PM 592 Regression Analysis for Public Health Data Science

Week 5

Multiple Regression

1

Multiple Regression

Shared Covariance

The Multiple Regression Model

Multiple Regression Assumptions

Collinearity

Regression Diagnostics

2

Lecture Objectives

- > Explain the effect that shared covariance of independent variables has on predicting an outcome.
- > Write the form of the multiple regression model.
- \succ Interpret coefficients from a multiple regression model.
- > Interpret the R-squared value from a multiple regression model.
- > Diagnose collinearity effects.
- > Perform a comprehensive analysis for diagnosing outliers and influential points in a linear regression model.

1. Review	4
✓ How to assess the assumptions of linear regression	
✓ Explain the concept behind the ANOVA table	
✓ Advantages and disadvantages of transforming Y (and X)	
✓ Correlation and its relation to regression	
✓ Interpreting the slope for a binary X variable	
✓ Dummy variable sets for categorical predictors	
, , , , , , , , , , , , , , , , , , , ,	
1	
2. Shared Covariance	s
Example	<u> </u>
Suppose researchers collected the following data from participants at a previous ToonCon:	-
SW – Liking of the Star Wars franchise (0-100 scale)	
ST – Liking of the Star Trek franchise (0-100 scale)	
SA – Score on a "social adjustment" scale (0-100)	
Male – Gender of participant	
5	
2. Shared Covariance	
If we want to know the relationship between the liking of these two	
franchises and social adjustment score, one possible approach would be	
to perform several univariable linear regression models. > ln(sa - su, data - data5) %% summay()	
Call: ln(formula = sa ~ sw, data = data5)	
Residuals: Min 10 Median 30 Max Each unit increase in liking Star Wars is	
-30.095 -9.107 2.049 8.616 33.240 associated with a 0.93-unit decrease in predicted Social Adjustment score.	
Estimate Std. Error t value Pr(> t) (Intercept) 95.0918 4.09294 20.25 <2e-16 *** sw	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
Residual standard error: 13.64 on 98 degrees of freedom Multiple R-squared: 0.5309, Adjusted R-squared: 0.5261 F-statistic: 110.9 on 1 and 98 OF, p-value: 2.2.e-16	

2. Shared Covariance	
If we want to know the relationship franchises and social adjustment so to perform several univariable lin	core, one possible approach would be
> lm(sa ~ st, data = data5) %>% summary()	
-38.410 -8.285 0.513 10.936 29.081	Each unit increase in liking Star Trek is associated with a 0.96-unit decrease in predicted Social Adjustment score.
Estimate Std. Error t value Pr(> t) (Intercept) 102.75775 5.74864 17.88 < 2e-16 ***	
(intercept) 182.757/5 5.74864 17.88 < 20-16 *** st -0.96413 0.09769 -9.87 2.320-16 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1	
Residual standard error: 14.1 on 98 degrees of freedom Multiple R-squared: 0.4985, Adjusted R-squared: 0.4934 F-statistic: 97.41 on 1 and 98 DF, p-value: 2.321e-16	

z. Shared Covariance	
	ip between the liking of these two score, one possible approach would be inear regression models.
> lm(sa ~ male, data = data5) %>% summary()	
Call: ln(formula = sa ~ male, data = data5) Residuals: Min 10 Median 30 Max -40.884 -13.586 -0.517 13.332 39.082	Being male is associated with a 10.2- unit decrease in predicted Social Adjustment score.
Coefficients: Estimate Std. Error t value Pr(> t)	
(Intercept) 53.381 2.868 18.610 < 2e-16 ***	
male -10.230 3.868 -2.645 0.00951 **	
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
Signit. codes: 0 0.001 0.01 0.05 0.1 1	
Residual standard error: 19.24 on 98 degrees of freedom Multiple R-squared: 0.06663, Adjusted R-squared: 0.05711 F-statistic: 6.996 on 1 and 98 DF, p-value: 0.009515	

8

2. Shared Covariance

It appears that the effect of each of our variables is as follows:

Model	Beta	P-Value	R ²
1: SW	-0.93	<0.001	0.53
2: ST	-0.96	<0.001	0.50
3: Male	-10.2	0.01	0.07

So we conclude that liking Star Wars, Star Trek, and being male are all associated with lower predicted social adjustment scores.

