CSE 3400/CSE 5850 - Introduction to Cryptography & Cybersecurity / Introduction to Cybersecurity

Lecture 7 Hash Functions – Part II

Ghada Almashaqbeh UConn

Adapted from textbook slides

Outline

- Hash based MACs.
- Accumulators.
 - Merkle-Damgard.
 - Merkle trees.
 - Blockchains.

Hash based MAC

- Hash-based MAC is often faster than block cipher-based MACs.
- How? Heuristic constructions:

```
Prepend Key: MAC_k^{PK}(m) = h(k + m)
Append Key: MAC_k^{AK}(m) = h(m + k)
Message-in-the-Middle: MAC_k^{MitM}(m) = h(k + m + k)
```

- Are these secure assuming CRHF? OWF? Both?
 - No.
- But: all are 'secure in the random oracle model': when the hash function is assumed to behave like a random function.

Hash-based MAC: HMAC

HMAC uses an unkeyed hash function h:

$$HMAC_{k}(x) = h(k \oplus opad \mid\mid h(k \oplus ipad \mid\mid x))$$

- □ opad, ipad: fixed sequences (of 36x, 5Cx resp.)
- It is a secure MAC under 'reasonable assumptions' [beyond our scope]
- Widely deployed
- More results, more exposure

 confidence!
- Hash functions are useful for MACs in another way:
 - Hash then MAC for efficiency.

Accumulators

- Generalization of collision-resistant hash
 - Input is a sequence (ordered list) of messages
 - □ Output is n-bit digest, denoted ∆
- Collision resistance accumulator means that it is hard to find two different message lists that have the same digest.

Accumulator Components

- Digest function $\Delta: \{m_i \in \{0,1\}^*\} \to \{0,1\}^n$
 - Also called accumulate function.
 - Collision-resistance requirement
- Validation of Inclusion: Pol and VerPol
 - □ *PoI* function: compute Proof of Inclusion
 - VerPoI function: verify Pol
 - Optional, also Proof-of-Non-Inclusion (PoNI)
- Extending the Sequence: Extend function with optional PoC and VerPoC
 - □ PoC: Proof of Consistency (from old digest to new)
 - □ VerPoC function: verify PoC

Correctness and Security for PoI and PoC

- Correctness means that on input a valid Pol, VerPol will output 1.
 - Same for PoC.
- For Pol: security means that a PPT adversary cannot forge a valid Pol for a message that is no the hashed list.
- For PoC: security means that a PPT adversary cannot forge a valid PoC for an invalid digest extension.

We will Study Three Accumulator Types

- Merkle-Damgard accumulators.
- Merkle trees.
- Blockchains

The Merkle-Damgard Accumulator

Idea: hash iteratively, message by message:

$$\Delta(m_1, \ldots, m_l) = h(\Delta(m_1, \ldots, m_{l-1})||1||m_l) ; \Delta(m_1) = h(0^{n+1}||m_1)$$

- If h is a CRHF, then Δ is a collision-resistant digest
 - Proof... (out of scope, but you can see details in textbook)

Merkle-Damgard Length-Padding

- Aka Merkle Damgard Strengthening
- Let $pad(x)=1||0^k||bin(|x|)$; x'=x||pad(x)|
 - □ Where bin(|x|) is the n-bit binary representation of |x|
- For i=1, ..., l, where l=|x'|/n, and let x'_i is the i^{th} n-bit block of x'_i
- Apply the construction in the prior slide to obtain the digest of x'

This is just a high level idea, care needed to avoid collisions

The Digest-Chain Extend Function

- Beyond digest and collision resistance: sequence-related integrity mechanisms
- For digest-chain, the extend function:
 - Input: digest and 'next' sequence
 - Output: digest (of entire sequence)
 - Correctness requirement:

$$Extend(\Delta_l, M_{l+1,l'}) = \Delta(M_l + M_{l+1,l'})$$

The Merkle-Damgard Extend Function

- We can define Extend for Merkle-Damgard:
 - Idea: Just continue last digest!

$$\mathcal{MD}^{h}.Extend\left(\Delta,\left\{m_{1},\ldots,m_{l}\right\}\right) \equiv \begin{cases} \text{Let } \Delta_{1} \leftarrow h(\Delta + 1 + m_{1}) \\ \text{For } l = 1 \colon \Delta_{1} \\ \text{For } l > 1 \colon \\ \mathcal{MD}^{h}.Extend\left(\Delta_{1},\left\{m_{2},\ldots,m_{l}\right\}\right) \end{cases}$$

Not secure to be used to construct a MAC!

Two-layered Merkle Tree

- Short digest validates integrity of large object
 - Often, object consists of multiple 'files'
- Merkle tree : integrity for many 'messages'
 - □ Hash each 'message' in block, then hash-of-hashes $\delta = h(h(m_1)||h(m_2)||h(m_3)||h(m_4))$
 - Validate each 'message' independently
 - Advantages: efficiency (computation, communication) and privacy

Two-layered Merkle tree

Hash each item in block separately:

$$x_1 = h(m_1), x_2 = h(m_2),$$
 ...

Digest is hash of hashes:

$$y = \Delta(m_1, m_2, ...) = h(x_1||x_2||...)$$

Allows each user to receive, validate only required items. How?

To verify inclusion of m_2 ...

$$2l\mathcal{M}\mathcal{T}.\Delta(m_1,\ldots,m_l) \equiv h\left[h(m_1) + \ldots + h(m_l)\right]$$

$$2l\mathcal{M}\mathcal{T}.PoI((m_1,\ldots,m_l),j) \equiv \{h(m_i)\}_{i=1}^l$$

$$2l\mathcal{M}\mathcal{T}.VerPoI(d,m,i,\{x_i\}_{i=1}^l) \equiv \begin{bmatrix} \text{True } if \ x_i = h(m), \ and \\ d = h(x_1 + \ldots + x_l) \end{bmatrix}$$

Receive and validate only m_2 . Other hashes still required, though.

The Merkle Tree Construction

Reduce length of 'proofs' – send less hashes of 'other msgs'

$$\mathcal{MT}.\Delta(M) \equiv \begin{cases} \text{If } L = 0: & h(m_1) \\ \text{Else} & h\left(\mathcal{MT}.\Delta\left(m_1, \dots, m_{2^{L-1}}\right) + + \mathcal{MT}.\Delta\left(m_{2^{L-1}+1}, \dots, m_{2^L}\right)\right) \end{cases}$$

Merkle Tree: Proof of Inclusion (PoI)

ullet To prove inclusion of m_3 , send also 'proofs': h_{1-2} , h_4

Blockchains

Separate slide set.

Covered Material From the Textbook

- Chapter 3: Sections 3.7, 3.8, and 3.9
 - Only the material that corresponds to what we covered in class
- Chapter 4: Section 4.4.5

Thank You!

