#### Universidad Tecnológica del Perú

# Sesión 03 Métodos de Ordenamiento Avanzado & Búsqueda

**Unidad I** 



#### **Temario:**

- Repaso de algoritmos avanzados de ordenamiento
  - Quick Sort
  - Shell Sort
  - Merge Sort
- Algoritmos de Búsqueda
  - Linear search
  - Binary search
- Práctica



#### Pautas de trabajo

- Los días que tengamos clases debemos conectarnos a través de Zoom.
- La participación de los estudiantes se dará través del <u>chat de</u>
   Zoom.

#### Inicio:





equals vs ==

compareTo

**Merge Sort** 

**Quick Sort** 

**Shell Sort** 

#### **Utilidad:**





#### Mira la imagen y responde

¿Cuál es el servicio principal de Google?

¿Siempre encuentra resultados de lo que se busca?

¿Qué información devuelve?

¿Cómo podrías buscar información en Java?

#### **Utilidad:**



#### Desarrollar un diccionario en Java



#### Mira la imagen y responde

¿Qué actividad se está realizando en la imagen?

¿Los datos mostrados, deben estar en orden?

¿Qué sucede si una palabra no se encuentra en el diccionario?

¿En que te ayudaría en tu futuro profesional desarrollar aplicaciones que te permitan buscar información?



## Logro de la sesión:

"Al finalizar la sesión, el estudiante resolverá problemas propuestos utilizando algoritmos ordenamiento avanzado y de búsqueda utilizando el lenguaje Java".







# Algoritmos de ordenamiento avanzados

#### Métodos de ordenamiento

#### **Merge Sort**

- Sigue el enfoque "divide y vencerás"
- Subdivide el array en 2 subarrays de n/2 elementos cada uno de manera recursiva
- Una vez que la división de arrays ya no puede continuar, se realiza el proceso de "fusión" (merge)
- Su complejidad es O(n log n)



## Métodos de ordenamiento Proceso de división





#### Métodos de ordenamiento

#### Universidad Tecnológica del Perú

### Proceso de mezclado (merge)



## Métodos de ordenamiento

### **Quick Sort**

- También sigue el enfoque "divide y vencerás".
   Subdivide el array en 2 subarrays de n/2 elementos cada uno de manera recursiva
- Se elige un elemento Pivot cercano a la mitad de cada subarray y se utilizan las posiciones Left y Right del array acercándolos al centro y evaluando donde corresponda el swap.
- El método va ordenando las mitades izquierdas de los subarrays, y el algoritmo se ordena de izquierda a derecha
- Su complejidad es O(n log n)





## Métodos de ordenamiento Shell Sort



- Está basado en el algoritmo InsertionSort
- El algoritmo rompe el conjunto original en subconjuntos más pequeños y luego los ordena usando InsertionSort
- Utiliza un intervalo o gap para la creación de subconjuntos
- Su complejidad es O(n log n)



## Métodos de ordenamiento Integrando ordenamiento a Java



#### **Ejercicio Propuesto**

Crear la clase java Curso con los siguientes atributos: codigo (String), ciclo (int), nombre (String), creditos (int)

Implementar la interfaz Comparable y configurar el orden natural por codigo

Crear la clase AppCurso e instanciar 5 objetos de la clase Curso en un array de manera desordenada

Ordenar los datos utilizando algún algoritmo de ordenamiento avanzado





## Algoritmos de Búsqueda

# Métodos de Ordenamiento ¿Qué es un algoritmos de búsqueda?



- Es un algoritmo encargado de recuperar información
- La búsqueda es una de las aplicaciones más importante de la informática y se le conoce como searching
- La búsqueda se realiza en un almacén de datos denominados tablas lookup cuya información suele estar emparejada
- Una vez encontrado el elemento buscado, se devuelve la información o la ubicación de la información para su posterior procesamiento.





