CAUSAL INFERENCE IN STATISTICS

A Gentle Introduction

Judea Pearl
University of California
Los Angeles
(www.cs.ucla.edu/~judea/jsm12)

OUTLINE

- Inference: Statistical vs. Causal, distinctions, and mental barriers
- Unified conceptualization of counterfactuals, structural-equations, and graphs
- Inference to three types of claims:
 - 1. Causal effects and confounding
 - 2. Attribution (Causes of Effects)
 - 3. Direct and indirect effects
- Frills external validity and transportability

TRADITIONAL STATISTICAL INFERENCE PARADIGM

e.g., Estimate the mean of X

$$Q(P) = E(X) = \sum_{x} xP(X = x)$$

TRADITIONAL STATISTICAL INFERENCE PARADIGM

e.g., Estimate the probability that a customer who bought product A would also buy product B.

$$Q = P(B \mid A)$$

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

Probability and statistics deal with static relations

What happens when P changes? e.g., Estimate the probability that a customer who bought A would buy B if we were to double the price.

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

What remains invariant when P changes say, to satisfy P'(price=2)=1

Note: $P'(B) \neq P(B \mid price = 2)$

e.g., Doubling price ≠ seeing the price doubled.

P does not tell us how it ought to change.

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES (CONT)

Causal and statistical concepts do not mix.

CAUSAL

Spurious correlation

Randomization / Intervention

Confounding / Effect

Instrumental variable

Ignorability / Exogeneity

Explanatory variables

STATISTICAL

Regression

Association / Independence

"Controlling for" / Conditioning

Odd and risk ratios

Collapsibility / Granger causality

Propensity score

3.

The fire shadows east on wall Prisoners Roadway where puppeteers perform PLATO'S CAVE...

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES (CONT)

Causal and statistical concepts do not mix.

CAUSAL

Spurious correlation

Randomization / Intervention

Confounding / Effect

Instrumental variable

Ignorability / Exogeneity

Explanatory variables

STATISTICAL

Regression

Association / Independence

"Controlling for" / Conditioning

Odd and risk ratios

Collapsibility / Granger causality

Propensity score

3.

FROM STATISTICAL TO CAUSAL ANALYSIS: 2. MENTAL BARRIERS

1. Causal and statistical concepts do not mix.

CAUSAL STATISTICAL

Spurious correlation Regression

Randomization / Intervention Association / Independence

Confounding / Effect "Controlling for" / Conditioning

Instrumental variable Odds and risk ratios

Ignorability / Exogeneity Collapsibility / Granger causality

Explanatory variables Propensity score

2. No causes in – no causes out (Cartwright, 1989)

statistical assumptions + data causal assumptions

⇒ causal conclusions

- 3. Causal assumptions cannot be expressed in the mathematical language of standard statistics.
- 4. Non-standard mathematics:
 - a) Structural equation models (Wright, 1920; Simon, 1960)
 - b) Counterfactuals (Neyman-Rubin (Y_x) , Lewis $(x \rightarrow Y)$)

WHY PHYSICS IS COUNTERFACTUAL

Scientific Equations (e.g., Hooke's Law) are non-algebraic e.g., Length (Y) equals a constant (2) times the weight (X)

$$Y = 2X$$

$$X = 1$$

Process information

$$X = 1$$

$$Y = 2$$

The solution

WHY PHYSICS IS COUNTERFACTUAL

Scientific Equations (e.g., Hooke's Law) are non-algebraic e.g., Length (*Y*) equals a constant (2) times the weight (*X*) Correct notation:

$$Y := 2X$$

 $X = 3 \times 1$
Process information

$$X = 1$$

 $Y = 2$
The solution

Had X been 3, Y would be 6. If we raise X to 3, Y would be 6. Must "wipe out" X = 1.

