

Tarea II: Macroeconometría Aplicada I

Nombres:

Juan Andrés Vicente Jaramillo

Fecha de entrega: 4 de Octubre, 2021

I) Ciclo de precios internacionales y su efecto en inflación.

1. ¿Es la serie $p_{_t}^{cu}$ estacionaria? Realice algún test específico si usted lo desea.

Al generar la serie podemos observar que tiene la siguiente forma:

lags	p-fuller	p-pperron
1	.67517627	.81298203
2	.68906732	.78145993
3	.70797529	.76408814
4	.72565716	.75379518
5	.71924883	.74639291
6	.74730885	.74419466
7	.72754402	.74501901
8	.76717861	.74981343
9	.75368023	.75588888
10	.69112503	.76010462
11	.61081151	.76104967
12	.63473564	.76059132
13	.67180943	.7611382
14	.67312508	.76176294
15	.67154902	.76218232
16	.63431243	.7623226
17	.59330075	.76201402
18	.61043047	.76169675
19	.6308856	.76242647
20	.59681716	.76326936

Luego para comprobar si la serie es estacionaria, se procederá a realizar el test de **Phillips-Perron y Dickey-Fuller,** donde se encuentran los siguientes resultados en el valor-p para diferentes rezagos.

La hipótesis nula de estos test es que la serie tiene raíz unitaria, como se puede observar, en ningún rezago se obtiene en el test un p-value menor a 0,05, por lo tanto no se puede rechazar la hipótesis nula y la serie no es estacionaria.

2. Comenzamos intentando estimar el ciclo del precio del cobre usando una tendencia determinística y un polinomio de tercer orden. Para esto, definiremos el ciclo del precio como:

$$c_t^{trend} = p_t^{cu} - (\widehat{\alpha}_0 + \widehat{\alpha}_1 t + \widehat{\alpha}_2 t^2 + \widehat{\alpha}_3 t^3)$$

Los parámetros α son estimados mediante MCO. ¿Es la serie c_t^{trend} estacionaria?

Al graficar la serie se obtiene lo siguiente:

lags	p-fuller	p-pperron
1	.08643238	.31011785
2	.08181774	.23042
3	.1085208	.19278607
4	.07243073	.17185815
5	.04967252	.15739372
6	.14034554	.15141447
7	.16617499	.149987
8	.26899538	.15431646
9	.26180801	.16085253
10	.21299885	.16496374
11	.15857359	.1642536
12	.19543949	.16154893
13	.26691438	.16048525
14	.20245602	.15971093
15	.19925561	.15884031
16	.24616009	.15775055
17	.22174798	.15615394
18	.20121211	.15464052
19	.29385729	.15468803
20	.20928527	. 15494563

"Al ojo" la serie pareciera ser estacionaria, sin embargo, al igual que en la pregunta anterior, los tests de **Phillips-Perron y Dickey-Fuller** nos indican que no se puede rechazar la hipótesis nula, para distintos rezagos y por lo tanto, la serie no es estacionaria.

3. En relación a la pregunta anterior, ahora estimaremos el ciclo del cobre usando el filtro de Hodrick y Prescott (HP). En este caso, definimos el ciclo del precio como:

$$c_t^{cu,hp} = p_t^{cu} - p_t^{cu,hp} \label{eq:cuhp}$$

Donde $P_t^{cu,hp}$ corresponde a la serie filtrada del precio usando el filtro HP (es decir, la serie t de la tendencia). ¿Es la serie $c_t^{cu,hp}$ estacionaria?

lags	p-fuller	p-pperron	Port-stati∼c
1	.00020661	.01190184	264.99755
2	.00019554	.00513331	476.51102
3	.00039885	.00334171	634.06073
4	.00019671	.00268965	745.76074
5	.00007528	.00237315	821.02261
6	.00094158	.00244692	867.62178
7	.00123388	.0027629	895.25494
8	.00680546	.00350561	910.88235
9	.00670204	.00462241	920.06936
10	.0026032	.00577988	925.76463
11	.00067056	.00657492	928.91147
12	.00143262	.00717855	929.91051
13	.00498806	.00805985	929.93931
14	.00254184	.00906944	930.18617
15	.00256361	.01015023	931.35193
16	.0038253	.01126895	933.95993
17	.00221898	.01234339	938.43974
18	.00194341	.01350483	945.38836
19	.00710178	.01520295	955.38048
20	.00235052	.01714903	967.70049

Se puede observar que se rechaza la hipótesis nula del test de **Phillips-Perron y Dickey-Fuller** para cualquiera de los rezagos, por lo tanto, la serie sí es estacionaria y no posee raíz unitaria.

Además con el test de ruido blanco, donde la hipótesis nula de este test es que la variable sigue un proceso de ruido blanco, encontramos que para todos los rezagos se rechaza la hipótesis nula y por tanto, la variable no sigue un proceso de ruido blanco.

4. Grafique ambas series c_t^{trend} y $c_t^{cu,hp}$. Discuta sus principales diferencias y/o similitudes.

Se puede apreciar que la media del Log-Cobre sin tendencia (cúbica) depende bastante más del tiempo que cuando se usa el filtro HP. Además ambas series parecen tener comportamientos similares en el tiempo t. Ilustrado en el cuadro de correlaciones, se puede observar lo siguiente:

	с	hc
С	1.0000	
hc	0.7902	1.0000

Evidenciando una correlación positiva entre ambas series del 79%

5. Determine el proceso ARMA(p,q) que seguiría $c_t^{cu,hp}$. Utilice los métodos vistos en clases: ACF, PACF, Box-Jenkins, Breusch-Godfrey y criterios de información.

lags	p-fuller	p-pperron	Port-stati~c
1	.00020661	.01190184	264.99755
2	.00019554	.00513331	476.51102
3	.00039885	.00334171	634.06073
4	.00019671	.00268965	745.76074
5	.00007528	.00237315	821.02261
6	.00094158	.00244692	867.62178
7	.00123388	.0027629	895.25494
8	.00680546	.00350561	910.88235
9	.00670204	.00462241	920.06936
10	.0026032	.00577988	925.76463
11	.00067056	.00657492	928.91147
12	.00143262	.00717855	929.91051
13	.00498806	.00805985	929.93931
14	.00254184	.00906944	930.18617
15	.00256361	.01015023	931.35193
16	.0038253	.01126895	933.95993
17	.00221898	.01234339	938.43974
18	.00194341	.01350483	945.38836
19	.00710178	.01520295	955.38048
20	.00235052	.01714903	967.70049

Como vimos en la pregunta 3) la serie del ciclo del cobre con filtro HP sería estacionaria y además no seguiría un proceso de ruido blanco, por lo que se pueden aplicar herramientas econométricas.

Luego, se corrieron regresiones con la **matriz HAC** para buscar si había una estacionalidad significativa. No fue así, tanto trimestral como mensualmente (ninguna *dummy* fue significativa, ni la constante). Se presentan la tabla:

VARIABLES	(1) trimestral	(2) mensual
month1		0.0115
		(0.0350)
month2		0.0233
		(0.0483)
month3		0.0373
		(0.0563)
month4		0.0512
		(0.0568)
month5		0.0521
		(0.0590)
month6		0.0369
		(0.0556)
month7		0.0497
month8		(0.0552)
montna		0.0409
month9		(0.0529) 0.0323
montn9		(0.0524)
month10		0.0324)
monthio		(0.0466)
month11		0.00282
monthii		(0.0328)
o.month12		(0.0328)
0.11101111112		
trim1	0.0178	
2	(0.0388)	
trim2	0.0405	
	(0.0438)	
trim3	0.0349	
	(0.0373)	
o.trim4	-	
Constant	-0.0235	-0.0297
	(0.0295)	(0.0412)
Observations	296	296

Standard errors in parentheses

^{***} p<0.01, ** p<0.05, * p<0.1

Posteriormente, se corrieron los autocorrelogramas hasta el rezago 20:

Dada la forma de los autocorrelogramas se probó con cualquier modelo que cumpliera con la mezcla de las correlaciones significativas, esto es, para **AR:** 0-1-2-11-12, y para **MA:** 0-1-2-3-4-5-6-7-8-9-10-18 (y no se modeló con 19 y 20 rezagos en MA ya que no fue factible pero por ejemplo los modelos ARMA con 18 rezagos de MA no eran los mejores).

Luego se evaluarán los criterios de información de distintos modelos para encontrar "el mejor modelo".

Model	N	ll(null)	ll(model)	df	AIC	BIC
Houet		cc(nacc)	cc(modec)	u 1	AIC	
ARIMA000	296		80.8762	2	-157.7524	-150.3717
ARIMA001	296		242.4916	3	-478.9831	-467.9121
ARIMA002	296		330.7269	4	-653.4539	-638.6924
ARIMA003	296		386.8174	5	-763.6349	-745.1831
ARIMA004	296		402.1486	6	-792.2972	-770.1551
ARIMA005	296		422.8701	7	-831.7403	-805.9078
ARIMA006	296		427.2636	8	-838.5272	-809.0043
ARIMA007	296		434.9104	9	-851.8208	-818.6075
ARIMA008	296		441.697	10	-863.3941	-826.4905
ARIMA009	296		445.3645	11	-868.7291	-828.1351
ARIMA0010	296		445.4065	12	-866.813	-822.5287
ARIMA100	296		410.7051	3	-815.4102	-804.3391
ARIMA101	296		434.872	4	-861.7441	-846.9826
ARIMA102	296		440.181	5	-870.362	-851.9102
ARIMA103	296		440.7274	6	-869.4547	-847.3126
ARIMA104	296		440.728	7	-867.456	-841.6235
ARIMA105	296		443.445	8	-870.89	-841.3671
ARIMA106	296		443.5061	9	-869.0122	-835.799
ARIMA107	296		444.4256	10	-868.8512	-831.9476
ARIMA108	296		444.7721	11	-867.5442	-826.9502
ARIMA109	296		444.9563	12	-865.9126	-821.6282
ARIMA1010	296		447.2114	12	-870.4228	-826.1385
ARIMA200	296		440.9144	4	-873.8287	-859.0673
ARIMA201	296		441.0848	5	-872.1695	-853.7177
ARIMA202	296		441.1139	6	-870.2278	-848.0856
ARIMA203	296		445.6489	7	-877.2978	-851.4653
ARIMA204	296		445.7387	7	-877.4774	-851.6449
ARIMA205	296		443.6248	9	-869.2495	-836.0363
ARIMA206	296		443.6758	10	-867.3515	-830.448
ARIMA208	296		444.7728	12	-865.5456	-821.2613
ARIMA209	296		445.2276	13	-864.4552	-816.4805
ARIMA2010	296		447.3092	13	-868.6184	-820.6438
ARIMA1100	296		446.4847	13	-866.9694	-818.9947
ARIMA1101	296		450.4706	13	-874.9411	-826.9664
ARIMA1102	296		448.803	15	-867.6059	-812.2505
ARIMA1103	296		454.0662	15	-878.1325	-822.7771
ARIMA1104	296		454.2815	16	-876.563	-817.5173
ARIMA1105	296		454.3383	18	-872.6766	-806.2501
ARIMA1106	296		455.8752	18	-875.7503	-809.3239
ARIMA1107	296		456.082	20	-872.1641	-798.3569
ARIMA1108	296		456.7513	20	-873.5027	-799.6955
ARIMA1109	296		458.3797	20	-876.7595	-802.9523
ARIMA1200	296		448.901	14	-869.8021	-818.137
ARIMA1201	296		448.915	15	-867.83	-812.4746
ARIMA1202	296		449.4897	16	-866.9793	-807.9336
ARIMA1203	296		454.5611	17	-875.1222	-812.3861
ARIMA1204	296		454.6859	17	-875.3718	-812.6357
ARIMA1205	296		454.5877	18	-873.1754	-806.749
ARIMA1206	296		456.855	18	-877.7101	-811.2836
ARIMA1207	296		457.6921	20	-875.3842	-801.577
ARIMA1208	296		456.7042	20	-873.4084	-799.6013
ARIMA1209	296		458.4829	22	-872.9658	-791.7779
ARIMA12010	296	•	459.1635	22	-874.327	-793.1391

Se encuentra que "el mejor modelo", con un menor BIC es el modelo ARIMA (2, 0, 0), por lo que se procederá a realizar diversos test al modelo.

Sample: 1997m11 thru 2021m8 Number of obs = 286

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	79.4153				.033836	548359	543235	535575
1	395.937	633.04	1	0.000	.003725	-2.75481	-2.74456	-2.72924
2	425.24	58.605*	1	0.000	.003056*	-2.95273*	-2.93735*	-2.91438*
3	425.471	.46292	1	0.496	.003073	-2.94735	-2.92686	-2.89622
4	425.472	.00206	1	0.964	.003094	-2.94037	-2.91475	-2.87645
5	425.837	.72936	1	0.393	.003108	-2.93592	-2.90518	-2.85922
6	426.567	1.4604	1	0.227	.003114	-2.93404	-2.89817	-2.84455
7	427.432	1.7299	1	0.188	.003117	-2.93309	-2.8921	-2.83083
8	427.54	.2165	1	0.642	.003136	-2.92686	-2.88074	-2.81181
9	428.817	2.5527	1	0.110	.00313	-2.92879	-2.87755	-2.80096
10	428.937	.24026	1	0.624	.00315	-2.92264	-2.86627	-2.78202

Se observa que el mejor modelo AR, es el AR(2) y que si se le agrega un rezago este no es significativo, como podemos ver a continuación:

VARIABLES	Arima (2,0,0)	Arima(3,0,0)
L.ar	1.351***	1.337***
	(0.0303)	(0.0365)
L2.ar	-0.430***	-0.385***
	(0.0346)	(0.0683)
L3.ar		-0.0335
		(0.0436)
Observations	296	296

*** p<0.01, ** p<0.05, * p<0.1

VARIABLES	Arima (2,0,0)	Arima(3,0,0)			
L.ar	1.351***	1.337***			
	(0.0303)	(0.0365)			
L2.ar	-0.430***	-0.385***			
	(0.0346)	(0.0683)			
L3.ar		-0.0335			
		(0.0436)			
Observations	296	296			
Standard errors in parentheses					

- Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.351	1	0.5538

H0: no serial correlation

Por otra parte, con el test de Breusch y Godfrey se revisó que no había correlación serial al no rechazar la hipótesis nula.

Además encontramos que el modelo a evaluar AR(2), no posee raíces unitarias.

También se realizará el **test de Portmanteau** para evaluar el ruido blanco en los residuos:

Portmanteau	test	for	white	noise	
Portmanteau	ı (Q)	stat	tistic	=	0.3101
Prob > chi2	2(2)			=	0.8564

Se puede apreciar que la hipótesis nula no se puede rechazar, por lo que el proceso seguiría un proceso de ruido blanco. Ilustrando la serie de los residuos del modelo, se observa de la siguiente forma:

0.50

0.40

Siendo el ruido blanco representado de la siguiente manera:

Finalmente, dado lo presentado el modelo AR(2), sería "el mejor modelo".

6. Descargue la serie de la inflación mensual en Chile y denótela como π t.2 Con esta información estime:

$$\pi_t = c + \alpha \pi_{t-1} + \sum_{j=0}^{11} \beta_j c_{t-j}^{cu,hp} + \epsilon_t$$

Muestre los 12 parámetros β estimados, es decir (β 0, β 1,..., β 11) junto a sus intervalos de confianza, en un gráfico. Interprete sus resultados. En particular, refiérase a la dinámica de la respuesta de la inflación frente al ciclo de precio del cobre.

El modelo es el siguiente, sus parámetros en conjunto son significativos aunque mucho de sus intervalos incluyen al cero, el primer rezago del cobre se interpreta como un aumento de un 1% en el precio del cobre en el mes anterior por sobre su ciclo aumenta en 1.37% la inflación en promedio. Y si bien es cierto que el precio del cobre es internacional este podría afectar el tipo de cambio y este último la inflación a través del *pass-through*. A su vez, vale decir que si bien el test F resulta ser significativo, los intervalos de confianza graficados claramente se ve que incluyen al 0.

VARIABLES	Drogueto 6			
VARIABLES	Pregunta 6			
L.i	0.315***	(1)	hc = 0	
	(0.0644)	(2)	L.hc = 0	
hc	-0.253	(3)	L2.hc = 0	
	(0.303)	(4)	L3.hc = 0	
L.hc	1.370***	(5)	L4.hc = 0	
	(0.460)	. ,	L5.hc = 0	
L2.hc	-0.757	(7)		
	(0.558)			
L3.hc	0.541		L7.hc = 0	
	(0.679)		L8.hc = 0	
L4.hc	-0.757	(10)	L9.hc = 0	
	(0.536)	(11)	L10.hc = 0	
L5.hc	0.499	(12)	L11.hc = 0	
	(0.649)	` '		
L6.hc	-0.491		F(12, 271) =	5.67
	(0.621)		Prob > F =	0.00
L7.hc	-0.293		Prob > r =	0.00
	(0.559)			
L8.hc	1.649***			
	(0.478)			
L9.hc	-1.266**			
1401	(0.518)			
L10.hc	-0.608			
111 ha	(0.539)			
L11.hc	1.027***			
Constant	(0.288) 0.187***			
Constant	(0.0239)			
	(0.0239)			
Observations	285			

*** p<0.01, ** p<0.05, * p<0.1

7. Finalmente, y en límea con la pregunta anterior, estime ahora:

$$\pi_t = c + \alpha \pi_{t-1} + \sum_{j=0}^{11} \gamma_j c_{t-j}^{oil, hp} + \epsilon_t$$

Donde $c_{t-j}^{oil,hp}$ corresponde al ciclo del precio internacional del petróleo construido de la misma forma que en la pregunta 3. Grafique los 12 parámetros γ estimados, es decir (γ 0, γ 1, ..., γ 11) junto a sus intervalos de confianza. Interprete sus resultados. En particular, refiérase a la dinámica de la respuesta de la inflación frente al ciclo de precio del petróleo.

La variable del logaritmo del precio del petróleo pasada por el filtro HP es estacionaria, no es ruido blanco. En particular se interpreta como, que haya habido un aumento de un 1% en el precio del petróleo el mes anterior, aumentará en 0.276% la inflación en promedio. Además, si bien el test F a los rezagos del petróleo es significativo, apenas lo es, y la mayoría de los intervalos de confianza incluyen al 0. La tabla de resultados, el test F a los parámetros y los intervalos de confianza graficados se presentan a continuación:

lags	p-fuller	p-pperron	Port-stati~c
1	.00020661	.01190184	264.99755
2	.00019554	.00513331	476.51102
3	.00039885	.00334171	634.06073
4	.00019671	.00268965	745.76074
5	.00007528	.00237315	821.02261
6	.00094158	.00244692	867.62178
7	.00123388	.0027629	895.25494
8	.00680546	.00350561	910.88235
9	.00670204	.00462241	920.06936
10	.0026032	.00577988	925.76463
11	.00067056	.00657492	928.91147
12	.00143262	.00717855	929.91051
13	.00498806	.00805985	929.93931
14	.00254184	.00906944	930.18617
15	.00256361	.01015023	931.35193
16	.0038253	.01126895	933.95993
17	.00221898	.01234339	938.43974
18	.00194341	.01350483	945.38836
19	.00710178	.01520295	955.38048
20	.00235052	.01714903	967.70049

VARIABLES	(1) Pregunta 7
L.i	0.324***
L.I	(0.0637)
hp	0.545**
	(0.256)
L.hp	0.276
	(0.240)
L2.hp	-0.550*
	(0.308)
L3.hp	0.349
	(0.289)
L4.hp	-0.447
	(0.358)
L5.hp	0.141
	(0.326)
L6.hp	-0.120
	(0.334)
L7.hp	0.230
	(0.329)
L8.hp	0.0383
	(0.264)
L9.hp	-0.543**
	(0.243)
L10.hp	0.536**
	(0.236)
L11.hp	-0.0596
	(0.168)
Constant	0.183***
	(0.0191)

Observation: 285
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) hp = 0(2) L.hp = 0 (3) L2.hp = 0 (4) L3.hp = 0 (5) L4.hp = 0L5.hp = 0 (6) (7) L6.hp = 0 L7.hp = 0 (8) (9) L8.hp = 0 (10) L9.hp = 0(11) L10.hp = 0(12) L11.hp = 0

> F(12, 271) = 2.51Prob > F = 0.0039

8. Comente sobre las similitudes y posibles diferencias entre las respuestas que los dos precios internacionales (cobre y petróleo) traerían sobre la inflación. Idealmente, utilice sus conocimientos de macroeconomía para contrastar ambas dinámicas.

Una similitud es que ambos precios internacionales tienen una relación positiva con la inflación, es decir, ya sea aumente el precio del cobre o el petróleo aumentará la inflación, pero como se vió esta relación positiva tiende a no tener significancia. A su vez, el efecto que tendría es pequeño (para ambas variables). Otra similitud es que los precios internacionales son determinados exógenamente y no por la economía chilena.

Además es importante señalar que la inflación también está determinada por la política monetaria.

II) Paper: Hodrick and Prescott (1997).

1. ¿Cómo se mide la covariabilidad de las series y porqué es relevante? Además, muestre que si $\lambda \to$ en el filtro HP, la solución se aproxima a un modelo con tendencia lineal determinística. Intérprete.

La variabilidad es medida a través de la desviación estándar y la covariabilidad es medida a través de la correlación con el PNB real. Además, otra medida de covariabilidad o de fuerte asociación, que es como lo presenta el *paper* es el R2 de la ecuación (6), la cual es:

$$c_{jt} = \alpha_j + \sum_{i=-2}^{2} \beta_{ji} GNP_{t-i}$$

Y esto viene a decir que el ciclo de una variable puede reaccionar tanto a valores futuros o rezagados del PNB, lo que sucederá en mayor medida cuando la diferencia entre correlación del producto real al cuadrado y el R2 de la regresión sea mayor, por ejemplo, en la tabla 5 es fácil notar el los valores rezagados o futuros explican bastante

TABLE 5
Factors of Production: Strength of Association with GNP and Measure of Stability Sample Period: 1950.1-1979.2

	R ² for Regression			
	Correlation with Real Output Squared	$c_{jt} = \alpha_j + \sum_{t=-2}^{2} \beta_{jt} GNP_{t+1}$	Stability Measure	
Capital Stocks				
Înventory	.257	.622	.828	
Capital Stock Durables	.044	.235	.782	
Capital Stock Nondurables	.056	.129	.740	
Hours	.728	.838	.954	
Work Week	.672	.700	.513	
Employees	.600	.801	.935	
Average Product of Labor	.010	.453	.773	

Otra forma de verlo es en la tabla 2 donde el gasto del gobierno tiene una mayor correlación antes que después, lo que viene a decir que este antecede el crecimiento.

TABLE 2
AGGREGATE DEMAND COMPONENTS: STANDARD DEVIATIONS AND CORRELATIONS WITH GNP SAMPLE PERIOD: 1950.1-1979.2

	Standard Deviations in Percents		Correlations with Real Output			Average Percent of Real	
	Whole	First Half	Second Half	Whole	First Half	Second Half	GNP
Real GNP	1.8	1.7	1.9	_	_	_	_
Total Consumption	1.3	1.2	1.4	.739	.503	.917	61.7
Services	.7	.7	.6	.615	.441	.781	26.8
Nondurables	1.2	1.0	1.3	.714	.575	.808	26.5
Durables	5.6	6.1	5.0	.574	.298	.884	8.4
Total Invest. Fixed	5.1	4.2	5.9	.714	.454	.884	14.2
Residential	10.7	8.5	12.4	.436	.123	.637	4.4
Nonresidential	4.9	4.4	5.3	.684	.554	.777	9.7
Equipment	5.8	5.6	5.9	.707	.642	.760	6.0
Structures	4.5	3.8	5.1	.512	.225	.698	3.7
Total Government	4.8	6.5	2.2	.258	.353	.152	22.6
Federal	8.7	11.6	4.2	.266	.377	.125	10.8
State and Local	1.3	1.6	1.0	170	408	.131	11.8

Con un lambda "infinito" la tendencia por el filtro queda como:

$$\min_{\{g_t\}_{t=-1}^T} \left\{ \sum_{t=1}^T c_t^2 + \lambda \sum_{t=1}^T \left[(g_t - g_{t-1}) - (g_{t-1} - g_{t-2}) \right]^2 \right\}$$

Y esto tiene la siguiente explicación. Si Lambda tiende a infinito se necesitará que el crecimiento se mantenga constante (para la minimización de la expresión), o en otras palabras que la velocidad del crecimiento sea 0. Luego esto minimizará la segunda expresión independientemente del valor que tenga lambda y por consecuencia, la serie de tiempo estará creciendo a una tasa constante como se puede observar en el gráfico de arriba.

2. Según el paper, refiérase a la covariabilidad de las series nominales con el producto. En particular, refiérase a los efectos sobre M2, las tasas de intereses e índices de precios.

Como se puede ver en la tabla 6 en general la correlación entre el PNB y las variables nominales es positiva, esto se cumple completamente para M1, para M2 solo hay una coviariabilidad negativa del valor del de M2 en la primera mitad, pero su valor nominal y velocidad siempre tienen una coviariabilidad positiva con el PNB real. A su vez, sólo las tasas largas en la segunda mitad covarían negativamente con el PNB. Y para los índices de precios, ambos varían positivamente en la primera mitad y negativamente en la segunda mitad.

TABLE 6
MONETARY AND PRICE VARIABLES: STANDARD DEVIATIONS AND CORRELATIONS WITH GNP SAMPLE PERIOD: 1950.1-1979.2

	Standard Deviations in Percents			Correlations with Real Output			
	Whole	First Half	Second Half	Whole	First Half	Second Half	
Real GNP M1	1.8	1.7	1.9	_	_	_	
Nominal Value	.9	.8	1.0	.661	.675	.649	
Velocity	1.6	2.0	1.0	.614	.801	.415	
Real Value	1.5	1.2	1.7	.565	.079	.865	
M2							
Nominal	1.1	.9	1.3	.480	.175	.665	
Velocity	1.9	2.4	1.2	.529	.818	.131	
Real Value	1.8	1.4	2.1	.432	221	.828	
Interest Rates							
Short	.24	.27	.19	.510	.738	.255	
Long	.06	.06	.06	.193	.640	175	
Price Indexes							
GNP Deflator	1.0	1.0	1.1	239	.490	814	
CPI	1.3	1.3	1.3	316	.223	799	