Noise Margin

B11901027 王仁軒

Procedure

- Hspice simulation
- Download data
- Post-processing done by python
 - Rotate the curves ccw by 45 degree
 - Subtract two curves
 - Find min(local maximum, -local minimum) for SNM, RNM
 - Find local maximum (or global maximum) for WNM

SNM (corners)

☐ Best at SF, worst at FF

SNM (supply voltage)

□ Roughly linear to VDD

At TT

SNM (width)

- Noise margin ↑ with Wn ↓ or Wp ↑
 - VDD = 1.8 V

```
Wp = 0.25 \text{ um} \\ 0.533
Wn = 0.62 \text{ um} \\ Wp = 0.30 \text{ um} \\ 0.564
Wp = 0.30 \text{ um} \\ 0.562
Wp = 0.35 \text{ um} \\ 0.569
```

RNM (corners)

☐ Best at SF, worst at FF

RNM (supply voltage)

□NM ↓ with VDD ↓

At TT

RNM (width)

- Noise margin ↑ with Wn ↓ or Wp ↑
 - VDD = 1.8 V

```
Wp = 0.24 \text{ um} \\ 0.196
Wn = 0.60 \text{ um} \quad Wp = 0.30 \text{ um} \\ 0.167 \quad 0.214 \quad 0.237
Wp = 0.36 \text{ um} \\ 0.216
```

WNM (corners)

☐ Best at FF, worst at FS

WNM (supply voltage)

■ Roughly linear to VDD

At TT

WNM (width)

- Noise margin ↑ with Wn ↓ or Wp ↑
 - VDD = 1.2 V

```
Wp = 0.25 \text{ um} \\ 0.472
Wn = 0.60 \text{ um} \quad Wp = 0.30 \text{ um} \\ 0.475 \quad 0.473 \quad 0.471
Wp = 0.36 \text{ um} \\ 0.473
```

WNM

■Some special cases

monotonic

