Devoir surveillé n°09

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

- **1.** Posons $M_p = \frac{1}{p}I_n$ pour $p \in \mathbb{N}^*$. La suite (M_p) est à valeurs dans $GL_n(\mathbb{R})$ et converge vers la matrice nulle qui n'est pas inversible. Par caractérisation séquentielle, $GL_n(\mathbb{R})$ n'est pas fermé.
- 2. Une matrice de $\mathcal{M}_n(\mathbb{R})$ est inversible si et seulement si son déterminant n'est pas nul. Ainsi $\mathrm{GL}_n(\mathbb{R}) = \det^{-1}(\mathbb{R}^*)$. Le singleton $\{0\}$ est fermé donc $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ est ouvert. Comme l'application det est continue sur $\mathcal{M}_n(\mathbb{R})$, $\mathrm{GL}_n(\mathbb{R})$ est ouvert comme image réciproque d'un ouvert par une application continue.
- 3. Si M n'admet pas de valeurs propres strictement positives, alors $\chi_{M}(\lambda) \neq 0$ pour tout $\lambda \in \mathbb{R}_{+}^{*}$. On peut alors choisir $\rho > 0$ de manière arbitraite. Pour tout $\lambda \in]0, \rho[, \chi_{M}(\lambda) \neq 0$ i.e. $M \lambda I_{n} \in GL_{n}(\mathbb{R})$. Si M admet des valeurs propres strictement positives, on note ρ la plus petite d'entre elles. A nouveau, pour tout $\lambda \in]0, \rho[, \chi_{M}(\lambda) \neq 0$ i.e. $M \lambda I_{n} \in GL_{n}(\mathbb{R})$. Posons alors $M_{p} = M \frac{\rho}{p+1}$ pour tout $p \in \mathbb{N}$. La suite (M_{p}) converge vers M et, d'après ce qui précède, est à valeurs dans $GL_{n}(\mathbb{R})$. Par caractérisation séquentielle, $GL_{n}(\mathbb{R})$ est dense dans $\mathcal{M}_{n}(\mathbb{R})$.
- **4. Première méthode.** Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. Comme $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$, il existe une suite (A_p) de matrices inversibles convergeant vers A. Soit $\lambda \in \mathbb{R}$. Alors pour tout $n \in \mathbb{N}$, $\lambda I_n BA_p = A_p^{-1}(\lambda I_n A_pB)A_p$ donc $\lambda I_n BA_p$ et $\lambda I_n A_pB$ sont semblables : elles ont donc même déterminant i.e. $\det(\lambda I_n BA_p) = \det(\lambda I_n A_pB)$. Mais $\lim_{p \to +\infty} \lambda I_n BA_p = \lambda I_n BA$ et $\lim_{p \to +\infty} \lambda I_n A_pB = \lambda I_n AB$ par continuité des endomorphismes $A \mapsto BB$ et $A \mapsto BB$ et $A \mapsto BB$ sur l'espace de dimension finie $A \mapsto BB$. Comme det est continue, on obtient par caractérisation séquentielle, $A \mapsto BB$ et $A \mapsto BB$ et $A \mapsto BB$ et $A \mapsto BB$. Par unicité de la limite, $A \mapsto BB$ et $A \mapsto BB$ i.e. $A \mapsto BB$ i.e. $A \mapsto BB$ et $A \mapsto BB$ pour tout $A \mapsto BB$. Par unicité de la limite, $A \mapsto BB$ et $A \mapsto BB$ i.e. $A \mapsto BB$ i.e. $A \mapsto BB$ pour tout $A \mapsto BB$. Par unicité de la limite, $A \mapsto BB$ et $A \mapsto BB$ i.e. $A \mapsto BB$ i.e. $A \mapsto BB$ et $A \mapsto BB$ et A

