PINSEL

Registros de configuración de los pines

LPC_PINCON->PINSELx

David Trujillo

Selección de función de los pines. x de 0 a 9, 2 registros por puerto [R/W]

- 31:0 [0]: 2 bits por pin.
 - 00 = Generalmente GPIO
 - o 01 = Función 1
 - o 10 = Función 2
 - o 11 = Función 3

LPC_PINCON->PINMODEx

Configura las resistencias de entrada en los pines. x de 0 a 9, 2 registros por puerto [R/W]

- 31:0 [0]: 2 bits por pin.
 - o 00 = Pull-up
 - o 01 = Repeater Se habilita PU o PD según el nivel del pin. Para evitar estado flotante y no consumir energía.
 - o 10 = None
 - o 11 = Pull-down

LPC_PINCON->PINMODE_ODx

Configura los pines como de drenador abierto. x de 0 a 4 [R/W]

- 31:0 [0]: 1 bit por pin.
 - o 0 = Normal
 - 1 = Open-drain

David Trujillo

Drivers de configuración de los pines

Estructuras de configuración

- PINSEL_CFG_Type
 - uint8_t Portnum:
 - PINSEL_PORT_x x de 0 a 4.
 - uint8_t Pinnum:
 - PINSEL_PIN_x x de 0 a 31.
 - o uint8_t Funcnum:
 - PINSEL_FUNC_x x de 0 a 3.
 - uint8_t Pinmode:
 - PINSEL_PINMODE_PULLUP
 - PINSEL_PINMODE_TRISTATE
 - PINSEL_PINMODE_PULLDOWN
 - uint8_t OpenDrain:
 - PINSEL_PINMODE_NORMAL
 - PINSEL_PINMODE_OPENDRAIN

PINSEL_ConfigPin(PinCfg)

Configura un pin

• PinCfg: Puntero a estructura de configuración.

David Trui illo

GPIO

Pines disponibles

- Puerto 0: [0-11], [15-30]; pueden interrumpir
- Puerto 1: [0-1], [4], [8-10], [14-31]
- Puerto 2: [0-13]; pueden interrumpir
- Puerto 3: [25-26]
- Puerto 4: [28-29]

Registros de los GPIO

LPC_GPIOx->FIODIR

David Trujillo

Dirección de los pines [R/W]

• 31:0 [0]: 0 = Entrada , 1 = Salida , 1 bit por pin.

LPC_GPIOx->FIOMASK

Máscara de bits [R/W]

• 31:0 [0]: Habilita la lectura y escritura de cada pin, 1 bit por pin.

01

LPC_GPIOx->FIOPIN

Estado de los pines [R/W]

• 31:0 [0]: Estado de cada pin, 1 bit por pin.

01

LPC_GPIOx->FIOSET

Pone en alto los pines a los que les asigne un 1 en este registro [R/W]

• 31:0 [0] 1 bit por pin.

David Trujillo

LPC_GPIOx->FIOCLR

Pone en bajo los pines a los que les asigne un 1 en este registro [WO]

• 31:0 [0] 1 bit por pin.

LPC_GPIOINT->IOxIntEnR

Habilita las interrupciones por flanco de subida en el puerto x [R/W]

• 31:0 [0]

LPC_GPIOINT->IOxIntEnF

Habilita las interrupciones por flanco de bajada en el puerto x [R/W]

• 31:0 [0]

LPC_GPIOINT->IntStatus

Estado de las interrupciones [RO]

- 0 P0Int [0]: Se pone en 1 cuando hay por lo menos una interrupción pendiente en el puerto 0.
- 2 P2Int [0]: Se pone en 1 cuando hay por lo menos una interrupción pendiente en el puerto 2.

LPC_GPIOINT->IOxIntStatR

David Truiillo

Estado de las interrupciones por flanco de subida en el puerto $x\ [RO]$

• 31:0 [0]: Se pone en 1 cuando hubo una interrupción por flanco de subida en el pin correspondiente.

LPC_GPIOINT->IOxIntStatF

Estado de las interrupciones por flanco de bajada en el puerto x [RO]

• 31:0 [0]: Se pone en 1 cuando hubo una interrupción por flanco de bajada en el pin correspondiente.

LPC_GPIOINT->IOxIntClr

• 31:0 [0]

Drivers de los GPIO

David Trujillo

GPIO_SetDir(portNum, bitValue, dir)

Define la dirección de los pines

- portNum: Puerto a configurar. 0 al 4
- bitValue: 0 a 0xFFFFFFFF para elegir los pines a configurar.
- dir: 0 = Entrada , 1 = Salida

GPIO_SetValue(portNum, bitValue)

Pone en alto pines específicos (salidas únicamente)

- portNum: Puerto a configurar. 0 al 4
- bitValue: 0 a 0xFFFFFFFF para elegir los pines a configurar.

GPIO_ClearValue(portNum, bitValue)

Pone en bajo pines específicos (salidas únicamente)

- portNum: Puerto a configurar. 0 al 4
- bitValue: 0 a 0xFFFFFFFF para elegir los pines a configurar.

uint32_t GPIO_ReadValue(portNum) David

Retorna el estado de los pines de un puerto

• portNum: Puerto a leer. 0 al 4

FIO_SetMask(portNum, bitValue, maskValue)

Habilita o deshabilita la máscara de pines específicos (salidas únicamente)

- portNum: Puerto a configurar. 0 al 4
- bitValue: 0 a 0xFFFFFFFF para elegir los pines a configurar.
- maskValue:
 - o 0 : Deshabilita la máscara
 - o 1 : Habilita la máscara

GPIO_IntCmd(portNum, bitValue, edgeState)

Habilita las interrupciones por flanco de subida o bajada (P0.0-P0.30, P2.0-P2.13)

- portNum: Puerto a configurar. 0 o 2 únicamente.
- bitValue: 0 a 0xFFFFFFFF para elegir los pines a configurar. No hace |= con el registro, lo sobreescribe.
- edgeState:
 - o 0 : Flanco de subida
 - o 1 : Flanco de bajada

NVIC_EnableIRQ(EINT3_IRQn)

David Trujillo

Habilita la interrupción en el NVIC

EINT3_IRQHandler()

Handler de la interrupción de GPIO

FunctionalState GPIO_GetIntStatus(portNum, pinNum, edgeState)

Devuelve el estado de la interrupción (1 o 0) de un pin (P0.0-P0.30, P2.0-P2.13)

• portNum: Puerto a leer. 0 o 2 únicamente.

