

JFW

2000-0001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT: Schanz et al. **GROUP:** Not yet assigned
SERIAL NO: 10/526,233 **EXAMINER:** Not yet assigned
FILING DATE: February 28, 2005
FOR: CONTROL SYSTEM FOR LIGHT TUBES

**Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450**

Sir:

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

Enclosed please find the certified copy of the foreign application from which priority is claimed for this case:

Country: Germany
Appln No.: 102 39 370.2
Filing Date: August 28, 2002

Respectfully submitted,

Patrick J. O'Shea
Reg. No. 35,305
O'Shea, Getz & Kosakowski, P.C.
1500 Main Street, Suite 912
Springfield, MA 01115
(413) 731-3100, Ext. 102

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service on the date below, with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Sarah L. Henry
6/26/06
Date

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 39 370.2
Anmeldetag: 28. August 2002
Anmelder/Inhaber: Harman/Becker Automotive Systems
(Becker Division) GmbH, 76307 Karlsbad/DE
Bezeichnung: Ansteuereinrichtung für Leuchtstoffröhren
IPC: H 05 B 41/392

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 25. Februar 2005
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Dzlerzon

**CERTIFIED COPY OF
PRIORITY DOCUMENT**

A 9161
03/00
EDV-L

WESTPHAL, MUSSGNUG & PARTNER
Patentanwälte · European Patent Attorneys

**Harman/Becker Automotive Systems
(Becker Division) GmbH
Im Stöckmädle 1

76307 Karlsbad**

- Patentanmeldung -

Ansteuereinrichtung für Leuchtstoffröhren

Ansteuereinrichtung für Leuchtstoffröhren.

Die Erfindung bezieht sich auf eine Ansteuereinrichtung für Leuchtstoffröhren.

5

Anzeigen von Multimediasystemen werden z.T. mit Hilfe von Leuchtstoffröhren beleuchtet. Hierbei werden z. T. mehrere Röhren verwendet, insbesondere für höhere Lichtleistungen bei begrenzter maximal zulässiger Lichtleistung einer einzelnen Leuchtstoffröhre. Zum Betreiben der Leuchtstoffröhren ist eine spezielle Ansteuerelektronik erforderlich. Aus Kostengründen werden zum Teil zwei parallel geschaltete Leuchtstoffröhren an einer Ansteuerung und mit einer Transformatorschaltung betrieben.

10

Aufgrund von Toleranzen in der Charakteristik der Leuchtstoffröhren kann es zu Fehlern kommen. Dabei verteilt sich der von der Ansteuerung vorgegebene Strom nicht gleichmäßig auf die parallel geschalteten Leuchtstoffröhren.

15

Diese haben einen negativen Innenwiderstand, d.h., dass bei minimalem Lampenstrom die maximale Brennspannung auftritt. Eine Parallelschaltung führt somit zu einem instabilen System, bei dem ggf. der Strom vollständig durch eine Leuchtstoffröhre mit geringem Widerstand fließt und die andere Leuchtstoffröhre stromlos sperrt. Durch in Reihe geschaltete Ballastwiderstände bzw. -impedanzen können die Lampenströme bei hinreichenden Stromstärken symmetrisch gehalten werden, da die Ballastwiderstände das Spannungsteilverhältnis und somit wiederum die Ströme in

20

den beiden Zweigen bestimmen. Bei geringeren Stromstärken ist der Spannungsabfall an den Ballastwiderständen jedoch so gering, dass der Spannungsteiler durch den nun relativ hohen Lampenwiderstand bestimmt wird. Die Schaltung kann bereits bei geringen Streukapazitäten asymmetrisch werden, wodurch

25

ggf. eine Lampe vollständig ausgehen kann. Die Steuerschaltung - z. B. ein Controller-IC - kann dies zwar als Unterschreiten eines vorgegebenen Mindeststromwertes

registrieren und zur erneuten Zündung der Lampe den Lampenstrom - z. B. in einem Fault-Modus bzw. Fehler-Modus - reduzieren und in einem nachfolgenden Burst-Modus die Lampe wieder zünden. Bei anhaltend geringer Stromstärke durch diese 5 Lampe kann sich dieses Verhalten jedoch wiederholen, so dass die Lampe flackert. Bei geringer Einstellung der Helligkeit - d.h. einer hohen Dimmrate - kann somit ein Flackern der Anzeigenhelligkeit auftreten.

10 Der Erfindung liegt die Aufgabe zugrunde, eine Ansteuersetzung für Leuchtstoffröhren zu schaffen, die mit relativ geringem Aufwand ein instabiles Verhalten, insbesondere Flackern der Lampen, verhindert.

