

Examen d'algèbre 1

Instructions : Les documents, les calculatrices et les téléphones portables sont interdits durant l'examen. Rédiger et justifiez clairement vos réponses.

Exercice 01:(4 points)

Soit f la fonction définie de $\mathbb{R}\setminus\{3\}$ dans \mathbb{R} par : $\forall x\in\mathbb{R}\setminus\{3\}, f(x)=\frac{2+x}{3-x}$.

- **1.** Calculer $f(\{-1,2\})$ et $f^{-1}(\{-1\})$.
- **2.** Soit y un réel fixé. Résoudre l'équation $y = \frac{2+x}{3-x}$.
- 3. En déduire que f est injective, mais qu'elle n'est pas bijective.
- **4.** Montrer qu' il existe un réel a tel que f soit une bijection de $\mathbb{R}\setminus\{a\}$ sur $\mathbb{R}\setminus\{a\}$, et expliciter la bijection réciproque.

Exercice 02:(5 points)

Soit \mathcal{R} la relation binaire définie dans \mathbb{R} par :

$$\forall x, y \in \mathbb{R}, x\mathcal{R}y \iff x^4 - x^2 = y^4 - y^2$$

- **1.** Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de 0, en déduire celle de 1 .
- **3.** Soit $a \in \mathbb{R}$.
- i) Trouver α et β dans \mathbb{R} pour que $X^4 X^2 (a^4 a^2) = (X^2 a^2)(X^2 + \alpha X + \beta)$.
- ii)Déterminer la classe d'équivalence de a.

Exercice 03:(7 points)

Soit $G=\mathbb{Q}^2-\{(0,0)\}.$ On définit sur G la loi * par :

$$(a,b)*(c,d) = (ac-bd,ad+bc)$$

1) Vérifier l'identité:

$$(a^2 + b^2) (c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

En déduire que * est une loi interne.

- 3) Montrer que (G, *) est un groupe commutatif.
- **4**) Soit l'application $f:G\longrightarrow \mathbb{C}^*$ définie par : f(a,b)=a+ib (où $i^2=-1$)
- **a)**Montrer que f est un homomorphisme du groupe (G,*) dans le groupe (\mathbb{C}^*,\cdot) .
- **b**) Déterminer Ker(f). L'homomorphisme f est-il injectif ? Est-ce un isomorphisme ?

Exercice 04:(4 points)

On note A l'ensemble de réels suivant :

$$A = \{ m + n\sqrt{5}, m, n \in \mathbb{Z} \}$$

- **1.** Montrer que $(A, +, \times)$ est un sous anneau de $(\mathbb{R}, +, \times)$.
- **2.** On considère l'application φ de A dans lui-même définie, pour tout, $m+n\sqrt{5}\in A$ par :

$$\varphi(m + n\sqrt{5}) = m - n\sqrt{5}$$

Montrer que φ est un automorphisme de l'anneau $(A,+,\times)$.

Correction d'examen d'algèbre 1

Exercice 01:

Soit f la fonction définie de $\mathbb{R}\setminus\{3\}$ dans \mathbb{R} par : $\forall x\in\mathbb{R}\setminus\{3\}, f(x)=\frac{2+x}{3-x}$.

1. On calcul $f(\{-1,2\}) = \{f(x), x \in \{-1,2\}\} = \{\frac{1}{4}, 4\}$.

$$f^{-1}\{-1\} = \{x, f(x) \in \{-1\}\} = \emptyset$$

2. On a $y = \frac{2+x}{3-x} \iff [y(3-x) = 2+x \text{ et } x \neq 3] \iff [x(y+1) = 3y-2 \text{ et } x \neq 3]. \star \text{Si}$ y = -1, il vient 0 = -5 et l'équation n'a donc pas de solution. \star Sinon l'unique solution est $x = \frac{3y-2}{y+1}$.

3. Tout élément de \mathbb{R} admet donc au plus un antécédent et f est injective. Mais -1 n'admet pas d'antécédent donc f n'est pas surjective et donc pas bijective. Néanmoins f induit une bijection de $\mathbb{R}\setminus\{3\}$ sur $\mathbb{R}\setminus\{-1\}$.

