厦门大学高等代数 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

第五章 复习题

1. $\[\mathcal{G} \] f(f(x)) = f^n(x), \[\mathcal{R} \] f(x). \]$

解 若 f(x) = 0, 则命题成立. 若 $f(x) \neq 0$, 设 $\deg f(x) = m$, 则因为 $f(f(x)) = f^n(x)$, 有 $m^2 = \deg f(f(x)) = \deg f^n(x) = mn$, 所以 m = 0 或 $\deg f(x) = n$.

若 m = 0, 由 $f(f(x)) = f^n(x)$ 即得 f(x) = a, 其中 $a^n = 1$.

若 m = n, 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, 则

$$f^{n}(x) = f(f(x)) = a_{n}f^{n}(x) + a_{n-1}f^{n-1}(x) + \dots + a_{1}f(x) + a_{0}, \tag{1}$$

(法一) 记 y = f(x), (1) 为 $y^n = a_n y^n + a_{n-1} y_{n-1} + \cdots + a_1 y + a_0$, 所以 $a_n = 1, a_{n-1} = \cdots = a_1 = a_0 = 0$. 故 $f(x) = x^n$.

(法二) (1) 式改写为

$$(a_n - 1)f^n(x) + a_{n-1}f^{n-1}(x) + \dots + a_1f(x) + a_0 = 0,$$
 (2)

上式左边各项的系数均为 0. (2) 式左边最高项为 $(a_n-1)x^{n^2}$, 因此 $a_n=1.$ 将其代入 (2) 式,得

$$a_{n-1}f^{n-1}(x) + \dots + a_1f(x) + a_0 = 0,$$
 (3)

同理上式左边最高项为 $a_{n-1}x^{n(n-1)}$, 因此 $a_{n-1}=0$, 以此类推, 得 $a_{n-2}=\cdots=a_1=a_0=0$, 从而 $f(x)=x^n$.

(法三) 由 (1) 知, f(x)|f(f(x)), 故 $f(x)|a_0$. 因 $\deg f(x) \geq 1 > \deg a_0$, 从而 $a_0 = 0$. 又因 $f(x) \neq 0$, 由消去律得

$$f^{n-1}(x) = a_n f^{n-1}(x) + a_{n-1} f^{n-2}(x) + \dots + a_1, \tag{4}$$

同理, (4), 故 f(x) 整除 (4) 式右端, 进而 $a_1 = 0$, 依此类推得 $a_2 = \cdots = a_{n-1} = 0$, 进而有 $f(x) = a_n f(x)$, 从而 $a_n = 1$, 即 $f(x) = x^n$.

常见错误 1 分情况讨论只讨论 f(x), g(x), h(x) 全不为零的情形.

常见错误 2 由 (1) 式直接得 $a_i = 0, i = 0, 1, ..., n$, 没有证明过程.

2. (1) 若行列式

$$\left| \begin{array}{ccc} 1 & 2 & 5 \\ 1 & 3 & -2 \\ 2 & 5 & x \end{array} \right| = 0,$$

求 x;

(2) 设

$$f(x) = \begin{vmatrix} 2x & 3 & 1 & 2 \\ x & x & 0 & 5 \\ 2 & -2 & x & 1 \\ x & 2 & -1 & 4x \end{vmatrix},$$

求 x^3 项的系数; x^4 项的系数和多项式的常数项;

(3) 设

$$f(x) = \begin{vmatrix} x - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & x - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & x - a_{33} \end{vmatrix},$$

求 x^3 项的系数; x^2 项的系数; 常数项.

解 (1) 因
$$\begin{vmatrix} 1 & 2 & 5 \\ 1 & 3 & -2 \\ 2 & 5 & x \end{vmatrix} = x - 3$$
, 故原式成立必须 $x = 3$.

- (2) 多项式 f(x) 等于四阶行列式取自不同行且不同列元素乘积的代数和,而行列式的元素是次数不超过 1 的多项式,因此要得到 f(x) 的 4 次项,要求每个元素都含有 x, 故 x^4 的系数为 8. 同理,求 f(x) 的 3 次项时,只要求三个元素含有 x 即可,计算得 x^3 的系数是 -14,常数项为 f(0) = 50.
 - (3) 同理, x^3 的系数是 $1, x^2$ 的系数是 $-a_{11} a_{22} a_{33}$, 常数项是

$$f(0) = \begin{vmatrix} -a_{11} & -a_{12} & -a_{13} \\ -a_{21} & -a_{22} & -a_{23} \\ -a_{31} & -a_{32} & -a_{33} \end{vmatrix}.$$

3. 设 $f(x) = x^3 + px^2 + qx + r$, $g(x) = ax^2 + bx + c$. 求证: 若 g(x)|f(x), 则

$$\frac{ap-b}{a} = \frac{aq-c}{b} = \frac{ar}{c}.$$

证明 (法一) 由于 g(x)|f(x), 则存在 q(x), 使得 f(x) = g(x)q(x), 依题意,令 q(x) = mx + n, 其中 $m \neq 0$. 则

$$x^{3} + px^{2} + qx + r = (ax^{2} + bx + c)(mx + n) = amx^{3} + (an + bm)x^{2} + (bn + cm)x + cn,$$

必有 am = 1, an + bm = p, bn + cm = q, cn = r, 解得

$$an = \frac{ap - b}{a} = \frac{aq - c}{b} = \frac{ar}{c}$$
.

