Minimum Spanning Tree

A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G

The minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight

Prim's algorithm can be used

- Greedy algorithm
- Selects an arbitrary starting vertex
- Chooses new vertex guaranteed to be in MST
- O(n²)
- Prim's algorithm is iterative

Prim's Minimum Spanning Tree Algorithm

```
PRIM MST(V, E,w, r) { // V: vertexes, E: edges; w: weights, r: initial vertex
VT := \{ r \};
d[r] := 0;
for all v \in (V - VT)
  if edge (r, v) exists then d[v] := w(r, v);
  else d[v] := \infty;
while VT \neq V
     find a vertex u such that d[u] := min\{d[v] | v \in (V - VT)\};
     VT := VT \cup \{u\};
     for all v \in (V - VT)
       d[v] := \min\{d[v], w(u, v)\};
```

Prim's Minimum Spanning Tree Algorithm

						f
d[]	1	0	5	1	∞	∞
	۲	,	2	~	~	2
b	1	0	5	1	∞	3 8 8 8 5 0
с	3	5	0	2	1	∞
d	∞	1	2	0	4	∞
е	∞	∞	1	4	0	5
f	2	∞	∞	∞	5	0
	_					_

Parallel Formulation of Prim's Algorithm

Difficult to perform different iterations of the **while** loop in parallel because d[v] may change each time

Can parallelize each iteration though

- Partition vertices into p subsets V_i , i=0,...,p-1
- Each process P_i computes $d_i[u] = min\{d_i[v] \mid v \in (V-V_T) \cap V_i\}$
- Global minimum is obtained using all-to-one reduction
- \circ New vertex is added to V_T and broadcast to all processes
- New values of d[v] are computed for local vertex

Prim's Algorithm: Parallel Formulation

The partitioning of the distance array d and the adjacency matrix A among p processes. $|\frac{n}{p}|$

Prim's Algorithm: Parallel Formulation

The cost to select the minimum entry and update the d vector is O(n/p).

The cost of a broadcast is O(log p).

So, the parallel time per iteration is O(n/p + log p).

The total parallel time (for n vertexes) is given by $O(n^2/p + n \log p)$.

The corresponding isoefficiency is $O(p^2log^2p)$.