This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

-	4.5				.7	
						· .
,					.42	
5 .				4		
đ.			(4)			
ř :	Y-		· ·		29	F
						,
,-						*
				D 1 4		
	* (i)			* * * * * * * * * * * * * * * * * * * *	•	*
i.					() ·	120
e.	•	ţ.				
1			۸.	, , ,	•	
3.0		*		n .		
,						
		A				
-						
Ē.		(4)	L'C			
	v		1 2			
18						* '
· •				**************************************		
•		· · · · · · · · · · · · · · · · · · ·				
		F-1				
·			0,		, t , ' a	
f 5	**		- F			
£		¥		4,		•
					x x = 0	•
*	•		* .	V	10 m	
4.	*.			* * * * * * * * * * * * * * * * * * * *		
F			i de			
3						
H.	· ·	•				
<u>.</u>					· · · · · · · · · · · · · · · · · · ·	
9	•	. · ·	• ,			
Ar. M						
1						
1	•					
àc.	<i>1</i> .				4	0
3	*					
	# ·	0		m y		* 1
Sp			•			
7					The state of the s	· .
÷		1 T				See .
	-				* * * * * * * * * * * * * * * * * * * *	
e dige	. (1)			4,		**************************************
		Ŧ.				* X
e,						
ş. 1.						
		·				
3		. "				
•						
			•			
New York	· .		•			
•						- 79
3				•	· W	
				•		
A.:						

RÉPUBLIQUE FRANÇAISE

(11) N° d publication : (A n'utiliser que pour les

commandes de reproduction).

2 285 851

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

A1

74)

DEMANDE DE BREVET D'INVENTION

75 29526 (21) Dérivés de l'amino-3 pyridine et compositions tinctoriales les contenant. (54) A 61 K 7/13; C 07 D 213/76, 213/89. Classification internationale (Int. Cl.2). (51) 26 septembre 1975, à 15 h 4 mn. Date de dépôt Priorité revendjquée : Demande de brevet déposée dans le Grand-Duché de Luxembourg le 27 septembre 1974, n. 71.015 au nom de la demanderesse. Date de la mise à la disposition du (41) B.O.P.I. - «Listes» n. 17 du 23-4-1976. public de la demande Société anonyme dite : L'OREAL, résidant en France. 77) Déposant : Invention de : Gérard Lang. (72) Titulaire: Idem (71) (73) Alain Casalonga, 8, avenue Percier, 75008 Paris.

La présente invention concerne des compositions tinctoriales pour cheveux humains contenant de nouveaux colorants azolques dérivés de l'amino-3 pyridine.

On connaît déjà l'utilisation de colorants azolques dérivés de l'amino-2 pyridine dont certains présentent une gamme de coloration étendue allant du jaune au bleu. L'invention a pour but d'étendre davantage la gamme des colorations, tout en améliorant si possible les autres propriétés recherchées pour les colorants entrant dans les compositions tinctoriales.

La présente invention a pour objet une composition tinctoriale

10 pour cheveux humains contenant en solution un ou plusieurs composés de formule générale ::

dans laquelle :

$$B = N \qquad \text{ou} \qquad N = M$$

R = alcoyle inférieur contenant l à 4 atomes de carbone ;

R₁= hydrogène, alcoyle inférieur, alcoxy inférieur ou chloro;

5 R₂= hydrogène, méthyle ou méthoxy;

 R_{Δ} = hydrogène, méthyle, chloro, nitro, amino ou acétylamino ;

R₃ = hydrogène ou bien R₄ et R₃ forment un cycle insaturé à 6 chaînons portant un substituant hydroxy chélaté avec un des atomes d'azote de la double liaison azotque

30 A = un reste

avec R_5 = hydrogène, méthyle, éthyle, β -hydroxyéthyle; R_6 = hydrogène, méthyle, éthyle, β -hydroxyéthyle, phényle ou- CH_2 -SO₃Na

l'anion associé X à l'atome d'azote quaternisé dérive d'un acide organique ou minéral, cet anion étant par exemple un méthosulfate ou éthosulfate, un bromure, un iodure ou un chlorure.

Les colorants de formule (I) permettent d'obtenir des nuances stables et lumineuses allant des jaunes aux bleus, présentant une gamme plus étendue dans les jaunes que les colorants azofques dérivant de l'amino-2 pyridine.

Les colorants de l'invention présentent une bonne solubilité dans les solvants cosmétiques, une bonne affinité pour les fibres kératiniques mais ils présentent en général une excellente stabilité en solution, ce qui constitue une caractéristique très recherchée dans les solutions et lotions cosmétiques, notamment dans les compositions tinctoriales.

Les compositions de l'invention sont constituées par des solutions aqueuses ou hydro-alcooliques préparées par dissolution dans l'eau ou dans un mélange eau-alcool d'un ou plusieurs composés de formule (I) ou encore par des solutions dans des solvants tels que le propylèneglycol ou le butylcéllo-solve. Les alcools utilisés dans les compositions de l'invention sont généralement l'éthanol ou l'isopropanol en des proportions d'environ 5 à 70 % en poids, tandis que les solvants précités sont utilisés en des proportions de 5 à 15 %.

La concentration des composés de formule (I) dans les compositions tinctoriales de l'invention peut varier en de larges limites étant donné leur bonne affinité pour les cheveux, cette concentration étant comprise entre 0,001 et 1 % en poids par rapport au poids total de la composition.

Le pH qui peut également varier en de larges limites est compris entre 3 et 11, et on l'ajuste à la valeur souhaitée par une addition appropriée d'un acide ou d'une base acceptables en cosmétique, tels que respectivement l'acide orthophosphorique et l'acide citrique, la monoéthanolamine, ou la triéthanolamine et l'ammoniaque.

Des compositions de l'invention peuvent contenir divers adjuvants habituellement utilisés en cosmétique, comme par exemple des agents mouillants, des agents dispersants, des agents gonflants, des agents de pénétration, des émollieuts ou des parfums, et elles sont avantageusement conditionnées en flacons aérosols.

Les compositions selon l'invention peuvent également renfermer

d'autres colorants directs tels que des colorants azolques ou anthraquinoniques, des colorants nitrés de la série benzénique, des indoanilines, des indophénols ou des indamines.

Les compositions selon l'invention peuvent être utilisées à des fins de teinture durable des cheveux : en ce cas, elles sont appliquées sur

10

20

25

30

.)

les cheveux pendant un temps variant de 3 à 40 minutes, cette application étant suivie d'un rinçage, éventuellement d'un lavage et d'un sèchage des cheveux.

Les compositions selon l'invention peuvent également être utilisées en lotions de rinçage destinées à conférer aux cheveux une légère coloration; elles sont alors appliquées sur les cheveux après lavage, et leur application n'est pas suivie d'un rinçage des cheveux.

Les compositions selon l'invention peuvent enfin être mises en oeuvre sous forme de lotions capillaires de mise en plis, destinées tout à la

10 fois à conférer aux cheveux une légère coloration et à améliorer la tenue
de la mise en plis : dans ce cas, elles se présentent sous forme de solutions
hydroalcooliques renfermant au moins une résine cosmétique et leur application
s'effectue sur les cheveux humides préalablement lavés et rincés, qui sont
ensuite enroulés et séchés.

Les résines cosmétiques entrant dans la composition de ces lotions de mise en plis sont mises en oeuvre dans la proportion de l à 3 % en poids et peuvent être en particulier la polyvinylpyrrolidone, les copolymères acide crotonique-acétate de vinyle, vinylpyrrolidone-acétate de vinyle ou anhydride maléique-éther butylvinylique, ou anhydride maléique- méthyl vinyl éther et ses esters éthylique, isopropylique ou butylique.

Les lotions de mise en plis selon l'invention renferment généralement de 20 à 70 % en poids d'un alcool à bas poids moléculaire qui est de préférence l'éthanol ou l'isopropanol.

L'invention a également pour objet les composés de formule (I) qui sont considérés comme des composés nouveaux.

On prépare les composés de formule (I) dans lesquels B = N

et B = N selon un procédé connu par diazotation de l'amino-3 pyridine ou

de Famino-3 pyridine N-oxyde correspondant, et couplage du sel de diazonium

résultant sur un composé de formule :

30

15

20

25

dans laquelle R₂, R₃, R₄ et A ont la définition déjà indiquée.

On prépare les composés de formule (I) dans lesquels B

par réaction d'un agent alcoylant RX dans lequel X a la signification déjà indiquée sur les composés précités p ur lesquels B

Les compositions de l'invention peuvent également contenir de l'eau oxygénée et sont alors utilisées comme compositions éclaircissantes. On peut également les utiliser en présence de colorants d'oxydation, un agent oxydant tel que l'eau oxygénée leur étant ajouté au moment de l'emploi.

On utilise de préférence de l'eau oxygénée à 200 volumes mais on peut bien entendu utiliser de l'eau oxygénée à une autre teneur par exemple à 20, 30, ou 100 volumes.

La gamme de pH est ajustée entre 3 à 7 lorsque les compositions contiennent des composés quaternaires de formule (I) qui sont instables en milieu basique.

5

Les teintures obtenues avec les compositions de l'invention se distinguent souvent par d'excellentes solidités à la lumière aux intempéries et par une bonne teneur au lavage.

Lorsque B désigne = N- les composés préférés sont ceux pour lesquels R_1 est différent de H, et si R_1 désigne H ceux pour lesquels l'un des radicaux R_4 R_5 ou R_6 n'a pas la valeur alcoyle ou phényle.

Les exemples non limitatifs suivants dans lesquels les pourcentages s'entendent sauf mention contrair en poids et les température en degrés centigrades, permettront de mieux comprendre l'objet de l'invention.

EXEMPLES DE PROCEDE

5

10

EXEMPLE_1

Préparation de la diméthylamino-4' benzène azo-1' : 3 pyridine de

formule

15

On dissout 0,1 mole d'amino-3 pyridine dans 50 cm3 d'acide chlorhydrique 5 N. La solution est refroidie à + 5°C et on ajoute goutte à goutte 13,3 cm de solution aqueuse de nitrite de sodium 7,5 N. On agite pendant 15 mn à +5°C. On ajoute la solution ainsi obtenue à 0,1 mole de N,N-diméthylaniline dans 12 cm d'acide acétique. On agite pendant 30 minutes, puis précipite le colorant par addition de 40 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit recristallisé dans le cyclohexane fond à 122°C.

Analyses : C13H14N4

25

20

69,00 H 6,20 24,80 calculé en % 68,83 6,13 Trouvé en %

EXEMPLE 2

Préparation de la N,N-bis (hydroxy-2 éthyl) amino-4'benzène-azo-

1': 3 pyridine de formule 30

35

On ajoute lentement, sous agitation et en maintenant la température à 5°C, une solution de 0,1 mole de sel de diaz nium préparée selon l'exemple 1 à une solution de 0,1 mole de N,N bis (hydroxy-2 éthyl) aniline dans 18 cm d'acide acétique. On agite pendant 30 minutes, puis précipite le colorant

par addition de 40 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit recristallisé dans l'isopropanol à 50 % fond à 126°C. Analyses: $C_{15}H_{18}N_4O_2$

5 calculé en % C 62,95 H 6,29 N 19,58 trouvé en % 62,72 6,40 19,61.

Exemple 3

Préparation du sel de sodium de l'acide pyridine azo-3' : 4 anilino néthyl sulfonique, de formule :

On ajoute lentement, sous agitation et en maintenant la température à 5°C,

20 une solution de 0,1 mole de sel de diazonium préparée selon l'exemple 1 à
une solution de 0,11 mole de sel () de l'aniline dans 180 cm³ d'eau contenant 60 g d'acétate de sodium cristallisé. On agite pendant 15 minutes, puis
ajoute 300 g d'acétate de sodium cristallisé. On agite encore pendant 15
minutes puis filtre. Le produit recristallisé dans l'eau fond au-dessus de

25 300°C.

Analyses: C₁₂H₁₁N₄O₃SNa, 0,5 H₂O

15

30

35

calculé en % C 44,60 H 3,72 N 17,35 trouvé en % 44,42 4,30 17,43

Exemple 4

Préparation de l'amino-4' hydroxy-8' naphtalène-azo-1' : 3 pyridine

On ajoute lentement, sous agitation et en maintenant la température à 5°C, 40 une soluti n de O,1 mole de sel de diazonium préparée selon l'exemple 1 à une solution de 0,1 mole d'hydroxy-5 naphtylamine-1 dans 400 cm³ d'alcool à 50 % et 80 cm³ d'acide acétique. On agite pendant 30 minutes, puis ajoute 80 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit fond à : 250°C (Déc.).

5 Analyses: $c_{15}^{H}_{12}^{N}_{4}^{O}$, 0,25 $^{H}_{2}^{O}$

10

15

25

40

calculé en % C 67, 10 H 4,66 H 20,81 trouvé en % 67,30 4,72 20,76

EXEMPLE 5

Préparation de la diméthylamino-4' nitro-2' benzène-azo-1':3

On ajoute lentement, sous agitation et en maintenant la température à 5°C, une solution de 0,1 mole de sel de diazonium préparée selon l'exemple 1 à une solution de 0,1 mole de N,N-diméthyl métanitraniline dans 50 cm³ d'acide acétique. On agite pendant 30 minutes puis filtre, lave à l'eau et recristallise dans l'alcool. Le produit fond à 156 °C.

Analyses : $C_{13}^{H}_{13}^{N}_{5}^{O}_{2}$

Calculé en % C 57,60 H 4,80 N 25,80 trouvé en % 57,92 5,05 25,86

EXEMPLE 6

Préparation de la phénylamino-4' benzène-azo-1' : 3 pyridine de

On ajoute lentement, sous agitation et en maintenant la température à 5°C, une solution de 0,1 mole de sel de diazonium préparée selon l'exemple 1 à une solution de 0,1 mole de diphénylamine dans 121 cm³ d'alcool à 90 % et 6 cm³

d'acide chlorhydrique concentré.

On agite pendant 1 heure puis ajoute 80 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit fond à 204°C.

 $: C_{17}^{H}_{14}^{N}_{4}, H_{2}^{O}$ Analyses

5

10

15

20

25

30

19,20 H 5,48 69,90 calculé en % 19,12 5,58 70,29 trouvé en %

EXEMPLE 7

Préparation de la diméthylamino-4' benzène azo-1' : 3 méthyl-6

On dissout 0,1 mole d'amino-3 méthyl-6 pyridine dans 50 cm3 d'acide chlorhydrique 5 N. La solution est refroidie à + 5°C et on ajoute goutte à goutte 13,3 cm de solution aqueuse de nitrite de sodium 7,5 N. On agite pendant 15 minutes à + 5°C. On ajoute la solution ainsi obtenue à 0,1 mole de N,N-diméthylaniline dans 12 cm d'acide acétique. On agite pendant 30 minutes, puis précipite le colorant par addition de 40 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit recristallisé dans l'alcool fond à 153°C.

Analyses: C14H16N4

N 23,34 н 6,66 70,00 calculé en % . 23,42 6,76 70,16 trouvé en %

Préparation du méthosulfate de diméthylamino-4' benzène-azo-1': 3 CH₃ methyl-1 pyridinium de formule

35

On dissout n tiédissant O, l mole de composé obtenu dans l'exemple l dans 50 cm de N-méthyl pyrrolidone-2. On ajoute 15 g de sulfate de diméthyle et laisse réagir pendant 30 minutes. On filtre, lave à l'acétate d'éthyle et recristallise dans 60 cm³ d'alcool absolu. Le produit fond à 202°C.