2. Shared Covariance

Is there more to this story, though?

When we run several separate regressions, we inherently assume all the effects are independent of each other.

Model	Beta	P-Value	R ²
1: SW	-0.93	<0.001	0.53
2: ST	-0.96	<0.001	0.50
3: Male	-10.2	0.01	0.07

But if these effects were independent of each other (r=0 among all X), then the regression R² for all of them combined would be 0.53 + 0.50 + 0.07 = 110%. This clearly can't be the true!

10

2. Shared Covariance

In each model, the dependent variable explains a particular portion of the variance in the outcome.

For Liking Star Trek, this is 50%. For gender, it is 7%.

We can visualize this as follows:

11

2. Shared Covariance

But here we see that all of our predictor variables are correlated to some extent!

Liking Star Trek is correlated with being male.

Recap Sometimes X variables are related to each other as well as to Y When X variables are related to each other, their effect on Y may be "shared" with other X variables

2. Shared Covariance 15	1
Recap	
➤ Explain the concept of "shared covariance" among X variables and how it affects their relationship with Y.	
16	
3. The Multiple Regression Model	
What did we do here? We combined ST, SW, and male into a single multiple regression model.	
• Let $\mu_{Y X_1,X_2,\dots,X_K}$ denote the mean value of Y for a given set of X variables.	
• Let $\sigma^2_{Y X_1,X_2,,X_K}$ denote the corresponding variance of Y for a given set of X variables.	
of X variables.	
17	
	_
3. The Multiple Regression Model We define the multiple regression equation as:	
We define the multiple regression equation as:	
$\mu_{Y X_1,X_2,\dots,X_K} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$	
$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$	

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K + e$

3. The Multiple Regression Model

Parameter Interpretations

 β_0 : The estimated mean when <u>all</u> X variables equal 0.

 β_k : The estimated difference in mean Y associated with a 1-unit change in X_k , when all other X variables are held constant.

The slope estimates represent partial regression coefficients. The following terminology is interchangeably used: $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2}$

- Holding all other X constant
- Controlling for all other X
- Adjusting for all other X
- Partialling out all other X
- · Taking all other X into account

19

3. The Multiple Regression Model What is the best-fit multiple regression model? > In(so ~ sw + st + male, data * data5) %3% summary() Call: In(formula = sa ~ sw + st + male, data = data5) Residuals: Win 10 Median 30 Max -24.740 -73.93 -1.535 9.472 25.327 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 113.77223 4.66080 36.434 c 2e-16 *** sw 40.1399 8.013180 -2.284 6.08020 *** sw 40.1399 8.013180 -2.284 6.08020 *** sw 40.1399 8.013180 -2.284 6.08020 *** st 50.1399 8.013180 -2.284 6.08020 *** st 40.1399 8.013180 -2.284 6.08020 *** st 50.1399 8.013180 -2.284 6.08020 *** st 60.1399 8.013180 -2.284 6.08020 *** st 70.1399 8.013180 -2.284 6.08020 *** st 70.13

20

3. The Multiple Regression Model What is the best-fit multiple regression model? > In(aa - su + st + male, data - data5) 3X summary() Call: In(formula - sa - su + st + male, data - data5) Residuals: Hin 10 Redian 30 Nax -24.760 -7.393 -1.535 9.472 25.327 Coefficients: Istinate Std. Error + value Pr(>|t|) (Intercept) 113.7723 4.66883 38.444 < 22-16 *** st -0.31885 0.1189 -2.854 0.86923 ** male -11.34294 2.0782 -4.243 5.086-05 *** Signif, codes: 0 **** 0.081 *** 0.06 **, 0.1 *** Residual standard error: 10.92 on 96 degrees of freedom Multiple Regarded 0.7066, Adjuste 8 r-sparsed: 0.6944 P-statistic: 70.7 on 3 and 96 0f, p-value: 2.22-16 Y = 113.77 - 0.81X_{SW} - 0.32X_{ST} - 11.34X_{MALE}

3. The Multiple Regression Model

What is the interpretation of R2?

- The multiple R² now reflects the proportion of variation in Y that is explained by <u>all</u> the X variables in the model.
- In single linear regression $\sqrt{R^2}=R$ reflected the correlation between X and Y.
- In multiple linear regression, multiple R reflects the correlation between an optimally-weighted linear combination of independent variables (i.e., our predicted value of Y) and the actual value of Y.
- Unlike r, multiple R always ranges between 0 and 1.

22

3. The Multiple Regression Model

Practice Questions

$$\hat{Y} = 113.77 - 0.81 X_{SW} - 0.32 X_{ST} - 11.34 X_{MALE}$$

- 1) What is the estimated difference in Y for a 10-point increase in SW score, holding ST and MALE constant?
- 2) What is the estimated difference in Y for a male who scored 75 on both SW and ST scales, vs. a female who scored 50 on both SW and ST scales?

23

3. The Multiple Regression Model

Practice Questions

$$\hat{Y} = 113.77 - 0.81 X_{SW} - 0.32 X_{ST} - 11.34 X_{MALE}$$

1) What is the estimated difference in Y for a 10-point increase in SW score, holding ST and MALE constant?

$$\begin{split} \widehat{Y}_1 &= 113.77 - 0.81 X_{SW} - 0.32 X_{ST} - 11.34 X_{MALE} \\ \widehat{Y}_2 &= 113.77 - 0.81 (X_{SW} + 10) - 0.32 X_{ST} - 11.34 X_{MALE} \end{split}$$

$$\hat{Y}_2 - \hat{Y}_1 = -0.81 (X_{SW} + 10) - (-0.81)(X_{SW}) = -8.1$$

Alternately, we know $\beta_{SW} = -0.81$ is the effect on Y for a 1-unit increase in X_{SW} , so the effect for a 10-unit increase would be 10(-0.81) = -8.1

3. The Multiple Regression Model

Practice Questions

$$\hat{Y} = 113.77 - 0.81X_{SW} - 0.32X_{ST} - 11.34X_{MALE}$$

2) What is the estimated difference in Y for a male who scored 75 on both SW and ST scales, vs. a female who scored 50 on both SW and ST scales?

$$\widehat{Y}_1 = 113.77 - 0.81(50) - 0.32(50) - 11.34(0)$$

 $\widehat{Y}_2 = 113.77 - 0.81(75) - 0.32(75) - 11.34(1)$

$$\begin{split} \hat{Y}_2 - \hat{Y}_1 &= (113.77 - 113.77) - 0.81 X_{SW} (75 - 50) - 0.32 (75 - 50) - 11.34 (1 - 0) \\ &= (113.77 - 113.77) - 0.81 (25) - 0.32 (25) - 11.34 (1) = -39.59 \end{split}$$

A male who scored 75 on both SW and ST scales is predicted to have a 39.59-point lower SA score

25

3. The Multiple Regression Model

Recap

- The slope coefficients in multiple regression models must be interpreted *relative to the other variables in the model*
- Multiple R² reflects the variance in Y that is explained by all X variables collectively

26

3. The Multiple Regression Model

Recap

- >Interpret slope estimates from a multiple regression model
- >Interpret intercepts from a multiple regression model
- ➤ Explain the concept of R²
- ➤ Explain how R² can be interpreted in the context of a correlation coefficient

4.	Multipl	e Regression	Model	Assum	ptions

Overall, the model assumptions for multiple regression are the same as for single regression.

We will go over a couple of nuances as we look at multiple independent variables.

