11 PHYSICS ATAR ASSIGNMENT 1: MEASUREMENT

IAME: _		DUE DATE:	44
. Wha	t is the difference between a <i>fundamental unit</i> .	and a <i>derived unit</i> ? Give an example of	
			(2
Wri	e the following in <i>scientific notation</i> . Include	he units.	
(a)	6.43 μm	(b) 293 mm	
(c)	0.0085 C	(d) 28.4 x 10 ⁻⁷ s	
(e)	89.42 nanoseconds	(f) 0.0000412 GJ	(6)
Cor	vert the following to standard units, using science	ntific notation where possible.	
(a)	0.021 mm	(b) 4953 million kilometres	
(c)	26.4 μs	(d) 34.4 m^2	
(e)	4.85 x 10 ⁻³ mm ³	(f) 756 cm ²	(6)
. How	many significant figures are in the following r	umbers?	(6)
(a)	1.003 (b) 0.0021	(c) 4.61 x 10 ⁻⁴	
(d)	2×10^3 (e) 20000	(f) 3000.0	(6)
. Perf	orm the following calculations, giving your ans	wers to the correct number of significant	figures.
(a)	21.6 + 41.24 + 28		
(b)	$\frac{(61.4)(2.4 \times 10^{-4})}{(3.016 \times 10^{-9})}$		
(c)	$\frac{(28.65 + 7.4 - 3.105)}{(2.649 \times 10^3)}$		(6)

6	A group of students measure	d a olass rectanoular	hlock with the	dimensions	$10.52 \text{ cm } \times 2$	20.2 cm x 3.2 cm
υ.	A group or students incasure	u a giass iectanigulai	DIOCK WITH THE	difficusions	10.32 CIII X 2	.U.2 CIII X 3.2

(a) Write the dimensions individually, giving the *absolute uncertainty* and *percentage uncertainty*.

length:

width:

height:

(6)

(b) Calculate the volume of the block, giving your answer in scientific notation with the correct number of significant figures and standard units. Include the absolute uncertainty involved.

(3)

7. A group of students investigated the relationship between the volume of a confined gas and its pressure. They understood that the relationship was given by:

$$P = \frac{k}{V},$$

where P = pressure (cm of Hg) V = volume (Litres)

k = constant.

Their results are given in the table below.

Pressure (cm of Hg)	Volume (L)	
20.0	10.0	
30.0	6.7	
40.0	5.0	
50.0	4.0	
60.0	3.3	
70.0	2.9	

(a) Manipulate the data to generate a straight-line graph. Record your data in the vacant column.

(b) Either graph the data on the grid provided, or use your calculator to generate a line of best fit.

Equation: (4)

(c) Use the graph to determine the value of the constant k.