BioCro Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15 \cdot (t - t_{sn})) \tag{2}$$

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)})\cos(\theta)$$
(4)

$$\frac{1}{2}\cos((15 \cdot t_{len}) = -\tan(\Omega)\tan(\delta) \tag{5}$$

$$t_{\rm len} = \frac{2\cos^{-1}(-\tan(\Omega)\tan(\delta))}{15} \tag{6}$$

$$t_{\text{down}} = 12 - t_{\text{len}}/2 \tag{7}$$

$$t_{\rm up} = 12 + t_{\rm len}/2$$
 (8)

what is the relevance of equation 5? Steve H's thesis contains the original, equation 6

Weather Downscaling

$$T_{\text{mean}} = \frac{1}{2} \left(T_{\text{max}} + T_{\text{min}} \right) \tag{9}$$

$$T_{\rm range} = T_{\rm max} - T_{\rm min} \tag{10}$$

$$T_{\text{excursion}} = \sin\left(2\pi \frac{h_r - 10}{24}\right) \tag{11}$$

$$T_{\rm air} = T_{\rm mean} + T_{\rm range} \cdot T_{\rm excursion}$$
 (12)

Canopy Radiation

combine or use clearly distinguished titles for different sections on canopy radiation; energy balance, etc

$$q = \frac{n_r}{n} \tag{13}$$

$$q = \frac{n_r}{n}$$

$$N_{\text{eff}} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$r^{\sim} = \frac{m_r}{n}$$

$$h = \frac{r^{\sim}}{q}$$

$$(13)$$

$$(14)$$

$$(15)$$

$$r^{\sim} = \frac{m_r}{n} \tag{15}$$

$$h = \frac{r^{\sim}}{q} \tag{16}$$

C4 Photosynthesis test

From Collatz 1992 Coupled Photosynthesis-Stomata1 Conductance Model for Leaves of C4 Plants. Aust. J. Plant Physiol. 19 519-538

$$V_{\text{max}} = \frac{V_{\text{max}_0} Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}}{(1 + \exp(0.3(T_{\text{lower}} - T_{\text{leaf}})))(1 + \exp(0.3(T_{\text{leaf}} - T_{\text{upper}}))}$$
(17)

$$R_d = \frac{R_0 Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}}{1 + \exp(1.3(T_{\text{leaf}} - 55))}$$
(18)

$$k_t = kQ_{10}^{\frac{T_{\text{leaf}} - 25}{10}}$$
(19)

$$c_i = c_a - \frac{1.6A_n P}{g_s} \tag{20}$$

$$A_{\text{net}} = A_{\text{gross}} - R_d \tag{21}$$

$$M = \min \left[\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}} \right]$$
(22)

$$M = \min \left[\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}}) \theta_{\text{curve}}}}{2\theta_{\text{curve}}} \right]$$

$$A_{\text{gross}} = \min \left[\frac{\left(M + k_t \cdot \frac{c_i}{P}\right) \pm \sqrt{\left(M + k_t \cdot \frac{c_i}{P}\right)^2 - \left(4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta\right)}}{2 \cdot \beta} \right]$$

$$(22)$$

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x

$$A = (1 - \Gamma^*/c_i) \tag{24}$$

$$w_c = \frac{V_{cmax}c_i}{c_i + K_c(1 + O_a/K_0)}$$
 (25)

$$w_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{26}$$

$$\Gamma^* = \exp(19.02 - 37.83/(R(T_{\text{leaf}} + 273.15))) \tag{27}$$

$$K_c = exp(38.05 - 36.38/R(T_{leaf} + 273.15))$$
 (28)

$$K_0 = \exp(20.30 - 36.38/R(T_{\text{leaf}} + 273.15)) \tag{29}$$

$$V_{c,\text{max}} = V_{c,\text{max}@25C} \cdot \exp(26.35 - 65.33/R(T_{\text{leaf}} + 273.15))$$
(30)

$$J = \frac{Q_2 + J_{\text{max,T}} - \sqrt{(Q_2 + J_{\text{max,T}})^2 - 4\Theta_{PSII}Q_2J_{\text{max,T}}}}{2\Theta_{PSII}}$$
(31)

