MA2115 Matemáticas IV (semi-presencial) Práctica 08

Boris Iskra María Neida Barreto

Sistemas de ecuaciones diferenciales no homogéneas.

Todos los sistemas homogéneos de esta práctica fueron resueltos en la práctica anterior

Ejemplo 1.1

Halle las soluciones del sistema

$$x' = 6x - 3y + 36t$$

 $y' = 2x + y + 5$

La solución del sistema homogéneo es:

$$x(t) = C_1 e^{3t} + 3C_2 e^{4t} y(t) = C_1 e^{3t} + 2C_2 e^{4t}.$$

Buscamos una solución particular del sistema no homogéneo. Como la parta no homogenea es lineal buscamos un solución de la forma

$$x(t) = a_1 t + b_1$$

 $y(t) = a_2 t + b_2$

Ejemplo 1.1 (Continuación)

$$x' = 6x - 3y + 36t$$
 $x(t) = a_1t + b_1$
 $y' = 2x + y + 5$ $y(t) = a_2t + b_2$.

Derivando y sustituyendo en el sistema obtenemos

$$a_1 = 6(a_1t+b_1) - 3(a_2t+b_2) + 36t$$

 $a_2 = 2(a_1t+b_1) + a_2t+b_2 + 5.$

$$\begin{array}{rcl}
0 & = & (6a_1 - 3a_2 + 36)t & + & 6b_1 - 3b_2 - a_1 \\
0 & = & (2a_1 + a_2)t & + & 2b_1 + b_2 - a_2 + 5.
\end{array}$$

Ejemplo 1.1 (Continuación)

Tenemos

$$0 = (6a_1 - 3a_2 + 36)t + 6b_1 - 3b_2 - a_1$$

$$0 = (2a_1 + a_2)t + 2b_1 + b_2 - a_2 + 5.$$

$$6a_1 - 3a_2 = -36$$

$$2a_1 + a_2 = 0$$

$$-a_1 + 6b_1 - 3b_2 = 0$$

$$-a_2 + 2b_1 + b_2 = -5.$$

Resolviendo el sistema obtenemos

$$a_1 = -3$$
 $a_2 = 6$
 $b_1 = 0$
 $b_2 = 1$

Ejemplo 1.1 (Continuación)

Lo cual nos dá la solución particular:

$$\begin{array}{rcl}
x(t) & = & -3t \\
y(t) & = & 6t & + & 1
\end{array}$$

y la solución general es:

$$x(t) = C_1 e^{3t} + 3C_2 e^{4t} - 3t y(t) = C_1 e^{3t} + 2C_2 e^{4t} + 6t + 1.$$

Ejemplo 1.1 (Continuación)

Ahora resolveremos el mismo problema usando Variación de Parámetros. De la solución general del sistema homogeneo tenemos la matriz:

$$\Psi(t) = \left(\begin{array}{cc} e^{3t} & 3e^{4t} \\ e^{3t} & 2e^{4t} \end{array}\right)$$

Cuya inversa es:

$$\Psi^{-1}(t) = \begin{pmatrix} -2e^{-3t} & 3e^{-3t} \\ e^{-4t} & -e^{-4t} \end{pmatrix}$$

Debemos hallar

$$\int \Psi^{-1}(t) \begin{pmatrix} 36t \\ 5 \end{pmatrix} dt = \int \begin{pmatrix} -2e^{-3t} & 3e^{-3t} \\ e^{-4t} & -e^{-4t} \end{pmatrix} \begin{pmatrix} 36t \\ 5 \end{pmatrix} dt$$

Ejemplo 1.1 (Continuación)

$$\int \left(\begin{array}{c} -72te^{-3t} + 15e^{-3t} \\ 36te^{-4t} - 5e^{-4t} \end{array} \right) dt = \left(\begin{array}{c} 24te^{-3t} + 3e^{-3t} + C_1 \\ -9te^{-4t} - e^{-4t} + C_2 \end{array} \right)$$

De donde obtenemos la solución general

$$\Psi(t) \begin{pmatrix} 24te^{-3t} + 3e^{-3t} + C_1 \\ -9te^{-4t} - e^{-4t} + C_2 \end{pmatrix}$$

$$= \begin{pmatrix} e^{3t} & 3e^{4t} \\ e^{3t} & 2e^{4t} \end{pmatrix} \begin{pmatrix} 24te^{-3t} + 3e^{-3t} + C_1 \\ -9te^{-4t} - e^{-4t} + C_2 \end{pmatrix}$$

$$= \begin{pmatrix} C_1e^{3t} & + 3C_2e^{4t} & -3t \\ C_1e^{3t} & + 2C_2e^{4t} & +6t & +1. \end{pmatrix}$$

Ejemplo 1.2

Halle las soluciones del sistema

$$x' = x + y + 50\cos(t)$$

 $y' = 4x - 2y + 6$

La solución del sistema homogéneo es:

$$x(t) = -C_1 e^{-3t} + C_2 e^{2t} y(t) = 4C_1 e^{-3t} + C_2 e^{2t}.$$

Buscamos una solución particular del sistema no homogéneo. Como la parta no homogenea tiene coseno y constante buscamos un solución de la forma

$$x(t) = a_1 \cos(t) + b_1 sen(t) + c_1 y(t) = a_2 \cos(t) + b_2 sen(t) + c_2.$$

Ejemplo 1.2 (Continuación)

$$x' = x + y + 50\cos(t)$$
 $x(t) = a_1\cos(t) + b_1 sen(t) + c_1$
 $y' = 4x - 2y + 6$ $y(t) = a_2\cos(t) + b_2 sen(t) + c_2$.

Derivando y sustituyendo en el sistema obtenemos

$$\begin{array}{lll} -a_1 \, sen(t) + b_1 \cos(t) & = & a_1 \cos(t) + b_1 \, sen(t) + c_1 \\ & + & (a_2 \cos(t) + b_2 \, sen(t) + c_2) & + & 50 \cos(t) \\ -a_2 \, sen(t) + b_2 \cos(t) & = & 4(a_1 \cos(t) + b_1 \, sen(t) + c_1) \\ & - & 2(a_2 \cos(t) + b_2 \, sen(t) + c_2) & + & 6. \end{array}$$

$$0 = (a_1 + b_1 + b_2) sen(t) + (a_1 + a_2 - b_1 + 50) cos(t) + c_1 + c_2$$

$$0 = (a_2 + 4b_1 - 2b_2) sen(t) + (4a_1 - 2a_2 - b_2) cos(t) + 4c_1 - 2c_2 + 6.$$

$$0 = (a_2 + 4b_1 - 2b_2) sen(t) + (4a_1 - 2a_2 - b_2) cos(t) + 4c_1 - 2c_2 + 6c_1$$

Ejemplo 1.2 (Continuación)

$$0 = (a_1 + b_1 + b_2) sen(t) + (a_1 + a_2 - b_1 + 50) cos(t) + c_1 + c_2$$

$$0 = (a_2 + 4b_1 - 2b_2) sen(t) + (4a_1 - 2a_2 - b_2) cos(t) + 4c_1 - 2c_2 + 6.$$

$$a_1 + b_1 + b_2 = 0$$

$$a_2 + 4b_1 - 2b_2 = 0$$

$$a_1 + a_2 - b_1 = -50$$

$$4a_1 - 2a_2 - b_2 = 0$$

$$c_1 + c_2 = 0$$

$$4c_1 - 2c_2 = -6.$$

Resolviendo el sistema obtenemos

$$\begin{array}{rcr|r}
 a_1 & = & -13 & a_2 & = & -28 \\
 b_1 & = & 9 & b_2 & = & 4 \\
 c_1 & = & -1 & c_2 & = & 1
 \end{array}$$

Ejemplo 1.2 (Continuación)

