COPYRIGHT (C) 2006 Univentio

10 OCT 2006

<20061010/UP>

FILE LAST UPDATED:

```
Welcome to STN International
                  Web Page URLs for STN Seminar Schedule - N. America
 NEWS
 NEWS
                  "Ask CAS" for self-help around the clock
 NEWS
          FEB 27
                  New STN AnaVist pricing effective March 1, 2006
                  CA/CAplus enhanced with 1900-1906 U.S. patent records
 NEWS
          MAY 10
 NEWS
          MAY 11
                  KOREAPAT updates resume
          MAY 19
 NEWS
                  Derwent World Patents Index to be reloaded and enhanced
          MAY 30
 NEWS
                  IPC 8 Rolled-up Core codes added to CA/CAplus and
                  USPATFULL/USPAT2
 NEWS
       8
          MAY 30
                  The F-Term thesaurus is now available in CA/CAplus
 NEWS
       9
          JUN 02
                  The first reclassification of IPC codes now complete in
                  INPADOC
 NEWS 10
          JUN 26
                  TULSA/TULSA2 reloaded and enhanced with new search and
                  and display fields
 NEWS 11
          JUN 28
                  Price changes in full-text patent databases EPFULL and PCTFULL
          JUl 11
 NEWS 12
                  CHEMSAFE reloaded and enhanced
 NEWS 13
          JUl 14
                  FSTA enhanced with Japanese patents
 NEWS 14
          JUl 19
                  Coverage of Research Disclosure reinstated in DWPI
 NEWS 15 AUG 09
                  INSPEC enhanced with 1898-1968 archive
 NEWS 16 AUG 28 · ADISCTI Reloaded and Enhanced
 NEWS 17 AUG 30 CA(SM)/CAplus(SM) Austrian patent law changes
 NEWS 18 SEP 11
                  CA/CAplus enhanced with more pre-1907 records
 NEWS 19
         SEP 21
                  CA/CAplus fields enhanced with simultaneous left and right
                  truncation
 NEWS 20
          SEP 25
                  CA(SM)/CAplus(SM) display of CA Lexicon enhanced
 NEWS 21
          SEP 25
                  CAS REGISTRY(SM) no longer includes Concord 3D coordinates
                  CAS REGISTRY(SM) updated with amino acid codes for pyrrolysine
 NEWS 22
          SEP 25
 NEWS 23
          SEP 28
                  CEABA-VTB classification code fields reloaded with new
                  classification scheme
 NEWS EXPRESS
              JUNE 30 CURRENT WINDOWS VERSION IS V8.01b, CURRENT
               MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
               AND CURRENT DISCOVER FILE IS DATED 26 JUNE 2006.
 NEWS HOURS
               STN Operating Hours Plus Help Desk Availability
 NEWS LOGIN
               Welcome Banner and News Items
 NEWS IPC8
               For general information regarding STN implementation of IPC 8
 NEWS X25
               X.25 communication option no longer available
Enter NEWS followed by the item number or name to see news on that
specific topic.
  All use of STN is subject to the provisions of the STN Customer
  agreement. Please note that this agreement limits use to scientific
  research. Use for software development or design or implementation
  of commercial gateways or other similar uses is prohibited and may
  result in loss of user privileges and other penalties.
                        * * STN Columbus
FILE 'HOME' ENTERED AT 12:52:36 ON 11 OCT 2006
=> file pctfull
COST IN U.S. DOLLARS
                                                 SINCE FILE
                                                                 TOTAL
                                                      ENTRY
                                                               SESSION
FULL ESTIMATED COST
                                                       0.21
                                                                  0.21
FILE 'PCTFULL' ENTERED AT 12:52:43 ON 11 OCT 2006
```

```
>>> IMAGES ARE AVAILABLE ONLINE AND FOR EMAIL-PRINTS <<<
```

>>> NEW IPC8 DATA AND FUNCTIONALITY NOW AVAILABLE IN THIS FILE.
SEE
http://www.stn-international.de/stndatabases/details/ipc-reform.html >>>

>>> FOR CHANGES IN PCTFULL PLEASE SEE HELP CHANGE
 (last updated April 10, 2006) <<<</pre>

>>> NEW PRICES IN PCTFULL AS OF 01 JULY 2006. FOR DETAILS, PLEASE SEE HELP COST <<<

=> s wo0191798/pn

L1 0 WO0191798/PN (WO191798/PN)

=>.s wo01091798/pn

L2 0 WOO1091798/PN (WO1091798/PN)

=> s wo2001091798/pn

L3 1 WO2001091798/PN (WO2001091798/PN)

=> s 13 and target? 186329 TARGET?

