The Extended Euclidean Algorithm

Definition: -----

We say that two numbers $a, b \in \mathbb{Z}$ are relativly prime if gcd(a, b) = 1Proprety:

if $a, b \in \mathbb{Z}$ are relativly prime then by the Euclidiant Algorithm for $\exists n \in \mathbb{Z}^+$, $r_{n-1} = 1$ Proof:

we know that for any $a, b \in \mathbb{Z}$ Euclidiant Algorithm after n iteration will find that $d = \gcd(a, b) = \gcd(r_{n-1}, r_n)$ and $r_n = 0$ (by the well – ordering theorem). we know that all iteration share the same $\gcd(a, and beause a and b are relativly prime <math>\gcd(a, b) = \gcd(r_{n-1}, r_n) = \gcd(r_{n-1}, 0) = 1$, hence $r_{n-1} = 1$

$* \rightarrow Algorithm for finding a^{-1}$

let $a, b \in \mathbb{Z}$ be relativly prime By the above property if we apply the Euclideant Algorithm we will have that $r_{n-1} = 1$ meaning that $r_{n-3} \equiv 1 \mod r_{n-2}$, because $r_{n-3} = q_{n-1} * r_{n-2} + r_{n-1}$, now i will try to just refolmulate how we found r_n 's the results would be the same

algstart:

we start with normal Euclidean Algorithm and we will reformulat it,

$$\exists q_1, r_1 \in \mathbb{Z} \times \mathbb{Z}^+ \ a = q_1 * b + r_1 \ q_1 = \left\lfloor \frac{a}{b} \right\rfloor \ and \ 0 \leqslant r_1 < b$$

we can rewrite r_1 as

$$r_1 = a - q_1 b = a x_1 + b y_1$$

$$x_1 = 1$$

$$y_1 = -q_1.$$

if
$$r_1 = 0$$
 then $b = 1$ and $a = q_1$ because $gcd(a, b) = 1$ else

we do the next euclidean division for b and r_1

$$\exists q_2, r_2 \in \mathbb{Z} \times \mathbb{Z}^+ \ b = q_2 * r_1 + r_2 \ q_2 = \left\lfloor \frac{b}{r_1} \right\rfloor \ and \ 0 \leqslant r_2 < r_1$$

we can rewrite r_2 as $r_2 = b - q_2 * r_1 = b - q_2 * (a * x_1 + b * y_1)$ = $b - q_2 * a * x_1 - q_2 * b * y_1$

$$= a*(-q_2*x_1) + b*(1 - q_2*y_1)$$

= $ax_2 + by_2$

$$x_2 = -q_2 x_1$$

$$y_2 = 1 - q_2 y_1$$

if
$$r_2 = 0$$
 then $r_1 = 1$ and $b = q_2$ else

we do the next euclidean division for b and r_1

$$\exists q_3, r_3 \in \mathbb{Z} \times \mathbb{Z}^+ \ r_1 = q_3 * r_2 + r_3 \ q_3 = \left\lfloor \frac{r_1}{r_2} \right\rfloor \ and \ 0 \leqslant r_3 < r_2$$

we can rewrite r_3 as

$$r_3 = r_1 - q_3 * r_2 = a * x_1 + b * y_1 - q_3 (a * x_2 + b * y_2)$$

= $a * (x_1 - q_3 * x_2) + b * (y_1 - q_3 * y_2)$
= $a x_3 + b y_3$

$$x_3 = x_1 - q_3 x_2$$

$$y_3 = y_1 - q_3 y_2$$

if
$$r_3 = 0$$
 then $r_2 = 1$ *and* $r_1 = q_2$

else

...

so after n-1 iteration of if else $r_n=0$ and $r_{n-1}=1$

$$\exists q_{n-1}, r_{n-1} \in \mathbb{Z} \times \mathbb{Z}^+ \ r_{n-3} = q_{n-1} * r_{n-2} + r_{n-1} \ q_{n-1} = \left\lfloor \frac{r_{n-3}}{r_{n-2}} \right\rfloor \ and \ 0 \leqslant r_{n-1} < r_{n-2}$$

we can rewrite r_{n-1} as

$$r_{n-1} = r_{n-3} - q_{n-1} * r_{n-2}$$

= $ax_{n-1} + by_{n-1}$

$$x_{n-1} = x_{n-3} - q_{n-1} * x_{n-2}$$

$$y_{n-1} = y_{n-3} - q_{n-1}y_{n-2}$$

so we can see that $x_{n-1} = x$ and $y_{n-1} = y$ (because $r_n = 0$), so we found $r_{n-1} = a*x + b*y$ which implies a*x = -b*y + 1, we did found $x \in \mathbb{Z}$ for wich $a*x \equiv 1 \mod b$ we give x the symbole a^{-1} and we name it the multiplicative inverse

: endalg

for a clean generalisation, first in the following line $r_1 = a - q_1b = ax_1 + by_1$ with $x_1 = 1$ and $y_1 = -q_1$, we see here that x_1 and y_1 doesn't have the general form neither does r_1 , so we put $r_{-1} = a$ and $r_0 = b$ wich gives $x_{-1} = 1$ and $x_0 = 0$ and finally $y_{-1} = 0$ and $y_0 = 1$ which gives the following initial and iteration condition's

$$r_1 = r_{-1} - q_1 r_0$$
, with n iteration $r_{n-1} = r_{n-3} - q_{n-1} r_{n-2}$ and $r_n = 0$

$$x_1 = x_{-1} - q_1 x_0$$
, with n iteration $x_{n-1} = x_{n-3} - q_{n-1} x_{n-2}$ and $x = x_{n-1}$

$$y_1 = y_{-1} - q_1 y_0$$
, with n iteration $y_{n-1} = y_{n-3} - q_{n-1} y_{n-2}$ and $y = y_{n-1}$