In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Out[2]:		date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	0	2015- 10-01 01:00:00	NaN	8.0	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN	28
	1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28
	2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1	28
	3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN	28
	4	2015- 10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN	28
	210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN	28
	210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN	28
	210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN	28
	210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN	28
	210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN	28

210096 rows × 14 columns

In [3]: data.head(10)

01:00:00

2015-10-01

10-01

01:00:00

0.7

0.4

NaN NaN NaN

0.3

Out[3]:		date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	statio
	0	2015- 10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN	2807900
	1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	2807900
	2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1	2807901
	3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN	2807901
	4	2015- 10-01	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN	2807901

NaN 35.0 104.0

NaN 54.0

01:00:00

20156 10-01 0.5 0.3 0.3 0.12 6.0 83.0 1.0 19.0 12.0 3.0 1.29 4.8 2807902
01:00:00

2015-

94.0

1.0

1.0

26.0

NaN

NaN

NaN

3.0 NaN

3.3 2807901

NaN NaN 2807902

2015-10-01 NaN 0.5 NaN NaN 38.0 114.0 16.0 NaN NaN NaN NaN NaN NaN 2807903 01:00:00

2015-10-01 NaN 0.7 NaN NaN 64.0 97.0 NaN 34.0 NaN 6.0 NaN NaN 2807903 01:00:00 In [4]: data.tail(20)

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	
210076	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	11.0	62.0	NaN	NaN	4.0	NaN	NaN	28
210077	2015- 08-01 00:00:00	0.1	0.1	0.1	NaN	2.0	15.0	61.0	11.0	NaN	2.0	NaN	0.3	28
210078	2015- 08-01 00:00:00	0.1	0.1	0.1	0.06	1.0	8.0	65.0	7.0	1.0	2.0	1.18	0.4	28
210079	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	63.0	NaN	NaN	NaN	NaN	NaN	28
210080	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	4.0	22.0	73.0	NaN	NaN	5.0	NaN	NaN	28
210081	2015- 08-01 00:00:00	NaN	0.1	NaN	NaN	1.0	9.0	NaN	19.0	NaN	7.0	NaN	NaN	28
210082	2015- 08-01 00:00:00	0.1	NaN	0.1	NaN	4.0	15.0	NaN	13.0	7.0	2.0	NaN	0.3	28
210083	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	2.0	10.0	67.0	NaN	NaN	NaN	NaN	NaN	28
210084	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	13.0	NaN	17.0	NaN	4.0	NaN	NaN	28
210085	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	17.0	NaN	12.0	6.0	NaN	NaN	NaN	28
210086	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	2.0	9.0	NaN	9.0	5.0	NaN	NaN	NaN	28
210087	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	11.0	63.0	NaN	NaN	NaN	NaN	NaN	28
210088	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	NaN	8.0	3.0	NaN	NaN	NaN	28
210089	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	2.0	14.0	64.0	NaN	NaN	NaN	NaN	NaN	28
210090	2015- 08-01 00:00:00	0.2	NaN	0.2	0.48	1.0	15.0	NaN	35.0	NaN	NaN	1.59	0.2	28
210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN	28
210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN	28

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	
210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN	28
210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN	28
210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN	28

In [5]: data.describe()

Out[5]:

	BEN	со	EBE	NMHC	NO	NO_2	
count	51039.000000	86827.000000	50962.000000	25756.000000	208805.000000	208805.000000	1:
mean	0.756945	0.366559	0.495269	0.261542	26.736821	40.980302	
std	0.998673	0.285630	0.883413	0.295215	59.570283	32.731316	
min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	
25%	0.100000	0.200000	0.100000	0.090000	2.000000	17.000000	
50%	0.400000	0.300000	0.200000	0.140000	6.000000	33.000000	
75%	1.000000	0.400000	0.500000	0.300000	22.000000	57.000000	
max	17.700001	4.500000	19.700001	2.800000	1146.000000	424.000000	
4							•

In [6]: np.shape(data)

Out[6]: (210096, 14)

In [7]: np.size(data)

Out[7]: 2941344

In [8]: data.isna()

