Sensory robotics

Lecture 09.

- i) Visual sensing
- ii) Sensors of mobile robots, sensors of humanoid robots Sensors of UAV, UUV and UGV

György Cserey 04. 26. 2021.

Image processing

- One of the most important sensor in biology provides visual input.
- Importance is obvious in mobile robotics. We have seen that Curiousity rover has a lot of cameras as well.
- 2D input data huge amount of information, hard to replace this modality
- Classical image processing vs. Deep Neural Networks

Steps in classical image processing

Digital images

Pixels represented in an RGB system?

The answer requires two short byepass in human vision and cameras as sensors

NASA/JPL-Caltech/MSSS/ASU: J. Bell/H.Kline Schematic cartoon only: Components not shown at their actual relative sizes.

Spectrum of visible light

- The input: The product of lighting and reflection spectra
- Rods and cones
- R-G-B

Color vision

- The input: the product of lighting and reflection spectra
- Population weighted cone spectral sensitivities in the visible light range. The product of input and its spectra leads to color vision.

Incoming energy at a sensor

RGB color model

- Image sensor chips (CCD) are desinged as RGB sensors in order to emulate the human visual system
- R,G,B are elements of an "color" orthobasis

Alternative: HSV Color Model

- Hue árnyalat, Saturation telítettség, Value színérték
- More robust under illumination changes (why?) (better fit to the psychological perception of color than RGB)
- Still must confront noise, specularity etc.

Processing of the visual system

- Temporal adaptation
 - Pupil adjustment (~4 sec)
 - □ Change focus (~220 msec)
- Spatial adaptation
 - Color
 - Surround
- Resolution
 - Fovea
 - Periphery
- Activity
 - Processing channels
 - Saccadic effects
 - Approaching objects

Infrared

- Electromagnetic radiation of all matters
- "Infrared" refers to biological life-forms
- Eye can not detect infrared
- Can be sense as heat

FLIR TG165 Spot Thermal Imaging Camera

Accuracy ±1.5% or 1.5°C (2.7°F)

Field of view (FOV)50° x 38,6°

■ IR Resolution 80 × 60 pixels

Object Temperature Range -25°C to 380°C (-13°F to 716°F)

Thermal Sensitivity/NETD <150 mK</p>

Humidity (Operating and Storage)
 0-90% RH (0-37°C (32-98.6°F)),
 0-65% RH (37-45°C (98.6-113°F)),
 0-45% RH (45-55°C (113-131°F))

Operating Temperature Range -10°C to 45°C (14°F to 113°F)

Storage Temperature Range -30°C to 55°C (-22°F to 131°F)

Image Frequency
9 Hz

Minimum Focus Distance0.1 m (4 in.)

Minimum Measurement Distance 26 cm (10 in.)

Spectral Range 8–14 μm

Camera weight incl battery 0.312 kg (11 oz)

Source: https://www.flir.com/products/tg165/

Examples

 Hands over buttons (keyboard), hand print on window, people outside, reflection off computer monitor, body print on chair, lighter.

Hot & Cold Water, bats, industrial apps

What will the camera see?

- Infrared camera captiured images
- Body prints are on the furniture
- Heat signatures remain lit until the heat dissipates

Nighvision camera

Need of night vision cameras

- Human eyes see reflected light
- Daylight and night vision cameras, as well as human eye detect reflected visible light energy
- This is how we have an image
- These detectors need enough light to make an image
- Starlight, moonlight and artificial lights are limited

Thermal imaging vs. Night vision

- Thermal imaging is not based on classical cameras
- Thermal imaging makes pictures from heat, not visible light.
- Thermal cameras detect tiny differences in heat as small as 0.01°C
- Everything gives off thermal energy
- Thermal energy comes from a combination of sources
- Different materials absorb and radiate thermal energy at different rates

Thermal imaging vs. Night vision

- Night vision goggles take in small amounts of visible light, magnify it greatly.
- If there isn't enough visible light available, they can't see well.
- They are not very useful during twilight hours, when there is too much light.
- Infrared illuminated I² cameras projects a beam which bounces off an object. I² cameras still rely on reflected light to make an image, they have the same limitations as any other night vision camera – short range, and poor contrast.

ASIMO senses

- Two basic video cameras for eyes,
 Stereoscopic vision
- Able to recognize, and avoid objects
 - detect multiple objects,
 - determine distance,
 - perceive motion,
 - recognize programmed faces
 - interpret hand motions
 - follow a person
 - allow a moving object to cross its path
 - greet you
- Several sensors for maneuver through environments and interact with objects and people
- Sense of touch: force sensors

Bigdog - structure

Bigdog - sensors

Bigdog - sensors

Туре	Measurement Quantity	Location	#		
Linear Pot	Joint displacements	Knee, Hip(2), Ankle	16]	
Load Cell	Actuator, ankle force	Legs eBox	16		
Current sensor	Servo valve current	еВох	16	Proprioception	
Stereo Vision	Obstacles, Optic Flos, Ground Slope	Body	3		
LIDAR	Human Tracking	Body	1		
Gyro	3 angular rates 3 linear accelerations	Body	6	Exteroception	
Temperature	Engine, Oil temperature	Body	3	1	
Flow	Oil flow	Body	4		
Pressure	Oil pressure	Body	2	Homeostasis	
Governor	Engine RPM Battery voltage	Body	2		
Total			69		

Source: https://www.edn.com/bigdog-robot-a-sensor-based-enhancement-of-human-capabilities/

UAV platforms

- Fixed wing airplanes
 - Simple, durable, cheaper, longer flight time / distance for larger areas

- Multi-rotor airplanes
 - Simple, VTOL, durable, lightweight, cheaper, many applications,

- Helicopters
 - VTOL, durable, stable, loadable, different sizes, longer flight time / distance

- Lighter than air ballon
 - VTOL, durable, different sizes, sensitive

UAV - sensors

UAV – remote sensing

 The phenomenon of collecting and analyzing information without direct contact is science, art and technology as well.

