## Experimento #4 LDR

**Objetivo:** Introdução ao comportamento de um LDR ("Light Dependent Resistor"), com a obtenção da sua curva I-V característica, em função da intensidade de luz incidente, obtida a partir de um LED.

## Material:

- Osciloscópio Digital Modelo:
- Gerador de Funções Modelo:
- LED (cores variadas)
- Fonte DC (x2) Modelo:
- Resistores:  $R_1 = \underline{\hspace{1cm}} +/-\underline{\hspace{1cm}} [\Omega]$

$$R_2 = \underline{\hspace{1cm}} + \!\!/ - \underline{\hspace{1cm}} [\Omega]$$



- 1) Com um multímetro no modo ohmímetro em uma escala apropriada, observe a variação da resistência entre os terminais do LDR em função da intensidade de luz incidente na superfície de captura do dispositivo.
- 2) Monte em um *protoboard* o circuito da figura, com o LED iluminando a área de captura do LDR. Cubra o conjunto de forma que a luz ambiente não afete as suas medidas. Utilize resistores com valores fornecidos pelo professor. Ajuste a tensão da fonte  $V_1 = 5$  e 8 volts. Varie a tensão da fonte  $V_2$  de 3 até 10 volts. Meça a tensão sobre o LDR ( $V_{xy}$ ) e os resistores  $R_1$  e  $R_2$  em relação ao terminal ao terra. Calcule a corrente  $I_1$  que passa pelo resistor  $R_1$  e pelo LDR. Calcule a corrente  $I_2$  que passa pelo resistor  $R_2$  e pelo LED.

|                       | $V_1 = 5 \text{ volts}$ |                                     |          |          | $V_1 = 8 \text{ volts}$ |                                     |          |             |
|-----------------------|-------------------------|-------------------------------------|----------|----------|-------------------------|-------------------------------------|----------|-------------|
| V <sub>2 (alvo)</sub> | $\mathbf{V}_2$          | $\mathbf{V}_{\mathbf{x}\mathbf{y}}$ | $V_{R1}$ | $V_{R2}$ | $\mathbf{V}_2$          | $\mathbf{V}_{\mathbf{x}\mathbf{y}}$ | $V_{R1}$ | $ m V_{R2}$ |
| 3V                    |                         |                                     |          |          |                         |                                     |          |             |
| 4V                    |                         |                                     |          |          |                         |                                     |          |             |
| 5V                    |                         |                                     |          |          |                         |                                     |          |             |
| 6V                    |                         |                                     |          |          |                         |                                     |          |             |
| 7V                    |                         |                                     |          |          |                         |                                     |          |             |
| 8V                    |                         |                                     |          |          |                         |                                     |          |             |
| 9V                    |                         |                                     |          |          |                         |                                     |          |             |
| 10V                   |                         |                                     |          |          |                         |                                     |          |             |

**Opcional:** Substitua a Fonte DC  $V_1$  por um Gerador de Sinais. Obtenha uma senóide com  $V_{PP} = 10$  volts, em uma frequência baixa (~30Hz). Escolha as melhores escalas de tensão e observe no modo x-y do Osciloscópio a curva I-V característica do LDR. Verifique o efeito da intensidade de iluminação sobre a inclinação da curva. Verifique o efeito do aumento da frequência sobre a curva e explique.

## 4) Responda:

- a) Pesquisa: Encontre materiais que podem ser usados na construção de LDRs sensíveis à luz com comprimentos de onda na faixa do infravermelho ( $\lambda > 700$  nm). Cite suas referências.
- **b**) Ajuste o modelo físico-matemático da corrente  $I_1$  (LDR) em função da corrente  $I_2$  (LED) pelo método dos quadrados-mínimos, para a tensão  $V_1 = 5$  e 8 volts. Plote o gráfico de dispersão. Calcule o EQM.

## Grupo: