Теория параллелизма

Отчет

Решение уравнения теплопроводности

Выполнила 23931, Басова Юлия 16.05.2025

Цель работы

Реализовать решение уравнение теплопроводности (разностная схема – пятиточечный шаблон) в двумерной области на равномерных сетках (128^2, 256^2, 512^2, 1024^2).

Используемый компилятор - pgc++ **Используемый профилировщик** – Nsight System **Как производили замер времени работы** – std::chrono

Выполнение на CPU

CPU-onecore

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128*128	1,41 с	10^-6	28560
256*256	4,24 c	10^-6	94980
512*512	14,81 с	10^-6	304820

CPU-multicore

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128*128	8,51 c	10^-6	28560
256*256	30,45 c	10^-6	94980
512*512	85,04 c	10^-6	304820
1024*1024	401,09 c	10^-6	922310

Диаграмма сравнения время работы CPU-one и CPU-multi

Выполнение на GPU

Этапы оптимизации на сетке 512*512

Этап №	Время выполнения	Точность	Максимальное количество итераций	Комментарии
1	2.91	10^(-6)	1_000_000	Без оптимизаций
2	8.24	10^(-6)	1_000_000	Добавлен флаг -О2
3	1.72	10^(-6)	1_000_000	std::swap, без вывода результатов
4	4.48	10^(-6)	1_000_000	std::unique_ptr, реже обновления CPU/GPU, реже проверка ошибки,

Диаграмма оптимизации (по горизонтали номер этапа; по вертикали время работы)

GPU - оптимизированный вариант

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128*128	0.429	10^(-6)	1_000_000
256*256	1.229	10^(-6)	1_000_000
512*512	4.612	10^(-6)	1_000_000
1024*1024	34.151	10^(-6)	1_000_000

Диаграмма сравнения Onecore, Multicore, GPU

Выполнение на GPU + cuBLAS

Время выполнения GPU+cuBLAS

Размер сетки	Время	Точность	Количество
	выполнения, с		итераций
128*128	0.39	10^(-6)	30_100
256*256	1.202	10^(-6)	102_900
512*512	4.554	10^(-6)	339_600
1024*1024	35.37	10^(-6)	1_000_000

Диаграмма сравнения Onecore, Multicore, GPU, GPU+cuBLAS

Профилирование GPU+cuBLAS

Выполнение на GPU (CUDA)

Время выполнения GPU (CUDA)

Размер сетки	Время выполнения, с	Точность	Количество итераций
128*128	0.074	10^(-6)	31_000
256*256	0.722	10^(-6)	103_000
512*512	1.368	10^(-6)	340_000
1024*1024	28.496	10^(-6)	1_000_000

Диаграмма сравнения Onecore, Multicore, GPU, GPU+cuBLAS, GPU CUDA

Профилирование GPU (CUDA)

Сетка 512*512

Вывод: уравнения теплопроводности эффективно решаются на GPU с использованием OpenACC (рассматривается оптимизированная версия). С использованием cuBLAS разница незначительная.