Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Table des matières

Ι	\mathbf{T}	ıéorie	e générale	5
1	Pré	sentat	ion des Mathématiques	7
	1.1	Défini		7
	1.2	Conne	ecteurs logiques	7
		1.2.1	,	7
		1.2.2		9
	1.3	Métho		0
		1.3.1		0
		1.3.2		0
		1.3.3		1
		1.3.4	Pour une disjonction	2
		1.3.5		2
		1.3.6	Pour une propriété à établir sur des entiers	4
2	Ens	emble	s, applications relations 1	5
_	2.1	Ensen	, = =	5
		2.1.1		5
		2.1.2		5
		2.1.3		6
		2.1.4	, 1	6
		2.1.5	, , , , , , , , , , , , , , , , , , , ,	6
	2.2		1	8
		2.2.1	± ±	8
		2.2.2		8
		2.2.3	0 / 0 1 1	8
		2.2.4		8
	2.3	Relati	1 11	8
	=	2.3.1		8
		2.3.2		8
		2.3.3	•	8

Première partie Théorie générale

Chapitre 1

Présentation des Mathématiques

1.1 Définition

- 1. Science à caractère essentiellement déductif, construite sur le seul raisonnement
- 2. Elles portent sur les concepts d'élément, d'ensembles, de relations
- 3. Elles réalisent sur ceux-ci un raisonnement c'est à dire une suite d'opérations logiques soumises à des règles strictes définies au préalable
- 4. Elles dégagent alors des propositions c'est à dire des énoncés dont on peut affirmer sans ambiguïtés s'ils sont vrais ou faux, ainsi : un axiome est une proposition supposée vraie au départ, un théorème est une proposition vraie établie après un raisonnement (appelé démonstration)
- 5. L'expérience en est exclue, néanmoins : les objets mathématiques sont inspirés d'objets réels (point, droite, cercle...) et les Mathématiques constituent ainsi un modèle opératoire pour les autres sciences

1.2 Connecteurs logiques

(éléments permettant de construire des propositions à partir d'autres)

1.2.1 Énumération

Négation : \bar{P} ou $\neg P$

Soit P une proposition. Montrer que sa négation \bar{P} est vraie revient à montrer que P est fausse.

P	\bar{P}
V	F
F	V

$\textbf{Conjonction}: \land$

Montrer que $(P \wedge Q)$ est vraie revient à montrer que P,Q sont simultanément vraies.

P	Q	$(P \wedge Q)$
V	V	V
$\mid V \mid$	F	F
F	V	F
F	F	F

Disjonction \vee , disjonction exclusive \vee

- $P \vee Q$ est vraie lorsque l'une au moins des 2 propositions P,Q est vraie
- $P \veebar Q$ est vraie lorsque l'une exactement des 2 propositions P,Q est vraie

$\mid P \mid$	$\mid Q \mid$	$ (P \lor Q) $	$(P \veebar Q)$
V	V	V	F
V	F	V	V
F	V	V	V
F	F	F	F

Implication \Rightarrow

Définition : $(P \Rightarrow Q) = (\bar{P} \lor Q)$

Pratique:

P	Q	$\mid \bar{P} \mid$	$(P \Rightarrow Q) = (\bar{P} \lor Q)$
V	V	F	F
V	F	F	F
F	V	V	V
F	F	$\mid V \mid$	V

Ainsi $P\Rightarrow Q$ est toujours vraie quand P est fausse donc montrer que $P\Rightarrow Q$ est vraie reviens à montrer que si P est vraie alors Q est vraie aussi.

1.2. CONNECTEURS LOGIQUES

9

$\acute{\mathbf{E}}$ quivalence \Leftrightarrow

Définition : $(P \Leftrightarrow Q) = (P \Rightarrow Q \lor Q \Rightarrow P)$

Table de vérité :

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Rightarrow Q \land Q \Rightarrow P$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

1.2.2 Propriétés

Diverses:

- $--\neg \neg P=P$
- $-P \wedge P = P$
- $-P \lor P = P$

Commutativité

- $--P \wedge Q = Q \wedge P$
- $--P\vee Q=Q\vee P$
- $-P \veebar Q = Q \veebar P$

Associativité

$$(P \wedge Q) \wedge R = P \wedge (Q \wedge R)$$
 idem avec \vee , avec \vee .

Distributivité

- $--P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$
- $--P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$
- $--P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$

Lois de Morgan

$$\begin{array}{l} -- \overline{P \wedge Q} = \bar{P} \vee \bar{Q} \\ -- \overline{P \vee Q} = \bar{P} \wedge \bar{Q} \end{array}$$

1.3 Méthodes de raisonnement

1.3.1 Pour une implication $P \Rightarrow Q$

— Par un raisonnement direct : on montre que (si) P est vraie (alors) Q l'est aussi.