- pinNum: Pin a leer. 0 al 30 para el puerto 0 y 0 al 13 para el puerto 2.
- edgeState: Estado que se quiere leer.
 - o 0: Flanco de subida
 - o 1 : Flanco de bajada

GPIO_ClearInt(portNum, bitValue)

David Trujillo

Limpia la interrupción de un pin (P0.0-P0.30, P2.0-P2.13)

- portNum: Puerto a limpiar. 0 o 2 únicamente.
- bitValue: Elección de los pines a limpiar.

INTERRUPCIONES EXTERNAS

Pines disponibles

- EINTO: P2[10]. Func 01.
- EINT1: P2[11]. Func 01.
- EINT2: P2[12]. Func 01.
- EINT3: P2[13]. Func 01.

Registros de las interrupciones externas

LPC_SC->EXTINT

Registros de flag de interrupciones externas [R/W]

- 0 EINTO [0]: Se limpia escribiendo 1. En modo de nivel, solo se puede limpiar si el pin no está en el nivel configurado para interrumpir.
- 1 EINT1 [0]: Idem.
- 2 EINT2 [0]: Idem.
- 3 EINT3 [0]: Idem.

David Trujillo

LPC_SC->EXTMODE

Registros de configuración de modo de las interrupciones externas [R/W]

- 0 EXTMODEO [0]: Se debe deshabilitar la interrupción antes de cambiar el modo, y limpiar el EXTINT correspondiente antes de habilitarla.
 - 0 = Nivel.
 - 1 = Flanco.
- 1 EXTMODE1 [0]:
- 2 EXTMODE2 [0]:
- 3 EXTMODE3 [0]:

LPC_SC->EXTPOLAR

Registros de configuración de los flancos de las interrupciones externas [R/W]

- 0 EXTPOLARO [0]: Se debe deshabilitar la interrupción antes de cambiar el modo, y limpiar el EXTINT correspondiente antes de habilitarla.
 - 0 = Nivel bajo o Flanco de bajada.
 - 1 = Nivel alto o Flanco de subida.
- 1 EXTPOLAR1 [0]:
- 2 EXTPOLAR2 [0]:
- 3 EXTPOLAR3 [0]:

Drivers de las interrupciones externas

David Trujillo

Estructuras de configuración

- EXTI_InitTypeDef
 - EXTI_Line:
 - EXTI_EINTx x de 0 a 3.
 - EXTI_Mode:
 - EXTI_MODE_LEVEL_SENSITIVE
 - EXTI_MODE_EDGE_SENSITIVE
 - EXTI_polarity:
 - EXTI_POLARITY_LOW_ACTIVE_OR_FALLING_EDGE
 - EXTI_POLARITY_HIGH_ACTIVE_OR_RISING_EDGE

EXTI_Init()

Limpia los flags de interrupción y configura todo a 0

EXTI_DeInit()

No hace nada

David Trujillo

EXTI_Config(EXTICfg)

Configura una interrupción externa

• EXTICfg: Estructura de configuración.

NVIC_EnableIRQ(EINTx_IRQn)

Habilita la interrupción externa x en el NVIC

x [0-3].

EINTx_IRQHandler(void)

Handlers de la interrupción externa x [0-3]

EXTI_SetMode(EXTILine, mode)

Configura el modo de una interrupción externa

- EXTILine: Línea a configurar.
 - EXTI_EINTx x de 0 a 3.
- mode:
 - EXTI_MODE_LEVEL_SENSITIVE
 - EXTI_MODE_EDGE_SENSITIVE

David Trujillo

EXTI_SetPolarity(EXTILine, polarity)

Configura la polaridad de una interrupción externa

- EXTILine: Línea a configurar.
 - EXTI_EINTx x de 0 a 3.
- polarity:
 - EXTI_POLARITY_LOW_ACTIVE_OR_FALLING_EDGE
 - EXTI_POLARITY_HIGH_ACTIVE_OR_RISING_EDGE

EXTI_ClearEXTIFlag(EXTILine)

Limpia el flag de una interrupción externa

- EXTILine: Interrupción a limpiar.
 - EXTI_EINTx x de 0 a 3.

SYSTICK

Registros del SysTick

SysTick->CTRL

David Trujillo

Registro de control del SysTick [R/W]

- 0 ENABLE [0]: Habilita el contador.
- 1 TICKINT [0]: Habilita la interrupción. Interrumpe cuando el contador llega a 0.
- 2 CLKSOURCE [1]: Selecciona la fuente de clock.
 - o Fuente de clock externa (STCLCK).
 - o 1 Fuente de clock interna.
- 16 COUNTFLAG [0]: Bandera de conteo. Se pone en 1 cuando el contador llega a 0. Se limpia leyéndola.

SysTick->LOAD

Registro de recarga del SysTick [R/W]

• 23:0 RELOAD [0]: Valor de recarga. Cuando el contador llega a 0, vuelve a contar desde este valor.

SysTick->VAL

Registro de valor actual del SysTick [R/W]

David Truiillo

• 23:0 CURRENT [0]: Valor actual del contador.

SysTick->CALIB

Registro de calibración del SysTick [R/W]

- 23:0 TENMS [0x0F 423F]: Valor de calibración. Contiene el valor de carga necesario para contar 10ms a 100MHz.
- 30 SKEW [0]: Indica si con el valor de TENMS se puede considerar preciso el conteo de 10ms.
 - o Bl conteo se considera preciso.
 - o 1 El conteo no es preciso.
- 31 NOREF [0]: Indica si existe un reloj externo de referencia.
 - o 0 Disponible.
 - o 1 No disponible.

