EXAMPLE PROBLEM 2.1

= 140.115 amu

Average Atomic Weight Computation for Cerium

Cerium has four naturally occurring isotopes: 0.185% of 136 Ce, with an atomic weight of 135.907 amu; 0.251% of 138 Ce, with an atomic weight of 137.906 amu; 88.450% of 140 Ce, with an atomic weight of 139.905 amu; and 11.114% of 142 Ce, with an atomic weight of 141.909 amu. Calculate the average atomic weight of Ce.

Solution

The average atomic weight of a hypothetical element M, \overline{A}_{M} , is computed by adding fraction-of-occurrence—atomic weight products for all its isotopes; that is,

$$\overline{A}_{\rm M} = \sum_{i} f_{i_{\rm M}} A_{i_{\rm M}} \tag{2.2}$$

In this expression, $f_{i_{\rm M}}$ is the fraction-of-occurrence of isotope i for element M (i.e., the percentage-of-occurrence divided by 100), and $A_{i_{\rm M}}$ is the atomic weight of the isotope.

For cerium, Equation 2.2 takes the form

$$\overline{A}_{\text{Ce}} = f_{^{136}\text{Ce}}A_{^{136}\text{Ce}} + f_{^{138}\text{Ce}}A_{^{138}\text{Ce}} + f_{^{140}\text{Ce}}A_{^{140}\text{Ce}} + f_{^{142}\text{Ce}}A_{^{142}\text{Ce}}$$

Incorporating values provided in the problem statement for the several parameters leads to

$$\overline{A}_{\text{Ce}} = \left(\frac{0.185\%}{100}\right) (135.907 \text{ amu}) + \left(\frac{0.251\%}{100}\right) (137.906 \text{ amu}) + \left(\frac{88.450\%}{100}\right) (139.905 \text{ amu}) + \left(\frac{11.114\%}{100}\right) (141.909 \text{ amu})$$

$$= (0.00185)(135.907 \text{ amu}) + (0.00251)(137.906 \text{ amu}) + (0.8845)(139.905 \text{ amu}) + (0.11114)(141.909 \text{ amu})$$

EXAMPLE PROBLEM 2.2

Computation of Attractive and Repulsive Forces between Two Ions

The atomic radii of K⁺ and Br⁻ ions are 0.138 and 0.196 nm, respectively.

- (a) Using Equations 2.9 and 2.10, calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another).
- **(b)** What is the force of repulsion at this same separation distance?

Solution

(a) From Equation 2.5b, the force of attraction between two ions is

$$F_A = \frac{dE_A}{dr}$$

Whereas, according to Equation 2.9,

$$E_A = -\frac{A}{r}$$

Now, taking the derivation of E_A with respect to r yields the following expression for the force of attraction F_A :

$$F_A = \frac{dE_A}{dr} = \frac{d\left(-\frac{A}{r}\right)}{dr} = -\left(\frac{-A}{r^2}\right) = \frac{A}{r^2}$$
 (2.12)

Now substitution into this equation the expression for A (Eq. 2.10) gives

$$F_A = \frac{1}{4\pi\epsilon_0 r^2} (|Z_1|e)(|Z_2|e) \tag{2.13}$$

Incorporation into this equation values for e and ϵ_0 leads to

$$F_A = \frac{1}{4\pi (8.85 \times 10^{-12} \,\mathrm{F/m})(r^2)} [|Z_1|(1.602 \times 10^{-19} \,\mathrm{C})][|Z_2|(1.602 \times 10^{-19} \,\mathrm{C})]$$

$$= \frac{(2.31 \times 10^{-28} \,\mathrm{N \cdot m^2})(|Z_1|)(|Z_2|)}{r^2}$$
(2.14)

For this problem, r is taken as the interionic separation r_0 for KBr, which is equal to the sum of the K⁺ and Br⁻ ionic radii inasmuch as the ions touch one another—that is,

$$r_0 = r_{K^+} + r_{Br^-}$$
 (2.15)
= 0.138 nm + 0.196 nm
= 0.334 nm
= 0.334 × 10⁻⁹ m

When we substitute this value for r into Equation 2.14, and taking ion 1 to be K^+ and ion 2 as Br^- (i.e., $Z_1 = +1$ and $Z_2 = -1$), then the force of attraction is equal to

$$F_A = \frac{(2.31 \times 10^{-28} \,\mathrm{N} \cdot \mathrm{m}^2)(|+1|)(|-1|)}{(0.334 \times 10^{-9} \,\mathrm{m})^2} = 2.07 \times 10^{-9} \,\mathrm{N}$$

(b) At the equilibrium separation distance the sum of attractive and repulsive forces is zero according to Equation 2.4. This means that

$$F_R = -F_A = -(2.07 \times 10^{-9} \,\text{N}) = -2.07 \times 10^{-9} \,\text{N}$$

EXAMPLE PROBLEM 2.3

Calculation of the Percent Ionic Character for the C-H Bond

Compute the percent ionic character (%IC) of the interatomic bond that forms between carbon and hydrogen.

