## Adaptive Markov Chain Monte Carlo Methods

Stefan Junghans Mitja Richter

TU Berlin

25.07.2014

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- 2 Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- 2 Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



### Markov Chain Monte Carlo

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- 2 Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



## Why adaptive?

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- 2 Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



### Criteria

#### acceptance rate

- $\alpha = \frac{\#accepted}{\#samples}$
- 0.44 for univariate distributions
- 0.234 for  $d \ge 5$  dimensions

### suboptimality

• 
$$b = d \cdot \frac{\sum_{i=1}^d \lambda_i^{-2}}{(\sum_{i=1}^d \lambda_i^{-1})^2}$$

- $\lambda_i$  are eigenvalues of  $\Sigma_p^{0.5} \Sigma^{-0.5}$
- $\Sigma_p$ : proposal covariance matrix
- Σ<sub>p</sub>: target covariance matrix
- usually b > 1, optimum at b = 1

### Criteria

#### autocorrelation time

- $ACT = 1 + 2\sum_{i=1}^{\infty} autocorr(i)$
- $autocorr(k) = 1/((n-k) \cdot v) \cdot \sum_{t=1}^{n-k} (x^t \mu)(x^{t+k} \mu)$

### average squared jump distance

• 
$$ASJD = \sum_{k=1}^{\infty} \sqrt{\sum_{i=0}^{d} (x_{(i)}^{k} - x_{(i)}^{k+1})^{2}}$$

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



#### Why do we need it?

- target distribution f(x) that we cannot directly sample from
- $X \sim c \cdot f(x)$ , where c is unknown

#### Why do we need it?

- target distribution f(x) that we cannot directly sample from
- $X \sim c \cdot f(x)$ , where c is unknown

#### Ingredients

- f(x): target density
- $x_0$ : start point (random)
- q(x|y) : proposal density, often  $N(\mu, \Sigma)$

 $(\mu = y \Rightarrow$  "Random Walk Metropolis Hastings")

#### **Steps**

- $\bullet$  current sample : x'
- 2 sample  $x^* \sim q(x|x')$
- $\odot$  calculate acceptance  $\alpha$ :

$$\alpha = min\left(1, \frac{f(x^*)}{f(x')} \cdot \frac{q(x'|x^*)}{q(x^*|x')}\right)$$

- ullet accept proposal  $x^*$  with probability  $\alpha$
- repeat

Example ...

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



#### Why do we need it?

- If Metropolis Hastings has bad settings, the acceptance rate will be inferior!
- high-dimensional target distributions
- correlated dimensions with different variances

#### Ingredients

- f(x): target density
- x<sub>0</sub>: start point (random)
- $q(x|y) \sim N(y, 0.1 \cdot I_d/d)$ : proposal density
- $q'(x|y) \sim N(y, 2.38^2 \cdot \Sigma_n/d)$ : "adapting" proposal density
  - 2.38<sup>2</sup> delivers the best results in certain environments
  - $\Sigma_n$  is the estimated covariance matrix of the current samples
- $\beta$  : adaption parameter, e.g.  $\beta = 0.05$

### Steps

- $\odot$  current sample : x'
- ② if  $n \le 2d$ : sample  $x^* \sim q(x|x')$
- **1** if n > 2d: sample  $x^* \sim (1 \beta) \cdot q'(x|x') + \beta \cdot q(x|x')$
- ullet calculate acceptance  $\alpha$ :

$$\alpha = \min\left(1, \frac{f(x^*)}{f(x')}\right)$$

- **o** accept proposal  $x^*$  with probability  $\alpha$
- $\bullet$  if accepted:  $x' = x^*$
- repeat

Example ...

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



#### Why do we need it?

- high-dimensional target distributions
- dimensions with different variances

#### Ingredients

- f(x): target density
- $x_0 \sim N(0_d, I_d)$ : start point
- q(x|y): proposal density
  - *i*th dimension is  $N(x_{(i)}^n, 10^{ls_i})$ -distributed
  - $ls_i = 0$  initially
- $\alpha_i$ : individual acceptance rate for every dimension *i*
- $\delta(n) = min(0.01, n^{-0.5})$ : adaption increment
- *b* : batch size, e.g. *b* = 50

### Steps (1/2)

- $\bullet$  current sample : x'
- 2 choose dimension *i* (one after another or randomly)
- $x^* = x'$
- $x_{(i)}^* = x_{(i)}^* + N(0, 10^{ls_i})$
- $\odot$  calculate acceptance  $\alpha$ :

$$\alpha = min\left(1, \frac{f(x^*)}{f(x')}\right)$$

- $oldsymbol{0}$  accept proposal  $x^*$  with probability  $\alpha$
- $\circ$  update all  $\alpha_i$

### Steps (2/2)

- $\bigcirc$  update all  $\alpha_i$
- repeat for all dimensions (d times)
- repeat b times
- **1** after  $b \cdot d$  samples adapt for all dimensions i:
- **2** if  $\alpha_i > 0.44$  :  $ls_i = ls_i + \delta(i)$
- **1** if  $\alpha_i < 0.44$  :  $ls_i = ls_i \delta(i)$
- adaption finished ⇒ back to start

Example ...

- Introduction
  - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results
- Summary



### 000000000000000000000

- - Markov Chain Monte Carlo
  - Why adaptive?
  - Criteria
- Methods
  - Metropolis Hastings
  - Adaptive Metropolis Hastings
  - Adaptive Metropolis Witin Gibbs
  - Regional Metropolis Hastings
  - Results



## Model

#### summer meee