Paired factor analysis for tree reconstruction

Kushal K Dey, Gao Wang July 19, 2016

The model

Let D_{nj} be the data corresponding to n-th sample and j-th feature. We assume for now that the data is Gaussian in its distribution. We assume there are K factors or nodes of the tree. We assume the model

$$E[D_{nj}|Z_n = (k_1, k_2), \lambda_n = q, F] = qF_{k_1,j} + (1-q)F_{k_2,j}$$

We assume a prior on λ ,

$$Pr\left[\lambda_n = q\right] = \pi_q$$

Then we can write

$$Pr\left[D_n|Z_n = (k_1, k_2), F, s_{j=1, 2, \cdots, J}^2\right] = \sum_q \pi_q Pr\left[D_n|Z_n = (k_1, k_2), \lambda_n = q, F, s_{j=1, 2, \cdots, J}^2\right]$$

where s_j^2 is the variance of the jth feature.

We also assume the prior

$$Pr[Z_n = (k_1, k_2)] = \pi_{k_1, k_2}$$
 $k_1 < k_2$

Then we can write

$$Pr\left[D_{n}|\pi,F\right] = \sum_{k_{1} < k_{2}} \pi_{k_{1},k_{2}} Pr\left[D_{n}|Z_{n} = (k_{1},k_{2}),F,s_{j=1,2,\cdots,J}^{2}\right]$$

We define the joint prior over the edges and the fraction of the edge represented as

$$\pi_{k_1, k_2, q} = \pi_{k_1, k_2} \pi_q \qquad k_1 < k_2$$

The overall likelihood

$$L(\pi, F) = \prod_{n=1}^{N} Pr \left[D_n | \pi, F, s_{j=1,2,\dots,J}^2 \right]$$

or we can write it as

$$L(\pi, F) = \prod_{n=1}^{N} \sum_{k_1 < k_2} \sum_{q} \left[\pi_{k_1, k_2, q} \times \prod_{j=1}^{G} N\left(D_{nj}; qF_{k_1, g} + (1 - q)F_{k_2, g}, s_j^2\right) \right]$$

$$logL(\pi, F) = \sum_{n=1}^{N} log \left(\sum_{k_1 < k_2} \sum_{q} \left[\pi_{k_1, k_2, q} \times \prod_{j=1}^{G} N\left(D_{nj}; qF_{k_1, g} + (1-q)F_{k_2, g}, s_j^2\right) \right] \right)$$

This is the log likelihood we want to maximize and we need to return this log-likelihood.

EM updates

We assume that q can take a finite set of values between 0 and 1, say $1/100, 2/100, \dots, 90/100, 1$. Suppose we have run upto m iterations. For the (m+1)th iteration, we have

$$\delta_{n,k_{1},k_{2},q}^{(m+1)} = Pr\left[Z_{n} = (k_{1},k_{2}), \lambda_{n} = q | \pi^{(m)}, F^{(m)}, s_{j=1,2,\cdots,J}^{(m)}, D_{n}\right]$$

$$\delta_{n,k_{1},k_{2},q}^{(m+1)} \propto Pr\left[Z_{n} = (k_{1},k_{2})\right] Pr\left[\lambda_{n} = q\right] Pr\left[D_{n} | \pi^{(m)}, F^{(m)}, s_{j=1,2,\cdots,J}^{(m)}, Z_{n} = (k_{1},k_{2}), \lambda_{n} = q\right]$$

$$\delta_{n,k_{1},k_{2},q}^{(m+1)} \propto \pi_{k_{1},k_{2},q}^{(m)} \prod_{i} N\left(D_{nj} | qF_{k_{1},j}^{(m)} + (1-q)F_{k_{2},j}^{(m)}, s_{j}^{(m)^{2}}\right)$$

where $s_{j}^{\left(m\right)^{2}}$ is the residual variance of feature j.

