Презентация по лабораторной работе №3

Модель боевых действий

Озьяс Стев Икнэль Дани

Информация

Докладчик

- Озьяс Стев Икнэль Дани
- студент группы НКН6д-01-21
- Российский университет дружбы народов
- https://github.com/Dacossti

Цели и задачи работы

Цель лабораторной работы

Рассматривать 2 случая ведения боевых действий по модели Ланчестера: 1. Боевые действия между регулярными войсками 2. Боевые действия с участием регулярных войск и партизанских отрядов

Задание к лабораторной работе

- 1. Изучать модель Ланчестера
- 2. Построить графики для обеих армий
- 3. Определить кто из них победитель

Процесс выполнения лабораторной работы

Теоретический материал

Будем рассматривать 2 случая ведения боевых действий: 1. Боевые действия между регулярными войсками 2. Боевые действия с участием регулярных войск и партизанских отрядов

В первом случае численность регулярных войск определяется тремя факторами:

- скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство);
- 2. скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.);
- 3. скорость поступления подкрепления (задаётся некоторой функцией от времени).

Теоретический материал

В этом случае модель боевых действий между регулярными войсками описывается следующим образом

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Потери, не связанные с боевыми действиями, описывают члены -a(t)x(t) и -h(t)y(t), члены -b(t)y(t) и -c(t)x(t) отражают потери на поле боя. Коэффициенты b(t), c(t) указывают на эффективность боевых действий со стороны y и x соответственно, a(t),h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t),Q(t) учитывают возможность подхода подкрепления к войскам X и Y в течение одного дня.

Теоретический материал

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что темп потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t) \end{cases}$$

Между страной X и страной Yидет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t) В начальный момент времени страна X имеет армию численностью 88000 человек, а в распоряжении страны Yармия численностью в 99000 человек. Для упрощения модели считаем, что коэффициенты a,b,c,h постоянны. Также считаем P(t),Q(t) непрерывные функции

Постройте графики изменения численности войск армии X и армии Y для следующих случаев:

1. Модель боевых действий между регулярными войсками

$$\begin{cases} \frac{dx}{dt} = -0.45x(t) - 0.55y(t) + sin(t+15) \\ \frac{dy}{dt} = -0.58x(t) - 0.45y(t) + cos(t+3) \end{cases}$$

Решение

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\begin{cases} \frac{dx}{dt} = -0.37(t) - 0.67y(t) + sin(7t) + 1 \\ \frac{dy}{dt} = -0.57x(t)y(t) - 0.39y(t) + cos(8t) + 1 \end{cases}$$

10/11

Выводы по проделанной работе

Вывод

В результате проделанной лабораторной работы мы познакомились с моделями Ланчестнера. Проверили, как работает модель в различных ситуациях, построили графики x(t) и y(t) в рассматриваемых случаях.