Midterm Exam

Name:

Student ID:

Problem	Score
#1	/10
#2	/10
#3	/10
#4	/10
#5	/25
#6	/10
#7	/10
Total	/85

- 1. (2 pts each) These are 'True/False' questions. Mark your answer. You do not need to justify your answer. You will get 2 points if your answer is correct, and 0 if the answer is wrong or you do not answer.
 - (a) (True / False) Let x(t) be a periodic square wave with fundamental period T. Suppose that we have its Fourier series coefficients $\{X_k\}$. Then, for reconstructed signal $x'(t) = \sum_{k=-\infty}^{\infty} X_k e^{jnw_0 t}$ is identical to x(t) on continuous intervals.
 - (b) (True / False) Among all possible signals, we can design a signal $x(t), t \in \mathbb{R}$ that is nonzero only on a finite interval $t \in [0, T]$ and has finite bandwidth in frequency.
 - (c) (True / False) A system represented by the operation $y(t) = \mathcal{L}\{x(t)\} = \int_0^T x(t)dt$ is an LTI system. Here, T is a given constant.
 - (d) (True / False) The envelop detector will work correctly for DSB-SC (DSB suppressed carrier) if the message signal of the modulator is always positive.
 - (e) (True / False) Super-heterodyne receiver varies the intermediate frequency by controlling local oscillator's frequency so that manufacturing cost is inexpensive.
- 2. (3, 7 pts) Consider the following signal $a_c(t)$ in Figure 1, where c > 0. Let $b(t) = \lim_{c \to \infty} a_c(t)$.
 - (a) **(Yes / No)** Is b(t) a unit delta function?
 - (b) Describe the reason for your answer.

Figure 1: $a_c(t)$

 $3.\ (10\ \mathrm{pts})$ Prove that the convolution of two unit sinc functions is also sinc, i.e.,

$$\int_{-\infty}^{\infty} \operatorname{sinc}(t-\tau) \operatorname{sinc}(\tau) d\tau = \operatorname{sinc}(t).$$

- 4. (5 pts each) Consider a message signal $m(t) = 2\cos(2\pi f_m t) + \cos(2\pi (2f_m)t) + 2\cos(2\pi (3f_m)t)$. Assume the carrier frequency is $f_c \gg f_m$.
 - (a) Sketch the spectrum of DSB-SC modulated signal. Assume the unit scaling constant.

(b) Sketch the spectrum of lower-sideband SSB modulated signal. Assume the unit scaling constant.

5. (5,5,10,5 pts) Assume the message signal $m(t) = \cos(2\pi f_m t)$ and carrier signal $\cos(2\pi f_c t)$, where $f_m \ll f_c$. Suppose the scaling constant is A_c .

(a) Note that m(t) is already normalized, that is, $|m(t)| \leq 1$. Write down the expression for the AM modulated signal $x_c(t)$ with modulation index α .

(b) Draw the frequency spectrum of $x_c(t)$.

(c) Obtain the message signal up to a constant factor via **coherent** demodulation, that is, the accurate carrier $\cos(2\pi f_c t)$ is available.

(d) Calculate the power efficiency E_{ff} in terms of α .

- 6. (5 pts each) Assume that a message signal is given by $m(t) = \cos(2\pi f_m t)$, where $f_m < f_c$.
 - (a) Write down and simplify the following SSB expression using trigonometric identity. Here, $\hat{m}(t)$ is the Hilbert transform of m(t). You do not need to show the derivation of $\hat{m}(t)$.

$$x_c(t) = m(t)\cos(2\pi f_c t) + \hat{m}(t)\sin(2\pi f_c t).$$

(b) Sketch the amplitude spectrum of $x_c(t)$ and specify whether it is lower-sideband SSB or upper-sideband SSB.

 $7.~(10~\mathrm{pts})$ Suppose that a superheterodyne receiver uses an IF frequency of 455 kHz. The receiver is tuned to a transmitter having a carrier frequency of $1100~\mathrm{kHz}$. Give two permissible frequencies of the local oscillator and the image frequency for each.

■ F.2 TRIGONOMETRIC IDENTITIES

$$\cos(u) = \frac{e^{ju} + e^{-ju}}{2}$$

$$\sin(u) = \frac{e^{ju} - e^{-ju}}{2j}$$

$$\cos^{2}(u) + \sin^{2}(u) = 1$$

$$\cos^{2}(u) - \sin^{2}(u) = \cos(2u)$$

$$2\sin(u)\cos(u) = \frac{1}{2}\cos(u - v) + \frac{1}{2}\cos(u + v)$$

$$\sin(u)\cos(v) = \frac{1}{2}\sin(u - v) + \frac{1}{2}\sin(u + v)$$

$$\sin(u)\sin(v) = \frac{1}{2}\cos(u - v) - \frac{1}{2}\cos(u + v)$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos^{2}(u) = \frac{1}{2} + \frac{1}{2}\cos(2u)$$

$$\cos^{2n}(u) = \frac{1}{2^{2n}} \left[\sum_{k=0}^{n-1} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

$$\sin^{2}(u) = \frac{1}{2} - \frac{1}{2}\cos(2u)$$

$$\sin^{2n}(u) = \frac{1}{2^{2n}} \left[\sum_{k=0}^{n-1} (-1)^{n-k} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

$$\sin^{2n}(u) = \frac{1}{2^{2n-2}} \left[\sum_{k=0}^{n-1} (-1)^{n-k} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

$$\sin^{2n}(u) = \frac{1}{2^{2n-2}} \left[\sum_{k=0}^{n-1} (-1)^{n-k} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

$$\sin^{2n}(u) = \frac{1}{2^{2n-2}} \left[\sum_{k=0}^{n-1} (-1)^{n-k} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

$$\sin^{2n}(u) = \frac{1}{2^{2n-2}} \left[\sum_{k=0}^{n-1} (-1)^{n-k} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

$$\sin^{2n-1}(u) = \frac{1}{2^{2n-2}} \left[\sum_{k=0}^{n-1} (-1)^{n-k} 2\binom{2n}{k} \cos 2(n - k)u + \binom{2n}{n} \right]$$

■ F.3 SERIES EXPANSIONS

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^{n-k} v^k, \quad \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Letting u = 1 and v = x where $|x| \ll 1$ results in the approximations:

$$(1+x)^n \cong 1 + nx; \quad (1-x)^n \cong 1 - nx; \quad (1+x)^{1/2} \cong 1 + \frac{1}{2}x$$

 $\log_a u = \log_e u \log_a e; \quad \log_e u = \ln u = \log_e a \log_a u$

$$e^{u} = \sum_{k=0}^{\infty} u^{k} / k! \cong 1 + u, \quad |u| \ll 1$$

■ F.5 FOURIER-TRANSFORM PAIRS

Signal	Fourier transform
$\Pi(t/\tau) = \begin{cases} 1, & t \le \tau/2 \\ 0, & \text{otherwise} \end{cases}$	$\tau \operatorname{sinc}(f\tau) = \tau \frac{\sin(\pi f \tau)}{\pi f \tau}$
$2W\operatorname{sinc}(2Wt)$	$\Pi(f/2W)$
$\Lambda(t/\tau) = \begin{cases} 1 - t /\tau, & t \le \tau \\ 0, & \text{otherwise} \end{cases}$	$\tau \operatorname{sinc}^2(f\tau)$
$W \operatorname{sinc}^2(Wt)$	$\Lambda(f/W)$
$\exp(-\alpha t) u(t), \alpha > 0$	$1/(\alpha + j2\pi f)$
$t \exp(-\alpha t) u(t), \alpha > 0$	$1/(\alpha+j2\pi f)^2$
$\exp(-\alpha t), \alpha > 0$	$2\alpha/\left[\alpha^2+(2\pi f)^2\right]$
$\exp\left[-\pi\left(t/\tau\right)^2\right]$	$ au \exp\left[-\pi \left(\tau f\right)^2\right]$
$\delta\left(t ight)$	1
1	$\delta(f)$
$\cos(2\pi f_0 t)$	$\frac{1}{2}\delta\left(f-f_0\right) + \frac{1}{2}\delta\left(f+f_0\right)$
$\sin(2\pi f_0 t)$	$\frac{1}{2j}\delta\left(f-f_0\right) - \frac{1}{2j}\delta\left(f+f_0\right)$
$u\left(t\right)$	$\frac{1}{j2\pi f} + \frac{1}{2}\delta(f)$
$1/(\pi t)$	$-j \operatorname{sgn}(f)$; $\operatorname{sgn}(f) = \begin{cases} 1, & f > 0 \\ -1, & f < 0 \end{cases}$
$\sum_{m=-\infty}^{\infty} \delta\left(t - mT_{s}\right)$	$f_s \sum_{n=-\infty}^{\infty} \delta(f - nf_s); f_s = 1/T_s$

■ F.6 FOURIER-TRANSFORM THEOREMS

Name	Time-domain operation (signals assumed real)	Frequency-domain operation
Superposition	$a_1 x_1(t) + a_2 x_2(t)$	$a_{1}X_{1}(f) + a_{2}X_{2}(f)$
Time delay	$x(t-t_0)$	$X(f)\exp(-j2\pi t_0 f)$
Scale change	x(at)	$ a ^{-1} X (f/a)$
Time reversal	x(-t)	$X\left(-f\right) = X^{*}\left(f\right)$
Duality	$X\left(t\right)$	x(-f)
Frequency translation	$x(t)\exp(j2\pi f_0 t)$	$X(f-f_0)$
Modulation	$x(t)\cos\left(2\pi f_0 t\right)$	$\frac{1}{2}X(f-f_0) + \frac{1}{2}X(f+f_0)$
Convolution ⁴	$x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Multiplication	$x_1(t) x_2(t)$	$X_1(f) * X_2(f)$
Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda$	$X(f)/(j2\pi f) + \frac{1}{2}X(0)\delta(f)$

 $[\]overline{^{4}x_{1}\left(t\right)\ast x_{2}\left(t\right)}\triangleq\int_{-\infty}^{\infty}x_{1}\left(\lambda\right)x_{2}\left(t-\lambda\right)d\lambda.$