(D) 日本国特許庁(JP)

即特許出願公開

◎公開特許公報(A)

昭57-120255

Mint. Cl.² G 11 B 15/02 27/28 識別記号 102 庁内整理番号 6255—5 D 6507—5 D ❸公開 昭和57年(1982) 7月27日

発明の数 1 審査請求 未請求

(全 5 頁)

Ø磁気テープ再生装置

②特

顧 昭56--5653

念出

置 昭56(1981) 1 月16日

⑩発 明 者 小阪義輝

横浜市神奈川区守屋町3丁目12

番地日本ピクター株式会社内

切出 願 人 日本ピクター株式会社

横浜市神奈川区守屋町 3 丁目12

猎地

か代 理 人 弁理士 伊東忠彦

明 超 有

1. 猫明の名称

務気チープ再生製量

2. 特徴 精求の 飯 囲

- 1. 接面に形成された主要情報信号記録トラック以外に、装面及び/又は異面に形成されたディジタル性母配母トラックを有する面気テープを再生し、確ディジタル信号試録トラックからの再生信号を再生生費の創輯のために用いることを特徴とする磁気ケープ再生を買っ
- 在男生被母の制御は、巫気チーブの信覚検索制御であることを関数とする特許項求の範囲成1項記載の経気テーブ将生整隆。
- 3. 酵料生務便の割削は、酵ディジタル信号記録トラックからの再生信号の位相級項を零とする服気テープの走行むら除去制御であることを特徴とする。特許請求の範囲第1項記載の確気チープ再生業量。
- 4. 波再生保護の制制は、核生機信養保与記録 トラック上をヘッドをして正視に型後せしめ

るためのコントロール信号の代的に、設デイジタル信号研集トランク海电信号を用いたトラツキング割機であることを確復とする解析 環次の範囲第1項記載の根域テープ再生研修。 3.集事の基準は提明

本条明は福気テープ再生場機に張り、少なくと ちアドレスコード及びクロッケパターンが主張情報 報信号とともに記録されているで気テープを再生 することにより、例えば構みで習慣の良いテープ 能職機能を行ない場る再生素例を提供することを 目的とする。

一般にオーディオテーブレコーダ、ドT乳をの他の最低記録符無装置において使用されるの気を一才は、片面にのみ供性者が形成されてこの面(これを以下「長頭」という)にてほ気内な関係、悪色が行なわれる。とこっか、電気テーブの表情は、晩えば単にチーブ型行性を良化ならしめるための物理的及び化学的処理がなされる規定であり、その有効的利用が格どなされていないというのが場状であった。

本務明は上記の点に置み、利用郵照を飛順的に 並大し得るようにしたものであり、以下その一寒 無例につき関値と共に説明する。

第1 関は本発明になる時気テープ再也要優化より再生されるべき磁気チープの一側のトラック・パターンを示す。同隔中、 $T_1 \sim T_4$ は共々破気テープのの異隔にテープ美争方向に沿って形成でった。の実体において、針をつい、すないの、分をでは、針を関する。 は、一つ、ないに相当する記録を引き、自由のない、 スロ は、 スロ は、 スロ は、 スロ は 大学的に 検 出 する は 外 都 都 は 黒 色に、 スロ は かい に な 最 の に テック T_1 の 最 し 間 都 な T_2 の た れ は T_3 の それ は T_4 の それ は T_4 の それ は T_4 の それ は T_5 の それ は T_6 の それ に 配 会 こ れ る。

またトラツクで。は 1 4 ピントの 2 遊パルスコードがT ドレスコードとして 時 発列的に 記録されたトラツクで、トラツクで。はトラツクで。のアド

次化、この磁気テープ 101 を再坐する本勢明察 概化つき説明するに、第 2 図は本発明製慣の一等 絶回の同略系統図を示す。 同図中、 103 、 104 、 105 、 106 、 107 及 *** : 108 は 光検出機で失々は第 3 図に示す明く光原 126 及び 党光素子 121 より構成されている。 光検出器 103 は第 1 図に示す トラック Ta 海線 組であり、 光検出器 104 は トラレク

