Introducción a las bases de datos

Fundamentos de Base de Datos

¿Qué es una base de datos?

• Una base de datos es un conjunto organizado de datos que se almacenan y gestionan de manera eficiente.

Objetivo principal: Permitir el almacenamiento, recuperación y manipulación de datos de forma rápida y segura.

Ejemplos:

- Base de datos de una biblioteca (libros, usuarios, préstamos).
- Base de datos de una tienda en línea (productos, clientes, pedidos).

Objetivos de las bases de datos

Integridad: Garantizar que los datos sean precisos y consistentes.

Disponibilidad: Asegurar que los datos estén accesibles cuando se necesiten.

Confidencialidad: Proteger los datos de accesos no autorizados.

Eficiencia: Optimizar el almacenamiento y la recuperación de datos.

Modelos de bases de datos

- Modelo jerárquico: Los datos se organizan en una estructura de árbol (padre-hijo).
- Modelo relacional: Los datos se organizan en tablas (filas y columnas).
- Modelo orientado a objetos: Los datos se representan como objetos, similares a la programación orientada a objetos.
- **Modelo NoSQL**: Bases de datos no relacionales, diseñadas para grandes volúmenes de datos no estructurados.

Modelo Jerárquico

- Los datos se organizan en una estructura de árbol (padre-hijo).
- Cada nodo tiene un único padre y múltiples hijos.
- Ejemplo: Organización de carpetas en un sistema operativo.

Modelo Relacional

- Los datos se organizan en tablas con filas y columnas.
- Usa claves primarias y foráneas para establecer relaciones.
- Ejemplo: Un sistema de gestión de empleados con tablas de empleados y departamentos.

Modelo Orientado a Objetos

- Representa datos como objetos, similares a la programación orientada a objetos.
- Incluye herencia, encapsulación y polimorfismo.
- Ejemplo: Un sistema de gestión de productos con clases de productos y variantes.

Los manejadores de bases de datos orientados a objetos deben tomar en cuenta las siguientes operaciones:

- Ser capaces de definir sus propios tipos de datos.
- El tamaño de los datos puede ser muy grande.
- La duración de las transacciones puede ser muy larga.
- Recuperar rápidamente objetos complejos.

- Lenguajes de consulta de objetos, un ejemplo es OQL (Object Query Language).
- Mecanismos de seguridad basados en la noción de objeto.
- Funciones para definir reglas deductivas.

Modelo NoSQL

- Bases de datos no relacionales, diseñadas para grandes volúmenes de datos no estructurados.
- Ejemplo: Bases de datos de documentos como MongoDB.
- Tipos: Documentales, clave-valor, columnares y grafos.

Arquitectura de un sistema de bases de datos

Un sistema de bases de datos se organiza en diferentes niveles de abstracción para garantizar una gestión eficiente y segura de los datos. Estos niveles permiten a los usuarios interactuar con la base de datos sin preocuparse por los detalles técnicos de su almacenamiento.

Niveles de Abstracción

Existen tres niveles de abstracción en la arquitectura de un sistema de bases de datos:

- 1. Nivel Interno
- 2. Nivel Conceptual
- 3. Nivel Externo

Cada uno de estos niveles cumple un propósito específico y se encarga de diferentes aspectos del almacenamiento y uso de los datos.

Nivel Interno

- Se encarga de la representación física de los datos en el almacenamiento.
 - Define la organización de archivos y estructuras de almacenamiento.
- Optimiza el acceso y recuperación de la información.
 - Ejemplo: Índices, páginas de disco, estructuras de almacenamiento B-Trees.

Nivel Conceptual

- Describe la estructura lógica de la base de datos.
- Define las relaciones entre los datos y restricciones de integridad.
- No depende de cómo se almacenan físicamente los datos.
 - Ejemplo: Modelo relacional con tablas, claves primarias y foráneas.

Nivel Externo

- Representa la forma en que los usuarios finales interactúan con los datos.
- Permite definir diferentes vistas de la base de datos según los permisos y necesidades de los usuarios.
 - Facilita la seguridad y control de acceso a la información.
 - Ejemplo: Vista personalizada para un usuario con acceso restringido a ciertas columnas.

- Componentes clave:
 - SGBD (Sistema Gestor de Bases de Datos):
 Software que gestiona la base de datos.
 - Lenguajes de consulta: SQL (Structured Query Language) para manipular datos.

Clasificación de las Bases de Datos

Según su Contenido

- Bases de datos transaccionales (OLTP):
- Optimizadas para manejar operaciones frecuentes y rápidas, como ventas y registros de usuarios.
- Bases de datos analíticas (OLAP): Diseñadas para consultas complejas y análisis de grandes volúmenes de datos, como reportes empresariales.

