Exercise 16.6. Let G = (V, E) be an undirected graph with distinct nonnegative edge weights $w : E \to \mathbb{R}$. For a spanning tree T, we say that the *bottleneck weight of* T is the maximum weight edge in T, $\max_{e \in T} w(e)$.

Exercise 16.6.1. Prove that the MST is also a minimum bottleneck weight spanning tree of G.

Solution. Let α be the MST of G. Assume ad absurdum that there exists an minimum bottleneck weight spanning tree (MBWST) β of G such that $\alpha \neq \beta$. Then by definition of bottleneck weight, we have that

$$\max_{e \in \alpha} \{w(e)\} > \max_{e \in \beta} \{w(e)\}.$$

That is to say, there exists some edge $e = (v_1, v_2) \in \alpha$ such that w(e) is greater than w(e') for every $e' \in \beta$. Obviously $e \notin \beta$, but by definition of spanning tree β spans e. Since α does not contain any cycles by definition of tree, WLOG there exists some $f = (v_1, v_3) \in \beta$ such that $f \notin \alpha$. Then we have that

$$w(e) > w(f)$$
.

By the spanning property of α , we know there exists an edge $(v_3, v_k) \in \alpha$ for some arbitrary vertex v_k . Thus by removing e and adding f to α , we can preserve the spanning property of α while reducing its total weight, contradicting that α is the MST of G. Thus the minimum spanning tree of G must also be a minimum bottleneck spanning tree of G.

CS 390ATA Homework 7 (16.6)

Spring 2025 Page 2

Exercise 16.6.2. Design and analyze a O(m+n)-time algorithm for computing a minimum bottleneck weight spanning tree of G. (This is faster than any of our algorithms for MST.)⁴

⁴Here's step 1: compute the median edge weight in O(m) time.

 \Box