Name: Key ID #:_______ As always you need to show your work. Fill in the appropriate blanks

1. A pair
$$(\lambda, \nu)$$
 is an eigen pair if $A V = \lambda V$ and $V \neq 0$

2. For
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$
. $\begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 + 1 - 1 \\ 2 + 1 - 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

2.1. Is $v = \{1, 1, -1\}$ an evec of A? $\bigvee e S$ if it is compute the eval $\lambda = 2$

3. For
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$
.

3.1. Is $v = \{0, 1, -1\}$ an an evec of A? | $y \in S$ | if it is compute the eval $\lambda = C$

- 4. For $A = \begin{pmatrix} 4 & 2 \\ -2 & 5 \end{pmatrix}$. $[A 8I] = \begin{bmatrix} -4 & 2 \\ -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 \\ -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}$ vors-
 - **4.1.** Is $\lambda = 8$ an eval of A? NC if it is compute the evec V =

- 5. For $A = \begin{pmatrix} 4 & 2 \\ -2 & 5 \end{pmatrix}$. $A 5I = \begin{pmatrix} -1 & 2 \\ -2 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ 0 & -4 \end{pmatrix}$ ne Free urs
 - **5.1.** Is $\lambda = 5$ an eval of A? $\mathcal{N}_{\mathcal{O}}$ if it is compute the evec $v = \mathcal{O}$