LUBELSKA PRÓBA PRZED MATURĄ Z MATEMATYKI

(DLA KLAS DRUGICH)
POZIOM PODSTAWOWY

GRUPA II

23 maja 2018

CZAS PRACY: 170 MINUT

Zadania zamknięte

ZADANIE 1 (1 PKT)

Wartość wyrażenia $\left(\frac{3^{-2}\cdot\sqrt[4]{81}}{9^{\frac{1}{2}}\cdot\left(\frac{1}{3}\right)^3}\right)^{-1}$ jest równa A) 3^{-2} B) 3^{-1} C) 3^1 D) 3^2

Rozwiązanie

Liczymy

$$\left(\frac{3^{-2} \cdot \sqrt[4]{81}}{9^{\frac{1}{2}} \cdot \left(\frac{1}{3}\right)^{3}}\right)^{-1} = \frac{9^{\frac{1}{2}} \cdot \left(\frac{1}{3}\right)^{3}}{3^{-2} \cdot \sqrt[4]{81}} = \frac{\sqrt{9} \cdot \frac{1}{3^{3}}}{\frac{1}{3^{2}} \cdot \sqrt[4]{3^{4}}} = \frac{1}{\frac{3}{2}} = \frac{1}{3} = 3^{-1}.$$

Odpowiedź: B

ZADANIE 2 (1 PKT)

Suma liczby x i jej kwadratu jest najmniejsza dla liczby x równej

A)
$$-1$$

B)
$$\frac{2}{3}$$

C)
$$\frac{1}{3}$$

D)
$$-\frac{1}{2}$$

ROZWIĄZANIE

Wykresem funkcji

$$f(x) = x + x^2 = x(x+1)$$

jest parabola o ramionach skierowanych w górę.

Funkcja ta przyjmuje najmniejszą wartość w wierzchołku, czyli dokładnie w środku między pierwiastkami

$$x_w = \frac{-1+0}{2} = -\frac{1}{2}.$$

Odpowiedź: D

ZADANIE 3 (1 PKT)

Iloczyn liczby $\sqrt{3}+1$ i odwrotności liczby $\sqrt{3}-1$ jest równy A) $2-\sqrt{3}$ B) $2+\sqrt{3}$ C) $2+2\sqrt{3}$

A)
$$2 - \sqrt{3}$$

B)
$$2 + \sqrt{3}$$

C)
$$2 + 2\sqrt{3}$$

D)
$$2 - 2\sqrt{3}$$

Rozwiązanie

Liczymy (mnożymy licznik i mianownik przez ($\sqrt{3}+1$)).

$$\frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3+2\sqrt{3}+1}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}.$$

Odpowiedź: **B**

ZADANIE 4 (1 PKT)

Cenę książki obniżano dwukrotnie, najpierw o 10%, a po miesiącu jeszcze o 5%. W wyniku obu obniżek cena książki zmniejszyła się o

- A) 14%
- B) 15%
- C) 14,5%
- D) 15,5%

Rozwiązanie

Oznaczmy przez x wyjściową cenę książki. Zatem po pierwszej obniżce cena wynosiła 0,9x.

Po kolejnej obniżce cena wynosiła

$$0.95 \cdot 0.9x = 0.855x$$
.

Zatem cena została łącznie obniżona o 14,5%.

Odpowiedź: C

ZADANIE 5 (1 PKT)

Wartość liczbowa wyrażenia $5\log_2 2 - \log_2 8 + \log_2 16$ jest równa

A) 1

$$C)$$
 2

Rozwiązanie

Liczymy

$$5 \log_2 2 - \log_2 8 + \log_2 16 = 5 - \log_2 2^3 + \log_2 2^4 = 5 - 3 + 4 = 6.$$

Odpowiedź: **B**

ZADANIE 6 (1 PKT)

Liczba –2 jest miejscem zerowym funkcji liniowej $h(x) = -\frac{1}{2}(2m-4)x + 1$. Wynika stąd,

