An Al Framework for Linear B Translation into Ancient Greek and English

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge

Al Framework for Linear B translation: overview

This presentation covers the following topics:

- What Linear scripts are and their data sources
- Cognate matching task between Linear B and Ancient Greek

- Auxiliary information gathering to perform translation
- A translation pipeline for Linear B automated translation into Ancient Greek and English

Aegean Linear Scripts: web scraping

Linear B: the script

Linear B script is logosyllabic:

- logograms are symbols that stand for entire words
- syllabograms are symbols representing phonetic syllables

- Deciphered by Michael Ventris in 1952
- 70% of syllabograms shared with Linear A
- Used to write Ancient Greek

Cognate matching

Being Linear B and Ancient Greek the same language with a different scripts, we can map their cognates.

- Jiaming Luo's Cognate Matching Framework was employed.
- Generative model: produces an Ancient Greek cognate for any Linear B word.
- Expectation-Maximization training
- Network-flow problem for cognate matching.

Cognates examples:

- ko-no-so → Κνωσός
- ko-wo → κόρος
- do-se → δώσει

Cognate Matching Model

Jiaming Luo outlined four language-agnostic cognate matching principles:

- 1. Distributional similarity of matching characters
- 2. Monotonic character mapping within cognates
- 3. Structural sparsity of cognate mapping
- 4. Significant cognate overlap within related languages

His model architecture deals with all these principles.

The machine learning model is responsible for the first two properties, the flow latent variable (F) accounts for the other two.

$$\mathbf{P}(\mathcal{X}, \mathcal{Y}) = \sum_{\mathcal{F} \in \mathbb{F}} \mathbf{P}(\mathcal{F}) \, \mathbf{P}(\mathcal{X} \mid \mathcal{F}) \, \mathbf{P}(\mathcal{Y} \mid \mathcal{F}, \mathcal{X}) \propto \sum_{\mathcal{F} \in \mathbb{F}} \mathbf{P}(\mathcal{Y} \mid \mathcal{X}, \mathcal{F}) = \sum_{\mathcal{F} \in \mathbb{F}} \prod_{y_j \in \mathcal{Y}} \mathbf{P}(y_j \mid \mathcal{X}, \mathcal{F})$$

$$\mathbf{P}(y_j \mid \mathcal{X}, \mathcal{F}) = \sum_{x_i \in \mathcal{X}} f_{ij} \cdot \mathbf{P}_{\theta}(y_j \mid x_i)$$

Training Technique

Algorithm 1 Iterative training

Require:

X, Y: vocabularies,

T: number of iterations,

N: number of cognate pairs to identify.

1:
$$f_{i,j}^{(0)} \leftarrow \frac{N}{|\mathcal{X}| \cdot |\mathcal{Y}|}$$
 \triangleright Initialize

2: for $\tau \leftarrow 1$ to T do

3:
$$\theta^{(\tau)} \leftarrow \text{MLE-TRAIN}(f_{i,j}^{(\tau-1)})$$

4:
$$\bar{d}_{i,j}^{(\tau)} \leftarrow \text{Edit-dist}(x_i, y_j, \theta^{(\tau)})$$

5:
$$\tilde{f}_{i,j}^{(\tau)} \leftarrow \text{Min-cost-flow}(\bar{d}_{i,j}^{(\tau)})$$

6:
$$f_{i,j}^{(\tau)} \leftarrow \gamma \cdot f_{i,j}^{(\tau-1)} + (1-\gamma) \cdot \tilde{f}_{i,j}^{(\tau)}$$

7: RESET $(\theta^{(\tau)})$

8: return
$$f_{i,j}^{(T)}$$

9: **function** MLE-TRAIN $(f_{i,j}^{(\tau)})$

10:
$$\theta^{(\tau)} \leftarrow \arg \max_{\theta} \prod_{y_i \in \mathcal{Y}} \Pr_{\theta}(y_j | \mathcal{X}, \mathcal{F})$$

11: return $\theta^{(\tau)}$

- Progressively updates latent flow values, used for loss computation
- Reinitialize the model at each E-step
- 3 output modes: MLE, Flow, and Flow with Expected Edits
- Distances gathered from multiple sampling + edit distance, or from character-wise probabilities product
- Flow Mode output: output of min-cost flow computed with the trained model

Dataset making

The Linear B cognate matching dataset employed was updated. The dataset making comprised:

- Manual corrections to Luo's original dataset
- Brute-force greedy algorithm to associate Linear B words to possible Ancient Greek cognates from Homer (Iliad and Odyssey)
- Cognates refinement through structured prompt engineering
- Manual corrections
- Adding other matches from Tselentis lexicon (available only as a PDF, processed with OCR tools and manually revised).

Luo's original dataset: 919 Linear B words, 1418 Greek correspondences Our dataset: 1911 Linear B words, 2383 Greek correspondences

Cognate matching results

LSTM Init	Split	MLE	Flow w/o edit	Flow w/ edit
	Train	0.789	0.790	0.735
zero	Validation	0.663	0.674	0.696
	Test	0.761	0.761	0.728
	Train	0.411	0.423	0.435
custom	Validation	0.391	0.424	0.435
	Test	0.359	0.359	0.435

Table 3.4. Performance (Train/Validation/Test) on Luo's original dataset.

LSTM Init	Split	MLE	Flow w/o edit	Flow w/ edit
	Train	0.645	0.658	0.639
zero	Validation	0.597	0.602	0.634
	Test	0.625	0.646	0.646
	Train	0.238	0.275	0.367
custom	Validation	0.262	0.262	0.377
	Test	0.224	0.234	0.370

Table 3.6. Performance (Train/Validation/Test) on our dataset.

