

Metural exclusion: - At least one neocource type in the system which can be used in Mon-sharable mode i.e. mutual exclusion (one-at a time/one-by one) eg Brinten.

Hold & wait: - A process is currently holding at least one neowerce and nequesting additional neowerces which are being held by other processes. Pr > Pr > Pr

No pre-emption: - A resource can not be pre-empted from a process by any other process neowerce can be necessed only valuntarily by the process holding it.

Curcular wait: - Each process must be waiting for a neowerce which is being held by another process, which in turn is waiting for the first process to release the nexture.

[KG]

Part 4.3 Deadlock handling method | Deadlock Prevention | Deadlock Avoidance | Deadlock Detectio...

Deadlock handling methods.

Severe X prequency

O Brevention -> means design such a system which voilate at least one of four necessary conditions of dead lock.

Alvoidance -> System maintains a set of data using which it takes a decision weather to entertain a new request an not, to be in safe state.

Obstection and recovery -> Here we wait until decolor occurs and once we detect it we become from it.

Notance / Ostrich algo -> We ignore the problem as if it does not exist.

2:22 / 13:25

KG

Deadlock prevention: - (No Bre-emption)

Farce-full priemption: - We allow a priciers to forcefully priempt the mesource holding by other processes.

- -> This method may be used by high priority process or system process.
- -> the process which are in waiting state must be selected as a victim instead of process in the orunning state.

"BANKER'S Algo" Total A=10, B=5, C=7 Deadlock Asidance. Deadlock Detection.																
2	CPU	Donat	ion	Max Need			Available			Rev	Remaining Need			1x-Allocation		
Process	A	B	3		В	_	A	В	C	A	В	C		Safe	Seguerce	•
Pi	0	1	0	7	5	3	3	3	2				_	Ung.	afe.	
P2	2	D	0	3	2	2	5	3	2	-	-			(T		
P2	3	0	2	9	0	2	7	4	3					- '		
	2	-	1	4	2	2	7	4	5	120				Į į.	4	
	0	0	2	5	3	3	+7	5	5					F		
Y	1	2	5											JA.)	
A														WAN THE		SUSSCRIBE