大学物理A习题册参考答案(试行版)

王学宇 光电信息科学与工程 2023 年 6 月 15 日

目录

1	前言	1
2	练习一 质点运动学	2
	2.1 选择题	2
	2.2 填空题	
	2.3 计算题	
3	练习二 质点动力学	4
	3.1 选择题	4
	3.2 填空题	5
	3.3 计算题	5
4	练习三 刚体定轴转动 角动量 角动量守恒	6
	4.1 选择题	6
	4.2 填空题	7
	4.3 计算题	9
5	练习四 机械振动	10
	5.1 计算题	10
6	练习五 机械波	11
	6.1 选择题	11
	6.2 填空题	11
	6.3 计算题	11
7	练习六 气体动理论 热力学第一定律 等值过程	12
	7.1 选择题	12
	7.2 填空题	13

	7.3 计算题	13
8	练习七 循环过程 热力学第二定律	14
	8.1 选择题	14
	8.2 填空题	15
	8.3 计算题	15
9	练习八 光的相干性 双缝干涉 光程	16
	9.1 选择题	16
	9.2 填空题	16
	9.3 计算题	17
10	练习九 薄膜干涉 劈尖 牛顿环	17
10	练习九 薄膜干涉 劈尖 牛顿环 10.1 选择题	
10		17
10	10.1 选择题	17 18
	10.1 选择题	17 18
	10.1 选择题	17 18 19 19
	10.1 选择题 10.2 填空题 10.3 计算题 练习十 单缝衍射 光栅 光的偏振	17 18 19 19
	10.1 选择题 10.2 填空题 10.3 计算题 练习十 单缝衍射 光栅 光的偏振 11.1 选择题	17 18 19 19 19

1 前言

此习题册参考答案完全由笔者手敲上千行代码,劳神伤财,版权所有,侵权必究。 1999年第23届国际物理与应用物理联合会(International Union of Pure and Applied Physics, IUPAP)代表大会通过的决议指出:物理学——研究物质、能量和它们相互作用

的学科,是一项国际事业,它对人类未来的进步起着关键的作用。

自然界,浩瀚广阔,丰富多彩,形形色色的物质在其中不断地运动变化着.什么是物质?大至日、月、星辰,小到分子、原子、电子,都是物质,不光固体、液体、气体和等离子体,这些实物是物质;电场、磁场、重力场和引力场,这些场也是物质。总之,物质是独立于人们意识之外的客观实在。

物理学是研究物质、能量和它们相互作用的学科,而物质、能量的研究涉及物质运动的普遍形式,这些普遍的运动形式包括机械运动、分子热运动、电磁运动、原子和原子核内的运动等,它们普遍地存在于其他高级的、复杂的物质运动形式之中,因此,物理学所研究的规律具有极大的普遍性。

物理学的研究对象是形形色色的物质。这些物质的空间尺度,从宇观的 $10^{26}m$ 到微观的 $10^{-5}m$;时间尺度从宇宙年龄 10^{18} s到硬 γ 射线的周期 10^{-27} s;速率范围从0到 $3\times10^8m/s$,这些尺度范围十分广泛.生命现象是宇宙中最为复杂的运动形式,而人则是复杂的生命现象之-一.物质世界的尺度,由人体大小的实物起,向非常大和非常小的两个方向去观察,物质世界的结构都逐渐变得简单,还未发现类似生物体中见到的复杂组织存在。小尺度和大尺度的世界所用的一些理论竟是相通的.目前,天体物理与粒子物理两大尖端正在紧密地衔接起来。

物理学是自然科学的基础,也是当代工程技术的重大支柱,是人类认识自然、优化自然并最终造福于人类的最有活力的带头学科。回顾物理学发展的全过程,可以加深我们对物理学重要性的认识。

此外,更重要的是,大学物理是今后数电、模电、信号与系统、通信原理、工程电磁场、量子力学、电动力学、工程光学、物理光学、傅里叶光学、量子场论等等学科的的重要基础,因此,大学物理这一门课在整个大学四年的学习中都是至关重要的一环,这也是这册参考答案诞生的必要性。

在参考答案写完之际,笔者要感谢在编写过程中给予笔者极大帮助的钟同学(Sun Yat-sen University),曹同学(Tsinghua University),李同学(Peking University),侯同学(Shanghai Jiao Tong University),聂同学(Huazhong University of Science and Technology),李同学(Wuhan University of Technology),廖同学(Central China Normal University),王同学(Harbin Institude of Technology,HIT),楚同学(Northwestern Polytechnical University),谭同学(Hunan university),何同学(Wuhan University).

以及钟同学(中南民族大学),莫同学(中南民族大学),王同学(中南民族大学),项同学(中南民族大学),朱同学(中南民族大学),梁同学(中南民族大学)以及全体宿舍成员(吴同学,林同学,黄同学,赵同学)的大力支持与鼎力相助.

特别感谢我的大物老师——潘林峰老师,没有潘老师的倾情相助,我根本没有撰写这册参考答案的动力,也就根本不会有这本参考答案的诞生,在此,向潘老师致以最高的敬意与感谢!

最后,由于最近事物诸多加之各学科作业大量布置与其他事情堆叠,导致投入时间精力有所减少,加之笔者能力水平有限,其间理解偏差与认知错误的知识点恳请各位同学多加批评,不吝赐教,笔者必当加以斧正。

2 练习一 质点运动学

2.1 选择题

- 1.Answer D
- 2.Answer B
- 3.Answer D

根据题意可得位置矢量为

$$\boldsymbol{r} = 2t\boldsymbol{i} + (19 - 2t^2)\boldsymbol{j} \tag{1}$$

速度矢量为

$$\boldsymbol{v} = \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\boldsymbol{v}} = 2\boldsymbol{i} - 4t\boldsymbol{j} \tag{2}$$

则由于垂直,结合(1)(2)两式得到

$$2 \times 2t + (19 - 2t^2)(-4) = 0 \tag{3}$$

解得

$$t_1 = 0 \quad t_2 = 3s.$$
 (4)

- 4.Answer C
- 5.Answer A

此题关键在于矢量三角形图的构建, 具体过程如下图所示。

得到

$$a_n = g\cos\theta \tag{5}$$

$$r = \frac{v_0^2 \cos^2 \theta}{g} \tag{6}$$

达到最高点时,由于阻力影响,使得竖直方向速度为0,接下来做平抛运动。

图 1: 矢量三角形

2.2 填空题

- 1.Answer 2s
- 2. Answer 6t(SI) $t + t^3(SI)$
- 3.Answer

$$\boldsymbol{v} = 4t\boldsymbol{i} - \pi\sin\pi t\boldsymbol{j}$$

$$\boldsymbol{a} = 4\boldsymbol{i} - \pi^2 \cos \pi t \boldsymbol{j}$$

$$a_t = 4(SI)$$

$$a_n = \pi^2(SI)$$

2.3 计算题

1.Answer

$$v = 190m/s$$
 $x = 705m$

2.Answer

因为

$$v = \frac{\mathrm{d}x}{\mathrm{d}v} = \frac{\mathrm{d}x}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}v}a\tag{7}$$

结合a = -kx(k > 0),则可以得到

$$\int_{v_0}^{v} v \, \mathrm{d}v = \int_{x_0}^{x} -kx \, \mathrm{d}x \tag{8}$$

由此解得

$$v = \pm \sqrt{v_0^2 - kx^2 + kx_0^2} \tag{9}$$

3.Answer

由题

$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} = t^2 \tag{10}$$

由此

$$\int_0^\omega d\omega = \int_0^0 t^2 dt \tag{11}$$

$$\omega = \frac{1}{3}t^3\tag{12}$$

因此

$$\omega = \frac{8}{3} rad/s \tag{13}$$

$$v = R\omega = \frac{16}{15} rad/s = 1.07 rad/s \tag{14}$$

$$\vec{a_n} = R\omega^2 = \frac{128}{45} rad/s^2 = 2.84 rad/s^2$$
 (15)

$$\vec{a_r} = \alpha R^2 = 1.60 rad/s^2 \tag{16}$$

$$\vec{a} = \sqrt{\vec{a_n}^2 + \vec{a_r}^2} = 3.26 rad/s^2 \tag{17}$$

3 练习二 质点动力学

3.1 选择题

- 1.Answer C
- 2.Answer C

- 3.Answer C
- 4.Answer C
- 5.Answer A

3.2 填空题

1.Answer

$$T = 2\pi \sqrt{\frac{l\cos\theta}{g}}$$

2.Answer

$$\omega \leq \frac{\mu g}{r}$$

3.Answer

根据题意,假设l为物体与地心距离,考虑引力势能

$$E = \int_0^l \frac{GMm}{r^2} dr = -\frac{GMm}{l} + C \tag{18}$$

此时C取决于所选取的参照点(零势能点)

若取地面的引力势能为0,则该地球与物体系统的引力势能为

$$E_1 = \int_R^{3R} \frac{GMm}{r^2} dr = \frac{2GMm}{3R} \tag{19}$$

若取无穷远处的引力势能为0,则该地球与物体系统的引力势能为

$$E_2 = \int_{\infty}^{3R} \frac{GMm}{r^2} dr = -\frac{GMm}{3R}.$$
 (20)

3.3 计算题

- 1.Answer
- (1)由于离开枪口时

$$\Sigma F = 0$$

因此解得

$$t' = 3 \times 10^{-3} \tag{21}$$

(2)由题

$$I = \int_0^{3 \times 10^{-3}} F dt = 0.6N \cdot s \tag{22}$$

(3)由动量守恒

$$I = mv (23)$$

得到

$$m = 2 \times 10^{-3} kq$$

- 2.Answer
- (1)由题设

$$f = -kv = -k\frac{\mathrm{d}v}{\mathrm{d}t} \tag{24}$$

由此

$$\int_{0}^{t} -\frac{k}{m} = \int_{v_0}^{v} \frac{1}{v} dv \tag{25}$$

解得

$$v = v_0 e^{-\frac{k}{m}t} \tag{26}$$

(2)由题

$$-kv = m\frac{\mathrm{d}v}{\mathrm{d}t} = m\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t} = mv\frac{\mathrm{d}v}{\mathrm{d}x} \tag{27}$$

由此得到

$$\int_0^x \mathrm{d}x = \int_{v_0}^0 -\frac{m}{k} \mathrm{d}v \tag{28}$$

解得

$$x = \frac{mv_0}{k}$$

4 练习三 刚体定轴转动 角动量 角动量守恒

4.1 选择题

- 1.Answer A
- 2.Answer D
- 3.Answer C

注意,由于细棒质量均匀,故重心位于中点处,因此该细棒可以等效为绳长为 $\frac{l}{2}$,质量为m的单摆,因此由机械能守恒

$$mgl(1 - \cos\theta) = \frac{1}{2}mv^2 \tag{29}$$

$$v = \omega l \tag{30}$$

结合上述两式

$$\omega = \sqrt{\frac{2g(1 - \cos \theta)}{l}} \tag{31}$$

由此可知,l越长, ω 越小

$$\omega_1 < \omega_2$$

- 4.Answer C
- 5.Answer D
- 6.Answer A
- 7.Answer C
- 8.Answer D
- 9.Answer E
- 10.Answer A

4.2 填空题

- 1. Answer $38kg \cdot m^2$
- 2.Answer

由题意知

$$M_{\mu} = -k\omega^2 \tag{32}$$

根据转动定律M=Jlpha,则当 $\omega=\frac{\omega_0}{3}$ 时,得

$$\alpha = \frac{M_{\mu}}{J} = \frac{-k\omega^2}{J} = \frac{-k(\frac{\omega_0}{3})^2}{J} = \frac{-k\omega_0^2}{9J}$$
 (33)

而后,对于开始制动到 $\omega = \frac{\omega_0}{3}$ 过程中

$$-k\omega^2 = J\alpha = J\frac{\mathrm{d}\omega}{\mathrm{d}t} \tag{34}$$

由此

$$\frac{\mathrm{d}\omega}{\omega^2} = -\frac{k}{J}\mathrm{d}t\tag{35}$$

对方程两边积分可得

$$\int_{\omega_0}^{\frac{\omega_0}{3}} \frac{\mathrm{d}\omega}{\omega^2} = -\frac{k}{J} \int_0^t \mathrm{d}t \tag{36}$$

故

$$t = -\frac{J}{k}(\frac{1}{\omega_0} - \frac{3}{\omega_0}) = \frac{2J}{k\omega_0}$$
 (37)

3.Answer

由题意,水平位置

$$M = 2mg\frac{l}{2} - mg\frac{l}{2} = mg\frac{l}{2} \tag{38}$$

此时,系统的角加速度

$$\alpha = \frac{M}{J} = \frac{mg\frac{l}{2}}{mg(\frac{l}{2})^2 + 2mg(\frac{l}{2})^2} = \frac{2g}{3l}$$
 (39)

5.Answer

由题,根据力矩的定义有

$$\mathbf{M} = \mathbf{r} \times \mathbf{F} = \mathbf{r} \times m \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} = \mathbf{r} \times m(-\omega^2 \mathbf{r}) = \mathbf{0}$$
 (40)

