Informatik I: Einführung in die Programmierung 9. Bäume

JNI REIBURG

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

27. November 2018

1 Der Baum

Z W

- Definition
- Terminologie
- Beispiele

Der Baum

Definition Terminologie Beispiele

Binärbäume

Suchbäume

- Bäume sind in der Informatik allgegenwärtig.
- Gezeichnet werden sie meistens mit der Wurzel nach oben!

Der Baum

Definition Terminolog Beispiele

Binärbäume

Suchbäume

Bäume in der Informatik - Definition

FRED EBB

- Induktive Definition:
 - Der leere Baum ist ein Baum.
 - Wenn $t_1, ..., t_n$, $n \ge 0$ disjunkte Bäume sind und k ein Knoten, der nicht in $t_1, ..., t_n$ vorkommt, dann ist auch die Struktur bestehend aus der Wurzel k mit zugeordneten Teilbäumen $t_1, ..., t_n$ ein Baum.
 - Nichts sonst ist ein Baum.
 - Beispiel:

Beachte: Bäume können auch anders definiert werden und können auch eine andere Gestalt haben (z.B. ungewurzelt) Der Baum

Terminologi Beispiele

Binärbäume

0 -1-1-2 ----

Zusammer

Terminologie I

- Alle Knoten, denen keine Teilbäume zugeordnet sind, heißen Blätter.
- Knoten, die keine Blätter sind, heißen innere Knoten.

 Die Wurzel kann also ein Blatt sein (keine weiteren Teilbäume) oder ein innerer Knoten. Der Baum

Terminologie Beispiele

Binärbäume

Zucamma

Zusammer fassung

Terminologie II

ZEZ

- Wenn k_1 ein Knoten und k_2 die Wurzel eines zugeordneten Teilbaums ist, dann gilt:
 - \mathbf{k}_1 ist Elternknoten von k_2 ,
 - k_1 sowie der Elternknoten von k_1 sowie dessen Elternknoten usw. sind Vorgänger von k_2 .
 - \blacksquare k_2 ist Kind von k_1 .
 - Alle Kinder von k_1 , deren Kinder, usw. sind Nachfolger von k_1 .
- Bäume sind oft markiert. Die Markierung weist jedem Knoten eine Marke zu.
- Formal: Wenn K die Knotenmenge eines Baums ist und M eine Menge von Marken, dann ist die Markierung eine Abbildung $\mu: K \to M$.

Der Baum

Terminologie Beisniele

Binarbaume

Zusammen

Beispiel: Verzeichnisbaum

UNI

In Linux (und anderen Betriebssystemen) ist die Verzeichnisstruktur im Wesentlichen baumartig.

Der Baum

Terminolog

Beispiele

Binärbäume Suchbäume

Beispiel: Syntaxbaum

Wenn die Struktur einer Sprache mit Hilfe einer formalen Grammatiken spezifiziert ist, dann kann der Satzaufbau durch sogenannte Syntaxbäume beschrieben werden.

Der Baum

Definition Terminologi

Beispiele

Dillarbaume

Zusammen

Beispiel: Ausdrucksbaum

- ZE.
- Bäume können arithmetische (und andere) Ausdrücke so darstellen, dass ihre Auswertung eindeutig (und einfach durchführbar) ist, ohne dass Klammern notwendig sind.
- Beispiel: (5+6) *3 * 2
- Entspricht: ((5+6) * 3) * 2
- Operatoren als Markierung innerer Knoten, Zahlen als Markierung der Blätter:

Der Baum Definition

Terminolog Beispiele

Binärbäume

Suchbaume

Zusammer fassung

Beispiel: Listen und Tupel als Bäume

- Jede Liste und jedes Tupel kann als Baum angesehen werden, bei dem der Typ die Knotenmarkierung ist und die Elemente die Teilbäume sind.
- Beispiel: [1, [2, (3, 4)], 5]

Der Baum Definition

Beispiele

Binärbäume

2 Binärbäume

- Der Baum
- Binärbäume
- Beisniel
- Funktionen auf Bäumen
- Baumeigenschaf-
- Traversierung
- Suchhäume
- Zusammenfassung

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

- Der Binärbaum ist ein Spezialfall eines Baumes.
- Ein Binärbaum ist entweder leer oder besteht aus einem (Wurzel-) Knoten und zwei Teilbäumen.
- Für viele Anwendungsfälle angemessen.
- Funktionen über solchen Bäumen sind einfach definierbar.

