

① Veröffentlichungsnummer: 0 584 871 A1

EUROPÄISCHE PATENTANMELDUNG

② Anmeldenummer: 93202435.9 ⑤ Int. Cl.⁵: **H01J** 35/08, H01J 35/10

2 Anmeldetag: 18.08.93

(12)

③ Priorität: 27.08.92 DE 4228559

Veröffentlichungstag der Anmeldung: 02.03.94 Patentblatt 94/09

Benannte Vertragsstaaten: **DE FR GB**

Anmelder: Tan, Dagang, Dr. Vogt-Kölln-Strasse 51 D-22527 Hamburg(DE)

Erfinder: Tan, Dagang, Dr.Vogt-Kölln-Strasse 51D-22527 Hamburg(DE)

Vertreter: Hartmann, Heinrich, Dipl.-Ing. et al Philips Patentverwaltung GmbH, Wendenstrasse 35c D-20097 Hamburg (DE)

Röntgenröhre mit einer Transmissionsanode.

⑤ Die Erfindung betrifft eine Röntgenröhre mit einer Transmissionsanode, die eine im Betriebszustand von Elektronen getroffene Targetschicht aus einem oder mehreren Metallen mit hoher Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl umfaßt. Dabei wird eine erhöhte Strahlungsintensität dadurch erreicht, daß der Winkel θ zwischen der Einfallsrichtung der Elektronen und dem außerhalb der Röntgenröhre ausgenutzten Teil der durch die Trägerschicht emittierten Röntgenstrahlen zwischen 10° und 40° beträgt.

EP 0 584 871 A1

Die Erfindung betrifft eine Röntgenröhre mit einer Transmissionsanode, die eine im Betriebszustand von Elektronen getroffene Targetschicht aus einem oder mehreren Metallen mit hoher Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl umfaßt.

Solche Röntgenröhren sind bekannt - beispielsweise aus der DE-OS 27 29 833, aus der US-PS 20 90 636 und aus der US-PS 3 894 239. Für die Dicke der beiden Schichten ergeben sich einander widersprechende Forderungen. Einerseits soll die Targetschicht möglichst dick sein, um die auftreffenden Elektronen zu einem möglichst hohen Prozentsatz in Röntgenquanten umzuwandeln. Andererseits muß diese Schicht möglichst dünn sein, um die darin erzeugten Röntgenquanten möglichst wenig zu schwächen. Die Trägerschicht muß einerseits dünn genug sein, um die austretenden Röntgenstrahlen möglichst wenig zu schwächen und andererseits dick genug, um die mechanische Stabilität und die Ableitung der in der Targetschicht erzeugten thermischen Energie zu gewährleisten.

Wohl wegen dieser einander widersprechenden Forderungen haben diese Röntgenröhren - jedenfalls für einen Spannungsbereich zwischen 50 und 500 kV, der für medizinische, aber auch für industrielle Untersuchungen wichtig ist - kaum Eingang in die Praxis gefunden. Für diese Zwecke werden Röntgenröhren mit Anoden eingesetzt, bei denen die Röntgenstrahlen von der Seite der Anode emittiert werden, auf die die Elektronen auftreffen. Diese Anoden werden deshalb im folgenden auch als Reflexionsanoden bezeichnet.

Bei allen Röntgenröhren wird in dem Spannungsbereich bis zu 500 kV nur ein Kleiner Teil der aufgebrachten elektrischen Energie in Röntgenstrahlung umgesetzt; der Rest der aufgewandten Energie führt zur Erwärmung der Anode. Von der erzeugten Röntgenstrahlung wird außerhalb der Röntgenröhre wiederum nur ein kleiner Bruchteil als Nutzstrahlenbündel ausgenutzt.

Aufgabe der vorliegenden Erfindung ist es, eine Röntgenröhre der eingangs genannten Art, deren Betriebsspannung im Bereich zwischen 50 kV und 500 kV liegt, so auszugestalten, daß mit der zum Betrieb der Röntgenröhre aufgebrachten elektrischen Energie im Nutzstrahlenbündel mehr Röntgenstrahlung erzeugt wird als bei einer Röntgenröhre mit Reflexionsanode.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Winkel θ zwischen der Einfallsrichtung der Elektronen und der Richtung der durch die Trägerschicht hindurch emittierten Röntgenstrahlen im Nutzstrahlenbündel zwischen 10° und 40° beträgt.