L4 1 L3 AND TARGET?

=> s 14 and (prostate or ovar or breast)
OR IS NOT A RECOGNIZED COMMAND
The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (=>).

=> s 14 and (prostate or ovar? or breast)

25735 PROSTATE

437 PROSTATES

25750 PROSTATE

(PROSTATE OR PROSTATES)

34105 OVAR?

34026 BREAST

1455 BREASTS

34301 BREAST

(BREAST OR BREASTS)

L5 1 L4 AND (PROSTATE OR OVAR? OR BREAST)

=> d kwic

L5 ANSWER 1 OF 1 PCTFULL COPYRIGHT 2006 Univentio on STN

PI WO 2001091798 A2 20011206

ABEN . . . biologically active entity linked to a masking moiety <i>via</i> a linking moiety. The prodrug compounds are selectively activated at or near target cells and display lower toxicity and possibly a longer <i>in vivo</i> or serum half-life than the corresponding naked biologically active. . .

DETD . . . cleaved by proteases and/or peptidases in the extracellular medium at or near tumor celis and certain endothelial celis involved in 20' neoangiogenesis (`target cells). Particularly, peptides that may be specifically cleaved in the target extracellular milieu include those having the amino

acid sequence (Leu)y(Ala-Leu)xAla-Phe, where y is 0 or 1 and x. invention together permits the biologically active entity to be selectively released or liberated in vivo at or near a tumor or target cell.

by virtue of the linking moiety and the observed differences in the amount of specifically cleaving peptidases produced and/or secreted by the target and healthy cells, the prodrugs of the invention permit compounds that are cytotoxic or cytostatic to be selectively delivered to the target celis, thereby providing a selective and safe means of delivering the cytotoxic and/or cytostatic agents to patients to treat turnorigenic conditions,.

facilitates transport into the cell or cell nucleus. Selective delivery of a biologically active entity directly into the nucleus of a target Gel¡ may improve the selectivity of the biologically active entity and may overcome drug resistance to the biologically active entity. Intracellularly active. . . the invention in which the biologically active entity includes a transport peptide permit selective delivery of biologically active entities to tumors and/or target celis that otherwise SUBSTITUTE SHEET (RULE 26) compositions of the invention in association with'a transport peptide that acts to enhance its membrane. . .

tumor or a tumor cell or an endothelial cell involved in tumor neoangiogenesis. The method comprises contacting a tumor or a target cell with an amount of a prodrug or pharmaceutical composition of the invention effective to inhibit the growth or proliferation of the tumor cell or target cell. The method can be practiced to inhibit the growth or proliferation of tumors and/or target cells in vivo, in vitro or ex vivo.

313 illustrates the specific deavage of a prodrug of one polarity in the extracellular milieu at or near a tumor or target cell; FIG. 3C illustrates the specific cleavage of a prodrug of a second polarity in the extracellular milieu at or near a tumor or target cell SUBSTITUTE SHEET (RULE 26) FIG. 3D illustrates the specific cleavage of a prodrug comprising a spacing moiety; FIG. 3E illustrates the specific. . .

`Biologically active entity` refers to a molecule or construct that exerts a biological effect on a target cell, as defined herein. Typically, the entity is cytotoxic and/or cytostatic toward target celis or sensitizes target celis to the action of another cytotoxic or cytostatic entity.

active entity to a masking moiety and that is susceptible to specific, selective cleavage at or near a tumor or a target cell, as defined herein.

11 Selective cleavage` refers to the enhanced or preferential specific cleavage achieved at or near a target cell. Thus, while the specific cleavage of the linking moiety is not unique to target celis, the greater cleavage achieved at or near target cells renders the cleavage selective for purposes of the present invention.

`Target cell refers to a tumor cell or to an endothelial cell involved in tumor neoangiogenesis.

entity, rendering it inactive until specifically released. The linking moiety is susceptible to specific, selective cleavage at or near a tumor or target cell. By virtue of the specific and selective cleavage of the linking moiety in vivo, an entity formulated as a prodrug. . .

Linking niolety
The linking moiety can comprise any molecule that is susceptible to specific cleavage at or near a tumor or a target cell. The linking moiety is covalently linked to the masking rnoiety and to the biologically active entity, thereby linking the two. . .