光検出級 104 により 都 1 図に示すトラック Te のクロックパターンが光学的に検出される。 曲気テープ 101 は再生時に第 1 図中本から立方向へ発行せしめられるので、光検出番 104 から取り出された信号は第 4 図のに 4 で示す 町くになる。 ここで、 第 4 図の中、 2。 は 7 ードの 始めの 部分を示す属の広い自色 102a (又は 102b 、 102c …)から再生された信号部分、 81 、82 ・・・ 314 は 夫

々様硬する1 4 個の幅の狭い虫魚 場分から再生された信仰を分を示す。この母系列デイジタル 母号 ■ は種分同路 109、被解解的回路 111 を失々経て場の広い 母母 単分 a。のみが初出された保育 b とされる。また時 裏列デイジタル 信号 a は 14 分別器(カウンタで構成できる) 110 により 14 分別されてインペータ 112 に同のされる一方、 2 入力 A N D 到路 113 の一力の入力 最子に向かされる。

14 分 即 器 110 は上記信号もの立下りでリセットされるよう構成されているので、上記信号部分 ai ~ ai4 を計 牧し、 ai4 を計 牧した 時点で出力 信号レベルが反転する。 従つて、インパータ 112 の出力信号理形は第4 協心に c で示す 初くになり、この信号 c は A N D 回路 113 の の 方の入力 烁子に 印加される。 これにより、 A N D 回路 113 からは 個の狭いパルス列 ai ~ ai4 が順 次時 系列的に出力されることになり、このパルス列は 1 4 ピットレジスタ 114 にクロンクパルス(シフトパルス)として印加される。

シフトレジスタ 114 は上記包号トの文下のでり

特的职57-120255(3)

セツトされ、かつ、人力端子に光検出器 108で物 出再也された前記トラックTaの再生信号が団が され、これを直並列電掛する。シフトレジスター 114 の出力類子 D₁ , D₂ , D₃ , ... , D₁₄ 化体夹 - 4前紀パルス列 2g . ag . ag ag . により 夫々トラツク T。の 母坐 想号を サンプリングした 紙の信号が得られ、これらは次段の14ピツトラ フチ135により削配信号もの立上りで収込まれ、 かつ、役員される。14ビツトラツチ 115 の14 ピットの2歳出力(トラツクT。の再生信号のパ ルス列 a, ~ a, a 化よるサンプルホールド出力) は、光検出器 105~ 108 からのトラツクで、~ T。 の毎生信号と共化、18ピツトの2進~10億呎 時同時 116 に印加され、ここで10歳数に変換さ れる。 2 代 - 1 0 進展機綱約 116 の出力債券は、 公知のデコーダ及びドライバ 117 を続てる桁表示 粉(例えば発光ダイオードなどで構成される)118 に印加され表示される。

6 桁表示部 318 の表示値は再生時の 嶋对群地を おわしている。とこで、例えば目的群地を滅出し 等のために担党した場合、強初はフォファックで、 ではリバース方向に振ったが、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 ののののでは、 のののののでは、 ののののでは、 のののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでも、 のので

次に一般家庭用 V T R に使用される BB 気ゲープ に配検された ビデオトラックをヘッドが再生物に 正確にトラッキングさせるためのコントロール信 号として内生する場合の動作につき 就明する。 こ の場合は、単一図板数のディンタル信号が配録さ れているトラック T₁ ~ T₄ のうちの任意のトラッ

ク Tn を伊東京 電モード再生 明化再生して、コントロール 個子として 在来のドラムサーボ 同名へ 内する。この 場合は、コントロールトラックを除去できるので、ビデオトラック 犯保 研表 所の 利用 効果を向上できる。また、トラック Tn-i は (i+1) 特殊モード 再生 時に コントロール 標 号記 段トラックとして 使用することができる。

