# Multimedia Computing

### Image Compression:

Part 1



### Topics

- Lossless image compression
- Lossy image compression
  - Distortion and Quantization
  - Transform based coding
  - Wavelet based coding
- JPEG Standard

### Lossless Predictive Coding (LPC)



Prediction error sequence Y usually contains less entropy than the original sequence X

### 2D image LPC

Raster scanning order: left  $\rightarrow$  right, top  $\rightarrow$  bottom

**Brown points:** 

available pixels



coded

Dark green point: the pixel being coded

**Predictor** 
$$\hat{X}_{m,n} = \sum_{k=1}^{K} a_k X_k, \forall m, n$$

#### Predictors in Lossless JPEG (JPEG-LS)

# 

- JPEG-LS is a special case of JPEG image compression.
- We predict X using A, B and C.

#### **Predictors in JPEG-LS**

| P1 | A (horizontal predictor) |
|----|--------------------------|
| P2 | B (vertical predictor)   |
| P3 | С                        |
| P4 | A+B-C                    |
| P5 | Median{A,B,A+B-C}        |
| P6 | LA+(B-C)/2               |
| P7 | L B+(A-C)/2              |
| P8 | [(A+B)/2]                |

#### Comparing P1, P2 and P5: example



- With P1, the prediction errors for the two cases are -50 and 0, respectively.
- With P2, the prediction errors for the two cases are 0 and -50, respectively.
- With P5, the prediction errors for the two cases are both 0.
- Usually P5 works better than P1 and P2, of course the price is more computation.

Suppose we have the following image

| 10 | 12 | 13 | 14 |
|----|----|----|----|
| 12 | 15 | 14 | 15 |
| 11 | 16 | 18 | 13 |
| 13 | 10 | 11 | 12 |

What is the entropy of this image?

The PDF of the image is

| 10   | 11   | 12   | 13   | 14   | 15   | 16   | 18   |
|------|------|------|------|------|------|------|------|
| 2/16 | 2/16 | 3/16 | 3/16 | 2/16 | 2/16 | 1/16 | 1/16 |

The entropy is

$$\eta = -\sum_{i} p_{i} \log_{2} p_{i} = 2.9056$$

- We code the image as follows
  - Code the first row using P1
  - Code the first column using P2
  - Code the other pixels using P5
- Then the prediction error image is

| 10 | 2  | 1  | 1  |
|----|----|----|----|
| 2  | 3  | -1 | 1  |
| -1 | 2  | 3  | -5 |
| 2  | -6 | -1 | 1  |

The PDF of the prediction error image is

| 1    | 2    | 3    | 10   | -1   | -5   | -6   |
|------|------|------|------|------|------|------|
| 4/16 | 4/16 | 2/16 | 1/16 | 3/16 | 1/16 | 1/16 |

The entropy is

$$\eta = -\sum_{i} p_{i} \log_{2} p_{i} = 2.5778$$

The entropy of the prediction error is smaller.

### Example: Lena



Vertical predictor P2  $\eta = 4.67$  bits

Predictor P5  $\eta = 4.55$  bits

#### Lab exercise

- Write a Matlab program to calculate the histogram (i.e. PDF) of the grey level image Lena, and then calculate its entropy.
- Use the P1 and P5 predictors in JPEG-LS, write a Matlab program to calculate the prediction error, then calculate the PDF and entropy of the prediction error.
- Plot the two PDFs, compare their shapes and the associated entropy values.

### Topics

- Lossless image compression
- Lossy image compression
  - Distortion and Quantization
  - Transform based coding
  - Wavelet based coding
- JPEG Standard

# Lossy Compression

- Lossless compression algorithms do not deliver compression ratios that are high enough. Hence, most multimedia compression algorithms are lossy.
- What is lossy compression?
  - The compressed data is not the same as the original data, but a close approximation of it.
  - Yields a much higher compression ratio than that of lossless compression.

#### Distortion Measures

- The three most commonly used distortion measures in image compression are:
  - 1. Mean Square Error (MSE)

$$\sigma_e^2 = \frac{1}{N \times M} \sum_{i=1}^{N} \sum_{j=1}^{M} (I(i,j) - \hat{I}(i,j))^2$$

*I* : The original image

Î: The reconstructed image after compression

#### Distortion Measures

#### 2. Signal to Noise Ratio (SNR)

$$SNR = 10\log_{10}\frac{\sigma_I^2}{\sigma_e^2}$$

 $\sigma_I^2$ : The mean square value of the original image

$$\sigma_I^2 = \frac{1}{N \times M} \sum_{i=1}^{N} \sum_{j=1}^{M} I^2(i, j)$$

 $\sigma_e^2$ : The MSE of the reconstructed image after compression

#### Distortion Measures

2. Peak Signal to Noise Ratio (PSNR)

$$SNR = 10\log_{10} \frac{x_I^2}{\sigma_e^2}$$

 $x_I$ : The peak value of the original image I

Usually we let  $x_I = 255$  for digital images

 $\sigma_e^2$ : The MSE of the reconstructed image after compression

#### The Rate-Distortion Theory

Provides a framework for the study of tradeoffs between code Rate and signal/image Distortion.