Lo cual nos dá la solución particular:

$$x(t) = -13\cos(t) + 9\sin(t) - 1$$

 $y(t) = -28\cos(t) + 4\sin(t) + 1$

y la solución general es:

$$x(t) = -C_1 e^{-3t} + C_2 e^{2t} - 13\cos(t) + 9\sin(t) - 1$$

 $y(t) = 4C_1 e^{-3t} + C_2 e^{2t} - 28\cos(t) + 4\sin(t) + 1$

Ejemplo 1.2 (Continuación)

Ahora resolveremos el mismo problema usando Variación de Parámetros. De la solución general del sistema homogeneo tenemos la matriz:

$$\Psi(t) = \left(\begin{array}{cc} -e^{-3t} & e^{2t} \\ 4e^{-3t} & e^{2t} \end{array}\right).$$

Cuya inversa es:

$$\Psi^{-1}(t) = \frac{1}{5} \begin{pmatrix} -e^{3t} & e^{3t} \\ 4e^{-2t} & e^{-2t} \end{pmatrix}$$

Debemos hallar

$$\int \Psi^{-1}(t) \begin{pmatrix} 50\cos(t) \\ 6 \end{pmatrix} dt = \frac{1}{5} \int \begin{pmatrix} -e^{3t} & e^{3t} \\ 4e^{-2t} & e^{-2t} \end{pmatrix} \begin{pmatrix} 50\cos(t) \\ 6 \end{pmatrix} dt$$

Ejemplo 1.2 (Continuación)

$$\frac{1}{5} \int \begin{pmatrix} -50e^{3t}\cos(t) + 6e^{3t} \\ 200e^{-2t}\cos(t) + 6e^{-2t} \end{pmatrix} dt$$

$$= \frac{1}{5} \begin{pmatrix} (5sen(t) + 15\cos(t) - 2)e^{3t} + C_1 \\ (-40\sin(t) + 80\cos(t) + 3)e^{-2t} + C_2 \end{pmatrix}$$

De donde obtenemos la solución general

$$\begin{split} &\frac{1}{5}\Psi(t)\left(\begin{array}{c} (5\,sen(t)+15\cos(t)-2)e^{3t}+C_1\\ (-40\,\sin(t)+80\cos(t)+3)e^{-2t}+C_2 \end{array}\right)\\ &= &\frac{1}{5}\left(\begin{array}{c} -e^{-3t} & e^{2t}\\ 4e^{-3t} & e^{2t} \end{array}\right)\left(\begin{array}{c} (5\,sen(t)+15\cos(t)-2)e^{3t}+C_1\\ (-40\,\sin(t)+80\cos(t)+3)e^{-2t}+C_2 \end{array}\right)\\ &= &\left(\begin{array}{ccc} -C_1e^{-3t} & + & C_2e^{2t} & - & 13\cos(t) & + & 9\,sen(t) & - & 1\\ 4C_1e^{-3t} & + & C_2e^{2t} & - & 28\cos(t) & + & 4\,sen(t) & + & 1. \end{array}\right) \end{split}$$

$$x(t) = -C_1e^{-3t} + C_2e^{2t} - 13\cos(t) + 9sen(t) - 1$$

 $y(t) = 4C_1e^{-3t} + C_2e^{2t} - 28\cos(t) + 4sen(t) + 1$.

Ejemplo 1.3

Halle la solución del sistema

$$x' = -11x + 7y + 15e^{5t}$$
 $x(0) = 3$
 $y' = -20x + 13y$ $y(0) = 1$.

La solución del sistema homogéneo es:

$$x(t) = 7C_1e^{-t} + C_2e^{3t} y(t) = 10C_1e^{-t} + 2C_2e^{3t}.$$

Buscamos una solución particular del sistema no homogéneo. Como la parta no homogenea tiene exponenciales buscamos un solución de la forma

$$\begin{array}{rcl}
x(t) & = & a_1 e^{5t} \\
y(t) & = & a_2 e^{5t}.
\end{array}$$

Ejemplo 1.3 (Continuación)

$$x' = -11x + 7y + 15e^{5t}$$
 $x(t) = a_1e^{5t}$
 $y' = -20x + 13y$ $y(t) = a_2e^{5t}$.