また、トラックT1~T4 は磁気テープ走行運兜 むらがあると、それに応じてそれらの再強信件の ゆり返し頃複数が緊動するので、そのうちの決定 の再生傾号(例えば 120 Ha 程度)を安定な過度 政権からの信号と位祖比板し、その代相構発 で例えばキャプスクン等のテープ送り特徴を飼御 することにより、テープ単行課度の進行むらの始 去を行なうにともできる。本程線例では光検出際 103~108の出力信号のうちの一つを分成してこ のような関途に供し得る。

ところで、上記実験例では専り駅に余すトラツ クパターンを磁気テープの裏面に形成するように 説明したが、表面に形成するようにしてもよい。 ただし、母気テープの表面に形成する場合は、各 トランクのトラツク塩が裏面に耐渡したと言より も狭くなるので、例えば男を逐に示すめく、トラ ツクTa 及びTa のみを要氮に形成してもよい。な お、 痛 5 関中、 124 は磁気テープ 122 の 長雨に記 舞されているオーディオトラツク。 128 はビデオ トラック、 To . To は明 1 別に示すトラック To . Taと同様のアドレスコード配保トラツクとクロ ツクパターン記録トラツクで、少なくともトラツ ク 123 、 124 は回転ヘツドヘリカルスキャンVT Rで記録され、すべてのトラックがこのVTRで 再生される。との場合、トラックで、, T. 形成器 分の現性頃の抗酷力は、テープ表面の他の磁性質 のそれに比し高く進定されており、全幅符会ヘツ どにより消去されないようにする。

なお、用る時に示す光検出のは1回だけとし、 これを回覚テープの場方向にシフトできる機構と してもよい。また 第1 1、 軍を関に示すトラック T₄ ~ T₅ の形成力法としては、光学的な白色と様

特別明57-120255(4)

きの配角パターン以外にも、例えば①母気的方法、②機械的方法(カルバーフィルムだよる凸凹、光 性 ボディディスクの配き断視する ピット列の形 収等)、③静電的方法(エレクトレットのポラライゼクトの存在の形成体)、④ 規気抵抗(金 麗の蕨 景、 導電 第の分析を持つブラステインクフィルムをベースとする 写りなども 通用し得る。 これらはすべて 公知の按照であるので、 その神細な 投明は省等する。また、各トラックには 3 紙や 4 個等のディジタル 同号を記録形成してもよい。

また 見に、 トラック T₁ ~ T₄ の 如 5 単一級 り返 し 風景 数の デイジタル 復号記録 トラックの みを質 数本 欲けるようにしてもよい。

上述の切く、本発明になる磁気テープ減性発電は、表面に形成された主要情報情号記録トラック以外に、表面及び/又は異面に形成されたデイジャルは母記録トラックを有する磁気テープを再生し、デイジタル信母記録トラックからの再生信号を再生場側の傾向のために用いるようにしたため、磁気テープの利用範囲を飛躍的に拡大することが

3 図は概2 図の容部の一事集例の構成を示す図、 第4 図 (A) ~ (C) は 夫々 第2 関 示装 酸の 動作 説明 用 信 母が 形 図、第5 図 は 本発明 帯 優 に より 再 色 される べき 歴 気 テープ の 動の 倒の トラック パターンを 示 す 関 で ある。

181、122 ・・・ 磁気テープ、103~108・・・ 光 輸出器、109・・・ 積分回路、110・・・ 1 分別器、 J14・・・ 1 4 ピットシフトレジスタ、215・・・ 1 4 ピットラッチ、116・・・ 1 8 ピット 2 端~ 1 0 漁 要換回路、128・・・ 光禄、121・・・ 受先 8 子。

