

Месенёв Павел Ростиславович

Оптимизационные методы решения обратных задач сложного теплообмена

Специальность 1.2.2 — «Математическое моделирование, численные методы и комплексы программ»

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Дальневосточный федеральный университет».

Научный руководитель: Чеботарев Александр Юрьевич

доктор физико-математических наук, профес-

cop

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, профес-

cop,

Не очень длинное название для места работы,

Гл. научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным

длинным длинным названием, старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное об-

разовательное учреждение высшего профессионального образования с длинным длинным

длинным длинным названием

Защита состоится DD mmmmmmmm YYYY г. в XX часов на заседании диссертационного совета Д 123.456.78 при Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Отзывы на автореферат в двух экземплярах, заверенные печатью учреждения, просьба направлять по адресу: Адрес, ученому секретарю диссертационного совета $\boxed{123.456.78}$.

Автореферат разослан DD mmmmmmmm2024 года. Телефон для справок: +7 (0000) 00-00-00.

Ученый секретарь диссертационного совета Д 123.456.78, д-р физ.-мат. наук

Общая характеристика работы

Содержание работы

Во <u>введении</u> обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана теоретическая и практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

Первая глава посвящена анализу диффузионных моделей сложного теплообмена. В разделе 1.1 приведена модель сложного теплообмена с полным уравнением переноса излучения, а также её нормализованный вариант. Раздел 1.2 посвящен выводу модели переноса излучения в P_1 приближении. Интенсивность излучения и фазовая функция заменяются линейными приближениями по частоте соответствующих функций

$$I^*(x,\omega,t) = \varphi(x,t) + \Phi(x,t) \cdot \omega, \quad P(\omega,\omega') = 1 + A\omega \cdot \omega'.$$

В разделе 1.3 приведены определения функциональных пространств, вспомогательных утверждений и определений, которые используются в дальнейшем. Обозначим $H=L^2(\Omega),\,V=H^1(\Omega).$ Пространство H отождествляем с пространством H', так что $V\subset H=H'\subset V'.$ $C_0^\infty(\Omega);$ $L^p(0,T;X)$ — пространство Лебега функций со значениями в банаховом пространстве $X,\,C([0,T];X)$ — пространство функций, непрерывных на [0,T], со значениями в $X,\,X'$ — пространство, сопряженное с пространством X.

В разделе 1.4 приведены теоретические результаты для стационарной модели сложного теплообмена в ограниченной области $\Omega \subset \mathbb{R}^3$ с границей $\Gamma = \partial \Omega$, которая имеет вид краевой задачи для системы нелинейных эллиптических уравнений

$$-a\Delta\theta + b\kappa_a\theta^4 = b\kappa_a\varphi,\tag{1}$$

$$-\alpha\Delta\varphi + \kappa_a\varphi = \kappa_a\theta^4,\tag{2}$$

с граничными условиями

$$a\frac{\partial \theta}{\partial \mathbf{n}} + \beta \left(\theta - \theta_b\right)|_{\Gamma} = 0, \tag{3}$$

$$\alpha \frac{\partial \varphi}{\partial \mathbf{n}} + \gamma (\varphi - \theta_b^4)|_{\Gamma} = 0. \tag{4}$$

Здесь θ — нормализованная температура, φ — нормализованная интенсивность излучения, усредненная по всем направлениям, κ_a — коэффициент поглощения. Постоянные a, b и α определяются следующим образом:

$$a = \frac{k}{\rho c_v}, \quad b = \frac{4\sigma n^2 T_{\text{max}}^3}{\rho c_v}, \quad \alpha = \frac{1}{3\kappa - A\kappa_s},$$

где k — теплопроводность, c_v — удельная теплоемкость, ρ — плотность, σ — постоянная Стефана-Больцмана, n — показатель преломления, $T_{\rm max}$ — максимальная температура в ненормализованной модели, $\kappa = \kappa_s + \kappa_a$ — коэффициент полного взаимодействия, κ_s — коэффициент рассеяния.

Раздел 1.5 посвящен квазистационарной модели сложного теплообмена. Данная модель описывает систему связанных уравнений в частных производных, моделирующих квазистационарный радиационный и диффузионный теплообмен. Рассмотрена следующая начально-краевая задача:

$$\frac{\partial \theta}{\partial t} - a\Delta\theta + b\kappa_a \left(|\theta|\theta^3 - \varphi \right) = 0,
- \alpha\Delta\varphi + \kappa_a \left(\varphi - |\theta|\theta^3 \right) = 0, \quad x \in \Omega, \quad 0 < t < T;$$
(5)

$$a(\partial_n \theta + \theta) = r, \quad \alpha(\partial_n \varphi + \varphi) = u$$
 на Γ ; (6)

$$\theta|_{t=0} = \theta_0. \tag{7}$$

Дано определение слабого решения, доказана лемма о существовании и единственности слабого решения, а также справедливости утверждений

$$\psi = [\theta]^{5/2} \in L^{\infty}(0, T; H) \cap L^{2}(0, T; V), \quad [\theta]^{4} \in L^{2}(0, T; H).$$

Указанный результат используется в параграфе 2.3 при анализе оптимизационного метода для квазистационарной модели.

В разделе 1.6 рассмотрена квазилинейная модель сложного теплообмена, представленная начально-краевой задачей в ограниченной трехмерной области Ω с отражающей границей $\Gamma = \partial \Omega$:

$$\sigma \partial \theta / \partial t - \operatorname{div}(k(\theta) \nabla \theta) + b \left(\theta^3 |\theta| - \varphi \right) = f, \tag{8}$$

$$-\operatorname{div}(\alpha \nabla \varphi) + \beta \left(\varphi - \theta^3 |\theta|\right) = g, x \in \Omega, 0 < t < T, \tag{9}$$

$$k(\theta)\partial_n\theta + p(\theta - \theta_b)|_{\Gamma} = 0, \alpha\partial_n\varphi + \gamma(\varphi - \theta_b^4)|_{\Gamma} = 0, \quad \theta|_{t=0} = \theta_{in}.$$
 (10)

Приведено определение слабой формулировки задачи (8)–(10), даны априорные оценки решений и доказано существование решения начально-краевой задачи. Представлены достаточные условия единственности решения. Кроме того, предложен численный метод решения задачи (8)–(10) и доказана его сходимость.

Вторая глава посвящена исследованию граничных обратных задач для стационарной и квазистационарной моделей сложного теплообмена. При решении таких задач часто встречаются краевые условия для эллиптических или параболических уравнений, когда на границе (части границы) задаётся неизвестная функция и её нормальная производная (условия Коши).

В разделе 2.1 рассмотрена нормализованная стационарная модель, описывающая процесс радиационного теплопереноса в области $\Omega \subset \mathbb{R}^3$ с липшицевой границей Γ . Модель имеет следующий вид

$$-a\Delta\theta + b\kappa_a(\theta^3|\theta| - \varphi) = 0, \quad -\alpha\Delta\varphi + \kappa_a(\varphi - \theta^3|\theta|) = 0, \tag{11}$$

и дополняется граничными условиями на $\Gamma \coloneqq \partial \Omega = \overline{\Gamma}_0 \cup \overline{\Gamma}_1 \cup \overline{\Gamma}_2$, где части границы $\Gamma_0, \Gamma_1, \Gamma_2$ не имеют пересечений.

$$\Gamma: a\partial_n \theta + \beta(\theta - \theta_b) = 0,$$

$$\Gamma_0 \cup \Gamma_2: \alpha \partial_n \varphi + \gamma(\varphi - \theta_b^4) = 0,$$

$$\Gamma_1: \alpha \partial_n \varphi + u(\varphi - \theta_b^4) = 0.$$
(12)

Функции γ, θ_b, β — являются известными. Неизвестная функция u характеризует отражающие свойства участка границы Γ_1 . Предполагается, что

$$0 < u_1 \le u \le u_2, \tag{13}$$

где u_1 и u_2 – заданные ограниченные функции.

Обратная задача заключается в отыскании тройки функций θ, φ, u по дополнительному условию $\theta|_{\Gamma_2}=\theta_0$. Далее ставится задача нахождения квазирешения обратной задачи, которая состоит в минимизации функционала

$$J(\theta) = \frac{1}{2} \int_{\Gamma_2} (\theta - \theta_0)^2 d\Gamma \tag{14}$$

на решениях краевой задачи (11)-(12) при ограничениях (13).

Для поставленной экстремальной задачи доказано существование решения, а также выведена система оптимальности, на котором основан численный алгоритм, представленный в разделе 4.2.2.

Раздел 2.2 содержит постановку задачи без краевых условий для интенсивности излучения. Предполагается, что на границе $\Gamma=\partial\Omega$ известно температурное поле и тепловой поток:

$$\theta = \theta_b, \quad \partial_n \theta = q_b.$$
 (15)

Оптимизационный метода решения краевой задачи (11),(15) заключается в рассмотрении задачи граничного оптимального управления с «искусственными» краевыми условиями

$$a(\partial_n \theta + \theta) = r, \ \alpha(\partial_n \varphi + \varphi) = u$$
 на Γ . (16)

Функция $r(x), x \in \Gamma$ является заданной, а неизвестная функция $u(x), x \in \Gamma$ играет роль управления. Экстремальная задача заключается в отыскании тройки $\{\theta_{\lambda}, \varphi_{\lambda}, u_{\lambda}\}$ такой, что

$$J_{\lambda}(\theta, u) = \frac{1}{2} \int_{\Gamma} (\theta - \theta_b)^2 d\Gamma + \frac{\lambda}{2} \int_{\Gamma} u^2 d\Gamma \to \inf$$
 (17)

на решениях краевой задачи (11),(16). Функция $\theta_b(x), x \in \Gamma$ и параметр регуляризации $\lambda > 0$ заданы.

Доказана однозначная разрешимость краевой задачи (11),(16) и даны априорные оценки решения, которые далее используются для доказательства разрешимости оптимизационной задачи (11),(16),(17).

Обоснованием предложенного оптимизационного метода решения задачи с уловиями Коши является следующий результат

Теорема (2.5). Пусть выполняются условия $a,b,\alpha,\kappa_a,\lambda=Const>0$, $\theta_b,\,q_b\in L^2(\Omega),\,\,r=a(\theta_b+q_b)\,\,u\,\,cyweetheyeth\,\,\theta_*,\varphi_*$ – решение задачи (11),(15). Если $\{\theta_\lambda,\varphi_\lambda,u_\lambda\}$ – решение задачи (11),(16),(17) для $\lambda>0$, то существует последовательность $\lambda\to +0$ такая, что $\theta_\lambda\to\theta_*,\,\,\varphi_\lambda\to\varphi_*$ слабо в $V,\,$ сильно в H.

В разделе 2.3 представлен аналогичный разделу 2.2 анализ оптимизационного метода решения задачи Коши для квазистационарной модели.

Ставится задача оптимального управления, доказывается существование решения оптимального управления и выводится система оптимальности. Представлено доказательство сходимости решений задачи оптимального управления к решению задачи с условиями Коши для температуры.

В разделе 2.4 рассмотрена стационарная задача сложного теплообмена с условиями Коши для температуры на части границы. В данном случае граница области состоит из двух участков, $\Gamma:=\partial\Omega=\overline{\Gamma}_1\cup\overline{\Gamma}_2$ так, что $\Gamma_1\cap\Gamma_2=\emptyset$. На всей границе Γ задается тепловой поток q_b , но краевые условия для интенсивности излучения на Γ_2 не заданы. В качестве условия переопределения на Γ_1 , в дополнение к условию на φ , задается температурное поле θ_b :

$$\alpha \partial_n \varphi + \gamma (\varphi - \theta_b^4) = 0, \quad \theta = \theta_b \quad x \in \Gamma_1.$$
 (18)

Для постановки задачи управления, которая аппроксимирует поставленную задачу, вводится новая неизвестная функция $\psi=a\theta+\alpha b\varphi$. Полученная краевая задача имеет вид

$$-a\Delta\theta + g(\theta) = \frac{\kappa_a}{\alpha}\psi, \quad \Delta\psi = 0, \ x \in \Omega, \tag{19}$$

$$a\partial_n \theta = q_b$$
 на Γ , $\alpha \partial_n \psi + \gamma \psi = r$, $\theta = \theta_b$ на Γ_1 . (20)

Здесь
$$g(\theta) = b\kappa_a |\theta| \theta^3 + \frac{a\kappa_a}{\alpha} \theta$$
, $r = \alpha b \gamma \theta_b^4 + \alpha q_b + a \gamma \theta_b$.

Задача управления заключается в отыскании тройки $\{\theta_{\lambda},\psi_{\lambda},u_{\lambda}\}$ такой, что

$$J_{\lambda}(\theta, u) = \frac{1}{2} \int_{\Gamma_1} (\theta - \theta_b)^2 d\Gamma + \frac{\lambda}{2} \int_{\Gamma_2} u^2 d\Gamma \to \inf,$$
 (21)

$$-a\Delta\theta + g(\theta) = \frac{\kappa}{\alpha}\psi, \quad \Delta\psi = 0, \ x \in \Omega, \tag{22}$$

$$a\partial_n \theta + s\theta = q_b + s\theta_b, \ \alpha \partial_n \psi + \gamma \psi = r \text{ на } \Gamma_1,$$
 (23)

$$a\partial_n \theta = q_b, \ \alpha \partial_n \psi = u$$
 на Γ_2 . (24)

Здесь $\lambda, s > 0$ – регуляризирующие параметры.

Для задачи оптимального управления доказано существование решения. Приведено доказательство, что решения задачи оптимального управления аппроксимируют решение краевой задачи при уменьшении параметра регуляризации.

Третья глава посвящена исследованию квазилинейных моделей. В разделе 3.1 рассмотрена задача оптимального управления для квазилинейных уравнений радиационно-кондуктивного теплообмена, моделирующих процесс внутривенной лазерной абляции в ограниченной области Ω с отражающей границей $\Gamma = \partial \Omega$. Задача заключается в минимизации функционала

$$J(\theta) = \int_0^T \int_{G_1} (\theta - \theta_d)^2 dx dt \to \inf$$

на решениях начально-краевой задачи

$$\sigma \partial \theta / \partial t - \operatorname{div}(k(\theta) \nabla \theta) - \beta \varphi = u_1 \chi$$

- \div(\alpha \nabla \varphi) + \beta \varphi = u_2 \chi, \quad x \in \Omega, \quad t \in (0, T), \quad (25)

$$\theta = 0|_{\Gamma}, \quad \alpha \partial_n \varphi + 2^{-1} \varphi|_{\Gamma} = 0, \quad \theta|_{t=0} = \theta_0.$$
 (26)

При этом учитываются ограничения:

$$u_{1,2} \ge 0, \quad u_1 + u_2 \le P, \quad \theta|_{G_2} \le \theta_*$$
 (27)

Здесь G_1 и G_2 подмножества Ω, θ представляют разницу между реальной температурой и температурой на границе, которая является постоянной. φ является интенсивностью излучения усредненной по всем направлениям, α — коэффициент диффузии фотонов, β — коэффициент поглощения, $k(\theta)$ является коэффициентом теплопроводности, $\sigma(x,t)$ является произведением удельной теплоемкости и плотностью среды, u_1 описывает мощность источника тепла, u_2 — мощность источника теплового излучения. P — максимальная мощность источника, χ есть характеристическая функция той части среды, в которой он расположен, деленная на объём.

Доказано существование решения задачи оптимального управления и даны априорные оценки решений. Для решения задачи с ограничением на температуру в области G_2 предложен метод, использующий функции со штрафом. Задача со штрафом заключается в минимизации функционала $J_{\varepsilon}(\theta)$ где

$$J_{\varepsilon}(\theta) = \int_{0}^{T} \int_{G_{1}} (\theta - \theta_{d})^{2} dx dt + \frac{1}{\varepsilon} \int_{0}^{T} \int_{G_{2}} F(\theta) dx dt,$$

$$\sigma \theta' + A(\theta) = u, \quad \theta(0) = \theta_{0}, \quad u \in U_{ad}.$$

Здесь

$$F(\theta) = \begin{cases} 0, & \text{если } \theta \le \theta_* \\ (\theta - \theta_*)^2, & \text{если } \theta > \theta_*. \end{cases}$$

Показано, что при уменьшении параметра регуляризации решения задачи со штрафом сходятся к решению задачи оптимального управления.

В разделе 3.2 приведён анализ метода штрафных функций используемого для решения задачи оптимального управления с финальным наблюдением. Задача заключается в минимизации функционала

$$J(\theta) = \int_{G_d} (\theta|_{t=T} - \theta_d)^2 dx \to \inf,$$

на решениях начально-краевой задачи (25),(26) учётом следующих ограничений:

$$u_{1,2} \ge 0, \quad u_1 + u_2 \le P, \quad \theta|_{G_b} \le \theta_*.$$

Требуется обеспечить близость распределения температуры к желаемому температурному полю θ_d в конечный момент времени t=T в подобласти G_d , при этом температура в подобласти G_b не должна превышать постоянного критического значения θ_* .

Данная задача сводится к задаче оптимального управления. Доказывается существование решения задачи оптимального управления, а также сходимость решений задачи со штрафом к решениям задачи оптимального управления.

В <u>четвертой главе</u> приведены разработанные численные методы решения прямых краевых задач сложного теплообмена и оптимизационные методы решения обратных задач.

В разделе 4.1 приводятся алгоритмы решения прямых стационарных задач. Для решения прямых задач используется метод Ньютона, который заключается в аппроксимации нелинейного слагаемого $|\theta|^3\theta$ выражением $\widetilde{\theta}^4 + 4\widetilde{\theta}^3(\theta - \widetilde{\theta})$, где $\widetilde{\theta}$ - приближение для температуры на предыдущей итерации. Решение линеаризированных дифференциальных уравнений осуществляется методом конечных элементов.

Рассматривается пример численного решения задачи (2)–(3) с параметрами, определёнными как $\gamma = 0.8\cos\left(\frac{\pi}{2}z\right) + 0.5$, $\theta_b = 1 - y/2 + z/2$. Начальное приближение решения выбрано нулевым. Метод Ньютона при указанных параметрах сходится за шесть итераций. Полученные компоненты состояния представлены на рисунке 1. На 1а представлено полученное

Рис. 1 — Решение граничной задачи в трёхмерной области

температурное поле, на 16 поле излучения.

В разделе 4.2 рассмотрены алгоритмы решения граничных обратных задач. Приведён пример реализации алгоритма градиентного спуска с проекцией в двумерном случае. Сам алгоритм является итерационным и состоит из решения прямой задачи с начальным приближением функции управления, расчёта сопряженной системы и перерасчёта управления из градиента функционала качества. Для задачи (11)–(13) определяются параметры среды, соответствующие стеклу. Результаты работы алгоритма нахождения квазирешения обратной задачи представлены на рисунке 2.

а) Первый эксперимент б) Второй эксперимент Рис. 2 — Тестовая функция u, начальная u_0 , найденная функция u_{end} .

Далее приводятся результаты работы алгоритма по решению задачи оптимального управления для квазистационарных и квазилинейных моделей.

Найденное решение квазистационарной задачи представленной в разделе 2.3 сравнивается с решением, полученным в статье коллег из университета Мюнхена, которые испольвоали альтернативный подход к решению, с использованием конформных прямоугольных конечных элементов Богнера-Фокса-Шмидта. Полученные решения отличаются слабо, но предложенный в диссертации алгоритм существенно проще в реализации, быстрее сходится.

В рамках численного решения квазилинейной начально-краевой задачи (25)—(??) использовались параметры среды, соответствующие процедуре внутривенной лазерной абляции. Получение температурных профилей в разных точках рассматриваемой области даёт возможность подбора оптимальных параметров процедуры: мощности лазера, длины испускаемой волны, скорости движения волокна и других. Рассматриваемая область и полученные в результате моделирования температуры приведены на рисунках 3.

Рис. 3 — Результаты моделирования квазилинейной начально-краевой задачи

Задача оптимального управления для квазилинейной модели с ограничениями на температуру аппроксимируется задачей оптимального управления со штрафом. Решения, полученные предложенным итерационным алгоритмом для задачи оптимального управления со штрафом приведены на рисунке 4.

Алгоритмы решения задач с данными Коши, а также примеры численного моделирования подобных задач представлены в разделе 4.3. Сам алгоритм заключается в выборе начального приближения для управления и расчёта прямой задачи. Результаты решения прямой задачи

Рис. 4 — Температурные профили: желаемая температура (черный), 1-е (зеленое), 2-е (синее) и 3-е (красное) приближения.

используются для расчёта значения функционала качества, а также для вычисления значений сопряженной системы. Решение сопряженной системы используется при пересчёте управления, используя градиент функционала качества. Обновленное управление позволяет нам повторить описанную процедуру и получить итерационный алгоритм решения задачи оптимального управления. Данный процесс повторяется до достижения некоторого заранее определённого значения функционала качества или же некоторое, заранее определённое количество итераций N.

Приведем пример численного моделирования. Для (11),(16) значения параметров среды выберем соответствующими стеклу. Определим граничные данные следующим образом:

$$r = 0.7, \quad u = \hat{u} = 0.5.$$

На рисунке 5а представлен модуль относительного отклонения $\partial_n \theta_\lambda$ от q_b на грани куба в плоскости z=l, где $\partial_n \theta_\lambda = \partial \theta_\lambda/\partial z$. На рисунке 56 приведена динамика функционала качества, определяющего норму разности $\|\theta_\lambda - \theta_b\|_{\Gamma}^2$.

Далее рассматривается алгоритм решения задачи сложного теплообмена с условиями Коши для температуры на части границы. Его отличие в том, что для постановки задачи управления вводится новая неизвестная функция ψ , как показано в разделе 2.4.1. Соответственно, алгоритм находит тройку θ, ψ, u из которой можно восстановить интенсивность излучения φ .

а) $|\partial_n \theta_\lambda - q_b|/|q_b|$ б) Значение функционала качества Рис. 5 — Результаты решения задачи с данными Коши

В первом примере рассматривается куб $\Omega=\{(x,y,z), 0\leq x,y,z\leq l\}$ с границей $\Gamma\equiv\Gamma_1\cup\Gamma_2,$ где

$$\Gamma_1 = \{(x, y, z), 0 \le x, y, \le l, z \in 0, l\}, \ \Gamma_2 = \partial \Omega \setminus \Gamma_1.$$

Параметры среды также положим соответствующими стеклу. Параметр регуляризации $\lambda=10^{-12}$. Граничные данные q_b и θ_b в (20) положим равными

$$q_b = 0.5, \quad \theta_b = 0.1 + z/2$$

на всей границе, а также начальное управление $u_0 = 0$. Полученные результаты представлены на рисунке 6.

Во втором примере рассматривается квадрат $S=\{(x,y), 0\leq x,y,z\leq 1$ см.} с круговой полостью R с центром $b_0=\{0.5,0.5\}$ $R=\{r,\|r-b_0\|\leq 1$

0.15 см.}. Рассматриваемая область $\Omega = S \setminus R$. $\Gamma \equiv \partial \Omega = \partial C \cup \partial B$ при этом $\Gamma_2 = \partial R$, $\Gamma_1 = \partial S \setminus \Gamma_2$. Граничные данные q_b и θ_b положим равными

$$\theta_b = 0.5, \quad q_b = \begin{cases} 0.2, & \text{если } x \in \Gamma_1, \\ -0.2, & \text{если } x \in \Gamma_2. \end{cases}$$

Начальное значение функционала качества 0.045 после тридцати итераций становится равным $6.2\cdot 10^{-5}$. Полученное состояние представлено рисунками 7.

Представленные численные примеры демонстрируют, что предложенный алгоритм успешно справляется с нахождением численного решения задачи с данными Коши для температуры на части границы.

В заключении приведены основные результаты работы. В диссертации в соответствии с паспортом специальности 1.2.2 представлен математический анализ диффузионных моделей сложного теплообмена, предложены новые постановки обратных задач, разработаны оптимизационные методы решения обратных задач, основанные на понятии квазирешения и сведения рассмотренных задач к задачам оптимального управления. Разработаны и программно реализованы новые алгоритмы решения прямых, обратных и экстремальных задач для моделей сложного теплообмена.

Получены новые априорные оценки решений начально-краевых задач для квазистационарных и квазилинейных уравнений сложного теплообмена и доказана их нелокальная однозначная разрешимость. Выполнен теоретический анализ возникающих новых экстремальных задач. Представлены априорные оценки решений регуляризованных задач и обоснована сходимость их решений к точным решениям обратных задач. Для решения задач с фазовыми ограничениями, предложены алгоритмы, основанные на аппроксимации экстремальными задачами со штрафом.

Таким образом, получены важные с теоретической и численной точки зрения результаты, которые могут быть полезны при дальнейшем использовании моделей сложного теплообмена и анализе обратных задач сложного теплообмена. Развитые методы исследования краевых, начально-краевых и экстремальных задач могут применяться для изучения различных моделей, описываемых нелинейными уравнениями типа реакции-диффузии. Численные алгоритмы решения задач оптимизации сложного теплообмена могут использоваться для выбора оптимальных характеристик процессов теплообмена.

В дальнейшем исследование обратных задач для диффузионных моделей сложного теплообмена может быть направлено на учет эффектов отражения и преломления на границе раздела сред и учет зависимости коэффициентов поглощения и рассеяния от частоты излучения.

Все рассмотренные в работе типы задач логически связаны следующим образом. Теоретический анализ математических моделей сложного теплообмена, представленный в первой главе, является основой для исследования оптимизационных методов решения обратных задач во второй и третьей главах. Соответственно, полученные там условия оптимальности дают возможность представить численные алгоритмы решения сформулированных задач и численно реализовать их в главе 4.

Конечно же, автору не удалось рассмотреть все важные вопросы в теории и методах решения обратных задач сложного теплообмена. В стороне осталось, например, исследование таких важных свойств решений экстремальных задач как регулярность, которая обеспечивает повышение скорости сходимости итерационных алгоритмов. Автор не касался в работе исследования необходимых и достаточных условий оптимальности второго порядка. Ряд постановок, которые нетрудно будет исследовать на основе предложенной методики, ожидает своего решения в том числе и в связи с вопросами нахождения наиболее эффективных механизмов и способов управления теплофизическими полями.

Публикации автора по теме диссертации

- [1] P. R. Mesenev. «Optimization method for solving the inverse problem of complex heat transfer». В: Дальневост. матем. журн. 23.1 (2023), с. 81—84. URL: http://mi.mathnet.ru/dvmg508.
- [2] П. Р. Месенев и А. Ю. Чеботарев. «Задача сложного теплообмена с условиями типа Коши на части границы». В: Ж. вычисл. матем. и матем. физ. 63.5 (2023), с. 856—863. URL: http://mi.mathnet.ru/zvmmf11560.

- [3] Alexander Chebotarev, Pavel Mesenev и Andrey Kovtanyuk. «Inverse problem with unknown sources for a quasi-linear complex heat transfer model». В: 2023 Days on Diffraction (DD). IEEE, июнь 2023, С. 31—35. URL: http://dx.doi.org/10.1109/DD58728.2023.10325734.
- [4] A Yu Chebotarev и др. «Mathematical modeling of complex heat transfer in the context of the endovenous laser ablation». В: Journal of Physics: Conference Series 2514.1 (май 2023), с. 012006. URL: http://dx.doi.org/10.1088/1742-6596/2514/1/012006.
- [5] A. Yu. Chebotarev и др. «Penalty method to solve an optimal control problem for a quasilinear parabolic equation». В: Dal'nevostochnyi Matematicheskii Zhurnal 22 (2022), с. 158—163.
- [6] P R Mesenev and A Yu Chebotarev. "Analysis of an optimization method for solving the problem of complex heat transfer with Cauchy boundary conditions". In: *Comput. Math. Math. Phys.* 62.1 (Jan. 2022), p. 33—41.
- [7] Alexander Chebotarev и др. «Optimal control with phase constraints for a quasilinear endovenous laser ablation model». B: 2021 Days on Diffraction (DD). IEEE, май 2021, С. 19—24. URL: http://dx.doi.org/10.1109/DD52349.2021.9598691.
- [8] Alexander Chebotarev, Andrey Kovtanyuk, and Pavel Mesenev. "Optimization algorithm for radiative-conductive heat transfer model with boundary conditions of Cauchy type". In: MMSC 2020 Proceedings of the Workshop on Mathematical Modeling and Scientific Computing: Focus on Complex Processes and Systems Dedicated to the Memory of Nikolai Botkin. Vol. 2783. Munich, Germany: CEUR WORKSHOP PROCEEDINGS, Nov. 2020, P. 29—40.
- [9] A.Yu. Chebotarev и P.R. Mesenev. «An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity». B: Dal'nevostochnyi Matematicheskii Zhurnal (июнь 2020), с. 114—122. URL: http://dx.doi.org/10.47910/FEMJ202012.
- [10] Месенев П.Р. «Граничная обратная задача для уравнений сложного теплообмена». В: Материалы региональной научно-практической конференции студентов, аспирантов и молодых учёных по естественным наукам. Владивосток, Россия: Дальневосточный федеральный университет, апр. 2018.
- [11] P. R. Mesenev и A. Yu. Chebotarev. «A boundary inverse problem for complex heat transfer equations». В: Dal'nevostochnyi Matematicheskii Zhurnal 18.1 (2018), с. 75—84.

- [12] П. Р. Месенев. «Солвер обратной задачи сложного теплообмена с граничными условиями типа Коши». Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет». 25 сент. 2023.
- [13] П. Р. Месенев. «Программа для нахождения квазирешения обратной задачи сложного теплообмена с дополнительным температурным условием на границе». Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет». 1 марта 2024.
- [14] П. Р. Месенев. «Программа для решения граничной обратной задачи сложного теплообмена с переопределением на части границы». Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет». 29 марта 2024.

Месенёв Павел Ростиславович
Оптимизационные методы решения обратных задач сложного теплообмена
Автореф. дис. на соискание ученой степени канд. физмат. наук
Подписано в печать Заказ № Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография