23

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-269754

(43)公開日 平成5年(1993)10月19日

(51) Int.Cl.5

識別記号

庁内整理番号 8927-4F 技術表示箇所

B 2 9 C 33/72 // C 1 1 D 7/24

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号	特願平4-100380	(71)出願人	000001085 株式会社クラレ	
(22)出願日	平成4年(1992)3月25日	(72)発明者	岡山県倉敷市酒津1621番地 大森 正弘 岡山県倉敷市酒津1621番地 レ内	株式会社クラ
		(72)発明者	祢宜 太一 岡山県倉敷市酒津1621番地 レ内	株式会社クラ
		(72)発明者	廣藤 俐 岡山県倉敷市酒津1621番地 レ内	株式会社クラ

(54) 【発明の名称】 パージング剤

(57)【要約】

【構成】 下記(I)、(II) 式を満足する熱可塑性樹脂からなるパージング剤。

 $2 \ 0 \ge M \ I \ (1 \ 5) \ge 0. \ 0 \ 1 \cdots \cdots \cdots \cdots \cdots \cdots (I)$

0. $0.5 \ge MI (1.5) MI (3.00) \ge 1.0^{-4} \cdots$ (II)

但し

M I (15) ・・・・220℃ (窒素中) 15分加熱後のメルトインデックス (g/10分) (190℃、2160 g荷重下に測定)

MI (300) ・・220℃ (窒素中) 300分加熱後の メルトインデックス (g/10分) (190℃、216 0g荷重下に測定)

【効果】 本発明のパージング剤によれば熱可塑性樹脂を溶融成形する装置において、溶融流路内に残存する熱可塑性樹脂をすみやかに排出でき、かつ熱可塑性樹脂を再度、流路内に導入した場合、パージング剤自身の排出を短時間で行なうことができるため、パージング剤の残存による製品ロスを大巾に改善することができる。

(2)

特開平5-269754

1

*性樹脂からなるパージング剤。

【特許請求の範囲】

下記 (I)、 (II) 式を満足する熱可塑* 【請求項1】

 $2.0 \ge MI (1.5) \ge 0.01 \cdots (I)$

0. $0.5 \ge MI (1.5) / MI (3.00) \ge 1.0^{-4} \cdots (II)$

但し

455

MI (15) ・・・220℃ (窒素中) 15分加熱後のメ ルトインデックス (g/10分) (190℃、2160 g荷重下に測定)

MI (300)・・220℃ (窒素中) 300分加熱後の メルトインデックス (g/10分) (190 \mathbb{C} 、216 $\emph{10}$ 時間が必要である。特にEVOHとの共押出、共射出多 0 g荷重下に測定)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂、とくに エチレンーピニルアルコール共重合体(以下EVOHと 記す)を溶融成形する装置において溶融流路内に残存す るEVOHをすみやかに排出でき、かつEVOHを再 度、流路内に導入した場合、該パージング剤の残存によ る製品不良ロスが大巾に改善されるパージング剤に関す る.

[0002]

【従来の技術】EVOHは今日、食品等の包装用フィル ム、容器、特に酸素に対するバリアー性が必要な食品、 保香性を必要とする製品などに対する使用を目的とする 分野において、有効性が認められている。

【0003】しかし、EVOHを溶融押出し成形を行な う場合、長時間運転を行なうと、樹脂流路内の滞留部分 などでEVOHがゲル化あるいは分解が生じ、製品中に ブツ、ゲル状物の混入、あるいは厚みムラ、スジ等の発 現による外見不良が生じる事がある。また運転を停止し 30 た後、再度運転を開始する場合、樹脂流路内のゲル化、 あるいは発泡分解が生じ、黄変化したEVOHが長期に わたり排出される為、正常な製品を採取するのに多大な 時間と格外ロス品が生じてしまう。最悪の場合、装置流 路内を分解掃除する必要がある。

