RAPID ADIABATIC PREPARATION OF INJECTIVE PEPS AND GIBBS STATES ARXIV:1508.00570 [QUANT-PH]

Yimin Ge, András Molnár, Ignacio Cirac

QIP 2016, 15.01.2016

Max Planck Institute of Quantum Optics, Garching, Germany

OUTLINE

1. Introduction

- PEPS
- Gibbs states
- · Parent Hamiltonians

2. Naive algorithm

- · Adiabatic theorem
- · Hamiltonian simulation

3. Algorithm

- · Improved adiabatic theorem
- Local changes
- · Lieb-Robinson localisation

4. Runtime & gap assumption

INTRODUCTION

- · Quantum system with N particles dim $\mathcal{H} = d^N$
 - Too large to describe efficiently
- Ground states of local gapped Hamiltonians
 - \cdot Special entanglement properties $\;\; o \;\;$ better description?

- Quantum system with N particles dim $\mathcal{H} = d^N$
 - Too large to describe efficiently
- Ground states of local gapped Hamiltonians
 - \cdot Special entanglement properties \rightarrow better description?

- · Quantum system with N particles $\dim \mathcal{H} = d^N$
 - Too large to describe efficiently
- Ground states of local gapped Hamiltonians
 - \cdot Special entanglement properties \rightarrow better description?

- · Quantum system with N particles $\dim \mathcal{H} = d^N$
 - Too large to describe efficiently
- Ground states of local gapped Hamiltonians
 - \cdot Special entanglement properties \rightarrow better description?

Injective PEPS

 Q_{λ} invertible $\forall \lambda$ (generic case)

Gibbs state

$$\cdot H = \sum_{\mu} h_{\mu} \qquad [h_{\mu}, h_{\nu}] = 0$$

$$\cdot H = \sum_{\mu} h_{\mu} \qquad [h_{\mu}, h_{\nu}] = 0$$

$$\cdot \rho_{\beta} = \frac{1}{Z} e^{-\beta H} \qquad Z = \operatorname{Tr} e^{-\beta H}$$

•
$$\beta = \text{Temperature}^{-1}$$

Gibbs state

•
$$H = \sum_{\mu} h_{\mu}$$
 $[h_{\mu}, h_{\nu}] = 0$

•
$$\rho_{\beta} = \frac{1}{Z}e^{-\beta H}$$
 $Z = \operatorname{Tr} e^{-\beta H}$

•
$$\beta = \text{Temperature}^{-1}$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(e^{-\beta H/2} \otimes \mathbb{1} \right) \left| \phi \right\rangle^{\otimes N}$$

•
$$|\phi\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle$$

• Tr_{Ancilla}
$$|\Psi\rangle\langle\Psi|=
ho_{eta}$$

Gibbs state

•
$$H = \sum_{\mu} h_{\mu}$$
 $[h_{\mu}, h_{\nu}] = 0$

•
$$\rho_{\beta} = \frac{1}{Z}e^{-\beta H}$$
 $Z = \operatorname{Tr} e^{-\beta H}$

•
$$\beta = \text{Temperature}^{-1}$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(e^{-\beta H/2} \otimes \mathbb{1} \right) \left| \phi \right\rangle^{\otimes N}$$

•
$$|\phi\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle$$

· Tr_{Ancilla}
$$|\Psi\rangle\langle\Psi|=
ho_{eta}$$

Gibbs state

•
$$H = \sum_{\mu} h_{\mu}$$
 $[h_{\mu}, h_{\nu}] = 0$

•
$$\rho_{\beta} = \frac{1}{7}e^{-\beta H}$$
 $Z = \operatorname{Tr} e^{-\beta H}$

