Lehrstuhl für INFORMATIONS-	Regelungssysteme 2	WS
TECHNISCHE REGELUNG	Übung 5	2014/15
Technische Universität München		
Prof. DrIng. Sandra Hirche		
www.itr.ei.tum.de		

1. Aufgabe: Störentkoppelungsregelung

Gegeben ist das MIMO-System

$$\dot{\boldsymbol{x}} = \begin{bmatrix} -6 & 4 \\ -2 & 0 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} \boldsymbol{u} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{d},$$
$$\boldsymbol{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \boldsymbol{x}$$

das mithilfe einer Störentkopplungsregelung

$$\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{x}(t)$$

die Störung d am Ausgang unterdrücken soll. Es sollen möglichst keine Eigenwerte verschoben werden.

1. Ist ein Störentkopplung möglich? Falls ja, berechnen sie die Regelungsmatrix K und, zur Kontrolle, die Übertragungsfunktion $G_d = \frac{y}{d}$ des geregelten Kreises.

Durch Änderungen am System konnte die Einkopplung der Störung zu

$$\dot{\boldsymbol{x}} = \begin{bmatrix} -6 & 4 \\ -2 & 0 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} \boldsymbol{u} + \begin{bmatrix} 4 \\ -2 \end{bmatrix} \boldsymbol{d},$$
$$\boldsymbol{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \boldsymbol{x}$$

geändert werden.

2. Ist Störentkopplung möglich? Falls ja, berechnen sie die Regelungsmatrix K und zur Kontrolle die Übertragungsfunktion $G_d = \frac{y}{d}$ des geregelten Kreise.

2. Aufgabe: Entkoppelungsregelung nach Falb-Wolovich

Gegeben ist folgendes MIMO-System:

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{u},$$

$$\boldsymbol{y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{x}$$

Es sollen die Ein- und Ausgänge mithilfe des Entkoppelungsansatzes nach Falb-Wolovich durch

$$\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{x}(t) + \boldsymbol{L}\boldsymbol{w}(t)$$

entkoppelt werden. Durch die Regelung soll y_1 einen Pol bei $s_1 = -2$ und y_2 zwei Pole bei $s_{2,3} = -2$ besitzen. Beide Ausgänge sollen im stationären Fall den Wert des Eingangs aufweisen.

- 1. Bestimmen sie den Relativgrad δ_1 für y_1 und δ_2 für y_2 .
- 2. Ist eine stabile Entkoppelung möglich?
- 3. Bestimmen sie die Minimalrealisierungen der Übertragungsfunktionen, die durch die Regelung eingestellt werden sollen.
- 4. Bestimmen sie die Reglermatrix K und den Vorfilter L.