

0.65W,5KV_{RMS} 耐压的全集成隔离 DC-DC 转换器

1 产品特性

- 集成高效率的 DC-DC 转换器和片上变压器
 - 内置软启电路来防止浪涌电流和输出过冲
 - 过载和短路保护功能
 - 过热关断保护功能
- 宽输入电压范围: 4.5 V~5.5 V
- 输出电压可选:
 - 3.3V \ 5.0V \ 3.7V \ 5.4V
 - 支持在输出端接 LDO
- 输出典型功率: 650mW(5V/130mA)
- 宽工作温度范围: -40 °C ~ 125 °C
- 优异的隔离性能:
 - UL 1577 标准下,长达 1 分钟的 5KV_{RMS} 隔离耐压
 - 符合 DIN V VDE V 0884-11:2017-01 标准的 7071VPK VIOTM 和 849VPK VIORM
 - IEC 60950、 IEC 60601 和 EN 61010 认证 — CQC、 TUV 和 CSA 认证
 - 高 CMTI: ±150 kV/μS (典型)
 - 隔离栅寿命: >40 年
- 符合 RoHS 标准封装
 - SOIC16-WB

2 应用

- 工业自动化控制系统
- 电机控制
- 医疗设备
- 电网基础设备
- 测试和测量仪器

3 概述

CA-IS3105W 是一款支持 5KV_{RMS} 隔离耐压的 DC-DC 转换器芯片,集成片上变压器,能够高效率传输大于

650mW 功率到副边输出。该芯片采用特有控制架构,能够快速响应负载变化,并且精确调节输出电压。CA-IS3105W 的出现可替代传统分立器件组建的隔离电源方案。该方案物理尺寸更小,且能够实现完全隔离。

CA-IS3105W 集成软启动、短路保护、过温保护等多种保护功能以更好地增强系统的可靠性。CA-IS3105W 具有 EN 使能管脚,当 EN 为低电时,输出电压为零,此时电源仅有微安级待机输入电流。

可通过管脚 SEL 选择 4 种输出电压,分别为 5V、3.3V、5.4V、3.7V,支持输出端接 LDO,以方便用户不同的电压需求。CA-IS3105W 器件采用 16 脚宽体 SOIC 封装,绝缘耐压高达 5 kV_{RMS}。

器件信息

零件号	封装	封装尺寸(标称值)
CA-IS3105W	SOIC16-WB(W)	10.30 mm × 7.50 mm

简化结构图

目录

产品特	导性	1
应用		1
概述		1
6.1		
6.2	ESD 额定值	4
6.3	推荐工作条件	4
6.4	热量信息	5
6.5	额定功率	5
6.6	隔离特性	6
6.7	安全相关认证	7
6.8	电气特性	8
6.9	潮敏等级	8
典型》	波形和曲线图	9
	应概修引产 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	6.2 ESD 额定值 6.3 推荐工作条件 6.4 热量信息 6.5 额定功率 6.6 隔离特性 6.7 安全相关认证 6.8 电气特性

	7.1	软启动和输出短路恢复波形	9
	7.2	输出电压纹波以及动态特性	10
	7.3	输出电压随负载电流和输入电压的变化	11
	7.4	静效率随负载电流以及表面温度的变化	13
	7.5	静态电流 Ivin_so 随输入电压的变化	13
	7.6	输出电流降额曲线	13
8	详细说	も明	14
	8.1	工作原理	14
	8.2	功能框图	14
9	典型应	团用	15
10	PCB 有	ī板建议	15
11	封装信	意息	16
12	焊接信	··· ···	17
13	, , , , , , , , , , , , , , , , , , , ,	· 息	
14		ョ明	
14	坐女 广	7 7/7 ······	т

4 修订历史

修订版本号	修订内容	修订时间	页码
Version 1.00	N/A		N/A
Version 1.01	更新 POD 和编带信息	2022.12.19	16, 18