•
$$\beta = \text{Temperature}^{-1}$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(e^{-\beta H/2} \otimes \mathbb{1}\right) |\phi\rangle^{\otimes N}$$

$$\cdot |\phi\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle$$

·
$$\operatorname{Tr}_{\operatorname{Ancilla}} |\Psi\rangle\!\langle\Psi| =
ho_{\beta}$$

$$\longrightarrow = \sum_{i=1}^{a} |ii|$$

Gibbs state

•
$$H = \sum_{\mu} h_{\mu}$$
 $[h_{\mu}, h_{\nu}] = 0$

•
$$\rho_{\beta} = \frac{1}{Z}e^{-\beta H}$$
 $Z = \operatorname{Tr} e^{-\beta H}$

• $\beta = \text{Temperature}^{-1}$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(e^{-\beta H/2} \otimes \mathbb{1} \right) \left| \phi \right\rangle^{\otimes N}$$

•
$$|\phi\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle$$

·
$$\operatorname{Tr}_{\operatorname{Ancilla}} |\Psi\rangle\!\langle\Psi| = \rho_{\beta}$$

$$\longrightarrow = \sum_{i=1}^{d} |ii\rangle$$

$$\bigcirc = e^{-\beta h_{\mu}/2}$$

Injective PEPS

Injective PEPS

Gibbs state

Injective PEPS

Gibbs state

General

Injective PEPS

Gibbs state

General

Injective PEPS

Gibbs state

General

Commuting, finite range, invertible operators ${\sf Q}_{\pmb{\lambda}}$ acting on maximally entangled pairs

Commuting, finite range, invertible operators ${\sf Q}_{\pmb{\lambda}}$ acting on maximally entangled pairs

Gibbs state

General

Commuting, finite range, invertible operators $Q_{\pmb{\lambda}}$ acting on maximally entangled pairs

$$\left(\prod_{\lambda:\lambda\cap\mu\neq\emptyset}Q_{\lambda}^{-1}\right)|\Psi\rangle$$

Commuting, finite range, invertible operators ${\sf Q}_{\pmb{\lambda}}$ acting on maximally entangled pairs

Gibbs state

General

Commuting, finite range, invertible operators $Q_{\pmb{\lambda}}$ acting on maximally entangled pairs

$$P_{\mu}\bigg(\prod_{\boldsymbol{\lambda}:\boldsymbol{\lambda}\cap\mu\neq\emptyset}Q_{\boldsymbol{\lambda}}^{-1}\bigg)|\Psi\rangle$$

Gibbs state

General

Commuting, finite range, invertible operators $Q_{\pmb{\lambda}}$ acting on maximally entangled pairs

$$P_{\mu}\bigg(\prod_{\boldsymbol{\lambda}:\boldsymbol{\lambda}\cap\mu\neq\emptyset}Q_{\boldsymbol{\lambda}}^{-1}\bigg)\,|\Psi\rangle\,=0$$

Gibbs state

General

Commuting, finite range, invertible operators $Q_{\pmb{\lambda}}$ acting on maximally entangled pairs

$$\left(\prod_{\lambda:\lambda\cap\mu\neq\emptyset}Q_{\lambda}^{-1}\right)^{\dagger}P_{\mu}\left(\prod_{\lambda:\lambda\cap\mu\neq\emptyset}Q_{\lambda}^{-1}\right)|\Psi\rangle=0$$

Commuting, finite range, invertible operators $\mathbf{Q}_{\pmb{\lambda}}$ acting on maximally entangled pairs

$$\sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right) |\Psi\rangle = 0$$

Commuting, finite range, invertible operators ${\sf Q}_{\pmb{\lambda}}$ acting on maximally entangled pairs

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

Injective PEPS

Gibbs state

General

Commuting, finite range, invertible operators Q_{λ} acting on maximally entangled pairs

Parent Hamiltonians

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

 $|\Psi\rangle$ is unique ground state of \emph{G}

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(s) = \sum_{\mu} G_{\mu}(s)$$
, $s \in [0, 1]$

Parent Hamiltonian

Adiabatic path

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Adiabatic theorem

e.g. [Jansen, Ruskai, Seiler '07]

