ARCH and GARCH Models

Advanced Information on the Bank of Sweden Prize in Economic Sciences to Robert F. Engle in Memory of Alfred Nobel, October 8, 2003. Available at: http://www.nobel.se/economics/laureates/2003/ecoadv.pdf

Andersen, T.G., T. Bollerslev, P. Christoffersen and F.X. Diebold (2006), "Volatility and Correlation Forecasting," in *Handbook of Economic Forecasting*, (eds. G. Elliott, A. Timmermann, and C.W.J. Granger). Amsterdam: North-Holland.

Andersen, T.G., T. Bollerslev, P. Christoffersen and F.X. Diebold (201?). *Volatility and Correlation: Practical Methods for Financial Applications*. In progress.

Bollerslev, T., R.Y. Chou, and K.F. Kroner (1992), "ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence," *Journal of Econometrics*, Vol.52, p.5-59.

Bollerslev, T., R.F. Engle, and D.B. Nelson (1994), "ARCH Models," in *Handbook of Econometrics, Vol.IV*, (eds. R.F. Engle and D. McFadden). Amsterdam: North-Holland.

Engle, R.F. (2004), "Risk and Volatility: Econometric Models and Financial Practice," *American Economic Review*, Vol.94, p.405-420.

ARCH and GARCH Models

- Basic structures and properties
 - The ARCH(q) and GARCH(p,q) models
 - GARCH(1,1) variance prediction
 - ARMA representation in squares
 - Maximum likelihood estimation and testing
- Variations on the basic GARCH model
 - Asymmetric response and the leverage effect
 - ARCH-M and time-varying risk premia
 - Fat-tailed conditional densities
 - Integrated volatility
 - Long-memory
 - Component GARCH
 - Regime switching
 - Other univariate GARCH models
- Multivariate GARCH models
 - Vech and Diagonal GARCH
 - Factor GARCH models
 - Constant conditional correlation models
 - Dynamic conditional correlation models
 - Asymmetries in correlations
 - Copulas
 - Structural GARCH

Basic Structure and Properties

• Standard time series models:

$$\begin{aligned} y_t &= E(y_t \mid \Omega_{t-1}) + \epsilon_t \\ E(y_t \mid \Omega_{t-1}) &= \mu_t(\theta) \end{aligned}$$

$$Var(y_t \mid \Omega_{t-1}) = E(\epsilon_t^2 \mid \Omega_{t-1}) = \sigma^2$$

- ARMA(p,q) model:

$$\mu_{t}(\theta) = \phi_{0} + \phi_{1}y_{t-1} + ... + \phi_{p}y_{t-p} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}$$

- Conditional mean: varies with Ω_{t-1}
- Conditional variance: constant
- k-step-ahead forecasts: generally depends non-trivially on $\Omega_{\text{t-1}}$
- k-step-ahead forecast error variance: depends only on k, not Ω_{t-1}
- Unconditional mean: constant
- Unconditional variance: constant

• AutoRegressive Conditional Heteroskedasticity - ARCH

Engle (1982, Econometrica)

$$y_{t} = E(y_{t} | \Omega_{t-1}) + \varepsilon_{t}$$

$$E(y_{t} | \Omega_{t-1}) = \mu_{t}(\theta)$$

$$Var(y_{t} | \Omega_{t-1}) = E(\varepsilon_{t}^{2} | \Omega_{t-1}) = h_{t}(\theta)$$

- Conditional mean: varies with Ω_{t-1}
- Conditional variance: varies with Ω_{t-1}
- k-step-ahead forecasts: generally depends on Ω_{t-1}
- k-step-ahead forecast error variance: generally depends on $\Omega_{\text{t-1}}$
- Unconditional mean: constant
- Unconditional variance: constant

• How to parameterize $E(\varepsilon_t^2 \mid \Omega_{t-1}) = h_t(\theta)$?

• ARCH(q) process:

$$h_t = \omega + \alpha_1 \varepsilon_{t-1}^2 + ... + \alpha_q \varepsilon_{t-q}^2$$

• AR(1)-ARCH(1) process:

$$y_{t} = \varphi y_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} \sim N(0, h_{t})$$

$$h_{t} = \omega + \alpha \varepsilon_{t-1}^{2}$$

- Conditional mean: $E(y_t | \Omega_{t-1}) =$
- Conditional variance: $E([y_t E(y_t | \Omega_{t-1})]^2 | \Omega_{t-1}) =$
- Unconditional mean: $E(y_t) =$
- Unconditional variance: $E(y_t E(y_t))^2 =$

- Why ARCH(q)?
 - Past residuals: $\mathbf{\epsilon}_{t-1}$, $\mathbf{\epsilon}_{t-2}$, ... , $\mathbf{\epsilon}_{1}$
 - Historical sample variance as of time t:

$$\frac{1}{t-1} \left[\epsilon_{t-1}^2 + \epsilon_{t-2}^2 + ... + \epsilon_1^2 \right]$$

- Only q most recent observations:

$$\frac{1}{q} \left[\varepsilon_{t-1}^2 + \varepsilon_{t-2}^2 + \dots + \varepsilon_{t-q}^2 \right]$$

- More weight to most recent observations:

$$\alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \dots + \alpha_q \varepsilon_{t-q}^2$$

- ARCH(q):

$$\omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \dots + \alpha_q \varepsilon_{t-q}^2$$

- Large q and too many "alpha's". What to do?

