SMAI ASSIGNMENT 1

NAME: ANIMI REDDY ROLL NUMBER: 20161191

PART1:

Attributes used as Categorichal data: ['Work_accident','promotion_last_5years','sales','salary','left']

Accuracy: 0.7624555160142349
Recall: 0.001869158878504673
Precision: 0.99999999999998
F1_score: 0.0037313432835820895

PART2:

Attributes used are both Categorichal and numeric.

Accuracy: 0.7929181494661922 Recall: 0.4638655462184874 Precision: 0.6202247191011236 F1_score: 0.5307692307692308

PART3:

Effectiveness of using Misclassification rate, Gini, Entropy as impurity measures over given dataframe:

Entropy as impurity measure: Accuracy: 0.7624555160142349

Recall: 0.001869158878504673 Precision: 0.9999999999998 F1 score: 0.0037313432835820895

Gini as impurity measure:

Accuracy: 0.7614597240765465 Recall: 0.0037174721189591076

Precision: 1.0

F1_score: 0.007407407407407408

Misclassification rate as impurity measure:

Accuracy: 0.7491103202846975 Recall: 0.0035335689045936395

Precision: 1.0

F1_score: 0.007042253521126761

PART4:

Visualization of Training data:

```
In [76]: import matplotlib.pyplot as plt
    df = pd.read_csv('decision_Tree/train.csv')
    df = df.sample(n=80)
    f1 = df[df['left']==1]['satisfaction_level']
    f2 = df[df['left']==1]['last_evaluation']
    plt.scatter(f1,f2,color="red",label="Yes")

g1 = df[df['left']==0]['satisfaction_level']
    g2 = df[df['left']==0]['last_evaluation']
    plt.scatter(g1,g2,color="blue",label="No")
    plt.xlabel ('satisfaction_level')
    plt.ylabel ('last_evaluation')
    plt.legend()
    plt.show()
```


Visualization of Decision Boundary:

```
In [3]: import numpy as np
import pandas as pd
eps = np.finfo(float).eps
from numpy import log2 as log
import matplotlib.pyplot as plt

df = pd.read_csv('inp.csv')

# df = df.sample(n=80)

fl = df[df['left']==1]['satisfaction_level']
f2 = df[df['left']==1]['last_evaluation']
plt.scatter(fl,f2,color="red",label="Yes")
g1 = df[df['left']==0]['satisfaction_level']
g2 = df[df['left']==0]['last_evaluation']
plt.scatter(gl,g2,color="blue",label="No")
x1, y1 = [1, 1], [-6, 6]
plt.plot(x1,y1, marker = 'o')
plt.xlabel ('satisfaction_level')
plt.ylabel ('last_evaluation')
plt.legend()
plt.show()
```


PART5:

PARIS.			
Depth of Decision Tree	Training error	Validation error	
10	0.2103724418456845	0.21061999406704246	
9	0.24126096351849502	0.24147137347967962	
8	0.22282954112113895	0.2192227825571047	
7	0.23401550781746538	0.23405517650548802	
6	0.22905809075886618	0.23909819044793834	
5	0.2382102453285878	0.23864648263579702	
4	0.23147324265920932	0.23880154256897068	
	0. 00400070400004	0.004054004400445500	
3	0.234269734333291	0.23435182438445568	
2	0.23554086691241893	0.24651438742212994	

```
In [320]: import matplotlib.pyplot as plt
    df = pd.read_csv('tab.csv')
    plt.plot(df['d'],df['ve'],color="red",label='Validation error')
    plt.plot(df['d'],df['te'],color="blue",label='Training error')
    plt.xlabel ('Depth of decision tree')
    plt.ylabel ('Error')
    plt.legend()
    plt.show()
```


Number of Nodes in DT	Training error	Validation error	
34	0.2203724418456845	0.24061999406704246	
26	0.23126096351849502	0.24147137347967962	
22	0.23282954112113895	0.2442227825571047	
18	0.23401550781746538	0.24405517650548802	
16	0.23705809075886618	0.24709819044793834	
12	0.2382102453285878	0.24864648263579702	
8	0.23847324265920932	0.24880154256897068	
4	0.239269734333291	0.240269734333291	
2	0.23554086691241893	0.23654086691241893	

```
In [86]: import matplotlib.pyplot as plt
    df = pd.read_csv('tabl.csv')
    plt.plot(df['d'],df['ve'],color="red",label='Validation error')
    plt.plot(df['d'],df['te'],color="blue",label='Training error')
    plt.xlabel ('Number of Nodes')
    plt.ylabel ('Error')
    plt.legend()
    plt.show()
```


PART6: Say we built a decision tree of whether one should play or not based on the weather conditions. We may have a training dataset like this:

OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
=======	========	========	=======	========
sunny	85	85	false	Don't Play
sunny	80	90	true	Don't Play
overcast	83	78	false	Play
rain	70	96	false	Play
rain	68	80	false	Play
rain	65	70	true	Don't Play
overcast	64	65	true	Play
sunny	72	95	false	Don't Play
sunny	69	70	false	Play
rain	75	80	false	Play
sunny	75	70	true	Play
overcast	72	90	true	Play
overcast	81	75	false	Play
rain	71	80	true	Don't Play

And use it to build a decision tree that may look something like this:

1. Decision Tree Algorithm deals with missing values by returning the probability distribution of the labels under the attribute branch for which the value is missing. Suppose that we had an instance in our test data that showed the outlook to be Sunny but did not have a value for the attribute Humidity. Also, suppose that our training data had 2 instances for which the outlook was Sunny, Humidity was below 75, and a label of Play. Furthermore, suppose the training data had 3 instances where the outlook was Sunny, Humidity was above 75, and had a label of Don't Play. So for the test instance with the missing Humidity attribute, the C4.5 algorithm would return a probability distribution of [0.4, 0.6] corresponding to [Play, Don't Play].