Лабораторная работа № 3 Методы линейной алгебры на Python

Теоретические сведения

1.1. Подключение библиотеки Numpy

Библиотека Numpy содержит большое количество функций для работы с матрицами. Для того чтобы импортировать данный модуль, в самое начало программы нужно добавить следующую строку:

import numpy as np

После этого можно обращаться к функциям библиотеки через новое имя np. *Пример*. Вызов функции формирования единичной матрицы заданной размерности 4:

E = np.eye(4) # из модуля numpy вызываем функцию eye print(E) #выводим полученную матрицу на экран

Модуль numpy.linalg содержит алгоритмы линейной алгебры: нахождение определителя матрицы, решений системы линейных уравнений, обращение матрицы, нахождение собственных чисел и собственных векторов матрицы, разложение матрицы на множители: Холецкого, сингулярное, метод наименьших квадратов и т.д.

1.2. Описание векторов и матриц

Для работы с массивами в Python по умолчанию используется тип данных список, но с точки зрения представления матриц и проведения вычислений с ними стандартные списки — не самый удобный инструмент.

Numpy содержит специальную структуру данных array, которую и будем использовать для создания векторов и матриц.

Описание векторов и матриц

Команда	Комментарий
vr = np.array([1, 2])	Создание вектора-строки vr = (1 2)
v0 = np.zeros((5,))	Создание нулевого вектора-строки
	размера 5
v1 = np.ones((5,))	Создание вектора-строки размера 5,
	заполненного единицами
vc = np.array([[1], [2]])	$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
	Создание вектора-столбца

m_sqr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] m_sqr = np.array(m)	$Msqr = egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix}$
m_sqr = np.matrix([[1, 2, 3],	Ещё одни способ создания матриц – это построение объекта типа matrix
[4, 5, 6], [7, 8, 9]])	
m_sqr = np.matrix('1 2 3; 4 5 6;	доступен стиль Matlab, когда между
7 8 9')	элементами ставятся пробелы, а строки
	разделяются точкой с запятой, при
	этом такое описание должно быть
	передано в виде строки

Пусть в программе определены матрицы

A = np.matrix('1 2 3; 4 5 6; 7 8 9')

B = np.matrix('7 8 9; 0 7 5; 3 2 1')

Действия с матрицами

Henemoun Emanymuna	
Команда	Комментарий
A.transpose()	Транспонирование матрицы
A.T	
A + B	Сумма матриц
A.dot(B)	Произведение АВ
B.dot(A)	Произведение ВА
A_det = np.linalg.det(A)	Определитель матрицы
A_obr = np.linalg.inv(A)	Обратная матрица

Указания к выполнению лабораторной работы

В качестве отчета по работе преподавателю предъявляются решения в электронном виде. При необходимости нужно ответить на дополнительные вопросы.

Задание на лабораторную работу 3

Задание 1. Выполнить задания 1-3 из лабораторной работы 2, используя стандартные функции из модуля numpy.linalg. Сравнить результаты с полученными ранее.

Задание 2. Найти собственные значения для матрицы своего варианта из задания 3 лабораторной работы 2.

Для этого используйте функцию linalg.eigvals(A)

Определить среди них действительные и комплексные значения.

Записать спектр матрицы.

Справочная информация

Numpy. Матричные вычисления: https://physics.susu.ru/vorontsov/language/numpy.html