• GARCH(p,q) process:

$$h_{t} = \omega + \alpha_{1} \varepsilon_{t-1}^{2} + ... + \alpha_{q} \varepsilon_{t-q}^{2} + \beta_{1} h_{t-1} + ... + \beta_{p} h_{t-p}$$

• The simple GARCH(1,1) model often works very well:

$$\varepsilon_{t} \mid \Omega_{t-1} \sim N(0, h_{t})$$

$$h_t = \omega + \alpha \epsilon_{t-1}^2 + \beta h_{t-1}$$

$$-\omega > 0, \alpha > 0, \beta > 0$$

- Conditional variance positively serially correlated
- Volatility clustering in financial markets

• Homoskedastic and normal GARCH(1,1) confidence bands for AR(4) quarterly U.S. inflation rate forecasts:

Fig. 3. 95% confidence intervals for OLS.

Fig. 4. 95% confidence intervals for GARCH(1,1).

Bollerslev (1986, Journal of Econometrics)

Variance Prediction

- Future (predicted) variances depend (non-trivially) on Ω_t
 - GARCH(1,1):

$$h_t = \omega + \alpha \epsilon_{t-1}^2 + \beta h_{t-1}$$

- 1-step-ahead predictions:

$$h_{t+1|t} = \omega + \alpha \varepsilon_t^2 + \beta h_t$$

- k-step-ahead predictions:

$$h_{t+k|t} = \omega + \alpha h_{t+k-1|t} + \beta h_{t+k-1|t}$$

- Long-run predictions:

$$\lim_{k\to\infty}h_{t+k|t} = \frac{\omega}{1-\alpha-\beta} = \overline{\omega}$$

• GARCH(1,1) forecasts of Dow Jones Industrial Average:

35 30 -25 -20 -10 -5 -23/08/88 24/07/90 23/06/92 24/05/94 23/04/96 24/03/98 22/02/00 Date

Figure 2. Returns on the Dow Jones Industrial Index.

Figure 4. Estimated conditional volatility using a GARCH(1,1) model.

Figure 6. Forecasts of daily return volatility using the GARCH(1,1) model.

Engle and Patton (2001, Quantitative Finance)

• k-period returns:

$$r_{t+k}(k) = r_{t+k} + r_{t+k-1} + ... + r_{t+1}$$

• k-period return variance:

$$Var(r_{t+k}(k) | \Omega_t) \approx h_{t+k|t} + h_{t+k-1|t} + ... + h_{t+1|t}$$

• Dow Jones Industrial Average:

Figure 7. Volatilities at different horizons from GARCH(1,1).

Engle and Patton (2001, Quantitative Finance)

• Scaling:

$$Var(r_{t+k}(k)) \approx k \times Var(r_{t+1} \mid \Omega_t) = k \times h_{t+1|t}$$

- Easy to calculate
- Correct on average
- Exaggerates volatility-of-volatility

• Simulated GARCH(1,1):

10-Day Volatility, Scaled and Actual

Diebold, Schuerman, Hickman and Inoue (1998, Risk)

ARMA Representation in Squares

• ARCH(1) implies an AR(1) representation for y_t^2 :

$$y_t^2 = \omega + \alpha y_{t-1}^2 + v_t$$

$$v_t = y_t^2 - h_t$$

• GARCH(1,1) implies an ARMA(1,1) representation for \mathbf{r}_t^2 :

$$y_t^2 = \omega + (\alpha + \beta)y_{t-1}^2 - \beta v_{t-1} + v_t$$

 $v_t = y_t^2 - h_t$

• Important result - y_t^2 is a *noisy* indicator for h_t :

$$y_t^2 = \left(\omega + (\alpha + \beta)y_{t-1}^2 - \beta v_{t-1}\right) + v_t$$

$$= h_t + v_t$$

GARCH(1,1) Realization

Conditional Variance

Squared GARCH(1,1) Realization

Maximum Likelihood Estimation and Testing

• Conditional normal GARCH process:

$$y_t \mid \Omega_{t-1} \sim N(\mu_t(\theta), h_t(\theta))$$

• Conditional densities:

$$f(y_t \mid \Omega_{t-1}; \theta) = \frac{1}{\sqrt{2\pi}} h_t(\theta)^{-1/2} exp \left(-\frac{1}{2} \frac{(y_t - \mu_t(\theta))^2}{h_t(\theta)} \right)$$

• Prediction error decomposition:

$$f(y_T, y_{T-1}, ..., y_1; \theta) =$$

$$f(y_T | \Omega_{T-1}; \theta) \times f(y_{T-1} | \Omega_{T-2}; \theta) \times ... \times f(y_1 | \Omega_0; \theta)$$

• Log-likelihood function:

$$logL(y_{T}, ..., y_{1}; \theta) = logf(y_{T}, ..., y_{1}; \theta)$$

$$= -\frac{T}{2} log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} log h_{t}(\theta) - \frac{1}{2} \sum_{t=1}^{T} \frac{(y_{t} - \mu_{t}(\theta))^{2}}{h_{t}(\theta)}$$

- Non-linear function in θ
 - Numerical optimization techniques
- Testing and model diagnostics
 - Likelihood ratio test:

$$2 \times \left(logL(y_T, ..., y_1; \hat{\theta}_U) - logL(y_T, ..., y_1; \hat{\theta}_R) \right) \sim \chi^2$$

- Autocorrelations of standardized residuals:

$$\frac{\epsilon_t(\hat{\theta})}{h_t(\hat{\theta})^{1/2}} \qquad \frac{\epsilon_t^2(\hat{\theta})}{h_t(\hat{\theta})} \qquad \frac{\left|\epsilon_t(\hat{\theta})\right|}{h_t(\hat{\theta})^{1/2}}$$

- Many different software packages available
 - EViews

• Daily S&P500 returns:

• Autocorrelations:

Raw Returns	Raw	Returns	
-------------	-----	---------	--

Sample: 6/05/1990 1/03/2003 Included observations: 3284							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		2 3 4 5 6 7 8 9	-0.026 -0.034 -0.002 -0.027 -0.029 -0.029 -0.009 0.016	-0.026 -0.034 -0.002 -0.029 -0.030 -0.030 -0.012 0.013	0.2075 2.3678 6.2702 6.2829 8.7126 11.467 14.229 14.482 15.367 16.041	0.306 0.099 0.179 0.121 0.075 0.047 0.070 0.081	

Squared Returns

Sample: 6/05/1990 1/03/2003 Included observations: 3284								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
		3 4 5 6 7 8	0.197 0.190 0.140 0.189 0.139 0.150 0.146 0.112	0.161 0.132 0.063 0.118 0.049 0.063 0.054 0.019	137.54 264.52 383.04 447.62 565.24 629.02 702.68 773.00 814.13 878.60	0.000 0.000 0.000 0.000 0.000 0.000 0.000		

• GARCH(1,1) estimates:

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 15 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.		
С	0.050394	0.013766	3.660814	0.0003		
Variance Equation						
C ARCH(1) GARCH(1)	0.005686 0.061016 0.935759	0.002064 0.009813 0.009149	2.754869 6.217920 102.2819	0.0059 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000418 -0.001333 1.054366 3646.337 -4380.318	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		0.028847 1.053664 2.670108 2.677534 1.983258		

• Residual Diagnostics:

Correlogram of GARCH Standardized Residuals

Sample: 6/05/1990 1/03/2003 Included observations: 3284						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		1 0.040 2 -0.009 3 -0.045 4 -0.017 5 -0.029 6 -0.012 7 -0.016 8 -0.011 9 0.002 10 0.016	-0.011 -0.044 -0.013 -0.029 -0.012 -0.017 -0.013 0.000	5.5249 12.152 13.072 15.901 16.338 17.153 17.536 17.543	0.063 0.007 0.011 0.007 0.012 0.016 0.025 0.041	

Correlogram of GARCH Standardized Residuals Squared

Sample: 6/05/1990 1/03/2003 Included observations: 3284							
Autocorrelation	Partial Correlation	,	4C	PAC	Q-Stat	Prob	
		2 (3 (4 4 5 (6 (7 4 8 4 9 4	0.034 0.002 0.001 0.005 0.002 0.015 0.001	0.034 0.002 -0.002 0.004 0.002 -0.015 -0.001	0.0597 3.8383 3.8502 3.8543 3.9215 3.9386 4.6452 4.6483 4.8291 4.8459	0.147 0.278 0.426 0.561 0.685 0.703 0.794 0.849	

• GARCH(1,1) forecasts:

• Higher order GARCH models:

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 17 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.050118	0.013833	3.622982	0.0003
	Variance	Equation		
C ARCH(1) ARCH(2) GARCH(1)	0.005973 0.052668 0.010486 0.933460	0.002192 0.025417 0.027597 0.010370	2.724882 2.072178 0.379985 90.01703	0.0064 0.0382 0.7040 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000408 -0.001628 1.054521 3646.299 -4380.159	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		0.028847 1.053664 2.670621 2.679903 1.983279

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 70 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.050300	0.013791	3.647391	0.0003
	Variance	Equation		
C ARCH(1) GARCH(1) GARCH(2)	0.005459 0.058316 0.990786 -0.052196	0.002801 0.025484 0.431960 0.407329	1.948877 2.288355 2.293697 -0.128143	0.0513 0.0221 0.0218 0.8980
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000415 -0.001635 1.054525 3646.324 -4380.267	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		0.028847 1.053664 2.670686 2.679969 1.983265

Asymmetric Response and the Leverage Effect

• Standard GARCH model:

$$h_{t} = \omega + \alpha r_{t-1}^{2} + \beta h_{t-1}$$

Volatility respond symmetrically to past returns

• News impact curve:

Engle and Ng (1993, Journal of Finance)

• Asymmetric response I - GJR or TGARCH models:

Glosten, Jagannathan and Runkle (1993, *Journal of Finance*) Zakoian (1994, *Journal of Economic Dynamics and Control*)

$$h_{t} = \omega + \alpha r_{t-1}^{2} + \gamma r_{t-1}^{2} D_{t-1} + \beta h_{t-1}$$

$$D_{t} = \begin{cases} 1 & \text{if } r_{t} < 0 \\ 0 & \text{otherwise} \end{cases}$$

- Positive return (good news): α
- Negative return (bad news): $\alpha + \gamma$
- Empirically: $\gamma > 0$
 - "Leverage" effect

• Asymmetric response II - EGARCH model:

Nelson (1991, Econometrica)

$$\ln(h_t) = \omega + \alpha \left| \frac{r_{t-1}}{h_{t-1}^{1/2}} \right| + \gamma \frac{r_{t-1}}{h_{t-1}^{1/2}} + \beta \ln(h_{t-1})$$

- Like a GARCH model in logs
- Log specification ensures positivity of the variance
- Complicates forecasts of h_{t+k}
- Volatility driven by both size and sign of shocks
- "Leverage" effect when $\gamma < 0$

• Daily SP500 returns:

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 18 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.		
С	0.027738	0.013508	2.053491	0.0400		
Variance Equation						
C ARCH(1) (RESID<0)*ARCH(1) GARCH(1)	0.011914 0.007538 0.113922 0.924656	0.002736 0.010296 0.019805 0.010713	4.354824 0.732140 5.752311 86.31432	0.0000 0.4641 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000001 -0.001221 1.054307 3644.817 -4337.787	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		0.028847 1.053664 2.644816 2.654098 1.984085		

