Software Defect Prediction Analysis using Machine Learning Algorithms

Data Mining Course, Bachelor in Technology
Department of Information Technology, IIIT Allahabad

Authors:

Abhishek Kumar Gupta IIT2018187 Puja kumari IIT2018191 Prabha Kumari IIT2018195 Under Supervision of:
Prof. OP Vyas
DMW Course Instructor
IIIT Allahabad

ABSTRACT : In this paper, we propose to extract a set of specifics from the first set of basic transformation measures using the Artificial Neural Network (ANN), and then train to differentiate according to the extracted elements using the decision tree and compare it to the other three between Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Kernel PCA. We use a database of five open source sources from the NASA Promise Repository conduct Data to comparative study. To test, three widely used metrics are used: Accuracy, F1 scores and areas below the Receiver Operating Curve feature.

Keywords- Machine Learning, Artificial Neural Network, Principal Component Analysis, Linear Discriminant Analysis, Kernel PCA, Decision Tree. Area under ROC curve

INTRODUCTION

In order to build high-quality softwares, feature prediction has become a priority as a lot of time and effort is put into software testing and its use of errors in some other way. False prediction methods are suggested to help prioritize software testing and debugging; can recommend software components that may be problematic for [1] Many parameters developers. considered when predicting whether software is an organization or not including the number of lines of code, its complexity, the number of operators and operators used in the code and other factors. We looked at a set of the first 22 features to predict whether the module is a disruptive entity.

Artificial Neural Network is a machine learning algorithm based on the functioning of neural biological networks. It has many areas connected by heavy edges. We propose to extract a set of explicit elements in the first set of basic transformation measures using the

Artificial Neural Network (ANN) and then train to differentiate according to the extracts from the decision tree and compare it to the three alternatives in which Analysis (PCA), Linear Discriminant Analysis (LDA) and Kernel PCA. Decisions Trees fall under a supervised learning approach to planning and reversal that can be easily identified. It works by splitting or reversing according to a specific task (here Entropy) in a training set with a label. It divides the population or sample on the basis of the most important separator by identifying the most important variant from the database. They are working on the goal of Selfishness.

Figure 1: Defect Prediction Process

PCA, LDA and Kernel PCA methods are used reduce LDA **PCA** size. and are straightforward conversion strategies, difference being that the LDA should be monitored and the PCA not monitored. PCA is a more effective way to reduce size while LDA is often very specific. The PCA manages the entire database while the LDA tries to discriminate between classes within the data. On the other hand, KPCA is not a straightforward form of PCA but it is like an extension of PCA

To test, three widely used metrics are used: Accuracy, F1 scores and areas below the Receiver Operating Curve feature. [12] The accuracy of the phase alone can be misleading at times so the other two metrics are also considered. F1 scores are rated with Precision rating and Recall scores False Positives and False Negatives. Basically, it is a harmonic definition of the two. Generally ROC curves can be said as a complete report of sensitivity and specificity. It has been found that the Artificial Neural Network surpasses all other ways to reduce size. The Kernel PCA has done very well among other ways to reduce size.

BACKGROUND

Here, we introduce the background of defect prediction technique.

Defect Prediction: The process of predicting code areas that contain defects is called Software defect prediction. It helps developers allocate their testing efforts by first checking buggy code. It ensures the reliability of large -scale software. Below given figure represents file-level defect prediction process.

Fig2 : File-level defect prediction process

Algorithm of file level defect prediction process is following:-

1.Collect source code files (instances) from

archives and level them as buggy or clean. 3.New instances are fed into trained classifier to

- File containing at least one post-release predict whether the files are buggy or clean. bug is labeled as buggy.
- Otherwise the file is labeled as clean.
- 2.Extract features (code metrics and CK features) from each file.
 - The instances with the corresponding features and labels to train classifiers using algorithms like ANN,LDA,PCA,KPCA.

