GRAFOS III

Algoritmos en grafos

Definiciones

Definición 1

Un árbol generador o recubridor de un grafo conexo G es un árbol que contiene todos los vértices de G y es subgrafo de G.

Definición 2

Un grafo ponderado $G=(V,E,\omega)$ es un grafo en el que a cada arista $e\in E$ se le asocia un peso $\omega(e)\in\mathbb{R}$.

Definición 3

Un árbol generador de peso mínimo de un grafo conexo ponderado es un árbol generador tal que la suma de los pesos de sus aristas es la más pequeña posible.

Definición 4

Un algoritmo voraz es áquel que en cada paso toma la elección óptima.

Algoritmos de búsqueda en grafos simples y conexión

Algoritmo de búsqueda BA (BFS)

Sea G = (V, A) un grafo simple. |V| = n

- Se marca (elige) un vértices v₁ (inicial).
- Se localizan sus vecinos y se etiquetan
- Se incorporan las aristas correspondientes (que no formen ciclo).
- Se elige el «primero» de una numeración arbitraria.
- Se repite el proceso hasta que no se pueden incorporar más vértices.

Complejidad algorítmica O(|V| + |A|) ó bien $O(n^2)$

Si G es conexo, el árbol será generador con raíz. Si no lo es, se detendrá al completar la componente conexa donde esté el vértice inicial.

Algoritmo de búsqueda BA (BFS)

Algoritmo de búsqueda BP (DFS)

Sea G = (V, A) un grafo simple. |V| = n

- Se marca (elige) un vértice v₁ (inicial).
- Se localizan sus vecinos. Se toma uno de ellos, v_2 , y se incorpora la arista $\{v_1, v_2\}$, que no forme ciclo.
- Se avanza a v₂ y se buscan vecinos no visitados.
- Se repite el proceso.
- Cuando se llega a un vértice que no tenga vecinos nuevos que añadir (v_k) , se retrocede al vértice anterior (v_{k-1})
- Se repite el proceso Coste computacional O(|V| + |A|) ó bien $O(n^2)$

Algoritmo de búsqueda BP (DFS)

PRIM Y KRUSKAL

(minimum spanning tree- MST)

PRIM Y KRUSKAL

(minimum spanning tree- MST)

Redes de transporte Redes de talocamunicaciones

ALGORITMO DE PRIM

(Árbol generador de peso mínimo)

Sea G = (V, A) un grafo conexo ponderado. |V| = n

- 1. Se marca (elige) un vértice **u** (inicial) de G y se considera el árbol **T** = {**u**}.
- 2. Se considera la arista a de mínimo peso que une un vértice de T y un vértice que no es de T, y se hace .
- 3. Si el número de aristas de T es n-1 el algoritmo termina. En caso contrario se vuelve al paso 2.

ALGORITMO DE PRIM

procedure Prim(G: grafo ponderado conexo con n vértices)

$$T_1=(V_1,E_1)$$
 donde $E_1=\{e_1\}$, $e_1=\{x_0,x_1\}$ es la arista con peso mínimo ω_{\min} y $V_1=\{x_0,x_1\}$.

for i = 1 to n - 2

begin

```
e_{i+1} = \{x_j, x_{i+1}\} arista de peso mínimo incidente con un vértice x_j de T_i = (V_i, E_i) y que no forme un ciclo si se le añade a T_i T_{i+1} = (V_i \cup \{x_{i+1}\}, E_i \cup \{e_{i+1}\}) = (V_{i+1}, E_{i+1})
```

end

Notas:

- La arista e_i (i = 1, ..., n 1) puede no ser única.
- El árbol generador de peso mínimo puede no ser único.
- El resultado es un árbol con n vértices, luego tiene n-1 aristas.

Coste computacional $O(n^2)$, ó bien $O(|V|\log|V| + |A|)$

ALGORITMO DE KRUSKAL

(Árbol generador de peso mínimo)

Sea G = (V, A) un grafo conexo ponderado. |V| = n

- 1. Se elige la arista **a** de mínimo peso, y se considera .
- 2. Sea **b** la arista de mínimo peso que no pertenece a **T**, y que al unir a T no presenta ciclos y se hace
- 3. Si \mathbf{T} tiene n 1 aristas el algoritmo termina. En caso contrario se vuelve al paso 2.

ALGORITMO DE KRUSKAL

procedure Kruskal(G: grafo ponderado conexo con n vértices)

$$T_0 = (V, E_0) \operatorname{con} E_0 = \emptyset$$
 for $i = 1$ to $n - 1$ begin

 e_i = arista de peso mínimo que no forme un ciclo si se le añade a $T_{i-1}=(V,E_{i-1})$ $T_i=(V,E_{i-1}\cup\{e_i\})=(V,E_i)$

end

Notas:

- La arista e_i (i = 1, ..., n 1) puede no ser única.
- La arista e_i puede no ser incidente con ningún vértice en T_{i-1} .