Derivando y sustituyendo en el sistema obtenemos

$$5a_1e^{5t} = -11a_1e^{5t} + 7a_2e^{5t} + 15e^{5t}$$

$$5a_2e^{5t} = -20a_1e^{5t} + 13a_2e^{5t}.$$

$$0 = (-16a_1 + 7a_2 + 15) e^{5t}$$

$$0 = (-20a_1 + 8a_2) e^{5t}.$$

Ejemplo 1.3 (Continuación)

$$0 = (-16a_1 + 7a_2 + 15)e^{5t}$$

$$0 = (-20a_1 + 8a_2)e^{5t}$$

$$-16a_1 + 7a_2 = -15$$

$$-20a_1 + 8a_2 = 0$$

Resolviendo el sistema obtenemos

$$a_1 = -10 \mid a_2 = -25.$$

Ejemplo 1.3 (Continuación)

Lo cual nos dá la solución particular:

$$x(t) = -10e^{5t}$$

 $y(t) = -25e^{5t}$

y la solución general es:

Evaluando la condición inicial x(0) = 3, y(0) = 1

Lo cual nos dá

$$x(t) = 13e^{3t} - 10e^{5t}$$

 $y(t) = 26e^{3t} - 25e^{5t}$.

Ejemplo 1.3 (Continuación)

Ahora resolveremos el mismo problema usando Variación de Parámetros. De la solución general del sistema homogeneo tenemos la matriz:

$$\Psi(t) = \begin{pmatrix} 7e^{-t} & e^{3t} \\ 10e^{-t} & 2e^{3t} \end{pmatrix}$$

Cuya inversa es:

$$\Psi^{-1}(t) = \frac{1}{4} \begin{pmatrix} 2e^t & -e^t \\ -10e^{-3t} & 7e^{-3t} \end{pmatrix}$$

Debemos hallar

$$\int \Psi^{-1}(t) \begin{pmatrix} 15e^{5t} \\ 0 \end{pmatrix} dt = \frac{1}{4} \int \begin{pmatrix} 2e^t & -e^t \\ -10e^{-3t} & 7e^{-3t} \end{pmatrix} \begin{pmatrix} 15e^{5t} \\ 0 \end{pmatrix} dt$$

Ejemplo 1.3 (Continuación)

$$\frac{1}{2} \int \begin{pmatrix} 15e^{6t} \\ -75e^{2t} \end{pmatrix} dt = \frac{1}{4} \begin{pmatrix} 5e^{6t} + C_1 \\ -75e^{2t} + C_2 \end{pmatrix}$$

De donde obtenemos la solución general

$$\frac{1}{4}\Psi(t)\begin{pmatrix} 5e^{6t} + C_1 \\ -75e^{2t} + C_2 \end{pmatrix}$$

$$= \frac{1}{4}\begin{pmatrix} 7e^{-t} & e^{3t} \\ 10e^{-t} & 2e^{3t} \end{pmatrix}\begin{pmatrix} 5e^{6t} + C_1 \\ -75e^{2t} + C_2 \end{pmatrix}$$

$$= \begin{pmatrix} 7C_1e^{-t} + C_2e^{3t} - 10e^{5t} \\ 10C_1e^{-t} + 2C_2e^{3t} - 25e^{5t} \end{pmatrix}$$

Ejemplo 1.4

Dado el sistema

$$x' = x + 4y + 9t^2 - 5$$

 $y' = -4x - 7y + 12t - 2$

verificar que

$$x(t) = 7t^2 - 2t - 5$$

 $y(t) = -4t^2 + 4t + 2$

es una solución particular y hallar la solución general. La solución del sistema homogéneo es:

$$x(t) = C_1 e^{-3t} + C_2 (te^{-3t} + \frac{1}{4}e^{-3t})$$

 $y(t) = -C_1 e^{-3t} - C_2 te^{-3t}.$

Ejemplo 1.4 (Continuación)

Sistema

$$x' = x + 4y + 9t^2 - 5$$

 $y' = -4x - 7y + 12t - 2$

solución particular

$$x(t) = 7t^2 - 2t - 5$$

 $y(t) = -4t^2 + 4t + 2$.

