Naiad: A Timely Dataflow System

Phil Gibbons

15-712 F15

Lecture 13

Today's Reminders

- Discuss Project Ideas with Phil & Kevin
- Office Hours: Kevin on Tues, Phil on Wed
- Sign up for a slot: 11-12:30 or 3-4:20 this Friday

Naiad: A Timely Dataflow System [SOSP'13 best paper]

- Derek Murray (Google)
- Frank McSherry (Free agent*)
- Rebecca Isaacs (Google)
- Michael Isard (Free agent)
- Paul Barham (Google)
- Martin Abadi (Google)
 - * "Doing less of what I used to do, and more of what I'd rather be doing."

[Slides from SOSP'13 talk]

Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs Michael Isard Paul Barham Martín Abadi Microsoft Research

Outline

Revisiting dataflow

How to achieve low latency

Evaluation

How to achieve low latency

Programming model

Distributed progress tracking protocol

System performance engineering

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

System performance engineering

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

System performance engineering

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Enables processes to deliver notifications promptly

System performance engineering

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Enables processes to deliver notifications promptly

System performance engineering

Performance engineering

Microstragglers are the primary challenge

 $\begin{array}{ll} \text{Garbage collection} & \text{O(1--10 s)} \\ \text{TCP timeouts} & \text{O(10--100 ms)} \end{array}$

Data structure contention O(1 ms)

For detail on how we handled these, see paper (Sec. 3)

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Enables processes to deliver notifications promptly

System performance engineering

Mitigates the effect of microstragglers

Outline

Revisiting dataflow

How to achieve low latency

Evaluation

Conclusions

Low-latency distributed computation enables Naiad to:

- achieve the **performance** of specialized frameworks
- provide the **flexibility** of a generic framework

The timely dataflow API enables parallel innovation

Now available for download:

http://github.com/MicrosoftResearchSVC/naiad/

[End of slides from SOSP'13 talk]

Could-Result-In

Timestamp

- (epoch, sequence of loop counters)

Pointstamp

- (timestamp, location), location is either edge or vertex

• Path Summary for l_1 to l_2

- Loop coordinates that its vertices remove, add, increment
- $\Psi[l_1,l_2]$ transforms a timestamp at l_1 to a timestamp at l_2

• Pointstamp (t_1, l_1) could-result-in pointstamp (t_2, l_2)

- $\Psi[l_1, l_2](t_1) \leq t_2$
- OK to notify pointstamp p iff no p' could-result-in p

41

Distributed Implementation

• Workers communicate using shared queues

- Have no other shared state
- Single thread of control within a vertex

• Optimizing broadcast updates

- Track progress on per stage/connector-basis not vertex/edge
- Accumulate updates in buffer by summing their deltas
- Accumulate at process level & cluster level
- Optimistic UDP update packup
- Wake workers in parallel

4

Micro-straggler Mitigation

Networking

- Disable Nagle's algorithm; Reduce delayed ack timeout to 10ms; Reduce min transmission time from 300ms to 20ms
- Future: Try Datacenter TCP & RDMA over InfiniBand

• Data structure contention (in .NET concurrent queues)

- Reduce clock granularity to 1 ms

• Garbage collection

 Trigger GC less frequently; Avoid object allocation; Use value types (single pointer)

Graph Algorithms

Algorithm	PDW	DryadLINQ	SHS	Naiad
PageRank	156,982	68,791	836,455	4,656
SCC	7,306	6,294	15,903	729
WCC	214,479	160,168	26,210	268
ASP	671,142	749,016	2,381,278	1,131

Table 1: Running times in seconds of several graph algorithms on the Category A web graph. Non-Naiad measurements are due to Najork *et al.* [34].

45

Streaming Acyclic Computation

(c) k-Exposure response time (§6.3)

Naiad: 482K tweets/s (None); 273K (Logging) Kineograph: 185K tweets/s in 90 s avg latency; reduced ingestion rate in 10 s avg latency

Naiad

- Timely Dataflow
- Structured loops
- Stateful vertices consume/produce records w/o coordination
- Notifications for vertices when input or iteration is done

"We believe that separating systems design into a common platform component and a family of libraries or domain-specific languages is good for both users and researchers."

Wednesday's Paper

Spanner: Google's Globally-Distributed Database James Corbett, Jeffrey Dean, Michael Epstein, et al.

OSDI'12 best paper