Analyses: $C_{15}H_{20}N_{4}O_{4}S$

15,90 Calculé en % 51,36 15,93 5,87 trouvé en

EXEMPLE 9

Préparation du méthosulfate de bis(hydroxy-2 éthyl)-amino-4' ben-10 zène-azo-1':3 méthyl·1 pyridinium de formule

On dissout en tiédissant 0,1 mole de composé obtenu dans l'exemple 2, dans 50 cm³ de N-méthylpyrrolidone-2. On ajoute 15 g de sulfate de diméthyle et laisse réagir pendant 30 minutes. On filtre, lave à l'acétate d'éthyle et recristallise dans l'alcool absolu. Le produit fond à 134°C.

Analyses: $C_{17}^{H_{24}N_{4}O_{6}S}$, 0,25 H_{2}^{O} 25

C 49,00 н 5,89 N 13,45 calculé en % : 48,97 6,08 13,48 trouvé en %

Préparation du méthosulfate d'amino-4' hydroxy-8' naphtalène-azo-

On dissout 0,1 mole de composé obtenu dans l'exemple 4 dans 50 cm3 de N-méthylpyrrolid ne-2. On ajoute 15 g de sulfate de diméthyle et laisse réagir pendant 30 minutes. On ajoute 250 cm d'acétate d'éthyle puis on filtre. Le produit

15

20

recristallisé dans le méthanol à 70 % fond à 265°C avec décomposition.

C₁₇H₁₈N₄O₅S , Analyses :

0,25 H₂O · N 14,20 calculé en % 5,27

trouvé en %

51,74

14,27

EXEMPLE 11

Préparation du méthosulfate de diméthylamino-4' nitro-2' benzène-

azo-1':3 méthy1-1 pyridinium de formule :
$$CH_3$$
 CH_3 CH_3

15

20

25

10

5

On dissout 0,1 mole de composé obtenu dans l'exemple 5 dans 70 cm de N-méthylpyrrolidone-2 et ajoute 15 g de sulfate de diméthyle. On laisse réagir pendant 1 heure puis on ajoute 250 cm³ d'acétate d'éthyle et on filtre. Le produit recristallisé dans l'alcool absolu fond à : 178°C.

 $C_{15}H_{19}N_{5}O_{6}S$

H 4,78 N 17,62 calculé en % 45,35 4,97

trouvé en %

45,10

17,73

EXEMPLE 12

Préparation du méthosulfate de diméthylamino-4' benzène-azo-

1':3 diméthyl-1,6 pyridinium de formule :

35

30

On dissout à chaud 0,1 mole de composé obtenu dans l'exemple 7 dans 50 cm3 de N-méthyl-pyrrolidone-2. On ajoute 15 g de sulfate de diméthyle et on agite pendant 30 minutes. On filtre, on lave à l'acétate d'éthyle et on sèche. Le 40 produit recristallisé dans l'alcool absolu fond à 212 °C.

Analyses: C₁₆H₂₂N₄O₄S, 0,25 H₂O
calculé en % C 51,85 H 6,07 N 15,11
trouvé en % 51,67 5,97 15,19
EXEMPLE 13

Préparation de l'amino-4' benzène-azo-1':3 pyridine N-oxyde de for-

mule

5

10

20

25

35 .

On dissout 0,11 mole de sel (A) de l'aniline dans 17 cm³ d'eau. On ajoute 53 g d'acétate de sodium cristallisé et refroidit la solution à + 5°C. On ajoute lentement une solution froide de 0,1 mole de chlorure de N-oxypyridy1-3 diazonium préparée selon L. PENTIMALLI TETRAHEDRON 9 page 194 (1960).

On ajoute ensuite 130 g d'acétate de sodium cristallisé et laisse réagir pendant 1 heure. On filtre et on dissout le produit jaune ainsi obtenu dans 600 cm³ d'eau. On ajoute 10 cm³ de lessive de soude et 10 cm³ d'ammoniaque concentré. La solution est laissée au repos pendant une nuit puis chauffée à 50°C pendant 3 heures. On ajoute 50 g de chlorure de sodium broyé et filtre. Le colorant recristallisé dans l'eau fond à 245°C.

Analyses $C_{11}^{H}_{10}^{N}_{4}^{O}$, $1^{H}_{2}^{O}$

EXEMPLE 14

Préparation de la diméthylamino-4' benzène-azo-l':3 pyridine N-oxyde

On dissout 0,1 mole de N,N-diméthylaniline dans 12 cm d'acide acétique et on ajoute lentement une solution froide de 0,1 mole de chlorure de N-oxypyridyl-3

diazonium préparé selon L. PENTIMALLI, TETRAHEDRON 9 page 194 (1960).

On laisse réagir pendant 15 minutes puis on ajoute 50 cm 3 de solution d'acétate de sodium à 40 %. On agite pendant 30 minutes puis on filtre et sèche. Le produit fond à 174° C.

EXEMPLE 15

Préparation de la N,N bis-(hydroxy-2 éthyl)-amino-4' benzène-azol':3 pyridine N-oxyde de formule : CH_2CH_2OH

On dissout 0,1 mole de N,N bis (hydroxy-2 éthyl) aniline dans 40 cm³ d'acide acétique et on ajoute lentement une solution froide de 0,1 mole de chlorure de N-oxypyridyl-3 diazonium préparée selon L.PENTIMALLI, TETRAHEDRON 9 page 194 (1960).

On laisse réagir pendant 30 minutes, puis on ajoute 40 g d'acétate de sodium cristallisé. On filtre, on lave à l'eau et on sèche. Le produit recristallisé dans le méthanol fond à 186°C.

Analyses: $C_{15}^{H}_{18}^{N}_{4}^{O}_{3}$

5

10

15

20

25

30

35

calculé en % C 59,61 H 5,96 N 18,54 trouvé en % 59,38 5,75 18,80

EXEMPLE 16

Préparation de la diméthylamino-4' méthyl-2' benzène-azo-1':3 pyridine

On ajoute lentement, sous agitation et en maintenant la température a+5°C, une solution de 0l mole de sel de diazonium préparée selon l'exemple l

à une solution de O, l mole de N, N diméthyl méta-toluidine dans 15 cm³ d'acide acétique. On agite pendant 30 mm, puis on ajoute 40 g d'acétate de sodium cristallisé. On agite encore pendant 15 mm, puis filtre, empâte dans une solution saturée de bicarbonate de sodium, lave à l'eau et sèche. Le colorant recristallisé dans le cyclobexane fond à 90°C.

Analyses : C₁₄H₁₆N₄

10

15

25

30

35

 calculé en %
 C 70,00
 H 6,66
 N 23,33

 trouvé en %
 70,18
 6,64
 23,20

EXEMPLE 17

Préparation de la diméthylamino-4' chloro-2' benzène-azo-1':3 pyridine de formule :

On ajoute lentement et en maintenant la température à + 5°C, une solution de 0,1 mole de sel de diazonium préparée selon l'exemplel à une solution de 0,1 mole de N,N diméthyl méta-chloraniline dans 15 cm³ d'acide acétique. On agite pendant 1 h 30, puis filtre. Le colorant est mis en suspension dans l'eau et neutralisé par addition d'une solution saturée de bicarbonate de sodium. On filtre, lave à l'eau et sèche.

Le produit recristallisé dans l'alcool fond à : 132°C.

Analyses: $C_{13}H_{13}N_4C1$

Calculé en % C 59,90 H 4,99 N 21,50 trouvé en % 59,97 5,29 21,62

EXEMPLE 18

Préparation de la diamino-2',4' méthyl-5' benzène-azo-1':3 pyridine de formule : CH,

On ajoute lentement et en maintenent la température à + 5°C, une solution de 0,1 mole de sel de diazonium préparée selon l'exemple 1 à une solution de

0,1 mole de diamino-2,4 toluène dans 20 cm³ d'acide acétique. On ajoute 100 cm³ d'eau et agite le tout 30 minutes. On neutralise par addition lente de lessive de soude puis filtre, lave à l'eau et sèche. Le colorant recristallisé dans l'acétate d'éthyle fond à : 175°C.

Analyses C₁₂H₁₃N₅

Calculé en % C 63,45 H 5,73 N 30,82 trouvé en % 63,59 5,97 31,04.

