Partial to full retroactivity

2025-10-26

How to go from partial to full retroactivity in detail

Cristina Gomes Fernandes, Felipe Castro de Noronha

BME-USP - Bussi

LAGOS 25 - November 10-14 2025

How to go from partial to full retroactivity in detail

Cristina Gomes Fernandes, Felipe Castro de Noronha

IME-USP - Brazil

LAGOS 25 - November 10-14, 2025

- 1. Hello there everybody, my name is Felipe Noronha and today I'm gonna gonna be doing a quick presentation about the paper professor Cristina and I did at the IME of USP
- 2. with the topic being: going from partial to full retroactivity in detail
- 3. This work addresses a practical limitation in Demaine, Iacono & Langerman's 2007 transformation
- 4. And also iterates over Junior & Seabra's solution from 2022
- 5. Our contribution shows how to go from partial to full retroactivity with same time complexity without requiring persistent data structures
- 6. As our main focus of study we had the minimum spanning fores problem, and that's what we are going to start with today

What is a spanning tree?

- Let G = (V, E) be a connected graph
- **Spanning tree:** A tree with all vertices of *G*

Partial to full retroactivity

2025-10-26

─What is a spanning tree?

- 1. Start with basic concept of spanning tree fundamental in graph theory
- 2. ——- SKIP SLIDE ——-
- 3. Explain key properties: connected (path between any two vertices), acyclic (no cycles), contains exactly n-1 edges for n vertices
- 4. ———- SKIP SLIDE ———-
- 5. Show visual example with graph G (blue edges) and spanning tree T (red wavy edges)
- 6. In the example: 8 vertices, so spanning tree has exactly 7 edges
- 7. This builds up the concepts step by step for the incremental MSF problem
- 8. Emphasize that spanning trees are not unique there can be many valid spanning trees

What is a spanning tree?

- Let G = (V, E) be a connected graph
- **Spanning tree:** A tree with all vertices of *G*
- Properties:
 - Connected (path between any two vertices)
 - ► Acyclic (no cycles)
 - ▶ Contains exactly n-1 edges for n vertices

What is a spanning tree?

• Let G = (V, E) be a connected graph

• Spanning tree: A tree with all vertices of G• Properties:

• Constend (path between any two vertices)

• Acyclic (no cycles)

• Contains exactly g = 1 edges for g = 1 vertices

025-10-26

─What is a spanning tree?

- 1. Start with basic concept of spanning tree fundamental in graph theory
- 2. ——- SKIP SLIDE ——-
- 3. Explain key properties: connected (path between any two vertices), acyclic (no cycles), contains exactly n-1 edges for n vertices
- 4. ——- SKIP SLIDE ——-
- 5. Show visual example with graph G (blue edges) and spanning tree T (red wavy edges)
- 6. In the example: 8 vertices, so spanning tree has exactly 7 edges
- 7. This builds up the concepts step by step for the incremental MSF problem
- 8. Emphasize that spanning trees are not unique there can be many valid spanning trees

What is a spanning tree?

- Let G = (V, E) be a connected graph
- **Spanning tree:** A tree with all vertices of *G*
- Properties:
 - ► Connected (path between any two vertices)
 - Acyclic (no cycles)
 - ▶ Contains exactly n-1 edges for n vertices

Figure: Graph G (blue edges) and spanning tree T (red wavy edges)

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

What is a spanning tree?

- 1. Start with basic concept of spanning tree fundamental in graph theory
- 2. ——- SKIP SLIDE ——-
- 3. Explain key properties: connected (path between any two vertices), acyclic (no cycles), contains exactly n-1 edges for n vertices
- 4. ——- SKIP SLIDE ——-
- 5. Show visual example with graph G (blue edges) and spanning tree T (red wavy edges)
- 6. In the example: 8 vertices, so spanning tree has exactly 7 edges
- 7. This builds up the concepts step by step for the incremental MSF problem
- 8. Emphasize that spanning trees are not unique there can be many valid spanning trees

Minimum Spanning Tree and Forest

• Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost

Partial to full retroactivity

2025-10-26

☐ Minimum Spanning Tree and Forest

Minimum Spanning Tree and Forest

Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost

- 1. Define MST as spanning tree in a graph with weighted edges with minimum total cost optimization problem
- 2. ——- SKIP SLIDE ——-
- 3. Generalize to MSF for disconnected graphs collection of MSTs for each component
- 4. ——- SKIP SLIDE ——-
- 5. Show visual example with weighted edges: blue edges show graph G, red wavy edges show MST
- 6. Demonstrate that red edges form MST with cost 14 (1+2+3+2+3+1+2=14)
- 7. Explain that any other spanning tree would have higher cost this is the optimal solution
- 8. This prepares for the incremental MSF problem where we maintain optimality dynamically
- 9. Key insight: we need to maintain optimality as edges are added one by one

Minimum Spanning Tree and Forest

- Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost
- Minimum Spanning Forest (MSF): generalization for disconnected graphs

Partial to full retroactivity

└─Minimum Spar

2025-

Minimum Spanning Tree and Forest

• Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost

└─Minimum Spanning Tree and Forest

- 1. Define MST as spanning tree in a graph with weighted edges with minimum total cost optimization problem
- 2. ——- SKIP SLIDE ——-
- 3. Generalize to MSF for disconnected graphs collection of MSTs for each component
- 4. ——- SKIP SLIDE ——-
- 5. Show visual example with weighted edges: blue edges show graph G, red wavy edges show MST
- 6. Demonstrate that red edges form MST with cost 14 (1+2+3+2+3+1+2=14)
- 7. Explain that any other spanning tree would have higher cost this is the optimal solution
- 8. This prepares for the incremental MSF problem where we maintain optimality dynamically
- 9. Key insight: we need to maintain optimality as edges are added one by one

Minimum Spanning Tree and Forest

- Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost
- Minimum Spanning Forest (MSF): generalization for disconnected graphs

Figure: Graph G (blue edges) and Minimum Spanning Tree (red wavy edges)

LAGOS 25 - November 10-14, 2025 3/26

Partial to full retroactivity

Minimum Spanning Tree and Forest

—Minimum Spanning Tree and Forest

- 1. Define MST as spanning tree in a graph with weighted edges with minimum total cost - optimization problem
- 2. ——- SKIP SLIDE ——-
- 3. Generalize to MSF for disconnected graphs collection of MSTs for each component
- 4. ——- SKIP SLIDE ——-
- 5. Show visual example with weighted edges: blue edges show graph G, red wavy edges show MST
- 6. Demonstrate that red edges form MST with cost 14 (1+2+3+2+3+1+2=14)
- 7. Explain that any other spanning tree would have higher cost this is the optimal solution
- 8. This prepares for the incremental MSF problem where we maintain optimality dynamically
- 9. Key insight: we need to maintain optimality as edges are added one by one

Incremental MSF problem

• Problem: Keep track of an MSF in a graph that grows over time

Graph starts empty, edges are added one by one

Partial to full retroactivity

• Problem: Xeep track of an MSF in a graph that gross over time
• Graph starts empts, edges are added one by one

- 1. Define incremental MSF problem clearly: maintain MSF as graph grows
- 2. Emphasize that graph starts empty and grows this is crucial for our approach
- 3. ——- SKIP SLIDE ——-

☐ Incremental MSF problem

2025-1

- 4. Show the two key operations: $add_edge(u,v,w)$ and $get_msf()$
- 5. ———- SKIP SLIDE ———-
- 6. Mention Frederickson's breakthrough solution from 1983 using link-cut trees
- 7. Note the cost is O(logn) amortized per edge addition using link-cut trees
- 8. This is the foundation for retroactive version we'll extend this to handle time
- 9. Key insight: we need to maintain MSF not just for current state, but for any time \boldsymbol{t}

