Devoir MAN Statistiques 2016

Sarah FELDMAN

30 octobre 2016

Q1/Dans un premier temps décrivez vos variables.

Nombre de variables

Le jeu de données TPretinol fait 315 lignes et 14 colonnes ou variables.

Type de variable

Les variables sont toutes reconnues comme quantitatives mais en regardant plus attentivement les min et max on peut voir que certaines variables ne sont pas quantitatives:

• sexe : variable binaire

sexe a un minimum de 1 et un maximum de 2 c'est donc une variables qualitative binaire. Je la recode en 0(homme)/1(femme) pour une interprétation plus facile par la suite. Je m'assure que c'est bien une valeur numérique pour pouvoir l'intégrer dans ma matrice de corrélation en question 2.

• tabac et vitamine : variables qualitatives ordinales

Les variables tabac et vitamine sont des variables qualitatives ordinales, il y a bien un ordre dans les classes mais je ne peux pas dire si l'espace entre 2 classes est le même. Pour tabac par exemple : ne pas fumer versus fumer anciennement aura-t-elle la même différence d'effet que fumer anciennement versus fumer actuellement? Je préfère donc les coder comme des variables qualitatives en attendant d'en savoir plus. Pour cela je les transforme simplement en facteur.

Je garde comme classe de référence "souvent" pour vitaline et "jamais" pour tabac car c'est ce qui a pour moi le plus de sens médicalement parlant. Je n'indique pas qu'elles sont ordonnées car je veux les analyser d'abord comme étant non ordonnées.

• Les autres variables sont quantitatives continues: age, bmi, calories, graisses, fibres, alcool, cholestérol, betadiet,retdiet,betaplasma,retplasma

Variables quantitative continues	Variables qualitatives	Variable binaire
age	tabac	sexe
bmi	vitamine	
calories		
graisses		
fibres		
alcool		
cholesterol		
betadiet		
retdiet		
betaplasma		
retplasma		

Données abberrantes

Observer ses variables sert également à dépister les "bizarreries". Par exemple, j'ai un doute concernant le max d'alcool, je vais donc regarder plus attentivement la variable, par exemple avec une table.

Je passe de 35 à 203 verres par semaine...203/7=29 verres par jour, il y a probablement un erreur de codage.

La valeur extrême d'alcool influe beaucoup sur la symétrie de ma distribution. On peut le voir notamment en comparant la moyenne (3.28) et la médiane (0.3). Cependant je ne sais pas si je peux la retirer sans conséquence, je préfère donc la garder pour la suite du devoir.

Distribution des variables

Lecture des histogrammes :

- bmi, graisses, cholestérol, betadiet, retdiet et betaplasme on des distribution à peu près normales mais asymétriques.
- calories, fibres, ret plasma ont de distributions d'allure normales
- age a une distribution irrégulière avec 2 cloches à 40 et 75 ans.
- alcool a une distribution très asymétrique qui ne semble pas normale

Variables quantitative normales	Variables quantitative non normales
retplasma	age
bmi	alcool
cholesterol	
retdiet	
graisses	
betadiet	
betaplasma	
calories	
fibres	

Voici un résumé des différentes variables :

• pour les variables quantitatives :

variables	n	missing	moyenne	median	q1	q3	rmin	max	Distribution normale
age	315	0	50.1	48.0	39.0	62.5	19.0	83.0	non
bmi	315	0	26.2	24.7	21.8	28.9	16.3	50.4	oui
calories	315	0	1796.7	1666.8	1338.0	2100.4	445.2	6662.2	oui
graisses	315	0	77.0	72.9	54.0	95.2	14.4	235.9	oui
fibres	315	0	12.8	12.1	9.1	15.6	3.1	36.8	oui
alcool	315	0	3.3	0.3	0.0	3.2	0.0	203.0	non
cholesterol	315	0	242.5	206.3	155.0	308.9	37.7	900.7	oui
betadiet	315	0	2185.6	1802.0	1116.0	2836.0	214.0	9642.0	oui
retdiet	315	0	832.7	707.0	480.0	1037.0	30.0	6901.0	oui
betaplasma	315	0	189.9	140.0	90.0	230.0	0.0	1415.0	oui
retplasma	315	0	602.8	566.0	466.0	716.0	179.0	1727.0	oui

• pour les variables qualitatives:

tabac	Fréquence	Pourcentage
jamais	157	50
autrefois	115	37
actuellement	43	14
N	315	100
missing	0	0

vitamine	Fréquence	Pourcentage
souvent	122	39
parfois	82	26
non	111	35
N	315	100
missing	0	0

sexe	Fréquence	Pourcentage
0 (homme)	42	13
1 (femme)	273	87
N	315	100
missing	0	0

Exemples de représentation graphique des variables :

Diagrammes pour tabac et vitamine

Je veux représenter des pourcentages, un diagramme est pour moi plus parlant qu'un camembert.

Boîtes à moustaches pour les variables quantitatives comme age ou ret plasma

Q2/Etudiez les relations existant entre toutes les paires possibles de variables.

NB : ce ne sont que les 9 variables de la régression demandées en question 3 qui sont concernées.

Matrice de corrélation

Je peux faire une matrice de corrélation. Je n'inclue ni vitamine ni tabac dans cette matrice car je les ai considérées comme des variables qualitatives à plusieurs classes. Je garde sexe qui est binaire.

Aucune condition n'est nécessaire pour faire des coefficients de corrélation. C'est pour les tester que nous avons besoin de vérifier les confidions de validité.

	retplasma	age	sexe	bmi	cholesterol	alcool	retdiet
retplasma	1.000	0.212	-0.184	0.013	-0.070	0.017	-0.063
age	0.212	1.000	-0.280	-0.017	-0.114	0.052	-0.010
sexe	-0.184	-0.280	1.000	-0.007	-0.255	-0.228	-0.074
bmi	0.013	-0.017	-0.007	1.000	0.110	-0.073	0.032
cholesterol	-0.070	-0.114	-0.255	0.110	1.000	0.182	0.443
alcool	0.017	0.052	-0.228	-0.073	0.182	1.000	0.045
retdiet	-0.063	-0.010	-0.074	0.032	0.443	0.045	1.000

Il faut ensuite interprêter la matrice. Pour cela je peux faire des schémas:

Visualisation de la matrice de corrélation

Dans cette visualisation de la matrice de corrélation, on voit surtout la corrélation entre cholestérol et retdiet car les cercles ont une densité élevée et on voit que la corrélation est positive car le cercle est de couleur bleu.

Je trouve que la représentation graphique de l'analyse en composantes principales (ACP) s'interprête plus facilement :

Analyse en composantes principales

• Lecture de l'ACP :

- bmi est très proches du centre du cercle donc non interprétable.
- les paires retdiet-cholestérol, retplasma-age sont fortement associés (corrélation positive), et ces deux groupes de variables sont indépendants l'un de l'autre car forme un angle droit avec le centre.
- sexe est également indépendant de retdiet et cholestérol.
- alcool-sexe est négativement corrélée.

• Je peux aussi sélectionner dans la matrice les valeurs absolues supérieures ou égales à certain niveau de corrélation :

variable 1	variable 2	coefficient de corrélation
Age	retplasma	0.212
Sexe	age	-0.280
Cholesterol	sexe	-0.255
alcool	sexe	-0.228
retdiet	cholesterol	0.443

4 couples ont un coefficient de corrélation entre 0.2 et 0.4 (en nombre absolu). age-retplasma, sexe-age, cholesterol-sexe, alcool-sexe.

Il n'y a qu'un couple avec un coefficient de corrélation supérieur ou égal à 0.4 : retdiet-cholestérol

Tests de corrélation

Pertinence

Est-ce pertinent de faire de tests de corrélation pour chaque variable?
 On peut se poser la question, en effet je n'avais aucune hypothèse de départ quant à ces corrélations et multiplier le nombre de tests augmente le risque alpha. Cependant pour les besoins du devoir je le fais quand même, mais je ne testerai que les corrélations supérieur à 0.2. En effet je ne sais pas quel sens je donnerai à une corrélation significative de 0.01 par exemple...

Conditions de validité

Avant de faire une test de corrélation, il faut tester les conditions de validité :

• Une des 2 variables du couple testé doit suivre une loi normale.

Je considère comme normale une variable dont l'histogramme montre une distribution en cloche. Lorsque la distribution ne semble pas normale, il faut interpréter les tests avec prudence. Je ne préfère pas faire des tests non paramétriques type test de corrélation de spearman, ni sur certaines variables pour garder une cohérence, ni sur toutes les variables pour ne pas m'empêcher de faire des tests paramétriques par la suite.

Résultats

var1	var2	r	testvalid	test
age	retplasma	0.212	TRUE	0.00015
sexe	age	-0.280	FALSE	0.00000
cholesterol	sexe	-0.255	TRUE	0.00000
alcool	sexe	-0.228	FALSE	0.00005
retdiet	cholesterol	0.443	TRUE	0.00000

Toutes les corrélations supérieures ou égales à 0.2 sont significatives car p<= 0.05. Il faut cependant prêter attention au fait que 2 couples ont des conditions de validité probablement non remplies : sexe-age et sexe-alcool car age et alcool n'ont pas une allure normale (et sexe est binaire donc ne peut pas être normale).

étude des liens entre une variable qualitative à plusieurs classe et des variables quantitatives:

Graphiquement: je regarde la dispersion des variables quantitatives dans les différentes classes grâce à des boîtes à moustaches.

Boites à moustaches des variables quantitatives en fonction de tabac.

Boites à moustaches des variables quantitatives en fonction de vitamine.

Comparaison de moyenne entre plusieurs groupes (plus de 2) : ANOVA

Conditions de validité:

• Variance du même ordre de grandeur dans tous les sous groupes :

tabac	retplasma	age	bmi	cholesterol	alcool	retdiet
jamais	188	15	7	134	3	659
autrefois	231	14	5	122	6	530
actuellement	207	14	5	146	31	468

vitamine	retplasma	age	bmi	cholesterol	alcool	retdiet
souvent	224	15	6	151	4	557
parfois	192	14	6	100	5	463
non	205	14	6	131	20	702

C'est le cas partout sauf pour la variable alcool. Je préfère donc ne pas faire de test avec alcool.

Distribution normale :

Je fais l'approximation que toutes les variables suivent une loi normale, d'autant plus que l'anova est un test qui résiste bien à des ditribution qui s'éloignent un peu de la normale.

Je fais donc des ANOVA entre ma variable qualitative (vitamine ou tabac) et mes variables quantitatives (alcool exclue)

variable_qualitative	retplasma	age	bmi	cholesterol	retdiet
tabac	0.024	0.024	0.128	0.109	0.899
vitamine	0.782	0.013	0.310	0.826	0.938

interprétation:

- tabac est significativement associée à retplasma et age.
- vitamine est significativement associée à age.

Etude du lien entre variables qualitatives

Je fais un test du chi 2 pour les couples :

- tabac-vitamine
- tabac-sexe
- sexe-vitamine

Condition de validité : Effectifs théoriques supérieurs à 5

Tous les effectifs théoriques sont supérieurs à 5 pour les 3 tableaux de contingence, je peux faire un chi2.

Test du Chi2

Le seuil de significativité est p<=0.05 :

- tabac et vitamine ne sont pas significativement liées : 0.065
- tabac et sexe sont significativement liées : p value = 0.028
- sexe et vitamine sont significativement liées : p value = 0.004

Q3/Effectuez ensuite une régression linéaire où la variable à expliquer sera la concentration en rétinol plasmatique, les autres variables étant explicatives. Recherchez des interactions entre les variables explicatives.

Analyse en composante principale focalisée

Je peux commencer par regarder les interaction enter retplasma et les variables explicatives avec une acp focalisée. Je retire cependant vitamine et tabac car fpca se base sur une matrice de corrélation, il faut donc faire attention à l'interprêtation du schéma car les interactions seront peutêtre modifiées en rajoutant vitamine et tabac:

2 variables semblent significativement liée à retplasma : age et sexe.

