(45)

2 Derivatives

This section is covering differentiation of a number of expressions with respect to a matrix \mathbf{X} . Note that it is always assumed that \mathbf{X} has no special structure, i.e. that the elements of \mathbf{X} are independent (e.g. not symmetric, Toeplitz, positive definite). See section 2.8 for differentiation of structured matrices. The basic assumptions can be written in a formula as

$$\frac{\partial X_{kl}}{\partial X_{ij}} = \delta_{ik}\delta_{lj} \tag{32}$$

that is for e.g. vector forms,

$$\left[\frac{\partial \mathbf{x}}{\partial y}\right]_i = \frac{\partial x_i}{\partial y} \qquad \left[\frac{\partial x}{\partial \mathbf{y}}\right]_i = \frac{\partial x}{\partial y_i} \qquad \left[\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right]_{ij} = \frac{\partial x_i}{\partial y_j}$$

The following rules are general and very useful when deriving the differential of an expression ([19]):

$$\begin{array}{rcl} \partial \mathbf{A} &=& 0 & (\mathbf{A} \text{ is a constant}) & (33) \\ \partial (\alpha \mathbf{X}) &=& \alpha \partial \mathbf{X} & (34) \\ \partial (\mathbf{X} + \mathbf{Y}) &=& \partial \mathbf{X} + \partial \mathbf{Y} & (35) \\ \partial (\mathrm{Tr}(\mathbf{X})) &=& \mathrm{Tr}(\partial \mathbf{X}) & (36) \\ \partial (\mathbf{X}\mathbf{Y}) &=& (\partial \mathbf{X})\mathbf{Y} + \mathbf{X}(\partial \mathbf{Y}) & (37) \\ \partial (\mathbf{X} \circ \mathbf{Y}) &=& (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y}) & (38) \\ \partial (\mathbf{X} \otimes \mathbf{Y}) &=& (\partial \mathbf{X}) \otimes \mathbf{Y} + \mathbf{X} \otimes (\partial \mathbf{Y}) & (39) \\ \partial (\mathbf{X}^{-1}) &=& -\mathbf{X}^{-1}(\partial \mathbf{X})\mathbf{X}^{-1} & (40) \\ \partial (\det(\mathbf{X})) &=& \mathrm{Tr}(\mathrm{adj}(\mathbf{X})\partial \mathbf{X}) & (41) \\ \partial (\det(\mathbf{X})) &=& \det(\mathbf{X})\mathrm{Tr}(\mathbf{X}^{-1}\partial \mathbf{X}) & (42) \\ \partial (\ln(\det(\mathbf{X}))) &=& \mathrm{Tr}(\mathbf{X}^{-1}\partial \mathbf{X}) & (43) \\ \partial \mathbf{X}_{-}^{T} &=& (\partial \mathbf{X})^{T} & (44) \end{array}$$

2.1 Derivatives of a Determinant

 $(\partial \mathbf{X})^H$

2.1.1 General form

$$\frac{\partial \det(\mathbf{Y})}{\partial x} = \det(\mathbf{Y}) \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right]$$
(46)

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X})$$
(47)

$$\frac{\partial^{2} \det(\mathbf{Y})}{\partial x^{2}} = \det(\mathbf{Y}) \left[\operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \frac{\partial \mathbf{Y}}{\partial x}}{\partial x} \right] + \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] - \operatorname{Tr} \left[\left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \right] \right]$$
(48)

2.1.2 Linear forms

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^T \tag{49}$$

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^{T}$$

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X})$$
(49)

$$\frac{\partial \det(\mathbf{A}\mathbf{X}\mathbf{B})}{\partial \mathbf{X}} = \det(\mathbf{A}\mathbf{X}\mathbf{B})(\mathbf{X}^{-1})^T = \det(\mathbf{A}\mathbf{X}\mathbf{B})(\mathbf{X}^T)^{-1}$$
 (51)

2.1.3 Square forms

If X is square and invertible, then

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mathbf{X}^{-T}$$
 (52)

If X is not square but A is symmetric, then

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{A} \mathbf{X})^{-1}$$
 (53)

