2022 빅콘테스트

데이터 분석 리그_퓨처스

Honglk

김태용, 권재현, 박세빈, 한혜원, 홍표민

1. 문제 이해

- 01 대출 신청 고객 예측
- 02 모델 기반 군집 분석 및 서비스 메시지 제안

2. 데이터 전처리

- 01 결측치 제거
- 02 결측치 대치

3. 모델링

- 01 대출 신청 고객 예측 모델링
- 02 서비스 메시지 군집 모델링

4. 결론

- 01 대출 신청 고객 예측
- 02 군집 모델링 서비스 메시지

01. 대출 신청 고객 예측

사용자 신용 정보

finda App 로그 정보

유저 연소득, 고용 형태, 기대출수 주거 소유 형태, 대출 목적 , ...

유저 번호, 행동명, 행동일시, 일 코드

사용자가 신청한 대출별 금융사별 승인결과

대출 신청 여부

신청서 번호, 한도조회 일시, 금융사 번호, 상품 번호, 승인한도, 승인금리

02. 모델 기반 군집 분석 및 서비스 메시지 제안

모델 기반으로 사용자를 군집화 한 후 각 군집에 적합한 서비스 메시지 작성

각 군집의 특성을 파악하고 군집 별 특성에 적합한 서비스 메시지 작성

2. 데이터 전처리

데이터 전처리

01.결측치 처리

user_spec.csv, loan_result.csv의 data가 대출 신청 여부에 더 큰 영향을 끼치고, 제한된 하드웨어 리소스에서 최대 성능을 내기 위해 log_data.csv를 제외한 나머지 두 파일을 user_id 기준으로 병합

· 의미 중복 제거

user_id	birth_year	gender	loan_limit	yearly_ income	income_type	employment_ type	purpose	loanapply_ insert_time	personal_ rehabilitatio n_yn	personal_ rehabilitation_ complete_yn	existing_loan _cnt	existing_loan _amt	credit_score
341318	1971	1	15000000	30000000	EARNEDINCOME	계약직	생활비	6/21/2022 8:31:13	null	null	4	20000000	710
524359	1976	1	45000000	42000000	EARNEDINCOME	정규직	'living'	8/19/2022 8:23:11	null	null	1	3000000	590
733387	1999	1	43900000	30000000	EARNEDINCOME2	정규직	'switchloan'	1/2/2022 6:45:15	null	null	null	null	580
801057	1993	0	17000000	48000000	EARNEDINCOME	정규직	대환대출	5/13/2022 7:52:48	null	null	0	0	660

'생활비', '대환대출', '사업자금', '기타', '전월세보증금', '주택구입', '투자', '자동차구입', 'living', 'switchloan', 'business', 'etc', 'housedeposit', 'buyhouse', 'invest', 'buycar' 등 중복되는 의미 제거

· 자료형 정렬

user_id	birth_year	gender	loan_limit	yearly_ income	income_type	employment_ type	purpose	loanapply_ insert_time	personal_ rehabilitatio n_yn	personal_ rehabilitation_ complete_yn	existing_loan _cnt	existing_loan _amt	credit_score
341318	1971	1	15000000	30000000	EARNEDINCOME	계약직	생활비	6/21/2022 8:31:13	null	null	4	20000000	710
524359	1976	1	45000000	42000000	EARNEDINCOME	정규직	'living'	8/19/2022 8:23:11	null	null	1	3000000	590
733387	1999	1	43900000	30000000	ARNEDINCOME2	정규직	'switchloan'	1/2/2022 6:45:15	null	null	null	null	580
801057	1993	0	17000000	48000000	EARNEDINCOME	정규직	대환대출	5/13/2022 7:52:48	null	null	0	0	660