La bijection réciproque est : $f^{-1}: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}, y \mapsto \frac{3y-2}{y+1}$

Exercice 02:

1. \mathcal{R} est une relation d'équivalence. a)- \mathcal{R} est réflexive car par la réflexivité de l'égalité on a

$$\forall x \in \mathbb{R}, x^4 - x^2 = x^4 - x^2,$$

donc

$$\forall x \in \mathbb{R}, x\mathcal{R}x,$$

ce qui montre que \mathcal{R} est réflexive. b)- \mathcal{R} est symétrique car par la symétrie de l'égalité on a

$$\forall x, y \in \mathbb{R}, x\mathcal{R}y \iff x^4 - x^2 = y^4 - y^2$$
$$\iff y^4 - y^2 = x^4 - x^2$$
$$\iff y\mathcal{R}x,$$

donc

$$\forall x, y \in \mathbb{R}, x\mathcal{R}y \iff y\mathcal{R}x,$$

ce qui montre que $\mathcal R$ est symétrique. c)- $\mathcal R$ est transitive car par la transitivité de l'égalité on a

$$\forall x, y, z \in \mathbb{R}, (x\mathcal{R}y) \land (y\mathcal{R}z) \iff \begin{cases} x^4 - x^2 = y^4 - y^2 \\ y^4 - y^2 = z^4 - z^2 \end{cases}$$
$$\implies x^4 - x^2 = z^4 - z^2$$
$$\implies x\mathcal{R}z$$

donc

$$\forall x, y, z \in \mathbb{R}, (x\mathcal{R}y) \land (y\mathcal{R}z) \Longrightarrow x\mathcal{R}z,$$

ce qui montre que \mathcal{R} est transitive. De a), b) et c), on déduit que \mathcal{R} est une relation d'équivalence. 2.

$$\dot{0} = \{ x \in \mathbb{R}, x\mathcal{R}0 \}$$

On a alors

$$x\mathcal{R}0 \Longleftrightarrow x^4 - x^2 = 0$$

$$\iff x^2 (x^2 - 1) = 0$$

$$\iff x = 0 \lor x = 1 \lor x = -1$$

ce qui donne

$$\dot{0} = \{0, 1, -1\}$$

Comme $1 \in \dot{0}$ alors $1\mathcal{R}0$, par suite $\dot{0} = \dot{1}$.

3. Soit $a \in \mathbb{R}$,

i) On cherche α et β dans $\mathbb R$ pour que $X^4-X^2-(a^4-a^2)=(X^2-a^2)(X^2+\alpha X+\beta)$. On a $X^4-X^2-(a^4-a^2)=(X^2-a^2)(X^2+\alpha X+\beta)=X^4+\alpha X^3+(\beta-a^2)X^2-\alpha a^2X-\beta a^2$. Par identification on trouve $\beta=-1+a^2$ et $\alpha=0$, donc l'équation devient comme suite $X^4-X^2-(a^4-a^2)=(X^2-a^2)(X^2-1+a^2)$.

ii) On détermine la classe d'équivalence de a.

$$\dot{a} = \{x \in \mathbb{R}, x\mathcal{R}a\}$$
$$x\mathcal{R}a \iff x^4 - x^2 = a^4 - a^2$$

D'après i) On a $X^4 - X^2 - (a^4 - a^2) = (X^2 - a^2)(X^2 - 1 + a^2)$. Pour trouver les classe de a on cherche la solution de l'équation $(X^2 - a^2)(X^2 - 1 + a^2) = 0$. Cela implique $\begin{cases} (X^2 - a^2) = 0, & ; \\ (X^2 - 1 + a^2) = 0, & ; \\ (X^2 - 1 + a^2) = 0, & ; \end{cases}$ implique $\begin{cases} X = \pm a, & ; \\ X = \pm \sqrt{1 - a^2}, & a \in [-1, 1] \ . \end{cases}$ d'où $\dot{a} = \left\{ a, -a, -\sqrt{1 - a^2}, +\sqrt{1 - a^2} \right\}.$

Exercice 03:

Soit $G = \mathbb{Q}^2 - \{(0,0)\}$. On définit sur G la loi * par :

$$(a,b)*(c,d) = (ac - bd, ad + bc)$$

1) On Vérifie l'identité:

$$\left(a^2+b^2\right)\left(c^2+d^2\right)=(ac-bd)^2+(ad+bc)^2$$

$$(ac-bd)^2+(ad+bc)^2=(ac)^2-2acbd+(bd)^2+(ad)^2+2adbc+(bc)^2=(ac)^2+(bd)^2+(ad)^2+(bc)^2$$
 Donc Obtient

$$(ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 = (a^2 + b^2)(c^2 + d^2)$$

On déduit que * est une loi interne.

* est une loi interne si et seulement si $(ac-bd,ad+bc)\neq (0,0)$ On pose (a^2+b^2) $(c^2+d^2)=0,$ cela implique $\left\{\begin{array}{l} a^2=-b^2,\\ c^2=-d^2, \end{array}\right.$ contradiction, donc $(ac-bd,ad+bc)\neq (0,0)$ d'ou la lois * est interne.

2) On Montre que (G, *) est un groupe commutatif.

