LAPORAN PRATIKUM

BAGIAN II – MODEL REGRESI LINEAR BERGANDA MATA KULIAH STATISTIKA REGRESI KELAS B

"Hasil Analisis Regresi Linear Berganda Terhadap Data uji Coba X1, X2, X3 dan Y"

DISUSUN OLEH:

ANGELA LISANTHONI (21083010032)

DOSEN PENGAMPU:

TRIMONO, S.SI., M.SI DR. ENG. IR. ANGGRAINI PUSPITA SARI., ST., MT.

PROGRAM STUDI SAINS DATA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN"
JAWA TIMUR
2022

1. BAB 1: PENDAHULUAN

1.1 Tujuan Pratikum

1.1.1 Tujuan Instruksional Umum (TIU)

Tujuan instruksional umum dari laporan ini adalah mahasiswa mampu melakukan pengolahan, analisis dan membuat model regresi dari data pengamatan berdasarkan model yang dibangun dengan menggunakan SPSS.

1.1.2 Tujuan Instruksional Khusus (TIK)

Tujuan instruksional khusus dari laporan ini adalah mahasiswa mampu mengestimasi koefisien regresi linear berganda serta menganalisis berbagai nilai statistic yang berkaitan dengan koefisien regresi linear berganda yang diperoleh dari hasil data pengamatan menggunakan SPSS.

1.2 Permasalahan

Adapun permasalahan yang dibahas dalam laporan ini adalah:

- Bagaimana bentuk model regresi antara data uji X1, X2, X3 dan Y menggunakan SSPS?
- Bagaimana menerapkan uji hipotesis terhadap data uji X1, X2, X3 dan Y menggunakan SSPS?
- Bagaimana menerapkan uji asumsi terhadap data uji X1, X2, X3 dan Y menggunakan SSPS?
- Bagaimana menghitung koefisien korelasi terhadap data uji X1, X2, X3 dan Y menggunakan SSPS?
- Bagaimana bentuk model akhir antara data uji X1, X2, X3 dan Y menggunakan SSPS?

2. BAB II: TINJAUAN PUSTAKA

2.1 Model Regresi Linear Berganda

Berdasarkan teori pada (Putri, Novianti, Yasmin, & Novitasari, 2021), regresi linear berganda adalah algoritma yang digunakan untuk mengidentifikasi hubungan antar variabel respons dengan minimal dua variable predictor yang dirumuskan sebagai berikut:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n \tag{1}$$

2.2 Uji Hipotesis

2.2.1 Uji Koefisien Regresi Secara Bersama – sama (Uji F)

Uji F digunakan untuk melihat apakah model regresi yang ada layak atau tidak. Kelayakan yang dimaksud adalah apakah model regresi dapat digunakan untuk menjelaskan pengaruhi variable independent pada dependen. Perhitungannya akan mengasumsikan H_0 : model tidak sesuai dan H_1 : model sesuai. H_0 ditolak apabila |f| hitung| > f| tabel atau sig $| < \alpha|$ (Nanincova, 2019).

2.2.2 Uji Koefisien Regresi secara Individu (Uji T)

Uji t adalah suatu uji yang menunjukkan seberapa jauh pengaruh satu variable independent secara individual dalam menerangkan variable dependen. Perhitungannya akan mengasumsikan H_0 : variable independent tidak mempunyai pengaruhi signifikan terhadap variable dependen dan H_1 : variable independent mempunyai pengaruhi signifikan terhadap variable dependen. H_0 ditolak apabila $|t \ hitung| > t \ tabel$ atau sig $< \alpha$ (Magdalena & Krisanti, 2019).

2.3 Uji Asumsi

2.3.1 Uji Normalitas

Uji normalitas dilakukan untuk mengetahui apakah nilai residual terdistribusi normal atau tidak dan model regresi yang baik adalah yang memiliki nilai residual berdistribusi normal. Cara dasar untuk mengetauinya adalah melalui penyebaran data pada suber diagonal pada grafik P Plot of regression standardized (Mardiatmoko, 2020). Perhitungan uji normalitas bisa secara manual dengan H₀: sisaan berdistribusi normal dan H₁: sisaan tidak berdistribusi normal. Serta bagian statistic uji, bisa melalui kolmogorof-Smirnov maupun Shapiro-Wilk (Wardani, Susanti, & Subanti, 2021) dengan kriteria penguji:

- nilai sig > a, maka data berdistribusi normal
- nilai sig < α, maka data tidak berdistribusi normal

2.3.2 Uji Linieritas

Uji Linieritas digunakan untuk mengetahui apakah dua variable secara signifikan mempunyai hubungan yang linear atau tidak (Harling, 2020).