If X is not square and A is not symmetric, then

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) (\mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{A} \mathbf{X})^{-1} + \mathbf{A}^T \mathbf{X} (\mathbf{X}^T \mathbf{A}^T \mathbf{X})^{-1})$$
(54)

2.1.4 Other nonlinear forms

Some special cases are (See [9, 7])

$$\frac{\partial \ln \det(\mathbf{X}^T \mathbf{X})|}{\partial \mathbf{X}} = 2(\mathbf{X}^+)^T \qquad (55)$$

$$\frac{\partial \ln \det(\mathbf{X}^T \mathbf{X})}{\partial \mathbf{X}^+} = -2\mathbf{X}^T \qquad (56)$$

$$\frac{\partial \ln |\det(\mathbf{X})|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^T = (\mathbf{X}^T)^{-1} \qquad (57)$$

$$\frac{\partial \det(\mathbf{X}^k)}{\partial \mathbf{X}} = k \det(\mathbf{X}^k) \mathbf{X}^{-T} \qquad (58)$$

$$\frac{\partial \ln \det(\mathbf{X}^T \mathbf{X})}{\partial \mathbf{X}^+} = -2\mathbf{X}^T \tag{56}$$

$$\frac{\partial \ln|\det(\mathbf{X})|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^T = (\mathbf{X}^T)^{-1}$$
(57)

$$\frac{\partial \det(\mathbf{X}^k)}{\partial \mathbf{X}} = k \det(\mathbf{X}^k) \mathbf{X}^{-T}$$
 (58)

2.2Derivatives of an Inverse

From [27] we have the basic identity

$$\frac{\partial \mathbf{Y}^{-1}}{\partial x} = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1} \tag{59}$$

from which it follows

$$\frac{\partial (\mathbf{X}^{-1})_{kl}}{\partial X_{ij}} = -(\mathbf{X}^{-1})_{ki}(\mathbf{X}^{-1})_{jl}$$
(60)

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T}$$
 (61)

$$\frac{\partial (\mathbf{X}^{-1})_{kl}}{\partial X_{ij}} = -(\mathbf{X}^{-1})_{ki}(\mathbf{X}^{-1})_{jl} \qquad (60)$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T} \qquad (61)$$

$$\frac{\partial \det(\mathbf{X}^{-1})}{\partial \mathbf{X}} = -\det(\mathbf{X}^{-1})(\mathbf{X}^{-1})^T \qquad (62)$$

$$\frac{\partial \mathbf{X}}{\partial \mathbf{Tr}(\mathbf{A}\mathbf{X}^{-1}\mathbf{B})} = -(\mathbf{X}^{-1}\mathbf{B}\mathbf{A}\mathbf{X}^{-1})^{T} \qquad (63)$$

$$\frac{\partial \text{Tr}((\mathbf{X} + \mathbf{A})^{-1})}{\partial \mathbf{X}} = -((\mathbf{X} + \mathbf{A})^{-1}(\mathbf{X} + \mathbf{A})^{-1})^{T} \qquad (64)$$

$$\frac{\partial \text{Tr}((\mathbf{X} + \mathbf{A})^{-1})}{\partial \mathbf{X}} = -((\mathbf{X} + \mathbf{A})^{-1}(\mathbf{X} + \mathbf{A})^{-1})^{T}$$
(64)

From [32] we have the following result: Let **A** be an $n \times n$ invertible square matrix, W be the inverse of A, and J(A) is an $n \times n$ -variate and differentiable function with respect to \mathbf{A} , then the partial differentials of J with respect to \mathbf{A} and \mathbf{W} satisfy

$$\frac{\partial J}{\partial \mathbf{A}} = -\mathbf{A}^{-T} \frac{\partial J}{\partial \mathbf{W}} \mathbf{A}^{-T}$$

2.3 Derivatives of Eigenvalues

$$\frac{\partial}{\partial \mathbf{X}} \sum \operatorname{eig}(\mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}) = \mathbf{I}$$
 (65)

$$\frac{\partial}{\partial \mathbf{X}} \prod \operatorname{eig}(\mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \det(\mathbf{X}) = \det(\mathbf{X}) \mathbf{X}^{-T}$$
(66)

