- 1. (3 points.) Consider a CNF formula F with m clauses. In F there are at most \sqrt{m} clauses of size 3, and the rest are clauses of size 2. Deciding if such a formula is satisfiable is
- (A) NP-Complete.
- (B) None of the other answers are correct.
- (C) Can not be solved in linear time, but can be done in polynomial time.
- (D) Can be solved in linear time.

Correct answer: A.

Your answer: A.

 ${f 3}$ out of ${f 3}$ points received

- 2. (3 points.) Given a graph G , and vertices u and v, these two vertices are **robustly connected**, if they remain connected, even if we remove any three vertices in G (except for u and v, naturally). Consider the problem of deciding if u and v are robustly connected.
- (A) This problem is NP-HARD.
- (B) This problem can be solved in polynomial time.

Correct answer: B. Your answer: B.

- 3. (3 points.) Given two NFAs N_1 and N_2 with n_1 and n_2 states, respectively. Then there is a DFA M that accepts the language $L(N_1) \cap L(N_2)$.
- (A) False.
- (B) True, and the number of states of M is at most n_1n_2 .
- (C) None of the other answers is correct.
- (D) True, and the number of states of M is at most $O(n_1 + n_2)$.
- (E) True, and the number of states of M is at most $2^{n_1}2^{n_2}$.

Correct answer: E.

Your answer: A.

- 4. (2 points.) You are given a set $\mathcal{I} = \{I_1, I_2, \dots, I_n\}$ of n weighted intervals on the real line. Consider the problem of computing the maximum weight set $\mathcal{C} \subseteq \mathcal{I}$, such that every pair of intervals of \mathcal{C} intersect. This problem
- (A) NP-HARD.
- (B) Can be solved in polynomial time.
- (C) NP-COMPLETE.
- (D) Can be solved in linear time by a greedy algorithm.
- (E) Undecidable.

Correct answer: B.

Your answer: B.

- 5. (3 points.) Given k sorted arrays A_1, A_2, \ldots, A_k with a total of n numbers stored in them (all numbers are distinct). Given a number x, one can compute the smallest number y, in these arrays, that is larger than x, in (faster is better)
- (A) O(n) time.
- (B) $O(n \log n)$ time.
- (C) O(nk) time.
- (D) $O(k \log n)$ time.
- (E) $O(n^2)$ time.

Correct answer: D.

Your answer: D.

6. (2 points.) For a word $w = w_1 w_2 \dots w_{2m}$, with $w_i \in \{0,1\}^*$, let $w^{\text{ODD}} = w_1 w_3 w_5 \dots w_{2m-1}$. If a language L is a regular language, then the language $L^{\text{ODD}} = \{w^{\text{ODD}} \mid w \in L\}$ is regular.

- (A) True.
- (B) False.

Correct answer: A. Your answer: A.

 ${f 2}$ out of ${f 2}$ points received

- 7. (2 points.) You are given a directed graph ${\sf G}$ with n vertices and m edges, a pair of vertices u,v, and a number t. Deciding if there is a closed walk, with at most t edges, that includes u and v can be done in
- (A) $O(n \log n + m)$ time.
- (B) None of the other answers is correct.
- (C) O(nm) time using Bellman-Ford.
- (D) only exponential time since this problem is NP-Complete.
- (E) O(n+m) time.

Correct answer: E.

Your answer: E.

8. (3 points.) For text files S, T, let $\langle S, T \rangle$ denote the string that encodes the content of both S and T. Consider the language

 $L = \{\langle S, T \rangle \mid S, T \text{ are two java programs that stops on the same inputs} \}.$

This language is

- (A) Decidable.
- (B) Context-free.
- (C) Regular.
- (D) Undecidable.
- (E) None of the other answers.

Correct answer: D.

Your answer: D.

9. (3 points.) Consider the recurrence $f(n) = f(\lfloor n/3) \rfloor + f(\lfloor (n/2) \rfloor) + O(n)$, where f(n) = O(1) if n < 10. The solution to this recurrence is

- (A) None of the above.
- (B) O(n).
- (C) $O(n \log n)$.
- (D) O(1).
- (E) $O(n^2)$.

Correct answer: B.

Your answer: B.

- 10. (3 points.) Let G be a directed graph with weights on the edges (the weights can be positive or negative). The graph G has n vertices and m edges. Computing the shortest **simple** path between two vertices in G can be done in:
- (A) This is not defined if there are negative cycles in the graph. As such, it can not be computed.
- (B) This is NP-HARD.
- (C) This can be solved in O(nm) time using Bellman-Ford.
- (D) None of the above.
- (E) This can be solved in $O(n \log n + m)$ time using Dijkstra.

Correct answer: B.

Your answer: E.

