Programme de colle - Semaine n°18

- Groupe A: Ilyes BENFERHAT, Hamza BOURAS, Julien DENEUBOURG, Célian FORET, Maxime LE BLAN, Pierre LESAGE, Vishwaraj SHABADI, Julien STEVENART, Mohamed Jibril TROUGOUTY, Félix VANDEN-BROUCKE.
- Groupe B: Lucas AGBOTON, Vladislas BANCOD, Nathan BISKUPSKI, Pierre CATHELAIN, Matthieu CHARETTE, Célien CHAZAL, Jarode COQUEL, Félix CORDONNIER-PORTIER, Maxime DANIEL, Baptiste DAULE SIGAUT, Raphaël DEPUYDT, Ethan DUMONT, Houdayfa EL HAJJIOUI, Gabriel HARENDARZ, Victor KRAWCZIK, Thibaut LAMARQUE, Juliette LECOUTRE, Mohamed-Yassine LOKMANE, Alexandre MARTINSSE, Clément MONCHIET, Mathieu POULAIN, Clarissa VALLAEYS.
- Groupe C: Ilan AKADJI, Orane BERTOUT, Pierre BODET, Marc BURGHGRAEVE, Noelien DUTILLEUL, Douae EL FANI, Julien GERY, Paul LEONARD, Noam THIBAUT-GESNEL, Clément TURPIN.

Chapitre 18 - Structures algébriques usuelles

• cf. semaines 15, 16, 17.

Chapitre 19 - Polynômes

- cf. semaine 17.
- Théorème de d'Alembert-Gauß. Conséquences : les irréductibles de \mathbb{C} sont exactement les polynômes de degré 1, tout polynôme sur \mathbb{C} est scindé, tout polynôme complexe a un nombre de racines (comptées avec multiplicité) égal à son degré, deux polynômes complexes sont premiers entre eux si et seulement s'ils n'ont aucune racine complexe commune. Exemples : factorisation de $X^n 1$ (sur \mathbb{C}), de $(X + i)^n (X i)^n$.
- Si $P \in \mathbb{R}[X]$ et $\alpha \in \mathbb{C}$ est racine de P alors $\overline{\alpha}$ est racine de P avec la même multiplicité. Les irréductibles de \mathbb{R} sont exactement les polynômes de degré 1 et de degré 2 de discriminant strictement négatif. Décomposition en produit de facteurs irréductibles sur \mathbb{R} . Exemples : $X^5 + X^4 X^2 X$, $2X^4 4X^3 4X^2 + 6X + 4$, $X^4 + 1$, $X^{2n} 1$.
- Expressions polynomiales en quelque-chose : caractère \mathscr{C}^{∞} de $x\mapsto e^{-1/x^2}$ prolongée en 0, polynômes de Tchebychev.
- Polynômes d'interpolation de Lagrange : existence et unicité (quand on impose la condition sur le degré). Phénomène de Runge (HP et non traité en classe).

Chapitre 20 - Fractions rationnelles

- Une fraction rationnelle est un quotient de deux polynômes. On ne cherche pas à savoir comment on le définit rigoureusement (cela a été distribué en poly mais c'est HP et cela n'a pas été traité en classe). L'ensemble des fractions rationnelles à coefficients dans \mathbb{K} est noté $\mathbb{K}(X)$ et est un corps qui contient $\mathbb{K}[X]$. On peut travailler avec des fractions rationnelles comme avec des fractions classiques.
- Représentant irréductible d'une fraction rationnelle. Degré d'une fraction rationnelle. Opérations sur les degrés.
- Zéro, pôle d'une fraction rationnelle (sous forme irréductible!).
- Fonction rationnelle associée. On peut identifier (sur ℝ ou sur ℂ) une fraction rationnelle et sa fonction rationnelle associée.
- Décomposition en éléments simples sur \mathbb{R} ou \mathbb{C} . Partie entière d'une fraction rationnelle (qui n'est rien d'autre que le quotient de la division euclidienne du numérateur par le dénominateur).
- Valeur du coefficient dans le cas d'un pôle simple, exemple de $1/(X^n-1)$.
- Décomposition en éléments simples de P'/P lorsque P est scindé (en particulier lorsque $P \in \mathbb{C}[X]$).

Chapitre 21 - Matrices

- Matrices à n lignes et p colonnes à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} (même si on peut généraliser à un corps quelconque). Notation $\mathcal{M}_{n,p}(\mathbb{K})$. Définition d'une matrice carrée, notation $\mathcal{M}_n(\mathbb{K})$.
- Matrices colonnes, matrices lignes, matrices élémentaires.
- Somme, multiplication par un scalaire. Propriétés. En particulier, $(\mathcal{M}_n(\mathbb{K}), +)$ est un groupe abélien.
- Définition d'une combinaison linéaire. Toute matrice est combinaison linéaire de matrices élémentaires.
- Produit de matrices, exemples.
- Propriétés du produit matriciel (associativité, distributivité par rapport à la somme, etc.).

Page 1/3 2023/2024

MP2I Lycée Faidherbe

• Matrice identité, produit d'une matrice rectangulaire par la matrice identité de taille convenable. En particulier, une matrice scalaire commute avec toute matrice carrée.

- Symbole de Kronecker. Produit de deux matrices élémentaires (seul le cas des matrices carrées a été vu mais le cas général est analogue lorsque les produits sont bien définis).
- Produit d'une matrice par un vecteur colonne. Application : si AX = BX pour tout vecteur colonne X, alors A = B.
- Transposition, transposition d'un produit, linéarité de la transposition.
- Cas particulier des matrices carrées : $\mathcal{M}_n(\mathbb{K})$ est un anneau (non intègre, non commutatif), notation puissance, binôme de Newton (les matrices doivent commuter!). Exemples : donner les puissances successives de

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{et} \qquad A = \begin{pmatrix} 3 & 1 & 1 & \dots & 1 \\ 1 & 3 & 1 & \dots & 1 \\ 1 & 1 & 3 & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 3 \end{pmatrix}$$

Chapitres au programme

Chapitres 18 et 19 (cours et exercices), chapitres 20 et 21 (cours uniquement).

Questions de cours

Groupes A - B - C:

- 1. Définition d'un corps. Donner un anneau intègre qui n'est pas un corps.
- 2. Degré d'une somme, d'une différence de polynômes, et cas d'égalité (sans démonstration).
- 3. Théorème de division euclidienne (sans démonstration). L'examinateur demande d'effectuer une division euclidienne dans un cas explicite.
- 4. Définition d'un PGCD de deux polynômes non tous nuls. Lien entre les différents PGCD, notation $A \wedge B$ (sans démonstration).
- 5. Définition de la multiplicité d'une racine. Caractérisation par les dérivées successives (sans démonstration puisque ce résultat est admis provisoirement).
- 6. Formule de Taylor pour les polynômes (sans démonstration puisque ce résultat est admis provisoirement).
- 7. Valeur de la somme et du produit des racines d'un polynôme scindé (sans démonstration).
- 8. Théorème de d'Alembert-Gauß (sans démonstration puisqu'il est admis).
- 9. Factorisation (sur \mathbb{C}) de X^n-1 (démonstration).
- 10. Théorème de factorisation sur \mathbb{R} (sans démonstration).
- 11. Interprétation géométrique des polynômes d'interpolation de Lagrange. Expression explicite de l'unique polynôme d'interpolation de Lagrange de degré $\leq n-1$ (sans démonstration). L'examinateur demande de donner un polynôme d'interpolation de Lagrange dans un cas explicite simple.
- 12. Décomposition éléments simples de $\frac{1}{X^n-1}$ (démonstration).
- 13. Décomposition en éléments simples de P'/P lorsque P est scindé (sans démonstration).
- 14. Définition du produit matriciel. L'examinateur demande d'effectuer un produit matriciel dans un cas explicite simple (disons $\max(n, p, q) \le 4$).
- 15. Démonstration de l'associativité du produit matriciel.
- 16. Produit de deux matrices élémentaires carrées (sans démonstration).

Groupes B - C:

- 1. Définition d'un morphisme d'anneaux.
- 2. Donner un anneau intègre qui n'est pas un corps. Un anneau intègre fini est un corps (démonstration).
- 3. Un polynôme réel périodique est constant (démonstration).
- 4. Existence et unicité des polynômes de Tchebychev (démonstration).
- 5. Décomposition en éléments simples de P^\prime/P lorsque P est scindé (démonstration).

Page 2/3 2023/2024

MP2I Lycée Faidherbe

6. Puissances de

$$A = \begin{pmatrix} 3 & 1 & 1 & \dots & 1 \\ 1 & 3 & 1 & \dots & 1 \\ 1 & 1 & 3 & & 1 \\ \vdots & & & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 3 \end{pmatrix}$$

Groupe C:

- 1. Théorème de division euclidienne (démonstration).
- 2. Fonctions symétriques élémentaires, formules de Viète (démonstration).
- 3. Factorisation sur \mathbb{R} de $X^{2n} 1$.
- 4. Produit de deux matrices élémentaires carrées (démonstration).

Prévisions pour la semaine prochaine

- Fin des matrices.
- Début de l'intégration sur un segment.

Exercices à préparer

Exercices 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15 du chapitre 20 et 1, 2, 3, 4, 5, 13, 15, 31, 33 du chapitre 21.

Cahier de calcul

Chapitre 25.

Page 3/3 2023/2024