15 Diese Aufgabe wird durch eine Ansteuereinrichtung nach Anspruch 1 gelöst. Die Unteransprüche beschreiben bevorzugte Weiterbildungen. Hierbei wird insbesondere eine Treiberschaltung nach Anspruch 5 und eine Lampenschaltung nach Anspruch 6 geschaffen.

20 Erfindungsgemäß wird somit der Einstellbereich bzw. Dimmbereich der Lampenströme in einen helleren Bereich (Tagmodus) und einen dunkleren Bereich (Nachtmodus) unterteilt. Die Detektion der Lampenströme erfolgt durch eine geeignete, als solche grundsätzlich bereits bekannte Steuerschaltung, z. B. einen integrierten Controller wie den LT1768, mit entsprechenden Detektionseingängen.

25 In dem Nachtmodus werden die Lampenströme gemeinsam ausgewertet. Die gemeinsame Auswertung kann insbesondere durch eine Verbindung der beiden Detektionseingänge über einen Schalter erfolgen. Dies hat zur Folge, dass bei asymmetrischem Verhalten der Leuchtstoffröhren keiner der Detektionseingänge einen so schwachen Strom erkennt, dass dieser Strom weiter reduziert wird. Die beiden Röhren leuchten somit mit konstanter, geringer Helligkeit, wobei eventuelle Asymmetrien aufgrund der geringeren Stromstärken

nicht zur Zerstörung einer Leuchtstoffröhre führen. Im Tagmodus mit höheren Stromstärken erfolgt erfindungsgemäß eine getrennte Auswertung und Einstellung der Ströme.

- 5 Die Erfindung wird im folgenden anhand der beiliegenden Zeichnungen an einer Ausführungsform näher erläutert. Die Figur zeigt ein Blockschaltbild einer Lampenschaltung.

Eine Lampenschaltung 1 weist eine Ansteuereinrichtung 2 mit
10 einem geeigneten Steuerschaltkreis 3, z. B. einem Controller-
IC, auf. Ein derartiger Controller-IC ist z. B. unter der
Bezeichnung LT1768 erhältlich. In der Ansteuereinrichtung 2
ist weiterhin zwischen Detektionseingängen a2, a3 bzw. den
angeschlossenen Leitungen DIO1 und DIO2 ein Schalter 4
15 vorgesehen, der z. B. als Halbleiterschalter ausgeführt sein
kann und in einem Tagmodus offen und in einem Nachtmodus
geschlossen ist.

An die Leitungen DIO1 und DIO2 sind Anschlusskontakte 8 bzw.
20 10 von Leuchtstoffröhren 6 bzw. 7 angeschlossen. An die
weiteren Anschlusskontakte 9 bzw. 11 der Leuchtstoffröhren 6
bzw. 7 sind Ballastkondensatoren CL12 bzw. CL13
angeschlossen, so dass zwei parallele, symmetrische
Strompfade S1 und S2 gebildet werden. Die Strompfade S1, S2
sind über eine gemeinsame Anschlussleitung 14 verbunden und
an eine als solche bekannte Transforschaltung 5
angeschlossen.

Der Steuerschaltkreis 3 detektiert die über die
30 Detektionseingänge a2 und a3 eingehenden Ströme und stellt
geeignete Lampenströme ein. Im Tagmodus mit höheren
Stromstärken fließen die Lampenströme I1, I2 jeweils in den
entsprechenden Eingang a2 bzw. a3, so dass sie separat
detektiert und eingestellt werden können. Im Nachtmodus mit
35 niedrigeren Stromstärken und geschlossenem Schalter 4 können
die Lampenströme I1, I2 von beiden Eingängen a2, a3
detektiert werden. Die an den Strompfaden S1 und S2

abfallende Spannung fällt bei den kleinen Stromstärken im wesentlichen an den Leuchtstoffröhren 6 bzw. 7 ab. Bei stärker unsymmetrischen Verhalten, bei dem z. B. durch die Röhre 6 ein geringerer Strom I_1 fließt, nimmt a_2 - wie a_3 - somit dennoch beide Ströme I_1 und I_2 bzw. einen Teil der Summe beider Ströme auf. Somit wird verhindert, dass in a_2 ein Versagen der Röhre 6 erkannt und der Lampenstrom I_1 weiter reduziert wird, um anschließend in einem Burst-Zyklus die Röhre 6 wieder zu zünden. Somit wird im Nachtmodus ein periodisches Reduzieren und wieder Anschalten des Stromes der schwächer leuchtenden Röhre vermieden und ein gleichmäßiges - ggf. unsymmetrisches - Leuchten erreicht.

Patentansprüche

1. Ansteuereinrichtung für mindestens zwei an eine gemeinsame
Transformatorschaltung (5) angeschlossene

5 Leuchtstoffröhren (6, 7), wobei die Ansteuereinrichtung
(2) mindestens aufweist:

einen Steuerschaltkreis (3) mit mindestens zwei Detektionseingängen (a₂, a₃) zur Detektion von durch die
Leuchtstoffröhren (6, 7) fließenden Lampenströmen (I₁,
10 I₂), wobei die detektierten Lampenströme (I₁, I₂) durch
den Steuerschaltkreis (3) in einem Tagmodus mit höheren
Stromstärken und einem Nachtmodus mit niedrigeren
Stromstärken einstellbar sind,

wobei die Lampenströme (I₁, I₂) in dem Nachtmodus

15 gemeinsam detektierbar sind und in dem Tagmodus getrennt
voneinander detektierbar sind.

2. Ansteuereinrichtung nach Anspruch 1, dadurch
gekennzeichnet, dass zwischen den beiden

20 Detektionseingängen (a₂, a₃) ein Schalter (4) vorgesehen
ist, durch den die beiden Detektionseingänge (a₂, a₃) im
Nachtmodus verbunden sind zur gemeinsamen Auswertung der
Lampenströme (I₁, I₂) durch die beiden Detektionseingänge
und im Tagmodus getrennt sind zur getrennten Auswertung
jedes Lampenstroms durch einen Detektionseingang.

25 3. Ansteuereinrichtung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, dass die Steuereinrichtung (3) einen
Lampenstrom (I₁, I₂) bei Detektion eines Unterschreitens
eines Mindeststromwertes absenkt und einen Burstdmodus zur
Einleitung einer Zündung einleitet.

30 4. Ansteuereinrichtung nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass der Steuerschaltkreis (3)
integriert ist.

5. Treiberschaltung für mindestens zwei Leuchtstoffröhren (6, 7), mit einer Ansteuereinrichtung (2) nach einem der vorherigen Ansprüche zum Anschluss an erste Anschlusskontakte (8, 10) der Leuchtstoffröhren,
zwei Impedanzen, vorzugsweise Kondensatoren (CL12, CL13), die an zweite Anschlusskontakte (9, 11) der Leuchtstoffröhren (6, 7) zur Ausbildung von Spannungsteilerschaltungen anschließbar sind, und
10 einer Transformatorschaltung (5), die mit den Impedanzen über eine gemeinsamen Anschlussleitung (14) verbunden ist.
6. Lampenschaltung (1) mit einer Treiberschaltung (2, 5, CL12, CL13) nach Anspruch 5 und zwei angeschlossenen Leuchtstoffröhren (6, 7).
7. Verfahren zum Betreiben einer Lampenschaltung nach Anspruch 6, bei dem in einem Tagmodus die durch die Leuchtstoffröhren (6, 7) fließenden Lampenströme (I_1 , I_2) in den beiden Detektionseingängen (a₂, a₃) getrennt detektiert und eingestellt werden und in einem Nachtmodus mit vorzugsweise verbundenen beiden Detektionseingängen (a₂, a₃) die Lampenströme (I_1 , I_2) gemeinsam detektiert und eingestellt werden.

Zusammenfassung

Die Erfindung betrifft eine Ansteuereinrichtung für mindestens zwei an eine gemeinsame Transformatorschaltung (5) angeschlossene Leuchtstoffröhren (6, 7).

Um mit relativ geringem Aufwand ein instabiles Verhalten, insbesondere Flackern, der Röhren zu verhindern, weist die Ansteuereinrichtung (2) auf:

einen Steuerschaltkreis (3) mit mindestens zwei Detektions-
eingängen (a2, a3) zur Detektion von durch die
Leuchtstoffröhren (6, 7) fließenden Lampenströmen (I1, I2),
wobei die detektierten Lampenströme (I1, I2) durch den
Steuerschaltkreis (3) in einem Tagmodus mit höheren
Stromstärken und einem Nachtmodus mit niedrigeren

Stromstärken einstellbar sind,
wobei die Lampenströme (I1, I2) in dem Nachtmodus gemeinsam
detektierbar sind und in dem Tagmodus getrennt voneinander
detektierbar sind

20

Fig.

Bezugszeichenliste

- 1 Lampenschaltung
- 2 Ansteuereinrichtung
- 5 3. Steuerschaltkreis
- 4. Schalter
- 5. Transformatorschaltung
- 6. Leuchtstoffröhre
- 7. Leuchtstoffröhre
- 10 8. Anschlusskontakt
- 9. Anschlusskontakt
- 10. Anschlusskontakt
- 11. Anschlusskontakt
- 14. Anschlussleitung
- 15 CL12 Ballastkondensator
- CL13 Ballastkondensator
- a1-4, b1-4 Eingänge von 3
- G Masseanschluss von 3
- VC Betriebsspannungseingang von 3

