Structure from Motion

Outline

- Bundle Adjustment
- Ambguities in Reconstruction
- Affine Factorization
- Extensions

Structure from motion

Recover both 3D scene geoemetry and camera positions

SLAM: Simultaneous Localization and Mapping

Recall: 2-view stereo

An annoying detail

What to do when ray's don't intersect?

Minimize reprojection error

$$\min_{\mathbf{X}} f(\mathbf{X}) = ||\mathbf{x}_1 - Proj(\mathbf{X}, M_1)||^2 + ||\mathbf{x}_2 - Proj(\mathbf{X}, M_2)||^2$$

Perspective projection equations where $M_1 = 3x4$ matrix of extrinics (R_1,t_1) and intrinsics (f_1) of camera 1

For this equation, its easier to parameterize camera position in absolute coordinates instead of relative ones

Minimize reprojection error

$$\min_{\mathbf{X}} f(\mathbf{X}) = ||\mathbf{x}_1 - Proj(\mathbf{X}, M_1)||^2 + ||\mathbf{x}_2 - Proj(\mathbf{X}, M_2)||^2$$

Perspective projection equations where $M_1 = 3x4$ matrix of extrinics (R_1,t_1) and intrinsics (f_1) of camera 1

For this equation, its easier to parameterize camera position in absolute coordinates instead of relative ones

Generalize triangulation to multiple points from multiple cameras

$$\min_{\mathbf{X}_1, \mathbf{X}_2, \dots} \sum_{i=1}^{m} \sum_{j=1}^{n} ||\mathbf{x}_{ij} - Proj(\mathbf{X}_j, M_i)||^2$$

As written, could this minimization done independantly for each 3D point?

Bundle adjustment

Minimize reprojection error over multiple 3D points and cameras

$$\min_{\mathbf{X}_1, \mathbf{X}_2, \dots, M_1, M_2, \dots} \sum_{i=1}^m \sum_{j=1}^n ||\mathbf{x}_{ij} - Proj(\mathbf{X}_j, M_i)||^2$$

Basic SFM pipeline

- 1.Find candidate correspondences (interest points + descriptor matches)
- 2.Select subset that are consistent with epipolar constraints on pairs of images (RANSAC + fundmental matrix)
- 3. Solve for 3D points and camera that minimize reprojection error

(Lots of variants; e.g., iteratively build map of 3D points and cameras as new images arrive)

$$\min_{\mathbf{X}_1, \mathbf{X}_2, \dots, M_1, M_2, \dots} \sum_{i=1}^m \sum_{j=1}^n ||\mathbf{x}_{ij} - Proj(\mathbf{X}_j, M_i)||^2$$

Bundle adjustment: nonlinear least-squares

Encode visibility graphs of what points are seen in what images, i.e.

Features: A,B,C,D,E

• Images: 1,2,3

Implies jacobian of error function is sparse

Excellent reference

Bundle Adjustment — A Modern Synthesis

Bill Triggs¹, Philip McLauchlan², Richard Hartley³ and Andrew Fitzgibbon⁴

¹ INRIA Rhône-Alpes, 655 avenue de l'Europe, 38330 Montbonnot, France. *Bill.Triggs@inrialpes.fr* ⋄ *http://www.inrialpes.fr/movi/people/Triggs*

² School of Electrical Engineering, Information Technology & Mathematics University of Surrey, Guildford, GU2 5XH, U.K.

 $P.McLauchlan@ee.surrey.ac.uk \ \diamond \ http://www.ee.surrey.ac.uk/Personal/P.McLauchlan$

³ General Electric CRD, Schenectady, NY, 12301 hartley@crd.ge.com

⁴ Dept of Engineering Science, University of Oxford, 19 Parks Road, OX1 3PJ, U.K. awf@robots.ox.ac.uk > http://www.robots.ox.ac.uk/ awf

Outline

- Bundle Adjustment
- Ambguities in Reconstruction
- Affine Factorization
- Extensions

Recall camera projection

$$\lambda \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} fs_x & fs_\theta & o_x \\ 0 & fs_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$= K_{3\times3} \begin{bmatrix} R_{3\times3} & T_{3\times1} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$= M_{3\times 4} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\mathbf{x} \equiv M\mathbf{X}$$

$$x = \frac{m_1^T X}{m_3^T X}$$

$$y = \frac{m_2^T X}{m_3^T X}$$

Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the 2D homogenous vector remains exactly the same:

$$\mathbf{x} \equiv M\mathbf{X}$$
$$M\mathbf{X} = (\frac{1}{k}M)(k\mathbf{X})$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the 2D homogenous vector remains exactly the same:
- More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, nothing changes

$$\mathbf{x} \equiv M\mathbf{X}$$

$$M\mathbf{X} = (MQ^{-1})(Q\mathbf{X})$$

Recall: transformations in 3D

Make use of 3D homogenous coordinates

$$\begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

Recall: transformations in 3D

Recall: transformations in 3D

Normalize by last coordinate to recover 3D points

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda z \\ \lambda \end{bmatrix}$$

