Calculus I Miscellaneous chain rule problems, part 1

Todor Miley

2019

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x)$
Let $g(u) =$
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \begin{pmatrix} \\ \end{pmatrix} \begin{pmatrix} \\ \end{pmatrix}$