Open Optical Networks - The Fiber

Exercise 1

Instantiate and use a Fiber span.

- 1. download from the web portal the following files:
 - \bullet eqpt.json
 - default_edfa_config.json
 - utilities.py
- 2. create a json file with the parameters of your Fiber. This json file has the following parameters:
 - "uid": a string used as unique identifier. You can use the name you want.
 - "params": a structure containing the following parameters:
 - "length": 80 km (length of the fiber)
 - "loss_coef": 0.2 dB/km (attenuation coefficient)
 - "length_units": "km" (this parameter automatically scales the length and the loss coefficient)
 - "att_in": 0 dB (attenuation before the fiber)
 - "con_in": 0.5 dB (loss of the connector at the input of the fiber)
 - "con_out": 0.5 dB (loss of the connector at the output of the fiber)
 - "type_variety": "SSMF"
 - "dispersion": $1.67e-05 \text{ s/}m^2$ (dispersion coefficient)
 - 'gamma': 0.00127 W/m (non-linear coefficient)
- 3. Instantiate the fiber from the JSON file.

Hint: use the kwargs to pass the dictionary to the constructor function. To pass a dictionary as kwargs to a function do as follows: output = function(dictionary_with_input_parameters)

- 4. instantiate a noiseless WDM comb according to the parameters described in eqpt.json file
- 5. propagate the WDM comb through the Fiber.

 Hint: As Fiber has the method __call__(self, spectral_info), an object Fiber can be used as function. So, the command fiber(spectral_information) will return the spectral information propagated through the fiber.
- 6. plot the signal before and after the propagation and the NLI noise power after the propagation.
- 7. plot the signal-to-NLI noise ratio (the SNR_{NL}) after the Fiber.

Exercise 2

Fiber and Amplifier cascade

- 1. instantiate a fiber as described in the previous exercise and an EDFA with the parameters described in the exercise # 1 of the previous set but with an amplifier gain=17 dB.
- 2. instantiate the spectral information as well.
- 3. propagate the spectral information through the fiber and then trhough the EDFA.
- 4. plot the Signal power, NLI power and ASE power before and after each network element.
- 5. plot the GSNR, SNR_{NL} and OSNR after the EDFA and after the Fiber.