- age-retplasma est un couple qui ressortait dans la matrice de corrélation avec un r=0.212 significativement différent de 0.
- sexe-retplasma ne ressortait pas car inférieur à 0.2, comme on peut le voir sur l'acp focalisée.

régression linéaire multiple

La variable à expliquer retplasma étant une variable Quantitative, je peux faire une régression linéaire. Et dans la mesure où j'introduis plusieurs variables explicatives, ce sera une régression linéaire multiple. Vitamine et tabac feront parti du modèle, je me suis bien assurée auparavent de les coder en facteur afin qu'elles soit recodées automatiquement en (nclasses-1) variables binaires.

```
mod <- lm(retplasma ~ age + sexe + bmi + tabac + vitamine + cholesterol +
alcool + retdiet,rt)</pre>
```

Vérification des conditions de validité:

Il y a 3 conditions de validité aux modèles :

- la normalité de bruit
- la variance du bruit ne doit dépendre ni de la variable à expliquer ni de la variable explicative
- le bruit doit être du vrai bruit

En pratique on ne teste que la première des conditions :

La distribution des résidus a une allure normale, les conditions de validité de mon modèle sont vérifiées.

Interprêtation des coefficients beta du modèle

	estimateur	CI95	pval	signif
(Intercept)	578.50	[400.7 - 756.3]	0.000	*
age	2.26	[0.59 - 3.94]	0.008	*
sexe	-98.18	[-172.8823.48]	0.010	*
bmi	1.12	[-2.7 - 4.94]	0.565	
tabacautrefois	58.07	[8.23 - 107.92]	0.023	*
tabacactuellement	1.12	[-70.88 - 73.13]	0.976	
vitamineparfois	-0.90	[-58.77 - 56.97]	0.976	
vitaminenon	-31.25	[-85.03 - 22.53]	0.254	
cholesterol	-0.13	[-0.34 - 0.07]	0.204	
alcool	-0.07	[-1.99 - 1.85]	0.940	
retdiet	-0.01	[-0.06 - 0.03]	0.533	

Légende : * p value <= 0.05 soit coefficient beta significativement différent de 0.

Interprétation:

- L'age et le sexe sont significativement associés à la concentration plasmatique en rétinol (p value<=0.05 et un intervalle de confiance à 95% ne contenant pas 0). Quand l'âge du sujet augmente d'un an, la concentration augmente de 2.26 unités. J'avais recodé les femmes en 1 et homme en 0, donc les femmes ont une concentration plasmatique en rétinol plus faible que les hommes d'environ 100 unités.
- Le coefficient de tabac "autrefois" est significativement différent de "jamais". ceux qui fumaient autrefois ont donc une concentration plasmatique en rétinol significativement plus élevée de 58 unités par rapport à ceux qui n'ont jamais fumé. Par contre on ne retrouve pas cette augmentation chez ceux qui fument actuellement.
- Les autres estimateurs ne sont pas significatifs.

Je peux regarder si les variables tabac et vitamine sont globalement associées à retplasma:

p values obtenues avec la fonction drop1 pour les variables tabac et vitamine.

	p value	
tabac	0.055	
vitamine	0.455	

Ni tabac ni vitamine ne sont globablement associées à retplasma.

Recherche d'interactions entre les variables explicatives:

	Df	Sum.of.Sq	RSS	AIC	PrChi.	signif
vitamine:alcool	2	680454.0770	11740799	3341.692	0.0001	*
cholesterol:alcool	1	477673.0449	11943580	3345.087	0.0004	*
bmi:alcool	1	399093.0404	12022160	3347.152	0.0013	*
age:alcool	1	339565.7626	12081688	3348.708	0.0031	*
sexe:bmi	1	258033.5031	12163220	3350.827	0.0101	*
alcool:retdiet	1	257913.8681	12163340	3350.830	0.0101	*
tabac:alcool	2	327568.6014	12093685	3351.021	0.0149	*
sexe:alcool	1	219309.5973	12201944	3351.828	0.0178	*
sexe:tabac	2	234156.1788	12187097	3353.444	0.0499	*
sexe:vitamine	2	221396.5505	12199857	3353.774	0.0589	
sexe:cholesterol	1	120836.9181	12300417	3354.360	0.0793	
sexe:retdiet	1	81694.8710	12339559	3355.361	0.1494	
cholesterol:retdiet	1	78852.8292	12342401	3355.433	0.1567	
bmi:cholesterol	1	78661.8340	12342592	3355.438	0.1572	
age:bmi	1	58314.1212	12362939	3355.957	0.2234	
bmi:vitamine	2	116638.7908	12304615	3356.467	0.2263	
age:sexe	1	52682.3075	12368571	3356.100	0.2472	
bmi:tabac	2	93217.8520	12328036	3357.066	0.3053	
age:tabac	2	92611.7314	12328642	3357.082	0.3077	
vitamine:retdiet	2	87846.3254	12333407	3357.204	0.3270	
age:retdiet	1	33043.2127	12388210	3356.600	0.3597	
vitamine:cholesterol	2	65621.2250	12355632	3357.771	0.4342	
tabac:vitamine	4	127730.3757	12293523	3360.183	0.5159	
tabac:cholesterol	2	43656.3939	12377597	3358.330	0.5743	
tabac:retdiet	2	34190.9266	12387063	3358.571	0.6478	
age:cholesterol	1	2104.6167	12419149	3357.386	0.8173	
age:vitamine	2	9610.5602	12411643	3359.195	0.8852	
bmi:retdiet	1	256.0591	12420997	3357.433	0.9358	