Incremental MSF problem

• Problem: Keep track of an MSF in a graph that grows over time

• Graph starts empty, edges are added one by one

Operations:

- ightharpoonup add_edge(u, v, w): add edge with cost w between vertices u and v
- get_msf(): return a list with the edges of an MSF of G

- 1. Define incremental MSF problem clearly: maintain MSF as graph grows
- 2. Emphasize that graph starts empty and grows this is crucial for our approach
- 3. ——- SKIP SLIDE ——-
- 4. Show the two key operations: add_edge(u,v,w) and get_msf()
- 5. ——- SKIP SLIDE ——-
- 6. Mention Frederickson's breakthrough solution from 1983 using link-cut trees
- 7. Note the cost is O(logn) amortized per edge addition using link-cut trees
- 8. This is the foundation for retroactive version we'll extend this to handle time
- 9. Key insight: we need to maintain MSF not just for current state, but for any time \boldsymbol{t}

Incremental MSF problem

• Problem: Keep track of an MSF in a graph that grows over time

- Graph starts empty, edges are added one by one
- Operations:
 - ightharpoonup add_edge(u, v, w): add edge with cost w between vertices u and v
 - ▶ get_msf(): return a list with the edges of an MSF of G

• Solution: Frederickson (1983) using link-cut trees

- 1. Define incremental MSF problem clearly: maintain MSF as graph grows
- 2. Emphasize that graph starts empty and grows this is crucial for our approach
- 3. ——- SKIP SLIDE ——-
- 4. Show the two key operations: add_edge(u,v,w) and get_msf()
- 5. ———- SKIP SLIDE ———-
- Mention Frederickson's breakthrough solution from 1983 using link-cut trees
- 7. Note the cost is O(logn) amortized per edge addition using link-cut trees
- 8. This is the foundation for retroactive version we'll extend this to handle time
- 9. Key insight: we need to maintain MSF not just for current state, but for any time t

• Key insight: Use link-cut trees to maintain MSF dynamically

Key insight: Use link-cut trees to

Frederickson's link-out tree solution

2025-10-2

Frederickson's link-cut tree solution

- 1. Explain Frederickson's key insight: use link-cut trees to maintain MSF dynamically
- 2. ——- SKIP SLIDE ——-
- 3. List the specific link-cut tree operations: find_max, link, cut all O(logn) amortized
- 4. ——- SKIP SLIDE ——-
- 5. 1. Check connectivity using link-cut trees find, ootoperations
- 6. 2. If not connected: add edge directly linkoperation
- 7. 3. If connected: find max cost edge on u-v path $find_max operation$
- 8. 4. If new edge cheaper: replace max edge cut + link operations
- 9. ——- SKIP SLIDE ——-
- 10. Emphasize the logarithmic time complexity: O(logn) per edge addition
- 11. Key insight: link-cut trees support efficient rollback, which we'll need for retroactivity

• **Key insight:** Use link-cut trees to maintain MSF dynamically

• Link-cut tree operations:

- find max(u, v): $\mathcal{O}(\log n)$ amortized
- ▶ link(u, v, w): O(log n) amortized
- $ightharpoonup \operatorname{cut}(u,v)$: $\mathcal{O}(\log n)$ amortized

Partial to full retroactivity

2025-10-26

Frederickson's link-cut tree solution

Frederickson's link-cut tree solution

Link-cut tree operations:

find_max(u, v): $O(\log n)$ amortized link(u, v, w): $O(\log n)$ amortized cut(u, v): $O(\log n)$ amortized

- 1. Explain Frederickson's key insight: use link-cut trees to maintain MSF dynamically
- 2. ——- SKIP SLIDE ——-
- 3. List the specific link-cut tree operations: find_max, link, cut all O(logn) amortized
- 4. ———- SKIP SLIDE ———-
- 5. 1. Check connectivity using link-cut trees find, ootoperations
- 6. 2. If not connected: add edge directly linkoperation
- 7. 3. If connected: find max cost edge on u-v path find_maxoperation
- 8. 4. If new edge cheaper: replace max edge cut + link operations
- 9. ——- SKIP SLIDE ——-
- 10. Emphasize the logarithmic time complexity: O(logn) per edge addition
- 11. Key insight: link-cut trees support efficient rollback, which we'll need for retroactivity

• **Key insight:** Use link-cut trees to maintain MSF dynamically

• Link-cut tree operations:

- find $\max(u, v)$: $\mathcal{O}(\log n)$ amortized
- ▶ link(u, v, w): O(log n) amortized
- $ightharpoonup \operatorname{cut}(u,v)$: $\mathcal{O}(\log n)$ amortized

• Algorithm for adding edge (u, v, w):

- \bigcirc Check if u and v are in same component
- ② If not: add edge to forest
- 3 If yes: find max cost edge on u-v path
- 4 If $w < \max$ cost: replace max edge with new edge

Partial to full retroactivity

2025-10-26

Frederickson's link-cut tree solution

Frederickson's link-cut tree solution

• Key insight: Use link-cut trees to minish MSF dynamically

• Key insight: Use link-cut trees to minish MSF dynamically

• Link-cut tree operations

• Link-cut (C) (C)(eq a) ministed

• Link(cut (C)(eq a) ministed

• Link(cut (C)(eq a) ministed

• Algorithm for adding adge (u, v w):

• O Cost if a set i u min tume comparent

O The cost is a ministed to comparent

O The cost is a ministed tree on the cost of th

- 1. Explain Frederickson's key insight: use link-cut trees to maintain MSF dynamically
- 2. ——- SKIP SLIDE ——-
- 3. List the specific link-cut tree operations: find_max, link, cut all O(logn) amortized
- 4. ———— SKIP SLIDE —————
- 5. 1. Check connectivity using link-cut trees find, ootoperations
- 6. 2. If not connected: add edge directly *linkoperation*
- 7. 3. If connected: find max cost edge on u-v path find_maxoperation
- 8. 4. If new edge cheaper: replace max edge cut + link operations
- 9. ——- SKIP SLIDE ——-
- 10. Emphasize the logarithmic time complexity: O(logn) per edge addition
- 11. Key insight: link-cut trees support efficient rollback, which we'll need for retroactivity

- **Key insight:** Use link-cut trees to maintain MSF dynamically
- Link-cut tree operations:
 - find_max(u, v): $\mathcal{O}(\log n)$ amortized
 - ▶ link(u, v, w): $\mathcal{O}(\log n)$ amortized
 - $ightharpoonup \operatorname{cut}(u,v)$: $\mathcal{O}(\log n)$ amortized
- Algorithm for adding edge (u, v, w):
 - \bigcirc Check if u and v are in same component
 - ② If not: add edge to forest
 - 3 If yes: find max cost edge on u-v path
 - 4 If $w < \max$ cost: replace max edge with new edge
- **Total cost:** Amortized $\mathcal{O}(\log n)$ per edge addition

- Explain Frederickson's key insight: use link-cut trees to maintain MSF dynamically
- 2. ——- SKIP SLIDE ——-
- 3. List the specific link-cut tree operations: find_max, link, cut all O(logn) amortized
- 4. ———- SKIP SLIDE ———-
- 5. 1. Check connectivity using link-cut trees find, ootoperations
- 6. 2. If not connected: add edge directly *linkoperation*
- 7. 3. If connected: find max cost edge on u-v path find_maxoperation
- 8. 4. If new edge cheaper: replace max edge cut + linkoperations
- 9. ——- SKIP SLIDE ——-
- 10. Emphasize the logarithmic time complexity: O(logn) per edge addition
- 11. Key insight: link-cut trees support efficient rollback, which we'll need for retroactivity

