3. Технологическая часть

Введение

В данной части дипломного проекта рассматривается технологический процесс изготовления щелевого заряда из смесевого твердого ракетного топлива, прочно скрепленного с корпусом РДТТ.

Смесевые твердые топлива являются ярко выраженными гетерогенными, многофазными взрывчатыми системами, представляющими собой смесь, как правило, неорганического окислителя, органического высокомолекулярного горючего-связующего и содержащие специальные добавки (энергетические, эксплуатационные, технологические). По своей структуре СТРТ – высоконаполненные (до 95%) композиционные материалы, в полимерной матрице которых равномерно распределены мелкодисперсные металлическое (металлосодержащее) горючее окислитель, компоненты. Современные смесевые твердые ракетные топлива в качестве окислителя содержат перхлорат аммония (ПХА) NH_4ClO_4 .

3.1 Схема технологического процесса изготовления заряда из СТРТ

В конструкторской части дипломного проекта было выбрано топливо марки ARCIT-373D с известными характеристиками. Условная химическая формула и некоторые свойства СТРТ представлены в таблице 1.

Таблица 1 – Свойства СТРТ

Условная химическая формула	ΔH ₂₉₈ , кДж/кг	$\alpha \cdot 10^4$, $1/K$	ρ, кг/м ³	$rac{\mathcal{C}_p,}{\mathcal{Д} lpha}$ кг · К
$C_{9,574}H_{37,389}O_{21,189}N_{5,039}Cl_{6,468}Al_{7,734}$	-1934	4	1770	1215

В данной работе представлена непрерывная технология изготовления заряда из смесевого твердого топлива. Блок-схема технологических процессов изготовления СТРТ и заряда из СТРТ с необходимыми операциями

представлена на листе 1 технологической части. Рассмотрим основные операции, процессы, технологические аппараты применительно к производству зарядов из типового состава на основе инертного полимерного ГСВ.

Этот состав топлива, как и другие высокоэнергетические СТРТ крупногабаритных собой зарядов представляют высоконаполненную гетерогенную композицию, содержащую высокий процент твердого наполнителя различной химической природы, В TOM числе высокочувствительное взрывчатое вещество. В этой связи смешение обеспечения безопасности, необходимой топливной массы целью c воспроизводительности состава и свойств по всему объему заряда проводят в несколько приемов, предварительно получая частные смеси из нескольких компонентов, называемые полуфабрикатами.

Условно принципиальная схема изготовления зарядов СТРТ представлена на рис.1.

Рис. 1 – Схема изготовления зарядов СТРТ

Основные технологические операции изготовления заряда из СТРТ представлены в таблице 2.

Таблица 2 – Основные технологические операции

No	Наименование операции
005	Приготовление РСПК
010	Приготовление ССД
015	Подготовка корпусов двигателей (пресс-форм) и формующей оснастки
020	Подготовка технологической оснастки
025	Смешение топливной массы
030	Заполнение корпуса двигателя
035	Отверждение и распрессовка зарядов
040	Окончательная обработка зарядов, контроль качества и укупорка

3.2 Технологический процесс

Рассмотрим содержание основных операций на отдельных стадиях.

3.2.1 Операция 005. Приготовление рабочей смеси порошкообразных компонентов (РСПК)

Применительно к рассматриваемому составу в РСПК входят различные фракции перхлората аммония (ПХА), отличающиеся средним диаметром частиц и удельной поверхностью. Как правило, перхлорат аммония используют двух фракций: крупную и мелкую, причем $d_{\rm K}/d_{\rm M}=7-10$.

В общем случае применение полифракционного наполнителя по сравнению с монофракционным позволяет улучшить реологические характеристики топливной массы при постоянной объемной доле наполнителя или увеличить объемную долю наполнителя при сохранении уровня реологических характеристик.

В рассматриваемом составе используют ПХА с $d_{\rm K} = 200-300$ мкм и $d_{\rm M} \leq 50$ мкм. Крупный ПХА поступает на производство зарядов готовым, а мелкий - получают непосредственно на производстве путем измельчения крупного до требуемой величины удельной поверхности перед началом изготовления топливной массы.

Содержание операции представлено в таблице 3.

