Synthese - IEEE754

Jaunart Gilles

1 Conversion decimal vers IEEE754

1.1 Signe:

Si x > 0, le bit de signe vaut 0. Si x < 0, le bit de signe vaut 1. Par la suite on prendra la valeur absolue de X.

1.2 Normalisation:

x est normalisé à l'aide de n divisions successives afin que $x'.2^n=x$ où $1\leq x'<2.$

Par exemple, x=6.2 est divisé n=2 fois par 2 pour obtenir x'=1,55 tel que $1,55.2^2=6,2$

1.3 Déduction de l'exposant:

On pose $2^n = 2^{e-B}$, ce qui permet de déduire e = n + B. On vérifie alors que le nombre est bien représentable.

Si $0 < e < 2^{E-1}$, alors la représentation normalisée doit etre utilisée.

Si $e \le 0$, alors on doit utiliser la dénormalisée.

1.4 Déduction de la mantisse en représentation normalisée:

On pose $x' = 1 + \frac{m}{2^M}$, ce qui permet de déduire $m = (x'-1).2^M$

1.5 Déduction de la mantisse en représenation dénormalisée:

Ici l'exposant est fixe, e=1. On pose $x=\frac{m}{2^M}.2^{1-B}$, ce qui permet de déduire $m=x.2^{M-(1-B)}$

2 Arrondi avec IEEE754

2.1 Round-to-nearest-even:

On arrondit au nombre le plus proche. Ex: $2,4\to 2$; $1,7\to 2$ Si on se retrouve pile entre 2 nombres pairs (ex: 1,35; 2,65; 3,15) alors on arrondit au nombre pair le plus proche. Ex: $1,35\to 1,4$ car 4 est pair et pas 3; $2,65\to 2,6$; $3,15\to 3,2$

2.2 Round-toward-zero:

On tronque la partie non-représentable. Ex: 1, 4 \rightarrow 1 ; 2, 7 \rightarrow 2 ; $-2, 5 \rightarrow -2$

2.3 Round-down:

Il s'agit de l'arrondi par défaut. Ex: 1,4 \rightarrow 1 ; 2,7 \rightarrow 2 ; $-2,5 \rightarrow -3$

2.4 Round-up:

Il s'agit de l'arrondi par excés. Ex: 1,4 \rightarrow 2 ; 2,7 \rightarrow 3 ; $-2,5 \rightarrow -2$

3 Typologie des erreurs

3.1 Erreur vraie:

 $\Delta x = X - \hat{X}$ où \hat{X} est la valeur de nombre représenté.

3.2 Erreur absolue:

$$|\Delta x| = |X - \hat{X}|$$

3.3 Erreur relative:

$$\epsilon_X = \frac{|X - \hat{X}|}{|X|}$$

3.4 Epsilon machine:

La précision machine ou "epsilon machine" est une borne sur l'erreur relative qui dépend du format de représentation, en particulier de la taille de la mantisse M.

$$\frac{|X-\hat{X}|}{|X|} \leq \epsilon_M$$
 où $\epsilon_M = 2^{-(M+1)}$