> **構作出版人 日本ピクター改統会社** 代 牌 人 弁門士 伊 東 忠 献 Nimin

でき、磁気テープの位置物製制御のために用いた ときは従来のテープカウンタを用いたものに出し、 俱要の累積なく正確な位債検需を行はうことがで き、またもの母合、テープ走行系の負債とならな いのでラウ・フラッターを悪化させることもなく。 またデイジタル信号記録トランクからの異生信号 の位档料剤を零とする曲気テーブの単行むら除去 制御を行なうととができ、更に主要情報信号(例 えばVTもにおける映像領号)記録トラツク上を ヘッドをして正確に産業せしめるためのコントロ ール信号の代りにデイジタル貿易配線トラツク再 生信号を用いたトラウキング制御とした場合は、 コントロールトラツクを不要にできるので、主機 情報信号記録トラツクのある際気テープ磁性値の 利用効率を拡大し得る等の数々の背景を有するも のである。

4. 関節の順単な説用

終り図は本発明報便により再生されるべき組織 チープの一鍋のトラックペターンを示す機。第2 図は本発明装成の一次両周を示す関略基数圏、数

特許法第17条の2の規定による補正の掲載

昭和 56 年特許顯第 5651 号 (特関 昭 67-120:55 号, 昭和 57 年 7 月 27 日 発行 公開特許公報 57-1203 号掲載)については特許法第17条の2の規定による補正があったので下記のとおり掲載する。 6 (1)

1 n t . C 1 . 4	識別記号	庁内整理番号
G118 15/087 27/28	! 0 1	6 2 5 5 - 5 D 6 5 6 7 - 5 D

带统树正瘤

南野60年6月24日

分許庁長官 恋 資 學 照

1. 事件の概念

福創56年 朝許斯 255653号

2. 発明の名称

樹気タープ育生数度

3、網定をする話

事件との関係 待許出版人

在层 〒 521 神奈川県機関市神奈州区帝陽印3丁目12番地

名称 (482) 日本ピクター機関会共

代表等 放筛设注法 呎 直 一 邱

4. 代 级 人

柱济 〒 402 架京都子代田区館町8丁四7省地

秀初尼尼州のT自尺1010月

氏名(70%) 乔亚士 伊 鬼 思 彦

22:1503 (263) 3271第 (代数)

5. 補正命令の日件 自発利正

6. 祖正の対象

明朝春の特許論求の範囲の確かよび発売の蘇和な影響の報。

7. 制正の内容

(f) 知知程中、特許関求の範囲を別版の通り符 正する。

- 広 - 同、都多質15行の「右から女」を「女から女」と「女からち」と紹介する。

③ 周、第12頁7件の「駅と」を「少なく」 と続正する。

物容無法の原形

「① 安園に形成された主要的機能身影線トラツク以外に、表面及び/又は表面に形成されたディンタル信号記録トラツクを育する観知テープを再生し、数ディジタル信号記録トラツクからの再生信号を再生被置の制御のために角いることを将取とする過気テープ質生装置。

② 腰裏生数配の制御は、磁気テープの色像検索制御であることを特徴とする特許指求の機関 第1項記載の延昇テープ再生装板。

(3) 禁事生機器の制制は、数デイジクル信号記録トラックからの商生信号の位配数治を<u>少なく</u>する磁気テープの逆行むら除去制制であることを特徴とする特許減なの範囲第1項記載の登気 テープ再生後間。

(4) 請再生数量の制御は、該型要値報信号記録 トラック上をヘッドをして正确に走落せしめる ためのコントロール信号の代りに、第ディッタ ル信号記録トラック再生認符を用いたトラッキ ング制弾であることを特徴とする特許数表の能 | 関勇1項記載の軽気テープ再生装置。|

(19) Japan Patent Office (JP)

(11) Unexamined Patent Application Publication

(12) Unexamined Patent Gazette S57-120255

(51) Int. Cl. ³ G 11 B 15/02 27/28	Identification symbols 102	JPO file number 6255-5D 6507-5D	(43) Published July 27, 1982 Number of inventions: 1 Request for examination: not filed
			(Total of 5 pages)
(54) Magnetic tap	e playback device	(71) Applicant	Victor Company of Japan, Ltd. 12 Moriya-cho 3-chome, Kanagawa- ku, Yokohama-shi
(21) Application (22) Filed	S56-5653 January 16, 1981	(74) Agent	Patent Attorney Ito, Tadahiko
(72) Inventor	Kosaka, Yoshiteru c/o Victor Company of Japan, L 12 Moriya-cho 3-chome, Kanagawa-ku, Yokohama-shi	t d .	•

