Math 214 – Foundations of Mathematics Homework 1/30 Sam Harrington

(Due Thursday, February 13)

Proposition 1.22(i): For all $m \in \mathbb{Z}$, -(-m) = m. COMPLETED

Proof. Let m be an integer. Then,

$$(-m) + m = 0$$
 (Prop. 1.8)
 $(-m) + (-(-m)) = 0$ (Axiom. 1.4)
 $-(-m) = m$ (Prop. 1.10)

Proposition 1.25(i): For all $m, n \in \mathbb{Z}$, -(m+n) = (-m) + (-n).

Proof. Let m, n be integers. Then,

$$(m+n) + (-(m+n)) = 0$$
 (Axiom. 1.4)
 $(m+n) + ((-m) + (-n)) = m + ((n+(-m)) + (-n))$ (Axiom. 1.1(ii)) twice
 $= m + (((-m) + n) + (-n))$ (Axiom. 1.1(i))
 $= (m + (-m)) + (n + (-n))$ (Axiom. 1.1(ii)) twice
 $= 0$ (Axiom. 1.1(ii)) twice
 $-(m+n) = (-m) + (-n)$ (Prop. 1.10)

Proposition 1.27(iii): For all $m, n, p, q \in \mathbb{Z}$, (m-n)(p-q) = (mp+nq) - (mq+np).

Proof. Let m, n, p, q be integers. Then,

$$(m-n)(p-q) = (m+(-n))(p+(-q))$$
 definition of subtraction
 $= (mp+(-n)p) + (m(-q)+(-n)(-q))$ (Prop 1.11(i))
 $= (mp+(-n)p) + (m(-q)+nq)$ (Prop 1.20)
 $= mp+(((-n)p+m(-q))+nq)$ (Axiom 1.1(ii)) twice
 $= mp+(nq+(m(-q)+(-n)p))$ (Axiom 1.1(i)) twice
 $= (mp+nq) + (m(-q)+(-n)p)$ (Axiom 1.1(ii))
 $= (mp+nq) + ((-(mq))+(-(np)))$ (Prop 1.25(iii)) twice
 $= (mp+nq) + (-(mq+np))$ (Prop 1.25(i))
 $= (mp+nq) - (mq+np)$ definition of subtraction