Solution

The %IC of a bond between two atoms/ions, A and B (A being the more electronegative) is a function of their electronegativities $X_{\rm A}$ and $X_{\rm B}$, according to Equation 2.16. The electronegativities for C and H (see Figure 2.9) are $X_{\rm C}=2.5$ and $X_{\rm H}=2.1$. Therefore, the %IC is

%IC =
$$\{1 - \exp[-(0.25)(X_{\rm C} - X_{\rm H})^2]\} \times 100$$

= $\{1 - \exp[-(0.25)(2.5 - 2.1)^2]\} \times 100$
= 3.9%

Thus the C—H atomic bond is primarily covalent (96.1%).

2.4 Indium has two naturally occurring isotopes: ¹¹³In with an atomic weight of 112.904 amu, and ¹¹⁵In with an atomic weight of 114.904 amu. If the average atomic weight for In is 114.818 amu, calculate the fraction-of-occurrences of these two isotopes.

Solution

The average atomic weight of indium (\overline{A}_{In}) is computed by adding fraction-of-occurrence—atomic weight products for the two isotopes—i.e., using Equation 2.2, or

$$\overline{A}_{\text{In}} = f_{113}_{\text{In}} A_{113}_{\text{In}} + f_{115}_{\text{In}} A_{115}_{\text{In}}$$

Because there are just two isotopes, the sum of the fracture-of-occurrences will be 1.000; or

$$f_{113}_{\text{In}} + f_{115}_{\text{In}} = 1.000$$

which means that

$$f_{113}_{\text{In}} = 1.000 - f_{115}_{\text{In}}$$

Substituting into this expression the one noted above for f_{113} _{In}, and incorporating the atomic weight values provided in the problem statement yields

114.818 amu =
$$f_{113}$$
{In} A{113} _{In} + f_{115} _{In} A_{115} _{In}

114.818 amu =
$$(1.000 - f_{113}_{In})A_{113}_{In} + f_{115}_{In}A_{115}_{In}$$

114.818 amu =
$$(1.000 - f_{115_{In}})(112.904 \text{ amu}) + f_{115_{In}}(114.904 \text{ amu})$$

114.818 amu = 112.904 amu -
$$f_{115}_{In}$$
 (112.904 amu) + f_{115}_{In} (114.904 amu)

Solving this expression for f_{115}_{In} yields f_{115}_{In} = 0.957. Furthermore, because

$$f_{113}_{\text{In}} = 1.000 - f_{115}_{\text{In}}$$

then

$$f_{113_{\text{In}}} = 1.000 - 0.957 = 0.043$$

- 2.5 (a) How many grams are there in one amu of a material?
- (b) Mole, in the context of this book, is taken in units of gram-mole. On this basis, how many atoms are there in a pound-mole of a substance?

Solution

(a) In order to determine the number of grams in one amu of material, appropriate manipulation of the amu/atom, g/mol, and atom/mol relationships is all that is necessary, as

$$\#g/amu = \left(\frac{1 \text{ mol}}{6.022 \times 10^{23} \text{ atoms}}\right) \left(\frac{1 \text{ g/mol}}{1 \text{ amu/atom}}\right)$$

$$= 1.66 \times 10^{-24} \text{ g/amu}$$

(b) Since there are $453.6 \text{ g/lb}_{\text{m}}$,

1 lb-mol =
$$(453.6 \text{ g/lb}_{\text{m}})(6.022 \text{ } 10^{23} \text{ atoms/g-mol})$$

$$= 2.73 \times 10^{26}$$
 atoms/lb-mol

2.9 Give the electron configurations for the following ions: P^{5+} , P^{3-} , Sn^{4+} , Se^{2-} , Γ , and Ni^{2+} .

Solution

The electron configurations for the ions are determined using Table 2.2 (and Figure 2.8).

- P^{5+} : From Table 2.2, the electron configuration for an atom of phosphorus is $1s^22s^22p^63s^23p^3$. In order to become an ion with a plus five charge, it must lose five electrons—in this case the three 3p and the two 3s. Thus, the electron configuration for a P^{5+} ion is $1s^22s^22p^6$.
- P^{3-} : From Table 2.2, the electron configuration for an atom of phosphorus is $1s^22s^22p^63s^23p^3$. In order to become an ion with a minus three charge, it must acquire three electrons—in this case another three 3p. Thus, the electron configuration for a P^{3-} ion is $1s^22s^22p^63s^23p^6$.
- $\mathrm{Sn^{4+}}$: From the periodic table, Figure 2.8, the atomic number for tin is 50, which means that it has fifty electrons and an electron configuration of $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^2$. In order to become an ion with a plus four charge, it must lose four electrons—in this case the two 4s and two 5p. Thus, the electron configuration for an $\mathrm{Sn^{4+}}$ ion is $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$.
- Se²⁻: From Table 2.2, the electron configuration for an atom of selenium is $1s^22s^22p^63s^23p^63d^{10}4s^24p^4$. In order to become an ion with a minus two charge, it must acquire two electrons—in this case another two 4p. Thus, the electron configuration for an Se²⁻ ion is $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$.
- Γ : From the periodic table, Figure 2.8, the atomic number for iodine is 53, which means that it has fifty three electrons and an electron configuration of $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^5$. In order to become an ion with a minus one charge, it must acquire one electron—in this case another 5p. Thus, the electron configuration for an Γ ion is $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$.
- Ni²⁺: From Table 2.2, the electron configuration for an atom of nickel is $1s^22s^22p^63s^23p^63d^84s^2$. In order to become an ion with a plus two charge, it must lose two electrons—in this case the two 4s. Thus, the electron configuration for a Ni²⁺ ion is $1s^22s^22p^63s^23p^63d^8$.

