Semaine 14 du 20 janvier 2025 (S4)

XII – Variables aléatoires discrètes

Le chapitre XII reste au programme :

1 Variables aléatoires discrètes

- 1.1 Définition
- 1.2 Évènements associés à une variable aléatoire
- 1.3 Fonction d'une variable aléatoire
- 2 Loi d'une variable aléatoire discrète
- 2.1 Définition
- 2.2 Loi conditionnelle
- 3 Lois usuelles
- 3.1 Rappels : lois usuelles finies
- 3.2 Loi géométrique
- 3.3 Loi de Poisson
- 4 Couples de variables aléatoires
- 4.1 Définition, loi conjointe, lois marginales
- 4.2 Extension aux *n*-uplets de variables aléatoires

5 Variables aléatoires indépendantes

- 5.1 Définition
- 5.2 Évènements indépendants et variables aléatoires indépendantes
- 5.3 Extension au cas de n variables aléatoires
- 5.4 Fonctions de variables aléatoires indépendantes
- 5.5 Familles infinies de variables aléatoires indépendantes

6 Exercices à connaître

6.1 Premier tirage d'une boule (Banque CCP MP)

Soit $n \in \mathbb{N}^*$. Une urne contient n boules blanches numérotées de 1 à n et deux boules noires numérotées 1 et 2.

On effectue le tirage une à une, sans remise, de toutes les boules de l'urne.

On note X la variable aléatoire égale au rang d'apparition de la première boule blanche.

On note Y la variable aléatoire égale au rang d'apparition de la première boule numérotée 1.

- 1) Déterminer la loi de X.
- 2) Déterminer la loi de Y.

6.2 Loi d'un couple et lois marginales

Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On suppose que la loi conjointe de X et Y vérifie

$$\forall (j,k) \in \mathbb{N}^2, \ P(X=j,Y=k) = a \frac{j+k}{2^{j+k}} \text{ avec } a \in \mathbb{R}$$

- 1) Déterminer la valeur de a.
- 2) Déterminer les lois marginales X et Y.
- 3) Les variables X et Y sont elles indépendantes?
- 4) Calculer P(X = Y).

6.3 Max et min de deux lois géométriques (Banque CCP MP) XIII - Intégrales à paramètre

X et Y sont deux variables aléatoires indépendantes et à valeurs dans

Elles suivent la même loi définie par : $\forall k \in \mathbb{N}, P(X = k) = P(Y = k) =$ pq^k où $p \in [0, 1[$ et q = 1 - p.

On considère alors les variables U et V définies par $U = \max(X, Y)$ et $V = \min(X, Y)$.

- 1) Déterminer la loi du couple (U, V).
- 2) Déterminer la loi marginale de U. On admet que $V(\Omega) = \mathbb{N}$ et que, $\forall n \in \mathbb{N}$, $P(V = n) = pq^{2n}(1+q)$.
- 3) Prouver que W = V + 1 suit une loi géométrique.
- 4) U et V sont-elles indépendantes?

6.4 Couples de variables aléatoires de Poisson (Banque CCP MP)

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

- 1) Soit $(\lambda_1, \lambda_2) \in (]0, +\infty[)^2$. Soit X_1 et X_2 deux variables aléatoires définies sur (Ω, \mathcal{A}, P) . On suppose que X_1 et X_2 sont indépendantes et suivent des lois de Poisson, de paramètres respectifs λ_1 et λ_2 . Déterminer la loi de $X_1 + X_2$.
- **2)** Soit $p \in [0, 1]$. Soit $\lambda \in [0, +\infty[$. Soit X et Y deux variables aléatoires définies sur (Ω, \mathcal{A}, P) . On suppose que Y suit une loi de Poisson de paramètre λ . On suppose que $X(\Omega) = \mathbb{N}$ et que, pour tout $m \in \mathbb{N}$, la loi conditionnelle de X sachant (Y = m) est une loi binomiale de paramètre (m,p). Déterminer la loi de X.

S'y ajoute:

1 Cadre

- 1.1 Fonctions dont la variable intervient dans les bornes d'une intégrale (et pas ailleurs)
- 1.2 Fonctions définies par une intégrale, dont la variable n'intervient pas dans les bornes
- 1.3 Et si la variable intervient à la fois dans les bornes et dans l'intégrande?

2 Continuité

- 2.1 Théorème de continuité par domination
- 2.2 Limite

3 Dérivation

- 3.1 Rappels de première année : dérivées partielles
- 3.2 Dérivation par domination
- 3.3 Dérivées d'ordres supérieurs

4 Exercices à connaître

4.1 La fonction Γ (banque CCINP MP)

On pose: $\forall x \in]0, +\infty[, \forall t \in]0, +\infty[, f(x,t) = e^{-t}t^{x-1}]$.

1) Démontrer que : $\forall x \in]0, +\infty[$, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$.

On pose alors :
$$\forall x \in]0, +\infty[$$
, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 2) Pour tout $x \in]0, +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- 3) Démontrer que Γ est de classe \mathscr{C}^1 sur $]0,+\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

4.2 Produit de convolution

On note E le \mathbb{C} -espace vectoriel des fonctions continues sur $\mathbb{R}, 2\pi$ périodiques, à valeurs complexes. On munit E de la norme N_{∞} .

On étudie la loi * qui, à deux fonctions f et g de E, fait correspondre la fonction f * g définie par

$$\forall x \in \mathbb{R}, \ (f * g)(x) = \int_{-\pi}^{\pi} f(x - t)g(t) dt$$

et appelée produit de convolution de f et g.

- 1) Montrer qu'une fonction continue périodique est bornée.
- 2) Démontrer que la fonction f * g est définie sur \mathbb{R} , bornée et donner un majorant de $N_{\infty}(g * f)$ en fonction de $N_{\infty}(f)$ et $N_{\infty}(g)$.
- 3) Démontrer que * est une loi de composition interne sur E.
- 4) Montrer que la fonction f * g est égale à la fonction g * f.
- **5)** Soit $k, l \in \mathbb{Z}$, $e_k : t \mapsto e^{ikt}$ et $e_l : t \mapsto e^{ilt}$. Calculer $e_k * e_l$.

4.3 L'intégrale de Gauss

Soient
$$f(x) = \left(\int_0^x e^{-t^2} dt\right)^2$$
 et $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1) Montrer que f et g sont de classe \mathscr{C}^1 sur \mathbb{R}^+ et déterminer leur dérivée.
- 2) Montrer que pour tout $x \ge 0$, on a $f(x) + g(x) = \frac{\pi}{4}$.
- 3) En déduire $I = \int_0^{+\infty} e^{-t^2} dt$.

4.4 Transformée de Laplace et intégrale de Dirichlet

On utilisera directement ici que l'intégrale généralisée $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.

On définit, si $s \in \mathbb{R}_+$,

$$F(s) = \int_0^{+\infty} e^{-st} \frac{\sin(t)}{t} dt.$$

- 1) Montrer que F est bien définie sur \mathbb{R} , et est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 2) Calculer F(s) pour $s \in \mathbb{R}_+^*$.
- 3) Montrer que F est continue en 0.
- 4) Déduire de ce qui précède la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.