- 11. (2 points.) Consider a Turing machine (i.e., program) M that accepts an input $w \in \Sigma^*$ if and only if there is a CFG G such that $w \in L(G)$. Then the language of L(M) is
- (A) not well defined.
- (B) finite.
- (C) context-free.
- (D) undecidable.
- (E) Σ^* .

Correct answer: E.

Your answer: C.

- 12. (3 points.) Given a directed graph G with n vertices and m edges, consider the problem of deciding if there is a walk (the walk is allowed to repeat both vertices and edges) that visits at least half of the vertices of G .
- (A) Can be solved in O(n+m) time.
- (B) NP-Complete.
- (C) Can be solved in O(nm) time, and no faster algorithm is possible.
- (D) None of the above.
- (E) NP-HARD.

Correct answer: A.

Your answer: C.

- 13. (5 points.) A string $s \in \{a, b\}^*$ is γ -wild if $|\#(a, s) \#(b, s)| > \gamma$, where γ is a prespecified parameter, and #(a, s) is the number of appearances of a in s. For a string $w \in \{a, b\}^*$ and parameters γ and τ , breaking it into strings s_1, s_2, \ldots, s_ℓ is a (γ, τ) -breakup of w iff:
 - (I) For all $i, s_i \in \{a, b\}^*$.
 - (II) For all i, s_i is γ -wild.
 - (III) $w = s_1 s_2 \dots s_\ell$ (that is, the concatenation of s_1, s_2, \dots, s_ℓ is w),
 - (IV) $\ell \leq \tau$.

Given as input a string $w \in \{a, b\}^*$ of length m, and parameters γ and τ , an algorithm can decide if there is a (γ, τ) -breakup of w in (faster is better):

- (A) $O(m^2\tau)$ time.
- (B) $O(m^2\gamma)$ time.
- (C) $O(m^3\gamma)$ time.
- (D) $O(m^3\tau)$ time.
- (E) $O(m^4)$.

Correct answer: A.

Your answer: B.

- 14. (3 points.) You are given an NFA N with n states (N might have ε -transitions), with the input alphabet being $\Sigma = \{0, 1\}$. Given a binary string $w \in \Sigma^*$ of length m, one can simulate N on a regular computer and decide if N accepts w. Which of the following is correct?
- (A) None of the other answers is correct.
- (B) This can be done in $O(n^m)$ time, and no faster algorithm is possible.
- (C) This can be done in $O(2^n m)$ time, and no faster algorithm is possible.
- (D) This problem can not be done in polynomial time, because it is undecidable.
- (E) This can done in $O(n^2m)$ time.

Correct answer: E.

Your answer: B.

- 15. (3 points.) Let \mathcal{PC} be the class of all decision problems, for which there is a polynomial time certifier that works in polynomial time, and furthermore, for an input of length n, if it is a YES instance, then there is a certificate that is a binary string of length $n^{O(1)}$. We have that:
- (A) $NP = \mathcal{PC}$.
- (B) None of the other answers is correct.
- (C) All the problems in \mathcal{PC} can be solved in polynomial time.
- (D) NP $\subseteq \mathcal{PC}$.
- (E) \mathcal{PC} contains some NP-Complete problems, but not all of them.

Correct answer: A.

Your answer: C.

16. (3 points.) If a problem is NP-HARD, then it can also be undecidable. This statement is

- (A) True if P = NP.
- (B) None of the other answers.
- (C) False if P = NP.
- (D) True.
- (E) False.

Correct answer: D.

Your answer: D.

- 17. (3 points.) Given an undirected graph G, with n vertices and m edges, consider the decision problem of determining if the vertices of G can be colored (legally) by 2 colors (i.e., no adjacent pair of vertices have the same color). This problem is:
- (A) Can be solved in polynomial time.
- (B) As hard as the independent set problem.
- (C) NP-COMPLETE.
- (D) Solvable in O(n+m) time.
- (E) Undecidable.

Correct answer: D.

Your answer: A.

18. (1 point.) All problems in NP are solvable in exponential time. This statement is

- (A) True.
- (B) False.

Correct answer: A.

Your answer: B.

 ${f 0}$ out of ${f 1}$ point received

19. (2 points.) Consider the following decision problem: Given a directed graph G , and two vertices u,v in G , are u and v strongly connected in G ?

This problem has a polynomial length certificate and polynomial time certifier. This claim is

- (A) True.
- (B) False.

Correct answer: A. Your answer: A.

- 20. (3 points.) The number of undecidable languages is
- (A) uncountable.
- (B) undecidable.
- (C) $2^{\mathbb{R}} = \aleph_2$.
- (D) None of the other answers are correct.
- (E) countable.

Correct answer: A.

Your answer: A.

