INEQUALITIES

Linear Inequalities in One Variable

Recall the following:

i) 6>4 implies 6 is greater than 4;

ii) 4<6 implies 4 is less than 6.

If a>b (or b(a), it means a-b>0 or b-a<0.

Recall also that > implies "is greater than or equal

to and & implies "is less than or equal to".

Likewise, > also implies "is not less than" and < mind implies " is not greater than". For instance, if x is

not less than 5, then x > 5.

Consider the following:

DIF a>b then atoc>btoc and a-oc>b-x.

For example, given 5>-3, then

5+3>-3+3

That is, 8>0

2) If a > b, then $a \propto > b \approx and \frac{q}{2} > \frac{b}{2}$, provided \propto is positive. For example,

12>-6, then

12(2) >-6(2), that is, 24>-12.

Also, 12 +2 > -6 +2

That is, 6 > -3

3) If a>b, then ax < bx and \(\frac{a}{x} \leq \frac{b}{x} \) if x is a negative. For example,

127-6 then

12(-2) < -6(-2)

That 0, -24<12

Also, 12 - (-2) < -6 + (-2)

That is, -6<3

Example: Solve 3x-5>-11

3x-5>-11

3x>-11+5

3x > -6

 $x > \frac{-6}{3}$

x7-2

The solution on a real number line is given as:

Note that 0 at -2 in the figure above implies that -2 is NOT included.

Example 2: Solve -3<5-3x <11

By solving each inequality separately.

-3 $\sqrt{5}$ -3 \times and 5-3 \times $\sqrt{11}$

3×<5+3 -3×≤11-5

FURTHER EXAMPLES

1) Find the values of ac which satisfy! 4x+5>2x+9

$$4x - 2x > 9 - 5$$

$$\Rightarrow x > 2$$

2) Find the range of values of ac for which $\frac{2c+2}{4x-3} \leqslant 3$?

Id, , Has any lovistor itin

3) Find the values of x for which 2(x+3) > 3(x-1)+6?

4) Given the inequalities (i)
$$2(3-x) > 9$$
 and (ii) $\frac{x+1}{2} + \frac{2x-1}{3} > 1$

Show the intervals in which ac can the if it satisfies (i) or (ii), and if it satisfies (i) AND (ii).

By solving (i),
$$6-2x > 9$$

$$-2x > 3$$

$$x < -\frac{3}{2}$$

$$x < -|x| / |x| / |$$

$$\frac{+}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

By solving (ii), 365++++ +2(20++) 76 $\frac{x+1}{2} + \frac{2x-1}{3}$

$$3(x+1)+2(2x-1) > 1$$

18 ELAC

7 8 22

* 4 4 7

Hence, if x is to satisfy i) or (ii), then both intervals are required so that ock-1/2 or oc > \frac{1}{7}. The represented on the & number line as!

If x is to satisfy i) AND (ii) then, no value of or is possible. There is no solution.

5) Show the interval in which as must be to satisfy the inequalities: 2x+5 > 1 and $3-\frac{1-2c}{2} < 4$.

ii.
$$3 - \frac{1-2c}{2} < 4$$

$$\frac{6 - (1-x)}{2} < 4$$

$$\frac{2}{6 - 1 + x} < 8$$

$$\frac{2}{2} < 3$$

For both inequalities to hold, at must lie in the common interval, that is, -2 < ac < 3. This is shown on the real number line as!

E. Jak

6-41/0

Exercise

D solve the following inequalities, showing the intervalues obtained on a number line.

e)
$$\frac{x+1}{3} - \frac{x-1}{4} > \frac{1}{2}$$

$$(f) - \frac{1}{2} \leqslant \frac{3 - 2\alpha}{5} \leqslant 1$$

2) Find the intervals in which a can lie if!

d)
$$5-(4-x) \le 3$$
 and $5-\frac{x+6}{3} < 4$

Quadratic Inequalities

Quadratic inequalities in one variable, such as x2-4x-5 >0 can be solved using the factors of x2-4x-5.

Gramplel: Solve 22-42c-570

This can be written as $(3c-5)(3c+1) \gg 0$. Consider how the signs of each linear factor vary as x moves along the number line. (3c-5) changes x ign at x=5, and x

Hence, $2x^2+3x-2=(2x-1)(x+2)<0$ when $-2<x<\frac{1}{2}$. Example 3: Solve the inequality x2-2c (3? Revorite the equation as: 22-20-3 <0 Using the quadratic formula: -b + 162-4ac $sc = \frac{1+1-4(-3)}{1-4(-3)}$ $\chi \approx -1.30$ or 2.30 (to 2 decimal places). Then, $x^2 - x - 3 \approx (x + 1.30)(x - 2-30)$ The changes in signs of the factors are (xc+1·30) (x-2.30)Product So x2-x-3=(x+1.30)(x-2.30) &0 when =1.30 \x (2.30) Example 4: Find the range of values of a for which 0 < log(x2+2x-2) < 1? 0 ≤ log(x2+2x-2) ≤ 1 can be written as 10° < 22+22c-2 < 10' Allert and had been $\Rightarrow 1 \leqslant x^2 + 2x - 2 \leqslant 10$ Take these separately,

ABSOLUTE VALUES, | DC)

The notation Isel means the modulus or absolute value of sc. For example,

$$|5| = 5$$
, Also $|-5| = 5$

$$|\cos|-240^{\circ}| = |\cos 240^{\circ}| = -\frac{1}{2}|\cos 240^{\circ}| = |-\frac{1}{2}| = \frac{1}{2}$$

We define
$$|x|_f = x$$
 if $x < 0$

Note:
$$|2x-3| \Rightarrow \int 2x-3$$
 if $2x-3 \neq 0$ Te. if $x \neq 1/2$
 $\left(-(2x-3)\right)$ if $2x-3(0) \Rightarrow 3x-2$ if $x < 1/2$

Also, /x/< K means x < K or -x < K ie x > - K

Then, lxKK implies -KxxxK

Also, IXI>K implies xXK or XX-K

Therefore, we can write

|ax+b| < K as -K < ax +b < K

But

|axtb| > 10 axtb <-K or axtb > K

Example 1: Solve (a) | 201-3/55 (b) | 201-3/>5

$$-5 \leqslant 2x - 3$$

and the second of

$$2x-3>5$$
 and $-(2x-3)>5$

$$2x>8$$
 and $2x<-2$

$$x>4$$
 and $x<-1$