=> V has a canonical differentiable structure, all it the standard/linear differentiable structure.

From last time:

Functions: (M, A = {U, q: U - R)) smooth.

f:M-OR is smooth at pet if 3 U, 3p in A s.t.

 $f \circ \phi_{\perp}^{-1} : \phi_{\kappa}(U_{\kappa}) \longrightarrow \mathbb{R}$ is smooth at $\phi_{\kappa}(\rho)$.

1 open

(*) R

(lest time) for any UB DP in A for \$= \$ [UB] - RB smooth at \$(p).

 $f: M \rightarrow \mathbb{R}$ is smooth if it is smooth at every per (=) for every $U_{\infty} \in A$, $f \circ \phi^{-1}: \phi(U_{\infty}) \longrightarrow \mathbb{R} \text{ is smooth.}$

Write Com (M) for the set of smooth functions M-OIR.

(check: if of: M→ R small then cf: M→ R smooth

fig: M > R smooth then ftg is also smooth, as is fog.
-- axions of an R-algebra.

A priest; C(x)(M) Lepends on A. Homeve, we'll prove:

Lenne: Az ~ 00 dz (i.e., A, and dz represent the save diff. structure)

if and only if $C_{(A_1)}^{\infty}(M) = C_{(A_2)}^{\infty}(M)$ (as substitute of $C^{\infty}(M)$)

The proof of one direction of this uses the following standard fiet about $C^{\infty}(R) / C^{\infty}(R^n)$; Lemma: ['C^{\infty} bump finctions]: There exist C^{∞} finctions h: $R \to [o,i]$ which equal 1 on [a,b] and 0 on $R \setminus [c,d]$ for any c < a < b < d.

(exects) \exists C^{∞} functions $\mathbb{R}^n \to \mathbb{R}$ which equal \bot on $B_{r_1}(x_0)$ and O orbitals $B_{r_2}(x_0)$ for any $r_1 < r_2$.

Proof of:

Lenne: $A_1 \sim_{C^{\infty}} A_2$ (i.e., A_1 and A_2 represent the same diff. shortere)

if and only if $C^{\infty}_{(A_1)}(M) = C^{\infty}_{(A_2)}(M)$ (as subset of $C^{\infty}(M)$)

Pf: \Longrightarrow Say $A_1 \sim_{C^{20}} A_2$, meaning $A_1 \cup A_2$ is a smooth at i.s.

By symboly, we'll just show $C_{(A_1)}^{\infty}(M) \subseteq C_{(A_2)}^{\infty}(M)$,

Let $f \in C_{A_1}^{\infty}(M)$. Meaning, $f : M \to \mathbb{R}$ is smooth at every peon.

with A_1 e.g., at every P_1 $\ni U_d \in A_1 \subseteq A_1 \cup A_2$ containing P_1 s.t. $f \circ \phi_d^{-1}$ is smooth at $\phi_a(P)$.

=) (by (x) applied to A, vA2) for any Upe A, vA2 bin particler for any Upe A2 containing p, foto is smooth at \$p(p)

=) feco (x).

 \subseteq Let's say $C_{A_1}^{\infty}(M) = C_{A_2}^{\infty}(M)$ for a pair of smooth atlases A_1, A_2 .

We need to show & ~ co & i.e., that &, U & 2 is as a smooth other, or equaletly that for my $(U_{\alpha}, \phi_{\alpha}) \in A_{1}, \quad (V_{\beta}, \psi_{\beta}) \in A_{2}, \quad \text{that}$ Propa : of (un Vp) -> Yp(un Vp) is s smooth. Post composing with x: R" -> IR (jth coord from), equality we must show that x; o \$\po\pa_{\alpha}^{-1} = (4p \cdot\pa_{\alpha}^{-1}); is smooth for each j, at Fix pe U A NB. Above, have $\times_{\mathfrak{J}}: \Psi_{\mathfrak{p}}(V_{\mathfrak{p}}) \longrightarrow \mathbb{R}$ By bump function lenning we can unter down a function Cerunds Xs in Biz (4, (P)) B·x; · / (Vp) -> R which > e zun's O outside Βε(Y, (P)) Now, note that your subset of M. e shall enough so this ball lies in (B.x3) = 4: VB -> R extends to a function x; defined on all of M by setting this finctuto be O while Voj & Claim: X; is smooth with respect to Az (follows for feet that Bx; = x; · 4 is smooth Your Line R on 4, (V,)). $=) \widetilde{K}_{j} \in C^{\infty}_{A_{2}}(M) \xrightarrow{hypothesis} \widetilde{\chi}_{j} \in C^{\infty}_{A_{2}}(M)$

(defin)
$$X_j \circ \varphi_a^{-1} : \varphi_a(U_a) \longrightarrow \mathbb{R}$$
 is smooth.

If

$$(\beta \times j) \circ \psi_b \circ \varphi_a^{-1} : \varphi_a(U_a \cap V_p) \xrightarrow{\psi_b \circ \varphi_a^{-1}} \psi_p(U_a \cap V_p) \xrightarrow{\beta \times j} \mathbb{R}.$$

is smooth at $\varphi_a(p)$, but note in small whood of $\varphi_a(p)$ under $\psi_b \circ \varphi_a^{-1}$ (i.e., in a small whood of $\psi_p(p)$), $\beta \equiv 1$.

$$(\beta \times j) \circ \psi_b \circ \varphi_a^{-1} : s \text{ smooth at } \varphi_a(p)$$

But, α, β , p orbitrary, as was $j \Rightarrow A, \cup A_2$ is a smooth at $\alpha \in \mathbb{R}$.

Operations on functions:

Topological spaces: Let's any $\phi: X \to Y$ is a continuous (C°) map of top.

Spaces, then \exists naturally defined phloade map $C^{\circ}(X) := \{ \text{continuous} \\ \text{unque} X \to R^{\circ} \} \qquad fo \phi \qquad (pt (x)^{\circ} \text{ next to dominent of foology})$ The functor \exists op \exists of \exists is a contravant finctor, i.e.,

where \exists is a contravant finctor, i.e.,

where \exists is a contravant finctor, i.e.,

Now say (M,A) smooth manifold, and $Y:M\to M$ a homeomorphism (if tp. spaces). Then $Y^*:C^{\circ}(M)\overset{\cong}{=} C^{\circ}(M)$ $C^{\infty}_{[A]}(M)$

It's not the in gone | that $\Psi^{+}(C_{\{M\}}^{\infty}(M)) = C_{(M)}^{\infty}(M)$; in fact the two might be distinct.

Def: Two C^{∞} stratues $C^{\infty}_{A_1}(M)$ and $C^{\infty}_{A_2}(M)$ are equalet: f f a homeomorphism f of f taking $C^{\infty}_{A_1}(M) \xrightarrow{\sim} C^{\infty}_{A_2}(M)$,

Amazong Fact: [Milnor, -]: St has several inequalent smooth others!

(in contrast, S', S', S') have only one, St unknown [Smooth Poincaré conj.)