Math4423_HW1.md 2024-10-04

Math 4423 Assignment 1

* I submit as LaTeX for the bonus points XD

\$Q1)\$

 $H_0: m = 5$

\$H_1: m> 5\$

 $\alpha = 0.05$

\$Sorted\space Statistics: 1,2,3,4,4,7,9,10,12,15\$

\$a)\space \text{Sign Test}\$

 $S=\sum_{i=1}^{10}I\{X_i>m\}=5$

\$S \sim Bin(10, \frac{1}{2})\$

\$\text{P-Value}\$

 $P(S \neq 5 \mid H_0)$

 $P(Bin(10, \frac{1}{2})\geq 5)$

 $$= \{10}{5}(\frac{1}{2})^{10} + \frac{10}{5}(\frac{1}{2})^{10} + \frac{10}{5}(\frac{1}{5}(\frac{1}{2}))^{10} + \frac{10}{5}(\frac{1}{5}(\frac{$

 $=(\frac{1}{2})^{10}\times(252+210+120+45+10+1)$

\$=0.623046875\$

\$\gt 0.05\$

\$\text{We do not have enough evidence to reject the null hypothesis}\$

\$b)\space \text{Sign Test with Normal Approximation}\$

 $S=\sum_{i=1}^{10}I\{X_i>m\}=5$

 $S \sim Bin(10, \frac{1}{2})$

 $\textstyle \text{S-np}(sqrt(np(1-p))) N(0,1)\simeq \text{text}(for Large n)$

 $\text{P-Value} P(S\geq 5\mod H_0) = P(Bin(10, \frac{1}{2})\geq 1-\Phi(0.316227766) \approx 0.1255 \gt 0.05 $$

\$\text{We do not have enough evidence to reject the null hypothesis}\$

\$c)\space \text{Wilxocon Sign Rank Text}\$

\$X_i\$	\$X_1\$	\$X_2\$	\$X_3\$	\$X_4\$	\$X_5\$	\$X_6\$	\$X_7\$	\$X_8\$	\$X_9\$	\$X_{10}\$
obs	3	4	7	10	4	12	1	9	2	15
\$X_i-m_0\$	-2	1	2	5	-1	7	-4	4	-3	10
\$abs of }{X_i- m_0}\$	2	1	2	5	1	7	4	4	3	10
\$\text{R of } X_i-m_0\$	\$\frac{3+4} {2}\$	\$\frac{1+2} {2}\$	\$\frac{3+4} {2}\$	8	\$\frac{1+2} {2}\$	9	\$\frac{6+7} {2}\$	\$\frac{6+7} {2}\$	5	10
\$Signs of } X_i- m_0\$	-	+	+	+	-	+	-	+	-	+

Math4423 HW1.md 2024-10-04

\$X_i\$	\$X_1\$	\$X_2\$	\$X_3\$	\$X_4\$	\$X_5\$	\$X_6\$	\$X_7\$	\$X_8\$	\$X_9\$	\$X_{10}\$
\$R_i\$	-3.5	1.5	3.5	8	-1.5	9	-6.5	6.5	-5	10

 $W=\sum_{i=1}^{10}R_i = 1.5+3.5+8+9+6.5+10=38.5 \text{By looking up the table: We know that the critical value is 10 when n=10, } \alpha=0.05 \because 38.5>10 \therefore \text{We do not have enough evidence to reject the null hypothesis}$

\$d) \space\text{Wilxocon Sign Rank Test with Normal Approximation}\$

 $W=\sum_{i=1}^{10}R_{i-i} = 1.5+3.5+8+9+6.5+10=38.5$

 $\text{P-Value} P(W\geq 38.5)\\approx 1-\phi(\frac{38.5-\frac{10(10+1)}{2}-0.5}{\sqrt{10(10+1)(10+1)(2)}}\\approx 0.6423\gt 0.05\ \text{We do not have enough evidence to reject the null hypothesis}$

\$e)\text{ Parametric t-test}\ \text{We Assume the data follows Normal Distribution}\$

 $X_1..X_{10} \simeq N(\mu , \simeq ^ 2)$

 $\Phi = 5 \ H_1: m > 5 \ \$

T-Statistics \$\$T=\frac{\sqrt{n}(\bar{X}-5)}{\sigma}\$\$ \$\$\hat{T}=\frac{1}{n-1}\sum_{(X_i-\bar{X})^2}}\$\$ \$\$t_{0bs}=\frac{10}{6.7-5}}{4.667856991}=1.151678818\$

\$T\sim t(n-1)\sim t(9)\$

\$\text{P-Value}\ P(T\geq1.1517)\ \approx 0.13956\ \gt0.05\ \therefore \text{We do not have enough evidence to reject the null hypothesis} \$

\$\text{f) Yes, five approaches reach the same conclusion of not rejecting the null hypothesis of the median being 5 among the population}\$

\$\text{Q2} Exact Distribution of Wilcoxon sign Rnak Test}\$

n=5						W	Prob
signs of \$R_i\$	1	2	3	4	5		
	+	+	+	+	+	15	1/32
	-	+	+	+	+	14	1/32
	+	-	+	+	+	13	1/32
	-	-	+	+	+	12	1/32
	+	+	-	+	+	12	1/32
	-	+	-	+	+	11	1/32
	+	-	-	+	+	10	1/32
	-	-	-	+	+	9	1/32
	+	+	+	-	+	11	1/32
	-	+	+	-	+	10	1/32
	+	-	+	-	+	9	1/32
	-	-	+	-	+	8	1/32
	+	+	-	-	+	8	1/32
	-	+	-	-	+	7	1/32
	+	-	-	-	+	6	1/32
	-	-	-	-	+	5	1/32
	+	+	+	+	-	10	1/32
	-	+	+	+	-	9	1/32
	+	-	+	+	-	8	1/32

Math4423_HW1.md 2024-10-04

n=5						W	Prob
	-	-	+	+	-	7	1/32
	+	+	-	+	-	7	1/32
	-	+	-	+	-	6	1/32
	+	-	-	+	-	5	1/32
	-	-	-	+	-	4	1/32
	+	+	+	-	-	6	1/32
	-	+	+	-	-	5	1/32
	+	-	+	-	-	4	1/32
	-	-	+	-	-	3	1/32
	+	+	-	-	-	3	1/32
	-	+	-	-	-	2	1/32
	+	-	-	-	-	1	1/32
	-	-	-	-	-	0	1/32

 $\textstyle \text{From the Derived Exact Distribution:} \ P(W\leq3)=5/32=0.15625\ P(W\geq8)=16/32=0.5\$

\$Q3)\$

Statistics					
X	17.2	21.6	19.5	19.0	22.0
Υ	18.3	20.8	20.9	21.2	22.7
Z=X-Y	-1.1	0.8	-1.4	-2.2	-0.7

 $\t 0.05_{2}-0.025 \sum_{i=0}^{k_{\alpha}}=1.1\ P(S<K_{\alpha})=-1.1\ P(S<K_{\alpha})=-1$

\$b) \text{ Hodgers-Lehmann estimator} \hat{}m_{HL}=\text{MD of all Walsh Average} \ \text{Walsh Average for {-2.2, -1.4, -1.1, -0.7, 0.8}} \ {-2.2, -1.8, -1.65, -1.45, -1.4, -1.25, -1.1, -1.05, -0.9, -0.7, -0.3, -0.15, 0.05, 0.8} \hat{m_{HL}}=X_{(\frac{15+1}{2})}=X_{(8)}=-1.05 \ \text{Usey's method of CI} \ P(W < K_{\alpha})=0.05/2 \ \text{when } k_{\alpha} \ \text{it is closest to 0.025,} \ \text{is } [-2.2, 0.8]} \$