ECE374 SP23 HW2

Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 1

- (a) Describe the DFA that describes the following languages ($\Sigma = \{0,1\}$). Formally define the DFAs and make sure their definitions are unique w.r.t. the other languages in part (a).
 - 1. L_1 contains all strings where the substring 01 appears an odd number of times.
 - 2. L_2 contains all strings where #(1,w) is divisible by three.
 - 3. L_3 contains all strings where the binary value of w is divisible by seven.
- (b) Let L denote the set of all strings $w \in \{0,1\}^*$ that are in **at most two** of the languages in part (a). Formally describe a DFA with input alphabet $\Sigma = \{0,1\}$ that accepts the language L.

Solution

- (a) Formal Definitions of the three DFAs
 - 1. $M_1=(Q_1,\Sigma,\delta_1,s_1,A_1)$, where

$$Q_1 = \{q_{10}, q_{11}, q_{12}, q_{13}\} \qquad s_1 = q_{10} \qquad A_1 = \{q_{11}, q_{12}\}$$

and δ_1 is described by the table below:

	q_{10}	q_{11}	q_{12}	q_{13}
0	q_{11}	q_{11}	q_{13}	q_{13}
1	q_{10}	q_{12}	q_{12}	q_{10}

2.
$$M=(Q_2,\Sigma,\delta_2,s_2,A_2)$$
 , where

$$Q_2 = \{q_{20}, q_{21}, q_{22}\} \qquad s_2 = q_{20} \qquad A_2 = \{q_{20}\}$$

and δ_2 is described by the table below:

	q_{20}	q_{21}	q_{22}
0	q_{20}	q_{21}	q_{22}

3.
$$M=(Q_3,\Sigma,\delta_3,s_3,A_3)$$
, where
$$Q_3=\{q_{30},q_{31},q_{32},q_{33},q_{34},q_{35},q_{36}\} \qquad s_3=q_{30} \qquad A_3=\{q_{30}\}$$
 and δ_3 is described by the table below:

	q_{30}	q_{31}	q_{32}	q_{33}	q_{34}	q_{35}	q_{36}	
0	q_{30}	q_{32}	q_{34}	q_{36}	q_{31}	q_{33}	q_{35}	
1	q_{31}	q_{33}	q_{35}	q_{30}	q_{32}	q_{34}	q_{36}	

(b) Putting it together

The combined DFA should be the product of the three DFAs above.

$$M=(Q,\Sigma,\delta,s,A)$$
 , where

$$ullet \ \ Q = Q_1 imes Q_2 imes Q_3 = \{(q_i,q_j,q_k) \ | \ q_i \in Q_1, q_j \in Q_2, q_k \in Q_3\}$$

$$\bullet \ \ \delta((q_i,q_j,q_k),a)=(\delta_1(q_i,a),\delta_2(q_j,a),\delta_3(q_k,a))$$

•
$$s = (s_1, s_2, s_3) = (q_{10}, q_{20}, q_{30})$$

•
$$A = Q - A_1 \times A_2 \times A_3$$