Drivers del SysTick

SYSTICK_InternalInit(time)

Inicializa el SysTick con el CPU clock y carga (cclk/1000)*time - 1 en LOAD

• time: Tiempo en ms. Tiempo máximo igual a 1/SystemCoreClock * (2²⁴) * 1000 (ms)

SYSTICK_ExternalInit(freq, time)

David Trujillo

Inicializa el SysTick con un clock externo y carga (freq/1000)*time - 1 en LOAD

- freq: Frecuencia del clock externo.
- time: Tiempo en ms. Tiempo máximo igual a 1/freq * (2²⁴) * 1000 (ms)

SYSTICK_Cmd(NewState)

Habilita o deshabilita el contador del SysTick

NewState: ENABLE o DISABLE

SYSTICK_IntCmd(NewState)

Habilita o deshabilita la interrupción del SysTick

• NewState: ENABLE o DISABLE

SysTick_Handler()

Handler de la interrupción del SysTick

uint32_t SYSTICK_GetCurrentValue()

Devuelve el valor actual del contador del SysTick (VAL)

SYSTICK_ClearCounterFlag()

Limpia la bandera de conteo del SysTick (COUNTFLAG)

SysTick_Config(ticks)

Configura el SysTick con un valor de recarga, habilita las interrupciones e inicia el contador

• ticks: Valor de recarga. Máximo 2²⁴ - 1 = 16777215

TIMERS

Pines disponibles

David Trujillo

- Timer 0:
 - CAP0.0: P1[26]. Func 11.
 - o CAP0.1: P1[27]. Func 11.
 - o MAT0.0: P1[28]. Func 11. P3[25] Func 10.
- MAT0.1: P1[29]. Func 11. P3[26] Func 10.
- Timer 1:
 - CAP1.0: P1[18]. Func 11.
 - o CAP1.1: P1[19]. Func 11.
 - o MAT1.0: P1[22]. Func 11.
 - MAT1.1: P1[25]. Func 11.
- Timer 2:
 - o CAP2.0: P0[4]. Func 11.
 - o CAP2.1: P0[5]. Func 11.
 - o MAT2.0: P0[6]. Func 11. P4[28] Func 10. • MAT2.1: P0[7]. Func 11. P4[29] Func 10.
 - MAT2.2: P0[8]. Func 11.
 - MAT2.3: P0[9]. Func 11.
- Timer 3:
 - o CAP3.0: P0[23]. Func 11.
 - o CAP3.1: P0[24]. Func 11.
 - MAT3.0: P0[10]. Func 11.
 - MAT3.1: P0[11]. Func 11.

Registros de los Timers

LPC_SC->PCONP

Power para los Timers

- 1 PCTIM0 [0]: Habilita el Timer 0.
- 2 PCTIM1 [0]: Habilita el Timer 1.
- 22 PCTIM2 [0]: Habilita el Timer 2
- 23 PCTIM3 [0]: Habilita el Timer 3.

LPC_SC->PCLKSEL0

Clock para los Timers 0 y 1

- 3:2 PCLK_TIMER0 [0]:
 - o 00 = CCLK/4
 - o 01 = CCLK
 - 0 10 = CCLK/2 o 11 = CCLK/8
- 5:4 PCLK_TIMER1 [0]

LPC_SC->PCLKSEL1

Clock para los Timers 2 y 3

- 13:12 PCLK_TIMER2 [0]
- 15:14 PCLK_TIMER3 [0]

LPC_TIMx->IR

Flags de interrupción del timer LPC_TIMx

- David Trujillo
- 0 MR0 [0]: Interrupción por coincidencia con MR0.
- 1 MR1 [0]: Interrupción por coincidencia con MR1.
- 2 MR2 [0]: Interrupción por coincidencia con MR2.
- 3 MR3 [0]: Interrupción por coincidencia con MR3.
- 4 CR0 [0]: Interrupción por evento de captura en CR0.
- 5 CR1 [0]: Interrupción por evento de captura en CR1.

LPC_TIMx->TCR

Control del Timer LPC_TIMx

- 0 CE [0]: Habilita el contador.
- 1 CR [0]: Resetea el TC y PC en el próximo flanco de PCLK. Debe ser limpiado por software para seguir contando.

LPC_TIMx->CTCR

Control de modo del timer LPC_TIMx

• 1:0 CTM [0]:

David Truiillo

- o 00 = Timer Mode
- o 01 = Counter Mode, captura en flanco de subida
- 10 = Counter Mode, captura en flanco de bajada
- 11 = Counter Mode, captura en flanco de subida y bajada
- 3:2 CIS [0]:
 - o 00 = CAPx.0
 - 01 = CAPx.1 En modo contador, los 3 bits del CAP seleccionado como captura de evento se ponen en 0 (CCR); sin embargo, el otro CAP se puede seguir usando para interrumpir o capturar el TC

LPC_TIMx->CCR

Control de captura del timer LPC_TIMx

- 0 CAPORE [0]: CAPO en RE causa que TC se copie a CRO.
- 1 CAP0FE [0]: CAP0 en FE causa que TC se copie a CR0.
- 2 CAPOI [0]: Interrumpe en el flanco habilitado (pueden ser ambos).
- 3 CAP1RE [0]: CAP1 en RE causa que TC se copie a CR1.
- 4 CAP1FE [0]: CAP1 en FE causa que TC se copie a CR1.
- 5 CAP1I [0]: Interrumpe en el flanco habilitado (pueden ser ambos).

LPC_TIMx->CR0

LPC_TIMx->CR1

Registros de captura del timer LPC_TIMx

David Trujillo

• 31:0 CR [0]: Copia el valor de TC cuando ocurre el evento habilitado en CCR.

