CANZONERI DANIELE GRILLEA FRANCESCO

Speak Italian

Data Mining and Machine Learning project

Context

- Hand gesture recognition task
 - Camera to record frames
- Pre-trained deep learning model to extract features from the image of a gesture (MediaPipe from Google)
- Machine Learning approach to classify the gesture

Roadmap

- Hand gesture recognition task
 - Camera to record frames
- Pre-trained deep learning model to extract features from the image of a gesture (MediaPipe from Google)
- Machine Learning approach to classify the gesture

Dataset - 1

Data Pre-Processing - 2

Train and Test Split - 3

Model Comparison - 4

Real Time Demostration - 5

Dataset

• Image pre-processing:

- each frame recorded is processed into a sequence of 21 hand landmarks
- x and y are normalized to [0.0, 1.0]
 w.r.t. the palm width and height
- z represents the landmark depth
 compared to the wrist depth

Data acquisition:

we asked 10 different people to record some frames for every gesture

- 0. WRIST
- 1. THUMB_CMC
- 2. THUMB_MCP
- 3. THUMB_IP
- 4. THUMB_TIP
- 5. INDEX_FINGER_MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP
- 8. INDEX_FINGER_TIP
- 9. MIDDLE_FINGER_MCP
- 10. MIDDLE_FINGER_PIP

- 11. MIDDLE_FINGER_DIP
- 12. MIDDLE_FINGER_TIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP
- 16. RING_FINGER_TIP
- 17. PINKY_MCP
- 18. PINKY_PIP
- 19. PINKY_DIP
- 20. PINKY_TIP

Dataset

In the end we collected

- 40.000 data instances
 - 200 data instances for each gesture made by the same person (with the same hand)
- **63 Features**: each of the 21 landmarks is represented by three points X, Y, Z
- 20 Classes: for each gesture we considered left and right hand
- No data cleaning needed
 - Prerfectly balanced classes
 - Noise tolerant / No outliers

10 Different Gestures

- ThumbUp
- ThumbDown
- Okay
- Gun
- Call

- Fist
- Stop
- Peace
- Rock
- Index

Pre-Processing

Attributes that represent the z point of a landmark have similar behaviour among all gestures.

Moreover, we found that all attributes relative to z-axis have a variance below a threshold fixed to 0.002.

Pre-Processing

Train-Test Split

- Ordered dataset:
 - user as primary key
 - gesture as secondary key
- Stratified 5-Fold Cross Validation
 - 8000 instances for each fold
- Each fold is made by all gestures made by two different users
 - the test set is made of landmarks belonging to unseen users

Hyperparameters

kNN

Chosen value = 4

 not the highest accuracy but the difference is very low, so we choose the simplest

Random Forest

Chosen value = 14

highest accuracy

Comparison

	Accuracy	Precision	Recall	F1_score
Gaussian Naive Bayesian	0.99	0.99	0.99	0.99
DecisionTree Classifier	0.958	0.964	0.958	0.956
Random Forest (n=14)	0.984	0.986	0.984	0.984
kNN (k=4)	0.99	0.991	0.99	0.99
SVC	0.9936	0.9939	0.9936	0.9936

Comparison

The chosen model is

Gaussian Naive Bayesian Classifier

- For real-time application we need low latency:
 - eager learners are preferred to lazy learners.
- No need to store structures in memory unlike Decision Tree Classifiers or Random Forest.

Real Time Usage

CANZONERI DANIELE GRILLEA FRANCESCO

Live Demo

model chosen: Gaussian Naive Bayes