Exemple: montrons que p entier impair $\Rightarrow p^2 - 1$ divisible par 8. On a $p = 2k + 1, k \in \mathbb{Z}$

dès lors : $p^2 - 1 = (2k + 1)^2 = 4k^2 + 4k + 1 - 1 = 4k(k + 1)$

puis k, k+1 sont deux entiers consécutifs donc l'un est pair donc 2 divise k(k+1)

donc 8 divise 4k(k+1) donc 8 divise $p^2 - 1$.

— Par contraposée : montrer que $P\Rightarrow Q$ revient à montrer que $\bar{Q}\Rightarrow \bar{P}$ est vraie.

en effet:

$$ar{Q} \Rightarrow ar{P} = ar{Q} \lor ar{P}$$

$$= Q \lor ar{P}$$

$$= ar{P} \lor Q$$

$$= P \Rightarrow Q$$

$$(1.1)$$

Exemple: soit $p \in \mathbb{Z}$. Montrons que p^2 pair $\Rightarrow p$ pair en effet, par contraposée, si p c-à-d $p = 2k + 1, k \in \mathbb{Z}$ alors $p^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ avec $2k^2 + 2k \in \mathbb{Z}$ donc p^2 est impair.

1.3.2 Pour une simple proposition

- Par un raisonnement direct, on montre que la proposition est vraie.
 - Exemple : montrons que $\forall x \in \mathbb{R}, x^2-x+1 > 0$. En effet x^2-x+1 est un polynôme de degré 2 en x, de discriminant $\Delta = (-1)^2 4 \cdot 1 \cdot 1 = -3 < 0$ donc de signe constant : celui du coefficient dominant, qui est > 0.
- Par négation, montrer que P est vraie revient à montrer que \bar{P} est fausse.

Exemple: Montrons que $\sqrt{2} \notin \mathbb{Q}$. Par négation : si on avait $\sqrt{2} \in \mathbb{Q}$, c-à-d si on avait $\sqrt{2} = \frac{p}{q}$ avec $\begin{cases} p \in \mathbb{Z}, q \in \mathbb{N}^* \\ p \wedge q = 1 \end{cases}$ alors on aurait $2 = \frac{p^2}{q^2}$ donc on aurait $2q^2 = p^2$ donc on aurait p^2 pair donc on aurait p^2 pair donc on aurait p^2 pair donc on aurait p^2 avec p^2 donc on aurait p^2 donc on aurait

 q^2 pair donc q pair (cf précédemment) donc p et q ne seraient pas premiers entre eux.

Pour une équivalence 1.3.3

— Par un procédé direct :

Exemple : soient A,B,C 3 ensembles et un élément x. Montrons que $x \in (A - B) - C \Leftrightarrow x \in A - (B \cup C)$. En effet :

$$x \in (A - B) - C \Leftrightarrow x \in (A - B) \land x \notin C$$

$$\Leftrightarrow x \in A \land x \notin B \land x \notin C$$

$$\Leftrightarrow x \in A \land (x \notin B \land x \notin C)$$

$$(1.2)$$

 $\text{Par ailleurs}: \left\{ \begin{array}{l} x \in B \cup C \Leftrightarrow x \in B \vee x \in C \\ x \notin B \cup C \Leftrightarrow x \in B \ \bar{\vee} \ x \in C \Leftrightarrow x \notin B \land x \notin C \end{array} \right.$

$$x \in (A - B) - C \Leftrightarrow x \in A \land x \notin B \cup C$$

$$\Leftrightarrow x \in A - (B \cup C)$$
(1.3)

L'équivalence est établie directement.

— Par une double implication, montrer que $P \Leftrightarrow Q$ revient à montrer que $P \Rightarrow Q \land Q \Rightarrow P$

Exemple: Soit $p \in \mathbb{Z}$. Montrons que $8p^2 + 1$ divisible par $3 \Leftrightarrow p$ n'est pas divisible par 3.

Solution "rapide" avec congruences

$$p \equiv a(3) \text{ où } a = 0, 1 \text{ ou } 2 \text{ donc } 8p^2 + 1 \equiv 8a^2 + 1(3)$$

$$donc \begin{cases} pour \ a = 0 : 8^2 + 1 \equiv 1(3) \\ pour \ a = 1 : 8^2 + 1 \equiv 9(3) \equiv 0(3) \\ pour \ a = 2 : 8p^2 + 1 \equiv 33(3) \equiv 0(3) \end{cases}$$

$$bref \ 8p^2 + 1 \text{ divisible par } 3 \Leftrightarrow 8p^2 + 1 \equiv 0(3) \Leftrightarrow a = 1 \text{ ou } 2 \Leftrightarrow p$$

n'est pas divisible par 3.

