

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On σ -subnormal and σ -permutable subgroups of finite groups

Alexander N. Skiba¹

Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus

ARTICLE INFO

Article history: Received 17 January 2015 Available online 26 April 2015 Communicated by E.I. Khukhro

MSC: 20D10 20D15 20D30

Keywords: Finite group σ -Group A complete Hall set of type σ σ -Subnormal subgroup σ -Permutable subgroup

ABSTRACT

Let $\sigma = {\sigma_i | i \in I}$ be some partition of the set \mathbb{P} of all primes, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. Let G be a finite group. We say that G is: σ -primary if G is a σ_i -group for some $i \in I$; σ -soluble if every chief factor of G is σ -primary. We say that a set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of Hall subgroups of G, where H_i is σ -primary (i = 1, ..., t), is a complete Hall set of type σ of G if $(|H_i|, |H_j|) = 1$ for all $i \neq j$ and $\pi(G) = \pi(H_1) \cup \cdots \cup \pi(H_t)$. We say that a subgroup A of G is: σ -subnormal in G if there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_n = G$ such that either A_{i-1} is normal in A_i or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i=1,\ldots,t$; σ -permutable in G if G has a complete Hall set $\mathcal H$ of type σ such that A is \mathcal{H}^G -permutable in G, that is, $AH^x = H^xA$ for all $x \in G$ and all $H \in \mathcal{H}$. We study the relationship between the σ -subnormal and σ -permutable subgroups of G. In particular, we prove that every σ -permutable subgroup of G is σ -subnormal, and we classify finite σ -soluble groups in which every σ -subnormal subgroup is σ -permutable.

© 2015 Elsevier Inc. All rights reserved.

E-mail address: alexander.skiba49@gmail.com.

Research of the author was supported by State Program of Fundamental Researches of Republic Belarus (Grant 20112850).

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. If n is an integer, then the symbol $\pi(n)$ denotes the set of all primes dividing |n|; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

We put $\sigma(n) = \{\sigma_i \cap \pi(n) \mid i \in I, \sigma_i \cap \pi(n) \neq \emptyset\}, \ \sigma(G) = \sigma(|G|)$ and we say that G is σ -primary if either G = 1 or $|\sigma(G)| = 1$.

A set S of Sylow subgroups of G is called a *complete set of Sylow subgroups* of G if S contains exact one Sylow p-subgroup of G for every prime p dividing |G|. By analogy with it, we say that a set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of Hall subgroups of G, where H_i is σ -primary $(i = 1, \ldots, t)$, is a *complete Hall set of* G of type σ if $(|H_i|, |H_j|) = 1$ for all $i \neq j$ and $\pi(G) = \pi(H_1) \cup \cdots \cup \pi(H_t)$. Following [1], the group G is a σ -group if it possesses a complete Hall set of type σ .

Let \mathcal{L} be some non-empty set of subgroups of G. Then a subgroup A of G is called \mathcal{L} -permutable if AH = HA for all $H \in \mathcal{L}$; \mathcal{L}^G -permutable if $AH^x = H^xA$ for all $H \in \mathcal{L}$ and all $x \in G$. If A is \mathcal{L}^G -permutable, where \mathcal{L} is a complete set of Sylow subgroups of G, then A is called S-quasinormal or S-permutable in G. By analogy with it, we say that a subgroup A of G is σ -permutable in G if G has a complete Hall set \mathcal{H} of type σ such that A is \mathcal{H}^G -permutable.

The S-permutable subgroups possess a series of interesting properties and they are closely related to subnormal subgroups. For instance, if H is an S-permutable subgroup of G, then H is subnormal in G (Kegel [2]) and the quotient H/H_G is nilpotent (Deskins [3]) and so, in fact, H^G/H_G is nilpotent. Moreover, H/H_G is nilpotent also in the case when H is subnormal and permutes with all members of some complete set of Sylow subgroups of G [4]. The S-permutable subgroups of G form a sublattice of the lattice of all subnormal subgroups of G (Kegel [2]). The description of PST-groups, that are groups, in which every subnormal subgroup is S-permutable, was first obtained by Agrawal [5], for the soluble case, and by Robinson in [6], for the general case. In the further publications, authors (see, for example, the recent papers [7–16]) have found out and described many other interesting characterizations of soluble PST-groups.

In fact, the following concept is a modification of the main concept in [17].

Definition 1.1. We say that a subgroup A of G is σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either A_{i-1} is normal in A_i or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, n$.

Before continuing, let's consider the following elementary example.

Example 1.2. Let p, q, r, t be different primes, where q and r divide p-1. Let A be a non-abelian group of order pr, T a group of order t and $P \rtimes Q$ a non-abelian group of

order pq. Let $V = (P \times Q) \wr T = K \times T$, where K is the base group of the regular wreath product V, and let $H = Q^{\natural}$ and $L = P^{\natural}$ (we use here the terminology in [18, A]). Let $G = V \wr A = K_0 \times A$, where K_0 is the base group of the regular wreath product G. If $\sigma = \{\{p,q\}, \{p,q\}'\}$, then the subgroup H is σ -subnormal in G (see Lemma 2.6(6) below) but it is not subnormal in G.

Now, let $\sigma = \{\{p,r\}, \{p,r\}'\}$. It is clear that L is normal in K_0 , so L is σ -permutable in G (see Lemma 3.1 below). Finally, suppose that L is S-permutable in G and let R be a Sylow r-subgroup of A. Then for every $x \in G$ we have $LR^x = R^xL$, so $L = LR^x \cap K_0$ is normal in LR^x . Therefore $G = K_0R^G \leq N_G(L)$, contrary to [18, A, 18.5(a)]. Hence L is not S-permutable in G.

The results in [5–16] are the motivations for the following

Question. Let G be a σ -group. What is the structure of G provided that every σ -subnormal subgroup of G is σ -permutable?

We do not know the answer to this question in the case of an arbitrary σ -group G. But we give a complete classification of such groups in the case of σ -soluble groups.

Definition 1.3. We say that G is: σ -soluble if every chief factor of G is σ -primary; σ -nilpotent if $(H/K) \rtimes (G/C_G(H/K))$ is σ -primary for every chief factor H/K of G.

Note that every σ -nilpotent group is also σ -soluble, and G is σ -soluble if and only if it is σ_i -separable for all $i \in I$; G is soluble (respectively nilpotent) if and only if it is σ -soluble (respectively σ -nilpotent), where σ is the smallest partition of \mathbb{P} , that is, for any $i \in I$, σ_i is a one-element set. Finally note that G is π -separable if and only if it is σ -soluble, where $\sigma = {\pi, \pi'}$.

We use \mathfrak{N}_{σ} to denote the class of all σ -nilpotent groups. The symbol $G^{\mathfrak{N}_{\sigma}}$ denotes the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N.