LPC_TIMx->TC

• 31:0 TC [0]: Incrementa cada que PC alcanza el valor de PR, si no se reinicia cuenta hasta 0xFFFF FFFF y regresa a 0 sin interrumpir (se puede interrumpir con un match si se necesita)

LPC_TIMx->PR

Prescaler del timer LPC_TIMx

• 31:0 PR [0]: Cada que PC alcanza PR, TC incrementa en 1, si PR=0, TC++ cada ciclo de reloj. En modo contador, se pone en 0 para contar todos los eventos.

LPC_TIMx->PC

Prescaler counter del timer LPC_TIMx

• 31:0 PC [0]: Cuenta cada ciclo de reloj, si PC=PR, TC incrementa en 1.

LPC_TIMx->MR0

LPC_TIMx->MR1

LPC_TIMx->MR2

David Trujillo

LPC_TIMx->MR3

Registros de match del timer LPC_TIMx

• 31:0 MR [0]: Se comparan continuamente con TC, si son iguales se dispara el evento controlado por MCR.

LPC_TIMx->MCR

Control de match del timer LPC_TIMx

- 0 MR0I [0]: Interrumpe cuando MR0=TC.
- 1 MR0R [0]: Resetea TC cuando MR0=TC.
- 2 MROS [0]: Detiene TC y PC cuando MR0=TC, además TCR[0]=0.

- 5:3: Idem para MR1.
- 8:6: Idem para MR2.
- 11:9: Idem para MR3.

LPC_TIMx->EMR

Control de salida del match del timer LPC_TIMx

David Trujillo

- 0 EM0 [0]: Valor de salida para pin MATx.0, comportamiento controlado por EMC0.
- 1 EM1 [0]: Idem para MATx.1.
- 2 EM2 [0]: Idem para MATx.2 (solo en timer 2).
- 3 EM3 [0]: Idem para MATx.3 (solo en timer 2).
- 5:4 EMC0 [0]: Comportamiento de MATx.0:
 - ∘ 00 = No cambia
 - o 01 = Pone a 0 en match
 - o 10 = Pone a 1 en match
 - 11 = Alterna el valor en match
- 7:6 EMC1 [0]: Idem para MATx.1.
- 9:8 EMC2 [0]: Idem para MATx.2 (solo en timer 2).
- 11:10 EMC3 [0]: Idem para MATx.3 (solo en timer 2).

Drivers de los Timers

Estructuras de configuración

- TIM_TIMERCFG_Type
 - uint8 t PrescaleOption:
 - TIM_PRESCALE_TICKVAL Valor de prescaler en ticks.
 - TIM_PRESCALE_USVAL: Valor de prescaler en microsegundos.
 - o uint32_t PrescaleValue:
- TIM_COUNTERCFG_Type

David Trujillo

- uint8_t CounterOption:
 - TIM_COUNTER_INCAP0: Captura en pin CAPx.0 para TIMERx.
 - TIM_COUNTER_INCAP1: Captura en pin CAPx.1 para TIMERx.
- o uint8_t CountInputSelect:
 - La documentación dice que los argumentos van en el campo CounterOption, pero la función usa CountInputSelect, posiblemente mal documentado. No manipular esta estructura de forma directa.
- TIM_MATCHCFG_Type
 - o uint8_t MatchChannel: Canal de match.
 - **•** 0
 - **1**
 - **2**
 - o uint8_t IntOnMatch: Habilita interrupción en match.
 - ENABLE o DISABLE
 - uint8_t StopOnMatch: Detiene el timer en match.
 - ENABLE o DISABLEuint8_t ResetOnMatch: Resetea el timer en match.
 - ENABLE O DISABLE
 - ENABLE O DISABLE
 - o uint8_t ExtMatchOutputType: Tipo de salida en match.
 - TIM_EXTMATCH_NOTHING
 - TIM_EXTMATCH_LOW
 - TIM_EXTMATCH_HIGH
 - TIM_EXTMATCH_TOGGLE
 - o uint8_t MatchValue: Valor de match.
- TIM_CAPTURECFG_Type
 - o uint8_t CaptureChannel: Canal de captura.

David Trujillo

- **•** 0
- **1**
- o uint8_t RisingEdge: Habilita captura en flanco de subida.
 - ENABLE O DISABLE
- o uint8_t FallingEdge: Habilita captura en flanco de bajada.
 - ENABLE o DISABLE
- o uint8_t IntOnCaption: Habilita interrupción en captura.
 - ENABLE o DISABLE

TIM_Init(LPC_TIMx, TimerCounterMode, TIM_ConfigStruct)

- LPC_TIMx: Timer a inicializar. x = [0-3]
- TimerCounterMode: Modo del timer.
 - TIM_TIMER_MODE Modo timer
 - TIM COUNTER RISING Modo contador, captura en flanco de subida
 - TIM_COUNTER_FALLING Modo contador, captura en flanco de bajada
 - TIM_COUNTER_ANY Modo contador, captura en flanco de subida y bajada
- TIM_ConfigStruct: Puntero TIM_TIMERCFG_Type para timer o TIM_COUNTERCFG_Type para contador.

TIM_DeInit(LPC_TIMx)

David Trujillo

Detiene el timer y deshabilita el power

• LPC_TIMx: Timer a desinicializar. x = [0-3]

TIM_ClearIntPending(LPC_TIMx, IntFlag)

Limpia la bandera de interrupción de un timer

- IntFlag: Bandera a limpiar.
 - TIM_MR0_INT Match 0
 - TIM_MR1_INT Match 1
 - TIM_MR2_INT Match 2
 - TIM_MR3_INT Match 3
 - TIM_CR0_INT Captura 0
 - TIM_CR1_INT Captura 1

TIM_ClearIntCapturePending(LPC_TIMx, IntFlag)

Idem que la anterior, pero para capturas. Función totalmente al pedo IMHO $\,$

- IntFlag: Bandera a limpiar.
 - o O Captura O (no pasar TIM_CRO_INT porque la función inicia desplazando 4 bits)
 - o 1 Captura 1 (no pasar TIM_CR1_INT porque la función inicia desplazando 4 bits)

FlagStatus TIM_GetIntStatus(LPC_TIMx, IntFlag)

David Trujillo

Devuelve el estado de la bandera de interrupción de un timer (1 o 0)

- IntFlag: Bandera a leer.
 - TIM_MR0_INT Match 0
 - TIM_MR1_INT Match 1
 - TIM_MR2_INT Match 2
 - TIM_MR3_INT Match 3
 - TIM_CR0_INT Captura 0
 - TIM_CR1_INT Captura 1

FlagStatus TIM_GetIntCaptureStatus(LPC_TIMx, IntFlag)

Idem que la anterior, pero para capturas. Función totalmente al pedo IMHO $\,$

- IntFlag: Bandera a leer.
 - o 0 Captura 0 (no pasar TIM_CR0_INT porque la función inicia desplazando 4 bits)
 - o 1 Captura 1 (no pasar TIM_CR1_INT porque la función inicia desplazando 4 bits)

TIM_ConfigStructInit(TimerCounterMode, TIM_ConfigStruct)

Inicializa la estructura de configuración TIM_TIMERCFG_Type o TIM_COUNTERCFG_Type

- TimerCounterMode: Modo del timer.
 - TIM_TIMER_MODE Modo timer
- David Trujili
- TIM_COUNTER_RISING Modo contador, captura en flanco de subida
- TIM_COUNTER_FALLING Modo contador, captura en flanco de bajada
- TIM_COUNTER_ANY Modo contador, captura en flanco de subida y bajada
- TIM_ConfigStruct: Puntero TIM_TIMERCFG_Type para timer o TIM_COUNTERCFG_Type para contador.

TIM_ConfigMatch(LPC_TIMx, TIM_MatchConfigStruct)

Configura el valor del match, las interrupciones y el comportamiento de la salida

• TIM_MatchConfigStruct: Puntero a estructura de configuración de tipo TIM_MATCHCFG_Type

TIM_UpdateMatchValue(LPC_TIMx, MatchChannel, MatchValue)

Configura el valor de match

- MatchChannel: Canal de match.
 - 0 0
 - 0 1
 - 23
- MatchValue: Nuevo valor de match.

David Truiillo

TIM_SetMatchExt(LPC_TIMx, ext_match)

Configura el comportamiento de la salida en match

- ext_match: Comportamiento de la salida en match.
 - TIM_EXTMATCH_NOTHING
 - TIM_EXTMATCH_LOW
 - TIM_EXTMATCH_HIGH
 - TIM_EXTMATCH_TOGGLE

NVIC_EnableIRQ(TIMERx_IRQn)

Habilita la interrupción del timer en el NVIC

• TIMERx_IRQn: Interrupción del timer. x = [0-3]

TIMERx_IRQHandler()

Handler de la interrupción del timer x [0-3]

TIM_ConfigCapture(LPC_TIMx, TIM_CaptureConfigStruct)

Configura el flanco de captura

David Trujillo

David Trujillo

• TIM_CaptureConfigStruct: Puntero a estructura de configuración de tipo TIM_CAPTURECFG_Type

TIM_Cmd(LPC_TIMx, NewState)

Habilita o deshabilita el contador (TCR[0]), no deshabilita el power

• NewState: ENABLE o DISABLE

uint32_t TIM_GetCaptureValue(LPC_TIMx, CaptureChannel)

Devuelve el valor de TC que se capturó (CRx)

- CaptureChannel: Canal de captura.
 - TIM COUNTER INCAPO
 - TIM_COUNTER_INCAP1

TIM_ResetCounter(LPC_TIMx)

Resetea el timer (TCR[1])

ADC

Pines disponibles

- AD0: P0[23]. Func 01.
- AD1: P0[24]. Func 01.
- AD2: P0[25]. Func 01.
- AD3: P0[26]. Func 01.
- AD4: P1[30]. Func 11.
- AD5: P1[31]. Func 11.
 AD6: P0[3]. Func 10.
- AD7: P0[3]. Func 10.
 AD7: P0[2]. Func 10.

AD7. PO[2]. Pulic 10.

Registros del ADC

LPC_SC->PCONP

Power para el ADC [R/W]

• 12 PCADC [0]: Limpiar PDN antes de deshabilitar, habilitar PCADC antes del PDN.

LPC_SC->PCLKSEL0

David Trujillo

Clock para el ADC [R/W]

- 25:24 PCLK_ADC [0]:
 - 00 = CCLK/4
 - o 01 = CCLK
 - o 10 = CCLK/2
 - o 11 = CCLK/8

LPC_ADC->ADCR

Configuración del ADC [R/W]

- 7:0 SEL [0x1]: Selección de canal, en modo SW se debe habilitar 1 a la vez.
- 15:8 CLKDIV [0]: [PCLK_ADC / (CLKDIV + 1)] <= 13 MHz
- 16 BURST [0]: Si se habilita, START=000 y ADINTEN:8=0.
- 21 PDN [0]: Habilita el ADC.
- 26:24 START [0]:
 - o 001 = Inicia la conversión.
 - o 010 = EINTO (P2[10]).
 - o 011 = CAP0.1 (P1[27]).
 - 100 = T0MR1.
 - o 101 = T0MR3.
 - 110 = T1MR0.
 - o 111 = T1MR1.
- 27 EDGE [0]: 0 = Subida , 1 = Bajada ; decide flanco de 010-111 de START .

LPC_ADC->ADGDR

David Trujillo

`Estado Global [R/W]

- 15:4 RESULT [X]: Última conversión.
- 26:24 CHN [X]: Canal que se convirtió.
- 30 OVERRUN [0]: Resultado sobrescrito, siempre 1 en burst, se limpia leyendo.
- 31 DONE [0]: Conversión lista, se limpia leyendo ADGDR o escribiendo ADCR. Si se escribe ADCR durante una conversión, se pone en 1 y se reinicia la conversión.

