Rock

Let's rock this data

Alessia Caccioppoli

2024-03-11

Indice

1	\mathbf{Esp}	olorazione dei dati	2
	1.1	Uno sguardo al dataset	2
	1.2	Rappresentazione grafica	3
	1.3	Regressione Lineare	4
	1.4	Confronto tra modelli di regressione lineare	4
	1.5	Nello specifico:	5
2	Roc	ck	5
	2.1	Measurements on Petroleum Rock Samples	5
		2.1.1 Description	5
	2.2	Facciamo un passo indietro: cos'è una petroleum rock	5
	2.3	Tipi di rocce madri	6
		2.3.1 Rocce madri di tipo I	6
		2.3.2 Rocce madri di tipo II	6
		2.3.3 Rocce madri di tipo III	6
	2.4	Lista di sassi	7
	2.5	Lista di sassi in ordine di bellezza	7
	2.6	Lista di sassi	7
	2.7	Città legate ai sassi:	7
	2.8	Equazioni sui sassi	9
Re	efere	nces	10

1 Esplorazione dei dati

1.1 Uno sguardo al dataset

Tabella 1: Tabella di summary

Statistic	N	Mean	St. Dev.	Min	Max
area	48	7,187.729	2,683.849	1,016	12,212
peri	48	2,682.212	1,431.661	308.642	4,864.220
shape	48	0.218	0.083	0.090	0.464
perm	48	415.450	437.818	6.300	1,300.000

	area	peri	shape	perm
1	4990	2791.900	0.0903296	6.3
2	7002	3892.600	0.1486220	6.3
3	7558	3930.660	0.1833120	6.3
4	7352	3869.320	0.1170630	6.3
5	7943	3948.540	0.1224170	17.1
6	7979	4010.150	0.1670450	17.1
7	9333	4345.750	0.1896510	17.1
8	8209	4344.750	0.1641270	17.1
9	8393	3682.040	0.2036540	119.0
10	6425	3098.650	0.1623940	119.0

. . . .

	area	peri	shape	perm
1	4990	2791.90	0.0903296	6.3
2	7002	3892.60	0.1486220	6.3
3	7558	3930.66	0.1833120	6.3
4	7352	3869.32	0.1170630	6.3
5	7943	3948.54	0.1224170	17.1
6	7979	4010.15	0.1670450	17.1

1.2 Rappresentazione grafica

plot(data\$y ~ data\$x)

1.3 Regressione Lineare

Call: $lm(formula = perm \sim area, data = rock)$

Residuals: Min 1Q Median 3Q Max -685.5 -277.7 -119.7 331.0 988.4

Coefficients: Estimate Std. Error t value $\Pr(>|t|)$

(Intercept) 880.52258 169.18732 5.204 4.41e-06 * area -0.06470 0.02208 -2.930 0.00525 — Signif. codes: 0 '' 0.001 '' 0.01 " 0.05 '' 0.1 '' 1

Residual standard error: 406.3 on 46 degrees of freedom Multiple R-squared: 0.1573, Adjusted R-squared: 0.139 F-statistic: 8.588 on 1 and 46 DF, p-value: 0.005254

Tabella 2: Risultati del modello

	Dependent variable:
	perm
area	-0.06^{***}
	(0.02)
Constant	880.52***
	(169.19)
Observations	48
\mathbb{R}^2	0.16
Adjusted R^2	0.14
Residual Std. Error	406.25 (df = 46)
F Statistic	$8.59^{***} (df = 1; 46)$
Note:	*p<0.1; **p<0.05; ***p<0.01

1.4 Confronto tra modelli di regressione lineare

Tabella 3: Confronto tra modelli

	Dependent variable:		
	I	oerm	
	(1)	(2)	
Constant	415.45***	880.52***	
	(63.19)	(169.19)	
area		-0.06***	
		(0.02)	
Observations	48	48	
\mathbb{R}^2	0.00	0.16	
Adjusted R ²	0.00	0.14	
Residual Std. Error	437.82 (df = 47)	406.25 (df = 46)	
F Statistic	, ,	$8.59^{***} (df = 1; 46)$	
Note:	*p<0.1; **p<0.05; ***p<0.01		

1.5 Nello specifico:

Warning in mean.default(rock\$y): l'argomento non è numerico o logico: si restituisce NA