EXEMPLE 19

Préparation de la diamino-2',4' méthoxy-5' benzène-azo-1':3 pyridine de formule

On ajoute lentement et en maintenant la température à + 5°C, une solution de 0,1 mole de sel de diazonium préparée selon l'exemple 1 à une solution de 0,1 mole de diamino-2,4 anisole dans 200 cm³ d'eau. On agite pendant 30 minutes, puis ajoute 40 g d'acétate de sodium pour précipiter le colorant. On filtre empâte dans une solution saturée de bicarbonate de sodium, lave à l'eau et sèche.

Le colorant recristallisé dans le méthoxy-2 éthanol à 50 % fond à 161°C.

EXEMPLE 20

Préparation de l'éthosulfate de diméthylamino-4' méthyl-2' benzèneazo-1':3 éthyl-1 pyridinium de formule

40

35

15

20

On dissout 0,1 mole de composé obtenu dans l'exemple 16, dans 50 cm³ de N-méthylpyrrolidone-2. On ajoute 16 g de sulfate de diéthyle et chauffe à 50 °C pendant 1 heure. On laisse refroidir puis précipite le colorant par addition d'acétate d'éthyle. On filtre, lave à l'acétate d'éthyle et sèche.

Le produit recristallisé dans l'isopropanol fond à 192°C.

Analyses : $^{ m C}_{12}{}^{ m H}_{26}{}^{ m N}_{4}{}^{ m O}_{4}{}^{ m S}$	C	н	N
calculé en %	54 ,8 0	6,60	14,20
trouvé _{en} %	54,95	6,78	14,26

EXEMPLE 21

Préparation du bromure de diméthylamino-4' méthyl-2' benzèneazo-1':3 butyl-1 pyridinium de formule :

On dissout 0,1 mole de composé obtenu dans l'exemple 16, dans 50 cm³ de N-méthylpyrrolidone-2. On ajoute 15,5 g de bromure de butyle et chauffe pendant une journée sur bain marie bouillant. On laisse refroidir puis filtre, lave à l'acétate d'éthyle et sèche.

Le produit recristallisé dans le mélange chloroforme-acétate d'éthyle fond à : 182°C.

Analyses: C₁₈H₂₅N₄Br

calculé en % C 57,30 H 6,63 N 14,85 trouvé en % 57,38 6,44 15,10.

EXEMPLE 22

Préparation du méthosulfate de diméthylamino-4' chloro-2' benzèneazo-1':3 méthyl-1 pyridinium de formule : CH3

35

40

30

5

10

15

20

On dissout 0,1 mole de composé obtenu dans l'exemple 17 dans 70 cm 3 de N-méthyl pyrrolidone-2. On ajoute 14 g de sulfate de diméthyle et agite pendant 2 heures à température ambiante. On filtre, lave à l'acétate d'éthyle et sèche.

Le produit recristallisé dans l'alcool fond à 191°C.

Analyses : $C_{15}H_{19}N_4O_4S$ C1

н 4,92 46,55 N 14,48 calculé en % 4,95 46,30 trouvé en % 14,35

EXEMPLE 23

10 Préparation du méthosulfate de diamino-2',4' méthyl-5' benzène-

20

25

On dissout Q1 mole de composé obtenu dans l'exemple 18 dans 40 ${
m cm}^3$ de N-méthylpyrrolidone-2. On ajoute 14 g de sulfate de diméthyle et agite pendant 1 heure. Le colorant est précipité par addition d'acétate d'éthyle. On filtre et sèche.

Le produit recristallisé dans le méthanol fond à : 196°C.

Analyses : $C_{14}H_{19}N_5O_4S$, 0,5 CH_3OH

N 18,97 calculé en % C 47,10 19,15 trouvé en % 46,99

EXEMPLE 24

30

Préparation du méthosulfate de phénylamino-4' benzène-azo-1':3 méthyl-l pyridinium de formule :

On dissout 0,1 mole de composé obtenu dans l'exemple 6 dans 70 cm³ de N-méthylpyrrolidone-2. On ajoute 14 g de sulfate de diméthyle et agite pendant 2 heures à température ambiante. On filtre, lave à l'acétate d'éthyle et sèche.

Le colorant recristallisé dans l'alcool fond à : 189°C.

Analyses:

C19H20N4O4S

calculé en % C 57,00 H 5,00 N 14,00 trouvé en % 57,00 4,94 14,19

EXEMPLE 25

10

5

Préparation de l'acétylamino-2' diméthylamino-4' benzène-azo-1':3 pyridine de formule :

15

20

25

30

35

On ajoute lentement sous agitation et en maintenant la température à + 5°C, une solution de 0,1 mole de sel de diazonium préparée selon l'exemple 1 à une solution de 0,1 mole de N,N-diméthyl méta-acétyl-amino aniline dans 20 cm³ d'acide acétique. On agite pendant une heure, puis ajoute 40 g d'acétate de sodium cristallisé. On filtre puis empâte le colorant dans une solution saturée de bicarbonate de sodium, lave à l'eau et sèche.

Le colorant recristallisé dans l'acétate d'éthyle fond à 124°C.

Analyses: $C_{15}^{H}_{17}^{N}_{5}^{O}$

Calculé en % C 63,60 H 6,00 N 24,72 trouvé en % 63,86 6,02 24,64.

EXEMPLE 26

Préparation de l'amino-2' diméthylamino-4' benzène-azo-1':3 pyridine de formule

On dissout 0,1 mole de composé obtenu dans l'exemple 25, dans 95 cm³ de solution aqueuse 2,5 N en acide chlorhydrique. On chauffe au reflux pendant 2 heures 30 puis laisse refroidir. Le mélange réactionnel est dilué par 200 cm³ d'eau et on neutralise à la soude. On agite pendant 15 minutes, puis filtre, lave à l'eau et sèche. Le colorant recristallisé dans le méthanol fond à : 165°C.

Analyses : C13H15N5

10

25

30

Calculé en % C 64,70 H 6,22 N 29,07 trouvé en % 64,96 6,05 28,96.

EXEMPLE 27

Préparation de l'éthosulfate d'acétylamino-2' diméthylamino-4' benzène-azo-1':3 éthyl-1 pyridinium de formule :

On dissout 0,1 mole de composé obtenu dans l'exemple 25 dans 40 cm³ de N-méthyl pyrrolidone-2. On ajoute 16 g de sulfate de diéthyle et chauffe sous agitation pendant 1 heure à 60°C.On laisse refroidir puis filtre, lave à l'acétate d'éthyle et sèche.

Le colorant recristallisé dans l'acétate d'éthyle fond à : 195°C.

Analyses: C₁₉H₂₇N₅O₅S calculé en % C 52,17 H 6,18 N 16,02 trouvé en % 52,12 6,30 15,92

EXEMPLE 28

Préparation du méthosulfate de diamino-2',4' méthoxy-5' benzène-

18,97

19,11

On dissout 0,1 mole de composé obtenu dans l'exemple 19, dans 50 cm³ de N-méthyl pyrrolidone-2. On ajoute 14 g de sulfate de diméthyle et agite pendant 5 heures. On ajoute 250 cm³ d'acétate d'éthyle et agite encore pendant 30 minutes. On filtre, lave à l'acétate d'éthyle et sèche.

Le colorant recristallisé dans l'isopropanol fond à : 176°C.

Analyses: C₁₄H₁₉N₅O₅S
calculé en %
trouvé en %

EXEMPLE 29

Préparation du méthosulfate d'amino-2' diméthylamino-4' benzèneazo-1':3 méthyl-1 pyridinium de formule :

20

25

5

10

15

On dissout 0,1 mole de composé obtenu dans l'exemple 26 dans 30 cm³ de N-méthylpyrrolidone-2. On ajoute 17 g de sultate de diméthyle et agite pendant une heure. On filtre, lave à l'acétate d'éthyle et sèche.Le colorant recristallisé dans le méthanol fond à : 237°C.

