

超级电容

一、超级电容概述

1. 定义

超级电容(电化学电容/法拉第电容):介于传统电容与电池之间的储能元件,通过双电层或法拉第反应储能。

2. 储能方式对比

超级电容	静电电容器	电池
<0.1	1~10	20~100
>10,000	1000~2000	50~200
∞	>100,000	500~2000
10 ⁻⁶ ~10 ⁻³	1~30	3600~18,000
	<0.1 >10,000 ∞	<0.1 1~10 >10,000 1000~2000 ∞ >100,000

3. 结构组成

○ 电极: 活性材料 (碳基/金属氧化物/导电聚合物) +导电剂+粘结剂

。 **电解液**: 水系(H₂SO₄/KOH/Na₂SO₄)、有机系(ACN/DMC)、离子液体、固态

○ 隔膜: 聚丙烯/无纺布, 需高离子通透性、电绝缘性、化学稳定性

○ **集流体**: 金属 (Al/Ni/Cu) 、高导电碳或聚合物

4. 性能指标

 \circ 比电容: $C_m = \frac{Q}{mU}$, $C_V = \frac{Q}{VU}$

。 能量密度: $E_m=rac{1}{2}C_mU^2$, $E_V=rac{1}{2}C_VU^2$

 \circ 功率密度: $P_m=rac{U^2}{4mR}$, $P_V=rac{U^2}{4VR}$

。 循环寿命: 充放电次数, 超级电容可达10°次以上。

5. 应用领域

新能源交通(制动能量回收)、太阳能发电(削峰填谷)、智能电网、军事国防(电磁弹射)、柔性电子等。

二、超级电容原理

1. 双电层电容 (EDLC)

· 机制: 电极/电解液界面电荷物理吸附, 无氧化还原反应。

○ 理论模型:

■ Helmholtz模型: 紧密双电层

■ Gouy-Chapman模型: 扩散双电层

■ Stern模型: 紧密层+扩散层 $(\frac{1}{C_{dl}} = \frac{1}{C_H} + \frac{1}{C_{diff}})$

○ 新型模型: EDCC (圆柱双电层) 、EWCC (微孔线芯电容) 、三明治模型 (狭缝孔) 。

2. 赝电容 (法拉第过程)

· 机制:表面/近表面快速可逆氧化还原反应。

○ 类型:

■ 欠电位沉积 (如Au吸附Pb2+)

■ **氧化还原反应** (如RuO₂的Ru⁴⁺/Ru³⁺转换)

插层赝电容(如Li⁺嵌入Nb₂O₅)。

3. 混合型超级电容

- 结构: 一极EDLC电极 (碳基) +另一极电池型电极 (如LiCoO₂) 。
- 优势:兼顾高功率密度与高能量密度。

三、双电层电容材料

1. 活性炭 (AC)

- 特点: 高比表面积 (1000~2000 m²/g) 、低成本。
- 原料: 椰壳、石油焦、酚醛树脂。
- 。 制备: 碳化 (去杂质) +活化 (KOH/CO₂造孔) 。

2. 碳纳米管 (CNT)

- ∘ 优势: 中孔结构 (1~60 nm) 、高导电性、柔性。
- 制备: 电弧法、CVD法、激光蒸发法。

3. 石墨烯

- 特性: 超高导电性、比表面积 (理论2630 m²/g) 。
- 。 **问题**: 易堆叠→解决方案: 三维多孔结构、掺杂 (N/S)。

4. 其他材料

- 碳化物衍生碳 (CDC) : 窄孔径分布、高比表面积 (>2000 m²/g) 。
- 洋葱炭 (OLC) : 无孔结构、高导电性。

四、赝电容材料

1. 金属氧化物

- 。 RuO₂: 理论比电容1300 F/g (无定形水合态更优)。
- MnO₂: 环保、理论1370 F/g (α/β/δ晶型)。
- 。 Co₃O₄/NiO/V₂O₅: 高理论电容 (3560/2584/2120 F/g)。

2. 导电聚合物

- PANI: 高比电容 (750 F/g) 、酸性腐蚀问题。
- ∘ PPy: 柔性好、比电容低 (100~500 F/g)。
- PEDOT: 高稳定性、宽电压窗口 (1.2 V) 。

