Integrali multidimensionali

Lucrezia Bioni

Thm: Teorema di Fubini

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}, E \in \mathcal{M}(\mathbb{R}^n), f \in L(E)$. Sia $\mathbb{R}^m \times \mathbb{R}^k = \mathbb{R}^n$ una decomposizione ortogonale. Allora:

- per q.o.x la sezione $E(x) = \{y \in \mathbb{R}^k \text{ con } (x,y) \in E\}$ è misurabile in \mathbb{R}^k per q.o. la funzione $x \mapsto \int_{E(x)} f(x,y) dy$ è ben definita, ed è in $L(\mathbb{R}^m)$
- $\int_E f(x,y)dxdy = \int_{\mathbb{R}^m} \left[\int_{E(x)} f(x,y)dy \right] dx$

Thm: Teorema di Tonelli

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}, E \in \mathcal{M}(\mathbb{R}^n), f \in \mathcal{M}(E), f(x) \geq 0 \,\forall x.$ Sia $\mathbb{R}^m \times \mathbb{R}^k = \mathbb{R}^n$ una decomposizione

- \bullet per $q.o.\,x$ la sezione $E(x)=\{y\in\mathbb{R}^k \text{ con } (x,y)\in E\}$ è misurabile in \mathbb{R}^k
- per q.ox la funzione $x \mapsto \int_{E(x)} f(x,y) dy$ è ben definita, ed è in $L(\mathbb{R}^m)$
- $\int_{E} f(x,y) dx dy = \int_{\mathbb{R}^m} \left[\int_{E(x)} f(x,y) dy \right] dx$

Thm: Teorema per il cambiamento di coordinate

Sia $\Phi:\Omega\subseteq\mathbb{R}^n\to\tilde{\Omega}$, con Ω e $\tilde{\Omega}$ aperti, un cambiamento di coordinate (dunque un diffeomorfismo). Sia $E \subseteq \tilde{\Omega}, E \in \mathcal{M}(\mathbb{R}) \implies \Phi^{-1}(E) \in \mathcal{M}(\mathbb{R}^n).$

Sia $f: E \to \mathbb{R}, f \in L(E)$ oppure $f: E \to [0, +\infty]$ e misurabile. Allora:

$$\int_{\Phi^{-1}(E)} f(\Phi(x)) \left| \det J\Phi(x) \right| dx = \int_{E} f(y) dy$$

Thm: Formule di Green

Sia D un dominio regolare in \mathbb{R}^2 . Sia $f:\Omega\subset\mathbb{R}^2\to\mathbb{R},D\subseteq\Omega,\Omega$ aperto, $f\in\mathcal{C}^1(\Omega)$, allora:

$$\int_{D} \frac{\partial f}{\partial x}(x, y) dx dy = \int_{\partial D^{+}} f(x, y) dy$$
$$\int_{D} \frac{\partial f}{\partial y}(x, y) dx dy = -\int_{\partial D^{+}} f(x, y) dx$$

Thm: Teorema della divergenza (Gauss) e di Stokes in \mathbb{R}^2

Sia $D \subseteq \mathbb{R}^2$ un dominio regolare. Sia $F: \Omega \to \mathbb{R}^2, D \subseteq \Omega, \Omega$ aperto, un campo vettoriale di classe $\mathcal{C}^1(\Omega)$, F = (f, g) allora:

$$\int_{D} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dx dy = \int_{D} \text{Div} F dx dy = \int_{\partial D^{+}} (f dy - g dx) = \int_{\partial D^{+}} \langle F, \nu \rangle ds$$

$$\int_{D} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \int_{\partial D^{+}} (f dx + g dy) = \int_{\partial D^{+}} \langle F, \tau \rangle ds$$

Def: Equazione del piano tangente

Sia $s_0 \in \overset{\circ}{S} \left(\equiv \operatorname{Im} \phi \left(\overset{\circ}{D} \right) \right)$. Allora S ha in s_0 un piano tangente che ha equazione:

$$\det \left[\mathbf{x} - s_0 \mid \partial_u \phi(u_0, v_0) \mid \partial_v \phi(u_0, v_0) \right] = 0$$

Def: Integrale di superficie

Data una superficie ϕ (non necessariamente orientabile) di sostegno S, sia $f:W\subseteq\mathbb{R}^3\to\mathbb{R}$, con S $\subseteq W$, dico che f è integrabile (secondo Lebesgue) su S quando $f\circ\phi\|\partial_{\mathbf{u}}\phi\wedge\partial_{\mathbf{v}}\phi\|$ è Lebesgue integrabile in D. In tal caso si pone:

$$\int_{S} f \, d\sigma = \int_{D} (f \circ \phi)(u, v) \, \|\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi\| \, du dv$$

Thm: Teorema della divergenza (Gauss) in \mathbb{R}^3

Sia T un dominio regolare e sia $\mathbf{F}=(F_1,F_2,F_3)$ un campo vettoriale di classe $\mathcal{C}^1(\Omega)$, con Ω aperto, $T\subseteq\Omega$, allora:

$$\int_T Div {\bf F} \ dx \, dy \, dz = \int_{\partial T^+} <{\bf F}, \nu > \, d\sigma$$

Dove
$$Div \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} e \nu = \frac{\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi}{\|\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi\|}$$

Thm: Teorema di Stokes in \mathbb{R}^3

Sia $\phi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una superficie regolare con bordo, con D dominio regolare, di sostegno S. Sia **F** un campo vettoriale di classe $\mathcal{C}^1(W)$ con W un aperto di $\mathbb{R}^3, S \subseteq W$. Allora:

$$\int_{S} < \operatorname{rot} F, \nu > d\sigma = \int_{\partial S^{+}} < \mathbf{F}, \tau > ds$$

Dove $rot \mathbf{F}$:

$$\begin{bmatrix} i & \partial x & F_1 \\ j & \partial y & F_2 \\ k & \partial z & F_3 \end{bmatrix}$$