Hamiltonian path
$$G(s)$$
 - ground state $|\phi(s)\rangle$
Initial state $|\psi(0)\rangle = |\phi(0)\rangle$

$$s \in [0,1]$$

 $\Delta = \min_{s} \operatorname{Gap} G(s)$

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = G\left(\frac{t}{\tau}\right)|\psi(t)\rangle \qquad t\in[0,\tau]$$

$$t \in [0,\tau]$$

$$au = O\left(rac{\|\dot{\mathbf{G}}\|^2}{arepsilon\Delta^3}
ight)$$
 sufficient for final error $\|\psi(au) - \phi(1)\| < arepsilon$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(s) = \sum_{\mu} G_{\mu}(s)$$
, $s \in [0, 1]$

Parent Hamiltonian

/////

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$/ / / / / /$$

$$/ / / / / /$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$/ / / / / / G(0) = \sum_{\mu} P_{\mu}$$

$$/ / / / / / / G(1) = G$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$/ / / / / / G(0) = \sum_{\mu} P_{\mu}$$

$$/ / / / / / / G(1) = G$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda : \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda : \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(0) = \sum P_{\mu}$$

$$G(0) = \sum G(0)$$

$$G(1) = G$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda : \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda : \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(0) = \sum P_{\mu}$$

$$G(1) = G$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

$$G(0) = \sum P_{\mu}$$

$$G(1) = G$$

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Parent Hamiltonian

$$G = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Runtime

$$\Delta = \min_{s} \operatorname{Gap} G(s)$$

Adiabatic runtime
$$\tau = O\left(\frac{\|\dot{\mathsf{G}}\|^2}{\varepsilon\Delta^3}\right)$$

Parent Hamiltonian

$$G = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Runtime

$$\Delta = \min_{s} \operatorname{Gap} G(s)$$

Adiabatic runtime
$$au = O\left(\frac{N^2}{\varepsilon \Delta^3}\right)$$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right) \qquad G(S) = \sum_{\mu} G_{\mu}(S), \quad S \in [0, 1]$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Hamiltonian simulation

e.g. [Berry, et al '14]

Given: Hamiltonian G(t) $t \in [0, \tau]$ **Want:** Unitary evolution of $G \rightarrow$ quantum circuit

$$\Rightarrow$$
 # gates = \tilde{O} ((# qubits) \times $||G|| \times \tau$)

Parent Hamiltonian

$$G = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Runtime

$$\Delta = \min_{s} \operatorname{Gap} G(s)$$

Adiabatic runtime
$$au = O\left(\frac{N^2}{\varepsilon \Delta^3}\right)$$

Parent Hamiltonian

$$G = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Runtime

$$\Delta = \min_s \operatorname{Gap} G(s)$$

Adiabatic runtime $\tau = O\left(\frac{N^2}{\varepsilon \Delta^3}\right)$ Runtime (# gates) $T = \tilde{O}\left(\tau N^2\right)$

Parent Hamiltonian

$$G = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s), \quad s \in [0, 1]$$

Runtime

$$\Delta = \min_s \operatorname{Gap} G(s)$$

Adiabatic runtime $\tau = O\left(\frac{N^2}{\varepsilon \Delta^3}\right)$ Runtime (# gates) $T = \tilde{O}\left(N^4 \Delta^{-3} \varepsilon^{-1}\right)$

Parent Hamiltonian

$$G = \sum_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)^{\dagger} P_{\mu} \left(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \right)$$

Adiabatic path

$$G(s) = \sum_{\mu} G_{\mu}(s)$$
, $s \in [0, 1]$

Runtime

$$\Delta = \min_s \operatorname{Gap} G(s)$$

 $\begin{array}{ll} \mbox{Adiabatic runtime} & \tau = O\left(\frac{N^2}{\varepsilon \Delta^3}\right) \\ \mbox{Runtime (# gates)} & T = \tilde{O}\left(N^4 \Delta^{-3} \varepsilon^{-1}\right) \end{array}$