【0004】これらの問題点を解決する為、長期運転 中、ゲル、スジ等の異常が発生した場合、あるいは運転 を停止する場合、EVOH樹脂の流路内を、たとえば高 密度ポリエチレン (HDPE)、直鎖状低密度ポリエチ ピレン (PP) 等で置換 (パージング) する方法が採用 されている。特にパージングの効率を上げる為、パージ ング剤の溶融粘度指数(190℃、2160g荷重下に 測定されたメルトインデックス0.05~10g/10 分) の低い樹脂を使用し、あるいは場合によっては段階 的にメルトインデックスの低い樹脂に切り替え、押出温 度を下げるか、あるいは/及び吐出量を増す等の処置が 取られている。

【0005】しかしながら、該パージング操作は複雑で あり、かつ多くの時間とパージング剤が必要なだけでな く、悪い事にはパージング完了後、流路にEVOHを導 入し、再立上げを行なう場合、パージング剤が長期間製 品中に残存し、正常な製品が採取可能になる為に多大の 層構造体において透明性が要求されるPS、ポリエチレ ンテレフタレート (PET)、ポリカーポネート (P C) 等の多層品あるいは延伸操作が加わる構成体におい ては、パージング剤によるゲル、ブツ状物の混入あるい はゲル、ブツ状物による延伸時のEVOH層の破れピン ホールが問題となる。さらに悪い事にはEVOH流路内 の滞留ゲル状物を除去するには、パージング剤のメルト インデックスが低いほど効果的であるが、逆にEVOH で再立上げを行なった場合、パージング剤の排出が容易 でなく、長時間製品中に残存、混入する。この対策とし てEVOHで再立上げする場合に際しパージング剤のメ ルトインデックスを段階的に増す方法も一部で採用はさ れているが、操作が煩雑であり、時間及びパージング剤 の量が非常に多くなり効果的でなかった。

【0006】また、EVOHにポリアミドーポリエーテ ルエラストマーをプレンドした樹脂をパージング剤とし て用いるとEVOHで再立上げしてから製品が得られる までの時間が早いことも特開平1-178545号に記 載されている。しかしながらこの方法は優れた効果を有 しているが、いまだ充分とはいえない。

【0007】これらの点からEVOH流路内の滞留ゲル 状物の除去が容易であり、かつ、EVOHによるパージ ング剤の排出が容易である、すなわちEVOHでの再立 上げ時、短時間で製品化可能なパージング剤の開発が重 要な課題の一つである。

[8000]

【発明が解決しようとする課題】EVOHは前記した様 に優れた諸特性を持っている反面、溶融押出成形、共押 出成形あるいは共射出成形を長期間あるいは停止再立上 レン (LLDPE)、ポリスチレン (PS)、ポリプロ 40 げを行なうと、ゲル、ブツ、スジ等が製品に混入する場 合がある。しかして、本発明の目的は、EVOH流路内 に滞留するゲル状物の除去が容易であり、かつEVOH で再立上げ時短時間で排出が可能なパージング剤を提供 することにある。

[0009]

【課題を解決するための手段】前配目的は、下記 (I)、(II)式を満足する熱可塑性樹脂からなるパー ジング剤を提供することによって達成される。

 $2.0 \ge MI (1.5) \ge 0.01 \cdots (I)$ 0. $0.5 \ge MI (1.5) / MI (3.00) \ge 1.0^{-1} \cdots (II)$ (3)

特開平5-269754

伹し

4.4

MI (15)・・・220℃ (窒素中) 15分加熱後のメ ルトインデックス (g/10分) (190℃、2160 g荷重下に測定)

3

MI (300)・・220℃ (窒素中) 300分加熱後の メルトインデックス (g/10分) (190℃、216 0 g荷重下に測定)

【0010】本発明のパージング剤によれば熱可塑性樹 脂を溶融成形する装置において、溶融流路内に残存する 熱可塑性樹脂をすみやかに排出でき、かつ熱可塑性樹脂 10 を再度、流路内に導入した場合、パージング剤自身の排 出を短時間で行なうことができるため、パージング剤の*

