1 終結式の定義

多項式の係数はいずれも整域 R の元としておく、こうしておくと多項式の係数を商体 $\mathrm{Rat}(R)$ の元として分数に拡張できる、さらに方程式の解は代数閉包 $\overline{\mathrm{Rat}(R)}$ 上で考えられる。もしかしたら R を UFD くらいに仮定しといた方が安全かもしれない。

定義 (終結式). 多項式
$$f(x) = \sum_{i=0}^m a_m x^i$$
 と $g(x) = \sum_{j=0}^n b_n x^j \; (a_m, b_n \neq 0)$ に対して

を f と g の**シルベスター行列**といい,その行列式

$$resul(f, g) := det(Syl(f, g))$$

を f と g の終結式 (resultant) という. なお、零でない定数 $g(x) = b_0 \neq 0$ に対しては

$$\operatorname{Syl}(f, b_0) = \begin{bmatrix} b_0 & & \\ & \ddots & \\ & & b_0 \end{bmatrix}, \quad \operatorname{resul}(f, b_0) = b_0^m$$

であり、同様に $\operatorname{resul}(a_0,g)=a_m^n$ である。また、共に非零定数の場合は $\operatorname{resul}(a_0,b_0)=1$ とし、一方が零多項式の場合は $\operatorname{resul}(f,0)=\operatorname{resul}(0,g)=0$ と定める。

注意. 上で定義した $\mathrm{Syl}(f,g)$ の転置行列をシルベスター行列と呼ぶ流儀もある.

例 1.
$$f(x) = x^3 + 1$$
, $g(x) = x^2 + 2x + 1$, $h(x) = x^2 + 1$ とする.

$$\operatorname{resul}(f,g) = \left| \begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \end{array} \right| = 0, \quad \operatorname{resul}(f,h) = \left| \begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right| = 2$$

2 終結式と共通根

以下, f,g は次のような多項式とする. ただし, $a_m,b_n \neq 0$ とする.

$$f(x) = \sum_{i=0}^{m} a_i x^i = a_m \prod_{i=1}^{m} (x - \alpha_i), \quad g(x) = \sum_{j=0}^{n} b_j x^j = b_n \prod_{j=1}^{n} (x - \beta_j)$$

定理 1. f と g は共通根を持つ. \iff resul(f,g)=0.

証明. (\Rightarrow) $f(\gamma)=g(\gamma)=0$ とすると, $\gamma^i f(\gamma)=\gamma^j g(\gamma)=0$ なので以下が成り立つ.

$$\begin{bmatrix} a_3 & a_2 & a_1 & a_0 & 0 \\ 0 & a_3 & a_2 & a_1 & a_0 \\ b_2 & b_1 & b_0 & 0 & 0 \\ 0 & b_2 & b_1 & b_0 & 0 \\ 0 & 0 & b_2 & b_1 & b_0 \end{bmatrix} \begin{bmatrix} \gamma^4 \\ \gamma^3 \\ \gamma^2 \\ \gamma \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad (m = 3, n = 2)$$

同次形連立 1 次方程式 $\mathrm{Syl}(f,g) x = \mathbf{0}$ が非自明解を持つので $\mathrm{resul}(f,g) = \mathbf{0}$ である.

補題 1. resul
$$(f,g) = a_m^n b_n^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$$

証明. 定理 1 の (\Rightarrow) から $\alpha_k = \beta_l$ のとき $\operatorname{resul}(f,g) = 0$ なので,因数定理より $T := \prod \prod (\alpha_i - \beta_j)$ は $\operatorname{resul}(f,g)$ を割り切る.そこで,各 α_i,β_j の多項式として $\operatorname{resul}(f,g)$ と T の次数を評価し,係数を比較すればよい.