LPC_ADC->ADINTEN

Interrupciones [R/W]

- 7:0 ADINTENx [0]: Habilita interrupción por canal x , 1 = habilita.
- 8 ADGINTEN [1]: θ = Interrumpen los canales habilitados, 1 = interrumpe DONE de ADGDR.

LPC_ADC->ADDRx

Estado específico del canal x [0-7] [RO]

- 15:4 RESULT [X]: Última conversión.
- 30 OVERRUN [0]: Resultado sobrescrito, siempre 1 en burst, se limpia leyendo.
- 31 DONE [0]: Conversión lista, se limpia leyendo.

LPC ADC->ADSTAT

Estado Global [RO]

David Truiillo

- 7:0 DONE [0]: Repite el DONE de ADDRx.
- 15:8 OVERRUN [0]: Repite el OVERRUN de ADDRx.
- 16 ADINT [0]: Se pone en 1 cuando hay algún DONE en 1, si no hay ningún DONE se limpia, por lo que si se interrumpe por software, se limpia leyendo ADGDR.

Drivers del ADC

ADC_Init(LPC_ADC, rate)

Activa el Power al adc, setea CLKDIV para tener el rate deseado y habilita el PDN del ADC

- LPC_ADC: ADC a inicializar, es el único que hay
- rate: Frecuencia de muestreo, máximo 200 kHz

ADC_BurstCmd(LPC_ADC, NewState)

Habilita o deshabilita el modo burst

• NewState: ENABLE o DISABLE

David Trujillo

ADC_StartCmd(LPC_ADC, start_mode)

Configura la forma de inicio de la conversión

- start_mode:
 - ADC_START_CONTINUOUS : Para modo burst
 - ADC_START_NOW: Inicia una conversión
 - ADC_START_ON_EINT0 : Inicia en flanco de EINT0
 - ADC_START_ON_CAP01 : Inicia en flanco de CAP0.1
 - ADC_START_ON_MAT01 : Inicia en flanco de TOMR1
 - ADC_START_ON_MAT03 : Inicia en flanco de TOMR3
 - ADC_START_ON_MAT10 : Inicia en flanco de T1MR0
 - ADC_START_ON_MAT11 : Inicia en flanco de T1MR1

ADC_ChannelCmd(LPC_ADC, channel, NewState)

Habilita o deshabilita un canal

- channel: Canal a habilitar
- NewState: ENABLE o DISABLE

ADC_EdgeStartConfig(LPC_ADC, EdgeOption)

Configura el flanco de inicio de la conversión

David Truiillo

- EdgeOption:
 - ADC START ON RISING: Inicia en flanco de subida
 - ADC_START_ON_FALLING : Inicia en flanco de bajada

ADC_IntConfig(LPC_ADC, IntType, NewState)

Habilita o deshabilita la interrupción de un canal o del bit DONE de ${\sf ADGDR}$

- IntType:
 - ADC_ADINTENx : Habilita interrupción por canal x
- NewState: ENABLE o DISABLE

NVIC_EnableIRQ(ADC_IRQn)

Habilita la interrupción del ADC en el NVIC

ADC_IRQHandler()

Handler de la interrupción del ADC

ADC_PowerdownCmd(LPC_ADC, NewState)

Habilita o deshabilita el PDN del ADC (Innecesario si se usa ADC_Init)

• NewState: ENABLE o DISABLE

David Truiillo

uint32_t ADC_GlobalGetData(LPC_ADC)

Devuelve el valor de la última conversión (ADGDR)

uint16_t ADC_ChannelGetData(LPC_ADC, channel)

• channel: Canal a leer

FlagStatus ADC_GlobalGetStatus(LPC_ADC, StatusType)

Verifica el estado global (Overrun o Done, según StatusType)

- StatusType:
 - 0 : Overrun1 : Done

David Trujillo

FlagStatus ADC_ChannelGetStatus(LPC_ADC, channel, StatusType)

Verifica el estado de un canal (Overrun o Done, según StatusType)

- channel: Canal a leer
- StatusType:
 - o 0 : Overrun
 - o 1:Done

DAC

Pines disponibles

• AOUT: P0[26]. Func 10.

Registros del DAC

LPC_SC->PCLKSEL0

Clock para el timer asociado al DAC-DMA [R/W]

David Trujillo

- 23:22 PCLK_DAC [0]:
 - o 00 = CCLK/4
 - o 01 = CCLK
 - 10 = CCLK/2
 - o 11 = CCLK/8

LPC_DAC->DACR

Configuración del DAC [R/W]

- 15:6 VALUE [0]: Valor de salida. (VALUE x (Vrefp Vrefn) / 1024 + Vrefn)
- 16 BIAS [0]:
 - o 1 Tiempo de establecimiento de 1us y corriente de salida de 700uA. Permite actualización de 1MHz.
 - o 1 Tiempo de establecimiento de 2.5us y corriente de salida de 350uA. Permite actualización de 400kHz.

LPC_DAC->DACCTRL

Control del DAC [R/W]

- 0 INT_DMA_REQ [0]: Habilita la solicitud de DMA.
 - o 0 El bit se pone a 0 cuando se escribe en DACR.
 - o 1 El bit se pone a 1 cuando se agota el timer de DMA.
- 1 DBLBUF_ENA [0]: Habilita el dobble buffer.
 - o 0 Se actualiza la salida del DAC apenas se escribe en DACR.
 - o 1 Los datos pasan por un buffer antes de sacarlos, por sincronización. CNT_ENA debe estar habilitado.
- 2 CNT_ENA [0]:
 - o 0 El contador de time-out no se habilita.
 - 1 El contador de time-out se habilita.

David Trujillo

• 3 DMA_ENA [0]: Habilita DMA.

- 0 El acceso a DMA está deshabilitado.
- o 1 Se habilita el DMA burst request input 7.

