Detecting Hate speech using Natural Language processing

Vinita V. Vader¹

¹ University of Oregon

Author Note

- Vinita V. Vader, University of Oregon, Department of Psychology, 1227 University of
- 6 Oregon, Eugene, OR, 97403
- Correspondence concerning this article should be addressed to Vinita V. Vader,
- Department of Psychology, 1227 University of Oregon, Eugene, OR, 97403. E-mail:
- 9 vvader@uoregon.edu

1

2

3

10

11

Detecting Hate speech using Natural Language processing

Research problem

Describe the task you want to achieve. What is the outcome of interest? What are you trying to predict? Why is it important? What are the potential benefits of having a predictive model for this outcome? Discuss potential applications of such a model.

The lines between freedom of speech and offensive speech are filled with confusion in 16 the age of freedom of choice and information dissemination on social media platforms. 17 Honesty in thought could be a potential violation of someone's right to function in a 18 respectable manner in a society. The constant suspension of morality in the milieu of right 19 to perspectives has been detrimental to attaining a universal grammar for understanding the meaning of rights and violation of rights. Although the philosophical debate around 21 this issue could surface several deep seated issues about morality of offense and integrity, it is important to consider that discomfort caused to anyone is crucial to any form of action online or offline - to be considered as harmful for the society. A recent study by (Williams, Burnap, Javed, Liu, & Ozalp, 2020) demonstrated how hate speech could influence political votes, terror attacks and promote criminal behavior by normalizing violence. 26

In the light of this discussion, hate speech behaviors on social media platforms
become vital to studying the precedents and possibly, conveyers of hate crimes. This report
focuses on offensive language detection, specifically, hate speech detection in twitter data.

Hate speech is defined as "language that is used to express hatred towards a targeted group
or is intended to be derogatory, to humiliate, or to insult the members of the group,"

(Davidson, Warmsley, Macy, & Weber, 2017). Natural Language processing (NLP) has
gained prominence in understanding the qualitative information in human language. The
development of context-dependent word embeddings such as Bidirectional Encoder

57

58

59

- Representations from Transformers or BERT the next state-of-art work in NLP which
 outperformed previous models. Among the competing BERT models that emerged through
 the corpus of text data available to for-profit and non-profit companies, Facebook's
 ROBERTa model has gained attention with its several advantages due to the training data it
 is based on. Ten-times larger dataset, longer training, increased batch size, excluding next
 sentence predicting task, using byte-level encoding with bigger vocabulary and dynamic
 masking pattern changing are some of the improvements that this model has been trained
 with.
- This report explores experiments in classifying hate and no hate speech using the word embedding from pre-trained RoBERTa model. Different layers emerging from the RoBERTa based model will be utilized to explore varying number of dimensions as predictors of classifying text obtained from Twitter as hate and no hate speech.

 Comparisons will be made across classification models such as Logistic regression with regularization and random forest.
- Bias in model performance, assessed based on sensitivity and accuracy analyses, will
 provide implications about groupings in the real world. Given that these algorithms might
 be used in legal and political settings (eg., what is the probability that a certain tweet
 invoked violence against group X), it important to assess their performance in generating
 appropriate inferences. A biased algorithm may lead to injustice towards certain groups in
 the society. The models resulting through the analysis in this report could be used as a
 starting point for evaluating bias in algorithms classifying hate speech. The results could
 also provide guidelines for caution while trusting outcomes based on RoBERTa models.

Description of the data

Describe core features of the data, any additional features you produced from existing features and how, basic descriptive statistics about these features, and any missing data analysis you conduct. The description should be sufficiently clear that the instructor understands all the variables included in your modeling.

```
$Continuous
   ##
63
      # A tibble: 1,000 x 0
   ##
65
   ## $Categorical
66
                                 n missing n missing percent levels n levels
             label var_type
67
                                             0
                                                             0.0
                                                                      1000
   ##
     text
              text
                       <chr> 1000
68
                                                                         2
   ## label label
                       <chr> 1000
                                             0
                                                             0.0
69
             levels_count levels_percent
   ##
70
   ## text
71
   ## label
```

73 Data generation process

The dataset has been built synthetically as a result of an AI improvement initiative
by the Facebook AI division. The process of generating this data has been described below:
Writers recruited for the task were provided with a certain context and target for whom
they created some speech text categorized as hate or no hate (H and NH) speech. The
target of the speech and the sentiment - H or NH - were set a priori to the generation of
speech text by each writer. These texts were inputs for models (generated by Facebook) to
test algorithms which best categorized the text the speeches as H or NH. If the model
classified the text correctly, the speech text is retained as a good training example. If the
model failed to classify the text correctly a verifier (person) was called in. The verifier - if
he disagreed with the writer, the speech was trashed but if he agreed with the writer the
speech text was retained for testing or developing the model.

Data features

95

99

performance.

- The original data consists of 40623 synthetically produced speeche texts. For the current project we will be using 1000 randomly sampled speech texts. The original data file consists of the following columns .
- For the purpose of the current study we are only interested in two columns, namely
 The text variable consists of all the synthetically generated speech texts. The label

 variable consists of the type of text speech produced. This is the *a priori* hyp.
- No NA's or missing values were found in the data. Total number of texts labeled as hate speech were c("hate," "nothate") and those labeled as non-hate speech were c(562, 438) 1.

Description of the models

- List at least three different modeling approaches you apply to this dataset.

 Describe each model, why the given model was selected, which hyperparameters
 to be optimized and how. Also, discuss how you plan to evaluate model
- For elegativing the tout in the given date generalized linear models will be one
- For classifying the text in the given data generalized linear models will be applied. The data will be modeled using Logistic regression without regularization and with regularization (ridge and lasso). For optimization of models, the λ hyperparameter was tuned for ridge regression and lasso regression. The α hyperparameter was set to 0 for Ridge regularization and 1 for Lasso regularization.
- The performance evaluation metrics on the test data would include computing

 LogLikelihood (LL), Area under the curve (AUC), Accuracy (ACC), True Positive rate

 (TPR), True Negative rate (TNR), False Positive rate (FPR), and Precision (PRE). #

 $_{108}\,$ Models: Roberta - layer 12 Logistic regression Logistic regression Lasso Logistic regression $_{109}\,$ Ridge

Roberta - layer 7 Logistic regression Logistic regression Lasso Logistic regression Ridge

112	##	[1]	"text"	"label"	"id_col"	"Dim1"	"Dim2"	"Dim3"	"Dim4"	"Dim5"
113	##	[9]	"Dim6"	"Dim7"	"Dim8"	"Dim9"	"Dim10"	"Dim11"	"Dim12"	"Dim13"
114	##	[17]	"Dim14"	"Dim15"	"Dim16"	"Dim17"	"Dim18"	"Dim19"	"Dim20"	"Dim21"
115	##	[25]	"Dim22"	"Dim23"	"Dim24"	"Dim25"	"Dim26"	"Dim27"	"Dim28"	"Dim29"
116	##	[33]	"Dim30"	"Dim31"	"Dim32"	"Dim33"	"Dim34"	"Dim35"	"Dim36"	"Dim37"
117	##	[41]	"Dim38"	"Dim39"	"Dim40"	"Dim41"	"Dim42"	"Dim43"	"Dim44"	"Dim45"
118	##	[49]	"Dim46"	"Dim47"	"Dim48"	"Dim49"	"Dim50"	"Dim51"	"Dim52"	"Dim53"
119	##	[57]	"Dim54"	"Dim55"	"Dim56"	"Dim57"	"Dim58"	"Dim59"	"Dim60"	"Dim61"
120	##	[65]	"Dim62"	"Dim63"	"Dim64"	"Dim65"	"Dim66"	"Dim67"	"Dim68"	"Dim69"
121	##	[73]	"Dim70"	"Dim71"	"Dim72"	"Dim73"	"Dim74"	"Dim75"	"Dim76"	"Dim77"
122	##	[81]	"Dim78"	"Dim79"	"Dim80"	"Dim81"	"Dim82"	"Dim83"	"Dim84"	"Dim85"
123	##	[89]	"Dim86"	"Dim87"	"Dim88"	"Dim89"	"Dim90"	"Dim91"	"Dim92"	"Dim93"
124	##	[97]	"Dim94"	"Dim95"	"Dim96"	"Dim97"	"Dim98"	"Dim99"	"Dim100"	"Dim101"
125	##	[105]	"Dim102"	"Dim103"	"Dim104"	"Dim105"	"Dim106"	"Dim107"	"Dim108"	"Dim109"
126	##	[113]	"Dim110"	"Dim111"	"Dim112"	"Dim113"	"Dim114"	"Dim115"	"Dim116"	"Dim117"
127	##	[121]	"Dim118"	"Dim119"	"Dim120"	"Dim121"	"Dim122"	"Dim123"	"Dim124"	"Dim125"
128	##	[129]	"Dim126"	"Dim127"	"Dim128"	"Dim129"	"Dim130"	"Dim131"	"Dim132"	"Dim133"
129	##	[137]	"Dim134"	"Dim135"	"Dim136"	"Dim137"	"Dim138"	"Dim139"	"Dim140"	"Dim141"
130	##	[145]	"Dim142"	"Dim143"	"Dim144"	"Dim145"	"Dim146"	"Dim147"	"Dim148"	"Dim149"
131	##	[153]	"Dim150"	"Dim151"	"Dim152"	"Dim153"	"Dim154"	"Dim155"	"Dim156"	"Dim157"
132	##	[161]	"Dim158"	"Dim159"	"Dim160"	"Dim161"	"Dim162"	"Dim163"	"Dim164"	"Dim165"
133	##	[169]	"Dim166"	"Dim167"	"Dim168"	"Dim169"	"Dim170"	"Dim171"	"Dim172"	"Dim173"

