Suposem $f: \mathbb{R}^n \to \mathbb{R}$

Definició 0.1 $v \in \mathbb{R}^n$ és un subgradient regular de f a \bar{x} si

$$f(x) \ge f(\bar{x}) + v^{\top}(x - \bar{x}) + o(\|x - \bar{x}\|) \tag{1}$$

El conjunt de tots els vectors $v \in \Re^n$ que verifiquen tal propietat (1) per a una funció f en un punt \bar{x} l'anomenem subdiferencial o conjunt subdiferencial regular de f a \bar{x} i el denotem per $\hat{\partial} f(\bar{x})$

Definició 0.2 $v \in \mathbb{R}^n$ és un subgradient de f a \bar{x} si $\exists \{x_k\} \to \bar{x}$ i, conjuntament, $f(x_k) \to f(\bar{x})$ tal que $\exists v_k \in \hat{\partial} f(\bar{x})$ i conjuntament $v_k \to v$. Si $\partial f(\bar{x})$ és el conjunt de tals direccions, llavors, en altres paraules:

$$\partial f(\bar{x}) = \lim \sup \hat{\partial} f(x) \ (x \xrightarrow{f} \bar{x})$$
 (2)

Si f és continuament differenciable a \bar{x} , llavors $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$ i "dins de $\partial f(\bar{x})$ " no hi han "direccions il.limitades".

Definició 0.3 Una funció f es diu Lipschitz-continua sobre un obert $A \subseteq \mathbb{R}^n$ (o simplement Lipschitz o lipschitziana), si $\forall x, y \in A$ si existeix una constant $K_f < +\infty$ tal que, uniformement sobre A:

$$||f(x) - f(y)|| \le K_f ||x - y||$$
 (3)

Teorema 0.4 (Rademacher) Sigui $A \subset \mathbb{R}^n$ un conjunt obert i sigui $F : A \to \mathbb{R}^n$ una funció Lipschitz. Sigui $B \subset A$ el conjunt de punt s on F és diferenciable. Llavors $A \setminus B$ és negligible.

Proposició 0.5 (caracterització del subdiferencial de Clarke) Sigui $f: A \to \Re^n$ una funció Lipschitz sobre A i B el subconjunt de punts on f és diferenciable. Per a cada punt $\bar{x} \in A$ considerem el conjunt:

$$\bar{\nabla}f(\bar{x}) = \{ v \mid \exists \{x_k\} \to \bar{x}, amb \, x_k \in B, \, \nabla f(x_k) \to v \}$$

$$\tag{4}$$

Llavors el subdiferencial de Clarke, $\partial^c f(\bar{x})$ pot caracteritzar-se com:

$$\partial^c f(\bar{x}) = Hull(\bar{\nabla} f(\bar{x})) \tag{5}$$