If **A** is real and symmetric, λ_i and \mathbf{v}_i are distinct eigenvalues and eigenvectors of **A** (see (276)) with $\mathbf{v}_i^T \mathbf{v}_i = 1$, then [33]

$$\partial \lambda_i = \mathbf{v}_i^T \partial(\mathbf{A}) \mathbf{v}_i \tag{67}$$

$$\partial \mathbf{v}_i = (\lambda_i \mathbf{I} - \mathbf{A})^+ \partial (\mathbf{A}) \mathbf{v}_i \tag{68}$$

2.4Derivatives of Matrices, Vectors and Scalar Forms

2.4.1First Order

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{69}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T \tag{70}$$

$$\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^{T} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{b}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^{T}$$

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij}$$

$$\frac{\partial (\mathbf{X} \mathbf{A})_{ij}}{\partial \mathbf{X}_{ij}} = \mathbf{S}_{ij}$$
(71)

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$
 (72)

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \tag{73}$$

$$\frac{\partial (\mathbf{X}\mathbf{A})_{ij}}{\partial X_{--}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn}\mathbf{A})_{ij}$$
 (74)

$$\frac{\partial X_{ij}}{\partial X_{mn}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn}\mathbf{A})_{ij} \qquad (74)$$

$$\frac{\partial (\mathbf{X}^T \mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{in}(\mathbf{A})_{mj} = (\mathbf{J}^{nm}\mathbf{A})_{ij} \qquad (75)$$

Second Order 2.4.2

$$\frac{\partial}{\partial X_{ij}} \sum_{klmn} X_{kl} X_{mn} = 2 \sum_{kl} X_{kl} \tag{76}$$

$$\frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} (\mathbf{b} \mathbf{c}^T + \mathbf{c} \mathbf{b}^T)$$
 (77)

$$\frac{\partial \mathbf{b}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} (\mathbf{b} \mathbf{c}^{T} + \mathbf{c} \mathbf{b}^{T}) \tag{77}$$

$$\frac{\partial (\mathbf{B} \mathbf{x} + \mathbf{b})^{T} \mathbf{C} (\mathbf{D} \mathbf{x} + \mathbf{d})}{\partial \mathbf{x}} = \mathbf{B}^{T} \mathbf{C} (\mathbf{D} \mathbf{x} + \mathbf{d}) + \mathbf{D}^{T} \mathbf{C}^{T} (\mathbf{B} \mathbf{x} + \mathbf{b}) \tag{78}$$

$$\frac{\partial (\mathbf{X}^{T} \mathbf{B} \mathbf{X})_{kl}}{\partial X_{ij}} = \delta_{lj} (\mathbf{X}^{T} \mathbf{B})_{ki} + \delta_{kj} (\mathbf{B} \mathbf{X})_{il} \tag{79}$$

$$\frac{\partial (\mathbf{X}^T \mathbf{B} \mathbf{X})_{kl}}{\partial X_{ii}} = \delta_{lj} (\mathbf{X}^T \mathbf{B})_{ki} + \delta_{kj} (\mathbf{B} \mathbf{X})_{il}$$
 (79)

$$\frac{\partial (\mathbf{X}^T \mathbf{B} \mathbf{X})}{\partial X_{ij}} = \mathbf{X}^T \mathbf{B} \mathbf{J}^{ij} + \mathbf{J}^{ji} \mathbf{B} \mathbf{X} \qquad (\mathbf{J}^{ij})_{kl} = \delta_{ik} \delta_{jl} \quad (80)$$

See Sec 9.7 for useful properties of the Single-entry matrix \mathbf{J}^{ij}

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$
 (81)

$$\frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{D}^T \mathbf{X} \mathbf{b} \mathbf{c}^T + \mathbf{D} \mathbf{X} \mathbf{c} \mathbf{b}^T$$
(82)

$$\frac{\partial}{\partial \mathbf{X}} (\mathbf{X}\mathbf{b} + \mathbf{c})^T \mathbf{D} (\mathbf{X}\mathbf{b} + \mathbf{c}) = (\mathbf{D} + \mathbf{D}^T) (\mathbf{X}\mathbf{b} + \mathbf{c}) \mathbf{b}^T$$
(83)

Assume W is symmetric, then

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{A}^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(84)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (85)

