Examen de Matemática Discreta

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema 1

Considerando el siguiente sumatorio $S = \sum_{i,j,k=1}^{8} x_i y_j z_k$. Se pregunta:

- a) De cuántos sumandos se compone esta expresión. (0,5 puntos)
- b) Si se supone que $i \neq j \neq k$, cuántos sumandos quedan. (0,5 puntos)
- c) Si $i \le j \le k$, cuántos sumandos quedan. (1,5 puntos) (2,5 puntos)

Problema 2

- a) Demostrar que el número de primos es infinito. (2 puntos)
- b) Demostrar que $1 + q + q^2 + ... + q^n = (1 q^{n+1})/(1 q)$ (1,5 puntos)

Problema 3

- a) Sea M la matriz de adyacencia de un grafo G con p vértices, p > 1. Demostrar que la entrada (i,j) de la matriz M^n es el número de caminos de longitud n con extremos v_i y v_j . (1,5 puntos).
- b) Sean n y k dos números naturales tales que $2k \le n$. Denotemos por X_n el conjunto $\{1,2,...,n\}$. Consideremos el grafo H(n,k) que tiene como vértices los subconjuntos de X_n con k elementos. Dos vértices distintos, A y B, están unidos por una arista si y sólo si $A \cap B \ne \emptyset$. No se consideran aristas del tipo AA, es decir, H(n,k) no es un pseudografo ni un multigrafo. Calcule en función de n y k cuántos vértices y aristas tiene H(n,k). (2,5 puntos)