A)
$$m = 1,5$$

B)
$$m = 2$$

C)
$$m = 2,5$$

D)
$$m = 1$$

ROZWIĄZANIE

Wiemy, że po wstawieniu do wzoru funkcji x=-2 powinno wyjść 0. Liczymy

$$0 = h(-2) = (2m-4) + 1 = 2m-3 \iff m = \frac{3}{2} = 1,5.$$

Odpowiedź: A

ZADANIE 7 (1 PKT)

Na rysunku przedstawiona jest prosta, przechodząca przez punkty A=(-2,3) i D=(2,-3), oraz zaznaczony jest kąt α nachylenia tej prostej do osi Ox.

Zatem tangens kąta α jest równy

A)
$$\frac{3}{2}$$

B)
$$-\frac{2}{3}$$

C)
$$\frac{2}{3}$$

D)
$$-\frac{3}{2}$$

Rozwiązanie

Dana prosta przechodzi oczywiście przez środek ${\cal O}$ odcinka ${\cal AD}$, czyli przez początek układu współrzędnych

$$O = \frac{A+D}{2} = (0,0).$$

Sposób I

Niech B rzutem punktu A na oś Ox.

Mamy zatem

$$tg \alpha = tg(180^{\circ} - \beta) = -tg \beta = -\frac{AB}{OB} = -\frac{3}{2}.$$

Sposób II

Napiszmy równanie danej prostej. Jest to prosta postaci y = ax. Współczynnik a obliczamy podstawiając współrzędne punktu A.

$$3 = -2a \quad \Rightarrow \quad a = -\frac{3}{2}.$$

Otrzymany współczynnik kierunkowy to dokładnie interesujący nas tg α .

Odpowiedź: D

ZADANIE 8 (1 PKT)

Zbiorem wartości funkcji, której wykres przedstawiono na rysunku jest

- A) (-2,2)
- B) (-2,2)
- C) (-2,2)
- D) $\langle -2,2 \rangle$

Rozwiązanie

Zbiorem wartości danej funkcji jest przedział $\langle -2,2 \rangle$ (wartość -2 funkcja przyjmuje na przedziale (-3, -2)).

Odpowiedź: D

ZADANIE 9 (1 PKT)

Obwód trójkąta równobocznego jest równy $\frac{6x}{y}$, gdzie x>0,y>0. Pole powierzchni tego trójkąta jest równe

A)
$$\frac{3x}{y}$$

B)
$$\frac{x^2\sqrt{3}}{y^2}$$

C)
$$\frac{x^2}{y^2}$$

C)
$$\frac{x^2}{y^2}$$
 D) $\frac{x\sqrt{3}}{y}$

Rozwiązanie

Jeżeli obwód trójkąta jest równy $\frac{6x}{y}$, to bok trójkąta ma długość $a=\frac{2x}{y}$. Pole jest więc równe

$$P = \frac{a^2\sqrt{3}}{4} = \frac{\frac{4x^2}{y^2}\sqrt{3}}{4} = \frac{x^2\sqrt{3}}{y^2}.$$

Odpowiedź: **B**

ZADANIE 10 (1 PKT)

Dziedziną funkcji
$$f(x) = \frac{x-2}{\sqrt{x-2}} + \frac{2-x}{x}$$
 jest A) $x \neq 2$ B) $x \neq 0$

A)
$$x \neq 2$$

B)
$$x \neq 0$$

C)
$$x > 2$$

D)
$$x \in \mathbb{R}$$

Rozwiązanie

Aby podany wzór funkcji miał sens, wyrażenie pod pierwiastkiem musi być dodatnie, czyli x > 2 oraz mianownik ułamka $\frac{2-x}{x}$ musi być niezerowy, co przy założeniu x > 2 jest spełnione automatycznie.

