

Departamento de Ciencias de la Computación y Tecnologías de Información Universidad del Bío-Bío Sede Chillán

Bases de Datos Lenguaje SQL

Ma Angélica Caro Gutiérrez

http://www.face.ubiobio.cl/~mcaro/

mcaro@ubiobio.cl

Lenguaje SQL

- Introducción
- Conceptos básicos
- Consultas básicas en SQL

- Consultas complejas en SQL
 - Vistas (tablas virtuales) en SQL

- GROUP BY y HAVING
 - "Contar la cantidad de libros de cada clase"
 - Una forma de resolverlo sería:

SELECT clase, COUNT(*)
FROM libro
GROUP BY clase;

Resultado:

- GROUP BY y HAVING
 - Una consulta general en SQL tiene la siguiente forma:

SELECT [DISTINCT] lista-selección FROM lista(tablas,vistas) WHERE condición GROUP BY lista-para-formar-grupos HAVING condición-sobre-grupos

- La lista-selección en la cláusula SELECT consiste de:
 - 1. Una lista de nombres de atributos
 - 2. Una lista de términos de la forma OpAgreg(nombre-columna)
 AS nuevo-nombre
- Todos los atributos que aparecen en (1) deben aparecer en lista-para-formar-grupos

GROUP BY y HAVING

SELECT [DISTINCT] lista-selección FROM lista(tablas,vistas) WHERE condición GROUP BY lista-para-formar-grupos HAVING condición-sobre-grupos

- Cada fila del resultado de la consulta se corresponde con un grupo, que es un conjunto de filas que concuerdan con los valores para las columnas de lista-para-formar-grupos
- Las expresiones en condición-sobre-grupos de la cláusula HAVING deben tener un único valor por grupo
- Si se omite GROUP BY, se considera a toda la tabla como un solo grupo

- Consultas con GROUP BY y HAVING
 - Dado el esquema: ALUMNO(ID,NOMBRE,EDAD, CIUDAD)
 - Encontrar la edad del alumno más joven (por sobre los 18 años) para cada ciudad que tenga como mínimo dos alumnos

SELECT CIUDAD, MIN(EDAD) AS minEDAD

FROM ALUMNO
WHERE EDAD > 18
GROUP BY CIUDAD
HAVING COUNT (*) > 1

 Los duplicados no se elir DISTINCT

¿Cuál sería el resultado dada la siguiente tabla?

ID	Nombre	Edad	Cuidad
ICI201039	Juan López	20	Chillán
ICO736822	Juana Tapia	22	Temuco
ICO636254	Igor Torres	18	Chillán
CPA12922	Luis Muñoz	16	San Carlos
ICI103847	Pamela Martin	19	Chillán
ICI273651	Jorge <u>Yañez</u>	18	San Carlos

Cláusula HAVING

- No se pueden usar funciones de agrupación en la cláusula WHERE de un SELECT. O sea, no se puede usar el WHERE para, de forma selectiva eliminar datos que no interesan del resultado de una consulta agrupada.
- Por ejemplo, en la tabla
 examenes(<u>id_asignatura, nro_estudiante</u>, nota, fecha)
- Si hacemos:

```
SELECT nro_estudiante, avg(nota)
FROM examenes
WHERE avg (nota) >6
GROUP BY nro_estudiante;
```

 Daría un error por usar una función de agrupamiento en el WHERE

Cláusula HAVING

La cláusula HAVING hace una función parecida a la del WHERE cuando se trabaja con este tipo de funciones. Así, para listar aquellos alumnos cuya media es mayor que 6 sería:

SELECT nro_estudiante, avg(nota)
FROM examenes
GROUP BY nro_estudiante
HAVING avg (nota) >6;

 El campo referenciado en la cláusula HAVING no puede tener más de un valor por grupo. Esto significa que, en la práctica, HAVING sólo puede referenciar a funciones de agregación y columnas que se están usando en el GROUP by

Cláusula HAVING

 De cada proyecto, en el que trabajen más de dos empleados, recupere su número, su nombre y el número de empleados que trabajan en él.

SELECT NUMPROY, NOMBREPROYECTO, COUNT(*)
FROM (PROYECTO JOIN TRABAJA_EN
ON NUMPROY = NUMPROYECTO)
GROUP BY NUMPROY, NOMBREPROYECTO
HAVING COUNT(*) > 2;

- Cláusula HAVING
 - De cada proyecto, recupere su número, su nombre y el número de empleados del departamento 5 que trabajan en él.

```
SELECT P.NUMPROY, P.NOMBREPROYECTO, COUNT(*)
FROM ((PROYECTO AS P JOIN TRABAJA_EN
ON NUMPROY = NUMPROYECTO)
JOIN EMPLEADO ON DNI=DNIEMPLEADO)
WHERE DNO = 5
GROUP BY NUMPROY, NOMBREPROYECTO;
```


Ejercicios

Dado el esquema:

Almacen(<u>Codigo</u>, Ubicacion, Capacidad), Cajas(<u>Numero</u>,Contenido,Valor,Almacen), donde Almacen es FK de ALMACEN

- 1. Obtener el código y número de cajas por cada almacén.
- Obtener el código y valor promedio de las cajas por cada almacén.
- Obtener el código de los almacenes donde el valor promedio de las cajas sea mayor a 200.000.
- 4. Obtener la ubicación de los almacenes que contienen más de 500 cajas

Ejercicios

- SELECT Almacen, Count(*) FROM Cajas GROUP BY Almacen;
- SELECT Almacen, AVG(Valor) FROM Cajas GROUP BY Almacen;
- SELECT Almacen FROM Cajas GROUP BY Almacen HAVING AVG(Valor) > 200000;
- SELECT Ubicacion FROM Almacen WHERE Codigo IN (SELECT Almacen FROM Cajas GROUP BY Almacen HAVING Count (*) > 500);
- Ó SELECT A.Ubicacion FROM Almacen AS A JOIN
 (SELECT Almacen FROM Cajas GROUP BY Almacen HAVING Count (*) > 500) AS B ON A.Codigo = B.Almacen;

Creación BD Ejemplo

```
Codigo integer,
Ubicacion varchar(30),
Capacidad integer,
PRIMARY KEY (Codigo));

Create Table Cajas(
Numero integer,
Contenido varchar(30),
Valor integer,
Almacen integer,
PRIMARY KEY (Numero),
FOREIGN KEY (Almacen) REFERENCES Almacen (Codigo));
```

Create Table Almacen(