LandSat Bands				
Band	Wavelength (µm)	Name	Applications	
1	0.45 – 0.52	Blue	Useful for soil/vegetation discrimination, forest type mapping and cultural feature identification.	
2	0.52 - 0.60	Green	Used for discrimination and vigor assessment of vegetation.	
3	0.63 – 0.69	Red	Designed to sense in a chlorophyll absorption region, aiding in plant species differentiation.	
4	0.76 – 0.90	Near IR	Useful for determining vegetation types, vigor and biomass content and soil moisture discrimination.	
5	1.55 – 1.75	Mid IR	Indicative of vegetation moisture content and soil moisture. Also useful in differentiation of snow from clouds	
6	10.4 – 12.5	Thermal IR	Useful in vegetation stress analysis, soil moisture discrimination and thermal mapping applications.	
7	2.09 – 2.35	Mid IR	Useful for discrimination of mineral and rock types.	

UAV – remote sensing

- UAV remote sensing with electromagnetic spectrum sensors, biological sensors, and chemical sensors
- A UAV sensors include visual spectrum, IR, or near IR cameras as well as radar systems.
- Biological sensors are capable of detecting the airborne presence of various microorganisms and other biological factors.

 Chemical sensors use laser spectroscopy to analyze the concentrations of elements in the air.

UAV - Oil, gas and mineral exploration

- UAVs can be used to perform geomagnetic surveys where based on the measurement of the differential Earths magnetic field strength magnetic rock structure can be calculated.
- Helps to predict the location of mineral deposits.
- The oil and gas exploration and monitoring of the integrity of oil and gas pipelines and installations.

UAV - Transport

- UAVs can transport payloads
 - rare population
 - COVID

UAV – scientific research

- Penetrating areas which may be too dangerous for piloted craft.
 (Hurricane, fire, colcano eruption)
- Measurements far closer to the water's surface
- For scientific research in severe climates such as the Antarctic.
- Search and rescue.
- Photographic-like images through clouds, rain or fog, even in daytime or nighttime conditions.
- Archeology
- Geology

UAV – military aims

- With high-precision zoom lens cameras, and video cameras with both electric optic and infrared capability that can see at night,
- "Painting the target" Sensors to calculate wind speed, direction, and other battlefield variables to gather all of this data into a firing solution.
- Military intelligence

UAV – NDVI

- Proportion of visible and infrared
- NDVI normailzed differential vegetative index
- It allows comparison of the vegetation of different areas

$$\frac{(0.50 - 0.08)}{(0.50 + 0.08)} = 0.72$$

$$\frac{(0.4 - 0.30)}{(0.4 + 0.30)} = 0.14$$

UAV – remote sensing

Satellite vs. UAV image

Applications of thermal cameras

Fungicide application

NDVI readings from Real Shot imagery

Green - high NDVI reading

Yellow - medium NDVI reading

Brown - low NDVI reading

Fungicide application zones

Blue - high label rate

Yellow - reduced label rate

Red - no product applied

Applications - lidar

UUV Systems Vision Enhanced, Efficient Capabilities

Distribution Statement A: Approved for Public Release; Distribution Unlimited. This Brief is provided for Information Only and does not constitute a commitment on behalf of the U.S. government to provide additional information and / or sale of the system

USV Systems Vision

Source: Slide 3 of briefing by Captain Pete Small, Program Manager, Unmanned Maritime Systems (PMS 406), entitled "Unmanned Maritime Systems Update," January 15, 2019, accessed May 22, 2019,

UUV - sensors

UUV sensors

- Marine Sonics DF sidescan ultrasound scanner
- EdgeTech sidescan ultrasound scanner
- SSAM DF (Simultaneous dual frequency band operation)
- ASW (anti submarine war)
- LF sensors low frequency sensors
- Video w/LED Bar
- Environmental Sensors
- Chemical Sensors
- BOSS bio-optical sensor system

UGV sensors

- Visual sensor tilt camera
- Passive/active thermal camera
- Chemical sensors nitrates, toxic materials
- Night vision sensors / cameras
- Acoustic sensors
- Radiation detectors
- Sensing biological materials
- Licence plate recognition

References

- Roland Siegwart, Illah R. Nourbakhsh,
 Davide Scaramuzza: Autonomous Mobile Robots
- H. R. Everett, A. K. Peters: Sensors for mobile robots: theory and applications, 1995, ISBN: 1-56881-048-2

End of lecture 09.

i) Visual sensing

ii) Sensors of mobile robots, sensors of humanoid robots Sensors of UAV, UUV and UGV

György Cserey 04. 26. 2021.