

Reinforcement Learning

Tom Vodopivec

IADS Big Data and Analytics Summer School 2019-08-05

The Field

Artificial Intelligence > Machine Learning

(A special case of) supervised learning

But also has elements of unsupervised learning

The Reinforcement Learning Setting

The Reinforcement Learning Setting

Agent

Behaviour > Actions

Environment

States

Rewards > define the goal of the agent

Markov Decision Processes

States

Actions

Rewards

Transition probabilities

Markov Decision Processes

Trajectory (concept of time)

(Expected) return

Discount rate

Continuing vs. episodic tasks

Terminal states

Non-stationary MDPs
Partially-observable MDPs

What to Learn From?

Experience = Samples of interaction with environment

- Real (learning)
- Simulated (planning)

Exploration-exploitation trade-off

Uncertainty

How to Store Knowledge?

State-value function
Action-value function
Behaviour policy
Model (of the environment)

Representations

- Tabular vs. approximate
- Fixed vs. adaptive

Updating Knowledge = Learning

Goal: learn optimal policy (and optimal value function)

Generalized policy iteration

- Policy evaluation
- Policy improvement

Algorithms

- Model-based
- Model-free

Race Track Example

Algorithms

Dynamic programming

Monte Carlo

Temporal-difference learning

- Bootstrapping
- Eligibility traces

Algorithms

Dynamic programming: policy iteration, value iteration

Monte Carlo

Temporal-difference learning: TD(λ), Sarsa, Q-learning, Deep Q-learning

- Bootstrapping
- Eligibility traces

Algorithms

Dynamic programming: policy iteration, value iteration

Monte Carlo

Temporal-difference learning: TD(λ), Sarsa, Q-learning, Deep Q-learning

- Bootstrapping
- Eligibility traces

Policy gradient and Actor-Critic: REINFORCE

Applications

Games: AlphaGo

Scheduling tasks: optimization of memory control

Modelling bird movement

Web services / optimization

Reading Material

Quick and practical state-of-the-art:

Thomas Simonini, Deep Reinforcement Learning course with Tensorflow

Most comprehensive and best foundations:

Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, An introduction, second edition

Outstanding applications:

Silver et al., AlphaGo, AlphaGo Zero, AlphaZero

Recap

Agent, actions, environnement, state, rewards

Representation of knowledge

Explore and collect experience

Update knowledge = learn

Improve behaviour