Midterm: Review

Lecturer: Dr. Nguyen Thi Ngoc Anh Email: ngocanhnt@ude.edu.vn

1

Seminar: Support Vector Machines

- Massive Data Mining via Support Vector Machines
- Support Vector Machines for:
 - · classifying from large datasets
 - single-class classification
 - discriminant feature combination discovery

Data Mining: Classification Schemes

- General functionality
 - Descriptive data mining
 - Predictive data mining
- Different views, different classifications
 - Kinds of data to be mined
 - Kinds of knowledge to be discovered
 - $^{\circ}$ Kinds of techniques utilized
 - Kinds of applications adapted

What Can Data Mining Do?

- Cluster
- Classify
 - · Categorical, Regression
- Summarize
 - Summary statistics, Summary rules
- Link Analysis / Model Dependencies
 - Association rules
- Sequence analysis
 - Time-series analysis, Sequential associations
- Detect Deviations

5

What is Data Warehouse?

- · Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid.
 The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Warehouse Summary

- Data warehouse
- A multi-dimensional model of a data warehouse
 - Star schema, snowflake schema, fact constellations
 - A data cube consists of dimensions & measures
- OLAP operations: drilling, rolling, slicing, dicing and pivoting
- OLAP servers: ROLAP, MOLAP, HOLAP
- Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - Multiway array aggregation
 - Bitmap index and join index implementations
- Further development of data cube technology
 - Discovery-drive and multi-feature cubes
 - From OLAP to OLAM (on-line analytical mining)

11

Data Preprocessing

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - · e.g., discrepancy between duplicate records

Multi-Dimensional Measure of Data Quality

- A well-accepted multidimensional view:
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Believability
 - Value added
 - Interpretability
 - Accessibility
- Broad categories:
 - intrinsic, contextual, representational, and accessibility.

14

Major Tasks in Data Preprocessing

- Data cleaning
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration
 - · Integration of multiple databases, data cubes, or files
- Data transformation
 - Normalization and aggregation
- Data reduction
 - Obtains reduced representation in volume but produces the same or similar analytical results
- Data discretization
 - Part of data reduction but with particular importance, especially for numerical data

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

16

How to Handle Noisy Data?

- Binning method:
 - first sort data and partition into (equi-depth) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)
- Regression
 - smooth by fitting the data into regression functions

Data Transformation

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones

18

Data Reduction Strategies

- A data warehouse may store terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results
- Data reduction strategies
 - Data cube aggregation
 - Dimensionality reduction remove unimportant attributes
 - Data Compression
 - · Numerosity reduction fit data into models
 - · Discretization and concept hierarchy generation

Principal Component Analysis

- Given N data vectors from k-dimensions, find c
 ≤ k orthogonal vectors that can be best used to represent data
 - The original data set is reduced to one consisting of N data vectors on c principal components (reduced dimensions)
- Each data vector is a linear combination of the c principal component vectors
- Works for numeric data only
- Used when the number of dimensions is large

20

Discretization

- Three types of attributes:
 - Nominal values from an unordered set
 - Ordinal values from an ordered set
 - Continuous real numbers
- Discretization:
 - divide the range of a continuous attribute into intervals
 - Some classification algorithms only accept categorical attributes.
 - Reduce data size by discretization
 - Prepare for further analysis

Data Preparation Summary

- Data preparation is a big issue for both warehousing and mining
- Data preparation includes
 - Data cleaning and data integration
 - Data reduction and feature selection
 - Discretization
- A lot a methods have been developed but still an active area of research

22

Association Rule Mining

- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
 - Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database [AIS93]
- Motivation: finding regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - · Can we automatically classify web documents?

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

- Itemset $X = \{x_1, ..., x_k\}$
- Find all the rules X →Y with min confidence and support
 - support, s, probability that a transaction contains X∪Y
 - confidence, c, conditional probability that a transaction having X also contains Y.

Let
$$min_support = 50\%$$
,
 $min_conf = 50\%$:
 $A \rightarrow C (50\%, 66.7\%)$
 $C \rightarrow A (50\%, 100\%)$

FP-Tree Algorithm

<u>\$</u>	ered) frequent items	Items bought (or	<i>TID</i>
	$\{f, c, a, m, p\}$	$\{f, a, c, d, g, i, m, p\}$	100
	$\{f, c, a, b, m\}$	$\{a, b, c, f, l, m, o\}$	200
min support	$\{f, b\}$	$\{b, f, h, j, o, w\}$	300
support	$\{c, b, p\}$	$\{b, c, k, s, p\}$	400
	$\{f, c, a, m, p\}$	$\{a, f, c, e, l, p, m, n\}$	500

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - \circ complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
 - Analyze the properties of constraints comprehensively
 - Push them as deeply as possible inside the frequent pattern computation.

Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally independent:

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- The product of occurrence of say 2 elements x_1 and x_2 , given the current class is C, is the product of the probabilities of each element taken separately, given the same class $P([y_1,y_2],C) = P(y_1,C) * P(y_2,C)$
- No dependence relation between attributes
- Greatly reduces the computation cost, only count the class distribution.
- Once the probability $P(X|C_i)$ is known, assign X to the class with maximum $P(X|C_i)^*P(C_i)$

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - $\,^\circ\,$ Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- · Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- S contains s_i tuples of class C_i for i = {1, ..., m}
- information measures info required to classify any arbitrary tuple

 $I(s_1, s_2,...,s_m) = -\sum_{i=1}^m \frac{s_i}{s} log \, 2 \frac{s_i}{s}$

entropy of attribute A with values {a₁,a₂,...,a_v}

$$E(A) = \sum_{j=1}^{\nu} \frac{S_{1j} + ... + S_{mj}}{S} I(S_{1j}, ..., S_{mj})$$

information gained by branching on attribute A

$$Gain(A) = I(s_1, s_2,...,s_m) - E(A)$$

35

Definition of Entropy

- Entropy $H(X) = \sum_{x \in A_Y} -P(x) \log_2 P(x)$
- Example: Coin Flip
 - A_X = {heads, tails}
 - $P(heads) = P(tails) = \frac{1}{2}$
 - $\circ \frac{1}{2} \log_2(\frac{1}{2}) = \frac{1}{2} * 1$
 - \circ H(X) = I
- What about a two-headed coin?
- Conditional Entropy:

$$H(X \mid Y) = \sum_{y \in A_Y} P(y)H(X \mid y)$$

Attribute Selection by Information Gain Computation

- Class P: buys computer = "yes"
- Class N: buys_computer = "no"
- I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

	<=30		2		3	0.9	971		
	3040		4		0	0			
>40		3		2	0.971				
	income	stu	dent	cr	edit_rat	ing	buys_c	om	pu
	high	1	no fair		•	n		10	
	high	ľ	no e		excellent		no		
)	high	1	าด	fair			yes		

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	evcellent	no

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = I(p, n) - E(age) = 0.246$$

Similarly,

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit\ rating) = 0.048$

Overfitting in Decision Trees

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - · Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Artificial Neural Networks: Training

- The ultimate objective of training
 - obtain a set of weights that makes almost all the tuples in the training data classified correctly
- Steps
 - · Initialize weights with random values
 - $^{\circ}\,$ Feed the input tuples into the network one by one
 - For each unit
 - Compute the net input to the unit as a linear combination of all the inputs to the unit
 - Compute the output value using the activation function
 - Compute the error
 - · Update the weights and the bias

constraint.

Non-separable Cont.

I. Constraint changes to the following:

$$y_i(x_i^T \beta + \beta_0), > C(1 - \xi_i),$$
Where $\forall i, \xi_i > 0, \sum_{i=1}^{N} \xi_i < const.$

2. Thus the optimization problem changes to:

$$\begin{aligned} & \mathsf{Min} || \ \boldsymbol{\beta} \ || \ \mathsf{subject to} \\ & \begin{cases} y_i(x_i^T \boldsymbol{\beta} + \boldsymbol{\beta}_0) > 1 - \xi_i, i = 1, \dots, N. \\ \forall i, \xi_i > 0, \sum_{i=1}^N \xi_i < const. \end{cases} \end{aligned}$$

43

General SVM

This classification problem clearly do not have a good optimal linear classifier.

Can we do better?

A non-linear boundary as shown will do fine.

General SVM Cont.

- The idea is to map the feature space into a much bigger space so that the boundary is linear in the new space.
- Generally linear boundaries in the enlarged space achieve better trainingclass separation, and it translates to nonlinear boundaries in the original space.

Mapping

- Mapping $\Phi: \Box^d \mapsto H$
 - Need distances in H: $\Phi(x_i) \cdot \Phi(x_i)$
- Kernel Function: $K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$ Example: $K(x_i, x_j) = e^{-||x_i x_j||^2/2\sigma^2}$
- In this example, H is infinite-dimensional

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- The target function could be discrete- or real- valued.
- For discrete-valued, the k-NN returns the most common value among the k training examples nearest to xq.
- Voronoi diagram: the decision surface induced by I-NN for a typical set of training examples.

47

Case-Based Reasoning

- Also uses: lazy evaluation + analyze similar instances
- <u>Difference</u>: Instances are not "points in a Euclidean space"
- <u>Example</u>: Water faucet problem in CADET (Sycara et al'92)
- Methodology
 - Instances represented by rich symbolic descriptions (e.g., function graphs)
 - Multiple retrieved cases may be combined
 - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving

Research issues

 Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases

Regress Analysis and Log-Linear Models in Prediction

- Linear regression:Y = α + β X
 - $^{\circ}$ Two parameters , α and β specify the line and are to be estimated by using the data at hand.
 - $^{\circ}$ using the least squares criterion to the known values of Y₁,Y₂,..., X₁, X₂,....
- Multiple regression:Y = b0 + b1 X1 + b2 X2.
 - Many nonlinear functions can be transformed into the above.
- Log-linear models:
 - The multi-way table of joint probabilities is approximated by a product of lower-order tables.
 - Probability: $p(a, b, c, d) = \alpha ab \beta ac \chi ad \delta bcd$

49

Bagging and Boosting

• General idea
Training data

Classification method (CM)
Classifier C

Altered Training data

CM
Classifier C1

Altered Training data

CM
Classifier C2

CM
Classifier C2

CM
Classifier C2

CM
Classifier C2

Test Taking Hints

- Open book/notes
 - Pretty much any non-electronic aid allowed
- See old copies of my exams (and solutions) at my web site
 - o CS 526
 - o CS 541
 - o CS 603
- Time will be tight
 - Suggested "time on question" provided

51

Seminar Thursday: Support Vector Machines

- Massive Data Mining via Support Vector Machines
- Support Vector Machines for:
 - · classifying from large datasets
 - single-class classification
 - discriminant feature combination discovery