Compiler Design

Fatemeh Deldar

Isfahan University of Technology

1402-1403

Top-Down Parsing

- Top-down parsing can be viewed as the problem of constructing a parse tree for the input string, starting from the root and creating the nodes of the parse tree in *preorder* (depth-first)
- Top-down parsing can be viewed as finding a *leftmost derivation* for an input string

• LL(k) grammars

• The class of grammars for which we can construct predictive parsers looking k symbols ahead in the input

Example

Recursive-Descent Parsing

- A recursive-descent parsing program consists of a set of procedures, one for each nonterminal
- Execution begins with the procedure for the start symbol

Recursive-Descent Parsing

- General recursive-descent may require backtracking; that is, it may require repeated scans over the input
- Example

• Parse tree for
$$w = cad$$

$$S \rightarrow c A d$$
$$A \rightarrow a b \mid a$$

• In going back to A, we must reset the input pointer to position 2

FIRST and FOLLOW

- The construction of both top-down and bottom-up parsers is aided by two functions, **FIRST** and **FOLLOW**, associated with a grammar *G*
- FIRST(X) for all grammar symbols X
 - 1. If X is a terminal, then $FIRST(X) = \{X\}.$
 - 2. If X is a nonterminal and $X \to Y_1 Y_2 \cdots Y_k$ is a production for some $k \ge 1$, then place a in FIRST(X) if for some i, a is in $\text{FIRST}(Y_i)$, and ϵ is in all of $\text{FIRST}(Y_1), \ldots, \text{FIRST}(Y_{i-1})$; that is, $Y_1 \cdots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$. If ϵ is in $\text{FIRST}(Y_j)$ for all $j = 1, 2, \ldots, k$, then add ϵ to FIRST(X). For example, everything in $\text{FIRST}(Y_1)$ is surely in FIRST(X). If Y_1 does not derive ϵ , then we add nothing more to FIRST(X), but if $Y_1 \stackrel{*}{\Rightarrow} \epsilon$, then we add $\text{FIRST}(Y_2)$, and so on.
 - 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

FIRST and FOLLOW

FOLLOW(A) for all nonterminals A

- 1. Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
- 2. If there is a production $A \to \alpha B\beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

FIRST and FOLLOW

Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

- $FIRST(F) = FIRST(T) = FIRST(E) = \{(,id)\}$
- $FIRST(E') = \{+, \epsilon\}$
- $FIRST(T') = \{*, \epsilon\}$
- $FOLLOW(E) = FOLLOW(E') = \{\}$
- $FOLLOW(T) = FOLLOW(T') = \{+, \}$
- $FOLLOW(F) = \{+,*,\}$