

Convolutional Neural Networks

Dozent: Dr. Zoran Nikolić

Machine Learning Seminar

Gliederung

- Der Convolution Operator
- Eigenschaften eines Convolutional Neural Network (CNN)
- Aufbau eines CNN
- Pooling-Layer
- Anwendung in Python

Anwendung

- Bilderkennung
- Autonomes Fahren (Klassifizierung der Verkehrszeichen)
- Gesichts- und Objekterkennung
- Spracherkennung
- Klassifizierung und Modellierung von Sätzen
- Maschinelles Übersetzen

Motivation

- $10^6 * 10^5 = 10^{11} = 100$ Milliarden Kanten/Gewichte
- Deep Learning: Vielfache
- Hoher Trainingsaufwand

Convolution Network Definition

- Convolutional Neuronal Network (CNN)
- Spezielle Form von neuronalen Netzen für Daten mit Gittertopologie
- Lokal verbundenes Netz
- Convolution (Faltung) statt Matrixmultiplikation

Grober Aufbau

Convolution Network Der Convolution Operator

Faltung auf zwei reellen Funktionen

$$s(t) = (x * w)(t) = \int x(a)w(z - a) da$$

- x = Input, w = Kern, s = Output = Feature Map
- In Praxis ist die Zeit meistens diskretisiert

$$s(t) = (x * w)(t) = \sum_{a=-\infty}^{\infty} x(a)w(z-a)$$

Convolution Network Der Convolution Operator

In Anwendungen mehrdimensionale Arrays als Input und Kern

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

Convolution Operator ist kommutativ

$$S(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

Cross-Correlation

$$S(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Funktionsweise der Convolution

$$I \in \mathbb{K}^{m \times n}, K \in \mathbb{K}^{k \times k}$$

$$\Rightarrow K * I \in \mathbb{K}^{(m-k+1) \times (n-k+1)}$$

$$I \in \mathbb{K}^{3 \times 4}, K \in \mathbb{K}^{2 \times 2}$$

 $\Rightarrow K * I \in \mathbb{K}^{2 \times 3}$

Input I

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Kern K

1	0	-1
1	0	-1
1	0	-1

Output S

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

$$S(1,1) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} I(1+m,1+n)K(m,n)$$

⇒ Kern hat Filterfunktion

Ermittlung der Gewichte Backpropagation

- Kern Matrix ist nicht vorgegeben → muss gelernt werden
- Weniger Gewichte zu lernen als in einem normalen NN
- Mittels Backpropagation mit Nebenbedingung

$$w_1 = w_4 = w_7$$

$$w_2 = w_5 = w_8$$

$$w_3 = w_6 = w_9$$

Erweiterungen

Padding:

- Hinzufügen eines Randes aus Nullen
 - →Beibehalten der Größe

Strided Convolution:

- Größere Schritte des Kerns über die Input Matrix
 →Kleinerer Output
- $s = Gr\ddot{o}$ Ger Schritte

0	0	0	0	0
0				0
0				0
0				0
0	0	0	0	0

Eigenschaften eines CNN Sparse Interactions

NN:

- Matrixmultiplikation
- Gewicht beschreibt Interaktion zwischen Output und Input
- Jeder Output interagiert mit jeder Input Einheit

CNN:

- Kern kleiner als Input
- Weniger Operationen zur Berechnung des Outputs
- Reduziert Speicherbedarf
- Verbesserungen der Effizienz

Sparse Interactions CNN vs. NN

Sparse Interactions

Deeper Layer

Tiefere Schichten können indirekt mit fast dem ganzen Input Bild verbunden sein

Eigenschaften eines CNN Gewichts Sharing

NN:

- Jedes Element der Gewichtsmatrix wird genau einmal benutzt um den Output der Schicht zu berechnen
- Multipliziert ein Element aus dem Input
- Danach nie wieder benutzt

CNN:

- Jeder Eintrag des Kerns wird an jeder Position des Inputs benutzt (außer an den Randpixeln)
- Ein Set Gewichte lernen statt ein separates für jede Stelle

