SBML Model Report

Model name: "Chen2000 - Budding yeast cell cycle"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Matthew Grant Roberts¹ and Catherine Lloyd² at June 25th 2010 at 12:06 a.m. and last time modified at February 20th 2018 at 9:06 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	4	constraints	0
reactions	0	function definitions	0
global parameters	102	unit definitions	1
rules	29	initial assignments	0

Model Notes

This a model from the article:

Kinetic analysis of a molecular model of the budding yeast cell cycle.

Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. Mol Biol Cell 2000 Jan;11(1):369-91 10637314,

¹EMBL-EBI, mroberts@ebi.ac.uk

 $^{^2} University \ of \ Auckland, \ {\tt c.lloyd@auckland.ac.nz}$

Abstract:

The molecular machinery of cell cycle control is known in more detail forbudding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected theroles of cyclin molecules (Cln1-3 and Clb1-6) in coordinating the events of DNAsynthesis, bud emergence, spindle formation, nuclear division, and cellseparation. These experimental clues suggest a mechanism for the principalmolecular interactions controlling cyclin synthesis and degradation. Usingstandard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three majorclasses of cyclin-dependent kinase activities. Model in hand, we examine themolecular events controlling "Start, (the commitment step to a new round ofchromosome replication, bud formation, and mitosis) and "Finish,, (the transitionfrom metaphase to anaphase, when sister chromatids are pulled apart and the budseparates from the mother cell) in wild-type cells and 50 mutants. The modelaccounts for many details of the physiology, biochemistry, and genetics of cellcycle control in budding yeast.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. (2000) - version=1.0

The original CellML model was created by:

Catherine Lloyd

c.lloyd@auckland.ac.nz The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name time

Definition 60 s

2.2 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment	Yeast Cell		3	1	litre	Ø	

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

Name Yeast Cell

4 Parameters

This model contains 102 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Cln2	Cln2		0.008		
ks_n2	ks_n2_prime		0.000		\square
$ks_n2_$	ks_n2_2prime		0.050		\square
kd_n2	kd_n2		0.100		
${\tt Clb2_T}$	Clb2_T		0.234		
${\tt Hct1_T}$	Hct1_T		1.000		\square
ks_b2	ks_b2_prime		0.002		$ \overline{\mathbf{Z}} $
ks_b2_	ks_b2_2prime		0.050		$ \overline{\mathbf{Z}} $
kd_b2	kd_b2_prime		0.010		
$kd_b2_$	kd_b2_2prime		2.000		\square
kd_b2	kd_b2_3prime		0.050		\mathbf{Z}
Vd_b2	Vd_b2		2.023		
Clb2	Clb2		0.155		
Clb5	Clb5		0.041		
Sic1	Sic1		0.023		
$Clb5_T$	Clb5_T		0.061		
ks_b5	ks_b5_prime		0.006		
ks_b5_	ks_b5_2prime		0.020		
kd_b5	kd_b5_prime		0.100		\square
$kd_b5_$	kd_b5_2prime		0.250		
Vd_b5	Vd_b5		0.271		
Bck2	Bck2		0.002		
$Bck2_0$	Bck2_0		0.003		
Cln3	Cln3		0.002		
Jn3	Jn3		6.000		
Dn3	Dn3		1.000		
${\tt Cln3_max}$	Cln3_max		0.020		
${ m Sic1}_{-}{ m T}$	Sic1_T		0.123		
ks_c1	ks_c1		0.020		
ks_c1_	ks_c1_2prime		0.100		
${\tt Clb2_Sic1}$	Clb2_Sic1		0.079		
kas_b2	kas_b2		50.000		
kdi_b2	kdi_b2		0.050		
${\tt Clb5_Sic1}$	Clb5_Sic1		0.021		
kas_b5	kas_b5		50.000		
kdi_b5	kdi_b5		0.050		\square