$$J_{\max,T} = J_{\max@25C} \exp(17.57 - 43.54/(R(T_{\text{leaf}} + 273.15)))$$
(32)

$$\Theta_{\text{PSII}} = 0.76 + 0.018T_{\text{leaf}} - 3.7 \cdot 10^{-4} T_{\text{leaf}}^2$$
(33)

$$Q_2 = Q \cdot k \cdot \Phi_{\text{PSII,max}} \cdot \beta_{\Phi} \tag{34}$$

$$\Phi_{\text{PSII,max}} = 0.352 + 0.022T_{\text{leaf}} - 3.4 \cdot 10^{-4} T_{\text{leaf}}^2$$
(35)

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2} T_{\text{leaf}} + 1.1688 \cdot 10^{-3} T_{\text{leaf}}^2 - 8.8741 \cdot 10^{-6} T_{\text{leaf}}^3}{0.73547} \right)$$
(36)

$$c_i = 0.7c_a@25^{\circ}C \tag{37}$$

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T_{\text{leaf}} + 2.5603 \cdot 10^{-5} T_{\text{leaf}}^2 - 2.1441 \cdot 10^{-7} T_{\text{leaf}}^3}{2.6934 \cdot 10^{-2}} \right)$$
(38)

$$O_i = O_a @25^{\circ}C \tag{39}$$

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{40}$$

is there a reason not to divide by the denominator when it is constant?

Water Stress

$$h_s = \frac{e_l - \rho_{va}}{e_l} \cdot 100 \tag{41}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{c_a} \tag{42}$$

Four options for water stress model: (43)

$$g_{\text{ws, linear}} = \frac{W_s - W_p}{F_c - W_p} \tag{44}$$

$$g_{\text{ws, logistic}} = \frac{1}{1 + \exp\left(\frac{\frac{1}{2}(F_c - W_p) - W_s)}{\phi_i}\right)}$$
(45)

$$g_{\text{ws, exponential}} = \frac{1 - \exp\left(\frac{F_c - W_s}{F_c - W_p} + \frac{W_p}{1 - W_p}\right)}{0.631206}$$
 (46)

$$q_{\text{ws, none}} = 1 \tag{47}$$

(48)

Calculate g_s and A_n under water stress:

$$g_s^{\text{water stress}} = g_{\text{ws},*}g_s$$
 (49)
 $A_n^{\text{water stress}} = g_{\text{ws},*}A_n$ (50)

$$A_n^{\text{water stress}} = g_{\text{ws.*}} A_n \tag{50}$$

should there be only one equation for Anet(?) is either correct? The first seems strange in that it implies water limited Anet equals Anet times humidity

Canopy Energy Balance

$$J_a = 2 \cdot I_{\text{abs}} \cdot \left(\frac{1 - r - \tau}{1 - \tau}\right) \cdot \ell \tag{51}$$

$$L_b = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{\text{air}}) / 0.004 \cdot \sqrt{L_w / u_{\text{layer}}}$$
(52)

$$u_a = \frac{u \cdot 0.41}{\log((u-d)/z_o)}$$
 (53) I can not reconcile units

$$g_a = \frac{(u_a^2/u_{\text{layer}}) \cdot L_b}{(u_a^2/u_{\text{layer}}) + L_b}$$
 (54) I can not reconcile units

$$\rho_v' = 610.78 \cdot \exp\left(\left(17.269 \cdot \frac{T_a}{T_a + 237.3}\right)\right) \tag{55}$$

$$\Delta \rho_{va} = \rho_v' \cdot \left(1 - \frac{h_s}{100}\right) \tag{56}$$

$$\gamma = \frac{\rho \cdot c_p}{\lambda} \tag{57}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_a) \cdot \left(\frac{\rho_v'}{8.314 \cdot (T_a + 273)^2}\right)$$
(58)

$$R_{lc} = 4\sigma \cdot (273 + T_{air})^3 \cdot \Delta T \tag{59}$$

$$\Phi_N = J_a - R_{lc} \tag{60}$$

$$\Delta T = T_{\text{leaf}} - T_{\text{air}} = \frac{\Phi_n \left(\frac{1}{g_a} + \frac{1}{g_c}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]}$$

