Three Hard Theorems

Each of these theorems will involve continuous functions on closed and bounded intervals, namely sets of the form [a, b]. Before we state and prove each of the theorems, let us recalls some preliminary definitions.

Definition 1. A function $f:[a,b] \to \mathbb{R}$ is continuous if for all $c \in [a,b]$ and for all $\varepsilon > 0$, there is $\delta > 0$ such that for all $x \in [a,b], |x-a| < \delta \Rightarrow |f(x)-f(a)| < \varepsilon$.

One of our concerns will be with a slightly stronger version of continuity, namely uniform continuity. Let's recall the definition, and the distinction from regular continuity.

Definition 2. A function $f:[a,b] \to \mathbb{R}$ is uniformly continuous if for all $\varepsilon > 0$, there is $\delta > 0$ such that for all $x,y \in [a,b], |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$.

The main difference is that with regular continuity, the $\delta > 0$ that we choose will depend on the point of continuity, namely for each $c \in [a, b]$, we have $\delta > 0$ that depends on c. With uniform continuity, this is not the case, given $\varepsilon > 0$ we have one $\delta > 0$ that works for all points in [a, b]. We're now ready to state the first hard theorem, which has the most complex proof of the three.

Theorem 1. If $f:[a,b]\to\mathbb{R}$ is continuous, then f is uniformly continuous.

Note that this is saying continuous functions on closed and bounded intervals are uniformly continuous. The fact that the domain is a closed and bounded interval is crucial, as the result fails otherwise, which we will see after the proof. But for now, let's prove this.

Proof. Let $\varepsilon > 0$, and define the following set

$$U = \{c \in [a, b] : \exists \delta > 0 \text{ such that } \forall x, y \in [a, c], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon\}$$

U is the collection of points $c \in [a,b]$ for which f is uniformly continuous on [a,c] given $\varepsilon > 0$. Our goal will be to show U = [a,b]. Note that $a \in U$ as $[a,a] = \{a\}$, and so any $\delta > 0$ will work. Also, $U \subseteq [a,b]$ by construction, so $c \le b$ for all $c \in U$. Thus, $\alpha := \sup(U)$ exists by completeness, and $\alpha \le b$. We want to show U = [a,b], so we need to show $b \in U$. Suppose $\alpha < b$, as f is continuous at α , there is $\delta_1 > 0$ such that for all $x \in [a,b], |x-\alpha| < \delta_1 \Rightarrow |f(x)-f(\alpha)| < \frac{\varepsilon}{2}$. By the criterion for supremum, there is $c \in U$ such that $\alpha - \delta_1 < c \le \alpha$, and as $c \in U$, there is $\delta_2 > 0$ such that for all $x, y \in [a,c], |x-y| < \delta_2 \Rightarrow |f(x)-f(y)| < \varepsilon$. Set $\delta = \min\left\{\frac{\delta_1}{2}, \delta_2\right\}$, to arrive at a contradiction, we show $\alpha + \frac{\delta}{2} \in U$. Fix $x, y \in \left[a, \alpha + \frac{\delta}{2}\right]$, and suppose $|x-y| < \delta$. If $x, y \in \left[a, \alpha - \frac{\delta_1}{2}\right]$, then $x, y \in [a,c]$, and so as $c \in U, |x-y| < \delta \le \delta_2 \Rightarrow |f(x)-f(y)| < \varepsilon$. Conversely, without loss of generality if $x \in \left(\alpha - \frac{\delta_1}{2}, \alpha + \frac{\delta}{2}\right]$, then $|x-\alpha| < \frac{\delta_1}{2}$, and as $|x-y| < \delta$, it follows by the triangle inequality that $|y-\alpha| \le |x-y| + |x-\alpha| < \delta + \frac{\delta_1}{2} \le \frac{\delta_1}{2} + \frac{\delta_1}{2} = \delta_1$, and so

$$|f(x) - f(y)| \le |f(x) - f(\alpha)| + |f(y) - f(\alpha)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus, $\alpha + \frac{\delta}{2} \in U$, contradicting that $\alpha = \sup(U)$, and so $\alpha = b$. Lastly, we show $b = \alpha \in U$. By the left continuity of f at b, there is $\delta_1 > 0$ such that $x \in (b - \delta_1, b] \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}$. As $b = \sup(U)$, there is $c \in U$ such that $c \in (b - \delta_1, b]$, and so there is $\delta_2 > 0$ such that for all $x, y \in [a, c], |x - y| < \delta_2 \Rightarrow |f(x) - f(y)| < \varepsilon$. Set $\delta = \min\left\{\frac{\delta_1}{2}, \delta_2\right\}$ and suppose $x, y \in [a, b]$ such that $|x - y| < \delta$. If $x, y \in [a, b - \frac{\delta_1}{2}] \subseteq [a, c]$, then $|x - y| < \delta \le \delta_2 \Rightarrow |f(x) - f(y)| < \varepsilon$.