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
(86)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(87)

$$\frac{\partial}{\partial \mathbf{A}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})\mathbf{s}^T$$
(88)

As a case with complex values the following holds

$$\frac{\partial (a - \mathbf{x}^H \mathbf{b})^2}{\partial \mathbf{x}} = -2\mathbf{b}(a - \mathbf{x}^H \mathbf{b})^*$$
 (89)

This formula is also known from the LMS algorithm [14]

2.4.3Higher-order and non-linear

$$\frac{\partial (\mathbf{X}^n)_{kl}}{\partial X_{ij}} = \sum_{r=0}^{n-1} (\mathbf{X}^r \mathbf{J}^{ij} \mathbf{X}^{n-1-r})_{kl}$$
(90)

For proof of the above, see B.1.3.

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{a}^T \mathbf{X}^n \mathbf{b} = \sum_{r=0}^{n-1} (\mathbf{X}^r)^T \mathbf{a} \mathbf{b}^T (\mathbf{X}^{n-1-r})^T$$
(91)

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{a}^{T} (\mathbf{X}^{n})^{T} \mathbf{X}^{n} \mathbf{b} = \sum_{r=0}^{n-1} \left[\mathbf{X}^{n-1-r} \mathbf{a} \mathbf{b}^{T} (\mathbf{X}^{n})^{T} \mathbf{X}^{r} + (\mathbf{X}^{r})^{T} \mathbf{X}^{n} \mathbf{a} \mathbf{b}^{T} (\mathbf{X}^{n-1-r})^{T} \right]$$
(92)

See B.1.3 for a proof.

Assume **s** and **r** are functions of **x**, i.e. $\mathbf{s} = \mathbf{s}(\mathbf{x}), \mathbf{r} = \mathbf{r}(\mathbf{x})$, and that **A** is a constant, then

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{s}^T \mathbf{A} \mathbf{r} = \left[\frac{\partial \mathbf{s}}{\partial \mathbf{x}} \right]^T \mathbf{A} \mathbf{r} + \left[\frac{\partial \mathbf{r}}{\partial \mathbf{x}} \right]^T \mathbf{A}^T \mathbf{s}$$
 (93)

$$\frac{\partial}{\partial \mathbf{x}} \frac{(\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x})}{(\mathbf{B}\mathbf{x})^T (\mathbf{B}\mathbf{x})} = \frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}}{\mathbf{x}^T \mathbf{B}^T \mathbf{B}\mathbf{x}}$$
(94)

$$= 2\frac{\mathbf{A}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{B} \mathbf{B} \mathbf{x}} - 2\frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} \mathbf{B}^T \mathbf{B} \mathbf{x}}{(\mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x})^2}$$
(95)

2.4.4 Gradient and Hessian

Using the above we have for the gradient and the Hessian

$$f = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} \tag{96}$$

$$\nabla_{\mathbf{x}} f = \frac{\partial f}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^T)\mathbf{x} + \mathbf{b}$$
(97)

$$\frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T} = \mathbf{A} + \mathbf{A}^T \tag{98}$$

2.5 Derivatives of Traces

Assume $F(\mathbf{X})$ to be a differentiable function of each of the elements of X. It then holds that

$$\frac{\partial \mathrm{Tr}(F(\mathbf{X}))}{\partial \mathbf{X}} = f(\mathbf{X})^T$$

where $f(\cdot)$ is the scalar derivative of $F(\cdot)$.

2.5.1 First Order

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}) = \mathbf{I} \tag{99}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^T \tag{100}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B}) = \mathbf{A}^T \mathbf{B}^T \tag{101}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{A}$$
 (102)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{A}) = \mathbf{A} \tag{103}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A} \mathbf{X}^T) = \mathbf{A} \tag{104}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \otimes \mathbf{X}) = \text{Tr}(\mathbf{A})\mathbf{I}$$
 (105)