LITERATURE SURVEY

S.No	Paper	Name of the	Methodology	Results	Paper Link
•	Тирет	Conference/j	Withhousings	Tesuits	Taper Link
	Title	ournal (Year)			
			used learning algorithms to predict		
			defects at change level. They made		
		-	use of a deep learning algorithm to		
			predict the same. They first created		
	Deep learning		a Deep Belief Network to extract a		
			set of expressive features from the		
	just-in-time	Quality,	initial set of linear features and		
	defect	Reliability and	then used Logistic Regression as a	Compare the result using	https://ieeexplore.
	prediction	Security, 2015	classifier to predict buggy and	accuracy f1 score and	ieee.org/documen
1.			non-buggy changes.	area under Roc	<u>t/7272910</u>
			In this paper we consider defect		
			prediction models that focus on	Predictor achieves an	
				average precision of 37	
			\mathcal{E}	percent and recall of 67	
	_		or packages.To build a change risk	r *	
	1		model, we use a wide range of	projects, which translates	
		•	factors based on the characteristics		
	just-in-time	· ·	of a software change, such as the	improvement of 90	https://ieeexplore.
	quality	· ·	number of added lines, and	percent over the random	ieee.org/documen
2.			developer experience	predictor.	<u>t/6341763</u>
		2017 7th	In this paper we have analyzed the		
	Software		most popular and widely used	the dominance of Linear	
	defect		Machine Learning algorithms -	Classifier over other	
	μ.			algorithms in terms of	https://ieeexplore.
	analysis using	1 0,	PSO(Particle Swarm	defect prediction	ieee.org/documen
3.	machine	Data Science &	Optimization), DT (Decision	accuracy.	<u>t/7943255</u>

	ı ·	г · ·	T) NDAL : D) 11 C		
	learning	Engineering -	Trees), NB(Naive Bayes) and LC		
	algorithms	Confluence	(Linear classifier)		
		2017 IEEE			
	Software		In this paper, we propose a		
	Defect		framework called Defect	The experimental results	
	Prediction via	Software	Prediction via Convolutional	show that in average,	
	Convolutional	Quality,	Neural Network (DP-CNN), which	DP-CNN improves the	https://ieeexplore.
	Neural	Reliability and	leverages deep learning for	state-of-the-art method	ieee.org/documen
4.	Network	Security (QRS)	effective feature generation	by 12%	t/8009936
		2013 28th	This paper proposes personalized		
			defect prediction-building a		
		International	separate prediction model for each		
				In this experiment result	
		Automated		improves the F1-score by	
	Personalized	Software	1 * * * * * * * * * * * * * * * * * * *	*	https://iocovenloss
				0.01-0.06 compared to	https://ieeexplore.
_	defect	0	prediction to classify defects at the		ieee.org/documen
5.	prediction	(ASE)	file change level	classification	<u>t/6693087</u>
		2016			
		IEEE/ACM			
		38th			
	Automatically	International			
	Learning		In this paper, we leverage Doop		
	Semantic	Software	In this paper, we leverage Deep	In this name samentis	
			Belief Network (DBN) to	In this paper semantic	1 44 //* 1
	Features for	Engineering	automatically learn semantic	features improve WPDP	https://ieeexplore.
	Defect	(ICSE)	l .	on average by 14.7% in	ieee.org/abstract/
	Prediction		1 * 5	precision, 11.5% in	document/788691
6.			Syntax Trees (ASTs).	recall, and 14.2% in F1	<u>2</u>
			In this paper, we revisit two	we find that if we test	
			l e e	20% of all modules based	
	Revisiting		r	on the predicted fault	
	common bug	2010 IEEE	metrics (e.g., change history)	density, we would detect	
	prediction	International	outperform product metrics (e.g.,	74% of faults using	
	findings using	Conference on	LOC), 2) Package-level	file-level models and	https://ieeexplore.
	effort-aware		predictions outperform file-level	62% of faults using	ieee.org/documen
7.	models	Maintenance	predictions.	package-level models.	t/5609530
			This paper provides selected	we presented	
		In Acoustics,	* * *	experimental evidence	https://www.resea
		1	1 ^	that spectrogram	rchgate.net/public
	Recent	Signal		features of speech are	ation/261153438
	advances in	Processing	1 2	superior to MFCC with	Recent advances
	deep learning	(ICASSP),		DNN, in contrast to the	in deep learnin
			_	· · · · · · · · · · · · · · · · · · ·	
			1 2 2	earlier long-standing	g for speech res
0	research at	International	modeling, speech understanding,	practice with	earch at Microso
8.	Microsoft	Conference on,	and dialogue state estimation.	GMM-HMMs	<u>ft</u>