Back to ambiguities for 3D reconstruction

$$\mathbf{X} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}^{-1}\right)\left(\mathbf{Q}\mathbf{X}\right)$$

- With no constraints on the camera calibration matrix or on the scene, we get a *projective* reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Projective ambiguity

$$x \equiv M\mathbf{X} = (MQ^{-1})(Q\mathbf{X})$$

$$\mathbf{Q}_{\mathbf{p}} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & \mathbf{v} \end{bmatrix}$$

Projective ambiguity

Affine ambiguity

$$x \equiv M\mathbf{X} = (MQ^{-1})(Q\mathbf{X})$$

$$\mathbf{Q}_{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix}$$

Affine ambiguity

(parallel lines are preserved)

Similarity ambiguity

$$x \equiv M\mathbf{X} = (MQ^{-1})(Q\mathbf{X})$$

$$\mathbf{Q}_{s} = \begin{bmatrix} sR & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$

Similarity ambiguity

angles+lengths preserved (but can't recover world coordinate system)

Outline

- Bundle Adjustment
- Ambguities in Reconstruction
- Affine Factorization
- Large-scale SFM

Structure from motion

• Let's start with affine cameras (the math is easier)

Recall: Orthographic Projection

Special case of perspective projection

Another common notation for a projection matrix:

Recall: affine cameras

Model as 3D affine transformation + orthographic projection + 2D affine transformation

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \hline & 1 & & \\ \hline & & & & 1 \end{bmatrix} \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline & \cdot & \cdot & \cdot & \cdot \\ \hline & & & & & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ \hline & & & & & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Affine camera defined by 8 parameters

Affine cameras

Model as 3D affine transformation + orthographic projection + 2D affine transformation

Qa must be 3D affine transformation (12 parameters) inorder to maintain structure of affine projection matrix

Affine cameras

Model as 3D affine transformation + orthographic projection + 2D affine transformation

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 1 & 1 & 1 \end{bmatrix} Q_a Q_a^{-1} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}, \quad Q_a = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

x = AX + b

2D points = linear transformation of 3D points + 2D translation

Affine structure from motion (my favorite vision algorithm)

• Given: *m* images of *n* fixed 3D points:

$$\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$$
, $i = 1, ..., m, j = 1, ..., n$

Problem: use the mn correspondences x_{ij} to estimate m projection matrices A_i and translation vectors b_i, and n points X_j

Affine structure from motion

• Given: *m* images of *n* fixed 3D points:

$$\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$$
, $i = 1, ..., m, j = 1, ..., n$

- Problem: use the mn correspondences x_{ij} to estimate m projection matrices A_i and translation vectors b_i, and n points X_j
- The reconstruction is defined up to an arbitrary 3D affine transformation Q (12 degrees of freedom):

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \mathbf{Q}^{-1}, \qquad \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix} \rightarrow \mathbf{Q} \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix}$$

- How many knowns are there?
- How many unknowns?

• Given: *m* images of *n* fixed 3D points:

$$\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$$
, $i = 1, ..., m, j = 1, ..., n$

- Problem: use the mn correspondences x_{ij} to estimate m projection matrices A_i and translation vectors b_i, and n points X_j
- The reconstruction is defined up to an arbitrary 3D affine transformation **Q** (12 degrees of freedom):

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \mathbf{Q}^{-1}, \qquad \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix} \rightarrow \mathbf{Q} \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix}$$

- We have 2mn knowns and 8m + 3n unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have $2mn \ge 8m + 3n 12$
- For m=2 views, we need n=4 point correspondences

Let's try centering the points in each 2D image

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k}^{n} \mathbf{x}_{ik}$$

Plug the following into the above expression: $\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$ [on board]

Centering: subtract the centroid of the image points

$$\hat{\mathbf{X}}_{ij} = \mathbf{X}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i})$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \hat{\mathbf{X}}_{j}$$

 After centering, each normalized point x_{ij} is related to the 3D point X_i by

$$\mathbf{\hat{x}}_{ij} = A_i \mathbf{\hat{X}}_j$$

Given a set of 2D correspondences, simply center them in each image Affine image projection now becomes linear (represent A_i by a 2x3 matrix and $\mathbf{x}^{\mathsf{A}}_{ij}$ is 2 vector)

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{X}}_{11} & \hat{\mathbf{X}}_{12} & \cdots & \hat{\mathbf{X}}_{1n} \\ \hat{\mathbf{X}}_{21} & \hat{\mathbf{X}}_{22} & \cdots & \hat{\mathbf{X}}_{2n} \\ & \ddots & & \\ \hat{\mathbf{X}}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix} \quad \text{cameras}$$

$$\hat{\mathbf{Z}}_{mn}$$

$$\hat{\mathbf{X}}_{m1} \quad \hat{\mathbf{X}}_{m2} \quad \cdots \quad \hat{\mathbf{X}}_{mn}$$