We normalize δ so that

$$\sum_{k_1 < k_2} \sum_{q} \delta_{n, k_1, k_2, q}^{(m+1)} = 1 \qquad \forall n$$

We define

$$\pi_{k_1,k_2,q}^{(m+1)} = \frac{1}{N} \sum_{n=1}^{N} \delta_{n,k_1,k_2,q}^{(m+1)}$$

We have therefore updated $\pi_{k_1,k_2,q}^{(m)}$ to $\pi_{k_1,k_2,q}^{(m+1)}$

We define the parameter

$$\theta := (\pi_{k_1, k_2, q}, F, s_{j=1, 2, \dots, J})$$

We define the complete loglikelihood

$$log L_c(\theta; D, Z, \lambda) = log \pi_{k_1, k_2, q} + log L(D|Z, \lambda, q, F)$$

We take the expectation of this quantity with respect to $[Z, \lambda | D, \theta^{(m)}]$.

$$Q(\theta|\theta^{(m)}) \propto -\sum_{n=1}^{N} \sum_{k_1 < k_2} \sum_{q} \delta_{n,k_1,k_2,q}^{(m+1)} \sum_{j} \left[logs_j + \frac{(D_{nj} - qF_{k_1,j} - (1-q)F_{k_2,j})^2}{2s_j^2} \right]$$

We try to maximize this quantity with respect to F, So, we can take derivative with respect to F and try to solve the resulting normal equation.

This equation, conditional on $[Z, \lambda | D, \theta^{(m)}]$, can be written as

$$D_{N\times J} = L_{N\times K} F_{K\times J} + E_{N\times J}$$

where

$$e_{nj} \sim N(0, s_i^2)$$

We define

$$D_{nj}^{'} := \frac{D_{nj}}{s_{j}}$$

If we consider finding the factors on a feature-by-feature basis, we do not need to worry about s_i .

$$L_{nk} = \begin{cases} q \text{ or } (1-q) & \lambda_n = q \\ 0 & \text{o.w.} \end{cases}$$

We have

$$E_{Z,\lambda|D,\theta^{(m)}}[L_{nk}] = \sum_{q} \sum_{k_2 > k} q \delta_{n,k,k_2,q}^{(m+1)} + \sum_{q} \sum_{k_1 < k} (1-q) \delta_{n,k_1,k,q}^{(m+1)}$$

$$E_{Z,\lambda|D,\theta^{(m)}}\left[L_{nk}^2\right] = \sum_{q} \sum_{k_2 > k} q^2 \delta_{n,k,k_2,q}^{(m+1)} + \sum_{q} \sum_{k_1 < k} (1-q)^2 \delta_{n,k1,k,q}^{(m+1)}$$

Also for any $k \neq l$,

$$E_{Z,\lambda|D,\theta^{(m)}}[L_{nk}L_{nl}] = \sum_{q} q(1-q)\delta_{n,k,l,q}^{(m+1)}$$

We use these to solve for the equation

$$\left[E_{Z,\lambda|D,\theta^{(m)}}\left(L^TL\right)\right]F \approx \left[E_{Z,\lambda|D,\theta^{(m)}}(L)\right]^TD$$

The solution therefore is

$$F \approx \left[E_{Z,\lambda|D,\theta^{(m)}} \left(L^T L \right) \right]^{-1} \left[E_{Z,\lambda|D,\theta^{(m)}} (L) \right]^T D$$

For $W = L^T L$

$$W_{kl} = \sum_{n} L_{kn} L_{nl}$$

$$E_{Z,\lambda|D,\theta^{(m)}}\left(W_{kl}\right) = \sum_{n} E_{Z,\lambda|D,\theta^{(m)}}\left(L_{nk}L_{nl}\right)$$

We use the definition of $E_{Z,\lambda|D,\theta^{(m)}}\left[L_{nk}^2\right]$ and $E_{Z,\lambda|D,\theta^{(m)}}\left[L_{nk}L_{nl}\right]$ from above to solve this linear system.

In the same way as we computed F by solving for the normal equation obtained from taking derivative of the function $Q(\theta|\theta^{(m)})$, we take derivative of the latter with respect to s_j^2 to obtain EM updates of the residual variance terms. O taking derivative, we obtain the estimates as

$$\hat{s}_{j}^{2} = \sum_{n=1}^{N} \sum_{k_{1} < k_{2}} \sum_{q} \delta_{n,k_{1},k_{2},q}^{(m+1)} (D_{nj} - qF_{k_{1},j} - (1-q)F_{k_{2},j})^{2}$$

where the F are the estimated values of the factors from the previous step.

We then continue this procedure described above for multiple iterations.