5 引脚功能描述

图 5-1 CA-IS3105W 顶部视图

表 5-1 CA-IS3105W 引脚功能描述

引脚名称	引脚编号	类型	描述
EN	1	输入	使能管脚。接高电平,使能芯片,接低电平,关断芯片。
GNDP	2	地	原边侧接地管脚。将原边的去耦电容连接在 VINP 和该管脚。
VINP	3	电源	原边侧输入电源管脚。将 10μF 和 0.1μF 的陶瓷电容接至 VINP 和 PIN2 之间,电容的摆放位置要尽量靠近芯片管脚。
	4	-	
	5	-	
NC ¹	6	-	无连接。原边电压域,在 PCB 板上连接至 GNDP。
	7	-	
	8	-	
GNDS	9	地	副边地管脚。
	10	-	
NC	11	-	无连接。副边电压域,在 PCB 板上连接至 GNDS。
	12	-	
SEL	13	输入	VISO 输出电压选择管脚。SEL 接至 VISO, VISO 输出 5V; SEL 通过 100K 电阻接至 VISO, VISO 输出 5.4V; SEL 接至 GNDS, VISO 输出 3.3V; SEL 通过 100K 电阻接至 GNDS, VISO 输出 3.7V。
VISO	14	电源	隔离电压输出管脚。将 10μF 和 0.1μF 的陶瓷电容接至 VISO 和 PIN15 之间,电容的摆放位置要尽量靠近芯片管脚。
GNDS	15	地	副边地管脚,将副边的去耦电容连接在 VISO 和该管脚之间。
GNDS	16	地	副边地管脚。

^{1.} NC 引脚没有内部连接,它们可以浮空、或连接到相应的"地"。

6 产品规格

6.1 绝对最大额定值 1,2

	参数	最小值	最大值	单位
VINP	电源电压	-0.5	6.0	V
VISO	隔离电源输出电压	-0.5	6.0	V
EN	EN 输入电压	-0.5	VINP+0.3 ³	V
SEL	SEL 输入电压	-0.5	VISO+0.3	V
Tj	结温	-40	150	°C
T _{STG}	存储温度	-65	150	°C

备注:

- 1. 等于或超出上述绝对最大额定值可能会导致产品永久性损坏,长期在超出最大额定值条件下工作会影响产品的可靠性。
- 2. 除差分 I/O 总线电压以外的所有电压值,均相对于本地接地端子(GNDP 或 GNDS),并且是峰值电压值。
- 3. 最大电压不得超过 6 V。

6.2 **ESD** 额定值

		数值	单位
V _{ESD} 静电放电	人体模型 (HBM),根据 ANSI/ESDA/JEDEC JS-001,所有引脚 ¹	±3000	V
V _{ESD} 静电放电	组件充电模式(CDM),根据 JEDEC specification JESD22-C101,所有引脚 ²	± 2000	V
各注 ·			

备注:

- 1. JEDEC 文件 JEP155 规定 500 V HBM 可通过标准 ESD 控制过程实现安全制造。
- 2. JEDEC 文件 JEP157 规定 250 V CDM 允许使用标准 ESD 控制过程进行安全制造。

6.3 推荐工作条件

	参数	最小值	典型值	最大值	单位
VINP	电源电压	4.5	5	5.5	V
V _{EN}	EN 输入电压	0		5.5	V
VISO	隔离输出电源电压	0		5.7	V
V _{SEL}	SEL 输入电压	0		5.7	V
T _A	环境温度	-40		125	°C
TJ	结温度	-40		150	°C

