arg Ile Ser Leu Glu Thr Asn Asn Asn Asn Asp Nap Val Ala Ile Pro Leu Thr 670 Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn Asn His 675 Ile Tyr Trp Thr Asp Val Ser Leu Lys Asn Ile Gy Corona (1900) Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gy Leu Asp Tyr Pro 710 Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp 735 Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe Arg 730 Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Val Rag Asp Pro 755 Asp Pro Trh Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro 765 Asp Pro Trh Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro 770 Asp Pro Trh Lys Gly Tyr Ile Tyr Trp Thr Asn Cys Met Thr Leu Val Rag Asp Leu Thr Ile Asp 790 Asp Leu Tyr Trp Thr Asp Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asp Ser Leu Hala Asp 795 Arg Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Thr Ile Asp 795 Asp Lys Val Glo Arg Val Val Ile Ala Asp Asp Leu Thr Ile Asp Tyr Ala Asp Gln 805 Arg Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Thr Ile Asp Tyr Ala Asp Gln 805 Arg Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro 835 Arg Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro 835 Arg Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro 865 Asp Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly					645					650					655	
675	Arg	Ile	Ser		Glu	Thr	Asn	Asn		Asp	Val	Ala	Ile		Leu	Thr
690	Gly	Val		Glu	Ala	Ser	Ala		Asp	Phe	Asp	Val		Asn	Asn	His
705		690			_		695		_			700	_			
The Gly The Ash Arg I Le Glu Val Ala Arg Leu Asp Gly Gln Phe Arg 740 Gln Val Leu Val Trp Arg Asp Leu Asp Asp Pro Arg Ser Leu Ala Leu 755 Asp Pro Thr Lys Gly Tyr I le Tyr Trp Thr Glu Trp Gly Gly Lys Pro 770 Arg I le Val Arg Ala Phe Met Asp Gly Thr Ash Cys Met Thr Leu Val 775 Arg I le Val Arg Ala Phe Met Asp Gly Thr I Leu Sp Tyr Ala Asp Glo Asp Lys Val Gly Arg Ala Ash Ash Asp Leu Trp Trp Thr Asp Leu Asp Roll 815 Arg Leu Tyr Trp Thr Asp Leu Asp Thr Ash Met I le Glu Ser Ser Ash 820 Met Leu Gly Gln Glu Arg Val Val I Le Ala Asp Asp Leu Pro 835 Phe Gly Leu Thr Gln Tyr Ser Asp Tyr I le Tyr Trp Thr Asp Leu Asp 860 Asp Lys Val Gly Arg Ala Asp Val Val I Le Ala Asp Asp Leu Pro 835 Met Leu Gly Gln Glu Arg Val Val I Le Ala Asp Asp Leu Pro 815 Asg Leu Thr Gln Tyr Ser Asp Tyr I I Trp Thr Asp Trp Ash 860 Bell Leu Gly Gln Glu Arg Ala Asp Lys Thr Ser Gly Arg Ash Arg Thr 865 Leu His Ser I Le Glu Arg Ala Asp Lys Thr Ser Gly Arg Ash Arg Thr 886 Leu I le Gln Gly His Leu Asp Phe Val Met Asp I le Leu Val Phe His 887 Ser Ser Arg Gln Asp Gly Leu Ash Asp Cys Met His Ash Ash Gly Gln 900 Cys Gly Gln Leu Cys Leu Ala I le Pro Gly Gly His Arg Cys Gly Cys 915 Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Ash Cys Ser Pro Pro 930 Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala I le Ser Arg Met I le 965 Arg Asp Asp Gln His Ser Pro Asp Leu I le Leu Pro Leu His Gly Leu 965 Arg Ash Val Lys Ala I le Asp Tyr Asp Pro Leu Asp Lys Phe I le Tyr 985 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Ash Pro Asp Asp Gly Thr 1005 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Ash Pro Asp Asp Gly Thr 1005 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Ash Pro Asp Asp Gly Thr 1005 Ala Met Gly Val Val Leu Arg Gly Tyr Leu Tyr Phe Thr Ash Met Glu Arg Ala I le Asp Asp Asp Asp Cys Pro Asp Asp Glo Thr 1005 Ala Met Gly Val Val Leu Arg Gly Tyr Leu Tyr Phe Thr Ash Met Glu Arg Ala I le Asp Asp Asp Asp Asp Asp Cys Pro Arg Ala I le 1005		Gly	Ser	Ser	Val		His	Val	Val	Glu		Gly	Leu	Asp	Tyr	
T40					725					730				-	735	-
755				740					745			_		750		_
Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met Thr Leu Val 785 790 795 800 Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr Ala Asp Gln 805 806 806 806 806 810 815 810 815 806 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 815 810 816 817 816 818 816 818 816 818 816 818 816 818 <td></td> <td></td> <td>755</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>760</td> <td>_</td> <td></td> <td></td> <td>•</td> <td>765</td> <td></td> <td></td> <td></td>			755		_	_	_	760	_			•	765			
790		770			_	-	775	_	_			780	_	_	_	
Red Tyr Trp Thr Asp Leu Asp Thr Asp Met Ile Glu Ser Ser Asn 820 840 840 845	785					790					795					800
Met Leu Gly Gln Glu Arg Val Val IIe Ala Asp Asp Leu Pro His Pro 835 Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr Asp Trp Asn 850 Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg Asn Arg Thr 865 Leu His Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His 885 Ser Ser Arg Gln Asp Gly Leu Asn 900 Asp Cys Met His Asn Asn Gly Gln 900 Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly Cys 915 905 Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro Pro 930 905 Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile 950 906 Pro Asp Asp Asp Asp Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys Phe Ile Tyr 980 985 Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr 1000 985 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly					805					810			_		815	
Reference	_		_	820		_		_	825					830		
S50			835					840			_	_	845			
Secondary Seco		850				_	855	_	-		_	860		=	-	
Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn Asn Gly Gln 900	865					870		_	_		875	_	•		_	880
Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly Cys 915 Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro Pro 930 Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile 945 Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro 965 Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Pro 985 Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr 995 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp Arg 1015 Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe Trp 1025 Ala Met Gly Val Val Leu Arg Gly Arg Gly Arg Gly Asp Asp Asp Lys Pro Arg Ala Ile 1045 Ala Met Gly Val Val Leu Arg Gly Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp 1075 Arg Ala Ala Ile Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp 1075 Arg Ala Ala Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu					885		_			890	-				895	
Page				900					905	_				910	_	
930			915					920		_	_		925	_	_	_
945		930		_			935					940	-			
Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys Phe Ile Tyr 980	945					950			-		955			_		960
980 985 990 Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr 995 1000 1005 Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp Arg 1010 1015 1020 Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe Trp 1025 1030 1035 1040 Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu Ser Gly Glu 1045 1055 Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro Arg Ala Ile 1060 1065 Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp 1075 1080 1085 Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu					965			_		970					975	
Second Column	_			980			_	_	985			_	_	990		-
1010			995					1000	כ				100	5		
1025		1010)				101	5				1020)		_	_
Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu Ser Gly Glu 1045			His	Asp	Leu			Asp	Ile	Tyr			Thr	Leu	Phe	-
Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro Arg Ala Ile 1060 1065 1070 Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp 1075 1080 1085 Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu			Glu	Ala		Asn		Ile	Asn		His		Leu	Ser	_	Glu
Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp 1075 1080 1085 Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu	Äla	Met	Gly		Val		Arg	Gly		Arg		Lys	Pro		Ala	
Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu	Val	Val		Ala		Arg	Gly		Leu		Phe	Thr		Met		Asp
	Arg		Ala		Ile	Glu	-	Ala		Leu	Asp	_	Thr		Arg	Glu

Val 110	Leu 5	Phe	Thr	Thr	Gly 1110		Ile	Arg	Pro	Val 111:	Ala 5	Leu	Val	Val	Asp 1120
Asn	Thr	Leu	Gly	Lys 112		Phe	Trp	Val	Asp 113		Asp	Leu	Lys	Arg 1139	Ile
Glu	Ser	Cys	Asp 114		Ser	Gly	Ala	Asn 1145		Leu	Thr	Leu	Glu 1150	_	Ala
	Ile	115	5				1160)				1165	5		-
	Ile 117	0				1175	5			_	1180)	_		
118	_				1190)				1195	5				1200
	His			1205	j .				1210)				1215	5
	Ala		1220)				1225	i				1230)	-
	Gly	123	5				1240)				1245	•		
	Leu 1250)				1255	5			_	1260)	-		
126					1270)				1275	5			-	1280
	Gly			1285	5				1290)			-	1295	5
	Cys		1300)				1305	j				1310)	-
	Arg	1315	5				1320)				1325	·		_
	Val 1330)				1335	5				1340)	_	-	
134					1350)				1355	j				1360
	Ile			1365	5				1370)			_	1375	5
	Asp		1380)				1385	;		_		1390)	_
	Ile	1395	5				1400)				1405	•		
	Val 1410)				1415	5				1420)			
142					1430)				1435	5				1440
Gly	Gly	Ser	Gln	His 1445		Pro	Phe	Thr	Gly 1450		Ala	Суѕ	Gly	Lys 1455	
Met	Met	Ser	Ser 1460		Ser	Leu	Met	Gly 1465	Gly		Gly	Gly	Val 1470	Pro	
Tyr	Asp	Arg 1475		His	Val	Thr	Gly 1480		Ser	Ser	Ser	Ser 1485		Ser	Ser
Thr	Lys 1490		Thr	Leu	Tyr	Pro 1495		Ile	Leu	Asn	Pro 1500		Pro	Ser	Pro
Ala 1509	Thr	Asp	Pro	Ser	Leu 1510		Asn	Met	Asp	Met 1515		Tyr	Ser	Ser	Asn 1520
Ile															
	Pro			1525	,				1530)			_	1535	5
		Pro	Thr 1540	1525 Thr	Pro	Cys	Ser	Thr 1545	1530 Asp) Val	Cys	Asp	Ser 1550	1535 Asp	Tyr

<210> 5 <211> 3096 <212> DNA <213> Homo sapiens

<400> 5

catcttctca cacgatctct cgcttcgcac tccttccttt gattggtttt caccatttac 60 teagacgacg greettette gatetttgea cattetteta teatetaeta cetteatace 120 cagctccgtc ccctaatatt catgcgcgga tggcccattc cgtggtgaaa attcccttct 180 actetgetaa tetgetgtte teteteeete eegtegggtt etgeteetge eacqttetee 240 cctctcccca ccaaaggctg ggttttcttt gtcagggctc ctttcccctt tggaagaagg 300 ggggctgtat ggccttggtg cgaggccctc cagtgacagg atcccccatc acccagagtt 360 ccacaggccc tggtagggag gagggggagc agaagaggag gtgccatctt tgcctgctgg 420 ggaagggcag gggccaccca cacagagctc tcccatttqc tqtqqaccct qqqqccactq 480 cccagttcct tccaaaggaa agccagctcc ccaggtggtg ggagagtgat atggcttcct 540 cttaaactta gggaattgag tgtgtggttg cttctaagtg ccttagaagc cgggagcggc 600 tectggaaag agectgeetg ceacageggg cettaceetg getgtgeeca cagatgteec 660 tggggcctgc cgctcctgcc cggctctcct ggcctccccc ggtgtgggtt gggaaaaqca 720 cagcaaatta aaaaacacct ccatctctgg cctttgaaga atgcatctga acagccgaga 780 gtgtaaaccg tggtgaaatg tggtctttcc agtttgggga gaagcagggc agagctgggg 840 900 960 ccgctgggac ctccagctgt aatagggaag gttttactgg gttgctggcc actgtggact gcccctaagg gcaggtatgc ctgcctttac ccgggttccc ctcctgcctg gaagatacag 1020 cccatgggag gcctgttgtc tgtgggatcc tccagcatca gagacactgg ggccagcgtc 1080 tgcctggtga ggtgcaggcc tggcaggccc ggtcccccac ctgcttgagc acccacggtg 1140 1200 gtgggggctc gctgcctccc gagacaatct atqtcattqt tqtccaagga agctaattta gagtagaaag ttccgtgtcc agtcccactc tgtgcgtgtg ttagcagggg actctcgggc 1260 cggagctggg tccaccctgg tagggggact tcatggggcc tgggcgacag cactgtgtat 1320 1380 ttgtgtgtgt gtgtgtttgt gtgtgtgtgt gtctgaggag gtggaccagt ttctcaaaag 1440 gcctqtqacc ccaagaacca aggaatttca qcctgggtqq atcacacctt cactqqtqaq tgggacaage tgggggeeet egecacagga geagecaggg catggggeae agttggeete 1500 attcacaaaa tgggagtata agtgatccct gctctggcgg ccaggacgat gagtgggaac 1560 1620 acaccgtgtg ggggctgcct ggcctgggtg tgccgcgggt gtccttgttg gtgatggttc cacctgcttg tgccaccagt gccctctggg tctcacacac aactctcttc ccagcgaagg 1680 1740 eccetectge ecteaggeet eagtgetget teegtetegg aaggeeceag gageteetge 1800 . atcctgggcg tgattcctgt gtgcctgcag accccctcgc ggctgccatc tcatcctttg gtqcacctqt tqqccaqacc tcctqqtaqc qqqtqctqca ctcccctqaa tqtqccqqqq 1860 1920 cctgggggca gggacctggg ctcctccctc actgagtgga gggaactcag tgtcttggag 1980 ttggggtgcc tgcaggctgg gtggtgcagg tgaaatgcag acctctcagc tggtgttcca 2040 gagcagctgc cttcccccgc ccgagggact tcacccgcag cccagtcagg ggtggcgcct 2100 gggtgcatcg cccgcaggct gggtaggggt ggagcctggg tggccctgcc tgtgagctgc atagttgtcg cetttgacce tgagttttet tegttatetg tttggacetg tttggggeag 2160 2220 gcaggggatg agatctgaag ataaatgcct tagctgtgac catctccttt tgtgagaggt 2280 caatgtccag ttccgctgca gttataacat cccatttttt gatttctttt tatttttcc tttttctttt tgagatggag tctcgctctg tcacccaggc tggagtgcaa tggggtgacc 2340 tcagctcact gcaacctcca cttctcgggt tcaagtgatt ctcctgcctc agcctcctga 2400

```
ctagcagggg ttacaggcgt gagccaccac gcccagctaa tttttgtatt tttagtaqaq
                                                                     2460
gcaaggtttc gtcatgttgg ccaggctggt ctcaaactcc tggccttaag tgatctgccc
                                                                     2520
gcctcggcct cccaaagtgc tgagatgaca ggtgtgagcc accgtgcccg gcccagaact
                                                                     2580
ctttaattcc cacctgaaac ttgccgcctt aagcaggtcc ccagtctccc tcccctagtc
                                                                     2640
cctggtccca ccattctgct ttctgtctca atgaatttgc ctaccgtaag tacctcatat
                                                                     2700
aaattgaatc ataaagtatt tqtcttttta tatctqqctt atttcactta qcataacatt
                                                                     2760
cttaagtttc atccatgttg tagcatgtgt cagaatctct ctctttttt ttttttttt
                                                                     2820
ttttttttt ttttgcagac agagtctcgc tctgtcatct agactggagt tcagtggcac
                                                                     2880
gatctcggtt cactgcaaca tctgcctcct gggtccaagc aattctcctg cctcaqcctc
                                                                     2940
cttagcagct ggaactacag gcgcgtgcca ccatgccttg ctaatttttg tattttatg
                                                                     3000
tggaggcagg gtttcaccat cttggccagg ctggtctcga attcctggtc ttcaccacqq
                                                                     3060
gggcccgaag gacccgggca aagcgtggag gggagg
                                                                     3096
```

<210> 6 <211> 26928 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (12044), (12489), (26433), (26434), (26435), (26436), (26439), (26441)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 6

gaagaccaag	ggcacacagc	gaggcagttt	cagggcgggc	agcctggggc	cccacggggc	60
ggccccggac	acttgttctc	acctgtggag	ggcagagaag	ggaacaggga	gagaagtggc	120
cggctgggag	tggaggtggg	tttgaggttt	tactgtaaac	taaatgtgta	ccctctacct	180
tagttatgaa	ttatgagaca	cgaagactgc	gaaacagaca	cactcctcta	aaagtgcctc	240
taggctgaca	gggagaaagt	cccgccaggc	tcccagacgc	cacctttgag	tccttcaaca	300
agcccgccag	ggcctcttgc	ccaccggtgt	cagctcagcc	actgaaccct	ccaggaagaa	360
gacgtgctgg	taggagaaga	atctcaccca	ggcacagcct	ggaaggggca	cagaaggggc	420
tccggaacca	gcaagcccaa	gttggaactc	ccagtctgct	actttctaga	acgactgtgc	480
ccttggcggg	tctaagtaga	acctctccgc	gcactctttc	ctcctttgta	aagtggggac	540
agcaatggcc	accttgcagg	ttcagagagg	gcttgcagta	cctcacagaa	ctgagtgccc	600
gtgaacgtgt	gtgttcctcc	agatttgtga	cagctttgcc	aggctggagt	caggctgaac	660
gcctctgccc	tcatggggtt	tatattctag	gaagaccaac	aaaaacaaga	agacggaaaa	720
ttaaaacaac	aaaagcccca	ttgacaggcc	gtgaagaatg	ccatgaaaaa	tgaatggcgt	780
tgtgctgcag	tctttgggga	aacgggctta	cggaaagaag	gacacttgag	ctgctaccaa	840
tgagcagccg	tccggtggga	gggcagttca	ggaagagcag	acatccactg	aggaggcgct	900
ggggcagagg	gcagcctggt	cgctggattc	gggggaggaa	ccacatcagg	ccatgagctg	960
gagctggtgg	tagaatgtac	aggagaggcc	agccagggcc	agctcatgtc	agacctcaag	1020
cggggaagat	gaatcgagaa	tgcaccccac	gagcaatggg	aagccagtct	acgatttaag	1080
cagcaaaaat	attttccctt	cttccaccct	gcatccagct	ctaccagcac	agcctggggt	1140
tctattttca	agatagaata	gacccagact	cccagctctt	cttacacttc	tactactgcc	1200
acctgtcacc	cactcatgcg	tccccacttg	cagcctcgac	ccccttccac	ctgatctcat	1260
				tcaggaaaga		1320
				tgacctctca		1380
				gtgtctctgt		1440
acacaccagg	tgcactcctg	cctcagggcc	tttgtgcttg	ctgttctctg	ctgggactct	1500
tttttttt	ttttttttg	agacagggtc	tcactctgtg	gcccaggctg	gagtgtagtg	1560
gtgtgatcgt	agctcattgc	aacctcaaac	tcctgggctc	aagcaatcct	cccacctcag	1620
				ggatctcact		1680
ggctggagtg	cagtggggca	atcttggctc	accacaacct	ctgcctccca	ggctcaagca	1740
attctcctgc	ctcagcctcc	caagtagctg	ggattacagg	catgtgccac	cacgcccagc	1800

WO 02/092015

PCT/US02/15982

```
ttatttttgt atttttagta gagacagggt ttcaccatgt tggtctggct ggtcttgaac
                                                                   1860
tectggeete agatgateea eetgeetegg eeteecaaag tgetgggatg acaggeatga
                                                                   1920
gcctgtctct agtagttagg actacagaga ggggccatca tgcctggtga tcctcccacc
                                                                   1980
ttttctgctc caactctttc accccactta gcctcgtggc tcactctctt acctcttcag
                                                                   2040
ctcctcagtc aggcctgagg acccctgttg aaaattgcaa accacaccc ccaccaccac
                                                                   2100
cacccactat tgccagcact ttctactcca tttctctgct ttacttttct cctttgtact
                                                                   2160
catcaccacc tgactcatta catgtttacg tatctttctt ctctccacta gcatqqaaqc
                                                                   2220
tccaggagag cagagagtgt agttttattc cctgatgtgt ttcctgtgcc cgtaccaggg
                                                                   2280
cctagcacac agtaggtgct cagtaaatgt gtgttggatg aacaaataca gtgaaaggat
                                                                   2340
ctgatctaca tttataaaga aggcactctg gctgctgagt ggggatgaga ctgtcaggag
                                                                   2400
gaaagaggcc cctgtggggg cctggccagc aggtgggtac aatggtagca gccaggaqaq
                                                                   2460
agggcctctt ggactcaagt ggatggggcc tgctcagggc tccggccaca ggaacaaagg
                                                                   2520
gaagggggcc caggatggcc tgtcatagag gacacattac aactggccca aagttcaagt
                                                                   2580
caggtttcta aatttgggaa gggatacaga aaaactaaag actctactgg acagtcagtt
                                                                   2640
2700
aaggggccac cagagactcc cagagaggaa agggactatg ggctggatgc ggtgactcac
                                                                   2760
acctataatc ccagcacttt gggaggccga ggagggtgga tcacgaggtc aggagttcaa
                                                                   2820
aaccagccta ggcaacatgg taaaaccccc gtttctacta aaaatacaaa aaattagctg
                                                                   2880
ggcatggcag catgtgcctg taatcccagc tactcgggag gctgaggcag gagagttgct
                                                                   2940
                                                                   3000
agaacccagg aggcagaggt tgcagtgagc cgagattgag ccactatgct ccagcttggg
cgacagagca agactccgtc tctaaaaaaa agaaaaaaaa ggccagatga ggtggctcat
                                                                   3060
gcctgtaatc ccagcacttt gggaggccga ggtgggtgga tcacgaggtc aggagatcga
                                                                   3120
                                                                   3180
gaccatcctg gctaacatgg tgaaactcca tctctactta aaatacaaaa aattagccgg
gcgtggtggc gggcacctgt agtcccagct acttgggagg ctgaggcagg agaatggcgt
                                                                   3240
gaacctggga ggcggagett gcagtgagec gagattgcgc cactgcactc catccagect
                                                                   3300
gggcgacaga gttagactcc gtctcaaaaa aaaaaaaaa aaaaaaatta gctgattagt
                                                                   3360
tgggcttggt ggcgggcgcc tgtaatccca actactcggg aggctgaggc gggagaatca
                                                                   3420
                                                                   3480
cttgaacccg ggaggcagag gttgcaatga gccgatatca cgccactaca ctccaqcctq
3540
gcctgggacc caaagcacac tactgcaaqg tcccagggtg cctgactcca accggagcct
                                                                   3600
                                                                   3660
tgagaacatt catttgcaaa gaatgaatta aaattcagca ctattttatt ctqcaqqatt
ccagcacccc aaggacagtc atttttagac ccttcagtaa cgtaataagt aaccggagga
                                                                   3720
                                                                   3780
tgtgctgagc ttccacttcc ccagacggtt gcctgtcaca gctcatcagg ccaacaaact
                                                                   3840.
tttcttaggc ctcaaatttg gaaatgttca ctctcagttc gttccttaga tgcaagtcca
teccaatgaa gtaacagggg etcageacet gtecaatete attgetteeg gggacagggg
                                                                   3900
cccatgagga tgtcgtttca gcccggtgac acttgggcaa agtgcctttt ggtttccctc
                                                                   3960
ccaggctgga acgtgctggc tctgtgaagt tacgctgggc acaagagccc ccccaaccc
                                                                   4020
ggcaggactg actgctgtgg tcagaggcgc ccctggggct ttggggagcca cagaatcttc
                                                                   4080
ctgagggcag cgccggagga ggccccagtg agagtgccca ctgccaggct cattcctcag
                                                                   4140
getgeegeag geeteteece aaaacaggea atgettetea geaacetgee eeaggageag
                                                                    4200
gccagggaag gccgccatcg gcctacagtg ctgggctctg gagggcttgg ttggtaacag
                                                                   4260
gccatggttt ctatgagcca gctggggtgt gaaggacaca ggctggattc acctctctgg
                                                                   4320
gcctcagttt ctgcattcaa aaagtgggaa tcatgatatc tgctctattt cttatctctc
                                                                    4380
agtgctgatg tgaacctcca ataagacttt taaaaatact ctttctacct tacttttatt
                                                                    4440
                                                                    4500
tttcatttat tttaagataa tgtctagctg tctcacccag gctggagtgc agtggtgtga
ttacggctca ctacagcctt aaccteccag gctcaagtga tectectace acagectece
                                                                    4560
aagtagctgg aactacaggc atgcaccacc gcacctggat aattttttct tttgagacaa
                                                                    4620 .
ggtttcactc tgttgcccag gctggagtgc agtggtgcac tcttggctca ctgcagcctc
                                                                    4680
aacctccctg ggcttaggtg atcctcacac ttcagtctcc caagtagctg ggactacagg
                                                                    4740
tatqtqccag tacacccagc taatattttt gaaggatggg gtttcactat attgcccagg
                                                                    4800
ctggtcttga actccagggt ttaagcaatc taccttcctc agcctgccaa agtgctagga
                                                                    4860
ttataggtat gagccacccc ccggcctata atcctaccac tttaaaaaag cctgtaattt
                                                                    4920
                                                                    4980
tagcacttta aaaaattttt ctaaattttt tatagagatg ggggacagct gtggtctcac
tqtqttqccc aggctggtct tqaactccta ggatcaagcc atcctcctqq cctqqcctcc
                                                                    5040
caaaqtqttg ggattataag cataagcctt accttacctt ttttttttqa qttqcaqttt
                                                                    5100
tgttcttgtt gctcaggctg gagtgcaatg gcaagatett ggctcactgc aacctccacc
                                                                    5160
tecegggtte aageaattet eetgeeteag eeteeegagt agetgggatt acaggeatge
                                                                    5220
```

gccaccacac ccagctaatt ttgtattttt agtagagatg gggtttctct atatacctta 5280 attttaaagc actgcattca tgtaaattgt gattaacatg gattcaagag agggagtgag 5340 gatgaatgag ccaggcagtc acctcqqctg tcaccctcca cttctctct ccttctqaca 5400 gtcatcgtcc atccgtttct gcagctgttt gtttgactct cctgatcatt ttgcttgcca 5460 cataacttgc ctcctgggaa agaatgccct gggcaggccc acatgagtag tgaaaaataa 5520 tctgcagtga aaaataaaac taagtagtct ggtccacaga gcagtcttat tttttcactq 5580 cagatgaagg agttgacatt caggettcat teteatttat aagtgtttta aagacacata 5640 cagtggattg aacagtggcc ttcaaaaaga tgtatctaca tcctaatccc tgggacctgt 5700 gaatgttaac caagttagga aaagggtctt cccgggtgtc attaagttag agatcttgag 5760 atgaggaget categtggat tatecaggtg gaccetgeat ceaaggacaa atggteetta 5820 gaaaagaaaa gcagaggctg ggcacagtgg ctcaagcctg taatcccagc actttgagag 5880 gccgaggtgg gtggatcacc taaggtcatg agttcgagag cagcctggcc aacatgatga 5940 aatcccatct ctactaaaaa tacaaaaatt agcaaggcat ggtggcgggt gcctataatc 6000 ccagctactc aggaagctga ggcaggagaa tggcttgcac ctgggaggcg gaggttgcag 6060 tgagccaaga tcgcgccact gcactccagc ctgagggaga aaagtgaaac tctgtctcat 6120 aaaagaaaag aaaagcagac agagatctga gacagaagag gagagtgaag gaaaaaaggc 6180 catgtgaaga tgaggcagag gttggagcca tgcagccaca agccaaggaa tacctggagc 6240 cccagaagtt gcaagaggta ggaagaagcc tcccctagag cctccagacg gagcacagcc 6300 ctgccaacac ctccacctca gacttctggc ctccagcact gtgagataat caactgctgt 6360 tgttttaagc caccagattt gtggtaattt gttatggcag ccacaggaaa ctaatacagt 6420 acctaatett cacaaaccca tettacagaa aaggaaactg aagteagaga ggtagtgget 6480 tgtgcagtgt gttaggccat tcttgtatta ctataaagaa atacctgagg ccgggcatgg 6540 tggctcacgc ctgtaatccc agcactttgg gaggccaagg tgagtggatc acttgaggtc 6600 aggagttcaa gaccagcctg gacaacatgg tgaaacccca tttctactga aaatatgaaa 6660 attagccagg catggtggcg tgcatctgta gtcccagcta ctcaggaggc tgaggcagga 6720 gaatcacttg cgcccgggag gaggaggttg tagtgagcca agattgtgcc actgcactcc 6780 agcctgggag acaagagaga aaccctgtct caaaataaat aaaaaacaaa taaacacctg 6840 agactgggta gtttataaag aaaggggtta actggctccc ggttctgcaq gctqtacaaq 6900 catggtgccg gcatctgctt ggttgctggg aaggcttcag ggagttttac tcatcgtgga 6960 aggcagagcc agagcaggtg catcacacag caaaagcagg agcgagagag agagagagca 7020 7080 gggaggtgtg cacactttta aatgagcaga tctcacgaga actcaccatt gcaaggacag 7140 caccaagcca cgaggggtct gcccccatga cccaaacctc ccactaggcc ccacccccaa cattgggaat tacagttcaa catgaggttt ggggggacaa atatccaaac tatatcattc 7200 7260 cacccctggc cccccagate teatgttett eteacattge aaaatatagt catgeettee 7320 cagtagcccc ccaaagtett aactcatece ageattaact caaaaateee atteecaagt ccaacgtctc atctgaagat gagttccttt cacctacaag actgtaaaaa tgaaaacagt 7380 tatttactgc tgagatacaa tgggggcata ggcattaggt aaacattcct gttccaaaag 7440 ggagaaatcg gtcaaaagaa aggggctata ggccccaagc aagtccaaaa cccagcagag 7500 caatcattca atcttaaagc tccaaaataa cctccttaaa ctccatgtcc catagccagg 7560 7620 gcacactggt gcaaggggca ggctcccaag gccttgggca gctctattcc tgcggctttg cagaattcag tecccatgge tgetettaca gattggagat gagggeetge ggetttteca 7680 ggtgcagggt gcaagctgct ggtgatctac cattctgggg tgtggatggt ggcggccccg 7740 tecegeaget ceactaggea ttgteceagt ggggaeteta tgtggggeet ceaaceceae 7800 7860 atttcccctc caatgggaag gctctgcccc tgcagcagcc ttcttcctgg gctcccaggc tttctcatac atcctctgac atctaggtgg atggtgtcaa gcttccttca ctcttgcact 7920 7980 ctgcacacct acaggettaa caccacatgg aagetgccaa ggtgtatgge tggaaccete 8040 tgaagcagca gcctgagctg tgactatggc cctttqagcc aaggctggag ctqqaacaqt 8100 ctagatgcag gcagggagca gtgtcctgag gctqtqcaqa qcagcagggc cctqtqcctq gacaatgaaa ccattettte etecteatee tetgggeetg tgatgggagg gttgtggaag 8160 atetetgaaa tgeetttgag geetttttge etetgaggee tattteetat tgteteagtt 8220 attggcagtc ggctcctttt tagttatgca aatcctctag caagaggtta ctccactgcc 8280 ggcttgaact cctctcctga aaaagctttt tctttctttg tcacatggcc aggctgcaaa 8340 ttttccaaac ttttatgctc tgttttacct ttaaatataa cttctaactt taattcattt 8400 8460 attigctcct gcattigage atagggaatt caaagaaget gggeeacate tigaatgett 8520 tgctgcttca aaatttatgg ccacgcttgg tggctcacac ctgtaatccc agcactttgg 8580 gaggectagg tgggcagate acgagateag gagategaga ceateetggt caacatggtg aaacccatct ctactaaaaa tacaaaaaaa ttagcttggt gtggtggcgc agacctgtag 8640

			aattacttga			8700
			gcctggtgac			8760
aaggaaggaa	ggaaggagga	agggaagaaa	tgtcttcccc	ccagatgtcc	tgggtcatcc	8820
			gggcatgaaa			8880
			cagttcccaa			8940
			atatcactgt			9000
tttaaccagc	taatcgggag	gctgaggcaa	gaggatcact	tgaacccagg	aggttgaggc	9060
tgcagtgagc	tgtgatcaca	tcactgcagt	ccagcttggg	caacagagca	agatcctgtc	9120
			acttaagttt			9180
caccatggag	aaaggccagg	ccagctcctt	ctctcttct	gcacgtgttc	ctcccacctc	9240
			gggagtagga			9300
agcaccccat	gacctggctc	tggggccttg	tgggtttatg	gattcccagt	gctgagtcat	9360
			attggtcaga			9420
acaccttttc	ctgatcatct	gggaagggca	gcttgtgcca	gcgaggccac	ctgttcagcg	9480
			ccttgccttt			9540
			gggacacatg			9600
gatgaacaag	agagggacaa	gtccccaagc	ctctctcc	ttcctgcctc	acccactccg	9660
			aactagggca			9720
			actgcaaaag			9780
gttggtcact	ctggggctgg	tggagtcagg	tttccttctg	caggccccct	ccccgcaagc	9840
			caggccccag			9900
			gagtcttgct			9960
			ctgccttctg			10020
			tggcaccacc			10080
			gtcttgaact			10140
ccgccttggc	ctcccaaagt	gctgggatta	caggtgtgag	ccactgtgcc	tggccccact	10200
cacaagtctt	aaaccatgcc	tcagcacatc	aatgccattt	acaaaaaggt	agagggattt	10260
			tgattgatca			10320
			cggtggctca			10380
tgggaggccg	aggcgggcgg	atcacgaggt	caggagatcg	agaccatcct	ggctaacacg	10440
			aaatggccgc			10500
			cggatcacga			10560
cctggctaac	acagtgaagc	cccgtctcta	ctaaaaaata	caaaaaaaat	tagccaggca	10620
tggtggcggg	cgcctgtagt	cccagcaact	tgggaggctg	aggcaggaga	agaatggtgt	10680
gaacctggga	ggtggagctt	ccagtgagcc	gagatcacac	cactgcactc	cagcctgggc	10740
gacagagtga	aactccatct	caaaaaaaaa	ataaataaat	aaataagaat	tgttagtatt	10800
ttgcaggtgt	gacaaatgat	tctgtttctg	tggcagaatg	ttctcaggag	atctcttttg	10860
aactctcatg	gaaagcatca	tgctgttggc	aacatcacat	ttattttat	ttatttatta	10920
			ccaggctgga			10980
ctcactgcag	cctcaacctc	ctgggctcaa	gcaatcctcc	tgcctcagcc	tcccaaagta	11040
			cagcccaatg			11100
			ttgaatctag			11160
			atctgtaatc			11220
ggtaggcgga	tcacctgagg	ccaggagttt	gagaccagcc	tggccaacat	ggtgtaaccc	11280
tgtctctaac	aaaaatacaa	aaaaattagc	cagacgtggt	ggtgcacgtc	tgtcatccca	11340
gctactaggg	aggctgaggc	aggagaattg	cttgaacccg	agaggcagag	gttgtgatga	11400
gccgagatcg	cgtcattgca	ctccagcctg	ggcaaaagca	agagcgaaac	tctctctcca	11460
			aattaaaata			11520
			gccaacaagt			11580
ctccctggct	ggacagatac	atcccacaac	acctggaagg	cggctccatg	tagaactttc	11640
			ggtgacagag			11700
cccggccccc	accaagggcg	aggtccccct	gtggtgggtc	tgagggaggc	atccgtatgg	11760
			ccaagtactt			11820
ggtttgggtg	ctgagggcat	atcccctggg	ccacatgggg	gcagaagtgg	ggccccctga	11880
agcttggagt	cctgggcagg	ggcatctatt	ttgctgtctg	aggccttcag	tacttgaagc	11940
aaaatggagg	cagaatgtcc	caccttaatg	cccctgattc	ctccaaacca	attccagaga	12000
cagcaagggc	cagaacaggg	atggccctgc	ccagggtcat	gcancgagga	agtggccagg	12060

WO 02/092015

PCT/US02/15982

		aatcccctcc				12120
tagageeete	cagctcactc	atcctcggcc	agctccatct	cctcagcttg	taaacccccc	12180
cgggattttc	ctttcttaaa	aaacaaaggc	ttggccaggc	acggtggctc	acgcctgtac	12240
tttgggggtg	gctcccagca	ctttgggagg	ccaaggtggg	cggatcatga	ggtcaagaga	12300
ttgagaccat	tctggccagc	atggtgaaac	cctgtattta	ctaaaaaaaa	aaaaattaac	12360
tgggcatggt	ggctagctac	ttaggaggct	gaggcaggag	aatcgcttga	acctgggaga	12420
aagaggttgc	agtgagccaa	gatcgcgcca	ctccacttta	acctggcaac	agaacaagat	12480
		aacaaacaaa				12540
		ttgggaggct				12600
ttgagaccag	cttggccaac	atggtgaaac	cccatttcca	ctaaaagtac	aaaaatcagc	12660
caggtgtggt	ggtgggtgcc	tgtaatccca	gctactcagg	aggctgaggc	aggagaatcg	12720
cttgaaccca	tgacctggag	gctacagtga	gctgagattg	cgccactgta	ctccagcttg	12780
ggcaacaaga	tttgtttctc	taaaaaaaaa	aaaaaaaga	ctggcccttc	cccttcagct	12840
cttcctcagg	gtccctgagc	actctacacc	cccgtctaca	ctgagcactc	caccctgctg	12900
		ctgccatcta				12960
ggctgcctcc	cgccctcacc	tcctgctaag	gccattcccc	gctgcatctg	tcttctagat	13020
tctgcagcct	tcagcacgct	gggcccctcc	tttgtcccct	tgagccacct	ccagcctccc	13080
cctgagctgc	tactcctctc	ccagcagcct	ccacccaagc	ccctccagtc	cccaagctgt	13140
cccttgcatc	cagcactgcc	cttccacgtg	ccccttccct	ccagcttcac	agcagggtgg	13200
ggcctccagg	ccctgcccac	tgtgcccatc	cacaagttgt	ggtgggagct	ccgaggggag	13260
gcaggggtgt	gcatggactt	gggacgtcca	agtctgggac	caggggcagc	tggttggtgg	13320
agtgtggagg	gggataggga	ctttcaggta	gagaggctgt	aggggcaaga	tcgggacggc	13380
ggatgtccct	aaggagggct	ctgacctggg	aaatattgtg	cagcttcctc	tttgccattc	13440
ctggagctca	gacactggcc	ggctctcacc	ccgcccttcc	tgcaggacac	agctccatcc	13500
cagtgagttc	ctagtgtaga	catctccagc	agcacggatg	ggaaaggaag	tcatcaaagg	13560
tgcccaggac	cggaggcttt	ttctggaggt	ggcagaggag	ggtgtgggtc	tcagggctct	13620
ggctgagggc	aagcgtggga	ggtcttaggt	ctgcaccagc	cccgtgaagg	ccctcctgc	13680
tccctggtgg	agtcctagag	ggaacagcag	cccctaggct	ctagcaggag	tgggtaggg	13740
cttttctggc	ttcctactgt	gccagcagga	tagctgggcc	tggcactgag	cccaaagatc	13800
acatgccggg	gcattggcgc	agtgaggaac	agacccttgc	caaagctggc	aaagaagacc	13860
ccatggggtg	cagctggtga	agctgagagc	tcaatgtttg	ggggagcctg	gcaaaagggg	13920
tcctccctc	cctctgcagg	ccaggatcgc	aggttttccc	tacatgttgg	taattctcaa	13980
acaatcccat	ggccactgga	gcaaagatca	cagtgggcgg	cggcctcggg	agcagtggac	14040
agggcacgca	gtgcctttga	tgccagagcc	ctcgccccaa	agtcaacaaa	ctctqcaqcq	14100
gactttgcac	ccggactttg	ttttcaccat	acaaggaaag	ggacagatca	caggccctct	14160
cgctgccctc	gctgagccgg	aagctgcagc	gtgagctctc	tcaagcccca	tttctaggtt	14220
		ccctactcgc				14280
		acagagggga				14340
		cgtggagctg				14400
		gaaggctgag				14460
	-	cgtgcggcca				14520
		tccgtcccag				14580
		gcgtggaaga				14640
		gaagggaaag				14700
		ctgcatggcc				14760
		tttttgagac				14820
gccgtggcac	gatcttggct	cactgctgcc	tcccaggttc	aagtgatcct	cccagctcag	14880 ·
cctcctacat	agctgggacc	ccaggtatgt	gtcaccacag	ccggctaatt	tttgtattt	14940
		ccgtattgcc				15000
gatcttcctg	cctcagcctc	ccaaagtgct	gggattactg	gcatgagcca	ccacacccaa	15060
cagagacete	agttttctaa	cctgtgccag	caggaataat	gatagetgee	tagettaget	15120
		tgaccgggta				15180
		cggtggtcag				15240
agggcctca	ttaccaccto	ggtgagtcct	catccaaacc	tagcactact	acataaaaa	15300
aacttctgcc	acccaagttg	gcagattgtg	tgcaaagtta	agtectgact	ctataaaata	15360
gacttcgagg	cctcttcatc	ggacctgctt	ccaataacta	cattoggace	tectectatt	15420
cctggtttaa	cacageceag	ctttcctcct	actgaggggt	ccctagaacct	actatoacco	15480
3 5			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Julycuacic	1000

WO 02/092015 PCT/US02/15982

		_				
			ctgtaccctg			15540
cacccagctg	agagtcaggg	cccctgtgag	gctctgccca	gcccgtcctc	cgggtttctg	15600
			ttctgagagt			15660
			gcttcctggt			15720
gggcacattt	tcccttggcc	aacatcagag	actggacatc	tgcagatctg	tgctagccac	15780
			tgtaaccaac			15840
tcagagaggt	gaagcgcctg	gcctggggcc	acagcctgcg	tcagctgcag	agccaggagc	15900
			ggtcctgcac			15960
			ccctctcaca			16020
			ctccccaaca			16080
			ttccaccgtt			16140
			gttgtgggca			16200
	-		aagctcaata			16260
			acagccctgt			16320
			aagccagtgc			16380
			tgtatgtatt			16440
						16500
			tgcggtgaca			
			acctcagcct			16560
			tatttctatt			16620
			ctagcttcaa			16680
			caccacacct			16740
			cagaaaagtt			16800
			tcagatctca			16860
			tatgcagaga			16920
tattttatat	tttattttat	attttttatt	tcattatttt	attttattt	attttattat	16980
ttttagagac	agggcctcac	tctgtcaccc	aggctggagt	acaatggagt	gatcatagct	17040
cactgcagcc	tcaaacacct	gggctcaagc	aatccccca	ctcagccttc	tgagtagttg	17100
			ttactttttg			17160
			ttcaagcgat			17220
			tgcctggcct			17280
			tctgtattct			17340
			ctatcataat			17400
			cctatttgta			17460
			aagccctatt			17520
			gggcacggtg			17580
			ttgaggttgg			17640
			atacaaaaat			17700
			tgggtggatc			17760
			tctcctaaaa			17820
			ttaggaggct			17880
			gatcgcgcca			17940
			ataataataa			18000
						18060
			gggaggctga			
			tcgtgccact			18120
			ttctgaagga			18180
		-	tttcatgtat	-	•	18240
			tcctgctatt			18300 ·
			aataaatatt			18360
			tgttgaattt			18420
			attttgagat			18480
ttgcaaaaat	agtacagaga	gttcctgttt	cccccttatg	ttaacccagt	ttctccttat	18540
gttaacatct	tacataacta	cagaacaatt	gtcaaatcta	agaatcaacc	tgggcacaat	18600
			atctcaccag			18660
			attatattta			18720
			tctttgtctt			18780
			gtagaacgcc			18840
			ttattggaga			18900
J - J -	, , , , ,	,,		,,,,-,	,	

WO 02/092015

gcaagctcaa	tqcatcatat	cagagggttt	gtaatgtcag	tttatacccc	cggagaccct	18960
aacctggagc	atttcgtgaa	agtactatet	gccaggattc	tccactagaa	agttactatt	19020
			ggaaatactt			19080
			tagcattcat			19140
			ttctgtttct			19200
			gtttcagttg			
						19260
			ttgaatccta			19320
			cttgaaattt			19380
cttttttgag	accgagicte	acticigicae	ccaggtttga	grgcagrggc	atgatettgg	19440
			gcaattctcc			19500
			cggctaattt			19560
			caaactcctg			19620
ctcggcctcc	caaagtgctg	ggactacagg	cgtgagccac	cacacctggc	ctcctatgcc	19680
			tcctactttc			19740
			tcaatcagtt			19800
ttttatggga	tacttagaaa	actagctctg	tatggcctgg	cgcggtggct	cacgcctgta	19860
atcccagtac	tttgggaggc	cgaggtgggc	agatcacaga	tcacgaagtc	aggagatcaa	19920
gaccatcctg	gctaacatgg	tgaaactctg	tctctactaa	acatacaaaa	aattagtcca	19980
ggcgcggtgg	cgggcgcctg	tagtcccagc	tactcaggag	gctgaggcag	gagaacggca	20040
tgaacccggg	aggcggagct	tgcagtgagc	cgagatcggc	agccactgca	ctccagcctg	20100
ggccacagag	cgagactccg	tctcaaaaaa	aaaaaagga	aaaagaaaaa	agaaaactag	20160
ctctgtatgc	tagtttttt	tttaagacag	ggtctctctt.	gccccagctg	gagtgtagca	20220
gcacgatcac	agctcactgt	agcctcaacc	ttctgggctc	aagcaatcct	cctgcctcag	20280
			accaccgtac			20340
tttgtagaga	tggagtctcc	ctatgttgcc	tggtctggaa	ctcctggcct	caagtgatcc	20400
			tacaggcatg			20460
			ttgtatagtt			20520
			ggctggagtg			20580
			attctcctgc			20640
			taattttttg			20700
			ctcctgacct			20760
			ccaccgcgcc			20820
			tggttacaaa			20880
			tttatctaac			20940
			aatgtgcaaa			21000
			tcttaacgtg			21060
			tcttttttt			21120
			gcaatctcgg			21180
			cccaagtagc			21240
			gtagagatgg			21300
			gcctgcctca			21360
			atactttctt			21420
			tccagaaagc			21480
			gttcctcaga			21540
		· · · · · · ·	-	_		21600
			agtctgtttt			21660
			atgtattctt			21720
			ctctggtttc			
			tctcactgca			21780
			aatgggcatt			21840
			tctcaacctt			21900
			aaaaggcttc			21960
			attttaaatt			22020
			tcatgtattt			22080
accaaaacaa	aaattagtga	gaagagtggc	atgtataatt	ttttttgttt	attttttgtt	22140
tttagatgga	atcttattct	gtcgcccagg	ctggagtgca	gtggtgtgat	ctcggctcac	22200
tgcaagetet	gcctcccagg	ttcacaccat	tctcctgcct	cagcctcctg	agtagctggg	22260
actgcaggtg	cctgccacca	cgcccggcta	attttttgta	tttttagtag	agatggagtt	22320

WO 02/092015 PCT/US02/15982

```
tcaccgtgtt agccaggatg gtcttgatct cctgaccttg tgatccaccc gcctcagcct
                                                                     22380
cccaaagtgc tgggattaca ggcttqaqcc actgcgtctg gcctaaattt ttgtgaatgt
                                                                     22440
ctttaatgcc tgccttctca tatttqtttc tgcattcaag ttattgcaaa atgttgtgtt
                                                                     22500
ggttgaagtt tgtaaagaaa atgtggcctc atacagttgt gtagttggaa aggcaagagt
                                                                     22560
attttgattc tctcttcaaa caactatgga caacctgctg ttacaaaacc agaatgcaaa
                                                                     22620
aagttgtagt aaatacaggt taggtqtagt gtggaatctg aaagcatgtg aatgaacttt
                                                                     22680
ctgagttttg taacattaaa gtccagttgc gttaagctac tgtgatagca tatagcattg
                                                                     22740
tcctaatact ggaattagta tcagaagtgg ggtgctactg ttaataaata aaaagaaata
                                                                     22800
aataaatcat gtgatactgg ctcagaagtc aggcagtagg ctgtgtggaa cctgacatca
                                                                     22860
cqccatqtaa tacattqqca accatttqat ccaqctqtct qtcatqatqa cttqqaaaqt
                                                                     22920
caaccacata cttacagagc ctgtagacat aggggaaaat agtataaaac agaatactaa
                                                                     22980
cagtggacct tggttcttgc cagttgcatt tagccaaata ttaaacaaaa gagatattct
                                                                     23040
tgggcagcaa ctggaccatc ttcaagtaaa agtgaaaggt aataaacaga gtccagacat
                                                                     23100
ttqtqcccat qcqqqttaaq aaaaatccaq ttqcttctaq acaccqtata tqaaaacaac
                                                                     23160
qctqaaaaca agcctttgag tggtaaaggc cgattaacac tcagcgcggt aacaaagacc
                                                                     23220
aggtgggcta acccgaaatg aaatgagaag cctgtggtga tgaggaggca gagaagtaaa
                                                                     23280
atcaagtttg agcatttcgt ttaggagagt ttgggctctg attacttgca catgcaaacg
                                                                     23340
                                                                     23400
aactggaaac aaacagatca gatgtctacc acttcttcga gggaattgca ttgccaaaga
agtcatgaaa gcagactcta tactgattag gcattaaaac aaaaacaatc tttaggcccc
                                                                     23460
taaacttgca tgggcaggaa gtgggctgtc aaagctgttc atcctctaag gtggacctag
                                                                     23520
ttcctagtcc ccagtataca cttcagatgt ggccctggag gacactggac atggaggacc
                                                                     23580
toccagagga tgaggctagg gottcatttc tocaatgacc tcagctgcct ctatttcccc
                                                                     23640
ttcttcctct ggaagtccta tcatcgttat tattattatt atcatcattt ttattttgag
                                                                     23700
ataaggtete getetgttge eeaggetgga gtgeagtgae atgateatgg eteactgeag
                                                                     23760
ccctcccagg ctcaagtgat cctcctgcct cagcctcctg agtagctggg agtacaggca
                                                                     23820
catgccacca tgcttggcta tttttttttt cagtagagat agggctctca ctatgttgcc
                                                                     23880
agggetgate teaaceteet gggtteaaga gateeteeta ceteagetee tgagtagetg
                                                                     23940
ggattcgggt gcacaccacc atgccaacta atttttaatt tttttttgta tggacaggat
                                                                     24000
gtacagtgtt agaaatggat tgcttgcaga ggcaggagga tcacttgagc ccaggagttt
                                                                     24060
                                                                     24120
gatcacactg tgaaccatga tegeacecet geacteeaat etgggeaaca gaqtgaqace
ttgtctcaaa aaaaaaaaaa aagagagaga gagagagact caaagatagg caaaaaagtg
                                                                     24180
ggaaagettt atagtggaca aaaaggaacg etetaagtet geectattgg catggtgetg
                                                                     24240
aaggtgggct aactagagat agggggtact atgtggttga ctatgggtgc atctttggct
                                                                     24300
                                                                     24360
ttccctgggt gatcctaagt tggaagcagg gacaaaaatt agggaagctg ttagttattc
atcacqttct ggcagtagtg gactggttgt gatagaagtt attgttttgg ccaggtgcgg
                                                                     24420
tggctcatgc ctgtaatcct agccctttca gagttcaacg tgggtggatc aggaaggagg
                                                                     24480
gaggatttgg gaggtcagga gttagcctgg ctaacctggc gaaatcccat ctctactaaa
                                                                     24540
aatacaaaaa ttagctgggc gtggtggtgc atgcctataa tcccagctac tcgggacgct
                                                                     24600
qaqqcaqqaq aatcaqttqa acctqqqqaq qcqqaqqttq caqtqaqcca aqatcqtqcc
                                                                     24660
caatttcatc tcaaaaaaaa aaaaaaagtt atcgtttagc ttcctcgatt gttactggac
                                                                     24720
gtagtaatct ggcttcctgc aagtctaact ttcagcagac tggctacatg ggctgtgtac
                                                                     24780
tgtagataag gcagtaagta aagcaaaaat tgatagagca tcaaggataa atagaaaatc
                                                                     24840
cgtaatcaag cagaagattt gaacacttca ctttcagtaa ctgataaaac aagtagacaa
                                                                     24900
aaaaaatcag taaggatgta gaagatttga acaacgtaat taacaaactt gacttgattt
                                                                     24960
                                                                     25020
acacgtctag aaccctgcag aacacacat ttttcaagca tactcagaac atttatataa
agtgaccata tggtggacca taaagcagtt tcaacaaatc tcacaggagt aaaataacag
                                                                     25080
accqtqtttt ctqaccqtaa gtacaqttaa cctaqaaatt gaaaacaaaa agctagaaaa
                                                                     25140 .
accccatgta tctggaaatt ttaatataca ctttgaaata acaaatggat cagagattaa
                                                                     25200
                                                                     25260
ttcaaatagg aatttagaaa taccttgaac tgaaaaataa tgagaatact ataccccaaa
                                                                      25320
actgtggggt gcagctgaac agtatataga cgaaaagtat actcatatgt gcatacctta
aggagcgggg aggattgaaa gttaatggga ggcaaaagca ggtggatcac ttgaggttag
                                                                      25380
                                                                      25440
gagttcaaga tcagcctggc taacagggtg aaaccccatc tctactaaaa atacaaaaaaa
                                                                     25500
ttatccagge gtagtgagge tgaggeaaga gaategttgg aacccaggag geagaggttg
                                                                     25560
caqtqagccg cqattgcgcc actqcacccc aqcctqqqaq acaqaqcqaq actccatctc
aaqaaagaaa aaaaaaaaag aaaaggccag gcgcggtqqc tcatqcctqt aatcccagca
                                                                     25620
                                                                      25680
ttttgggagg ccgaggtggg cggatcacga ggtcaggaga tcgagactat cctggctagc
                                                                     25740
acggtgaaac cccgcctcta ctaaaaatac aaaaaaatta qccaggcgtg gtggcgggtg
```

```
cetgtagtee cagetactea ggaggetgag geaggagaat gteatgaace caggaggeag
                                                                      25800
agettgcagt gagecgagat egegecactg tactccagee tgggcaacag agaqagacte
                                                                      25860
tgtctcaaaa aaaaaaaaa gttaatggga taaacatcca tctcaagaag ttagaaagga
                                                                      25920
atgacaaata aaccaaaaaa aaaaaaatca aaagaagaaa atcataaggt caagactata
                                                                      25980
aagagagtgg ctgggtgcag tggctcaggc ctgtaatctc agcattttgg gaagcagagg
                                                                      26040
tgggcagatc acttgagccc aggagttcaa gaccagcctg agtaacatag agagacctca
                                                                      26100
tctttgctga aaataaaaat aaaaaattag ccaggcatgg tggtactgag gtgggaggat
                                                                      26160
cacttgagec taggaggttg aggetgeagt aagceatgat tgtgeeactg cactteagee
                                                                      26220
tgggtgacag agtgggaccc tgtctctaaa aaactaaaat aaggctgggc gcqqtqqctc
                                                                      26280
aaatctgtaa tcccaccact ttgggaggcc aaggctgagg tcagcagttt gagaacagct
                                                                      26340
tggccaacaa gatgaaacct catctctact aaaaatacaa aaaattagtt gggtgtggtg
                                                                      26400
gcatgtgcct gtaatcccag ctacttagga ggnnnnctnt ngattatatt ttctccttcc
                                                                      26460
tacgtcgtta ttggactgaa ttcagaatga tgactctcat tggagctctt cctqtctcct
                                                                      26520
aactacagtg getteegace ceactetggt ttteacttea eccetetget geteatacga
                                                                      26580
qtaqatactt ccttccttct ttctcacttg ttgctcttcc tcaacccccc ccgttggtgt
                                                                      26640
cocctcctct ttatcttttt ctcgcgacac ctgcgttctc ttgccctctt atcatccctt
                                                                      26700
totogaggog gtootttoot ttatocagot taaatacott otoototgtt tatttqqqqq
                                                                      26760
ttgggttttt atctctcacc ctccctctaa tttctttcct ctttccgcac ccatcaaqcc
                                                                      26820
tetegtggtt tetetteete taeteteggg teeeceect eteecettet titttette
                                                                      26880
accccccaa gcgctttgcc ttttttttct ttgcccttta ttcccccc
                                                                      26928
<210> 7
<211> 29430
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (4336), (4345), (4349), (4392), (4447), (4490)
<223> Identity of nucleotide sequences at the above locations are unknown.
<400> 7
                                                                      60
aggggaaggg ccggctccgt agctcacacc tataatccca gcactttccg aggagagagg
atcatctcag gccaggagtt caagaccagc ctgggcaaca cagcaagacc gcatctctac
                                                                      120
aaaaaacttct tttaaagctt aaaaaaaaaa aaaaaagcaa agaggacagt tcaggagaaa
                                                                      180
agcetgtaga ggeageaeae taaggaggag aegeageeea ggeaeeagga ggggetggee
                                                                      240
```

atgggcactc actectocag caggegagtg eccageacea getggeecae ecagacaece 300 aggacacggc ctgaatggct ccgtattcac gtgggtggta ataaacaagc aatacacata 360 gccaataagg acacettagt aatgttacat cataaacget gcagatcagg gaaatggtge 420 agggtgaagt gggttggggg gctgcatgct acatgagaag tgggtcgggg ggctgcatgc 480 540 tacctgagac agagcaggcc ttgctgggaa agaaggagcc ggcaggcctg ggcaaaggtc 600 ctggggtggg agcacactgg agcaqaqtqt qqqqqtaqca tqqcqgqtqc tqqtcctctq 660 ggcgccttcc caccacgtca tgtgcccatg tgcccaaggt ctctcgtttc acagccccct gaageteagg ggteacaget acacageece cagatacett ggeetgeece aggteattee 720 780 atccagtgat ggacctgctg acctctagcc tgacctctgg gcagcgtaat ttgagaagga ggagaaggga gggcaacaga cctggggcga tqaqqqatqc acagggtggc aqacacctqa 840 900 ggctgcacct tggagcctca gttctgggtg tgggtggggg atggacaggc tgagggctga 960 agcagetggg cccggccacc atcacacccc aggacccacc agatcaccat gaaaaaccga 1020 atgtcaactg gcagcccaga gtgcagaaca aacctttcag aaacacggtg gtgactgccg catcatgaac ataaaataat tacgccctct ccccaqqqat cacccctgca qqaqtttqtc 1080 1140 CCaagaaaCa CCagaaagaa ggaaaacgtc tgaqtcacaa tatttgctga ggccttattt gtaatagcaa aaaaaaaaaa aaaaaaagaa caatctccag cggcaggggt aactagacta 1200 1260 ttgtctccgt ggaaaggtag caccaattaa ctaqtaacaa aatgactgcg gtaacaacaa aacqttcgac atgtcaacac caaaaaccac acacccagca taaccqtgaa ccatgatttc 1320

PCT/US02/15982

032796-132.ST25

WO 02/092015

```
tactagaatg aatggcagtt atgagaaagc accagcggag acaaagattg aaaaagtaaa
                                                                    1380
ggtggcctca ttagggagac aagtctctgg gtaatatatt gtaatactgg taaatatata
                                                                    1440
gtttttaata tatttttaa ttccaaattc catatatgtt cctatgaagc tatttctgca
                                                                    1500
aatattttt tcaggaccgt acatcacaaa ggcaaaaggg ccaggtcagc tctccaqctq
                                                                    1560
agagtgacca cttcagagca gacggcagac tccagggtta gcaagcctgg ctgagacctg
                                                                    1620
geccatgaca ateacteaac ecetetgace teaacateet gtetgtgaaa tggggataat
                                                                    1680
tactgcacct ccacatcaca gagtgcgagg cttaaacagg atgcttcata gaaaagcgct
                                                                    1740
caagaggtaa cagccgggag ggggtagtgg ttttcattaa ttaaatgttg ccttcatcca
                                                                    1800
gccctgggcc agctccaaca caaagcacac accatccact cagactcagt tqcctqqatt
                                                                    1860
caaagcccgg cctggcctcc agctgtgaga ttccgggcag gatttcccat ctcccagagc
                                                                    1920
ctcagtttcc tcattcatga aacaggaagt gatcattcct tttattttta tttttatttt
                                                                    1980
tattttgaga cggagtttca ctctagttgc ccaggctgga gtatgatggc gcaatctcag
                                                                    2040
ctcactgcaa cctcggcctc ccagtttcaa gcgattctcc cacctcagtc tcctgagtag
                                                                    2100
ctqqqattac aggcacacgc caccacgccc agctaatttt gtatttttag tagagacggg
                                                                    2160
gttttgccat gttggtcagg ctggtctcga actcctgacc tcaggtgatc cgcccgcctt
                                                                    2220
ggcatcccaa agtgctggga ttacaggtgt gagccaccaa gcccagttga caactgcttt
                                                                    2280
taaagacacc tctggctgct gtggaaaaca gcctggtagt gcctcaaaaa gttacacata
                                                                    2340
gaatgateet atgaccagta attecaetee tacatatata eecaaaagaa etgaaceeet
                                                                    2400
ctactcatgt atgtacacat acaggtacac gcatgttaac agcagtgttc acaaagccaa
                                                                    2460
aacatggaaa cagctcaaat gtccataacc gatgaacgga taaatgaaac gtagtctatt
                                                                    2520
caccacctga cggaggtgag aggggccata aaaaggaatg atgcataaaa acgaatatta
                                                                    2580
tggccaggta tggtggctca cgcctgtaat cccaggactt tgggaggctg aggcgggcgg
                                                                    2640
atcacgaggt aaggagttcg agaccagcct ggccaacacg gtgaaacccc atctctacta
                                                                    2700
aaaatacaca aattagctgg gcatggtgga gggcgcctgt aataccagct actccggagg
                                                                    2760
ctgaggcaag agaatccctt qaacctggga aacagaggtt gcagtgagct gagattgcac
                                                                    2820
cactgcactc cagcctgggc gacagaccaa aactccgttt cqqaaaaaaa aqaaaaaatt
                                                                    2880
agccaggtgt ggtggcgggt gggtccctgt aatcccagct ctacttggga tactgaggca
                                                                    2940
                                                                    3000
ggagaaccac ttgaacccgg gaggtggagg tagcggtgag ctgagattgt gccactgcgc
tccagcctgt gtgacagaag gagactctgt ctctaaaaaa caaaaacaaa aaaggcccga
                                                                    3060
cgcggtgtct tacacctgta atgccaacac tttgggaagc caaggcaggc agatcatctg
                                                                    3120
aggtcaggag tttgagagca gcctgggcaa cacggtgaaa ccccatctct actaaaaata
                                                                    3180
                                                                    3240
cagaaattag ccaggtgtgg tggcacatgc ctgtaatccc agctactcgg gaggctgagg
caggagaatc gcttgaaccc aggaagcgga ggttgcagtg agccgacatt gcaccattat
                                                                    3300
3360
ctaaacaaaa gcaaaaaaac caatgagtaa tgttgtcaag tgaacttcat cccaatggga
                                                                    3420
atgcagataa tttgtttaaa aggcaccatg cacactgggc aggctggctt cccctgggaa
                                                                    3480
cgtcttcttt tgcctggatt cccagttggt ttaatcgggc gtagaacact ttcttcaatc
                                                                    3540
egggatteag geacceetge teageacaaa eteagtacae eeegeactet getgtgggtt
                                                                    3600
cttggcacta ttaggagaat gtgagggggt gattcagatc tatctctagt gggtgcatgt
                                                                    3660
etgecactee caggaacgee caettetgge aagteagtgt cagagaaagg ceagetegtg
                                                                    3720
geoecteetg cettgagtee caggaceegt gateagteet acceggagea gaateaggag
                                                                    3780
tttgaaaacc caagtgccaa caatctcatt ttaacccatg taagcatatc caatatttat
                                                                    3840
atatagaatt cataacagat gtctgggctt ccattccaat agcctatatt ttacactgtt
                                                                    3900
tatttacatg gttacaccaa acaagactca attcaaggta acccaatcct ttgctactat
                                                                    3960
accaaaataa gcaacatttt cagtccatgc cttatatata ttcaccaagc attacactag
                                                                    4020
                                                                    4080
gcctccaact gctcatcgga gcaagctgca gcctggacac aagctagaga ttaatcagtc
                                                                    4140
aggaatgatc ctgcgtccag tgccagcatg atgqaagaqa cagagaaaca qaaqacatca
                                                                    4200
gggctccaqa gtcaaggagc ctgcaggtta gttqqqcaqq atatacacac atacacacac
acacgcacac acaaaaccac ccaagaagaa aaggtgggat gaatgcatgg acaggtaatg
                                                                    4260
cctggagcct ggggatggat aagctgactg caggtggccc aggcaggctt cctggaggaa
                                                                    4320
                                                                    4380
gaagacctgg ctgtangtgg ggtangcang ctttctaaat ggggaaaatc tggctgtggg
tggagttggc angtttccga aaagaagaaa agctgactat gggtacacct ggctgttggt
                                                                    4440
ggaacangca ggcttcttgg aagaagaaaa tctggctgtg ggtggatcan gcaagcttct
                                                                     4500
tggaagaagt aaacctgact atgggtggac caggcaggct tcctagagga agaagaccgg
                                                                    4560
ctgtgggtga accaggcagg cttcctagac agaggaagat ctgqctqcqq ttaqaqtqqq
                                                                    4620
caggetteta agaagaggaa gggetgaetg tgggtagaee tggetgtggg tagaetggge
                                                                    4680
aggetteetg gaggaggaag agetggagea ttgaaaaaea aacatgaett ggtgaatgtt
                                                                    4740
```

		cccagaggca				4800
		tctctgacac				4860
		cacgctacta				4920
		tgccaaagct				4980
		ccaccccgca				5040
aatctgccct	gatgcctggc	ggagcgagtc	cctcccgatt	cgtctccttc	agaaacacct	5100
gggctgccct	ggtcctgtta	tacccccaac	acattctaca	gtcagctccg	caagttccac	5160
aaagatcaac	gctggcgttt	ttatggcatt	ttatttacag	tttttacaat	ataaaaaagg	5220
		agcaggacag				5280
		ctgttttcaa				5340
		acatgaatgt				5400
		tatatgtatt				5460
		ctgtaatctc				5520
		gaccagtctc				5580
		tgtggtggtg				5640
		aaaccgggag				5700
		acaaaagcaa				5760
		tatggtatag				5820
aagaatgact	tgggactaca	gttacagccc	tcattcagga	atttgtttta	aatgtgggtt	5880
ggtcgctaag	gcatgtacac	aacattttga	cgttcaaata	ttcctagatt	tggacagtga	5940
		ttctgtccca				6000
		tgccccatgc				6060
agaaccagct	tcttcgtgga	caagctctga	ctcctttggg	tggagaatgg	tattcagaaa	6120
		tgctcactgc				6180
		cacgtacagt				6240
		atttatatcc				6300
		tgtgaaaaaa				6360
		cccatcttct				6420
		tgccatgctt				6480
ttgctgtata	aaatgtcccc	tgcacatatg	ctgctgtgta	gtgctcctag	gtgcatgagg	6540
		agaatatgca				6600
		atgttaatga				6660
		tgtcacccag				6720
		gggctcaagt				6780
		ctgcactcag				6840
		tgcggtggct				6900
caaggtggga	ggttcacttg	aggccagaag	tttgagacta	gcctgggcaa	catggcaaga	6960
		aaatcagaca				7020
		gaaaatggcc				7080
		ccagcctggg				7140
		aggtatcgaa				7200
		tttcccctag				7260
		gcataacttt				7320
		ttttatttta				7380
		tggcgtgatc		-		7440
		caagtagctg				7500
		gacggagttt				7560
		cacctcagcc	-			7620
		cacttttata				7680
		agtacctaca				7740
		ctccaaagtg				7800
		atttacttat				7860 7030
		acctctgcac				7920
		ctacatagca				7980
		agtcttactc				8040 8100
		cgcctcctgg				
aaacageegg	garracayge	gcccaccacc	acycccayct	aacccccgca	ccccagtag	8160

agatggggtt tcaccatgtt ggccaggctg gtctcgaact cctgacctca agtgatccac 8220 cttggcctct caaagtgctg ggattacagg tgtgagccac cgcgcctggt ctgcttcttt 8280 aaatgccagg caccaacatt tgtgcaatgg ggtgggagga aagaacaggg aggagagcac 8340 actgccggcc cctgcactga atccactgat caatctgggg gcaactgcca tctccatctc 8400 ctgtcttcct atccgtgaac atctactgca gtcctctcca atgtccttct gtaaagttgt 8460 attatgtttt gcatacaggc cttqcatatt agttctcaga tataatccat atactttata 8520 taaaattcaa accacattta aaaaaataaa actagcatga ctataacgga gtctgcaaca 8580 ttctcacaga ctttatgata aaacatgaaa cttcaaagat acttagggtg gggcagggac 8640 aatgtttaag gctgcctgga agcctcccca tccctgagcc agaaagtcct atctccctt 8700 caaggggaaa tgcttgaaaa agcactgatc aggctaaaat gacagggatc aggqagtaat 8760 caaagtacaa gtgagctggt ctcctccatt ctgagcacag caaagttcag tctctccaag 8820 tecaagaate atacaeetgt ttgeeaagaa tgaagtteag gtgtetacaa gtggetgaaa 8880 atattcattg ctgggccatt aacaacattc ttggcaaaac cataccttag cttctcqtqq 8940 aaatttctta aggtagaaga aacaggaaac acccaggete gettttatgt agacagttee 9000 atgaagccag ggaccttccc cacatccacg tttcaattac ctgcacgcag ctcacaqtqt 9060 attcaacatc tacgcgtctc tcctactggg gtggcggtgg ccactcaaac cctcatgcag 9120 ctacgatgac cgcaattttg gcaacataat ttcatgtttt tccttgggct tttacccaag 9180 tcagtgacac aattctgcag ttgtctaaag attcaaaatg agggacttga catttacaac 9240 aataataaaa tottgggttt cotttaacca agcacatgtt otgootttta gagaaagoto 9300 tgcaaactca agctggagtg ggatacttgc tgacatcttc aagcacccca ggaatagctc 9360 tactececea tittecacett ggetgaacea tetatateee accaatteee ceaacateee 9420 tecatecgte catecateca eccaaggace tgetaageea ggaggtetet eccatetace 9480 ccacagootg gootcagood acaagggoto tototacatg aatoocacog caccagagta 9540 gaccaagtet ecegtagact ceacetgac cacetecatg ecteeageea tteecaceee 9600 taaaaaccet ceetggtete tacacceage tgatgaatac ttggetgaat gtgacetgge 9660 ctcctggacc caggtgaagc ccacgtcctc cgtaagcccg ccagctcacc ctqcctctqc 9720 accttcactg gagagagece geacttcace tectcaggge aggeatgget gatgecacee 9780 agtggaatet ggtgeaaage agggeeeggt geagageagg getgeetgea gageaaggee 9840 ctggtgctgg ggccgagcac ctccaatgct ggccgtggaa ccatccctcc cattccaggt 9900 gctgtctcca tcaagaatga gcgagctgct gacatttgca tgacaataat gaataaatac 9960 catattttgc ttcaaatcca gaatagatgt ggcagggtt ggcatatgac tgttgggaaa 10020 ggacagtttg cctcttccca aaccaacttg gattataaaa agcttttctt aacqaccaca 10080 agagcggagg agctcagggg cagacaaaag gaaggctggc tgcagaaggc gggagagtgg 10140 ggccttcagg ggcgggtggg gagagagaaa gcctggagct gcacccccaa ggtctgtgta 10200 catcaggtgc tacagaataa caccacctct tccagcttgg ccccacctg ccctctccca 10260 geocagteae ceagacagea ecceaetece cacacacae teacatetge eegecteaca 10320 ctcaccagct tcggctctca atgcaacctg gaacctgccc ttggcctctc agctcagcca 10380 eccecattee tgttggeece tggeececca tegaattete tetaateeta atgeacacae 10440 ttgcacactc aaacacacac acacacaca acacacag cccaqaggaa aaccataatt 10500 gactgaggtc caggcaagtt teeegageag ggaceaeatt teaaaggtea gggaageagg 10560 cgaacaggaa acatacaggg ggcacgtttg ggggtggagc aggaaataag aaatcacttg 10620 caaaagataa aaagaaaatg aggtagctgg tttcagacac ctcggagcac acagaacagg 10680 acaggogoot cogggtotto cotcaacagg gagatgggoo aggcaggtoo otgotgotoo 10740 accgcagage tgggggetat ggccetgaca ccaaggeeet ggggcaggeg gggaggeage 10800 10860 tgttctcctg cctgtgctcc cgggcagggc ctggccccac aagggaactg gccgaaggct ctgcttggct actccggaaa gtcctgggag acaagcaaag gacttgctag gtcactccaa 10920 acggcccaga tgtgacaact gtgaagaagc cacaccaaag caaggtgaca gaacaatgtt 10980 ggtgacgtca ggttatcagc ttacgctcaa ctccacttac ccggactcac ccgtaacctg 11040 ccgtctcttc ccaaccagta aaggatgcct aggtagaggg gcacaaggcc tggagcataa 11100 ttaccatttt aaaggetetg agaagteetg eggtgaggaa geetagttea etttetete 11160 cctaggattt cccaactgcg cctgatcaca gaacattttt tcatttccac tcaggaaaca 11220 tattttgaaa aacactggcc tagaggcaga agtgaaatgg aaaacacaaa agtaaaactg 11280 11340 aacaggaggc actgggcaga gaacggtcag aggcqccctg aatcctggac cqqtqqaqat ccccagcttg gcatgctccc ctccctgggc ccagaccgcc tccccccatt tcctqqataa 11400 gaaggctaat gcgcatcagg gtgaagggct tgcctgggct acacccccag gctcqcccca 11460 caccaatege getectgega gagecagtga etttettgat ttggetaetg tggaattgtt 11520 tgcaactaac caccccagat acagatacaa atgacaggat gatcagatgt aaaggaccca 11580

