

Sep 16, 2020

Immunoprecipitation (IP) and Mass Spectrometry

In 1 collection

Yingchao Xue^{1,2}, Xiping Zhan³, Shisheng Sun⁴, Senthilkumar S. Karuppagounder^{5,6,7}, Shuli Xia^{2,5}, Valina L Dawson^{5,6,7,8,9}, Ted M Dawson^{5,6,7,8,10}, John Laterra^{2,5,8,11}, Jianmin Zhang¹, Mingyao Ying^{2,5}

¹Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology;

²Hugo W. Moser Research Institute at Kennedy Krieger; ³Department of Physiology and Biophysics, Howard University;

⁴College of Life Sciences, Northwest University; ⁵Department of Neurology, Johns Hopkins University School of Medicine;

⁶Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine;

⁷Adrienne Helis Malvin Medical Research Foundation; ⁸Department of Neuroscience, Johns Hopkins University School of Medicine;

⁹Department of Physiology, Johns Hopkins University School of Medicine;

¹⁰Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine;

¹¹Department of Oncology, Johns Hopkins University School of Medicine

1

Works for me

This protocol is published without a DOI.

Neurodegeneration Method Development Community Tech. support email: ndcn-help@chanzuckerberg.com

Anita Broellochs protocols.io

ABSTRACT

This protocol explains Immunoprecipitation (IP) and Mass Spectrometry for lines ND1014, N1, and ND27760 from *Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons*.

EXTERNAL LINK

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344911/

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Xue Y, Zhan X, Sun S, Karuppagounder SS, Xia S, Dawson VL, Dawson TM, Laterra J, Zhang J, Ying M. Stem Cells Transl Med. 2019 Feb;8(2):112-123. doi: 10.1002/sctm.18-0036. Epub 2018 Nov 1. PMID: 30387318

PROTOCOL CITATION

Yingchao Xue, Xiping Zhan, Shisheng Sun, Senthilkumar S. Karuppagounder, Shuli Xia, Valina L Dawson, Ted M Dawson, John Laterra, Jianmin Zhang, Mingyao Ying 2020. Immunoprecipitation (IP) and Mass Spectrometry. **protocols.io**

https://protocols.io/view/immunoprecipitation-ip-and-mass-spectrometry-9zhh736

.

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Xue Y, Zhan X, Sun S, Karuppagounder SS, Xia S, Dawson VL, Dawson TM, Laterra J, Zhang J, Ying M. Stem Cells Transl Med. 2019 Feb;8(2):112-123. doi: 10.1002/sctm.18-0036. Epub 2018 Nov 1. PMID: 30387318

EXTERNAL LINK

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344911/

COLLECTIONS (i)

Protocols for Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons

KEYWORDS

ND1014, N1, ND27760, ipsc, SNCA, Atoh2, Nqn2, Immunoprecipitation, IP, Mass Spectrometry, MS

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Dec 02, 2019

LAST MODIFIED

Sep 16, 2020

OWNERSHIP HISTORY

Dec 02, 2019 Liz Brydon Protocols.io

Sep 16, 2020 Anita Broellochs protocols.io

PROTOCOL INTEGER ID

30473

PARENT PROTOCOLS

Part of collection

Protocols for Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons

MATERIALS

NAME	CATALOG #	VENDOR
lodoacetamide	AK-U470	P212121
Sodium bicarbonate	S6014	Sigma Aldrich
Sequencing Grade Modified Trypsin, 100ug	V5117	Promega
TCEP-HCI	TCEP	Gold Biotechnology
Urea	U5378	Sigma Aldrich
NE-PER Nuclear and Cytoplasmic Extraction Reagents	78833	Thermo Scientific
Monoclonal ANTI-FLAG M2 antibody produced in mouse	F3165	Sigma Aldrich
Dynabeads Protein G for Immunoprecipitation	10003D	Thermo Scientific

SAFETY WARNINGS

Please refer to the Safety Data Sheets (SDS) for safety and environmental hazards.

BEFORE STARTING

Obtain approval to work with human stem cells from an appropriate Institutional Review Board.

Immunoprecipitation (IP)

- 1 Twenty-four hours after mRNA transfection, extract nuclear proteins of iPSCs using the NE-PER Nuclear and Cytoplasmic Extraction Kit.
- Perform FLAG IP using anti-FLAG M2 antibody and Protein G Dynabeads following the manufacturer's protocol.
- 3 Elute binding proteins by elution buffer ([M]8 Molarity (M) urea, [M]1 Molarity (M) NaHCO3 in water).

online LC separation.

IP and MS Analysis

- 16 Search raw data against UniProt human protein database by Proteome Discoverer with the following parameters:
 - two missed cleavages allowed for trypsin digestion
 - carbamidomethyl (C) set as a fixed modification
 - oxidation (M) and acetyl (protein N-terminal) set as variable modifications

17

Normalize the intensity of each identified proteins to the intensity of their A-WT or A-SA proteins, respectively, and further calculate the A-SA/A-WT ratio of normalized intensity.