Deuxième méthode. Soient $B \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Posons $f: A \in \mathcal{M}_n(\mathbb{R}) \mapsto \chi_{AB}(\lambda)$ et $g: A \in \mathcal{M}_n(\mathbb{R}) \mapsto \chi_{AB}(\lambda)$. Pour tout $A \in GL_n(\mathbb{R})$, $BA = A^{-1}ABA$ donc BA et AB sont semblables de sorte que $\chi_{AB} = \chi_{BA}$ i.e. f(A) = g(A). De plus, $\mathcal{M}_n(\mathbb{R})$ est de dimension finie donc les applications $M \in \mathcal{M}_n(\mathbb{R}) \mapsto MB$ et $M \in \mathcal{M}_n(\mathbb{R}) \mapsto BM$ sont continues. Comme det est continue sur $\mathcal{M}_n(\mathbb{R})$, les applications f et g sont continues sur $\mathcal{M}_n(\mathbb{R})$. De plus, elles coïncident sur $GL_n(\mathbb{R})$ qui est dense dans $\mathcal{M}_n(\mathbb{R})$ donc f = g. Ainsi,

$$\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2, \ \forall \lambda \in \mathbb{R}, \ \chi_{AB}(\lambda) = \chi_{BA}(\lambda)$$

Comme deux polynômes qui coïncident sur un ensemble infini (en l'occurrence R), sont égaux,

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \ \chi_{AB} = \chi_{BA}$$

Si on considère $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, alors AB = 0 donc $\pi_{AB} = X$ mais $BA = B \neq 0$ donc $\pi_{BA} \neq X = \pi_{AB}$.

5. Si on pose $A = I_n$ et $B = \begin{pmatrix} -1 & 0 \\ \hline 0 & I_{n-1} \end{pmatrix}$, alors $\det(A) = 1$ et $\det(B) = -1$. Notamment, A et B appartiennent à $GL_n(\mathbb{R})$. Si $GL_n(\mathbb{R})$ était connexe par arcs, $\det(GL_n(\mathbb{R}))$ serait un connexe par arcs de \mathbb{R} , c'est-à-dire un intervalle, car det est

1

continue sur $\mathcal{M}_n(\mathbb{R})$. Mais, d'après ce qui précède, cet intervalle contiendrait -1 et 1 et donc également 0. Ceci est absurde puisque les matrices inversibles sont de déterminants non nuls. Ainsi $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Solution 2

1. a. Un produit par blocs donne

$$M_{A,B,C,D}M_{I_n,E,O_n,I_n} = M_{A,AE+B,C,CE+D}$$

b. En prenant $E = -A^{-1}B$ dans la question précédente, on obtient

$$M_{A,B,C,D}M_{I_n,E,0_n,I_n} = M_{A,0_n,C,D-CA^{-1}B}$$

Par conséquent,

$$\det(M_{A,B,C,D}) \det(M_{I_n,E,0_n,I_n}) = \det(M_{A,0_n,C,D-CA^{-1}B})$$

Les matrices $M_{I_n,E,0_n,I_n}$ et $M_{A,0_n,C,D-CA^{-1}B}$ sont triangulaires par blocs donc $\det(M_{I_n,E,0_n,I_n}) = \det(I_n)^2 = 1$ et $\det(M_{A,0_n,C,D-CA^{-1}B}) = \det(A) \det(D-CA^{-1}B)$. Finalement,

$$\det(M_{A,B,C,D}) = \det(A) \det(D - CA^{-1}B)$$

2. a. D'après la question précédente,

$$\begin{split} \det(M_{A,B,C,D}) &= \det(A) \det(D - CA^{-1}B) \\ &= \det(A(D - CA^{-1}B)) \qquad \text{par propriété du déterminant} \\ &= \det(AD - ACA^{-1}B) \\ &= \det(AD - CAA^{-1}B) \qquad \text{car A et C commutent} \\ &= \det(AD - CB) \end{split}$$

