Three-Terminal Devices:

D Field Effect Transistors (FET)

D Bipolar Junction Transistor (BJT)

FET: Voltage-controlled, unipolar (majority carrier)

BJT: Current-Controlled, bipolar (majority and minority carrier)

Electrons injected into source, flow through channel, collected at drain.

Potential varies

with position in
lightly-doped channel:
Distributed resistor

Several FET types:

JFET: Junction FET -> Gate controls depletion width of reverse-biased junction

MCSFET: Metal-semiconductor FET: Schottlery barrier replaces junction

MISFET: Metal- Insulator-Semiconductor FCT

MOSFET. " -Oxide- "

FET Advantage: High impedance in reverse bias - Lower power and higher packing density

How does it work? Apply bias to drain or gate to "pinch off" channel

"Feld Effect"

Tamily of current-voltage $-V_G = 0$ V Corves for the Channels as V_A is varied

Negative	gate bias: (more re	Ve increa	ses resista	nce
-> 150	duces			
Beyond with incri	pich-off vo,	voltage,	In consta	sot
Vary Ve				,
ve across	reverse b	ias -> his	gh input in	pedane

Princh-off Voltage: Calculate reverse bias between nochannel and pt gate at drain end of channel

Vreverse = - VGD between gate and drain

Chercassume.

Vap >> Vo and und xpxxxx

hower Vo needed for pinch off when negative ve applied.

Calculate FET current versus Voltage:

Differential volume of neutral channel

so resistance of volume element R=

$$h(x) = a - W(x) = a - \left[\frac{2E(-V_{Gx})}{9N_0} \right]^{\frac{1}{2}} a \left[1 - \left(\frac{V_{F}V_{G}}{V_{F}} \right) \right]^{\frac{1}{2}}$$
where $V_{G} = V_{G} - V_{G}$ and $V_{G} = \frac{2}{9} \frac{2}{9} \frac{N_1}{3} \frac{2}{3} \frac{2}{9} \frac{N_1}{3} \frac{2}{9} \frac{N_1}{3} \frac{2}{9} \frac{N_1}{3} \frac{N_1}{3} \frac{2}{9} \frac{N_1}{3} \frac{N_1}{3}$

where Vex = Ve-Vx and Vp= ga2 Nd/2E (assumes h(x) doesn't change abroptly)

where Go = is conditions for W

is conductance of channel for W negligible (far from pinch-off) and Va negative

assume I_0 (saturation) constant at pinchoff so $V_D - V_C = V_P$

where
$$\frac{VD}{Ve} = 1 + \frac{Ve}{Ve}$$

This agrees with our qualitative predictions:

more negative.

Represent device biased in saturation To depend on Vachanges. gm (sat.) = 2 Is (sat.) = 6 [-(-Va)/2] 9m is mutual transconductance lin Alvorsiemenss In and Im/z are FET figures of merit Drain current in Saturation In (sat.) = I ass (1+ Ve) experimentally where Ioss = Io for VG = 0