0. $0.1 \ge MI (1.5) / MI (3.0.0) \ge 1.0^{-4} \cdots (II)$

【0012】本発明においてパージング剤に用いられる 熱可塑性樹脂としてはEVOHが好適であるので、以下 この点について述べる。またこのパージング剤が適用さ れる、置換される樹脂としてもEVOHが好適であるの でこの点についても併せて述べる。

【0013】本発明においてパージング剤および置換さ れる熱可塑性樹脂として使用されるEVOHは、エチレ ン含有量15~70モル%、好適には20~60モル %、酢酸ビニル成分のけん化度は90%以上、好適には 95%以上のエチレン-酢酸ピニル共重合体けん化物で ある。このEVOHは小量の共重合モノマーで変性され ていてもよく、変性用モノマーとしては、プロピレン、 1-ブテン、1-ヘキセン、4-メチル-1-ペンテ ン、アクリル酸エステル、メタクリル酸エステル、マレ イン酸、フタル酸、イタコン酸、アルキルピニルエーテ ル、N-ピニルピロリドン、N-ノルマルプトキシメチ 30 ルアクリルアミド、N-(2-ジメチルアミノエチル) メタクリルアミド類あるいはその4級化物、N-ビニル イミダゾールあるいはその4級化物、ケイ素を含有する オレフィン性不飽和モノマー(ピニルトリメトキシシラ ン、ピニルトリエトキシシラン、ピニルメチルジメトキ シシラン、ピニルトリアセトキシシランなど)を例示す ることができる。

【0014】EVOHは通常エチレン-酢酸ピニル系共 重合体のアルコール溶液中に苛性アルカリまたはアルカ リ金属アルコラートを加えてケン化した後、ケン化時に 副生する酢酸ソーダ等を水で洗浄して除去し、さらにこ れに酸を添加、あるいは酸溶液に浸漬、又はある種の金 属塩と酸を組合せて添加するなどの操作を行なうことに よって得られる。

【0015】パージング剤に用いられるEVOHは「経 時的に特殊な粘性変化」を持たせるために、たとえば特 開昭64-66262号公報に記載されているような方 法を用いて得ることができる。この方法について以下に 述べる。すなわちEVOHに(A)周期律表第II族に属 する金属の一種または二種以上の金属塩、(B) pka 50

*残存による製品ロスを大巾に改善することができる。さ らにまたパージング剤の熱可塑性樹脂として、置換され る熱可塑性樹脂のメルトインデックスより低く、かつ時 間の経過とともに置換される熱可塑性樹脂のそれより高 くなる熱可塑性樹脂を用いる場合は、前記効果はさらに 顕著となるし、パージング剤の熱可塑性樹脂を置換され る熱可塑性樹脂と同種、たとえばEVOH同士とする場 合は、効果はさらに促進される。

【0011】前記(I)および(II)式を満足すること により、後術の実施例に示すとおり上記したとおりの優 れた効果が発せられるが、(I)および(II)式のより 好適な条件は次のとおりである。 $5 \ge M I (15) \ge 0.5 \cdots (I)$

> (25℃での酸度指数) 3. 5以上で常圧下の沸点が1 80℃以上の酸性物質および(C) pka3.5以上で 常圧下の沸点が120℃以下の酸性物質で処理すること により得られる。ここで(A)の金属塩の周期律表第II 族に属する金属としては、ベリリウム(Be)、マグネ シウム (Mg)、カルシウム (Ca)、亜鉛 (Zn)、 バリウム(Ba)があげられ、その塩としては炭酸塩、 酢酸塩、硫酸塩、リン酸塩、などがあげれる。このうち 酢酸カルシウム、酢酸マグネシウムがEVOHの経時的 粘性変化のコントロール、EVOHの色相の点から好ま しい。使用に際しては、これらの金属塩を1種あるいは 2種以上用いることができる。

