

Prof. Dr. Peter Thiemann Manuel Geffken 27.11.2015

5. Übungsblatt, Aufgabe 6 zur Vorlesung Theoretische Informatik

Mit Lösungsskizze

Aufgabe 6: Abgeschlossenheit Regulärer Sprachen

4 Bonuspunkte

Sei Σ ein Alphabet und seien $a_1, a_2, \dots a_n \in \Sigma$. Sei L eine Sprache über Σ . Die Operation F ist auf Wörtern wie folgt definiert.

$$F(a_1 a_2 \dots a_n) = a_1 a_3 \dots a_m$$
 wobei
$$\begin{cases} m = n - 1 & \text{falls } n > 0 \land n \text{ gerade,} \\ m = n & \text{sonst.} \end{cases}$$

D.h. jeder zweite Buchstabe wird gelöscht. Insbesondere gilt $F(\varepsilon) = \varepsilon$. Auf Sprachen ist F wie folgt definiert.

$$F(L) = \{ F(w) \mid w \in L \}.$$

Zeigen Sie, dass die regulären Sprachen unter F abgeschlossen sind. Das heißt, wenn L regulär ist, dann ist auch F(L) regulär.

..... Lösungsskizze

Extrahiere induktive Definition von $F: \Sigma^* \to \Sigma^*$, die später im Beweis nützlich ist.

$$F(\varepsilon) = \varepsilon$$
$$F(a_1) = a_1$$
$$F(a_1 a_2 w) = a_1 F(w)$$

Per Induktion über die Länge der Wörter ist obige Definition äquivalent zu der ursprünglichen Definition.

- $F(\varepsilon) = \varepsilon$ (sofort per Definition)
- $F(a_1) = a_1$ (sofort per Definition)
- Sei $w=a_3\dots a_n$. $F(a_1a_2w)=a_1a_3\dots a_m \qquad \text{wobei } \begin{cases} m=n-1 & \text{falls } n>0 \wedge n \text{ gerade,} \\ m=n & \text{sonst.} \end{cases}$

Da L regulär ist, existiert ein NEA $\mathcal{B}=(Q,\Sigma,\Delta,q_0,\mathcal{F})$, so dass $\mathcal{L}(\mathcal{B})=L$. Wir konstruieren einen NEA $\mathcal{B}'=(Q',\Sigma',\Delta',q_0',\mathcal{F}')$ wie folgt. Sei \tilde{Q} eine Zustandsmenge, so dass $Q\cap \tilde{Q}=\emptyset$, $|\tilde{Q}|=|Q|$ und $\tilde{f}:Q\to \tilde{Q}$ eine Bijektion.

$$Q' = Q \cup \tilde{Q}, \Sigma' = \Sigma, q'_0 = q_0, \mathcal{F}' = \mathcal{F} \cup \{\tilde{f}(q) \mid q \in \mathcal{F}\}\$$

und

$$(q, a, q'') \in \Delta' \iff (q, a, q') \in \Delta \text{ und } (q', a', q'') \in \Delta$$
 (1)

$$(q, a, \tilde{f}(q')) \in \Delta' \iff (q, a, q') \in \Delta$$
 (2)

Es bleibt zu zeigen, dass $\mathcal{L}(\mathcal{B}') = F(L)$. Wir zeigen beide Richtung der Inklusion getrennt. Fall $\mathcal{L}(\mathcal{B}') \supseteq \{F(w) \mid w \in L\}$: Zu zeigen ist $\forall w \in L : F(w) \in \mathcal{L}(\mathcal{B}')$. Wir zeigen, dass für alle $q \in Q$ und für alle $w \in \Sigma^*$ gilt $(q, w, q') \in \Delta^* \implies (q, F(w), q'') \in \Delta'^*$ und $q' \in \mathcal{F} \iff q'' \in \mathcal{F}'$. Beweis per Induktion über die Länge von w.

- Fall $w = \varepsilon$: Es gilt $(q, \varepsilon, q) \in \Delta^*$. Mit $F(w) = \varepsilon, \mathcal{F}' \cap Q = \mathcal{F}$ und $(q, \varepsilon, q) \in \Delta'^*$ folgt $(q, F(w), q) \in \Delta'^*$ und $q \in \mathcal{F} \iff q \in \mathcal{F}'$.
- Fall w=a: Es gilt $(q,a,q')\in \Delta^*$. Das bedeutet, dass $(q,a,q')\in \Delta$. Also ist laut (2) $(q,a,\tilde{f}(q'))\in \Delta'$ und $q'\in \mathcal{F}\iff \tilde{f}(q')\in \mathcal{F}'$.
- $\bullet \ \, \mathsf{Fall} \ \, w = aa'w' \in L : \ \, \mathsf{Es} \ \, \mathsf{gilt} \ \, (q, aa'w', q') \in \Delta^*. \ \, \mathsf{Das} \, \, \mathsf{bedeutet}, \, \mathsf{dass} \, \, (q, a, q'') \in \Delta, \\ (q'', a', q''') \in \Delta \, \mathsf{und} \, (q''', w, q') \in \Delta^*. \, \mathsf{Mit} \, (1) \, \mathsf{folgt} \, (q, a, q''') \in \Delta'. \, \mathsf{Laut} \, \mathsf{I.V.} \, \mathsf{folgt} \, (q''', F(w), q'''') \in \Delta'^*, \, \mathsf{so} \, \mathsf{dass} \, q' \in \mathcal{F} \iff q'''' \in \mathcal{F}' \, \, \mathsf{und} \, \, \mathsf{damit} \, \, (q, aF(w), q'''') \in \Delta'^*, \, \mathsf{so} \, \, \mathsf{dass} \, q' \in \mathcal{F} \iff q'''' \in \mathcal{F}'. \\ q'''' \in \mathcal{F}'. \, \, \mathsf{Also} \, \, \mathsf{gilt} \, \, (q, F(aa'w), q'''') \in \Delta'^*, \, \mathsf{so} \, \, \mathsf{dass} \, q' \in \mathcal{F} \iff q''''' \in \mathcal{F}'.$

