Oct 23, 2015

Outline

Introduction

Selfish Routing Game Braess's Paradox ER Random Network

Braess's Paradox in ER Network

Model Main Result Proof Approach

Related Work

Outline

Introduction

Selfish Routing Game

Braess's Paradox ER Random Network

Braess's Paradox in ER Network

Model Main Result Proof Approach

Related Work

Selfish Routing Game

- Source sink pair (s, t)
- Traffic rate r
- Inifinite number of players (Non-atomic)
- Non-decreasing latency functions
- Nash flow exists
 - Same latency for all players
 - Same common latency in all Nash flows
 - In general inefficient (PoA, PoS...) [2]

Source - sink pair (s, t)

- Traffic rate r
- Inifinite number of players (Non-atomic)
- Non-decreasing latency functions
- Nash flow exists
 - Same latency for all players
 - Same common latency in all Nash flows
 - In general inefficient (PoA, PoS...) [2]

Outline

Introduction

Selfish Routing Game

Braess's Paradox

ER Random Network

Braess's Paradox in ER Network

Model Main Result Proof Approach

Related Work

Braess's Paradox

Fig. 1: Braess's Paradox

- Counterintuitive
- Removing edges can decrease latency (Adding edges can increase latency)
- PoA = 4/3, the worst PoA in affine latency functions
- Braess ratio = largest factor of latency improvement by removing edges

Braess's Paradox

Fig. 1: Braess's Paradox

- Counterintuitive
- Removing edges can decrease latency (Adding edges can increase latency)
- PoA = 4/3, the worst PoA in affine latency functions
- Braess ratio = largest factor of latency improvement by removing edges

Braess's Paradox

Fig. 1: Braess's Paradox

- Counterintuitive
- Removing edges can decrease latency (Adding edges can increase latency)
- PoA = 4/3, the worst PoA in affine latency functions
- Braess ratio = largest factor of latency improvement by removing edges

History

- Inspired in 1968
- Not much knowledge about its mechanism until 2000
- Happens in
 - Many real-world networks, by transportation scientist
 - ER random network (discussed today) [1]
- Doesn't happen in
 - Constant latency (reduced to minimum-cost flow problem)
 - Series-Parallel Network
- NP-hard to find the BP and decide which edges to remove
 [3]

Braess's Paradox Properties

- History
 - Inspired in 1968
 - Not much knowledge about its mechanism until 2000
- Happens in
 - Many real-world networks, by transportation scientist
 - ER random network (discussed today) [1]
- Doesn't happen in
 - Constant latency (reduced to minimum-cost flow problem)
 - Series-Parallel Network
- NP-hard to find the BP and decide which edges to remove
 [3]

- History
 - Inspired in 1968
 - Not much knowledge about its mechanism until 2000
- Happens in
 - Many real-world networks, by transportation scientist
 - ER random network (discussed today) [1]
- Doesn't happen in
 - Constant latency (reduced to minimum-cost flow problem)
 - Series-Parallel Network
- NP-hard to find the BP and decide which edges to remove
 [3]

- History
 - Inspired in 1968
 - Not much knowledge about its mechanism until 2000
- Happens in
 - Many real-world networks, by transportation scientist
 - ER random network (discussed today) [1]
- Doesn't happen in
 - Constant latency (reduced to minimum-cost flow problem)
 - Series-Parallel Network
- NP-hard to find the BP and decide which edges to remove
 [3]

Outline

Introduction

ER Random Network

Braess's Paradox in ER Network

Proof Approach

Related Work

ER Network Definition

- Graph G(n, p)
- Undirected graph on *n* vertices
- Edge (v, w) exists with probability p, independently, for all pairs of vertices (v, w).