Solution sans congruences avec une double implication

$$\exists k, a \in \mathbb{Z}, p = 3k + a \text{ avec } a = 0, 1 \text{ ou } 2$$

$$8p^{2} + 1 = 8(3k + a)^{2} + 1$$

$$= 8(9k^{2} + 6ka + a^{2})$$

$$= 72k^{2} + 48ka + 8a^{2} + 1$$

$$= 3(24k^{2} + 16ak) + 8a^{2} + 1$$
(1.4)

dès lors $8p^2 + 1$ est divisible par $3 \Leftarrow 8a^2 + 1$ est divisible par 3, puis:

- \Leftarrow si p n'est pas divisible par 3 c-à-d si a=1 ou 2, alors $8a^2+1=9$ ou 33 donc $8a^2+1$ est divisible par 3 donc $8p^2+1$ est divisible par 3
- \implies montrons que $8p^2 + 1$ est divisible par $3 \implies p$ non divisible par 3 par contraposée. En effet : si p est divisible par 3 c-à-d si a = 0, alors $8a^2 + 1 = 1$ n'est pas divisible par 3 donc $8p^2 + 1$ n'est pas divisible par 3.

1.3.4 Pour une disjonction

Principe:

$$(P \lor Q) = (\bar{P} \lor Q)$$

$$= (\bar{P} \Rightarrow Q)$$

$$= (Q \lor P)$$

$$= (\bar{Q} \Rightarrow P)$$

$$(1.5)$$

donc pour montrer que une disjonction est vraie, on montre que : (si) une des deux propositions est fausse (alors) l'autre est vraie.

Exemple: soit $p \in \mathbb{Z}$, montrons que $p^2 - 1$ est impair ou divisible par 8. En effet: (si) $p^2 - 1$ n'est pas impair (alors) $p^2 - 1$ est pair donc p^2 est impair donc p^2 impair donc $p^2 - 1$ est divisible par 8 (cf précédemment).

1.3.5 Pour une existence-unicité

— On peut traiter existence et unicité séparément.

<u>Exemple</u>: Division euclidienne dans \mathbb{N} : soit $a \in \mathbb{N}, b \in \mathbb{N}^*$: montrons que $\exists ! (q,r) \in \mathbb{N} \times \mathbb{N}, a = bq + r$ avec $0 \leqslant r < b$. q et r sont les quotient et reste de la division euclidienne de a par b.

— <u>Unicité</u> : (en montrant que s'il y a 2 solutions, alors elle ne font qu'une)

(si) a = bq + r = bq' + r' avec q, q', r, r' respectant les conditions citées précédemment,

Attention! on ne soustrait jamais d'inégalités, mais on écrit "l'inégalité opposée" puis on additionne.

— Existence:

- <u>Axiome</u> : toute partie de \mathbb{N} non vide majorée a un plus grand élément.
- Soit $E = \{k \in \mathbb{N}, bk \leq a\}$. E est une partie de \mathbb{N} , non vide $(0 \in E)$, majorée (par $\frac{a}{b}$) donc E a un plus grand élément : q. Soit alors r tel que r = a bq. q et r sont bien alors tel que :
 - -a = bq + r
 - $-q \in \mathbb{N}$
 - $r \in \mathbb{N}$ car : $r \in \mathbb{Z}$ (car a, b, q sont desentiers) avec $q \in E$ donc $qb \le a$ donc $r = a bq \ge 0$ donc $r \in \mathbb{N}$
 - r < b car q est le plus grand élément de E donc $q+1 \notin E$ donc b(q+1) > a donc bq+b>a donc b>r.

