A N.O. e MOD1 V.O.

- Del seguente circuito si calcoli v_{OUT} in funzione di v_A e v_B.
 Si suppongano gli OPAMP ideali e in alto guadagno.
 Esplicitare i passaggi.
- 2) Dimensionare R_1 in modo che il circuito si comporti come un sommatore nei confronti degli ingressi v_A e v_B . Esplicitare i passaggi.

$$R_3 = 10 \text{ K}\Omega$$
 $R_4 = 40 \text{ K}\Omega$
 $L_+ = -L_- = 10 \text{ V}$

$$v_O = \frac{R_4 R_2}{R_3 R_1} v_A + \frac{R_3 + R_4}{R_3} v_B$$

1) Del seguente circuito si calcoli V_X . Esplicitare i passaggi.

$$V_x = -1.25V$$

1) Si progetti un gate CMOS in logica statica in modo da implementare la seguente funzione logica:

$$O = [(A+D) \cdot B + \bar{C}] \cdot [E + \bar{F}]$$

essendo O il nodo evidenziato nella seguente figura:

2) Dimensionare NMOS e PMOS (senza ottimizzazione) in modo che il tempo di salita e discesa sia in tutti i casi inferiore o uguale a 110 ps.

Con il dimensionamento ottenuto si calcolino i tempi minimi di propagazione

Parametri tecnologici:

Req p= 10Kohm Req n= 5Kohm $Cox = 3 \text{ fF/}\mu\text{m}^2$ $Lmin = 0,35\mu\text{m}$ Vdd = 3,3V $C_{INV} = 75 \text{ fF}$