VLSI DESIGN LAB Experiment-3 CMOS INVERTER (Part-2)

Group Number: 2

Group Members:

Thathapudi Sanjeev Paul Joel - 2020AAPS0120H Aditya Anirudh - 2020AAPS0373H

Width of PMOS transistor when $V_M = 0.8 \text{ V}$:

CMOS INVERTER-2

At the midpoint voltage, Vin = Vout = Vm, and both NMOS and PMOS are in saturation,

$$\Rightarrow \frac{(W/L)_n}{(W/L)_p} = \frac{\mu_p}{\mu_n} \cdot \frac{(V_{in} - V_{DD} - V_{O,p})^2}{(V_{in} - V_{O,n})^2}$$

$$\frac{\mu_{n}}{\mu_{p}} = \frac{\mu_{n}Cox}{\mu_{p}Cox} = \frac{356}{70} = 5, V_{M} = 0.8 V = V_{in},$$

VTo, n = 0.429V, VTo, p = -0.468V. Substituting these values, we get -

$$\frac{(W/L)p}{(W/L)n} = 5 \cdot \frac{(0.8 - 0.429)^2}{(0.8 - 1.8 + 0.468)^2}$$

Taking Wn = 400 nm, we get Wp as -

Schematics:

CMOS Inverter with $V_M = 0.8 \text{ V}$:

CMOS Inverter with V_M = 0.9 V (Symmetric switching threshold):

Waveforms:

CMOS Inverter with $V_M = 0.8 \text{ V}$:

Plot displaying the switching threshold at nearly $V_M = 0.81 \text{ V}$.

Plot displaying the derivative, dV_{out}/dV_{in} . The points where the ordinate = -1 are also displayed.

Plot displaying the ordered pairs, (V_{IL}, V_{OH}) & (V_{IH}, V_{OL}) .

CMOS Inverter with $V_M = 0.9 \text{ V}$ (Symmetric switching threshold):

Plot displaying the switching threshold at nearly $V_M = 0.9 V$.

Plot displaying the derivative, dV_{out}/dV_{in} . The points where the ordinate = -1 are also displayed.

Plot displaying the ordered pairs, (V_{IL}, V_{OH}) & (V_{IH}, V_{OL}) .

Metrics Measured:

CMOS Inverter with $V_M = 0.8 \text{ V}$:

 $V_M = 809.578 \text{ mV (practical)}$

 $V_{IL} = 650.3584 \text{ mV}$ $V_{IH} = 944.4542 \text{ mV}$

 $V_{OL} = 95.80754 \text{ mV}$ $V_{OH} = 1.67637 \text{ V}$

 $NM_H = 0.731916 V$ $NM_L = 0.55455 V$

 $W_p/W_n = 2.432$ (For obtaining $V_M = 0.8 \text{ V}$)

 $W_p \sim 970 \text{ nm for } W_n = 400 \text{ nm}.$

CMOS Inverter with $V_M = 0.9 \text{ V}$ (Symmetric switching threshold):

 $V_{M} = 712.09 \text{ mV}$

 $V_{IL} = 776.175 \text{ mV}$ $V_{IH} = 1.04933 \text{ V}$

 $V_{OL} = 83.2004 \text{ mV}$ $V_{OH} = 1.64816 \text{ V}$

 $NM_{H} = 0.59883 V$ $NM_{L} = 0.6929746 V$

 $W_p/W_n = 5.0625$ (For symmetrical transfer characteristics)

 $W_p \sim 2.025 \, \mu \text{m} \text{ for } W_n = 400 \, \text{nm}.$

The noise margin of output = logic-0 increased for V_M =0.9 V as compared to V_M = 0.8 V. This is expected because even when we assume that the transition is abrupt ($V_{IL}=V_{IH}=V_M$), increasing V_M from 0.8 to 0.9 V would increase the range of voltages where input = logic-0. Similarly, this would decrease the range of voltages where input = logic-1 and hence the noise margin of output = logic-1 is reduced.

For simplicity, assuming $V_{IL}=V_{IH}=V_M$ and $V_{OL}=0$, $V_{OH}=V_{DD}=1.8$ V: $V_M=0.8$ V, $NM_H=V_{OH}-V_{IH}=1.8-0.8=1.0$ V $NM_L=V_{IL}-V_{OL}=0.8-0=0.8$ V

$$V_M$$
 = 0.9 V (increased V_M),
 NM_H = V_{OH} - V_{IH} = 1.8 - 0.9 = 0.9 V (HIGH Noise Margin reduced)
 NM_L = V_{IL} - V_{OL} = 0.9 - 0 = 0.9 V (LOW Noise Margin increased)

Conclusion:

In this experiment, we designed a CMOS Inverter with a custom switching threshold ($V_M = 0.8 \text{ V}$). We have obtained the V_{IL} , V_{IH} , V_{OL} , V_{OH} values, and the noise margins NM_L , & NM_H . Finally, we also obtained the same parameters for a CMOS inverter with a symmetric switching threshold and compared its performance with that of $V_M = 0.8 \text{ V}$.