Теорема Фубини

Теорема 1. (Фубини) Пусть $I = I_x \times I_y$, $I_x \subset \mathbb{R}^n$, $I_y \subset \mathbb{R}^m$ - замкнутые бруски (в том числе I тоже замкнутый брусок). Пусть f интегрируема по Риману на I и $\forall x \in I_x$ функция $y \mapsto f(x,y)$ интегрируема на бруске I_y , тогда функция: $x \mapsto \int_{I_y} f(x,y) dy$ интегрируема на I_x и верно равенство:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_x} \left(\int\limits_{\mathbf{I}_y} f(x,y)dy \right) dx$$

Если $\forall y \in I_y$ функция $x \mapsto f(x,y)$ интегрируема на бруске I_x , тогда функция: $y \mapsto \int_{I_x} f(x,y) dx$ интегрируема на I_y и верно равенство:

$$\iint_{\mathbf{I}} f(x,y)dxdy = \int_{\mathbf{I}_{u}} \left(\int_{\mathbf{I}_{x}} f(x,y)dx \right) dy$$

В прошлый раз мы доказали эту теорему и как уже говорили, условие интегрируемости было крайне важным в этой теореме.

Напоминание доказательства теоремы Фубини

Мы проделали следующие шаги:

1) Построили функции $h_n(x,y)$ - неубывающая, $g_n(x,y)$ - невозрастающая такие, что:

$$h_n(x,y) \le f(x,y) \le g_n(x,y), \int_{\mathbf{I}} h_n(x,y) - g_n(x,y) dx dy \to 0$$

$$\int_{\mathbf{I}} h_n(x,y)dxdy \to \int_{\mathbf{I}} f(x,y)dxdy, \quad \int_{\mathbf{I}} g_n(x,y)dxdy \to \int_{\mathbf{I}} f(x,y)dxdy$$

2) Проинтегрировали эти ступенчатые функции и снова получили ступенчатые функции:

$$H_n(x) = \int_{\mathbf{I}_y} h_n(x, y) dy, \quad G_n(x) = \int_{\mathbf{I}_y} g_n(x, y) dy,$$

$$H_n(x) \le \int_{\mathcal{I}_y} f(x, y) dy \le G_n(x)$$

3) Поняли, что $H_n(x)$ - неубывающая, $G_n(x)$ - невозрастающая. А поскольку для индикатора бруска, а следовательно и для ступенчатой функции теорема выполнена, то верно:

$$\int_{\mathbf{I}_x} H_n(x) dx = \iint_{\mathbf{I}} h_n(x, y) dx dy \to \iint_{\mathbf{I}} f(x, y) dx dy \leftarrow \iint_{\mathbf{I}} g_n(x, y) dx dy = \int_{\mathbf{I}_x} G_n(x) dx$$

Далее критерий интегрируемости даёт нам интегрируемость $\int_{\mathbf{I}_y} f(x,y) dy$ как функции x по x и требуемое равенство;

Обобщение теоремы Фубини для интеграла Римана

Вопрос, а что делать если интеграл не существует. Пусть теперь нет условия, что $\exists \int_{\mathbf{I}_y} f(x,y) dy$. Введём следующую функцию:

 $F(x) = \begin{cases} \int_{\mathbf{I}_y} f(x,y) dy, & \text{интеграл существует} \\ A, & \text{интеграл не существует} \end{cases}$

Что нам необходимо добавить? Мы хотим, чтобы также выполнялось:

$$H_n(x) \le F(x) \le G_n(x)$$

Тогда мы сразу же получаем, что:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_x} F(x)dx$$

Нам необходимо доопределить F(x) так, чтобы всё время выполнялись неравенства выше, для всех n. Подойдет следующее число A:

$$A \in \left[\sup_{n} H_n(x), \inf_{n} G_n(x)\right]$$

где начало и конец отрезка понимаем как пределы. Пределы $H_n(x)$ и $G_n(x)$ всегда существуют, поскольку это ограниченные, монотонные последовательности. В том случае когда интеграл существует, то точная верхняя грань $H_n(x)$ и точная нижняя грань $G_n(x)$ совпадут:

$$\lim_{I_n} \int (h_n(x,y) - g_n(x,y)) dy \xrightarrow[n \to \infty]{} 0$$

Но это означает, что интеграл по f существует (по критерию интегрируемости). Следовательно, можно было бы заменить последним условием про A всю функцию.