LPC_DAC->DACCNTVAL

Valor del contador de time-out [R/W]

• 15:0 VALUE [0]

Drivers del DAC

Estructuras de configuración

DAC_CONVERTER_CFG_Type
 uint8_t DBLBUF_ENA:
 0 0 1
 uint8_t CNT_ENA:
 0 0 1
 uint8_t DMA_ENA:
 0 0 1

David Trujillo

DAC_Init(LPC_DAC)

Activa el Power al DAC, el CLK/4 y el bias de 700uA

DAC_UpdateValue (LPC_DAC, dac_value)

Actualiza el valor de salida del DAC

• dac_value: Valor de salida (0-1023).

DAC_SetBias (LPC_DAC, bias)

Setea el bias del DAC

- 0 = 700uA, 1us, 1MHz
- 1 = 350uA, 2.5us, 400kHz

DAC_ConfigDAConverterControl (LPC_DAC, DAC_ConverterConfigStruct)

Configuración del DMA (DACCTRL)

David Trujillo

• DAC_ConverterConfigStruct: Estructura DAC_CONVERTER_CFG_Type.

DAC_SetDMATimeOut(LPC_DAC, time_out)

Setea el time-out del DMA

• time_out: Valor del contador de time-out.

DMA

Registros del DMA

LPC_GPDMA->DMACIntStat

Estado de las interrupciones por canal [RO]

• 7:0 [0]: 1 bit por canal. Para limpiarla, debería preguntar si la interrupción es de TC o de error y limpiar la correspondiente.

LPC_GPDMA->DMACIntTCStat

Estado de las interrupciones por transferencia completa [RO]

• 15:0 [0]: 1 bit por canal. Se pone en 1 cuando se completa una transferencia (todo el TransferSize)

LPC_GPDMA->DMACIntTCClear

David Truiillo

Limpia las interrupciones por transferencia completa [WO]

• 15:0 [0]: 1 bit por canal. Escribir un 1 limpia la interrupción del canal correspondiente.

LPC_GPDMA->DMACIntErrStat

Estado de las interrupciones por error [RO]

• 15:0 [0]: 1 bit por canal. Se pone en 1 cuando hay un error en la transferencia.

LPC_GPDMA->DMACIntErrClr

Limpia las interrupciones por error [WO]

David Trujillo

• 15:0 [0]: 1 bit por canal. Escribir un 1 limpia la interrupción del canal correspondiente.

LPC_GPDMA->DMACRawIntTCStat

Estado de las interrupciones por transferencia completa sin enmascarar [RO]

• 15:0 [0]: 1 bit por canal.

LPC_GPDMA->DMACRawIntErrStat

Estado de las interrupciones por error sin enmascarar [RO]

• 15:0 [0]: 1 bit por canal.

LPC_GPDMA->DMACEnbldChns

Estado de los canales [RO]

- 7:0 [0]: 1 bit por canal. NO habilita los canales, solo muestra su estado.
 - o 0 = Canal deshabilitado.
 - o 1 = Canal habilitado.

LPC_GPDMA->DMACSoftBReq

David Trujillo

Solicitud de transferencia burst [R/W]

Si se escribe un 1 en un bit, se solicita una transferencia burst en el canal correspondiente. Se pone en 0 cuando se completa la transferencia burst.

- 0 [0]: SSP0 Tx
- 1 [0]: SSP0 Rx
- 2[0]: SSP1 Tx
- 3 [0]: SSP1 Rx
- 4 [0]: ADC
- 5[0]: I2S Ch0
- 6[0]: I2S Ch1
- 7 [0]: DAC
- 8[0]: UARTO TX/MATO.0
- 9[0]: UARTO Rx/MATO.1
- 10 [0]: UART1 Tx/MAT1.0
- 11 [0]: UART1 Rx/MAT1.1
- 12 [0]: UART2 Tx/MAT2.0
- 13 [0]: UART2 Rx/MAT2.1
- 14 [0]: UART3 Tx/MAT3.0
- 15[0]: UART3 Rx/MAT3.1

LPC_GPDMA->DMACSoftSReq

Solicitud de transferencia simple [R/W]

Si se escribe un 1 en un bit, se solicita una transferencia simple en el canal correspondiente. Se pone en 0 cuando se completa la transferencia simple.

• 15:0 [0]: Mismas fuentes que DMACSoftBReq.

LPC_GPDMA->DMACSoftLBReq

David Trujillo

Solicitud de última transferencia de ráfaga [R/W]

• 15:0 [0]: Mismas fuentes que DMACSoftBReq.

LPC_GPDMA->DMACSoftLSReq

Solicitud de última transferencia simple [R/W]

• 15:0 [0]: Mismas fuentes que DMACSoftBReq.

LPC_GPDMA->DMACConfig

```
Configuración del DMA [R/W]
```

- 0 E [0]: Habilita el DMA.
- 1 M [0]:
 - o 0 = Little endian.
 - o 1 = Big endian.

LPC_GPDMA->DMACSync

David Trujillo

Sincronización de las solicitudes de DMA [R/W]

• 0 [0]: 0 = Sincroniza, 1 = no sincroniza.

LPC_SC->DMAREQSEL

Selección de fuente de solicitud de DMA para las fuentes compartidas (8-15) [R/W]

- 0 DMASEL08 [0]:
 - 0 = UART
 - 1 = Timer
- 1 DMASEL09 [0]
- 2 DMASEL10 [0]
- 3 DMASEL11 [0]
- 4 DMASEL12 [0]
- 5 DMASEL13 [0]
- 6 DMASEL14 [0]
- 7 DMASEL15 [0]

LPC_GPDMACHx->DMACCSrcAddr

Dirección de la fuente de la transferencia [R/W]

• 31:0 [0]: Dirección de la fuente.

LPC_GPDMACHx->DMACCDestAddr

David Trujillo

Dirección del destino de la transferencia [R/W]

• 31:0 [0]: Dirección del destino.

