Colles série 3 : Intervalles de fluctuations

Sujet 1 : évaluer le niveau de fluctuation d'un intervalle donné pour la moy. emp.

- 1. Définir $n=100,\ N=10000,\ \mu=2$ et $\sigma=2$. Calculer les bornes de l'intervalle centré en μ et de précision 10% de μ (soit $I=[0.9\mu;1.1\mu]$).
- 2. On veut évaluer ici le niveau de fluctuation de cet intervalle pour \bar{X}_n : simuler N échantillons de taille n et de loi normale $\mathcal{N}(\mu, \sigma^2)$ puis en calculer les N moyennes empiriques. Evaluer la fréquence avec laquelle la moyenne empirique tombe dans l'intervalle I. Quel est son niveau de fluctuation?

Sujet 2 : calculer un inter. de fluct. d'un niveau donné pour la moy. emp.

- 1. Définir $n=100,\ N=10000,\ \mu=2,\ \sigma=2$ et $\alpha=5\%.$ Calculer les bornes de l'intervalle de fluctuation de niveau 95% pour \bar{X}_n .
- 2. On veut vérifier ici le niveau de fluctuation de cet intervalle : simuler N échantillons de taille n et de loi normale $\mathcal{N}(\mu, \sigma^2)$ puis en calculer les N moyennes empiriques. Evaluer la fréquence avec laquelle la moyenne empirique tombe dans l'intervalle précédent. Son niveau de fluctuation est-il celui attendu?

Sujet 3 : calculer un inter. de fluct. d'un niveau donné pour l'est d'une proba. p

- 1. Définir n=100, N=10000, p=0.7 et $\alpha=1\%$. Calculer les bornes de l'intervalle de fluctuation de niveau 99% pour $\bar{X}_n=\hat{p}$ (modèle de Bernoulli).
- 2. On veut vérifier ici le niveau de fluctuation de cet intervalle : simuler N échantillons de taille n et de loi $\mathcal{B}(1,p)$ puis en calculer les N moyennes empiriques. Evaluer la fréquence avec laquelle la moyenne empirique tombe dans l'intervalle précédent. Son niveau de fluctuation est-il celui attendu ?

Sujet 4 : évaluer le niveau de fluctuation d'un intervalle donné pour la var. emp.

- 1. Définir $n=100,\ N=10000,\ \mu=2$ et $\sigma=2$. Calculer les bornes de l'intervalle centré en σ et de précision 10% de σ (soit $I=[0.9\sigma;1.1\sigma]$).
- 2. On veut évaluer ici le niveau de fluctuation de cet intervalle pour S_n^2 : simuler N échantillons de taille n et de loi normale $\mathcal{N}(\mu, \sigma^2)$ puis en calculer les N variances empiriques s_n^2 puis écart-type empiriques s_n . Evaluer la fréquence avec laquelle l'écart-type empirique tombe dans l'intervalle précédent. Quel est son niveau de fluctuation ?