While not intending to be bound by theory of operation, it is believed that tumors and target celis secrete into the extracellular medium a factor or factors such as proteases or peptidases that are capable of specifically cleaving. . in tumor neoangiogenesis excrete a significantly higher concentration of the factor thereby permitting specific and selective cleavage at or near tumors and/or target celis. The resulting improved selectivity of action of the biologically active entity is illustrated in FIG.

of biologically active entity 12 and linking moiety 14 is relatively stable at or near healthy cell 16. In FIG. 1 C, target (tumor or angiogenic endothelial) cell 18 secretes a factor 20 which is capable of specifically cleaving the linkage between linking moiety 14, liberating released biologically active entity 12'. Liberated biologically active entity 12' is free to exert its activity on target cell 18. For instance, biologically active entity 12' might bind receptor 22 on the surface of target cell 18, thereby initiating an intracellular cascade leading to the apoptosis or another form of death of tumor cell 18. Because. . .

Factor 20 can be any molecule or condition in the environment at or near target cell 18 that is capable of specifically cleaving linking moiety 14. While not intending to be bound by theory, it is believed that: factor 20 is a protease or peptidase selectively secreted by target celis. I-lowever, since al¡ proteases or peptidases that specifically cleave the linking moiety have not yet been identified, factor 20 can. . . condition that

```
is capable of specifically cleaving the linking moiety. For instance,
 factor 20 might even
 be low pH conditions near a target cell. Factor 20 is
 selectively present at or near target
 cells. ¡t can be present at or near target cells
 exclusively, or it can be enriched at or near
   target celis such that: prodrug 8 is cleaved preferentially at
 or near target celis and
 administration of prodrug 8 displays improved selectivity for
target celis relative to
 administration of the naked biologically active entity 12 or released
 biologically active
 entity 12'.
 Preferred linking moieties are peptides that are susceptible to specific
 cleavage at
 or near target celis. For example, ¡t has been
discovered that peptides having the amino
SUBSTITUTE SHEET (RULE 26)
acid sequence (Leu) y (Ala-Leu),, Ala-Leu and peptides having.
                                                              . . 0 or
 1 and x = 11 2, or 3) are specifically cleaved by
a factor in the extracellular milieu near target celis.
Preferred peptide linking moieties
comprise the amino acid sequence Ala-Leu-Ala-Leu (SEQ ID NO:1),
Leu-Ala-Leu-Ala-Leu
 (SEQ ID NO:2), Leu-Ala-Leu (SEQ ID NO:3),. . .
5.6 Biologically active entities
The biologically active entity can be any entity that has biological
activity against
tumors or target celis, or any entity that: would derive an
advantage from being selectively
administered to a tumor or target cell. Preferred biologically
active entities include those
entities that are cytotoxic and/or cytostatic to tumors and/or
target celis such as, for
example TNFa, IFN-a, IFN-V, IL-1, IL-2, IL-6, an IGF-1 antagonist, a
lytic peptide, an
antiangiogenic peptide, a thrombospondin-derived.
adjusting the biologically
active entity: linking moiety molar ratio of the conjugation reaction.
Specific cleavage of
the linking moiety in the vicinity of target celis such as
tumor celis releases the biologically
active polpeptide modified with a leucine residue or a phenylalanine
residue at each
amine.
Tumor selective prodrug of TNFa
In one preferred embodiment of this aspect of the invention, a prodrug
selectively
delivers active TNIFa to target celis. TNFa can be linked to a
masking rnoiety via any
linking rnoiety of the present invention.
the surface of the majority
of mammalian celis. Receptor aggregation upon TNIFa binding might be the
mechanism
for receptor activation in the target cells (Banner et aL,
1993, Cell 73:431-445). For an
extensive review on TNIFa, see Sidhu and Bollon, 1993, Pharmacol. Ther.
57:79.
stability and tissue distribution to the PEG-TNFa conjugates
```

described above. However, since selective activation of the prodrug at or near tumors or

target celis liberates leucyI-TI\¡Fa, the prodrug conjugates should display little or no loss of TNIFa specific activity in vivo. As a result, . . . ensuring reduced toxicity and allowing the use of higher dose leveis. In acidition, selective activation of the prodrug at or near target celis should dramatically enhance the selectivity of the prodrug relative to the PEG-TNFa SUBSTITUTE SHEET (RULE 26) conjugates. The PEG-TNIFa conjugates displayed only. . .

aL, 1995, supra. Because the PEG or polymer masking moieties are specifically and selectively cleaved at or near a tumor or target cell, when formulated as a prodrug according to the invention, the TNFa can be completely inactivated by the PEG or polymer masked. . .

activated IGF-1 antagonist prodrug
In another embodiment, a prodrug selectively delivers an oligopeptide
antagonist
of insulin-like growth factor QGF-1) to tumors or target celis
in vivo. The masking moiety
SUBSTITUTE SHEET (RULE 26)
can be selected from any of the masking moieties discussed above, and.

the IGF-mediated survival function is likely to increase the antiturrior effects of conventional chemotherapy (Gooch J. L. et aL, 1 999 , Breast Cancer Res. Treat. 56:1-10).

