- 1. Let $A = \{x^2 : x \in \mathbb{N}\}.$
 - (a) Describe the set A in a couple other ways in words and by listing (some of) the elements.
 - (b) Classify each of the following as true, false, or meaningless.
 - i. $4 \in A$

- ii. $4 \subseteq A$ iii. $\{4\} \in A$ iv. $\{4\} \subseteq A$
- 2. Let A be any set. Classify each of the following as always true, sometimes false, or meaningless.
 - (a) $\emptyset \in A$

(c) $A \in \mathcal{P}(A)$

(e) $\emptyset \in \mathcal{P}(A)$

(b) $\emptyset \subseteq A$

(d) $A \subseteq \mathcal{P}(A)$

- (f) $\emptyset \subseteq \mathcal{P}(A)$
- 3. Are the following statements true for all sets A and B? If so, explain why. If not, give a counter-example.
 - (a) $A \cup B \subseteq B$
 - (b) $A \cap B \subseteq B$
 - (c) $A \subseteq A \cup B$
 - (d) $A \subseteq A \cap B$

Set Theory Notation			
Symbol:	Read:	Example:	
{,}	braces	$\{1,2,3\}$. The braces enclose the elements of a set. This is the set which contains the numbers 1, 2 and 3.	
:	such that	$\{x: x > 2\}$ is the set of all x such that x is greater than 2.	
€	is an element of	$2 \in \{1,2,3\}$ asserts that 2 is one of the elements in the set $\{1,2,3\}$. However, $4 \notin \{1,2,3\}$.	
\subseteq	is a subset of	$A \subseteq B$ asserts that every element of A is also an element of B .	
\subset	is a proper subset of	$A \subset B$ asserts that every element of A is also an element of B , but $A \neq B$.	
\cap	intersection	$A \cap B$ is the set of all elements which are elements of both A and B .	
U	union	$A \cup B$ is the set of all elements which are elements of A or B or both.	
\	set difference	$A \setminus B$ is the <i>set</i> of all elements of A which are not elements of B .	
\overline{A}	compliment (of A)	\overline{A} is the set of everything which is not an element of A . The A can be any set here.	
A	cardinality (of A)	$ \{4,5,6\} = 3$ because there are 3 elements in the set. Sometimes we say $ A $ is the <i>size</i> of A .	
Special se	ets		
Ø	The <i>empty set</i> is the set which contains no elements.		
\mathcal{U}	The <i>universe set</i> is the set of all elements.		
N	The set of natural numbers. That is, $\mathbb{N} = \{0, 1, 2, 3 \dots\}$		
\mathbb{Z}	The set of integers. $\mathbb{Z} = \{, -2, -1, 0, 1, 2, 3,\}$		
\mathbb{Q}	The set of rational numbers.		
\mathbb{R}	The set of real numbe	The set of real numbers.	
$\mathcal{P}(A)$	The power set of any set A is the set of all subsets of A .		