134	##	[177]	"Dim174"	"Dim175"	"Dim176"	"Dim177"	"Dim178"	"Dim179"	"Dim180"	"Dim181"
135	##	[185]	"Dim182"	"Dim183"	"Dim184"	"Dim185"	"Dim186"	"Dim187"	"Dim188"	"Dim189"
136	##	[193]	"Dim190"	"Dim191"	"Dim192"	"Dim193"	"Dim194"	"Dim195"	"Dim196"	"Dim197"
137	##	[201]	"Dim198"	"Dim199"	"Dim200"	"Dim201"	"Dim202"	"Dim203"	"Dim204"	"Dim205"
138	##	[209]	"Dim206"	"Dim207"	"Dim208"	"Dim209"	"Dim210"	"Dim211"	"Dim212"	"Dim213"
139	##	[217]	"Dim214"	"Dim215"	"Dim216"	"Dim217"	"Dim218"	"Dim219"	"Dim220"	"Dim221"
140	##	[225]	"Dim222"	"Dim223"	"Dim224"	"Dim225"	"Dim226"	"Dim227"	"Dim228"	"Dim229"
141	##	[233]	"Dim230"	"Dim231"	"Dim232"	"Dim233"	"Dim234"	"Dim235"	"Dim236"	"Dim237"
142	##	[241]	"Dim238"	"Dim239"	"Dim240"	"Dim241"	"Dim242"	"Dim243"	"Dim244"	"Dim245"
143	##	[249]	"Dim246"	"Dim247"	"Dim248"	"Dim249"	"Dim250"	"Dim251"	"Dim252"	"Dim253"
144	##	[257]	"Dim254"	"Dim255"	"Dim256"	"Dim257"	"Dim258"	"Dim259"	"Dim260"	"Dim261"
145	##	[265]	"Dim262"	"Dim263"	"Dim264"	"Dim265"	"Dim266"	"Dim267"	"Dim268"	"Dim269"
146	##	[273]	"Dim270"	"Dim271"	"Dim272"	"Dim273"	"Dim274"	"Dim275"	"Dim276"	"Dim277"
147	##	[281]	"Dim278"	"Dim279"	"Dim280"	"Dim281"	"Dim282"	"Dim283"	"Dim284"	"Dim285"
148	##	[289]	"Dim286"	"Dim287"	"Dim288"	"Dim289"	"Dim290"	"Dim291"	"Dim292"	"Dim293"
149	##	[297]	"Dim294"	"Dim295"	"Dim296"	"Dim297"	"Dim298"	"Dim299"	"Dim300"	"Dim301"
150	##	[305]	"Dim302"	"Dim303"	"Dim304"	"Dim305"	"Dim306"	"Dim307"	"Dim308"	"Dim309"
151	##	[313]	"Dim310"	"Dim311"	"Dim312"	"Dim313"	"Dim314"	"Dim315"	"Dim316"	"Dim317"
152	##	[321]	"Dim318"	"Dim319"	"Dim320"	"Dim321"	"Dim322"	"Dim323"	"Dim324"	"Dim325"
153	##	[329]	"Dim326"	"Dim327"	"Dim328"	"Dim329"	"Dim330"	"Dim331"	"Dim332"	"Dim333"
154	##	[337]	"Dim334"	"Dim335"	"Dim336"	"Dim337"	"Dim338"	"Dim339"	"Dim340"	"Dim341"
155	##	[345]	"Dim342"	"Dim343"	"Dim344"	"Dim345"	"Dim346"	"Dim347"	"Dim348"	"Dim349"
156	##	[353]	"Dim350"	"Dim351"	"Dim352"	"Dim353"	"Dim354"	"Dim355"	"Dim356"	"Dim357"
157	##	[361]	"Dim358"	"Dim359"	"Dim360"	"Dim361"	"Dim362"	"Dim363"	"Dim364"	"Dim365"
158	##	[369]	"Dim366"	"Dim367"	"Dim368"	"Dim369"	"Dim370"	"Dim371"	"Dim372"	"Dim373"
159	##	[377]	"Dim374"	"Dim375"	"Dim376"	"Dim377"	"Dim378"	"Dim379"	"Dim380"	"Dim381"
160	##	[385]	"Dim382"	"Dim383"	"Dim384"	"Dim385"	"Dim386"	"Dim387"	"Dim388"	"Dim389"

