КРАТКОЕ ОПИСАНИЕ ПРОТОКОЛА MODBUS/RTU

RNJATOHHA

В данном документе приведено краткое описание протокола MODBUS/RTU с передачей данных по последовательному интерфейсу.

ПРОТОКОЛ ПЕРЕДАЧИ ДАННЫХ MODBUS/RTU

Модель OSI протокола ModBus/RTU представлена на рисунке 1.

Уровень	Mодель ISO/OSI		
7	Прикладной уровень	Прикладной уровень ModBus	
6	Представительский уровень		
5	Сеансовый уровень		
4	Транспортный уровень		
3	Сетевой уровень		
2	Канальный уровень	Протокол последовательного интерфейса ModBus	
1	Физический уровень	EIA/TIA-485 (RS-485) или EIA/TIA-232 (RS-232)	

Рисунок 1 – Модель ISO/OSI протокола ModBus/RTU

1 Физический уровень

В качестве среды передачи данных используется двухпроводный (полудуплексный) или четырехпроводный (дуплексный) дифференциальный интерфейс TIA/EIA-485 (TIA/EIA-422). Требования к параметрам среды передачи данных приведены в стандарте ANSI/TIA/EIA-485-A-98.

2 Канальный уровень

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов.

Протокол MobBus является протоколом типа "ведущий-ведомый", т.е. в одно и то же время к шине подключено может быть только одно ведущее устройство (мастер) и один или несколько (до

247) ведомых устройств (слейвы). Передача данных инициируется всегда ведущим устройством. Ведомые устройства могут отвечать отвечают только на запросы ведущего.

Ведущее устройство единовременно может инициировать запросы к конкретному ведомому устройству (unicast mode) или всем ведомым устройствам (broadcast mode – широковещательный запрос). Ведомые устройства сети не отвечают на широковещательные запросы, а только принимают их. Для передачи широковещательных запросов используется адрес 0.

Протокол ModBus предполагает использование адресов ведомых устройств в диапазоне 1-247. Каждое устройство в сети должно иметь уникальный адрес.

Формат данных протокола ModBus/RTU представлен на рисунке 2.

Старт	9 бит поши м	Бит	Стоп
бит	8 бит данных	четности	бит

Рисунок 2 – Формат данных

Посылка каждого байта начинается со старт-бита, после которого следуют 8 бит данных, бит четности (even) и стоп бит. Таким образом, одна посылка данных состоит из 11 бит.

Для согласования со сторонними изделиями, возможна работа без бита четности, при этом должны использоваться два стоп-бита, как указано на рисунке 3.

ı	Старт	0 6	Стоп	Стоп
ı	бит	8 бит данных	бит	бит

Рисунок 3 – Альтернативный формат данных

Обмен данными по протоколу производится фреймами пакетами (данных). Структура фрейма приведена на рисунке 4.

Адрес	Функция	Данные	Контрольная сумма

Рисунок 4 – Структура фрейма

Фрейм начинается с посылки адрес устройства, к которому отправляется запрос (или адрес устройства, которое формирует ответ). Диапазон возможных значений адресов: 0–247. Адрес 0 (нулевой) является широкополосным и предназначен для передачи информации всем устройствам в сети. Запрос с нулевым адресом устройства не предполагает ответа.

После передачи адреса следует байт функции, определяющий функциональную принадлежность запроса (ответа). Диапазон возможных значений: 0 – 255.

После передачи Функции следует передача данных. Передача данных осуществляется побайтно. Количество передаваемых байт – 0...252.

После передачи данных следует два байта контрольной суммы, предназначенных для проверки достоверности принимаемой информации.

В соответствии с протоколом ModBus/RTU, длина фрейма может быть переменной, не более 256 байт. Передача байт данных в пределах фрейма производится последовательно с промежутком времени между передачей не более 1,5 времени передачи одного байта данных.

В протоколе используется повременная синхронизация начала и завершения передачи.

Диаграмма передачи фреймов приведена на рисунке 5.

Рисунок 5 – Диаграмма передачи фреймов

Перед началом передачи очередного фрейма, необходима выдержка времени, соответствующая 3,5 временам передачи одного байта данных (t3,5) после завершения передачи предыдущего фрейма (или "ложной" передачи данных).

Завершение передачи фрейма является отсутствие передачи данных в течении 1,5 времени передачи одного байта данных (t1,5). Однако, если по истечении времени t1,5 в течение времени t3,5 возобновится передача данных, то фрейм считается недостоверным.

