Hunter Lybbert Student ID: 2426454 10-23-24 AMATH 561

PROBLEM SET 3

1. Give an example of a probability space (Ω, \mathcal{F}, P) , a random variable X and a function f such that $\sigma(f(X))$ is strictly smaller than $\sigma(X)$ but $\sigma(f(X)) \neq \{\emptyset, \Omega\}$. Give a function g such that $\sigma(g(X)) = \{\emptyset, \Omega\}$. Hint: Look at finite sample spaces with a small number of elements.

Solution:

Let our probability space be two independent coin tosses, such that $\Omega = \{HH, TT, HT, TH\}$. Define a random variable X such that $X(\omega)$ be the number of heads in the outcome ω with $\omega \in \Omega$. Therefore

$$X(HH) = 2,$$

$$X(TT) = 0,$$

$$X(HT) = 1, \text{ and}$$

$$X(TH) = 1.$$

Now $\sigma(X)$ can be written as

$$\sigma(X) = \left\{ \{HH\}, \{TH, HT\}, \{TT\}, \{TT, HH\}, \{HH, HT, TH\}, \{TT, HT, TH\}, \Omega, \emptyset \right\}$$

Part one

Random variable X and f such that $\sigma(f(X)) \subseteq \sigma(X)$ and $\sigma(f(X))$ is not the trivial σ -algebra.

Define f(x) as follows

$$f(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 0. \end{cases}$$

Let's look at the possible pre-images of f(X) with respect to a few cases of Borel sets. For convenience, I will define $\hat{X} = f(X)$. Now let's look at some cases for the pre-image

Case 1: $0 \in B$ but $1 \notin B$

$$\hat{X}^{-1}(B) = \left\{\omega: \hat{X}(\omega) \in B\right\} = \left\{\omega: X(\omega) \in (-\infty, 0]\right.\} = \left\{TT\right\}$$

Case 2: $0 \notin B$ but $1 \in B$

$$\hat{X}^{-1}(B) = \left\{\omega: \hat{X}(\omega) \in B\right\} = \left\{\omega: X(\omega) \in (0, \infty) \right. \} = \left\{TH, HT, HH\right\}$$

Case 3: $0 \in B$ and $1 \in B$

$$\hat{X}^{-1}(B) = \left\{\omega: \hat{X}(\omega) \in B\right\} = \left\{\omega: X(\omega) \in (-\infty, \infty) \right. \} = \Omega$$

Case 4: $0 \not\in B$ and $1 \not\in B$

$$\hat{X}^{-1}(B) = \left\{ \omega : \hat{X}(\omega) \in B \right\} = \emptyset.$$

Therefore,

$$\sigma(f(X)) = \left\{ \{TT\}, \{TH, HT, HH\}, \Omega, \emptyset \right\} \neq \{\emptyset, \Omega\}$$

And thus we have $\sigma(f(X)) \subseteq \sigma(X)$.

Part two Now also give a function g such that $\sigma(g(X))$ is the trivial σ -algebra, $\{\emptyset, \Omega\}$.

Define g(x) to be a constant $c \in \mathbb{R}$ such that g(x) = c for all $x \in \mathbb{R}$. Once again, for convenience we define $\tilde{X} = g(X)$. Let's go through a few cases of what the pre-image may be for any Borel set

Case 1: $c \in B$

$$\tilde{X}^{-1}(B) = \left\{ \omega : \tilde{X}(\omega) \in B \right\} = \left\{ \omega : X(\omega) \in (-\infty, \infty) \right\} = \Omega$$

Case 2: $c \notin B$

$$\tilde{X}^{-1}(B) = \left\{ \omega : \tilde{X}(\omega) \in B \right\} = \emptyset.$$

Therefore,

$$\sigma(g(X)) = \{\Omega,\emptyset\} \,.$$

2. Give an example of events A, B, and C, each of probability strictly between 0 and 1, such that $P(A \cap B) = P(A)P(B)$, $P(A \cap C) = P(A)P(C)$, and $P(A \cap B \cap C) = P(A)P(B)P(C)$ but $P(B \cap C) \neq P(B)P(C)$. Are A, B and C independent? Hint: You can let Ω be a set of eight equally likely points. Solution:

Let $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Define events A, B, and C as follows

$$A = \{1, 2, 3, 4\}$$
$$B = \{1, 2, 5, 7\}$$
$$C = \{1, 3, 6, 8\}.$$

Then we have

$$P(A \cap B) = P(\{1, 2\}) = \frac{1}{4}$$

and

$$P(A)P(B) = P(\{1, 2, 3, 4\})P(\{1, 2, 5, 7\}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Additionally, we have

$$P(A \cap C) = P(\{1,3\}) = \frac{1}{4}$$

and

$$P(A)P(C) = P(\{1, 2, 3, 4\})P(\{1, 3, 6, 8\}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Finally, we have

$$P(A \cap B \cap C) = P(\{1\}) = \frac{1}{8}$$

and

$$P(A)P(B)P(C) = P(\{1,2,3,4\})P(\{1,2,5,7\})P(\{1,3,6,8\}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}.$$

Notice we also get

$$P(B \cap C) = P(\{1\}) = \frac{1}{8}$$

which is not equal to

$$P(B)P(C) = P(\{1, 2, 5, 7\})P(\{1, 3, 6, 8\}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

In class we said two events E and E' are independent if $P(E \cap E') = P(E)P(E')$. However, since independence of a collection of events E_i for $i \in \{1, 2, 3, ..., n\}$ implies pairwise independence, $P(E_i \cap E_j) = P(E_i)P(E_j)$ for all $j \neq i$, if the collection E_i fails to be pairwise independent then the collection must not be independent either. We have shown that A and B are independent and A and C are independent. But B and C are not independent, therefore we don't have pairwise independence between each pair of the three events hence A, B, and C are not independent. \Box

3. Let (Ω, \mathcal{F}, P) be a probability space such that Ω is countably infinite, and $\mathcal{F} = 2^{\Omega}$. Show that it is impossible for there to exist a countable collection of events $A_1, A_2, \ldots \in \mathcal{F}$ which are independent, such that $P(A_i) = 1/2$ for each i. Hint: First show that for each $\omega \in \Omega$ and each $n \in \mathbb{N}$, we have $P(\omega) \leq 1/2^n$. Then derive a contradiction.

Solution:

Assume by way of contradiction, there exists a countably infinite collection of independent events $A_1, A_2, A_3, ... \in \mathcal{F}$ such that $P(A_i) = \frac{1}{2}$. Independence of these events implies that

$$P\left(\bigcap_{i}^{n} A_{i}\right) = \prod_{i}^{n} P(A_{i}) = \prod_{i}^{n} \frac{1}{2} = \left(\frac{1}{2}\right)^{n}.$$

I note that our collection of events is countably infinite so we can take the limit of the previous expression as $n \to \infty$. Their independence also implies the independence of the events A_i^c , as discussed in class. Next I want to construct a collection of new sets call them $B_{i,j}$ where $\omega_j \in B_{i,j}$ (note we can index the ω 's since Ω is countably infinite). Let $B_{i,j}$ be

$$B_{i,j} = \begin{cases} A_i, & \omega_j \in A_i \\ A_i^c, & \omega_j \notin A_i. \end{cases}$$

Therefore we can now write each ω_i as

$$\bigcap_{i}^{n} B_{i,j} = \{\omega_j\}.$$

Then we have

$$P(\{\omega_j\}) = P\left(\bigcap_{i}^{n} B_{i,j}\right) = \prod_{i}^{n} P(B_{i,j}) = \prod_{i}^{n} \frac{1}{2} = \left(\frac{1}{2}\right)^{n} = 0.$$

Where $P(\{\omega_j\}) = 0$ since $n \to \infty$ because our collection of independent events is countably infinite. Notice, since $\Omega = \bigcup_{j=1}^{\infty} \{w_j\}$, then

$$P(\Omega) = P(\bigcup_{j=1}^{\infty} \{w_j\}) = \sum_{j=1}^{\infty} P(\{\omega_j\}) = \sum_{j=1}^{\infty} 0 = 0.$$

Which contradicts the fact that if (Ω, \mathcal{F}, P) is a probability space then $P(\Omega) = 1$. Therefore, it is impossible for there to exist a countable collection of events $A_1, A_2, \ldots \in \mathcal{F}$ which are independent, such that $P(A_i) = 1/2$ for each i.

