Notation

X. Y are finite sets

 $P, P' \in \Delta(X)$ [P, P' distributions on X] $R \in \Delta(X \times Y)$ [joint distribution] [marginal on X]

 $P(x) = \sum_{y \in Y} R(x, y)$ $Q(y) = \sum_{x \in X} R(x, y)$

[marginal on *Y*]

Info content (subjectivist version)

Information content ("surprisal") measures perplexity of an agent with beliefs $P \in$ $\Delta(X)$ when observing $x \in X$.

think of: neural activity in a predictive brain

Definition:
$$I_P(x) = -\log_b P(x)$$

base b > 1; common choice b = 2 (bits)

Justification: Negative $\log (b > 1)$ is the only solution for intuitive "axioms:"

exactly as expected, zero perplexity

If
$$P(x) = 1$$
, $I_P(x) = 0$

less expected, more perplexing

If
$$P(x_1) > P(x_2)$$
, then $I_P(x_1) < I_P(x_2)$

perplexity adds up

$$I_P(x_1 \cap x_2) = I_P(x_1) + I_P(x_2)$$

if x_1, x_2 stochastically independent

General template for all measures

Definitions below are all expected values of the form:

$$\sum_{x \in X} P_{GT}(x) F(x)$$

 P_{GT} is the assumed ground-truth

F is some function related to perplexity

Logarithm rules

inverse function of exponential

product-to-sum rule

$$x = a^y \Leftrightarrow y = \log_b x$$

$$\log_b(xy) = \log_b x + \log_b y$$

		P_{GT}	F	definition
entropy	$\mathcal{H}(P)$	P	I_P	$-\sum_{x\in X} P(x) \log_b P(x)$

average perplexity of an agent with beliefs P when the ground truth is P

cross-entropy

 $\mathcal{H}(P^*,P)$

 $-\sum_{x\in X} P^*(x) \log_b P(x)$

average perplexity of an agent with beliefs P when the ground truth is P^*

joint entropy

 $\mathcal{H}(P,O)$

 $-\sum_{z \in Y \vee V} R(z) \log_b R(z)$

just entropy applied to a joint probability distribution; boring but useful for the "facts" below

NB: cross-entropy compares distributions on the same X, joint entropy looks at joint distribution over product of space X and Y

 $I_{R'}$

conditional entropy $\mathcal{H}(P \mid Q)$

 $Q \qquad \mathcal{H}(R^{|y}) \qquad -\sum_{y \in Y} Q(y) \sum_{x \in X} R(x \mid y) \log_b R(x \mid y)$

where $R^{|y|}(x) = R(x \mid y)$

 $-\sum_{(x,y)\in X\times Y} R(x,y) \log R(x\mid y)$

where $S(\langle x, y \rangle) = R(x \mid y)$

average entropy of an agent's conditional beliefs about X after observing events from Y

two equivalent formulations here: the second is the usual (compact) definition; the first corresponds to the interpretation in the line above

relative entropy

 $D_{KL}(P \parallel Q) \qquad P \qquad I_O - I_P \qquad \qquad \sum_{x \in X} P(x) \log_h \frac{P(x)}{Q(x)}$

also known as "Kullback-Leibler divergence"; average difference in perplexity when agent believes O instead of true P "excess surprisal" or "unnecessary perplexity" on top of the minimum (when having "true beliefs" P)

mutual information

I(P,Q) R $I_{R^{\perp}} - I_{R}$ $\sum_{(x,y) \in X \times Y} R(x,y) \log_{h} \frac{R(x,y)}{P(x) Q(x)}$

where $R^{\perp}(x, y) = P(x) O(x)$

excess perplexity of an agent believing that X and Y are independent, when in truth they might not be alternatively: how much learning about Y reduces uncertainty about X (and vice versa; see facts below) special case of KL-divergence for joint distributions, one treating X and Y as independent, the other possibly not

Fun facts

$$D_{KL}(P \parallel Q) = \mathcal{H}(P, Q) - \mathcal{H}(P)$$

$$P^* = \arg\min_{P} \mathcal{H}(P^*, P)$$

$$I(P, Q) = I(Q, P)$$

$$I(P, Q) = \mathcal{H}(P) - \mathcal{H}(P \mid Q)$$

$$I(P, Q) = \mathcal{H}(P) + \mathcal{H}(Q) - \mathcal{H}(P, Q)$$