(法二) 如 §5.2 习题 3 般列式求. (过程略)

4. 设 $f(x), g(x) \in F[x]$, 令

$$\Omega = \{ u(x)f(x) + v(x)g(x)|u(x), v(x) \in F[x] \}.$$

求证: (1) 若 $a(x), b(x) \in \Omega$, 则 $a(x) \pm b(x) \in \Omega$;

- (2) 若 $a(x) \in \Omega$, 则对任意 $h(x) \in F[x]$, 有 $a(x)h(x) \in \Omega$;
- (3) 存在首一的 $d(x) \in \Omega$, 使得对于任意的 $a(x) \in \Omega$, 有 d(x)|a(x);
- (4) d(x) = (f(x), g(x)).

证明 (1) 若 $a(x), b(x) \in \Omega$, 则存在 $u_1(x), v_1(x), u_2(x), v_2(x) \in F[x]$, 使得

$$a(x) = u_1(x)f(x) + v_1(x)g(x), \quad b(x) = u_2(x)f(x) + v_2(x)g(x).$$

则

$$a(x) + b(x) = [u_1(x) + u_2(x)]f(x) + [v_1(x) + v_2(x)]g(x) \in \Omega.$$

同理 $a(x) - b(x) \in \Omega$.

(2) 若 $a(x) \in \Omega$, 则存在 $u(x), v(x) \in F[x]$, 使得 a(x) = u(x)f(x) + v(x)g(x). 于是对任意 $h(x) \in k[x]$, 有

$$a(x)h(x) = (u(x)h(x))f(x) + (v(x)h(x))g(x) \in F[x].$$

(3) 设 $d(x)=u(x)f(x)+v(x)g(x)\neq 0$ 为 Ω 中一个次数最低首一多项式. 我们断言对于任意 $a(x)\in\Omega$,有 d(x)|a(x). 如若不然,假设 a(x)=u'(x)f(x)+ $v'(x)g(x) \in \Omega$ 使得 d(x) / a(x). 令 a(x) = d(x)q(x) + r(x), 其中 $0 \le \deg r(x) < \deg d(x)$. 于是

$$r(x) = a(x) - d(x)q(x) = (u'(x) - q(x)u(x))f(x) + (v'(x) - q(x)v(x))g(x) \in \Omega,$$

与设 d(x) 是 Ω 中次数最低的多项式矛盾. 故对任意的 $a(x) \in \Omega$, 都有 d(x)|a(x).

(4) 因为 $f(x) = 1f(x) + 0g(x) \in \Omega$, 所以 d(x)|f(x). 同理 d(x)|g(x). 又 d(x) = u(x)f(x) + v(x)g(x), 所以 d(x) = (f(x), g(x)).

常见错误 (3) 的证明中直接取 d(x) = (f(x), g(x)). 这是不允许的,若不然则导致循环证明. 事实上,本题给出的是最大公因式的另一个定义.

5. 设 (f(x), g(x)) = 1, $\deg f(x) > 0$, $\deg g(x) > 0$. 证明: 存在唯一的 u(x), v(x), 使得

$$f(x)u(x) + g(x)v(x) = 1$$

 $\underline{\mathbb{H}} \deg u(x) < \deg g(x), \deg v(x) < \deg f(x).$

证明 存在性. 因为 (f(x),g(x))=1, 所以存在 h(x),k(x), 使得 f(x)h(x)+g(x)k(x)=1. 若 $\deg h(x)>\deg g(x)$, 由带余除法,存在 q(x),u(x), 使得 h(x)=g(x)q(x)+u(x), 其中 $\deg u(x)<\deg g(x)$. 代入上式得 f(x)(g(x)q(x)+u(x))+g(x)k(x)=1, 即

$$f(x)u(x) + g(x)(f(x)q(x) + k(x)) = 1.$$

令 v(x) = f(x)q(x) + k(x),则 $\deg v(x) < \deg f(x)$.若不然, $\deg v(x) \ge \deg f(x)$,比较上式两边次数, $\deg(f(x)u(x) + g(x)v(x)) = \deg(g(x)v(x)) \ge 2 > 0 = \deg 1$,与 f(x)u(x) + g(x)v(x) = 1 矛盾.