Odpowiedź: C

ZADANIE 11 (1 PKT)

Miara kata α pod jakim przecinają się styczne do okręgu o środku S wynosi

 $A) 60^{\circ}$

 $B) 30^{\circ}$

C) 40°

D) 45°

Rozwiązanie

Zauważmy, że dwa kąty czworokąta ASBO są proste (bo promienie SA i SB) są prostopadłe do stycznych. Mamy zatem

$$\alpha = 360^{\circ} - 90^{\circ} - 90^{\circ} - \angle ASB = 180^{\circ} - 120^{\circ} = 60^{\circ}.$$

Odpowiedź: A

ZADANIE 12 (1 PKT)

Jeżeli
$$f(x) = x + 1$$
 i $g(x) = f(x - 1) + 2$, to funkcja $g(x)$ jest równa

A)
$$-x+2$$

B)
$$-x - 2$$

C)
$$x-2$$

D)
$$x + 2$$

Rozwiązanie

Liczymy

$$g(x) = f(x-1) + 2 = (x-1) + 1 + 2 = x + 2.$$

Odpowiedź: **D**

Materiał pobrany z serwisu www.zadania.info

6

ZADANIE 13 (1 PKT)

Wśród podanych poniżej nierówności wskaż tę, której zbiorem rozwiązań jest przedział (-6,8).

A)
$$8 < x - 2 < -6$$

B)
$$-6 < x - 2 < 8$$

A)
$$8 < x - 2 < -6$$
 B) $-6 < x - 2 < 8$ C) $-8 < x - 2 < 6$ D) $-8 < x + 2 < 6$

D)
$$-8 < x + 2 < 6$$

Rozwiązanie

Zauważmy, że warunek $x \in (-6,8)$ możemy zapisać równoważnie w postaci

$$-6 < x < 8 / -2$$

$$-8 < x - 2 < 6$$
.

Odpowiedź: C

ZADANIE 14 (1 PKT)

Punkt A = (2,7) jest wierzchołkiem kwadratu ABCD, a punkt S = (6,5) jest środkiem okręgu opisanego na tym kwadracie. Bok tego kwadratu ma długość

A)
$$\sqrt{20}$$

B)
$$2\sqrt{20}$$

C)
$$\sqrt{10}$$

D)
$$2\sqrt{10}$$

ROZWIĄZANIE

Szkicujemy kwadrat.

Obliczamy długość odcinka *AS*.

$$AS = \sqrt{(6-2)^2 + (5-7)^2} = \sqrt{16+4} = 2\sqrt{5}.$$

Jeżeli oznaczymy przez a długość boku kwadratu, to

$$a\sqrt{2} = AC = 2AS = 4\sqrt{5}$$
 \Rightarrow $a = \frac{4\sqrt{5}}{\sqrt{2}} = \frac{4\sqrt{10}}{2} = 2\sqrt{10}.$

Odpowiedź: **D**

ZADANIE 15 (1 PKT)

Wiadomo, że $\sin \alpha = \frac{3\sqrt{5}}{7}$ i $\alpha \in (90^\circ; 180^\circ)$. Wynika stąd, że

A)
$$\cos \alpha = -\frac{4}{49}$$

B)
$$\cos \alpha = \frac{2}{7}$$

B)
$$\cos \alpha = \frac{2}{7}$$
 C) $\cos \alpha = -\frac{2}{7}$

D)
$$\cos \alpha = -\frac{\sqrt{34}}{7}$$

Rozwiązanie

Z jedynki trygonometrycznej mamy

$$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{45}{49} = \frac{4}{49}.$$

Ponieważ $\cos \alpha < 0$ dla kątów rozwartych, mamy stąd

$$\cos \alpha = -\frac{2}{7}$$

Odpowiedź: C

ZADANIE 16 (1 PKT)

Na rysunku proste BC i DE są równoległe oraz |AB| = x - 3, |BD| = x, |BC| = 2, |DE| = 8. Wobec tego *x* jest równe

A) 3

B) 3,5

C) 4,5

D) 4

ROZWIĄZANIE

Ponieważ proste BC i DE są równoległe, więc trójkąty ABC i ADE są podobne. Zatem

$$\frac{AB}{BC} = \frac{AD}{DE}$$

$$\frac{x-3}{2} = \frac{x-3+x}{8} = \frac{2x-3}{8} / 8$$

$$4x-12 = 2x-3$$

$$2x = 9 \Rightarrow x = 4,5.$$

Odpowiedź: C

ZADANIE 17 (1 PKT)

Dany jest trzywyrazowy ciąg geometryczny o wyrazach dodatnich: $(2, x\sqrt{2}, 6)$. Wówczas

A)
$$x = \sqrt{6}$$

B)
$$x = 6$$

C)
$$x = 3$$

D)
$$x = 3\sqrt{2}$$

Rozwiązanie

Jeżeli trzy liczby a,b,c są kolejnymi wyrazami ciągu geometrycznego to $b^2=ac$. Daje to nam równanie

$$2x^2 = 2 \cdot 6$$

$$x = -\sqrt{6}$$
 lub $x = \sqrt{6}$.

Ponieważ ciąg ma mieć wyrazy dodatnie, mamy stąd $x = \sqrt{6}$.

Odpowiedź: A

ZADANIE 18 (1 PKT)

Dany jest ciąg liczbowy (a_n) , w którym $a_1 = x - 1$, $a_2 = 2x + 1$, $a_3 = 4x + 1$. Dla jakiej wartości liczbowej x dany ciąg jest ciągiem arytmetycznym?

A)
$$-2$$

ROZWIĄZANIE

Środkowy wyraz w ciągu arytmetycznym jest średnią arytmetyczną wyrazów sąsiednich, więc

$$2(2x+1) = (x-1) + (4x+1)$$

$$4x + 2 = 5x$$

$$2 = x$$
.

Odpowiedź: **C**

ZADANIE 19 (1 PKT)

Jeżeli $x \in \langle -2, 0 \rangle$, to wartość wyrażenia 3x - |x + 2| + |x| jest równa

A)
$$x + 2$$

B)
$$3x + 2$$

C)
$$x - 2$$

D)
$$5x + 2$$

ROZWIĄZANIE

Zauważmy, że dla $x \in \langle -2, 0 \rangle$ mamy

$$x + 2 > 0$$
.

Zatem

$$3x - |x + 2| + |x| = 3x - (x + 2) - x = x - 2.$$

Odpowiedź: **C**

ZADANIE 20 (1 PKT)

Setny wyraz ciągu (a_n) jest równy 2018. Wzór ogólny na n-ty wyraz ciągu (a_n) może mieć postać

A)
$$a_n = 2n - 2018$$

A)
$$a_n = 2n - 2018$$
 B) $a_n = n^2 - 100n$ C) $a_n = \frac{n^2}{4} - 482$ D) $a_n = \frac{n + 2018}{n}$

C)
$$a_n = \frac{n^2}{4} - 482$$

D)
$$a_n = \frac{n+2018}{n}$$

Rozwiązanie

Łatwo sprawdzić, że jeżeli $a_n = \frac{n^2}{4} - 482$, to

$$a_{100} = \frac{100^2}{4} - 482 = \frac{10000}{4} - 482 = 2500 - 482 = 2018.$$

Odpowiedź: C

ZADANIE 21 (1 PKT)

Do wykresu funkcji f danej wzorem $f(x) = 3^x - 4$, należy punkt o współrzędnych A) (-1, -7)B) (0, -3)C) (0, -4)D) (2,2)

Rozwiązanie

Liczymy

$$f(-1) = 3^{-1} - 4 = \frac{1}{3} - 4 = -\frac{11}{3}$$
$$f(0) = 3^{0} - 4 = -3$$
$$f(2) = 3^{2} - 4 = 5.$$

To oznacza, że spośród podanych punktów tylko (0, -3) należy do wykresu funkcji f. Na koniec wykres dla ciekawskich.