Worse than classical algorithms for classical Gibbs states

IMPROVED ALGORITHM

Summary of results

```
Algorithm with  \text{Runtime (\# gates)} \quad T = O(N \operatorname{polylog}(N/\varepsilon)) \quad \leftarrow \quad \text{almost optimal}   \text{Circuit depth} \qquad D = O(\operatorname{polylog}(N/\varepsilon))
```

assuming a uniform gap

Ingredients

- 1. Adiabatic theorem with (almost) exponentially small error
- 2. Sequence of local changes
- 3. Lieb-Robinson localisation

IMPROVED ALGORITHM

Summary of results

```
Algorithm with
```

```
Runtime (# gates) T = O(N \operatorname{polylog}(N/\varepsilon)) \leftarrow \operatorname{almost optimal}
Circuit depth D = O(\operatorname{polylog}(N/\varepsilon))
assuming a uniform gap
```

Ingredients

- 1. Adiabatic theorem with (almost) exponentially small error
- 2. Sequence of local changes
- 3. Lieb-Robinson localisation

Main message: Speedup by locality

ADIABATIC THEOREM WITH ALMOST EXPONENTIALLY SMALL ERROR

ADIABATIC THEOREM WITH ALMOST EXPONENTIALLY SMALL ERROR

Theorem

c.f. [Nenciu '93], [Hagedorn, Joye '02]

- G(s) smooth & all derivatives of G(s) vanish at s=0,1
- G(s) is in Gevrey class $1 + \alpha$
- $K = |\operatorname{supp} \dot{G}|$

$$\Rightarrow \quad \tau = O\left(\log^{1+\alpha}\left(\frac{\kappa}{\varepsilon\Delta}\right)\frac{\kappa^2}{\Delta^3}\right) \quad \text{sufficient for final error } \varepsilon$$

$$G_{\text{initial}} = \sum_{\mu} P_{\mu}$$

$$\begin{aligned} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \text{Change } Q_{\lambda} \text{'s} \\ & &$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ \text{Change } Q_{\lambda} \text{'s} \\ & \qquad \qquad \text{individually} \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ & \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ & \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ & \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ & \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{split} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{split}$$

$$\begin{aligned} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \qquad \qquad \\ & \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{aligned}$$

$$G_{\text{initial}} = \sum_{\mu} P_{\mu}$$

$$\begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \end{array}$$

$$G_{\text{final}} = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

$$\begin{aligned} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \qquad \qquad \qquad \\ & \text{Change } Q_{\lambda} \text{'s} \\ & \text{individually} \\ G_{\text{final}} &= \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{aligned}$$

$$\begin{aligned} G_{\text{initial}} &= \sum_{\mu} P_{\mu} \\ & & \\ & & \\ & & \\ & & \\ & \text{Change } Q_{\lambda} \text{'s} \\ & &$$

 $\Delta = \text{minimum gap}$

Runtime

Adiabatic runtime N paths $\times O\left(\log^{1+\alpha}(N/\varepsilon\Delta)\Delta^{-3}\right)$

$$G_{\text{initial}} = \sum_{\mu} P_{\mu}$$

$$\begin{array}{c} & \\ & \\ & \\ \end{array}$$

$$\begin{array}{c} \text{Change } Q_{\lambda} \text{'s} \\ \text{individually} \\ \\ G_{\text{final}} = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{array}$$

 $\Delta = \text{minimum gap}$

Runtime

Adiabatic runtime N paths $\times O\left(\log^{1+\alpha}(N/\varepsilon\Delta)\Delta^{-3}\right)$ Runtime (# gates) $T = O\left(N^3 \operatorname{polylog}(N/\varepsilon\Delta)\Delta^{-3}\right)$

$$G_{\mathsf{initial}} = \sum_{\mu} P_{\mu}$$

$$\begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} \mathsf{Change} \ Q_{\lambda} \mathsf{'s} \\ \mathsf{individually} \end{array}$$

$$G_{\mathsf{final}} = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

 $\Delta = \text{minimum gap}$

Runtime

Adiabatic runtime
$$N$$
 paths $\times O\left(\log^{1+\alpha}(N/\varepsilon\Delta)\Delta^{-3}\right)$
Runtime (# gates) $T = O\left(N^3 \operatorname{polylog}(N/\varepsilon\Delta)\Delta^{-3}\right)$

$$G_{\text{initial}} = \sum_{\mu} P_{\mu}$$

$$\begin{array}{c} & \\ & \\ & \\ \end{array}$$

$$\begin{array}{c} \text{Change } Q_{\lambda} \text{'s} \\ \text{individually} \\ \\ G_{\text{final}} = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg) \end{array}$$

 $\Delta = minimum gap$

Runtime

Adiabatic runtime
$$N$$
 paths $\times O\left(\log^{1+\alpha}(N/\varepsilon\Delta)\Delta^{-3}\right)$
Runtime (# gates) $T = O\left(N^3 \operatorname{polylog}(N/\varepsilon\Delta)\Delta^{-3}\right)$

Problem: Hamiltonians act on entire system!

$$G_{\text{initial}} = \sum_{\mu} P_{\mu}$$

$$\begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} \text{Change } Q_{\lambda} \text{'s} \\ \text{individually} \end{array}$$

$$G_{\text{final}} = \sum_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)^{\dagger} P_{\mu} \bigg(\prod_{\lambda: \lambda \cap \mu \neq \emptyset} Q_{\lambda}^{-1} \bigg)$$

 $\Delta = minimum gap$

Runtime

Adiabatic runtime
$$N \text{ paths } \times O\left(\log^{1+\alpha}(N/\varepsilon\Delta)\Delta^{-3}\right)$$

Runtime (# gates) $T = O\left(N^3 \text{ polylog}(N/\varepsilon\Delta)\Delta^{-3}\right)$

Problem: Hamiltonians act on entire system!

Assume from now: $\Delta = \Omega(1)$

supp Ġ

Idea

Localise Hamiltonian around supp \dot{G}

Idea

Localise Hamiltonian around supp Ġ

Tool

Lieb-Robinson bound

Assumptions

 $\tau = O(\text{polylog}(N/\varepsilon))$ G frustration-free

Idea

Localise Hamiltonian around supp Ġ

Tool

Lieb-Robinson bound

Assumptions

 $\tau = O(\text{polylog}(N/\varepsilon))$ G frustration-free

Theorem

Hamiltonian terms supported at distance \gtrsim polylog $\left(\frac{N}{\varepsilon}\right)$ away from supp \dot{G} have negligible effect on adiabatic evolution

Truncate \rightarrow Hamiltonians act only on $O\left(\operatorname{polylog}\left(\frac{N}{\varepsilon}\right)\right)$ sites

RUNTIME & GAP ASSUMPTION

Runtime

Adiabatic runtime: $N \text{ paths } \times O\left(\log^{1+\alpha}\left(\frac{N}{\varepsilon}\right)\right)$

Each path: supported on $O\left(\operatorname{polylog}\left(\frac{N}{\varepsilon}\right)\right)$ sites

Runtime

Adiabatic runtime: $N \text{ paths } \times O\left(\log^{1+\alpha}\left(\frac{N}{\varepsilon}\right)\right)$

Each path: supported on $O\left(\operatorname{polylog}\left(\frac{N}{\varepsilon}\right)\right)$ sites

Runtime (# gates): $T = O(N \operatorname{polylog}(\frac{N}{\varepsilon}))$

Runtime

Adiabatic runtime: $N \text{ paths } \times O\left(\log^{1+\alpha}\left(\frac{N}{\varepsilon}\right)\right)$

Each path: supported on $O\left(\operatorname{polylog}\left(\frac{N}{\varepsilon}\right)\right)$ sites

Runtime (# gates): $T = O(N \operatorname{polylog}(\frac{N}{\varepsilon}))$

Parallelisation

Circuit depth: $D = O\left(\text{polylog}\left(\frac{N}{\varepsilon}\right)\right)$

Runtime

Adiabatic runtime: N paths $\times O\left(\log^{1+\alpha}\left(\frac{N}{\varepsilon}\right)\right)$

Each path: supported on $O\left(\operatorname{polylog}\left(\frac{N}{\varepsilon}\right)\right)$ sites

Runtime (# gates): $T = O(N \operatorname{polylog}(\frac{N}{\varepsilon}))$

Parallelisation

Circuit depth: $D = O\left(\text{polylog}\left(\frac{N}{\varepsilon}\right)\right)$

Assumption

 $\Omega(1)$ gap along all N paths

$$\bigcirc \ = \ Q_{\lambda}: (\mathbb{C}^D)^{\otimes 4} \to \mathbb{C}^d$$

$$\begin{aligned} &\text{Gap } G_n(s) \geq \text{const} > 0 \\ &\forall n = 1 \dots N \text{ and } s \in [0,1] \end{aligned}$$

$$\bigcirc \ = \ \mathcal{Q}_{\lambda}: (\mathbb{C}^{\mathbb{D}})^{\otimes 4} \to \mathbb{C}^{d}$$

Gap
$$G_n(s) \ge \text{const} > 0$$

 $\forall n = 1...N \text{ and } s \in [0,1]$

$$\bigcirc \ = \ Q_{\lambda}: (\mathbb{C}^{\mathbb{D}})^{\otimes 4} \to \mathbb{C}^{d}$$

$$\begin{aligned} &\text{Gap } G_n(s) \geq \text{const} > 0 \\ &\forall n = 1 \dots N \text{ and } s \in [0,1] \end{aligned}$$

$$\bigcirc \ = \ Q_{\lambda}: (\mathbb{C}^{\mathbb{D}})^{\otimes 4} \to \mathbb{C}^{d}$$

Gap
$$G_n(s) \ge \text{const} > 0$$

 $\forall n = 1...N \text{ and } s \in [0,1]$

$$\bigcirc \ = \ Q_{\lambda}: (\mathbb{C}^D)^{\otimes 4} \to \mathbb{C}^d$$

Assumption

Gap
$$G_n(s) \ge \text{const} > 0$$

 $\forall n = 1...N \text{ and } s \in [0,1]$

Theorem

If
$$Q_{\lambda} > q\mathbb{1}$$
 for all λ and some $q = \text{const} > 0$
 $\Rightarrow \text{Gap } G_n(s) \geq q^{-2} \text{ Gap } G_n(0) \quad \forall s \in [0, 1].$

UNIFORM GAP ASSUMPTION

$$\bigcirc = Q_{\lambda} : (\mathbb{C}^{D})^{\otimes 4} \to \mathbb{C}^{d}$$

Assumption

Gap
$$G_n(s) \ge \text{const} > 0$$

 $\forall n = 1...N \text{ and } s = 0$

Theorem

If
$$Q_{\lambda} > q\mathbb{1}$$
 for all λ and some $q = \text{const} > 0$
 $\Rightarrow \text{Gap } G_n(s) \geq q^{-2} \text{ Gap } G_n(0) \quad \forall s \in [0, 1].$

UNIFORM GAP ASSUMPTION

$$G_{n-1}$$
 change single Q_{λ}

$$\bigcirc = Q_{\lambda} : (\mathbb{C}^{\mathbb{D}})^{\otimes 4} \to \mathbb{C}^{d}$$

Assumption

Gap
$$G_n(s) \ge \text{const} > 0$$

 $\forall n = 1...N \text{ and } s = 0$

Theorem

If
$$Q_{\lambda} > q\mathbb{1}$$
 for all λ and some $q = \text{const} > 0$
 $\Rightarrow \text{ Gap } G_n(s) \geq q^{-2} \text{ Gap } G_n(0) \qquad \forall s \in [0, 1].$

Uniform gap assumption

$$\operatorname{\mathsf{Gap}} G_n(0) = \Omega(1) \qquad \forall n = 1 \dots N$$

"Parent Hamiltonian of various system sizes (& shapes) gapped"

$(\Delta$	Δ

Runtime (uniform gap)

Our algorithm

O(N polylog N)

414	Runtime (uniform gap)	
Our algorithm	O(N polylog N)	
	Injective PEPS	
[Schwarz et al '12]	$O(N^4)$	

	Runtime (uniform gap)	
Our algorithm	O(N polylog N)	
	Injective PEPS	
[Schwarz et al '12]	$O(N^4)$	
	Gibbs states	

	Runtime (uniform gap)		
Our algorithm	O(N polylog N)		
	Injective PEPS		
[Schwarz et al '12]	$O(N^4)$		
	Gibbs states		
Classical (sampling)			
MCMC (e.g. Metropolis)	$O(N^2)$		
Additional assumptions	$O(N \log N)$	\leftarrow	"rapid mixing"

		Runtime (uniform gap)		
Our	algorithm	O(N polylog N)		
		Injective PEPS		
[Schw	arz et al '12]	$O(N^4)$		
		Gibbs states		
Class	sical (sampling)			
MCMC	(e.g. Metropolis)	$O(N^2)$		
Add	ditional assumptions	$O(N \log N)$	\leftarrow	"rapid mixing"
Quar	ntum			
QSA	[Somma et al '08] [Wocjan, Abeyesinghe '08]			
QM	[Temme et al '11]	O(poly N)		
QQM	[Yung, Aspuru-Guzik '12]			

		Runtime (uniform gap)	Gap dependence
Our	algorithm	O(N polylog N)	$ ilde{O}(\Delta^{-3})$ or $ ilde{O}(\Delta^{-3-6 ext{dim}})$
		Injective PEPS	
[Schw	arz et al '12]	$O(N^4)$	$O(\Delta^{-1})$
		Gibbs states	
Class	sical (sampling)		
MCMO	C (e.g. Metropolis)	$O(N^2)$	$O(\Delta^{-1})$
Ado	ditional assumptions	$O(N \log N)$	← "rapid mixing"
Quai	ntum		
QSA	[Somma et al '08] [Wocjan, Abeyesinghe '08]		$O(\Delta^{-1/2})$
QM	[Temme et al '11]	O(poly N)	$O(\Delta^{-1})$
QQM	[Yung, Aspuru-Guzik '12]		$O(\Delta^{-1/2})$

- · Injective PEPS
- · Gibbs distribution

- · Injective PEPS
- · Gibbs distribution

Ingredients

- · Improved adiabatic theorem
- · Sequence of local changes
- · Lieb-Robinson localisation

- · Injective PEPS
- · Gibbs distribution

Ingredients

- \cdot Improved adiabatic theorem
- · Sequence of local changes
- · Lieb-Robinson localisation

- Injective PEPS
- · Gibbs distribution

Ingredients

- · Improved adiabatic theorem
- · Sequence of local changes
- · Lieb-Robinson localisation

Performance

- Runtime $O(N \text{ polylog } N) \leftarrow \text{almost optimal}$
- Depth O(polylog N)
- · Almost quadratically faster than classical MCMC algorithms
- · Uniform gap assumption

- Injective PEPS
- · Gibbs distribution

Ingredients

- · Improved adiabatic theorem
- · Sequence of local changes
- · Lieb-Robinson localisation

Performance

- Runtime $O(N \text{ polylog } N) \leftarrow \text{almost optimal}$
- Depth O(polylog N)
- · Almost quadratically faster than classical MCMC algorithms
- · Uniform gap assumption