Out[8]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL
0	False	True	False	True	True	False	False	True	True	True	False	True	True
1	False												
2	False	False	True	False	True	False	False	True	True	True	True	True	False
3	False	True	False	True	True	False	False	False	True	True	True	True	True
4	False	True	True	True	True	False	False	False	True	True	False	True	True
210091	False	True	False	True	True	False	False	False	True	True	True	True	True
210092	False	True	False	True	True	False	False	True	False	True	False	True	True
210093	False	True	True	True	True	False	False	False	True	True	True	True	True
210094	False	True	True	True	True	False	False	False	True	True	True	True	True
210095	False	True	True	True	True	False	False	False	False	True	True	True	True

210096 rows × 14 columns

In [9]: data.dropna()

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28
6	2015- 10-01 01:00:00	0.5	0.3	0.3	0.12	6.0	83.0	1.0	19.0	12.0	3.0	1.29	4.8	2
25	2015- 10-01 02:00:00	1.6	0.7	1.3	0.38	81.0	105.0	4.0	36.0	19.0	13.0	1.93	6.9	2
30	2015- 10-01 02:00:00	0.4	0.3	0.3	0.11	5.0	72.0	2.0	16.0	10.0	2.0	1.27	7.8	2
49	2015- 10-01 03:00:00	2.2	8.0	1.8	0.41	111.0	104.0	4.0	35.0	20.0	14.0	2.05	13.9	2
•••														
210030	2015- 07-31 22:00:00	0.1	0.1	0.1	0.06	1.0	10.0	69.0	10.0	3.0	2.0	1.18	0.2	2
210049	2015- 07-31 23:00:00	0.4	0.3	0.1	0.12	3.0	28.0	56.0	15.0	7.0	12.0	1.45	1.2	2
210054	2015- 07-31 23:00:00	0.1	0.1	0.1	0.06	1.0	10.0	63.0	5.0	1.0	2.0	1.18	0.2	2
210073	2015- 08-01 00:00:00	0.1	0.3	0.1	0.11	2.0	23.0	59.0	5.0	2.0	11.0	1.44	0.6	2
210078	2015- 08-01 00:00:00	0.1	0.1	0.1	0.06	1.0	8.0	65.0	7.0	1.0	2.0	1.18	0.4	2

```
In [11]: sd=data[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
```

In [12]: dd=sd.head(20) dd

Out[12]:

	BEN	со	EBE	NMHC	NO_2
0	NaN	0.8	NaN	NaN	82.0
1	2.0	8.0	1.6	0.33	95.0
2	3.1	NaN	1.8	NaN	97.0
3	NaN	0.6	NaN	NaN	103.0
4	NaN	NaN	NaN	NaN	96.0
5	0.7	0.4	0.3	NaN	104.0
6	0.5	0.3	0.3	0.12	83.0
7	NaN	NaN	NaN	NaN	94.0
8	NaN	0.5	NaN	NaN	114.0
9	NaN	0.7	NaN	NaN	97.0
10	0.3	NaN	0.4	NaN	69.0
11	NaN	0.6	NaN	NaN	99.0
12	NaN	NaN	NaN	NaN	106.0
13	NaN	NaN	NaN	NaN	97.0
14	NaN	NaN	NaN	NaN	63.0
15	NaN	NaN	NaN	NaN	70.0
16	NaN	NaN	NaN	NaN	76.0
17	NaN	NaN	NaN	NaN	111.0
18	0.6	NaN	1.9	0.42	106.0
19	NaN	0.7	NaN	NaN	87.0

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

In [17]: dd.plot.box()

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: | dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x2312190cf70>

In [23]: sns.distplot(dd['NO_2'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>


```
In [24]: ds=data.fillna(20)
```

In [25]: ssd=ds.head(20)

```
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
```

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>


```
In [28]: | x= ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]:
         print(lr.intercept_)
         28079020.931648426
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
            BEN
                   0.186243
             CO
                   0.784038
            EBE
                   0.184561
          NMHC
                  -0.048940
           NO_2
                   0.032416
```

```
In [33]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[33]: <matplotlib.collections.PathCollection at 0x231247cabe0>


```
In [34]: |print(lr.score(x_test,y_test))
         -0.31111095437947167
In [35]: |lr.score(x_test,y_test)
Out[35]: -0.31111095437947167
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.2843392317570176
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: -0.3129464656335721
In [40]: |dr.score(x_train,y_train)
Out[40]: 0.28430901780534046
In [41]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: -0.3850911218492261
In [43]: la.score(x_train,y_train)
Out[43]: 0.26857867745924624
         ElasticNet
```