A typical rate-distortion function

#### Quantization

- Reduce the number of distinct output values to a much smaller set.
- The main source of the "loss" in lossy compression.
- Three different forms of quantization.
  - Uniform Quantization
  - Non-uniform Quantization
  - Vector Quantization

#### Uniform Scalar Quantization

- A uniform scalar quantizer partitions the domain of input values into equally spaced intervals, except possibly at the two outer intervals.
  - The output or reconstruction value corresponding to each interval is taken to be the midpoint of the interval.
  - □ The length of each interval is referred to as the step size, denoted by the symbol ∆.
- Two common types of uniform scalar quantizers:
  - Midrise quantizers have even number of output levels.
  - Midtread quantizers have odd number of output levels, including zero as one of them.

### Midrise and Midtread Quantizers



### Some special cases (optional)

■ For the special case where  $\Delta = 1$ , we can simply compute the output values for these quantizers as:

$$Q_{midrise}(x) = \lceil x \rceil - 0.5$$

$$Q_{midtread}(x) = \lfloor x + 0.5 \rfloor$$

For M level quantizer, suppose the input is uniformly distributed in the interval [-X<sub>max</sub>, X<sub>max</sub>]. The rate of the quantizer is:

$$R = \lceil \log_2 M \rceil$$

# Quantization Error of Uniformly Distributed Source (optional)

- Granular distortion: quantization error caused by the quantizer for bounded input.
  - To get an overall figure for granular distortion, notice that decision boundaries b<sub>i</sub> for a midrise quantizer are [(i − 1)∆, i∆], i = 1,2,...,M/2, covering positive data X (and another half for negative X values).
  - Output quantized values  $y_i$  are the midpoints  $i\Delta$ - $\Delta$ /2, i = 1,2,...,M/2, again just considering the positive data. The total distortion is twice the sum over the positive data, or

$$D_{gran} = 2 \sum_{i=1}^{\frac{M}{2}} \int_{(i-1)\Delta}^{i\Delta} \left( x - \frac{2i-1}{2} \Delta \right)^2 \frac{1}{2X_{max}} dx$$

- Since the reconstruction values  $y_i$  are the midpoints of each interval, the quantization error must lie within the values  $[-\Delta/2, \Delta/2]$ .
- For a uniformly distributed source, the graph of the quantization error is as follows



### Companded quantization (optional)

- Companded quantization is nonlinear.
- A compander consists of a compressor function G, a uniform quantizer, and an expander function G<sup>-1</sup>.
- The two commonly used companders are the μ-law and A-law companders.



### Vector Quantization (optional)

- According to Shannon's original work on information theory, any compression system performs better if it operates on vectors or groups of samples rather than individual symbols or samples.
- Form vectors of input samples by simply concatenating a number of consecutive samples into a single vector.
- Instead of single reconstruction values as in scalar quantization, in vector quantization (VQ) code vectors with n components are used. A collection of these code vectors form the codebook.

### Topics

- Lossless image compression
- Lossy image compression
  - Distortion and Quantization
  - Transform based coding
  - Wavelet based coding
- JPEG Standard

### Transform Coding

#### Why transform?

- If we transform the input signal X into Y using a linear transform T such that the components of Y are much less correlated, then Y can be coded more efficiently than X.
- If most information can be accurately described by only few components of a transformed vector, then the remaining components can be coarsely quantized, or even set to zero, with little signal distortion.
- We will first study Discrete Cosine Transform (DCT) and Karhunen-Loève Transform (KLT), and then study Wavelet Transform (WT).

# How does transformation works?

- By transformation, we can view the same thing in different worlds (domains), e.g. from the Yang (阳) domain to Yin (阴) domain in Chinese philosophy.
- We can view the ordinary representation (time/spatial/temporal) of signals/images/videos as in the Yang domain, and the representation in the transformed world as in the Yin domain.
- Many times, an event can be better represented in the other domains with less cost.
- The predictive coding is actually a transformed coding because we transform the original signal into the difference domain.
- One key point in transform based coding is that the original data can be transformed back from the transformed domain.