Der Baum

Binärbäume

Repräsentat

Funktionen auf

Baumeigenschaften

Traversierung

Suchbäum

Zusammen

fassung

Binärbäume durch Objekte repräsentieren

- Der Baum
- Binarbaume

Repräsentation

Funktionen auf Bäumen

ten

Cuabbāuma

Suchbaume

Zusammer fassung

- Der leere Baum wird durch None repräsentiert.
- Jeder andere Knoten wird durch ein Node-Objekt repräsentiert.
- Das Attribut mark enthält die Markierung.
- Das Attribut left enthält den linken Teilbaum.
- Das Attribut right enthält den rechten Teilbaum.
- Beispiele:
 - Der Baum bestehend aus dem einzigen Knoten mit der Markierung 8: Node (8, None, None)
 - Der Baum mit Wurzel '+', linkem Teilbaum mit Blatt 5, rechtem Teilbaum mit Blatt 6: Node('+', Node(5, None, None), Node(6, None, None))


```
FREIBU
```

```
class Node:
    def __init__(self, mark, left, right):
        self.mark = mark
        self.left = left
        self.right = right
```

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen Baumeigenschaf-

ten Traversierung

Suchbäume

Beispiel: Der Ausdrucksbaum

Der Baum

Binärbäu

Diriarbauri

Beispiel Funktionen auf

Baumeigenschaften

Traversierung

Suchbäume

Zusammenfassung

wird folgendermaßen mit Node Objekten dargestellt:

```
Node ('*", Node ('*', Node ('+', Node (5, None, None), Node (6, None, None)),

Node (3, None, None)),
```

Drucken von Bäumen

T.

```
Funktionsgerüst
```

```
def tree_str (tree : Node) -> string:
   if tree is None:
       return "fill_in"

else:
       l_str = tree_str (tree.left)
       r_str = tree_str (tree.right)
       return "fill_in"
```

- Node Objekte enthalten selbst wieder Node Objekte (oder None) in den Attributen left und right.
- Zum Ausdrucken eines Node Objekts müssen auch die enhaltenen Node Objekte ausgedruckt werden.
- Daher ist tree_str rekursiv, d.h. es wird in seiner eigenen Definition aufgerufen!

Der Baum

Binärbäu

Beispiel

Funktionen auf Bäumen Baumeigenschaf-

Traversierung

Suchbäume

Drucken von Bäumen erfolgt rekursiv

- UNI FREIBURG
- Die rekursiven Aufrufe tree_str (tree.left) und tree_str (tree.left) erfolgen auf den Kindern des Knoten.
- Ergibt sich zwangsläufig aus der induktiven Definition!
- Rekursive Aufrufe auf den Teilbäumen sind Teil des Funktionsgerüsts, sobald eine baumartige Struktur bearbeitet werden soll.
- Die Alternative "tree is None" ergibt sich daraus, dass ein tree entweder None oder ein Node-Objekt ist.
- Alle Funktionen auf Binärbäumen verwenden dieses Gerüst.

Der Baum

Rinärhäun

Repräsentation

Funktionen auf Bäumen

Baumeigenschaften Traversierung

Suchbäume

lusammen assung

Drucken von Bäumen

Funktionsdefinition

FREIB

Der Baum

Binärbäun

Denräcentation

Beispiel Funktionen auf Bäumen

Baumeigenschaften Traversierung

Suchhäume

Sucribaume

- Die Tiefe eines Knotens k (Abstand zur Wurzel) ist
 - 0, falls k die Wurzel ist,
 - \blacksquare *i* + 1, wenn *i* die Tiefe des Elternknotens ist.
- Die Höhe eines Baumes ist die maximale Tiefe über alle Blätter:
 - -1 für den leeren Baum,
 - m+1, wenn m die maximale Höhe aller der Wurzel zugeordneten Teilbäume ist.
- Die Größe eines Baumes ist die Anzahl seiner Knoten.
 - 0 für den leeren Baum,
 - s+1, wenn s die Summe der Größen der Teilbäume ist.