• add_edge(g, h, 4): Add edge with cost 4

Figure: Step 1: Added edge (g,h) with cost 4

• **MSF**: {g-h}

Partial to full retroactivity

2025-1

- 1. Show first edge being added: (g,h) with cost 4
- 2. Explain it's automatically added to MSF since no cycle exists yet
- 3. Current MSF: g-h with total cost 4
- 4. This demonstrates the incremental nature: we start with empty graph
- 5. Each step shows how MSF evolves as edges are added
- 6. Link-cut tree operations: link(g,h) O(log n) time

• add_edge(c, a, 1): Add edge with cost 1

Figure: Step 2: Added edge (c,a) with cost 1

• MSF: {g-h, c-a}

Partial to full retroactivity

2025-10-26

- 1. Show second edge being added: (c,a) with cost 1
- 2. Still no cycle, so added to MSF directly
- 3. Current MSF: g-h, c-a with total cost 5
- 4. Link-cut tree operations: link(c,a) O(log n) time
- 5. We now have two separate components: g,h and c,a
- 6. This shows how MSF grows incrementally without cycles

• add_edge(f, g, 6): Add edge with cost 6

Figure: Step 3: Added edge (f,g) with cost 6

• MSF: {g-h, c-a, f-g}

Partial to full retroactivity

2025-10-26

- 1. Show third edge being added: (f,g) with cost 6
- 2. Still no cycle, so added to MSF directly
- 3. Current MSF: g-h, c-a, f-g with total cost 11
- 4. Link-cut tree operations: link(f,g) O(log n) time
- 5. Now we have components: g,h,f and c,a
- 6. This continues the incremental growth pattern

• add_edge(a, f, 2): Add edge with cost 2

Figure: Step 4: Added edge (a,f) with cost 2

• **MSF:** {g-h, c-a, f-g, a-f}

Partial to full retroactivity

2025-10-26

- 1. Show fourth edge being added: (a,f) with cost 2
- 2. Still no cycle, so added to MSF directly
- 3. Current MSF: g-h, c-a, f-g, a-f with total cost 13
- 4. Link-cut tree operations: link(a,f) O(logn) time
- 5. Now we have component: g,h,f,a,c all vertices connected!
- 6. This shows how components merge as edges are added

• add_edge(c, f, 5): Add edge with cost 5

Figure: Step 5: Added edge (c,f) with cost 5

• MSF: {g-h, c-a, f-g, a-f}

Partial to full retroactivity

2025-10-26

- 1. Show fifth edge being added: c, f with cost 5
- 2. This creates a cycle! c-a-f-g-h-c forms a cycle
- 3. Link-cut tree operations: find_max(c,f) finds edge a, f with cost 2
- 4. Since new edge cost 5, which is grater than 2, it's not added to the MSF
- 5. Current MSF: g-h, c-a, f-g, a-f with total cost 13
- 6. This demonstrates the cycle-breaking optimization in Frederickson's algorithm
- 7. Key insight: we maintain optimality by replacing expensive edges with cheaper ones

• add_edge(f, d, 7): Add edge with cost 7

Figure: Step 6: Added edge (f,d) with cost 7

• MSF: {g-h, c-a, f-g, a-f, f-d}

Partial to full retroactivity

2025-10-26

- 1. Show sixth edge being added: f, d with cost 7
- 2. This creates a cycle! f-d-g-h-f forms a cycle
- 3. Link-cut tree operations: $find_{max}(f,d)$ no cycle returned
- 4. Edge is added to the MSF
- 5. Current MSF: g-h, c-a, f-g, a-f, f-d with total cost 20

• add_edge(a, d, 3): Add edge with cost 3

Figure: Step 7: Added edge (a,d) with cost 3

• MSF: {g-h, c-a, f-g, a-f, a-d}

Partial to full retroactivity

2025-1

- 1. Show seventh edge being added: a, d with cost 3
- 2. This creates a cycle! a-d-f-a forms a cycle
- 3. Link-cut tree operations: find_max(a,d finds edge f, d with cost 7
- 4. Since new edge cost 3 i max cost 7, we replace (f,d) with (a,d)
- 5. Current MSF: g-h, c-a, f-g, a-f, a-d with total cost 16 improved!
- 6. This shows continued optimization as better edges are found
- 7. Key insight: the algorithm continuously improves the MSF as new edges arrive

• add_edge(d, g, 2): Add edge with cost 2

Figure: Step 8: Added edge (d,g) with cost 2

• MSF: {g-h, c-a, a-f, a-d, d-g}

Partial to full retroactivity

2025-1

- 1. Show eighth edge being added: d, g with cost 2
- 2. This creates a cycle! d-g-f-a-d forms a cycle
- 3. Link-cut tree operations: $find_{max}(d,g)$ finds edge (f,g) with cost 6
- 4. Since new edge cost 2 j max cost 6, we replace (f,g) with (d,g)
- 5. Current MSF: {g-h, c-a, a-f, a-d, d-g} with total cost 12 improved!
- 6. This shows the final optimization step
- 7. Key insight: the algorithm finds the optimal MSF through incremental improvements
- 8. Total cost reduced from 14 to 8 through smart edge replacements

Incremental MSF example - Final Result

• Continue adding edges...

Partial to full retroactivity

2025-10-26

Incremental MSF example - Final Result

ncremental MSF example - Final Result • Continue adding edges...

- 1. If we continue adding edges and applying this algorithm
- 2. ——- SKIP SLIDE ——-
- 3. Show final complete MSF with optimal cost = 12
- 4. Summarize the incremental process: started empty, added edges one by one
- 5. Transition to Frederickson's solution: O(logn) amortized per edge addition
- 6. Key insight: link-cut trees enable efficient cycle detection and edge replacement
- 7. This sets up the retroactive version: what if we want to query MSF at any time t?
- 8. The challenge: maintain MSF not just for current state, but for any historical time
- 9. This motivates the need for retroactive data structures

Incremental MSF example - Final Result

- Continue adding edges...
- Final MSF: Minimum spanning forest with optimal cost

Figure: Final MSF with optimal cost = 12

• **Solution:** Frederickson (1983) using link-cut trees

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

2025-

Incremental MSF example - Final Result

- 1. If we continue adding edges and applying this algorithm
- 2. ——- SKIP SLIDE ——-
- 3. Show final complete MSF with optimal cost = 12
- 4. Summarize the incremental process: started empty, added edges one by one
- 5. Transition to Frederickson's solution: O(logn) amortized per edge addition
- 6. Key insight: link-cut trees enable efficient cycle detection and edge replacement
- 7. This sets up the retroactive version: what if we want to query MSF at any time t?
- 8. The challenge: maintain MSF not just for current state, but for any historical time
- 9. This motivates the need for retroactive data structures

What is retroactivity?

• Problem: Data structures usually support updates and queries

• The order of updates affects the state of the data structure

Partial to full retroactivity

2025-

└─What is retroactivity?

- 1. Data structures usually support queries, and generally, the order in which the updates are done will affect the result of the queries
- 2. Because of this, we don't always have a proper way of correcting mistakes or adding forgotten operations
- 3. ——- SKIP SLIDE ——-
- 4. That where retroactive comes to play, to allow us to manipulate the sequence of updates, while also allowing for queries at any moment in time
- 5. ——- SKIP SLIDE ——-
- 6. Show the three key operations: insert, remove, query at any time
- 7. Emphasize that time stamps must be distinct this is important for correctness
- 8. This sets up the distinction between partial and full retroactivity
- 9. Key insight: we need to maintain state at every possible time, not just current

What is retroactivity?