WO 02/092015 PCT/US02/15982

		_				
			agcatggcta			11640
			cagaacccca			11700
			tccagcaaga			11760
ggagccagtt	accagaagca	aatcgcctct	tccaaaaccc	aggctattaa	tggagtccac	11820
tgttgagtgg	agctggggtc	tagctatgga	atactgcaca	gcagagatct	tcctgagaga	11880
aagcagtttt	ccctgaaagc	catgtgtcct	ccactaactg	tgttttaatt	gggcgaacgt	11940
ctgtatctca	ttgcagtggc	cgcgcatgtg	ctgacaaggg	gctgggggcg	gggtggggag	12000
cagaagctca	ggggcctggg	agggaaggaa	acaggccacc	agggctcccc	agaaggcatg	12060
tatctctctc	acaaacacac	gcatgcacac	acacgtgcac	acatactctg	caagccctga	12120
gttagcaact	gtggaatgtg	accagctcag	tgatcccagg	acaagctgct	agggaatatg	12180
			ttcactaatt			12240
gagaaaaata	tgtatttcag	agtcccagtt	tgacctgcca	gaaaccagcc	cattactaac	12300
attcttattt	tcaacaaaat	atagcattct	gattacatac	catcttggtt	ccacgcctcc	12360
			ggccatggca			12420
cagggtggag	actgactcag	gggtgtcagt	cagtggggcg	ctgatggccg	gtgggaggcc	12480
agcagtcatc	accctctcct	tgggacagtt	gagtagctct	ccccagggt	catgtggcca	12540
ctcaggttca	tatgggaggc	gagaggagtg	gcagagtcca	ggagagtggc	tccgaagtca	12600
ctgttccctc	caggcctcag	tgtcttcatc	cattaaatgg	gtaggctgag	gtctgggatg	12660
acaaggaggg	cttgcactta	ctgaaaccca	tgggaggctg	ttcgccgatt	tcttttattg	12720
atggaagaaa	acactcgtat	aattcaagta	ccaattaaaa	ggcaggcact	ggaaccaccg	12780
			atttgagcaa			12840
			gggatggccc			12900
aaggattaaa	gaaatcaaac	atctcttaga	gcccacctgg	cacactgtga	tacacaacaa	12960
atgttagcta	tttttgtcta	tgaagtctag	attttatatc	ttgggtgttc	taaagcagga	13020
tacatttatt	taaaaacaag	gattttcatt	aaacacgtac	cccacagaca	gcaaccccat	13080
ggagactgct	cttaattcag	gccagtatcg	aaacgactct	aactacaagc	tttatacagg	13140
			gtggtacttc			13200
			gctcacggat			13260
			ccgaggaagg			13320
			tgtcctgcag			13380
			cagaaaagga			13440
			ccataaatgc			13500
			cagggacgga			13560
			ggaaaggagg			13620
cggctgggct	ggcacagact	cgtggtttcc	atcgaggtgg	gaggaggtgg	gacgtcccag	13680
			cggccgtttc			13740
			ggaggaccga			13800
			cacatttcag			13860
			ataataataa			13920
			aaacgtggca			13980
			gccaaggccc			14040
			cactgtacca			14100
			cttgcctcct			14160
			cttagttgta			14220
			agctttgatt			14280
			agaagctgag			14340
			tggactgaca			14400 -
			cgggggaaac			14460
			gtccctaccc			14520
			ctgacttcac			14580
aactactqtc	accccatttt	acagatgggg	agactgggca	caaggggacc	aaqaaaccaa	14640
tgcaaagtca	cacttqtqqq	atcagtgaca	ggggagatca	attcccaggt	tcttctcca	14700
agagttaaat	tgttttcata	ctgcctaagg	gggggcaact	gaaagaccac	tgcatatctt	14760
			ccagtgggtc			14820
			gtcccctcct			14880
			atcccggtcc			14940
			aagaggggct			15000
· · · · · · · ·	J J - J - J - J -	. 5539				

				ggctttggag		15060
				ggatcccacc		15120
				agggcagata		15180
tggccagggc	gaaggcagga	cacgtgggct	ccagcctggc	cccaccatcc	ctgcacaaca	15240
ctgggcaaag	tccacgtttt	cctcaactgg	gtgttgacat	ctgcaggaca	ggggcatgga	15300
ggtacagagc	gctgaagcca	cacagcaacc	taggagcgag	actccatgcc	tccccgggga	15360
cccctcccca	ccatgaggac	catgaaggct	tcccatgtgc	cgcaaggact	ctggtgtgga	15420
				actgggtggt		15480
				ctgctctcat		15540
				cctccacttc		15600
				ggagcgccaa		15660
				ggccagggcg		15720
				cccaggctgg		15780
				agaaagggct		15840
						15900
				cagatggcag		-
acaacyteet	ccgaaaagga	tagttataa	cigototggt	gacacctaca	aatagatagt	15960
cageeeccag	coccetgeca	cacticigac	aaagcagagg	ccccagggg	aggcgcaccc	16020
gaaggtacct	gcaccigice	cccagactcc	tagageceae	ctgaccccat	cccaccaggg	16080
ctccagctac	aaaataaatg	ccgaggccag	ctaggcaagg	acgcacactc	ggtaccgact	16140
				ccaggccaca		16200
ctgagatggt	ttcggccaag	cagcctctca	gctgagctga	acaagtccag	agtccccggg	16260
				ccctaacagc		16320
				tctgcagcct		16380
				aactgagctc		16440
				aacagcaggt		16500
cgggtgaggg	gggcctgcat	gggcttctct	ggaggctgcg	catacacgca	acccccagga	16560
ccccgaccct	gcacctgcag	ctcgctactg	ccccctcagt	gactccagca	aacctcgggg	16620
taggggaagg	aggctgggaa	tacctcgggt	gtccgaaaca	gcagcttctg	cttggaggcc	16680
				cctgtgccac		16740
				gtgggcagcc		16800
				ggcgggcact		16860
				agggcaagat		16920
				cagtgaggct		16980
				ccccagccct		17040
				gtacccagaa		17100
				cccgctctgg		17160
				agggcacagg		17220
				ctcaaccctc		17280
				gtggcgtgcc		17340
				cccaacccag		17400
				tcgacactgg		17460
				ctgctctgcc		17520
					agaggataaa	17580
					gagatggaaa	17640
				cacacctcaa		17700
						17760
					cggccagccg	17820
				ccgggcaccc		
					agtctctgag	17880
					atctgtccca	17940
					cgcccgcagc	18000
					ctctgcggca	18060
					ctaagaggca	18120
					gcaggtcagg	18180
				gagtctacga		18240
					ggctgcgggg	18300
					gccccctgag	18360
cagcgaccag	gtggcaagtg	catgaactcc	cgggggcata	acctgggagg	gtgacactct	18420

PCT/US02/15982

WO 02/092015

cttcgtgttc	aaattcttga	gaacgcatta	aaaatatcac	tcagtcacct	actctatagt	18480
tttaactcaa	aagtaccaaa	gtagccaggc	gcggtggctc	acgcctataa	tcccagtact	18540
ttgggaagct	gaggcaagag	gatcacttaa	gcccaggagt	tccaaatgaa	cctgggcaac	18600
				attacctggg		18660
				gaaccacatg		18720
				ccagcctggg		18780
				gcttggtggc		18840
				gagtcagaag		18900
				caaaaattac		18960
				caggagaact		19020
				actcaagcct		19080
				caccaagact		19140
				aatgtttata		19200
				aagcccccac		19260
				gacccgagac		19320 19380
				tatgggctct		19360
				gccagacagg		19500
				cagaggaggt		19560
				acagttactg		19620
				cccctgtcct		19680
				caagagaagt tgccaggcca		19740
						19800
				ggaaggatgt gggcaaaggg		19860
				gaatctaggc		19920
				ggagtctgag		19980
				gaggaatagg		20040
				agcacggcca		20100
				ttggagaaat		20160
				tctcgtacag		20220
				ggggcagaac		20280
				cagcccaggc		20340
				ttgccaggca		20400
				atgaaaggtg		20460
				gtaattatat		20520
				agcagacacc		20580
				cctccagage		20640
				acccagcaga		20700
				aatccagccc		20760
				aagggtggaa		20820
				gagccaatac		20880
				tatgttctga		20940
				gcagtggagc		21000
				aaaagagcag		21060
				ctccctattc		21120
				aaacccagac		21180
				ataatggagg		21240
aatctggaga	tggagtaaca	agggatagga	aaaaagccat	agggaaaaag	tagagttatg	21300
attatatgaa	gcttcttaat	atctttatga	taatgtacca	ccagaaacaa	ggatgaagga	21360
				aaagaattaa		21420
-				aggctggcac		21480
				tcacttgagg		21540
				aaaaatacaa		21600
				gctgagccag		21660
				atcgcgccac		21720
				aaaagaagaa		21780
gaaaagaaaa	agacaacaga	aaaatgggcc	aaggataagt	gtaggcaatt	tgcagaaaag	21840

032796-132.ST25

PCT/US02/15982

			tgcaaatcaa			21900
			aaaatcttgt			21960
			ttgcaggtat			22020
			tgtatttgag			22080
			atggcttact			22140
			gtagctgaga			22200
			catggggggt			22260
			cctgcctcaa			22320
			tatctttaaa			22380
			tatacacatg			22440
			actcctcaat			22500
cacctgtgta	ctatgaaatg	gcacttggct	tttaacaaga	gcaaagacag	aaaagcaaaa	22560
gtacaaagta	gggtgtgatg	gcacatgcct	gcagtcccag	ctactcagga	ggctgaggca	22620
			ccaggagctg			22680
			tgggcacagc			22740
			cttgatccca			22800
			aaattttaaa			22860
gcatggtggc	tcacgcctgt	aatcccagca	ctttgggagg	ccgaggcagg	cagatcactt	22920
			acgtggcaaa			22980
acaaaaatta	gctgggcatg	gtggcagatg	cctgtagtcc	cagctactga	ggcacaagaa	23040
			tgagccgaga			23100
ctgggcgtga	gtgagactcc	tgtctcaaaa	aaaaaaaaa	aaaaaaaca	aggagccagg	23160
cacggtgggg	tgagggaggg	cacagaagca	gcgcctcttc	tgggggcacc	cccaatctct	23220
agcgatccag	aggcctcagg	atcctgaagg	gagaaaaaac	gtgaagctcc	gtgctagaag	23280
agaccataga	gattggaatc	agctggttct	attttacaaa	aaaaggaaac	tgaggccctc	23340
agaaggtgag	tgcctctcaa	tgccccacag	ggaggcaggg	agagggctct	gagccctgca	23400
gggccctgga	ttcttgcaat	ggggtggagt	ggagcctgtg	ccgccccac	caggcacctt	23460
ctcaggagag	gagccgttgt	catatccttg	aaggggtcct	tgagcccctc	aaaaggctaa	` 23520
			cctcagttta			23580
			tcccagcact			23640
gatcgcttga	gcccaggagt	tcaagaccag	cctgggcaac	atagtgaaac	cctgtctcta	23700
caaaaaacaa	caaaatcagc	tgggcgtggt	ggtgcacacc	tgaggtccca	actacttgcg	23760
			gaggtagagg			23820
			aagactcaaa			23880
			caccttggga			23940
			aaccccgtct			24000
			tccagctact			24060
			gtgagctgag			24120
			aaaaaaaaa			24180
			tatatatatt			24240
gagcaaatac	gaaaataccc	agaaaacaca	atccccgcac	ccccaggaca	acctcccagg	24300
			agacagagaa			24360
			aggctcttgc			24420
			cacgagtcag			24480
			ggaaaccaga		_	24540
			ggacctcaga			24600
			cttagggaca			24660
			gtagggaacg			. 24720
			cgggggcaac			24780
			ctggacaagg			24840
			agctggatgc			24900
			cttgggaccc			24960
			aactgaggct			25020
			ggagccagcc			25080
					cccaggacag	25140
					aataagtgaa	25200
			gcccggctc			25260
J J =	J J-99-	JJ J	J	, ,,,,,		

anotoccat	++~~~~~			+	annahat	
		cattaagtgt				25320
		acctgaactt				25380
		ctgagatgcc				25440
		ggcaggagag				25500
ccaccaggat	gcaggaggca	tgagacctgc	tcgtgccggc	tgggagatgc	aaccaaccaa	25560
gatcaatcca	atcagcggat	gaactgacaa	atataatgtg	gtccctccac	acaatggaat	25620
attattcagc	cacaaaaagg	gctgaaatag	gccgggcgtg	atggctcaca	cctgtaatcc	25680
		gccggcagct				25740
		gtctctacta				25800
		acttgggagc				25860
		aagatcgcac				25920
		ataaaaggct				25980
		aaccaaggaa				26040
						26100
		acaggcagaa				-
ccaggggacc	cygygagagg	gaacgggaag	caecgigia	acgggtatgg	gttttattt	26160
ggggcgacgg	adatetetta	taacttgata	gaagagaggg	ttgtaaacac	tgtgaatgta	26220
		ctttaatatt				26280
		tttcacctag				26340
		ccagaagctt				26400
acaccatgat	ctggcctcta	agggcctctc	gcaggacacc	ccgagggtga	aggagcaccc	26460
gtgggcccac	ctctgcatag	ctgcaaagct	tctttccctg	tcctccctc	tacatgggaa	26520
gctctgcccg	caggggcggg	gccttatctg	ccattctatc	gcactcaacc	ctagcacttc	26580
		gcaaaacagc				26640
		ggaaggattc				26700
		cttcctaagc				26760
		ctctgtccac				26820
		agtttgtcag				26880
						26940
		cagcctctag				
		tgcagctctg				27000
		cctgggagag				27060
		cactgagcat				27120
		caacccgtcg				27180
		cgtgtgtgtg				27240
gcacggctga	aattaaacgg	gttccaaaaa	cgacaggaag	cacgaagtga	atctccccag	27300
gaaagtgctg	aacaaatgct	ggatcgggtt	caccggcgaa	tttcttggaa	ctgaagaggg	27360
gagctaaaca	cacggggccc	tgctttggag	gggactctct	cagggtgctc	cacacagcac	27420
		cttctgggct				27480
		gggggagagg				27540
		gaggactagg				27600
		tttccgtgcg				27660
		cccacttact				27720
		taacatcaaa				27780
		accacattca				27840
						27900
		ttgcctcaca				
		catggacgac				27960
		ctgcaatgag				28020
		ttccccaaaa				28080 -
		gcctgtactc				28140
ttgttttgct	agctccagac	aaggccccac	aatgtaaaca	cgctcctgaa	agaggcagat	28200
ttggggtgaa	actgtccata	gaatctctag	gcttgggtca	gaggcaggag	gacgtgaaac	28260
		tccccgctgt				28320
		ccaccccgct				28380
					cgctaaactg	28440
					acttggccag	28500
					agcaagaggc	28560
		caatctccaa				28620
		tcctgacctc				28680
cycciaayii	cccigagecc	coccyactet	aaccccaccc	cccyyyaaac	accaaaaget	20000

```
ggatgagaaa gttcccccgc cctacctctc cccacgggag tgtacaactg aggcacaagc
                                                                     28740
etgecteese cactgeeceg egatetggga ceaegtetee teegegtage egaceegggg
                                                                     28800
atggacacta totggggaco oggoggocac acggggcatt ogggtogoco gggcacotqq
                                                                     28860
caggtgtcag tecgettgga aacceacage caegeggete acaggageag egecaeegge
                                                                     28920
taggccgccc cgcgcccggg ctcagaactt tctcgctgcc acttcagccc gtcctcqqaq
                                                                     28980
cacgegggc ggccgcgcg ccgctggaaa caggcttgcg aaccggctcc ccgggccaqq
                                                                     29040
eccgcetecg egececaagt eccegetegg tgeceggece gggecacaeg ggeceagege
                                                                     29100
gggctcggct cggctcccqq cttcccqcqq gctcqqqcaq gtqaggaccc qcccqcqccq
                                                                     29160
cacctggcgg agcgggcqcc ctcctcqcca gcccqqqacg caqcgtcccc qqqqaqqqcc
                                                                     29220
cgggtgggga gacaaagggc ccgcgcgtgg cggggacgcc ggggacggca gggggatccc
                                                                     29280
gggegegege eccaaetege teccaaeteg ceaagteget teegagaegg eggegegee
                                                                     29340
egegeactig geogeggge egeoegggee attgteegag caaceegegg eceqtettae
                                                                     29400
acgccgggcg cgggaaggta tcgaatcagg
                                                                     29430
```

<210> 8

<211> 33769

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (33739), (33749), (33758)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 8

```
cttcccctta cactggtcct tcgacccgcc tcggatgaaa actgaatggg tttagcctta
                                                                   60
gaggeteteg gtetetaagg gaggtgggte aggatgeegg ggacagggte etetteetgg
                                                                   120
ggcaacgtgg gggaacgagc cacctacccc tccactgaat tgccctgggg tgtqqqtacc
                                                                   180
gacggctcat tcggtgtcca gggtctgaga tgtgttgaca ggaagaatga aaggggatgg
                                                                   240
gagggatggg gcgaaagaag ccacctgcag ccccaggaac tatctggcca gcacaccgtc
                                                                   300
acccagegge etgagecace cetgecagag ceaggaggag accetgecaa tgggteacea
                                                                   360
gtgtgcagga actcagaagg tcatcacagt taataccctc catgccccaa tgtgggaaaa
                                                                   420
                                                                   480
540
ccccggacac ctccatccca cctcatcacc cagccgcagg gccccggcca tccctgcaga
cagaqtqqat qtcacaacct ccctqcaccq aaccaaqtqc aqctcccaqq ccacaqqcca
                                                                   600
cccaggaaag gtccagtggc ccccggaggc tcccaccgca ggcctcccac cacagccggc
                                                                   660
accaacccag gatagctgtg ttctcctggc ttcttttcac acgggtagca gaaagctgag
                                                                   720
atccggggaa agctgagatc cagggaaagc tgagaatcgg cctctgctgc ccggacgccc
                                                                   780
acceccaget etgeteccag etccagggee teetteteag gtgeeettae aggaggeaga
                                                                   840
gggettgage caceteetgg geetggggea egeaggatga aeggggteae ggtgeaggee
                                                                   900
actgtccact gcgcagatcc caaggccata aacagcctgg ccacagtggc ttcccagctg
                                                                   960
gcaggcgcc agattatttt tgttgtttag caattgatta agtttctccg ctqcccccag
                                                                   1020
gggtaagtgg tggggcaaat gccgcaaccg cagcatttga cccgggatcc tgtgccaagt
                                                                   1080
gaccataggg tcacaaagca caagggaagt ggctgggccc gatqctggct ctqctggaac
                                                                   1140 .
                                                                   1200
ctgaggccgg ccactgtcac ctgcacggtg cctgggacct tccagcaaqc acagagaaqc
                                                                   1260
tatgqccctc caggagcagc tggcaggcac cttggcctgc aqtcagggqc tctgtctgct
cagetetaaa acaggaaagt egetgetetg eetggggtea gggcageeag agagtgaeea
                                                                   1320
agtcagtgcc ggcctcagga agggacctgc aggcgggtcc cttcctctcc catccctcgg
                                                                   1380
                                                                   1440
tgccagccag cccctcctgt ggccccccac tgcctgcctc tgcccccatg ccccaccaca
                                                                   1500
acctcaggcc catggctgca tggccactcc ccaggcaggc aqtqqqqatg ggatttcacc
atqttqqcca ggctggtctc gaactcctga cctcaggtga ggagttccta aagtgctggg
                                                                   1560
attacaggcg tgagccaccg cgccagccct ccctgtggta ctaaacactc acaccccctt
                                                                   1620
gctggggacc ctggtgaggg aacacagcct cacaagtgaa gtgtggtttt gttgagcaaa
                                                                   1680
tgacgcctgg gcagccctct catctttgcc taaaactgaa gaatttaggg gcgtggatgt
                                                                   1740
```

				tcccccttt		1800
				ccaggcacac		1860
				tgtctgtggc		1920
				accccggtat		1980
				ccagatccca		2040
tcctccatag	acctcagcga	gctctcggca	ccatgtgcct	caggcccatt	taagaagtag	2100
ggccggccag	gcatggtggc	tcatgcctgt	aatcccagca	ctttgggagg	cccaaggtgg	2160
gtggatcacg	agatggtcag	gagatcgaga	ccatcctggc	taacacggtg	aaaccccatc	2220
tctactaaaa	atacaaaaaa	taagccgagt	gtggtggcgg	gtgcctatag	tccaagctac	2280
tcgggaggct	gaggcaggat	aatcgcttga	gctcagcagg	cagaggttgc	agttagcgga	2340
gatcgcgcca	ttgcactcca	gcctaggtga	cagagagaga	ctctgtctca	attaaaaaaa	2400
aaaaaaataa	aaaaaagaag	cagggccagc	cacggacgac	ccctcacaca	gctcccagga	2460
cgcgtgcctg	ggtatagggc	tcaggaccat	gaccgctgca	gtggccccca	agaaacgtta	2520
cttttgtcac	ccaccccgcc	tcagtggcag	tagccaaaat	aacggattag	aatggaacca	2580
tgtgacaatg	ccactgcccc	aactgacaga	agatggctat	cagcagttca	cgcggcccca	2640
cctatcacaa	gtgcagggca	ctctacaact	tatgcatcct	tccccagaca	ccgtcctttc	2700
gaccctccca	ggtcagcaag	gcacacaggg	cctacatttc	acagccacac	agcagagggc	2760
tgaggctgga	actcggatgc	tctgatttcc	gttcaatcac	atccccagag	gtggcacaga	2820
gacggggggc	ttctcttgac	aaagtcaaga	aagtcactgc	cagctccact	gaagaccaaa	2880
				tctcccagcc		2940
				gctccctaga		3000
				ggagccgtgt		3060
				ggggaagggt		3120
				gatgtgcaca		3180
				aaacagagtg		3240
				gcagcccgag		3300
				ccccagggca		3360
				aaacaaggag		3420
				tctgtctggg		3480
				actgaagata		3540
				ggcttatgct		3600
				cacagtetaa		3660
				cattccccct		3720
				ctcctcttgc		3780
				cgtggttcca		3840
				aggagagtgg		3900
				gtggtagaaa		3960
				aagttaatcc		4020
				aattaaaaaa		4080
				gattttcttg		4140
				gcaaagtcaa		4200
				cttttttccc		4260
				acgcccgtta		4320
				agacggaggg		4380
				cgacagtggc		4440
				tcctgtccct		4500
				cccacaaatc		4560
						4620
				ccaccctctg		4680
				ggtgcacgcc		4740
				aaaagtcaaa		4800
				gaacagcagc		4860
				tttagctcat		4920
				gtcctggggc		4920
				tggggatgag		5040
				agccccggcc		5100
				tcacttcagg		
yagccaggac	acayeccagg	yctagcggtc	accetgeage	tcaggggcca	cgtaaatagt	5160

	_					
		cagtgcgggg				5220
		cctgggaacg				5280
		cttggggaag				5340
		aaagcagaat				5400
		gtcagacacc				5460
cacctgaggc	tctggcttca	aacctcgaga	tgtttccagc	catgctagcg	ccgccccca	5520
caacctgccc	cacacagtcc	tcccttggga	actcacagat	ttggccccca	cctgccccgt	5580
ttcttctggt	ggagtgggtg	cgttgggttg	gggtggggct	ggggactctg	gatgtgtctt	5640
aagagtctga	gtgattctga	cacagccagg	ccctgccccc	ctcctgacct	tcgccccaca	5700
		gaagcgccca				5760
ccgctggccg	tgtgagccgt	gctccccact	gccccttcac	ccaccccagc	tcctcctqqc	5820
		acttctgatt				5880
		caccatcacg				5940
		gtataatcac				6000
		cctaagctcc				6060
		tccaagtccc				6120
		gacactgcac				6180
		ccacggtccc				6240
		gacactgcac				6300
		ccacggtccc				6360
		gacactgcac				6420
						6480
		ccaccaccac				6540
		ctgcctgaca				
		tcaccgccac				6600
		gctcccaact				6660
		tcacaatgcc				6720.
		gcgtttccgc				6780
		ccccggacac				6840
		cctcctctgc				6900
		cactggcagc				6960
		ggtgccctgc				7020
		agcgacagaa				7080
		cagtcgaggc				7140
		cgcacggccg				7200
		agcgactgtg				7260
		atattttacg				7320
		ctgccgcgtg				7380
		ggtccggctc				7440
ctgtcctcca	accagaacat	gacttcctta	aggacaaagc	cgtttctcgc	ccatccccat	7500
ctccctctgg	attaagaaat	atgggaagat	cttctagaac	cacctcaaat	ttgcagagag	7560
		tgaaatgctt				7620
		atttccacac				7680
agggcccagg	gcagggagac	ggaggagcca	gcatccacac	cgagcaccag	cctgttaatt	7740
aacgggaagc	gggtggggcc	catctccagg	cagctctgag	gtcagactgg	ggaaccatgc	7800
ttacaaaaaa	aagtgaactg	aaacgctcac	gtcctcatgc	aaaaccagac	tcccagttgc	7860
atctttctgt	ctcattgagg	agctttttcc	tccctttgac	agaacaccct	acacacggca	7920
		attcaggctc				7980
		gtctcgccca			•	8040
		gctccaactg				8100
		aagactagag				8160
		cagccctgcg				8220
					gtgtctgtgg	8280
					ccctgccagc	8340
		gggtagccta				8400
		cccccctct				8460
					gcagaaggag	8520
					gaaggcccag	8580
		,,-,	, .,		, ,,,,,,,,,	•

ctgttagaac	cctgggagcc	agcaaagagc	caggggctcc	acctaagtct	atagcccctg	8640
	ttgggaaaga					8700
ccccaggtat	gggaggattc	tgggacgatg	caggcaaacc	tggaccctga	gtgaacctgc	8760
	acgggcctgg					8820
atgaaggtga	taagggcatg	gacagtggac	atggcagctg	gacactgggc	acccactgga	8880
	ccagcacggc					8940
	gcaagttatt					9000
gccatgagtc	tgggatttta	tcagggccca	cacccgttcc	tggaactctg	atacgtgagg	9060
gagccacaca	gggaccctta	acaaaagctc	ccagggcaac	atgttctctt	gcctcagtct	9120
	tgggattaca					9180
	tttcaccatg					9240
	agggcaaggc					9300
	cccactcctt					9360
aacagagatg	gtgacacctg	cttcctacat	gcccattgct	ctcccaaggc	agacatcccc	9420
agcagatgca	acacagtgtt	taggcagaca	tcaccaatcg	atggtggcaa	cagacaccag	9480
	ctctaactcc					9540
aacccacagc	agcaagactc	agaaatggca	aaaacacaaa	gagaacagaa	acgccccata	9600
gcgggaggat	gactaaaaga	catgtcttga	taagatattg	ttcaggcata	ggccaggcac	9660
agtggctcat	gcctgtgatc	ctagaacttt	aggaggctga	ggtaggtgga	tcacctgagg	9720
ttaggagttc	aagaccagcc	tagccaacat	ggtgaaaccc	catctctact	aaacatacaa	9780
aaattagcca	gacatagtag	cgggcgcctg	taatcccagc	tgcttgggag	gctgaggcag	9840
gagaattgct	tgaacctggg	aggtggaagc	tgctgtgagc	cactgtactc	caacctggac	9900
	gactctgtct					9960
	tacatattta					10020
	aggaagcctt					10080
	ggagggctgg					10140
ccaagagagt	aagagaccac	ctccagacct'	cccttcagct	tctcaaacac	acgagccggg	10200
	aatttgcggg					10260
	tttcaggtca					10320
	cggtcccaac					10380
	tttccctctt					10440
	tcaggcggcc					10500
	cgatccaggt					10560
	cacacgtgtg					10620
	attttctgga					10680
	caggacgagc					10740
	gctggagtat					10800
	ttctcctgcc					10860
actgcccagc	taatttttat	atttttagta	gagatggagt	ttcaccatgt	tggccaggct	10920
	tcctgacctc					10980
acaggcgtga	gccactgcgc	ccggcccgag	ctgcctgttt	tacacctttg	ccatattccg	11040
gtgattctct	ctcccctccg	tcccccggcc	ctgactgtgg	tggccactcc	ctgccgtcat	11100
gagcccgtat	gtcctcactc	tttccctttc	cgccaggact	tcaaccaaca	ctgcagagcg	11160
cagggtccag	ctccagcact	gagttcagcc	tcttctcacc	aacagacagg	caggaaagaa	11220
aacaaactct	gagaaggcca	aggttcccgg	gcagccagca	agccaagcat	ccttctccgc	11280
tgaggcttgt	gcagccgagg	cacccctcc	tccagggagc	aggcagcgtc	ctggggcagt	11340
ctgcgaggga	gaccagggcc	cttgctccac	cagggcccca	ggtatggggg	cagcagcaaa	11400
	tgggagccag					11460
	tggtgacttg					11520
	cctccccttc					11580
	ccaggtcact					11640
	cattgccttt					11700
					ccctcgtgga	11760
					agcgccagag	11820
					cagcacccgg	11880
					tgaatgagca	11940
					caagtcccca	12000
= =		_	_	-		

tttctcaaat tctccttctc ccgacttggg aaacaagatg cttggtcggg gaggctctcc 12060 aaccatecce tgcagcagee ggcacagegg acagaceett tgatgtaaca gecatgtett 12120 cattaaagat gccctgctct cagaaagaga aagacaaata caaacctgga aaatcctcac 12180 caaacgcagg accectgcca gggagcagag aaaagaccca cacgccacgg gcgccacgac 12240 cacacacaca ccccagccgc tgcacacaaa cacagaccct agccagcaag aacaggggga 12300 ccaggaaact gttcctaaag tcaggacccc catgtgctca gacagcagtg agagcaagga 12360 cactteteca tecaceggat gecaggagag teettttagg gggeeceaca eegagaetet 12420 gcccttagga ctgttcctga gtgtggaagc cagcccactt ggaagccccc tgccctcccq 12480 agtgggacac cggcacagga agcaggccct gtcccccacc actttctgca agctgggcc 12540 catcacgcta cagaaacggg gaggactggt cccagggatg gcgctttcct gacacctctc 12600 gttaccccct cgcttgccag gccccagggt cagccccaga ggccagactg gctatcccag 12660 gcccgggagc atccccgaag gcgagctgca tcctgaacgt gtgtgatttc ccgaagggcc 12720 cgccccgaac cgacacctgg aaagaaagat cctcagccgg tgccccagag gagaagagcc 12780 atgeeteact geaacacagt eccaggaage accaagtgee tgaggaecaa ggeggagagt 12840 12900 ggctcaagca atcctcccaa ctcagcttcc cgagtagctg ggaccacaga cttgaatcac 12960 cacaccegee aagtggatea tttegaaegg gtttgeegag gtteettetg gggeaeeeee 13020 ggcggccgca acccattece gccaggccce gccccgcccg cccgccccgt cccgtcccac 13080 egecteacet geettacaeg teetgeegtt gteetgeage tgeacaeeeg tggggeagge 13140 gcatgtgtag aaaggctcgc ttggggacag caggcacagg tgggagcagc cgccattgtc 13200 ctcctcacag cgagtgtgga ctgagaaaac caggacagac tgagagaagg ttccagaaga 13260 ggaccgtcac ttgtttctga atgagtcaca tcctgcctcg tcccccgtga cagcctccag 13320 tgtgtccctc tgcccaaaca tcggcctcaa gtggcatcag ggacctcccc gcgggcacca 13380 ttccacctgc ctcatcgctg gccccgtcca catggggccc tcagcctggc cagacggcct 13440 gcaatttccc caaaaccagc cgtgaccttc ctggccaccc tcacacccag atgtgacctq 13500 cccatggagt gacatcctcc ccatctgctt cctcccacca agctcctatg actagaacac 13560 cctccccagc tcctcggagc ccccaaagga cacccctctg caaaggctgc ccccacgct 13620 ccaatggccg gggtcaggac ctgcctgtgt ggtaqtgacg ggaaccccag agacaatggg 13680 ctcctgggca aaaggcttgt cttgtctttg tgctatgtgt ggacccagca gcttccatag 13740 gaacactgtc cttcttgctg ggatggccaa gcttgtcact ctcccaagcc ctcctatgac 13800 caacagcaat tgaacggaac tcgataaatg cttccagcac ctcattcaaa ccaggggaaa 13860 gctgggtgta gcagccccaa aatacggata taactggaac aacaaactca tcaaaatgaa 13920 cetetecete ceteatgetg ceceaagtgt agatgggttt tgtgaceaeg aettteteae 13980 14040 caggaaacag ctccagagag ccccaccete etgtgtcetg etetgggaac agetggcace 14100 cctaggcccc acatttcaat tcaaagtcca aaccttccat aatggcctgg ccagaaatct 14160 ccatccctgg tccctgtggg agtgggccac tgtccccaga gccgcagccc cactgtcaca gaagetggtg catttcccca teagggacet etgtcacaac ecagegtgge ecceaggetg 14220 agaactgctg attctgggca gattattcat tgataaatac gcgacttgca gggccaagca 14280 tggtggctca tacctgtgac cccagcactt tgggaagtca aggtgtgagg atcactggag 14340 14400 cccacgagtt tgagacaagc ctgggcaacg tggcaaaatc tctcatctct attaaaaata catacacaca cacacacaca cacacacaca cacatatata tgtatatata aataaccata 14460 14520 tatatatata cacacatacg tgtatgtgta tataaataca tatacacaca cacacagaca 14580 acttettetg ggeettgaaa acgaggeaac etteettgga aateeeettg eeactgetga 14640 gcctgaaata gcccccatga gctctgcaga ggggtcctct gcaggcccgt gtcccccagc 14700 cagecacaca ecteceteca ttgcageagg tacceettta gagaggggge ececeagage atgggettet geagggaggg gteacetgee ecceacec acceaegee gegeaeeece 14760 acgeccecge atecteceae teccetgece egegeeeeeg etecceceag eccetteace 14820 ctetececeg tgececaace ggeacteaca aaaaggetge egeteetgge teageacetg 14880 14940 gatgtccatg ggtgagtata gggcactcag gatctccttc ctcttccccc cagtgcgctt 15000 gttgcaggca tggatggagc gggtctgcca gtctgtccag tacagagtgt ccccggagag 15060 cgtcagggcg aaggggtgcg tcaggctgcc ctccaccacc ttctgcctgc agtcagggaa 15120 gcggggtgga ggagccatca ggagggtccc ccgacagtca ttgctgctga cccaattaat 15180 ttcttttttt ttttttgaga tggagtctcg gtctgtcgcc caggctggag tgcagtgatg taatctcagc tcactgcaac ctccgcctcc cgggttcaag caattatcct gcctcagcct 15240 15300 eccgagtage tgggateact gatgeceace actaegeeea gatgattttt gtatttttag 15360 tagagacagg gtttcatcat gttggcaagg ctggtctcga actcctgacc tcaggtgatc cacccacctc agcctctcaa agcgctggga ttacaggcgt gcgccaccat gccaggcttc 15420

WO 02/092015 PCT/US02/15982

	.					
				ccccaggagc		15480
				agcctgtgat		15540
				gaaaggagga		15600
				gtatacaaat		15660
gcactcgctc	cttcttacaa	tgctcataat	ttatactttc	agagtaaatg	aaacttggca	15720
tcaacccgag	aaacagctat	tcttttctag	atgcttacag	tgcccagcaa	atgaggactc	15780
gggtgtaatg	agattatgga	cactggaaac	aggatcataa	tgtgacgtgg	tcggtaatgt	15840
				tccctgaggg		15900
				gccaggagag		15960
				gatccaccac		16020
				aaaattcaca		16080
				tcacccaggt		16140
				tcaagcgatt		16200
				acccagctaa		16260
				aggctggtct		16320
						16380
				ggattacagg		
				tacctagtgc		16440
				attgccccac		16500
				cccggcaaac		16560
				atcacaatat		16620
				catccaggct		16680
agtgcttcat	cccgttttag	gggtgaacca	tattccagtg	tgcagacaga	aaccaatctg	16740
tgcatccatt	cacccactgg	gggacctttg	tgtcatttcc	accctcggct	gttgtgcaca	16800
gtgctgctac	ggacattact	gtccattcac	attttgtgtg	aagacctgtt	ttcgattctt	16860
				aaatcaatgt		16920
				tttgttttct		16980
				tggctcactg		17040
				tagctgggaa		17100
				tgtttttgtt		17160
				catctcagct		17220
				ccgagtggct		17280
				gtagagatgg		17340
						17400
				acctgccttg		17460
				cttttaattt		17520
				gctctgtagc		
				ccaggttcac		17580
	-		-	cacgatgccc	•	17640
				ggatgatctc		17700
				ttacaggcgt		17760
				gagtcttgct		17820
				ccgcctccca		17880
attctcctgc	ctcagcctcc	cgagtagctg	ggactacagg	cacccaccac	cacacctggc	17940
taatgttttg	tatttttagt	agagacgagg	tttcaccgtg	ttagccagga	tggtctcgat	18000
ctcctgacct	cgtaatccgc	ccgcctcggc	ctcccaaagt	gctgggatta	cacgcgtaag	18060
ccatggcgcc	cagcccatgt	ggccattttt	cagtgagaga	agccagaggc	ccatcactct	18120
					gtcagcctcg	18180
					tggctccaga	18240-
					atgaagagcg	18300
					ggctgagaac	18360
					agctgtgtgg	18420
					acacaggeta	18480
						18540 .
				gccgaggtgg		18600
					ctacaaaaaa	18660
					tacttggaag	
				tgtggccgcg		18720
					tgatcaggag	18780
ttcaagacca	gcctggccaa	catggtgaaa	ccccgtccct	actaaaaaaa	tacaacaatt	18840

taccagacat	aataacaaac	acctgtaatc	ccagctactt	gggaggctga	дасаддадаа	18900
		gaggttgtag				18960
		ccatcccaaa				19020
		accatgattg				19020
		ataaaaatat				19080
		ttaaatgaac				19200
		ccaccgccac				19260
		tcctttgacc				19320
		tgtaagatca				19380
		aaaccagacc				19440
		agagatgtgt				19500
		gagcttggaa				19560
		gagcttgagt				19620
cacccagcta	atccactcct	catcactgac	tccctcccca	taaaaaacct	gtttgctgtt	19680
tcaggctgtt	aagttgtggg	ctgttttgtt	acacagcaat	ggataactaa	cacacgaggc	19740
ctggcaagtg	tggagcaaag	ctgcccaagc	cctcaagtct	gttcatgtgg	gtgttggcct	19800
gtgtttgcag	aaatccagcc	actgagtcct	cccatgcagt	cactactgcc	ctctgcacag	19860
acacctgcca	catccctgcc	tgggccagga	gctccactag	tgcaggaatg	gggtctgccg	19920
		cctagcacag				19980
		acacagaagg				20040
		cagaaggctc				20100
		cattttattg				20160
		aactgagaca				20220
		ggggtggtgc				20280
		acaattccaa				20340
		aaacctcatt				20400
		ggagccgagg				20460
		agaccccgtc				20520
		cccagctact				20580
		gtgagctgag				20640
		aaaaacaaag				20700
		gccctactta				20760
		tgccacacag				20820
		agagtttcag				20880
		ggacaaaggg				20940
						21000
		ggttggcacg				21060
		ggtcgatggt				21120
		tgccatccat				
		acctgtgacg				21180
		tgcatagatg				21240 21300
		aaataaccaa				
		tatttccaac				21360
		aaagattcct	_			21420
		cttcaggtta				21480
		gcaattcaaa				21540
					gcactttggg	21600
		cgaggtcggg				21660.
		tacaaaacat				21720
					ggaggttgca	21780
gtgagcagaa	atcgcaccat	tgcactccat	cctgggcgac	agagcgagac	tccatctcaa	21840
aaaaaaaaa	aagaaaagaa	aagaaatgat	ctatcaagcc	atgaaaagac	atggaggaaa	21900
cttaaatgca	tgttagtagg	tgaaagagcc	aatctgtatg	agtccagttc	taaacactct	21960
ggaaaaagca	aatacacaga	gacagtaaag	catcagtggt	tgccaggagt	tggagaggag	22020
					atgacatgga	22080
					caagggcgaa	22140
					cagttgtaac	22200
					gtgaggacag	22260

PCT/US02/15982

agatatatag	anactorate		ataaatttta	ctatassact		00000
	gaactcagta					22320
	agtctattta					22380
	acttcgggag					22440
	cacctctaca					22500
	agtcccagct					22560
	tgcagtgagc					22620
agaccctgcc	taaaaaaaaa	aaaaaaagg	ctgggtgcgg	tggctcatgc	ctgtaattcc	22680
agcgctttgg	gaggccgaga	tgggcggatc	acgaggtcag	gagatcgaga	ccatcctggc	22740
taacacggtg	aaaccccgtc	tctactaaaa	gtacaaaaaa	aaaaattagc	cgggcatggt	22800
ggcggacacc	tgtagtcaca	gctactcggg	aggctgaggc	aggagaatgg	cgtgaacccg	22860
	cttgcagtga					22920
	ctcaaaaaaa					22980
	gttcctgggt					23040
	atcacccatc					23100
	tgaaccaaga					23160
	gcccagtgtg					23220
	ctcagcggag					23280
	gctgggatga					23340
	cagcagagaa					23400
	ccttgtaaaa					23460
						23520
	ttcccctcag					23580
	gtgatcccgg					
	agaagaggca					23640
	caggageete					23700
	atcgttcctg					23760
	atgagggcat					23820
	cagctgctat					23880
	cacatggaac					23940
	gaacccaacc					24000
	gaggccccga					24060
tctgggaaca	cacttggtgt	ctgctgaggg	cccgagcccg	gccatcatat	gactcaccct	24120
tcgccagcaa	agcccgggtg	tgggtgaact	tttcctggca	gcctgggact	ccaaggtgct	24180
ggcagccagc	ccagggaagg	ctcccgcgtg	cctgcggcag	acgccttgct	ttacctgcac	24240
gtccccaccc	ctaggagcct	ggacagagcc	cagaccctcc	gccacctcct	gagaaggtat	24300
caggggcatc	agtctggact	tgggggggaa	tccacacagg	ccttccccaa	atgctccacc	24360
gtggcccatg	gaaaaggctg	gaaaacgtgc	aggagcagga	gcctccgcat	ggagcataat	24420
tcacattcct	tccccgagtt	tcataacaga	ggcctgctgg	tttccttaaa	tggggaattt	24480
	cggtgaccag					24540
	gcccagccaa					24600
	tcgtgcagag					24660
	tttaaagagg					24720
	cccttgtcag					24780
	cccagatcct					24840
	ccctgggcct					24900
	cctgcattgc					24960
	ctcttgatcc					25020
	catgatgatg					25080
						25140
	actgcaggag					25200
	geteetegea					25260
	cactctcagg					
	ctattcaagt					25320
	atcctctccc					25380
	cctcagggta					25440
	gcatctcact					25500
	aggcccagga					25560
ggagtgaaca	gccacaggtg	rgatcctggg	gagggcttct	gggagagaat	tcagaggcaa	25620
gcatgtagag	gaaccatttc	aaatagttaa	gaaaagccag	agccaaacag	ggacagttgg	25680

ctcgcagaga	tgatgcaggc	aaagccagct	cagatctgag	catgggaaag	actactccca	25740
accaagggcc	cagcatctcc	caaccaagca	ccaagtacct	cccaaccaaa	tgccaagcac	25800
	aatacctccc					25860
	caccaagtac					25920
	accaagcgcc					25980
	ctcccaactg					26040
	tcccaaccaa					26100
	ctcaactgga					26160
	caccttccaa					26220
	acctagcacc					26280
	agcaaaagcc					26340
	gtggcgagga					26400
	gttcttggtg					26460
	tgaggcacag					26520
	agtgccagca					26580
	tacccccaca					26640
	cgtggagagg					26700
	caggggatgc					26760
	tcctctcctc					26820
	cccgccccaa					26880
	ccccagaca					26940
	caagaggcct					27000
	tgctttatcc					27060
	ctcactgaaa					27120
	agggctcaca					27180
	tgggagggaa					27240
	cgctggtgag					27300
	gcctctccga					27360
	cttccaaaaa					27420
	ctgagagggc					27480
	cggcagctgc					27540
	gggatgagtg					27600
	ggggcacgag					27660
	accgtgtccc					27720
	ctctcgcgca					27780
	cactcataca					27840
	ggctcacacg					27900
	ctcccactcc					27960
	tgggctctga					28020
tggcttccta	agtcaccaca	cagatcaaag	aggtgaactt	ggccacatgg	cactctgctt	28080
	caaacaccag					28140
	gcaggcccag					28200
cccggctcct	gcagccggca	ccatgggagt	cagggggagg	tcactgcaaa	gggcaacagc	28260
aagttggtgg	ccccaggact	agagcccagg	ggtcttcagt	cctactccag	agcttggaca	28320
	gggcatggcc					28380
	cctgtggcag					28440
	aggtcaggct					28500
	ggtggatcac					28560
	tctactaaaa					28620
	caggaggctg					28680
					accggtgagg	28740
	gagtgctgag					28800
	cctgggggtg					28860
	acactgaccc					28920
					caagaaaagg	28980
	ggacaagggg					29040 29100
gacctggcct	agctggccag	tggagctggg	CCACCTCCCC	LEABACECEC	caccccggac	23100

				ctgggatcac		29160
				gctgaggagg		29220
				gcttccagac		29280
				caaattccac		29340
				atgtgtttaa		29400
				taaaaaggaa		29460
ggccaggcac	ggtggttcac	gtctgtaatc	ccagcacttt	gggaggccga	ggtgggtgga	29520
tcacctgagg	tcaggagttc	gagaccagcc	tagacaccat	ggtgaaaccc	catctgtacc	29580
aaaactacaa	aaattagctg	ggcgtggtgg	tgggcgcctg	taatcccagc	tacttgggaa	29640
gctgaggcag	gagaatcact	tgaacccggg	aggcgaaggt	tgcagtgagc	cgagattgtg	29700
ccactgcact	ccagcctggg	caacaaggga	gactccatct	caattaaaaa	aaaaaaaa	29760
aaaaaggaac	ataactatgg	agtctcaagg	ggaagtaatt	ccttcaacaa	taacaaatct	29820
				tcactttgtc		29880
gagtgcagtg	gtgggatcac	agctcactgc	agcctcgatc	tcccaggctc	aaatgatcct	29940
cctacctcag	cctcccaaga	agctgggatt	acaggtgcat	accatcacac	ccgattcatt	30000
tttgtatact	ttgaagagat	ggggtctcac	catgttgccc	agtgtggtct	tgaattcctg	30060
gactcaggtg	atctgcccgc	cttggcctcc	cagagtgctg	ggattacagg	cctgagccaa	30120
cacccccacg	ggttcatttt	cagagtcgca	ccgagtgctg	gggttacagg	cctgagccaa	30180
ccccccacg	ggttcatttt	aagagtgaca	ccgagtgctg	gggttacagg	cctgaaccaa	30240
				gggttacagg		30300
				gggttacagg		30360
				gggttacagg		30420
				gaaaaacaac		30480
				gacccaggtg		30540
				gctggtcaag		30600
				cgatgcggtt		30660
				ggccgtcggg		30720
				tcaggtaggt		30780
				aaaactggaa		30840
				gcttgactcc		30900
				gcgaggctgt		30960
				gccctgggat		31020
				cctccagttc		31080
				cccgcatcat		31140
				agcacctgtt		31200
				ccatgcccaa		31260
				agagaagcca		31320
				ctggccatgc		31380
				cccaggccag		31440
				gcccgtttcc		31500
				accetgette		31560
				agacaccttc		31620
				tggcctccaa		31680
				gcattcctga		31740
				cagccccttc		31800
				gggctcaatg		31860
				tcggaccagg		31920
				aggagtgaac		31980
				ccgtgttctg		32040
			_	tgaagccttg		32100
				ctgcgcagat		32160
				ccaaaacaaa		32220
				ttggtttcat		32280
					catggcccag	32340
				cctccctgcc		32400
				ctccacagga		32460
				cgccgcccca		32520
-acayayyac		guudatyata	geggegeeee	uguuguuda	cecytyctyt	JEJEU

```
catcatctta ggtctacagt tctttgtggc aacgagggac actgtgaaag tcaaacaaca
                                                                      32580
ggaaggcata ggccacaaat aaaqacaaac gggacttcat gggaagctaa agattttgtq
                                                                      32640
catcaaaaga cactatcqaq aqaqtaaaaa qqcaacccac aqaatqagag aaaatatttc
                                                                      32700
caaatcatag atctactaag agattaatat ccatgaaata cagagaactc ctaaaactca
                                                                      32760
acaatgagaa aacaactaag ccaactcaaa aatgggcaaa caacttgaac agacatttct
                                                                      32820
ccaaagatga catataaatg gccaataaac acatcaaaac aggcttaata tatccctaat
                                                                      32880
catcagggaa atgcaaatca aaactacaat aagataccat cttgcaccaa ttaggacggc
                                                                      32940
tactatcaaa aaaacaaaat agcaagtgtt ggtgaggatc tggagcaact ggaacccttg
                                                                      33000
tgcaccactg gcaaaaatgt gaaatggtgc agctactatg gaaaacagca tggcagttcc
                                                                      33060
ccaaaaactt aaacacagaa ttaccatatg acccagcaat ttcgctttgg gttatatacc
                                                                      33120
caaaagaact gaaaacaggg acacaatcag atatgcatac accttggatc acagcagcat
                                                                      33180
ccttcccaac agctaaaaca tggaggcagc caggcatggt ggctcacqcc tgtaatccca
                                                                      33240
qcactttggg aggctgaggc qqqtqgatca cctgaqqtca gqaqttcgag accaqcctqq
                                                                      33300
ccaacatggt gaaaccccgt ctctactaaa atacaaaaat tagctgggcg tagtgacggg
                                                                      33360
cacctgtaat cccagctact cacaagtctg aggcaggaga atcacttgaa ccctggaaqt
                                                                      33420
ggacgttgca gtgagccaag attgcgccac tgcattccag cctgggtgac acagcgagac
                                                                      33480
tctgtctcaa aaaacagcaa aacaaaaaca aaaaaacaaa caaacatgga agcaacccaa
                                                                      33540
gcgtccctct actgagggat gaatagcggg gcaaaatctg ctccatccac acaatggagt
                                                                      33600
actattcagt ctcaaaaagg aaaaagattc tggtcaggca cggtggctca tgcctgtaat
                                                                      33660
cccagcactt ggggaggetg aggegggtgg atcacctgaa gtcaggaatt caaggeeege
                                                                      33720
ctggccaaga ctggcaccna gctacacana aagtatangg ccccggaaa
                                                                      33769
```

<210> 9 <211> 72049 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (8356), (8385), (38585)

<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 9 tataccttqc qcqqaccttc qqctcctqtq qtqaaqacaa tatqaaqaaa ataqaaatta 60 cccataattt tgccacacag acttagttgt gtccatgtat cttgtgcacc ttttttctgt 120 ttacggatca aaatcgactt ttagggtcag gcgcggtggc tcacacctgt aatcccaaca 180 240 ctttgggagg ctggagttgg ggttgggggg tggatcactg aagatcagga gtttgagacc agcctggcca acatggcgaa actccatctc tactaaaaat aaaagattag ccaggcgtgg 300 360 tggtgggtgc ctctaatccc agctactccg gaggctgagg caggagaatc gcttgaaccc aggagacaga ggttgcagtg agccaggatc acgccactgc actccagcct ggcaacagag 420 480 taggagattg gttcaaacaa tgtgtgtaat gttgtgtctg agtgtttttc atttatcgtt 540 catgcaaatt ccgacatcat tcactcttct ccagagtgtg ctgttttcct gcctgtgtca 600 tcacccgtca ccttgaatgc cctcgtttag gtaaaataag tacattttat tcaaaaatat 660 720 ttgaggacat ttgggttgtc tccaggttct tggtcttgag ttttgctgtt cttgtggagc 780 catggtggtg tctggttgca ggaaceteca tgcgttccag ctgctgcttc tgcctgtgtt cttagagagg aaatgctggg gtccgcggtt cccgggctgc tgaccaggaa gcctqcgqtg 840 900 ctttacggcc cttccagaag cgggaqatgc ccccacttaa gtgtcagaca ggcctttcca cctcactqqc aqctctqaqc qqctcccttc tatttqcaqa tqactqaqaa qttaccaatt 960 tocacqttta ctgactgctg tttctcctgt taatttgtat ttatagtctt cqctaattta 1020 ttgctagggt tttggtgttg tccctattga cttgtatgcc ttttaatttt ttaaacaaca 1080 ttaatatact tcatttttt agagcagttt taagtttaca ggaaaattaa gggacaagta 1140 cagagagttc cttccacctg ctgtcctcct ctcctcctcc ccaccttccc tccttcccct 1200 1260 attgtaactt totttotgat attataaaag toactcatgg otgggogtgg tggotoacgo

ctgtaatccc	agcacgttgg	gaggcagagg	caggcagatc	acctgaggtc	aggagttcca	1320
gaccagcctg	gccaacatgg	tgaaaccccg	tctctactaa	aaacacaaaa	agttagccag	1380
				ctgaggcagg		1440
				cactgcactc		1500
				gcttcttgta		1560
				ggccatgagc		1620
				aatgttttgg		1680
				tttgtttgct		1740
				tgaggaggcg		1800
				ttcccagagt		1860
				cgataaccac		1920
				tctgtttgct		1980
				cctggaggat		2040
				ggcctcagaa		2100
				cacgctcaga		2160
				ggcccaggcc		2220
				cttaccctct		2280
				gtctaacccc		2340
gtatgtgatc	taatttggaa	acagggtctt	ggctgatgta	atcaagcgag	gatgaggtca	2400
				catgagagca		2460
				gggcttagtg		2520
				agctggaaga		2580
				gacgtcttga		2640
cagggatgca	tgtcttaggg	tgtgtggggg	ggtgcatttc	tgatgttaga	agccacctgg	2700
ttggtggcga	tgtgtcacgg	gagccctctg	caggttctgc	gtgtccatgt	ggtcggggac	2760
agaggtgggc	agggacggac	ggtgtcgagc	tggacatgtc	catgacgtcg	gccatccctt	2820
				gaagctgtgc		2880
				gggatgtcgc		2940
tgcatgcgtg	cagggaggaa	ggggagaggt	cagcagcccg	cctggaggag	gctcgggcga	3000
ggggaaggtt	tcactttcag	gcaatgttgt	ggggctgttt	aaacaacccc	aaagaaaacc	3060
				ggtgtttaaa		3120
ccaagactct	gtagctggtc	ccagggaagg	agttggcctc	tcttcttat	agcccggcac	3180
agtcagtccc	ctgcacctgc	ccctcccaac	cccaggcctg	cttccccgtg	gccatggctg	3240
ctgcccggac	ctctctacac	acagaacctc	ctggaggcca	gctgtgggca	ccagccttgg	3300
cagggctgtg	gcggagccca	ggctgctggt	actctctctg	cagctgctcc	ctgctggcct	3360
ggctggacag	cgtccccacc	accactgggg	tcacctctgt	gctggtcaca	gctcactcag	3420
accttcaggc	aaatgggttg	gatcctgcct	ctctcccagg	tgtctcagtc	tctgcaaaac	3480
tcaaaaacct	cagaggcctt	gcagcctgag	gggtgtcaga	gacacctcct	tcgaatcagt	3540
aaacacctac	agattcaccc.	cagcagtgaa	aggactgctt	cgccacagag	gtttgattta	3600
ctcctaagta	attggaaggg	atgccgagaa	taggttcctc	atggtgggac	tagaggccct	3660
ctgctgacct.	agttaacaga	gggctagggc	tgggtgtgct	cagcccctga	aggttctagg	3720
cccatttggg	acaccccgcc	agaacctgcc	acaacctgcc	atgtggtgac	agctacctaa	3780
atcccagagg	ctcttgagct	ggagagcaga	cctctcaatc	tcagcaggcc	ccccacacag	3840
accccataac	cctagtctgc	cttcacagta	cagttcgtgg	ctatgtgttc	acggatggtg	3900
ttgttcacct	aaggtctctg	ccctgtgacc	ccaagggcgt	cctgagggca	gattccaagt	3960
ctgtttcgtc	cacccctcct	tccctagcag	cgggtccagg	gcctggcctg	aactagcttc	4020
ccacagagat	actggtggga	tgatgaaggc	agccaggcgg	caagtgaaaa	acgcacttcc	4080
tgcatgtgct	ggctcctggg	attgaagtgt	ttgaggaagc	aaagtgaagt	gagctttcct	4140
cttgcggctg	tgtgtccttg	ggccgggagc	ctaccctctc	tgagcgttgg	ggtccttgtc	4200
agtagaatgg	ggcatcctca	tagctcaagg	ggtggtgtgt	gaaaattgtg	ctattgtgtt	4260
actttaatga	tttttttt	ttcgagacaa	agtctcaccc	caacgcgcag	gctggagtgc	4320
				gttcaagtga		4380
tcagcctccc	aagtagctgg	aattacagga	gtgcgccacc	aggcccggca	tatttttcta	4440
tttttagtag	agagggggtt	ttaccatgtt	ggctaggctg	gtcttgaact	cctgacctca	4500
				caagcatgag		4560
				ggctggcaag		4620
aatgtgtttt	gggatcaagt	gccggtttct	gtctggcact	ggcgttctct	gtggggccat	4680

PCT/US02/15982

WO 02/092015

gatggacaca	ctgctgaggt	caagcgtgat	tcgtcttgcg	ctgtgcctgg	cagtctcatt	4740
	gtagacatcg					4800
ccaggactgt	gatctcccca	cagtggctgt	taagcaggga	cctttcgtga	agtggagtct	4860
	ccaagtcata					4920
	gaggagacag					4980
	gtttcggtct					5040
gatgtggttc	tgtgctgggg	gctgtggaga	gcagggggct	tgtgccagga	ccccagtgag	5100
ggtggcgccc	tcgccatgag	gccgactgtt	ggtatggggc	ggccatccac	tggggtgtgg	5160
ggaggaacag	ctttcctgag	gaggaggtgg	cgggaggaac	agcttccctg	aggaggaggt	5220
ggcggtgctg	tgtgacctgg	gccttgaagg	acaggtccat	tgtcaacaga	acattttggg	5280
agtggagcct	agagggagaa	aatttgttga	aattcagatt	ccctcccc	taccaataca	5340
caccaaatca	gatgcccctg	accagatcta	aatttggctc	tcagagattt	ccattgtagc	5400
	gggaaccttc					5460
tttccccagc	cctgggcccg	tgtcgctgtt	gccatcacgt	gggcgccctc	tagtggagga	5520
	gcactccggg					5580
	tgccgggatc					5640
	gggaccatct					5700
	gctgcagggc					5760
	ggcccctttg					5820
	aggggtctct					5880
	acaaatgagt					5940
	cgggaaggat				_	6000
	acttgcaatt					6060
	gaaatgctga					6120
	gtgggccacg					6180
	cttgagggcc					6240
	ggagtccttg					6300
	cctgggccct					6360
	ttaagcttct					6420
	cagatgccca					6480
	tggcaaatcc					6540
	atcctcctgt					6600
	ctccctcat					6660
	gcgtgacctc					6720
	ggtggctgtg					6780
	cagtgccttg					6840
	tcatcactgt					6900
	gccagggccc					6960
	cacctgtgtt					7020
	tgaaagtgcc					7080
	ggagcatctg					7140
	ctaggagece					7200
						7260
	gagcgatgaa					7320
	ggggacgctg					7380
	tggttggggc					7440
	cagctcccac					7500
	taacctctca					
	cccagaggtg					7560 7620
	taacatcacc					
	ggcccacccc					7680
	cctgtctcca					7740
	atctcgctgg					7800
	gccattgcca					7860
	cgggccatcc					7920
	atcaacgacc					7980
					cctcccgcaa	8040
gatectggtg	rcggaggacc	rggacgagee	ccgagccatc	gcactgcacc	ccgtgatggg	8100

gtaagacggg	cgggggctgg	ggcctggagc	cagggccagg	ccaagcacag	gcgagaggga	8160
gattgacctg	gacctgtcat	tctgggacac	tgtcttgcat	cagaacccgg	aggagggctt	8220
gttaaaacac	cggcagctgg	gccccacccc	cagagcggtg	attcaggagc	tccagggcgg	8280
ggctgaagac	ttgggtttct	aacaagcacc	ccagtggtcc	ggtgctgctg	ctgggtccat	8340
gcgtagaaag	ccctgnaaac	tggagggagc	cctttgtccc	cctgncttca	gtttcctcat	8400
ctgtagaatg	gaacggtcca	tctgggtgat	ttccaggatg	acagtagtga	cagtaagggc	8460
agcctctgtg	acactgacca	cagtacaggc	caggcctctt	tttttcttt	tttttttgag	8520
atggagtctc	actctgtcgc	ccaggctgga	gtgcagtggt	gtgatctcag	ctcactacaa	8580
cctctgcctc	ctgggctcaa	gtgattctcc	tgcctcagcc	tcctgagtag	ctgggattac	8640
aggtgcctgc	cactgtgctt	ggctaatgtt	tgtatttttg	gtagagatgg	ggtttcaccg	8700
				ccacctgcct		8760
				ggccaggcct		8820
				cagttgtaca		8880
				cagcaggatg		8940
				gaaatctgtg		9000
				agcggctcag		9060
				tgggaaaacc		9120
				ggagctggga		9180
				gtttccaggt		9240
				acccgtcggg		9300
				gccctggggg		9360
				ggagccagca		9420
				cagagggggg		9480
				ggctgctcca		9540
				aagaagtggg		9600
				agtgaaggga		9660
				cggtgtcctc		9720
				ccctggtttc		9780
				tcgtggggtc		9840
				ggtcagacac		9900
				tgccacccca		9960
				ttgcataggg		10020
				aggtgctcag		10020
				gtcatttctg		10140
						10200
				gggctggtgt		10260
				ccagggactc		10260
				accagcatct		
				cgacactgac		10380
				ccaacactga	_	10440
				actgacattg		10500
				atttaccgac		10560
				catttaccga		10620
				ccgatgccag		10680
				tttaccgaca		10740
				gacgtttacc		10800
				caccgacatt		10860
				ctgacaccaa		10920-
				tttaccaaca		10980
				gacatttacc		11040
				tactggcatc		11100
				ccaacaccga		11160
				tttagccatg		11220
				gcagagacca		11280
				tggacagact		11340
ccctaaaatc	gagtgtgcca	acttggatgg	gcaggagcgg	cgtgtgctgg	tcaatgcctc	11400
cctcgggtgg	cccaacggcc	tggccctgga	cctgcaggag	gggaagctct	actggggaga	11460

032796-132.ST25

PCT/US02/15982

cgccaagaca	gacaagatcg	aggtgaggct	cctgtggaca	tgtttgatcc	aggaggccag	11520
	cccctgcagc					11580
	ggccacatgg					11640
	ggtagcgcta					11700
	agacacagct					11760
	gcccgggcaa					11820
	aaattatttc					11880
	aagacagaaa					11940
	tggttcctaa					12000
	gggtgcagcc					12060
gtggacgcag	cctcgccctg	ccgctgtggt	cgggtttcag	tggcctcgtc	ccgtggacgc	12120
agcctcgccc	tgccgctgtg	gtcgggtttc	agtggcctcg	tcccgtggac	gcagcctcgc	12180
cctgccgctg	tggtcgggtt	tcagtggcct	cgtcccgtgg	acgcagcctc	gccctgccgc	12240
tgtggtcggg	tttcagtggc	ctcgtcctgt	ggacgcagcc	tcgccctgcc	gctgtggtcg	12300
ggtttcagtg	gcctcgtccc	atgggcgtgc	tttggcagct	ttttgctcac	ctgtggagcc	12360
tctcttgagc	ttttttgttt	gttgtttgtt	tttgtttgat	tttgtttgat	tgtttgtttt	12420
tgttgtcgtt	gttgttgccc	aggctggagt	gcagtggcgc	gatctcagct	cactgaaacc	12480
tctgcctcct	tgggttcatg	ccattctcct	gcctcagcct	cccacatagc	tgggattaca	12540
agtgcccgcc	accacgcctg	gctaaatttt	gtatttttag	tagacagggg	gtttcaccat	12600
gttggtcagg	ctggtctgga	actcctggtc	tcacatgatc	cacctgcctc	ggcctcccaa	12660
agtgttggga	ttacaggcgt	gagccaccgc	gcccagccct	ctgttgagca	tattttgagg	12720
ttctcttggt	gccagtgata	tgtacatgtg	tccccatcgc	accatcgtca	cccattgagg	12780
tgacattggt	gcctctcctc	ggggtggatg	cctccctctg	tttccagcaa	cttctgaagg	12840
attttcctga	gctgcatcag	tccttgttga	cgtcaccatc	ggggtcacct	ttgctctcct	12900
	aggggaggcc					12960
	tctgtgttgc					13020
	tggggaaccc					13080
	tgcaggtgtg					13140
	atgtttgcgg					13200
	gtcagggact					13260
	tctcagcagt					13320
	gcgcaatcac					13380
	ccctctgagt					13440
	ttttgtgggg					13500
	acaagcgatc					13560
	acgcagctca					13620
	cattttaaag					13680
	tgagaggctg					13740
	tgatgaaatc					13800
	gtaatcccag					13860
	ttgcagtgat					13920
	cttgaaaaat					13980
	gaggacaatg					14040
	ctgaaggaaa					14100
cccagccict	gtcaaccact	aatctacttt	ctatctctag	gggttcactt	cttctggacg	14160
	ctggaatcct					14220
	agattcaccc					14280 ·
	ttaggcctgt					14340
	tttgagacca					14400
	ctgaacgtgg					14460
_	gatcgcttaa					14520
					aaaaaaaaa	14580
					attttgtttg	14640
	gggtggtggg					14700
	gaattcaagt					14760
	gattgctgag					14820
	caacagtggc					14880
	5 25-		-			

```
tgactttacc tcctcacaaa cgcttctttt ccatttaaaa aaatattcag ccaggtgctc
                                                                     14940
tggctcacgc ctgtaatccc agcactttgg gaggccgtgg cgggcggatc acctgaggtc
                                                                     15000
aggagttega gaegageetg gecaacatgg tgtaaceeca tetetaecaa aaatataaaa
                                                                     15060
attaqccqqq tqtqqcaqcq qqcqcctqta atcccaqcta cttqqqaqqc tqaqqcaqqa
                                                                     15120
gaatcacttg aaccegggag geagaggttg cagtgageca agategegee actacactee
                                                                     15180
15240
atttattaaa acattcatca Cagccagcct agtgggtgtc ccatgtggct ttgcctcgca
                                                                    15300
tttccctgat aactaggatg ctgagcgtct tgtcccaggc ttgccacacc tcaqcacttt
                                                                    15360
gagatacgtc gcacagtccc catttgcgaa cgagaaatga ggtttaggga acagcagctg
                                                                    15420
tgtcatgtca cacagegage agggggtete tgageegtet gaceecacag eegaceaage
                                                                    15480
tocaatcott accectoct agtettetee atgtagocca gegtectocc acattittca
                                                                    15540
gatgagaaca ccgaagctca aaacaggagc gttttgtcca cattggatac acgatgtctq
                                                                    15600
tggtttggtc ctgaagtcac tttatatctc agtggtccag actggagtag gacagggggt
                                                                    15660
tctggggaat ggggaaggtg tctcaggtga aaggaaggaa ttccagattc tccatactgt
                                                                    15720
ccttgggaag ttagaagact cagagggtct ggcaaagtca gacaaagcaa gagaaatgca
                                                                    15780
gtcaggagga agcggagctg tccaggaaca ggggggtcgc aggagctcac ccccaqqaac
                                                                    15840
tacacttgct ggggccttcg tgtcacaatg acgtgagcac tgcgtgttga ttacccactt
                                                                    15900
tttttttttt tttgaggtgg agtctcgctc tcttgcccag tctggagtgc agtggcacga
                                                                    15960
teteggetea etgeaagete tgeeteeegg gtteatgeea tteteetgee teageeteee
                                                                    16020
gcgtagctgg gactacaggc gcctgccacc gcgcccggct aatttttgta tttttagtag
                                                                    16080
agatgggatt tcactacatt agccaggatg gtctcgatct cctgacctca tgatccgccc
                                                                    16140
gtctcggcct cccaaagtgc tgggattaca ggcgtgagcc accgcgcccg qcccqatttc
                                                                    16200
ccactttaag aatctgtctg tacatcctca aagccctata cacagtgctg qqttqctata
                                                                    16260
gggaatatga ggcttacagg ccatggtgct ggacacacag aagggacgga ggtcaggag
                                                                    16320
tagaagggcg gagagaggga acaggcggag gtcacatcct tggctttcaa aatgqqccaq
                                                                    16380
ggagagacac cctctgagca tggtaggaca ggaaagcaag attggaacac attgagagca
                                                                    16440
accgaggtgg ctgggcgtgg tggcttacgc ctgtaatccc aacactttgg aaagctgagg
                                                                    16500
tgggtggatt gcttgaggcc aggagttcaa gaccagcctg gccaacatgg tgagaccccq
                                                                    16560
tototactaa atatacaaaa attagooagg cgtgatggtg catacotgta atcocagotg
                                                                    16620
cttgggaggc tgaggcagga gaattgctta aacctgggag gcggaggttg cagtgagccg
                                                                    16680
                                                                    16740
agatecegee actgeactee ageetgggee acagagtgag actecatete aaaaaaaaaa
aaaaaaaaga taaaaagacc aaccgaggaa ttgaagtggg ggggcgtcac agtagcagaa
                                                                    16800
gggggatcgt ggagcaggcc accctgtggt catgcactgg aagctcatta cctgacgatt
                                                                    16860
tggagctcat cactgggggc ctaaggagaa tagatactga aggatgagga gtgatggcgc
                                                                    16920
                                                                    16980
ggggcacggg tgtctttggt ggccagaact tggggactgc tggggtgcct cactgcaggc
                                                                    17040
cttctcagcg ccctttatat gcttacacag gctgtttcta agagggggat acattgcata
agegttttca gactacctca tcatgggtcc ctttctttac cctctgtggc cctggtggcg
                                                                     17100
cactetetgg gaaggtgcag gtggatgccc agacccgccc tgccatccac ctgcacgtcc
                                                                    17160
                                                                     17220
agagetgaet tageetegag attgetgetg geaceteetg eeeegggaea eeteggatgt
                                                                     17280
gcccgtggag atgctggctc tgtgttttct gctggagttt ggtgcgtctt ttcctcctgc
aagtggccac cgctcttggg tatgtcctca ggcttctgcg agtcatggct gcttctcagg
                                                                     17340
                                                                     17400
teettgeeca gegeeaggag caaaceetee tggeaetttg tteaggggtg gatgegeeag
                                                                    17460
tgtteetget gtggaeegee ateteaeatg agggtettgg geetgeagge tegtteagga
                                                                     17520
aacacccgct gagtatgcag tgtgtgccag ctgtgtccca ggcaatggcg gggacagtgg
                                                                     17580
ctgctgctgg ggttgtggtg gcttctgggg actctgggga cagctgaggt gcaaggagcc
acggctcctt gaggatgcag ttggactcca ggtggaaggg atggttgggg gaggtataaa
                                                                     17640
                                                                     17700 -
tggggtcagg gaggagacac atttggaaca atgggaacat ttttaagatg ctatgtcggg
aggcaacaag gtggccaacc caggtgctga ggagcccaca ccagccctgg acgtgttttg
                                                                     17760
ccgctcacct ttgctgggga gtggtgggag agaggattcc gttccacgtg gtggtgtgcg
                                                                     17820
cagctgggct gtgtggagct gggcgctagg aggaaggtgc tttctgcggg gctagccggg
                                                                     17880
                                                                     17940
ctctgccttt gaacacaatc aggctccagg ttttcagcat ccagtgcatg agaggacttc
acgggcagct gtggctgatc ccttgatgaa ttgggagaag aacaaaggtc tatgaaatga
                                                                     18000
                                                                     18060
ggtttcatgt agatggcatt agagacgccc acaacagatt tacagagtgg agcggagacg
                                                                     18120
geggatgggt etgggaggee eeteetgetg geettgaetg tgaeagetgt eetgggaate
                                                                     18180
agettecagg cegeeceage ageetgactg acacacag gggttttage eccatectge
gaccagctgt tgccatcatc agtgacagct gggagtggcg gtggttccag ccctgggcac
                                                                     18240
                                                                     18300
cetecceace tgetggggee cacceaggge agteetgaca cetacaggtt gettggagee
```