Id	Name	SBO	Value	Unit	Constant
Vd2_c1	Vd2_c1		0.031		
$kd2_c1$	kd2_c1		0.300		
epsilonc1_n3	epsilonc1_n3		20.000		$\overline{\mathbb{Z}}$
epsilonc1_k2	epsilonc1_k2		2.000		$\overline{\mathbf{Z}}$
epsilonc1_b5	epsilonc1_b5		1.000		$\overline{\mathbf{Z}}$
epsilonc1_b2	epsilonc1_b2		0.067		$\overline{\mathbf{Z}}$
Cdc20_T	Cdc20_T		0.833		
ks_20	ks_20_prime		0.005		
ks_20_	ks_20_2prime		0.060		$\overline{\mathbf{Z}}$
Cdc20	Cdc20		0.685		
ka_20	ka_20		1.000		
ki_20	ki_20_prime		0.100		$\overline{\mathbb{Z}}$
ki_20_	ki_20_2prime		10.000		_
Vi_20	Vi_20		0.100		
Hct1	Hct1		0.995		☑ ⊟ ⊟
ka_t1	ka_t1_prime		0.040		
ka_t1_	ka_t1_2prime		2.000		$\overline{\mathbb{Z}}$
ki_t1	ki_t1_prime		0.000		$\overline{\mathbb{Z}}$
$ki_t1_$	ki_t1_2prime		0.640		
Vi_t1	Vi_t1		0.119		☑ ⊟
Ji_t1	Ji_t1		0.050		
Ja_t1	Ja_t1		0.050		$ \overline{\mathscr{L}} $
epsiloni_t1- _n2	epsiloni_t1_n2		1.000		$\overline{\mathbb{Z}}$
epsiloni_t1- _b5	epsiloni_t1_b5		0.500		\mathbf{Z}
epsiloni_t1- _b2	epsiloni_t1_b2		1.000		
mass	mass		0.661		А
mu	mu		0.006		$\overline{\mathbf{Z}}$
ORI	ORI		0.000		
ks_ori	ks_ori		2.000		_ ✓
kd_ori	kd_ori		0.060		\overline{Z}
epsilonori-	epsilonori_b2		0.400		\overline{Z}
_b2	•				
BUD	BUD		0.000		
ks_bud	ks_bud		0.300		
kd_bud	kd_bud		0.060		$\overline{\mathbf{Z}}$
epsilonbud- _b5	epsilonbud_b5		1.000		\mathbf{Z}
_D5 SPN	SPN		0.000		
ks_spn	ks_spn		0.000		
vo-phii	ro-ohii		0.000		

Id	Name	SBO	Value	Unit	Constant
kd_spn	kd_spn		0.060		$ \overline{\checkmark} $
J_spn	$J_{-}spn$		0.200		$ \overline{\mathbf{Z}} $
SBF	SBF		0.003		
ka_sbf	ka_sbf		1.000		
ki_sbf	ki_sbf_prime		0.500		
$ki_sbf_$	ki_sbf_2prime		6.000		
Va_sbf	Va_sbf		0.311		
Ji_sbf	Ji_sbf		0.010		
Ja_sbf	Ja_sbf		0.010		
epsilonsbf-	epsilonsbf_n3		75.000		
_n3					
epsilonsbf-	epsilonsbf_b5		0.500		\mathbf{Z}
_b5					
MBF	MBF		0.003		\Box
Mcm1	Mcm1		0.513		\Box
ka_mcm	ka_mcm		1.000		$ \overline{\mathbf{Z}} $
ki_mcm	ki_mcm		0.150		$ \overline{\mathbf{Z}} $
Ji_mcm	Ji_mcm		1.000		$ \overline{\mathbf{Z}} $
Ja_mcm	Ja_mcm		1.000		$ \overline{\mathbf{Z}} $
Swi5	Swi5		0.923		
ka_swi	ka_swi		1.000		
ki_swi	ki_swi_prime		0.300		
$\mathtt{ki_swi_}$	ki_swi_2prime		0.200		
Ji_swi	Ji_swi		0.100		
Ja_swi	Ja_swi		0.100		
kd1_c1	kd1_c1		0.010		
kd_20	kd_20		0.080		
Jd2_c1	Jd2_c1		0.050		
END_M	$END_{-}M$		2000.000		
$\mathtt{START}_{-}\mathtt{S}$	$START_S$		1000.000		
D	D		145.632		

5 Rules

This is an overview of 29 rules.

5.1 Rule Vd_b2

Rule Vd_b2 is an assignment rule for parameter Vd_b2:

$$Vd_{b2} = kd_{b2} \cdot (Hct1_{T} - Hct1) + kd_{b2} \cdot Hct1 + kd_{b2} \cdot Cdc20$$
 (1)

5.2 Rule C1b2

Rule C1b2 is an assignment rule for parameter C1b2:

$$Clb2 = Clb2_T - Clb2_Sic1$$
 (2)

5.3 Rule Clb5

Rule Clb5 is an assignment rule for parameter Clb5:

$$Clb5 = Clb5_T - Clb5_Sic1$$
 (3)

5.4 Rule Sic1

Rule Sic1 is an assignment rule for parameter Sic1:

$$Sic1 = Sic1_T - (Clb2_Sic1 + Clb5_Sic1)$$
(4)

5.5 Rule Vd_b5

Rule Vd_b5 is an assignment rule for parameter Vd_b5:

$$Vd_b5 = kd_b5 + kd_b5 \cdot Cdc20$$
 (5)

