- CC3-S1 - 2019-2020

- Correction - Algèbre -

Dans tout l'exercice, on considère un entier $n \in \mathbb{N}^*$.

Partie 1 - Produit scalaire sur $\mathbb{R}_n[X]$

Pour tout couple $(P,Q) \in \mathbb{R}_n[X]^2$, on note :

$$(P|Q) = \int_{0}^{+\infty} P(t)Q(t)e^{-t}dt$$

1. Justifier que l'intégrale définissant (P|Q) est convergente.

Pour tous les polynômes P et Q, $t \mapsto P(t)Q(t)e^{-t}$ est continue sur $[0, +\infty[$.

Par croissances comparées, on a $\lim_{t \to +\infty} P(t)Q(t)t^2e^{-t} = 0$ donc $P(t)Q(t)e^{-t} = o_{+\infty}\left(\frac{1}{t^2}\right)$.

Par comparaison à une intégrale de Riemann convergente sur $[1, +\infty[$, on en déduit que $\int_0^{+\infty} P(t)Q(t)e^{-t}dt$ converge.

- **2.** Montrer alors que l'application $(\cdot|\cdot)$ est un produit scalaire sur $\mathbb{R}_n[X]$.
 - $(\cdot|\cdot)$ est clairement symétrique.
 - Par linéarité des intégrales généralisées, $(\cdot|\cdot)$ est linéaire par rapport à sa première variable, donc bilinéaire par symétrie.
 - Par positivité de l'intégrale, pour tout $P \in \mathbb{R}_n[X]$, $(P|P) \ge 0$, et la fonction $t \mapsto P(t)^2 e^{-t}$ étant continue sur $[0, +\infty[, (P|P) = 0 \Leftrightarrow \forall t \in [0, +\infty[, P(t)^2 e^{-t} = 0 \text{ donc } P(t) = 0 \text{ pour } t \in [0, +\infty[; \text{ le polynôme } P \text{ admettant une infinité de racines, il est nul.}$ $(\cdot|\cdot)$ est donc définie positive.
 - $(\cdot|\cdot)$ est une forme bilinéaire symétrique définie positive, c'est donc un produit scalaire sur $\mathbb{R}_n[X]$.
- **3.** Soit $k \in [1, n]$. A l'aide d'une intégration par parties, montrer que :

$$\int_0^{+\infty} t^k e^{-t} dt = k \int_0^{+\infty} t^{k-1} e^{-t} dt$$

Soient $u:t\mapsto -\mathrm{e}^{-t}$ et $v:t\mapsto t^k$. u et v sont de classe C^∞ sur $[0,+\infty[$. De plus, par croissances comparées, $\lim_{t\to +\infty} u(t)v(t)=0$, donc le théorème d'intégration par parties donne $\int_0^{+\infty} u'(t)v(t)\mathrm{d}t$ et $\int_0^{+\infty} u(t)v'(t)\mathrm{d}t$ de même nature (convergentes d'après la question 1) et, pour $k\geq 1$:

$$\int_{0}^{+\infty} t^{k} e^{-t} dt = \left[-e^{-t} t^{k} \right]_{0}^{+\infty} + \int_{0}^{+\infty} k t^{k-1} e^{-t} dt = k \int_{0}^{+\infty} t^{k-1} e^{-t} dt$$

4. Conclure que:

$$\forall k \in [1, n], (X^k | 1) = k!$$

La question précédente donne : $\forall k \in [1, n], (X^k|1) = k(X^{k-1}|1)$, donc par télescopage

$$(X^{k}|1) = k!(1|1) = k! \int_{0}^{+\infty} e^{-t} dt = k! \left[-e^{-t} \right]_{0}^{+\infty} = k!$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 3

Partie 2 - Construction d'une base orthogonale

On considère l'application u définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \ u(P) = XP'' + (1 - X)P'$$

1. a. Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$.

Par linéarité de l'opérateur de dérivation, u est linéaire. De plus :

- si deg(P) = 0, alors $u(P) = 0 \in \mathbb{R}_n[X]$,
- si $\deg(P) = 1$ (avec $n \ge 1$), alors u(P) = (1 X)P' avec $\deg(P') = 0$ donc $\deg(u(P)) = 1$ et $u(P) \in \mathbb{R}_n[X]$,
- si $\deg(P) = p \ge 2$ (avec $n \ge p$), alors $\deg(P'') = p 2$, $\deg(P') = p 1$ donc $\deg(u(P)) \le p$ et $u(P) \in \mathbb{R}_n[X]$.

Ainsi, u est bien un endomorphisme sur $\mathbb{R}_n[X]$.

b. Ecrire la matrice de u dans la base $(1, X, X^2, \dots X^n)$ de $\mathbb{R}_n[X]$.

Soit $k \in [0, n]$; $u(X^k) = -kX^k + k^2X^{k-1}$. On en déduit la matrice de u dans la base canonique :

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 4 & \cdots & \vdots \\ 0 & 0 & -2 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & n^2 \\ 0 & 0 & 0 & \cdots & -n \end{pmatrix}$$

 \mathbf{c} . En déduire que u est diagonalisable et que le spectre de u est

$$Sp(u) = \{-k, k \in [0, n]\}$$

La matrice de u étant triangulaire, on obtient immédiatement le polynôme caractéristique : $\chi_u = \prod_{k=0}^{n} (X+k)$.

