TEMA 3
El tipo árbol

PROGRAMACIÓN Y ESTRUCTURAS DE DATOS

Tipo árbol

- 1. Definiciones generales
- 2. Árboles binarios
- 3. Árboles de búsqueda
 - 3.1. Árboles binarios de búsqueda
 - 3.2. Árboles AVL
 - 3.3. Árboles 2-3
 - 3.4. Árboles 2-3-4

2

Tema 3. El tipo áxbol

1. Definiciones generales (I)

• La estructura de datos árbol aparece porque los elementos que lo constituyen mantienen una estructura jerárquica, obtenida a partir de estructuras lineales, al eliminar el requisito de que cada elemento tiene como máximo un sucesor:

Los elementos de los árboles se llaman nodos

3

Tema 3. El tipo árbol

1. Definiciones generales (II)

- Definición inductiva de árbol:
- un único nodo es un árbol (raíz)
- dados n árboles a_1 , ..., a_n se puede construir uno nuevo como resultado de enraizar un nuevo nodo con los n árboles. Los árboles a_i pasan a ser **subárboles** del nuevo árbol y el nuevo nodo se convierte en raíz del nuevo árbol
- Árbol vacío o nulo ⇒ 0 nodos

1. Definiciones generales (V)

• Camino:

- es una secuencia a_1 , ..., a_s de árboles tal que, $\forall i \in \{1...s-1\}$, a_{i+1} es subárbol de a_i
- el número de subárboles de la secuencia menos uno, se denomina longitud del camino

(Consideraremos que existe un camino de longitud 0 de todo subárbol a sí mismo)

Tema 3. El tipo d

1. Definiciones generales (VI)

a₁ es ascendiente de a₂ (y a₂ es
 descendiente de a₁) si existe un camino
 a₁, ..., a₂

(Según la definición de camino, todo subárbol es ascendiente/descendiente de sí mismo)

 Los ascendientes (descendientes) de un árbol, excluido el propio árbol, se denominan ascendientes (descendientes) propios

Tema 3. El tipo árbol

1. Definiciones generales (VII)

- Padre es el primer ascendiente propio, si existe, de un árbol
- Hijos son los primeros descendientes propios, si existen, de un árbol
- Hermanos son subárboles con el mismo padre
- Profundidad de un subárbol es la longitud del único camino desde la raíz a dicho subárbol

9

Tema 3. El tipo árbol

1. Definiciones generales (VIII)

- Nivel de un nodo:
 - el nivel de un árbol vacío es 0
 - el nivel de la raíz es 1
 - si un nodo está en el nivel i, sus hijos están en el nivel i + 1
- Altura (profundidad) de un árbol:
 - es el máximo nivel de los nodos de un árbol

Altura del árbol = 5

1. Definiciones generales (IX)

 Árbol lleno es un árbol en el que todos sus subárboles tienen n hijos (siendo n el grado del árbol) y todas sus hojas tienen la misma profundidad

 Árbol completo es un árbol cuyos nodos corresponden a los nodos numerados (la numeración se realiza desde la raíz hacia las hojas y, en cada nivel, de izquierda a derecha) de 1 a n en el árbol lleno del mismo grado. Todo árbol lleno es completo

11

Tema 3. El tipo árbol

2. Árboles binarios

- Definición de árbol binario y propiedades
- Especificación algebraica
- Recorridos
- Enriquecimiento de la especificación
- Representación secuencial y enlazada
- Otras operaciones interesantes
- Ejercicios

2. Árboles binarios

DEFINICIÓN

- Un árbol binario es un conjunto de elementos del mismo tipo tal que:
 - o bien es el conjunto vacío, en cuyo caso se denomina árbol vacío o nulo
 - o bien no es vacío, y por tanto existe un elemento distinguido llamado raíz, y el resto de los elementos se distribuyen en dos subconjuntos disjuntos, cada uno de los cuales es un árbol binario llamados, respectivamente subárbol izquierdo y subárbol derecho del árbol original

13

Tema 3. El tipo árbol

2. Árboles binarios

PROPIEDADES (I)

- Propiedades:
 - El máximo número de nodos en un nivel i de un árbol binario es $N(i) = 2^{i-1}$, $i \ge 1$

Demostración

Base inducción

nivel 1 (raíz): $N(1) = 2^{1-1} = 2^0 = 1$ (se cumple)