WHY PHYSICS IS COUNTERFACTUAL

Scientific Equations (e.g., Hooke's Law) are non-algebraic e.g., Length (Y) equals a constant (2) times the weight (X) Correct notation:

(or)

$$Y \leftarrow 2X$$

$$X = 3$$

Process information

$$X = 1$$

$$Y = 2$$

The solution

Had X been 3, Y would be 6. If we raise X to 3, Y would be 6. Must "wipe out" X = 1.

THE STRUCTURAL MODEL PARADIGM

M – Invariant strategy (mechanism, recipe, law, protocol) by which Nature assigns values to variables in the analysis.

"Think Nature, not experiment!"

FAMILIAR CAUSAL MODEL ORACLE FOR MANIPILATION

STRUCTURAL CAUSAL MODELS

Definition: A structural causal model is a 4-tuple $\langle V, U, F, P(u) \rangle$, where

- $V = \{V_1, ..., V_n\}$ are endogenous variables
- $U = \{U_1, ..., U_m\}$ are background variables
- $F = \{f_1, ..., f_n\}$ are functions determining V, $v_i = f_i(v, u)$ e.g., $y = \alpha + \beta x + u_y$
- P(u) is a distribution over U

P(u) and F induce a distribution P(v) over observable variables

STRUCTURAL MODELS AND CAUSAL DIAGRAMS

The functions
$$v_i = f_i(v, u)$$
 define a graph $v_i = f_i(pa_i, u_i)$ $PA_i \subseteq V \setminus V_i$ $U_i \subseteq U$

Example: Price – Quantity equations in economics

SIMULATING INTERVENTIONS IN STRUCTURAL MODELS – do(x)

- Double the price
- Take a drug
- Raise taxes
- Make me laugh

SIMULATING INTERVENTIONS IN STRUCTURAL MODELS – do(x)

Let *X* be a set of variables in *V*.

The action do(x) sets X to constants x regardless of the factors which previously determined X.

do(x) replaces all functions f_i determining X with the constant functions X=x, to create a mutilated model M_x

$$q = b_1 p + d_1 i + u_1$$

$$p = b_2 q + d_2 w + u_2$$

$$Q$$

$$P$$

SIMULATING INTERVENTIONS IN STRUCTURAL MODELS

Let *X* be a set of variables in *V*.

The action do(x) sets X to constants x regardless of the factors which previously determined X.

do(x) replaces all functions f_i determining X with the constant functions X=x, to create a mutilated model M_x

CAUSAL MODELS AND COUNTERFACTUALS

- If I were a rich man
- Had we doubled the price

CAUSAL MODELS AND COUNTERFACTUALS

Definition:

The sentence: "Y would be y (in situation u), had X been x," denoted $Y_r(u) = y$, means:

The solution for Y in a mutilated model M_x , (i.e., the equations for X replaced by X = x) with input U = u, is equal to y.

The Fundamental Equation of Counterfactuals:

$$Y_{\mathcal{X}}(u) = Y_{M_{\mathcal{X}}}(u)$$

CAUSAL MODELS AND COUNTERFACTUALS

Definition:

The sentence: "Y would be y (in situation u), had X been x," denoted $Y_x(u) = y$, means:

The solution for Y in a mutilated model M_x , (i.e., the equations for X replaced by X = x) with input U = u, is equal to y.

Joint probabilities of counterfactuals:

$$P(Y_{\chi} = y, Z_{W} = z) = \sum_{u:Y_{\chi}(u)=y,Z_{W}(u)=z} P(u)$$

In particular:

$$P(y | do(x)) = P(Y_{x} = y) = \sum_{u:Y_{x}(u)=y} P(u)$$

$$P(Y_{x'} = y' | x, y) = \sum_{u:Y_{x'}(u)=y'} P(u | x, y)$$

$$u:Y_{x'}(u)=y'$$

READING COUNTERFACTUALS FROM SEM

 $X = \mathsf{Treatment}$

Z = Study Time

Y = Score

$$x = \varepsilon_1$$

$$z = \beta x + \varepsilon_2$$

$$y = \alpha x + \gamma z + \varepsilon_3$$

Data shows: $\alpha = 0.7$, $\beta = 0.5$, $\gamma = 0.4$ A student named Joe, measured X = 0.5, Z = 1.0, Y = 1.9 Q_1 : What would Joe's score be had he doubled his study time?

