ОГЛАВЛЕНИЕ

Глава	1. Визуальная арифметика	3
1.1	Сложение	3
1.2	Вычитание	3
1.3	Умножение	4
1.4	Натуральные числа	4
1.5	Теорема Пифагора графически	5
1.6	Бином Ньютона и другие формулы визуально	6
1.7	Соизмеримость отрезков, алгоритм Евклида	6
Глава	2. Движения на прямой	8
2.1	Сдвиг, композиция сдвигов	8
2.2	Отражение	9
2.3	Таблица Кэли движений прямой	10
2.4	Теоема о гвоздях, аналог теоремы Шаля	11
Глава	3. Вокруг окружности	12
3.1	Симметрии окружности	12
3.2	Таблица Кэли для окружности	13
3.3	Наматывание прямой на окружность	14
3.4	Целые числа. Кольцо	17
Глава	4. Симметрии фигур	19
4.1	Симметрии правильного треугольника	19
4.2	Симметрии ромба, группа Клейна	20
4.3	Симметрии правильного многоугольника	20
4.4	Подгруппы вращения окружности	21
Глава	5. Движения плоскости	22
5.1	Виды движений плоскости	22
5.2	Теорема Шаля	22
5.3	Таблица движений	23
Глава	6. Исчисление остатков	24
6.1	Простые числа, их бесконечность	24
6.2	Таблица сложения остатков	24
6.3	Умножение остатков. Поле	25

6.4	Малая теорема Ферма	25
6.5	Многочлены	26
Глава	7. Основная теорема арифметики и ее следствия	27
7.1	Алгоритм Евклида визуально	27
7.2	Соизмеримость и НОД	27
7.3	ОТА в целых числах	28
7.4	Корни и разрешимость уравнений	28
7.5	Рациональные дроби	29
7.6	Цепные дроби	29
7.7	Расширение поля рациональных чисел	30
Глава	8. Комплексные числа и Гаусс	31
8.1	Комплексные числа	31
8.2	Реализация движений с помощью комплексных чисел	31
8.3	Гомотетии прямой и плоскости	32
8.4	Основная теорема Алгебры	32
8.5	Числа Гаусса	33

Визуальная арифметика

1.1 Сложение

1.1.1 План

- 1. На прямой откладываем отрезки друг за другом ВПРАВО это сложение!
- 2. Нулевой отрезок
- 3. Сложение коммутативно
- 4. Сложение ассоциативно
- 5. Сложение интерпретируется как сумма однонаправленных векторов

1.1.2 Задачи

1.2 Вычитание

1.2.1 План

- 1. Вычитание это «сложение налево», откладывание отрезка влево.
- 2. Сложение и вычитание интерпретируем как две команды: сделать шаг a вправо, сделать шаг b влево (на сцену выходит кузнечик!)
- 3. Сложение и вычитание коммутируют
- 4. Вычитание можно интерпретировать как сложение, если смотреть на прямую с противоположной стороны доски
- 5. Вычитание это сложение противоположно направленных векторов
- 6. Вычитание или сложение вопрос ориентации вектора!
- 7. Векторы, направленные вправо, идут со знаком + (или вовсе без знака), а векторы, направленные влево, со знаком -

1.2.2 Задачи

1.3 Умножение

1.3.1 План

- 1. Строим две перпендикулярно направленные оси
- 2. Умножение это площадь, построенная на векторах. $2 \times 2 = 4$
- 3. Знак умножения определяется направлением векторов
- 4. Таблица умножения знаков

	+	_
+	+	_
_	ı	+

- 5. Понятие группы на данном примере. Элемент + является нейтральным элементом
- 6. Умножение коммутативно и ассоциативно
- 7. Умножение на нулевой отрезок (мультипликативное свойство нуля)
- 8. Дистрибутивный закон, в том числе при разнонаправленных векторах
- 9. Единичный отрезок способ свести многократное сложение одного вектора к умножению на сумму единичных отрезков! Прямоугольник единичной высоты и длины an перекладывается в прямоугольник $a \times n$, тем самым сложение превращается в умножение
- 10. Сложение отрезков это также сложение прямоугольников единичной высоты
- 11. Умножение отрезков это не только площадь, но также и объем, который заметает вертикальный единичный отрезок на площади $a \times b$, поэтому $ab = a \times b \times 1$
- 12. *Степень*: многократное умножение отрезка самого на себя. Иллюстрация отрезок, квадрат, куб

1.3.2 Задачи

1.4 Натуральные числа

1.4.1 План

1. Кратность операций сложения и умножения: $a+a+a+a+a+\dots$, $a\cdot a\cdot a\cdot \dots$ Натуральное число вводится для обозначения кратности одинаковых операций!