2.3.3 Uji Homoskedastisitas

Uji Homoskedastisitas merupakan keadaan dimana terjadi ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. model yang baik adalah model yang tidak terjadi heteroskedastisitas (Mardiatmoko, 2020).

2.3.4 Uji Non Autokorelasi

Uji Non autikorelasi bertujuan untuk melihat apakah dalam model regresi linear ada korelasi antara sisaan pada periode t dengan sisaan pada periode t -1 (sebelumnya) yang biasanya menggunakan uji Durbin-Watson. Perhitungannya akan mengasumsikan H_0 : tidak ada autokorelasi antar sisaan dan H_1 : terdapat autokorelasi antar sisaan. H_0 ditolak apabila $d < d_L$ atau $d > (4-d_L)$ atau H_0 diterima apabila $d_u < d < (4-d_u)$ (Wardani, Susanti, & Subanti, 2021).

2.3.5 Uji Non multikolinieritas

Uji Non multikolinieritas bertujuan untuk membuktikan bahwa tidak ada hubungan antar variabel independent dalam model regresi. Uji Non multikoliniearitas tepnuhi apabila nilai VIF (Variance inflation Factor) < 10 atau nilai Tolerance > 0.1 (Mardiatmoko, 2020).

3. BAB III: ANALISIS DAN PEMBAHASAN

3.1 Model Regresi Linear Berganda

			Coeffici	ients ^a				
		Unstandardized B	Coefficients Std. Error	Standardized Coefficients Beta		0:-	Collinearity Tolerance	Statistics
Mode	el	В	Sta. Error	Beta	τ	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826		-6.262	.000		
	Jumlah Transaksi	.002	.001	.331	2.373	.024	.401	2.491
	Rating	3.011	.746	.381	4.038	.000	.874	1.144
	Lama Penggunaan aplikasi (jam)	4.471	.968	.651	4.618	.000	.392	2.550

Berdasarkan tabel Coefficient, didapatkan:

 $\beta_0 = -42.740$

 $\beta_1 = 0.002$

 $\beta_2 = 3.011$

 $\beta_3 = 4.471$

Maka persamaan regresi awalnya adalah:

Y = -42.740 + 0.002X1 + 3.011X2 + 4.471X3

3.2 Uji Hipotesis

3.2.1 Uji Koefisien Regresi Secara Bersama – sama (Uji F)

- H_0 : $\beta_0 = \beta_1 = \beta_2 = \beta_3 = 0$ (model regresi tidak sesuai) H_1 : $\beta_i \neq 0$ [i = 1,2,3] (model regresi sesuai)
- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2443.344	3	814.448	32.466	.000 ^b
	Residual	777.676	31	25.086		
	Total	3221.021	34			

Berdasarkan tabel ANOVA dapat diketahui:

F = 32.466sig = 0.000

• Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig < α . dan Diperhitungan ini, sig < α (0.000 < 0.05) sehingga H_0 ditolak yang artinya model regresi sesuai

3.2.2 Uji Koefisien Regresi secara Individu (Uji T)

Uji Variabel X1

- H_0 : $\beta_1 = 0$ (X1 tidak mempengaruhi Y) H_1 : $\beta_1 \neq 0$ (X1 mempengaruhi Y)
- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

			Coeffici	ents ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826	_	-6 262	000		
	Jumlah Transaksi	.002	.001	.331	2.373	.024	.401	2.491
	Rating	3.011	.746	.381	4.038	.000	.874	1.144
	Lama Penggunaan aplikasi (jam)	4.471	.968	.651	4.618	.000	.392	2.550

Berdasarkan tabel Coefficients dapat diketahui:

t = 2.373sig = 0.024

Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig $< \alpha$. dan Diperhitungan ini, sig $< \alpha$ (0.024 < 0.05) sehingga H_0 ditolak yang artinya X1 mempengaruhi Y.

