HK 5 for PDE I Fall 2024, 150 marks total, due Dec. 18 in class

I (10 marks) Suppose that $\Omega \subseteq \mathbb{R}^n$ is bounded. Prove that if $u \in W_0^{1,1}(\Omega)$ and $\nabla u \equiv 0$ in Ω , then u = 0 a.e. in Ω .

Hint: For $n \geq 2$, the proof is one sentence long using a theorem that we proved in class. For n = 1, use the proof of the following Problem 2.

2 (20 marks) Let Ω be a finite interval (a,b). Suppose $u \in W_0^{1,p}(\Omega)$ with 1 . Show that

(i) u is absolutely continuous on [a, b] and u(a) = 0 = u(b).

Hint: By definition, $C_0^{\infty}(\Omega)$ is dense in $W_0^{1,p}(\Omega)$; when we say u is absolutely continuous, we mean $\exists v$ which is absolutely continuous on [a,b] s.t. u=v a.e. on Ω .

(ii) $u \in C^{\alpha}(\overline{\Omega})$ with $\alpha = 1 - \frac{1}{p}$ provided p > 1.

Remark: This is the 1D case of the Sobolev imbedding:

$$W_0^{1,p}(\Omega) \hookrightarrow C^{1-\frac{n}{p}}(\overline{\Omega})$$
 if $\Omega \subseteq \mathbb{R}^n$ bounded, $p > n$.

Hint: From the proof of (i), you have

$$u(x) = \int_{a}^{x} u'(t) dt$$
, $u(y) = \int_{a}^{y} u'(t) dt \Rightarrow u(x) - u(y) = \int_{y}^{x} u'(t) dt$.

3 (10 marks) Let Ω be a bounded domain in \mathbb{R}^n as shown,

where $\Omega = \Omega_1 \cup \Gamma \cup \Omega_2$, Γ is the common boundary of the domains Ω_1 and Ω_2 , $\Gamma \in C^1$. Suppose $u_1 = u_2$ on Γ , $u_1 \in C^1(\overline{\Omega}_1)$, $u_2 \in C^1(\overline{\Omega}_2)$. Define

$$u = \begin{cases} u_1(x), & x \in \overline{\Omega}_1, \\ u_2(x), & x \in \overline{\Omega}_2. \end{cases}$$

Prove that $u \in W^{1,p}(\Omega) \ \forall \ 1 \leq p \leq \infty$.

Hint: What is your bet on weak $\frac{\partial u}{\partial x_i}$?

4 10 marks) Let $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$, $\Omega \subset \mathbb{R}^n$. Suppose $u \in W_0^{1,p}(\Omega)$, $v \in W^{1,p'}(\Omega)$. Prove the integration by parts formula:

$$\int_{\Omega} \frac{\partial u}{\partial x_i} v \ dx = -\int_{\Omega} u \frac{\partial v}{\partial x_i} \ dx, \quad i = 1, \dots, n.$$

Hint: $C_0^{\infty}(\Omega)$ is dense in $W_0^{1,p}(\Omega)$; use definition of weak derivative $\frac{\partial v}{\partial x_i}$.

5 (10 marks) Suppose Ω is a bounded domain in \mathbb{R}^n , $u \in W^{1,p}(\Omega)$, $1 \leq p < \infty$, and $v \in C^1(\overline{\Omega})$. Show that $uv \in W^{1,p}(\Omega)$ and the weak

$$\nabla(uv) = v\nabla u + u\nabla v.$$

Hint: $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$.

(10 marks) Suppose $u \in W^{1,p}(\Omega)$ $(1 \le p < \infty)$ and supp $u \subset \Omega' \subset\subset \Omega$ (i.e., $\overline{\Omega'}$ is compact and $\overline{\Omega'} \subset \Omega$). Prove that $u \in W_0^{1,p}(\Omega)$.

Hint: Think about the mollification u_{ϵ} of u.

7 (10 marks) Suppose $1 \leq p < n$. Show that if an estimate of the form

$$||u||_{L^q(\mathbb{R}^n)} \le C||\nabla u||_{L^p(\mathbb{R}^n)}$$

holds for all functions $u \in C_0^{\infty}(\mathbb{R}^n)$ and certain constants C > 0, $1 \le q < \infty$ which are independent of u, then necessarily $q = \frac{np}{n-p}$.

