Inductive Learning of Concept Representations from Library-Scale Bibliographic Corpora

Lukas Galke^{1,2} & Tetyana Melnychuk² & Eva Seidlmayer³ & Steffen Trog¹ & Konrad U. Förstner³ & Carsten Schultz² & Klaus Tochtermann¹

¹ ZBW, ² Kiel University, ³ ZB MED

INFORMATIK 2019, Kassel, 26.09.2019

Outline

- 1) Motivation: analyses of research dynamics
- 2) Problem statement: learning concept similarity from graph data
- 3) Approach: unsupervised training objective for graph neural nets
- 4) Quantitative and (small-scale) qualitative evaluation

Motivation

- Digital libraries accumulate a large amount of bibliographic data
- Include valuable annotations with controlled vocabularies (concept hierarchies)
- Used for multi-label classification
- Used for information retrieval
- Used for recommender systems
- What about analyses of research dynamics?

Motivation

Motivation: Research Dynamics

Motivation: Research Dynamics

How to identify scientific convergence?

- Decreasing distance over time
- $\frac{d_{t+1}(a,b)}{d_t(a,b)}$ <1 for t in [t_{start},..., t_{end}], distance metric d, arbitrary concepts a, b
- Metric learning in pairwise concept space
- Replace d(a, b) by deuclidean(f(a), f(b)), where f maps concept to vectors
- This paper: We can learn function f from data

Bibliographic Data

Bibliographic Data

Coauthorship edges between Papers

Concepts

Problem Statement

Learning Concept Representations

Given:

- a graph (V, E)
- V consists of paper nodes P and concept nodes C
- E consists of co-authorship and annotation edges
- Papers P have textual features (e.g. their title)
- Concepts C have no features

Desired output: Meaningful and useful vector representations for concepts C

Problem Statement

Learning Concept Representations

Given:

- a graph (V, E)
- V consists of paper nodes P and concept nodes C
- E consists of co-authorship and annotation edges
- Papers P have textual features (e.g. their title)
- Concepts C have no features

Desired output: Meaningful and useful vector representations for concepts C

Induced similarity corresponds to human judgments

useful for downstream tasks

Transductive vs Inductive Learning

Transductive Learning

- Look-up table for node representations
- Need further training whenever new nodes/edges appear
- Approaches: DeepWalk (Perozzi et al., KDD 2014), node2vec (Grover & Lescovec, SIGKDD 2016), TransE, (Bordes et al., NeurIPS 2013), ... (many more)

Inductive Learning

Valuable for dynamic graphs

- Node representations solely induced by node features
- Capable of dealing with unseen nodes/edges without retraining
- Approaches: GCN (Kipf & Welling, ICLR 2017), GraphSAGE (Hamilton et al., NeurIPS 2017), ... (many more)

Graph Convolution (Kipf & Welling 2017)

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ij}} \boldsymbol{W}^{(l)} \boldsymbol{h}_{j}^{(l)} + \boldsymbol{b}^{(l)} \right)$$
From layer I to I+1

1) Transform via parameters W, b

2) Aggregate neighbor representations

3) Nonlinear activation

From layer I to I+1

- 3) Nonlinear activation

Experiments

- 2.1M English research papers from economics and business economics domain
- 5,688 concepts from Standardthesaurus Wirtschaft (http://zbw.eu/stw)
- Quantitative Evaluation
 - Subset of 3,113 concepts, which belong to only one of 7 subthesauri
 - Downstream tasks: clustering and classification
- Qualitative Evaluation:
 - Nearest concept queries
 - Linear operations in latent space

Results: Clustering with k-Means

Model	S	СН	Н	С	V	ARI
Random	0.0062	13.83	0.0032	0.0030	0.0031	0.0000
Random (L2)	0.0062	13.92	0.0033	0.0031	0.0032	0.0001
LSA	-0.0207	53.45	0.0030	0.0071	0.0042	-0.0041
LSA (L2)	0.1284	96.44	0.0022	0.0025	0.0023	-0.0009
DeepWalk	0.0194	124.80	0.2165	0.2496	0.2318	0.1852
DeepWalk (L2)	0.0670	131.18	0.2930	0.2810	0.2869	0.1981
GCN	0.0667	171.13	0.1845	0.1761	0.1802	0.1178
GCN (L2)	0.0823	193.64	0.1992	0.1891	0.1940	0.1423

t-SNE Visualization

Results: Classification with linear SVMs

Model	Norm	Accuracy
LSA	None	0.2345 (SD: 0.00)
LSA	Unit L2	0.2181 (SD: 0.02)
DeepWalk	None	0.6625 (SD: 0.04)
DeepWalk	Unit L2	0.6708 (SD: 0.03)
GCN	None	0.6813 (SD: 0.03)
GCN	Unit L2	0.6496 (SD: 0.03)

Nearest Concept Queries 1/4

Query: Economic growth

Textual descriptions are never shown to the models

LSA	DeepWalk	GCN
Management information system Tobacco Internet Usage Eurobond Automobile engine	Economic adjustment Economic policy Growth policy Economic development Economic reform	Stages of growth model Growth policy Resource wealth Kuznets curve Export-led growth

Nearest Concept Queries 2/4

Query: Tax

LSA	DeepWalk	GCN
Rehabilitation hospital	Fiscal administration	Tax policy
Abortion	Tax system	Tax system
Biodiversity	Tax policy	Tax reform
Financial statement analysis	Sales tax	Taxation procedure
Association agreement	Tax reform	Tax burden

Nearest Concept Queries 3/4

Query: Germany

${\sf DeepWalk}$	GCN
Italy	East Germany
France	Austria
Comparison	West Germany
Netherlands	Lower Saxony
Austria	Western Europe
	Italy France Comparison Netherlands

Nearest Concept Queries 4/4

Query: Vehicle

LSA	DeepWalk	GCN
Pigouvian tax	Transport research	Sustainable mobility
Cargo shipping	Transport economics	Passenger transport
Cyclical unemployment	Waste treatment	Freight transport
Wage subsidy	Battery	Major electrical appliances
Financial Statement analysis	Microsystems	Traffic

Linear relationship queries 1/2

Query: Tax + Theory

LSA	DeepWalk	GCN
Tax	Tax	Theory of taxation
Theory	Theory of taxation	Theory
Financial statement analysis	Tax system	Second best
Nursing profession	Capital income	Optimal taxation
Rehabilitation hospital	Public economics	Welfare economics

Linear relationship queries 2/2

Query: *Economic growth* + *Theory*

LSA	DeepWalk	GCN
Economic growth Banking services	Economic growth Growth theory	Growth theory Neoclassical growth model
Producer cooperative	Economic model	Unbalanced growth
Licence Laboratory	Theory Endogenous growth model	Balanced growth Functional income distribution

Conclusion & Limitations

- DeepWalk works well despite using only structural features (confirms orig. paper)
- GCNs can be used for inductive representation learning
- Learned GCN representations are comparably meaningful & useful as DeepWalk's
- Limitations:
 - No ground truth for pairwise concept similarity
 - Only one dataset, but large-scale!

Next steps

- Add more structure (concept hierarchy, journals, institutions, ...)
- Use publication years for truly dynamic research analyses
- Create a ground truth for pairwise concept similarity

Github: Igalke/INFORMATIK2019-concept-representation-learning

Twitter: _lpag

E-mail: l.galke@zbw.eu

Acknowledgment

This work was supported by BMBF within the programme "Quantitative Wissenschaftsforschung" under grant numbers 01PU17013A, 01PU17013B, 01PU17013C.