• **Problem:** Data structures usually support updates and queries

• The order of updates affects the state of the data structure

• **Retroactivity:** Manipulate the sequence of updates

Partial to full retroactivity

2025-

—What is retroactivity?

- 1. Data structures usually support queries, and generally, the order in which the updates are done will affect the result of the queries
- 2. Because of this, we don't always have a proper way of correcting mistakes or adding forgotten operations
- 3. ——- SKIP SLIDE ——-
- 4. That where retroactive comes to play, to allow us to manipulate the sequence of updates, while also allowing for queries at any moment in time
- 5. ——- SKIP SLIDE ——-
- 6. Show the three key operations: insert, remove, query at any time
- 7. Emphasize that time stamps must be distinct this is important for correctness
- 8. This sets up the distinction between partial and full retroactivity
- 9. Key insight: we need to maintain state at every possible time, not just current

What is retroactivity?

- Problem: Data structures usually support updates and queries
- The order of updates affects the state of the data structure
- Retroactivity: Manipulate the sequence of updates
- Operations:
 - ▶ Insert update at time t (possibly in the past)
 - ► Remove update at time *t*
 - Query at time t (not just present)

- 1. Data structures usually support queries, and generally, the order in which the updates are done will affect the result of the queries
- 2. Because of this, we don't always have a proper way of correcting mistakes or adding forgotten operations
- 3. ——- SKIP SLIDE ——-
- That where retroactive comes to play, to allow us to manipulate the sequence of updates, while also allowing for queries at any moment in time
- 5. ——- SKIP SLIDE ——-
- 6. Show the three key operations: insert, remove, query at any time
- 7. Emphasize that time stamps must be distinct this is important for correctness
- 8. This sets up the distinction between partial and full retroactivity
- 9. Key insight: we need to maintain state at every possible time, not just current

Partial vs Full retroactivity

Fully Retroactive

- Queries at **any** time t
- Insert/remove updates at any time

Partial to full retroactivity

2025-

Partial vs Full retroactivity

ally Retroactive

• Queries at any time t

• Insert (remove undates at any time

Partial vs Full retroactivity

- 1. We also have different flavors of retroactivity, namely partial and semi-retroactivity
- 2. With full retroactivity, we have the operations we just showed
- 3. ——- SKIP SLIDE ——-
- 4. While partial retroactivitty only allows queries on current state this is the limitation
- 5. ——- SKIP SLIDE ——-
- 6. Define semi-retroactive: queries at any time, insertions, but no removals
- 7. Generally, partial retroactive structures are simpler to implement, and with that, an interesting challange arrives

Partial vs Full retroactivity

Fully Retroactive

- Queries at **any** time *t*
- Insert/remove updates at any time

Partially Retroactive

- Queries only on current state
- Insert/remove updates at any time

Partial to full retroactivity

025-10-26

Partial vs Full retroactivity

ial vs Full retroactivity
Retroactive
Queries at any time t
nsert/remove updates at any time
ally Retroactive
Queries only on current state
nsert/remove updates at any time

- 1. We also have different flavors of retroactivity, namely partial and semi-retroactivity
- 2. With full retroactivity, we have the operations we just showed
- 3. ——- SKIP SLIDE ——-
- 4. While partial retroactivitty only allows queries on current state this is the limitation
- 5. ——- SKIP SLIDE ——-
- 6. Define semi-retroactive: queries at any time, insertions, but no removals
- 7. Generally, partial retroactive structures are simpler to implement, and with that, an interesting challange arrives

Partial vs Full retroactivity

Fully Retroactive

- Queries at **any** time t
- Insert/remove updates at any time

Partially Retroactive

- Queries only on current state
- Insert/remove updates at any time

Semi-Retroactive

- Queries at any time t
- Insert updates at any time
- No removal of updates

Partial to full retroactivity

Partial vs Full retroactivity

artial vs Full retroactivity
ully Retroactive
Queries at any time t
 Insert/remove updates at any time
Partially Retroactive
Queries only on current state
 Insert/remove updates at any time
emi-Retroactive
Queries at any time t
 Insert updates at any time
Management of contract

- 1. We also have different flavors of retroactivity, namely partial and semi-retroactivity
- 2. With full retroactivity, we have the operations we just showed
- 3. ——- SKIP SLIDE ——-
- 4. While partial retroactivitty only allows queries on current state this is the limitation
- 5. ——- SKIP SLIDE ——-
- 6. Define semi-retroactive: queries at any time, insertions, but no removals
- 7. Generally, partial retroactive structures are simpler to implement, and with that, an interesting challange arrives

The challenge

Challenge

How to transform partial \rightarrow full retroactivity?

Partial to full retroactivity

The challenge

Challenge

How to transform partial → ful

2025-10-26

☐ The challenge

- 1. State the main challenge clearly: partial to full retroactivity
- 2. ——- SKIP SLIDE ——-
- 3. Explain what we need to achieve: queries at any time t
- 4. ———- SKIP SLIDE ———-
- 5. Introduce the solution approach: square-root decomposition
- 6. Mention the key insight about checkpoints
- 7. Reference the Demaine et al. work from 2007
- 8. This motivates the detailed solution in the next slide
- 9. Key insight: we need to maintain multiple versions of the data structure
- 10. The challenge: how to do this efficiently without persistent data structures?

The challenge

Challenge

How to transform partial \rightarrow full retroactivity?

- **Problem:** Need to support queries at any time t
- Solution approach: Square-root decomposition

Partial to full retroactivity

2025-10-26

☐The challenge

The challenge

Challenge

How to transform partial → full retreactivity?

• Problem: Need to support queries at any time t

- 1. State the main challenge clearly: partial to full retroactivity
- 2. ———- SKIP SLIDE ———-
- 3. Explain what we need to achieve: queries at any time t
- 4. ———- SKIP SLIDE ———-
- 5. Introduce the solution approach: square-root decomposition
- 6. Mention the key insight about checkpoints
- 7. Reference the Demaine et al. work from 2007
- 8. This motivates the detailed solution in the next slide
- Key insight: we need to maintain multiple versions of the data structure
- 10. The challenge: how to do this efficiently without persistent data structures?

The challenge

Challenge

How to transform partial \rightarrow full retroactivity?

- **Problem:** Need to support queries at any time t
- Solution approach: Square-root decomposition
- **Key insight:** Keep checkpoints with data structure states
- Implementation: Demaine, Iacono & Langerman (2007)

Partial to full retroactivity

2025-10-26

The challenge

The challenge

Custonge

Non to transform partial → full retractivity?

• Problem: Need to support queries at any time z

• Solution approach: Square-nost decomposition

• Key insight: Need obseptories with data structure states

Implementation: Demaine, Iacono & Langerman (200

- 1. State the main challenge clearly: partial to full retroactivity
- 2. ———- SKIP SLIDE ———-
- 3. Explain what we need to achieve: queries at any time t
- 4. ———- SKIP SLIDE ———-
- 5. Introduce the solution approach: square-root decomposition
- 6. Mention the key insight about checkpoints
- 7. Reference the Demaine et al. work from 2007
- 8. This motivates the detailed solution in the next slide
- Key insight: we need to maintain multiple versions of the data structure
- 10. The challenge: how to do this efficiently without persistent data structures?