Coste computacional: $O(|A|\log(|V|)$

(Problema del camino mínimo 1959)

Determina el **camir**en un grafo ponderado
Si todos los pesos son iguales a uno bastará con la contra BA.

¿Cómo trabaja?:

- Se marcan los vértices como no utilizados.
- Se evalúan sus vecinos (es **VORAZ** porque el camino mínimo contendrá caminos que también lo serán).
- Se elige la arista de menos peso
- Se evalúa si se puede llegar más rápido a través de él a los demás.
- Se escoge el siguiente más cercano.
- Se repite el proceso.

(Problema del camino mínimo 1959)

Sea G = (V, A, W) un grafo conexo ponderado con $\Omega = (\omega_{ij})$, su matriz de pesos. Este algoritmo construye, en cada paso, un **camino de mínimo peso** desde un vértice inicial v_D a otro vértice.

Se usa:

- Una lista, L, que contendrá los vértices para los que se ha construido el camino.
- Un vector de pesos, D, que tendrá, al final, los pesos mínimos.
- Inicio: $L = \{v_p\}$; $D = \Omega(p,:)$, p-ésima fila de pesos.

(Problema del camino mínimo 1959)

```
Pseudocódigo:
   Inicio: \Omega ; V_p ; L = \{V_p\} ; D = \Omega(p, :)
   Mientras que V \setminus L \neq \emptyset
      tomar v_k \in V \setminus L con D(k) mínimo
      hacer L = L \cup \{v_k\}
      para cada v<sub>i</sub> de V\L
          si D(j) > D(k) + \Omega(k,j)
             hacer D(j) = D(k) + \Omega(k,j)
          fin
      fin
   fin
```

- (1) Paso inicial: Marcamos el origen s con la etiqueta permanente (0, s). El resto de los vértices $j \in V$ $(j \neq s)$ se marcan con etiquetas temporales:
 - Si $\{j, s\} \in E$, se le asigna la etiqueta $(\omega_{s,j}, s)$.
 - Si $\{j, s\} \not\in E$, se le asigna la etiqueta $(\infty, -)$.
- (2) Sea $v \in V$ el <u>último</u> vértice que se ha vuelto permanente. Examinamos cada vértice temporal j comparando δ_j con el valor de $\delta_v + \omega_{v,j}$:
 - Si $\delta_v + \omega_{v,j} < \delta_j$, cambiamos (δ_j, P_j) por $(\delta_v + \omega_{v,j}, v)$.
 - Si $\delta_v + \omega_{v,j} \geq \delta_j$, no hacemos nada.
- (3) De entre todos los vértices temporales j elegimos el que tenga el estimador δ_j más pequeño (= δ_{\min}).
 - Si $\delta_{\min} = \infty$, el algoritmo termina: no hay camino entre s y t.
 - Si $\delta_{\min} < \infty$, marcamos dicho vértice con la etiqueta permanente (δ_{\min}, P_j)
- (4) Si t es el vértice cuya etiqueta (δ_t, P_t) se ha hecho permanente, el algoritmo termina. La longitud del camino más corto entre s y t es δ_t y dicho camino se obtiene siguiendo las etiquetas permanentes en sentido contrario $t \to P_t \to \cdots \to s$. Si no es t, volver al paso (2).

Algoritmo de Dijkstra (ejemplo)

Sea G, y Ω su matriz de pesos

Etiquetado inicial permanente

Ω	Paso 1			
\mathbf{v}_{1}	(0, v1)			
$\mathbf{V_2}$	(3, v1)			
\mathbf{v}_3	(9, v1)			
$\mathbf{v_4}$	∞			
\mathbf{v}_{5}	∞			
\mathbf{v}_{6}	∞			
\mathbf{v}_7	∞			

Algoritmo de Dijstra (ejemplo)

Ω	Paso 1	Paso 2			
$\mathbf{v_1}$	(0, v1)				
\mathbf{V}_2	(3 , v1)				
\mathbf{v}_3	(9, v1)				
$\mathbf{v_4}$	∞				
\mathbf{v}_{5}	∞				
\mathbf{v}_{6}	∞				
\mathbf{v}_7	∞				

Algoritmo de Dijstra (ejemplo)