#### Algoritmos de búsqueda básicos

**Linear Search** 

Búsqueda secuencial o lineal

**Binary Search** 

Búsqueda binaria

## Algoritmos de búsqueda básicos Linear Search





## Algoritmos de búsqueda básicos Linear Search



Si la clave (KEY) buscada no se encuentra,
 el algoritmo devuelve el valor -1

 Después de llamar a la función de búsqueda, debemos comprobar si la clave (KEY) fue encontrada

Buscar KEY 55

-1



No se encontró



#### **Linear Search**

#### **Ejercicio Propuesto**

Se tiene el siguiente conjunto de elementos: 100,25,61,98,205,18,2

Realizar la representación gráfica de un Linear Search para la búsqueda de las siguientes keys:

205

61

15



#### Linear Search en Java

#### Pseudocódigo

```
Para i desde 0 hasta i < longitud(array)
Si (arreglo[i] == clave){
retornar i
}
retornar -1
FinPara
```

```
public static int linearSearch(int[] data, int key){
    for (int <u>i</u> = 0; <u>i</u> < data.length; <u>i</u>++) {
        if (data[<u>i</u>] == key) return <u>i</u>;
    }
    return -1;
}
```

Universidad Tecnológica del Perú

### **Binary Search**



LEFT, caso contrario en RIGHT



#### **Binary Search**

#### Buscar KEY 10

Paso 1: 10 == 27 ? False 10 < 27 ? True

Paso 2: 10 == 12 ? False 10 < 12 ? True

Paso 3: 10 == 10 ? True / Devolver



0 1 2 3 4 5 6 7 8 9 10



L=0, R=10, M=(0+10)/2=5



L=0, R=4, M=(0+4)/2=2



L=0, R=1, M=(0+1)/2=0

## Algoritmos de búsqueda básicos Binary Search



#### Buscar KEY 50

Paso 1: 50 == 27 ? False 50 > 27 ? True

Paso 2: 50 == 40? False 50 > 40 ? True

Paso 3: 50 == 45? False 50 > 45 ? True

Paso 4: 50 == 50 ? True Devolver 10 Importante: Los datos deben estar ordenados

M

M

1 2 3 4 5 6 7

10 11 12 20 25 27 30 35 40 45 50

L=0, R=10, M=(0+10)/2=5

L=6, R=10, M=(6+10)/2=8

L=9, R=10, M=(9+10)/2=9

L=10, R=10, M=(10+10)/2=10

10

10

10

## Algoritmos de búsqueda Binary Search



#### **Ejercicio Propuesto**

Se tiene el siguiente conjunto de elementos: 10,20,30,40,50,60,70,80

Realizar la representación gráfica de un Binary Search para la búsqueda de las siguientes keys:

20

60

15

#### Consultas





## **Practiquemos**





## **Practiquemos**





- palabra (String)
- significado (String)
- Definir el comparador de orden natural por palabra y significado
- Crear en la clase Diccionario, 10 instancias de la clase Word en un array y ordenar los datos con un algoritmo de ordenamiento avanzado
- Utilizar un método de búsqueda para poder encontrar palabras en el diccionario (mostrar error en caso de no encontrarla)
- Utilizar la clase TextUTP para cargar el diccionario e ingles del archivo oxford.txt y realizar búsquedas con todo los métodos estudiados

#### **Tarea**





## ¿Que hemos aprendido hoy?





- ¿Para que sirven los algoritmos de búsqueda?
- ¿Cuáles son los algoritmos de búsqueda básicos?
- Si los datos están desordenados.
  ¿Se puede encontrar información?
- ¿Qué algoritmos de ordenamiento pueden ayudar a ordenar la información?

## Bibliografía



 Tanenbaum & Van Steen (2008). Algoritmos y Estructuras de Datos -Principios y Paradigmas, 2da Edición. Pearson Education

 Khalid A. Mughal & Rolf W. Rasmussen (2017). A Programmer's guide to Java SE 8 Oracle Certified Associate

#### Universidad Tecnológica del Perú