ALGORITHMS AND FLOWCHART (Day 1)

Q1. Write a c program to print the word 'ADAMAS UNIVERSITY'.

Ans:

ALGORITHM

Step1: Start.

Step2: Print "ADAMAS UNIVERSITY" using 'printf'.

Step 3:End.

FLOWCHART

Q2. Write a program to add two float numbers.

Ans:

ALGORITHM

Step 1: start.

Step 2: Declare three variables a, b, c.

Step 3: Read the first number and store it in a.

Step 4: Read the second number and store it in b.

Step 5: calculate c=a+b;

Step 6: Display the value of c.

Step 7: End

FLOWCHART

Q3. Write a C program to substract two float integers.

Ans:

ALGORITHM

Step 1: Start.

Step 2: declare a the variables a, b, c.

Step 3: read and store the value of two integers in a and b respectively.

Step 4: calculate c=a-b;

Step 5: Display the value of c.

Step 6: Stop.

FLOWCHART

Q4. Write a c program to write the multiplication table.

Ans:

ALGORITHM

Step 1: Start the program.

Step 2: Include the header file <stdio.h>.

Step 3: Declare an integer variable num.

Step 4: Display a message — "Enter a number to print its multiplication table:"

Step 5: Read the value of num using scanf().

Step 6: Display the multiplication results as follows:

- Print num \times 1 = num * 1
- Print num \times 2 = num \times 2
- Print num \times 3 = num \times 3
- Print num \times 4 = num * 4
- Print num \times 5 = num \times 5
- Print num \times 6 = num * 6
- Print num \times 7 = num \times 7
- Print num \times 8 = num*8
- Print num \times 9 = num * 9
- Print num × 10 = num*10

Step 7: End the program with return 0;.

Step 8: Stop.

FLOWCHART

Q5.Write a c program to print the ASCII value of a character.

Ans:

Step 1: Start the program.

Step 2: Include the header file <stdio.h>.

Step 3: Declare a variable ch of type char.

Step 4: Display the message — "Enter a character:"

Step 5: Read the character input from the user using scanf("%c", &ch);

Step 6: Convert the character ch into its ASCII value using type casting (int)ch.

Step 7: Display the ASCII value using printf("The ASCII value of %c is %d", ch, (int)ch);

Step 8: End the program using return 0;.

Step 9: Stop.

FLOWCHART

Q6. Write a c program to calculate the simple interest.

Ans:

ALGORITHM

1. Start

- 2. **Declare** three integer variables: p, r, and t (where p = principal amount, r = rate of interest, and t = time)
- 3. **Display** the message:

"Enter the principal, rate of interest and time"

- 4. **Read** the values of p, r, and t from the user.
- 5. Calculate the simple interest using the formula:

$$si = (p * r * t) / 100$$

6. Display the result:

"Required simple interest: si"

7. **Stop**

FLOWCHART

Q7. Write

a c program to calculate the area of a circle.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** an integer variable r (for the radius of the circle).
- 3. **Display** the message:

"Enter the radius of the circle"

- 4. **Read** the value of r from the user.
- 5. Calculate the area using the formula:

$$a = 3.14 * r * r$$

6. **Display** the result:

"Required area: a"

7. **Stop**

Q8.Write a c program to convert frahreinheit to celcius and vice versa.

Ans:

ALGORITHM

- 1.Start
- 2. **Declare** four float variables: f1, f2, c1, and c2.
- 3. **Display** the message:

"Enter temperature in Fahrenheit:"

- 4. Read the value of f1 from the user.
- 5. **Display** the message:

"Enter temperature in Celsius:"

- 6. Read the value of c1 from the user.
- 7. **Calculate** the Celsius equivalent of Fahrenheit using the formula:

$$c2 = (f1 - 32) * 5 / 9$$

8. Calculate the Fahrenheit equivalent of Celsius using the formula:

$$f2 = (c1 * 9 / 5) + 32$$

- 9. Display the result:
- f1 Fahrenheit is c2 Celsius
- 10. **Display** the result:
- c1 Celsius is f2 Fahrenheit
- 11. **Stop**

ALGORITHM
1. Start
2. Declare three integer variables: a, b, and c.
3. Display the message: "Enter two numbers"
4. Read the values of a and b from the user.
5. Store the value of b in c. \rightarrow c = b
6. Assign the value of a to b. \Rightarrow b = a
7. Assign the value of c to a. → a = c
8. Display the message: "Reversed"
9. Display the swapped values of a and b.
10. Stop

Q9. Write a c program to swap two numbers using a third variable.

Ans:

Q10. Write a c program to swap two numbers without using a third variable.

Ans:

ALGORITHM

1. Start

2.**Declare** three integer variables: a, b, and c (though c is unused here, you can skip declaring it).

3. **Display** the message:

"Enter two numbers"

4. **Read** the values of a and b from the user.

5.**Swap** the numbers using arithmetic operations:

6. **Display** the message:

"Reversed numbers"

7. **Display** the swapped values of a and b.

8. **Stop**

Q11.Write a c program to find the last digit of an integer (i) using modulus operator (ii) without using modulus operator.