唯一性. 设另有 $u_1(x), v_1(x)$ 适合条件,即 $f(x)u_1(x)+g(x)v_1(x)=f(x)u(x)+g(x)v(x)=1$.则 $f(x)(u(x)-u_1(x))+g(x)(v(x)-v_1(x))=0$.因为 g(x) 与 f(x) 互素,上式表明 $g(x)|(u(x)-u_1(x))$.而 $u(x)-u_1(x)$ 次数小于 g(x) 的次数,所以只能 $u(x)-u_1(x)=0$.即 $u(x)=u_1(x)$,进而 $v(x)=v_1(x)$.

常见错误 1 存在性中 $\deg v(x)$ 的次数必须小于 $\deg f(x)$ 的次数的证明中,未给出如何导致矛盾的证明.

常见错误2存在性没有证明.

6. 若 (f(x), g(x)) = 1, 且 h(x)|f(x), 则 (h(x), g(x)) = 1.

证明 因 h(x)|f(x), 所以存在多项式 s(x), 使得 f(x) = h(x)s(x). 又因为 (f(x),g(x))=1, 所以存在多项式 u(x),v(x), 使得

$$1 = f(x)u(x) + g(x)v(x) = h(x)(s(x)u(x)) + g(x)v(x),$$

因此 (h(x), g(x)) = 1.

7. 设 $a, b, c, d \in F$ 满足 ad - bc = 1. 求证:

$$(af(x) + bg(x)), cf(x) + dg(x)) = (f(x), g(x)).$$

证明 设 d(x) = (f(x), g(x)). 要证 (af(x) + bg(x), cf(x) + dg(x)) = d(x).

首先, 因为 d(x)|f(x) 且 d(x)|g(x), 故 d(x)|af(x)+bg(x) 且 d(x)|cf(x)+dg(x).

其次,若 $h(x)|af(x)+bg(x), h(x)|cf(x)+dg(x), 则 \ h(x)|d(af(x)+bg(x))-b(cf(x)+dg(x)).$ 因为 ad-cb=1, 所以 d(af(x)+bg(x))-b(cf(x)+dg(x))=f(x), 因此 h(x)|f(x). 同理 h(x)|g(x), 故 h(x)|d(x).

综上,
$$d(x) = (af(x) + bg(x), cf(x) + dg(x)).$$

8. 如果多项式 $f_1(x), f_2(x), g_1(x), g_2(x)$ 满足

$$(f_1(x), g_1(x)) = (f_1(x), g_2(x)) = (f_2(x), g_1(x)) = (f_2(x), g_2(x)) = 1,$$

则

$$(f_1(x)g_1(x), f_2(x)g_2(x)) = (f_1(x), f_2(x))(g_1(x), g_2(x)).$$

证明 若 $f_1(x) = f_2(x) = 0$ 或 $g_1(x) = g_2(x) = 0$,则命题成立.否则 (法一) 设 $(f_1(x), f_2(x)) = d_1(x), (g_1(x), g_2(x)) = d_2(x)$,那么存在 $h_1(x), h_2(x)$, $h_3(x), h_4(x)$ 使得

$$f_1(x) = d_1(x)h_1(x), f_2(x) = d_1(x)h_2(x), g_1(x) = d_2(x)h_3(x), g_2(x) = d_2(x)h_4(x).$$

结合已知条件知 $(h_i(x), h_i(x)) = 1, i \neq j(i, j = 1, 2, 3, 4)$. 因此

$$(h_1(x)h_3(x), h_2(x)h_4(x)) = 1.$$

而

$$(f_1(x)g_1(x), f_2(x)g_2(x)) = d_1(x)d_2(x)(h_1(x)h_3(x), h_2(x)h_4(x))$$
$$= d_1(x)d_2(x) = (f_1(x), f_2(x))(g_1(x), g_2(x)).$$

(法二) 因 $(f_1(x), g_1(x)) = (f_1(x), g_2(x)) = (f_2(x), g_1(x)) = (f_2(x), g_2(x)) = 1$, 因此可设

$$f_1(x) = k_1 p_1^{a_1}(x) p_2^{a_2}(x) \cdots p_m^{a_m}(x), f_2(x) = k_2 p_1^{b_1}(x) p_2^{b_2}(x) \cdots p_m^{b_m}(x),$$

$$g_1(x) = l_1 q_1^{c_1}(x) q_2^{c_2}(x) \cdots q_n^{c_n}(x), g_2(x) = l_2 q_1^{d_1}(x) q_2^{d_2}(x) \cdots q_n^{d_n}(x),$$

