KUBIG Data Science and Machine Learning

Week 4. Regularization

Logistic Regression Optimization

$$Loss[Y, \hat{Y}] = -\sum_{i=1}^{n} [y_i(\boldsymbol{\beta}^T \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} L[Y, \ \widehat{Y}]$$

⇒ Do not have an explicit solution!

Quadratic approximation (2nd order Taylor Expansion)

$$L(\mathbf{\theta}) \approx L(\mathbf{\theta}_0) + \nabla L(\mathbf{\theta}_0)^T (\mathbf{\theta} - \mathbf{\theta}_0) + \frac{1}{2} (\mathbf{\theta} - \mathbf{\theta}_0)^T \mathbf{H}(\mathbf{\theta}_0) (\mathbf{\theta} - \mathbf{\theta}_0)$$
where
$$\nabla L(\mathbf{\theta}_0) = \frac{\partial}{\partial \mathbf{\theta}} L(\mathbf{\theta}) \bigg|_{\mathbf{\theta} = \mathbf{\theta}_0}$$

$$\mathbf{H}(\mathbf{\theta}_0) = \frac{\partial^2}{\partial \mathbf{\theta} \partial \mathbf{\theta}^T} L(\mathbf{\theta}) \bigg|_{\mathbf{\theta} = \mathbf{\theta}_0}$$

Newton-Raphson Method

$$\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \mathbf{H}^{-1}(\mathbf{\theta}^{(t)}) \nabla L(\mathbf{\theta}^{(t)})$$
$$= \mathbf{\theta}^{(t)} - \mathbf{H}^{-1}(\mathbf{\theta}^{(t)}) \frac{\partial}{\partial \mathbf{\theta}^{(t)}} L(\mathbf{\theta}^{(t)})$$

$$cf. \ \theta^{(t+1)} = \theta^{(t)} - \frac{f'(\theta^{(t)})}{f''(\theta^{(t)})}$$

$$L[\boldsymbol{\beta}] = -\sum_{i=1}^{n} [y_i(\boldsymbol{\beta}^T \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

$$\nabla L(\mathbf{\beta}) = \frac{\partial}{\partial \mathbf{\beta}} L(\mathbf{\beta}) = -\sum_{i=1}^{n} \left[y_i \mathbf{X}_i - \frac{\exp(\mathbf{\beta}^T \mathbf{X}_i)}{1 + \exp(\mathbf{\beta}^T \mathbf{X}_i)} \mathbf{X}_i \right]$$

$$\mathbf{H}(\boldsymbol{\beta}) = \frac{\partial^2}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} L(\boldsymbol{\beta}) = \sum_{i=1}^n \left[\left(\frac{\exp(\boldsymbol{\beta}^T \mathbf{X}_i)}{1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i)} \right) \left(\frac{1}{1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i)} \right) \mathbf{X}_i \mathbf{X}_i^T \right]$$

$$L[\boldsymbol{\beta}] = -\sum_{i=1}^{n} [y_i(\boldsymbol{\beta}^T \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^T \mathbf{X}_i))]$$

Update

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} - \mathbf{H}^{-1} \big(\boldsymbol{\beta}^{(t)} \big) \nabla L \big(\boldsymbol{\beta}^{(t)} \big)$$

until

$$||\mathbf{\beta}^{t+1} - \mathbf{\beta}^t|| < \epsilon$$
 for small $\epsilon > 0$

					Solvers
Penalties	'liblinear'	'lbfgs'	'newton-cg'	'sag'	'saga'
Multinomial + L2 penalty	no	yes	yes	yes	yes
OVR + L2 penalty	yes	yes	yes	yes	yes
Multinomial + L1 penalty	no	no	no	no	yes
OVR + L1 penalty	yes	no	no	no	yes
Behaviors					
Penalize the intercept (bad)	yes	no	no	no	no
Faster for large datasets	no	no	no	yes	yes
Robust to unscaled datasets	yes	yes	yes	no	no