Paso inductivo

Se desea probar $N(i-1) \Rightarrow N(i)$, es decir, a partir de la suposición "temporal" de que N es cierta para i-1 debemos probar que es cierta para i

nivel
$$i - 1$$
: $N(i-1) = 2^{(i-1)-1} = 2^{i-2}$ (suponemos cierto)
nivel $i : N(i) = N(i-1) * 2 = 2^{i-2} * 2 = 2^{i-2+1} = 2^{i-1}$

2. Árboles binarios

PROPIEDADES (II)

- El máximo número de nodos en un árbol binario de altura k es N(k) = 2 k - 1, k ≥ 1

Demostración

nivel 1:
$$2^{1-1} = 1$$
 nodo
nivel 2: $2^{2-1} = 2$ nodos
nivel 3: $2^{3-1} = 4$ nodos

Altura k =
$$2^{1-1} + 2^{2-1} + ... + 2^{k-1} =$$

 $S.P.G. (r = 2, a_1 = 2^0, n = k)$

$$= 1 (2^{k} - 1) / 2 - 1 = 2^{k} - 1$$

15

Tema 3. El tipo árbol

2. Árboles binarios

ESPECIFICACIÓN ALGEBRAICA (I)

MODULO ARBOLES_BINARIOS USA BOOL, NATURAL

PARAMETRO TIPO item

OPERACIONES

error_item() \rightarrow item

FPARAMETRO

TIPO arbin

OPERACIONES

crea_arbin() → arbin

enraizar(arbin, item, arbin) → arbin

raiz(arbin) → item

esvacio(arbin) → bool

hijoiz, hijode(arbin) → arbin

altura(arbin) → natural

VAR i, d: arbin; x: item;

ECUACIONES

raiz(crea_arbin()) = error_item()

raiz(enraizar(i, x, d)) = x

 $\label{eq:hijoiz} \mbox{hijoiz(crea_arbin()) = crea_arbin()}$

hijoiz(enraizar(i, x, d)) = i

hijode(crea_arbin()) = crea_arbin()

hijode(enraizar(i, x, d)) = d

esvacio(crea_arbin()) = CIERTO

esvacio(enraizar(i, x, d)) = FALSO

altura(crea_arbin()) = 0

altura(enraizar(i, x, d)) =

1 + max (altura(i), altura(d))

FMODULO

2. Árboles binarios

RECORRIDOS

- Recorrer un árbol es visitar cada nodo del árbol una sola vez
- Recorrido de un árbol es la lista de etiquetas del árbol ordenadas según se visitan los nodos
- Se distinguen dos categorías básicas de recorrido:
 - recorridos en profundidad
 - recorridos en anchura o por niveles

Tema 3. El tipo áxbol

2. Árboles binarios

RECORRIDOS EN PROFUNDIDAD (I)

- Si representamos por I: ir hacia la izquierda, R: visitar o escribir el item, D: ir hacia la derecha, existen 6 posibles formas de recorrido en profundidad: RID, IRD, IDR, RDI, DRI y DIR. Si sólo queremos hacer los recorridos de izquierda a derecha quedan 3 formas de recorrido:
 - 1. RID o preorden (orden previo)
 - 2. IRD o inorden (orden simétrico)
 - **3. IDR** o **postorden** (orden posterior)

(El recorrido en postorden es el inverso especular del recorrido preorden, es decir, se recorre el árbol en preorden, visitando primero el subárbol derecho antes que el izquierdo, y se considera la lista resultante como el inverso de la solución)

2. Árboles binarios

RECORRIDOS EN PROFUNDIDAD (III)

```
algoritmo inorden ( a : arbin )

si ( no esvacio( a ) ) entonces
    inorden ( hijoiz ( a ) )
    escribe ( raiz ( a ) )
    inorden ( hijode ( a ) )

fsi
falgoritmo
```

```
algoritmo postorden ( a : arbin )

si ( no esvacio( a ) ) entonces
    postorden ( hijoiz ( a ) )
    postorden ( hijode ( a ) )
    escribe ( raiz ( a ) )

fsi
falgoritmo
```

2

Tema 3. El tipo árbol

2. Árboles binarios

RECORRIDO EN ANCHURA (NIVELES)