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 21 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.023302	0.013840	1.683632	0.0923
	Variance	Equation		
C RES /SQR[GARCH](1 RES/SQR[GARCH](1) EGARCH(1)	-0.096127 0.121627 -0.093223 0.981289	0.015431 0.019525 0.013756 0.003676	-6.229354 6.229333 -6.776698 266.9692	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000028 -0.001248 1.054321 3644.914 -4324.177	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		0.028847 1.053664 2.636527 2.645810 1.984032

ARCH-M and Time-Varying Risk Premia

Engle, Lilien and Robins (1997, Econometrica)

• GARCH-in-Mean, or GARCH-M, model:

$$r_t = x_t'b + \delta h_t + \varepsilon_t$$

$$\varepsilon_{t} \mid \Omega_{t-1} \sim N(0, h_{t})$$

- Information matrix not block-diagonal
- Risk-return tradeoff
- Time-varying risk premium
- Other functional forms: $\delta \cdot f(h_t)$

• Daily SP500 returns:

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 14 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.	
GARCH	0.037345	0.024269	1.538758	0.1239	
C	0.025856	0.021404	1.207990	0.2271	
Variance Equation					
C	0.006035	0.002100	2.874151	0.0041	
ARCH(1)	0.062866	0.010102	6.222943	0.0000	
GARCH(1)	0.933578	0.009333	100.0313	0.0000	

Dependent Variable: SP500_RETURN Method: ML - ARCH (Marquardt)

Sample(adjusted): 6/05/1990 1/03/2003

Included observations: 3284 after adjusting endpoints

Convergence achieved after 15 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.	
SQR(GARCH)	0.055272	0.050604	1.092245	0.2747	
C	0.008235	0.041430	0.198781	0.8424	
Variance Equation					
C	0.005946	0.002079	2.860298	0.0042	
ARCH(1)	0.062183	0.010015	6.209229	0.0000	
GARCH(1)	0.934301	0.009264	100.8485	0.0000	

Fat-tailed Conditional Densities

• Standard GARCH models assume:

$$r_t \mid \Omega_{t-1} \sim N(0, h_t)$$

- If the model is correctly specified: $\frac{\mathbf{r}_t}{\sqrt{\hat{\mathbf{h}}_t}} \sim N(0,1)$
- In practice: $\frac{r_t}{\sqrt{\hat{h}_t}}$ ~ fat tailed
- GARCH(1,1) standardized residuals for daily SP500 returns:

Series: STD_RES Sample 6/05/1990 1/03/2003 Observations 3284					
Mean	-0.029353				
Median	-0.020933				
Maximum	4.104471				
Minimum	-6.867822				
Std. Dev.	1.000339				
Skewness	-0.392853				
Kurtosis	5.092364				
Jarque-Bera	683.5266				
Probability	0.000000				

- Two approaches for dealing with this problem
 - Robust inference
 - Fat tailed conditional distributions
 Parametric
 Non-Parametric
- Robust inference

Bollerslev and Wooldridge (1992, Econometric Reviews)

- "Sandwich form" of the covariance matrix
- Daily SP500 GARCH(1,1) estimates and standard errors:

Bollerslev-Wooldrige robust standard errors & covariance Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.			
С	0.050394	0.013766	3.660814	0.0003			
Variance Equation							
C ARCH(1) GARCH(1)	0.005686 0.061016 0.935759	0.002064 0.009813 0.009149	2.754869 6.217920 102.2819	0.0059 0.0000 0.0000			
Variance backcast: ON							
	Coefficient	Std. Error	z-Statistic	Prob.			
С	0.050394	0.014246	3.537407	0.0004			
Variance Equation							
C ARCH(1) GARCH(1)	0.005686 0.061016 0.935759	0.001240 0.004967 0.005223	4.586609 12.28500 179.1672	0.0000 0.0000 0.0000			

- Fat tailed conditional distributions
 - Important for VaR (quantile) predictions
- Parametric
 - GARCH-t

Bollerslev (1987, Review of Economics and Statistics)

$$r_t h_t^{-1/2} \stackrel{iid}{\sim} t_v \quad instead \ of \quad r_t h_t^{-1/2} \stackrel{iid}{\sim} N(0,1)$$

- GARCH-GED

Nelson (1991, Econometrica)

$$r_t h_t^{-1/2} \sim GED$$
 instead of $r_t h_t^{-1/2} \sim N(0,1)$

- Non Parametric
 - Semiparametric GARCH

Engle and Gonzales-Rivera (1991, J. of Business and Economic Statistics)

- Semi Non Parametric (SNP) Density Estimation

Gallant and Tauchen (1989, *Econometrica*) Gallant, Hsieh and Tauchen (1991, *Proceedings*)

Volatility clustering produces unconditional fat tails

$$r_t \mid \Omega_{t-1} \sim N(0, h_t) \rightarrow r_t \sim \text{fat tailed distribution}$$

• Convergence to normality under temporal aggregation

$$\begin{aligned} r_t \mid \Omega_{t-1} &\sim N(0, h_t) &\Rightarrow \\ r_t(k) &= r_t + r_{t-1} + ... + r_{t-k+1} &\sim N(0, Var_k) & \text{for large } k \end{aligned}$$

• Asymmetry in distributions

$$r_{t} \mid \Omega_{t-1} \sim N(0, h_{t}) \Rightarrow$$

$$r_{t}(k) \sim \text{not necessarily symmetric}$$

Engle (2004, Am. Eco. Rev.)