Все устройства в сети должны иметь один формат передачи данных и одну скорость передачи данных. Рекомендуемая скорость передачи данных - 19,2 кБит/с. Допускается передача данных на скоростях 9,6 кБит/с, 57,6 кБит/с, 115,2 кБит/с.

Для определения достоверности принимаемых данных используются:

- контроль бита четности при передаче каждого байта (аппаратная функция приемопередатчика);
- подсчет и сравнение контрольной суммы CRC (Cyclical Redundancy Checking) при передаче фрейма.

Контрольная сумма состоит из 2-х байт в формате [MSB(старший байт)]LSB(младший байт)].

Контрольная сумма подсчитывается и добавляется в конец фрейма передающим устройством, и сравнивается принимающим устройством с контрольной суммой, подсчитанной им по принятым данным.

В подсчете контрольной суммы используются все байты фрейма, начиная с первого (адреса).

Подсчет контрольной суммы производится следующим образом:

- 1) Записывается в 16-ти битный регистр CRC число 0xFFFF.
- 2) Первому байту данных и регистру CRC применяется функция XOR, результат помещается в CRC регистр;
- 3) Регистр CRC сдвигается вправо на 1 бит, старший бит CRC регистра устанавливается в 0. Проверяется сдвинутый бит CRC регистра.
- 4) Если сдвинутый бит CRC регистра равен 1, то CRC регистру и полиномиальному числу (например 0xA001) применяется функция XOR;
 - 5) Выполняются пункты 3,4, пока не будет выполнено 8 сдвигов СКС регистра;
- 6) Следующему байту данных и регистру CRC применяется функция XOR, результат помещается в CRC регистр;
 - 6) Повторяются действия по пунктам 3-6 для оставшихся данных.
- 7) Контрольная сумма передается в фрейме младшим байтом вперед, т.е. в формате LSBIMSB.

Возможна также табличная форма подсчета контрольной суммы, что значительно ускоряет процесс подсчета.

Функция подсчета CRC16 на языке си имеет вид:

```
unsigned short CRC16 ( puchMsg, usDataLen )
unsigned char *puchMsg;
unsigned short usDataLen;
{
unsigned char uchCRCHi = 0xFF; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF; /* low byte of CRC initialized */
unsigned undex; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
{
ulndex = uchCRCLo ^ *puchMsgg++; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[ulndex];
uchCRCHi = auchCRCLo[ulndex];
```

```
}
return (uchCRCHi << 8 | uchCRCLo);
}
static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40};
static char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40};
```

3 Прикладной уровень

Перечень используемых функций протокола ModBus/RTU приведены в таблице 1. Весь перечень функций приведен в MODBUS Application Protocol Specification V1.1b3.

Тип адресации	Описание функции	Код функции (hex)
Битовая адресация	Чтение дискретных входов	0x2
	Чтение состояния релейных выходов	0x1
	Запись состояния одного релейного выхода	0x5
	Запись состояния нескольких релейных выходов	0xF
16-битная	Чтение регистров данных	0x4
адресация	Чтение регистров параметров	0x3
	Запись одного регистра параметров	0x6
	Запись одного нескольких регистров параметров	0x10
Работа с	Чтение данных файла	0x14
файловыми записями	Запись данных файла	0x15
Диагностические	Чтение ID (серийного номера)	0x11
данные		

0х2 - Чтение дискретных входов

Эта функция используется для чтения от 1 до 2000 дискретных входов.

Нумерация дискретных входов начинается с нуля. Значения битов: 1 – соответствует замкнутому состоянию входа, 0 – разомкнутому.

Запрос

Функция	1 байт	0x2
Начальный адрес	2 байта	0x0-0xFFFF
Количество входов	2 байта	1-2000 (0x7D0)
для чтения		

Ответ

Функция	1 байт	0x2
Число байт	1 байт	N*
Байты состояния	N* x 1 байт	
входов		

Функция	1 байт	0x82
Код ошибки	1 байт	0х1, 0х2, 0х3 или 0х4

N* = [Количество входов для чтения]/8, если остаток > 0, то принимается N=N+1

Пример запроса состояния дискретных входов 197-218 устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x2	Функция	0x2
Начальный адрес	0x0	Число байт	0x3
(старший байт)			
Начальный адрес	0xC4	Состояния входов	0xAC
(младший байт)			
		204-197	
Количество входов	0x0	Состояния входов	0xDB
(старший байт)			
		212-205	
Количество входов	0x16	Состояния входов	0x35
(младший байт)			
		218-213	

0х1 - Чтение состояния релейных выходов

Эта функция используется для чтения от 1 до 2000 релейных выходов.