其中 $a_i \ge 0$, $b_i \ge 0$, $a_i + b_i > 0$, $i = 1, 2, \dots, m$; $c_j \ge 0$, $d_j \ge 0$, $c_j + d_j > 0$, $j = 1, 2, \dots, n$; $p_1(x), p_2(x), \dots, p_m(x), q_1(x), q_2(x), \dots, q_n(x)$ 是两两互素的,不可约的,首一多项式。因此

$$f_1g_1 = k_1l_1p_1^{a_1}(x)p_2^{a_2}(x)\cdots p_m^{a_m}(x)q_1^{c_1}(x)q_2^{c_2}(x)\cdots q_n^{c_n}(x),$$

$$f_2g_2 = k_2l_2p_1^{b_1}(x)p_2^{b_2}(x)\cdots p_m^{b_m}(x)q_1^{d_1}(x)q_2^{d_2}(x)\cdots q_n^{d_n}(x).$$

从而

$$(f_1(x), f_2(x)) = p_1^{s_1}(x)p_2^{s_2}(x)\cdots p_m^{s_m}(x),$$

$$(g_1(x), g_2(x)) = q_1^{t_1}(x)q_2^{t_2}(x)\cdots q_n^{t_n}(x),$$

$$(f_1(x)g_1(x), f_2(x)g_2(x)) = p_1^{s_1}(x)p_2^{s_2}(x)\cdots p_m^{s_m}(x)q_1^{t_1}(x)q_2^{t_2}(x)\cdots q_n^{t_n}(x),$$

其中 $s_i = \min\{a_i, b_i\}, t_i = \min\{c_j, d_j\}, i = 1, 2, \dots, m, j = 1, 2, \dots, n,$ 故命题成立.

(法三) 设 $(f_1(x), f_2(x)) = s(x), (g_1(x), g_2(x)) = t(x),$ 可证 $(f_1(x)g_1(x), f_2(x)g_2(x)) = s(x)t(x).$ 事实上,一方面, $s(x)|f_1(x), t(x)|g_1(x),$ 所以 $s(x)t(x)|f_1(x)g_1(x),$ 同理, $s(x)t(x)|f_2(x)g_2(x).$ 另一方面,对任意的 $h(x)|f_1(x)g_1(x)$ 且 $h(x)|f_2(x)g_2(x).$ 可将 h(x) 做分解为 $h(x) = s_1(x)t_1(x),$ 使得 $s_1(x)|f_1(x),$ $t_1(x)|g_1(x).$ 则 $s_1(x)t_1(x)|f_2(x)g_2(x),$ 进而 $s_1(x)|f_2(x)g_2(x).$ 因为 $(f_1(x),g_2(x)) = 1,$ $s_1(x)|f_1(x),$ 所以 $(s_1(x),g_2(x)) = 1,$ 因此 $s_1(x)|f_2(x).$ 同理, $t_1(x)|g_2(x),$ 从而 $s_1(x)|s(x),$ $t_1(x)|t(x),$ 故 h(x)|s(x)t(x). 综上即得命题.

常见错误 1 设 $f_1(x) = k_1 p_1^{a_1}(x) p_2^{a_2}(x) \cdots p_m^{a_m}(x), f_2(x) = k_2 p_1^{b_1}(x) p_2^{b_2}(x) \cdots p_m^{b_m}(x),$ 其中 $p_1(x), p_2(x), \cdots, p_m(x)$ 是不可约多项式,则 $(f_1(x), f_2(x)) = p_1^{s_1}(x) p_2^{s_2}(x) \cdots p_m^{s_m}(x),$ 其中 $s_i = \min\{a_i, b_i\}, i = 1, 2, \cdots, m; t_i = \min\{c_j, d_j\}, j = 1, 2, \cdots, n.$ (应加上"两两互素",和"首一",尤其是前者。反例: $f(x) = x^2 x^3, g(x) = x^4 x^2,$ $(f(x), g(x)) = x^5 \neq x^2 x^2).$

常见错误 2 设 $f_1(x) = k_1 p_1^{a_1}(x) p_2^{a_2}(x) \cdots p_m^{a_m}(x)$, 其中 $p_1(x), p_2(x), \cdots, p_m(x)$ 是不相等的不可约多项式. (不相等的多项式未必互素, 如 $p_1(x) = x$, $p_2(x) = 2x$, $p_1(x) \neq p_2(x)$, 但 $(p_1(x), p_2(x)) = x \neq 1$)

常见错误 $3 s(x)|f_1(x), t(x)|g_1(x),$ 所以 $s(x)t(x)|f_1(x)g_1(x),$ 同理, $s(x)t(x)|f_2(x)g_2(x).$ 此外,对任意 $s_1(x)|f_1(x) 且 s_1(x)|f_2(x),$ 则 $s_1|s(x).$ $t_1(x)|g_1(x) 且 t_2(x)|g_2(x),$ 则 $t_1|t(x).$ 因此 $s_1(x)t_1(x)|f_1(x)g_1(x),$ $s_1(x)t_1(x)|f_2(x)g_2(x).$ 所以命题得证. (后半部分的假设不保证所取的为 $f_1(x)g_1(x)$ 和 $f_2(x)g_2(x)$ 的任一公因式,而是带了约束条件的公因式,因此是错误的)

9. 证明: 非常数首一多项式 f(x) 是某个不可约多项式的幂的充分必要条件是对于任意 g(x), 或 (f(x),g(x))=1, 或 f(x) 可以整除 g(x) 的某个幂.