3. 新型材料

- o MXene (Ti₃C₂Tx): 层状结构、高导电性、插层赝电容。
- MoS₂/WS₂: 二维结构, 1T相 (金属性) 更优。

五、发展前沿

1. 新型电极材料

- 。 MOFs: 超高比表面积、有序孔道→需复合导电材料 (如石墨烯) 。
- 垂直取向石墨烯 (VGs) : 避免堆叠、开放离子通道。

2. 自修复超级电容

- 机制: 动态键 (氢键/配位键) 或微胶囊修复剂。
- 应用: 柔性可穿戴设备。

3. 热敏性超级电容

○ 温度响应电解液: 高温凝胶化阻断离子传输, 保护电路。

4. 挑战

- 石墨烯规模化: 化学法污染大, CVD法成本高。
- o MOFs稳定性: 导电性差、孔道易塌缩。

六、关键公式速查

- 比电容: $C=rac{Q}{U}$
- 能量密度: $E=\frac{1}{2}CU^2$
- 功率密度: $P = \frac{U^2}{4R}$
- 循环伏安积分法: $C_s = rac{1}{m(V_1-V_2)v} \int I \, dV$

金属离子电池储能材料

1. 锂离子电池概论

工作原理

• 反应式:

。 正极: $\text{LiCoO}_2 \leftrightarrow \text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + xe^-$

。 负极: $x \text{Li}^+ + 6\text{C} + x e^- \leftrightarrow \text{Li}_x \text{C}_6$

• 充放电过程:

。 充电时, Li*从正极脱出, 嵌入石墨负极; 电子经外电路流动。

○ 放电时, Li⁺从石墨脱出, 返回正极。

基本概念

• **电池容量 (C)** : 理论容量公式。

• 能量密度: 单位质量/体积的储能能力 (Wh/kg 或 Wh/L)。

• **库伦效率**: $\mathrm{CE}=rac{\dot{\mathrm{M}}$ 电容量 imes 100%,受 SEI 膜形成和电解质分解影响。

2. 锂离子电池正极材料

材料类型	代表材料	优点	缺点
层状氧化 物	LiCoO ₂	高振实密度、高体积比容量	钴资源稀缺、循环性能差
尖晶石型	LiMn ₂ O ₄	成本低、三维结构	容量衰减快、高温性能差
橄榄石型	LiFePO ₄	安全性高、循环稳定	导电性差、需碳包覆改性
三元材料	LiNi _x Co _x Mn _x O ₂	高容量、成本可控(调节 Ni/Co/Mn)	热稳定性差、高镍材料易结构坍塌

关键问题与解决方案

• LiCoO₂容量衰减: 高电压下Li⁺过度脱嵌导致结构崩塌 → 表面包覆 (Al2O3) 。

• LiFePO4导电性差:纳米化、碳包覆。

• 三元材料热失控: 掺杂AI/Mg、优化Ni/Co/Mn比例。

3. 锂离子电池负极材料

材料类型	代表材料	优点	缺点
碳基材料	石墨	高库伦效率、稳定性	理论容量低 (372 mAh/g)
硅基材料	Si/SiOx	超高容量 (4200 mAh/g)	体积膨胀大 (~400%) 、SEI膜不稳定
合金材料	Sn、Sb	高容量、低电位	体积膨胀、循环寿命短

硅基材料改进方法

• 纳米结构: 纳米线、核壳结构缓解体积膨胀。

• 复合碳材料: 石墨烯/碳纳米管包覆提高导电性。

• 新型粘合剂:海藻酸钠、聚丙烯酸增强电极结合力。

4. 钠离子电池

与锂离子电池对比

特性	钠离子电池	锂离子电池
	地壳含量2.83%,成本低	地壳含量0.0065%,资源紧张
集流体	正负极均可用铝箔	负极需铜箔 (防锂合金化)
能量密度	较低 (~160 Wh/kg)	较高 (~250 Wh/kg)
电解质	可选水系或有机系	主要有机系

