Simulare Examen Național Bacalaureat Noiembrie 2023 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece

A. MECANICĂ

(45 de puncte)

Subjectul I

Nr. Item	Soluție, rezolvare	Punctaj
I.1.	d	3p
2.	c	3p
3.	b	3p
4.	b	3p
5.	b	3p
TOTAL	entru Subiectul I	

Subjectul al II-lea

II. a.	Pentru:		4 p
11. a.			- p
	reprezentarea corectă a forțelor ce acționează asupra corpului	4p	
b.	Pentru:		3 p
	$d = v \cdot \Delta t$	2p	
	rezultat final d = 1,2 m	1p	
c.	Pentru:		4 p
	$F=F_f$	1p	
	$F_f = \mu N$	1p	
	N= mg	1p	
	rezultat final $\mu = 0.3$	1p	
d.	Pentru:		4 p
	$F_1 - G_t - F_{f1} = ma$	1p	
	$F_{f1} = \mu_1 \text{ mg } \cos \alpha$	1p	
	$G_t = mg \sin \alpha$	1p	
	rezultat final $a = 0.5 \text{ m/s}^2$	1p	
TOTAL	pentru Subiectul al II-lea		15p

Subjectul al III-lea

Nr.	Soluție, rezolvare		Punctaj
item	, ,		
III.a	$E_1 = m_1 g h$	2p	3p
	$E_1 = 15J$	1p	
III.b	$v_2 = \sqrt{{v_0}^2 - 2g\left(\sin\alpha + \mu\cos\alpha\right)\frac{L}{2}}$	1p	4 p

	$v_2 = 10 \frac{m}{s}$ $P_2 = m_2 \cdot v_2$	1p	
	$P_2 = m_2 \cdot v_2$	1p	
	$P_2 = 20N \cdot s$	1p	
III.c	$m_2 v_2 + 0 = (m_1 + m_2) u$ $u = \frac{m_2 v_2}{m_1 + m_2} = 4 \frac{m}{s}$	1p	4 p
	$\Delta E_c = 0 - \frac{(m_1 + m_2)u^2}{2} = -(m_1 + m_2)g \sin \alpha \Delta l - \mu(m_1 + m_2)g \cos \alpha \Delta l$	$-\frac{k(\Delta l)^2}{2}$	~
		2p	
	$\Delta l = \frac{1}{2} m \Rightarrow h = \Delta l \sin \alpha = \frac{1}{4} m \Rightarrow H = 0,75m$	1p	
III.d	$F_e = F_f - G_p$	1p	4p
	$\Delta l = 0.18m \Rightarrow h = 0,09m$	1p	
	$H_1 = 0.59m$	1p	
	$E_{Max} = 29,5J$	1p	
Total pe	ntru subiectul al III-lea		15p

Simulare Examen Național Bacalaureat Noiembrie 2023 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece

B. ELEMENTE DE TERMODINAMICĂ

Subjectul I

Nr. Item	Soluție, rezolvare	Punctaj
I.1.	a	3p
2.	c	3p
3.	d	3p
4.	a	3p
5.	a	3p
TOTAL r	entru Subiectul I	

Subjectul al II-lea

II. a.	$a = \frac{p_1}{V_1}$	1p	3p
	$V_1 = 2 \cdot 10^{-3} m^3$	1p	
	$V_{1} = 2 \cdot 10^{-3} m^{3}$ $a = 0.25 \cdot 10^{8} \frac{N}{m^{5}}$ Pentru $aV^{2} = vRT$	1p	
b.		1p	4p
	$\frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}}$	2p	
	$\left \frac{v_2}{v_1}\right = 2$	1p	
c.	$p_2 = 2 p_1$ Transformare izotermă $\Rightarrow p_2 \cdot V_2 = p_3 \cdot V_3$	1p	4p
	$V_3 = 4V_1$	1p 1p	
	$V_3 = 8l$	1p	
d.	Masa iniţială $m_i = \nu \mu = 4g$ În starea 1, $p_1 V_1 = \frac{m_i}{\mu} R T_1$	1p	4p
	În starea finală, $p_1V_1 = \frac{m_f}{\mu}R4T_1$	1p	
	$m_f = \frac{m_i}{4}$	1p	
	Masa evacuată, $m = 3g$	1p	
TOTAL	pentru Subiectul al III-lea		15p

