TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 17.-21.12.2018

9. Übung Analysis III für Mathematiker(innen)

(Dynkin-Systeme, σ -Algebren, Maße)

Themen der großen Übung am 10.12.

Wir zeigen, dass eine höchstens abzählbare Summe von Maßen ein Maß ist und dass jedes Maß σ -subadditiv und monoton ist.

Sei $\Omega = \mathbb{Q}$ und $\mathcal{F}_0 := d(\{(a, b] : a < b, a, b \in [-\infty, \infty]\})$ (wobei hier natürlich die Menge $(a, b] := \{q \in \mathbb{Q} \mid a < q \leq b\} \subseteq \mathbb{Q}$ gemeint ist) und sei $\mathcal{F} = \sigma(\mathcal{F}_0)$. Dann beweisen wir:

- (i) $\mathcal{F} = \mathcal{P}(\Omega)$.
- (ii) Das Zählmaß μ , definiert durch $\mu(A) = \#A$, ist σ -endlich auf \mathcal{F} , aber nicht auf \mathcal{F}_0 .
- (iii) Es gibt ein $A \in \mathcal{F}$ mit $\mu(A) < \infty$, aber für keine Folge $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{F}_0$ ist $\mu(A \triangle A_n) \to 0$.
- (iv) Ist λ ein Maß mit $\lambda = 2\mu$, dann gilt $\lambda = \mu$ auf \mathcal{F}_0 , aber nicht auf \mathcal{F} .

Wir zeigen, dass jede im Sinn der Definition 2.1.5 Lebesgue-messbare Menge auch im Sinn der Definition 2.3.13 λ^* -messbar ist. (Die umgekehrte Richtung folgt aus Satz 2.3.17.)

Tutoriumsvorschläge

25. Aufgabe

Es sei n>2 eine gerade Zahl und Ω eine Menge mit genau n Elementen. Zeigen Sie, dass das Teilmengensystem $\mathcal F$ aller Teilmengen mit gerader Kardinalität ein Dynkin-System ist, aber keine σ -Algebra.

26. Aufgabe

Zeigen Sie, dass jede abzählbare Vereinigung von Nullmengen wieder eine Nullmenge ist.

27. Aufgabe

Wir wollen uns überlegen wie die Theorie der Reihen im Rahmen der Maßtheorie gefasst werden kann. Dazu gehen wir wie folgt vor:

Sei I eine beliebige Indexmenge und $x_i \in [0, \infty)$ für $i \in I$. Dann definieren wir die Summe

$$\sum_{i \in I} x_i := \sup \left\{ \sum_{i \in F} x_i \mid F \subseteq I \text{ endlich} \right\} \in [0, \infty].$$

(i) Zeigen Sie, dass für $I = \mathbb{N}$ die Definition mit der Reihendefinition aus der Analysis I übereinstimmt, d.h. für jede Folge $(x_i)_{i \in \mathbb{N}}$ von Zahlen aus $[0, \infty]$ gilt

$$\sum_{i \in \mathbb{N}} x_i = \sum_{i=1}^{\infty} x_i.$$

- (ii) Zeigen Sie, dass für beliebiges (möglicherweise überabzählbares) I gilt: Wenn $\sum_{i \in I} x_i < \infty$, dann gibt es eine abzählbare Teilmenge $A \subseteq I$ mit $x_i = 0$ für alle $i \in I \setminus A$.
- (iii) Seien für alle $i, j \in \mathbb{N}$ Zahlen $x_{i,j} \in [0, \infty]$ gegeben. Zeigen Sie, dass dann gilt

$$\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x_{i,j} = \sum_{j \in \mathbb{N}} \sum_{i \in \mathbb{N}} x_{i,j}.$$

28. Aufgabe

Zeigen Sie, dass jede Teilmenge $M \subseteq \{(x_1, \dots, x_d) \in \mathbb{R}^d \mid x + d = 0\}$ von \mathbb{R}^d mit $d \in \mathbb{N}$ eine Lebesgue Nullmenge ist.

Wir werden später sehen, dass das Lebesgue-Maß invariant unter Rotationen und Verschiebungen ist, d.h. obiges Resultat bedeutet also: Jede Teilmenge N einer affinen Hyperebene

$$\mathcal{H} := \{ x \in \mathbb{R}^d \mid x = p + \sum_{i=1}^{d-1} s_i x_i, s_1, \dots, s_{d-1} \in \mathbb{R} \}$$

(wobei $p \in \mathbb{R}^d$ und die x_i linear unabhängige Vektoren in \mathbb{R}^d sind), ist eine Lebesgue Nullmenge.

Ankündigung:

- Der Test am 07.01. in der großen Übung wird sich inhaltlich mit den Übungsblättern 3-8 beschäftigen. Inhalt ist also Kapitel 1-2.2 des Skriptes.
- Wolfgang König steht für mündliche Prüfungen in der Zeit vom 18.2. bis 5.3.2019 **nicht** zur Verfügung. Empfohlener Prüfungszeitraum für Analysis 2 und 3 Prüfungen: Erste Aprilwoche 2019.