$$f(x)/a_m = x^m + A_1 x^{m-1} + \dots + A_m = \prod_{i=1}^m (x - \alpha_i),$$

$$g(x)/b_n = x^n + B_1 x^{n-1} + \dots + B_n = \prod_{j=1}^n (x - \beta_j)$$

とすると, m=3, n=2 の場合

resul
$$(f,g) = a_3^2 b_2^3$$
 $\begin{vmatrix} 1 & A_1 & A_2 & A_3 & 0 \\ 0 & 1 & A_1 & A_2 & A_3 \\ 1 & B_1 & B_2 & 0 & 0 \\ 0 & 1 & B_1 & B_2 & 0 \\ 0 & 0 & 1 & B_1 & B_2 \end{vmatrix}$

である。各 A_i は α_1,\ldots,α_m の,各 B_i は β_1,\ldots,β_n の i 次基本対称式の ± 1 倍である。また,各 A_i,B_j はそれぞれ α_i,β_j の 1 次式なので,resul(f,g) は α_i に関して高々 n 次で, β_j に関して高々 m 次である。従って,resul(f,g) は T の定数倍であり, α_1^n の係数を比較して,resul $(f,g)=a_m^nb_n^mT$ がわかる.

例 2. $f(x) = ax^2 + bx + c \ (a \neq 0)$ とする. f'(x) = 2ax + b であり、

resul
$$(f, f')$$
 = $\begin{vmatrix} a & b & c \\ 2a & b & 0 \\ 0 & 2a & b \end{vmatrix}$ = $-a(b^2 - 4ac)$

より、 $b^2 - 4ac = 0$ のとき f, f' は共通根を持つ. また、このとき f は重根を持つ.

定理 2. 非定数多項式 f に対して、以下は同値.

- (1) f は重根を持つ.
- (2) f, f' は共通根を持つ.
- (3) resul(f, f') = 0.

定理 3.

resul
$$(f, f') = (-1)^{m(m-1)/2} a_m^{2m-1} \prod_{1 \le i < j \le m} (\alpha_i - \alpha_j)^2$$

証明. 補題1より, 一般に

$$resul(f,g) = a_m^n \ b_n^m \ \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j) = a_m^n \ \prod_{i=1}^m \left(b_n \prod_{j=1}^n (\alpha_i - \beta_j) \right) = a_m^n \ \prod_{i=1}^m g(\alpha_i)$$

が成り立つ. これを g = f' として適用して

$$resul(f, f') = a_m^{m-1} \prod_{i=1}^m f'(\alpha_i)$$

を得る.
$$f'(x) = a_m \sum_{\substack{i=1 \ j \neq i}}^m \prod_{\substack{j=1 \ j \neq i}}^m (x - \alpha_j)$$
 より $f'(\alpha_i) = a_m \prod_{\substack{j=1 \ j \neq i}} (\alpha_i - \alpha_j)$ から従う.

定義 (判別式). 2 次以上の多項式 f に対して以下の $\mathrm{disc}(f)$ を f の判別式という.

$$\operatorname{disc}(f) = a_m^{2m-2} \prod_{1 \le i \le j \le m} (\alpha_i - \alpha_j)^2 = \frac{(-1)^{m(m-1)/2}}{a_m} \operatorname{resul}(f, f')$$

定理 2,3 より、f が重根を持つことと $\operatorname{disc}(f) = 0$ は同値である.

例 3. $f(x) = x^3 + px + q$ とする. $f'(x) = 3x^2 + p$ より、 $\operatorname{disc}(f)$ は以下の通り.

$$\operatorname{disc}(f) = (-1)^{3} \operatorname{resul}(f, f') = - \begin{vmatrix} 1 & 0 & p & q & 0 \\ 0 & 1 & 0 & p & q \\ 3 & 0 & p & 0 & 0 \\ 0 & 3 & 0 & p & 0 \\ 0 & 0 & 3 & 0 & p \end{vmatrix} = -(4p^{3} + 27q^{2})$$

定理 4. *f* を実係数 3 次多項式とする.

$$\operatorname{disc}(f) = \begin{cases} > 0 & (f \text{ は相異なる 3 個の実根を持つ}) \\ = 0 & (f \text{ は重根を持ち, どの根も実数}) \\ < 0 & (f \text{ は 1 個の実根と 2 個の互いに共役な虚根を持つ}) \end{cases}$$

