Chapter 5 Solutions

Question 1

Firstly, let's rewrite f(x) as $f(x) = 4 \log(x) \sin(x^3)$.

Then, $f'(x) = \frac{4}{x}\sin(x^3) + 12x^2\log(x)\cos(x^3)$.

Question 2

If we rewrite our function as $f(x) = (1 + \exp(-x))^{-1}$, then we have $f'(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2}$.

Question 3

We have $f'(x) = \frac{\mu - x}{\sigma^2} f(x)$.

Question 4

We compute the first five derivatives of our function at 0. We have f(0) = f'(0) = 1, $f^{(2)}(0) = f^{(3)}(0) = -1$, and $f^{(4)}(0) = f^{(5)}(0) = 1$.

The Taylor polynomial $T_5(x)=1+x-\frac{1}{2}x^2-\frac{1}{6}x^3+\frac{1}{24}x^4+\frac{1}{120}x^5$. The lower-order Taylor polynomials can be found by truncating this expression appropriately.

Question 5

Part a

We can see below that $\frac{\partial f_1}{\partial x}$ has dimension 1×2 ; $\frac{\partial f_2}{\partial x}$ has dimension $1 \times n$; and $\frac{\partial f_3}{\partial x}$ has dimension $n^2 \times n$.

Part b

We have $\frac{\partial f_1}{\partial x} = \left[\cos(x_1)\cos(x_2) - \sin(x_1)\sin(x_2)\right]; \frac{\partial f_2}{\partial x} = y^{\mathsf{T}}$. (Remember, y is a column vector!)

Part c

Note that
$$xx^{\mathsf{T}}$$
 is the matrix
$$\begin{bmatrix} x_1^2 & x_1x_2 & \cdots & x_1x_n \\ x_2x_1 & x_2^2 & \cdots & x_2x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_nx_1 & x_nx_2 & \cdots & x_n^2 \end{bmatrix}$$
. Thus its derivative will be a higher-order tensor.

However, if we consider the matrix to be an n^2 -dimensional object in its own right, we can compute the Jacobian. Its first row consists of $\begin{bmatrix} 2x_1 & x_2 & \cdots & x_n \mid x_2 & 0 & \cdots & 0 \mid \cdots \mid x_n & 0 & \cdots & 0 \end{bmatrix}$, where I have inserted a vertical bar every n columns, to aid readability.

Question 6

We have
$$\frac{df}{dt} = \cos(\log(t^{\mathsf{T}}t)) \cdot \frac{1}{t^{\mathsf{T}}t} \cdot \begin{bmatrix} 2t_1 & 2t_2 & \cdots & 2t_D \end{bmatrix} = \cos(\log(t^{\mathsf{T}}t)) \cdot \frac{2t^{\mathsf{T}}}{t^{\mathsf{T}}t}$$
.

For g, we know that the derivative of the trace is the trace of the derivative. Thus, we need to find $\frac{d(AXB)}{dX}$.

Question 7

Part a

The chain rule tells us that $\frac{df}{dx} = \frac{df}{dz}\frac{dz}{dx}$, where $\frac{df}{dz}$ has dimension 1×1 , and $\frac{dz}{dx}$ has dimension $1 \times D$. We know $\frac{dz}{dx} = 2x^{\mathsf{T}}$ from f in Question 6. Also, $\frac{df}{dz} = \frac{1}{1+z}$.

Therefore, $\frac{df}{dx} = \frac{2x^{\mathsf{T}}}{1+x^{\mathsf{T}}x}$.

Part b

Here we have
$$\frac{df}{dz}$$
 is an $E \times E$ matrix, namely
$$\begin{bmatrix} \cos z_1 & 0 & \cdots & 0 \\ 0 & \cos z_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \cos z_E \end{bmatrix}.$$

Also, $\frac{dz}{dx}$ is an $E \times D$ -dimensional matrix, namely A itself.

The overall derivative is obtained by multiplying these two matrices together, which will again give us an $E \times D$ -dimensional matrix.

Question 8

Part a

We have $\frac{df}{dz}$ has dimension 1×1 , and is simply $-\frac{1}{2} \exp(-\frac{1}{2}z)$.

Now, $\frac{dz}{dy}$ has dimension $1 \times D$, and is given by $y^{\mathsf{T}}(S^{-1} + (S^{-1})^{\mathsf{T}})$.

Finally, $\frac{dy}{dx}$ has dimension $D \times D$, and is just the identity matrix.

Again, we multiply these all together to get our final derivative.

Part b

If we explicitly write out $xx^{\mathsf{T}} + \sigma^2 I$, and compute its trace, we find that $f(x) = x_1^2 + \dots + x_n^2 + n\sigma^2$.

Hence, $\frac{df}{dx} = 2x^{\mathsf{T}}$.

Part c

Here,
$$\frac{df}{dz} = \begin{bmatrix} \frac{1}{\cosh^2 z_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\cosh^2 z_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\cosh^2 z_M} \end{bmatrix}$$
, while $\frac{dz}{dx} = A$, as in Question 7b.

Finally, $\frac{df}{dx}$ is given by the product of these two matrices.

Question 9

Piecing this together, replacing z with $t(\varepsilon, v)$ throughout, we have that $g(v) = \log(p(x, t(\varepsilon, v))) - \log(q(t(\varepsilon, v), v))$.

Therefore,
$$\frac{dg}{dv} = \frac{p'(x,t(\epsilon,v))\cdot t'(\epsilon,v)}{p(x,t(\epsilon,v))} - \frac{q'(t(\epsilon,v),v)\cdot t'(\epsilon,v)}{q(t(\epsilon,v),v)}$$
.