上海川土微电子有限公司

6.4 热量信息

热量表	CA-IS3105W	単位
於里 仪	SOIC16-WB(W)	平位
R _{θJA} IC 结至环境的热阻	73.8	°C/W

6.5 额定功率

参数	测试条件	最小值	典型值	最大值	单位
P _D 最大输入功率	VINP=5.5V,VISO=5.4V,负载电流 130mA		1.27W	1.4	W

CHIPANALOG

6.6 隔离特性

			数值	单位
	- ***		W	十四
CLR	外部气隙(间隙)1	测量输入端至输出端,隔空最短距离	8	mm
CPG	外部爬电距离 1	测量输入端至输出端,沿壳体最短距离	8	mm
DTI	隔离距离	最小内部间隙(内部距离)	21	μm
CTI	相对漏电指数	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	V
	材料组	依据 IEC 60664-1	I	
		额定市电电压≤ 300 V _{RMS}	I-IV	
	IEC 60664-1 过压类别	额定市电电压≤ 400 V _{RMS}	I-IV	
		额定市电电压 ≤ 600 V _{RMS}	1-111	
DIN V VI	DE V 0884-11:2017-01 ²			
V _{IORM}	最大重复峰值隔离电压	交流电压(双极)	849	V_{PK}
	目上工水原家中厅	交流电压;时间相关的介质击穿 (TDDB) 测试	600	V _{RMS}
V _{IOWM}	最大工作隔离电压	直流电压	849	V_{DC}
V _{IOTM}	最大瞬态隔离电压	V _{TEST} = V _{IOTM} , t = 60 s (认证); V _{TEST} = 1.2 × V _{IOTM} , t= 1 s (100% 产品测试)	7070	V_{PK}
V _{IOSM}	最大浪涌隔离电压3	测试方法 依据 IEC 60065,1.2/50 μs 波形, V _{TEST} = 1.6 × V _{IOSM} (生产测试)	6250	V_{PK}
q _{pd}	表征电荷 4	方法 a,输入/输出安全测试子类 2/3 后, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.2 × V _{IORM} , t _m = 10 s 方法 a,环境测试子类 1 后, V _{ini} = V _{IOTM} , t _{ini} = 60 s;	≤5 ≤5	pC
		V _{pd(m)} = 1.6 × V _{IORM} , t _m = 10 s 方法 b1, 常规测试 (100% 生产测试) 和前期预处理(抽样测试) V _{ini} = 1.2 × V _{IOTM} , t _{ini} = 1 s; V _{pd(m)} = 1.875 × V _{IORM} , t _m = 1 s	≤5	
C _{IO}	栅电容,输入到输出5	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	3.5	pF
		V _{IO} = 500 V, T _A = 25°C	>1012	
R _{IO}	绝缘电阻 5	$V_{IO} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>1011	Ω
		V _{IO} = 500 V at T _S = 150°C	>109	
	污染度		2	
UL 1577				
V _{ISO}	最大隔离电压	V _{TEST} = V _{ISO} ,t = 60 s (认证) V _{TEST} = 1.2 × V _{ISO} ,t = 1 s (100%生产测试)	5000	V_{RMS}
H 11.				

备注:

- 1. 根据应用的特定设备隔离标准应用爬电距离和间隙要求。注意保持电路板设计的爬电距离和间隙距离,以确保印刷电路板上隔离器的安装焊盘不会缩短该距离。在某些情况下印刷电路板上的爬电距离和间隙相等。在印刷电路板上插入凹槽的技术有助于提高这些指标。
- 2. 该标准仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。
- 3. 测试在空气或油中进行,以确定隔离屏障的固有浪涌抗扰度。
- 4. 表征电荷是由局部放电引起的放电电荷(pd)。
- 5. 栅两侧的所有引脚连接在一起,形成双端子器件。

6.7 安全相关认证

上海川土微电子有限公司

VDE(申请中)	CSA(申请中)	UL(申请中)	CQC(申请中)	TUV(申请中)
根据 DIN V VDE V 0884- 11:2017-01 认证	根据 IEC60950-1,IEC 62368-1 和 IEC 60601-1 认证	UL1577 器件认证程序认证	根据 GB4943.1-2011 认 证	根据 EN61010-1:2010 (3rd Ed)和 EN 60950- 1:2006/A2:2013 认证

