SSMBA: Self-Supervised Manifold Based Data Augmentation for Improving Out-of-Domain Robustness

집현전 중급반 https://github.com/jiphyeonjeon

발표자 : 박동주 https://github.com/toriving

About

SSMBA: Self-Supervised Manifold Based Data Augmentation for Improving Out-of-Domain Robustness

Nathan Ng University of Toronto Vector Institute

Kyunghyun Cho New York University Marzyeh Ghassemi University of Toronto Vector Institute

EMNLP2020 – Long paper

Topic: Data augmentation

Paper: https://www.aclweb.org/anthology/2020.emnlp-main.97.pdf

Code: https://github.com/nnq555/ssmba

Self-Supervised Learning – Computer Vision

Input image

Self-Supervised Learning – Natural Language Processing

Natural Language Processing

Data Augmentation – Computer Vision

Original

Blur

Noise

Translation

Horizontal flip

Vertical flip

Rotation

Data Augmentation – Computer Vision

255	255	255
0	0	255
0	0	255

Rotation

255	255	255
255	0	0
255	0	0

Data Augmentation – Computer Vision

coarse-salt

vertical-flip

I go to school by bus

I go to school by bus

I go to ????? by bus

255	255	255
0	0	255
0	0	255

$$W(\text{``cat"}) = (0.2, -0.4, 0.7, \dots)$$

$$W(\text{``mat"}) = (0.0, 0.6, -0.1, \dots)$$

Introduction

- Training distributions often do not cover all of the test distributions we would like a supervised classifier or model to perform well on.
- Therefore, a key challenge in training machine learning models in these settings is ensuring they are robust to unseen examples.
- If data concentrates on a low-dimensional manifold then these synthetic examples should lie in a manifold neighborhood of the original examples.
- However, in domains such as natural language, it is much more difficult to find a set of invariances that preserves meaning or semantics.

Introduction

- Self-Supervised Manifold Based Data Augmentation (SSMBA): a data augmentation method for generating synthetic examples in domains where the data manifold is difficult to heuristically characterize.
- Motivation : Denoising auto-encoders
 - Corruption fuction: Stochastically perturb examples off the data manifold
 - Reconstruction function: Project them back on.

Figure 1: SSMBA moves along the data manifold \mathcal{M} by using a corruption function to perturb an example x off the data manifold, then using a reconstruction function to project it back on.

Background and Related Work

Data Augmentation in NLP

- Existing work on improving generalization has focused on data augmentation, where synthetically generated training examples are used to augment an existing dataset.
- It is hypothesized that these examples induce robustness to local perturbations, which has been shown to be effective in semi-supervised and self-supervised settings.

Background and Related Work

VRM and the Manifold Assumption

- Existing work on improving generalization has focused on data augmentation, where synthetically generated training examples are used to augment an existing dataset.
- It is hypothesized that these examples induce robustness to local perturbations, which has been shown to be effective in semi-supervised and self-supervised settings.

Background and Related Work

Figure 2: To sample from an MLM DAE, we apply the MLM corruption q to the original sentence then reconstruct the corrupted sentence using our DAE r.

Figure 3: SSMBA generates synthetic examples by corrupting then reconstructing the original training inputs. To form the augmented dataset, corresponding outputs are preserved from the original data or generated from a supervised model f trained on the original data.

Algorithm 1 SSMBA

```
1: Require: perturbation function q
                  reconstruction function r
 2: Input: Dataset \mathcal{D} = \{(x_1, y_1) \dots (x_n, y_n)\}
               number of augmented examples m
 3: function SSMBA(\mathcal{D}, m)
         train a model f on \mathcal{D}
         for (x_i, y_i) \in \mathcal{D} do
             for j \in 1 \dots m do
                  sample perturbed x'_{ij} \sim q(x'|x_i)
                  sample reconstructed \hat{x}_{ij} \sim r(\hat{x}|x'_{ij})
                  generate \hat{y}_{ij} \leftarrow f(\hat{x}_{ij}) or preserve
 9:
                  the original y_i
             end for
10:
         end for
11:
         let \mathcal{D}^{aug} = \{(\hat{x}_{ij}, \hat{y}_{ij})\}_{i=1...n,j=1...m}
         augment \mathcal{D}' \leftarrow \mathcal{D} \cup \mathcal{D}^{aug}
13:
         return \mathcal{D}'
14:
15: end function
```


Dataset	Domain	\boldsymbol{n}	l	Train	Test
AR-Clothing	*	4	35	$25k^{\dagger}$	2k
AR-Full	*	10	67	$25k^{\dagger}$	2k
Yelp	*	4	138	$25k^{\dagger}$	2k
Movies	SST2 IMDb	-	11 296	66k 46k	1k 2k
MNLI	*	10	36	80k	1k
ANLI	R1 R2 R3	-	92 90 82	17k 46k 100k	1k 1k 1k
IWSLT	-	1	24	160k	7k
OPUS	Medical	5	15	1.1m	2k
de-rm	Law Blogs	-	22 25	100k -	2k 2k

Table 1: Dataset summary statistics. n: number of domains. l: average tokenized input length. A * in the domain column indicates that the statistics are identical across domains within that dataset. Training sets marked with a \dagger are sampled randomly from a larger dataset. Refer to Appendix A for more information.