Rm: 1. Теорема Фубини верна, если отменить условие интегрируемости $y \mapsto f(x,y)$ (аналогично для $x \mapsto f(x,y)$) и заменить $\int_{\mathbf{I}_y} f(x,y) dy$ на F(x) (или заменить $\int_{\mathbf{I}_x} f(x,y) dx$ на F(y)). Тем не менее, плата за такую замену - большая, вместо повторного интеграла мы получаем:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_{x}} F(x)dx$$

И на каждом сечении нам потребуется проверять интегрируемость.

Возникает вопрос, а как много таких точек, в которых потребуется доопределение? Для начала вспомним определение из второго семестра.

Опр: 1. Множество $E \subset \mathbb{R}$ называется множеством меры ноль по Лебегу, если: $\forall \varepsilon > 0$, \exists не более чем счетный набор интервалов $\{I_n\}$ таких, что:

- (1) Множество E покрыто этими интервалами: $E \subset \bigcup_n \mathbf{I}_n$;
- (2) Сумма длин этих интервалов меньше ε : $\sum_{n} |\mathbf{I}_{n}| < \varepsilon$;

Опр: 2. Если некоторое свойство имеет место для всех точек, кроме множества меры ноль, то говорят, что это свойство выполняется почти всюду.

Rm: 2. Заметим, что далее мы это ещё обсудим, но в общем случае, вместо отрезков будут бруски.

Утв. 1. Множество x: $\nexists \int_{\mathbf{I}_y} f(x,y) dy$ имеет меру нуль по Лебегу.

- □ Рассмотрим следующие функции:
 - 1) F^+ , доопределив её в "плохих" точках значениями $\inf_{x} G_n(x)$;
 - 2) F^- , доопределив её в "плохих" точках значениями $\sup_{x} H_n(x)$;

Тогда очевидно, что: $F^-(x) \le F^+(x)$ и по замечанию к теореме Фубини выше будет верно:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_x} F^+(x)dx = \int\limits_{\mathbf{I}_x} F^-(x)dx \Rightarrow$$

$$\Rightarrow \int_{\Gamma_x} \underbrace{(F^+(x) - F^-(x))}_{>0} dx = 0 \Rightarrow F^+(x) - F^-(x) = 0$$
 почти всюду

где последнее верно по аналогии со следствием 4 лекции 25 семестра 2.

Rm: 3. Далее мы приведём более строгое доказательство для брусков вместо отрезков.

Вывод: Теорема Фубини хороша в первоначальной формулировке, но если мы всё же не хотим требовать, чтобы на сечениях существовал интеграл, то смысл будет такой: если f интегрируема на I, то существует интегрируемая на I_x функция, которая почти всюду совпадает с интегралом $\int_{I_y} f(x,y) dy$ (и который тем самым объявляется существующим) и верно равенство:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_x} \left(\int\limits_{\mathbf{I}_y} f(x,y)dy \right) dx$$

Утв. 2. Пусть $I = I_x \times I_y$ и $f \in C(I)$, тогда $\exists \int_{I_x} f(x,y) dx$, $\int_{I_y} f(x,y) dy$ и функция $x \mapsto \int_{I_y} f(x,y) dy$ непрерывна на I_x , функция $y \mapsto \int_{I_x} f(x,y) dx$ непрерывна на I_y .

