les of Q d. be the expection of the numeration of the Halt State P9-1
for genes 182, vosp
Let 2, t d, and 2, t d, be the numerators of the t-studistics
(C, F) = (S, F)
Let d , Q dz be the expection of the numerator of the f
Assuming SIUZ, and SIUZ, it can be shown that
r= d, d, Cov(51, 52) + E(51,52)
[[+ di var(=)][[+ di var(=)]
For the rest of this document, our good will be to
find O $F(\frac{z_1 z_2}{s_1 s_2})$ O $Var(\frac{1}{s_1})$ and $Var(\frac{1}{s_2})$
Assumptions: a) Normality (praitially this may not be much stronger that SIUZ, Q SIUZz):
6) The covariance matrix for the two genes is
$\sum_{i=1}^{\infty} \begin{pmatrix} \sigma_{i}^{2} & \sigma_{i2} \\ \sigma_{21} & \sigma_{2}^{2} \end{pmatrix} = \begin{pmatrix} \sigma_{12} & \sigma_{12} \\ \sigma_{13} & \sigma_{2} \end{pmatrix}$
c) For notational simplicity, we have consider a one-sample problem: Zitai is the
a one-sample problem: - is the

one-sample t-statistic, where 2i+d is the sample mean, $5i=\hat{c}i$, 15n, where n is the sample size.

Note: high a two-sample problem (or some other design)

be the derivation will ofill hold b/c the only thing needs

becaused to change is the diff, which will cancel out as now.

Theorem 1 no (Si2-Oi/n) PN (O) (2014 2012)

Theorem 1 no (Si2-Oi/n) PN (O) (2014 2012) This follows from the following Lemma $\frac{2\sigma_{1}^{4}}{2\sigma_{1}^{2}} = \frac{2\sigma_{1}^{2}}{2\sigma_{1}^{2}} =$ Pf (brief): Normality follows from properties of MCE.

2 asymptotic unbiasedness. The asymptotic voor covariance can be derived by looking at the information matrix. Alternatively, one can vely on the following fart:

199-3. If X: (X', ..., X',) ~ mv N (M, Ex), i=1..., then $\frac{n}{z_i}(X_i-\overline{X})(X_i-\overline{X})^{\intercal} \sim W_{\mathcal{P}}(z_i,n-1)$ Pxp metrix Wishart dish, botton with NV degrees of freedom. It is helpful to keep in mind that the MGF of Wp(5, M) B given by M (0) = det (I-202) = 3 Theorem I combined by Delta method yields Theorem 2 $Var\left(\frac{1}{5_1}\right) \rightarrow \frac{1}{2\sigma_1^2}$ $Var\left(\frac{1}{5_2}\right) \rightarrow \frac{1}{2\sigma_2^2}$ $\operatorname{Cov}(\frac{1}{5_1}, \frac{1}{5_2}) \rightarrow \frac{1}{20_10_2}$ $E(\frac{1}{NS_1S_2}) \rightarrow \frac{1}{\sigma_1\sigma_2}$ It follows that $E\left(\frac{S_1S_2}{S_1S_2}\right) = E\left(nS_1S_2\right)E\left(\frac{1}{nS_1S_2}\right)$ $\rightarrow \left(n \cdot \frac{\rho_{\sigma_1 \sigma_2}}{n}\right) \left(\frac{1}{\sigma_{1 \sigma_2}}\right) = \rho.$ Therefore, $Y = \frac{l + \frac{1}{2} l^2 R_1 R_2}{\sqrt{(l + \frac{1}{2} R_1^2)(l + \frac{1}{2} R_2^2)}}$ where $R_1 = \frac{d_1}{\sigma_1}$, $R_2 = \frac{d_2}{\sigma_2}$

Two-sample f-test

With a two-sample analysis, the derivation needs to be changed only with regard the following expents;

- (1) One degree of freedom will be lost for this S. & G. (and home S. & S.). But this won't affect the conclusion as n-700.
- (2) d: (defined to be E (numerator of t statistic))
 needs to be replaced by $\Delta i/2$, where Δi 13 the DE effect of gene i.

It can be shown (details o'mitted), that

$$Y = \frac{(1 + \frac{1}{8})^2 R_1 R_2}{\sqrt{(1 + \frac{1}{8})^2 (1 + \frac{1}{8})^2}}, R_1 = \frac{\Delta_1}{\sigma_1}, \lambda_{21}, \lambda_{22}$$