

MachineLearning Project /박효신/신우경/유민우/장문정

목차

- 1. 프로젝트 주제
- 2. 데이터 출처
- 3. 변수설명
- 4. 분석 Tool
- 5. EDA
- 6. Model Fitting
- 7. Model 비교/선택
- 8. Model 적용, 예측
- 9. 결론

머신러닝 프로젝트 주제

COVID-19 감염으로 인한 사망자 수 예측

- 백신 접종자 수, 주간 병원 수용 가능 환자수, 양성 환자 비율 등 여러가지 요인을 통해 COVID-19 감염으로 인한 사망자 수를 예측
- 한국, 일본, 미국, 유럽, 아시아 각각 모델을 fitting

데이터 출처

Our World in Data

(https://ourworldindata.org/)

Demographic Health
Food and Agriculture
Energy and Environment
Innovation and Technological

TRUSTED IN RESEARCH AND MEDIA Science nature PNAS STATISTICAL BBC The New York Times CNN FI theguardian THE WALL STREET JOURNAL. The Washington Post Vox USED IN TEACHING HARVARD Stanford Berkeley CAMBRIDGE OXFORD III

0.8cm

변수 설명

변수명	변수 설명
new_death	누적 확진자 수
icu_patients	위중증 환자수
total_vaccinations	1차 + 2차 + 부스터 샷 누적 접종자 수
stringency_index	엄격성지수(학교/직장 닫음, 여행 금지 등, 0~100)
new_cases	신규 확진자 수
new_deaths	신규사망자 수
weekly_hosp_admissions_	주간 병원 수용 가능 환자수
weekly_icu_admissions	주간 병원 수용 가능 위중증 환자수
positive_rate	양성 환자 비율
reproduction_rate	감염 재생산지수
new_tests	신규 코로나 검사 수
total_tests	누적 코로나 검사 수

분석 Tool

Tableau Python Sklearn xgboost statsmodels.api pandas numpy seaborn matplotlib.pyplot

EDA boxplot /distplot

y값인 new_death와 많은 변수가 높은 양의 상관관계

y값인 new_death와 stringency_index -0.3의 음 의 상관관계 : 사회적 거리두기와 사망자 수가 반대방향의 상관관계

(a) Linear regression model

(b) Gradient Boost model

(c) XGB model

(a) Linear regression model

stepwise 변수선택

new_cases total_cases icu_patients new_tests weekly_hosp_admissions, stringency_index total_vaccinations,

(a) Linear regression model

model summary

R-squared (uncentered):	0.932
Adj. R-squared (uncentered):	0.931
F-statistic:	942.9
Prob (F-statistic):	0.00
Log-Likelihood:	-3669.4
AIC:	7363.
BIC:	7420.

(b) Gradient Boost model

model summary

(c) XGB model

model summary

Model 비교/선택

RMSE값, r2값 확인

```
kor pred GBM = kor gb reg.predict(X).round(0)
GBM_rmse = np.sqrt(mean_squared_error(y, kor_pred_GBM))
lm = sm.OLS(y, X).fit()
kor_pred_lm = lm.predict(X).round(0)
LM_rmse = np.sqrt(mean_squared_error(y, kor_pred_lm))
X_selected_variables = COVID_KOR[selected_variables]
lm_selected_variables = sm.OLS(y,X_selected_variables).fit()
kor_pred_lm_selected_variables = lm_selected_variables.predict(X_selected_variables).round(0)
LM_selected_variables_rmse = np.sqrt(mean_squared_error(y, kor_pred_lm_selected_variables))
xg_reg = XGBRegressor(objective ='reg:linear',
                          colsample bytree = 0.3,
                          learning_rate = 0.1,
                          max_depth = 5,
                          alpha = 10,
                          n = 10
xg_reg.fit(X,y)
pred_XGB = xg_reg.predict(X)
XGB_rmse = np.sqrt(mean_squared_error(y, pred_XGB))
lm_r2 = r2_score(kor_pred_lm,y)
lm_selected_variables_r2 = r2_score(kor_pred_lm_selected_variables,y)
GMB_r2 = r2_score(kor_pred_GBM,y)
XGB_r2 = r2_score(pred_XGB,y)
```

Model 비교/선택

	rmse	R-squared
Linear regression	19.3931	0.9124
GBM	5.6976	0.9928
XGB	5.9196	0.9921

rmse가 제일 낮고, R-squared가 가장 높은 GBM 모델 채택

한국

Train R-Squared: 0.9945 Test R-Squared: 0.8696

일본

Train R-Squared : 0.9751 Test R-Squared : 0.9176

미국

Train R-Squared : 0.9587 Test R-Squared : 0.8943

아시아

Train R-Squared: 0.9795 Test R-Squared: 0.9325

유럽

Train R-Squared : 0.9551 Test R-Squared : 0.8992

소득1/3분위

소득2/3분위

소득3/3분위

Train R-Squared: 0.9445

Test R-Squared: 0.8658

Train R-Squared: 0.9722 Train R-Squared: 0.9802

Test R-Squared: 0.9379 Test R-Squared: 0.9150

결론

total_tests, icu_patients, new_cases를 주요 요인으로 삼아 회귀분석을 하는 GBM의 성능이 가장 좋음

변수 중 유일하게 stringency_index만 음의 상관관계 가짐 COVID-19 확진자 수가 감소해도 stringency_index가 떨어지게 되면 COVID-19 확진자수와 사망자수가 증가

COVID-19 확진자수가 줄어들고 있더라도 사회적 거리두기와 같은 의도적 조심성이 COVID-19 사망자 수를 감소시킬 수 있다

한국

전세계

전세계

