Portfolio Risk with Selected Revaluation Fast and Accurate Portfolio Risk (VaR, Stessed VaR)

Christian Fries

Version 0.3

http://www.christian-fries.de/finmath

Paris ● 2011, April

NOTICE

This is a preliminary version of the presentation. Please check for updates.

The presentation is based on the following paper:

► Portfolio Risk with Selected Revaluation (2010). http://ssrn.com/abstract=1802126

Introduction

Valuation under Shift Scenarios

Approximations of the Value Function Approximation with Scenario Error Correction Approximation Accuracy in the Context of Numerical Errors

Application: Value at Risk

Numerical Results

Introduction

Valuation under Shift Scenarios

Approximations of the Value Function Approximation with Scenario Error Correction Approximation Accuracy in the Context of Numerical Error

Application: Value at Risk

Numerical Results

Portfolio Risk Introduction

Portfolio Risk

- Calculate the distribution of portfolio values: a function of some given distribution of market data scenarios.
- One approach: "Monte-Carlo", i.e., re-valuate your portfolio for a given sample of market data scenarios.
- "Risk" means, we are interested in some tail behavior, e.g. behavior under large scenario shifts.
- If the portfolio consists of non-linear products, a sensitivity approximation may not be adequate.
- Re-valuations are in general computationally expensive.

Goal

- Fast calculation of the portfolio risk.
- Accurate approximation of the distribution.
- Confidence (benchmark: full-revaluation).

Portfolio Risk

Notation

- Let T_0, T_1, T_2, \dots denote a set of calculation times
- with a comparably short period length $T_{k+1} T_k$ (e.g., one day).
- Let $X^i(T_k)$ scenarios generated from the current market data vector $M(T_k)$ and some shift Z_i

$$X^{i}(T_{k}) = G(M(T_{k}), Z_{i}).$$

 Two common situations are absolute (additive) changes and relative changes, i.e.,

$$X^{i}(T_{k}) = M(T_{k}) + Z_{i}$$
 or $X^{i}(T_{k}) = M(T_{k})(1 + Z_{i}),$

where the shifts Z_i have been generated accordingly.

- Let V_j denote the j-th product in the porfolio.
- The portfolio risk is a function of the distribution of scenario valuations

$$V_i(T_k, X^i(T_k))$$

Problem: The number of valuations can be huge since the number of scenarios and the number of products are usually large.

Portfolio Risk Notation

Example: Historical Simulation

- ▶ In a historical simulation Z_i are determined from past market data changes, e.g.
 - ▶ historic absolute changes, $Z_i := M(S_{i+1}) M(S_i)$
 - ► historic relative changes, $Z_i := \frac{M(S_{i+1})}{M(S_i)} 1$

for a given set of past dates $\{S_i\}$

Note: We assume that the scenario shifts Z_i are fixed. In a historic VaR each day one scenario drops out, a new one comes in. In a historic simulated stress VaR they are fixed.

Portfolio Risk Problem

Problem Description

- Given fixed scenario shifts Z_i.
- ▶ Calculate $V_j(T_k, X^i(T_k))$, where
- $X^i(T_k) = G(M(T_k), Z_i).$
- for every product V_j
- ▶ in every scenario Xⁱ
- every day T_k.

Note: We assume that the scenario shifts Z_i are fixed.

Introduction

Valuation under Shift Scenarios

Approximations of the Value Function Approximation with Scenario Error Correction Approximation Accuracy in the Context of Numerical Errors

Application: Value at Risk

Numerical Results

APPROXIMATIONS OF THE VALUE FUNCTION

VALUATION UNDER SHIFT SCENARIOS

Approximating the Value FunctionNotation

Approximating the Value Function

Let

$$V_j^{\mathrm{A}}(T_k, M(T_k), Z_i)$$

denote some approximation of $V_j(T_k, G(M(T_k), Z_i))$.

Remarks

- We do not require the approximation to have a small approximation error.
- For example, we do not require Z_i small.¹

Next, we give two examples for such an approximation.

¹In applications like VaR or stressed VaR Z_i will no be small.

Approximating the Value Function Simple Sensitivity Approximation

Simple Sensitivity Approximation

- ▶ Simple sensitivity approximation of $V_i(T_k, X^i(T_k))$ uses the valuation and sensitivities at $(T_k, M(T_k))$ to approximate the scenario at $(T_k, X^i(T_k))$.
- ▶ If $V_i^A(T_k, M(T_k), Z_i)$ is such an approximation

 $V_i(T_k, X^i(T_k)) \approx V_i^{A}(T_k, M(T_k), Z_i)$

$$|V_j^{A}(T_k, M(T_k), Z_i) - V_j(T_k, M(T_k))| = O(|Z_i|).$$
 (2) **Example:**

▶ First order Taylor polynomial, e.g., for additive scenario changes Z_i

 $V_{i}^{A}(T_{k}, M(T_{k}), Z_{i}) := V_{i}(T_{k}, M(T_{k})) + \nabla V_{i}(T_{k}, M(T_{k}))Z_{i}$

Properties: ▶ If the sensitivity ∇V_i is numerically stable, the approximation (3) is usually suitable for small scenarios Z_i .

but has an larger approximation error for large scenarios Z_i.