 \square Функция непрерывна на $I\Rightarrow$ она непрерывна по каждой переменной \Rightarrow все интегралы существуют. Рассмотрим функцию: $x\mapsto \int_{I_y}f(x,y)dy$, пусть $x_n\to x_0$, тогда из-за равномерной непрерывности f на I (замкнутый брус это компакт $\Rightarrow f$ - равномерно непрерывна) мы получаем:

$$f(x_n, y) \stackrel{\mathrm{I}_y}{\underset{n \to \infty}{\Longrightarrow}} f(x_0, y)$$

Тогда по теореме о равномерном пределе под интегралом, мы получаем:

$$\int_{\mathrm{I}_y} f(x_n, y) dy \xrightarrow[n \to \infty]{} \int_{\mathrm{I}_y} f(x_0, y) dy$$

Аналогично для функции: $y \mapsto \int_{\mathbf{I}_x} f(x,y) dx$.

Следствие 1. Пусть $I = [a_1, b_1] \times ... \times [a_n, b_n], f \in C(I)$. Тогда для любой перестановки $(i_1, i_2, ..., i_n)$ чисел (1, 2, ..., n) верно равенство:

$$\int_{I} f(x)dx = \int_{a_{i_1}}^{b_{i_1}} \left(\int_{a_{i_2}}^{b_{i_2}} \left(\dots \left(\int_{a_{i_n}}^{b_{i_n}} f(x) dx_{i_n} \right) \dots \right) dx_{i_2} \right) dx_{i_1}$$

Rm: 4. Без непрерывности придется каждый раз доопределять функцию по аналогии с доопределением теоремы Фубини.

 \square Рассмотрим тождественную перестановку: $i_1=1, i_2=2,\ldots,i_n=n$. По индукции докажем, что:

$$\int_{\mathbf{I}} f(x)dx = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \left(\dots \left(\int_{a_n}^{b_n} f(x)dx_n \right) \dots \right) dx_2 \right) dx_1$$

База индукции: Для n=1 - очевидно, для n=2 - теорема Фубини:

$$\int_{a_1}^{b_1} f(x)dx_1 = \int_{a_1}^{b_1} f(x)dx_1, \int_{\mathbf{I}} f(x)dx_1dx_2 = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} f(x)dx_2\right)dx_1$$

<u>Шаг индукции</u>: Пусть верно для $\leq n-1$. Пусть: $I=[a_1,b_1]\times I_{n-1},\ I_{n-1}=[a_2,b_2]\times\ldots\times [a_n,b_n],$ тогда из непрерывности функции f на I и по теореме Фубини будет верно:

$$\int_{I} f(x)dx = \int_{a_{1}}^{b_{1}} \left(\int_{I_{n-1}} f(x_{1}, x_{2}, \dots, x_{n}) dx_{2} dx_{3} \dots dx_{n} \right) dx_{1}$$

Расписываем внутренний интеграл по индукции и получаем требуемое. Для произвольной перестановки необходимо уметь делать транспозицию. Пусть утверждение верно для какого-либо порядка:

$$\int_{\mathbf{I}} f(x)dx = \int_{a_{i_1}} \left(\int_{a_{i_2}}^{b_{i_2}} \left(\dots \left(\int_{a_{i_n}}^{b_{i_n}} f(x)dx_{i_n} \right) \dots \right) dx_{i_2} \right) dx_{i_1}$$

Достаточно уметь делать транспозицию соседних интегралов: рассмотрим i_k и i_{k+1} :

$$\int\limits_{a_{i_k}}^{b_{i_k}} \left(\int\limits_{a_{i_{k+1}}}^{b_{i_{k+1}}} F(x) dx_{i_{k+1}} \right) dx_{i_k} = \int\limits_{\mathbf{I}_{i_k} \times \mathbf{I}_{i_{k+1}}} F(x) dx_{i_k} dx_{i_{k+1}} = \int\limits_{a_{i_{k+1}}}^{b_{i_{k+1}}} \left(\int\limits_{a_{i_k}}^{b_{i_k}} F(x) dx_{i_k} \right) dx_{i_{k+1}}$$

где F это интеграл от f по некоторому бруску $\Rightarrow F$ это непрерывная функция \Rightarrow интегрируемая на прямоугольнике: $I_{i_k} \times I_{i_{k+1}} = [a_{i_k}, b_{i_k}] \times [a_{i_{k+1}}, b_{i_{k+1}}] \Rightarrow$ можем поменять порядок по теореме Фубини.

