

Kravspecifikation

Redaktör: Dennis Ljung

Version 0.2

Status

Granskad	Andreas Runfalk	-
Godkänd	Andreas Runfalk	-

PROJEKTIDENTITET

 $\begin{tabular}{ll} VT, 2015, Grupp 2 \\ Linköpings Tekniska Högskola, IDA \end{tabular}$

Gruppdeltagare

Namn	Ansvar	Telefon	E-post
Adam Sestorp	Team leader	070 9987270	adase035@student.liu.se
Dennis Ljung	Dokumentansvarig	070 8568148	denlj069@student.liu.se
Alexander Yngve	Utvecklingsansvarig	076 2749762	aleyn573@student.liu.se
Martin Söderén	Analysansvarig	070 8163241	marso329@student.liu.se
Ruben Das	Kvalitetssamordnare	073 7355892	rubda680@student.liu.se
Sebastian Fast	Arkitekt	073 3885208	sebfa861@student.liu.se
Johan Isaksson	Testledare	070 2688785	johis024@student.liu.se

 $\mathbf{Hemsida} : \ \mathrm{http://pum-2.ida.liu.se/}$

 $\mathbf{Kund} \colon \mathrm{SAAB}$

Kontaktperson hos kund: Daniel Simon Kursansvarig: Kristian Sandahl Handledare: Andreas Runfalk

Innehåll

1	Inledning	1
	1.1 Parter	1
	1.2 Syfte och mål	1
	1.3 Användning	1
	1.4 Bakgrundsinformation	1
	1.5 Definitioner	1
2	Översikt av programmet	2
	2.1 Grov beskrivning av produkten	2
	2.2 Produktkomponenter	2
	2.3 Beroenden till andra system	2
	2.4 Avgränsningar	2
	2.5 Designfilosofi	2
	2.6 Generella krav på hela systemet	2
3	Prestandakrav	2
4	Krav på vidareutveckling	3
5	Tillförlitlighet	3
6	Ekonomi	3
7	Leveranskrav och delleveranser	4
8	Dokumentation 8.1 Kray på dokumentation	5 5

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2015-02-05	Första utkast	Grupp 2	
0.2	2015-02-09	Andra utkast	Grupp 2	

1 Inledning

Dagens flygplan får mer och mer komplexa styrsystem, vilket medför att det krävs mer assistans för piloten. Vi har fått i uppgift av SAAB att välja och implementera en algoritm för att lösa ett kvadratiskt konvext optimeringsproblem. Detta problemet kommer ifrån den prediktiva reglering som kan tillämpas i moderna flygplans styrsystem.

Figur 1 – Problembeskrivning

1.1 Parter

Systemet har beställts av SAAB, där kontaktperson är Daniel Simon. Leverantör är grupp 2.

1.2 Syfte och mål

Syftet med projektet är att:

- 1. gruppen systematiskt ska integrera sina kunskaper som har förvärvats under studietiden, främst inom programmering och datalogi.
- 2. tillämpa sig metodkunskaper och ämnesmässiga kunskaper inom datateknik
- 3. tillgodogöra sig innehållet i relevant facklitteratur och relatera sitt arbete till den

Målet med projektet är att välja och implementera en algoritm för lösning av kvadratiska konvexa optimeringsproblem.

1.3 Användning

Implementationen ska vara generell och kunna lösa problemet lika snabbt eller snabbare än den kommersiella programvaran Gurobi. Den ska köras på Mac, Windows och Linux. På samtliga plattformar ska den kunna användas från Matlab. Den ska främst användas för simulering men den ska inte vara begränsad från att användas i ett verkligt system i framtiden.

1.4 Bakgrundsinformation

Vi är studenter vid Linköpings universitet som läser kursen TDDD77. Vår beställare är SAAB, där vår kontaktperson är Daniel Simon, industridoktorand vid Linköpings universitet.

1.5 Definitioner

- Vi har beslutat att kalla vårt program för QuadOpt
- Prioritetsnivå 1: Krav som programmet ska uppfylla
- Prioritetsnivå 2: Krav som programmet skall uppfylla om tid finns

2 Översikt av programmet

2.1 Grov beskrivning av produkten

Programmet skall bestå av en algoritm som löser konvexa kvadratiska optimeringsproblem samt ett gränssnitt mot användaren och andra program. Gränssnittet ska vara ett terminalbaserat program som används för att läsa in filer där problemet är definierat, detta ska generera en utdatafil. Även ett gränssnitt mot Mathworks programmeringsspråk och utvecklingsmiljö Matlab ska finnas. Med hjälp av gränssnittet ska man enkelt kunna definiera problem och kalla på programmet för lösning av problemet.

2.2 Produktkomponenter

Den färdiga produkten kommer innehålla följande komponenter

- Källkod för programmet
- Teknisk dokumentation
- Användarhandledning

2.3 Beroenden till andra system

QuadOpt skall kunna integreras med programmen MATLAB och ARES vilket är SAABs simuleringsmiljö för Gripen.

2.4 Avgränsningar

Skall endast lösa konvexa kvadratiska optimeringsproblem.

