Определение ширины запрещенной зоны полупроводников оптическим методом по краю собственного поглощения

Шмаков Владимир – $\Phi\Phi$ КЭ, гр. Б04-103 Абрамов Александр – $\Phi\Phi$ КЭ, гр. Б04-104

14 ноября 2024 г.

Цель работы

Определение ширины запрещенной зоны полупроводников

Теоретические сведения

 \prod воздействии на полупроводник излучения с энергией кванта $h\nu$, превышающей ширину запрещённой зоны E_g в зоне проводимости, и соотвественно в валентной зоне возникают неравновесные электроны и дырки. Их появление связано с переходами электронов из валентной зоны проводимости. В результате увеличивается проводимость кристалла. Это явление называется собственной фотопроводимостью.

В непрямозонных полупроводниках типа германия и кремния минимум зоны проводимости и максимум валентной зоны расположены в различных точках зоны Бриллюэна. В этом случае оптический переход электрона из вершины валентной зоны в минимум зоны проводимости возможен лишь при участии третьей частицы — фонона. В соответствии с законом сохранения импульса квазиимпульс такого фонона $q_{\Phi} \approx \hbar k_{\rm B}$, а энергия $\hbar \omega$ должна удовлетворять закону сохранения энергии:

$$h\nu = E_g \pm \hbar\omega_q + \hbar^2 (k_n - k_c)^2 / 2m_n + \hbar^2 k_p^2 / 2m_p \tag{1}$$

где k_n и k_p — начальные волновые числа электрона и дырки, а k_c — конечное волновое число электрона.

Таким образом, край основной полосы поглощения в полупроводниках типа кремния и германия определяется непрямыми оптическими переходами, сопровождающимися поглощением и испусканием фононов. При этом для разрешённых переходов, которые доминируют в полупроводниках такого типа, коэффициент поглощения:

$$K = C \left[\frac{(h\nu - E_g + \hbar\omega_q)^2}{\exp\frac{\hbar\omega_q}{kT} - 1} + \frac{(h\nu - E_g - \hbar\omega_q)^2}{1 - \exp\frac{\hbar\omega_q}{kT}} \right]$$
(2)

При больших энергиях квантов $h\nu > (E_g + \hbar\omega_q)$ начинают преобладать переходы с эмиссией фононов и зависимость $K^{1/2}$ от $h\nu$ должна аппроксимироваться прямой, пересекающей ось энергии в точке $h\nu_1 = E_g + \hbar\omega_q$.

При рассмотрении случая сильного поглощения излечения в образце (оптически толстый образец), то есть при d/K << 1, где d – толщина образца, скорость генерации электроннодырочных пар экспоненциально уменьшается от поверхности вглубь образца:

$$g(x) \approx K(1 - R)N_0 \exp{-Kx} \tag{3}$$

где R – коэффициент отражения света, а N_0 – поток квантов на единицу поверхности.

Методика

Оборудование

- 1. осветитель
- 2. образец
- 3. монохроматор
- 4. усилитель
- 5. фотоприёмник

Экспериментальная установка

Рис. 1: Схема экспериментальной установки. 1 – осветитель, 2 – блок питания осветителя, 3 – линзы, 4 – механический модулятор излучения, 5 – монохроматор, 6 – блок питания образца, 7 – схема включения образца, 8 – усилитель

Обработка экспериментальных данных

GaAs

Рис. 2: Экспериментальные данные для GaAs

Экспериментальные данные изображены на рисунке 2. Для определение ширины запрещенной зоны построим зависимость логарифма обратного показателя пропускания.

Рис. 3: зависимость логарифма обратного показателя пропускания от длины волны Как видно на рисунке 3, ширина запрещенной зоны GaAs оказалась равной 1416 мэВ.

Ge

Аналогичный график построим для германия (смотрите рисунок 4).

Рис. 4: зависимость логарифма обратного показателя пропускания от длины волны

Как видно на рисунке 4, ширина запрещенной зоны германия порядка 680 мэВ.

Вывод

Удалось определить ширину запрещенной зоны для GaAs и Ge. Экспериментально полученные значения, в пределах погрешности, сошлись с табличными.