Subiectul al III-lea

a.	$lS = V_{max} - V_{min}$ $\frac{T_2}{T_1} = \left(\frac{V_{max}}{V_{min}}\right)^{\gamma - 1} = 2$ $V_{min} = 0.24 dm^3$ $l = 41 cm$	1p 1p 1p 1p	4p
b.	Temperatura maximă se atinge la finalul încălzirii izocore $T_{max} = \frac{p_{max}V_{min}}{v_R}$ $T_{max} = 1925,4K$	1p 1p 1p	3p

Filiera teoretică – profilul real, Filiera vocațională – profilul militar Pagină 3 din 8

c.	Notez $T_{max} = T_3$ și cu T_4 , temperatura la finalul timpului motor		4p
	$T_1T_3 = T_2T_4$	1p	1
	$T_4 = \frac{T_3}{2}$	1p	
	$L_{34} = \nu C_V (T_3 - T_4)$	1p	
	$L_{34} = 60KJ$	1p	
d.	$\eta = 1 - \frac{ Q_{ced} }{Q_{prim}}$	1p	4p
	$Q_{ced} = vC_V(T_1 - T_4)$ $Q_{prim} = vC_V(T_3 - T_2)$	1p	
	$Q_{prim} = \nu C_V (T_3 - T_2)$	1p	
	$\eta = 50\%$	1p	
TOTAL	pentru Subiectul al III-lea		15p

Simulare Examen Național Bacalaureat Noiembrie 2023 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU (45 de puncte)

C. Subiectul I

Nr. Item	Soluție, rezolvare		Punctaj
I.1	c.		3p
2	b.		3p
3	c.		3р
4	d		3р
5	b.		3p
Total pentru	Subjectul I		15p

C. Subiectul al II-lea

II. a	Pentru:		3p
	$I_1 = E_1/(R + r_1)$	2p	
	Rezultat final: $I_1 = 0.75A$	1p	
b.	Pentru:		4p
	$I_2 = E_{ep}/(R + r_{ep})$	1p	
	$E_{ep} = r_{ep} \cdot \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right)$	1p	
	$r_{ep} = \frac{r_1 \ r_2}{r_1 + r_2}$	1p	
	Rezultat final: $I_2 \cong 1.3A$	1p	
c.	Pentru:		4 p
	$I_3 = \frac{E_1}{r_1} + \frac{E_2}{r_2}$	3p	
	Rezultat final: $I_3 = 10A$	1p	
d.	Pentru:		4 p
	$u_2 = I_4 \cdot r_2$	2p	
	$u_2 = I_4 \cdot r_2 I_4 = \frac{E_2 - E_1}{r_1 + r_2}$	1p	
	Rezultat final: $u_2 = 16V$	1p	
Total pen	ntru Subiectul al II-lea		15p

C. Subiectul al III-lea

III. a	Pentru:		3p
	$U_V = E_2 - Ir_2$	2p	
	Rezultat final: $U_V = 0$	1p	
b.	Pentru:		4 p
	$P_R = R I^2$	1p	
	$E_s = E_1 + E_2$; $r_s = r_1 + r_2$	1p	
	$E_S = RI + r_S I$	1p	

Filiera teoretică – profilul real, Filiera vocațională – profilul militar Pagină 5 din 8

	Rezultat final: $P_R = 5.25 W$	1p	
c.	Pentru:		4p
	$\eta = \frac{R}{R + r_s}$	3p	
	Rezultat final: $\eta = 43,7\%$	1p	
d.	Pentru:		4p
	$P_R = P_{R_1}$ $R \cdot R_1 = r_S^2$	1p	
	$R \cdot R_1 = r_s^2$	2p	
	Rezultat final: $R_1 \cong 3,86 \Omega$	1p	
Total pentr	u Subiectul al III-lea	•	15p