关键材料

• 正极: 层状氧化物 (NaFeO₂) 、聚阴离子化合物 (Na₃V₂(PO₄)₃) 、普鲁士蓝类似物。

• 负极: 硬碳 (300 mAh/g) 、合金材料 (Sn、Sb) 。

挑战

• 动力学阻碍: Na⁺半径大导致扩散慢 → 纳米化材料。

• 负极选择: 石墨不适用 → 开发硬碳/合金材料。

5. 金属离子电池的应用与发展前沿

应用领域

• 锂电: 消费电子、电动汽车 (特斯拉) 、储能电站。

• 钠电: 低速电动车、电网储能 (成本敏感场景)。

新兴电池类型

类型	优势	挑战
钾离子电池	资源丰富、高电压	离子半径大、材料结构易破坏
镁离子电池	高体积容量、安全性	电解质钝化、正极材料开发困难
锌离子电池	水系电解液安全环保	正极材料容量低、循环性能差

电催化水裂解材料

1. 电催化水裂解应用概述

氢能优势:

- 。 高热值 (143 MJ/kg, 是甲烷的2.8倍);
- 。绿色无污染,产物为H2和O2;
- 原料水储量丰富,可持续利用。

• 制氢方法对比:

方法	优点	缺点
化石燃料制氢	工艺成熟,产量高	污染大,不可持续
生物制氢	能耗低,污染小	稳定性差
水裂解制氢	无污染, 高效	大规模应用难度大

政策支持:

。 国家973计划、"十三五"规划、《中国制造2025》均列为重点研发方向。

2. 电催化水裂解工作原理

• 基本反应:

○ 阴极 (HER) :

酸性: $2H^+ + 2e^- \rightarrow H_2 \uparrow$

碱性: $2H_2O + 2e^- \rightarrow H_2 \uparrow + 2OH^-$

○ 阳极 (OER) :

酸性: $2H_2O \rightarrow O_2 \uparrow +4H^+ +4e^-$ 碱性: $4OH^- \rightarrow O_2 \uparrow +2H_2O +4e^-$

• 总反应: $H_2O o H_2 \uparrow + \frac{1}{2}O_2 \uparrow$

效率瓶颈:

OER因四电子转移过程复杂,动力学缓慢,需高效催化剂降低过电势。

3. 性能评价参数

参数	定义与意义	测试方法
过电势 (η)	实际电压与理论值 (1.23 V) 的差值,反映催化 剂活性	LSV、循环伏安法 (CV)
塔菲尔斜率	描述电流密度与过电势的关系,斜率越小催化活性越高	Tafel图(log(j) vs. η)
电流密度	单位面积电流,衡量反应速率	LSV
法拉第效率	实际产气量与理论值的比值	气体收集法、旋转环盘电极 (RRDE)
稳定性	催化剂在长时间反应中的性能保持能力	计时电流法、循环伏安法 (高扫描速度)
ТОБ	单位活性位点的反应速率,反映催化剂本征活性	$TOF = rac{jA}{nFm}$

4. 阴极析氢电催化材料 (HER)

• 贵金属基:

- Pt基: 活性最高, 但储量少、成本高; 研究方向为低Pt负载 (如Pt-Co合金) 。
- 。 Ru、Ir: 高活性, 稳定性较差。

• 过渡金属基:

- Fe、Ni、Co: 储量丰富,成本低;需改性提升活性(如磷化物、硫化物)。
- Mo基: MoS₂、MoP等, 具有高机械强度和耐腐蚀性。

非金属基:

○ **碳基材料**: N/P/S掺杂石墨烯、碳纳米管,通过杂原子调节电子结构。

5. 阳极析氧电催化材料 (OER)

• 贵金属基:

- IrO₂、RuO₂: 酸性条件下高效, 但成本高。
- 。 研究方向: 合金化 (如Ir-Ni) 以降低成本。

• 非贵金属基:

- Ni/Co氧化物: 尖晶石结构 (如NiFe-LDH) , 碱性环境中稳定。
- 。 过渡金属磷化物: P原子调节表面电荷, 增强中间体吸附。

其他材料:

- MOFs: 高比表面积, 但导电性差;
- 钙钛矿 (ABO₃): 低成本, 结构可调。

6. 发展前沿

• 贵金属基:

。 单原子催化剂 (SACs) 、超薄纳米片, 降低用量并保持活性。

• 过渡金属基:

- 。 优化表面吸附自由能 (如缺陷工程、杂原子掺杂);
- 。 开发酸性稳定催化剂 (如Co₃O₄@C) 。

碳基非金属:

- 。 杂原子共掺杂 (N/P/B) 、拓扑缺陷设计;
- 解决稳定性问题 (如碳包覆保护层)。

气体传感器材料

一、气体传感器概述

1. 定义

○ 传感器:将被测量 (物理/化学量) 转换为可测信号的装置,由**敏感元件** (直接感知) 和**转换元件** (信号转换) 组成。

2. 基本特性

- **静态特性**: 灵敏度、线性度、重复性、稳定性、分辨力、迟滞、漂移。
- · 动态特性: 输入信号随时间变化的响应特性。

3. 发展历程

三阶段: 结构型 → 固体传感器(半导体、陶瓷等) → 智能传感器(自诊断、数据处理)。

二、化学类气体传感器

1. 接触燃烧式

- 原理: 可燃气体在催化剂表面无焰燃烧, 热量使铂丝电阻变化, 电桥失衡输出信号。
- 核心材料:
 - **金属氧化物**: Rh₂O₃-Al₂O₃ (甲烷) 、Ni₂O₃-In₂O₃ (甲烷) 、Co₃O₄ (甲烷) 、SnO₂ (氢气) 。
 - 贵金属复合物: Au/VOx (甲烷) 、Au/Co₃O₄ (CO) 、Pt-CeO₂-ZrO₂-ZnO (CO) 。
- · 优点: 线性输出、成本低、抗环境干扰。
- 缺点: 选择性差、催化剂易中毒、有爆炸风险。

2. 半导体电阻式

- 原理: 气体吸附导致半导体电导率变化 (N型: 还原气体1电导; P型: 氧化气体1电导) 。
- 核心材料:
 - 金属氧化物: SnO₂ (NO₂、CO) 、ZnO (H₂S、乙醇) 、WO₃ (丙酮) 。
 - 碳材料: 石墨烯 (NO₂、NH₃) 、碳纳米管 (H₂、NH₃) 。
 - 新型材料: 过渡金属硫族化合物 (MoS₂、WS₂)、黑磷烯 (NO₂、NH₃)。
- 优点: 灵敏度高、成本低、寿命长。
- · 缺点: 易受温湿度影响、高浓度易饱和。

3. 电化学式

- · 原理: 气体在电极发生氧化/还原反应, 产生电流信号。
- 核心材料:
 - 电极材料:碳纳米管、石墨烯、贵金属 (Pt、Au)。
 - 电解质: 酸性溶液 (H₂SO₄、H₃PO₄)。
- 优点: 体积小、灵敏度高、适用宽温范围 (-40~50℃)。
- 缺点: 本底电流干扰、选择性有限。

三、材料对比与典型应用

传感器类 型	敏感材料	检测气体	优点	缺点
接触燃烧式	Rh_2O_3 - Al_2O_3 、Pt	甲烷、氢气	线性输出、抗干 扰	选择性差、催化剂中毒
半导体式	SnO₂、石墨烯	NO₂、CO、 NH₃	高灵敏度、低成本	温湿度敏感、高浓度饱和
电化学式	Pt/C、石墨烯复合材料	CO、H ₂ S、SO ₂	低功耗、宽温适用	本底电流、交叉干扰

四、发展前沿

1. 光学式传感器

。 **类型**:红外 (气体吸收光谱)、紫外荧光 (SO_2)、化学发光 (NOx)。

· 优势: 高灵敏度、非接触检测。

2. MEMS技术

· 特点: 微型化、低功耗、易集成。

○ 应用:智能穿戴、环境监测。

3. 未来趋势

○ 材料: 开发高选择性、稳定性的纳米复合材料 (如石墨烯/MoS₂) 。

○ 技术: 标准化、智能化 (电子鼻、物联网集成) 。

太阳能电池储能材料

1. 光伏原理概述

1. 太阳光谱与太阳常数

- \circ 太阳常数: $R_{sc} = 1367\,\mathrm{W/m}^2$ (大气层外垂直入射) 。
- 地面接收:约43%的太阳辐射到达地面 (直接辐射+漫射辐射)。

