

COLEGIO CHAMPAGNAT FÍSICA

BIMESTRE I: EJERCICIOS SEMANALES #1

Profesor: Pedro Samuel Díaz Pérez

Alumno: Fernando José Fuentes Castillo #10

Grado: Segundo año Sección: B

1. En el aparato de la figura, m1 = 10 kg y los coeficientes de fricción estática y cinética entre m1 y la tabla son 0.60 y 0.40, respectivamente. a) ¿Cuál es el máximo valor de masa para m2 para que no se ponga en movimiento? b) Una vez que el sistema se empiece a mover, ¿qué aceleración tendrá?

2. Para el dispositivo de la figura, ¿qué valor mínimo del coeficiente de fricción estática entre el bloque (m3) y la mesa mantendría el sistema en reposo si m1 = 0.25 kg, m2 = 0.50 kg y m3 = 0.75 kg?

Fernando Dosé Fuen	tes Castillo #10 2do B
	sitivo de la figura
m2=0.5	Primera ley de 100 kg Newton (reposo). 75 kg -> w= 7.35 N
m 3 = 0.	
Caisa 3 - caisa 1:	Caja 3 - caja 2:
Fx = 0	S F x = O
Fx = 0 fs - T = 0	$T_2 - f_s = 0$ $T_2 = f_s$
$f_s = T_1$ $U_s \circ n = T_1$	T2 = 7.35 µs
$\mu_s \cdot n = T_1$ $7.35 \mu_s = T_1$	F- MA-9) 100 F 100 S -1
Caja 1 - Caja 3:	Cajal - Caja 3:
Z. Fy =0	2 6y +0
w = T = 0	110-1-0
	1
0.25 (q.8) = T ₁ = 2.45N = T ₄ = 0	7,9,0 - 12
9.16 - 7.26	la fs coincide con la
$2.45 = 7.35 \mu s$ $2.45 = \mu s$	la casa ma es mas pes
7.35	an dest in a per
0.33 F Us	R/El cooficiente de fs

3. En la figura, el coeficiente de fricción cinética entre el bloque A y la mesa es 0.20. Además, $m_A = 25$ kg, $m_B = 15$ kg. ¿Cuánto bajará el cuerpo B en los primeros 3 s después de liberar el sistema?

	6 24 #10 240 B
Fernando José Fuentes	Castillo #10 2do B
3. En la figura, el	coeficiente de fricción
Datos: $\mu_{R} = 0.20$ $m_{A} = 25 \text{ hg}$ $m_{B} = 15 \text{ Kg}$	RI El werpo B descendera 11.025 m en 3 segundos.
Cuerpo A:	
$ \sum_{f \times f} F \times f = ma $ $ T - f_k = ma $ $ T = ma + f_k $	
T= 25a + (Mk . () T= 25a + 245 (0.	25)(4.81) 20) -> T= 25a + 49 N
Cuerpo B: 1- 1	+
$\sum_{i} F_{y} = m \cdot a$ $i = m \cdot a$ (15)(9.8) - I = 15a	T= 25a + 49 N T= 147 N - 15a
147 - T = 15a $T = 147N - 15a$	25a +49 = 147 - 15a 40a = 98 a = 98 -> a = 2.45 m
V ₀ = 0	40 5
(1- 40-17 1111)	$= 0 + \frac{1}{2} (2.45)(3)^{2}$ $= 11.025 \text{ m}.$
X = 3 X = 5 X	