Mit $q'_0 = q_0$ folgt $\mathcal{L}(\mathcal{B}') \supseteq F(L)$.

Fall $\mathcal{L}(\mathcal{B}')\subseteq \{F(w)\mid w\in L\}$: Zu zeigen ist $\forall w\in \mathcal{L}(\mathcal{B}'):\exists w'\in L: F(w')=w.$ Wir zeigen, dass für alle $q\in Q$ und für alle $w\in \Sigma^*$ gilt $(q,w,q'')\in \Delta'^*\implies \exists w'\in \Sigma^*: (q,w',q')\in \Delta^*,$ F(w')=w und $q'\in \mathcal{F}\iff q''\in \mathcal{F}'.$ Beweis per Induktion über die Länge von w.

- Fall $F(w') = \varepsilon$: Es gilt $(q, \varepsilon, q) \in \Delta'^*$. Mit $w = \varepsilon, \mathcal{F}' \cap Q = \mathcal{F}$ und $(q, \varepsilon, q) \in \Delta^*$ folgt $\exists w' \in \Sigma^* : (q, w', q) \in \Delta^*$ und $q \in \mathcal{F} \iff q \in \mathcal{F}'$.
- Fall F(w') = a: Es gilt $(q, a, q') \in \Delta'^*$ also $(q, a, q') \in \Delta'$. Nach (1) und (2) gilt $q' \in Q$ oder $q' \notin Q$ $(q' \in \tilde{Q})$.
 - $\begin{array}{l} -\ q' \in Q \text{: Es folgt } (q,a,q'') \in \Delta \ \text{und } (q'',a',q') \in \Delta. \ \text{Folglich existiert ein Wort } aa' \in \Sigma^*, \\ \text{so dass } (q,aa',q') \in \Delta^*. \ \text{Mit } \mathcal{F}' \cap Q = \mathcal{F} \ \text{folgt } q' \in \mathcal{F} \iff q' \in \mathcal{F}'. \end{array}$
 - $-q' \in \tilde{Q}$: Es folgt $(q, a, \tilde{f}^{-1}(q')) \in \Delta$. Folglich existiert ein Wort $a \in \Sigma^*$, so dass $(q, a, \tilde{f}^{-1}(q')) \in \Delta^*$. Mit $\tilde{f}(q) \in \mathcal{F}' \cap \tilde{Q} \iff q \in \mathcal{F}$ folgt $\tilde{f}^{-1}(q') \in \mathcal{F} \iff q' \in \mathcal{F}'$.
- $\bullet \ \, \mathsf{Fall} \ \, F(w') = aa'w'' \colon \mathsf{Es} \ \mathsf{gilt} \ \, (q,aa'w'',q') \in \Delta'^* \ \, \mathsf{also} \ \, \mathsf{nach} \ \, (1) \ \, \mathsf{und} \ \, (2) \ \, (q,a,q'') \in \Delta' \ \, \mathsf{und} \ \, (q'',a',q''') \in \Delta' \ \, \mathsf{mit} \ \, q'' \in Q \ \, (\mathsf{denn} \ \, \mathsf{es} \ \, \mathsf{gilt} \ \, \neg (\exists q'' \in \tilde{Q} : \exists a' \in \Sigma : \exists q''' \in Q' : (q'',a',q''') \in \Delta') \big) \ \, \mathsf{und} \ \, (q''',w'',q') \in \Delta'^*. \ \, \mathsf{Weiterhin} \ \, \mathsf{gilt} \ \, (q'',a'w'',q') \in \Delta'^*. \ \, \mathsf{Laut} \ \, \mathsf{I.V.} \ \, \mathsf{existiert} \ \, w''' \in \Sigma^*, \ \, \mathsf{so} \ \, \mathsf{dass} \ \, (q'',w''',q'''') \in \Delta^* \ \, \mathsf{mit} \ \, F(w''') = a'w'' \ \, \mathsf{und} \ \, q'''' \in \mathcal{F} \ \, \Longleftrightarrow \ \, q' \in \mathcal{F}'. \ \, \mathsf{dass} \$

Mit
$$q'_0 = q_0$$
 folgt $\mathcal{L}(\mathcal{B}') \subseteq F(L)$.