5.6 Rule Bck2

Rule Bck2 is an assignment rule for parameter Bck2:

$$Bck2 = Bck2_0 \cdot mass \tag{6}$$

5.7 Rule Cln3

Rule Cln3 is an assignment rule for parameter Cln3:

$$Cln3 = \frac{Cln3_max \cdot Dn3 \cdot mass}{Jn3 + Dn3 \cdot mass}$$
(7)

5.8 Rule Va_sbf

Rule Va_sbf is an assignment rule for parameter Va_sbf:

$$Va_sbf = ka_sbf \cdot (Cln2 + epsilonsbf_n3 \cdot (Cln3 + Bck2) + epsilonsbf_b5 \cdot Clb5)$$
 (8)

5.9 Rule Vd2_c1

Rule Vd2_c1 is an assignment rule for parameter Vd2_c1:

$$Vd2_c1 = kd2_c1 \cdot (epsilonc1_n3 \cdot Cln3 + epsilonc1_k2 \cdot Bck2 + Cln2 + epsilonc1_b5 \cdot Clb5 + epsilonc1_b2 \cdot Clb2)$$
(9)

5.10 Rule Vi_20

Rule Vi_20 is an assignment rule for parameter Vi_20:

$$\begin{aligned} &\text{Vi}_20 \\ &= \begin{cases} 10 & \text{if } (\text{time} \geq \text{START}_S) \land (\text{time} \\ 10 - 9.9 \cdot \frac{\text{time} - \text{END}_M}{12} & \text{if } (\text{time} \geq \text{END}_M) \land (\text{time} < \text{END}_M + 12) \\ 0.1 & \text{otherwise} \end{cases} \end{aligned}$$

5.11 Rule Vi_t1

Rule Vi_t1 is an assignment rule for parameter Vi_t1:

$$\begin{aligned} \text{Vi_t1} &= \text{ki_t1} + \text{ki_t1}_\\ &\quad \cdot \left(\text{Cln3} + \text{epsiloni_t1_n2} \cdot \text{Cln2} + \text{epsiloni_t1_b5} \cdot \text{Clb5} + \text{epsiloni_t1_b2} \cdot \text{Clb2} \right) \end{aligned}$$

5.12 Rule SBF

Rule SBF is an assignment rule for parameter SBF:

SBF
$$(12)$$

 $ki_sbf + ki_sbf_ \cdot Clb2 + Va_sbf \cdot Ji_sbf + (ki_sbf + ki_sbf_ \cdot Clb2) \cdot Ja_sbf - Va_sbf + \left((ki_sbf + ki_sbf_ \cdot Clb2) \cdot Ja_sbf - Va_sbf + (ki_sbf_ \cdot Clb2) \cdot Ja_sbf - Va_sbf - Va_sbf + (ki_sbf_ \cdot Clb2) \cdot Ja_sbf - Va_sbf - Va_sb$

5.13 Rule MBF

Rule MBF is an assignment rule for parameter MBF:

$$MBF = SBF \tag{13}$$

2 · ka_mcm · Clb2

5.14 Rule Mcm1

Rule Mcm1 is an assignment rule for parameter Mcm1:

$$Mcm1 (14)$$

 $ki_mcm + ka_mcm \cdot Clb2 \cdot Ji_mcm + ki_mcm \cdot Ja_mcm - ka_mcm \cdot Clb2 + \Big((ki_mcm + ka_mcm \cdot Clb2 \cdot Ji_mcm - ka_mcm \cdot Clb2 + \Big)$

5.15 Rule Swi5

Rule Swi5 is an assignment rule for parameter Swi5:

 $ki_swi + ki_swi_ \cdot Clb2 + ka_swi \cdot Cdc20 \cdot Ji_swi + (ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + \Big((ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + (ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + (ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi \cdot Cdc20 + (ki_swi + ki_swi_ \cdot Clb2) \cdot Ja_swi - ka_swi - k$

5.16 Rule D

Rule D is an assignment rule for parameter D:

$$D = \frac{1.026}{mu} - 32 \tag{16}$$

5.17 Rule Cln2

Rule Cln2 is a rate rule for parameter Cln2:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cln2} = \mathrm{mass} \cdot (\mathrm{ks_n2} + \mathrm{ks_n2_} \cdot \mathrm{SBF}) - \mathrm{kd_n2} \cdot \mathrm{Cln2}$$
(17)

5.18 Rule Clb2_T

Rule Clb2_T is a rate rule for parameter Clb2_T:

$$\frac{d}{dt}Clb2_{-}T = mass \cdot (ks_{-}b2 + ks_{-}b2_{-} \cdot Mcm1) - Vd_{-}b2 \cdot Clb2_{-}T$$
(18)

