THEORETICAL COMPUTER SCIENCE TUTORING (3)

Maurizio Fiusco

Remember how Turing machines can be encoded as integers. Let $f: \mathbb{N} \to \mathbb{N}$ be a function defined as follows:

$$f(i) = \begin{cases} 0 \text{ if } i \text{ is the encoding of the Turing machine} \\ 1 \text{ if } i \text{ isn't the encoding of the Turing machine} \end{cases}$$

After defining the concept of computability of a function, discuss the computability of f(n) by demonstrating your claims.

Definition

A function $f: \Sigma_1^* \to \Sigma_2^*$ is **computable** if there exists a Turing transducer T such that for every $x \in \Sigma_1^*$ for which x is defined, T(x) = f(x)

discuss the computability of f(n)

f is the characteristic function associated with the language L_T of Turing machine encoded as integers

Claim

 L_T is decidable

Prove it by yourselves (build a Turing machine)

Theorem

A language L is decidable if and only if the associated characteristic function f is computable

Let's see the proof

Proof

L is decidable \Rightarrow *f* is computable

There exists a recognizer T such that $\forall x \in \Sigma^*$:

$$o_T(x) = \begin{cases} q_A & \text{if } x \in L \\ q_R & \text{if } x \notin L \end{cases}$$

Suppose that T has only one tape

T

$$x \in \Sigma^*$$

Let's build a transducer T' that will compute f(x) on two tapes

Proof

L is decidable \Rightarrow *f* is computable

T'

$$x \in \Sigma^*$$

output tape

- 1. On the first tape, which contains the input x, it performs the computation T(x)
- 2. If T(x) terminates in q_a , it writes the value 0 on the output tape; otherwise, it writes the value 1

here ends the exercise, let's finish the proof anyway

Proof

f is computable $\Rightarrow L$ is decidable

f is a total function by definition

There exists a transducer T such that for every x, it computes f(x)

T

 $x \in \Sigma^*$

output tape

Let's build a recognizer T' that will decide L on two tapes

Proof

L is decidable \Rightarrow *f* is computable

T'

 $x \in \Sigma^*$

1/0

- 1. On the first tape, which contains the input x, it performs the computation T(x), writing the result on the second tape
- 2. If $\bf 0$ has been written on the second tape, then the computation of $\bf T'$ terminates in the accepting state; **otherwise**, it terminates in the rejecting state

Let $L_1 \subseteq \Sigma^*$ be a **decidable** language decided by machine T_1 , and let $L_2 \subseteq \Sigma^*$ be an **acceptable** but undecidable language accepted by machine T_2 . Consider the following language

$$L = \{(x, k) : x \in \Sigma^* \land k \in \mathbb{N} \land [x \notin L_1 \lor (x \notin L_2 \land T_2(x) \text{ rejects in } k \text{ steps})]\}$$

Show whether L is an acceptable or decidable language

$$L_{blue} = \{(x, k) : x \in \Sigma^* \land k \in \mathbb{N} \land x \notin L_1\}$$

$$L_{orange} = \{(x, k) : x \notin L_2 \land T_2(x) \text{ rejects in } k \text{ steps}\}$$

$$L = L_{blue} \cup L_{orange}$$

Claim

$$L_{blue} = \{(x, k): x \in \Sigma^* \land k \in \mathbb{N} \land x \notin L_1\}$$
 is decidable

Proof

 L_1 is decidable

Suppose that T_1 has only one tape

$$x \in \Sigma^*$$

Let's build a recognizer T'_1 that will decide L_{blue}

 T_1'

$$x \in \Sigma^*$$

Simulate $T_1(x)$

- $T_1(x)$ ends in the accepting state $X T'_1$ rejects
- $T_1(x)$ ends in the rejecting state \checkmark T'_1 accepts

Claim

 $L_{orange} = \{(x, k): x \notin L_2 \land T_2(x) \text{ rejects in } k \text{ steps}\} \text{ is decidable}$

Proof

 $oldsymbol{L_2}$ is accepatable but not decidable

 $oldsymbol{L_2^c}$ is not acceptable but...

Suppose that T_2 has only one tape

Let's build a recognizer T_2' that will decide L_{orange}

 T_2'

$$x \in \Sigma^*$$

- 1. Simulate one instruction of $T_2(x)$ on the first tape
- 2. Move the head on the second tape to the right

if $T_2(x)$ ends in the rejecting state \checkmark else if $T_2(x)$ ends in the accepting state or on the second tape the head reads \square else $^{\square}$ 1

Claim

 $L = L_{blue} \cup L_{orange}$ decidable

Proof

 L_{blue} and L_{orange} are decidable, we proved it in the last lesson

Let $L_1 \subseteq \Sigma^*$ be an acceptable but undecidable language and let $L_2 \subseteq \Sigma^*$ be a decidable language. Consider the following function $f: \sigma^* \to \mathbb{N}: \forall x \in \Sigma^*$

$$f(x) = \begin{cases} 1 & \text{if } x \in L_1 \\ |x| & \text{if } x \notin L_1 \land x \in L_2 \\ 0 & \text{otherwise} \end{cases}$$

Show whether *f* is a computable function