Specification

1. Title of invention

Magnetic tape playback device

2. Scope of patent claims

- 1. Magnetic tape playback device distinguished in that it plays back a magnetic tape having a digital signal recording track formed on the top and/or bottom surface in addition to the main information signal recording track formed on the top surface, and uses playback signals from said digital signal recording track for control of the playback device.
- 2. A magnetic tape playback device as set forth in claim 1, distinguished in that said control of the playback device is magnetic tape positioning control.
- 3. A magnetic tape playback device as set forth in claim 1, distinguished in that said control of the playback device is magnetic tape travel irregularity elimination control whereby the phase error of the playback signal from said digital signal recording track is made zero.
- 4. A magnetic tape playback device as set forth in claim 1, distinguished in that said control of the playback device is tracking control which uses said digital signal recording track playback signal instead of a control signal for making the head accurately scan said main information signal recording track.

3. Detailed description of the invention

The present invention relates to magnetic tape playback devices, and has the objective of providing a magnetic tape playback device capable of performing, for example, reliable and precise tape positioning, by playing back a magnetic tape on which at least an address code and clock pattern are recorded along with the main information signal.

Magnetic tapes used in audio tape records, VTRs and other magnetic recording and playback devices generally have a magnetic layer formed on only one surface, which surface (hereinafter referred to as "top surface") is used for magnetic recording and playback. The bottom surface of the magnetic tape is however only subjected at most to physical and chemical treatment to simply improve the tape travel characteristics, for example, and is not currently being efficiently utilized.

The present invention was made in view of the above point and dramatically expands the range of said utilization. An embodiment example of the present invention is described below along with the drawings.

Figure 1 illustrates an example of the track pattern of a magnetic tape to be played back by a magnetic tape playback device of the present invention. In the drawing, T_1 through T_6 designated six tracks which are formed in the lengthwise direction on the bottom surface of the magnetic tape 101. On each of these tracks T_1 through T_6 , the areas shaded with slanted lines are "0", i.e. recording areas corresponding to low level, while the blank areas are "1", i.e. recording areas corresponding to high level. In the case of optical detection, the areas shaded with slanted lines could be coded using black color, and the blank areas using white color, respectively. Assuming the repeat frequency of white and black in track T_1 at the uppermost edge of the magnetic tape 101 to be F, tracks T_2 , T_3 and T_4 are colored with repeat frequencies of 1/2 F, 1/4 F and 1/8 F.

Furthermore, track T_5 is a track on which a 14-bit binary pulse code is recorded in a time series as an address code, and track T_6 has a clock pattern recorded on it, which is used for obtaining a pulse which serves as a reference for reading the address code of track T_5 . The address code of track T_5 can designate absolute addresses in combination with the address designation of 0 through 15 based on the 4 bits of aforementioned tracks T_1 through T_4 . If the range of absolute addresses 0 through 15 is taken to be ℓ_0 , the range of absolute addresses 16 through 31 is taken to be ℓ_1 , and the successive ranges of 16 addresses each are taken to be ℓ_2 , ℓ_3 , ..., then the address code of track T_5 would be what represents these ranges ℓ_1 , ℓ_2 , ℓ_3 , Furthermore, the clock pattern of track T_6 comprises 16-bit words, with a wide white area 102a, 102b, 102c, ... arranged at the beginning of each word.