28

4. Multiple Regression Model Assumptions

Linearity

- The mean of Y is a linear function of the independent variables.
- i.e., $\mu_{Y|X_1,X_2,\dots,X_k}=\beta_0+\beta_1X_1+\beta_2X_2+\dots+\beta_KX_K$
- Because all the X variables are included together, we can't just look at a plot of Y vs. any specific X; we'll have to examine the residuals for this.

29

4. Multiple Regression Model Assumptions

Normality

- For any fixed values of X_1, X_2, \dots, X_k , Y has a normal distribution.
- With large N, the central limit theorem makes inferences robust to deviations from this assumption.

31

4. Multiple Regression Model Assumptions

Homoscedasticity

- For any fixed values of $X_1, X_2, ..., X_k$, the variance of Y is a constant.
- Technically, we want to see that the variance of Y is constant across the multivariate distribution of X values
- Since this is difficult to do, we frequently examine the variance of Y across the fitted values of Y.

32

4. Multiple Regression Model Assumptions

Recap

- Multiple regression model assumptions are the same as for single regression
- To make examination of plots easier when there are many X variables, sometimes we examine the residuals as a function of \hat{Y} instead of as a function of X.

		-		
4. Multiple Regression Model Assumptions	34	34		
Recap		1 -		
➤ Assess the LINE assumptions from	n a multiple regression model			
		-		
		-		
		-		
		l .		
		-		
2.4				
34				
5. Collinearity	33	35		
·				
Example		'		
100 participants were surveyed beforean-eat food plan. Participants' wei	ore a cruise that offered an all-you-	١.		
after the cruise Participants also fill	ed out a survey asking about their			
liking of particular food items.	· ·	-		
WGAIN: weight gain post- vs. pre-to-	rip			
FRIES: score of liking French fries (1	-100 scale)	-	-	
CHIPS: score of liking potato chips ((1-100 scale)			
		-		
35		_		
55				
5. Collinearity	36	36		
•				
gain during the trip.	pear to be strong predictors of weight	'		
> lm(wgain ~ fries, data = data6) %>% summary()	> lm(wgain ~ chips, data = data6) %>% summary()	1 .		
Call: lm(formula = wgain ~ fries, data = data6)	Call: lm(formula = wgain ~ chips, data = data6)			
Residuals: Min 1Q Median 3Q Max	Residuals: Min 1Q Median 3Q Max	1 .		
-5.6333 -2.1853 0.0965 1.9174 4.9363 Coefficients:	-5.9340 -2.0774 0.1946 1.9435 4.6659 Coefficients:			
Estimate Std. Error t value Pr(> t) (Intercept) -0.08230 0.85101 -0.097 0.923	Estimate Std. Error t value Pr(> t) (Intercept) 0.31171 0.78837 0.395 0.693	1		
fries 0.09885 0.01622 6.095 2.16e-08 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1	chips	1 .		
Residual standard error: 2.486 on 98 degrees of freedom	Residual standard error: 2.485 on 98 degrees of freedom	1		

Diagnosing Collinearity The variance inflation factor (VIF) is the amount the standard errors have been inflated by because of the inclusion of other correlated variables. The tolerance is 1/VIF. The VIF will be 1 when the X variable is not correlated with any other independent variables in the model. Rule of Thumb: A VIF value > 10 indicates serious issues with collinearity.

43

44

5. Collinearity

Collinearity: What to Do?

- Sometimes centering the variables can help.
- When variables are highly collinear, they provide similar information about Y and little is lost by including only one.
- How to choose which variable to drop?
 - $\circ\quad$ Whichever was least significant in a single linear regression model.
 - o Whichever has the highest VIF value.
 - $_{\odot}\;$ Whichever has less missing data.
 - o Whichever is harder or more expensive to obtain.

