Homework #3

Justin Robinette

January 29, 2019

No collaborators for any problem

Question 4.7.1, pg 168: Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In other words, the logistic function representation and the logit representation for the logistic regression model are equivalent.

Results: Logistic Function:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Step 1:

$$\frac{1}{p(X)} = \frac{1 + e^{\beta_0 + \beta_1 X}}{e^{\beta_0 + \beta_1 X}}$$

Step 2:

$$\frac{1}{p(X)} = \frac{1}{e^{\beta_0 + \beta_1 X}} + \frac{e^{\beta_0 + \beta_1 X}}{e^{\beta_0 + \beta_1 X}}$$

Step 3:

$$\frac{1}{p(X)} = 1 + \frac{1}{e^{\beta_0 + \beta_1 X}}$$

Step 4:

$$e^{\beta_0 + \beta_1 X} = \frac{p(X)}{1 - p(X)}$$

Which gives us the same equation as 4.3

$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

Question 4.7.10, pg 171: This question should be answered using teh **Weekly** data set, which is part of the *ISLR* package. This data is similar in nature to the **Smarket** data from this chapter's lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

Part A: Produce some numerical and graphical summaries of the **Weekly** data. Do there appear to be any patterns?

Results: First, I loaded the dataset and printed a summary to scan for NAs as well as examine the variables. Next, I created a numerical depiction of the Direction variable to better examine correlation between variables. I then printed a correlation matrix where we only see strong correlations between the Direction and Today, which is somewhat expected since we are measuring a the direction of the week, and between Volume and Year. A correlation plot was included which visually represents the data in the correlation matrix.

At this point, the only true pattern that I see is a correlation between the Volume and the Year. Therefore, a plot is done to further examine this relationship. The plot shows us that the Volume generally is increasing from year to year. An analogous base R plot is included.

```
##
         Year
                         Lag1
                                             Lag2
                                                                 Lag3
##
    Min.
           :1990
                   Min.
                           :-18.1950
                                               :-18.1950
                                                                   :-18.1950
                                       Min.
                                                           Min.
##
    1st Qu.:1995
                   1st Qu.: -1.1540
                                       1st Qu.: -1.1540
                                                           1st Qu.: -1.1580
##
    Median :2000
                   Median :
                              0.2410
                                       Median :
                                                  0.2410
                                                           Median :
                                                                      0.2410
                   Mean
##
    Mean
           :2000
                              0.1506
                                       Mean
                                                  0.1511
                                                           Mean
                                                                      0.1472
##
    3rd Qu.:2005
                    3rd Qu.:
                              1.4050
                                        3rd Qu.:
                                                  1.4090
                                                            3rd Qu.:
                                                                      1.4090
    Max.
           :2010
                           : 12.0260
                                       Max.
                                               : 12.0260
                                                                  : 12.0260
##
                   Max.
                                                           Max.
                                                Volume
##
         Lag4
                             Lag5
##
    Min.
           :-18.1950
                        Min.
                               :-18.1950
                                            Min.
                                                   :0.08747
    1st Qu.: -1.1580
                        1st Qu.: -1.1660
##
                                            1st Qu.:0.33202
##
    Median :
              0.2380
                        Median :
                                  0.2340
                                            Median :1.00268
##
    Mean
           :
              0.1458
                        Mean
                                  0.1399
                                            Mean
                                                   :1.57462
##
    3rd Qu.:
              1.4090
                        3rd Qu.:
                                  1.4050
                                            3rd Qu.:2.05373
           : 12.0260
                        Max.
                               : 12.0260
                                            Max.
                                                   :9.32821
##
    Max.
##
        Today
                        Direction
##
    Min.
           :-18.1950
                        Down: 484
    1st Qu.: -1.1540
                        Up :605
##
##
    Median : 0.2410
           : 0.1499
##
    Mean
##
    3rd Qu.:
              1.4050
##
    Max.
           : 12.0260
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	NumDirection
Year	1.0000	-0.0323	-0.0334	-0.0300	-0.0311	-0.0305	0.8419	-0.0325	-0.0222
Lag1	-0.0323	1.0000	-0.0749	0.0586	-0.0713	-0.0082	-0.0650	-0.0750	-0.0500
Lag2	-0.0334	-0.0749	1.0000	-0.0757	0.0584	-0.0725	-0.0855	0.0592	0.0727
Lag3	-0.0300	0.0586	-0.0757	1.0000	-0.0754	0.0607	-0.0693	-0.0712	-0.0229
Lag4	-0.0311	-0.0713	0.0584	-0.0754	1.0000	-0.0757	-0.0611	-0.0078	-0.0205
Lag5	-0.0305	-0.0082	-0.0725	0.0607	-0.0757	1.0000	-0.0585	0.0110	-0.0182
Volume	0.8419	-0.0650	-0.0855	-0.0693	-0.0611	-0.0585	1.0000	-0.0331	-0.0180
Today	-0.0325	-0.0750	0.0592	-0.0712	-0.0078	0.0110	-0.0331	1.0000	0.7200
NumDir	-0.0222	-0.0500	0.0727	-0.0229	-0.0205	-0.0182	-0.0180	0.7200	1.0000
ection									

Volume vs. Year - ggplot

Volume vs. Year - base R

Part B: Use the fully data set to perform a logistic regression with **Direction** as the response and the five *lag* variables plus **Volume** as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

Results A model was fit using the instructions from the text, and a summary was printed per the same instructions. Additionally, for readability, I included a table of the p-values extracted from the summary.

Based on these outputs, aside from the Intercept, it appears that "Lag2" is the only predictor that is statistically significant at an alpha = 0.05. Lag2, per the ISLR documentation, represents the Percentage return for 2 weeks previous to the week being measured.

```
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
      Volume, family = binomial, data = Weekly)
##
##
## Deviance Residuals:
##
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -1.6949 -1.2565
                     0.9913
                              1.0849
                                       1.4579
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
                                            0.0019 **
## (Intercept) 0.26686
                          0.08593
                                    3.106
## Lag1
              -0.04127
                          0.02641 -1.563
                                            0.1181
## Lag2
                                            0.0296 *
               0.05844
                          0.02686 2.175
## Lag3
              -0.01606
                          0.02666 -0.602
                                            0.5469
              -0.02779
                          0.02646 -1.050
                                            0.2937
## Lag4
              -0.01447
                          0.02638 -0.549
                                            0.5833
## Lag5
## Volume
              -0.02274
                          0.03690 -0.616
                                            0.5377
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1496.2 on 1088 degrees of freedom
##
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
```

P-Values of Predictors for Direction

	P-Value
(Intercept)	0.0018988
Lag1	0.1181444
Lag2	0.0296014
Lag3	0.5469239
Lag4	0.2936533
Lag5	0.5833482
Volume	0.5376748

Part C: Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

Results: First, I used the predict() function to predict Direction using the Weekly.glm model provided by the text book. Next, I added the predictions to the Weekly data set and printed a confusion matrix showing the breakdown of *Direction* predictions versus the observed *Direction*.

Next, per the instructions, I printed the overall fraction of correct predictions. I also included the overall accuracy as a percentage as I think that reads better. I rounded both outputs to 3 decimal places.

Lastly, per the instructions, I analyzed the types of the mistakes made by the model. The last table shows the percentage of correct predictions, by the model, based on whether the *Direction* was Up or Down in the given week. As we can see, in weeks whether the market was up, the model is \sim 92% accurate. In weeks when the market was down, the model is only \sim 11% accurate.

```
## Predicted
## Observed Down Up
## Down 54 430
## Up 48 557
## [1] "The percentage of accurate predictions is: 56.107 % (rounded to 3 decimals)"
## [1] "The overall fraction of correct predictions is: 611 / 1089"
```

Percentage Accuracy by Market Movement

Accuracy when Market is Up Accuracy when Market is Down 92.066 11.157

Part D: Now fit the logistic regression model using a training data period from 1990 to 2008, with **Lag2** as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

Results: To complete this exercise, first I removed the prediction results from the **Weekly** data set from early exercises. Then I created subsets of training and test data sets using the years 2009 and 2010 as the test data and the prior years as the training set.

Then, I fit a model using only the **Lag2** variable as a predictor of **Direction**, using the training set to build the model.

I then used the model to predict the direction in the test data set and printed the confusion matrix and overall fraction of correct predictions, as instructed. I also included the percentage of accuracy for easier analysis.

Lastly, I included a comparison of *Model 1* (the model that uses all predictors of Direction from Parts B and C) and *Model 2* (the model that only uses "Lag2") as a predictor.

As we can see, despite using training/test data sets which often give less accurate predictions, the model that only uses "Lag2" to predict "Direction" is more accurate.

Per the homework instructions, I've skipped Parts E-I.

```
##
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = Weekly.training)
##
## Deviance Residuals:
     Min
               1Q Median
##
                               3Q
                                      Max
## -1.536 -1.264
                   1.021
                            1.091
                                    1.368
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.20326
                           0.06428
                                     3.162 0.00157 **
## Lag2
               0.05810
                           0.02870
                                     2.024 0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1354.7 on 984
                                      degrees of freedom
##
## Residual deviance: 1350.5 on 983
                                      degrees of freedom
## AIC: 1354.5
## Number of Fisher Scoring iterations: 4
##
          Predicted
## Observed Down Up
               9 34
##
      Down
##
      Up
               5 56
## [1] "The percentage of accurate predictions in test set is: 62.5 % (rounded to 3 decim
als)"
## [1] "The overall fraction of correct predictions in the test set is: 65 / 104"
```

Percentage Accuracy by Model

Accuracy of Model 1 Accuracy of Model 2 56.10652 62.5

Question 4.7.11, pg 172: In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the **Auto** data set.

Part A: Create a binary variable **mpg01**, that contains a 1 if **mpg** contains a value above its median, and a 0 if **mpg** contains a value below the median.

Results: I created the variable "mpg01" per the instructions using the condition of whether or not the "mpg" value for each observation is above or below the median value of "mpg". I printed the header to confirm the creation of the variable.

##		mpg01	mpg	cylinders	displacement	horsepower	weight	acceleration	year
##	1	0	18	8	307	130	3504	12.0	70
##	2	0	15	8	350	165	3693	11.5	70
##	3	0	18	8	318	150	3436	11.0	70
##		origin	1		name				
##	1	1	. che	evrolet che					
##	2	1		buick	k skylark 320				
##	3	1		plymou	uth satellite				

Part B: Explore the data set graphically in order to investigate the association between **mpg01** and the other features. Which of the other features seem most likely to be useful in predicting **mgp01**? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

Results: First, I printed boxplots showing the relationship between the binary variable **mpg01** and the other predictors. From these plots, it appears to me that the most useful features are *Cylinders*, *Displacement, Horsepower and Weight.* There appears to be a possibly useful correlation between the dependent variable and *Year*, but I will examine that later in this exercise. Base R plots are included for reference.

Next, I printed a table showing the correlation values of each variable as well as a corresponding correlation plot to visually depict the table. These two visuals confirm that *Cylinders, Displacement, Horsepower and Weight* will be useful predictors. The correlation between the response variable and *Year* still appears to be somewhat relevant but I am not sure if it will help the model. I will create two models, one with *Year* and one without to compare.

Lastly, to confirm my selections, I included scatterplot matrices and looked at the relationships again. These matrices confirm my decision in the prior paragraph. Analagous base R plots have been included per homework guidelines.

MPG

MPG by Cylinders

MPG by Displacement

MPG by Horsepower

MPG by Weight

MPG by Acceleration

MPG by Year

MPG by Origin

	mpg01	cylinders	displacement	horsepower	weight	acceleration	year	origin
mpg01	1.0000	-0.7592	-0.7535	-0.6671	-0.7578	0.3468	0.4299	0.5137
cylinders	-0.7592	1.0000	0.9508	0.8430	0.8975	-0.5047	-	-
							0.3456	0.5689
displacement	-0.7535	0.9508	1.0000	0.8973	0.9330	-0.5438	-	-
							0.3699	0.6145
horsepower	-0.6671	0.8430	0.8973	1.0000	0.8645	-0.6892	-	-
							0.4164	0.4552
weight	-0.7578	0.8975	0.9330	0.8645	1.0000	-0.4168	-	-
							0.3091	0.5850
acceleration	0.3468	-0.5047	-0.5438	-0.6892	-0.4168	1.0000	0.2903	0.2127
year	0.4299	-0.3456	-0.3699	-0.4164	-0.3091	0.2903	1.0000	0.1815
origin	0.5137	-0.5689	-0.6145	-0.4552	-0.5850	0.2127	0.1815	1.0000

Part C: Split the data into training and test sets.

Results: Here I set a sample size to extract 75% of the data set as training data and 25% as testing data. I set a seed for reproducibility and split the sets.

To confirm, I printed the number of rows in each of the 3 data sets.

of Rows in Each Data Set

# Rows Auto	# Rows Train	# Rows Test
392	294	98

Per the Homework PDF, I've skipped Parts D and E

Part F: Perform logistic regression on the training data in order to predict **mpg01** using the variables that seemed most associated with **mpg01** in (b). What is the test error of the model obtained?

Results: First, I fit both two models with the predictors discussed in (b). The first model included *Year* as a predictor, while the second model did not. I first compared the two models by comparing the p-values of the predictors. In the first model, **Weight, Horsepower and Year** are significant predictors. In the second model, we see that **Horsepower and Displacement** are the only significant predictors with p-values below our alpha of 0.05. The *Weight* variable is no longer significant when *Year* is removed from the modeling. This is interesting since *Year* was a predictor that did not appear to be as strong of a correlated variable as the others in part (b).

Next, I compared the AIC (Akaike Information Criterion) value is useful in comparing models to see which "fit" the data better. The lower AIC indicates a superior model. Here we see that the model with Year as a predictor is superior, according to AIC. Next we'll see if this superiority translates to better results when using them on our test data set.

Lastly, I used the two models to predict the test data set **mpg01** values. Then I printed the confusion matrices, accuracies, and fractions of accuracies for both models. Then, per assignment instructions, I also showed the error rate for each model.

As we can see, predictably (from the AIC discussion above), the model with *Year* included as a predictor is better at predicting the response variable in the test data.

P-Values of Predictors with Year Included

P-Values of Predictors without Year Included

	P-Values	_		P-Values
(Intercept)	0.0054592		(Intercept)	0.0000000
cylinders	0.6565322		cylinders	0.7981999
weight	0.0009514		weight	0.0561246
displacement	0.1189136		displacement	0.0494608
horsepower	0.0339068		horsepower	0.0106244
year	0.0000012			

Comparison of AIC Values

AIC of Model with Year	AIC of Model without Year
131.8796	163.036