6.8 电气特性

若无其他特殊说明,VINP=4.5V~5.5 V, T_A = -40 to 125°C,SEL 管脚短路到 VISO 管脚, C_{VINP} = C_{VISO} =10μF。所有典型值的条件为 T_J =25°C 和 VINP=5V。

		测试条件	最小值	典型值	最大值	单位	
输入供电							
I _{VINP_SD}	EN 关断时输入静态电流	EN=LOW,图 7- 27		0.05	10	μΑ	
		EN=HIGH,SEL 短路到 VISO (5V 输出),图 7- 28		8.4	20	mA	
i	工及共吐松) 整大电流	EN=HIGH,SEL 通过 100K 接到 VISO (5.4V 输出)		8.8	20	mA	
I_{VINP_O}	无负载时输入静态电流	EN=HIGH,SEL 短路到 GNDS (3.3V 输出)		7.3	20	mA	
		EN=HIGH,SEL 通过 100K 接到 GNDS (3.7V 输出)		7.5	20	mA	
I _{VINP_SC}	VISO 管脚发生短路时的输入电源 电流平均值	VISO 脚短路到 GNDS		42	100	mA	
V_{UVLO+}	电源上升过程的欠压保护阈值			2.6	3.0	V	
$V_{\text{UVLO-}}$	电源下降过程的欠压保护阈值		2.1	2.3		V	
V _{HYS(UVLO)}	电源欠压保护阈值迟滞			0.3	0.6	V	
逻辑管脚物	特性						
V_{IH_EN}	EN 输入高电平		2			V	
V _{IL_EN}	EN 输入低电平				0.8	V	
I _{EN}	输入漏电流	VINP=5V, $V_{EN} = 5V$		5	20	μΑ	
隔离 DC-D	C 转换器						
		SEL 接至 VISO(5V 输出),I _{ISO} =50mA	4.65	5.0	5.35		
VISO	隔离输出电压	SEL 通过 100KΩ 接至 VISO(5.4V 输出),I _{ISO} =50mA	5.02	5.4	5.78	V	
VISO	州内州山 七 丛	SEL 接至 GNDS(3.3V 输出),I _{ISO} =50mA	3.07	3.3	3.53		
		SEL 通过 100KΩ 接至 VISO(3.7V 输出),I _{ISO} =50mA	3.44	3.7	3.96		
	输出隔离电压纹波(峰峰值)	20MHz 带宽,SEL 短路到 VISO (5V 输出), IISO = 100 mA ,图 7-9		65	100	mV	
VISO _(RIP)		20MHz 带宽,SEL 短路到 GNDS (3.3V 输出), IISO = 100 mA ,图 7- 11		55	100		
	直流线性调整率	SEL 短路到 VISO (5V 输出),IISO = 50 mA,VINP = 4.5 V to 5.5 V ,图 7- 21		2	5	mV/V	
VISO _(LINE)		SEL 短路到 GNDS (3.3V 输出),IISO = 50 mA, VINP = 4.5 V to 5.5 V ,图 7- 23		2	5		
		SEL 短路到 VISO (5V 输出),IISO = 0 to 130		1%	2%		
$VISO_{(LOAD)}$	直流负载调整率	mA,图 7- 17 SEL 短路到 GNDS (3.3V 输出),IISO = 0 to 130				1	
		mA,图 7-19		1%	2%		
EFF	最大负载电流时的效率	I_{ISO} = 130 mA, C_{LOAD} = 0.1 μF 10 μF;VISO=5V,图 7- 25,图 7- 26		55%			
LII	以ハスれでMirt IIJ从平	I_{ISO} = 130 mA, C_{LOAD} = 0.1 μF 10 μF;VISO=3.3V,图 7- 25,图 7- 26		48%			
CMTI	共模瞬变抗扰度	GNDP VS GNDS 的斜率,V _{CM} =1200V _{RMS}	±100	±150		kV/μs	
动态负载过冲		10%和 100%负载跳变,上升斜率 10mA/us;测量两种负载下输出电压的波峰的差值。图 7-13,图 7-14,图 7-15,图 7-16		80	100	mV	
瞬时过载了	功率	VINP=5V, VISO=5.4V	1			W	

