

MODULE 3:

DIGITAL SYSTEMS

NUMBER SYSTEMS

DECIMAL BINARY CONVERSIONS

Decimal to Binary

- > Repeatedly divide the decimal by 2, till quotient is zero
- > Remainders, read in reverse order, give the binary form

Conversion of

343₁₀ to binary

 $343_{10} = 101010111_2$

DECIMAL BINARY CONVERSIONS

Decimal Fraction to Binary

- ➤ Repeatedly multiply the fractional part by 2, and retain the whole parts of the result.
- ➤ Stop till the desired precision is reached.

Conversion of

0.392₁₀ to binary

 $0.392_{10} \approx 0.011001_2$

$$2 \times 0.392$$
 = 0 + 0.784
 2×0.784 = 1 + 0.568
 2×0.568 = 1 + 0.136
 2×0.136 = 0 + 0.272
 2×0.272 = 0 + 0.544
 2×0.544 = 0.088

To convert a decimal which has a both a whole part and a fractional part, Convert each part seperately and combine the two

$$343_{10} = 101010111_2$$
 $0.392_{10} \cong 0.011001_2$

343.392₁₀ to binary

$$343.392_{10} \cong 101010111.011001_2$$

DECIMAL BINARY CONVERSIONS

Binary to Decimal

➤ Multiply by the power of 2 based on its place value

Conversion of

10011.011 to Decimal

$$10011.011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1}$$

+ 1 \times 2^{-2} + 1 \times 2^{-3} = 19.375_{10}

HEXA-DECIMAL & OCTAL Number Systems

OCTAL & HEX —— DECIMAL CONVERSIONS

Octal to Decimal

➤ Multiply by the power of 8 based on its place value

Conversion of

173.2 to Decimal

$$173.21_8 = 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 + 2 \times 8^{-1} + 1 \times 8^{-2}$$
$$= 123.265625_{10}$$

Hexadecimal to Decimal

Conversion of

1FA.2A to Decimal

➤ Multiply by the power of 16 based on its place value

$$1FA.2A_{16} = 1 \times 16^{2} + 15 \times 16^{1} + 10 \times 16^{0} + 2 \times 16^{-1} + 10 \times 16^{-2}$$
$$= 506.1640625_{10}$$

OCTAL & HEX ------ BINARY CONVERSIONS

Octal to Binary

➤ Replace every Octal digit by its binary

Conversion of

317.2₈ to Binary

$$317.2_8 = 011\ 001\ 111.010_2$$

= 011001111.010_2

Hex to Binary

Conversion of

F3A.2 to Binary

➤ Replace every Hex digit by its binary

$$F3A.2_{16} = 1111\ 0011\ 1010.0010$$

= 111100111010.0010_2

BINARY —— OCTAL & HEX CONVERSIONS

Binary to Octal

Conversion of 11110110.1_2

to Octal

- > Form 3-bit groups
- > Start from binary point
- >Append leading and trailing zeros

Binary to Hex

Conversion of 11110110.1_2 to Hex

- > Form 4-bit groups
- > Start from binary point
- **➤**Append leading and trailing zeros

```
11110110.1 = 1111 0110.1
= 1111 0110.1000
= F6.8_{16}
```

Decimal	Binary	Octal	Hexadecimal
0	0000	0 (000)	0 (0000)
1	0001	1 (001)	1 (0001)
2	0010	2 (010)	2 (0010)
3	0011	3 (011)	3 (0011)
4	0100	4 (100)	4 (0100)
5	0101	5 (101)	5 (0101)
6	0110	6 (110)	6 (0110)
7	0111	7 (111)	7 (0111)
8	1000	10	8 (1000)
9	1001	11	9 (1001)
10	1010	12	A (1010)
11	1011	13	B (1011)
12	1100	14	C (1100)
13	1101	15	D (1101)
14	1110	16	E (1110)
15	1111	17	F (1111)

ASSIGNMENT

- Q1) Convert the following decimals to binary.
 Stop after max 6 bit for fractional part
 - a) 23.75
 - b) 17.25
 - c) 4.3
- Q2) Convert the following binary to decimals.
 - a) 1101.111₂
 - b) 100.001₂
- Q2) Convert the following into binary, octal and hexadecimal forms
 - a) 97₁₀
 - b) 229₁₀
- Q4) Convert the following numbers into binary form
 - a) 72₈
 - b) FA6₁₆

ASSIGNMENT

LOGIC CIRCUITS

LOGIC GATES

AND gate

NAND

gate

OR gate

XOR gate

NOR

gate

NOT gate

AND Gate

AND gate

- For two logic variables A and B, the "AND" operation represented as "AB" and read as "A and B"
- Operation: Logical multiplication

Truth table - 2 input AND gate

Symbol

A and B is 1 iff A is 1 and B is 1

OR Gate

OR gate

- For two logic variables A and B, the "OR" operation represented as "A+B" and read as "A or B"
- Operation: Logical addition

Truth table - 2 input OR gate

Symbol

$$A = C = A + B$$
Boolean

Expression

A or B is 1 if A is 1 or B is 1 or both AB is 1

3-input Gates

3-input AND

Truth tables

\boldsymbol{A}	В	C	D = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

3-input OR

A	В	C	D = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Symbols

$$D = ABC$$

$$D = A + B + C$$

NOT GATE

NOT gate

- \blacksquare For two logic variables A and B, the "OR" operation represented by placing bar on top of logical variable A (or B)
- Read as "Not A" or "A inverse"

Truth table - NOT gate

Symbol

$$\begin{array}{c|c}
A & \overline{A} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

NAND Gate

NAND gate

- AND gate followed by an Inverter NAND gate
- Symbol: same as AND, with a bubble

Truth table - 2 input NAND gate

Symbol

Α	В	C= AB	$C = \overline{AB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

A nand B is 1
If either A or B is 1 but both not 1

NOR Gate

NOR gate

- OR gate followed by an Inverter NOR gate
- Symbol: same as OR, with a bubble

Truth table - 2 input NOR gate

Α	В	C= <i>A+B</i>	$C=\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Symbol

$$A \longrightarrow (\overline{A+B})$$

A nor B is 1 iff A and B is 0

XOR Gate

XOR gate

- XOR gate for 2 logical variable represented by $A \oplus B$
- Defined as $0 \oplus 0 = 0$ $1 \oplus 0 = 1$ $0 \oplus 1 = 1$ $1 \oplus 1 = 0$

Truth table - 2 input XOR gate

AB $C = A \oplus B$ 000011101110

Symbol

$$A \bigoplus_{B} A \oplus B$$

$$A \oplus B = A\overline{B} + \overline{A}B$$

XOR operation: A XOR B is 1 iff only A or only B is 1

It is 0 for if both A and B are 1

EXAMPLES-1

Give the Boolean expression for the logic circuits shown

EXAMPLES -2

Give the Boolean expression for the logic circuit shown

$$P = A \oplus B \oplus C \oplus D$$

$$F = \overline{A}B + C$$

Logic IC's

Logic Gates from 7400 series TTL IC family

AND	7408
OR	7432
NOT	7404
NAND	7400
NOR	7402
XOR	7486

Acknowledgements

- 1. Allan R. Hambley, 'Electrical Engineering Principles & Applications, Pearson Education, First Impression, 6/e, 2013
- 2. https://technobyte.org/sequential-combinational-logic-circuits-types/
- 3. https://learnabout-electronics.org/Digital/dig21.php