intro

Nach Sonnenschein kommt Regen

Wetterdaten mit rdwd downloaden und verarbeiten, seltene Hochwässer mit extremeStat schätzen

Berry Boessenkool, uni-potsdam.de, March 2017

berry-b@gmx.de

github.com/brry/rdwd cran.r-project.org/package=extremeStat

Nach Sonnenschein kommt Regen

Wetterdaten mit rdwd downloaden und verarbeiten, seltene Hochwässer mit extremeStat schätzen

Berry Boessenkool, uni-potsdam.de, March 2017

berry-b@gmx.de

github.com/brry/rdwd cran.r-project.org/package=extremeStat The German Weather Service (DWD) provides over 25'000 climate datasets

The German Weather Service (DWD) provides over 25'000 climate datasets

- ▶ Too much for manual inspection
- Somewhat difficult to search
- ► File format inconsistent (e.g. column widths)

The German Weather Service (DWD) provides over 25'000 climate datasets

- ▶ Too much for manual inspection
- Somewhat difficult to search
- ► File format inconsistent (e.g. column widths)

Screenshot of FTP server:

Index von ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/more_precip/recent/

1 In den übergeordneten Ordner wechseln

Name	Größe	Zuletzt veränder	t
BESCHREIBUNG_obsgermany_climate_daily_more_precip_recent_de.pdf	67 KB	25.04.2016 00:00:00)
DESCRIPTION_obsgermany_climate_daily_more_precip_recent_en.pdf	66 KB	25.04.2016 00:00:00)
RR_Tageswerte_Beschreibung_Stationen.txt	1094 KB	27.01.2017 09:45:00)
tageswerte_RR_00015_akt.zip	5 KB	27.01.2017 05:12:00)
tageswerte_RR_00019_akt.zip	6 KB	26.01.2017 00:13:00)
tageswerte_RR_00020_akt.zip	6 KB	26.01.2017 00:13:00)
tageswerte_RR_00021_akt.zip	6 KB	26.01.2017 00:13:00)
tageswerte_RR_00022_akt.zip	6 KB	26.01.2017 00:13:00)
tageswerte_RR_00023_akt.zip	6 KB	26.01.2017 13:17:00)
tageswerte_RR_00041_akt.zip	6 KB	26.01.2017 13:17:00)
tageswerte_RR_00044_akt.zip	6 KB	26.01.2017 13:17:00)
⅓ tageswerte RR 00053 akt.zip	6 KB	27.01.2017 06:33:00)

R saves the day

R package rdwd -> easy usage of the datasets

```
clim <- dataDWD(link)
## dataDWD -> dirDWD: creating directory 'C:/Users/boessenkool/rdwd/DWDdata'
## dataDWD -> fileDWD: creating 1 file: 'daily_kl_recent_tageswerte_KKL_03987_akt.zip'
```

dataDWD uses readDWD to unzip file(s) + read / convert data

Data structure

```
str(clim)
## 'data frame': 550 obs. of 18 variables:
   $ STATIONS ID
                           $ MESS_DATUM
                            : POSIXct, format: "2015-09-09" "2015-09-10" ...
   $ QUALITAETS NIVEAU
                            : int 3 3 3 3 3 3 3 3 3 3 ...
   $ LUFTTEMPERATUR
                            : num 12.5 13 13.5 15.8 18.2 16.5 14.8 16.4 17.8 14.8 ...
                                 11.1 11.7 14.3 14.7 15.9 16.5 13.2 14.7 16.5 13.2 ...
   $ DAMPFDRUCK
                            : num
   $ BEDECKUNGSGRAD
                            : num
                                 4.1 5 6.2 4.5 6.7 5.3 3.8 6 5.8 3.5 ...
   $ LUFTDRUCK STATIONSHOEHE : num
                                 1013 1013 1009 1006 1000 ...
   $ REL FEUCHTE
                                 77.7 81 92.2 83.8 76.8 ...
                            : num
                                  3 3.6 4.1 3.4 3.8 4.4 4.5 4.2 5.1 4.4 ...
   $ WINDGESCHWINDIGKEIT
                           : num
   $ LUFTTEMPERATUR MAXIMUM : num 18.7 19.9 17.3 22.7 24.1 20.2 19.4 23.7 24.1 19.9 ...
  $ LUFTTEMPERATUR_MINIMUM
                           : num 7.1 8.1 10.5 11.8 14.1 12.4 10.6 10.8 12.9 10.1 ...
  $ LUFTTEMP_AM_ERDB_MINIMUM: num 4.5 5.2 8.8 8.7 13.5 10.9 8.4 8.1 11.5 7.9 ...
  $ WINDSPITZE MAXIMUM
                            : num 9.2 19.5 10.4 9.5 8.4 11.7 14.9 12.2 12.7 11.9 ...
  $ NIEDERSCHLAGSHOEHE
                            : num 0 1.3 0.4 0.1 0 4.7 0 1.7 2.9 0 ...
## $ NIEDERSCHLAGSHOEHE_IND : int 6 6 6 6 0 6 6 6 6 0 ...
  $ SONNENSCHEINDAUER
                            : num 6.82 5.7 1.55 6.12 5.32 ...
                            : int. 0 0 0 0 0 0 0 0 0 0 ...
## $ SCHNEEHOEHE
## $ eor
                            : Factor w/ 1 level "eor": 1 1 1 1 1 1 1 1 1 ...
```

