Лабораторная работа 1 по Численным Методам Анализа

Емельков Матвей Егорович

ИСУ: 471918

Смирнов Александр Вячеславович

ИСУ: 467504

Группа: J3110 Вариант 31

 ${
m Cahkt-} \Pi$ етербург 2025

Результаты экспериментов

Таблица 1: Зависимость числа обусловленности от МАЕ

Степень полинома	Scaler	Число обусловленности	MAE (train)	MAE (test)
1	False	$2.2245574280 \times 10^{8}$	2.9926	4.1047
1	True	$8.7527996755 imes 10^{1}$	2.9926	4.1047
2	False	$4.8020284455 \times 10^{19}$	1.6466	3.1394
2	True	$8.2037250983 \times 10^{18}$	9.3011	9.8120
3	False	$1.1804851265 \times 10^{35}$	0.0000	262.0172
3	True	$6.6853905669 \times 10^{20}$	7.1742×10^{15}	7.2487×10^{20}

Выводы:

- 1. Чем выше число обусловленности, тем больше модель склонна к переобучению (MAE на train ↓) и к численной нестабильности (MAE на test ↑).
- 2. При умеренном cond train-ошибка падает, а test-ошибка может слегка улучшиться но дальше рост cond ведёт к резкому росту test-MAE.
- 3. Масштабирование (StandardScaler) снижает cond и стабилизирует решение, но при экстремально больших полиномиальных признаках даже оно не спасает модель от деградации.

Ссылка на код Colab: https://colab.research.google.com/drive/1S5T5YEsI6fmcZ-cgxZTT6vusp=drive_link