Demaine, Iacono & Langerman's solution

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with:

- $\mathcal{O}(\sqrt{m})$ slowdown per operation
- ullet $\mathcal{O}(m)$ space usage
- Requirement: Need persistent version of the data structure

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

2025-

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with: $C(\sqrt{m})$ ishordown per operation C(m) space usage

• Requirement: Nucl pervisitent version of the data structure

Demaine, Iacono & Langerman's solution

Demaine, Iacono & Langerman's solution

- 1. State Theorem 05 from Demaine, Iacono and Langerman 2007
- 2. Emphasize the persistent data structure requirement, this is the key limitation
- 3. ——- SKIP SLIDE ——-
- 4. Explain square-root decomposition concept: break timeline into \sqrt{m} blocks
- 5. ——- SKIP SLIDE ——-
- 6. Show how queries work: find checkpoint, apply updates, rollback
- 7. Time complexity: $O(\sqrt{m})$ slowdown per operation
- 8. Space complexity: O(m) using persistent data structures
- 9. Set up the problem: what if we don't have persistent version?
- 10. Key insight: persistent data structures are complex to implement
- 11. Our contribution: same performance without persistence requirement

18 / 26

Demaine, Iacono & Langerman's solution

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with:

- $\mathcal{O}(\sqrt{m})$ slowdown per operation
- $\mathcal{O}(m)$ space usage
- Requirement: Need persistent version of the data structure
- **Key idea:** Square-root decomposition
- Keep \sqrt{m} checkpoints with data structure states

Partial to full retroactivity

2025-

└─Demaine, Iacono & Langerman's solution

Demaine, Lacono & Langerman's solution
Thoorem (Thoorem 05)
Any parially retroactive data structure can be transformed into a fully
retroactive one with:

- \$C(\infty) \text{ justice} one with:
- \$C(\infty) \text{ justice} one proposition
- \$C(\infty) \text{ justice} one proposition
- \$C(\infty) \text{ justice} one proposition of the data structure

Keen \mathread methods with data structure states

- 1. State Theorem 05 from Demaine, Iacono and Langerman 2007
- 2. Emphasize the persistent data structure requirement, this is the key limitation
- 3. ——- SKIP SLIDE ——-
- 4. Explain square-root decomposition concept: break timeline into \sqrt{m} blocks
- 5. ——- SKIP SLIDE ——-
- 6. Show how queries work: find checkpoint, apply updates, rollback
- 7. Time complexity: $O(\sqrt{m})$ slowdown per operation
- 8. Space complexity: O(m) using persistent data structures
- 9. Set up the problem: what if we don't have persistent version?
- 10. Key insight: persistent data structures are complex to implement
- 11. Our contribution: same performance without persistence requirement

Demaine, Iacono & Langerman's solution

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with:

- $\mathcal{O}(\sqrt{m})$ slowdown per operation
- $\mathcal{O}(m)$ space usage
- Requirement: Need persistent version of the data structure
- **Key idea:** Square-root decomposition
- Keep \sqrt{m} checkpoints with data structure states
- Query at time *t*:
 - 1 Find closest checkpoint before t
 - 2 Apply updates from checkpoint to t
 - Answer query, then rollback

Partial to full retroactivity

2025-

Demaine, Iacono & Langerman's solution

Demaine,	lacono & Langerman's solution
Theorem (heorem 05)
retroactive • $O(\sqrt{m}$ • $O(m)$	retroactive data structure can be transformed into a fully selvedown per operation sace usage ment: Need persistent version of the data structure
• Key id	ac Square-root decomposition
• Keep v	m checkpoints with data structure states
	at time t:

- 1. State Theorem 05 from Demaine, Iacono and Langerman 2007
- 2. Emphasize the persistent data structure requirement, this is the key limitation
- 3. ———- SKIP SLIDE ———-
- 4. Explain square-root decomposition concept: break timeline into \sqrt{m} blocks
- 5. ——- SKIP SLIDE ——-
- 6. Show how queries work: find checkpoint, apply updates, rollback
- 7. Time complexity: $O(\sqrt{m})$ slowdown per operation
- 8. Space complexity: O(m) using persistent data structures
- 9. Set up the problem: what if we don't have persistent version?
- 10. Key insight: persistent data structures are complex to implement
- 11. Our contribution: same performance without persistence requirement

• Naive approach: Keep \sqrt{m} independent copies

• Space usage: $\Theta(m\sqrt{m})$

Partial to full retroactivity

2025-10-26

☐The space problem

pproach: Keep \sqrt{m} independent copies sage: $\Theta(m\sqrt{m})$

The space problem

- 1. Explain the space issue with naive approach: $\Theta(m\sqrt{m})$ space
- 2. ——- SKIP SLIDE ——-
- 3. Show how Demaine et al. solve it with persistent data structures: Om space
- 4. A persistent data structure is a data structure that always preserves the previous version of itself when it is modified, so you can query at any time *t* but only update the present
- 5. ——- SKIP SLIDE ——-
- 6. State the practical problem: persistent versions are complex to implement
- 7. ———- SKIP SLIDE ———-
- 8. Present our key contribution: same performance without persistence
- 9. Emphasize the space trade-off we make: $\Theta(m\sqrt{m})$ vs Om
- 10. This motivates our improved rebuilding approach that use idepedent copies

• Naive approach: Keep \sqrt{m} independent copies

• Space usage: $\Theta(m\sqrt{m})$

• **Demaine et al. solution:** Use persistent data structures

• Space usage: $\mathcal{O}(m)$

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

☐ The space problem

The space problem

Demaine et al. solution: Use persistent data structures

- 1. Explain the space issue with naive approach: $\Theta(m\sqrt{m})$ space
- 2. ——- SKIP SLIDE ——-3. Show how Demaine et al. solve it with persistent data structures:

at any time t but only update the present

- Om space 4. A persistent data structure is a data structure that always preserves the previous version of itself when it is modified, so you can guery
- 5. ——- SKIP SLIDE ——-
- 6. State the practical problem: persistent versions are complex to implement
- 7. ——- SKIP SLIDE ——-
- 8. Present our key contribution: same performance without persistence
- 9. Emphasize the space trade-off we make: $\Theta(m\sqrt{m})$ vs Om
- 10. This motivates our improved rebuilding approach that use idepedent copies

• Naive approach: Keep \sqrt{m} independent copies

• Space usage: $\Theta(m\sqrt{m})$

• **Demaine et al. solution:** Use persistent data structures

• Space usage: $\mathcal{O}(m)$

Problem

What if we don't have or don't want to use persistent data structures?

Partial to full retroactivity

☐ The space problem

What if we don't have or don't want to use persistent data structure

- 1. Explain the space issue with naive approach: $\Theta(m\sqrt{m})$ space
- 2. ——- SKIP SLIDE ——-
- 3. Show how Demaine et al. solve it with persistent data structures: Om space
- 4. A persistent data structure is a data structure that always preserves the previous version of itself when it is modified, so you can query at any time t but only update the present
- 5. ——- SKIP SLIDE ——-
- 6. State the practical problem: persistent versions are complex to implement
- 7. ——- SKIP SLIDE ——-
- 8. Present our key contribution: same performance without persistence
- 9. Emphasize the space trade-off we make: $\Theta(m\sqrt{m})$ vs Om
- 10. This motivates our improved rebuilding approach that use idepedent copies

• Naive approach: Keep \sqrt{m} independent copies

• Space usage: $\Theta(m\sqrt{m})$

• Demaine et al. solution: Use persistent data structures

• Space usage: $\mathcal{O}(m)$

Problem

What if we don't have or don't want to use persistent data structures?