```
In [45]: |print(en.coef_)
         [ 0.17721647  0.76530765  0.1592669
                                                            0.02902792]
                                               -0.
In [46]:
         print(en.intercept_)
         28079021.10668583
In [47]: prediction=en.predict(x_test)
In [48]: |print(en.score(x_test,y_test))
         -0.32567182260324357
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: | from sklearn.linear model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 5)
In [53]: target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3]]
In [58]: | prediction=logr.predict(observation)
         print(prediction)
         [28079054]
```

```
In [59]: logr.classes
Out[59]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056], dtype=int64)
In [60]: logr.predict_proba(observation)[0][0]
Out[60]: 6.732126555297627e-05
In [61]: | ged=data[['BEN','CO','EBE','NMHC','NO_2','O_3','PM10','SO_2','TCH','TOL','stati
In [62]: | d=ged.fillna(20)
In [63]: | dg=d.head(100)
In [64]: | x=dg[['BEN','CO','EBE','NMHC','NO 2','O 3','PM10','SO 2','TCH','TOL']]
         y=dg['station']
In [65]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [66]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[66]: RandomForestClassifier()
In [67]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min samples leaf':[5,10,15,20,25,30,35],
                        'n_estimators':[10,20,30,40,50,60,70]}
In [68]: from sklearn.model selection import GridSearchCV
         grid_search= GridSearchCV(estimator = rfc,param_grid=paramets,cv=2,scoring="ac
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[68]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                   'min_samples_leaf': [5, 10, 15, 20, 25, 30, 35],
                                   'n_estimators': [10, 20, 30, 40, 50, 60, 70]},
                      scoring='accuracy')
In [69]: |grid_search.best_score_
Out[69]: 0.4714285714285714
```

In [70]: rfc_best=grid_search.best_estimator_

In [71]: from sklearn.tree import plot_tree
 plt.figure(figsize=(50,40))
 plot_tree(rfc_best.estimators_[5],filled=True)

Out[71]: [Text(797.1428571428571, 1956.96, 'X[8] <= 11.025\ngini = 0.94\nsamples = 44 \nvalue = $[3, 4, 2, 2, 0, 3, 6, 1, 1, 4, 4, 4, 3, 6 \n1, 7, 4, 3, 0, 2, 1, 5,$ 4]'), $Text(398.57142857142856, 1522.0800000000000, 'gini = 0.639\nsamples = 9\nval$ ue = [0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]'),Text(1195.7142857142858, 1522.0800000000002, 'X[0] <= 12.0\ngini = 0.928\nsa mples = 35\nvalue = [3, 0, 2, 2, 0, 3, 0, 1, 1, 4, 4, 4, 3, 6\n1, 7, 4, 0, 0, 2, 1, 5, 4]'), Text(797.1428571428571, 1087.2, 'gini = 0.642\nsamples = 6\nvalue = [0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),Text(1594.2857142857142, 1087.2, 'X[6] <= 19.0\ngini = 0.911\nsamples = 29\n value = [3, 0, 0, 2, 0, 0, 0, 1, 1, 4, 0, 4, 3, 6\n1, 7, 4, 0, 0, 2, 1, 5, 4]'), Text(1195.7142857142858, 652.3200000000002, 'gini = 0.693\nsamples = 7\nvalu $e = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6 \setminus 0, 4, 0, 0, 0, 1, 0, 0, 4]'),$ Text(1992.8571428571427, 652.3200000000002, 'X[5] <= 7.5\ngini = 0.9\nsample s = 22\nvalue = [3, 0, 0, 2, 0, 0, 0, 1, 1, 4, 0, 4, 3, 0\n1, 3, 4, 0, 0, 1, 1, 5, 0]'), Text(1594.2857142857142, 217.4400000000000, 'gini = 0.66\nsamples = 6\nvalu e = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0 | 1, 0, 4, 0, 0, 0, 0, 0]'),Text(2391.4285714285716, 217.44000000000005, 'gini = 0.862\nsamples = 16\nva lue = $[3, 0, 0, 1, 0, 0, 0, 1, 1, 4, 0, 0, 3, 0 \cap 0, 3, 0, 0, 0, 1, 1, 5,$

0]')]

Conclusion: Ridge,Lasso() 0.28430901780534046 HIGH RANGE

In []:		
---------	--	--