

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

دانشکدهٔ ریاضی و علوم کامپیوتر

پروژهٔ دوم درس داده کاوی

پیشبینی بارش به کمک تحلیل دادههای اقلیمی

استاد درس: دکتر فاطمه شاکری طراحان پروژه: مریم صادقی، مهدی رجالی

زمستان ۱۴۰۲

معرفي مجموعه داده

مجموعه دادهٔ آوردهشده حاوی اطلاعات آب و هوایی ۱۰ سال اخیر در یک کشور میباشد که به صورت روزانه و در مکانهای مختلف جمع آوری شده است.

مجموعه داده شامل ۱۴۵۴۶۰ نمونه با ۲۲ ویژگی میباشد که از انواع اسمی و عددی هستند. توضیحی مختصر از ویژگیها در زیر آور ده شده است:

- Date: تاریخ ثبت مشاهدات
- Weather Station: کد مکان اندازهگیری و ثبت مشاهدات آب و هوایی
- Minimum/Maximum Temperature: حداقل یا حداکثر دمای ثبتشده در طی یک روز (بر حسب سلسیوس)
 - Rainfall: میزان بارش در طی آن روز (بر حسب میلیمتر)
 - Evaporation: میزان تبخیر در آن روز (بر حسب میلیمتر)
 - Sunshine: تعداد ساعات يردرخشش آفتاب در آن روز
 - Gust Trajectory: جهت قوىترين باد در طي آن روز (بر حسب مقياس Gust Trajectory:
 - Air Velocity: سرعت قوی ترین باد در طی آن روز (بر حسب کیلومتر بر ساعت)
- Gust Trajectory at 9 AM/3 PM: جهت باد برای از ۱۰ دقیقه قبل از زمان مذکور (بر حسب مقیاس Compass Points: جهت باد برای از ۱۰ دقیقه قبل از زمان مذکور (بر حسب مقیاس
 - Air Velocity at 9 AM/3 PM: سرعت باد از ۱۰ قبل از زمان مذکور (بر حسب کیلومتر بر ساعت)
 - Moisture Level at 9 AM/3 PM: ميزان رطوبت هوا در زمان مذكور (بر حسب درصد)
 - Atmospheric Pressure at 9 AM/3 PM فشار هوا در زمان مذكور (بر حسب هكتوپاسكال)
 - Cloudiness at 9 AM/3 PM: ميزان مسدوديت آسمان توسط ابرها (يکهشتم يکهشتم)
 - Recorded Temperature at 9 AM/3 PM: دما در زمان مذکور (بر حسب سلسیوس)
 - Rain that day : وقوع یا عدم وقوع بارش در آن روز

هدف

از شما خواسته شده است تا بر اساس مجموعه دادهٔ فوق، یک مدل یادگیری ماشین برای پیشبینی بارش ارائه دهید که با گرفتن اطلاعات آب و هوایی یک روز مشخص، بتواند با دقت خوبی وضعیت بارش در روز آتی را مشخص کند.

ڃالشھا

مجموعه دادهٔ ارائهشده به نحوی انتخاب شده است که شما را با طیفی از مشکلات و چالشهایی که ممکن است در هنگام تحلیل انواع داده آشنا كند. در اين مجموعه داده، به مسائل زير ممكن است بر بخوريد:

- ناقص بودن تعداد قابل توجهی از دادهها: برای سازگاری دادهها با مدلهای مختلف، نیاز به تکمیل یا حذف دادههای ناقص خواهید داشت.
- تنوع ویژگیها: برای استفاده از اغلب مدلها، نیاز است که دادههای اسمی را به نحوی به دادههای عددی تبدیل کنید. راههای متنوعی برای این کار از جمله Label Encoding و One-Hot Encoding وجود دارند که هر کدام مناسب نوع دادهٔ مشخصی هستند. برای کارکرد بهتر مدل میبایست روش مناسب تبدیل هر ویژگی را تشخیص داده و آنها را تبدیل کنید.
- همبستگی ویژگیها: برخی از ویژگیها ممکن است ارتباط و تشابه زیادی با یکدیگر داشتهباشند و نیاز به نگهداری همگی آنها نباشد. برای یافتن این وابستگیها و ارتباطات، از ابزار متنوعی مانند Correlation Heatmap استفاده کنید. یافتن ویژگیهای بسیار مرتبط و حذف یا ترکیب آنها اغلب سبب بهبود کارایی مدل و سرعت آموزش آن میشود.
- دادههای پرت و نویز: به دلیل تعداد بسیار زیاد نمونهها و ماهیت این مجموعه داده، انتظار میرود قسمتی از نمونهها، دادههای پرت یا نویز باشند. برای کارکرد بهتر مدل، نیاز است تا این دادهها را شناسایی کرده و حذف کنید.
- عدم توازن کلاسها: نسبت دادههای دو کلاس تقریباً به صورت ۳ به ۱ است، که ممکن است باعث ایجاد بایاس ۱ در مدل شود و از دقت آن بکاهد. در مورد راهکارهای حل مشکلات مجموعه دادههای غیرمتوازن ۲ تحقیق کنید و به دلخواه از یکی از آنها استفاده کنید و بهبود یا عدم بهبود کارایی را گزارش کنید.