Légende : * p value <= 0.05 soit interaction significative

Interprétation:

J'ai 9 interactions significatives (p value<=0.05): vitamine-alcool, cholestérol-alcool, bmi-alcool, age-alcool,sexe-bmi,alcool-retdiet, tabac-alcool,sexe-tabac.

Je trace la représentation graphique des p values des 28 interactions possibles :

J'ai bien 9 points au dessus de la ligne qui sont mes 9 interactions significatives.

Q4/Transformez la variable "rétinol plasmatique" en une variable binaire (en la coupant en deux au niveau de la médiane). Refaites les calculs précédents en ayant recours cette fois à une régression logistique.

Je transforme retplasma en variable binaire : les concentrations strictement inférieures à la médiane valent 0, celles supérieures ou égales valent 1.

régression logistique : construction du modèle

La variable à expliquer est binaire, il faut donc faire une régression logistique

```
mod.bin <- glm(retplasma.bin ~ age + sexe + bmi + tabac + vitamine +
cholesterol + alcool + retdiet, data = rt, family = "binomial")</pre>
```

Vérification des conditions de validité

Pour que le modèle soit valide, il faut au moins 5 à 10 évènements par variable explicative. J'ai 6 variables explicatives comptant comme une variable, et 2 variables comptant comme n(classe) - 1 variables soit 2 pour vitamines et 2 pour tabac (sexe est binaire et ne compte donc que pour une variable). J'ai donc un total de 10 variables. $105=50\ 1010=100$

retplasma.bin: 157 sujets n'ont pas la variable, 158 l'ont. Donc 158 sujets ont des variables explicatives. 100 est inférieur à 158 donc le modèle est valable.

Interprêtation des coefficients beta du modèle

	estimate	Cl95	pval	signif
(Intercept)	-1.3105	[-3.1405 - 0.4892]	0.156	
age	0.0282	[0.0111 - 0.0458]	0.001	*
sexe	-0.2852	[-1.0668 - 0.4757]	0.466	
bmi	0.0101	[-0.0286 - 0.049]	0.608	
tabacautrefois	0.2276	[-0.2764 - 0.735]	0.377	
tabacactuellement	0.0514	[-0.6833 - 0.7785]	0.890	
vitamineparfois	-0.0360	[-0.6211 - 0.5502]	0.904	
vitaminenon	-0.2873	[-0.8367 - 0.2573]	0.302	
cholesterol	-0.0003	[-0.0024 - 0.0018]	0.773	
alcool	0.0004	[-0.0209 - 0.0252]	0.967	
retdiet	0.0000	[-5e-04 - 4e-04]	0.919	

Seul le coefficient beta de age est significativement différent de 0 (c'est également le seul à avoir un intervalle de confiance à 95% ne contenant pas 0).

Je ne peux pas interpréter les coefficients tels quels, j'interprète uniquement l'exponentiel de ces coefficients qui sont égales aux Odds ratio.