	_					
	cctgccccac					18360
	cacttccctt					18420
	ggaattccag					18480
	tagagccccg					18540
	cctgtgagcc					18600
	acctgggctc					18660
	cccctcctac					18720
ctgtgccaca	agacatggct	gtgtgtgaaa	gtggcagggt	ctggcatctc	tgtgggtctc	18780
tgaggcccac	gctccagtgc	cactcttccc	acccgctggc	cgtgccctca	tgctggaggg	18840
	cctctcccga					18900
ctggaagccg	gggtcactcc	agccgtatgc	catggtgggg	acatcctgct	tccttggcct	18960
tccagggaag	gtcctctttc	caaatggcga	cacctggtcc	ctgcctggag	gctggaagct	19020
gtggcccttg	tatgcccctc	cagggtctgt	gcgctcggtt	ggcccgagtt	cccatcaccg	19080
tcatcatcac	catcatcatt	gtcatttcgc	ttgtctgtga	gccggcctgg	tctcccagag	19140
cagagaccct	ctgaggtcca	gcctgagttg	gggtctccgt	gctgacccct	gacggggact	19200
caggacgtac	caggtctggg	tcaggagtga	ccccaaacc	tcgtgccctt	tgacaggcac	19260
ccctgacttt	tgctaagtgg	gtggaggtga	catcacttac	agcgggagtg	atgggacagg	19320
gtctgttggc	tgcactgtgc	tcccagggat	ctggggagag	gctatatccc	tgggctttgg	19380
cactgcagag	ctgtgtgtgt	ttgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	19440
gtgtgtgttt	gcgtgcgcgc	acatgtgtat	aagatctttt	tttattacat	gaagcaagat	19500
aactgttgct	gtttcctttt	gggttttgtg	ttcaacagag	tggggtactt	cttccctcag	19560
acaacagaac	tctcccttt	aaacacgtgc	tgtcagaggg	tgggtcttgg	gctcatgtct	19620
gtttgcacag	ccgagtcaga	ggaaacacag	ggttcttcat	aaaaacactg	cacagcaggc	19680
	agtcagcctg					19740
	tgggatctcc					19800
	ctggtcaggg					19860
	tcggagagga					19920
	gacacagcct					19980
	gagtcgagag					20040
	tcaagctgag					20100
	tcatgaccca					20160
	cagtgtccat					20220
	gtgctatggc					20280
	agcctcctga					20340
	attttagtaa					20400
	ctcccaaagt					20460
	actgataaag					20520
	gggaggatcg					20580
	tgatcatgtc	_				20640
	atatttaaaa					20700
	gaggtgggag					20760
	ctacactcta					20820
	aacatgtatt					20880
	tccagagacc					20940
	ctgacctctg					21000
	tgtcctaaat					21060
	gccaggacag					21120
	aggcattctt					21180
					gtggcttttg	21240
	gggccggtca					21300
					gttttcccag	21360
					agggggcttg	21420
					gagtggcttc	21480
					cgcaggccct	21540
					gccgggtgga	21600
					agcaagggta	21660
					gggccctctg	21720
2~24777477			Junguacuu	-g-cegeoce	222000000	

					_	
				ggacttcctt		21780
				gtgtggaaat		21840
				gggcgcggtg		21900
				cctgaggtcg		21960
				aataaataaa		22020
				taatcccagc		22080
				agatcacgcc		22140
				aaataaataa		22200
				cccagcactt		22260
				cagcctggcc		22320
				atagtgacct		22380
				ttctttgtgg		22440
				gaagaagggg		22500
				ggagaagcct		22560
				tgctgctggg		22620
				attcatggcc		22680
				ttttgggacc		22740
cacctgctgt	tcattgcaca	ccggagcatc	caggcatggg	tggagagctc	agacttccag	22800
				ctgctcgtca		22860
ttgggagctg	ttatcatgat	accatacctg	ggccctgggc	tatccgattc	tgacttaatt	22920
gctccaggtt	ggggccaggc	cgttgtttgc	tgttttgttg	tttcttctgt	gacgttagcc	22980
actgggctaa	tctgagcccc	tcagttacag	gtggagaaac	tgagacccat	gggggtgcaa	23040
ggacttgccg	aggacccaga	gccccttggg	ggcagagctg	aggcggggcc	tggctttggg	23100
tcccagagct	tccagtcccc	ttcccgctct	cctaacagct	ttttttttg	agacaagatc	23160
tcaccctgtc	acccaggctg	gagtgcaatg	gcatgatctc	ggctcactgc	aatcttcgct	23220
				agctgggatt		23280
				agatagggtt		23340
				ctgcctcggc		23400
				gcagctttgt		23460
				ttccatctgc		23520
				gctggaaatg		23580
				ctctttcatc		23640
				gttaacatac		23700
				gtatgcttcc		23760
				gcggtggttg		23820
				agaggagaca		23880
				cctcagagtt		23940
				tttgccccag		24000
				ctgccccagg		24060
				tgccccaggt		24120
				ctgcacctgg		24180
				ggttctccag		24240
				cctggtctgt		24300
				ggatcctcag		24360
				catcatggcc		24420
					ttgaggtcag	24480
				ctactaaaaa		24540
				gggaggctga		24600
					gcactccage	24660
						24720
					caaaaaacaa	24780
					tgttttatgg	24780
					ttgtttgggg	24940
					ggcccatcca	24960
				gggacgaaga		25020
					tcatctactg	25020
				gtcaaggcca		25140
catcattgac	caycigcccg	accigatggg	gctcaaagct	gtgaatgtgg	ccaaggtcgt	23140

cggtgagtcc ggggggtccc aagccatggc tcagccatgc agacttgcat gaggaggaag 25200 tgacgggtcc atgcctgggc ataagtgttg agctcaggtg ccccgacctg gggaagggca 25260 ggacaggaaa ggtgacagta tctggccaaq qacagatggg aagggaccaa gggagctgat 25320 tagggagtgg ttatggacta ggaatgtcgg taacaatggt tagaaagtga ctaacatttq 25380 ttgagcacct gctgtgtgcc cggccctggc cgggagcctt cgtgcccaca gtgaccccgt 25440 ctgcaaatgt agttccttgc cctactcgca ctggggagca ggacgcagag ccgtgcaact 25500 cacaggtgcc aagetcagga eteceteetg ggtetgeetg ggetgggetg tgettgttge 25560 ccctgtggcc cacgeatgtg caccttccac ctgaaagcca ggatcttcag gacgctcccc 25620 gaggaggtcg ttgtctggca caatgatttg tctcttcctg aaaaggtgac agagttacac 25680 tggagagage agcatccagg tgcggcaggg acaggcctgg ggctcgcggg cagggactct 25740 gtgtcctgcc ggggtcccac actgcacctg cttgtcagag gcactcagtc aatctttgct 25800 gatgaaggat gagaggacag aggacgtgat gcttgctgct gcattgcctg cagtcctgqq 25860 tgagatgccc gggttgactc tgctgcccgt cgggtggatg tgatgtcaga tccccggctt 25920 taaaatacga gggagctggg aattgaggga gcaggttggg gcagaaagca cagccccgtg 25980 gaagcctgga gctgaggcag tgtgggcgac ccctggagca gtgagtgctt ccttcatggc 26040 cttcatcgca ccctgcagtc ctcatgtagg ggatgccatc catgaattta gttttcccag 26100 cctcctttaa aaacgcgttc atgctggggc cggggcagtg cagtggctca catctgaaat 26160 cccaccactt tgggaggccg aggcgggtgg atcatgaggt caggagatcg agaccatcct 26220 ggctaacaag gtgaaacccc gtctctacta aaaatacaaa aaattagccg ggtgcggtgg 26280 26340 egggegeetg tagteecage tactegggag getgaggeag gagaatggeg tgaaceeggg aagcggaget tgcagtgage egagattgeg ecactgcagt eegcagteeg geetgggega 26400 26460 ggtgtggtat cacgcgccta taatctcact actcgagagg ctgaggcgga gaattgcttg 26520 aacccaggag gtagaggttg tagtgagccc gtatcgtacc actgccctcc acctgggcaa 26580 tagagcgaga ctctgtctca aaaagaaaaa aaaaaaaaaga acatttatgc caggtgtggt 26640 ggctcatgcc tgaaatccca gaactttgga agactgaggc aggaggatca cttgagccca 26700 gaaatttgag agtgtcttcc ctgggcaaca tagagagacc tcatctctac cagaaaaaaa 26760 26820 aaaattagcc cggcatggtg gcatatccct gtggtcccag ctacttaggg ggctgacgtg gcaggatcac ctgagtctgg aggcagaggt tgaagtgagc tgagatcatg ccactgcact 26880 ccagcctggg tgacagacag agaccctgtc tcaaaaaaaa aaaaaaaaa aagcatttac 26940 27000 tatccaccat ggaaggtgag actgacctgt gagtgattgt tcaaagaaca aaaaataaac 27060 cccagagata agacaaaagg gtgcctccat gggggtgtga tttaaagctg agaaattggg cttcttcccc ctcccctctc accccgtggt ttgctaaagg agatgggaaa aaggattctt 27120 27180 tttttggctg aaatatttaa cactaaatta aagccaattt taacagcact ttggttgatg agtgaaatta acagactggc caaaaataaa cgaacggtct gtactatgtg aaaaagaggc 27240 agctttggcc atgctgggcc aatgtgagtt ttcagggttg ctgggaatgt ctgtgaatcg 27300 gaggaagggc ctagctggga ctctcaggag ccaaggccct gaggggcaac ttgcctggtc 27360 cctgccctga ggcgttcact gctttcttcc tgggccagat cacaggcccg gaggctggac 27420 cactgggctg gcactcttgc cgagctgctc cctgacttcc tgaccatgct cctttcagca 27480 27540 gccttgctgc actttagttt ccttgaatga aaaatgggga tgagaatagc tcctacctcc aaggtgaatg gagtgagttc ggacaggtga ctccctggga ccagtgcctg gcgcctgaca 27600 27660 aggtecagte agagecegea etgetgttae tgataceett ggetgtaeea ggggagaaet 27720 tggttgccat tgccaggtgt tctcccacca cccccactac tgtccctgtt tgatgtgtgg 27780 cgggaataaa gctgtgcaca ttggagcttt tggcacatcc tggctttcag gtgaaaggtg cgtqtgtgtt tgagggttta gcctggccaa cccagccatg aggtcggacc tgacctgggg 27840 gtgagtcctg agctcggcac ccctgagctg tgtggctcac ggcagcattc attgtgtggc 27900 ttgggccgca cccctttccc tgctgggctg ttgatgttta gactggagcc tctgtgttcg 27960 . cttccaggaa ccaacccgtg tgcggacagg aacggggggt gcagccacct gtgcttctgc 28020 acaccccacg caacccggtg tggctgccc atcggcctgg agctgctgag tgacatgaag 28080 acctgcateg tgeetgagge ettettggte tteaceagea gageegeeat eeacaggate 28140 28200 tecetegaga ecaataacaa egaegtggee atecegetea egggegteaa ggaggeetea qccctqqact ttqatqtqtc caacaaccac atctactqqa caqacqtcaq cctqaaqqta 28260 28320 gcgtqggcca qaacgtgcac acaggcagcc tttatgggaa aaccttgcct ctgttcctgc ctcaaaggct tcagacactt ttcttaaagc actatcgtat ttattgtaac gcagttcaag 28380 ctaatcaaat atgagcaagc ctatttaaaa aaaaaaaaga tgattataat gagcaagtcc 28440 ggtagacaca cataagggct tttgtgaaat gcttgtgtga atgtgaaata tttgttgtcc 28500 28560 gttgagettg actteagaea ecceaeceae tecettgteg gtgeeegttt geteageaga

atattatta	3+++3+3+4			+		
	atttatagtg					28620
	tgagacagag					28680
	gcaacctccg					28740
	ctacagacat					28800
	ttcatcatgt					28860
acggggttgg	cctcccaaag	ggcggaaata	acaggggtga	gccaccgttc	ccggcctagg	28920
aaaacttttt	gccttctaaa	gaagagttta	gcaaactagt	ctgtgggctg	gccttctgat	28980
	aagtttgatt					29040
	cgaggtgggc					29100
	ccccgtctct					29160
	atcgcagcta					29220
acagagatta	tggtgagctg	agatogcacc	attocactco	acctddda	acaaaaataa	29280
	cagaaaaaaa					29340
	cagcttttgt					
						29400
	atgtgccatc					29460
	actacaatgt					29520
	tgttgttgag					29580
	ctcactgcag					29640
	ctgggactac					29700
	gtggagacag					29760
ctcaaacacc	cacctcagcc	tcccaaagtg	ctgggattac	aggcgtgagc	caccatgccc	29820
	actgtttgta					29880
	gtagaaaaaa					29940
	tccagccaga					30000
ttttttctct	aagatagcat	ttctcttcat	cacagtcata	tactacacaa	aattototat	30060
cctgatttt	tcacttgaca	ttacaacagg	tatttgatgg	cactataaca	aactctttgg	30120
	taaatgtatg					30180
	tttgcgtgtg					30240
	gagggtgagg					30300
	tgagacccca					30360
	agtcccagcc					30420
	tgcagtgacc					30480
-	ggggaaaaaa					30540
	cgcacacaca					30600
atataaaaat	atatatttat	aaataaaatt	tataaattat	atttataagt	aaatatataa	30660
tatataatat	aaaaatatat	attatataat	atataataaa	atatataata	taaaaatata	30720
tatttataaa	taatatataa	tacatactta	taagtatata	tttaaaatat	atgtaatgta	30780
tatttttaa	tgtatgatat	ataatataca	tttataaata	cacatttata	ttattttata	30840
	ataaaatctc					30900
	aaaaacttga					30960
	agcatctcgg					31020
	tgtaatctca					31080
	accageettg					31140
						31200
	gcgtggtggc					31260
	gaacccaggg					
	aagaagagcg					31320
	ccttttcctc					31380
	ggagcacgtg					31440
actggatggg	caagaacctc	tactgggccg	acactgggac	caacagaatc	gaagtggcgc	31500
	gcagttccgg					31560
tggccctgga	·tcccaccaag	gggtaagtgt	ttgcctgtcc	cgtgcgtcct	tgtgttcacc	31620
			ggcaaggtgg			31680
tcgtatgaga	cagtgcgggg	7-7				
				ggccaggact	ggtagggccc	31740
cagtgattag	agctgtactg	atgtcattag	ccttgatggt			31740 31800
cagtgattag tcagaggtca	agctgtactg tggagttcct	atgtcattag tcgtggagcg	ccttgatggt ggtgctgagg	ctgtatcagg	cacagtgctg	
cagtgattag tcagaggtca gctgctttca	agctgtactg tggagttcct cctgggccgt	atgtcattag tcgtggagcg ctcaccgaag	ccttgatggt ggtgctgagg tgtccatgga	ctgtatcagg gcctgcgtag	cacagtgctg ggtgggtatc	31800 31860
cagtgattag tcagaggtca gctgctttca tgtgtcgatt	agctgtactg tggagttcct	atgtcattag tcgtggagcg ctcaccgaag agaaacaggc	ccttgatggt ggtgctgagg tgtccatgga tcagagaaac	ctgtatcagg gcctgcgtag cgagtgactt	cacagtgctg ggtgggtatc ccctaaggtc	31800

```
teettgettt geactettge caaaaceatg atccagaact gactttgagg teeceggace
                                                                      32040
teaggeteet eegaaatgge etettggagg etgetgagee acagettagg acceaecteg
                                                                      32100
agaggcaaat gtgctttgag ctgccaggcg tcctgggggc cctgccttgg gcacggggtt
                                                                      32160
cagacaggcc ccagatgtgt ggggcgtctt tctggacttg agttttcttt tctgtgtggt
                                                                      32220
ggacacagtg ctcacccctt aaagcacctg tgatgtgtgc agcagcccaa tccctgcctg
                                                                      32280
tcgcctgttc tgctagggaa ggaaggaata cttcaggatg gcaggacaac agaaagaggt
                                                                      32340
ccaggtttta gagcaagggc aggtcaaact tagaaaattc tggaatgagg atgtgcattt
                                                                      32400
cctcttctgg atctgctaaa agaagaggga aggaggggct gctgggggag gagcccagag
                                                                      32460
ccgagtttac atccggatcc cgcaaggcct cccctgccct gaggtcttgt tttgtgatgt
                                                                      32520
gcttgtgtcc atcctggttt ctgccgtgtc cccaacatcc ggccaagctt aggtggatgt
                                                                      32580
tocagoacac actoaccotg totgtgcaco tgtttttgtg tocgtaagtg ggtatttact
                                                                      32640
caccttacga gtgagccact gtgggaattc agggaggtgg cgcagtgacc acccctggag
                                                                      32700
ggatatgtgt gtggcagggg tcgagggtct cgcccttccc tgcttcctgc gcgtggcttt
                                                                      32760
ctccaggacg gggagggctg agctgaagag gtggggacag ttgcgtcccc ccgccaccca
                                                                      32820
etgteetgeg gtgagageag acteaetgag cetgeeette teeettgtge etteeageta
                                                                      32880
catctactgg accgagtggg gcggcaagcc gaggatcgtg cgggccttca tggacgggac
                                                                      32940
                                                                      33000
caactgcatg acgctggtgg acaaggtggg ccgggccaac gacctcacca ttgactacgc
                                                                      33060
tgaccagege etetactgga eegacetgga caccaacatg ategagtegt eeaacatget
                                                                      33120
gggtgagggc cgggctgggg ccttctggtc atggagggcg gggcagccgg gcgttggcca
ceteccagee tegeogeacy taccetytyy cetycaaytt ceccaacety geaggagety
                                                                      33180
tggccacacc cacgactgcc cagcagcctc accetetgct gtgggagttg teccegteca
                                                                      33240
cccctgggtg cctttgctgc agttatgtcg ggagaggctc tggtgacagc tgtttcctgt
                                                                      33300
                                                                      33360
gcacctgctg ggcactaggt cccagctaat ccctgtgcca ggactctaat ttcaccctaa
cacacatggt ggttttcatt gctggggaag ctgaggcctg agcacatgac ttgccttagg
                                                                      33420
                                                                      33480
tcacataget ggtgagttca ggatececca gagataceag ggecageact egatececae
                                                                      33540
ccagccctga accccaccat gtgctgggat tgtgctggga gtgtccacac gcctgggacc
                                                                      33600
ccagggctgg tgctctcatc tcctttttcc agatcatgag aatgaggctc agggaagttt
qaaaaaaacc tatcccaaqt cacacaqcaa caqqaqcaqq atttqaaccc aqaaaaqqqq
                                                                      33660
                                                                      33720
accgcacact ctgttctgct agagtagtta gctgtcctgg gtgatatggc aggtgacagg
                                                                      33780
ggcaactgtg cttaacaaag gaacccccat ccccctgcc aagttgggag actagaaggt
                                                                      33840
caggggcaga agctctgaag ggccaggtgc agtggctgac acctctaatc ccagcacttt
                                                                      33900
gtgaggccaa ggcgggcaga tgatttgagc ccaggagttc aagatcagcc tgggtaatgt
agtgagacgc catctctaca aaaaaatttt ttaaaaaatta gctgggcatg gtggttcatg
                                                                      33960
cctgtagtcc aagctacttg ggaggctcag gtgggaggat tgcttgagcc caggaggttg
                                                                      34020
                                                                      34080
aggttgtggt gagctgtgat catgccactg cactccagcc tgggcaatag agtgagaccg
                                                                      34140
tctccaaaaa aaaaaaaaga agaagaaaaa gaagctctga ggctccaagt ccccaggcac
                                                                      34200
cccttggctt gagggcagac aagggaggag agggtcacct gggcagccct gacttttgtc
ccctggcaaa gggaccttca gtgaccttgg ccctaggaga gcctctgagc acgtcagcca
                                                                      34260
                                                                      34320
tgtcgaaccg ctcaggaagg gcagcaagaa tttggcttct gacctctgcc tctcctactc
                                                                      34380
gccatctgca ctgggtgtgg ttgtgcccat tttacagatg aggaggctgg ggcatcgacc
agetgaatge ettgteecag gtactgegta ggeagagetg geagttgaae eeegtgteet
                                                                      34440
                                                                      34500
ggttgtcgct gggggtgggc tgcaccctga cttgtgaggc cagtagcaag gtttgcacgt
                                                                      34560
gacttcgtga ccgtcaccca gctctgcagc acatcccgtg acccagctca tccaggccgc
                                                                      34620
atgcaaacct gttgccaggc gagaaaccag tcaccgcaca gctgtggttg cctgaaatga
                                                                      34680
ttaagctcat taatcacccc ggagtgagga cagactcaga tgaaaaccag caaaagccct
ggaaactcat gtgaccctgc caatgagggc ggccatgtgc attgcagcct ggccgtcact
                                                                      34740
                                                                      34800 -
cctcqqtacq tqttttggac ttaaacqctc cqgatqttta ctgaqtqctt qattaataac
atggaaggcc tggtctcatt gctgtgggag tgaaggatgc acagccaggc ctgacatgat
                                                                      34860
                                                                      34920
gagaacaaga acctggagtc tcgctgcctg ggtggtaatc ctggccctgc cacttagcaa
                                                                      34980
ctgtgtgact gtagccaggt cacttaattt tgctagatcc tgcctgcgct tcagtggatc
                                                                      35040
ttgctggttt tccaaggtgg ccaaacactt taaggcattc atgtggtcgc taggctgcag
ggttgaaccc tggctcaccc cgcagggcgc cgtgtgctct gtggcctggc tgtgcctttg
                                                                      35100
                                                                      35160
ctgacaccgt gcccgtgtgt gttcatgcag gtcaggagcg ggtcgtgatt gccgacgatc
tecegeacce gtteggtetg acgeagtaca gegattatat etactggaca gaetggaate
                                                                      35220
                                                                      35280
tgcacagcat tgagcgggcc gacaagacta gcggccggaa ccgcaccctc atccagggcc
                                                                      35340
acctggactt cgtgatggac atcctggtgt tccactcctc ccgccaggat ggcctcaatg
                                                                      35400
actgtatgca caacaacggg cagtgtgggc agctgtgcct tgccatcccc ggcggccacc
```

actacaacta	cgcctcacac	tacaccctoo	accccagcag	ccqcaactqc	agccgtaagt	35460
gcctcatggt	ccccccacc	teactecete	gttagatcag	actaatteta	ggagetgaeg	35520
			ggtgtacata			35580
			gtccaggtcc			35640
			tcctcagctg			35700
			gtgcttgctc			35760
			aagcctggag			35820
			agaggtgtgg			35880
			tggcaggctg			35940
			cggggaattt			36000
			tgagaagagt			36060
			ttcccccatg			36120
			taaagctctt			36180
			ctggtcttgc			36240
			ctgttcgagg			36300
			ctgggctgtc			36360
						36420
			caaatggagg			36480
			ctgtggccgg			36540
			gacggtgcgc			
			tgttagctgt			36600
			tcggatcctg			36660
			gtggcatgtg			36720
			gcccggtttt			36780
			cgtgggtatg			36840
			tcttaagtgt			36900
			ttatcccagc			36960
			cagcctggcc			37020
ctactaaaaa	tacaaaatta	gctgggcatg	gtggggcatg	cctataatcc	cagctactca	37080
ggaggctgag	gcaggagaat	ggcgtgaacc	cgagaggcag	agcttacagt	gagcccagat	37140
agcaccactg	cagtccagcg	tgggcaacag	tgcgagactc	catctcaaaa	aaaaaataaa	37200
taaataaaag	aaaaataaat	ttatgatcta	tttcaaaaat	aacacatgta	ctttgaaaca	37260
gcagagacac	atatgacacg	gagaatgaaa	ttccccatag	cgcaccccca	agagacagcc	37320
ctggtccccc	cgtctttccc	gtggacctcc	agcggggcag	atgctgagcc	gcctgttgtc	37380
gagtggcatg	ctatcccgtc	ctccagctcc	tctgtggctt	acagacaccc	acctgcagcc	37440
			ttcttgctgt			37500
			ccggatctca			37560
			ctggacaagt			37620
			gggacccagg			37680
			tgctggtttc			37740
			gggtgaatga			37800
			gaaccccgag			37860
			gtggggtcag			37920
			caggggtagt			37980
			catttctgct			38040
			aaaaatgaca			38100
			atgacatgta			38160
			ggttagctat			38220
						38280
			acttcacctt			38340
			ttttgtgaaa			38400
			gtggagaaga			
			gtgtgtgggt			38460
			gtttctcgtg			38520
			ctaatacatc			38580
			tttgaaatgg			38640
			tgcaaccttt			38700
			attacagggc			38760
agatttgcat	ttttgaaaca	actgctaggc	tgggcgcggt	ggctcacacc	tgtaatccca	38820

PCT/US02/15982

			cctgaggtca			38880
ccaacatggt	gaaaccccgt	ctctactgaa	tatacaaaaa	tcagctgggt	gtggtggcgg	38940
			gaggcaggag			39000
			ttgcactcca			39060
			acaagtgctg			39120
			aatgatgtgc			39180
			ttcattagtg			39240
			tgcagagccc			39300
			ggagttcaag			39360
			ttagctgggt			39420
			tgcttgaacc			39480
			tgggcaacag			39540
			ttctccaccg			39600
tgttattgtg	gtgaaatctt	ggtactttct	tgaggcagag	agaggctgag	cgcctggaga	39660
			cggtttcgct			39720
			ctttccacca			39780
			gtccttggtt			39840
			gagcttctct			39900
			gattcctttc			39960
			cgtgttaatt			40020
			gagtttcatt			40080
			gaagaaaacc			40140
			ttttgctaag			40200
			tattaggagt			40260
			ggttttgttt			40320
			tttgccattt			40380
			aggctggagt			40440
			gatcctctca			40500
			ctgattttt			40560 ~
			actcctggac			40620
			gagccacaac			40680
			atcgcccagg			40740
			ttcaagcgac			40800
			ctatgcctgg			40860
			ctggtcttga			40920
			acaggtgtga			40980
			acccagactg			41040
			aagttgtgca			41100
			tgcccaggct			41160
cagtccaccc	acctcagcct	cccaaagtgc	tgagattaca	ggcgcgagcc	accgcaccca	41220
			tcagtggcat			41280
ccatcactgc	cattcatctc	cagactactt	caccttctcg	gcagatgtcc	gaaactgtcc	41340
gcattgaaca	cactcctcat	ctccctctga	cagccaccat	tctactttgt	atctctctct	41400
			ttataccaat			41460
cttctttcat	gtgacatggt	gtcctcaagg	ttcatctgtg	ttatagcctg	tgtcagaatt	41520
tccttcctta	aagcctgaat	aataacccgt	tgtaaaggct	gggcgcggtg	gctcacaccc	41580
tctaatccca	gcattttggg	agtccgaggt	gggcagatca	cttgaggtca	ggagtttgag	41640 [.]
accagcctgg	ccaacatagt	gaaaccctgg	ctctactaaa	agtacaaaat	tagctgggtg	41700
			caggaggctg			41760
			attgtgcctc			41820
			aaaatcatcg			41880
cttgttattt	atccatccac	gggtgctagg	tttcttccac	ctttggttgt	cgtgaataag	41940
gccactatga	acatttcctt	ccgtggtgaa	ggttttgtac	tagtgaggaa	aaggcgtgtt	42000
tgtggtgttg	cataggattc	tggtaagaaa	gtttgcacta	accataagta	tttgtactac	42060
attaaaatga	aagctcaggg	gccgggcgcg	gtggctcacg	cctgtaatcc	cagcactttg	42120
ggaggccagg	gcgggcggat	catgaggtca	ggagatcaag	accatcctgg	ccaacatggt	42180

		•				
gaaaccccgt	ctctactaaa	aataccaaaa	aactagccag	gtgtggtggc	gggcacctgt	42240
agtcccagct	acttgggagg	ctgaggcagg	agaatggcgt	gaacccggga	ggcggagctt	42300
gcggtgagcc	gagatcgctt	cactgcactc	gagcctgggc	aacagagcaa	gactccgtct	42360
	tctgtctcac					42420
tgaaactggc	cagccgcgta	aagtttgctg	tattatttt	gtgcccggga	ggagtgtggc	42480
cagggtgtca	cgtcacacag	tacacotttc	tcagatogto	gttctccaga	ctactataca	42540
aaagtetatt	tttgcatctg	attoccacaa	acceaccete	caccatcaga	ctgctgtccc	
aaagcotgcc	teegcaccig	gttcccacag	acceaccec	cacygrage	cigattitgg	42600
ccagggrage	tggaatcttg	cttgtettte	ageceggeag	ctgtaccagt	ccagggtcca	42660
cagctagtgg	cttttaggaa	ggaatttgtt	cagttggctt	tgacacatgg	ccccctaggg	42720
	tgtagtgatg					42780
cagatgaaag	tgatgatgtc	tttgcagctg	cccagcaagg	ctgtgtgtgt	gtgtgtgtgt	42840
gtgtgtgtgt	gtgtgtgtgg	tgtgtgtgtg	gtgtgtgtgt	gtgtatgggg	gagggaggca	42900
	ctgggggtgt					42960
	tgtgtgtgtg					43020
	agacgcttct					43080
	ctcactctgt					43140
	ctcccaggct					43200
	cgtcaccata					43260
	tggagtcttg					43320
gattctccca	cctcagtttc	ccgacattct	gggatcacag	gtgtgagcca	ctgctgtctc	43380
cctgttttat	taactgctga	aagacctaga	taaagaaagt	ctgaaaagac	ttactatcag	43440
agcaccatcc	taagatgatt	ccctctgact	caatggagag	ggaggggagc	ttttccttca	43500
	gcaggagccc					43560
	tgcagctgtc					43620
	gctgtcctct					43680
	gccccaaaag					43740
	cgagcatctc					43800
	tgagagacgt					43860
	tgcccctacc					43920
	ctttacccgc					43980
ccccactca	cccgcccctg	caccctcacc	tgtccccac	cttcacctaa	ccccaccct	44040
cacctgccct	cccctcacct	ggcctccttc	cgttggggaa	ggggttgtaa	ggggcggccc	44100
ccaaactgtc	tgtcctggtg	ccctgcagag	aaaacagtac	gtgagggccg	cagtccaaaa	44160
	tggaaggtgg					44220
	gactgtcaat					44280
	gggtggctga					44340
	aatcgctctg					44400
						44460
	ccacaccaat					
	ctgccagagc					44520
	agtgcccggg					44580
gtctccgcca	gtgctcagga	gtcttggttt	ctttgtctta	cagccctttg	ttttgacctc	44640
tctgagccaa	ggccaaaacc	cagacaggca	gccccacgac	ctcagcatcg	acatctacag	44700
ccggacactg	ttctggacgt	gcgaggccac	caataccatc	aacgtccaca	ggctgagcgg	44760
	ggggtggtgc					44820
	gggtaggagg					44880
	ctgccgaatg					44940
						45000·
	ggctttccag					
	aagccccaag					45060
	ccgacgggag					45120
	gaaatccctt					45180
ccacagggag	ctcctgggct	tcttcctccc	agaggccccc	gacgctccca	cctgttggtc	45240
gtcagagctt	ctggttggtg	ggaaggcacc	caggaccttg	aggtctccag	agagaaaagc	45300
	gggagaccga					45360
	gggacaggag					45420
	acagccagca					45480
	tggccacgtg					45540
	ggagtgacgg					45600
Jecaetygea	224744	Juliani	goggoodod	Juycacacyg	adadecedar	42000

		taaggcggct				45660
		ttagcagctg				45720
ctgtcagaaa	ttaccagaag	ccaggtggct	gagagtaatg	gacacttgtt	ctctcacagt	45780
tcctgagggc	tgaagcccga	gatcgaggtg	tgggcagggc	cctgcgccct	ctgaaggctc	45840
tgagggaacc	tttgggcttc	tggtggctcc	aggcacccct	tgacttgtgg	tcctgtcact	45900
ccagtctctc	tgtctggctg	cacatggcgt	ggcctcttct	gtaccattga	aggacacttc	45960
agttggattt	agggcctacc	ctcacccatt	gtggtcgtat	cttgatcctt	catgacattt	46020
gtaaagaccc	tgcttccaaa	taagctcaca	ttctgaggtt	ctggggtgag	cgggaatttg	46080
gagagcattg	ttcaactagt	atagaatgtg	acctgtcagc	ctcgggcagc	cctgagaggc	46140
aggggctttc	cacagcccag	ctgggtgccc	tgggctccgt	gctgtccgag	gagacgccat	46200
ccccacaccc	gtccttcacc	cgccaccctc	ccgcaggtac	ctgtacttca	ccaacatgca	46260
ggaccgggca	gccaagatcg	aacgcgcagc	cctggacggc	accgagcgcg	aggtcctctt	46320
caccaccggc	ctcatccgcc	ctgtggccct	ggtggtggac	aacacactgg	gcaagctgtt	46380
ctgggtggac	gcggacctga	agcgcattga	gagctgtgac	ctgtcaggta	cgcgccccgg	46440
ggcctgccct	aaccgcagac	acccggcctt	cattgtcagt	aatggcagca	gctgccacat	46500
tgtccgagac	ctgccgtgag	cccagtgccg	cgccaggggc	tttgtgtgta	acatattta	46560
tcctcacact	gacagetgta	ggctggggtt	ctgagtgagc	cccacagggc	agaggcagaa	46620
aatgagtctc	agagagggtg	agcgagctgc	ttggggcccc	acagcaggag	atggagcagg	46680
actgcagect	agcctctgcc	cccagcacct	gcgcaagaag	ctactctact	ctggactgtg	46740
ttaggctgcg	agggctggag	agaaatgaga	attaatactt	agagagggg	cacagatece	46800
		tgaggtagat				46860
		ttggaactga				46920
		ttgtcttggg				46980
		tggaatcccc				47040
tecteceag	ctgagtgtgg	ggcaagttct	ggaggtcagc	actoctcago	addacccsca	47100
		cgcctgaccc				47160
		catctctact				47220
georgadeae	ascescaaa	gacaagcgga	ctcacatcca	aaaccatata	acquicquyc	47280
		gaagtcagcc				47340
		ctaaacccga				47400
						47460
		ggcggtggtc				47520
aaatcaccac	gaacagggtt	gtcccgaggc	accasatett	****	geegeagaae	47520
		ttaagacaac				
		cccaggctgg				47640
		ttaagtgaac				47700
		acctggctaa				47760
		actcctgggc				47820
		gagccactgg				47880
		cacagcgtgg				47940
		aggaacgctg				48000
		aggtagcagt				48060
		tcagctccta				48120
		ggctccctgc				48180
		tgtgattcgg				48240
		ggctgattaa				48300
		ccgtgctggg				48360
		ttgctgtgtc				48420 ·
		cctccatggt				48480
		atccctacaa				48540
		atcccagcac				48600
aggttgggag	ttcgagacca	gcctgcccaa	catagtgaaa	tcccgtctct	actaaaaata	48660
		tggcaggcgc				48720
tgggagaatt	acttgaacct	gggaggcgga	agttgcagtg	agccaaaatt	acgccactgc	48780
		gtgagactcc				48840
		cccaaaaaaa				48900
gacactgtga	aatttttctg	ggtggggcag	ggaacagagc	gtcttctgtc	atttcttcca	48960
cctgggtgtg	gtcagctctc	cctccaagct	gcctcctctt	cttctcattg	tccgggtgtt	49020

ggagagattt	aattaaataa	242224			****	
attttattt	atttatta	atagaataac	gegagiteee	agggacttgg	LCCattgct	49080
tanantaana	tttaatttt	attttattt	attlattlat		attlattat	49140
tyayatyyay	acetaces-	gtcgcccagg	ctggagtgea	gtggcgcgat	ctcggttcac	49200
tgcaaccccc	geeteedagg	ttcaagtgat	tetectacet	cagcetteca	agtaactggg	49260
attacaggca	cccaccacca	taccaggcta	atttttttgt	atttttagta	gagacgggtt	49320
ttcgccattt	tgcccaggct	ggtcttcaac	tcctagcctc	aggtgatcca	cgcacctcgg	49380
cctcccaaag	tgctgggatt	acaggcatga	gccaccacgc	ctggcaccat	ttgctatttt	49440
aattcccatg	tgtattagtg	tcccacggct	gctgtaacaa	atgaccacaa	actggatggc	49500
ttaaagcaac	agaaatggat	tcccccaatg	tgctggagac	cagaagcctg	cgaccaaact	49560
		tctgggggct				49620
gtgctgtggg	tgccagcgtt	ccacacttgt	ggatgcgccg	cctcaacctc	tgcccatctt	49680
catgtgtcca	tctcctttgt	gtctgcgtct	ttacctcttc	ttcttgtctg	tgttgcctct	49740
		ggtttagggc				49800
tgagatcctt	aacctgcaaa	gacccttttt	ccaaaaaaag	gttatgctca	cagattctag	49860
gccttaagac	atgggtgtat	ctttctgggg	ggcactatcc	aaccccttat	acaatgaaag	49920
acgggaagag	ggccaggtgt	ggtagttcac	gcctgtaatc	tcagcacttt	aggaagctga	49980
		ccaggagttt				50040
		aaaaaaaaa				50100
ctgtaatccc	agcactttgg	gaggctgagg	caggcagate	acqaqqtcaq	gagattgaga	50160
ccatcctggc	taacacaata	aaaccccgtc	tctactaaaa	atacaaaaaa	ttataaccaa	50220
		aatcccagca				50280
		cttggctaac				50340
		gctaacacgg				50400
						50460
		gggcgcctgt				50520
		ggcggagctt				
		agtgagactc				50580
		gcctattgtc				50640
		gagtttgcag				50700
		ctgtctcaaa				50760
		ggctgaggca				50820
		accactgccc				50880
		ggagagacaa				50940
agtagagact	ggtgcagaca	ggctggcctg	tgatgtcaag	caacttctgt	aactgtttcc	51000
ggcatccatt	tgtgtgtcaa	tttccgtgtc	agtaggaaga	ctctgtaggc	tgccaagagg	51060
		cagagaggcc				51120
		ccaggctgtg				51180
tgtttgtctt	gttttgtctt	tgcagcagcc	cacccatgtg	cccgtgacaa	tggtggctgc	51240
		gggtgatggg				51300
gtgctcctgc	agaacctgct	gacctgtgga	ggtaggtgtg	acctaggtgc	tcctttgggg.	51360
tgatggacag	gtacctgatt	ctctgcctgc	taggctgctg	cctggcatcc	ttttaaaatc·	51420
acagtccctg	tggcatccag	tttccaaagc	tgattgtgtc	ttcctttgcc	ctcctttctt	51480
ttctactatg	tgcattcggt	gctatgaatt	ttcctctaag	tactgcgttt	cctgcatctc	51540
acaaattttg	ttacattttc	attttcaggt	agtttgaata	tttttacact	tctcctgaga	51600
tgacatcttt	ggctcatgtg	ttatttagaa	gtgttgctta	gtttctaaag	agttggggct	51660
tttccagctg	tctctctgca	actgatttct	aatttaattc	tactgtagtc	tgagagetta	51720
ttttatatga	tttctgttat	tttaaatgtg	ttgggtgtgg	tgtttttgtt	gttattgttt	51780
		ttgcttcgtt				51840·
		atggcgcgat				51900
		cagcctcctg				51960
		ttttagtaga				52020
		gatccgccca				52080
gcgtgagcca	ctatacctaa	ccattaggtg	tottttatca	cccagcatca	tocaotttat	52140
		ctcttgaaaa				52200
		gatccagttg				52260
		ttgagctgtc				52320
		tttctcctag				52380
		ggcttcctgg				52440
- 5		22-1-00-99		222-202-36	<i>3312319229</i>	25.3.30

PCT/US02/15982

	ggccaa agaggccag				52500
	tggtgc ctgaatctc				52560
	ggcagg ctgtcatgg				52620
	acagga atgccagct				52680
gtgaccatct gtat	cctcac cacagtgaa	g cctgtccagg	gctttctctc	ctatgccccc	52740
	ccttgg atcctgttg				52800
gtgggagttc ctgg	gggttc agcttcatco	: tacagacagc	agcacacact	ggctgtgcac	52860
ccttttttt tttt	tttttt tttttttg	gatggagtct	cgctttttc	gcgcaggctg	52920
	gatett ggeteactge				52980
	ccaagt agctgggatt				53040
	agagat ggtgtttcad				53100
acctcaggtg atcc	gcccac ctcagcctco	caaagtgcag	ggattacagg	cataaaccac	53160
cacacccqqa qtqc	cggttg tttttagcag	tttatcttat	tcctggagag	actggctcct	53220
geceaggage tegg	ggagta gggccgcgg	atactaccte	acacctcgag	tttggccgta	53280
agcagaggg acat	tttgtg actgtcccc	tectgagett	cccagcaget	tttctccaag	53340
	ctcagg tggatttgca				53400
taccagaset acce	tggcca agaaacggg	. ccatcadage	getgegeae	staceactya	53460
agasetssat assa	gagge atgeette	, etgecagaac	gccgcactaa	cogcaycott	
steetaaste aaa	gaggee atgeeette	topografic	accordant	ggeeerggee	53520
esastastta testi	actcca ggccccttco	ctacggattg	agagacgcgc	acctacegea	53580
	tctctt gtggcctctt				53640
	acatgg accetttgat				53700
	agcagt gccatcacca				53760
	gcccca gtgtcccagt				53820
	gagagt cgaggtcgga				53880
	ggagac ttgggctcca				53940
	ctccgt gtcccccate				54000
ggctcctctc agcc	gtcgtg ggctgaccct	ggcacgtcct	cctgtggctg	agcccagtgg	54060
ggacagctgc ttcc	ttttat taccctagaa	ctctcgtctt	tgatcaggcc	ccctccccta	54120
	tgtcac tcgggtgage				54180
	cttgcg tgcagcatga				54240
	gcgggg gctttgctca				54300
	ggccag cctctgttt				54360
	gggggg ccacctcgaa				54420
gtgcccccac gctt	tgtgtc tgtgtcccc	gcccatggga	ctgtgttatt	ccctgagtgc	54480
tgccgcatgc ccag	cccgca ctgaggacgi	ggagccccga	ggggcaggat	ggcctccatg	54540
	gtggcc tccaccctc				54600
	gtcatc agccctcct				54660
	caggtc ctctgccgg		-		54720
	ccttct tctgtagca				54780
	ccctc tggtcctgad				54840
	gccggg aggaggaag				54900
	tgtatt tggtgtagc				54960
					55020
	ctgcat tgaaaaaca				55080
	ctcttc tgggttggg				55140
	gcgggt gcagcaccc				
	tgcttt gaagcccagi				55200
	tetect etgteeete				55260 ·
	cagggg agatcgact				55320
tecegagige gaige	accaga gcgacgagg	a gggctgcccc	gtgtgctccg	ccgcccagtt	55380
cccctgcgcg cggg	gtcagt gtgtggacci	gegeetgege	tgcgacggcg	aggcagactg	55440
tcaggaccgc tcag	acgagg tggactgtga	a cggtgaggcc	ctccccgtca	aggctctgcc	55500
aagaccctgg ccct	gccctc cgggatacga	gcttggggct	gcctccggcc	tcacaggagt	55560
aggggctctg aaaa	cctttg cttgcaggga	gattgccaag	tctgtctttt	aggcccaaca	55620
aggaaaactc tgca	gttcca cccatcctg1	cccaccaggt	agtgtggctt	gaaggcagac	55680
tgtgagggtc tatc	tcacct tcctgcatta	ggtcaggagt	ttcacagaaa	cctgaggcac	55740
attcaggggt gggc	tgcaga ggtccatgg	tcacaccctg	gaaaatccgc	ccccaaaaga	55800
cagtgctgtc tccac	ctgacc agtctgtggg	, atagtgctta	agcctgagtg	gtttctatca	55860
		-		-	

PCT/US02/15982

acatgtagaa	tcaggaggta	taaagagatt	tgctcaggca	tcctgggccc	tctctgacca	55920
gcaggatctt	cctttagatc	ttgacagtga	aacacatctc	ttctgtgccc	cctgtgagtt	55980
ttctttcatt	cattcattca	ttcattcatt	cattcattca	ttcgagacag	agtcttgctc	56040
tgtcacccag	gctggagtgc	cctggtgtaa	tctcggctca	ctgcaacctc	tgcctccagg	56100
gttcaatcga	ttctcctgcc	tcagcctccc	gagtagctgg	gatgacaggt	gcgcaccacc	56160
atgcctggct	aatttttgta	tttttagtag	agacagggtt	tcaccatgtt	ggccaggctg	56220
gtctcgaact	cctgacctca	ggtgatccgc	ccgcctcagc	ctcccaaagt	gctgggatta	56280
caggcatgag	ccaccgcgcc	cggcctgagt	tttcctttta	tgaaggacct	gcttggttgg	56340
	catgttgtca					56400
tcgctctccc	agagccaccg	gctctgttag	ataattcaca	tgcagtctgg	ccactgtcct	56460
	tcacaaagag					56520
	ttctataaag					56580
aattttatgg	aggctgtaga	ctaggggctg	gtaaactaag	ggcccagggg	ccaaatccag	56640
cctgccacct	acttttgtaa	ataaagtttt	cttggtgcac	agccatgccc	attcattcat	56700
ttgcacaatg	tctgtggctg	ctttcatgcc	aaaagcagga	gaactgagtg	gttatgctgg	56760
	ccttcaaagc					56820
	gcgcatcctg					56880
ccgtggttag	gaattgtccc	tgtgttggtc	cattttgcat	tgctatgaag	gagcacctga	56940
ggccgggtag	attatgaagg	aaagaggtct	gtctggctca	tggttctgta	ggcagcacca	57000
gtatggcacc	cgcatctgct	cagcttctag	tgaggtctca	ggaagctttg	actcatggtg	57060
gaagtcgaag	cgggagcagg	tgcatcacat	ggtgagagag	ggagcaacgg	agagagag	57120
	agagcgcctc					57180
ttaagtaacc	agctcccatg	tgaactcaca	qtqaqaqccc	atttqctact	gcggagaggg	57240
	ctgctcccat					57300
	tattctgttc					57360
	ctattatttg					57420
gcatgatctt	ggctcactgc	aacctccacc	tcccaggttc	aagcgattct	cctacctcaa	57480
cctcccgagt	agctgggatt	acaggcacac	accaccacac	ccgggtaatt	tttgtatttt	57540
caatagagat	ggggtttcac	catgttggcc	aggctggtct	caaactcctg	acctcaagtg	57600
atccacttac	ctcggcctcc	caaagtgcca	tgattacaga	totoagtcac	tacacccaat	57660
gagggtcaca	tttccgttga	gatttggagg	ggcagacgtt	ggagccatct	gageceete	57720
atcccactct	agcttctcct	cccatatacc	ccacaatact	ggtggcaggc	ccttacacca	57780
attetaaeta	cacgctctgt	tccagaagct	ttcttcccta	cttggttacc	agaaaatcat	57840
cccatccatt	acaaggacag	ggtcccctta	teteceatte	ccadacada	acaccadada	57900
cagggcaggt	ggggaactga	gcaagttctc	taggaggagg	cataactata	actocotota	57960
	tggggagggg					58020
	tgtggccttg					58080
	cctccctcc					58140
	ggcgaggctc					58200
	gccttgggcg					58260
	cacatacctc					58320
	ccctgcgtgg					58380
	cactccccgc					58440
	ttggttgctg					58500
	gcctctcctt				-	58560
	cctcatcaaa					58620
						58680 ·
	gtgtggtgag					58740
	gtggagttta					58800
	aggcggctgg					58860
	ggacagactg					
	tggtgtccag					58920
	aggcagcaag					58980
	tgaggaggag					59040
	catcccacat					59100
	taggaggcca					59160
ttatatata	gattcaggca	ggaagggagc	tgagttcaga	Laggaagtag	caatgagtca	59220
regraterag	ggacatggcc	actecttege	rgcagaggga	cctgggctga	gagctcctct	59280

032796-132.ST25

PCT/US02/15982

attatemete	020100000	202224	L			
terategette	cagtcgggag	agaageeege	cgggggaga	agggggette	ctcaagggac	59340
teeetgtgee	ctttggcacc	ttcgtgccag	greaggerra	aggcctgaag	gcagtggtgg	59400
gggccaccaa	gggtcgcctc	ctctgctggg	caagttccca	gtctgacggg	cctgtgccgt	59460
gggccccagc	tgtgggggcg	ctgttgatgc	gcagccaggc	ctcgccgcca	gagcccgcac	59520
gcttccattc	cgctgacttc	atcgacgccc	tcaggatcgc	tgggccggcc	ctgtgggaga	59580
gtgaatgtgg	cttttgccaa	agttgagtct	ggagcctgga	aacttcccta	tgggcagcct	59640
tgatagtgga	gtggcccaag	gagcccaccc	agccgaccct	gcccctcccg	tggctggtgg	59700
gcggcaccag	gggctgcctg	gctttgctcg	ttcaccaaca	tcacccgggc	tggccagggc	59760
gcgctcactt	ctgccaccac	cgagggccct	gggcgaagga	gtgaatacca	ggctgcctta	59820
gcagggatgt	gttgagggct	gtggggagtc	ggacagcggc	gggggtcaga	ggaggaggag	59880
ggtgcaccgt	gcaggctgaa	gggccacgtt	accetgaggt	tggccaggct	cccagget	59940
agcctcccag	ctccccact	ttctccccac	cctccaccag	tggcaaagcc	ageceettea	60000
gggcgcacgg	tgtctgcccc	caaggagggc	ccattccgtt	ggggttaatg	ttggccacct	60060
ctttctattt	gtctctggca	gaaatcacca	agccgccctc	agacgacage	ccaacccaca	60120
gcagtgccat	cgggcccgtc	attogcatca	tectetetet	cttcatcata	gatagtatat	60180
attttatata	ccagcgcgtg	atataccaac	actatacaaa	accesecacy	ggeggegeee	60240
acceptates	caacaaaaa	ccacacatac	coctcaattt	ggccaacggg	ggaggttage	
acgagiacgi	cagcgggacc	angenerate	ccccaaccc	tactagececg	ggcggtteee	60300
	cttcacaggt					60360
	gcagctttgg					60420
	cattgctaat					60480
gcatcagaat	ccttcaacac	agaggcctgc	atggctgtag	caacccaccc	tttggcactg	60540
	gaaagctcct					60600
	tcctcatgta					60660
gctgaaggaa	tcactctgta	ccatacagca	gctttgtctt	gagtgcagct	gggatttgtg	60720
	tacaattcct					60780
	gccgcaccgc					60840
	agaaggtgga					60900
	ttgcctctgc					60960
	agccggcctc					61020
	gggagcgggg					61080
	cagtcgcagc					61140
ctatactacc	ccgcctgggt	tecetacec	autcucauuc	cccttagaaa	anntaccato	61200
	ttcacagatg					61260
						61320
	gagcggggca					61380
	gcagaggaga					61440
	tececegtee					
	ctgatggggg					61500
	tccagcagct					61560
	gaggggggg					61620
	cttcccgggt					61680
	tcaaaccctt					61740
	acaaaaatat					61800
	ccgtcagcat					61860
tagccgcctg	caccaggcct	gtctgccctc	tgtgagcctc	cccacagggt	tccctccaca	61920
aacaccctgt	tctcccaccc	agggctggct	gcttcctgga	aaacagctgg	atggttttgt	61980
	caaacacagg					62040
	ctggctccag					62100 -
	ccctccagga					62160
acagtcccag	gatgccaagg	cgagcttggt	gccgagatgt	gaactcctga	gtgtaaacag	· 62220
cgggggctga	cttgacatgc	tttqtatqct	tttcatttat	tcctgcagct	gtatgcccct	62280
aaggtgagtc	cagccccctt	ctacttecte	tagaacctca	ccagtgagcc	ccaccttact	62340
agagetaatt	cctcctgccc	ttctgggtat	ccctcacate	tagaatetta	tettettatt	62400
ttattttct	ttttttttg	agacggagtt	tcacttttat	taccearact	tcartroset	62460
aatataatat	ctaggeteae	cacaacetet	acctoccaca	ttoaacooct	totootoot	62520
Carreteret	antanctor	attacaccc	tatassess	cccaageage	attta	62580
tttagtaga	agtagctggg	toostotto	torgactast	cycccagcta	attegratt	62640
tastasasas	atggggtttc	coccatguigg	taggetgat	cccgaactcc	ccacctcagg	
Lyattegeec	accttggcct	cccaaagtgc	cgggattaca	ggcgtgagcc	accgcacctg	62700

gcctttttct	tttcttttct	tttcttttt	ctgagacagg	gtctcgctct	gtcacccagg	62760
ctggagtgca	atggtgtcat	catggctaac	tgcagcctct	accttctagg	ctcaagcaat	62820
	cagcccctaa					62880
	ttttgtagag					62940
	cgatcctcct					63000
	gcctggggta					63060
	gaagagggtt					63120
	ggctttgttt					63180
	cccttcttcc					63240
	caagcagggc					63300
	tgggagctgg					63360
	tttaaatcac					63420
tacagttcag	tgggttttag	tgtattcaca	gatgtgtgca	accctcacca	cagttaattt	63480
	tcctgcccct					63540
aaagttattt	tgcatccttt	aaatatatgt	tcatggtaca	aaattcaaaa	gatacagaag	63600
	ccaaagagac					63660
ggcctcctgc	agtgtgtttc	ttctatgtcc	ccccaggggt	catctgtaca	tatgcaagca	63720
tacaagagcg	tggactttgt	tttccaagcc	agaagataat	tgtagattta	tgtgcagttg	63780
tgagaaagag	cacagaccca	tttatcctct	gcctggtttc	ccccagtgct	gcctgccatc	63840
ttgcatgact	tccattccta	tcataagcaa	gacactgata	acgattcttt	caccttattc	63900
agattgacat	aagtgtttt	tgtttgttct	tgagacaaac	ttcctctgtc	acccagtggg	63960
	cacaatcaca					64020
ctgcctcagt	cccctcaagt	agctcagatg	gcaggtgtgc	accatcatgc	caggctaatt	64080
	ttgtggaggt					64140
	atcctcctgc					64200
	ctgacatatg					64260
	gccttttgct					64320
	tgccgtgtgc					64380
	ttttcctcat					64440
	ttcggttggt					64500
	ccccgcaccc					64560
	acagcactcc					64620
	tgctgcggtt					64680
	agtccatctt					64740
	ccacctgtct					64800
	tatcatgaat					64860
	gcttgcagct					64920
	gagtttgaga					64980
	tagccgggta					65040
	gggaggcgga					65100
	gcgagactct					65160
	cttttatggc					65220
	tgttcataaa					65280
	ctttttttt					65340
	ctcagctcac					65400
	agtagctggg					65460
tttagtagag	acgggggttt	ctccatgttg	gtcaggctgg	tctcgaactc	gcgacctcag	65520.
	cacctcggcc					65580
	ctctttctta					65640
	taattagatt					65700
ggcttatggg	tggcgtgaat	tagtcggggt	ctatcaggag	gcagaaactc	tatgagaatt	65760
tgaacagaga	aagttccgtc	tacaggetta	ttaccaggga	ctggaatage	agaaattgaa	65820
cagtgagatg	tacagagaac	tctaagaatg	caggaatagg	ccaggcatge	taactaacac	65880
ctgtcatccc	agcactttgg	gagaccaagg	caaataaato	acctgaggte	aggagttcga	65940
	gccaacatag					66000
agtataataa	cgcatgcctg	taatcccago	ttctcaggag	totgaggetg	gagaatcact	66060
tgaacctggg	aggcagaggt	tataataaac	cgagatcato	ccattotact	ccagcctaga	66120
- 3577		-22-9-9-		ccaccycacc	ccaycorggg	55125

		caaaacaaca				66180
		CCCCCacccc				66240
		cacgggacat				66300
		cagtgcagat				66360
taggagagaa	accaggcctg	gtcaagttca	tgggaagagg	tggaaacaga	ccccataggc	66420
tggggcttgg	gcagctgtag	gaagccctct	ctgctgcctc	cctgcctgct	ctctgctttg	66480
aagcatcttc	cccagtgccc	ccagtctcat	gccctctcaa	cgttggggtc	adatcctgag	66540
		tgggccaaag				66600
tgcggcttcc	taaagggcag	gggaagggcc	tggccactcc	ccagaggcta	ctcaccagcc	66660
atcaggatag	ccccaggaag	caggccttct	cgagcccatt	ttattacttt	attttattat	66720
tttatttaat	tttaaattta	ttttttgaga	cagagtótca	ctctgttgcc	caggctggag	66780
		ccactgcagc				66840
acctcagcct	cccaagtagc	tgggattaca	ggtgcccgcc	accacacccg	gctaattttc	66900
atattttag	tagagacgag	gtttcaccat	gttggccagg	ctggtctcga	actcctgacc	66960
tcaagtgatc	cgcccgcctc	ggcctcccaa	agtgctaggt	caagcccatt	ttaaagttga	67020
		attccctccc				67080
aaacaggact	tcacccgggt	ctgtctggcg	tgaaaggcag	tgttcttgta	ccaccctagg	67140
		cctcgggcat				67200
		tgctttccag				67260
accctttggg	aagctgcatg	ttgggttggg	gtgccgtcag	tggcacttgt	ggaaggtgca	67320
		cccagggccc				67380
tgtgtgctgc	ctggacctgg	ggggcacgtt	cacgtggtga	atttgtctat	ttactatccc	67440
		cacaggccct				67500
actgtggccc	ctccctcagc	gtggtgactt	ctgtgtcagg	gcttcagcag	ggacgcagag	67560
cccctgagtg	ttcggaacaa	gggcgtcatt	gcaggagtta	gactgtgtgt	gatggaggga	67620
		cagaaggaga				67680
gaggtgctaa	ctggtgtgga	ggacactcag	ggcctgtggg	gacatctcct	actgctgggg	67740
gccagccaca	aagggaactg	gccgaagtcc	tgtccccgcc	ttcacagccc	agcatctggt	67800
cacaaggcag	gtacttggaa	gggcgcgggc	acctgggcca	aaagtgcctg	ggttcccttt	67860
gcctttcact	gagatgacct	tcggggcagg	tggctgctgc	ctccctcct	gtccccaggt	67920
		aggggtcctg				67980
aaggaaagcc	cgaggggtgt	gggaggaagg	aaggaatgcc	caggctggcg	aggctctaag	68040
		tcagatcctg				68100
		gttctactct				68160
		ccctccatgg				68220
		tgatgagggg				68280
		ctgctctgcc				68340
		ggttcagaaa				68400
tcaagttgct	cctatggggg	ttacttttaa	gctgggaaat	ggctgtggcg	tcgaggggcc	68460
		ctgactgtgt				68520
tgagatgccc	cctcttggtg	gctctgtcct	cttaggatgg	gacaagtctg	tgaaggctgc	68580
		cctaatcgtg				68640
					tggacaccag	68700
		ggggtcacag				68760
		acccaggtgt				68820
		tcctgacctt				68880
		ccacccccgc				68940.
		cgcattcctc				69000
		ccacctagtg				69060
		ccatttccac				69120
		gtcacagtct				69180
		ggcagcccag				69240
		tctgggccca				69300
		ccccaagagg				69360
		tcccacccat				69420
					tttctgggcc	69480
acagttgggt	gcaggtagcc	tctgggagga	tgggaggtca	ggagccatct	tgcgagtcag	69540

```
gttgcttgaa ctcaggatgg aagtgttccg ggcccattgg ttgctgtatt agcctgttct
                                                                      69600
cacgctgcta ataaagacat acccaagact gggtaattgt aaaggaaaga ggtttaacgg
                                                                      69660
actcacagtt ccacctgcct ggggtggcct cacaatcatg gtagaagaca aggaggagca
                                                                      69720
agtcacatct tacatggctt cagggaacag acagcatgag aaccaagcga aaggggtttc
                                                                      69780
cccttgtaaa accatcaagt ctagtgagat ttattcacta ccacgagaac agtatggggg
                                                                      69840
gaaccacccc catgattcaa tcatctccca ctgggtccct cccacagcac gtgggaatta
                                                                      69900
tgggagtaca attcaagatg agatttgggt ggggacacag ccaaacccta tcggttgcca
                                                                      69960
acatttacag taacagtgtt aggtgaacag ttgtccagtc tcctgttttg tcggacactg
                                                                      70020
tttctagcac cttccaggca gaatctcatg tatccttcac tttcgaaatg ggtactattt
                                                                      70080
catccccact tttatcaatg agaaactaaa gctcgaagag gtcaagtaag ttcctggcca
                                                                      70140
aggtcagcta gcaggctcta gaggcctcgt tctccttaga ggcagccttg ccagggccca
                                                                      70200
ggcttggcag gctgcagggc aggtgcgggc atgcccatgg tagaggtggg accattgagg
                                                                      70260
ctcagagagg gtaagtgatg agccctggcg acacagcggg gtgggtccag agtccggcct
                                                                      70320
geatettetg gagetggeea gtggaeagge ettteeegtt caeageeeeg gggetgetgt
                                                                      70380
gcccaccagg gcggatgtgc ctaccgaatc ccactcctct gtgtgtgtcc ctttcaggcc
                                                                     70440
ctacatcatt cgaggaatgg cgcccccgac gacgccctgc agcaccgacg tgtgtgacag
                                                                      70500
cgactacage gecageeget ggaaggeeag caagtactae etggatttga acteggaete
                                                                      70560
agacccctat ccacccccac ccacgcccca cagccagtac ctgtcggcgg aggacagctg
                                                                      70620
eccgeecteg eccgeeaceg agaggageta ettecatete tteecgeece etecgteece
                                                                      70680
ctgcacggac tcatcctgac ctcggccggg ccactctggc ttctctgtgc ccctgtaaat
                                                                      70740
agttttaaat atgaacaaag aaaaaaatat attttatgat ttaaaaaata aatataattg
                                                                      70800
ggattttaaa aacatgagaa atgtgaactg tgatggggtg ggcagggctg ggagaacttt
                                                                      70860
gtacagtgga gaaatattta taaacttaat tttgtaaaac agaactgcca ttcttttgtg
                                                                      70920
ccctqtqtqc atttqaqttq tqtqtccccq tqqaqqqaat qccqacccc qqaccaccat
                                                                      70980
gagagteete etgeaceegg gegteeetet gteeggetee tgeagggaag ggetggggee
                                                                     71040
ttgggcagag gtggatatct cccctgggat gcatccctga gctgcaggcc gggccggctt
                                                                      71100
tatgtgcgtg tggcctgtgc cgtcagaaag ggccctgggc ttcatcacgc tgttgctgtt
                                                                      71160
cgtcttcctc agattcttag tcttttttt tttttttt tttttgagacg gagtctttct
                                                                      71220
ctgtcatcca ggctggagtg cagtggtaca atctcagctc actgcaagct ccgactccca
                                                                      71280
ggttcaagtg agtctcctgc ctcagcctcc cgagtagctg ggactacagg tgcgcgccac
                                                                      71340
cacacccgcc cagctaattt ttgtattttt agtagagatg gggtttcacc atgttggcca
                                                                      71400
ggatgatete gatetettga ectegtgate egeceacete ggeeteeeaa agtgetggga
                                                                      71460
ttataggcat gagccactgt acccagctga ctcttagtca cttttaagaa ggggactgtg
                                                                      71520
cetteatttt teaetgggee etgeagaata tatgeetggg etetgggete ttetgaacet
                                                                      71580
gtgttggctt ccatctgacc tctctgtgcc agcccaaggc tqctqctctt cctqaggqca
                                                                      71640
aggageeeca tgactgegtg ttgacteget ggatgggget getgageeca etetgeeaca
                                                                      71700
ccacqtqccc ctgqcagqqa qqqaatccct qqqtcctcac aqqaacaqtc aqcaaqccac
                                                                      71760
acetgaegee tgetgtggge ecatecetge ggtgetggag aagaeagaea aggeetggte
                                                                      71820
                                                                      71880
actgcctctg cagggtcccc agtccgtgga aggagacagt aatctaggca ttttcggtgg
ggaagctgag ctgttctcgt gtcctgaagg ccaggcggga acagccgtct tcagagggaa
                                                                      71940
gggagaaaat gcacatcgca tcagtggaga agggcctgac ttccctcagc atggtggagg
                                                                      72000
gaggtcagaa aacagtcaag cttgagtatt ctatagtgtc acctaaata
                                                                      72049
```

```
<210> 10
<211> 8705
<212> DNA
```

<213> Homo sapiens

<400> 10

ggactcaggg	gcagcaggga	ggtacaccca	tggttagtgg	gcggaccata	gggggtaatg	60
agagggtgaa	tcgatggaac	ctgggggaca	caatcgaagt	ggttccagag	tcgggctgta	120
ctaattaaag	agacggggca	gtggacaggc	attttcagtt	gactgcccag	ggagtgttct	180
gcccaacagg	gaggatatgc	gtacagaatc	atactcgatc	agcatgagtc	caattcagac	240
cgtacatcag	tggagatatg	ggtcccccga	tgactccgtg	gaacactgat	gtttgtgaca	300
ggggagtaca	gcaccagcca	tcagcaggcc	agtaaatcat	accggcctgc	gaaattggac	360

