HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Make span schedule

ONE LOVE. ONE FUTURE.

- Make a schedule for a project with many tasks.
- A project has n tasks 1,..., n:
 - Task i has duration d(i) to be completed
 - Precedence constraints Q: for each (i,j) in Q, task j cannot be started before the completion of task i.
- Objective: Arrange task the project to complete as soon as possible.
- Input: n, |Q|, d(1),..., d(n), the set Q
- Output: The earliest completion time of the project.

• Example

Input	Output
8 9	148
15 30 80 45 4 15 15 19	
1 2	
2 4	
3 4	
4 5	
2 6	
3 6	
5 7	
6 7	
5 8	

- Idea to solve: Formulate the problem using directed graph
 - A graph with n nodes as n tasks
 - If $(i,j) \in Q$, we draw an edge (i,j) on graph
 - weight of edge (i,j) is t[i]
 - The node having in-degree 0: we can perform the corresponding task since t = 0

- Idea to solve: BFS
 - The node having in-degree 0 -> not affected by any other, but may affect some other nodes
 - We use BFS to traverse, from a node y having in-degree 0
 - Use auxiliary variable dist[x]: the first starting time of x
 - After BFS all node: retrieve the node with maximal dist[]

THANK YOU!