Hausaufgaben

31. Aufgabe (5 Punkte)

Sei $\Omega = \mathbb{N}$ und $\mathcal{F} = \{A \subseteq \Omega \mid A \text{ oder } A^c \text{ ist endlich}\}$. Definiere $\mu \colon \mathcal{F} \to [0, \infty[$ durch

$$\mu(A) = \begin{cases} 0, & \text{falls } A \text{ endlich ist,} \\ \infty & \text{sonst.} \end{cases}$$

- (i) Zeigen Sie, dass \mathcal{F} eine Algebra und μ ein σ -endlicher Inhalt¹ auf \mathcal{F} ist.
- (ii) Ist $\mu \sigma$ -additiv?
- (iii) Ist μ stetig in \emptyset ?
- (iv) Lässt sich μ zu einem Maß auf $\sigma(\mathcal{F})$ fortsetzen?

Hinweis: Wie üblich ist $\infty + a = \infty$ für alle $a \in [0, \infty]$.

32. Aufgabe (6 Punkte)

Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum.

(i) Zeigen Sie, dass

$$\overline{\mathcal{F}} := \{ A \cup N \mid A \in \mathcal{F}, N \subseteq \Omega \text{ ist } \mu\text{-Nullmenge} \}$$

eine σ -Algebra ist.

(ii) Zeigen Sie folgende Identitäten:

$$\overline{\mathcal{F}} = \{A \triangle N \mid A \in \mathcal{F}, N \subseteq \Omega \text{ ist } \mu\text{-Nullmenge}\}\$$

= $\{A \subseteq \Omega \mid \text{es gibt } B \in \mathcal{F}, \text{ so dass } A \triangle B \text{ eine } \mu\text{-Nullmenge ist}\}.$

(iii) Sei weiter $\overline{\mu} \colon \overline{\mathcal{F}} \to [0, \infty]$ definiert durch $\overline{\mu}(A \cup N) := \mu(A)$ für alle $A \subseteq \mathcal{F}$ und alle Nullmengen $N \subseteq \Omega$. Zeigen Sie, dass $\overline{\mu}$ ein wohldefiniertes Maß auf $(\Omega, \overline{\mathcal{F}})$ ist, das μ fortsetzt.

Den Maßraum $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ nennt man die Vervollständigung von $(\Omega, \mathcal{F}, \mu)$.

¹Ein Inhalt μ heißt σ -endlich, wenn es eine disjunkte Zerlegung $\Omega = \bigcup_{n \in \mathbb{N}} A_n$ gibt mit $\mu(A_n) < \infty$.

33. Aufgabe (4 Punkte)

Sei \mathcal{B}_d die Borel- σ -Algebra auf dem \mathbb{R}^d .

- (i) Zeigen Sie, dass $\mathcal{B}_d = \sigma(\mathcal{K}_d)$, wobei \mathcal{K}_d die Menge der kompakten Teilmengen von \mathbb{R}^d ist
- (ii) Eine Menge heißt eine G_{δ} -Menge, wenn sie ein abzählbarer Durchschnitt von offenen Mengen ist. Zeigen Sie, dass $\mathcal{B}_d = \sigma\left(\{K \mid K \text{ ist kompakte } G_{\delta}\text{-Menge}\}\right)$ (d.h. \mathcal{B}_d stimmt mit der sogenannten Baire- σ -Algebra überein).

Hinweis: Vielleicht ist es hilfreich, das Dokument zur Teilung der Eins (Woche 5.-11. November auf ISIS) zu lesen.

34. Aufgabe (5 Punkte)

Es sei X eine nichtleere Menge.

- (i) Sei $\mu \colon \mathcal{P}(X) \to [0, \infty]$ ein Inhalt mit $\mu(A) \in \{0, 1\}$ für alle $A \subseteq X$ und $\mu(X) = 1$. Wir setzen $\mathfrak{U} := \{A \subseteq X \mid \mu(A) = 1\}$. Zeigen Sie:
 - (a) $\emptyset \notin \mathfrak{U}$,
 - (b) $A \in \mathfrak{U}, A \subseteq B \subseteq X \Rightarrow B \in \mathfrak{U},$
 - (c) $A, B \in \mathfrak{U} \Rightarrow A \cap B \in \mathfrak{U}$,
 - (d) $A \subseteq X \Rightarrow A \in \mathfrak{U} \text{ oder } A^{c} \in \mathfrak{U}.$

Eine nichtleere Teilmenge \mathfrak{U} von $\mathcal{P}(X)$ mit den Eigenschaften (a)-(c) nennt man Filter auf X; gilt zusätzlich (d), so nennt man \mathfrak{U} Ultrafilter

(ii) Zeigen Sie: Ist $\mathfrak U$ ein Ultrafilter auf X, so ist $\mu \colon \mathcal P(X) \to [0,\infty], \mu(A) := \begin{cases} 1, & A \in \mathfrak U, \\ 0, & \text{falls } A^{\mathrm{c}} \in \mathfrak U, \end{cases}$ ein Inhalt. Weiter ist μ genau dann ein Maß, wenn für jede Folge $(A_n)_{n \in \mathbb N}$ von Mengen aus $\mathfrak U$ gilt $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Gesamtpunktzahl: 20