

Regression Model to Predict Cement Compressive Strength

Compressive strength of cement at 7 and 28 days

import library
import pandas as pd
import numpy as np

import data
cement = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete%20Compressive%20Strength.csv')

view data
cement.head()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)	Concrete Compressive Strength(MPa, megapascals)
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986111
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887366
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269535
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052780
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296075

info of data
cement.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype				
0	Cement (kg in a m^3 mixture)	1030 non-null	float64				
1	Blast Furnace Slag (kg in a m^3 mixture)	1030 non-null	float64				
2	Fly Ash (kg in a m^3 mixture)	1030 non-null	float64				
3	Water (kg in a m^3 mixture)	1030 non-null	float64				
4	Superplasticizer (kg in a m^3 mixture)	1030 non-null	float64				
5	Coarse Aggregate (kg in a m^3 mixture)	1030 non-null	float64				
6	Fine Aggregate (kg in a m^3 mixture)	1030 non-null	float64				
7	Age (day)	1030 non-null	int64				
8	Concrete Compressive Strength(MPa, megapascals)	1030 non-null	float64				
<pre>dtypes: float64(8), int64(1)</pre>							

summary statistics

cement.describe()

memory usage: 72.5 KB

Fine Coarse Concrete Cement (kg Fly Ash (kg Water (kg Superplasticizer Aggregate Aggregate Furnace Slag Compressive in a m^3 (kg in a m^3 (kg in a in a m^3 in a m^3 (kg in a Age (day) (kg in a m^3 Strength(MPa, mixture) mixture) mixture) mixture) m^3 m^3 mixture) megapascals) mixture) mixture) 1030.000000 1030.000000 1030.000000 1030.000000 1030.000000 1030.000000 1030.000000 1030.000000 1030.000000 count 281.165631 73.895485 54.187136 181.566359 6.203112 972.918592 773.578883 45.662136 35.817836 mean 5.973492 104.507142 86.279104 63.996469 77.753818 80.175427 63.169912 16.705679 std 21.355567 102.000000 0.000000 0.000000 0.000000 594.000000 2.331808 121.750000 801.000000 1.000000 min 25% 192.375000 0.000000 164.900000 0.000000 932.000000 730.950000 0.000000 7.000000 23.707115 50% 272.900000 22.000000 0.000000 185.000000 6.350000 968.000000 779.510000 28.000000 34.442774

10.160000

1029.400000

824.000000

56.000000

46.136287

check for missing value
cement.isna().sum()

350.000000

75%

142.950000

118.270000

192.000000

Cement (kg in a m^3 mixture)	0	
Blast Furnace Slag (kg in a m^3 mixture)	0	
Fly Ash (kg in a m^3 mixture)	0	
Water (kg in a m^3 mixture)	0	
Superplasticizer (kg in a m^3 mixture)	0	
Coarse Aggregate (kg in a m^3 mixture)	0	
Fine Aggregate (kg in a m^3 mixture)	0	
Age (day)	0	
Concrete Compressive Strength(MPa, megapascals)		
dtype: int64		

check for categories cement.nunique()

Cement (kg in a m^3 mixture)	280
Blast Furnace Slag (kg in a m^3 mixture)	187
Fly Ash (kg in a m^3 mixture)	163
Water (kg in a m^3 mixture)	205
Superplasticizer (kg in a m^3 mixture)	155
Coarse Aggregate (kg in a m^3 mixture)	284
Fine Aggregate (kg in a m^3 mixture)	304
Age (day)	14
Concrete Compressive Strength(MPa, megapascals)	938
dtype: int64	

visualize pairplot
import seaborn as sns
sns.pairplot(cement)

columns name
cement.columns

https://colab.research.google.com/drive/1zgGyQlqlK6J2KHAYX9PNJToHrALvzqFx#scrollTo=I18Jq4byuxJz&printMode=true

```
# define X
X=cement[['Cement (kg in a m^3 mixture)',
'Blast Furnace Slag (kg in a m^3 mixture)',
'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
'Superplasticizer (kg in a m^3 mixture)',
'Coarse Aggregate (kg in a m^3 mixture)',
'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)']]
# split data
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=2559)
# verify shape
X_train.shape,X_test.shape,y_train.shape,y_test.shape
     ((721, 8), (309, 8), (721,), (309,))
# select model
from sklearn.linear_model import LinearRegression
model=LinearRegression()
# train model
model.fit(X_train,y_train)
     LinearRegression()
# predict with model
y_pred=model.predict(X_test)
# model evaluation
from sklearn.metrics import mean absolute error, mean absolute percentage error, mean squared error
# model MAE
mean_absolute_error(y_test,y_pred)
     7.814891951068712
# model MAPE
mean_absolute_percentage_error(y_test,y_pred)
     0.28040027489426594
```

model MSE
mean_squared_error(y_test,y_pred)

102.62674212692517

future prediction
X.sample()

Cement (kg in a m^3 mixture)		Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
620	254.0	0.0	0.0	198.0	0.0	968.0	863.0	365

define X_new
X_new=X.sample()
X_new

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
575	238.1	0.0	0.0	185.7	0.0	1118.8	789.3	28

predict for X_new
model.predict(X_new)

array([16.41446917])