Problem Set 2 Advanced Macroeconomics II WISE, Xiamen University

March 12, 2014

The due date for this assignment is Wednesday, March 19, before the class starts at 2:30pm. You can form a group of up to three persons.

Solving a model with stochastic labor supply.

Consider the following model, where a representative household solves

$$\max_{c_t, k_t, n_t} E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left(\ln c_t - m_t n_t \right) \right\}$$
 (1)

s.t.

$$c_t + k_t = Ae^{z_t} k_{t-1}^{\theta} n_t^{1-\theta} + (1-\delta)k_{t-1}$$
(2)

and

$$y_t = Ae^{z_t} k_{t-1}^{\theta} n_t^{1-\theta} \tag{3}$$

$$R_t = \theta \frac{y_t}{k_{t-1}} + 1 - \delta \tag{4}$$

$$\ln m_t = (1 - \rho) \ln \bar{m} + \rho \ln m_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2) \quad 0 \le \rho < 1$$
 (5)

$$z_t = \phi z_{t-1} + v_t, \quad v_t \sim N(0, \sigma_v^2) \quad 0 \le \phi < 1$$
 (6)

where c_t , n_t , k_t denote consumption, labor and capital. m_t is a stochastic process for "labor preference". $A, \theta, \beta, \delta, \rho$ and ϕ are parameters with $0 < \beta < 1, 0 < \theta < 1, |\rho| < 1, |\phi| < 1$ and \bar{m} is the steady state value of m_t .

- 1. Describe the economy briefly. Comment on the preference, endowment, technology, and information.
- 2. If m_t rises, what happens to the marginal utility or disutility?
- 3. Find the first order necessary conditions (FONCs) of the representative agent for c_t, k_t , and n_t .
- 4. Write down the model in eight equations, including FONCs, budget constraint, output, interest rate, and processes defining shocks.
- 5. Solve for the steady states, i.e. provide formulas for \bar{c} , $\bar{\lambda}$, \bar{k} , \bar{n} , \bar{R} and \bar{y} , given \bar{m} and other parameters. (Show the steps that you solve these values subsequently, if you cannot get that far, it would be useful to derive $\frac{\bar{y}}{\bar{k}}$, $\frac{\bar{c}}{\bar{k}}$, and $\frac{\bar{n}}{\bar{k}}$)
- 6. Log-linearize the eight equations. Define $\tilde{x}_t \equiv \log(x_t/\bar{x})$. Write down all necessary log-linearized equations characterizing the equilibrium in the notation of log-deviation term \tilde{x}_t . (Note: z_t is already in the deviation term for technology factor in the sense of $z_t = \log((Ae^{z_t})/(Ae^0)$.)

7. Classify the exogenous state as z_t and \hat{m}_t , endogenous state as \tilde{k}_t and the rest as other endogenous variables. Find algebraic manipulations such that you are left with four equations for the four variables \tilde{k}_t , $\hat{\lambda}_t$, z_t and \hat{m}_t .

$$0 = -\tilde{k}_t + \alpha_1 \tilde{k}_{t-1} + \alpha_2 \tilde{\lambda}_t + \alpha_3 \hat{m}_t + \alpha_7 z_t$$

$$0 = E_t \left[-\tilde{\lambda}_t + \alpha_4 \tilde{k}_t + \alpha_5 \tilde{\lambda}_{t+1} + \alpha_6 \hat{m}_{t+1} + \alpha_8 \tilde{z}_{t+1} \right]$$

$$\tilde{z}_t = ?$$

$$\hat{m}_t = ?$$

$$(7a)$$

what are $a_1, a_2, ...,$ till α_8 in terms of the original parameters?

- 8. Given the following parameter values: $\phi = 0.9$, $\beta = 0.99$, $\rho = 0.96$, $\theta = 0.4$, $\delta = 0.025$, $\bar{m} = 3.5$, A = 0.3, calculate steady state values and a_1 to a_8 Assume that your model parameters are calibrated from quarterly data.
- 9. For questions 9 11, focus on the shocks of labor preference, so you can ignore the part of technology shock. Guess the recursive law of motion of the above system as:

$$\tilde{\lambda}_{t} = \eta_{\lambda k} \tilde{k}_{t-1} + \eta_{\lambda m} \hat{m}_{t}
\tilde{k}_{t} = \eta_{kk} \tilde{k}_{t-1} + \eta_{km} \hat{m}_{t}$$

and exploit $E_t [\hat{m}_{t+1}] = \rho \hat{m}_t$.

- 10. By comparing the coefficients on \tilde{k}_{t-1} , you can get a characteristic quadratic equation η_{kk} as $a\eta_{kk}^2 + b\eta_{kk} + c = 0$, where a, b, and c are determined by a_1 to a_6 . By solving this equation, what are the roots you get? Which root should you choose and why? Use the corresponding η_{kk} to calculate $\eta_{\lambda k}$.
- 11. By comparing the coefficients on \hat{m}_t , solve for η_{km} and $\eta_{\lambda m}$.
- 12. Now use the Toolkit.4.1 to solve the model. Classify the 8 equations you obtain from Step 6 into the three blocks of equations, what are the endogenous state variables, endogenous other variables are exogenous variables?
- 13. Assume a one time shock to \hat{m}_0 , plot the impulse responses of $\hat{m}_t, \hat{c}_t, \hat{k}_t, \hat{n}_t$ and \hat{y}_t .
- 14. Interpret the results of the previous exercise. Do the results fit the interpretation of the "labor preference shifter" you gave in the second question? Explain briefly.
- 15. Assume a one time shock to z_0 , plot the impulse responses of z_t , \hat{c}_t , \hat{k}_t , \hat{n}_t and \hat{y}_t .