The effect of time-dependent infectiousness on epidemic dynamics

Nicholas W. Landry, Karen L. Stengel, University of Colorado Boulder

Background

Infectiousness depends on viral load

- There is a time-dependent rate of transmission over the course of an illness, determined by your viral load
- Most epidemic simulations assume the transmission rate is constant

Model

We start from the SIR model

Assume instead of a constant rate of infection, that $\beta_i(\tau)$ is the infection rate of node i that has been infected for a time τ

Assume that $\beta_j(\tau) = \beta(\tau)$, $\forall j$

We divide the infected state into n discrete infectious states and denote them $\beta(\tau_i) = \beta_i$, where $\tau_i = i\Delta\tau$

Deterministic flow through infectious compartments

Theory

An example of a viral load function (rescaled gamma distribution)

We can write the model as a mean-field system of ODEs for the fully-mixed case:

$$\frac{dS}{dt} = -\frac{S}{N} \sum_{i=1}^{n} \beta_i I_i$$

$$\frac{dI_1}{dt} = -\frac{I_1}{\Delta \tau} + \frac{S}{N} \sum_{i=1}^{n} \beta_i I_i$$

$$\frac{dI_i}{dt} = \frac{I_{i-1} - I_i}{\Delta \tau}, i = 2 \dots \tau$$

$$\frac{dI_i}{dt} = \frac{I_n}{\Delta \tau}$$

- Linearize as x' = Ax
- Express *A* as a sum of *infectious transmissions* and *non-infectious transitions*
- Use Next Generation Matrix Theory to derive the reproductive number
- As $\Delta \tau \to 0$, $R_0 = \int_{\tau_0}^{\tau_f} \beta(\tau) \, d\tau$ for the fully mixed case and $R_0 = \rho(P) \int_{\tau_0}^{\tau_f} \beta(\tau) \, d\tau$ for the categorybased mixing case

Simulations 1.0 1.0 Light: Fully-mixed

Conclusions

- The reproductive number is only affected by the *exposure* of an individual and mixing effects and transmission effects are independent.
- Can write as the transport equation with boundary conditions capturing the infection.

References

- Inferring high-resolution human mixing patterns for disease modeling by Mistry et al.
- The construction of next-generation matrices for compartmental epidemic models by Diekmann et al.
- Rethinking Covid-19 Test Sensitivity A Strategy for Containment by Mina et al.

Manuscript in preparation!