데이터 전처리

01.결측치 제거

· 변수 사이의 관계: 개인회생자 여부와 개인 회생자 납입 완료 여부 사이의 관계 확인

user_id	birth_year	gender	loan_limit	yearly_ income	income_type	employment_ type	purpose	loanapply_ insert_time	personal_ rehabilitatio n_yn	personal_ rehabilitation_ complete_yn	existing_loan _cnt	existing_loan _amt	credit_score
341318	1971	1	15000000	30000000	EARNEDINCOME	계약직	생활비	6/21/2022 8:31:13	null	null	4	20000000	710
524359	1976	1	45000000	42000000	EARNEDINCOME	정규직	'living'	8/19/2022 8:23:11	null	null	1	3000000	590
733387	1999	1	43900000	30000000	EARNEDINCOME2	정규직	'switchloan'	1/2/2022 6:45:15	null	null	null	null	580
801057	1993	0	17000000	48000000	EARNEDINCOME	정규직	대환대출	5/13/2022 7:52:48	null	null	0	0	660

- 1. 개인 회생자가 아닐 때, 회생자 납입 완료 여부가 전부 결측치
- 2. 개인 회생자가 1일 때, 개인 회생자 납입 완료 여부의 결측치 존재 x
 - 1) 개인 회생자 여부가 0인 경우 회생자 납입 완료 여부 '2'로 대치
 - 2) 개인 회생자 여부의 결측치는 '2'로 대치 & 개인 회생자 여부가 결측치이고 납입 완료가 결측치인 경우 개인 회생자 납입 완료 여부의 결측치 '3'으로 대치
 - 3) 문자열로 변환 후 다시 One-hot-encoding 실시

· 결측치 제거

user_id	birth_year	gender	loan_limit	yearly_ income	income_type	employment_ type	purpose	loanapply_ insert_time	personal_ rehabilitatio n_yn	personal_ rehabilitation_ complete_yn	existing_loan _cnt	existing_loan _amt	credit_score
341318	1971	1	15000000	30000000	EARNEDINCOME	계약직	생활비	6/21/2022 8:31:13	null	null	4	20000000	710
524359	1976	1	45000000	42000000	EARNEDINCOME	정규직	'living'	8/19/2022 8:23:11	null	null	1	3000000	590
733387	1999	1	43900000	30000000	EARNEDINCOME2	정규직	'switchloan'	1/2/2022 6:45:15	null	null	null	null	580
801057	1993	0	17000000	48000000	EARNEDINCOME	정규직	대환대출	5/13/2022 7:52:48	null	null	0	0	660

2. 데이터 전처리

데이터 전처리

02.결측치 대치

· 평균값 대치

user_id	birth_year	gender	loan_limit	yearly_ income	income_type	employment_ type	purpose	loanapply_ insert_time	personal_ rehabilitatio n_yn	personal_ rehabilitation_ complete_yn	existing_loan _cnt	existing_loan _amt	credit_score
341318	1971	1	15000000	30000000	EARNEDINCOME	계약직	생활비	6/21/2022 8:31:13	null	null	4	20000000	710
524359	1976	1	45000000	42000000	EARNEDINCOME	정규직	'living'	8/19/2022 8:23:11	null	null	1	3000000	590
733387	1999	1	43900000	30000000	EARNEDINCOME2	정규직	'switchloan'	1/2/2022 6:45:15	null	null	null	null	580
801057	1993	0	17000000	48000000	EARNEDINCOME	정규직	대환대출	5/13/2022 7:52:48	null	null	0	0	660

상대적으로 결측치가 적었지만 중요한 feature라고 판단하여 평균값으로 대치

• 선형 회귀

user_id	birth_year	gender	loan_limit	yearly_incom e	income_type	employment_ type	purpose	loanapply_ insert_time	personal_ rehabilitatio n_yn	personal_ rehabilitation_ complete_yn	existing_loan _cnt	existing_loan _amt	credit_score
341318	1971	1	15000000	30000000	EARNEDINCOME	계약직	생활비	6/21/2022 8:31:13	null	null	4	20000000	710
524359	1976	1	45000000	42000000	EARNEDINCOME	정규직	'living'	8/19/2022 8:23:11	null	null	1	3000000	590
733387	1999	1	43900000	30000000	EARNEDINCOME2	정규직	'switchloan'	1/2/2022 6:45:15	null	null	null	null	580
801057	1993	0	17000000	48000000	EARNEDINCOME	정규직	대환대출	5/13/2022 7:52:48	null	null	0	0	660

01. 대출 신청 고객 예측 모델링: Overview

01. 대출 신청 고객 예측 모델링: Data Pre-Processing

01. 대출 신청 고객 예측 모델링: Dataset Split Method

- 무작위(Random) 추출
- 비복원 (without replacement) 추출
 - Training : Ensemble = 80:20

01. 대출 신청 고객 예측 모델링: Training Method

Model	성능 (Accuracy)
XGBoost	94.88
CatBoost	95.02
LightGBM	95.73
Random Forest	96.77

- 3개로 분리된 Training Dataset을 Parameter tuning 한 Random Forest 모델에 각각 학습시킴.
 - Random Forest의 성능이 다른 알고리즘에 비해 약 1%p~2%p의 정확도가 높음.