			<u> </u>	T	
		2013, pp.			
		8604–8608			
				Our results suggest that	
				code metrics, despite	
				widespread use in the	
				defect prediction	
				literature, are generally	
				less useful than process	
		2013 35th		metrics for prediction.	
		International		Second, we find that code	
	How, and why,	Conference on	In this paper we analyze the	metrics have high stasis;	
	process	Software	applicability and efficacy of	they don't change very	https://ieeexplore.
	metrics are	Engineering	process and code metrics from	much from release to	ieee.org/documen
9.	better	(ICSE)	several different perspectives.	release	<u>t/6606589</u>
				It can be concluded	
				that the Random Forest	
			We compared the classification	achieves increased	
		In International	results obtained from methods i.e.	classification	
		Journal of	Random Forest and Decision	performance and yields	https://www.resea
		Computer	Tree (J48). The classification	results that are accurate	rchgate.net/public
		Science Issues,	parameters consist of correctly	and precise in the cases	ation/259235118
	Random	Vol. 9, Issue 5,	classified instances, incorrectly	of large number of	Random Forests
	Forests and	No 3,	classified instances, F-Measure,	instances	and Decision Tr
10.	Decision Trees	September 2012	Precision, Accuracy and Recall.		<u>ees</u>
		Proceedings of		The values of sensitivity	
		3rd	we have developed a model based		
		International	on text mining techniques that will	low severity defects are	
		Conference on	be used to assign the severity level		
	Software	Reliability,	to each defect report based on the	75%, in contrast to its	
	defect	Infocom	classification of existing reports	values for high severity	
	prediction	Technologies	done using the machine learning	defects which is in the	https://ieeexplore.
		and	method namely, Radial Basis	range of 70% to 100% for	ieee.org/documen
11.	networks	Optimization	Function of neural network	most of the runs	<u>t/7014673</u>
		in International			
		Journal of			
		Emerging		It can be concluded	
		Trends &		that the Random Forest	
		Technology in		achieves increased	
		Computer		classification	https://www.resea
			, ,	performance and yields	rchgate.net/public
	A survey of	Volume 3, Issue	poses the dimensionality reduction	results that are accurate	ation/260755521_
	dimensionality		r	and precise in the cases	A_survey_of_dim
			1	of large number of	ensionality_reduc
12.		ember 2014.	81 1	instance	tion_techniques
	Dimensionalit		Using probabilistic estimates for	We show that perform-	https://www.resea
	-	International		ing KPCA and then	rchgate.net/public
				1 - 1	ation/221345784_
13.	generalization	Machine	propose a parameter choice	the projected data, a	Dimensionality r