#### An example



- Suppose in the (x, y) coordinate world, the point A is represented by (2,1), we need two numbers to index it.
- We can transform the "world" by using a rotation transformation as follows, and then in the new (x', y') world the point A can be represented as  $(sqrt(5), 0) \rightarrow only$  one number is needed.

$$\begin{bmatrix} A_{x'} \\ A_{y'} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} A_x \\ A_y \end{bmatrix}$$

#### Discrete Cosine Transform (DCT)

- Spatial frequency indicates how many times pixel values change across an image block.
- The DCT formalizes this notion with a measure of how much the image contents change in correspondence to the number of cycles of a cosine wave per block.
- The role of the DCT is to decompose the original signal into its DC (direct current) and AC (alternative current) components; the role of the Inverse DCT (IDCT) is to reconstruct (recompose) the signal.

#### Definition of DCT

Given an input function f(i,j) over two integer variables i and j, the 2D DCT transforms it into a new function F(u,v), with integer u and v running over the same range as i and j. The general definition of the DCT is:

$$F(u,v) = \frac{2C(u)C(v)}{\sqrt{MN}} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \cos \frac{(2i+1) \cdot u\pi}{2M} \cdot \cos \frac{(2j+1) \cdot v\pi}{2N} \cdot f(i,j)$$

where i, u = 0,1,2,..., M-1; j, v = 0,1,2,...,N-1; and the constants C(u) and C(v) are determined by

$$C(\xi) = \begin{cases} \frac{\sqrt{2}}{2} & if & \xi = 0, \\ 1 & otherwise. \end{cases}$$

#### 2D DCT and 2D IDCT

#### **2D DCT**

$$F(u,v) = \frac{C(u)C(v)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} \cos \frac{(2i+1)u\pi}{16} \cos \frac{(2j+1)v\pi}{16} f(i,j)$$

where i, j, u, v = 0, 1, ..., 7.

#### 2D Inverse DCT (2D IDCT)

$$\tilde{f}(i,j) = \sum_{u=0}^{7} \sum_{v=0}^{7} \frac{C(u)C(v)}{4} \cos \frac{(2i+1)u\pi}{16} \cos \frac{(2j+1)v\pi}{16} F(u,v)$$

where i, j, u, v = 0, 1, ..., 7.

#### 1D DCT and 1D IDCT

#### 1D DCT

$$F(u) = \frac{C(u)}{2} \sum_{i=0}^{7} \cos \frac{(2i+1)u\pi}{16} f(i)$$

where i, u = 0, 1, ..., 7.

#### 1D Inverse DCT (1D IDCT)

$$\tilde{f}(i) = \sum_{u=0}^{7} \frac{C(u)}{2} \cos \frac{(2i+1)u\pi}{16} F(u)$$

where i, u = 0, 1, ..., 7.

Almost all properties of 1D DCT can be readily extended to 2D DCT.

#### 1D DCT basis functions: cos(•)



#### 1D DCT basis functions: cos(•)



### Example



Constant signal  $f_1$ =[100, 100, ...,100]. Its DCT is

$$F_1(0) = \frac{\sqrt{2}}{2 \cdot 2} \left( 1 \cdot 100 + 1 \cdot 100 + \dots + 1 \cdot 100 \right) \approx 283$$

$$F_1(1) = \frac{1}{2} \left( \cos \frac{\pi}{16} \cdot 100 + \cos \frac{3\pi}{16} \cdot 100 + \dots + \cos \frac{15\pi}{16} \cdot 100 \right) = 0$$

$$F_1(2) = F_1(3) = \dots = F_1(7) = 0$$

### Example



Signal  $f_2$  is a discrete cosine signal

$$f_2(i) = 100\cos((2i+1)\pi/8)$$

#### Its DCT is

$$F_2(0) = \frac{\sqrt{2}}{2 \cdot 2} \left( 100 \cos \frac{\pi}{8} + 100 \cos \frac{3\pi}{8} + \dots + 100 \cos \frac{15\pi}{8} \right) = 0$$

$$F_2(1) = F_2(3) = F_2(4) = \dots = F_2(7) = 0$$

$$F_2(2) = \frac{1}{2} (\dots) = 200$$

# Example





#### DCT is a linear transform

In general, a transform T (or function) is linear, if and only if

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

where  $\alpha$  and  $\beta$  are constants, p and q are any functions, variables or constants.

 From the definition of DCT, we can easily prove that DCT is a linear transform because it uses only simple arithmetic operations.



f(i): 85 -65 15 30 -56 35 90 60

F(u): 69 -49 74 11 16 117 44 -5

Can we recover the original signal f(i) from its DCT F(u)?

$$\tilde{f}(i) = \sum_{u=0}^{7} \frac{C(u)}{2} \cos \frac{(2i+1)u\pi}{16} F(u)$$

We can see that IDCT can be implemented as a loop with eight iterations.

