Week 2-1: Linear Regression

with Multiple Variables

1. Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

Midterm Exam	$(Midterm Exam)^2$	Final Exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is the square of the midterm score. Further, you plan to use both feature-scaling (dividing by the max-min, or range, of a feature) and mean normalization. What is the normalized feature $x_2^{(4)}$? (Hint: midterm = 69, final = 78 is training example 4.) Please round off your answer to two decimal places and enter in the text box below.

We have our score vector as: $\begin{bmatrix} 7921 \\ 5184 \\ 8836 \\ 4761 \end{bmatrix}$. The range of these values is 8836 - 4761 = 4075. We divide the vector by the range to get: $\begin{bmatrix} 1.94 \\ 1.27 \\ 2.17 \\ 1.17 \end{bmatrix}$. The next step is to find the mean of the values of $\begin{bmatrix} 0.31 \end{bmatrix}$

 x_2 , which is about 1.64. Finally, we replace each x_i in the vector with $x_i - \mu$ to get: $\begin{bmatrix} 0.31 \\ -0.37 \\ 0.53 \\ -0.47 \end{bmatrix}$.

Thus, the value of the normalized feature $x_2^{(4)}$ is $\boxed{-0.47}$

2. You run gradient descent for 15 iterations with $\alpha = 0.3$ and compute $J(\theta)$ after each iteration. You find that the value of $J(\theta)$ decreases slowly and is still decreasing after 15 iterations. Based on this, which of the following conclusions seems most plausible?

Rather than using the current value of α , it'd be more promising to try a larger value of α , say 1.0.

3. Suppose you have m=14 training examples with n=3 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

$$X$$
 is 14×4 , y is 14×1 , θ is 4×1 .

4. Suppose you have a dataset with m = 1000000 examples and n = 200000 features for each example. You want to use multivariable linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.

- 5. Which of the following are reasons for using feature scaling?
 - (a) It speeds up gradient descent by making each iteration of gradient descent less expensive to compute.