i. Soit $\lambda \in \mathbb{C} \setminus \operatorname{Sp}(A)$. Alors $\lambda I_n - A$ est inversible. De plus, $\lambda I_n - A$ et -C commutent encore. On peut alors appliquer la question précédente pour affirmer que

$$\chi_{\mathrm{M_{A,B,C,D}}}(\lambda) = \det(\mathrm{M_{\lambda I_n - A, -B, -C, \lambda I_n - D}}) = \det((\lambda \mathrm{I}_n - \mathrm{A})(\lambda \mathrm{I}_n - \mathrm{D}) - \mathrm{CB}) = \det(\lambda^2 \mathrm{I}_n + \lambda \mathrm{U} + \mathrm{V})$$

avec U = -(A + D) et V = AD - CB. Les applications $\lambda \mapsto \chi_{M_{A,B,C,D}}(\lambda)$ et $\lambda \mapsto \det(\lambda^2 I_n + \lambda U + V)$ sont polynomiales et coïncident sur l'ensemble infini $\mathbb{C} \setminus Sp(A)$: elles sont donc égales.

ii. Les deux applications précédentes sont donc égales en 0, ce qui donne

$$\det(\mathbf{M}_{-\mathbf{A},-\mathbf{B},-\mathbf{C},-\mathbf{D}}) = \det(\mathbf{A}\mathbf{D} - \mathbf{C}\mathbf{B})$$

Or

$$\det(M_{-A,-B,-C,-D}) = \det(-M_{A,B,C,D}) = (-1)^{2n} \det(M_{A,B,C,D}) = \det(M_{A,B,C,D})$$

donc

$$det(M_{A,B,C,D}) = det(AD - CB)$$

- 3. a. D'une part, $(B^TB)^T = B^T(B^T)^T = B^TB$ donc B^TB est symétrique. D'autre part, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^TB^TBX = (BX)^TBX = \|BX\|^2 \ge 0$ où $\|\cdot\|$ désigne la norme euclidienne usuelle sur $\mathcal{M}_{n,1}(\mathbb{R})$. Ainsi B est bien symétrique positive.
 - **b.** Comme I_n et B^T commutent, on peut appliquer la question **2.b.i** pour affirmer que

$$\forall \lambda \in \mathbb{C}, \ \chi_{S}(\lambda) = \det(\lambda^{2} - 2\lambda I_{n} + I_{n} - B^{\mathsf{T}}B) = \det((\lambda - 1)^{2}I_{n} - B^{\mathsf{T}}B) = \chi_{\mathsf{R}^{\mathsf{T}}\mathsf{R}}((\lambda - 1)^{2})$$

c. Remarquons déjà que S est bien symétrique.

Supposons que S soit symétrique définie positive. Soit $\mu \in Sp(B^TB)$. Comme B^TB est symétrique positive, $\mu \ge 0$. D'après la question précédente,

$$\chi_S(1-\sqrt{\mu})=\chi_{B^\top B}(\mu)=0$$

donc $1-\sqrt{\mu}$ est valeur propre de S. Comme S est symétrique définie positive, $1-\sqrt{\mu}>0$ puis $\mu<1$. Les valeurs propres de B^TB sont donc toutes strictement inférieures à 1.

Supposons que toutes les valeurs propres de B^TB soient strictement inférieures à 1. Soit $\lambda \in Sp(S)$. Alors

$$\chi_{B^{\mathsf{T}}B}((\lambda-1)^2) = \chi_{S}(\lambda) = 0$$

d'après la question précédente. Ainsi $(\lambda-1)^2$ est une valeur porpre de B^TB de sorte que $(\lambda-1)^2<1$ i.e. $-1<\lambda-1<1$ ou encore $0<\lambda<2$. On a alors $Sp(S)\subset\mathbb{R}_+^*$ donc S est bien symétrique définie positive.

