Cyclistic Case Study Feb21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for February 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
            1.2.1
                       ✓ stringr 1.4.1
          2.1.3
                       ✓ forcats 0.5.2
## ✓ readr
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Feb21 <- read_csv("C:/Users/theby/Documents/202102-divvy-tripdata.csv")
```

```
## Rows: 49622 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Feb21)

```
colnames (Feb21)
   [1] "ride id"
                              "rideable_type"
                                                    "started at"
   [4] "ended at"
                              "start station name" "start station id"
   [7] "end_station_name"
                                                    "start_lat"
                              "end_station_id"
## [10] "start_lng"
                              "end_lat"
                                                    "end_lng"
## [13] "member_casual"
nrow(Feb21)
## [1] 49622
dim(Feb21)
## [1] 49622
                13
```

```
head(Feb21)
```

```
## # A tibble: 6 × 13
##
     ride id
                     ridea…¹ started at
                                                   ended at
                                                                        start...2 start...3
##
                     <chr>
                             <dttm>
                                                   <dttm>
                                                                                 <chr>
## 1 89E7AA6C29227... classi... 2021-02-12 16:14:56 2021-02-12 16:21:43 Glenwo... 525
## 2 0FEFDE2603568... classi... 2021-02-14 17:52:38 2021-02-14 18:12:09 Glenwo... 525
## 3 E6159D746B2DB... electr... 2021-02-09 19:10:18 2021-02-09 19:19:10 Clark ... KA1503...
## 4 B32D3199F1C2E... classi... 2021-02-02 17:49:41 2021-02-02 17:54:06 Wood S... 637
## 5 83E463F23575F... electr... 2021-02-23 15:07:23 2021-02-23 15:22:37 State ... 13216
## 6 BDAA7E3494E8D... electr... 2021-02-24 15:43:33 2021-02-24 15:49:05 Fairba... 18003
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
      start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       2start_station_name, 3start_station_id
```

```
tail(Feb21)
```

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                  ended at
                                                                        start...2 start...3
##
                     <chr>
                            <dttm>
                                                   <dttm>
## 1 F1E4C456F8F88... electr... 2021-02-12 12:47:42 2021-02-12 13:23:32 Burnha... 15545
## 2 7ED482EE6C9F5... classi... 2021-02-20 15:25:32 2021-02-20 15:59:45 Wester... TA1307...
## 3 203DF22F090C1... classi... 2021-02-09 08:54:38 2021-02-09 09:08:19 Frankl... 13017
## 4 940161523673F... docked.. 2021-02-27 14:46:06 2021-02-27 15:00:49 Frankl... 13017
## 5 C5538FFA492A7... classi... 2021-02-09 11:44:17 2021-02-09 11:46:13 Frankl... 13017
## 6 EB4CA525B953E... electr... 2021-02-04 10:26:44 2021-02-04 10:31:21 Frankl... 13017
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

```
summary(Feb21)
```

```
##
      ride id
                      rideable_type
                                           started at
                      Length: 49622
                                         Min. :2021-02-01 00:55:44.00
##
   Length: 49622
                      Class :character
                                         1st Qu.:2021-02-09 08:20:56.25
##
   Class :character
##
   Mode :character Mode :character
                                         Median :2021-02-22 13:17:53.00
##
                                         Mean :2021-02-18 01:16:52.85
##
                                         3rd Qu.:2021-02-26 16:02:13.50
##
                                         Max. :2021-02-28 23:59:41.00
##
##
      ended at
                                    start station name start station id
##
         :2021-02-01 01:22:48.00
                                    Length:49622
                                                       Length: 49622
   1st Ou.:2021-02-09 08:36:02.50
                                                       Class :character
##
                                    Class :character
##
   Median :2021-02-22 13:39:20.50
                                    Mode :character Mode :character
         :2021-02-18 01:41:18.23
##
   3rd Qu.:2021-02-26 16:19:32.75
##
   Max. :2021-03-05 15:11:45.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.65
                                                        Min. :-87.77
##
   Length: 49622
                      Length: 49622
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                        Mean :-87.64
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.06 Max. :-87.53
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.54
                   Min. :-87.77
                                    Length: 49622
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
                   Median :-87.64
##
   Mean :41.90
                   Mean :-87.64
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.07
                   Max. :-87.53
##
   NA's
          :214
                   NA's
                         :214
```