Der Baum

Binärbäum

Repräsentation

Funktionen auf Bäumen

Baumeigenschaften

Traversierung

Suchbaume

Baumeigenschaf-

$$height(tree) = \begin{cases} -1, & \text{if } tree \text{ is empty} \\ 1 + \max(& height(tree.left), \\ & height(tree.right)), & \text{otherwise.} \end{cases}$$

$$size(tree) = \begin{cases} 0, & \text{if } tree \text{ is empty;} \\ 1 & +size(tree.left) \\ & +size(tree.right)), & \text{otherwise.} \end{cases}$$

Funktionen für Höhe und Größe

Höhe und Größe von Binärbäumen

```
def height(tree):
    if (tree is None):
        return -1
    else:
        return (max (height (tree.left),
                    height(tree.right)) + 1)
def size(tree):
    if (tree is None):
        return 0
    else:
        return(size(tree.left)
             + size(tree.right) + 1)
tree = Node('*', Node('+', Node(6, None, None), Node(5,
                  Node(1, None, None))
```

Der Baum

Baumeigenschaf-

Traversierung

Suchhäume

Zusammen-

fassung

Traversierung von Bäumen

- Oft sollen alle Knoten eines Baumes besucht und bearbeitet werden.
- 3 Vorgehensweisen (Traversierungen) sind üblich:
 - Pre-Order (Hauptreihenfolge): Zuerst der Knoten selbst, dann der linke, danach der rechte Teilbaum
 - Post-Order (Nebenreihenfolge): Zuerst der linke, danach der rechte Teilbaum, zum Schluss der Knoten selbst
 - In-Order (symmetrische Reihenfolge): Zuerst der linke Teilbaum, dann der Knoten selbst, danach der rechte Teilbaum
- Manchmal auch Reverse In-Order (anti-symmetrische Reihenfolge): Rechter Teilbaum, Knoten, dann linker Teilbaum
- Auch das Besuchen nach Tiefenlevel von links nach rechts (level-order) ist denkbar

Der Baum

Rinärhäume

Binardaume

Beispiel Funktionen auf Bäumen

ten Traversierung

O. . - l- l- = . . - - -

Suchbaume

assung

Pre-Order Ausgabe eines Baums

■ Gebe Baum *pre-order* aus

Ausgabe: A B C D E F G

Der Baum

Binärbäume

Repräsentatio Beispiel

Funktionen auf

Baumeigenschaf-

Traversierung

Suchbäume

Oddibadiii

Post-Order Ausgabe eines Baums

■ Gebe Baum post-order aus

■ Ausgabe: C E F D B G A

Der Baum

Binärbäume

Repräsentati Beisniel

Funktionen au

Baumeigenschaf-

Traversierung

Suchhäume

Suchbaume

In-Order Ausgabe eines Baums

■ Gebe Baum in-order aus.

■ Ausgabe: C B E D F A G

Der Baum

Binärbäume

Diriarbaa

Beispiel Funktionen a Bäumen

Baumeigenschaf-

Traversierung

Suchbäume

Ouchbaume

Post-order Programm

NI REIBURG

Post-Order Printing

```
def postorder(tree):
    if tree is None:
        pass
    else:
        postorder(tree.left)
        postorder(tree.right)
        print(tree.mark)
def leaf (m):
    return Node (m, None, None)
tree = Node('*', Node('+', leaf(6), leaf(5)),
        leaf(1))
postorder(tree)
```

Der Baum

Binärbäum

Repräsentation

Beispiel Funktionen auf

Baumeigenschaf-

Traversierung

Iraversierung

Suchbäume

Zusammen fassung

Die *post-order* Ausgabe eines arithmetischen Ausdrucks heißt auch <u>umgekehrt polnische</u> oder <u>Postfix-Notation</u> (HP-Taschenrechner, Programmiersprachen *Forth* und *PostScript*)

3 Suchbäume

FR =

- Der Baum
- Binärbäume
- Suchbäume
 - Definition Suche Aufbau
 - Zusammenfassung

