SOLUCIÓN \rightarrow Del ejemplo 5.5.3, se sabe que W es un subespacio de dimensión dos de \mathbb{R}^3 con

vectores básicos
$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 y $\mathbf{w}_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$. Utilizando la base estándar en \mathbb{R}^2 , $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, se define la transformación lineal T por $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ y $T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.

Entonces, como lo muestra el análisis que sigue al teorema 7.2.2, *T* está completamente determinada. Por ejemplo,

$$T\begin{pmatrix} 5 \\ -7 \end{pmatrix} = T \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 7 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix} = 5T \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 7T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - 7 \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \\ -7 \end{pmatrix}.$$

De manera más general,

$$T \begin{pmatrix} x \\ y \end{pmatrix} = T \left[x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = xT \begin{pmatrix} 1 \\ 0 \end{pmatrix} + yT \begin{pmatrix} 0 \\ 1 \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} x \\ 2x + 3y \\ y \end{pmatrix}.$$

Ahora se darán dos definiciones importantes en la teoría de transformaciones lineales.

Definición 7.2.1

Núcleo e imagen de una transformación líneal

Sean V y W dos espacios vectoriales y sea T: $V \rightarrow W$ una transformación lineal. Entonces

i) El núcleo de T, denotado por nu T, está dado por

nu
$$T = \{ v \in V : Tv = 0 \}$$
 (7.2.2)

ii) La imagen de T, denotado por im T, está dado por

im T = {
$$\mathbf{w} \in W$$
: $\mathbf{w} = T\mathbf{v}$ para alguna $\mathbf{v} \in V$ } (7.2.3)

Observación 1. Observe que nu T es no vacío porque, de acuerdo con el teorema 7.2.1, $T(\mathbf{0}) = \mathbf{0}$, de manera que $\mathbf{0} \in \mathbb{N}$ para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que "se transformen en 0". De nuevo, observe que cuando escribimos $T(\mathbf{0}) = \mathbf{0}$, el $\mathbf{0}$ de la izquierda está en V y el de la derecha en W.

Observación 2. La imagen de T es simplemente el conjunto de "imágenes" de los vectores en V bajo la transformación T. De hecho, si $\mathbf{w} = T\mathbf{v}$, se dice que \mathbf{w} es la **imagen** de \mathbf{v} bajo T.

Antes de dar ejemplos de núcleos e imágenes, se demostrará un teorema de gran utilidad.

Imagen