2. 半导体光吸收

- 。 光吸收公式: $I = I_0 \exp(-\alpha x)$, 其中 α 为吸收系数。
- \circ 本征吸收: 光子能量 $h
 u \geq E_q$ (禁带宽度) ,产生电子-空穴对。
- 直接 vs 间接带隙:
 - ullet 直接带隙(GaAs、CdTe):高吸收系数($lpha\sim 10^5-10^6\,\mathrm{cm}^{-1}$)。
 - **间接带隙** (晶体硅) : 需声子参与,吸收系数低 $(\alpha \sim 1 10^3 \, {\rm cm}^{-1})$ 。

3. 光生伏特效应 (PN结)

- 。 **核心过程**: 光照产生电子-空穴对 \rightarrow 扩散至势垒区 \rightarrow 内建电场分离电荷 \rightarrow 形成光电压 V_{oc} 和光电流 I_{sc} 。
- 。 关键公式:
 - 总电流: $I=I_L-I_S\left[\exp\left(rac{eV}{kT}
 ight)-1
 ight]$
 - 开路电压: $V_{oc} = \frac{kT}{e} \ln \left(\frac{I_L}{I_S} + 1 \right)$
 - 效率: $\eta = \frac{V_{oc}I_{sc}FF}{P_{in}} imes 100\%$

2. 晶体硅太阳能电池

1. 材料特性

- \circ 禁带宽度: $E_q=1.1\,\mathrm{eV}$ (间接带隙,需厚材料吸收光)。
- 表面处理: 减反射膜 (如Si₃N₄、TiO₂) 和陷光结构 (倒金字塔) 降低反射率至5%以下。

2. 关键设计优化

- 掺杂: P型 (硼) 、N型 (磷) ; 浅能级杂质减少复合。
- 结构优化:
 - 发射区薄(减少表面复合),基区厚(充分吸收光)。
 - 背表面场 (BSF) 减少背表面复合。

3. 效率影响因素

- · 少子寿命: 长寿命提高载流子收集效率。
- \circ 寄生电阻: 串联电阻 R_s 降低填充因子 FF , 并联电阻 R_{sh} 影响漏电流。

3. 染料敏化太阳能电池 (DSC)

1. 结构组成

核心组件: 介孔TiO₂电极(锐钛矿结构)、染料(Ru络合物)、电解质(I⁻/I₃⁻)、对电极(Pt或碳)。

2. 工作原理

○ 染料吸光 → 激发态电子注入TiO2导带 → 电解质再生染料 → 对电极催化还原。

3. 效率提升方向

。 染料优化: 宽光谱吸收 (可见至近红外), 强锚定基团 (-COOH)。

○ 电解质改进: 低电势损失 (如钴基氧化还原对) 。

○ 界面钝化: 减少电子-电解质复合。

4. 最高效率: 12.3% (实验室),目标15%。

4. 有机太阳能电池 (OPV)

1. 器件组成

○ 活性层: P型给体 (如共轭聚合物) + N型受体 (如富勒烯衍生物) 。

○ 结构类型: 双层异质结、本体异质结 (主流) 。

2. 工作机理

○ 激子产生 → 扩散至界面分离 → 电荷传输至电极。

○ 关键参数:

■ Voc 由给体HOMO与受体LUMO能级差决定。

■ 激子扩散长度 ($L_D\sim 10\,\mathrm{nm}$) 限制活性层厚度。

3. 性能优化

· 材料选择: 宽光谱吸收、高迁移率、能级匹配。

○ 形态控制: 纳米级相分离 (互穿网络) 。

○ 阴极缓冲层:溶液可处理材料 (替代真空沉积金属)。

4. 最高效率: 17.4% (实验室), 模组11.7%。

5. 对比总结

类型	优点	缺点	效率 (实验室)
晶体硅	高稳定性、成熟工艺	间接带隙 (需厚材料) 、成本高	25%
染料敏化	低成本、弱光响应好	电解质泄漏、长期稳定性差	12.3%
有机 (OPV)	柔性、轻质、可溶液加工	低寿命、效率衰减快	17.4%