4. (a) Let $X \ge 0$ and $Y \ge 0$ be independent random variables with distribution functions F and G. Find the distribution function of XY. Solution:

Let $h(x,y) = \mathbb{1}_{\{xy \le z\}}$ and $\mathbb{E}[h(x,y)]$ be

$$\mathbb{E}\left[h(x,y)\right] = \int_{\mathbb{R}} \int_{\mathbb{R}} h(x,y) \mu(\mathrm{d}x) \nu(\mathrm{d}y)$$

where μ and ν are probability measures with distribution functions F and G respectively. We also have

$$\mathbb{E}\left[h(x,y)\right] = \mathbb{E}\left[\mathbb{1}_{\{xy \le z\}}(x,y)\right]$$
$$= 1 \cdot P(XY \le z) + 0 \cdot P(XY > 0)$$
$$= P(XY \le z).$$

Additionally,

$$\int_{[0,\infty)} h(x,y)\mu(\mathrm{d}x) = \int_{[0,\infty)} \mathbb{1}_{\{xy \le z\}}(x,y)\mu(\mathrm{d}x)
= \int_{[0]} \mathbb{1}_{\{xy \le z; y = 0\}}(x,y)\mu(\mathrm{d}x) + \int_{(0,\infty)} \mathbb{1}_{\{x \le \frac{z}{y}\}}(x,y)\mu(\mathrm{d}x)
= \int_{[0]} G(0)\mu(\mathrm{d}x) + \int_{(0,\infty)} \mathbb{1}_{\{x \le \frac{z}{y}\}}(x,y)\mu(\mathrm{d}x)
= G(0) + P\left(X \le \frac{z}{y}\right)
= G(0) + F\left(\frac{z}{y}\right).$$

Combining these we have

$$\begin{split} P\left(XY \leq z\right) &= \mathbb{E}\left[h(x,y)\right] \\ &= \int_{(0,\infty)} \int_{[0,\infty)} h(x,y) \mu(\mathrm{d}x) \nu(\mathrm{d}y) \\ &= \int_{(0,\infty)} \left[G(0) + F\left(\frac{z}{y}\right)\right] \nu(\mathrm{d}y) \\ &= \int_{(0,\infty)} G(0) \nu(\mathrm{d}y) + \int_{[0,\infty)} F\left(\frac{z}{y}\right) \nu(\mathrm{d}y) \\ &= G(0) + \int_{(0,\infty)} F\left(\frac{z}{y}\right) \nu(\mathrm{d}y) \\ &= G(0) + \int_{(0,\infty)} F\left(\frac{z}{y}\right) \mathrm{d}G(y) \end{split}$$

(b) If $X \geq 0$ and $Y \geq 0$ are independent continuous random variables with density functions f and g, find the density function of XY. Solution:

We don't need to bring the G(0) term into computing the density since, with continuous random variables, G(0) = P(Y = 0) = 0, since $\{0\}$ is a set of measure 0. Therefore it has no density and does not need to be accounted for in this portion of the problem.

$$\int_{(0,\infty)} F\left(\frac{z}{y}\right) dG(y) = \int_{(0,\infty)} \int_{-\infty}^{\frac{z}{y}} f(u) du dG(y).$$

Now we need to do a change of variables of $u = \frac{x}{y}$ then $du = \frac{dx}{y}$. We have

$$\int_{(0,\infty)} F\left(\frac{z}{y}\right) dG(y) = \int_{(0,\infty)} \int_0^{\frac{z}{y}} f(u) du dG(y)$$

$$= \int_{(0,\infty)} \int_0^z \frac{1}{y} f\left(\frac{x}{y}\right) dx dG(y)$$

$$= \int_0^z \int_{(0,\infty)} \frac{1}{y} f\left(\frac{x}{y}\right) dG(y) dx$$

$$= P(XY < z).$$

I site Fubini's theorem to justify reordering integration in the second to the third line. Therefore the density is

$$f(x) = \int_{(0,\infty)} \frac{1}{y} f\left(\frac{x}{y}\right) dG(y).$$

Since Y has a density g, we can write the above as

$$f(x) = \int_{(0,\infty)} \frac{1}{y} f\left(\frac{x}{y}\right) g(y) dy$$

using Theorem 3 from Lecture 9 slides.

(c) If X and Y are independent exponentially distributed random variables with parameter λ , find the density function of XY.

Recall the density of an exponentially distributed r.v. with parameter λ is the same as a gamma distributed r.v. with parameters $(1, \lambda)$. Therefore the density of X would be

$$f(x) = \frac{\lambda^1}{\Gamma(1)} x^{1-1} e^{-\lambda x} = \lambda e^{-\lambda x}.$$

Now using the formula we derived in part (b) we have

$$f(x) = \int_{(0,\infty)} \frac{1}{y} f\left(\frac{x}{y}\right) g(y) dy$$
$$= \int_{(0,\infty)} \frac{1}{y} \lambda e^{-\lambda \frac{x}{y}} \lambda e^{-\lambda y} dy$$
$$= \int_{(0,\infty)} \frac{\lambda^2}{y} e^{-\lambda \left(\frac{x}{y} + y\right)} dy.$$