Odpowiedź: **B**

ZADANIE 22 (1 PKT)

Piąty wyraz rosnącego ciągu geometrycznego jest równy $5\frac{1}{3}$, a siódmy $21\frac{1}{3}$. Iloraz tego ciągu jest równy

A)
$$-4$$

B)
$$-2$$

Rozwiązanie

Z definicji ciągu geometrycznego mamy

$$a_7 = a_6 q = a_5 q^2$$

 $\frac{64}{3} = \frac{16}{3} q^2 / \frac{3}{16}$
 $4 = q^2$
 $q = 2 \lor q = -2$.

Ponieważ ciąg ma być rosnący, musi być q=2.

Odpowiedź: **D**

ZADANIE 23 (1 PKT)

Na okręgu o środku w punkcie O leżą punkty A, B, C (zobacz rysunek).

Rozwiązanie

Sposób I

Zauważmy, że trójkąt BOC jest równoramienny, więc

$$\angle OBC = \angle OCB = \frac{180^{\circ} - \angle BOC}{2} = \frac{\angle AOB}{2} = \frac{58^{\circ}}{2} = 29^{\circ}.$$

Sposób II

Korzystając z twierdzenia o kątach wpisanym i środkowym, mamy

$$\angle OBC = \angle OCB = \frac{1}{2} \angle AOB = 29^{\circ}.$$

Odpowiedź: **C**

ZADANIE 24 (1 PKT)

Dany jest trapez równoramienny (patrz rysunek). Wtedy tg α jest równy

A)
$$\frac{\sqrt{3}}{3}$$

B)
$$\frac{\sqrt{2}}{2}$$

C)
$$\sqrt{3}$$

D)
$$\sqrt{2}$$

Rozwiązanie

Dorysujmy wysokości trapezu.

Z twierdzenia Pitagorasa wyliczamy długość wysokości.

$$h = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}.$$

Zatem

$$tg \alpha = \frac{4\sqrt{3}}{4} = \sqrt{3}.$$

Odpowiedź: C

ZADANIE 25 (1 PKT)

Funkcja kwadratowa określona jest wzorem $f(x) = -x^2 + 2x + c$. Jeżeli f(4) = -2, to A) f(1) = 5 B) f(1) = 7 C) f(1) = -7 D) f(1) = -5

$$A) f(1) = 5$$

B)
$$f(1) = 7$$

C)
$$f(1) = -7$$

D)
$$f(1) = -5$$

Rozwiązanie

Liczymy

$$-2 = f(4) = -16 + 8 + c \implies c = 6.$$

Zatem $f(x) = -x^2 + 2x + 6i$

$$f(1) = -1 + 2 + 6 = 7.$$

Odpowiedź: B

Zadania otwarte

ZADANIE 26 (2 PKT)

Wyznacz zbiór niedodatnich rozwiązań nierówności $-x^2 + 15 \ge 2x$.

Rozwiązanie

Liczymy

$$-x^{2} - 2x + 15 \ge 0 \quad / \cdot (-1)$$

$$x^{2} + 2x - 15 \le 0$$

$$\Delta = 4 + 60 = 64 = 8^{2}$$

$$x_{1} = \frac{-2 - 8}{2} = -5, \quad x_{2} = \frac{-2 + 8}{2} = 3$$

$$x \in \langle -5, 3 \rangle.$$

To oznacza, że niedodatnie rozwiązania nierówności tworzą przedział

$$\langle -5,0\rangle$$
.

Odpowiedź: $x \in \langle -5, 0 \rangle$

ZADANIE 27 (2 PKT)

Wykaż, że trójkąt ABC o wierzchołkach A=(1;2), B=(6;3), C=(4;5) jest prostokątny.

Rozwiązanie

Jeżeli narysujemy podane punkty, to jest jasne, że kąt prosty powinien być przy wierzchołku *C*.