If, without loss of generality, $x \in \left(b - \frac{\delta_1}{2}, b\right]$, then $|x - b| < \frac{\delta_1}{2}$, and by the triangle inequality, $|y - b| \le |x - y| + |x - b| < \frac{\delta_1}{2} + \delta \le 2\frac{\delta_1}{2} = \delta_1$, and so it follows that

$$|f(x) - f(y)| \le |f(x) - f(b)| + |f(y) - f(b)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus, $b \in U$ and hence f is uniformly continuous.

Now let's see where this result can go wrong if we change the domain of the continuous function.

Example 1. The function $f:(0,1)\to\mathbb{R}$ given by $f(x)=\frac{1}{x}$ is continuous and not uniformly continuous.

Proof. Fix $c \in (0,1)$, it follows from the limit laws that f is continuous at c, and so f is continuous on (0,1). We claim f is *not* uniformly continuous. Indeed, let $\varepsilon_0 = \frac{1}{2}$ and $\delta > 0$ be given. Choose some $x_0 \in (0,1)$ such that $0 < x_0 < \min\{1,\delta\}$ and set $y_0 = \frac{x_0}{2}$. Note that $|x_0 - y_0| = \frac{x_0}{2} < \delta$ and

$$|f(x_0) - f(y_0)| = \left| \frac{1}{x_0} - \frac{1}{y_0} \right| = \frac{|x_0 - y_0|}{x_0 y_0} = \frac{x_0}{2} \left(\frac{1}{x_0 y_0} \right) = \frac{1}{2y_0} \ge \frac{1}{2} = \varepsilon_0$$

This emphasizes the importance that the interval be closed. Conversely, we show why the interval needs to be bounded

Example 2. The function $f:[0,\infty)\to\mathbb{R}$ given by $f(x)=x^2$ is continuous and not uniformly continuous.

Proof. Let $c \in [0, \infty)$, once again it follows from the limit laws that f is continuous at c at hence continuous on $[0, \infty)$, we show f is not uniformly continuous. Pick $\varepsilon_0 = 1$ and let $\delta > 0$ be given. Set $x_0 = \frac{1}{\delta}$ and $y_0 = x_0 + \frac{\delta}{2}$. Then $|x_0 - y_0| = \frac{\delta}{2} < \delta$, and

$$|f(x_0) - f(y_0)| = x_0 \delta + \frac{\delta^2}{4} > x_0 \delta = 1 = \varepsilon_0$$

Thus, f is not uniformly continuous.

Moving on to the second of the hard theorems, which is likely the most intuitive, and is the easiest to prove of the three.

Theorem 2. If $f:[a,b]\to\mathbb{R}$ is continuous and f(a)f(b)<0, there is $c\in(a,b)$ such that f(c)=0.

Proof. The condition f(a)f(b) < 0 says that one of the endpoints is positive and the other negative, let's assume f(a) < 0 < f(b) (otherwise apply the following to g := -f). Define the set

$$U = \{c \in [a, b] : f(x) < 0 \quad \forall x \in [a, c]\}$$

As f(a) < 0 by assumption and $[a, a] = \{a\}$, it follows that $a \in U$, moreover $U \subseteq [a, b]$ by construction, and so $\alpha := \sup(U)$ exists by completeness. We show $\alpha \in (a, b)$ such that $f(\alpha) = 0$. Suppose $f(\alpha) > 0$, the left continuity of f at α (we can't guarantee two-sided continuity at α since $\alpha = b$ is still technically possible), there is $\delta_1 > 0$ such that f(x) > 0 for all $x \in (\alpha - \delta_1, \alpha]$. By the criterion for suprema, there is $c_1 \in U$ such that $\alpha - \delta_1 < c_1 \le \alpha$, and as $c_1 \in U$, f(x) < 0 for all $x \in [a, c_1]$, and hence $f(c_1) < 0$. But $c_1 \in (\alpha - \delta_1, \alpha]$, and so $f(c_1) > 0$, a contradiction. Thus $f(\alpha) \le 0$ and hence $\alpha < b$. Suppose now that $f(\alpha) < 0$, by the continuity of f at $\alpha \in (a, b)$, there is

 $\delta_2 > 0$ such that f(x) < 0 for all $x \in (\alpha - \delta_2, \alpha + \delta_2)$, and hence for all $x \in \left[\alpha - \frac{\delta_2}{2}, \alpha + \frac{\delta_2}{2}\right]$. Again by there criterion for suprema, there is $c_2 \in U$ such that $\alpha - \delta_2 < c_2 \le \alpha$. As $c_2 \in U$, f(x) < 0 for $x \in [a, c_2]$ and hence f(x) < 0 for $x \in \left[a, \alpha + \frac{\delta_2}{2}\right]$. Thus f(x) < 0 for all $x \in \left[a, \alpha + \frac{\delta_2}{2}\right]$, and hence $a + \frac{\delta_2}{2} \in U$, contradicting $\alpha = \sup(U)$. Thus $\alpha \in (a, b)$ and $f(\alpha) = 0$.

Corollary 3. If $f:[a,b] \to \mathbb{R}$ is continuous, and d is any value between f(a) and f(b), there is $c \in [a,b]$ such that f(c) = d.