> 【0016】また(B)のpka(25℃での酸度指 数) 3. 5以上で常圧下の沸点が180℃以上の酸性物 質としては、コハク酸、アジピン酸、安息香酸、カブリ ン酸、クエン酸、ラウリン酸等の有機酸、ホウ酸、リン 酸二水素カリウム、リン酸二水素ナトリウム等の無機酸 性物質、アスパラギン酸、アミノ安息香酸、グルタミン 酸等のアミノ酸をあげることができるが、必ずしもこれ らに限定されない。これらのう沸点が250℃以上の酸 性物質が好ましい。使用に際しては、これらのうち1種 または2種以上を用いることができる。

【0017】また(C)のpka3.5以上で常圧下の 沸点が120℃以下の酸性物質としてはアセト酢酸、ギ 酸、酢酸などがあげられるが、酢酸がより好適である。 これらの物質のEVOHの添加方法としては、これらの 物質を直接EVOHに添加して混合してもよく、あるい はこれらの物質を水に溶解して調製した水溶液中にEV OHを浸漬する操作をとってもよい。

【0018】これらの物質をEVOHへ添加したあと の、EVOH中の各物質の含有量は、(A)の金属塩に ついてはその金属に換算してそれぞれ0.0005~ 0. 5 重量%好適には0. 001~0. 3 重量%, (B) のpka3. 5以上で常圧下沸点が180℃以上 の酸性物質については0.002~2.0重量%、好適 には0.005~1.0重量%、また(C)のpka

(4)

特開平5-269754

3. 5以上で常圧下沸点120℃以下の酸性物質につい ては0.01~2.0重量%、好適には0.02~1. 0 重量%である。EVOH中にケン化時に副生する酢酸 ソーダを含まない方が好ましいが、0.05重量%程度 含んでいても、上記の特性を何ら阻害することはない。

【0019】さらに前記EVOH組成物には特開昭60 -199040号に記載されているような周期率表 I 族、II族およびIII族から選ばれる少なくともひとつの 元素を含む塩あるいは酸化物を少なくとも1種、たとえ ばハイドロタルサイト系化合物、エチレンジアミン四酢 10 酸の金属塩、パルミチン酸、ステアリン酸、オレイン 酸、リノール酸、リノレイン酸等の高級脂肪酸金属塩を 含んでいてもよい。

【0020】さらに前記したケイ素を含有するオレフィ ン性不飽和モノマーを少量共重させたEVOHを使用す る場合は、EVOH流路内に滞留するゲル状物の除去が 容易、かつEVOHで再立上げ時短時間で排出が可能に なることもある。

【0021】次に、従来用いられてきたパージング剤と 本発明のパージング剤との比較を行なう。従来用いられ 20 ていたパージング剤の代表的なものとしてはポリエチレ ン (PE)、ポリスチレン (PS) があるが、通常のパ ージング方法としてはパージング剤のメルトインデック スが置換されるEVOHよりも低いものを使用する。そ のためパージング後のEVOHでの再立上げを行なうと きメルトインデックスに差がある分パージング剤が長期 間に渡り流路内から排出されないため多大の格外品が生 じる。

【0022】一方本発明のEVOHのパージング剤はパ ージングしたときのメルトインデックスが置換されるE VOHのそれより低いために従来のPE、PS等のパー ジング剤同様に流路内のEVOHを排出し、かつ時間の 経過とともにメルトインデックスが上昇して再立上げす るEVOHのそれよりも高くなるためパージング剤自身 も容易に流路内から排出される。しかも成形樹脂とパー ジング剤が同一樹脂であるためもし成形中に完全に排出 されなかったパージング剤が排出されても格外品になら ないというメリットも備えている。

【0023】パージング剤が使用される溶融押出装置に 関しては特に限定されるものではなく、たとえば単層フ 40 ィルム押出機、単層インフレ押出機、共押出シート製膜 機、共押出フィルム製膜機、共押出プロー成形機、共射 出成形機等に使用される。