Analyses : $C_{15}^{H_{21}}N_{5}^{O_{4}}S$

calculé en % C 49,03 H 5,73 N 19,08 trouvé en % 49,33 5,98 18,93

EXEMPLE 30

Préparation de la diméthylamino-4' benzène-azo-1':3 méthoxy-6 pyridine de formule :

On dissout 0.1 mole d'amino 3 méthoxy-6 pyridine dans 50 cm³ d'acide chlorhydrique 5 N. La solution est refroidie à + 5°C et on ajoute goutte à goutte 13,3 cm³ de solution aqueuse de nitrite de sodium 7,5 N. On agite pendant 15 minutes à i 5°C. On ajoute la solution ainsi obtenue à 0,1 mole de N,N-diméthylaniline dans 12 cm³ d'acide acétique. On agite pendant 30 minutes puis précipite le colorant par addition de 40 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit recristallisé dans l'acétone fond à : 143°C.

Analyses: C₁₄H₁₆N₄O calculé en % C 65,65 H 6,25 N 21,85 trouvé en % 65,94 6,12 21,82

Préparation de la diméthylamino-4' benzène-azo-1':3 chloro-6

On dissout 0,1 mole d'amino-3 chloro-6 pyridine dans 50 cm³ d'acide chlorhydrique 5 N. La solution est refroidie à + 5°C et on ajoute goutte à goutte 13,3 cm³ de solution aqueuse de nitrite de sodium 7,5 N. On agite pendant 15 minutes à + 5°C. On ajoute la solution ainsi obtenue à 0,1 mole de N,N-diméthylaniline dans 12 cm³ d'acide acétique. On agite pendant 30 minutes puis précipite le colorant apr addition de 40 g d'acétate de sodium cristallisé. On filtre, lave à l'eau et sèche. Le produit recristallisé dans l'acétone fond à : 164°C.

Analyses: $C_{13}^{H}_{13}^{N}_{4}^{C1}$

10

15

20

25

35

calculé en % C 59,90 H 4,96 N 21,50 trouvé en % 59,82 4,88 21,75

EXEMPLE 32

Préparation de la diéthylamino-4' benzène-azo-1':3 butoxy-6 pyridin de formule

$$C_{4}H_{9}$$

On dissout 0,1 mole d'amino-3 butoxy-6 pyridine dans 50 cm³ d'acide

chlorhydrique 5 N. La solution est refroidie à + 5°C et on ajoute goutte à
goutte 13,3 cm³ de solution aqueuse de nitrite de sodium 7,5 N. On agite
pendant 15 minutes à + 5°C. On ajoute la solution ainsi obtenue à 0,1 mole de
N,N-diéthylaniline dans 12 cm³ d'acide acétique. On agite pendant 30 minutes
puis précipite le colorant par addition lente d'une solution aqueuse saturée

de carbonate de sodium. On filtre, lave à l'eau et sèche. Le produit recristallisé dans l'éthanol fond à 72°C.

Analyses :	C ₁₉ H ₂₆ N	4 ⁰ 1			•				
	calculé			C	70,00	H	7,97	N	17,15
	trouvé	en	%	•	68,89		7,98		16,91.

EXEMPLES DE COMPOSITIONS

EXEMPLE a

_	On prépare la composition tinctoriale suivante :
5 .	Colorant (exemple 30) 0,050 g
•	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool isopropylique
10	Triéthanolamine pH 7
	Eauq.s.p. 100 cc
	Appliquée sur des cheveux décolorés, cette lotion de mise
	en plis confère à la chevelure une jolie nuance Blond Doré très esthé-
	tique.
15	
	EXEMPLE b
	On prépare la composition tinctoriale suivante :
	Colorant (exemple 1) 0,050 g
20	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p.50°
	Triéthanolamine pH 9
	Eauq.s.p. 100 cc
25	Appliquée sur des cheveux décolorés, cette lotion de mise
	en plis confère à la chevelure une nuance Blond clair Doré particulière-
	ment esthétique.
	."
	EXEMPLE c
30	On prépare la composition tinctoriale suivante :
	Colorant (exemple 3) 0,050 g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Copulymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
26	Alcool éthyliqueq.s.p.50°
35	Triethanolamineq.s.p. pH 7
	Eauq.s.p. 100 cc
	Appliquée sur des cheveux naturels Blonds, cette l tion de
	mise en plis confère à la chevelure de légers reflets dorés très lumineux

exemple d

	On prépare la composition tinctoriale suivante :
	Colorant (exemple 14) 0,050 g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
5	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p. 50°
	Triéthanolamineq.s.p. pH 7
	Eauq.s.p. 100 cc
	Appliquée sur des cheveux teints en Blond Foncé, cette
10	lotion de mise en plis confère à la chevelure une nuance Dorée Cuivrée
	particulièrement esthétique.
	, , , , , , , , , , , , , , , , , , , ,
	EXEMPLE e
15	On prépare la composition tinctoriale suivante :
	Colorant (exemple 14) 0,050 g
	Copolymère acétate de vinyle -acide crotonique (90/10) 1,8 g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p. 50°
20	Triéthanolamine pH 9
	Eauq.s.p. 100 cc
	Appliquée sur des cheveux teints en Châtain Clair, cette
	lotion de mise en plis confère à la chevelure une jolie nuance Châtain
	Clair Doré Cuivré.
25	
	EXEMPLE f
	On prépare la composition tinctoriale suivante :
	Colorant (exemple 21) 0,050 g
20	(00/10)
30	(10/10)
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g Alcool éthyliqueq.s.p. 50°
	Triethanolamine
	Eauq.s.p. 100 cc
25	Appliquée sur des cheveux teints en Châtain, cette lotion
35	de mise en plis confère à la chevelure un joli reflet Acajou très
	·
	lumineux.

EXEMPLE g

	On prépare la composition tinctoriale suivante :
	Colorant (exemple 5) 0,050 g
5	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
,	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3
	Alcool éthyliqueq.s.p. 50°
	Acide citrique pH 5
	Eauq.s.p. 100 cc
10	Appliquée sur des cheveux teints en Blond, cette lotion
10	de mise en plis confère à la chevelure des reflets Dorés particulièrement
	esthétiques.
	EXEMPLE h
15	
	On prépare la composition tinctoriale suivante :
	Colorant (exemple 14)
	Copolymère acetate de vinyre acras sistemania
	Alcool éthylique
20	Eau oxygénée à 200 volumes
	Acide orthophosphoriqueq.s.p. pH 3 Eauq.s.p. 100 cc
	Eau
	de mise en plis éclaircit légèrement les cheveux et leur apporte un
25	joli reflet Doré légèrement Cuivré.
	EXEMPLE i
	On prépare la composition tinctoriale suivante :
30	Colorant (composé de l'exemple 27) 0,060 g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Alcool éthyliqueq.s.p. 55°
	Eau oxygénée à 200 volumes 5 cc
	Acide orthophosphoriqueq.s.p. pH 3
35	Eauq.s.p. 100 cc
,,	Appliquée sur des cheveux naturels Châtain, cette lotion
	de mise en plis éclaircit légèrement les cheveux et leur apporte un
	reflet Acajou Cuivré particulièrement esthétique.
	-

exemple j

	On prépare la composition tinctoriale suivante :		
	Colorant (composé de l'exemple 8)	0,800	g
5	Monoéthanolamineq.s.p.	рн 6,5	
	Eauq.s.p.	100	g .
	Cette solution, appliquée sur des cheveux Châtai	n Clair	,
	rincée au bout de 20 mm et après shampoing, confère à la chev	elure u	ae
	splendide nuance Châtain Clair Acajou vif.		
10	•		
	EXEMPLE k		
	On prépare la composition tinctoriale suivante :		
	Colorant (exemple 25)	0,250	g
	Hydroxy éthyl propyl cellulose vendu sous la dénomination		
15	Methocel 65 Hg 4000 par Dow Chemical	0,7	g
	Monoéthanolamineq.s.p.	.рн 10,8	3
	Eauq.s.p.	100	g
	Cette solution, appliquée sur des cheveux nature	ls Blond	i
	Foncé, rincée au bout de 15 mm, confère à la chevelure de jo	lis refl	lets
20	Dorés.		
	EXEMPLE 1		
	On prépare la composition tinctoriale suivante :		
25		0,030	g
•		1,8	8
		0,3	g
	Alcool éthyliqueq.s.p.		
	Triéthanolamine ./q.s.p.		
30	Eauq.s.p.		
	Appliquée sur des cheveux teints en Blond, cette		
	de mise en plis confère à la chevelure une nuance Blond Cuiv	ré parti	i –
•	culièrement esthétique.	•	
	·		