- 2.13 Without consulting Figure 2.8 or Table 2.2, determine whether each of the following electron configurations is an inert gas, a halogen, an alkali metal, an alkaline earth metal, or a transition metal. Justify your choices.
- (a) $1s^22s^22p^63s^23p^5$
- (b) $1s^22s^22p^63s^23p^63d^74s^2$
- $(c) 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$
- (d) $1s^22s^22p^63s^23p^64s^1$
- (e) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^55s^2$
- (f) $1s^22s^22p^63s^2$

Solution

- (a) The $1s^22s^22p^63s^23p^5$ electron configuration is that of a halogen because it is one electron deficient from having a filled p subshell.
- (b) The $1s^22s^22p^63s^23p^63d^74s^2$ electron configuration is that of a transition metal because of an incomplete d subshell.
- (c) The $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$ electron configuration is that of an inert gas because of filled 4s and 4p subshells.
 - (d) The $1s^22s^22p^63s^23p^64s^1$ electron configuration is that of an alkali metal because of a single s electron.
- (e) The $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^55s^2$ electron configuration is that of a transition metal because of an incomplete d subshell.
 - (f) The $1s^22s^22p^63s^2$ electron configuration is that of an alkaline earth metal because of two s electrons.

2.18 The net potential energy between two adjacent ions, E_N , may be represented by the sum of Equations 2.9 and 2.11; that is,

$$E_N = -\frac{A}{r} + \frac{B}{r^n} \tag{2.17}$$

Calculate the bonding energy E_0 in terms of the parameters A, B, and n using the following procedure:

- 1. Differentiate E_N with respect to r, and then set the resulting expression equal to zero, since the curve of E_N versus r is a minimum at E_0 .
 - 2. Solve for r in terms of A, B, and n, which yields r_0 , the equilibrium interionic spacing.
 - 3. Determine the expression for E_0 by substitution of r_0 into Equation 2.17.

Solution

(a) Differentiation of Equation 2.17 yields

$$\frac{dE_N}{dr} = \frac{d\left(-\frac{A}{r}\right)}{dr} + \frac{d\left(\frac{B}{r^n}\right)}{dr}$$

$$= \frac{A}{r^{(1+1)}} - \frac{nB}{r^{(n+1)}} = 0$$

(b) Now, solving for $r = r_0$

$$\frac{A}{r_0^2} = \frac{nB}{r_0^{(n+1)}}$$

or

$$r_0 = \left(\frac{A}{nB}\right)^{1/(1-n)}$$

(c) Substitution for r_0 into Equation 2.17 and solving for $E = E_0$ yields

$$E_0 = -\frac{A}{r_0} + \frac{B}{r_0^n}$$

$$= -\frac{A}{\left(\frac{A}{nB}\right)^{1/(1-n)}} + \frac{B}{\left(\frac{A}{nB}\right)^{n/(1-n)}}$$

Fundamentals of Engineering Questions and Problems

2.1FE The chemical composition of the repeat unit for nylon 6,6 is given by the formula $C_{12}H_{22}N_2O_2$. Atomic weights for the constituent elements are $A_C = 12$, $A_H = 1$, $A_N = 14$, and $A_O = 16$. According to this chemical formula (for nylon 6,6), the percent (by weight) of carbon in nylon 6,6 is most nearly:

- (A) 31.6%
- (B) 4.3%
- (C) 14.2%
- (D) 63.7%

Solution

The total atomic weight of one repeat unit of nylon 6,6, A_{total} , is calculated as

$$A_{total} = (12 \text{ atoms})(A_{\rm C}) + (22 \text{ atoms})(A_{\rm H}) + (2 \text{ atoms})(A_{\rm N}) + (2 \text{ atoms})(A_{\rm O})$$

= (12 atoms)(12 g/mol) + (22 atoms)(1 g/mol) + (2 atoms)(14 g/mol) + (2 atoms)(16 g/mol) = 226 g/mol

Therefore the percent by weight of carbon is calculated as

$$C(wt\%) = \frac{(12 \text{ atoms})(A_C)}{A_{\text{total}}}$$
 100

$$= \frac{(12 \text{ atoms})(12 \text{ g/mol})}{226 \text{ g/mol}}$$
 100 = 63.7%

which is answer D.