Storage Models

Objectives:

- · Detail three storage models,
 - Row storage (conventional)
 - Column Storage
 - Parallel/Distributed Key-Value stores (NoSQL)
- And a first look at parallel/distributed database structure

Horizontal Partition of Row Storage

• First introduction to parallel databases

Shared Nothing – Advantages

- Economical: uses commodity hardware
 - Rack mounted servers
- Most scalable
 - · Minimizes interference by minimizing resource sharing
 - Memory and I/O bandwidth and capacity grow with the number of compute nodes.

16 Transactions & Rocver

Database Systems

Other Architectures...
people think they lost

but they actually live, (they have a low profile) they could come back

New Idea 1: Partition Data

- Partition Data: to split the storage of a table across the servers.
 - Horizontal Paritioning
 - Vertical Partitioning

16 Transactions & Rocvery

Database Systems

3 Methods of Horizontal Partitioning

- Round Robin
- Hash
- Range

Horizontal Data Partitioning

• Relation R split into P chunks $R_0, \, ..., \, R_{P-1},$ stored at the P nodes

Let t_j be a tuple in chunk R_i Let a_j be the value or set of values for an attribute or set of attribute for all t_i

16 Transactions & Rocvery

tabase Systems

Horizontal Data Partitioning

• Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes

Chunks

Round Robin Partitioning

- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Round robin: tuple t_i to chunk (i mod P)
- · Like dealing cards from a deck of cards
 - All chunks the same size, (+/- 1)
 - If "the deck" is randomized, the chunks are randomized

16 Transactions & Rocvery

Database Systems

12

Hash Partitioning

- · Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Hash the value(s) in the tuple to some integer
- That integer maps to a processor number
 - If attribute values are randomized, the chunks are randomized, and roughly the same size

16 Transactions & Rocvery

Database Systems

Range Partitioning

- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$
- Usually the DBA specifies the ranges (v_{i-1}, v_i)

16 Transactions & Rocvery

Database Systems

15

Horizontal Data Partitioning Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes Round robin: tuple t_i to chunk (i mod P)

- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 Tuple t to chunk i if v_{i-1} < t.A < v_i

ns

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1< A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors ?
 - Round robin
 - Hash partitioned
 - Range partitioned

16 Transactions & Rocvery

atabase Systems

17

Selection – Round Robin Partitioning

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1< A< v2}(R)$

- Q: What is the cost on a parallel database with P processors?
- Round robin: all servers do the work
 - Parallel time = B(R)/P; total work = B(R)
 - Good load be ance but ne read all the data

nsactions & Rocvery

Database Systems

Selection - Hash Partitioning

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1< A< v2}(R)$

- Hash:
 - $-o_{A=v}(R)$: Parallel time = total work = B(R)/P Query is on the hashed attribute

Query is on the hashed attribute

Is A the primary key? Discuss implications

16 Transactions & Rocvery

Database Systems

19

Range Partitioning

- Range: one server only
 - Parallel time total work // Discuss
 - Works well for range predicates but suffers from data skew

16 Transactions & Rocvery

atabase Systems

Parallel Selection

- Q: What is the cost on a parallel database with P processors?
- Round robin: all servers do the work
 - Parallel time = B(R)/P; total work = B(R)
 - Good load balance but needs to read all the data
- · Hash:
 - $-\sigma_{A=v}(R)$: Parallel time = total work = B(R)/P
 - $-\sigma_{A \in [v_1,v_2]}(R)$: Parallel time = B(R)/P; total work = B(R)
- Range: one server only
 - Parallel time: total work // Discuss
 - Works well for range predicates but suffers from data skew

16 Transactions & Rocvery Database Systems

The Column Store Storage Model

Column Stores: The SQL entry to NoSQL Big Data

- 1. Column stores *are not* NoSQL, but you will see that in marketing
 - They do support Big Data
 - Marketing people don't get modas ponens

NoSQL → Big data

Column Store → Big data

So, marketing says -

Column Store \rightarrow NoSQL Not, and they are being called out on it.

The Very Good

SELECT Sum(S.sales) FROM sales table S, time T, location L WHERE L.city = 'Austin' AND T.year = 2019 AND S.locationkey = L.pk loc AND S.timekey = T.pk time

- How many columns must be read to process query? 7
 - L.city, L.pk_loc
 - T.year, T.pk_time
 - S.locationkey, S.timekey, S.sales
- In contemporary systems these are stored as compressed bitmaps.
- Compare to amount of data to read in a conventional horizontal store (?)

What actually get's read?

SELECT Sum(S.sales)

FROM sales table S, time T, location L • T.year, just the bitmap for 2019

WHERE L.city = 'Austin' AND

T.year = 2019 AND

S.locationkey = L.pk_loc AND

S.timekey = T.pk time

- · L.city, just the bitmap for 'Austin'

But to do the explicit joins we'll need all values (bitmaps) for

- · S.locationkey, L.pk loc
- S.timekey, T.pk_time

Similarly to compute the output Sum(S.sales), we will need the bitmaps for all values

Improved I/O not without cost:

SELECT Sum(S.sales) FROM sales_table S, time T, location L WHERE L.city = 'Austin' AND T.year = 2019 AND S.locationkey = L.pk loc AND S.timekey = T.pk time

What needs to be joined?