```
##
          Predicted #1
## Observed 0 1
          0 45 5
##
          1 2 46
##
##
          Predicted #2
## Observed 0 1
          0 42 8
##
          1 3 45
##
## [1] "The percentage of accurate predictions in test set is: 92.857 % (rounded to 3 dec
imals)"
## [1] "The overall fraction of correct predictions in the test set is: 91 / 98"
## [1] "The percentage of accurate predictions in test set is: 88.776 % (rounded to 3 dec
imals)"
## [1] "The overall fraction of correct predictions in the test set is: 87 / 98"
```

Test Error by Model

Error Rate of Model 1 (with Year) Error Rate of Model 2 (w/out Year)
7.142857 11.22449

Question 4: Write a function in RMD that calculates the misclassification rate, sensitivity, and specificity. The inputs for this function are a cutoff point, predicted probabilities, and original binary response. Test your function using the model from 4.7.10 b. (This needs to be an actual function using the function() command, not just a chunk of code). This will be something you will want to use throughout the semester, since we will be calculating these a lot! *Show the function code you wrote in your final write-up.*

```
class.function <-</pre>
  function(cutoff, probs, outcomes) {
    results <- list()
    predictions <- ifelse(probs > 0.5, 1, 0)
    confusion.matrix <- table(outcomes, predictions)</pre>
    names(dimnames(confusion.matrix)) <- c("Observed", "Predicted")</pre>
    results$misclassification.rate <- 1- ((confusion.matrix[1,1] +
                                               confusion.matrix[2,2])/(confusion.matrix[1,
1] +
                                                                          confusion.matrix[
1,2]+confusion.matrix[2,1]+
                                                                          confusion.matrix[
2,2]))
     results\$sensitivity <- confusion.matrix[2,2]/(confusion.matrix[2,2] + confusion.matr
ix[2,1]
    results\$specificity <- confusion.matrix[1,1]/(confusion.matrix[1,1] + confusion.matri
x[1,2]
    return(as.data.frame(results))
 }
class.function(0.5, Weekly.probs, Weekly$Direction)
##
     misclassification.rate sensitivity specificity
                  0.4389348 0.9206612 0.1115702
## 1
```