- Definition
- Suche
- Aufbau

Suchbäume

__

- Suchbäume realisieren Wörterbücher und dienen dazu, Items schnell wieder zu finden.
- Ein Suchbaum ist ein binärer Baum, der die Suchbaumeigenschaften erfüllt:
 - Alle Markierungen im linken Teilbaum sind kleiner als die aktuelle Knotenmarkierung, alle Markierungen im rechten Teilbaum sind größer.
- Suchen nach einem Item *m*: Vergleiche mit Markierung im aktuellem Knoten.
 - wenn gleich, stoppe und gebe True zurück,
 - wenn *m* kleiner ist, suche im linken Teilbaum,
 - wenn *m* größer ist, such im rechten Teilbaum.
- Suchzeit ist proportional zur Höhe des Baums! Im besten Fall logarithmisch in der Größe des Baums.

Der Baum

Binärbäume

Suchbäun

Suche

Zusamme

Suche im Suchbaum

Search in search tree

```
Der Baum
def search(tree, item):
                                                      Binärbäume
    if tree is None:
        return False
    elif tree.mark == item:
                                                       Suche
                                                       Aufbau
        return True
    elif tree.mark > item:
                                                      fassung
        return search(tree.left, item)
    else:
        return search(tree.right, item)
# smaller values left, bigger values in right subtree
nums = Node(10, Node(5, leaf(1), None),
                 Node (15, leaf (12), leaf (20))
print(search(nums, 12))
```

Immutable — unveränderlich

- Aufruf insert(tree, item) für das Einsortieren von item in tree
- Ist tree leer, so wird der Knoten leaf(item) zurückgegeben.
- Wenn die Markierung tree.mark größer als item ist, wird item in den linken Teilbaum eingesetzt und der Baum rekonstruiert (das erhält die Suchbaumeigenschaft!).
- Falls tree.mark kleiner als item ist, entsprechend.
- Falls tree.mark == item müssen wir nichts machen.

Der Baum

Binärbäume

Definition

Aufbau

TA THE PARTY OF TH

BIRG

Creating a search tree

```
def insert(tree, item):
    if tree is None:
        return leaf(item)
    elif tree.mark > item:
        return Node (tree.mark,
                      insert (tree.left, item),
                      tree.right)
    elif tree mark < item:
        return Node (tree.mark,
                      tree.left,
                      insert(tree.right, item))
    else:
        return tree
```

Der Baum

Binärbäume

Definition

Aufbau


```
FREBUR
```

```
Der Baum
```

Binärbäume

Suchhäume

Suche

```
def insertall (tree, lst):
    for key in lst
        tree = insert (tree, key)
    return tree
bst = insertall (None, [10, 15, 20, 12, 5, 1])
```

Suchbaumaufbau

Mutable — veränderlich

Creating a mutable search tree

```
def insertm(tree, item):
    if tree is None:
        return leaf(item)
    if tree.mark > item:
        tree.left = insertm(tree.left, item)
    elif tree.mark < item:
        tree.right = insertm(tree.right, item)
    return tree</pre>
```

Der Baum

Binärbäume

Suchhäume

Suche

Suchbaumaufbau

Mutable — verönderlich

FRE

```
def insertmall (tree, lst):
   for key in lst
        tree = insertm (tree, key)
   return tree
```

bst = insertmall (None, [10, 15, 20, 12, 5, 1])

Der Baum

Binärbäume

Suchhäume

Suche

Aufbau

Der Baum

Binärbäume

Suchbäume

Zusammenfassung

¥

- Der Baum ist eine Struktur, die in der Informatik allgegenwärtig ist.
- Binärbäume sind Bäume, bei denen jeder Knoten genau zwei Teilbäume besitzt.
- Operationen über (Binär-)Bäumen lassen sich einfach als rekursive Funktionen implementieren.
- Es gibt drei Hauptarten der Traversierung von Binärbäumen.
- Suchbäume sind Binärbäume, die die Suchbaumeigenschaft besitzen, d.h. in linken Teilbaum sind nur kleinere, im rechten nur größere Markierungen.
- Das Suchen und Einfügen kann durch einfache rekursive Funktionen realisiert werden. Sortierte Ausgabe ist auch sehr einfach!

Der Baum

Dillarbaume

Zucammon