Sharding | Partitioning

Database Sharding

- ☐ Horizontal partitioning that splits one giant database into smaller components (shards/partitions), which are faster and easier to manage
- ☐ A **shard** is an individual partition that exists on independent database servers called **nodes**

Original Table

CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR
1	TAEKO	OHNUKI	BLUE
2	O.V.	WRIGHT	GREEN
3	SELDA	BAĞCAN	PURPLE
4	JIM	PEPPER	AUBERGINE

Vertical Partitions

CUSTOMER ID	FIRST NAME	LAST NAME
1	TAEKO	OHNUKI
2	O.V.	WRIGHT
3	SELDA	BAĞCAN
4	JIM	PEPPER

VI 2		
CUSTOMER ID	FAVORITE COLOR	
1	BLUE	
2	GREEN	
3	PURPLE	
4	AUBERGINE	

Horizontal Partitions

HP1

CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR
1	TAEKO	OHNUKI	BLUE
2	O.V.	WRIGHT	GREEN

HP2

CUSTOMER ID	FIRST NAME	LAST NAME	FAVORITE COLOR
3	SELDA	BAĞCAN	PURPLE
4	JIM	PEPPER	AUBERGINE

Source: digitalocean.com

Evaluating Business Application Fit

Growth in application data **EXCEEDS** the storage capacity of a single database node

Volume of writes or reads to the database **SURPASSES** what a single node can handle, resulting in slowed response times

Network bandwidth required by the application **OUTPACES** the bandwidth available to a single database node, resulting in slowed response times

Benefits

Data Proximity & Sovereignty

Cost Effective

Source: oracle.com

Sharding Architectures

Also known as Hash based sharding

DIRECTORY BASED SHARDING

Source: digitalocean.com

Case Studies

- Adopted Oracle Sharding for WeChat IoT Application
- Narrow Based (NB) IoT Network user base is projected to grow exponentially
- Chief benefit desired SCALIBILITY

"We do not need to worry about what to do when we need to scale to larger number of users"

- Adopted Oracle Sharding to easily and effectively scale their mission critical transactional databases
- ☐ "Key is Key" Choose one STRONG key and align. E.g. Account/User ID
- ☐ Sharding required major rework in Data Model and Data Design