01. 대출 신청 고객 예측 모델링: Ensemble Method

Ensemble Method	Trained Model Algoritm	Training Dataset	성능 (Accuracy)
Voting (soft)	Random Forest, LightGBM, XGBoost	Dataset 0 (trained)	95.14
Voting (soft)	Random Forest, LightGBM, XGBoost	Dataset 3 (non-trained)	94.95
Stacking Ensemble	Catboost + (Random Forest, XGBoost)	Dataset 0 (trained)	96.74
Our method	Random Forest	Dataset 3 (non-trained)	98.79

- Random Forest 모델에 Model 0, Model 1, Model 2의 결과를 Staking Ensemble을 변형한 Ensemble method를 통해 최종 inference를 추출
- Staking Ensemble은 이미 학습시킨 Dataset을 통해 Ensemble을 하지만, Our method는 학습시키지 않은 Dataset으로 Ensemble하여 Overfitting을 최소화 함.

01. 대출 신청 고객 예측 모델링: Model Evalution

Model	Model Algoritm	Dataset	성능 (F1-score)
Model 0	Random Forest	Dataset 0	52.25
Model 1	Random Forest	Dataset 1	53.45
Model 2	Random Forest	Dataset 2	25.64
Ensemble (Model 3)	Random Forest	Dataset 3	81.04

- Model 0, Model 1, Model 2과 Our method로 Ensemble한 Model과 F1-score으로 성능 비교
- 단일 모델인 Model 0, Model 1, Model 2와 Ensemble 모델과 확연한 성능 차이(최대 약56%p)가 남.

3. 모델링

모델링

02. 서비스 메시지 군집 모델링

- 선정한 알고리즘: K-Means Clustering

방대한 데이터를 좋은 성능으로 빠르게(time complexity: O(log k)) 군집화 할 수 있음.

- Method:
- 1. 여러 ML 모델을 적용하여 Feature Importance로 중요한 feature을 선정
- 2. 상위 중요도와 고객의 특성을 잘 표현하는 6가지 feature 선정
- 3. 선정된 feature를 기반으로 K-Means Clustering을 사용하여 최적으로 군집화
- 4. 시각화를 통해 군집된 고객의 특징의 분포를 파악
- 5. 맞춤형 서비스 메시지 설계

모든 feature를 고려하여 군집화 하는 것보다 중요한 feature를 <mark>정량적으로 선별</mark>하여 군집화 하는 것이 더 효과적인 맞춤형 서비스 메시지를 제공할 수 있음.