Die Erfindung basiert auf der Erkenntnis, daß die Intensität der Röntgenstrahlung sehr stark von dem Winkel abhängig ist, den die emittierte Röntgenstrahlung mit der Richtung der Elektronen einschließt. Unter Vernachlässigung der Schwächung durch das Target ergibt sich ein ausgeprägtes Intensitätsmaximum auf der Mantelfläche eines Kegels, dessen Mittelachse durch die Richtung des die Röntgenstrahlen erzeugenden Elektronenstrahls gebildet wird. Der Öffnungswinkel dieses Kegels ist von der Betriebsspannung abhängig, und zwar wird er umso kleiner, je höher die Betriebsspannung ist. Für eine Betriebsspannung von 60 kV beträgt der halbe Öffnungswinkel des Kegels mit der maximalen Intensität ca. 40°, und für eine Betriebsspannung von 500 kV ca. 10°.

Die Erfindung nutzt diese Erkenntnis dadurch aus, daß sie den Winkel zwischen dem Nutzstrahlenbündel, d.h. dem außerhalb der Röntgenröhre ausgenutzten Teil der Röntgenstrahlung, und der Einfallsrichtung der die Röntgenstrahlung erzeugenden Elektronen entsprechend wählt.

In der Regel hat das Nutzstrahlenbündel zumindest in einer Richtung einen von Null verschiedenen Öffnungswinkel. In diesem Fall muß der Winkel zwischen einem Röntgenstrahl im Zentrum des Nutzstrahlenbündels und der Einfallsrichtung der Elektronen so gewählt sein, wie im Anspruch angegeben.

Bei den bisher bekannten Röntgenröhren mit Transmissionsanode verläuft das Nutzstrahlenbündel in der Regel in der Verlängerung der Elektronenbahn, d.h. der Winkel θ ist Null.

Jedoch gibt es auch Röntgenröhren mit einer Transmissionsanode, bei denen der Winkel θ von Null verschieden ist. So ist aus der US-PS 3 894 239 eine Drehanoden-Röntgenröhre mit einer Transmissionsanode bekannt, bei der ein Elektronenbündel etwa senkrecht auf eine Targetschicht auftrifft, die gegenüber dem Strahlenaustrittsfenster um ca. 80° geneigt. ist. Dadurch soll das in der Targetschicht erzeugte kontinuierliche Bremsstrahlungsspektrum wesentlich stärker geschwächt werden als die in der Targetschicht erzeugte Fluoreszenzstrahlung.

Weiterhin ist in Fig. 7 der DE-OS 27 29 833 eine Röntgenröhre mit einer ringförmigen Anode beschrieben, bei der die Röntgenstrahlung mittels zweier auf den Umfang der Anode verteilter Gruppen von Kathoden erzeugt wird, die beiderseits einer durch den Strahler verlaufenden Mittelebene angeordnet sind. Dadurch ergibt sich jeweils ein Winkel θ von 45°.

In keiner dieser Veröffentlichungen wird die Tatsache ausgenutzt, daß die Röntgenstrahlung in einem Winkelbereich zwischen 15° (bei hohen Röhrenspannungen) und 40° (bei niedrigen Röhrenspannungen) besonders intensiv ist.

EP 0 584 871 A1

Schließlich ist aus der WO 92/03837 eine Röntgenröhre mit einer Reflexionsanode bekannt, bei der die Elektronen unter einem Winkel von 10° (statt üblicherweise 70° - 90°) auf die Anode auftreffen und bei der das Nutzstrahlenbündel unter einem Winkel von 5° - 15° in Bezug auf die Anode verläuft. Dabei kann sich aber das Strahlenaustrittsfenster stark durch Streuelektronen erwärmen.

In Ausgestaltung der Erfindung ist vorgesehen, daß das für die Röntgenstrahlenausbeute wesentliche Gewicht w der Targetschicht pro Flächeneinheit - ausgedrückt in Gramm/cm² - zumindest annähernd der Beziehung genügt:

$$W = 1.08 \cdot 10^{-6} \cdot (A/Z)^{2.5} \cdot U^{1.6} \cdot \cos\beta$$

10

20

25

35

45

55

5

wobei A die relative Atommasse und Z die Ordnungszahl des Metalls der Targetschicht ist, U die Betriebsspannung in kV, für die die Röntgenröhre ausgelegt ist, und β der Winkel ist, den die Einfallsrichtung der Elektronen mit der Normalen auf die Targetschicht einschließt. Für eine Röntgenröhre mit einer Targetschicht aus Wolfram ergibt sich daraus für eine Betriebsspannung U = 100 kV eine Masse pro Flächeneinheit von 0,017 g/cm² bzw. eine Dicke von 8,6 μ m (für β = 0°).