Hint: Choose a function $u \in C_0^{\infty}(\mathbb{R}^n)$, $u \not\equiv 0$, and consider $u_{\lambda}(x) := u(\lambda x)$ for $\lambda > 0$.

- 8 (20 marks) Suppose Ω is a bounded domain in \mathbb{R}^n . Show that for $f \in L^{\infty}(\Omega)$, $\lim_{n \to \infty} ||f||_{L^p(\Omega)} = ||f||_{L^{\infty}(\Omega)}$.
- 9 (10 marks) (i) Show that for every $\delta > 1$, the series $\sum_{k=1}^{\infty} k \delta^{-k}$ is finite.
- (ii) Show that $\delta^{\sum_{k=1}^{\infty} k\delta^{-k}}$ diverges to $+\infty$ as $\delta \to 1+$.
- 10 (10 marks) Suppose $B_1(0)$ is the unit open ball in \mathbb{R}^n and $n \geq 2$. Prove that $\log \log(1 + \frac{1}{|x|}) \in W^{1,n}(B_1(0))$ but $\notin L^{\infty}(B_1(0))$.

11 (10 marks) Show that if $u \in W^{1,p}(\mathbb{R}^n)$ with $n , then <math>\lim_{|x| \to \infty} u(x) = 0$.

Hint: Use the following Sobolev Inequality: Let Ω be a bounded domain in \mathbb{R}^n with a C^1 boundary. Then for $u \in W^{1,p}(\Omega)$ with n , it holds that

$$||u||_{L^{\infty}(\Omega)} \le C(p, n, |\Omega|) ||u||_{W^{1,p}(\Omega)}.$$

R (10 marks) Let Ω be a bounded domain in \mathbb{R}^n and let $1 \leq p < \infty$. Prove that if $u \in W^{1,p}(\Omega) \cap C(\bar{\Omega})$ and $u|_{\partial\Omega} = 0$, then $u \in W^{1,p}_0(\Omega)$.

Moral of story: This theorem is user-friendly. For example, it helps us to see $\sin x \in W_0^{1,p}((0,\pi))$.

Hint: Just need to show that $u^+ = \max\{u, 0\}$ and $u^- = \min\{u, 0\}$ are in $W_0^{1,p}(\Omega)$. To see $u^+ \in W_0^{1,p}(\Omega)$, consider $v_{\varepsilon} = (u - \varepsilon)^+$ for $\varepsilon > 0$. Argue that (i) $v_{\varepsilon} \in W^{1,p}(\Omega)$; (ii) v_{ε} has a compact support in Ω and hence by Hw 5, #6, $v_{\varepsilon} \in W_0^{1,p}(\Omega)$; (iii) $v_{\varepsilon} \to u^+$ in $W^{1,p}(\Omega)$ as $\varepsilon \to 0$ by LDCT. Finally, use the fact that $W_0^{1,p}(\Omega)$ is a closed subspace of $W^{1,p}(\Omega)$.

13 (10 marks) Let $1 \leq p < \infty$. Prove $W_0^{1,p}(\mathbb{R}^n) = W^{1,p}(\mathbb{R}^n)$. Hint: (i) Prove $\exists \eta \in C_0^{\infty}(\mathbb{R}^n)$ s.t.

$$\eta \equiv 1 \text{ on } B_1(0), \ \eta \equiv 0 \text{ on } (B_2(0))^c, \ 0 \le \eta \le 1. \text{ (Mollify } \chi_{B_{1.5}(0)}(x).)$$

- (ii) $\forall R > 0$, define $\eta_R(x) = \eta(\frac{x}{R})$. (η_R is called a cut-off function.)
- (iii) $\forall u \in W^{1,p}(\mathbb{R}^n)$, define $u_R(x) = \eta_R(x)u(x)$.
- (iv) Is $u_R \in W_0^{1,p}(\mathbb{R}^n)$?
- (v) Prove $u_R \to u$ in $W^{1,p}(\mathbb{R}^n)$.

14 (20 marks) Let Ω be a domain in \mathbb{R}^n and $1 \leq p < \infty$. $\forall u \in W_0^{1,p}(\Omega)$, define v(x) = u(x) for $x \in \Omega$ and v(x) = 0 for $x \notin \Omega$. Prove that $v \in W^{1,p}(\mathbb{R}^n)$.