- · Seemingly unavoidable
 - · S.locationkey = L.pk loc
 - · S.timekey = T.pk time

But to actually compute the result

- For S, the sequential index of S.locationkey, S.timekey, S.sales,
 - · must all be the same.
 - · Each may take on many values
 - → {many} x {many} x {many}
 - In bitmap can be done linear time AND
 - . If Not in bitmap, but sorted, linear time merge
- · Similarly,
 - · T.year, T.pk time
 - L.city, L.pk_loc
 - But just 1, value, Austin and 2019 have to match index with the
- → AND the bitmaps

- · 2 obvious joins in the SQL query
- . + 4 operations to assemble the output

Consider

SELECT ** ** all columns of the three tables

FROM sales table S, time T, location L

WHERE L.city = 'Austin' AND

T.year = 2019 AND

S.locationkey = I.pk loc AND

S.timekey = T.pk time

- Reading all columns, all values
- Reassemble columns into rows

Thus, Column Store vs. Row Store Tradeoff

For a given query

- Column store may require many fewer disk block reads than a horizontal store.
- Column store requires computation not needed by a horizontal store to assemble output.
- Note: More column reads → more work to assemble output.

Column Stores

- From research
 - MonetDB (open source) [2002]
 - H-store and C-store ~[2005]
- To commercial practice
 - Sybase IQ [1995], bought by SAP... evolved to:
 - · SAP HANA [2008], main-memory, cluster
 - HP Vertica [Vertica founded 2005 from C-store fork]
 - Sisense // a Tableau competitor, offers similar function but on multiple terabytes on a desktop
- "Proof" column store

 SQL RDBMS
 - MariaDB (mySQL fork) Column Store version
 - SQL Server (starting, 2016 V13), columnstore indexes

.6 Transactions & Rocvery

atabase System **SQL Server** 2016 (13.x), **columnstore indexes**

34

NoSQL Key Value Stores

- 1. Parallel/Distributed Storage
- 2. Notion of numbered Logical and Physical processors

(which will be ignored until near the last slide)

- 3. Each processor is replicated many times
 - Replicates contain the same data

Key, Value model

Setname: {(key1, value1), (key2, value2) (key3, value3)...}

- Key_i Typically any string, but also OID (object id)
- store(key_i, value_i) will store (key_i, value_i) replicates in processor Chord(key_i)
 - the key is explicitly stored as its often also data
 - Data type of value_i depends on the system, but can be anything
 - Json document
 - A nested set of (key, value) pairs

1: Introduction

Data Management & Engineering

Distributed File System

- Hadoop Distributed File System (HDFS)
 - pages/blocks or 64 or 128 Mbytes
 pages are compressed for storage

 - pages are replicated for fault tolerance
 - quorum consistency is the basis of transactions

13 Join Operators

Database Management & Engineering

NOSQL: Not as Different as "they" Would Like You to Believe

- E.g.
 name{ (k1, dan), (k2, bob), (k3, bruce)}
 salary{ (k1, \$10), (k2, \$1), (k3, \$1000)}
 title {(k1, professor), (k2, fry cook), (k3, chairman)}
- Employee

Name	Salary	Title
dan	10	professor
bob	1	fry cook
bruce	1000	chairman
	dan bob	dan 10 bob 1

Look familiar?

- E.g.
 name{ (k1, dan), (k2, bob), (k3, bruce)}
 salary{ (k1, \$10), (k2, \$1), (k3, \$1000)}
 title {(k1, professor), (k2, fry cook), (k3, chairman)}
- Employee

Id	Name	Salary	Title
1	dan	10	professor
2	bob	1	fry cook
3	bruce	1000	chairman

Data Management & Engineering

How about now?

- - Employee.name{ (k1, dan), (k2, bob), (k3, bruce)}
 - Employee.salary{ (k1, \$10), (k2, \$1), (k3, \$1000)}
 - Employee.title {(k1, professor), (k2, fry cook), (k3, chairman)}
- Employee

ld	Name	Salary	Title		Id	Name		Id	Salary		Id	Title
1	dan	10	professor		1	dan		1	10		1	professor
2	bob	1	fry cook		2	bob		2	1		2	fry cook
3	bruce	1000	chairman		3	bruce		3	1000		3	chairman
: Introduction Data Management & Engineering												

What about indexing?

What about secondary indexes?

- Add more Bloom Filters
 - · Declare the field used as a key

Storage Model Summary

Conventional Rows B+ tree B+ tree, vendor s additions	•
	•
Column Store Compressed Bit N//A ? (RDBMS) Maps	
Key Value (NoSQL) Hash partitioned, replicated, large compressed pages Bloom Filter maybe o	•