161	##	[393]	"Dim390"	"Dim391"	"Dim392"	"Dim393"	"Dim394"	"Dim395"	"Dim396"	"Dim397"
162	##	[401]	"Dim398"	"Dim399"	"Dim400"	"Dim401"	"Dim402"	"Dim403"	"Dim404"	"Dim405"
163	##	[409]	"Dim406"	"Dim407"	"Dim408"	"Dim409"	"Dim410"	"Dim411"	"Dim412"	"Dim413"
164	##	[417]	"Dim414"	"Dim415"	"Dim416"	"Dim417"	"Dim418"	"Dim419"	"Dim420"	"Dim421"
165	##	[425]	"Dim422"	"Dim423"	"Dim424"	"Dim425"	"Dim426"	"Dim427"	"Dim428"	"Dim429"
166	##	[433]	"Dim430"	"Dim431"	"Dim432"	"Dim433"	"Dim434"	"Dim435"	"Dim436"	"Dim437"
167	##	[441]	"Dim438"	"Dim439"	"Dim440"	"Dim441"	"Dim442"	"Dim443"	"Dim444"	"Dim445"
168	##	[449]	"Dim446"	"Dim447"	"Dim448"	"Dim449"	"Dim450"	"Dim451"	"Dim452"	"Dim453"
169	##	[457]	"Dim454"	"Dim455"	"Dim456"	"Dim457"	"Dim458"	"Dim459"	"Dim460"	"Dim461"
170	##	[465]	"Dim462"	"Dim463"	"Dim464"	"Dim465"	"Dim466"	"Dim467"	"Dim468"	"Dim469"
171	##	[473]	"Dim470"	"Dim471"	"Dim472"	"Dim473"	"Dim474"	"Dim475"	"Dim476"	"Dim477"
172	##	[481]	"Dim478"	"Dim479"	"Dim480"	"Dim481"	"Dim482"	"Dim483"	"Dim484"	"Dim485"
173	##	[489]	"Dim486"	"Dim487"	"Dim488"	"Dim489"	"Dim490"	"Dim491"	"Dim492"	"Dim493"
174	##	[497]	"Dim494"	"Dim495"	"Dim496"	"Dim497"	"Dim498"	"Dim499"	"Dim500"	"Dim501"
175	##	[505]	"Dim502"	"Dim503"	"Dim504"	"Dim505"	"Dim506"	"Dim507"	"Dim508"	"Dim509"
176	##	[513]	"Dim510"	"Dim511"	"Dim512"	"Dim513"	"Dim514"	"Dim515"	"Dim516"	"Dim517"
177	##	[521]	"Dim518"	"Dim519"	"Dim520"	"Dim521"	"Dim522"	"Dim523"	"Dim524"	"Dim525"
178	##	[529]	"Dim526"	"Dim527"	"Dim528"	"Dim529"	"Dim530"	"Dim531"	"Dim532"	"Dim533"
179	##	[537]	"Dim534"	"Dim535"	"Dim536"	"Dim537"	"Dim538"	"Dim539"	"Dim540"	"Dim541"
180	##	[545]	"Dim542"	"Dim543"	"Dim544"	"Dim545"	"Dim546"	"Dim547"	"Dim548"	"Dim549"
181	##	[553]	"Dim550"	"Dim551"	"Dim552"	"Dim553"	"Dim554"	"Dim555"	"Dim556"	"Dim557"
182	##	[561]	"Dim558"	"Dim559"	"Dim560"	"Dim561"	"Dim562"	"Dim563"	"Dim564"	"Dim565"
183	##	[569]	"Dim566"	"Dim567"	"Dim568"	"Dim569"	"Dim570"	"Dim571"	"Dim572"	"Dim573"
184	##	[577]	"Dim574"	"Dim575"	"Dim576"	"Dim577"	"Dim578"	"Dim579"	"Dim580"	"Dim581"
185	##	[585]	"Dim582"	"Dim583"	"Dim584"	"Dim585"	"Dim586"	"Dim587"	"Dim588"	"Dim589"
186	##	[593]	"Dim590"	"Dim591"	"Dim592"	"Dim593"	"Dim594"	"Dim595"	"Dim596"	"Dim597"
187	##	[601]	"Dim598"	"Dim599"	"Dim600"	"Dim601"	"Dim602"	"Dim603"	"Dim604"	"Dim605"

```
## [609] "Dim606" "Dim607" "Dim608" "Dim609" "Dim610" "Dim611" "Dim612" "Dim613"
188
      [617] "Dim614" "Dim615" "Dim616" "Dim617" "Dim618" "Dim619" "Dim620" "Dim621"
189
      [625] "Dim622" "Dim623" "Dim624" "Dim625" "Dim626" "Dim627" "Dim628" "Dim629"
190
      [633] "Dim630" "Dim631" "Dim632" "Dim633" "Dim634" "Dim635" "Dim636" "Dim636"
191
     [641] "Dim638" "Dim639" "Dim640" "Dim641" "Dim642" "Dim643" "Dim644" "Dim645"
192
      [649] "Dim646" "Dim647" "Dim648" "Dim649" "Dim650" "Dim651" "Dim652" "Dim653"
193
      [657] "Dim654" "Dim655" "Dim656" "Dim657" "Dim658" "Dim659" "Dim660" "Dim661"
194
      [665] "Dim662" "Dim663" "Dim664" "Dim665" "Dim666" "Dim667" "Dim668" "Dim668"
195
      [673] "Dim670" "Dim671" "Dim672" "Dim673" "Dim674" "Dim675" "Dim676" "Dim677"
196
      [681] "Dim678" "Dim679" "Dim680" "Dim681" "Dim682" "Dim683" "Dim684" "Dim685"
197
      [689] "Dim686" "Dim687" "Dim688" "Dim689" "Dim690" "Dim691" "Dim692" "Dim693"
198
      [697] "Dim694" "Dim695" "Dim696" "Dim697" "Dim698" "Dim699" "Dim700" "Dim701"
199
      [705] "Dim702" "Dim703" "Dim704" "Dim705" "Dim706" "Dim707" "Dim708" "Dim709"
200
     [713] "Dim710" "Dim711" "Dim712" "Dim713" "Dim714" "Dim715" "Dim716" "Dim717"
201
   ## [721] "Dim718" "Dim719" "Dim720" "Dim721" "Dim722" "Dim723" "Dim724" "Dim725"
202
   ## [729] "Dim726" "Dim727" "Dim728" "Dim729" "Dim730" "Dim731" "Dim732" "Dim733"
203
     [737] "Dim734" "Dim735" "Dim736" "Dim737" "Dim738" "Dim739" "Dim740" "Dim741"
204
   ## [745] "Dim742" "Dim743" "Dim744" "Dim745" "Dim746" "Dim747" "Dim748" "Dim749"
205
   ## [753] "Dim750" "Dim751" "Dim752" "Dim753" "Dim754" "Dim755" "Dim756" "Dim757"
206
   ## [761] "Dim758" "Dim759" "Dim760" "Dim761" "Dim762" "Dim763" "Dim764" "Dim765"
207
   ## [769] "Dim766" "Dim767" "Dim768"
208
   ## tibble [1,000 x 769] (S3: tbl df/tbl/data.frame)
209
       $ Label : chr [1:1000] "hate" "hate" "nothate" "nothate" ...
210
              : num [1:1000] -0.0795 -0.0333 0.0155 0.0426 -0.011 ...
   ##
       $ Dim1
211
               : num [1:1000] 0.0283 0.0924 0.0863 0.1245 0.0967 ...
       $ Dim2
   ##
212
               : num [1:1000] 0.08579 0.00733 0.06838 -0.00661 0.05425 ...
   ##
       $ Dim3
213
       $ Dim4 : num [1:1000] -0.2576 0.0412 -0.1447 -0.0421 -0.1275 ...
214
```

```
: num [1:1000] 0.1991 0.4505 0.0322 0.3567 0.1109 ...
   ##
       $ Dim5
215
       $ Dim6
                : num [1:1000] -0.10062 -0.20682 -0.00324 -0.08741 0.24727 ...
   ##
216
                : num [1:1000] 0.0353 0.0507 0.0376 0.074 0.0456 ...
   ##
       $ Dim7
217
                : num [1:1000] 0.1016 0.0272 0.03 0.0806 -0.0162 ...
   ##
218
   ##
               : num [1:1000] 0.0938 -0.016 0.028 0.0128 0.0148 ...
219
       $ Dim10 : num [1:1000] -0.04394 -0.05269 0.05363 -0.00703 0.05217 ...
   ##
220
       $ Dim11 : num [1:1000] -0.0656 -0.0668 -0.0663 -0.1644 -0.1628 ...
   ##
221
       $ Dim12 : num [1:1000] -0.0946 -0.0786 -0.0739 -0.1072 -0.167 ...
   ##
222
       $ Dim13 : num [1:1000] 0.09203 0.01265 -0.0193 0.04477 -0.00249 ...
   ##
223
       $ Dim14 : num [1:1000] -0.1079 -0.0969 -0.0741 0.1308 -0.0747 ...
   ##
224
       $ Dim15 : num [1:1000] -0.0318 0.0475 0.0681 -0.1103 0.1283 ...
   ##
225
       $ Dim16 : num [1:1000] 0.0843 0.1851 -0.1631 0.1157 -0.1573 ...
   ##
       $ Dim17 : num [1:1000] 0.2017 -0.0898 0.1335 -0.0527 0.0325 ...
   ##
227
       $ Dim18 : num [1:1000] 0.0362 -0.0144 0.0473 -0.0365 0.0795 ...
   ##
228
       $ Dim19 : num [1:1000] -0.022 -0.0509 0.1179 0.0929 -0.0228 ...
   ##
229
       $ Dim20 : num [1:1000] 0.165 -0.032 0.158 0.152 -0.026 ...
   ##
230
       $ Dim21 : num [1:1000] -0.1072 -0.0415 -0.0726 -0.0565 -0.0726 ...
   ##
231
       $ Dim22 : num [1:1000] 0.09555 0.06618 0.14415 -0.00492 0.22261 ...
   ##
232
       $ Dim23 : num [1:1000] -0.1781 -0.0181 -0.0236 -0.0777 -0.0872 ...
   ##
233
       $ Dim24 : num [1:1000] 0.14796 0.12122 0.05944 0.00402 0.04334 ...
   ##
234
       $ Dim25 : num [1:1000] -0.0202 -0.0354 -0.0415 -0.0504 -0.1469 ...
   ##
235
       $ Dim26 : num [1:1000] 0.00976 0.04094 0.08391 -0.01513 0.12582 ...
   ##
236
       $ Dim27 : num [1:1000] 0.03 0.0165 0.151 0.1833 0.0762 ...
   ##
237
       $ Dim28 : num [1:1000] 0.0132 -0.1301 0.0937 -0.0317 -0.0918 ...
   ##
238
       $ Dim29 : num [1:1000] -0.03667 0.02588 0.00581 0.08772 -0.0529 ...
   ##
239
       $ Dim30 : num [1:1000] 0.0693 0.1139 -0.0113 -0.0376 -0.1253 ...
   ##
240
       $ Dim31 : num [1:1000] -0.13636 0.00998 -0.0944 -0.11835 -0.0611 ...
   ##
241
```

```
$ Dim32 : num [1:1000] -0.1024 -0.0828 -0.0233 0.0132 -0.0229 ...
   ##
242
       $ Dim33 : num [1:1000] 0.055908 0.000795 0.040355 -0.006121 0.07767 ...
   ##
243
       $ Dim34 : num [1:1000] -0.01342 -0.03566 0.08336 -0.00649 0.09765 ...
244
       $ Dim35 : num [1:1000] 0.01331 0.00535 -0.04677 -0.05681 -0.07868 ...
   ##
245
   ##
       $ Dim36 : num [1:1000] 0.01555 0.0425 -0.0151 -0.08599 -0.00778 ...
246
       $ Dim37 : num [1:1000] 0.0995 0.139 0.0783 0.0373 0.1383 ...
   ##
247
       $ Dim38 : num [1:1000] 0.04237 0.00826 0.00658 0.01017 -0.00746 ...
   ##
248
       $ Dim39 : num [1:1000] 0.345 0.1914 0.2469 0.0745 0.1925 ...
   ##
249
       $ Dim40 : num [1:1000] 0.1028 0.0046 0.0649 -0.0728 0.0183 ...
   ##
250
       $ Dim41 : num [1:1000] -0.1233 -0.1269 0.0897 0.0106 -0.0169 ...
   ##
251
       $ Dim42 : num [1:1000] -0.2174 -0.0419 -0.1553 -0.2404 0.0491 ...
   ##
252
       $ Dim43 : num [1:1000] -0.00121 0.05386 -0.0154 0.00676 -0.07798 ...
   ##
       $ Dim44 : num [1:1000] -0.0293 -0.0378 0.033 -0.0028 0.0292 ...
   ##
254
       $ Dim45 : num [1:1000] 0.1032 0.0318 0.0107 0.0263 0.0378 ...
   ##
255
       $ Dim46 : num [1:1000] 0.0326 -0.0295 0.0209 0.0135 0.0691 ...
   ##
256
       $ Dim47 : num [1:1000] -0.1591 -0.0431 -0.1508 -0.1071 -0.1156 ...
   ##
257
       $ Dim48 : num [1:1000] 0.1301 -0.0315 -0.1125 0.0825 -0.0899 ...
   ##
258
       $ Dim49 : num [1:1000] 0.04845 -0.06322 -0.00179 0.06586 0.048 ...
   ##
259
       $ Dim50 : num [1:1000] 0.0839 -0.0281 -0.0133 0.0114 -0.1345 ...
   ##
260
       $ Dim51 : num [1:1000] -0.0917 0.0868 -0.0278 -0.0355 -0.0683 ...
261
   ##
       $ Dim52 : num [1:1000] -0.0234 -0.0176 0.1633 0.1193 0.0173 ...
262
       $ Dim53 : num [1:1000] -0.022 0.0954 -0.012 0.0484 0.1322 ...
   ##
263
       $ Dim54 : num [1:1000] -1.51e-02 -7.33e-02 1.75e-05 3.63e-03 7.05e-02 ...
   ##
264
       $ Dim55 : num [1:1000] 0.0408 0.0366 -0.0173 -0.0549 0.0221 ...
   ##
265
       $ Dim56 : num [1:1000] 0.0137 0.0543 0.046 -0.0196 0.0293 ...
   ##
266
       $ Dim57 : num [1:1000] 0.072 0.019 0.1006 0.0708 0.1566 ...
   ##
267
       $ Dim58 : num [1:1000] 0.233 0.193 0.162 0.373 0.231 ...
   ##
```