4. a. On montre d'abord par récurrence que A_n est une matrice carrée de taille 2^n . Les matrices $2A_{n-1}$ et iA_{n-1} commutent donc, d'après la question **2.b.ii**,

$$\det(A_n) = \det(2A_{n-1} \times (-2A_{n-1}) - iA_{n-1} \times iA_{n-1}) = \det(-3A_{n-1}^2) = (-3)^{2^{n-1}} \det(A_{n-1})^2$$

Mais comme n > 1, 2^{n-1} est pair donc

$$\det(A_n) = 3^{2^{n-1}} \det(A_{n-1})^2$$

b. Tout d'abord, $\det(A_1) = -3$. On montre ensuite par récurrence que $\det(A_n) = 3^{2^{n-1}n}$ pour tout entier $n \ge 2$. D'abord,

$$\det(A_2) = 3^2 \det(A_1)^2 = 3^4 = 3^{2^{2-1} \times 2}$$

Ensuite, supposons que $det(A_n) = 3^{2^{n-1}n}$ pour un certain entier $n \ge 2$. Alors

$$\det(\mathbf{A}_{n+1}) = 3^{2^n} \det(\mathbf{A}_n)^2 = 3^{2^n} \left(3^{2^{n-1}n}\right)^2 = 3^{2^n} \cdot 3^{2^n n} = 3^{2^n(n+1)}$$

ce qui conclut la récurrence.

c. Les matrices $2A_{n-1}$ et iA_{n-1} commutent donc, d'après la question **2.b.i**,

$$\begin{split} \forall \lambda \in \mathbb{C}, \ \chi_{A_n}(\lambda) &= \det(\lambda^2 I_{2^{n-1}} - 3A_{n-1}^2) \\ &= \det\left(3\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} - A_{n-1}\right)\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} + A_{n-1}\right)\right) \\ &= 3^{2^{n-1}}\det\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} - A_{n-1}\right)\det\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} + A_{n-1}\right) \\ &= 3^{2^{n-1}}\chi_{A_{n-1}}\left(\frac{\lambda}{\sqrt{3}}\right)\chi_{-A_{n-1}}\left(\frac{\lambda}{\sqrt{3}}\right) \end{split}$$

d. Comme $\chi_{A_1} = X^2 - 3$, $Sp(A_1) = \{-\sqrt{3}, \sqrt{3}\}$. La relation de récurrence de la question précédente montre que

$$\operatorname{Sp}(\mathbf{A}_n) = \left(\sqrt{3}\operatorname{Sp}(\mathbf{A}_{n-1})\right) \cup \left(\sqrt{3}\operatorname{Sp}(-\mathbf{A}_{n-1})\right) = \left(\sqrt{3}\operatorname{Sp}(\mathbf{A}_{n-1})\right) \cup \left(-\sqrt{3}\operatorname{Sp}(\mathbf{A}_{n-1})\right)$$

On en déduit par une récurrence évidente que $Sp(A_n) = \{-\sqrt{3}^n, \sqrt{3}^n\}$.

Problème 1

1 On note $a_n = \frac{n^{n-1}}{n!}$ le coefficient de x^n dans la série entière. D'après la formule de Stirling,

$$a_n \sim \frac{1}{\sqrt{2\pi}} \frac{e^n}{n^{\frac{3}{2}}}$$

Donc $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = e$ et le rayon de convergence de la série entière vaut e^{-1} d'après la règle de d'Alembert.

REMARQUE. On peut se passer de la formule de Stirling dans cette question. En effet,

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{a_{n+1}}{a_n} = \frac{(n+1)^n n!}{(n+1)!} n^{n-1} = \left(\frac{n+1}{n} \right) = \left(1 + \frac{1}{n} \right)^{n-1} = \left(1 + \frac{1}{n} \right)^{n-1} = \exp\left((n-1) \ln\left(1 + \frac{1}{n} \right) \right)$$

Or $(n-1)\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{\sim} n \cdot \frac{1}{n} = 1$ donc

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = e$$

et le rayon de convergence de la série entière vaut e^{-1} d'après la règle de d'Alembert.

