OPTYMALIZACJA PROJEKT ZALICZENIOWY NR 2

W poniższej tabeli zaprezentowaliśmy optymalne odpowiedzi dla danych ruchów przeciwnika zależnie od liczby oczek na naszej kostce (oznaczonej jako X).

Ruch przeciwnika / Liczba oczek	X = 1	X = 2	X = 3	X= 4
BRAK	(1,1)	(1,2)	(1,3)	(1,4)
(1,1)	(1,2)	(1,2)	(1,3)	(1,4)
(1,2)	(1,3)	(1,3)	(1,3)	(1,4)
(1,3)	(1,4)	(1,4)	(1,4)	(1,4)
(1,4)	(2,2)	(2,2)	(2,3)	(2,4)
(2,1)	(2,2)	(2,2)	(2,3)	(2,4)
(2,2)	(2,3)	Bluff	(2,3)	(2,4)
(2,3)	(2,4)	Bluff	Bluff	(2,4)
(2,4)	Bluff	Bluff	Bluff	Bluff

Plik z wynikami składa się z listy ruchów przeciwnika i odpowiedzi na nie w zależności od liczby oczek na naszej kostce.

WSTĘPNE ZAŁOŻENIA

1. Na potrzeby algorytmu obliczamy prawdopodobieństwo wygranej w momencie gdy nasz przeciwnik powie *Bluf*. Wynik uzależniony jest od liczby oczek na naszej kostce.

$$P(A | X = k, Y) = \sum_{n=1}^{4} P(A \wedge X = 1 \wedge Y = n)P(Y = n)$$

gdzie:

- A nasz ruch
- k ustalona wartość na naszej kostce, należąca do zbioru $\{1,2,3,4\}$
- n liczba oczek na kostce przeciwnika (nieznana)
- 2. Korzystając z otrzymanych wartości liczymy wypłaty dla konkretnych wartości oczek na naszej kostce. W tym celu używamy wzoru:

$$w(A) = P(A \mid X = k, Y = n) + (-1)*(1 - P(A \mid X = k, Y = n)) = 2P(A \mid X = k, Y = n) - 1$$

Otrzymujemy tym sposobem wektory postaci

$$[w(1,1), w(1,2), w(1,3), w(1,4), w(2,1), w(2,2), w(2,3), w(2,4)]$$

- dla X = 1: $\left[1, 1, 1, 1, -\frac{1}{2}, 0, 0, 0\right]$
- dla X = 2: $\left[-\frac{1}{2}, 1, 0, 0, -1, 0, -1, -1 \right]$
- dla X = 3: $\left[-\frac{1}{2}, 0, 1, 0, -1, -1, 0, -1 \right]$
- dla X = 4: $\left[-\frac{1}{2}, 0, 0, 1, -1, -1, -1, 0 \right]$

3. Formulujemy problemy liniowe:

- Optymalizowana funkcja funkcja wypłaty,
- Zmienne prawdopodobieństwa zagrania poszczególnych ruchów
- Ograniczenia zerowanie prawdopodobieństw niewykonalnych zagrań oraz formułowanie wypłat dla poszczególnych wyników rzutu kostką.

Rozwiązujemy problem liniowy dla każdego możliwego zagrania przeciwnika przy posiadaniu każdego możliwego wyniku rzutu kostką, czyli 8 x 4 = 32 problemy liniowe.