

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

CR

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/732,089	12/06/2000	Daniel J. Miller	MSI-630US	3095
22801	7590	01/27/2005	EXAMINER	
LEE & HAYES PLLC 421 W RIVERSIDE AVENUE SUITE 500 SPOKANE, WA 99201			EL CHANTI, HUSSEIN A	
			ART UNIT	PAPER NUMBER
			2157	
DATE MAILED: 01/27/2005				

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/732,089	MILLER ET AL. <i>an</i>	
	Examiner	Art Unit	
	Hussein A El-chanti	2157	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 02 July 2004.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-75 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-75 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date <u>11/4,7/4,5/4,4/4</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. This action is responsive to amendment received on July 2, 2004. Claims 1-75 are pending examination.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

2. Claims 1-75 are rejected under 35 U.S.C. 102(e) as being anticipated by Tucker et al., U.S. Patent No. 6,590,604 (referred to hereafter as Tucker).

Tucker teaches the invention explicitly as claimed including a method of compressing and decompressing video and audio streams received and sent by the user (see abstract).

As to claim 1, Tucker teaches an editing system comprising: a switch assembly comprising one or more software-implemented matrix switches, individual matrix switches comprising:

one or more input pins configured to receive a data stream (see col. 2 lines 18-25); and

one or more output pins configured to output a data stream (see col. 2 lines 18-25);

the one or more input pins being routable to the one or more output pins, the switch assembly being configured to process both compressed and uncompressed data streams to provide a compressed output data stream that represents a user-defined editing project (see col. 2 lines 18-45 and col. 5 lines 23-47, the user establishes a communication call with other users on the network and generates compressed video and audio streams to be transmitted over the network and decodes video and audio compressed streams).

As to claims 21, Tucker teaches a multi-media editing system comprising:
a switch assembly comprising one or more non-hardware matrix switches, individual matrix switches comprising:

one or more input pins configured to receive a data stream (see col. 2 lines 18-25); and

one or more output pins configured to output a data stream (see col. 2 lines 18-25);

the one or more input pins being routable to the one or more output pins, the switch assembly being configured to process both compressed and uncompressed data streams to provide a compressed output data stream that represents a user-defined multi-media editing project (see col. 2 lines 18-45 and col. 5 lines 23-47, the user establishes a communication call with other users on

the network and generates compressed video and audio streams to be transmitted over the network and decodes video and audio compressed streams).

As to claims 2, 22 and 52, Tucker teaches the editing system of claims 1, 21 and 51 respectively, wherein the switch assembly comprises multiple switches (see col. 5 lines 23-47).

As to claims 3, 23 and 53, Tucker teaches the editing system of claims 2, 22 and 51 respectively, wherein one switch is configured to process compressed data streams (see col. 2 lines 23-35).

As to claims 4 and 24, Tucker teaches the editing system of claims 2 and 22 respectively, wherein one switch is configured to process uncompressed data streams (see col. 6 lines 58-67).

As to claims 5, 18 and 25, Tucker teaches the editing system of claims 2, 15 and 21 respectively, wherein one switch is configured to process compressed data streams, and one switch is configured to process uncompressed data streams (see col. 6 lines 58-67).

As to claim 6, Tucker teaches one or more computer-readable media having computer-readable instructions thereon which, when executed by a computer, provide the editing system of claim 1 (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 7, Tucker teaches the editing system of claim 1 configured as a multi-media editing system (see col. 5 lines 23-47).

As to claims 8 and 19, Tucker teaches an editing system comprising: a media processing object configured to: receive multiple data streams comprising compressed and uncompressed data streams; and process the one or more data streams to provide a compressed output data stream that represents a media project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 9, Tucker teaches the editing system of claim 8, wherein the media processing object comprises a software-implemented switch assembly (see col. 5 lines 23-47).

As to claim 10, Tucker teaches the editing system of claim 8, wherein the media processing object comprises a software-implemented switch assembly having multiple pins configured to receive or provide data streams (see col. 5 lines 23-47).

As to claim 11, Tucker teaches the editing system of claim 8, wherein the media processing object comprises multiple software-implemented switches each of which having one or more pins configured to receive or provide data streams (see col. 5 lines 23-47).

As to claim 12, Tucker teaches the editing system of claim 8, wherein the media project comprises a multi-media project (see col. 5 lines 23-47).

