CLIPPEDIMAGE= JP410333129A

PAT-NO: JP410333129A

DOCUMENT-IDENTIFIER: JP 10333129 A

TITLE: PROJECTION TYPE LIQUID CRYSTAL DISPLAY DEVICE

PUBN-DATE: December 18, 1998

INVENTOR-INFORMATION:

NAME

YOKOYAMA, OSAMU SHIMODA, TATSUYA MIYASHITA, SATORU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SEIKO EPSON CORP

N/A

TOYOTA CENTRAL RES & DEV LAB INC

N/A

APPL-NO: JP09145472 APPL-DATE: June 3, 1997

INT-CL_(IPC): G02F001/1333; G02F001/13; G02F001/1335; G03B021/16

; H01L023/38 ABSTRACT:

PROBLEM TO BE SOLVED: To miniaturize a cooling mechanism in a projection type

liquid crystal display device to make three organic electric field light emitting elements corresponding to three primary colors functioning as a light

source.

SOLUTION: Planar organic electric field light emitting elements 105R, 105G and

105B for emitting in red, green and blue respectively are arranged on the back

surfaces of liquid crystal display elements 101R, 101G and 101B arranged on the

three side surfaces of a dichroic prism 102. The heat generated by the organic

electric field light emitting elements is transported to radiation plates 108R,

108G and 108B through heat pipes 107R, 107G and 107B. The three radiation plates are air-cooled by one fan 109.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-333129

(43)公開日 平成10年(1998)12月18日

G 0 2 F 1/1333
1/13 5 0 5
1/1335 5 3 0
G 0 3 B 21/16
H01L 23/38
審査請求 未請求 請求項の数6 OL (全 9 頁)
(71) 出願人 000002369
セイコーエプソン株式会社
東京都新宿区西新宿2丁目4番1号
(74)上記1名の代理人 弁理士 鈴木 喜三郎 (外2
名)
(71)出願人 000003609
株式会社豊田中央研究所
愛知県愛知郡長久手町大字長湫字橫道41番
地の1
(74)上記1名の代理人 弁理士 鈴木 喜三郎
(72)発明者 横山 修
長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内
最終頁に続く
_

(54) 【発明の名称】 投写型液晶表示装置

(57)【要約】

【課題】 3原色に対応する3つの有機電界発光素子を 光源とした投写型液晶表示装置における冷却機構を小型 化する。

【解決手段】 ダイクロイックプリズム102の3つの側面に配置された液晶表示素子101R、101G、101Bの背面にそれぞれ赤、緑、青で発光する面状の有機電界発光素子105R、105G、105Bが配置される。有機電界発光素子で発生した熱はヒートパイプ107R、107G、107Bで放熱板108R、108G、108Bに輸送される。3つの放熱板は一つのファン109で空冷される。

【特許請求の範囲】

【請求項1】 赤色成分の画像を表示する第1の液晶表 示素子と、緑色成分の画像を表示する第2の液晶表示素 子と、青色成分の画像を表示する第3の液晶表示素子 と、前記第1の液晶表示素子の背面に配置され、赤色光 を放射する第1の有機電界発光素子と、前記第2の液晶 表示素子の背面に配置され、緑色光を放射する第2の有 機電界発光素子と、前記第3の液晶表示素子の背面に配 置され、青色光を放射する第3の有機電界発光素子と、 前記第1、第2および第3の液晶表示素子に表示される 画像を合成する合成光学系と、該合成光学系で合成され た画像を投写する投写レンズとを備えた投写型液晶表示 装置において、前記第1、第2および第3の有機電界発 光素子の背面にそれぞれ熱伝導性の良い金属板から成る 第1、第2および第3の受熱板が熱的に接触して配置さ れ、前記第1、第2および第3の受熱板のそれぞれとは 異なる位置にそれぞれの受熱板に対応して第1、第2お よび第3の放熱板が配置され、前記第1の受熱板と前記 第1の放熱板との間、前記第2の受熱板と前記第2の放 熱板との間、および前記第3の受熱板と前記第3の放熱 20 板との間がそれぞれ第1、第2および第3のヒートパイ プで熱的に結ばれていることを特徴とする投写型液晶表 示装置。

【請求項2】 前記第1、第2および第3のヒートパイプのうち、前記第1および第3のヒートパイプは直線状の形状であり、前記第2のヒートパイプが前記受熱板と前記放熱板の間で略直角に曲げられた形状であることを特徴とする請求項1記載の投写型液晶表示装置。

【請求項3】 前記第1、第2および第3の放熱板が共通の一つのファンで空冷されていることを特徴とする請 30 求項1あるいは2のいずれか一項に記載の投写型液晶表示装置。

【請求項4】 前記第1、第2および第3の放熱板が共通の一つのヒートシンクに熱的に接続され、前記ヒートシンクが冷却されることを特徴とする請求項1あるいは2のいずれか一項に記載の投写型液晶表示装置。

【請求項5】 前記ヒートシンクがファンで空冷される 電子冷却素子によって冷却されることを特徴とする請求 項4記載の投写型液晶表示装置。

【請求項6】 前記第1、第2および第3の有機電界発光素子において、それぞれの有機電界発光素子の発光層が光学的共振器構造に挟持されていることを特徴とする請求項1乃至5のいずれか一項に記載の投写型液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示素子に表示されている画像をレンズで拡大投写する表示装置における光源およびその冷却に関する。

[0002]

2

【従来の技術】従来、液晶表示素子の画像を拡大投写して表示を行う表示装置である投写型液晶表示装置の光源としては、メタルハライドランプなどの放電型の光源が用いられていた。

【0003】また、光源および照明光学系を小型化するために、平板状の光源を液晶表示素子の背面に配置する構成を考えることができる。平板状の光源としては、有機薄膜を発光層とする有機電界発光素子を用いることができる。

10 [0004]

【発明が解決しようとする課題】しかしながら、従来のメタルハライドランプを用いた投写型液晶表示装置では、ランプから出た発散光を液晶表示素子に平行性良く照射するために開口が大きなリフレクタが必要であり、さらにランプから出た光を赤、緑、青の光に分解してそれぞれの色の画像を表示する液晶表示素子へ導くための光学系が必要であり、装置の小型化が難しいという問題点がある。

【0005】また、光源として有機電界発光素子を用いた場合には、素子を流れる電流による発熱を抑えるために素子の冷却が必要となる。ファンによる空冷が簡便であるが、赤、緑、青の画像を表示する3枚の液晶表示素子の背面にそれぞれ赤、緑、青で発光する有機電界発光素子を配置する構成では、それぞれの有機電界発光素子に対応してファンを配置させると3つのファンが必要となり、ファンの騒音が大きくなる、という問題点がある。

【0006】本発明はこのような問題点を解決するもので、高輝度で発光できる有機電界発光素子を平板状の光源として用いることによって投写型表示装置を小型化するとともに、赤、緑、青のそれぞれの色で発光する3枚の有機電界発光素子を光源として用いた場合にも一つのファンで冷却を行なうことにより、表示装置の騒音を低減することを目的としている。

[0007]

【課題を解決するための手段】請求項1記載の投写型液晶表示装置は、赤色成分の画像を表示する第1の液晶表示素子と、緑色成分の画像を表示する第2の液晶表示素子と、青色成分の画像を表示する第3の液晶表示素子と、前記第1の液晶表示素子の背面に配置され、赤色光を放射する第1の有機電界発光素子と、前記第2の液晶表示素子の背面に配置され、緑色光を放射する第2の有機電界発光素子と、前記第3の液晶表示素子の背面に配置され、青色光を放射する第3の有機電界発光素子と、前記第1、第2および第3の液晶表示素子に表示される画像を合成する合成光学系と、該合成光学系で合成された画像を投写する投写レンズとを備えた投写型液晶表示装置において、前記第1、第2および第3の有機電界発

50 第1、第2および第3の受熱板が熱的に接触して配置さ

光素子の背面にそれぞれ熱伝導性の良い金属板から成る

40

れ、前記第1、第2および第3の受熱板のそれぞれとは 異なる位置にそれぞれの受熱板に対応して第1、第2お よび第3の放熱板が配置され、前記第1の受熱板と前記 第1の放熱板との間、前記第2の受熱板と前記第2の放 熱板との間、および前記第3の受熱板と前記第3の放熱 板との間がそれぞれ第1、第2および第3のヒートパイ プで熱的に結ばれていることを特徴とする。

【0008】上記構成によれば、3つの有機電界発光素 子で発生する熱を任意の場所に輸送して放熱できるとい う効果を有する。

【0009】請求項2記載の投写型液晶表示装置は、前記第1、第2および第3のヒートパイプのうち、前記第1および第3のヒートパイプは直線状の形状であり、前記第2のヒートパイプが前記受熱板と前記放熱板の間で略直角に曲げられた形状であることを特徴とする。

【0010】上記構成によれば、直交して配置されている面状の有機電界発光素子に対応する放熱板をコンパクトに配置できるという効果を有する。

【0011】請求項3記載の投写型液晶表示装置は、請求項1あるいは2のいずれか一項に記載の投写型液晶表 20 示装置において、前記第1、第2および第3の放熱板が共通の一つのファンで空冷されていることを特徴とする。

【0012】上記構成によれば、3つの有機電界発光素子で発生する熱を一つのファンで放散させることができるので、投写型液晶表示装置を小型化できるという効果を有する。

【0013】請求項4記載の投写型液晶表示装置は、請求項1あるいは2のいずれか一項に記載の投写型液晶表示装置において、前記第1、第2および第3の放熱板が 30 共通の一つのヒートシンクに熱的に接続され、前記ヒートシンクが冷却されることを特徴とする。

【0014】上記構成によれば、3つの有機電界発光素子で発生する熱を一つのヒートシンクを介して放散させることができるので、投写型液晶表示装置を小型化できるという効果を有する。

【0015】請求項5記載の投写型液晶表示装置は、請求項4記載の投写型液晶表示装置において、前記ヒートシンクがファンで空冷される電子冷却素子によって冷却されることを特徴とする。

【0016】上記構成によれば、3つの有機電界発光素子で発生する熱を一つのヒートシンクを介して電子冷却素子によって強制的に放散させることができるので、光源の冷却能力に優れた小型の投写型液晶表示装置を提供できるという効果を有する。

【0017】請求項6記載の投写型液晶表示装置は、請求項1乃至5のいずれか一項に記載の投写型液晶表示装置において、前記第1、第2および第3の有機電界発光素子において、それぞれの有機電界発光素子の発光層が光学的共振器構造に挟持されていることを特徴とする。

4

【0018】上記構成によれば、有機電界発光素子から放射される光の発光スペクトルを狭くすることができ、かつ、放射光の指向性を強めることができるので、色再現範囲が広く、かつ、明るい投写型液晶表示装置を構成できるという効果を有する。

[0019]

【発明の実施の形態】以下、本発明の好適な実施の形態 に係る投写型液晶表示装置を添付の図面を参照しながら 説明する

10 (第1の実施形態)本発明の投写型液晶表示装置の第1 の実施形態を図1から図4に基づき説明する。図1は投 写型液晶表示装置の基本的な構成を上面から見た図であ る。図2、図3は有機電界発光素子で発生する熱を放熱 板へ伝達する機構を説明する図である。図4はファンと 放熱板の配置をファンの方から見た図である。

【0020】まず図1によって投写型液晶表示装置の構成を説明する。

【0021】赤色成分の画像を表示する液晶表示素子1016、緑色成分の画像を表示する液晶表示素子101G、および青色成分の画像を表示する液晶表示素子101Bが、ダイクロイックプリズム102の3つの面に対向して配置されている。この3つの液晶表示素子に表示される画像はダイクロイックプリズム102で合成された後、投写レンズ103によってスクリーン104に拡大投写される。スクリーンは反射型でも透過型でも良い。

【0022】以降、図中の参照番号において、赤色表示 に関わる要素を参照する番号にはR、緑色表示に関わる 要素を参照する番号にはG、青色表示に関わる要素を参 照する番号にはBを付けることとする。

【0023】赤色成分の画像を表示する液晶表示素子101Rの背面には、赤色の放射光110Rを放射する有機電界発光素子105Rが配置されている。放射光110Rは図2に示すように面状の有機電界発光素子105Rの法線方向に放射される。

【0024】赤領域の波長で発光する有機電界発光素子105Rの構造としては、透明ガラス基板上に、ハーフミラー層となるTiO2(酸化チタン)薄膜とSiO2(酸化シリコン)薄膜の積層構造、陽極となるITO(インジウム錫酸化物)薄膜、正孔輸送層となるTAD(ジアミン誘導体)薄膜、発光層となるEu(ユーロピウム)錯体薄膜、電子輸送層となるAlq3(トリス(8-キノリノナト)アルミニウム)薄膜、および陰極となるMgAg(マグネシウム銀)薄膜が順次積層された構造とすることができる。このような有機電界発光素子の構造はJapaneseJournal of Applied Physics Vol.33(1994)pp.L863-L866に開示されている。このような構造で放射光のピーク波長を620nm程度とすることができる。

0 【0025】ハーフミラー層と陰極とで光学的な共振器

が構成され、放射光の発光スペクトルを狭帯域化することができるとともに、発光素子面の法線方向(正面方向)への指向性を強めることができる。

【0026】赤領域の波長で発光する有機発光層としては、Eu錯体以外にもAlq3に赤色で発光する色素を添加した材料を用いることができる。Eu錯体は元来発光スペクトルが狭いので光学的共振器がなくても良いが、Alq3に赤色で発光する色素を添加した材料を発光層として用いた場合は、その発光スペクトルがブロードなので、光学的共振器構造による放射光のスペクトルの狭帯域化は顕著となる。

【0027】緑色成分の画像を表示する液晶表示素子101Gの背面には、緑色の放射光110Gを放射する有機電界発光素子105Gが配置されている。放射光110Gは図3に示すように面状の有機電界発光素子105Gの法線方向に放射される。

【0028】緑領域の波長で発光する有機電界発光素子105Gの構造としては、透明ガラス基板上に、ハーフミラー層となるTiO2薄膜とSiO2薄膜の積層構造、陽極となるITO薄膜、正孔輸送層となるTPD(トリフェニルジアミン誘導体)薄膜、発光層となるAlq3薄膜、および陰極となるMgAg薄膜が順次積層された構造とすることができる。このような有機電界発光素子の構造はAppliedPhysics Letters Vol.68 (1994) pp.1-3に開示されている。このような構造で放射光のピーク波長を540nm程度とすることができる。

【0029】ハーフミラー層と陰極とで光学的な共振器が構成され、放射光の発光スペクトルを狭帯域化することができるとともに、発光素子面の法線方向(正面方向)への指向性を強めることができる。

【0030】青色成分の画像を表示する液晶表示素子101Bの背面には、青色の放射光110Bを放射する有機電界発光素子105Bが配置されている。放射光110Bは面状の有機電界発光素子105Bの法線方向に放射される。

【0031】青領域の波長で発光する有機電界発光素子105Bの構造としては、透明ガラス基板上に、ハーフミラー層となるTiO2薄膜とSiO2薄膜の積層構造、陽極となるITO薄膜、正孔輸送層となるTPD薄膜、発光層となるジスチリルビフェニル誘導体薄膜、電子輸送層となるAlq3薄膜、および陰極となるMgAg薄膜が順次積層された構造とすることができる。ハーフミラー層を除いた発光層の構造は応用物理第62巻第10号1015~1018頁(1993)に開示されている。このような構造で放射光のピーク波長を480nm程度とすることができる。

【0032】ハーフミラー層と陰極とで光学的な共振器が構成され、放射光の発光スペクトルを狭帯域化することができるとともに、発光素子面の法線方向(正面方向)への指向性を強めることができる。

6

【0033】以上述べたように、透過型液晶表示素子を 照明する光源として、発光スペクトルを狭帯域化でき、 かつ、放射光の指向性を強めることができる光学的共振 器構造を有する有機電界発光素子を用いることにより、 色の純度を高くすることができ、かつ、液晶表示素子を 透過した後の光の発散を抑えて投写レンズに入射する光 量を増加させることができる。従って、色再現範囲が広 く、かつ、明るい投写型液晶表示装置を構成できる。

