Research Interest

• My current interest and focus is on applying deep learning for scene understanding which includes scene classification, object detection, recognition and segmentation.

Education

Indian Institute of Science

Bangalore, Karnataka

Master of Engineering in Signal Processing

2010 - 2012

- Master Thesis: Complex Network Approach for Analysis of Biomedical signals
- CGPA: 5.8/8.0
- Advisor: Prof. D. Narayana Dutt

Sri Jayachamarajendra College of Engineering

Mysore, Karnataka

Bachelor of Engineering in Electronics and Communication

2005 - 2009

- Percentage: 71.14%

Work Experience

Samsung Research Institute India

Bangalore

Technical Lead, Media Analytics and Recognition Team

2012-Present

O Project: Deep Convolutional Network for Food Recognition

- * Trained Squeezenet model for deployment on Android phones. Accuracy: 69.5%
- * Trained Resnet-50, Resnet-101, Resnet-152 models with data augmentation and tweak to the model architecture to improve the recognition accuracy. Resnet-152 accuracy: 78.5%
- * Dataset: Food-101. Languages & Tools used Python, Caffe

O Project: Deep Convolutional Network for Image Aesthetics

- * Trained 2-column VGG-16 model and GoogleNet model with data augmentation including data oversampling and multiple input crops. GoogleNet accuracy: 83.7%
- * Application developed to classify a given image into high and low quality
- * Dataset: AVA. Languages & Tools used Python, PyQt, Caffe

O Project: Fully Convolutional Network for Segmentation of Sky and Non-sky regions in an image S blog

- * Trained fully convolutional VGG-16 model. Sky segmentation map used as prior for horizon detection in an image
- * Dataset: SIFT flow. Languages & Tools used Python, Caffe

O Project: Nearest Neighbor Image retrieval using GIST \(\mathbf{O}\) code

- * Developed code for extracting GIST descriptor for images
- * Evaluated GIST descriptor for task of Image retrieval
- * Demonstrated how GIST descriptor can be used for detection of duplicate images
- * Languages & Tools used C++, OpenCV, MATLAB

O Project: Combining Sketch and Tone for Pencil Drawing Production O code

- * Code developed for color pencil sketch effect for images which mimicks human style of pencil drawing
- * Application development for Color Pencil Sketch
- * Languages & Tools used C++, OpenCV, QT

O Project: Auto Image Enhancement (Galaxy S6 onwards)

- * Developed algorithm for detection of low-light/backlight images
- * Developed algorithm for detection of poorly lit faces in an image
- * Complete architecture design of auto image enhancement engine
- * Complete JNI framework design & development for communicating between application and engine
- * Languages & Tools used C, Matlab

O Project: Photo Editor, Best Photo.

- * Developed red eye correction algorithm. GUI developed using Matlab GUIDE for quick demo
- * Implemented image blur detection and ranking algorithms
- * Implemented bilinear resizer module for less memory architecture in Photo Editor
- * Optimization of Photo Editor effects using POSIX threads
- * Languages & Tools used C, C++, Matlab

O Project: Touch Focus (Galaxy S5 onwards)

* Complete JNI framework design & development for communicating between application and engine

Hobby Projects

- 1. Implementation of RNN and LSTM from scratch for character prediction. Languages & Tools used Python, Numpy \bigcirc code-rnn \bigcirc code-lstm
- 2. Trained a SVM model for Pedestrain detection using Histogram of Oriented Gradients feature. Languages & Tools used C++, OpenCV, Python code
- 3. QT based GUI Application for experimenting edge detectors such as Sobel & Canny, blurring filters such as homogeneous, median, Gaussian & bilateral. Languages & Tools used C++, OpenCV, QT software
- 4. Implementation of Canny Edge Detector, Bilateral filter. Languages & Tools used C++, OpenCV 🗘 code

Recognition

- 1. Awarded Galaxy S5 for the success of Touch Focus USP
- 2. Awarded Employee of the month Jan 2016

Relevant Coursework

Deep Learning: Learning from Data (Caltech), Machine Learning (Stanford), UFLDL (Stanford), Stanford CS231 course

Signal Processing Courses: Digital Image Processing, DSP System Design, Biomedical Signal Processing, Speech Information Processing

Mathematical Courses: Linear Algebra, Probability & Random Process, Detection & Estimation Theory, Mathematics for Electrical Engineers

Skills

Programming Languages: C, C++, MATLAB, Python

Tools & Framework: Caffe Deep Learning Framework, Microsoft Visual Studio, QT, Eclipse, Android JNI/NDK

Work Productivity Tools: Vim, tmux