As to claims 13 and 26, Tucker teaches a multi-media editing system comprising:

a switch assembly comprising one or more software-implemented matrix switches, individual matrix switches comprising:

one or more input pins configured to receive a data stream; and one or more output pins configured to output a data stream;

the one or more input pins being routable to the one or more output pins, the switch assembly being configured to process both compressed and uncompressed data streams to provide a compressed output data stream that represents a user-defined multi-media editing project; and one or more data structures associated with the switch assembly and configured for use in programming the switch assembly to provide a routing scheme for routing input pins to output pins for a given multi-media editing project time line (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claims 14, 27, 41 and 49, Tucker teaches the multi-media editing system of claims 13, 26, 41 and 44 respectively, wherein the one or more data structures comprise one or more grid structures, individual grid structures being configured to contain data that defines an association between input and output pins for the project time line (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 15, Tucker teaches the multi-media editing system of claim 13, wherein the switch assembly comprises multiple switches (see col. 2 lines 18-45).

As to claims 16 and 42, Tucker teaches the multi-media editing system of claims 15 and 40 respectively, wherein the one or more data structures comprise a data structure associated with at least some of the multiple switches (see col. 2 lines 18-45).

As to claims 17, 43 and 51, Tucker teaches the multi-media editing system of claims 16, 42 and 44 respectively, wherein the data structures comprise grid structures that contain data that defines an association between input and output pins for the project time line (see col. 6 lines 58-col. 7 lines 10).

As to claim 20, Tucker teaches the multi-media editing system of claim 19, wherein the data structures comprise grid structures that contain data that defines an association between each switch's input and output pins for the project time line.

As to claim 28, Tucker teaches an media processing system comprising: switch means for receiving compressed and uncompressed data streams associated with sources that are to be incorporated into a project and processing the compressed and uncompressed data streams to provide a single compressed output stream that represents the project; and programming means associated with the switch means and configured to program the switch means to

provide the single compressed output stream (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claims 29 and 45-47, Tucker teaches the multi-media editing system of claims 28 and 44 respectively, wherein the switch means comprises: first switch means for processing the uncompressed data stream to provide an output uncompressed data stream; second switch means for processing the compressed data stream to provide an output compressed data stream; and third switch means for processing the output uncompressed and compressed data streams to provide the single compressed output stream (see col. 2 lines 18-45 and col. 5 lines 23-47)..

As to claim 30, Tucker teaches the multi-media editing system of claim 28, wherein the switch means comprises means for providing a data stream as a feedback data stream that is processed by the switch means (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 31, Tucker teaches the system of claim 28 wherein the switch means comprises switch means implemented in software (see col. 5 lines 40-47).

As to claims 32 and 48, Tucker teaches The multi-media editing system of claims 28 and 44, wherein the switch means comprises: first software switch means for processing the uncompressed data stream to provide an output uncompressed data stream; second software switch means for processing the compressed data stream to provide an output compressed data stream; and third software switch means for processing the output uncompressed and compressed

data streams to provide the single compressed output stream (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 33, Tucker teaches a multi-media editing system comprising:

a first software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the first matrix switch being configured to process one or more uncompressed data streams and output an uncompressed data stream;

a second software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the second matrix switch being configured to process one or more compressed data streams and output a compressed data stream; and

a third software-implemented matrix switch comprising multiple input pins and multiple output pins, the input pins being routable to one or more output pins, the third matrix switch being configured to receive an uncompressed data stream from the first switch and a compressed data stream from the second switch and process the received data streams to provide a single compressed output data stream that represents a user-defined multi-media editing project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 34, Tucker teaches the multi-media editing system of claim 33 further comprising a software-implemented compressor element coupled with the third switch and configured to receive and compress an uncompressed data stream (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 35, Tucker teaches the multi-media editing system of claim 34 further comprising a feedback path between the compressor element and an input pin of the third switch configured to provide a compressed data stream to the third switch's input pin (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 36, Tucker teaches the multi-media editing system of claim 33, wherein the third switch is programmed to receive, when available, a data stream from the second switch and, when a data stream is unavailable from the second switch, seek a data stream from the first switch (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 37, Tucker teaches one or more computer-readable having computer-readable instructions thereon which, when executed by a computer, provide the multi-media editing system of claim 33 (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 38, Tucker teaches a multi-media editing system comprising:
first software switch means for processing one or more uncompressed data streams to provide an uncompressed data stream, the switch means comprising at least one feedback loop that modifies a data stream that is output

by the switch means and provides the modified data stream as an input to the switch means;

second software switch means for processing one or more compressed data streams to provide a compressed data stream; and

a third software switch means for receiving an uncompressed data stream from the first software switch means and a compressed data stream from the second software switch and processing the received data streams to provide a single compressed output data stream that represents a user-defined multi-media editing project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 39, Tucker teaches 39. The multi-media editing system of claim 38 further comprising programming means associated with the first and second software switch means for programming routing of data streams therethrough (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 40, Tucker teaches a multi-media editing system comprising:

a first software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the first matrix switch being configured to process one or more uncompressed data streams and output an uncompressed data stream;

