

SMARTRALLY

AI Approach to Coaching Badminton Strategy with Mobile App

Computer Systems Lab 2024-2025

İpek Sayar, Jacob Dipasupil

Popularity

- No Olympic medals
- "Backyard sport"

Problem

Availability

- Majority of badminton clubs are located in California [1]
- Only one club in VA with dedicated badminton facilities [1]
- Not accessible depending on location

Cost

- Badminton coaching costs around \$100 per hour
- Not accessible to lower income families

SmartRally

We have developed an Al-powered app for badminton that leverages advanced computer vision and machine learning techniques to enhance players' skills by analyzing their strategy to offer personalized feedback.

Novelty

- Pose recognition
- Next Best Move Algorithm
- Mobile App

We leverage YOLOv11 for object detection,
OpenPose for player detection and joint
recognition, TrackNet for shuttlecock tracking,
and SlowFast for pose classification.

Datasets

VideoBadminton [2]

- Clean, high quality footage of badminton form and technique.
- 18 categories of badminton actions
 - 7,822 clips spanning 145 minutes of self-recorded footage

ShuttleSet [4]

- Annotated stroke-level records from matches from
 27 top-ranking men's and women's singles players
- Preprocessed: Only kept five key features shot,
 hit_area (0-15), land_area (0-15), player_location_area (0-8), and opponent_location_area (0-8) to use as input for the NBM algorithm.

Systems Architecture

Model Structure

Player Tracking

- Each video is split into frames (10-15 frames per second).
- Canny edge detection highlights the sharp edges of the court.
- Hough Line Transform detects straight lines from the edges to define the court's boundaries and extract coordinates.
- YOLOv11's OpenPose processes each frame to detect people and their keypoints.
- Using the court corner coordinates and a y-buffer, we save the keypoints of the players on the court.
- OpenCV is used to highlight key points with red circles.
- By focusing on the last two keypoints (the feet), we assign each
 player a number (0-8) based on which section of the court they are
 in.

Hough Line Transform

OpenPose Demo

TrackNet Demo

SlowFast_[5]

- Slow pathway: Slow, high-definition CNN to analyze the static content of a video
- Fast pathway: fast, low-definition CNN that analyzes the dynamic content of a video.
- Trained on VideoBadminton dataset
 - Achieved Top-1 accuracy of ~72%

Next Best Move (NBM)

1-2 Hidden Layers → Underfitting

That means the model ends up too
 simple, it misses the deeper patterns.

>3 Hidden Layers → Overfitting

 Memorizes the training set and isn't able to generalize testing set

ReLU helps vanishing gradients

 When learning freezes while the error is still high.

No one absolute best move in every sequence

- Model gives statistical best choice
- Like a chess engine: guidance, not commands

Conclusion: Developing Game Sense

- Recreate scenarios the app gives you and practice the suggested "next best move"
- Re-record and feed videos back into the app to track how your decision-making evolves
- Build muscle memory and strategy over time
- It's like driving:
 - New drivers know rules, but not instincts
 - Real skills come from reacting to live situations
 - Patterns emerge with repetition
 - Eventually, you just know the right move

Questions?

References

- [1] https://www.worldbadminton.com/whereToPlay/unitedStates/index.html#va
- [2] https://arxiv.org/html/2403.12385v1#S3
- [3] https://inoliao.github.io/CoachAl/
- [4] https://github.com/wywyWang/ShuttleNet
- [5] https://github.com/facebookresearch/SlowFast