Definition	Transformation
$\left(\frac{\partial^2 T}{\partial p^2}\right)_{\varrho}$	$= -\left(\frac{\partial^2 p}{\partial T^2}\right)_{\varrho} \left(\frac{\partial p}{\partial T}\right)_{\varrho}^{-3}$
$\left(\frac{\partial^2 T}{\partial \varrho^2}\right)_p$	$= -\left[\left(\frac{\partial^2 p}{\partial \varrho^2}\right)_T \left(\frac{\partial p}{\partial T}\right)_{\varrho} - \left(\frac{\partial p}{\partial \varrho}\right)_T \left(\frac{\partial^2 p}{\partial T \partial \varrho}\right)\right] \left(\frac{\partial p}{\partial T}\right)_{\varrho}^{-2}$
	$+ \left[\left(\frac{\partial^2 p}{\partial T \partial \varrho} \right) \left(\frac{\partial p}{\partial T} \right)_{\varrho} - \left(\frac{\partial p}{\partial \varrho} \right)_{T} \left(\frac{\partial^2 p}{\partial T^2} \right)_{\varrho} \right] \left(\frac{\partial p}{\partial T} \right)_{\varrho}^{-3} \left(\frac{\partial p}{\partial \varrho} \right)_{T}$
$\left(\frac{\partial^2 T}{\partial p \partial \varrho}\right)$	$= -\left[\left(\frac{\partial^2 p}{\partial T \partial \varrho} \right) \left(\frac{\partial p}{\partial T} \right)_{\varrho} - \left(\frac{\partial p}{\partial \varrho} \right)_{T} \left(\frac{\partial^2 p}{\partial T^2} \right)_{\varrho} \right] \left(\frac{\partial p}{\partial T} \right)_{\varrho}^{-3}$
$\left(\frac{\partial^2\varrho}{\partial p^2}\right)_T$	$= -\left(\frac{\partial^2 p}{\partial \varrho^2}\right)_T \left(\frac{\partial p}{\partial \varrho}\right)_T^{-3}$
$\left(\frac{\partial^2\varrho}{\partial T^2}\right)_p$	$= -\left[\left(\frac{\partial^2 p}{\partial T^2}\right)_{\varrho} \left(\frac{\partial p}{\partial \varrho}\right)_T - \left(\frac{\partial p}{\partial T}\right)_{\varrho} \left(\frac{\partial^2 p}{\partial T \partial \varrho}\right)\right] \left(\frac{\partial p}{\partial \varrho}\right)_T^{-2}$
	$+ \left[\left(\frac{\partial^2 p}{\partial T \partial \varrho} \right) \left(\frac{\partial p}{\partial \varrho} \right)_T - \left(\frac{\partial p}{\partial T} \right)_\varrho \left(\frac{\partial^2 p}{\partial \varrho^2} \right)_T \right] \left(\frac{\partial p}{\partial \varrho} \right)_T^{-3} \left(\frac{\partial p}{\partial T} \right)_\varrho$
$\left(\frac{\partial^2 \varrho}{\partial T \partial p}\right)$	$= -\left[\left(\frac{\partial^2 p}{\partial T \partial \varrho} \right) \left(\frac{\partial p}{\partial \varrho} \right)_T - \left(\frac{\partial p}{\partial T} \right)_{\varrho} \left(\frac{\partial^2 p}{\partial \varrho^2} \right)_T \right] \left(\frac{\partial p}{\partial \varrho} \right)_T^{-3}$
$\left(\frac{\partial \mu}{\partial T}\right)_{\varrho}$	$= \left\{ -\left(\frac{\partial^2 p}{\partial T^2}\right)_{\varrho} - \left(\frac{\partial p}{\partial \varrho}\right)_T \left(\frac{\partial h}{\partial T}\right)_{\varrho} \left(\frac{\partial^2 h}{\partial T \partial \varrho}\right) \left(\frac{\partial h}{\partial \varrho}\right)_T^{-2} \right\}$
	$+ \left[\left(\frac{\partial^2 p}{\partial T \partial \varrho} \right) \left(\frac{\partial h}{\partial T} \right)_{\varrho} + \left(\frac{\partial p}{\partial \varrho} \right)_{T} \left(\frac{\partial^2 h}{\partial T^2} \right)_{\varrho} \right] \left(\frac{\partial h}{\partial \varrho} \right)_{T}^{-1} \right\} \mu^2$
$\left(\frac{\partial \mu}{\partial \varrho}\right)_T$	$= \left\{ - \left(\frac{\partial^2 p}{\partial T \partial \varrho} \right) - \left(\frac{\partial p}{\partial \varrho} \right)_T \left(\frac{\partial h}{\partial T} \right)_\varrho \left(\frac{\partial^2 h}{\partial \varrho^2} \right)_T \left(\frac{\partial h}{\partial \varrho} \right)_T^{-2} \right.$
	$+ \left[\left(\frac{\partial^2 p}{\partial \varrho^2} \right)_T \left(\frac{\partial h}{\partial T} \right)_{\varrho} + \left(\frac{\partial p}{\partial \varrho} \right)_T \left(\frac{\partial^2 h}{\partial T \partial \varrho} \right) \right] \left(\frac{\partial h}{\partial \varrho} \right)_T^{-1} \right\} \mu^2$
$\left(\frac{\partial^2 T}{\partial x^2}\right)$	$= \left(\frac{\partial \mu}{\partial p}\right)_h = \frac{\left(\frac{\partial \mu}{\partial T}\right)_{\varrho} \left(\frac{\partial h}{\partial \varrho}\right)_{T} - \left(\frac{\partial \mu}{\partial \varrho}\right)_{T} \left(\frac{\partial h}{\partial T}\right)_{\varrho}}{\left(\frac{\partial p}{\partial T}\right)_{\varrho} \left(\frac{\partial h}{\partial \varrho}\right)_{T} - \left(\frac{\partial p}{\partial \varrho}\right)_{T} \left(\frac{\partial h}{\partial T}\right)_{\varrho}}$
$\langle Op^2 \rangle_h$	$ \left(\frac{\partial p}{\partial T} \right)_{\varrho} \left(\frac{\partial h}{\partial \varrho} \right)_{T} - \left(\frac{\partial p}{\partial \varrho} \right)_{T} \left(\frac{\partial h}{\partial T} \right)_{\varrho} $