Analysis of Algorithms CSC 402 2022-23

Subject Incharge

Bidisha Roy Associate Professor Room No. 401

email: bidisharoy@sfit.ac.in

Module 1 - Introduction

Analyzing Algorithms

- Why
 - Measuring efficiency of an Algorithm.
- Efficiency checked by
 - Correctness
 - Implementation
 - Simplicity
 - Execution time and Memory space req.
 - New ways of doing same task better.

Time and Space

- Time Complexity
 - Amount of computer time an algorithm needs to execute the program and get the intended result.
- Space Complexity
 - Amount of memory required for running an algorithm.

Types of Analysis

- Priori Analysis
 - -Machine independent
 - Done before implementation

- Posteriori Analysis
 - -Target Machine dependent
 - Done after implementation

Order of Magnitude

- Order of Magnitude of an Algorithm is the sum of number of occurrences of statements contained in it.
- Other terms
 - Worst case Running Time
 - Best case Running Time
 - Average case Running Time

Asymptotic Notations

- Concerned with how the running time of an algorithm increases with the size of input in the limit, as the size of input increases without bound.
- Notations
 - –O notation
 - $-\Omega$ notation
 - −O notation

O Notation

- Formally defined as
 - For non-negative functions T(n) and f(n), the function T(n) = O(f(n))if there are positive constants \mathbf{c} and \mathbf{n}_0 such that $T(n) \le c^*f(n)$ for all \mathbf{n} , $\mathbf{n} \ge \mathbf{n}_0$ ($\mathbf{c} > \mathbf{0}$, $\mathbf{n}_0 \ge \mathbf{1}$)
- Known as the Big-Oh
- If graphed, f(n) serves as an upper bound to the curve you are analysing.
- Describes the worst that can happen.

Ω Notation

- Formally defined as
 - For non-negative functions, T(n) and f(n), the function T(n) = Ω(f(n)) if there are positive constants c and n_0 such that T(n) ≥ c*f(n) for all n, $n ≥ n_0$. (c>0, $n_0 ≥ 1$)
- f(n) is the lower bound for T(n).
- Describes best that can happen for a given data input size.

Θ Notation

- Formally defined as
 - For non-negative functions, T(n) and g(n), the function T(n) = Θ(g(n)) if there exist positive constants c1, c2 and n_0 such that $c_1*g(n) ≤ T(n) ≤ <math>c_2*g(n)$ for all n, $n ≥ n_0$. $(c_1, c_2>0, n_0 ≥ 1)$
- Describes the average case for the input data size n.

How to approximate time complexity?

- Algorithms of two types
 - —Iterative Algorithms
 - Recursive Algorithms
- Iterative Algorithms
 - Count number of times instructions are executed
- Recursive Algorithms
 - -Recursive/recurrence equations

Insertion Sort Pseudocode

Ln No.	Insertion_Sort(A, n)
1.	for j ← 2 to n
2.	key ← A[j]
3.	i ← j-1
4.	while i>0 and A[i] >key
5.	$A[i+1] \leftarrow A[i]$
6.	i ← i-1
7.	A[i+1] ← key

for $j \leftarrow 2$ to n key $\leftarrow A[j]$

i **←** j-1

http://liveexample.pearsoncmg.com/dsanimation/InsertionSortNeweBook.html

while i>0 and A[i] >key $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$

 $A[i+1] \leftarrow key$

Index		1	2	3	4	5	6	7
List		8	6	9	5	1	2	7
Pass 1	j=2, key=6, i=1	6	8					
Pass 2	j=3, key=9, i=2	6	8	9				
Pass 3	j=4, key=5, i=,3,2,1,0	5	6	8	9			
Pass 4	j=5, key=1, i=4,3,2,1,0	1	5	6	8	9		
Pass 5	j=6, key=2, i=5,4,3,2,1	1	2	5	6	8	9	
Pass 6	j=7, key=7, i=6,5,4	1	2	5	6	7	8	9

Insertion Sort (A, n)

Ln No.	Pseudo Code	Cost	Times
1.	for j ← 2 to n	c1	n
2.	key ← A[j]	c2	n-1
3.	i ← j-1	c3	n-1
4.	while i>0 and A[i] >key	c4	$\sum_{j=2}^n t_j$
5.	$A[i+1] \leftarrow A[i]$	c5	$\sum_{j=2}^{n} (t_j - 1)$ $\sum_{j=2}^{n} (t_j - 1)$
6.	i ← i-1	с6	$\sum_{j=2}^{n} (t_j - 1)$
7.	A[i+1] ← key	c7	n-1

Assumptions while finding Time Complexity

- The leading constant of highest power of n
 and all lower powers of n are ignored in f(n)
- Example for Insertion sort

$$-T(n) = O(f(n))$$

- Best case f(n) = (c1+c2+c3+c4+c7)n (c2+c3+c7)
- Therefore T(n) = O(n)

Selection Sort

- Successive elements are selected in order and placed in their proper position.
- An in-place sort.
- Simple to implement
- Works as follows
 - Find the minimum value in the list
 - Swap it with the value in the first position
 - Repeat the steps above for the remainder of the list (starting at the second position and advancing each time)

Selection Sort Pseudocode

Ln No.	Selection_Sort (A,n)
1.	for i← 1 to n
2.	j ← i
3.	for k← i+1 to n
4.	if (A[k] <a[j]) td="" then<=""></a[j])>
5.	j ← k
6.	swap (A[i],A[j])

https://liveexample.pearsoncmg.com/dsanima tion13ejava/SelectionSorteBook.html

Index		1	2	3	4	5	6	7	
Initial List		8	6	9	5	1	2	7	
Pass 1	i=1, j=1, 2, 4, 5 Swap (A[1], A[5])	1	6	9	5	8	2	7	
Pass 2	i=2, j=2, 5, 6 Swap (A[2], A[6])	1	2	9	5	8	6	7	
Pass 3	i=3, j=3, 4 Swap (A[3], A[4])	1	2	5	9	8	6	7	
Pass 4	i=4, j=4, 5, 6 Swap (A[4], A[6])	1	2	5	6	8	9	7	
Pass 5	i=5, j=5, 7 Swap (A[5], A[7])	1	2	5	6	7	9	8	
Pass 6	i=6, j=6, 7 Swap (A[6], A[7])	1	2	5	6	7	8	9	
Pass 7	i=7, j=7	1	2	5	6	7	8	9	

for $i \leftarrow 1$ to n j **←** i for $k \leftarrow i+1$ to n if (A[k] < A[j]) then j**←**k swap (A[i],A[j])

Selection Sort (A,n)

Ln No.	Pseudo Code	Cost	Times
1.	for i← 1 to n	c1	n+1
2.	j ← i	c2	n
3.	for k← i+1 to n	c3	n(n+1)/2
4.	if $(A[k] < A[j])$ then	c4	n(n+1)/2 - 1
5.	j←k	c5	n(n+1)/2 - 1
6.	swap (A[i],A[j])	с6	n

Some Problems

Recursive Algorithms

- Bin_Search(A, target, low, high, n)
 - If (high < low)</p>
 - return not found
 - $\text{ mid} \leftarrow \text{low} + ((\text{high low}) / 2)$
 - if (A[mid] > target)
 - return Bin_Search(A, target, low, mid-1)
 - if (A[mid] < target)</pre>
 - return Bin_Search(A, target, mid+1, high)
 - else
 - return mid

Solving Recursive Algorithms

- Recurrence Relations/Substitution Method
 - Substitute the equation for earlier instances
- Recursion Tree
 - Draw a recurrence tree and calculate time taken for each level of tree
- Master's Method
 - Direct Method

Substitution/Recurrence Relation Method

Example 1

- A(n)
 - if (n>1)
 - Return (A(n-1))
 - if (n==1)
 - Return 1
- T(n) = 1 + T(n-1)
- Where
 - T(n-1) Time taken to execute n-1 inputs

Example 2

- A(n)
 - if (n>1)
 - Return (A(n/2) + A(n/2))
 - if (n==1)
 - Return 1
- T(n) = c + 2T(n/2)
- where
 - c- time taken for constant actions
 - -T(n/2) Time taken to

Master's Theorem

- Given: a divide and conquer algorithm
 - —An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

Master's Theorem

- If T(n) = aT(n/b) + f(n), $a \ge 1$, b > 1, then
 - -Case I:
 - If $f(n) = O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T(n) = O(n^{\log_b a})$
 - -Case II:
 - If $f(n) = O(n^{\log_b a})$, then $T(n) = O(n^{\log_b a} \log_n)$
 - -Case III:
 - If $f(n)=\Omega(n^{\log_b a+\epsilon})$ for some constant $\epsilon>0$, and if af(n/b)<=cf(n) for some constant c<1 and all sufficiently large n, then $T(n)=\Theta(f(n))$

Using Master's Theorem

- T(n) = 9T(n/3) + n
 - -a=9, b=3, f(n) = n
 - $-n^{\log b a} = n^{\log 3 9} = \Theta(n^2)$
 - -Since $f(n) = O(n^{\log_3 9 \epsilon})$, where $\epsilon > 1$, case 1 applies:

$$T(n) = \Theta(n^{\log_b a})$$
 when $f(n) = O(n^{\log_b a - \varepsilon})$

-Thus the solution is $T(n) = \Theta(n^2)$

Recurrence Tree Method

- Convert the recurrence into a tree:
 - Each node represents the cost incurred at various levels of recursion
 - Sum up the costs of all levels
 - To draw the recurrence tree, we start from the given recurrence and keep drawing till we find a pattern among levels.
 - The pattern is typically a arithmetic or geometric series.

Example: $W(n) = 2W(n/2) + n^2$

- Subproblem size at level i is: n/2ⁱ
- Subproblem size hits 1 when $1 = n/2^i \rightarrow i = logn$
- Cost of the problem at level $i = (n/2^i)^2$ No. of nodes at level i $= 2^{i}$
- **Total Cost**

$$W(n) = \sum_{i=0}^{\lg n-1} \frac{n^2}{2^i} + 2^{\lg n} W(1) = n^2 \sum_{i=0}^{\lg n-1} \left(\frac{1}{2}\right)^i + n \le n^2 \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i + O(n) = n^2 \frac{1}{1 - \frac{1}{2}} + O(n) = 2n^2$$

E.g.:
$$T(n) = 3T(n/4) + cn^2$$

$$T(\frac{n}{4}) T(\frac{n}{4}) T(\frac{n}{4}) C(\frac{n}{4})^2 C(\frac{n}{4})^2 C(\frac{n}{4})^2$$

$$T(\frac{n}{16}) T(\frac{n}{16}) T(\frac{n}{16}) T(\frac{n}{16}) T(\frac{n}{16}) T(\frac{n}{16}) T(\frac{n}{16}) T(\frac{n}{16})$$

- Subproblem size at level i is: n/4ⁱ
- Subproblem size hits 1 when $1 = n/4^i \Rightarrow i = \log_4 n$
- Cost of a node at level $i = c(n/4^i)^2$
- Number of nodes at level $i = 3^i \Rightarrow$ last level has $3^{\log_4 n} = n^{\log_4 3}$ nodes
- Total cost:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) \le \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) = \frac{1}{1 - \frac{3}{16}} cn^2 + \Theta\left(n^{\log_4 3}\right) = O(n^2)$$

 \Rightarrow T(n) = O(n²)

Some common recurrences

Recurrence	Solution			
T(n) = T(n/2) + d	$T(n) = O(\log_2 n)$			
T(n) = T(n/2) + n	T(n) = O(n)			
T(n) = 2T(n/2) + d	T(n) = O(n)			
T(n) = 2T(n/2) + n	$T(n) = O(nlog_2n)$			
T(n) = T(n-1) + d	T(n) = O(n)			

Next

Divide and Conquer