

Rest2Task: генеративное моделирование моторной карты головного мозга по данным фМРТ

Team: Antipushina Ekaterina, Ruslan Kalimullin

Introduction

Определения:

- (1) фМРТ в покое
- (2) фМРТ при выполнении двигательных задач

Проблема: запись фМРТ пациента при выполнении двигательных задач длительна и является дорогостоящей

Задача: создание ассистентного алгоритма, генерирущего моторные матрицы конективности на основе данных состояния покоя

Датасет: Human Connectome Project 600 корреляционных матриц для состояния покоя 600 корреляционных матриц для моторных задач

Методы

Модели: VAE, cGAN, WCGAN-QC, Vanila NOT, Deform NOT

Mетрики: MSE, ELBO, L1-loss

(1) VAE результаты

epoches: 50

learning rate: 1e-4

MSE(rest, motor) = 0.10 ± 0.07 MSE(reconstruction, motor) = 0.07 ± 0.25 ELBO(reconstruction, motor) = 0.69 ± 0.25

(2) cGAN (ріх2ріх) результаты

MSE(rest, motor) = 0.10 ± 0.07 MSE(reconstruction, motor) = 0.06 ± 0.009 L1 = 0.19 ± 0.01

(3) WCGAN-QC результаты

LWGAN-QC(D):

$$=\frac{1}{2}\left(\frac{1}{m}\sum_{i\in\mathcal{I}}D_w(y_i)-\frac{1}{m}\sum_{i\in\mathcal{I}}H_i^*\right)^2 \qquad \qquad \text{Kontarovich Potential} \\ +\frac{1}{2}\left(\frac{1}{n}\sum_{j\in\mathcal{J}}\left(D_w(x_j)-H_j^*\right)^2\right) \qquad \qquad \text{OT Regularization} \\ +\frac{\gamma}{\sqrt{K}n}\sum_{j\in\mathcal{J}}\left(||\nabla_x D_w(x_j)||-K||y_{\sigma(j)}-x_j||\right)^2$$

2wgan-qc(G):
$$\min_{\theta} \quad \mathcal{L}(\theta) = -\frac{1}{n} \sum_{j \in \mathcal{J}} D_w(G_{\theta}(z_j))$$

epoches: 300

learning rate: 2e-4 optimizer: Adam

MSE(reconstruction, motor) = 0.056 ± 0.012 L1 = 0.18 ± 0.012

(4) Vanila NOT результаты

epoches: 300

learning rate: 2e-4

MSE(reconstruction, motor) = 0.06 ± 0.025

 $L1 = 0.22 \pm 0.03$

(5) Deform NOT результаты

epoches: 300

learning rate: 2e-4

MSE(reconstruction, motor) = 0.07 ± 0.030 L1 = 0.22 ± 0.04

Выводы + дальнейшие шаги

• Лучшая модель: WCGAN-QC (MSE = 0.056 ± 0.012, L1 = 0.18 ± 0.012)

Модель	MSE	L1
cGAN	0.06 ± 0.009	0.19 ± 0.01
WCGAN-QC	0.056 ± 0.012	0.18 ± 0.012
Vanila NOT	0.06 ± 0.025	0.22 ± 0.03
Deform NOT	0.07 ± 0.030	0.22 ± 0.04

Дальнейшая шаги:

- 1) wc-NOT (Unet)
- 2) Осуществить визуализацию в виде карт активации мозга

Antipushina Katerina Msc-2, Skoltech

github

thx!

Ruslan Kalimullin Msc-2, Skoltech

github