6.9 潮敏等级

参数	标准	等级
潮敏等级	IPC/JEDEC J-STD-020D.1	MSL 3

上海川土微电子有限公司 典型波形和曲线图

软启动和输出短路恢复波形 7.1

7.2 输出电压纹波以及动态特性

上海川土微电子有限公司

图 7- 13 VINP=5V, VISO=5V, 13mA/130mA 13mA/130mA 时的 VISO 纹波电压波峰的差值: 16mV

图 7- 14 VINP=5V, VISO=5.4V, 13mA/130mA 13mA/130mA 时的 VISO 纹波电压波峰的差值: 17mV

图 7- 15 VINP=5V,VISO=3.3V,13mA/130mA 13mA/130mA 时的 VISO 纹波电压波峰的差值: 15mV

图 7- 16 VINP=5V,VISO=3.7V,13mA/130mA 13mA/130mA 时的 VISO 纹波电压波峰的差值: 16mV

7.3 输出电压随负载电流和输入电压的变化

VINP=5V, VISO=5V

图 7- 18 输出电压随负载电流的变化 VINP=5V, VISO=5.4V

图 7-19 输出电压随负载电流的变化

VINP=5V, VISO=3.3V

图 7-21 输出电压随输入电压的变化

VINP=4.5~5.5V, VISO =5V

图 7-23 输出电压随输入电压的变化

VINP=4.5~5.5V, VISO =3.3V

图 7-20 输出电压随负载电流的变化

VINP=5V, VISO=3.7V

图 7-22 输出电压随输入电压的变化

VINP=4.5~5.5V, VISO =5.4V

图 7-24 输出电压随输入电压的变化

VINP=4.5~5.5V, VISO=3.7V

上海川土微电子有限公司

静效率随负载电流以及表面温度的变化 7.4

图 7-25 效率随负载电流的变化

VINP=5V, VISO=5V; VINP=5V, VISO=5.4V; VINP=5V, VISO =3.3V; VINP=5V, VISO=3.7V

图 7-26 效率随芯片表面温度的变化

VINP=5V, VISO=5V; VINP=5V, VISO=5.4V; VINP=5V, VISO =3.3V; VINP=5V, VISO=3.7V

静态电流 Ivin_sd 随输入电压的变化 7.5

图 7-27 EN 使能关断时,输入静态电流 IVIN_SD 随输入电 压的变化 VINP=4.5~5.5V, EN 管脚接 GNDP

图 7-28 EN 使能时,输入静态电流 IVIN_SD 随温度的变

VINP=4.5~5.5V, VISO=5V, EN 管脚接 VINP

输出电流降额曲线 7.6

图 7-29 输出电流降额曲线 VINP=4.5~5.5V

8 详细说明

8.1 工作原理

CA-IS3105W 是一款支持 5KVrms 隔离耐压的 DC-DC 转换器芯片,集成片上变压器,能够高效率传输大于 650mW 功率到副边输出。CA-IS3105W 产品的功能框图如图 8-1 所示。

该芯片采用特有的隔离控制架构,能够快速响应负载变化,并且精确调节输出电压。VINP 电源供电给一个振荡电路,该电路将能量传输给一个高 Q 值的片上变压器,该变压器具有高效率和低辐射性能。根据 SEL 引脚的设置,传递到副边的能量被调节成 3.3 V/5 V 或 3.7 V/5.4 V(通过 SEL 管脚来选择)的输出电压。副边(VISO)控制器将 PWM 控制信号通过一个专用的隔离数据通道传递给原边,原边依据副边反馈的 PWM 信号调节传输能量。VINP 和 VISO 电源上都具备带迟滞的欠压锁定(UVLO)保护,保证了系统在噪声条件下的良好性能。内置的软启动电路确保了不会出现浪涌电流和输出电压过冲。

