Explanation of new notations

Pu Justin Scarfy Yang September 5, 2024

Usefulness and Necessity of $V_{a_1a_2...a_i}V_{b_1b_2...b_j}\mathbb{F}_{c_1c_2...c_k}(F)$ Notations

The study conducted demonstrates both the usefulness and necessity of the notations $V_{a_1a_2...a_i}V_{b_1b_2...b_j}\mathbb{F}_{c_1c_2...c_k}(F)$ in the following ways:

1. Usefulness in Generalization

The notation $V_{a_1a_2...a_i}V_{b_1b_2...b_j}\mathbb{F}_{c_1c_2...c_k}(F)$ allows for the systematic and unified representation of complex mathematical objects, facilitating connections between different areas of study.

2. Enhanced Rigor and Precision

These notations introduce rigor and precision necessary for advanced studies, allowing for clear distinctions between mathematical objects and facilitating precise cohomological computations.

3. Facilitating New Discoveries

This framework supports the construction of new theories and discoveries by offering a flexible and rigorous way to describe intermediate structures between known mathematical entities.

4. Necessity in Advanced Studies

In abstract areas of mathematics, this notation is essential for defining and exploring objects that do not fit neatly into existing frameworks, making it a necessary tool for further development.

5. Interdisciplinary Applications

The notations provide a common language adaptable to different fields, making them essential for cross-disciplinary research and innovation, especially in mathematical physics and cryptography.

Conclusion

The study clearly demonstrates that the $\mathbb{V}_{a_1a_2...a_i}\mathbb{V}_{b_1b_2...b_j}\mathbb{F}_{c_1c_2...c_k}(F)$ notations are not only useful but necessary for advancing mathematical understanding and enabling new discoveries across various fields of study.

Enhancing the Necessity of $V_{a_1a_2...a_i}V_{b_1b_2...b_j}\mathbb{F}_{c_1c_2...c_k}(F)$ Notations

1. Introduce Clear Hierarchies and Relationships

Refine subscripts, superscripts, and introduce nested notations to show dependencies and relationships:

$$\mathbb{V}_{a_{1}a_{2}...a_{i}}^{(n)}\mathbb{Y}_{b_{1}b_{2}...b_{j}}^{(m)}\mathbb{F}_{c_{1}c_{2}...c_{k}}^{(k)}(F)$$

$$\mathbb{V}_{a_{1}\left(\mathbb{Y}_{b_{1}(\mathbb{F}_{c_{1}}(F))}\right)}$$

2. Explicitly Relate to Existing Mathematical Concepts

Relate the notation to well-known structures:

$$\mathbb{V}_{a_1 a_2 \dots a_i} \sim \text{Generalized Vector Space}$$
 and $\mathbb{Y}_{b_1 b_2 \dots b_j} \sim \text{Higher Category}$

3. Develop Notation-Specific Theorems or Lemmas

Create theorems that are best expressed using this notation:

$$H^n\left(\mathbb{V}_{a_1a_2...a_i}\mathbb{Y}_{b_1b_2...b_j}\mathbb{F}_{c_1c_2...c_k}(F),\mathcal{M}\right)=\mathbb{V}_{a_1...a_i}\otimes\mathbb{Y}_{b_1...b_j}\otimes\mathbb{F}_{c_1...c_k}$$

4. Demonstrate Computational Efficiency

Show how the notation simplifies complex calculations:

$$H^2(\mathbb{V}_2\mathbb{Y}_3\mathbb{F}_{5,7}(\mathbb{Q}), \operatorname{Mod}(\rho))$$
 is simplified by $\mathbb{V}_2\mathbb{Y}_3\mathbb{F}_{5,7}$ notation.

5. Introduce a Syntax or Grammar for Notation

Formalize a grammar $\mathcal G$ for the notation:

$$\mathbb{V}_{a_1 a_2 \dots a_i} \mathbb{Y}_{b_1 b_2 \dots b_j} \mathbb{F}_{c_1 c_2 \dots c_k}(F)$$
 adheres to the grammar \mathcal{G} .

6. Develop Notation-Specific Applications

Apply the notation to real-world problems:

$$H^2(\mathbb{V}_2\mathbb{Y}_3\mathbb{F}_{5,7}(\mathbb{F}_7), \operatorname{Crypto}) \cong \mathbb{F}_7^{\oplus 2}$$
 used in cryptography.

Conclusion

By refining the notation to explicitly show hierarchies, relationships, computational efficiency, and formal syntax, and by developing theorems and real-world applications that rely on this notation, it becomes clear that presenting mathematical structures in this way is absolutely necessary.

Cohomology Examples

1. Algebraic Geometry and Number Theory

Cohomology of a generalized elliptic curve over $V_2V_3\mathbb{F}_{p,q}(F)$:

$$H^1(\mathbb{V}_2\mathbb{Y}_3\mathbb{F}_{2,3}(\mathbb{C}),\mathcal{O}_{\mathbb{E}})\cong\mathbb{C}$$

2. Representation Theory

Cohomology of the modular forms space associated with a representation ρ of a non-abelian group acting on $\mathbb{V}_1\mathbb{Y}_2\mathbb{F}_{3,5}(F)$:

$$H^2(\mathbb{V}_1\mathbb{Y}_2\mathbb{F}_{3,5}(\mathbb{Q}), \operatorname{Mod}(\rho)) \cong \operatorname{Ext}^1_{\mathbb{O}}(\rho, \mathbb{Q})$$

3. Mathematical Physics

Cohomology of a topological quantum field theory (TQFT) defined on $V_3V_4F_{2,7}(F)$:

$$H^3(\mathbb{V}_3\mathbb{Y}_4\mathbb{F}_{2.7}(\mathbb{R}), \mathrm{TQFT}) \cong \mathbb{R}^{\oplus 3}$$

4. Homotopy Theory and Higher Categories

Cohomology of a higher categorical structure over $\mathbb{V}_n\mathbb{Y}_m\mathbb{F}_{p,q}(F)$:

$$H^2(\mathbb{V}_2\mathbb{Y}_2\mathbb{F}_{2.5}(\mathbb{Z}),\mathcal{C}_{\infty})\cong\mathbb{Z}/5\mathbb{Z}$$

5. Cohomological Invariants

A new invariant defined by the first cohomology group of $\mathbb{V}_2\mathbb{Y}_2\mathbb{F}_{p,q}(F)$:

$$\operatorname{Inv}\left(\mathbb{V}_{2}\mathbb{Y}_{2}\mathbb{F}_{3,7}(\mathbb{R})\right) = H^{1}\left(\mathbb{V}_{2}\mathbb{Y}_{2}\mathbb{F}_{3,7}(\mathbb{R}),\mathcal{M}\right) \cong \mathbb{R}$$

6. Interdisciplinary Studies

Cohomology used in the development of a cryptographic scheme based on the structure $\mathbb{V}_2\mathbb{Y}_3\mathbb{F}_{5,7}(F)$:

$$H^2(\mathbb{V}_2\mathbb{Y}_3\mathbb{F}_{5,7}(\mathbb{F}_7), \operatorname{Crypto}) \cong \mathbb{F}_7^{\oplus 2}$$