9.2 Introduction to Time Series

MBC 638

Data Analysis and Decision Making

2 of 39

Introduction

3 of 39

Introduction

• **Time series:** data collected at regular intervals over a given time period

4 of 39

Introduction

- **Time series:** data collected at regular intervals over a given time period
 - E.g., monthly sales, daily stock prices, market share changes

Introduction

- Time series: data collected at regular intervals over a given time period
 - E.g., monthly sales, daily stock prices, market share changes
 - $\circ \quad y = f(y)?$

6 of 39

Potential Components of Variation

7 of 39

Potential Components of Variation

- 1. Trend
- 2. Calendar cycles
- 3. Business cycles
- 4. Autoregressive behavior
- 5. Random variation

8 of 39

Potential Components of Variation

- 1. Trend
 - Long-term rise and fall
- 2. Calendar cycles
- 3. Business cycles
- 4. Autoregressive behavior
- 5. Random variation

Potential Components of Variation

- 1. Trend
 - Long-term rise and fall
- 2. Calendar cycles
 - Seasonality
- 3. Business cycles
- 4. Autoregressive behavior
- 5. Random variation

10 of 39

Potential Components of Variation

- 1. Trend
 - Long-term rise and fall
- 2. Calendar cycles
 - Seasonality
- 3. Business cycles
 - Affected by American politics
- 4. Autoregressive behavior
- 5. Random variation

11 of 39

Time Series Analysis

12 of 39

Time Series Analysis

• Time plot: tool to study/visualize time series

Time Series Analysis

- Time plot: tool to study/visualize time series
- · Model patterns: trends and seasonality

14 of 39

Time Series Analysis

- Time plot: tool to study/visualize time series
- Model patterns: trends and seasonality
- Forecast: predict future values of time series

15 of 39

Time Series Analysis

- Time plot: tool to study/visualize time series
- Model patterns: trends and seasonality
- Forecast: predict future values of time series
- Remember practical, graphical, analytical

16 of 39

Systematic Patterns

22 of 39

Trend

- Simple linear regression
 - Input (x) = indexed numbers, e.g., 1979, 1980,
 1981
 - Output (y) = data of interest, e.g., budget information

26 of 39

Seasonality

- Simple linear regression
 - Input (x) =
 - Indicator variables
 - Seasonality factors
 - Output (y) = data of interest

27 of 39

Indicator Variables

28 of 39

Indicator Variables

Months as indicator variable

Indicator Variables

· Months as indicator variable

• Use
$$x_1 - x_{11}$$
 (K – 1)

30 of 39

Indicator Variables

- · Months as indicator variable
 - Use x₁−x₁₁ (K − 1)
- Trend + season model:

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x_1 + \beta_3 x_2 + \dots + \beta_{12} x_{11}$$

31 of 39

Indicator Variables

- · Months as indicator variable
 - Use $x_1 x_{11}$ (K 1)
- Trend + season model:

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x_1 + \beta_3 x_2 + \dots + \beta_{12} x_{11}$$

∘ Trend: $\beta_0 + \beta_1 x$

32 of 39

Indicator Variables

- Months as indicator variable
 - Use x₁−x₁₁ (K − 1)
- Trend + season model:

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x_1 + \beta_3 x_2 + \dots + \beta_{12} x_{11}$$

- Trend: $\beta_0 + \beta_1 x$
- Seasonality: $\beta_2 x_1 + \beta_3 x_2 + ... + \beta_{12} x_{11}$

Seasonality Factors

34 of 39

Seasonality Factors

Calculate adjustments, multiply by regression equation

35 of 39

Seasonality Factors

- Calculate adjustments, multiply by regression equation
- For each data point in time series, calculate ratio

36 of 39

Seasonality Factors

- Calculate adjustments, multiply by regression equation
- For each data point in time series, calculate ratio

$$\frac{\text{Actual } y}{\text{Predicted } v} = \text{Seasonality Factor (SF)}$$

37 of 39

Seasonality Factors

- Calculate adjustments, multiply by regression equation
- For each data point in time series, calculate ratio

$$\frac{\text{Actual } y}{\text{Predicted } y} = \text{Seasonality Factor (SF)}$$

Average SF by month → 12 SFs

Seasonality Factors

- Calculate adjustments, multiply by regression equation
- · For each data point in time series, calculate ratio

$$\frac{\text{Actual } y}{\text{Predicted } y} = \text{Seasonality Factor (SF)}$$

- Average SF by month → 12 SFs
- Multiply regression equation by a given month's SF to account for seasonality in a trend model.

39 of 39

Seasonality Factors

- Calculate adjustments, multiply by regression equation
- For each data point in time series, calculate ratio

$$\frac{\text{Actual } y}{\text{Predicted } y} = \text{Seasonality Factor (SF)}$$

- Average SF by month → 12 SFs
- Multiply regression equation by a given month's SF to account for seasonality in a trend model.
- Trend + season model: $\hat{y} = (\beta_0 + \beta_1 x) \times SF$