

Compte Rendu

Réalisé par :

Intissar SIDAOUI

3 DNI / G2

Exercice °1

1. Consider the training examples shown in Table 3.5 for a binary classification problem.

Customer ID	Condon	Con True	Chint Cine	Class
Customer ID	Gender	Car Type	Shirt Size	
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	\mathbf{F}	Luxury	Medium	C1
20	F	Luxury	Large	C1

⇒ J'ai résumée tout le travail dans ce tableau

⇒ Les démonstrations sont au-dessous.

	Gini index	Gini Totale
Overall collection	0.5	
Customer ID	0	0
Gender	Gini(M)=0.48 Gini(F)=0.48	0.48
Car Type	Gini(Family)= 0.375 Gini(Sport) = 0 Gini(Luxury) = 0.218	0.1622
Shirt Size	Gini(Small) = 0.48 Gini(Medium) = 0.489 Gini(Large) = =0.5 Gini(Extra Large) =0.5	0.4911

	Gender	Car Type	Shirt Size
Gain	0.02	0.3378	0.0089

On a:

Les Class totale = 20

$$C0 = \frac{10}{20} = \frac{1}{2}$$

Et

$$C1 = \frac{10}{20} = \frac{1}{2}$$

Alors,

On a:

Gini=
$$1 - P(c0)^2 - (Pc1)^2$$

a. Compute the Gini index for the overall collection of training examples.

Gini= 1 - P(c0) ^2 - (Pc1) ^2
= 1 -
$$\left(\frac{1}{2}\right)^2$$
 - $\left(\frac{1}{2}\right)^2$
= 1 - $\frac{1}{2}$
= $\frac{1}{2}$

b. Compute the Gini index for the 'Customer ID' attribute.

Dans la class C0

Les Customer ID {1,2,3,4,5,6,7,8,9,10}, chacun entre eux prend comme probabilité 1 en C0 et 0 en C1

Donc,

Gini=
$$1 - P(c0)^2 - (Pc1)^2$$

= $1 - 1 - 0$
= 0

Dans la class C1

Les Customer ID {11,12,13,14,15,16,17,18,19,20}, chacun entre eux prend comme probabilité 1 en C1 et 0 en C0

Donc,

Gini=
$$1 - P(c0)^2 - (Pc1)^2$$

= $1 - 0 - 1$
= 0

⇒ La somme des probabilités est égale à 0

Gini=0

c. Compute the Gini index for the Gender attribute.

Pour les 10 class de C0, on a :

6 Masculins

4 féminins

D'où

$$M = \frac{6}{10}$$

$$F = \frac{4}{10}$$

Donc,

Gini (M)=
$$1 - \left(\frac{4}{10}\right)^2 - \left(\frac{6}{10}\right)^2$$

= $1 - \frac{16}{100} - \frac{36}{100}$
= $1 - \frac{52}{100}$
= $\frac{48}{100} = 0.48$

Gini (F) =
$$1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2$$

= $1 - \frac{52}{100}$
= $\frac{48}{100} = 0.48$

$$\Rightarrow \text{ Gini total} = \frac{10}{20} * Gini(M) + \frac{10}{20} * Gini(F) = \frac{10}{20} * 0.48 + \frac{10}{20} * 0.48 = 0.48$$

d. Compute the Gini index for the Car Type attribute using multiway split.

Pour tous les 20 classes, on a :

- 4 Family
- 8 Sport
- 8 Luxury

Pour le class C0, on a :

- 1 family \rightarrow P(Family) = $\frac{1}{4}$
- 8 Sport \rightarrow P(Sport) = 1
- 1 Luxury \rightarrow P(Luxury) = $\frac{1}{8}$

Pour le class C1, on a :

- 3 Family → P(Family) = $\frac{3}{4}$
- 0 Sport → P(Sport) = 0
- 7 Luxury \rightarrow P(Luxury) = $\frac{7}{8}$

Gini(Family)= 1-
$$\left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 = 0.375$$

