A SI-Einheiten

A.1 Die SI Basiseinheiten

Größe	Abkürzung	Name	Symbol	Definition
Länge	1	Meter	m	Das Meter ist die Länge der Strecke, die Licht im Vakuum während der Dauer von (1/299 792 458) Sekunden durchläuft.
Masse	m	Kilogramm	kg	Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps (Ur-Kilogramm, 1889).
Zeit	t	Sekunde	s	Die Sekunde ist das 9192631770 fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids ¹³³ Cs entsprechenden Strahlung.
elektrische Stromstärke	I	Ampère	A	Das Ampere ist die Stärke eines konstanten elektrischen Stromes, der, durch zwei parallele, geradlinige, unendlich lange und im Vakuum im Abstand von einem Meter voneinander angeordnete Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern je einem Meter Leiterlänge die Kraft 2×10^{-7} Newton hervorrufen würde.
Temperatur	T	Kelvin	K	Das Kelvin, die Einheit der thermodynamischen Temperatur, ist der 273.16-te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers.
Lichtstärke	J	Candela	cd	Die Candela ist die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der Frequenz 540×10^{12} Hertz aussendet und deren Strahlstärke in dieser Richtung (1/683) Watt durch Steradiant beträgt.
Stoffmenge	n	Mol	mol	Das Mol ist die Stoffmenge eines Systems, das aus ebensoviel Einzelteilchen besteht, wie Atome in 0,012 Kilogramm des Kohlenstoffnuklids ¹² C enthalten sind. Bei Benutzung des Mol müssen die Einzelteilchen spezifiziert sein und können Atome, Moleküle, Ionen, Elektronen sowie andere Teilchen oder Gruppen solcher Teilchen genau angegebener Zusammensetzung sein.
ergänzende S	SI Einheite	en:		
ebener Winkel	θ	Radiant	rad	
Raumwinkel	Ω	Steradiant	sr	

304 A SI-Einheiten

A.1.1 Einige von den SI Einheiten abgeleitete Einheiten

Größe	Abkürzung	Name	Symbol	SI-Einheit
Frequenz	ν	Hertz	Hz	s^{-1}
Kreisfrequenz	ω	Radiant/Sekunde		s^{-1}
Geschwindigkeit	ν	Meter/Sekunde		ms^{-1}
Beschleunigung	а	Meter/Sekunde ²		$\mathrm{ms^{-2}}$
Winkelgeschwindigkeit	ω	Radiant/Sekunde		s^{-1}
Winkelbeschleunigung	α	Radiant/Sekunde ²		s^{-2}
Kraft	F	Newton	N	
Energie	Е	Joule	J	$m^2 kg s^{-2}$
Leistung	P	Watt	W	$m^2 kg s^{-3}$
Druck	Р	Pascal	Pa	$kgm^{-1}s^{-2}$
Ladung	Q	Coulomb	С	As
Spannung (Potenzial)	U	Volt	V	$\mathrm{m}^2\mathrm{kg}\mathrm{s}^{-3}\mathrm{A}^{-1}$
elektrische Feldstärke	Е	Volt/Meter	V/m	$mkgs^{-3}A^{-1}$
elektrische Polarisation	P	Coulomb/Meter	C/m	Asm^{-1}
elektrische Flussdichte ¹	D	Coulomb/Meter ²	C/m ²	Asm^{-2}
elektrischer Widerstand	R	Ohm	Ω	$m^2kgs^{-3}A^{-2}$
elektrische Leitfähigkeit	σ	Siemens/Meter	S/m	$m^{-3}kg^{-1}s^3A^2$
magnetische Flussdichte	В	Tesla	$T=Vs/m^2$	$kgs^{-2}A^{-1}$
magnetische Feldstärke	Н	Ampère/Meter		A/m
magnetischer Fluss	Φ	Weber	Wb=Vs	$m^2kgs^{-2}A^{-1}$
Selbstinduktion	L	Henry	H=Vs/A	$m^2kgs^{-2}A^{-2}$
Wärmekapazität	С	Joule/Kelvin	J/K	$\mathrm{m}^2\mathrm{kg}\mathrm{s}^{-2}\mathrm{K}^{-1}$
Entropie	S	Joule/Kelvin	J/K	$m^2kgs^{-2}K^{-1}$
Enthalpie	J	Joule	J	m^2kgs^{-2}
Wärmeleitfähigkeit	λ	Watt/Meter Kelvin	W/m K	mkgs ⁻³ K ⁻¹

A.2 Vorsätze

Faktor	Bezeichnung	Abkürzung	Faktor	Bezeichnung	Abkürzung
10^{18}	Exa	Е	10^{-1}	Dezi	d
10^{15}	Peta	P	10^{-2}	Zenti	С
10^{12}	Tera	T	10^{-3}	Milli	m
10 ⁹	Giga	G	10^{-6}	Mikro	μ
10^{6}	Mega	M	10^{-9}	Nano	n
10^{3}	Kilo	k	10^{-12}	Pico	p
10^{2}	Hekto	h	10^{-15}	Femto	f
10^{1}	Deka	da	10^{-18}	Atto	a

wird meist als elektrische Verschiebung bezeichnet

A.3 Abgeleitete Einheiten und Umrechnungsfaktoren

In der Bundesrepublik Deutschland ist das Gesetz über Einheiten im Messwesen die Rechtsgrundlage für die Angabe physikalischer Größen in gesetzlichen Einheiten. Es verpflichtet zu ihrer Verwendung im geschäftlichen und amtlichen Verkehr. Die gesetzlichen Einheiten sind in den folgenden Tabellen fett geschrieben. Die Ausführungsverordnung zum Gesetz über Einheiten im Messwesen (Einheitenverordnung) verweist auf die Norm DIN 1301.

A.3.1 Länge, Fläche, Volumen

Einheit	Abkürzung	Umrechnung
Ångström	Å	$1 \text{Å} = 10^{-10} \text{m}$
Astronomische Einheit	AE	$1 \text{ AE} = 1.4960 \times 10^{11} \text{ m}$
Fermi	fm	$1 \text{fm} = 10^{-15} \text{m}$
inch	inch	1 inch = 0.254 m
foot	ft	1 ft = 0.3038 m
yard	yd	1 yard = 0.9144 m
mile	mile	1 mile = 1609 m
Lichtjahr	Lj	$1 \mathrm{Lj} = 9.46 \times 10^{15} \mathrm{m}$
Parsekunde	pc	$1 \mathrm{pc} = 30.857 \times 10^{15} \mathrm{m}$
Ar	a	$1 a = 100 \mathrm{m}^2$
Hektar	ha	$1 \text{ ha} = 10^4 \text{ m}^2$
barn	Ь	$1 b = 10^{-28} \text{m}^2$
Liter	1	$11 = 10^{-3} \text{ m}^3$
gallon	gal (US)	$1 \text{gal} = 3.7851 \times 10^{-3} \text{m}^3$
barrel	bbl	$1 bbl = 158.988 \times 10^{-3} m^3$

A.3.2 Masse

P. 1 4	A11 "	TT I
Einheit	Abkürzung	Umrechnung
atomare Masseneinheit	u	$1 u = 1.6605655 \times 10^{-27} \text{ kg}$
Tonne	t	1 t = 1000 kg
metrisches Karat		$1 \text{Karat} = 2 \times 10^{-4} \text{kg}$
pound	lb	1 lb = 0.4536 kg
ounce	OZ	1 oz = 1/16 lb = 0.02835 kg

306 A SI-Einheiten

A.3.3 Zeit, Frequenz

Einheit	Abkürzung	Umrechnung
Tag	d	1 d = 86400 s
Stunde	h	1 h = 3600 s
Minute	min	$1 \min = 60 s$
Jahr (tropisches)	a	$1 a = 365.24 d = 3.156 \times 10^7 s$
Hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$