- 2. Нулевая кратность: в случае сложения ничего не складываем, остаемся на месте в начальной точке, поэтому $a \cdot 0 = 0$,
- 3. Нулевая степень: в случае умножения ничего не умножаем, от умножения остается только кратность 1, наследуемая от сложения, т.е. в произведении $1 \times a \times a \times \ldots$ выбрасываем все, остается только 1. Поэтому $a^0=1$, кроме того, это согласуется с законом ассоциативности умножения
- 4. **Натуральные числа** это показатели кратностей (сложения и умножения)
- 5. С другой стороны, натуральные числа можно рассматривать как суммы единичных отрезков

$$n = \underbrace{1 + 1 + \dots + 1}_{n \text{ pa3}}$$

- 6. Чудо, но это вполне согласуется с операциями сложения и умножения, сохраняет все законы арифметики: ассоциативность, коммутативность, дистрибутивность
- 7. Поэтому натуральные числа, привязанные к единичным отрезкам, можно также считать мерой длины, площади, объема и т.д.
- 8. Ноль натуральное число, поскольку мы рассматриваем нулевую кратность для однородности законов арифметики.

NotaBene Натуральные числа — это и кратности операций, и единицы измерения, т.е. числа

9. Натуральные числа отвечают за соизмеримость и кратность: a **кратно** b $(a \dot{:} b)$, если a = bn или a = (-b)n при некотором натуральном n. Ноль кратен любому числу! Нулю кратен только ноль!

1.4.2 Задачи

1.5 Теорема Пифагора графически

1.5.1 План

- 1. Строим квадрат $a+b\times a+b$ и внутри квадраты $a\times a$ и $b\times b$
- 2. Строим квдарат $a+b\times a+b$ и внутри квадрат $c\times c$
- 3. Делаем вывод, перекладывая треугольники
- 4. *Построение $\sqrt{2}, \sqrt{7}$ (используются признаки подобия треугольников, отношения строн)
- 5. Примеры пифагоровых троек (анонс теоремы!)

1.5.2 Задачи

1.6 Бином Ньютона и другие формулы визуально

1.6.1 План

- 1. визуализация $(a b)(a + b) = a^2 b^2$
- 2. сумма подряд идущих чисел $1,2,\ldots,n$ с помощью сложения прямоугольников
- 3. сумма подряд идущих нечетных чисел
- 4. Вывод формулы $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
- 5. Разрезание сырного кубика на 8 частей тремя плоскостями

1.6.2 Задачи

1.7 Соизмеримость отрезков, алгоритм Евклида

1.7.1 План

- 1. Два отрезка a и b, кузнечики прыгают, один на a и -a сколько угодно раз, второй на b и -b сколько угодно раз
- 2. Кузнечики стартуют в одной и той же точке (назовем ее O). Могут ли они попасть в одну точку, отличную от O, когда-нибудь?
- 3. Ответ да, если есть такая точка A, что отрезок OA кратен и a, и b одновременно, т.е. при некотрых натуральных n, m, не равных нулю, будет верно равенство an = bm:

$$\underbrace{a+a+\cdots+a}_{n \text{ pa3}} = \underbrace{b+b+\cdots+b}_{m \text{ pa3}}$$

- 4. Отрезки, которые имеют общий кратный отрезок, называются *соизмеримыми*
- 5. Иллюстрация: строим прямоугольник $a \times b$ (a < b), начинаем отсекать в нем квадраты: сначала отсекаем квадраты $a \times a$, пока можем, останется кусок $a \times b_1$ ($b_1 < a$), затем отсекаем квадраты $b_1 \times b_1$, пока можем, останется кусок $a_1 \times b_1$ ($a_1 < b_1$), и т.д.
- 6. Если исходные отрезки соизмеримы, то процесс остановится: исходный прямоугольник будет разбит на конечное число квадратиков.
- 7. Финальный квадратик будет иллюстрировать НОД отрезков a и b, т.к. это максимальный квадрат, которым можно замостить прямоугольник $a \times b$

- 8. Такой процесс называется *алгоритмом Евклида*, к нему мы еще вернемся с более формальной точки зрения
- 9. Заметим, что числа a и b при этом вовсе не обязан быть натуральными
- 10. Несоизмеримость стороны квадрата и его диагонали: 1 и $\sqrt{2}$
- 11. Алгоритм Евклида никогда не остановится. НОДом будет бесконечно малое число

