Nome: Miguel José Ferreira Cabral N.º Mec: 93091

AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e análise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ T_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{se } n > 2 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ 2 \times T_{3}\left(\frac{n}{3}\right) + n, \text{se } n \text{ é múltiplo de 3} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{3}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{caso contrário}$$

Deve utilizar aritmética inteira: n/3 é igual a $\lfloor \frac{n}{3} \rfloor$ e (n+2)/3 é igual a $\lceil \frac{n}{3} \rceil$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

T1 tem ordem de complexidade logarítmica \rightarrow O(logn) T2 tem ordem de complexidade linear \rightarrow O(n)

T3 tem ordem de complexidade linear \rightarrow O(n)

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico.

$$C(0) = 0 \rightarrow \text{caso inicial}$$

 $C(n) = C(floor(n/3) + 1 = C(floor(n/9) + 2 = C(floor(n/3^k) + k))$
Para $n = 0$, $k = 1 + log_3 n$
 $C(n) = C(floor(n/3^{1+log_3 n}) + 1 + log_3 n = C(0) + 1 + log_3 n$

De acordo com a expressão obtida podemos concluir que tem ordem de complexidade logarítmica tal como os resultados obtidos experimentalmente.

n	T ₁ (n)	Nº de Chamadas Recursivas	T ₂ (n)	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	4	2	5	2	5	1
4	5	2	7	2	7	2
5	6	2	8	2	8	2
6	8	2	10	2	10	1
7	9	2	14	4	14	3
8	10	2	15	4	15	3
9	13	3	19	6	19	2
10	14	3	22	6	22	5
11	15	3	23	6	23	5
12	17	3	26	6	26	3
13	18	3	28	6	28	6
14	19	3	29	6	29	6
15	21	3	31	6	31	3
16	22	3	34	6	34	5
17	23	3	35	6	35	5
18	26	3	38	6	38	2
19	27	3	43	8	43	6
20	28	3	44	8	44	6
21	30	3	49	10	49	4
22	31	3	51	10	51	8
23	32	3	52	10	52	8
24	34	3	54	10	54	4
25	35	3	59	12	59	7
26	36	3	60	12	60	7
27	40	4	65	14	65	3
28	41	4	69	14	69	9

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$C(0) = 0$$
, $C(1) = 0$, $C(2) = 0 \rightarrow Casos iniciais$
 $C(n) = C(floor(n/3)) + C(ceil(n/3)) + 2$
Para $n = 3^k \Leftrightarrow k = log_3 n \text{ temos que} \rightarrow C(n) = 2*C(n/3) + 2 = 2*(2*C(n/9) + 2) + 2 = 2*(6+4*C(n/27)) + 2 = 2^{k+1} - 2$, $logo C(n) = 2^{log_3 n+1} - 2 = 2*n^{log_3 2} - 2 \rightarrow O(n^{log_3 2})$
Teorema Mestre:
 $a = 2$; $b = 3$; $d = 0$ como $a > b^d \rightarrow O(n^{log_3 2})$
Confirmando o resultado obtido anteriormente.

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Sim. Como o desenvolvimento telescópico da função é do tipo $n^{\alpha}(\alpha > 0)$ é uma função suave , logo a ordem de complexidade pode ser generalizada para todo o n.

• Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_3(n)$.

$$C(0) = 0$$
, $C(1) = 0$, $C(2) = 0 \rightarrow Casos$ iniciais
 $C(n) = 1 + C(n/3)$, se n é multiplo de 3
 $C(n) = C(n/3) + C((c+2)/3) + 2$, caso contrário

• Considere o caso particular $n = 3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

```
Para n = 3^k, n ou é 0 ou múltiplo de 3 logo só vamos analizar estes casos. C(0) = 0, C(1) = 0, C(2) = 0 \rightarrow Casos iniciais

Para n multiplo de 3:
C(n) = 1 + C(n/3) = 2 + C(n/9) = 3 + C(n/27) = k + C(n/3^k), substituindo k por log_3n:
C(n) = log_3n + C(n/3^{log_3n}) = log_3n + C(1) = log_3n \rightarrow O(log_3n)

Teorema Mestre:
a = 1; b = 3; d = 0 \text{ como } a = b^d \rightarrow O(n^d log_bn) \rightarrow O(log_3n)

Confirmando o resultado obtido anteriormente.
```

 Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique. Sim. Como o desenvolvimento telescópico da função é do tipo logαn (α > 0) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $\log_{\alpha} n \ (\alpha \geq 0)$ é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
Sim. Como o desenvolvimento telescópico da função é do tipo $log_{\alpha}n$ ($\alpha > 0$) é uma
•
função suave, logo a ordem de complexidade pode ser generalizada para todo o n.
• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidad para $T_3(n)$. Justifique.
Uma vez que calculam o mesmo resultado mas T3 faz menos operações a ordem de complexidade de T3 não pode ser superior à ordem de complexidade de T2.