Таблица 3 – Содержание операции 005

No	Содержание операции	Оборудование, оснастка	
Операция 005. Приготовление РСПК			
01	Загрузка в смеситель крупной фракции ПХА, созданием разряжения в смесителе	Смеситель С-5	
02	Измельчение крупной фракции ПХА до получения требуемых характеристик	Струйно – вихревая мельница	
03	Дозирование вибро-шнековым дозатором	Вибро – шнековый дозатор	
04	Загрузка мелкой фракции ПХА вакуумом в смеситель	Смеситель С-5	

3.2.2 Операция 010. Приготовление смеси связующего с добавками (ССД)

В ССД вводят поливинилхлорид, ди-(2-этилгексил) адипинат, порошкообразный Al. Поливинилхлорид, ди-(2-этилгексил) адипинат и порошкообразным Al в начале смешивают в планетарном смесителе (СП).

Последующее смешение с добавками проводят в смесителе объемного типа С-5 или УСП-7, в которых отсутствуют механические мешалки, что обеспечивает безопасность проведения процесса.

Смесители СП и С-5 обогреваются водой с температурой ≤ 50 °C.

Содержание операции представлено в таблице 4.

Таблица 4 – Содержание операции 010

№	Содержание операции	Оборудование, оснастка	
	Операция 010. Приготовление ССД		
01	Подогрев поливинилхлорида в плавителе	Плавитель	
02	Дозирования ДВП в СП	Дозатор	
03	Смешение связующего	Планетарный смеситель	
04	Загрузка вакуумом порошкообразного Al в 8 приемов с перемешиванием	Планетарный смеситель	
05	Перемешивание всей загруженной массы	Планетарный смеситель	
06	Дозирование массы в смеситель	Смеситель С-5	
07	Загрузка добавок	Смеситель С-5	
08	Смешение ССД	Смеситель С-5	
09	Отбор и анализ пробы	-	

3.2.3 Операция 015. Подготовка корпусов двигателей и формующей оснастки

Цель операции подготовки корпусов двигателей - нанесение на его внутреннюю поверхность крепящего (клеящего) состава, обеспечивающего скрепление с зарядом топлива в процессе производства. На внутренней стороне силовой оболочки корпуса имеется защитно-крепящий резиновый каучуков, слой на синтетических обладающий достаточной основе эластичностью по сравнению с материалом силовой оболочки (например, полимерный композиционный материал). Его назначение - скомпенсировать напряжения, возникающие внутренние заряде результате В полимеризационной и температурной усадки при отверждении.

Возможны следующие способы скрепления заряда с корпусом:

- тканевый с помощью крепящего состава, наносимого на тканевую подложку, которой дублирована резина крепящего слоя. Ткань (капроновая, асбестовая) обладает развитой поверхностью, что обеспечивает высокую прочность скрепления.
- бестканевый с использованием крепящего состава, наносимого на ЗКС или ТЗП;
- бестканевый и бесклеевый при котором топливо скрепляется с ТЗП с использованием вулканизирующих добавок, наносимых на ТЗП.

Наиболее отработанным является тканевый способ.

Основные требования к клеящему составу (КС):

- 1) высокие адгезионные свойства ($\sigma_{\rm адr} \ge \sigma_{\rm T}$), обеспечивающие когезионное (по топливу) разрушение адгезионного шва при нагрузках, превосходящих или равных прочности топлива при растяжении;
- 2) совместимость с полимерной основой ГСВ;
- 3) ограниченная совместимость с пластификатором топлива;

- 4) инертность по отношению к прилегающим слоям топлива и корпуса;
- 5) величина температуры стеклования меньше температуры нижней границы интервала эксплуатации РДТТ;
- 6) температурный коэффициент линейного расширения близок к коэффициенту топлива;
- 7) возможно меньшая плотность;
- 8) возможность совулканизации с ГСВ топлива;
- 9) основные механические характеристики КС (σ, ε) близки к механическим характеристикам топлива;
- 10) стабильность свойств;
- 11) минимальная токсичность, отсутствие легковоспламеняющихся жидкостей.

Основа клея - полимер с высокими адгезионными свойствами. На практике используют те же полимеры, которые входят в состав топлива или не содержащиеся в нем. В первом случае адгезионное взаимодействие объясняется преимущественно диффузионным механизмом, а во втором - образованием химических и дисперсионных связей на границе скрепления. При этом может реализоваться принцип взаимопроникающих сеток для несовместимых структурирующих систем.