Формула интегрирования по частям

Теорема 2. (Формула интегрирования по частям) Пусть $f, g \in C^1(I)$ и f = 0 на границе I (на гранях), тогда для всякого k верно равенство:

$$\int\limits_{\mathbf{I}} f(x) \cdot \frac{\partial g}{\partial x_k}(x) dx = -\int\limits_{\mathbf{I}} g(x) \cdot \frac{\partial f}{\partial x_k}(x) dx$$

Rm: 5. Заметим, что здесь нет внеинтегрального члена, поскольку f = 0. Когда $f \neq 0$, то лучше это обсуждать в теме поверхностного интегрирования.

 \square Пусть $\mathbf{I} = [a_1, b_1] \times \ldots \times [a_n, b_n]$, тогда:

$$\int_{\mathbf{I}} f(x) \cdot \frac{\partial g}{\partial x_k}(x) dx = \int_{\underbrace{a_1}}^{b_1} \dots \left(\int_{a_k}^{b_k} f(x) \frac{\partial g}{\partial x_k} dx_k \right) \dots dx_1$$

Поскольку все x_i фиксированы, кроме x_k , то применим формулу интегрирования по частям к внутреннему интегралу, с учетом того, что f(x) = 0 на гранях I:

$$\int_{a_k}^{b_k} f(x) \cdot \frac{\partial g}{\partial x_k}(x) dx_k = f(x) \cdot g(x) \Big|_{x_k = a_k}^{b_k} - \int_{a_k}^{b_k} \frac{\partial f}{\partial x_k}(x) \cdot g(x) dx_k = - \int_{a_k}^{b_k} \frac{\partial f}{\partial x_k}(x) \cdot g(x) dx_k \Rightarrow$$

$$\Rightarrow \int_{a_1}^{b_1} \dots \left(\int_{a_k}^{b_k} f(x) \frac{\partial g}{\partial x_k} dx_k \right) \dots dx_1 = -\int_{a_1}^{b_1} \dots \left(\int_{a_k}^{b_k} \frac{\partial f}{\partial x_k} (x) \cdot g(x) dx_k \right) \dots dx_1 = -\int_{\mathbf{I}} g(x) \cdot \frac{\partial f}{\partial x_k} (x) dx$$

где в последнем равенстве мы опять воспользовались теоремой Φ убини в силу непрерывности f на I.

Следствие 2. Пусть $f,g\in C^m({\rm I}),\, f,f^{(1)},\dots,f^{(m-1)}=0$ на границе I, тогда $\forall (i_1,\dots,i_m)$:

$$\int_{\mathbf{T}} f(x) \cdot \frac{\partial^m g}{\partial x_{i_1} \dots \partial x_{i_m}} (x) dx = (-1)^m \cdot \int_{\mathbf{T}} \frac{\partial^m f(x)}{\partial x_{i_1} \dots \partial x_{i_m}} \cdot g(x) dx$$

□ Доказывается по индукции с применением формулы интегрирования по частям.

Rm: 6. Отметим, что писать так: $\int_{\mathbf{I}} f(\overrightarrow{x}) d\overrightarrow{x}$ - некорректно, правда раньше так писали. Сейчас запись преимущественно имеет вид: $\int_{\mathbf{I}} f(x) dx$ или $\int_{\mathbf{I}} f$, но последняя запись очень плоха для геометрии, так как надо писать дифференциальную форму по которой идёт интегрирование.

