Analysis I

Daniel Yu

October 21, 2024

Contents

1	1.1 connected sets in \mathbb{R}		3
	1.1	connected sets in $\mathbb R$	5
	1.2	Intermediate Value Theorem	6
2	Pat	h Connected	6

CONTENTS 2

1 Connected Sets

Define connected sets as a set that is not a not connected sets

Definition 1. (X, ρ) is not connected if $\exists U_{\text{open}} \neq \emptyset, V_{\text{open}} \neq \emptyset$ such that

$$X = U \cup V, U \cap V = \emptyset.$$

This is also written as the disjoint union:

$$X = U \coprod V$$
.

Not-connectedness is an intrinsic property of the metric space.

Definition 2. let $E \subseteq X$. E is not connected in X if (E, ρ) is not connected.

Proposition 1. (\rightarrow) $E \subseteq X$ is not connected w.r.t to $X \Leftrightarrow \exists A \neq \emptyset, B \neq \emptyset$ such that $E = A \cup B$ and $\overline{A} \cap B = \emptyset, A \cap \overline{B}$ (closures are in X)

Proof. Assume that $E \subseteq X$ is not connected in $X \Rightarrow (E, \rho)$ is not connected $\Rightarrow \exists U_{\text{open}} \neq \emptyset \subseteq E, V_{\text{open}} \neq \emptyset \subseteq E$ and $E = U \cup V$ where $U \cap V = \emptyset$.

By homework 1, $\exists \tilde{U} \subseteq X, \ \tilde{U} \cap E = U$. Then,

$$\tilde{U} \cap V = (\tilde{U} \cap E) \cap V = U \cap V = \emptyset.$$

Then,

$$V\subseteq \left(X\setminus \tilde{U}\right)\Rightarrow \overline{V}^X\subseteq \left(X\setminus \tilde{U}\right)\Rightarrow \overline{V}\cap \tilde{U}\Rightarrow \overline{V}\cap U=\emptyset.$$

We can apply the same argument to V and obtain that $\overline{U}^X \cap V = \emptyset$. In addition, U, V are nonempty and $E = U \cap V$.

 (\leftarrow) Assume that $\exists A \neq \emptyset, B \neq \emptyset$ such that $E = A \cup B$ and $\overline{A}^X \cap B = \emptyset, A \cap \overline{B}^X$. Since

$$\overline{A} \cap B = \emptyset \Rightarrow B \subseteq X \setminus \overline{A}.$$

Note that $X \setminus \overline{A}$ must then be open since the complement of a closed set is open.

$$(X\setminus \overline{A})\cap E=(X\cap E)\setminus (\overline{A}\cap E)=(A\cup B)\setminus \overline{A}=B.$$

Since $B = (X \setminus \overline{A}) \cap E$, the intersection of an open set with an open set (a metric space is open and closed), then B is an open set in (E, ρ) . We can apply the same arugment to A to show that A is open in (E, ρ) .

We also know that $A \neq \emptyset, B \neq \emptyset, E = A \cup B$ where A, B are open, and $A \cap B = \emptyset$ because $\overline{A} \cap B = \emptyset, A \cap \overline{B} = \emptyset$. Thus, E is not connected in X as (E, ρ) is not connected

Note. Example

Consider the set in \mathbb{R}^2 . Define $E = \{(0, y) \mid -1 \le y \le 1\} \coprod \{\sin \frac{1}{x} \mid 0 < x \le \frac{2}{\pi}\}$ where \coprod is the disjoint union. This is an example of a **connected set**

Figure 1: E is connected!

Note that the red line never reaches the blue, so they don't intersect.

Theorem 1. Let $f: X \to Y$ a continous map and $E \subseteq X$ (connected in X) $\Rightarrow f(E)$ is connected in Y.

Proof. Since $f: X \to Y$ is continuous, then $f: E \to f(E)$ is also continuous. We are given that (E, ρ) is connected. Consider the strongest case where E = X, so (X, ρ_X) is connected and Y = f(X). Since by subspace topology, we can always restrict to $E \subseteq X, f: E \to f(E)$, then the above case is enough to prove the statement for all cases.

