eXtreme Deep Factorization Machine (xDeepFM)

For Recommender Systems

Background & Introduction

Traditional cross feature engineering

Task-specific
Web-scale
Unseen interactions

Including all features both useful and useless combinations which introduces noises

Factorization

Machines

FNN&PNN

They focus more on highorder feature interactions while capture little loworder interactions

Background & Introduction

DNNs model high-order feature interactions in an implicit fashion at the bit-wise level

Each hidden layer is a scalar multiple of embedding layer; Interactions come in a bit-wise fashion

Cross Network
(CrossNet)

This paper propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level.

Word Embedding

Reference: https://www.coursera.org/specializations/deep-learning?

Implicit and Explicit High-order Interactions

What is Implicit High-order Interactions?

It use feed-forward neural network on the field embedding vector to learn high-order feature interactions. It can not figure out the relationship between hidden layers and embedding layer.

$$\mathbf{x}^1 = \sigma(\mathbf{W}^{(1)}\mathbf{e} + \mathbf{b}^1) \tag{1}$$

$$\mathbf{x}^k = \sigma(\mathbf{W}^{(k)}\mathbf{x}^{(k-1)} + \mathbf{b}^k) \tag{2}$$

All formulas come from reference: Lian, Jianxun, et al. "xdeepfm: Combining explicit and implicit feature interactions for recommender systems." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.

What is Explicit High-order Interactions?

It shows that each hidden layer is a scalar multiple of the embedding layer which means that the relationship between hiden layers and embedding layer can be figured out.

$$\mathbf{x}_k = \mathbf{x}_0 \mathbf{x}_{k-1}^T \mathbf{w}_k + \mathbf{b}_k + \mathbf{x}_{k-1}$$
 (3)

$$\mathbf{x}_1 = \mathbf{x}_0(\mathbf{x}_0^T \mathbf{w}_1) + \mathbf{x}_0$$

$$= \mathbf{x}_0(\mathbf{x}_0^T \mathbf{w}_1 + 1)$$

$$= \alpha^1 \mathbf{x}_0$$
(4)

$$\mathbf{x}_{i+1} = \mathbf{x}_0 \mathbf{x}_i^T \mathbf{w}_{i+1} + \mathbf{x}_i$$

$$= \mathbf{x}_0 ((\alpha^i \mathbf{x}_0)^T \mathbf{w}_{i+1}) + \alpha^i \mathbf{x}_0$$

$$= \alpha^{i+1} \mathbf{x}_0$$
(5)

Vector-wise and Bit-wise Level

What is bit-wise level?

 $X_0 \in \mathbb{R}^{1 \times (m^*D)}$, it is means that X_0 only has one vector. Even the bits in the same field can be interacted with each other.

What is vector-wise level?

It $X_0 \in \mathbb{R}^{m \times D}$, m is the number of features which means that it has m vectors.

(a) Outer products along each dimension for feature interactions. The tensor Z^{k+1} is an intermediate result for further learning.

Filters in CNN

Reference: https://www.coursera.org/specializations/deep-learning?

Compressed Interaction Network

Intuitively: It works same as the filters in the CNN. Using some filters to extract some features from the big data matrixes

All pictures come from reference: Lian, Jianxun, et al. "xdeepfm: Combining explicit and implicit feature interactions for recommender systems." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.

xDeepFM

Combining Explicit and Implicit Feature Interactions

All pictures come from reference: Lian, Jianxun, et al. "xdeepfm: Combining explicit and implicit feature interactions for recommender systems." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.

Result

Model name	Criteo			Dianping			Bing News		
	AUC	Logloss	Depth	AUC	Logloss	Depth	AUC	Logloss	Depth
LR	0.7577	0.4854	-,-	0.8018	0.3608	-,-	0.7988	0.2950	-,-
FM	0.7900	0.4592	-,-	0.8165	0.3558	-,-	0.8223	0.2779	-,-
DNN	0.7993	0.4491	-,2	0.8318	0.3382	-,3	0.8366	0.2730	-,2
DCN	0.8026	0.4467	2,2	0.8391	0.3379	4,3	0.8379	0.2677	2,2
Wide&Deep	0.8000	0.4490	-,3	0.8361	0.3364	-,2	0.8377	0.2668	-,2
PNN	0.8038	0.4927	-,2	0.8445	0.3424	-,3	0.8321	0.2775	-,3
DeepFM	0.8025	0.4468	-,2	0.8481	0.3333	-,2	0.8376	0.2671	-,3
xDeepFM	0.8052	0.4418	3,2	0.8639	0.3156	3,3	0.8400	0.2649	3,2

All pictures come from reference: Lian, Jianxun, et al. "xdeepfm: Combining explicit and implicit feature interactions for recommender systems." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.

Thank you!

Zhang Yu, Liu Mengling, Zhang Yu Group Y | Nov 14, 2020