1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (20/02/04)

1.— Sea \(\mathbb{R} \) la relación en \(\mathbb{Z} \) definida por:

$$a \Re b \iff \begin{cases} 8 | a^2 + b^2 & \text{si } a \text{ y } b \text{ son pares} \\ 8 | a^2 + 7b^2 & \text{en los otros casos.} \end{cases}$$

- (i) Probar que si a y b son de distinta paridad, entonces no pueden estar relacionados.
- (ii) Probar que R es una relación de equivalencia.
- (iii) Describir las clases de 0, de 1 y de 2.
- **2.** Sean $a, b \in \mathbb{Z}$ que verifican que el resto de dividir a a por b es 24 y el resto de dividir a 3b por 72 es 48. Determinar (a:b).
- 3.— Sea $w \in \mathbb{C}$ una raíz primitiva de 1 de orden 30 y sea $z \in \mathbb{C}$ una raíz primitiva de 1 de orden 24. Determinar todos los $n \in \mathbb{N}$ para los cuales vale simultáneamente:

$$w^{7n-3} = 1$$
 y $z^{10n-6} = 1$.

4.— Hallar la forma binomial de todos los $z\in\mathbb{C}$ que verifican simultáneamente las condiciones:

$$|z|^4 - 2i|z|^3 - 3|z|^2 + 10i|z| - 10 = 0$$
 y Arg $(z^3) = \frac{3\pi}{2}$.

5.— Sea la sucesión $(f_n)_{n\in\mathbb{N}}$ de polinomios definida por:

$$f_1 := X^3 + X^2 - X - 1$$
 , $f_{n+1} := f_n^n \quad \forall n \in \mathbb{N}$.

Determinar y probar una fórmula para la escritura de f_n como producto de polinomios irreducibles en $\mathbb{C}[X]$, para todo $n \in \mathbb{N}$.

Se considerarán sólo las respuestas debidamente justificadas.