a second software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable

to the one or more output pins, the second matrix switch being configured to process one or more compressed data streams and output a compressed data stream;

a third software-implemented matrix switch comprising multiple input pins and multiple output pins, the input pins being routable to one or more output pins, the third matrix switch being configured to receive an uncompressed data stream from the first switch and a compressed data stream from the second switch and process the received data streams to provide a single compressed output data stream that represents a user-defined multi-media editing project; and

one or more data structures associated with at least some of the matrix switches and configured for use in programming the associated switches to provide a routing scheme for routing input pins to output pins (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 44, Tucker teaches a multi-media editing method comprising:

providing a switch assembly comprising one or more software-implemented matrix switches, individual matrix switches comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the switch assembly being configured to process both compressed and uncompressed data streams to provide a compressed output data stream that represents a user-defined multi-media editing project; and

programming the switch assembly using one or more data structures, said programming providing a routing scheme for routing input pins to output pins for a given time period (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 50, Tucker teaches the multi-media editing method of claim 44 further comprising: representing the editing project as a hierarchical tree structure; and processing the hierarchical tree structure to provide at least one grid structure containing data that defines an association between input pins, output pins and a time line defined by the editing project (see col. 9 lines 40-67).

As to claims 54 and 58, Tucker teaches the multi-media editing method of claims 51 and 57, wherein said defining of the second grid structure comprises deriving the second grid structure from the first grid structure (see col. 9 lines 40-67).

As to claim 55, Tucker teaches one or more computer-readable media having computer-readable instructions thereon which, when executed by a computer, implement the method of claim 44 (see col. 9 lines 40-67).

As to claim 56, Tucker teaches a multi-media editing application executable on one or more computers to implement the method of claim 44 (see col. 9 lines 40-67).

As to claim 57, Tucker teaches one or more computer-readable media having computer-readable instructions thereon which, when executed by a computer, cause the computer to:

provide a switch assembly comprising multiple software-implemented matrix switches, individual matrix switches comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the switch assembly comprising: a first switch configured to process uncompressed data streams to provide an uncompressed output data stream;

a second switch configured to process compressed data streams to provide a compressed output data stream; and

a third switch configured to receive both the uncompressed and compressed output data streams and process the data streams to provide a compressed output data stream that represents a user-defined multi-media editing project; and

program the switch assembly by defining a first grid structure containing data that defines an association between the first switch's input pins, at least one output pin and a time line defined by the editing project, and defining a second grid structure containing data that defines an association between the second switch's input pins, at least one output pin and the time line defined by the editing project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 59, Tucker teaches the computer-readable media of claim 58, wherein the instructions cause the computer to derive the second grid structure by: determining whether any entries in the second grid structure are associated with a data stream source that is not in a format that is the same as or

Art Unit: 2157

compatible with a format associated with the compressed output data stream that represents a user-defined multi-media editing project; and removing any entry that is not in the same or compatible format (see col. 7 lines 27-40 and col. 8 lines 36-55)

As to claim 60, Tucker teaches the computer-readable media of claim 59, wherein said format is associated with a frame rate (see col. 7 lines 27-40 and col. 8 lines 36-55).

As to claim 61, Tucker teaches the computer-readable media of claim 59, wherein said format is associated with a data rate (see col. 7 lines 27-40 and col. 8 lines 36-55).

As to claim 62, Tucker teaches the computer-readable media of claim 58, wherein the instructions cause the computer to derive the second grid structure by: copying the first grid structure; evaluating the copied grid structure to ascertain entries associated with data source streams that are modified in some way; and removing any grid entries associated with data source streams that are modified in some way (see col. 7 lines 27-40 and col. 8 lines 36-55).

As to claim 63, Tucker teaches a multi-media editing method comprising:
providing a first software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the first matrix switch being configured to

process one or more uncompressed data streams and output an uncompressed data stream;

providing a second software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins, the second matrix switch being configured to process one or more compressed data streams and output a compressed data stream;

providing a third software-implemented matrix switch comprising multiple input pins and multiple output pins, the input pins being routable to one or more output pins; receiving, with the third matrix switch, an uncompressed data stream from the first switch and a compressed data stream from the second switch; and processing the received data streams with the third switch to provide a single compressed output data stream that represents a user-defined multi-media editing project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 64, Tucker teaches the multi-media editing method of claim 63, wherein said processing comprises: compressing the uncompressed data stream received from the first switch using a software-implemented compressor element coupled with the third switch; and routing the compressed data stream that was compressed by the compressor element to an input pin of the third switch (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 65, Tucker teaches the multi-media editing method of claim 63 further comprising receiving with the third switch, when available, a data stream

Art Unit: 2157

from the second switch and, when a data stream is unavailable from the second switch, seeking with the third switch, a data stream from the first switch (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 66, Tucker teaches one or more computer-readable media having computer-readable instructions thereon which, when executed by a computer, implement the method of claim 63 (see col. 5 lines 23-47).