2 Toujours d'après la formule de Stirling,

$$\frac{n^{n-1}e^{-n}}{n!} \sim \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{n^{\frac{3}{2}}}$$

Par comparaison à une série de Riemman convergente, $\sum \frac{n^{n-1}e^{-n}}{n!}$ converge.

3 Pour tout $x \in [-e^{-1}, e^{-1}],$

$$|a_n x^n| = \left| \frac{n^{n-1}}{n!} x^n \right| \le \frac{n^{n-1} e^{-n}}{n!}$$

D'après la question précédente, la série définissant f converge normalement sur $[-e^{-1}, e^{-1}]$.

Pour tout $n \in \mathbb{N}^*$, $f_n : x \mapsto a_n x^n$ est continue sur $[-e^{-1}, e^{-1}]$. La série $\sum f_n$ converge normalement et donc uniformément sur $[-e^{-1}, e^{-1}]$ d'après la question précédente. Ainsi $f = \sum_{n=1}^{+\infty} f_n$ est continue sur $[-e^{-1}, e^{-1}]$.

5 Par concavité du logarithme, $\ln(1+x) \le x$ pour tout $x \in]-1, +\infty[$. Notamment, pour tout $n \in \mathbb{N}^*$,

$$\ln\left(1+\frac{1}{n}\right) \le \frac{1}{n}$$

puis

$$n \ln \left(1 + \frac{1}{n}\right) \le 1$$

et enfin, par croissance de l'exponentielle,

$$\left(1 + \frac{1}{n}\right)^n \le e$$

6 Comme f est la somme d'une série entière de rayon de convergence e^{-1} , elle est de classe \mathcal{C}^{∞} sur son intervalle ouvert de convergence, c'est-à-dire] $-e^{-1}$, e^{-1} [.

On obtient la dérivée de f en dérivant terme à terme :

$$\forall x \in]-e^{-1}, e^{-1}[, f'(x) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{(n-1)!} x^{n-1} = \sum_{n=0}^{+\infty} \frac{(n+1)^n}{n!} x^n$$

7 Il est clair que $f'(x) \ge 0$ pour tout $x \in [0, e^{-1}[$. Soit $x \in]-e^{-1}, 0[$. Comme x est négatif,

$$f'(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{(n+1)^n |x|^n}{n!}$$

On vérifie alors le critère spécial des séries altermées. Posons $u_n = \frac{(n+1)^n|x|^n}{n!}$. Comme $\sum (-1)^n u_n$ converge, on a nécessairement $\lim_{n \to +\infty} u_n = 0$. De plus, en utilisant la question 5

$$\forall n \in \mathbb{N}^*, \ \frac{u_n}{u_{n-1}} = \left(1 + \frac{1}{n}\right)^n |x| \le e|x| \le 1$$

Comme (u_n) est positive, on peut affirmer qu'elle est décroissante. La série $\sum (-1)^n u_n$ vérifie donc le critère spécial des séries alternées. La somme $f'(x) = \sum_{n=0}^{+\infty} (-1)^n u_n$ est donc du signe de son premier terme u_0 . Ainsi $f'(x) \ge 0$. La fonction f est donc croissante sur $]-e^{-1}$, e^{-1} [.

8 Remarquons que

$$f\left(-\frac{1}{e}\right) = \sum_{n=1}^{+\infty} (-1)^n \frac{n^{n-1}e^{-n}}{n!}$$

Posons $u_n = \frac{n^{n-1}e^{-n}}{n!}$ pour $n \in \mathbb{N}^*$. On vérifie à nouveau que la série $\sum (-1)^n u_n$ vérifie le critère spécial des séries alternées. Pour tout $n \in \mathbb{N}^*$,

$$\frac{u_{n+1}}{u_n} = \left(1 + \frac{1}{n}\right)^{n-1} \cdot \frac{1}{e} \le \left(1 + \frac{1}{n}\right)^n \cdot \frac{1}{e} \le 1$$