Consiste en visitar los nodos desde la raíz hacia las hojas, y de izquierda a derecha dentro de cada nivel

```
algoritmo niveles ( a : arbin )

var c: cola de arbin; aux: arbin; fvar
encolar(c, a)
mientras no esvacia(c) hacer
aux := cabeza(c)
escribe (raiz(aux))
desencolar(c)
si no esvacio(hijoiz(aux)) entonces encolar(c, hijoiz(aux))
si no esvacio(hijode(aux)) entonces encolar(c, hijode(aux))
fmientras
falgoritmo
```


2. Árboles binarios

ENRIQUECIMIENTO DE LA ESPECIFICACIÓN

OPERACIONES

```
preorden, inorden, postorden( arbin ) → lista
nodos ( arbin ) → natural
eshoja ( arbin ) → bool

VAR i, d: arbin; x: item;

ECUACIONES

preorden( crea_arbin()) = crea_lista()
preorden( enraizar( i, x, d )) = concatenar( insiz( x, preorden( i ) ), preorden( d ))
inorden( crea_arbin()) = crea_lista()
inorden( enraizar( i, x, d )) = concatenar( insde( inorden( i ), x ), inorden( d ))
postorden( enraizar( i, x, d )) = crea_lista()
postorden( enraizar( i, x, d )) = insde( concatenar( postorden( i ), postorden( d )), x )
nodos( crea_arbin()) = 0
nodos( enraizar( i, x, d )) = 1 + nodos( i ) + nodos( d )
eshoja( crea_arbin()) = FALSO
```

27

Tema 3. El tipo árbol

2. Árboles binarios

REPRESENTACIÓN SECUENCIAL Y ENLAZADA (I)

eshoja(enraizar(i, x, d)) = esvacio(i) Λ esvacio(d)

Representación secuencial

Se numeran secuencialmente los nodos del árbol hipotéticamente lleno desde la raíz a las hojas por niveles (comenzando por el nivel 1, después el nivel 2, etc.) y de izquierda a derecha en cada nivel. La representación secuencial se puede hacer usando un vector unidimensional:

- la raíz se guarda en la dirección 1
- si un nodo n está en la dirección i, entonces su hijo izquierdo estará en la dirección 2i y su hijo derecho en la dirección 2i + 1

Tema 3. El tipo árbol 2. Árboles binarios REPRESENTACIÓN SECUENCIAL Y ENLAZADA (III) Representación enlazada typedef int TItem; class TNodo; class TArbin{ public: TArbin (); //CONSTRUCTOR TArbin (const TArbin & origen); //CONSTRUCTOR DE COPIA //DESTRUCTOR ~TArbin (); TArbin & operator = (const TArbin & a); //ASIGNACIÓN void Enraizar (TArbin &iz, const TItem c, TArbin &de); TItem & Raiz (); TArbin HijoIz (); TArbin HijoDe (); bool EsVacio (); int Altura (); private: void Copiar (const TArbin & origen); TNodo *farb; TItem item_error; 30

```
Tema 3. El tipo á
2. Árboles binarios
REPRESENTACIÓN SECUENCIAL Y ENLAZADA (IV)
                                                   class TNodo{
                                                                        friend class TArbin;
                                                                        private:
                                                                                      TItem fitem;
                                                                                      TArbin fiz, fde;
                                                 };
                                                   TArbin::TArbin ( ) {farb = NULL; }
                                                   TArbin::TArbin (const TArbin & origen){
                                                                        Copiar (origen);
                                                   void
                                                   TArbin::Copiar (const TArbin & origen){
    if (origen.farb != NULL){
        TNodo *aux = new TNodo();
        County TNodo();
                                                                                     Find the state of the state of
                                                                        else farb = NULL;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        31
```

Tema 3. El tipo árbol 2. Árboles binarios REPRESENTACIÓN SECUENCIAL Y ENLAZADA (V) TArbin::~TArbin(){ if (farb != NULL){ delete farb; farb = NULL;} TArbin & TArbin::operator = (const TArbin & a){ this \rightarrow ~TArbin(); Copiar (a); return *this; void TArbin::Enraizar (TArbin &iz, const TItem c, TArbin &de){ TNodo *aux = new TNodo(); $aux \rightarrow fitem = c;$ $(aux \rightarrow fiz).farb = iz.farb;$ $(aux \rightarrow fde).farb = de.farb;$ iz.farb = de.farb = NULL; this → ~TArbin (); farb = aux; //deja vacíos el árbol original (*this), iz y de 32