WO 02/092015

					_	
		accgacgtcc				420
		gaatagggcc				480
tgccgaggcg	ctgcattggt	ggatcttgcc	agaagtttgc	ccagtgcaga	tttgggcaga	540
		gtaggagaga				600
gtggaaacag	accccatagg	ctggggcttg	ggcagctgta	ggaagccctc	tctgctgcct	660
ccctgcctgc	tctctgcttt	gaagcatctt	ccccagtgcc	cccagtctca	tgccctctca	720
		ggaataccca				780
		gtgcggcttc				840
		catcaggata				900
		ttttatttaa				960
actctgttgc	ccaggctgga	gtgcagtggt	gcgatctcaa	cccactgcag	cctctacctc	1020
		cacctcagcc				1080
		catattttta				1140
		ctcaagtgat				1200
		aagaaactga				1260
		aaaacaggac				1320
						1320
		ggggcctgag				
		aggggctcgg				1440
		caccetttgg				1500
		agacctgtgt				1560
		ttgtgtgctg				1620
		ccgctttggg				1680
		gactgtggcc				1740
ggcttcagca	gggacgcaga	gcccctgagt	gttcggaaca	agggcgtcat	tgcaggagtt	1800
agactgtgtg	tgatggaggg	aggaggggca	ggaggaaagg	tcagaaggag	agttcctggg	1860
aaggtccctg	aggagcctgg	tgaggtgcta	actggtgtgg	aggacactca	gggcctgtgg	1920
ggacatctcc	tactgctggg	ggccagccac	aaagggaact	ggccgaagtc	ctgtccccgc	1980
		tcacaaggca				2040
		tgcctttcac				2100
		ttttgccaac				2160
		caaggaaagc				2220
		gtcaccctgg				2280
		ctccctgtac				2340
		caggtaggac				2400
		ggggcctaat				2460
		cgggcccagc				2520
						2580
		ctcagcgggc				2640
		ttcaagttgc				2700
		cgggggcttg				
		ttgagatgcc				2760
		ctgcagcacc				2820
		acttgccaca				2880
		gcccccgag				2940
		ctgagagtgt				3000
cgcaggggct	ggatcagagc	ctgggatggg	cagggtgagc	ctcctgacct	ttaacccagt	3060
ggtgtcaggc	aacgtggccc	acccgccagc	cgcaccaggc	cccacccccg	caggtgaagg	3120
ggtgggatag	gctgggcctg	ggccaggaca	cctctggacc	acgcattcct	cattgcttgg	3180
gtccctggag	cagcagggcc	tcccgagtgt	ggtgccgcct	gccacctagt	ggccatttcc	3240
		ggggagccgg				3300
		gcctcagtat				3360
		agaatggtca				3420
		ctttgctcat				3480
		tctgacctca				3540
		cacccggtgt				3600
		tcctaaacac				3660
		cacagttggg				3720
						3780
aggagecace	ccycyayica	ggrigoriga	acceayyacy	gaagegeece	gggcccattg	3700

gttgctgtat	tagcctgttc	tcacgctgct	aataaagaca	tacccaagac	tgggtaattg	3840
	aggtttaacg					3900
ggtagaagac	aaggaggagc	aagtcacatc	ttacatggct	tcagggaaca	gacagcatga	3960
gaaccaagcg	aaaggggttt	ccccttgtaa	aaccatcaag	tctagtgaga	tttattcact	4020
accacgagaa	cagtatgggg	ggaaccaccc	ccatgattca	atcatctccc	actgggtccc	4080
tcccacagca	cgtgggaatt	atgggagtac	aattcaagat	gagatttggg	tggggacaca	4140
gccaaaccct	atcggttgcc	aacatttaca	gtaacagtgt	taggtgaaca	gttgtccagt	4200
ctcctgtttt	gtcggacact	gtttctagca	ccttccaggc	agaatctcat	gtatccttca	4260
ctttcgaaat	gggtactatt	tcatccccac	ttttatcaat	gagaaactaa	agctcgaaga	4320
ggtcaagtaa	gttcctggcc	aaggtcagct	agcaggctct	agaggeeteg	ttctccttag	4380
aggcagcctt	gccagggccc	aggcttggca	ggctgcaggg	caggtgcggg	catgcccatg	4440
gtagaggtgg	gaccattgag	gctcagagag	ggtaagtgat	gagccctggc	gacacagcgg	4500
	gagtccggcc					4560
tcacagcccc	ggggctgctg	tgcccaccag	ggcggatgtg	cctaccgaat	cccactcctc	4620
	cctttcaggc					4680
cagcaccgac	gtgtgtgaca	gcgactacag	cgccagccgc	tggaaggcca	gcaagtacta	4740
cctggatttg	aactcggact	cagaccccta	tccaccccca	cccacgcccc	acagccagta	4800
cctgtcggcg	gaggacagct	gcccgccctc	gcccgccacc	gagaggagct	acttccatct	4860
cttcccgccc	cctccgtccc	cctgcacgga	ctcatcctga	cctcggccgg	gccactctgg	4920
cttctctgtg	cccctgtaaa	tagttttaaa	tatgaacaaa	gaaaaaaata	tattttatga	4980
tttaaaaaaat	aaatataatt	gggattttaa	aaacatgaga	aatgtgaact	gtgatggggt	5040
gggcagggct	gggagaactt	tgtacagtgg	agaaatattt	ataaacttaa	ttttgtaaaa	5100
cagaactgcc	attctttcgt	gccctgtgtg	catttgagtt	gtgtgtcccc	gtggagggaa	5160
tgccgacccc	cggaccacca	tgagagtcct	cctgcacccg	ggcgtccctc	tgtccggctc	5220
ctgcagggaa	gggctggggc	cttgggcaga	ggtggatatc	tcccctggga	tgcatccctg	5280
	cgggccggct					5340
cttcatcacg	ctgttgctgt	tcgtcttcct	cagattctta	gtctttttt	tttttttt	5400
	cggagtcttt					5460
tcactgcaag	ctccgactcc	caggttcaag	tgagtctcct	gcctcagcct	cccgagtagc	5520
	ggtgcgcgcc					5580
tggggtttca	ccatgttggc	caggatgatc	tcgatctctt	gacctcgtga	tccgcccacc	5640
	aaagtgctgg					5700
cacttttaag	aaggggactg	tgccttcatt	tttcactggg	ccctgcagaa	tatatgcctg	5760
ggctctgggc	tcttctgaac	ctgtgttggc	ttccatctga	cctctctgtg	ccagcccaag	5820
	ttcctgaggg					5880
	cactctgcca					5940
	tcagcaagcc					6000
agaagacaga	caaggcctgg	tcactgcctc	tgcagggtcc	ccagtccgtg	gaaggagaca	6060
	cattttcggt					6120
	cttcagaggg					6180
	gcatggtgga					6240
tgcatttaat	aatcaaaata	taggctgggt	acggtggctc	atgcctgtaa	tcccagcact	6300
	gaggcaggtg					6360
atggcaaaac	ctcaactact	aaaatacaaa	aactagccgg	gcgtggtggt	gcacgcctgt	6420
aatcccagct	acttgggagg	ctgaggcagg	agaattgctt	gaacctggga	ggcggaggct	6480
	gagattgtgc					6540
	aaaaaaaaa					6600
	caaaacaaac					6660
	tgactgtaaa					6720
tggctcacgc	ctgtaattcc	aacgctttgg	gaggetgagg	cagatagate	atttgatgtc	6780
	agaccagcct					6840
aattagccag	gcggtagtgg	cacgcaccta	taatcccagc	tacttgtgag	gctgaggcag	6900
	ggaggctggg					6960
	cgacagagtg					7020
	acccaaccat					7080
ctaggccagg	tgtggtggct	cacacctota	atcccaccc	tttgggaggc	ctgactggca	7140
gatcacctga	ggccaggagt	ttcagaccag	cttgaccgac	atggcaaaac	cccatctete	7200
		J5	5 5	- 5 5		

ctaaaaatac aaaaaacaa aaaaaagaaa aaggctggaa gtagtgatgt gtgcctgtag 7260 ccccagctac ttgggaggct gaggcaggag aattgcttga atccgggaag tggaggttgc 7320 agtgagccag gatggtgcca ctgcacteca gcctgggtga cagagcgaga ccctgtcata 7380 7440 gaaataataa agatcagaac aggccaggct catgggcaca gtggctcaac tcctacctgc 7500 tcaggagttt gagaccagtc tggccaacat ggcaaaaccc catctctcct aaaaatatga 7560 aaaaaaaaaa ataggctgga tgtggtgatg tgtgtgtgcc tgtagcccca gctacttggg 7620 aggctgaggt gggagaatca cttgagccca ggaagtggag gctgcagcga gtcatgaatg 7680 caccetgeae tetagetggg taactggagt gagattetgt etcaaaaaag caaagaccag 7740 agcagaaata aatgaaatgg aaatgaagga aacaatgcaa aatgatacaa aaagtttttt 7800 cgaaaagata aacaaaatca acaaaccttt agccagatta agaaaaaaag agagaagacc 7860 caaataaata aaatccgaga ttaaaaagga gacattacca ctgataccac agaaattcaa 7920 aggatcatta gaggcaacta tgtgcaacta tatgctaatg aactggaaaa cctagaagaa 7980 ctgggtaaat ttctagacac atacaaccta tcaagattga accatgaaga aatccaaaac 8040 ctgaacaggc cgggcacggt ggcttacgcc tgtaatccca gcactttgga aggcctgaga 8100 tcaggagttc gagaccagcc tggccaacat ggtgaaaccc catctctact gaaaaaatat 8160 aaaaattagc cgggcgtggt ggcgggtgcc tctaatgtca gccactcggg aggctgaggc 8220 aggaaaatca cttgaacctg ggaggcatag gttgcagcga gccgaggttg caccactgca 8280 ctccagcctt ggcgacagag ccagactcca tctcaaaaaa attaaaataa caaaaacctg 8340 aacagaccaa taacaagtaa tgcgatgaaa actgtaataa aatgtttccc aacaaagaaa 8400 gcccaggaac aaatggcttc actgctgaat tttaccaaac atttttttt ttttgagacg 8460 gagteteget etgtegeeca ggetggagtg cagtggtgta accteggtte getggtaact 8520 tatgcctctc aggctgcaag tgattttcct gcttcaggcc ccccgagtgg ctggaaatta 8580 gatggtactt gtcaaacaag gcctggctaa atttctatat ttccttcaag tagaagatgt 8640 gcttccaaca aaggttgggt tacggctggc ttctgaaaat cttggatttc aaggctcccc 8700 8705

<210> 11 <211> 66933 <212> DNA

<213> Homo sapiens

<400> 11

tataatcaag cgcgttccgt ccagtccggt gggaagattt tcgatatgct tcgtgatctg 60 ctcaagaacg ttgatcttaa agggttcgag cctgatgtac gtattttgct taccaaatac 120 agcaatagta atggctctca gtccccgtgg atggaggagc aaattcggga tgcctgggga 180 agcatggttc taaaaaatgt tgtacgtgaa acggatgaag ttggtaaagg tcagatccgg 240 atgagaactg tttttgaaca ggccattgat caacgctctt caactggtgc ctggagaaat 300 gctctttcta tttgggaacc tgtctgcaat gaaattttcg atcgtctgat taaaccacgc 360 tgggagatta gataatgaag cgtgcgcctg ttattccaaa acatacgctc aatactcaac 420 cggttgaaga tacttcgtta tcgacaccag ctgccccgat ggtggattcg ttaattqcqc 480 gcgtaggagt aatggctcgc ggtaatgcca ttactttgcc tgtatgtggt cgggatgtga 540 agtttactct tgaagtgctc cggggtgata gtgttgagaa gacctctcgg gtatggtcag 600 gtaatgaacg tgaccaggag ctgcttactg aggacgcact ggatgatctc atcccttctt 660 ttctactgac tggtcaacag acaccggcgt tcggtcgaag agtatctggt gtcatagaaa 720 ttgccgatgg gagtcgccgt cgtaaagctg ctgcacttac cgaaagtgat tatcgtgttc 780 tggttggcga gctggatgat gagcagatgg ctgcattatc cagattqggt aacqattatc 840 gcccaacaag tgcttatgaa cgtggtcagc gttatgcaag ccgattgcag aatgaatttg 900 ctggaaatat ttctgcgctg gctgatgcgg aaaatatttc acgtaagatt attacccgct 960 gtatcaacac cgccaaattg cctaaatcag ttgttgctct tttttctcac cccggtgaac 1020 tatctgcccg gtcaggtgat gcacttcaaa aagcctttac agataaagag gaattactta 1080 agcagcaggc atctaacctt catgagcaga aaaaagctgg ggtgatattt gaagctgaag 1140 aagttatcac tettttaaet tetgtgetta aaaegteate tgeateaaga aetagtttaa 1200 gctcacgaca tcagtttgct cctggagcga cagtattgta taagggcgat aaaatggtgc 1260 ttaacctgga caggtctcgt gttccaactg agtgtataga gaaaattgag gccattctta 1320

aggaacttga aaagccagca ccctgatgcg accacgtttt agtctacgtt tatctgtctt 1380 tacttaatgt cctttgttac aggccagaaa gcataactgg cctgaatatt ctctctgggc 1440 ccactgttcc acttgtatcg tcggtctgat aatcagactg ggaccacggt cccactcgta 1500 togtoggtot gattattagt otgggaccac ggtoccacto gtatogtogg totgattatt 1560 agtctgggac cacggtccca ctcgtatcgt cggtctgata atcagactgg gaccacggtc 1620 ccactcgtat cgtcggtctg attattagtc tgggaccatg gtcccactcg tatcgtcggt 1680 ctgattatta gtctgggacc acggtcccac tcgtatcgtc ggtctgatta ttagtctgga 1740 accacggtcc cactcgtatc gtcggtctga ttattagtct gggaccacgg tcccactcgt 1800 atcgtcggtc tgattattag tctgggacca cgatcccact cgtgttgtcg gtctgattat 1860 cggtctggga ccacggtccc acttgtattg tcgatcagac tatcagcgtg agactacgat 1920 tocatcaatg cotgtoaagg goaagtattg acatgtogto gtaacctgta gaacggagta 1980 acctcggtgt gcggttgtat gcctgctgtg gattgctgct gtgtcctgct tatccacaac 2040 attttgcgca cggttatgtg gacaaaatac ctggttaccc aggccgtgcc ggcacgttaa 2100 ccgggctgca tccgatgcaa gtgtgtcgct gtcgacgagc tcgcgagctc ggacatgagg 2160 ttgccccgta ttcagtgtcg ctgatttgta ttgtctgaag ttgtttttac gttaagttga 2220 tgcagatcaa ttaatacgat acctgcgtca taattgatta tttgacgtgg tttgatggcc 2280 tccacgcacg ttgtgatatg tagatgataa tcattatcac tttacgggtc ctttccggtg 2340 atccgacagg ttacggggcg gcgacctcgc gggttttcgc tatttatgaa aattttccgg 2400 tttaaggcgt ttccgttctt cttcgtcata acttaatgtt tttatttaaa ataccctctg 2460 aaaagaaagg aaacgacagg tgctgaaagc gagctttttg gcctctgtcg tttcctttct 2520 ctgtttttgt ccgtggaatg aacaatggaa gtccgagctc atcgctaata acttcgtata 2580 gcatacatta tacgaagtta tattcgatgc ggccgcaagg ggttcgcgtc agcgggtgtt 2640 ggcgggtgtc ggggctggct taactatgcg gcatcagagc agattgtact gagagtgcac 2700 catatgcggt gtgaaatacc gcacagatgc gtaaggagaa aataccgcat caggcgccat 2760 tcgccattca ggctgcgcaa ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta 2820 cgccagctgg cgaaaggggg atgtgctgca aggcgattaa gttgggtaac gccagggttt 2880 teccagteae gaegttgtaa aaegaeggee agtgaattgt aataegaete aetataggge 2940 gaattcgagc tcggtacccg gggatcctct agagtcgacc tgcaggcatg caagcttctc 3000 ttgtgccggt tgtacgctgt caggtcacac tggtgagtta ggcagggcac agatgcccag 3060 agcagaggga actttccttg gggattcaac acgtgcaagt cttaggggct ggcaaatcct 3120 gccctcagct agagagggg cttttatttg agaccagaat cacctgagca tcctcctgtc 3180 cccagctgtg tccagcctgt ctgcagggac atcctgagag gaccaggctc tcccctcatc 3240 cacctgccta agtgccactc tgaaccctgt ccacctgtgc cgtggagggg cqtgacctca 3300 agctgctcag ccagcagcag gcttggccct ggggggcagc agagacccag gtggctgtgg 3360 ggtgggtgct tcgtggcgtg gttctgaaac ttcgttggaa gtgtgtggac agtgccttgc 3420 ctgttctctg tgggacccta tttagaaacg aggtctgagt tactgggggt catcactgtg 3480 ttctgatggc ccagctgtgt ggaggccgcg gtgcagcccc atccaaggag ccagggccct 3540 gggtctagcc gtgaccagaa tgcatgcccc ggaggtgttt ctcatctcgc acctqtqttq 3600 cctggtgtgt caagtggtcg tgaaactctg tgttagctct tggtgttcct gaaagtgccc 3660 ecgggtetea ggeeteagaa ceagggttte cetteatete ggtggeetgg gageatetgg 3720 geagttgage aaagagggeg atteacttga aggatgtgte tggccctgce taggageece 3780 ccggcacggt gctggggcct gaagctgccc tcgggtggtg gagaggaggg agcgatgaag 3840 tggcgtcgag ctgggcagga agggtgagcc cctgcaaggt gggcatgctg gggacgctga 3900 gcagcatggc cagcagctgg gtctgcagcc tggtacccgg cgggacttgt ggttgggct 3960 ggtttgtggc caggagaggg gctggcagga gacaaggggg actgtgaggc agctcccacc 4020 cagcagetga ageceaatgg cetggetgtg tggeteteag etgegtgeat aaceteteag 4080 tgcttcagtt ctctcatttg taaaatgagg aaacaaacag tgccagcctc ccagaggtgt 4140 . catgaggatg aacgagtgac catgtagcat gggctgggtg cgtgtcacct aacatcacca 4200 gcctttgcaa ggagagccct gggggcctgg ctgagtattt cccttgcccg gcccacccca 4260 ggcctagact tgtgcctgct gcaggccctt gacccctgac cccattgcac ctqtctccac 4320 aggageegag gaggtgetge tgetggeeeg geggaeggae etaeggagga tetegetgga 4380 cacgccggac ttcaccgaca tcgtgctgca ggtggacgac atccggcacg ccattgccat 4440 cgactacgac ccgctagagg gctatgtcta ctggacagat gacgaggtgc gggccatccg 4500 cagggcgtac ctggacgggt ctggggcgca gacgctggtc aacaccgaga tcaacgaccc 4560 cgatggcatc gcggtcgact gggtggcccg aaacctctac tggaccgaca cgggcacgga 4620 ecgcategag gtgacgegee teaacggeae eteeegeaag atcetggtgt eggaggacet 4680 ggacgagccc cgagccatcg cactgcaccc cgtgatgggg taagacgggc gggggctggg 4740

gcctggagcc	agggccaggc	caagcacagg	cgagagggag	attgacctgg	acctgtcatt	4800
ctgggacact	gtcttgcatc	agaacccgga	ggagggcttg	ttaaaacacc	ggcagctggg	4860
cccacccc	agagcggtga	ttcaggagct	ccagggcggg	gctgaagact	tgggtttcta	4920
acaagcaccc	cagtggtccg	gtgctgctgc	tgggtccatg	cgtagaaagc	cctggagacc	4980
tggagggagc	cctttgttcc	cctggcttca	gtttcctcat	ctgtagaatg	gaacggtcca	5040
tctgggtgat	ttccaggatg	acagtagtga	cagtaagggc	agcctctgtg	acactgacca	5100
cagtacaggc	caggcctctt	tttttcttt	ttttttttg	agatggagtc	tcactctgtc	5160
gcccaggctg	gagtgcagtg	gtgtgatctc	agctcactac	aacctctgcc	tcctgggctc	5220
aagtgattct	cctgcctcag	cctcctgagt	agctgggatt	acaggtgcct	gccactgtgc	5280
ttggctaatg	tttgtatttt	tggtagagat	ggggtttcac	cgtcttggcc	aggctggtcg	5340
caaactcctg	acctcaggtg	atccacctgc	ctcagcctcc	caaagtgctg	ggattacagg	5400
catgagccac	cacgcccggt	caggccaggc	ctcttttgaa	cactttgcac	accatgggtc	5460
ttttcatcca	ggggggtagg	tacagttgta	cagttgagga	cactgaagcc	cagagaggct	5520
cagggacttg	cccagggtca	cacagcagga	tgtggcaggt	gtggggctgg	gcctggcagc	5580
gtggctccag	ctttccagca	tagaaatctg	tgaaagcaga	tagtttgtcg	gtcggtaggg	5640
gagactttct	gagacccgcc	ccagcggctc	agagggtagt	agccaggggc	cttcctgggg	5700
gctcataacc	cagaacactg	aatgggaaaa	ccctgatgga	ggaggcgcag	tggagctgtg	5760
ggtgccgatg	ggaagtccca	gaggagctgg	gaggtcagta	gcggtgctgc	cctctgtgga	5820
gcacttagtg	ggcaccaggt	gtgtttccag	gttcatggcc	ctgggacctg	aagctcagaa	5880
ggtgaagtaa	cttgcccagg	gcacccgtcg	ggcagcggcg	ggcagaggat	ttgtgggctg	5940
tggagcctgt	gctcgtggcc	cagccctggg	ggttgtgagt	gtgctggccg	gggagctttt	6000
cctgcaagtg	gactggtgtc	taggagccag	catgtcaggc	agcaggcagc	gggagtgcag	6060
caggcagcgg	gagcacagca	ggcagagggc	ggggctcgag	cagccatccg	tggaccctgg	6120
ggcacggagg	catgtgggag	agggctgctc	catggcagtg	gctgaagggc	tgggttgtgc	6180
cccgaggagg	gtggatgagg	gtaagaagtg	gggtccccag	gggctttagc	aaqaqqaqqc	6240
ccaggaactg	gttgccagct	acagtgaagg	gaacacggcc	ctgaggtcag	gagettqqte	6300
aagtcactgt	ctacatgggc	ctcggtgtcc	tcatctgtga	aaaaggaagg	gatggggaag	6360
ctgactccaa	ggcccctcct	agccctggtt	tcatgagtct	gaggatccca	gggacatggg	6420
cttggcagtc	tgacctgtga	ggtcgtgggg	tccagggagg	ggcaccgagc	tggaagcggg	6480
aggcagaggg	gctggccggc	tgggtcagac	acagctgaag	cagaggctgt	gacttggggc	6540
ctcagaacct	tcacccctga	gctgccaccc	caggatctgg	gttccctcct	tagagaacce	6600
cagggaacaa	gtcacctgtc	ctttgcatag	gggagccctt	cagctatgtg	cagaaggttc	6660
tgctctgccc	cttcctccct	ctaggtgctc	agctcctcca	gcccactagt	cagatgtgag	6720
gctgccccag	accctgggca	gggtcatttc	tgtccactga	cctttgggat	gggagatgag	6780
ctcttggccc	ctgagagtcc	aagggctggt	gtggtgaaac	ccgcacaggg	tqqaaqtqqq	6840
catccctgtc	ccaggggagc	ccccagggac	tctggtcact	gggcttgccg	ctggcatgct	6900
cagtcctcca	gcacttactg	acaccagcat	ctactgacac	caacatttac	aaacaccgac	6960
attgaccgac	accgacattt	accgacactg	acatttacca	acactgttta	ccaacactga	7020
catctactga	cactggcatc	taccaacact	gacatttacc	gacactgaca	tttaccaaca	7080
				caacaccaac		7140
accaacattt	accaacactg	aaatttaccg	acaccgacat	ttaccgacac	cqtttaccaa	7200
caccgacgtt	taccgacacc	gacatttacc	gacactgata	tttaccaaca	ctgacatcta	7260
ctgacgctgg	catctactga	caccgatgcc	agcatctacc	aacaccgaca	tttaccaaca	7320
ctgacattta	ctgacactga	tatctactga	cactggcatc	tactgacacc	aacatttacc	7380
aacaccagca	tctaccaaca	ccgacattta	ccaacaccag	cattiaccaa	caccgatgtt	7440
taccaacgcc	gacgtttacc	gacgccagca	tctaccaaca	ctgacattta	ccgacaccga	7500
catttaccga	cactgacatt	tactgacact	gacatctact	gatactggca	tctaccgaca	7560
ctgatattta	ccaacgccag	catctactga	cactgatgtt	taccaacacc	gacatttacg	7620
agcaccgaca	tttactgaca	ccaatattta	ctgacatcaa	catttagcca	tataataaaa	7680
gccggcttgg	gggcaggcct	tgctcttggc	actggggatg	ctgcagagac	cagacagact	7740
catggggtca	tggacttctg	cttcttctcc	agcctcatqt	actggacaga	ctggggagag	7800
aaccctaaaa	tcgagtgtgc	caacttggat	gggcaggagc	ggcgtgtgct	ggtcaatgcc	7860
tccctcgggt	ggcccaacgq	cctggcccta	gacctgcagg	aggggaagct	ctactagaga	7920
gacgccaaga	cagacaagat	cgaggtgagg	ctcctqtqqa	catgtttgat	CCaddaddcc	7980
aggcccagcc	acccctgca	gccagatqta	cqtattqqcq	aggcaccgat	agatacetat	8040
gctctgctat	ttggccacat	ggaatgcttg	agaaaatagt	tacaatactt	totgacaaaa	8100
acgccttgag	agggtagcgc	tatacaacot	cctgtggtta	cgtaagatgt	tatcattcgg	8160
	-	-				

ccaggtgcc	t gtagacacag	ctacttggag	actgaggtgg	gaggatcgct	ggagtccaag	8220
agtttgagg	c cagcccgggc	aaaggggaca	caggaatcct	ctgcactgct	tttgccactt	8280
actgtgaga	t ttaaattatt	tcacaataca	aaattaagac	aaaaagttaa	tcacatatcc	8340
actgccctg	c ttaagacaga	aaacatgggt	gttgttgaag	ccagaggcag	ctgctggcct	8400
gagtttggt	g attggttcct	aagcagttga	aggcagtttt	gtttttccat	agatgtctgt	8460
tctcccttt	g ctgggtgcag	cctcgccctg	ctgctgtggt	cgggtttcag	tggcctcgtc	8520
ccgtggacg	c agcctcgccc	tgccgctgtg	gtcgggtttc	agtggcctcg	tcccgtggac	8580
gcagcctcg	c cctgctgctg	tggtcgggtt	tcagtggcct	cgtcccgtgg	acgcagcctc	8640
gccctgccg	c tgtggtcggg	tttcagtggc	ctcgtcccgt	ggacgcagcc	tcgccctgcc	8700
gctgtggtc	g ggtttcagtg	gcctcgtccc	atgggcgtgc	tttggcagct	ttttgctcac	8760
ctgtggagc	c tctcttgagc	ttttttgttt	gttgtttgtt	tttgtttgat	tttgtttgat	8820
tgtttgttt	t tgttgtcgtt	gttgttgccc	aggctggagt	gcagtggcgc	gatctcagct	8880
cactgaaac	c tctgcctcct	tgggttcatg	ccattctcct	gcctcagcct	cccacatage	8940
tgggattac	a agtgcccgcc	accacgcctg	gctaaatttt	gtatttttag	tagacagggg	9000
gtttcacca	t gttggtcagg	ctggtctgga	actcctggtc	tcacatgatc	cacctgcctc	9060
ggcctccca	a agtgttggga	ttacaggcgt	gagccaccgc	gcccagcctc	tgttgagcat	9120
attttgagg	t tctcttggtg	ccagtgatat	gtacatgtgt	ccccatcgca	ccatcgtcac	9180
ccattgagg	t gacattggtg	cctctcctcg	gggtggatgc	ctccctctgt	ttccagcaac	9240
ttctgaagg	a ttttcctgag	ctgcatcagt	ccttgttgac	gtcaccatcg	gggtcacctt	9300
tgctctcct	c agggctccca	ggggaggccc	gaatcaggca	gcttgcaggg	cagggcagga	9360
tggagaaca	c gagtgtgtgt	ctgtgttgca	ggatttcaga	ccctgcttct	gagcgggagg	9420
agtctcagc	a ccttcagggt	ggggaaccca	gggatggggg	aggctgagtg	gacgcccttc	9480
ccacgaaaa	c cctaggagct	gcaggtgtgg	ccatttcctg	ctggagctcc	ttgtaaatgt	9540
tttgtttt	g gcaaggccca	tgtttgcggg	ccgctgagga	tgatttgcct	tcacgcatcc	9600
ccgctaccc	gʻtgggagcagg	tcagggactc	gcgtgtctgt	ggcacaccag	gcctgtgaca	9660
ggcgttgtt	c catgtactgt	ctcagcagtg	gttttcttga	gacagggtct	cgctcgctca	9720
cccaggcga	g agtgcagtgg	cgcaatcacg	gctcgctgta	gcctcaatct	ccctgggctc	9780
aggtgatcc	t cctgcctcac	cctctgagta	gctgggacta	cagacacata	ccaccacacc	9840
cagctagtt	t ttgtgtattt	tttgtggggg	gagatggggt	ttcgctgtgg	tgcccaagct	9900
gatctcaaa	c tcctgaggca	caagcgatcc	acctgcctcg	gcctcccaaa	gtgctgggat	9960
gacaggcat	c agccgtcaca	cgcagctcaa	tgattttatt	gtggtaaaat	aaacatagca	10020
caaaattga	t gattttaacc	attttaaagt	gaacagttca	ggctgggcgt	ggtggcttat	10080
gcttgtaat	c ccagtacttt	gagaggctga	ggtgggcaga	tcacctgagg	tcaggagttt	10140
gagaccagc	c tggccaacat	gatgaaatcc	agtctctact	aaaaatacaa	aaattagccg	10200
ggcatggtg	g caggtgcctg	taatcccagc	tactcgggag	gctgaggcag	gagaatcgct	10260
tgagcccgg	g aggtggaggt	tgcagtgatc	tgagatcatg	ccactgcact	ccaatctgtg	10320
tgacagagc	a agactctgtc	ttgaaaaata	aataaataaa	aaaaatttta	aaaagtgaac	10380
aattcaggg	c atttagtatg	aggacaatgt	ggtgcaggta	tctctgctac	tatctacttc	10440
	t tcttctgccc					10500
ccctctct	c ccagcctctg	tcaaccacta	atctactttc	tgtctctggg	ggttcacttc	10560
	t tttgtgtgac					10620
	t gtgttttcca					10680
cctgactgg	g tgcagtgggt	taggcctgta	atcctaacat	tctgggaggc	caaggcggga	10740
cgatcactt	g aggcaggagt	ttgagaccag	cctggccagc	ctagcaagac	cccagctacc	10800
	t aaaagttaac					10860
	g aggtgggagg					10920
atcgcacca	c tgcactccag	cctggacaac	agagcaagac	cctgtctgaa	aaaaaaaaca	10980.
	g ttcctttctt					11040
	t ctgtttatcg					11100
	g tgaacatttg					11160
gatatatgt	g taggggtagg	attgctgagt	cctatggtaa	tgttaggttt	gacttactga	11220
ggaaccatt	a aactgttttc	aacagtggct	gcgccgttct	gcatccccac	cggcaqtqtq	11280
tgagggttc	t gactttacct	cctcacaaac	gcttcttttc	catttaaaaa	aatattcagc	11340
caggtgctc	ggctcacgcc	tgtaatccca	gcactttggg	aggccgtggc	gggcggatca	11400
cctgaggtc	a ggagttcgag	acgagcctgg	ccaacatggt	gtaaccccat	ctctaccaaa	11460
aatataaaa	a ttagccgggt	gtggcagcgg	gcgcctgtaa	tcccagctac	ttgggaggct	11520
gaggcagga	g aatcacttga	acccgggagg	cagaggttgc	agtgagccaa	gatcgcgcca	11580
	_	: 3 -				

	gcctgggtga					11640
taaataaaaa	tttattaaaa	cattcatcac	agccagccta	gtgggtgtcc	catgtggctt	11700
	ttccctgata					11760
cagcactttg	agatacgtcg	cacagtcccc	atttgcgaac	gagaaatgag	gtttagggaa	11820
	gtcatgtcac					11880
cgaccaagct	ccaatcctta	ccgcctccta	gtgttgtgga	tgtagcccag	ggtgctccca	11940
catttttcag	atgagaacac	cgaagctcaa	aacaggagcg	ttttgtccac	attggataca	12000
cgatgtctgt	ggtttggtcc	tgaagtcact	ttatatctca	gtggtccaga	ctggagtagg	12060
	ctggggaatg					12120
	cttgggaagt					12180
agaaatgcag	tcaggaggaa	gcggagctgt	ccaggaacag	gggggtcgca	ggagctcacc	12240
cccaggaact	acacttgctg	gggccttcgt	gtcacaatga	cgtgagcact	gcgtgttgat	12300
tacccacttt	tttttttt	ttgaggtgga	gtctcgctct	cttgcccagt	ctggagtgca	12360
gtggcacgat	ctcggctcac	tgcaagctct	gcctcccggg	ttcatgccat	tctcctgcct	12420
cagcctcccg	cgtagctggg	actacaggcg	cctgccaccg	cgcccggcta	atttttgtat	12480
ttttagtaga	gatgggattt	cactacatta	gccaggatgg	tctcgatctc	ctgacctcat	12540
gatccgcccg	tctcggcctc	ccaaagtgct	gggattacag	gcgtgagcca	ccgcgcccgg	12600
	cactttaaga					12660
gttgctatag	ggaatatgag	gcttacaggc	catggtgctg	gacacacaga	agggacggag	12720
	agaagggcgg					12780
	gagagacacc					12840
	ccgaggtggc					12900
	gggtggattg					12960
gagaccccgt	ctctactaaa	tatacaaaaa	ttagccaggc	gtgatggtgc	atacctgtaa	13020
	ttgggaggct					13080
	gatcccgcca					13140
	aaaaaaaga					13200
	gggggatcgt					13260
	tggagctcat					13320
	ggggcacggg					13380
	cttctcagcg					13440
	agcgttttca					13500
	cactctctgg					13560
	agagctgact					13620
	gcccgtggag					13680
	aagtggccac					13740
	tccttgccca					13800
	tgttcctgct					13860
	aacacccgct					13920
	ctgctgctgg					13980
gcaaggagcc	acggctcctt	gaggatgcag	ttggactcca	ggtggaaggg	atggttgggg	14040
gaggtataaa	tggggtcagg	gaggagacac	atttggaaca	atgggaacat	ttttaagatg	14100
	aggcaacaag					14160
	ccgctcacct					14220
	cagctgggct					14280
	ctctgccttt					14340
	acgggcagct					14400.
	ggtttcatgt					14460
	gcggatgggt					14520
	agcttccagg					14580
	gaccagctgt					14640
	cctcccacc					14700
	gcatccgagt					14760
	attgcatccc					14820
	tcctgggcta					14880
	ttcctgagtc					14940
tgcagccaca	ctcagcttct	cctgtgagcc	tccagcatqt	ccctcagga	ccaaqccctc	15000
	=					

acgttcttgc ctccccgccc	acctgggctc	agccagggga	aggcctggct	gggagcgtct	15060
cocctctgcc ctgcccttct					15120
ttttatatcc tgtgccacaa					15180
gtgggtctct gaggcccacq					15240
gctggaggga cagcccagco	ctctcccgaa	ccccagcccc	atgtgcccag	ctgcccccgg	15300
ccctctcccc tggaagccg	ggtcactcca	gccgtatgcc	atggtgggga	catcctgctt	15360
ccttggcctt ccagggaagg	tcctcttcc	aaatggcgac	acctggtccc	tgcctggagg	15420
ctggaagctg tggcccttgt	atgcccctcc	agggtctgtg	cgctcggttg	gcccgagttc	15480
ccatcaccgt catcatcacc	: atcatcattg	tcatttcgct	tgtctgtgag	ccggcctggt	15540
ctcccagagc agagacccto	: tgaggtccag	cctgagttgg	ggtctccgtg	ctgacccctg	15600
acggggactc aggacgtacc					15660
gacaggcacc cctgactttt					15720
tgggacaggg tctgttggct					15780
gggctttggc actgcagagc					15840
tgtgtgtgtg tgtgtgtgtg					15900
catgaagcaa gataactgtt					15960
cttcttccct cagacaacag					16020
tgggctcatg tctgtttgca					16080
ctgcacagca ggcgactgto					16140
agcacagcta gggtgggctg					16200
cggccggccc attccttggt					16260
ggaatgggac agaagctggc					16320
gctggaccat ctcattgtco					16380
acaagtgcac agaactagag					16440
tgccacctgt tttcacacca					16500
aaaaaaaaa gccaaaggag					16560
aaaattatat ggaattcaaa					16620
tctgtcaccc aggctggagt					16680
ggctcaagcg atcctcctgt					16740
caagcccggc taatttttt					16800
cttttctgga actccatctt					16860
gcccagcctg tttttgtttt					16920
ctagcgattt gggaggctga					16980
tcaagtgatc aggaggtgaa					17040
aagaacctat ctcttaaaaa					17100
tggtcccagc tacttaggca					17160
tgcagcgagc caagatcgtg					17220
ctctttaaaa aaaaaaacca					17280
gtgctctcca tgctgctttc					17340
					17400
tctatccttt acaaaaaagt				-	17460
tttaggteta tteggtteet					17520
tttggctctg ttccctccca					17580
cgcccagagg cttggctcgg					17640
aggcetectg agteageeea					
agagtggctt ttgccgatgg					17700
gccactttgg gattccttcc					17760
gatgttttcc cagttggccc					17820.
agtaggggc ttgggggagt					17880
agggagtggc ttctgagcca					17940
ttccgcaggc cctgccggc					18000
ccagccgggt ggaacagcc	gregeeteet	ctcactttgt	tttggggcca	cctgggagtg	18060
tggagcaagg gtagagagg					18120
cttgggccct ctgtgggctd					18180
cttgcctcac ttcagttcaa					18240
aatagagcaa gaagagaaaa					18300
gtggctcacg cctgtaaato	: ccagtacttt	gggaggctga	ggcgggcaga	tcacctgagg	18360
tcgggagttt gtgaccggc	: tgaccaagat	ggagaaaccc	cgtctctact	aaaaataaat	18420

aaataaataa	ataaataaat	acaaaattag	ccaggcatgg	tggcgcctgc	ctataatccc	18480
agetaaggea	ggagaatcgc	ttgaacctgg	gaggcaaagg	ttgcagtgag	ccaagatcac	18540
gccattgcac	tctagtctgg	gcaacaagag	tgaaactccg	tctcaaaaaa	aataaataaa	18600
taaaaaataa	aaatagtgac	ctctggccag	gtgtggcagc	tcatacccgt	aatcccagca	18660
ctttggaagg	aaggccgaga	tgggcagatt	gctttagcac	aggagtttga	gaccagcctg	18720
gccaacatgg	tggaacccca	tctctacaaa	aatagaataa	aatttaagag	gtaatagtga	18780
ccttttggta	gatcgaaacc	tggattgctt	tctttttcta	aatgctgatt	cttttctttg	18840
tggtgtttgt	gttctgtgcc	gatgtccctc	ccccagccct	gttattgtga	gtggaagaag	18900
gggaaagggt	tcgcccgcta	ctgtgagccc	ctcctctcac	gctgggtgtc	cttggagaag	18960
cctgcacttc	ttcattgtac	gccagggctg	ggtccctccc	tggagtggtt	ctgtgctgct	19020
gggatggggc	caacccctca	gatgttttct	gagtgtcaca	cacaggtgtg	tgcattcatg	19080
gcctttgcgt	gtcttcctgt	tgtggaggca	aaaatgtgaa	gaaccctaga	tgattttggg	19140
accagggctc	catcacctgc	tgttcattgc	acaccggagc	atccaggcat	gggtggagag	19200
ctcagacttc	caggcacggt	cgcaggggct	ggtctaacca	tgttcccgcc	cgcctgctcg	19260
tcagaaccgc	ctgttgggag	ctgttatcat	gataccatac	ctgggccctg	ggctatccga	19320
ttctgactta	attgctccag	gttggggcca	ggccgttgtt	tgctgttttg	ttgtttcttc	19380
tgtgacgtta	gccactgggc	taatctgagc	ccctcagtta	caggtggaga	aactgagacc	19440
catgggggtg	caaggacttg	ccgaggaccc	agagcccctt	gggggcagag	ctgaggcggg	19500
gcctggcttt	gggtcccaga	gcttccagtc	cccttcccgc	tctcctaaca	gcttttttt	19560
ttgagacaag	atctcaccct	gtcacccagg	ctggagtgca	atggcatgat	ctcggctcac	19620
tgcaatcttc	gctagctgcg	ttccagcgat	tctcctgcct	cagcctcccg	agcagctggg	19680
attacaggtg	tgtgccgcca	tgcccagctc	gtttttttt	gtacttttag	tagagatagg	19740
gtttcaccat	gttggccagg	ctgatctcga	actcctgacc	tcaaatgatc	cgcctgcctc	19800
ggcctcccaa	agtgctagga	ttacaggctg	ggatcacact	gtgcctggcc	ctagcagett	19860
tgtcctgtgc	catccaacaa	cagatgaccg	aagtctttgt	ttcttaacat	gcattccatc	19920
tgccttacag	ttttgccacc	tgcaaaacag	aggacttgtc	gcttttctgg	taagctggaa	19980
atgtaatctg	gtagcaggag	gcctgtggaa	gcttgccttt	aatggccttg	tatctctttc	20040
atcctgtcct	gagagccgga	gaacttggat	gttgcaccta	actcaacctt	cctgttaaca	20100
tacagttctg	caggctcatg	gatcatcaga	accacatect	atctcacgcg	gctgtatgct	20160
tccgttggtt	caggtgtttt	taccttgaca	gtattttctc	ctcaataact	tttacaataa	20220
ttgcttttaa	tcagcattga	ctcttcaaga	aaaatattta	gctgctacat	ctcagaggag	20280
acagggtgga	aagcatctga	gacctgcagg	ctcagactta	gaaccagaag	tgccctcaga	20340
gttcatccgg	ccctgaccca	gcgggaaatg	agttcacaga	gaagcgggag	aactttgccc	20400
caggeeetge	cgttgctcat	aactgcccca	ggtccttaca	tttgctccag	atcetacee	20460
aggccctgca	gttgctcata	actocccao	gtccttatat	ttactccaaa	tectacecea	20520
ggtcctgcag	ttgctctgtg	taataaatat	gatctggagc	cotococca	ttactacacc	20580
tagagcaggc	attgctaatt	gatoccagga	ctccttccta	cadaacacac	cctaattete	20640
	ctgcctgtca					20700
tottccaaat	cttgcttctc	atcccagcac	anntannnn	tactataga	aagggatect	20760
cagttggccc	tgtcactgct	ctatcageta	aggeaggggg	atcctactca	aagggacccc	20820
accaaacaca	gtggctcacg	cctagaatcc	carcactttr	accetagega	aaacatcatg	20880
	cagaagttcg					20940
	attcgccagg					21000
						21060
	gaatcgcttg					21120
	agcctgggca					
taatatttta	caaacaaaca	aagegeeace	catccagcac	tactott	ccatgctacc	21180
cygigitita	tggtacctgg	caaggigeag	grgaagrige	tgetettggg	cattgaaccc	21240.
octores	gggcagctca	ggceccagge	agggtccggg	ttggctctcg	ttggtgtggc	21300
acceggeceat	ccagacctat	acciding	coorgoaggt	gatcaatgtt	gatgggacga	21360
agaggcggac	cctcctggag	yacaagetee	cgcacatttt	cgggttcacg	ctgctggggg	21420
acccatcta	ctggactgac	cygcagcgcc	gcagcatcga	gcgggtgcac	aaggtcaagg	21480
teageeggga	cgtcatcatt	yaccagetge	ccgacctgat	ggggctcaaa	gctgtgaatg	21540
rggccaaggt	cgtcggtgag	Leeggggggt	cccaagccat	ggctcagcca	tgcagacttg	21600
calgaggagg	aagtgacggg	Locatgootg	ggcataagtg	ttgagctcag	gtgccccgac	21660
ctggggaagg	gcaggacagg	aaaggtgaca	gtatctggcc	aaggacagat	gggaagggac	21720
caagggagct	gattagggag	tggttatgga	ctaggaatgt	cggtaacaat	ggttagaaag	21780
tgactaacat	ttgttgagca	cctgctgtgt	gcccggccct	ggccgggagc	cttcgtgccc	21840

acagtgacco	cgtctgcaaa	tgtagttcct	tgccctactc	gcactgggga	gcaggacgca	21900
gageegrgea	tctcacaggt	gccaagctca	ggactccctc	ctgggtctgc	ctagactaga	21960
etgtgettgt	tgcccctgtg	gcccacgcat	gtgcaccttc	cacctgaaag	ccaggatett	22020
caggacgctc	cccgaggagg	tcgttgtctg	gcacaatgat	ttgtctcttc	ctgaaaaggt	22080
gacagagtta	cactggagag	agcagcatcc	aggtgcggca	gggacaggcc	tagaactcac	22140
gggcagggac	tctgtgtcct	gccggggtcc	cacactgcac	ctgcttgtca	gaggcactca	22200
gtcaatcttt	gctgatgaag	gatgagagga	cagaggacgt	gatgcttgct	gctgcattgc	22260
ctgcagtcct	gggtgagatg	cccgggttga	ctctgctgcc	cgtcgggtgg	atgtgatgtc	22320
agatccccgg	ctttaaaata	cgagggagct	gggaattgag	ggagcaggtt	ggggcagaaa	22380
gcacagcccc	gtggaagcct	ggagctgagg	cagtgtgggc	gacccctgga	gcagtgagtg	22440
cttccttcat	ggccttcatc	gcaccctgca	gtcctcatgt	aggggatgcc	atccatgaat	22500
ttagttttcc	cagcctcctt	taaaaacgcg	ttcatgctgg	ggccggggca	gtgcagtggc	22560
tcacatctga	aatcccacca	ctttgggagg	ccgaggcggg	tggatcatga	ggtcaggaga	22620
tcgagaccat	cctggctaac	aaggtgaaac	cccgtctcta	ctaaaaatac	aaaaaattag	22680
ccdddrdcdd	tggcgggcgc	ctgtagtccc	agctactcgg	gaggctgagg	caggagaatg	22740
gcgtgaaccc	gggaagcgga	gcttgcagtg	agccgagatt	gcgccactgc	agtccgcagt	22800
ccggcctggg	cgacagagcg	agactccgtc	tcaaaaaaaa	aaaaaaaqt	acaaaaaaa	22860
aaaaattagt	ctgggtgtgg	tatcacgcgc	ctataatctc	actactcgag	aggctgaggc	22920
ggagaattgc	ttgaacccag	gaggtagagg	ttgtagtgag	cccgtatcgt	accactgccc	22980
tccacctggg	caatagagcg	agactctgtc	tcaaaaagaa	aaaaaaaaa	agaacattta	23040
tgccaggtgt	ggtggctcat	gcctgaaatc	ccagaacttt	ggaagactga	qqcaqqaqqa	23100
tcacttgagc	ccagaaattt	gagagtgtct	tccctgggca	acatagagag	acctcatctc	23160
taccagaaaa	aaaaaaatta	gcccggcatg	gtggcatatc	cctataatcc	cagctactta	23220
gggggctgac	gtggcaggat	cacctgagtc	tggaggcaga	ggttgaagtg	agctgagatc	23280
atgccactgc	actccagcct	gggtgacaga	cagagaccct	qtctcaaaaa	aaaaaaaaa	23340
aaaaagcatt	tactatccac	catggaaggt	gagactgacc	tgtgagtgat	tottcaaaga	23400
acaaaaaata	aaccccagag	ataagacaaa	agggtgcctc	catgggggtg	tgatttaaag	23460
ctgagaaatt	gggcttcttc	ccctcccct	ctcaccccqt	ggtttgctaa	aggagatogg	23520
aaaaaggatt	ctttttttgg	ctgaaatatt	taacactaaa	ttaaagccaa	ttttaacagc	23580
actttggttg	atgagtgaaa	ttaacagact	ggccaaaaat	aaacgaacgg	tctgtactat	23640
gtgaaaaaga	ggcagctttg	gccatgctgg	gccaatgtga	gttttcaggg	ttactaggaa	23700
tgtctgtgaa	tcggaggaag	ggcctagctg	ggacteteag	gagccaaggc	cctgaggggc	23760
aacttgcctg	gtccctgccc	tgaggcgttc	actgctttct	tectgggeea	gatcacaggc	23820
ccggaggctg	gaccactggg	ctggcactct	tgccgagctg	ctccctgact	tectgaceat	23880
gctcctttca	gcagccttgc	tgcactttag	tttccttgaa	tgaaaaatgg	ggatgagaat	23940
agctcctacc	tccaaggtga	atggagtgag	ttcggacagg	tgactccctg	ggaccagtgc	24000
ctggcgcctg	acaaggtcca	gtcagagccc	gcactgctgt	tactgatacc	cttggctgta	24060
ccaggggaga	acttggttgc	cattgccagg	tottctccca	ccacccccac	tactgtccct	24120
gtttgatgtg	tggcgggaat	aaagctgtgc	acattggage	ttttggcaca	tectagettt	24180
caggtgaaag	gtgcgtgtgt	gtttgagggt	ttagcctggc	caacccagcc	atgaggtegg	. 24240
acctgacctg	ggggtgagtc	ctgagetegg	cacccctgag	ctatataact	cacaacaaca	24300
ttcattgtgt	ggcttggccg	cacccctttc	cctactagac	tattaatatt	tagactggag	24360
cctctgtgtt	cgcttccagg	aaccaacccg	tatacagaca	adaacaaaaa	atacaaccac	24420
ctgtgcttct	tcacacccca	cacaacccaa	tataactacc	ccatconcct	gagagagaaa	24480
agtgacatga	agacctgcat	catacctasa	accttcttaa	tetteaceac	cagageegeeg	24540
atccacagga	tctccctcga	gaccaataac	aacgacgtgg	ccatcccact	cagageegee	24540
aaggaggcct	cagccctgga	ctttgatgtg	tccaacaacc	acatctactc	gacagacgtc	24660
agcctgaagg	tagcgtgggc	cagaacgtgc	acacacacac	cetttataaa	gacagacgcc	24720
ctctattcct	gcctcaaagg	cttcagacac	ttttcttaaa	cccctatggg	atttattata	24720
acqcaqttca	agctaatcaa	atatgagga	acctatttas	aaaaaaaaaa	matmattata	
atgaggaagt	ccggtagaca	cacataaggg	cttttatass	2+00+0+0+0+	gacyactata	24840
tatttattat	ccgttgagct	tgacttcaga	Caccccacca	actocottot	yearyryddd caatacaaa	24900
ttgctcagca	gactctttct	tcatttata	tacaaatata	accountry	aggryceegt	24960
gaagactttt	ttttttttt	tttgagagag	agtottacta	tattaccass	acaaatacag	25020
catagootoe	gctcagctca	ctocasceto	caceteen==	cttoness	gorggagtac	25080
teagestest	gctcagctca	dactacadac	atoracasas	guicaagega	LECETCEGCC	25140
atattttag	gagtagctgg tagagacagg	atttcatcat	attages==	acacccagct	adttttttt	25200
	tagagacagg	gercalcat	guuggudagg	ciggtettga	actectgace	25260

tcaggtgatc	tgcccgcctc	ggcctcccaa	agtgctgaga	taacaggtgt	gagccaccgt	25320
tcccggcata	ggaaaacttt	ttgccttcta	aagaagagtt	tagcaaacta	gtctgtgggc	25380
tggccttctg	attctgtaaa	gaaagtttga	ttggtggctg	ggtgcggtgg	ctcacacctg	25440
	actttgggag					25500
	aacgtggaga					25560
	cgcctgcctg					25620
	aggcggaggt					25680
	gaaactccgt					25740
	gattgtctgt					25800
	aaagcctaaa					
						25860 25920
	aagtattgga					
	tgttgttgtt					25980
	gtgtaatctc					26040
	cctccctagt					26100
	tttttttt					26160
	ggctcaaaca					26220
	ccagcctatt					26280
	caagggttct					2.6340
	gtccataacc					26400
	tctttttct					26460
agaattctgt	atcctgattt	tttcacttga	cattacaaca	ggtatttgat	ggcgctgtga	26520
	ggcacaatct					26580
ttaggcttaa	ctgttctttt	attttgcgtg	tgctggttac	agccgggcac	agtggctcat	26640
	acaacacttt					26700
	tgggcaacat					26760
	gtgcatagct					26820
	ggaggttgat					26880
	caagacttgt					26940
	tatatacata					27000
	taatataaaa					27060
	aatatataat					27120
	tatatttata					27180
	tatattttt					27240
	tataaaatat					27300
	aaacattcat					27360
	tgccagtggc					27420
	gtggctcacg					27480
	ctggatttcg					27540
						27600
	aaaattagcc					27660
	ggagaatcgc					27720
	tccaggctgg					27780
	ctaaaatgtg					27780
	cgggagctcg					_
	tgactggatg					27900
	gcggctggac					27960
-	gctggccctg					28020
	cctcgtatga					28080.
	ctcagtgatt					28140
	cctcagaggt					28200
_	tggctgcttt		-			28260
agggtgggta	tctgtgtcga	ttttacagat	gcagaaacag	gctcagagaa	accgagtgac	28320
ttccctaagg	tcacataccc	agttagagca	gagctgggcc	aggaagtgct	gtctcaggct	28380
cctgaccagg	tctccttgct	ttgcactctt	gccaaaacca	tgatccagaa	ctgactttga	28440
ggtccccgga	cctcaggctc	ctccgaaatg	gcctcttgga	ggctgctgag	ccacagctta	28500
ggacccacct	cgagaggcaa	atgtgctttg	agctgccagg	cgtcctgggg	gccctgcctt	28560
gggcacgggg	ttcagacagg	ccccagatgt	gtggggcgtc	tttctggact	tgagttttct	28620
tttctgtgtg	gtggacacag	tgctcacccc	ttaaagcacc	tgtgatgtgt	gcagcagccc	28680

aatccctgcc tgtcgcc	ctgt tctgctaggg	aaggaaggaa	gacttcagga	tggcaggaca	28740
acagaaagag gtccag	gttt tagagcaagg	gcaggtcaaa	cttagaaaat	tctggaatga	28800
ggatgtgcat ttcctc	ttct ggatctgcta	aaagaagagg	gaaggagggg	ctgctggggg	28860
aggagcccag agccgag					28920
gttttgtgat gtgctt					28980
ttaggtggat gttccaq					29040
tgggtattta ctcacct					29100
ccacccctgg agggata					29160
gcgcgtggct ttctcca					29220
ccccgccacc cactgto					29280
gccttccagc tacatct	=				29340
catggacggg accaact					29400
cattgactac gctgacc					29460
gtccaacatg ctgggtg					29520
gggcgttggc cacctco					29580
tggcaggagc tgtggcc					29640 29700
tgtccccgtc cacccct					29760
gctgtttcct gtgcacc					29760
atttcaccct aacacac					29880
acttgcctta ggtcaca					29940
ctcgatcccc acccago					30000
acgcctggga ccccagg					30060
tcagggaagt ttgaaaa					30120
ccagaaaagg ggaccgc					30180
gcaggtgaca ggggcaa					30240
agactagaag gtcaggg					30300
tcccagcact ttgtgag					30360
tggtggttca tgcctg					30420
cccaggaggt tgaggt					30480
agagtgagac cgtctc					30540
gtccccaggc acccct					30600
ctgacttttg tcccct					30660
gcacgtcagc catgtc					30720
cctctcctac tcgcca					30780
ggggcatcga ccagct					30840
accccgtgtc ctggtt					30900
aggtttgcac gtgact					30960
catccaggcc gcatgc					31020
tgcctgaaat gattaa					31080
agcaaaagcc ctggaa					31140
ctggccgtca ctcctc					31200
ttgattaata acatgg					31260
gcctgacatg atgaga					31320
gccacttagc aactgt					31380
cttcagtgga tcttgc					31440
gctaggctgc agggtt					31500.
gctgtgcctt tgctga					31560
ttgccgacga tctccc					31620
cagactggaa tctgca					31680
tcatccaggg ccacct					31740
atggcctcaa tgactg					31800
ccggcggcca ccgctg					31860
gcagccgtaa gtgcct					31920
tgggagctga cgctga					31980
ggtaggttgt gcactg					32040
tggacttgtt gcttca	tcag gacatagata	a aatggccaaa	actcctcagc	tggaaggtcc	32100

		gaaaaccagt				32160
agcacagtgc	tgagtgcttt	ccatagcgct	cgtttactcc	tcaagcctgg	agggtgggga	32220
gtagcatggt	cccatttcac	gtacaaggaa	cccgatgcac	agagaggtgt	ggcaacccat	32280
		tgggttgagc				32340
gtccctgctc	ctgaaccctt	gccaggcagc	ctggcatcag	ctcggggaat	ttttgccctg	32400
		ctctttgttc				32460
		ggtgtttcct				32520
		ctacgcagaa				32580
		gcagacctgg				32640
gctgcatgga	tggggaactt	gaggcttgca	aaggttaagg	ggctgttcga	ggcccaggct	32700
ggcaggagat	gggcctgggc	cagagtctgg	gacttcccat	gcctgggctg	tctttggtcc	32760
		tggggccatg				32820
		gccatgactc				32880
		agaccagcca				32940
		caggactcag				33000
		gttctgctag				33060
		ttgattctgg				33120
		ttctctcggg				33180
		catagcaaac				33240
		cactaccatt				33300
		tggacgcggt				33360
		cctgaggtca				33420
		aatacaaaat				33480
		aggcaggaga				33540
		tgcagtccag				33600
		agaaaaataa				33660
		acatatgaca				33720
		cccgtctttc				33780
		tgctatcccg				33840
		gcctcctcta				33900
		gatcccggac				33960
		caaagccatc				34020
		catcaagcga				34080
		gtgcttccca				34140
		ggaggaaaca				34200
		gggtatgacc				34260
		cccgttgtt				34320
		aagaaaatgg				34380
		tattttgtgg				34440
-	_	cacctatgca	-			34500
		acagccctca				34560
		aagtgccttt				34620
		ttaatgctgc				34680
		tggaagggtg				34740
					gagtgggtca	34800
		gggaggtcag				34860
		tagttttttg				34920.
		accgtgctgt				34980
						35040
					ggagtctcac ttgcctccta	35100
					catgagecae	35160
						35220
					tggctcacac	35280
					aggggttcga	35340
					atcagctggg	35400
					gaattgcttg	35460
					agcctgggca	35520
acaagagcaa	aactccatct	caadddatdd	aaaatagaaa	aacaaytyct	gtagcggaag	33320

tgagcacttt	gcggagtcag	gcttgtgtgg	cctgttccac	aaatgatgtg	ctcacggtgg	35580
cctcaggccc	acctggagtc	tgcagcatgg	ggcacaacag	gttcattagt	gtagaattcc	35640
aggacaggcc	tggctcctaa	gcagccttct	tttacaaaaa	ctgcagagcc	cgcctgtatc	35700
ctagcacttt	gggaggccga	agtgggtgga	tcacgaggtc	aggagttcaa	gaccagcctg	35760
	tgaaacccca					35820
	gtcccagcta					35880
	ggatctgaga					35940
	aaaaaaaac					36000
	gtgttattgt					36060
	agactttcac					36120
	ggctggtgcc					36180
	gtttctagtt					36240
	attgaaattc					36300
						36360
	tgcctctgct					36420
	actgtcacgt					
	ctgagaaagc					36480
	gtgtctgcta					36540
	tttggaaaat					36600
	ccccgctctg					36660
	atggtgtcta					36720
	ttttattgtg					36780
	gtttttgaga					36840
	tcactgcagc					36900
ctctagtagc	cgggactaca	ggcatacact	accacatctg	gctgattttt	tgtattttt	36960
ttttattgta	gagacccgct	atgttgccca	ggctggtctc	aactcctgga	ctcaagccat	37020
cctcccacct	caccctccca	aagtgctggg	attacaggca	tgagccacaa	cacccagcca	37080
ttttaatttt	tttttttt	tttgagatgg	agtctcactc	tatcgcccag	gctggagtgc	37140
	tatcaactca					37200
tcagcctcct	cccgagtagc	tgggattaca	ggtgcccatc	actatgcctg	gctaatttt	37260
	gcagagacgg					37320
	gcccgcctcg					37380
	ttttgtttt					37440
	tggctcactg					37500
	gtattttatg					37560
	gcagtccacc					37620
	agcccatttt					37680
	accatcactg					37740
	cgcattgaac					37800
_	tgccttctct					37860
	gcttctttca					37920
	ttccttcctt					37980
	ctctaatccc					38040
	gaccagcctg					38100
	gtggtggcgc					38160
					ctgcagtcca	38220
						38280
					ggatggatgg	38340.
					cctttggttg	38400
					ctagtgagga	38460
	ttgtggtgtt					
					gcctgtaatc	38520
					gaccatcctg	38580
					ggtgtggtgg	38640
					tgaacccggg	38700
					caacagagca	38760
					aaaaaaagag	38820
					tgtgcccggg	38880
aggagtgtgg	ccagggtgtc	acgtcacaca	gtacacgttt	ctcagatggt	ggttctccag	38940

				gacccaccct		39000
cctgattttg	gccagggtag	ctggaatctt	gcttgtcttt	cagcccggca	gctgtaccag	39060
tccagggtcc	acagctagtg	gcttttagga	aggaatttgt	tcagttggct	ttgacacatg	39120
gccccctagg	gtccacagct	ctgtagtgat	gtggatgttg	ttatctacaa	agacacatga	39180
tccttcgtgt	ccagatgaaa	gtgatgatgt	ctttgcagct	gcccagcaag	gctgtgtgtg	39240
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tggtgtgtgt	gtggtgtgtg	tgtgtgtatg	39300
ggggagggag	gcaccctttc	catctggggg	tgtgtgtgtg	tggggtgtgt	gtgtgtgtgt	39360
gcgcgtgtgt	gtggtgtgtg	gtgtgtgtgt	gtgtatgggg	gaggcaccct	ttccatctgg	39420
				tacttagaga		39480
				gctggggtat		39540
				tcctcccacc		39600
				attgttttt		39660
ggtttaattt	tttttgatac	agatggagtc	ttgctatgtt	gcccagacta	gtctcaaact	39720
				tctgggatca		39780
				agataaagaa		39840
				actcaatgga		39900
				ccaggcccca		39960
				gtaacccaaa		40020
				cgtcagctca		40080
				tcatccctga		40140
				gtgaccccag		40200
				ctgccttccc		40260
				acctggcccc		40320
				ctacccaccc		40380
				acctgtcccc		40440
				ttccgttggg		40500
				gagaaaacag		40560
				agggatgtgt		40620
				tcatgggagc		40680
				taaagtccga		40740
				caggcgggca		40800
				tttgactttc		40860
				ccagtgccca		40920
				gccagtgcca		40980
				tttctttgtc		41040
				gcagcccac		41100
				caccaatacc		41160
				ggaccgcgac		41220
				gtgggtgggg		41280
				ctcacaggct		41340
				aagcaaacac		41400
				ggggaaaggg		41460
				ttgataggtt		41520
				catgggggct		41580
				tcccagaggc		41640
				cacccagagge		41700
				tgtgacatga		41760.
						41820
				ggccttcctc		41880
				ctgggccggg		41940
•				ggcgggtggc	_	42000
				tggtgcggcc		42060
				ggctgtgcag		42120
				gctgtggggg		42120
				ggctgagagt		42180
				ggtgtgggca		42300
				ctccaggcac		42360
grygroorge	caccidayid	coloughong	yeryeacary	gcgtggcctc	cccycacca	42300

WO 02/092015

PCT/US02/15982

ttgaaggaca	cttcagttgg	atttagggcc	taccctcacc	cattgtggtc	gtatcttgat	42420
	atttgtaaag					42480
	tttggagagc					42540
	aggcaggggc					42600
	ccatccccac					42660
ttcaccaaca	tgcaggaccg	ggcagccaag	atcgaacgcg	cagccctgga	cggcaccgag	42720
	tcttcaccac					42780
ctgggcaagc	tgttctgggt	ggacgcggac	ctgaagcgca	ttgagagctg	tgacctgtca	42840
	ccggggcctg					42900
	acattgtccg					42960
	tttgtcctca					43020
-	agaaaatgag					43080
	caggactgca					43140
	tgtgttaggc					43200
	tccccatggc					43260
	ggggccagtg					43320
	gtgggagcag					43380
	cagctcccac					43440
	tctgtcctcc					43500
	cacgggctgc					43560
	ctgggcctga					43620
	gagcgtgtgg					43680
	ctcactggca					43740
	gcagtggggt					43800
	caagatcctg					43860
	tggggttcag					43920
	gaacaaatca					43980
	tgagtcagga					44040
	gcagcctcga					44100
	ggactacagg					44160
	catgttgccc					44220
	caaagtgcta					44280
	agttctgtaa					44340
	cacggggcca					44400
	attagcttcc					44460
	tggtťattgg					44520
	gccctctctg					44580
	tctgatttgc					44640
	tcccctttga					44700
	ttctgccaca					44760
	ttaggattct					44820
	gctgggacca					44880
					aaacaaaaag	44940
					gaccaaggtg	45000
	ttgaggttgg					45060
	atacaaaaat					45120
	aggtgggaga					45180.
	tgcactccag					45240
	tggtagtgac					45300
	aaggacactg					45360
					cttcttctca	45420
	gttggacaca					45480
					tatttattta	45540
	tattgagatg					45600
	cactgcaacc					45660
					tgtattttta	45720
	gttttcgcca					45780
,	,		,,,			