Co	ш	me	ПΧ

Recap

- Collinearity is a problem in multiple regression when two or more X variables are very highly related
- Collinearity can cause numerical problems in the regression output

46

5. Collinearity

Recap

- > Explain how to diagnose collinearity in a multiple regression model
- > Explain how to proceed with model building upon encountering collinearity
- \succ Explain the difference between Type I and Type III Sums of Squares

47

6. Regression Diagnostics

Correlation between Countries' Annual Per Capita Chocolate Consumption & # of Nobel Laureates per 10 Million Population

"There was a close, significant, linear correlation (r=0.791, p<.0001) between chocolate consumption per capita and the number of Nobel laureates per 10 million persons in a total of 23 countries... When recalculated with the exclusion of Sweden, the correlation coefficient increased to 0.862."

Messerli FH. N Engl J Med 2012;367:1562-1564

6. Regression Diagnostics

Days from 100th COVID-19 case to quarantine plotted against date of 100th case (in days from Jan 19, 2020; China's 100th case).

The two variables are correlated (r = -0.47, p=.003) after removing China (red square).

49

6. Regression Diagnostics

Ultimately in regression we want a "good" model in that it:

- 1. Satisfies the assumptions of linear regression
 - Basic satisfaction of the LINE assumptions, and more to be covered
- 2. Generalizes to some population of interest
 - This is typically addressed through study design, but also by detection of outliers
- 3. Accurately estimates the relationship between Y and each X
 - Adequate sample size, no collinearity, account for confounding and effect modification (next week)
- 4. Has some basis in reality
 - Up to you and your colleagues to decide
 - More complicated models are harder to interpret; the best models are simple yet good ("parsimonious")

50

6. Regression Diagnostics

The best way to meet these goals is to **know your data**

- Print your data in the results window or open it in the data viewer
- Exploratory data analysis for frequencies, means, maximum and minimum values
- Plotting the univariate distributions (histograms) and multivariate distributions (scatterplots) to spot potential data errors
- Correlation matrices to understand pairwise relationships among variables

6. Regression Diagnostics

Diagnostics Definitions

Outlier. A rare or unusual observation that appears at one of the extremes of the univariate or multivariate distributions.

Leverage (h_i). The extremeness of an observation with respect to the independent variables. The leverage of a data point depends on the distance of its X-value from the corresponding mean of all X values.

$$h_i = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{(n-1)S_X^2}$$

Influence. A data point is influential if, by itself, it has a substantial impact on the parameter estimates (intercepts, slopes) in a model. This typically happens when an observation is an outlier with high leverage (extreme in X and an unusual pattern of Y|X).

52

6. Regression Diagnostics

Advanced Residual Analysis

There are subtle differences among the different types of residuals we can examine.

The true residual. This is a bit of an abstract concept. The errors e_i are assumed to have mean 0 and variance σ^2 . We can never really tell what the true residual is, as we can only measure them empirically based on the model we choose.

The estimated residual. What we are accustomed to calculating. This is given as: $\hat{e}_i = Y_i - \hat{Y}_i$. The mean of all estimated residuals is 0.

53

6. Regression Diagnostics

The standardized residual. $z_i=\frac{\dot{e}_i}{S}$. Essentially, each residual is converted to a z-score by dividing by the standard deviation of all residuals (mean 0 and variance 1). Because they're standardized, we can immediately determine how extreme the residual value is.

The studentized residual. $r_i=\frac{z_i}{\sqrt{1-h_i}}$. These values follow a T distribution with n-k-1 d.f. if regression assumptions are met.

6	Regression	Diagnosti	2

The jackknife residual. $r_{(-i)} = \frac{\hat{e}_i}{S_{(-i)}\sqrt{1-\hat{h}_i'}}$ where $S_{(-i)}$ is the standard deviation of the residuals computed from a model where the ith observation is deleted.

This type of residual is especially useful for identifying influential points.

These values follow a T-distribution with n-k-2 degrees of freedom if regression assumptions are met.

Jackknife residuals are large when the studentized residual is large.

55

6. Regression Diagnostics

Measures of Influence

There are 3 statistics that quantify the amount of influence an observation has on the estimated regression slope(s) or predicted value of Y.