EXEMPLE m

	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 9 0,030	g
5	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8	g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60 0,3	g
	Alcool éthyliqueq.s.p. 50°	
	Triéthanolamine pH 7	
	Eauq.s.p. 100 cc	
10	Appliquée sur des cheveux teints en Blond, cette lotion	
	de mise en plis confère à la chevelure des reflets Rosés très lumin	eux.
	EXEMPLE n	
15	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 2 0,030	g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8	g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	8.
	Alcool éthyliqueq.s.p. 50°	
20	Triéthanolamineq.s.p. pH 7	
	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux décolorés, cette lotion de mi	se
	en plis confère à la chevelure une jolie nuance Blond Doré.	
25	EXEMPLE o	
	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 10 0,030	g
	Copolymere accuracy at 1 and 1	g
30	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	g
	Alcool éthyliqueq.s.p. 50°	
	Triéthanolamineq.s.p. pH 7	
	Eauq.s.p. 100 c	c
	Appliquée sur des cheveux teints en Blond Foncé, cette	
35	lotion de mise en plis confère à la chevelure des reflets Cendrés	
	très lumineux.	

EXEMPLE p

	On prépare la composition tinctoriale suivante	:	
	Colorant de l'exemple 26	0,030	g
5	Copolymère acétate de vinyle - acide crotonique (90/10)	1,8	g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60)	0,3	g
	Alcool éthyliqueq.s.p.	50°	•
	Triéthanolamineq.s.p.	pH 7	
	Eauq.s.p.	100 cc	
10	Appliquée sur des cheveux teints en Blond Clair	, cette	
	lotion de mise en plis confère à la chevelure des reflets D	orés.	
	EXEMPLE q		
15	On prépare la composition tinctoriale suivante		
	Colorant de l'exemple 14	0,020	g.
	Paratoluylène diamine	0,072	g
	Paraaminophénol	0,350	g
20	Sulfate de N méthyl paraaminophénol	0,175	g
20	Sulfate de métadiaminoanisole	0,040	g
	Résorcine	0,040	g
	Métaaminophénol	0,040	·g
	Butylcellosolve	8	g
0.5	Propylène glycol	8	g
25	Polyéthoxyéther d'alkylphénol vendu sous la dénomination	22	* - 3
	"Remcopal 334" par la société Gerland	22	g
	Polyéthoxyéther d'alkylphénol vendu sous la dénomination	22	
	"Remcopal 349" par la société Gerland		g
20	Ammoniaque à 22° Bé		
30			
	Eau q.s.p.		g
	On ajoute à 40 g de la solution ainsi préparée	40 g d'e	au
. •	oxygénée à 20 Volumes.		
26	On obtient ainsi un gel que l'on applique sur de	,	1X
35	Blond Clair. Après 30 mm, on lave les cheveux. Après séchag		•
	chevelure présente une nuance Blond Clair Doré Cuivré parti	culièrem	ent

lumineuse.

EXEMPLE r

	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 4 0,006 g	
5	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g	
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	
	Alcool éthyliqueq.s.p. 50°	
	Triéthanolamineq.s.p. pH 7	
	Eauq.s.p. 100 cc	
10	Appliquée sur des cheveux teints en Blond Clair, cette	
	lotion de mise en plis confère à la chevelure un reflet Rosé très	
	original.	
	EXEMPLE s	
15		
.,	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 23 0,030 g	
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g	
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	
20	Alcool éthyliqueq.s.p. 50°	
	Triéthanolamineq.s.p. pH 7	
	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux teints en Châtain Clair, cette	
	lotion de mise en plis confère à la chevelure une nuance Châtain Clair	
25	Acajou Cuivré particulièrement esthétique.	
	EXEMPLE t.	
	On prépare la composition tinctoriale suivante :	
30	Colorant de l'exemple 20 0,050 g	
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g	
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g	
	Alcool ethyliqueq.s.p. 50°	
	Triéthanolamine pH 7	
35	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux naturels Blond Foncé, cette	
	iotion de mise en plis confère à la chevelure de jolis reflets Rosés.	

EXEMPLE u

	On prépare la composition tinctoriale suivante :
	Colorant de l'exemple 12 0,050 g
5	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p. 50°
	Triéthanolamineq.s.p. pH 7
	Eauq.s.p. 100 cc
10	Appliquée sur des cheveux teints en Blond Clair, cette
	lotion de mise en plis confère à la chevelure des reflets Acajou
	Cuivré particulièrement esthétiques.
	EXEMPLE v
15	
	On prépare la composition tinctoriale suivante :
	Colorant de l'exemple 22 0,050 g
	Copolymere acetate de vinyie - acide disconnique
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
20	Alcool éthyliqueq.s.p. 50°
	Triéthanolamineq.s.p. pH 7
	Eauq.s.p. 100 cc
	Appliquée sur des cheveux teints en Blond Foncé, cette
	lotion de mise en plis confère à la chevelure une nuance Blond Foncé
25	Rosé très lumineuse.
	EXEMPLE w
	On prépare la composition tinctoriale suivante :
30	Colorant de l'exemple 17 0,030 g
30	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p. 50°
	Triéthanolamineq.s.p. pH 7
	Eauq.s.p. 100 cc
35	Appliquée sur des cheveux décolorés, cette lotion de mise
	en plis confère à la chevelure une nuance Blond Doré très esthétique.
	en birs confere a la cheverare que managa anti-

EXEMPLE ×

	On prépare la composition tinctoriale suivante :
	Colorant de l'exemple 18 0,030 g
5	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
_	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p. 50°
	Triethanolamine pH 7
	Eauq.s.p. 100 cc
10	Appliquée sur des cheveux teints en Blond, cette lotion
	de mise en plis confère à la chevelure des reflets Dorés très lumineux.
	EXEMPLE y
	On prépare la composition tinctoriale suivante :
15	Colorant de l'exemple 16 0,050 g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Alcool éthyliqueq.s.p. 50°
3.0	Triéthanolamine pH 7
20	Eauq.s.p. 100 cc
	Appliquée sur des cheveux naturels Blond Foncé, cette lotion
	de mise en plis confère à la chevelure des reflets Dorés particulièrement
	esthétiques.
25	
	EXEMPLE 2
	On prépare la composition tinctoriale suivante :
	Colorant de l'exemple 13
30	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3 g
	Copolymère acétate de Vinyle - Vinylpyllolldone (**)
	Alcool isopropyliqueq.s.p. 50°
	Triéthanolamineq.s.p. pH 7
	Eauq.s.p. 100 cc Appliquée sur des cheveux teints en Châtain Clair, cette
	Appliquée sur des cheveux termes en character des reflets Dorés Cuivrés
	lotion de mise en plis confère à la chevelure des reflets Dorés Cuivrés
	très lumineux.