Sposób I

Aby sprawdzić czy tak jest w istocie, musimy sprawdzić czy $\overset{\rightarrow}{CA}\circ\overset{\rightarrow}{CB}=0$. Liczymy

$$\vec{CA} \circ \vec{CB} = [-3, -3] \circ [2, -2] = -6 + 6 = 0.$$

A więc istotnie trójkąt ABC jest prostokątny.

Sposób II

Jeżeli nie chcemy korzystać z iloczynu skalarnego, korzystamy z twierdzenia odwrotnego do twierdzenia Pitagorasa.

$$AC^2 = (4-1)^2 + (5-2)^2 = 9 + 9 = 18$$

 $BC^2 = (4-6)^2 + (5-3)^2 = 4 + 4 = 8$
 $AB^2 = (6-1)^2 + (3-2)^2 = 25 + 1 = 26 = AC^2 + BC^2$.

Zatem istotnie $\angle C = 90^{\circ}$.

ZADANIE 28 (2 PKT)

Oblicz obwód trójkąta prostokątnego o polu powierzchni równym $35~{\rm cm}^2$, wiedząc, że długości jego przyprostokątnych różnią się o $3~{\rm cm}$.

Rozwiązanie

Szkicujemy trójkąt prostokątny.

Jeżeli oznaczymy długości przyprostokątnych przez a i b to mamy układ równań

$$\begin{cases} a - b = 3\\ \frac{1}{2}ab = 35. \end{cases}$$

Podstawiając a = b + 3 z pierwszego równania do drugiego, otrzymujemy

$$(b+3)b = 70$$

$$b^{2} + 3b - 70 = 0$$

$$\Delta = 9 + 280 = 289 = 17^{2}$$

$$b = \frac{-3+17}{2} = 7 \quad \lor \quad b = \frac{-3-17}{2} = -10.$$

Ujemne rozwiązanie odrzucamy i mamy b=7 oraz a=b+3=10. Długość przeciwprostokątnej wyliczamy z twierdzenia Pitagorasa

$$\sqrt{a^2 + b^2} = \sqrt{10^2 + 7^2} = \sqrt{100 + 49} = \sqrt{149}.$$

Obwód trójkąta jest więc równy

$$(17 + \sqrt{149})$$
 cm.

Odpowiedź: $(17 + \sqrt{149})$ cm

ZADANIE 29 (2 PKT)

Wyrazami ciągu arytmetycznego (a_n) są kolejne liczby naturalne, które przy dzieleniu przez 5 dają resztę 3. Ponadto $a_6 = 28$. Oblicz a_{15} .

Rozwiązanie

Wyrazy opisanego ciągu są wybrane spośród liczb

W szczególności mamy do czynienia ciągiem o różnicy r=5. Ze wzoru na wyraz ogólny ciągu arytmetycznego mamy

$$28 = a_6 = a_1 + 5r = a_1 + 25 \implies a_1 = 3.$$

Stad

$$a_{15} = a_1 + 14r = 3 + 14 \cdot 5 = 73.$$

Odpowiedź: $a_{15} = 73$

ZADANIE 30 (2 PKT)

Ojciec i syn mają łącznie 50 lat. Pięć lat temu ojciec był trzykrotnie starszy od syna. Ile lat ma ojciec, a ile syn?

Rozwiązanie

Sposób I

Jeżeli oznaczymy przez o i s wiek odpowiednio ojca i syna, to mamy układ równań

$$\begin{cases}
o+s = 50 \\
o-5 = 3(s-5)
\end{cases}$$

Odejmujemy od pierwszego równania drugie (żeby skrócić o).

$$s + 5 = 50 - 3s + 15$$

 $4s = 60 \implies s = 15.$

Zatem o = 50 - s = 35.

Sposób II

Skoro teraz mają łącznie 50 lat, to 5 lat temu mieli łącznie 40 lat. W dodatku ojciec był 3 razy starszy od syna, czyli

$$s + 3s = 40 \Rightarrow s = 10$$
,

gdzie przez s oznaczyliśmy wiek syna 5 lat temu. Zatem teraz syn ma 15 lat, a ojciec 35.