LPC_GPDMACHx->DMACCLLI

Dirección del siguiente LLI [R/W]

- 1:0 [0]: Siempre 0, ya que las direcciones son múltiplos de 4 (word-aligned).
- 31:2 [0]: Dirección del siguiente LLI.

LPC_GPDMACHx->DMACCControl

Control de la transferencia [R/W]

- 11:0 TransferSize [0]: Tamaño total de la transferencia.
- 14:12 SBSize [0]: Tamaño de la transferencia de burst.
 - 000 = 1
 - 001 = 4
 - 0 010 = 8
 - 011 = 16
 - o 100 = 32
 - 101 = 64110 = 128
 - o 111 = 256
- 17:15 DBSize [0]: Tamaño de la transferencia de burst.
- 20:18 SWidth [0]: Ancho de la transferencia de fuente.
 - o 000 = 8 bits
 - o 001 = 16 bits
 - o 010 = 32 bits
- 23:21 DWidth [0]: Ancho de la transferencia de destino.
- 26 SI [0]: Indica si la dirección se debe incrementar después de cada transferencia. 0 = dirección constante.
- 27 DI [0]: Indica si la dirección se debe incrementar después de cada transferencia. 0 = dirección constante.
- 31 I [0]: Interrumpe al final de la transferencia total (TransferSize).

LPC_GPDMACHx->DMACCConfig

```
Configuración de la transferencia [R/W, 17=RO]
```

- 0 E [0]: Habilita el canal.
 - o 0 = Canal deshabilitado.
 - o 1 = Canal habilitado.
- 5:1 SrcPeripheral [0]: Periférico fuente.
- 10:6 DestPeripheral [0]: Periférico destino.
- 13:11 TransferType [0]: Tipo de transferencia.
 - o 000 = M2M
 - o 001 = M2P
 - o 010 = P2M
 - o 011 = P2P
- 14 IE [0]: Máscara de interrupción de error.
- 15 ITC [0]: Máscara de interrupción de transferencia completa.
- 17 A [0]: Estado del canal.
- 18 H [0]: Ignora los pedidos de transferencia.

Drivers del DMA

Estructuras de configuración

- GPDMA_Channel_CFG_Type
 - uint32_t ChannelNum:
 - 0 a 7 . Número de canal. El canal 0 tiene la mayor prioridad.
 - o uint32_t TransferSize:
 - Tamaño total de la transferencia.
 - uint32_t TransferWidth:
 - Ancho de la transferencia.
 - o uint32_t SrcMemAddr:
 - Dirección de la fuente.
 - uint32_t DstMemAddr:
 - Dirección del destino.
 - o uint32_t TransferType:
 - GPDMA_TRANSFERTYPE_M2M
 - GPDMA_TRANSFERTYPE_M2P
 - GPDMA_TRANSFERTYPE_P2M
 - GPDMA_TRANSFERTYPE_P2P
 - o uint32_t SrcConn: Periférico fuente.
 - GPDMA_CONN_SSP0_Tx
 - GPDMA_CONN_SSP0_Rx
 - GPDMA_CONN_SSP1_Tx
 - GPDMA_CONN_SSP1_Rx
 - GPDMA_CONN_ADC
 - GPDMA_CONN_I2S_Channel_0
 - GPDMA_CONN_I2S_Channel_1
 - GPDMA_CONN_DAC
 - GPDMA_CONN_UART0_Tx
 - GPDMA_CONN_UART0_Rx
 - GPDMA_CONN_UART1_Tx
 - GPDMA_CONN_UART1_Rx
 - GPDMA_CONN_UART2_TX
 - GPDMA_CONN_UART2_Rx
 - GPDMA_CONN_UART3_Tx ■ GPDMA_CONN_UART3_Rx
 - GPDMA CONN MAT0 0
 - GPDMA_CONN_MAT0_1
 - GPDMA_CONN_MAT1_0
 - GPDMA_CONN_MAT1_1
 - GPDMA_CONN_MAT2_0
 - GPDMA_CONN_MAT2_1
 - GPDMA_CONN_MAT3_0
 - GPDMA_CONN_MAT3_1
 - \circ uint32_t DstConn: Periférico destino.
 - Idemuint32_t DMALLI:
 - Si no hay siguiente LLI, poner 0.
- GPDMA_LLI_Type
 - uint32_t SrcAddr:
 - Dirección de la fuente.
 - uint32_t DstAddr:
 - **32_t DstAddr**: ■ Dirección del destino.
 - o uint32_t NextLLI:
 - Dirección del siguiente LLI.
 - o uint32_t Control:
 - Control de la transferencia.

David Truiillo

David Truiille

GPDMA_Init()

David Trujillo

Habilita el power, limpia los registros de configuración de los canales y limpia las interrupciones

Status GPDMA_Setup(GPDMAChannelConfig)

Configura un canal, no lo habilita, devuelve 1 si la configuración fue exitosa

• GPDMAChannelConfig: Puntero a estructura de configuración de tipo GPDMA_Channel_CFG_Type

IntStatus GPDMA_IntGetStatus(type, channel)

Devuelve el estado de las interrupciones, 1 si existe una interrupción activa

- type:
 - GPDMA_STAT_INT
 - GPDMA_STAT_INTTC
 - GPDMA_STAT_INTERR
 - GPDMA_STAT_RAWINTTC
 - GPDMA_STAT_RAWINTERR
 - GPDMA_STAT_ENABLED_CH
- channel: Canal a consultar.

GPDMA_ClearIntPending(type, channel)

Limpia las interrupciones

David Trujillo

- type:
 - GPDMA_STATCLR_INTTC
 - GPDMA_STATCLR_INTERR
- channel: Canal a limpiar.

GPDMA_ChannelCmd(channelNum, NewState)

Habilita o deshabilita un canal

- channelNum: Canal a habilitar/deshabilitar.
- NewState: ENABLE o DISABLE

David Trujillo