証明. f の根 $\alpha_1, \alpha_2, \alpha_3$ が互いに相異なる実数のとき、定義から $\mathrm{disc}(f) > 0$ である. f が重根を持つとき、 $\mathrm{disc}(f) = 0$ である. α_1 が実数で α_2, α_3 が互いに共役な虚数のとき、

$$\operatorname{disc}(f) = a_m^{2m-2} (\alpha_1 - \alpha_2)^2 (\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_3)^2$$

= $a_m^{2m-2} ((\alpha_1 - \alpha_2) (\overline{\alpha_1 - \alpha_2}))^2 (2i (\Im \alpha_2))^2 = -4a_m^{2m-2} |\alpha_1 - \alpha_2|^2 (\Im \alpha_2)^2 < 0$

である. f は実係数なので実根は 1 個以上あり、虚根は偶数個で重根ではない.

例 4 (接点 t 問題). 点 (a,b) から曲線 $y=x^3-3x$ に引ける接線の本数が 3 本になるときの a,b の条件を求めよう.

点 (a,b) を通る直線 y=m(x-a)+b と曲線 $y=x^3-3x$ が接するための必要十分条件は、3 次多項式 $f(x)=x^3-3x-(m(x-a)+b)$ が重根を持つこと、つまり

$$resul(f, f') = -4m^3 + 9(3a^2 - 4)m^2 - 54(ab + 2)m + 27(b - 2)(b + 2) = 0$$

が成り立つことである。そして、このような接線が 3 本存在することは、上の m に関する 3 次方程式が異なる 3 実解を持つことと同値である。つまり、

$$g(m) = -4m^3 + 9(3a^2 - 4)m^2 - 54(ab + 2)m + 27(b - 2)(b + 2)$$

とおいて、 $\operatorname{disc}(g) > 0$ となる条件を求めればよい.

$$\operatorname{disc}(g) = \frac{-1}{-4}\operatorname{resul}(g, g') = 314928(a^3 - 3a - b)(3a + b)^3$$

より, $(a^3 - 3a - b)(3a + b) > 0$ が求める条件である.

3 終結式と共通因子

定理 5. 定数でない多項式 f,q に関して以下は同値である.

- (1) f, g は定数でない共通因子を持つ.
- (2) 以下を満たす多項式 U,V (少なくとも一方は非零多項式) が存在する.

$$Uf + Vg = 0$$
, $\deg U < n$, $\deg V < m$

(3) resul(f, g) = 0.

証明. $(1) \Rightarrow (2) h$ を f, g の共通因子とし, $f = hf_1, g = hg_1$ とする.

$$g_1 \cdot f + (-f_1) \cdot g = g_1 h f_1 - f_1 h g_1 = 0$$

より, $U = g_1, V = -f_1$ とすればよい.

 $(2) \Rightarrow (1) \ Uf + Vg = 0, \ \deg U < n, \ \deg V < m, \ V \neq 0 \$ とする. f,g が共通因子を持たないとすると, $\tilde{U}f + \tilde{V}g = 1$ を満たす多項式 \tilde{U}, \tilde{V} が存在する. Vg = -Uf なので

$$V = V(\tilde{U}f + \tilde{V}g) = \tilde{U}Vf + \tilde{V}Vg = \tilde{U}Vf + \tilde{V}(-Uf) = (\tilde{U}V - \tilde{V}U)f$$

である. $V \neq 0$ なので $\deg V \geq \deg f = n$ より、 $\deg V < n$ に矛盾する.