		Learning,	procedure allowing us to prove	procedure known as ker-	eduction and ge
		_	r	r	neralization
				1 1 1	<u>neranzation</u>
		2007.		regression (KPCR), is	
				equivalent to spectral	
				cut-on regulariza- tion,	
				the regularization	
				parameter being ex- actly	
				the number of principal	
				components to keep.	
				We have analyzed the	
				number of citations that	
				the most relevant papers	
				in each section have	
		In International		received in the last	https://www.resea
		Journal of		decade (2003-2012). In	rchgate.net/public
	A Survey Of	Computer		Table I we show the	ation/276197488
	Dimensionalit	Science &	A different family of algorithms	number of citations	A Survey Of Di
	y Reduction	Engineering	poses the dimensionality reduction	summarized by large	mensionality Red
	And	Survey, Vol.3,	problem as one of projecting the	areas as well as their	uction And Clas
	Classification	No.3, June	original data onto a subspace with	share (%) for the different	sification Metho
14.	Methods	2012	some interesting properties	years	<u>ds</u>
	Kernel				https://www.resea
	Principal				rchgate.net/public
	Component				ation/229158312
	Analysis and		We show some experiment results		Kernel Principal
	its		_	We found that Gaussian	Component An
	Applications			kernel PCA-based ASMs	alysis and its A
	in Face		for pattern classification. We also	are promis-ing in	pplications in Fa
	Recognition		_	providing more	ceRecognition an
	_	Usa, 2011.	_	deformation patterns than	
15.		1 '	l ,	tradi-tional ASMs.	Models
	<u> </u>		A large number of theoretically		
			based measures has been proposed		
			to reduce an entire ROC curve to a		
			single quantitative inclex of		https://www.resea
			diagnostic accuracy; all of these		rchgate.net/public
	The Meaning		measures have been rooted in the		ation/16134792
	and Use of the		assumption that the functional		The Meaning an
	Area Under a		form of the ROC curve is the same		d Use of the Ar
	Receiver		as that implied by supposing that		ea Under a Rec
	Operating			To amplify the three-way	
				equivaLence between the	
16.				area under an ROC curve,	
10.	(1.00) Curve	<u>- </u>	Cuabbian	production and too carve,	<u>CC Curve</u>

DATASET DESCRIPTION

The five datasets used in this project were taken from NASA Promise Dataset Repository

(http://promise.site.uottawa.ca/SERepository/datasets-page.html) namely pc1, cm1, jm1, kc1, kc2 each have no miss values and 22 attributes that get from McCabe and Halstead features extractors.

Figure 2: Dataset characteristics

dataset	Language Used	Total instance	Defect ive instan ces	NonDe fective instanc es
PC1	С	1,109	77	1032
CM1	С	498	49	449
JM1	С	10,885	2106	8,779
KC1	C++	2,109	326	1783
KC2	C++	522	105	415

Table 1: Characteristics of Datasets

Since the data had more instances of non buggy modules than buggy, then to prevent biasing we did under sampling.

RESEARCH METHODOLOGY

The Tree Decision Separator or classifier is used to make the model learn from the test set and after that the model is tested in the training set and the action steps are calculated. However, having too many traits and circumstances can lead to a model overreacting. Therefore, we first reduced the size of the data into a set of 6 integrated features using 4 different techniques and then trained the model using the Tree Truth. Detailed comparisons are made based on performance metrics including accuracy, F1-Scores and Area Under the Receiver Operating Characteristics (ROC).

Figure3: Overview of SDP Process

The following are the algorithms used to reduce the size, as well as a brief description.

A. Artificial Neural Network (ANN)

Input nodes layer Output nodes layer Output y Input x3 Output y Links Links

Figure 4: ANN

This algorithm is somehow derived from the human brain or the human nervous system and uses a collection of hidden layers with different numbers of locations called neurons. Each neuron picks up inputs from a few or all of the neurons of the previous layer and processes the input using activated instruments and activation function. It then sends the output to multiple neurons of the next layer. Depending on the output and the cost function, the instruments are updated over and over again until the parameters fit exactly the model.

To train our model, we use 3 hidden layers with different numbers of neurons. Integrated features removed from the network and used for model training using the Decision Tree Separator or classifier.

B. Principal Component Analysis (PCA)

Figure5: PCA

PCA is a mathematical data analysis method that converts the first set of variables into a set of specific combinations, known as key components (PCs), with specific characteristics regarding variability. This maintains the size of the system while storing information on a flexible connection [17].

The PCA algorithm is used in such a way that it produces 6 new independent features that most accurately define database variability, without dependent variability. Since the final stage of each case can be considered when converting data into a subset, that is why it is an Unsupervised Model.

