

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 по курсу «Математическая статистика»

«Гистограмма и эмпирическая функции распределения»

Студент	Маслова Марина Дмитриевна	
_	VVV- (AV	
Группа	ИУ7-63Б	
Оценка (баллы)		
` ,		
Преподаватель	Власов Павел Александрович	

1 Задание

Цель работы: построение гистограммы и эмпирической функции распределения.

Содержание работы

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление максимального значения M_{max} и минимального значения M_{min} ;
 - б) размаха R выборки;
 - в) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - г) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - д) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - е) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 :
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

Содержание отчета

- 1. формулы для вычисления величин M_{max} , M_{min} , R, $\hat{\mu}$, S^2 ;
- 2. определение эмпирической плотности и гистограммы;
- 3. определение эмпирической функции распределения;
- 4. текст программы;
- 5. результаты расчетов для выборки1 из индивидуального варианта.

2 Теоретическая часть

2.1 Формулы для вычисления величин

Пусть $\vec{x} = (x_1,...,x_n)$ — выборка объема n из генеральной совокупности X.

Максимальное и минимальное значения выборки:

$$M_{max} = x_{(n)} = \max\{x_1, ..., x_n\},\tag{2.1}$$

$$M_{min} = x_{(1)} = \min\{x_1, ..., x_n\},\tag{2.2}$$

где $x_{(1)}, x_{(n)}$ — крайние члены вариационного ряда, отвечающего выборке \vec{x} . Размах выборки:

$$R = M_{max} - M_{min}. (2.3)$$

Оценка математического ожидания — выборочное среднее:

$$\hat{\mu}(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i. \tag{2.4}$$

Оценка дисперсии — исправленная выборочная дисперсия:

$$S^{2}(\vec{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \tag{2.5}$$

где $\overline{x} = \hat{\mu}$.

2.2 Определение эмпирической плотности и гистограммы

Если объем выборки достаточно велик (n>50), то элементы выборки группируют в так называемый интервальный статистический ряд. Для этого отрезок $J=[x_{(1)},x_{(n)}]$ разбивают на m равновеликих промежутков. Ширина каждого из них:

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m}.$$
(2.6)

Далее полагают:

$$J_{i} = [x_{(1)} + (i-1)\Delta; x_{(1)} + i\Delta], \quad i = \overline{1, m-1},$$

$$J_{m} = [x_{(1)} + (m-1)\Delta; x_{(n)}].$$
(2.7)

Определение. Интервальным статистическим рядом, отвечающим выборке \vec{x} , называется таблица вида:

Здесь n_i — число элементов выборки \vec{x} , попавших в промежуток J_i , $i=\overline{1,m}.$

Количество интервалов определяется формулой:

$$m = [\log_2 n] + 2. (2.8)$$

Пусть для данной выборки \vec{x} построен интервальный статистический ряд $(J_i, n_i), i = \overline{1, m}.$

Определение. Эмпирической плотностью распределения (соответствующей выборке \vec{x}) называется функция:

$$f(x) = \begin{cases} \frac{n_i}{n\Delta}, & x \in J_i, \ i = \overline{1, m}, \\ 0, & \text{иначе.} \end{cases}$$
 (2.9)

Определение. График эмпирической функции плотности называется гистограммой.

2.3 Определение эмпирической функции распределения

Пусть $\vec{x} = (x_1, ..., x_n)$ — выборка из генеральной совокупности X.

Обозначим $n(t, \vec{x})$ — число компонент вектора \vec{x} , которые меньше, чем t.

Определение. Эмпирической функцией распределения, построенной по выборке \vec{x} , называют функцию $F_n: \mathbb{R} \to \mathbb{R}$, определенную правилом:

$$F_n(t) = \frac{n(t, \vec{x})}{n}. (2.10)$$

- 3 Практическая часть
- 3.1 Текст программы
- 3.2 Результаты расчетов для выборки из индивидуального варианта