- Very simple, good statistical properties
- Sharp threshold for phase changes: giant component, connectivity, etc
- Not a good model for real-world simulation
- Modified version: Small-World networks

Outline

ER Random Network

Braess's Paradox in ER Network

Model

Proof Approach

Related Work

Model Definition

- Underlying graph $G \sim G(n, p)$ with $p = \Omega(n^{(-1/2)+\zeta})$ for some $\zeta > 0$
- Affine latency functions: $I(x) = ax + b, a, b \ge 0$
 - (Simplest functions for Braess's Paradox to occur)
- Independent coefficients model: $a \sim A, b \sim B$
 - Reasonable assumptions:
 A bounded from 0, B dense around 0
- The 1/x model: I(x) = x (not independent)
 with probability q and I(x) = 1 with probability 1 q

Model Definition

- Underlying graph $G \sim G(n, p)$ with $p = \Omega(n^{(-1/2)+\zeta})$ for some $\zeta > 0$
- Affine latency functions: $I(x) = ax + b, a, b \ge 0$
 - (Simplest functions for Braess's Paradox to occur)
- Independent coefficients model: $a \sim A, b \sim B$
 - Reasonable assumptions:
 A bounded from 0, B dense around 0
- The 1/x model: I(x) = x (not independent) with probability q and I(x) = 1 with probability 1 q

Model Delimition

- Underlying graph $G \sim G(n, p)$ with $p = \Omega(n^{(-1/2)+\zeta})$ for some $\zeta > 0$
- Affine latency functions: $I(x) = ax + b, a, b \ge 0$
 - (Simplest functions for Braess's Paradox to occur)
- Independent coefficients model: $a \sim A, b \sim B$
 - Reasonable assumptions:
 A bounded from 0, B dense around 0
- The 1/x model: I(x) = x (not independent) with probability q and I(x) = 1 with probability 1 q

- Underlying graph $G \sim G(n, p)$ with $p = \Omega(n^{(-1/2)+\zeta})$ for some $\zeta > 0$
- Affine latency functions: $I(x) = ax + b, a, b \ge 0$
 - (Simplest functions for Braess's Paradox to occur)
- Independent coefficients model: $a \sim A, b \sim B$
 - Reasonable assumptions:
 A bounded from 0, B dense around 0
- The 1/x model: I(x) = x (not independent)
 with probability q and I(x) = 1 with probability 1 q

00 00 000

Outline

Introduction

Selfish Routing Game Braess's Paradox ER Random Network

Braess's Paradox in ER Network

Mode

Main Result

Proof Approach

Related Work

Braess's Paradox is dense

Theorem

Let $p = \Omega(n^{(-1/2)+\zeta})$ be an edge sampling probability with for some $\zeta > 0$, \mathcal{A} , \mathcal{B} reasonable distributions, there is a constant $\rho = \rho(\zeta, \mathcal{A}, \mathcal{B}) > 1$ such that, with high probability, a random network (G, I) admits a choice of traffic rate r such that the Braess ratio of the instance (G, r, I) is at least ρ .

Theorem

Let p, q, ϵ be constants. With high probability, a sufficiently large random network (G, I) from $\mathcal{G}(n, p, q)$ admits a choice of traffic rate r such that the Braess ratio of the instance (G, r, I) is at least $\frac{4-3pq}{3-2pq} - \epsilon$.

Braess's Paradox is dense

Theorem

Let $p = \Omega(n^{(-1/2)+\zeta})$ be an edge sampling probability with for some $\zeta > 0$, \mathcal{A}, \mathcal{B} reasonable distributions, there is a constant $\rho = \rho(\zeta, \mathcal{A}, \mathcal{B}) > 1$ such that, with high probability, a random network (G, I) admits a choice of traffic rate r such that the Braess ratio of the instance (G, r, I) is at least ρ .

Theorem

Let p, q, ϵ be constants. With high probability, a sufficiently large random network (G, I) from $\mathcal{G}(n, p, q)$ admits a choice of traffic rate r such that the Braess ratio of the instance (G, r, I) is at least $\frac{4-3pq}{3-2pq} - \epsilon$.

Outline

ER Random Network

Braess's Paradox in ER Network

Proof Approach

Related Work

Proof Approach

- Want to show a random network has a "global" structure similar to the 4-node Braess network
- Regard G as two sets of parallel links, latency balanced

Proof Approach

- Want to show a random network has a "global" structure similar to the 4-node Braess network
- Argue that all "internal vertices" in the Nash flow have almost equal distance from source

1 Tool Apprount

- Want to show a random network has a "global" structure similar to the 4-node Braess network
- Argue that all "internal vertices" in the Nash flow have almost equal distance from source
- Regard G as two sets of parallel links, latency balanced

Proof Approach cont'd

- Partition all links into 3 groups: "1-type", "x-type", others
- Delete links inside G to pair up 1-type and x-type edges (Analogous to the removal of the intermediate link in Braess network)
- Argue that latency improved after removal of links

