Caderno de InfraCOM

Marconi Gomes

August 21, 2019

1 Introdução

- Noções de hosts
- Aplicações
- Meios de comunicação (cabeado ou não)

1.1 Componentes ou comutadores e Infraestrutura

- \rightarrow Roteadores, Switches, etc...
- \rightarrow ISPs (Internet Service Providers) conectados
- \rightarrow Protocolos
- \rightarrow RFCs: Request for comments (Definição: São documentos para disponibilização de protocolos públicos, gerenciados por força tarefa de engenheiros da internet.)
- \rightarrow IETF: Internet Engineering Task Force

1.2 Protocolos

→ O que são: Conjunto de **regras** que definem o **formato**, **ordem e ações** sobre a **transmissão** das mensagens enviadas e recebidas entre entidades de redes.

Exemplo: O protocolo para abrir um site (TCP) é dado por fazer uma requisição, o servidor responde com um arquivo e etc.

1.3 Internet

Definição: São sistemas finais conectados à outras redes através de ISPs, ou seja, a internet é uma rede de redes ISPs conectados, possibilitando assim com que dois hosts possam se comunicar, pois existe um caminho entre eles.

A internet é muito complexa e sua evolução foi guiada por **políticas nacionais e enconômicas**.

Pergunta: Como podemos refazer os passos para chegar (aproximadamente) ao estado atual da internet?

Resposta: A dissipação de ISPs (nacionais e continentais) especializados, que se comunicam com outros ISPs de mesmo tipo utilizando pontos de troca de tráfego (Internet eXchange Point - IXP), até para casos que um IXP não esteja disponível possa ser utilizado outro caminho de comunicação.

Categorizando os ISPs, ficariam da seguinte forma:

- ISP Comerciais (Tier 1): Google, Embratel, etc...
- Redes de provedores de conteúdo: Google, Amazon, etc... Essas conectam a internet aos seus datacenters
- IXP: Internet eXchange Points (Conexões geralmente intercontinentais).
- ISP Regionais (Nordeste, Norte, etc)
- ISP de acesso (Cidades)

Conceitos:

- → Endpoints: Hosts (Computadores e servidores).
- → Meios de acesso: Tipo de transmissão, se é cabeada ou não.
- \rightarrow Núcleo: cabos interconectados.

1.4 Tecnologias de conexão

- \rightarrow **DSL:** Usam o mesmo cabo para transmissão de telefonia e internet (cabo com par) que é levado até o DSLAM (DSL Access Multiplexer) este que divide os dados respectivamente pelo seu tipo. Tem respectivamente US \leq 2,5Mbps e DS \leq 24Mbps.
- → Coaxial: Usam um único cabo coaxial para transmissão de dados de internet e TV (cada um usando faixas de frequência reservadas para cada serviço) e nas pontas são usados multiplexadores para dividir e categorizar a banda, chegando até o cable headend. Geralmente usam do tipo HFC assimétrico, além de compartilhamento de estrutura podendo tornar a rede mais lenta.
- \rightarrow Redes Residenciais: Normalmente usam cabos Ethernet, com geralmente um AP usando padrão IEEE 802.11*
- → Redes Corporativas: Usualmente usam a mesma infraestrutura de uma rede residencial (em questão de cabos), porém usando Switches e ISPs institucionais.
- → Redes Sem Fio: Padrão WiFi IEEE 802.11, respectivamente com suas transmissões: b/g:11/54Mbps, n:até 600Mbps e ac:até 1Gbps.

1.5 Hosts

- \rightarrow A função de transmissão de um host é receber mensagens da aplicação (qualquer), quebra em pequenos pacotes de L bits e os transmite a uma taxa R de transmissão.
- \rightarrow O atraso de transmissão do pacote é dado por $\frac{L(tamanho)}{R(velocidade)}$.
- → Os meios físicos de transmissão são os que transferem bits. Geralmente divididos por meios **guiados** (cabos) ou **não guiados** (ondas magnéticas).

1.6 Comutação de circuitos

Definição: Estabelecer um caminho exclusivo (no sentido de não poder ser usado por outros dispotivos ao mesmo tempo) para a comunicação entre dois dispositivos. O segmento de circuito (ou seja, o caminho/ligação, geralmente formado por 2 ou mais encaminhadores/roteadores) fica ocioso se não estiver sendo usado pela "chamada".

No mundo real, para se realizar a multiplexação de frequências usa-se o FDM - (Frequency Division Multiplexing) ou o TDM - (Time Division Multiplexing).

 \rightarrow O FDM trabalha de forma a dividir o sinal para transmitir as informações em cada

frequência específica para dispositivos específicos. A divisão pode ser feita de forma fixa ou sob demanda, ou seja, dividir mais ou menos o canal disponível, assim no método FDM todos podem falar ao mesmo tempo.

 \rightarrow Já no TDM, como o nome sugere, toda a frequência do meio de comunicação é usada, entretanto cada dispositivo possui um tempo limite de tempo para transmitir os dados de forma padronizada. Dessa forma, o modo TDM não permite que dois ou mais dispositivos falem ao mesmo tempo. Apesar de parecer nos dias de hoje, não é o que acontece, pois o TDM aplicado atualmente é tão rápido que o usuário não percebe a divisão de tempo. **Observação:** O meio de comunicação usado para transmitir informação, tanto no TDM quanto no FDM, pode ser tanto com cabos ou sem cabos (Wireless ou não).

1.7 Comutação de pacotes

 \rightarrow Esse novo conceito permite que mais usuários se comunicando usando a rede. Supondo que casa usuário quando ativo transmite a 100kbps e fica ativo à 10% do tempo total, se houvessem 35 usuários nessa mesma rede com a mesma velocidade, a probabilidade de mais que 10 usuários estejam ativos ao mesmo tempo é menor do que 0,004s.

1.8 CP vs CI

Pontos fortes da CP:

- \rightarrow É excelente para transmissão de rajada (ou seja, envia uma grande quantidade de dados e depois fica em silêncio).
- \rightarrow Uso compartilhado de recursos.
- \rightarrow É mais simples, não precisa estabelecer uma chamada (reservar os recursos para única e exclusivamente para aqueles dois dispositivos se comunicarem).

Pontos fracos da CP:

→ Pode haver congestionamento excessivo durante a transmissão (mesmo que seja de probabilidade mínima, ainda pode acontecer).

Para isso eu preciso de protocoles que garantam a transferência de dados sem erros ou falta de informações, além disso para controlar o congestionamento.

Pergunta: E qual o impacto do congestionamento?

Resposta: O atraso e perda de pacotes.

Pontos fortes da CI:

 \rightarrow Garantia de desempenho (usando toda a banda necessária), já que o canal de comunicação é exclusivo.

1.9 Relações MTU & Camada

Mensagem \rightleftharpoons Aplicação Segmento \rightleftharpoons Transporte Datagrama \rightleftharpoons Rede Quadro \rightleftharpoons Enlace Bits \rightleftharpoons Física

References