2. Árboles binarios REPRESENTACIÓN SECUENCIAL Y ENLAZADA (VII) bool TArbin::EsVacio () { return (farb == NULL) } /*-----* int TArbin::Altura () { int a1, a2; if (farb != NULL) { a1 = (farb \rightarb fiz).Altura (); a2 = (farb \rightarb fie).Altura (); return (1 + (a1 < a2 ? a2 : a1)); } else return 0; }

```
2. Árboles binarios

REPRESENTACIÓN SECUENCIAL Y ENLAZADA (VIII)

/* Programa de prueba
int
main (){

TArbin a, b, c;

a.Enraizar (b, 1, c);
b.Enraizar (a, 2, c);
cout << "el hijo izquierda del árbol contiene un " << (b.Hijolz()).Raiz();
// ESCRIBE 1
cout << "la altura del árbol es " << b.Altura() << endl;
// ESCRIBE 2
}
```

2. Árboles binarios REPRESENTACIÓN SECUENCIAL Y ENLAZADA (IX) ¿Constructor y destructor de TNodo? TNodo::TNodo():fiz(),fde(){ fitem=0; } TNodo::~TNodo() { fitem=0; }

2. Árboles binarios

OTRAS OPERACIONES INTERESANTES (I)

• Además de todas las operaciones vistas anteriormente, utilizaremos las operaciones de asignación y "movimiento" de árboles e iteradores:

I, J = Iteradores

37

2. Árboles binarios

OTRAS OPERACIONES INTERESANTES (II)

- a) Asignación (copia) entre árboles e iteradores:
 - a1) A = B. Hace una copia de B en A
- a2) A = I. Hace una copia sobre el árbol A, de la rama del árbol a la que apunta el Iterador I

2. Árboles binarios

OTRAS OPERACIONES INTERESANTES (III)

- a) Asignación (copia) entre árboles e iteradores:
 - a3) I = A. Hace una copia sobre la rama del árbol a la que apunta el Iterador I del árbol A

 a4) I = J. Sirve para inicializar el Iterador
 I de forma que apunte al mismo nodo al que apunta el Iterador J

39

2. Árboles binarios

OTRAS OPERACIONES INTERESANTES (IV)

- b) Movimiento de ramas entre árboles e iteradores:
 - b1) Mover (A, B). Mueve el árbol B al árbol A. B se queda vacío

 b2) Mover (A, I). Mueve la rama del árbol a la que apunta el Iterador I al árbol A

B vací

2. Árboles binarios

OTRAS OPERACIONES INTERESANTES (V)

- b) Movimiento de ramas entre árboles e iteradores:
 - b3) Mover (I, A). Mueve el árbol A a la rama del árbol a la que apunta el Iterador I
- b4) Mover (I, J). Mueve la rama del árbol a la que apunta el Iterador J a la rama del árbol a la que apunta el Iterador I

2. Árboles binarios

EJERCICIOS recorridos

- 1a) Dado el siguiente árbol binario, calcular los recorridos preorden, postorden, inorden y niveles
- 1b) ¿Se puede resconstruir un árbol binario dando solamente su recorrido inorden? ¿Cuántos recorridos como mínimo son necesarios? ¿Cuáles?

a c f

Tema 3. El tipo árbol

2. Árboles binarios

EJERCICIOS nodosHoja

2) Sea un árbol binario. Especificar la sintaxis y semántica de las operaciones:

nodosHoja, que devuelve el número de nodos hoja de un árbol binario

43

Tema 3. El tipo árbol

2. Árboles binarios

EJERCICIOS simetricos y todos

- 3) Sea un árbol binario cuyas etiquetas son números naturales. Especificar la sintaxis y semántica de las operaciones:
 - a) simétricos, que comprueba que 2 árboles binarios son simétricos
 - b) **todos**, que calcula la suma de todas las etiquetas de los nodos del árbol

Nota: Especificar la sintaxis de todas las operaciones de árboles binarios usadas

2. Árboles binarios

EJERCICIOS *transforma*

4) Se define la operación transforma que recibe un árbol binario y devuelve un árbol binario. Explicar qué hace esta operación detallando el comportamiento de las dos ecuaciones que aparecen a continuación:

VAR i, d: arbin; x: item,
transforma(crea_arbin()) = crea_arbin()
transforma(enraizar(i, x, d)) =

enraizar(transforma(i), x + todos(i) + todos(d), transforma(d))

Nota: La operación *todos* calcula la suma de todas las etiquetas de los nodos del árbol (números naturales)

45

2. Árboles binarios

EJERCICIOS quita_hojas

5) Utilizando exclusivamente las operaciones *crea_arbin()* y *enraizar(arbin, item, arbin)* definir la sintaxis y la semántica de la operación quita_hojas que actúa sobre un árbol binario y devuelve el árbol binario original sin sus hojas

Tema 3. El tipo árbol

2. Árboles binarios

EJERCICIOS dos_hijos

6) Especificar la sintaxis y la semántica de la operación dos_hijos que actúa sobre un árbol binario y devuelve CIERTO si todos los nodos tienen dos hijos (excepto los nodos hoja)

47

Tema 3. El tipo árbol

2. Árboles binarios

Preguntas de tipo test: Verdadero vs. Falso

- El nivel de un nodo en un árbol coincide con la longitud del camino desde la raíz a dicho nodo
- Dado un único recorrido de un árbol binario lleno, es posible reconstruir dicho árbol
- Un árbol binario completo con n nodos y altura k es un árbol binario
 Ileno para esa misma altura

3. Árboles de búsqueda (I)

- Árboles de búsqueda = Árboles n-arios de búsqueda = Árboles multicamino de búsqueda
- Son un tipo particular de árboles, que pueden definirse cuando el tipo de los elementos del árbol posee una relación ≤ de orden total
- Un árbol multicamino de búsqueda T es un árbol n-ario vacío o cumple las siguientes propiedades:

```
- 1. La raíz de T contiene A_0, \ldots, A_{n-1} subárboles y K_1, \ldots, K_{n-1} etiquetas
```

- $-2. K_i < K_{i+1}, 1 \le i < n-1$
- 3. Todas las etiquetas del subárbol A_i son:

```
menores que K_{i+1} 0 \le i < n-1
mayores que K_i 0 < i \le n-1
```

4. Los subárboles A_i, 0 ≤ i ≤ n-1 son también árboles multicamino de búsqueda

K ₁	K ₂	K ₃		K _{n-1}
A_0	\mathbf{A}_{1}		 A _{n-1}	

49

3. Árboles de búsqueda (II)

- Algoritmo de búsqueda
 - Para buscar un valor x el árbol, primero se mira el nodo raíz y se realiza la siguiente comparación:
 - $\quad x < K_i \quad \acute{o} \quad x > K_i \quad \acute{o} \quad x = k_i \ (\ 1 \le i \le n\text{-}1)$
 - 1) En el caso que x = K_i, la búsqueda ya se ha completado
 - 2) Si x < K_p entonces por la definición de árbol multicamino de búsqueda, x debe estar en el subárbol A_{i-1} , si éste existe en el árbol
 - 3) Si x > K_i , x debe estar en A_i
- Los árboles multicamino de búsqueda son útiles cuando la memoria principal es insuficiente para utilizarla como almacenamiento permanente
- En una representación enlazada de estos árboles, los punteros pueden representar direcciones de disco en lugar de direcciones de memoria principal. ¿Cuántas veces se accede a disco cuando se realiza una búsqueda? ¿Cómo se puede reducir el número de accesos a disco?

3.1. Árboles binarios de búsqueda

ESPECIFICACIÓN ALGEBRAICA (I)

- Propiedades
 - todos los elementos en el subárbol izquierdo son ≤ que la raíz,
 - todos los elementos en el subárbol derecho son ≥ que la raíz,
 - los dos subárboles son binarios de búsqueda
 - en algunas variantes no se permite la repetición de etiquetas

MODULO ARBOL_BIN_BUSQUEDA USA BOOL, ARBOLES_BINARIOS PARAMETRO TIPO item

OPERACIONES

<, ==, >: item, item \rightarrow bool error_item() \rightarrow item

FPARAMETRO

OPERACIONES

insertar(arbin, item) → arbin buscar(arbin, item) → bool borrar(arbin, item) → arbin min(arbin) → item