1.3 Tumor activated prodrug of a thrombospondin-1 derived peptide In another preferred embodiment, a prodrug compound is capable of selectively delivering to target celis an antiangiogenic peptide derived from the structure of the angiogenesis inhibitor thrombospondin-1 (TSP-1).

embodiment of the invention, peptides derived from the primary sequence of TSP-1 are formulated as prodrug compounds for selective delivery to target cells. In particular, peptide sequences that comprise reverse sequences of D-amino acids derived from a type-1 repeat of amino acids from the. . .

substance P antagonist
In another preferred embodiment of the invention, substance P antagonists are formulated as prodrug compounds for selective delivery to target celis.

Growth factors play an important role in the pathogenesis and evolution of cancers. New targets for therapy have been identified from the knowledge of the role such growth factors play in the progression of lung cancer.. . .

Accordingly, in this embodiment, substance P antagonists are formulated as prodrugs for selective delivery to target celis. A preferred substance P antagonist is a

peptide with the amino acid sequence D-Arg-Pro-Lys-Pro-D-Trp-Gin-D-Trp-Phe-D-Trp-Leu-Leu-NH2 (SPD). Preferred masking moieties include biocompatible. .

5 2.1 Tumor activated prodrug of a lytic peptide
In another embodiment of the invention, a prodrug selectively delivers
to target
celis a peptide that is capable of lysing those celis in vivo. In this
embodiment, a lytic,
peptide is finked to any. . .

Due to their intrinsic cytolytic activity, nalked lytic peptides active on marnmalian cells are inherently toxic. They must be targeted specifically to tumor cefis in the form of prodrugs.

The transport peptide portion of the construct enables, facilitates or enhances transport of the intracellularly active entity into the target cell and/or nuclear transiocation of the entity. The action of any biologically active entity, including intracellularly active biologically active entities can potentially. . .

protein - carrier peptide prodrug
In this embodiment of the present invention, a prodrug selectively
transports an
intracellularly active, pro-apoptotic protein into target
celis in vivo. A pro-apoptotic protein
is formulated in a prodrug as a construct comprising the pro-apoptotic
protein and a
transport peptide.. . .

supra. Preferred masking moleties include PEG, preferred linking moieties include the tetrapeptide Ala-Leu-Ala-Leu. When the prodrug is in the environment of a target cell, the linking moiety is cleaved liberating an active leucyI derivative of the active transport peptide. The transport peptide carries with. . . the cell. If so, the cleavage site can be cleaved within the cell liberating the intact, active pro-apoptotic protein within the target cell.

embodiments of the invention, the prodrug compounds are dual prodrugs. A dual prodrug compound can deliver two or more entities to target cells. In dual prodrugs, the biologically active entity is a cytostatic or cytotoxic entity as described in detail above. In addition, the. . .

the present invention include any pair of entities that have a biological activity and a therapeutic effect on a tumor or target cell. For instance, a dual prodrug can comprise two biologically active polypeptides, two biologically active small molecules, two extracellularly active biologically active. . Particularly useful prodrugs of the present invention are those that comprise a pair of entities that act in concert at a target cell. For instance, one of the entities can be a ligand for a cell surface receptor that facilitates transport of the other. . .

In a third pair, a small molecule and a polypeptide can have synergistic effects on the same target cell.

an amino group, such as a dicarboxylic acid (e.g., citraconyl, dimethylmaleyl, glutaryl, succinyl and diglycolyl). When placed in the vicinity of a target cell, dual prodrug 52 is cleaved to release 2 moles of released biologically active entity 39 for every mole of dual. . .

of TNFa or to abrogate the cellular resistance to TNFa. There is convincing evidence that there is a synergy between TNFa and topoisomerase-targeted drugs such as doxorubicin, VIVI-26, etoposide, teniposide and daunorubicin. This synergy is related to a rapid increase in specific activity of topoisomerase. . .

amino termina¡ end of the linking moiely via a dicarboxylic acid spacer. Activation of the prodrug in the vicinity of a target cell liberates leucyl-doxorubicin and TNFa modified with a portion of the linking moiety.