		AR-l	Full	AR-Cl	othing	Mo	vies	Ye	elp	Ave	rage
Model	Augmentation	ID	OOD	ID	OOD	ID	OOD	ID	OOD	ID	OOD
	None	69.46	66.32	69.25	67.80	90.74	71.94	62.51	61.28	70.16	66.17
	EDA	67.32	64.47	66.87	65.21	88.43	68.3	58.39	57.19	67.56	63.55
RNN	CBERT	69.94	66.77	69.56	68.10	91.01	72.11	63.17	61.75	70.17	66.57
	UDA	69.92	66.97	69.98	68.24	90.05	69.73	63.40	62.13	70.64	66.53
	SSMBA	70.38* [†]	67.41* [†]	70.19	68.60* [†]	89.61	73.20	63.85	62.83* [†]	70.96	67.31
	None	70.67	67.64	70.14	68.52	92.92	72.11	65.13	64.46	71.68	67.63
	EDA	68.52	66.03	67.76	66.17	91.22	74.20	60.99	59.88	69.13	65.65
CNN	CBERT	70.62	67.70	70.13	68.23	92.92	71.56	65.09	64.19	71.65	67.49
	UDA	70.80	68.06	70.29	68.70	92.63	72.55	65.22	64.32	71.77	67.89
	SSMBA	71.10*	68.18*	70.74	69.04*	92.93	74.67	65.59	64.81* [†]	72.11	68.33

Table 2: Average in-domain (ID) and out-of-domain (OOD) accuracy (%) for models trained on sentiment analysis datasets. Average performance across datasets is weighted by number of domains contained in each dataset. Accuracies marked with a * and \dagger are statistically significantly higher than unaugmented models and the next best model respectively, both with p < 0.01.

	MN	NLI	ANLI		
Augmentation	ID	OOD	ID	OOD	
None	84.29	80.61	42.54	43.80	
EDA	83.44	80.34	45.59	42.77	
CBERT	84.24	80.34	46.68	43.53	
UDA	84.24	80.99	45.85	42.89	
SSMBA	85.71	82.44*†	48.46* [†]	43.80	

Table 3: Average in-domain and out-of-domain accuracy (%) for RoBERTa models trained on NLI tasks. Accuracies marked with a * and \dagger are statistically significantly higher than unaugmented models and the next best model respectively, both with p < 0.01.

System	BLEU
ConvS2S (Edunov et al., 2018) Transformer (Wu et al., 2019a) DynamicConv (Wu et al., 2019a)	32.2 34.4 35.2
Transformer (ours) + Word Dropout + RAML + SwitchOut	34.70 34.43 35.00 35.28
+ SSMBA	36.10* [†]

Table 4: Results on IWSLT de \rightarrow en for models trained with different data augmentation methods. Scores marked with a * and † are statistically significantly higher than baseline transformers and the next best model, both with p < 0.01.

	OP	US	de→rm		
Augmentation	ID	OOD	ID	OOD	
None	56.99	10.24	51.53	12.23	
Word Dropout	56.26	10.15	50.23	12.23	
RAML	56.76	10.10	51.52	12.49	
SwitchOut	55.50	9.27	51.34	13.59	
SSMBA	54.88	10.65	51.97	14.67*	

Table 5: Average in-domain and out-of-domain BLEU for models trained on OPUS (de \rightarrow en) and de \rightarrow rm data. Scores marked with a * and † are statistically significantly higher than baseline transformers and the next best model, both with p < 0.01.

Figure 4: OOD accuracy of models trained on successively subsampled datasets. The full training set contains 25k examples. Error bars show standard deviation in OOD accuracy across models.

	Distil	Base	Large
OOD Accuracy Boost (%)	0.73	0.78	0.78

Table 6: Boost in OOD accuracy (%) of models trained with SSMBA augmented data generated with different reconstruction functions.

Figure 5: Boost in OOD accuracy (%) of models trained with SSMBA augmentation applied with different percentages of corrupted tokens.

Figure 6: Boost in OOD accuracy (%) of models trained with SSMBA augmentation using different sampling methods. Error bars show standard deviation in OOD accuracy across models.

Figure 7: OOD accuracy (%) of models trained with different amounts of SSMBA augmentation. 0 augmentation corresponds to a baseline model. Error bars show standard deviation in OOD accuracy across models.

Figure 8: Boost in OOD accuracy (%) of models trained with augmented data labelled with different supervision models and label generation methods.