Gini(Sport) =
$$1 - 1 - 0 = 0$$

Gini(Luxury) =
$$1 - \left(\frac{1}{8}\right)^2 - \left(\frac{7}{8}\right)^2 = 0.218$$

$$\Rightarrow \text{ Gini Total} = \frac{4}{20} * Gini(Family) + \frac{8}{20} * Gini(Sport) + \frac{8}{20} *$$

$$Gini(Luxury) = \frac{4}{20} * 0.375 + \frac{8}{20} * 0 + \frac{7}{8} * 0.218 = 0.1622$$

- e. Compute the Gini index for the Shirt Size attribute using multiway split.
- 5 Small
- 7 Medium
- 4 Large
- 4 Extra Large

Pour C0:

$$P(Small) = \frac{3}{5}$$

$$P(Medium) = \frac{3}{7}$$

$$P(Large) = \frac{2}{4}$$

$$P(Extra Large) = \frac{2}{4}$$

Pour C1:

$$P(Small) = \frac{2}{5}$$

$$P(Medium) = \frac{4}{7}$$

$$P(Large) = \frac{2}{4}$$

P(Extra Large) =
$$\frac{2}{4}$$

 \Rightarrow

Gini(Small) =
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Gini(Medium) =
$$1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 = 0.489$$

Gini(Large) =
$$1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 = 0.5$$

Gini(Extra Large) =
$$1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 = 0.5$$

$$\Rightarrow \text{ Gini Totale} = \left(\left(\frac{5}{20} * 0.48 \right) + \left(\frac{7}{20} * 0.489 \right) + \left(\frac{4}{20} * 0.5 \right) + \left(\frac{4}{20} * 0.5 \right) \right) = 0.4911$$

f. Which attribute is better, Gender, Car Type, or Shirt Size?

The Gini index for the overall collection = 0.5

The Gini index for the Gender = 0.48

The Gini index for the Car Type =0.1622

The Gini index for the Shirt Size =0.491

$$Gain(Gender) = 0.5 - 0.48 = 0.02$$

Gain (Car Type) =
$$0.5 - 0.1622 = 0.3378$$

Gain (Shirt Size) =
$$0.5 - 0.4911 = 0.0089$$

D'après les résultats on constate que, le gain de Car Type est le plus élevé

g. Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.

Car chaque Customer ld est se répète une seule fois et dans une seule classe.

Alors chacun, prend comme probabilité l'une = 1 et l'autre = 0

Exercice ° 2

2. Consider the training examples shown in Table 3.6 for a binary classification problem.

Instance	a1	a2	a3	Target Class
1	Т	Т	1.0	+
2	Т	Т	6.0	+
3	Т	F	5.0	-
4	F	F	4.0	+
5	F	Т	7.0	-
6	F	Т	3.0	-
7	F	F	8.0	-
8	Т	F	7.0	+
9	F	Т	5.0	-

Dans cette Data-set, on a:

9 target class

4 Positives

5 Négatives

Avec:

$$(Pc+) = \frac{4}{9}$$

$$(Pc-) = \frac{5}{9}$$

On a:

Entropy =
$$-\frac{p}{p+n} log 2 \left(\frac{p}{p+n}\right) - \frac{n}{p+n} log 2 \left(\frac{n}{p+n}\right)$$

a. What is the entropy of this collection of training examples with respect to the class attribute?

Entropy (Class) = (Pc+) log2 (Pc+) - (Pc-) log2 (Pc-)
=
$$-\frac{4}{9}log2\left(\frac{4}{9}\right) - \frac{5}{9}log2\left(\frac{5}{9}\right) = 0.9911$$

b. What are the information gains of and relative to these training examples?

Pour a1:

(4T) avec

(3T+)
$$P(T+) = \frac{3}{4}$$

Et →

$$(1T-) P(T-) = \frac{1}{4}$$

(5F) avec

(1F+)
$$P(F +) = \frac{1}{5}$$

Et →

(4F-)
$$P(F-) = \frac{4}{5}$$

Entropy (a1)=
$$\frac{4}{9}\left(-\frac{3}{4}log 2\left(\frac{3}{4}\right)-\frac{1}{4}log 2\left(\frac{1}{4}\right)\right)+\frac{5}{9}\left(-\frac{1}{5}log 2\left(\frac{1}{5}\right)-\frac{4}{5}log 2\left(\frac{4}{5}\right)\right)\right)=0.7616$$