02. 서비스 메시지 군집 모델링: Feature Importance

LightGBM(split)	LightGBM(gain)	Random Forest	XGBoost(weight)	XGBoost(gain)	XGBoost(cover)	XGBoost(total_gain)	XGBoost(total_cover)
loan_rate	credit_score	loan_rate	loan_rate	credit_score	income_type_0	credit_score	credit_score
credit_score	loan_rate	credit_score	credit_score	income_type_0	credit_score	loan_rate	loan_rate
bank_id	desired_amount	application_id	desired_amount	desired_amount	insert_hour	desired_amount	income_type_0
product_id	income_type_0	user_id	loan_limit	loan_rate	purpose_6	income_type_0	desired_amount
loan_limit	product_id	loan_limit	product_id	purpose_6	loanapply_insert_hour	loan_limit	company_enter_month
desired_amount	bank_id	birth_year	bank_id	company_enter_month	purpose_4	product_id	product_id
birth_year	loan_limit	company_enter_month	income_type_0	existing_loan_cnt	income_type_2	company_enter_month	bank_id
yearly_income	company_enter_month	yearly_income	company_enter_month	product_id	company_enter_month	existing_loan_cnt	existing_loan_cnt
existing_loan_cnt	existing_loan_cnt	product_id	existing_loan_cnt	insert_hour	desired_amount	bank_id	loan_limit
existing_loan_amt	birth_year	existing_loan_amt	birth_year	income_type_5	loan_rate	birth_year	yearly_income
company_enter_month	yearly_income	desired_amount	employment_type_1	loan_limit	existing_loan_cnt	employment_type_1	birth_year
income_type_0	existing_loan_amt	loanapply_insert_minute	yearly_income	bank_id	purpose_2	purpose_6	purpose_6
loanapply_insert_hour	employment_type_1	insert_minute	existing_loan_amt	employment_type_1	income_type_5	income_type_5	income_type_5
application_id	purpose_6	bank_id	income_type_5	income_type_4	yearly_income	yearly_income	loanapply_insert_hour
loanapply_insert_day	income_type_5	insert_day	loanapply_insert_hour	loanapply_insert_hour	bank_id	insert_hour	employment_type_1
user_id	loanapply_insert_hour	loanapply_insert_day	purpose_2	income_type_2	product_id	loanapply_insert_hour	insert_hour
income_type_5	loanapply_insert_day	insert_hour	purpose_6	yearly_income	loan_limit	existing_loan_amt	income_type_2
loanapply_insert_minute	insert_hour	existing_loan_cnt	income_type_2	purpose_4	employment_type_1	purpose_2	purpose_2
loanapply_insert_month	purpose_2	loanapply_insert_hour	insert_hour	purpose_2	birth_year	income_type_2	purpose_4
purpose_6	loanapply_insert_month	insert_month	purpose_4	income_type_1	income_type_4	purpose_4	existing_loan_amt

- LightGBM, XGBoost, RandomForest 등의 트리 기반 알고리즘을 통해 feature importance 추출 - 상위 20개의 feature를 수집한 후, 고객의 특징을 담고 있는 feature 6가지 선정 => birth_year, credit_score, desired_amount, loan_limit, loan_rate, yearly_income

02. 서비스 메시지 군집 모델링: K-Means

birth_year, credit_score, loan_rate

loan_rate, credit_score, desired_amount

- 선정한 6가지 feature를 3가지의 feature씩 군집화 시각화 - 육안으로 군집이 잘 구별되는 결과 취합

01. 대출 신청 고객 예측

[Problem]

제한된 하드웨어 리소스에서 방대한 양의 Data를 모델에 학습시켜야 하는 문제가 존재했음.

[Our Solution]

연산량이 많고 시간이 오래걸리는 단점을 해결하기 위해, Dataset을 Split하여 각각 모델에 학습시킨 뒤, Staking Ensemble을 응용하여 고안한 Ensemble Method로 Overfitting 문제 최소화함.

[Conclusion]

F1-Score가 약 81%인 모델을 생성해 냄.

02. 군집 모델링 서비스 메시지: 군집화 분석

[Result]

- 1. 연봉이 <mark>적고(상위 25% 이하)</mark> 대출 희망 금액이 <mark>적은(상위 25% 이하)</mark> 사람 (보라)
- 2. 연봉이 <mark>적고(상위 25% 이하)</mark> 대출 희망 금액이 <mark>높은(상위 25% 이상)</mark> 사람 (초록)
- 3. 연봉이 높은(상위 25% 이상) 사람 (노랑)

02. 군집 모델링 서비스 메시지: 서비스 메시지 제안

- 1. 연봉이 적고(상위 25% 이하) 대출 희망 금액이 적은(상위 25% 이하) 사람 (보라)
- ⇒ 대출 한도와 상관없이 가장 빠르게 대출되는 상품 비교 메시지
- 2. 연봉이 적고(상위 25% 이하) 대출 희망 금액이 높은(상위 25% 이상) 사람 (초록)
- ⇒ 이자가 낮고 대출 한도가 높은 대출 상품 비교 메시지
- 3. 연봉이 높은(상위 25% 이상) 사람 (노랑)
- ⇒ 금리가 낮은 대출 상품 비교 메시지

THANK YOU

끝까지 봐주셔서 감사합니다.

Honglk

김태용, 권재현, 박세빈, 한혜원, 홍표민