 $(2) \Leftrightarrow (3)$ 簡単のため、m=3, n=2 とする. 一般の場合も同様である.

$$U = \sum_{i=0}^{n-1} u_i x^i = u_1 x + u_0, \quad V = \sum_{i=0}^{m-1} v_j x^j = v_2 x^2 + v_1 x + v_0$$

とおき, $oldsymbol{w}^ op = \left[egin{array}{cccc} u_1 & u_0 & v_2 & v_1 & v_0 \end{array}
ight]$ とすると

$$Uf + Vg = 0 \Leftrightarrow \begin{cases} a_3u_1 + b_2v_2 = 0 \\ a_2u_1 + a_3u_0 + b_1v_2 + b_2v_1 = 0 \\ a_1u_1 + a_2u_0 + b_0v_2 + v_1v_1 + b_2v_0 = 0 \\ a_0u_1 + a_1u_0 + b_0v_1 + b_1v_0 = 0 \\ a_0u_0 + b_0v_0 = 0 \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} a_3 & 0 & b_2 & 0 & 0 \\ a_2 & a_3 & b_1 & b_2 & 0 \\ a_1 & a_2 & b_0 & b_1 & b_2 \\ a_0 & a_1 & 0 & b_0 & b_1 \\ 0 & a_0 & 0 & 0 & b_0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_0 \\ v_2 \\ v_1 \\ v_0 \end{bmatrix} = \mathbf{0}_5 \Leftrightarrow \operatorname{Syl}(f, g)^\top \mathbf{w} = \mathbf{0}_5$$

なので、 $\operatorname{resul}(f,g) = \operatorname{det}\left(\operatorname{Syl}(f,g)^{\top}\right)$ と合わせて以下を得る.

 $(2) \Leftrightarrow 同次形連立 1 次方程式 Syl(f,g)^{\top} x = 0 が非自明解を持つ <math>\Leftrightarrow (3)$

定理 6. 非零多項式 $f,g \in R[x]$ に対して次を満たす $U,V \in Rat(R)[x]$ が存在する.

$$Uf + Vg = resul(f, g)$$

特に, f,g の一方が非定数なら, $U,V \in R[x]$ である.

証明. $\operatorname{resul}(f,g)=0$ なら U=V=0 とし、f,g の一方が定数、例えば $f=a_0$ なら

resul
$$(a_0, g) = a_0^n = a_0^{n-1} \cdot f + 0 \cdot g$$

とすればよいので、f,g 共に定数でないとし、 $resul(f,g) \neq 0$ とする. まず、

$$\tilde{U}f + \tilde{V}g = 1$$

を満たす多項式 \tilde{U}, \tilde{V} を構成する. $\tilde{U}=\sum_{i=0}^{n-1}u_ix^i, \; \tilde{V}=\sum_{j=0}^{m-1}v_jx^j$ とおくと,

$$\tilde{U}f + \tilde{V}g = 1 \Leftrightarrow \begin{bmatrix} a_3 & 0 & b_2 & 0 & 0 \\ a_2 & a_3 & b_a & b_2 & 0 \\ a_1 & a_2 & b_0 & b_1 & b_2 \\ a_0 & a_1 & 0 & b_0 & b_1 \\ 0 & a_0 & 0 & 0 & b_0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_0 \\ v_2 \\ v_1 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

である (m=3,n=2 の場合). この係数行列は $\mathrm{Syl}(f,g)^{\top}$ であり、その行列式は $\mathrm{resul}(f,g)\neq 0$ なのでこれは唯一つの解を持つ. クラーメルの公式から、例えば u_1 は

$$u_1 = \frac{1}{\text{resul}(f,g)} \begin{vmatrix} 0 & 0 & b_2 & 0 & 0 \\ 0 & a_3 & b_a & b_2 & 0 \\ 0 & a_2 & b_0 & b_1 & b_2 \\ 0 & a_1 & 0 & b_0 & b_1 \\ 1 & a_0 & 0 & 0 & b_0 \end{vmatrix}$$

であり、この行列式部分は R の元である。他の u_i,v_j についても同様なので、共通の分母 $\mathrm{resul}(f,g)$ を払って $U=\mathrm{resul}(f,g)\tilde{U},\ V=\mathrm{resul}(f,g)\tilde{V}$ とすれば、 $Uf+Vg=\mathrm{resul}(f,g)$ である。

