MATH 592 1/19/2024 Based = Spaces with a base-point *, continuous maps $f: X \to Y$ f(*) = *. · Gy = Groups, humamoghusms of groups New discussion: Tuesday, EH5822 1-2 pm

TI, : Based -> Gp

htop = topological spaces, homotopy dasser of (confinuous) maps Notation: X = f f: Y my g: Y m comfinuous mars fog ~ Idy, gof ~ Idx A space homotopy-equivalent to a point is called contractible.

Grospoid = A category whose every morphism is an isomorphism. let X be a topologial yours. Exemple: Objects = proint of X (X as a set) $\Pi(X)$ paupond Monphiseur co: x -> y where there exists a homestopy h: $\omega_1 \simeq \omega_2$ maps w:[0,1] -> X 0 ---> X $h^{f}(\mathfrak{d}) = x$ ¥ { = [0,1] Composition is defined the seence as in the fundamental group:

w: X -> y wz: y -> 2 w hf(1) = A (as in after def. of T, (X,x))

Natural Fransformation: let F, b: 6 -> De functions. A natural transformation y: F > 6 consists of a D-maybin, for every object x & & Such that for a G - morphism $f: x \to y$ we have a commutative diagram f(x) = f(x) = f(x) = f(x)F(x) -4x (x) $\mathcal{L} \qquad \mathcal{L}(f) \circ \varphi_{\chi} = \mathcal{L}_{\chi} \circ F(f)$

Example with the fundamental groupoid:
TT: Top - Groupoids fundos lon moghveur f: 1 -> 1 $\omega: X_1 \longrightarrow X_2$ fow). $\omega: [0,1) \to X$

Proposition: A homotopy $h: f \simeq g$, $f:g: X \to Y$ specifies a natural transformation $\Pi(f) \to \Pi(g)$. $\Pi(f): \Pi(X) \to \Pi(Y)$ Proof: f(x) = f(y)f(y) = f(y)

Refine (4: T1(f) -> T1(g) by: Px = he (x)

WIX -> y ETI(X)

We say that a natural transformation più a natural isomorphism if ψ_{x} is an isomorphism for every x. (Note: $\varphi^{-1} = (\varphi_{x}^{-1})$ is automatically natural). Nac lane: Categories for a working reallematician.

In a groupoid, every natural transformation is a natural isonerylusur.

We can form a category Cup whose object are small groupoids

I By C FOF > GOG and morphous are equipment classes

of functors under the relation of being

most walls isomorphic.

A PU B TI An equivalence of category

(4,D) is a poir of function F. P. 10D

(:D) & such that CF = Idg $x \in A$ $F(x) \xrightarrow{Y_x} G(x)$ $Y_{F(x)}G'$ FF(x) - GG(x) nafreally isomorphise F(Px) = 16(x) Y 6(x)

The proposition implies: We have a functor (1): h Top - soupoid Croupoid Pres other TI(X) and TI(Y) and TI(Y) and TI(Y) and Toucher growth speech one exceptions.

(HW): (3) Will be on gudescope on introducing $\pi_{M}(X, x) = M > 1$.

Theorem: $\Pi_{i}(S^{M}_{i})=0$ M>1Parof:
We have proved $S^{i}\to S^{i}\simeq constant$ more,
By the HW, the stevered follows. Π

Why i, 5th with a ctible? We will need to use The.