Также заметим, что сейчас мы под dx понимаем: $dx_1 \cdot \ldots \cdot dx_n$, но далее мы будем воспринимать dx как слитный символ, где dx_1, \ldots, dx_n не разделены. Они распадутся в отдельные интегралы по x_1, \ldots, x_n , когда будет применена теорема Фубини. Таким образом, можно dx воспринимать как элемент объема. Символ dx не будет произведением: dx_1, \ldots, dx_n , поскольку тела не обязана иметь вид бруска, например, у шара это уже никакое не произведение - оно произведение в смысле теоремы Фубини.

Критерий Лебега

Ранее мы вывели критерий интегрируемости и из него вывели теорему Фубини и её следствия. Критерий подразумевает, что мы легко умеем строить ступенчатые функции и нам очевидно, стремятся интегралы от них к одному и тому же или нет. Делать это не очень удобно и более того совершать проверки для произвольных функций даже на 3-хмерных брусках достаточно сложно. Таким образом, хотелось бы какой-нибудь простой критерий. Для одномерных случаев таким был критерий Лебега.

Множество меры нуль по Лебегу

Опр: 3. Множество $E \subset \mathbb{R}^n$ называется множеством меры нуль по Лебегу, если: $\forall \varepsilon > 0, \exists$ не более чем счетный набор замкнутых брусков $\{I_k\}$ такой, что:

- 1) $E \subset \bigcup_k I_k$;
- 2) $\sum_{k} |I_k| < \varepsilon$;

Примеры:

- 1) Точка множество меры нуль по Лебегу;
- 2) Конечный набор точек множество меры нуль по Лебегу;

Утв. 3. В определении множества меры нуль по Лебегу замкнутые брусы: $[a_1, b_1] \times \ldots \times [a_n, b_n]$ можно заменить на открытые: $(a_1, b_1) \times \ldots \times (a_n, b_n)$.

 (\Leftarrow) Если E покрыли открытыми J_k : $\sum_k |J_k| < \varepsilon$, то E покрыто замкнутыми брусками: \overline{J}_k , $|J_k| = |\overline{J}_k|$:

$$E \subset \bigcup_{k} J_{k} \subseteq \bigcup_{k} \overline{J}_{k}, \sum_{k} |J_{k}| = \sum_{k} |\overline{J}_{k}| < \varepsilon$$

(⇒) Если E покрыли замкнутыми I_k : $\sum_k |I_k| < \varepsilon$, то:

$$I_k = [a_1^k, b_1^k] \times \ldots \times [a_n^k, b_n^k] \subset J_k = (\alpha_1^k, \beta_1^k) \times \ldots \times (\alpha_n^k, \beta_n^k), \quad \beta_i^k - \alpha_i^k = 3(b_i^k - a_i^k) \Rightarrow$$
$$\Rightarrow |J_k| = 3^n \cdot |I_k| \Rightarrow \sum_k |J_k| < 3^n \varepsilon$$

Так как ε - произвольное, то умеем покрывать открытыми $\forall \varepsilon > 0$.

Следствие 3. Пусть $I = [a_1, b_1] \times ... \times [a_n, b_n]$, причём верно: $\forall k, b_k - a_k > 0$. Тогда I не является множеством меры нуль.

□ Предположим противное, пусть:

$$0 - открытые, $\sum_k|{
m J}_k|$$$

Поскольку I это компакт, то можно считать, что:

$$I \subset \bigcup_{k=1}^{N} J_k \Rightarrow |I| \le \sum_{k=1}^{N} |J_k| < \varepsilon$$

Получили противоречие.

Утв. 4. Пусть I - замкнутый брус в \mathbb{R}^n и $f \in C(I)$, тогда $\Gamma_f = \{(x,y) \mid y = f(x), x \in I\}$ - график функции f является множеством меры нуль по Лебегу в \mathbb{R}^{n+1} .