Sea G, y Ω su matriz de pesos

Ω	Paso 1	Paso 2			
$\mathbf{v_1}$	(0, v1)	*			
\mathbf{v}_2	(3 , v1)	(3, v1)			
\mathbf{v}_3	(9, v1)				
$\mathbf{v_4}$	∞				
\mathbf{v}_{5}	∞				
\mathbf{v}_{6}	∞				
\mathbf{v}_7	∞				

mín{P(3), P(4), P(5), P(6), P(7)}

Ω	Paso 1	Paso 2		
$\mathbf{v_1}$	(0, v1)	*		
\mathbf{V}_2	(3 , v1)	(3, v1)		
\mathbf{v}_3	(9 , v1)	(5, v2)		
$\mathbf{V_4}$	∞	(10 , v2)		
\mathbf{v}_{5}	∞	(4, v2)		
\mathbf{v}_{6}	∞	∞		
\mathbf{v}_7	∞	∞		

Ω	Paso 1	Paso 2	Paso 3		
$\mathbf{v_1}$	(0, v1)	*	*		
\mathbf{v}_2	(3 , v1)	(3, v1)	*		
$\mathbf{v_3}$	(9 , v1)	(5, v2)	(5, v2)		
$\mathbf{v_4}$	∞	(10 , v2)	(9, v5)		
\mathbf{v}_{5}	∞	(4, v2)	(4, v2)		
\mathbf{v}_6	∞	∞	(13, v5)		
\mathbf{v}_7	∞	∞	∞		

mín{P(3), P(4), P(6), P(7)}

Ω	Paso 1	Paso 2	Paso 3	Paso 4	
\mathbf{v}_1	(0, v1)	*	*	*	
\mathbf{v}_2	(3 , v1)	(3, v1)	*	*	
\mathbf{v}_3	(9 , v1)	(5, v2)	(5, v2)	(5, v2)	
$\mathbf{v_4}$	∞	(10 , v2)	(9, v5)	(9, v5)	
$\mathbf{v_5}$	∞	(4, v2)	(4, v2)	*	
\mathbf{v}_6	∞	∞	(13, v5)	(13, v5)	
\mathbf{v}_7	∞	∞	∞	∞	

mín{P(4), P(6), P(7)}

$$EP(6) < P(3) + \Omega(3,6)$$
?

$$∂P(7) < P(3) + Ω(3,7)?$$
 $∂∞ < 5 + ∞?$

Ω	Paso 1	Paso 2	Paso 3	Paso 4	Paso 5	
$\mathbf{v_1}$	(0, v1)	*	*	*	*	
\mathbf{v}_2	(3, v1)	(3, v1)	*	*	*	
$\mathbf{v_3}$	(9, v1)	(5, v2)	(5, v2)	(5, v2)	*	
$\mathbf{v_4}$	∞	(10 , v2)	(9, v5)	(9, v5)	(9, v5)	
\mathbf{v}_{5}	∞	(4, v2)	(4, v2)	*	*	
\mathbf{v}_6	∞	∞	(13, v5)	(13, v5)	(11, v4)	
\mathbf{v}_7	∞	∞	∞	∞	(17, v4)	

mín{P(6), P(7)}

$$P(7) < P(4) + \Omega(4,7)$$
?
 $\infty < 9 + 8$

Ω	Paso 1	Paso 2	Paso 3	Paso 4	Paso 5	Paso 6
\mathbf{v}_{1}	(0, v1)	*	*	*	*	*
\mathbf{v}_2	(3 , v1)	(3, v1)	*	*	*	*
\mathbf{v}_3	(9 , v1)	(5, v2)	(5, v2)	(5, v2)	*	*
$\mathbf{v_4}$	∞	(10 , v2)	(9, v5)	(9, v5)	(9, v5)	*
\mathbf{v}_{5}	∞	(4, v2)	(4, v2)	*	*	*
\mathbf{v}_6	∞	∞	(13, v5)	(13, v5)	(11, v4)	(11, v4)
\mathbf{v}_7	∞	∞	∞	∞	(17, v4)	(15, v6)

Ω	Paso 1	Paso 2	Paso 3	Paso 4	Paso 5	Paso 6	Paso 7
$\mathbf{v_1}$	(0, v1)	*	*	*	*	*	*
\mathbf{v}_2	(3 , v1)	(3 , v1)	*	*	*	*	*
$\mathbf{v_3}$	(9, v1)	(5, v2)	(5, v2)	(5, v2)	*	*	*
$\mathbf{v_4}$	∞	(10 , v2)	(9, v5)	(9, v5)	(9, v5)	*	*
\mathbf{v}_{5}	∞	(4 , v2)	(4, v2)	*	*	*	*
\mathbf{v}_{6}	∞	∞	(13, v5)	(13, v5)	(11, v4)	(11, v4)	*
\mathbf{v}_7	∞	∞	∞	∞	(17, v4)	(15, v6)	(15, v6)