4 2変数多項式の終結式と消去法

k を体とする. 以下 $f,g \in k[x,y] = (k[y])[x]$ は次のような多項式とする.

$$f(x,y) = \sum_{i=0}^{m} a_i(y)x^m, \quad g(x,y) = \sum_{j=0}^{n} b_j(y)x^j, \quad a_m, b_n \neq 0$$

係数環を R=k[y] として定まる終結式 $\operatorname{resul}(f,g)\in k[y]$ を $\operatorname{resul}_x(f,g)(y)$ と書く. 同様に、シルベスター行列も $\operatorname{Syl}_x(f,g)(y)$ と書く.

例 5.
$$f(x,y) = x^2 + y^2 - 1$$
, $g(x,y) = x^2 + xy + y^2 - 1$ とすると,

$$\operatorname{resul}_{x}(f,g)(y) = \begin{vmatrix} 1 & 0 & y^{2} - 1 & 0 \\ 0 & 1 & 0 & y^{2} - 1 \\ 1 & y & y^{2} - 1 & 0 \\ 0 & 1 & y & y^{2} - 1 \end{vmatrix} = y^{4} - y^{2} = y^{2}(y+1)(y-1)$$

である. これの根 y=0 を f,g に代入すると

$$f(x,0) = g(x,0) = x^2 - 1 = (x+1)(x-1)$$

となり, f(1,0)=g(1,0)=0 と f(-1,0)=g(-1,0)=0 がわかる. 残りの根 y=-1,1 も同様に f,g に代入すると,

$$\begin{cases} f(x,-1) = x^2 \\ g(x,-1) = x^2 - x = x(x-1) \end{cases} \qquad \begin{cases} f(x,1) = x^2 \\ g(x,1) = x^2 + x = x(x+1) \end{cases}$$

となり, f(0,1)=g(0,1)=0 と f(0,-1)=g(0,-1)=0 がわかる. つまり,

$$(x,y) = (1,0), \quad (-1,0), \quad (0,1), \quad (0,-1)$$

の 4 点は連立方程式 f(x,y) = g(x,y) = 0 の解である.実はこれが解の全てであることが以下の定理 7 によって保証される.

定理 7.
$$f(\alpha, \beta) = g(\alpha, \beta) = 0 \Longrightarrow \operatorname{resul}_x(f, g)(\beta) = 0$$

証明. f,g のいずれかが零多項式なら明らかなので、共に零でないとする. 定理 6 から

$$U(x,y)f(x,y) + V(x,y)g(x,y) = resul_x(f,g)(y)$$

を満たす $U(x,y), V(x,y) \in k[x,y]$ が存在するので, $f(\alpha,\beta) = g(\alpha,\beta) = 0$ ならば $\operatorname{resul}_x(f,g)(\beta) = 0$ である.

例 6. 2 変数関数 $f(x,y) = xy(x^2 + y^2 - 4)$ の停留点を全て求めるために、連立方程式 $f_x(x,y) = f_y(x,y) = 0$ を解く.