证明 设 p(x) 是不可约多项式, $f(x) = p^k(x)$. 又若 f(x) 和 g(x) 不互素, 则 p(x) 是 f(x) 和 g(x) 的公因式, 即 p(x)|g(x), 所以 $p^k(x)|g^k(x)$, 即 $f(x)|g^k(x)$.

反之, 若 $f(x) = p^m(x)h(x)$, 其中 p(x) 是不可约, $\deg h(x) \ge 1$ 且 (p(x), h(x)) = 1. 取 g(x) = h(x), 则 $(f(x), g(x)) \ne 1$, 且 f(x) 不能整除 g(x) 的任意次幂,与假设矛盾. 故 f(x) 必是某个不可约多项式的幂.

10. 设 $f(x), g(x) \in F[x]$, 求证存在自然数 N, 使得当 $n_1, n_2 > N$ 时,有

$$(f^{n_1}(x), g(x)) = (f^{n_2}(x), g(x)).$$

证明 当 f(x), g(x) 中有一个为常数时,等式显然成立,等式两边都是 1. 当 f(x), g(x) 次数均大于 0 时,设 $p_1(x)$, $p_2(x)$, \cdots , $p_k(x)$ 是 f(x), g(x) 的所有首一的,两两互素的,不可约的公因式,因此可进一步假设

$$f(x) = ap_1^{a_1}(x)p_2^{a_2}(x)\cdots p_k^{a_k}(x)p_{k+1}^{a_{k+1}}(x)p_{k+2}^{a_{k+2}}(x)\cdots p_r^{a_r}(x),$$

$$g(x) = bp_1^{b_1}(x)p_2^{b_2}(x)\cdots p_k^{b_k}(x)p_{r+1}^{b_{r+1}}(x)p_{r+2}^{b_{r+2}}(x)\cdots p_m^{b_m}(x),$$

其中 a,b 非零, $p_1(x),p_2(x),\cdots,p_m(x)$ $a_i>0,$ $b_j>0,\ i=1,2,\cdots,r,\ j=1,2,\cdots,k,r+1,r+2,\cdots,m.\ \diamondsuit N=\max_{1\leq i\leq k}\left[\frac{b_i}{a_i}\right]+1,$ 其中 [a] 表示对 a 取整.则 $Na_i>b_i,\ i=1,2,\cdots,m.$ 故当 n>N 时,总有 $(f^n(x),g(x))=\frac{1}{b}g(x).$

11. 设 $a \neq b \in F$. 求证: f(x) 除以 (x-a)(x-b) 的余式为

$$\frac{f(a) - f(b)}{a - b}x + \frac{af(b) - bf(a)}{a - b}.$$

证明 (法一) 由带余除法, 存在 g(x), r(x), 使得

$$f(x) = (x - a)(x - b)g(x) + r(x),$$

解

得 $c = \frac{f(a) - f(b)}{a - b}$, $d = \frac{af(b) - bf(a)}{a - b}$, 即

$$r(x) = \frac{f(a) - f(b)}{a - b}x + \frac{af(b) - bf(a)}{a - b}.$$

(法二) 由余数定理, 存在 g(x), 使得 f(x) = (x-a)g(x)+f(a). 由带余除法, 对 g(x) = (x-b)h(x)+s, 则 f(x) = (x-a)(x-b)h(x)+s(x-a)+f(a). 将 x 用 b 替换, 得 $s = \frac{f(b)-f(a)}{b-a}$. 从而 f(x) 除以 (x-a)(x-b) 的余式为 $\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$.

12. 设 f(x) 是一个 n 次多项式,若当 $k=0,1,2,\cdots,n$ 时有 $f(k)=\frac{k}{k+1}$,求 f(n+1).

解: 设 g(x) = f(x)(x+1) - x, 则 g(x) 是 n+1 次多项式且 $x=0,1,2,\cdots,n$ 是 g(x) 的根,因此 $g(x) = cx(x-1)(x-2)\cdots(x-n)$. 即 $f(x)(x+1) - x = cx(x-1)(x-2)\cdots(x-n)$, 其中 c 是一个常数. 令 x=-1 代入,求出 $c=\frac{(-1)^{n+1}}{(n+1)!}$. 从而 $f(x) = \frac{1}{x+1}[\frac{(-1)^{n+1}x(x-1)(x-2)\cdots(x-n)}{(n+1)!} + x]$. 故 $f(n+1) = \frac{1}{n+2}[(-1)^{n+1} + n + 1]$. 当 n 是奇数时, f(n+1) = 1; 当 n 是偶数时, $f(n+1) = \frac{n}{n+2}$.

13. 设 $(x-1)|f(x^n)$. 求证: $(x^n-1)|f(x^n)$.

证明 (法一) x^n-1 有 n 个互异根 $\varepsilon_k=e^{2k\pi i/n}(k=0,1,2,\cdots,n-1)$ 且 $\varepsilon_i^n=1$. 由设 $x-1|f(x^n)$ 知 $f(1)=f(1^n)=0$,从而 $f(\varepsilon_k^n)=f(1)=0(k=0,1,2,\cdots,n-1)$. 而 $\varepsilon_k=e^{2k\pi i/n}$ 两两互异,因此 $x^n-1|f(x^n)$.

(法二) 因 $x-1|f(x^n)$, 所以 $f(1)=f(1^n)=0$, 因此 x-1|f(x), 即存在 g(x) 使得 f(x)=(x-1)g(x), 从而 $x^n-1|f(x^n)$.

(法三) 设 f(x) = (x-1)h(x) + r. 若 r = 0, 用 x^n 替换上式的 x 得, $f(x^n) = (x^n-1)h(x^n)$, 故 $(x^n-1)|f(x^n)$. 若 $0 \neq r \in F$, 用 x^n 替换上式的 x 得, $f(x^n) = (x^n-1)h(x^n) + r = (x-1)(x^{n-1} + x^{n-2} + \dots + 1)h(x^n) + r$, 与 $(x-1)|f^n(x)$ 矛盾. 因此 (x-1)|f(x),

常见错误 因为 $(x-1)|f(x^n)$, 所以 $f(x^n)=(x-1)g(x)$, 因此 1 是 f(x) 的一个根. (注意: $f(x^n)=(x-1)g(x)$ 中是关于 x^n 的多项式,而不是关于 x 的多项式,如 $f(x^n)=(x-2)g(x)$,不能就此断定 2 是 f(x) 的一个根)

14. 证明: 若 $(x^2 + x + 1)|f_1(x^3) + xf_2(x^3)$, 则 $(x - 1)|f_1(x)$ 且 $(x - 1)|f_2(x)$.

为 $x^2 + x + 1 | f_1(x^3) + x f_2(x^3)$, 则得 ω_1, ω_2 也是 $f_1(x^3) + x f_2(x^3)$ 的根,则有

$$f_1(\omega_1^3) + \omega_1 f_2(w_1^3) = 0, \quad f_1(\omega_2^3) + \omega_2 f_2(\omega_2^3) = 0,$$

联立这两个方程,解得 $f_1(1) = f_2(1) = 0$,故 $(x-1)|f_1(x)$ 且 $(x-1)|f_2(x)$.

(法二) 设 $f_1(x) = (x-1)g_1(x) + r_1$, $f_2(x) = (x-1)g_2(x) + r_2$, 其中 $r_1, r_2 \in F$. 因此

$$f_1(x^3) + x f_2(x^3) = (x^3 - 1)g_1(x^3) + r_1 + x(x^3 - 1)g_2(x) + r_2x$$

= $(x^2 + x + 1)((x - 1)g_1(x^3) + x(x - 1)g_2(x^3)) + (r_2x + r_1).$

又因为 $(x^2 + x + 1)|f_1(x^3) + xf_2(x^3)$, 因此 $r_2x + r_1 = 0$, 故 $r_1 = r_2 = 0$, 从而 $(x-1)|f_1(x)$ 且 $(x-1)|f_2(x)$.

15. 设 $\deg f(x) = n > 1$, 且 f'(x)|f(x). 求证: f(x) 有 n 重根.

证明 (法一) 因为 f'(x)|f(x), 所以 (f(x),f'(x))=af'(x), 其中 a 是 f'(x)) 的首项系数的倒数. 又因为 $\frac{f(x)}{(f(x),f'(x))}$ 与 f(x) 有相同的不可约因式. 由 $\deg f(x)=n>1$, $\deg f'(x)=n-1>0$, 则 $\frac{f(x)}{(f(x),f'(x))}$ 是一次的因式, 记为 k(x-a), 则 $f(x)=k(x-a)^n$, 即 f(x) 有 n 重根.

(法二) 设 $f(x)=ap_1^{a_1}(x)p_2^{a_2}(x)\cdots p_m^{a_m}(x)$, 其中 $p_i(x)$, $i=1,2,\cdots,m$ 为首一的两两互素的不可约 r_i 次多项式, $n=\sum_{i=1}^m a_i r_i$. 则 (f(x),f'(x))=d(x), 其中

 $d(x) = p_1^{a_1-1}(x)p_2^{a_2-1}(x)\cdots p_m^{a_m-1}(x)$. 由已知条件 f'(x)|f(x), 所以 f'(x) = bd(x). 另一方面 $\deg f'(x) = n-1$, 故 $n-1 = \sum_{i=1}^m (a_i-1)r_i = n - \sum_{i=1}^m r_i$, 而 r_i , $i=1,2,\cdots,m$ 全是正整数,从而 m=1, 且 $r_1=1$.

常见错误 1 (法二) 证明中直接设 $p_i(x)$ 为一次多项式. (该假设在一般数域上是无法保证成立的)

常见错误 2 (法二) 证明中在复数域上做因式分解. (题目没有对数域做出特别说明,因此是一般数域 F. 用此法证明,只能得出必有 n 重复根 c,需进一步说明 $c \in F$ 或 $d(x-c)^n \in F[x]$)

16. 设 $g(x) \in \mathbb{Q}[x]$, 存在 $c \in \mathbb{C}$, 使得 g(c) = 0. 记

$$W = \{ f(x) \in \mathbb{Q}[x] \mid f(c) = 0 \}.$$

求证:在 W 中存在唯一的首一不可约 p(x),使得对于任意的 $f(x) \in W$,都有 p(x)|f(x). 此时, c 称为代数数, \mathbb{C} 中非代数数称为超越数, p(x) 称为 c 的最小多项式.

证明 存在性. 因为 $g(x) \in W$, 所以 $W \neq \emptyset$. 取 W 中次数最低的首一多项式 p(x), 则 p(x) 为所求. 首先, p(x) 在 \mathbb{Q} 上是不可约的. 若不然,设 p(x) = g(x)h(x), 其中 g(x), $h(x) \in \mathbb{Q}[x]$, 且 g(x) 和 h(x) 的次数均小于 p(x) 的次数. 由于 p(c) = 0, 因此 g(c) 和 h(c) 至少有一个为 0. 不妨设 g(c) = 0, 则 $g(x) \in W$ 与 p(x) 是 W 最低次数矛盾. 其次,对任意多项式 $f(x) \in W$,因为 f(c) = p(c) = 0,说明 c 是 f(x) 和 p(x) 在 \mathbb{C} 上的公共根,因此他们在 \mathbb{C} 上不互素. 注意到互素与数域扩大无关,所以 f(x) 和 p(x) 在 \mathbb{Q} 上不互素. 而 p(x) 是 \mathbb{Q} 上不可约多项式,因此 p(x)|f(x).

唯一性. 若还有 $q(x) \in W$ 满足条件,则 q(x)|p(x),且 p(x)|q(x),而 p(x),q(x)都是首一多项式,因此 q(x) = p(x).

17. 设 $f(x) = x^3 + px^2 + qx + r$ 的三个根成等差数列,求证:

$$3p^3 - 9pq + 27r = 0.$$

证明 设 c_1, c_2, c_3 是 f(x) 的三个根, 则三个根成等差数列的充分必要条件是

$$c_1 = \frac{1}{2}(c_2 + c_3), \, \mathbf{z}_2 = \frac{1}{2}(c_1 + c_3), \, \mathbf{z}_3 = \frac{1}{2}(c_1 + c_2),$$

即

$$(2c_1 - c_2 - c_3)(c_1 - 2c_2 + c_3)(c_1 + c_2 - 2c_3) = 0.$$

将左式表为初等对称多项式 $\sigma_1, \sigma_2, \sigma_3$ 的多项式

$$(2c_1 - c_2 - c_3)(c_1 - 2c_2 + c_3)(c_1 + c_2 - 2c_3) = 2\sigma_1^3 - 9\sigma_1\sigma_2 + 27\sigma_3.$$

而 $\sigma_1 = -p$, $\sigma_2 = q$, $\sigma_3 = -r$, 所以 $3p^3 - 9pq + 27r = 0$.

注: 依已知条件三根成等差数列,故可直接假设三个根为 a-b, a, a+b. 再进行计算.

18. 设 f(x) 是 \mathbb{R} 上首一多项式且无实根, 求证存在 g(x), h(x), 使得

$$f(x) = g^2(x) + h^2(x)$$

 $\underline{\mathbb{H}} \deg g(x) > \deg h(x).$

证明 因为 f(x) 是 \mathbb{R} 上首一多项式且无实根,所以, f(x) 在 \mathbb{R} 上的标准分解式的不可约因子形如 (x^2+bx+c) , 其中 $b,c\in\mathbb{R}$ 且 $b^2-4c<0$. 对 f(x) 的次数做数学归纳法证明命题.

