Linear Algebra [1]

5.3 Similarity and Diagonalization

Diagonalization Revisited

Thm. [A] $A: n \times n$ matrix.

A is diagonalizable if and only if it has eigenvectors X_1, X_2, \dots, X_n s.t. $P = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}$ is invertible. In this case, $P^{-1}AP = D = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, where λ_i is the eigenvalue of A corresponding to X_i .

Thm. [A'] $A: n \times n$ matrix.

A is diagonalizable if and only if \mathbf{F}^n has a basis $\{X_1, X_2, \cdots, X_n\}$ of eigenvectors of A.

Thm. [B] Let X_1, X_2, \dots, X_k be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ of A. Then $\{X_1, X_2, \dots, X_k\}$ is linearly independent.

Proof. Assume that $\{X_1, X_2, \cdots, X_k\}$ is linearly dependent. We can find j s.t. $\{X_1, X_2, \cdots, X_{j-1}\}$ is linearly independent, and $\{X_1, X_2, \cdots, X_j\}$ is linearly dependent. Then we have

$$(*) a_1 X_1 + a_2 X_2 + \dots + a_j X_j = O,$$

where not all a_i 's are zero, and in particular $a_j \neq 0$. Multiplying (*) by A from the left, we get

$$a_1\lambda_1 X_1 + a_2\lambda_2 X_2 + \dots + a_j\lambda_j X_j = O.$$

On the other hand, multiplying (*) by λ_j , we obtain

$$a_1\lambda_j X_1 + a_2\lambda_j X_2 + \dots + a_j\lambda_j X_j = O.$$

Subtracting two equations, we have

$$a_1(\lambda_1 - \lambda_j)X_1 + a_2(\lambda_2 - \lambda_j)X_2 + \dots + a_{j-1}(\lambda_{j-1} - \lambda_j)X_{j-1} = O,$$

and $a_1(\lambda_1 - \lambda_j) = a_2(\lambda_2 - \lambda_j) = \cdots = a_{j-1}(\lambda_{j-1} - \lambda_j) = 0$. Since λ_i 's are distinct, we have

$$a_1 = a_2 = \dots = a_{j-1} = 0,$$

and $a_j X_j = 0$, $a_j = 0$, a contradiction.

Therefore, $\{X_1, X_2, \cdots, X_k\}$ is linearly independent. \square

Linear Algebra [4]

Cor. [B'] If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

Fact. If one chooses linearly independent sets of eigenvectors corresponding to distinct eigenvalues, and combines them into a single set, then that combined set will be linearly independent.

Def. An eigenvalue λ of A is said to have multiplicity m if it occurs m times as a root of $c_A(x)$.

Def. The set

$$E_{\lambda}(A) = \{X \in \mathbf{F}^n | AX = \lambda X\}$$

of λ -eigenvectors is a subspace of \mathbf{F}^n called the eigenspace of A corresponding to λ .

Note that an eigenspace $E_{\lambda}(A)$ is merely the null space of $\lambda I - A$.

Thm. [C] $A: n \times n$ matrix.

A is diagonalizable if and only if $\dim E_{\lambda}(A)$ is equal to the multiplicity of λ for every eigenvalue λ of A.

Proof. (\Rightarrow) We omit it.

(\Leftarrow) Let $\lambda_1, \lambda_2, \cdots, \lambda_k$ be distinct eigenvalues. Assume that $\dim E_{\lambda_i}(A)$ is equal to the multiplicity of λ_i for each $i=1,2,\cdots,k$. Choose a basis B_i of $E_{\lambda_i}(A)$ for each λ_i . Let $B=B_1\cup B_2\cup\cdots\cup B_k$. Then |B|=n and B is linearly independent from **Fact**. Thus B is a basis of \mathbf{F}^n , and A is diagonalizable by **Thm A'**. \square

Thm. [C'] $A: n \times n$ matrix.

A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields m basic solutions of the equation

$$(\lambda I - A)X = O.$$

Fact. Let λ be an eigenvalue of multiplicity of m of A. Then

$$\dim E_{\lambda}(A) \leq m$$
.

• Diagonalization Algorithm

Let A be an $n \times n$ matrix.

- 1. Find all the eigenvalues λ of A.
- 2. For each λ , compute the basic solutions of $(\lambda I A)X = O$. If there are n basic solutions in total, A is diagonalizable.
- 3. Construct the matrix P whose columns are (scalar multiples of) basic solutions.
- 4. $P^{-1}AP$ is diagonal. (P is invertible.)

Eg.
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $c_A(x) = x(x-1)^2$. For $\lambda = 1$,

$$\lambda I - A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

A is not diagonalizable.

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
 is diagonalizable.

Linear Algebra [10]

Similar Matrices

Def. $A, B: n \times n$ matrices

We say that A and B are similar if $B = P^{-1}AP$ for some invertible P. We will write $A \sim B$ for similar matrices A and B.

Eg.
$$\begin{bmatrix} 1 & -2 \\ -3 & 2 \end{bmatrix}$$
 and $\begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$ are similar.

Indeed, for $P = \begin{bmatrix} \frac{2}{3} & 1 \\ -1 & 1 \end{bmatrix}$, we have

$$P^{-1} \begin{bmatrix} 1 & -2 \\ -3 & 2 \end{bmatrix} P = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}.$$

Observations:

1. A is diagonalizable if and only if A is similar to a diagonal matrix.

- 2. Assume that A and B are similar. Then $A^{-1} \sim B^{-1}$, $A^T \sim B^T$, $A^k \sim B^k$. If one of A and B is diagonalizable, then the other is also diagonalizable.
- 3. If A is diagonalizable, then A^{-1} , A^T and A^k are also diagonalizable.

Def. Let $A = [a_{ij}]$. The trace of an $n \times n$ matrix A is defined by

$$tr A = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}.$$

Linear Algebra [12]

Prop.

1. $\operatorname{tr}(A+B) = \operatorname{tr}A + \operatorname{tr}B$,

- 2. $\operatorname{tr}(kA) = k \operatorname{tr} A$,
- 3. $\operatorname{tr}(A^T) = \operatorname{tr} A$,
- 4. $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Proof. $A = [a_{ij}], B = [b_{ij}], AB = [c_{ij}], and BA = [d_{ij}].$

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = \sum_{k=1}^{n} d_{kk} = \operatorname{tr}(BA).$$

Linear Algebra [13]

Thm. If $A \sim B$, then A and B have the same determinant, rank, trace, characteristic polynomial, and eigenvalues.

Proof. Let $B = P^{-1}AP$ for some invertible P.

$$\det B = \det(P^{-1}AP) = \det P^{-1} \det A \det P = \det A.$$

$$trB = tr(P^{-1}AP) = tr((AP)P^{-1}) = trA.$$

$$c_B(x) = \det(xI - B) = \det(P^{-1}xIP - P^{-1}AP)$$

= $\det[P^{-1}(xI - A)P] = \det(xI - A) = c_A(x).$

$$rankB = rank(P^{-1}AP) = rank(AP) = rankA.$$