$$f_x(x,y) = 3yx^2 + y(y^2 - 4), \quad f_y(x,y) = x^3 + (3y^2 - 4)x$$

なので、終結式 $\operatorname{resul}_x(f_x,f_y)$ は第 1 列に関する余因子展開を利用しつつ

$$\operatorname{resul}_{x}(f_{x}, f_{y})(y) = \begin{vmatrix} 3y & 0 & y(y^{2} - 4) & 0 & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) & 0 \\ 0 & 0 & 3y & 0 & y(y^{2} - 4) \\ 1 & 0 & 3y^{2} - 4 & 0 & 0 \\ 0 & 1 & 0 & 3y^{2} - 4 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & -8y(y^{2} - 1) & 0 & 0 & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) & 0 \\ 0 & 0 & 3y & 0 & y(y^{2} - 4) \\ 1 & 0 & 3y^{2} - 4 & 0 & 0 \\ 0 & 1 & 0 & 3y^{2} - 4 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 0 & -8y(y^{2} - 1) & 0 & 0 & 0 \\ 3y & 0 & y(y^{2} - 4) & 0 & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) & 0 \\ 1 & 0 & 3y^{2} - 4 & 0 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 0 & -8y(y^{2} - 1) & 0 & 0 & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) & 0 \\ 1 & 0 & 3y^{2} - 4 & 0 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -8y(y^{2} - 1) & 0 & 0 & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) \\ 1 & 0 & 3y^{2} - 4 & 0 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} -8y(y^{2} - 1) & 0 & 0 & 0 \\ 0 & -8y(y^{2} - 1) & 0 & 0 \\ 0 & 3y & 0 & y(y^{2} - 4) \end{vmatrix} = 64y^{3}(y - 2)(y + 2)(y - 1)^{2}(y + 1)^{2}$$

$$= \begin{vmatrix} -8y(y^{2} - 1) & 0 & 0 & 0 \\ 0 & -8y(y^{2} - 1) & 0 & 0 \\ 0 & -8y(y^{2} - 1) & 0 & 0 \\ 3y & 0 & y(y^{2} - 4) \end{vmatrix} = 64y^{3}(y - 2)(y + 2)(y - 1)^{2}(y + 1)^{2}$$

$$= \begin{vmatrix} -8y(y^{2} - 1) & 0 & 0 & 0 \\ 0 & -8y(y^{2} - 1) & 0 & 0 \\ 0 & -8y(y^{2} - 1) & 0 & 0 \\ 0 & 0 & -8y(y^{2} - 4) & 0 \end{vmatrix}$$

と計算できる. これより, resul_x $(f_x, f_y)(y) = 0$ の解 $y = 0, \pm 1, \pm 2$ が得られるので,

- $f_x(x,0) = 0$ かつ $f_y(x,0) = x(x^2 4) = 0 \Leftrightarrow x = 0, \pm 2$
- $f_x(x,1) = 3(x^2-1) = 0$ かつ $f_y(x,1) = x(x^2-1) = 0 \Leftrightarrow x = \pm 1$
- $f_x(x,-1) = -3(x^2-1) = 0$ かつ $f_y(x,-1) = x(x^2-1) = 0 \Leftrightarrow x = \pm 1$
- $f_x(x,2) = 6x^2 = 0$ かつ $f_y(x,2) = x(x^2 + 8) = 0 \Leftrightarrow x = 0$
- $f_x(x,-2) = -6x^2 = 0$ $f_y(x,-2) = x(x^2+8) = 0 \Leftrightarrow x = 0$

より、f の 停留点は (0,0), $(\pm 2,0)$, $(1,\pm 1)$, $(-1,\pm 1)$, $(0,\pm 2)$ の 9 点である.

y に関する方程式 $\operatorname{resul}_x(f,g)(y)=0$ は連立方程式 f(x,y)=g(x,y)=0 から変数 x を消去した方程式である.この $\operatorname{resul}_x(f,g)(y)=0$ の解 $y=\beta$ を f(x,y)=g(x,y)=0 の解 $(x,y)=(\alpha,\beta)$ へと拡張する,というのが 2 変数終結式の使い方である.

ところが、 $\operatorname{resul}_x(f,g)(\beta)=0$ となる β に対していつでも $f(\alpha,\beta)=g(\alpha,\beta)=0$ となる α が存在するとは限らない.以下のような例がある.

例 7. $f(x,y)=(y-1)x^2+(y^2-2y)x+y-3$, g(x,y)=(y-1)x-1 に対して

$$\operatorname{resul}_{x}(f,g)(y) = \begin{vmatrix} y-1 & y^{2}-2y & y-3 \\ y-1 & -1 & 0 \\ 0 & y-1 & -1 \end{vmatrix} = 2(y-1)^{2}(y-2)$$

なので、 $\operatorname{resul}_x(f,g)(y)=0$ の解として y=1,2 が得られる. 一方で、

$$f(x,1) = -x - 2$$
, $g(x,-1) = -1$

なので、 $f(\alpha,1) = g(\alpha,1) = 0$ を満たす α は存在しない.