C. Linear Discriminant Analysis (LDA)

Figure6: LDA

In high-quality data, it is difficult to find similarities between different data points so the model is difficult to analyze. The LDA algorithm specifies down the data with the maximum size to the minimum size space provided by the divider to train the model. The LDA aims to increase the distance between the phase and reduce the distance within the phase by the size of the reduced area [15].

The LDA algorithm is used in such a way that it produces 6 new independent features that greatly differentiate the data classes, which are buggy and non-buggy. Since the extracted features are derived from the dependent variable dependence, this is why it is a supervised model.

D. Kernel Principal Component Analysis (KPCA)

Standard PCA only allows for a decrease in line size. However, if the data has complex structures that cannot be properly represented in a specific location, a standard PCA will not be very helpful. The Kernel PCA thus extends the standard key analysis (PCA) to the top feature space using the kernel algorithm. An accurate understanding of the Gaussian kernel PCA is that it uses distances between different training data points, such as the nearest neighbor k or meeting methods [19]. The Gaussian kernel PCA reveals more complex data structures than conventional PCA.

RBF. Gaussian Polynomial, Hyperbolic Tangent are some of Kernel's most popular works. We have used the Gaussian RBF kernel function to reduce the size of our data set

Decision Tree Algorithm

The Decision Tree algorithm, which is a supervised learning algorithm and works on the principles of entropy and information acquisition, has been used to classify. Data entry measures data pollution i.e., how the data set is disrupted.

The most critical aspect of the Decision Tree algorithm is the method of selecting the attribute used for each tree node, because there are certain features that separate the data completely from other attributes. The algorithm works on the goal of greed that is, it looks at a solution that seems to be the best at the moment without looking at the overall picture.

Figure8: Decision Tree for SDP

The Decision Tree algorithm uses Information Gain, which calculates the reduction of entropy or gain , to classify a set of data using a specific attribute.

The algorithm is advantageous as it requires minimal data purification and is not influenced by vendors and lost prices at a reasonable rate.

PERFORMANCE MEASURES

	Predicted buggy	Predicted clean
True Buggy	TP	FN
True Clean	FP	TN

Table 3: Confusion Matrix

A. Accuracy

This is the ratio between correctly predicted instances of the test set to the total number of instances of the test set.

Accuracy = (TP + TN) / (TP + FN + FP + TN)

B. F1 scores

In some cases, the confusion of accuracy can lead to misinterpretation of the results, which is why we take some performance metrics called F1 points. The F1 score is a harmonic definition of Precision and Recall, also calculated from the confusion matrix.

Precision is the ratio of actual correctly predicted positive (buggy) instances to the total number of predicted positive instances (Precision = TP /(TP + FP).

Recall is also known as Sensitivity. Recall is the ratio of actual correctly predicted positive (buggy) instances to the total number of actual positive instances (Recall = TP /(TP + FN).) Taking the harmonic mean,

we get F1 score = (2*Recall*Precision)/(Recall + Precision)

C. Area Under the ROC Curve (AUC)

The performance of the predicted models was assessed by setting the Receiver Operating Characteristics (ROC) curve and the area below the curve. The ROC curve, defined as a sensitivity strategy in y-coordinate compared to its 1st specification (defined as estimating of classified error classes in the number of actually classified classes) in x link, operates a method to assess the quality or performance of predicted models [19].

VALIDATION METHOD

We used to hold the cross verification method to verify the data set. If all data sets used have too many scenarios, the training set and the test set are divided into a 3: 1 ratio.

The training set was used to differentiate training and the model was validated in the test set.