2.5.2 Second Order

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^2) = 2\mathbf{X}^T \tag{106}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^2 \mathbf{B}) = (\mathbf{X} \mathbf{B} + \mathbf{B} \mathbf{X})^T$$
 (107)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{B} \mathbf{X}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (108)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X} \mathbf{X}^T) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (109)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (110)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \mathbf{B} \mathbf{X}^T) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (111)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X}^T \mathbf{X}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (112)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{X} \mathbf{B}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (113)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}) = \mathbf{A}^T \mathbf{X}^T \mathbf{B}^T + \mathbf{B}^T \mathbf{X}^T \mathbf{A}^T \qquad (114)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \mathbf{X}^T) = 2\mathbf{X} \quad (115)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B}) = \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T$$
 (116)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\mathbf{X}^T \mathbf{B} \mathbf{X} \mathbf{C} \right] = \mathbf{B} \mathbf{X} \mathbf{C} + \mathbf{B}^T \mathbf{X} \mathbf{C}^T$$
 (117)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C}) = \mathbf{A}^T \mathbf{C}^T \mathbf{X} \mathbf{B}^T + \mathbf{C} \mathbf{A} \mathbf{X} \mathbf{B}$$
(118)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[(\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{C}) (\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{C})^T \right] = 2\mathbf{A}^T (\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{C}) \mathbf{B}^T$$
(119)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \otimes \mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}) \text{Tr}(\mathbf{X}) = 2 \text{Tr}(\mathbf{X}) \mathbf{I}(120)$$

See [7].

2.5.3 Higher Order

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^k) = k(\mathbf{X}^{k-1})^T$$
 (121)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^k) = \sum_{r=0}^{k-1} (\mathbf{X}^r \mathbf{A} \mathbf{X}^{k-r-1})^T$$
 (122)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B} \right] = \mathbf{C} \mathbf{X} \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \\ + \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C}^T \mathbf{X} \\ + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \\ + \mathbf{C}^T \mathbf{X} \mathbf{X}^T \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T$$
(123)

2.5.4 Other

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^{-1} \mathbf{B}) = -(\mathbf{X}^{-1} \mathbf{B} \mathbf{A} \mathbf{X}^{-1})^T = -\mathbf{X}^{-T} \mathbf{A}^T \mathbf{B}^T \mathbf{X}^{-T}$$
(124)

Assume \mathbf{B} and \mathbf{C} to be symmetric, then

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr} \Big[(\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{A} \Big] = -(\mathbf{C} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}) (\mathbf{A} + \mathbf{A}^T) (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (125)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr} \Big[(\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{B} \mathbf{X}) \Big] = -2\mathbf{C} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{B} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}$$

$$+2\mathbf{B} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (126)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr} \Big[(\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{B} \mathbf{X}) \Big] = -2\mathbf{C} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}$$

$$+2\mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (127)$$

See [7].

$$\frac{\partial \text{Tr}(\sin(\mathbf{X}))}{\partial \mathbf{X}} = \cos(\mathbf{X})^T \tag{128}$$

2.6 Derivatives of vector norms

2.6.1 Two-norm

$$\frac{\partial}{\partial \mathbf{x}}||\mathbf{x} - \mathbf{a}||_2 = \frac{\mathbf{x} - \mathbf{a}}{||\mathbf{x} - \mathbf{a}||_2} \tag{129}$$

$$\frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|_{2}} = \frac{\mathbf{I}}{\|\mathbf{x} - \mathbf{a}\|_{2}} - \frac{(\mathbf{x} - \mathbf{a})(\mathbf{x} - \mathbf{a})^{T}}{\|\mathbf{x} - \mathbf{a}\|_{2}^{3}}$$
(130)

$$\frac{\partial ||\mathbf{x}||_2^2}{\partial \mathbf{x}} = \frac{\partial ||\mathbf{x}^T \mathbf{x}||_2}{\partial \mathbf{x}} = 2\mathbf{x}$$
(131)

2.7 Derivatives of matrix norms

For more on matrix norms, see Sec. 10.4.

2.7.1 Frobenius norm

$$\frac{\partial}{\partial \mathbf{X}} ||\mathbf{X}||_{\mathrm{F}}^2 = \frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X} \mathbf{X}^H) = 2\mathbf{X}$$
 (132)

See (248). Note that this is also a special case of the result in equation 119.