— Par une Analyse-Synthèse

- Principe : on établit d'abord l'unicité en montrant que l'élément voulu est <u>nécessairement</u> défini de manière unique (c'est l'Analyse) puis on établit ensuite l'existence en montrant <u>réciproquement</u> que l'élément défini auparavant convient (c'est la Synthèse).
- Exemple : même exemple de la division euclidienne dans \mathbb{N} .
- <u>Unicité</u>: car nécessairement,
 - $-q \in \mathbb{N}$
 - $r \geqslant 0$ et a = bq + r donc nécessairement : $bq \leqslant a$
 - r < b donc, nécessairement, a = bq + r < bq + b = b(q+1) donc $\forall z \in \mathbb{N}, q < z : q+1 \leq z$ donc a < bz
 - Donc nécessairement, q est le plus grand élément de l'ensemble $E = \{k \in \mathbb{N}, bk \leq a\}$ car nécessairement $q \in \mathbb{N}$ et $bq \leq a$ donc $q \in E$ et tout entier z > q n'est pas dans E.
 - Bref q est nécessairement défini de manière unique en tant que plus grand élément de l'ensemble E.
 - r est lui aussi défini de manière unique car r=a-bq. C'est l'Analyse.
- <u>Existence</u> : réciproquement, vérifions que q et r trouvés ci-dessus conviennent,
 - Ci-dessus, on a r = a bq donc a = bq + r
 - On a vu que $q \in E$ donc $q \in \mathbb{N}$
 - On a vu que r = a bq donc $r \in \mathbb{Z}$ or $q \in E$ donc bq < a donc $r \ge 0$ donc $r \in \mathbb{N}$

- On a vu que $q+1 \notin E$ donc a < b(q+1) donc a > bq+b donc r=a-bq < b
- Bref q et r définis ci-dessus de manière unique conviennent bien. C'est la Synthèse.

1.3.6 Pour une propriété à établir sur des entiers

Penser à une démonstration <u>par récurrence</u> (cf Arithmétique, chapitre Récurrences, sommations)

Chapitre 2

Ensembles, applications relations

2.1 Ensembles

2.1.1 Définition

Un ensemble E peut être défini :

- en extension : quand on énumère tous ses éléments.
- en compréhension : à l'aide d'une propriété caractéristique de ses éléments.

Un ensemble de contenant aucun élément est l'ensemble vide : \emptyset .

Un ensemble contenant un seul élément est un singleton : $\{a\}$

Un ensemble contenant deux éléments est une paire : $\{a, b\}$

Remarque : il n'existe pas "d'ensemble de tous les ensembles" car la relation $E \in E$ est incorrecte.

2.1.2 Inclusion

Soient A, B deux ensembles.

$$A \subset B \Leftrightarrow \forall x, x \in A \Rightarrow x \in B$$

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

2.1.3 Différences, complémentaires

Différence

Pour A, B deux ensembles quelconques, A privé de B est :

$$A \setminus B = A - B = \{x \text{ tel que } x \in A \land x \notin B\}$$

Complémentaire

Pour A, B tel que $B \subset A$, le complémentaire de B dans A est :

$$C_A B = A \setminus B = \bar{B} = \{x \in A, x \notin B\}$$

2.1.4 Intersections, réunions, différence symétrique Définitions

— L'intersection de A et B est :

$$A \cap B = \{x, \ x \in A \land x \in B\}$$

— La réunion de A et B est :

$$A \cup B = \{x, \ x \in A \lor x \in B\}$$

— La différence symétrique de A et B est :

$$A\Delta B = \{x, \ x \in A \ \overline{\lor} \ x \in B\}$$

Ainsi
$$A\Delta B = A \cup B - A \cap B$$

Inclusion (traduction)

$$A \subset B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$$

Négation

$$--x\not\in A\cap B\Leftrightarrow x\not\in A\vee x\not\in B$$

$$-x \notin A \cup B \Leftrightarrow x \notin A \land x \notin B$$

Propriétés

2.1.5 Ensemble des parties d'un ensemble

Notation

L'ensemble des parties d'un ensemble E est : $\mathcal{P}(E)$.

Partition d'un ensemble

Une partition de E est une famille de parties de E $(A_i)_{i\in\Delta}$ tel que :

$$- \forall i \in \Delta, A_i \neq \emptyset$$

$$\begin{array}{ll} -- & \forall i \in \Delta, A_i \neq \emptyset \\ -- & \forall i \neq j \in \Delta, A_i \cap A_j = \emptyset \\ -- & \cup_{i \in \Delta} A_i = E \end{array}$$

$$-- \cup_{i \in \Delta} A_i = E$$

2.2 Fonctions ou applications

2.2.1 Définitions

Énoncé

Notation

Caractérisation

Restriction, prolongement

2.2.2 Image, image réciproque

Définitions

Propriétés de l'image

Propriétés de l'image réciproque

Propriétés reliant les deux

2.2.3 Injection, surjection, bijection

Définitions

Contre-exemples

2.2.4 Composition d'applications

Définition

Premières propriétés

Injection, surjection, bijection

Composée et bijectivité

Autres caractérisations de la bijectivité

2.3 Relations

2.3.1 Définitions

Réflexive

Symétrique

Antisymétrique

Transitive

2.3.2 Relation d'équivalence

Définition

Exemples

Classe d'équivalence

2 3 3 Relations d'ordre