Aalto University Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2021-2022/III Problem set 6

K Kytölä & M Orlich

(Exercise sessions: 17.-18.2.2022) Hand-in due: Tue 22.2.2022 at 23:59

Fill-in-the-blanks 1. Let (X, d) be a metric space. Given a subset $A \subset X$, a point $x \in X$ is said to be

- an interior point of A, if for some r > 0 we have $\mathcal{B}_r(x) \subset A$
- an exterior point of A, if for some r > 0 we have $\mathcal{B}_r(x) \subset X \setminus A$
- a boundary point of A, if x is neither an interior point of A nor and exterior point of A.

The set of all interior points of A is denoted A° , the set of all exterior points $\operatorname{ext}(A)$, and the set of all boundary points ∂A . These form a partition $X = A^{\circ} \cup \operatorname{ext}(A) \cup \partial A$ of the whole space X to three disjoint subsets, of which A° and $\operatorname{ext}(A)$ are open in X. The *closure* of A is defined as $\overline{A} = X \setminus \operatorname{ext}(A)$, and as the complement of the open set $\operatorname{ext}(A)$, it is closed.

Complete the proofs of the following claims.

subset containing A itself contains at least \overline{A} .

Claim (i). $A \subset \overline{A}$.

Claim (1): 21 C 21.
Proof. By considering complements, the claim can be equivalently formulated as $X \setminus A \supset X \setminus \overline{A}$. Directly from the definition of clo-
sure we get that $X \setminus \overline{A} = \underline{\qquad}$. Therefore, let $x \in \text{ext}(A)$.
Then for some $r > 0$ we have $\mathcal{B}_r(x) \subset X \setminus A$. In particular we get $x \in \mathcal{B}_r(x) \subset X \setminus A$. This proves the claim $X \setminus \overline{A} \subset X \setminus A$.
Claim (ii). If $F \subset X$ is closed and $A \subset F$, then $\overline{A} \subset F$.
Proof. Let $F \subset X$ be a closed subset such that $A \subset F$. Then $X \setminus F$
is open and $X \setminus A$ $X \setminus F$. If $x \in X \setminus F$, then by openness for
some $r > 0$ we have $\mathcal{B}_r(x) \subset X \setminus F \subset X \setminus A$, which by definition shows
that $x \in \underline{\hspace{1cm}}$. We therefore have $X \setminus F \subset \operatorname{ext}(A)$. For the
complements we get $F \supset X \setminus \text{ext}(A) = \overline{A}$ as claimed.
Claim (iii). \overline{A} is the smallest closed set which contains A .
Proof. The closure \overline{A} is a closed set, and by part, it
contains A . By part, on the other hand, every closed

 $J = [\vec{x}_1, \vec{x}_2] = \{\vec{x}_1 + t(\vec{x}_2 - \vec{x}_1) \mid t \in [0, 1]\} \subset \mathbb{R}^n.$ A broken line in \mathbb{R}^n through points $\vec{x}_1, \ldots, \vec{x}_\ell$ is the union of line segments $M = [\vec{x}_1, \vec{x}_2] \cup [\vec{x}_2, \vec{x}_3] \cup \cdots \cup [\vec{x}_{\ell-1}, \vec{x}_{\ell}] \subset \mathbb{R}^n.$ A broken line M of this form is said to connect the points \vec{x}_1 and \vec{x}_ℓ . Complete the proof of the following claim. **Claim.** If $D \subset \mathbb{R}^n$ is open and connected, then for all points $\vec{x}, \vec{y} \in D$ there exists a broken line $M \subset D$ connecting the points \vec{x} and \vec{y} . **Proof.** Assume $D \subset \mathbb{R}^n$ is open and connected, and $\vec{x}, \vec{y} \in D$. Let $U \subset D$ be the set of all points $\vec{z} \in D$ to which the point \vec{x} can be connected by some broken line. Below we will show that both $U \subset D$ and its complement $D \setminus U \subset D$ are open. Moreover, we clearly have $U \neq \emptyset$, since at least _____ $\in U$. With the connectedness of D these imply that $D \setminus U = \underline{\hspace{1cm}}$. In particular $\vec{y} \in U$, i.e., the point \vec{x} can be connected to \vec{y} by a broken line, completing the proof. Let us first show that $U \subset D$ is open. Let $\vec{z} \in U$. Then there exists a broken line $M \subset D$ connecting points _____ and \vec{z} . Since $D \subset \mathbb{R}^n$ is open and $\vec{z} \in D$, for some r > 0 we have $\mathcal{B}_r(\vec{z})$ _______. For any $\vec{w} \in \mathcal{B}_r(\vec{z})$, the line segment $[\vec{z}, \vec{w}]$ is contained in the ball $\mathcal{B}_r(\vec{z})$. Therefore, by setting $M' = M \cup [\vec{z}, \vec{w}]$, we obtain a broken line $M' \subset$ connecting points \vec{x} and \vec{w} . This implies _____ $\in U$. We conclude that $\mathcal{B}_r(\vec{z}) \subset U$, showing that U is open. Let us then show that $D \setminus U \subset D$ is open. Let $\vec{z} \in D \setminus U$. Again by openness of D, there exists an r > 0 such that If $\mathcal{B}_r(\vec{z}) \subset D \setminus U$, then the openness of $D \setminus U$ follows. Assume the converse; that there exists $\vec{w} \in \mathcal{B}_r(\vec{z}) \cap U$. Then there exists a broken line $M\subset D$ connecting the points _____ and ____ . But since $[\vec{w}, \vec{z}] \subset \mathcal{B}_r(\vec{z})$, by setting $M' = M \cup [_,]$ we would obtain a broken line $M' \subset D$ connecting the points \vec{x} and \vec{z} , which is a contradiction since $___$. \Box

Fill-in-the-blanks 2. A line segment in \mathbb{R}^n between points $\vec{x}_1, \vec{x}_2 \in \mathbb{R}^n$ is the set