1. Write a R program to create a Vector containing the following 8 values and perform the following operations.

4 3 0 5 2 9 4 5

- a. Find mean, median, mode.
- b. Find the range.
- c. Find the 35th and 78th percentile.
- d. Find the variance and standard deviation
- e. Find the interquartile range.
- f. Find the z-score for each value.

```
values <- c(4, 3, 0, 5, 2, 9, 4, 5)
mean value <- mean(values)
median value <- median(values)
table_values <- table(values)
mode_value <- as.numeric(names(table_values)[table_values == max(table_values)])
range value <- range(values)
percentile 35 <- quantile(values, 0.35)
percentile 78 <- quantile(values, 0.78)
variance value <- var(values)
std deviation value <- sd(values)
IQR value <- IQR(values)
z scores <- scale(values)</pre>
cat("\nMean:", mean_value)
cat("\nMedian:", median value)
cat("\nMode:", mode value)
cat("\nRange:", range_value[2] - range_value[1])
cat("\n35th Percentile:", percentile_35)
cat("\n78th Percentile:", percentile_78)
cat("\nVariance:", variance value)
cat("\nStandard Deviation:", std_deviation_value)
cat("\nInterquartile Range:", IQR value)
cat("\nZ-Scores:", z_scores)
```

Output:

Mean: 4 Median: 4 Mode: 4 5 Range: 9

35th Percentile: 3.45 78th Percentile: 5 Variance: 6.857143

Standard Deviation: 2.618615 Interquartile Range: 2.25

Scores: 0 -0.3818813 -1.527525 0.3818813 -0.7637626 1.909407 0 0.3818813

Manual:

Vector values =
$$\begin{pmatrix} 4 & 3 & 0 & 5 & 2 & 9 & 4 & 5 \end{pmatrix}$$

Sorted vector values = $\begin{pmatrix} 0 & 2 & 3 & 4 & 4 & 5 & 5 & 9 \end{pmatrix}$
No. of data in vector = n = 8

a. Find mean, median, mode.

Mean =
$$\frac{4+3+0+5+2+9+4+5}{8}$$
 = 4
Median = $\frac{\left[\frac{8}{2}^{th} value + \frac{8}{2} + 1^{th} value\right]}{2}$
= $\frac{\left[4+4\right]}{2}$ = $\frac{8}{2}$ = 4

$$Mode = 4.5$$

b. Find the range.

Range: $max(vector\ values) - min(vector\ values) = 9 - 0 = 9$

c. Find the 35th and 78th percentile.

$$P_{35} = (((0.35 * (n - 1)) + 1)^{th})$$

$$= (((0.35 * 7) + 1)^{th}) = 3.45^{th}$$

$$= 3^{rd} value + (0.45 * (4^{th} value - 3^{rd} value))$$

$$P_{35} = 3 + (0.45 * (4 - 3)) = 3.45$$

$$P_{78} = (((0.78 * (n - 1)) + 1)^{th})$$

$$= (((0.78 * 7) + 1)^{th}) = 6.46^{th}$$

$$= 6^{th} value + (0.46 * (7^{th} value - 6^{rd} value))$$

$$P_{78} = 5 + (0.46 * (5 - 5)) = 5$$

d. Find the variance and standard deviation

х	x - µ	$(x - \mu)^2$
---	-------	---------------

4	0	0	$\mu = \frac{\Sigma x}{N}$
3	-1	1	$= \frac{32}{8}$
0	-4	16	
5	1	1	$\mu = 4$
2	-2	4	
9	5	25	
4	0	0	
5	1	1	
Σx = 32		$\Sigma(x - \mu)^2 = 48$	

variance,
$$\sigma^2 = \frac{\Sigma(x-\mu)^2}{N-1}$$

 $\sigma^2 = \frac{48}{8-1} = \frac{48}{7}$
 $\sigma^2 = 6.857143$

Standard Deviation,
$$\sigma = \sqrt{\frac{\Sigma(x-\mu)^2}{N-1}}$$

$$\sigma = \sqrt{\frac{48}{7}}$$

$$\sigma = 2.618615$$

e. Find the interquartile range.

$$Q1 = P_{25} = (((0.25 * (n - 1)) + 1)^{th}$$

$$= ((0.25 * 7) + 1)^{th} = 2.75^{th}$$

$$= 2^{nd}value + (0.75 * (3^{rd}value - 2^{nd}value))$$

$$Q1 = P_{25} = 2 + (0.75 * (3 - 2)) = 2.75$$

$$Q3 = P_{75} = (((0.75 * (n - 1)) + 1)^{th}$$

$$= ((0.75 * 7) + 1)^{th} = 6.25^{th}$$

$$= 6^{th}value + (0.25 * (7^{th}value - 6^{rd}value))$$

$$Q3 = P_{75} = 5 + (0.25 * (5 - 5)) = 5$$

InterQuartile Range, IQR = Q3 - Q1 = 5 - 2.75 = 2.25

f. Find the z-score for each value.