DATA SET	ANN	PCA	LDA	KPC A
PC1	0.95	0.95	0.95	0.95
СМ1	0.92	0.92	0.92	0.93
KC1	0.86	0.89	0.88	0.88
KC2	0.90	0.86	0.87	0.89
JM1	0.86	0.85	0.84	0.84

Table 2: F1 Scores of each technique

RESULT

We got the confusion matrix by applying various techniques . Accuracy and F1 score obtained are given below in the table :

	_			_
DATA SET	ANN	PCA	LDA	KPC A
PC1	0.90	0.920	0.910	0.92
CM1	0.86	0.864	0.864	0.872
KC1	0.78	0.818	0.812	0.81
KC2	0.84	0.778	0.793	0.81
JM1	0.78	0.754	0.748	0.75

DATA SET	ANN	PCA	LDA	KPCA
PC1	0.50	0.70	0.62	0.70
СМ1	0.70	0.69	0.75	0.58
KC1	0.62	0.63	0.63	0.62
KC2	0.73	0.61	0.65	0.62
JM1	0.65	0.59	0.57	0.59

Table 3: ROC Curve Area..

Table 1: Accuracy of each technique

LDA: ROC of Different Datasets

PCA: ROC of different datasets

ROC curve (area = 0.69)

0.8

0.6

Dataset 1: cm1

Dataset 1: cm1

Dataset 2: jm1

Dataset 2: jm1

Dataset 3: kc1

Dataset 3: kc1

Dataset 4: kc2

Dataset 4: kc2

Dataset 5 : pc1

Dataset 5 : pc1

ANN: ROC of different dataset

KPCA: ROC of different dataset

Dataset 1: cm1

Dataset 1: cm1

Dataset 3: kc1

Dataset 3: kc1

Dataset 4: kc2

Dataset 4: kc2

Dataset 5 : pc1

Dataset 5 : pc1

THREATS OF VALIDITY

In this section, we discuss the various threats to the validity of our comparative study.

Construct Validity

We estimate the performance of the model using the hold-out cross-validation method. Training and test sets are constructed randomly so they may overfit the data. Using other performance estimation techniques might give different results. Apart from the considered attributes, there might be other factors affecting the presence of defects.

Internal validity

The data set used contains information regarding features determined by McCabe and Halstead feature extractors, which are known to have certain limitations.

External Validity

We used only 5 open-source data sets taken from NASA Promise Repository and so our results may not generalize to all software. Replication of this a comparative study taking into account other datasets may produce more generalized results.

Conclusion Validity

The datasets being used have a class imbalance problem. So, we used AUC to evaluate the performance of our model but it can still be partial for non-buggy instances

CONCLUSION

In this paper, we proposed various size reduction strategies and compared the results obtained on the basis of the accuracy of the forecast, the F1 points and the area below the curve. Artificial Neural Networks (ANN) and KPCA performed well in comparison to other models in terms of accuracy.

FUTURE SCOPE

In future,we would like to improve the neural network model . We can improve it by changing its various parameters like number of hidden layers , neurons in each layer , optimizers and the cost function. We will also try other models like Naive Bayes , Kernel Support Vector Machine, Random Forest and compare its results with these models.

APPENDICES

Appendix 1

S.No.	Metric	Description
1.	Process Metrics	It is used for improving software development and maintenance.
2.	Line of code(LOC)	It is a software metric used to measure the size of a computer program by counting the number of lines in the text of the program's source code.
3.	Number of changes	Number of builds in which a specific component has changed
4.	Number of Instances	Number of features which are extracted from the software archive
5.	Number of principal component	Number of those variables which are constructed as linear combinations or explain maximal amount of variance that is to say the lines that capture most information of the data.
6.	Number of bugs	Number of defects or we can say defect prone-modules in software system

Appendix 2

S.No.	ALGORITHM	Description
1.	ANN (Artificial Neural Network)	It is a computational and mathematical model that is inspired by the biological nervous system. It uses the processing of the brain as a basis to develop algorithms that can be used to model complex patterns and prediction problems.
2.	PCA (Principal Component Analysis)	PCA is a mathematical data analysis method that converts the first set of variables into a set of specific combinations, known as key components (PCs)with specific characteristics regarding variability. This maintains the size of the system while storing information on a flexible connection
3.	LDA (Linear Discriminant Analysis)	The LDA algorithm is used in such a way that it produces 6 new independent features that greatly differentiate the data classes, which are buggy and non-buggy.
4.	KPCA (Kernel Principal Component Analysis)	It is a non-linear dimensionality reduction technique and also extension of PCA Algorithm - which is a linear dimensionality reduction technique -using kernel methods.

