Exercises from $Algebraic\ Topology$ by Allen Hatcher

Tyler Jensen | tyjensen222@gmail.com

January 21, 2025

Contents

0	Some Underlying Geometric Notions	1
	Exercise 0.1 [Complete]	1
	Exercise 0.2 [TODO]	1
1	Fundamental Group	3

iv CONTENTS

Chapter 0

Some Underlying Geometric Notions

Exercise 0.1 [Complete] Construct an explicit deformation retraction of the torus with one point deleted onto a graph of two circles intersecting at a point, namely, longitude and meridian circles of the torus.

Solution. Consider the fundamental square of the torus with a point removed:

where the deformation retract of the removed point retaracts to the boundary of the square; identifying the sides gives a bouquet of two circles:

where the point at the intersection of the circles is the identification of the four corners.

Alternatively, let $p \in T$ be the removed point. Choose your favorite open set U about p. Retract U to the meridian, so that T is now missing a longitudinal strip, contracted to a line spanning the meridial width of U. Then there are two open copies of S^1 seperated by this width; contract them along the meridian in the opposite direction of each other. Then, exactly two copies of S^1 are left, connected by a single point.

Exercise 0.2 [TODO] Construct an explicit deformation retract from $\mathbb{R}^n - \{0\}$ to S^{n-1} . Solution. Define a map

$$h: (\mathbb{R}^n - \{0\}) \times I \to \mathbb{R}^n - \{0\}$$

via

$$h(x,t) := (1-t)x + \frac{tx}{||x||}$$

where $||\cdot||$ is the Euclidean norm in \mathbb{R}^n . Then, h(x,0)=x and h(1)=x/||x||, retracting each point to a point on S^{n-1} .

Chapter 1 Fundamental Group

... content ...