

Advanced level study programme in Electronics Design and Integration Technologies

28213-IC-1-2005-1-BE-ERASMUS-PROGUC-3 2006-2322 / 001-001 SO2

RF Signals and Systems

1. Introduction. Communications Systems

Ivan Uzunov

Table of Contents

1.	Information, Messages, Signals	. 3
2.	Elements of a Communication System	. 4
3.	Fundamental Limitations in Communications	. 7
	3.1. Limitations Due to Technological Problems	. 7
	3.2. Fundamental Physical Limitations	8
4.	Modulation	9

1.Information, Messages, Signals

Information: general intuitive term.

Message: a physical manifestation of the information as produced by the source.

Various sources of messages (people, machines, measuring instruments, etc.).

Analog message: a physical time-variable quantity usually in smooth and continuous form.

Digital message: ordered sequence of symbols selected from finite set of elements.

Signal: physical embodiment of the information.

Signal ≈ Message

Electrical signal: voltage or current representing the message.

2. Elements of a Communication System

Figure 1. Block-diagram of a communication system with input and output transducers.

Input transducer converts the message to an electrical signal.

The **transmitter** converts the input signal to transmitted signal suited for the transmission channel.

Transmission cannel is the electric medium that bridges the distance from source to destination.

The **receiver** converts the received signal in a form appropriate for the output transducer.

Output transducer converts the output electrical signal the desired message form.

Figure 1 (repeated). Block-diagram of a communication system with input and output transducers.

Basic operations in the transmitter

- Modulation
- Coding

Basic operations in the receiver

- Amplification
- Filtering
- Demodulation
- Decoding

Effects of the channel on the transmitted signal

- Attenuation: decreasing the signal strength;
- *Distortion of the signal waveform:* caused by channel characteristics (linearity, frequency response, etc.)
- *Noise:* contamination of random natural signals added to the transmitted signal
- *Interference:* contaminations of extraneous signal of human sources machinery, power lines, digital switching circuits, etc.

Figure 1 (repeated). Block-diagram of a communication system with input and output transducers.

One-way or simplex (SX) transmission. Transmission in one direction only. Example - Figure 1.

Full-duplex (**FDX**) system – a system, which channel allows transmission in both directions.

Full-duplex (**HDX**) system – a system, which channel allows transmission in both directions but not simultaneously.

3. Fundamental Limitations in Communications

3.1. Limitations Due to Technological Problems

- Hardware availability
- Economic factors
- International and national regulating norms

3.2. Fundamental Physical Limitations

3.2.1. Transmission Bandwidth B.

- Limits the spectrum of the transmitted signal, i.e. the maximum speed of variation of the transmitted signal.
- The time required for transmission of a given amount of information is inversely proportional to the transmission bandwidth B.

3.2.2. *Noise*

- Noise is generated in all conductors and in electronic devices as well.
- Thermal noise due to random motion of the charged particles like electrons.
- Noises generated in electronic devices: shot, flicker, popcorn, avalanche.

- The noise degrades the fidelity in analog communication systems and produces errors in digital communications.
- Noise generation limits the weakest transmitted signal. Significant in long-distance communications when the signal attenuation is large.
- Signal-to-noise ratio *S/N*

$$S/N = \frac{\text{power of the signal}}{\text{power of the noise}}$$

3.2.3. Hartley-Shannon low

The rate of information transmission cannot exceed the **channel capacity C**

$$C = B \log(1 + S/N)$$

4. Modulation

4.1. Modulation Methods

- Modulating signal represents the message.
- Carrier wave suits the application.
- Usually the modulation signal is much slower than the carrier wave.
- **Modulation** altering one or more of the parameters (amplitude, frequency, phase, pulse width) of the carrier in correspondence with the modulating signal.
- **Demodulation** extraction of modulating signal from modulated signal; reverse operation to modulation.
- Continuous wave modulation when the carrier is sinusoidal.
- **Pulse modulation** the carrier is pulse train.

Figure 2. Examples of the basic continuous modulations.

Figure 3. Examples of the basic pulse modulations.

4.2. Modulation Benefits and Applications

- Modulation for efficient transmission;
- Modulation to overcome hardware limitation;
- Modulation to overcome noise and interference;
- Modulation for frequency assignment
- Modulation for multiplexing: frequency division; time division, multiple access
- Coding methods and benefits

4.3. Analog and Digital Communications

- Analog communication systems: the informative signal is transmitted in continuous form.
- **Digital communication system:** the informative signal is represented as a sequence of limited set of symbols (digits) and these symbols are transmitted via the channel by applying of and appropriate modulation. The input signal must be **sampled** if it enters in analog form.
- Basic advantages of the digital communication systems:
 - better resistivity against the noise;
 - ➤ allows the use of effective coding methods;
 - ➤ more flexible signal handling suggested by digital signal processing methods
- However the front end of radiofrequency (RF) communication systems are always analog since signals are existing only in analog form.

References:

1. [1] A. Bruce Carlson, P. B. Crilly, J. C. Rutledge, Communication Systems, 4th ed., McGraw-Hill, 2002, ISBN 0-07-011127-8.