- [1] 6.3
- [1] 5.35109

$$z_i = \frac{x_i - \bar{X}}{sd} = \frac{-409.15}{437.8182261} = -0.9345203$$

2 Rock

2.1 Measurements on Petroleum Rock Samples

2.1.1 Description

Measurements on 48 rock samples from a petroleum reservoir.

summary(cars)

speed		dist		
Min.	: 4.0	Min.	:	2.00
1st Qu.	:12.0	1st Qu.	:	26.00
Median	:15.0	Median	:	36.00
Mean	:15.4	Mean	:	42.98
3rd Qu.	:19.0	3rd Qu.	:	56.00
Max.	:25.0	Max.	:1	20.00

2.2 Facciamo un passo indietro: cos'è una petroleum rock¹

Nella geologia del petrolio , la roccia madre è la roccia che ha generato idrocarburi o che potrebbe generare idrocarburi. Le rocce madri sono uno degli elementi necessari per un sistema petrolifero funzionante . Sono sedimenti ricchi di sostanza organica che potrebbero essere stati depositati in una varietà di ambienti tra cui acque profonde marine , lacustri e deltizie . Lo scisto bituminoso può essere considerato una roccia madre ricca di materiale organico ma immatura da cui è stato generato ed espulso poco o nessun petrolio. Le metodologie di mappatura delle rocce madri del sottosuolo consentono di identificare le probabili zone di presenza di petrolio nei bacini sedimentari e nei giacimenti di gas di scisto .

¹rock

2.3 Tipi di rocce madri

Le rocce madri² sono classificate in base ai tipi di kerogene che contengono, che a sua volta governa il tipo di idrocarburi che verranno generati:

2.3.1 Rocce madri di tipo I

Le rocce madri di tipo I sono formate da resti di alghe depositati in condizioni anossiche in laghi profondi: tendono a generare oli grezzi cerosi quando sottoposti a stress termico durante l'interramento profondo (FESTA 1917).

2.3.2 Rocce madri di tipo II

Le rocce madri di tipo II sono formate da resti planctonici e batterici marini conservati in condizioni anossiche in ambienti marini: producono sia petrolio che gas quando vengono fessurate termicamente durante l'interramento profondo (Epifania, Anselmi, e Robusto 2020b).

2.3.3 Rocce madri di tipo III

Le rocce madri di tipo III sono formate da materiale vegetale terrestre che è stato decomposto da batteri e funghi in condizioni ossiche o subossiche: tendono a generare principalmente gas con oli leggeri associati quando vengono fessurate termicamente durante l'interramento profondo. La maggior parte dei carboni e degli scisti carbonatici sono generalmente rocce madri di tipo III (Epifania, Anselmi, e Robusto 2020a).

 $^{^2}$ Rocce madri

2.4 Lista di sassi

- Tufo
- Granito
- Marmo
- Alessandrite

2.5 Lista di sassi in ordine di bellezza

- 1. Alessandrite
- 2. Marmo
- 3. Granito
- 4. Tufo

2.6 Lista di sassi

- 1. Alessandrite
- 2. Marmo
 - Il marmo bianco di Carrara
 - Il marmo Botticino classico
 - Il marmo travertino romano classico, noce e rosso persiano
 - Il marmo giallo Cleopatra e giallo reale
- 3. Granito
- 4. Tufo

Un sasso particolare: lo smeraldo.

Provenienze dello smeraldo:

- Africa
- Egitto
- Colombia
- \bullet Brasile

2.7 Città legate ai sassi:

Figura 1: Sasso di Castalda

Figura 2: Matera

2.8 Equazioni sui sassi

Facendo un po' di operazioni con i sassi avremo che:

$$1 + \frac{4}{2} - \sqrt{4} = 1$$

Quindi è evidente che sia possibile fare di conto usando i sassi.

References

Epifania, Ottavia M, Pasquale Anselmi, e Egidio Robusto. 2020a. «Dscoreapp: A shiny web application for the computation of the implicit association test d-score». Frontiers in Psychology 10: 489006.

——. 2020b. «Implicit measures with reproducible results: The implicit Measures package». Journal of Open Source Software 5 (52): 2394.

FESTA, GIOV BATT. 1917. «Il dialetto di Matera.»