Integrated Volatility

Engle and Bollerslev (1986, *Econometric Reviews*) Bollerslev and Engle (1993, *Econometrica*)

- "Integration in variance"
 - Like a "unit root"
- For the GARCH(1,1) model this occurs when: $\alpha + \beta = 1$
 - Empirically: $\hat{\alpha} + \hat{\beta} \approx 1$
- Daily SP500 GARCH(1,1) estimates:

Convergence achieved after 15 iterations Bollerslev-Wooldrige robust standard errors & covariance Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.			
С	0.050394	0.013766	3.660814	0.0003			
Variance Equation							
C ARCH(1) GARCH(1)	0.005686 0.061016 0.935759	0.002064 0.009813 0.009149	2.754869 6.217920 102.2819	0.0059 0.0000 0.0000			

• The IGARCH model imposes: $\alpha + \beta = 1$

- Features of the IGARCH model:
 - Corresponds to EWMA (RiskMetric) with $\omega = 0$
 - Squared process is ARIMA but strictly stationary
 Nelson (1990, Econometric Theory)
 - Likelihood-based inference may proceed in standard fashion
 Lumsdaine (1996, Econometrica)
 Lee and Hansen (1994, Econometric Theory)
 - Continuous-record, or fill-in, asymptotics "justifies" IGARCH
 Nelson (1990, 1992, J. of Econometrics)
 Nelson and Foster (1994, Econometrica)
- Problems with IGARCH as a model:
 - Infinite dependence on initial conditions
 - Unconditional variance doesn't exist
- Maybe dominant root is close to, but less than, unity
 - Maybe long-memory!

Long Memory

• ARFIMA model:

$$(1-L)^{d} \Phi(L) y_{t} = \Theta(L) \varepsilon_{t}$$

$$(1-L)^{d} = 1 - dL + \frac{d(d-1)}{2!}L^{2} - \frac{d(d-1)(d-2)}{3!}L^{3} + \dots$$

- d=0: ARMA model
- d=1: Unit root
- 0<d<1: Fractionally integrated
- Autocorrelations:
 - d=0: Fast exponential decay
 - d=1: Infinite persistence
 - 0<d< $\frac{1}{2}$: Eventual but slow hyperbolic decay
- ullet Can do the same for absolute or squared returns: $|{f r}_t|$, ${f r}_t^2$

• Daily S&P returns 1928-1991:

Ding, Granger and Engle (1993, J. of Empirical Finance)

FIGARCH and FIEGARCH models

Baillie, Bollerslev and Mikkelsen (1996, *J. of Econometrics*) Bollerslev and Mikkelsen (1996, *J. of Econometrics*)

$$-$$
 GARCH(1,1) \sim ARMA(1,1)

$$r_t^2 = \omega + (\alpha + \beta)r_{t-1}^2 - \beta v_{t-1} + v_t$$

- FIGARCH(0,d,1)

$$(1 - L)^d r_t^2 = \omega - \beta v_{t-1} + v_t$$

• FIGARCH(0,d,1):

$$(1 - L)^d r_t^2 = \omega - \beta v_{t-1} + v_t$$

$$h_{t} = \omega (1 - \beta)^{-1} + [1 - (1 - \beta L)^{-1} (1 - L)^{d}] r_{t}^{2}$$

$$= \omega (1 - \beta)^{-1} + \sum_{k=1}^{\infty} \lambda_{k} r_{t-k}^{2}$$

$$\lambda_{k} = (1 - \beta - (1 - d)k^{-1})\Gamma(k + d - 1)\Gamma(k)^{-1}\Gamma(d)^{-1}$$

- By Stirling's Formula for large k

$$\lambda_k \sim k^{d-1}$$

- Typically
$$\hat{d} \approx 0.35 - 0.45$$

• FIEGARCH:

$$(1 - L)^d \log(h_t) = \omega + \alpha \left| \frac{r_{t-1}}{h_{t-1}^{1/2}} \right| + \gamma \frac{r_{t-1}}{h_{t-1}^{1/2}}$$

Component GARCH

Engle and Lee (1999, Festschrift for C.W.J. Granger)

• Standard GARCH(1,1) model:

$$(h_t - \overline{\omega}) = \alpha (r_{t-1}^2 - \overline{\omega}) + \beta (h_{t-1} - \overline{\omega})$$

- long-run volatility:
$$\overline{\omega} = \frac{\omega}{1 - \alpha - \beta}$$

• Component GARCH:

$$(h_t - q_t) = \alpha (r_{t-1}^2 - q_{t-1}) + \beta (h_{t-1} - q_{t-1})$$

– long-run volatility:

$$q_{t} = \omega + \rho (q_{t-1} - \omega) + \varphi (r_{t-1}^{2} - h_{t-1})$$

- Transitory dynamics governed by: $\alpha+\beta$
- Persistent dynamics governed by: ρ
- Equivalent to non-linearly restricted GARCH(2,2)
- Looks "like" long-memory

Andersen and Bollerslev (1997, *J. of Finance*) Gallant, Hsu and Tauchen (1999, *Rev. Econ. Stat.*)

Regime Switching

Hamilton (1989, Econometrica)

- Markov-switching model:
 - $-\{s_t\}_{t=1}^T$ a two-state first-order Markov process with transition probabilities:

$$\mathbf{M} = \begin{pmatrix} \mathbf{p}_{HH} & \mathbf{p}_{HL} \\ \mathbf{p}_{LH} & \mathbf{p}_{LL} \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{HH} & \mathbf{1} - \mathbf{p}_{HH} \\ \mathbf{1} - \mathbf{p}_{LL} & \mathbf{p}_{LL} \end{pmatrix}$$

– Conditional distribution:

$$f(r_t | s_t; \theta) = \frac{1}{\sqrt{2\pi} \sigma_{s_t}} \exp \left(\frac{-r_t^2}{2\sigma_{s_t}^2}\right)$$

- Like GARCH with only two states: "High" (H) and "Low"(L) volatility
- GARCH and regime switching

Cai (1994, J. of Business and Economic Statistics) Hamilton and Susmel (1994, J. of Econometrics) Gray (1996, J. of Financial Economics)

- Intimately related to long-memory

Liu (2000, J. of Econometrics) Park (2000, Rev. Econ. Stat.)

Other Univariate GARCH Models

• An *incomplete* list:

Bollerslev (2010, Engle Festschrift)

ARCH Engle (1982) GARCH Bollerslev (1986)

IGARCH Bollerslev and Engle (1986)

Log-GARCH Geweke (1986), Milhøj (1987), Pantula (1986)

TS-GARCH Taylor (1986), Schwert (1989)
GARCH-t Bollerslev (1987)
ARCH-M Engle, Lilien and Robins (1987)

MGARCH Bollerslev, Engle and Wooldridge (1998)

CCC GARCH Bollerslev (1990)
AGARCH Engle (1990)
CGARCH Engle and Lee (1990)
EGARCH Nelson (1991)

SPARCH Engle and Gonzalez-Rivera (1991)

LARCH Robinson (1991)

AARCH Bera, Higgins and Lee (1992) NGARCH Higgins and Bera (1992)

QARCH Sentana (1992)

STARCH Harvey, Ruiz and Sentana (1992) QTARCH Gourieroux and Monfort (1992)

GARCH-EAR LeBaron (1992)

GJR-GARCH Glosten, Jagannathan and Runkle (1993)

Weak GARCH Drost and Nijman (1993) VGARCH Engle and Lee (1993)

APARCH Ding, Granger and Engle (1993) SWARCH Hamilton and Susmel (1994) β-ARCH Guegan and Diebolt (1994)

TGARCH Zakoian (1994)
GQARCH Sentana (1995)
HGARCH Hentschel (1995)
SGARCH Liu and Brorsen (1995)
PGARCH Bollerslev and Ghysels (1996)
GARCH-X Brenner, Harjes and Kroner (1996)

GRS-GARCH Gray (1996)

VS-GARCH Fornari and Mele (1996)

FIGARCH Baillie, Bollerslev and Mikkelsen (1996) FIEGARCH Bollerslev and Mikkelsen (1996)

ANN-ARCH Donaldson and Kamstra (1997)

HARCH Müller, Dacorogna, Davé, Olsen, Pictet and Weizsäcker (1997)

ATGARCH Crouchy and Rockinger (1997)

AUG-GARCH Duan (1997)

STGARCH Gonzalez-Rivera (1998)

FIAPARCH Tse (1998)

SQR-GARCH Heston and Nandi (2000)
OGARCH Alexander (2001)
DCC GARCH Engle (2002)

ANST-GARCH Nam, Pyum and Arize (2002)

RGARCH Park (2002)

Flex-GARCH Ledoit, Santa-Clara and Wolf (2003) GARJI Maheu and McCurdy (2004)

HYGARCH Davidson (2004)

COGARCH Klüppelberg, Lindner and Maller (2004)

LMGARCH Conrad and Karanasos (2006)
REGARCH Brandt and Jones (2006)
FCGARCH Medeiros and Veiga (2009)

• • • •

ARCH:
$$\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} e_{i-i}^{2}$$

GARCH: $\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} e_{i-i}^{2} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{2}$

IGARCH: $\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} e_{i-i}^{2} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{2}$

IGARCH: $\sigma_{i}^{2} = \omega + e_{i-1}^{p} + \sum_{j=1}^{p} a_{i} (e_{i-j}^{2} - e_{i-1}^{2}) + \sum_{j=1}^{q} \beta_{j} (\sigma_{i-j}^{2} - e_{i-1}^{2})$

Taylor/Schwert: $\sigma_{i} = \omega + \sum_{j=1}^{p} a_{i} |e_{i-j}| + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}$

A-GARCH: $\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} (e_{i-i} + \gamma_{i} \varepsilon_{i-j}) + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{2}$

NA-GARCH: $\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} (e_{i-i} + \gamma_{i})^{2} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{2}$

V-GARCH: $\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} (e_{i-i} + \gamma_{i})^{2} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{2}$

Thr.-GARCH: $\sigma_{i}^{2} = \omega + \sum_{i=1}^{p} a_{i} [(1 - \gamma_{i}) \varepsilon_{i-i}^{+} - (1 + \gamma_{i}) \varepsilon_{i-j}^{-}] + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{2}$

Iog-GARCH: $\log(\sigma_{i}) = \omega + \sum_{i=1}^{p} a_{i} |e_{i-i}| + \sum_{j=1}^{q} \beta_{j} \log(\sigma_{i-j})$

EGARCH: $\log(\sigma_{i}) = \omega + \sum_{i=1}^{p} a_{i} |e_{i-i}| + \sum_{j=1}^{q} \beta_{j} \log(\sigma_{i-j})$

EGARCH: $\sigma_{i}^{3} = \omega + \sum_{i=1}^{p} a_{i} |e_{i-i}|^{3} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{5}$

A-PARCH: $\sigma_{i}^{3} = \omega + \sum_{i=1}^{p} a_{i} |e_{i-i}|^{3} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{5}$

H-GARCH: $\sigma_{i}^{3} = \omega + \sum_{i=1}^{p} a_{i} |e_{i-i}| + \sum_{i=1}^{p} a_{i} |e_{i-i}| + \sum_{i=1}^{p} a_{i} |e_{i-j}|^{3} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{5}$

Aug-GARCHb: $\sigma_{i}^{3} = \omega + \sum_{i=1}^{p} a_{i} \delta_{i} \sigma_{i-j}^{5} |e_{i-j}| - \kappa(-\kappa)|^{\nu} + \sum_{j=1}^{q} \beta_{j} \sigma_{i-j}^{5}$
 $\phi_{i} = \omega + \sum_{i=1}^{p} |a_{i} \delta_{i} \sigma_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5} + \sum_{i=1}^{q} a_{i} \delta_{i} \sigma_{i-j}^{5}$
 $\phi_{i} = \omega + \sum_{i=1}^{p} |a_{i} \delta_{i} \sigma_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5} \sigma_{i-j}^{5}$
 $\phi_{i} = \omega + \sum_{i=1}^{p} |a_{i} \delta_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5} + \sum_{i=1}^{q} a_{i} \delta_{i-j}^{5}$
 $\phi_{i} = \omega + \sum_{i=1}^{p} |a_{i} \delta_{i} \sigma_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5} + \sum_{i=1}^{q} a_{i} \delta_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5} + \sum_{i=1}^{q} a_{i} \delta_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5} + \sum_{i=1}^{q} a_{i} \delta_{i-j}^{5} |e_{i-j} \kappa_{i-j}^{5$

Hansen and Lunde (2005, J. of Applied Econometrics)

^a This is A-PARCH without the leverage effect.

^b Here $f(x, y) = (x^{y} - 1)/y$.

Multivariate GARCH Models

• Univariate GARCH models, y_t scalar:

$$- \operatorname{Var}(y_t | \Omega_{t-1}) = h_t$$

• Multivariate GARCH models, $r_t N \times 1$ vector:

$$-\operatorname{Var}(y_{t}|\Omega_{t-1}) = H_{t}$$

- Positive definite, N×N matrix:

$$Var(\lambda' y_t | \Omega_{t-1}) = h_t = \lambda' H_t \lambda > 0$$

• Maximum likelihood estimation and testing:

$$y_t \mid \Omega_{t-1} \sim N(\mu_t, H_t)$$

$$LogL = -\frac{TN}{2}ln(2\pi) - \frac{1}{2}\sum ln|H_t| - \frac{1}{2}\sum \varepsilon_t'H_t^{-1}\varepsilon_t$$

• How to parameterize H_t?

Vech and Diagonal GARCH

Bollerslev, Engle and Wooldridge (1988, J. of Political Economy)

• General vech(·) model:

$$vech(H_t) = W + \sum_{i=1}^{q} A_i vech(\epsilon_{t-i} \epsilon'_{t-i}) + \sum_{j=1}^{p} B_j vech(H_{t-j})$$

- Vech(·) ensures symmetry
- Not necessarily positive definite
- Large number of parameters, O(N⁴)
- Diagonal model
 - A_i and B_i matrices diagonal
 - BEKK representation ensures positive definiteness
 Engle and Kroner (1995, Econometric Theory)
 - Still O(N²) parameters
- EWMA RiskMetric
 - W = 0, $A_1 = diag\{\gamma\}$ and $B_1 = diag\{1-\gamma\}$
 - Positive definite, but too simplistic

Factor ARCH Models

Diebold and Nerlove (1989, *J. of Applied Econometrics*) Engle, Ng and Rothschild (1990, *J. of Econometrics*)

- Commonalities in volatility
- One-Factor GARCH(1,1) model:

$$r_{t} = bF_{t} + v_{t}$$

$$F_{t} | \Omega_{t-1} \sim N(0, h_{t})$$

$$h_{t} = \omega + \alpha F_{t-1}^{2} + \beta h_{t-1}$$

$$v_{t} | \Omega_{t-1} \sim N(0, \Gamma)$$

- Conditional distribution:

$$r_t | \Omega_{t-1} \sim N(0, H_t)$$

$$H_t = h_t bb' + \Gamma$$

- H_t guaranteed to be positive definite
- jth time-t conditional variance:

$$H_{jj,t} = b_j^2 h_t + \gamma_j = b_j^2 (\omega + \alpha F_{t-1}^2 + \beta h_{t-1}) + \gamma_j$$

– jk^{th} time-t conditional covariance (for Γ diagonal):

$$H_{jk,t} = b_j b_k h_t = b_j b_k (\omega + \alpha F_{t-1}^2 + \beta h_{t-1})$$

- Parameters in one-factor GARCH(1,1) model, 2N + 3
- Parameters in k-factor GARCH(p,q) model, O(N)

Fig. 1. Monthly excess returns.

Engle, Ng and Rothschild (1990, J. of Econometrics)

- Drawbacks to the factor GARCH model
 - What are the factor(s)?
 - Latent factor(s) complicates estimation
 - Portfolios with no ARCH, $\lambda'b = 0$:

$$r_{p,t} = \lambda' r_t = \lambda' b F_t + \lambda' v_t = \lambda' v_t$$

Constant Conditional Correlation (CCC) Model

Bollerslev (1990, Review of Economics and Statistics)

• Unconditional correlation:

$$\rho_{ij} = \frac{E(r_{i,t}r_{j,t})}{\sqrt{E(r_{i,t}^2)E(r_{j,t}^2)}}$$

• Conditional correlation:

$$\rho_{ij,t} = \frac{E(r_{i,t}r_{j,t} | \Omega_{t-1})}{\sqrt{E(r_{i,t}^2 | \Omega_{t-1})E(r_{j,t}^2 | \Omega_{t-1})}}$$

• Constant Conditional Correlations:

$$\rho_{ij,t} = \rho_{ij}$$

• Time-Varying Conditional Covariances:

$$E(r_{i,t}r_{j,t}|\Omega_{t-1}) = \rho_{ij} \sqrt{E(r_{i,t}^2|\Omega_{t-1})} \sqrt{E(r_{j,t}^2|\Omega_{t-1})}$$