2.8 Derivatives of Structured Matrices

Assume that the matrix **A** has some structure, i.e. symmetric, toeplitz, etc. In that case the derivatives of the previous section does not apply in general. Instead, consider the following general rule for differentiating a scalar function $f(\mathbf{A})$

$$\frac{df}{dA_{ij}} = \sum_{kl} \frac{\partial f}{\partial A_{kl}} \frac{\partial A_{kl}}{\partial A_{ij}} = \text{Tr} \left[\left[\frac{\partial f}{\partial \mathbf{A}} \right]^T \frac{\partial \mathbf{A}}{\partial A_{ij}} \right]$$
(133)

The matrix differentiated with respect to itself is in this document referred to as the structure matrix of **A** and is defined simply by

$$\frac{\partial \mathbf{A}}{\partial A_{ij}} = \mathbf{S}^{ij} \tag{134}$$

If **A** has no special structure we have simply $\mathbf{S}^{ij} = \mathbf{J}^{ij}$, that is, the structure matrix is simply the single-entry matrix. Many structures have a representation in singleentry matrices, see Sec. 9.7.6 for more examples of structure matrices.

The Chain Rule

Sometimes the objective is to find the derivative of a matrix which is a function of another matrix. Let $\mathbf{U} = f(\mathbf{X})$, the goal is to find the derivative of the function $g(\mathbf{U})$ with respect to \mathbf{X} :

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\partial g(f(\mathbf{X}))}{\partial \mathbf{X}} \tag{135}$$

Then the Chain Rule can then be written the following way:

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\partial g(\mathbf{U})}{\partial x_{ij}} = \sum_{k=1}^{M} \sum_{l=1}^{N} \frac{\partial g(\mathbf{U})}{\partial u_{kl}} \frac{\partial u_{kl}}{\partial x_{ij}}$$
(136)

Using matrix notation, this can be written as:

$$\frac{\partial g(\mathbf{U})}{\partial X_{ij}} = \text{Tr}\left[\left(\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}}\right)^T \frac{\partial \mathbf{U}}{\partial X_{ij}}\right]. \tag{137}$$

2.8.2Symmetric

If **A** is symmetric, then $\mathbf{S}^{ij} = \mathbf{J}^{ij} + \mathbf{J}^{ji} - \mathbf{J}^{ij}\mathbf{J}^{ij}$ and therefore

$$\frac{df}{d\mathbf{A}} = \left[\frac{\partial f}{\partial \mathbf{A}}\right] + \left[\frac{\partial f}{\partial \mathbf{A}}\right]^{T} - \operatorname{diag}\left[\frac{\partial f}{\partial \mathbf{A}}\right]$$
(138)

That is, e.g., ([5]):

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A} + \mathbf{A}^{T} - (\mathbf{A} \circ \mathbf{I}), \text{ see } (142) \tag{139}$$

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I})) \tag{140}$$

$$\frac{\partial \ln \det(\mathbf{X})}{\partial \mathbf{X}} = 2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I}) \tag{141}$$

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I}))$$
 (140)

$$\frac{\partial \ln \det(\mathbf{X})}{\partial \mathbf{X}} = 2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I})$$
(141)

2.8.3 Diagonal

If X is diagonal, then ([19]):

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A} \circ \mathbf{I} \tag{142}$$

2.8.4 Toeplitz

Like symmetric matrices and diagonal matrices also Toeplitz matrices has a special structure which should be taken into account when the derivative with respect to a matrix with Toeplitz structure.

As it can be seen, the derivative $\alpha(\mathbf{A})$ also has a Toeplitz structure. Each value in the diagonal is the sum of all the diagonal valued in \mathbf{A} , the values in the diagonals next to the main diagonal equal the sum of the diagonal next to the main diagonal in \mathbf{A}^T . This result is only valid for the unconstrained Toeplitz matrix. If the Toeplitz matrix also is symmetric, the same derivative yields

$$\frac{\partial \text{Tr}(\mathbf{AT})}{\partial \mathbf{T}} = \frac{\partial \text{Tr}(\mathbf{TA})}{\partial \mathbf{T}} = \boldsymbol{\alpha}(\mathbf{A}) + \boldsymbol{\alpha}(\mathbf{A})^T - \boldsymbol{\alpha}(\mathbf{A}) \circ \mathbf{I}$$
(144)