Cancer_reg_EDA

PCA group

2022-07-14

```
# load packages
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
library(readr)
library(haven)
library(tidyverse)
## -- Attaching packages -----
                                                 ----- tidyverse 1.3.1 --
## v tibble 3.1.7
                      v stringr 1.4.0
## v tidyr
           1.2.0
                      v forcats 0.5.1
## v purrr
           0.3.4
## -- Conflicts -----
                                                ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(sandwich)
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(stargazer)
##
## Please cite as:
  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
```

```
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
##
      src, summarize
## The following objects are masked from 'package:base':
##
      format.pval, units
library(funModeling)
## funModeling v.1.9.4 :)
## Examples and tutorials at livebook.datascienceheroes.com
## / Now in Spanish: librovivodecienciadedatos.ai
cancer <- read_csv("cancer_reg.csv")</pre>
## Rows: 3047 Columns: 33
## -- Column specification -----
## Delimiter: ","
## chr (2): binnedinc, geography
## dbl (31): avganncount, avgdeathsperyear, target_deathrate, incidencerate, me...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Correlation table:

```
correlation_table(data = cancer, target = "target_deathrate")
```

```
##
                     Variable target_deathrate
## 1
             target deathrate
## 2
       pctpubliccoveragealone
                                          0.39
## 3
                incidencerate
                                          0.38
## 4
                 pcths25_over
                                          0.38
## 5
               povertypercent
                                          0.37
## 6
                                           0.35
            pctpubliccoverage
## 7
         pctunemployed16_over
                                           0.32
## 8
                                          0.26
                     pctblack
                   pcths18_24
## 9
                                          0.25
## 10
                 pctnohs18_24
                                          0.08
              medianagefemale
                                          0.02
## 11
## 12
                                         -0.01
                    medianage
                                         -0.03
## 13
                  studypercap
## 14
               medianagemale
                                          -0.03
## 15
                    birthrate
                                          -0.05
```

```
-0.10
## 16
             avgdeathsperyear
## 17
                   popest2015
                                          -0.11
## 18
                  avganncount
                                          -0.13
## 19
              pctsomecol18_24
                                          -0.16
## 20
                     pctwhite
                                          -0.16
## 21
                     pctasian
                                          -0.20
                 pctotherrace
## 22
                                          -0.21
## 23
                                          -0.23
               percentmarried
## 24
           pctempprivcoverage
                                          -0.23
## 25
         pctmarriedhouseholds
                                          -0.29
## 26
              pctbachdeg18_24
                                          -0.30
                                          -0.32
## 27 pctprivatecoveragealone
                                          -0.34
           pctprivatecoverage
## 28
## 29
                                          -0.37
           pctemployed16_over
## 30
                    medincome
                                          -0.38
## 31
            pctbachdeg25_over
                                          -0.44
```

Plot positive correlations:

 $Positive\ correlations:\ pctpublic$ $coveragealone,\ incidence$ $rate,\ pcths 25_over,\ povertypercent,\ pctpublic$ $coverage,\ pctunemployed 16_over$

```
ggplot(data = cancer, aes(x = pctpubliccoveragealone, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+labs(x = "Percentage of county with public coverage alone", y = "Cancer deathrate")
```



```
ggplot(data = cancer, aes(x = incidencerate, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+labs(x = "Cancer incident rate", y = "Cancer death incidence per 100,000")
```



```
ggplot(data = cancer, aes(x = pcths25_over, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+labs(x="Percentage of county residents age > 25 with highschool as highest l
```


Percentage of county residents age > 25 with highschool as highest level of education

```
ggplot(data = cancer, aes(x = povertypercent, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Percent of pupulace in poverty", y= "Cancer death incidence per 100,000")
```



```
ggplot(data = cancer, aes(x = pctpubliccoverage, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Percent of county residents with government-provided health insurance", y= "Cancer death inci-
```



```
ggplot(data = cancer, aes(x = pctunemployed16_over, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Percent of county residents ages 16 and over unemployed", y= "Cancer death incidence per 100,"
```


Plot negative correlations:

```
pctbachdeg
25_over -.44 medincome -0.38 pctemployed
16_over -0.37 pctprivatecoverage -0.34 pctprivatecoverage
alone -0.32
```

```
ggplot(data = cancer, aes(x = pctbachdeg25_over, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Percent of county residents ages >=25 with Bachelor degree as highest education", y= "Cancer"
```


Percent of county residents ages >=25 with Bachelor degree as highest education

```
ggplot(data = cancer, aes(x = medincome, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Median income per county", y= "Cancer death incidence per 100,000")
```



```
ggplot(data = cancer, aes(x = pctemployed16_over, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Percent of county residents ages 16 and over employed", y= "Cancer death incidence per 100,00"
## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 152 rows containing non-finite values (stat_smooth).

Warning: Removed 152 rows containing missing values (geom_point).


```
ggplot(data = cancer, aes(x = pctprivatecoverage, y = target_deathrate))+
  geom_point()+
  geom_smooth(method = lm)+
  labs(x="Percent of county residents with private health coverage", y= "Cancer death incidence per 100")
```



```
ggplot(data = cancer, aes(x = pctprivatecoveragealone, y = target_deathrate))+
   geom_point()+
   geom_smooth(method = lm)+
   labs(x="Percent of county residents with private health coverage (no public assistance)", y= "Cancer"
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 609 rows containing non-finite values (stat_smooth).
```

Warning: Removed 609 rows containing missing values (geom_point).