_					
	ctccca aagtgctggg				45840
	attccc atgtgtatta				45900
	taaagc aacagaaatq				45960
	ttggga gggctgtgct				46020
gttggccctt ccagt	tgctgt gggtgccago	gttccacact	tgtggatgcg	ccgcctcaac	46080
	atgtgt ccatctcctt				46140
	ataagg acgtttgtca				46200
	gagate ettaacetge				46260
	ccttaa gacatgggto				46320
	cgggaa gagggccag				46380
	gcggga ggatcactt				46440
	tttcta caaaaagtga				46500
	tgtaat cccagcactt				46560
	cateet ggetaacae				46620
	egeagt ggeteceged				46680
					46740
	gtcaag agatcgagad				46800
	agagat ggagaccato				
	attagc cgggcatggt				46860
	gaatgg cgtgaacccg				46920
	actcca gcctgggtga				46980
	aaagaa aattagccag				47040
	ggcagg agaatggcat				47100
	gegete cageetgggd				47160
	gtgcat gcctgtagto				47220
	gagatc aaggctacaq				47280
ctgggtgaca gagt	gtgacc ctgtctcaaa	gtaagtaaat	aggaggagag	acaagtgggc	47340
	gtatgg gcacagtaga				47400
caagcaactt ctgta	aattgt ttccggcato	: catttgtgtg	tcaatttccg	tgtcagtagg	47460
aagactctgt aggct	tgccaa gaggaataaq	, tgggaggatc	ctcccagaga	ggccgggcct	47520
gcaggagggc cagtt	tctcat gagttctċat	ttggccccta	ccctccaggc	tgtggttctg	47580
aggtgggaga cagaq	gootga cototgtttq	tcttgttttg	tctttgcagc	agcccaccca.	47640
tgtgcccgtg acaat	tggtgg ctgctcccad	atctgtattg	ccaagggtga	tgggacacca	47700
cggtgctcat gccca	agtoca cotogtgoto	ctgcagaacc	tgctgacctg	tggaggtagg	47760
tgtgacctag gtgct	toottt ggggtgatg	, acaggtacct	gattctctgc	ctgctaggct	47820
	ttttaa aatcacagto				47880
	ctcctt tctttctad				47940
	cctgca tctcacaaat				48000
	tctcct gagatgacat				48060
	agttgg ggcttttcca				48120
	tgagag cttattttat				48180
	gttatt gtttttgtg!				48240
	gtettg etetgteact				48300
	gcctcc cgggttcaa				48360
	cacgee accatacee				48420
	gtcagg ctggtctcg				48480
	gggatt ataggcgtg				48540
	tgcagt ttatcttgg				48600
					48660
	ttgggt ggagtgttc				48720
	tgtctc tatccttcc				48780
	agtoto caactotaal				
	cttcta cccttgatco				48840
	ggtagt gaagaacct				48900 48960
	acttcc cagttgagt				
	ctgtga aattgagag				49020
	cacctg gaccctgaca				49080
	tagtaa taaagtgac				49140
cagggctttc tctc	ctatgc ccccatgcc	: ccaggtggcc	ttggatcctg	ttggttctgt	49200

```
getetgetea gegaeettte teeegtggga gtteetgggg gtteagette ateetaeaga
                                                                      49260
cagcagcaca cactggctgt gcaccetttt tttttttttt tttttttt tgagatggag
                                                                      49320
tetegetttt ttegegeagg etgaagtgea gtggtgtgat ettggeteae tgeaacetet
                                                                      49380
acctcctggg ttcaagtgat tttcctgcct caccctccca agtagctggg attacaggct
                                                                      49440
cccaccacca Cgcccggcta attittgtat tittcagtaga gatggtgttt caccatgttg
                                                                      49500
gccaggatgg tcttgaactc ctgacctcag gtgatccgcc cacctcagcc tcccaaagtg
                                                                      49560
cagggattac aggcgtgagc caccacacc ggagtgccgg ttgtttttag cagtttgtct
                                                                      49620
tgttcctgga gagactggct cctgcccagg agctcgggga gtagggccgc ggggtgctqc
                                                                      49680
ctcacacctc gagtttggcc gtaagcagag gggacatttt gtgactgtcc ccctcctgag
                                                                      49740
cttcccagca gcttttctcc aagttacagc ccaaaagctc aggtggattt gcaacccaac
                                                                      49800
ggtgtctgtg cacctcccac tgatgcccga actgccctgg ccaagaaacg gggccgtcag
                                                                      49860
aacgctgcac taactgcagc cttgggcctc catgccagag gccatgccct tccatccacc
                                                                      49920
accccctggc ctgggccctg ggccctcctg gctcgggaac tccaggcccc ttcctcacqq
                                                                      49980
ctcgagagac gtgtatttac cgcacaggtg cttgtcattc tcttgtggcc tcttctccag
                                                                      50040
ggagatcaca gaaggacagg gcctcactga ggtctcggac atggaccctt tgatagtggc
                                                                      50100
aggagccagg ctgggcaaga ggcggccaca gtcacctcag cagtgccatc accaccqcca
                                                                      50160
tteagecett ecetgageeg ggegeeece tggetetgge eceagtgtee eagttacage
                                                                      50220
teacaggage ttgtggtgee cageggetge ttetgattga gagtegaggt eggaggettt
                                                                      50280
gggaggctga gaggctgctc ggtttcacaa ctgctgaggg agacttgggc tccatctcag
                                                                      50340
gtatgcccca tgtcgccctc aacctccagc caccggtcct ccgtgtcccc catggccagg
                                                                      50400
cacggettge agacatetgt egttggetee teteageegt egtgggetga eeetggeaeg
                                                                      50460
tectectgtg getgageeca gtggggaeag etgetteett ttattaceet agaacteteg
                                                                      50520
tetttgatea ggeceetee ectatgecae acagteeetg teactegggt gageceagta
                                                                      50580
gtcatgggga aggcctgcgg gttccaaaca tccaaaggct tgcgtgcagc atgacagctt
                                                                      50640
gaaaccgatg ttttttacct tgatcagatt tcagcttggc gggggctttg ctcagctttc
                                                                      50700
agtgaggeet gggeegattt ceeageatee ceteetgagg ceageetetg ttteetgtga
                                                                      50760
ttttctgcac aaagtgggag ggaggagtcc taggaaatgg ggggccacct cgaagcctag
                                                                      50820
geetectetg gettetetgt gecagtgeec ceaegetttg tgtetgtgte eecageecat
                                                                      50880
gggactetge tattecetga gtgetgeege atgeceagee egeactgagg aegtggagee
                                                                      50940
ccgaggggca ggatggcctc catggtcaca cgtaggaagt ggcctccacc ctccgatgat
                                                                      51000
cctctccctc ctccctttca qcqccctccc cqqqqqtqtc ctcaqccctc ctqcctqtqc
                                                                      51060
tttgtcccgt cttctgcagg cgcctgggac gtgctgacag gtcctctgcc ggctcctgcc
                                                                      51120
ttgctatgcg cacgctggtc accacagagg cctggccctt cttctgtagc agtcccacac
                                                                      51180
ccgcaacagg tgtggctgct gaccacctgc tttctgcccc tctggtcctg aggagggcgc
                                                                      51240
agtgggcact caggcgtggc tgagcagatg tgtgttgccg ggaggaggaa ggactgctcc
                                                                      51300
agtcagggct gaatttccca cccggagcat ttctgctgta tttggtgtag cgcctgctgc
                                                                      51360
ttaaagetet gatteeeagt tggeaceett teeettetge attgaaaaac atacggatge
                                                                      51420
atgtettett geagtgaatg tgtattetee eagestetet tetgggttgg ggetggaggt
                                                                      51480
ggageggeae acaggageeg cagegatgga ggatgtgegg qtgcageaec cegtacagea
                                                                      51540
gggatgccaa accegegetg agtecetete aacttetget ttgaageeca gteaegeeat
                                                                      51600
tgcctgggtt ttgctgggcg gggctgcgtg tgatgttctc ctctgtccct cccccagagc
                                                                      51660
cgcccacctg ctccccggac cagtttgcat gtgccacagg ggagatcgac tgtatccccg
                                                                      51720
gggcctggcg ctgtgacggc tttcccgagt gcgatgacca gagcgacgag gagggctgcc
                                                                      51780
ccgtgtgctc cgccgcccag ttcccctgcg cgcggggtca gtgtgtggac ctgcgcctgc
                                                                      51840
gctgcgacgg cgaggcagac tgtcaggacc gctcagacga ggcggactgt gacggtgagg
                                                                      51900
                                                                      51960
ccctccccgt caaggetetg ccaagaccet ggccctgccc teegggatae gagettgggg
ctgcctccgg cctcacagga gtaggggctc tgaaaacctt tgcttgcagg gagattgcca
                                                                      52020 -
                                                                      52080
agtotgtott ttaggoccaa caaggaaaac totgoagtto caccoatoot gtoccaccag
gtagtgtggc ttgaaggcag actgtgaggg tctatctcac cttcctgcat taggtcagga
                                                                      52140
                                                                      52200
gtttcacaga aacctgaggc acattcaggg gtgggctgca gaggtccatg gctcacaccc
                                                                      52260
tggaaaatcc gcccccaaaa gacagtgctg tctccactga ccagtctgtg ggatagtgct
taageetgag tggtttetat caacatgtag aateaggagg tataaagaga tttgeteagg
                                                                      52320
                                                                      52380
catcctgggc cetetetgac cagcaggate tteetttaga tettgacagt gaaacacate
                                                                      52440
tettetgtge eccetgtgag ttttetttea tteatteatt catteattea tteatteatt
                                                                      52500
cattcattcg agacagagtc ttgctctgtc acccaggctg gagtgccctg gtgtaatctc
ggctcactgc aacctctgcc tccagggttc aatcgattct cctgcctcag cctcccgagt
                                                                      52560
                                                                      52620
agctgggatg acaggtgcgc accaccatgc ctggctaatt tttgtatttt tagtagagac
```

			cgaactcctg			52680
			catgagccac			52740
cttttatgaa	ggacctgctt	ggttggttgc	ctgccacatg	ttgtcagcac	catgggccca	52800
ggactgctga	ggagctgttg	atgccctcgc	tctcccagag	ccaccggctc	tgttagataa	52860
ttcacatgca	gtctggccac	tgtcctacgt	cctcattcac	aaagagcaga	catttcgtag	52920
			atgtttttct			52980
			ttatggaggc			53040
			ccacctactt			53100
			acaatgtctg			53160
			ctacggcctt			53220
			cctgctgcgc			53280
			ggttaggaat			53340
			gggtagatta			53400
			ggcacccgca			53460
gtctcaggaa	getttgaete	arggrgaaag	tcgaagcggg	agcaggtgca	tcacatggtg	53520
agagagggag	caacggagag	agagagagag	cgcctctccc	tcttgccctc	accttgagag	53580
			cccatgtgaa			53640
			tcccatgacc			53700
			ctgttctatg			53760
ccatgccatg	ccatgctatt	cctattctat	tatttgagac	agaatctcgc	tctgttgccc	53820
aggctggagt	gcagtggcat	gatcttggct	cactgcaacc	tccacctccc	aggttcaagc	53880
			gggattacag			53940
			tttcaccatg			54000
			gcctcccaaa			54060
			cgttgagatt			54120
			tctcctcccg			54180
			ctctgttcca			54240
						54300
			ggacagggtc			
ggtaggatat	cgggggcagg	gcaggcgggg	aactgagcaa	gerecetggg	ggcaggcgcg	54360
			gaggggtgga			54420
			gccttgtgct			54480
			ccctcccctc			54540
			aggctcctcg			54600
			tgggcggggt			54660
tagacctccc	cacagtaggc	acctgacaca	tacctcctgg	ggggcaggca	ggaggtgcgt	54720
tgaggtctca	gccctggcag	tccctcccct	gcgtggcata	ggcctcgcca	cagggtcatc	54780
gagggtgggt	ggagactgta	ctagaccact	ccccgctggt	cctagaaagg	gtcccatctg	54840
			ttgctgtgcc			54900
			ctccttgcag			54960
			atcaaacagc			55020
			ggtgagccag			55080
			agtttagggg			55140
			ggctgggagg		-	55200
			agactgtgag			55260
						55320
			gtccaggtgc			
			agcaagatta			55380
			gaggagtgat			55440
			ccacatgctc			55500
			aggccaagac			55560
			caggcaggaa			55620
aagtagcaat	gagtcattgt	gtctggggac	atggccactc	cttcgctgca	gagggacctg	55680
ggctgagagc	tcctctctta	tggctgcagt	cgggagagaa	gtctgttggg	gggagaaggg	55740
			ggcaccttcg			55800
			cgcctcctct			55860
gacgggcctg	tgccgtgggc	cccagctgtg	ggggcgctgt	tgatgcgcag	ccaggcctcg	55920
ccgccagage	ccgcacgctt	ccattccqct	gacttcatcg	acqccctcaq	gatcgctggg	55980
			tgccaaagtt			56040
	322 2 3 3 5 5 E	, ,,	J	J J55-5		- - ·

tccctatggg cagccttgat agtggagtgg cccaaggagc ccacccagcc gaccctgccc 56100 ctcccgtggc tggtgggcgg caccaggggc tgcctggctt tgctcgttca ccaacatcac 56160 ctgggctggc cagggcgcgc tcacttctgc caccaccgag ggccctgggc gaaggagtga 56220 ataccagget geettggeag ggatgtgttg agggetgtgg ggagteggae ageggegggg 56280 gtcagaggag gaggagggtg caccgtgcag gctgaagggc cacgttaccc tgaggttgqc 56340 caggeteece aggeetagee teccagetee eccaetttet ecceaecete caccagtgge 56400 aaagccagcc ccttcagggc gcacggtgtc tgcccccaag gagggcccat tccgttgqqg 56460 ttaatgttgg ccacctcttt ctgtttgtct ctggcagaaa tcaccaagcc gccctcagac 56520 gacagecegg eccaeageag tgecateggg eccgteattg geateatect etetetet 56580 gtcatgggtg gtgtctattt tgtgtgccag cgcgtggtgt gccagcgcta tgcgggggcc 56640 aacgggccct tcccgcacga gtatgtcagc gggaccccgc acgtgcccct caatttcata 56700 gccccgggcg gttcccagca tggccccttc acaggtaagg agcctgagat atqqaatqat 56760 ctggaggagg caggagagta gtctgggcag ctttggggag tggagcaggg atgtgctacc 56820 ccaggccctc ttgcacatgt ggcagacatt gctaatcgat cacagcattc agcctttccc 56880 actgagcctg tgcttggcat cagaatcctt caacacagag gcctgcatgg ctgtagcaac 56940 ccaccctttg gcactgtagg tgtggagaaa gctccttgga cttgaccttc atattctagt 57000 aggacatgtg ctgtgttgtc cacaaatcct catgtaccct agaaatgaat gtgggggcgg 57060 ctgggctctc tccagagctg aaggaatcac tctgtaccat acagcagctt tgtcttgagt 57120 gcagctggga tttgtggctg agcagttaca attcctacgt ggcccaggca ccaggaacgc 57180 aggetgtgtt tgtagatgge tgggeageeg caeegeagag etgeaceatg etggtttgta 57240 tcacatgggt gaccatggta tgtctaagaa ggtggagtcc ctgtgaggtc tgcaggtgcc 57300 cccacagete caggecacet tgaggattge etetgeetge ccagecetga qttecetete 57360 ccctgtcctg tcccactgtc accccaagcc ggcctcattg ggagcctgtt ggatggcagg 57420 gtatagatgt aacctgatte tetetgggga geggggttat etggettete aagageteet 57480 aggageccae agtggtggca ceateaeagt egeageagee eeeagagaae geggeeetgt 57540 ctgttcctgg cgtgctctgt gctgccccgc ctgggttccc tgccccagtc gcaggcccct 57600 tggaggaggt accatgtgtc tcccgtttca cagatgagcc ccggggagct cactctagta 57660 gtggccagag aggcctgcgg ctcagggagc ggggcacatt tccaacagga cacaccgccc 57720 tggtctgagt ctcgtgggta gtgggagcag aggagagcgc cctatgtctg tggggcggct 57780 tggctgagcc tggaagccac ctgacctccc ccgtcccttc cctgccaggc atcqcatqcq 57840 gaaagtccat gatgagctcc gtgagcctga tggggggccg gggcggggtg cccctctacq 57900 accggaacca cgtcacaggg gcctcgtcca gcagctcgtc cagcacgaag gccacgctgt 57960 accegeeggt gaggggggg geeggggagg ggeggggegg gatggggetg tgggeeeete 58020 ccaccgtcag tgctggccac cggaggcttc ccgggttcct gggggctgtg ccaccgcctc 58080 tgaggcatgc ttgctttctt cccttttcaa accettctgc ttccttcttt aatgacattg 58140 ttgattgtgg ataatctgaa aactacacaa aaatataaag agccaaaatc tcacccaaat 58200 ccacctccta gagtggctgt tgggctccgt cagcatccag gcggccgtct gtgttccgca 58260 eggeecagee categatage egeetgeace aggeetgtet geectetgtg ageeteecea 58320 cagggttccc tccacaaaca ccctgttctc ccacccaggg ctggctgctt cctggaaaac 58380 agctggatgg ttttgtgcat gacagacaaa cacagggtga ttttcgtggc taaaatactc 58440 cctggagctt ttggcagggt gaggggctgg ctccagctga gccacgcctt gagtgaaatg 58500 58560 actgtgagga gaataaactg ccgctgccct ccaggatcac tggggctggc tggggagaac coccepttict gggagcacag toccaggatg ccaaggegag cttggtgccg agatgtgaac 58620 tectgagtgt aaacageggg ggetgacttg acatgetttg tatgetttte atttgtteet 58680 gcagctgtat gcccctaagg tgagtccagc ccccttctgc ttcctctggg gcctcgccag 58740 58800 tgagccccac cttgctgggg ctggttcctc ctgcccttct gggtatccct cacatctggg gtcttgtctt cttgttttct ttttcttttt tttttgagac ggagtttcac ttttgttgcc 58860 caggetteag tgeaatggtg tgatetetag geteacegea acetetgeet eecaggttea 58920 58980 agcagttccc ctgcctcagc ctccctagta gctgggatta caggcatgtg ccaccacgcc cagctaattt tgtattttta gtagagatgg ggtttctcca tgttggtcag gctgatcttg 59040 aactccctac ctcaggtgat ccgcccacct tggcctccca aagtgctggg attacaggcg 59100 59160 59220 cgctctgtca cccaggctgg agtgcaatgg tgtcatcatg gctaactgca gcctctacct 59280 totaggetca ageaateete ceateteage ceetaagtag etaggaetge aegeatgeat 59340 ccccatgccc agctaatatt tacatttttt gtagagatga agtttcacta tattgcccag gctggtctcc aactcctgga ctcgagcgat cctcctgcct cggcctcccc aggtgctggg 59400 attacaggeg tgagecaceg tgeetggeet ggggtattgt ettettatgg cacetgaetg 59460

WO 02/092015

	_					
tggtgggccc	tgggaaggaa	gtagcagaag	agggttcttc	ttggtttcct	ggacagtaac	59520
tgagtgttct	ggaggcccca	gggcctggct	ttgtttaggg	acaaagggaa	ctggtaacca	59580
gaagccgaga	gtttaaacac	ccactgccct	tcttccctgc	tcctgctgct	gcaacccagc	59640
ttaaccagcc	aggagtgcta	ggaacccaag	cagggccccc	gagcacacag	caggcagctc	59700
acgaattctc	ttttcctgtt	ctcccttggg	agctgggagg	atcttaatca	ggcaataaga	59760
	agcagccagc					59820
	aaagggtaca					59880
	taattttaga					59940
	attagcaaag					60000
	cagaagagtc					60060
	aggcatggcc					60120
	caagcataca					60180
	cagttgtgag					60240
	gccatcttgc					60300
						60360
	ttattcagat					60420
	agtgggagtg					60480
	attctcctgc					
	ctaatttta					60540
	ctcctgagct					60600
	agccactgcg					60660
	gtcaacattg					60720
	ttcggaggct					60780
	ggaggaggtg					60840
	ccactggcct					60900
	ccttctactc					60960
	cattcttggt					61020
ctggagggca	tcatggtcct	ctctcctgct	gcggttgaac	cttggctgtt	tcaaccactc	61080
ctgccaagtg	gccctctgaa	agggacagtc	catcttttct	cagcagaggg	ccacactggc	61140
aaaacggtcc	ctggcaccct	ttctctccac	ctgtctaata	tagagtaaaa	atggtatcat	61200
gttaagatct	tcatttatat	ttattttatc	atgaatgatg	taagcatcat	tttgtgtgtt	61260
taagaacctt	tgggcccagc	gtgatggctt	gcagctgtaa	tctcagcact	ttaggaggct	61320
gagatgagcg	gatcacttga	ggccgggagt	ttgagaccag	cctggccaac	atggagaaac	61380
cccgtctcta	gtaaaaattt	aaaaattagc	cgggtatggt	gateceaget	acttgggagt	61440
ctgaagcatg	agaattgctt	gaacatggga	ggcggaggtt	gcagtgagcc	gagatcgcgc	61500
cattgcactc	cagcctgggc	gacagagcga	gactctgtct	caaaaaaaaa	aaaaaaaag	61560
	aaattatcaa					61620
	atatatatt					61680
	acaacttatt					61740
	caggctggag					61800
	tgattctcct					61860
	gctaattttg					61920
	actcgcgacc					61980
	gagccaccat					62040
					gcaaggtggg	62100
					gggtctatca	62160
					cttattacca	62220
					aatgcaggaa	62280 -
						62340
					aaggcgggtg	62400
					cccatctcta	62460
					cagctactcg	62520
	gcaggagaat					
					aaaaaaaaa	62580 62640
					ttatgtcacc	
					tgccccagaa	62700
					caggtcaaga	62760
					aggggtcggc	62820
ccatttcaac	gtggaaactg	agctcttctg	cttctcttc	ttcttcactg	cattaagatt	62880

WO 02/092015

caataccgct	tgggaagcag	gtatttccct	tcctataaag	gatggttggg	agcctgagtg	62940
				ctgccgtcaa		63000
				gtggcaccct		63060
				tgaaggtgtg		63120
				acctcacagg		63180
				cgggaacaag		63240.
				ggactttctt		63300
				ccacacccat		63360
				tgctctggtt		63420
				gtgacagaga		63480
				gtacatgcct		63540
				ataaacaaaa		63600
				cctcagttcc		63660
				ttaaataagc		63720
				ccaagaagcc		63780
				ttagaacaat		63840
				caggggagga		63900
				cagggctgtg		63960
				ggcggatgag		64020
				gacccagcct		64080
				aatttttggg		64140
				tgtgttaggg		64200
				atttatttat		64260
				ttgcccaggt		64320
				tcacgccatt		64380
				cctggctaat		64440
				tcttgaatcc		64500
				aggcgtgagc		64560
				ttgagacaga		64620
				gcaatctccg		64680
				tgcaggcacg		64740
				ccatgtggga		64800
				aaagtgctgg		64860
				tataacgtat		64920
				tttgtgttac		64980
				ttgagacgga		65040
				tgcaagctct		65100
		_	_	gcgagtagct		65160
				tttggtagag		65220
				atccgcccgt		65280
				ctatttattc		65340
				aaatacggat		65400
				ccacctcacc		65460
		_		tatctctatg	-	65520
				cctgtaatcc		65580
				accagcctgg		65640
				gtggtggtgg		65700·
				aactgggagg		65760
				cagagtaaga		65820
				gtgaagtttc		65880
				ccacgttgtt		65940
				taatcccagc		66000
				tcctggctaa		66060
				gtggtgggca		66120
				ccggaagact		66180
				ccccgagtaa		66240
ctccctcctc	ggattacgct	cacctttccg	cttcaatcac	gttgctccgt	ccccttcccc	66300

```
attegtacea etecteactt tegtetteet acceccacta tecetttteg tectetat
                                                                      66360
teettaetta eteeteece ttetetteat actteattee eteegetett eccaetegeg
                                                                      66420
eteccacttt cacctagttg ccctcaccta cgttgccatc tcgccccttc ttcagctctc
                                                                      66480
ggcctctcac ccatctgtcc tctctcttac ctctctcctc atctcgctca gacatctctc
                                                                      66540
tagactates etcaetttae etteteagte gtettettee tateettegt tetecatgat
                                                                      66600
cttcacgtcg ccatctcttt tcqccccttt catatqtctc tcttcatqtt ctcactatca
                                                                      66660
ttctcatgat cactatcgtt ctcactactt atcactcccc tctttcttca tcaattcctc
                                                                      66720
tengthatte tegtetetet ettacaaceg cetteettgt getatetaan teaaceatge
                                                                      66780
ctctcctact ctctctat cgccctcca tcgcttatgc atcctcttct attgcacacc
                                                                      66840
cgcccctcca tcgcttatgc atcctcttct attgcacacc gcccctccat cgcttatgca
                                                                      66900
tcctcttcta ttgcacatcc tcttctattg cac
                                                                      66933
<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 12
ctgagcggaa ttcgtgagac c
                                                                      21
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 13
ttggtctcac gtattccgct cga
                                                                      23
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 14
ctcgagaatt ctggatcctc
                                                                      20
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

032796-132.ST25

<400> 15	
ttgaggatcc agaattctcg ag	22
<210> 16	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 16	
tgtatgcgaa ttcgctgcgc g	21
·	
<210> 17	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 17	
ttcgcgcagc gaattcgcat aca	23
crogogoago gaaccogoac aca	23
<210> 18	
<211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
4220	
<220>	
<223> Primer	
<400> 18	
gtccactgaa ttctcagtga g	21
<210> 19	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 19	
ttgtcactga gaattcagtg gac	23
<210> 20	
<211> 21	
<212> DNA	

<213> Artificial Sequence

032796-132.ST25

<220>		
<223>	Primer	
<400>	20	
		21
,	,,,,	
<210>	21	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
1225		
<400>	21	
		23
cegeeg	acca ggaactegga tte	23
<210>	22	
<211>		
<212>		
<213>	Artificial Sequence	
4000 5		
<220>	not and	
<223>	Primer	
<400>		
cuacua	cuac uactgagcgg aattegtgag acc	33
403.05	0.2	
<210>		
<211>	·	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
cuacua	cuac uactogagaa ttotggatoo to	32
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
•		
<400>	24	
	acuac uatgtatgcg aattcgctgc gcg	33

<210> 25

032796-132.ST25

<211>	33	
<212>	DNA	
	Artificial Sequence	
<220>		
	Parimon	
<223>	Primer	
<400>		
cuacua	cuac uagtccactg aattctcagt gag	33
<210>	26	
<211>	33	
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
<223>	Primer	
<400>	26	
	cuac uagaatcoga attootggto ago	33
<210>	•	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
12237	TITMEL	
<400>-	27	
aactg	gaaga attegeggee geaggaattt ttttttttt ttttt	45
<210>	28	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>	28	
	ggcac gag	13
44444	,	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
~~~J/	* * * * * * * * * * * * * * * * * * *	
<400>		
ctcgtg	acca	9

ctcgtgccg

<210> 30	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(SS2) LITIMEE	
<400> 30	
gtacgacggc cagt	14
guarden sugar	14
<210> 31	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
CZZO FILMEI	
<400> 31	
aacagctatg accatg	16
adougotaty accure	10
<210> 32	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
CZZS> FIIMET	
<400> 32	
ccaagttctg agaagtcc	18
- day agaageee	10
<210> 33	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
<400> 33	
	20
aatacctgaa accatacctg	20
<210> 34	
<211> 57	
<212> DNA	
<213> Artificial Sequence	
•	
<220\	
<220>	
/7775 Duiman	

agetgetegt agetgtetet ecetggatea egggtaeatg taetggaeag aetgggt	<b>57</b>
<210> 35 <211> 56 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 35 tgagacgccc ggattgagcg ggcagggata gcttattccc tgtgccgcat tacggc	56
<210> 36 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 36 agctgctcgt agctgtctct ccctgga	27
<210> 37 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 37 gccgtaatgc ggcacaggga ataagct	27
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 38 gagaggctat atccctgggc	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223> Prime	er					
<400> 39 acagcacgtg	tttaaagggg					20
<210> 40 <211> 163 <212> DNA <213> Homo	sapiens					
<400> 40 actaaagcgc	cgccgccgcg	ccatggagcc	cgagtgagct	cggcgcgggc	ccqtccqqcc	60
gccggacaac	atggaggcag	ctccgcccgg		ccgctgctgc		120 163
<210> 41 <211> 419 <212> DNA <213> Homo	sapiens					
				ggacgtacgg		60
tggacttcca	gttttccaag	ggagccgtgt	actggacaga	cctggaggat cgtgagcgag	gaggccatca	120 180
				cgtggtcatc gctgtactgg		240 300
agaccaaccg	catcgaggtg	gccaacctca	atggcacatc	ccggaaggtg tcacgggtaa	ctcttctggc	360 419
<210> 42 <211> 221 <212> DNA <213> Homo	sapiens					
<400> 42					,	
				cgccccggat acatttactg		60 120
			tactgggctg taggtaccca	acgccaagct c	cagcttcatc	180 221
<210> 43 <211> 221 <212> DNA <213> Homo	sapiens					
<400> 43						<b>6</b> 0
tctccgggga	cactctgtac	tggacagact	ggcagacccg	gcaccccttc ctccatccat	gcctgcaaca	60 120
			tgagtgccct gtgagtgccg	atactcaccc g	atggacatcc	180 221

```
<210> 44
<211> 156
<212> DNA
<213> Homo sapiens
<400> 44
tttctcagtc cacactcgct gtgaggagga caatggcggc tggtcccacc tgtgcctgct
                                                                      60
gtccccaagc gagccttttt acacatgcgc ctgccccacg ggtgtgcaga tgcagqacaa
                                                                      120
cggcaggacg tgtaaggcag gtgaggcggt gggacg
                                                                      156
<210> 45
<211> 416
<212> DNA
<213> Homo sapiens
<400> 45
ctccacagga gccgaggagg tgctgctgct ggcccggcgg acggacctac ggaggatctc
                                                                      60
getggacacg ceggacttea ecgacategt getgeaggtg gacgacatec ggeacgecat
                                                                      120
tgccatcgac tacgacccgc tagagggcta tgtctactgg acagatgacg aggtgcgggc
                                                                      180
catcogcagg gcgtacctgg acgggtctgg ggcgcagacg ctggtcaaca ccgagatcaa
                                                                      240
cgaccccgat ggcatcgcgg tcgactgggt ggcccgaaac ctctactgga ccgacacggg
                                                                      300
cacggaccgc atcgaggtga cgcgcctcaa cggcacctcc cgcaagatcc tggtgtcgga
                                                                      360
ggacctggac gagccccgag ccatcgcact gcaccccgtg atggggtaag acgggc
                                                                      416
<210> 46
<211> 198
<212> DNA
<213> Homo sapiens
<400> 46
ttottotoca gootcatgta otggacagao tggggagaga accotaaaat cgagtgtgoo
aacttggatg ggcaggagcg gcgtgtgctg gtcaatgcct ccctcgggtg gcccaacggc
                                                                      120
                                                                      180
ctggccctgg acctgcagga ggggaagctc tactggggag acgccaagac agacaagatc
                                                                      198
gaggtgaggc tcctgtgg
<210> 47
<211> 244
<212> DNA
<213> Homo sapiens
<400> 47
                                                                       60
ccgtcctgca ggtgatcaat gttgatggga cgaagaggcg gaccctcctg gaggacaagc
tecegeacat tttegggtte acgetgetgg gggaetteat etactggaet gaetggeage
                                                                      120
qccqcagcat cgagcgggtg cacaaggtca aggccagccg ggacgtcatc attgaccagc
                                                                      180
tgcccgacct gatggggctc aaagctgtga atgtggccaa ggtcgtcggt gagtccgggg
                                                                       240
                                                                       244
ggtc
<210> 48
<211> 313
<212> DNA
<213> Homo sapiens
```

tetgeacace tgaagacetg ggateteect	aggaaccaac ccacgcaacc catcgtgcct cgagaccaat ggactttgat ggc	cggtgtggct gaggcctttt aacaacgacg	gccccatcgg tggtcttcac tggccatccc	cctggagctg cagcagagcc gctcacgggc	ctgagtgaca gccatccaca gtcaaggagg	60 120 180 240 300 313
<210> 49 <211> 255 <212> DNA <213> Homo	sapiens					
agtttggcct gggccgacac	gaccatcagc tgactacccc tgggaccaac gagggacttg ctgtc	gagggcatgg agaatcgaag	ccgttgactg tggcgcggct	gatgggcaag ggacgggcag	aacctctact ttccggcaag	60 120 180 240 255
<210> 50 <211> 210 <212> DNA <213> Homo	sapiens					
ttcatggacg accattgact	gctacatcta ggaccaactg acgctgacca tgctgggtga	catgacgctg gcgcctctac	gtggacaagg	tgggccgggc	caacgacctc	60 120 180 210
<210> 51 <211> 352 <212> DNA <213> Homo	sapiens					
tgacgcagta ccgacaagac acatcctggt ggcagtgtgg	aggtcaggag cagcgattat tagcggccgg gttccactcc gcagctgtgc ggaccccagc	atctactgga aaccgcaccc tcccgccagg cttgccatcc	cagactggaa tcatccaggg atggcctcaa ccggcggcca	tctgcacagc ccacctggac tgactgtatg ccgctgcggc	attgagcggg ttcgtgatgg cacaacaacg tgcgcctcac	60 120 180 240 300 352
<210> 52 <211> 225 <212> DNA <213> Homo	sapiens					
atcccggacg	cgcccaccac accagcacag actatgaccc	cccggatctc	atcctgcccc	tgcatggact	gaggaacgtc	60 120 180

atcaagcgag	ccaaggacga	cgggacccag	gcaggtgccc	tgtgg		225
<210> 53 <211> 235 <212> DNA <213> Homo	sapiens					
<400> 53						
gccccacgac caataccatc	ctcagcatcg aacgtccaca	acatctacag ggctgagcgg	tctgagccaa ccggacactg ggaagccatg cgcggagcga	ttctggacgt ggggtggtgc	gcgaggccac tgcgtgggga	60 120 180 235
<210> 54 <211> 218 <212> DNA <213> Homo	sapiens			·		
<400> 54						
ccaccctccc cgcgcagccc gtggccctgg	tggacggcac	cgagcgcgag cacactgggc	aacatgcagg gtcctcttca aagctgttct cgccccgg	ccaccggcct	catccgccct	60 120 180 218
<210> 55 <211> 234 <212> DNA <213> Homo	sapiens					
gcctgaccat gtgtggagaa	ccttggcaag gaccaccggg	catctctact gacaagcgga	tggaggacgc ggatcgaccg ctcgcatcca tggaggagtt	ccagcagcag gggccgtgtc	atgatcgagc gcccacctca	60 120 180 234
<210> 56 <211> 157 <212> DNA <213> Homo	sapiens					
ttgccaaggg		ccacggtgct	gtgacaatgg catgcccagt taggtgc			60 120 157
<210> 57 <211> 272 <212> DNA <213> Homo	sapiens					
<400> 57 gttctcctct	gtccctcccc	cagageegee	cacctgctcc	ccggaccagt	ttgcatgtgc	60

cacaggggag atcgactgta tgaccagagc gacgaggagg gggtcagtgt gtggacctgc agacgaggtg gactgtgacg	gctgccccgt gcctgcgctg	gtgctccgcc cgacggcgag	gcccagttcc	cctgcgcgcg	120 180 240 272
<210> 58 <211> 134 <212> DNA <213> Homo sapiens				·	
<400> 58 teteettgea gecatetgee cateaaacag cagtgegaet tggtgageea gett	tgcccaacca ccttccccga	gttccggtgt ctgtatcgac	gcgagcggcc ggctccgacg	agtgtgtcct agctcatgtg	60 120 134
<210> 59 <211> 274 <212> DNA <213> Homo sapiens		·			
<pre>&lt;400&gt; 59 gtttgtctct ggcagaaatc ccatcgggcc cgtcattggc tgtgccagcg cgtggtgtgc atgtcagcgg gaccccgcac gccccttcac aggtaaggag</pre>	atcatcctct cagcgctatg gtgcccctca	ctctcttcgt cgggggccaa atttcatagc	catgggtggt cgggcccttc	gtctattttg ccgcacgagt	60 120 180 240 274
<210> 60 <211> 164 <212> DNA <213> Homo sapiens					
<400> 60 cttccctgcc aggcatcgca gccggggcgg ggtgcccctc cgtccagcac gaaggccacg	tacgaccgga	accacgtcac	aggggcctcg		60 120 164
<210> 61 <211> 130 <212> DNA <213> Homo sapiens					
<400> 61 ttggctctcc tcagatcctg acatggacat gttctactct tcccctgcag					60 120 130
<210> 62 <211> 496 <212> DNA <213> Homo sapiens			·		

```
<400> 62
tcaaacattc cggccactgc gagaccgtac aggccctaca tcattcgagg aatgqcqccc
                                                                      60
ccgacgacgc cctgcagcac cgacgtgtgt gacagcgact acagcgccag ccgctqqaaq
                                                                      120
gccagcaagt actacctgga tttgaactcg gactcagacc cctatccacc cccaccaca
                                                                      180
ccccacagec agtacetgte ggcggaggac agetgeeege cetegeeege cacegagagg
                                                                      240
agetactice ateteticee geoeceteeg teeceetgea eggacteate etgacetegg
                                                                      300
ccgggccact ctggcttctc tgtgcccctg taaatagttt taaatatgaa caaaqaaaaa
                                                                      360
aatatatttt atgatttaaa aaataaatat aattgggatt ttaaaaaacat gagaaatgtg
                                                                      420
aactgtgatg gggtgggcag ggctgggaga actttgtaca gtggagaaat atttataaac
                                                                      480
ttaattttgt aaaaca
                                                                      496
<210> 63
<211> 3081
<212> DNA
<213> Homo sapiens
<400> 63
eccgccagee cageccagee caaccetact eccteeccae gecagggeag cageegttge
                                                                        60
tcagagagaa ggtggaggaa gaaatccaga ccctagcacg cgcgcaccat catggaccat
                                                                       120
tatgattete ageaaaceaa egattaeatg cageeagaag aggaetggga eegggaeetg
                                                                       180
ctcctggacc cggcctggga gaagcagcag agaaagacat tcacggcatg gtgtaactcc
                                                                       240
                                                                       300
cacctccgga aggcggggac acagatcgag aacatcgaag aggacttccg ggatggcctg
aageteatge tgetgetgga ggteatetea ggtgaaeget tggeeaagee agagegagge
                                                                       360
aagatgagag tgcacaagat ctccaacgtc aacaaggccc tggatttcat agccagcaaa
                                                                       420
ggcgtcaaac tggtgtccat cggagccgaa gaaatcgtgg atgggaatgt gaagatgacc
                                                                       480
etgggcatga tetggaccat cateetgege tttgccatee aggacatete egtggaagag
                                                                       540
acttcagcca aggaagggct gctcctgtgg tgtcagagaa agacagcccc ttacaaaaat
                                                                       600
gtcaacatcc agaacttcca cataagctgg aaggatggcc tcggcttctg tgctttgatc
                                                                       660
caccgacacc ggcccgagct gattgactac gggaagctgc ggaaggatga tccactcaca
                                                                       720
                                                                       780
aatctgaata cggcttttga cgtggcagag aagtacctgg acatccccaa gatgctggat
                                                                       840
gccgaagaca tcgttggaac tgcccgaccg gatgagaaag ccatcatgac ttacgtgtct
                                                                       900
agettetace aegeettete tggageecag aaggeggaga cageageeaa tegeatetge
                                                                       960
aaggtgttgg ccgtcaacca ggagaacgag cagcttatgg aagactacga gaagctggcc
agtgatetgt tggagtggat cegeegeaca atecegtgge tggagaaceg ggtgeeegag
                                                                      1020
                                                                      1080
aacaccatgc atgccatgca acagaagctg gaggacttcc gggactaccg gcgcctgcac
                                                                      1140
aagccgccca aggtgcagga gaagtgccag ctggagatca acttcaacac gctgcaqacc
aagctgcggc tcagcaaccg gcctgccttc atgccctctg agggcaggat ggtctcggac
                                                                      1200
                                                                      1260
atcaacaatg cctggggctg cctggagcag gtggagaagg gctatgagga gtggttgctg
                                                                      1320
aatgagatcc ggaggctgga gcgactggac cacctggcag agaagttccg gcagaaggcc
                                                                      1380
tecatecaeg aggeetggae tgaeggeaaa gaggeeatge tgegaeagaa ggaetatgag
accgccaccc tctcggagat caaggccttg ctcaagaagc atgaggcctt cgagagtgac
                                                                      1440
                                                                      1500
ctggctgccc accaggaccg tgtggagcag attgccgcca tcgcacagga gctcaatgag
                                                                      1560
ctggactatt atgactcacc cagtgtcaac gcccgttgcc aaaagatctg tgaccagtgg
                                                                      1620
gacaatctgg gggccctaac tcagaagcga agggaagctc tggagcggac cgagaaactg
ctggagacca ttgaccagct gtacttggag tatgccaagc gggctgcacc cttcaacaac
                                                                      1680
tggatggagg gggccatgga ggacctgcag gacaccttca ttgtgcacac cattgaggag
                                                                      1740
atccagggac tgaccacagc ccatgagcag ttcaaggcca ccctccctga tgccgacaag
                                                                      1800
gagcqcctgg ccatcctggg catccacaat gaggtgtcca agattgtcca gacctaccac
                                                                      1860
gtcaatatgg cgggcaccaa cccctacaca accatcacgc ctcaggagat caatggcaaa
                                                                      1920
tgggaccacg tgcggcagct ggtgcctcgg agggaccaag ctctgacgga ggagcatgcc
                                                                      1980
                                                                      2040
cgacagcagc acaatgagag gctacgcaag cagtttggag cccaggccaa tgtcatcggg
                                                                      2100
ccctggatcc agaccaagat ggaggagatc gggaggatct ccattgagat gcatgggacc
ctggaggacc agctcagcca cctgcggcag tatgagaaga gcatcgtcaa ctacaagcca
                                                                      2160
                                                                      2220
aagattgatc agctggaggg cgaccaccag ctcatccagg aggcgctcat cttcgacaac
                                                                      2280
aagcacacca actacaccat ggagcacatc cgtgtgggct gggagcagct gctcaccacc
                                                                      2340
ategecagga ccateaatga ggtagagaac cagateetga ceegggatge caagggeate
```

```
agccaggage agatgaatga gttccgggcc tccttcaacc actttgaccg ggatcactcc
                                                                    2400
ggcacactgg gtcccgagga gttcaaagcc tgcctcatca gcttgggtta tgatattggc
                                                                    2460
aacgaccccc agggagaagc agaatttgcc cgcatcatga gcattgtgga ccccaaccgc
                                                                    2520
ctgggggtag tgacattcca ggccttcatt gacttcatgt cccgcgagac agccgacaca
                                                                    2580
gatacagcag accaagtcat ggcttccttc aagatcctgg ctggggacaa gaactacatt
                                                                    2640
accatggacg agetgeeg cgagetgeea eccgaecagg etgagtactg categegegg
                                                                    2700
atggcccct acaccggcc cgactccgtg ccaggtgctc tggactacat gtccttctcc
                                                                    2760
acggcgctgt acggcgaqaq tgacctctaa tccaccccgc ccggccgccc tcgtcttgtq
                                                                    2820
cgccgtgccc acagatgtga aatgaatgta atctaataga agcctaatca gcccaccatg
                                                                    2880
ttctccactg aaaaatcctc tttctttggg gtttttcttt ctttctttt tgattttgca
                                                                    2940
ctggacggtg acgtcagcct gtacaggctc ccaggggtgg cgtcaaatgc tattgaaatt
                                                                    3000
gcgctgaatc gtatgctttt tccttttgat aaataaacaa tgtaaaaatg tttcaaaaac
                                                                    3060
ctaataaaat aaataaatac g
                                                                    3081
<210> 64
<211> 1324
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1324)
<223> n = A, T, C or G
<400> 64
                                                                      60
ggccgcccgg cgcccccagc agnccgagcc ggggcgcaca gncggggcgc agcccgcgcc
ccccgccgcg attgacatga tgtttccaca aagcaggcat tcgggctcct cgcacctacc
                                                                     120
ccagcaactc aaattcacca cctcggactc ctgcgaccgc atcaaagacg aatttcagct
                                                                     180
actgcaagct cagtaccaca gcctcaagct cgaatgtgac aagttggcca gtgagaagtc
                                                                     240
                                                                     300
agagatgcag cgtcactatg tgatgtacta cgagatgtcc tacggcttga acatcgagat
gcacaaacag gctgagatcg tcaaaaggct gaacgggatt tgtgcccagg tcctgcccta
                                                                     360
cctctcccaa gagcaccagc agcaggtctt gggagccatt gagagggcca agcaggtcac
                                                                     420
                                                                     480
egetecegag etgaacteta teateegaca geageteeaa geecaceage tgteceaget
geaggeeetg geeetgeeet tgaeeceact accegtgggg etgeageege ettegetgee
                                                                     540
                                                                     600
ggcggtcagc gcaggcaccg gcctcctctc gctgtccgcg ctgggttccc aggcccacct
ctccaaggaa gacaagaacg ggcacgatgg tgacacccac caggaggatg atggcgagaa
                                                                     660.
                                                                     720
gtcggattag cagggggccg ggacagggag gttgggaggg gggacagagg ggagacagag.
gcacggagag aaaggaatgt ttagcacaag acacagcgga gctcgggatt ggctaatctc
                                                                     780
                                                                     840
900
ttetteetae eccatteegg etteceteet ecteceetge ageetggtta ggtggataee
tgccctgaca tgtgaggcaa gctaaggcct ggagggtcag atgggagacc aggtcccaag
                                                                     960
ggagcaagac ctgcgaagcg cagcagcccc ggcccttccc ccgttttgaa catgtgtaac
                                                                    1020
                                                                     1080
cgacagtetg ccctgggcca caqcectete accetggtae tgcatgcacg caatgetage
                                                                     1140
tgcccctttc ccgtcctggg caccccgagt ctcccccgac cccgggtccc aggtatgctc
ccacctccac ctgccccact caccacctct gctagttcca gacacctcca cgcccacctg
                                                                     1200
gtcctctccc atcgcccaca aaaggggggg cacgagggac gagcttagct gagctgggag
                                                                     1260
                                                                     1320
gagcagggtg agggtgggcg acccaggatt ccccctcccc ttcccaaata aagatgaggg
                                                                     1324
tact
<210> 65
<211> 2377
<212> DNA
<213> Homo sapiens
<400> 65
                                                                       60
ggtgacaaag agccaacaga gacaatagga gacttgtcaa tttgtcttga tgggctacag
```

120

180

#### 032796-132.ST25

ttagagtctg aagttgttac caatggtgaa actacatgtt cagaaagtgc ttctcagaat

gatgatggct ccagatccaa ggatgaaaca agagtgagca caaatggatc agatgaccct

```
gaagatgcag gagctggtga aaataggaga gtcagtggga ataattctcc atcactctca
                                                                       240
aatggtggtt ttaaaccttc tagacctcca agaccttcac gaccaccacc acccacccca
                                                                       300
cgtagaccag catctgtcaa tggttcacca tctgccactt ctgaaagtga tgggtctagt
                                                                       360
acaggetete tgeegeegae aaatacaaat acaaatacat etgaaggage aacatetgga
                                                                       420
ttaataattc ctcttactat atctggaggc tcaggcccta ggccattaaa tcctgtaact
                                                                       480
caageteect tgecacetgg ttgggageag agagtggace ageaegggeg agtttactat
                                                                       540
gtagatcatg ttgagaaaag aacaacatgg gatagaccag aacctctacc tcctggctqq
                                                                       600
gaacggcggg ttgacaacat gggacgtatt tattatgttg accatttcac aagaacaaca
                                                                       660
acgtggcaga ggccaacact ggaatccgtc cggaactatg aacaatggca gctacagcgt
                                                                       720
agtcagcttc aaggagcaat gcagcagttt aaccagagat tcatttatgg gaatcaagat
                                                                       780
ttatttgcta catcacaaag taaagaattt gatcctcttg gtccattgcc acctggatgg
                                                                       840
gagaagagaa cagacagcaa tggcagagta tatttcgtca accacaacac acgaattaca
                                                                       900
caatgggaag accccagaag tcaaggtcaa ttaaatgaaa agcccttacc tgaaggttgg
                                                                       960
gaaatgagat tcacagtgga tggaattcca tattttgtgg accacaatag aagaactacc
                                                                      1020
acctatatag atccccgcac aggaaaatct gccctagaca atggacctca gatagcctat
                                                                      1080
gttcgggact tcaaagcaaa ggttcagtat ttccggttct ggtgtcagca actggccatg
                                                                      1140
ccacagcaca taaagattac agtgacaaga aaaacattgt ttgaggattc ctttcaacag
                                                                      1200
ataatgaget teagteecea agatetgega agaegtttgt gggtgatttt teeaggagaa
                                                                      1260
gaaggtttag attatggagg tgtagcaaga gaatggttct ttcttttgtc acatgaagtg
                                                                      1320
ttgaacccaa tgtattgcct gtttgaatat gcagggaagg ataactactg cttgcagata
                                                                      1380
aaccccgctt cttacatcaa tccagatcac ctgaaatatt ttcgttttat tggcagattt
                                                                      1440
attgccatgg ctctgttcca tgggaaattc atagacacgg gtttttcttt accattctat
                                                                      1500
aagcgtatct tgaacaaacc agttggactc aaggatttag aatctattga tccagaattt
                                                                      1560
                                                                      1620
tacaattctc tcatctgggt taaggaaaac aatattgagg aatgtgattt ggaaatgtac
ttctccgttg acaaagaaat tctaggtgaa attaagagtc atgatctgaa acctaatggt
                                                                      1680
ggcaatatto ttgtaacaga agaaaataaa gaggaataca tcagaatggt agctgagtgg
                                                                      1740
                                                                      1800
aggttgtctc gaggtgttga agaacagaca caagctttct ttgaaggctt taatgaaatt
                                                                      1860
cttccccagc aatatttgca atactttgat gcaaaggaat tagaggtcct tttatgtgga
                                                                      1920
atgcaagaga ttgatttgaa tgactggcaa agacatgcca tctaccgtca ttatgcaagg
                                                                      1980
accagcaaac aaatcatgtg gttttggcag tttgttaaag aaattgataa tgagaagaga
atgagactic tgcagtttgt tactggaacc tgccgattgc cagtaggagg atttgctgat
                                                                      2040
                                                                      2100
ctcatgggga gcaatggacc acagaaattc tgcattgaaa aagttgggaa agaaaattgg
                                                                      2160
ctacccagaa gtcatacctg ttttaatcgc ctggacctgc caccatacaa gagctatgag
                                                                      2220
caactgaagg aaaagctgtt gtttgccata gaagaaacag aaggatttgg acaagagtaa
cttctgagaa cttgcaccat gaatgggcaa gaacttattt gcaatgtttg tccttctctg
                                                                      2280
                                                                      2340
cctgttgcac atcttgtaaa attggacaat ggctctttag agagttatct gagtgtaagt
                                                                      2377
aaattaatgt tctcatttaa aaaaaaaaa aaaaaaa
<210> 66
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 66
                                                                        60
gggccgccgc ccacccgggc cttgcctcta cctcagtcgt tgccccccga ttttcggctg
gageceaegg ecceggeet cageceege tetagetteg ecagtagete ggecagegae
                                                                       120
qcqaqcaagc cgtccagccc ccqqqgcagc ctgctgctgg acggggcggg ggctggcgga
                                                                       180
gctggaggta gccggccctg cagcaatcgc accagcggca tcagcatggg ctacgaccag
                                                                       240
                                                                       300
cgccacggga gccccttgcc agcggggccg tgcctgtttg gcccacccct ggccggagca
                                                                       360
ccggcaggct atteteccgg aggggteccg tecgeetace eggageteca egeegeeetg
gaccgattgt acgctcagcg gcccgcgggg ttcggctgcc aggaaagccg ccactcgtat
                                                                       420
                                                                       480
cccccggccc tgggcagccc tggagctcta gccggggccc gagtgggagc ggcggggccc
                                                                       540
ttggagagac ggggggcgca acccggacga cactctgtga ccggctacgg ggactgcgcc
                                                                       600
gtgggcgccc ggtaccagga cgagctaaca gctttgcttc gcctgacggt gggcaccggt
                                                                       660
gggcgagaag ccggagcccg cggagaaccc tcggggattg agccgtcggg tctggaggag
```

```
720
ccaccaggtc ctttcgttcc ggaggccqcc cgggcccgga tgcgggagcc agaggccagg
                                                                       780
gaggactact tcggcacctg tatcaagtgc aacaaaggca tctatgggca gagcaatgcc
tgccaggccc tggacagcct ctaccacacc cagtgctttg tttgctgctc ttgtgggcga
                                                                       840
                                                                       900
actttgcgtt gcaaggcttt ctacagtgtc aatggctctg tgtactgtga ggaagattat
ctgttttcag ggtttcagga ggcagctgag aaatgctgtg tctgtggtca cttgattttg
                                                                       960
                                                                      1020
gagaagatee tacaageaat ggggaagtee tateateeag getgttteeg atgeattgtt
tqcaacaaqt gcctqqatqq catccccttc acaqtggact tctccaacca aqtatactqt
                                                                      1080
gtcaccgact accacaaaaa ttatgctcct aagtgtgcag cctgtggcca acccatcctc
                                                                      1140
ccctctgagg gctgtgagga catcgtgagg gtgatatcca tggaccggga ttatcacttt
                                                                      1200
gagtgctacc actgtgagga ctgccggatg cagctgagtg atgaggaagg ctgctgctgt
                                                                      1260
                                                                      1295
ttccctctgg atgggcactt gctctgccat ggttg
<210> 67
<211> 3411
<212> DNA
<213> Homo sapiens
<400> 67
                                                                        60
gggcccgggg tcccgccacc accgcgcgcg ggacagattg attcactttg gagctgtaag
                                                                       120
tactgatgta ttagggtgca gcgctcattg ttcattgacg cagagtccca aaatgaatat
                                                                       180
ccaagagcag ggtttcccct tggacctcgg agcaagtttc accgaagatg ctccccgacc
                                                                       240
cccagtgcct ggtgaggagg gagaactggt gtccacagac ccgaggcccg ccagctacag
tttctgctcc gggaaaggtg ttggcattaa aggtgagact tcgacggcca ctccgaggcg
                                                                       300
ctcggatctg gacctggggt atgagcctga gggcagtgcc tcccccaccc caccatactt
                                                                       360
                                                                       420
gaagtgggct gagtcactgc attccctgct ggatgaccaa gatgggataa gcctgttcag
gactttcctg aagcaggagg gctgtgccga cttgctggac ttctggtttg cctgcactgg
                                                                       480
cttcaggaag ctggagccct gtgactcgaa cgaggagaag aggctgaagc tggcgagagc
                                                                       540
catctaccga aagtacattc ttgataacaa tggcatcgtg tcccggcaga ccaagccagc
                                                                       600
                                                                       660
caccaagage tteataaagg getgeateat gaageagetg ategateetg eeatgtttga
                                                                       720
ccaggcccag accgaaatcc aggccactat ggaggaaaac acctatecet cetteettaa
                                                                       780
gtctgatatt tatttggaat atacgaggac aggctcggag agccccaaag tctgtagtga
                                                                       840
ccagagctct gggtcaggga cagggaaggg catatctgga tacctgccga ccttaaatga
                                                                       900
agatgaggaa tggaagtgtg accaggacat ggacgaggac gatggcagag acgctgctcc
                                                                       960
ccccggaaga ctccctcaga agctgctcct ggagacagct gccccgaggg tctcctccag
tagacggtac agcgaaggca gagagttcag gtatggatcc tggcgggagc cagtcaaccc
                                                                      1020
                                                                      1080
ctattatgtc aatgccggct atgccctggc cccagccacc agtgccaacg acagcgagca
                                                                      1140
gcagagcctg tccagcgatg cagacaccct gtccctcacg gacagcagcg tggatgggat
                                                                      1200
cccccatac aggatecgta agcagcaccg cagggagatg caggagageg cgcaggtcaa
tgggcgggtg cccctacctc acattccccg cacgtaccgg gtgccgaagg aggtccgcgt
                                                                      1260
                                                                       1320
ggagecteag aagttegegg aggageteat ceaeegeetg gaggetgtge agegeaegeg
                                                                      1380
ggaggccgag gagaagctgg aggagcggct gaagcgcgtg cgcatggagg aggaaggtga
                                                                      1440
ggacggcgat ccatcgtcag ggcccccagg gccgtgtcac aagctgcctc ccgccccgc
                                                                      1500
ttggcaccac ttcccgcccc gcttgtgttg gacatgggct tgtgccgggc tccgggatgc
                                                                       1560
acacgaggag aaccctgaga gcatcctgga cgagcacgta cagcgtgtgc tgaggacaac
                                                                       1620
tggccgccag tcgcctgggc ctggccatcg ctccccggac agtgggcacg tggccaagat
                                                                       1680
gecagtggca ctgggggtg ccgcctcggg gcacgggaag cacgtaccca agtcaggggc
                                                                       1740
gaagetggae geggeeggee tgeaceacea eegacaegte caccaecaeg tecaccaea
                                                                       1800
cacagecegg eccaaggage aggtggagge egaggecace egeagggece agageagett
                                                                       1860
cgcctggggc ctggaaccac acagccatgg ggcaaggtcc cgaggctact cagagagtgt
                                                                       1920
tqqcqctqcc cccaacgcca gtgatggcct cqcccacagt gggaaggtgg gcgttgcgtg

    caaaagaaat gccaagaagg ctgagtcggg gaagagcgcc agcaccgagg tgccaggtgc

                                                                       1980
                                                                       2040
ctcggaggat gcggagaaga accagaaaat catgcagtgg atcattgagg gggaaaagga
                                                                       2100
gatcagcagg caccgcagga ccggccacgg gtcttcgggg acgaggaagc cacagcccca
                                                                       2160
tgagaactcc agaccyttgt cccttgagca cccctgggcc ggccctcagc tccggacctc
cgtgcagccc tcccacctct tcatccaaga ccccaccatg ccacccacc cagctccaa
                                                                       2220
ccccctaacc cagctggagg aggcgcgccg acgtctggag gaggaagaaa agagagccag
                                                                       2280
ccgagcaccc tccaagcaga ggtatgtgca ggaggttatg cggcggggac gcgcctgcgt
                                                                       2340
```

032796-132.ST25

```
caggccagcg tgcgcgccgg tgctgcacgt ggtaccagcc gtgtcggaca tggagctctc
                                                                   2400
cgagacagag acaagatcgc agaggaaggt gggcggcggg agtgcccagc cgtgtgacag
                                                                   2460
categttgtg gegtactact tetgegggga acceateece tacegeacee tggtgagggg
                                                                   2520
ccgcgctgtc accctgggcc agttcaagga gctgctgacc aaaaagggca gctacagata
                                                                   2580
ctacttcaag aaagtgagcg acgagtttga ctgtggggtg gtgtttgagg aggttcgaga
                                                                   2640
ggacgaggcc gtcctgcccg tctttgagga gaagatcatc ggcaaagtgg agaaggtgga
                                                                   2700
ctgatagget ggtgggetgg cegetgtgee aggegaggee ettggeggge aegggtgtea
                                                                  2760
cggccaggca gatgacctcg tactcaggag cccgatgggg aacagtgttg ggtgtaccac
                                                                   2820
ccatccctgt ggtctacccg tgtctagagg caggtagggg gtccctccaa gtggtccaca
                                                                   2880
agettetgte etgececeaa qgaggeagee tggaceaete eteatageaa taettggagg
                                                                   2940
geccageeea agtgaggeag cegaggteee tgetgeeage tteaggtgae eeeeeecat
                                                                   3000
cccccggcac ctcccttggg cacgtgtgct gggatctact ttccctctgg gatttgccca
                                                                   3060
                                                                   3120
cgtacccagg tctggctggg gcccaggccc ggatgcagag gcctgcaggg cctctgtcaa
                                                                   3180
ttgtacgcgc caccaagtgc cttcaacaca gcttgtctct tgcctgccac tgtgtgaatc
ggcgacggag cactgcacct gcctccagcc gccggctgtg cagtcctggg tcctcctttc
                                                                   3240
tgagggcccg tgtaaatatg tacatttctc aggctagggc cagcaggggc tgcccgagtc
                                                                   3300
tgtttttcat gcgatgacac.ttgtacaatt atcttttcaa aggtacttgg ataataatga
                                                                   3360
3411
```

<210> 68 <211> 3140 <212> DNA

<213> Homo sapiens

### <400> 68

ggctgcgagt acctccatgg teceggtggc tgtgacggcg gcagtggcgc ctgtcctgtc 60 120 cataaacagc gatttctcag atttgcggga aattaaaaag caactgctgc ttattgcggg 180 cettaceegg gageggggee tactacaeag tageaaatgg teggeggagt tggetttete 240 tetecetgea ttgcetetgg cegagetgea accgeeteeg cetattacag aggaagatge 300 ccaggatatg gatgcctata ccctggccaa ggcctacttt gacgttaaag agtatgatcg 360 ggcagcacat ttcctgcatg gctgcaatag caagaaagcc tattttctgt atatgtattc 420 cagatatctg tctggagaaa aaaagaagga cgatgaaaca gttgatagct taggcccct ggaaaaagga caagtgaaaa atgaggcgct tagagaattg agagtggagc tcagcaaaaa 480 540 acaccaaget egagaacttg atggatttgg actttatetg tatggtgtgg tgettegaaa 600 actggacttg gttaaagagg ccattgatgt gtttgtggaa gctactcatg ttttgccctt 660 gcattgggga gcctggttag aactctgtaa cctgatcaca gacaaagaga tgctgaagtt 720 cctgtctttg ccagacacct ggatgaaaga gttttttctg gctcatatat acacagagtt 780 gcagttgata gaggaggccc tgcaaaagta tcagaatctc attgatgtgg gcttctctaa 840 gagetegtat attgttteee aaattgeagt tgeetateae aatateagag atattgaeaa 900 agccctctcc atttttaatg agctaaggaa acaagaccct tacaggattg aaaatatgga 960 cacattetee aacettettt atgteaggag catgaaateg gagttgagtt atetggetea 1020 taacctctgt gagattgata aataccgtgt agaaacgtgc tgtgtaattg gcaattatta 1080 cagtttacgt tctcagcatg agaaagcagc cttatatttc cagagagccc tgaaattaaa 1140 tecteggtat ettggtgeet ggacactaat gggacatgag tacatggaga tgaagaacae 1200 gtctqctgct atccaggctt ataqacatgc cattgaggtc aacaaacggg actacagagc 1260 ttggtatggc ctcgggcaga cctatgaaat ccttaagatg ccattttact gcctttatta 1320 ttatagacgg gcccaccagc ttcgacccaa tgattctcgc atgctggttg ctttaggaga 1380 atgttacgag aaactcaatc aactagtgga agccaaaaag tgttattgga gagcttacgc cgtgggagat gtggagaaaa tggctctggt gaaactggca aagcttcatg aacagttgac 1440 tgagtcagaa caggctgccc agtgttacat caaatatatc caagatatct attcctgtgg 1500 1560 ggaaatagta gaacacttgg aggaaagcac tgcctttcgc tatctggccc agtactattt 1620 taagtgcaaa ctgtgggatg aagcttcaac ttgtgcacaa aagtgttgtg catttaatga tacccgggaa gaaggtaagg cettactccg gcaaatccta cagettegga accaaggega 1680 1740 gacteetace accgaggtge etgeteeett ttteetacet getteactet etgetaacaa 1800 tacccccaca cgcagagttt ctccactcaa cttgtcttct gtcacgccat agttggctac 1860 tctcaagcca gcacattgtt agacccatct taattaagcc ttacctccat gtaaagaaca 1920 geaegtetgt tecaaggace teagetette ttgtttetae agatggeaac agetecatag

PCT/US02/15982 WO 02/092015

032796-132.ST25

```
ggacagettg tataattace tteaqaqqee aactgacaga ateetggeag gaacaqaeat
                                                                      1980
tatcttgcca gttagaagta cttctgtctc acttatgtcc aaagagtggc tatagatctt
                                                                      2040
ggccttcttc cctgaatgct ttttttttt ggcccccaag aaagtccctt ttatagcact
                                                                      2100
ttagcacagg caatgctaca ggaacaaagt ttcaatgctg ctgagagtga aagaaaggag
                                                                      2160
gaaagtetge cactetacce tgagetggca gtagggcact gagtaccett aggaagaagt
                                                                      2220
cagagcaatg gatacaaatg accttgctct tggatttgct gagcatgatc cctattctqa
                                                                      2280
tgtcagagat taggtttaaa tggaatagag ctatccattt gttcttactc tctagggaga
                                                                      2340
caatcttcca aaacagtttt gggggggtct tctaaagctt tcaaattgga agtaacttta
                                                                      2400
ttcaactaga gttgaataaa agaagggcaa aaataatctc acagagcttg gaactgctga
                                                                      2460
tagocottac tgagggcaaa agatggctat attgttagct atactoctac caaaqcaaqc
                                                                      2520
aaggagatag gattatagat aatttcacgg acatttggaa ataacattgg tgattataca
                                                                      2580
gacaagaata aactcacttc aagctggtct gttttaataa attttcaacg taattgtcta
                                                                      2640
tttttttccc tcccatctgc aacagaatac attttttca gcctttatct agatgaggta
                                                                      2700
aagggaatca ttcttatggt gctcttggag agtttcaggc ctgtgcatgt gtgtacagca
                                                                      2760
ggaggtaata tgctataatg tctgctgtaa tatatttgca cagtagatgc tatgqatcat
                                                                      2820
tctgagctca gggtccagac tttattctta ttcccagaat tttgtgttac gtttttacct
                                                                      2880
cctaacatat gacacttcat cttatattaa ggaaggttta gaatatctaa tacgacttga
                                                                      2940
atteatttgt tactaageet teteaggeaa getgtataet agttactggt etecaetgee
                                                                      3000
atgccttttc aaggttccca tggtccagaa tgatgtttga ttcttaattt ttctgtccct
                                                                      3060
tttataattt gttttaatga ttttgctaca tttggaattc aataaaaaat gtgaacaata
                                                                      3120
ataaaaaaa aaaaaaaaaa
                                                                      3140
```

<210> 69 <211> 3513 <212> DNA

<213> Homo sapiens

### <400> 69

ccgtgtacca ggtgctgcta gtgggaagca cgctgctgaa ggaagtgcct tccgggctgc 60 agetggagea gttgeettet cagageetge tgacccaeat cecaacggeg gggetgeeca 120 cttcgctagg aggaggcctg ccttactgcc accaggcctg gctggatttc cgaaggcggc 180 240 tggaagetet actacagaae tgccaggcag ettgtgeeet getecagggg gecategaaa 300 gtgtgaaggc tgtgccccag cccatggagc ctggggaggt cggtcagctg ctacagcaga 360 cagaggtcct gatgcagcag gtgctagact cgccatggct ggcatggcta caatgccagg ggggccggga gctgacatgg ctgaagcaag aggtcccaga ggtgaccctg agcccagact 420 480 acaggacggc aatggacaag gctgacgagc tatatgaccg ggtggatgga ttgctgcacc 540 aactgaccct gcagagcaac cagcgaatac aggccctaga gttggtccaa acactggagg cccgggaaag cggactgcac cagattgaag tgtggctgca gcaggtgggc tggccagcac 600 660 tggaggagge tggggageee tegetggaea tgetgeteea ggeeeaagge tetttteagg agctgtacca ggttgcccag gagcaggtca ggcaagggga gaagtttctg cagccgctga 720 780 ctggctggga ggcggctgaa ctggacccc ctggggcacg ctttctggcc ctgcgagccc 840 agetgaetga attetetagg getttggeee ageggtgeea geggetggeg gatgetgaga 900 ggctgtttca gctcttcagg gaggccttga cgtgggctga ggaggggcag cgagtgttgg cagagetgga geaggaaege eegggggttg tgttgeagea getgeagetg caetggaeea 960 1020 ggcaccetga ettgeeteet geceaettee gaaagatgtg ggetetggee aeggggetgg gctcagaggc catccgccag gagtgccgct gggcctgggc gcggtgccag gacacctggc 1080 1140 tggccctgga ccaaaagctt gaggcttcac tgaagctacc accggtgggc agcacagcta 1200 gcctgtgtgt cagccaggtc cccgctgcac ctgcccaccc tcccctgagg aaggcctaca 1260 gettegateg gaatetgggg cagagtetea gtgaacetge etgecaetge caccatgegg 1320 ctactgtgcc tccaccaggc agetetgace ceaggageet caacaggeta cagetggtge 1380 tggcagagat ggtggccacg gagcgggagt atgtccgggc tctagagtac actatggaga 1440 actatttccc cgagetggat cgeceegatg tgeeeeaggg ceteegeggt cagegtgeee 1500 acctetttgg caacetggag aagetgeggg aettecaetg ceaettette etgegtgage 1560 1620 tggaggettg cacceggeae ceaceaegag tggeetatge etteetgege catagggtge 1680 agtttgggat gtacgcgctc tacagcaaga ataagcctcg ctccgatgcc ctgatgtcaa 1740 gctatgggca caccttcttc aaggacaagc agcaagcact gggggaccac ctggacctgg

032796-132.ST25

```
cctcctacct gctaaagccc atccagcgca tgggcaagta cgcactgctg ctgcaggagc
                                                                    1800
tggcacgggc ctgcgggggc cccacqcagg agctcagtgc gctgcgggag gcccaqaqcc
                                                                    1860
ttqtqcactt ccaqctqcqq cacqqaaacq acctqctqqc catqqacqcc atccaqqqct
                                                                    1920
qtqatqttaa cctcaagqaa caqqqqcaqc tggtgcgaca ggatgagttt qtqqtqcqca
                                                                    1980
ctqqqcqcca caagtccqtg cgccgcatct tcctttttga ggagctgctg ctcttcaqca
                                                                    2040
agectegeca tgggeceaca ggggttgaca catttgeeta caagegetee tteaaqatqq
                                                                    2100
cagacettgg teteactgag tgetgtggga acageaacet gegettegag atetggttee
                                                                    2160
qccqccqcaa ggccagggac acctttgtgc tgcaggcctc cagcctggct atcaagcaqq
                                                                    2220
cctqqacagc tgacatctcc cacctgcttt ggaggcaggc cgtccacaac aaggaggtgc
                                                                    2280
gcatggctga gatggtgtcc atgggtgtgg ggaacaaggc cttccgagac attgctccca
                                                                    2340
gcgaggaagc catcaacgac cgcaccgtca actatgtcct gaagtgccga gaagttcgct
                                                                    2400
ctcgggcgtc cattgccgta gccccgtttg accatgacag cctctacctg ggggcctcga
                                                                    2460
actecettee tggagaceet geetettget etgttetggg gteeeteaae etgeaeetgt
                                                                    2520
acagagaccc agetettetg ggteteeget gteecetgta teecagette etagaggaag
                                                                    2580
cagcactgga ggctgaggca gagctgggcg gccagccctc tttgactgct gaggactcag
                                                                    2640
agatetegte ceaatgeeca teageeagtg geteeagtgg etetgacage agetgtgtgt
                                                                    2700
cagggcaggc cctgggtagg ggcctggagg acttaccctg tgtctgagcc cgggactgga
                                                                    2760
cgagcagtag atccagcagc ctgcagctcc aaggaacatt gcctctctgg atctqctqtq
                                                                    2820
accagggtgt ggctgacacc tgggctacct ccaacctaca tgtgcaacgc tgttgactac
                                                                    2880
cctttctgat gtgtgtggcc attggactaa ctggcacggg gcctctctag ggaagtctgg
                                                                    2940
ttgtagagcc tgaataggct cctggcccca tgaccccttc tcctgtcccc agctcccatc
                                                                    3000
ccagttgtgg gttaagaata ggctagagca gacattgggt gtttccatgc tgtaggctgg
                                                                    3060
tgggggacca tgtgcctcta ggcagtgact agggtgcccc cacccctcag gaagaacaca
                                                                    3120
ggtgggctcc tagcagctga tccccaatgc ctggccttaa agccgagctc agttaccata
                                                                    3180
gggacaggte cacctetact gggccctcat gettgccttt cetggcccce aggcccagee
                                                                    3240
cctttttact ggggcagttt cgttattttg acttgatgcc ttttgaataa ctttcaatag
                                                                    3300
aattgtctaa aattatctta ctggttgtta ggcctttggt gtctcagaga aggagtctag
                                                                    3360
gtctttgatg tgtgatttaa tcttttattt gtttataata aaaaatagac tgatttgtaa
                                                                    3420
3480
                                                                    3513
aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaa
<210> 70
<211> 3597
<212> DNA
<213> Homo sapiens
<400> 70
                                                                       60
catgocagtt acttoctcag gaaaatattt tottgootfo ttotttcagt atggttttaa
                                                                      120
atttgggaac agtggataac ccaagtgtcc cacaggccaa ggtatattcc aatggcagca
                                                                     180
tgatccctgc acccaaagcc agcccctaaa gcctacccct tgtgcacccg cagcctggta
                                                                     240
agtgagettg getgettgtg aggagetaca agtgaaagag aagttatttt aaataaatee
                                                                      300
caaagtttga ggcagactgt ccaggactgt tcccaggaag aagcaggagt tacccacagg
                                                                      360
aaaagtetet gacetggtee ceteaggeee agetacetge geeeaceage agtgaaggtt
                                                                      420
qatqtactqg cccagcatct ccacctcccc catgcaacca ggtccctggt accgtgtctc
ccgttgcatg tctggcttct gcctgtgctc ctcctgccac gagcatcctc cctgtccctc
                                                                      480
cteattecae egtgtetete etgeacaeat ageetetgte eeagggegat ttatecaett
                                                                      540
                                                                      600
gagtacagga gctgctcaga cctctcagcc cagccctctg tgactgcccc agccccatcc
                                                                      660
taccccaccc aaagctgcct tcctggctgt aggagctccc tcgtctagcc aaggccctat
gggtccccat ccgaggatcc acaagcaatg acttcccaaa tgacctccac tgcaagaaga
                                                                      720
atccttacca ctgtttccag agccgtgaac gatgctgtga tggcccaggt ctcagcacca
                                                                      780
                                                                      840
ccctctgtga cctaaaaaga aaagctcaat ttccatctgt cttctttccc aggaccaagg
                                                                      900
qqacacaqta atgtgaagtc aaatacttaa ccqagcaaag ggccagtgtt gttatcagtc
                                                                      960
```