Tableau des odds ratio

	OR	Cl95	signif
(Intercept)	0.270	[0.043 - 1.631]	
age	1.029	[1.011 - 1.047]	*
sexe	0.752	[0.344 - 1.609]	
bmi	1.010	[0.972 - 1.05]	
tabacautrefois	1.256	[0.759 - 2.085]	
tabacactuellement	1.053	[0.505 - 2.178]	
vitamineparfois	0.965	[0.537 - 1.734]	
vitaminenon	0.750	[0.433 - 1.293]	
cholesterol	1.000	[0.998 - 1.002]	
alcool	1.000	[0.979 - 1.026]	
retdiet	1.000	[1 - 1]	

légende : * pvalue <= 0.05 soit OR significativement différent de 1 NB: pour retdiet l'intervalle de confiance est [1-1] à cause de l'arrondi mais contient 1 en réalité.

retplasma.bin n'est pas rare(car j'ai pris la médiane pour le construire...) donc les OR ne peuvent pas être interprétés comme des risques relatifs. On voit cependant que le coefficient de l'âge a beau être significatif, le rapport des odds est très proche de 1 donc l'âge est significativement différent mais de très très peu...

Je peux regarder si les variables tabac et vitamine sont globalement associées à retplasma.bin:

p values obtenues avec la fonction drop1 pour les variables tabac et vitamine.

	p value		
tabac	0.667		
vitamine	0.548		

Ni tabac ni vitamine ne sont globablement associées à retplasma.

Recherche d'interactions entre les variables explicatives:

	Df	Deviance	AIC	LRT	PrChi.	signif
age:alcool	1	408.5431	432.5431	11.5653979	0.0007	*
vitamine:alcool	2	406.6623	432.6623	13.4461750	0.0012	*
sexe:alcool	1	412.1654	436.1654	7.9430772	0.0048	*
cholesterol:alcool	1	412.9150	436.9150	7.1934532	0.0073	*
tabac:alcool	2	412.1586	438.1586	7.9498765	0.0188	*
vitamine:retdiet	2	414.2083	440.2083	5.9001197	0.0523	
sexe:cholesterol	1	416.5274	440.5274	3.5810981	0.0584	
alcool:retdiet	1	417.0398	441.0398	3.0686293	0.0798	
cholesterol:retdiet	1	417.0518	441.0518	3.0566627	0.0804	
bmi:alcool	1	417.4791	441.4791	2.6293068	0.1049	
sexe:vitamine	2	415.6189	441.6189	4.4895862	0.1059	
age:sexe	1	417.5073	441.5073	2.6011927	0.1068	
tabac:vitamine	4	413.0035	443.0035	7.1049567	0.1304	
sexe:retdiet	1	418.1929	442.1929	1.9155134	0.1664	
bmi:vitamine	2	416.7095	442.7095	3.3989931	0.1828	
sexe:bmi	1	418.4180	442.4180	1.6904666	0.1935	
age:bmi	1	418.5490	442.5490	1.5594369	0.2117	
tabac:retdiet	2	417.4232	443.4232	2.6852380	0.2612	
age:vitamine	2	418.2739	444.2739	1.8345122	0.3996	
age:cholesterol	1	419.5769	443.5769	0.5315997	0.4659	
bmi:tabac	2	418.6334	444.6334	1.4750222	0.4783	
vitamine:cholesterol	2	418.9844	444.9844	1.1240558	0.5701	
bmi:retdiet	1	419.7874	443.7874	0.3210643	0.5710	
age:tabac	2	419.1693	445.1693	0.9391251	0.6253	
age:retdiet	1	419.8734	443.8734	0.2350310	0.6278	
sexe:tabac	2	419.3692	445.3692	0.7392477	0.6910	
tabac:cholesterol	2	419.6653	445.6653	0.4431853	0.8012	
bmi:cholesterol	1	420.0803	444.0803	0.0281585	0.8667	

Légende : * p value <= 0.05 soit coefficient beta significativement différent de 0.

Interprétation :

J'ai 5 interactions significatives (p value<=0.05): age-alcool, vitamine-alcool, sexe-alcool, cholesterol-alcool, tabac-alcool.

Je trace la représentation graphique des pvalue des 28 interactions possibles

J'ai 9 points au dessus de la ligne mais 5 points qui se détachent du groupe, correspondant à mes 5 interactions significatives. L'interprétation n'est pas aisée.