 \square Поскольку $f \in C(I)$, то f - равномерно непрерывна на I, тогда разбиваем I на бруски $\{I_k\}$ так, чтобы:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0: \ \operatorname{diam}(I_k) < \delta \Rightarrow \forall x, \widetilde{x} \in I_k, \ |f(x) - f(\widetilde{x})| < \varepsilon$$

Последнее верно, поскольку мы берём разбиение, диаметр которого меньше δ . Следовательно:

$$\forall k, \exists [\alpha_k, \beta_k] \colon \beta_k - \alpha_k = 2\varepsilon, \{(x, f(x)) \mid x \in I_k\} \subset I_k \times [\alpha_k, \beta_k] = J_k \Rightarrow |J_k| = |I_k| \cdot 2\varepsilon \Rightarrow I_k \Rightarrow$$

$$\Rightarrow \Gamma_f \subset \bigcup_k J_k, \ \sum_k |J_k| = 2\varepsilon \cdot \sum_k |I_k| = 2\varepsilon \cdot |I|$$

В силу произвольности ε мы получаем требуемое.

Rm: 7. Полезно иметь в виду, что графики всех разумных функций являются множеством меры ноль и это в определенном смысле из продвинутой теоремы Фубини. Но мы пока не можем это доказать нашими средствами.

Rm: 8. Тем самым любые плоскости, гиперплоскости это множество меры нуль в пространстве большей размерности. Или всё что мы нарисуем меньшей размерности (в условиях теоремы), чем размерность пространства, будет множеством меры нуль.

Свойства множеств меры нуль

Утв. 5. (Свойства множеств меры нуль)

- 1) Если D множество меры нуль по Лебегу и $E \subset D$, то E множество меры нуль;
- 2) Если $\{E_n\}$ не более чем счётный набор множеств меры нуль, то $\bigcup_n E_n$ множество меры нуль;
- 1) Очевидно, поскольку накрыли $D \Rightarrow$ накрыли и $E \subset D$ так, что сумма объемов $< \varepsilon$;
- 2) Возьмем произвольный $\varepsilon>0$, накроем E_n брусками: $E_m\subset\bigcup_k {\rm I}_k^m\colon \sum_k |{\rm I}_k^m|<\frac{\varepsilon}{2^m}$. Тогда:

$$\bigcup_{m} E_{m} \subset \bigcup_{k,m} I_{k}^{m}, \quad \sum_{k,m} |I_{k}^{m}| < \varepsilon \cdot \sum_{m} \frac{1}{2^{m}} < \varepsilon$$

Опр: 4. Если некоторое свойства выполняется для всех точек x, кроме точек множества меры нуль, то говорят, что это свойство выполняется почти всюду.

Утв. 6. Если f интегрируема на I и f=0 почти всюду, тогда верно:

$$\int_{\mathbf{I}} f(x)dx = 0$$

 \square Пусть $\{I_i\}$ это разбиение І. По условию, поскольку f интегрируема, то:

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i} f(\xi_{i}) \cdot |\mathbf{I}_{i}| \xrightarrow{\lambda(\mathbb{T}) \to 0} \int_{\mathbf{I}} f(x) dx$$

Множество I_i - не множество меры нуль $\Rightarrow \exists \xi \in I_i \colon f(\xi) = 0$, но поскольку Риманова сумма не зависит от выбора ξ_i , то мы получим:

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i} 0 \cdot |\mathcal{I}_{i}| = 0 \xrightarrow{\lambda(\mathbb{T}) \to 0} 0 \Rightarrow \int_{\mathcal{I}} f(x) dx = 0$$

Критерий Лебега

Теорема 3. (**Критерий Лебега**) f интегрируема по Риману на $I \Leftrightarrow f$ - ограничена и f - непрерывна почти всюду на I.