We say that a Hall subgroup H of G is a σ -Hall subgroup of G provided $\sigma(H) \subseteq \sigma(G)$.

Theorem A. Let G be a σ -soluble group. Then every σ -subnormal subgroup of G is σ -permutable if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is an abelian σ -Hall subgroup of odd order of G such that every element of M induces a power automorphism of D.

The proof of Theorem A is based on many observations about σ -subnormal and σ -permutable subgroups obtained in this paper. In particular, we use the following result, which generalizes the above-mentioned results in [2,3].

Theorem B. Let G be a σ -group and $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall set of type σ of G. Let $D = G^{\mathfrak{N}_{\sigma}}$ and H be a subgroup of G.

- (i) If H is \mathcal{H}^D -permutable, then H is σ -subnormal in G.
- (ii) If H is \mathcal{H}^G -permutable, then H^G/H_G is σ -nilpotent and $D \leq N_G(H)$.

We say that G is a σ -group of Sylow type if every subgroup of G is a D_{σ_i} -group for all $i \in I$. Note that by the Feit–Thompson Odd Theorem and Theorem 3.6 in [19, 6], every σ -soluble group is a σ -group of Sylow type. Note also that the group PSL(2, 11) and the Mathieu group M_{11} are σ -groups of Sylow type, where $\sigma = {\sigma_i \mid i \in I}$ such that $\sigma_1 = {5,11}$ and σ_i is a one-element set for all $i \neq 1$; the Lyons group Ly is a σ -groups of Sylow type, where $\sigma = {\sigma_i \mid i \in I}$ such that $\sigma_1 = {11,67}$ and σ_i is a one-element set for all $i \neq 1$.

As another application of Theorem B, we prove also the following result.

Theorem C. Let G be a σ -group of Sylow type. Then the set of all σ -permutable subgroups of G forms a sublattice of the lattice of all σ -subnormal subgroups of G.

Note that Theorem C not only generalizes the above mentioned Kegel result on the lattice of the S-permutable subgroups but also gives a shorter proof of it.

Finally, note that all results of this paper remain to be new in the universe of all soluble groups.

2. Basic lemmas and propositions

We use \mathfrak{S}_{σ} to denote the class of all σ -soluble groups.

Direct calculations show that the following lemma is true.

Lemma 2.1. (i) The class \mathfrak{S}_{σ} is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the σ -soluble group by a σ -soluble group is a σ -soluble group as well.

(ii) $\mathfrak{S}_{\sigma} \subseteq \mathfrak{S}_{\sigma^*}$ for any partition $\sigma^* = \{\sigma_j^* \mid j \in J\}$ of \mathbb{P} such that $J \subseteq I$ and $\sigma_j \subseteq \sigma_j^*$ for all $j \in J$.

Let A, B and R be subgroups of G. Then A is said to R-permute with B [20] if for some $x \in R$ we have $AB^x = B^x A$.

In what follows, Π is always supposed to be a subset of the set σ and $\Pi' = \sigma \setminus \Pi$.

We say that: n is a Π -number if $\pi(n) \subseteq \bigcup_{\sigma_i \in \Pi} \sigma_i$; a subgroup H of G is a Π -subgroup of G if |H| is a Π -number; a σ -Hall subgroup H of G is a Hall Π -subgroup of G if H is a Π -subgroup of G and |G:H| is a Π -number.

If G has a complete Hall set $\mathcal{H} = \{H_1, \dots, H_t\}$ of type σ such that $H_iH_j = H_jH_i$ for all i, j, then we say that \mathcal{H} is a σ -basis of G.

By the classical Hall theorem, G is soluble if and only if it has a Sylow basis. The direct analogue of this result for σ -soluble groups is not true in general. Indeed, let $\sigma = \{\{2,3\}, \{2,3\}'\}$. Then the alternating group A_5 of degree 5 has a σ -basis and it is not σ -soluble. Nevertheless, the following generalization of the Hall result is true.

Proposition 2.2. (See [21,22].) Let R be the product of all normal σ -soluble subgroups of G. Then any two of the following conditions are equivalent:

- (i) G is σ -soluble.
- (ii) For any Π , G has a Hall Π -subgroup E and every Π -subgroup of G is contained in a conjugate of E. Moreover, every σ -Hall subgroup of G R-permutes with every Sylow subgroup of G.
- (iii) G has a σ -basis $\{H_1, \ldots, H_t\}$ such that for each $i \neq j$ every Sylow subgroup of H_i R-permutes with every Sylow subgroup of H_i .

Let \mathfrak{F} be a class of groups. A chief factor H/K of G is called \mathfrak{F} -central in G provided $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$.

Proposition 2.3. (See [21,22].) Any two of the following conditions are equivalent:

- (i) G is σ -nilpotent.
- (ii) Every chief factor of G is \mathfrak{N}_{σ} -central.
- (iii) G has a complete Hall set $\mathcal{H} = \{H_1, \dots, H_t\}$ of type σ such that $G = H_1 \times \dots \times H_t$.
- (iv) G has a complete Hall set $\mathcal{H} = \{H_1, \dots, H_t\}$ of type σ such that every member of \mathcal{H} is σ -subnormal in G.
 - (v) Every subgroup of G is σ -subnormal in G.
 - (vi) Every maximal subgroup of G is σ -subnormal in G.

Corollary 2.4. If A and B are normal σ -nilpotent subgroups of G, then AB is σ -nilpotent.

Proof. Without loss of generality we can assume that AB = G. Then, by Lemma 2.1, G is σ -soluble. Hence by Proposition 2.2, G has a complete Hall set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of type σ . Without loss of generality we can assume that H_i is a σ_i -group for all $i = 1, \ldots, t$. Then, by Proposition 2.3, $A = (A \cap H_1) \times \cdots \times (A \cap H_t)$ and $B = (B \cap H_1) \times \cdots \times (B \cap H_t)$, where $A \cap H_i$ and $B \cap H_i$ are Hall σ_i -subgroups of A and B, respectively. Then $(A \cap H_i)(B \cap H_i)$ is a normal Hall σ_i -subgroup of G, so G is σ -nilpotent. The corollary is proved. \square

We call the product of all normal σ -nilpotent subgroups of G the σ -Fitting subgroup of G and denote it by $F_{\sigma}(G)$.

Lemma 2.5. The class \mathfrak{N}_{σ} is closed under taking direct products, homomorphic images and subgroups. Moreover, if H is a normal subgroup of G and $H/H \cap \Phi(G)$ is σ -nilpotent, then E is σ -nilpotent.

Proof. In view of Proposition 2.3 and Corollary 2.4, it is enough to prove that if $H/H \cap \Phi(G)$ is a σ_i -group, then H has a normal Hall σ_i -subgroup. Let $D = O_{\sigma_i}(H)$. Then, since $H \cap \Phi(G)$ is nilpotent, D is a Hall σ_i -subgroup of H. Hence by the Schur–Zassenhaus theorem, H has a Hall σ_i -subgroup, say E. It is clear that H is σ_i -soluble, so any two Hall σ_i -subgroups of H are conjugated in H. Therefore by the Frattini Argument we have $G = HN_G(E) = (E(H \cap \Phi(G)))N_G(E) = N_G(E)$. Thus E is normal in G. The lemma is proved. \square

We use $O^{\Pi}(G)$ to denote the subgroup of G generated by all its Π' -subgroups. Instead of $O^{\{\sigma_i\}}(G)$ we write $O^{\sigma_i}(G)$.

Lemma 2.6. Let A, K and N be subgroups of G. Suppose that A is σ -subnormal in G and N is normal in G.

- (1) $A \cap K$ is σ -subnormal in K.
- (2) If K is a σ -subnormal subgroup of A, then K is σ -subnormal in G.
- (3) If K is σ -subnormal in G, then $A \cap K$ and $\langle A, K \rangle$ are σ -subnormal in G.
- (4) AN/N is σ -subnormal in G/N.
- (5) If $N \leq K$ and K/N is σ -subnormal in G/N, then K is σ -subnormal in G.
- (6) If $K \leq A$ and A is σ -nilpotent, then K is σ -subnormal in G.
- (7) If $H \neq 1$ is a Hall Π -subgroup of G and A is not a Π' -group, then $A \cap H \neq 1$ is a Hall Π -subgroup of A.
 - (8) If |G:A| is a Π -number, then $O^{\Pi}(A) = O^{\Pi}(G)$.
 - (9) If N is a Π -group of G, then $N \leq N_G(O^{\Pi}(A))$.
 - (10) If A is a σ -Hall subgroup of G, then A is normal in G.
 - (11) If G is a σ -group and A is σ -nilpotent, then A is contained in $F_{\sigma}(G)$.

Proof. Assume that this lemma is false and let G be a counterexample of minimal order. By hypothesis, there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_r = G$ such that either A_{i-1} is normal in A_i or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, r$. Let $M = A_{r-1}$. We can assume without loss of generality that $M \ne G$.

(1) Consider the chain $K_0 = K \cap A_0 \leq K \cap A_1 \leq \cdots \leq K \cap A_r = K$. If A_{i-1} is normal in A_i , then evidently $K \cap A_{i-1}$ is normal in $K \cap A_i$. Now suppose that $A_i/(A_{i-1})_{A_i}$ is a σ_i -group. Then $(A_i \cap K)(A_{i-1})_{A_i}/(A_{i-1})_{A_i} \simeq A_i \cap K/(A_{i-1})_{A_i} \cap K$ is a σ_i -group, where $(A_{i-1})_{A_i} \cap K$ is normal in $A_i \cap K$ and so $(A_{i-1})_{A_i} \cap K \leq (K \cap A_{i-1})_{K \cap A_i}$. Hence $(K \cap A_i)/(K \cap A_{i-1})_{K \cap A_i}$ is a σ_i -group. Hence $A \cap K$ is σ -subnormal in K.

Assertions (2) and (5) are evident.

(3) By Assertions (1) and (2), $A \cap K$ is σ -subnormal in G.

Now we show that $\langle A, K \rangle$ is σ -subnormal in G. A subgroup H of G is said to be \mathfrak{F} -subnormal in the sense of Kegel [17] or K- \mathfrak{F} -subnormal in G (see p. 236 in [23]) in G if there exists a chain of subgroups

$$H = H_0 \le H_1 \le \cdots \le H_t = G$$

such that either H_{i-1} is normal in H_i or $H_i/(H_{i-1})_{H_i} \in \mathfrak{F}$ for all $i=1,\ldots,t$. Kegel proved [17] that if \mathfrak{F} is the class of all π -groups for some non-empty subset π of \mathbb{P} , then the set of all K- \mathfrak{F} -subnormal subgroups of G forms a sublattice of the lattice of all subgroups of G. Therefore from Proposition 2.3 and Theorem 6.3.9 and Lemma 6.3.11 in [23] it follows that the set of all K- \mathfrak{N}_{σ} -subnormal subgroups of G forms a sublattice of the lattice of all subgroups of G. Finally, note that in view of Proposition 2.3, a subgroup G of a G-group G is G-subnormal in G if and only if it is G-G-subnormal in G. Therefore G-G-subnormal in G-subnormal in G-subnorm

(4) Consider the chain

$$AN/N = A_0N/N \le A_1N/N \le \cdots \le A_rN/N = G/N.$$

Assume that $A_{i-1}N/N$ is not normal in A_iN/N . Then $L=A_{i-1}$ is not normal in $T=A_i$ and so T/L_T is a σ_i -group for some $i \in I$, by hypothesis. Then

$$(T/L_T)/(L_T(T \cap N)/L_T) = (T/L_T)/((T \cap NL_T)/L_T) \simeq T/(T \cap NL_T) \simeq$$

 $TN/L_TN \simeq (TN/N)/(L_TN/N)$

is a σ_i -group. But $L_T N/N \leq (LN/N)_{TN/N}$. Hence $(TN/N)/(LN/N)_{TN/N}$ is σ -primary. Hence AN/N is σ -subnormal in G/N.

- (6) Since A is σ -nilpotent, every subgroup of A is σ -subnormal in A by Proposition 2.3(v). Thus this assertion is a corollary of Assertion (2).
- (7) First we show that $M \cap H \neq 1$ is a Hall Π -subgroup of M. If either $H \leq M$ or M is normal in G, it is evident. Assume that $K = M_G \neq M$ and $H \nleq M$. Then |G : K| is a σ_i -number for some $i \in I$, where $\sigma_i \in \Pi$. Therefore, in the case when K = 1, G is a σ_i -group and so the assertion is true.

Now assume that $K \neq 1$. Then, by the choice of G, $(HK/K) \cap (M/K) = (H \cap M)K/K \neq 1$ is a Hall Π -subgroup of M/K. Hence $|M:K(H\cap M)|$ is a Π' -number. On the other hand, $H\cap K$ is a Hall Π -subgroup of K since K is normal in G. Therefore $|M:H\cap M|=|M:K(H\cap M)||K:K\cap H|$ is a Π' -number. Hence $M\cap H\neq 1$ is a Hall σ_i -subgroup of M.

Since A is σ -subnormal in M and |M| < |G|, the choice of G implies that $H \cap A = (H \cap M) \cap A$ is a Hall Π -subgroup of A.

(8) It is clear that |M:A| and |G:M| are Π -numbers. Moreover, A is σ -subnormal in M, so by the choice of G we have $O^{\Pi}(A) = O^{\Pi}(M)$.

Since |G:M| is a Π -number, G/M_G is a Π -number. Therefore every Π' -subgroup of G is contained in M_G , so $O^{\Pi}(G) = O^{\Pi}(M) = O^{\Pi}(A)$.

- (9) It is clear that |AN:A| is a Π -number. On the other hand, A is σ -subnormal in AN by Assertion (1). Hence $N \leq N_G(O^{\Pi}(AN)) = N_G(O^{\Pi}(A))$ by Assertion (1).
- (10) It is clear that A^x is a σ -subnormal σ -Hall subgroup of G for all $x \in G$. Therefore this assertion is a corollary of Assertion (7).
- (11) In view of Proposition 2.3, it is enough to consider the case when A is a σ_i -group for some $i \in I$. By hypothesis, G has a Hall σ_i -subgroup, say H. Then, by Assertion (7), for any $x \in G$ we have $A \leq H^x$. Hence $A^G \leq H_G \leq F_{\sigma}(G)$.

The lemma is proved. \Box

Lemma 2.7. Let A and K be subgroups of G and H a Hall Π -subgroup of G. Suppose that AH = HA, A is σ -subnormal in AH and $H \cap K$ is a Hall Π -subgroup of K. Then $AH \cap K = (A \cap K)(H \cap K)$.

Proof. Since $|AH:A| = |H:H \cap A|$ is a Π -number, $O^{\Pi}(A) = O^{\Pi}(AH)$ by Lemma 2.6(8). Hence every Π' -subgroup of AH is contained in A. Therefore $|(AH \cap K):(A \cap K)|$ is a Π -number. But then $AH \cap K = (A \cap K)(H \cap K)$. The lemma is proved. \square

The following lemma also can be proved by direct calculations.

Lemma 2.8. Let H, K and N be subgroups of a σ -group G. Let $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall set of type σ of G and $\mathcal{L} = \mathcal{H}^K$. Suppose that H is \mathcal{L} -permutable and N is normal in G.

- (1) If $H \leq E \leq G$, then H is \mathcal{L}^* -permutable, where $\mathcal{L}^* = \{H_1 \cap E, \dots, H_t \cap E\}^{K \cap E}$. In particular, if G is a σ -group of Sylow type and H is σ -permutable in G, then H is σ -permutable in E.
 - (2) The subgroup HN/N is \mathcal{L}^{**} -permutable, where $\mathcal{L}^{**} = \{H_1N/N, \dots, H_tN/N\}^{KN/N}$.
- (3) If G is a σ -group of Sylow type and E/N is a σ -permutable subgroup of G/N, then E is σ -permutable.
 - (4) If K is \mathcal{L} -permutable, then $\langle H, K \rangle$ is \mathcal{L} -permutable [18, A, 1.6(a)].

3. Proofs of Theorems A, B and C

Proof of Theorem B. Assume that this theorem is false and let (G, H) be a counterexample with |G| + |G| : H| as small as possible. Then t > 1 and $H^G \neq H$. Thus, one of the subgroups of \mathcal{H} does not normalize H. We can assume that $H_1 \nleq N_G(H)$.

We start with two general claims.

Claim (1) $H_G = 1$.

Assume that $H_G \neq 1$. It is clear that $\{H_1H_G/H_G, \ldots, H_tH_G/H_G\}$ is a complete Hall set of type σ of G/H_G and $DH_G/H_G = G^{\mathfrak{N}_{\sigma}}H_G/H_G = (G/H_G)^{\mathfrak{N}_{\sigma}}$. Therefore by Lemma 2.8(2) the hypothesis holds for G/H_G . If H is \mathcal{H}^D -permutable, then the choice of G implies that H/H_G is σ -subnormal in G/H_G , so H is σ -subnormal in G by Lemma 2.6(5). If H is \mathcal{H}^G -permutable, then H^G/H_G is σ -nilpotent and $DH_G/H_G \leq N_{G/H_G}(H/H_G) = N_G(H)/H_G$, so $D \leq N_G(H)$. Therefore $H_G = 1$.

Claim (2) If H is \mathcal{H}^G -permutable, then $H_j^G \leq N_G(H)$ for all j > 1.

We follow a similar argument to the one in the proof of Theorem A in [24] (see also the proof of Statement 2 of [25, 1.2.14]).

Assume that for some $x \in G$ and j > 1 we have $H_j^x \nleq N_G(H)$, and let $A = \langle H^{H_1} \rangle$ and $B = \langle H^{H_j^x} \rangle$. Then $A^G = H^G = B^G$ and $H < A \leq HH_1$ and $H < B \leq HH_j^x$, which implies that $H = A \cap B$ and so $1 = H_G = A_G \cap B_G$. Finally, A and B are \mathcal{H}^G -permutable by Lemma 2.8(4). Therefore the choice of G implies that A^G/A_G and B^G/B_G are σ -nilpotent, hence $H^G \simeq H^G/A_G \cap B_G$ is σ -nilpotent and so H is σ -subnormal in G by Lemma 2.6(6).

Proof of (i). We can assume without loss of generality that H_i is a σ_i -group for all $i=1,\ldots,t$. Let $E_i=H_i\cap HD$. Since $H_iH=HH_i$ by hypothesis, $H_i\cap H$ is a Hall σ_i -subgroup of H. Hence $E_i=(H_i\cap H)(H_i\cap D)$ and so $|HD:E_i|$ is a σ_i -number. It

follows that E_i is a Hall σ_i -subgroup of HD. Therefore E_1, \ldots, E_t is a complete Hall set of type σ of HD. Moreover, for any $x \in D$ we have

$$HH_i^x \cap HD = H(H_i^x \cap HD) = H(H_i \cap HD)^x = HE_i^x = E_i^x H$$

since $HH_i^x \cap HD$ is a subgroup of HD. Furthermore, since $HD/D \simeq H/H \cap D$ and $HD/D \leq G/D \in \mathfrak{N}_{\sigma}$, it follows that $(HD)^{\mathfrak{N}_{\sigma}} \leq D$ by Lemma 2.5. Therefore the hypothesis holds for HD.

If HD < G, H is σ -subnormal in HD, by minimality of |G| + |G| : H|. By Lemmas 2.6(2)(5) and 2.5 we obtain a contradiction. Hence G = HD and so, in fact, H is H^G -permutable. From Claim (2) we get that $H_j^G \leq N_G(H)$ for every j > 1. Let $E = H_2^G \cdots H_t^G$. Then $E \leq N_G(H)$ or, equivalently, H is normal in HE. On the other hand, $G/E \simeq H_1/(H_1 \cap E)$ and hence HE/E is σ -subnormal in G/E. By Lemma 2.6(5), HE is σ -subnormal in G. Thus G is G-subnormal in G. This contradicts our assumption. Hence (i) holds.

Proof of (ii). By Part (i), H is σ -subnormal in G and then in HH_1 by Lemma 2.6(1). Hence $O^{\sigma_1}(H) = O^{\sigma_1}(HH_1)$ by Lemma 2.6(8). Therefore $H_1 \leq N_G(O^{\sigma_1}(H))$. By Claim (2), $H_j^G \leq N_G(H)$ and so $H_j^G \leq N_G(O^{\sigma_1}(H))$ for all j > 1. Then $O^{\sigma_1}(H)$ is normal in G. By Claim (1), $O^{\sigma_1}(H) = 1$, and hence H is a σ_1 -group. Therefore H is σ -nilpotent. Since H is σ -subnormal in G, $H \leq F_{\sigma}(G)$ by Lemma 2.6(11). Hence H^G is σ -nilpotent.

Let $L_i = O^{\sigma'_i}(H)$, for all i = 1, ..., t. Then $H = L_1 \cdots L_t$ and $N_G(H) = N_G(L_1) \cap \cdots \cap N_G(L_t)$. By Lemma 2.6(8), $H_i^x \leq N_G(O^{\sigma_i}(H))$ for all $x \in G$. This is to say that, $H_i^G \leq N_G(O^{\sigma_i}(H))$. Hence $H_i^G \leq N_G(L_j)$, for all $j \neq i$. Since $O^{\sigma_i}(G) = \prod_{j \neq i} H_j^G$, we have $O^{\sigma_i}(G) \leq N_G(L_i)$, for all i = 1, ..., t. But then $D \leq O^{\sigma_1}(G) \cap \cdots \cap O^{\sigma_t}(G) \leq N_G(L_1) \cap \cdots \cap N_G(L_t) = N_G(H)$.

The theorem is proved. \Box

Lemma 3.1. Let H be a σ_1 -subgroup of a σ -group G. Then H is σ -permutable in G if and only if $O^{\sigma_1}(G) \leq N_G(H)$.

Proof. First assume that H is σ -permutable in G and let $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall set of type σ of G such that H is \mathcal{H}^G -permutable. Then H is σ -subnormal in G by Theorem B(i). We can assume without loss of generality that H_1 is a σ_1 -group. Let i > 1 and $x \in G$. Then $HH_i^x = H_i^x H$ and H is σ -subnormal in HH_i^x by Lemma 2.6(1). Hence $O^{\sigma_i}(HH_i^x) = O^{\sigma_i}(H) = H$ by Lemma 2.6(8). Hence $H_i^x \leq N_G(H)$. Therefore $O^{\sigma_1}(G) = \langle \{H_i^x | i \neq 1, x \in G\} \rangle \leq N_G(H)$.

Now assume that $O^{\sigma_1}(G) \leq N_G(H)$. Then H is $\{H_2,\ldots,H_t\}^G$ -permutable. On the other hand, since $G/O^{\sigma_1}(G)$ is a σ_1 -group, $O^{\sigma_1}(G)H$ is σ -subnormal in G by Lemma 2.6(5). Therefore H is σ -subnormal in G by Lemma 2.6(2) and so $H \leq H_1^x$ for all $x \in G$ by Lemma 2.6(7). Hence $HH_1^x = H_1^x = H_1^xH$. Therefore H is σ -permutable in G. The lemma is proved. \square

If H is a Hall σ_i '-subgroup of G, then we say that H is a σ_i -complement of G.

We will say that a group G is a $P\Sigma T$ -group if $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is an abelian σ -Hall subgroup of odd order of G such that every element of M induces a power automorphism of D.

Proof of Theorem A. Let $\mathcal{H} = \{H_1, \dots, H_t\}$ be a complete Hall set of type σ of G. We can assume without loss of generality that H_i is a σ_i -group for all $i = 1, \dots, t$.

Necessity. Assume that this is false and let G be a counterexample of minimal order. Then $D \neq 1$, so t > 1. Since G is σ -soluble, every Hall σ_i -subgroup E_i of G is a conjugate of H_i and so $HE_i = E_iH$.

(a) If R is a non-identity normal subgroup of G, then the hypothesis holds for G/R. Hence G/R is a $P\Sigma T$ -group.

Let H/R be a σ -subnormal subgroup of G/R. Then H is σ -subnormal in G by Lemma 2.6(5). Hence H is σ -permutable in G by hypothesis, so H/R is σ -permutable in G/R by Lemma 2.8(2). Therefore the hypothesis holds for G/R, so G/R is a $P\Sigma T$ -group by the choice of G.

(b) If E is a proper σ -subnormal subgroup of G, then $E^{\mathfrak{N}_{\sigma}} \leq D$ and E is a $P\Sigma T$ -group. Indeed, since $E/E \cap D \simeq ED/D \in \mathfrak{N}_{\sigma}$ and \mathfrak{N}_{σ} is a hereditary class by Lemma 2.5, $E/E \cap D \in \mathfrak{N}_{\sigma}$. Hence $E^{\mathfrak{N}_{\sigma}} \leq D$.

Since every σ -subnormal subgroup H of E is σ -subnormal in G by Lemma 2.6(2), H is σ -permutable in G by hypothesis and so H is σ -permutable in E by Lemma 2.8(1) since every σ -soluble group is a σ -group of Sylow type. Therefore E is a $P\Sigma T$ -group by the choice of G.

(c) D is soluble.

In view of Claim (a), it is enough to show that a minimal normal subgroup R of G contained in D is abelian. Let V be a maximal subgroup of R. Since G is σ -soluble by hypothesis, R is σ -primary, say R is a σ_1 -group. Hence $R \leq D \leq O^{\sigma_1}(G)$. On the other hand, V is σ -subnormal in G by Lemma 2.6(6), so V is σ -permutable in G. Hence $R \leq N_G(V)$ by Lemma 3.1. Therefore R is abelian.

- (d) D is a σ -Hall subgroup of G. Hence D has a complement in G, say M. Suppose that this is false and let U be a Hall σ_i -subgroup of D such that $1 < U < H_i$. Without loss of generality we can assume that i = 1.
- (1) If R is a minimal normal subgroup of G contained in D, then R = U is a Sylow p-subgroup of D for some prime $p \in \sigma_1$ and a p-complement of D is a σ -Hall subgroup of G. Hence R is the unique minimal normal subgroup of G contained in D and $R = G_p \cap D$, where G_p is a Sylow p-subgroup of G contained in H_1 .

Since D is soluble by Claim (c), R is a p-group for some prime p. Moreover, $D/R = (G/R)^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of G/R by Claim (a). Hence UR/R is a σ -Hall subgroup of G/R. It is clear that $UR \neq H_1$. Hence R = U is a Sylow p-subgroup of D. It is also clear that a p-complement of D is a σ -Hall subgroup of G.

(2) $R \nleq \Phi(G)$.

Assume that $R \leq \Phi(G)$. Then $D \neq R$ by Lemma 2.5. On the other hand, D/R is a p'-group by Claim (1). Hence $O_{p'}(D) \neq 1$ by Lemma 2.5. But $O_{p'}(D)$ is characteristic in D and so it is normal G, which contradicts (1).

(3) If G has a minimal normal subgroup $L \neq R$, then $G_p = R \times (L \cap G_p)$. Hence $O_{v'}(G) = 1$.

Indeed, $L \nleq D$ by Claim (1). On the other hand, $DL/L \simeq D$ is a σ -Hall subgroup of G/L by Claim (a). Hence $G_pL/L = RL/L$, so $G_p = R \times (L \cap G_p)$. Thus $O_{p'}(G) = 1$.

(4) $C_G(R) = R \times V$, where $V = C_G(R) \cap M \leq H_1$.

In view of Claims (1) and (2), there is a maximal subgroup M of G such that $G = R \times M$ and so $C_G(R) = R \times V$, where $V = C_G(R) \cap M$ is a normal subgroup of G. By Claim (1), $V \cap D = 1$ and hence $V \simeq DV/D$ is σ -nilpotent. Let W be a σ_1 -complement of V. Then W is characteristic in V and so it is normal in G. Therefore we have (4) by Claim (3).

(5) $G_p \neq H_1$.

Assume that $G_p = H_1$. Let Z be a subgroup of order p in $Z(G_p) \cap R$. Then, since $R \leq D \leq O^{\sigma_1}(G) = O^p(G)$, Z is normal in G by Lemma 3.1. Hence |R| = p and so $R < C_G(G)$. Then $C_G(R) = R \times L = G_p = C_G(G_p)$, where L is a minimal normal subgroup of G by Claims (3) and (4). Therefore every subgroup of G_p is normal in G by Lemma 3.1. Hence |L| = p. Let $R = \langle a \rangle$, $L = \langle b \rangle$ and $N = \langle ab \rangle$. Then $N \nleq D$, so in view of the G-isomorphisms $DN/D \simeq N \simeq NL/L \simeq G_p/L = RL/L \simeq R$ we get that $R \rtimes (G/C_G(R)) = R \times (G/G_p)$ is a p-group. This contradiction shows that we have (5).

Final contradiction for (d). By Proposition 2.2, G has a σ_1 -complement E and a Sylow p-subgroup P such that EP = PE. Let $V = (EP)^{\mathfrak{N}_{\sigma}}$. By Claim (5), $EP \neq G$. On the other hand, $R \leq D \leq EP$ by Claim (1), so EP is σ -subnormal in G by Lemma 2.6(5). Therefore by Claim (b) we have $V \leq D$, V is a σ -Hall subgroup of EP and every subgroup of EP is normal in EP. But then, since the Sylow p-subgroup EP of EP is contained in EP, EP is EP is EP in EP in EP in EP in EP in EP in EP is EP in EP i

(e) At least one of the subgroups H_1, \ldots, H_t is normal in G and contained in D.

Since G is σ -soluble, D < G. On the other hand, D is a σ -Hall subgroup of G by Claim (d), and D is a $P\Sigma T$ -group by Claim (b). Therefore every σ -Hall subgroup of D is a σ -Hall subgroup of G, so for some i, $H_i \leq D$ and H_i is normal in G.

(f) D is nilpotent.

Assume that this is false and let R be a minimal normal subgroup of G. Then $RD/R = (G/R)^{\mathfrak{N}_{\sigma}}$ is abelian by Claim (a). Therefore R is the unique minimal normal subgroup of G and $R \nleq \Phi(G)$ by Lemma 2.5. Therefore $R = C_G(R)$ is a p-group for some prime p by [18, A, 15.2]. By Claim (e), one of the subgroups H_1, \ldots, H_t , say H_1 , is normal in G and contained in D. Therefore $R \leq H_1$. Let L be a subgroup of order p in R. Then $O^{\sigma_1}(G) \leq N_G(L)$ by Lemma 3.1. But $G/O^{\sigma_1}(G)$ is a σ_1 -group and so from $H_1 \leq D \leq O^{\sigma_1}(G)$ we

get that $O^{\sigma_1}(G) = G$. Therefore R = L, so $G/C_G(R) = G/R$ is a cyclic group. Hence G is supersoluble and therefore D is nilpotent.

(g) Every subgroup H of D is normal in G.

Since D is a σ -Hall nilpotent subgroup of G by Claims (d) and (f), it is enough to consider the case when H is a non-identity σ_i -group for some $i \in I$. In this case we have $H_i \leq D$ and so $O^{\sigma_1}(G) = G$. But then H is normal in G by Lemma 3.1.

(h) If p is a prime such that (p-1, |G|) = 1, then p does not divide |D|. In particular, |D| is odd. Hence D is abelian.

Assume that this is false. Then, by Claim (g), D has a maximal subgroup E such that |D:E|=p and E is normal in G. Then $C_G(D/E)=G$, so since D is a Hall subgroup of G, $G/E=(D/E)\times(ME/E)$, where $ME/E\simeq M\simeq G/D$ is σ -nilpotent. Therefore G/E is σ -nilpotent by Lemma 2.5. But then $D\leq E$, a contradiction. Hence p does not divide |D|. In particular, |D| is odd. But in view of Claim (g), D is a Dedekind group. Hence D is abelian

From Claims (d)–(h) we get that the necessity conditions are true for G, which contradicts the choice of G.

Sufficiency. It is enough to show that if $G = D \rtimes M$, where D is a σ -Hall subgroup of G such that every subgroup of D is normal in G and M is σ -nilpotent, then every σ -subnormal subgroup of G is σ -permutable in G. Assume that this is false and let G be a counterexample of minimal order. Then 1 < D < G and for some σ -subnormal subgroup H of G and for some $x \in G$ and $k \in I$ we have $HH_k^x \neq H_k^xH$. Let $E = H_k^x$. Since G is σ -soluble and D is a σ -Hall subgroup of G, we can assume without loss of generality that $M = H_i \times \cdots \times H_t$ for some i > 1. Then, since every subgroup of D is normal in G, $i \leq k \leq t$.

Assume that $H_G \neq 1$. It is clear that the hypothesis holds for G/H_G , so the choice of G implies that $(H/H_G)(EH_G/H_G) = (EH_G/H_G)(H/H_G)$. Therefore $HE = HEH_G = EH_GH_GH = EH_GH = EH$, a contradiction. Hence $H_G = 1$, which implies that $H \cap D = 1$. It follows that $H \simeq DH/D$ is σ -nilpotent. Therefore we can assume without loss of generality that $H \leq M$. Hence $H = (H \cap H_i) \times \cdots \times (H \cap H_t)$, so for some j we have $(H \cap H_j)E \neq E(H \cap H_j)$. Let $V = H \cap H_j$. Then V is clearly σ -subnormal in G, so $j \neq k$ by Lemma 2.6(7).

Since ED/D is a Hall σ_k -subgroup of G/D, (VD/D)(ED/D) = (ED/D)(VD/D). Hence VED is a subgroup of G. Assume that VED < G. It is clear that the hypothesis holds for VED. On the other hand, V is clearly σ -subnormal in VED. Hence EV = VE by the choice of G, a contradiction. Therefore VED = G. It follows that $V = H_j$. But then V is normal in G by Lemma 2.6(10) and so VE = EV. This contradiction completes the proof of the result. \square

Lemma 3.2. Let H and K be subgroups of G. If G is a σ -group of Sylow type and H is σ -permutable in G, then $H \cap K$ is σ -permutable in K.

Proof. Let K_i be a Hall σ_i -subgroup of K. Then for some Hall σ_i -subgroup E_i of G we have $K_i = E_i \cap K$. Moreover, since G is a σ -group of Sylow type, H permutes with E_i and H is σ -subnormal in HE_i by Theorem B(ii) and Lemma 2.6(1), so $HE_i \cap K = (H \cap K)(E_i \cap K) = (H \cap K)K_i = K_i(H \cap K)$ by Lemma 2.7. Hence $H \cap K$ is σ -permutable in K. The lemma is proved. \square

Proof of Theorem C. In fact, in view of Lemma 2.8(4), we have only to show that if A and B are σ -permutable subgroups of G, then $A \cap B$ is σ -permutable in G. Assume that this is false and let G be a counterexample of minimal order. Then $|\sigma(G)| > 1$, and for some i and for some Hall σ_i -subgroup H of G we have $(A \cap B)H \neq H(A \cap B)$.

Let $D = AH \cap BH$. Then $A \cap D$ and $B \cap D$ are σ -permutable in D by Lemma 3.2. Assume that D < G. Then the choice of G implies that $A \cap B = (A \cap D) \cap (B \cap D)$ is σ -permutable in D by the choice of G. Hence $(A \cap B)H = H(A \cap B)$, a contradiction. Therefore D = G, so G = AH = BH. Hence |G : A| and |G : B| are σ_i -numbers. By Theorem B(i), A and B are σ -subnormal in G. Hence by Lemma 2.6(8) we have

$$O^{\sigma_i}(A) = O^{\sigma_i}(G) = O^{\sigma_i}(B).$$

Therefore, since $|\sigma(G)| > 1$, it follows that $V = A_G \cap B_G \neq 1$.

By Lemma 2.8(2), A/V and B/V are σ -permutable in G/V. Hence the choice of G implies that

$$(A \cap B/V)(HV/V) = ((A/V) \cap (B/V))(HV/V) =$$
$$(HV/V)((A/V) \cap (B/V)) = (HV/V)(A \cap B/V)$$

by the choice of G. But then $(A \cap B)H = (A \cap B)HV = HV(A \cap B) = H(A \cap B)$. This contradiction completes the proof of the result. \Box

Corollary 3.3. (See Kegel [2] or Theorem 1.2.19 in [25].) The set of all S-permutable subgroups of G forms a sublattice of the lattice of all subnormal subgroups of G.

4. Final remarks, some other applications and open questions

- 1. In view of Theorem B(i), the class of all σ -soluble groups G, in which σ -permutability is a transitive relation on G, that is, every σ -permutable subgroup of a σ -permutable subgroup of G is σ -permutable in G, coincides with the class of all $P\Sigma T$ -groups.
 - 2. As another application of Theorem B we prove the following fact.

Theorem 4.1. Let G be a σ -group of Sylow type. Then a subgroup A of G is σ -permutable in G if and only if A is σ -subnormal in G and A is σ -permutable in $\langle A, x \rangle$ for all $x \in G$.

Proof. In view of Theorem B(i) and Lemma 2.8(1), it is enough to prove that if A is σ -subnormal in G and σ -permutable in $\langle A, x \rangle$ for all $x \in G$, then A is σ -permutable

in G. Assume that this is false and let G be a counterexample with |G| + |A| minimal. Then G is not σ -primary, and for some i and for some Hall σ_i -subgroup H of G we have $AH \neq HA$.

Assume that $\langle A, H \rangle < G$. In view of Lemma 2.6(1), A is σ -subnormal in $\langle A, H \rangle$. Therefore the hypothesis holds for $\langle A, H \rangle$, so A is σ -permutable in $\langle A, H \rangle$ by the choice of G. But then, since G is a σ -group of Sylow type by hypothesis, A permutes with every Hall σ_i -subgroup of $\langle A, H \rangle$ and hence AH = HA. This contradiction shows that $\langle A, H \rangle = G$.

Now let $x \in H$ and $L = \langle A, x \rangle$. Then A is σ -permutable in L by hypothesis, so for some Hall σ_i -subgroup E of L we have $x \in E$ and AE = EA. It follows that |AE : A| is a σ_i -number and so $O^{\sigma_i}(AE) = O^{\sigma_i}(A)$ by Lemma 2.6(8). Hence $x \in N_G(O^{\sigma_i}(A))$. Therefore $O^{\sigma_i}(A)$ is normal in G. But since $AH \neq HA$, $A \nleq H$ and so in view of Lemma 2.6(7) we have $O^{\sigma_i}(A) \neq 1$. Therefore, $A_G \neq 1$.

Note that $\langle A/A_G, xA_G \rangle = \langle A, x \rangle / A_G$, where A/A_G is σ -permutable in $\langle A, x \rangle / A_G$ by Lemma 2.8(2). Also, A/A_G is σ -subnormal in G/A_G by Lemma 2.6(4). Hence the hypothesis holds for G/A_G , so A/A_G is σ -permutable in G/A_G by the choice of G. Hence A is σ -permutable in G by Lemma 2.6(3). This contradiction completes the proof of the result. \square

Recall that a subgroup A of G is subnormal in G if and only if A is subnormal in $\langle A, x \rangle$ for all $x \in G$ [18, A, 14.10]. Therefore from Theorem 4.1 we get the following known result.

Corollary 4.2. (See Ballester-Bolinches and Esteban-Romero [26] or Theorem 1.2.13 in [25].) A subgroup A of G is S-permutable in G if and only if A is S-permutable in $\langle A, x \rangle$ for all $x \in G$.

3. Let \mathfrak{X} be a class of groups. A group G is called \mathfrak{X} -critical if G is not in \mathfrak{X} but all proper subgroups of G are in \mathfrak{X} [18, p. 517]. An \mathfrak{N} -critical group, where \mathfrak{N} is the class of all nilpotent groups, is called a *Schmidt group*.

Example 4.3. Let $G = (C_5 \rtimes C_2) \times S_4$, where $C_5 \rtimes C_2$ is a non-abelian group of order 10 and S_4 is the symmetric group of degree 4. Let $\sigma = \{\{2,3\}, \{2,3\}'\}$. Then $F_{\sigma}(G) = C_5 S_4$ and $G/F_{\sigma}(G) \simeq C_2$ is abelian. Now let H be any Schmidt subgroup of G. If 5 divides |H|, then $C_5 \leq H$ and so G/H_G is a $\{2,3\}$ -group. Hence H is σ -subnormal in G. If 5 does not divide |H|, then H is not \mathfrak{N}_{σ} -critical subgroup of G.

Example 4.3 was a motivation for the following result.

Theorem 4.4. (See Skiba [21].) Suppose that G is a non- σ -nilpotent σ -group. If every \mathfrak{N}_{σ} -critical subgroup of G is σ -subnormal in G, then $G/F_{\sigma}(G)$ is abelian.

Corollary 4.5. (See Semenchuk [27].) Suppose that G is a non-nilpotent group. If every Schmidt subgroup of G is subnormal in G, then G is metanilpotent.

Corollary 4.6. (See Monakhov and Knyagina [28].) Suppose that G is a non-nilpotent group. If every Schmidt subgroup of G is subnormal in G, then G/F(G) is abelian.

4. A full description of groups with subnormal Schmidt subgroups was obtained by V.A. Vedernikov in [29].

Question 4.7. Describe σ -groups in which every \mathfrak{N}_{σ} -critical subgroup is σ -subnormal.

5. We say that a σ -group G is σ -dispersive provided G has a normal series $1 = G_1 < G_2 < \cdots < G_{t-1} < G_t = G$ and a complete Hall set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of type σ such that $G_iH_i = G_{i+1}$ for all $i = 1, \ldots, t-1$.

In view of Theorem A, every σ -soluble group in which every σ -subnormal subgroup is σ -permutable is σ -dispersive.

Question 4.8. Let G be a σ -soluble group and $|\sigma(G)| = n$. Assume that every (n+1)-maximal subgroup of G is σ -subnormal. Is it true then that G is σ -dispersive?

In the case when σ is the smallest partition of \mathbb{P} the answer to Question 4.8 is positive [30].

6. In view of [31, IV, 5.4] the following question seems to be natural.

Question 4.9. Is it true that every \mathfrak{N}_{σ} -critical group is σ -soluble?

7. Finally, we draw the readers' attention to the following two open problems.

Question 4.10. Suppose that for every $x \in G$, the subgroup H of G is σ -subnormal in $\langle H, x \rangle$. Is it true then that H is σ -subnormal in G?

Question 4.11. Let H and K be σ -subnormal subgroups of G such that $\pi(H/H^{\mathfrak{N}_{\sigma}}) \cap \pi(K/K^{\mathfrak{N}_{\sigma}})$ is empty. Is it true then that HK = KH?

In the case when σ is the smallest partition of \mathbb{P} the answers to Questions 4.10 and 4.11 are positive (see Wielandt's theorems [18, A, 14.10] and [32, 4.1.2], respectively).

Acknowledgment

The author is deeply grateful for the helpful suggestions and remarks of the referee.

References

[1] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory 18 (2) (2015) 191–200, http://dx.doi.org/10.1515/jgth-2014-0045.

- [2] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962) 205–221.
- [3] W.E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963) 125–132.
- [4] A. Ballester-Bolinches, R. Esteban-Romero, A.A. Heliel, M.O. Almestadi, Z-permutable subgroups of finite groups, preprint.
- [5] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1975) 77–83.
- [6] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, J. Aust. Math. Soc. 70 (2001) 143–159.
- [7] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, J. Lond. Math. Soc. 40 (1989) 244–256.
- [8] J.C. Beidleman, B. Brewster, D.J.S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra 222 (1999) 400–412.
- [9] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutable subnormal subgroups, J. Algebra 251 (2002) 727–738.
- [10] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, Illinois J. Math. 47 (2003) 63–69.
- [11] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, A local approach to certain classes of finite groups, Comm. Algebra 31 (2003) 5931–5942.
- [12] M. Asaad, Finite groups in which normality or quasinormality is transitive, Arch. Math. 83 (4) (2004) 289–296.
- [13] A. Ballester-Bolinches, J. Cossey, Totally permutable products of finite groups satisfying SC or PST, Monatsh. Math. 145 (2005) 89–93.
- [14] K. Al-Sharo, J.C. Beidleman, H. Heineken, et al., Some characterizations of finite groups in which semipermutability is a transitive relation, Forum Math. 22 (2010) 855–862.
- [15] J.C. Beidleman, M.F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, Cent. Eur. J. Math. 9 (4) (2011) 915–921.
- [16] X. Yi, A.N. Skiba, Some new characterizations of PST-groups, J. Algebra 399 (2014) 39-54.
- [17] O.H. Kegel, Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband echt enthalten, Arch. Math. 30 (3) (1978) 225–228.
- [18] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.
- [19] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, Evanston, London, 1968.
- [20] W. Guo, K.P. Shum, A.N. Skiba, X-semipermutable subgroups of finite groups, J. Algebra 315 (2007) 31–41.
- [21] A.N. Skiba, On some properties of finite σ -soluble and σ -nilpotent groups, preprint.
- [22] A.N. Skiba, On σ -properties of finite groups I, PFMT 4 (21) (2014) 89–96.
- [23] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006.
- [24] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra 207 (1998) 285–293.
- [25] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, New York, 2010.
- [26] A. Ballester-Bolinches, R. Esteban-Romero, On finite soluble groups in which Sylow permutability is a transitive relation, Acta Math. Hungar. 101 (2003) 193–202.
- [27] V.N. Semenchuk, Finite groups with a system of minimal nonξ-groups, in: Subgroup Structure of Finite Groups, Nauka i Tehnika, Minsk, 1981, pp. 138–139.
- [28] V.S. Monakhov, V.N. Knyagina, On finite groups with some subnormal Schmidt subgroups, Sib. Math. J. 45 (6) (2004) 1316–1322.
- [29] V.A. Vedernikov, Finite groups with subnormal Schmidt subgroups, Algebra Logika 46 (6) (2007) 669–687.
- [30] A. Mann, Finite groups whose n-maximal subgroups are subnormal, Trans. Amer. Math. Soc. 132 (1968) 395–409.
- [31] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [32] J.C. Lennox, S.E. Stonehewer, Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1987.