- 21. (3 points.) Given an undirected graph G with n vertices and m edges, and a number k, deciding if G has a spanning tree with at most k leaves is
- (A) Can be done in polynomial time.
- (B) Can be done in O(n+m) time.
- (C) Can be done in $O(n \log n + m)$ time, and there is no faster algorithm.
- (D) NP-COMPLETE.
- (E) Can be done in $O((n+m)\log n)$ time, and there is no faster algorithm.

Correct answer: D.

Your answer: E.

22. (2 points.) You are given an unsorted set X of n numbers. Deciding if there are two numbers x and y in X such that x + y = 0 can be solved in (faster is better):

- (A) $O(n \log n)$ time.
- (B) O(n) time.
- (C) $O(n^2)$ time.
- (D) $O(n^{3/2})$ time.
- (E) $O(n^2 \log n)$ time.

Correct answer: A.

Your answer: A.

23. (3 points.) For the language $L = \{a^n b^n \mid n \ge 0\}$, we have

- (A) $F = \{a^i b^i \mid i \ge 0\}$ is a fooling set for L.
- (B) All of the sets suggested are fooling sets.
- (C) $F = \{a^i \mid i \ge 0\}$ is a fooling set for L.
- (D) None of the sets suggested are fooling sets.
- (E) $F = \{a^i b^j \mid i < j\}$ is a fooling set for L.

Correct answer: C.

Your answer: C.

24. (3 points.) For the following recurrence (evaluated from top to bottom in this order):

$$f(i,j,k) = \begin{cases} 1 & i < 0 \text{ or } j < 0 \text{ or } k < 0 \\ f(i-1,j,k) + 1 & i > j \text{ or } i > k \\ f(i,j-1,k) + 2 & j > k \\ f(i-1,j,k) + f(i,j-1,k) + f(i,j,k-1) & \text{otherwise.} \end{cases}$$

Assume that every arithmetic operation takes constant time (even if the numbers involved are large). Computing $f(n, \lfloor n/2 \rfloor, \lfloor n/4 \rfloor)$ can be done in (faster is better):

- (A) $O(n^2)$ time, using dynamic programming.
- (B) $O(n^3)$ time, using dynamic programming.
- (C) O(n) time, by recursion.
- (D) $O(2^n)$.
- (E) $O(n \log n)$ time.

Correct answer: B. Your answer: B.

- 25. (3 points.) Give a CNF formula F with n variables, and m clauses, where every clause has exactly three literals (reminder: a literal is either a variable or its negation). Then, one can compute a satisfying assignment to F in:
- (A) This is Satisfiability and it can not be solved in polynomial time unless P = NP.
- (B) $O(n \log n + m)$ time.
- (C) $O(n^2 + m^2)$ time.
- (D) $O(2^n 2^m)$ time.
- (E) O(n+m) time.

Correct answer: A.

Your answer: A.

- 26. (3 points.) Consider the problem of checking if a graph has a Hamiltonian path in it. This problem can be solved in
- (A) It is NP-COMPLETE, so it can not be solved efficiently.
- (B) None of the other answers are correct.
- (C) Polynomial time.
- (D) Maybe polynomial time we do not know. Currently fastest algorithm known takes exponential time.

Correct answer: D.

Your answer: C.

- 27. (3 points.) Given an array $B[1 \dots n]$ with n real numbers (B is not sorted), consider the problem computing and printing out the smallest $\lfloor \sqrt{n} \rfloor$ numbers in B the numbers should be output in sorted order. This can be done in
- (A) $O(\sqrt{n}\log^2 n)$ time, and no faster algorithm is possible.
- (B) $O(\sqrt{n} \log n)$ time, and no faster algorithm is possible.
- (C) $O(n \log n)$ time, and no faster algorithm is possible.
- (D) O(n) time, and no faster algorithm is possible.

Correct answer: D.

Your answer: C.

28. (3 points.) You are given a directed graph G with n vertices, m edges, and positive weights on the vertices (but not on the edges). In addition, you are given two vertices u and v. The weight of a path π is the total weight of the vertices of π .

Consider the problem of computing the lightest (simple) path connecting a vertex u to a vertex v, that visits all the vertices of the graph. This problem is

- (A) NP-HARD.
- (B) Solvable in $O(n \log n + m)$ time.
- (C) Polynomially equivalent to Eulerian cycle.
- (D) Undecidable.
- (E) Solvable in O(n+m) time.

Correct answer: A.

Your answer: B.

- 29. (3 points.) You are given a directed graph G with n vertices and m edges. Consider the problem of deciding if this graph has k vertices t_1,\ldots,t_k , such that any vertex in G can reach any of these k vertices. This problem is
 - (A) NP-Complete by a reduction from Hamiltonian path/cycle to this problem.
 - (B) Doable in O(n+m) time.
 - (C) None of other answers are correct.
- (D) Doable in $O(n^k(n+m))$ time, and no faster algorithm is possible.
- (E) NP-COMPLETE by a reduction from this problem to Hamiltonian path/cycle.

