Міністерство освіти і науки України Львівський національний університет імені Івана Франка

Факультет прикладної математики та інформатики Кафедра прикладної математики

Звіт з курсу:

"Чисельні методи математичної фізики"

Студентки групи ПМП-42 Волошко Святослав Вороняк Олег Добосевич Богдан-Микола Доманич Арсен Оліщук Вячеслав

Наукові консультанти професор Дияк І.І. доцент Стягар А.О.

Зміст

1	Пос	гановка задач	чi													3
2	Дос.	підження опе	ратора	край	ово	3a ,	цач	i								3
	2.1	Симетричніс	ть													3
	2.2	Додатність							 •			•				4
3	Bap	іаційне форм	улюван	ня												4
4		ельні експери														4
	4.1	Завдання 1														4 5
	4.2	Завдання 2														5
	4.3	Завдання 3							 •			•				6
Bı	існов	ок														8
Лi	терат	rvpa														9

1 Постановка задачі

Необхідно знайти таку функцію $u \in C^2(\bar{\Omega})$, що задовольняє рівняння

$$-a_{11}\frac{\partial^{2} u}{\partial x_{1}^{2}} - a_{22}\frac{\partial^{2} u}{\partial x_{2}^{2}} + du = f, (x_{1}, x_{2}) \in \Omega, \tag{1}$$

та граничні умови

$$\beta_i N u + \sigma_i (u - u_{ci}) = 0, (x_1, x_2 \in \Gamma_i),$$
 (2)

де

$$Nu = a_{11} \frac{\partial u}{\partial x_1} \cos \left(v, x_1 \right) + a_{22} \frac{\partial u}{\partial x_2} \cos \left(v, x_2 \right),$$

$$v_i = \cos(v, x_i)$$
 — зовнішня нормаль до границі $\Gamma = \bigcup_i \Gamma_i$.

2 Дослідження оператора крайової задачі

2.1 Симетричність

Теорема 1. Оператор $A \in$ симетричним, якщо $D_A \subset H \in$ щільною множиною у просторі H і виконується співвідношення

$$(Au, v) = (u, Av) \quad \forall (u, v) \in D_A.$$

Доведення. Оскільки $C_0^{(\infty)}\subset D_A$ і $C_0^{(\infty)}$ є щільною у даному просторі $W_2^{(1)}(\Omega)$ і, як відомо, даний простір є гільбертовим, то множина D_A є щільною у даному просторі.

Розглянемо вираз

$$(Au, v) = \int_{\Omega} \left(-a_{11} \frac{\partial^2 u}{\partial x_1^2} - a_{22} \frac{\partial^2 u}{\partial x_2^2} \right) v d\Omega + d \int_{\Omega} uv d\Omega.$$

Застосуємо формулу Остроградського і отримаємо:

$$\int_{\Omega} \left(v \frac{\partial u}{\partial x_1} + u \frac{\partial v}{\partial x_1} \right) d\Omega = \int_{\Gamma} u v l_1 d\Gamma.$$

Звідси

$$\int_{\Omega} v \frac{\partial u}{\partial x_1} d\Omega = -\int_{\Omega} u \frac{\partial v}{\partial x_1} d\Omega + \int_{\Gamma} u v l_1 d\Gamma. \tag{3}$$

Підставимо $\psi = uv$, $\varphi = 0$.Отримаємо:

$$\int_{\Omega} v \frac{\partial u}{\partial x_2} d\Omega = -\int_{\Omega} u \frac{\partial v}{\partial x_2} d\Omega + \int_{\Gamma} u v l_2 d\Gamma. \tag{4}$$

Використовуючи (3) - (4) отримаємо:

$$(Au, v) = -a_{11} \int_{\Omega} \frac{\partial u}{\partial x_1} \frac{\partial v}{\partial x_1} d\Omega - a_{22} \int_{\Omega} \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_2} d\Omega + d \int_{\Omega} uv d\Omega - \frac{\sigma}{\beta} \int_{\Gamma} (u - u_c) v d\Gamma.$$

Останній вираз є симетричний відносно u, v, якщо $u_c = 0$, таким чином оператор A є симетричним.