(3)

(1)

for Z_i small,

Approximating the Value FunctionOther Value Approximations

Other Approximations

- The method which will be described is not limited to sensitivity approximations.
- Other approximations can be used.
- For example an approximation by using a different valuation model and/or a different valuation algorithm.

Examples

- Analytic approximation.
- Reduced calibration accuracy (e.g., non-smile vs. smile).
- Valuation with reduced accuracy (reduced Monte-Carlo path, reduced PDE discretization).

Properties:

▶ If $V_i^{A}(T_k, M(T_k), Z_i)$ is such an approximation we have

$$|V_j^{\mathbf{A}}(T_k, M(T_k), 0) - V_j(T_k, M(T_k))| = O(1), \tag{4}$$

VALUATION UNDER SHIFT SCENARIOS APPROXIMATION WITH SCENARIO ERROR CORRECTION

Approximation Error

▶ Let E_j denote the error of the approximation $V_j^A(T_k, M(T_k), Z_i)$, i.e.,

$$E_j(T_k, M(T_k), Z_i) := V_j(T_k, X^i(T_k)) - V_j^A(T_k, M(T_k), Z_i).$$

Properties

▶ Given smoothness of E_j , the difference of two such approximation errors at T_{k_1} and T_{k_2} can be estimated as

$$||E_{j}(T_{k_{1}}, M(T_{k_{1}}), Z_{i}) - E_{j}(T_{k_{2}}, M(T_{k_{2}}), Z_{i})||$$

$$= O(|T_{k_{1}} - T_{k_{2}}| + ||M(T_{k_{1}}) - M(T_{k_{2}})||).$$
(5)

Where we subsume the scenario size into the constant of $O(\dots)$ (i.e., we assume that the scenarios are taken from a compact set). From (5) we see that the difference between the error of the two approximations is small if the time period $T_{k_1} - T_{k_2}$ and the market data movement over that time period $M(T_{k_1}) - M(T_{k_2})$ is small. Market data movements $M(T_{k_1}) - M(T_{k_2})$ are usually much smaller than scenario movements Z_i .

Approximation Error Correction

Let us also assume that for some coarser time discretization $T_0, T_{m_1}, T_{m_2}, \ldots$ we have full valuation vectors in all scenarios.

$$V_j(T_k, X^i(T_k))$$
 for $k = 0, m_1, m_2, ...$

- ▶ Let *I* be such that $m_I \le k < m_{I+1}$.²
- Then we can improve our estimate as follows

$$\begin{split} V_{j}(T_{k}, X^{i}(T_{k})) &= V_{j}^{A}(T_{k}, M(T_{k}), Z_{i}) + E_{j}(T_{k}, M(T_{k}), Z_{i}) \\ &= V_{j}^{A}(T_{k}, M(T_{k}), Z_{i}) + E_{j}(T_{m_{l}}, M(T_{m_{l}}), Z_{i}) \\ &+ O\left(|T_{k} - T_{m_{l}}|^{2} + |M(T_{k}) - M(T_{m_{l}})|\right). \end{split}$$

from which we may then derive the following approximation:

²In other words T_{m_l} is the largest time point for which we have a full-revaluation prior to T_k .

Approximation with Scenario Error Correction The approximation with error correction is given by

$$V_j^{A+E}(T_k, M(T_k), Z_i) := V_j^A(T_k, M(T_k), Z_i) + E_j(T_{m_l}, M(T_{m_l}), Z_i)$$
 (6)

Residual Approximation Error

We have

$$||V_{j}(T_{k}, X^{i}(T_{k})) - V_{j}^{A+E}(T_{k}, M(T_{k}), Z_{i})||$$

$$= ||E_{j}(T_{k}, M(T_{k}), Z_{i}) - E_{j}(T_{m_{l}}, M(T_{m_{l}}), Z_{i})||$$

$$= O(|T_{k} - T_{m_{l}}| + |M(T_{k}) - M(T_{m_{l}})|).$$

Residual Approximation Error

Let us compare the approximation error

$$O(|T_k - T_{m_l}| + |M(T_k) - M(T_{m_l})|)$$

to the approximation error of the simple sensitivity approximation, which is in the case of example (3)

$$O(|Z_i|^2)$$
.

Obviously, the latter does not make any sense, since scenario Z_i cannot be assumed to be small, but the former does.

VALUATION UNDER SHIFT SCENARIOS APPROXIMATION ACCURACY IN THE CONTEXT OF NUMERICAL ERRORS

Introduction

Valuation under Shift Scenarios

Approximations of the Value Function
Approximation with Scenario Error Correction
Approximation Accuracy in the Context of Numerical Errors

Application: Value at Risk

Numerical Results

Introduction

Valuation under Shift Scenarios

Approximations of the Value Function Approximation with Scenario Error Correction Approximation Accuracy in the Context of Numerical Errors

Application: Value at Risk

Numerical Results

Introduction

Valuation under Shift Scenarios

Approximations of the Value Function Approximation with Scenario Error Correction Approximation Accuracy in the Context of Numerical Error

Application: Value at Risk

Numerical Results