

FPN目标检测网络

报告人: 石强

原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。

4种利用特征的形式

a 图像金子塔 b顶层特征 c多层特征融合 d多层特征融合 (底层特征和顶层特征融合)

FPN的结构详解

上一个结构中,带有skip connection的 网络结构在预测的时候是在finest level (自顶向下的最后一层)进行的,简单 讲就是经过多次上采样并融合特征到最 后一步,拿最后一步生成的特征做预测

而下面一个网络结构和上面的类似,区 别在于预测是在每一层中独立进行的

一个自底向上的线路,一个自顶向下的线路,横向连接(lateral connection)。 图中放大的区域就是横向连接,这里1*1的 卷积核的主要作用是减少卷积核的个数, 也就是减少了feature map的个数,并不 改变feature map的尺寸大小

自底向上其实就是网络的前向过程。在前向过程中,feature map的大小在经过某些层后会改变,而在经过其他一些层的时候不会改变,作者将不改变feature map大小的层归为一个stage,因此每次抽取的特征都是每个stage的最后一个层输出,这样就能构成特征金字塔。

自顶向下的过程采用上采样(upsampling)进行,而横向连接则是将上采样的结果和自底向上生成的相同大小的feature map进行融合(merge)。在融合之后还会再采用3*3的卷积核对每个融合结果进行卷积,目的是消除上采样的混叠效应(aliasing effect)

RPN网络

作者一方面将FPN放在RPN网络中用于生成proposal,原来的RPN网络是以主网络的某个卷积层输出的feature map作为输入,简单讲就是只用这一个尺度的feature map。但是现在要将FPN嵌在RPN网络中,生成不同尺度特征并融合作为RPN网络的输入。在每一个scale层,都定义了不同大小的anchor,对于P2,P3,P4,P5,P6这些层,定义anchor的大小为32^2,64^2,128^2,256^2,512^2,另外每个scale层都有3个长宽对比度:1:2,1:1,2:1。所以整个特征金字塔有15种

正负样本

如果某个anchor和一个给定的ground truth有最高的IOU或者和任意一个 Ground truth的IOU都大于0.7,则是正样本。如果一个anchor和任意一个 ground truth的IOU都小于0.3,则为负样本。

假如fpn的rpn的有效性

RPN	feature	# anchors	lateral?	top-down?	AR ¹⁰⁰	AR^{1k}	AR^{1k}_s	AR_m^{1k}	AR_l^{1k}
(a) baseline on conv4	C_4	47k			36.1	48.3	32.0	58.7	62.2
(b) baseline on conv5	C_5	12k			36.3	44.9	25.3	55.5	64.2
(c) FPN	$\{P_k\}$	200k	1	✓	44.0	56.3	44.9	63.4	66.2
Ablation experiments follow:									
(d) bottom-up pyramid	$\{P_k\}$	200k	V		37.4	49.5	30.5	59.9	68.0
(e) top-down pyramid, w/o lateral	$\{P_k\}$	200k	90	1	34.5	46.1	26.5	57.4	64.7
(f) only finest level	P_2	750k	1	njtp:	38.4	51.3	35.1	59.7	67.6

网络这些结果都是基于ResNet-50。评价标准采用AR,AR表示Average Recall,AR右上角的100表示每张图像有100个anchor,AR的右下角s,m,l表示COCO数据集中object的大小分别是小,中,大。feature列的大括号{}表示每层独立预测。

- 从 (a) (b) (c) 的对比可以看出FRN的作用确实 很明显。另外 (a) 和 (b) 的对比可以看出高层特 征并非比低一层的特征有效。
- (d) 表示只有横向连接,而没有自顶向下的过程,也就是仅仅对自底向上(bottom-up)的每一层结果做一个1*1的横向连接和3*3的卷积得到最终的结果,有点像Fig1的(b)。从feature列可以看出预测还是分层独立的。作者推测(d)的结果并不好的原因在于在自底向上的不同层之间的semantic gaps比较大。
- (e) 表示有自顶向下的过程,但是没有横向连接,即向下过程没有融合原来的特征。这样效果也不好的原因在于目标的location特征在经过多次降采样和上采样过程后变得更加不准确。
- (f) 采用finest level层做预测(参考Fig2的上面那个结构),即经过多次特征上采样和融合到最后一步生成的特征用于预测,主要是证明金字塔分层独立预测的表达能力。显然finest level的效果不如FPN好,原因在于PRN网络是一个窗口大小固定的滑动窗口检测器,因此在金字塔的不同层滑动可以增加其对尺度变化的鲁棒性。另外(f)有更多的anchor说明增加anchor的数量并不能有效提高准确率。

FPN性能

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(*) baseline from He et al. [16] [†]	RPN, C_4	C_4	conv5			47.3	26.3	# E 3	155	===
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	~	http://	56.9	33.9	17.8	37.78	45.8

	backbone	competition	image pyramid	test-dev					test-std				
method				AP _{@.5}	AP	AP_s	AP_m	AP_l	AP _{@.5}	AP	AP_s	AP_m	AP_l
ours, Faster R-CNN on FPN	ResNet-101	4		59.1	36.2	18.2	39.0	48.2	58.5	35.8	17.5	38.7	47.8
Competition-winning single-n	nodel results follow:		×		X2				20	20	0		
G-RMI [†]	Inception-ResNet	2016		1 62	34.7	1250	26	32	320	153	323	当	200
AttractioNet [‡] [10]	VGG16 + Wide ResNet§	2016	1	53.4	35.7	15.6	38.0	52.7	52.9	35.3	14.7	37.6	51.9
Faster R-CNN +++ [16]	ResNet-101	2015	1	55.7	34.9	15.6	38.7	50.9	853	(5)	323	靈	25
Multipath [40] (on minival)	VGG-16	2015		49.6	31.5	3763		0.54		S-85	-		
ION [‡] [2]	VGG-16	2015		53.4	31.2	12.8	32.9	45.2	52.9 S	30.7	11.8	32.8	44.8

作者提出的FPN (Feature Pyramid Network) 算法同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的,这和常规的特征融合方式不同。

祝您有个美好的一天