Нумерация релейных выходов начинается с нуля. Значения битов: 1 – соответствует включенному состоянию выхода, 0 – выключенному.

Запрос

Функция	1 байт	0x1
Начальный адрес	2 байта	0x0-0xFFFF
Количество	2 байта	1-2000 (0x7D0)
выходов для чтения		

Ответ

Функция	1 байт	0x1
Число байт	1 байт	N*
Байты состояния	n x 1 байт	n=N* или n=N+1
выходов		

Функция	1 байт	0x81
Код ошибки	1 байт	0х1, 0х2, 0х3 или
		0x4

N* = [Количество выходов для чтения]/8, если остаток > 0, то принимается N=N+1

Пример запроса состояния релейных выходов 20-38 устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x1	Функция	0x1
Начальный адрес	0x0	Число байт	0x3
(старший байт)			
Начальный адрес	0x13	Состояния выходов	0xCD
(младший байт)			
		27-20	
Количество входов	0x0	Состояния выходов	0x6B
(старший байт)			
		35-28	
Количество входов	0x13	Состояния выходов	0x05
(младший байт)			
		38-36	

0х5 - Запись состояния одного релейного выхода

Эта функция используется для записи состояния одного релейного выхода по выбранному адресу.

Нумерация релейных выходов начинается с нуля. Значения регистров: 0xFF00 – соответствует включенному состоянию выхода, 0x00FF – выключенному.

При успешном выполнении команды в ответ устройство присылает копию запроса.

Запрос

Функция	1 байт	0x5
Адрес выхода	2 байта	0x0-0xFFFF
Значение для записи	2 байта	0xFF00 или 0x00FF

Ответ

Функция	1 байт	0x5
Адрес выхода	2 байта	0x0-0xFFFF
Значение для записи	2 байта	0xFF00 или 0x00FF

Функция	1 байт	0x85

Пример включения релейного выхода 173 устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x5	Функция	0x5
Адрес выхода	0x0	Адрес выхода	0x0
(старший байт)		(старший байт)	
Адрес выхода	0xAC	Адрес выхода	0xAC
(младший байт)		(младший байт)	
Значение выхода	0xFF	Значение выхода	0xFF
(старший байт)		(старший байт)	
Значение выхода	0x00	Значение выхода	0x00
(младший байт)		(младший байт)	

0xF - Запись состояния нескольких релейных выходов

Эта функция используется для записи состояния нескольких релейных выходов выбранного диапазона адресов.

Нумерация релейных выходов начинается с нуля. Значения битов: 1 – соответствует включенному состоянию выхода, 0 – выключенному.

При успешном выполнении команды ответ имеет формат: функция, начальный адрес записи, число записанных релейных выходов.

Запрос

Функция	1 байт	0xF
Начальный адрес	2 байта	0x0-0xFFFF
Число выходов для	2 байта	1-2000 (0x07B0)
записи		
Число байт	1 байт	N*
Значение для записи	N* x 1 байт	

N* = [Количество выходов для чтения]/8, если остаток > 0, то принимается N=N+1

Функция	1 байт	0xF
Начальный адрес	2 байта	0x0-0xFFFF
Число записанных	2 байта	1-2000 (0x07B0)
релейных выходов		

Ошибка

Функция	1 байт	0x8F
Код ошибки	1 байт	0х1, 0х2, 0х3 или 0х4

Пример записи состояния релейных выходов 20-30 устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0xF	Функция	0xF
Начальный адрес	0x0	Начальный адрес	0x0
(старший байт)		(старший байт)	
Начальный адрес	0x13	Начальный адрес	0x13
(младший байт)		(младший байт)	
Количество выходов	0x0	Количество выходов	0x0
(старший байт)		(старший байт)	
Количество выходов	0xA	Количество выходов	0xA
(младший байт)		(младший байт)	
Число байт	0x2		
Значение	0xCD		
(старший байт)			
Значение	0x1		
(младший байт)			

