計量経済 I: 宿題 3

村澤 康友

提出期限: 2024年5月21日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. (教科書 p. 128, 実証分析問題 5-A) gretl で回帰分析を実行する手順は次の通り:
 - (a) メニューから「モデル」→「通常の最小二乗法」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」を選択.
 - (d) $\lceil OK \rfloor$ $\geq D \cup D = 0$.

データセット「 5_1 _income.dta」を gretl に読み込み,教科書 pp. 113-116 の 4 つの単回帰モデルの推定結果を再現しなさい. ただ実行して終わるのでなく,データ分析の際は,以下の点に常に注意すること:

分析前 データの数値を確認し、表・グラフ・統計量でデータの特徴を把握する.

分析後 推定値の統計的有意性・符号・大きさを確認し、分析結果を解釈する.

- 2. (教科書 p. 128, 実証分析問題 5-B) データセット「5_2_sleep.dta」を gretl に読み込み, 睡眠時間 を通勤時間で説明する回帰分析を実行しなさい.
- 3. (教科書 p. 128, 実証分析問題 5-C) データセット「 5_3 abe.dta」を gretl に読み込み,安倍首相(当時)への支持感情を賃金所得で説明する回帰分析を実行しなさい.

解答例

1. (a) レベル=レベル

モデル 1: 最小二乗法 (OLS), 観測: 1–4327 従属変数: income

	係数	Std. Error	t-ratio	p 値
const	-56.8928	19.3568	-2.939	0.0033
yeduc	23.1510	1.38425	16.72	0.0000

Mean dependent var	263.9040	S.D. dependent var	176.5552
Sum squared resid	1.27e + 08	S.E. of regression	171.1286
R^2	0.060744	Adjusted \mathbb{R}^2	0.060527
F(1,4325)	279.7095	P-value (F)	$6.85 \mathrm{e}{-61}$
Log-likelihood	-28389.98	Akaike criterion	56783.96
Schwarz criterion	56796.70	Hannan-Quinn	56788.46

(b) ログ=レベル

モデル 2: 最小二乗法 (OLS), 観測: 1–4327 従属変数: lincome

	係数	Std. Error	t-ratio	p 値
const	4.38520	0.100312	43.72	0.0000
veduc	0.0651801	0.00717354	9.086	0.0000

Mean dependent var	5.288386	S.D. dependent var	0.895150
Sum squared resid	3401.469	S.E. of regression	0.886830
R^2	0.018731	Adjusted \mathbb{R}^2	0.018504
F(1, 4325)	82.55861	P-value (F)	1.53e-19
Log-likelihood	-5619.064	Akaike criterion	11242.13
Schwarz criterion	11254.87	Hannan-Quinn	11246.63

(c) レベル=ログ

モデル 3: 最小二乗法 (OLS), 観測: 1–4327 従属変数: income

	係数	Std. E	Error t-ra	tio p値	Ĩ
const	-515.478	50.032	29 -10	.30 0.000	00
lyeduc	297.534	19.074	15	.60 0.000	00
Mean dependent	var 263	.9040	S.D. deper	ndent var	176.5552
Sum squared res	id 1.28	se+08	S.E. of reg	ression	171.8089
R^2	0.05	53262	Adjusted A	R^2	0.053043
F(1, 4325)	243	.3176	$\operatorname{P-value}(F$)	2.07e-53
Log-likelihood	-284	07.15	Akaike cri	terion	56818.29
Schwarz criterio	n 568	31.04	Hannan-C	uinn	56822.79

(d) ログ=ログ

モデル 4: 最小二乗法 (OLS), 観測: 1–4327 従属変数: lincome

Std. Error t-ratio p值

係数

	const	3.1594	7	0.2586	86	12.21	0.0000	
	lyeduc	0.8127	27	0.0986	204	8.241	0.0000	
Mean d	lependent	var	5.28	8386	S.D.	dependen	t var	0.895150
Sum sq	uared res	id	3412	2.809	S.E.	of regress	ion	0.888307
\mathbb{R}^2			0.01	5460	Adju	sted \mathbb{R}^2		0.015232
F(1, 43)	25)		67.9	1354	P-va	lue(F)		2.24e-16
Log-like	elihood	_	-5626	5.264	Akai	ke criterio	n	11256.53
Schwar	z criterior	1	1126	9.27	Hanı	nan–Quini	n	11261.03

2. 通勤時間と睡眠時間

モデル 1: 最小二乗法 (OLS), 観測: 1–3726 従属変数: sleep

	係数	Std. Err	or t-ratio	p 値
const	431.765	1.29258	334.0	0.0000
commute	-0.553002	0.031474	-17.57	0.0000
Mean dependent	var 413.0	825 S.D	. dependent	var 46.67611
Sum squared res	id 7494	253 S.E	of regression	n 44.86001
R^2	0.076	551 Adj	usted \mathbb{R}^2	0.076303
F(1,3724)	308.7	091 P-v	alue(F)	1.87e-66
Log-likelihood	-19457	7.98 Aka	ike criterion	38919.96
Schwarz criterion	n 38932	2.41 Har	nan-Quinn	38924.39

3. 賃金所得と支持感情

モデル 1: 最小二乗法 (OLS), 観測: 1–4276 従属変数: abe

係對	数 5	Std. Error	t-ratio	p 値
const 43.437	2 0.	327738	132.5	0.0000
income -0.003	05935 0	000928663	-3.294	0.0010
Mean dependent var	42.6368	81 S.D. d	lependent v	ar 14.40106
Sum squared resid	884349	.4 S.E. o	f regression	14.38450
R^2	0.00253	33 Adjus	ted R^2	0.002299
F(1,4274)	10.8527	78 P-valu	$\operatorname{ie}(F)$	0.000995
Log-likelihood	-17466.8	84 Akaike	e criterion	34937.69
Schwarz criterion	34950.4	41 Hanna	an–Quinn	34942.18