EXEMPLE aa

	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 7 0,050	g
5	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8	g
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	g
	Alcool éthylique 'q.s.p. 50°	
	Triéthanolamine pH 7	
	Eauq.s.p. 100 cc	
10	Appliquée sur des cheveux teints en Chatain Clair, cette	2
	lotion de mise en plis confère à la chevelure de jolis reflets Dorés	3.
	EXEMPLE ab	
15	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 6 0,0055	g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8	g
	Copolymère acétate de viny e - vinylpyrrolidone (40/60) 0,3	g
	Alcool éthyliqueq.s.p. 50°	
20	Triéthanolamineq.s.p. pH 7	
	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux teints en Blond Clair, cette	
	lotion de mise en plis confère à la chevelure de jolis reflets Dorés	3.
0.5	EXEMPLE ac	
?5	EADY IN AC	
	On prépare la composition tinctoriale suivante :	
	Colorant de l'exemple 9 0,015	8
	Colorant de 1'exemple 26 0,0075	g
30	(amino-4') phényl acétylamino-3 benzoquinone	
	imine	g
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8	8
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	g
•	Alcool éthyliqueq.s.p. 50°	
35	Triéthanolamineq.s.pH 7	
	Eau	
•	Appliquée sur des cheveux teints en Blond, cette lotion	man +
	de mise en plis confère à la chevelure un reflet Nacré particulières	acii L
	esthétique.	

EXEMPLE ad

-			
	On prépare la composition tinctoriale suivante	:	
5	Méthosulfate de diméthylamino-4' méthyl-2' benzène azo-1':2 chloro-5 méthyl-1 pyridinium	e 0,025	8
	Méthosulfate d'amino-4' benzène-azo-1' 2 méthyl-1		
	pyridinium	0,0125	g
	Colorant de l'exemple 13	0,0125	8
	Copolymère acétate de vinyle - acide crotonique (90/10)	1,8	8
10	Copolymère acétate de vinyle - vinylpyrrolidone (40/60)	0,3	g
	Alcool éthylique q.s,p.	50°	
	Triethanolamineq.s.p.	pH 7	
	Eauq.s.p.	100 cc	
	Appliquée sur des cheveux teints en Châtaiπ Cla	ir, cett	e
15	lotion de mise en plis confère à la chevelure une nuance Cha	atain Cla	air
	Violacé très lumineuse.		
	EXEMPLE ae		
20 .	On prépare la composition tinctoriale suivante	:	
	Méthosulfate d'amino-4' hydroxy-8' naphtalène azo-1',2 méthyl-1 pyridinium	0,025	g
	Méthosulfate de diméthylamino-4' benzène azo-1':2		
_	méthyl-l pyridinium	0,015	g
25	Colorant de l'exemple 14	0,0075 0,0025 1,8 0,3	8 8 8
	Alcool éthyliqueq.s.p.	50°	
	Triéthanolamineq.s.p.	pH 7	
30	Eauq.s.p.	100 cc	
	Appliquée sur des cheveux teints en Chatain, cet	cte '	
	lotion de mise en plis confère à la chevelure des reflets Ce	≥ndrés	
	particulièrement esthétiques.	•	
35	EXEMPLE af		
	On prépare la composition tinctoriale suivante :	:	
	Méthosulfate d'amino-4' hydroxy-8'naphtalène		
	azo-1:2 methyl-1 pyridinium	0,025	·g
	Méthosulfate de diméthylamino-4 benzène azo-1 :2		
40	diméthyl-1,3 pyridinium	0,0125	g
	Colorant de l'exemple 1 `	0,0075	8
	Colorant de l'exemple 14	0,0025	g
	•		

	Colorant de l'exemple 3 0,0025 g	
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8	
	Copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	
	Alcool éthyliqueq.s.p. 50°	
5	Triéthanolamineq.s.p. pH 7	
	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux teints en Blond, cette lotion de	
	mise en plis confère à la chevelure une nuance Blond Cendré Nacré part	í-
	culièrement esthétique.	
10		
	EXEMPLE ag	
	On prépare la composition tinctoriale suivante :	
	Méthosulfate de diméthylamino-4' benzène azo 1':2	3
•	Copolymère acétate de vinyle-acide crotonique (90/10)1,8	3
15	Alcool éthyliqueq.s.p. 55°	
	Eau oxygénée à 200 volumes 5 cc	
	Acide orthophosphoriqueq.s.p. pH 3	
	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux naturels Châtain Clair, cette	
20	lotion de mise en plis éclaircit légèrement les cheveux et leur apport	e
	un reflet Violacé particulièrement esthétique.	
	EXEMPLE ab	
25	On prépare la composition tinctoriale suivante :	
	méthosulfate de diméthylamino-4' benzène azo-1'2 méthyl-1 pyridinium	
	Colorant de l'exemple 32 0,010 g	
30	méthosulfate d'amino-4' benzène azo-1',2 méthyl-1 pyridinium 0,020 g	
	Copolymère acétate de vinyle - acide crotonique (90/10) 1,8 g	
	Alcool éthyliqueq.s.p. 55°	
	Eau oxygénée à 200 volumes 5 cc	
	Acide orthophosphoriqueq.s.p. pH 3	
35	Eauq.s.p. 100 cc	
	Appliquée sur des cheveux naturels Chatain Clair, cette	
	lotion de mise en plis non seulement éclaircit légèrement les cheveux	,
	mais encore leur apporte un joli reflet Nacré Rosé.	

EXEMPLE ai

	On prépare la composition tinctoriale suivante :			
	- amino-4' benzène azo-1':3 pyridine	0,050	Og	
	- hydroxy-8' quinoléine azo-5' : 2-pyridine-N-oxyde	0,35	0g	
_	- hutvlcellosolve	8	g	
5	- propylène glycol	8	g	
	Polyéthovéher dalkiphénol vendu sous la dénomination			
	"Remonal 334" par la société GERLAND	22	g	
	polyéthoxyéther d'alkylphénol vendu sous la dénomination			
	"Remounal 349" par la société GERLAND	22	8	
10	ammoniaque à 22° Baumé	10	cc	
	. 000 G S. D	LUU	g	
	On ajoute à 20 g de la solution ainsi préparée, 20 g d'eau o	эху-		
	4 > 00 w.lumon			
15	On obtient ainsi un gel que l'on applique sur cheveux bione	rone	e.	
13	Après 30 minutes, on lave les cheveux. Après séchage, la chevelure est	ecla	ır-	
	cie et présente une nuance blond foncé rosé très lumineuse.			
	EXEMPLE aj			
	On prépare la composition tinctoriale suivante :			
20	- amino-4' benzène azo-1':3 pyridine)50g	
	- hydroxy 8' quinoléine azo 5' : 2 pyridine-N-oxyde	0,3	50g	
	- Butylcellosolve	8	g	
	- propylène glycol	8	g	
	- polyéthoxyéther d'alkylphénol vendu sous la dénomination		-	
∠5	"Remcopal 334" par la société GERIAND	. 22	g	
	- nolvéthoxyéther d'alkylphénol vendu sous la dénomination			
	Remonal 349" par la Société GERLAND	22	g	
	ammoniague à 22° Baumé	10	cc	
	- AAN G. B. D	100	g	
30	On ajoute à 20 g de la solution ainsi préparée 20 g d'eau.		ı	
	On obtient ainsi un gel que l'on applique sur des cheveux	PTOUG	1	
	foncé. Après 30 minutes, on lave les cheveux. Après séchage, la cheve	ture		
	présente de jolis reflets rosés.			
	EXEMPLE ak			
35	On prépare la composition tinctoriale suivante :		. 015~	,
	- colorant de l'exemple 25		,015g	
	- colorant de l'exemple 4	·),005g	,
	- paratoluylènediamine		l,77g	
	- para aminophénol		1,62g	

	- résorcine	8
	- métaaminophénol	g
	- butylcellosolve 8	8
,	- propylène glycol 8	g
5	- polyéthoxy éther d'alkylphénol vendu. sous la dénomina-	
	tion "Remcopal 334" par la société GERLAND	g
	- polyéthoxyéther d'alkylphénol vendu sous la dénomina-	
	tion "Remcopal 349" par la société GERIAND	g
	- ammoniaque à 22° Baumé	
10	- bisulfite de sodium	
	100	g
	On ajoute à 40 g de la solution ainsi préparée 40 g d'eau oxy-	
	génée à 20 volumes. On applique sur des cheveux teints en blond foncé. Après	
15	30 minutes on lave les cheveux. Après séchage la chevelure présente une belle nuance Blond doré. EXEMPLE al	
	On prépare la composition tinctoriale suivante :	
	- colorant de l'exemple 10	5 g
	- méthosulfate d'amino-4' benzène azo-1',2 diméthyl-1,3 pyri-	
20	dinium	5g
	benzoquinone imine	g
	- copolymère acétate de vinyle - acide crotonique (90/10) 1,8	g
	- copolymère acétate de vinyle - vinylpyrrolidone (40/60) 0,3	g
	- alcool éthyliqueq.s.p50°	
25	- triéthanolamineq.s.ppH 7	
	- eau	
	Appliquée sur des cheveux teints en chatain clair, cette lotion	
	de mise en plis confère à la chevelure une jolie nuance châtain clair nacré.	