Ejemplos de OLTP y OLAP

OLTP (Procesamiento de Transacciones en Línea)

- Sistemas bancarios: Transferencias, retiros y depósitos en tiempo real.
- E-commerce: Registro de compras, actualización de inventarios.
 - Sistemas de reservas: Boletos de avión, hoteles.
 - Sistemas de gestión hospitalaria: Registro de pacientes y consultas médicas.

OLAP (Procesamiento Analítico en Línea)

- Reportes financieros: Análisis de tendencias de ingresos y gastos.
- Inteligencia de negocios: Evaluación del rendimiento de productos y mercados.
 - Análisis de datos en telecomunicaciones: Estudio de patrones de uso y facturación.
 - Análisis de marketing: Segmentación de clientes y comportamiento de compra.

Según su Ubicación

- Bases de datos centralizadas: Toda la información se almacena en un único servidor o ubicación física.
- ◆ Bases de datos distribuidas: La información se divide y replica en múltiples servidores geográficamente dispersos para mejorar la disponibilidad y redundancia.

Arquitectura de un SGBD Módulos principales

Gestor de Almacenamiento:

- Función: Es el encargado de administrar el almacenamiento físico de los datos en el disco.
- Responsabilidades:
 - Organización de los datos en archivos y estructuras de almacenamiento.
 - Gestión del espacio en disco y asignación de recursos.
 - Implementación de técnicas de acceso a los datos (índices, hashing, etc.).

• Manejo de la E/S de datos (lectura y escritura).

- Procesador de Consultas:
 - Función: Interpreta y ejecuta las consultas que realizan los usuarios para acceder a los datos.
 - Proceso:
 - Análisis: Examina la consulta para verificar su sintaxis y validez.
 - Optimización: Determina la estrategia más eficiente para ejecutar la consulta.
 - Ejecución: Lleva a cabo la consulta, recuperando los datos solicitados.

- Gestor de Transacciones:
 - Función: Garantiza la consistencia e integridad de los datos durante las operaciones, especialmente en entornos multiusuario.
 - Mecanismos:
 - Control de concurrencia: Evita conflictos entre transacciones que acceden a los mismos datos.
 - Manejo de errores y fallos: Asegura que las transacciones se completen correctamente o se reviertan en caso de error.

 Propiedades ACID: Cumplimiento de las propiedades de Atomicidad, Consistencia, Aislamiento y Durabilidad de las transacciones.

Interfaces

- Interfaz de Usuario:
 - Propósito: Permite a los usuarios interactuar con la base de datos.
 - Tipos:
 - Interfaz gráfica (GUI): Proporciona herramientas visuales para crear, modificar y consultar datos.
 - Interfaz de línea de comandos (CLI): Permite interactuar mediante comandos de texto.

- Lenguajes de consulta (SQL): Lenguajes especializados para realizar consultas complejas.
- API (Interfaz de Programación de Aplicaciones):
- Función: Permite que otras aplicaciones se conecten e interactúen con la base de datos.
- Estándares:*
 - ODBC (Open Database Connectivity): Estándar para conectar aplicaciones a diversas bases de datos.
 - JDBC (Java Database Connectivity): API para conectar aplicaciones Java a bases de datos.

Componentes Adicionales

Además de los módulos e interfaces principales, un SGBD puede incluir otros componentes:

Diccionario de Datos: Almacena metadatos sobre la estructura de la base de datos (tablas, columnas, tipos de datos, etc.).

Herramientas de Administración: Facilitan la gestión y configuración del SGBD (copias de seguridad, monitorización, etc.).

Módulos de Seguridad: Controlan el acceso a la base de datos y protegen los datos de accesos no autorizados.

Ventajas de usar bases de datos

- Reducción de redundancia: Evita la duplicación de datos.
- 2. **Consistencia**: Mantiene los datos actualizados y precisos.
- 3. Seguridad: Control de acceso y protección de datos.
- 4. **Escalabilidad**: Capacidad para manejar grandes volúmenes de datos.
- 5. Facilidad de acceso: Consultas rápidas y eficientes.

Desafíos de las bases de datos

- Complejidad: Diseñar y mantener una base de datos puede ser complicado.
- **Costo**: Requiere inversión en hardware, software y personal capacitado.
- Seguridad: Proteger los datos contra accesos no autorizados y ataques.
- Rendimiento: Optimizar el acceso a los datos en sistemas grandes.

Resumen

- Una base de datos es un sistema organizado para almacenar y gestionar datos.
- Los modelos de bases de datos incluyen el relacional, jerárquico, orientado a objetos y NoSQL.
- La arquitectura de un SGBD consta de niveles de abstracción y módulos clave.
- Las bases de datos ofrecen ventajas como integridad, disponibilidad y seguridad, pero también presentan desafíos.