В состав КС, как и в ГСВ топлив, входят компоненты системы пластификаторы, растворители (разбавители) и отверждения, технологические добавки. Метод нанесения клея зависит его технологических свойств, прежде всего вязкости. Так высоковязкие составы наносят методом втирания шпателем, средневязкие - кистью, низковязкиераспылением. Оптимальный расход КС для корпусов крупногабаритных двигателей определяется исходя из условий обеспечения адгезионной прочности и полноты пропитки ткани, а также типа намотки корпусов и составляет ориентировочно 200-400 г/м². Низковязкие КС наносятся в основном методом распыления с помощью специальных установок и, частично, кистью вручную.

Рассмотрим сущность основных операций применительно к типовому КС следующего состава:

- полимерная основа наиритовая смесь (наирит и хлорнаирит хлоропреновый каучук);
- система отверждения сера, тиурам-Д, окись цинка;
- растворитель смесь этилацетата и бензина.

Регламентируется срок и условия хранения подготовленного корпуса до заполнения топливной массой (~ 10-15 суток).

Содержание операции представлено в таблице 5.

Таблица 5 – Содержание операции 015

No	Содержание операции	Оборудование, оснастка		
Oı	Операция 015. Подготовка корпуса двигателя и формующей оснастки			
01	Входной контроль	-		
02	Сушка горячим воздухом	-		
03	Приготовление раствора полимера (~30 %)	-		
04	Приготовление раствора отвердителя	-		
05	Нанесение раствора полимера с помощью вручную 2-3 слоя, между слоями сушка	Кисть		
06	Окончательная сушка	-		
07	Нанесение раствора отвердителя и сушка	Кисть		

	Сборка с техоснасткой,	
08	проверка на герметичность,	-
	заполнение сухим воздухом	

3.2.4 Операция 020. Подготовка технологической оснастки

технологическую (формующую) оснастку входят основные элементы: формующая игла, узел силового крепления иглы, узел ввода, система поддавливания и отсечки топливной массы после заполнения и Сущность подготовки заключается В что другие. TOM, элементы, соприкасающиеся с топливной массой после заполнения корпуса, покрывают антиадгезионным слоем с тем, чтобы после отверждения заряда эти формующие элементы можно было безопасно извлечь (распрессовать заряд). Как правило, для покрытия используют кремнийорганические (силиконовые) каучуки в виде раствора.

Содержание операции представлено в таблице 6.

Таблица 6 – Содержание операции 020

№	Содержание операции	Оборудование, оснастка	
	Операция 020. Подготовка технологической оснастки		
01	Входной контроль (осмотр, обмер)	-	
02	Приготовление обезжиривающего раствора, обработка им элементов	-	
03	Сушка	-	
04	Приготовление грунта - 15% раствора силиконового каучука СКТ в бензине с катализатором отверждения	-	

05	Протирка оснастки бензино- хладоновой смесью	Ветошь
06	Сушка	-
07	Нанесение грунта в несколько слоев с сушкой между слоями	Кисть
08	отверждение грунта при 80 – 100 °C	-
09	проверка сплошности грунта	-
10	приготовление 30% раствора покрытия- алюмосиликонового каучука в бензине с катализатором отверждения	-
11	пропитка оснастки спиртом	Ветошь
12	Сушка	-
13	нанесение раствора каучука	Кисть
14	отверждение покрытия при $15-35^{\circ}\mathrm{C}$	-
15	контроль сплошности покрытия	-

3.2.5 Операция 025. Смешение топливной массы

Смешение - один из важнейших технологических процессов в производстве зарядов СТРТ. В результате его осуществления формируются реологические свойства топливной массы и выходные характеристики зарядов.

Цель смешения - равномерное распределение компонентов по объему, получение однородной по химическому составу массы, достижение стабильности ее характеристик.

Смешение - вероятностный процесс и с этих позиций его цель характеризующейся исходной системы, превращение упорядоченным распределением ингредиентов, в систему с неупорядоченным, случайным распределением. С позиции структуры цель смешения - увеличение контакта компонентами. Идеально перемешанная система, которой поверхность контакта между дисперсионной средой и дисперсионной фазой равна поверхности всех частиц дисперсной среды. Способ смешения в производстве зарядов для МБР - периодический, т.к. в объемных (гравитационных) смесителях загрузка не более 5-7 т. массы.

Содержание операции представлено в таблице 7.