Die Erfindung kann bei unterschiedlichen Röntgenröhren für unterschiedliche Anwendungszwecke eingesetzt werden. Nach einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, daß sie als Drehanoden-Röntgenröhre ausgebildet ist und daß die Targetschicht (beispielsweise aus Wolfram und/oder Rhenium) auf der Mantelfläche eines Kegelstumpfes liegt, der mit der Richtung der außerhalb der Röntgenrohre ausgenutzten Röntgenstrahlen einen Winkel einschließt, der Kleiner ist als der Winkel, der zwischen dieser Richtung und der Richtung der einfallenden Elektronen besteht. Die Anode hat dabei die Form einer zu ihrer Drehachse symmetrischen Schüssel, deren mit der Targetschicht versehene Innenfläche der die Elektronen emittierenden Elektronenquelle zugewandt ist und deren Nutzstrahlenbündel vorzugsweise unter einem Winkel von 90 ° zur Drehachse aus der Außenfläche emittiert wird.

Die Erfindung wird nachstehend anhand der Zeichnungen näher erläutert. Es zeigen

Fig. 1 eine Prinzipzeichnung eines Teils einer Transmissionsanode und

Fig. 2 eine Drehanoden-Röntgenröhre mit einer erfindungsgemäßen Transmissionsanode.

Die in Fig. 1 dargestellte Transmissionsanode umfaßt eine Targetschicht 1 aus einem Metall mit einer hohen Ordnungszahl, die auf eine Trägerschicht 2 aus einem Stoff mit einer niedrigen Ordnungszahl aufgebracht ist. Die Targetschicht 1 kann beispielsweise aus Wolfram oder Rhenium oder aus einer Legierung dieser Metalle bestehen; andere für die Targetschicht 1 geeignete Metalle sind Platin oder Thorium. Die Trägerschicht 2 kann aus Graphit oder Beryllum bestehen und eine solche Dicke aufweisen, daß sich einerseits eine genügende mechanische Stabilität ergibt und die Röntgenstrahlung möglichst wenig geschwächt wird.

Mit dem Pfeil 3 ist ein Elektronenstrahl bezeichnet, der unter einem Winkel β mit der Normalen auf die Targetschicht 1 auftrifft. Dadurch wird Röntgenstrahlung erzeugt, die sich auf einer Kugel um den Auftreffpunkt ausbreitet. Theoretische und experimentelle Untersuchungen haben jedoch gezeigt, daß bei Vernachlässigung der Schwächung durch die Targetschicht die Röntgenstrahlung, die sich auf dem Mantel eines Kegels (mit seiner Spitze im Elektronenauftreffpunkt und seiner Symmetrieachse parallel zur Elektronenstrahlrichtung) mit einem bestimmten Öffnungswinkel θ ausbreitet, die größte Intensität hat. Von diesem Kegel sind in Fig. 1 der obere Grenzstrahl 4a und der untere Grenzstrahl 4b dargestellt. Der halbe Öffnungswinkel θ dieses Kegels hängt von der Betriebsspannung ab, wobei näherungsweie die Tabelle gilt:

U/kV	60 - 100	100 - 150	150 - 200	200 - 350	350 - 500
θ	40°-35°	35°-30°	30°-25°	25°-20°	20°-15°

Deshalb muß die Röntgenröhre so gestaltet werden, daß die Richtung des Nutzstrahlenbündels mit der Richtung eines der Strahlen auf dem Kegelmantel zusammenfällt. Die in der Targetschicht erzeugte Röntgenstrahlung kann dabei unter verschiedenen Winkeln zu den Schichtebenen verlaufen, wobei die Zeichnung den kleinsten Winkel α_1 und den größten Winkel α_2 zeigt. Für diese Winkel gelten die Gleichungen

$$\alpha_1 = 90^\circ - \beta - \theta \qquad (1)$$

$$\alpha_2 = 90^{\circ} - \beta + \theta \qquad (2)$$

Die für die Strahlenausbeute optimale Masse der Targetschicht pro Flächeneinheit errechnet sich angenä-

hert nach der Beziehung

$$W = 1.08 \cdot 10^{-6} \cdot (A/Z)^{2.5} \cdot U^{1.6} \cdot \cos\beta$$
 (3)

Dabei ist a die relative Atommasse (atomic weight) und Z die Ordnungszahl (atomic number) des Metalls, aus dem die Targetschicht besteht. β ist der Einfallswinkel der Elektronen, d.h. der Winkel, den die Richtung des Elektronenstrahls 3 mit der Normalen auf die Targetschicht bildet. Wenn die Targetschicht aus einer Legierung aus zwei oder mehreren Metallen besteht, errechnet sich die Masse der Targetschicht pro Flächeneinheit, indem man für jedes Metall der Legierung den Wert w entsprechend Gleichung (3) berechnet und die berechneten Werte entsprechend dem jeweiligen Legierungsanteil gewichtet summiert.