$$s \cdot \Phi_N + \lambda \cdot a \cdot \Delta a$$
(6)

$$E = \frac{s \cdot \Phi_N + \lambda \cdot g_a \cdot \Delta \rho_{va}}{\lambda \cdot [s + \lambda \cdot (1 + g_a/g_c)]}$$
(62)

$$\mathbf{E_c} = \sum_{\text{laver}=1}^{N} (\mathbf{E}_{\text{sun}} \cdot l_{\text{sun}}) + (\mathbf{E}_{\text{shade}} \cdot l_{\text{shade}})$$
(63)

$$\mathbf{E}_{\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} \mathbf{E}_{\mathbf{c}}$$
 (64)

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)}}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$
(65)

$$F_{\rm sun} = \frac{1 - \exp[-k \cdot F_{\rm canopy}]}{k} \tag{66}$$

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}} \tag{67}$$

$$I_{\text{sun}} = k \cdot I_{beam} + I_{\text{diff}} + I_{\text{scat}} \tag{68}$$

$$I_{\text{beam}} = I_{\text{dir}} \cos(\theta) \tag{69}$$

$$I_{\text{shade}} = I_{\text{diff}} + I_{\text{scat}} \tag{70}$$

$$I_{\text{diff}} = I_{\text{od}} \exp(-k_d F_{\text{canopy}}) \tag{71}$$

$$I_{\text{scat}} = I_{\text{beam}} \exp(-k\sqrt{\alpha_{\text{scat}}} F_{\text{canopy}}) - I_{\text{beam}} \exp(-kF_{\text{canopy}})$$
 (72)

(73)

should thermal conductivity

be in this equation?

Total Canopy Assimilation

$$A_c = (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(74)

$$F_{\text{sun}} = \sum_{\text{layer}=1}^{N} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$
 (75)

$$F_{\text{shade}} = \sum_{\text{layer}=1}^{N} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$
 (76)

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{77}$$

$$A_c = \sum_{\text{layer}=1}^{N} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(78)

$$A_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} A_c \tag{79}$$

$$g_c = \sum_{\text{layer}=1}^{N} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
(80)

$$g_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} g_c \tag{81}$$

is $\ell_{\text{sun}} \equiv l_{\text{sun}}$?

Allocation

$$A_{\text{storage}} = |\min(0, \omega_{\text{storage}} \cdot k_{\text{storage}})| \tag{82}$$

$$A_{\text{total}} = A_{\text{leaf}} + A_{\text{stem}} + A_{\text{root}} + A_{\text{storage}}$$
(83)

$$\omega_{\text{leaf}} = \omega_{\text{leaf}} + (A_{\text{total}} \cdot k_{\text{leaf}}) \tag{84}$$

$$\omega_{\text{stem}} = \omega_{\text{stem}} + (A_{\text{total}} \cdot k_{\text{stem}}) \tag{85}$$

$$\omega_{\text{stroot}} = \omega_{\text{storage}} + (A_{\text{total}} \cdot k_{\text{storage}}) \tag{86}$$

$$\omega_{\text{root}} = \omega_{\text{root}} + (A_{\text{total}} \cdot k_{\text{root}}) \tag{87}$$

$$\Psi_{\rm adl} < \Psi_{\rm pt}$$
 (88)

$$k_{\text{leaf}} = k_{\text{leaf}} \cdot k_{\text{mod}} \tag{89}$$

$$k_{\text{stem}} = k_{\text{stem}} \cdot k_{\text{mod}}$$
 (90)

$$k_{\text{storage}} = k_{\text{storage}} \cdot k_{\text{mod}}$$
 (91)

$$k_{\text{mod}} = (\Psi_{\text{adl}} - \Psi_{\text{pt}}) \cdot \Psi_q; 0 \le k_{\text{mod}} \le 1$$
(92)

$$\Delta F_{\rm canopy} = \frac{\omega_{\rm leaf}}{Sp_{\rm leaf}} \tag{93}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{S p_{\text{stem}}} \tag{94}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{sroot}}}{S_n} \tag{95}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{sroot}}}{Sp_{\text{sroot}}}$$

$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storage}}}$$

$$(94)$$

$$(95)$$

$$Stem_{coppice} = 0.95 - \omega_{stem} \tag{97}$$

should restrictions on values of k in equations 82 and 92 be moved to the parameter definitions?

would it make sense to subscript values of ω with t, t+1 when updating them to avoid confusion?

