Функциональное программирование Задание 3

Кобылянский А.В. Группа 5381 **FP1** Найдите наиболее общие типы следующих термов:

• $\lambda xy. xy: (\alpha \to \beta) \to \alpha \to \beta$

Пусть $y:\alpha$, тогда из наличия апликации xy имеем $x:\alpha\to\beta$. Тип результата (xy) соответственно будет β . Тогда наша функция принимает 2 аргумента $\alpha\to\beta$ и α и возвращает β .

• $\lambda xx. \ x: \beta \to \alpha \to \alpha$

Запишем $\lambda xx. x$ как $\lambda x.(\lambda x. x)$. Тип внутреннего выражения, очевидно, $\alpha \to \alpha$. Тип внешнего x, вообще говоря, может отличаться от внутреннего, обозначим его как β . Тогда наша функция принимает один аргумент β и возвращает $\alpha \to \alpha$.

• λxy . x(y(yx)) – не типизируем

Пусть x имеет некий тип τ , тогда из апликации yx имеем $y:\tau\to\sigma$, а из апликации y(yx) имеем $\tau=\sigma$. Тогда из апликации x в x(y(yx)) имеем $x:\tau\to\psi$ для какого-то типа ψ . Но мы начали с того, что $x:\tau$, значит $\tau=\tau\to\psi$. Не сходится по арности, как с термом $\lambda x.xx$.

• $\lambda xyz. \ x(y(xz)) : (\alpha \to \beta) \to (\beta \to \alpha) \to \alpha \to \beta$

Пусть z имеет тип α , тогда из апликации xz имеем $x:\alpha\to\beta$, из апликации y(xz) имеем $y:\beta\to\gamma$. Из апликации x(y(xz)) имеем $x:\gamma\to\delta$. и, сравнвая с первой типизацие x, получаем $\alpha=\gamma$ и $\beta=\delta$. Тип результата x(y(xz)) будет тип, возвращаемый x, т.е. β . Тогда наша функция принимает 3 аргумента: $\alpha\to\beta$, $\beta\to\alpha$ и α и возвращает β .

FP2 Выведите тип терма (приведите дерево вывода):

$$(\lambda xy. xy)(\lambda tz. t)$$

$$\frac{x:\alpha \to \beta \to \alpha, y:\alpha \vdash x:\alpha \to \beta \to \alpha \qquad x:\alpha \to \beta \to \alpha, y:\alpha \vdash y:\alpha}{x:\alpha \to \beta \to \alpha, y:\alpha \vdash (xy):\beta \to \alpha} \\ \frac{x:\alpha \to \beta \to \alpha, y:\alpha \vdash (xy):\beta \to \alpha}{x:\alpha \to \beta \to \alpha \vdash (\lambda y.xy):\alpha \to \beta \to \alpha} \\ \frac{x:\alpha \to \beta \to \alpha \vdash (\lambda y.xy):\alpha \to \beta \to \alpha}{\vdash (\lambda xy.xy)(\lambda tz.t):\alpha \to \beta \to \alpha} \\ \frac{t:\alpha,z:\beta \vdash t:\alpha}{t:\alpha \vdash (\lambda z.t):\beta \to \alpha} \\ \vdash (\lambda tz.t):\alpha \to \beta \to \alpha$$

```
FP3 Найдите замкнутые термы следующих типов:

• \lambda xyzt.y(xtt)(zt): (\gamma \to \gamma \to \beta) \to (\beta \to \alpha \to \delta) \to (\gamma \to \alpha) \to \gamma \to \delta
x: \gamma \to \gamma \to \beta, t: \gamma значит (xtt): \beta.
z: \gamma \to \alpha, t: \gamma значит (zt): \alpha.
y: \beta \to \alpha \to \delta, значит y(xtt)(zt): \delta
• \lambda xyztw.z(yw): (\alpha \to \alpha \to \beta) \to (\gamma \to \beta) \to (\beta \to \delta) \to \alpha \to \gamma \to \delta
y: \gamma \to \beta, w: \gamma значит (yw): \beta.
z: \beta \to \delta, значит z(yw): \delta.
• \lambda xy.x(\lambda z.yzz): ((\alpha \to \beta) \to \alpha) \to (\alpha \to \alpha \to \beta) \to \alpha
y: \alpha \to \alpha \to \beta, значит x(xz.yzz): \alpha.
• x(\alpha \to \beta) \to \alpha, значит x(xz.yzz): \alpha.
• xy.y(x(\lambda z.yzz))(x(\lambda z.yzz)): ((\alpha \to \beta) \to \alpha) \to (\alpha \to \alpha \to \beta) \to \beta
y: \alpha \to \alpha \to \beta и из предыдущего пункта x(\lambda z.yzz): \alpha, значит y(x(\lambda z.yzz))(x(\lambda z.yzz)): \beta.
```

FP4 Найдите замкнутый терм типа

$$(\alpha \to \beta) \to ((\alpha \to \beta) \to \beta) \to \beta$$

которому нельзя приписать тип

$$\gamma \to (\gamma \to \beta) \to \beta$$

Искомый терм:

$$\lambda xy.y(\lambda z.xz)$$

Действительно, если $x:(\alpha\to\beta)$, то $(\lambda z.xz):(\alpha\to\beta)$ и $y(\lambda z.xz):\beta$, все сходится. С другой стороны, при втором варианте типизации $x:\gamma$ — не стрелочный тип и запись $\lambda z.xz$ становится нелегально.

FP5 Типизируйте по Чёрчу:

SKK

В общем случае, для некоторых типов $\phi, \psi, \sigma, \tau, \omega$

$$\mathbf{K} = \lambda x^{\phi} y^{\psi}.x : \phi \to \psi \to \phi$$

$$\mathbf{S} = \lambda x^{\sigma \to \tau \to \omega} y^{\sigma \to \tau} z^{\sigma}.xz(yz) : (\sigma \to \tau \to \omega) \to (\sigma \to \tau) \to \sigma \to \omega$$

Типизируем наше выражение

$$\mathbf{SKK} = (\lambda xyz.xz(yz))(\lambda xy.x)(\lambda xy.x)$$

Пусть правое **K** имеет тип $\alpha \to \beta \to \alpha$. Тогда тип $y^{\sigma \to \tau}$ в **S** будет $y: \alpha \to \beta \to \alpha$. Имеем $\sigma \to \tau = \alpha \to (\beta \to \alpha)$ или $\sigma = \alpha$ и $\tau = \beta \to \alpha$. Из $\sigma = \alpha$ имеем для z^{σ} в **S**: $z: \alpha$. Так же получаем почти весь тип для $x^{\sigma \to \tau \to \omega}$ в **S**: $x: \alpha \to (\beta \to \alpha) \to \omega$.

Из апликации **SK** имеем равенство типов x и первого $\mathbf{K}: \alpha \to (\beta \to \alpha) \to \omega = \phi \to \psi \to \phi$ или $\alpha = \phi, (\beta \to \alpha) = \psi, \omega = \phi = \alpha$.

Теперь мы можем записать полный тип выражения:

$$(\lambda x^{\alpha \to (\beta \to \alpha) \to \alpha} y^{\alpha \to (\beta \to \alpha)} z^{\alpha} . x z(yz)) (\lambda x^{\alpha} y^{\beta \to \alpha} . x) (\lambda x^{\alpha} y^{\beta} . x) : \alpha \to \alpha$$