As to claim 67, Tucker teaches one or more computer-readable media having computer-readable instructions thereon which, when executed by a computer, cause the computer to:

process at least one compressed data stream to provide an output compressed data stream that comprises a portion of a user-defined multi-media editing project that is associated with a data stream source;

process one or more uncompressed data streams to manipulate the one or more uncompressed data streams to provide an output uncompressed data stream that comprises a different portion of a user-defined multi-media editing project that is associated with one or more data stream sources;

compress the output uncompressed data stream; and
associate the output compressed data stream and the compressed output uncompressed data stream together to provide a compressed stream that represents a user-defined multi-media editing project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 68, Tucker teaches the computer-readable media of claim 67, wherein the instructions cause the computer to provide a software-implemented matrix switch that associates the data streams to provide the user-defined multi-media editing project (see col. 5 lines 23-47).

As to claim 69, Tucker teaches the computer-readable media of claim 67, wherein the instructions cause the computer to provide a software-implemented matrix switch that associates the data streams to provide the user-defined multi-media editing project, the software-implemented matrix switch being configured to receive the output compressed data stream when it is available, and seek the output uncompressed data stream when the output compressed data stream is unavailable (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 70, Tucker teaches one or more computer-readable media having computer-readable instructions thereon which, when executed by a computer, cause the computer to:

receive and process one or more uncompressed data streams with a first software-implemented matrix switch comprising one or more input pins and one or more output pins, the one or more input pins being routable to the one or more output pins to output an uncompressed data stream;

receive and process one or more compressed data streams with a second software-implemented matrix switch comprising one or more input pins and one

or more output pins, the one or more input pins being routable to the one or more output pins to output a compressed data stream;

receive and process the uncompressed data stream that is output by the first switch and the compressed data stream that is output by the second switch with a third software-implemented matrix switch comprising multiple input pins individual ones of which receive data streams, and one or more output pins individual ones of which provide data streams, the one or more input pins being routable to the one or more output pins to output, at one output pin, a compressed data stream that represents a user-defined multi-media editing project (see col. 2 lines 18-45 and col. 5 lines 23-47).

As to claim 71 the computer-readable media of claim 70, wherein the instructions cause the computer to: compress the uncompressed data stream output by the first switch using the third switch; and incorporate the compressed uncompressed data stream with the compressed data stream that is output by the second switch to provide the compressed data stream that represents the user-defined editing project (see col. 5 lines 23-47).

As to claim 72, the computer-readable media of claim 70, wherein the instructions cause the computer to program the first and second switches using first and second data structures respectively associated with the first and second switches, each data structure providing a routing scheme for routing switch input pins to switch output pins (see col. 5 lines 23-47).

As to claim 73, the computer-readable media of claim 72, wherein the first and second data structures comprise grid structures that provide an association between input pins, output pins and a time line defined by a user-defined multi-media editing project (see col. 5 lines 23-47).

As to claim 74, the computer-readable media of claim 73, wherein the instructions cause the computer to derive the second grid structure from the first grid structure (see col. 5 lines 23-47).

As to claim 75, the computer-readable media of claim 74, wherein the instructions cause the computer to derive the second grid structure by: copying the first grid structure; evaluating the copied grid structure to ascertain entries associated with data source streams that are modified in some way; and removing any grid entries associated with data source streams that are modified in some way (see col. 5 lines 23-47).

3. Applicant's arguments filed have been fully considered but they are not persuasive.

In the remarks, the applicant argues in substance that; A) Tucker does not disclose an editing system for representing a user defined editing project.

In response to A) Tucker discloses a conferencing system that compresses and decompresses video and audio streams received and sent by the user (see abstract). The user establishes a communication call with other users on the network. The user also generates video and audio streams to be transmitted over the network. The user also receives and decodes video and

Art Unit: 2157

audio streams sent by users on the network in response to the call establishment between the two users of the network (see col. 5 lines 40-47 and lines 57-col. 6 lines 8). There is no limitation in the claim on how the methods in which the user edits the compressed and uncompressed stream i.e. automatically according to a user profile or manually through a user selection and therefore the generation of audio and video streams in response to call establishment by the user taught by Tucker meets the scope of the claimed limitation "both compressed and uncompressed data streams to provide a compressed output data stream that represents a user-defined editing project".

4. THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

5. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Hussein A El-chanti whose telephone number is (571)272-3999. The examiner can normally be reached on Mon-Fri 8:30-5:00.

Art Unit: 2157

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ario Etienne can be reached on (571)272-4001. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Hussein El-chanti

Jan. 12, 2005

Ario Etienne
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100