Statistical Learning Homework 3

110024516 邱繼賢

Problem 1.

```
library(AppliedPredictiveModeling) #install package first!!
library(corrplot) #correlation plot
library(leaps)
library(latex2exp)
library(glmnet)
library(knitr)
library(pls)
```

```
data(ChemicalManufacturingProcess)
dim(ChemicalManufacturingProcess)
```

[1] 176 58

原始資料共有 176 筆觀測值,58 個變數,其中有 12 個和 biological starting material 有關,45 個和 manufacturing process 有關,剩餘 1 個為 response variable Yield

```
sum(is.na(ChemicalManufacturingProcess))
```

[1] 106

• 發現資料中共有 106 個數值缺失,將有缺失值的 observation 移除

```
CMP <- na.omit(ChemicalManufacturingProcess) #remove missing data
dim(CMP)</pre>
```

[1] 152 58

• 剩餘資料僅剩 152 筆觀測值,但都沒有任何數值有所缺失,以下分析就使用此資料

```
#rename variable
B_name = c()
for (i in 1:12){
    B_name[i] = paste("B",i,sep="")
}
P_name = c()
for (i in 1:45){
    P_name[i] = paste("P",i,sep="")
}
names(CMP) <- c("Yield",B_name, P_name)</pre>
```


- biological starting material 的變數間大多呈現中至高度正相關,建構模型時可能會具有共線性
- manufacturing process 的變數間有正相關也有負相關, $P25\sim P31$ 間互相有著高度正相關

將資料以 120:32 的比例隨機分割成 train & test data set,以下各種建構模型方法皆是對 train data 建模,然後在 test data 上比較其表現

```
set.seed(1116)
idx = sample(1:152,120)
train_data = CMP[idx,]
test_data = CMP[-idx,]
```

Subset Selection via Criterion based

利用 Cp, BIC, R_a^2 等 criterion 進行 model selection,以此來決定模型中應該保留的變數個數。因為全部共有 57 個解釋變數,總共有 2^{57} 種模型選擇,若全部模型都對 criterion 計算會太花時間,故此僅使用 forward 的方式 選取模型:

Reordering variables and trying again:

```
regfit_sum = summary(regfit)
```

```
which.min(regfit_sum$cp)
```

[1] 13

```
which.min(regfit_sum$bic)
```

[1] 4

```
which.max(regfit_sum$adjr2)
```

[1] 26

```
par(mfrow = c(1,3))
plot(regfit_sum$cp,type="l",ylab="Cp",xlab="num of variables")
points(13,regfit_sum$cp[13],col=2,pch=16,cex=1.2)
plot(regfit_sum$bic,type="l",ylab="BIC",xlab="num of variables")
```

```
points(4,regfit_sum$bic[4],col=2,pch=16,cex=1.2)
plot(regfit_sum$adjr2,type="l",ylab=TeX("$R^2_a$"),xlab="num of variables")
points(26,regfit_sum$adjr2[26],col=2,pch=16,cex=1.2)
```


• 三種 criterion 所決定的解釋變數個數分別為:13,4,26

所選取出變數係數的估計值如下:

round(coef(regfit,13),3)

##	(Intercept)	B5	P1	P7	Р9	P19
##	-38.570	0.179	0.452	-0.267	0.696	0.017
##	P20	P23	P25	P29	P33	P34
##	-0.013	-0.031	0.000	0.068	0.287	10.459
##	P38	P40				
##	-0.042	-1.487				

```
round(coef(regfit,4),3)
## (Intercept)
                         P1
                                      Р9
                                                  P33
                                                               P34
       -52.885
##
                      0.306
                                   0.692
                                                0.429
                                                            12.395
round(coef(regfit, 26), 3)
## (Intercept)
                         В5
                                      B7
                                                  B11
                                                                P1
                                                                            P2
##
       291.901
                      0.265
                                  -2.286
                                               -0.042
                                                             0.232
                                                                         -0.019
##
            РЗ
                         P4
                                      P7
                                                   Р9
                                                               P11
                                                                           P12
        -3.671
                      0.073
                                  -0.477
                                                0.874
                                                            -1.280
                                                                         0.000
##
##
           P19
                        P20
                                     P23
                                                  P25
                                                               P28
                                                                           P29
         0.000
                     -0.012
                                  -0.125
                                               -0.006
                                                           -0.066
                                                                         1.654
##
##
           P30
                        P32
                                     P33
                                                  P34
                                                               P37
                                                                           P38
                                                            -0.756
        -0.175
##
                      0.249
                                  -0.327
                                                1.921
                                                                         -0.043
##
           P40
                        P44
                                     P21
##
        -0.490
                     -0.393
                                  -0.155
```

Subset Selection via Cross-Validation

將 train data 隨機分割成五份做 5-fold CV, 然後分別計算模型在不同解釋變數個數下對 Validation set 的 MSE,以此來決定模型解釋變數個數:

```
k = 5 ; n = dim(train_data)[1] ; p = dim(train_data)[2]-3
set.seed(11137)
fold_idx = sample(rep(1:k, length = n))
cv.errors = matrix(NA, k, p)
```

```
predict.regsubsets <- function(object, newdata, id, ...) {
  form <- as.formula(object$call[[2]])
  mat <- model.matrix(form, newdata)
  coefi <- coef(object, id = id)
  xvars <- names(coefi)
  mat[, xvars] %*% coefi
}</pre>
```

```
for (j in 1:k) {
    best.fit = regsubsets(Yield~., data=train_data[fold_idx!=j,],
                          nvmax = p,really.big = T,method = "backward")
    for (i in 1:p) {
       pred = predict.regsubsets(best.fit, train_data[fold_idx==j,],id=i)
       cv.errors[j,i] = mean((train_data$Yield[fold_idx==j]-pred)^2)
    }
## Reordering variables and trying again:
plot(cv.errors[1,], type="l", ylim = c(min(cv.errors), max(cv.errors)),
     ylab="MSE", xlab="num of variables")
for (i in 2:5) {
    points(1:p,cv.errors[i,],type="l",col=i)
}
legend("topright",legend = paste("fold",1:5),lty=1,col=1:5)
```


• fold 5 時計算出的 MSE 非常大,可能因為此時的 Validation set 被分割到了一些 outliers,故我們不考慮此情況,僅將剩餘四種 fold 所計算的 MSE 平均

```
cv.errors_mean = apply(cv.errors[-5,],2,mean) ; which.min(cv.errors_mean)
```

[1] 18

```
plot(cv.errors_mean,type="l", ylab="mean(MSE)", xlab="num of variables")
points(18,cv.errors_mean[18],pch=16,col=2,cex=1.5)
```


• 在選取 18 個解釋變數時,平均的 MSE 最小

將所有資料合併,選取 18 個解釋變數的模型估計係數如下:

Reordering variables and trying again:

round(coef(best.fit_full,18),3)

##	(Intercept)	В5	В7	P1	P2	P4
##	316.524	0.255	-3.217	0.329	0.002	0.106
##	P7	Р9	P11	P12	P19	P20
##	-0.351	0.903	-1.729	0.000	-0.003	-0.011
##	P23	P25	P29	P33	P34	P38
##	-0.019	-0.008	1.970	0.208	11.550	0.112
##	P40					
##	-0.056					

```
pred.cp = predict.regsubsets(best.fit_full,test_data,id=13)

MSE.cp = mean((test_data$Yield-pred.cp)^2)

pred.bic = predict.regsubsets(best.fit_full, test_data, id=4)

MSE.bic = mean((test_data$Yield-pred.bic)^2)

pred.adjr2 = predict.regsubsets(best.fit_full,test_data,id=26)

MSE.adjr2 = mean((test_data$Yield-pred.adjr2)^2)

pred.5cv = predict.regsubsets(best.fit_full,test_data,id=18)

MSE.5cv = mean((test_data$Yield-pred.5cv)^2)
```

Ridge Regression via Cross-Validation

利用 5-fold CV 計算 MSE 的平均,以選取 Ridge Regression 所使用的參數 λ

```
set.seed(1114)
x = as.matrix(train_data[,-1]); y = train_data$Yield
cv.ridge = cv.glmnet(x,y, alpha=0, nfolds = 5)
plot(cv.ridge)
```


mean(MSE) 最小時的 λ 為:

```
best.lam_ridge = cv.ridge$lambda.min
best.lam_ridge
```

[1] 2.946562

將全部資料合併用以配飾 Ridge Regression,且帶入前面所求得的 λ ,然而因為 Ridge Regression 並沒有辦法使得變數的係數真的為零,以達到 model selection 的目的,故以下僅列出 $|\hat{\beta}_i|>0.05$ 的那些係數視為重要的解釋變數:

##	(Intercept)	B1	В7	В8	Р3	P7
##	87.497	0.091	-0.640	0.065	-0.893	-0.130
##	Р9	P11	P13	P17	P21	P34
##	0.125	0.138	-0.164	-0.139	-0.126	2.284
##	P36	P37	P40	P41	P42	P43
##	-186.492	-0.257	-1.099	-1.089	-0.129	0.052
##	P44	P45				
##	0.168	0.067				

```
x_test = as.matrix(test_data[,-1])
pred.ridge = predict(full.ridge, newx = x_test,s=best.lam_ridge)
MSE.ridge = mean((test_data$Yield-pred.ridge)^2)
```

Lasso Regression via Cross-Validation

利用 5-fold CV 計算 MSE 的平均,以選取 Lasso Regression 所使用的參數 λ

```
set.seed(1114)
cv.lasso = cv.glmnet(x,y,alpha = 1, nfolds=5)
plot(cv.lasso)
```

53 54 53 49 44 41 37 33 29 20 13 8 4 4 3 2

mean(MSE) 最小時的 λ 為:

```
best.lam_lasso = cv.lasso$lambda.min
best.lam_lasso
```

[1] 0.2127656

##

0.859

-208.990

將全部資料合併用以配飾 Lasso Regression,且帶入前面所求得的 λ ,和 Ridge 不同的是,Lasso 可以使得變數的係數真的為零,以達到 model selection 的效果,故以下列出係數不為零的變數視為重要解釋變數:

```
full.lasso = glmnet(x,y,alpha = 1)
coef.lasso = predict(full.lasso, type="coefficients",
                     s=best.lam_lasso)[1:58,]
round(coef.lasso[coef.lasso!=0],3)
## (Intercept)
                         B6
                                     P6
                                                  P9
                                                             P17
                                                                         P32
##
        15.167
                     0.008
                                  0.004
                                              0.362
                                                          -0.283
                                                                       0.121
##
           P34
                        P36
                                    P37
```

-0.058

```
pred.lasso = predict(full.lasso, newx = x_test,s=best.lam_lasso)
MSE.lasso = mean((test_data$Yield-pred.lasso)^2)
```

Principal Components Regression

對 train data 做 PCR,並利用累績解釋比例超過 80% 來選取 component 個數

 \Rightarrow 選出 15 個 components 來做為模型的解釋變數,係數如下所示:

```
round(fit.pca$coefficients[,,1:15],2)
```

```
## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps
## B1 0.08 0.07 0.07 0.07 0.06 0.05 0.06 0.06
```

## B2	0.09	0.09	0.09	0.10	0.10	0.10	0.09	0.09	0.09
## B3	0.08	0.09	0.09	0.10	0.11	0.11	0.11	0.09	0.08
## B4	0.07	0.07	0.07	0.08	0.08	0.08	0.07	0.04	0.04
## B5	0.03	0.00	0.00	0.02	0.01	0.01	0.00	0.04	0.05
## B6	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09
## B7	0.00	0.01	0.01	-0.02	-0.02	-0.01	-0.01	0.02	-0.07
## B8	0.08	0.09	0.09	0.10	0.10	0.10	0.09	0.09	0.03
## B9	0.05	0.07	0.07	0.07	0.08	0.08	0.07	0.05	-0.05
## B1	0.05	0.04	0.05	0.05	0.05	0.04	0.03	0.00	-0.02
## B1	1 0.07	0.08	0.08	0.10	0.10	0.10	0.10	0.10	0.02
## B1	2 0.07	0.09	0.08	0.09	0.09	0.10	0.10	0.09	0.02
## P1	-0.03	-0.02	0.00	0.04	0.04	0.04	0.02	0.05	0.05
## P2	-0.04	0.00	0.00	0.00	0.01	0.01	0.02	0.04	0.01
## P3	-0.01	-0.02	-0.01	0.01	0.01	0.01	-0.01	-0.05	-0.04
## P4	-0.05	-0.06	-0.06	-0.03	-0.02	-0.02	-0.04	-0.05	-0.07
## P5	0.00	0.02	0.04	0.07	0.07	0.06	0.05	0.02	0.02
## P6	0.02	0.06	0.07	0.08	0.08	0.08	0.09	0.14	0.13
## P7	0.00	0.01	0.00	0.01	0.00	-0.02	-0.01	-0.01	-0.02
## P8	0.00	0.01	0.00	0.00	0.00	-0.03	-0.03	0.00	0.00
## P9	0.02	0.11	0.13	0.15	0.15	0.15	0.15	0.17	0.18
## P1	0.00	0.06	0.07	0.02	0.02	0.02	0.01	0.02	0.01
## P1	1 0.00	0.08	0.11	0.13	0.12	0.12	0.11	0.11	0.14
## P1	2 0.04	0.10	0.10	0.08	0.08	0.08	0.10	0.11	0.15
## P1	3 -0.01	-0.11	-0.13	-0.13	-0.13	-0.13	-0.13	-0.16	-0.19
## P1	4 0.02	-0.05	-0.05	0.01	0.01	0.01	0.02	0.01	0.03
## P1	5 0.03	-0.02	-0.02	0.05	0.05	0.05	0.06	0.07	0.11
## P1	6 -0.01	-0.07	-0.07	-0.01	-0.01	-0.01	-0.01	0.00	0.02
## P1	7 0.00	-0.09	-0.12	-0.15	-0.15	-0.15	-0.16	-0.19	-0.21
## P1	8 0.02	-0.07	-0.09	-0.11	-0.11	-0.11	-0.11	-0.08	-0.09
## P1	9 0.03	-0.05	-0.06	-0.07	-0.07	-0.07	-0.07	-0.03	-0.03
## P2	0 -0.01	-0.09	-0.10	-0.09	-0.10	-0.10	-0.10	-0.06	-0.06
## P2	1 0.01	-0.01	-0.02	-0.09	-0.09	-0.10	-0.11	-0.11	-0.11
## P2	2 0.00	0.02	0.01	0.03	0.03	0.03	0.03	0.12	0.04
## P2	3 -0.01	0.00	0.00	0.01	0.01	0.00	0.03	0.09	0.01
## P2	4 -0.04	-0.05	-0.04	-0.04	-0.04	-0.04	-0.03	-0.08	-0.06
## P2	5 0.01	-0.04	0.01	-0.01	-0.01	-0.01	0.00	0.00	-0.01

##	P26	0.01	-0.04	0.01	0.00	0.00	0.00	0.00	0.01	0.00
##	P27	0.01	-0.05	0.01	-0.01	-0.01	-0.01	-0.01	0.01	-0.01
##	P28	0.06	0.06	0.06	0.03	0.02	0.03	0.03	0.02	0.04
##	P29	0.02	-0.03	0.02	0.00	0.00	0.00	0.01	0.02	0.02
##	P30	0.00	0.02	0.07	0.07	0.07	0.07	0.07	0.08	0.09
##	P31	0.00	-0.05	0.00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.03
##	P32	0.07	0.07	0.06	0.05	0.06	0.06	0.06	0.09	0.18
##	P33	0.06	0.05	0.04	0.03	0.04	0.03	0.04	0.03	0.13
##	P34	-0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07	0.03
##	P35	-0.02	-0.03	-0.03	-0.03	-0.02	-0.05	-0.05	-0.06	0.00
##	P36	-0.06	-0.06	-0.05	-0.05	-0.06	-0.07	-0.07	-0.10	-0.15
##	P37	-0.01	-0.03	-0.02	-0.02	-0.02	0.01	0.00	-0.01	-0.02
##	P38	0.00	-0.01	-0.01	-0.01	-0.01	-0.03	-0.02	-0.01	0.05
##	P39	-0.01	0.00	0.00	-0.02	-0.02	-0.02	-0.01	-0.06	-0.04
##	P40	0.00	0.00	0.01	0.01	0.01	0.01	0.02	-0.13	-0.19
##	P41	0.01	0.01	0.02	0.02	0.02	0.01	0.03	-0.12	-0.18
##	P42	-0.03	-0.05	-0.05	-0.06	-0.06	-0.06	-0.08	-0.06	-0.12
##	P43	0.02	0.04	0.04	0.01	0.01	0.01	0.01	0.00	0.02
##	P44	0.02	0.06	0.06	0.05	0.06	0.06	0.06	0.03	0.07
##	P45	0.00	0.01	0.00	0.00	0.00	0.00	0.00	-0.05	0.00
##		10 comps	11 comps	12 comps	13 com	ps 14 o	comps 15	comps		
##	B1	0.05	0.07	0.06	0.	06	0.06	0.05		
##	B2	0.10	0.09	0.09	0.	09	0.10	0.08		
##	ВЗ	0.08	0.06	0.07	0.	07	0.08	0.07		
##	B4	0.03	0.04	0.05	0.	06	0.05	0.03		
##	B5	0.05	0.03	0.06	0.	06	0.05	0.02		
##	B6	0.10	0.07	0.08	0.	80	0.09	0.07		
##	B7	-0.07	-0.08	-0.10	-0.	10 -	-0.10	-0.24		
##	B8	0.02	0.02	0.03	0.	02	0.01	0.01		
##	В9	-0.05	-0.06	-0.05	-0.	06 -	-0.07	-0.04		
##	B10	-0.04	-0.01	-0.01	0.	00 -	-0.01	-0.02		
##	B11	0.02	-0.01	0.00	0.	00	0.00	-0.02		
##	B12	0.02	-0.01	-0.01	-0.	01 -	-0.01	0.00		
##	P1	0.05	0.07	0.09	0.	10	0.08	0.11		
##	P2	0.01	0.01	0.03	0.	02	0.00	0.01		
##	Р3	-0.04	-0.03	-0.05	-0.	05 -	-0.06	-0.01		

##	P4	-0.07	-0.03	-0.03	-0.04	-0.03	-0.04
##	P5	0.02	0.03	0.02	0.04	0.03	-0.02
##	P6	0.13	0.15	0.16	0.15	0.16	0.25
##	P7	-0.02	-0.02	-0.02	-0.03	-0.02	0.00
##	P8	0.01	0.03	0.04	0.04	0.05	0.05
##	P9	0.17	0.17	0.15	0.14	0.15	0.16
##	P10	0.02	0.02	0.02	0.02	0.02	0.03
##	P11	0.14	0.14	0.13	0.13	0.14	0.12
##	P12	0.15	0.15	0.14	0.15	0.13	0.11
##	P13	-0.19	-0.20	-0.20	-0.19	-0.18	-0.20
##	P14	0.03	0.03	0.02	0.02	0.02	0.02
##	P15	0.10	0.10	0.09	0.09	0.09	0.11
##	P16	0.02	0.01	0.00	0.00	-0.01	0.00
##	P17	-0.21	-0.21	-0.22	-0.21	-0.20	-0.23
##	P18	-0.09	-0.08	-0.08	-0.09	-0.10	-0.06
##	P19	-0.03	-0.01	-0.01	-0.03	-0.04	0.02
##	P20	-0.06	-0.06	-0.05	-0.07	-0.08	-0.04
##	P21	-0.11	-0.11	-0.11	-0.11	-0.11	-0.13
##	P22	0.04	0.04	0.00	0.01	0.01	0.03
##	P23	0.00	0.01	0.01	0.02	0.01	-0.05
##	P24	-0.08	-0.07	-0.04	-0.03	-0.04	-0.12
##	P25	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
##	P26	0.00	0.00	0.00	0.00	0.00	0.00
##	P27	-0.01	-0.01	-0.01	-0.01	-0.01	0.00
##	P28	0.03	0.03	0.04	0.03	0.03	0.02
##	P29	0.02	0.02	0.02	0.02	0.02	0.02
##	P30	0.09	0.08	0.08	0.08	0.09	0.08
##	P31	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
##	P32	0.18	0.20	0.20	0.22	0.22	0.24
##	P33	0.14	0.17	0.15	0.16	0.16	0.13
##	P34	0.02	0.00	0.04	0.06	0.07	0.18
##	P35	-0.01	-0.07	-0.08	-0.09	-0.09	-0.11
##	P36	-0.15	-0.20	-0.21	-0.23	-0.23	-0.27
##	P37	-0.02	-0.06	-0.08	-0.07	-0.08	-0.06
##	P38	0.04	-0.02	-0.03	-0.03	-0.03	-0.02
##	P39	-0.06	-0.03	-0.03	-0.05	-0.04	0.01

```
## P40
         -0.19
                 -0.17
                         -0.17
                                 -0.17
                                         -0.17
                                                  -0.11
## P41
        -0.18
                -0.16
                        -0.17
                                 -0.16
                                         -0.16
                                                  -0.12
## P42
        -0.12
               -0.15
                        -0.15
                                 -0.13
                                         -0.11
                                                  -0.05
## P43
        0.01
               -0.02
                        -0.04
                                -0.03
                                         -0.05
                                                  0.12
         0.07
## P44
                 0.07
                        0.08
                                 0.04
                                         0.06
                                                  0.05
## P45
          0.01
                 -0.05
                         -0.03
                                 -0.03
                                         -0.03
                                                  -0.03
pred.pcr = predict(fit.pca, x_test, ncomp = 15)
MSE.pcr = mean((test_data$Yield-pred.pcr)^2)
```

Performance upon test data

各模型對 test data 的預測表現 MSE 計算結果呈現如下

	Cp	BIC	R_a^2	5-fold CV	Ridge	Lasso	PCR
MSE	1.708	1.572	1.441	2.064	1.306	1.353	1.544

⇒ Ridge regression 在 test data 上的表現最好

Problem 2.

```
library(latex2exp)
library(boot)
data2 = read.csv("hw3_problem2.csv")
X = data2$x
n = dim(data2)[1]
compute_sigma.hat = function(X, idx) {
```

```
X = X[idx]
sd(X)
}
compute_sigma.tilde = function(X, idx) {
    X = X[idx]
    1.4826*median(abs(X-median(X)))
}
```

Compute estimated standard deviation for the whole data

$$\begin{split} \hat{\sigma} &= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2} \ = \ 3.745385 \\ \tilde{\sigma} &= \ 1.4826 \times med_{1 \leq i \leq n} \left\{ |X_i - X_{med}| \right\} \ = \ 2.585234 \end{split}$$

```
sigma.hat = compute_sigma.hat(X, 1:n)
sigma.tilde = compute_sigma.tilde(X,1:n)
c(sigma.hat,sigma.tilde)
```

[1] 3.745385 2.585234

And now apply bootstrap method (resample n observations with replacement from the raw data) 10000 times to compute $\hat{\sigma}_b^i$ and $\tilde{\sigma}_b^i$ for i=1,...,10000

```
set.seed(1108)
sigma.hat_boots = boot(X,compute_sigma.hat,R=10000)
sigma.tilde_boots = boot(X,compute_sigma.tilde,R=10000)
```

Construct the sampling distribution of $\hat{\sigma}$ and $\tilde{\sigma}$ by histogram

```
hist(sigma.hat_boots$t[,1], probability = T,
    main = TeX("Sampling distribution of $\\hat{\\sigma}$"),
    xlab = TeX("$\\hat{\\sigma}_b$"))
abline(v = sigma.hat, col = 2, lwd = 2)
abline(v = quantile(sigma.hat_boots$t[,1],c(0.025,0.975)), col=4, lty=2, lwd=2)
legend("topright", legend = c(TeX("$\\hat{\\sigma}$"),TeX("$\\hat{\\sigma}_b$ 95% CI")),
    lty=c(1,2),col=c(2,4),lwd=2)
box()
```

Sampling distribution of $\hat{\sigma}$


```
hist(sigma.tilde_boots$t[,1], probability = T,
    main = TeX("Sampling distribution of $\\tilde{\\sigma}$"),
    xlab = TeX("$\\tilde{\\sigma}$"))
abline(v = sigma.tilde, col=2, lwd=2)
abline(v = quantile(sigma.tilde_boots$t[,1],c(0.025,0.975)),col=4,lwd=2,lty=2)
legend("topright", legend = c(TeX("$\\tilde{\\sigma}$"),TeX("$\\tilde{\\sigma}_b$ 95% CI")),
    lty=c(1,2),col=c(2,4),lwd=2)
box()
```

Sampling distribution of $\tilde{\sigma}$

We can see that both $\hat{\sigma}$ and $\tilde{\sigma}$ are filled in the 95% bootstrap confidence intervals.

Compute the estimation of $var\left(\hat{\sigma}\right)$ and $var\left(\tilde{\sigma}\right)$

$$\hat{var}(\hat{\sigma}) = \frac{1}{B-1} \sum_{i=1}^{B} \left(\hat{\sigma}_b^i - \bar{\hat{\sigma}}_b \right)^2 = 0.13677879$$

$$\hat{var}\left(\tilde{\sigma}\right) \; = \; \frac{1}{B-1} \sum_{i=1}^{B} \left(\tilde{\sigma}_{b}^{i} \; - \; \bar{\tilde{\sigma}}_{b}\right)^{2} \; = \; 0.08307997$$

c(var(sigma.hat_boots\$t[,1]),var(sigma.tilde_boots\$t[,1]))

[1] 0.13677879 0.08307997