【0024】パージング剤の使用方法に関しては、通常 EVOH側押出機ホッパー内の樹脂がなくなった後パー ジング剤を押出機樹脂滞留量の約6~20倍投入する。 この場合スクリュー回転数の増加が効果的である。パー ジング完了後EVOHでの再立上げ方法としては次にあ げる3つの方法がある。①パージング完了後直ちにEV そのままでスクリュー回転だけ停止してパージング剤の メルトインデックスの上昇を待ち、EVOHで再立上げ する。③パージング完了後降温停止(降温中にパージン グ剤のメルトインデックス上昇)し、再び昇温してEV OHで再立上げする。パージング完了後直ちにEVOH で再立上げする場合、押出機温度を少し上げた(メルト

【0025】前記したとおり、本発明においてはパージ ング剤に用いられる熱可塑性樹脂として、EVOHが好 適であるが、さらにこれ以外にポリオレフィン(エチレ ン(共) 重合体、プロピレン(共) 重合体など 、ポリ スチレン、ポリアミド、ポリエステル、ポリ塩化ビニ ル、ポリ塩化ビニリデンなども使用できるし、またこれ らの樹脂をプレンドして使用することもできる。

インデックスの上昇が早い)方がより効果的である。

【0026】さらに本発明のパージング剤が適用され る、溶融成形に供される樹脂(置換される樹脂)とし て、EVOH樹脂が好適であるが、これ以外に上記した ポリオレフィン、ポリスチレン、ポリアミド、ポリエス テル、ポリ塩化ビニル、ポリ塩化ビニリデンなども使用 できる。溶融成形に供される樹脂はパージング剤に用い られる熱可塑性樹脂と同一種類であることが効果的であ る。以下実施例により本発明をさらに説明するが本発明 はこれによってなんら限定を受けるものではない。

[0027]

【実施例】

フィードプロック型3種5層共押出装置(EVOH側押 出機の押出温度220℃、接着性樹脂押出機の押出温度 230℃、PET側押出機の押出温度280℃、フィー ドブロック及びダイ温度270℃)を用い、最外層のポ リエステル層が800μ、中間層の接着性樹脂(無水マ レイン酸によるグラフト変性エチレン-酢酸ピニル共重 合体)層が50μ、さらに最内層のEVOH(エチレン 含有量44モル%、けん化度99.5%、メルトインデ ックス 5. 5 g / 1 0 分) 層が 5 0 μ のシートを成形し たところ、3日後よりEVOH層にスジ及びゲルが認め られる様になった。そこで上記運転条件下EVOH側押 出機(吐出量5Kg/hr)にパージング剤 {EVO H;エチレン含有量31モル%、ケン化度99.4%、 メルトインデックスMI(15)=1.0, MI(30 0) = 1000} を吐出量5kg/Hで約30分(2. 5kg)投入した後、再度EVOHに切替えたところ、 50分後よりスジ・プツのない良好な製品シートが得ら れた。さらに5日後、EVOH層にスジ及びゲルが発生 したために再度同じパージング剤を用いて上記条件下で パージングした後、温度はそのままでスクリュー回転の み60分間停止させ、次にEVOHに切替えたところ、 30分後よりスジ・ブツのない良好な製品シートが得ら れた。さらに4日後前記と同じ状態になったので、同条 OHで再立上げする。②パージング完了後押出機温度は 50 件下で同パージング剤を用いてパージングした後運転を (5)

特開平5-269754

停止した。翌日、再び昇温後EVOHに切替えたところ、15分後よりスジ・ブツのない良好な製品シートが 得られた。

. 7

【0028】 実施例2~3

EVOH及びパージング剤の銘柄を表1に示すとおり変 更を行ない、パージング時間を30分(実施例2)及び60分(実施例3)で実施し、それ以外は実施例1と同様に行なった。いづれの場合も良好な結果が得られた。

