Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.11 BS 07/02/22

CONTINUOUS INTERNAL EVALUATION - 2

Dept:BS		Sub:Calculus and Differential Equations	S Code:21MAT11
Date:16-02-22	Time: 9:30-11:00	Max Marks: 40	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

ONI	O) (1	PRT	COL				
QN	Questions	Marks	KDI	COS				
PART A								
1 a	Expand $y = \log(secx)$ up to the term containing x^6 Using Maclaurin's series	6	L2	CO2				
ь	If $u=f(2x-3y,3y-4z,4z-2x)$ then show that $6u_x + 4u_y + 3u_z = 0$	7	L2	CO2				
0	Find the extreme values of the function $f(x,y)=x^3+y^3-3x-12y+20$	7	L2	CO2				
OR								
2 8	Evaluate (i) $\lim_{x\to 0} \left[\frac{tanx}{x}\right]^{\frac{1}{x^2}}$	6	L2	CO2				
	ii) $\lim_{x\to 0} \left[\frac{a^x + b^x + c^x}{3} \right]^{\frac{1}{x}}$							
	If $u = \tan^{-1} \left[\frac{y}{x} \right]$ where $x = e^t - e^{-t}$, $y = e^t + e^{-t}$		L2	CO2				
	Find the total derivative $\frac{du}{dt}$ using partial differentiation							
c	If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$	7	L	2 CO2				

Page: 1 / 2

PART B						
3	a	Solve $[2xy+y-tany]dx+[x^2-xtan^2y+sec^2y]dy=0$	6	L2	CO3	
	b	Prove that the system of parabolas $y^2 = 4a(x+a)$ is self orthogonal	7	L3	CO3	
	С	Solve $\frac{dy}{dx} + y \tan x = y^2 secx$	7	L2	CO3	
OR						
4	a	Solve $(x^2 + y^3 + 6x) dx + y^2 x dy = 0$	6	L2	CO3	
	b A copper ball originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, if the temperature of the air being $40^{\circ}C$, what will be the temperature of the ball after 40 minutes from the original?		7	L3	CO3	
	0	Find the orthogonal trajectories of $r^n cosn \theta = a^n$	7	L3	CO3	

Prepared by: Ravishankar N K

HOD: M Ramananda kamath