Ayudantía N. 10 + 1

Daniel Sánchez

18 de Noviembre 2022

1. Sea $C = \{1, x, x^2\}$ base canónica de $P_2[x]$ y considere la base \mathbb{R}^2 dada por

$$B = \{(1,1), (-1,0)\}$$

T una transformación lineal: $T: P_2[x] \to \mathbb{R}^2$ cuya matriz asociada con respecto a las bases dadas es:

 $A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 1 & -2 \end{bmatrix}$

- (a) Encuentre $T(2x x^2)$.
- (b) Determine una base para el Núcleo de T.
- (c) ξ Es T epiyectiva? Justifique.
- 2. Determine el valor de verdad de las siguientes proposiciones:
 - (a) Una base para el subespacio $W = \{(x, y, z, w) \in \mathbb{R}^4 | x + y = 0 \land z + w = 0\}$ de \mathbb{R}^4 es el conjunto $\{(-2.2, 0, 0), (0, 0, -1, 1)\}$
 - (b) Si un espacio vectorial V es generado por 5 vectores entonces dim(V) = 5.
 - (c) Existe una transformación lineal $T:\mathbb{R}^2\to\mathbb{R}^3$ de modo que T(2,3)=(0,0,0) y T(1,0)=(1,-3,2)
- 3. Sea $A = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 0 & 2 \\ 3 & 3 & 1 \end{bmatrix}$
 - (a) Determine los valores propios de A.
 - (b) Determine los espacios propios de A.
 - (c) Justifique si es diagonalizable, en caso positivo calcule A^{10} .
- 4. Sea $A = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 3 \end{bmatrix}$ done a es un parámetro real. Determine para qué valores de a la matriz es diagonalizable.

1