而角动量为

$$L = \mathbf{r} \times m \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$$

$$= m\omega [a\cos(\omega t)\mathbf{i} + b\sin(\omega t)\mathbf{j}] \times [-a\sin(\omega t)\mathbf{i} + b\cos(\omega t)\mathbf{j}]$$

$$= m\omega \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a\cos(\omega t) & b\sin(\omega t) & 0 \\ -a\sin(\omega t) & b\cos(\omega t) & 0 \end{vmatrix}$$

$$= m\omega a \mathbf{k}$$

$$(41)$$

 $= m\omega ab\mathbf{k}.$

6.Answer

由角动量守恒与机械能守恒可得

$$mv\frac{L}{2} = \frac{1}{3}ML^2\omega \tag{42}$$

$$\frac{1}{2}(\frac{1}{3}ML^2)\omega^2 = Mg\frac{L}{2}(1-\cos\theta)$$
 (43)

解得

$$v = \frac{2M\sqrt{gL(1-\cos\theta)}}{\sqrt{3}m} = \frac{2M\sqrt{3gL(1-\cos\theta)}}{3m}$$
(44)

4.3 计算题

1.Answer

设M为恒力矩, M_f :阻力矩,由此对整个过程

$$M - M_f = J \frac{\omega}{t_1} \tag{45}$$

$$-M_f = J \frac{-\omega}{t_2} \tag{46}$$

由此

$$M = J\omega(\frac{1}{t_1} + \frac{1}{t_2}) \tag{47}$$

解得

$$J = 9.1kg \cdot m^2$$

2.Answer

考虑角动量守恒

$$mvL = mv\frac{L}{2} + \frac{1}{3}ML^2\omega \tag{48}$$

随后考虑机械能守恒

$$\frac{1}{2}(\frac{1}{3}ML^2)\omega^2 = MgL = Mg(\frac{L}{2} + \frac{L}{2})$$
(49)

其中,注意杆的重心上升高度为L,由此解得

$$v_{min} = \frac{2M}{m} \sqrt{\frac{2gL}{3}} = \frac{2M}{3m} \sqrt{6gL} \tag{50}$$

3.Answer

(1)对小球分析由机械能守恒

$$mgl = \frac{1}{2}mv^2 \tag{51}$$

小球在最低点以速度v碰撞过程由角动量守恒

$$mvL = \frac{1}{3}ML^2\omega_0 \tag{52}$$

结合上两式,解得

$$\omega_0 = \frac{3m\sqrt{2gl}}{ML} \tag{53}$$

(2)对于碰撞后,考虑机械能守恒

$$\frac{1}{2} \times (\frac{1}{3}ML^2)^2 + Mg\frac{L}{2}(1 - \cos\theta) = \frac{1}{2}(\frac{1}{3}ML^2) \times \omega_0^2$$
 (54)

All rights reserved by Xueyu Wang.

由此解得

$$\omega = \sqrt{\frac{18m^2gl}{M^2L^2} - \frac{3g(1 - \cos\theta)}{L}}$$
 (55)

最后,考虑

$$M_z = Mg\frac{L}{2}\sin\theta = \frac{1}{3}ML^2\alpha\tag{56}$$

解得

$$\alpha = \frac{3g\sin\theta}{2L} \tag{57}$$

5 练习四 机械振动

5.1 计算题

2.Answer

根据题意可知 $T = 4.0s, A = 24 \times 10^{-2}$

$$\omega = \frac{2\pi}{T} = \frac{\pi}{2} rad/s$$

当t=0时,x=+A,因此 $\varphi=0$

由此,可得振动方程为

$$x = 0.24\cos(\frac{\pi}{2}t)m\tag{58}$$

(1)将t = 0.5带入可得

$$x_{0.5} = 0.24\cos(\frac{\pi}{4})m = 0.17m\tag{59}$$

$$\mathbf{F} = m\mathbf{a} = m\omega^2 x = -4.2 \times 10^{-3} N \tag{60}$$

$$a = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \cos(\omega x + \varphi) \tag{61}$$

方向沿x轴负向. (2)当x=0.12时,注意到此时v<0带入式子中解得

$$t = \frac{2}{3}s = 0.67s \tag{62}$$

(3)由于谐振动能量守恒,在任一时刻或任一位置的系统总能量均为

$$E = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2 = 7.1 \times 10^{-4}J$$
 (63)

