# Laboratorio di Elettronica e Tecniche di Acquisizione Dati 2024-2025

### **Fotodiodo**

cfr. http://www-3.unipv.it/lde/didattica\_elettronicall/photodiode.pdf

 Fotodiodo: trasduttore da segnale ottico a segnale elettrico ("fotorivelatore")



 Diodo a semiconduttore operato con polarizzazione inversa. Quando un fotone con energia E=hv > E<sub>gap</sub> incide nella zona svuotata, può convertire in una coppia elettrone-lacune che contribuisce a una corrente di segnale.



## Fotodiodi

- I fotodiodi sono dispositivi a semiconduttore con struttura PN (o PIN), impiegati come trasduttori di potenza luminosa
- L'energia trasportata dalla radiazione elettromagnetica, assorbita nella regione di svuotamento o nella regione intrinseca, determina la generazione di coppie elettrone/lacuna, che contribuiscono alla formazione di una corrente elettrica.
- La caratteristica tensione corrente di un fotodiodo è dunque uguale a quella di un diodo, con l'aggiunta di un termine di corrente fotogenerata I<sub>ph</sub>:

dove  $I_0$  è la corrente di leakage del diodo,  $V_D$  la tensione ai capi del dispositivo e  $V_T$  la tensione termica (kT/e). Si osservi che, in condizioni di polarizzazione inversa ( $V_D \le 0$ ), la corrente sarà data da  $I_0$  e  $I_{ph}$ , e, addirittura, per  $V_D = 0$ ,  $I_D = -I_{ph}$ .



 La corrente fotogenerata I<sub>ph</sub> risulta proporzionale alla potenza luminosa incidente, ovvero al flusso di fotoni che colpiscono il dispositivo:

$$I_{ph} = S \cdot P = \frac{\eta e}{h \nu} P$$
,  $\frac{P}{h \nu} = \#$  fotoni al sec.

- dove S è la sensibilità spettrale, η è l'efficienza quantica, e è la carica dell'elettrone (1.602 10<sup>-19</sup> C), P è la potenza dell'onda elettromagnetica incidente, h è la costante di Plank (6.625 10<sup>-34</sup> J·s) e v è la frequenza dell'onda elettromagnetica.
- altri parametri caratteristici di un fotodiodo sono la linearità, la corrente di buio, la sensibilità spettrale, la capacità di giunzione, la tensione di breakdown ed il tempo di risposta

- Efficienza quantica: probabilità di creazione di una coppia e-h per fotone incidente
- Responsività: corrente generata per potenza luminosa incidente (A/W).

Entrambe sono funzione della lunghezza d'onda della luce incidente, ovvero dell' energia dei quanti di luce.



# **Applicazioni**

| Settore                     | Impiego o dispositivo                                                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|
| Fotocamere                  | Misuratori di intensità luminosa, controllo automatico dell'otturatore, auto-focus, controllo del flash       |
| Strumentazione<br>medica    | Scanner per TAC – rivelazione di raggi X, analisi biologiche (e.g. sul sangue), ossimetria                    |
| Dispositivi di<br>sicurezza | Rivelatori di fumo e di fiamma, apparati a raggi X per ispezioni di aeromobili, rivelatori di intrusione      |
| Automotive                  | Headlight dimmer, rivelatore di luce solare (per regolazione della climatizzazione)                           |
| Comunicazioni               | Convertitori opto-elettronici, controllo ottico remoto                                                        |
| Industria                   | Lettori di codici a barre, encoder, sensori di posizione, misura della densità del toner nelle fotocopiatrici |