0х4 - Чтение регистров данных

Эта функция используется для последовательного чтения от 1 до 125 регистров данных. Нумерация регистров начинается с нуля. Регистры 16-ти битные, беззнаковые или знаковые (в дополнительном коде). 32-х битные регистры разбиваются на два 16-ти битных слова в формате [Hlword, LOWword]

Запрос

Функция	1 байт	0x4
Начальный адрес	2 байта	0x0-0xFFFF
Количество регистров	2 байта	1-125 (0x7D)
для чтения		

Функция	1 байт	0x4
Число байт	1 байт	2 x N*
Байты регистров	N* x 2 байт	

N - Количество регистров для чтения

Ошибка

Функция	1 байт	0x84
Код ошибки	1 байт	0х1, 0х2, 0х3 или 0х4

Пример чтения регистра 9 устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x4	Функция	0x4
Начальный адрес	0x0	Число байт	0x2
(старший байт)			
Начальный адрес	0x8	Значение регистра	0x0
(младший байт)			
		(старший байт)	
Количество регистров	0x0	Значение регистра	0xA
		(младший байт)	
(старший байт)			
Количество регистров	0x1		
(младший байт)			

0х3 - Чтение регистров параметров

Эта функция используется для последовательного чтения от 1 до 125 регистров параметров.

Нумерация регистров начинается с нуля. Регистры 16-ти битные, беззнаковые или знаковые (в дополнительном коде). 32-х битные регистры разбиваются на два 16-ти битных слова в формате [Hlword, LOWword]

Запрос

Функция	1 байт	0x3
Начальный адрес	2 байта	0x0-0xFFFF
Количество регистров	2 байта	1-125 (0x7D)
для чтения		

Функция	1 байт	0x3
Число байт	1 байт	2 x N*
Байты регистров	N* x 2 байт	

N - Количество регистров для чтения

Ошибка

Функция	1 байт	0x83
Код ошибки	1 байт	0х1, 0х2, 0х3 или 0х4

Пример чтения регистров 108-110 устройства с адресом 0x1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x3	Функция	0x3
Начальный адрес	0x0	Число байт	0x6
(старший байт)			
Начальный адрес	0x6B	Значение регистра 108	0x2
(младший байт)			
		(старший байт)	
Количество регистров	0x0	Значение регистра 108	0x2B
, , , , ,		(младший байт)	
(старший байт)			
Количество регистров	0x3	Значение регистра 109	0x0
(14707WW 50KT)		(azanuuğ 5ağz)	
(младший байт)		(старший байт)	0.40
		Значение регистра 109	0x0
		(младший байт)	0.0
		Значение регистра 110	0x0
		(старший байт)	
		Значение регистра 110	0x64
		(младший байт)	

0х6 – Запись одного регистра параметров

Эта функция используется для записи одного регистра параметров.

Нумерация регистров начинается с нуля. Регистры 16-ти битные, беззнаковые или знаковые (в дополнительном коде).

При успешном выполнении команды в ответ устройство присылает копию запроса.

Запрос

Функция	1 байт	0x6
Адрес регистра	2 байта	0x0-0xFFFF
Значение для записи	2 байта	0x0-0xFFFF

Ответ

Функция	1 байт	0x6
Адрес регистра	2 байта	0x0-0xFFFF
Значение для записи	2 байта	0x0-0xFFFF

Ошибка

Функция	1 байт	0x86
Код ошибки	1 байт	0х1, 0х2, 0х3 или 0х4

Пример записи числа 3 в регистр 2 устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x6	Функция	0x6
Адрес регистра	0x0	Адрес регистра	0x0
(старший байт)		(старший байт)	
Адрес регистра	0x1	Адрес регистра	0x1
(младший байт)		(младший байт)	
Значение для записи	0x0	Значение для записи	0x0
(старший байт)		(старший байт)	
Значение для записи	0x3	Значение для записи	0x3
(младший байт)		(младший байт)	

0х10 – Запись одного регистра параметров

Эта функция используется для записи 1-123 регистра параметров.

Нумерация регистров начинается с нуля. Регистры 16-ти битные, беззнаковые или знаковые (в дополнительном коде).

При успешном выполнении команды ответ имеет формат: функция, начальный адрес записи, число записанных регистров.