00

Proof Approach cont'd

- Partition all links into 3 groups: "1-type", "x-type", others
- Delete links inside G to pair up 1-type and x-type edges (Analogous to the removal of the intermediate link in Braess network)
- Argue that latency improved after removal of links

00

Proof Approach cont'd

- Partition all links into 3 groups: "1-type", "x-type", others
- Delete links inside G to pair up 1-type and x-type edges (Analogous to the removal of the intermediate link in Braess network)
- Argue that latency improved after removal of links

Braess's Paradox in Other Random Networks

- In 2010, the main theorem is expanded to sparser, more general networks. [4]
- The proof idea is all the same.

Theorem 3. Let G be an Erdős-Rényi random graph on n vertices with edge probability p. Let A and B be reasonable distributions and let all latency functions have the form $\ell_e(f_e) = a_e f_e + b_e$ where (a_e, b_e) is distributed according to $A \times B$. There are constants $\delta > 0$, c > 1, and $\rho > 1$ such that, if $\mathbb{P}\left(B \le \frac{\delta}{\log(n)}\right) pn \ge c\log(n)$, then there is a flow rate R such that the instance (G, ℓ, R) has Braess's ratio at least ρ with high probability.

Braess's Paradox in Other Random Networks

- In 2012, analogous result was proved in expander networks with continuous convex latency functions. [5]
- More, more and more x-type, 1-type analysis...

Theorem 1 (nontechnical). If G is a sufficiently good expander with source-sink pair (s,t) with $\deg(s) \approx \deg(t)$, and the latency functions are randomly chosen from a reasonable class of continuous, convex, latency functions, then with high probability there is a subgraph G' and a traffic rate R such that the selfish routing on G' incurs less latency than the selfish routing on G.

Tinding Boot Gubiletiion

- In 2013, the same type of analysis leads to an approximation algorithm [6], that runs in
 - polynomial time if the graph has average degree O(poly(lnn)) and the traffic rate is O(poly(lnlnn))
 - quasipolynomial time if average degree o(n) and traffic rate O(poly(lnn))
- The same property that causes Braess's Paradox to be everywhere makes it easy to find.

Braess's Paradox in Reality

 An 2006 conference talk data [7]: Braess's Paradox in Boston road network

Boston Road Network

 Find optimal solution and the best Nash flow for all numbers of agents

Congestion distribution on the edges

User Optimum

Global Optimum

Braess's Paradox in Reality

- PoA is small, due to affine costs
- They identified which roads are Braess-like (can be removed)
- They also simulated Regular-Like, Barabasi-Albert, ER and Small-World random graphs with various graph sizes

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic
- Need extension to more real-world like network models

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- Magic number 4/3:
 - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic network
- Need extension to more real-world like network models

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- Magic number 4/3:
 - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic network
- Need extension to more real-world like network models

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- Magic number 4/3:
 - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic network
- Need extension to more real-world like network models

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- Magic number 4/3:
 - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic network
- Need extension to more real-world like network models

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- Magic number 4/3:
 - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic network
- Need extension to more real-world like network models

- Braess's Paradox is dense, easy to find and to resolve in random networks.
- Magic number 4/3:
 - PoA and Braess ratio for the original four-node network
 - The largest PoA for affine-cost network
 - Limit of Braess's ratio for 1/x model
 - NP-hard for any ⁴/₃-approximation algorithm in deterministic network
- Need extension to more real-world like network models

- G. Valiant and T.Roughgarden, *Braess's Paradox in Large Random Graphs*, Random Structures and Algorithms, 37(4):495-515, 2010.
- T.Roughgarden, Selfish Routing and the Price of Anarchy, MIT press, 2005.
- T.Roughgarden, On the Severity of Braess's Paradox: Designing Networks for Selfish Users is Hard, Journal of Computer and System Sciences, 72(5):922-953, 2006.
- F. Chung and S.J. Young, *Braess's Paradox in Large Sparse Graphs*, WINE '10, 2010.
- F. Chung, S.J. Young and W. Zhao, *Braess's Paradox in Expanders*, Random Structures and Algorithms, 41(4):451-468, 2012.

D. Fotakis, A.C. Kaporis, T. Lianeas and P.G. Spirakis, Resolving Braess's Paradox in Random Networks, WINE '13, 2013.

