

<u>Lecture 21: Introduction to</u> **Generalized Linear Models**;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

13. Variance in terms of the

> Canonical Parameter

13. Variance in terms of the Canonical Parameter Variance in terms of the Canonical Parameter

to link functions,

which are just a way to model how mu of x depends on x now

or how, in this case, theta of x depends on x.

Because we could talk about either mu

or we could talk about theta because if there's

only one parameter, it better depend on unknown mean.

So that's it.

Thank you.

7:43 / 7:43 X ▶ 1.0x

End of transcript. Skip to the start.

Video Download video file **Transcripts** Download SubRip (.srt) file <u>Download Text (.txt) file</u>

Practice: the Mean and Variance of Binomial Distribution

2/2 points (graded)

Recall that the pmf of a Binomial distribution ${\sf Binom}\,(n,p)$, with known n can be written as:

$$f_{ heta}\left(y
ight) \; = \; \exp\left(rac{y heta-b\left(heta
ight)}{\phi} + c\left(y,\phi
ight)
ight).$$

Refer to the answer of $b(\theta)$ and ϕ to the problem *Practice: Binomial Distribution as a Canonical Exponential Family* 2 pages before this one.

Compute $b'(\theta)$.

$$b'\left(\theta\right)=$$

$$\begin{array}{c} e^{\text{+}n}\\ \frac{e^{\theta}\cdot n}{1+e^{\theta}} \end{array}$$
e^{+}theta*n/(1+e^{+}theta)

(Is this equal to $\mathbb{E}\left[oldsymbol{y}
ight]$?)

Compute $\phi b''(\theta)$.

$$\phi b''(\theta) = e^{\theta \cdot n}$$
 e^{\theta \nabla n / (1 + e^{\theta})^2} Answer: n*e^{\theta / (1 + e^{\theta})^2}

Note: Express your answers in terms of the canonical parameter $oldsymbol{ heta}$.

STANDARD NOTATION

Solution:

Recall

$$b(\theta) = n \ln (1 + e^{\theta}).$$

Taking the derivative gives

$$b'(\theta) = \frac{db}{d\theta}(\theta) = \frac{ne^{\theta}}{1 + e^{\theta}}.$$

Recall that $heta=\ln\left(rac{p}{1-p}
ight)$ so $e^ heta=rac{p}{1-p}$. Plugging this in to the equation above gives

$$b^{\prime}\left(heta\left(p
ight)
ight) \;=\;rac{ne^{ heta}}{1+e^{ heta}}=np$$

which is, as expected, equal to $\mathbb{E}\left[Y
ight]$ where $Y\sim\mathsf{Binom}\left(n,p
ight)$.

Take the second derivative of $b\left(\theta\right)$:

$$egin{align} b''\left(heta
ight) &=& rac{db}{d heta}rac{ne^{ heta}}{1+e^{ heta}} \ &=& nrac{e^{ heta}\left(1+e^{ heta}
ight)-\left(e^{ heta}
ight)e^{ heta}}{\left(1+e^{ heta}
ight)^2} \ &=& nrac{e^{ heta}}{\left(1+e^{ heta}
ight)^2} \end{split}$$

Recall that $\phi=1$, so $\phi b''(\theta)=b''(\theta)$. Rewriting $\phi b''(\theta)$ in terms of p gives $\phi b''(\theta(p))=np(1-p)$, which is indeed the variance of a binomial variable $Y\sim \mathsf{Binom}\,(n,p)$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

The log-partition function b

4/4 points (graded)

For each proposed function b shown below, indicate (based only on its second derivative) whether it could potentially be a log-partition function of some exponential family **with dispersion** $\phi = 1$.

•
$$b(\theta) = \theta^2 - 2\theta + 1$$

Valid

Invalid

•
$$b(\theta) = \sqrt{\theta}$$

Valid

Invalid

$ullet \ b\left(heta ight)=\ln heta$	
O Valid	
● Invalid ✔	
$ullet \ b\left(heta ight)= heta$	
● Valid ✔	
Invalid	
Solution:	
Recall that in a canonical exponential family, $b''(heta)\cdot\phi= extstyle ext$) must be convex. Not
• Yes. Since the second derivative is positive, it is convex and therefore valid.	
No. Since the second derivative is negative, it is not convex and therefore invalid.	
No. Since the second derivative is negative, it is not convex and therefore invalid.	
• Yes. Since the second derivative is non-negative, it is convex and therefore valid.	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Discussion	Show Discussion
opic: Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; exponential Families / 13. Variance in terms of the Canonical Parameter	