Universidade de São Paulo Instituto de Matemática e Estatística Bachalerado em Ciência da Computação

Mateus Barros Rodrigues

Implementação de algoritmos para consultas de segmentos em janelas

> São Paulo Setembro de 2016

Implementação de algoritmos para consultas de segmentos em janelas

 ${\it Monografia final \ da \ disciplina}$ ${\it MAC0499-Trabalho \ de \ Formatura \ Supervisionado.}$

Supervisor: Prof. Dr. Carlos Eduardo Ferreira

São Paulo Setembro de 2016

Resumo

Este trabalho de conclusão de curso fundamentou-se na compreensão e implementação em linguagem python de um algoritmo para consultas de intersecções de segmentos de retas com janelas retangulares no espaço, um subproblema de geometria computacional conhecido por: buscas em regiões ortogonais. Este algoritmo foi o foco da tese de mestrado de Álvaro Junio Pereira Franco. Além da implementação, foi feita também a adaptação do visualizador de algoritmos geométricos feito por Alexis Sakurai Landgraf para exposição dos resultados obtidos.

Palavras-chave: Geometria, janelas, segmentos, buscas.

Sumário

1	11111	oduça	O	1
2	Def	inições	s e Primitivas	3
	2.1	Pontos	s e Segmentos	. 3
	2.2	Comp	arações entre pontos	. 3
	2.3	Posiçã	ao relativa entre ponto e segmento	. 3
3	Cor	sultas	sobre pontos em janelas	5
	3.1	Janela	a limitada - Caso unidimensional	. 5
		3.1.1	Pré-processamento	. 5
		3.1.2	Realizando a consulta	. 6
		3.1.3	Análise	. 8
	3.2	Janela	ı limitada - Caso bidimensional	. 8
		3.2.1	Pré-processamento	. 8
		3.2.2	Realizando a consulta	. 9
		3.2.3	Análise	. 11
4	Cor	ıclusõe	es	13
$\mathbf{R}_{\mathbf{c}}$	eferê	ncias I	Bibliográficas	15

Introdução

Neste trabalho de conclusão de curso foi abordado o problema de consultas de segmentos em janelas, um problema de buscas em intervalos ortogonais, que é um dos tópicos fundamentais da área de geometria computacional.

Dado um conjunto S de segmentos no espaço (Seja no \mathbb{R} , \mathbb{R}^2 , etc.) e uma janela W de lados paralelos, queremos responder rapidamente a seguinte pergunta: quais segmentos de S estão contidos na ou intersectam a janela W?

Este trabalho foi baseado em Consultas de segmentos em janelas: algoritmos e estruturas de dados de Álvaro Junio (2009), portanto seguiremos a mesma divisão do problema que foi proposta nessa dissertação: Encontrar pontos contidos em janelas e achar todos os segmentos que intersectam com um dado segmento (Horizontal ou vertical). Seguiremos também a mesma divisão de capítulos: Primeiramente apresentaremos definições e primitivas geométricas, dedicaremos um capítulo para falar de consultas de pontos em janelas, um para falar de encontrar intersecção de segmentos e finalmente um onde agregaremos esses algoritmos para resolver o problema proposto. Todo o código desenvolvido foi escrito em linguagem python e está disponível no gitHub.

Definições e Primitivas

Explicaremos a seguir algumas das noções fundamentais que serão utilizadas ao longo do trabalho:

2.1 Pontos e Segmentos

Neste trabalho trataremos basicamente com pontos e segmentos de reta no espaço (\mathbb{R} e \mathbb{R}^2). Sejam $x,y\in\mathbb{R}$ definimos um **ponto** no \mathbb{R}^2 como um par p=(x,y). Um **segmento** s pode ser formalmente definido como o conjunto solução de $s=u+t*v,\ t\in[0,1],\ u,v$ pontos. Seremos um pouco relaxados quanto à isso <u>e</u> os representaremos como um par de pontos e um reta por cima para dar destaque: $s:=\overline{(x_1,y_1)(x_2,y_2)}$, onde $u=(x_1,y_1)$ e $v=(x_2,y_2)$ são pontos chamados de **pontos extremos** de s.

2.2 Comparações entre pontos

Uma outra definição que será usada copiosamente ao longo desta monografia é a relação de desigualdade associada à uma dada coordenada. Sejam u, v pontos, dizemos que $u \leq_x v$ caso x(u) < x(v) ou x(u) = x(v) e $y(u) \leq y(v)$ (Simetricamente definido para desigualdades em relação à coordenada y), ou seja, sempre comparamos primeiro a coordenada de maior interesse e desempatamos pela segunda coordenada nas comparações.

2.3 Posição relativa entre ponto e segmento

Usaremos também bastante a noção de posição relativa entre pontos e segmentos, isto é, dado um ponto p e um segmento s, queremos saber se p se encontra $\hat{\mathbf{a}}$ esquerda, $\hat{\mathbf{a}}$ direita ou sobre o segmento s.

Sejam
$$p := (x_1, y_1) \in \mathbb{R}^2$$
, $s := \overline{(x_2, y_2)(x_3, y_3)}$ e $d := \det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}$

Dizemos que p está **à esquerda** de s caso d > 0, que está **sobre** s caso d = 0 e que está **à direita** de s caso contrário. Seguem a seguir os trechos de código que foram usados no trabalho para realizarmos essas verificações:

Algoritmo 1 Retorna TRUE caso p esteja à esquerda de s.

```
1 def left(p,s):
2    b = s.beg
3    c = s.end
4    if b.x == c.x and p.x == b.x: return p.y > c.y
5    if b.y == c.y and p.y == b.y: return p.x < c.x
6    return (b.x-p.x)*(c.y-p.y) - (b.y-p.y)*(c.x-p.x) > 0
```

Algoritmo 2 Retorna TRUE caso p esteja à direita de s.

```
1 def right(p,s):
2    b = s.beg
3    c = s.end
4    if b.x == c.x and p.x == b.x: return p.y < b.y
5    if b.y == c.y and p.y == b.y: return p.x > c.x
6    return not(left_on(p,s))
```

Algumas ressalvas sobre essas funções:

- A única diferença da função *left_on* em relação à função *left* é que ela também retorna *true* caso o ponto esteja sobre o segmento dado.
- As modificações presentes nas linhas 4 e 5 foram adicionadas apenas para resolverem os casos degenerados apresentados no capítulo x.

Consultas sobre pontos em janelas

Nesse capítulo mostraremos os algoritmos implementados para localizarmos todos os pontos numa dada janela e algumas variações desse problema. Todas as provas de corretude e de eficiência dos algoritmos expostos, tanto deste capítulo quanto dos próximos, poderão ser encontradas na dissertação de Álvaro Junio (2009).

3.1 Janela limitada - Caso unidimensional

Analisaremos primeiramente o problema no espaço \mathbb{R} , ou seja, nossos pontos estarão todos contidos na reta. Sejam u, v pontos na reta tais que $u \leq v$, definimos uma **janela** como sendo um *intervalo fechado* com extremos u e v.

3.1.1 Pré-processamento

Para resolvermos rapidamente sucessivas consultas sobre um dado conjunto de pontos, precisaremos armazenar esses dados em uma estrutura de dados apropriada. A estrutura que usaremos será um tipo de **árvore de busca binária balanceada** (ABBB) chamada de árvore limite, onde cada nó terá 3 campos: o ponto associado, um ponteiro para o filho esquerdo e um ponteiro para o filho direito. A seguir está o trecho de código referente à construção da árvore:

Algoritmo 3 Retorna uma raíz v de uma árvore limite 1D construída sobre um conjunto de pontos ordenados.

```
1 def buildTree(self, points):
      v = Node(None)
      1 = points[:len(points)//2]
3
      r = points[len(points)//2:]
4
5
      v.point = points[len(points)//2-1]
6
7
8
      if len(points) == 1:
           v.l = v.r = None
9
10
      else:
           v.l = self.buildTree(1)
11
12
           v.r = self.buildTree(r)
13
      return v
```

3.1.2 Realizando a consulta

6

Seja P um conjunto de pontos e seja $W = [w_1, w_2]$ uma janela. Podemos consultar todos os pontos de $P \subset W$ da seguinte forma:

- 1. Construímos a ABBB sobre o conjunto P.
- 2. Achamos o **ponto divisor** de P, este é o ponto que se encontra na raiz da subárvore que contém os pontos $S := (v \mid w_1 \le v \le w_2)$, chamaremos esse ponto de v_{div} .
- 3. Percorremos a subàrvore esquerda de v_{div} verificando se o ponto r da raiz é tal que $w_1 \leq r$, caso seja, adicionamos todos os pontos dessa subàrvore na resposta e nos movemos para a subàrvore esquerda, caso contrário vamos para a subárvore direita. Ao chegar na folha apenas verificamos se $w_1 \leq r \leq w_2$ e adicionamos na resposta caso seja verdade.
- 4. Percorremos a subárvore direita de v_{div} de forma simétrica ao item 3.

Segue a implementação das rotinas supracitadas juntamente com suas funções auxiliares:

```
Algoritmo 4 Retorna true caso w_1 \leq_x p \leq_x w_2
```

```
1 def inRange(self,rng,p):
2     w1,w2 = rng
3     return w1 <= p and p <= w2</pre>
```

Algoritmo 5 Retorna o ponto divisor v_{div} de uma ABBB referente à uma dada janela rng.

```
1 def findDividingNode(self,rng):
2
       w1, w2 = rng
3
       div = self.root
4
       while(not div.isLeaf() and (w1 > div.point or w2 <= div</pre>
5
          .point)):
           if w2 <= div.point:</pre>
6
                div = div.1
7
8
            else:
9
                div = div.r
10
       return div
```

Algoritmo 6 Devolve uma lista com as folhas de uma dada árvore.

Algoritmo 7 Retorna uma lista com todos os pontos contidos numa dada janela rng.

```
1 def query(self,rng):
       div = self.findDividingNode(rng)
3
      p = []
4
       if div.isLeaf():
5
           if self.inRange(rng,div.point):
6
7
                p.append(div.point)
       else:
8
9
            v = div.1
10
            while(not v.isLeaf()):
                 if w1 <= v.point:</pre>
11
                     subtree = v.r.listSubTree()
12
                     p += subtree
13
                     v = v.1
14
15
                 else:
16
                     v = v.r
17
            if self.inRange(rng, v.point):
18
                 p.append(v.point)
19
20
            v = div.r
21
22
            while(not v.isLeaf()):
23
24
                 if w2 > v.point:
                     subtree = v.l.listSubTree()
25
                     p += subtree
26
27
                     v = v.r
28
                 else:
29
                     v = v.1
30
            if self.inRange(rng, v.point):
                 p.append(v.point)
31
32
33
        return p
```

3.1.3 Análise

- O pré-processamento requer que seja feita uma ordenação sobre o conjunto de pontos de entrada, portanto tem complexidade $\Theta(n \log n)$.
- A árvore terá altura $\mathcal{O}(\log n)$ e visitaremos $\mathcal{O}(\log n)$ pontos em cada subàrvore de v_{div} , além disso, consumiremos tempo $\mathcal{O}(k)$ para visitar os k pontos das folhas que estão contidos no intervalo e devem aparecer na resposta final. Portanto a complexidade final da consulta é da ordem $\mathcal{O}(n \log n + k)$.

3.2 Janela limitada - Caso bidimensional

Analisaremos agora o problema no espaço do \mathbb{R}^2 . Sejam $w_1 = (x_1, y_1)$ e $w_2 = (x_2, y_2)$ pontos no \mathbb{R}^2 , os segmentos de reta que formam um retângulo de lados paralelos ao eixos e que passam pelos pontos w_1 e w_2 são: $s_1 = \overline{(x_1, y_1)(x_1, y_2)}$, $s_2 = \overline{(x_1, y_2)(x_2, y_2)}$, $s_3 = \overline{(x_2, y_2)(x_2, y_1)}$ e $s_4 = \overline{(x_2, y_1)(x_1, y_1)}$, uma **janela** será definida como a intersecção desses 4 segmentos e sua região interna, porém, usaremos uma representação compacta representando a janela pelo segmento $s = \overline{w_1, w_2}$. Mostraremos primeiro o algoritmo mais simples que estende a ideia apresentada no algoritmo anterior e então mostraremos o algoritmo para consultas com janelas limitadas bidimensionais mais eficiente.

3.2.1 Pré-processamento

Precisaremos de uma estrutura de dados que consiga particionar o espaço de tal forma que consigamos saber a ordem entre os pontos em cada semiplano. Uma estrutura que nos fornece isso é a chamada $\mathbf{kd\text{-}tree}$ ($k\text{-}dimensional\ tree}$). A kd-tree é uma ABBB cuja ordem dos elementos é feita sobre a coordenada x e cada nó terá 4 elementos: uma raíz para uma ABBB cujos elementos são os mesmos da subárvore do nó, mas os elementos estão ordenados pela coordenada y, um ponto, um ponteiro para o filho esquerdo e um ponteiro para o filho direito.

Segue o algoritmo de construção dessa árvore. Omitiremos a implementação da estrutura auxiliar VerticalTree cuja descrição está presente no trabalho de Álvaro Junio (2009), essa estrutura é uma ABBB construída sobre um heap e tem tempo de construção $\mathcal{O}(n)$.

Algoritmo 8 Retorna uma raiz v para uma ABBB ordenada pela coordenada x a partir de um vetor de pontos ordenados por x e um vetor de pontos ordenados por y.

```
1 def buildTree(self, vx, vy):
2
      v = Node(None)
3
      v.tree = VerticalTree(vy)
      lx = vx[:len(vx)//2]
4
5
      rx = vx[len(vx)//2:]
      n = len(vx)
6
      ly = []
7
      ry = []
8
9
      for i in range(n):
10
           if vy[i].x < vx[n//2-1].x or (vy[i].x == vx[n])
11
              //2-1].x and vy[i].y <= vx[n//2-1].y):
                ly.append(vy[i])
12
           else: ry.append(vy[i])
13
14
      v.point = vx[n//2-1]
15
16
17
      if len(vx) == 1:
18
           v.l = v.r = None
19
      else:
           v.l = self.buildTree(lx,ly)
20
           v.r = self.buildTree(rx,ry)
21
22
23
      return v
```

3.2.2 Realizando a consulta

Seja P um conjunto de pontos e seja $W=(x_1,y_1)(x_2,y_2)$ uma janela. Podemos consultar todos os pontos de $P\subset W$ da seguinte forma:

- 1. Construímos a kd-tree sobre o conjunto P.
- 2. Achamos o **ponto divisor** no primeiro nível da kd-tree de forma similar ao algoritmo anterior.
- 3. Percorremos a subàrvore esquerda de v_{div} verificando se o ponto r da raiz é tal que $w_1 \leq_x r$, caso seja, realizamos a consulta unidimensional na árvore associada ao nó. Caso contrário, caso contrário vamos para a subárvore direita. Ao chegar na folha apenas verificamos se $w_1 \leq_x r \leq_x w_2$ e adicionamos na resposta caso seja verdade.
- 4. Percorremos a subárvore direita de v_{div} de forma simétrica ao item 3.

Segue a implementação das rotinas supracitadas juntamente com suas funções auxiliares:

Algoritmo 9 Verifica se o ponto p está contido na janela rng.

```
1 def inRange(self,rng,p):
2     w1,w2 = rng
3     a = w1.x < p.x or (w1.x == p.x and w1.y <= p.y)
4     b = p.x < w2.x or (p.x == w2.x and p.y <= w2.y)
5     c = w1.y < p.y or (w1.y == p.y and w1.x <= p.x)
6     d = p.y < w2.y or (p.y == w2.y and p.x <= w2.x)
7     return a and b and c and d</pre>
```

Algoritmo 10 Retorna uma lista com todos os pontos contidos numa dada janela rng.

```
1 def query(self,rng):
      [] = q
3
      w1, w2 = rng
      div = self.findDividingNode(rng)
5
      if div.isLeaf():
7
           if self.inRange(rng,div.point):
               p.append(div.point)
8
9
      else:
10
          v = div.1
11
           while not v.isLeaf():
12
               if w1.x < v.point.x or (w1.x == v.point.x and</pre>
13
                  w1.y <= v.point.y):
14
                   p += v.r.tree.oneDimQuery(rng)
15
                   v = v.1
16
               else:
17
                   v = v.r
18
           if self.inRange(rng, v.point): p.append(v.point)
19
20
21
          v = div.r
22
23
           while not v.isLeaf():
24
               if w2.x > v.point.x:
25
                   p += v.l.tree.oneDimQuery(rng)
26
                   v = v.r
27
               else:
28
                   v = v.1
29
           if self.inRange(rng, v.point): p.append(v.point)
30
31
32
      return p
```

3.2.3 Análise

- No pré-processamento ordenamos 2 vezes o conjunto de pontos, levando tempo $\mathcal{O}(n \log n)$. A construção em si da primeira árvore leva tempo $\mathcal{O}(n \log n)$ e para cada um dos $\mathcal{O}(\log n)$ nós dela construímos uma estrutura auxiliar consumindo tempo $\mathcal{O}(n)$. O que nos leva ao consumo total de $\mathcal{O}(n \log n)$.
- Os caminhos esquerdo e direito a partir de v_{div} têm $\mathcal{O}(\log n)$ nós, e possivelmente chamamos o algoritmo anterior para cada um deles, o que consome tempo $\mathcal{O}(\log n + k)$. O que nos leva ao consumo total de tempo de $\mathcal{O}(\log^2 n + k)$.

Conclusões

Texto texto.

¹Exemplo de referência para página Web: www.vision.ime.usp.br/~jmena/stuff/tese-exemplo

Referências Bibliográficas

Álvaro Junio(2009) Álvaro Junio. Consultas de segmentos em janelas: algoritmos e estruturas de dados. Dissertação de Mestrado, Instituto de Matemática e Estatística, Universidade de São Paulo, Brasil. Citado na pág. 1, 5, 8