1

GATE -BM 16

EE23BTECH11057 - Shakunayeti Sai Sri Ram Varun

Question: For the circuit given below, choose the angular frequency ω_0 at which voltage across capacitor has maximum amplitude?

Fig. 1. circuit

- (A) 1000
- (B) 100
- (C) 1
- (D) 0

(GATE BM 2023 question 16)

Solution:

Parameter	Description	Value	
$V_i(j\omega)$	Input voltage	100	
$v_{c}\left(t\right)$	Potential difference across Capacitor	?	
$V_{c}\left(s\right)$	Potential difference across Capacitor	$V_{c}\left(s\right)$	
H(s)	Transfer function	$\frac{V_c(s)}{V_i(s)}$	
V_o	Amplitude of input voltage	100 V	
R	Resistance in circuit	1 kΩ	
С	Capacitace in circuit	100 μF	
ω_o	angular frequency of input voltage	ω_o	
	TADIE I		

INPUT VALUES

$$V_c(s) = \frac{V_1(s)\frac{1}{sC}}{R + \frac{1}{sC}}$$
(1)

$$\implies H(s) = \frac{1}{1 + sRC} \tag{2}$$

$$\therefore H(j\omega) = \frac{1}{1 + j\omega RC}$$
 (3)

Fig. 2. circuit in ω -domain

$$v_c(t) = \frac{100}{\sqrt{1 + (\omega_o RC)^2}} \left(\cos \omega_o t + \arctan\left(\frac{1}{\omega_o RC}\right)\right)$$
(4)

Maximum amplitude of $v_c(t)$ occurs at $\omega_o = 0$

$$\therefore \omega_o = 0 \tag{5}$$

(6)

 \therefore maximum value of $v_c(t)$ at steady state is 100 Volts.