(1) Calculate equilibrium solution with regards to rigid body modes	$oldsymbol{\lambda_{N}}_0 = \mathbf{AG}(\mathbf{G}^T\mathbf{AG})^{-1}\mathbf{e}$
(2) Projector to natural subspace	$\mathbf{P} = \mathbf{I} - \mathbf{AG}(\mathbf{G}^T \mathbf{AG})^{-1} \mathbf{G}^T$
(3) Preconditioner	$\mathbf{S} = \sum_{s} \mathbf{S}^{[s]}$
(4) Calculate residual(gap) in natural subspace	$\mathbf{r}_0 = \mathbf{P}^T (\mathbf{d} - \mathbf{F} \boldsymbol{\lambda}_{\mathbf{N}_0})$
(5) Calculate resulting forces (preconditioning)	$\mathbf{z} = \mathbf{Sr}_0,$
(6) Remove rigid body-components of forces	$\mathbf{w}_0 = \mathbf{P} \mathbf{z}_0$
(7) Initialize	$\lambda_{F0} = 0, i = 0$
(8) While not converged	$\sqrt{\mathbf{r}_i^T\mathbf{z}_i} > \epsilon$
(9) Compute gap-change due to forces \mathbf{w}_i	$q = Fw_i$
(10) Auxiliary parameter	$\delta_i = q_i^{\ T} w_i$
(11) Auxiliary parameter	$\gamma_i = \mathbf{r}_i^T \mathbf{z}_i$
(12) Step in the new direction	$oldsymbol{\lambda_{F}}_{i+1} = oldsymbol{\lambda_{F}}_i + (\gamma_i/\delta_i) oldsymbol{w}_i$
(13) Gap after force step	$\mathbf{r}_{i+1} = \mathbf{r}_i - (\gamma_i/\delta_i)\mathbf{P}^T\mathbf{q}_i$
(14) Calculate resulting forces (preconditi	\overline{oning} $\mathbf{z}_{i+1} = \mathbf{S}r_{i+1}$
(15) Remove rigid body-components of for	$\mathbf{w}_{i+1} = \mathbf{Pz}_{i+1}$
(16) Loop over previous iterations	for: $0 \le j \le i$
(17) Compute factor	$\phi_{i,j} = \mathbf{q}_j^T \mathbf{w}_{i+1}$
(18) Orhorgonalize to direction j	$\mathbf{w}_{i+1} \leftarrow \mathbf{w}_{i+1} - (\phi_{i,j}/\delta_j)\mathbf{w}_j$
(19) Increase iteration counter	$i \leftarrow i+1$
(20) Compute total interface forces	$oldsymbol{\lambda} = oldsymbol{\lambda}_{ extsf{N}0} + oldsymbol{\lambda}_{ extsf{F}i}$