295

```
$ Dim59 : num [1:1000] 0.0733 -0.055 0.0294 0.0662 0.0432 ...
   ##
269
       $ Dim60 : num [1:1000] 0.01502 -0.09608 -0.01706 0.00262 -0.01736 ...
   ##
270
       $ Dim61 : num [1:1000] 0.01 0.0385 -0.0233 -0.0503 0.052 ...
271
       $ Dim62 : num [1:1000] 0.4931 0.4505 0.0755 0.4037 -0.1958 ...
   ##
272
   ##
       $ Dim63 : num [1:1000] -0.1841 -0.0605 -0.0428 -0.0792 -0.1128 ...
273
       $ Dim64 : num [1:1000] 0.0996 -0.0166 0.0474 -0.0503 0.1249 ...
   ##
274
       $ Dim65 : num [1:1000] -0.0798 -0.00528 0.02712 0.03789 0.08076 ...
   ##
275
       $ Dim66 : num [1:1000] 0.0348 0.016 -0.0105 -0.0118 -0.0121 ...
   ##
276
       $ Dim67 : num [1:1000] 0.09249 -0.02617 0.01732 0.00648 0.09461 ...
   ##
277
       $ Dim68 : num [1:1000] -0.0602 -0.2076 -0.0604 -0.0934 0.0936 ...
   ##
278
       $ Dim69 : num [1:1000] 0.0315 0.0986 -0.0499 0.0323 0.0737 ...
   ##
279
       $ Dim70 : num [1:1000] -0.0503 0.0767 0.0641 0.082 0.1444 ...
   ##
280
       $ Dim71 : num [1:1000] 0.0941 0.0891 -0.0412 0.0391 -0.053 ...
   ##
281
       $ Dim72 : num [1:1000] -0.1152 0.0205 -0.0256 -0.0618 -0.0503 ...
   ##
282
       $ Dim73 : num [1:1000] -0.0218 0.0898 0.0409 -0.0411 0.0109 ...
   ##
283
       $ Dim74 : num [1:1000] -0.047 -0.0574 0.0274 -0.1004 0.0533 ...
   ##
284
       $ Dim75 : num [1:1000] 0.05422 -0.00118 0.06607 0.01979 0.13762 ...
   ##
285
       $ Dim76 : num [1:1000] 0.1064 -0.1159 0.0546 0.0536 0.0835 ...
   ##
286
       $ Dim77 : num [1:1000] 0.0187 0.065 0.0521 0.0837 0.0691 ...
   ##
287
       $ Dim78 : num [1:1000] -4.89 -2.42 -5.9 -3.63 -5.69 ...
   ##
288
   ##
       $ Dim79 : num [1:1000] -0.0492 -0.0797 -0.1108 0.0334 -0.0179 ...
289
       $ Dim80 : num [1:1000] 0.1146 0.00874 -0.09434 0.02867 0.07683 ...
   ##
290
       $ Dim81 : num [1:1000] -0.00173 0.0534 0.10269 0.11348 0.08096 ...
   ##
291
       $ Dim82 : num [1:1000] -0.2051 -0.0792 -0.0913 -0.0359 -0.0849 ...
   ##
292
       $ Dim83 : num [1:1000] 0.2152 0.0969 0.6394 0.4623 0.5441 ...
   ##
293
       $ Dim84 : num [1:1000] -0.000328 0.034866 -0.061725 0.057915 -0.033154 ...
   ##
294
       $ Dim85 : num [1:1000] 0.0418 0.1306 0.0755 0.0558 -0.0413 ...
   ##
```

```
$ Dim86 : num [1:1000] -0.1317 0.3587 -0.0523 0.028 -0.0539 ...
   ##
296
       $ Dim87 : num [1:1000] 0.0286 0.09665 -0.00575 -0.02233 0.0037 ...
   ##
297
       $ Dim88 : num [1:1000] -0.0774 0.173 -0.1015 -0.0337 0.0413 ...
   ##
298
       $ Dim89 : num [1:1000] -0.01247 0.0665 -0.00921 0.0184 0.01273 ...
   ##
299
       $ Dim90 : num [1:1000] 0.03029 -0.09836 0.00135 -0.01018 0.13343 ...
   ##
300
       $ Dim91 : num [1:1000] -0.0164 0.0291 0.1429 0.1461 0.0221 ...
   ##
301
       $ Dim92 : num [1:1000] 0.0293 -0.0356 -0.0273 0.0174 0.1431 ...
   ##
302
       $ Dim93 : num [1:1000] -0.01328 -0.00859 -0.03453 -0.01491 0.01285 ...
   ##
303
       $ Dim94 : num [1:1000] 0.06097 0.00899 0.05293 0.03094 0.21327 ...
   ##
304
       $ Dim95 : num [1:1000] 0.0444 0.04561 0.06597 0.08142 -0.00476 ...
   ##
305
       $ Dim96 : num [1:1000] -0.00381 0.0402 0.09011 -0.01924 -0.04217 ...
   ##
306
       $ Dim97 : num [1:1000] -0.036561 0.027386 -0.020688 -0.000983 -0.028573 ...
   ##
307
       $ Dim98 : num [1:1000] 0.5007 -0.061 0.5236 0.0664 0.1875 ...
   ##
308
   ##
         [list output truncated]
309
   ## Recipe
310
   ##
311
   ## Inputs:
312
   ##
313
             role #variables
314
   ##
         outcome
                            1
315
                          768
   ##
       predictor
316
   ##
317
   ## Operations:
318
   ##
319
   ## Centering and scaling for all of(numeric)
   ## Recipe
```

```
##
322
   ## Inputs:
323
   ##
324
             role #variables
325
   ##
          outcome
                             1
326
   ##
        predictor
                           768
327
   ##
328
   ## Training data contained 1000 data points and no missing data.
329
   ##
330
   ## Operations:
331
   ##
332
   ## Centering and scaling for Dim1, Dim2, Dim3, Dim4, Dim5, Dim6, Dim7, Dim8,... [trained
333
   ## # A tibble: 1,000 x 769
334
   ##
          Label
                       Dim1
                               Dim2
                                        Dim3
                                                 Dim4
                                                          Dim5
                                                                  Dim6
                                                                            Dim7
                                                                                    Dim8
                                                                                            Dim9
335
          <fct>
                              <dbl>
                                       <dbl>
                                                         <dbl>
                                                                           <dbl>
   ##
                      <dbl>
                                                <dbl>
                                                                 <dbl>
                                                                                   <dbl>
                                                                                           <dbl>
336
   ##
        1 hate
                   -1.90
                             -0.358
                                      1.45
                                              -2.00
                                                        0.880
                                                                -0.750 -0.0661
                                                                                   1.34
                                                                                           0.601
337
        2 hate
                   -0.871
                              0.695 - 0.486
                                               1.83
                                                        2.46
                                                                -1.84
                                                                         0.312
                                                                                   0.106 - 1.12
   ##
338
   ##
        3 nothate
                   0.219
                              0.594
                                      1.02
                                              -0.554
                                                       -0.170
                                                                 0.254 - 0.00966
                                                                                   0.151 - 0.432
339
   ##
       4 nothate
                   0.823
                              1.22
                                    -0.830
                                               0.762
                                                        1.87
                                                                -0.613
                                                                        0.887
                                                                                   0.992 - 0.670
340
                                                                 2.84
                              0.765
                                              -0.334
                                                        0.326
   ##
        5 nothate -0.374
                                      0.675
                                                                         0.187
                                                                                  -0.616 - 0.639
341
   ##
       6 nothate
                   1.07
                              0.423 -0.0821 -0.0748 -0.729
                                                                -0.641
                                                                         2.52
                                                                                  -0.149 - 0.810
342
   ##
       7 nothate
                   0.215
                              0.894 - 1.88
                                              -0.962
                                                        2.49
                                                                -0.726
                                                                         2.51
                                                                                  -0.405 -0.442
343
   ##
                    0.00453 -0.214 -0.158
                                              -0.406
                                                        0.845
                                                                 0.421 - 1.34
                                                                                   0.624 - 1.53
       8 hate
344
   ##
       9 hate
                   -0.773
                              0.261
                                      1.12
                                               0.644
                                                       -0.0518
                                                                0.752 - 0.427
                                                                                  -0.577 - 0.517
   ## 10 nothate -1.41
                              0.251
                                      0.887
                                             -0.459
                                                        1.07
                                                                -1.48
                                                                         1.64
                                                                                  -0.127 1.38
346
   ## # ... with 990 more rows, and 759 more variables: Dim10 <dbl>, Dim11 <dbl>,
347
           Dim12 <dbl>, Dim13 <dbl>, Dim14 <dbl>, Dim15 <dbl>, Dim16 <dbl>,
348
```

```
Dim17 <dbl>, Dim18 <dbl>, Dim19 <dbl>, Dim20 <dbl>, Dim21 <dbl>,
   ## #
349
   ## #
          Dim22 <dbl>, Dim23 <dbl>, Dim24 <dbl>, Dim25 <dbl>, Dim26 <dbl>,
350
   ## #
          Dim27 <dbl>, Dim28 <dbl>, Dim29 <dbl>, Dim30 <dbl>, Dim31 <dbl>,
351
          Dim32 <dbl>, Dim33 <dbl>, Dim34 <dbl>, Dim35 <dbl>, Dim36 <dbl>,
   ## #
352
   ## #
          Dim37 <dbl>, Dim38 <dbl>, Dim39 <dbl>, Dim40 <dbl>, Dim41 <dbl>, ...
353
   Logistic regression
   ## Warning in train.recipe(blueprint 12, data = data 12 tr, method = "glm", : The
355
   ## metric "Accuracy" was not in the result set. logLoss will be used instead.
   ## Warning: glm.fit: algorithm did not converge
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
   ## prediction from a rank-deficient fit may be misleading
360
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
   ## prediction from a rank-deficient fit may be misleading
   ## Warning: glm.fit: algorithm did not converge
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
   ## prediction from a rank-deficient fit may be misleading
365
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
367
   ## prediction from a rank-deficient fit may be misleading
368
```

