COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 2)

DFA $M = (Q, \Sigma, \delta, q, F)$, state $r \in Q$, symbol $a \in \Sigma$, string $w = w_1...w_n$

Standard transition function $\delta: Q \times \Sigma \rightarrow Q$:

- $\delta(r, a) = r'$ with $r \xrightarrow{a} r'$
- $\delta(r,a)$ is the state that is reached from r by taking the a-labelled transition

DFA $M = (Q, \Sigma, \delta, q, F)$, state $r \in Q$, symbol $a \in \Sigma$, string $w = w_1...w_n$

Standard transition function $\delta: Q \times \Sigma \rightarrow Q$:

- $\delta(r, a) = r'$ with $r \xrightarrow{a} r'$
- $\delta(r,a)$ is the state that is reached from r by taking the a-labelled transition

Extended transition function $\bar{\delta}: Q \times \Sigma^* \to Q$:

ullet Σ^* is the set of all strings over Σ , including the empty string ϵ

Example: $\Sigma = \{0, 1\}$ $\Sigma^* = \{\epsilon, 0, 1, 00, 01, ...\}$

DFA $M = (Q, \Sigma, \delta, q, F)$, state $r \in Q$, symbol $a \in \Sigma$, string $w = w_1...w_n$

Standard transition function $\delta: Q \times \Sigma \rightarrow Q$:

- $\delta(r, a) = r'$ with $r \xrightarrow{a} r'$
- $\delta(r,a)$ is the state that is reached from r by taking the a-labelled transition

Extended transition function $\bar{\delta}: Q \times \Sigma^* \to Q$:

- ullet Σ^* is the set of all strings over Σ , including the empty string ϵ
- $\overline{\delta}(r, w_1 \dots w_n) = r'$ with $r \xrightarrow{w_1} \dots \xrightarrow{w_n} r'$
- $\bar{\delta}(r, w_1 \dots w_n)$ is the state that is reached from r by sequentially taking the w_1 -, ... w_n -labelled transitions
- ullet is based on a recursive application of δ

Example: $\Sigma = \{0, 1\}$ $\Sigma^* = \{\epsilon, 0, 1, 00, 01, ...\}$

DFA $M = (Q, \Sigma, \delta, q, F)$, state $r \in Q$, symbol $a \in \Sigma$, string $w = w_1...w_n$

Standard transition function $\delta: Q \times \Sigma \rightarrow Q$:

- $\delta(r, a) = r'$ with $r \xrightarrow{a} r'$
- $\delta(r,a)$ is the state that is reached from r by taking the a-labelled transition

Extended transition function $\bar{\delta}: Q \times \Sigma^* \to Q$:

- ullet Σ^* is the set of all strings over Σ , including the empty string ϵ
- $\bar{\delta}(r, w_1 \dots w_n) = r'$ with $r \xrightarrow{w_1} \dots \xrightarrow{w_n} r'$
- $\bar{\delta}(r, w_1 \dots w_n)$ is the state that is reached from r by sequentially taking the w_1 -, ... w_n -labelled transitions
- ullet is based on a recursive application of δ

Acceptance of a string w can now be simply defined as $\bar{\delta}(q,w) \in F$

Example: $\Sigma = \{0, 1\}$ $\Sigma^* = \{\epsilon, 0, 1, 00, 01, ...\}$

Extended Transition Function: Example

Is w = 100 accepted by M?

$$\bullet$$
 $\delta(q_0,1) = q_0, \ \delta(q_0,0) = q_1, \ \delta(q_1,0) = q_2 \in F$

•
$$\bar{\delta}(q_0, 100) = q_2 \in F$$

Operations on Regular Languages

The following operations can be applied to languages:

• The **union** of languages *A* and *B*:

$$A \cup B = \{w : w \in A \text{ or } w \in B\}$$

Example:

$$A = \{work\}, B = \{sheet, space\} \rightarrow A \cup B = \{work, sheet, space\}$$

Operations on Regular Languages

The following operations can be applied to languages:

• The **union** of languages A and B:

$$A \cup B = \{w : w \in A \text{ or } w \in B\}$$

Example:

$$A = \{work\}, B = \{sheet, space\} \rightarrow A \cup B = \{work, sheet, space\}$$

• The **concatenation** of *A* and *B*:

$$AB = \{ww' : w \in A \text{ and } w' \in B\}$$

Example:

$$A = \{work\}, B = \{sheet, space\} \rightarrow AB = \{worksheet, workspace\}$$

Operations on Regular Languages

• The **star** of language *A*:

$$A^* = \{u_1 u_2 \cdots u_k : k \geq 0 \text{ and } u_i \in A \text{ for all } i = 1, 2, \cdots, k\}$$

all possible combinations of strings from A glued together

Example:

$$A = \{a, b\} \rightarrow A^* = \{\epsilon, a, b, aa, bb, ab, ba, aba, abba \ldots\}$$

Alternative Definition of the Star Operation

Definition

Let A be a language, A^k , $k \ge 0$, and A^* are defined as

$$A^0 = \{\epsilon\}$$
 $A^1 = A$
 $A^2 = AA$
 $A^3 = AAA$
 \vdots
 $A^k = \underbrace{A \dots A}_{k \text{ times}}$
and

$$A^* = A^0 \cup A^1 \cup \dots$$

Closure of Operations

In many practical cases **closure** is an important property when it comes to the application of operations.

Closure is when an operation on elements of a set X results in an element of the same set X.

Example:

- $1 \in \mathbb{N}, 2 \in \mathbb{N}$
- $1+2 = 3 \in \mathbb{N}$ (N closed under addition)
- $1/2 = 0.5 \notin \mathbb{N}$ (N not closed under division)

Is the set of regular languages closed under Union, Concatenation, Star?

Closure of Operations on Languages

Let R be the set of all regular languages over some alphabet Σ :

Definition

R is closed under an binary operator bop if for all $A, B \in R$

$$bop(A, B) \in R$$

i.e. if bop(A, B) is regular.

Definition

R is closed under an unary operator uop if for all $A \in R$

$$uop(A) \in R$$

i.e. if uop(A) is regular.

Theorem (Closure of Union)

The set of regular languages R over Σ is closed under the Union operation.

Proof Idea:

- we show that for any two regular languages A and B the language $A \cup B$ is regular as well
- since A and B are regular there exist automata $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ that accept A and B respectively
- to prove $A \cup B$ regular we construct automaton M that accepts $A \cup B$
- we therefore show that for all strings $w \in \Sigma^*$: $\underbrace{M_1 \text{ accepts } w}_{A} \quad \text{OR} \quad \underbrace{M_2 \text{ accepts } w}_{B} \quad \Longleftrightarrow \quad \underbrace{M}_{A \cup B} \text{ accepts } w$

We let M_1 and M_2 run simultaneously with the same input w

As states of M we use combined states (t_1, t_2) where $t_1 \in Q_1$ and $t_2 \in Q_2$

M to be constructed shall be in accept state if M_1 or M_2 is in accept state

Run M_1 and M_2 simultaneously with $\mathbf{w} = \mathbf{1011}$

current combined state of M_1 and M_2 is (q_1, q_2) , which shall be the current state of M

Run M_1 and M_2 simultaneously with $\mathbf{w} = \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{1}$

current combined state of M_1 and M_2 is (q_1, r_2) , which shall be the current state of M

Run M_1 and M_2 simultaneously with $\mathbf{w} = \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{1}$

current combined state of M_1 and M_2 is (r_1, q_2) , which shall be the current state of M

Run M_1 and M_2 simultaneously with $\mathbf{w} = \mathbf{10} \ \mathbf{1} \ \mathbf{1}$

current combined state of M_1 and M_2 is (q_1, r_2) , which shall be the current state of M

Run M_1 and M_2 simultaneously with $\mathbf{w} = \mathbf{101} \ \mathbf{1}$

current combined state of M_1 and M_2 is (q_1, s_2) , which shall be the current state of M and an **accepting state** of M

Run M_1 and M_2 simultaneously

Formal Proof of Theorem (Closure of Union):

Given $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ we construct $M=(Q,\Sigma,\delta,q,F)$ as follows:

- $Q = Q_1 \times Q_2 = \{(t_1, t_2) : t_1 \in Q_1 \text{ and } t_2 \in Q_2\}$ set of all combined states of M_1 and M_2
- Σ is the same alphabet as that of M_1 and M_2
- $q = (q_1, q_2)$ the combined start state of M_1 and M_2
- $F = \{(t_1, t_2) : t_1 \in F_1 \text{ OR } t_2 \in F_2\}$ set of all combined states where M_1 or M_2 is in an accepting state