6. 公式速查

• 光吸收: $I = I_0 \exp(-\alpha x)$

• 开路电压: $V_{oc}=rac{kT}{e}\ln\left(rac{I_L}{I_S}+1
ight)$

• 填充因子: $FF = \frac{I_m V_m}{I_{sc} V_{cc}}$

• 转换效率: $\eta = rac{V_{oc}I_{sc}FF}{P_{in}} imes 100\%$

液流电池储能材料

1. 液流电池的定义与分类

• 定义:氧化还原液流电池(Redox Flow Battery),电解液储存在外部储罐,通过泵循环至电堆进行反应。

• 分类:

- **传统电解液**:全钒液流电池 (VRFB,最成熟)、锌溴、铁铬等 (水溶液,电压<1.7 V,能量密度低)。
- 新型电解液: 非水电解液 (如锂/多硫化物、锂/碘液流电池) , 电压高 (3-4 V) , 但粘度大、泵损高。
- 其他类型: 半固态锂液流电池 (高理论能量密度) 、混合液流电池 (如Li/TEMPO) 。

2. 应用场景与技术优势

应用场景:

- 大规模储能: 风光发电调频、削峰填谷、偏远供电。
- 。 电动汽车电源、应急电源。

技术优势:

· 独立调节: 储能容量 (电解液体积) 与功率 (电堆规模) 可独立设计。

· 长寿命: 模块化设计, 部件可单独更换。

· 安全性高: 电解液与电堆分离, 无热失控风险。

· 环保: 部分体系 (如全钒) 电解液可循环利用。

3. 关键组成元件及功能

元件	功能
电堆	由多个单电池叠加组成,包含电极、膜、双极板。
储液罐	存储正负极电解液。
泵	循环电解液至电堆。
离子交换膜	允许特定离子通过,防止电解液交叉污染(如Nafion膜)。
电极	多孔碳材料 (石墨毡、碳纸) , 提供氧化还原反应场所。
双极板	导电隔板, 分隔电解液并传递电流 (常用石墨或碳塑复合材料)。

4. 关键元件材料研究进展

• 电极材料:

- **石墨毡/碳毡**: 主流材料, 通过热氧化、杂原子掺杂 (N、P) 、多尺度孔隙 (微孔-介孔-纳米孔) 提升催化活性。
- 。 碳纸: 导电性好、接触电阻低, 但亲水性差, 需KOH活化。
- · 碳布: 柔性好, 适用于有机电解液。
- 。新型处理:静电纺丝制备定向纤维, 3D打印优化孔隙结构。

• 电解液:

- 水性电解液: 低成本但电压受限 (全钒、锌溴) 。
- **有机电解液**: 高电压 (4.5 V) , 但粘度高、稳定性差 (如TEMPO自由基体系) 。

• 双极板:

- · 石墨材料: 耐腐蚀但脆性高。
- **碳塑复合材料**: 兼具导电性与加工性, 但机械强度需优化。

• 膜材料:

- 全氟磺酸膜 (Nafion): 化学稳定性高, 但成本高、选择性低。
- 非氟膜: 低成本 (如PVDF接枝膜、无孔丙烯腈膜) , 但需提升稳定性。
- · 多孔离子传导膜: 通过孔径筛分离子, 降低交叉污染。

5. 性能评价标准

• 能量效率 (η energy) :

$$\eta_{ ext{energy}} = \eta_{ ext{coulombic}} \cdot \eta_{ ext{voltage}} \cdot rac{W_{ ext{out}} - W_{ ext{pump}}}{W_{ ext{out}}}$$

- **库伦效率 (η coulombic)** : 放电电荷/充电电荷 (反映副反应损失) 。
- 。 电压效率 (η voltage) : 放电电压积分/充电电压积分 (反映极化损失) 。
- 泵功损失: 与电解液粘度、流道设计相关。

• 测试方法:

- 循环伏安法 (CV): 分析反应可逆性 (峰流比、峰电位差)。
- 极化曲线:区分活化、欧姆、浓差极化。
- 。 电化学阻抗谱 (EIS) : 量化欧姆电阻、电荷转移电阻。