Ans:

ALGORITHM

- 1. Start
- 2. Declare two integer variables: n and a.
- 3. **Display** the message:

"Enter the integer"

- 4. Read the value of n from the user.
- 5. Find the last digit of the number using the modulus operator:

a = n % 10

6. **Display** the message and result:

"The last integer: a"

7. (Optional second method)

Compute the last digit again using:

b = n - (n / 10) * 10

8. **Display** the message and result:

"The last integer: b"

- 9. **Stop**
- 10. Start
- 11. **Declare** two integer variables: n and a.
- 12. **Display** the message:

"Enter the integer"

- 13. **Read** the value of n from the user.
- 14. Find the last digit of the number using the modulus operator:

a = n % 10

15. **Display** the message and result:

"The last integer: a"

16. (Optional second method)

Compute the last digit again using:

b = n - (n / 10) * 10

17. **Display** the message and result:

"The last integer: b"

18. **Stop**

Q12. Write a c program to find out the compound interest.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** the following variables of type double: principal, rate, time, n, amount, and compoundInterest.
- 3. Display the message:

"Enter the principal amount:"

- 4. Read the value of principal.
- 5. **Display** the message:

"Enter the annual interest rate (in percentage):"

- 6. Read the value of rate.
- 7. **Display** the message:

"Enter the time (in years):"

- 8. Read the value of time.
- 9. **Display** the message:

"Enter the number of times interest is compounded per year:"

10. **Read** the value of n.

11.**Convert** the annual interest rate into decimal form: rate = rate / 100

12. **Calculate** the total amount using the compound interest formula: amount = principal * (1 + rate / n)^(n * time) (Use the pow() function for exponentiation.)

- 13. **Calculate** the compound interest: compound Interest = amount principal
- 14. **Display** the total amount after the given time:

"Total Amount after time years: amount"

15. **Display** the compound interest earned:

"Compound Interest earned: compound Interest"

16. **Stop**

Q13.Write a c program to find out the area and perimeter of a rectangle.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** two integer variables: I (length) and b (breadth).
- 3. **Display** the message:

"Enter the length and breadth of a rectangle"

- 4. **Read** the values of l and b from the user.
- 5. **Calculate** the area of the rectangle using the formula:

$$a = l * b$$

6. Calculate the perimeter of the rectangle using the formula:

$$p = 2 * (l + b)$$

7. **Display** the result for area:

"Required area: a"

8. **Display** the result for perimeter:

"Required perimeter: p"

9. **Stop**

Q14.Write a c program to find out the floor and ceil value of positive and negative integers.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** two variables of type double: positive_number and negative_number.
- 3. **Display** the message:

"Enter a positive integer:"

- 4. **Read** the value of positive_number from the user.
- 5. **Display** the message:

"Enter a negative integer:"

- 6. **Read** the value of negative_number from the user.
- 7. For the positive number:
 - o **Display** "For the positive number:"
 - Calculate the floor value using: floor(positive_number)
 - Calculate the ceiling value using: ceil(positive_number)
 - Display both the floor and ceiling values.
- 8. For the negative number:
 - o **Display** "For the negative number:"
 - Calculate the floor value using: floor(negative_number)
 - Calculate the ceiling value using: ceil(negative_number)
 - Display both the floor and ceiling values.
- 9. **Stop**

FLOWCHART

Q15.Write a c program to find out the roots of a quadratic equation but only the positive part.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** variables of type double:
 - a, b, c, discriminant, root1, and root2.

3. **Display** the message:

"Enter coefficients a, b, and c for the equation $ax^2 + bx + c = 0$ "

- 4. **Read** the values of a, b, and c from the user.
- 5. Calculate the discriminant using the formula:

discriminant = (b * b) - (4 * a * c)

- 6. Check the condition:
 - o **If** discriminant >= 0, then proceed to find real roots.
 - o **Else**, display:

"The equation has no real roots, and therefore no positive roots." and go to step 12.

- 7. Calculate the two real roots using the quadratic formula:
 - o root1 = (-b + sqrt(discriminant)) / (2 * a)
 - o root2 = (-b sqrt(discriminant)) / (2 * a)
- 8. **Display** the message:

"Positive roots are:"

- 9. Check for positive roots:
 - o **If** root1 > 0, display root1.
 - **If** root2 > 0, display root2.
 - o If both root1 <= 0 and root2 <= 0, display "None".
- 10. **Display** the positive roots (if any).
- 11. **If discriminant < 0**, display:

"No real or positive roots."

12. **Stop**

Q16.Write a c program to check whether roll no. 100 is present or not using if only.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** an integer variable roll.
- 3. **Display** the message:

"Enter roll number:"

- 4. **Read** the value of roll from the user.
- 5. Check the condition:
 - o If roll == 100, then→ Display "Roll number 100 is present."
- 6. **Check** the next condition:
 - o **If** roll != 100, then
 - → Display "Roll number 100 is not present."

