GCN data:

- Social Network
- Citation Network
- Molecules (分子结构)
- Opening Cloud:
 - · 严格来说, 只有点没有连线, 不是天生的图结构, 但可以人工的表达成图的结构;
 - · Edge的生成:不同人可以有不同的方法
 - Fix——NN查找或者radius NN;
 - Dynamic——DGCNN(见后);
- o 3D Mesh

GCN for Point Cloud

Graph 基础复习:见下图(图1)

• Graph - G(V, E)

• V: a set of vertices

• E: a set of edges

- Represent a point cloud by graph?
 - One point one vertex
 - Edge
 - Fix by coordinate based kNN/RadiusNN
 - Dynamic DGCNN

Vertex info: Coordinate: \mathbb{R}^3 Feature: \mathbb{R}^m

Graph – G(V, E)

Convolution on Graph:

- 不像2D或者3D网格,不是定义在欧式空间,一个点周围的邻居不是固定的,导致卷积和pooling 很麻烦! 同时,也衍生出很多方法,所以GCN是一个family。
 - 图上定义卷积: 实际上kernel做卷积就是一个加权平均的矩阵化计算! (图2)

- 问题:
 - · 图上,每个点的邻居数量不是固定的,而以往kernel表示,实际的邻居数是固定的,比如 3×3卷积,一个点有8个邻居;
 - · 边的权重不是统一的,kernel表示下每个点的边权是一致的,而图结构下,每个邻居的边 实际有不同的权重,上述方法没有考虑;

DGCNN

- DGCNN方案:
 - 问题1: 因为实际点云是没有边的,是我们自己设置的,因此设置同样个数的连接即解决;
 - 问题2:实际上没有直接考虑这点,就假设边权是一样的,但由于输入包含坐标信息,而边权也可以用两点之间的相对距离表示,所以这个角度可以认为也考虑进去了;
- EdgeConv: 主要贡献之一!
 - 是一个大一统的公式,把之前PointNet、PointNet++等方法都统一起来的,可以演化出不同的实现方法。

EdgeConv

· Aggregation of neighboring vertex

- 本质上,我们希望根据点x_i和其邻居x_j做feature transform(Edge function,这里通常是MLP,即 线性变化+ReLu),然后用aggregation function(例如sum、avg、min、max等)把点和其邻居组合起来变成一个输出vector;
- o x_i经过EdgeConv 从c维变换 (encoding) c'维;
- 例子: (图5) → PointNet:

PointNet++:

► DGCNN:

・ DGCNN 网络结构: 和PointNet极其相似,仅仅是把简单的MLP变成了通用的 EdgeConv!

- Similar to T-Net of PointNet,
- NOT presented in the author's open-source code

- · DGCNN 图的构建:
 - KNN on coordinates: 属于静态建图, DGCNN说不好!
 - KNN on features: 动态建图 for subsequent EdgeConv;
 - 特别的,对第一层,携带的feature就是coordinates;
 - 神经网络拥有了** 调整边连接 **的能力,基于特征空间(学习出来的);
 - 可视化: 说明dynamic 基于语义特征的KNN建图方法有什么不一样(图6)
 - 神经网络如果要做分类、分割,更关心的是东西表达的语义而不是几何空间的距离;

Left

• Euclidean distance in \mathbb{R}^3

Middle

- Euclidean distance in \mathbb{R}^3
- After 3×3 matrix transform

Right

- Feature distance in \mathbb{R}^3
- From the last layer
- Semantic & dynamic

通用 GCN:

- 图结构表示: 相似矩阵A(谱聚类那一章有学到)
 - 无连接-0
 - 有连接-1
- 衍生概念:
 - Degree matrix D: n×n;
 - Laplacian matrix: L = D A;
 - o Normalized Laplacian matrix: Lsym = $(D^-1/2)L(D^-1/2) = I D^-1/2)A(D^-1/2)$
 - 为什么需要这些衍生概念? (见后直观理解分析)
- 一种通用GCN layer的理解: 主要包括下面两个步骤(图7)

