General Synthetic Scheme for 1,3,4-Oxadiazole Inhibitors

Figure 1

General Scheme for 1,3,4-Oxadiazole Inhibitors - Continued

General Synthetic Scheme for 1,2,4-Oxadiazole inhibitors

General Synthetic Scheme for 1,2,4-Oxadiazole inhibitors (Continued)

Figure 4

General Synthetic Scheme for P2-P3 Modified Based Inhibitors

Synthetic Scheme for P2-P3 Modified Inhibitors

Synthetic Scheme for P2-P3 Modified Inhibitors

General Synthetic Scheme for P2-P3 Modified Inhibitors

Synthetic Scheme for P2-P3 Modified Inhibitors

General Synthetic Scheme for P2-P3 Modified Inhibitors

General Synthetic Scheme for P2-P3 Lactam Based Inhibitors

General Synthetic Scheme for P2-P3 Lactam Based Inhibitors

General Synthetic Scheme for Metathiazanone Based Inhibitors

General Synthetic Scheme for Thiazolidinone Based Inhibitors

General Synthetic Scheme for Pyridazinedione Based Inhibitors

General Synthetic Scheme for Benzopyridazinedione Based Inhibitors

General Synthetic Scheme for 3,4-Dihydroquinolone Based Inhibitors

- 1) NCS, DMS, Toluene 0° C
- 2) -25° C
- 3) TEA, -25° C to RT-(24%)

General Synthetic Scheme for Benzylidene Diketopiperazine Based Inhibitors

General Synthetic Scheme for Diketopiperazine Based Inhibitors

Synthetic Scheme for Hydantoin Based Inhibitors

General Synthetic Scheme for Hydantoin Based Inhibitors

OCN
$$O$$
 + O + O + O CH O TEA O CH O CH O + O CH O CH

CE#	R	K _I (nM)	CE#	R	K _I (nM)
2039		2.0	2054	CF ₃	0.29
2042	OMe	2.5	2055	Me Me	0.49
2045	OMe	1.0	2058		0.56
2048	CF ₃	0.36	2062		0.30
2049	OMe	0.5	2066	~ CO° CO	0.98
2052	Me Me	0.37	2096	Ph Ph	8.0
2053	OMe	0.41	2115	N N	1.0

CE#	R	K _I (nM)	CE#	R	K _I (nM)
2046	- ◆	9.9	2077		0.15
2047		3.8	2078	N N N N N N N N N N N N N N N N N N N	1.05
2050		1.84	2092	~ N → O	6.3
2057		0.38	2103		12.4
2069		4.4	2119	OCH3	7.7
2073	CF ₃	0.24	2152		0.24
2076		1.46			

CE#	R	K_{l} (nM)
2072	CH3	0.025
2074	— СН ₃	0. 99
2075	CF3	0.11
2100	N N	0. 069
2123	-n(15.1
2124		0.033

CE#	R ₁	R ₂	R ₃	HET	$K_l(nM)$
2083	Cbz-	СН₃	CH ₃	N-N CH3	73.0
2098	~ ~~	<i>È</i> Propyl	н	N-0 N-0	85.0
2104	€_n-4°	<i>I</i> -Propyl	н	N-N CH3	0.33
2109	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>i</i> -Propyl	Н	N-0-N	126
2110	MeO	<i>l</i> -Propyl	н	N-O CF3	0.13

CE#	R	K _I (nM)
2072	CH3	0.025
2074	—CH ₃	0.99
2075	CE-3	0.11
2100		0. 069
2123	-n'	15.1
2124		0.033

Figure 28

CE#	R	HET	K _I (nM)
2130		В	10.0
2132	H ₂ N II	A	24.0
2134	Ph	B	2.0
2135	H ₂ N II N	A	17
2126	H S	В	5.05
2127	H ₂ N H	· A	. 33.9

CE#	R	HET	K _I (nM)
2125	YQ	A	0.40
2145	Cbz-HN II N	В	0.038
2143	H ₃ C N	A	25.0
2056	Cbz-HN II O O	A	0. 98
2097		A	. 60.0
2156	H ₂ N II N O O	A	512.0

Figure 30

CE#	R	HET	K_l (nM)
2089	Cbz-NH-	A	1.5
2090	NH ₂ -	А	2.7
2095	Cbz-NH-	B	0.21
2101	NH ₂ -	В	0.64

CE#	R ₁	0 R ₂	K _I (nM)
2107	Cbz-NH-	$\langle n \rangle$	17.0
2108	Cbz-NH-	Н	10.5
2113	H ₂ N-	н	38.8
2116		н	76.3
2117	Me-O	F	587.0

CE-2088
$$K_1 = 66.0 \text{ nM}$$

2140

II

В

204.4

Figure 33

CE#	R ₁	R ₂	K _f (nM)
2079	Cbz-NH-	Н	35.5
2080	H₂N-	Н	62.0
2087	Н	—⟨¯¯⟩_F	19.8
2091	° N N N N N N N N N N N N N N N N N N N	Н	270.0

Figure 34

CE#	п	х	HET	R	K _I (nM) -
2118	2	S	N-N CH3	-⟨¯⟩	13.2
2121	1	S	N-N CH3	→	28.0
2122	1	Ø	N-N CH3		62.7
2136	1	SO	N-N CH3	/ √\$>	104.0
2137	1	so	N-0 CF3	/ √\$	557.0

Figure 35

CE#	R	K_l (nM)
2099		1.9
2105	¥ F	0.72
2111		20.1
2112	CO ₂ Me	1.17
2114) N	25.1

CE#	R ₁	R ₂	R ₃	HET	K_{l} (nM)
2084	CH3	~[~ H	A	133.0
2106	CH₃	~{ <u>`</u> }	≯ ‡	В	40.7
2120	CH3CO-		≯ 4	В	50.9
2128		—н		В	64.0
2129		—н		A	300.3
2133		—н		C	33200
2139	н—		~ H	B.	41.0
2144			-н	В	9.3
2 146			—н	Α	67.3

CE#	R ₁	R ₂	HET	K _I (nM)
2141		Н	А	64.0
2142		Н	В	8.7
2149 **		Н	В	0.28
2154	H		В	10.0
2155	н		 А	57.0

^{**} Stereochemistry not definitive

Figure 38

CE#	HET	K_l (nM)
2150	N-O CF3	>1000
2151	и-и СН3	60

Overall yield >30 (from Boc-Val)