Uji Variabel X2

- H_0 : $\beta_2 = 0$ (X2 tidak mempengaruhi Y) H_1 : $\beta_2 \neq 0$ (X2 mempengaruhi Y)
- taraf signifikansi (a = 5%)
- Statistik uji

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826		-6.262	.000		
	Jumlah Transaksi	.002	.001	.331	2.373	.024	.401	2.491
	Rating	3.011	.746	.381	4.038	.000	.874	1.144
	Lama Penggunaan aplikasi (jam)	4.471	.968	.651	4.618	.000	.392	2.550

Berdasarkan tabel Coefficients dapat diketahui:

t = 4.038

sig = 0.000

• Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig < α . dan Diperhitungan ini, sig < α (0.000 < 0.05) sehingga H_0 ditolak yang artinya X2 mempengaruhi Y.

Uji Variabel X1

• H_0 : $\beta_3 = 0$ (X3 tidak mempengaruhi Y) H_1 : $\beta_3 \neq 0$ (X3 mempengaruhi Y)

- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

			Coeffici	ents ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-42.740	6.826		-6.262	.000		
	Jumlah Transaksi	.002	.001	.331	2.373	.024	.401	2.491
	Rating	3.011	.746	.381	4.039	.000	.874	1.144
	Lama Penggunaan aplikasi (jam)	4.471	.968	.651	4.618	.000	.392	2.550

Berdasarkan tabel Coefficients dapat diketahui:

t = 4.618

sig = 0.000

Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig < α . dan Diperhitungan ini, sig < α (0.000 < 0.05) sehingga H_0 ditolak yang artinya X3 mempengaruhi Y.

3.3 Uji Asumsi

3.3.1 Uji Normalitas

a. Secara Visual

Pada gambar diatas, dapat dilihat bahwa plot nya mengikuti garis lurus sehingga bisa disimpulkan bahwa residual berdistribusi normal jika secara visual.

b. Secara perhitungan

• H₀: residual berdistribusi normal

H₁: residual tidak berdistribusi normal.

a. Lilliefors Significance Correction

- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

Tests of Normality									
	Kolm	ogorov-Smir	nov ^a	S	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.			
Unstandardized Residual	.075	35	.200*	.980	35	.755			
*. This is a lower bound of	of the true sig	nificance.							

Berdasarkan tabel Tests of Normality, didapatkan (ditinjau melalui Kolmogorov Smirnov):

$$|FT - FS| = 0.075$$

sig = 0.200

• Keputusan

Tolak H_0 apabila nilai sig $< \alpha$ namun, dalam perhitungan ini nilai sig $> \alpha$ (0.200 > 0.05) sehingga H_0 diterima yang artinya residual data berdistribusi normal.

3.3.2 Uji Linieritas

Berdasarkan gambar diatas terlihat bahwa sebaran datanya terjadi secara acak dan tidak membentuk pola tertentu. Maka bisa disimpulkan bahwa uji linieritas terpenuhi.

3.3.3 Uji Homoskedastisitas

Berdasarkan gambar diatas, terlihat bahwa sebaran datanya terjadi secara acak dan tidak membentuk pola tertentu. Maka bisa disimpulkan bahwa uji homoskedastisitas terpenuhi.

3.3.4 Uji Non-Autokorelasi

• H₀: tidak ada autokorelasi antar sisaan H₁: terdapat autokorelasi antar sisaan

- Taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

Berdasarkan Model Summary, didapatkan bahwa DW (Durbin-Watson) = 1.813 Dari tabel Durbin Watson dengan $\alpha = 5\%$ dengan n=35 dan k=3 maka:

	k*	= 1	¥:*	= 2	k*	= 3	k*	= 4	k*	= 5	k.*	= 6
n	dL	du	d_L	du	d_L	d_u	dı.	du	dL	d_{u}	dL	d_u
6	0.610	1.400	100,000,000	tone to the gr								
7	0.700	1.356	0.467	1.896								
8	0.763	1.332	0.559	1.777	0.368	2.287						
9	0.824	1.320	0.629	1.699	0.455	2.128	0.296	2.588				
10	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822		
11	0.927	1.324	0.658	1.604	0.595	1.928	0.444	2.283	0.316	2.645	0.203	3.003
12	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.379	2.506	0.268	2.832
13	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.445	2.390	0.328	2.693
14	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296	0.389	2.572
15	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220	0.447	2.473
16	1.106	1.371	0.982	1.539	0.857	1.728	0.734	1.935	0.615	2.157	0.502	2.388
17	1.133	1.381	1.015	1.536	0.897	1.710	0.779	1.900	0.664	2.104	0.554	2.318
18	1.158	1.391	1.046	1.535	0.933	1.696	0.820	1.872	0.710	2.060	0.603	2.25
19	1.180	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	0.649	2.200
20	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991	0.692	2.163
21	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	0.732	2.12
22	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940	0.769	2.090
23	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920	0.804	2.061
24	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	0.837	2.033
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886	0.868	2.013
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992
27	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.97
28	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028	1.850	0.951	1.958
29	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050	1.841	0.975	1.94
30	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833	0.998	1.93
31	1.363	1.496	1.297	1.570	1.229	1.650	1.160	1.735	1.090	1.825	1.020	1.920
32	1.373	1.502	1.309	1.574	1.244	1.650	1.177	1.732	1.109	1.819	1.041	1.909
33	1.383	1.508	1.321	1.577	1.258	1.651	1.193	1.730	1.127	1.813	1.061	1.900
34	1.393	1.514	1.333	1.580	1.271	1.652	1.208	1.728	1.144	1.808	1.080	1.891
35	1.402	1.519	1.343	1.584	1.283	1.653	.222	1.726	1.160	1.803	1.097	1.884

dL = 1.283dU = 1.653

• Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila $dW < d_L$. Namun, diperhitungan ini, $dW > d_L (1.813 > 1.283)$ sehingga H_0 diterima yang artinya tidak ada autokorelasi

3.3.5 Uji Non-Multikolinieritas

			Coeffici	ents ^a				
		Unstandardize	d Coefficients	Stan dardize d Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VOE
1	(Constant)	-42.740	6.826		-6.262	.000		
	Jumlah Transaksi	.002	.001	.331	2.373	.024	.401	2.491
	Rating	3.011	.746	.381	4.03B	.000	.874	1.144
	Lama Penggunaan aplikasi (jam)	4.471	.968	.651	4.618	.000	.392	2.550

Berdasarkan gambar diatas, terlihat nilai VIF didapatkan 1.491;1.114;2.550. Berdasarkan Teori Penunjang diatas, jika nilai VIF < 10 maka uji non-multikolinieritas terpenuhi. Maka, dalam data ini non-multikolinieritas terpenuhi sehingga tidak ada korelasi antar variabel bebas.

3.4 Koefisien Determinasi

Berdasarkan gambar 9, didapatkan nilai Koefisien Korelasi (R) = 0.759 yang artinya antara X1, X2, X3 dan Y memiliki korelasi tinggi. ada 75.9% variable Y dipengaruhi oleh X sedangkan 24.1% variable Y dipengaruhi factor lain.

3.5 Model Akhir

Berdasarkan uji F, model regresi yang dibuat cocok digunakan untuk analisis lebih lanjut dan berdasarkan uji t, koefisien parameter regresi X yaitu β_1 , β_2 , β_3 berpengaruh signifikan terhadap Y. Dapat disimpulkan model akhir berbeda dengan model awal yang dibuat yaitu:

Y = -42.740 + 0.002X1 + 3.011X2 + 4.471X3

4. BAB IV: KESIMPULAN

Model regresi akhir didapatkan Y = -42.740 + 0.002X1 + 3.011X2 + 4.471X3 dimana yang menunjukkan jika X1 naik, Y juga akan naik sebesar 0.002; jika X2 naik, Y juga akan naik sebesar 3.011; jika X3 naik, Y juga akan naik sebesar 4.471 dengan nilai konstan -42.740. Model regresi ini dinyatakan telah sesuai berdasarkan uji F dan nilai X1,X2,X3 mempengaruhi secara signifikan terhadap nilai Y berdasarkan uji t. Berdasarkan nilai koefisien korelasi, X mempengaruhi sebesar 75.9% variable Y. Residual dari Y prediksi berdistribusi normal menurut uji normalitas, serta karena residual yang didapat tidak menghasilkan pola maka disimpulkan uji linieritas dan uji Homoskedastisitas terpenuhi yang artinya kedua variable ada hubungan linear dan ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. Dari Uji Non Autokorelasi, terbukti bahwa setiap residual tidak ada korelasi. Serta, dari uji Nonmultikolinieritas terbukti bahwa tidak ada korelasi antar variabel bebas.