Input: $X \in \mathbb{R}^{n \times C_{in}}$

Output: $H \in \mathbb{R}^{n \times C_{out}}$

A GCN layer consists of two steps

- Aggregation
 - · Gather features from neighbors
- Update
 - · Apply learnable layer to transform the aggregated features

- Aggregation: 周围 (邻居) 信息 (feature) 的集合;
 - ▸ 例如: DGCNN里的(x_i-x_j), 只是一个减法收集信息, 还没有函数处理;
- Update: 用函数处理aggregated features;
 - ▶ 例如: MLP处理;
- 直观理解衍生概念:
 - ▸ 简单的GCN方案如下图(图8): 加权求和收集信息 + 全连接层&ReLu 处理信息更新;

Input: $X \in \mathbb{R}^{n \times C_{in}}$ Output: $H \in \mathbb{R}^{n \times C_{out}}$

	Graph
of neighbors	2 4 5

Aggregation

- Weighted sum of neighbors
- $N = A \cdot X$

Update

- Linear (Fully Connected) Layer with learnable param $W \in \mathbb{R}^{C_{in} \times C_{out}}$
- Activation function σ , e.g, ReLU
- $H = \sigma(N \cdot W) = \sigma(AXW)$
- ・问题1: 每个点没有考虑自己的信息(A的对角线元素是0);
 - Laplacian matrix L解决; (图9)

Input: $X \in \mathbb{R}^{n \times C_{in}}$ Output: $H \in \mathbb{R}^{n \times C_{out}}$

Aggregation

- · Weighted sum of neighbors and itself
- $N = (D A) \cdot X = LX$
- In vector form: $N_i = \sum_i (A_{ij}(X_i X_i))$

Graph 1 2 4 5

Update

- Linear (Fully Connected) Layer with learnable param $W \in \mathbb{R}^{C_{in} \times C_{out}}$
- Activation function σ , e.g, ReLU
- $H = \sigma(N \cdot W) = \sigma(LXW)$
- · 问题2: 简单的加权求和,如果一个点连接的点特别多,求和/平均的结果会特别大,主导了神经网络,即A没有经过归一化;
 - 归一化Laplacian matrix Lsym解决;(图10)

Input: $X \in \mathbb{R}^{n \times C_{in}}$ Output: $H \in \mathbb{R}^{n \times C_{out}}$

Aggregation

- Normalized weighted sum of neighbors and itself
- $N = D^{-1/2}LD^{-1/2} \cdot X = L_{sym}X$
- In vector form: $N_i = \sum_j \left(A_{ij} (X_i X_j) \cdot \frac{1}{\sqrt{D_{ii}D_{ij}}} \right)$

Update

- Linear (Fully Connected) Layer with learnable param $W \in \mathbb{R}^{C_{in} \times C_{out}}$
- Activation function σ , e.g, ReLU
- $H = \sigma(N \cdot W) = \sigma(LXW)$

○ 对比DGCNN: (图11)

DGCNN

- For each *i*
- MLP on neighbors → get multiple feature vectors
- Maxpool → get final feature vector for i

MLP with param Θ MLP with param ϕ $h_{\Theta}(x_i, x_j) = h_{\Theta}(x_j - x_i) + h_{\phi}(x_i) \qquad \qquad x_i' = maxpool_j \left(h_{\Theta}(x_i, x_j)\right)$ Neighboring vertex, \mathbb{R}^m The vertex we are working on, \mathbb{R}^m

General GCN

- For each *i*
- Aggregation: Weighted sum of neighbors → get one feature vector
- Update: MLP on the feature vector → get final feature vector for i
- · 不同点: 区别很细微, DGCNN是GCN的特例; (随着网络的堆叠, 先MLP还是后做, 实际上没有区别)
 - · Aggregation:
 - DGCNN先MLP(N×K×C_in --> N×K×C_out), GCN只是加权求和,没有MLP;
 - DGCNN固定了K邻居,K是个常数,GCN是根据拉普拉斯矩阵,不同数量的邻居 连接;
 - update: GCN使用MLP;
 - DGCNN没有经过normalization,可以尝试改进作为一个点!