1.7.2 Задачи

Движения на прямой

2.1 Сдвиг, композиция сдвигов

2.1.1 План

- 1. Рассмотрим аффинную прямую, т.е. набор точек и векторов на прямой
- 2. Сумма точки и вектора есть точка, сумма векторов есть вектор, разность точек есть вектор
- 3. Команда «прибавить ко всем точкам вектор a» называется *сдвигом* прямой на вектор a
- 4. Сдвиг на a это операция сложения с вектором без указания конкретной точки приложения, она применяется сразу ко всем точкам! В итоге вся прямая смещается как единое целое
- 5. Сдвиг является движением (не случайно это однокоренные слова!)
- 6. Вообще, движение это преобразование, сохраняющее расстояния (размеры и форму): если между точками A и B было расстояние x, то после преобразования движения расстояние между точками A' и B', в которые перешли исходные точки, тоже будет x, и так для любой пары точек!
- 7. Математическое движение это результат физического движения (есть только начальное и конечное состояние системы)
- 8. Сдвиг на вектор a будем обозначать T_a : $T_a(A)$ это точка B такая, что AB есть вектор a (совпадает по направлению и длине)
- 9. Композиция сдвигов это их последовательное применение:

$$(T_b \circ T_a)(A) = T_b(T_a(A))$$

- 10. Композиция сдвигов соответствует сумме векторов: $T_b \circ T_a = T_{a+b}$
- 11. Композиция сдвигов перестановочна в силу коммутативности сложения:

$$T_b \circ T_a = T_a \circ T_b$$

12. Кратность сдвига обозначается как степень

$$\underbrace{T_a \circ \cdots \circ T_a}_{n \text{ pa3}} = T_a^n$$

и соответствует кратности сложения или умножению на степень кратности: $T_a^n = T_{an}$

- 13. Нулевой сдвиг $T_0 = \mathrm{id}$ это **тождественное преобразование**, которое ничего не меняет
- 14. Обратный сдвиг T_a^{-1} это сдвиг на вектор -a, т.е. сдвиг в обратном направлении на ту же величину
- 15. Вообще, если есть какие-то два преобразования u и v и операция композиции \circ , то эти преобразования **взаимно обратны**, если $u \circ v = \mathrm{id}$ и $v \circ u = \mathrm{id}$, т.е. последовательное применение этих преобразований является тождественным преобразованием
- 16. Очевидно, что всякий сдвиг имеет обратный, причем $T_a \circ T_a^{-1} = T_a^{-1} \circ T_a = \mathrm{id}$
- 17. Нулевой сдвиг сам себе обратен
- 18. Все сдвиги с операцией композиции образуют группу (композиция сдвигов есть сдвиг, ассоциативность выполняется, обратимость имеется)
- 19. Мало того, группа сдвигов коммутативна (абелева)
- 20. Кратность обратного сдвига: $T_a^{-n} \rightleftharpoons (T_a^{-1})^n = T_{-a}^n = T_{-an}$
- 21. На основе только одного сдвига T_a можно построить подгруппу сдвигов

$$\{T_a^n, T_a^{-n} \mid n = 0, 1, 2, \dots\}$$

22. Эта подгруппа — реализация целых чисел \mathbb{Z} , к которым мы еще вернемся позже

2.1.2 Задачи

2.2 Отражение

2.2.1 План

- 1. Еще один вид движений прямой отражение
- 2. Отражение связано с выделенной точкой центром отражения, и все точки переводит в симметричные относительно данного центра. Взяли прямую и перевернули ее на 180° , оставляя центр отраженя на месте

- 3. Отражение с центром O будем обозначать S_O
- 4. Композиция отражений:

$$S_O \circ S_C = T_{2CO}, \quad S_C \circ S_O = T_{2OC}$$

- 5. Видим, что композиция отражений является сдвигом и при этом не коммутативна!
- 6. Композиция отражения и сдвига:

$$S_O \circ T_a = S_{O-a/2}, \quad T_a \circ S_O = S_{O+a/2}$$

- 7. Такая композиция является отражением и при этом не коммутативна!
- 8. Кратность отражения S_O^n определяется четностью числа n. В случае четного n это id, в случае нечетного — исходное S_O
- 9. Отражение обратно самому себе: $S_O \circ S_O = \text{id}$
- 10. Пара $\{id, S_O\}$ образует самую маленькую нетривиальную группу движений, которая к тому же является абелевой и циклической (т.е. все ее элементы есть степени какого-то одного, а именно $S_O = S_O^1$, id $= S_O^2$)

	id	S_O
id	id	S_O
S_O	S_O	id

11. Видим, что таблица полностью повторяет таблицу умножения знаков, причем id является нейтральным элементом

2.2.2 Задачи

2.3 Таблица Кэли движений прямой

2.3.1 План

- 1. Еще пример группы: рассмотрим класс всех сдвигов $\mathbb T$ и класс всех отражений S
- 2. Мы можем определить композицию классов $\mathbb{T} \circ \mathbb{T}$, $\mathbb{T} \circ \mathbb{S}$, $\mathbb{S} \circ \mathbb{T}$ и $\mathbb{S} \circ \mathbb{S}$ как все возможные композиции движений из этих классов в указанном порядке
- 3. Из произведенных выше вычислений легко видеть таблицу композиций этих классов:
- 4. Видим полную аналогию с таблицей знаков и таблицей для id, S_O . Здесь класс Т является нейтральным элементом

	\mathbb{T}	S
$\overline{\mathbb{T}}$	\mathbb{T}	S
S	S	\mathbb{T}

- 5. Если теперь собрать в одну кучу все сдвиги и отражения, то получим группу движений прямой
- 6. Наша цель доказать, что других движений нет, т.е. что мнжество $\{T_a,S_O\}_{a,O}$ полностью исчерпывает все возможные движения прямой

2.3.2 Задачи

2.4 Теоема о гвоздях, аналог теоремы Шаля

2.4.1 План

- 1. Анализ движений проводится на основе наблюдений за количеством стационарных точек
- 2. Пусть движение M таково, что оно оставляет на месте две точки $A \neq B$.
- 3. M(A) = A и M(B) = B. Пусть C' = M(C). M сохраняет расстояния AC и BC, откуда AC = AC' и BC = BC', откуда C = C'. Т.е. M(C) = C для любых точек C, т.е. $M = \mathrm{id}$
- 4. Пусть движение M оставляет на месте ровно одну точку O. В этом случае A' = M(A) и $A \neq A'$ и OA = OA', тогда A' отражение A относительно O. Следовательно, $M = S_O$
- 5. Пусть движение M не оставляет на месте ни одной точки и пусть B=M(A) ($B\neq A$). Обозначим x=AB. Тогда $T_x^{-1}\circ M(A)=A$, т.е. $T_x^{-1}\circ M$ оставляет на месте хотя бы одну точку. Если оно оставляет на месте ровно одну точку A, то это некоторая симметрия S_O , но тогда $M=T_x\circ S_O=S_{O+x/2}$. Получается, что M сохраняет точку O+x/2 на месте. Противоречие. Остается вариант, что $T_x^{-1}\circ M$ оставляет на месте две точки, но тогда $T_x^{-1}\circ M=\mathrm{id}$, откуда $M=T_x\circ\mathrm{id}=T_x-\mathrm{сдвиг}$.
- 6. Таким образом, все движения прямой это либо сдвиги (в частности, id), либо отражения (теорема Шаля)
- 7. При этом, любое движение это либо одна симметрия, либо композиция двух симметрий

2.4.2 Задачи

Вокруг окружности

3.1 Симметрии окружности

3.1.1 План

- 1. Берем окружность (обруч). Какие у нее есть движения, переводящие его в самого себя?
- 2. Очевидно, вращение вокруг центра окружности, а также симметрии относительно прямых, проходящих через центр
- 3. Окружность аналог прямой. Только эту прямую взяли за 2 конца и замкнули где-то на бесконечности
- 4. Поэтому вращение окружности соответствует сдвигу прямой, а симметрия окружности относительно прямой отражению на прямой относительно точки (можно считать ее симметрией относительно перпендикулярной прямой)
- 5. Если представить, что на окружности большого радиуса живут маленькие одномерные математики, то для них окружность будет практически не отличима от прямой, и движения окружности они будут воспринимать именно как движения прямой
- 6. Поворот на угол α обозначим R_{α} (положительный против часовой стрелки), симметрию относительно прямой, имеющей угол наклона φ , обозначим S_{φ} ($0 \leqslant \varphi < \pi$)
- 7. Вновь замечаем, что композиция поворотов есть поворот на суммарный угол: $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta}$
- 8. У каждого поворота есть обратный: $R_{\alpha}^{-1} = R_{-\alpha}$
- 9. Повороты коммутируют
- 10. Есть нейтральный поворот $id = R_0$
- 11. Так что все повороты образуют группу относительно операции композиции
- 12. Тем не менее, есть одна особенность: поворот на угол $2\pi k$ это тоже id

- 13. Вообще, повороты, заданные углами с шагом 2π , равны: $R_{\alpha}=R_{\alpha\pm2\pi k},$ где k натуральное число
- 14. Некоторые повороты дают іd в некоторой кратности, например, $R_{90^o}^4 =$ іd, $R_{60^o}^6 =$ іd и т.д.
- 15. Если угол, выраженный в градусах, соизмерим с величиной 360^{o} , то поворот на данный угол имеет положительную степень, в которой он обращается в id
- 16. Но есть угол, не обладающий таким свойством, это угол в 1 радиан. Если бы он был соизмерим с полным оборотом, то число π оказалось бы соеизмеримым с 1, а это не так!
- 17. Поэтому некоторые вращения образуют конечные циклические подгруппы в группе движений, а некоторые нет.

3.1.2 Задачи

3.2 Таблица Кэли для окружности

3.2.1 План

1. Композиция симметрий:

$$S_{\psi} \circ S_{\varphi} = R_{2(\psi - \varphi)}, \quad S_{\varphi} \circ S_{\psi} = R_{2(\varphi - \psi)}$$

- 2. Видим, что композиция симметрий является поворотом и при этом не коммутативна!
- 3. Композиция симметрии и поворота:

$$S_{\varphi} \circ R_{\alpha} = S_{\varphi - \alpha/2}, \quad R_{\alpha} \circ S_{\varphi} = S_{\varphi + \alpha/2}$$

- 4. Такая композиция является отражением и при этом не коммутативна!
- 5. По аналогии с прямой обозначим \mathbb{R} класс всех вращений окружности, \mathbb{S} класс всех симметрий окружности
- 6. Получаем аналогичную таблицу композиций:

	\mathbb{R}	\mathbb{S}
\mathbb{R}	\mathbb{R}	S
\mathbb{S}	S	\mathbb{R}

где \mathbb{R} является нейтральным элементом

7. Снова наблюдаем все ту же группу умножения знаков!

- 8. Существуют ли другие движения окружности? Ответ нет!
- 9. Если движение сохраняет на месте две точки окружности, не являющиеся диаметрально противоположными, то это id
- 10. Если движение сохраняет на месте ровно две диаметрально противоположные точки, то это симметрия
- 11. Если движение не имеет неподвижных точек. то это поворот на угол, не кратный 360°
- 12. Всякое движение окружности это либо поворот, либо симметрия (теорема Шаля)
- 13. Причем всякое движение окружности можно представить как симметрию или композицию симметрий

3.2.2 Задачи

3.3 Наматывание прямой на окружность

3.3.1 План

- 1. Совместим теперь окружность с прямой иным способом. Выделим на окружности точку O и начнем ее обход (вращение) в положительном направлении.
- 2. Выше мы видели, что углы поворота, кратные 360^o , т.е. полном обороту, соответствуют тождественному движению, т.е. приведут нас в точку отправления O.
- 3. Однако, если с точки зрения математического движения ничего не изменилось, физически мы проделали путь, равный длине окружности. Для удобства будем считать, что радиус окружности есть единичный вектор, так что ее длина равна 2π , и с каждым полным оборотом мы будем «наматывать» расстояние 2π .
- 4. Вообще, расстояние, пройденное по окружности единичного радиуса, когда этот радиус заметает угол α , равно $\alpha(2\pi/360^{o})$. Чтобы каждый раз не переводить единицы измерения радиуса в градусы и наоборот, углы также приняот измерять в единицах длины радианах. А именно, угол в 1 радиан соответствует повороту, при котором точка проделает по окружности путь, равный по длине радиусу данной окружности. Нетрудно видеть, что в градусах 1 радиан будет иметь выражение $360^{o}/(2\pi)$ или $180^{o}/\pi$.
- 5. В дальнейшем условимся все углы измерять в радианах, если не потребуется иное.

- 6. Известно, что число π не соизмеримо с целыми числами, так что поворот R_1 на 1 радиан ни в какой положительной степени не приведет нас снова в точку исхода O.
- 7. Зато поворот $R_{2\pi}$ в точности возвращает нас в точку отправления O.
- 8. При каждом таком повороте мы проделываем путь, равный углу поворота, т.е. 2π (радиус равен 1).
- 9. Следовательно степени такого поворота $R^n_{2\pi}$ дадут прохождение пути длиной $2\pi n.$
- 10. Представим эту картину не с точки зрения жителей окружности, бегающих по замкнутой траектории, а с точки зрения жителей прямой, которая наматывается на окружность. С их точки зрения все выглядит несколько иначе и больше напоминает движение оклеса по дорожному полотну: окружность катится по прямой и через равные промежутки касается точкой O данной прямой.
- 11. Если при этом два друга один из мира окружности, второй из мира прямой, двигаются с одинаковой скоростью в одном направлении, то они могут синхронизироваться в точке касания окружности и прямой и разговаривать друг с другом.
- 12. Итак, колесо катится, два друга беседуют, точка O то и дело, а именно через каждые 2π метров соприкасается с прямой. Каждый раз, когда точка O касается прямой, наш ученый друг из мира прямой ставит на прямой отметину и считает их по порядку, т.е. приравнивает к степени совершенного поворота: в начальный момент времени это был 0, затем 1 оборот, затем 2 оборота, и т.д.
- 13. Что же мы видим на прямой? Мы видим не что иное как шкалу натуральных чисел, в точности соответствующую степеням вращений окружности.
- 14. Представим теперь, что в какой-то момент касания точки O с прямой физика мира изменилась, и вращение начало осуществляться в обратную сторону!
- 15. Наши друзья-ученые при этом продолжат совместное путешествие, но только назад. Они пойдут отсчитывать уже проставленные отметки на прямой в убывающем порядке, пока не вренутся в точку 0. Но здесь состоится чудо, и движение продолжится дальше.
- 16. Как все это записать на языке вращений и сдвигов?
- 17. Предположим, что сначала окружность повернулась на n полных оборотов вперед, а затем на m полных оборотов назад.

- 18. Мы получаем итоговое вращение, записываемое как $R_{2\pi n} \circ R_{2\pi m}^{-1}$.
- 19. А что мы имеем с точки зрения движения на прямой?
- 20. Сначала был произведен сдвиг $T_{2\pi n}$, затем сдвиг $T_{-2\pi m}$.
- 21. И мы видим, что индекс, определяющий итоговое вращение и итоговый сдвиг, один и тот же!
- 22. Причем, если n > m, то сдвиг будет вправо на расстояние $2\pi(n-m)$, а поворот будет положительным на угол $2\pi(n-m)$.
- 23. Если же n < m, то сдвиг будет влево на расстояние $2\pi(m-n)$, а поворот будет отрицательным (по часовой стрелке) на угол $2\pi(m-n)$.
- 24. Ранее мы уже договаривались, что перед векторами, направленными влево, будем ставить знак '-'. Так же будем поступать и с углами вращений в отрицательную сторону.
- 25. Соответственно, при n < m мы будем иметь итоговый сдвиг $T_{-2\pi(m-n)}$ и итоговый поворот $R_{-2\pi(m-n)}$, которые также можно записать в виде степеней:

$$T_{-2\pi(m-n)} = T_{2\pi}^{-(m-n)}$$
 и $R_{-2\pi(m-n)} = R_{2\pi}^{-(m-n)}$.

- 26. Осталось добавить маленький штрих к портрету, а именно: в случае n < m под разностью n m будем понимать запись -(m n).
- 27. Тогда уже независимо от того, n < m, или m < n, или n = m, композиция поворотов и сдвигов сначала на n вправо и затем на m влево будет записываться одинаково:

$$T_{2\pi(n-m)} = T_{2\pi}^{n-m}$$
 и $R_{2\pi(n-m)} = R_{2\pi}^{n-m}$.

- 28. В итоге мы приходим к тому, что называется **целыми числами**, включающими натуральные числа и отрицательные натуральные числа (при этом -0=0).
- 29. Сколько бы мы ни вращали окружность на 2π в ту или иную сторону с помощью поворота $R_{2\pi}$, мы совершаем поворот на целую степень полного оборота. При этом как бы мы ни катали окружность по прямой, точка O будет ставить отметки в точках $2\pi k$, где k целое число.
- 30. Последнее замечание про отрицательные числа:

$$T_{2\pi}^{-k} = S_0 \circ T_{2\pi}^k \text{ if } R_{2\pi}^{-k} = S_O \circ R_{2\pi}^k.$$

31. То есть отрицательные повороты и сдвиги — это всего лишь отражение положительных (в случае прямой центром отражения будет точка, помеченная как 0, а в случае окружности — прямая, проходящая через точку O и центр окружности)

16

3.3.2 Задачи

3.4 Целые числа. Кольцо

3.4.1 План

- 1. Итак, совмещение вращений со сдвигами дает нам полную свободу перемещений в положительном и отрицательном направлении. При этом с точки зрения окружности ничего не меняется происходит итоговое движение id, а с точки зрения прямой происходит разметка точек с равным шагом. Ясно, что сам шаг при этом не имеет значения. Мы могли бы взять окружность радиуса R, и тогда шаг был бы равен $2\pi R$. В частности, можно взять радиус $R = 1/2\pi$, и тогда точки на прямой расположатся с шагом 1.
- 2. Такую же картину можно получить, если взять все точки, получаемые из выделенной точки 0 степенями сдвига на единичный вектор, используя положительные и отрицательные, т.е. целые, степени.
- 3. Как видим, целые числа, как и натуральные, можно интерпретировать и как степени движений (и вообще любых преобразований, имеющих обратные), и как векторы сдвигов на прямой, а значит, к ним применимы определенные ранее операции сложения, вычитания и умножения. При этом результат умножения получает такой знак, который определяется из таблицы умножения знаков.
- 4. Множество всех целых чисел принято обозначать \mathbb{Z} . Вместе с операциями сложения (вычитания) и умножения структура ($\mathbb{Z}, +, \cdot$) называется кольцом целых чисел. Кольцо это структура, где можно складывать, вычитать и умножать.
- 5. Понятие кольцо является расширением понятия группы, т.к. добавляется операция умножения.
- 6. Ранее мы уже видели такие группы, как группа движений прямой, группа умножения знаков, группа композиций классов сдвигов и симметрий, группа вращений окружности. Все они обладали одной операцией композицией, которая соответствовала сложению параметров сдвигов и вращений.
- 7. Кроме того, мы ввели такое понятие как кратность, заменяя тем самым многократное сложение умножением на целое число.
- 8. Кратность операций нельзя рассматривать как умножение сдвигов или вращений, поскольку это сущности разного рода. Поэтому движения в общем случае образуют только лишь группу.

- 9. Однако, уже сами кратности, как самостоятельные сущности, можно и складывать, и умножать. Например, если мы рассмотрим сдвиг T_1 и композицию его кратностей $T_1^n \circ T_1^m$, то получим тот же сдвиг но в суммарной кратности T_1^{n+m} , где $n,m \in \mathbb{Z}$. Но ничто не мешает нам рассмотреть кратность m сдвига T_1^n , т.е. сдвиг $(T_1^n)^m$, а это уже будет не что иное, как сдвиг кратности nm, т.е. T_1^{nm} .
- 10. Иначе говоря, умножение на целых числах можно представить как кратности кратностей сдвигов!

3.4.2 Задачи

Симметрии фигур

4.1 Симметрии правильного треугольника

4.1.1 План

- 1. Вернемся на окружность и рассмотрим на ней вращение $R_{2\pi/3}$, т.е. на 120^o .
- 2. Множество вращений $R^3=\{R_{2\pi/3},R_{2\pi/3}^2,R_{2\pi/3}^3\}$ образует циклическую группу. Видим, что

$$R^3 = \{ id, R_{2\pi/3}, R_{4\pi/3} \}.$$

- 3. Зафиксируем точку A на окружности и найдем ее образы при действии этой группы: $B=R_{2\pi/3}(A),\, C=R_{4\pi/3}(A)$. Набор точек $\{A,B,C\}$ образует орбиту точки A при действии группы R^3 .
- 4. Посмотрим теперь на треугольник ABC. Какие движения переводят его в себя? Очевидно, вращения из группы R^3 , но также есть и симметрии $S^3 = \{S_A, S_B, S_C\}$ относительно осей, проходящих через центр окружности и вершины треугольника.
- 5. Можем проверить, что объединение $R^3 \cup S^3$, состоящее из трех вращений и трех симметрий, образует группу относительно операции композиции движений.

6. Выпишем полную таблицу Кэли для этой группы:

id	$R_{2\pi/3}$	$R_{4\pi/3}$	S_A	S_B	S_C
$R_{2\pi/3}$	$R_{4\pi/3}$	id	S_B	S_C	S_A
$R_{4\pi/3}$	id	$R_{2\pi/3}$	S_C	S_A	S_B
S_A	S_C	S_B	id	$R_{4\pi/3}$	$R_{2\pi/3}$
S_B	S_A	S_C	$R_{2\pi/3}$	id	$R_{4\pi/3}$
S_C	S_B	S_A	$R_{4\pi/3}$	$R_{2\pi/3}$	id

7.

8.

- 9.
- 10.

4.1.2 Задачи

4.2 Симметрии ромба, группа Клейна

4.2.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

4.2.2 Задачи

4.3 Симметрии правильного многоугольника

4.3.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

20

4.3.2 Задачи

4.4 Подгруппы вращения окружности

4.4.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

4.4.2 Задачи

Движения плоскости

5.1 Виды движений плоскости

5.1.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

5.1.2 Задачи

5.2 Теорема Шаля

5.2.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

- 8.
- 9.
- 10.

5.2.2 Задачи

5.3 Таблица движений

5.3.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

5.3.2 Задачи

Исчисление остатков

6.1 Простые числа, их бесконечность

6.1.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

6.1.2 Задачи

6.2 Таблица сложения остатков

6.2.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

- 8.
- 9.
- 10.

6.2.2 Задачи

6.3 Умножение остатков. Поле

6.3.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

6.3.2 Задачи

6.4 Малая теорема Ферма

6.4.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.

6.4.2 Задачи

6.5 Многочлены

6.5.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

6.5.2 Задачи

Основная теорема арифметики и ее следствия

7.1 Алгоритм Евклида визуально

7.1.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9
- 10.

7.1.2 Задачи

7.2 Соизмеримость и НОД

7.2.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

7. 8. 9. 10. **7.2.2 Задачи 7.3 ОТА** в

7.3 ОТА в целых числах

7.3.1 План

- 1.
- 2
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

7.3.2 Задачи

7.4 Корни и разрешимость уравнений

7.4.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.

28

- 9.
- 10.

7.4.2 Задачи

7.5 Рациональные дроби

7.5.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

7.5.2 Задачи

7.6 Цепные дроби

7.6.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

7.6.2 Задачи

7.7 Расширение поля рациональных чисел

7.7.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

7.7.2 Задачи

Комплексные числа и Гаусс

8.1 Комплексные числа

8.1.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

8.1.2 Задачи

8.2 Реализация движений с помощью комплексных чисел

8.2.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

- 7.
- 8.
- 9.
- 10.

