Vertex of the Quadratic

Given a quadratic $k(z) = a z^2 + b z + c$ compute its value at $z_1 = -\frac{b}{2a}$ namely $k(z_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at
$$z_1 + h$$
, namely $k(z_1 + h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = k(z_1 + h) - k(z_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $k(z) = 2z^2 + 8z - 46$

Example 2.

However if $rac{f a < f 0}$ then riangle < f 0 or vertex is the global maximum!

