Лабораторная работа № 5.5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Тенгиз Пазов

Октябрь 2025

1 Теоретическая справка

Проходя через вещество, пучок γ -квантов постепенно ослабляется, ослабление происходит по экспоненциальному закону, который может быть записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l},$$

$$I = I_0 e^{-\mu' m_l},$$

где I, I_0 – интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком γ -лучей, m_l – масса пройденного вещества на единицу площади, $\mu, \ \mu'$ – константы, зависящие от вещества.

Число выбывших на пути dl из пучка γ -квантов

$$-dN = \mu Ndl$$
,

откуда

$$N = N_0 e^{\mu l}$$

или

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{1}$$

Описание установки

Рис. 1 -Схема установки.

На Рис. 1 изображена схема установки. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтилляционным счётчиком. Сигналы от счётчика усиливаются и регистрируются пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика. Чтобы уменьшить влияние плохой геометрии, счётчик расположен на большим расстоянии от источника, поглотители имеют небольшие размеры, а так же устанавливаются на расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние кванты с меньшей вероятностью могли в него вернуться.

Ход работы

Число поглощаемых частиц при отсутствии заглушки

$$N_0 = 2298 \pm 40$$

Число поглощаемых частиц в присутствии поглотителя(фон)

$$N_{\mathrm{фон}}=35$$

В дальнейшем за $N_{\text{част}}$ примем число, равное $N_{\text{част}}-N_{\text{фон}}.$ $\sigma_l=0,01$ см

Свинец			Железо			Алюминий		
$l_0 = 0,50 \text{ cm}$			$l_0 = 1,00 \text{ cm}$			2,00 см		
$N_{\text{пластин}}$	$N_{\text{\tiny \tiny HACT}}$	$\sigma_{N_{ m \tiny 4act}}$	$N_{\rm пластин}$	$N_{\text{\tiny \tiny HACT}}$	$\sigma_{N_{ m \tiny 4act}}$	$N_{\text{пластин}}$	$N_{\text{част}}$	$\sigma_{N_{ ext{\tiny част}}}$
1	39065	40	1	39422	40	1	46147	40
2	22271	30	2	22614	30	2	30621	30
3	12761	20	3	13034	20	3	20404	20
4	7384	10	4	7333	10	4	13768	20
5	4527	10	5	4305	9	5	9246	20
6	2755	6	6	2589	6	6	6263	10
7	1821	5	7	1576	4	7	1576	5
8	1156	4	8	1085	3	8	1085	5

Преобразуем формулу для коэффициента ослабления

$$\ln(N) = -\mu l + \ln(N_0)$$

Тогда получается график зависимости $\ln(N/N0)$ от l

Материал	$\mu, 10^{-3} \text{cm}^{-1}$	$\sigma_{\mu}, 10^{-3} \text{cm}^{-1}$	$<\varepsilon>$, MəB
Свинец	1021	40	0,79
Железо	533	16	0,80
Алюминий	197	8	0,78

Вывод

В данной лабораторной работе ыл вычислен коэффициент ослабления потока γ - лучей в веществе, также была вычислена средняя энергия γ -лучей.