6 练习五 机械波

6.1 选择题

- 1.Answer C
- 2.Answer D
- 3.Answer A
- 4.Answer A
- 5.Answer D

6.2 填空题

- 1.Answer 3m 300m/s
- 2.Answer 0.5
- 3.Answer 5J

6.3 计算题

- 1.Answer
- (1)由题设x = 0处的振动方程为

$$y(t) = 2 \times 10^{-2} \cos(\frac{\pi}{2}t + \varphi) \tag{64}$$

由此, 当t = 1s时

$$\cos(\frac{\pi}{2} + \varphi) = -1 \tag{65}$$

 $\mathfrak{R}\varphi = \frac{\pi}{2}$

$$\therefore y(t) = 2 \times 10^{-2} \cos(\frac{\pi}{2}t + \frac{\pi}{2}) \tag{66}$$

(2)结合(1)得到波动方程

$$y(x,t) = 2 \times 10^{-2} \cos(\frac{\pi}{2} - \frac{\pi}{10}x + \frac{\pi}{2})m \tag{67}$$

- 2.Answer
- (1)由图,不妨设

$$y(t) = 0.1\cos(\omega t + \varphi)$$

由此带入t=0,向上运动

$$\varphi = -\frac{\pi}{3}$$

再有t = 3.0s

$$\cos(3\omega - \frac{\pi}{3}) = 0\tag{68}$$

解得

$$\omega = \frac{5\pi}{18}$$

因此

$$y(t) = 0.1\cos(\frac{5\pi}{18}t - \frac{\pi}{3})\tag{69}$$

(2)由(1)

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{vT} = \frac{\omega}{v} = \frac{5\pi}{18} \tag{70}$$

因此

$$y(x,t) = 0.1\cos(\frac{5\pi}{18}t - \frac{5\pi}{18}x + \frac{19}{18}\pi)$$
 (71)

7 练习六 气体动理论 热力学第一定律 等值过程

7.1 选择题

5.Answer C 对于此题,考虑

$$\overline{\lambda} = \frac{\overline{v}}{\overline{Z}} = \frac{1}{\sqrt{2\pi}d^2n} \tag{72}$$

可知其与温度无关,而由前几节的知识可知,T提高, \overline{Z} 同样会增大而不是考虑推导式

$$\overline{\lambda} = \frac{kT}{\sqrt{2\pi}d^2p} \tag{73}$$

$$p = nkT (74)$$

可知

$$\frac{p}{T} = nk \tag{75}$$

为常数,故 $\bar{\lambda}$ 应不变.

7.2 填空题

3.Answer

单位体积分子数

$$n = \frac{P}{kT} = 3.2 \times 10^{17} m^{-3} \tag{76}$$

平均自由程

$$\overline{\lambda} = \frac{1}{\sqrt{2\pi}d^2n} = 7.8m\tag{77}$$

平均碰撞频率

$$\overline{Z} = \frac{\overline{v}}{\lambda} = \sqrt{\frac{8RT}{\pi M}} \cdot \frac{1}{\lambda} = 60s^{-1}$$
 (78)

7.3 计算题

- 1.Answer
- (1)考虑

$$p = nkT (79)$$

由此

$$n = \frac{p}{kT} = 2.42 \times 10^{25} m^{-3} \tag{80}$$

(2)设有1mol O_2 ,则

$$\rho = \frac{m}{V} = \frac{32}{\frac{RT}{n}} = 1.3kg/m^3 \tag{81}$$

(3)氧气分子的平均动能

$$E_k = \frac{5}{2}kT = 1.04 \times 10^{-20}J\tag{82}$$

2.Answer

结合等温等压计算公式与热力学第一定律即可得到对应答案,注意此题中i=3

(1)由题

$$Q_V = \Delta E = 623J \quad W = 0$$

(2)由题

$$\Delta E = 623J$$
 $Q_p = 1039J$ $W = -416J$

(3)由题

$$Q = 0$$
 $W = \Delta E = 623J$

3.Answer

(1)气体对外做功等于线段 ac 所围成的面积

$$W = 405.2J (83)$$

(2)由图知

$$P_a V_a = P_c V_c \qquad \therefore T_a = T_c \tag{84}$$

$$\therefore \Delta E = 0 \tag{85}$$

(3)由热力学第一定律

$$\Delta E = 0 \quad Q = W = 405.2J \tag{86}$$

8 练习七 循环过程 热力学第二定律

8.1 选择题

5.Answer C

考虑热力学第一定律

$$Q = \Delta E + W \tag{87}$$

对于过程I,该图像斜率不变,则外力做功

$$\Delta W = 0 \qquad \Delta E_I = Q \tag{88}$$

对于绝热过程II可知

$$\Delta E_{II} = W \qquad \therefore Q = W \tag{89}$$

由于热机效率η<1

$$\therefore \eta < \frac{W}{Q} \tag{90}$$

8.2 填空题

- 1.Answer 500K
- 2.Answer 7.8
- 3.Answer 不能 相交 一

8.3 计算题

Answer

(1) 由题 $1atm = 1.013 \times 10^5 Pa$

$$W_{da} = S_{da-x} = p\Delta V = p(V_a - V_b) \times 10^{-3} = -5065J = -5.065 \times 10^3 J$$
 (91)