# Modalità operative

 Modalità fotovoltaica: il fotodiodo opera in assenza di tensioni di polarizzazione ed è in grado di erogare potenza elettrica. In particolare per I<sub>D</sub>=0, il fotodiodo si comporta come un generatore di tensione:



$$V_{D} = V_{T} ln \left( \frac{I_{ph}}{I_{0}} + 1 \right)$$

 Modalità fotoconduttiva: il fotodiodo opera in condizioni di polarizzazione inversa o nulla, V<sub>D</sub>≤0 e si comporta come un generatore di corrente. In particolare se V<sub>D</sub>=0:

$$I_{\text{D}} = -I_{\text{ph}}$$



# Modalità operative

 Modalità fotovoltaica: il fotodiodo opera in assenza di tensioni di polarizzazione ed è in grado di erogare potenza elettrica. In particolare per I<sub>D</sub>=0, il fotodiodo si comporta come un generatore di tensione:



 Modalità fotoconduttiva: il fotodiodo opera in condizioni di polarizzazione inversa o nulla, V<sub>D</sub>≤0 e si comporta come un generatore di corrente. In particolare se V<sub>D</sub>=0:

$$I_{\text{D}} = -I_{\text{ph}}$$







Fotodiodo con amplificatore transimpedenza on-chip

(integra un op-amp con feedback negativo che trasforma il segnale in corrente in segnale in tensione)

#### **Block Diagram**



#### Spectral Responsivity





OPT101

SBBS002B-JANUARY 1994-REVISED JUNE 2015

#### **OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier**

#### 1 Features

- Single Supply: 2.7 to 36 V
- Photodiode Size: 0.090 inch × 0.090 inch (2.29 mm × 2.29 mm)
- Internal 1-MΩ Feedback Resistor
- High Responsivity: 0.45 A/W (650 nm)
- Bandwidth: 14 kHz at  $R_F = 1 M\Omega$
- Low Quiescent Current: 120 μA
- Packages: Clear Plastic 8-pin PDIP and J-Lead SOP

#### 2 Applications

- Medical Instrumentation
- Laboratory Instrumentation
- Position and Proximity Sensors
- Photographic Analyzers
- Barcode Scanners
- Smoke Detectors
- · Currency Changers

#### 3 Description

The OPT101 is a monolithic photodiode with on-chip transimpedance amplifier. The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs, such as leakage current errors, noise pick-up, and gain peaking as a result of stray capacitance. Output voltage increases linearly with light intensity. The amplifier is designed for single or dual power-supply operation.

The 0.09 inch × 0.09 inch (2.29 mm × 2.29 mm) photodiode operates in the photoconductive mode for excellent linearity and low dark current.

The OPT101 operates from 2.7 V to 36 V supplies and quiescent current is only 120  $\mu$ A. This device is available in clear plastic 8-pin PDIP, and J-lead SOP for surface mounting. The temperature range is 0°C to 70°C.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE  | BODY SIZE (NOM)   |
|-------------|----------|-------------------|
| ODT404      | PDIP (8) | 9.53 mm × 6.52 mm |
| OPT101      | SOP (8)  | 9.52 mm × 6.52 mm |

(1) For all available packages, see the package option addendum at the end of the data sheet.



www.ti.com

**OPT101** 

SBBS002B - JANUARY 1994-REVISED JUNE 2015

#### 5 Pin Configuration and Functions

#### DTL and NTC Packages 8-pin SOP and 8-pin PDIP Top View



(1) Photodiode location.

#### **Pin Functions**

| PIN I/O |                | 1/0    | DESCRIPTION                                                                                                             |  |
|---------|----------------|--------|-------------------------------------------------------------------------------------------------------------------------|--|
| NO.     | NAME           | 1/0    | DESCRIPTION                                                                                                             |  |
| 1       | V <sub>S</sub> | Power  | Power supply of device. Apply 2.7 V to 36 V relative to –V pin.                                                         |  |
| 2       | –In            | Input  | Negative input of op amp and the cathode of the photodiode. Either do not connect, or apply additional op amp feedback. |  |
| 3       | -V             | Power  | Most negative power supply. Connect to ground or a negative voltage that meets the recommended operating conditions.    |  |
| 4       | 1MΩ Feedback   | Input  | Connection to internal feedback network. Typically connect to Output, pin 5.                                            |  |
| 5       | Output         | Output | Output of device.                                                                                                       |  |
| 6       | NC             | _      | Do not connect                                                                                                          |  |
| 7       | NC             | _      | Do not connect                                                                                                          |  |
| 8       | Common         | Input  | Anode of the photodiode. Typically, connect to ground.                                                                  |  |

#### 6.5 Electrical Characteristics

At  $T_A$  = 25°C,  $V_S$  = 2.7 V to 36 V,  $\lambda$  = 650 nm, internal 1-M $\Omega$  feedback resistor, and  $R_L$  = 10 k $\Omega$  (unless otherwise noted)

|           | PARAMETER                         | TEST CONDITIONS                                                                         | MIN 7                   | YP MAX | UNIT            |
|-----------|-----------------------------------|-----------------------------------------------------------------------------------------|-------------------------|--------|-----------------|
| RESPONSIN | /ITY                              |                                                                                         | -                       |        |                 |
|           | Photodiode current                |                                                                                         | (                       | ).45   | A/W             |
|           | Voltage output                    |                                                                                         | (                       | 1.45   | V/µW            |
|           | Voltage output vs temperature     |                                                                                         |                         | 100    | ppm/°C          |
|           | Unit-to-unit variation            |                                                                                         | ±                       | 5%     |                 |
|           | Nonlinearity <sup>(1)</sup>       | Full-scale (FS) output = 24 V                                                           | ±C                      | .01    | % of FS         |
|           | D                                 | 0.090 in × 0.090 in                                                                     | 0.                      | 008    | in <sup>2</sup> |
|           | Photodiode area                   | 2.29 mm × 2.29 mm                                                                       |                         | 5.2    | mm <sup>2</sup> |
| DARK ERR  | ORS, RTO <sup>(2)</sup>           |                                                                                         | -                       |        | !               |
|           | Offset voltage, output            |                                                                                         | 5                       | 7.5 10 | mV              |
|           | Offset voltage vs temperature     |                                                                                         |                         | ±10    | μV/°C           |
|           | Offset voltage vs power supply    | V <sub>S</sub> = 2.7 V to 36 V                                                          |                         | 10 100 | μV/V            |
|           | Voltage noise, dark               | $f_B = 0.1 \text{ Hz to } 20 \text{ kHz}, V_S = 15 \text{ V}, V_{PIN3} = -15 \text{ V}$ |                         | 300    | μVrms           |
| TRANSIMPI | EDANCE GAIN                       |                                                                                         |                         |        |                 |
|           | Resistor                          |                                                                                         |                         | 1      | МΩ              |
|           | Tolerance                         |                                                                                         | ±0.                     | 5% ±2% |                 |
|           | Tolerance vs temperature          |                                                                                         |                         | ±50    | ppm/°C          |
| REQUENC   | Y RESPONSE                        |                                                                                         |                         |        |                 |
|           | Bandwidth                         | V <sub>OUT</sub> = 10 V <sub>PP</sub>                                                   |                         | 14     | kHz             |
|           | Rise and fall time                | 10% to 90%, V <sub>OUT</sub> = 10-V step                                                |                         | 28     | μs              |
|           |                                   | to 0.05%, V <sub>OUT</sub> = 10-V step                                                  |                         | 160    | μs              |
|           | Settling time                     | to 0.1%, V <sub>OUT</sub> = 10-V step                                                   |                         | 80     | μs              |
|           |                                   | to 1%, V <sub>OUT</sub> = 10-V step                                                     |                         | 70     | μs              |
|           | Overload recovery                 | 100%, return to linear operation                                                        |                         | 50     | μs              |
| OUTPUT    |                                   |                                                                                         |                         |        |                 |
|           | Voltage output, high              |                                                                                         | $(V_S) - 1.3 (V_S) - 1$ | .15    | V               |
|           | Capacitive load, stable operation |                                                                                         |                         | 10     | nF              |
|           | Short-circuit current             | V <sub>S</sub> = 36 V                                                                   |                         | 15     | mA              |
| POWER SU  | PPLY                              |                                                                                         |                         |        |                 |
|           | Quincoant aurrent                 | Dark, V <sub>PIN3</sub> = 0 V                                                           |                         | 120    | μΑ              |
|           | Quiescent current                 | R <sub>L</sub> = ∞, V <sub>OUT</sub> = 10 V                                             |                         | 220    | μA              |

- (1) Deviation in percent of full scale from best-fit straight line.
- (2) Referred to output. Includes all error sources.

