Going Deeper with Convolutions

■ Author	Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna
∷ Field	CV
Journal	CVPR
# Published Year	2014
∷ Speaker	강동규 이민지
≡ Summary	InceptionNet-v1
	Finished!
∅ link	https://arxiv.org/pdf/1409.4842.pdf

▼ Target Problem

By increasing the depth and width efficiently, produce high accuracy

- Good Model → Efficient Model → Good at performance and memory usage
- Performance
 - Increase DEPTH and WIDTH

▼ Background & Related Work

Network In Network (NIN)

1x1 convolution

what is CCCP(cascaded cross channel parametric pooling)?

- CCCP
 - Max pooling
 - Reduce channels
- \Rightarrow CCCP is equal to 1x1 convolution kernel!

This derived 1X1 convolution is later used in GoogLeNet and several papers due to the effect of channel reduction.

Global average pooling

- Global average pooling
 - Calculate the average of each feature map
 - Each feature map represent the characteristics
 - Don't have parameters
- FC layer
 - All information in all feature map is connected
 - Difficult to know why each class was selected

Network in network structure

NIN = mlpconv layer 3 + global average pooling layer 1

▼ GoogLeNet

Overall Architecture

Inception

1. Motivation

- Increasing depth and width \Rightarrow Bigger size network \Rightarrow Training higher quality
 - Depth = The number of levels
 - Width = The number of units

Problem

- 1. A larger number of parameters ⇒ Overfitting
- 2. Computational resources dramatically increase.

Solution

Going Deeper with Convolutions

- Change fully connected to **sparsely** connected architecture
- Sparsely Connected Architecture
 - Dense Layer(Fully Connected Layer)

Reference : https://iq.opengenus.org/dense-layer-in-tensorflow/

- Neurons are not necessarily connected each other.
- Some neurons would be activated, the others would not.
- Convolution

- When network capacity is added and if most weights end up to be close to zero, a lot of computation is wasted.
- Sparse architecture ⇒ Parameters decrease.

- Because of GPU calculation, implementation is hard, inefficient.
- **⇒** Approximate a sparse structure using inception architecture

2. Naive Inception Module

Let's find the optimal local construction and repeat it spatially!

(a) Inception module, naïve version

- · Why use different convolution sizes?
 - 1. High-level features are abstracted, so their spatial concentration is reduced.
 - Using 3x3, 5x5 convolutions, increase spatial concentration.
 - 2. Obtain various features by using convolutions of multiple scales.
- Why use odd scales? ⇒ To avoid patch-alignment issues

- ⇒ The cost would increase dramatically when the number of filters is increased
- 3. Inception Module with Dimension Reduction

(b) Inception module with dimension reductions

cf) Understanding calculation of convolution channel

• Use 1x1 convolutions - Dimension Reduction

Going Deeper with Convolutions

- 1x1 convolutions
 - \circ Compress channels \Rightarrow Reduce dimensions \Rightarrow Decrease computational cost.
 - \circ Compressed channels \Rightarrow Compressed informations.
 - Sparsity

4. Benefit of Inception Module

- 1. It uses computational resources efficiently ⇒ Better Computational cost, Speed
- 2. It **increases depth and width** without dramatically increasing of cost.
- 3. It allows to gain intuition of visual information and abstract features from different scales simultaneously.

Auxiliary Classifier

Solve vanishing gradient problem using auxiliary classifier!

- Deep Network → backpropagation would not be linked to the first layer of network.
- · Auxiliary classifier
 - 1. Make propagation flow well
 - 2. regularization effect

Overall Architecture

Going Deeper with Convolutions

▼ Result & Conclusion

Classification

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

Table 3: GoogLeNet classification performance break down

Detection

Team	Year	Place	mAP	external data	ensemble	approach
UvA-Euvision	2013	1st	22.6%	none	?	Fisher vectors
Deep Insight	2014	3rd	40.5%	ImageNet 1k	3	CNN
CUHK DeepID-Net	2014	2nd	40.7%	ImageNet 1k	?	CNN
GoogLeNet	2014	1st	43.9%	ImageNet 1k	6	CNN

Table 4: Detection performance

Team	mAP	Contextual model	Bounding box regression
Trimps-Soushen	31.6%	no	?
Berkeley Vision	34.5%	no	yes
UvA-Euvision	35.4%	?	?
CUHK DeepID-Net2	37.7%	no	?
GoogLeNet	38.02%	no	no
Deep Insight	40.2%	yes	yes

Table 5: Single model performance for detection

Conclusion

- 1. The expected optimal sparse structure can be approximated using an easily available dense building block through the inception module.
- 2. Significant performance improvements were achieved despite the increased computational cost.

▼ Reference

Inception-v1 번역, 분석 참고 : https://sike6054.github.io/blog/paper/second-post/

Inception-v1 논문: https://arxiv.org/abs/1409.4842

Going Deeper with Convolutions