T: Aldehydy – budowa, nazewnictwo i otrzymywanie.

Aldehydy to jednofunkcyjne pochodne węglowodorów, które zawierają jako grupę funkcyjną grupę aldehydową – CHO.

Wzór ogólny:R - CHO

gdzie: R – atom wodoru lub grupa alkilowa lub grupa arylowa

O

- CHO grupa aldehydowa (grupę aldehydową tworzy grupa karbonylowa – C - połączona z jednym atomem wodoru.

Rodzaj występujących wiązań w aldehydach:

W grupie aldehydowej jedno wiązanie pomiędzy C a tlenem jest typu σ a drugie typu π , pozostałe wiązania zaliczamy do wiązań typu σ .

Nazewnictwo aldehydów:

Nazwy systematyczne aldehydów alifatycznych tworzy się poprzez dodanie do nazwy odpowiedniego węglowodoru końcówki "– al ". Jeżeli cząsteczka aldehydu zawiera podstawniki, to nazwę zaczynamy od wymienienia podstawników w kolejności alfabetycznej z podaniem ich lokantów.

Liczba	Nazwa	Wzór sumaryczny	Wzór strukturalny
atomów			
C			
1	metanal		
	(aldehyd mrówkowy,	НСНО	
	formaldehyd)		
2			
3			

4		
5		

Nasycone aldehydy alifatyczne tworzą szereg homologiczny, w którym każdy kolejny związek różni się od poprzedniego o grupę – CH₂.

Zad.1, str. 149

Aldehydy tworzą izomery szkieletowe oraz funkcyjne:

Otrzymywanie aldehydów:

Prezentacja dośw. – otrzymywanie etanalu:

Obserwacje: Powierzchnia drutu miedzianego ogrzewanego w płomieniu palnika pokrywa się (*czarnym / niebieskim*) nalotem. Po wprowadzeniu drutu do probówki z etanolem nalot (*zmienia kolor / zanika*) a drut miedziany ma ponownie barwę ceglastoczerwoną. Wyczuwalny jest charakterystyczny zapach.

<u>Wnioski:</u> Miedź ogrzewana w płomieniu palnika utlenia się tlenem z powietrza do tlenku miedzi(II). Po wprowadzeniu do etanolu gorącej miedzi pokrytej nalotem – tlenek miedzi(II) redukuje się do metalicznej miedzi i powstaje etanal.

$$2 \ Cu \ + \ O_2 \square \ \ 2 \ CuO$$

$$CH_3CH_2OH + CuO \stackrel{temp.}{\Box} CH_3CHO + Cu + H_2O$$

Aldehydy otrzymuje się w reakcji utleniania alkoholi pierwszorzędowych za pomocą słabych utleniaczy, np. CuO.

$$HCH_2OH + CuO$$
 temp.

Aldehydy na skalę przemysłową otrzymuję się w reakcjach katalitycznych np.:

- Utleniania metanolu 2 CH₃OH + O_2^{kat} 2 HCHO + 2 H₂O
- Utleniania etenu $CH_2 = CH_2 + \frac{1}{2} O_2^{kat} \square CH_3CHO$

Etanal można otrzymać w reakcji addycji wody do do etynu:

$$CH \equiv CH + H_2O \xrightarrow{HgSO_4} CH_3 - CHO$$

T: Właściwości aldehydów.

ETANAL

- bezbarwna ciecz,
- rozpuszczalny w wodzie,
- posiada odczyn obojętny,
- toksyczny, powoduje łzawienie,

METANAL

- w temperaturze pokojowej jest gazem,
- 40% roztwór wodny to formalina,
- Aldehydy są bardziej lotne od alkoholi o tej samej liczbie atomów węgla w cząsteczce. Dobrze rozpuszczają się w wodzie.
 Posiadają odczyn obojętny.

Reakcje aldehydów:

Aldehydy wykazują właściwości redukujące, które potwierdza próba Trommera i Tollensa.

1) Próba Tollensa – prezentacja dośw.

Obserwacje: W trakcie dodawania do roztworu azotanu(V) srebra(I) stężonego roztworu wodorotlenku sodu strąca się (biały / brunatny) osad, który po dodawaniu roztworu amoniaku (*zmienia kolor na czerwony / zanika*). Po dodaniu aldehydu i ogrzaniu probówki, jej ścianki pokrywają się (*czarnym / srebrzystym*) nalotem.

Wnioski: Aldehyd utlenia się, a jony srebra redukują się z I na 0 stopień utlenienia, tworząc tak zwane lustro srebrowe.

Uproszczony zapis reakcji utleniania metanalu:

$$H_{\text{CHO}}$$
 + Ag_2O $temp.$ \Box H_{COOH} + $2 Ag$

$$CH_3CHO \ + \ Ag_2O \quad \ ^{\textit{temp.}} \ \Box$$

$$CH_3CH_2CHO \ + \ Ag_2O \quad \ ^{\textit{temp.}} \ \Box$$

2) Próba Trommera – prezentacja dośw.

Obserwacje: Po dodaniu do roztworu siarczanu(VI) miedzi(II) roztworu wodorotlenku sodu strąca się (niebieski, galaretowaty osad / żółty, galaretowaty osad). Dodanie roztworu metanalu i ogrzanie powoduje zmianę zabarwienia osadu (z niebieskiej na ceglastoczerwoną / z niebieskiej na zieloną).

Wnioski: Metanal się utlenia zaś wodorotlenek miedzi(II) ulega redukcji do tlenku miedzi(I).

$$H_{\text{CHO}}$$
 + 2 $Cu(OH)_2$ $temp.$ \Box H_{COOH} + Cu_2O + 2 H_2O

$$CH_3CHO + 2 Cu(OH)_2$$
 temp. \square

$$CH_3CH_2CHO + 2 Cu(OH)_2$$
 temp. \Box

Próbie Tollensa i Trommera ulegają jedynie związki, które zawierają w swojej budowie grupę aldehydową.

3) Aldehydy ulegają reakcji redukcji do alkoholi I-rzędowych:

$$CH_3$$
 CHO + H_2 $kat. \square$ CH_3 CH_2OH

$$CH_3CH_2$$
 CHO + H_2 $kat. \square$

4) Metanal może ulegać reakcji polimeryzacji:

n HCHO \square - CH₂ - O - $_n$

(n = 8 - 100)

metanal

poliformaldehyd

Zastosowania aldehydów:

•