Gradient Descent

$$\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \mathbf{H}^{-1}(\mathbf{\theta}^{(t)}) \nabla L(\mathbf{\theta}^{(t)})$$

$$\Rightarrow \quad \boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \boldsymbol{\eta}^{(t)} \, \nabla L(\boldsymbol{\theta}^{(t)})$$

Gradient Descent

$$\begin{aligned} &\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \mathbf{H}^{-1}(\boldsymbol{\theta}^{(t)}) \nabla L(\boldsymbol{\theta}^{(t)}) \\ &\Rightarrow \quad \boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \nabla L(\boldsymbol{\theta}^{(t)}) \quad \rightarrow \quad \text{in Deep Learning} \\ &\Rightarrow \quad \boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta \nabla L(\boldsymbol{\theta}^{(t)}) \end{aligned}$$

(Batch) Gradient Descent

■ Batch size = n

Stochastic Gradient Descent

■ Batch size = 1

Mini-Batch Gradient Descent

■ Batch size = p, where p x k = n

Stein's Paradox

• Let
$$\mathbf{X} = [X_1, \dots, X_p]^T \sim N_p(\mathbf{\theta}, I)$$

The UMVUE and MLE of θ is

$$\widehat{\boldsymbol{\theta}}_{MLE,UMVUE} = \mathbf{X}$$

• Using squared error loss, the risk of $\widehat{m{ heta}}_{MLE,UMVUE}$ is

$$R(\mathbf{\theta}, \widehat{\mathbf{\theta}}_{UMVUE}) = E[||\mathbf{X} - \mathbf{\theta}||^2] = p$$

Stein's Paradox

James and Stein (1961) Estimator

$$\widehat{\mathbf{\theta}}_{JS} = \left(1 - \frac{p-2}{||\mathbf{X}||^2}\right) \mathbf{X}$$

• When $p \ge 3$,

$$R(\mathbf{\theta}, \widehat{\mathbf{\theta}}_{JS}) = p - (p-2)E\left(\frac{1}{||\mathbf{X}||^2}\right) < p$$

Steins Paradox

Proof

$$\begin{split} R(\pmb{\theta}, \widehat{\pmb{\theta}}_{JS}) &= E\left[||\mathbf{X} - \pmb{\theta} - \frac{(p-2)\mathbf{X}}{||\mathbf{X}||^2}||^2\right] \\ &= p - 2(p-2)\sum_{j}^{p} E\left(\frac{X_j(X_j - \theta_j)}{||\mathbf{X}||^2}\right) + (p-2)^2 E\left(\frac{1}{||\mathbf{X}||^2}\right) \\ &= p - (p-2)E\left(\frac{1}{||\mathbf{X}||^2}\right) \\ &= \sum_{j}^{p} E\left(\frac{X_j(X_j - \theta_j)}{||\mathbf{X}||^2}\right) = (p-2)E\left(\frac{1}{||\mathbf{X}||^2}\right) \end{split}$$
 Since $\sum_{j}^{p} E\left(\frac{X_j(X_j - \theta_j)}{||\mathbf{X}||^2}\right) = (p-2)E\left(\frac{1}{||\mathbf{X}||^2}\right)$

Steins Paradox

- JS estimator shrinks each component of X towards the origin, and thus the biggest improvement comes when || θ || is close to zero.
- Normality assumption is not critical, and similar results can be shown for a wide class of distributions.

Normal Equation

$$(\mathbf{X}^T\mathbf{X})\mathbf{\beta} = \mathbf{X}^T\mathbf{Y}$$

The OLS estimator

$$\widehat{\boldsymbol{\beta}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Normal Equation

$$(\mathbf{X}^T\mathbf{X})\mathbf{\beta} = \mathbf{X}^T\mathbf{Y}$$

The OLS estimator

$$\widehat{\boldsymbol{\beta}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

• What if $\mathbf{X}^T\mathbf{X}$ is not invertible?

We can consider

$$\widehat{\boldsymbol{\beta}}_{Ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

Ridge estimator is

$$\widehat{\boldsymbol{\beta}}_{Ridge} = \underset{\boldsymbol{\beta}}{argmin} \ (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{T} \boldsymbol{\beta}$$

Standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

Standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

$$L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)$$

Definition: Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is the minimized Lagrangian with respect to x

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda, \nu)$$

$$= \inf_{\mathbf{x} \in \mathbb{R}^n} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

Definition: Lagrange dual function $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is the minimized Lagrangian with respect to x

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda, \nu)$$

$$= \inf_{\mathbf{x} \in \mathbb{R}^n} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

$$f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda, \nu) = g(\lambda, \nu)$$

minimize
$$f_0(x) + \sum_i \lambda_i f_i(x) + \sum_i \nu_i h_i(x)$$

- Lagrange dual is an unconstrained minimization of Lagrangian
- 2 Lagrangians are measure of 'irritation' or penalty associated with violation of constraints, but having less penalty or 'smoothed' irritation than the originally strict constraints

Primal Problem

$$\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
 subject to $||\boldsymbol{\beta}||_2^2 \le C$, where $||\boldsymbol{\beta}||_2^2 = \boldsymbol{\beta}^T \boldsymbol{\beta} = \sum_i^p \beta_i^2$

Dual Problem

$$\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda(||\boldsymbol{\beta}||_2^2 - C)$$

$$(\widehat{\boldsymbol{\beta}}^{\lambda,2} =) \widehat{\boldsymbol{\beta}}_{Ridge} = \underset{\boldsymbol{\beta}}{argmin} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{2}^{2}$$

$$\Leftrightarrow \underset{\boldsymbol{\beta}}{argmin} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda (||\boldsymbol{\beta}||_{2}^{2} - C)$$

```
# Logistic regression
from sklearn.linear_model import LogisticRegression
Logit = LogisticRegression(C=1e2, random_state=1023) # C = 1/入. 디폴트: L2, One-versus-Rest.
Logit.fit(X_train_std, y_train)
```


Bias-Variance Trade off

Expected Prediction Error

$$E[(Y_0 - \hat{Y}_0)^2] = \sigma^2 + E[(\mu_0 - \hat{Y}_0)^2]$$

Irreducible error

model error

where
$$Y_0 = \mu_0 + \epsilon_0 = \mathbf{X}_0^T \mathbf{\beta} + \epsilon_0$$

and
$$\widehat{Y}_0 = \mathbf{X}_0^T \widehat{\boldsymbol{\beta}}$$

Bias-Variance Trade off

Model Error

$$E[(\mu_0 - \hat{Y}_0)^2] = E[(\mu_0 - E[\hat{Y}_0] + E[\hat{Y}_0] - \hat{Y}_0)^2]$$

$$= (\mu_0 - E[\hat{Y}_0])^2 + Var[\hat{Y}_0]$$
Bias² variance

Ridge Regression solves

$$\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_2^2 \qquad (L2 \ penalty)$$

LASSO Regression solves

Ridge Regression solves

$$\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_2^2 \qquad (L2 \ penalty)$$

LASSO Regression solves

$$\min_{\mathbf{\beta}} (\mathbf{Y} - \mathbf{X}\mathbf{\beta})^T (\mathbf{Y} - \mathbf{X}\mathbf{\beta}) + \lambda ||\mathbf{\beta}||_1 \qquad (L1 \ penalty)$$

LASSO (Least Absolute Shrinkage and Selection Operator)

$$(\widehat{\boldsymbol{\beta}}^{\lambda,1} =) \widehat{\boldsymbol{\beta}}_{LASSO} = \underset{\boldsymbol{\beta}}{argmin} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{1}$$

where
$$||\boldsymbol{\beta}||_1 = \sum_{j=1}^p |\beta_j|$$

- For simplicity, let $y_i = \beta x_i + \epsilon_i$, where $\sum_i^n x_i = 0$ and $\sum_i^n x_i^2 = n$
- Least Square estimator is

$$\hat{\beta}_{OLS} = \frac{1}{n} \sum x_i y_i$$

Ridge estimator is

$$\hat{\beta}_{Ridge} = \frac{\hat{\beta}_{OLS}}{1+\lambda}$$

Definition (Subgradient)

For a convex function $f: \mathbb{R}^p \to \mathbb{R}$, a vector $\mathbf{z} \in \mathbb{R}^p$ is to be a *subgradient* of f at $\boldsymbol{\beta}$ if

$$f(\boldsymbol{\beta}') \ge f(\boldsymbol{\beta}) + \mathbf{z}^T(\boldsymbol{\beta}' - \boldsymbol{\beta})$$
 for all $\boldsymbol{\beta}' \in \mathbb{R}^p$.

For LASSO, the objective function is

$$f(\beta) = \frac{1}{n} \sum (y_i - \beta x_i)^2 + \lambda |\beta|$$

and its subdifferential is

$$\partial f(\beta) = \begin{cases} \beta - \hat{\beta}_{OLS} + \lambda & \text{if } \beta > 0 \\ \beta - \hat{\beta}_{OLS} + \lambda[-1,1] & \text{if } \beta = 0 \\ \beta - \hat{\beta}_{OLS} - \lambda & \text{if } \beta < 0 \end{cases}$$

LASSO estimator is

$$\hat{\beta}_{LASSO} = \begin{cases} \hat{\beta}_{OLS} - \lambda & \text{if } \hat{\beta}_{OLS} > \lambda \\ 0 & \text{if } |\hat{\beta}_{OLS}| \le \lambda \\ \hat{\beta}_{OLS} + \lambda & \text{if } \hat{\beta}_{OLS} < -\lambda \end{cases}$$

LASSO estimator is

$$\hat{\beta}_{LASSO} = \begin{cases} \hat{\beta}_{OLS} - \lambda & \text{if } \hat{\beta}_{OLS} > \lambda \\ 0 & \text{if } |\hat{\beta}_{OLS}| \le \lambda \\ \hat{\beta}_{OLS} + \lambda & \text{if } \hat{\beta}_{OLS} < -\lambda \end{cases}$$

Soft-thresholding operator

$$S_{\lambda}(x) = sign(x) (|x| - \lambda)_{+}$$

LASSO estimator is

$$\hat{\beta}_{LASSO} = S_{\lambda}(\hat{\beta}_{OLS})$$

Soft-thresholding operator

$$S_{\lambda}(x) = sign(x) (|x| - \lambda)_{+}$$

(b) Ridge Regression (c) Lasso (Soft Thresh.)

LASSO (Least Absolute Shrinkage and Selection Operator)

$$(\widehat{\boldsymbol{\beta}}^{\lambda,1} =) \widehat{\boldsymbol{\beta}}_{LASSO} = \underset{\boldsymbol{\beta}}{argmin} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{1}$$

where
$$||\boldsymbol{\beta}||_1 = \sum_{i=1}^{p} |\beta_i|$$

LASSO (Least Absolute Shrinkage and Selection Operator)

$$(\widehat{\boldsymbol{\beta}}^{\lambda,1} =) \widehat{\boldsymbol{\beta}}_{LASSO} = \underset{\boldsymbol{\beta}}{argmin} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{1}$$

where
$$||\boldsymbol{\beta}||_1 = \sum_{j=1}^p |\beta_j|$$

LASSO (Least Absolute Shrinkage and Selection Operator)

LASSO estimator gives a sparse solution

⇒ Thus, features are selected automatically!

- Feature Selection
 - Subset selection, Stepwise method, LASSO, Least Angle Regression etc..

- Feature Extraction (Dimension Reduction)
 - Principal Component Analysis, Partial Least Square, Discriminant Analysis, Factor Analysis, Latent Class Analysis, etc..

Elastic Net solves

$$\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \left[\alpha ||\boldsymbol{\beta}||_1 + \frac{1}{2} (1 - \alpha) ||\boldsymbol{\beta}||_2^2 \right]$$

⇒ middle ground of LASSO and Ridge penalty

L_p penalty

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

Elastic Net

FIGURE 3.13. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_{j} (\alpha \beta_{j}^{2} + (1-\alpha)|\beta_{j}|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

Elastic Net

Figure 4.2 The elastic-net ball with $\alpha = 0.7$ (left panel) in \mathbb{R}^3 , compared to the ℓ_1 ball (right panel). The curved contours encourage strongly correlated variables to share coefficients (see Exercise 4.2 for details).

Figure 4.1 Six variables, highly correlated in groups of three. The lasso estimates $(\alpha=1)$, as shown in the left panel, exhibit somewhat erratic behavior as the regularization parameter λ is varied. In the right panel, the elastic net with $(\alpha=0.3)$ includes all the variables, and the correlated groups are pulled together.

library(glmnet)

```
fit = glmnet(x, y, alpha = 0.2, weights = c(rep(1,50), rep(2,50)), nlambda = 20)
```

Cross Validation

K-fold Cross Validation

K-fold Cross Validation

K-fold Cross Validation

```
[ ] ### K-fold cross-validation using pipeline ###
from sklearn.model_selection import cross_val_score
scores = cross_val_score(estimator=pipe_Ir, X=X_train, y=y_train, cv=10) # Accuracy scores
print('CV accuracy scores: %s' % scores)
import numpy as np
print('CV accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))
```

```
CV accuracy scores: [0.97826087 0.95652174 0.95652174 0.95652174 0.91304348 0.95555556 0.97777778 0.97777778 1. 0.97777778]

CV accuracy: 0.965 +/- 0.022
```


Nested Cross Validation

•
$$K_1 = 5$$

 $K_2 = 2$

$$K_2 = 2$$

Grid Search CV

```
# Decision tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
inner_cv=KFold(n_splits=3, shuffle=True, random_state=0)
outer_cv=KFold(n splits=5, shuffle=True, random state=0)
gs = GridSearchCY(estimator=DecisionTreeClassifier(random state=0),
                  param_grid=[{'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
                  scoring='accuracy', cv=inner cv)
scores = cross_val_score(gs, X, y, scoring='accuracy', cv=outer_cv)
print('CV accuracy: \%.3f +/- \%.3f' \% (np.mean(scores), np.std(scores)))
```

CV accuracy: 0.942 +/- 0.012

Grid Search CV

cv.glmnet {glmnet} R Documentation

Cross-validation for glmnet

Description

Does k-fold cross-validation for glmnet, produces a plot, and returns a value for lambda (and gamma if relax=TRUE)

Usage

```
cv.glmnet(x, y, weights = NULL, offset = NULL, lambda = NULL,
  type.measure = c("default", "mse", "deviance", "class", "auc", "mae",
  "C"), nfolds = 10, foldid = NULL, alignment = c("lambda",
  "fraction"), grouped = TRUE, keep = FALSE, parallel = FALSE,
  gamma = c(0, 0.25, 0.5, 0.75, 1), relax = FALSE, trace.it = 0, ...)
```


reference

자료

19-2 STAT424 통계적 머신러닝 - 박유성 교수님

21-1 COSE423 볼록최적화입문 백승준 교수님

교재

파이썬을 이용한 통계적 머신러닝 (2020) - 박유성

ISLR (2013) - G. James, D. Witten, T. Hastie, R. Tibshirani

The elements of Statistical Learning (2001) - J. Friedman, T. Hastie, R. Tibshirani Statistical Learning with Sparsity: The Lasso and Generalizations (2015)

- R. Tibshirani, , T. Hastie, M. Wainwright