1020 1080

1140

1200

aaggacaaac ctcccacctc acagacagcc aagcagtgag ggaaagacag acagacatag gtaggaaggt gctctgcagg cacaaggccc agagaagccc ctctccggga acttcccctg

ctccttccag gaacagtgag cccagtgagc agtcccagcc agctcttcaa ggccttcaag

gggtctttcc atgactgagt cacctccagg agctcacctg acccccagag aagacctacc

ccaggcaget cegtgeectg getteteece atgececaaa teecececag ccatecetee

PCT/US02/15982 WO 02/092015

```
tggtcctcgt ctacatcaag ggcctcttcc cctcttcctc ccagctctca ggacaggtqa
                                                                    1260
ctgggagacc ttgaaccetc agectettee tttaaaaaaaa acaaaacaaa acaaaactqt
                                                                    1320
gggccattta tttgggattt tggagttgtt tggtttttgt ttttatatct taatagttcg
                                                                    1380
aaagtaagaa gggagccctg ctatggatgt taagtccaaa ttactcggtt agtgggagca
                                                                    1440
aaacctatga cttccaaggg gatgaggaga ggttcagagg acaggaggag cctcccccat
                                                                    1500
tgaaaaaaaa aaaatgggtc aggacattcc ctggatgagg acaatgctag gggtggcatc
                                                                    1560
tcacatggct gctgctattc ctgqtgcttc cccacacttt tgacagatgg agtccttctc
                                                                    1620
ctaccgcctc ctgccacctc accctacagg cattctctat gtaggaaaca agagccttat
                                                                    1680
cttatagagt ggggagctga gacacagcct caggtaacac tgacacagct cccgaatgag
                                                                    1740
gctgggacac tctgcaaacc tctcctcatg gtgctaaggg tggcatgctc ttgacaggaa
                                                                    1800
acctaaatga ccactcctct catttggaaa gtaatccact gcagtaaaag tttcaqacat
                                                                    1860
qcaagagaga gtttttttt ttttttacta caaatttttg ctcccccata aaattatttt
                                                                    1920
tttattagag ggagtatcca agttttaaaa gtatatagaa ttttttggtt gtaagagaaa
                                                                    1980
tacatactca ttaggatccc gattaaattc cttgagtaga ctggtgccta ccagaaagca
                                                                    2040
aagcaaagtt aaacaaaacg aaacaaaatc cttcatatac aaaaagaact ttctgtttgt
                                                                    2100
attqqcaqaq gtaqtqaqqt qattcaqqta qqctqaaaat cctqqgttqc qqqaqcctca
                                                                    2160
ctttattcca ttcccacccg ctttgatgtc tatgcttggc tctctgggct gcccctqqta
                                                                    2220
ctgccgaatc ctacacatct cttatcagct ttcctcaaac tttaaggagg ctctgtgagg
                                                                    2280
gatgggtcat gggaagaccc aagctttccc tccgccagga ttgcaaaagc aagtagactt
                                                                    2340
ggtctatgca gctcttcttc caacaatttc tttatttgga attagaactt cctttgttag
                                                                    2400
tatctttgat cttttgactc aagcacattt tggaagggct cccttacaaa agtagaattt
                                                                    2460
aaaacagagg atacagttaa agagcaaccc aaaggacgct taagaaaccg agaccacttc
                                                                    2520
accgaacagg actaaggaac actttcgtgc acagaagtca gccgcaatcc aggcacagga
                                                                    2580
cgaagatggg atacacgtgc tcatctgtct gtcctccttt cctctccctc cccgacgttc
                                                                    2640
tagttagett gttgacttgt taaacettet gttettaaaa tgaaaageta gettaeetca
                                                                    2700
aagaatcttg tttccattcg gaaaccaacg attttgtgtt ttagaatgga cagcctccc
                                                                    2760
ctcaccactc cctaccttgg cctggtgtcc ttgagacata cggtctttgc ttagtcgtgt
                                                                    2820
gttggctgct ttgagcagga acgaggcctc caggccctga ggtgggaagg aaggattgga
                                                                    2880
tgccactgcc ctcctccca ctttagcatg taggggccag cccatctctt ccagcagggt
                                                                    2940
                                                                    3000
cctgctgagt taccatagca accagcaact ccagggtacc acaacagaca atggctcagc
gagecgaegt gtggggatga tgeaggggtt ttggeceage eagaggaece agagttgage
                                                                    3060
                                                                    3120
ttcaaatgct agagaagggg agaaacagga tggaagggtg gtttaaggaa ctggcagggg
                                                                    3180
tetttgagte acatagagaa geegttgaag gaggtaggge aggttatete tgtteeagte
accecettee ageceeatee cacttetqtt teaaactaaa geteecacet eqaacattqa
                                                                    3240
ccctttgtta gaacaaagca aagcatatct ttaaacaaca gtgttaaaat gagcctcaaa
                                                                    3300
                                                                    3360
tgtatgtgga tgagatotot aagaagaggg tottotggtt ttgattttta aagaagagta
                                                                    3420
tcctagtaaa atattaaaaa aaaattaaaa agtttttaaa aaggaaacct atgctattta
aattggagcc cagttgtaac ttggtaaagg caagcttctg tacctttgtt ataattaatt
                                                                    3480
gtatacctgt gtatgtaaat ataaggcatt cctattttgc agttcagaac aaaaaaaact
                                                                    3540
3597
<210> 71
<211> 855
<212> DNA
<213> Homo sapiens
<400> 71
                                                                       60
cgctcaatta tctactcgag tctagactcg aggcggccgc ccattgtgca ctaaagcagg
                                                                      120
ggatageaac ggcgtccctc ctccccgctc agctgcagcc cgcagtcctc acagtggtaa
catgccacgt ggtagtctct gtccatggac accacacgga tggttgtctc gcagccctgt
                                                                      180
gcagggagga taggacgggc acaggaggcg cattttggtg caaaaaccgt gtgatagtct
                                                                      240
cgcacgcagt agatgttgtt ctccacgtcc acggtgaagg gaaccccgtc caggcactca
                                                                      300
ttgcacacgg agcaccggaa gcagcctggg tggtaggact tgcccagggc ctgcaggatc
                                                                      360
atttccatga tgagatgtcc acacacgctg catttgtcgg ccgtctgctg gaacccggag
                                                                      420
                                                                      480
tacaggaagt cctcctggca gtacactttc tcacccacgt tgtagaacgc cttcccacgg
agtcgtctcc cacacgagtc gcaggtgaag cagtcagtgt gataaagact ccccattgcc
                                                                      540
                                                                      600
tggcacgcct gctgggctcc gtagatgcca agcccacact tgatgcaaat gccgaagtag
```

cgctcggccg aagggggccg	cgcttgggcc gccccgcagg cgtaggcttt	gccctcccgg ctccggggag	ccagggggca cgagcgggcg	gggtgagcgc gcgggagtgc cggggcaggc atccggtcga	gccgggcggg	660 720 780 840 855
<210> 72 <211> 3791 <212> DNA <213> Homo	sapiens					
<400> 72						
acagacggcg	ggtgaacatg	gcgtcctcga	cttggtctga	gacgtgatag	gcctgccttc	60
				tgtcgccttc		120
ggaaaaccat	ctatgagaac	tcctctccgt	gaacttaccc	tgcagcccgg	tgccctcacc	180
				catcactgtg		240
ctgcaggaag	gcagcaacaa	ctcgtctcca	gtggattttg	taaataacaa	gaggacagac	300
				aaacttgtca		360
				ctcctaaaac		420
				tccttgtacc		480
				ccatggcaga		540
				gagaggaggt		600
				aacctatctt		660
				ctgaacaact		720
				acttagtacc		780
				caactgcctt		840
				agcatggagc		900 960
				cagaagatca atctagtaga		1020
				ttcttggctc		1020
				atacctccgt		1140
				atgctgcaat		1200
				cagcaccaca		1260
				gtacttctga		1320
				gacatgactt		1380
				agcttcggga		1440
				cacagactga		1500
				atgagatggg		1560
				ctaaagagct		1620
				ctgtgaatca		1680
				agaaattgag		1740
cagagcctca	aagcagaaag	ggaggaggca	aggcacagag	aggaaatggc	tctcagaggc	1800
aaggatgcgg	cagagatagt	gttggaggct	ttctgtgcac	acgccagcca	gcgcatcagc	1860
cagctggaac	aggacctagc	atccatgcgg	gaattcagag	gccttctgaa	ggatgcccag	1920
				ttcagcagac		1980
				attatacaac		2040
				tcaagagcca		2100
				ctagggtgct		2160
				tggagttgga		2220
				acatggacag		2280
				ctatgaagga		2340
				gcgtaaagga		2400
				tcctggccaa		2460
				aggttgctca		2520
				tccgggagcg		2580
cytyagaacc	accascator	ryrayagaac	craacggcta	aactggccag	caccatagea	2640 2700
yacaaccayy	aycaayacct	gyayaaaaca	cygcagtact	ctcaaaagct	agggetgetg	2100

```
actgagcaac tacagagcct gactctcttt ctacagacaa aactaaagga gaagactgaa
                                                                      2760
caagagaccc ttctgctgag tacagcctgt cctcccaccc aggaacaccc tctqcctaat
                                                                      2820
gacaggacct tcctgggaag catcttgaca gcagtggcag atgaagagcc agaatcaact
                                                                      2880
cctgtgccct tgcttggaag tgacaagagt gctttcaccc gagtagcatc aatggtttcc
                                                                      2940
cttcagcccg cagagacccc aggcatggag gagagcctgg cagaaatgag tattatgact
                                                                      3000
actgagette agagtetttg tteeetgeta caagagteta aagaagaage cateaggaet
                                                                      3060
ctgcagcgaa aaatttgtga gctgcaagct aggctgcagg cccaggaaga acagcatcag
                                                                      3120
gaagtccaga aggcaaaaga agcagacata gagaagctga accaggcctt gtgcttgcqc
                                                                      3180
tacaagaatg aaaaggagct ccaggaagtg atacagcaga atgagaagat cctaqaacag
                                                                      3240
atagacaaga gtggcgagct cataagcctt agagaggagg tgacccacct tacccqctca
                                                                      3300
cttcggcgtg cggagacaga gaccaaagtg ctccaggagg cctggcaggc cagctqqact
                                                                      3360
ccaactgcca gcctatggcc accaattgga tccaggagaa agtgtggctc tctcaggagg
                                                                      3420
tggacaaact gagagtgatg ttcctggaga tgaaaaatga gaaggaaaac tcctgatcaa
                                                                      3480
gttccagagc ccatagaaat atcctagagg agaaccttcg gcgctctgac aaggagttag
                                                                     3540
aaaaactaga tgacattgtt cagcatattt ataagaccct gctctctatt ccagaggtgg
                                                                      3600
tgaggggatg caaagaacta cagggattgc tggaatttct gagctaagaa actgaaagcc
                                                                      3660
agaatttgtt tcacctcttt ttacctgcaa taccccctta ccccaatacc aagaccaact
                                                                      3720
ggcatagagc caactgagat aaatgctatt taaataaagt gtatttaatg aaaaaaaaa
                                                                      3780
aaaaaaaaa a
                                                                      3791
<210> 73
<211> 1683
<212> DNA
<213> Homo sapiens
<400> 73
ctctgagtgt ccagtggtca gttgccccag gatggggacc acagccagag cagccttggt
                                                                        60
cttgacctat ttggctgttg cttctgctgc ctctgaggga ggcttcacgg ctacaggaca
                                                                       120
gaggcagctg aggccagagc actttcaaga agttggctac gcagctcccc cctccccacc
                                                                       180
                                                                       240
cctatcccga agcctcccca tggatcaccc tgactcctct cagcatggcc ctccctttga
                                                                       300
gggacagagt caagtgcage eccetecete teaggaggee acceetetee aacaggaaaa
                                                                       360
gctgctacct gcccaactcc ctgctgaaaa ggaagtgggt ccccctctcc ctcaggaagc
                                                                       420
tgtccccctc caaaaagagc tgccctctct ccagcacccc aatgaacaga aggaaggaac
gccagctcca tttggggacc agagccatcc agaacctgag tcctggaatg cagcccagca
                                                                       480
ctgccaacag gaccggtccc aagggggctg gggccaccgg ctggatggct tcccccctgg
                                                                       540
                                                                       600
gcggccttct ccagacaatc tgaaccaaat ctgccttcct aaccgtcagc atgtggtata
                                                                       660
tggtccctgg aacctaccac agtccagcta ctcccacctc actcgccagg gtgagaccct
                                                                       720
caattteetg gagattggat atteeegetg etgecaetge egeageeaca caaacegeet
                                                                       780
agagtgtgcc aaacttgtgt gggaggaagc aatgagccga ttctgtgagg ccgagttctc
                                                                       840
ggtcaagacc cgaccccact ggtgctgcac gcggcagggg gaggctcggt tctcctgctt
                                                                       900
ccaggaggaa gctccccagc cacactacca gctccgggcc tgccccagcc atcagcctga
                                                                       960
tatttcctcg ggtcttgagc tgcctttccc tcctggggtg cccacattgg acaatatcaa
                                                                      1020
gaacatetge cacetgagge getteegete tgtgccaege aacetgecag etactgaece
                                                                      1080
cctacaaagg gagctgctgg cactgatcca gctggagagg gagttccagc gctgctgccg
                                                                      1140
ccaggggaac aatcacacct gtacatggaa ggcctgggag gatacccttg acaaatactg
                                                                      1200
tgaccgggag tatgctgtga agacccacca ccacttgtgt tgccgccacc ctcccagccc
                                                                      1260
tactogggat gagtgetttg coogtoggge teettacece aactatgace gggacatett
                                                                      1320
gaccattgac atcagtcgag tcacccccaa cctcatgggc cacctctgtg gaaaccaaag
                                                                      1380
agtteteace aageataaac atatteetgg getgateeac aacatgactg ceegetgetg
tgacctgcca tttccagaac aggcctgctg tgcagaggag gagaaattaa ccttcatcaa
                                                                      1440
tgatctgtgt ggtccccgac gtaacatctg gcgagaccct gccctctgct gttacctgag
                                                                      1500
tcctggggat gaacaggtca actgcttcaa catcaattat ctgaggaacg tggctctagt
                                                                      1560
                                                                      1620
gtetggagac actgagaacg ccaagggcca gggggagcag ggctcaactg gaggaacaaa
                                                                      1680
tatcagetee acctetgage ccaaggaaga atgagteace ccagageeet agagggteag
                                                                      1683
ata
```

<210> 74

<211> 1696 <212> DNA <213> Homo sapiens <400> 74 cacctaaaag ccaaaatggg aaaggaaaag actcatatca acattgtcgt cattggacac 60 gtagattcgg gcaagtccac cactactggc catctgatct ataaatgcgg tggcatcgac 120 aaaagaacca ttgaaaaatt tgagaaggag gctgctgaga tgggaaaggg ctccttcaag 180 tatgcctggg tcttggataa actgaaagct gagcgtgaac gtggtatcac cattgatatc 240 teettgtgga aatttgagae eageaagtae tatgtgaeta teattgatge eecaggaeae 300 agagacttta tcaaaaacat gattacaggg acatctcagg ctgactgtgc tgtcctgatt 360 gttgctgctg gtgttggtga atttgaagct ggtatctcca agaatgggca gacccgagag 420 catgcccttc tggcttacac actgggtgtg aaacaactaa ttgtcggtgt taacaaaatg 480 qattccactg agccacccta cagccagaag agatatgagg aaattgttaa qqaaqtcagc 540 acttacatta agaaaattgg ctacaacccc gacacagtag catttgtgcc aatttctggt 600 tggaatggtg acaacatgct ggagccaagt gctaacatgc cttggttcaa gggatggaaa 660 gtcacccgta aggatggcaa tgccagtgga accacgctgc ttgaggctgt ggactgcatc 720 ctaccaccaa ctcgtccaac tgacaagccc ttgcgcctgc ctctccagga tgtctacaaa 780 attggtggta ttggtactgt tcctgttggc cgagtggaga ctggtgttct caaacccqqt 840 atggtggtca cctttgctcc agtcaacgtt acaacggaag taaaatctgt cgaaatgcac 900 catgaagctt tgagtgaagc tcttcctggg gacaatgtgg gcttcaatgt caagaatgtg 960 tetgtcaagg atgttegteg tggcaacgtt getggtgaca geaaaaatga eecaecaatg 1020 gaagcagctg gcttcactgc tcaggtgatt atcctgaacc atccaggcca aataagcgcc 1080 ggctatgccc ctgtattgga ttgccacacg gctcacattg catgcaagtt tgctgagctg 1140 aaggaaaaga ttgatcgccg ttctggtaaa aagctggaag atggccctaa attcttgaag 1200 tctggtgatg ctgccattgt tgatatggtt cctggcaagc ccatgtgtgt tgagagcttc 1260 tcagactatc cacctttggg tcgctttgct gttcgtgata tgagacagac agttgcggtg 1320 ggtgtcatca aagcagtgga caagaaggct gctggagctg gcaaggtcac caagtctgcc 1380 cagaaagctc agaaggctaa atgaatatta tccctaatac ctgccacccc actcttaatc 1440 agtggtggaa gaacggtctc agaactgttt gtttcaattg gccatttaag tttagtagta 1500 1560 aaagactggt taatgataac aatgcatcgt aaaaccttca gaaggaaagg agaatgtttt gtggaccact ttggttttct tttttgcgtg tggcagtttt aagttattag tttttaaaat 1620 cagtactttt taatggaaac aacttgacca aaaatttgtc acagaatttt gagacccatt 1680 1696 aaaaaagtta aatgag <210> 75 <211> 7680 <212> DNA <213> Homo sapiens <400> 75 60 gaagagcaag aggcaggete agcaaatggt teageceeag teeeeggtgg etgteagtea 120 aagcaagccc ggttgttatg acaatggaaa acactatcag ataaatcaac agtgggagcg 180 gacctaccta ggtaatgtgt tggtttgtac ttgttatgga ggaagccgag gttttaactg cgaaagtaaa cctgaagctg aagagacttg ctttgacaag tacactggga acacttaccg 240 300 agtgggtgac acttatgagc gtcctaaaga ctccatgatc tgggactgta cctgcatcgg 360 ggctgggcga gggagaataa gctgtaccat cgcaaaccgc tgccatgaag ggggtcagtc 420 ctacaagatt ggtgacacct ggaggagacc acatgagact ggtggttaca tgttagagtg tgtqtgtctt ggtaatggaa aaggagaatg gacctgcaag cccatagctg agaagtgttt 480 tgatcatgct gctgggactt cctatgtggt cggagaaacg tgggagaagc cctaccaagg 540 600 ctggatgatg gtagattgta cttgcctggg agaaggcagc ggacgcatca cttgcacttc 660 tagaaataga tgcaacgatc aggacacaag gacatcctat agaattggag acacctggag 720 caaqaaggat aatcgaggaa acctgctcca gtgcatctgc acaggcaacg gccgaggaga 780 gtggaagtgt gagaggcaca cctctgtgca gaccacatcg agcggatctg gccccttcac 840 cgatgttcgt gcagctgttt accaaccgca gcctcacccc cagcctcctc cctatggcca 900 ctgtgtcaca gacagtggtg tggtctactc tgtggggatg cagtggttga agacacaagg 960 aaataagcaa atgctttgca cgtgcctggg caacggagtc agctgccaag agacagctgt

aacccagact	tacggtggca	acttaaatgg	agagccatgt	gtcttaccat	tcacctacaa	1020
	ttctactcct					1080
cacaacttcg	aattatgagc	aggaccagaa	atactctttc	tgcacagacc	acactgtttt	1140
ggttcagact	caaggaggaa	attccaatgg	tgccttgtgc	cacttcccct	tcctatacaa	1200
caaccacaat	tacactgatt	gcacttctga	gggcagaaga	gacaacatga	agtggtgtgg	1260
	aactatgatg					1320
	acaaccaatg					1380
	ggtcacatga					1440
	tactcgcaac					1500
	ttccacaagc					1560
	ggcaggtgga					1620
	caaattggag					1680
	ggccgtggca					1740
	cctgtcgaag					1800
	aatgcaccac					1860
	gtaggccgtt					1920
	ctgaagcctg					1980
	gaagtgactc					2040
	gtgacaggag					2100
	atcacagcca					2160
	cgggtggaat					2220
	acagccactt					2280
	tatcagatat					2340
	cctgatgccc					2400
	tggagcagac					2460
	ggtagcagca					2520
	caacctggtg					2580
	cctgttgtca					2640
	agggacctgc					2700
	gagagtgcag					2760
	gggcagaggc					2820
	gtcacctatt					2880
	gctcaacaga					2940 3000
	tctactgtcc					
	gtgggcctta					3060
	taccccctga					3120
	ggcaaccaag					3180
					tgatcacatg	3240
	ccaagaattg					3300
	gtgacttcag					3360 3420
	tacaccatcc					3480
	gtgacaccat					3540
					ctggttatag	3600
					tggtccatgc atgtcagtgt	3660
	aaggatgaca					3720
					gtgtcacctg	3780
					ctgtgaaaaa	3840
					tcttaacaaa	3900
					aacatgagag	3960
						4020
					ttgacttttc	4020
					ccatcactgg	4140
					atcgggtgcc atgtggtcag	4200
					aatcaacagt	4260
					tactgatcag	4320
					aaacaggagg	4380
99946966			LLUCUYYULU	accuacygay	caacayyayy	.500

	gtccaggagt					4440
	ggagttgatt					4500
	agcaagccaa					4560
	accgatgttc					4620
	ggttacagag					4680
	ggtccagatc					4740
	agtgtctatg					4800
	aacattgatc					4860
	gcttgggaaa					4920
	gatggaatcc					4980
	ggcctcagac					5040
	agccagcccc					5100
	actcaggtca					5160
	ggatatcgag					5220
	gctcctgaca					5280
	agtgtctatg					5340
	ctggagaatg					5400
	accattagct					5460
	gccaatggcc					5520
	acaggtttac				_	5580
	cggagctccc					5640
	ttcctggcca					5700
	accggctaca					5760
	ccccgccctg					5820
	atttatgtca					5880
	acagacgagc					5940
	ttggatgttc					6000
	ggaaatggta					6060
gcaacaaatg	atctttgagg	aacatggttt	taggcggacc	acaccgccca	caacggccac	6120
ccccataagg	cataggccaa	gaccataccc	gccgaatgta	ggacaagaag	ctctctctca	6180
	tcatgggccc					6240
	gatgaagaac					6300
	ctcaccagag					6360
	aaggttcggg					6420
gaaccaacct	acggatgact	cgtgctttga	cccctacaca	gtttcccatt	atgccgttgg	6480
agatgagtgg	gaacgaatgt	ctgaatcagg	ctttaaactg	ttgtgccagt	gcttaggctt	6540
tggaagtggt	catttcagat	gtgattcatc	tagatggtgc	catgacaatg	gtgtgaacta	6600
caagattgga	gagaagtggg	accgtcaggg	agaaaatggc	cagatgatga	gctgcacatg	6660
	ggaaaaggag					6720
	taccacgtag					6780
	tttggaggcc					6840
	cccgaaggca					6900
	aacactaatg					6960
	gaagattccc					7020
	agatccatct					7080
tttctttctt	aagccctttg	ctctggagga	agttctccag	cttcagctca	actcacagct	7140
tctccaagca	tcaccctggg	agtttcctga	gggttttctc	ataaatgagg	gctgcacatt	7200
gcctgttctg	cttcgaagta	ttcaataccg	ctcagtattt	taaatgaagt	gattctaaga	7260
	gatcaatagg					7320
	aaattttaag					.7380
	atactgtagg					7440
	tttttccaaa					7500
	atttttccca					7560
	taagaggaat					7620
gtgccaaagc	tttactactg	tggaaagaca	actgttttaa	taaaagattt	acattccaca	7680

```
<210> 76
<211> 1316
<212> DNA
<213> Homo sapiens
<400> 76
tectaataeg acteactata gggetegage ggeegeeegg geaggtegaa tgeaggegae
                                                                        60
ttqcqaqctg ggagcgattt aaaacqcttt ggattccccc ggcctgggtg gggaqaqcqa
                                                                       120
gctgggtgcc ccctagattc cccgcccccg cacctcatga gccgaccctc ggctccatgg
                                                                       180
agcccggcaa ttatgccacc ttggatggag ccaaggatat cgaaggcttg ctgggagcgg
                                                                       240
gaggggggg gaatctggtc gcccactccc ctctgaccag ccacccagcg gcgcctacqc
                                                                       300
tqatqcctgc tgtcaactat qcccccttgg atctgccagg ctcggcggag ccqccaaaqc
                                                                       360
aatgccaccc atgccctggg gtgccccagg ggacgtcccc agctcccgtg ccttatggtt
                                                                       420
actttggagg cgggtactac tcctgccgag tgtcccggag ctcgctgaaa ccctgtgccc
                                                                       480
aggcagccac cctggccgcg taccccgcgg agactcccac ggccggggaa gagtacccca
                                                                       540
gtogococac tgagtttgcc ttotatocgg gatatocggg aacotaccac gotatggcca
                                                                       600
gttacctgga cgtgtctgtg gtgcagactc tgggtgctcc tggagaaccg cgacatgact
                                                                       660
ccctgttgcc tgtggacagt taccagtctt gggctctcgc tggtggctgg aacagccaga
                                                                       720
                                                                       780
tgtgttgcca gggagaacag aacccaccag gtcccttttg gaaggcagca tttgcagact
                                                                       840
ccagcgggca gcaccctcct gacgcctgcg cctttcgtcg cggccgcaag aaacgcattc
                                                                       900
cgtacagcaa ggggcagttg cgggagctgg agcgggagta tgcggctaac aagttcatca
ccaaggacaa gaggcgcaag atctcggcag ccaccagcct ctcggagcgc cagattacca
                                                                       960
tctggtttca gaaccgccgg gtcaaagaga agaaggttct cgccaaggtg aagaacagcg
                                                                      1020
ctacccctta agagatetee ttgcctgggt gggaggageg aaagtggggg tgtcctgggg
                                                                      1080
agaccagaaa cctgccaagc ccaggctggg gccaaggact ctgctgagag gcccctagag
                                                                      1140
acaacaccct teccaggeea etggetgetg gaetgtteet eaggagegge etgggtacce
                                                                      1200
agtatgtgca gggagacgga accccatgtg acaggcccac tccaccaggg ttcccaaaga
                                                                      1260
acctggccca gtcataatca ttcatcctca cagtggcaat aatcacgata accagt
                                                                      1316
<210> 77
<211> 566
<212> DNA
<213> Homo sapiens
<400> 77
                                                                        60
cccaccaaac ccataaagag ggtgggtcga cccacgcgtc cgcggacgcg tgggaaatta
ttgaattgga aacagaaata gaaaagttta aagctgagaa cgcatcttta gctaaacttc
                                                                       120
                                                                       180
gcattgaacg agaaagtgcc ttggaaaaac tcaggaaaga aattgcagac ttcgaacaac
                                                                       240
agaaagcaaa agaattagct cgaatagaag agtttaaaaa ggaggagatg aggaagctac
                                                                       300
aaaaggaacg taaagttttt gaaaagtata ctacagctgc aagaactttt ccagataaaa
                                                                       360
aggaacgtga agaaatacag actttaaaac agcaaatagc agatttacgg gaagatttga
                                                                       420
aaagaaagga gaccaaatgg tcaagtacac acagccgtct cagaagccag atacaaatgt
                                                                       480
tagtcagaga gaacacagac ctccgggaag aaataaaagt gatggaaaga ttccgactgg
                                                                       540
atgeetggaa gagageagaa geeatagaga geageetega ggtggagaag aaggaeaage
                                                                      . 566
ttgcgaacac atctgttcga tttcaa
<210> 78
<211> 5067
<212> DNA
<213> Homo sapiens
<400> 78
                                                                        60
gcccggacac ctgtctgcag catggataag tatgacgacc tgggcctgga ggccagtaaa
                                                                       120
ttcatcgagg acctgaacat gtatgaggcc tctaaggatg ggctcttccg agtggacaag
                                                                       180
ggtgcaggca acaaccccga gtttgaggaa actcgcaggg tgttcgccac caagatggcc
aaaatccacc tecagcagca gcagcagcag etectgcagg aggagactet geccaggggg
                                                                       240
agtagaggcc ctgtcaatgg agggggccgc ctgggcccac aggcccgttg ggaagttgtg
                                                                       300
```

ggcagcaagc	tgactgtgga	tggtgctgcc	aagcctcctc	ttgctgcctc	gacaggggca	360
cctggggcag	tcaccaccct	cgctgctggg	cagcccccgt	acccaccgca	ggagcagaga	420
tccaggccat	acctgcatgg	cacgaggcat	ggcagccagg	actgtggttc	cagggagagc	480
ctggcgactt	ctgagatgtc	tgctttccac	cagccaggcc	cctgtgagga	tccttcctgc	540
ctcactcatg	gagactatta	tgacaacctc	tccttggcaa	gcccaaagtg	gggtgacaaa	600
ccaggagtgt	ccccagcat	cggcctgagt	gtagggagtg	ggtggcctag	ctccccgggg	660
	cactgcccaa					720
ctgagctcca	gcaggtcttc	tgagggtagc	ctcggtggtc	agaatagtgg	cattggtggc	780
cgcagcagcg	agaagccaac	aggcctttgg	tccactgcct	cctcccagcg	ggtgagccct	840
ggcctgcctt	ccccaaactt	ggagaacgga	gcaccagctg	tggggcctgt	tcagcccagg	900
	tgtcagcacc					960
tcaaactcgg	ggctgggggg	tgaggtttca	ggtgtgatgt	ccaaacccaa	tgtggacccc	1020
caaccctggt	tccaggatgg	gcccaaatct	tacctttcca	gttctgcccc	gtcatcctcg	1080
	tggacggttc					1140
	ttggcactgg					1200
tccaccctgc	ctgagttatc	ttgtaaagag	ggtcccctgg	gctggtcttc	tgatggtagc	1260
ctgggatctg	tgctcctgga	cagccccagc	tcccctaggg	taaggctgcc	ctgccagccc	1320
	gtcctgagct					1380
	agcgagagat					1440
	aaggggtgtt					1500
catgacacat	gcttcacctg	tgcagcttgc	agccggaagc	tgagaggaaa	agccttttat	1560
	gcaaagtgtt					1620
gctgacaggt	gttttctttg	tggacatctg	atcatggaca	tgatcctgca	agccctgggg	1680
aagtcctacc	accccggctg	tttccgctgt	gtcatctgta	atgagtgttt	ggatggggtg	1740
cccttcaccg	tggactcaga	gaacaagatc	tactgtgtcc	gagattacca	caaggtgctg	1800
gcccccaagt	gtgcagcctg	tgggcttccc	atccttccac	ctgagggctc	agatgagacc	1860
atccgtgtcg	tgtccatgga	cagagactac	cacgtggagt	gttaccactg	cgaggactgt	1920
ggtctggagc	tcaatgatga	agatggccac	cgctgttatc	cgctggagga	ccacctgttc	1980
tgtcactcct	gccacgtgaa	gaggctggag	aagagaccct	catctacage	ccttcaccag	2040
caccacttct	agccagagcc	acttgcagac	atcacggcag	gggatgagga	gccggggttg	2100
ctgctgctgc	ttccggtggc	ccctggggtg	gaagtggggt	aggggaagag	gaggggcagg	2160
agggagagtt	cctgtgagca	tgtggggggt	gcctttcctt	taaccaggga	ggtgaacact	2220
acctgcctcc	tgcgtgtatt	ttccaagtgc	ttttctctgt	tgccacattt	tcctcaggtt	2280
actcaggaaa	atgctccagc	atgtgcgagc	acatgacctg	aggttgcatc	atagcaccaa	2340
aggaatcctc	ctgtcccctc	tgggaacatt	tcatgcttca	gagggagagg	tttttattga	2400
gcttgtttca	caatatcccc	ttgaagggac	agctcagctg	ccaatacatt	caaccctttc	2460
tcttccttca	ggaaaatacc	tatacccaaa	tgttccctcc	cccgacatat	atcatggcat	2520
gacttaaggc	ttcttttcac	ctgagagctt	cagttcttct	gcagaatggc	tgcaaattta	2580
attgcattaa	ggcaagaagg	aagctctaat	gtgtgctttg	tatcctaaga	taaatttgct	2640
tagaaaacca	gagtcaagat	ttgaaatagg	tgaggcaggg	tttcctcctt	agacactgac	2700
	gtaccccttc					2760
aatttgccct	atgggagtaa	aacatacttt	gggagaagaa	cttggtgcag	gcaccaggat	2820
tttttttt	gcccacgtgt	ttgcgctgtt	tttctctgga	gttctcaaga	gttggtgact	2880
tggaaggccg	cttctgcaag	gcaagtctca	ggaacccatg	caggtacatc	gcttgcacct	2940
gtttttagct	tatttaatga	cgggcttttg	ggaagagctg	cccgcatact	gagagacagc	3000
ttcttataaa	caaggagagt	ttttgtgtgt	gcgagatctc	taagccagcg	tgggagggag	3060
	taagttatta					3120
	gtttgaagaa					3180
	ccttcacttt					3240
	ttcaggagga					3300
	actggcttca					3360
	agtggggaat					3420
	agggtggcag					3480
actctctgca	ctgaagaggt	aaaatttgca	ctgcaaqtca	catccctgag	gccagaggtc	3540
	ggtatttcga					3600
	gccggggaca					3660
	ggactgggtg					3720
				-		

tgaactcagg cttttcatt	ggcccggctc	cacttctagg	ccatgttttg	actcatttqq	3780
taaccattgc ctgtaagca			_		3840
gaattcattc tgttggaat					3900
ttggttcttt ttcacaggc					3960
gaaccctgag gtggggacc					4020
cagggggta aatgaagcc					4080
gccttactga cacaccttte					4140
aattgggtaa ttagtttaa					4200
ctagattgag gtgattcag	taggtttgcg	aatataccat	tttatattgt	tgagaaagaa	4260
caaaaaggga atttccaga	gtcctagaaa	tcctagcaac	agatttctct	ggttgtcagt	4320
ttccctggag aaggcgcca					4380
cccttacaca aaagccatg					4440
ttattagcca aatagaact					4500
					4560
aggacttggt aggccagga					
tttctttttg acaattctt					4620
atcccaaagc cagcctcca					4680
ccaccgtctc ctgttttgt					4740
aaactgcctg ggtggtttg	gaagagacaa	cccagtttga	tctgcaatac	aaggatccat	4800
togtaatoto tototoacto	g atgttattcc	cccatctgcc	gtcttggttc	atctcaccac	4860
agaagggcat ttagtccta	ccaqccatcq	gctgcggtat	gacagcagga	tggcacttcc	4920
catticictg tggttagtg					4980
gctgttgagt cctgggtgg					5040
		accyayyayy	cotygecace	cccaagegee	
gtcatcgcct tgtttccat	ggerrer				5067
<210> 79					
<211> 950					
<212> DNA					
<213> Homo sapiens					
<213> Homo sapiens		,			
		,			
<400> 79	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a a a good of o	· .	aaaaaaaa	60
<400> 79 tcgaccggat ccgaattcc					60
<400> 79 tcgaccggat ccgaattccggctggcggcggcgg	g gcggctgcag	cagcagaggg	agacccgcgg	caaccccggc	120
<400> 79 tcgaccggat ccgaattccggcggggggggggggggggg	g geggetgeag e tgeeaceatg	cagcagaggg acgggaagca	agacccgcgg atatgtcgga	caaccccggc cgccttggcc	120 180
<400> 79 tcgaccggat ccgaattccggctggcggcggcgg	g geggetgeag e tgeeaceatg	cagcagaggg acgggaagca	agacccgcgg atatgtcgga	caaccccggc cgccttggcc	120 180 240
<400> 79 tcgaccggat ccgaattccggcggggggggggggggggg	g geggetgeag e tgecaceatg g ceaggeeege	cagcagaggg acgggaagca ttctccccg	agacccgcgg atatgtcgga ccgagcgcat	caaccccggc cgccttggcc tgtcaacagc	120 180
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg	g geggetgeag e tgeeaceatg g ceaggeeege a geactgette	cagcagaggg acgggaagca ttctccccg gtgtgtgccc	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg	caaccccggc cgccttggcc tgtcaacagc gcccttcccc	120 180 240
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt	g geggetgeag c tgecaceatg g ccaggecege a geactgette c tgaaggeegg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg	120 180 240 300
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat	g geggetgeag c tgecaceatg g ceaggeeege a geactgette c tgaaggeegg c etgeggtgag	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg	120 180 240 300 360 420
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg	g geggetgeag c tgecaceatg g ceaggeege a geactgette c tgaaggeegg c ctgeggtgag g etgetteege	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac	120 180 240 300 360 420 480
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg	g gcggctgcag c tgccaccatg g ccaggcccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa	caacccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag	120 180 240 300 360 420 480 540
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt	g gcggctgcag c tgccaccatg g ccaggcccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc	120 180 240 300 360 420 480 540
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg	g gcggctgcag c tgccaccatg g ccaggccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag	120 180 240 300 360 420 480 540 600 660
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc	g gcggctgcag c tgccaccatg g ccaggccgc a gcactgcttc tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac	120 180 240 300 360 420 480 540 600 660 720
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg	g gcggctgcag c tgccaccatg g ccaggccgc a gcactgcttc tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac	120 180 240 300 360 420 480 540 600 660 720 780
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatggcg ttcccatct	g gcggctgcag c tgccaccatg g ccaggccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag g cggggcctgc	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac	120 180 240 300 360 420 480 540 600 660 720
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatggcg ttcccatct gcgctgggca agcagtggc	g gcggctgcag c tgccaccatg g ccaggccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag g cggggcctgc a cgtggagcac	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 660 720 780
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccggc ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatggcg ttcccatct gcgctgggcacc ggcactatg</pre>	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatggcg ttcccatct gcgctgggca agcagtggc	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 660 720 780 840
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccaggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tggagcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg ggcggccgcc tcgagtcta	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccaggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg ggcggccgc tcgagtcta</pre>	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg ggcggccgc tcgagtcta</pre>	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg gcgcggcgcc tcgagtcta</pre> <pre>&lt;210&gt; 80 &lt;211&gt; 2346</pre> <212> DNA	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg ggcggccgc tcgagtcta</pre>	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg gcgcggcgcc tcgagtcta</pre> <pre>&lt;210&gt; 80 &lt;211&gt; 2346</pre> <212> DNA	g gcggctgcag tgccaccatg ccaggcccgc g ccaggccgg ctgcaggcgg ctgcttccgc ccggcaggcat a catctgccag ctaccacct cgagctgaag ccggggcctgc a cgtggagcac a catggagcac a catggagcac a catggagcac a cgagagagcac a cgagagagacac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<pre>&lt;400&gt; 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgccgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg gcgcggcgcc tcgagtcta</pre> <pre>&lt;210&gt; 80 &lt;211&gt; 2346</pre> <212> DNA	g gcggctgcag tgccaccatg g ccaggcccgc a gcactgcttc tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag g cggggcctgc a cgtggagcac a gaagaaggg	cagcagaggg acgggaagca ttctccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc	120 180 240 300 360 420 480 540 600 720 780 840 900
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgcgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca ggcactatg ggcggccgcc tcgagtcta <210> 80 <211> 2346 <212> DNA <213> Homo sapiens <400> 80	g gcggctgcag c tgccaccatg g ccaggccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccaccct g cgagctgaag g cggggcctgc a cgtggagcac a gaagaagggc a ctcgagtag	cagcagaggg acgggaagca ttctcccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact ataattgagc	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta ggaatttctt	caacccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc gtgcacaatg	120 180 240 300 360 420 480 540 600 720 780 840 900
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgcgtgt gccagcgct aatggggagc tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca agcagtggc ctgggcacc ggcactatg ggcggccgc tcgagtcta <210> 80 <211> 2346 <212> DNA <213> Homo sapiens <400> 80 ccgccgtcgc ccccgctc	g gcggctgcag c tgccaccatg g ccaggcccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag g cggggcctgc a cgtggagcac a gaagaagggc a ctcgagtag c ccctgcctca	cagcagaggg acgggaagca ttctcccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact ataattgagc	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcacca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta ggaatttctt	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaatgctg caaggccatg gctggctgac ccgtgagaag cgagcaccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc gtgcacaatg	120 180 240 300 360 420 480 540 660 720 780 840 900 950
<400> 79 tcgaccggat ccgaattcc ggcgggcggg cgctcggct aacccagggc tcggcgtcg aacgcgtgt gccagcgct aatggggac tgtaccatg gaggggctct tctatgagt tttgctccgt gctgtggat aacaacaact ggcacccgg ctgggctttg tgaagaatg gccaagggcc tgggcaagt ctcatgttca ggagcgacg gagctgacag ccgaggccc aagatgggcg ttcccatct gcgctgggca ggcactatg ggcggccgcc tcgagtcta <210> 80 <211> 2346 <212> DNA <213> Homo sapiens <400> 80	g gcggctgcag c tgccaccatg g ccaggcccgc a gcactgcttc c tgaaggccgg c ctgcggtgag g ctgcttccgc c cggcaggcat a catctgccag c ctaccacct g cgagctgaag g cggggcctgc a cgtggagcac a gaagaagggc a ctcgagtag c ccccggcccg	cagcagaggg acgggaagca ttctcccccg gtgtgtgccc aagtactgcg ttcatcattg tgcgagctgt ctctgccggc cggtgccacc gaccacttca ggtgagctct cgccggccca tttgtctgtg ctggcctact ataattgagc	agacccgcgg atatgtcgga ccgagcgcat agtgcttccg aacacgactt gccgcgtcat gtgatgtgga cttgccacaa tggtcatcga actgcaccca actgcctgcc tcgagggccg ccaagtgtga gcgagcttta ggaatttctt  ccgccagcgg ccccgaccc	caaccccggc cgccttggcc tgtcaacagc gcccttcccc ccaaatgctg caaggccatg gctggctgac ccgtgagaag cgagcagccc ctgtgggaag ctgccatgac agtggtcaac gaagccattc gtgcacaatg	120 180 240 300 360 420 480 540 600 720 780 840 900 950

240

300

#### 032796-132.ST25

aaggagttgc agcggcggct gaagcgtctc tacccggccg tggacgaaca agagacqccq

ctgcctcggt cctggagccc gaaggacaag ttcagctaca tcggcctctc tcagaacaac

```
ctgcgggtgc actacaaagg tcatggcaaa accccaaaag atgccgcgtc agttcgagcc
                                                                       360
acgcatccaa taccagcagc ctgtgggatt tattattttg aagtaaaaat tgtcagtaag
                                                                       420
ggaagagatg gttacatggg aattggtctt tctgctcaag gtgtgaacat gaatagacta
                                                                       480
ccaggttggg ataagcattc atatggttac catggggatg atggacattc gttttgttct
                                                                       540
totggaactg gacaacotta tggaccaact ttcactactg gtgatgtcat tggctgttgt
                                                                       600
gttaatctta tcaacaatac ctgcttttac accaagaatg gacatagttt aggtattgct
                                                                       660
ttcactgacc taccgccaaa tttgtatcct actgtggggc ttcaaacacc aggagaagtg
                                                                       720
gtcgatgcca attttgggca acatcctttc gtgtttgata tagaagacta tatgcgggag
                                                                       780
tggagaacca aaatccaggc acagatagat cgatttccta tcggagatcg agaaggagaa
                                                                       840
tggcagacca tgatacaaaa aatggtttca tcttatttag tccaccatgg gtactgtgcc
                                                                       900
acagcagagg cctttgccag atctacagac cagaccgttc tagaagaatt agcttccatt
                                                                       960
aagaatagac aaagaattca gaaattggta ttagcaggaa gaatgggaga agccattgaa
                                                                     1020
acaacacaac agttataccc aagtttactt gaaagaaatc ctaatctcct tttcacatta
                                                                     1080
aaagtgcgtc agtttataga aatggtgaat ggtacagata gtgaagtacg atgtttggga
                                                                     1140
ggccgaagtc caaagtctca agacagttat cctgttagtc ctcgaccttt tagtagtcca
                                                                     1200
agtatgagec ecagecatgg aatgaatate cacaatttag cateaggeaa aggaageace
                                                                     1260
gcacattttt caggttttga aagttgtagt aatggtgtaa tatcaaataa agcacatcaa
                                                                     1320
tcatattgcc atagtaataa acaccagtca tccaacttga atgtaccaga actaaacagt
                                                                     1380
ataaatatgt caagatcaca gcaagttaat aacttcacca gtaatgatgt agacatggaa
                                                                     1440
acagatcact actocaatgg agttggagaa acttcatcca atggtttcct aaatggtagc
                                                                     1500
tctaaacatg accacgaaat ggaagattgt gacaccgaaa tggaagttga ttcaagtcag
                                                                     1560
ttgagacgcc agttgtgtgg aggaagtcag gccgccatag aaagaatgat ccactttgga
                                                                     1620
cgagagctgc aagcaatgag tgaacagcta aggagagact gtggcaagaa cactgcaaac
                                                                     1680
aaaaaaatgt tgaaggatgc attcagtcta ctagcatatt cagatccctg gaacagccca
                                                                     1740
gttggaaatc agcttgaccc gattcagaga gaacctgtgt gctcagctct taacagtgca
                                                                     1800
atattagaaa cccacaatct gccaaagcaa cctccacttg ccctagcaat gggacaggcc
                                                                     1860
acacaatgtc taggactgat ggctcgatca ggaattggat cctgcgcatt tgccacagtg
                                                                     1920
gaagactacc tacattagct atgcatttca agagctcaca cttatattgt ggcatatagt
                                                                     1980
caacatggaa gtagaccagc tctgctgatt tgaaatttag atttttaaa ttatgtactg
                                                                     2040
gggacaggtt tttgtcgctt tacattgctt cctagtttac agcatgatgc aaatgatttt
                                                                     2100
ctaacttagt gttaggagaa attatttcc atctttaacc tcttagttgt ctaagagtta
                                                                     2160
aatattactg aatttcagac gttcaaattg atcatcacaa atcctttaaa acaattacct
                                                                     2220
aaaagaaacc aaaaatcctg ccttctttgt gggggagggg ggagagaggg gaaggaaatg
                                                                      2280
gaacaagttg tgtttgtgtt agcatgtggg tgatgtaaac ttcaaattgg gagatgttcc
                                                                     2340
gacccc
                                                                      2346
<210> 81
<211> 2512
<212> DNA
<213> Homo sapiens
<400> 81
caatgcactg acggatatga gtgggatcct gtgagacagc aatgcaaaga tattgatgaa
                                                                        60
tgtgacattg tcccagacgc ttgtaaaggt ggaatgaagt gtgtcaacca ctatggagga
                                                                       120
tacctctgcc ttccgaaaac agcccagatt attgtcaata atgaacagcc tcagcaggaa
                                                                       180
acacaaccag cagaaggaac ctcaggggca accaccgggg ttgtagctgc cagcagcatg
                                                                       240
gcaaccagtg gagtgttgcc cgggggtggt tttgtggcca gtgctgctgc agtcgcaggc
                                                                       300
cetgaaatge agactggceg aaataacttt gteateegge ggaaceeage tgaceeteag
                                                                       360
cgcattccct ccaacccttc ccaccgtatc cagtgtgcag caggctacga gcaaagtgaa
                                                                       420
cacaacgtgt gccaagacat agacgagtgc actgcaggga cgcacaactg tagagcagac
                                                                       480
caagtgtgca tcaatttacg gggatccttt gcatgtcagt gccctcctgg atatcagaag
                                                                       540
cgaggggagc agtgcgtaga catagatgaa tgtaccatcc ctccatattg ccaccaaaga
                                                                       600
tgcgtgaata caccaggctc attttattgc cagtgcagtc ctgggtttca attggcagca
                                                                       660
aacaactata cctgcgtaga tataaatgaa tgtgatgcca gcaatcaatg tgctcagcag
                                                                       720
tgctacaaca ttcttggttc attcatctgt cagtgcaatc aaggatatga gctaagcagt
                                                                       780
```

PCT/US02/15982

gacaggctca	actgtgaaga	cattgatgaa	tgcagaacct	caagctacct	gtgtcaatat	840
caatgtgtca	atgaacctgg	gaaattctca	tgtatgtgcc	cccagggata	ccaagtggtg	900
agaagtagaa	catgtcaaga	tataaatgag	tgtgagacca	caaatgaatg	ccgggaggat	960
				cacgaaatcc		1020
				tctcaaatgc		1080
gaactgcccc	agtcaatagt	ctacaaatac	atgagcatcc	gatctgatag	gtctgtgcca	1140
				acaccatcaa		1200
				aaacaagtcc		1260
atgcttgtgc	tcgtgaagtc	attatcagga	ccaagagaac	atatcgtgga	cctggagatg	1320
				tgttaagatt		1380
gtggggccat	tttcatttta	gtcttttcta	agagtcaacc	acaggcattt	aagtcagcca	1440
aagaatattg	ttaccttaaa	gcactatttt	atttatagat	atatctagtg	catctacatc	1500
tctatactgt	acactcaccc	ataacaaaca	attacaccat	ggtataaagt	gggcatttaa	1560
tatgtaaaga	ttcaaagttt	gtctttatta	ctatatgtaa	attagacatt	aatccactaa	1620
actggtcttc	ttcaagagag	ctaagtatac	actatctggt	gaaacttgga	ttctttccta	1680
taaaagtggg	accaagcaat	gatgatcttc	tgtggtgctt	aaggaaactt	actagagete	1740
cactaacagt	ctcataagga	ggcagccatc	ataaccattg	aatagcatgc	aagggtaaga	1800
atgagttttt	aactgctttg	taagaaaatg	gaaaaggtca	ataaagatat	atttctttag	1860
				atatccagcc		1920
				tggtttctgt		1980
taattttgtc	agaaatttta	gattgtgaat	attttgtaaa	aaacagtaag	caaaattttc	2040
				tactattgag		2100
				aactgacctg		2160
				aagatgcaga		2220
				aatttaaatc		2280
				ctcacagagg		2340
tgatggtttt	tattcctggc	atccagagtg	acagtgaact	taagcaaatt	accctcctac	2400
ccaattctat	ggaatatttt	atacgtctcc	ttgtttaaaa	tctgactgct	ttactttgat	2460
gtatcatatt	tttaaataaa	aataaatatt	cctttagaag	atcactctaa	aa	2512
<b>2010&gt; 00</b>						
<210> 82						
<211> 2306						
<212> DNA						
<213> Homo	sapiens					
<400> 82						
	tacacacaca	ataacteeaa	atctcttcat	ctttacaaaa	t	60
				ctttgcagcg ccatagtgaa		120
				cacattcctg		180
				cactggcatc		240
				gattaagtct		300
				tgcggagacc		360
				ctaccggccc		420
				caagggcagc		480
				ggataacgcc		540
			-	ctgcaaggtg		600
				ggtgaagcag		660
				cagcaagaag		720
tteetagge	tactataaac	ttacctacta	tatcaaaaa	ggacatccag	ggtgtgaact	780
ttagaataa	gcaggatgtt	gatatootot	ttacatcatt	catccgcaag	desteteste	840
tecatorage	taggaaggte	ctaggagage	adddaaadaa	catcaagatt	atcaccasas	900
togagaatea	taaggaagtt	caaaaattta	atraaatrot	ggaggccagt	catagodada	960
taataactca	taataateta	adcattasas	ttcctaceae	gaaggtcttc	cttactaca	1020
				catctgtgct		1020
tagagagagat	gatcaagaag	-coordecee	ctcaaacta	aggcagtgat	atagement	1140
cagtectoga	tagageegae	tacatcatac	tatctagaga	aacagccaaa	ananactato	1200
ctctagaggc	tgtgcgcatg	cagcacctga	ttacccatas	ggcagaggct	accatctacc	1260
	- 3 - 3 - 3 3	u		220-209900	goodictace	1200

032796~132.ST25

acttgcaatt atttgaggaa ctccgccgcc tggcgcccat taccagcgac cccacagaag 1320 ccaccgccgt gggtgccgtg gaggcctcct tcaagtgctg cagtggggcc ataatcgtcc 1380 tcaccaagtc tggcaggtct gctcaccagg tggccagata ccgcccacgt gcccccatca 1440 ttgctgtgac ccggaatccc cagacagctc gtcaggccca cctgtaccgt ggcatcttcc 1500 ctgtgctgtg caaggaccca gtccaggagg cctgggctga ggacgtggac ctccgggtga 1560 actttgccat gaatgttggc aaggcccgag gcttcttcaa gaagggagat gtggtcattg 1620 tgctgaccgg atggcgccct ggctccggct tcaccaacac catgcgtgtt gttcctgtgc 1680 cgtgatggac cccagagccc ctcctccagc ccctgtccca cccccttccc ccagcccatc 1740 cattaggcca gcaacgcttg tagaactcac tctgggctgt aacgtggcac tggtaggttg 1800 ggacaccagg gaagaagatc aacgcctcac tgaaacatgg ctgtgtttgc agcctgctct 1860 agtgggacag cccagagcct ggctgcccat catgtggccc cacccaatca agggaagaag 1920 gaggaatgct ggactggagg cccctggagc cagatggcaa gagggtgaca gcttcctttc 1980 ctgtgtgtac tctgtccagt tcctttagaa aaaatggatg cccagaggac tcccaaccct 2040 ggettggggt caagaaacag ccagcaagag ttaggggcet tagggcactg ggetgttgtt 2100 ccattgaagc cgactctggc cctggccctt acttgcttct ctagctctct aggcctctcc 2160 agtttgcacc tgtccccacc ctccactcag ctgtcctgca gcaaacactc caccctccac 2220 cttccatttt cccccactac tgcagcacct ccaggcctgt tgctatagag cctacctgta 2280 tgtcaataaa caacagctga agcacc 2306 <210> 83 <211> 2656 <212> DNA <213> Homo sapiens <400> 83 gaattcgcgg ccgcagagtc cccgggccaa gatggctgcg cggtgctcca cacqctgqtt 60 getggtggtt gtggggacce cgcggctgcc ggctatateg ggtagagggg cccggccgc 120 cagggagggc gtggtggggg catggctgag ccgcaagctg agcgtccccg cctttqcqtc 180 ttccctgacc tcttgcggcc cccgagcgct gctgacattg agacctggtg tcaqccttac 240 aggaacaaaa cataaccctt tcatttgtac tgcctccttc cacacgagtg cccctttggc 300 caaagaagat tattatcaga tattaggagt gcctcgaaat gccagccaga aagagatcaa 360 gaaagcctat tatcagcttg ccaagaagta tcaccctgac acaaataagg atgatcccaa 420 agccaaggag aagttctccc agctggcaga agcctatgag gttttgagtg atgaggtgaa 480 gaggaagcag tacgatgcct acggctctgc aggcttcgat cctggggcca gcggctccca 540 gcatagctac tggaagggag gccccactgt ggaccccgag gagctgttca ggaagatctt 600 tggcgagttc tcatcctctt catttggaga tttccagacc gtgtttgatc agcctcagga 660 atacttcatg gagttgacat tcaatcaagc tgcaaagggg gtcaacaagg agttcaccgt 720 gaacatcatg gacacgtgtg agcgctgcaa cggcaagggg aacgagcccg gcaccaaggt 780 gcagcattgc cactactgtg gcggctccgg catggaaacc atcaacacag gcccttttgt 840 gatgcgttcc acgtgtagga gatgtggtgg ccgcggctcc atcatcatat cgccctgtgt 900 ggtctgcagg ggagcaggac aagccaagca gaaaaagcga gtgatgatcc ctgtgcctgc 960 aggagtcgag gatggccaga ccgtgaggat gcctgtggga aaaagggaaa ttttcattac 1020 gttcagggtg cagaaaagcc ctgtgttccg gagggacggc gcagacatcc actccgacct 1080 ctttatttct atagctcagg ctcttcttgg gggaacagcc agagcccagg gcctgtacga 1140 gacgatcaac gtgacgatcc cccctgggac tcagacagac cagaagattc ggatggtgg 1200 gaaaggcatc ccccggatta acagctacgg ctacggagac cactacatcc acatcaagat 1260 acgagttcca aagaggctaa cgagccggca gcagagcctg atcctgagct acgccgagga 1320 cgagacagat gtggagggga cggtgaacgg cgtcaccctc accagctctg gtggcagcac 1380 1440 catggatagc tccgcaggaa gcaaggctag gcgtgaggct ggggaggacg aggagggatt cetteccaaa ettaagaaaa tgtttacete atgatateee ageegaggaa aaagateeae 1500 tggaaactag gccgggaagc agcagcccct ccaagggcca gggcacctgg gagacgggag 1560 gattccagaa cagcagcact gagctcccac ccgcagagcc tctggacggc cttggcaaca 1620 gcaaaatcat gggacaacac ctctctccac ggaaaggtca cagtggacag cccgggcagt 1680 aggatgcage cccagagget ggtggcagtt teetgteeat tggtaggtga eggeeeeetg 1740 gtcagcagag gagaggttag atcttgcagg ctaaaactct aatttggaat tgaatattgt 1800 ggatatctta gttaaaggcc atgcttacag cttagaaatg aagccttaag ctgcatcaag 1860

1920

ttacgaagtg attaatttcc ttctcagcaa acctccggga ggttccagaa tgagttcttc

```
ctgacaggtt gtcttcactg ggagcgtggg gcccccaggc cccaccagca ccgtcctccc
                                                                      1980
ctaatgaggg gccctgccga ggcatcagct gctctgctca gttagttttt attcccgggg
                                                                      2040
taccaagcag ctgcacagtc ggtgcctggg aagcacgtta aaggcccaga gagatcctgg
                                                                      2100
gggttetget etgacegtgt gggtggtgat cettgteagg atgtacagte ettgetecea
                                                                      2160
ccccatccgg gatggccgcc tgtccctgac tattgagtcc tgttgttgta agccaggcat
                                                                      2220
ggagggctcc tgcccttctg ctgagccaca gcccattgca gcactgtgct ggccagactt
                                                                      2280
cagetgeett gggaactgaa geeetgeeac tgttgetagt caggggettg gtteteecac
                                                                      2340
ttacactgtt gacatctatt ttctgaagtg tgtttaaatt attcagtgct aatcattgtt
                                                                      2400
ttttcctttg taaatgttga ttcagaaaag gaaagcacag gctaagcagt tgaaqqttcc
                                                                      2460
ccaccattca gtgagagcag aacccccatt ccccagcctc tgctggtagc atgtcgcagt
                                                                      2520
ttccatgtgt ttcaggatct tcgggctgtc gttagacagg ttaatgaaga acacttctca
                                                                      2580
acagtttcct ttttgttttc ctttataatt cactaaaata aagcatctat tagtgtctga
                                                                      2640
aaaaaaaaa aaaaaa
                                                                      2656
<210> 84
<211> 2217
<212> DNA
<213> Homo sapiens
<400> 84
geggaecegg egeegaggeg geeaecegag aegeggegeg eaegeteegg eetgegeage
                                                                        60
eeggeeegge catggeggee eeeegeeegt etecegegat eteegttteg gteteggete
                                                                       120
cggcttttta cgccccgcag aagaagttcg gccctgtggt ggccccaaag cccaaagtga
                                                                       180
atccettccg gcccggggac agcgagcctc ccccggcacc cggggcccag cgcgcacaga
                                                                       240
tgggccgggt gggcgagatt cccccgccgc ccccggaaga ctttcccctg cctccacctc
                                                                       300
cccttgctgg ggatggcgac gatgcagagg gtgctctggg aggtgccttc ccgccgcccc
                                                                       360
etecceegat egaggaatea tttecceetg egeetetgga ggaggagate ttecettece
                                                                       420
egeogeetee teeggaggag gagggaggge etgaggeece catacegeec ceaceacage
                                                                       480
ccagggagaa ggtgagcagt attgatttgg agatcgactc tctgtcctca ctgctggatg
                                                                       540
acatgaccaa gaatgateet tteaaageee gggtgteate tggatatgtg eeceeaceag
                                                                       600
tggccactcc attcagttcc aagtccagta ccaagcctgc agccgggggc acagcacccc
                                                                       660
tgcctccttg gaagtcccct tccagetccc agectctgcc ccaggttccg gctccggctc
                                                                       720
agagecagae acagttecat gtteagecee ageceeagee caageeteag gteeaactee
                                                                       780
                                                                       840
atgtccagtc ccagacccag cctgtgtctt tggctaacac ccagccccqa gggcccccag
cctcatctcc ggctccagcc cctaagtttt ctccagtgac tcctaagttt actcctgtgg
                                                                       900
cttccaagtt cagtcctgga gccccaggtg gatctgggtc acaaccaaat caaaaattgg
                                                                       960
                                                                      1020
ggcaccccga agctetttet getggcacag geteceetea aceteccage tteacetatg
                                                                      1080
cccagcagag ggagaagccc cgagtgcagg agaagcagca ccccgtgccc ccaccggctc
                                                                      1140
agaaccaaaa ccaggtgcgc tcccctgggg ccccagggcc cctgactctg aaggaggtgg
                                                                      1200
aggagetgga geagetgace cageagetaa tgeaggacat ggageateet cagaggeaga
atgtggctgt caacgaactc tgcggccgat gccatcaacc cctggcccgg gcgcagccag
                                                                      1260
ccgtccgcgc tctagggcag ctgttccaca tcgcctgctt cacctgccac cagtgtgcgc
                                                                      1320
                                                                      1380
ageageteea gggeeageag ttetacagte tggagggge geegtactge gagggetgtt
acactgacac cctggagaag tgtaacacct gcggggagcc catcactgac cgcatgctga
                                                                      1440
gggccacggg caaggcctat caccegeact gcttcacctg tgtggtctgc gcccgcccc
                                                                      1500
tggagggcac ctccttcatc gtggaccagg ccaaccggcc ccactgtgtc cccgactacc
                                                                      1560
acaagcagta egeceegagg tgeteegtet getetgagee cateatgeet gageetggee
                                                                      1620
                                                                      1680
gagatgagac tgtgcgaqtg gtcgccctgg acaagaactt ccacatgaag tgttacaagt
gtgaggactg cgggaagecc ctgtcgattg aggcagatga caatggctgc ttccccctqg
                                                                      1740
acggtcacgt gctctgtcgg aagtgccaca ctgctagagc ccagacctga gtgaggacag
                                                                      1800
geoetettea gacegeagte catgececat tgtggaceae ceacactgag accaeetgee
                                                                      1860
cccacctcag ttattgtttt gatgtctagc ccctcccatt tccaacccct ccctagcatc
                                                                      1920
                                                                      1980
ccaggtgccc tgacccagga cccaacatgg tctagggatg caggatcccc gccctggggt
etggteeteg eccateetge agggattgee cacegtette cagacacece acetgagggg
                                                                      2040
ggcaccaggt ttagtgctgc tgctttcact gctgcacceg cgccctcggc cggccccccg
                                                                      2100
ageageettt gtactetget tgeggaggge tgggagaeee teeaggaeat teecaceete
                                                                      2160
ccccatgctg ccaagttgta gctatagcta caaataaaaa aaaaccttgt tttccag
                                                                      2217
```

032796-132.ST25

<210> 85 <211> 8906 <212> DNA <213> Homo sapiens

#### <400> 85

gaggeggeca aggaeetgge egacategeg geettettee gateegggtt tegaaaaaae 60 gatgaaatga aagctatgga tgttttacca attttgaagg aaaaagttgc atacctttca 120 ggtgggagag ataaacgtgg aggtcccatt ttaacgtttc cggcccgcag caatcatgac 180 agaatacgac aggaggatct caggagactc atttcctatc tagcctgtat tcccagcgag 240 gaggtctgca agcgtggctt cacggtgatc gtggacatgc gtgggtccaa gtgggactcc 300 atcaagcccc ttctgaagat cctgcaggag tccttcccct gctgcatcca tgtggccctq 360 atcatcaagc cagacaactt ctggcagaaa cagaggacta attttggcag ttctaaattt 420 gaatttgaga caaatatggt ctctttagaa ggccttacca aagtagttga tccttctcag 480 ctaactcctg agtttgatgg ctgcctggaa tacaaccacg aagaatggat tgaaatcaga 540 gttgcttttg aagactacat tagcaatgcc acccacatgc tgtctcggct ggaggaactt 600 caggacatcc tagctaagaa ggagctgcct caggatttag agggggctcg gaatatgatc 660 gaggaacatt ctcagctgaa gaagaaggtg attaaggccc ccatcgagga cctggatttg 720 gagggacaga agctgcttca gaggatacag agcagtgaaa gctttcccaa aaagaactca 780 ggctcaggca atgcggacct gcagaacctc ttgcccaagg tgtccaccat gctggaccgg 840 ctgcactcga cacggcagca tctgcaccag atgtggcatg tgaggaagct gaagctggac 900 cagtgcttcc agctgaggct gtttgaacag gatgctgaga agatgtttga ctggatcaca 960 cacaacaaag gcctgtttct aaacagctac acagagattg ggaccagcca ccctcatgcc 1020 atggagette agaegeagea caateaettt geeatgaaet gtatgaaegt gtatgtaaat 1080 ataaaccgca tcatgtcggt ggccaatcgt ctggtggagt ctggccacta tgcctcgcag 1140 cagatcaggc agatcgcgag tcagctggag caggagtgga aggcgtttgc ggcagccctg 1200 gatgagcgga gcaccttgct ggacatgtcc tccattttcc accagaaggc cgaaaagtat 1260 atgagcaacg tggattcatg gtgtaaagct tgcggtgagg tagaccttcc ctcagagctg 1320 caggacctag aagatgccat tcatcaccac cagggaatat atgaacatat cactcttgct 1380 tattctgagg tcagccaaga tgggaagtcg ctccttgaca agctccagcg qcccttqact 1440 cccggcagct ccgattccct gacagcctct gccaactact ccaaggccgt gcaccatgtc 1500 ctggatgtca tccacgaggt gctgcaccac cagcggcacg tgagaacaat ctggcaacac 1560 cgcaaggtcc ggctgcatca gaggctgcag ctgtgtgttt tccagcagga agttcagcag 1620 gtgctagact ggatcgagaa ccacggagaa gcatttctga gcaaacatac aggtgtgggg 1680 aaatctcttc atcgggccag agcattgcag aaacgtcatg aagattttga agaagtggca 1740 cagaacacat acaccaatgc ggataaatta ctggaagcag cagaacagct ggctcagact 1800 ggggaatgtg accccgaaga gatttatcag gctgcccatc agctggaaga ccggattcaa 1860 gatttcgttc ggcgtgttga gcagcgaaag atcctactgg acatgtcagt gtcctttcac 1920 acccatgtga aagagctgtg gacgtggctg gaggagctgc agaaggagct gctggacgac. 1980 gtgtatgccg agtcggtgga ggccgtgcag gacctcatca agcgctttgg ccagcagcag 2040 cagaccaccc tgcaggtgac tgtcaacgtg atcaaggaag gggaggacct catccagcag 2100 cteagggact etgecatete cagtaacaag accecccaca acagetecat caaccacatt 2160 gagacggtgc tgcagcagct ggacgaggcg cagtcgcaga tggaggagct cttccaggag 2220 cgcaagatca agctggagct cttcctgcac gtgcgcatct tcgagaggga cgccatcgac 2280 2340 attatctcag acctcgagtc ttggaatgat gagctttctc agcaaatgaa tgacttcgac acagaagatc tcacgattgc agagcagcgc ctccagcacc atgcagacaa agccttgacc 2400 2460 atgaacaact tgacttttga cgtcatccac caagggcaag atcttctgca gtatgtcaat gaggtccagg cctctggtgt ggagctgctg tgtgatagag atgtagacat ggcaactcgg 2520 gtccaggacc tgctggagtt tcttcatgaa aaacagcagg aattggattt agccgcagag 2580 2640 cagcatcgga aacacctgga gcagtgcgtg cagctgcgcc acctgcaggc agaagtgaaa caggtgctgg gttggatccg caacggagag tccatgttaa atgccggact tatcacagcc 2700 agetegttae aagaggeaga geageteeag egagageaeg ageagtteea geatgeeatt 2760 gagaaaacac atcagagcgc gctgcaggtg cagcagaagg cagaagccat qctacaggcc 2820 aaccactacg acatggacat gatccgggac tgcgccgaga aggtggcgtc tcactggcaa 2880 cageteatge teaagatgga agategeete aagetegtea aegeetetgt egetttetae 2940 aaaacctcag agcaggtctg cagcgtcctc gagagcctgg aacaggagta caagagagaa 3000

				_		
		ggataagctg				3060
		ggagcagaag				3120
cggaggaatg	cagacgtctt	cctgaaatac	ctgcacagga	acagcgtgaa	catgccagga	3180
		tcctgaacag				3240
		gcattactgg				3300
		gaggagtgcc				3360
ggcgagttct	acctttccac	acacacctcc	acgggctcca	gtatacagca	cacccaggag	3420
ctcctgaaag	agcacgagga	gttccagata	actgcaaagc	aaaccaaaga	gagagtgaag	3480
		tggcttttgt				3540
		ggataagagg				3600
		agccctgggg				3660
		tccagccagt				3720
		agagaagcgg				3780
		aaaggcttat				3840
		tggcgtggaa				3900
		gcaagaaatc				3960
		gttgccagag				4020
		cacatattgc				4020
		ttttgacgag				4140
		accagttcag				4200
		ggaaggaaag				4260
		caatgacgcc				4320
		agaactcatc				4380
		tcgagaacgg			_	4440
		ttccagtggg			_	4500
tttacctcag	agttgggtgt	cacagaacat	gttgaaggag	acccttgcaa	atttgcactg	4560
tgggtggga	gaacaccaac	ttcagataat	aaaattgtcc	ttaaggcttc	cagcatagag	4620
aacaagcagg	actggataaa	gcatatccgc	gaagtcatcc	aggagcggac	gatccacctg	4680
aagggagccc	tgaaggagcc	cattcacatc	cctaagaccg	ctcccgccac	aagacagaag	4740
ggaaggaggg	atggagagga	tctggacagc	caaggagacg	gcagcagcca	gcctgatacg	4800
		gtctcagaac				4860
		ccatgacttc				4920
		agttctggag				4980
		cccagcggca				5040
		catggaaatg				5100
		cagtccaccc				5160
		gggccccaag				5220
		cagcagcggc				5280
		cgaggtccgc				5340
		cccgcaggac				5400
		ctccaaatcc				5460
		cgacgccgtg				5520
		ctcacaggat				5580
						5640
		gagtgcagcc				
		ggatcgcccc				5700
		ttcggataat			-	5760
		cagctcttta				5820
		tgtgcgggac				5880
		tcctgatgac				5940
		ctggcacaga				6000
		aggatccctt				6060
		taaaccaaag				6120
		gcagcgtctt				6180
atcaaaccag	tgcagagaat	catgaagtat	cagctgttac	tgaaggactt	cctcaagtat	6240
		tacatcagaa				6300
		catgatgaac				6360
		gctcttgcag				6420
<del>-</del>		• •				