 Δt is the timescale for updating biomass.; need to define ΔT for both daily and hourly

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(98)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{99}$$

$$\Psi_x = \sum \frac{(\Psi_{si} - q_w \cdot z_i)}{R_{si} + R_{ri}} / \sum \frac{1}{R_{si} + R_{ri}}$$
 (100)

$$\Psi_L = \Psi_x - E \cdot R_L \tag{101}$$

$$E_d = \begin{cases} E_p, & \theta^* \ge \theta_1 \\ E_p \left(\frac{\theta - \theta_2}{\theta_1 - \theta_2} \right), & \theta_2 < \theta^* < \theta_1 \\ 0, & \theta^* \le \theta_2 \end{cases}$$
 (102)

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{103}$$

$$g_{a,\text{soil}} = \frac{(2.126 \cdot 10^{-5}) + (1.48 \cdot 10^{-7}) \cdot T_{\text{soil}}}{\left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)}$$
(104)

$$R_{lc,\text{soil}} = ((4\sigma) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T) \tag{105}$$

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{106}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{107}$$

$$E_{\text{soil}} = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$

$$(108) \text{ is "soil" subscript correct?}$$

Respiration

$$R_{\text{total}} = aA_n + b_{\text{stem}} \Delta \omega_{\text{stem}} + b_{\text{root}} \Delta \omega_{\text{root}} + b_{\text{storage}} \Delta \omega_{\text{storage}}$$
(109)

Soil Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_{\text{soil}} + 273.16)} \right]$$

$$(110)$$

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_{\text{soil}}}{273.3 + T_{\text{soil}}} \right] / T_{\text{soil}} + 273.16$$
 (111)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{112}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_{\text{soil}}}{\Delta z} \right] + (T_{\text{soil}} - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
(113)

should denominator in equation 112 be δz ?

what is t_1 ?

C in from equation 113 is undefined - is this the specific heat of soil?

Definition of Terms

Term	Units	Definition	Value
$A_{ m gross}$	$\mu mol mol^{-1}$	Gross rate of CO ₂ uptake per unit leaf area	-
$A_{ m net}$	$\mu mol \ mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	-
$A_{net, water stress}$	$\mu mol mol^{-1}$	$A_{\rm net}$ under water stress	
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	-
$A_{c,\text{tot}}$	$g m^{-2} y r^{-1}$	A_c integrated over the course of a year	-
$A_{c,\mathrm{sun}}$	$mol mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	-
$A_{c,\mathrm{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	-
A	$\mu mol mol^{-1}$	Predicted rate of CO ₂ uptake	-
c_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378
$ ilde{C}$	$J^{\circ}C^{-1}m^{-}3$	volumetric heat capacity	
a	Dimensionless	Coefficient for growth respiration	0.2
lpha	dimensionless	Atmospheric transmittance	0.85
	mol mol^{-1}	The quantum yield of CO ₂ uptake determined by the	0.04
$lpha_{ m slope}$	mor mor	initial slope of the response of A versus I_{abs}	0.04
1.	D:il		0.02
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015
$b_{ m root}$	Dimensionless	Coefficient for maintenance respiration for root	0.01
β		C_4 curvature parameter	0.93
eta_Φ	%	Fraction of absorbed quanta reaching PSII	
c_i	$\mu mol\ mol^{-1}$	Intercellular concentration of O_2 in air corrected for	
		solubility relative to 25°C	
c_p	$J kg^{-1} K-1$	Specific heat capacity of dry air	1010
C_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each	-
		month	
d_s	m	Soil depth	_
D_j	d	day of year	_
$D_{ m start}$	d	Day of year on which the sinusoidal temperature func-	45
Dstart	u	tion is assumed to start	10
d	dimensionless	Zero plane displacement	0.77
			0.77
δ	degrees	Solar declination	-
e_l	kPa	Saturated water VPD in the leaf	-
E	$J mol^{-1}$	Activation energy	$R_d =$
			66405
			$V_{\rm max} =$
			6800
E_d			
E_i			
E_c	$mmolm^{-2}s^{-1}$	Instantaneous canopy evapo/transpiration rate	-
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	-
E_l	$mmolm^{-2}s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a	-
		canopy layer	
E_p	$g m^{-2} s^{-1}$	Actual soil evaporation	_
$E_{R_d}^{r}$	$J \text{ mol}^{-1}$	Activation energy of R_d	_
$E_{ m tot}$	$mmol m^{-2} yr^{-1}$	E_c integrated over the course of a year	_
$E_{V_{ m max}}$	$J \text{ mol}^{-1}$	Activation energy of V_{cmax}	_
f_{\max}	9 11101	fraction of light not absorbed by photosynthesis	0.23
•		fraction of light not absorbed by photosynthesis fraction of sunlit leaves at depth l (l is cumulative leaf	0.25
$f_{s,l}$			
E.	$m^3 m^{-3}$	area index from top)	
F_c		Field Capacity	0
$F_{ m canopy}$	$m^2 m^{-2}$	Cumulative canopy leaf area index from top at depth	9
$F_{ m shade}$	$m^2 m^{-2}$	Canopy shaded leaf area index	-
$F_{ m sun}$	$m^2 m^{-2}$	Canopy sunlit leaf area index	-
$F_{ m sum}$	$m^2 m^{-2}$	Summed leaf area index from top of canopy to layer	-
		considered in calculation	
$G_{ m soil}$	$W m^{-2}$	Soil heat flux	_
g	$m s^{-2}$	Gravitional constant	9.8
J		C-D-SIMI COMPONIA	J.U

is "saturated VPD" an oxymoron?
undefined from equation 102 undefined from equation 103

		e 1 – continued from previous page		
Term	${f Units}$	Definition	Value	
g_a	$mmol m^{-2} s^{-1}$	Leaf boundary layer conductance	_	
g_c	$mmol m^{-2} s^{-1}$	Canopy conductance of CO ₂	-	
$g_{ m c,\ root}$				undefined
g_s	$mmol m^{-2} s^{-1}$	Leaf stomatal conductance	_	
g_0	dimensionless	Stomatal slope factor	3	
g_1	dimensionless	Stomatal intercept factor	0.08	
$g_{s,\mathrm{sun}}$	$mmolm^{-2}s^{-1}$	The sum of stomatal conductance of sunlit leaves	_	
$g_{s,\mathrm{shade}}$	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of shaded leaves	_	
$g_{ m ws}$	dimensionless	Species-specific water stress sensitivity factor		
_	dimensionless	water stress stomatal conductance factor; see equa-		
$g_{ m ws}*$	dimensioniess	tions 43		
0/	$Pa K^{-1}$	psychrometer constant		
γ Γ^*	μ mol mol ⁻¹		-	
1	μ mor mor	CO ₂ compensation point in the absence of dark respi-		
7	1	ration		
h_r	h	Hour of day	-	
h_s	%	Relative humidity	_	
h_{canopy}	m	Height of canopy	5	
h_{ms}	m	Wind speed measurement height	2	
h_{layer}	m	Height of canopy layer above ground	-	
I	$\mu mol m^{-2} s^{-1}$	Photon flux	-	
h	$mmday^{-1}$	The amount of water received on a given rainy day	_	
$h_{ m soil}$	m	Water pressure head	-	
HO_{soil}	kgm^{-3}	Saturated humidity of the air at the soil surface	_	
$HS_{ m soil}$	Kgm^{-3}	Humidity of the air at the soil surface	_	
$I_{ m abs}$	$\mu mol m^{-2} s^{-1}$	Photon flux absorbed by either sunlit or shaded leaves	_	
abs	μπουπ	within a canopy layer		
$I_{ m dir}$	$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam		
$I_{ m diff}$	$\mu mol m^{-2} s^{-1}$	Photon flux in diffuse radiation	_	
	$\mu mol m^{-2} s^{-1}$		-	
I_{total}	$\mu mol m s$ $\mu mol m^{-2} s^{-1}$	Total photon flux incident on canopy	-	
I_s	$\mu moi m - s$	Solar constant, photon flux in a plane perpedicular to	2600	
		the solar beam above the atmosphere		1.6.1
I_d				undefined
$I_{\ell,d}$	- 0 1			undefined
$I_{ m short}$	$\mu mol\ m^{-2}\ s^{-1}$	Short wave radiation component of incident light	-	
$I_{ m beam}$		flux density of beam radiation on horizontal surface at		
		top of canopy		
I_{od}		flux density of diffuse radiation on horizontal surface		
		at top of canopy		
$I_{ m soil}$	$\mu mol m^{-2} s^{-1}$	Solar radiation incident upon soil surface	_	
$I_{ m soil}$	$W m^{-2}$	Solar radiation on soil	_	which units
$I_{ m sun}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves which receive direct solar radiation,	_	
-sun	F	i.e. are sunlit		
I_{shade}	$\mu mol m^{-2} s^{-1}$	Mean I for leaves shaded from direct solar radiation	_	
$I_{ m scat}$	$\mu mol m^{-2} s^{-1}$	Direct beam radiation scattered by surfaces within the		
Iscat	$\mu moim s$		_	
7	$\mu mol\ m^{-2}\ s^{-1}$	Canopy Total calar radiation absorbed by sither qualit or		
J_{a}	$\mu morms$	Total solar radiation absorbed by either sunlit or	-	
7	-2 -1	shaded leaves within a canopy layer		
$J_{\rm a, \ soil}$	$\mu mol m^{-2} s^{-1}$	Total solar radiation absorbed by soil	-	
k	dimensionless	Foliar absorption coefficient (α_{ℓ} in Bernacchi 2003)	-	
k_d	dimensionless	extinction coefficient for diffuse light		
K_c	$\mu mol mol^{-1}$	Michaelis Menton constant for the carboxylation of	460	
		RuBISCO		
$K_{\rm CO_2}$	$mol m^{-2} s^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7	
Kt		C_4 slope factor	_	
K_o	$mmolmol^{-1}$	Michaelis Menton constant for oxygenation of Ru-	330	
ū		BISCO		
$k_{\rm slope}$	Dimensionless	Initial slope of photosynthetic light response	0.04	
LN	$g m^{-2}$	Leaf nitrogen concentration	-	
	9 110	non more concentration		

which units for $I_{\rm soil}$ are correct?

Term	Units	2 1 – continued from previous page Definition	Value	
k_{leaf}	Dimensionless	Partitioning coefficient for leaf	_	
$k_{ m stem}$	Dimensionless	Partitioning coefficient for stem	_	
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	_	
k_t		temperature-dependent pseudo-first order rate con-		
		stant with respect to P_i (Collatz 1992)		
$k_{\rm froot}$	Dimensionless	Partitioning coefficient for fine root	_	
$k_{ m stroot}$	Dimensionless	Partitioning coefficient for structural root	_	
ℓ		8		undefined from Ja: equation 51
$\ell_{ m sun}$				undefined from equation ??
$l_{ m sun}$				undefined from equation 75
L_i	$cm cm^{-3}$	Root density of ith zone	_	
L_w	m	Leaf width in the direction of the wind	0.04	
$\Delta L_{ m stem}$				undefined
$\Delta L_{ m sroot}$				undefined
λ	MJ/Kg	Latent heat of vapourisation	_	didollifed
$\lambda_{ m soil}$	$W/(m^{\circ}C)$	Thermal conductivity for the soil surface	_	
M	W / (III C)	Thermal conductivity for the son surface	22	what is M ?
m_r	${\rm mm\ month}^{-1}$	monthly precipitation rate	22	witau isivi :
$N_{ m eff}$	days/mo	effective length of rainy period		check units with equation 14
n	day	The number of days in a month	29, 30,	check units with equation 14
16	uay	The number of days in a month	or 31	
mm	day	The number of rainy days in a month	01 31	
$\frac{nr}{O_a}$	$mmol mol^{-1}$	Atmospheric O_2 concentration	210	is this corected to 25C like O_i ?
O_i	$mmol m^{-2} s^{-1}$	Intercellular concentration of O_2 in air corrected for	-	is this corected to 250 like O_i :
O_i	mmoi m 3	solubility relative to 25°C	-	
/ h . c	CC.	Leaf biomass		
$\omega_{ m leaf}$	g	Stem biomass	-	
$\omega_{ m stem}$	g	Biomass of storage root	-	
$\omega_{ m sroot}$	g	Biomass of fine root	-	
ω_{froot}	g	Biomass of structural root	-	
$\omega_{ m stroot}$	g		-	
$\omega_{ m storage}$	g .1	Biomass of storage	-	
$\frac{\Omega}{P}$	degrees	Latitude	-	
	kPa kPa	Atmospheric pressure	101.324	
P_o		Standard atmospheric pressure at sea level	101.524	
P_s	kPa	Leaf surface partial pressure of CO ₂	-	1-C 1
$\Psi_{ m g}$	MD-	I as Compton of a still		undefined
Ψ_l	MPa	Leaf water potential	-	1-C 1
$\Psi_{ m L}$	MD			undefined
Ψ_t	MPa	Threshold leaf water potential for decreasing gs	-	
$\Phi_{ m N}$	$\mathrm{W}~\mathrm{m}^{-2}$ $\mathrm{W}~\mathrm{m}^{-2}$	Net radiation	-	
$\Phi_{N,soil}$	w m	Net radiation at soil surface	-	
ϕ_i		coefficient which controls spread of logistic function		
)Tr	MD-	used to calculate water stress factor in 43		
$\Psi_{ m adl}$	MPa	Average daily plant water potential	-	
$\Psi_{ m pt}$	MPa	Threshold water potential	-	
$\Psi_{ m si}$	MPa	Soil water potential of the ith layer	-	
Ψ_x	MPa	xylem water potential	-	1
q	Dimensionless	The probability that there is no rainfall	-	during a month?
q_w	$kg s^{-1}$	Flux of water	-	
Q_{10}	dimensionless	Is the proportional rise in a parameter for a 10°C increase in temperature	2	
r	dimensionless	Leaf reflection coefficient for total solar radiation	0.2	
r^{\sim}	$\mathrm{mm} \ \mathrm{day}^{-1}$	Mean daily rainfall in each month	_	
R	$J k^{-1} mol^{-1}$	Real gas constant	8.314	
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	-	
$R_{ m si}$	$m^3kg^{-1}s^{-1}$	Soil resistance of the ith zone	_	
$R_{ m ri}$	$M^3kg^{-1}s^{-1}$	root resistance of the ith zone	_	
R_o	$mol m^{-2} s^{-1}$	Dark respiration rate at $25^{\circ}C$	3	
-		<u> </u>		

