Design Patterns for Responsible Al

Sara Robinson, Developer Advocate

@SRobTweets

sararobinson.dev

Agenda

- 1. What are design patterns?
- 2. Defining Responsible Al
- 3. Three patterns + some live demos

What are design patterns?

Design patterns are formalized best practices to solve common problems when designing a software system.

We wrote a book!

Pre-order bit.ly/ml-design-patterns

Launching November 2020

Follow us on Twitter:

@lak_gcp

ML Design Patterns: quick preview

Defining Responsible Al

What is **Responsible AI**?

The development of Al is creating new opportunities to improve the lives of people around the world, from business to healthcare to education. It is also raising new questions about the best way to build **fairness**, **explainability**, **privacy**, and **security** into these systems.

Responsible Al

3 patterns for Responsible Al

1. Heuristic Benchmark

Developing a starting point for summarizing and evaluating a model

2. Explainable Predictions

Understanding the features influencing model behavior

3. Fairness Lens

Ensuring models are fair and equitable for different groups of users

Fairness

Understanding the reasons behind a model's predictions can help ensure models are **treating all users fairly**

Explainability

The process of understanding **how** and **why** a machine learning model is making predictions.

Pattern #1: Heuristic Benchmark

Let's start with an example

You're building a model to predict bike rental duration

The model's mean absolute error (MAE) is 1,200 seconds. Great!

But is that good or bad??

Heuristic benchmark = simple point of comparison

- Good benchmarks:
 - Constant
 - Rule of thumb
 - Mean / median / mode
 - Human experts

 Not necessarily determined by ML: comparing to a linear regression model isn't always best

Returning to our bike example

 In our training dataset, what is the average rental duration given the station name and whether or not it is a peak commute hour?

 How does our model performance compare to this benchmark?

Should you use a heuristic benchmark?

Pattern #2: Explainable Predictions

"Explainability" evokes a variety of related concepts

Who are model stakeholders?

Model builders & ML Ops

- Why is my model not performing?
- How can I improve it?

'End users' of ML systems

- Should I trust the model's output?
- How should I respond to the prediction?

Public stakeholders

- Is the model safe and fit-for-purpose?
- Does it comply with regulations?

How can users take action from explanations?

Model builders & ML Ops

- Update model architecture
- Involve stakeholders and domain experts

'End users' of ML systems

- Make informed decisions
- Identify new areas for model refinement
- Take recourse on contentious predictions

Public stakeholders

- Audit a model's behavior to see if it complies with regulations/standards
- Use explanations to inform future policy

It depends on the data type

Images

Text

How could you not love cake?!

Tabular

Feature name	Feature value
start_hr	18
weekday	1
distance	1395.51
temp	16.168
dew_point	7.83396
wdsp	0
max_temp	20.7239
prcp	0.03
rain_drizzle	0
duration	11

It depends on the data type

Text

Images

How could you not love cake?!

Feature value Attribution value Name distance 1395.51 -2.44478start hr 18 -1.29039max_temp 20.7239 0.690506 16.168 0.12629 temp 7.83396 0.0110318 dew point 0.03 -0.00134132prcp

Tabular

Sentiment score: 0.9

How can you use Explainable AI on Google Cloud today?

ML APIs

*AutoML Tables

AutoML

BQML

*Al Platform Prediction

Al Platform Training & Prediction

Al Platform Pipelines

*Al Platform Notebooks

Deep Learning VM images

Data

Application developers

scientists & ML engineers

We offer **feature attributions** today

Demo time!

AutoML Tables

Building a **fraud detection model** using public data from BigQuery

TensorFlow on Al Platform

Building an **image classification** for medical images

Pattern #3: Fairness Lens

A shoe example

 You're in charge of collecting all of the shoe images for a fashion classification model

Which types of shoes come to mind?

Types of data bias

- Bias isn't always bad: naturally occuring vs. harmful
- Data distribution bias
- Data representation bias
- Experimenter bias

How can bias affect your ML system?

Solving for fairness with the What-If Tool

How can you use it?

Available on many platforms

TensorBoard dashboard
Google Colaboratory
Jupyter Notebook
Cloud Al Platform Notebooks

Supports What-If Analysis

Explore counterfactuals
Fairness measures
Partial dependence plots

Visualizes Model Performance

Threshold simulation
Up to 2 model comparisons
Dataset summary statistics

Integration with Explainable Al

Demo time!

Resources

- Pre-order the book: bit.ly/ml-design-patterns
- Explainability whitepaper: bit.ly/xai-whitepaper
- Explainability sample code: bit.ly/xai-sample-code
- What-If Tool: pair-code.github.io/what-if-tool
- Codelabs: codelabs.developers.google.com

Thank you

Sara Robinson @SRobTweets

