27. Const. \overline{RS} so that $\overline{RS} = a$. Const. the \perp bis. of \overline{RS} to locate midpt. M. Draw an arc with ctr. M and radius b and an arc with ctr. R and radius c, int. at T. Draw \overline{TR} and \overline{TS} .

Algebra Review, Page 419

1. 1.69 3.
$$\frac{19}{3}$$
 5. $18\sqrt{2}$ 7. 2826 9. 42 11. $-\frac{1}{2}$ 13. 54

15.
$$15\sqrt{2}$$
 17. 96 **19.** cd **21.** πrl **23.** πd^2 **25.** $x = \frac{c - by}{a}, a \neq 0$

27.
$$n = \frac{S}{180} + 2$$
 29. $h = \pm \sqrt{xy}$ **31.** $h = \frac{2A}{b}, b \neq 0$

Preparing for College Entrance Exams, Page 420

Cumulative Review, Page 421

SAS, ASA 15. a. 3.6 b.
$$4\frac{2}{7}$$
 17. 1. $m \angle 1 = 45$ (Given) 2. $\widehat{mPQ} = 90$ (Thm. 9-7) 3. $m \angle O = 90$

(Def. meas. of arc) 4. $\overline{OP} \cong \overline{OQ}$ (All radii of a \odot are \cong .) 5. $m \angle OQP = m \angle OPQ$ (Isos. \triangle Thm.) 6. $m \angle OOP + m \angle OPO = 90$; $2m \angle OPO = 90$; $m \angle OPO = m \angle OOP = 45$ (Thm. 3-11 Cor. 4, algebra) 7. $\triangle OPQ$ is a $45^{\circ} - 45^{\circ} - 90^{\circ}$ \triangle . (Def. of $45^{\circ} - 45^{\circ} - 90^{\circ}$ \triangle) 19. Methods may vary. Draw line k and pts. P and Q on k so that PQ < AB. Const. line $l \perp$ to k at P and line $m \perp$ to k at Q. Draw an arc with ctr. Q and radius AB int. l at S. Draw an arc with ctr. P and radius AB int. m at R. Draw \overline{RS} .

Chapter 11

Written Exercises, Pages 426-427

1.
$$60 \text{ cm}^2$$
 3. 5 cm 5. 24 7. $2x^2 - 6x$ 9. 36 cm^2 ; 26 cm 11. 5 cm; 80 cm^2 13. $a^2 - 9$; $4a$ 15. $x - 3$; $4x - 6$ 17. 130

11. 5 cm; 80 cm² 13.
$$a^2 - 9$$
; 4a 15. $x - 3$; 4x - 6 17. 130

19. 48 **21.** 39.4 **23.** 40xy **25.**
$$\frac{d^2}{2}$$
 27. 144 m² **29.** a. 768 ft²

b. 3 cans 31. 14 m × 28 m 35. a. length =
$$\frac{1}{2}$$
(40 - 2x) = 20 - x

b. $20x - x^2$ **c.** See figure at right. **d.** 10 m \times 10 m

Written Exercises, Pages 431-433

1. 29.9 m² 3. 12 5.
$$16\sqrt{3}$$
 7. 40 9. 84 11. 16 13. $30\sqrt{2}$ 15. $\frac{25\sqrt{3}}{2}$ 17. 240

19.
$$2r^2$$
 21. 18.2 **23.** 73.5 **25.** $\triangle DFE \sim \triangle DGF \sim \triangle FGE$; 20, 4, 16 **27.** 40 ; 20 **29. a.** 2:3

b. 20 **31. a.**
$$A = \frac{1}{2}ab$$
 b. $A = \frac{1}{2}ch$ **c.** $h = \frac{ab}{c}$ **d.** 4.8; 5 **33. a.** $b = s$, $h = \frac{s\sqrt{3}}{2}$;

$$A = \frac{1}{2} \cdot s \cdot \frac{s\sqrt{3}}{2} = \frac{s^2\sqrt{3}}{4}$$
 b. $\frac{49\sqrt{3}}{4}$ 35. 10; 20 37. 41.5 39. 936 cm²; 504 cm²

Written Exercises, Pages 436-438

1. 70; 10 3. 6;
$$3\frac{3}{4}$$
 5. 5; 18 7. 1; 4 9. 9 11. 108 13. $\frac{27\sqrt{3}}{4}$ 15. 24 17. 128

Answers may vary in Exs. 19-21. **19.** 42.0 **21.** 87.8 **23.** 15; 74 **25.**
$$\triangle ABC$$
: $36\sqrt{3}$; $\triangle ACD$: $72\sqrt{3}$;

ADEF:
$$108\sqrt{3}$$
 27. 12.5 cm²; 112.5 cm² 29. $\frac{175 - 25\sqrt{3}}{2}$ 31. 156