${\tt EE3206/EE320E\ INTRODUCTION\ TO}$ COMPUTER VISION AND IMAGE PROCESSING

Tutorial Set E – Solution

Question 1

Part (a)

$$(x_i, y_i) \rightarrow b = -x_i a + y_i$$

P1:
$$(-4,0) \rightarrow b = 4a$$

P2: $(-2,1) \rightarrow b = 2a+1$

$$P3: (0,1) \rightarrow b=1$$

$$P4: (2,1.5) \rightarrow b = -2a + 1.5$$

$$P5: (4,2) \rightarrow b = -4a + 2$$

$$P6: (6,2) \rightarrow b = -6a + 2$$

Part (b)

$$(x_{i}, y_{i}) \rightarrow \rho = \sqrt{x_{i}^{2} + y_{i}^{2}} \cos(\theta - \tan^{-1}(y_{i}/x_{i}))$$

$$P1: (-4,0) \rightarrow \rho = 4\cos(\theta - \tan^{-1}(\frac{0}{-4})) = 4\cos(\theta - 3.14)$$

$$P2: (-2,1) \rightarrow \rho = \sqrt{5}\cos(\theta - \tan^{-1}(\frac{1}{-2})) = \sqrt{5}\cos(\theta - 2.68)$$

$$P3: (0,1) \rightarrow \rho = 1\cos(\theta - \tan^{-1}(\frac{1}{0})) = 1\cos(\theta - 1.57)$$

$$P4: (2,1.5) \rightarrow \rho = \sqrt{6.25}\cos(\theta - \tan^{-1}(\frac{1.5}{2})) = \sqrt{6.25}\cos(\theta - 0.64)$$

$$P5: (4,2) \rightarrow \rho = \sqrt{20}\cos(\theta - \tan^{-1}(\frac{2}{4})) = \sqrt{20}\cos(\theta - 0.46)$$

$$P6: (6,2) \rightarrow \rho = \sqrt{40}\cos(\theta - \tan^{-1}(\frac{2}{6})) = \sqrt{40}\cos(\theta - 0.32)$$

Detected line parameters:

$$\rho = -1, \quad \theta = -1.4 \text{ rad}$$

Line equation:

$$x\cos(-1.4) + y\sin(-1.4) = -1$$
$$y = 0.17x + 1.0$$

$$(x_i, y_i) \rightarrow b = -x_i a + y_i$$

The accumulator array has limits

$$-1 \le a \le +1, \qquad -2 \le b \le +14$$

with $\Delta a = 0.2$ and $\Delta b = 1$.

The center coordinates of the cells are

$$a_i = -1, -0.8, -0.6, \dots, 0, \dots, 0.8, 1$$
 $(\Delta a = 0.2)$
 $b_j = -2, -1, 0, \dots, 13, 14$ $(\Delta b = 1)$

The cell values can be obtained using a table:

	a_i :	-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
(4,9)	b = -4a + 9	13.0	12.2	11.4	10.6	9.8	9.0	8.2	7.4	6.6	5.8	5.0
(5, 3)	b = -5a + 3	8	7	6	5	4	3	2	1	0	-1	-2
(6,9)	b = -6a + 9											
(8, 5)	b = -8a + 5											
(8, 8)	b = -8a + 8											
(10, 10)	b = -10a + 10											
(12, 6)	b = -12a + 6											
(14, 10)	b = -14a + 10											
(16, 5)	b = -16a + 5											
(16, 12)	b = -16a + 12											

From the completed accumulator array, the largest cell values are 5 obtained at cell (-0.4, 11), and 4 obtained at (0.8, -1). Hence, the corresponding line equations are

$$L1: y = -0.4x + 11$$

 $L2: y = 0.8x - 1$

3

Gray level, z_k : 0 1 2 3 4 5 6 7 8 9 No. of pixels, n_k : 400 800 800 1200 400 800 2000 1600 1200 800

Initial estimate

$$T_0 = \text{mean} = \frac{1}{\sum_k n_k} \sum_k n_k z_k = 5.16$$

The histogram is partitioned into two groups:

$$0 \to 5$$
 $\mu_1 = 2.63$; $6 \to 9$ $\mu_2 = 7.14$

$$T_1 = \frac{1}{2}(2,63+7,14)$$

= 4.89 (Threshold = 4)

Next, we have

$$0 \to 4$$
 $\mu_1 = 2.11$; $5 \to 9$ $\mu_2 = 6.88$
$$T_2 = \frac{1}{2}(2.11 + 6.88)$$
$$= 4.49$$
 (Threshold = 4)

The threshold value is unchanged; hence the selected threshold is

$$T=4$$

i.e.

$$g(x,y) = \begin{cases} 1 & z > 4 \\ 0 & z \le 4 \end{cases}$$

Part (a)

Starting from the leftmost pixel of the top row, we have 00000654664443212

This code is normalised for starting point.

Part (b)

Denote the 17 boundary pixels by $b_i(x_i, y_i)$, i = 1, 2, ..., 17. The centroid is estimated by

$$\bar{x} = \frac{1}{17} \sum_{i=1}^{17} x_i$$

$$= 4.00$$

$$\bar{y} = \frac{1}{17} \sum_{i=1}^{17} y_i$$

$$= 3.235$$

Radial distance:
$$r_i = \sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}$$

Polar angle: $\theta_i = \tan^{-1} \frac{y_i - \bar{y}}{x_i - \bar{x}}$

where $i = 1, 2, \dots, 17$.

Minimum radial distance, $r_{min} = 1.03$ Maximum radial distance, $r_{max} = 3.48$ Average radial distance, $r_{ave} = 2.41$ Eccentricity = $r_{max}/r_{min} = 3.38$

Part (c)

r	n(r)	p(r)
0.25 - 0.75	0	0
0.75 - 1.25	1	0.059
1.25 - 1.75	1	0.059
1.75 - 2.25	6	0.353
2.25 - 2.75	4	0.235
2.75 - 3.25	4	0.235
3.25 - 3.75	1	0.059
3.75 - 4.25	0	0

Part (1)

With A as the origin, equation of AB is x - 2y = 0, C is the point (1,3) and F is the point (4,-1)

Length of major axis
$$a = \overline{AB}$$

= $\sqrt{3^2 + 6^2}$
= 6.71

Orientation,
$$\theta = \tan^{-1}(3/6)$$

= 26.6°

Length of minor axis
$$b=\overline{CD}+\overline{EF}$$

$$=\frac{|1-6|}{\sqrt{1^2+2^2}}+\frac{|4+2|}{\sqrt{1^2+2^2}}$$

$$=\frac{11}{\sqrt{5}}$$

$$=4.92$$

Part (a)

Point	s	ψ
P+	0	0°
Q-	40	0_{\circ}
Q+	40	90°
R	50	90°
S-	81.4	270°
S+	81.4	207°
P-	103.7	207°

Part (b)