Wenn die Strahlenaustrittsrichtung entsprechend der Tabelle gewählt und die Dicke der Targetschicht entsprechend Gleichung (3) bemessen ist, ist - bei gleicher Röhrenspannung und bei gleichem Röhrenstrom - die Intensität der Röntgenstrahlung im Nutzstrahlenbündel signifikant größer als bei einer Röntgenröhre mit Reflexionsanode, bei der der Winkel zwischen Elektroneneinfallsrichtung und Strahlenaustrittsrichtung ca. 90° beträgt. Die Zunahme der Intensität ist umso ausgeprägter, je größer die Röhrenspannung ist. - Betreibt man allerdings die Röntgenröhre bei einer anderen Spannung als derjenigen, für die sie ausgelegt ist, dann nehmen diese Intensitätsvorteile ab.

In Fig. 2 ist als Ausführungsbeispiel eine Drehanoden-Röntgenröhre mit einer erfindungsgemäßen Transmissionsanode dargestellt. Die Röntgenröhre umfaßt einen Röhrenkolben 5 aus Glas, in dem sich eine Kathodenanordnung 6 und eine Anodenanordnung 7 befinden. Die Anodenanordnung umfaßt eine Transmissionsanode 2, die in bekannter Weise an einem Rotor 8 befestigt ist, der im Innern der Röntgenröhre drehbar gelagert ist. Der Antrieb des Rotors erfolgt durch einen außerhalb des Glaskolbens angeordneten, in Fig. 2 nicht näher dargestellten Stator.

Die Transmissionsanode umfaßt einen Trägerkörper 2 aus Graphit und hat eine zur Kathodenanordnung 6 hin offene Schüssel- oder Tellerform. In dem vom Elektronenstrahl 3 aus einem an der Kathodenanordnung 6 befestigten Elektronenemitter bestrichenen Bereich der Transmissionsanode ist eine Targetschicht 1 aus Rhenium auf den Trägerkörper 2 aufgebracht. Wenn die Röntgenröhre für Zwecke der Computertomographie bestimmt ist und dementsprechend für eine Betriebsspannung von 150 kV ausgelegt ist und wenn der Elektronenstrahl 3 unter einem Winkel von 40 ° mit der normalen Richtung auf die Schicht trifft, dann beträgt die Masse dieser Schicht, bezogen auf die Flächeneinheit gemäß Gleichung (3) 0,024 g/cm². Dies wird durch eine 11,5 µm dicke Rheniumschicht erreicht.

Die Röntgenröhre befindet sich im Innern eines Gehäuses, von dem in Fig. 2 nur auf der rechten Seite ein Teil der Gehäusewand 10 dargestellt ist. Die Gehäusewand umfaßt eine Auskleidung aus einem die Röntgenstrahlung absorbierenden Material, beispielsweise Blei von genügender Dicke. Lediglich in Höhe der Targetschicht ist ein Strahlenaustrittsfenster 11 aus einem für die Röntgenstrahlung transparenten Material vorgesehen, z.B. aus Aluminium, so daß nur in diesem Bereich Nutzstrahlung austreten kann. Die Nutzstrahlung verläuft dann senkrecht zur Rotationsachse unter einem Winkel von 30° zur Richtung des Elektronenbündels. Bei Anwendung für CT-Untersuchungen wird durch das Strahlenaustrittsfenster ein nahezu ebenes fächerförmiges Strahlenbündel senkrecht zur Zeichenebene der Fig. 2 ausgeblendet. Die Hauptausdehnungsrichtung des Strahlenaustrittsfensters verläuft in diesem Fall ebenfalls senkrecht zur Zeichenebene.

