Week 06: Tasks

 ${\sf FanFly}$

April 12, 2020

FanFly Week 06: Tasks April 12, 2020 1 / 11

The Task Selction Problem

Today we are going to introduce another combinatorial optimization problem, which is called the **task selection problem**.

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i .
- Output: A maximum size subset of mutually compatible tasks.

We will use $T_i = [x_i, y_i]$ to denote the *i*th task.

Furthermore, two tasks T_i and T_i are compatible if

$$[x_i, y_i) \cap [x_j, y_j) = \varnothing.$$

FanFly Week 06: Tasks April 12, 2020 2/11

Compatible Tasks

Given a set of tasks $\{T_1, \ldots, T_n\}$, how can we check if they are mutually compatible?

- Check if all pairs of tasks are disjoint. It takes $\Theta(n^2)$ time.
- Sort the tasks based on start time, and then check if all consecutive tasks are disjoint. It takes $\Theta(n)$ time to check the tasks.

Sorting saves lots of time!

Thus, it must be a good idea to sort the tasks first.

FanFly Week 06: Tasks April 12, 2020 3/11

A Brute-force Approach

Now supposed that the tasks are sorted based on start time.

- For each possible subset of tasks, check if it contains tasks that are not disjoint.
- There are $\Theta(2^n)$ possible subsets.
- It takes O(n) time for each subset.
- Thus, we can solve the problem in $O(2^n n)$ time.

FanFly Week 06: Tasks April 12, 2020 4/11

A Brute-force Approach

By the way, how to enumerate all subsets of a set?

```
>>> subsets(3)
[[], [0], [1], [0, 1], [2], [0, 2], [1, 2], [0, 1, 2]]
```

FanFly Week 06: Tasks April 12, 2020 5 / 11

A Simple Observation

The following theorem is a simple result, but it can help us develop a faster algorithm.

Theorem

Let $S = \{T_1, \dots, T_n\}$ be a collection of tasks.

- If $T_i \subseteq T_j$, then there must be a maximum-size subset of mutually compatible tasks that does not contain T_i .
- The task with earliest finish time must be included in some maximum-size subset of mutually compatible tasks.

FanFly Week 06: Tasks April 12, 2020 6/11

Greedy Algorithm

This theorem leads us to find the following algorithm.

For each step, let $S = \{T_1, \dots, T_n\}$ be the set of tasks that we are currently dealing with, where T_1, \dots, T_n are sorted based on start time.

- Note that $T_1 = [x_1, y_1)$ is the task with earliest start time.
- If $y_1 \ge y_2$, then we discard T_1 .
- If $y_1 < y_2$, then we choose T_1 and discard the tasks overlapping with T_1 .

Since we always make the choice that looks best at the moment, the algorithm is usually called a **greedy algorithm**.

FanFly Week 06: Tasks April 12, 2020 7 / 11

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i .
- Output: A maximum size subset of mutually compatible tasks.

What is the overall time complexity of the greedy algorithm that solves the task selection problem?

 \bullet $\Theta(n)$

- $\bullet \ \Theta(n \log n)$
- \bullet $\Theta(n^2)$

 \bullet $\Theta(2^n)$

Solution

It takes $\Theta(n \log n)$ time to sort the tasks based on start time. Then it takes $\Theta(n)$ to choose the compatible tasks. Thus, the overall time complexity is $\Theta(n \log n)$.

FanFly Week 06: Tasks April 12, 2020 8/11

Exercise #2

Consider the following code, which is slightly different from the previous version.

Then we have the following result.

```
>>> subsets(2)
{0: [], 1: [0], 2: [1], 3: [0, 1]}
```

FanFly Week 06: Tasks April 12, 2020 9 / 11

Exercise #2 (cont.)

Now we assume that the following Python code is executed.

```
= subsets(n)
```

Please find the value of P[18].

Solution

Since $18 = 2^1 + 2^4$, the value of P[18] should be [1, 4]. (That is, 18 can be represented as 10010 in binary.)

> FanFly Week 06: Tasks April 12, 2020 10 / 11

Exercise #3

Consider the task selection problem for the following set of tasks.

Task											
Start	0	1	2	3	3	5	5	6	8	8	12
End	6	4	14	5	9	7	9	10	11	12	16

What is the maximum size of subset of mutually compatible tasks?

Solution

There can be at most 4 mutually compatible tasks, e.g., $\{T_2, T_6, T_9, T_{11}\}$.

FanFly Week 06: Tasks April 12, 2020 11 / 11