CA-IS3105W 内置短路保护功能。当输出电压 VISO 短路到地后,芯片进入 Hiccup 模式,表现为芯片输出每关闭一段时间后再尝试软起动上电,不断循环,直到短路故障清除,输出自动软起动恢复正常。

8.2 功能框图

图 8-1 芯片工作模式

通过 EN 管脚可以控制输出端是否有电压,当 EN 为低电平时,输出为 OV;当 EN 为高电平时,通过 SEL 管脚的接线方式,输出电压有 5V、3.3V、5.4V、3.7V 等 4 种选项。表 8-1 输出电源真值表为 CA-IS3105W 输出电压真值表。

EN	SEL	VISO
HIGH	短接到 VISO	5V
HIGH	通过 100K 电阻接至 VISO	5.4V
HIGH	短接到 GNDS	3.3V
HIGH	通过 100K 电阻接至 GNDS	3.7V
HIGH	OPEN ¹	不支持
LOW	Х	0V

表 8-1 输出电源真值表

1. 应用时不推荐把 SEL 管脚悬空。

9 典型应用

CA-IS3105W 芯片只需要在外部接上适当的储能电容就可以工作,电容放置在尽可能靠近芯片管脚的位置。图 9-1 显示了 CA-IS3105W 芯片的典型应用。

图 9-1 CA-IS3105W 典型应用电路

10 PCB 布板建议

建议在隔离器下方保留一个远离地线和信号线的隔离通道,电缆侧和逻辑侧之间的任何电气连接或金属连接,都会降低隔离度。为确保器件在任何数据速率下可靠工作,建议在 V_{CC} 与 GNDA、 V_{ISO} 与 GNDB 之间外接 10μ F 的去耦电容。并且电容器应紧靠器件相应的电源引脚放置。实际应用中,输入和输出电容为 10μ F 和 0.1μ F 电容并联,且 0.1μ F 电容靠近芯片引脚摆放,距离控制在 2mm 以内。PCB 板上输入、输出电容和芯片必须放在芯片同一层,不要将电容和芯片放在不同层且通过过孔相连。推荐 PCB 隔离电源部分走线如图 10-1 所示。

图 10-1 推荐 PCB 电源部分走线

11 封装信息

下图说明了 CA-IS3105W 隔离 DC-DC 采用的 SOIC-16WB 宽体封装大小尺寸图和建议焊盘尺寸图,尺寸以毫米为单位。

FRONT VIEW

RECOMMMENDED LAND PATTERN

LEFT SIDE VIEW

12 焊接信息

图 12-1 焊接温度曲线

表 12-1 焊接温度参数

简要说明	无铅焊接
温升速率(T∟=217°C 至峰值 T _P)	最大 3°C/s
T _{smin} =150°C 到 T _{smax} =200°C 预热时间 t _s	60~120 秒
温度保持 217℃ 以上时间 tL	60~150 秒
峰值温度 T _P	260°C
小于峰值温度 5℃ 以内时间 tp	最长 30 秒
降温速率(峰值 T₂至 T₂=217°C)	最大 6°C/s
常温 25℃ 到峰值温度 Tp时间	最长8分钟

13 编带信息

REEL DIMENSIONS

TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width					
В0	Dimension designed to accommodate the component length					
K0	Dimension designed to accommodate the component thickness					
W	Overall width of the carrier tape					
P1	Pitch between successive cavity centers					

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
I	CA-IS3105W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

14 重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保 留因技术革新而改变上述资料的权利。

Chipanalog 产品全部经过出厂测试。针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。除此之外不得复制或展示所述资源, 如因 使用所述资源而产生任何索赔、赔偿、成本、损失及债务等, Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

http://www.chipanalog.com