例 7 のようなことが起こるのは、f(x,1),g(x,1) の x に関する最高次の係数が 0 となることで、 $\mathrm{Syl}(f(x,1),g(x,1))$ の次数が下がり、

$$0 = \text{resul}_x(f, q)(1) \neq \text{resul}(f(x, 1), q(x, 1)) = -1$$

となっていることが原因である.このような問題は,2 変数多項式の終結式 $\operatorname{resul}_x(f,g)(y)$ に $y=\beta$ を代入した $\operatorname{resul}_x(f,g)(\beta)$ と,f(x,y),g(x,y) に $y=\beta$ を代入したものの終結式 $\operatorname{resul}(f(x,\beta),g(x,\beta))$ が一致していれば発生しない.

定理 8. 次を満たす $\beta \in \bar{k}$ に対して, $f(\alpha,\beta) = g(\alpha,\beta) = 0$ を満たす $\alpha \in \bar{k}$ が存在する.

$$\operatorname{resul}_x(f,g)(\beta) = \operatorname{resul}(f(x,\beta),g(x,\beta)) = 0$$

証明. 定理 1 から $f(x,\beta),g(x,\beta)$ に共通根 $\alpha \in \overline{k}$ が存在し, $f(\alpha,\beta)=g(\alpha,\beta)=0$. \square 実際には, $f(x,\beta),g(x,\beta)$ の最高次係数が共に 0 でなければ,2 つの終結式は一致する.

補題 2. $\beta \in \bar{k}$ に対して, $a_m(\beta) \neq 0$ かつ $b_n(\beta) \neq 0$ であれば以下が成り立つ.

$$\operatorname{resul}_x(f,g)(\beta) = \operatorname{resul}(f(x,\beta),g(x,\beta))$$

証明. $a_m(\beta) \neq 0$ かつ $b_n(\beta) \neq 0$ のとき、2 つのシルベスター行列 $\mathrm{Syl}_x(f,g)(\beta)$ と $\mathrm{Syl}(f(x,\beta),g(x,\beta))$ は共に (m+n) 次正方行列で各成分が等しい.つまり、 $\mathrm{Syl}_x(f,g)(\beta) = \mathrm{Syl}(f(x,\beta),g(x,\beta))$ でなので、両者の行列式も当然等しい.

例 8. 例 7 の $\operatorname{resul}_x(f,g)(y) = 0$ の解 y = 2 に関しては, $f(x,2) = x^2 - 1$, g(x,2) = x - 1 より、いずれも最高次数が下がらず、

$$Syl_x(f,g)(2) = Syl(f(x,2), g(x,2)) = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

である. さらに, f(1,2)=g(1,2)=0 である. 以上から, (x,y)=(1,2) が連立方程式 f(x,y)=g(x,y)=0 の解の全てである.

補題 2 と定理 8 から, $a_m(\beta) \neq 0$ かつ $b_n(\beta) \neq 0$ なら $\operatorname{resul}_x(f,g)(y) = 0$ の解 $y = \beta$ を f(x,y) = g(x,y) = 0 の解 $(x,y) = (\alpha,\beta)$ に拡張できるが,この条件は弱められる.

定理 9 (解の拡張定理). $\operatorname{resul}_x(f,g)(\beta)=0$ のとき, $a_m(\beta)\neq 0$ または $b_n(\beta)\neq 0$ なら $f(\alpha,\beta)=g(\alpha,\beta)=0$ となる $\alpha\in \bar{k}$ が存在する.

証明. $b_n(\beta) \neq 0$ のときも同様なので、 $a_m(\beta) \neq 0$ とし、 $k = \deg(g(x,\beta))$ とする.