A.3.4 Temperatur

Einheit	Abkürzung	Umrechnung
Grad Celsius	°C	$T(^{\circ}C) = T(K) - 273.15(K)$
Grad Fahrenheit	°F	$T(^{\circ}F) = \frac{9}{5} T(^{\circ}C) + 32$

A.3.5 Winkel

Einheit	Abkürzung	Umrechnung
Radiant	rad	1 rad = 1 m/m
Grad	0	$1^{\circ} = (2\pi/360) \text{ rad} = 1.745 \times 10^{-2} \text{ rad}$
Winkelminute	1	$1' = 2.91 \times 10^{-4} \text{rad}$
Winkelsekunde	11	$1'' = 4.85 \times 10^{-6} \text{ rad}$
Neugrad	gon	$1 \text{ gon} = 2\pi/400 \text{ rad}$
Steradiant	sr	$1 \operatorname{sr} = 1 \operatorname{m}^2/\operatorname{m}^2$

A.3.6 Kraft, Druck, Viskosität

Einheit	Abkürzung	Umrechnung
Newton	N	$1 N = 1 kg m/s^2$
Dyn	dyn	$1 \text{dyn} = 10^{-5} \text{N} = 1 \text{g cm/s}^2$
Kilopond	kp	$1 \text{ kp} = 1 \text{ kg} \cdot \text{g} = 9.8067 \text{ N}$
Pascal	Pa	$1 \text{ Pa} = 1 \text{ N/m}^2 = 1 \text{ kg/(m s}^2)$
Bar	bar	$1 \text{bar} = 10^5 \text{Pa}$
Atmosphäre (physikalisch)	atm	1 atm = 101 325 Pa
Atmosphäre (technisch)	at	1 at = 98 066 Pa
Torr, mmHg	Torr	1 Torr = 1 mmHg = 133.322 Pa
Poise	P	1 P = 0.1 Pa s
psi	lb/in ²	1 psi = 6895.0 Pa s

A.3.7 Energie, Leistung, Wärmemenge

Einheit	Abkürzung	Umrechnung
Joule	J	$1 J = 1 N m = 1 kg m^2/s^2$
Kilowattstunde	kWh	$1 \text{kWh} = 3.6 \times 10^6 \text{J} = 860 \text{kcal}$
Kalorie	cal	1 cal = 4.187 J
Erg	erg	$1 \text{ erg} = 1 \text{ g cm}^2/\text{s}^2 = 10^{-7} 1 \text{ kg m}^2/\text{s}^2 == 10^{-7} \text{ J}$
Elektronenvolt	eV	$1 \text{eV} = 1.6022 \times 10^{-19} \text{J}$
		1 eV entspricht $11 604 \text{ K}$ ($E = k_B T$)
		1 eV entspricht 2.4180×10^{14} Hz ($E = hv$)
Watt	W	$1 W = 1 J/s = 1 kgm^2/s^3$
Pferdestärke	PS	1 PS = 735.6 W

A.3.8 Elektromagnetische Einheiten

Einheit	Abkürzung	Umrechnung
Coulomb	С	1C = 1As
Volt	V	$1 V = 1 J/A s = 1 kg m^2/(A s^3)$
Farad	F	$1 F = 1 C/V = 1 A^2 s^4/(kg m^2)$
Ohm	Ω	$1 \Omega = 1 \text{ V/A} = 1 \text{ kg m}^2 / (\text{A}^2 \text{ s}^3)$
Siemens	S	$1 S = 1/\Omega$
Tesla	T	$1 T = 1 V s/m^2 = 1 kg/(A s^2)$
Gauß	G	$1 G = 10^{-4} T$
Oersted	Oe	1 Oe = $(10^3/4\pi)$ A/m, entspricht 1 G (B = $\mu_0 H$)
Henry	Н	$1 H = 1 Vs/A = 1 m^2 kg/(A^2 s^2)$
Weber	Wb	$1 \text{ Wb} = 1 \text{ V s} = 1 \text{ m}^2 \text{ kg/(A s}^2)$
Maxwell	M	$1 \mathrm{M} = 10^{-8} \mathrm{Wb}$