Test niezależności χ^2

Maciej Beręsewicz

1 Test niezależności χ^2

Punktem wyjścia w teście niezależności χ^2 jest dwuwymiarowa tablica kontyngencji $\mathbf{N} = [n_{ij}]$, gdzie n_{ij} oznaczają liczebności empiryczne w i-tym wierszu oraz j-tej kolumnie $(i=1,\ldots,I,j=1,\ldots,J)$.

Tabela 1: Tablica kontyngencji dla dwóch zmiennych X i Y

Kategorie zmiennej X						
	Y_1	Y_2		Y_J		
X_1	n_{11}	n_{12}		n_{1J}	$n_{1.}$	
X_2	n_{21}	n_{22}		n_{2J}	$n_{2.}$	
:	:	:	:	:	•••	
X_I	n_{I1}	n_{I2}		n_{IJ}	$n_{I.}$	
Suma kolumn	n.1	$n_{.2}$		$n_{.J}$	n	

Źródło: Opracowanie własne.

Powyższa tabela przedstawia tablicę kontyngencji dla dwóch zmiennych X i Y, z których pierwsza ma I, a druga J wariantów.

W praktyce najczęściej wykorzystywanym narzędziem pozwalającym wykryć zależność między zmiennymi X i Y jest test χ^2 niezależności. $Hipoteza\ zerowa-H_0\ zakłada\ brak\ związku\ między\ zmiennymi,$ czyli zmienne X i Y są niezależne, wobec $hipotezy\ alternatywnej-H_1$, że zmienne X i Y nie są niezależne. Sprawdzianem hipotezy zerowej jest statystyka:

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \hat{n}_{ij})^2}{\hat{n}_{ij}}$$
 (1)

gdzie n_{ij} oraz \hat{n}_{ij} oznaczają odpowiednio empiryczne i teoretyczne liczebności tabeli kontyngencji. Liczebności teoretyczne \hat{n}_{ij} wyznaczamy ze wzoru:

$$\hat{n}_{ij} = \frac{n_{i.} n_{.j}}{n} \tag{2}$$

gdzie n oznacza liczebność próby, a n_i , $n_{.j}$ liczebności brzegowe. Statystyka (1) przy założeniu prawdziwości hipotezy H_0 ma graniczny rozkład χ^2 z (I-1)(J-1) stopniami swobody. Obszar krytyczny w teście χ^2 niezależności buduje się prawostronnie:

$$P(\chi^2 \geqslant \chi_\alpha^2) = \alpha \tag{3}$$

\mathbf{W} przypadku tabeli $2\mathbf{x}2$

Tabela 2: Tabela 2x2

			D	
Cecha X	Cecha Y		Razem	
	Y_1	Y_2		
X_1	A	В	A+B	
X_2	C	D	C+D	
Razem	A+C	B+D	N=A+B+C+D	

 $\frac{\mathbf{m} \mid \mathbf{A} + \mathbf{C} \mid \mathbf{B} + \mathbf{D} \mid \mathbf{N} = \mathbf{A} + \mathbf{B}}{\hat{\mathbf{Z}} r \acute{o} d l o}$: Opracowanie własne.

można skorzystać z następującego wzoru:

$$\chi^2 = \frac{n * (ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)} \tag{4}$$

2 Test niezależności χ^2 w SAS

Zadanie 1. Stosując test niezależności χ^2 sprawdź czy pomiędzy wykształceniem, a tym czy w ciągu ostatnich 3 lat osoba brała udział w szkoleniach istnieje zależność. Na podstawie 141 losowo zapytanych pracowników pewnej firmie uzyskano następujące wyniki. Przyjmij poziom istotności $\alpha=0,05$.

Tabela 3: Tabla kontyngencji zadania 1

Wykształcenie	Udział w szkoleniach	Brak udziału w szkoleniach		
Zawodowe	18	17		
Średnie	34	19		
Wyższe	38	15		

Wczytanie danych

```
data zad1;
input wykszt $ szkolenie $ n;
datalines;
zawodowe tak 18
zawodowe nie 17
średnie tak 34
średnie nie 19
wyższe tak 38
wyższe nie 15
;
run;
```

Aby rozwiązać zadanie można wykorzystać do tego procedurę **PROC FREQ**. Kod znajduje się poniżej.

```
proc freq data=zad1;
table wykszt*szkolenie /chisq;
weight n;
run;
```

Na podstawie poniższej tabeli należy stwierdzić, że nie mamy podstaw do odrzucenia H_0 ponieważ p-value (prob) jest większe od założonego poziomu istotności $\alpha = 0,05$. W związku z tym nie ma zależności między wykształceniem a udziałem w szkoleniach.

Statistic	DF	Value	Prob
Chi-Square	2	3.7550	0.1530
Likelihood Ratio Chi-Square	2	3.7240	0.1554
Mantel-Haenszel Chi-Square		0.6492	0.4204
Phi Coefficient		0.1632	
Contingency Coefficient		0.1611	
Cramer's V		0.1632	