 $k = -\infty$ ($\Leftrightarrow g(x,\beta) = 0$) のとき, $\operatorname{resul}(f(x,\beta),0) = 0$ なので, 定理 8 から従う.

k=0 ($\Leftrightarrow g(x,\beta)=b_0(\beta)\neq 0$) とはならない. 実際, $a_m(\beta)\neq 0$ かつ $b_n(\beta)=b_0(\beta)\neq 0$ なので補題 2 から $\mathrm{resul}_x(f,g)(\beta)=\mathrm{resul}(f(x,\beta),g(x,\beta))$ だが, 終結式の定義から $\mathrm{resul}(f(x,\beta),g(x,\beta))$ resul $(f(x,\beta),b_0(\beta))=a_m(\beta)^n\neq 0$ である.

以下, $k \ge 1$ とする. このとき, $\operatorname{resul}_x(f,g)(\beta) = a_m(\beta)^{n-k} \operatorname{resul}(f(x,\beta),g(x,\beta))$ が 成り立つ. 実際, 例えば m=4, n=3, k=1 の場合では

$$\operatorname{resul}_{x}(f,g)(\beta) = \begin{vmatrix} a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ 0 & 0 & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{1} & b_{0} \end{vmatrix} = a_{4}^{2} \operatorname{resul}(f(x,\beta), g(x,\beta))$$

$$= a_{4}^{2} \begin{vmatrix} a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & b_{1} & b_{0} \end{vmatrix} = a_{4}^{2} \operatorname{resul}(f(x,\beta), g(x,\beta))$$

となる. $a_m(\beta) \neq 0$ なので、これより $\mathrm{resul}_x(f,g)(\beta) = \mathrm{resul}(f(x,\beta),g(x,\beta)) = 0$ だから、定理 8 より従う.

例 9. $f(x,y) = (y-1)x^2 - x + y$, g(x,y) = yx - 1 とする.

$$\operatorname{resul}_{x}(f,g)(y) = y^{3} - 1 = (y-1)(y-\omega)(y-\omega^{2}) \quad (\omega = \exp(2\pi i/3))$$

である. これの根 y=1 を f(x,y) の x に関する最高次係数 $a_2(y)=y-1$ に代入すると $a_2(1)=0$ となるが,g(x,y) の最高次係数 $b_1(y)=y$ に代入しても $b_1(1)=1\neq 0$ なので定理 9 からこの y=1 を連立方程式 f(x,y)=g(x,y)=0 の解に拡張できる.実際,

$$f(x,1) = -x + 1, \quad g(x,1) = x - 1$$

なので、(x,y) = (1,1) が f(x,y) = g(x,y) = 0 の解である.

$$Syl_x(f,g)(y) = \begin{bmatrix} y-1 & -1 & y \\ y & -1 & 0 \\ 0 & y & -1 \end{bmatrix}$$

なので、y=1 を代入して行列式をとれば

$$\det\left(\mathrm{Syl}_x(f,g)(1)\right) = \mathrm{resul}_x(f,g)(1) = \left| \begin{array}{ccc} 0 & -1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{array} \right| = -1 \times \left| \begin{array}{ccc} -1 & 1 \\ 1 & -1 \end{array} \right| = 0$$

となるが、最後の 2 次の行列式が f(x,1) と g(x,1) の終結式である.

resul
$$(f(x,1),g(x,1)) = \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 0$$

なお、 $\operatorname{resul}_x(f,g)(y)=0$ の残りの解 $y=\omega,\omega^2$ を拡張すれば、連立方程式 f(x,y)=g(x,y)=0 の残りの解 $(x,y)=(\omega,\omega^2)$ 、 (ω^2,ω) が得られる.

参考文献

- [1] 長坂工作・岩根秀直(編),『計算機代数の基礎理論』, 共立出版 (2020).
- [2] 三宅敏恒,『線形代数概論』, 培風館 (2023).
- [3] 横山和弘,『多項式と計算機代数』,朝倉書店 (2022).
- [4] D. A. Cox, J. Little and D. O'Shea, *Ideals Varieties, and Ulgorithms 4th edition*, Springer (2015).
- [5] S. Lang, Algebra Revised 3rd edition, Springer (2004).