# Deep Learning meets Parametric Partial Differential Equations

#### Gitta Kutyniok

(Technische Universität Berlin and University of Tromsø)

Banach Center – Oberwolfach Graduate Seminar: Mathematics of Deep Learning Polish Academy of Sciences, Bedlewo, November 17 – 23, 2019



### Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of science and engineering.

### Some Exemplary Problem Classes:

- Complex design problems
- Inverse problems
- Optimization tasks
- Uncertainty quantification
- ...



#### The number of parameters can be

- finite (physical properties such as domain geometry, ...)
- infinite (modeling of random stochastic diffusion field, ...)

#### Parametric Map:

$$\mathcal{Y} \ni y \mapsto u_v \in \mathcal{H}$$
 such that  $\mathcal{L}(u_v, y) = f_v$ .



# Example: The Parametric Poisson Equation

For  $f:\Omega\subset\mathbb{R}^d\to\mathbb{R}$ , consider the parametric Poisson Equation

$$\begin{cases} \nabla(a\cdot\nabla u)=f, \text{ in } \Omega,\\ u=0, \text{ on } \partial\Omega. \end{cases},\quad a\in\mathcal{A}\subset\{g:\Omega\to\mathbb{R}, \text{ bounded}\}.$$

If  $\mathcal{A}$  is compact, there exist functions  $(g_i)_{i=1}^{\infty}$  such that for every  $a \in \mathcal{A}$  there exist  $(y_i)_{i=1}^{\infty} \subset \mathbb{R}$  with

$$a=\sum_{i=1}^{\infty}y_ig_i.$$



### Example: The Parametric Poisson Equation

For  $f:\Omega\subset\mathbb{R}^d\to\mathbb{R}$ , consider the parametric Poisson Equation

$$\begin{cases} \nabla(a\cdot\nabla u)=f, \text{ in } \Omega,\\ u=0, \text{ on } \partial\Omega. \end{cases},\quad a\in\mathcal{A}\subset\{g:\Omega\to\mathbb{R}, \text{ bounded}\}.$$

If  $\mathcal{A}$  is compact, there exist functions  $(g_i)_{i=1}^{\infty}$  such that for every  $a \in \mathcal{A}$  there exist  $(y_i)_{i=1}^{\infty} \subset \mathbb{R}$  with

$$a=\sum_{i=1}^{\infty}y_ig_i.$$

We restrict ourselves to the case that

$$a = \sum_{i=1}^{p} y_i g_i$$

for some  $p \in \mathbb{N}$  which is potentially very large.



### Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

$$b_y(u_y, v) = f_y(v)$$
, for all  $y \in \mathcal{Y}$ ,  $v \in \mathcal{H}$ ,

where

- (i)  $\mathcal{Y} \subseteq \mathbb{R}^p$  (p large) is the compact parameter set,
- (ii)  $\mathcal{H}$  is a Hilbert space,
- (ii)  $b_y \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is a symmetric, uniformally coercive, and uniformally continuous bilinear form,
- (iv)  $f_y \in \mathcal{H}^*$  is the uniformly bounded, parameter-dependent right-hand side,
- (v)  $u_v \in \mathcal{H}$  is the solution.

We assume the solution manifold

$$S(\mathcal{Y}) := \{u_v : y \in \mathcal{Y}\}$$

to be compact in  $\mathcal{H}$ .



# Multi-Query Situation

Many applications require solving the parametric PDE multiple times for different parameters:

$$\mathbb{R}^p \supset \mathcal{Y} \ni y = (y_1, \dots, y_p) \quad \mapsto \quad u_y \in \mathcal{H}$$

#### Examples:

- Design optimization
- Optimal control
- Routine analysis
- Uncertainty quantification
- Inverse problems







# Multi-Query Situation

Many applications require solving the parametric PDE multiple times for different parameters:

$$\mathbb{R}^p \supset \mathcal{Y} \ni y = (y_1, \dots, y_p) \quad \mapsto \quad u_y \in \mathcal{H}$$

#### Examples:

- Design optimization
- Optimal control
- Routine analysis
- Uncertainty quantification
- Inverse problems





Curse of Dimensionality:

Computational cost often much too high!



### **High-Fidelity Approximations**

Galerkin Approach: Instead of  $b_y(u_y, v) = f_y(v)$ , we solve

$$b_y\left(u_y^h,v\right)=f_y(v) \qquad \text{ for all } v\in U^h,$$

where  $U^h \subset \mathcal{H}$  with  $D := \dim (U^h) < \infty$  is the *high-fidelity discretization* and  $u_v^h \in U^h$  is the solution.

Cea's Lemma:  $u_y^h$  is (up to a constant) a best approximation of  $u_y$  by elements in  $U^h$ .



### High-Fidelity Approximations

Galerkin Approach: Instead of  $b_y(u_y, v) = f_y(v)$ , we solve

$$b_y\left(u_y^h,v\right)=f_y(v) \qquad \text{ for all } v\in U^h,$$

where  $U^h \subset \mathcal{H}$  with  $D := \dim (U^h) < \infty$  is the *high-fidelity discretization* and  $u_v^h \in U^h$  is the solution.

Cea's Lemma:  $u_y^h$  is (up to a constant) a best approximation of  $u_y$  by elements in  $U^h$ .

Galerkin Solution: Let  $(\varphi_i)_{i=1}^D$  be a basis for  $U^h$ . Then  $u_y^h$  satisfies

$$u_y^h = \sum_{i=1}^D (\mathbf{u}_y^h)_i \varphi_i$$
 with  $\mathbf{u}_y^h := (\mathbf{B}_y^h)^{-1} \mathbf{f}_y^h \in \mathbb{R}^D$ ,

where  $\mathbf{B}_{y}^{h} := (b_{y}(\varphi_{j}, \varphi_{i}))_{i,i=1}^{D}$  and  $\mathbf{f}_{y}^{h} := (f_{y}(\varphi_{i}))_{i=1}^{D}$ .



# What about Deep Neural Networks?

### Parametric Map:

$$\mathcal{Y} 
ightarrow \mathbf{u}_y^{\mathrm{h}} \in \mathbb{R}^D$$
 such that  $b_y\left(u_y^h,v\right) = f_y(v) \ orall v \in U^h.$ 

Can a Neural Network Approximate the Parametric Map?



# What about Deep Neural Networks?

### Parametric Map:

$$\mathcal{Y} \ni y \; \mapsto \; \mathbf{u}_y^{\mathrm{h}} \in \mathbb{R}^D \quad \text{such that} \quad b_y\left(u_y^h, v\right) = f_y(v) \; \forall v \in U^h.$$

Can a Neural Network Approximate the Parametric Map?

### Advantages:

- After training, extremely rapid computation of the map.
- Flexible, universal approach.

#### Questions: Let $\varepsilon > 0$ .

(1) Does there exist a neural network  $\Phi$  such that

$$\|\Phi - \mathbf{u}_y^{\mathrm{h}}\| \le \varepsilon$$
 for all  $y \in \mathcal{Y}$ ?

(2) How does the complexity of  $\Phi$  depend on p and D?



# Reduced Basis Method: Key Ideas

High-Fidelity Discretization:



Key Idea:



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\mathrm{rb}} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim (U^{\mathrm{rb}}) \ll D$  such that

$$\sup_{\mathbf{y}\in\mathcal{Y}}\inf_{\mathbf{w}\in U^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

→ Optimality through Kolmogorov N-width!



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\mathrm{rb}} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim (U^{\mathrm{rb}}) \ll D$  such that

$$\sup_{y \in \mathcal{Y}} \inf_{w \in U^{\text{rb}}} \|u_y - w\|_{\mathcal{H}} \leq \varepsilon.$$

→ Optimality through Kolmogorov N-width!

#### Transfer to Reduced Basis:

• Let 
$$U^{\text{rb}} := \text{span}(\psi_i)_{i=1}^{d(\varepsilon)}$$
 with  $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i} \varphi_j\right)_{i=1}^{d(\varepsilon)}$ .



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\mathrm{rb}} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim (U^{\mathrm{rb}}) \ll D$  such that

$$\sup_{y \in \mathcal{Y}} \inf_{w \in U^{\text{rb}}} \|u_y - w\|_{\mathcal{H}} \leq \varepsilon.$$

→ Optimality through Kolmogorov N-width!

#### Transfer to Reduced Basis:

- Let  $U^{\text{rb}} := \text{span}(\psi_i)_{i=1}^{d(\varepsilon)}$  with  $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i} \varphi_j\right)_{i=1}^{d(\varepsilon)}$ .
- Set  $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j, \psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ .
- Set  $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$ .



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\mathrm{rb}} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim (U^{\mathrm{rb}}) \ll D$  such that

$$\sup_{y \in \mathcal{Y}} \inf_{w \in U^{\mathrm{rb}}} \|u_y - w\|_{\mathcal{H}} \leq \varepsilon.$$

→ Optimality through *Kolmogorov N-width*!

#### Transfer to Reduced Basis:

- Let  $U^{\text{rb}} := \text{span}(\psi_i)_{i=1}^{d(\varepsilon)}$  with  $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i} \varphi_j\right)_{i=1}^{d(\varepsilon)}$ .
- Set  $\mathbf{B}_{y}^{\mathrm{rb}} := (b_{y}(\psi_{j}, \psi_{i}))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^{T} \mathbf{B}_{y}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ .
- Set  $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$ .

Galerkin Solution:  $(\sup_{y \in \mathcal{Y}} \|u_y - u_y^{\mathrm{rb}}\|_{\mathcal{H}} \leq C\varepsilon)$ 

$$u_v^{\rm rb} =$$



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\mathrm{rb}} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim (U^{\mathrm{rb}}) \ll D$  such that

$$\sup_{y\in\mathcal{Y}}\inf_{w\in U^{\mathrm{rb}}}\|u_y-w\|_{\mathcal{H}}\leq\varepsilon.$$

→ Optimality through Kolmogorov N-width!

#### Transfer to Reduced Basis:

- Let  $U^{\text{rb}} := \text{span}(\psi_i)_{i=1}^{d(\varepsilon)}$  with  $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i} \varphi_j\right)_{i=1}^{d(\varepsilon)}$ .
- Set  $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j, \psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ .
- Set  $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$ .

Galerkin Solution:  $(\sup_{y \in \mathcal{Y}} \|u_y - u_y^{\mathrm{rb}}\|_{\mathcal{H}} \leq C\varepsilon)$ 

$$u_y^{\mathrm{rb}} = \sum_{i=1}^{d(\varepsilon)} \left(\mathbf{u}_y^{\mathrm{rb}}\right)_i \psi_i =$$



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\mathrm{rb}} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim (U^{\mathrm{rb}}) \ll D$  such that

$$\sup_{y\in\mathcal{Y}}\inf_{w\in U^{\mathrm{rb}}}\|u_y-w\|_{\mathcal{H}}\leq\varepsilon.$$

→ Optimality through Kolmogorov N-width!

#### Transfer to Reduced Basis:

- Let  $U^{\text{rb}} := \text{span}(\psi_i)_{i=1}^{d(\varepsilon)}$  with  $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^D \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$ .
- Set  $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j, \psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ .
- Set  $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$ .

Galerkin Solution:  $(\sup_{y \in \mathcal{Y}} \|u_y - u_y^{\mathrm{rb}}\|_{\mathcal{H}} \leq C\varepsilon)$ 

$$u_y^{\mathrm{rb}} = \sum_{i=1}^{d(\varepsilon)} \left(\mathbf{u}_y^{\mathrm{rb}}\right)_i \psi_i = \sum_{i=1}^{D} \left(\mathbf{V} \mathbf{u}_y^{\mathrm{rb}}\right)_j \varphi_j =$$



Assumption: For all  $\varepsilon > \varepsilon_0$ , there exists  $U^{\rm rb} \subset \mathcal{H}$ ,  $d(\varepsilon) \coloneqq \dim(U^{\rm rb}) \ll D$ such that

$$\sup_{y \in \mathcal{Y}} \inf_{w \in U^{\text{rb}}} \|u_y - w\|_{\mathcal{H}} \leq \varepsilon.$$

→ Optimality through Kolmogorov N-width!

#### Transfer to Reduced Basis:

- Let  $U^{\text{rb}} := \text{span}(\psi_i)_{i=1}^{d(\varepsilon)}$  with  $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i} \varphi_j\right)_{i=1}^{d(\varepsilon)}$ .
- Set  $\mathbf{B}_{v}^{\mathrm{rb}} := (b_{v}(\psi_{i}, \psi_{i}))_{i,i-1}^{d(\varepsilon)} = \mathbf{V}^{T} \mathbf{B}_{v}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ .
- Set  $\mathbf{f}_{\nu}^{\mathrm{rb}} := (f_{\nu}(\psi_{i}))_{i=1}^{d(\varepsilon)} = \mathbf{V}^{T} \mathbf{f}_{\nu}^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$ .

Galerkin Solution:  $(\sup_{v \in \mathcal{V}} \|u_v - u_v^{\text{rb}}\|_{\mathcal{H}} \leq C\varepsilon)$ 

$$u_y^{\mathrm{rb}} = \sum_{i=1}^{d(\varepsilon)} \left( \mathbf{u}_y^{\mathrm{rb}} \right)_i \psi_i = \sum_{j=1}^{D} \left( \mathbf{V} \mathbf{u}_y^{\mathrm{rb}} \right)_j \varphi_j = \sum_{j=1}^{D} \left( \mathbf{V} (\mathbf{B}_y^{\mathrm{rb}})^{-1} \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \right)_j \varphi_j.$$



# Deep Learning Approaches to Parametric PDEs

### Solving Parametric PDEs with Neural Networks:

- K. Lee, K. Carlberg; 2018 Learn a parametrization of  $S(\mathcal{Y})$  represented by neural networks.
- J.S. Hesthaven, S. Ubbiali; 2018
   Find reduced basis and then train neural networks to predict coefficients of solution in that basis.
- Schwab, Zech; 2018
   Assume that there is a reduced basis of polynomial chaos functions.
   These and the coefficients can be efficiently represented by neural networks



Our Theoretical Analysis

### Comparison/Similarities:

### Statistical Learning Problem

Parametric Problem

Learn  $f: X \to Y$ 

Distribution on  $X \times Y$ 

Loss function  $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ 

Training data  $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ 







### Comparison/Similarities:

### Statistical Learning Problem

Parametric Problem

Learn  $f: X \to Y$ 

Learn  $\mathcal{Y} \ni y \mapsto u_y \in H$ 

Distribution on  $X \times Y$ 

Loss function  $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ 

Training data  $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ 







### Comparison/Similarities:

### Statistical Learning Problem

Parametric Problem

Learn  $f: X \to Y$ 

Learn  $\mathcal{Y} \ni y \mapsto u_y \in H$ 

Distribution on  $X \times Y$ 

PDE

Loss function  $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ 

Training data  $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ 







### Comparison/Similarities:

\_

Parametric Problem

Learn  $f: X \to Y$ 

Learn  $\mathcal{Y} \ni y \mapsto u_y \in H$ 

Distribution on  $X \times Y$ 

PDE

Loss function  $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ 

Metric on state space

Training data  $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ 







### Comparison/Similarities:

### Statistical Learning Problem

Learn  $f: X \to Y$ 

Distribution on  $X \times Y$ 

Loss function  $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ 

Training data  $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ 

Training phase  $\sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$ 

#### Parametric Problem

Learn  $\mathcal{Y} \ni y \mapsto u_y \in H$ 

PDE

Metric on state space

Snapshots







### Comparison/Similarities:

### Statistical Learning Problem

Learn  $f: X \to Y$ 

Distribution on  $X \times Y$ 

Loss function  $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ 

Training data  $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ 

Training phase  $\sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$ 



#### Parametric Problem

Learn  $\mathcal{Y} \ni y \mapsto u_y \in H$ 

PDE

Metric on state space

Snapshots

Offline phase





### Our Results: Discrete Version

### Theorem (K, Petersen, Raslan, Schneider; 2019):

We assume the following:

• For all  $\varepsilon > 0$ , there exists  $d(\varepsilon) \ll D$ ,  $\mathbf{V} \in \mathbb{R}^{D \times d(\varepsilon)}$ , such that for all  $y \in \mathcal{Y}$  there exists  $\mathbf{B}_y^{\mathrm{rb}} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$  with

$$\|\mathbf{V}(\mathbf{B}_y^{\mathrm{rb}})^{-1}\mathbf{V}^T\mathbf{f}_y^{\mathrm{h}} - \mathbf{u}_y^{\mathrm{h}}\| \leq \varepsilon.$$

• There exist ReLU neural networks  $\Phi^B$  and  $\Phi^f$  of size  $O(\operatorname{poly}(p)d(\varepsilon)^2\operatorname{polylog}(\varepsilon))$  such that, for all  $y \in \mathcal{Y}$ ,

$$\|\Phi^B - \mathbf{B}_y^{\mathrm{rb}}\| \leq \varepsilon \quad \text{and} \quad \|\Phi^f - \mathbf{f}_y^{\mathrm{rb}}\| \leq \varepsilon.$$

Then there exists a ReLU neural network  $\Phi$  of size  $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + D + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$  such that

$$\|\Phi - \mathbf{u}_y^{\mathrm{h}}\| \leq \varepsilon \qquad \text{for all } y \in \mathcal{Y}.$$



### Our Results: Continuous Version

### Theorem (K, Petersen, Raslan, Schneider; 2019):

Let  $(\psi_i)_{i=1}^{d(\varepsilon)}$  denote the reduced basis. We assume in addition the following:

• There exist ReLU neural networks  $(\Phi_i)_{i=1}^{d(\varepsilon)}$  of size  $O(\operatorname{polylog}(\varepsilon))$  such that  $\|\Phi_i - \psi_i\|_{\mathcal{H}} \leq \varepsilon$  for all  $i = 1, \ldots, d(\varepsilon)$ .

Then there exists a ReLU neural network  $\Phi$  of size  $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$  such that

$$\|\Phi - u_y\|_{\mathcal{H}} \le \varepsilon$$
 for all  $y \in \mathcal{Y}$ .



### Our Results: Continuous Version

### Theorem (K, Petersen, Raslan, Schneider; 2019):

Let  $(\psi_i)_{i=1}^{d(\varepsilon)}$  denote the reduced basis. We assume in addition the following:

• There exist ReLU neural networks  $(\Phi_i)_{i=1}^{d(\varepsilon)}$  of size  $O(\operatorname{polylog}(\varepsilon))$  such that  $\|\Phi_i - \psi_i\|_{\mathcal{H}} \leq \varepsilon$  for all  $i = 1, \ldots, d(\varepsilon)$ .

Then there exists a ReLU neural network  $\Phi$  of size  $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$  such that

$$\|\Phi - u_y\|_{\mathcal{H}} \le \varepsilon$$
 for all  $y \in \mathcal{Y}$ .

Remark: The hypotheses are fulfilled, for example, by

- Diffusion equations,
- Linear elasticity equations.



### Possible Impact

#### Theoretical Foundation:

- Theoretical underpinning for the empirical success of neural networks for parametric problems.
- Can the link between deep learning techniques for parametric PDE problems with approximation theory be further exploited?



# Possible Impact

#### Theoretical Foundation:

- Theoretical underpinning for the empirical success of neural networks for parametric problems.
- ∼→ Can the link between deep learning techniques for parametric PDE problems with approximation theory be further exploited?

### Understanding the Circumvention of the Curse of Dimensionality:

- We showed that those neural networks circumvent the curse of dimensionality and essentially only depend on the size of the reduced basis.
- → What general structural components are required to avoid the curse?



### Possible Impact

#### Theoretical Foundation:

- Theoretical underpinning for the empirical success of neural networks for parametric problems.
- ∼→ Can the link between deep learning techniques for parametric PDE problems with approximation theory be further exploited?

### Understanding the Circumvention of the Curse of Dimensionality:

- We showed that those neural networks circumvent the curse of dimensionality and essentially only depend on the size of the reduced basis.
- → What general structural components are required to avoid the curse?

### Identifying Suitable Architectures:

- Neural networks of sufficient depth and size are able to yield very efficient approximations.
- → How do they perform for stochastic gradient descent?



Main Task: Approximate  $\mathbf{V}(\mathbf{B}_{y}^{\mathrm{rb}})^{-1}\mathbf{V}^{T}\mathbf{f}_{y}^{\mathrm{h}}$  by a ReLU neural network and control its size!



Main Task: Approximate  $\mathbf{V}(\mathbf{B}_y^{\mathrm{rb}})^{-1}\mathbf{V}^T\mathbf{f}_y^{\mathrm{h}}$  by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):

For  $g(x) := \min\{2x, 2-2x\}$  and  $g_s := g \circ \ldots \circ g$  (s times), we have

$$x^2 = \lim_{n \to \infty} x - \sum_{s=1}^n \frac{g_s(x)}{2^{2s}}$$
 for all  $x \in [0, 1]$ .



Main Task: Approximate  $\mathbf{V}(\mathbf{B}_y^{\mathrm{rb}})^{-1}\mathbf{V}^T\mathbf{f}_y^{\mathrm{h}}$  by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):

For  $g(x) := \min\{2x, 2-2x\}$  and  $g_s := g \circ \ldots \circ g$  (s times), we have

$$x^2 = \lim_{n \to \infty} x - \sum_{s=1}^n \frac{g_s(x)}{2^{2s}}$$
 for all  $x \in [0, 1]$ .

Also, g can be represented by a neural network due to

$$g(x) = 2\rho(x) - 4\rho(x - \frac{1}{2}) + 2\rho(x - 2)$$
 for all  $x \in [0, 1]$ .



Main Task: Approximate  $\mathbf{V}(\mathbf{B}_y^{\mathrm{rb}})^{-1}\mathbf{V}^T\mathbf{f}_y^{\mathrm{h}}$  by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):

For  $g(x) := \min\{2x, 2-2x\}$  and  $g_s := g \circ \ldots \circ g$  (s times), we have

$$x^2 = \lim_{n \to \infty} x - \sum_{s=1}^n \frac{g_s(x)}{2^{2s}}$$
 for all  $x \in [0, 1]$ .

Also, g can be represented by a neural network due to

$$g(x) = 2\rho(x) - 4\rho(x - \frac{1}{2}) + 2\rho(x - 2)$$
 for all  $x \in [0, 1]$ .

Moreover,

$$xz = 1/4((x+z)^2 - (x-z)^2)$$
 for all  $x, z \in \mathbb{R}$ .

 $\implies$  Scalar multiplication on  $[-1,1]^2$  can be  $\varepsilon$ -approximated by a neural network of size  $\mathcal{O}(\log_2(1/\varepsilon))$ .



### Step 2 (Multiplication):

A matrix multiplication of two matrices of size  $d \times d$  can be performed by  $d^3$  scalar multiplications.

 $\Longrightarrow$  Matrix multiplication can be  $\varepsilon$ -approximated by a neural network of size  $\mathcal{O}(d(\varepsilon)^3 \log_2(1/\varepsilon))$ .



### Step 2 (Multiplication):

A matrix multiplication of two matrices of size  $d \times d$  can be performed by  $d^3$  scalar multiplications.

 $\Longrightarrow$  Matrix multiplication can be  $\varepsilon$ -approximated by a neural network of size  $\mathcal{O}(d(\varepsilon)^3 \log_2(1/\varepsilon))$ .

### Step 3 (Inversion):

- Neural networks can approximate matrix polynomials.
- ullet Neural networks can the inversion operator  ${f A}\mapsto {f A}^{-1}$  using

$$\sum_{s=0}^m \mathbf{A}^s \ \longrightarrow \ (\mathbf{Id}_{\mathbb{R}^d} - \mathbf{A})^{-1} \quad ext{as } m o \infty.$$

 $\implies$  Matrix inversion can be  $\varepsilon$ -approximated by a neural network of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q(1/\varepsilon))$  for a constant q>0.



### Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on  $\mathbf{B}_y^{\mathrm{rb}}$  and  $\mathbf{f}_y^{\mathrm{rb}}$ .
- $\Longrightarrow$  The map  $y \mapsto (\mathbf{B}_y^{\mathrm{rb}})^{-1} \mathbf{f}_y^{\mathrm{rb}}$  can be  $\varepsilon$ -approximated by a neural network  $\Phi^{\mathrm{rb}}$  of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q (1/\varepsilon) + poly(p) d(\varepsilon)^2 \log_2^q (1/\varepsilon))$ .



### Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on  $\mathbf{B}_y^{\mathrm{rb}}$  and  $\mathbf{f}_y^{\mathrm{rb}}$ .
- $\Longrightarrow$  The map  $y \mapsto (\mathbf{B}_y^{\mathrm{rb}})^{-1} \mathbf{f}_y^{\mathrm{rb}}$  can be  $\varepsilon$ -approximated by a neural network  $\Phi^{\mathrm{rb}}$  of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q (1/\varepsilon) + poly(p) d(\varepsilon)^2 \log_2^q (1/\varepsilon))$ .

#### For Theorem 1:

- Now use the assumption that every element from the reduced basis can be approximately represented in the high-fidelity basis.
- Consider then  $\mathbf{V} \circ \Phi^{\mathrm{rb}}$ .
- $\Longrightarrow$  The discrete parametric map can be  $\varepsilon$ -approximated by a neural network of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q (1/\varepsilon) + d(\varepsilon)D + poly(p)d(\varepsilon)^2 \log_2^q (1/\varepsilon))$ .



### Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on  $\mathbf{B}_y^{\mathrm{rb}}$  and  $\mathbf{f}_y^{\mathrm{rb}}$ .
- $\Longrightarrow$  The map  $y \mapsto (\mathbf{B}_y^{\mathrm{rb}})^{-1} \mathbf{f}_y^{\mathrm{rb}}$  can be  $\varepsilon$ -approximated by a neural network  $\Phi^{\mathrm{rb}}$  of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q (1/\varepsilon) + poly(p) d(\varepsilon)^2 \log_2^q (1/\varepsilon))$ .

#### For Theorem 1:

- Now use the assumption that every element from the reduced basis can be approximately represented in the high-fidelity basis.
- Consider then  $\mathbf{V} \circ \Phi^{\mathrm{rb}}$ .
- $\Longrightarrow$  The discrete parametric map can be  $\varepsilon$ -approximated by a neural network of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q (1/\varepsilon) + d(\varepsilon)D + poly(p)d(\varepsilon)^2 \log_2^q (1/\varepsilon))$ .

#### For Theorem 2:

- Now use the assumption that neural networks can approximate each element of the reduced basis.
- $\Longrightarrow$  The continuous parametric map can be ε-approximated by a neural network of size  $\mathcal{O}(d(\varepsilon)^3 \log_2^q(1/\varepsilon) + poly(p)d(\varepsilon)^2 \log_2^q(1/\varepsilon))$ .

### **Conclusions**



### What to take Home...?

#### Deep Learning:





• Theoretical foundation of neural networks almost entirely missing: Expressivity, Learning, Generalization, and Explainability.

#### Parametric PDEs:

- One key problem is the curse of dimensionality.
- The reduced basis method uses the low-dimensionality of the solution manifold.



#### A Theoretical Analysis:

- We derive upper bounds on the complexity of ReLU neural networks to approximate parametric maps.
- Those neural networks do not suffer from the curse of dimensionality and essentially only depend on the size of the reduced basis.
- We provide a construction for such neural networks.





### THANK YOU!

References available at:

www.math.tu-berlin.de/~kutyniok

Code available at:

www.ShearLab.org

