USTHB

Faculté d'Electronique et d'Informatique Département d'Informatique Master 1 Systèmes Informatiques Intelligents Représentation et raisonnement 1

TD N° 6 – TP4 Les Logiques de description

Année Universitaire: 2020-2021

Exercice 1:

- 1- Exprimez à l'aide de la logique de description les connaissances suivantes relatives au domaine de la représentation des connaissances et du raisonnement sachant que:
 - définie, compose, est-correcte, génère et est_un sont des rôles atomiques.
- LMODE, GMODE, LCLASSIC, ALPHABET, RREECRITURE, AXIOME, RINFERENCE, RVALUATION et CONTRADICTIONS sont des concepts atomiques.

Une description complexe sera définie par la construction de concepts et de rôles comme suit :

 $C \to A \mid_{\top} \mid_{\bot} \mid_{\neg} C \mid_{C} \sqcap D \mid_{\forall} R.C \mid_{\exists} R.T \mid_{\exists} R.C \mid_{C} \sqcup D \mid_{au \ moins \ n \ R \mid_{au \ plus \ n \ R}$ Les concepts atomiques sont dénotés par A et B et un rôle atomique est dénoté par R.

Dans la A-box, C(a) représente l'assertion d'un concept alors que R(b,c) représente l'assertion de rôle.

TBOX:

a. Le mode de représentation de connaissances est composé de mode logique et de mode graphique.

MREPER≡ LMODE ∐ GMODE

b. Les logiques classiques et les logiques non classiques sont des modes logiques.

LNCLASSIC = ¬LCLASSIC
LCLASSIC ⊆ LMODE
LNCLASSIC ⊆ LMODE
LMODE= LCLASSIC ∐ LNCLASSIC

c. Le langage est défini par son alphabet et ses règles de réécritures.

 $LANGAGE \equiv \exists definie.(ALPHABET \sqcup RREECRITURE)$

d. Une syntaxe se compose au moins de deux règles d'inférences et de trois axiomes tels que tous les axiomes sont correctes.

SYNTAXE \equiv (\exists compose.RINFERENCE \sqcap au moins 2 compose) \sqcup (\exists compose.AXIOME \sqcap au moins 3 compose \sqcap au plus 3 compose) \vdash \subseteq \forall est-correcte.AXIOME

- e. La sémantique est composée que par des règles de valuation. SEMANTIQUE ≡ ∀compose.RINFERENCE
- f. Une logique est définie par son langage, sa syntaxe et sa sémantique. LOGIQUE ≡ ∃definie.(LANGAGE ∐ SYNTAXE ∐ SEMANTIQUE)

g. Les logiques ne génèrent pas de contradictions. LOGIQUE $\subseteq \forall$ génère. \neg CONTRADICTIONS

ABOX:

- h. La logique des propositions et la logique des prédicats sont des logiques classiques. LCLASSIC(LP); LCLASSIC(LPO)
- i. Les logiques de description, la logique modale et la logique des défauts sont des logiques non classiques

LNCLASSIC(LD); LNCLASSIC(LM); LNCLASSIC(LF)

- j. Les réseaux Bayésiens et les réseaux sémantiques sont des modes graphiques GMODE(RB) ; GMODE(RS)
- k. La logique des prédicats contient l'axiome A4.

AXIOME (A4); Contient(LPO, A4)

l. le système T est une logique modale. Est-un(Système-T, LM)

m. le système T contient l'axiome A7 AXIOME(A7) ; contient(Système-T, A7)

2- Que peut-on déduire? LMODE(LP); MREPER(LP); ...

Exercice 2:

CORVETTO

Sachant:

- qu'une description complexe en logique de description est définie par: C \rightarrow A \mid T \mid \perp \mid \neg A \mid C \mid D \mid \forall R.C \mid \exists R.C \mid C \mid D \mid au moins n R \mid au plus n R

CROCEITA
PORTA ROMANA
LODI TIB

- STATION, ROUGE, JAUNE, VERTE, STATIONECHANGE sont des concepts atomiques,
 - "suivant", "a-couleur" et "composé" sont des rôles atomiques.
 - 1. Décrivez à l'aide de la logique de description les concepts suivants:

IBOX:

- a. Les stations qui sont sur la ligne rouge STR≡STATION ∏ ∀a-couleur.ROUGE
- b. Les stations qui sont sur la ligne jaune STJ≡STATION ∏ ∀a-couleur.JAUNE
- c. Les stations qui sont sur la ligne verte STV≡STATION ∏ ∀a-couleur.VERTE
- d. Les stations d'échange STVR≡STATION ∏(∃a-couleur.VERT ∐∃a-couleur.ROUGE)

STJR≡STATION ∏(∃a-couleur.JAUNE∐∃a-couleur.ROUGE) STJV≡STATION ∏(∃a-couleur.JAUNE∐∃a-couleur.VERT) STEXCHANGE ≡ STVR ∐ STJR ∐ STJV

- e. Les stations ayant la prochaine station sur la ligne rouge STSR ≡ STATION ∏∃suivant.STR
- f. les stations terminus TERMINUS = STATION $\sqcap \forall$ suivant. \bot
- g. Une ligne de métro est constituée entre 12 et 30 stations LIGNE = ∃composé.STATION ∏ au moins 12 composé ∏ au plus 30 composé
- h. Un réseau est composé de plusieurs lignes
 RESEAU ≡ ∃composé.LIGNE
- j. Un petit réseau est composé d'au plus 6 de lignes PETITRESEAU ≡ RESEAU ∏ au plus 6 composé
- k. Une station de la ligne rouge est une station $STR \subseteq STATION$
- m. Toute chose qui a quelque chose à coté est une station $\top \subseteq \forall suivant.STATION$
- 2- Dans la A-box, C(a) représente l'assertion d'un concept alors que R(b,c) représente l'assertion de rôle. Donnez des exemples d'assertions relatives aux concepts définis précédemment.

ABOX:

STR(BONOLA); STJ(CROCETTA); STJR(DUOMO); TERMINUS(S.DONATO) a-couleur(ZARA,ROUGE); suivant(PASTEUR,ROVERETO); RESEAU(MILANO)

3- Que peut-on déduire

Déductions:

STEXCHANGE(DUOMO) PETITRESEAU(MILANO)

. . .

Exercice 3:

Exprimez à l'aide de la logique de description les connaissances du monde relatives au domaine de l'architecture sachant que:

Une description complexe sera définie par la construction de concepts et de rôles comme suit :

 $C \rightarrow A \mid_{T} \mid_{\bot} \mid_{\neg C} \mid_{C} \mid_{D} \mid_{\forall R.C} \mid_{\exists R.C} \mid_{C} \mid_{D} \mid_{au \ moins \ n \ R} \mid_{au \ plus \ n \ R}$

Les concepts atomiques sont dénotés par A et B et un rôle atomique est dénoté par R.

Dans la A-box, C(a) représente l'assertion d'un concept alors que R(b,c) représente l'assertion de rôle.

Ces descriptions nécessitent de définir les rôles atomiques : contient, a-coté, définie, faitpartie et délimité-est.

Et les concepts atomiques : STRUCTURE, ARCHITECTURE, DATE-CONSTRUCTON, SURFACE, POSITION-DEBUT, POSITION-FIN, ORIENTATION, ADRESSE, BATIMENT, STUDION, CHAMBRE, MUR, MAISON-COLLECTIVE, MAISON-PRIVEE, LONGUEUR, LOCALISATION et ADRESSE.

TBOX:

- 1. Les maisons privées et les maisons collectives sont des bâtiments MAISON-PRIVEE ☐ MAISON-COLLECTIVE ⊂ BATIMENT
- 2. Une adresse peut être considérée comme une localisation ADRESSE ⊆ LOCALISATION
- 3. Un appartement est une maison collective ayant au moins trois pièces.

 APPARTEMENT ≡ MAISON-COLLECTIVE ∏ (∃contient. PIECE ∏ au moins 3 contient)
- 4. Un studio a au moins une chambre∃a-piece ⊆ STUDIO (restriction de domaines)
- Toute chose à coté de quelque chose est un bâtiment
 _T ⊆ ∀a-coté.BATIMENT (plage de restriction ou image)
- 6. Toute chose qui a quelque chose à coté doit être un bâtiment $\exists a\text{-coté.}\ \top\subseteq BATIMENT$
- 7. Une maison est une structure définie par son architecture, sa date de construction et sa surface.

MAISON \equiv STRUCTURE \sqcap \exists définie.(ARCHITECTURE \sqcup DATECONSTRUCTION \sqcup SURFACE)

8. Toutes les maisons sont des bâtiments MAISON ⊆ BATIMENT

9. Un mur fait partie d'une chambre.

 $MUR \subseteq \exists fait-partie.CHAMBRE$

10. Une maison est toujours délimitée par un mur à l'est.

 $MAISON \subseteq \forall delimité-est.MUR$

9. Une rue est définie par sa position début, sa position fin, son orientation et sa longueur.

RUE ⊆ ∃définie.(POSITION-DEBUT ☐ POSITION-FIN ☐ ORIENTATION ☐ LONGUEUR)

ABOX:

10. Le bâtiment B001 est à côté du Bâtiment B002. BATIMENT(B001) ∏ BATIMENT(B002) ∏ a-coté(B001,B002)

12. Le mur WH2019 fait partie de la chambre R200. MUR(WH2019) ∏CHAMBRE(R200) ∏ fait-partie(WH2019, R200)

12. La maison H004 est délimitée à l'est par le mur WH2019. Elle date du 19éme siècle et sa surface est de 400m2. Sa position est de (36.320782, 5.736546).

MAISON(H004) \sqcap MUR(WH2019) \sqcap est-délimité (H004, WH2019) \sqcap (DATE-CONSTRUCTION(19) \sqcap SURFACE(400) \sqcap POSITION-DEBUT(36.320782) \sqcap POSITION-FIN(5.736546).

Exercice 4:

Représentez les connaissances suivantes en utilisant la logique de description dans laquelle un concept complexe est défini par :

$$C \rightarrow A \mid_{\top} \mid_{\bot} \mid_{\neg} C \mid_{C} \sqcap D \mid_{C} \forall R.C \mid_{C} \exists R.C \mid_{C} \sqcup D \mid_{au \ moins \ n \ R} \mid_{au \ plus \ n \ R}$$

Les concepts atomiques sont dénotés par A et B et un rôle atomique est dénoté par R. Dans la A-box, C(a) représente l'assertion d'un concept alors que R(b,c) représente l'assertion de rôle. Les concepts atomiques et les rôles doivent être prédéfinis au préalable.

TBOX:

a- Une ville intelligente est une ville qui utilise les TIC pour améliorer la qualité des services urbains ou encore réduire les coûts.

```
VILLEINT≡VILLE 

☐ ∃utilise.TIC 
☐ (∃améliore. SERVICE ☐ ∃réduire.COUTS)
```

- b- Une ville intelligente doit développer des environnements durables, une mobilité intelligente et une urbanisation responsable.
- c- Une cyberville est une ville intelligente

 $CYBERVILLE \subseteq VILLEINT$

- d- Les villes intelligentes se sont développées pour répondre à des changements technologiques, économiques et environnementaux majeurs, notamment le changement climatique, la restructuration économique.
- e- Toutes les villes intelligentes doivent intégrer la technologie des capteurs sans fil.

VILLEINT⊆∀integre.TECHCAPTSF

- f- Une urbanisation non responsable ne développe pas de villes intelligentes. URBANRESP ⊆ ¬ (∃developpe.VILLEINT)
- g- Le marché de la ville intelligente atteindra 1400 milliard de dollars.

ABOX:

h- Amsterdam est une ville intelligente. VILLEINT(Amsterdam) Abox

Exercice 5:

Représentez les connaissances en utilisant la logique de description dans laquelle un concept complexe est défini par :

 $C \rightarrow A \mid_{T} \mid_{\bot} \mid_{\neg} C \mid_{C} \Box D \mid_{C} \forall R.C \mid_{C} \exists R.C \mid_{C} \Box D \mid_{au \ moins \ n \ R} \mid_{au \ plus \ n \ R}$

Les concepts atomiques sont dénotés par A et B et un rôle atomique est dénoté par R. Dans la A-box, C(a) représente l'assertion d'un concept alors que R(b,c) représente l'assertion de rôle.

Les concepts atomiques et les rôles doivent être prédéfinis au préalable Soient les concepts atomiques EVENEMENT, DOMMAGE-NATURE, ATTEINTE-ECOSYS, CHIMIE-EAUX

Et le rôle atomique : provoque

TBOX:

a- Les catastrophes écologiques sont des événements qui provoquent toujours des dommages à la nature et des atteintes à l'écosystème.

CATASTROPHES-ECOLOGIQUE \equiv EVENEMENT \sqcap \forall provoque.(DOMMAGENATURE \sqcap ATTEINTE-ECOSYS)

b- Les phénomènes géophysiques sont des évènements qui provoquent des catastrophes écologiques.

PHENOMENES-GEOPHYSIQUES \equiv EVENEMENT \sqcap \exists provoque.CATASTROPHE-ECOLO

c- Les séismes, les cyclones et les éruptions volcaniques sont des phénomènes géophysiques.

SEISME \sqcup CYCLONE \sqcup ERUPRION-VOLCANIQUE \subseteq PHENOMENES-GEOPHYSIQUES

- d- Les risques naturels, les feux de forêts sont des catastrophes écologiques. RISQUE-NATUREL ☐ FEUX-FORETS ☐ CATASTROPHES-ECOLOGIQUE
- e- Les accidents nucléaires sont des catastrophes technologiques. ACCIDENT-NUCLEAIRE ⊆ CATASTROPHES-TECHNOLOGIQUES
- f- Les catastrophes écologiques et les catastrophes technologiques sont distinctes. CATASTROPHES-ECOLOGIQUE \sqcap CATASTROPHES-TECHNOLOGIQUES $\equiv \bot$
- g- Les catastrophes technologiques n'induisent pas des dommages à la nature. CATASTROPHES-TECHNOLOGIQUES ⊆ ¬ (∃provoque.DOMMAGE-NATURE)
- h. Les inondations sont des risques naturels qui provoquent un déséquilibre sur la chimie des eaux.

INONDATIONS= RISQUE-NATUREL \sqcap \exists provoque.CHIMIE-EAUX **ABOX**:

h- Tchernobyl est un accident nucléaire. ACCIDENT-NUCLEAIRE(TCHERNOBYL) i- Les feux en Amazonie sont des catastrophes écologiques.

CATASTROPHES-ECOLOGIQUE(feux-Amazonie)

TP4:

Plusieurs raisonneurs ont été développés pour simuler l'inférence avec une base de connaissances exprimée en Logique de Description.

A partir du lien du site web officiel des logiques de description est http://dl.kr.org/, une liste de raisonneurs est offerte.

Les raisonneurs suivants figurent parmi les outils les plus utilisés :

RACER: https://github.com/ha-mo-we/Racer

http://www.racer-systems.com/

FaCT: http://www.cs.man.ac.uk/~horrocks/FaCT

FACT++: https://code.google.com/archive/p/factplusplus/

Hermit: http://hermit-reasoner.com/

Pellet: http://clarkparsia.com/pellet/

La partie pratique consiste à utiliser un des outils free pour simuler le raisonnement en exploitant les TBOX et les Abox des exercices précédents.

A titre d'exemple, pour l'outil RACER, une base de connaissances relative aux relations familiales est présentée comme suit :

```
(in-knowledge-base family smith-family)
(signature :atomic-concepts (human person female male woman man
                     parent mother father
                     grandmother aunt uncle
                     sister brother)
      :roles ((has-descendant :transitive t)
            (has-child :parent has-descendant)
           has-sibling
            (has-sister :parent has-sibling)
            (has-brother :parent has-sibling)
            (has-gender :feature t))
      :individuals (alice betty charles doris eve))
(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))
(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother
           (and mother
                  (some has-child
                      (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)
(instance charles brother)
(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))
(related doris eve has-sister)
(related eve doris has-sister)
(concept-subsumes? brother uncle)
(concept-ancestors mother)
(concept-descendants man)
(all-transitive-roles)
(individual-instance? doris woman)
(individual-types eve)
(individual-fillers alice has-descendant)
(individual-direct-types eve)
(concept-instances sister)
|#
```