6480

```
ggacttctgc ctcgctgcag agagaggcgc atcttcctct ttgagcagat cgtcatattc
agcgaaccac ttgataaaaa gaagggette tecatgeegg gatteetgtt taagaacagt
                                                                      6540
atcaaggtga gttgcctttg cctggaggaa aatgtggaaa atgatccctg taaatttgct
                                                                      6600
ctgacatcga ggacgggtga cgtggtagag accttcattt tgcattcatc tagtccaagt
                                                                      6660
gtccggcaaa cttggatcca tgaaatcaac caaattttag aaaaccagcg caattttta
                                                                      6720
aatgeettga eategeeaat egagtaeeag aggaaeeaea gegggggegg eggeggege
                                                                      6780
ggcagcgggg cagcggcggg ggtgggggca gcggcggcgg cggggccccc agtggcqcca
                                                                      6840
geggeeacag tggeggeece ageagetgeg geggegeece cageacgage aggageegge
                                                                      6900
ecteccggat eccecageet gtecgacace acceccegt getggtetee tetgcageet
                                                                      6960
cgagccaggc agaggcagac aagatgtcag agtgaaagca gcagcagtag caacatctcc
                                                                      7020
accatgttgg tgacacacga ttacacggca gtgaaggagg atgagatcaa cgtctaccaa
                                                                      7080
ggagaggtcg ttcaaattct ggccagcaac cagcagaaca tgtttctggt gttccgagcc
                                                                     7140
gccactgacc agtgccccgc agctgagggc tggattccag gctttgtcct gggccacacc
                                                                     7200
agtgcagtca tcgtggagaa cccggacggg actctcaaga agtcaacatc ttggcacaca
                                                                     7260
gcactccgtt taaggaaaaa atctgagaaa aaagataaag acggcaaaag ggaaggcaag
                                                                     7320
ttagagaacg gttatcggaa gtcacgggaa ggactcagca acaaggtatc tgtgaagctt
                                                                     7380
ctcaatccca actacattta tgacgttccc ccagaattcg tcattccatt gagtgaggtc
                                                                     7440
acgtgtgaga caggggagac cgttgttctt agatgtcgag tctgtggccg ccccaaagcc
                                                                     7500
tcaattacct ggaagggccc tgaacacaac accttgaaca acgatggtca ctacagcatc
                                                                     7560
tcctacagtg acctgggaga ggccacgctg aagattgtgg gcgtgaccac ggaagatgac
                                                                     7620
ggcatctaca cgtgcatcgc tgtcaatgac atgggttcag cctcatcatc ggccagcctg
                                                                     7680
agggtcctag gtccagggat ggatgggatc atggtgacct ggaaagacaa ctttgactcc
                                                                     7740
ttctacagtg aagtggctga gcttggcagg ggcagattct ctgtcgttaa gaaatgtgat
                                                                     7800
cagaaaggaa ccaagcgagc agtggccact aagtttgtga acaagaagtt gatgaagcgc
                                                                     7860
gaccaggica cocatgaget tggcateetg cagageetee ageaeeeet gettqteqqe
                                                                      7920
ctcctcgaca cctttgagac ccccaccagc tacatcctgg tcttagaaat ggctgaccag
                                                                      7980
ggtcgcctcc tggactgcgt ggtgcgatgg ggaagcctca ctgaagggaa gatcagggcg
                                                                     8040
cacctggggg aggttctgga agctgtccgg tacctgcaca actgcaggat agcacacctg
                                                                     8100
gacctaaagc ctgagaatat cctggtggat gagagtttag ccaagccaac catcaaactg
                                                                     8160
gctgactttg gagatgctgt tcagctcaac acgacctact acatccacca gttactgggg
                                                                     8220
aaccctgaat tcgcagcccc tgaaatcatc ctcgggaacc ctgtctccct gacctcggat
                                                                     8280
acgtggagtg ttggagtgct cacatacgta cttcttagtg gcgtgtcccc cttcctggat
                                                                     8340
gacagtgtgg aagagacctg cctgaacatt tgccgcttag actttagctt cccagatgac
                                                                     8400
tactttaaag gagtgagcca gaaggccaag gagttcgtgt gcttcctcct gcaggaggac
                                                                     8460
cccgccaagc gtccctcggc tgcgctggcc ctccaggagc agtggctgca ggccggcaac
                                                                     8520
ggcagaagca cgggcgtcct cgacacgtcc agactgactt ccttcattga gcggcgcaaa
                                                                     8580
caccagaatg atgttcgacc tatccgtagc attaaaaact ttctgcagag caggcttctg.
                                                                     8640
cctagagttt gacctatcca gaagttettt eteattetet tteacetgee aateagetgt
                                                                     8700
taatctgaat tttcaagaga aaacaagcaa acataactga tcagctgccg gtatgttcat
                                                                     8760
cgtgtgaaat tgcattccaa gtgagctgtg ctcagcagtg cttggacaca gagctgcaag
                                                                     8820
ctgcgctggg gtggaggacc gtcacttaca ctctgccaag gacggaggtc gcattgctgt
                                                                     8880
atcacagtat tttttacgga tttctg
                                                                     8906
<210> 86
<211> 1204
<212> DNA
<213> Homo sapiens
<400> 86
tcggcggcgg tggtatcggc ggcagctgtg agggggttcc gggaagatgg tgctgatcaa
                                                                        60
ggaattccgt gtggttttgc catgttctgt tcaggagtat caggttgggc agctttactc
                                                                       120
tgttgcagaa gctagtaaga atgagactgg tggtggagaa ggaattgaag tcttaaagaa
                                                                       180
tgaaccttat gagaaggatg gagaaaaggg acaqtatacg cacaaaattt atcacctaaa
                                                                       240
gagcaaagtg cctgcattcg tgaggatgat tgctcccgag ggctccttgg tgtttcatga
                                                                       300
gaaagcctgg aatgcgtacc cctactgtag aacaattgta acgaatgaat atatgaaaga
                                                                      360
tgatttcttc attaaaatcg aaacatggca caaaccagac ttgggaacat tagaaaatgt
                                                                       420
```

tagaagtcaa gttgaaccag cagactacaa agctgatgaa gacccagcat tattccagtc	40 00
	00
agtcaagacc aagagaggcc ctttgggacc caactggaag aaggagctgg caaacagccc	
tgactgtccc cagatgtgtg cctataagct ggtgaccatc aaattcaagt ggtggggact	60
gcaaagcaaa gtagaaaact tcattcaaaa gcaagaaaaa cggatattta caaacttcca	20
tcgccagctt ttttgttgga ttgacaagtg gatcgatctc acgatggaag acattaggag	80
aatggaagac gagactcaga aagaactaga aacaatgcgt aagaggggtt ccgttcgagg	40
cacgtcggct gctgatgtct agatgagtcc cctgtagggt cagagacaat gtcaaactgt	00
ttacgtaatc aaggtcaagt gaggggaaca agcgcagcca gtgatgagtg aacaacaatc	60
tgaccagtat cttgcagtgt tgacgtttcc cagatgtgtg cttgtgatga tacacacaca 10	20
tgcacaggtt ctcaaccacg tgtgtatata tgtatgtgtg catatgtctg tagctgtata 10	80
taaagcgcat gtagagctac agatccagat acacacactt gtgtatatat gtacatacag 11	40
acatactgaa gggattagta caatttctcc aaagtactgt acctatcttc agcaagaatg 12	00
caaa 12	04

<210> 87

<211> 892

<212> PRT

<213> Homo sapiens

<400> 87

Met Asp His Tyr Asp Ser Gln Gln Thr Asn Asp Tyr Met Gln Pro Glu Glu Asp Trp Asp Arg Asp Leu Leu Leu Asp Pro Ala Trp Glu Lys Gln Gln Arg Lys Thr Phe Thr Ala Trp Cys Asn Ser His Leu Arg Lys Ala Gly Thr Gln Ile Glu Asn Ile Glu Glu Asp Phe Arg Asp Gly Leu Lys 55 Leu Met Leu Leu Glu Val Ile Ser Gly Glu Arg Leu Ala Lys Pro 70 Glu Arg Gly Lys Met Arg Val His Lys Ile Ser Asn Val Asn Lys Ala 90 Leu Asp Phe Ile Ala Ser Lys Gly Val Lys Leu Val Ser Ile Gly Ala 105 Glu Glu Ile Val Asp Gly Asn Val Lys Met Thr Leu Gly Met Ile Trp 120 Thr Ile Ile Leu Arg Phe Ala Ile Gln Asp Ile Ser Val Glu Glu Thr 135 Ser Ala Lys Glu Gly Leu Leu Trp Cys Gln Arg Lys Thr Ala Pro 150 Tyr Lys Asn Val Asn Ile Gln Asn Phe His Ile Ser Trp Lys Asp Gly 165 170 Leu Gly Phe Cys Ala Leu Ile His Arg His Arg Pro Glu Leu Ile Asp 185 Tyr Gly Lys Leu Arg Lys Asp Asp Pro Leu Thr Asn Leu Asn Thr Ala 200 Phe Asp Val Ala Glu Lys Tyr Leu Asp Ile Pro Lys Met Leu Asp Ala 215 Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu Lys Ala Ile Met Thr 230 235 Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly Ala Gln Lys Ala Glu 245 250 Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala Val Asn Gln Glu Asn 265 Glu Gln Leu Met Glu Asp Tyr Glu Lys Leu Ala Ser Asp Leu Leu Glu 275 280

Trp	Ile	Arg	Arg	Thr	Ile	Pro	Trp	Leu	Glu	Asn	Arq	Val	Pro	Glu	Asn
	290					295					300				
305					310					315		Arg	_	_	320
Arg	Leu	His	Lys	Pro 325	Pro	Lys	Val	Gln	Glu 330	Lys	Суз	Gln	Leu	Glu 335	Ile
Asn	Phe	Asn	Thr 340	Leu	Gln	Thr	Lys	Leu 345	Arg	Leu	Ser	Asn	Arg 350	Pro	Ala
		355					360					Asn 365			_
Gly	Cys 370	Leu	Glu	Gln	Val	Glu 375	Lys	Gly	Tyr	Glu	Glu 380	Trp	Leu	Leu	Asn
Glu 385	Ile	Arg	Arg	Leu	Glu 390	Arg	Leu	Asp	His	Leu 395	Ala	Glu	Lys	Phe	Arg 400
Gln	Lys	Ala	Ser	Ile 405	His	Glu	Ala	Trp	Thr 410	Asp	Gly	Lys	Glu	Ala 415	Met
Leu	Arg	Gln	Lys 420	Asp	Tyr	Glu	Thr	Ala 425	Thr	Leu	Ser	Glu	Ile 430	Lys	Ala
Leu	Leu	Lys 435	Lys	His	Glu	Ala	Phe 440	Glu	Ser	Asp	Leu	Ala 445	Ala	His	Gln
Asp	Arg 450	Val	Glu	Gln	Ile	Ala 455	Ala	Ile	Ala	Gln	Glu 460	Leu	Asn	Glu	Leu
Asp 465	Tyr	Tyr	Asp	Ser	Pro 470	Ser	Val	Asn	Ala	Arg 475	Cys	Gln	Lys	Ile	Cys 480
Asp	Gln	Trp	Asp	Asn 485	Leu	Gly	Ala	Leu	Thr 490	Gl'n	Lys	Arg	Arg	Glu 495	Ala
Leu	Glu	Arg	Thr 500	Glu	Lys	Leu	Leu	Glu 505	Thr	Ile	Asp	Gln	Leu 510	Tyr	Leu
		515					520				_	Met 525		_	
	530					535					540	Ile			
545					550					555		Thr			560
				565					570			Asn		575	
Lys	Ile	Val	Gln 580	Thr	Tyr	His	Val	Asn 585	Met	Ala	Gly	Thr	Asn 590	Pro	Tyr
Thr	Thr	Ile 595							_	_	-	Asp 605		Val	Arg
Gln	Leu 610	Val	Pro	Arg	Arg	Asp 615	Gln	Ala	Leu	Thr	Glu 620	Glu	His	Ala	Arg
Gln 625	Gln	His	Asn	Glu	Arg 630	Leu	Arg	Lys		Phe 635	Gly	Ala	Gln	Ala	Asn 640
Val	Ile	Gly	Pro	Trp 645	Ile	Gln	Thr	Lys	Met 650	Glu	Glu	Ile	Gly	Arg 655	Ile
Ser	Ile	Glu	Met 660	His	Gly	Thr	Leu	Glu 665	Asp	Gln	Leu	Ser	His 670	Leu	Arg
Gln	Tyr	Glu 675	Lys	Ser	Ile	Val	Asn 680	Tyr	Lys	Pro	Lys	Ile 685	Asp	Gln	Leu
	690					695					700	Phe	-		-
His 705	Thr	Asn	Tyr	Thr	Met 710	Glu	His	Ile	Arg	Val 715	Gly	Trp	Glu	Gln	Leu 720
Leu	Thr	Thr	Ile	Ala 725	Arg	Thr	Ile	Asn	Glu 730	Val	Glu	Asn	Gln	Ile 735	Leu
Thr	Arg	Asp	Ala	Lys	Gly	Ile	Ser	Gln	Glu	Gln	Met	Asn	Glu		Arg

745 Ala Ser Phe Asn His Phe Asp Arg Asp His Ser Gly Thr Leu Gly Pro 760 Glu Glu Phe Lys Ala Cys Leu Ile Ser Leu Gly Tyr Asp Ile Gly Asn 780 775 Asp Pro Gln Gly Glu Ala Glu Phe Ala Arg Ile Met Ser Ile Val Asp 790 795 Pro Asn Arg Leu Gly Val Val Thr Phe Gln Ala Phe Ile Asp Phe Met 805 810 Ser Arg Glu Thr Ala Asp Thr Asp Thr Ala Asp Gln Val Met Ala Ser 825 Phe Lys Ile Leu Ala Gly Asp Lys Asn Tyr Ile Thr Met Asp Glu Leu 840 Arg Arg Glu Leu Pro Pro Asp Gln Ala Glu Tyr Cys Ile Ala Arg Met 860 855 Ala Pro Tyr Thr Gly Pro Asp Ser Val Pro Gly Ala Leu Asp Tyr Met 870 875 Ser Phe Ser Thr Ala Leu Tyr Gly Glu Ser Asp Leu 885 <210> 88

<211> 197

<212> PRT

<213> Homo sapiens

Met Met Phe Pro Gln Ser Arg His Ser Gly Ser Ser His Leu Pro Gln 10 Gln Leu Lys Phe Thr Thr Ser Asp Ser Cys Asp Arg Ile Lys Asp Glu 25 Phe Gln Leu Leu Gln Ala Gln Tyr His Ser Leu Lys Leu Glu Cys Asp Lys Leu Ala Ser Glu Lys Ser Glu Met Gln Arg His Tyr Val Met Tyr Tyr Glu Met Ser Tyr Gly Leu Asn Ile Glu Met His Lys Gln Ala Glu 70 75 Ile Val Lys Arg Leu Asn Gly Ile Cys Ala Gln Val Leu Pro Tyr Leu 90 Ser Gln Glu His Gln Gln Gln Val Leu Gly Ala Ile Glu Arg Ala Lys 105 Gln Val Thr Ala Pro Glu Leu Asn Ser Ile Ile Arg Gln Gln Leu Gln 120 Ala His Gln Leu Ser Gln Leu Gln Ala Leu Ala Leu Pro Leu Thr Pro 140 135 Leu Pro Val Gly Leu Gln Pro Pro Ser Leu Pro Ala Val Ser Ala Gly 150 155 Thr Gly Leu Leu Ser Leu Ser Ala Leu Gly Ser Gln Ala His Leu Ser 170 165 Lys Glu Asp Lys Asn Gly His Asp Gly Asp Thr His Gln Glu Asp Asp 180 185

<210> 89

<211> 739

<212> PRT

<213> Homo sapiens

Gly Glu Lys Ser Asp 195

<400> 89															
			Glu	Pro	Thr	Glu	Thr	Ile	Gly	Asp	Leu	Ser	Ile	Cys	Leu
1				5					10					15	
			20					25					30	Thr	
Cys	Ser	Glu 35	Ser	Ala	Ser	Gln	Asn 40	Asp	Asp	Gly	Ser	Arg 45	Ser	Lys	Asp
Glu	Thr 50	Arg	Val	Ser	Thr	Asn 55	Gly	Ser	Asp	Asp	Pro 60	Glu	Asp	Ala	Gly
Ala 65	Gly	Glu	Asn	Arg	Arg 70	Val	Ser	Gly	Asn	Asn 75	Ser	Pro	Ser	Leu	Ser 80
				85					90				_	Pro 95	
			100					105			_		110	Ser	
		115					120					125		Thr	
	130					135					140			Ile	
Leu 145	Thr	Ile	Ser	Gly	Gly 150	Ser	Gly	Pro	Arg	Pro 155	Leu	Asn	Pro	Val	Thr 160
	Ala	Pro	Leu	Pro 165		Gly	Trp	Glu	Gln 170		Val	Asp	Gln	His 175	
Arg	Val	Tyr	Tyr 180		Asp	His	Val	Glu 185		Arg	Thr	Thr	Trp	Asp	Arg
Pro	Glu	Pro		Pro	Pro	Gly	Trp 200		Arg	Arg	Val	Asp 205		Met	Gly
Arg	Ile 210		Tyr	Val	Asp	His 215		Thr	Arg	Thr	Thr 220		Trp	Gln	Arg
Pro 225		Leu	Glu	Ser	Val 230		Asn	Tyr	Glu	Gln 235		Gln	Leu	Gln	Arg 240
	Gln	Leu	Gln	Gly 245		Met	Gln	Gln	Phe 250		Gln	Arg	Phe	Ile 255	
Gly	Asn	Gln	Asp 260	Leu	Phe	Ala	Thr	Ser 265	Gln	Ser	Lys	Glu	Phe 270	Asp	Pro
Leu	Gly	Pro 275	Leu	Pro	Pro	Gly	Trp 280	Glu	Lys	Arg	Thr	Asp 285	Ser	Asn	Gly
Arg	Val 290	Tyr	Phe	Val	Asn	His 295	Asn	Thr	Arg	Ile	Thr 300	Gln	Trp	Glu	Asp
Pro 305	Arg	Ser	Gln	Gly	Gln 310	Leu	Asn	Glu	Lys	Pro 315	Leu	Pro	Glu	Gly	Trp 320
Glu	Met	Arg	Phe	Thr 325	Val	Asp	Gly	Ile	Pro 330	Tyr	Phe	Val	Asp	His 335	Asn
Arg	Arg	Thr	Thr 340	Thr	Tyr	Ile	Asp	Pro 345	Arg	Thr	Gly	Lys	Ser 350	Ala	Leu
Asp	Asn	Gly 355	Pro	Gln	Ile	Ala	Tyr 360	Val	Arg	Asp	Phe	Lys 365	Ala	Lys	Val
Gln	Tyr 370	Phe	Arg	Phe	Trp	Cys 375	Gln	Gln	Leu	Ala	Met 380	Pro	Gln	His	Ile
385					390					395				Gln	400
				405					410					Val 415	
			420					425					430	Glu	_
Phe	Phe	Leu	Leu	Ser	His	Glu	Val	Leu	Asn	Pro	Met	Tyr	Cys	Leu	Phe

435 440 445 Glu Tyr Ala Gly Lys Asp Asn Tyr Cys Leu Gln Ile Asn Pro Ala Ser 455 460 Tyr Ile Asn Pro Asp His Leu Lys Tyr Phe Arg Phe Ile Gly Arg Phe 470 475 Ile Ala Met Ala Leu Phe His Gly Lys Phe Ile Asp Thr Gly Phe Ser 485 490 Leu Pro Phe Tyr Lys Arg Ile Leu Asn Lys Pro Val Gly Leu Lys Asp 505 Leu Glu Ser Ile Asp Pro Glu Phe Tyr Asn Ser Leu Ile Trp Val Lys 520 Glu Asn Asn Ile Glu Glu Cys Asp Leu Glu Met Tyr Phe Ser Val Asp 535 Lys Glu Ile Leu Gly Glu Ile Lys Ser His Asp Leu Lys Pro Asn Gly 550 555 Gly Asn Ile Leu Val Thr Glu Glu Asn Lys Glu Glu Tyr Ile Arg Met 570 565 Val Ala Glu Trp Arg Leu Ser Arg Gly Val Glu Glu Gln Thr Gln Ala 585 Phe Phe Glu Gly Phe Asn Glu Ile Leu Pro Gln Gln Tyr Leu Gln Tyr 600 605 Phe Asp Ala Lys Glu Leu Glu Val Leu Leu Cys Gly Met Gln Glu Ile 615 620 Asp Leu Asn Asp Trp Gln Arg His Ala Ile Tyr Arg His Tyr Ala Arg 630 635 Thr Ser Lys Gln Ile Met Trp Phe Trp Gln Phe Val Lys Glu Ile Asp 650 Asn Glu Lys Arg Met Arg Leu Leu Gln Phe Val Thr Gly Thr Cys Arg 665 Leu Pro Val Gly Gly Phe Ala Asp Leu Met Gly Ser Asn Gly Pro Gln 680 Lys Phe Cys Ile Glu Lys Val Gly Lys Glu Asn Trp Leu Pro Arg Ser 695 His Thr Cys Phe Asn Arg Leu Asp Leu Pro Pro Tyr Lys Ser Tyr Glu 710 715 Gln Leu Lys Glu Lys Leu Leu Phe Ala Ile Glu Glu Thr Glu Gly Phe Gly Gln Glu

<210> 90

<211> 431

<212> PRT

<213> Homo sapiens

<400> 90

```
90
Leu Ala Gly Ala Pro Ala Gly Tyr Ser Pro Gly Gly Val Pro Ser Ala
           100
                               105
Tyr Pro Glu Leu His Ala Ala Leu Asp Arg Leu Tyr Ala Gln Arg Pro
                            120
Ala Gly Phe Gly Cys Gln Glu Ser Arg His Ser Tyr Pro Pro Ala Leu
                        135
                                            140
Gly Ser Pro Gly Ala Leu Ala Gly Ala Arg Val Gly Ala Ala Gly Pro
Leu Glu Arg Arg Gly Ala Gln Pro Gly Arg His Ser Val Thr Gly Tyr
               165
                                    170
Gly Asp Cys Ala Val Gly Ala Arg Tyr Gln Asp Glu Leu Thr Ala Leu
                               185
Leu Arg Leu Thr Val Gly Thr Gly Gly Arg Glu Ala Gly Ala Arg Gly
                            200
Glu Pro Ser Gly Ile Glu Pro Ser Gly Leu Glu Glu Pro Pro Gly Pro
                        215
                                            220
Phe Val Pro Glu Ala Ala Arg Ala Arg Met Arg Glu Pro Glu Ala Arg
                   230
                                        235
Glu Asp Tyr Phe Gly Thr Cys Ile Lys Cys Asn Lys Gly Ile Tyr Gly
               245
                                   250
Gln Ser Asn Ala Cys Gln Ala Leu Asp Ser Leu Tyr His Thr Gln Cys
                                265
Phe Val Cys Cys Ser Cys Gly Arg Thr Leu Arg Cys Lys Ala Phe Tyr
                            280
                                                285
Ser Val Asn Gly Ser Val Tyr Cys Glu Glu Asp Tyr Leu Phe Ser Gly
                        295
                                            300
Phe Gln Glu Ala Ala Glu Lys Cys Cys Val Cys Gly His Leu Ile Leu
                    310
                                        315
Glu Lys Ile Leu Gln Ala Met Gly Lys Ser Tyr His Pro Gly Cys Phe
               325
                                    330
Arg Cys Ile Val Cys Asn Lys Cys Leu Asp Gly Ile Pro Phe Thr Val
                                345
Asp Phe Ser Asn Gln Val Tyr Cys Val Thr Asp Tyr His Lys Asn Tyr
                            360
Ala Pro Lys Cys Ala Ala Cys Gly Gln Pro Ile Leu Pro Ser Glu Gly
                        375
Cys Glu Asp Ile Val Arg Val Ile Ser Met Asp Arg Asp Tyr His Phe
                   390
                                        395
Glu Cys Tyr His Cys Glu Asp Cys Arg Met Gln Leu Ser Asp Glu Glu
                405
Gly Cys Cys Phe Pro Leu Asp Gly His Leu Leu Cys His Gly
            420
                                425
```

<210> 91

<211> 900

<212> PRT

<213> Homo sapiens

<400> 91

	50					55					60				
Glu 65		Gly	Glu	Leu	Val	-	Thr	Asp	Pro	Arg 75		Ala	Ser	Tyr	Ser 80
	Cys	Ser	Gly	Lys 85		Val	Gly	Ile	Lys 90	-	Glu	Thr	Ser	Thr 95	
Thr	Pro	Arg	Arg 100	Ser	Asp	Leu	Asp	Leu 105	Gly	Tyr	Glu	Pro	Glu 110		Ser
Ala	Ser	Pro 115	Thr	Pro	Pro	Tyr	Leu 120	Lys	Trp	Ala	Glu	Ser 125	Leu	His	Ser
	130	_	Asp		_	135					140				-
145			Cys		150					155			-		160
	-		Leu	165					170			_	-	175	-
		_	Ala 180		_	_	_	185			_		190	-	
		195	Gln		-		200	•	_			205	_	-	-
	210	_	Gln			215					220				
225			Ala		230					235					240
	_		Tyr	245		_		_	250					255	_
	-		Asp 260				_	265	_		_	_	270		
		275	Pro				280					285	_	_	
	290		Glu	_		295	_	_			300		_	_	
305			Leu		310					315					320
_		_		325	_	_			330	_	_			335	Glu
			Pro 340	_	_			345	_				350		
		355	Asn.				360					365			_
	370		Leu			375					380				Asn
385	_	_			390					395					400 Lys
-	_			405					410		-	_		415	Arg
		٠	420				_	425					430		Glu
		435			_		440					445			Pro
_	450	_	_		_	455					460			_	Ala
465					470					475					480
				485					490					495	Gly
Leu	Arg	Asp	Ala 500	His	Glu	Glu	Asn	Pro 505	Glu	Ser	Ile	Leu	Asp 510	Glu	His

Val Gln Arg Val Leu Arg Thr Thr Gly Arg Gln Ser Pro Gly Pro Gly 520 His Arg Ser Pro Asp Ser Gly His Val Ala Lys Met Pro Val Ala Leu 535 Gly Gly Ala Ala Ser Gly His Gly Lys His Val Pro Lys Ser Gly Ala 550 Lys Leu Asp Ala Ala Gly Leu His His His Arg His Val His His His 570 565 Val His His Ser Thr Ala Arg Pro Lys Glu Gln Val Glu Ala Glu Ala 585 Thr Arg Arg Ala Gln Ser Ser Phe Ala Trp Gly Leu Glu Pro His Ser 600 His Gly Ala Arg Ser Arg Gly Tyr Ser Glu Ser Val Gly Ala Ala Pro 615 620 Asn Ala Ser Asp Gly Leu Ala His Ser Gly Lys Val Gly Val Ala Cys 630 635 Lys Arg Asn Ala Lys Lys Ala Glu Ser Gly Lys Ser Ala Ser Thr Glu 650 645 Val Pro Gly Ala Ser Glu Asp Ala Glu Lys Asn Gln Lys Ile Met Gln 665 Trp Ile Ile Glu Gly Glu Lys Glu Ile Ser Arg His Arg Arg Thr Gly 680 His Gly Ser Ser Gly Thr Arg Lys Pro Gln Pro His Glu Asn Ser Arg 695 Pro Leu Ser Leu Glu His Pro Trp Ala Gly Pro Gln Leu Arg Thr Ser 715 710 Val Gln Pro Ser His Leu Phe Ile Gln Asp Pro Thr Met Pro Pro His 725 730 Pro Ala Pro Asn Pro Leu Thr Gln Leu Glu Glu Ala Arg Arg Leu 745 Glu Glu Glu Lys Arg Ala Ser Arg Ala Pro Ser Lys Gln Arg Tyr 760 Val Gln Glu Val Met Arg Arg Gly Arg Ala Cys Val Arg Pro Ala Cys 775 780 Ala Pro Val Leu His Val Val Pro Ala Val Ser Asp Met Glu Leu Ser 795 790 Glu Thr Glu Thr Arg Ser Gln Arg Lys Val Gly Gly Ser Ala Gln 810 Pro Cys Asp Ser Ile Val Val Ala Tyr Tyr Phe Cys Gly Glu Pro Ile 825 Pro Tyr Arg Thr Leu Val Arg Gly Arg Ala Val Thr Leu Gly Gln Phe 840 Lys Glu Leu Leu Thr Lys Lys Gly Ser Tyr Arg Tyr Tyr Phe Lys Lys 860 855 Val Ser Asp Glu Phe Asp Cys Gly Val Val Phe Glu Glu Val Arg Glu 870 875 Asp Glu Ala Val Leu Pro Val Phe Glu Glu Lys Ile Ile Gly Lys Val 890 885 Glu Lys Val Asp 900 <210> 92 <211> 591 <212> PRT <213> Homo sapiens

Page 133

<400> 92

1				5	Val				10					15	
			20		Asp			25					30		
Ile	Ala	Gly 35	Leu	Thr	Arg	Glu	Arg 40	Gly	Leu	Leu	His	Ser 45	Ser	Lys	Trp
	50				Phe	55					60				
65					Ile 70					75	•			•	80
				85	Ala				90				_	95	
			100		Gly			105		_		-	110		-
		115			Leu		120					125	_		
	130				Pro	135					140				
145					Val 150					155				-	160
				165	Leu				170					175	
			180		Ala			185					190		
		195			Gly		200					205			
	210				Lys	215					220		_		_
225					His 230					235					240
				245	Gln				250		_			255	
			260		Gln			265					270		_
		275			Ser		280				_	285		_	
	290				Met	295		•			300		_		_
305					10 310		_			315					320
				325	Glu				330				_	335	
			340		Glu			345					350		
		355			Tyr		360		_			365	_		
	370				Asn -	375					380		_	-	
385					Lys 390					395					400
				405	Leu				410	_			_	415	_
			420		Leu			425					430		
		435			Glu		440					445		_	•
Cys	Tyr	Trp	Arg	Ala	Tyr	Ala	Val	Gly	Asp	Val	Glu	Lys	Met.	Ala	Leu

### 032796-132.ST25

455 Val Lys Leu Ala Lys Leu His Glu Gln Leu Thr Glu Ser Glu Gln Ala 470 475 Ala Gln Cys Tyr Ile Lys Tyr Ile Gln Asp Ile Tyr Ser Cys Gly Glu 485 490 Ile Val Glu His Leu Glu Glu Ser Thr Ala Phe Arg Tyr Leu Ala Gln 505 Tyr Tyr Phe Lys Cys Lys Leu Trp Asp Glu Ala Ser Thr Cys Ala Gln 520 Lys Cys Cys Ala Phe Asn Asp Thr Arg Glu Glu Gly Lys Ala Leu Leu 535 Arg Gln Ile Leu Gln Leu Arg Asn Gln Gly Glu Thr Pro Thr Thr Glu 550 Val Pro Ala Pro Phe Phe Leu Pro Ala Ser Leu Ser Ala Asn Asn Thr 570 Pro Thr Arg Arg Val Ser Pro Leu Asn Leu Ser Ser Val Thr Pro 585 <210> 93 <211> 914 <212> PRT <213> Homó sapiens <400> 93 Val Tyr Gln Val Leu Leu Val Gly Ser Thr Leu Leu Lys Glu Val Pro Ser Gly Leu Gln Leu Glu Gln Leu Pro Ser Gln Ser Leu Leu Thr His Ile Pro Thr Ala Gly Leu Pro Thr Ser Leu Gly Gly Gly Leu Pro Tyr 40 Cys His Gln Ala Trp Leu Asp Phe Arg Arg Arg Leu Glu Ala Leu Leu Gln Asn Cys Gln Ala Ala Cys Ala Leu Leu Gln Gly Ala Ile Glu Ser Val Lys Ala Val Pro Gln Pro Met Glu Pro Gly Glu Val Gly Gln Leu 90 Leu Gln Gln Thr Glu Val Leu Met Gln Gln Val Leu Asp Ser Pro Trp 105 Leu Ala Trp Leu Gln Cys Gln Gly Gly Arg Glu Leu Thr Trp Leu Lys 120 Gln Glu Val Pro Glu Val Thr Leu Ser Pro Asp Tyr Arg Thr Ala Met 135 140 Asp Lys Ala Asp Glu Leu Tyr Asp Arg Val Asp Gly Leu Leu His Gln Leu Thr Leu Gln Ser Asn Gln Arg Ile Gln Ala Leu Glu Leu Val Gln 165 170 Thr Leu Glu Ala Arg Glu Ser Gly Leu His Gln Ile Glu Val Trp Leu 185 Gln Gln Val Gly Trp Pro Ala Leu Glu Glu Ala Gly Glu Pro Ser Leu 200 Asp Met Leu Leu Gln Ala Gln Gly Ser Phe Gln Glu Leu Tyr Gln Val 215 220 Ala Gln Glu Gln Val Arg Gln Gly Glu Lys Phe Leu Gln Pro Leu Thr 230 235 Gly Trp Glu Ala Ala Glu Leu Asp Pro Pro Gly Ala Arg Phe Leu Ala 245 250 Leu Arg Ala Gln Leu Thr Glu Phe Ser Arg Ala Leu Ala Gln Arg Cys

			260					265					270		
Gln	Ara	Leu		Asp	Ala	Glu	Ara		Phe	Gln	T.eu	Phe	270 Ara	Glu	Ala
	• ,	275					280		0	02	200	285	9	<u></u>	nia
Leu	Thr 290	Trp	Ala	Glu	Glu	Gly 295	Gln	Arg	Val	Leu	Ala 300	Glu	Leu	Glu	Gln
Glu 305	Arg	Pro	Gly	Val	Val 310	Leu	Gln	Gln	Leu	Gln 315	Leu	His	Trp	Thr	Arg 320
His	Pro	Asp	Leu	Pro 325	Pro	Ala	His	Phe	Arg 330	Lys	Met	Trp	Ala	Leu 335	Ala
			340	Ser				345			_	_	350		-
		355		Asp			360					365			
	370			Pro		375					380				
385				Ala	390					395	_	_		_	400
				Leu 405					410				_	415	-
			420	Thr				425					430		_
		435		Gln			440					445	_		
	450			Leu		455					460				
465				Glu	470					475					480
				Leu 485		_		_	490			_		495	-
			500	Leu		_		505		_		_	510		
		515		Leu			520					525			
	530			Ala		535	_		_		540		_		-
545				Lys	550					555					560
			•	Phe 565		_	_	_	570				_	575	
			580	Ser				585					590		
		595		Leu			600					605	_		
	610			Ala		615					620				
625				Asn	630					635				_	640
				Lys 645					650				=	655	
			660					665					670		Phe
		675		Leu			680					685		_	
_	690			Tyr	_	695			_		700	_		•	
705	GIU	cys	cys	GTÀ	710	ser	ASN	Leu	Arg	715	Glu	116	Trp	Phe	Arg 720

### 032796-132.ST25

Arg Arg Lys Ala Arg Asp Thr Phe Val Leu Gln Ala Ser Ser Leu Ala 730 Ile Lys Gln Ala Trp Thr Ala Asp Ile Ser His Leu Leu Trp Arg Gln 740 745 Ala Val His Asn Lys Glu Val Arg Met Ala Glu Met Val Ser Met Gly 760 Val Gly Asn Lys Ala Phe Arg Asp Ile Ala Pro Ser Glu Glu Ala Ile 775 Asn Asp Arg Thr Val Asn Tyr Val Leu Lys Cys Arg Glu Val Arg Ser 790 795 Arg Ala Ser Ile Ala Val Ala Pro Phe Asp His Asp Ser Leu Tyr Leu 805 810 Gly Ala Ser Asn Ser Leu Pro Gly Asp Pro Ala Ser Cys Ser Val Leu 825 Gly Ser Leu Asn Leu His Leu Tyr Arg Asp Pro Ala Leu Leu Gly Leu 840 Arg Cys Pro Leu Tyr Pro Ser Phe Leu Glu Glu Ala Ala Leu Glu Ala 855 860 Glu Ala Glu Leu Gly Gly Gln Pro Ser Leu Thr Ala Glu Asp Ser Glu 870 875 Ile Ser Ser Gln Cys Pro Ser Ala Ser Gly Ser Ser Gly Ser Asp Ser 890 885 Ser Cys Val Ser Gly Gln Ala Leu Gly Arg Gly Leu Glu Asp Leu Pro 905 Cys Val

<210> 94

<211> 277

<212> PRT

<213> Homo sapiens

#### <400> 94

Leu Asn Tyr Leu Leu Glu Ser Arg Leu Glu Ala Ala Ala His Cys Ala 10 Leu Lys Gln Gly Ile Ala Thr Ala Ser Leu Leu Pro Ala Gln Leu Gln 25 Pro Ala Val Leu Thr Val Val Thr Cys His Val Val Val Ser Val His 40 Gly His His Thr Asp Gly Cys Leu Ala Ala Leu Cys Arg Glu Asp Arg 55 Thr Gly Thr Gly Gly Ala Phe Trp Cys Lys Asn Arg Val Ile Val Ser 70 His Ala Val Asp Val Val Leu His Val His Gly Glu Gly Asn Pro Val Gln Ala Leu Ile Ala His Gly Ala Pro Glu Ala Ala Trp Val Val Gly 105 Leu Ala Gln Gly Leu Gln Asp His Phe His Asp Glu Met Ser Thr His 120 Ala Ala Phe Val Gly Arg Leu Leu Glu Pro Gly Val Gln Glu Val Leu 135 140 Leu Ala Val His Phe Leu Thr His Val Val Glu Arg Leu Pro Thr Glu 150 155 Ser Ser Pro Thr Arg Val Ala Gly Glu Ala Val Ser Val Ile Lys Thr 165 170 Pro His Cys Leu Ala Arg Leu Leu Gly Ser Val Asp Ala Lys Pro Thr 180 185

032796-132.ST25 Leu Asp Ala Asn Ala Glu Val Val Pro Arg Arg Ala Arg Leu Glu Arg 195 200 Pro Leu Gln Leu Pro Gly Glu Arg Leu Gln Pro Pro Leu Gly Arg Ala 215 Trp Ala Ala Leu Pro Ala Arg Gly Gln Arg Glu Cys Arg Gln Arg Glu 230 Gly Gly Arg Pro Arg Arg Leu Arg Gly Ala Ser Gly Arg Gly Ala Gly 250 Ala Gly Arg Glu Glu Val Ser Val Gly Phe Ser Ala Gln Trp Glu Phe 265 Gly Ser Gly Arg His 275 <210> 95 <211> 1120 <212> PRT <213> Homo sapiens <400> 95 Met Trp Arg Val Lys Lys Leu Ser Leu Ser Leu Ser Pro Ser Pro Gln Thr Gly Lys Pro Ser Met Arg Thr Pro Leu Arg Glu Leu Thr Leu Gln 25 Pro Gly Ala Leu Thr Thr Ser Gly Lys Arg Ser Pro Ala Cys Ser Ser Leu Thr Pro Ser Leu Cys Lys Leu Gly Leu Gln Glu Gly Ser Asn Asn 55 Ser Ser Pro Val Asp Phe Val Asn Asn Lys Arg Thr Asp Leu Ser Ser 70 Glu His Phe Ser His Ser Ser Lys Trp Leu Glu Thr Cys Gln His Glu 90 Ser Asp Glu Gln Pro Leu Asp Pro Ile Pro Gln Ile Ser Ser Thr Pro 105 Lys Thr Ser Glu Glu Ala Val Asp Pro Leu Gly Asn Tyr Met Val Lys 120 Thr Ile Val Leu Val Pro Ser Pro Leu Gly Gln Gln Gln Asp Met Ile 135 Phe Glu Ala Arg Leu Asp Thr Met Ala Glu Thr Asn Ser Ile Ser Leu 150 155

Asn Gly Pro Leu Arg Thr Asp Asp Leu Val Arg Glu Glu Val Ala Pro 170

Cys Met Gly Asp Arg Phe Ser Glu Val Ala Ala Val Ser Glu Lys Pro 185

Ile Phe Gln Glu Ser Pro Ser His Leu Leu Glu Glu Ser Pro Pro Asn 200

Pro Cys Ser Glu Gln Leu His Cys Ser Lys Glu Ser Leu Ser Ser Arg 215 220

Thr Glu Ala Val Arg Glu Asp Leu Val Pro Ser Glu Ser Asn Ala Phe 230 235

Leu Pro Ser Ser Val Leu Trp Leu Ser Pro Ser Thr Ala Leu Ala Ala 250

Asp Phe Arg Val Asn His Val Asp Pro Glu Glu Glu Ile Val Glu His 265

Gly Ala Met Glu Glu Arg Glu Met Arg Phe Pro Thr His Pro Lys Glu 280

Ser Glu Thr Glu Asp Gln Ala Leu Val Ser Ser Val Glu Asp Ile Leu 295 300

305					310					315		Ser			320
Pro	Gly	Pro	Ala	Val 325	Glu	Asp	Val	Gly	Arg 330	Ile	Leu	Gly	Ser	Asp 335	Thr
Glu	Ser	Trp	Met 340	Ser	Pro	Leu	Ala	Trp 345	Leu	Glu	Lys	Gly	Val 350	Asn	Thr
Ser	Val	Met 355	Leu	Glu	Asn	Leu	Arg 360	Gln	Ser	Leu	Ser	Leu 365	Pro	Ser	Met
Leu	Arg 370	Asp	Ala	Ala	Ile	Gly 375	Thr	Thr	Pro	Phe	Ser 380	Thr	Cys	Ser	Val
385					390					395		Ser			400
				405					410	•		Ser		415	
			420					425				Leu	430	-	
		435		•			440					Val 445			
	450					455					460	Val			
465					470					475		His		-	480
				485					490			Met	_	495	
			500					505				Leu	510		•
		515					520					Leu 525			•
	530					535			_		540	Thr			-
545					550	_	_		_	555	_	Leu			560
				565					570			Met		575	_
			580					585				Cys	590		
		595					600		•			Ser 605			
	610					615					620	Val	_		
625					630					635		Leu			640
				645					650		_	Thr		655	
			660					665				Leu	670		•
		675					680					Glu 685		-	
	690					695					700	Leu			-
705					710					715		Arg			720
				725					730			Asp		735	
			740					745				Asp	750		
Lys	Asp	Glu	Leu	Leu	Cys	Gln	Leu	Thr	Gln	Ser	Asn	Glu	Glu	Gln	Ala

```
760
                                                765
 Ala Gln Cys Val Lys Glu Glu Met Ala Leu Lys His Met Gln Ala Glu
                        775
                                            780
Leu Gln Gln Gln Ala Val Leu Ala Lys Glu Val Arg Asp Leu Lys
                    790
                                        795
                                                             800
Glu Thr Leu Glu Phe Ala Asp Gln Glu Asn Gln Val Ala His Leu Glu
                                    810
Leu Gly Gln Val Glu Cys Gln Leu Lys Thr Thr Leu Glu Val Leu Arg
            820
                                825
Glu Arg Ser Leu Gln Cys Glu Asn Leu Lys Asp Thr Val Glu Asn Leu
                            840
Thr Ala Lys Leu Ala Ser Thr Ile Ala Asp Asn Gln Glu Gln Asp Leu
                        855
Glu Lys Thr Arg Gln Tyr Ser Gln Lys Leu Gly Leu Leu Thr Glu Gln
                   870
                                        875
Leu Gln Ser Leu Thr Leu Phe Leu Gln Thr Lys Leu Lys Glu Lys Thr
                885
                                    890
Glu Gln Glu Thr Leu Leu Ser Thr Ala Cys Pro Pro Thr Gln Glu
            900
                                905
His Pro Leu Pro Asn Asp Arg Thr Phe Leu Gly Ser Ile Leu Thr Ala
                            920
Val Ala Asp Glu Glu Pro Glu Ser Thr Pro Val Pro Leu Leu Gly Ser
                        935
                                            940
Asp Lys Ser Ala Phe Thr Arg Val Ala Ser Met Val Ser Leu Gln Pro
                    950
                                        955
Ala Glu Thr Pro Gly Met Glu Glu Ser Leu Ala Glu Met Ser Ile Met
                965
                                    970
Thr Thr Glu Leu Gln Ser Leu Cys Ser Leu Leu Gln Glu Ser Lys Glu
                                985
Glu Ala Ile Arg Thr Leu Gln Arg Lys Ile Cys Glu Leu Gln Ala Arg
                            1000
Leu Gln Ala Gln Glu Gln His Gln Glu Val Gln Lys Ala Lys Glu
                        1015
                                            1020
Ala Asp Ile Glu Lys Leu Asn Gln Ala Leu Cys Leu Arg Tyr Lys Asn
                    1030
                                       1035
Glu Lys Glu Leu Gln Glu Val Ile Gln Gln Asn Glu Lys Ile Leu Glu
               1045
                                   1050
Gln Ile Asp Lys Ser Gly Glu Leu Ile Ser Leu Arg Glu Glu Val Thr
            1060
                                1065
His Leu Thr Arg Ser Leu Arg Arg Ala Glu Thr Glu Thr Lys Val Leu
                            1080
                                                1085
Gln Glu Ala Trp Gln Ala Ser Trp Thr Pro Thr Ala Ser Leu Trp Pro
                        1095
                                            1100
Pro Ile Gly Ser Arg Arg Lys Cys Gly Ser Leu Arg Arg Trp Thr Asn
                    1110
                                        1115
<210> 96
<211> 540
<212> PRT
<213> Homo sapiens
<400> 96
Met Gly Thr Thr Ala Arg Ala Ala Leu Val Leu Thr Tyr Leu Ala Val
                                    10
Ala Ser Ala Ala Ser Glu Gly Gly Phe Thr Ala Thr Gly Gln Arg Gln
            20
                                25
Leu Arg Pro Glu His Phe Gln Glu Val Gly Tyr Ala Ala Pro Pro Ser
```

		35					40					45			
	50					55					Pro 60				
His 65	Gly	Pro	Pro	Phe	Glu 70	Gly	Gln	Ser	Gln	Val 75	Gln	Pro	Pro	Pro	Ser 80
Gln	Glu	Ala	Thr	Pro 85	Leu	Gln	Gln	Glu	Lys 90	Leu	Leu	Pro	Ala	Gln 95	Leu
Pro	Ala	Glu	Lys 100	Glu	Val	Gly	Pro	Pro 105	Leu	Pro	Gln	Glu	Ala 110	Val	Pro
Leu	Gln	Lys 115	Glu	Leu	Pro	Ser	Leu 120	Gln	His	Pro	Asn	Glu 125	Gln	Lys	Glu
Gly	Thr 130	Pro	Ala	Pro	Phe	Gly 135	Asp	Gln	Ser	His	Pro 140	Glu	Pro	Glu	Ser
Trp 145	Asn	Ala	Ala	Gln	His 150	Суѕ	Gln	Gln	Asp	Arg 155	Ser	Gln	Gly	Gly	Trp 160
				165					170		Pro			175	
			180					185			Val		190	-	
		195					200				Thr	205		-	
	210					215					Cys 220			_	_
225					230					235	Val				240
				245					250		Lys		_	255	
			260					265			Ser	_	270		
		275					280				Cys	285		•	
	290					295					Pro 300		_		
305					310					315	Arg	_		•	320
				325					330		Gln			335	
			340					345			Cys		350		
		355					360				Asp	365			
	370					375					His 380			_	_
385					390					395	Phe				400
				405					410		Ile			415	_
			420					425			Asn		430		
		435					440				Asn	445			_
	450					455					Cys 460				
465					470					475	Arg				480
Arg	Asp	Pro	Ala	Leu 485	Cys	Cys	Tyr	Leu	Ser 490	Pro	Gly	Asp	Glu	Gln 495	Val

Asn Cys Phe Asn Ile Asn Tyr Leu Arg Asn Val Ala Leu Val Ser Gly 505 Asp Thr Glu Asn Ala Lys Gly Gln Gly Glu Gln Gly Ser Thr Gly Gly 520 Thr Asn Ile Ser Ser Thr Ser Glu Pro Lys Glu Glu 535 <210> 97 <211> 462 <212> PRT <213> Homo sapiens <400> 97 Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Tyr Lys Cys Gly 25 Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys 55 Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe 70 Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala 105 Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser 120 Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly 135 Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro 155 Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr 165 170 Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro 185 Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met 195 200 Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser 215 Gly Thr Thr Leu Leu Glu Ala Val Asp Cys Ile Leu Pro Pro Thr Arg 230 235 Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile 250 Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu 265 Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu 280 Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro 295 300 Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val 310 315 Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu 325 330 Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln 340 345

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 355 360 Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 375 Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala 390 395 Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 410 Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr 425 Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 440 Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys 455

<210> 98 <211> 2328 <212> PRT

<213> Homo sapiens

<400> 98

Lys Ser Lys Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val 10 Ala Val Ser Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg 75 Val Gly Asp Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys 90 Thr Cys Ile Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn 105 Arg Cys His Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg 120 Arg Pro His Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly 135 140 Asn Gly Lys Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe 150 155 Asp His Ala Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys 170 Pro Tyr Gln Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly 180 185 Ser Gly Arg Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn 215 Arg Gly Asn Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu 230 235 Trp Lys Cys Glu Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser 245 250 Gly Pro Phe Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His 265 Pro Gln Pro Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val 275 280 285

WO 02/092015

	290				Gln	295					300		_		
Leu 305		Thr	Cys	Leu	Gly 310	Asn	Gly	Val	Ser	Cys 315	Gln	Glu	Thr	Ala	Val 320
Thr	Gln	Thr	Tyr	Gly 325	Gly	Asn	Leu	Asn	Gly 330	Glu	Pro	Cys	Val	Leu 335	Pro
Phe	Thr	Tyr	Asn 340	Gly	Arg	Thr	Phe	Tyr 345	Ser	Cys	Thr	Thr	Glu 350	Gly	Arg
Gln	Asp	Gly 355	His	Leu	Trp	Cys	Ser 360	Thr	Thr	Ser	Asn	Tyr 365	Glu	Gln	Asp
Gln	Lys 370	Tyr	Ser	Phe	Cys	Thr 375	Asp	His	Thr	Val	Leu 380	Val	Gln	Thr	Gln
Gly 385	Gly	Asn	Ser	Asn	Gly 390	Ala	Leu	Cys	His	Phe 395	Pro	Phe	Leu	Tyr	Asn 400
				405	Asp				410			_	-	415	
			420		Thr			425					430		_
		435			Ala		440					445			_
	450				Gly	455	•				460		_		_
465					Thr 470					475				-	480
				485	Gln				490				_	495	
			500		Asp			505					510	_	
		515			Cys		520					525	_	-	_
	530				Cys	535					540			-	
545					Glu 550					555		-	_		560
				565	Gly				570					575	
			580		Ser			585					590		
		595			Ser		600			_		605			
	610				Tyr	615					620				
625					Ala 630					635				_	640
Ile	Lys	Gly	Leu	Lys 645	Pro	Gly	Val	Val	Tyr 650	Glu	Gly	Gln	Leu	Ile 655	Ser
Ile	Gln	Gln	Tyr 660	Gly	His	Gln	Glu	Val 665	Thr	Arg	Phe	Asp	Phe 670	Thr	Thr
Thr	Ser	Thr 675	Ser	Thr	Pro	Val	Thr 680	Ser	Asn	Thr	Val	Thr 685	Gly	Glu	Thr
	690				Leu	695					700				
705					Val 710					715					720
				725	Glu				730				-	735	
Gln	Tyr	Leu	Asp	Leu	Pro	Ser	Thr	Ala	Thr	Ser	Val	Asn	Ile		Asp

			740					745					750		
Leu	Leu	Pro		Ara	T.vs	Tyr	Tle			Va 1	Tur	Gln		Ser	Gl II
		755	3	9	nys	- y -	760	V 0.1	MJ11	<b>V</b> 41	- 7 -	765	116	Set	GIU
Asp	Gly 770	Glu	Gln	Ser	Leu	Ile 775		Ser	Thr	Ser	Gln 780	Thr	Thr	Ala	Pro
Asp 785	Ala	Pro	Pro	Asp	Pro 790	Thr	Val	Asp	Gln	Val 795	Asp	Asp	Thr	Ser	Ile 800
				805		Pro			810			_	_	815	
			820			Glu		825					830		
		835				Thr	840					845	_		
	850					Ala 855					860				
865					870	Thr				875			_		880
				885		Gln			890			_		895	
			900			Pro		905				_	910	_	
		915				Leu	920				_	925	_		
	930					Ala 935					940			_	
945					950	Phe				955	_				960
				965		Thr		_	970	-				975	
			980			Asp		985				-	990		
		995				Gly	1000	)				1005	5		
	1010	)				Tyr 1015	5				1020	)			-
102	5				1030					103	5				1040
				1045	5	Glu Ser			1050	)		_		1055	5
			1060	)		Thr		106	5				1070	0	
		1075	5			Ser	1080	)				108	5	_	
	1090	)				1099 Ile	5		_		1100	)	_		
110		vsħ	261	Gry	1110		Val	Val	Ser	111:		1111	PIO	GIÀ	1120
		Val		Thr 1125	Ile	Gln	Val	Leu	Arg 1130	Asp		Gln	Glu	Arg 113	Asp
Ala	Pro	Ile	Val 1140		Lys	Val	Val	Thr 1145	Pro		Ser	Pro	Pro 1150	Thr	
		1155	5			Pro	1160	Thr O	Gly			1165	Val	Ser	_
	1170	)				Asp 1179	5				1180	Ile )	Thr		
Pro 1185		Asn	Gly	Gln	Gln 119	Gly O	Asn	Ser	Leu	Glu 119		Val	Val	His	Ala 1200

Asp Gln Ser Ser Cys Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr Asn Val Ser Val Tyr Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile Ser Asp Thr Ile Ile Pro Ala Val Pro Pro Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg Val Thr Trp Ala Pro Pro Pro 1250 1255 Ser Ile Asp Leu Thr Asn Phe Leu Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg Thr Glu Ile Asp Lys Pro Ser Gln Met Gln Val Thr Asp Val Gln Asp Asn Ser Ile Ser Val Lys Trp Leu Pro Ser Ser Pro Val Thr Gly Tyr Arg Val Thr Thr Pro Lys Asn Gly Pro Gly Pro Thr Lys Thr Lys Thr Ala Gly Pro Asp Gln Thr Glu Met Thr Ile Glu Gly Leu Gln Pro Thr Val Glu Tyr Val Val Ser Val Tyr Ala Gln Asn Pro Ser Gly Glu Ser Gln Pro Leu Val Gln Thr Ala Val Thr Asn Ile Asp Arg Pro Lys Gly Leu Ala Phe Thr Asp Val Asp Val Asp Ser Ile Lys Ile Ala Trp Glu Ser Pro Gln Gly Gln Val Ser Arg Tyr Arg Val Thr Tyr Ser Ser Pro Glu Asp Gly Ile His Glu Leu Phe Pro Ala Pro Asp Gly Glu Glu Asp Thr Ala Glu Leu Gln Gly

	165	-				165					166	0			
166	5				167	0				167	Val	Ala			Asp 1680
				168.	5				169					169	Pro
			170	0				170.	5	Thr			171	0	
		171	5				1720	0		Thr		172	5		_
	173	0				173	5 ·			Lys	1740	0			
174	5				1750	)				Leu 1755	5				1760
				176	5				1770					1779	5
			1780	כ				178	5	Val			1790	)	_
		179	5				1800	)		Ile		1809	5	_	-
	1810	0				181	5			Val	1820	)			
182	5				1830	)				Lys 1835	5	_		-	1840
				1845	5				1850					1855	5
			1860	)				1865	5	Pro			1870	)	
		187	5				1880	)		Arg		1885	5		
	1890	) ·				1895	5			Pro	1900	)	_		
1905	5				1910	)				Ser 1915	•		_		1920
				1925	5				1930					1935	5
			1940	)				1945	5	Ile			1950	)	
		195	5				1960	) [`]		Lys		1965	5		
	1970	)				1975	5			His	1980	)			
1985	<b>i</b>				1990	)				Phe 1995	,				2000
				2005	•				2010				_	2015	<b>,</b>
			2020	)				2025	5	Glu		=	2030	)	•
		2035	5				2040	)		Arg		2045	<b>,</b>	_	
	2050	)				2055	5			Ser	2060	)			
2065	•				2070	)				Ile 2075	į.				2080
				2085	,				2090				_	2095	Ser
Thr	Ser	Ala	Thr 2100	Leu )	Thr	Gly	Leu	Thr 2105		Gly	Ala	Thr	Tyr 2110		Ile

```
Ile Val Glu Ala Leu Lys Asp Gln Gln Arg His Lys Val Arg Glu Glu
              2120
Val Val Thr Val Gly Asn Ser Val Asn Glu Gly Leu Asn Gln Pro Thr
                       2135
Asp Asp Ser Cys Phe Asp Pro Tyr Thr Val Ser His Tyr Ala Val Gly
               2150
                                      2155
Asp Glu Trp Glu Arg Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln
               2165
                                  2170
Cys Leu Gly Phe Gly Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp
           2180
                              2185
Cys His Asp Asn Gly Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg
                           2200
Gln Gly Glu Asn Gly Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly
                       2215
                                           2220
Lys Gly Glu Phe Lys Cys Asp Pro His Glu Ala Thr Cys Tyr Asp Asp
2225
                   2230
                                       2235
Gly Lys Thr Tyr His Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly
               2245
                                  2250
Ala Ile Cys Ser Cys Thr Cys Phe Gly Gly Gln Arg Gly Trp Arg Cys
                              2265
Asp Asn Cys Arg Arg Pro Gly Gly Glu Pro Ser Pro Glu Gly Thr Thr
                          2280
                                              2285
Gly Gln Ser Tyr Asn Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn
                      2295
                                          2300
Thr Asn Val Asn Cys Pro Ile Glu Cys Phe Met Pro Leu Asp Val Gln
                  2310
                                       2315
Ala Asp Arg Glu Asp Ser Arg Glu
               2325
```

<210> 99 <211> 188

<212> PRT

<213> Homo sapiens

<400> 99

His Gln Thr His Lys Glu Gly Gly Ser Thr His Ala Ser Ala Asp Ala 10 Trp Glu Ile Ile Glu Leu Glu Thr Glu Ile Glu Lys Phe Lys Ala Glu 25 Asn Ala Ser Leu Ala Lys Leu Arg Ile Glu Arg Glu Ser Ala Leu Glu 40 Lys Leu Arg Lys Glu Ile Ala Asp Phe Glu Gln Gln Lys Ala Lys Glu 55 Leu Ala Arg Ile Glu Glu Phe Lys Lys Glu Glu Met Arg Lys Leu Gln 70 75 Lys Glu Arg Lys Val Phe Glu Lys Tyr Thr Thr Ala Ala Arg Thr Phe 90 Pro Asp Lys Lys Glu Arg Glu Glu Ile Gln Thr Leu Lys Gln Gln Ile 100 105 Ala Asp Leu Arg Glu Asp Leu Lys Arg Lys Glu Thr Lys Trp Ser Ser 120 125 Thr His Ser Arg Leu Arg Ser Gln Ile Gln Met Leu Val Arg Glu Asn 135 Thr Asp Leu Arg Glu Glu Ile Lys Val Met Glu Arg Phe Arg Leu Asp 155 Ala Trp Lys Arg Ala Glu Ala Ile Glu Ser Ser Leu Glu Val Glu Lys 165 170

```
Lys Asp Lys Leu Ala Asn Thr Ser Val Arg Phe Gln
<210> 100
<211> 284
<212> PRT
<213> Homo sapiens
<400> 100
Met Glu Pro Gly Asn Tyr Ala Thr Leu Asp Gly Ala Lys Asp Ile Glu
Gly Leu Leu Gly Ala Gly Gly Gly Arg Asn Leu Val Ala His Ser Pro
Leu Thr Ser His Pro Ala Ala Pro Thr Leu Met Pro Ala Val Asn Tyr
Ala Pro Leu Asp Leu Pro Gly Ser Ala Glu Pro Pro Lys Gln Cys His
Pro Cys Pro Gly Val Pro Gln Gly Thr Ser Pro Ala Pro Val Pro Tyr
                    70
Gly Tyr Phe Gly Gly Gly Tyr Tyr Ser Cys Arg Val Ser Arg Ser Ser
                                    90
Leu Lys Pro Cys Ala Gln Ala Ala Thr Leu Ala Ala Tyr Pro Ala Glu
                                105
Thr Pro Thr Ala Gly Glu Glu Tyr Pro Ser Arg Pro Thr Glu Phe Ala
                         120
                                               125
Phe Tyr Pro Gly Tyr Pro Gly Thr Tyr His Ala Met Ala Ser Tyr Leu
                        135
                                            140
Asp Val Ser Val Val Gln Thr Leu Gly Ala Pro Gly Glu Pro Arg His
                    150
Asp Ser Leu Leu Pro Val Asp Ser Tyr Gln Ser Trp Ala Leu Ala Gly
                                    170
Gly Trp Asn Ser Gln Met Cys Cys Gln Gly Glu Gln Asn Pro Pro Gly
            180
                                185
Pro Phe Trp Lys Ala Ala Phe Ala Asp Ser Ser Gly Gln His Pro Pro
                            200
Asp Ala Cys Ala Phe Arg Arg Gly Arg Lys Lys Arg Ile Pro Tyr Ser
                        215
Lys Gly Gln Leu Arg Glu Leu Glu Arg Glu Tyr Ala Ala Asn Lys Phe
                    230
                                        235
Ile Thr Lys Asp Lys Arg Arg Lys Ile Ser Ala Ala Thr Ser Leu Ser
                245
                                    250
Glu Arg Gln Ile Thr Ile Trp Phe Gln Asn Arg Arg Val Lys Glu Lys
                                265
Lys Val Leu Ala Lys Val Lys Asn Ser Ala Thr Pro
<210> 101
<211> 676
<212> PRT
<213> Homo sapiens
Met Asp Lys Tyr Asp Asp Leu Gly Leu Glu Ala Ser Lys Phe Ile Glu
Asp Leu Asn Met Tyr Glu Ala Ser Lys Asp Gly Leu Phe Arg Val Asp
                                25
Lys Gly Ala Gly Asn Asn Pro Glu Phe Glu Glu Thr Arg Arg Val Phe
```

		35					40					45			
Ala	Thr	_	Met	Ala	Lys	Ile 55		Leu	Gln	Gln	Gln 60		Gln	Gln	Leu
Leu 65		Glu	Glu	Thr	Leu 70		Arg	Gly	Ser	Arg 75		Pro	Val	Asn	Gly 80
Gly	Gly	Arg	Leu	Gly 85		Gln	Ala	Arg	Trp		Val	Val	Gly	Ser 95	Lys
Leu	Thr	Val	Asp 100	Gly	Ala	Ala	Lys	Pro 105	Pro	Leu	Ala	Ala	Ser 110	Thr	Gly
		115					120					125	Pro	_	
	130		Gln			135				•	140		•		_
145			Cys		150					155					160
			Gln	165					170					175	
			Tyr 180					185					190		_
		195	Val				200					205		_	_
	210		Pro			215					220			-	-
225			Asn		230					235					240
			Leu	245					250					255	
			Thr 260					265					270		
		275	Pro				280					285			_
	290		Pro Gln			295					300				
305			Gly		310					315				_	320
			Gly	325					330					335	-
			340 Gly					345					350		
		355	Pro				360					365			
	370		Leu			375					380		_		
385			Gly		390					395					400
			Asp	405					410					415	
			420 Pro					425					430	•	
		435	Leu				440					445			•
	450		Tyr			455					460				
465			Gln		470					475					480
~~3		,	J	485	Cys	3111	ura	MEL	490	UOII	neu	ryr	นาร	495	rnr

#### 032796-132.ST25

Cys Phe Thr Cys Ala Ala Cys Ser Arg Lys Leu Arg Gly Lys Ala Phe 505 Tyr Phe Val Asn Gly Lys Val Phe Cys Glu Glu Asp Phe Leu Tyr Ser 520 Gly Phe Gln Gln Ser Ala Asp Arg Cys Phe Leu Cys Gly His Leu Ile 535 Met Asp Met Ile Leu Gln Ala Leu Gly Lys Ser Tyr His Pro Gly Cys 550 555 Phe Arg Cys Val Ile Cys Asn Glu Cys Leu Asp Gly Val Pro Phe Thr 570 565 Val Asp Ser Glu Asn Lys Ile Tyr Cys Val Arg Asp Tyr His Lys Val 585 Leu Ala Pro Lys Cys Ala Ala Cys Gly Leu Pro Ile Leu Pro Pro Glu 600 Gly Ser Asp Glu Thr Ile Arg Val Val Ser Met Asp Arg Asp Tyr His 615 620 Val Glu Cys Tyr His Cys Glu Asp Cys Gly Leu Glu Leu Asn Asp Glu 630 635 Asp Gly His Arg Cys Tyr Pro Leu Glu Asp His Leu Phe Cys His Ser 645 650 Cys His Val Lys Arg Leu Glu Lys Arg Pro Ser Ser Thr Ala Leu His 665 Gln His His Phe 675 <210> 102 <211> 296 <212> PRT <213> Homo sapiens <400> 102 Ser Thr Gly Ser Glu Phe Pro Leu Cys Thr Lys Ala Ser Pro Cys Ser Ala Ala Arg Ala Gly Gly Arg Ala Leu Gly Trp Arg Leu Gln Gln 25 Arg Glu Thr Arg Gly Asn Pro Gly Asn Pro Gly Leu Gly Val Ala Ala 40 Thr Met Thr Gly Ser Asn Met Ser Asp Ala Leu Ala Asn Ala Val Cys Gln Arg Cys Gln Ala Arg Phe Ser Pro Ala Glu Arg Ile Val Asn Ser Asn Gly Glu Leu Tyr His Glu His Cys Phe Val Cys Ala Gln Cys Phe 90 Arg Pro Phe Pro Glu Gly Leu Phe Tyr Glu Phe Glu Gly Arg Lys Tyr 105 Cys Glu His Asp Phe Gln Met Leu Phe Ala Pro Cys Cys Gly Ser Cys 120 Gly Glu Phe Ile Ile Gly Arg Val Ile Lys Ala Met Asn Asn Asn Trp 140 135

130

His Pro Gly Cys Phe Arg Cys Glu Leu Cys Asp Val Glu Leu Ala Asp
145

Leu Gly Phe Val Lys Asn Ala Gly Arg His Leu Cys Arg Pro Cys His
165

170

175

Asn Arg Glu Lys Ala Lys Gly Leu Gly Lys Tyr Ile Cys Gln Arg Cys

His Leu Val Ile Asp Glu Gln Pro Leu Met Phe Arg Ser Asp Ala Tyr
195 200 205

032796-132.ST25

His Pro Asp His Phe Asn Cys Thr His Cys Gly Lys Glu Leu Thr Ala 215 Glu Ala Arg Glu Leu Lys Gly Glu Leu Tyr Cys Leu Pro Cys His Asp 230 235 Lys Met Gly Val Pro Ile Cys Gly Ala Cys Arg Arg Pro Ile Glu Gly 250 Arg Val Val Asn Ala Leu Gly Lys Gln Trp His Val Glu His Phe Val 265 Cys Ala Lys Cys Glu Lys Pro Phe Leu Gly His Arg His Tyr Glu Lys 280 Lys Gly Leu Ala Tyr Cys Glu Leu <210> 103 <211> 500 <212> PRT <213> Homo sapiens <400> 103 Met Gly Ile Gly Leu Ser Ala Gln Gly Val Asn Met Asn Arg Leu Pro Gly Trp Asp Lys His Ser Tyr Gly Tyr His Gly Asp Asp Gly His Ser Phe Cys Ser Ser Gly Thr Gly Gln Pro Tyr Gly Pro Thr Phe Thr Thr Gly Asp Val Ile Gly Cys Cys Val Asn Leu Ile Asn Asn Thr Cys Phe 55 Tyr Thr Lys Asn Gly His Ser Leu Gly Ile Ala Phe Thr Asp Leu Pro 70 Pro Asn Leu Tyr Pro Thr Val Gly Leu Gln Thr Pro Gly Glu Val Val 90 Asp Ala Asn Phe Gly Gln His Pro Phe Val Phe Asp Ile Glu Asp Tyr 105 Met Arg Glu Trp Arg Thr Lys Ile Gln Ala Gln Ile Asp Arg Phe Pro 120 Ile Gly Asp Arg Glu Gly Glu Trp Gln Thr Met Ile Gln Lys Met Val 135 Ser Ser Tyr Leu Val His His Gly Tyr Cys Ala Thr Ala Glu Ala Phe 150 Ala Arg Ser Thr Asp Gln Thr Val Leu Glu Glu Leu Ala Ser Ile Lys 170 Asn Arg Gln Arg Ile Gln Lys Leu Val Leu Ala Gly Arg Met Gly Glu 180 185 Ala Ile Glu Thr Thr Gln Gln Leu Tyr Pro Ser Leu Leu Glu Arg Asn 200 Pro Asn Leu Leu Phe Thr Leu Lys Val Arg Gln Phe Ile Glu Met Val 215 220 Asn Gly Thr Asp Ser Glu Val Arg Cys Leu Gly Gly Arg Ser Pro Lys 230 235 Ser Gln Asp Ser Tyr Pro Val Ser Pro Arg Pro Phe Ser Ser Pro Ser 245 250 Met Ser Pro Ser His Gly Met Asn Ile His Asn Leu Ala Ser Gly Lys 265 Gly Ser Thr Ala His Phe Ser Gly Phe Glu Ser Cys Ser Asn Gly Val 280 Ile Ser Asn Lys Ala His Gln Ser Tyr Cys His Ser Asn Lys His Gln 290 295

#### 032796-132.ST25

Ser Ser Asn Leu Asn Val Pro Glu Leu Asn Ser Ile Asn Met Ser Arg 315 310 Ser Gln Gln Val Asn Asn Phe Thr Ser Asn Asp Val Asp Met Glu Thr 330 Asp His Tyr Ser Asn Gly Val Gly Glu Thr Ser Ser Asn Gly Phe Leu 345 Asn Gly Ser Ser Lys His Asp His Glu Met Glu Asp Cys Asp Thr Glu 360 Met Glu Val Asp Ser Ser Gln Leu Arg Arg Gln Leu Cys Gly Gly Ser 375 Gln Ala Ala Ile Glu Arg Met Ile His Phe Gly Arg Glu Leu Gln Ala 395 390 Met Ser Glu Gln Leu Arg Arg Asp Cys Gly Lys Asn Thr Ala Asn Lys 410 405 Lys Met Leu Lys Asp Ala Phe Ser Leu Leu Ala Tyr Ser Asp Pro Trp 425 430 420 Asn Ser Pro Val Gly Asn Gln Leu Asp Pro Ile Gln Arg Glu Pro Val 440 Cys Ser Ala Leu Asn Ser Ala Ile Leu Glu Thr His Asn Leu Pro Lys 455 Gln Pro Pro Leu Ala Leu Ala Met Gly Gln Ala Thr Gln Cys Leu Gly 470. 475 Leu Met Ala Arg Ser Gly Ile Gly Ser Cys Ala Phe Ala Thr Val Glu 490 Asp Tyr Leu His 500 <210> 104 <211> 387 <212> PRT <213> Homo sapiens <400> 104 Met Ala Thr Ser Gly Val Leu Pro Gly Gly Gly Phe Val Ala Ser Ala 10 Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val

Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arg Ala 70 75 Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro 90 Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys 105 Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser 120 Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr 135 140 Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln 155 150 Gln Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly 170 Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys 180

