LECTURE 23: More on the Poisson process

- The sum of independent Poisson r.v.s
- Merging and splitting
- Random incidence

The sum of independent Poisson random variables

• Poisson process of rate $\lambda = 1$

$$\frac{\mathcal{L}}{\mathcal{M}} \times \frac{\mathcal{L}}{\mathcal{L}} \times \frac{\mathcal{L}}{\mathcal{L} \times \mathcal{L}} \times \frac{\mathcal{L}}{\mathcal{L}} \times \frac{\mathcal{L}}{\mathcal{L}} \times \frac{\mathcal{L}}{\mathcal{L}} \times \frac{\mathcal{L$$

 \bullet Consecutive intervals of length μ and ν

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}$$

ullet Numbers of arrivals during these intervals: M and N

· M: Poisson (µ)

• Independent? Yes

· N: Poisson (2)

• M+N: Poisson (µ+v)

The sum of independent Poisson random variables, with means/parameters μ and ν , is Poisson with mean/parameter $\mu + \nu$

Merging of independent Poisson processes

$$\begin{array}{c|cccc}
 & 1 - \lambda_1 \delta & \lambda_1 \delta & O(\delta^2) \\
\hline
 & 0 & 1 & \geq 2 \\
\hline
 & 1 - \lambda_2 \delta & 0 & (1 - \lambda_1 \delta), & \lambda_1 \delta & (1 - \lambda_2 \delta) \\
 & & (1 - \lambda_2 \delta) & \lambda_1 \delta & (1 - \lambda_2 \delta) \\
 & \lambda_2 \delta & 1 & \lambda_2 \delta & (1 - \lambda_1 \delta) & \lambda_1 \lambda_2 \delta^2 \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2) & \geq 2 & & & \\
\hline
 & O(\delta^2$$

Merged process: Poisson($\lambda_1 + \lambda_2$)

Where is an arrival of the merged process coming from?

P(Red | arrival at time t) = $\frac{\lambda_1}{(\lambda_1 + \lambda_2)}$

$$P(k\text{th arrival is Red}) = \frac{\lambda_1}{(\lambda_1 + \lambda_2)}$$

Independence for different arrivals

Independence for different arrivals
$$P(4 \text{ out of first 10 arrivals are Red}) = \begin{pmatrix} 10 \\ 4 \end{pmatrix} \begin{pmatrix} \frac{\lambda_1}{\lambda_1 + \lambda_2} \end{pmatrix}^4 \begin{pmatrix} \frac{\lambda_2}{\lambda_1 + \lambda_2} \end{pmatrix}^6$$

The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)

time

time

$$E[\min\{x,y,z\}] = \iiint \min\{z,y,z\} \lambda e^{-\lambda z} \lambda e^{-\lambda y} \lambda e^{-\lambda z} dz dy dz$$

$$I(\min\{x,y,z\} > t) = I(x>t,y>t,z>t) = e^{-\lambda t} e^{-\lambda t} - \lambda t = e^{-3\lambda t}$$

$$Exp(3\lambda)$$

- \bullet X, Y, Z: first arrivals in independent Poisson processes
- Merged process: Poisson (31)
- $\min\{X,Y,Z\}$: 1st arrival in merged process $\longleftarrow \mathbb{E}_{x} p(3\lambda)$

The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)
- Find expected time until all burn out

Splitting of a Poisson process

- ullet Split arrivals into two streams, using independent coin flips of a coin with bias q
 - assume that coin flips are independent from the original Poisson process

Are the two resulting streams independent?
 Surprisingly, yes!

"Random incidence" in the Poisson process

Poisson process that has been running forever

- Believe that $\lambda = 4/\text{hour}$, so that $\mathbf{E}[T_k] = \frac{1}{7} \ \mathcal{U}_{rs} = 15 \ \text{mins}$
- Show up at some time and measure interarrival time
 - do it many times, average results, see something around 30 mins! Why?

"Random incidence" in the Poisson process — analysis

- Arrive at time t^*
- *U*: last arrival time

• V: next arrival time

•
$$V - U = (V - t^*) + (t^* - U)$$

$$E \times p(\lambda) \qquad E \times p(\lambda)$$

• V-U: interarrival time you see, versus kth interarrival time

Random incidence "paradox" is not special to the Poisson process

- Example: interrarival times, i.i.d., equally likely to be 5 or 10 minutes
 - expected value of kth interarrival time: $\frac{1}{2} \cdot 5 + \frac{1}{2} \cdot 10 = 7.5$
- you show up at a "random time"
 - P(arrive during a 5-minute interarrival interval) = $\frac{1}{3}$ expected length of interarrival interval during which you arrive = $\frac{1}{3} \cdot 5 + \frac{2}{3} \cdot 10$

~ 8.3

- Calculation generalizes to "renewal processes:"
 i.i.d. interarrival times, from some general distribution
- "Sampling method" matters

Different sampling methods can give different results

Average family size?

- $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 6$
- look at a "random" family (uniformly chosen)
- look at a "random" person's (uniformly chosen) family $\frac{3}{9} \cdot 1 + \frac{6}{9} \cdot 6$
- Average bus occupancy?
 - look at a "random" bus (uniformly chosen)

- look at a "random" passenger's bus
- Average class size?