5.19 Rule Clb5_T

Rule Clb5_T is a rate rule for parameter Clb5_T:

$$\frac{d}{dt}Clb5_{T} = mass \cdot (ks_b5 + ks_b5_{\cdot} \cdot MBF) - Vd_b5 \cdot Clb5_{T}$$
(19)

5.20 Rule Sic1_T

Rule Sic1_T is a rate rule for parameter Sic1_T:

$$\frac{d}{dt}\operatorname{Sic1}_{-T} = ks_{-}c1 + ks_{-}c1_{-} \cdot \operatorname{Swi5} - \operatorname{Sic1}_{-T} \cdot \left(kd1_{-}c1 + \frac{Vd2_{-}c1}{Jd2_{-}c1 + \operatorname{Sic1}_{-T}}\right)$$
(20)

5.21 Rule Clb2_Sic1

Rule Clb2_Sic1 is a rate rule for parameter Clb2_Sic1:

$$\frac{d}{dt}Clb2_Sic1 = kas_b2 \cdot Clb2 \cdot Sic1 - Clb2_Sic1$$

$$\cdot \left(kdi_b2 + Vd_b2 + kd1_c1 + \frac{Vd2_c1}{Jd2_c1 + Sic1_T}\right)$$
(21)

5.22 Rule Clb5_Sic1

Rule Clb5_Sic1 is a rate rule for parameter Clb5_Sic1:

$$\frac{d}{dt}Clb5_Sic1 = kas_b5 \cdot Clb5 \cdot Sic1 - Clb5_Sic1$$

$$\cdot \left(kdi_b5 + Vd_b5 + kd1_c1 + \frac{Vd2_c1}{Jd2_c1 + Sic1_T}\right)$$
(22)

5.23 Rule Cdc20_T

Rule Cdc20_T is a rate rule for parameter Cdc20_T:

$$\frac{d}{dt}Cdc20_{-}T = ks_{-}20 + ks_{-}20_{-} \cdot Clb2 - kd_{-}20 \cdot Cdc20_{-}T$$
 (23)

5.24 Rule Cdc20

Rule Cdc20 is a rate rule for parameter Cdc20:

$$\frac{d}{dt}Cdc20 = ka_20 \cdot (Cdc20_T - Cdc20) - Cdc20 \cdot (Vi_20 + kd_20)$$
 (24)

5.25 Rule Hct1

Rule Hct1 is a rate rule for parameter Hct1:

$$\frac{d}{dt}Hct1 = \frac{(ka_{-}t1 + ka_{-}t1_{-} \cdot Cdc20) \cdot (Hct1_{-}T - Hct1)}{Ja_{-}t1 + Hct1_{-}T - Hct1} - \frac{Vi_{-}t1 \cdot Hct1}{Ji_{-}t1 + Hct1}$$
(25)

5.26 Rule mass

Rule mass is a rate rule for parameter mass:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mass} = \mathrm{mu}\cdot\mathrm{mass} \tag{26}$$

5.27 Rule ORI

Rule ORI is a rate rule for parameter ORI:

$$\frac{d}{dt}ORI = ks_ori \cdot (Clb5 + epsilonori_b2 \cdot Clb2) - kd_ori \cdot ORI$$
 (27)

5.28 Rule BUD

Rule BUD is a rate rule for parameter BUD:

$$\frac{d}{dt}BUD = ks_bud \cdot (Cln2 + Cln3 + epsilonbud_b5 \cdot Clb5) - kd_bud \cdot BUD$$
 (28)

5.29 Rule SPN

Rule SPN is a rate rule for parameter SPN:

$$\frac{d}{dt}SPN = \frac{ks_spn \cdot Clb2}{J_spn + Clb2} - kd_spn \cdot SPN$$
 (29)

6 Events

This is an overview of four events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

6.1 Event Event_detection_for_END_M

Name Event detection for END_M

Trigger condition

$$SPN \ge 1 \tag{30}$$

Assignment

$$END_M = time$$
 (31)

6.2 Event Event_detection_for_Cell_Division_and_BUD_SPN_reset

Name Event detection for Cell Division and BUD/SPN reset

Trigger condition

$$Clb2 < 0.3 \tag{32}$$

Assignments

$$mass = \exp(1 \cdot mu \cdot D) \cdot mass \tag{33}$$

$$BUD = 0 (34)$$

$$SPN = 0 \tag{35}$$

6.3 Event Event_detection_for_START_S

Name Event detection for START_S

Trigger condition

$$ORI > 1 \tag{36}$$

Assignments

$$START_S = time$$
 (37)

$$END_{-}M = time + 1000 \tag{38}$$

6.4 Event Event_detection_for_ORI_reset

Name Event detection for ORI reset

Trigger condition

$$Clb2 + Clb5 < 0.2 \tag{39}$$

Assignment

$$ORI = 0 (40)$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany