WHAT IS CLAIMED IS:

1	1. A feed forward amplifier system, comprising:
2	an input for receiving an RF input signal;
3	a first control loop coupled to the input and comprising a main amplifier, a
4	main amplifier sampling coupler, a delay element, and a cancellation combiner;
5	a second control loop coupled to the first control loop and comprising a
6	first signal path, a second signal path comprising an error amplifier, and an error
7	coupler coupling the first and second signal paths;
8	an output coupled to the error coupler; and
9	means for controlling at least one of the first and second control loops
10	employing an alignment list having a plurality of list elements, each element
.11	having an alignment setting and a collection of parameters characterizing the
12	operating condition of the feed forward amplifier system.
1	2. A feed forward amplifier system as set out in claim 1, wherein said first control
2	loop further comprises a gain adjuster and a phase adjuster and wherein each
3	said alignment setting comprises a loop 1 gain adjuster setting and a loop 1
4	phase adjuster setting.
1	3. A feed forward amplifier system as set out in claim 1, wherein said second
2	control loop further comprises a gain adjuster and a phase adjuster and wherein
3	each said alignment setting comprises a loop 2 gain adjuster setting and a loop 2
4	phase adjuster setting.
1	4. A feed forward amplifier system as set out in claim 1, wherein said collection of
2	parameters characterizing the operating condition of the feed forward amplifier
3	system comprises one or more of temperature, DC power supply, input signal
4	power and input signal carrier frequency.
1	
1 2	5. A feed forward amplifier system as set out in claim 4, wherein said collection of
4	parameters characterizing the operating condition of the feed forward amplifier

- 3 system are defined as an attribute vector and a distance is defined between any
- 4 two attribute vectors.
- 1 6. A feed forward amplifier system as set out in claim 5, wherein said means for
- 2 controlling obtains a current attribute vector and computes the distance to the
- 3 attribute vectors of the list elements and selects the list element with the least
- 4 distance for use as an alignment setting in the control function.
- 1 7. A feed forward amplifier system as set out in claim 6, wherein said means for
- 2 controlling continually measures misalignment of the feed forward amplifier
- 3 system and retrieves an alignment setting from said alignment list when said
- 4 measured misalignment exceeds a predetermined value.
- 1 8. A feed forward amplifier system as set out in claim 7, wherein said means for
- 2 controlling employs a selected element as an initial alignment setting and
- 3 computes a new alignment setting from the initial setting employing an iterative
- 4 control algorithm.
- 9. A feed forward amplifier system as set out in claim 8, wherein said means for
- 2 controlling updates said alignment list with a new alignment setting after
- 3 completing said iterative computation.
- 1 10. A feed forward amplifier system as set out in claim 5, wherein the distance
- 2 between closest list element attribute vectors varies throughout the list.
- 1 11. An adaptive controller for controlling a loop of an amplifier system, 2 comprising:
- one or more inputs for receiving one or more attribute parameters corresponding to current operating conditions of the amplifier system; and
- one or more processors coupled to said one or more inputs and having an associated alignment list and programmed with an alignment list algorithm and a controller algorithm to provide loop adjustment settings to control the loop of the

- 8 amplifier system, wherein said alignment list algorithm generates said list with
- ⁹ adjustment settings computed by said controller algorithm and associates one or
- more attribute parameters with each adjustment setting.
- 1 12. An adaptive controller for controlling a loop of an amplifier system as set out
- 2 in claim 11, wherein said alignment list algorithm selects an alignment setting
- ³ from said alignment list for use by said controller algorithm at start up or when the
- 4 loop becomes sufficiently misaligned.
- 1 13. An adaptive controller for controlling a loop of an amplifier system as set out
- 2 in claim 12, wherein said alignment list algorithm selects an alignment list
- 3 adjustment setting for use by said controller algorithm by computing the distance
- 4 between the one or more attribute parameters corresponding to current operating
- 5 conditions and the attribute parameters associated with each of the alignment
- 6 settings in the list and selecting the alignment setting corresponding to the
- 7 attribute parameter with the minimum distance.
- 1 14. An adaptive controller for controlling a loop of an amplifier system as set out
- 2 in claim 12, wherein the distance computation is weighted with different weights
- ³ for different attribute parameters.
- 1 15. An adaptive controller for controlling a loop of an amplifier system as set out
- 2 in claim 11, wherein the attribute parameters comprise one or more of
- 3 temperature, DC supply voltage, input signal power and input signal carrier
- 4 frequency.
- 1 16. An adaptive controller for controlling a loop of an amplifier system as set out
- in claim 14, wherein the distance d_{attr} between two sets of attribute parameters
- 3 "n" and "0", is defined by the weighted Linf norm distance measure or the
- 4 weighted L₂ norm distance measure.

- 1 17. An adaptive controller for controlling a loop of an amplifier system as set out
- ² in claim 11, further comprising one or more inputs for receiving alignment data.
- 1 18. An adaptive controller for controlling a loop of an amplifier system as set out
- 2 in claim 17, wherein said one or more inputs for receiving alignment data
- 3 comprises a pilot signal input.
- 1 19. An adaptive controller for controlling a loop of an amplifier system as set out
- ² in claim 17, wherein said one or more inputs for receiving alignment data
- 3 comprises an input for loop test data.
- 1 20. An adaptive controller for controlling a loop of an amplifier system as set out
- 2 in claim 11, wherein said adjustment settings comprise gain adjuster and phase
- ³ adjuster settings.
- 1 21. A method for controlling an amplifier system having a control loop comprising
- 2 a control loop input, a first signal path, a second signal path, and a control loop
- 3 output, at least one of said first and second signal paths including an amplifier,
- 4 said method comprising:
 - providing a list of alignment settings, each alignment setting having an associated operating condition;
 - detecting the current operating conditions of the amplifier system;
 - comparing the current operating conditions to those in the list of alignment settings; and
- selecting the alignment setting associated with the most similar operating condition in the list.
- 1 22. A method for controlling an amplifier system as set out in claim 21, wherein
- 2 the relevant operating conditions are configured as a multi-dimensional attribute
- ³ vector.

5

6

7

8

- 1 23. A method for controlling an amplifier system as set out in claim 22, wherein
- 2 said comparing comprises measuring a distance between the current attribute
- yector and each of the attribute vectors of the list.
- 1 24. A method for controlling an amplifier system as set out in claim 23, wherein
- ² said selecting comprises determining the attribute vector having minimum
- distance from the current operating condition attribute vector.
- 1 25. A method for controlling an amplifier system as set out in claim 21, further
- 2 comprising computing a new alignment setting employing an iterative loop
- 3 controller algorithm, wherein the alignment setting associated with the most
- 4 similar operating condition is used as the initial alignment setting for the adaptive
- ⁵ loop controller algorithm.
- 1 26. A method for controlling an amplifier system as set out in claim 25, further
- 2 comprising updating the alignment list with a new alignment setting computed by
- 3 the adaptive loop controller algorithm.
- 1 27. A method for controlling an amplifier system as set out in claim 21, wherein
- 2 the size of the alignment list is dynamic.
- 1 28. A method for controlling an amplifier system as set out in claim 23, wherein
- 2 the spacing of the stored adjustment settings, as defined by the attribute vector
- 3 distance, varies through the list.
- 1 29. A method for controlling an amplifier system as set out in claim 28, wherein a
- ² higher density of adjustment settings is provided in regions of the list where the
- 3 alignment is most sensitive to one or more operating conditions comprising the
- 4 attribute vector.

1	30. A method of maintaining a list of alignment settings of a control loop of an
2	amplifier system, said list comprising a plurality of elements each element having
3	an alignment setting and a set of parameters corresponding to operating
4	conditions of the amplifier system, said method comprising:
5	selecting an element of the alignment list;
6	determining the element of the alignment list having the most similar
7	corresponding operating conditions to the selected element;
8	determining if the two elements are sufficiently similar to be considered
9	redundant; and
10	deleting the oldest of the two elements of the alignment list if the elements
11	are redundant.
1	31. A method of maintaining a list of alignment settings of a control loop of an
2	amplifier system as set out in claim 30, wherein said selecting an element of the
3	alignment list comprises selecting the oldest element of the list not previously
4	subject to list maintenance processing.
1	32. A method of maintaining a list of alignment settings of a control loop of an
2	amplifier system as set out in claim 30, wherein said determining the element of
3	the alignment list having the most similar corresponding operating conditions to
4	the selected element comprises determining a distance measure to the operating
5	condition parameter values of each of the remaining elements of the alignment
6	list and selecting the element having the minimum distance.
1	33. A method of maintaining a list of alignment settings of a control loop of an
2	amplifier system as set out in claim 32, wherein said distance measure
3	comprises a weighted difference between parameter values corresponding to
4	operating conditions.
1	24 A mothed of maintaining a list of alignment actions of a control line.
2	34. A method of maintaining a list of alignment settings of a control loop of an
_	amplifier system as set out in claim 33, wherein said parameters corresponding

- 3 to operating conditions of the amplifier system comprise one or more of
- 4 temperature, DC power supply, input signal power and input signal carrier
- ⁵ frequency.
- 1 35. A method of maintaining a list of alignment settings of a control loop of an
- 2 amplifier system as set out in claim 30, wherein said determining if the elements
- 3 are sufficiently similar to be considered redundant comprises determining a
- 4 distance measure between the alignment settings and comparing the alignment
- 5 distance to a redundant distance threshold.
- 1 36. A method of maintaining a list of alignment settings of a control loop of an
- 2 amplifier system as set out in claim 32, wherein said determining if the elements
- 3 are sufficiently similar to be considered redundant comprises comparing the
- 4 distance between the operating condition parameters of the two elements to an
- ⁵ outdated distance threshold.

4

- 1 37. A method of maintaining a list of alignment settings of a control loop of an
- 2 amplifier system as set out in claim 30, further comprising repeating said list
- maintenance processing for each element of the alignment list.
- 1 38. A method of generating a hierarchical list of alignment settings of a control
- 2 loop of an amplifier system, said list comprising a plurality of elements each
- ³ element having an alignment setting and a corresponding set of parameters
 - corresponding to operating conditions of the amplifier system, said list having a
 - hierarchical structure comprising at least two levels, said method comprising:
- 6 selecting an element in a first level of the alignment list;
- determining the element of the first level of the alignment list having the
- 8 most similar corresponding operating conditions to the selected element; and
- demoting the oldest of the two elements to a lower level of the hierarchical alignment list.

ATTORNEY DOCKET NO: PWV1.PAU.51

- 1 39. A method of generating a hierarchical list of alignment settings of a control
- 2 loop of an amplifier system as set out in claim 38, wherein said determining the
- 3 element of the alignment list having the most similar corresponding operating
- 4 conditions to the selected element comprises determining a distance measure to
- 5 the operating conditions of each of the remaining elements of the first level of the
- 6 alignment list and selecting the element having the minimum distance.
- 1 40. A method of generating a hierarchical list of alignment settings of a control
- 2 loop of an amplifier system as set out in claim 38, further comprising determining
- 3 if the two elements are redundant, wherein said older element is only demoted if
- 4 the elements are redundant.
- 1 41. A method of generating a hierarchical list of alignment settings of a control
- loop of an amplifier system as set out in claim 38, further comprising repeating
- 3 said list processing for each level of the hierarchical list.
- 1 42. A method of generating a hierarchical list of alignment settings of a control
- 2 loop of an amplifier system as set out in claim 41, wherein said older entry is
- 3 deleted if the list maintenance processing is at the lowest level of the hierarchy.
- 1 43. A method of generating a hierarchical list of alignment settings of a control
- 2 loop of an amplifier system as set out in claim 38, wherein said demoted element
- 3 is associated as a subset list entry of the redundant element not demoted.
- 1 44. A method of generating a hierarchical list of alignment settings of a control
- 2 loop of an amplifier system as set out in claim 43, wherein an element being
- demoted and having a subset list is merged with the subset list of a redundant
- 4 element not demoted.

- 1 45. A method for controlling an amplifier system having a control loop comprising
- 2 a control loop input, a first signal path, a second signal path, and a control loop

3	output, at least one of said first and second signal paths including an amplifier,
4	said method comprising:
5	providing a hierarchical list of alignment settings having at least two levels,
6	each alignment setting having an associated operating condition and some or all
7	of the alignment settings in a highest level having subset alignment settings in a
8	lower level;
9	detecting the current operating conditions of the amplifier system;
10	comparing the current operating conditions to those in the highest level of
11	the hierarchical list of alignment settings;
12	selecting the alignment setting associated with the most similar operating
13	condition in the highest level of the list;
14	comparing the current operating conditions to those in the subset of the
15	selected highest level alignment setting;
16	selecting the alignment setting of the subset with the most similar
17	operating condition; and
18	selecting the alignment setting in the higher or lower level having the most
19	similar operating condition to the current operating condition.
1	46. A method for controlling an amplifier system as set out in claim 45, further
2	comprising repeating the processing for each level of the hierarchical list until the
3	next lower subset is empty.
1	47. A method for controlling an amplifier system as set out in claim 45, wherein
2	the highest level has a coarser spacing of alignment settings than the lower level.
1	48. A method for controlling an amplifier system as set out in claim 47, wherein
2	any two alignment settings have an alignment distance and wherein the highest
3	level has a larger alignment distance between settings than said lower level.

- 1 49. A method for controlling an amplifier system as set out in claim 47, wherein
- 2 said alignment distance is a weighted difference between the adjustment
- 3 settings.
- 1 50. A method for controlling an amplifier system as set out in claim 49, wherein
- 2 the adjustment settings are a gain adjustment and phase adjustment setting and
- ³ wherein the weighting is an alignment sensitivity.