

Лекция 11

Не забываем отмечаться и оставлять отзывы

Нейронные сети. CNN. Лекция 11

Содержание лекции

- 1. Задачи обработки изображений
- 2. Свёрточные нейронные сети
- 3. Свёрточные слои, операции пулинга
- 4. Регуляризации нейронных сетей. Dropout
- 5. Transfer learning

Изображения

Параметры изображения:

1. Размеры: (w, h)

2. Каналы: с

3. Динамический диапазон: d

Типичные изображения:

Цветные(RGB) -(w, h, 3), 8 bit **Черно-белые**(Grayscale) -(w, h) или (w, h, 1), 8 bit

Задачи обработки изображений

Основные задачи обработки изображений:

- 1. Классификация объектов
- 2. Детектирование объектов
- 3. Сегментация объектов

(a) classification

(b) detection

(c) segmentation

Фильтрация, операция свертки

Дано:

Исходное изображение I, массив (w, h)

Ядро свертки K, массив (x, y), x < w, y < h

Поиск границ, оператор Собеля (пример фильтрации)

Идея: посчитаем градиент яркости изображения

$$\mathbf{G}_y = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ +1 & +2 & +1 \end{bmatrix} * \mathbf{A} \quad ext{and} \quad \mathbf{G}_x = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} * \mathbf{A}$$

$$\mathbf{G} = \sqrt{{\mathbf{G}_x}^2 + {\mathbf{G}_y}^2}$$

Оператор Собеля, поиск границ

Пример работы оператора Собеля

Padding + операция свертки

Convolution

Input						Kernel			Output			
0	0	0	 	0				0	3	8	4]
0	3	4	5	0 ~~~ 0	*	0 1 =	=	9	19	25	10	
0	6	7	8	0				21	37	43 8	16 0	
0	0	0	0	0				0		0	U	

Padding добавляет к краям поддельные пиксели (обычно нулевого значения).

Таким образом, ядро при проскальзывании позволяет неподдельным пикселям оказываться в своем центре, а затем распространяется на поддельные пиксели за пределами края, создавая выходную матрицу того же размера, что и входная.

Template Matching

Проходим по изображению сравнивая эталонное изображение с фрагментами исследуемого каким-либо образом

template

Проблема масштаба, пирамиды изображений

Пирамиды изображений позволяют выполнять Template Matching в различных масштабах

Свёрточные слои

Свёрточный слой - это полносвязный слой в котором мы игнорируем не локальные связи, а локальные связи считаем общими для всех нейронов

Fully Connected

Слои пулинга

Слои **пулинга** (pooling) -это слои снижения размерности карт признаков

Для снижения размерности как правило используют функцию max

Нейронные сети. CNN. LeNet-5

Основные параметры сети:

- Перед подачей в сеть изображения стандартизировали
- Свертки 5х5
- Пулинг с функцией sum
- Сигмоидальная функция активации

LeCun et al., 1998

http://yann.lecun.com/exdb/lenet/

Нейронные сети. CNN. LeNet-5

Архитектура сети:

Карты признаков

Что такое ImageNet?

ImageNet - проект, направленный на (ручную) маркировку и категоризацию изображений в примерно 22 000 отдельных категорий объектов для задач исследований в области компьютерного зрения.

В рамках проекта **ImageNet** ежегодно проводится соревнование ImageNet Large Scale Visual Recognition Challenge (**ILSVRC**)

ILSVRC

Задача соревнования - построить модель, для классификации изображений в 1000 отдельных категорий объектов. Эти 1000 категорий изображений представляют классы предметов, с которыми мы сталкиваемся в повседневной жизни, такие как виды собак, кошек, различные предметы быта, типы транспортных средств и многое другое.

1. Train: ~1.2 миллиона изображений

2. Test: ~100 тысяч изображений

ILSVRC

VGG-16

Архитектура сети VGG-16 (победитель ILSVRC 2014)

Нейронные сети. CNN.

VGG 16

ResNet

Регуляризация NN. Dropout

Суть метода заключается в том, что в процессе обучения выбирается слой, из которого случайным образом выбрасывается определённое количество нейронов, которые выключаются из дальнейших вычислений.

CNN. Image Embedding

Transfer learning

Спасёнов Алексей

a.spasenov@corp.mail.ru