Томия		Definition	Value	
Term	$\frac{\text{Units}}{mol m^{-2} s^{-1}}$	Definition Desirable and a sign of the second secon	varue	
R_d	$mol m^{-2} s^{-1}$	Dark respiration at a given temperature	-	
$R_{ m lc}$	$mol m$ s $mol m^{-2} s^{-1}$	Longwave radiation	-	
$R_{lc,\mathrm{soil}}$		Soil longwave radiation	1000	
$ ho_w$	$kg m^{-3}$	Density of water	1000	
$ ho_a$	kPa	vapor pressure deficit in air		is this distinct from $\Delta \rho_{\rm va}$?
$ ho_a'$	1D 7Z=1			undefined from equation 56
s	$kPa K^{-1}$	Slope of saturated water vapor pressure change with	-	also defined by equation 58; is
		respect to temperature (look up table)		one correct?
s_p	dimensionless	Spectral imbalance	-	
$S_{ m size}$	m	Average size of soil particles	0.04	
S_r	Dimensionless	Soil reflectance	0.2	
$S_{ au}$	Dimensionless	Soil transmission	0.01	
Sp_{leaf}	$\mathrm{gram} \ \mathrm{m}^{-2}$	Specific leaf area	50	
$Sp_{ m stem}$	${\rm gram} {\rm m}^{-1}$	Specific stem elongation factor	60	
Sp_{froot}	${\rm gram} {\rm m}^{-1}$	Specific fine root elongation factor	10	
$Sp_{ m stroot}$	${\rm gram}~{\rm m}^{-1}$	Specific structural root elongation factor	60	
σ	$\mathrm{Wm^{-2}K^{-4}}$	Stefan-Boltzmann constant	5.67 ·	
			10^{-8}	
t	h	Time of day	-	
$t_{ m up}$	h	time of dawn		
$t_{ m down}$	h	time of dusk		
$t_{ m len}$	h	day length	-	is this a constant, 24?
$t_{ m sn}$	h	Time of solar noon	12	
$T_{ m leaf}$	$^{\circ}\mathrm{C}$	Leaf temperature	-	
$T_{ m air}$	$^{\circ}\mathrm{C}$	Ambient air temperature	-	
$T_{ m mean}$	$^{\circ}\mathrm{C}$	Daily mean $T_{\rm air}$		
$T_{\rm range}$	$^{\circ}\mathrm{C}$	$rac{T_{ m air}-T_{ m mean}}{T_{ m range}}$		
$T_{ m excursion}$	fraction	Difference between current $T_{\rm mean}$		
$T_{ m soil}$	°C	Soil surface temperature	_	
$T_{ m lower}$	$^{\circ}\mathrm{C}$	Lower T limitation on photosynthesis		
$T_{ m upper}$	$^{\circ}\mathrm{C}$	Upper T limitation on photosynthesis		
T_1	$^{\circ}\mathrm{C}$	Annual mean air temperature	18	
T_2	$^{\circ}\mathrm{C}$	Annual range in air temperature	2	
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7	
T_4	$^{\circ}\mathrm{C}$	Maximum daily range in air temperature	7	
ΔT	$^{\circ}\mathrm{C}$	Temperature difference between (leaf or soil) and air	·	
au	Dimensionless	Leaf transmittance coefficient		
Θ_{curve}	dimensionless	Curvature parameter	_	
Θ^*	kgm^{-3}	Actual volumetric water content	_	
Θ_1	kgm^{-3}	The volumetric water content for maximizing Evapo-		
O1	ng m	ration		
Θ_2	kgm^{-3}	The volumetric water content for wilting point	_	
Θ_i	kgm^{-3}	The volumetric water content of the ith day	_	
Θ	degrees	Solar zenith angle		
u	${ m m~s}^{-1}$	Measured wind speed at known height (2m)	2	
	${ m m~s} { m m~s}^{-1}$	Wind speed in a given canopy layer	2	
$u_{ m layer}$	${ m m~s} { m m~s}^{-1}$	Wind speed at soil surface	-	
$u_{ m soil} \ v$	111 5	Saturated water vapour concentration	-	
	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
$V_{ m max}$	moim s	· · · · · · · · · · · · · · · · · · ·	-	
\mathbf{V}	$mol m^{-2} s^{-1}$	given temperature Maximum rubP saturated rate of carboxylation at a		
$V_{ m max_0}$	movms	v	-	
V	$mol m^{-2} s^{-1}$	given temperature Maximum ruhP saturated rate of carbovylation at	30	
V_{c,\max_0}	movms	Maximum rubP saturated rate of carboxylation at	39	
VDD	kPa	25°C Loof air water yapour pressure deficit		
VPD V=	$mol m^{-2} s^{-1}$	Leaf-air water vapour pressure deficit V_{\max} at current T	-	
V_T	$mol m s \\ mol m^{-2} s^{-1}$	V_{max} at current I RuBISCO limited rate of photosynthesis		units?
w_c	moim s	rubiboo ininted rate of photosynthesis		umus:

Term	Units	Definition	Value	
$\overline{w_c}$	$mol m^{-2} s^{-1}$	RuBP limited rate of photosynthesis		un
W_p	$m^{3}m^{-3}$	Wilting point		
W_s	$m^{3}m^{-3}$	Soil water content		
z_o	m	Roughness length	0.234	
χ	dimensionless	The ratio of horizontal:vertical projected area of leaves	1	
		in the canopy segment		
slope	$mol m^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7	
curve	dimensionless	Curvature parameter	0.83	
Z	m	Thickness of a soil layer	_	