Warning: glm.fit: algorithm did not converge

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
   ## prediction from a rank-deficient fit may be misleading
371
372
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
373
   ## prediction from a rank-deficient fit may be misleading
374
   ## Warning: glm.fit: algorithm did not converge
375
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
376
   ## prediction from a rank-deficient fit may be misleading
377
378
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
379
   ## prediction from a rank-deficient fit may be misleading
380
   ## Warning: glm.fit: algorithm did not converge
381
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
382
   ## prediction from a rank-deficient fit may be misleading
383
384
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
385
   ## prediction from a rank-deficient fit may be misleading
   ## Warning: glm.fit: algorithm did not converge
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
388
   ## prediction from a rank-deficient fit may be misleading
389
390
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
391
   ## prediction from a rank-deficient fit may be misleading
392
```

```
## Warning: glm.fit: algorithm did not converge
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
   ## prediction from a rank-deficient fit may be misleading
395
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
   ## prediction from a rank-deficient fit may be misleading
398
   ## Warning: glm.fit: algorithm did not converge
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
400
   ## prediction from a rank-deficient fit may be misleading
401
402
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
403
   ## prediction from a rank-deficient fit may be misleading
404
   ## Warning: glm.fit: algorithm did not converge
405
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
406
   ## prediction from a rank-deficient fit may be misleading
407
408
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
409
   ## prediction from a rank-deficient fit may be misleading
410
   ## Warning: glm.fit: algorithm did not converge
411
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
412
   ## prediction from a rank-deficient fit may be misleading
413
414
   ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
415
   ## prediction from a rank-deficient fit may be misleading
416
```

```
## Warning: glm.fit: algorithm did not converge
   ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
   ## Generalized Linear Model
   ##
420
   ## 800 samples
421
   ## 768 predictors
422
         2 classes: 'hate', 'nothate'
   ##
423
   ##
424
   ## Recipe steps: normalize
425
   ## Resampling: Cross-Validated (10 fold)
426
   ## Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...
427
   ## Resampling results:
428
   ##
429
   ##
         logLoss
430
   ##
         17
431
   ##
              hate nothate
432
   ## 1
           1.5e-10 1.0e+00
433
   ## 2
           1.7e-07 1.0e+00
434
   ## 3
           2.2e-16 1.0e+00
435
   ## 4
           2.2e-16 1.0e+00
436
   ## 5
           2.2e-16 1.0e+00
437
   ## 6
           2.2e-16 1.0e+00
   ## 7
           2.2e-16 1.0e+00
439
           1.0e+00 2.2e-16
   ## 8
440
   ## 9
           2.2e-16 1.0e+00
```

- 442 ## 10 1.0e+00 1.1e-03
- 443 ## 11 2.2e-16 1.0e+00
- 444 ## 12 1.0e+00 2.2e-16
- 445 ## 13 1.0e+00 2.2e-16
- 446 ## 14 1.0e+00 2.2e-16
- 447 ## 15 1.0e+00 2.2e-16
- 448 ## 16 1.0e+00 2.2e-16
- 449 ## 17 3.1e-06 1.0e+00
- 450 ## 18 1.0e+00 2.2e-16
- 451 ## 19 2.2e-16 1.0e+00
- 452 ## 20 1.0e+00 2.2e-16
- 453 ## 21 1.0e+00 2.2e-16
- 454 ## 22 1.0e+00 2.2e-16
- 455 ## 23 2.2e-16 1.0e+00
- 456 ## 24 2.2e-16 1.0e+00
- 457 ## 25 2.2e-16 1.0e+00
- 458 ## 26 2.2e-16 1.0e+00
- 459 ## 27 1.0e+00 2.2e-16
- 460 ## 28 2.2e-16 1.0e+00
- 461 ## 29 3.9e-04 1.0e+00
- 462 ## 30 2.2e-16 1.0e+00
- 463 ## 31 2.2e-16 1.0e+00
- 464 ## 32 1.0e+00 2.2e-16
- 465 ## 33 5.8e-05 1.0e+00
- 466 ## 34 2.2e-16 1.0e+00
- 467 ## 35 1.0e+00 2.2e-16
- 468 ## 36 1.0e+00 2.2e-16

- 469 ## 37 1.0e+00 2.2e-16
- 470 ## 38 1.0e+00 2.2e-16
- 471 ## 39 2.2e-16 1.0e+00
- ## 40 1.0e+00 2.2e-16
- 473 ## 41 2.2e-16 1.0e+00
- 474 ## 42 6.4e-01 3.6e-01
- 475 ## 43 1.0e+00 2.2e-16
- 476 ## 44 1.0e+00 2.2e-16
- 477 ## 45 1.0e+00 2.2e-16
- 478 ## 46 2.2e-16 1.0e+00
- 479 ## 47 1.0e+00 2.2e-16
- 480 ## 48 1.0e+00 2.2e-16
- 481 ## 49 1.0e+00 2.2e-16
- 482 ## 50 2.2e-16 1.0e+00
- 483 ## 51 1.0e+00 2.2e-16
- 484 ## 52 1.0e+00 2.2e-16
- 485 ## 53 2.2e-16 1.0e+00
- 486 ## 54 2.2e-16 1.0e+00
- 487 ## 55 1.0e+00 2.2e-16
- 488 ## 56 1.0e+00 2.2e-16
- 489 ## 57 1.0e+00 2.2e-16
- 490 ## 58 3.3e-01 6.7e-01
- 491 ## 59 1.0e+00 2.2e-16
- 492 ## 60 1.0e+00 1.5e-12
- 493 ## 61 1.0e+00 2.2e-16
- 494 ## 62 2.2e-16 1.0e+00
- 495 ## 63 2.2e-16 1.0e+00

- 496 ## 64 2.2e-16 1.0e+00
- 497 ## 65 1.0e+00 3.1e-06
- 498 ## 66 1.0e+00 2.2e-16
- ## 67 1.6e-11 1.0e+00
- 500 ## 68 3.3e-04 1.0e+00
- 501 ## 69 1.0e+00 2.2e-16
- 502 ## 70 1.0e+00 2.2e-16
- 503 ## 71 2.2e-16 1.0e+00
- 504 ## 72 1.2e-06 1.0e+00
- 505 ## 73 2.2e-16 1.0e+00
- 506 ## 74 2.2e-16 1.0e+00
- 507 ## 75 1.0e+00 2.2e-16
- 508 ## 76 1.7e-06 1.0e+00
- 509 ## 77 1.0e+00 2.2e-16
- 510 ## 78 1.0e+00 2.2e-16
- 511 ## 79 1.0e+00 2.2e-16
- 512 ## 80 1.0e+00 2.2e-16
- 513 ## 81 1.0e+00 2.3e-08
- 514 ## 82 1.0e+00 2.2e-16
- 515 ## 83 2.2e-16 1.0e+00
- 516 ## 84 1.0e+00 2.2e-16
- 517 ## 85 1.0e-06 1.0e+00
- 518 ## 86 1.0e+00 2.2e-16
- 519 ## 87 1.1e-07 1.0e+00
- 520 ## 88 2.2e-16 1.0e+00
- 521 ## 89 2.2e-16 1.0e+00
- 522 ## 90 1.0e+00 2.0e-04

- 523 ## 91 2.2e-16 1.0e+00
- 524 ## 92 6.4e-08 1.0e+00
- 525 ## 93 1.0e+00 2.2e-16
- 526 ## 94 1.0e+00 2.2e-16
- 527 ## 95 1.0e+00 2.2e-16
- 528 ## 96 4.9e-02 9.5e-01
- 529 ## 97 1.0e+00 2.2e-16
- 530 ## 98 1.0e+00 2.2e-16
- 531 ## 99 1.0e+00 2.2e-16
- 532 ## 100 1.0e+00 1.3e-07
- 533 ## 101 2.2e-16 1.0e+00
- 534 ## 102 2.2e-16 1.0e+00
- 535 ## 103 2.2e-16 1.0e+00
- 536 ## 104 1.0e+00 2.2e-16
- 537 ## 105 2.2e-16 1.0e+00
- 538 ## 106 1.0e+00 2.2e-16
- 539 ## 107 1.0e+00 2.2e-16
- ₅₄₀ ## 108 4.6e-11 1.0e+00
- 541 ## 109 1.0e+00 2.2e-16
- 542 ## 110 1.0e+00 2.2e-16
- 543 ## 111 1.0e+00 2.2e-16
- 544 ## 112 1.0e+00 2.2e-16
- 545 ## 113 1.0e+00 2.2e-16
- 546 ## 114 1.0e+00 2.2e-16
- 547 ## 115 2.2e-16 1.0e+00
- 548 ## 116 2.2e-16 1.0e+00
- 549 ## 117 9.5e-02 9.0e-01

- 550 ## 118 2.2e-16 1.0e+00
- 551 ## 119 1.0e+00 2.2e-16
- 552 ## 120 2.2e-16 1.0e+00
- 553 ## 121 1.0e+00 2.2e-16
- 554 ## 122 2.2e-16 1.0e+00
- 555 ## 123 2.2e-16 1.0e+00
- 556 ## 124 2.2e-16 1.0e+00
- 557 ## 125 1.0e+00 2.2e-16
- 558 ## 126 1.1e-08 1.0e+00
- 559 ## 127 6.1e-13 1.0e+00
- 560 ## 128 1.0e+00 2.2e-16
- 561 ## 129 2.2e-16 1.0e+00
- 562 ## 130 2.2e-16 1.0e+00
- 563 ## 131 2.2e-16 1.0e+00
- 564 ## 132 2.2e-16 1.0e+00
- 565 ## 133 2.2e-16 1.0e+00
- 566 ## 134 1.0e+00 2.2e-16
- 567 ## 135 1.0e+00 2.2e-16
- 568 ## 136 2.2e-10 1.0e+00
- 569 ## 137 1.0e+00 4.9e-07
- 570 ## 138 2.2e-16 1.0e+00
- 571 ## 139 2.2e-16 1.0e+00
- 572 ## 140 2.2e-16 1.0e+00
- 573 ## 141 2.2e-16 1.0e+00
- 574 ## 142 2.2e-16 1.0e+00
- 575 ## 143 1.0e+00 2.2e-16
- 576 ## 144 2.2e-16 1.0e+00

- 577 ## 145 4.0e-07 1.0e+00
- 578 ## 146 1.0e+00 2.2e-16
- 579 ## 147 1.0e+00 2.2e-16
- 580 ## 148 1.0e+00 2.2e-16
- 581 ## 149 1.0e+00 2.2e-16
- 582 ## 150 2.2e-16 1.0e+00
- 583 ## 151 1.0e+00 2.2e-16
- 584 ## 152 2.2e-16 1.0e+00
- 585 ## 153 3.3e-09 1.0e+00
- 586 ## 154 1.0e+00 2.2e-16
- 587 ## 155 1.0e+00 2.2e-16
- 588 ## 156 1.0e+00 2.2e-16
- 589 ## 157 2.2e-16 1.0e+00
- 590 ## 158 2.2e-16 1.0e+00
- 591 ## 159 2.2e-16 1.0e+00
- 592 ## 160 1.0e+00 2.2e-03
- 593 ## 161 1.0e+00 2.2e-16
- 594 ## 162 1.6e-03 1.0e+00
- 595 ## 163 1.0e+00 2.3e-11
- 596 ## 164 1.0e+00 2.2e-16
- 597 ## 165 1.0e+00 2.2e-16
- 598 ## 166 1.0e+00 2.2e-16
- 599 ## 167 3.9e-08 1.0e+00
- 600 ## 168 2.2e-16 1.0e+00
- 601 ## 169 1.0e+00 1.2e-06
- 602 ## 170 1.0e+00 2.2e-16
- 603 ## 171 1.0e+00 2.2e-16

- 604 ## 172 1.0e+00 2.2e-16
- 605 ## 173 1.0e+00 2.2e-16
- 606 ## 174 1.0e+00 2.2e-16
- 607 ## 175 1.0e+00 2.2e-16
- 608 ## 176 1.0e+00 2.2e-16
- 609 ## 177 2.2e-16 1.0e+00
- 610 ## 178 1.0e+00 2.2e-16
- 41 ## 179 1.0e+00 2.2e-16
- 612 ## 180 2.2e-16 1.0e+00
- 613 ## 181 2.2e-16 1.0e+00
- 614 ## 182 1.0e+00 2.2e-16
- 615 ## 183 1.0e+00 2.2e-16
- 616 ## 184 1.0e+00 2.2e-16
- 617 ## 185 1.0e+00 2.2e-16
- 618 ## 186 1.0e+00 2.2e-16
- 619 ## 187 1.0e+00 2.2e-16
- 620 ## 188 1.0e+00 2.2e-16
- 621 ## 189 2.2e-16 1.0e+00
- 622 ## 190 1.0e+00 5.5e-10
- 623 ## 191 1.0e+00 2.2e-16
- 624 ## 192 2.2e-16 1.0e+00
- 625 ## 193 2.2e-16 1.0e+00
- 626 ## 194 1.0e+00 2.2e-16
- 627 ## 195 1.0e+00 2.2e-16
- 628 ## 196 1.0e+00 2.2e-16
- 629 ## 197 1.0e+00 2.2e-16
- 630 ## 198 2.2e-16 1.0e+00