Таблица 7 – Содержание операции 025

No	Содержание операции	Оборудование, оснастка		
	Операция 025. Смешение топливной массы			
01	Загрузка первой порции РСПК из контейнера смесителя	Смеситель С-5		
02	Загрузка ССД	Смеситель С-5		
03	Перемешивание	Смеситель С-5		
04	Порционная загрузка РСПК и перемешивание	Смеситель С-5		
05	Перемешивание всей композиции в начале под вакуумом, затем при атмосферном давлении	Смеситель С-5		
06	Контроль качества топливной массы	-		

Основные процессы при смешении:

перенос вещества, в основном конвективный, за счет деформаций сдвига, растяжения и сжатия; диффузия маловероятна из-за большого диаметра частиц и высокой вязкости системы;

- 1) диспергирование, разрушение коагуляционной структуры наполнителя;
- 2) образование граничного слоя связующего на частицах наполнителя (адсорбционно-сольватных оболочек);
- 3) механо-химические процессы деструкция связующего, подизмельчение частиц наполнителя;
- 4) подотверждение массы вследствие химического структурирования ГСВ;
- 5) дегазация (деаэрация) массы вакуумированием удаление газовых включений, так как они вызывают ухудшение реологических характеристик массы, пористость массы и заряда (источники: механический захват воздуха, испарение, адсорбция, химические реакции, окклюзия и др.).

При загрузке промежуточных смесей и перемешивании под вакуумом остаточное давление в смесителе $p_{\text{ост}} = 15-30$ мм. рт. ст., температура массы $\sim 40\,^{\circ}\text{C}$, температура воды в рубашке смесителя $15-30\,^{\circ}\text{C}$, температура воздуха в цехе $15-30\,^{\circ}\text{C}$ и влажность $\varphi \leq 60\%$. Регламентируется время смешения и количество оборотов смесителя C-5. В общем случае на качество топливной массы влияют многие факторы, параметры процессов, в связи с чем они на стадии отработки техпроцесса применительно к конкретному заряду оптимизируются. Основными из них являются:

- порядок ввода компонентов в смеситель;
- температура массы и давление в смесителе;

- время и интенсивность смешения после каждой загрузки и после загрузки всех компонентов (промежуточных смесей);
- загрузка смесителя.

3.2.6 Операция 030. Заполнение корпусов двигателей

Пресс-форму с технологической оснасткой, подготовленные к заполнению, устанавливают в барокамере, находящейся в шахте на весах в вертикальном положении смеситель С-5, как правило, передвижной, с топливной массой устанавливают над бункером экструдера. А экструдер соединяют с корпусом специальным устройством. Время хранения топливной массы в С-5 после смешения до слива, а также промежутки между очередными сливами в одну пресс-форму регламентируется с учетом жизнеспособности массы- времени сохранения реологических характеристик на допустимом уровне.

Содержание операции представлено в таблице 8.

Таблица 8 – Содержание операции 030

№	Содержание операции	Оборудование, оснастка	
	Операция 030. Заполнение корпуса двигателя		
01	Вывод здания на температурновлажностный режим ($t=15-35$ °C, $\varphi \le 65\%$)	-	
02	Подсоединение устройства дистанционного подключения прессформы	Барокамера	
03	Опрессовка пресс-формы	Барокамера	
04	Завоз смесителя с топливной массой	Смеситель С-5	
05	Перемешивание всей композиции в начале под вакуумом, затем при атмосферном давлении	Смеситель С-5	

06	Проверка герметичности системы	-
07	Слив топливной массы в экструдер	Экструдер
08	Подача топливной массы с помощью экструдера	Экструдер
09	Отсоединение смесителя и экструдера от сборки	-
10	Окончательное взвешивание	Весы
11	отбор проб топливной смеси на анализ из горловины сливного устройства сборки	-

При сливе топливной смеси не допускается проскока воздуха в корпус из смесителя, что может произойти в конце слива. Для предотвращения проскоков воздуха снижается темп слива путем регулирования остаточного давления.

Завершив подачу, отсекают топливную массу отсекателем от магистрали и устанавливают редукционный клапан. Извлекают пресс-форму из барокамеры, устанавливают на специальную платформу и транспортируют в термокамеру на отверждение.

3.2.7 Операция 035. Отверждение и распрессовка заряда

На стадии производства обеспечиваются механические характеристики, геометрические размеры, плотность, равновесная температура и др. характеристики зарядов. Отверждение определяет эффективность всего технологического процесса, так как составляет около 80% общего времени изготовления зарядов СТРТ.

