MATH 414 Analysis I, Homework 9

Mobina Amrollahi

Due: November 1^{st} , 11:59pm

2.5: Problem 2

Suppose that $f^{(n+1)}(x_0)$ exists, and let T_n be the *n*-th Taylor polynomial of f about x_0 . Show that the function

$$E_n(x) = \begin{cases} \frac{f(x) - T_n(x)}{(x - x_0)^n}, & x \in D_f - x_0, \\ 0, & x = x_0 \end{cases}$$

is differentiable at x_0 , and find $E'_n(x_0)$.

Answer

To show $E_n(x)$ is differentiable at x_0 , we have to show the following limit exists:

$$\lim_{x \to x_0} \frac{E_n(x) - E_n(x_0)}{x - x_0}$$

Hence:

$$\lim_{x \to x_0} \frac{E_n(x) - E_n(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^{n+1}}$$

Since $f^{(0)}(x_0)$ exists, $f(x_0) = T_n(x_0)$, and the ratio $\frac{f(x) - T_n(x)}{(x - x_0)^{n+1}}$ is indeterminate of the form 0/0 as $x \to x_0$. Thus, L'Hospital's rule implies that:

$$\lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^{n+1}} = \lim_{x \to x_0} \frac{f'(x) - T'_n(x)}{(n+1)(x - x_0)^n}$$

We will show that $f'(x_0) - T'_n(x_0) = 0$. We know:

$$T_n(x) = \sum_{r=0}^n \frac{f^{(r)}(x_0)}{r!} (x - x_0)^r = \frac{f(x_0)}{0!} (x - x_0)^0 + \sum_{r=1}^n \frac{f^{(r)}(x_0)}{r!} (x - x_0)^r = f(x_0) + \sum_{r=1}^n \frac{f^{(r)}(x_0)}{r!} (x - x_0)^r$$

$$T'_n(x) = \sum_{r=1}^n \frac{f^{(r)}(x_0)}{r!} \times r \times (x - x_0)^{r-1}$$

$$\Rightarrow T'_n(x) = \sum_{r=1}^n \frac{f^{(r)}(x_0)}{(r-1)!} (x - x_0)^{r-1}$$

$$\Rightarrow T'_n(x_0) = \sum_{r=1}^n \frac{f^{(r)}(x_0)}{(r-1)!} (x_0 - x_0)^{r-1}$$

If $r_1 \ge 1$, then $\frac{f^{(r)}(x_0)}{(r-1)!}(x_0 - x_0)^{r-1} = 0$ and:

$$T'_n(x_0) = \sum_{r=1}^n \frac{f^{(r)}(x_0)}{(r-1)!} (x_0 - x_0)^{r-1} \quad \text{if } r < 2$$

$$\Rightarrow T'_n(x_0) = \frac{f^{(1)}(x_0)}{(0)!} (x_0 - x_0)^0 = f'(x_0)$$

$$\Rightarrow f'(x_0) - T'_n(x_0) = 0$$

Thus, the ratio $\frac{f'(x)-T'_n(x)}{(n+1)(x-x_0)^n}$ is indeterminate of the form 0/0 as $x\to x_0$. Thus, L'Hospital's rule implies that:

$$\lim_{x \to x_0} \frac{f'(x) - T'_n(x)}{(n+1)(x-x_0)^n} = \lim_{x \to x_0} \frac{f^{(2)}(x) - T_n^{(2)}(x)}{(n+1)n(x-x_0)^{n-1}}$$

We will show that $f^{(2)}(x) - T_n^{(2)}(x) = 0$. We know:

$$T'_n(x) = \sum_{r=1}^n \frac{f^{(r)}(x_0)}{(r-1)!} (x - x_0)^{r-1}$$

$$= \frac{f^{(1)}(x_0)}{(1-1)!} (x - x_0)^{1-1} + \sum_{r=2}^n \frac{f^{(r)}(x_0)}{(r-1)!} (x - x_0)^{r-1}$$

$$= f'(x_0) + \sum_{r=2}^n \frac{f^{(r)}(x_0)}{(r-1)!} (x - x_0)^{r-1}$$

Hence:

$$T_n^{(2)}(x) = \sum_{r=2}^n \frac{f^{(r)}(x_0)}{(r-2)!} (x - x_0)^{r-2}$$

$$\Rightarrow T_n^{(2)}(x_0) = f^{(2)}(x_0) + \sum_{r=3}^n \frac{f^{(r)}(x_0)}{(r-2)!} (x_0 - x_0)^{r-2}$$

$$\Rightarrow T_n^{(2)}(x_0) = f^{(2)}(x_0)$$

This process can be continued n times; each time, we will imply L'Hospital's rule, and we'll end up with an indeterminate of the form 0/0. Finally:

$$\lim_{x \to x_0} \frac{E_n(x) - E_n(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f^{(n)}(x) - T_n^{(n)}(x)}{(n+1)!(x - x_0)}$$

Where

$$T_n^{(n)}(x) = f^{(n)}(x_0)(x - x_0)$$

Since $\frac{f^{(n)}(x)-T_n^{(n)}(x)}{(n+1)!(x-x_0)}$ is an indeterminate of the form 0/0, we can apply the L'Hospital's rule one more time, and we get:

$$\lim_{x \to x_0} \frac{E_n(x) - E_n(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f^{(n+1)}(x) - T_n^{(n+1)}(x)}{(n+1)!} = \lim_{x \to x_0} \frac{f^{(n+1)}(x) - f^{(n)}(x_0)}{(n+1)!}$$
$$= \frac{f^{(n+1)}(x_0) - f^{(n)}(x_0)}{(n+1)!}$$

Hence:

$$E'_n(x_0) = \frac{f^{(n+1)}(x_0) - f^{(n)}(x_0)}{(n+1)!}$$

2.5: Problem 4

(a) Prove: if $f''(x_0)$ exists, then

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0).$$

(b) Prove or give a counterexample: If the limit in (a) exists, then so does $f''(x_0)$, and they are equal.

Answer

(a) Since $f''(x_0)$ exists, then 2^{nd} Taylor polynomial of f about x_0 is:

$$T_2(x) = \sum_{r=0}^{2} \frac{f^{(r)}(x_0)}{r!} (x - x_0)^r = \frac{f(x_0)}{0!} (x - x_0)^0 + \frac{f'(x_0)}{1!} (x - x_0)^1 + \frac{f^{(2)}(x_0)}{2!} (x - x_0)^2$$
$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2} (x - x_0)^2$$

Now, based on Theorem 2.5.1 [1] we know:

$$\lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = 0$$

Therefore for n = 2 and $x = x_0 + h$, h > 0:

$$\lim_{x \to x_0^+} \frac{f(x) - T_2(x)}{(x - x_0)^2} = \lim_{h \to 0} \frac{f(x_0 + h) - T_2(x_0 + h)}{(h)^2}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - T_2(x_0 + h)}{(h)^2}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)(h) - \frac{f^{(2)}(x_0)}{2}(h)^2}{(h)^2}$$

Also, we can do the same procedure for n = 2 and $x = x_0 - h$, h > 0:

$$\lim_{x \to x_0^-} \frac{f(x) - T_2(x)}{(x - x_0)^2} = \lim_{h \to 0} \frac{f(x_0 - h) - T_2(x_0 - h)}{(h)^2}$$

$$= \lim_{h \to 0} \frac{f(x_0 - h) - T_2(x_0 - h)}{(h)^2}$$

$$= \lim_{h \to 0} \frac{f(x_0 - h) - f(x_0) + f'(x_0)(h) - \frac{f^{(2)}(x_0)}{2}(h)^2}{(h)^2}$$

Since $\lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = 0$:

$$\lim_{x \to x_0^+} \frac{f(x) - T_n(x)}{(x - x_0)^n} = \lim_{x \to x_0^-} \frac{f(x) - T_n(x)}{(x - x_0)^n} = 0$$

Therefore:

$$\lim_{x \to x_0^+} \frac{f(x) - T_2(x)}{(x - x_0)^2} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)(h) - \frac{f^{(2)}(x_0)}{2}(h)^2}{(h)^2} = 0$$

$$\lim_{x \to x_0^-} \frac{f(x) - T_2(x)}{(x - x_0)^2} = \lim_{h \to 0} \frac{f(x_0 - h) - f(x_0) + f'(x_0)(h) - \frac{f^{(2)}(x_0)}{2}(h)^2}{(h)^2} = 0$$

And

$$\lim_{x \to x_0^+} \frac{f(x) - T_2(x)}{(x - x_0)^2} - \lim_{x \to x_0^-} \frac{f(x) - T_2(x)}{(x - x_0)^2} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)(h) - \frac{f^{(2)}(x_0)}{2}(h)^2}{(h)^2}$$

$$+ \lim_{h \to 0} \frac{f(x_0 - h) - f(x_0) + f'(x_0)(h) - \frac{f^{(2)}(x_0)}{2}(h)^2}{(h)^2} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h) - f^{(2)}(x_0)(h)^2}{(h)^2} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{(h)^2} - \lim_{h \to 0} f^{(2)}(x_0) = 0$$

 $f^{(2)}(x_0)$ is a constant, therefore:

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{(h)^2} = f^{(2)}(x_0)$$

(b) Consider the following counterexample:

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

This function is continuous at $x_0 = 0$ and differentiable everywhere, including at x_0 . However, the second derivative does not exist at x_0 .

Calculating the first derivative:

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

At $x_0 = 0$:

$$f'(0) = 0.$$

Now for the second derivative, if we try to compute f''(0):

$$f''(0) = \lim_{h \to 0} \frac{f'(h) - f'(0)}{h} = \lim_{h \to 0} \frac{2h \sin\left(\frac{1}{h}\right) - \cos\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} 2\sin\left(\frac{1}{h}\right) - \lim_{h \to 0} \frac{\cos\left(\frac{1}{h}\right)}{h}$$

This limit does not exist because $\sin\left(\frac{1}{h}\right)$ oscillates as $h \to 0$ although $\cos\left(\frac{1}{h}\right)$ takes same value in a neighborhood around 0.

However, the following limit exists:

$$\lim_{h\to 0}\frac{f(h)-2f(0)+f(-h)}{h^2}=\lim_{h\to 0}\frac{h^2\sin\left(\frac{1}{h}\right)+h^2\sin\left(-\frac{1}{h}\right)}{h^2}=\lim_{h\to 0}\sin\left(\frac{1}{h}\right)-\sin\left(\frac{1}{h}\right)=0.$$

2.5: Problem 6

A function f has a double zero (or a zero of multiplicity 2) at x_0 if f is twice differentiable on a neighborhood of x_0 and $f(x_0) = f'(x_0) = 0$, while $f''(x_0) \neq 0$.

(a) Prove that f has a double zero at x_0 if and only if

$$f(x) = q(x)(x - x_0)^2$$

where g is continuous at x_0 and twice differentiable on a deleted neighborhood of x_0 , $g(x_0) \neq 0$, and

$$\lim_{x \to x_0} (x - x_0)g'(x) = 0.$$

(b) Give an example showing that g in (a) need not be differentiable at x_0 .

Answer

(a) We have to prove the following:

f has a double zero at
$$x_0 \iff f(x) = g(x)(x - x_0)^2$$
,

where g is continuous at x_0 and twice differentiable on a deleted neighborhood of x_0 , $g(x_0) \neq 0$, and

$$\lim_{x \to x_0} (x - x_0)g'(x) = 0.$$

 (\Longrightarrow) f is twice differentiable on a neighborhood of x_0 , hence $f(x_0)$, $f^{(1)}(x_0)$ and $f^{(2)}(x_0)$ exist. Thus, we can write the 2^{nd} Taylor polynomial of f about x_0 , which is:

$$T_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2}(x - x_0)^2$$

Since $f(x_0) = f'(x_0) = 0$:

$$T_2(x) = \frac{f^{(2)}(x_0)}{2}(x - x_0)^2$$

In addition, based on Lemma 2.5.2 [1] we know If $f^{(n)}(x_0)$ exists, then:

$$f(x) = \sum_{r=0}^{n} \frac{f^{(r)}(x_0)}{r!} (x - x_0)^r + E_n(x) (x - x_0)^n,$$

where

$$E_n(x) = \begin{cases} \frac{f(x) - T_n(x)}{(x - x_0)^n}, & x \in D_f \setminus \{x_0\}; \\ 0, & x = x_0 \end{cases}$$

and

$$\lim_{x \to x_0} E_n(x) = E_n(x_0) = 0.$$

If we plug n = 2, we have:

$$f(x) = \sum_{r=0}^{2} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + E_2(x)(x - x_0)^2,$$

 $\sum_{r=0}^{2} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ is expressing $T_2(x)$ which is $\frac{f^{(2)}(x_0)}{2} (x-x_0)^2$, hence:

$$f(x) = \frac{f^{(2)}(x_0)}{2}(x - x_0)^2 + E_2(x)(x - x_0)^2 = (\frac{f^{(2)}(x_0)}{2} + E_2(x))(x - x_0)^2$$

If we put $g(x) = \frac{f^{(2)}(x_0)}{2} + E_2(x)$. Now, we will show the following hold for g:

(a) $g(x_0) \neq 0$ We know:

$$g(x_0) = \frac{f^{(2)}(x_0)}{2} + E_2(x_0) = \frac{f^{(2)}(x_0)}{2} + 0 = \frac{f^{(2)}(x_0)}{2} \neq 0$$

(b) g is continuous at x_0

The continuity of g at x_0 depends on the continuity of $E_2(x)$ at x_0 . We know:

$$\lim_{x \to x_0} E_2(x) = E_2(x_0) = 0$$

Hence $E_2(x)$ is continuous at x_0 . Now:

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \frac{f^{(2)}(x_0)}{2} + E_2(x) = \frac{f^{(2)}(x_0)}{2} + \lim_{x \to x_0} E_2(x) = \frac{f^{(2)}(x_0)}{2} = g(x_0)$$

$$\Rightarrow \lim_{x \to x_0} g(x) = g(x_0)$$

- (c) g is twice differentiable on a deleted neighborhood of x_0 . The differentiability of g around x_0 depends on the differentiability of $E_2(x)$ around x_0 . Since f(x), $f^{(1)}(x)$ and $f^{(2)}(x)$ exist on a deleted neighborhood of x_0 , hence $E'_2(x)$ and $E^{(2)}_2(x)$ also exist on a deleted neighborhood of x_0 . Thus, g'(x) and $g^{(2)}(x)$ exist for all x on a deleted neighborhood of x_0 .
- (d) $\lim_{x \to x_0} (x x_0)g'(x) = 0$ Since:

$$g(x) = \frac{f^{(2)}(x_0)}{2} + E_2(x) \Rightarrow g'(x) = E_2'(x) \Rightarrow g'(x) = (\frac{f(x) - T_n(x)}{(x - x_0)^n})'$$

I don't know how to show this.

(\iff) since $f(x) = g(x)(x - x_0)^2$, $f(x_0) = g(x_0)(x_0 - x_0)^2 = 0$. Now, to calculate $f'(x_0)$ we have:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(x_0)(x - x_0)^2 - 0}{x - x_0}$$

$$= \lim_{x \to x_0} g(x_0)(x - x_0)$$

$$\Rightarrow f'(x_0) = g(x_0) \times 0 = 0$$

Since g(x) and $(x-x_0)^2$ are twice differentiable on a deleted neighborhood of x_0 , considering this deleted neighborhood as I, then we can calculate f'(x) for all $x \in I$:

$$f(x) = g(x)(x - x_0)^2$$

\$\Rightarrow f'(x) = 2 \times g(x)(x - x_0) + g'(x)(x - x_0)^2\$

Now, to calculate $f^{(2)}(x)$ on this deleted neighborhood, we can calculate the following:

$$f^{(2)}(x_0) = \lim_{x \in I} \frac{f'(x) - f'(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{2 \times g(x)(x - x_0) + g'(x)(x - x_0)^2 - 0}{x - x_0}$$

$$= \lim_{x \to x_0} 2 \times g(x) + g'(x)(x - x_0)$$

$$= \lim_{x \to x_0} 2 \times g(x) + \lim_{x \to x_0} g'(x)(x - x_0)$$

$$= 2 \times g(x_0) + \lim_{x \to x_0} g'(x)(x - x_0) = 2 \times g(x_0) + 0$$

$$\Rightarrow f^{(2)}(x_0) = 2 \times g(x_0) \neq 0$$

Hence, f has a double zero at x_0 .

(b) Consider g(x) = |x| + 1. Then g is continuous at $x_0 = 0$ and twice differentiable on a deleted neighborhood of $x_0 = 0$ since:

$$g(x) = \begin{cases} x, & x \ge 0; \\ -x, & x < 0 \end{cases}$$

Thus to calculate g'(x) and $g^{(2)}(x)$ for all $x \neq 0$, we only need to consider the following limits in a small neighborhood where the values don't change signs:

$$\lim_{x \to x_1} \frac{g(x) - g(x_1)}{(x - x_1)} \text{ and } \lim_{x \to x_1} \frac{g'(x) - g'(x_1)}{(x - x_1)}$$

Then, based on the neighborhood we're whether dealing with x or -x which are both twice differentiable functions. In addition $g(x_0) = g(0) = 1 \neq 0$. Finally to calculate $\lim_{x \to x_0} (x - x_0)g'(x)$ we will first calculate the limit from the left and then right.

$$\lim_{x \to x_0^+} (x - x_0)g'(x) = \lim_{x \to x_0^+} (x - x_0) \times 1 = 0$$

$$\lim_{x \to x_0^-} (x - x_0)g'(x) = \lim_{x \to x_0^-} (x - x_0) \times -1 = 0$$

$$\Rightarrow \lim_{x \to x_0^+} (x - x_0)g'(x) = \lim_{x \to x_0^-} (x - x_0)g'(x) = 0$$

$$\Rightarrow \lim_{x \to x_0} (x - x_0)g'(x) = 0$$

2.5: Problem 13

Determine whether $x_0 = 0$ is a local maximum, local minimum, or neither for each of the following functions.

(b)
$$f(x) = x^3 e^{x^2}$$

(d)
$$f(x) = \frac{1+x^3}{1+x^2}$$

(f)
$$f(x) = e^{x^2} \sin(x)$$

(h)
$$f(x) = e^{x^2} \cos(x)$$

Answer

To answer this question, we will be using Theorem 2.5.3 [1] which is the following: **Theorem 2.5.3** Suppose that f has n derivatives at x_0 and n is the smallest positive integer such that $f^{(n)}(x_0) \neq 0$:

- (a) If n is odd, x_0 is not a local extreme point of f.
- (b) If n is even, x_0 is a local maximum of f if $f^{(n)}(x_0) < 0$, or a local minimum of f if $f^{(n)}(x_0) > 0$.

Thus, in each part, we will be calculating the derivatives of f at $x_0 = 0$ up to the n^{th} derivative where $f^{(n)}(0) \neq 0$, and based on n we will decide about the type of $x_0 = 0$ of that function.

(b)
$$f(x) = x^3 e^{x^2}$$

 $f'(x) = 3x^2 e^{x^2} + x^3 e^{x^2} \times 2x = 3x^2 e^{x^2} + 2x^4 e^{x^2} = x^2 e^{x^2} (3 + 2x^2)$
 $\Rightarrow f'(0) = 0$
 $f^{(2)}(x) = (2xe^{x^2} + x^2 e^{x^2} \times 2x)(3 + 2x^2) + x^2 e^{x^2} (4x) = (2xe^{x^2})(2x^4 + 5x^2 + 1)$
 $\Rightarrow f^{(2)}(0) = 0$
 $f^{(3)}(x) = (2e^{x^2} + 4x^2 e^{x^2})(2x^4 + 5x^2 + 1) + (2xe^{x^2})(8x^3 + 10x)$
 $= (2e^{x^2})(4x^6 + 12x^4 + 8x^3 + 7x^2 + 10x + 1)$
 $\Rightarrow f^{(3)}(0) = (2 \times 1)(1) = 2$

Since n=3 is an odd number, then $x_0=0$ is not a local extreme point of f.

(d)
$$f(x) = \frac{1+x^3}{1+x^2}$$

$$f'(x) = \frac{(3x^2)(1+x^2) - (1+x^3)(2x)}{(1+x^2)^2} = \frac{x^4 + 3x^2 - 2x}{x^4 + 2x^2 + 1}$$

$$\Rightarrow f'(0) = 0$$

$$f^{(2)}(x) = \frac{(4x^3 + 6x - 2)(x^4 + 2x^2 + 1) - (x^4 + 3x^2 - 2x)(4x^3 + 4x)}{(x^2 + 1)^4} = \frac{(-2) \times (1) - 0}{1}$$

$$\Rightarrow f^{(2)}(0) = -2$$

Since n=2 is an even number and $f^{(n)}(0) < 0$, x_0 is a local maximum of f.

(f)
$$f(x) = e^{x^2} \sin(x)$$

$$f'(x) = e^{x^2} 2x \sin(x) + e^{x^2} \cos(x)$$

 $\Rightarrow f'(0) = 0 + 1 = 1$

Since n = 1 is an odd number, then $x_0 = 0$ is not a local extreme point of f.

(h)
$$f(x) = e^{x^2} \cos(x)$$

 $f'(x) = e^{x^2} 2x \cos(x) + -e^{x^2} \sin(x) = e^{x^2} (2x \cos(x) - \sin(x))$
 $\Rightarrow f'(0) = 0$
 $f^{(2)}(x) = e^{x^2} 2x (2x \cos(x) - \sin(x)) + e^{x^2} (2\cos(x) - 2x \sin(x) - \cos(x))$
 $\Rightarrow f^{(2)}(0) = 0 + 1 \times (2 - 0 - 1) = 1$

Since n=2 is an even number and $f^{(n)}(0)>0$, x_0 is a local minimum of f.

2.5: Problem 16

Find an upper bound for the magnitude of the error in the approximation.

- (a) $\sin(x) \approx x$, for $|x| < \frac{\pi}{20}$.
- (b) $\sqrt{1+x} \approx 1 + \frac{x}{2}$, for $|x| < \frac{1}{8}$.
- (d) $\log(x) \approx (x-1) \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3}$, for $|x-1| < \frac{1}{64}$.

Answer

In all sections, we are asked to approximate the function with some polynomials. Hence, we will be using Taylor polynomials for such approximation. We will propose x_0 and n, which we will use the n^{th} Taylor polynomial to approximate the given function. Finally, we will propose a remainder for such approximation, which can be written in the following form based on Theorem 2.5.4 (Taylor's Theorem) [1]:

$$R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Finally, to suggest an upper bound for the magnitude of such error, we will find its maximum absolute value within the given neighborhood of x_0 .

(a) $n = 1, x_0 = 0$. The 1st Taylor's polynomial implies:

$$T_1(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0)$$

$$\Rightarrow T_1(x) = \sin(x_0) + \frac{\cos(x_0)}{1!}(x - x_0)$$

$$= T_1(x) = x$$

Hence

$$R_1(x) = f(x) - T_1(x) = \sin x - x = \frac{f^{(2)}(c)}{(2)!} (x - x_0)^2,$$
$$-\frac{\sin(c)}{(2)!} (x)^2$$

 $R_1(x)$ is a quadratic function which will take its maximum value where the coefficient is the largest positive value with $c \in (-\frac{\pi}{20}, \frac{\pi}{20})$. Since $\sin(c)$ is increasing in $(-\frac{\pi}{20}, \frac{\pi}{20})$, thus $-\frac{\sin(c)}{(2)!}$ is decreasing in this interval at takes its maximum at the lower bound of the interval which is $c = -\frac{\pi}{20}$. Hence:

$$R_1(x) = -\frac{\sin(-\frac{\pi}{20})}{(2)!}(-\frac{\pi}{20})^2 = 0.00193$$

(b) $n = 1, x_0 = 0$. The 1st Taylor's polynomial implies:

$$T_1(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0)$$

$$\Rightarrow T_1(x) = \sqrt{1+x} + \frac{\frac{1}{\sqrt{1+x}}}{1!}(x) = \sqrt{1+x} + \frac{x}{\sqrt{1+x}}$$

Hence

$$R_1(x) = f(x) - T_1(x) = \frac{f^{(2)}(c)}{(2)!}(x)^2$$
$$= -\frac{\frac{1}{\sqrt{(1+c)^3}}}{4 \times (2)!}(c)^2$$
$$= -\frac{1}{8\sqrt{(1+c)^3}}(c)^2$$

Except $x_0 = 0$, $R_1(x)$ will take negative values in its domain since both $\sqrt{(1+x)^3}$ and $(x)^2$ are positive and the coefficient is negative. Hence, $R_1(x)$ takes its local maxima in $(-\frac{1}{8}, \frac{1}{8})$ at $x_0 = 0$. However, $R_1(x_0) = 0$. Therefore, the rest of the values that $R_1(x)$ takes in $(-\frac{1}{8}, \frac{1}{8})$ are negative. Thus, we have to look for the smallest value that $R_1(x)$ can take in this interval, which will result in the greatest absolute value. The general function of $-\frac{1}{8\sqrt{(1+x)^3}}(x)^2$ will go to $-\infty$ as $x \to -1$, however, this value degrades slower as $x \to \infty$. Hence, as $x \to \frac{-1}{8}$, $R_1(x)$ takes lower values than $x \to \frac{1}{8}$. Thus $R_1(x)$ takes its minimum at the lower bound of the interval, which is $c = \frac{-1}{8}$. Hence:

$$R_1(x) = -\frac{1}{8\sqrt{(1+\frac{-1}{8})^3}}(\frac{-1}{8})^2 = -0.00239$$

(d) $n = 3, x_0 = 1$. In this question, I'll assume the logarithm is with base e. The 3^{rd} Taylor's polynomial implies:

$$T_3(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3$$

$$\Rightarrow T_3(x) = f(x_0) + \frac{1}{x_0}(x - 1) + \frac{-1}{2 \times x_0^2}(x - 1)^2 + \frac{1}{3 \times x_0^3}(x - 1)^3$$

$$\Rightarrow T_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$$

Hence

$$R_3(x) = f(x) - T_3(x) = \frac{f^{(4)}(c)}{(4)!} (x-1)^4$$
$$= \frac{-6}{24 \times c^4} (x-1)^4$$
$$= -\frac{1}{4 \times c^4} (x-1)^4$$

 $R_3(x)$ consists of $(x-1)^4$ and a negative coefficient. $(x-1)^4$ Takes its global minimum at $x_0=1$. Hence, $R_3(x)$ takes its global maximum at $x_0=1$. However, $R_3(1)=0$, which means at this point Taylor polynomial perfectly approximates f. To maximize $\left|\frac{1}{4\times c^4}(x-1)^4\right|$ we can maximize both $\left|\frac{1}{4\times c^4}\right|$ and $\left|(x-1)^4\right|$ by having $c=1-\frac{1}{64}$. Thus:

$$R_3(x) = -\frac{1}{4 \times (1 - \frac{1}{64})^4} (-\frac{1}{64})^4$$
$$= -1.587 \times 10^{-8}$$

References

[1] William F Trench. Introduction to real analysis. 2013.