当 $\deg f(x) = 0$ 时, $f(x) = 1 = 1^2 + 0^2$,令 g(x) = 1,h(x) = 0,符合题意. 归纳假设命题对次数小于等于 n-1 的首一多项式成立.

当 f(x) 的次数为 n 时. 由于其只有虚根,因此必存在 $f_1(x) = x^2 + bx + c$ 和 $f_2(x)$,其中 $b,c \in \mathbb{R}$ 且 $b^2 - 4c < 0$,使得 $f(x) = f_1(x)f_2(x)$. 令 $g_1(x) = x - a$, $h_1(x) = \sqrt{c - b/4}$,则 $f_1(x) = g_1^2(x) + h_1^2(x)$ 且 $\deg g_1(x) > \deg h_1(x)$. 因 $\deg f_2(x) < n - 1$,由归纳假设存在 $f_2(x)$, $g_2(x)$ 使得 $f_2(x) = g_2^2(x) + h_2^2(x)$ 且 $\deg g_2(x) > \deg h_2(x)$. 这时,

$$(g_1^2(x) + h_1^2(x))(g_2^2(x) + h_2^2(x)) = g_1^2(x)g_2^2(x) + h_1^2(x)g_2^2(x) + g_1^2(x)h_2^2(x) + h_1^2(x)h_2^2(x)$$
$$= (g_1(x)g_2(x) + h_1(x)h_2(x))^2 + (g_1(x)h_2(x) - g_2(x)h_1(x))^2.$$

令

$$g(x) = g_1(x)g_2(x) + h_1(x)h_2(x), \quad h(x) = g_1(x)h_2(x) - g_2(x)h_1(x),$$

则有

$$f(x) = q^2(x) + h^2(x)$$

Ħ.

$$\deg g(x) = \deg g_1(x) + \deg g_2(x) > \deg(g_1(x)h_2(x) - g_2(x)h_1(x)) = \deg h(x).$$

由数学归纳法,命题得证.

19. 设

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) - 1,$$

其中 a_1, a_2, \dots, a_n 是两两不同的整数. 求证 f(x) 在 \mathbb{Q} 上不可约.

使

得 f(x) = g(x)h(x), 且 $\deg g(x) < n$, $\deg h(x) < n$. 由题意知 $-1 = f(a_i) = g(a_i)h(a_i)(i=1,2,\cdots,n)$, 则 $g(a_i) = \pm 1$, 且 $h(a_i) = \mp 1$, 从而 $g(a_i) + h(a_i) = 0$ ($i=1,2,\cdots,n$), 即 a_1,a_2,\cdots,a_n 是 g(x) + h(x) 的 n 个两两不同的根. 而 $\deg(g(x) + h(x)) < n$, 故得 g(x) = -h(x), 即 $f(x) = -g(x)^2$. 因为 f(x) 的首项系数是 1, 而 $-g(x)^2$ 的首项系数负数,矛盾.

20. 设 $f(x) = (x - a_1)^2 (x - a_2)^2 \cdots (x - a_n)^2 + 1$, 其中 a_1, a_2, \cdots, a_n 是两两互 异整数. 证明: f(x) 在 $\mathbb{Q}[x]$ 上不可约.

证明: 首先证明 f(x) 不可能是某个多项式的平方. 用反证法, 假设 $f(x) = g^2(x)$ 是整系数多项式. 令 $h(x) = (x - a_1)(x - a_2) \cdots (x - a_n)$, 则 $g(x)^2 = h(x)^2 + 1$, 即 (g(x) + h(x), g(x) - h(x)) = 1. 因为 g(x), h(x) 都是整系数多项式. 故或者

是 g(x) = 1 或 g(x) = -1, 不可能. 再假设 f(x) = u(x)v(x), u(x), v(x) 都是整系数多项式. f(x) 是 2n 次多项式, 因此 u(x) 和 v(x) 的次数至少有一个不超过 n. 现假定 u(x) 的次数小于 n, 显然 f(x) 无实根, 因此 u(x) 也无实根. 不妨设 u(x) 是首一多项式, 则 u(x) 恒大于零. 由 $f(a_i) = 1$ 得 $u(a_i)v(a_i) = 1$, 因此 $u(a_i) = 1$. 考虑多项式 u(x) - 1, 由上面的分析可知它有 n 个不同的根 a_1, a_2, \cdots, a_n . 但前面假设它的次数小于 n, 矛盾. 因此 u(x) 只能是 n 次首一的多项式, 于是 v(x) 也是 n 次首一的多项式. 另一方面,由于对 a_i , $u(a_i)v(a_i) = 1$, $u(a_i) = 1$, 故 $u(a_i) = 1$. 这表明 $u(a_i) = v(a_i)$, $i = 1, 2, \cdots, n$, 因此 u(x) = v(x), $f(x) = u(x)^2$. 由前面的证明可知假设不成立.