Course Title: Computer Graphics Full Marks: 60+20+20

Course no: CSC209 Pass Marks: 24 +8+8

Nature of the Course: Theory + Lab Credit Hrs: 3

Semester: III

Course Description: The course coversconcepts of graphics hardware, software, and applications, data structures for representing 2D and 3D geometric objects, drawing algorithms for graphical objects, techniques for representing and manipulating geometric objects, illumination and lighting models, and concept of virtual reality.

Course Objectives: The objective of this course is to understand the theoretical foundation as wellas the practical applications of 2D and 3D graphics.

Detail Syllabus

Chapter / Units	Teaching	Teaching
	Methodology	Hours
Unit 1: Introduction of Computer Graphics	Class Lecture	3 Hours
1.1 A Brief Overview of Computer Graphics, Areas of		
applications		
1.2 Graphics Hardware: Display Technology, Architecture of		
Raster-Scan Displays, Interlaced refresh procedure, refresh		
buffer, frame buffer, Vector Displays, Display Processors,		
Hard copy devices. Input Devices		
1.3 Graphics Software: Software standards, Coordinate		
Representations, PHIGS Workstations, Need of machine		
independent graphics language		
1.4 Human visual system: basic of how we perceived the world,		
strength and weakness of the human visual system		
1.5 Color models: RGB, CMYK, HVS, XYZ		
2. Scan Conversion Algorithm	Class Lecture	6 Hours
2.1 Scan Converting a Point and a straight Line: DDA Line	+ Lab Session	
Algorithm, Bresenham's Line Algorithm		
2.2 Scan Converting Circle and Ellipse :Mid Point Circle and		
Ellipse Algorithm		
2.3 Area Filling: Scan Line Polygon fill Algorithm,Inside-		
outside Test,Scan line fill of Curved Boundary area,		
Boundary-fill and Flood-fill algorithm		

3.Two-Dimensional Geometric Transformations	Class Lecture	5 Hours
3.1 Two-Dimensional translation, Rotation, Scaling, Reflection		2 110415
and Shearing	1 Lab Session	
3.2 Homogeneous Coordinate and 2D Composite		
Transformations. Transformation between Co-ordinate		
Systems		
3.3 Two Dimensional Viewing: Viewing pipeline, Window to		
viewport coordinate transformation		
3.4 Clipping: Point,Lines(Cohen Sutherland line		
clipping,Liang-BarskyLineClipping),Polygon		
Clipping(Sutherland Hodgeman polygon clipping)		
empping(Sumeriana Hoageman porygon empping)		
4. Three-Dimensional Geometric Transformation	Class Lecture	5 Hours
4.1 Three-Dimensional translation, Rotation, Scaling,		2 110 115
Reflection and Shearing	Lab Session	
4.2 Three-Dimensional Composite Transformations		
4.3 Three-Dimensional Viewing: Viewing pipeline, world to		
screen viewing transformation, Projection		
concepts(Orthographic, parallel, perspective projections)		
concepts (orthographie, paramet, perspective projections)		
5. 3D Objects Representation	Class Lecture	7 Hours
5.1 Representing Surfaces: Boundary and Space partitioning	+ Lab Session	
5.1.1 Polygon Surface: Polygon tables, Surface normal and		
Spatial orientation of surfaces, Plane equations, Polygon		
meshes		
5.1.2 Wireframe Representation		
5.1.3 Blobby Objects		
5.2 Representing Curves: Parametric Cubic Curves, Spline		
Representation, Cubic spline interpolation, Hermite		
Curves, Bezier and B-spline Curve and surface, Fractals and		
its applications		
5.3 Quadric Surface: Sphere and Ellipsoid		
6. Solid Modeling	Class Lecture	4 Hours
6.1 Solids and solid modeling, boundary point, interior point,		
closure		
6.2 Sweep ,Boundary and Spatial-Partitioning Representation		

6.3 Binary Space Partition Trees (BSP)		
6.4 Octree Representation		
7. Visible Surface Detections	Class Lecture	5 Hours
7.1 Visible surface and hidden surface, Coherence for visibility	+ Lab Session	
7.2 Image Space and Object Space Techniques		
7.3 Back Face Detection, Depth Buffer (Z-buffer), A-Buffer and		
Scan-Line Algorithms		
7.4 Depth Sorting Method (Painter's Algorithm)		
7.5 BSP tree Method, Octree and Ray Tracing		
8. Illumination Models and Surface Rendering Techniques	Class Lecture	5 Hours
8.1 Defining Realism, Image Synthesis Validation, challenges in		
computing light, optics model		
8.2 Basic Illumination Models: Ambientlight, Diffuse		
reflection,Specular reflection and Phong model		
8.3 Intensity attenuation and Color consideration		
,Transparency,Shadows		
8.4 Polygon Rendering Methods: Constant intensity shading,		
Gouraud shading, Phong Shading and Fast Phong Shading, Real		
time vs offline rendering		
O Judan Jundan de Windowski Donillan	Class I askassa	2 11
9. Introduction to Virtual Reality	Class Lecture	2 Hours
9.1 Concept of Virtual reality		
9.2 Virtual Reality Components of VR System, Types of VR		
System, 3D Position Trackers, Navigation and Manipulation		
Interfaces		
9.3 Visual computation in virtual reality		
9.4 Augmented Reality		
9.5 Application of VR		
10 Internal and Commercial	Class I at	2 11
10. Introduction to OpenGL	Class Lecture	3 Hours
10.1Introduction, Callback functions, Color commands,	+ Lab Session	
Drawings pixels, lines, polygons using OpenGL, OpenGL		
and Direct X APIs - key differences, Viewing, Lighting and		
reflectance model		