Our contribution

Simple rebuilding strategy without persistent data structures

- Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation
- Space usage: $\Theta(m\sqrt{m})$

Partial to full retroactivity

The space problem

The space problem

- 1. Explain the space issue with naive approach: $\Theta(m\sqrt{m})$ space
- 2. ———- SKIP SLIDE ———-
- 3. Show how Demaine et al. solve it with persistent data structures: Om space
- 4. A persistent data structure is a data structure that always preserves the previous version of itself when it is modified, so you can query at any time *t* but only update the present
- 5. ——- SKIP SLIDE ——-
- 6. State the practical problem: persistent versions are complex to implement
- 7. ——- SKIP SLIDE ——-
- 8. Present our key contribution: same performance without persistence
- 9. Emphasize the space trade-off we make: $\Theta(m\sqrt{m})$ vs Om
- 10. This motivates our improved rebuilding approach that use idepedent copies

Starting point

• Junior & Seabra's solution: Semi-retroactive incremental MSF

Operations:

- ▶ add_edge(u, v, w, t): add edge at time t
- get_msf(t): get MSF at time t

Partial to full retroactivity

- June & Stather's solution: Some interactive incremental MSF
- Operations

└─Starting point

2025-1

- 1. Start with Junior and Seabra's work as our starting point
- 2. Explain their semi-retroactive MSF problem: add edge at time t, query at time t
- 3. Show their operations: add_edgeu, v, w, t and get_msft
- 4. ——- SKIP SLIDE ——-
- 5. Describe their square-root decomposition approach: \sqrt{m} checkpoints
- 6. Show how they use checkpoints: $t_i = i\sqrt{m}$ for i = 1, ..., sqrtm
- 7. ——- SKIP SLIDE ——-
- 8. Data structures: D_i contains edges before time t_i
- 9. Time complexity: $O(\sqrt{mlogn})$ per operation
- 10. This sets up their limitations in the next slide
- 11. Key insight: they assume fixed m and time range serious restrictions

Starting point

• Junior & Seabra's solution: Semi-retroactive incremental MSF

Operations:

- add_edge(u, v, w, t): add edge at time t
- ▶ get_msf(t): get MSF at time t
- Implementation: Square-root decomposition
- Checkpoints: $t_i = i\sqrt{m}$ for $i = 1, ..., \sqrt{m}$

2025-10-26

-Starting point

- 1. Start with Junior and Seabra's work as our starting point
- 2. Explain their semi-retroactive MSF problem: add edge at time t, query at time t
- 3. Show their operations: add_edgeu, v, w, t and get_msft
- 4. ——- SKIP SLIDE ——-
- 5. Describe their square-root decomposition approach: \sqrt{m} checkpoints
- 6. Show how they use checkpoints: $t_i = i\sqrt{m}$ for i = 1, ..., sqrtm
- 7. ——- SKIP SLIDE ——-
- 8. Data structures: D_i contains edges before time t_i
- 9. Time complexity: $O(\sqrt{mlogn})$ per operation
- 10. This sets up their limitations in the next slide
- 11. Key insight: they assume fixed m and time range serious restrictions

Starting point

• Junior & Seabra's solution: Semi-retroactive incremental MSF

Operations:

- ▶ add_edge(u, v, w, t): add edge at time t
- ▶ get_msf(t): get MSF at time t
- Implementation: Square-root decomposition
- Checkpoints: $t_i = i\sqrt{m}$ for $i = 1, ..., \sqrt{m}$
- Data structures: D_i contains edges before time t_i
- Time: $\mathcal{O}(\sqrt{m}\log n)$ per operation

- 1. Start with Junior and Seabra's work as our starting point
- 2. Explain their semi-retroactive MSF problem: add edge at time t, query at time t
- 3. Show their operations: add_edgeu, v, w, t and get_msft
- 4. ———- SKIP SLIDE ———-
- 5. Describe their square-root decomposition approach: \sqrt{m} checkpoints
- 6. Show how they use checkpoints: $t_i = i\sqrt{m}$ for i = 1, ..., sqrtm
- 7. ——- SKIP SLIDE ——-
- 8. Data structures: D_i contains edges before time t_i
- 9. Time complexity: $O(\sqrt{mlogn})$ per operation
- 10. This sets up their limitations in the next slide
- 11. Key insight: they assume fixed m and time range serious restrictions

Limitations

Problems with their approach

- **Fixed** *m*: Must know sequence length beforehand
- Fixed time range: Operations must have timestamps 1 to m
- No rebuilding: Cannot handle arbitrary growth

Partial to full retroactivity

 $ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{eta}}}}$ Limitations

blems with their approach

Fixed m: Must know sequence length beforehand

Fixed time range: Operations must have timestamps 1 to m

No rebuilding: Cannot handle arbitrary growth

Limitations

- 1. Clearly list their three main limitations
- 2. Emphasize that fixed m and time range are serious restrictions
- 3. ———- SKIP SLIDE ———-
- 4. State our goal: remove these limitations while maintaining efficiency
- 5. ———- SKIP SLIDE ———-
- 6. Present our key insight: implement rebuilding process
- 7. Explain the challenge: how to rebuild without persistent structures
- 8. This motivates our solution in the next slide
- 9. Key insight: we need to handle arbitrary growth without knowing m beforehand
- 10. Our approach: rebuild when m becomes a perfect square

Limitations

Problems with their approach

- **Fixed** *m*: Must know sequence length beforehand
- Fixed time range: Operations must have timestamps 1 to m
- No rebuilding: Cannot handle arbitrary growth

Our goal

Remove these limitations while maintaining efficiency

Partial to full retroactivity

-Limitations

2025

Limitations
Problems with their approach
- Fixed m: Mort loose sequence length beforehand
- Fixed dien ranger: Operations must have timestamps 1 to m
- No rebuildings: Cannot handle arbitrary groath
Our goal
Remove these limitations white maintaining efficiency

- 1. Clearly list their three main limitations
- 2. Emphasize that fixed m and time range are serious restrictions
- 3. ——- SKIP SLIDE ——-
- 4. State our goal: remove these limitations while maintaining efficiency
- 5. ——- SKIP SLIDE ——-
- 6. Present our key insight: implement rebuilding process
- 7. Explain the challenge: how to rebuild without persistent structures
- 8. This motivates our solution in the next slide
- 9. Key insight: we need to handle arbitrary growth without knowing m beforehand
- 10. Our approach: rebuild when m becomes a perfect square

Limitations

Problems with their approach

- Fixed m: Must know sequence length beforehand
- **Fixed time range:** Operations must have timestamps 1 to *m*
- No rebuilding: Cannot handle arbitrary growth

Our goal

Remove these limitations while maintaining efficiency

- Key insight: Implement rebuilding process
- Challenge: How to rebuild without persistent data structures?
- Solution: Reuse existing data structures during rebuilding

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

Limitations

2025-

Solution: Reuse existing data structures during rebuilding

Limitations

Challenge: How to rebuild without persistent data structures

- 1. Clearly list their three main limitations
- 2. Emphasize that fixed m and time range are serious restrictions
- 3. ——- SKIP SLIDE ——-
- 4. State our goal: remove these limitations while maintaining efficiency
- 5. ——- SKIP SLIDE ——-
- 6. Present our key insight: implement rebuilding process
- 7. Explain the challenge: how to rebuild without persistent structures
- 8. This motivates our solution in the next slide
- 9. Key insight: we need to handle arbitrary growth without knowing m beforehand
- 10. Our approach: rebuild when m becomes a perfect square