Proof. Fix some d between f(a) and f(b). If d = f(a) or d = f(b), we're done, so suppose d lies strictly between them. Define g := f - d, so that g is continuous on [a, b] and g(a)g(b) < 0. By Theorem 2, there is $c \in (a, b)$ such that g(c) = 0, namely f(c) = d.

Moving on to the last and final hard theorem, recall that a function $f: D \to \mathbb{R}$ is bounded on D if there is M > 0 for which $|f(x)| \leq M$ for all $x \in D$.

Theorem 3. If $f:[a,b]\to\mathbb{R}$ is continuous then f is bounded.

Proof. We will take a similar approach in the proof, namely define the set

$$U = \{c \in [a, b] : \exists M > 0 \text{ such that } |f(x)| \leq M \ \forall x \in [a, c]\}$$

namely U is the collection of points c for which f is bounded on [a,c]. We show U=[a,b]. Note that $[a,a]=\{a\}$, and so f is bounded trivially on [a,a], namely $a\in U$, moreover $U\subseteq [a,b]$ by construction, and so $\alpha:=\sup(U)$ exists by completeness. Note that $\alpha\leq b$ by construction, suppose $\alpha< b$ so that $\alpha\in (a,b)$. By the continuity of f at α , there is $\delta_1>0$ and $M_1>0$ such that $|f(x)|\leq M_1$ for all $x\in (\alpha-\delta_1,\alpha+\delta_1)$, and hence for all $x\in \left[\alpha-\frac{\delta_1}{2},\alpha+\frac{\delta_1}{2}\right]$. By the criterion for suprema, there is $c_1\in U$ such that $\alpha-\delta_1< c_1\leq \alpha$, and so there is $M_2>0$ such that $|f(x)|\leq M_2$ for all $x\in [a,c_1]$, and hence for all $x\in \left[a,\alpha-\frac{\delta_1}{2}\right]$. Thus, $|f(x)|\leq \max\{M_1,M_2\}$ for all $x\in \left[a,\alpha+\frac{\delta_1}{2}\right]$, namely $\alpha+\frac{\delta_1}{2}\in U$, contradicting $\alpha=\sup(U)$, and so $\alpha=b$. All that remains to show is that $b\in U$. By the left continuity at b, there is $\delta>0$ and M>0 such that $|f(x)|\leq M$ for all $x\in (b-\delta,b]$ and hence for all $x\in [b-\frac{\delta}{2},b]$. As $b=\alpha$, there is $c\in U$ such that $c\in (b-\delta,b]$, and so there is $c\in U$ such that $c\in (b-\delta,b]$, and so there is $c\in U$ such that $c\in (b-\delta,b]$, and so $c\in U$ such that $c\in (b-\delta,b]$, and so $c\in U$ such that $c\in U$. Thus, $c\in U$ such that $c\in U$ such

Note that this theorem tells us that if $f:[a,b]\to\mathbb{R}$ is continuous, then we can meaningfully write

$$\sup_{x \in [a,b]} f(x) = \sup\{f(x) : x \in [a,b]\} \quad \text{and} \quad \inf_{x \in [a,b]} f(x) = \inf\{f(x) : x \in [a,b]\}$$

A consequence of this result, which will be very useful, is that the supremum and infimum are witnessed, namely there are $x_m, x_M \in [a, b]$ such that $f(x_m) = \sup(f)$ and $f(x_m) = \inf(f)$.

Corollary 4. If $f:[a,b] \to \mathbb{R}$ is continuous, then there are points $x_m, x_M \in [a,b]$ such that $f(x_m) \leq f(x) \leq f(x_M)$ for all $x \in [a,b]$.

Proof. By Theorem 3, $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$ exist as f is bounded. Suppose $M \neq f(x)$ for all $x \in [a,b]$ so that $g(x) := \frac{1}{M-f(x)}$ is well defined and hence continuous on [a,b]. Let N > 0, by the criterion for supremum, there is $x_0 \in [a,b]$ such that

$$M - \frac{1}{N} < f(x_0) \le M \iff 0 \le N < \frac{1}{M - f(x_0)} = g(x_0)$$

Namely g is unbounded, contradicting Theorem 3. Similarly, suppose $m \neq f(x)$ for all $x \in [a, b]$ so that $h(x) := \frac{1}{f(x)-m}$ is well defined and hence continuous on [a, b]. Let N > 0, by the criterion for infimum, there is $x_1 \in [a, b]$ such that

$$m \le f(x_1) < m + \frac{1}{N} \iff 0 \le N < \frac{1}{f(x_1) - m} = h(x_1)$$

Namely h is unbounded, contradicting Theorem 3. Thus, there is $x_m, x_M \in [a, b]$ such that $m = f(x_m)$ and $M = f(x_M)$.

It's worth noting that like Theorem 1, dropping the conditions of closed and bounded on the domain will result in continuous functions that are not bounded. The same functions from Example 1 and Example 2 will be continuous and not bounded.