Отверждение - физико-химический процесс перехода топливной массы из вязкого или упруговязкого состояния в упругое (вязкоупругое) вследствие

структурирования, обусловленного прежде всего химическими реакциями между макромолекулами полимерной основы ГСВ и образованием физической структуры.

Одновременно со структурированием могут идти процессы разложения отдельных компонентов деструкции, старение образовавшихся И особенность высокополимеров. Важная процесса отверждения крупногабаритных зарядов - не стационарность, не изотермичность, наличие полимеризационной усадки. Тепловыделение при структурировании составляет 20 ... 30 Дж/кг, $\Delta T = 20$... 30 °C, полимеризационная усадка достигает 5..10%.

Содержание операции представлено в таблице 9.

Таблица 9 – Содержание операции 035

No	Содержание операции	Оборудование, оснастка		
	Операция 035. Отверждение и распрессовка заряда			
01	Подготовка полимеризационной кабины: вывод на режим температуры воздуха и воды 60 °C	-		
02	Постановка заряда на отверждение, подсоединение датчиков	Датчики температуры, давления и деформации, шахта		
03	Термостатирование заряда	Шахта		
04	Ступенчатое охлаждение изделий	Шахта		
05	Распрессовка	-		

С целью обеспечения безопасности ограничивают предельные усилия распрессовки, например, извлечение иглы- $1 \cdot 10^3$ H.

3.2.8 Операция 040. Окончательная обработка заряда

Включает зачистку заряда, удаление остатков адгезионного покрытия, (концевые операции), сушку после зачистки. Производят обмер, взвешивание и другие операции по контролю качества: проверку монолитности- удефектоскопом; наличие внутренних дефектов ультразвуковым дефектоскопом, радиографическим методом, бетатроном. После маркировки и окончательной технической приемки производят укупорку и отгрузку заряда (снаряженного корпуса двигателя).

Содержание операции представлено в таблице 10.

Таблица 10 – Содержание операции 040

№	Содержание операции	Оборудование, оснастка			
Операция 040. Окончательная обработка зарядов, контроль качества и укупорка					
01	Удаление остатков адгезионного покрытия	-			
02	Сушка	Датчики температуры, давления и деформации, шахта			
03	Обмер, взвешивание	Весы			
04	Проверку монолитности	γ-дефектоскопом			
05	укупорку	-			
06	Отгрузку снаряженного корпуса двигателя	-			

3.3 Расчет равновесной температуры полимеризации

В данной серии вариантов предложено рассчитать значения равновесной температуры при различных температуре полимеризации и давлении отсечки. Равновесной называется температура, при которой контактное давление на

границе заряд-корпус приближается к нулю, и система освобождается от напряжений.

Исходные данные:

Геометрические параметры заряда и корпуса:

Внутренний радиус заряда: $R_3^{\text{внутр}} = 230 \text{ мм}$

Внешний радиус заряда: $R_3^{\text{внеш}} = 860 \text{ мм}$

Внешний радиус корпуса: $R_{\rm KC}^{\rm BHe III} = 900$ мм

Механические свойства материала корпуса:

Модуль Юнга:E=100 ГПа

Коэффициент Пуассона: $\mu_{\chi}=0.3$

Напряжение разрушения: $\sigma_{\text{вк}} = 2400 \text{ M}\Pi \text{a}$

Коэффициент запаса прочности: $K_{\rm K}=1,2$

Коэффициент термического расширения: $\alpha = 5 \cdot 10^{-6} \, 1/\mathrm{K}$

Остаточная деформация корпуса: $\varepsilon = 0.001$

Механические свойства топлива:

Модуль Юнга: $E_{\scriptscriptstyle \mathrm{T}}=20~\mathrm{M}\Pi \mathrm{a}$

Коэффициент Пуассона топлива: $\mu_{\scriptscriptstyle \rm T}=0.45$

Напряжение разрушения топлива: $\sigma_{\mbox{\tiny BT}} = 40 \mbox{ M}\mbox{Па}$

Коэффициент запаса прочности: $K_{\rm T}=1.5$

Коэффициент термического расширения: $\alpha_{\scriptscriptstyle \rm T} = 4 \cdot 10^{-4} \ 1/{\rm K}$

Термическая усадка топлива: $\Delta_{\text{тус}} = 0,0005$

Сжимаемость топливной массы: $\beta_{\scriptscriptstyle \rm T} = 0.5 \cdot 10^{-9} \ 1/\Pi a$