Formal Proof of Theorem (Closure of Union):

Given
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$
we construct $M = (Q, \Sigma, \delta, q, F)$ as follows:

• transition function $\delta: Q \times \Sigma \to Q$ with

$$\delta((t_1, t_2), a) = \underbrace{(\delta_1(t_1, a), \delta_2(t_2, a))}_{(t'_1, t'_2)}$$

for all $t_1 \in Q_1$, $t_2 \in Q_2$, and $a \in \Sigma$.

This completes the construction of M.

Formal Proof of Theorem (Closure of Union):

It remains to show that for all strings $w \in \Sigma^*$:

$$M$$
 accepts $w \iff M_1$ accepts w OR M_2 accepts w

which is the same as:

$$ar{\delta}((q_1,q_2),w)\in F\iff ar{\delta}_1(q_1,w)\in F_1 \ \ \mathsf{OR} \ \ ar{\delta}_2(q_2,w)\in F_2$$

Formal Proof of Theorem (Closure of Union):

It remains to show that for all strings $w \in \Sigma^*$:

$$M$$
 accepts $w \iff M_1$ accepts w OR M_2 accepts w

which is the same as:

$$ar{\delta}((q_1,q_2),w)\in F\iff ar{\delta}_1(q_1,w)\in F_1 \ \ \mathsf{OR} \ \ ar{\delta}_2(q_2,w)\in F_2$$

Proof of Equivalence:

$$\bar{\delta}((q_1,q_2),w)\in F$$

$$\Leftrightarrow (\overline{\delta}_1(q_1,w),\overline{\delta}_2(q_2,w)) \in F$$

(Def. of δ)

$$\delta((t_1, t_2), a) = (\delta_1(t_1, a), \delta_2(t_2, a))$$

Formal Proof of Theorem (Closure of Union):

It remains to show that for all strings $w \in \Sigma^*$:

$$M$$
 accepts $w \iff M_1$ accepts w OR M_2 accepts w

which is the same as:

$$ar{\delta}((q_1,q_2),w)\in F\iff ar{\delta}_1(q_1,w)\in F_1 \ \ \mathsf{OR} \ \ ar{\delta}_2(q_2,w)\in F_2$$

Proof of Equivalence:

$$\bar{\delta}((q_1,q_2),w)\in F$$

$$\Leftrightarrow (\overline{\delta}_1(q_1,w),\overline{\delta}_2(q_2,w)) \in F$$
 (Def. of δ)

$$\Leftrightarrow$$
 $(\overline{\delta}_1(q_1,w),\overline{\delta}_2(q_2,w)) \in \{(r_1,r_2): r_1 \in F_1 \text{ OR } r_2 \in F_2\}$ (Def. of F)

$$F = \{(t_1, t_2) : t_1 \in F_1 \text{ OR } t_2 \in F_2\}$$

Formal Proof of Theorem (Closure of Union):

It remains to show that for all strings $w \in \Sigma^*$:

$$M$$
 accepts $w \iff M_1$ accepts w OR M_2 accepts w

which is the same as:

$$ar{\delta}((q_1,q_2),w)\in extstyle F\iff ar{\delta}_1(q_1,w)\in extstyle F_1 ext{ OR } ar{\delta}_2(q_2,w)\in extstyle F_2$$

Proof of Equivalence:

$$\bar{\delta}((q_1,q_2),w)\in F$$

$$\Leftrightarrow (\overline{\delta}_1(q_1, w), \overline{\delta}_2(q_2, w)) \in F$$
 (Def. of δ)

$$\Leftrightarrow$$
 $(\overline{\delta}_1(q_1,w),\overline{\delta}_2(q_2,w)) \in \{(r_1,r_2): r_1 \in F_1 \text{ OR } r_2 \in F_2\}$ (Def. of F)

$$\Leftrightarrow \ ar{\delta}_1(q_1,w) \in F_1 \ \ \mathsf{OR} \ \ ar{\delta}_2(q_2,w) \in F_2 \ \ \Box$$

Theorem (Closure of Union)

The set of regular languages R over Σ is closed under the Union operation.