1 Intermolekulare Kräfte

1.1 Van-Der-Waals-Kräfte

- Schwache Wechselwirkungen zwischen verschiedenen Atomen oder Molekülen
- Entstehung durch kurzzeitige Dipolmomente aufgrund ungleichmäßiger Elektronenverteilung um den Atomkern
- Unterteilt in drei Unterarten

Stärke

Van-der-Waals-Kräfte sind generell sehr schwache Kräfte

1.1.1 London-Kräfte

- Spontane Polarisation von Teilchen (e^- "schwirren" gerade auf einer Seite)
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen nicht-Dipolen
- \implies Teilchen ziehen sich an / stoßen sich ab

Stärke

Sehr schwach

1.1.2 Debye-Wechselwirkung

- Bereits existierende Dipole in der Lösung
- Induzierte Dipole in benachbarteten Teilchen
- Zwischen Dipol und nicht-Dipol
- ullet Teilchen ziehen sich an / stoßen sich ab

Stärke

Sehr schwach, aber generell stärker als London-Kräfte

1.1.3 Keesom-Kraft

- Bereits existierende Dipole in der Lösung
- Besagte Dipole ziehen sich an / stoßen sich ab.
- Zwischen zwei Dipolen

Stärke

Sehr schwach, aber generell die stärkste der drei Van-der-Waals-Kräfte

1.2 Wasserstoffbrückenbindungen $\sum_{s=1}^{s} \frac{1}{s}$

$$R^1 \longrightarrow X \xrightarrow{\delta^-} H \xrightarrow{\delta^+} Y \xrightarrow{\delta^-} R^2$$

- Zwischen Wasserstoffatom und stark elektronegativem Atom (O, N, F, ...)
- Insbesondere an freiem Valenzelektronenpaar

Stärke

Schwächer als Ionenbindung, Kovalente Bindung, etc. aber deutlich stärker als Van-der-Waals-Kräfte

Examples 1.
$$HO \longrightarrow H \longrightarrow \overline{O}H_2$$

2 Reaktionsmechanismen

2.1 Grundlagen

2.1.1 induktive Effekte

- Elektronenverschiebungen entlang konvalenter Bindungen
- Bindungen mit Elektronegativtätsdifferenzen (aber keine Ionenbindung) (z.B. C-F)
- Beeinflusst Abspaltbarkeit von Teilmolekülen in z.B. nukleophiler Substitution $(S_N 1)$, elektrophiler Addition, ... (schwächt Bindung)

Zum Beispiel durch folgende Gruppen

+I-Effekt (Schiebend)

- t-Butylgruppe (-C(CH₃)₃)
- i-Propylgruppe (-CH(CH₃)₂)
- Alkylrest (−R)

Examples 2.
$$H_3^{\delta^-} - {\delta^+\atop Li}$$

-I-Effekt (Ziehend)

- Hydroxygruppe (-OH) / Carbonylgruppenteil (-C=O)
- Iodatom (-I) / Bromatom (-Br) / Chloratom (-Cl) / Fluoratom (-F)
- Nitrogruppe $(-NO_2)$ / Aminogruppe $(-NH_2)$ / Carboxygruppe $(-NH_2)$ / Cyanogruppe (-CN) / Sulfonyl-gruppe $(-SO_3H)$

Examples 3.
$$H_3^{\delta^+}C^{-\delta^-}Br$$

2.1.2 Reaktionsenthalpie

Was ist das?

- ΔH_R gibt die Änderung der Enthalpie (\approx Energie) im Verlauf einer Reaktion an, bei konstantem Druck
- Sie entspricht der Differenz zwischen Produkt und Edukt: $\Delta H_R = H_{\rm Produkt} H_{\rm Edukt}$
- Da sie nur vergleichbar ist, wenn die Bedingungen gleich sind, verwendet man Standardbedingungen (273, 15K, 1Bar)
- Die Reaktionsenthalpie unter Standardbedingungen wird als ΔH_R^0 bezeichnet.

Exotherm

- $\Delta E_i = \Delta H_R < 0 \implies$ Exotherm
- Energie wird freigesetzt

Endotherm

- $\Delta E_i = \Delta H_R > 0 \implies \text{Endotherm}$
- Energie wird aufgenommen

Eigenschaften

ullet E_A bezeichnet die Aktivierungsenergie, die benötigt wird, um die Reaktion zu starten

2.2 radikalische Substitution

- Wasserstoffatome werden von Alkanen abgespalten
- werden ersetzt/substituiert durch Halogenatome (Fluor (F), Chlor (Cl), Brom (Br), Iod (I))
- Benötigt zum Kettenstart externe Energie, um Radikale zu erzeugen (Sonnenlicht, Hitze, etc.)

Kettenstart / Initation

• Homolytische Aufbrechung vom Brom

- Zuführung von Energie (Licht, Wärme)
- Bindungspartner behalten Elektronen

Kettenfortschritt / Folgereaktion / Prolongation

- Reaktion mit Kohlenwasserstoff
- Bildung weiterer Radikale, es entsteht H $\overline{\underline{Br}}$ und ein Alkylradikal
- Reaktion mit unreagierten Halogenmolekül, es entsteht ein Halogenalkan
- Wiederholen dieses Schrittes bis kein Edukt mehr vorliegt

Examples 5.
$$|\overline{\underline{Br}} \cdot H| \\ \downarrow + C_6H_{13} \cdot \overline{C} - H$$

$$H$$

$$C_6H_{13} \cdot \overline{C} \cdot + H \cdot \overline{\underline{Br}}| \\ H$$

$$\downarrow + |\overline{\underline{Br}} \cdot \overline{\underline{Br}}|$$

$$H$$

$$C_6H_{13} \cdot \overline{C} - \overline{\underline{Br}}| + |\overline{\underline{Br}} \cdot \overline{\underline{Hr}}|$$

Kettenabbruch

- Rekombination der Radikale (Bildung von Konvalenten Bindungen):
- Zwei Halogenradikale treffen aufeinander
- Ein Halogenradikal und ein Alkylradikal treffen aufeinander
- Zwei Alkylradikale treffen aufeinander
- Notiz: Da die Rekombination energetisch ungünstig ist, spielt der Kettenabbruch bis die Edukte verbraucht sind meist eine untergeordnete Rolle.

J. Flügel

S. Schultze

E. Selimi

L. Culmey

A. Prebreza

Examples 6.
$$2 \cdot |\overline{Br} \cdot 5 \longrightarrow |\overline{Br} - \overline{Br}|$$

$$C_6H_{13} \xrightarrow{C} \xrightarrow{H} \xrightarrow{\overline{Br}|} C_6H_{13} \xrightarrow{C} - \overline{\underline{Br}}|$$

2.3 elektrophile Addition

Mechanismus

- Ungesättigte Kohlenwasserstoffe wie Alkene oder Alkine reagieren mit Halogenen
- Halogene greifen Doppelbindung im Substrat an
- Unterteilung in mehrere Schritte (siehe folgendes Beispiel)

Halogene

Die elektrophile Addition funktioniert ausschließlich mit Chlor (Cl), Brom (Br) und Iod (I), da Fluor (F) so elektronegativ ist, dass es die C —— C-Bindung und die C —— H-Bindung im Alken/Alkin angreift.

Examples 7 (+
$$X_2$$
). R^1

$$R^2$$

$$X_1$$

$$X_2$$

$$R_1$$

$$R_2$$

$$X_3$$

$$X_4$$

$$X_4$$

$$X_5$$

$$X_6$$

$$X_7$$

$$X_8$$

$$X_8$$

$$X_1$$

$$X_8$$

$$X_1$$

$$X_8$$

$$X_8$$

$$X_1$$

$$X_8$$

$$X_1$$

$$X_8$$

$$X_1$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_1$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_4$$

$$X_1$$

$$X_2$$

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

- Halogenmolekül wird polarisiert, das dem Alken/-in zugewandte Halogen-Atom wird partiell postiv und das abgewandte partiell negativ geladen
- Halogen-Kation addiert sich nun an die Doppelbindung des Alkens/-ins
- es entsteht ein negativ geladenes Halogen-Ion
- Das negativ-geladene Halogen-Ion greift nun an der anderen Seite des ehemaligen Ethen-Moleküls an
- Die "Doppelbindung" zum obrigen Halogen-Kation wird gelöst und verbindet sich mit dem Halogen-Ion.

J. Flügel

S. Schultze

E. Selimi

L. Culmey

A. Prebreza

Examples 8 (+ XH).
$$R^1$$
 $C = C$
 XH
 X
 $C = C$
 R^2
 XH
 X
 XH
 XH

2.4 Eliminierung

- "elektrophile Addition rückwärts"
- Spaltet X-H ab
- 3 verschiedene Mechanismen: E_1 , E_1cB , E_2

 E_1

Vorgang

- Das Halogen-Atom wird im ersten Schritt abgespalten
- Das Wasserstoff-Atom wird im zweiten Schritt abgespalten

 E_1cB

Vorgang

- Das Wasserstoff-Atom wird im ersten Schritt abgespalten
- Das Halogen-Atom wird im zweiten Schritt abgespalten

 E_2

J. Flügel

S. Schultze

E. Selimi

L. Culmey

A. Prebreza

Vorgang

• Das Wasserstoff-Atom und das Halogen-Atom wird in einem Schritt abgespalten

Reaktionsgeschwindigkeit

 E_1 / E_1cB

Da die E_1 / E_1cB -Reaktion in zwei Schritten verläuft, beeinflusst nur eine Konzentration die Reaktionsgeschwindigkeit (der 1. Schritt muss vollendet sein, damit der 2. Schritt passieren kann)

$$v = k_1 \cdot c[\text{Substrat}]$$

 E_1 / E_1cB

Da die E_2 -Reaktion in einem Schritt verläuft, beeinflussen **beide** Konzentrationen die Reaktionsgeschwindigkeit (Beide Edukte sind am 1. Schritt beteiligt)

$$v = k_2 \cdot c[\text{Substrat}] \cdot c[\text{Elektrophil}]$$

2.5 nukleophile Substitution

 $S_N 1$

Schritte

Die S_N 1-Reaktion verläuft 2-Schrittig

Reaktionsgeschwindigkeit

Bei einer S_N 1-Reaktion beeinflusst **nur eine** Konzentration die Reaktionsgeschwindigkeit (weil sie in 2 Schritten verläuft)

$$v = k_1 \cdot c$$
 [Substrat]

$$S_N 2$$

Examples 13.
$$X \xrightarrow{+ \odot Nu} \begin{bmatrix} R^1 \\ X^{---Nu} \\ R^2 \end{bmatrix} \xrightarrow{R^3} X^{\odot} + \begin{bmatrix} R^1 \\ X^{---Nu} \\ R^3 \end{bmatrix}$$

Schritte

Die S_N 2-Reaktion verläuft 1-Schrittig

Reaktionsgeschwindigkeit

Bei einer S_N 2-Reaktion beeinflussen **beide** Konzentrationen die Reaktionsgeschwindigkeit (weil sie in einem Schritt verläuft)

$$v = k_2 \cdot c \left[\text{Substrat} \right] \cdot c \left[\text{Nukleophil} \right]$$

J. Flügel S. Schultze

E. Selimi

L. Culmey

A. Prebreza

3 Stoffklassen

- Einteilung von Stoffen
- funktionelle Gruppe ist charakteristisch für Stoffklasse
- Atome in Molekülen bestimmen über chemische und physikalische Eigenschaften

Funktionelle Gruppe	Stoffklasse
Halogen R — X	Halogenalkane
Amino-Gruppe R – N	Amine
Hydroxy-Gruppe $R - O - H$	Alkohle
Ether-Gruppe $R^1 - \overline{Q} - R^2$	Ether
Aldehyd-Gruppe R – C H	Aldehyde
Keto-Gruppe R^1 $C = 0$	Ketone
Carboxy-Gruppe R C H	Carbonsäure

Mehrere Stoffklassen

Einige Moleküle können auch mehrere Stoffklassen haben, zum Beispiel:

$$\begin{array}{c} COOH \\ | \\ NH_2 \longrightarrow C \longrightarrow H \\ | \\ R \\ Aminsäure \end{array}$$

KAPITEL 4. TESTE DICH!

4 Teste dich!

$$|\underline{\overline{C}}| - C - C - \overline{O} \qquad H - C - C - N|$$

$$|\underline{\overline{C}}| + H \qquad H \qquad H \qquad H$$

4.1 induktive Effekte

Aufgabe 4.1.1. Zeichne die Induktiven Effekte in die obrigen Moleküle ein!

4.2 Stoffklassen

Aufgabe 4.2.1. Markiere in obrigen Molekülen die funktionellen Gruppen und ordne sie begründet in eine oder mehrere Stoffklassen ein!

4.3 nukleophile Substitution

Aufgabe 4.3.1. Die Gabriel-Synthese ist ein Verfahren zur selektiven Herstellung primärer Amine. Ein Schritt behilft sich dabei der nukleophilen Substitution.

Seien folgende Moleküle gegeben:

Gebe alle Reaktionsprodukte sowie den zugehörigen Mechanismus, unter der Annahme das primär die S_N1 stattfindet, an! Von der Konzentration welchen Moleküls ist die Reaktion primär abhängend?

4.4 elektrophile Addition

Aufgabe 4.4.1. Gebe den Reaktionsmechanismus für die elektrophile Addition von Br_2 sowie $H - \overline{\underline{Br}}$ an Ethen (das folgende Molekül) an:

10 KAPITEL 4. TESTE DICH!

$$C = C$$

Ethen

Aufgabe 4.4.2. Begründe: Würde auch die Addition an Ethin funktionieren? Die Addition an Ethan?

4.5 radikalische Substitution

Aufgabe 4.5.1. Die Wohl-Ziegler-Reaktion stellt eine radikalische Bromierung von Alkenen dar. Gebe alle möglichen Produkte der Wohl-Ziegler-Reaktion mit Cyclohexen (das folgende Molekül) an!

Cyclohexen

4.6 Eliminierung

Aufgabe 4.6.1. 2-Methylpropan-2-ol wird in einer sauren wässrigen Lösung gelöst. Zeichne die Moleküle und gebe den Reaktionsmechanismus der Eliminierung 1. Ordnung an.

Begründe, von welchen Molekülen die Reaktionsgeschwindigkeit abhängt.

Aufgabe 4.6.2. In einer Lösung liegen Brommethan und Hydroxid-Ionen vor. Zeichne die Moleküle und gebe den Reaktionsmechanismus der Eliminierung 2. Ordnung an.

Begründe, von welchen Molekülen die Reaktionsgeschwindigkeit abhängt.