Thus, we will prove that if $f: X \to Y$ is continuous and X is not connected and f(X) = Y then Y is connected. Prove this by contradiction, assume that the above holds but Y is not connected. Then

$$Y = U \coprod V, U_{\text{open}} \neq \emptyset, V_{\text{open}} \neq \emptyset.$$

Consider the pre-images which we know are open due to continuous map theorems.

$$f^{-1}(U) \subseteq X, f^{-1}(V) \subseteq X.$$

We also know that both pre-images are not empty because the image is not empty and the map is onto (we construct f(X) = Y).

$$f^{-1}(U) \neq \emptyset, f^{-1}(V) \neq \emptyset.$$

We can use the following result from set theory:

$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V).$$

And we know that $U \cap V = \emptyset$ because $U \coprod V$ (disjoint union), so

$$\begin{split} f^{-1}\left(U\cap V\right) &= f^{-1}\left(\emptyset\right) \\ &= \emptyset \\ &= f^{-1}(U)\cap f^{-1}(V). \end{split}$$

This means that open set $f^{-1}(U), f^{-1}(V)$ in X and which $f^{-1}(U) \cup f^{-1}(V) = X$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, so $f^{-1}(U) \coprod f^{-1}(V) = X$ and X is not connected. This is a contradiction. Thus, if $f: X \to Y$ is continuous and X is not connected and f(X) = Y then Y is connected which is enough to prove the more general statement $f: X \to Y$ continuous map and $E \subseteq X \Rightarrow f(E)$ connected in Y.

1.1 connected sets in \mathbb{R}

Theorem 2. $E \subseteq \mathbb{R}$ is not connected $\Leftrightarrow \exists x, y \in E$, s.t. x < y and x < z < y, where $z \notin E$

Proof. (\Rightarrow) Assume that E is not connected. Then, $\exists U \neq \emptyset, V \neq \emptyset, U, V$ open in E, $E = U \coprod V$ ($U = X \setminus V$ but V is open, so U is open and closed and by the same arugment V is also open and closed). Take $x \in U, y \in V$. Without loss of generality, assume that x < y. Consider

$$\alpha = \sup([x, y] \cap U)$$
.

which must exist as [x, y] is bounded and U is bounded. Consider the following cases:

- 1. If $\alpha \notin E$ then $x < \alpha < y$ (since $x, y \in E$ and $\alpha \notin E$). The theorem thus holds for all $z = \alpha$
- 2. If $\alpha \in E$ then either:
 - (a) $\alpha \in U$ then since U is open in E, $\exists \varepsilon > 0$ such that

$$B_{\varepsilon}(\alpha)^E = ((\alpha - \varepsilon, \alpha + \varepsilon) \cap E) \subseteq U.$$

and $\alpha + \varepsilon < y$. Take $z \in (\alpha, \alpha + \varepsilon)$,

- i. If $z \notin E$ then $x \le \alpha < z < \alpha + \varepsilon < y$. Hence, the theorem follows in this case
- ii. If $z \in E$, then $z > \alpha$, $e \in [x,y] \cap U \Rightarrow \alpha$ is not the $sup([x,y] \cap U)$ so this arugment is not possible.
- (b) If $\alpha \in V$ then this means that $\alpha \notin ([x,y] \cap U)$. Then α is a limit point of $[x,y] \cap U \Rightarrow \alpha \in E$ is a limit point of U. Note that U is both open and closed in E which implies that $\alpha \in U$, but we know $V \cap U = \emptyset$, so this is a contradiction!

Definition 3. A subset E is convex if $\forall x, y \in E$ we have that $[x, y] = \{tx + (1-t)y \mid 0 \le t \le 1\} \subseteq E$

Theorem 3. $E \subseteq \mathbb{R}$ is connected $\Leftrightarrow E$ is convex.

Proof.

Corollary 1. A subset $E \subseteq \mathbb{R}$ is connected $\Leftrightarrow E$ is one of the following sets: \emptyset , \mathbb{R} , (a,b), [a,b], [a,b), (a,b), (a,b), (a,a), (a,∞) , (a,∞)

1.2 Intermediate Value Theorem

Corollary 2. If $f:[a,b] \to \mathbb{R}$ be continuous and f(a) < f(b). Then if f(a) < c < f(b) then $\exists x_* \in [a,b]$ such that $f(x_*) = c$.

Proof. The interval [a, b] is connected and compact (in [a, b], we restrict to [a, b] because the function only defined as [a, b]) then since $f : [a, b] \to \mathbb{R}$ is continuous, f([a, b]) must also be connected and compact in $\mathbb{R} \Rightarrow f([a, b]) = [A, B]$. Since the interval exists then $f(x_*) \in [A, B]$ exists and must be the image of $x_* \in [a, b]$.

Note. We don't necessarily need compactness just to prove the above theorem, we use compactness for the stronger conclusion that the image of a closed interval under a continuous map is also a closed interval (where closed interval in \mathbb{R} is connected and compact).

2 Path Connected

2 PATH CONNECTED

6

Definition 4. X is path connected if $\forall x,y \in X \exists$ a continuous map $\gamma[0,1] \to X$ such that $\gamma(0) = x, \gamma(1) = y$.

Proposition 2. If (X, ρ) is path connected $\Rightarrow X$ is connected i.e. {path connected sets} \subseteq {connected sets}