Verifiquemos la solución particular. Derivando tenemos

$$x'(t) = 14t - 2$$

 $y'(t) = -8t + 4$

por otro lado, sustituyendo en el sistema tenemos que

$$\begin{array}{rclcrcl} x+4y+9t^2-5 & = & 7t^2-2t-5 & + & 4(-4t^2+4t+2) & + & 9t^2-5 \\ & = & 14t-2 \\ -4x-7y+12t-2 & = & -4(7t^2-2t-5) & - & 7(-4t^2+4t+2) & + & 12t-2 \\ & = & -8t+4. \end{array}$$

Ejemplo 1.4 (Continuación)

Lo cual nos dá la solución general es:

$$x(t) = 7C_1e^{-t} + C_2e^{3t} + 7t^2 - 2t - 5$$

 $y(t) = 10C_1e^{-t} + 2C_2e^{3t} - 4t^2 + 4t + 2.$

Ejemplo 1.5

Halle la solución del sistema

$$x' = 6x - 4y + 4t$$
 $x(0) = 0$
 $y' = x + 2y + 2t - 3$ $y(0) = 0$.

La solución del sistema homogéneo es:

$$x(t) = 2C_1e^{4t} + C_2(2te^{4t} + e^{4t})$$

 $y(t) = C_1e^{4t} + C_2te^{4t}$

Buscamos una solución particular del sistema no homogéneo. Como la parta no homogenea es lineal buscamos un solución de la forma

$$x(t) = a_1 t + b_1$$

 $y(t) = a_2 t + b_2$.

Ejemplo 1.5 (Continuación)

$$x' = 6x - 4y + 4t x(t) = a_1t + b_1$$

 $y' = x + 2y + 2t - 3 y(t) = a_2t + b_2.$

Derivando y sustituyendo en el sistema obtenemos

$$a_1 = 6(a_1t+b_1) - 4(a_2t+b_2) + 4t$$

 $a_2 = a_1t+b_1 + 2(a_2t+b_2) + 2t-3.$

$$\begin{array}{rcl}
0 & = & (6a_1 - 4a_2 + 4)t & + & 6b_1 - 4b_2 - a_1 \\
0 & = & (a_1 + 2a_2 + 2)t & + & b_1 + 2b_2 - a_2 - 3.
\end{array}$$

Ejemplo 1.5 (Continuación)

Tenemos

$$0 = (6a_{1} - 4a_{2} + 4)t + 6b_{1} - 4b_{2} - a_{1}$$

$$0 = (a_{1} + 2a_{2} + 2)t + b_{1} + 2b_{2} - a_{2} - 3.$$

$$6a_{1} - 4a_{2} = -4$$

$$a_{1} + 2a_{2} = -2$$

$$-a_{1} + 6b_{1} - 4b_{2} = 0$$

$$-a_{2} + b_{1} + 2b_{2} = 3.$$

Resolviendo el sistema obtenemos

$$a_1 = -1 \mid a_2 = -\frac{1}{2} \mid b_1 = \frac{1}{2} \mid b_2 = 1.$$

Ejemplo 1.5 (Continuación)

Lo cual nos dá la solución particular:

$$x(t) = -t + \frac{1}{2}$$

 $y(t) = -\frac{1}{2}t + 1$.

y la solución general es:

Evaluando la condición inicial x(0) = 0, y(0) = 0

Lo cual nos dá

$$\begin{array}{rclrcrcr} x(t) & = & -\frac{1}{2}e^{4t} & + & 3te^{4t} & - & t & + & \frac{1}{2} \\ y(t) & = & -e^{4t} & + & \frac{3}{2}te^{4t} & - & \frac{1}{2}t & + & 1. \end{array}$$