Давление отсечки: $p_{\text{отс}} = 15 \text{ М}$ Па

Температура полимеризации: $T_{\text{пол}} = 350 \text{ K}$

Механические свойства иглы:

Коэффициент термического расширения: $\alpha_{\rm u} = 13 \cdot 10^{-6} \,$ 1/К

Расчет безразмерных и размерных коэффициентов:

$$M = \frac{R_3^{\text{внеш}}}{R_3^{\text{внутр}}} = \frac{860}{230} = 3,74$$

$$N = \frac{R_{\text{KC}}^{\text{BHeIII}}}{R_{2}^{\text{BHeIII}}} = \frac{900}{860} = 1,05$$

$$A = E^{2} \cdot (N-1) \cdot M^{2} \cdot (3 \cdot \alpha_{T} - 2 \cdot \alpha - \alpha) - (3 \cdot \alpha_{T} - 2 \cdot \alpha_{H} - \alpha) =$$

$$= (100 \cdot 10^{9})^{2} \cdot (1,05-1) \cdot 3,74^{2} \cdot (3 \cdot 4 \cdot 10^{-4} - 2 \cdot 5 \cdot 10^{-6} - 5 \cdot 10^{-6})$$

$$- (3 \cdot 4 \cdot 10^{-4} - 2 \cdot 13 \cdot 10^{-6} - 5 \cdot 10^{-6}) = 7,2 \cdot 10^{18} \text{ Ha/K}$$

$$B = 2 \cdot E \cdot M^2 + 0.5 \cdot E \cdot [(M^2 - 1) \cdot (1 - 4 \cdot \mu_{\chi}) - (1 - M^{-2})] + E^2 \cdot \beta_{T} \cdot (N - 1) \cdot (M^2 - 1) =$$

$$= 2 \cdot 100 \cdot 10^9 \cdot 3.74^2 + 0.5 \cdot 100 \cdot 10^9 \cdot (3.74^2 - 1) \cdot (1 - 4 \cdot 0.3) - (1 - 3.74^{-2})] + (100 \cdot 10^9)^2 \cdot 0.5 \cdot 10^{-9} \cdot (1.05 - 1) \cdot (3.74^2 - 1) = 5.6 \cdot 10^{12} \, \Pia$$

$$C = E^{2} \cdot (N - 1) \cdot \left[\left(\Delta_{\text{tyc}} + \varepsilon \right) \cdot (M^{2} - 1) + 2 \cdot M^{2} \cdot \varepsilon \right] =$$

$$= (100 \cdot 10^{9})^{2} \cdot (1,05 - 1) \cdot$$

$$\cdot [(0,0005 + 0,001) \cdot (3,74^2 - 1) + 2 \cdot 3,74^2 \cdot 0,001] = 4,9 \cdot 10^{18} \text{ Ha}^2$$

Расчет предельного давления полимеризации:

$$p_{\text{пол}}^{\text{пред}} = \frac{\sigma_{\text{вк}}}{K_{\text{к}}} \cdot \frac{R_{\text{кC}}^{\text{внеш}} - R_{\text{3}}^{\text{внеш}}}{R_{\text{кC}}^{\text{внеш}} + R_{\text{3}}^{\text{внеш}}} = \frac{2400 \cdot 10^6}{1,2} \cdot \frac{(900 - 860) \cdot 10^{-3}}{(900 + 860) \cdot 10^{-3}} = 45,4 \text{ МПа}$$

Расчет равновесной температуры:

$$T_{\rm p} = T_{\rm non} - \frac{B}{A} \cdot p_{\rm non}^{\rm npeq} = 350 - \frac{5.6 \cdot 10^{12}}{7.2 \cdot 10^{18}} \cdot 45.4 \cdot 10^6 = 314.2 \text{ K}$$

Расчет необходимой температуры заполнения:

$$T_{3 \text{ап}} = T_{\text{пол}} - \frac{C + B \cdot p_{\text{пол}}^{\text{пред}}}{A} + \frac{B \cdot p_{\text{отс}}}{A} =$$

$$= 350 - \frac{4,9 \cdot 10^{18} + 5,6 \cdot 10^{12} \cdot 45,4 \cdot 10^{6}}{7,2 \cdot 10^{18}} + \frac{5,6 \cdot 10^{12} \cdot 15 \cdot 10^{6}}{7,2 \cdot 10^{18}}$$

$$= 325,3 \text{ K}$$

Определение параметров заполнения с учетом тепловых потерь:

Средняя температура воздуха:

$$T_{\rm B} = \frac{T_{\rm B1} \cdot \tau_1 + T_{\rm B2} \cdot \tau_2 + T_{\rm B3} \cdot \tau_3}{\tau_1 + \tau_2 + \tau_3} = \frac{293 \cdot 2 + 294 \cdot 1 + 295 \cdot 2}{2 + 1 + 1} = 294 \,\rm K$$

Перепад температуры:

$$\Delta T = T_{3a\pi} - T_{B} = 325,3 - 294 = 31,3 \text{ K}$$

Начальная температура заполнения:

$$T_{\text{CM}} = T_{\text{3a}\Pi} + \Delta T(\Delta T, \tau_1 + \tau_2 + \tau_3) = 325.3 + 10 = 335.3 \text{ K}$$

Где $\Delta T(\Delta T, \tau_1 + \tau_2 + \tau_3)$ определяется по рисунку 2.

Рис. 2 — Зависимость потери температуры от времени полимеризации для различных температурных перепадов: $1-T_{\rm 3an}-T_{\rm B}=20{\rm K} \qquad ; 2-T_{\rm 3an}-T_{\rm B}=40{\rm K} \qquad ; 3-T_{\rm 3an}-T_{\rm B}=60{\rm K};$ $4-T_{\rm 3an}-T_{\rm B}=80{\rm K};$

Аналогичные расчеты проводятся для температур $T_{\rm non}=375,400~{\rm K}.$ Результаты расчетов представлены в таблице в таблице 2.

Таблица 2 - Зависимость па	араметров от $T_{\text{пол}}$
----------------------------	-------------------------------

$T_{\text{пол}}$, К	T_{p} , K	$T_{зап}$, К	ΔT , K	$T_{\scriptscriptstyle exttt{CM}}$, К
350	314,2	325,3	31,3	335,3
375	339,2	350,3	56,3	368,3
400	364,2	375,3	81,3	399,3

Графики зависимости характерных температур от температуры полимеризации заряда СТТ расположены на листе технологической части.

3.4 Расчет напряжения в месте стыка корпус – заряд при различной температуре

Далее проводится расчет зависимости напряжения в месте стыка заряда с корпусом при различной температуре полимеризации.

Напряжение в месте стыка заряд-корпус определяется по формуле:

$$\sigma_r(T) = \frac{E_m \cdot \left(M^2 - 1\right) \cdot \left(\alpha_{\Theta} - \alpha_m\right) \cdot \left(T - T_p\right)}{M^2 \cdot \left(1 - 2 \cdot \mu_m\right) + 1}.$$

$$\sigma_r(T) = \frac{E_{\mathsf{T}} \cdot \left(M^2 - 1\right) \cdot \left(\alpha - \alpha_{\mathsf{T}}\right) \cdot \left(T - T_p\right)}{M^2 \cdot \left(1 - 2 \cdot \mu_{\mathsf{T}}\right) + 1}$$

Согласно полученным данным графическим методом определяется диапазон рабочих температур, при которых модуль напряжения в месте стыка заряд-корпус не превышает допустимых значений (обычно в диапазоне 15...25 МПа).

$$\sigma_r(T) = \frac{E_{\text{\tiny T}} \cdot (M^2 - 1) \cdot (\alpha - \alpha_{\text{\tiny T}}) \cdot (T - T_{\text{\tiny p}})}{M^2 \cdot (1 - 2 \cdot \mu_{\text{\tiny T}}) + 1}$$

$$= \frac{20 \cdot 10^8 \cdot (3,74^2 - 1) \cdot (5 \cdot 10^{-6} - 4 \cdot 10^{-4}) \cdot (200 - 314,2)}{3,74^2 \cdot (1 - 2 \cdot 0,45) + 1}$$

$$= 10,5 \text{ M}\Pi \text{a}$$

Аналогичные расчеты проводятся при температурах $T=250,300~{\rm K}$ для температур полимеризации $T_{\rm пол}=375,400~{\rm K}$ соответственно.

Графики зависимости напряжения в месте стыка корпус-заряд при различной температуре расположены на листе технологической части. Результаты расчетов представлены в таблице 3.

$T_{\text{пол}}, K$ T, K	350	375	400
250	27,5	38,1	48,4
300	6,1	16,8	27,5
400	-36,7	-25,9	-15,3