Auxiliary classifiers

Three additional tasks were identified to support translation:

- 1. Part of Speech Detection: noun, adjective, verb, adverb
- 2. Noun type: proper, toponym, ethnonym, common
- 3. Inflection Detection: thematic -o, thematic -a, athematic

Number	Case	Thematic $-o$ (M.)	Thematic $-o$ (N.)	Thematic -a (M.)	Thematic $-a$ (F.)	Athematic (M./F.)	Athematic (N.)
Sing.	Nom.	-0	-0	-a	-a	variable	variable
Sing.	Gen.	-ojo	-ojo	-ao	-a	-0	-0
Sing.	Dat.	-0	-0	-a	-a	-e/-i	-e/-i
Sing.	Acc.	-0	-0	-a	-a	-a	variable (often = Nom.)
Plur.	Nom.	-o/-oi	-a	-a	-a	-e	-a
Plur.	Gen.	-0	-0	-ao	-ao	-0	-0
Plur.	Dat.	-oi	-oi	-ai	-ai	-si/-ti	-si/-ti
Plur.	Acc.	-0	-a	-a	<u>-a</u>	-a/-e	-a

POS Detection: clarifies words' role in the sentence.

NT: clarifies how nouns (and adjectives) should be interpreted

ID: explains how to interpret inflected terms thanks to declension table

Tested solutions

The first approach: training neural networks (BRNN, convolutional) on embedded tokenized Linear B words.

This approach demonstrated slow convergence and low performance.

The second approach: bag-of-words for the Linear B syllabograms and Tf-ldf features for n-grams.

This word preprocessing proved to be effective for all tasks, with a variety of models while also being much more efficient.

Due to the more satisfactory results, only this approach was tested using 5-fold Cross Validation with the following models:

- 1. Logistic Regression
- 2. Random Forest
- 3. Linear SVM
- 4. Multinomial Naive Bayes
- 5. Histogram-based Gradient Boosting Classification Tree
- 6. MLP classifier

Auxiliary tasks results: Linear SVM performs best in all tasks

Model	Accuracy	Macro-F1	
Logistic Regression	0.8848	0.3826	
Random Forest	0.8770	0.2745	
Linear SVM	0.8845	0.4129	
Multinomial Naive Bayes	0.8712	0.2439	
HistGradientBoosting	0.8777	0.3390	
Neural Network (MLP)	0.8790	0.3022	

Noun Type Classification

Model	Accuracy	Macro-F1	
Logistic Regression	0.8097	0.7755	
Random Forest	0.7405	0.6836	
Linear SVM	0.8372	0.8072	
Multinomial Naive Bayes	0.7298	0.6690	
HistGradientBoosting	0.7855	0.7443	
Neural Network (MLP)	0.7993	0.7611	

Part of Speech Detection

Model	Accuracy	Macro-F1	
Logistic Regression	0.6341	0.4045	
Random Forest	0.6015	0.2953	
Linear SVM	0.6401	0.4632	
Multinomial Naive Bayes	0.6044	0.2978	
HistGradientBoosting	0.6012	0.3841	
Neural Network (MLP)	0.6319	0.3653	

Inflection Detection

Translation Pipeline

Results

12 documents, whose translation had been provided by Tselentis, have been manually evaluated.

Adjustments have been highlighted in red, mistakes in blue.

Document name: KN Ra 1540

Linear B text: to-sa pa-ka-na PUG 50

Greek translation: τόσα φάσγανα ΦΑΣΓΑΝΑ 50.

English translation: So many swords: 50 SWORDS.

Document name: KN So 4439

Linear B text: a-mo-ta e-ri-ka te-mi-dwe-ta ROTA ZE 3 MO ROTA 1

Greek translation: ἄρματα έλικά τερμιοέντα: τροχοί ζεύγη 3, μόνος τροχός 1.

English translation: Wheels made of willow tree, rimmed: 3 pairs of wheels, 1

single wheel.

Error Analysis & Evaluation

Overall, four main causes of error were identified in the analyzed documents:

- insufficient/misleading cognate information;
- misinterpretation of words' grammatical function (mostly due to wrong case selection);
- auxiliary classifiers' mislabeling, often turning common names into proper names;
- Logograms misinterpretation, especially for abbreviations.

Machine Translation metrics

- 1. BLEU
- 2. METEOR
- 3. ROUGE-(1, 2 and L)
- 4. TER
- 5. CHRF
- 6. WER

Metric	Greek	English
BLEU	0.641	0.768
METEOR	0.813	0.880
ROUGE-1 F1	0.818	0.903
ROUGE-2 F1	0.698	0.837
ROUGE-L F1	0.815	0.899
TER	0.187	0.158
CHRF	0.836	0.848
WER	0.189	0.161

Conclusions and future work

Overall, the LLM always manages to understand the context of the administrative Linear B records, and translates most of them appropriately.

Possible ideas for future work include:

- manual labeling of auxiliary classifiers' dataset;
- expanding auxiliary tasks (detecting tense/mood/voice for verbs, or case, gender and number for nouns/adjectives);
- fine-tuning an LLM using expert-validated Ancient Greek and English translations;
- forms normalization towards classical Ancient Greek;
- add possible interpretations for logographic abbreviations;
- evaluate the performance of this pipeline on other related languages.
- extending the systematic evaluation to more documents from the Linear B corpus