Запрос

Функция	1 байт	0x10
Адрес начала записи	2 байта	0x0-0xFFFF
Число регистров	2 байта	0x0-0x7B
Число байт	1 байт	2 x N*
Значения для записи	N* x 2 байт	0x0-0xFFFF

Ответ

Функция	1 байт	0x10
Адрес начала записи	2 байта	0x0-0xFFFF
Число записанных регистров	2 байта	1-123(0x7B)

N - Количество регистров для записи

Ошибка

Функция	1 байт	0x90
Код ошибки	1 байт	0х1, 0х2, 0х3 или 0х4

Пример записи чисел 10 и 258 в два регистра, начиная с адреса 1, устройства с адресом 0х1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x10	Функция	0x10
Адрес начала записи	0x0	Адрес начала записи (старший байт)	0x0
(старший байт)			
Адрес начала записи	0x1	Адрес начала записи (младший	0x1
(младший байт)		байт)	
Значение для записи	0x0	Число записанных регистров	0x0
(старший байт)		(старший байт)	
Значение для записи	0xA	Число записанных регистров	0x2
(младший байт)		(младший байт)	
Значение для записи	0x1		
(старший байт)			
Значение для записи	0x2		
(младший байт)			

0х14 – Чтение записи файла

Эта функция используется для чтение файлов.

Файл состоит из записей. Каждый файл может содержать до 1000 записей с адресацией от 0 до 9999.

Функция позволяет считывать несколько групп записей в одном запросе.

Длина считываемой записи должна быть выбрана такой, чтобы длина ответа не превысила 253 байта.

Запрос

Функция	1 байт	0x14
Число байт запроса	1 байт	0x7-0xF5
Группа 1. Тип запроса	1 байт	0x6
Группа 1. Номер файла	2 байта	0x1-0xFFFF
Группа 1. Номер записи	2 байта	0x0-0x270F
Группа 1. Длина записи	2 байта	N
Группа 2. Тип запроса	1 байт	0x6
Группа 2. Номер файла	2 байта	0x1-0xFFFF
Группа 2. Номер записи	2 байта	0x0-0x270F
Группа 2. Длина записи	2 байта	N

Ответ

Функция	1 байт	0x14
Число байт ответа	1 байт	0x7-0xF5
Группа 1. Длина записи	1 байт	0x7-0xF5
Группа 1. Тип запроса	1 байт	0x6
Группа 1. Данные	N x 2 байт	
Группа 2. Длина записи	1 байт	0x7-0xF5
Группа 2. Тип запроса	1 байт	0x6
Группа 2. Данные	N x 2 байт	

Функция	1 байт	0x94
Код ошибки	1 байта	0х1, 0х2, 0х3, 0х4 или 0х8

Пример чтения 2-х групп данных, устройства с адресом 0х1

- 2-х регистров из файла 4, начиная с регистра 1;
- 2-х регистров из файла 3, начиная с регистра 9:

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x14	Функция	0x14
Число байт	0xE	Число байт	0xC
Группа 1. Тип запроса	0x6	Группа 1. Длина записи	0x5
Группа 1. Номер файла	0x0	Группа 1. Тип запроса	0x6
(старший байт)			
Группа 1. Номер файла	0x4	Группа 1. Данные 1	0xD
(младший байт)		(старший байт)	
Группа 1. Номер записи	0x0	Группа 1. Данные 1	0xFE
(старший байт)		(младший байт)	
Группа 1. Номер записи	0x1	Группа 1. Данные 2	0x0
(младший байт)		(старший байт)	
Группа 1. Длина записи	0x0	Группа 1. Данные 2	0x20
(старший байт)		(младший байт)	
Группа 1. Длина записи	0x2	Группа 1. Длина записи	0x5
(младший байт)			
Группа 2. Тип запроса	0x6	Группа 1. Тип запроса	0x6
Группа 2. Номер файла	0x0	Группа 1. Данные 1	0x33
(старший байт)		(старший байт)	
Группа 2. Номер файла	0x3	Группа 1. Данные 1	0xCD
(младший байт)		(младший байт)	
Группа 1. Номер записи	0x0	Группа 1. Данные 2	0x0
(старший байт)		(старший байт)	
Группа 1. Номер записи	0x9	Группа 1. Данные 2	0x40
(младший байт)		(младший байт)	

Группа 1. Длина записи	0x0	
(старший байт)		
Группа 1. Длина записи	0x2	
, , , , , , , , , , , , , , , , , , ,		
(младший байт)		

0х15 – Запись записи файла

Эта функция используется для записи файлов.