La loi est commutative car

$$\forall (a,b), (c,d) \in G: (a,b)*(c,d) = (ac-bd,ad+bc) = (ca-db,cb+da) = (c,d)*(a,b)$$
 L'élément neutre :

$$\forall (a,b) \in G, \exists (e,e') \in G: (a,b)*(e,e') = (e,e')*(a,b) = (ae-be',ae'+be) = (a,b)$$
 Ce que est implique
$$\left\{ \begin{array}{l} ae-be'=a, \\ ae'+be=b, \end{array} \right.$$
 D'après la question 1) on trouve $(e,e')=(1,0)$ L'élément symétrique

$$\forall (a,b) \in G, \exists (a',b') \in G: (a,b)*(a',b') = (a',b')*(a,b) = (aa'-bb',ab'+ba') = (1,0)$$
 Ce que est implique
$$\left\{ \begin{array}{l} aa'-bb'=1,\\ ab'+ba'=0, \end{array} \right.$$
 D'après la question **1**) on trouve $(a',b')=\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)$. La Lois * est associative car:

$$\forall (a,b), (c,d), (e,f) \in G : ((a,b)*(c,d))*(e,f) = (a,b)*((c,d)*(e,f))$$

Par conséquence (G, *) est un groupe commutative.

4) Soit l'application $f:G\longrightarrow \mathbb{C}^*$ définie par : f(a,b)=a+ib (où $i^2=-1$)

a) On montre que f est un homomorphisme du groupe (G,*) dans le groupe (\mathbb{C}^*,\cdot) . On a

$$\forall (a,b), (c,d) \in G : f((a,b) * (c,d)) = f(ac - bd, ad + bc) = ac - bd + i(ad + bc)$$

et

$$\forall (a,b), (c,d)f((a,b).f(c,d)) = (a+ib)(c+id) = ac - bd + i(ad+bc)$$

Donc f((a,b)*(c,d)) = f(a,b).f(c,d). Par conséquence f est un homomorphisme du groupe (G,*) dans le groupe (\mathbb{C}^*,\cdot) .

b. On determine le Ker(f)

 $Ker(f)=\{(a,b)\in G, f(a,b)=1,\}$ òu 1 est l'élément neutre de groupe (\mathbb{C}^*,\cdot) , f(a,b)=1 implique que a+ib=1 donc (a,b)=(1,0) d'ou f est injective. f n'est pas un isomorphisme car f n'est pas surjective (car l'équation $f(a,b)=a+ib=1+i\sqrt{2}$ n'admet pas solution dans $G=\mathbb{Q}^2-\{(0,0)\}$).

Exercice 04 : 1. L'ensemble A est non vide. Il suffit de vérifier que A est un sous-groupe pour l'addition, et que la multiplication est stable. Soient m, n, m', n' quatre éléments de \mathbb{Z} .

$$(m + n\sqrt{5}) - (m' + n'\sqrt{5}) = (m - m') + (n - n')\sqrt{5}$$

Donc

$$(m+n\sqrt{5}) - \left(m'+n'\sqrt{5}\right) \in A$$
$$\left(m'+n'\sqrt{5}\right) = (mm'+5nn') + (mn'+m'n)\sqrt{5}$$

Donc

$$(m+n\sqrt{5}) \times (m'+n'\sqrt{5}) \in A$$

2. Observons d'abord que pour tout élément a de $A, \varphi(\varphi(a)) = a$. Donc φ est une bijection, puisque tout élément de A a pour antécédent $\varphi(a)$. Montrons maintenant que φ est un morphisme pour l'addition.

$$\varphi\left(\left(m+n\sqrt{5}\right)+\left(m'+n'\sqrt{5}\right)\right)=\varphi\left(\left(m+m'\right)+\left(n+n'\right)\sqrt{5}\right)=\left(m+m'\right)-\left(n+n'\right)\sqrt{5}$$
$$=\left(m-n\sqrt{5}\right)+\left(m'-n'\sqrt{5}\right)=\varphi(m+n\sqrt{5})+\varphi\left(m'+n'\sqrt{5}\right)$$

Montrons enfin que φ est un morphisme pour la multiplication.

$$\varphi((m+n\sqrt{5})\times\left(m'+n'\sqrt{5}\right)) = \varphi\left((mm'+5nn')+(mn'+m'n)\sqrt{5}\right)$$

$$= (mm'+5nn')-(mn'+m'n)\sqrt{5} = (m-n\sqrt{5})\times\left(m'-n'\sqrt{5}\right)$$

$$= \varphi(m+n\sqrt{5})\times\varphi\left(m'+n'\sqrt{5}\right)$$

$$(1)$$