#### 6.6 Electrical Characteristics: Photodiode

At  $T_A = 25$ °C and  $V_S = 2.7$  V to 36 V (unless otherwise noted)

| PARAMETER                   | TEST CONDITIONS             | MIN TYP MAX       | UNIT            |
|-----------------------------|-----------------------------|-------------------|-----------------|
| Photodiode area             | 0.090 in × 0.090 in         | 0.008             | in <sup>2</sup> |
| Priotodiode area            | 2.29 mm × 2.29 mm           | 5.2               | mm <sup>2</sup> |
|                             | λ = 650 nm                  | 0.45              | A/W             |
| Current responsivity        |                             | 865               | (µA/W)/cm       |
| Dark current                | V <sub>DIODE</sub> = 7.5 mV | 2.5               | pA              |
| Dark current vs temperature | V <sub>DIODE</sub> = 7.5 mV | Doubles every 7°C | _               |
| Capacitance                 |                             | 1200              | pF              |

#### 6.7 Electrical Characteristics: Op Amp<sup>(1)</sup>

At  $T_A$  = 25°C,  $V_S$  = 2.7 V to 36 V,  $\lambda$  = 650 nm, internal 1-M $\Omega$  feedback resistor, and  $R_L$  = 10 k $\Omega$  (unless otherwise noted)

| PARAMETER                             | TEST CONDITIONS                             | MIN TYP MA                                       | X UNIT   |
|---------------------------------------|---------------------------------------------|--------------------------------------------------|----------|
| INPUT                                 |                                             | ,                                                |          |
| Offset voltage                        |                                             | ±0.5                                             | mV       |
| vs temperature                        |                                             | ±2.5                                             | μV/°C    |
| vs power supply                       |                                             | 10                                               | μV/V     |
| Input bias current                    | (–) input                                   | 165                                              | pA       |
| vs temperature                        | (–) input                                   | Doubles every 10°C                               | _        |
| land time and are a                   | Differential                                | 400    5                                         | MΩ    pF |
| Input impedance                       | Common-mode                                 | 250    35                                        | GΩ    pF |
| Common-mode input voltage range       | Linear operation                            | 0 to (V <sub>S</sub> – 1)                        | V        |
| Common-mode rejection                 |                                             | 90                                               | dB       |
| OPEN-LOOP GAIN                        |                                             |                                                  |          |
| Open-loop voltage gain                |                                             | 90                                               | dB       |
| FREQUENCY RESPONSE                    |                                             | ·                                                |          |
| Gain bandwidth product <sup>(2)</sup> |                                             | 2                                                | MHz      |
| Slew rate                             |                                             | 1                                                | V/µs     |
|                                       | 0.05%                                       | 8.0                                              | μs       |
| Settling time                         | 0.1%                                        | 7.7                                              | μs       |
|                                       | 1%                                          | 5.8                                              | μs       |
| ОИТРИТ                                |                                             |                                                  |          |
| Voltage output, high                  |                                             | (V <sub>S</sub> ) – 1.3 (V <sub>S</sub> ) – 1.15 | V        |
| Short-circuit current                 | V <sub>S</sub> = 36 V                       | 15                                               | mA       |
| POWER SUPPLY                          |                                             |                                                  |          |
| Ovice court avenue at                 | Dark, V <sub>PIN3</sub> = 0 V               | 120                                              | μA       |
| Quiescent current                     | R <sub>L</sub> = ∞, V <sub>OUT</sub> = 10 V | 220                                              | μA       |

<sup>(1)</sup> Op amp specifications provided for information and comparison only.(2) Stable gains ≥ 10 V/V.