Problema 4.10 - (Responsables de viatges)

a) Demostreu que, per a qualsevol entrada V_1, \dots, V_n , hi ha una assignació justa.

Demostrar que existeix una assignació justa és equivalent a demostrar que a la xarxa de flux proposada a classe com a solució, 1 el flux amb valor màxim és sempre n. Per fer-ho, analitzarem la capacitat dels (s,t)-talls.

D'una banda, veiem que el tall $(\{s\} \cup A \cup B, \{t\})$ té capacitat n, per la qualcosa sabem que $MaxFlow(\mathcal{N}) \leq n$.

Demostrem ara que qualsevol altre tall té capacitat $\geq n$:

- 1. Considerem un tall (S,T), on |T| > 1.
- 2. Anomenem els diferents subconjunts de nodes que crea aquest tall de la següent forma (vegeu Fig. ??): $A_1 = S \cap A$, $A_2 = T \cap A$, $B_1 = S \cap B$, i $B_2 = T \cap B$. Analitzem les arestes que creuen el tall:
 - (2.1) El tall conté totes les arestes entre B_1 i t (amb capacitat 1); en total $|B_1|$.
 - (2.2) Dividim B_2 en dos subconjunts, $B_2 = B_2^1 \cup B_2^2$, on (vegeu Fig. ??): B_2^1 són els viatges de B_2 amb algun viatger a A_1 , i $B_2^2 = B_2 \setminus B_2^1$ són la resta. Els viatges a B_2^1 contribueixen al tall amb almenys una aresta de capacitat 1 (des d' A_1); en total $\geq |B_2^1|$.
 - (2.3) Tots els viatgers dels viatges a B_2^2 són a A_2 ; una aresta (s,x) on $x \in A_2$ contribueix al tall amb capacitat $[S_x]$. Per tant, tenim:

$$\begin{split} \sum_{x \in A_2} \lceil S_x \rceil &\geq \sum_{x \in A_2} S_x \geq \sum_{x \in A_2} \left(\sum_{y \in B \mid x \in V_y} \frac{1}{|V_y|} \right) \\ &\geq \sum_{y \in B_2^2 \mid x \in V_y} \frac{1}{|V_y|} \\ &= \sum_{y \in B_2^2} \left(\sum_{x \in V_y} \frac{1}{|V_y|} \right) = |B_2^2|. \end{split}$$

3. Sumant el totes de les contribucions al tall tenim²:

$$cut(S,T) \ge |B_1| + |B_2^1| + |B_2^2| = |B| = n.$$

Donat que tots els talls tenen capacitat $\geq n$, i sabem d'un amb capacitat = n, podem afirmar que el tall de capacitat mínima té capacitat = n. Aplicant el *Teorema Max-Flow Min-Cut* sabem, doncs, que $MinCut(\mathcal{N}) = MaxFlow(\mathcal{N}) = n$.

¹Recordeu que la xarxa \mathcal{N} proposada a classe ha estat la següent:

⁻ Nodes: $\{s,t\} \cup A \cup B$, on |A| = m amics i |B| = n viatges.

⁻ Arestes i capacitats: $E_1 \cup E_2 \cup E_3$, on: $E_1 = \{(s,x) \mid x \in A\}$ amb capacitat $\lceil S_x \rceil$, $E_2 = \{(x,y) \mid x \in A, y \in B, x \in V_y\}$ amb capacitat 1, $E_3 = \{(y,t) \mid y \in B\}$ amb capacitat 1.

²Observeu que les arestes que van d' A_2 a B_1 no formen part del cut(S,T).

Figura 1: Distinció dels subgrups de nodes que defineix un cut(S,T).

Figura 2: Detalls de la classificació dels nodes de B_2 del cut(S,T).