Obwohl die Erfindung vorstehend anhand einer für medizinische Untersuchungen bestimmten Drehanoden-Röntgenröhre mit einem Glaskolben erläutert wurde, ist die Erfindung auch bei anderen Ausführungsformen verwendbar. Beispielsweise kann anstelle einer Drehanode eine Festanode verwendet werden. Anstelle einer Röntgenröhre mit Glaskolben kann auch eine Röntgenröhre mit Metallkolben verwendet werden, bei der Kathode und/oder Anode über Isolatoren mit dem Metallkolben verbunden sind. Die Röntgenröhre kann auch für zerstörungsfreie Untersuchungen im industriellen Bereich eingesetzt werden; in dem für diese Zwecke benutzten Bereich von Röhrenspannungen (200 - 500 kV) ergibt sich ein besonders hoher Wirkungsgrad.

Patentansprüche

50

55

 Röntgenröhre mit einer Transmissionsanode, die eine im Betriebszustand von Elektronen getroffene Targetschicht aus einem oder mehreren Metallen mit hoher Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl umfaßt,

dadurch gekennzeichnet, daß der Winkel θ zwischen der Einfallsrichtung der Elektronen und der Richtung der durch die Trägerschicht hindurch emittierten Röntgenstrahlen im Nutzstrahlenbündel

EP 0 584 871 A1

zwischen 10° und 40° beträgt.

2. Röntgenröhre nach Anspruch 1,

5

10

15

20

25

30

35

40

45

50

55

dadurch gekennzeichnet, daß der Winkel θ und die Betriebsspannung U, für die die Röntgenröhre ausgelegt ist, zumindest näherungsweise der Beziehung genügen

U/kV	60 - 100	100 - 150	150 - 200	200 - 350	350 - 500
θ	40°-35°	35°-30°	30°-25°	25° - 20°	20°-15°

3. Röntgenröhre nach einem der vorhergehenden Ansprüche,

<u>dadurch</u> gekennzeichnet, daß das Gewicht der Targetschicht pro Flächeneinheit - ausgedrückt in Gramm/cm² - zumindest annähernd der Beziehung genügt:

$$w = 1.08 \cdot 10^{-6} \cdot (A/Z)^{2.5} \cdot U^{1.6} \cdot \cos\beta$$

wobei A die relative Atommasse und Z die Ordnungszahl des Metalls der Targetschicht, U die Betriebsspannung in kV, für die die Röntgenröhre ausgelegt ist und β der Winkel ist, den die Einfallsrichtung der Elektronen mit der Normalen auf die Targetschicht einschließt.

4. Röntgenröhre nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, daß sie als Drehanoden-Röntgenröhre ausgebildet ist und daß die Targetschicht (1) auf der Mantelfläche eines Kegelstumpfes liegt, der mit der Richtung der außerhalb der Röntgenröhre ausgenutzten Röntgenstrahlen einen Winkel (α_1) einschließt, der kleiner ist als der Winkel θ , der zwischen dieser Richtung und der Richtung der einfallenden Elektronen besteht.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 93 20 2435

Kate 2 A	US-A-3 999 096 (FUN * Zusammenfassung * * Spalte 2, Zeile 1 Abbildungen 1-3 *	K ET AL.)	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Inc.Cl.5) H01J35/08 H01J35/10
	* Zusammenfassung * * Spalte 2, Zeile 1 Abbildungen 1-3 *	•	1,3	
A				
	*	6 - Spalte 4, Zeile 15	1,4	
	* Spalte 5, Zeile 3 Abbildungen 2,6 *	7 - Spalte 6, Zeile 6;		
D, A	* Zusammenfassung * * Spalte 2, Zeile 3 *	1 - Spalte 3, Zeile 35	1,2	
	* Spalte 5, Absatz	2; Abbildungen 1,5,6 *		
A	* Zusammenfassung *	ERAL ELECTRIC COMPANY) 7 - Spalte 4, Zeile 56;	1	RECHERCHIERTE
	Abbildungen 1,2 *			SACHGEBIETE (Int.Cl.5) H01J
D	Der vorliegende Recherchenbericht wurd			
	Recherchenort	Abschlußdatum der Reckerche		Prufer
Y A	DEN HAAG KATEGORIE DER GENANNTEN I : von besonderer Bedeutung allein betrach : von besonderer Bedeutung in Verbindung anderen Veröffentlichung derselben Kate : technologischer Hintergund : nichtschriftliche Offenbarung	E: älteres Patenidol et nach dem Anmel mit einer D: in der Anmeldun gorie L: aus andern Grün	grunde liegende ument, das jedoc dedatum veröffen g angeführtes Di den angeführtes	atlicht worden ist okument