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

idding moments: When $m = k^2$ (perfect square)

Our solution - Rebuilding strategy

2025-10-26

└Our solution - Rebuilding strategy

- 1. Explain our key insight: reuse existing data structures
- 2. Show rebuilding moments: when m is a perfect square $(m = k^2)$
- 3. ——- SKIP SLIDE ——-
- 4. Walk through the three-step strategy:
- 5. 1. Create new empty structures D'_0, D'_1
- 6. 2. Reuse $D_i to D'_{i+2}$ for i = 0, ..., k-1
- 7. 3. Apply missing updates to each D'_i
- 8. ——- SKIP SLIDE ——-
- 9. Present the key lemma: every update in D_i is within first (i+2)(k+1) updates
- 10. ———- SKIP SLIDE ———-
- 11. Analyze time complexity: O(mlogn) total, $O(\sqrt{mlogn})$ amortized
- 12. This sets up the detailed algorithm in the next slide
- 13. Key insight: we can reuse most of the work from previous structures
- 14. The offset (i+2) is crucial for correctness

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)
- Strategy:
 - Create new empty structures D'_0, D'_1
 - 2 Reuse $D_i \rightarrow D'_{i+2}$ for $i = 0, \dots, k-1$
 - **3** Apply missing updates to each D'_i

LAGOS 25 – November 10-14, 2025

Partial to full retroactivity

Strategy: • Create new empty structures D_0^i, D_1^i • Reuse $D_1 \rightarrow D_{1/2}^i$ for i = 0, ..., k-1• Apply missing updates to each D_1^i

Our solution - Rebuilding strategy

2025-

Our solution - Rebuilding strategy

- 1. Explain our key insight: reuse existing data structures
- 2. Show rebuilding moments: when m is a perfect square $(m = k^2)$
- 3. ——- SKIP SLIDE ——-
- 4. Walk through the three-step strategy:
- 5. 1. Create new empty structures D'_0 , D'_1
- 6. 2. Reuse $D_i to D'_{i+2}$ for i = 0, ..., k-1
- 7. 3. Apply missing updates to each D_i^{\prime}
- 8. ——- SKIP SLIDE ——-
- 9. Present the key lemma: every update in D_i is within first (i+2)(k+1) updates
- 10. ——- SKIP SLIDE ——-
- 11. Analyze time complexity: O(mlogn) total, $O(\sqrt{mlogn})$ amortized
- 12. This sets up the detailed algorithm in the next slide
- 13. Key insight: we can reuse most of the work from previous structures
- 14. The offset (i+2) is crucial for correctness

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)
- Strategy:
 - Create new empty structures D_0', D_1'
 - 2 Reuse $D_i \rightarrow D'_{i+2}$ for $i = 0, \dots, k-1$
 - **3** Apply missing updates to each D'_i

Key Lemma

Every update in D_i is within the first (i+2)(k+1) updates in the new sequence.

Partial to full retroactivity

Our solution - Rebuilding strategy

- 1. Explain our key insight: reuse existing data structures
- 2. Show rebuilding moments: when m is a perfect square $(m = k^2)$
- 3. ——- SKIP SLIDE ——-
- 4. Walk through the three-step strategy:
- 5. 1. Create new empty structures D'_0 , D'_1
- 6. 2. Reuse $D_i to D'_{i+2}$ for i = 0, ..., k-1
- 7. 3. Apply missing updates to each D'_i
- 8. ——- SKIP SLIDE ——-
- 9. Present the key lemma: every update in D_i is within first (i+2)(k+1) updates
- 10. ——- SKIP SLIDE ——-
- 11. Analyze time complexity: O(mlogn) total, $O(\sqrt{mlogn})$ amortized
- 12. This sets up the detailed algorithm in the next slide
- 13. Key insight: we can reuse most of the work from previous structures
- 14. The offset (i+2) is crucial for correctness

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)
- Strategy:
 - Create new empty structures D'_0, D'_1
 - 2 Reuse $D_i \rightarrow D'_{i+2}$ for $i = 0, \dots, k-1$
 - **3** Apply missing updates to each D'_i

Key Lemma

Every update in D_i is within the first (i+2)(k+1) updates in the new sequence.

- Time per rebuilding: $\mathcal{O}(m \log n)$
- Amortized cost: $O(\sqrt{m} \log n)$ per operation

Partial to full retroactivity

└Our solution - Rebuilding strategy

• Time per rebuilding: $O(m \log n)$ • Amortized cost: $O(\sqrt{m} \log n)$ per operation

Our solution - Rebuilding strategy

- 1. Explain our key insight: reuse existing data structures
- 2. Show rebuilding moments: when m is a perfect square $(m = k^2)$
- 3. ——- SKIP SLIDE ——-
- 4. Walk through the three-step strategy:
- 5. 1. Create new empty structures D'_0 , D'_1
- 6. 2. Reuse $D_i to D'_{i+2}$ for i = 0, ..., k-1
- 7. 3. Apply missing updates to each D_i'
- 8. ——- SKIP SLIDE ——-
- 9. Present the key lemma: every update in D_i is within first (i+2)(k+1) updates
- 10. ——- SKIP SLIDE ——-
- 11. Analyze time complexity: O(mlogn) total, $O(\sqrt{mlogn})$ amortized
- 12. This sets up the detailed algorithm in the next slide
- 13. Key insight: we can reuse most of the work from previous structures
- 14. The offset (i+2) is crucial for correctness

Rebuilding algorithm

- $O_0 \leftarrow \text{NEWINCREMENTALMSF}()$
- 2 $D_1' \leftarrow \text{NEWINCREMENTALMSF}()$
- **③** For i = 2 to k + 1: $D'_i \leftarrow D_{i-2}$
- **4** For i = 1 to k + 1:
 - ▶ $p \leftarrow \text{KTH}(S, i(k+1))$
 - $t'_i \leftarrow p.time$
 - ightharpoonup ADDEDGES(S, t_{i-2}, t'_i, D'_i)
- \bullet Return k+1, D', t'

> reuse existing

2025-

 $\triangleright i(k+1)$ th edge

LAGOS 25 - November 10-14, 2025

Partial to full retroactivity

Rebuilding algorithm

> i(k+1)th edge

- 1. Show the step-by-step rebuilding algorithm
- 2. Explain how we create new empty structures D_0' , D_1'
- 3. Show how we reuse existing structures with offset: D_i becomes D'_{i+2}
- 4. Walk through the process of applying missing updates
- 5. ——- SKIP SLIDE ——-
- 6. Explain the key insight: D_i becomes D'_{i+2} with offset
- 7. Analyze time complexity: O(mlogn) total, $O(\sqrt{m}logn)$ amortized
- 8. Space complexity: $\Theta(m\sqrt{m})$ this is our trade-off
- 9. This leads to our results in the next slide
- 10. Key insight: the algorithm is surprisingly simple despite its power
- 11. The visual shows the reuse pattern clearly

Rebuilding algorithm

- $D_0' \leftarrow \text{NEWINCREMENTALMSF}()$
- O $D'_1 \leftarrow \text{NEWINCREMENTALMSF}()$
- **③** For i = 2 to k + 1: $D'_i ← D_{i-2}$

4 For i = 1 to k + 1:

▶
$$p \leftarrow \text{KTH}(S, i(k+1))$$

$$\triangleright i(k+1)$$
th edge

- ▶ $t_i' \leftarrow p$.time
- ightharpoonup ADDEDGES (S, t_{i-2}, t'_i, D'_i)
- **6** Return k + 1, D', t'

Original

New

$$D_i \rightarrow D'_{i+2}$$

LAGOS 25 - November 10-14, 2025

2025-10-;

Rebuilding algorithm

Partial to full retroactivity

- 1. Show the step-by-step rebuilding algorithm
- 2. Explain how we create new empty structures D'_0 , D'_1
- 3. Show how we reuse existing structures with offset: D_i becomes D'_{i+2}
- 4. Walk through the process of applying missing updates
- 5. ——- SKIP SLIDE ——-
- 6. Explain the key insight: D_i becomes D'_{i+2} with offset
- 7. Analyze time complexity: O(mlogn) total, $O(\sqrt{mlogn})$ amortized
- 8. Space complexity: $\Theta(m\sqrt{m})$ this is our trade-off
- 9. This leads to our results in the next slide
- 10. Key insight: the algorithm is surprisingly simple despite its power
- 11. The visual shows the reuse pattern clearly

Results

Our contribution

- ullet General transformation: Partial o Full retroactivity
- No persistent data structures needed
- Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation
- Space trade-off: $\Theta(m\sqrt{m})$ vs $\mathcal{O}(m)$

Partial to full retroactivity

∟_F

2025-

Results

contribution

General transformation: Partial \rightarrow Full retroactivity

No persistent data structures needed

Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation

Same time $\mathcal{O}(m/m)$ or $\mathcal{O}(m/m)$

- 1. Summarize our main theoretical contribution.
- 2. Emphasize that we don't need persistent data structures this is the key advantage
- 3. Show we achieve the same time complexity as Demaine et al.: $O\sqrt{m}$ per operation
- 4. Present our MSF implementation results: $O\sqrt{mlogn}$ per operation
- 5. Highlight that we removed the fixed m and time range restrictions
- 6. This demonstrates the practical value of our approach
- Key insight: we provide a simpler alternative to persistent data structures
- 8. Space trade-off: Theta $m\sqrt{m}$ vs Om but much simpler implementation
- 9. Our approach is more practical for many applications

Results

Our contribution

- **General transformation:** Partial → Full retroactivity
- No persistent data structures needed
- Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation
- Space trade-off: $\Theta(m\sqrt{m})$ vs $\mathcal{O}(m)$

Semi-retroactive MSF implementation

- Operations: $add_edge(u, v, w, t)$, $get_msf(t)$
- Time: $\mathcal{O}(\sqrt{m}\log n)$ per operation
- Space: $\Theta(m\sqrt{m})$
- No fixed m or time range restrictions

Partial to full retroactivity

Results

ar Contribution

4. General Transformation: Partial — Full Introactivity

8. The persistent of that structures needed

4. Same time complexity: O(\(\pi\)) per operation

5. Space trade off \(\pi\), (\(\pi\)) m \(\pi\) o(\(\pi\))

**Interconce MSF implementation

6. Operations: Addressed, in . w. 1), get_mat(t)

**Time: O(\(\pi\)) files of per operation

5. Space: \(\phi\) (\(\pi\)) files of per operation

5. Space: \(\phi\), (\(\pi\))

No fixed m or time range restrictions

- 1. Summarize our main theoretical contribution.
- 2. Emphasize that we don't need persistent data structures this is the key advantage
- 3. Show we achieve the same time complexity as Demaine et al.: $0\sqrt{m}$ per operation
- 4. Present our MSF implementation results: $O\sqrt{mlogn}$ per operation
- 5. Highlight that we removed the fixed m and time range restrictions
- 6. This demonstrates the practical value of our approach
- 7. Key insight: we provide a simpler alternative to persistent data structures
- 8. Space trade-off: Theta $m\sqrt{m}$ vs Om but much simpler implementation
- 9. Our approach is more practical for many applications

Extending for full retroactivity

• **General applicability:** Works for any partially retroactive data structure

Partial to full retroactivity

2025-10-26

-Extending for full retroactivity

applicability: Works for any partially retroactive data

Extending for full retroactivity

- 1. Emphasize the general applicability of our approach
- 2. Explain how to extend for full retroactivity with removals
- 3. Show the adapted rebuilding trigger condition
- 4. Explain how to handle both insertions and removals
- 5. List the requirements: partially retroactive, rollback capability
- 6. This shows how our approach can be extended for full functionality
- 7. Key insight: our method works for any partially retroactive data structure
- 8. The rebuilding frequency changes but the core idea remains the same
- 9. This demonstrates the generality of our approach

Extending for full retroactivity

- **General applicability:** Works for any partially retroactive data structure
- Supporting removals: To achieve full retroactivity
 - Adapt rebuilding trigger: when $|\lfloor \sqrt{m'} \rfloor \lfloor \sqrt{m} \rfloor| \leq 1$
 - ▶ Handle both insertions and removals in update sequence
 - Rebuilding frequency: every $2|\sqrt{m}|-1$ operations

Partial to full retroactivity

2025-10-26

-Extending for full retroactivity

Extending for full retroactivity

- General applicability: Works for any partially retroactive data structure
- Supporting removals: To achieve full retroactivity
- * Adapt rebuilding trigger: when $|\lfloor \sqrt{m'} \rfloor \lfloor \sqrt{m} \rfloor| \le 1$ * Handle both insertions and removals in update sequer * Rebuilding frequency: every $2\lfloor \sqrt{m} \rfloor 1$ operations

- 1. Emphasize the general applicability of our approach
- 2. Explain how to extend for full retroactivity with removals
- 3. Show the adapted rebuilding trigger condition
- 4. Explain how to handle both insertions and removals
- 5. List the requirements: partially retroactive, rollback capability
- 6. This shows how our approach can be extended for full functionality
- 7. Key insight: our method works for any partially retroactive data structure
- 8. The rebuilding frequency changes but the core idea remains the same
- 9. This demonstrates the generality of our approach

Extending for full retroactivity

- **General applicability:** Works for any partially retroactive data structure
- **Supporting removals:** To achieve full retroactivity
 - Adapt rebuilding trigger: when $||\sqrt{m'}| |\sqrt{m}|| \le 1$
 - ► Handle both insertions and removals in update sequence
 - ▶ Rebuilding frequency: every $2|\sqrt{m}|-1$ operations

• Requirements:

- Partially retroactive data structure
- ► Rollback capability
- No persistent version needed

Partial to full retroactivity

2025-1

-Extending for full retroactivity

Extending for full retroactivity

- General applicability: Works for any partially retroactive data

- Partially retroactive data structure Rollback capability
- 1. Emphasize the general applicability of our approach
- 2. Explain how to extend for full retroactivity with removals
- 3. Show the adapted rebuilding trigger condition
- 4. Explain how to handle both insertions and removals
- 5. List the requirements: partially retroactive, rollback capability
- 6. This shows how our approach can be extended for full functionality
- 7. Key insight: our method works for any partially retroactive data structure
- 8. The rebuilding frequency changes but the core idea remains the same
- 9. This demonstrates the generality of our approach

Thank you!

Questions?

Partial to full retroactivity

Thank you!

Questions?

- 1. Invite questions from the audience
- 2. Be prepared to answer questions about:
- 3. * The rebuilding algorithm details
- 4. * Space vs time trade-offs
- 5. * Implementation challenges
- 6. * Comparison with persistent data structures
- 7. * Applications beyond MSF
- 8. Key points to emphasize if asked:
- 9. * Our approach is simpler to implement
- 10. * Same time complexity as Demaine et al.
- 11. * No persistent data structure requirement
- 12. * General applicability to any partially retroactive structure
- 13. Thank the audience for their attention