56

6. Regression Diagnostics

1. Cook's Distance

A measure of how much all the fitted values change with the deletion of each observation.

$$d_i = \frac{e_i^2 h_i}{(k+1)S^2(1-h_i)^2} = \frac{r_i^2 h_i}{(k+1)(1-h_i)}$$

Observations with d_i > 0.5 may be worth investigating. Observations with d_i > 1 are likely worth investigating. Any observation with a Cook's distance that "sticks out should be investigated. 6. Regression Diagnostics

2. DFBETAS

A measure of how much the regression coefficients change with the exclusion of the i^{th} observation.

$$\Delta\beta = \frac{\hat{\beta} - \hat{\beta}_{(-i)}}{S_{(-i)} \sqrt{\Sigma X_i^2}}$$

Observations with $\Delta \beta > 2/\sqrt{n}$ are influential.

58

6. Regression Diagnostics

3. DFFITS

A measure of how much the predicted value for the i^{th} observation changes when the i^{th} observation is deleted.

$$\Delta \hat{Y}_i = \frac{\hat{Y}_i - \hat{Y}_{i(-i)}}{S_{(-i)} \sqrt{\Sigma h_i}}$$

Observations with $\Delta \hat{Y}_i > 2/\sqrt{k/n}$ are influential.

59

6. Regression Diagnostics Summary of Rules of Thumb

Leverage	Cook's D	DFBETAS	DFFIT
$h_i > 2(k+1)/n$	$d_i > 1$	$ \Delta \beta > 2/\sqrt{n}$	$ \Delta \hat{Y}_i > 2/\sqrt{k/n}$

o. Regression Diagnostics	
Example	
What is the combined effect of house age, number of stores nearby, and distance to the nearest MRT station on price per unit area?	

6. Regression Diagnostics **Summary of Residuals** Standardized · Z-score of residuals • Identifies outliers Studentized (internally) • Standardizes to a t-distribution · Accounts for leverage · Identifies outliers Jackknife (externally studentized) \bullet Studentized residual from fitting a model that deletes the observation in question · Identifies influential points • Better at identifying outliers on Y 73 6. Regression Diagnostics What to do when you encounter problematic data points? • Check for obvious data errors • Check for the accuracy of the data point • Delete the point if it is not representative of your intended population • Consider the formulation of your model • Did you leave out important predictors? • Is there nonlinearity, or are there interactions you have to consider? • Always justify why you alter data • Have a good objective reason for deleting data points • You can always perform "sensitivity" analysis; report the results with the data point included and excluded 74 6. Regression Diagnostics Recap • While not part of the LINE assumptions, models should be checked to see if any data point has undue influence on the regression model • Problematic observations are those that 1) have high leverage (potential to be influential) and 2) have high residuals • There are no firm rules about what constitutes an influential value; you'll need to make a decision based on the evidence you find

6. Regression Diagnostics	76
Recap	
•	
Explain the different ways of calculating a model residual	
➤ Explain the different regression diagnostic metrics and what each measures	
➤ Explain how to spot an influential observation	
➤ Describe the steps that should be taken upon finding influential	
observations	
76	_
, ,	
Additional Reading	
	7
Type I and Type III Sum of Squares	
https://www.youtube.com/watch?v=mNzljQBKu5l	
·	
Partial and Seminartial Correlations	
Partial and Semipartial Correlations https://www.youtube.com/watch?v=yb0a4wPERZc	
77	
7. Recap	78
Packages and Functions	
• plot(lm_object)	
• car::residualPlots()	
car::Anova()GGally::ggpairs()	
• olsr::ols_vif_tol()	
• olsr::ols_plot_cooksd_bar()	
olsr::ols_plot_diffits()olsr::ols_plot_resid_stud()	
• olsr::ols_plot_resid_stand()	
olsr::ols_plot_resid_lev()influence.measures()	-
	-
	•