• Constant conditional correlation GARCH model:

$$H_t = D_t R D_t$$

 $-D_t^2$ diagonal matrix of conditional variances:

$$D_t^2 = diag(h_{ii,t}) = diag(E(r_{i,t}^2 | \Omega_{t-1}))$$

- R matrix of constant *conditional* correlations for $\varepsilon_t = D_t^{-1} r_t$:

$$E(\varepsilon_{t} \varepsilon_{t}^{\prime} | \Omega_{t-1}) = R$$

- Easy to use and estimate
 - N univariate GARCH models
 - R estimated by sample cross correlations of $\hat{\mathbf{\epsilon}}_t = \hat{\mathbf{D}}_t^{-1} \mathbf{r}_t$
 - Guaranteed to be positive definite

- So are the correlations constant?
 - Maybe in the short-run
 - But probably not over longer horizons

• Rolling sample international equity market correlations:

FIGURE 1. Correlation of the US stock market. This figure reports the (unweighted) average correlation of the US stock market with the other seven stock markets. The correlation is computed over sliding windows of four years, using local currency monthly total returns. The period is December 1959–91.

Longin and Solnik (1995, J. of International Money and Finance)

Dynamic Conditional Correlation (DCC) Models

Engle (2002, *J. of Business and Economic Statistics*)
Tse and Tsui (2002, *J. of Business and Economic Statistics*)

• Allow the correlations to be time-varying:

$$H_t = D_t R_t D_t$$

- R_t must be a correlation matrix for ε_t :
 - Positive definite
 - Ones along the diagonal
- Exponential smoothing DCC_INT model:

$$\rho_{ij,t} \ = \ \frac{q_{ij,t}}{\sqrt{q_{ii,t} \, q_{jj,t}}}$$

$$q_{ij,t} = (1 - \gamma) \epsilon_{i,t-1} \epsilon_{j,t-1} + \gamma q_{ij,t-1}$$

• Could parameterize R_t in many other ways

• Equity volatilities and correlations:

Figure 2. Ten Years of Volatilities.

Figure 3. Ten Years of Dow Jones-NASDAQ Correlations.

Engle (2002, J. of Business and Economic Statistics)

• DCC-based Bond-Equity correlations:

Engle (2009, Anticipating Correlations)

• DCC-based T-Bond and AAA Corporate Bond correlations:

Buraschi, Porchia and Trojani (2009, manuscript, Imperial College, London)

Asymmetries in Correlations

- Up- and down-markets
 - Domestic
 - International
- High and low volatility
- Recessions and expansions
- Benefits to diversification
 - Least when you want it the most!

• US equity returns:

Figure 3: Exceedance correlations of industry, size, book-to-market, and momentum portfolios

We plot exceedance correlations with the market portfolio for selected industry, size, book-to-market, and momentum portfolios. These are the conditional correlations $\mathrm{corr}(\tilde{x},\tilde{y}|\tilde{x}>\vartheta,\tilde{y}>\vartheta;\rho)$ for exceedance $\vartheta>0$ for normalized portfolio \tilde{x} and the normalized market portfolio \tilde{y} . For $\vartheta<0$, the exceedance correlation is defined as $\mathrm{corr}(\tilde{x},\tilde{y}|\tilde{x}<\vartheta,\tilde{y}<\vartheta;\rho)$. Exceedance correlations are calculated at the weekly frequency. The H statistic in the legend is the measure of correlation asymmetry developed in Section 4.

- How to model asymmetries in (covariances) correlations
 - Multivariate vech GJR model
 - Multivariate EGARCH model
 - Regime switching GARCH
 - DCC with asymmetric $q_{ij,t}$
 - Copulas

• Asymmetric DCC covariance estimates:

Cappiello, Engle and Shephard (2007, Journal of Financial Econometrics)

Copulas

• "Standard" univariate GARCH:

$$r_{i,t} | \Omega_{t-1} \sim N(0, h_{ii,t})$$
 (or $\sim D(0, h_{ii,t})$)

• "Standard" multivariate GARCH:

$$r_t | \Omega_{t-1} \sim N(0, H_t)$$
 (or $\sim D(0, H_t)$)

- Copulas:
 - Marginal distributions (cdf)

$$F(r_{i,t} | \Omega_{t-1})$$

Joint distribution (cdf)

$$F(r_{t} | \Omega_{t-1}) = C(F^{-1}(r_{1,t} | \Omega_{t-1}), ..., F^{-1}(r_{N,t} | \Omega_{t-1}))$$

- Sklar's Theorem:

The copula C is unique, although not necessarily time-invariant

• Examples of copulas:

Patton (2005, International Economic Review)

Structural GARCH

Sentana and Fiorentini (2001, *J. of Econometrics*) Rigobon and Sack (2004, *manuscript*) Andersen, Bollerslev, Diebold and Vega (2007, *J.Int.Eco.*)

• Structural (homoskedastic) VAR

$$\Phi_0 y_t = \Phi_1 y_{t-1} + ... + \Phi_p y_{t-p} + \varepsilon_t$$

$$Var_{t-1}(\varepsilon_t) = diag\{h_1, h_2, ..., h_N\}$$

Reduced form

$$y_{t} = A_{1} y_{t-1} + ... + A_{p} y_{t-p} + e_{t}$$

$$A_{i} = \Phi_{0}^{-1} \Phi_{i} \qquad e_{t} = \Phi_{0}^{-1} \epsilon_{t}$$

- $-\Phi_0$ not identified (in general)
- Structural VAR-GARCH

$$Var_{t-1}(\varepsilon_t) = diag\{h_{1,t}, h_{2,t}, ..., h_{N,t}\} \equiv D_t$$

- Reduced form errors

$$Var_{t-1}(e_t) = H_t = \Phi_0^{-1} D_t \Phi_0^{-1}$$

 $-\Phi_0$ identified through heteroskedasticity