

2) The e.g. d		ne ex against		resist motion	
The Springs				СЬУ	
	/	(0)	ro l		
			<i>j</i> *		
v) A ra	idial:	spring	encowaj		
to stay		et rac		fance of	the sphere
Fra	dial =	- A (r	- [0]	from the	preferred
		9	, so	dius	

(b) The sphere is driven by assuming a constant tangential force is applied

Fungental =
$$f$$
 drive

These are the magnitudes of the Spring forces, but we also need to know the direction of the forces

 $X=(x,y,z)$
 $C=(x,y,z)$,

 $C=(x,z)$,

At every time step we solve for I from Av = 6 and then

we the velocity to update the

Position and then repeat. V=10 nph 5) $X_1 = X_0 + Volt$ $X_1 = X_0 + Volt$ Forward Euler another parameter

