Chapter 30

Message Security, User Authentication, and Key Management

30.1 Message Security

Privacy

Authentication

Integrity

Nonrepudiation

30.2 Digital Signature

Signing the Whole Document

Signing the Digest

Digital signature does not provide privacy. If there is a need for privacy, another layer of encryption/decryption must be applied.

(Variable length)

(Fixed length)

Decrypt

Digest

➤ Compare ≺

Hash

Digest

30.3 User Authentication

With Symmetric Key

With Public Key

30.4 Key Management

Symmetric-Key Distribution

Public-Key Certification

A symmetric key between two parties is useful if it is used only once; it must be created for one session and destroyed when the session is over.

The symmetric (shared) key in the Diffie-Hellman protocol is $K = G^{xy} \mod N$.

Example 2

Assume G = 7 and N = 23. The steps are as follows:

- 1. Alice chooses x = 3 and calculates $R1 = 7^3 \mod 23 = 21$.
- 2. Alice sends the number 21 to Bob.
- 3. Bob chooses y = 6 and calculates $R2 = 7^6 \mod 23 = 4$.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 4^3 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 21^6 \mod 23 = 18$.

The value of K is the same for both Alice and Bob; $G^{xy} \mod N = 7^{18} \mod 23 = 18$.

Figure 30.12 Man-in-the-middle attack

Figure 30.14 Needham-Schroeder protocol

In public-key cryptography, everyone has access to everyone's public key.

Table 30.1 X.500 fields

Field	Explanation
Version	Version number of X.509
Serial number	The unique identifier used by the CA
Signature	The certificate signature
Issuer	The name of the CA defined by X.509
Validity period	Start and end period that certificate is valid
Subject name	The entity whose public key is being certified
Public key	The subject public key and the algorithms that use it

30.5 Kerberos

Servers

Operation

Using Different Servers

Version 5

Realms

Figure 30.17 Kerberos servers

Figure 30.18 Kerberos example