8.2.2 Задачи

8.3 Гомотетии прямой и плоскости

8.3.1 План

- 1.
- 2
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

8.3.2 Задачи

8.4 Основная теорема Алгебры

8.4.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.

- 9.
- 10.

8.4.2 Задачи

8.5 Числа Гаусса

8.5.1 План

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

8.5.2 Задачи

СОДЕРЖАНИЕ

Глава	1. Виз	вуальная арифметика	3
1.1	Слож	ение	3
	1.1.1	План	3
	1.1.2	Задачи	3
1.2	Вычи	тание	3
	1.2.1	План	3
	1.2.2	Задачи	4
1.3	Умног	жение	4
	1.3.1	План	4
	1.3.2	Задачи	4
1.4	Натур	ральные числа	4
	1.4.1	План	4
	1.4.2	Задачи	5
1.5	Teope	ма Пифагора графически	5
	1.5.1	План	5
	1.5.2	Задачи	6
1.6	Бином	м Ньютона и другие формулы визуально	6
	1.6.1	План	6
	1.6.2	Задачи	6
1.7	Соизм	меримость отрезков, алгоритм Евклида	6
	1.7.1	План	6
	1.7.2	Задачи	7
Глава	2. Дви	ижения на прямой	8
2.1	Сдвиг	г, композиция сдвигов	8
	2.1.1	План	8
	2.1.2	Задачи	9
2.2	Отрах	жение	9
	2.2.1	План	9
	2.2.2	Задачи	10
2.3	Табли	ица Кэли движений прямой	10
	2.3.1	План	10
	2.3.2	Задачи	11
2.4	Теоем	а о гвоздях, аналог теоремы Шаля	11
	2.4.1	План	11
	2.4.2	Задачи	11

Глава	3. Box	круг окружности	12
3.1	Симм	етрии окружности	12
	3.1.1	План	12
	3.1.2	Задачи	13
3.2	Табли	ица Кэли для окружности	13
	3.2.1	План	13
	3.2.2	Задачи	14
3.3	Нама	тывание прямой на окружность	14
	3.3.1	План	14
	3.3.2	Задачи	17
3.4	Целы	е числа. Кольцо	17
	3.4.1	План	17
	3.4.2	Задачи	18
		мметрии фигур	19
4.1		етрии правильного треугольника	19
		План	19
	4.1.2	Задачи	20
4.2		етрии ромба, группа Клейна	20
		План	20
	4.2.2	Задачи	20
4.3		етрии правильного многоугольника	20
		План	20
	4.3.2	Задачи	21
4.4	_	руппы вращения окружности	21
		План	21
	4.4.2	Задачи	21
		ижения плоскости	22
5.1		движений плоскости	22
	5.1.1	План	22
		Задачи	22
5.2	•	ема Шаля	22
	5.2.1	План	22
	5.2.2	Задачи	23
5.3		ица движений	23
	5.3.1	План	23
	5.3.2	Задачи	23
		нисление остатков	24
6.1	_	гые числа, их бесконечность	24
	6.1.1	План	24

	6.1.2 Задачи	24
6.2	Таблица сложения остатков	24
	6.2.1 План	24
	6.2.2 Задачи	25
6.3	Умножение остатков. Поле	25
	6.3.1 План	25
	6.3.2 Задачи	25
6.4	Малая теорема Ферма	25
	6.4.1 План	25
	6.4.2 Задачи	26
6.5	Многочлены	26
	6.5.1 План	26
	6.5.2 Задачи	26
	7. Основная теорема арифметики и ее следствия	27
7.1	Алгоритм Евклида визуально	27
	7.1.1 План	27
	7.1.2 Задачи	27
7.2	Соизмеримость и НОД	27
	7.2.1 План	27
	7.2.2 Задачи	28
7.3	ОТА в целых числах	28
	7.3.1 План	28
	7.3.2 Задачи	28
7.4	Корни и разрешимость уравнений	28
	7.4.1 План	28
	7.4.2 Задачи	29
7.5	Рациональные дроби	29
	7.5.1 План	29
= 0	7.5.2 Задачи	29
7.6	Цепные дроби	29
	7.6.1 План	29
	7.6.2 Задачи	30
7.7		30
	7.7.1 План	30
	7.7.2 Задачи	30
	8. Комплексные числа и Гаусс	31
8.1	Комплексные числа	31
	8.1.1 План	31
	8.1.2 Задачи	31
8.2	Реализация движений с помощью комплексных чисел	31

	8 2 1	План	31
	8.2.2	Задачи	32
8.3	Гомот	етии прямой и плоскости	32
	8.3.1	План	32
	8.3.2	Задачи	32
8.4	Основ	вная теорема Алгебры	32
	8.4.1	План	32
	8.4.2	Задачи	33
8.5	Числа	а Гаусса	33
	8.5.1	План	33
	8.5.2	Залачи	33