Exploratory Data Analysis - Part Two

Loco por los Datos

Summary

- Frequency Distribution.
- Correlation Analysis.
- Scatter Plot.
- Regression Analysis.
- Analysis of Variance (ANOVA).

It consists of grouping the data into categories that show the number of cases or observations in each mutually exclusive category.

500	3000	2500	680	550
900	1400	7 50	850	2500
900	650	1320	700	1300
1500	2500	240	1900	750
1300	900	800	2100	2050
600	1350	1100	7 50	1400
1400	1900	950	800	900
2000	700	630	1000	600

- ☐ Step 1: Establish categorical groups called classes.
- ☐ Step 2: Distribute the data in the corresponding class.
- ☐ Step 3: Count the amount of data in each class.

Loco por los Datos

- ☐ Step 1: Establish categorical groups called classes.
 - Define the class interval.

class interval

Maximum value - Minimum value number of classes

Loco por los Datos

- ☐ Step 1: Establish categorical groups called classes.
 - Define the class interval.

- Rules of thumb for determining the number of classes.
 - 1) Not less than 5 and not more than 15.
 - 2) $2^k >= n (k = 0,1,2...) (n = number of observations).$

k	2 ^k	n	
0	1	40	
1	2	40	
2	4	40	
3	8	40	
4	16	40	
5	32	40	
6	64	40	

class interval =
$$\frac{3,000 - 240}{6}$$
 = 460

Salaries							
0	499						
500	999						
1,000	1,499						
1,500	1,999						
2,000	2,499						
2,500	3,000						

☐ Step 2: Distribute the data in the corresponding class.

☐ Step 3: Count the amount of data in each class.

1000

Frequency Distribution in Python

- ☐ Histogram.
 - o plot() method.

```
Country
Canada
              150000
Japan
              651750
Mexico
              563750
Spain
              706250
Argentina
             640375
Canada
              519375
             870375
E EUU
Chile
              926250
E EUU
             676250
E EUU
             103750
Name: Sales, dtype:
```


Correlation Analysis

- ☐ Measures the strength of correlation between two variables.
 - Correlation coefficient

```
    Close to 1 : High positive correlation
```

Close to -1 : High negative correlation

Close to 0 : No correlation

p value

```
o p < 0.001 : High certainty in the result
```

o p < 0.05 : Moderate certainty in the result

 \circ p < 0.1 : Low certainty in the result

 \circ p > 0.1 : Lack of certainty in the result

https://en.wikipedia.org/wiki/P-value

Correlation Analysis

Pearson's Correlation Coefficient.

$$\mathbf{r} = \frac{\sum X\gamma - n(\bar{x})(\bar{y})}{\sqrt{\left(\sum X^2 - n\bar{X}^2\right)\left(\sum y^2 - n\bar{y}^2\right)}}$$

$$r = \frac{10,143,130,842 - 19(563,252)(819)}{(6,814,828,787,298 - (19)(563,252)^2)(16,227,383 - (19)(819)^2)}$$

r = 0.83195

	563,750	902	508,502,500	317,814,062,500	813,604
	706,2 <mark>50</mark>	1,130	798,062,500	498,789,062,500	1,276,900
	640,3 <mark>75</mark>	1,024	655,744,000	410,080,140,625	1,048,576
	519,3 <mark>75</mark>	0	0	269,750,390,625	0
	870,3 <mark>75</mark>	1,392	1,211,562,000	757,552,640,625	1,937,664
	926,250	1,482	1,372,702,500	857,939,062,500	2,196,324
	676,250	1,082	731,702,500	457,3 <mark>14,062,500</mark>	1,170,724
	103,750	166	17,222,500	10,764,062,500	27,556
	567,925	910	516,811,750	322,538,805,625	828,100
	650,041	1,041	676,692,681	422,553,301,681	1,083,681
	565,000	904	510,760,000	319,225,000,000	817,216
	440,000	704	309,760,000	193,600,000,000	495,616
	301,262	480	144,605,760	90,758,792,644	230,400
	700,152	1,120	784,170,240	490,212,823,104	1,254,400
_	452,750	0	0	204,982,562,500	0
	565,287	903	510,454,161	319,549,392,369	815,409
9	651,250	1,042	678,602,500	424,126,562,500	1,085,764
	10,701,792	15,565	10,143,130,842	6,814,828,787,298	16,227,383

36,000,000

679,775,250

 χ^2

22,500,000,000

424,778,062,500

 Y^2

57,600

1,087,849

mean

SALES

150,000

651,750

REFUNDS

240

1,043

Correlation Analysis in Python

☐ Correlation Coefficient with p value.

	Customer	Customer Type	Payment Type	Purchases	Sales	Refunds	Country	Continent
0	10000	Person	Cash	120000	150000	240	Canada	America
1	10001	Company	Cash	521400	651750	1043	Japan	Asia
2	10002	Company	Credit Card	451000	563750	902	Mexico	America
3	10003	Company	Transfer	565000	706250	1130	Spain	Europe
4	10004	Person	Transfer	512300	640375	1024	Argentina	America

from scipy import stats

```
pearson_coef, p_value = stats.pearsonr(df_operations['Sales'], df_operations['Refunds'])
print("Pearson's correlation coefficient: ", pearson_coef, "p value: ", p_value)
```

Pearson's correlation coefficient: 0.8319496410228725 p value: 1.0035802366568795e-05 High certainty

Correlation Analysis in Python

☐ Correlation Matrix.

```
df_operations[["Sales", "Refunds"]].corr()
```

	Sales	Refunds
Sales	1.00000	0.83195
Refunds	0.83195	1.00000

Correlation Analysis in Python

☐ Correlation Matrix.

```
df_operations[["Sales", "Refunds"]].corr()
```

	Sales	Refunds
Sales	1.00000	0.83195
Refunds	0.83195	1.00000

- □ Determination Coefficient : Por los Dotos
 - $r^2 = (0.83195)^2 = 0.6921 = 69.21\%$

Scatter Plot

A scatter plot is a graphical illustration that is used in regression analysis.

☐ It consists of a dispersion of points where each point represents a value of the independent variable (measured on the horizontal axis), and a value associated with the dependent variable (measured on the vertical axis).

Scatter Plot

Source: https://en.wikipedia.org/wiki/Correlation_and_dependence

Scatter Plot

Regression Analysis

Least squares method

$$\hat{\gamma} = a + bX$$

$$b = \frac{\sum X\gamma - n(\bar{x})(\bar{y})}{\sum X^2 - n\bar{X}^2}$$

$$a = \overline{Y} - b\overline{X}$$

Х	Υ	XY	X ²
150,000	240	36,000,000	22,500,00 <mark>0,000</mark>
651,750	1,043	679,775,250	424,778,062,500
563,750	902	508,502,500	317,814,062,500
706,250	1,130	798,06 <mark>2,50</mark> 0	498,789,06 <mark>2,50</mark> 0
640,375	1,024	655,74 <mark>4,00</mark> 0	410,080,14 <mark>0,62</mark> 5
519,375	0	0	269,750,39 <mark>0,62</mark> 5
870,375	1,392	1,211,562,000	757,552,64 <mark>0,62</mark> 5
926,250	1,482	1,372,702,500	857,939,062,500
676,250	1,082	731,702,500	457,314,062,500
103,750	166	17,222,500	10,764,062,500
567,925	910	516,811,750	322,538,805,625
650,041	1,041	676,692,681	422,553,301,681
565,000	904	510,760,000	319,225,000,000
440,000	704	309,760,000	193,600,000,000
301,262	480	144,605,760	90,758,792,644
700,152	1,120	784,170,240	490,212,823,104
452,750	0	0	204,982,562,500
565,287	903	510,454,161	319,549,392,369
651,250	1,042	678,602,500	424,126,562,500

15,565 10,143,130,842 6,814,828,787,298

REFUNDS

Replacing:

b =
$$\frac{10,143,130,842 - (19)(563,252)(819)}{6,814,828,787,298 - (19)(563,252)^2} = 0.00175$$

$$\widehat{y}$$
 = -165.64 + 0.00175 X

10,701,792

Regression Analysis

☐ Least squares method.

_	SALES	REFUNDS			
_	X	Υ	XY	X ²	ŷ
	150,000	240	36,000,000	22,500,000,000	97
	651,750	1,043	679,775,250	424,778,062,500	974
	563,750	902	508,502,500	317,814,062,500	820
	706,250	1,130	798,062,5 <mark>00</mark>	498,789,062,500	1,069
	640,375	1,024	655,744,000	410,080,140,625	954
	519,375	(0	269,750,390,625	742
	870,375	1,392	1,211,562,000	757,552,640,625	1,356
	926,250	1,482	1, <mark>372,702,5</mark> 00	857,9 <mark>39</mark> ,062,500	1,454
	67 <mark>6,250</mark>	1,082	731,702,500	457,314,062,500	1,017
	10 <mark>3,750</mark>	166	17,222,500	10,764,062,500	16
	56 <mark>7,925</mark>	910	516,811,750	322,538,805,625	827
	650,041	1,043	676,692,681	422,553,301,681	971
	565,000	904	510,760,000	319,225,000,000	822
	440,000	704	309,760,000	193,600,000,000	604
	301,262	480	144,605,760	90,758,792,644	361
	700,152	1,120	784,170,240	490,212,823,104	1,059
	452,750	(0	204,982,562,500	626
	565,287	903	510,454,161	319,549,392,369	823
	651,250	1,042	678,602,500	424,126,562,500	973
	10,701,792	15,565	10,143,130,842	6,814,828,787,298	

Regression Plot in Python

Statistical test used to find differences between groups of a categorical variable.