Il est scindé à racines simples, on en déduit que u est diagonalisable et que son spectre est bien $Sp(u) = \{-k, k \in [0, n]\}.$

- **2.** On fixe $k \in [0, n]$.
 - **a.** Quelle est la dimension de Ker $(u + k \operatorname{Id}_{\mathbb{R}_n[X]})$?

Chaque valeur propre est de multiplicité 1, donc chaque espace propre $E_{-k} = \text{Ker} \left(u + k \text{Id}_{\mathbb{R}_n[X]} \right)$ est de dimension 1.

b. En déduire qu'il existe un unique polynôme $P_k \in \mathbb{R}_n[X]$, de coefficient dominant égal à 1, vérifiant

$$u(P_k) = -kP_k$$

Chaque espace propre a pour dimension 1, tous ses vecteurs sont donc colinéaires. Il en existe un seul dont le coefficient dominant est 1 (il suffit de prendre l'un d'entre eux et de le diviser par son coefficient dominant). Ainsi il existe un unique polynôme $P_k \in \mathbb{R}_n[X]$ de coefficient dominant 1, qui engendre E_{-k} et vérifie donc $u(P_k) = -kP_k$.

c. Justifier que le degré de P_k est k.

On note d le degré de P_k et $P_k = X^d + R$ avec $\deg(R) < d$, la division euclidienne de P_k par X^d . On a :

$$\begin{split} u(P_k) &= -kP_k &\iff d(d-1)X^{d-1} + XR'' + (1-X)dX^{d-1} + (1-X)R' = -kX^d - kR \\ &\Leftrightarrow (-d+k)X^d + d^2X^{d-1} + XR'' + (1-X)R' + kR = 0 \end{split}$$

avec $\deg(d^2X^{d-1} + XR'' + (1-X)R' + kR) < d$, on en déduit que d = k.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 3

d. Déterminer P_0 , P_1 , et vérifier que $P_2 = X^2 - 4X + 2$.

$$P_0$$
 est un polynôme unitaire constant, donc $P_0 = X^0$.
On a : $P_1 = X + a$ et $u(P_1) = -P_1$ donc $(1 - X) = -X - a$, d'où $P_1 = X - 1$.
On a $P_2 = X^2 + aX + b$, et $u(P_2) = -2P_2$ donc $2X + (1 - X)(2X + a) = -2X^2 - 2aX - 2b$ d'où $P_2 = X^2 - 4X + 2$.

- **3.** On fixe un couple $(P,Q) \in \mathbb{R}_n[X]^2$.
 - a. Montrer que

$$(u(P)|Q) = -\int_0^{+\infty} tP'(t)Q'(t)e^{-t}dt$$

Notons tout d'abord que d'après la question 1 de la partie I, toutes les intégrales considérées sont convergentes, et on peut appliquer la linéarité des intégralités généralisées.

$$(u(P)|Q) = \int_0^{+\infty} (tP''(t) + (1-t)P'(t)) Q(t) e^{-t} dt = \int_0^{+\infty} (tP''(t) + P'(t)) Q(t) e^{-t} dt - \int_0^{+\infty} tP'(t)Q(t) e^{-t} dt.$$
 Soient $f: t \mapsto tP'(t)$ (de dérivée $f': t \mapsto tP''(t) + P'(t)$), et $g: t \mapsto Q(t)e^{-t}$. f est g sont de classe C^{∞} sur $[0, +\infty[$. De plus, par croissances comparées, $\lim_{t \to +\infty} f(t)g(t) = 0$, donc le théorème d'intégration par parties

donne $\int_0^{+\infty} f'(t)g(t)dt$ et $\int_0^{+\infty} f(t)g'(t)dt$ de même nature (convergentes) et :

$$\int_{0}^{+\infty} (tP''(t) + P'(t)) Q(t) e^{-t} dt = \left[tP'(t)Q(t)e^{-t} \right]_{0}^{+\infty} - \int_{0}^{+\infty} tP'(t) (Q'(t) - Q(t)) e^{-t} dt$$

$$= -\int_{0}^{+\infty} tP'(t)Q'(t)e^{-t} dt + \int_{0}^{+\infty} tP'(t)Q(t)e^{-t} dt$$

Finalement, on obtient : $(u(P)|Q) = -\int_0^{+\infty} tP'(t)Q'(t)e^{-t}dt$

b. En déduire que

$$(u(P)|Q) = (P|u(Q))$$

Dans l'égalité démontrée précédemment P et Q ont des rôles clairement symétriques, on a donc (u(P)|Q) = (P|u(Q)).

c. Montrer que (P_0, P_1, \dots, P_n) est une base orthogonale de $\mathbb{R}_n[X]$.

Soient
$$(k,l) \in [0,n]^2$$
. On a : $(u(P_k)|P_l) = -k(P_k|P_l) = (P_k|u(P_l) = -l(P_k|P_l)$; ainsi, $(k-l)(P_k|P_l) = 0$.

On en déduit que si $k \neq l, (P_k|P_l) = 0$ donc que la famille (P_0, P_1, \dots, P_n) est orthogonale sans polynôme nul, donc libre. Comme son cardinal est $n+1 = \dim(\mathbb{R}_n[X])$, on en déduit que c'est une base orthogonale de $\mathbb{R}_n[X]$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 3