str(Feb21)

```
## spc tbl [49,622 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:49622] "89E7AA6C29227EFF" "0FEFDE2603568365" "E6159D746B2DBB91" "B32D3199F1C2E75
## $ ride id
R"
## $ rideable_type
                        : chr [1:49622] "classic bike" "classic bike" "electric bike" "classic bike" ...
                        : POSIXct[1:49622], format: "2021-02-12 16:14:56" "2021-02-14 17:52:38" ...
## $ started at
                        : POSIXct[1:49622], format: "2021-02-12 16:21:43" "2021-02-14 18:12:09" ...
## $ ended_at
## $ start_station_name: chr [1:49622] "Glenwood Ave & Touhy Ave" "Glenwood Ave & Touhy Ave" "Clark St & Lake St
" "Wood St & Chicago Ave" ...
    $ start_station_id : chr [1:49622] "525" "525" "KA1503000012" "637" ...
   $ end station name : chr [1:49622] "Sheridan Rd & Columbia Ave" "Bosworth Ave & Howard St" "State St & Rando
lph St" "Honore St & Division St" ...
   $ end station_id : chr [1:49622] "660" "16806" "TA1305000029" "TA1305000034" ...
##
   $ start_lat
                       : num [1:49622] 42 42 41.9 41.9 41.8 ...
##
                       : num [1:49622] -87.7 -87.7 -87.6 -87.7 -87.6 ...
    $ start_lng
                        : num [1:49622] 42 42 41.9 41.9 41.8 ...
##
    $ end lat
                        : num [1:49622] -87.7 -87.7 -87.6 -87.7 -87.6 ...
##
    $ end lng
                       : chr [1:49622] "member" "casual" "member" "member" ...
##
    $ member casual
    - attr(*, "spec")=
##
    .. cols(
##
     .. ride_id = col_character(),
##
          rideable type = col character(),
     . .
          started_at = col_datetime(format = ""),
##
     . .
          ended_at = col_datetime(format = ""),
##
          start_station_name = col_character(),
##
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Feb21$date <- as.Date(Feb21$started_at)
Feb21$month <- format(as.Date(Feb21$date), "%m")
Feb21$day <- format(as.Date(Feb21$date), "%d")
Feb21$year <- format(as.Date(Feb21$date), "%Y")
Feb21$day_of_week <- format(as.Date(Feb21$date), "%A")
Feb21$ride_length <- difftime(Feb21$ended_at,Feb21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Feb21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Feb21$ride_length <- as.numeric(as.character(Feb21$ride_length))
is.numeric(Feb21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Feb21 <- na.omit(Feb21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Feb21 <- subset(Feb21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
Feb21 <- subset (Feb21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Feb21$ride_length)
```

```
## [1] 1276.021
```

median(Feb21\$ride_length)

```
## [1] 664
```

max(Feb21\$ride_length)

```
## [1] 1807754
```

min(Feb21\$ride_length)

[1] 2

Run a statistical summary of the ride length.

```
summary(Feb21$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 397 664 1276 1176 1807754
```

Compare the members and casual users

```
aggregate(Feb21$ride_length ~ Feb21$member_casual, FUN = mean)
```

```
aggregate(Feb21$ride_length ~ Feb21$member_casual, FUN = max)
```

```
## Feb21$member_casual Feb21$ride_length
## 1 casual 1807754
## 2 member 88461
```

```
aggregate(Feb21$ride_length ~ Feb21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Feb21$ride_length ~ Feb21$member_casual + Feb21$day_of_week, FUN = mean)
```

```
##
      Feb21$member_casual Feb21$day_of_week Feb21$ride_length
## 1
                                      Friday
                                                      3720.8095
                   casual
## 2
                   member
                                      Friday
                                                       819.2540
## 3
                   casual
                                      Monday
                                                      1880.2357
                                      Monday
## 4
                   member
                                                      901.0550
## 5
                                    Saturday
                                                      3673.0503
                   casual
## 6
                                    Saturday
                                                       982.0812
                   member
## 7
                   casual
                                      Sunday
                                                      2157.2717
## 8
                   member
                                      Sunday
                                                       994.5507
## 9
                                                      1332.4501
                   casual
                                    Thursday
## 10
                   member
                                    Thursday
                                                       801.9600
## 11
                                                      2605.2287
                                     Tuesday
                   casual
## 12
                   member
                                     Tuesday
                                                       898.1700
## 13
                    casual
                                   Wednesday
                                                      1704.4654
## 14
                                                       854.3922
                   member
                                   Wednesday
```

Sort the days of the week in order.

```
Feb21$day_of_week <- ordered(Feb21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Feb21$ride_length ~ Feb21$member_casual + Feb21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Feb21$member casual Feb21$day of week Feb21$ride length
## 1
                  casual
                                     Sunday
                                                     2157.2717
## 2
                                     Sunday
                  member
                                                      994.5507
## 3
                  casual
                                     Monday
                                                     1880.2357
## 4
                  member
                                     Monday
                                                      901.0550
## 5
                                                     2605.2287
                  casual
                                    Tuesday
## 6
                                                      898.1700
                  member
                                    Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                      <int>
                                      <int>
## 1 casual
                                                        2157.
                          1
                                       1211
## 2 casual
                          2
                                        454
                                                        1880.
## 3 casual
                          3
                                         835
                                                        2605.
## 4 casual
                          4
                                        926
                                                        1704.
## 5 casual
                          5
                                        842
                                                        1332.
## 6 casual
                                        1223
                                                        3721.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Feb21$member_casual)
```

```
##
## casual member
## 8613 34373
```

```
table(Feb21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 34627 1271 7088
```

```
table(Feb21$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 4739 3945 5853 6717 6067 6904 8761
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Feb21$day_of_week,Feb21$member_casual))
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                       casual 1211
## 2
          Monday
                        casual 454
## 3
         Tuesday
                        casual 835
## 4
      Wednesday
                        casual 926
## 5
       Thursday
                        casual 842
## 6
          Friday
                        casual 1223
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Feb21$rideable_type,Feb21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

Plot for bike user vs bike type.

Riders and Ride Types 20000 20000 10000 classic_bike docked_bike Riders member_casual member casual member

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Feb21, "Feb21.csv")