Simulare Examen Național Bacalaureat Noiembrie 2023 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece

D. OPTICĂ

Sub	Subiectul I			
1.	С		Punctaj 3p	
2.	b		3p	
3.	a		3p	
4.	С		3p	
5.	d		3p	
TO	TAL pentru Subiectul I		15p	
		Parțial	Punctaj	
a.	Diectul al II-lea $ \frac{1}{f_{aer}} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \Rightarrow f_{aer} = -8cm $ $ \frac{1}{f_{apă}} = \left(\frac{n}{n_{apă}} - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \Rightarrow f_{apă} = -32cm $ $ 1 1 1 1 $	2p 2p	4p	
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_{aer}}$	1p		
b.	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_{aer}}$ $x_2 = -\frac{24}{5}cm = -4.8cm$ $\beta = \frac{x_2}{x_1}$ $\beta = 0.4$ $\frac{1}{x_1} - \frac{1}{x_2} = \frac{1}{x_2}$	1p	4 p	
	$\beta = \frac{x_2}{x_1}$	1p		
	$\beta = 0.4$	1p		
	$\left \frac{1}{x_2'} - \frac{1}{x_1'} = \frac{1}{f_{ap\check{a}}}\right $	1p		
c.	$x_2' = -\frac{96}{5} = -19,2cm$	1p	4 p	
	$\frac{1}{x'_2} - \frac{1}{x'_1} = \frac{1}{f_{apă}}$ $x'_2 = -\frac{96}{5} = -19,2cm$ $\beta' = \frac{x'_2}{x'_1}$	1p		
	$\beta' = 0.4$	1p		
d.	B_1 F_2 A_2 O F_1 X	2p	3р	
TE C	Imaginea este: virtuală, dreaptă și micșorată.	1p	15p	
	TOTAL pentru Subiectul al II-lea			
Suk	biectul al III-lea	Parțial	Punctaj	
a.	$i = \frac{\lambda D}{2l} = 1,2mm$	2p	3 p	
	$x_0 = 0 \cdot i = 0mm$	1p		
b.	$x_0 = 0 \cdot i = 0mm$ $\lambda_{apă} = \frac{\lambda}{n}$	1p	3 p	

	$i_{ap\check{a}} = \frac{i}{n} = \frac{1,2}{4} \cdot 3 = 0,9mm$	1p		
	$x_{apa} = 0 \cdot i_{apa} = 0mm$	1p		
c.	Introducerea unui strat subțire (lamă, film, peliculă) în calea unuia din fasciculele luminoase care interferă conduce la deplasarea figurii de interferență spre acel fascicul. De exemplu, dacă se introduce o lamă transparentă cu grosimea e și indicele de refracție n , în calea fasciculului 1, atunci noua diferență de drum optic între razele care interferă este: $\Delta r = r_2 - (r_1 - e + ne) = r_2 - r_1 - e(n-1)$ Deci, în centrul ecranului, unde diferența $r_2 - r_1$ este nulă, apare o diferență de drum suplimentară e(n-1). Punând condiția de maxim găsim noul ordin al maximului plasat în centrul ecranului, $e(n-1) = k_{nou} \cdot \lambda \Longrightarrow k_{nou} = \frac{e(n-1)}{1}$	2p 2p	5p	
	$k_{nou} = 10$ $k_{nou} = 10$	1p		
d.	Figura de interferență are aceeași interfranjă ca și în cazul a), deci $i = 1,2$ mm.	2p		
	Figura de interferență este deplasată în sensul fasciculului acoperit, deci noul maxim central va avea abscisa $x_{0 \ nou} = k_{nou} \cdot i = 10 \cdot 1,2 = 12mm$	2p	4p	
TOTAL pentru Subiectul al III-lea			15p	