z scores,
$$z = \frac{x-\mu}{\sigma}$$

z scores	х	x - µ	$\frac{x-\mu}{\sigma}$
z(4)	4	0	0.0000000
z(3)	3	-1	-0.3818813
z(0)	0	-4	-1.5275250
z(5)	5	1	0.3818813
z(2)	2	-2	-0.7637625
z(9)	9	5	1.9094063
z(4)	4	0	0.0000000
z(5)	5	1	0.3818813

<u>Note:</u> Only If examiner ask for find or give value in percentile position(rank) Do this,

In Program code:(not sure it is correct way)

Use this:

percentile_35 <- sorted_vector[floor(quantile(values, 0.35))] percentile_78 <- sorted_vector[floor(quantile(values, 0.78))]

In Manual:

Use this:

$$P_{35} = ((0.35 * (n - 1)) + 1)^{th}$$

$$= ((0.35 * 7) + 1)^{th} = 3.45^{th}$$

$$= 3^{rd} value + (0.45 * (4^{th} value - 3^{rd} value))$$

$$P_{35} = 3 + (0.45 * (4 - 3)) = 3.45$$

As 3.45 is in decimal, round it up. i.e 3 Find the 3rd value from the vector. i.e 3

$$P_{78} = ((0.78 * (n - 1)) + 1)^{th}$$

$$= ((0.78 * 7) + 1)^{th} = 6.46^{th}$$

$$= 3^{rd} value + (0.46 * (4^{th} value - 3^{rd} value))$$

$$P_{78} = 5 + (0.46 * (5 - 5)) = 5$$

As 5 is in integer, you don't need to round it up. i.e 5 Find the 3rd value from the vector, i.e 4

2. Write R script to find the correlation coefficient and type of correlation between advertisement expenses and sales volume using Karl Pearson's coefficient of correlation method (Direct Method).

Firm	1	2	3	4	5	6	7	8	9	10
Advertisement Exp. (Rs. in Lakhs)	11	13	14	16	16	15	15	14	13	13
Sales Volume (Rs. in Lakhs)	50	50	55	60	65	65	65	60	60	50

```
advertisement_expenses <- c(11, 13, 14, 16, 16, 15, 15, 14, 13, 13)
sales_volume <- c(50, 50, 55, 60, 65, 65, 60, 60, 50)

correlation_coefficient <- cor(advertisement_expenses, sales_volume, method = "pearson")

type_of_correlation_coefficient <- if(correlation_coefficient > 0){
    "Positive correlation"
} else if(correlation_coefficient < 0){
    "Negative correlation"
} else{
    "No correlation"
} cat("Correlation Coefficient:", correlation_coefficient, "\n")
cat("Type of Correlation:", type_of_correlation_coefficient, "\n")
```

Output:

Correlation Coefficient: 0.7865665

Type of Correlation: Positive correlation

Manual:

Let us assume that advertisement expenses are variable x and sales volume are variable y.

Calculation of Karl Pearson's coefficient of correlation (Direct Method)

	x se	ries	y se		
Firm	x	x^2	у	y ²	ху

1	11	121	50	2500	550
2	13	169	50	2500	650
3	14	196	55	3025	770
4	16	256	60	3600	960
5	16	256	65	4225	1040
6	15	225	65	4225	975
7	15	225	65	4225	975
8	14	196	60	3600	840
9	13	169	60	3600	780
10	13	169	50	2500	650
n = 10	$\Sigma x = 140$	$\Sigma x^2 = 1982$	$\Sigma y = 580$	$\Sigma y^2 = 34000$	$\Sigma xy = 8190$

Using Karl Pearson's coefficient of correlation method (Direct Method) formula

$$r = \frac{(n \cdot \Sigma xy) - (\Sigma x \cdot \Sigma y)}{(\sqrt{(n \cdot \Sigma x^2) - (\Sigma x)^2}) \cdot (\sqrt{(n \cdot \Sigma y^2) - (\Sigma y)^2})}$$

$$r = \frac{(10.8190) - (140.580)}{(\sqrt{(10.1982) - (140)^2}) \cdot (\sqrt{(10.34000) - (580)^2})}$$

$$r = \frac{81900 - 81200}{(\sqrt{19820 - 19600}) \cdot (\sqrt{340000 - 336400})}$$

$$r = \frac{700}{(\sqrt{220}).(\sqrt{3600})}$$

$$r = \frac{700}{14.832397.60}$$

$$r = \frac{700}{889.94376} = 0.78657$$

Interpretation: From the above calculation it is very clear that there is a high degree of positive correlation i.e. r = 0.78657 between the two variables.

i.e Increase in advertisement expenses leads to increased sales volume.