Gewichts Sharing CNN vs. NN

Effizienz eines CNN

Kern: [-1 1]

Output

280 319

■ 280*320*3 ≈300.000 Operationen

■ 280*320*280*319 ≈8 Bio. Operationen

Aufbau eines CNN

3 Layer:

- Convolution Layer: Mehrere Convolution-Operatoren um eine Reihe von linearen Aktivierungen zu erzeugen
- Detector Layer: Jede lineare Aktivierung geht durch eine nichtlineare Aktivierungs Funktion, zB: ReLu
- Pooling Layer

Aufbau

Convolution Layer

- Anwendung des Convolution Operators
- Mehrere Convolution Operatoren um eine Reihe von linearen Aktivierungen zu erzeugen
- Output dreidimensional

Mehrdimensionale Convolution

Detector Layer

• Verwendet als Aktivierungsfunktion häufig ReLu mit f(x) = max(0, x)

Pooling Layer

Häufig: Max Pooling (Maximum in Umgebung), L₂ Norm

1	4	6	5			
9	3	1	0	Max-Pooling (2×2)	9	6
6	2	8	4		7	8
4	7	0	1			

- Ersetzt den Output des Netzes an einer bestimmten Stelle durch eine zusammenfassende Statistik der benachbarten Outputs
- Reduziert die Dimension
- Reduziert auf wesentliche Informationen

Pooling Layer

- Erhöht Rechenleistung
- Meistens: 2 × 2 Pooling ohne Überlappung → Bei größerem Pooling gehen häufig zu viele Informationen verloren
- Es müssen keine Gewichte gelernt werden
- Kontrolle von Overfitting

Invarianz der Pooling Layer Am Beispiel Max Pooling

Invariant gegenüber kleinen Verschiebungen im Input

Aufbau Programm CNN in Python

- MNIST Datensatz
- Keras in Python

```
# define the larger model
def larger model():
    # create model
    model = Sequential()
    model.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(15, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool size=(2, 2)))
    model.add(Conv2D(15, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool size=(2, 2)))
    model.add(Dropout(0.2))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dense(50, activation='relu'))
    model.add(Dense(num classes, activation='softmax'))
    # Compile model
    model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
```


Auswertung Programm CNN in Python

Trainingsgenauigkeit: 99,78%

Testgenauigkeit: 99,18%

Auswertung Programm CNN in Python

Modell	Trainingsgenauigkeit	Testgenauigkeit
CNN: 1 CNN Layer	99,92%	98,98%
CNN: 2 CNN Layer	99,78%	99,18%
CNN: 3 CNN Layer	99,71%	97,61%
NN: 1 Hidden Layer	99,72%	98,18%
NN: 2 Hidden Layer	99,23%	97,35%
NN: 6 Hidden Layer	99,41%	97,75%

Zusatz: RGB Bild

R	G	В	Farb-Beispiel
255	165	000	
164	211	238	
154	205	050	

- Bisher: Input Bild der Größe Höhenpixel × Breitenpixel
- Damit können nur Schwarz weiß Bilder dargestellt werden
- Buntes Bild hat pro Pixel 3 Werte:

- \Rightarrow Größe Input = Höhe \times Breite \times 3
- \Rightarrow Kern hat Dimension $k \times k \times 3$

Fazit

- State-of-the-art in Bild- und Audioverarbeitung
- Fehlerraten: Teilweise besser als Mensch
- Mit Grafikprozessoren lassen sich CNN sehr effizient trainieren
- Vorteile CNN:
 - Robustheit
 - Weniger Speicherplatzbedarf
 - Einfacheres und besseres Training

Literatur

- [AH] H. Aghdam, E. Heravi. Guide to Convolutional Neural Networks, Springer, 2017
- [GBC] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org
- [QV] Quoc V Le et al. A tutorial on deep learning part 2: Autoencoder, convolutional neural networks and recurrent neural networks, Google Brain, 2015, http://https://cs.stanford.edu/~quocle/tutorial2.pdf