جزئیات هر بخش

- شما در این پروژه موظف به پیادهسازی و مقایسهٔ عملکرد سه مدل KNN ،SVM و Decision Tree هستید.
- شما میبایست پیشپردازشهای مورد نیاز (مثلاً برای آمادهسازی ورودی یک مدل) را با ذکر دلیل انجام دهید. مواردی همچون نرمالسازی ۲، استانداردسازی ۴ و کاهش بعد ۵ برخی از پیشپردازشهای احتمالی هستند که میتوانند مفید باشند. دقت داشته باشید که پیشپردازش اشتباه میتواند باعث کمتر شدن کارایی مدل شود.
- برای پویش در دادهها، میبایست مجموعه دادههای آموزشی را به کمک حداقل دو مدل نمودار بصریسازی کرده و به تحلیل آنها بپردازید.
- پس از آموزش مدلها، برای ارزیابی آنها از مجموعه دادهٔ آزمایشی استفاده کرده و در کنار تشکیل ماتریس آشفتگی ^۶، با گزارش معیارهای Recall ،Precision ،Accuracy و F1 Score به تحلیل عملکرد مدلهای مختلف بپردازید. در نظر داشته باشید که برای پیادهسازی معیارهای فوق میتوانید از توابع موجود در کتابخانهٔ sklearn استفاده کنید.
- در صورت بهینهسازی مدلها با انتخاب ابرپارامتر های ۲ بهتر برای هر مدل، دلیل یا نحوهٔ انتخاب این ابرپارامترها را توضیح دهید.

¹Bias

²Imbalanced Dataset

³Normalization

⁴Standardization

⁵Dimensionality Reduction

⁶Confusion Matrix

⁷Hyperparameter

نحوهٔ ارزیابی

این پروژه دارای ۱۰۰ نمرهٔ اصلی و ۱۰ نمرهٔ امتیازی است، که تقسیمبندی ۱۰۰ نمرهٔ اصلی به شکل زیر میباشد:

نمره	بخش
١.	بصریسازی
۳٠	پیشپردازش دادهها
۳٠	ساخت و آموزش مدلها
٣.	پیادهسازی معیارهای ارزیابی و مقایسهٔ عملکرد مدلها

نمرهٔ امتیازی به تحلیلهای کاملتر و پیشپردازشهای بهتر تعلق خواهد گرفت.

نحوه و مهلت ارسال

مهلت ارسال

شما برای ارسال این پروژه، تا پایان ۲۵ام اردیبهشت (یعنی ساعت ۲۳:۵۹ روز مذکور) فرصت دارید.

قالب ارسالي

فایل ارسالی شما میبایست به فرمت zip. با نامگذاری project_2_<GroupID>.zip باشد که در آن میبایست به جای (GroupID>، شمارهٔ گروه خود را قرار دهید. فایل فشردهٔ ارسالی میبایست شامل **هر سهٔ** مورد زیر باشد:

- ۱. یک فایل pdf. حاوی گزارش پروژه
- ۲. یک فایل ipynb. حاوی کد کامنتگذاری شدهٔ مرتبط با بروژه
- ۳. یک فایل txt. حاوی لینک گوگل کولب ^۸ منطبق با ژوپیتر نوتبوک ^۹ بخش قبل

⁸Google Colaboratory

 $^{^9\}mathrm{Jupyter~Notebook}$