RED WINE QUALITY PREDICTION

SUPERVISED LEARNING CAPSTONE

OVERVIEW OF THE STUDY

- For the current capstone project, Red Wine Quality Prediction is considered with various **Supervised Machine Learning** algorithms
- We have used machine learning to determine which **physiochemical properties** make a wine 'good'!
- The wine data used in this study comes from the north-west region, named Minho, of Portugal, and we have used only the data w.r.t. red wine
- This dataset is also available from the UCI machine learning repository,

https://archive.ics.uci.edu/ml/datasets/wine+quality

• **Relevant publication:** P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

AGENDA

1. DATA ANALYSIS AND FEATURE EVALUATION

2. MACHINE LEARNING MODELS

OVERVIEW OF THE DATA

- The dataset of red wine contains 1599 rows and 12 columns. The following are the variables in the dataset
- Input variables "features": They are based on physicochemical tests namely fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol
- Output variables "target": It is based on sensory data namely quality (score between 0 and 10)
- A basic exploratory data analysis reveals that there are **no missing values in the dataset**
- All the variable columns were analyzed for outliers with Tukey's method
- The data was subjected to **winsorization** to eliminate outliers

BIVARIATE ANALYSIS

- Quality decreases with volatile acidity
- Quality increases with citric acid
- Quality increases with sulphates
- Quality increases with alcohol content

Wine Attributes Correlation Heatmap

	Tillo / ttillo dtoo ooli olatioli i loatillap											
fixed acidity	1.00	-0.26	0.67	0.11	0.09	-0.15	-0.11	0.67	-0.68	0.18	-0.06	0.12
volatile acidity	-0.26	1.00	-0.55	0.00	0.06	-0.01	0.08	0.02	0.23	-0.26	-0.20	-0.39
citric acid	0.67	-0.55	1.00	0.14	0.20	-0.06	0.04	0.36	-0.54	0.31	0.11	0.23
residual sugar	0.11	0.00	0.14	1.00	0.06	0.19	0.20	0.36	-0.09	0.01	0.04	0.01
dhlorides	0.09	0.06	0.20	0.06	1.00	0.01	0.05	0.20	-0.27	0.37	-0.22	-0.13
free sulfur dioxide	-0.15	-0.01	-0.06	0.19	0.01	1.00	0.67	-0.02	0.07	0.05	-0.07	-0.05
total sulfur dioxide	-0.11	0.08	0.04	0.20	0.05	0.67	1.00	0.07	-0.07	0.04	-0.21	-0.19
density	0.67	0.02	0.36	0.36	0.20	-0.02	0.07	1.00	-0.34	0.15	-0.50	-0.17
pН	-0.68	0.23	-0.54	-0.09	-0.27	0.07	-0.07	-0.34	1.00	-0.20	0.21	-0.06
sulphates	0.18	-0.26	0.31	0.01	0.37	0.05	0.04	0.15	-0.20	1.00	0.09	0.25
alcohol	-0.06	-0.20	0.11	0.04	-0.22	-0.07	-0.21	-0.50	0.21	0.09	1.00	0.48
quality	0.12	-0.39	0.23	0.01	-0.13	-0.05	-0.19	-0.17	-0.06	0.25	0.48	1.00
	fixed acidity	volatile acidity	citric acid	residual sugar	dhlorides	free sulfur dioxide	otal sulfur dioxide	density	Ŧ	sulphates	alcohol	quality

Variable
Correlation
Matrix

1. **Alcohol** level has **strongest** positive correlation (0.48) with **quality**

- 0.4

- 0.2

- -0.2

- -0.4

2. Negative correlation
between 'pH' and the
'fixed acidity' of the wine
(Wine is mostly acidic with
pH 3-4)

TARGET "REVIEW" AND LABEL ENCODING

- Quality is represented by scores ranging from 0 to 10
- 0 is "worst" and 10 is "best" in the data
- Create a new target column "Review"
- Label Encoding in Review: Quality < = 5 as "0", Quality > 5 as "1"

Quality	Bin Count
3	10
4	53
5	681
6	638
7	199

MACHINE LEARNING MODELS

The following are the different machine leaning models that we used to get the prediction

- A. LOGISTIC REGRESSION
- B. DECISION TREES
- C. RANDOM FORESTS
- D. SVM
- E. STOCHASTIC GRADIENT DESCENT
- F. KNN

VISUALIZING MODEL PERFORMANCE

THE TOP THREE MACHINE LEARNING MODELS FOR THE CURRENT DATASET ARE

- 1. SVM
- 2. RANDOM FOREST
- 3. DECISION TREES

1. SUPPORT VECTOR MACHINES

	precision	recall	f1-core	support
0	0.8	0.8	0.8	176
1	0.84	0.85	0.84	224
accuracy			0.82	400
macro avg	0.82	0.82	0.82	400
weighted avg	0.82	0.82	0.82	400

Parameters:

Kernel = 'poly'

Degree = 3

Gamma = 'auto'

Accuracy = 82.5 %

2. RANDOM FOREST

6		precision	recall	f1-core	support
	0	0.78	0.84	0.81	176
	1	0.87	0.82	0.84	224
	accuracy			0.83	400
	macro				
	avg	0.83	0.83	0.83	400
	weighted				
	avg	0.83	0.83	0.83	400

Parameters:

criterion = 'entropy' n_estimators = 100 max_features = 'sqrt' min_samples_leaf = 1

Accuracy = 82.5 %

	precision	recall	f1-core	support
0	0.76	0.72	0.74	176
1	0.79	0.82	0.8	224
accuracy			0.78	400
macro avg	0.77	0.77	0.77	400
weighted				
avg	0.77	0.78	0.77	400

Parameters: criterion = 'entropy' may_depth = None

max_depth = None, min_samples_split = 3

Accuracy = 78%

VARIABLE IMPORTANCE PLOT

It indicates that alcohol is the most important variable

CONCLUSIONS

- The red wine data was analyzed for quality
- It was found that quality of the wine is mostly correlated to alcohol
- Data was split into training and test set. Machine learning models were trained in training set and tested for accuracy on the test set.
- SVM model does the best with an accuracy of 82.5%
- Machine learning also conclude that "alcohol" is the most important variable that determines the quality of wine
- Future Scope: ML models accuracy is not high. The low prevalence of quality levels 3, 4 and 8 and the large distribution overlapping area stratified by quality is a reason.
- We do not have information about the composition of grape varieties in each wine, the mix of experts that evaluated wine quality, or the production year.
- Lack of information about how the dataset was created may impact the prediction of quality using the physicochemical properties as predictors.

THANK YOU!