Donc la suite (u_n) est décroissante. Elle est également de limite nulle puisque $\sum (-1)^n u_n$ converge. Alors, d'après le théorème sur les séries alternées

$$\left| f\left(-\frac{1}{e}\right) - \sum_{k=1}^{n} (-1)^k u_k \right| = \left| \sum_{k=n+1}^{+\infty} (-1)^k u_k \right| \le |u_{n+1}| = u_{n+1}$$

On cherche donc n tel que $u_{n+1} \le 10^{-2}$. On propose un programme Python à cet effet.

```
from math import factorial, exp

def approx(\(\epsilon\):
    u = exp(-1)
    s = 0
    n = 1
    while u > \(\epsilon\):
        s += (-1)**n * u
        u *= (1+1/n)**(n-1) * exp(-1)
        n += 1
    return s
```

```
>>> approx(10**-2)
-0.28352486503145236
```

[9] φ est de classe \mathcal{C}^{∞} sur \mathbb{R} comme composée d'une fonction polynôme et de l'exponentielle. On raisonne par récurrence sur i.

On a bien $\varphi(x) = P_0(e^x)(1 - e^x)^m$ pour tout $x \in \mathbb{R}$ avec $P_0 = 1$. Soit $i \in [0, m-1]$. Supposons qu'il existe un polynôme P_i tel que $\varphi^{(i)}(x) = P_i(e^x)(1 - e^x)^{m-i}$ pour tout $x \in \mathbb{R}$. Alors, pour tout $x \in \mathbb{R}$,

$$\varphi^{(i+1)}(x) = P_i'(e^x)e^x(1-e^x)^{m-i} - (m-i)P_i(e^x)e^x(1-e^x)^{m-i-1} = P_{i+1}(e^x)(1-e^x)^{m-i-1}$$

avec $P_{i+1} = X(1 - X)P'_i - (m - i)XP_i$.

Par récurrence, il existe bien pour tout $i \in [0, m]$ un polynôme P_i tel que $\varphi^{(i)}(x) = P_i(e^x)(1 - e^x)^{m-i}$ pour tout $x \in \mathbb{R}$.

10 Soit un entier $m \ge 2$. D'après la formule du binôme,

$$\forall x \in \mathbb{R}, \ \varphi(x) = \sum_{n=0}^{m} {m \choose n} (-1)^n e^{nx}$$

En dérivant m-1 fois, on obtient

$$\forall x \in \mathbb{R}, \ \varphi^{(m-1)}(x) = \sum_{n=0}^{m} {m \choose n} (-1)^n n^{m-1} e^{nx}$$

puis en évaluant en 0

$$\varphi^{(m-1)}(0) = \sum_{n=0}^{m} {m \choose n} (-1)^n n^{m-1}$$

Mais, d'après la question précédente,

$$\varphi^{(m-1)}(0) = P_{m-1}(1)(1-1)^{m-1} = 0$$

car $m - 1 \ge 1$. On en déduit le résultat demandé.

11 La fonction g est dérivable sur \mathbb{R} et $g'(y) = (1 - y)e^{-y}$ pour tout $y \in \mathbb{R}$. On en déduit le tableau de variation suivant.

у	-∞ 1 +∞
g'(y)	+ 0 -
g(y)	e^{-1} 0

puis le graphe suivant

12 La fonction g est strictement croissante et continue sur [-1,0]. Puisque

$$g(-1) = -e < -e^{-1} < 0 = g(0)$$

il existe un unique réel $\alpha \in]-1,0[$ tel que $g(\alpha)=-\frac{1}{e}.$ De plus, par croissance de g sur $[\alpha,1],$

$$\forall y \in [\alpha, 1], \ g(\alpha) = -\frac{1}{e} \le g(y) \le g(1) = \frac{1}{e}$$

