Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko Toplotna prevodnost

Poročilo pri fizikalnem praktikumu III

avtor: Kristofer Č. Povšič

Asistentka: Jelena Vesić

Uvod

V telesu, ki ima neenakomerno temperaturo, toplota prehaja z delov z višjo na dele z nižjo temperaturo. Toplotni tok ima enačbo

$$\vec{j} = -\lambda \text{grad}T\tag{1}$$

 λ je koeficient toplotne prevodnosti in se razlikuje za vsako snov. Kovine oz. el. prevodniki so tudi dobri toplotni prevodniki, el. izolatorji pa slabo.

Toplotna prevodnost in el. prevodnost sta v kovinah povezani preko Wiederman-Franzovega zakona.

Za meritev toplotne prevodnosti v merjencu vzpostavimo stacionarno ravnovesje. Meritve olajša tudi preprosta geometrijska oblika: palica za dobre prevodnike in plošča/valj pa za slabe. Toplotni tok plošče/palice je:

$$j = -\lambda \frac{\Delta T}{l} \tag{2}$$

kjer je ΔT razlika temperatur, l pa dolžina palice.

V telesu se temperatura $T(\vec{r})$ spreminja z

$$\frac{\partial T}{\partial t} = D\nabla^2 T \tag{3}$$

kjer je $D=\frac{\lambda}{\rho c_p}$ toplotna difuzija, ρ gostota, c_p specifična toplotna kapaciteta pri konstantnem tlaku.

Naloga

- 1. Umeri termočlen izmeri zvezo med temperaturo razliko in napetostjo na termočlenu.
- 2. Izmeri koeficiente toplotne prevodnosti

Potrebščine

- merjenec valj iz neznane kovine
- posoda za hlajenje z vodo, 2 kovinski izolirni posodi
- ledomat in kuhalnik za vodo
- električni kuhalnik za olje, variak, električni grelec za vodo bojler
- \bullet termočlen baker-konstantan, termonapetosti $43\mu VK^{-1}$
- mikrovoltmeter
- dva digitalna termometra z določeno napako

Navodilo

Najprej umerimo termočlen. Temperaturno razliko med posodo z ledom in posodo z vročo vodo merimo z termometrom. Pri vsaki temperaturi zabeležimo napetosti in narišemo regresivno premico. Temperaturni koeficient termočlena je enak naklonu krivulje.

Termočlen nato vtaknemo v luknjici na valjastem prevodniku. Pri različnih močeh grelca zapišemo napetost na termočlenu in regresiramo premico.

Obdelava podatkov

Za prvi del meritev sem dobil sledeče podatke:

$\Delta T[K]$	U[mV]
88.60	3.70
84.90	3.57
80.90	3.40
72.90	3.07
68.90	2.90
65.00	2.73
58.30	2.47
54.40	2.30
49.50	2.01
42.60	1.73
40.50	1.64

Izrišem sledeč graf:

Slika 1: ΔT med posodo z ledom in posodo z vročo vodo in pri njih izmerjene napetosti na termočlenu.

Koeficient premice je

$$k = (22.6 \pm 0.4) \frac{K}{V}$$

Za drugi del izmerim sledeče podatke:

P[W]	U[mV]
30.5	228.0
35.0	275.0
40.0	306.0
44.7	348.0
50.0	378.0
55.9	409.0
60.5	449.0

Valjast prevodnik ima polmer $R=(4.46\pm0.1)cm$ in luknjici sta oddaljeni $l=(5.6\pm0.1)cm$.

Izrišem sledeč graf:

Slika 2: Moč v odvisnost od napetosti.

Regresivna premica ima naklon

$$k = (226 \pm 9)W/mK$$

kar je tudi koeficient toplotne prevodnosti.