- The F value: Variation between the group means divided by the variation within the groups.
- ☐ The critical value for the distribution F.

CustomerID	Туре	Sales
10000	Person	150,000
10001	Company	651,750
10002	Company	563,750
10003	Company	706,250
10004	Person	640,375
10005	Person	519,375
10006	Company	870,375
10007	Person	926,250
10008	Company	676,250
10009	Company	103,750
10010	Company	567,925
10011	Person	650,041
10012	Person	565,000
10013	Person	440,000
10014	Company	301,262
10015	Company	700,152
10016	Person	452,750
10017	Person	565,287
10018	Company	651,250

ANOVA

Variation Source	Sum of Squares	Degree Freedom	Mean Square	F
Treatments	SST	(k - 1)	SST / (k - 1) = MST	MST / MSE
Error	SSE	n - k	SSE / (n - k) = MSE	
Total	SS Total	n - 1		

Where:

SS Total : Sum Squares Total

SST : Sum Squares of Treatments

SSE : Sum Squares of Error k : Treatments number

: Observations number

MST : Mean Square of Treatments

MSE : Mean Square of Error

$$|SS Total| = \sum_{n} x^2 - \frac{\left(\sum_{n} X\right)^2}{n}$$

$$\mathbf{SST} = \sum \left(\frac{T_c^2}{n_c}\right) - \frac{\left(\sum X\right)^2}{n}$$

Treatment 1		Treatm	nent 2								
	Comp	any		<u>Person</u> Total							
_	(X	X ²	<u></u>	X	X ²		SS Total =	6 01/1 020	10,70	02^2 =	787,020.79
1	652	424,778	1	150	22,500		33 IUlai –	0,014,023	19	_	767,020.79
2	564	317,814	2	640	410,080						
3	706	498,789	3	519	269,750		CCT -	5,793 ²	4,909 ²	10,702 ²	E 447 40
4	870	757,553	4	926	857,939		SST =	10 +	9	19	= 5,417.42
5	676	457,314	5	650	422,553			10	3	13	
6	104	10,764	6	565	319,225						
7	568	322,539	7	440	193,600		SSE = 787,0	020.79 - 5,4	417.42 = 781	L,603. <mark>37</mark>	
8	301	90,759	8	453	204,983						
9	700	490,213	9	565	319,549						, ,
10_	651	424,127					Degree Fre	<u>edom:</u>	k - 1 = 2 -	-1 = 1 (numerator)
									n _ k = 10	_ 2 - 17 (denominator)
T _c	5,793			4,909		10,702			11 – K – 13	-2-17(denominator)
n _c	10			9		19					
χ^2		3,794,649			3,020,180	6,814,829					
*											

ANOVA

					4
Variation Source	Sum of Squares	Degree Freedom	Mean Square	F	Τ
Treatments	5,417.42	1 -	5,41	0.11783	<u>t-s</u>
Error	7 <mark>81,603.</mark> 37	17	45,97	6.67	Cl
Total	787.020.79	18			d

F is less than the critical value. That is, 0.11783 < 4.451.

We conclude that the average sales between the groups:

company and person are equal.

https://web.ma.utexas.edu/users/davis/375/popecol/tables/f005.html

Table of F-statistics P=0.05

t-statistics

F-statistics with other P-values: <u>P=0.01</u> | <u>P=0.001</u>

Chi-square statistics

			_										
	df2\df1]	L	2	3	4	5	6	7	8	9	10	11
	3	10	13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76
	4	7.1	1	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94
	5	6.6	1	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70
	6	5.9	9	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03
	7	5.5	9	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60
	8	5.3	2	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.3
	9	5. :	2	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10
	10	4.9	6	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94
	- 11	4.8	4	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82
	12	4.7	5	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72
	13	4.6	7	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63
	14	4.6	0	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57
	15	4.4	4	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.5
	16	4.4	9	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46
	17	4.4	5	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.4
	18	4.4	1	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.3
ľ													

Analysis of Variance with Python

- The F value: Variation between the group means divided by the variation within the groups.
- p value that refers to the confidence level of the test.

Loco por los Datos

Analysis of Variance with Python

Scatter plot of three vehicle brands and their price

Analysis of Variance with Python

☐ f_oneway()

The F statistic is less than the critical value when you compare Honda's prices to Isuzu, but it is much higher if you compare Isuzu to Porsche.

	m ake	price
0	alfa-romero	13495.0
1	alfa-romero	16500.0
2	alfa-romero	16500.0
3	audi	13950.0
4	audi	1745 0.0
190	volvo	12940.0
191	volvo	13415.0
192	volvo	15985.0
193	volvo	16515.0
194	volvo	1842 0.0