Eastwood Ravine

YUSUF MOTSI PRINCIPLES OF ENGINEERING PATRICK HENRY HIGH SCHOOL 1/9/2018

Design Brief

I will be constructing a structurally stable bridge called Eastwood Ravine. However, it will have a budget of \$190,000. I will need to cut down on things that may make the bridge better, but at the same time are not necessary. I will also need to focus the money that I spend on the things that keep the bridge up and running.

This bridge's deck needs to be 10 feet wide so it can accomodate two lanes of traffic. I will also need to construct Eastwood ravine using a deck thickness of 15 centimeters if high-strength concrete, and 23 centimeters thick if medium-strength concrete. The highest my bridge can go is 24 meters above the water, and there is no restriction on how low I can build it. The maximum amount of joints that each main truss can have is 50, and each can have up to 120 members

Research summaries

Through West Point Bridge Design Software, I taught myself which materials that are good for building bridges are most affordable. However, I needed a little assistance to do so, which caused me to use TeachEngineering.com. I also had a little assistance with lowering my bridge under \$190,000, so i asked a classmate, Sami Rida, to help me out.

Member properties report

LOad Test Report

#	Material Type	Cross Section	Size (mm)	Length (m)	Compression Force	Compression Strength	Compression Status	Tension Force	Tension Strength	Tension Status
1	QTS	Tube	160	4.00	807.43	1390.76	OK	0.00	2241.09	OK
2	QTS	Tube	160	4.00	717.01	1390.76	OK	0.00	2241.09	OK
3	QTS	Tube	160	4.00	717.01	1390.76	OK	0.00	2241.09	OK
4	QTS	Tube	160	4.00	1016.23	1390.76	OK	0.00	2241.09	OK
5	QTS	Tube	160	4.00	670.56	1390.76	OK	0.00	2241.09	OK
6	QTS	Tube	160	4.00	670.56	1390.76	OK	0.00	2241.09	OK
7	QTS	Tube	160	4.00	700.08	1390.76	OK	0.00	2241.09	OK
8	QTS	Tube	160	4.12	1209.07	1354.47	OK	0.00	2241.09	OK
9	QTS	Tube	160	6.08	303.56	793.57	OK	0.00	2241.09	OK
10	QTS	Tube	160	6.08	252.24	793.57	OK	24.90	2241.09	OK
11	QTS	Tube	160	4.12	1209.07	1354.47	OK	0.00	2241.09	OK
12	QTS	Tube	160	5.00	0.00	1096.25	OK	838.19	2241.09	OK
13	QTS	Tube	160	3.00	607.28	1673.53	OK	0.00	2241.09	OK
14	QTS	Tube	160	5.00	0.00	1096.25	OK	896.26	2241.09	OK
15	QTS	Tube	160	3.00	607.28	1673.53	OK	0.00	2241.09	OK
16	QTS	Tube	160	2.83	183.75	1718.37	OK	199.65	2241.09	OK
17	QTS	Tube	160	2.83	258.54	1718.37	OK	125.47	2241.09	OK
18	QTS	Tube	160	5.00	797.47	1096.25	OK	0.00	2241.09	OK
19	QTS	Tube	160	5.00	709.33	1096.25	OK	0.00	2241.09	OK

COST CALCULATIONS

Total Cost	M+C+P+5	\$47,386.77 + \$11,000.00 + \$1,000.00 + \$127,753.40 =	\$187,140.17
	Cable Anchorage Cost	No anchorages =	\$0.00
	Pier Cost	No pier =	\$0.00
	Abutment Cost	(2 arch abutments) x (\$8,501.70 per abutment) =	\$17,003.40
	Excavation Cost	(85,000 cubic meters) x (\$1.00 per cubic meter) =	\$85,000.00
Site Cost (S)	Deck Cost	(5 4-meter panels) x (\$5,150.00 per panel) =	\$25,750.00
Product Cost (P)	19 - 160x160x8 mm Quenched & Tempered Steel Tube	(\$1,000.00 per Product) =	\$1,000.00
Connection Cost (C)	7-10	(11 Joints) x (500.0 per joint) x (2 Trusses) =	\$11,000.00
Material Cost (M)	Quenched & Tempered Steel Hollow Tube	(3057.2 kg) x (\$7.75 per kg) x (2 Trusses) =	\$47,386.77
Type of Cost	Item	Cost Calculation	Cost

FINAL JUSTIFICATION

In this project, I used hollow tubes instead of solid bars since they served the same function. I found that this was the same case for the metal, as I used quenched and tempered steel. I also decided to place three joint tools, so I would be able to use less members, helping me stay under my budget.

references

Goode, J, S (2006, August 13). Lesson: Strength of Materials. Retrieved from https://www.teachengineering.org/lessons/view/cub_brid_lesson04

Rida, S (2018, January 12). Personal.