Friday, May 12, 2023 3:26 PM

Friday, May 12, 2023 3:26 PM
例以。納究系系(文, = -X,+X) 次 = -X,-X, 的原总稳定性
次=-X,-X;Xx的原总稳定性
我们构造函数L(x,x)
有一步,不一步,不好有
$\frac{1}{2} = \frac{\partial L}{\partial X_1} \left(-X_1 + X_2 \right) + \frac{\partial L}{\partial X_2} \left(-X_1 - X_2 - X_1^2 X_2 \right)$
$= -\frac{\partial L}{\partial X_{1}} (X_{1} - X_{2}) - \frac{\partial L}{\partial X_{2}} (X_{1} + X_{2} + X_{1}^{2} + X_{2})$
$\overline{\mathcal{A}}_{X,-X_{1}}^{2} = \frac{\partial L}{\partial x_{2}} (X_{1} + X_{1}^{2} X_{2})$
耳又 L = {(x²+ x²) > 解证正定性。
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
$\frac{\chi_{1}}{\chi_{1}} = -\chi_{1}(x_{1}-x_{2}) - \chi_{2}(x_{1}+x_{2}+x_{1}^{2}x_{2})$
$=-X_{1}^{2}+X_{1}X_{2}-X_{1}X_{2}-X_{1}^{2}-X_{1}^{2}X_{2}^{2}<0$, $6\overline{c}$
我们只需证: L 正定, 显然成立, 故事还是稳定的.
例小儿,使用李亚奢诺夫近似法研究
$ \begin{cases} \dot{X}_1 = X_2 \\ \dot{X}_2 = -X_1 - 0X_2 - X_1^2 X_2 \end{cases} $
研究近似系统:舍生-XiXx 使
$\begin{bmatrix} \dot{x}_i \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} 1 & X_i \\ - 1 & -\alpha \end{bmatrix} + 446$
$\begin{bmatrix} x_2 \end{bmatrix} \begin{bmatrix} -1 & -\alpha \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix}$
NE-A = X - = 2 + ax + = 0,
<u> </u>
17. n -at/024_

1 / 2ta/
图带: $\lambda = \frac{-a \pm \sqrt{a^2 4}}{a^2 + a^2}$
有; a >o 时;两个特征根实部均负则系统稳定
ako 时,两特征根实部均正,不稳定
0=0对,稳定性不能血腥判断获取,
3 5/12,如图系统、分析二个平衡完的不稳定性条件(19)题)
应于系统的系数方程:
$\partial = W$.
中众 三个平衡仓置为; iv=0, 0
$ \partial_{s_1} = 0, \partial_{s_2} = \text{arcos} \frac{g}{\Omega^2 \Upsilon}, \partial_{s_3} = \Pi $
我们取状动力:
$\dot{x}_{i} = \partial - \partial_{s} = \omega - \omega_{s} = x_{2}$
建之:泰斯展开并取一阶线性质,有: 故文, 是不。
$ \frac{\langle \dot{\chi} = \chi_2 \rangle}{\dot{\omega} = -\frac{1}{7} \sin \theta + \Omega^2 \sin \theta \cos \theta} \sqrt{\frac{1}{16} \sin \theta \cos \theta} $
) w = - f sind + \Q^2 sind ons b J相如果开
$= -\frac{9}{3} \left[\sin \theta_s + \cos \theta_s \cdot (\theta - \theta_s) \right] + \Omega^2 \left[\sin \theta_s + \cos \theta_s (\theta - \theta_s) \right] \left[\cos \theta_s - \sin \theta_s (\theta - \theta_s) \right]$
$= -\frac{9}{x} \left(\sin \theta_s + \cos \theta_s \cdot x_i \right) + \Omega^2 \left(\sin \theta_s + \cos \theta_s \cdot x_i \right) \left(\cos \theta_s - \sin \theta_s \cdot x_i \right)$
,
x ₂ =w-w ₅ = -frix l ₅ + D ² sinds cashe
$\text{Fig: } \dot{x}_{2} = -\frac{9}{7} \cos \theta_{3} x_{1} + \Omega^{2} \left[\text{Sinds-cosed}_{s} + x_{1} \left(\cos^{2}\theta_{s} - \sin^{2}\theta_{s} \right) - x_{1}^{2} \sin \theta_{s} \cos \theta_{s} \right]$
$= -\frac{9}{7}\cos\theta_{8} \times_{1} + \Omega^{2} \times_{1}\cos 2\theta_{8}$ $= -\frac{9}{7}\cos\theta_{8} \times_{1} + \Omega^{2} \times_{1}\cos 2\theta_{8}$ $= -\frac{9}{7}\cos\theta_{8} \times_{1} + \Omega^{2} \times_{1}\cos 2\theta_{8}$
7 22/100000
则方程(我动方程)变为;
$\dot{\chi}_{i} = \chi_{2}$ $\dot{\chi}_{i} = [\Omega_{ov} 2 - \frac{9}{7} \text{ os } \theta_{s}] \times$, 因而得到系统的特征方程、
X / 文=[Novag- y osc 0s] X, 国而得到系统的特征方程、
1.×1. T ×.7

1 / X= [[2007] = 0000] X, FIRE 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[,×][/]
$\frac{1}{x_2}$ $\frac{1}{x_2}$ $\frac{1}{x_2}$ $\frac{1}{x_2}$ $\frac{1}{x_2}$ $\frac{1}{x_2}$ $\frac{1}{x_2}$ $\frac{1}{x_2}$
: a XE-A = 0
$ \Delta E - \Delta = 0$
$\frac{1}{12} = \pm i \sqrt{\Omega^2 \cos 2\theta_s - \frac{9}{7} \cos \theta_s}$
该式为系统的特征方程;可分别根据特征方程根制断不稳定条件。
该式为系统的特征方程;可分别根据特征方程根制断不稳定条件。 图此:1)对 Bs=Bs=0ws=0s 入2-(介2-至)=0.1. 介字时存在正实积不稳定
2). Os= Qs, , No=0,
3). Os= Osa , Ws=0;