

Hidden Duality and associated instabilities of Tomonaga-Luttinger Liquid on Lattice

Z. N. C. Ha*

National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306,

U.S.A.

(July 24, 1997)

Abstract

Hidden duality and associated instabilities of the spinless Luttinger liquid on lattice are reported. The local quantum fluctuations and the long-distance chiral modes compete and as a result produce a hierarchy of exotic charge/density instabilities. Explicit bosonic quantum operators for the local density fluctuations are constructed and are used to make identification of the Luttinger liquid with the classical 2D Coulomb gas with θ -term and with the rich hidden duality.

Keywords: duality, Luttinger liquid, low dimension, phase transition.

*zha@magnet.fsu.edu (Email); 904-644-5038 (Fax).

I report novel instabilities and hidden duality structure of the spinless Luttinger liquid on lattice with anomalous *local* quantum fractional statistical fluctuations which, I argue, are induced by the possible multi-particle umklapp and pairing processes at rational densities. The local parameter is, in general, different from the usual charge stiffness K which characterizes the *long-distance* physics. It is shown that the interplay between the *short-* and *long-distance* physics gives rise to new exotic charge/density instabilities which expose the hidden duality of the Luttinger liquid on lattice.

First, I need to consider two conjugate phase fields $\theta(x)$ and $\phi(x)$. The phase $\theta(x)$ essentially defines a field that measures the density modulations, and it acquires phase $\pm 2\pi$ going from one to a neighboring particle. The canonically conjugate phase field $\phi(x)$ is associated with the $U(1)$ charge degrees of freedom such that $[\phi(x), \theta(x')] = i\pi \text{sgn}(x - x')$. Explicit constructions of the two operators are straightforward via Fourier transform. Usually, the renormalization coupling constant $e^{-2\varphi}$ ($= 2\pi K$) is introduced to code the effects of quantum fluctuation [1].

In the Luttinger liquid universality class it is always possible to find the right and left eigenmodes which carry, in general, fractional statistics. In order to show this more explicitly I use the following right and left Mandelstam modes [2]

$$\Psi_R^\dagger(x) = e^{i\phi(x)} e^{i\beta\theta(x)}, \quad \Psi_L^\dagger(x) = e^{i\phi(x)} e^{-i\beta\theta(x)}. \quad (1)$$

The time-dependent correlation function for large x and t is given by

$$\langle \Psi_R^\dagger(x, t) \Psi_R(0, 0) \rangle \propto \frac{1}{(x - v_s t)^{2x_R} (x + v_s t)^{2x_L}}, \quad (2)$$

where $x_{R,L} = (2\beta \exp(\varphi) \pm \exp(-\varphi))^2/4$. If $2\beta = \exp(-2\varphi)$ then the correlation function involves either the right- or the left-movers only. Therefore, the Mandelstam modes with $2\beta = \exp(-2\varphi)$ can be regarded as the FQS-carrying *long-distance* chiral eigenmodes of the Luttinger liquid.

I conjecture that there are two parameters for describing the Luttinger liquid on lattice. One is the long-distance charge stiffness K ($= \exp(-2\varphi)/2\pi$) previously discussed, and the other the local FQHE-like parameter which is presumably determined by the filling fraction and *allowed* local interactions such as the umklapp processes.

Now, consider perturbing the Luttinger liquid with the density fluctuations containing the following

$$\Psi_{\lambda,n}^{\dagger m} = e^{in\theta(x)} e^{im\phi(x)} e^{im\lambda\theta(x)}, \quad (3)$$

where m is integer content of the $U(1)$ charge and n integer index for the low-energy sectors. The parameters m , n , and λ are chosen such that the overall operator be bosonic and the resulting damping term equal to constant (allowed umklapp condition). The scaling dimension,

$$x_{n,m}^\lambda = \frac{1}{4\pi K} (n + \lambda m)^2 + \pi K m^2, \quad (4)$$

is invariant under the following duality \hat{D} and periodicity \hat{T} transformations [3]

$$\hat{D} : \eta \rightarrow 1/\eta; \quad (n, m) \rightarrow (-m, n), \quad (5)$$

$$\hat{T} : \eta \rightarrow \eta + i; \quad (n, m) \rightarrow (n - m, m), \quad (6)$$

where $\hat{D}^2 = 1$ and η is a complex parameter defined as $2\pi K + i\lambda$. This duality generalizes the well-known duality for $\lambda = 0$.

This work is supported by DOE grant 5024-528-23.

REFERENCES

1. F. D. M. Haldane, Phys. Rev. **B25**, 4925 (1982).
2. S. Mandelstam, Phys. Rev. **D11**, 3026 (1975).
3. J. L. Cardy, Nucl. Phys. **B205**, 17 (1982).