Mathematische Grundlagen(1141)

SoSe 2012

Kurseinheit 6:

Einsendeaufgaben – Einsendetermin: 25.6.2012

Aufgabe 6.1

Wahr oder falsch?

wahr falsch

- (1) $\sum_{n=1}^{\infty} (-1)^n \sqrt[n]{2}$ ist konvergent.
- (2) $\sum_{n=1}^{\infty} \frac{2n}{4^n}$ ist konvergent.
- (3) $\sum_{n=1}^{\infty} {2n \choose n}^{-1}$ ist konvergent.
- (4) $\sum_{n=1}^{\infty} \frac{x^n}{(5+(-1)^n)^n}$ konvergiert für alle $x \in (-4,4)$.
- (5) $\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n}$ ist konvergent.
- (6) $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\ln(n)}$ ist konvergent.
- (7) $\sum_{n=1}^{\infty} \frac{(-3)^n}{2^n}$ ist konvergent.
- (8) $\sum_{n=1}^{\infty} \frac{(-2)^n}{3^n}$ ist konvergent.
- (9) Der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \frac{n}{10^n} x^n$ ist 10.
- (10) Der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \frac{n!}{10^n} x^n$ ist 0. (Hinweis: Quotientenkriterium)

 $[\max(0, r - f)]$ Punkte, wobei r die Anzahl der richtigen und f die Anzahl der falschen Antworten ist. Nicht beantwortete Fragen gehen nicht in die Bewertung ein.]

Einsendeaufgaben MG EA 6

Diese Seite bleibt aus technischen Gründen frei!

Einsendeaufgaben MG EA 6

Aufgabe 6.2

Untersuchen Sie, für welche $x \in \mathbb{R}$ die Reihe $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n}$ konvergent ist.

[10 Punkte]

Aufgabe 6.3

Untersuchen Sie, ob Sie bei der Berechnung von

$$\lim_{x \to 0} \frac{\exp(5x) - 1}{\ln(1 + 5x)} \text{ mit } x > -\frac{1}{5}$$

die Regel von de l'Hospital anwenden können. Berechnen Sie den Grenzwert.

[10 Punkte]

Aufgabe 6.4

Sei $D = \mathbb{R} \setminus \{(2k+1)\frac{\pi}{2} \mid k \in \mathbb{Z}\}$. Sei $f: D \to \mathbb{R}$ definiert durch $f(x) = \frac{1}{\cos(x)}$ für alle $x \in D$.

- 1. Beweisen Sie, dass f periodisch mit Periode 2π ist.
- 2. Beweisen Sie, dass $|f(x)| \ge 1$ für alle $x \in D$ ist.
- 3. Bestimmen Sie die lokalen Extremwerte von f.

[2+2+6 Punkte]

Aufgabe 6.5

Bestimmen Sie das dritte Taylorpolynom $P_{3,1}$ im Entwicklungspunkt 1 von ln und bestimmen Sie eine Umgebung U von 1 so, dass $|\ln(x) - P_{3,1}(x)| < \frac{1}{2} \cdot 10^{-4}$ für alle $x \in U$ gilt.

[10 Punkte]

Aufgabe 6.6

Seien $a, b \in \mathbb{R}$ mit a < b, und sei $f : [a, b] \to \mathbb{R}$ stetig und in (a, b) differenzierbar.

Beweisen Sie, dass es Zahlen $x_1, x_2 \in (a, b)$ und $a_1, a_2 \in (0, \infty)$ mit $a < x_1 < x_2 < b$ und $a_1 + a_2 = 1$ so gibt, dass gilt:

$$\frac{f(b) - f(a)}{b - a} = a_1 f'(x_1) + a_2 f'(x_2).$$

Hinweis: Wählen Sie irgendein $c \in (a, b)$ und wenden Sie den Mittelwertsatz auf [a, c] und [c, b] an.

[10 Punkte]