Iteration 0 (DC) 
$$\tilde{f}(i) = \frac{C(0)}{2} \cdot \cos(0) \cdot F(0) = \frac{\sqrt{2}}{2 \cdot 2} \cdot 1 \cdot 69 \approx 24.3$$
Iteration 1 
$$\tilde{f}(i) = \frac{C(0)}{2} \cdot \cos(0) \cdot F(0) + \frac{C(1)}{2} \cdot \cos\frac{(2i+1)\pi}{16} \cdot F(1)$$

$$\approx 24.3 - 24.5 \cos\frac{(2i+1)\pi}{16}$$
Iteration 2 
$$\tilde{f}(i) \approx 24.3 - 24.5 \cos\frac{(2i+1)\pi}{16} + 37 \cos\frac{(2i+1)\pi}{8}$$

• • • •





### Orthonormality of Cosine Bases

• Functions  $B_p(i)$  and  $B_q(i)$  are orthogonal, if

$$\sum_{i} [B_p(i) \cdot B_q(i)] = 0 \qquad if \quad p \neq q$$

• Functions  $B_p(i)$  and  $B_q(i)$  are orthonormal, if they are orthogonal and

$$\sum_{i} [B_p(i) \cdot B_q(i)] = 1 \qquad if \quad p = q$$

It can be shown that cosine functions are orthonormal:

$$\sum_{i=0}^{7} \left[ \cos \frac{(2i+1) \cdot p\pi}{16} \cdot \cos \frac{(2i+1) \cdot q\pi}{16} \right] = 0 \quad if \quad p \neq q$$

$$\sum_{i=0}^{7} \left[ \frac{C(p)}{2} \cos \frac{(2i+1) \cdot p\pi}{16} \cdot \frac{C(q)}{2} \cos \frac{(2i+1) \cdot q\pi}{16} \right] = 1 \quad if \quad p = q$$

#### 2D DCF basis functions

In 1D DCT, we have 8 basis functions; in 2D DCT, we have 64 basis functions, each is a 8×8 spatial frequency image F(u,v).



# 2D Separable Basis

The 2D DCT can be separated into a sequence of two, 1D DCT steps:

$$G(i,v) = \frac{1}{2}C(v)\sum_{j=0}^{7}\cos\frac{(2j+1)v\pi}{16}f(i,j)$$

$$F(u,v) = \frac{1}{2}C(u)\sum_{i=0}^{7}\cos\frac{(2i+1)u\pi}{16}G(i,v)$$

It is straightforward to see that this simple change saves many arithmetic steps. The number of iterations required is reduced from 8×8 to 8+8.

#### Karhunen-Loève Transform (KLT)

#### (optional)

- The KLT is a reversible linear transform that exploits the statistical properties of the vector representation.
- It optimally decorrelates the input signal.
- To understand the optimality of the KLT, consider the autocorrelation matrix R<sub>x</sub> of the input vector X defined as

$$R_{X} = E[XX^{T}]$$

$$= \begin{bmatrix} R_{X}(1,1) & R_{X}(1,2) & \cdots & R_{X}(1,k) \\ R_{X}(2,1) & R_{X}(2,2) & \cdots & R_{X}(2,k) \\ \vdots & \vdots & \ddots & \vdots \\ R_{X}(k,1) & R_{X}(k,2) & \cdots & R_{X}(k,k) \end{bmatrix}$$

#### KLT

- Our goal is to find a transform T such that the components of the output Y are uncorrelated, i.e. E[Y<sub>t</sub>Y<sub>s</sub>] = 0, if t ≠ s. Thus, the autocorrelation matrix of Y takes on the form of a positive diagonal matrix.
- Since any autocorrelation matrix is symmetric and non-negative definite, there are k orthogonal eigenvectors  $u_1, u_2, ..., u_k$ , and k corresponding real and nonnegative eigenvalues  $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k \ge 0$ .

#### **KLT**

If we define the KLT as

$$T = [u_1, u_2, ..., u_k]^T$$

Then, the autocorrelation matrix of Y becomes

$$R_{\mathbf{Y}} = E[\mathbf{Y}\mathbf{Y}^T] = E[\mathbf{T}\mathbf{X}\mathbf{X}^T\mathbf{T}] = \mathbf{T}R_{\mathbf{X}}\mathbf{T}^T$$

$$= \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ 0 & \vdots & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix}$$

#### References

Ze-Nian Li, M. S. Drew, Fundamentals of Multimedia, Prentice Hall Inc., 2004. Chapters 7 and 8.