Pour a2:

(5T) avec

(2T+)
$$P(T+)=\frac{2}{5}$$

Et →

(3T-)
$$P(T-)=\frac{3}{5}$$

(4F) avec

(2F+)
$$P(F+) = \frac{2}{4}$$

Et →

(2F-)
$$P(F-)=\frac{2}{4}$$

Entropy(a2) =
$$\frac{5}{9} \left(-\frac{2}{5} log 2 \left(\frac{2}{5} \right) - \frac{3}{5} log 2 \left(\frac{3}{5} \right) \right) + \frac{4}{9} \left(-\frac{2}{4} log 2 \left(\frac{2}{4} \right) - \frac{2}{4} log 2 \left(\frac{2}{4} \right) \right) = 0.9838$$

$$\frac{\text{Gain (a2)}}{\text{Gain (a2)}} = 0.9911 - 0.9838 = \frac{0.0072}{0.0072}$$

c. For, which is a continuous attribute, compute the information gain for every possible split.

On organise les valeurs de a3, de plus grand à plus petit,

Instance	A3	Target class
1	1.0	+
6	3.0	-
4	4.0	+
3	5.0	-
9	5.0	-
2	6.0	+
5	7.0	-
8	7.0	+
7	8.0	-

On constate que la valeur 2.0 n'est pas trouvé dans le tableau.

On calcule le gain de a3, en supposant la valeur 2.0, d'où

D'après les valeurs de a3, on a 3 valeurs qui sont positives et supérieur à 2.0 et une seule valeur qu'est positive et inférieur à 2.0

Aussi on a 5 valeurs qui sont négatives et supérieurs à 2.0 et 0 valeurs qu'est négative et inférieur à 2.0.

Donc,

Gain
$$(a3) = 0.1427$$

d. What is the best split (among, and) according to the information gain?

$$\frac{\text{Gain (a1)}}{\text{Gain (a1)}} = \frac{0.2294}{1}$$

$$\frac{\text{Gain (a2)}}{\text{Gain (a2)}} = \frac{0.0072}{1.00072}$$

$$\frac{\text{Gain (a3)}}{\text{Gain (a3)}} = \frac{0.1427}{1.000}$$

- ⇒ A1 est la meilleure.
- e. What is the best split (between and) according to the misclassification error rate ?

On rappelle que:

Pour a1:

(4T) avec

(3T+)
$$P(T +) = \frac{3}{4}$$

Et →

(1T-)
$$P(T-) = \frac{1}{4}$$

(1F+)
$$P(F +) = \frac{1}{5}$$

Et →

(4F-)
$$P(F -) = \frac{4}{5}$$

Pour a2:

(5T) avec

(2T+)
$$P(T+) = \frac{2}{5}$$

Et →

(3T-)
$$P(T-)=\frac{3}{5}$$

(2F+)
$$P(F+)=\frac{2}{4}$$

Et →

(2F-)
$$P(F-)=\frac{2}{4}$$

On va calculer les erreurs de chacun d'eux :

$$erreur(a1) = \frac{4}{9}\left(1 - \frac{3}{4}\right) + \frac{5}{9}\left(1 - \frac{4}{5}\right) = \frac{1}{9} + \frac{1}{9} = \frac{2}{9}$$

Εt

erreur (a2) =
$$\frac{5}{9} \left(1 - \frac{3}{5} \right) + \frac{4}{9} \left(1 - \frac{2}{4} \right) = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$$

f. What is the best split (between and) according to the Gini index?

On va calculer les Gini index :

$$Gini(a1) = \frac{4}{9} \left(1 - \frac{3^2}{4^2} - \frac{1^2}{4^2} \right) + \frac{5}{9} \left(1 - \frac{1^2}{5^2} - \frac{4^2}{5^2} \right) = 0.3444$$

$$Gini(a2) = \frac{5}{9} \left(1 - \frac{2^2}{5^2} - \frac{3^2}{5^2} \right) + \frac{4}{9} \left(1 - \frac{2^2}{4^2} - \frac{2^2}{4^2} \right) = 0.4889$$

Merci pour Votre attention