READING COUNTERFACTUALS FROM SEM

 $\overline{X} = \mathsf{Treatment}$

Z = Study Time

Y = Score

$$x = \varepsilon_1$$

$$z = \beta x + \epsilon_2$$
 $z = 2.0$

$$y = \alpha x + \gamma z + \varepsilon_3$$

Data shows: $\alpha = 0.7$, $\beta = 0.5$, $\gamma = 0.4$

A student named Joe, measured X = 0.5, Z = 1.0, Y = 1.9

Q₁: What would Joe's score be had he doubled his study time?

Answer: $Y_{Z=2} = 0.7 \ 0.5 + 0.4 \ 2.0 + \epsilon_3 = 2.30$

REGRESSION VS. STRUCTURAL EQUATIONS (THE CONFUSION OF THE CENTURY)

Regression (claimless, nonfalsifiable):

$$Y = ax + \varepsilon_{V}$$

Structural (empirical, falsifiable):

$$Y = bx + u_Y$$

Claim: (regardless of distributions):

$$E(Y \mid do(x)) = E(Y \mid do(x), do(z)) = bx$$

The mothers of all questions:

- Q. When would b equal a?
- A. When all back-door paths are blocked, $(u_Y \perp \!\!\! \perp X)$
- Q. When is *b* estimable by regression methods?
- A. Graphical criteria available

THE FIVE NECESSARY STEPS OF CAUSAL ANALYSIS

Define: Express the target quantity Q as property of

the model M.

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if *Q* is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

Test: If *M* has testable implications

Repeat if necessary

THE LOGIC OF CAUSAL ANALYSIS

THE FIVE NECESSARY STEPS FOR EFFECT ESTIMATION

Define: Express the target quantity *Q* as a property of

the model M.

 $P(Y_x = y)$ or $P(y \mid do(x))$

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if Q is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

THE FIVE NECESSARY STEPS FOR AVERAGE TREATMENT EFFECT

Define: Express the target quantity Q as a property of

the model M.

 $ATE \equiv E(Y \mid do(x_1)) - E(Y \mid do(x_0))$

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if Q is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

THE FIVE NECESSARY STEPS FOR DYNAMIC POLICY ANALYSIS

Define: Express the target quantity Q as a property of

the model M.

$$P(y \mid do(x = g(z)))$$

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if *Q* is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

THE FIVE NECESSARY STEPS FOR TIME VARYING POLICY ANALYSIS

Define: Express the target quantity Q as a property of

the model M.

$$P(y | do(X = x, Z = z, W = w))$$

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if *Q* is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

THE FIVE NECESSARY STEPS FOR TREATMENT ON TREATED

Define: Express the target quantity Q a property of the

 $\mathsf{model}\,M.$

$$\mathsf{ETT} = P(Y_{\chi} = y \mid X = x')$$

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if *Q* is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

THE FIVE NECESSARY STEPS FOR INDIRECT EFFECTS

Define: Express the target quantity Q a property of the

 $\mathsf{model}\,M.$

$$\mathsf{IE} = E[Y_{x,Z(x')}] - E[Y_x]$$

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if *Q* is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

THE FIVE NECESSARY STEPS FROM DEFINITION TO ASSUMPTIONS

Define: Express the target quantity Q as a property of

the model M.

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if Q is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

FORMULATING ASSUMPTIONS THREE LANGUAGES

- 1. English: Smoking (X), Cancer (Y), Tar (Z), Genotypes (U)
- 2. Counterfactuals: $Z_{\chi}(u)=Z_{\chi\chi}(u),$ $X_{\chi}(u)=X_{\chi\chi}(u)=X_{\chi\chi}(u)=X_{\chi\chi}(u),$ $Y_{\chi}(u)=Y_{\chi\chi}(u),$ $Z_{\chi} \perp \!\!\! \perp \{Y_{\chi},\chi\}$

Not too friendly:

Consistent?, complete?, redundant?, plausible?, testable?

3. Structural:

FROM Q AND ASSUMPTIONS TO IDENTIFICATION

Define: Express the target quantity Q as a function

Q(M) that can be computed from any model M.

Assume: Express causal assumptions in structural or

graphical form.

Identify: Determine if *Q* is identifiable. SOLVED!!!

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

Test: If *M* has testable implications

THE PROBLEM OF CONFOUNDING

Find the effect of X on Y, P(y|do(x)), given measurements on auxiliary variables Z_1, \ldots, Z_k

Can P(y|do(x)) be estimated if only a subset, Z, can be measured?

ELIMINATING CONFOUNDING BIAS THE BACK-DOOR CRITERION

 $P(y \mid do(x))$ is estimable if there is a set Z of variables that d-separates X from Y in G_X .

Moreover,
$$P(y \mid do(x)) = \sum_{z} P(y \mid x,z) P(z)$$
 ("adjusting" for Z)

EFFECT OF INTERVENTION BEYOND ADJUSTMENT

Theorem (Tian-Pearl 2002)

We can identify P(y|do(x)) if there is no child Z of X connected to X by a confounding path.

EFFECT OF WARM-UP ON INJURY (After Shrier & Platt, 2008)

COUNTERFACTUALS AT WORK ETT – EFFECT OF TREATMENT ON THE TREATED

1. Regret:

I took a pill to fall asleep. Perhaps I should not have?

2. Program evaluation:

What would terminating a program do to those enrolled?

$$P(Y_{\mathcal{X}} = y \mid x')$$

IDENTIFICATION OF COUNTERFACTUALS

$$\mathsf{ETT} = P(Y_{\chi} = y \mid x')$$

ETT is identifiable in G iff $P(y \mid do(x), w)$ is identifiable in G'

Moreover, ETT =
$$P(Y_x = y \mid x') = P(y \mid do(x), w) \mid G' w = x'$$

Complete graphical criterion (Shpitser-Pearl, 2009)

ETT - THE BACK-DOOR CRITERION

ETT is identifiable in G if there is a set Z of variables that d-separates X from Y in G_X .

"Standardized morbidity"

FROM IDENTIFICATION TO ESTIMATION

Define: Express the target quantity Q as a function

Q(M) that can be computed from any model M.

e.g., Q = P(y | do(x))

Assume: Formulate causal assumptions using ordinary

scientific language and represent their structural

part in graphical form.

Identify: Determine if *Q* is identifiable.

Estimate: Estimate Q if it is identifiable; approximate it,

if it is not.

PROPENSITY SCORE ESTIMATOR (Rosenbaum & Rubin, 1983)

$$L(z_1, z_2, z_3, z_4, z_5) \equiv P(X = 1 | z_1, z_2, z_3, z_4, z_5)$$

Theorem:
$$\sum_{z} P(y \mid z, x) P(z) = \sum_{l} P(y \mid L = l, x) P(L = l)$$

Adjustment for L replaces Adjustment for Z

WHAT PROPENSITY SCORE (PS) PRACTITIONERS NEED TO KNOW

$$L(z) = P(X = 1 | Z = z)$$

$$\sum_{z} P(y | z, x)P(z) = \sum_{l} P(y | l, x)P(l)$$

- 1. The assymptotic bias of PS is EQUAL to that of ordinary adjustment (for same *Z*).
- 2. Including an additional covariate in the analysis CAN SPOIL the bias-reduction potential of others.
- 3. Choosing sufficient set for PS, requires knowledge about the model.

WHICH COVARIATES MAY/SHOULD BE ADJUSTED FOR?

Question:

Which of these eight covariates may be included in the propensity score function (for matching) and which should be excluded.

Answer:

Must include: Age

Must exclude: B_1 , M, B_2 , Follow-up, Assignment without Age

May include: Cost, Hygiene, {Assignment + Age},

{Hygiene + Age + B_1 }, more . . .

WHICH COVARIATES MAY/SHOULD BE ADJUSTED FOR?

Question:

Which of these eight covariates may be included in the propensity score function (for matching) and which should be excluded.

Answer:

Must include: Age

Must exclude: B_1 , M, B_2 , Follow-up, Assignment without Age

May include: Cost, Hygiene, {Assignment + Age},

{Hygiene + Age + B_1 }, more . . .

WHAT PROPENSITY SCORE (PS) PRACTITIONERS NEED TO KNOW

$$L(z) = P(X = 1 | Z = z)$$

$$\sum_{z} P(y | z, x)P(z) = \sum_{l} P(y | l, x)P(l)$$

- 1. The assymptotic bias of PS is EQUAL to that of ordinary adjustment (for same *Z*).
- 2. Including an additional covariate in the analysis CAN SPOIL the bias-reduction potential of others.
- 3. Choosing sufficient set for PS, requires knowledge about the model.
- 4. That any empirical test of the bias-reduction potential of PS, can only be generalized to cases where the causal relationships among covariates, observed and unobserved is the same.

THE STRUCTURAL-COUNTERFACTUAL SYMBIOSIS

- 1. Express assumptions in structural or graphical language.
- 2. Express queries in counterfactual language.
- 3. Translate (1) into (2) for algebraic analysis, Or (2) into (1) for graphical analysis.
- 4. Use either graphical or algebraic machinery to answer the query in (2).

GRAPHICAL – COUNTERFACTUALS TRANSLATION

Every causal graph expresses counterfactuals assumptions, e.g., $X \rightarrow Y \rightarrow Z$

1. Missing arrows
$$Y \leftarrow Z$$
 $Y_{x,z}(u) = Y_x(u)$

2. Missing arcs
$$Y Z Y_x \perp \!\!\! \perp Z_y$$

consistent, and readable from the graph.

Every theorem in SCM is a theorem in Potential-Outcome Model, and conversely.

DEMYSTIFYING CONDITIONAL IGNORABILITY

$$\{Y(0),Y(1)\} \perp \!\!\! \perp X \mid Z$$
 (Ignorability)
 $(X \perp \!\!\! \perp Y \mid Z)_{G_{\underline{X}}}$ (Back-door)

Where in the graph are $\{Y(0), Y(1)\}$?

W plays the role of $\{Y(0), Y(1)\}$ in the graph

DETERMINING THE CAUSES OF EFFECTS (The Attribution Problem)

 Your Honor! My client (Mr. A) died BECAUSE he used that drug.

DETERMINING THE CAUSES OF EFFECTS (The Attribution Problem)

 Your Honor! My client (Mr. A) died BECAUSE he used that drug.

• Court to decide if it is MORE PROBABLE THAN NOT that A would be alive BUT FOR the drug! $PN = P(? \mid A \text{ is dead, took the drug}) \ge 0.50$

THE ATTRIBUTION PROBLEM

Definition:

What is the meaning of PN(x,y):
 "Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur."

Answer:

$$PN(x, y) = P(Y_{x'} = y'|x, y)$$

Computable from M

THE ATTRIBUTION PROBLEM

Definition:

What is the meaning of PN(x,y):
 "Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur."

Identification:

2. Under what condition can PN(x,y) be learned from statistical data, i.e., observational, experimental and combined.

PARTIAL IDENTIFICATION

(Tian and Pearl, 2000)

 Bounds given combined nonexperimental and experimental data

$$\max \left\{ \frac{P(y) - P(y_{\chi'})}{P(x,y)} \right\} \leq PN \leq \min \left\{ \frac{1}{P(y'_{\chi'})} \right\}$$

Identifiability under monotonicity (Combined data)

$$PN = \frac{P(y/x) - P(y/x')}{P(y/x)} + \frac{P(y/x') - P(y_{x'})}{P(x,y)}$$

corrected Excess-Risk-Ratio

CAN FREQUENCY DATA DECIDE LEGAL RESPONSIBILITY?

	Experimental		Nonex	Nonexperimental	
	do(x)	do(x')	\mathcal{X}	x'	
Deaths (y)	16	14	2	28	
Survivals (y')	984	986	998	972	
	1,000	1,000	1,000	1,000	

- Nonexperimental data: drug usage predicts longer life
- Experimental data: drug has negligible effect on survival
- Plaintiff: Mr. A is special.
 - 1. He actually died
 - 2. He used the drug by choice
- Court to decide (given both data):
 Is it more probable than not that A would be alive but for the drug?

$$PN \stackrel{\Delta}{=} P(Y_{x'} = y' | x, y) > 0.50$$

SOLUTION TO THE ATTRIBUTION PROBLEM

- WITH PROBABILITY ONE $1 \le P(y'_{x'}|x,y) \le 1$
- Combined data tell more that each study alone

EFFECT DECOMPOSITION (direct vs. indirect effects)

- 1. Why decompose effects?
- 2. What is the definition of direct and indirect effects?
- 3. What are the policy implications of direct and indirect effects?
- 4. When can direct and indirect effect be estimated consistently from experimental and nonexperimental data?

WHY DECOMPOSE EFFECTS?

1. To understand how Nature works

2. To comply with legal requirements

3. To predict the effects of new type of interventions: Signal routing, rather than variable fixing

LEGAL IMPLICATIONS OF DIRECT EFFECT

Can data prove an employer guilty of hiring discrimination?

What is the direct effect of *X* on *Y*?

$$E(Y \mid do(x_1), do(z)) - E(Y \mid do(x_0), do(z))$$

(averaged over z) Adjust for Z? No! No!

NATURAL INTERPRETATION OF AVERAGE DIRECT EFFECTS

Robins and Greenland (1992) - "Pure"

Natural Direct Effect of X on Y: $DE(x_0, x_1; Y)$

The expected change in Y, when we change X from x_0 to x_1 and, for each u, we keep Z constant at whatever value it attained before the change.

$$E[Y_{x_1Z_{x_0}} - Y_{x_0}]$$

In linear models, DE = Controlled Direct Effect = $\beta(x_1 - x_0)$

DEFINITION OF INDIRECT EFFECTS

Indirect Effect of X on Y: $IE(x_0, x_1; Y)$

The expected change in Y when we keep X constant, say at x_0 , and let Z change to whatever value it would have attained had X changed to x_1 .

$$E[Y_{x_0Z_{x_1}} - Y_{x_0}]$$

In linear models, IE = TE - DE

POLICY IMPLICATIONS OF INDIRECT EFFECTS

What is the indirect effect of X on Y?

The effect of Gender on Hiring if sex discrimination is eliminated.

Blocking a link – a new type of intervention

MEDIATION FORMULAS IN UNCONFOUNDED MODELS

$$Z = f(x,u_1)$$

$$y = g(x,z,u_2)$$

$$x \perp \!\!\!\perp u_1 \perp \!\!\!\perp u_2$$

$$DE = \sum_{z} [E(Y \mid x_1,z) - E(Y \mid x_0,z)] P(z \mid x_0)$$

$$IE = \sum_{z} [E(Y \mid x_0,z) [P(z \mid x_1) - P(z \mid x_0)]$$

$$TE = E(Y \mid x_1) - E(Y \mid x_0)$$

$$IE = \text{Fraction of effect explained by mediation}$$

TE - DE = Fraction of effect owed to mediation

SUMMARY OF MEDIATION RESULTS

- 1. Formal semantics of path-specific effects, based on disabling mechanisms, instead of value fixing.
- 2. Path-analytic techniques extended to nonlinear and nonparametric models.
- 3. Meaningful (graphical) conditions for estimating direct and indirect effects from experimental and nonexperimental data.

EXTERNAL VALIDITY From Threats to Licenses

- "External validity' asks the question of generalizability: To what population, settings, treatment variables, and measurement variables can this effect be generalized?"
 (Shadish, Cook and Campbell 2002)
- "An experiment is said to have `external validity' if the distribution of outcomes realized by a treatment group is the same as the distribution of outcome that would be realized in an actual program."

(Manski, 2007)

- "A threat to external validity is an explanation of how you might be wrong in making a generalization." (Wikipedia 2011, after Trochin)
- "A license of validity is a set of theoretical assumptions that neutralizes all conceivable threats."
 (Anon, 2011)

TRANSPORTABILITY ACROSS DOMAINS

1. A Theory of causal transportability

When can causal relations learned from experiments be transferred to a different environment in which no experiment can be conducted?

2. A Theory of statistical transportability

When can statistical information learned in one domain be transferred to a different domain in which

- a. only a subset of variables can be observed? Or,
- b. only a few samples are available?

3. Applications to Meta Analysis

Combining results from many diverse studies

MOTIVATION

WHAT CAN EXPERIMENTS IN LA TELL ABOUT NYC?

Experimental study in LA

Measured: P(x, y, z)

 $P(y \mid do(x), z)$

Observational study in NYC

Measured: $P^*(x, y, z)$

 $P^*(z) \neq P(z)$

Needed:
$$P^*(y | do(x)) = ? = \sum_{z} P(y | do(x), z) P^*(z)$$

Transport Formula (calibration): $F(P, P_{do}, P^*)$

TRANSPORT FORMULAS DEPEND ON THE STORY

a) Z represents age

$$P^*(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) P^*(z)$$

TRANSPORT FORMULAS DEPEND ON THE STORY

a) Z represents age

$$P^*(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) P^*(z)$$

b) Z represents language skill

$$P^*(y | do(x)) = P(y | do(x))$$

TRANSPORT FORMULAS DEPEND ON THE STORY

a) Z represents age

$$P^*(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) P^*(z)$$

b) **Z** represents language skill

$$P^*(y | do(x)) = ?$$

TRANSPORT FORMULAS DEPEND ON THE STORY

a) Z represents age

$$P^*(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) P^*(z)$$

b) Z represents language skill

$$P^*(y | do(x)) = P(y | do(x))$$

c) Z represents a bio-marker

$$P^*(y | do(x)) = \sum_{z} P(y | do(x), z) P^*(z | x)$$

GOAL: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE Back to Transportability

INPUT: Annotated Causal Graph *S* Factors creating differences

OUTPUT:

- 1. Transportable or not?
- 2. Measurements to be taken in the experimental study
- 3. Measurements to be taken in the target population
- 4. A transport formula

$$P^*(y | do(x)) = f[P(y, v, z, w, t, u | do(x)); P^*(y, v, z, w, t, u)]$$

TRANSPORTABILITY REDUCED TO CALCULUS

Theorem 1

A causal relation R is transportable from Π to Π^* if and only if $R(\Pi^*)$ is reducible, using the rules of do-calculus, to an expression in which S appears only as a conditioning variable in do-free terms.

$$R(\prod^*) = P^*(y \mid do(x)) = P(y \mid do(x), s)$$

$$= \sum_{w} P(y \mid do(x), s, w) P(w \mid do(x), s)$$

$$= \sum_{w} P(y \mid do(x), w) P(w \mid s)$$

$$= \sum_{w} P(y \mid do(x), w) P^*(w)$$

RESULT: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE

INPUT: Annotated Causal Graph S → Factors creating differences

OUTPUT:

- 1. Transportable or not?
- 2. Measurements to be taken in the experimental study
- 3. Measurements to be taken in the target population
- 4. A transport formula

$$P^{*}(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) \sum_{w} P^{*}(z \mid w) \sum_{t} P(w \mid do(x), t) P^{*}(t)$$

WHICH MODEL LICENSES THE TRANSPORT OF THE CAUSAL EFFECT $X \rightarrow Y$

S External factors creating disparities No Yes Yes (a) (b) (c)Yes Yes No (e)

STATISTICAL TRANSPORTABILITY

Why should we transport statistical information?

i.e., Why not re-learn things from scratch?

- Measurements are costly.
 Limit measurements to a subset V* of variables called "scope".
- Samples are scarce.
 Pooling samples from diverse populations will improve precision, if differences can be filtered out.

STATISTICAL TRANSPORTABILITY

Definition: (Statistical Transportability)

A statistical relation R(P) is said to be *transportable* from Π to Π^* over V^* if $R(P^*)$ is identified from P, $P^*(V^*)$, where V^* is a subset of variables.

 $R=P*(y \mid x)$ is transportable over $V*=\{X,Z\}$, i.e., R is estimable without re-measuring Y

$$R = \sum_{z} P^*(z \mid x) P(z \mid y)$$

Transfer Learning

If few samples (N_2) are available from Π^* and many samples (N_1) from Π , then estimating $R = P^*(y \mid x)$ by

$$R = \sum_{z} P^*(y \mid x, z) P(z \mid x)$$

achieves a much higher precision

META-ANALYSIS OR MULTI-SOURCE LEARNING

Target population Π^* $R = P^*(y / do(x))$

CAN WE GET A BIAS-FREE ESTIMATE OF THE TARGET QUANTITY?

Target population Π^* $R = P^*(y / do(x))$

Is R identifiable from (d) and (h)?

$$R = \sum_{w} P^*(y | do(x), w) P^*(w | do(x))$$
$$\sum_{w} P_{(h)}(y | do(x), w) P_{(d)}(w | do(x))$$
$$\sum_{w} P_{(h)}(y | do(x), w) P_{(d)}(w | x)$$

 $R(\Pi^*)$ is identifiable from studies (d) and (h).

 $R(\Pi^*)$ is not identifiable from studies (d) and (i).

FROM META-ANALYSIS TO META-SYNTHESIS

The problem

How to combine results of several experimental and observational studies, each conducted on a different population and under a different set of conditions, so as to construct an aggregate measure of effect size that is "better" than any one study in isolation.

Definition (Meta-Estimability)

A relation R is said to be "meta estimable" from a set of populations $\{\Pi_1, \Pi_2, ..., \Pi_K\}$ to a target population Π^* iff it is identifiable from the information set $I = \{I(\Pi_1), I(\Pi_2), ..., I(\Pi_K), I(P^*)\}$.

FROM META-ANALYSIS TO META-SYNTHESIS (Cont.)

Theorem

 $\{\Pi_1, \Pi_2, ..., \Pi_K\}$ – a set of studies. $\{D_1, D_2, ..., D_k\}$ – selection diagrams (relative to Π^*). A relation $R(\Pi^*)$ is "meta estimable" if it can be decomposed into terms of the form:

$$Q_k = P(V_k \mid do(W_k), Z_k)$$

such that each Q_k is transportable from D_k .

Open-problem: Systematic decomposition

BIAS VS. PRECISION IN META-SYNTHESIS

Principle 1: Calibrate estimands before pooling (to minimize bias)

Principle 2: Decompose to sub-relations before calibrating (to improve precision)

BIAS VS. PRECISION IN META-SYNTHESIS (Cont.)

CONCLUSIONS

I TOLD YOU CAUSALITY IS SIMPLE

- Principled methodology for causal and counterfactual inference (complete)
- Unification of the graphical, potential-outcome and structural equation approaches
- Friendly and formal solutions to century-old problems and confusions.

CONCLUSIONS

He is wise who bases causal inference on an explicit causal structure that is defensible on scientific grounds.

(Aristotle 384-322 B.C.)

From Charlie Poole

QUESTIONS???

Now is the time!