Data can be plotted with regular R code

Data can be plotted with regular R code

```
plot(clim[,c(2,4)], type="l", xaxt="n", las=1)
berryFunctions::monthAxis(ym=TRUE) ; abline(h=0)
```


Interactive map (local)

vignette("mapDWD", package="rdwd")

Interactive map (CRAN)

Extreme rainfall over temperature (github.com/brry/prectemp)

Extreme rainfall over temperature (github.com/brry/prectemp)

Return periods

Return periods

```
library(extremeStat) ; data(annMax)
dlf <- distLextreme(annMax, quiet=TRUE)</pre>
```

Return periods

```
library(extremeStat) ; data(annMax)
dlf <- distLextreme(annMax, quiet=TRUE)
plotLextreme(dlf, log=TRUE, nbest=17)</pre>
```


Return periods (RP) - Return Level (RL)

$$RP = \frac{1}{P_{exceedance}} = \frac{1}{1 - P_{nonexceedance}}$$
 $e.g. 50 = \frac{1}{0.02} = \frac{1}{1 - 0.98}$ $P_{nonexceedance} = 1 - \frac{1}{RP}$ $e.g. 0.98 = 1 - \frac{1}{50}$

 $RL = quantile_function(probs = P_{nonexceedance}, parameter = fitted_par)$

distLextreme(annMax, RPs=c(10,20,50,100))\$returnlev

Three methods for extreme value analysis

- ▶ Empirical quantiles (order observations, take $(p \cdot n)^{th}$ value)
- ▶ BM: Block Maxima (e.g. annual maxima, fit GEV, use qGEV)
- ▶ POT: Peak Over Threshold (fit GPD to values above threshold)

Empirical quantiles are underestimated in small samples

Don't use GPD with Maximum Likelihood Estimation for fitting

Choose threshold wisely

High quantile estimate needed?
(e.g. 99.9%)

no

Do whatever you want

▶ DWD has tons of observational (and derived) datasets

- ▶ DWD has tons of observational (and derived) datasets
- Usage of the data is easy with rdwd

- ▶ DWD has tons of observational (and derived) datasets
- Usage of the data is easy with rdwd
- Extreme quantile estimation is hard for small samples

- ▶ DWD has tons of observational (and derived) datasets
- Usage of the data is easy with rdwd
- Extreme quantile estimation is hard for small samples
- extremeStat does the nasty part for you

- ▶ DWD has tons of observational (and derived) datasets
- Usage of the data is easy with rdwd
- Extreme quantile estimation is hard for small samples
- extremeStat does the nasty part for you
- github.com/brry/rdwd

- ▶ DWD has tons of observational (and derived) datasets
- Usage of the data is easy with rdwd
- Extreme quantile estimation is hard for small samples
- extremeStat does the nasty part for you
- ► github.com/brry/rdwd
- github.com/brry/extremeStat

Long term climate graph (Potsdam 1893:2015)

Long term climate graph (Potsdam 1893:2015)

Flashflood event rainfall analysis (Taskforce report)

Flashflood event rainfall analysis (Taskforce report)