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$
cameras
$$(2m \times 3)$$

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Fundamental Decomposition

Affine ambiguity

- The decomposition is not unique. We get the same D
 by using any 3×3 matrix C and applying the
 transformations M → MC, S → C⁻¹S
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)

Eliminating the affine ambiguity

We want C such that $A_i CC^TA^T_i = Id$

Write out optimization as min

$$\min_{L} ||A_i L A_i^T - Id||^2$$

Eliminating the affine ambiguity

Orthographic: image axes are perpendicular and scale is 1

• This translates into 3m equations in $L = CC^T$:

$$A_i L A_i^T = Id,$$
 $i = 1, ..., m$

- Solve for L
- Recover C from L by Cholesky decomposition: L = CC^T (in practice, easy to do)
- Update M and S: M = MC, S = C⁻¹S

Algorithm summary

- Given: m images and n features \mathbf{x}_{ij}
- For each image i, center the feature coordinates
- Construct a 2m × n measurement matrix D:
 - Column j contains the projection of point j in all views
 - Row i contains one coordinate of the projections of all the n points in image i
- Factorize D:
 - Compute SVD: D = U W V^T
 - Create U₃ by taking the first 3 columns of U
 - Create V₃ by taking the first 3 columns of V
 - Create W₃ by taking the upper left 3 × 3 block of W
- Create the motion and shape matrices:

$$M = U_3, \quad S = \Sigma_3 V_3^T$$

Eliminate affine ambiguity

Source: M. Hebert

Results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method.

Results

Outline

- Bundle Adjustment
- Ambguities in Reconstruction
- Affine Factorization
- Extensions

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

cameras

points

Sequential structure from motion

- Intuition: exploit low-rank redundancy of matrix
- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement

(1) Perform factorization on a dense subblock

Cameras

points

Sequential structure from motion

- Intuition: exploit low-rank redundancy of matrix
- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement

(2) Solve for a new 3D point visible by at least two known cameras (linear least squares)

$$\min_{S} ||D - MS||^2$$

Sequential structure from motion

- Intuition: exploit low-rank redundancy of matrix
- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement

(3) Solve for a new camera that sees at least three known 3D points (linear least squares)

$$\min_{M} ||D - MS||^2$$

Nonrigid structure motion

Assume 3D shapes are a linear combination of K basis shapes

$$S = \sum_{k=1}^{K} \alpha_k S_k$$

For each image, we need to solve for camera matrix *and* scaling coefficients Simply relax rank constraint on measurement matrix from 3 to 3K!

Mocap data with 75 points, 264 frames, K = 5

2D Input Data

Two Views of 3D Reconstruction

O Computed Structure

Projective structure from motion

Given: m images of n fixed 3D points

$$\mathbf{x}_{ij} \equiv \mathbf{M}_i \mathbf{X}_j$$
, $i = 1, ..., m$, $j = 1, ..., n$

- Problem: estimate m projection matrices M_i and n 3D points X_j from the mn correspondences x_{ij}
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation Q:

$$X \rightarrow QX, M \rightarrow MQ^{-1}$$

We can solve for structure and motion when

$$2mn >= 11m + 3n - 15$$

For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

- Compute fundamental matrix F between the two views (from 7 or more correspondences)
- First camera matrix: M = [I|0]
- Second camera matrix: $M' = [A_{3x3}|b_{3x1}]$
- Then one can compute **A,b** from F as follows:
 - **b** is the right null vector, or epipole $(\mathbf{F}^T\mathbf{b} = 0)$

$$A = -\hat{\mathbf{b}}F$$
 (where hat notation refers to skew symmetric matrix)

For proof, see F & P Sec 8.3

For more than 2 images, things get more implicated

Back to bundle adjustment

Minimize reprojection error over multiple 3D points and cameras

$$\min_{\mathbf{X}_1, \mathbf{X}_2, \dots, M_1, M_2, \dots} \sum_{i=1}^m \sum_{j=1}^n ||\mathbf{x}_{ij} - Proj(\mathbf{X}_j, M_i)||^2$$

Self-calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images
- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images
 - Compute initial projective reconstruction and find 3D projective transformation matrix \mathbf{Q} such that all camera matrices are in the form $\mathbf{M}_i = \mathbf{K} \left[\mathbf{R}_i \, \middle| \, \mathbf{t}_i \right]$
- Can use constraints on the form of the calibration matrix: orthogonal image axis
- Can use vanishing points

Review: Structure from motion

- Ambiguity
- Affine structure from motion
 - Factorization
- Dealing with missing data
 - Incremental structure from motion
- Projective structure from motion
 - Bundle adjustment
 - Self-calibration

Summary: 3D geometric vision

- Single-view geometry
 - The pinhole camera model
 - Variation: orthographic projection
 - The perspective projection matrix
 - Intrinsic parameters
 - Extrinsic parameters
 - Calibration
- Multiple-view geometry
 - Triangulation
 - The epipolar constraint
 - Essential matrix and fundamental matrix
 - Stereo
 - Binocular, multi-view
 - Structure from motion
 - Reconstruction ambiguity
 - Affine SFM
 - Projective SFM