CSC 411

Computer Organization (Spring 2023) Lecture 10: Conditionals and loops

Prof. Marco Alvarez, University of Rhode Island

Example

▶ What is the value of x9?

Disclaimer

Some of the following slides are adapted from:

Computer Organization and Design (Patterson and Hennessy)

The Hardware/Software Interface

More instructions

Logical operations

Instructions for bitwise manipulation

Logical operations	C operators	Java operators	RISC-V instructions
Shift left	<<	<<	sll, slli
Shift right	>>	>>>	srl, srli
Shift right arithmetic	>>	>>	sra, srai
Bit-by-bit AND	&	&	and, andi
Bit-by-bit OR			or, ori
Bit-by-bit XOR	٨	۸	xor, xori
Bit-by-bit NOT	~	~	xori

Branches

- ► A branch is a change of control flow
 - conditional branch change control according to a condition
 - beg, bne, blt, bge, bltu, bgeu
 - unconditional branch change control unconditionally
 - **j** (jump)

Branch instructions

Conditional branch	Branch if equal	beq x5, x6, 100	if (x5 == x6) go to PC+100	PC-relative branch if registers equal
	Branch if not equal	bne x5, x6, 100	if (x5 != x6) go to PC+100	PC-relative branch if registers not equal
	Branch if less than	blt x5, x6, 100	if (x5 < x6) go to PC+100	PC-relative branch if registers less
	Branch if greater or equal	bge x5, x6, 100	if (x5 >= x6) go to PC+100	PC-relative branch if registers greater or equal
	Branch if less, unsigned	bltu x5, x6, 100	if (x5 < x6) go to PC+100	PC-relative branch if registers less, unsigned
	Branch if greater or equal, unsigned	bgeu x5, x6, 100	if (x5 >= x6) go to PC+100	PC-relative branch if registers greater or equal, unsigned
Unconditional branch	Jump and link	jal x1, 100	x1 = PC+4; go to PC+100	PC-relative procedure call
	Jump and link register	jalr x1, 100(x5)	x1 = PC+4; go to x5+100	Procedure return; indirect call

Conditional operations

- Jump/branch to a labeled instruction if a condition is true
 - · otherwise, continue sequentially

```
// if equal, jump to label L1
beq <rs1>, <rs2>, L1

// if not equal, jump to label L1
bne <rs1>, <rs2>, L1
```

```
// assume f, g, h, i, j are in
Example (if)
                    // x19, x20, ...
                    if (i == j) {
                        f = q + h;
                     } else {
                        f = q - h;
main:
     // ... instructions
     bne x22, x23, label1
     add x19, x20, x21
     beg \times 0, \times 0, label2
label1:
     sub x19, x20, x21
label2:
     // ... instructions
```

```
Example (loop)
                        // assume i in x22, k in x24
                        // base address of save in x25
                        while (save[i] == k) {
                           i += 1;
 main:
      // ... instructions
 label3:
      slli x10, x22, 2
      add x10, x10, x25
      1w \times 9, 0(\times 10)
      bne x9, x24, label4
      addi x22, x22, 1
      beg \times 0, \times 0, label3
 label4:
      // ... instructions
```

More conditional operations

▶ Branch to instruction if condition is true

Signed vs unsigned

- Signed comparison
- blt bge
- Unsigned comparison
 - bltu bgeu
- Example

```
// assume x22 stores 0xFFFFFFF
// assume x23 stores 0x00000001
// which instruction branches?
blt x22, x23, Label
bltu x22, x23, Label
```

```
Example

// assume to holds the value 0x00101000

// what is the value of t2?

//

addi t2, zero, 10
blt zero, t0, Else
beq zero, zero, Done

else:
addi t2, t2, 2

done:
addi t2, t2, 1
```

```
Example

// assume t1 holds the value 10 and s2
// is zero, what is the value of s2?

loop:

bge zero, t1, Done
addi t1, t1, -1
addi s2, s2, 2
beq zero, zero, Loop

done:
```

```
Example
```

```
// assume a, b, c, d
// are in s1, s2, s3, s4
// base address of data in t0
do {
   a = a + data[c];
   c = c + d;
} while (c != b);
```

Example

```
// assume a, b, c, v are
// in s1, s2, s3, s4
switch (v) {
    case 0:
        a = b + c;
        break;
    case 1:
        a = b - c;
        break;
    case 2:
        a = b * c;
        break;
}
```