(2)由题

$$\Delta E = v \frac{i}{2} R \Delta T = \frac{i}{2} (p_b V_b - p_a V_a) = 3.039 \times 10^4 J$$
 (92)

(3)由题,根据热力学第一定律,bc段为等温变化,则

$$Q_{bc} = W_{bc} = vRT \ln \frac{V_2}{V_1} = 1.054 \times 10^4 J \tag{93}$$

$$\Sigma W = W_{ab} + W_{cd} + W_{da} + W_{bc} = W_{da} + W_{bc} = 5.44 \times 10^3 J \tag{94}$$

(4)结合(1)(2)(3)

纯吸热

$$\Sigma Q = Q_{ab} + Q_{bc} = 4.09 \times 10^4 J \tag{95}$$

$$\eta = \frac{\Sigma W}{\Sigma O} = 13.4\% \tag{96}$$

- 2.Answer
- (1)ab等容过程,W=0

$$Q_{ab} = \Delta E_{ab} = v \frac{i}{2} R \Delta T_{ab} = 300J \tag{97}$$

cd等容过程,W=0

$$Q_{cd} = \Delta E_{cd} = v \frac{i}{2} R \Delta T_{cd} = -450J \tag{98}$$

bc等压过程

$$W_{bc} = p\Delta V = 200J \tag{99}$$

$$\Delta E_{bc} = v \frac{i}{2} R \Delta T = 300 J \quad Q_{bc} = 500 J \tag{100}$$

da等压过程

$$Q_{da} = vC_p \Delta T_{da} = -250J \tag{101}$$

$$W_{da} = p\Delta V = -100J \quad \Delta E_{da} = -150J$$
 (102)

(2)由题

$$\eta = \frac{\Sigma W}{\Sigma Q} = \frac{S_{abcd}}{Q_{ab} + Q_{bc}} = 12.5\% \tag{103}$$

9 练习八 光的相干性 双缝干涉 光程

9.1 选择题

4.Answer D

当箱子灌满油时, 折射率增大

考虑

$$v = \frac{c}{n} \tag{104}$$

可知速度减小

在考虑

$$v = \lambda f \tag{105}$$

则可知波长减小, 最后考虑

$$\Delta x = \lambda \frac{L}{d} \tag{106}$$

则可知条纹间隔减小.

5.Answer B

9.2 填空题

1.Answer

$$\frac{2\pi e(n_1 - n_2)}{\lambda}$$

2.Answer 下 上

3.Answer 暗

$$\frac{D\lambda}{2a}$$

9.3 计算题

- 2.Answer
- (1)由题

$$\delta = d\frac{x}{D} = 5\lambda \tag{107}$$

由此解得

$$x = 6mm$$

(2)由题此时

$$\delta = r_2 - (r_1 - e + ne) = 5\lambda \tag{108}$$

因此

$$r_2 - r_1 = d\frac{x'}{D} = (n-1)e + 5\lambda$$
 (109)

解得

$$x^{'} = 19.9mm$$

10 练习九 薄膜干涉 劈尖 牛顿环

10.1 选择题

1.Answer B

结合参考文献中的[1, 2, 3]使用.

- 2.Answer C
- 3.Answer A

由题

$$2e\sqrt{n_2^2 - n_1^2 \sin^2 1} + \frac{\lambda}{2} = k\lambda \tag{110}$$

由此

$$k = 28.16$$

除去中央明纹,故可以看到27条干涉条纹.

- 4.Answer B
- 5.Answer D

10.2 填空题

1.Answer

$$n_1\theta_1 = n_2\theta_2$$

2. Answer 480nm 600nm, 400nm

(1)考虑

$$2ne + \frac{\lambda}{2} = k\lambda \tag{111}$$

k = 1时, $\lambda = 2400nm$; 舍去

k=2时, $\lambda=800nm$;舍去

k=3时, $\lambda=480nm$;满足

(2)考虑

$$2ne = k\lambda \tag{112}$$

k = 1时, $\lambda = 1200nm$; 舍去

k=2时, $\lambda=600nm$;满足

k=3时, $\lambda=400nm$;满足

(3) Answer $1.2\mu m$

考虑

$$2ne + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2} \tag{113}$$

$$2ne = k\lambda = 4\lambda \tag{114}$$

由此解得

$$d = 1.2 \mu m$$

10.3 计算题

11 练习十 单缝衍射 光栅 光的偏振

11.1 选择题

- 1.Answer A
- 2.Answer B
- 3.Answer C

由于单缝夫琅禾费衍射,出射光是平行光,通过透镜会聚到屏上产生衍射条纹,而 只要是平行光,经过透镜都会聚焦到一个位置,即透镜的焦点,因此,如果单缝只是稍 稍上移,出射平行光依然会聚焦到透镜的焦点上,衍射图样不变。