#### 032796-132.ST25

Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly 200 Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg 215 Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu 230 235 Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg 245 250 Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val 265 Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val 280 Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile 295 Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe 310 315 Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr 325 330 Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro 345 Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly 360 Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro Phe Ser Phe 385 <210> 105 <211> 531 <212> PRT <213> Homo sapiens <400> 105 Met Ser Lys Pro His Ser Glu Ala Gly Thr Ala Phe Ile Gln Thr Gln 10 Gln Leu His Ala Ala Met Ala Asp Thr Phe Leu Glu His Met Cys Arg Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg Asn Thr Gly Ile Ile Cys Thr Ile Gly Pro Ala Ser Arg Ser Val Glu Thr Leu Lys Glu Met 55 Ile Lys Ser Gly Met Asn Val Ala Arg Leu Asn Phe Ser His Gly Thr 70 75 His Glu Tyr His Ala Glu Thr Ile Lys Asn Val Arg Thr Ala Thr Glu Ser Phe Ala Ser Asp Pro Tyr Leu Tyr Arg Pro Val Ala Val Ala Leu 105 Asp Thr Lys Gly Pro Glu Ile Arg Thr Gly Leu Ile Lys Gly Ser Gly 120 Thr Ala Glu Leu Glu Leu Lys Lys Gly Ala Thr Leu Lys Ile Thr Leu 135 140 Asp Asn Ala Tyr Met Glu Lys Cys Asp Glu Asn Ile Leu Trp Leu Asp 150 Tyr Lys Asn Ile Cys Lys Val Val Glu Val Gly Ser Lys Ile Tyr Val 170 165 Asp Asp Gly Leu Ile Ser Leu Gln Val Lys Gln Lys Gly Ala Asp Phe 180

```
Leu Val Thr Glu Val Glu Asn Gly Gly Ser Leu Gly Ser Lys Lys Gly
                            200
Val Asn Leu Pro Gly Ala Ala Val Asp Leu Pro Ala Val Ser Glu Lys
                        215
Asp Ile Gln Asp Leu Lys Phe Gly Val Glu Gln Asp Val Asp Met Val
                    230
                                        235
Phe Ala Ser Phe Ile Arg Lys Ala Ser Asp Val His Glu Val Arg Lys
               245
                                    250
Val Leu Gly Glu Lys Gly Lys Asn Ile Lys Ile Ile Ser Lys Ile Glu
                                265
Asn His Glu Gly Val Arg Arg Phe Asp Glu Ile Leu Glu Ala Ser Asp
                            280
Gly Ile Met Val Ala Arg Gly Asp Leu Gly Ile Giu Ile Pro Ala Glu
                       295
Lys Val Phe Leu Ala Gln Lys Met Met Ile Gly Arg Cys Asn Arg Ala
                   310
                                        315
Gly Lys Pro Val Ile Cys Ala Thr Gln Met Leu Glu Ser Met Ile Lys
                                    330
               325
Lys Pro Arg Pro Thr Arg Ala Glu Gly Ser Asp Val Ala Asn Ala Val
                                345
Leu Asp Gly Ala Asp Cys Ile Met Leu Ser Gly Glu Thr Ala Lys Gly
        355
                            360
Asp Tyr Pro Leu Glu Ala Val Arg Met Gln His Leu Ile Ala Arg Glu
                                            380
                        375
Ala Glu Ala Ala Ile Tyr His Leu Gln Leu Phe Glu Glu Leu Arg Arg
                    390
Leu Ala Pro Ile Thr Ser Asp Pro Thr Glu Ala Thr Ala Val Gly Ala
                405
                                    410
Val Glu Ala Ser Phe Lys Cys Cys Ser Gly Ala Ile Ile Val Leu Thr
                                425
Lys Ser Gly Arg Ser Ala His Gln Val Ala Arg Tyr Arg Pro Arg Ala
                            440
        435
Pro Ile Ile Ala Val Thr Arg Asn Pro Gln Thr Ala Arg Gln Ala His
                                            460
                        455
Leu Tyr Arg Gly Ile Phe Pro Val Leu Cys Lys Asp Pro Val Gln Glu
                    470
                                        475
Ala Trp Ala Glu Asp Val Asp Leu Arg Val Asn Phe Ala Met Asn Val
                                    490
Gly Lys Ala Arg Gly Phe Phe Lys Lys Gly Asp Val Val Ile Val Leu
                                505
Thr Gly Trp Arg Pro Gly Ser Gly Phe Thr Asn Thr Met Arg Val Val
                            520
Pro Val Pro
    530
<210> 106
<211> 480
<212> PRT
<213> Homo sapiens
<400> 106
Met Ala Ala Arg Cys Ser Thr Arg Trp Leu Leu Val Val Val Gly Thr
                                    10
Pro Arg Leu Pro Ala Ile Ser Gly Arg Gly Ala Arg Pro Pro Arg Glu
Gly Val Val Gly Ala Trp Leu Ser Arg Lys Leu Ser Val Pro Ala Phe
```

Ala	Ser 50	Ser	Leu	Thr	Ser	Cys 55	Gly	Pro	Arg	Ala	Leu 60	Leu	Thr	Leu	Arg
Pro 65	Gly	Val	Ser	Leu	Thr 70	Gly	Thr	Lys	His	Asn 75	Pro	Phe	Ile	Cys	Thr 80
Ala	Ser	Phe	His	Thr 85	Ser	Ala	Pro	Leu	Ala 90	Lys	Glu	Asp	Tyr	Tyr 95	Gln
Ile	Leu	Gly	Val 100	Pro	Arg	Asn	Ala	Ser 105	Gln	Lys	Glu	Ile	Lys 110	Lys	Ala
Tyr	Tyr	Gln 115	Leu	Ala	Lys	Lys	Tyr 120	His	Pro	Asp	Thr	Asn 125	Lys	Asp	Asp
	130		_			135				Ala	140				
145		-			150	_	_			Asp 155					160
_				165					170	His				175	
-			180					185		Arg			190		
		195				_	200			Thr		205			
	210	-				215				Gln	220				
225	-				230					Thr 235					240
_	_			245					250	Gln		-		255	
-	_		260					265		Gly			270		
		275					280			Ser		285			
	290					295				Lys	300				
305					310	_				Gly 315					320
				325					330	Phe				335	
			340	_	_			345		His			350		
		355					360	_		Ala		365			
	370					375					380				Gln
385					390					395					Gly 400
-	_			405					410					415	
		_	420					425					430		Thr
•		435	_				440					445			Gly
	450		_			455					460				Gly
G1u 465	-	GIU	GIU	GTÀ	470		ser	ьys	rea	475		ne C	File	mr	Ser 480

<210> 107

<211> 572

<212> PRT <213> Homo sapiens

<400> 107 Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro 25 Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro 55 Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ala Gly 70 75 Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro 85 90 Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu 105 Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu 120 Ala Pro Ile Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile 135 Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys 150 155 Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro 165 170 Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly 185 Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro 200 Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val 215 220 Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser 235 230 Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro 250 Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys 265 Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala 300 295 Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg 315 310 Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Pro Ala 330 325 Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr 345 Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln 360 Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val Asn Glu Leu Cys 375 Gly Arg Cys His Gln Pro Leu Ala Arg Ala Gln Pro Ala Val Arg Ala 390 395 Leu Gly Gln Leu Phe His Ile Ala Cys Phe Thr Cys His Gln Cys Ala Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr

### 032796-132.ST25

420 425 430 Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly 440 Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His 460 455 Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr 470 475 Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr 485 490 His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met 500 505 Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys 520 Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu 535 Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val 550 555 Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr 565 <210> 108 <211> 2861 <212> PRT <213> Homo sapiens <400> 108

Met Lys Ala Met Asp Val Leu Pro Ile Leu Lys Glu Lys Val Ala Tyr Leu Ser Gly Gly Arg Asp Lys Arg Gly Gly Pro Ile Leu Thr Phe Pro 25 Ala Arg Ser Asn His Asp Arg Ile Arg Gln Glu Asp Leu Arg Arg Leu 40 Ile Ser Tyr Leu Ala Cys Ile Pro Ser Glu Glu Val Cys Lys Arg Gly Phe Thr Val Ile Val Asp Met Arg Gly Ser Lys Trp Asp Ser Ile Lys 70 75 Pro Leu Leu Lys Ile Leu Gln Glu Ser Phe Pro Cys Cys Ile His Val Ala Leu Ile Ile Lys Pro Asp Asn Phe Trp Gln Lys Gln Arg Thr Asn 100 105 Phe Gly Ser Ser Lys Phe Glu Phe Glu Thr Asn Met Val Ser Leu Glu 120 Gly Leu Thr Lys Val Val Asp Pro Ser Gln Leu Thr Pro Glu Phe Asp 135 140 Gly Cys Leu Glu Tyr Asn His Glu Glu Trp Ile Glu Ile Arg Val Ala 150 155 Phe Glu Asp Tyr Ile Ser Asn Ala Thr His Met Leu Ser Arg Leu Glu 165 170 Glu Leu Gln Asp Ile Leu Ala Lys Lys Glu Leu Pro Gln Asp Leu Glu 180 185 190 Gly Ala Arg Asn Met Ile Glu Glu His Ser Gln Leu Lys Lys Val 195 200 Ile Lys Ala Pro Ile Glu Asp Leu Asp Leu Glu Gly Gln Lys Leu Leu 215 220 Gln Arg Ile Gln Ser Ser Glu Ser Phe Pro Lys Lys Asn Ser Gly Ser 230 235 Gly Asn Ala Asp Leu Gln Asn Leu Leu Pro Lys Val Ser Thr Met Leu

				245					250					255	
Asp	Arg	Leu	His 260	Ser	Thr	Arg	Gln	His 265	Leu	His	Gln	Met	Trp 270	His	Val
Arg	Lys	Leu 275	Lys	Leu	Asp	Gln	Cys 280	Phe	Gln	Leu	Arg	Leu 285	Phe	Glu	Gln
Asp	Ala 290	Glu	Lys	Met	Phe	Asp 295	Trp	Ile	Thr	His	Asn 300	Lys	Gly	Leu	Phe
Leu 305	Asn	Ser	Tyr	Thr	Glu 310	Ile	Gly	Thr	Ser	His 315	Pro	His	Ala	Met	Glu 320
			Gln	325					330		-			335	_
			Asn 340	_				345					350		
_		355	Ala				360					365			
	370	_	Lys			375				_	380				
385	_		Ser		390				_	395		-	_		400
		_	Ser	405	_	-		_	410			_		415	
			Asp 420			•		425					430		-
		435	Thr			-	440					445	_	_	
	450	_	Lys			455					460			_	
465			Ser		470	_	:	_		475					480
			Glu	485					490					495	
		-	Lys 500		_			505	•				510		
		515	Val				520		_			525		_	
	530		Ser			535					540				
545			Gln	-	550			-		555					560
			Asn	565		•			570					575	
			Glu 580					585					590		
		595	Arg			_	600					605			
	610		Asp			615					620				
625		_	Leu		630			-		635					640
			Val	645				_	650					655	
			Thr 660					665					670		
		675	Ile				680	_				685			
Thr	Pro 690	His	Asn	Ser	Ser	Ile 695	Asn	His	Ile	Glu	Thr 700	Val	Leu	Gln	Gln

705	_				710					715	Phe				720
Ile	Lys	Leu	Glu	Leu 725	Phe	Leu	His	Val	Arg 730	Ile	Phe	Glu	Arg	Asp 735	Ala
	_		740					745			Asp		750		
		755					760				Ile	765			
	770					775					Asn 780				
785					790					795	Tyr				800
			_	805					810		Asp			815	
	-		820	_				825			Glu		830		
		835					840				Leu	845			
	850	-				855					Val 860				
865		_			870					875	Ile				880
				885					890		Glu			895	
			900					905			Val		910		
		915					920				Asp	925			
_	930		_			935					Leu 940				
945	-	_		_	950					955	Ala				960
				965					970		Glu			975	
_			980					985			Leu		990		
		995					100	0			His	100	5		
	101	0		_		101	5				Arg 102	0			
Phe 102		Lys	Tyr	Leu	H1S		Asn	ser	vaı	103	Met 5	Pro	GIĀ	met	1040
Thr	His	Ile	Lys	Ala 104:	Pro		Gln	Gln	Val 105		Asn	Ile	Leu	Asn 105	
Leu	Phe	Gln	Arg 106		Asn	Arg	Val	Leu 106		Tyr	Trp	Thr	Met 107		Lys
Arg	Arg	Leu 107		Gln	Суѕ	Gln	Gln 108		Val	Val	Phe	Glu 108		Ser	Ala
Lys	Gln 109		Leu	Glu	Trp	Ile 109		Asp	Asn	Gly	Glu 110		Tyr	Leu	Ser
Thr 110	His		Ser	Thr	Gly 111		Ser	Ile	Gln	His 111		Gln	Glu	Leu	Leu 1120
Lys	Glu			112	5				113	0	Gln			113	5
	-		114	0				114	5		Cys		115	0	
Ala	His	Ala	Ala	Glu	Ile	Lys	Lys	Cys	Val	Thr	Ala	Val	Asp	Lys	Arg

#### 032796-132.ST25

Tyr Arg Asp Phe Ser Leu Arg Met Glu Lys Tyr Arg Thr Ser Leu Glu Lys Ala Leu Gly Ile Ser Ser Asp Ser Asn Lys Ser Ser Lys Ser Leu Gln Leu Asp Ile Ile Pro Ala Ser Ile Pro Gly Ser Glu Val Lys Leu Arg Asp Ala Ala His Glu Leu Asn Glu Glu Lys Arg Lys Ser Ala Arg Arg Lys Glu Phe Ile Met Ala Glu Leu Ile Gln Thr Glu Lys Ala Tyr Val Arg Asp Leu Arg Glu Cys Met Asp Thr Tyr Leu Trp Glu Met Thr Ser Gly Val Glu Glu Ile Pro Pro Gly Ile Val Asn Lys Glu Leu Ile Ile Phe Gly Asn Met Gln Glu Ile Tyr Glu Phe His Asn Asn Ile Phe Leu Lys Glu Leu Glu Lys Tyr Glu Gln Leu Pro Glu Asp Val Gly His Cys Phe Val Thr Trp Ala Asp Lys Phe Gln Met Tyr Val Thr Tyr Cys Lys Asn Lys Pro Asp Ser Thr Gln Leu Ile Leu Glu His Ala Gly Ser Tyr Phe Asp Glu Ile Gln Gln Arg His Gly Leu Ala Asn Ser Ile Ser Ser Tyr Leu Ile Lys Pro Val Gln Arg Ile Thr Lys Tyr Gln Leu Leu Leu Lys Glu Leu Leu Thr Cys Cys Glu Glu Gly Lys Gly Glu Ile Lys Asp Gly Leu Glu Val Met Leu Ser Val Pro Lys Arg Ala Asn Asp Ala Met His Leu Ser Met Leu Glu Gly Phe Asp Glu Asn Ile Glu Ser Gln Gly Glu Leu Ile Leu Gln Glu Ser Phe Gln Val Trp Asp Pro Lys Thr Leu Ile Arg Lys Gly Arg Glu Arg His Leu Phe Leu Phe Glu Met Ser Leu Val Phe Ser Lys Glu Val Lys Asp Ser Ser Gly Arg Ser Lys Tyr 1460 · 1465 Leu Tyr Lys Ser Lys Leu Phe Thr Ser Glu Leu Gly Val Thr Glu His Val Glu Gly Asp Pro Cys Lys Phe Ala Leu Trp Val Gly Arg Thr Pro Thr Ser Asp Asn Lys Ile Val Leu Lys Ala Ser Ser Ile Glu Asn Lys Gln Asp Trp Ile Lys His Ile Arg Glu Val Ile Gln Glu Arg Thr Ile His Leu Lys Gly Ala Leu Lys Glu Pro Ile His Ile Pro Lys Thr Ala Pro Ala Thr Arg Gln Lys Gly Arg Arg Asp Gly Glu Asp Leu Asp Ser Gln Gly Asp Gly Ser Ser Gln Pro Asp Thr Ile Ser Ile Ala Ser Arg Thr Ser Gln Asn Thr Leu Asp Ser Asp Lys Leu Ser Gly Gly Cys Glu Leu Thr Val Val Ile His Asp Phe Thr Ala Cys Asn Ser Asn Glu Leu 

Thr Ile Arg Arg Gly Gln Thr Val Glu Val Leu Glu Arg Pro His Asp Lys Pro Asp Trp Cys Leu Val Arg Thr Thr Asp Arg Ser Pro Ala Ala Glu Gly Leu Val Pro Cys Gly Ser Leu Cys Ile Ala His Ser Arg Ser Ser Met Glu Met Glu Gly Ile Phe Asn His Lys Asp Ser Leu Ser Val Ser Ser Asn Asp Ala Ser Pro Pro Ala Ser Val Ala Ser Leu Gln Pro His Met Ile Gly Ala Gln Ser Ser Pro Gly Pro Lys Arg Pro Gly Asn Thr Leu Arg Lys Trp Leu Thr Ser Pro Val Arg Arg Leu Ser Ser Gly Lys Ala Asp Gly His Val Lys Lys Leu Ala His Lys His Lys Lys Ser Arg Glu Val Arg Lys Ser Ala Asp Ala Gly Ser Gln Lys Asp Ser Asp Asp Ser Ala Ala Thr Pro Gln Asp Glu Thr Val Glu Glu Arg Gly Arg Asn Glu Gly Leu Ser Ser Gly Thr Leu Ser Lys Ser Ser Ser Ser Gly Met Gln Ser Cys Gly Glu Glu Glu Glu Glu Glu Gly Ala Asp Ala Val Pro Leu Pro Pro Pro Met Ala Ile Gln Gln His Ser Leu Leu Gln Pro Asp Ser Gln Asp Asp Lys Ala Ser Ser Arg Leu Leu Val Arg Pro Thr Ser Ser Glu Thr Pro Ser Ala Ala Glu Leu Val Ser Ala Ile Glu Glu Leu Val Lys Ser Lys Met Ala Leu Glu Asp Arg Pro Ser Ser Leu Leu Val Asp Gln Gly Asp Ser Ser Ser Pro Ser Phe Asn Pro Ser Asp Asn Ser Leu Leu Ser Ser Ser Pro Ile Asp Glu Met Glu Glu Arg Lys Ser Ser Ser Leu Lys Arg Arg His Tyr Val Leu Gln Glu Leu Val Glu Thr Glu Arg Asp Tyr Val Arg Asp Leu Gly Tyr Val Val Glu Gly Tyr Met Ala Leu Met Lys Glu Asp Gly Val Pro Asp Asp Met Lys Gly Lys Asp Lys Ile Val Phe Gly Asn Ile His Gln Ile Tyr Asp Trp His Arg Asp Phe Phe Leu Gly Glu Leu Glu Lys Cys Leu Glu Asp Pro Glu Lys Leu Gly Ser Leu Phe Val Lys His Glu Arg Arg Leu His Met Tyr Ile Ala Tyr Cys Gln Asn Lys Pro Lys Ser Glu His Ile Val Ser Glu Tyr Ile Asp Thr Phe Phe Glu Asp Leu Lys Gln Arg Leu Gly His Arg Leu Gln Leu Thr Asp Leu Leu Ile Lys Pro Val Gln Arg Ile Met Lys Tyr Gln Leu Leu Lys Asp Phe Leu Lys Tyr Ser Lys Lys Ala Ser Leu Asp Thr Ser Glu Leu Glu Arg Ala Val Glu Val Met Cys Ile Val Pro

2065	2070	2075	2080
208	15 209		5
2100	2105	Leu Gln Asp Thr Phe 2110	
2115	2120	Arg Cys Arg Glu Arg 2125	
2130	2135	e Ser Glu Pro Leu Asp 2140	
2145	2150	Phe Lys Asn Ser Ile 2155	2160
216	55 217		5
2180	2185	. Val Glu Thr Phe Ile 2190	
2195	2200	Trp Ile His Glu Ile 2205	
2210	2215	Asn Ala Leu Thr Ser 2220	
2225	2230	Gly Gly Gly Gly Gly 2235	2240
224	225		5
2260	2265	A Ala Ala Ala Pro 2270	•
2275	2280	Pro Ser Leu Ser Asp 2285	
2290	2295	Arg Ala Arg Gln Arg 2300	
2305	2310	Ser Asn Ile Ser Thr 2315	2320
232	25 23		5
2340	2345	a Ser Asn Gln Gln Asn 2350	
2355	2360	n Cys Pro Ala Ala Glu 2365	
2370	2375	r Ser Ala Val Ile Val 2380	
2385	2390	r Ser Trp His Thr Ala 2395	2400
24	24:	<del> </del>	5
2420	2425	r Arg Glu Gly Leu Ser 2430	
2435	2440	n Tyr Ile Tyr Asp Val 2445	
2450	2455	1 Thr Cys Glu Thr Gly 2460	
2465	2470	y Arg Pro Lys Ala Ser 2475	2480
24	85 24		5
2500	2505	a Thr Leu Lys Ile Val 2510	_
Val Thr Thr Glu As	p Asp Gly Ile Tyr Th 2520	r Cys Ile Ala Val Asn 2525	Asp

#### 032796-132.ST25

Met Gly Ser Ala Ser Ser Ser Ala Ser Leu Arg Val Leu Gly Pro Gly 2535 2530 Met Asp Gly Ile Met Val Thr Trp Lys Asp Asn Phe Asp Ser Phe Tyr 2550 2555 Ser Glu Val Ala Glu Leu Gly Arg Gly Arg Phe Ser Val Val Lys Lys 2570 2575 2565 Cys Asp Gln Lys Gly Thr Lys Arg Ala Val Ala Thr Lys Phe Val Asn 2585 2580 Lys Lys Leu Met Lys Arg Asp Gln Val Thr His Glu Leu Gly Ile Leu 2600 Gln Ser Leu Gln His Pro Leu Leu Val Gly Leu Leu Asp Thr Phe Glu 2615 2620 Thr Pro Thr Ser Tyr Ile Leu Val Leu Glu Met Ala Asp Gln Gly Arg 2630 2635 Leu Leu Asp Cys Val Val Arg Trp Gly Ser Leu Thr Glu Gly Lys Ile 2650 2645 Arg Ala His Leu Gly Glu Val Leu Glu Ala Val Arg Tyr Leu His Asn 2665 Cys Arg Ile Ala His Leu Asp Leu Lys Pro Glu Asn Ile Leu Val Asp 2680 2685 Glu Ser Leu Ala Lys Pro Thr Ile Lys Leu Ala Asp Phe Gly Asp Ala 2695 2700 Val Gln Leu Asn Thr Thr Tyr Tyr Ile His Gln Leu Leu Gly Asn Pro 2715 2710 Glu Phe Ala Ala Pro Glu Ile Ile Leu Gly Asn Pro Val Ser Leu Thr 2725 2730 Ser Asp Thr Trp Ser Val Gly Val Leu Thr Tyr Val Leu Leu Ser Gly 2740 2745 Val Ser Pro Phe Leu Asp Asp Ser Val Glu Glu Thr Cys Leu Asn Ile 2760 2765 Cys Arg Leu Asp Phe Ser Phe Pro Asp Asp Tyr Phe Lys Gly Val Ser 2775 2780 Gln Lys Ala Lys Glu Phe Val Cys Phe Leu Leu Gln Glu Asp Pro Ala 2790 2795 Lys Arg Pro Ser Ala Ala Leu Ala Leu Gln Glu Gln Trp Leu Gln Ala 2810 2805 Gly Asn Gly Arg Ser Thr Gly Val Leu Asp Thr Ser Arg Leu Thr Ser 2820 2825 Phe Ile Glu Arg Arg Lys His Gln Asn Asp Val Arg Pro Ile Arg Ser 2840 Ile Lys Asn Phe Leu Gln Ser Arg Leu Leu Pro Arg Val 2850 2855 <210> 109 <211> 271 <212> PRT <213> Homo sapiens <400> 109 Met Val Leu Ile Lys Glu Phe Arg Val Val Leu Pro Cys Ser Val Gln

 Met Val Leu Ile Lys Glu Phe Arg Val Val Leu Pro Cys Ser Val Gln
 1
 5
 10
 15

 Glu Tyr Gln Val Gly Gln Leu Tyr Ser Val Ala Glu Ala Ser Lys Asn
 20
 25
 30

 Glu Thr Gly Gly Gly Glu Gly Ile Glu Val Leu Lys Asn Glu Pro Tyr
 35
 40
 45

 Glu Lys Asp Gly Glu Lys Gly Gln Tyr Thr His Lys Ile Tyr His Leu
 50
 60

#### 032796-132.ST25

Lys Ser Lys Val Pro Ala Phe Val Arg Met Ile Ala Pro Glu Gly Ser Leu Val Phe His Glu Lys Ala Trp Asn Ala Tyr Pro Tyr Cys Arg Thr Ile Val Thr Asn Glu Tyr Met Lys Asp Asp Phe Phe Ile Lys Ile Glu 105 . Thr Trp His Lys Pro Asp Leu Gly Thr Leu Glu Asn Val His Gly Leu 120 Asp Pro Asn Thr Trp Lys Thr Val Glu Ile Val His Ile Asp Ile Ala 135 Asp Arg Ser Gln Val Glu Pro Ala Asp Tyr Lys Ala Asp Glu Asp Pro 155 150 Ala Leu Phe Gln Ser Val Lys Thr Lys Arg Gly Pro Leu Gly Pro Asn 170 165 Trp Lys Lys Glu Leu Ala Asn Ser Pro Asp Cys Pro Gln Met Cys Ala 185 180 Tyr Lys Leu Val Thr Ile Lys Phe Lys Trp Trp Gly Leu Gln Ser Lys 200 Val Glu Asn Phe Ile Gln Lys Gln Glu Lys Arg Ile Phe Thr Asn Phe 215 His Arg Gln Leu Phe Cys Trp Ile Asp Lys Trp Ile Asp Leu Thr Met 235 230 Glu Asp Ile Arg Arg Met Glu Asp Glu Thr Gln Lys Glu Leu Glu Thr 250 Met Arg Lys Arg Gly Ser Val Arg Gly Thr Ser Ala Ala Asp Val 265

<210> 110

<211> 233

<212> PRT

<213> Homo sapiens

<400> 110

Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu 10 Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala 75 Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His 105 Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp 120 His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys 140 135 Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser 155 150 Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile

Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg 180 185 190

170

 Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu

 195
 200
 205

 Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser
 210
 215
 220

 Ser Arg Leu His Thr Cys Gln Arg His
 230
 230
 230

<210> 111 <211> 212 <212> PRT <213> Homo sapiens

<400> 111 Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly 25 Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln 40 Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala 70 Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro 90 85 Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His 105 Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp 120 His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys 135 140 Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser 150 155 Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile 165 170 Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg 185 Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu 200 205 195

<210> 112 <211> 149 <212> PRT <213> Homo sapiens

Gly Leu Ser Cys 210

<400> 112

#### 032796-132.ST25

Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala 70 75 Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro 90 Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His 105 Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp 115 120 His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys 135 Met Tyr His Thr Lys 145 <210> 113 <211> 170 <212> PRT <213> Homo sapiens Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu

<400> 113 Ala Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn 40 His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser 70 75 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser 85 90 Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys 105 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg 115 120. Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 135 140 Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn 150 Ser Ser Arg Leu His Thr Cys Gln Arg His

<210> 114

<211> 128

<212> PRT

<213> Homo sapiens

165

<400> 114

Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly 40 45

 Ser
 Val
 Cys
 Leu
 Arg
 Ser
 Ser
 Asp
 Cys
 Ala
 Ser
 Gly
 Leu
 Cys
 Cys
 Ala

 Arg
 His
 Phe
 Trp
 Ser
 Lys
 Ile
 Cys
 Lys
 Pro
 Val
 Leu
 Lys
 Gly
 Gln
 Gln
 Gly
 Gln
 Ser
 His
 Gly
 Gly
 Leu
 Gly
 Leu
 Leu
 Lys
 Gly
 Gln
 Res
 His
 Gly
 Leu
 Ser
 His
 Gly
 Leu
 Ser
 Cys
 Arg
 Ile
 Gln
 Lys
 Arg
 His
 H

<210> 115 <211> 84 <212> PRT <213> Homo sapiens

<400> 115

Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly
1 5 10 15

Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu
20 25 30

Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly
35 40 45

Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg
50 55 60

Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr
65 70 75 80

Cys Gln Arg His

<210> 116 <211> 149 <212> PRT <213> Homo sapiens <400> 116 Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu 1 Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser 70 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser 85 90 Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys 105 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg 120 Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 135 Glu Gly Leu Ser Cys 145

```
<210> 117
<211> 107
<212> PRT
<213> Homo sapiens
<400> 117
Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile
                                    10
Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg
           20
                                25
Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly
                            40
Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala
                        55
Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln
                                        75
                    70
Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe
                                    90
Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys
            100
<210> 118
<211> 15
<212> PRT
<213> Homo sapiens
<400> 118
Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys
<210> 119
<211> 22
<212> PRT
<213> Homo sapiens
Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
Thr Lys Gly Gln Glu Gly
            20
<210> 120
<211> 21
<212> PRT
<213> Homo sapiens
<400> 120
Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His
                                   10
                5
Thr Cys Gln Arg His
            20
```

```
<210> 121
<211> 15
<212> PRT
<213> Homo sapiens
<400> 121
Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp
                 5
<210> 122
<211> 19
<212> PRT
<213> Homo sapiens
<400> 122
Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg Ile
1
Gln Lys Asp
<210> 123
<211> 13
<212> PRT
<213> Artificial Sequence
<223> LRP5/HBM amino acid sequence
Met Tyr Trp Thr Asp Trp Val Glu Thr Pro Arg Ile Glu
                 5
                                     10
<210> 124
<211> 13
<212> PRT
<213> Artificial Sequence
<223> LRP5/HBM amino acid sequence
<400> 124
Met Tyr Trp Thr Asp Trp Gly Glu Thr Pro Arg Ile Glu
<210> 125
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
```

```
<400> 125
Lys Arg Thr Gly Gly Lys Arg Lys Glu Ile Leu Ser Ala
                 5
<210> 126
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
<400> 126
Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly
Arg
<210> 127
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
<400> 127
Lys Gln Gln Cys Asp Ser Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu
                 5
<210> 128
<211> 266
<212> PRT
<213> Homo sapiens
<400> 128
Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala Met
Val Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser Ala Thr
                                25
Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro
                            40
Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro
                        55
                                             60
Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr
                    70
                                         75
Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr
Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu
                                105
Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys
                            120
Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn
    130
```

```
His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn
                    150
                                         155
Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser
                165
                                    170
Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser
            180
                                185
Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys
                            200
                                                 205
Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg
                        215
Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
                    230
                                         235
Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn
                245
                                    250
Ser Ser Arg Leu His Thr Cys Gln Arg His
            260
<210> 129
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> complementary synthetic oligonucleotide
<400> 129
                                                                    39
tggtcagcgg cctggaggat gtggccgcag tggacttcc
<210> 130
<211> 39
<212> DNA
<213> Artificial Sequence
<223> complementary synthetic oligonucleotide
<400> 130.
ggaagtccac tgcggccaca tcctccaggc cgctgacca
                                                                    39
<210> 131
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> complementary synthetic oligonucleotide
<400> 131
aagctgtact ggacggactc agtgaccaac cgcatcgagg
                                                                    40
<210> 132
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> complementary synthetic oligonucleotide
```

<400> 132	
cctcgatgcg gttggtcact gagtccgtcc agtacagctt	40
<210> 133	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
12237 Complementary Synthetic Originalization	
<400> 133	
atgtactgga cagactggaa ggagacgccc cggattgagc g	41
<210> 134	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
4000	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 134	
egeteaatee ggggegtete etteeagtet gteeagtaea t	41
<210> 135	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 135	
atgtactgga cagactggtt tgagacgccc cggattgagc g	41
acquarga addactyger egagacycco aggaregage g	7.4
<210> 136	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
12237 Complementary Synthetic Originational	
<400> 136	
cgctcaatcc ggggcgtctc aaaccagtct gtccagtaca t	41
<210x 127	
<210> 137	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 137	

atgtactgga cagactggat tgagacgccc cggattgagc g	41
<210> 138 <211> 41 <212> DNA	
<213> Artificial Sequence	
<220> <223> complementary synthetic oligonucleotide <400> 138	
cgctcaatcc ggggcgtctc aatccagtct gtccagtaca t	41
<210> 139 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> complementary synthetic oligonucleotide	
<400> 139 atgtactgga cagactggca ggagacgccc cggattgagc g	41
<210> 140	
<211> 41 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 140	
cgctcaatcc ggggcgtctc ctgccagtct gtccagtaca t	41
<210> 141	
<211> 42 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 141	
cggacattta ctggcccaat gtactgacca tcgacctgga gg	42
<210> 142	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 142	
cctccaggtc gatggtcagt acattgggcc agtaaatgtc cg	42
<210> 143	

<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>		
agctct	tactg ggctgacgtc aagctcagct tcatccaccg	40
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	gomplementary synthetic elicenyalectide	
(2237	complementary synthetic oligonucleotide	
<400>	144	
		40
cggrg	gatya ayetyayett yacyttayet taytayayet	40
<210>	145	
<211>		
<212>	• •	
	Artificial Sequence	
1210	The transfer of the transfer o	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	145	
gagtgo	ecctc tactcacccg tggacateca ggtgctgage c	41
<210>	146	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
•		
<220>		
<223>	complementary synthetic oligonucleotide	
<400>		
	agcac ctggatgtcc acgggtgagt agagggcact c	41
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<b>2220</b> 5		
<220>		
<b>\</b> 223>	complementary synthetic oligonucleotide	
<400>	147	
		45
catyt	actgg acagactggg tagagaaccc taaaatcgag tgtgc	7.7
<210>	148	
<211>		
<212>		
	Artificial Sequence	
	4 7 7 7	

<220> <223> c	complementary synthetic oligonucleotide	
<400> 1	L48	
gcacact	cega ttttagggtt etetaceeag tetgteeagt acatg	15
<210> 1		
<211> 4	<del>-</del>	
<212> [		
<213> P	Artificial Sequence	
<220>		
<223> c	complementary synthetic oligonucleotide	
<400> 1		
catctac	ctgg accgagtggg tcggcaagcc gaggatcgtg cg	12
<210> 1		
<211> 4		
<212> C		
<213> A	Artificial Sequence	
<220>		
<223> c	complementary synthetic oligonucleotide	
<400> 1	150	
cgcacga	atcc toggettgee gacceacteg gtecagtaga tg	12
4010× 1	151	
<210> 1 <211> 4		
<211> 4		
	Artificial Sequence	
\2137 F	attificial Sequence	
<220>		
<223> c	complementary synthetic oligonucleotide	
<400> 1	151	
gtactto	cacc aacatggtgg accgggcagc caagatcgaa cg	12
<210> 1	152	
<211> 4		
<212> 0		
	Artificial Sequence	
<220>	•	
<223> c	complementary synthetic oligonucleotide	
<400> 1	152	
cgttcga	atct tggctgcccg gtccaccatg ttggtgaagt ac	42
<210> 1	153	
<211> 4		
<212> [	ONA	
<213> P	Artificial Sequence	
<220>		

<223> Complementary synthetic oligonucleotide	
<400> 153	
gtactggaca gactgggtag aagtgccaaa gatagaacgt gc	42
2210. 154	
<210> 154 <211> 42	
<212> DNA	
<213> Artificial Sequence	
·	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 154	
gcacgttcta tctttggcac ttctacccag tctgtccagt ac	42
<210> 155	
<211> 31	
<212> DNA <213> Artificial Sequence	
1213/ ALCITICIAL Sequence	
<220>	
<223> primer	
<400> 155	
ttttttgtcg accaattcca acgctatcaa g	21
terregrey accase coa acyclateas y	31
<210> 156	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 156	
ttttttgtcg acctgcgcta gtcccacccg c	31
<210> 157	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
TEOP PLINEL	
<400> 157	
ttttttgtcg accgtgtctt ctgatcaaaa tc	32
Z210\ 150	
<210> 158 <211> 33	
<211> JJ <212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	

<pre>&lt;400&gt; 158 ttttttgtcg accggacaag aaggttctgt ttg</pre>	33
<210> 159 <211> 37	
<212> DNA <213> Artificial Sequence	
<220><223> primer	
<400> 159 ttttttgcgg ccgcttattt ggtgtgatac atttttg	37
<210> 160	
<211> 35 <212> DNA	
<213> Artificial Sequence	
<220> <223> primer	
<400> 160	
ttttttgcgg ccgcttagca agacagacct tctcc	35
<210> 161	
<211> 35 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 161	25
ttttttgcgg ccgcttagtg tctctgacaa gtgtg	35 -
<210> 162 <211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 162	24
cagtgaattc accatgcaaa acaccacttt gttc	34
<210> 163 <211> 32	
<212> DNA	
<213> Artificial Sequence	
<220> <223> primer	
<400> 163	
cagttgcggc cgctcatctc cggtggcctc tg	32

```
<210> 164
<211> 39
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 164
caatagtcga cgaattcacc atggctctgg gcgcagcgg
                                                                   39
<210> 165
<211> 42
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 165
gtattgcggc cgctctagat tagtgtctct gacaagtgtg aa
                                                                   42
<210> 166
<211> 32
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 166
ctaacggatc caccatggcc gcgttgatgc gg
                                                                   32
<210> 167
<211> 33
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 167
                                                                   33
gattcgaatt ctcaaatttt ctgacacaca tgg
<210> 168
<211> 690
<212> DNA
<213> Homo sapiens
<400> 168
aattccaacg ctatcaagaa cctgccccca ccgctgggcg gcgctgcggg gcacccaggc 60
totgoagtoa gogoogogo gggaatootg taccogggog ggaataagta coagacoatt 120
gacaactacc agccgtaccc gtgcgcagag gacgaggagt gcggcactga tgagtactgc 180
gctagtccca cccgcggagg ggacgcgggc gtgcaaatct gtctcgcctg caggaagcgc 240
cgaaaacgct gcatgcgtca cgctatgtgc tgccccggga attactgcaa aaatgqaata 300
tgtgtgtctt ctgatcaaaa tcatttccga ggagaaattg aggaaaccat cactgaaagc 360
tttggtaatg atcatagcac cttggatggg tattccagaa gaaccacctt gtcttcaaaa 420
```

```
atgtatcaca ccaaaggaca agaaggttot gtttgtotoo ggtcatcaga ctgtgcotca 480
ggattgtgtt gtgctagaca cttctggtcc aagatctgta aacctgtcct gaaagaaggt 540
caagtgtgta ccaagcatag gagaaaaggc tctcatggac tagaaatatt ccaqcgttgt 600
tactgtggag aaggtctgtc ttgccggata cagaaagatc accatcaagc cagtaattct 660
tctaggcttc acacttgtca gagacactaa
<210> 169
<211> 1226
<212> DNA
<213> Homo sapiens
<400> 169
ctcatcctgc ccctgcatgg actgaggaac gtcaaagcca tcgactatga cccactggac 60
aagttcatct actgggtgga tgggcgccag aacatcaagc gagccaagga cgacgggacc 120
cagccctttg ttttgacctc tctgagccaa ggccaaaacc cagacaggca gccccacgac 180
ctcagcatcg acatctacag ccggacactg ttctggacgt gcgaggccac caataccatc 240
aacgtccaca ggctgagcgg ggaagccatg ggggtggtgc tgcgtgggga ccgcgacaag 300
cccagggcca tcgtcgtcaa cgcggagcga gggtacctgt acttcaccaa catgcaggac 360
cgggcagcca agategaacg cgcagccctg gacggcaccg agcgcgaggt cctcttcacc 420
accggcctca tccgccctgt ggccctggtg gtagacaaca cactgggcaa gctgttctgg 480
gtggacgcgg acctgaagcg cattgagagc tgtgacctgt caggggccaa ccqcctgacc 540
ctggaggacg ccaacatcgt gcagcctctg ggcctgacca tccttggcaa gcatctctac 600
tggatcgacc gccagcagca gatgatcgag cgtgtggaga agaccaccgg ggacaagcgg 660
actogratee agggeogtgt egeceacete actggeatee atgeagtgga ggaagteage 720
ctggaggagt tctcagccca cccatgtgcc cgtgacaatg gtggctgctc ccacatctqt 780
attgccaagg gtgatgggac accacggtgc tcatgcccag tccacctcgt gctcctqcag 840
aacctgctga cctgtggaga gccgcccacc tgctccccgg accagtttgc atgtgccaca 900
ggggagatcg actgtatece eggggeetgg egetgtgaeg gettteeega gtgegatgae 960
cagagegacg aggagggetg cecegtgtge teegeegeec agtteeeetg egegegggt 1020
cagtgtggtg gacctgcgcc tgcgctgcga cggcgaggca gactgtcagg accgctcaga 1080
cgaggcggac tgtgacgcca tctgcctgcc caaccagttc cggtgtgcga gcggccagtg 1140
tgtcctcatc aaacagccag tgcgactcct tccccgactg tatcgacggc tccgacgagc 1200
tcatgtgtga aatcaccaag ccgccc
                                                                  1226
<210> 170
<211> 934
<212> DNA
<213> Homo sapiens
<400> 170
agggccatcg tcgtcaacgc ggagcgaggg tacctgtact tcaccaacat gcaggaccgg 60
gcagccaaga tcgaacgcgc agccctggac ggcaccgagc gcgaggtcct cttcaccacc 120
ggcctcatcc gccctgtggc cctggtggta gacaacacac tgggcaagct gttctgqgtg 180
gacgcggacc tgaagcgcat tgagagctgt gacctgtcag gggccaaccg cctqaccctg 240
gaggacgcca acategtgca geetetggge etgaceatee ttggcaagea tetetaetgg 300
atogacogoo agcagcagat gatogagogt gtggagaaga ccacogggga caaqoqqact 360
cgcatccagg gccgtgtcgc ccacctcact ggcatccatg cagtggagga agtcagcctg 420
gaggagttet cageceacee atgtgeeegt gaeaatggtg getgeteeea catetgtatt 480
gccaagggtg atgggacacc acggtgctca tgcccagtcc acctcgtgct cctqcaqaac 540
ctgctgacct gtggagagcc gcccacctgc tccccqqacc agtttgcatg tgccacaqqq 600
gagategact gtateceegg ggeetggege tgtgaegget tteeegagtg egatgaeeag 660
agegacgagg agggetgeec egtgtgeete egeegeeeag tteecetgeg egeggggtea 720
gtgtgtggac ctgcgcctgc gctgcgacgg cgaggcagac tgtcaggacc gctcagacga 780
ggcggactgt gacgccatct ggcctgccca accagttccg gtgtgcgagc ggccagtgtg 840
tecteateaa acageagtge gacteettee eegactgtat egacggetee gacgagetea 900
tgtgtgaaat caccaagccg ccctaagcgg ccgc
                                                                   934
```

```
<210> 171
<211> 16
<212> PRT.
<213> Homo sapiens
<400> 171
Ser Val Gly Cys Leu Cys Ala Gly Leu Gly Val Trp Ser Leu Ser
<210> 172
<211> 19
<212> PRT
<213> Homo sapiens
<400> 172
Trp Cys Cys Cys Gly Leu Phe Arg Gly Val Cys Val Trp Ser Cys Gly
                5
                                                         15
Ala Asp Asp
<210> 173
<211> 16
<212> PRT
<213> Homo sapiens
<400> 173
Gly Trp Arg Arg Cys Asp Trp Cys Gly Cys Val Ser Trp Cys Trp Val
                 5
<210> 174
<211> 32
<212> PRT
<213> Homo sapiens
<400> 174
Met Pro Gly Ser Val Ser His Cys Trp Gly Gly Ile Cys Glu Ala Leu
                                    10
Ser Cys Cys Ala Val Asp Val Cys Leu Arg Cys Gly Gly Trp Phe Arg
            20
                                25
                                                     30
<210> 175
<211> 16
<212> PRT
<213> Homo sapiens
<400> 175
Ser Cys Cys Ala Val Asp Val Cys Leu Arg Cys Gly Gly Trp Phe Arg
                 5
                                                         15
<210> 176
<211> 16
<212> PRT
```

WO 02/092015 PCT/US02/15982

```
<213> Homo sapiens
<400> 176
Ser Val Leu Gly Thr Cys Cys Cys Cys Gly Gly Trp Ile Leu Cys Glu
                 5
                                     10
<210> 177
<211> 16
<212> PRT
<213> Homo sapiens
<400> 177
Val Leu Ser Val Cys Glu Val Cys Gly Gly Val Phe Val Arg Arg Cys
                                     10
<210> 178
<211> 15
<212> PRT
<213> Homo sapiens
<400> 178
Gly Met Trp Tyr Trp Ser Gly Arg Asp Cys Ala Leu Cys Trp Leu
                5
                                     10
<210> 179
<211> 16
<212> PRT
<213> Homo sapiens
<400> 179
Cys Thr Ala Val Met Trp Gly Val Gly Ser Val Ala Tyr Leu Gly Glu
                                                          15
<210> 180
<211> 13
<212> PRT
<213> Homo sapiens
<400> 180
Val Val Cys Trp Trp Cys Gly Cys Arg Gly Trp Trp Arg
                 5
<210> 181
<211> 16
<212> PRT
<213> Homo sapiens
<400> 181
Cys Val Cys Ala Ser Phe Cys Cys Cys Val Cys Gly Leu Arg Leu Leu
                                     10
                                                          15
```

```
<210> 182
<211> 16
<212> PRT
<213> Homo sapiens
<400> 182
Thr Tyr Glu Val Cys Glu Glu Cys Gly Gly Arg Val Arg Met Trp Val
<210> 183
<211> 16
<212> PRT
<213> Homo sapiens
<400> 183
Val Val Val Cys Ala Ser Cys Gly Gln Val Trp His Gly Ser Gly Ala
                                     10
<210> 184
<211> 16
<212> PRT
<213> Homo sapiens
<400> 184
Cys Cys Arg Cys Cys His Cys Trp Asp Cys Glu Trp His Met Cys Val
<210> 185
<211> 16
<212> PRT
<213> Homo sapiens
<400> 185
Phe Cys Ala Ser Cys Cys Trp Cys Gly Cys Asp Cys Phe Gly Trp Val
<210> 186
<211> 16
<212> PRT
<213> Homo sapiens
<400> 186
Cys Asp Tyr Cys Trp Ser Cys Gly Val Trp Cys Pro Ser Ser Trp Leu
                 5
                                     10
<210> 187
<211> 16
<212> PRT
<213> Homo sapiens
<400> 187
Val Tyr Leu Cys Val Trp Cys Gly Ala Ala Arg Phe Gly Cys Tyr Gly
```

WO 02/092015 PCT/US02/15982

```
1
                 5
                                     10
                                                          15
<210> 188
<211> 16
<212> PRT
<213> Homo sapiens
<400> 188
Phe Cys Val Cys Gly Cys Cys Trp Cys Trp Cys Ala Ala Cys Trp Cys
<210> 189
<211> 16
<212> PRT
<213> Homo sapiens
<400> 189
Val Val Leu Cys Ser Arg Cys Gly Arg Leu Trp Arg Trp Ser Cys Gly
                                     10
                                                          15
<210> 190
<211> 16
<212> PRT
<213> Homo sapiens
<400> 190
Glu Val Arg Gln Val Thr Cys Ile Arg Cys Arg Arg Gly Phe Leu Leu
                 5
                                     10
<210> 191
<211> 15
<212> PRT
<213> Homo sapiens
<400> 191
Gly Gly Gly Met Trp Glu Ala Trp Ser Cys Tyr Ala Cys Gly
                 5
                                     10
<210> 192
<211> 16
<212> PRT
<213> Homo sapiens
<400> 192
Gly Trp Arg Trp Cys Gly Arg Cys Gly Ala Leu Trp Trp Arg Arg Val
                                                          15
<210> 193
<211> 485
<212> DNA
<213> Homo sapiens
```

```
<400> 193
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccgtggttct gtgttcgcgt tgtgggcgtt tgtggcgqtq gtcqtqtqqq 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
<210> 194
<211> 485
<212> DNA
<213> Homo sapiens
<400> 194
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccgggtggcg gtggtgtggt cggtgtgggg ctttgtggtg gcggcgtgtt 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
                                                                   485
<210> 195
<211> 485
<212> DNA
<213> Homo sapiens
<400> 195
aagettgeea eeatggagae agaeaeaete etgetatggg taetgetget etgggtteea 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccgaggtgcg gcaggttacg tgtattaggt gtcgtcgggg ttttctgttg 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
                                                                   485
<210> 196
<211> 485
<212> DNA
<213> Homo sapiens
<400> 196
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccggtggtgg ggggatgatt tgggaggctt ggagttgtta tgcgtgtggg 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
```

```
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
<210> 197
<211> 485
<212> DNA
<213> Homo sapiens
<400> 197
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccttgtggat tgggccgggt gatcagggtc tgtttcggcg ttttgtttt 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
<210> 198
<211> 476
<212> DNA
<213> Homo sapiens
<400> 198
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc cgtgtcttct gatcaaaatc atttccgagg agaaattgag 120
gaaaccatca ctgaaagctt tggtaatgat catagcacct tggatgggta ttccagaaga 180
accaccttgt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt ttgtctccgg 240
tcatcagact gtgcctcagg attgtgttgt gctagacact tctggtccaa gatctgtaaa 300
cctgtcctga aagaaggtca agtgtgtacc aagcatagga gaaaaggctc tcatggacta 360
gaaatattcc agcgttgtta ctgtggagaa ggtctgtctt gccggataca gaaagatcac 420
catcaagcca gtaattette taggetteae aettgteaga gacactaage ggeege
<210> 199
<211> 539
<212> DNA
<213> Homo sapiens
<400> 199
aagettgeea ceatggagae agaeacaete etgetatggg taetgetget etgggtteea 60
ggttccactg gtgacggatc ctgcgctagt cccacccgcg gaggggacgc gggcgtgcaa 120
atctgtctcg cctgcaggaa gcgccgaaaa cgctgcatgc gtcacgctat gtgctgcccc 180
gggaattact gcaaaaatgg aatatgtgtg tcttctgatc aaaatcattt ccgaggagaa 240
attgaggaaa ccatcactga aagctttggt aatgatcata gcaccttgga tgggtattcc 300
agaagaacca ccttgtcttc aaaaatgtat cacaccaaag gacaagaagg ttctgtttgt 360
ctccggtcat cagactgtgc ctcaggattg tgttgtgcta gacacttctg gtccaagatc 420
tgtaaacctg tcctgaaaga aggtcaagtg tgtaccaagc ataggagaaa aggctctcat 480
ggactagaaa tattccagcg ttgttactgt ggagaaggtc tgtcttgcta agcggccgc 539
<210> 200
<211> 416
<212> DNA
<213> Homo sapiens
<400> 200
aagcttgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
```

```
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tectatgegt ggttgtttte ttgtagtagg tgtaggtggt ggttgeettg gactagtggt 180
ccgtgcaaaa tgatcgccc gattctggat gaaatcgctg acgaatatca gggcaaactg 240
accettecaa aacteaacat ceatcaaaac ccteecacte cecceaaata teecatceet 300
ggtatcccga ctctgctgct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc
<210> 201
<211> 416
<212> DNA
<213> Homo sapiens
<400> 201
aagcttgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
gtactcaaac gccacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tccatttgtg aggttgtgag gttgtggagt cggtatcctt ggtcttgggt gactagtggt 180
ccgtgcaaaa tgatcgccc gattctggat gaaatcgctg acgaatatca gggcaaactg 240
accettecaa aacteaacat ceatcaaaac ccteecate cecegaaata tegcatceet 300
ggtatcccga ctctgctgct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc
<210> 202
<211> 422
<212> DNA
<213> Homo sapiens
<400> 202
aagettgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tccggttgta ctagtgcggt gtgtggtgct tgggctgagg cgggtaggtt ttattgtact 180
agtggtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 240
aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 300
atccgtggta tcccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 360
ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc gtaagcggcc 420
gc
                                                                422
<210> 203
<211> 416
<212> DNA
<213> Homo sapiens
<400> 203
aagcttgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
ccgtgcaaaa tgatcgccc gattctggat gaaatcgctg acgaatatca gggcaaactg 240
acceptedaa aactgaacat ceatcaaaac cetegeacte cecegaaata tegeatceet 300
ggtatcccga ctctgctgct gttcaaaaac ggtgaagtgg cggcaaccaa aqtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc
<210> 204
<211> 154
<212> PRT
<213> Homo sapiens
<400> 204
```

WO 02/092015 PCT/US02/15982

032796-132.ST25

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Val Val Leu Cys Ser Arg Cys Gly Arg Leu Trp Arg Trp Ser Cys Gly Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 135 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala <210> 205 <211> 154 <212> PRT <213> Homo sapiens <400> 205 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu 40 Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Gly Trp Arg Trp 55 Cys Gly Arg Cys Gly Ala Leu Trp Trp Arg Arg Val Thr Ser Gly Pro 70 75 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala 150 <210> 206 <211> 154 <212> PRT <213> Homo sapiens <400> 206

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro

WO 02/092015 PCT/US02/15982

032796-132.ST25

<210> 207 <211> 154

<212> PRT

<213> Homo sapiens

<400> 207

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu 40 Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Gly Gly Gly 55 Met Ile Trp Glu Ala Trp Ser Cys Tyr Ala Cys Gly Thr Ser Gly Pro 70 75 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln

135

Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala

<210> 208 <211> 154

<212> PRT

<213> Homo sapiens

<400> 208

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

1 5 10 15

Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr

WO 02/092015 PCT/US02/15982

# 032796-132.ST25

20 25 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Leu Trp Ile Gly Pro Gly Asp Gln Gly Leu Phe Arg Arg Phe Val Phe Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 135 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala <210> 209 <211> 151 <212> PRT <213> Homo sapiens <400> 209 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Val Ser Ser Asp Gln Asn His Phe Arg 25 Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys 70 Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys 90 Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly 105 Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu 120 125 Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr Cys Gln Arg His 145 <210> 210 <211> 172 <212> PRT <213> Homo sapiens <400> 210 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro 10 Gly Ser Thr Gly Asp Gly Ser Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg Cys

PCT/US02/15982 **WO** 02/092015

# 032796-132.ST25

40 45 Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile 55 Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr 70 75 Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser 90 Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu 105 Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys 120 Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly 135 Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys 165 <210> 211 <211> 131 <212> PRT <213> Homo sapiens <400> 211 Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Tyr Ala Trp Leu Phe Ser Cys Ser Arg Cys Arg 35 45 Trp Trp Leu Pro Trp Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys 70 Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr 100 105 Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala 115 Asn Leu Ala 130 <210> 212 <211> 131 <212> PRT <213> Homo sapiens <400> 212 Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Arg His Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp

Cys Gly Pro Asn Ser Ile Cys Glu Val Val Arg Leu Trp Ser Arg Tyr

40 Pro Trp Ser Trp Val Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile

35

<210> 213 <211> 133

<212> PRT

<213> Homo sapiens

<400> 213

 Met
 Gly
 Asp
 Lys
 Ile
 Ile
 His
 Leu
 Thr
 Asp
 Asp
 Ser
 Phe
 Asp
 Thr
 Asp

 Val
 Leu
 Lys
 Ala
 Asp
 Gly
 Ala
 Ile
 Leu
 Val
 Asp
 Phe
 Trp
 Ala
 Glu
 Trp
 30
 Trp
 45
 Trp
 45
 Trp
 Ala
 45
 Trp
 Ala
 45
 Trp
 Ala
 Ala
 Trp
 45
 Trp
 Ala
 Trp
 Cys
 Lys
 Lys
 Lys
 Met
 Ile
 Ala
 Ala
 Ala
 Ala
 Trp
 Ala

<210> 214

130

<211> 131

<212> PRT

<213> Homo sapiens

<400> 214

 Met
 Gly
 Asp
 Lys
 Ile
 Ile
 His
 Leu
 Thr
 Asp
 Asp
 Ser
 Phe
 Asp
 Thr
 Asp

 Val
 Leu
 Lys
 Ala
 Asp
 Gly
 Ala
 Ile
 Leu
 Val
 Asp
 Phe
 Trp
 Ala
 Gly
 Pro
 Gly
 Asp
 Phe
 Trp
 Ala
 Gly
 Pro
 Gly
 Asp
 Gln
 Gly
 Leu
 Phe
 Phe

WO 02/092015 PCT/US02/15982

032796-132.ST25

Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr

100 105 11/0.

Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala
115 120 125

Asn Leu Ala
130

# (19) World Intellectual Property Organization International Bureau





# (43) International Publication Date 21 November 2002 (21.11.2002)

# **PCT**

# (10) International Publication Number WO 02/092015 A3

(51) International Patent Classification⁷: A61K 39/395, 39/00, 39/38

(21) International Application Number: PCT/US02/15982

(22) International Filing Date: 17 May 2002 (17.05.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 60/291,311
 17 May 2001 (17.05.2001)
 US

 60/353,058
 1 February 2002 (01.02.2002)
 US

 60/361,293
 4 March 2002 (04.03.2002)
 US

(71) Applicants (for all designated States except US):

GENOME THERAPEUTICS CORPORATION

[US/US]; 100 Beaver Street, Waltham, MA 02453 (US).

WYETH [US/US]; Five Giralda Farms, Madison, NJ 07928 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALLEN, Kristina [US/US]; 11 Oliver Lane, Hopkinton, MA 01748-3108 (US). ANISOWICZ, Anthony [US/US]; 50 Upham Street, West Newton, MA 02465 (US). BHAT, Bheem, M. [IN/US]; 1214 Mayapple Lane, West Chester, PA 19380 (US). DAMAGNEZ, Veronique [FR/US]; 125 Water Street, Framingham, MA 01701 (US). ROBINSON, John, Allen [US/US]; 23 Webb Road, Downingtown, PA

19335 (US). YAWORSKY, Paul, J. [US/US]; 13 Hobart Lane, Rockland, MA 02370 (US).

- (74) Agents: REA, Teresa, Stanek et al.; Burns, Doane, Swecker & Mathis L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

# Published:

- with international search report
- (88) Date of publication of the international search report: 23 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.



# (54) Title: REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

(57) Abstract: The present invention provides reagents, compounds, compositions, and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk, including Dkk-1. The various nucleic acids, polypeptides, antibodies, assay methods, diagnostic methods, and methods of treatment of the present invention are related to and impact on Dkk, LRP5, LRP6, HBM, and Wnt signaling. Dkk, LRP5, LRP6, HBM, and Wnt are implicated in bone and lipid cellular signaling. Thus, the present invention provides reagents and methods for modulating lipid levels and/or bone mass and is useful in the treatment and diagnosis of abnormal lipid levels and bone mass disorders, such as osteoporosis.

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/15982

A. CLASSIFICATION OF SUBJECT MATTER				
IPC(7) : A61K 39/395, 00, 38				
US CL: 424/130.1, 184.1  According to International Patent Classification (IPC) or to both n	ational classification and IPC			
B. FIELDS SEARCHED	automic crassification and if C			
Minimum documentation searched (classification system followed	by classification symbols)			
U.S. : 424/130.1, 184.1	-,,			
Documentation searched other than minimum documentation to the	extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (nan	ne of data base and, where practicable, search terms used)			
Please See Continuation Sheet				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category * Citation of document, with indication, where ap				
A GONG, Y et al. LDL RECEPTOR-RELATED PRO				
ACCRUAL AND EYE DEVELOPMENT, CELL, ZORN A. WNT SIGNALLING: ANTABONISTIC				
BIOLOGY, 2001, VOL.11, No.15, PAGES R592-F	· · · · · · · · · · · · · · · · · · ·			
A WO 9846743 A1 (THE WELL-COME TRUST LI	VIITED), 22 OCTOBER 1998 1-11 and 13-23			
(22.10.98) see entire document.	·			
Further documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the			
"A" document defining the general state of the art which is not considered to be of particular relevance	principle or theory underlying the invention			
	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step			
	when the document is taken alone			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as	"Y" document of particular relevance; the claimed invention cannot be			
specified)	considered to involve an inventive step when the document is combined with one or more other such documents, such combination			
"O" document referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in the art			
"P" document published prior to the international filing date but later than the	"&" document member of the same patent family			
priority date claimed				
Date of the actual completion of the international search  Date of mailing of the international search report				
18 March 2003 (18.03.2003) US AUG ZUUJ				
Name and mailing address of the ISA/US  Commissioner of Patents and Trademarks  Atthrized ficer  Commissioner of Patents and Trademarks				
Box PCT Washington, D.C. 20231				
Facsimile No. (703)305-3230	Telephone No. 703/308-0196			

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/15982

•	Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
<b>2.</b>	Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3.	Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule				
Box II Ob	servations where unity of invention is lacking (Continuation of Item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet					
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-11 and 13-23				
Remark on	Protest				

PCT/US02/15982
----------------

# INTERNATIONAL SEARCH REPORT

# BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

- I. Claims 1-11 and 13-23, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to LRP5.
- II. Claims 1-11 and 13-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to LRP6.
- III. Claims 1-11 and 13-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to HBM.
- IV. Claims 1-10, 12-14 and 16-23 drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to LRP5.
- V. Claims 1-10, 12-14 and 16-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to LRP6.
- VI. Claims 1-10, 12-14 and 16-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to HBM.
- VII. Claims 2 4, 7-11, 13-20, 21-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.
- VIII. Claims 2 4, 7-11, 13-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.
- IX. Claims 2 4, 7-11, 13-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.
- X. Claims 2 4, 7-10, 12-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with RP5, wherein said composition enhances Dkk binding to LRP5.
- XI. Claims 2 4, 7-10, 12-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.
- XII. Claims 2 4, 7-10, 12-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition enhances Dkk binding to HBM.
- XIII. Claims 2 4, 7-11, 13-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.
- XIV. Claims 2 4, 7-11, 13-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.
- XV. Claims 2 4, 7-11, 13-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM

# INTERNATIONAL SEARCH REPORT

- XVI. Claims 2 4, 7-10, 12-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.
- XIV. Claims 2 4, 7-10, 12-20, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.
- XV. Claims 2 4, 7-10, 12-20, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.
- XVI. Claims 2 4, 7-11, 13-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.
- XVII. XVI. Claims 2 4, 7-11, 13-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to IRP6
- XVIII. Claims 2 4, 7-11, 13-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.
- XIX. Claims 2 4, 7-10, 12-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.
- XX. Claims 2 4, 7-10, 12-20, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.
- XXI. Claims 2 4, 7-10, 12-20, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.
- XXII. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of Dkk.
- XXIII. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP5.
- XXIV. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP6.
- XXV. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of HBM.
- XXVI. Claims 2, 37-43, 44-47, drawn to a method of screening for a compound which modulates the interaction of DKK with LRP5.
- XXVII. Claims 2, 37-43, 47, drawn to a method of screening for a compound which modulates the interaction of DKK with LRP6.
- XXVIII. Claims 2, 37-43, 47, drawn to a method of screening for a compound which modulates the interaction of DKK with HBM.
- XXIX. Claims 2,41-43, 48-49, drawn to a method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting proteins.

# INTERNATIONAL SEARCH REPORT

XXX. Claims 50-63 drawn to a composition comprising a LRP5 and a pharmaceutical acceptable carrier thereof.

XXXI. Claims 50- 59, 63 drawn to a composition comprising a LRP6 and a pharmaceutical acceptable carrier thereof.

XXXII. Claims 50- 59, 63 drawn to a composition comprising a HBM and a pharmaceutical acceptable carrier thereof.

XXXIII. Claims 2 and 64 drawn to a method for identifying compound which modulate Dkk and LRP5 interaction.

XXXIV. Claims 2 and 64 drawn to a method for identifying compound which modulate Dkk and LRP6 interaction.

XXXV. Claims 2 and 64 drawn to a method for identifying compound which modulate Dkk and HBM interaction.

XXXVI. Claims 2 and 65 drawn to a method of identifying binding partners for a Dkk protein.

XXXVII. Claims 66-68 drawn to a nucleic acid and a vector encoding a Dkk interacting protein.

XXXVIII. Claims 69-90, drawn to a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP5.

XXXIX. Claims 69-87, drawn to a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP6.

XL. Claims 69-87, drawn to a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a HBM.

XLI. Claims 91-92 drawn to a transgenic animal.

XLII. Claims 2 and 93 drawn to a method for identifying potential compound which modulate Dkk activity.

XLIII - LXII. Claim 94, drawn to one specific peptide aptamer of one specific SEQ ID NOs: 171-88; 189-192.

LXIII- LXXIX. Claims 95-97, drawn to an antibody which specifically recognizes and binds to specific peptides of SEQ ID NOs: 110-127.

LXXX. Claims 2, 98-100, drawn to a method of identifying Dkk interacting protein which modulate the interaction of Dkk with Wnt signaling pathway.

LXXXI. Claims 2, 25 and 101-104, drawn to a method for identifying Dkk interacting proteins.

LXXXII. Claims 2, 105-106, drawn to a method for identifying compounds which modulate Dkk and LRP5 interaction.

LXXXIII. Claims 2, 105-106, drawn to a method for identifying compounds which modulate Dkk and LRP6 interaction.

LXXXIV. Claims 2, 105-106, drawn to a method for identifying compounds which modulate Dkk and HBM interaction.

LXXXV. Claims 2, 25, 107-110, drawn to a method for identifying compound which modulate the interaction of Dkk with Wnt signaling pathway.

LXXXVI. Claims 2, 111, drawn to a method of testing compounds that modulate Dkk-mediated activity in a mammal.

LXXXVII. Claims 2, 112, 113, drawn to method of screening for compound or composition which modulate the interaction of Dkk and Dkk interacting protein.

LXXXVIII-CIX. Claim 114 drawn to antibody which recognizes and binds to one specific SEQ ID NOs: 171-192.

	INTERNATIONAL SEARCH REPORT	
	·	
	The inventions listed as Groups 1-109 do not relate to a single general inventive of Rule 13.2, they lack the same or corresponding special technical features for the	
	The invention listed as groups 1-109 do not related to a single general inventive of Rule 13.2, hey lack the same or corresponding special technical features for the f	
	The special technical features of Group I is considered a method of regulating L composition which inhibits Dkk binding to LRP5.	RP5 activity in a subject, comprising administering a
-	The special technical features of Group II is considered a method of regulating I a composition which inhibits Dkk binding to LRP6.	
	The special technical features of Group III is considered a method of regulating I a composition which inhibits Dkk binding to HBM.  The special technical features of Group IV is considered a method of regulating I	
	a composition which enhances Dkk binding to LRP5.  The special technical features of Group V is considered a method of regulating L	
	composition which enhances Dkk binding to LRP6.  The special technical features of Group VI is considered a method of regulating to Composition which, enhances Dkk binding to HPM.	

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/15982

# INTERNATIONAL SEARCH REPORT

The special technical features of Group VII is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.

The special technical features of Group VIII is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.

The special technical features of Group IX is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.

The special technical features of Group X is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with RP5, wherein said composition enhances Dkk binding to LRP5.

The special technical features of Group XI is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.

The special technical features of Group XII is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition enhances Dkk binding to HBM.

The special technical features of Group XIII is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.

The special technical features of Group XIV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.

The special technical features of Group XV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.

The special technical features of Group XVI is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.

The special technical features of Group XIV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.

The special technical features of Group XV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.

The special technical features of Group XVI is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.

The special technical features of Group XVII is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.

The special technical features of Group XVIII is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.

The special technical features of Group XIX is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.

# INTERNATIONAL SEARCH REPORT

The special technical features of Group XX is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.

The special technical features of Group XXI is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.

The special technical features of Group XXII is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of Dkk.

The special technical features of Group XXIII is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP5.

The special technical features of Group XXIV is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP6.

The special technical features of Group XXV is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of HBM.

The special technical features of Group XXVI is considered a method of screening for a compound which modulates the interaction of DKK with LRP5.

The special technical features of Group XXVII is considered a method of screening for a compound which modulates the interaction of DKK with LRP6.

The special technical features of Group XXVIII is considered a method of screening for a compound which modulates the interaction of DKK with HBM.

The special technical features of Group XXIX is considered a method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting proteins.

The special technical features of Group XXX is considered a composition comprising a LRP5 and a pharmaceutical acceptable carrier thereof.

The special technical features of Group XXXI is considered a composition comprising a LRP6 and a pharmaceutical acceptable carrier thereof.

The special technical features of Group XXXII is considered a composition comprising a HBM and a pharmaceutical acceptable carrier thereof.

The special technical features of Group XXXIII is considered a method for identifying compound which modulate Dkk and LRP5 interaction.

The special technical features of Group XXXIV is considered a method for identifying compound which modulate Dkk and LRP6 interaction.

The special technical features of Group XXXV is considered a method for identifying compound which modulate Dkk and HBM interaction.

The special technical features of Group XXXVI is considered a method of identifying binding partners for a Dkk protein.

The special technical features of Group XXXVII is considered a nucleic acid and a vector encoding a Dkk interacting protein.

The special technical features of Group XXXVIII is considered a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP5.

# INTERNATIONAL SEARCH REPORT

The special technical features of Group XXXIX is considered a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP6.

The special technical features of Group XL is considered a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a HBM.

The special technical features of Group XLI is considered a transgenic animal.

The special technical features of Group XLII is considered a method for identifying potential compound which modulate Dkk activity.

The special technical features of Group XLIII - LXII is considered one specific peptide aptamer of one specific SEQ ID NOs: 171-88: 189-192.

The special technical features of Group LXIII- LXXIX is considered an antibody which specifically recognizes and binds to specific peptides of SEQ ID NOs: 110-127.

The special technical features of Group LXXX is considered a method of identifying Dkk interacting protein which modulate the interaction of Dkk with Wnt signaling pathway.

The special technical features of Group LXXXI is considered a method for identifying Dkk interacting proteins.

The special technical features of Group LXXXII is considered a method for identifying compounds which modulate Dkk and LRPS interaction.

The special technical features of Group LXXXIII is considered a method for identifying compounds which modulate Dkk and LRP6 interaction.

The special technical features of Group LXXXIV is considered a method for identifying compounds which modulate Dkk and HBM interaction.

The special technical features of Group LXXXV is considered a method for identifying compound which modulate the interaction of Dkk with Wnt signaling pathway.

The special technical features of Group LXXXVI is considered a method of testing compounds that modulate Dkk-mediated activity in a mammal.

The special technical features of Group LXXXVII is considered a method of screening for compound or composition which modulate the interaction of Dkk and Dkk interacting protein.

The special technical features of Group LXXXVIII-CIX. is considered an antibody which recognizes and binds to one specific SEQ ID NOs: 171-192.

Accordingly, Groups I-CIX are not so linked by the same or corresponding special technical feature within meaning of PCT Rule 13.2 so as to form a single general inventive concept.

# INTERNATIONAL SEARCH REPORT Biosis, CAPLUS, SciSearch, Medline, EMBASE, WEST, USPATFULL, PCTFULL search terms; Allen K; Anisowicz, A; Bhat, B; Damagnez, V, Robinson, J; Yaworsky, P; DKK, Dkk1, LRP5, SEQ ID NO:28, protein OST262; osteoporosis.

PCT/US02/15982