【0034】各色に対応する液晶表示素子101R、101G、101Bの表示領域の大きさは、対角で1.3インチ(約33mm)とすることができ、この場合には有機電界発光素子105R、105G、105Bの発光領域の大きさは対角で1.3インチより若干大きく、1.4インチ(約36mm)程度とする。投写レンズ103の倍率を約13倍とすると、スクリーン104には対角で17インチ(約432mm)の画像が表示される

【0035】続いて、有機電界発光素子の冷却機構について図1、図2および図3を用いて説明する。

【0036】有機電界発光素子105R、105G、105Bの背面にはそれぞれ受熱板106R、106G、106Bが熱伝導性の良いグリースを介して熱的に接触して配置されている。

【0037】有機電界発光素子から受熱板に移動した熱

は、ヒートパイプ107R、107G、107Bによって放熱板108R、108G、108Bに運ばれる。放熱板はファン109で空冷される。受熱板および放熱板はヒートパイプに熱的に接触して取り付けられている。【0038】ヒートパイプは、内壁に毛細管構造を持30 ち、内部が真空の金属パイプに純水、パーフルオロカーボンなどの作動液が密封されている構造を有する伝熱素子である。ヒートパイプの一端(加熱部)に熱が加わると作動液は蒸発し、蒸気の流れとなって他端(冷却部)の低温部へ移動し、ここで冷却されて凝縮する。凝縮した作動液は毛細管現象によって加熱部へ戻る。このように蒸発、移動、凝縮を繰り返し、加熱部に加えられた熱

【0039】受熱板106R、106G、106Bの大きさは、有機電界発光素子全面からの熱を有効に受け取ることができるように、33mm×25mm程度とする。放熱板108R、108G、108Bの大きさは、熱を放射する表面積を大きくするために、80mm×25mm程度とする。ヒートパイプ107R、107G、107Bの直径は約4mm、長さは約130mmとする。

を冷却部へ輸送する。

【0040】赤で発光する有機電界発光素子105Rおよび青で発光する有機電界発光素子105Bを冷却するために用いられるヒートパイプ107R、107Bは図2に示すように直線状である。図2では赤で発光する有50機電界発光素子105Rに対応する冷却構造だけが描か

れているが、青で発光する有機電界発光素子105Bに 対応する冷却構造はこの構造に対して対称な構造である ので図は省いた。

【0041】緑で発光する有機電界発光素子105Gを冷却するために用いられるヒートパイプ107Gは図3に示すように直角に曲げられている。このように一つのヒートパイプを直角に折り曲げる構造は、ダイクロイックプリズム102の3つの側面に配置された3つの有機電界発光素子に対応する放熱板108R、108G、108Bを一つのファン109の近くに配置させるために10好ましい構造である。このような構造とすることによって、3つの有機電界発光素子で生じる熱を一つのファンで放散させることができ、それぞれの有機電界発光素子毎にファンを設置する構造に比べて投写型液晶表示装置を小型化できるとともに、ファンで生じる騒音を低減できる。

【0042】図4はファン109と放熱板108R、108G、108Bの配置をファン側から見た図である。ファンの風量が多ければ、図5に示すようにファン501を3枚の放熱板で囲まれる空間に配置しても良い。

【0043】(第2の実施形態)本発明の投写型液晶表示装置の第2の実施形態を説明する。基本的な構成は第1の実施形態と同じであるが、放熱板の形状だけが第1の実施形態と異なる。図6はヒートパイプ107Rに取り付けられた放熱板601Rの形状を示す斜視図である。放熱板601Rを構成するフィン602Rはヒートパイプの長さ方向に伸びている。なお、この放熱板の形状は赤、緑、青で発光するそれぞれの有機電界発光素子に対応する3つの放熱板について共通の形状である。