4.Answer B

考虑

$$\frac{x}{f} = \tan \theta \tag{115}$$

$$a\sin\theta = \pm k\lambda\tag{116}$$

得到

$$f = \frac{a\Delta x}{6\lambda} = 1m\tag{117}$$

5.Answer B

考虑

$$d\sin\varphi = k\lambda \quad \varphi = 90^{\circ} \tag{118}$$

得到

$$k = 3.64$$

因此最大级次为第三级

6.Answer D

7.Answer C

利用

$$d = \frac{1mm}{200} \tag{119}$$

$$d\sin\varphi = k\lambda \tag{120}$$

求解即可

8.Answer D

9.Answer A

10.Answer B

11.2 填空题

3.Answer 570nm 43.2°

(1)考虑

$$k = 1 \quad \lambda = d\sin\theta_1 = 570nm \tag{121}$$

(2)考虑

$$\theta_2 = \arcsin\frac{2\lambda}{d} = 43.2^{\circ} \tag{122}$$

5.Answer 51.1°

$$\arctan \frac{1.65}{1.33} = 51.1^{\circ} \tag{123}$$

6.Answer

$$I_1 = \frac{I_0}{2} \tag{124}$$

$$I_2 = \frac{I_0}{2}\cos^2(\omega t) \tag{125}$$

$$I_3 = \frac{I_0}{2}\sin^2(\omega t)\cos^2(\omega t) \tag{126}$$

11.3 计算题

1.Answer

(1)由于P点为明纹,故有

$$a\sin\phi = (2k+1)\frac{\lambda}{2}, k = 1, 2, 3...$$
 (127)

而

$$\sin \phi = \tan \phi = \frac{x}{f} = 3.5 \times 10^{-3} \tag{128}$$

由此

$$\lambda = \frac{2a\sin\phi}{2k+1} \tag{129}$$

当k = 3时,得 $\lambda_3 = 600nm$; 当k = 4时,得 $\lambda_4 = 470nm$.

(2)由(1)可得

当 $\lambda_3 = 600nm$,则P为第三级明纹; 当 $\lambda_4 = 470nm$,则P为第四级明纹.

(3)由

$$a\sin\phi = (2k+1)\frac{\lambda}{2} \tag{130}$$

得

当k = 3时,可分成2k + 1 = 7个波阵面; 当k = 4时,可分成2k + 1 = 9个波阵面.

2.Answer

(1)根据重合可知

$$a\sin\theta_1 = \lambda_1 \tag{131}$$

$$a\sin\theta_2 = 2\lambda_2\tag{132}$$

由题得

$$\theta_1 = \theta_2$$

 $\sin\theta_1 = \sin\theta_2$

21

由此得到

$$\lambda_1 = 2\lambda_2 \tag{133}$$

(2)由题

$$a\sin\theta_1 = k_1\lambda_1 = 2k_1\lambda_2(k_1 = 1, 2, 3...) \tag{134}$$

$$a\sin\theta_2 = k_2\lambda_2(k_2 = 1, 2, 3...) \tag{135}$$

$$k_2 = 2k_1 (136)$$

3.Answer

(1)考虑

$$(a+b)\sin\phi = k\lambda(k=2) \tag{137}$$

得到

a + b = 2400nm

(2)由题

$$k = \frac{a+b}{a}k' \tag{138}$$

当k' = 1时a最小,此时

a = 800nm

(3)由题

$$(a+b)\sin\frac{\pi}{2} = k\lambda\tag{139}$$

得到

$$k = 4 \tag{140}$$

因此, k=0,±1,±2, 共五条.

夹带私货

公式练手

(1)格林公式 (Green equation)

设闭区域D由分段光滑的曲线L围成,函数 P(x,y)及Q(x,y)在 D上具有一阶连续偏导数,则有

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy$$

(2)高斯公式(Gauss's law)

设空间有界闭合区域 Ω ,其边界 $\partial\Omega$ 为分片光滑闭曲面。函数P(x,y,z),Q(x,y,z),R(x,y,z) 及其一阶偏导数在 Ω 上连续,那么

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV = \iint_{\partial \Omega} P dy dz + Q dz dx + R dx dy$$

或

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV = \iint_{\Omega} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) dS$$

All rights reserved by Xueyu Wang.