2.5 Designfilosofi

Exaktheten och prestandan av programmet prioriteras högst, d.v.s. kunna lösa problemet korrekt och inom rimlig tidsgräns.

2.6 Generella krav på hela systemet

Krav	Förändring	Beskrivning	Prioritet
Krav 1	Original	Lösa konvexa kvadratiska optimeringsproblem	1
Krav 2	Original	Källkod i C	1
Krav 3	Original	Ska kunna exekveras från en körbar kompilerad fil	1
Krav 4	Original	Ska kunna exekveras från Matlab	1
Krav 5	Original	Ska kunna användas på Windows, Linux och Mac	1
Krav 6	Original	Alla matriser ska kunna ändras mellan iterationer	1
Krav 7	Original	Ska kunna ställa in hur ofta variabler uppdateras	2
Krav 8	Orginal	Programmet ska använda lösningen från den tidigare ite-	1
		rationen som startpunkt för lösningen i nästa iteration.	

3 Prestandakrav

Algoritmen ska kunna lösa ett givet problem lika snabbt eller snabbare än vad det kommersiella lösningsprogrammet Gurobi kan göra.

Programmet är tänk att användas i en simulering av ett reglersystem i ett flygplan och kommer då användas kontinuerligt för att lösa liknande problem. Den ska då använda den tidigare lösningen som utgångspunkt i nästa lösning av problemet då dessa kommer påminna mycket om varandra.

Krav	Förändring	Beskrivning	Prioritet
Krav 9	Orginal	Ska lösa problem lika snabbt eller snabbare än den kom-	1
		mersiella programvaran Gurobi	

4 Krav på vidareutveckling

Programmet ska göras så moduluppbyggt som möjligt och mellan samtliga moduler ska gränssnittet var väldefinierat för att man ska kunna byta ut moduler i framtiden. För att underlätta underhåll ska koden vara välkommenterad men också utförligt beskriven i den tekniska dokumentationen.

Krav	Förändring	Beskrivning	Prioritet
Krav 10	Orginal	Gränsnitten skall vara väldefinierade	1

5 Tillförlitlighet

Krav	Förändring	Beskrivning	Prioritet
Krav 11	Original	Programmet ska kunna hitta en lösning med specifierad	1
		noggrannhet	
Krav 12	Original	Programmet ska avbryta exekveringen när ett max antal	1
		iterationer har körts	
Krav 13	Original	Programmet ska avbryta efter ett viss tid	1
Krav 14	Original	Programmet ska inte krascha vid specialfall eller felaktig	1
		indata	

6 Ekonomi

Krav	Förändring	Beskrivning	Prioritet
Krav 15	Orginal	Projektmedlemmarna ska lägga ca 300 timmar vardera	1
		på projektet	
Krav 16	Orginal	Tidsfördelningen mellan gruppmedlemmar får inte skilja	1
		mer än $10~\%$	

7 Leveranskrav och delleveranser

Krav	Förändring	Beskrivning	Deadline
Krav 17	Original	Val av projekt och teamledare	2015-01-23
		inlämnat till examinator	
Krav 18	Original	Kopia på avtal med kund	2015-02-03
		inlämnat till examinator	
Krav 19	Original	Inlämning av förstudie-	2015-02-16
		dokument till handledare och	
		opponentgrupp	
Krav 20	Original	Inlämning halvtids-dokument	2015-03-13
		och utkast 1 av rapport till	
		handledare och opponentgrupp	
Krav 21	Original	Inlämning av dokument för itera-	2015-04-20
		tion 2 till handledare	
Krav 22	Original	Inlämning av utkast 2 för rap-	2015-05-13
		port till handledare opponent-	
		grupp samt examinator	
Krav 23	Original	Inlämning av slutrapport till	2015-05-27
		handledare och examinator	
Krav 24	Original	Tidsrapport till handledaren	Varje vecka fram till projektav-
			slut
Krav 25	Original	Statusrapport till handledaren	Varje vecka fram till projektav-
			slut

8 Dokumentation

Den tekniska dokumentationen ska användas om man vill utveckla eller modifiera källkoden, medan användarhandledning ska användas om man endast vill använda programmet. Användarhandledningen ska vara lättförstålig och strukturerad så att någon med god kunskap om datorer snabbt ska kunna komma igång med programmet. Användarhandledning ska även beskriva hur man kompilerar källkoden på samtliga operativsystem som stöds.

Dokument	Språk	Syfte	Målgrupp	Format
Teknisk dokumentation	Svenska	Beskriv hur systemet är	Tekniskt ansvarig	PDF
		konstruerat		
Användarhandledning	Svenska	Introduktionsbeskrivning	Användare	PDF
		av systemet		

Tabell 1 – Dokumentation

8.1 Krav på dokumentation

Krav	Förändring	Beskrivning	Prioritet
Krav 26	Orginal	All dokumentation enligt Tabell 1 skall levereras tre da-	1
		gar före slutleveransen	
Krav 27	Orginal	Dokumentationen skall följa LIPS-standarden	1
Krav 28	Orginal	All källkod skall vara väldokumenterad	1
Krav 29	Original	Dokumentation i form av kommentarer i all källkod ska	1
		finnas	