Cálculo numérico 1

Formulario · Primavera 2021

Fundamentos

0.1. Aritmética de punto flotante

Un número de punto flotante consiste en tres partes:

- 1. el **signo** (+ o -);
- 2. la mantisa, que contiene la cadena de bits significativos;
- 3. el exponente.

$$\boxed{ \pm \quad \mid d_1 \mid d_2 \mid \cdots \mid d_{m-1} \mid d_m \mid s}$$

i.e. $\pm 0.d_1d_2...d_{m-1}d_m \times 10^s$, $m \in \mathbb{N}$, $s \in \mathbb{Z}$.

Formatos y precisión

Precisión	Signo	Mantisa (m)	Exponente (s)	Bits totales
half	1	10	5	16
single	1	23	8	32
double	1	52	11	64
long double	1	64	15	80
quad	1	112	15	128

Proposición 0.1

El número positivo más grande está dado por:

$$X_{\text{máx}} = (1 - 10^{-m}) \, 10^{E_{\text{máx}}},$$

donde $E_{\text{máx}}$ es el exponente entero positivo más grande.

Proposición 0.2

El número positivo más pequeño está dado por:

$$X_{\min} = 10^{E_{\min}-1},$$

donde E_{\min} es el exponente entero negativo más pequeño.

Definición 0.1 (Método de corte). Sea algún número real $x = (0.d_1d_2...d_md_{m+1}...) \times 10^s$, entonces:

$$fl(x) = (0.d_1d_2 \dots d_m) \times 10^s.$$

Definición 0.2 (Método de redondeo). Sea algún número real $x = (0.d_1d_2 \dots d_md_{m+1} \dots) \times 10^s$, entonces:

$$fl(x) = \begin{cases} (0.d_1 d_2 \dots d_m) \times 10^s, & \text{si } d_{m+1} < 5\\ (0.d_1 d_2 \dots d_m) \times 10^s + (0.0 \dots 01) \times 10^s, & \text{si } d_{m+1} \ge 5 \end{cases}.$$

Teorema 0.1

Al usar el método de corte, para toda $x \in [X_{\min}, X_{\max}]$ se cumple:

$$\frac{|x - fl(x)|}{|x|} \le 10^{1-m}.$$

Definición 0.3 (Operación suma). $Definimos\ la\ suma\ como\ sigue:$

Input: x, yOutput: z

Carlos Lezama	Cálculo numérico 1 · Formulario	Página 2

1. Localización de raíces y extremos locales