2.2 Додатність

$$(Au, u) \ge 0 \forall u \in D_A \text{ i } (Au, u) = 0 \Rightarrow u \equiv 0.$$

Доведення. Розглянемо вираз

$$(Au, u) = a11 \int_{\Omega} \frac{\partial u}{\partial x_1} \frac{\partial u}{\partial x_1} d\Omega - a22 \int_{\Omega} \frac{\partial u}{\partial x_2} \frac{\partial u}{\partial x_2} d\Omega + d \int_{\Omega} uu d\Omega + \frac{\sigma}{\beta} \int_{\Gamma} (u - u_c) u d\Gamma = \frac{\sigma}{\beta} \int_$$

$$=-a11\int_{\Omega}\left(\frac{\partial u}{\partial x_1}\right)^2d\Omega-a22\int_{\Omega}\left(\frac{\partial u}{\partial x_2}\right)^2d\Omega+d\int_{\Omega}u^2d\Omega+\frac{\sigma}{\beta}\int_{\Gamma}u^2d\Gamma+u_c\frac{\sigma}{\beta}\int_{\Gamma}ud\Gamma.$$

Враховуючи симетричність і невід'ємність підінтегральних функцій маємо, що $u_c=0$. Оскільки підінтегральні функції є невід'ємними, тоді для того щоб $(Au,u)\geq 0$ достатньо, щоб

$$a11 \ge 0, a22 \ge 0, d \ge 0, \delta \ge 0, \beta > 0.$$

Hexaй (Au, u) = 0.

$$\left(\frac{\partial u}{\partial x_1}\right)^2 = 0, \left(\frac{\partial u}{\partial x_2}\right)^2 = 0, u^2 = 0$$
$$\Rightarrow u^2 = 0 \Rightarrow u = 0.$$

Звідси можна зробити висновок, що оператор $A \in$ додатним.

3 Варіаційне формулювання

Введемо множину $V = \left\{ u \in W_2^{(1)}(\Omega) \right\}$. Візьмемо деяке $v \in V$, помножимо (1) на v і проінтегруємо результат в області Ω . Отримаємо:

$$\int_{\Omega} \left(-a_{11} \frac{\partial^2 u}{\partial x_1^2} - a_{22} \frac{\partial^2 u}{\partial x_2^2} \right) v d\Omega + \int_{\Omega} du v d\Omega = \int_{\Omega} f v d\Omega, (x_1, x_2) \in \Omega.$$

За формулою Остроградського-Гріна перетворимо перший доданок і отримаємо:

$$-a_{11} \int_{\Omega} \frac{\partial u}{\partial x_1} \frac{\partial v}{\partial x_1} d\Omega - a_{22} \int_{\Omega} \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_2} d\Omega + d \int_{\Omega} uv d\Omega - \frac{\sigma}{\beta} \int_{\Gamma} (u - u_c) v d\Gamma = \int_{\Omega} fv d\Omega.$$
(5)

4 Чисельні експерименти

4.1 Завдання 1

Побудуємо аналітичний розв'язок крайової задачі (1)-(2) та зробимо оцінку відносної та абсолютної похибок у нормах L_2 та $W_2^{(1)}$. Розглянемо задачу (1) з наступними даними

$$a_{11} = 1, a_{22} = 1, d = 1, f = 3.$$
 (6)

Розв'язок будемо шукати в прямокутній області Ω . На Γ_1 задамо однорідну умову Діріхле; на Γ_2 - однорідну умову Неймана. За цих умов задача зводиться до звичайного диференціального рівняння

$$-1\frac{d^2y}{dx^1} + u = 3,$$

з граничними умовами

$$u(a) = 0, \quad u(b) = 0.$$

Розв'язок:

$$u(x) = \frac{-3e^{1-x} - 3e^x + 3 + 3e}{1+e}. (7)$$

Область Ω триангулюємо і будуємо розв'язок методом скінченних елементів.

Норми обчислюватимуться за наступними формулами:

$$||u||_{W_{2}^{(1)}} = \sqrt{\int_{\Omega} (u^{2} + u'^{2}) d\Omega},$$

$$||u||_{L_{2}} = \sqrt{\int_{\Omega} (u^{2}) d\Omega}.$$
(8)

Враховуючи триангуляцію, норма у просторі L_2 матиме вигляд

$$||u||_{L_2} = \sqrt{\sum_{e=1}^n u^2(x_e, y_e) S_e},$$

де (x_e, y_e) і S_e - координати точки перетину медіан і площа трикутного елемента Ω_e відповідно.