【0044】図7にファン109と放熱板601R、601G、601Bの配置を、ファンの方からファンを透かして見た図を示す。

【0045】本実施形態では放熱板から熱を効率的に放 散させるために、放熱板の表面積を大きくしている。

【0046】(第3の実施形態)本発明の投写型液晶表示装置の第3の実施形態を図8、図9を用いて説明する。基本的な構成は第1の実施形態と同じであるが、放熱部の構造が異なっている。図8は投写型液晶表示装置の基本的な構成を上面から見た図であり、図9はヒートシンクと放熱板とファンの配置を、ファンの方からファンを透かして見た図である。

【0047】有機電界発光素子105R、106G、1 05Bで発生した熱は、ヒートパイプ107R、107 G、107Bによって放熱板108R、108G、10 8Bに輸送される。放熱板108R、108G、108 Bは鍋のブロックから成るヒートシンク801の側面に 熱伝導性の良いグリースを介して取り付けられている。 ヒートシンク801にはペルチェ効果を利用した電子冷 却素子802が熱伝導性の良いグリースを介して取り付けられている。電子冷却素子802はファン803で空 50

冷される。

【0048】本実施形態では放熱板に運ばれてきた熱を電子冷却素子で積極的に取り除き、有機電界発光素子の冷却効果を高める。

【0049】本実施例においても、3つの有機電界発光素子で発生する熱を一ヶ所に集めて一つの電子冷却素子で放散させることができるので、3つの有機電界発光素子のそれぞれに電子冷却素子を備える構造に比べて、投写型液晶表示装置を小型化できるとともに、ファンも一つで済むのでファンの騒音を抑えることができる。

【0050】以上、本発明の実施形態を説明したが、本発明は投写レンズによってスクリーンに画像を投写する表示装置以外にも、投写レンズを肉眼で覗き込んで投写レンズによって形成される液晶表示素子の拡大虚像を観察する表示装置にも適用が可能である。

【0051】また、本発明は、有機電界発光素子に限らず冷却が必要な複数の素子を備えた装置にも応用が可能である。

[0052]

20 【発明の効果】以上述べたように、本発明の投写型液晶表示装置によれば、複数の有機電界発光素子で発生する熱をヒートパイプを用いて一ヶ所に輸送し、ファンなど一つの冷却装置でその熱を放散させることにより、各有機電界発光素子ごとに冷却装置を設置する必要がなくなるので、小型で騒音の少ない投射型液晶表示装置を提供できる、という効果を有する。

【図面の簡単な説明】

【図1】 本発明の第1の実施形態における投写型液晶 表示装置の基本的な構成を上面から見た図。

30 【図2】 本発明の第1の実施形態において有機電界発 光素子で発生する熱を放熱板へ伝達する機構を説明する 図。

【図3】 本発明の第1の実施形態において有機電界発 光素子で発生する熱を放熱板へ伝達する機構を説明する 図。

【図4】 本発明の第1の実施形態におけるファンと放 熱板の配置をファンの方から見た図。

【図5】 本発明の第1の実施形態におけるファンと放 熱板の配置の別な例を示す図で、ファンと放熱板の配置 をファンの方から見た図。

【図6】 本発明の第2の実施形態における放熱板の形状を示す斜視図。

【図7】 本発明の第2の実施形態におけるファンと放 熱板の配置を、ファンの方からファンを透かして見た 図

【図8】 本発明の第3の実施形態における投写型液晶 表示装置の基本的な構成を上面から見た図。

【図9】 本発明の第3の実施形態におけるヒートシンクと放熱板とファンの配置を、ファンの方からファンを透かして見た図。

8

9

【符号の説明】 101R、101G、101B 液晶表示素子

102 ダイクロイックプリズム

103 投写レンズ

104 スクリーン

105R、105G、105B 有機電界発光素子

106R、106G、106B 受熱板

10

107、107R、107G、107B ヒートパイプ

108R、108G、108B 放熱板

109、501、803 ファン

110R、110G、110B 放射光

601R、601G、601B 放熱板

801 ヒートシンク

802 電子冷却素子

【図1】

【図2】

【図6】

【図8】

フロントページの続き

(72)発明者 下田 達也

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内

(72) 発明者 宮下 悟

長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内