Text Books:

1. **Donald Hearne and M.Pauline Baker**, "Computer Graphics, C Versions." Prentice Hall

Reference Books:

- 1. **J.D. Foley, S.K. Feiner and J.F. Hughes**, "Computer Graphics Principles and Practises" (Second Edition in C)
- 2. **R.K. Maurya**, "Computer Graphics with Virtual Reality", Wiley India
- 3. F.S. Hill, Stephen M.Kelley, "Computer Graphics using Open GL" Prentice Hall

Laboratory Works:

Students should be able to write program on the most of the contents listed in syllabus, using any known programming language (C, C++) in previous semester. Majorly, students should on computer graphics primitives like line, circle and ellipse drawing algorithm to hidden surface removal techniques. After completing the basic lab session the students must be able to design some project works like game, 3D rotation, screen saver etc. Some sample lab sessions can be as following:-

Unit 2 : Scan Conversions Algorithm (10 Hours)

- Study of Fundamental Graphics Functions
- Implementation of Line drawing algorithms: DDA Algorithm, Bresenham's Algorithm
- Implementation of Circle drawing algorithms: Bresenham's Algorithm, Mid-Point Algorithm

Unit 3 : Two-Dimensional Geometric Transformations (4 Hours)

- Simulation of 2D transformation, Rotation and Scaling
- Write a program to implement Cohen Sutherland line clipping algorithm

Unit 4 : Three-Dimensional Geometric Transformation (12 Hours)

- Write a program to perform shear transformation on a rectangle
- Write a program to perform 2D Transformation on a line
- Write a program to draw a car using in build graphics function and translate it from bottom left corner to right bottom corner of screen
- Write a program to draw a cube using in build library function and perform 3D transformations
 - o Translations in x, y, z directions
 - o Rotation by angle 450 about z axis, rotation by 600 about y-axis in succession.
 - o Scaling in x-direction by a factor of 2, scaling in y-direction by a factor of 3

Unit 5 : 3D Objects Representation (4 Hours)

- Implementation of polygon tables.
- Write a program to draw Bezier curve, sphere

Unit 7: Visible Surface Detections (10 Hours)

- Back face detection:- Implementation of Depth Buffer, A Buffer, Scan-Line algorithm
- Implementation of rotation of 3D cube.

Unit 10: Introduction to OpenGL (5 Hours)

- Event driven programming
- Point, Line and Polygon
- Drawing 3D objects

Model Question Tribhuvan University

Institute of Science and Technology

Course Title: Computer GraphicsFullMarks:60Course No: CSC 209PassMarks:24

Level: B. Sc CSIT Second Year/ Third Semester Time: 3 Hrs

Section A Long Answer Questions

Attempt any TWO questions

 $[2 \times 10 = 20]$

- 1. Explain the working details of DDA algorithm? Explain. Digitize a line with end points A(6,12) and B(10,5) using Bresenham's line drawing algorithm. [5 + 5]
- 2. How can polygons be clipped? Why is Phong shading also called Normal Vector Interpolation scheme? Explain. [5 + 5]
- 3. Given a window bordered by (1,2) at the lower left and (16,12) at the upper right, give the screen coordinates of a triangle with vertices (3,2), (10,7.5) and (5,5) when mapped into a viewport with corners (100,100) and (400,200). Provide accurate illustrations of the window, viewport, and the untransformed and transformed triangles with your answer. [10]

Section B Short Answer Questions

Attempt any EIGHT questions

 $[8 \times 5 = 40]$

- 4. How to animate a two dimensional figure using transformations? Explain with example. [5]
- 5. Remember in screen coordinates y increases as you go down. [5]
- 6. What are the key issues prevalent in producing a Virtual reality scene? Describe the Binary Space Partition tree. [2 + 3]
- 7. How can a polygon surface be filled using the Flood fill approach? Explain. [5]
- 8. What is the significance of vanishing points in Perspective Projection? Explain. [5]
- 9. Explain ambient light, diffuse reflection and specular reflection with examples. [5]
- 10. Compute the midpoint of the Bezier Curve with control points $p_0 = (0,0,1)$, $p_1 = (1,0,1)$ and $p_2 = (1,2,0)$. [5]
- 11. How does a polygon can be created in OpenGL? Illustrate with an example. [5]
- 12. How does a video controller and a frame buffer jointly collaborate to produce graphical display on the screen, in case of a Raster Display? [5]
- 13. Write short notes on (Any TWO) [2.5 + 2.5]
 - a. Polygon Tables
 - b. Augmented Reality
 - c. Painter's algorithm