Ejemplo 1.6

Halle la solución del sistema

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2\cos(t) \\ 0 \end{pmatrix}$$

La solución del sistema homogéneo es:

$$\begin{array}{lclcrcl} x(t) & = & C_1 e^{-t} \cos(\sqrt{2}t) & + & C_2 e^{-t} sen(\sqrt{2}t) \\ y(t) & = & C_1 \sqrt{2} e^{-t} sen(\sqrt{2}t) & - & C_2 \sqrt{2} e^{-t} \cos(\sqrt{2}t). \end{array}$$

Buscamos una solución particular del sistema no homogéneo. La matriz fundamental del sistema es:

$$\Psi(t) = \left(\begin{array}{cc} e^{-t}\cos(\sqrt{2}t) & e^{-t}sen(\sqrt{2}t) \\ \sqrt{2}e^{-t}sen(\sqrt{2}t) & -\sqrt{2}e^{-t}\cos(\sqrt{2}t) \end{array} \right)$$

Ejemplo 1.6 (Continuación)

La inversa de Ψ es:

$$\Psi^{-1}(t) = \mathrm{e}^t \left(egin{array}{ccc} \cos(\sqrt{2}t) & rac{\sin(\sqrt{2}t)}{\sqrt{2}} \ \sin(\sqrt{2}t) & -rac{\cos(\sqrt{2}t)}{\sqrt{2}} \end{array}
ight)$$

$$\begin{array}{lcl} \Psi^{-1}(t) \begin{pmatrix} 2\cos(t) \\ 0 \end{pmatrix} & = & e^t \begin{pmatrix} \cos(\sqrt{2}t) & \frac{sen(\sqrt{2}t)}{\sqrt{2}} \\ sen(\sqrt{2}t) & -\frac{\cos(\sqrt{2}t)}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 2\cos(t) \\ 0 \end{pmatrix} \\ & = & e^t \begin{pmatrix} 2\cos(\sqrt{2}t)\cos(t) \\ 2sen(\sqrt{2}t)\cos(t) \end{pmatrix} \end{array}$$

Ejemplo 1.6 (Continuación)

Calculamos:

$$\begin{split} &\int \Psi^{-1}(t) \left(\begin{array}{c} 2\cos(t) \\ 0 \end{array} \right) dt = \int e^t \left(\begin{array}{c} 2\cos(\sqrt{2}t)\cos(t) \\ 2 \operatorname{sen}(\sqrt{2}t)\cos(t) \end{array} \right) dt \\ = & \frac{e^t}{2} \left(\begin{array}{c} \sqrt{2} \operatorname{sen}(t) \operatorname{sen}\left(\sqrt{2}t\right) + \cos(t) \left(\sqrt{2} \operatorname{sen}\left(\sqrt{2}t\right) + 2\cos\left(\sqrt{2}t\right)\right) \\ -\sqrt{2}\cos\left(\sqrt{2}t\right) \operatorname{sen}(t) + \cos(t) \left(2 \operatorname{sen}\left(\sqrt{2}t\right) - \sqrt{2}\cos\left(\sqrt{2}t\right)\right) \end{array} \right) \end{split}$$

De donde obtenemos la solución particular

$$\Psi(t) \int \Psi^{-1}(t) \begin{pmatrix} 2\cos(t) \\ 0 \end{pmatrix} dt = \begin{pmatrix} 2\cos(t) \\ 2sen(t) + 2\cos(t) \end{pmatrix}$$

y la solución general

$$\begin{array}{lclcrcl} x(t) & = & C_1 e^{-t} \cos(\sqrt{2}t) & + & C_2 e^{-t} sen(\sqrt{2}t) & + & 2\cos(t) \\ y(t) & = & C_1 \sqrt{2}e^{-t} sen(\sqrt{2}t) & - & C_2 \sqrt{2}e^{-t}\cos(\sqrt{2}t) & + & 2sen(t) + 2\cos(t). \end{array}$$

FIN