Plan du cours

l.	Rap	opel des définitions des solides	1
	1.	La pyramide	1
	2.	Le cône de révolution	1
П.	Мо	déliser une situation spatiale : section plane de solides	2
	1.	Section d'une pyramide ou d'un cône	2
	2.	Agrandissement et réduction	4

I. Rappel des définitions des solides

1. La pyramide

Définition

Une pyramide est un solide dont :

- toutes les faces latérales sont des triangles ayant un sommet commun appelé sommet de la pyramide ,
- l'autre face est un polygone quelconque appelé base de la pyramide.

Propriété

Le volume d'une pyramide est le tiers du produit de l'aire de sa base par sa hauteur :

Exercice d'application 1

(a) Calculer le volume de la pyramide ci-contre.

2. Le cône de révolution

Définition

Un cône de révolution est un solide formé :

- d'un disque appelé **base**;
- d'une surface courbe appelé face latérale;
- d'un point appelé sommet du cône.

Propriété

Le volume d'un cône de révolution est le tiers du produit de l'aire de sa base par sa hauteur :

Exercice d'application 2

(a) Calculer le volume du cône de révolution ci-contre.

٠	٠	٠	٠			٠	٠	٠		٠	٠	٠	٠						٠	٠					٠	٠	٠			٠	٠	٠	٠		٠	٠	٠	
															٠				٠			٠			٠					٠	٠							

II. Modéliser une situation spatiale : section plane de solides

1. Section d'une pyramide ou d'un cône

Propriété

Exercice d'application 3

Un cône de révolution a pour hauteur 10 cm. Sa base a pour centre O et pour rayon 8 cm. Le cône est coupé par un plan parallèle à la base et passant à 7 cm du $sommet \; S.$

A est un point du cercle de base.

Le plan coupe la génératrice [AS] en B et la hauteur [SO] en I.

1. Quel est le rayon de la section du cône par ce point ?

 	• •	 • •	 	٠													
 		 	 	 	 	 	 	 	 	 	٠						
 		 • •	 	٠													
 	• •	 	 	 	 	 	 	 	 	 							

Exercice d'application 4

Cette figure représente une pyramide régulière de sommet S dont la base est un hexagone régulier de centre O et de côté 6 cm. Sa hauteur est de 8 cm. On coupe cette pyramide par un plan parallèle à sa base à 3 cm au-dessus de sa base.

- 1. Pourquoi le triangle OAB est-il équilatéral?
- 2. Calculer la valeur exacte de SA.
- 3. Calculer les valeurs exactes de Cl et SC.
- 4. Calculer le périmètre de la section.

						2						

......

2. Agrandissement et réduction

Définition

Propriété

Dans un agrandissement (ou une réduction) de rapport k:

- les **longueurs** sont multipliées par
- les **aires** sont multipliées par
- les **volumes** sont multipliés par

Exemples:

Soit SABCD une pyramide à base carré, on sait que son aire vaut $250dm^2$.

- 2. Combien vaut l'aire d'une pyramide 2 fois plus petite?
- 3. Combien vaut le volume d'une pyramide 10 fois plus grande?

Exercice d'application 5

On considère une cône de révolution de hauteur SO=6cm dont le disque de base a pour rayon 5 cm.

- 1. Calculer le volume exacte de ce cône.
- 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.

