Лабораторная работа № 8

Краевая задача для ОДУ второго порядка

<u>Тема:</u> Численное решение краевой задачи для обыкновенного дифференциального уравнения второго порядка.

$$\frac{d^2u}{dx^2} + p(x)\frac{du}{dx} - q(x)u = f(x)$$
 на промежутке $[a,b]$ с граничными условиями на концах промежутка первого рода : $u(a) = \mu_1$, $u(b) = \mu_2$

Задание

- 1. Найти приближенное решение задачи, используя разностную схему первого или второго порядка точности с погрешностью не более 10⁻³ (оценивая погрешность по методу Рунге). В зависимости от номера варианта использовать:
 - 1). разностную схему с левой разностной производной первого порядка
 - 2). разностную схему с правой разностной производной первого порядка
 - 3). разностную схему с центральной разностной производной первого порядка
 - 2. Найти приближенное решение, используя функцию MathCAD Odesolve в решающем блоке **Given**
- 3. Для полученных в первом и втором пунктах задания приближенных решений построить график их разности и сравнить с погрешностью первого приближенного решения.

Варианты индивидуальных заданий

Но- мер вари анта	p(x)	q(x)	f(x)	а	b	μ_1	μ_2
1	$1 + x^2$	0.5x	<i>x</i> + 1	1	3	1	0
2	x+1	$0.2x^{2}$	$\sin(x) + 1$	0	2	1	2
3	ln(x+2)	$\sqrt{1+x}$	$\cos(x-1)$	0	3	-1	2
4	$\sqrt{x^2+1}$	$\frac{1}{1+x}$	$e^{-x} + x$	0	2.5	1	2
5	$0.5 + \sqrt{x}$	0.7x	$\sqrt{4\cdot x^2+1}$	0	2	0	2
6	$1 - 0.2x^2$	$0.6\ln(1+x)$	$^{\circ}_{2.5-x^2}$	0	3	0.5	2
7	$\frac{1}{1+x^2}$	1 + 0.3x	$\ln(x+\sqrt{x+1})$	0	2.5	1	0
8	$e^{-x} + 1$	$0.4\sqrt{x+1}$	$x^2 - \cos(x)$	0	1.5	1	1
9	$1 + 0.3x^2$	ln(x+1)	$x + 2 \cdot x^2 - 1$	0	2	-0.2	2

10	$2+e^{-x}$	$0.5x^{3}$	$-2 \cdot x^2 + 1$	0	3	0	3
11	$1+\sqrt{x+2}$	$\frac{1}{0.5 + x^2}$	$\sqrt{x^2 + 3.2}$	0	1.75	0	2
12	$1 + \ln(x + 1)$	$\sqrt{2\sqrt{x}}$	$\sin(2x^2) + x$	0	3	1	0
13	$\frac{1}{2+x^2}$	$1 + \sin(x)$	$2 \cdot x^2 + 1$	0	3.5	0	2
14	$0.5 + e^{-x}$	0.8x	$\cos(2x)-x$	0	2.5	1	2
15	$0.5 + x^3$	$\ln(1+x^2)$	x^2-x-1	0	1.5	1	2
16	2+x	$0.6e^{-x}$	$\frac{1}{x^2+1} - \frac{x}{3}$	0	2	-0.5	2
17	$\frac{0.5}{1 + \ln(x)}$	1 + 0.4x	$x^2 + \sin(x)$	0.5	3	-0.5	2
18	$2 + 0.3x^2$	$e^{0.5x}$	$e^{-x^2} + 2 \cdot x$	0	2.25	1	2
19	$\ln(3.5+x)$	$0.8x^2$	$2.5 \cdot x - x^2$	0	0.5	1	2
20	$1.5\sin(x +$	0.7x	$\cos(3 \cdot x) - 2$	0	1.5	0	3
21	$1 - 0.2x^2$	$\sqrt{1+x^2}$	$\frac{3.3}{1+2\cdot x^2} + x$	0.1	2	1	0
22	$\sqrt{x^2 + 0.5}$	e^{1-x^2}	$x-2\cdot x^2+1$	0	2	1	2
23	1 + 0.3x	$0.4\cos(x)$	$-\sin(4x^2) - x$	0	3	-1	2
24	$\frac{1}{1+e^{-x}}$	0.4x + 2	$\cos(x+1)-x$	0	2.5	1	2
25	0.5 + 0.7x		$2.3 \cdot x - 1.2$	0	2	0	2
26	$3-0.2x^2$	$0.6 + x^{-2}$	$\sin(x+2)-1$	0	3	0.5	2
27	$5\cos(x-1)$		x-2	0	2.5	1	0
28		$\ln(2+x^2)$	$\sin(x-1)+2$	0	1.5	1	1
29	$3\sin(x+3)$	$0.8x^2 + 0.3$		0	2	-0.2	2
30	$\frac{2}{2+x^2}$	$2 + \ln(1 + x^2)$	$(3\cdot x^2-1)$	0	2	0.2	2

В приложении приведены копии фрагментов MathCAD-документа с реализацией одного из вариантов разностной схемы для рассматриваемой залачи

Методом прогонки получены приближенные решения для двух значений шага разностной схемы и дана оценка погрешности этих решений по методу

Рунге. На графике показано распределение величины этой оценки по узлам сетки и найден максимум оценки.

Показано получение решения той же задачи с помощью решающего блока **Given Odesolve**. В блоке записываются дифференциальное уравнение в стандартной форме и граничные (или начальные) условия. (Граничные условия могут быть только первого или второго рода). Обязательными аргументами функции **Odesolve** являются независимая переменная задачи и правая граница промежутка, на котором ищется решение.

Приведен график разности решения, найденного функцией Odesolve и решения, полученного по разностной схеме.