Conditional Expectation

- · Say that we observe that Y=y and wish to use this information to predict X. The conditional PMF $P_{X|Y}(x|y)$ or PDF $f_{X|Y}(x|y)$ tells us the distribution, but what about just the average value of X given that Y=y?
 - -> Examples: * Observe the temperature today and try to predict the average temperature tomorrow.
 - * Take a noisy measurement from a reactor and determine the best control input (on average).
- The conditional expected value E[X|Y=y] of X given the event $\{Y=y\}$ is

Discrete:
$$\mathbb{E}[X|Y=y] = \sum_{x \in R_x} \times P_{x|x}(x|y)$$

Continuous:
$$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{x|Y}(x|y) dx$$

- Recall that the expected value $\mathbb{E}[X]$ is a number. All of the randomness in X is averaged out.
- In contrast, the conditional expected value $\mathbb{E}[X|Y=y]$ is a function of y. Roughly speaking, all of the randomness in X that does not depend on Y is averaged out.
 - \rightarrow Sometimes, it helps to write $h(y) = \mathbb{E}[X \mid Y = y]$ to remind ourselves this is a deterministic function of y.
- Recall also that if we plug in the random variable Y into a function h(y), we get h(Y), which is a random variable itself.
- In this sense, we use the notation $\mathbb{E}[X|Y]$ to represent h(Y) where $h(y) = \mathbb{E}[X|Y=y]$. Thus, $\mathbb{E}[X|Y]$ is a random variable.

• The conditional expected value $\mathbb{E}[g(X)|Y=y]$ of a function g(X) given the event $\{Y=y\}$ is

Discrete:
$$\mathbb{E}[g(x)|Y=y] = \sum_{x \in R_x} g(x) P_{x|Y}(x|y)$$

Discrete:
$$\mathbb{E}[g(x)|Y=y] = \sum_{x \in R_x} g(x) P_{x|Y}(x|y)$$

Continuous: $\mathbb{E}[g(x)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{x|Y}(x|y) dx$

- Writing $h(y) = \mathbb{E}[g(x)|Y=y]$ helps remind us that $\mathbb{E}[g(x)|Y=y]$ is a deterministic function of y.
- The notation $\mathbb{E}[g(x)|Y]$ refers to substituting the random variable Y into the function $h(y) = \mathbb{E}[g(x) | Y = y]$ and thus $\mathbb{E}[q(x)|Y]$ is a random variable.

· Conditional Expectation Properties:

→ If X and Y are independent,
$$\mathbb{E}[X|Y=y] = \mathbb{E}[X]$$
 and $\mathbb{E}[g(X)|Y=y] = \mathbb{E}[g(X)]$.

Why?
$$\mathbb{E}[X|Y=y] = \sum_{x \in R_x} P_{X|Y}(x|y) = \sum_{x \in R_x} P_x(x) = \mathbb{E}[X].$$

Law of Total Expectation:
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$$

$$\mathbb{E}[g(X)] = \mathbb{E}[\mathbb{E}[g(X)|Y]]$$

Why?
$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[h(Y)] = \sum_{y \in R_{Y}} h(y) P_{Y}(y)$$

$$h(y) = \mathbb{E}[X|Y = y] = \sum_{y \in R_{Y}} \sum_{x \in R_{X}} \sum_{y \in R_{Y}} \frac{P_{x|Y}(x|y)}{P_{Y}(y)}$$

$$= \sum_{x \in R_{X}} \sum_{x \in R_{X}} \sum_{x \in R_{X}} \sum_{x \in R_{X}} \frac{P_{x|Y}(x|y)}{P_{Y}(x|y)} P_{Y}(y)$$

$$= \sum_{y \in R_{Y}} \sum_{x \in R_{X}} \sum_{x \in R_{X}} P_{x|Y}(x|y) = \mathbb{E}[X]$$

	Pxix(xly)		×		
· Example:			1	2	3
		1	1	0	0
	J	٦	1	14	ーコ

- → Calculate E[X|Y=y].

$$\mathbb{E}[X|Y=\gamma] = \sum_{x \in R_x} \times P_{x|Y}(x|y) = \begin{cases} \sum_{x \in R_x} \times P_{x|Y}(x|1) & y=1 \\ \sum_{x \in R_x} \times P_{x|Y}(x|2) & y=2 \end{cases}$$

$$= \begin{cases} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 & y=1 \\ 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{2} & y=2 \end{cases}$$

Jaculate E[E[X|Y]]. We don't have enough information! Need $P_{Y}(y)$.

Say $P_{Y}(y) = \left(\frac{1}{3} y = 1\right)$ $\left(\frac{2}{3} y = 2\right)$

$$\mathbb{E}\big[\mathbb{E}\big[X|Y]\big] = \sum_{y \in R_Y} \mathbb{E}\big[X|Y = Y\big] P_Y(y) = \mathbb{E}\big[X|Y = I\big] P_Y(I) + \mathbb{E}\big[X|Y = 2\big] P_Y(2)$$

$$= 1 \cdot \frac{1}{3} + \frac{9}{4} \cdot \frac{2}{3} = \frac{2+9}{6} = \frac{11}{6} = \mathbb{E}[X]$$

• Example: X given
$$Y = y$$
 is Geometric (y) .

$$P_{Y}(y) = \begin{pmatrix} \frac{1}{4} & y = \frac{1}{2} & P_{X|Y}(x|y) = \begin{pmatrix} y & (1-y)^{X-1} & y = \frac{1}{2}, \frac{2}{3}, & x = 1,2,3,... \\ \frac{3}{4} & y = \frac{2}{3} & 0 & \text{otherwise} \end{pmatrix}$$
otherwise

Determine E[X|Y=y] and E[X].

$$\mathbb{E}[X|Y=y] = \frac{1}{y}$$

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \sum_{y \in R_Y} \frac{1}{y} P_y(y) = \frac{1}{(\frac{1}{2})} \cdot \frac{1}{4} + \frac{1}{(\frac{2}{3})} \cdot \frac{3}{4}$$

$$= \frac{1}{2} + \frac{4}{8} = \frac{13}{8}$$
The description of Total Expectation is $\frac{1}{2} = \frac{1}{2} + \frac{4}{8} = \frac{13}{8}$

· Example: X given Y=y is Gaussian ($\frac{1}{3}$, 4). Y is Exponential (2). Determine $\mathbb{E}[X|Y=y]$ and $\mathbb{E}[X]$.

Gaussian
$$(\mu, \sigma^2)$$
 Mean: $\mu \mathbb{E}[Y^2] = Var[Y] + (\mathbb{E}[Y])^2$

Olternate Variance =
$$\frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2}$$

$$Var[Y] = \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2$$

Formula
$$Var[Y] = \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2$$
Exponential(X) Mean: $\frac{1}{x}$

Variance:
$$\frac{1}{2}$$

• Example:
$$f_{x,y}(x,y) = \begin{cases} 2 & 0 \le x \le y, & 0 \le y \le 1 \end{cases}$$

Of therwise

Range Rxxy

Range Rxxy

Step 1 Determine conditional PDF fx14 (xly).

$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{\infty} 2 dx = (2x)|_{0}^{y} = (2y)|_{0}^{y} = (2y$$

- Now, plug into conditional PDF formula.

$$f_{x|y}(x|y) = \begin{cases} \frac{f_{x,y}(x,y)}{f_{y}(y)} & (x,y) \in \mathbb{R}_{x,y} = \begin{cases} \frac{2}{2y} & 0 \le x \le y, & 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Step 2 Plug into conditional expectation formula.