Next, the device of the present invention, which plays back this magnetic tape 101, will be described. Figure 2 is a circuit diagram of one embodiment of the device of the present invention. In said figure, 103, 104, 105, 106, 107 and 108 are optical detectors, each of which comprises a light source 120 and a light receiving element 121, as shown in Figure 3. Optical detector 103 is used for playback of track T₅ shown in Figure 1, and optical detector 104 is used for playback of track T₆. Furthermore, tracks T₁, T₂, T₃ and T₄ are played back by optical detectors 105, 106, 107 and 108 respectively. In Figure 3, light emitted by the light source 120 strikes and is reflected by one surface 119 of the magnetic tape 101, and the reflected light is received by the light receiving element 121 and subjected to optoelectric conversion. Since the strength of light reflected from the slanted line areas (black) shown in Figure 1 is extremely low, while the strength of light reflected from the blank areas (white) is extremely high, it is clear that the electrical signal extracted from the light receiving element 121 will be low level when playing back a slanted line area and high level when playing back a blank area.

The clock pattern of track T_6 shown in Figure 1 is detected optically by optical detector 104. Magnetic tape 101 is moved from right to left in Figure 1 during playback, so the signal extracted from optical detector 104 becomes as illustrated in Figure 4 (A). Here, in Figure 4 (A), a_0 is the signal part played back from the wide white area 102a (or 102b, 102c, ...) indicating the beginning of a word, while a_1 , a_2 , ..., a_{14} indicate signal parts played back from the 14 narrow white areas that follow. This time series digital signal a passes through an integration circuit 109 and a waveform shaping circuit 111 and is made into signal b, in which only the wide signal portion a_0 is extracted. Furthermore, the time series digital signal a is subjected to 1/14 frequency division by means of a 1/14 frequency divider 110 (comprised of a counter) and is impressed onto an inverter 112 and onto one of the input terminals of a two-input AND circuit 113.

The 1/14 frequency divider 110 is configured so as to reset upon the fall of said signal b, so the aforementioned signal portions a_1 through a_{14} are counted, and once a_{14} has been counted, the output signal level is inverted. Therefore, the output signal waveform of the inverter 112 becomes as indicated by c in Figure 4 (C), and this signal c is impressed onto the other input terminal of the AND circuit 113. As a result, a narrow pulse series a_1 through a_{14} is successively outputted in a time series from the AND circuit 113, and this pulse series is impressed onto the 14-bit shift register 114 as a clock pulse (shift pulse).

The shift register 114 is reset by the fall of said signal b, the playback signal of aforementioned track T_5 , which is detected and played back by optical detector 103, is impressed onto its input terminal, and is subjected to serial-parallel conversion. Signals of values obtained by sampling the playback signal of track T_5 by means of said pulse series a_1 , a_2 , a_3 , ..., a_{14} are obtained at output terminals D_1 , D_2 , D_3 , ..., D_{14} of shift register 114, and these signals are taken up and held at the rise of

said signal b by the subsequent 14-bit latch 115. The 14-bit binary output of the 14-bit latch 115 (the sample hold output based on pulse series a_1 through a_{14} of the playback signal of track T_5) is impressed along with the playback signals of tracks T_1 through T_4 from optical detectors 105 through 108 onto the 18-bit binary to decimal conversion circuit 116, where they are converted to decimal. The output signal of the binary to decimal conversion circuit 116 passes through a known decoder and driver 117, and is impressed onto and displayed on a six-position display device 118 (composed of light emitting diodes, for example).

The value displayed by the six-position display device 118 represents the absolute address during playback. Here, for example when a target address is designated for cueing or the like, at first the target address range is searched for while moving the tape at high speed in the forward or reverse direction, and once the target address range has been detected, the tape running speed is lowered to the normal standard speed, and the target tape position can then be found based on the absolute address expressed by tracks T₁ through T₄. Here, since the absolute address is recorded on the magnetic tape itself, there is no burden load on the tape transport system as in the case of a tape counter driven by rotary force transmitted via a belt from a rotating reel, and thus wow and flutter are not made worse, and there is no accumulation of positioning error as in the case of tape counters, allowing for extremely accurate positioning.