22

版权所有,侵权必究

(3)麦克斯韦方程组(Maxwell's equation)

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$
(141)

或者

$$\nabla \cdot \vec{D} = \rho_f$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$
(142)

(4)梯度、散度、旋度与拉普拉斯算子

1. 梯度(Gradient)

梯度是个向量 $\langle \frac{\partial f}{\partial z}i, \frac{\partial f}{\partial y}j, \frac{\partial f}{\partial z}k \rangle$,指向上升速度最快的方向。机器学习中梯度下降是沿着梯度反方向,故公式中用负号;

梯度操作将一个标量场 f 转变为向量场;

梯度可被视为Del操作符 $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ "数乘"标量(Scala)函数 f;

$$\langle \frac{\partial f}{\partial z}i, \frac{\partial f}{\partial y}j, \frac{\partial f}{\partial z}k \rangle$$
 (143)

2. 散度(Divergence)

散度操作将一个向量场产转变为标量场;

散度是Del算符(∇)"点积"一个向量(Vector)函数;

$$Div(\vec{F}) = \nabla \cdot \vec{F} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \cdot (f_1, f_2, f_3) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$
(144)

3. 旋度(Curl)

旋度是Del操作符(∇)"叉积"一个向量(Vector)函数;

旋度操作将一个向量场 \vec{F} 转变为向量场;

$$Curl(\vec{F}) = \nabla \times \vec{F} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \times (f_1, f_2, f_3)$$

$$= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}.$$
(145)

4.拉普拉斯算子(Laplacian)

$$\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$$

$$\Delta = \nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
(146)

Laplacian在流体力学、电磁学和量子力学等领域中应用广泛。经典的例子就是以 他名字命名的拉普拉斯方程

$$\nabla^2 \phi = 0 \tag{147}$$

也被称为物理学中三大偏微分方程之首。

在物理中 ϕ 通常表示势(potential),这个方程表达:势的梯度的散度等于0,也就是说势的变化平稳,没有逼近最值,方程适用于以下场景:一个温度分布达到均衡的没有热源的房间;或一个电荷密度为0的区域等。如果房间里有根点燃的蜡烛,蜡烛周围的区域温度最高,这并非拉普拉斯方程适用的场景,而适用于泊松方程

$$\nabla^2 \phi = f \tag{148}$$

拉普拉斯方程的泛化形式。

总之,拉普拉斯方程描述的是一种不依赖时间的无源场的均衡情况。

小结:

	定义	输入	输出
梯度(Grad)	$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$	f	$\frac{\partial f}{\partial z}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$
散度(Div)	$ abla \cdot ec{F}$	$ec{F}$	$\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$
旋度 (Curl)	$ abla imesec{F}$	Γ̈́	$\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}$
拉普拉斯算符	$\nabla^2 = \nabla \cdot \nabla$	f	$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

图 2: 梯度、散度、旋度、拉普拉斯算子小结

(5)常微分方程

1. 可分离变量的微分方程

$$\frac{dy}{dx} = f(x)g(y)$$

$$\Rightarrow \int \frac{dy}{g(y)} = \int \frac{dx}{f(x)} + C$$
(149)

其中C为常数

2. 齐次方程

齐次方程

⇒
$$\frac{dy}{dx} = u + x \frac{du}{dx}$$

从而消去 y ⇒可分离变量的微分方程
 $g(u)du = f(x)dx$

图 3: 齐次方程

3.

(以下见参考文献[10, 11])

12 参考文献

参考文献

- [1] https://b23.tv/mZ5jWS3
- [2] https://b23.tv/51L4H3y
- [3] https://b23.tv/h3a9b10
- [4] https://zhuanlan.zhihu.com/p/139082395
- [5] https://zhuanlan.zhihu.com/p/99710616
- [6] https://zhuanlan.zhihu.com/p/145785676
- [7] https://zhuanlan.zhihu.com/p/145743480
- [8] https://zhuanlan.zhihu.com/p/525901926
- [9] https://pan.baidu.com/s/1BE5ZT1CZ10pctbC60W6LGw 提取码: ccnu 解压密码: 22E09.249246BF
- [10] https://zhuanlan.zhihu.com/p/56466991
- [11] https://zhuanlan.zhihu.com/p/510741969