REFERENCES

1. X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, "Deep learning for just-in-time defect prediction," in QRS'15: Proc. of the International Conference on Software Quality, Reliability and Security, 2015.

Deep learning for just-in-time defect prediction

- 2. Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi, "A large-scale empirical study of just-in-time quality assurance," TSE, vol. 39, no. 6, pp. 757–773, 2013. A large-scale empirical study of just-in-time quality assurance
- 3. T. Jiang, L. Tan, and S. Kim, "Personalized defect prediction," in ASE, 2013, pp. 279–28. 4. M. Tan, L. Tan, S. Dara, and C. Mayeux, "Online defect

prediction for imbalanced data," in ICSE'15, pages 99–108. <u>Personalized</u> defect prediction

- 4. Praman Deep Singh, Anuradha Chug, "
 Software defect prediction analysis using machine learning algorithms" in 2017 7th International Conference on Cloud Computing, Data Science & Engineering. Confluence. Software defect prediction analysis using machine learning algorithms
- 5. S. Wang, T. Liu, and L. Tan, "Automatically learning semantic features for defect prediction," in ICSE'16: Proc. of the International Conference on Software Engineering, 2016.

Automatically Learning Semantic Features for Defect Prediction

- 6. Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Hassan, "Revisiting common bug prediction findings using effort-aware models," in ICSM, 2010, pp. 1–10.

 Revisiting common bug prediction findings using effort-aware models
- 7. Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu, "Software Defect Prediction via Convolutional Neural Network". Software Defect Prediction via Convolutional Neural Network
- 8. P. D. Singh and A. Chugh, "Software Defect Prediction Analysis Using Machine Learning Algorithms," in International Conference on Cloud Computing, Data Science & Engineering Confluence, 2017. Software Defect Prediction Analysis

Using Machine Learning Algorithms

- 9. G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504–507, 2006. Reducing the dimensionality of data with neural networks
- 10. G. E. Hinton, "Learning multiple layers of representation," Trends in cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007. Learning multiple layers of representation
- 11. L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams et al., "Recent advances in deep learning for speech research at microsoft," in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp. 8604–8608.

Recent advances in deep learning for speech research at microsoft,

- 12. F. Rahman and P. Devanbu, "How, and why, process metrics are better," in ICSE, 2013, pp. 432–441. How, and why, process metrics are better
- 13. J. Ali, R. Khan, N. Ahmad, I. Maqsood, "Random Forests and Decision Trees," in International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 . Random Forests and Decision Trees,
- 14. R. Jindal, R. Malhotra, A. Jain, "Software Defect Prediction Using Neural Networks," IEEE Conference 2014.

<u>Software Defect Prediction Using Neural</u> Networks

- 15. V. A. Kumar, N. Elavarasan, "A Survey on Dimensionality Reduction Technique," in International Journal of Emerging Trends & Technology in Computer Science, Volume 3, Issue 6, November-December 2014. A Survey on Dimensionality Reduction Technique
- 16. S. Mosci, L. Rosasco, A. Verri, "Dimensionality Reduction and Generalization," in the 24th International Conference on Machine Learning, Corvallis, OR, 2007. <u>Dimensionality</u> Reduction and Generalization
- 17. N. Varghese, V. Verghese, Gayathri. P and Dr. N. Jaisankar, "A Survey Of Dimensionality Reduction And Classification Methods," in International Journal of Computer Science & Engineering Survey, Vol.3, No.3, June 2012. A Survey Of Dimensionality Reduction And Classification Methods
- 18. Q.Wang, "Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models," Rpi, Troy, Ny, Usa, 2011. Copyright 2011. Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models
- 19. J. Hanley, BJ. McNeil, "The meaning and use of the area under a Receiver Operating Characteristic ROC curve", Radiology, 143, 1982, pp. 29-36. The meaning and use of the area under a Receiver Operating Characteristic ROC curve