VE270 Final Exam Review Register, Shifter, Memroy, PLD

Shi Li 2019.12.10

1. Register Basic register

• Used to store data.

1. Register Register with load

• Add a synchronous load signal.

1. Register Register file

Used to store a lot of data.

1. Register Shift register (not shifter) & Rotate register

• Shift or rotate, every clock cycle.

	OUT3	OUT2	OUT1	OUT0
D Q	D Q	D Q	D_Q	

	IN	OUT(3:0)
Initial value:	0	0110
rising edge:	0	0011
rising edge:	0	0001
rising edge:	0	0000
rising edge:	1	1000
risina edae:	0	0100

	OUT(3:0)
Initial value:	0110
rising edge:	0011
rising edge:	1001
rising edge:	1100
rising edge:	0110
rising edge:	0011

1. Register Universal shift register

- Shift or rotate, every clock cycle.
- Exercise: Write Verilog code for it.

Inp	Action		
Sh (Shift)	L (Load)	Action	
0	0	no change	
0	1	load	
1	X	Shift Right	

1. Register Exercise Solution

```
module Universal_Shift_Reg (D, Q, SI, Sh, L, Clk);
  input SI, Sh, L, Clk;
  input [3:0] D;
  output [3:0] Q;
  reg [3:0] Q;
  always @ (posedge clock)
  begin
    if (Sh == 1)
    begin
     Q[2:0] \leftarrow Q[3:1];
      Q[3] \leftarrow SI;
    end
    else if (L == 1)
      Q <= D;
  end
endmodule
```

2. Shifter (not shift register) Basic shifter

- Combinational component, not sequential! (do not depend on Clk)
- Shift left once = multiply by 2
- Shift right once = divide by 2

2. Shifter (not shift register) Bigger shifter

- How to use bigger shifter to shift by any amount?
- Suppose the input is 111111111, how to set xyz so that the output will be 11100000?

3. Memory Concept

W_data R_data

W_addr R_addr

W_en R_en

16×32
register file

Register file

- Random Access Memory (RAM)
 - Similarity to register file: read/write by address
 - Difference to register file: RAM is larger, slower, implemented on a separate device

3. Memory Concept: Random Access Memory (RAM)

- Similarity to register file: read/write by address
- Difference to register file: RAM is larger, slower, implemented on a separate device

3. Memory Concept: Random Access Memory (RAM)

3. Memory Concept: Static RAM (SRAM)

- 6 transitors (Why?)
- You need to understand
 - How to write a cell?
 - How to read a cell?

3. Memory Concept: Dynamic RAM (DRAM)

- 1 transistor and 1 capacitor
- Why use DRAM? Cheaper, larger.

Example: Intel Nehalem 4-core processor

3. Memory Concept: Read-Only Memory (ROM)

- Memory that can only be read, but cannot be written
- So… Why use ROM?
 - Small
 - Non-volatile
 - Fast
 - Low power
- Structure: Similar to RAM
- Type: EPROM, EEPROM...

3. Memory Concept: Read-Only Memory (ROM)

- Where can you find ROM in your computer?
- Eg. Basic Input & Output System (BIOS) program is stored in ROM on your motherboad.

(The ROM in the picture is actually in one of the computers in JI···)

4. Programmable Logic Devices (PLD) Concept

- Simple Simple programmable logic devices (SPLD)
 - Programmable logic array (PLA)
 - Programmable array logic (PAL)
- Complex programmable logic array (CPLD)
- Field-programmable gate array (FPGA)

4. Programmable Logic Devices (PLD)

Concept: PLA & PAL

AND plane

	,		
	BASIS FOR COMPARISON	PLA	PAL
	Stands for	Programmable Logic Array	Programmable Array Logic
	Construction	Programmable array of AND and OR gates.	Programmable array of AND gates and fixed array of OR gates.
	Availability	Less prolific	More readily available
	Flexibility	Provides more programming flexibility.	Offers less flexibility, but more likely used.
	Cost	Expensive	Intermediate cost
	Number of functions	Large number of functions can be implemented.	Provides the limited number of functions.
	Speed	Slow	High

Reference: techdifferences.com/difference-between-pla-and-pal.html

4. Programmable Logic Devices (PLD) Concept: CPLD

- More complex than PLA or PLA
- Provide more I/O

4. Programmable Logic Devices (PLD) Concept: FPGA

- Reprogrammable
 - SRAM-based (volatile, what we use in lab)
 - EEPROM-based (Flash-based)
- One-time programmable (OTP)
 - Anti-fuse-based FPGA
 - Anti-fuse: apply high-voltage/temperature: insulating->conducting
 - EPROM-based

4. Programmable Logic Devices (PLD) Configurable Logic Block (CLB) in FPGA

4. Programmable Logic Devices (PLD) Look-Up Table (LUT) in FPGA

Thanks for your support!
Good luck and see you VE370:)