1)

.)						
		L1	L2	L3	L4	L5
	L1	0	1	0	0	0
	L2	0	0	0	0	0
	L3	1	1	0	1	1
	L4	1	1	0	0	0
	L5	1	1	0	1	0

2)

8.18

(1) 采用中断方式

假设中断一次传输硬盘一个扇区的数据,一个扇区有 512 个字节, load 和 store 的指令一次读/写 32 位数据,其他操作时间可以忽略不计。那么,一次中断处理所需时间最少为(2+2)个时钟周期×512 个字节/4 个字节+13 个时钟周期=525 个时钟周期=5.25×10-6s

 $N \le 512/5.25 \times 10^6$ $N_{max} = 512/5.25 \times 10^6 = 9.75 \times 10^7 \text{ B/s}$

(2) 采用 DMA 方式

假设 DMA 一次传输硬盘一个扇区的数据,一个扇区有 512 个字节,其他操作时间可以 忽略不计。因为 DMA 操作与 CPU 操作并行,每次 DMA 传输结束 CPU 要进行一次中断响应,所以,可认为一次 DMA 操作所需时间最少为 13 个 CPU 时钟周期

 \therefore N \leq 512/13×10⁸ N_{max}=512/13×10⁸=3.94×10⁹ B/s