In the vicinity of target cefis, prodrug 40 is specifically cleaved to yield Compound 35 and released biologically active entity 39. Released biologically active entity 39. . .

Activation of the prodrug in the vicinity of a target cell liberates compound 48 comprising biologically active entity 38, spacing moiety 42 and a leucine residue. Again, the synthesis may be controlled. . .

the free carboxyI groups of compound 58 to yield dual prodrug 52. Cleavage of dual prodrug 52 in the vicinity of target celis liberates two molecules of released biologically SUBSTITUTE SHEET (RULE 26) active entity 39. Both molecules of released biological entity 39 comprise. . .

the invention can be used in a wide variety of applications to inhibit or prevent the growth of a tumor or target cell. For example, the prodrugs can be used to treat or prevent diseases related to tumor cell growth in humans and. . .

therapeutically effective amount is meant an amount of peptide or composition that inhibits the growth of, or is lethal to, a target cell. The actual therapeutically effective amount will depend on a particular application. An ordinarily skilled artisan will be able to determine therapeutically. . .

For use to treat or prevent tumor or target cell growth or diseases related thereto, the prodrugs of the invention, or compositions thereof, are administered or applied in a therapeutically effective. . . By therapeutically effective amount is meant an amount

effective to ameliorate the symptoms of, or ameliorate, treat or prevent tumor or target cell growth or diseases related thereto. Determination of a therapeutically effective. amount is weil within the capabilities of those skilled in the. receptor-binding assays are carried out with the conjugates of TNFa to check inactivation as described, supra. Then, culture media conditioned by MCF-7/6 (breast carcinoma), LS T (colon carcinoma), LNCaP (prostate carcinoma) and NC1-H209 (small-cell lung carcinoma), or other cell lines are used to check the reactivation of the conjugates by tumor-released peptidases.. dual TNFa - doxorubicin prodrug In this example, we present a dual prodrug that releases TNFa and the antineoplastic entity doxorubicin at target cefis in vivo. The activities of the IGF-1 antagonist and its leucyI-derivative are compared in receptor binding and cell proliferation assays. MCF-7/6'human breast cancer celis are seeded and grown in serum-free medium. They are then incubated at 40C with [1251]-IGF-1 in the presence of increasing. activity is compared to that: of Dox and of the IGF-1 antagonist, alone or in combination. Nude mice bearing MCF-7/6 human breast tumors are used for the activity assays. - doxorublicin prodrug In this ex'ample, we present a dual prodrug that specifically releases a lytic peptide and doxorubicin at or near target celis in vivo. we describe the design and-preparation of an HIV Tat-derived transport peptide (Gly-Arg-Lys-Lys-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gin-Cys) prodrug for carrying doxorubicin directly to the nucleus of a target cell. Formulation of, the 3 5 construct as a prodrug according to the present invention by coupling with PEG-Ala-Leu-SUBSTITUTE SHEET (RULE 26) Ala-Leu provides selectivity for target cells to the construct and increases its stability. The HIV- Tat-derived transport peptide of the construct carries doxorubicin to the nucleus. The uptake of the biotinylated peptide and its leucyI-derivatives in . MCF-7/6 human breast cancer celis is determined after reaction with streptavidin-conjugated horse radish peroxidase. Celis are incubated for 1 to 18 hours with biotinylated. centrifuged to eliminate celis and analyzed by HIPI-C. The disappearance the conjugates over time is quantified. Media conditioned by MCF-716 (breast carcinoma) and LS-1 74-T (colon carcinoma) cell lines are used to check tumor peptidase reactivation of the conjugates. After incubation at 370C.

evaluation of its in vivo toxicity (lethality studies) and chemotherapeutic activity in nude mice bearing subcutaneous resistant turnors such as the human breast cancer MCF-7/Adr.

14. Example 10: Pro-apoptopic protein-carrier peptide prodrug In this example, we describe a prodrug that selectively delivers a pro-apoptotic protein construct to target celis. The construct includes a transport peptide that carries the pro-apoptotic protein into the nucleus of the target cell and the pro-apoptotic protein granzyrne B.

CLMEN. . . that (M - L1)n hinders the activity of B and is susceptible to cleavage at or near a tumor or a target cell; and n is an integer from 1 up to the total number of reactive groups of B.

each independently biologically active entities and L3 is a linking moiety susceptible to cleavage at or near a tumor or a target cell.

---Logging off of STN---

=>
Executing the logoff script...

=> LOG Y

=>

COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST
10.05
10.26

STN INTERNATIONAL LOGOFF AT 12:56:11 ON 11 OCT 2006