Computational Intelligence

Image Processing Project

• We started processing the CIFAR-10 dataset using a standard ResNet-20 network.

• The ResNet-20 Base network was written with our own design and no ready-made networks were used.

• The test, training, and validation data were divided as follows:

45000 train samples

5000 validation samples

10000 test samples

• The first model we used resulted in an overfit:

- After that, data augmentation was used and it was observed that the overfit was fixed and the model was working properly.
- In both models, subtract_pixel_mean was used.

- After all this, the accuracy was 92% for validation data and 90.7% for test data.
- The learning rate started at 0.001 but we used lr_schedule to optimize it.
- Loss value for the final model:

Test loss: 0.47134658694267273

Test accuracy: 0.9021999835968018

• Leveraging labeled datasets to classify IDC (Invasive Ductal Carcinoma).

Total number of images: 193811

Number of IDC(-) Images: 115025

Number of IDC(+) Images: 78786

• Key statistics on data distribution: Stratification

Training class distribution: Counter({1: 60665, 0: 58202})

Validation class distribution: Counter({0: 28411, 1: 9060})

Testing class distribution: Counter({0: 28412, 1: 9061})

• For stratified data, the confusion matrix looks like this:

• And F-1 looks like this:

• For the final model, Summery looked like this:

Layer (type)	Output Shape	Param #
conv2d_5 (Conv2D)	(None, 50, 50, 32)	896
batch_normalization_6 (BatchNormalization)	(None, 50, 50, 32)	128
conv2d_6 (Conv2D)	(None, 50, 50, 32)	9,248
max_pooling2d_2 (MaxPooling2D)	(None, 25, 25, 32)	Θ
batch_normalization_7 (BatchNormalization)	(None, 25, 25, 32)	128
dropout_3 (Dropout)	(None, 25, 25, 32)	0
conv2d_7 (Conv2D)	(None, 25, 25, 64)	18,496
batch_normalization_8 (BatchNormalization)	(None, 25, 25, 64)	256
conv2d_8 (Conv2D)	(None, 25, 25, 64)	36,928
batch_normalization_9 (BatchNormalization)	(None, 25, 25, 64)	256
max_pooling2d_3 (MaxPooling2D)	(None, 12, 12, 64)	0
dropout_4 (Dropout)	(None, 12, 12, 64)	0
conv2d_9 (Conv2D)	(None, 12, 12, 128)	73,856
flatten_1 (Flatten)	(None, 18432)	0
dense_5 (Dense)	(None, 128)	2,359,424
batch normalization 10 (BatchNormalization)	(None, 128)	512
dense_6 (Dense)	(None, 64)	8,256
batch_normalization_11 (BatchNormalization)	(None, 64)	256
dense_7 (Dense)	(None, 64)	4,160
dropout_5 (Dropout)	(None, 64)	0
dense_8 (Dense)	(None, 24)	1,560
dense_9 (Dense)	(None, 2)	50

Total params: 2,514,410 (9.59 MB)

Image Captioning (Phase3)

• Image captioning started with the Flickr-8k dataset.

• We considered:

 $batch_size_train = 270$

 $batch_size_val = 270$

• After the trainig, the following was obtained:

loss: 2.3952 - val_loss: 3.6134

Image Captioning (Phase3)

• For this model that we use ineception-v3, The test was as follows:

Image Captioning (Phase3)

• For test set the results and captions for the photos were as follows. for example, we have:

a white dog is jumping over a stick

a white and white dog is jumping over a frisbee

a little girl in a blue shirt is blowing from a slide

a young boy in a yellow shirt is playing with a red ball

a man in a backpack is standing on top of a waterfall

a brown and white dog runs through the snow

a young boy in a pink shirt is sitting on a table

a black dog is standing on the beach

Thank you for your attention and time