Next, the operation will be described for the case of playback as a control signal for making the head perform accurate tracking of the video track recorded on a magnetic tape used in common household VTRs during playback. In this case, an arbitrary track T_n from among tracks T_1 through T_4 , on which a single frequency digital signal has been recorded, is played back during standard speed mode playback, and is outputted as a control signal to a conventional drum servo circuit. In this case, the control track can be eliminated, allowing for improved efficiency of utilization of the top surface, on which the video track is recorded. Furthermore, track T_{n+i} can be used as a control signal recording track during (i+1)× speed mode playback, and track T_{n-1} can be used as a control signal recording track during (1/i+1)× speed mode playback.

Furthermore, when there are magnetic tape travel speed irregularities, the repeat frequency of playback signals of tracks T₁ through T₆ will fluctuate accordingly, so performing a phase comparison between a specific one of those playback signals (e.g., about 120 Hz) and a signal from a stable frequency source and controlling the tape feed device, e.g. a capstan, based on the resulting phase error signal makes it possible to eliminate tape travel speed irregularities. In the present embodiment, one of the output signals of optical detectors 103 through 108 can be branched and used for this purpose.

While the above embodiment was described with the track pattern shown in Figure 1 being formed on the bottom surface of the magnetic tape, it may also be formed on the top surface. However, when this track pattern is formed on the top surface of the magnetic tape, the track width of the tracks will be smaller compared to when it is formed on the bottom surface, so one may, for example, form only tracks T_5 and T_6 on the top surface, as shown in Figure 5. In Figure 5, 124 is an audio track recorded on the top surface of magnetic tape 122, 123 is a video track, and T_5 and T_6 are an address code recording track and clock pattern recording track of the same sort as tracks T_5 and T_6 shown in Figure 1. At least tracks 123 and 124 are recorded on a rotating head helical scan VTR, and all tracks are played back on this VTR. In this case, the coercive force of the magnetic layer of the area where tracks T_5 and T_6 are formed is selected to be higher than that of the magnetic layer of other areas of the top surface of the tape, so that they are not erased by a full width erasing head.

One may also use just one optical detector of the sort shown in Figure 3 and provide it with a mechanism that allows shifting in the widthwise direction of the magnetic tape. Furthermore, as regards the method of forming tracks T_1 through T_6 shown in Figure 1 and Figure 5, besides an optical white and black coloring pattern, one could also use, for example, 1 a magnetic method, 2 a mechanical method (concavo-convexities using Kalvar film, series of discontinuous pits as in optical video discs, etc), 3 an electrostatic method (creating presence/absence of electret polarization, etc), 4 an electrical resistance method (metal deposition, using a plastic film with a conductivity distribution as a base, etc), and the like. Since all these are known art, detailed description thereof will be omitted. Furthermore, ternary, quaternary, etc digital signals may also be recorded on each track.

In addition, one may provide a plurality of digital signal recording tracks with a single repeat frequency only, like tracks T₁ through T₄.

As described above, since the magnetic tape playback device of the present invention plays back a magnetic tape having a digital signal recording track formed on its top and/or bottom surface in addition to the main information signal recording track formed on the top surface, and uses playback signals from the digital signal recording track for control of the playback device, it has numerous advantages, such as that it allows the range of utilization of the magnetic tape to be dramatically increased, and in the case of use for magnetic tape positioning control, compared to using a conventional tape counter, it allows accurate positioning without accumulation of error; furthermore, in this case, it does not worsen wow and flutter, since there is no load on the tape transport system, and allows for magnetic tape travel irregularity elimination control whereby the phase error of playback signals from the digital signal recording track is made zero. Furthermore, in the case of tracking control using the digital signal recording track playback signal instead of a control signal for making the head accurately scan the main information signal recording track (e.g. the video signal recording track in a VTR), the control track can be rendered unnecessary, making it possible to increase the efficiency of utilization of the magnetic surface of magnetic tapes with the main information signal recording track.