Odpowiedź: Ojciec ma 35 lat, syn 15 lat.

ZADANIE 31 (2 PKT)

Wykaż, że jeżeli środkowa trójkąta jest dwa razy krótsza od boku, do którego jest poprowadzona, to trójkąt ten jest prostokątny.

Rozwiązanie

Niech CD będzie taką środkową trójkąta ABC, dla której $CD = \frac{1}{2}AB$.

Ponieważ D jest środkiem odcinka AB, mamy stąd

$$DC = DB = DA$$
,

czyli punkty A, B, C leżą na okręgu o środku D i promieniu R = DC = DB = DA. Ponadto, odcinek AB jest średnicą tego okręgu, więc

$$\angle ACB = 90^{\circ}$$

(kat oparty na średnicy).

ZADANIE 32 (4 PKT)

Na prostej o równaniu y=x wyznacz współrzędne punktu P leżącego najbliżej punktu K=(-1,7).

ROZWIAZANIE

Niech P = (x, x) będzie dowolnym punktem prostej y = x. Liczymy teraz kwadrat odległości KP.

$$KP^2 = (x+1)^2 + (x-7)^2 = x^2 + 2x + 1 + x^2 - 14x + 49$$

= $2x^2 - 12x + 50$.

Musimy zatem wyznaczyć najmniejszą wartość funkcji $f(x) = 2x^2 - 12x + 50$. Ponieważ jest to parabola o ramionach skierowanych w górę, przyjmuje ona wartość najmniejszą w wierzchołku, czyli dla $x = \frac{12}{4} = 3$. Wtedy y = x = 3. Zatem P = (3,3)

Na koniec możemy sobie naszkicować całą sytuację.

Odpowiedź: P = (3,3)

ZADANIE 33 (4 PKT)

W wyniku zwiększenia każdego boku danego prostokąta o 2 cm jego pole wzrosło o 20 cm². O ile zwiększy się pole danego prostokąta, jeśli jego boki zwiększymy o 3 cm?

ROZWIAZANIE

Oznaczmy długości boków danego prostokąta przez a i b. Wiemy zatem, że

$$(a+2)(b+2) = ab + 20$$

 $ab + 2a + 2b + 4 = ab + 20$ /: 2
 $a+b=8$.

Jeżeli więc zwiększymy każdy z boków o 3 cm, to otrzymamy prostokąt o polu

$$(a+3)(b+3) = ab+3(a+b)+9 = ab+3\cdot 8+9 = ab+33,$$

czyli pole zwiększy się o 33 cm².

Odpowiedź: 33 cm²

ZADANIE 34 (5 PKT)

Na okręgu o promieniu 3 opisano trójkąt prostokątny o jednej z przyprostokątnych długości 12. Oblicz obwód tego trójkąta.

Rozwiązanie

Szkicujemy trójkąt prostokątny.

Korzystamy ze wzoru

$$r = \frac{a+b-c}{2}$$

na promień r okręgu wpisanego w trójkąt prostokątny o przyprostokątnych długości a i b oraz przeciwprostokątnej długości c. Jeżeli oznaczymy b=12, to mamy

$$3 = r = \frac{a+12-c}{2}$$
 \Rightarrow $6 = a-c+12$ \Rightarrow $c-a = 6$.

Ponadto, na mocy twierdzenia Pitagorasa

$$144 = b^2 = c^2 - a^2 = (c - a)(c + a) = 6(c + a).$$

Mamy zatem

$$\begin{cases} c - a = 6 \\ c + a = 24. \end{cases}$$

Jeżeli teraz odejmiemy od drugiego równania pierwsze (żeby skrócić c), to mamy

$$2a = 18 \Rightarrow a = 9.$$

Stąd c = a + 6 = 15 i obwód trójkąta *ABC* jest równy

$$a + b + c = 9 + 12 + 15 = 36$$
.

Odpowiedź: 36