13 On a vu précédemment que f était définie et même continue sur $[-e^{-1}, e^{-1}]$. Soit $y \in [\alpha, 1]$. D'après la question précédente, $g(y) = ye^{-y} \in [-e^{-1}, e^{-1}]$ donc f est bien définie en ye^{-y} . De plus,

$$f(ye^{-y}) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n e^{-ny}$$

Mais en utilisant le développement en série entière de l'exponentielle,

$$f(ye^{-y}) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n \sum_{m=0}^{+\infty} \frac{(-ny)^m}{m!}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n \sum_{m=n}^{+\infty} \frac{(-1)^{m-n} n^{m-n} y^{m-n}}{(m-n)!}$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} \frac{n^{n-1}}{n!} y^n \cdot \frac{(-1)^{m-n} n^{m-n} y^{m-n}}{(m-n)!}$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m$$

14 Soit $y \in [\alpha, -\alpha]$. D'après le théorème de Fubini positif,

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} |z_{n,m}| = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} |z_{n,m}|$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} \frac{n^{m-1}}{n!(m-n)!} |y|^m$$

$$= \sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty} \frac{n^{m+n-1}}{n!m!} |y|^{m+n}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}|y|^n}{n!} \sum_{m=0}^{+\infty} \frac{(n|y|)^m}{m!}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}|y|^n}{n!} e^{n|y|}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} (|y|e^{|y|})^n$$

Or $y \in [\alpha, -\alpha]$, $-|y| \in [\alpha, 0]$ et donc $g(-|y|) \in [-e^{-1}, e^{-1}]$ i.e. $-|y|e^{|y|} \in [-e^{-1}, e^{-1}]$ et donc également $|y|e^{|y|} \in [-e^{-1}, e^{-1}]$. On a vu que la série définissant f convergeait sur $[-e^{-1}, e^{-1}]$ donc

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} |z_{n,m}| = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} (|y|e^{|y|})^n < +\infty$$

Ceci prouve que la famille $(z_{n,m})_{(n,m)\in(\mathbb{N}^*)^2}$ est bien sommable.

Soit $y \in [\alpha, -\alpha]$. On peut maintenant appliquer le théorème de Fubini. D'une part, en reprenant les calculs de la question précédente

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} z_{n,m} = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} z_{n,m}$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m$$

$$= \sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty} (-1)^m \frac{n^{m+n-1}}{n!m!} y^{m+n}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}y^n}{n!} \sum_{m=0}^{+\infty} \frac{(-ny)^m}{m!}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}y^n}{n!} e^{-ny}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} (ye^{-y})^n$$

$$= f(g(y))$$

D'autre part,

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} z_{n,m} = \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} z_{n,m}$$

$$= \sum_{m=1}^{+\infty} \sum_{n=1}^{m} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m$$

$$= \sum_{m=1}^{+\infty} \frac{(-1)^m y^m}{m!} \sum_{n=1}^{m} (-1)^n \binom{m}{n} n^{m-1}$$

D'après la question 10, tous les termes d'indices $m \ge 2$ de cette somme sont nuls. Ainsi

$$\sum_{(n,m)\in(\mathbb{N}^*)^2}z_{n,m}=y$$

Finalement, f(g(y)) = y.

La question précédente montre que f est la bijection réciproque de la bijection de $[\alpha, 1]$ sur $[-e^{-1}, e^{-1}]$ induite par g. On en déduit le graphe suivant.

17 La fonction g est dérivable en α et $g'(\alpha) = (1 - \alpha)e^{-\alpha} \neq 0$ donc f est dérivable en $g(\alpha) = -\frac{1}{e}$. Par contre, g est dérivable en 1 mais g'(1) = 0 donc f n'est pas dérivable en $g(1) = \frac{1}{e}$. On peut préciser que le graphe de f admet une tangente verticale au point d'abscisse $\frac{1}{e}$.