

UNITED KINGDOM · CHINA · MALAYSIA

Spectroscopic Bulge-Disk Decomposition:

A New Method to Study the Evolution of S0s

Evelyn Johnston

My Research

- Evolution of lenticular galaxies in nearby clusters
 - Evolution from spirals
 - Investigating what caused SF to stop
 - Evolution of bulge and disk as individual components

Summary of Work

 New method for studying evolution of nearby galaxies:

Spectroscopic Bulge Disk Decomposition

 Separates a 2D spectrum into separate bulge and disk spectra

So, What Are Lenticular Galaxies?

- Lie between Spirals and Ellipticals on Hubble Sequence
- Colours & stellar populations → Ellipticals
- Stellar disks → Spirals
- True nature still debated today

How do they Evolve?

Morphology-density relation for Clusters

Dressler 1980, Dressler et al 1997

How do they Evolve?

- Theories for evolution from spirals mainly centre on stopping the star formation
 - Ram pressure stripping
 - Gunn & Gott 1972
 - Starvation/Strangulation
 - Larson, Tinsley & Caldwell 1980
 - Galaxy Harassment
 - · Moore, Lake & Katz 1998
 - Unequal-mass galaxy mergers
 - Mihos & Hernquist 1994)

- Draw ellipses of constant luminosity
- Fit components to light profile
- Integrate and subtract from original image

Images taken from GALFIT examples

- Draw ellipses of constant luminosity
- Fit components to light profile
- Integrate and subtract from original image

Images taken from GALFIT examples

- Draw ellipses of constant luminosity
- Fit components to light profile
- Integrate and subtract from original image

- Draw ellipses of constant luminosity
- Fit components to light profile
- Integrate and subtract from original image

- Draw ellipses of constant luminosity
- Fit components to light profile
- Integrate and subtract from original image

Images taken from GALFIT examples

- Multi-waveband photometry
- Next step... looking at variations with wavelength
- > Spectroscopy

Minor Complexities

- Gaussian smooth spectra to central velocity dispersion
- Correct for rotational velocity

Data Sample

- 9 S0s from Fornax Cluster
- Flux calibrated long slit spectroscopy from VLT
- Reduced and analysed by Alejandro Bedregal (Bedregal et al 2006a, 2006b, 2008, 2010)
- Range of masses and luminosities

Success Rates

- 9 galaxies
 - -2 → bulge and disk spectra
 - -3 → disk spectra (disk dominated from very small radii)
 - -2 → strange bulge and disk spectra
 - -2 → unable to decompose

Measurements

- Measured line strengths
- SSP models from Vazdekis et al (2010)
 - MILES stellar library
 - $-\sigma_{lib}=2.3\text{Å}$
- Estimated ages and metallicities

Initial Results

- In general bulges
 - contain younger stellar populations than disks
 - have higher metallicities than disks
- Final bursts of SF in galaxies were in the bulge

Initial Results

- In general bulges
 - contain younger stellar populations than disks
 - have higher metallicities than disks
- Final bursts of SF in galaxies were in the bulge

Conclusions

- We have developed a new method to study the evolution of nearby galaxies
- Initial results show that final bursts of SF occurred in the bulge
- But, current sample too small to make any real science claims

Future Plans

- Analyse spectra that have strange bulge and disk spectra
- Look at $R_{e,\lambda}$ and $R_{0,\lambda}$ for information on gradients
- To analyse another sample of 21 S0s from Virgo Cluster
- We hope to extend the method to Spiral galaxies