Functional and logic programming written exam -

Important:

)

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- A. The following function definition in LISP is given

 (DEFUN F(L1 L2)

 (APPEND (F (CAR L1) L2)

 (COND

 ((NULL L1) (CDR L2))

 (T (LIST (F (CAR L1) L2) (CAR L2)))

)

)

Rewrite the definition in order to avoid the double recursive call **(F (CAR L1) L2)**. Do NOT redefine the function. Do NOT use SET, SETQ, SETF. Justify your answer.0

B. Write a PROLOG program that generates the list of all combinations of k elements with numbers from 1 to N, with the property that difference between two consecutive numbers from a combination has an even value. Write the mathematical models and flow models for the predicates used. For example, for the N=4, $k=2 \Rightarrow [[1,3],[2,4]]$ (not necessarily in this order).

C. Given a nonlinear list, write a Lisp function to return the list with all occurrences of the element **e** replaced by the value **e1**. **A MAP function shall be used.**

Example a) if the list is (1 (2 A (3 A)) (A)), e is A and e1 is B => (1 (2 B (3 B)) (B))

b) if the list is (1 (2 (3))) and **e** is A = (1 (2 (3)))