6. 发展前沿

• 新技术:

- 半固态锂液流电池: 高能量密度, 结合锂离子电池与液流电池优势。
- MOF催化剂: 高比表面积, 提升反应活性 (如溴基液流电池) 。
- 垃圾衍生电极材料: 低成本环保 (如轮胎废料、橘皮制备碳电极) 。
- · **笼状多孔碳**:解决溴扩散问题,提升溴基电池效率。

• 制备工艺:

- 静电纺丝: 定向纤维电极, 改善电解液分布。
- 3D打印: 复杂结构电极 (双尺度孔隙)。

分子动力学模拟

一、基本原理

• 定义:

通过经典势函数计算原子/分子间作用力,模拟其运动轨迹,推导宏观性质(如温度、压力、扩散系数等)。

- 理论基础:
 - \circ 牛顿力学 F=ma
 - Born-Oppenheimer近似 (核与电子运动分离) 。
- 核心假设:
 - 。 核质量远大于电子质量, 速度差异显著。

三、关键概念

- 1. 系宗 (Ensemble)
 - \circ NVE (微正则): 孤立系统, 粒子数 N、体积 V、能量 E 守恒。
 - \circ NVT (正则): 恒定 N、V、T, 用热浴调控温度。
 - \circ NPT (等温等压): 恒定 N、P、T, 调控体积和温度。
- 2. 势函数与力场
 - 分子间作用:
 - 范德华力 (Lennard-Jones势):

$$V(r)=4\epsilon\left[\left(rac{\sigma}{r}
ight)^{12}-\left(rac{\sigma}{r}
ight)^{6}
ight]$$

■ 静电力 (库仑定律):

$$V_{chg} = K rac{q_i q_j}{\epsilon r_{ij}}$$

- 分子内作用:
 - 键伸缩: $E_s = \frac{1}{2}k_s(l-l_0)^2$
 - 键角弯曲: $E_B = \frac{1}{2}k_b(\theta \theta_0)^2$
 - 二面角扭转: $E_T = \sum rac{V_n}{2} [1 + \cos(n\omega \gamma)]$
- 3. 力场选择
 - 生物体系: AMBER、CHARMM。
 - 凝聚态材料: COMPASS、PCFF。
 - 通用性: UFF (覆盖周期表所有元素) 。

四、计算流程

1. 初始化:

- 初始位置 (晶格排列: 简单立方、面心立方等)。
- 。 初始速度 (麦克斯韦分布):

$$f(v) = 4\pi \left(rac{m}{2\pi kT}
ight)^{3/2} \exp\left(-rac{mv^2}{2kT}
ight) v^2$$

2. 迭代计算:

- \circ 计算力 $F = -\nabla U$ 。
- \circ 更新加速度 a = F/m。
- 。 积分算法 (如Verlet) 更新位置和速度。

3. 边界条件:

- 。 周期性边界 (PBC) : 消除表面效应, 模拟准无限体系。
- \circ 截断半径: $r_c \leq \frac{L}{2}$ (L为模拟盒边长) 。

4. 调控参数:

- 温度: 速度标度、Berendsen、Nose-Hoover热浴。
- 。 压力: Berendsen、Parrinello-Rahman方法。
- 5. 能量最小化: 共轭梯度法、最快下降法。

五、时间步长 (Δt)

- 原则: 不超过体系最快振动周期的1/10 (室温下约1 fs)。
- 高温或刚性键: 需缩短步长 (如0.5 fs) 。

六、应用领域

- 材料科学: 合金、高分子、纳米材料。
- 化学: 反应机理、溶剂化效应。
- 生物学: 蛋白质折叠、药物-受体相互作用。
- 能源材料: 电池电解质、催化剂设计。

七、常见问题速答

1. 为何用周期性边界条件?

消除小体系的边界效应,模拟宏观性质。

2. Lennard-Jones势的物理意义?

描述分子间排斥 $(r^{12}$ 项) 与吸引 $(r^6$ 项) 作用。

3. NVT与NVE的区别?

NVT恒定温度 (需热浴调控), NVE孤立系统 (能量守恒)。

4. 如何选择力场?

根据体系类型 (如生物选AMBER, 材料选COMPASS)。