# grEEEn:

# An IoT Platform for Indoor Plant Monitoring



Castor, John Danielle T Gonzales, Airick Miguel R Sabater, Zylm M



#### Introduction

#### **Project Objectives**

- Develop an Internet of Things (IoT) platform to monitor environmental variables
- Collect and analyze data from the assigned sensors: AM2320, BH1750, and SGP30
- Transmit data to cloud for real-time processing and analysis
- Gain insights into the impacts of plant introduction to a classroom

#### **Motivation**

- "A Design of IoT-based Monitoring System for Intelligence Indoor Micro-Climate Horticulture Farming in Indonesia"
- Monitor soil, water, and air conditions in horticulture cultivation using loT device
- IoT sensor board components: CO2, light, air humidity and temperature, soil moisture and temperature sensors, camera, WLAN module

#### Scope

- Design, development, and implementation of an IoT plant monitoring system
- Utilization of assigned sensors to monitor environmental variables
- Investigate the effectiveness of the system in monitoring indoor environment

#### **Limitations**

- Study did not evaluate or monitor soil quality and nutrition
- Findings have limited generalizability to different indoor settings and plant varieties
- Long-term effects were not fully observed

#### Methodology

- Specifications Definition
  - STM32F411RE MCU
  - ESP8266 WiFi Module
  - AM2320 Temperature and Humidity Sensor
  - BH1750 Light Sensor
  - SGP30 Air Quality Sensor
  - o PC201 PCB, headers
- Task- utilize the hardware to create an **IoT** platform for a UPD-EEEI Room (Room 321)

#### Methodology

- System Design and Planning
  - loT platform for indoor plant monitoring- sensors aligned with most plant requirements
    - Fixed soil quality (loam+garden+vermicast) and water frequency (every 1-2 weeks)
  - Epipremnum aureum (Golden Pothos)
    - Robust
    - Indoor effects

## Methodology



#### Methodology: Overall System Software Design



- For all sensors,
  - Datasheet and manual reading
  - Paper Layouts- modified
  - Prototyping- breadboard
  - Drop and Continuity tests
  - Powered via power banks and charger adapters
    - ~5V/2A

- For all sensors,
  - ESP8266- reliable and integrated
    - 3.3V- VDD and Chip Enable
    - 115.2kHz baud rate
    - 2.4GHz
    - 802.11 b/g/n
    - UART- RX and TX wires
      - UART1
      - PA10 (RX) and PA9 (TX)

- AM2320- stable, fast and calibrated
  - -40 to 80 °C, 0.1°C resolution, <5s response</li>
  - 0-99%RH, 0.1%RH resolution, <5s response</li>
  - 5V
  - $\circ$  4.7k $\Omega$  pull-up
  - I2C- SDA and SCL wires
    - I2C1- up to 50MHz
    - PB9 (SDA) and PB8 (SCL)

- BH1750- stable, fast and calibrated
  - 1-65535lx
  - 3.3V
  - $\circ$  2.2k $\Omega$  pull-up
  - I2C- SDA and SCL wires
    - I2C1- up to 50MHz
    - PB9 (SDA) and PB8 (SCL)

#### SGP30

- TVOC: 0 ppb 60000 ppb; 1, 6, 32 ppb resolution
- CO2: 400 ppm 60000 ppm; 1, 3, 9, 31 ppm resolution
- 1.62-1.98V
- I2C- SDA and SCL wires
  - I2C1- up to 50MHz
  - PB9 (SDA) and PB8 (SCL)

- For all sensors,
  - I2C- Controllerstech repository
    - STM32F411RE as master
    - Sensors as slaves
    - Configured and enabled GPIO and I2C registers and clocks
    - Basic I2C functions-
      - Start and Stop conditions
      - Address Transmission
      - Master Transmission and Receiving
  - Bare-metal
  - Checked errors via **Debugging** and Live Expressions

- AM2320- derived from Electrohobby repository
  - Configured 7-bit addressing mode
  - Wake- passive mode
    - START + 0xB8 (slave address) + 1ms + STOP
  - Send Read Command-
    - START + 0xB8 + 0x03 (function code [read register]) + 0x00 (start address) + 0x04 (register length) + STOP + 1ms
  - Read Sensor-
    - START + 0xB9 (0xB8 + 1 [R/read]) + <read sensor via buffers> + STOP

- AM2320-
  - Data received consists 8 bytes
    - 3rd and 4th bytes- humidity reading in hex
    - 5th and 6th- temperature reading in hex
      - Converted them to decimal then /10
    - 7th and 8th- CRC checksum
      - Segregates correct information
      - Code from datasheet
  - Overall communication- <3s else dormant</li>

- AM2320-
  - Virtual Actuators- C time library
    - Desk fan
    - Ceiling fan- CW (circulate warm air) and CCW (push cool air)
    - Pebble Humidity Tray- drains (humidity too low)
    - Baking Soda Moisture Absorber Tray- opens (humidity too high)
  - Calibration-
    - Crowded room
    - Cloudy and cool outside
    - Spraying, fanning, blowing

- BH1750- derived from BH1750FVI data sheet
  - Wake- passive mode
    - START + 0x23 (slave address) + 1ms + 0x01 (power on) + STOP
  - To begin data collection-
    - START + 0x23 + ack+ 0x10 (continuous high resolution mode) + STOP
  - Read Sensor-
    - START + 0x24 (0x23 + 1 [R/read]) + <read sensor via buffers> + STOP

- BH1750-
  - Data received consists 2 bytes
    - Both are values of lux

#### • SGP30-

- The first 8 bits of the communication hold the I2C address, which is the slave address (0x58).
- Following the address, there are 16 bits that can be either a memory address or a command.
- If write operation, the MCU sends 16 bits of data (partitioned into two 8-bit parts) and a CRC.
- If read operation, the MCU sends the slave address, and the sensor responds with a 16-bit data and CRC.

#### • SGP30-

- The "SGP30 Write" function writes a 16-bit command to the sensor by initiating I2C communication, sending the slave address, and writing the upper and lower 8 bits of the command.
- The "SGP30 Read" function reads data from the sensor by initiating I2C communication, waiting for the start bit, sending the slave address, and reading data in a loop.
- The "SGP30 Init" function initializes the SGP30 sensor by calling "SGP30 - Write" with the command for "sgp30 iaq init" (0x2003).
- The "SGP30 Measure" function is invoked to initialize air quality measurement by using "SGP30 - Write" with the "sgp30 measure iaq" command (0x2008).

#### • SGP30-

 CO2 and TVOC values are extracted from the read data by combining specific bytes.

#### Methodology: WiFi Module-MCU Integration

- Similar across all units- Controllerstech repository
  - HAL library
  - UARTRingBuffer.c library
    - UART methods
    - Ring buffer- reliable and efficient data handling, fixed data size
  - ESPDataLogger.c library
    - ESP8266 Initialization and Send methods
    - UARTRingBuffer.c module
    - AT commands

## Methodology: WiFi Module-MCU Integration

- .ioc- GPIO, UART and clock (max) configuration
- Main function-
  - Initialization calls
  - ESP8266 Initialization
    - SSID
    - Password
- While(1)-
  - Read Data
  - Virtual actuators
  - Data readings to buffer, sent to Thingspeak via API and TCP
  - 15s delay (Thingspeak)

## Methodology: WiFi Module-MCU Integration

- Auto-reconnect
  - Void SysTick\_Handler(void)
  - HAL\_GetTick();
  - Every 30-60s

#### Methodology: Web Interface Design

- Simple monitoring and indications, Golden Pothos requirements list
  - Environmental conditions
  - Actuator states
- Advantageous-
  - Internet
  - No installation
  - Data on cloud

## Methodology: Web Interface Design

- Development- notepad
  - HTML
  - CSS
  - JavaScript
- Thingspeak accesses-
  - Visualizations- <iframe> provided
  - Latest readings- fetch() and data.feeds[0]

#### **Methodology: Testing and Deployment**

- Preliminaries-
  - 12-hour end-to-end communication test
    - Calibration
    - Relatively stable fiber-optic
- Pretest- control
  - Measure current room conditions for 1 day
  - Setup- merged armchairs and boxes, extension cord, tapes, units w/o BH1750

#### **Methodology: Testing and Deployment**

#### Posttest-

- Compared w/ pretest readings to assess improvements and recommendations
- 1 day
- Similar setup w/ pretest + BH1750 + Golden Pothos
- Units nearby plants

# PROTOTYPE DEMONSTRATION



#### Results

#### **Testing of Web Application**



#### **RESULTS**

#### **Temperature**





#### **Relative Humidity**





#### **CO2 Level**





#### **TVOC Concentration**





## **Light Level (Testing)**



## **Light Level (Posttest)**



#### Conclusion

- The group was able to successfully develop a reliable IoT indoor environment monitoring platform.
- Data was collected and analyzed from the assigned sensors:
  AM2320 and SGP30 for two days, and BH1750 for a day.
- There was no significant changes between a classroom setup with and without indoor plants.
- There were external factors that have affected the measurements.

## **Appendix: Final Setup**





## Q&A