

Corso di Laurea in Ingegneria Informatica COMUNICAZIONI NUMERICHE – 18-03-11

Esercizio 1
Con riferimento allo schema di Fig. 1a, considerato un segnale di ingresso x(t) periodico di periodo T_0 come rappresentato in Fig. 1b, una risposta impulsiva $h(t) = \frac{3}{T_0} \operatorname{sinc}\left(\frac{3t}{T_0}\right)$ ed un segnale modulante $c(t) = \cos\left(2\pi\frac{t}{T_0}\right)$, si calcolino: 1) La espressione analitica della TCF X(t), 2)

l'espressione analitica dell'uscita y(t) e 3) la potenza ed energia del segnale in uscita y(t).

Esercizio 2

Al ricevitore di Fig. 2 viene applicato il segnale PAM $r(t) = \sum_{i} a_{i} g_{T}(t-iT) \sin^{2}(\pi f_{0}t + \vartheta) + w(t)$ con $f_{0} >> 1/T$, $\vartheta = \pi/3$, simboli a_{i} , indipendenti ed equiprobabili, appartenenti all'alfabeto A = [-1,1]. Il rumore w(t) introdotto dal canale è Gaussiano, a media nulla, con densità spettrale di potenza $S_{W}(f) = \frac{N_{0}}{2} \left[rect \left((f - f_{0})T/2 \right) + rect \left((f + f_{0})T/2 \right) \right]$. L'impulso $g_{T}(t) = rect \left(\frac{t}{T/2} \right)$. Nell'ipotesi che la risposta impulsiva del filtro in ricezione $g_{R}(t) = rect \left(\frac{t}{T/2} \right)$, si calcoli:

- 1. L'energia trasmessa media per simbolo;
- 2. Lo schema equivalente in banda base del ricevitore;
- 3. La potenza media della componente di rumore all'uscita del filtro in ricezione $g_R(t)$;
- 4. Si determini la probabilità d'errore P(e) dove la soglia di decisone è $\lambda=0$.

Fig. 2