Файл состоит из записей. Каждый файл может содержать до 1000 записей с адресацией от 0 до 9999.

Функция позволяет записывать несколько групп записей в одном запросе.

Длина записи должна быть выбрана такой, чтобы длина ответа не превысила 253 байта.

При успешном выполнении команды в ответ устройство присылает копию запроса.

Запрос

Функция	1 байт	0x15
Число байт запроса	1 байт	0x9-0xFB
Группа 1. Тип запроса	1 байт	0x6
Группа 1. Номер файла	2 байта	0x1-0xFFFF
Группа 1. Номер записи	2 байта	0x0-0x270F
Группа 1. Длина записи	2 байта	N
Группа 1. Данные	N x 2 байт	
Группа 2. Тип запроса	1 байт	0x6
Группа 2. Номер файла	2 байта	0x1-0xFFFF
Группа 2. Номер записи	2 байта	0x0-0x270F
Группа 2. Длина записи	2 байта	N
Группа 2. Данные	N x 2 байт	

Функция	1 байт	0x15
Число байт запроса	1 байт	0x9-0xFB
Группа 1. Тип запроса	1 байт	0x6
Группа 1. Номер файла	2 байта	0x1-0xFFFF
Группа 1. Номер записи	2 байта	0x0-0x270F

Группа 1. Длина записи	2 байта	N
Группа 1. Данные	N x 2 байт	
Группа 2. Тип запроса	1 байт	0x6
Группа 2. Номер файла	2 байта	0x1-0xFFFF
Группа 2. Номер записи	2 байта	0x0-0x270F
Группа 2. Длина записи	2 байта	N
Группа 2. Данные	N x 2 байт	

Ошибка

Функция	1 байт	0x95
Код ошибки	1 байта	0х1, 0х2, 0х3, 0х4 или 0х8

Пример записи группы данных, устройства с адресом 0х1

- 3-х регистров в файле 4, начиная с регистра 7;

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x15	Функция	0x15
Число байт	0xD	Число байт	0xD
Тип запроса	0x6	Тип запроса	0x6
Номер файла	0x0	Номер файла	0x0
(старший байт)		(старший байт)	
Номер файла	0x4	Номер файла	0x4
(младший байт)		(младший байт)	
Номер записи	0x0	Номер записи	0x0
(старший байт)		(старший байт)	
Номер записи	0x7	Номер записи	0x7
(младший байт)		(младший байт)	
Длина записи	0x0	Длина записи	0x0
(старший байт)		(старший байт)	
Длина записи	0x3	Длина записи	0x3

(младший байт)		(младший байт)	
Данные 1	0x6	Данные 1	0x6
(старший байт)		(старший байт)	
Данные 1	0xAF	Данные 1	0xAF
(младший байт)		(младший байт)	
Данные 2	0x4	Данные 2	0x4
(старший байт)		(старший байт)	
Данные 2	0xBE	Данные 2	0xBE
(младший байт)		(младший байт)	
Данные 3	0x10	Данные 3	0x10
(старший байт)		(старший байт)	
Данные 3	0xD	Данные 3	0xD
(младший байт)		(младший байт)	

0x11 - Чтение ID (серийного номера)

Эта функция используется для чтения серийного номера изделия

Запрос

Ответ

Функция	1 байт	0x11
Число байт	1 байт	
Байт ID устройства	2 байта	(базовый адрес в формате строки)
Байт статуса	1 байт	0xFF
Байты номера (гг nnnn)	6 байт	(номер в формате строки)

Функция	1 байт	0x91
Код ошибки	1 байта	0х1 или 0х4

Пример чтения ID SVA-35D, устройства с адресом 0x1

Запрос		Ответ	
Адрес	0x1	Адрес	0x1
Функция	0x11	Функция	0x11
		Число байт	0x8
		Байт ID устройства	0x36
		Байт ID устройства	0x30
		Байт статуса	0xFF
		Байт номера 1	0x31
		Байт номера 2	0x33
		Байт номера 3	0x30
		Байт номера 4	0x30
		Байт номера 5	0x30
		Байт номера 6	0x31

Коды ошибок:

0х1 – ошибка функции

0х2 – ошибка адреса данных

0х3 – ошибка значения данных

0х4 – ошибка обработки данных устройством

0x8 – ошибка четности данных файла (для функций 0x14, 0x15)