5. DAFTAR PUSTAKA

- Harling, V. N. (2020). ANALISIS HUBUNGAN KEDISIPLINAN BELAJAR DARI RUMAH (BDR) DENGAN PRESTASI BELAJAR KIMIA SISWA SELAMA MASA PANDEMI. *SOSCIED*.
- Magdalena, R., & Krisanti, M. A. (2019). Analisis Penyebab dan Solusi Rekonsiliasi Finished Goods Menggunakan Hipotesis Statistik dengan Metode Pengujian Independent Sample T-Testdi PT.Merck, Tbk. *TEKNO*, 35 48.
- Mardiatmoko, G. (2020). PENTINGNYA UJIASUMSIKLASIK PADAANALISIS REGRESI LINIER BERGANDA (STUDI KASUS PENYUSUNAN PERSAMAAN ALLOMETRIK KENARI MUDA [CANARIUM INDICUML.]). *BAREKENG: Jurnal Ilmu Matematika dan Terapan*, 333-342.
- Nanincova, N. (2019). PENGARUH KUALITAS LAYANAN TERHADAP KEPUASAN PELANGGAN NOACH CAFE AND BISTRO. *AGORA*.

- Putri, E. R., Novianti, F., Yasmin, Y. R., & Novitasari, D. C. (2021). Prediksi Kasus Aktif Kumulatif Covid-19 di Indonesia Menggunakan Model Regresi Linier Berganda. *Transformasi: Jurnal Pendidikan Matematika dan Matematika*, 567-577.
- Wardani, I. K., Susanti, Y., & Subanti, S. (2021). PEMODELAN INDEKS KEDALAMAN KEMISKINAN DI INDONESIA MENGGUNAKAN ANALISIS REGRESI ROBUST. *Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST)*, (pp. 15 23). Yogyakarta.

6. LAMPIRAN

- 6.1 Langkah Analisis
 - a. Definisikan variable Y, variable X, dan variabel Dummy pada bagian Variabel View

Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Y_032	Numeric	8	2	Poin Bonus	None	None	8	■ Right		> Input
X1_032	Numeric	8	0	Jumlah Transaksi	None	None	8	■ Right		> Input
X2_032	Numeric	8	2	Rating	None	None	8	■ Right		> Input
X3_032	Numeric	8	2	Lama Penggun	None	None	8	■ Right		> Input

b. Isikan data pada kolom yang sesuai pada bagian Data View

c. klik menu Analyze → Regresion → Linear

d. lalu akan muncul kotak seperti berikut. Masukkan bagian data Y ke Dependent sedangkan Data X1,X2,X3 ke bagian independent

e. Klik Statistics dan dan centang pada opsi estimates, Covariance Matrix, R Square change, Colinearity Diganostic, dan Durbin Watson

f. Klik plot, lalu masukkan *ZRESID ke kotak Y dan *ZPRED ke kotak X Klik Next, lalu masukkan *SRESID ke kotak Y dan *ZPRED ke kotak X Centang Normal Probability Plot → continue

g. Klik save lalu centang opsi Unstandardized di kolom predicted Values dan Residuals

h. Klik OK

- i. Dilakukan khusus untuk uji normalitas
 - Menu analyze → Descriptive Statistics → explore

• Masukkan data RES_1 ke bagian dependent list

klik plots dan centang normalisty plots with tests

Klik OK

6.2 Output Analisis pada SPSS

[DataSet0]

Variables Entered/Removed^a

Model	Entered	Removed	Method
1	Lama Penggunaan aplikasi (jam), Rating, Jumlah Transaksi ^b		Enter

Dependent Variable: Poin Bonus
 All requested variables entered.