【0029】比較例1~3

パージング剤としてEVOHとポリアミドーポリエーテ 10 ル共重合体のプレンド物を使用した場合、ある程度の効*

*果は認められるが、本発明の効果には至らず(表1~2 参照)、またポリアミドとEVOHの相溶性が比較的良 好なために、EVOHのゲル・ブツがあるにもかかわら ず発見しにくいということも考えられ本発明の方が優位 であると考える。

【0030】比較例4~5

PEをパージング剤として使用した場合、表1~2に示すようにいずれのPEもパージング剤としては不適当であった。

[0031]

【表1】

		パージ	・ン	グ剤		EV	ОН
	EVOH組成		エラストマー	エラストマー	Μſ	エチレン	ΜI
	エチレン含量	ΜI	ポリエーテル成分	ブレンド量	g/10 9	計	
	(£1/%)	(g/10分)	EA%	(wt%)		(£#%)	(g/109)
		MI(15)=1.0					
実施例1	31	MI(300)=1000	_	_	_	44	5. 5
		WI(15)=0.5					
″ 2	27	MI(300)=600	_	-	_	31	1. 3
		MI(15)=0.5					
″ 3	27	MI(300)=600	-	-	-	31	1. 3
比較例1	31	1. 3	60	30	1. 0	44	5. 5
" 2	44	5. 5	60	30	5. 0	31	1. 3
″ 3	44	5. 5	60	30	5. 0	31	1. 3
″ 4		ポリエチレン	(M I = 1.	0)		44	5. 5
" 5		ポリエチレン	$\overline{(MI=3)}$	0)		44	5. 5

*WI(15)・・・・・220℃(窒素中)15分加熱後のメルトインデックス(g/10分)(190℃、 2160g荷重下で測定)

WI(300)・・・・220℃(窒素中)300分加熱後のメルトインデックス(g/10分)(190℃、 2160g荷重下で測定)

*実験10EVOHに含する成分・・・酢酸、リン酸二水素かりウム、酢酸がルシウム、 酢酸マクネシウム

(0.1重量%) (120ppm) (カルシウム教算で80ppm) (マグネシウム検算で50ppm)

幾例20EVOHに付ける成分・・・酢酸 、リン酸二水素カリウム、酢酸カルシウム、 酢酸マグネシウム

(0.02重量%) (100ppm) (カルシウム換算で60ppm) (マグネシウム換算で70ppm)

類別のEVOIIに含むる成分・・・酢酸 、リン酸二水素かりつム、酢酸かりシウム、 酢酸マグネシウム

(0.05重量%) (110ppm) (カルシウム製算で50ppm) (マグネシウム投算で80ppm)

[0032]

【表2】

(6)

特開平5-269754

		9					10	
			,	۴)	レ・スジ	の	状 況	
			置換直後EVOH再立	上げ	置換後スクリュー停止	l.	置換後スクリュー停止降	EL.
		パージ			60分後EVOH再立	刊	翌日昇温後EVOH再立上げ	
		時間		膜面		飅		膜面
		(分)	點化期 (分)	状况	點(時間(分)	뫲	鰮化棚 (分)	找犯
実施例	1	30	50	0	30	0	15	0
"	2	30	50	0	30	0	15	0
"	3	60	20	0	15	0	10	0
比較例	1	30	60	0	60	0	60	0
"	2	30	90	Δ	90	Δ	90	Δ
"	3	60	30	0	30	0	60	0
"	4	30	180<	×	180<	×	180<	×
			<u> </u>		·			_

製品化時間・・・EVOH切替後、製品(シート)がとれるまでに要する時間

150

Δ

○・・・・・スジ、ブツなし良好

150

△・・・・・スジ、ブツ減少

×・・・・・スジ、ブツ変化なし

[0033]

【発明の効果】本発明のパージング剤によれば熱可塑性 樹脂を溶融成形する装置において、溶融流路内に残存す る熱可塑性樹脂をすみやかに排出でき、かつ熱可塑性樹

30 脂を再度、流路内に導入した場合、パージング剤自身の 排出を短時間で行なうことができるため、パージング剤 の残存による製品ロスを大幅に改善することができる。

150

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.