Correct answer: B.

Your answer: A.

30. (3 points.) You are given a graph G with n vertices and m edges, and with weights on the edges. In addition, you are given a tree T. Verifying that T is an MST of G can be done in (faster is better):

- (A) $O(n \log n + m)$ time.
- (B) O(nm) time algorithm, and no faster algorithm is possible.
- (C) None of the other answers.
- (D) O(n) time.
- (E) $O(\log n)$ time, after preprocessing the graph in O(n) time.

Correct answer: A.

Your answer: C.

- 31. (2 points.) Consider an NFA N with m states defined over $\{0,1\}^*$. There is an equivalent regular expression r (i.e., L(r) = L(N)), such that
- (A) none of other answers are correct.
- (B) r is of length at most O(m).
- (C) r is of length at most $O(m \log m)$.
- (D) r is of length at most f(m), where f is some function that is not specified in the other answers.

Correct answer: D.

Your answer: B.

32. (3 points.) You are given two algorithms A_Y and A_N . Both algorithms read an undirected graph G and a number k. If G has an independent set of size $\geq k$, then A_Y would stop (in polynomial time!) and output YES (if there is no such independent set then A_Y might run forever). Similarly, if G does not have an independent set of size $\geq k$, then the algorithm A_N would stop in polynomial time, and output NO (if there is such an independent set then A_N might run forever).

In such a scenario:

- (A) This would imply that $P \neq NP$.
- (B) One can in polynomial time output if G has a an independent set of size $\geq k$.
- (C) Impossible since $P \neq NP$.
- (D) This would imply that P = NP.
- (E) At least two of the other answers are correct.

Correct answer: E.

Your answer: C.

33. (2 points.) Consider the language

$$L = \{1^i 2^j 3^k \mid i, j, k \ge 0, \text{ and } j \text{ is divisible by } p_1, p_2, \dots, p_{100} \},$$

where p_j is the jth smallest prime number, for $j=1,\ldots,100$ (i.e., $p_1=2,p_3=3,\ldots,p_{100}=541$). This language is

- (A) Decidable.
- (B) Finite.
- (C) Undecidable.
- (D) Context-free.
- (E) Regular.

Correct answer: E.

Your answer: E.

34. (3 points.) Let $L_1, L_2 \subseteq \Sigma^*$ be context-free languages. Then the language $L_1 \cap L_2$ is always context-free.

- (A) True only if the languages L_1 and L_2 are decidable, and no other answer is correct.
- (B) False if the languages L_1 and L_2 are decidable, , and no other answer is correct.
- (C) None of the other answers.
- (D) True.
- (E) False.

Correct answer: E.

Your answer: D.

35. (3 points.) Let P_1, \ldots, P_{k+1} be k+1 decision problems. Consider a sequence of k polynomial reductions R_1, \ldots, R_k , where R_i works in quadratic time in its input size, and is a reduction from P_i to P_{i+1} . As such, there is a reduction from P_1 to P_{k+1} and its running time is

- (A) $O(kn^2)$
- (B) $O(k^2n^2)$
- (C) $O(n^{2k})$
- (D) $O(2^k n^2)$
- (E) $O(n^{2^k})$

Correct answer: E.

Your answer: C.

- 36. (3 points.) Let B be the problem of deciding if the shortest path in a graph between two given vertices is smaller than some parameter k (where the weights on the edges of the graph are positive).
- Let C be the problem of deciding if a given CNF formula is satisfiable. Pick the correct answer out of the following:
- (A) There is no relation between the two problems, and no reduction is possible.
- (B) None of the other answers is correct.
- (C) There is a polynomial time reduction from B to C.
- (D) There is a polynomial time reduction from B to C, but only if P = NP.
- (E) There is a polynomial time reduction from C to B, but only if $P \neq NP$..

Correct answer: C.

Your answer: D.

Summary of answers:

Question	Correct Answer	Your Answer	Points
1	A	A	3
2	В	В	3
3	Е	A	0
4	В	В	2
5	D	D	3
6	A	A	2
7	Е	E	2
8	D	D	3
9	В	В	3
10	В	E	0
11	Е	С	0
12	A	С	0
13	A	В	0
14	Е	В	0
15	A	С	0
16	D	D	3
17	D	A	0
18	A	В	0
19	A	A	2
20	A	A	3
21	D	E	0
22	A	A	2
23	С	С	3
24	В	В	3
25	A	A	3
26	D	С	0
27	D	С	0
28	A	В	0
29	В	A	0
30	A	С	0
31	D	В	0
32	E	С	0
33	E	E	2
34	Е	D	0
35	E	С	0
36	С	D	0
Total			42