4. Brief description of the drawings

Figure 1 is a drawing which shows an example of the track pattern of a magnetic tape to be played back by the device of the present invention; Figure 2 is a circuit diagram illustrating an embodiment of the device of the present invention; Figure 3 is a drawing illustrating the configuration of an embodiment of the main parts of Figure 2; Figure 4 (A) through (C) are signal waveform drawings serving to explain the operation of the device illustrated in Figure 2; and Figure 5 is a drawing illustrating another example of the track pattern of a magnetic tape to be played back by the device of the present invention.

101, 122 ··· magnetic tape; 103~108 ··· optical detector; 109 ··· integration circuit; 110 ··· 1/14 frequency divider; 114 ··· 14-bit shift register; 115 ··· 14-bit latch; 116 ··· 18-bit binary to decimal conversion circuit; 120 ··· light source; 121 ··· light receiving element.

Patent applicant: Victor Company of Japan, Ltd. Agent: Patent Attorney Ito, Tadahiko <seal>

Figure 1 [see source for drawing]

Figure 2 [see source for drawing]

[captions]

103–108: Optical detector

109: Integration circuit

110: 1/14 frequency divider

111: Waveform shaping circuit

117: Decoder and driver

118: Six-position display device

Figure 3 [see source for drawing]

Figure 4 [see source for drawing]

[captions]
. Time

Figure 5 [see source for drawing]

[stamp: Issued Oct. 31, 1985]

Publication of amendment under Article 17bis of the Patent Law

An amendment under Article 17bis of the Patent Law was received for Patent Application No. S56-5653 (Unexamined Patent Application Publication S57–120255, published July 27, 1982 in Unexamined Patent Gazette 57-1203), which is published as follows. 6 (4)

in Gazette 37 1203), which is published as follows:					
Int.Cl.4		Identification symbols	JPO file number		
G11B	15/087	101	6255-5D		
	27/28		6507-5D		
		-			

Amendment of proceedings

June 24, 1985

[stamp: approved]

To the Director-General of the Patent Office, Mr. Shiga, Manabu

1. Designation of matter

Patent Application S56-5653

2. Title of invention

Magnetic tape playback device

3. Person making amendment

Relationship to matter: Patent applicant

Address: 12 Moriya-cho 3-chome, Kanagawa-ku, Yokohama-shi, Kanagawa-ken

Name: (432) Victor Company of Japan, Ltd.

Representative: President and CEO Shishi, Shinichiro

4. Agent

Address: 1010 Shuwa Kioi-cho TBR, 7 Koji-machi 5-chome, Chiyoda-ku, Tokyo-to 102

Name: (7015) Patent Attorney Ito, Tadahiko <seal> Telephone: 03 (263) 3271 (switchboard)

5. Date of amendment order

Voluntary amendment

[stamp: Patent Office; June 25, 1985; 2nd Filing Office, Wakabayashi]

6. Object of amendment

The section "Scope of patent claims" and "Detailed description of the invention" of the Specification.

- 7. Content of amendment
 - (1) In the specification, the Scope of patent claims is amended as per the attachment
- (2) On page 5, line 15 of the Specification, "from right to left" is amended to read "from left to right".
 - (3) On page 12, line 7 of the Specification, "made zero" is amended to read "reduced".

Scope of patent claims

- "(1) Magnetic tape playback device distinguished in that it plays back a magnetic tape having a digital signal recording track formed on the top and/or bottom surface in addition to the main information signal recording track formed on the top surface, and uses playback signals from said digital signal recording track for control of the playback device.
- (2) A magnetic tape playback device as set forth in claim 1, distinguished in that said control of the playback device is magnetic tape positioning control.

- (3) A magnetic tape playback device as set forth in claim 1, distinguished in that said control of the playback device is magnetic tape travel irregularity elimination control whereby the phase error of the playback signal from said digital signal recording track is <u>reduced</u>.
- (4) A magnetic tape playback device as set forth in claim 1, distinguished in that said control of the playback device is tracking control which uses said digital signal recording track playback signal instead of a control signal for making the head accurately scan said main information signal recording track."

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.