```
44 199 3.6e-05 1.0e+00
```

figure 4 pred_class_12

634 ## 0 1

635 ## hate 49 65

636 ## nothate 42 44

Ridge regression

638 ## alpha lambda

639 ## 1 0 0e+00

640 ## 2 0 1e-05

641 ## 3 0 2e-05

642 ## 4 0 3e-05

643 ## 5 0 4e-05

644 ## 6 0 5e-05

645 ## 7 0 6e-05

646 ## 8 0 7e-05

647 ## 9 0 8e-05

648 ## 10 0 9e-05

649 ## 11 0 1e-04

650 ## 12 0 5e-03

651 ## 13 0 1e-02

652 ## 14 0 5e-02

653 ## 15 0 1e-01

654 ## glmnet

655 ##

```
## 800 samples
656
   ## 768 predictors
657
   ##
         2 classes: 'hate', 'nothate'
658
   ##
659
   ## Recipe steps: normalize
660
   ## Resampling: Cross-Validated (10 fold)
661
   ## Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...
662
   ## Resampling results across tuning parameters:
663
   ##
664
   ##
         lambda
                 logLoss
665
   ##
         0e+00
                  0.61
666
   ##
         1e-05
                  0.61
667
   ##
         2e-05
                  0.61
668
         3e-05
   ##
                  0.61
669
         4e-05
   ##
                  0.61
   ##
         5e-05
                  0.61
671
   ##
         6e-05
                  0.61
   ##
         7e-05
                  0.61
673
   ##
         8e-05
                  0.61
674
         9e-05
   ##
                  0.61
675
   ##
         1e-04
                  0.61
676
   ##
         5e-03
                  0.61
677
         1e-02
                  0.61
   ##
678
   ##
         5e-02
                  0.61
679
   ##
         1e-01
                  0.61
680
   ##
681
   ## Tuning parameter 'alpha' was held constant at a value of 0
```

logLoss was used to select the optimal model using the smallest value.

 684 ## The final values used for the model were alpha = 0 and lambda = 0.1.

686 ## alpha lambda 687 ## 15 0 0.1

685

688 ## pred_class_12 689 ## 0 1 690 ## hate 32 82 691 ## nothate 50 36

593 ## [1] 769

692

```
[,1]
   ##
694
   ## (Intercept) -0.33
   ## Dim102
                   -0.15
696
   ## Dim154
                    0.15
697
   ## Dim168
                    0.14
                   -0.13
   ## Dim33
                   -0.13
   ## Dim89
   ## Dim350
                   0.13
   ## Dim32
                   -0.12
702
                   -0.12
   ## Dim400
703
   ## Dim16
                    0.12
```

Logistic Regression with Lasso penalty

706	##		alpha	lambda
707	##	1	1	0.016
708	##	2	1	0.016
709	##	3	1	0.016
710	##	4	1	0.016
711	##	5	1	0.016
712	##	6	1	0.016
713	##	7	1	0.016
714	##	8	1	0.016
715	##	9	1	0.016
716	##	10	1	0.016
717	##	11	1	0.016
718	##	12	1	0.016
719	##	13	1	0.016
720	##	14	1	0.016
721	##	15	1	0.016
722	##	16	1	0.016
723	##	17	1	0.016
724	##	18	1	0.016
725	##	19	1	0.016
726	##	20	1	0.016
727	##	21	1	0.016
728	##	22	1	0.016
729	##	23	1	0.016
730	##	24	1	0.016
731	##	25	1	0.016

732	##	26	1	0.016
733	##	27	1	0.016
734	##	28	1	0.016
735	##	29	1	0.016
736	##	30	1	0.016
737	##	31	1	0.016
738	##	32	1	0.016
739	##	33	1	0.016
740	##	34	1	0.016
741	##	35	1	0.016
742	##	36	1	0.016
743	##	37	1	0.016
744	##	38	1	0.016
745	##	39	1	0.016
746	##	40	1	0.016
747	##	41	1	0.016
748	##	42	1	0.016
749	##	43	1	0.016
750	##	44	1	0.016
751	##	45	1	0.016
752	##	46	1	0.016
753	##	47	1	0.016
754	##	48	1	0.016
755	##	49	1	0.016
756	##	50	1	0.016
757	##	51	1	0.017
758	##	52	1	0.017

759	##	53	1	0.017
760	##	54	1	0.017
761	##	55	1	0.017
762	##	56	1	0.017
763	##	57	1	0.017
764	##	58	1	0.017
765	##	59	1	0.017
766	##	60	1	0.017
767	##	61	1	0.017
768	##	62	1	0.017
769	##	63	1	0.017
770	##	64	1	0.017
771	##	65	1	0.017
772	##	66	1	0.017
773	##	67	1	0.017
774	##	68	1	0.017
775	##	69	1	0.017
776	##	70	1	0.017
777	##	71	1	0.017
778	##	72	1	0.017
779	##	73	1	0.017
780	##	74	1	0.017
781	##	75	1	0.017
782	##	76	1	0.017
783	##	77	1	0.017
784	##	78	1	0.017
785	##	79	1	0.017

786	##	80	1	0.017
787	##	81	1	0.017
788	##	82	1	0.017
789	##	83	1	0.017
790	##	84	1	0.017
791	##	85	1	0.017
792	##	86	1	0.017
793	##	87	1	0.017
794	##	88	1	0.017
795	##	89	1	0.017
796	##	90	1	0.017
797	##	91	1	0.017
798	##	92	1	0.017
799	##	93	1	0.017
800	##	94	1	0.017
801	##	95	1	0.017
802	##	96	1	0.017
803	##	97	1	0.017
804	##	98	1	0.017
805	##	99	1	0.017
806	##	100	1	0.017
807	##	101	1	0.017
808	##	102	1	0.017
809	##	103	1	0.017
810	##	104	1	0.017
811	##	105	1	0.017
812	##	106	1	0.017

813	##	107	1	0.01	۱7
814	##	108	1	0.01	۱7
815	##	109	1	0.01	۱7
816	##	110	1	0.01	۱7
817	##	111	1	0.01	L7
818	##	112	1	0.01	L7
819	##	113	1	0.01	L7
820	##	114	1	0.01	۱7
821	##	115	1	0.01	۱7
822	##	116	1	0.01	L7
823	##	117	1	0.01	۱7
824	##	118	1	0.01	۱7
825	##	119	1	0.01	۱7
826	##	120	1	0.01	۱7
827	##	121	1	0.01	۱7
828	##	122	1	0.01	۱7
829	##	123	1	0.01	۱7
830	##	124	1	0.01	L7
831	##	125	1	0.01	۱7
832	##	126	1	0.01	۱7
833	##	127	1	0.01	L7
834	##	128	1	0.01	۱7
835	##	129	1	0.01	۱7
836	##	130	1	0.01	L7
837	##	131	1	0.01	۱7
838	##	132	1	0.01	۱7

839 ## 133 1 0.017

840	##	134	1	0.017
841	##	135	1	0.017
842	##	136	1	0.017
843	##	137	1	0.017
844	##	138	1	0.017
845	##	139	1	0.017
846	##	140	1	0.017
847	##	141	1	0.017
848	##	142	1	0.017
849	##	143	1	0.017
850	##	144	1	0.017
851	##	145	1	0.017
852	##	146	1	0.017
853	##	147	1	0.017
854	##	148	1	0.017
855	##	149	1	0.017
856	##	150	1	0.017
857	##	151	1	0.018
858	##	152	1	0.018
859	##	153	1	0.018
860	##	154	1	0.018
861	##	155	1	0.018
862	##	156	1	0.018
863	##	157	1	0.018
864	##	158	1	0.018
865	##	159	1	0.018

866 ## 160 1 0.018

867	##	161	1	0.018
868	##	162	1	0.018
869	##	163	1	0.018
870	##	164	1	0.018
871	##	165	1	0.018
872	##	166	1	0.018
873	##	167	1	0.018
874	##	168	1	0.018
875	##	169	1	0.018
876	##	170	1	0.018
877	##	171	1	0.018
878	##	172	1	0.018
879	##	173	1	0.018
880	##	174	1	0.018
881	##	175	1	0.018
882	##	176	1	0.018
883	##	177	1	0.018
884	##	178	1	0.018
885	##	179	1	0.018
886	##	180	1	0.018
887	##	181	1	0.018
888	##	182	1	0.018
889	##	183	1	0.018
890	##	184	1	0.018
891	##	185	1	0.018
892	##	186	1	0.018

893 ## 187 1 0.018

```
## 188
                   0.018
                1
   ## 189
                   0.018
895
   ## 190
                   0.018
896
   ## 191
                   0.018
897
   ## 192
                   0.018
898
   ## 193
                   0.018
899
   ## 194
                   0.018
900
   ## 195
                   0.018
                1
901
   ## 196
                   0.018
902
   ## 197
                   0.018
903
   ## 198
                   0.018
904
   ## 199
                   0.018
                1
905
   ## 200
                   0.018
                1
   ## 201
                   0.018
907
   ## glmnet
908
   ##
909
   ## 800 samples
910
   ## 768 predictors
911
         2 classes: 'hate', 'nothate'
   ##
912
   ##
913
   ## Recipe steps: normalize
914
   ## Resampling: Cross-Validated (10 fold)
915
   ## Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...
916
   ## Resampling results across tuning parameters:
917
   ##
918
   ##
         lambda
                  logLoss
919
   ##
         0.016
                  0.61
920
```

921	##	0.016	0.61
921	ππ	0.010	0.01

- 923 ## 0.016 0.61
- 924 ## 0.016 0.61
- 925 ## 0.016 0.61
- 926 ## 0.016 0.61
- 927 ## 0.016 0.61
- 928 ## 0.016 0.61
- 929 ## 0.016 0.61
- 930 ## 0.016 0.61
- 931 ## 0.016 0.61
- 932 ## 0.016 0.61
- 933 ## 0.016 0.61
- 934 ## 0.016 0.61
- 935 ## 0.016 0.61
- 936 ## 0.016 0.61
- 937 ## 0.016 0.61
- 938 ## 0.016 0.61
- 939 ## 0.016 0.61
- 940 ## 0.016 0.61
- 941 ## 0.016 0.61
- 942 ## 0.016 0.61
- 943 ## 0.016 0.61
- 944 ## 0.016 0.61
- 945 ## 0.016 0.61
- 946 ## 0.016 0.61
- 947 ## 0.016 0.61

948 ## 0.016 0.	.61
-----------------	-----

- 949 ## 0.016 0.61
- 950 ## 0.016 0.61
- 951 ## 0.016 0.61
- 952 ## 0.016 0.61
- 953 ## 0.016 0.61
- 954 ## 0.016 0.61
- 955 ## 0.016 0.61
- 956 ## 0.016 0.61
- 957 ## 0.016 0.61
- 958 ## 0.016 0.61
- 959 ## 0.016 0.61
- 960 ## 0.016 0.61
- 961 ## 0.016 0.61
- 962 ## 0.016 0.61
- 963 ## 0.016 0.61
- 964 ## 0.016 0.61
- 965 ## 0.016 0.61
- 966 ## 0.016 0.61
- 967 ## 0.016 0.61
- 968 ## 0.016 0.61
- 969 ## 0.016 0.61
- 970 ## 0.017 0.61
- 971 ## 0.017 0.61
- 972 ## 0.017 0.61
- 973 ## 0.017 0.61
- 974 ## 0.017 0.61

975	##	0.017	0.6	31
-----	----	-------	-----	----

- 976 ## 0.017 0.61
- 977 ## 0.017 0.61
- 978 ## 0.017 0.61
- 979 ## 0.017 0.61
- 980 ## 0.017 0.61
- 981 ## 0.017 0.61
- 982 ## 0.017 0.61
- 983 ## 0.017 0.61
- 984 ## 0.017 0.61
- 985 ## 0.017 0.61
- 986 ## 0.017 0.61
- 987 ## 0.017 0.61
- 988 ## 0.017 0.61
- 989 ## 0.017 0.61
- 990 ## 0.017 0.61
- 991 ## 0.017 0.61
- 992 ## 0.017 0.61
- 993 ## 0.017 0.61
- 994 ## 0.017 0.61
- 995 ## 0.017 0.61
- 996 ## 0.017 0.61
- 997 ## 0.017 0.61
- 998 ## 0.017 0.61
- 999 ## 0.017 0.61
- 1000 ## 0.017 0.61
- 1001 ## 0.017 0.61

1002 ## 0.017 0.6	1002	##	0.017	0.61
-------------------	------	----	-------	------

$$_{1026}$$
 ## 0.017 0.61

1029 ## 0.017 0.01	1029	##	0.017	0.61
--------------------	------	----	-------	------

^{1030 ## 0.017 0.61}

1056	##	0.017	0.61
------	----	-------	------

1058
 ## 0.017 0.61

1074
 ## 0.018 0.61

$$_{1078}$$
 ## 0.018 0.61

1083	##	0.018	0.61
1084	##	0.018	0.61
1085	##	0.018	0.61
1086	##	0.018	0.61
1087	##	0.018	0.61
1088	##	0.018	0.61
1089	##	0.018	0.61
1090	##	0.018	0.61
1091	##	0.018	0.61

- 1092 ## 0.018 0.61 1093 ## 0.018 0.61
- 1094 ## 0.018 0.61
- 1095 ## 0.018 0.61
- 1096 ## 0.018 0.61
- 1097 ## 0.018 0.61
- 1098 ## 0.018 0.61
- 1099 ## 0.018 0.61
- 1100 ## 0.018 0.61
- 1101 ## 0.018 0.61
- 1102 ## 0.018 0.61
- 1103 ## 0.018 0.61
- 1104 ## 0.018 0.61
- 1105 ## 0.018 0.61
- 1106 ## 0.018 0.61
- 1107 ## 0.018 0.61
- 1108 ## 0.018 0.61
- 1109 ## 0.018 0.61

```
##
          0.018
                    0.61
1110
          0.018
                     0.61
    ##
1111
    ##
          0.018
                     0.61
1112
          0.018
                     0.61
    ##
1113
          0.018
                    0.61
    ##
1114
    ##
           0.018
                     0.61
1115
          0.018
                     0.61
    ##
1116
    ##
          0.018
                     0.61
1117
          0.018
                    0.61
    ##
1118
          0.018
                     0.61
    ##
1119
    ##
           0.018
                     0.61
1120
    ##
```

Tuning parameter 'alpha' was held constant at a value of 1 1122

logLoss was used to select the optimal model using the smallest value. 1123

The final values used for the model were alpha = 1 and lambda = 0.017. 1124

1121

1 0.017

1126 ## alpha lambda

98

1128 ## [1] 200 2

1129 ## hate nothate

1130 ## 1 0.46 0.54

1131 ## 2 0.69 0.31

1132 ## 3 0.11 0.89

1133 ## 4 0.52 0.48

1134 ## 5 0.67 0.33

1135 ## 6 0.52 0.48

1136 ## Warning: Unknown or uninitialised column: 'hate'.

1137 ## pred_class_12

1138 ## 0 1

1139 ## hate 32 82

1140 ## nothate 50 36

[,1] 1142 ## (Intercept) -0.28 -0.22 ## Dim32 ## Dim202 0.22 -0.20 ## Dim102 1146 ## Dim168 0.19 1147 ## Dim350 0.18 1148 ## Dim542 0.18 ## Dim628 0.16 1150 ## Dim400 -0.16 1151 ## Dim214 0.15

1141

1159

1160

1161

1162

1153 References

Warning in utils::citation(x[pkg], auto = if (no_citations[pkg]) TRUE else

NULL): no date field in DESCRIPTION file of package 'recipes'

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech detection and the problem of offensive language. In *Proceedings of the*international AAAI conference on web and social media (Vol. 11).

Williams, M. L., Burnap, P., Javed, A., Liu, H., & Ozalp, S. (2020). Hate in the machine: Anti-black and anti-muslim social media posts as predictors of offline racially and religiously aggravated crime. *The British Journal of Criminology*, 60(1), 93–117.

Table 1

Number of

Hate and no

Hate labels

Label	n
hate	562
nothate	438

 $\label{eq:continuous} \begin{tabular}{ll} Table~2\\ Evaluation~metrics~for~the~RoBERTa~-~Layer~12~model \end{tabular}$

model	-LL	AUC	ACC	TPR	TNR	FPR	PRE
Logistic Regression	16.88	0.54	0.47	0.51	0.43	0.57	0.40
Logistic Regression with Ridge Penalty	0.61	0.73	0.34	0.42	0.28	0.72	0.31
Logistic Regression with Lasso Penalty	0.61	0.71	0.34	0.42	0.28	0.72	0.31