INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Circuitos

SUMÁRIO

> Circuito

> Circuitos Combinacionais

> Circuitos como Memória

Circuito

Circuito é uma combinação de portas que interagem, projetada para realizar uma função lógica específica

Circuito

- No circuito combinacional a saída é unicamente determinada pelos valores de entrada
- □ No circuito sequencial a saída é função de seus valores de entrada e do estado corrente do circuito

Portas são combinadas em circuitos usando a saída de uma porta como entrada de outra.

Portas são combinadas em circuitos usando a saída de uma porta como entrada de outra.

Α	В	С	D	Е	Saída
1	1	1	1	1	1
1	1	0	1	0	1
1	0	1	0	1	1
1	0	0	0	0	0
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	0	0	0

A	В	С	D (A∧B)	E (A\C)	Saída (A∆B) ∀(A∆C)
1	1	1	1	1	1
1	1	0	1	0	1
1	0	1	0	1	1
1	0	0	0	0	0
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	0	0	0

□ Considere a seguinte proposição: A\(B\C)

					$\mathbf{A} \longrightarrow \mathbf{A} \wedge (\mathbf{B} \vee \mathbf{C})$
A	В	С	B∀C	A\(B\C)	\
					B (BVC)
1	1	1	1 /	1	\c
1	1	0	1	1	
1	0	1	1	1	
1	0	0	0	0	
0	1	1	1	0	
0	1	0	1	0	
0	0	1	1	0	
0	0	0	0	0	

A A/DV/CV

A	В	С	D	E	Saída
			(A∧B)	(A ∧ C)	/(A∧B) ∀(A∧C)
1	1	1	1	1 /	1
1	1	0	1	0	1
1	0	1	0	1	1
1	0	0	0	0	0
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	0	0	0

Equivalência de circuitos ocorre quando temos a mesma saída para cada correspondente entrada de dois circuitos

A∧(B∀C)	(A∧B)∀(A∧C)
1	1
1	1
1	1
0	0
0	0
0	0
0	0
0	0

Equivalência de circuitos ocorre quando temos a mesma saída para cada correspondente entrada de dois circuitos

Somador é um circuito eletrônico que realiza a operação de adição com valores binários

Α	В	Soma	Vai um
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	0
		Δ⊕R	ΔΛR

Semissomador é um circuito que calcula a soma de dois bits e gera o bit apropriado de vai-um

Somador completo é um circuito que calcula a soma de dois bits, levando em conta a entrada de um bit de vai-um

Registrador (latch) S-R armazena um único dígito binário (1 ou 0) e pode ser projetado usando uma variedade de portas.

Registrador (latch) S-R armazena um único dígito binário (1 ou 0) e pode ser projetado usando uma variedade de portas.

INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Circuitos