51

Tema 3. El tipo árbol

3.1. Árboles binarios de búsqueda

ESPECIFICACIÓN ALGEBRAICA (II)

```
VAR i, d: arbin; x, y: item; 

ECUACIONES 

insertar( crea_arbin(), x ) = 

enraizar( crea_arbin(), x, crea_arbin()) 

si ( y < x ) entonces 

insertar( enraizar( i, x, d), y ) = 

enraizar( insertar( i, y), x, d) 

si no si ( y > x ) insertar( enraizar( i, x, d), y ) = 

enraizar( i, x, insertar( d, y ) ) fsi 

buscar( crea_arbin(), x ) = FALSO 

si ( y < x ) entonces 

buscar( enraizar( i, x, d), y ) = buscar( i, y ) 

si no si ( y > x ) entonces 

buscar( enraizar( i, x, d), y ) = buscar( d, y ) 

si no buscar( enraizar( i, x, d), y ) = CIERTO fsi
```

```
borrar( crea_arbin(), x ) = crea_arbin()
\mathbf{si} ( y < x ) entonces
 borrar(enraizar(i, x, d), y) =
    enraizar(borrar(i, y), x, d)
si no si (y > x) entonces
 borrar( enraizar( i, x, d ), y ) =
enraizar(i, x, borrar(d, y)) fsi
\mathbf{si} ( y==x ) \mathbf{y} esvacio( d ) entonces
  borrar(enraizar(i, x, d), y) = i \mathbf{fsi}
si ( y==x ) y esvacio( i ) entonces
  borrar(enraizar(i, x, d), y) = d \mathbf{fsi}
si ( y==x ) y no esvacio( d ) y no esvacio( i ) entonces
  borrar(enraizar(i, x, d), y) =
    enraizar(i, min(d), borrar(d, min(d))) fsi
min( crea_arbin( ) ) = error_item( )
\mathbf{si} esvacio( i ) entonces min( enraizar( i, x, d ) ) = x
si no min(enraizar(i, x, d)) = min(i) fsi
```

FMODULO

3.1. Árboles binarios de búsqueda

OPERACIONES BÁSICAS (I)

• Búsqueda e inserción de un elemento

Recorrido en inorden: todas las etiquetas ordenadas ascendentemente
 ¿Cuál es el coste de las operaciones de búsqueda e inserción en el ABB?
 ¿Qué pasa si insertamos una serie de elementos ordenados en un ABB

53

3.1. Árboles binarios de búsqueda

OPERACIONES BÁSICAS (II)

inicialmente vacío?

- · Borrado de un elemento
 - El nodo donde se encuentra es una hoja
 - El nodo donde se encuentra tiene un único hijo. El nodo a eliminar es sustituido por su hijo

borrado del elemento 26

El nodo donde se encuentra, tiene dos hijos

borrar el elemento 17

3.1. Árboles binarios de búsqueda

EJERCICIOS inserción y borrado

- 1) En un árbol binario de búsqueda inicialmente vacío,
 - a) Insertar los siguientes elementos: 20, 10, 30, 40, 5, 15, 50, 22, 25, 24, 26, 3, 35, 38, 39, 37
 - b) Sobre el árbol resultante, realizar el borrado de: 5, 3, 30, 22, 39 (utilizar el criterio de sustituir por el menor de la derecha)

55

Tema 3. El tipo árbol

3.1. Árboles binarios de búsqueda

Preguntas de tipo test: Verdadero vs. Falso

- En el borrado de un elemento que se encuentre en un nodo con dos hijos no vacíos en un árbol binario de búsqueda, tenemos que intercambiar el elemento a borrar por el menor del subárbol de la izquierda o por el mayor del subárbol de la derecha
- El menor elemento en un árbol binario de búsqueda siempre se encuentra en un nodo hoja
- El coste temporal (en su peor caso) de insertar una etiqueta en un árbol binario de búsqueda es lineal respecto al número de nodos del árbol

Árboles binarios

Aplicaciones

- Evaluación de expresiones aritméticas (AB).

- Árboles de Huffman (ABB).
 - Emisor: transmisión de mensajes codificados
 - Receptor: árbol decodificador
- Treesort (ABB).
 - Ordenación de elementos utilizando un ABB
 - Si está equilibrado $\rightarrow \Theta$ (n logn)