Model	e

						,				
						Ch	inge Statisti	es		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	871ª	759	735	5.00863	759	32.466	3	31	000	1.813

b. Dependent Variable: Poin Bonus

ANOVA ^a						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2443.344	3	814.448	32.466	.000
	Residual	777.676	31	25.086		
	Total	2224 024	24			

b. Predictors: (Constant), Lama Penggunaan aplikasi (jam), Rating, Jumlah Transaksi

Collinearity Diagnosticsa

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	Jumlah Transaksi	Rating	Lama Penggunaan aplikasi (jam)	
1	1	3.831	1.000	.00	.00	.01	.00	
	2	.152	5.026	.00	.01	.65	.01	
	3	.012	18.197	.93	.04	.34	.24	
	4	.006	24.868	.06	.96	.00	.75	

a. Dependent Variable: Poin Bonus

Residuals Statistics

			Mean	Std. Deviation	N
Predicted Value	9.5311	47.2085	20.6080	8.47721	35
Std. Predicted Value	-1.307	3.138	.000	1.000	35
Standard Error of Predicted Value	.876	3.268	1.601	.560	35
Adjusted Predicted Value	9.4246	45.5914	20.5358	8.26396	35
Residual	-8.66646	10.25045	.00000	4.78255	35
Std. Residual	-1.730	2.047	.000	.955	35
Stud. Residual	-1.898	2.121	.006	1.013	35
Deleted Residual	-10.63840	11.00767	.07223	5.41164	35
Stud. Deleted Residual	-1.986	2.256	.005	1.038	35
Mahal. Distance	.070	13.502	2.914	3.047	35
Cook's Distance	.000	.227	.034	.053	35
Centered Leverage Value	.002	.397	.086	.090	35

a. Dependent Variable: Poin Bonus

Coefficients

		Unstandardize	Unstandardized Coefficients				Collinearity Statistics		
Mode	d .	В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
1	(Constant)	-42.740	6.826		-6.262	.000			
	Jumlah Transaksi	.002	.001	.331	2.373	.024	.401	2.491	
	Rating	3.011	.746	.381	4.03B	.000	.874	1.144	
	Lama Penggunaan aplikasi (jam)	4.471	.968	.651	4.618	.000	.392	2.550	

a. Dependent Variable: Poin Bonus

Coefficient Correlations^a

Model			Lama Penggunaan aplikasi (jam)	Rating	Jumlah Transaksi
1 Correlations	Lama Penggunaan aplikasi (jam)	1.000	.171	744	
	Rating	.171	1.000	.080	
	Jumlah Transaksi	744	.080	1.000	
	Covariances	Lama Penggunaan aplikasi (Jam)	.937	.123	001
	Rating	.123	.556	4.645E-5	
		Jumlah Transaksi	001	4.645E-5	5.992E-7

Normal P-P Plot of Regression Standardized Residual

Hasil output untuk bagian uji normalitas

→ Explore

Case Processing Summary

	Cases						
	Valid		Missing		Total		
	N	Percent	N	Percent	N	Percent	
Unstandardized Residual	35	100.0%	0	0.0%	35	100.0%	

Descriptives

			Statistic	Std. Error
Unstandardized Residual	Mean		.0000000	.80839929
	95% Confidence Interval	Lower Bound	-1.6428650	
	for Mean	Upper Bound	1.6428650	
	5% Trimmed Mean	0330309		
	Median	.5491383		
	Variance	22.873		
	Std. Deviation	4.78255467		
	Minimum	-8.66646		
	Maximum	10.25045		
	Range	18.91691		
	Interquartile Range	5.90753		
	Skewness	044	.398	
	Kurtosis	473	.778	

Tests of Normality

	Kolm	ogorov-Smir	rnov ^a		Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.075	35	.200*	.980	35	.755

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Unstandardized Residual

Unstandardized Residual Stem-and-Leaf Plot

Frequency	Stem	&	Leaf
6,00	-0		556888
10,00	-0	•	0001222344
14,00	0		00011112222444
4,00	0		5667
1,00	1		0

Stem width: 10,00000
Each leaf: 1 case(s)