Норма у просторі $W_2^{(1)}$ виглядатиме наступним чином:

$$\|u\|_{W_2^{(1)}} = \sqrt{\sum_{e=1}^n (u^2(x_e, y_e) + u'^2(x_e, y_e))S_e}.$$

Значення абсолютної і відносної похибки сіткового розв'язку шляхом порівняння з аналітичним розв'язком наведені в наступній таблиці.

n	$ u_h - u_{exact} _{L_2}$	$ u_h - u_{exact} _{W_2(1)}$
36	0,0167694446882555	0,0850304064352695
152	0,00416111814820238	0,0415156846470005
622	0,00103241205850759	0,0189614872237382
2444	0,0002701884250202	0,0102394701565669

4.2 Завдання 2

Зробимо оцінку порядку збіжності числового розв'язку у випадку, коли відомим є точний розв'язок задачі. Використаємо отримані в попередньому завданні значення абсолютних похибок.

Нехай δ_h та $\delta_{h/2}$ абсолютні похибки в нормах L_2 або $W_2^{(1)}$, обчислені у завданні 1. Використаємо частковий випадок апріорних похибок

$$\delta_h = Ch^p, \quad \delta_{h/2} = C\left(\frac{h}{2}\right)^p.$$

Звідси отримаємо

$$p = \frac{\ln \delta_h - \ln \delta_{h/2}}{\ln 2}.$$

Значення порядків збіжності в просторах наведені в наступній таблиці.

n	ı	$ u_h - u_{exact} _{L_2}$	$ u_h - u_{exact} _{W_2(1)}$	p в L_2	p в $W_2^{(1)}$
36	6	0,0167694446882555	0,0850304064352695	_	_
15	52	0,00416111814820238	0,0415156846470005	2,01079175850789	1,03432234345411
62	22	0,00103241205850759	0,0189614872237382	2,01095235472069	1,13058436547492
244	44	0,0002701884250202	0,0102394701565669	1,93398112176021	0,888931060173303

Порядок збіжності

4.3 Завдання 3

Застосуємо схему Ейткена для оцінки порядку збіжності у випадку коли аналітичний розв'язок відсутній.

Виберемо три сітки з кроками $h_1 = h, h_2 = h/2, h_3 = h/4.$

Обчислимо норми наближеного розв'зку L_2 або $W_2^{(1)}$. Позначимо їх U_h , $U_{h/2}$, $U_{h/4}$. Тоді, якщо враховувати головний член похибки U, можна записати

$$U = U_h + Ch^p,$$

$$U = U_{h/2} + C\frac{1}{2^p}h^p,$$

$$U = U_{h/4} + C\frac{1}{4^p}h^p.$$

З першого та другого рівняння маємо

$$Ch^p\left(1-\frac{1}{2^p}\right)=U_{h/2}-U_h.$$

З другого та третього рівняння отримаємо

$$\frac{1}{2^p}Ch^p\left(1-\frac{1}{2^p}\right) = U_{h/4} - U_{h/2}.$$

З двох останніх рівнянь матимемо

$$2^p = \frac{U_{h/2} - U_h}{U_{h/4} - U_{h/2}}.$$

Звідси можемо знайти р

$$p = \frac{1}{\ln 2} \left(\ln \left(u_{h/2} - u_h \right) - \ln \left(u_{h/4} - u_{h/2} \right) \right).$$

Значення норм наближеного розв'язку у просторах L_2 та $W_2^{(1)}$. Отримані результати показують хороший порядок збіжності, хоча дещо відрізняються від теоретичних значень, а саме порядок збіжності в просторі L_2 збігається до 1. Дану проблему потрібно додатково дослідити.

n	$ u_h _{L_2}$	$ u_h _{W_2(1)}$	p в L_2	p в $W_2^{(1)}$
36	0, 234734921005014	0,800613779412838	_	_
152	0, 245224401446447	0,819293534046578	_	_
622	0, 247837308661578	0,824103013558215	2,00521542070652	0,978761413813927
2444	0, 248473038545618	0,825334716811595	2,03917008262133	0,982613026852217

Порядок збіжності за схемою Ейткена

Висновок

В ході виконання даного завдання ми розглянули крайову задачу з різноманітними граничними умовами. Під час проведення досліджень оператора задачі отримано можливість доведення його симетричності та додатності. Шляхом нескладних обчислень було отримано аналітичний розв'язок крайової задачі. Проведено оцінку абсолютної та відносної похибок у нормах та оцінку порядку збіжності чисельного розв'язку. Ці результати дозволяють нам зробити висновок щодо можливості стверджувати, що метод скінченних елеменів за певних обставин можна вважати достатньо ефективним для отримання чисельного розв'язку крайових задач. Аналогічний висновок можна зробити щодо його зручності.

Література

[1] Савула Я.Г. "Числовий аналіз задач математичної фізики варіаційними методами'.