REVENDICATIONS

l. Composition tinctoriale pour cheveux humains, caractérisée par le fait qu'elle contient dans une solution ayant un pH de 3 à 11, en une quantité de 0,001 à 1 % en poids, un ou plusieurs composés de formule générale:

R = alcoyle inférieur contenant 1 à 4 atomes de carbone;

R₁= hydrogène, alcoyle inférieur, alcoxy inférieur ou chloro;

R₂ hydrogène, méthyle ou méthoxy;

R + hydrogène, méthyle, chloro, nitro, amino ou acétylamino ;

20 R₃ = hydrogène ou bien R₄ et R₃ forment un cycle insaturé à 6 chaînons portant un substituant hydroxy chélaté avec un des atomes d'azote de la double liaison azolque.

A = un reste
$$R_5$$
 R_6

5

10

ıĵ

25

30

35

avec $R_5 = H$; $-CH_3$; C_2H_5 ; β -hydroxyéthyle; $R_6 = H$; $-CH_3$; C_2H_5 ; β -hydroxyéthyle, phényle ou CH_2 -SO₃Na

étant entendu que lorsque
$$B = N$$

l'anion associé X à l'atome d'azote quaternisé dérive d'un acide organique ou minéral, cet anion étant par exemple un méthosulfate, un éthosulfate, un iodure, un chlorure ou un bromure.

- 2. Composition selon la revendication 1, caractérisée par le fait qu'elle renferme d'autres colorants directs.
 - 3. Composition selon la revendication 2, caractérisée par le fait qu'elle renferme des colorants az iques, des colorants anthraquinoniques, des colorants nitrés de la série benzénique, des indoanilines, des indophénols ou des indamines.

- 4. Composition selon la revendication 1, caractérisée par le fait qu'elle renferme des colorants d'oxydation.
- 5. Compositi n selon l'une quelconque des revendications l à 4, caractérisée par le fait qu'elle renferme de 5 à 70 % en poids d'un alcool aliphatique inférieur comportant de 1 à 4 atomes de carbone.
 - 6. Composition selon la revendication 5, caractérisée par le fait que l'alcool est l'éthanol ou l'isopropanol.

10

15

20

25

30

35

- 7. Composition selon l'une quelconque des revendications 5 et 6, constituant une lotion capillaire de mise en plis, caractérisée par le fait qu'elle renferme une résine cosmétique dans la proportion de 1 à 3 % en poids, et 20 à 70 % en poids d'alcool.
- 8. Composition selon la revendication 7, caractérisée par le fait que la résine cosmétique qu'elle renferme est la polyvinylpyrrolidone, un copolymère acide crotonique-acétate de vinyle, vinylpyrrolidone-acétate de vinyle anhydride maléique-éther butyl vinylique ou anhydride maléique-méthyl vinyléther et ses esters éthylique, isopropylique ou butylique.
- 9. Composition selon l'une des revendications 1 à 8, caractérisée par le fait qu'elle contient comme solvant du butylcellosolve ou du propylène glycol en une quantité de 5 à 15 % en poids par rapport au poids de la composition.
- 10. Composition selon l'une des revendications l à 9, caractérisée par le fait que si elle contient un composé quaternaire de formule (I), son pH est de 3 à 7.
- 11. Composition selon l'une des revendications l à 10, caractérisée par le fait qu'elle contient un agent oxydant.
- 12. Composition selon la revendication ll, caractérisée par le fait qu'elle contient de l'eau oxygénée à 200 volumes en une quantité de 2 % à 10 % et de préférence 5 % en poids, ou une quantité équivalente d'eau oxygénée.
 - 13. Procédé de teinture des cheveux humains, caractérisé par le fait que l'on applique sur les cheveux une composition telle que définie dans l'une quelconque des revendications l à 6 et 10 à 12, qu'on laisse la composition en contact avec les cheveux pendant un temps compris entre 3 et 40 minutes, à la suite de quoi on rince les cheveux et éventuellement on les lave et on les sèche.
 - 14. Procédé de traitement des cheveux humains, caractérisé par le fait qu'on applique sur les cheveux préalablement lavés et rincés une lotion de mise en plis telle que définie dans l'une des revendications 7 à 12, à la suite de quoi on enroule les cheveux et on les sèche.
 - 15. Procédé de teinture des cheveux humains selon l'une des revendication 13 et 14, caractérisé par le fait qu'au moment de l'emploi, on ajoute un agent oxydant à la composition tinctoriale de l'une des revendications 1 à 10.

16. Nouveaux composés de formule générale

dans laquelle :

$$B = N_N N_N N_N$$

10

5

R = alcoyle inférieur contenant l à 4 atomes de carbone;

R₁= hydrogène ou alcoyle inférieur, alcoxy inférieur ou chloro;

R, = hydrogène, méthyle ou méthoxy;

 R_{\perp} = hydrogène, méthyle, chloro, nitro, amino ou acétylamino.

 R_3 = hydrogène ou bien R_4 et R_3 forment un cycle insaturé à 6 chaînons portant un substituant hydroxy chélaté avec un des atomes d'azote de la double liaison azoique;

A = un reste

20

30

avec R₅ = H; C₂H₅; β -hydroxyéthyle; ou CH₃

 $R_6 = H$; C_2H_5 ; β -hydroxyethyle; phényle; $CH_2-SO_3Na: ou -CH_3$;

25 étant entendu que lorsque B = N

> l'anion associé x à l'atome d'azote quaternisé dérivé d'un acide organique ou minéral, cet anion étant par exemple un méthosulfate, un éthosulfate, un iodure, un chlorure ou un bromure.

17. Procédé de préparation des composés de formule

(I)

R₅, R₆, et A ayant les valeurs indiquées dans la revendication 1 ; ce procédé étant caractérisé par le fait que ;

- a) on effectue la diazotation de l'amino-3 pyridine ou de l'amino-3 pyridine N-oxyde correspondant;
- b) on effectue la copulation du sel de diazonium obtenu en a) sur un composé de formule

$$R_{\Delta}$$
 R_{Δ}
 R_{3}

10

dans laquelle \mathbf{R}_2 , \mathbf{R}_3 , \mathbf{R}_4 et A ont les définitions précitées ;

- c) on précipite éventuellement par relargage le dérivé de l'amino-3 pyridine ou de l'amino-3 pyridine N-oxyde ainsi obtenu ; et
- d) après séparation et une recristallisation éventuelle, on le lave et on le 15 sèche.

18, Procédé de préparation des composés de formule :

20

- et, R, R₁, R₂, R₃, R₄, R₅, R₆ et A ont les valeurs indiquées dans la revendication l ; ce procédé étant caractérisé par le fait que ;
 - a) on fait réagir au sein d'un solvant le composé de la revendication 17 dans lequel B = Ny sur un agent alcoylant ayant la formule RX dans laquelle X désigne un anion dérivé d'un acide organique ou minéral. R ayant la définition précitée ;
 - b) on précipite éventuellement par relargage le dérivé quaternaire ainsi obtenu ; et
- c) après séparation et une recristallisation éventuelle, on le lave et on le 35 sèche.
 - 19. Procédé de préparation selon la revendication 18, caractérisé par le fait qu'on utilise comme agent alcoylant, un méthosulfate, un éthosulfate, un bromure, un iodure ou un chl rure.