7. **Stop**

Q17.Write a c program to check an integer whether its odd or even.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** an integer variable num.
- 3. **Display** the message:

"Enter an integer:"

- 4. Read the value of num from the user.
- 5. **Check** the condition:
 - o If num % 2 == 0, then→ Display "<num> is Even."
- 6. **Else**,
 - → Display "<num> is Odd."
- 7. **Stop**

Q18. Write a c program to check the greatest among the two numbers.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** two integer variables: a and b.
- 3. **Display** the message:

"Enter two numbers:"

- 4. **Read** the values of a and b from the user.
- 5. **Compare** the two numbers:
 - **If** a > b, then
 - → Display "<a> is the greatest."
 - Else if b > a, then
 - → Display " is the greatest."
 - **Else** (i.e., a == b),
 - → Display "Both numbers are equal."

6.Stop

Q19.A coin has been tossed once . Write a c program to check whether its head or tails.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** an integer variable toss.
- 3. **Seed** the random number generator using the current time: srand(time(0))
- 4. **Generate** a random number toss as either 0 or 1: toss = rand() % 2
- 5. Check the value of toss:
 - o If toss == 0, then→ Display "It's Head!"
 - Else (i.e., toss == 1),→ Display "It's Tail!"
- 6. **Stop**

Q20.Write a c program to check whether a number is a whole number or not.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** an integer variable num.
- 3. **Display** the message:

"Enter a number:"

- 4. **Read** the value of num from the user.
- 5. Check the condition:
 - **If** num >= 0, then
 - → Display "<num> is a whole number"
 - **Else** (i.e., num < 0),
 - → Display "<num> is not a whole number"

6.Stop

Q21. Write a c program to check whether it is a leap year or not using ladder if else.

Ans:

ALGORITHM

- 1. Start
- 2.**Input**: Read an integer year from the user.
- 3.Process:
 - If year % 400 == 0, then
 - o Print "year is a Leap Year."
 - Else if year % 100 == 0, then
 - o Print "year is Not a Leap Year."
 - Else if year % 4 == 0, then
 - o Print "year is a Leap Year."
 - Else
 - o Print "year is Not a Leap Year."
- 4. **End**

Q22. Write a c program to find the greatest among three numbers.

Ans:

ALGORITHM

- 1. Start
- 2. **Input**: Read three numbers a, b, and c from the user.
- 3. Process:

- \circ If a >= b **and** a >= c, then
 - Print "a is the greatest."
- \circ Else if b >= a **and** b >= c, then
 - Print "b is the greatest."
- \circ Else
 - Print "c is the greatest."

4. **End**

Q23.Write a c program r check whether the letter is vowel or consonant using ladder if else.

Ans:

ALGORITHM

- 1. Start
- 2. Input: Read a character ch from the user.
- 3. Process:
 - If ch is 'a' or 'A', then
 - Print "ch is a vowel."
 - Else if ch is 'e' or 'E', then
 - o Print "ch is a vowel."
 - Else if ch is 'i' or 'I', then
 - o Print "ch is a vowel."
 - Else if ch is 'o' or 'O', then
 - o Print "ch is a vowel."
 - Else if ch is 'u' or 'U', then
 - o Print "ch is a vowel."
 - Else
 - o Print "ch is a consonant."
 - 5. End

Q24. Write a c program to find the size of an integer , float, double, char.

Ans:

ALGORITHM

1.Start

2.Process:

- Use sizeof(int) to find the size of an integer.
- Use sizeof(float) to find the size of a float.
- Use sizeof(double) to find the size of a double.
- Use sizeof(char) to find the size of a character.

3. Output:

Print the size of int in bytes.

- Print the size of float in bytes.
- Print the size of double in bytes.
- Print the size of char in bytes.

4. End

Q25.Write a c program to check maximum among three numbers using nested if ele.

Ans:

ALGORITHM

Algorithm: Find the Maximum of Three Numbers (Nested If)

- 1. Start
- 2. Input: Read three integers a, b, and c from the user.
- 3. Process:
 - If a >= b then
 - If a >= c then
 - Print "a is the maximum."
 - Else
 - Print "c is the maximum."
 - Else (a < b)
 - If b >= c then
 - Print "b is the maximum."
 - Else
 - Print "c is the maximum."
- 4. **End**

Q26.Write a c program to create a simple calculator using switch case.

Ans:

ALGORITHM

1. Start

2. Input:

- o Read an operator op (+, -, *, /) from the user.
- o Read two numbers num1 and num2 from the user.

- 3. **Process** (Decision based on operator):
 - o Switch op:
 - Case '+':
 - result = num1 + num2
 - Print result
 - Case '-':
 - result = num1 num2
 - Print result
 - Case '*':
 - result = num1 * num2
 - Print result
 - Case '/':
 - If num2 != 0 then
 - result = num1 / num2
 - Print result
 - Else
 - Print "Error! Division by zero."
 - Stop program
 - Default:
 - Print "Error! Invalid operator."
- 4. **End**

Q27. Write a c program using switch case to check whether a given alphabet is a vowel or constant.

Ans:

ALGORITHM

- 1. Start
- 2. **Input**: Read a character ch from the user.
- 3. **Process** (Using switch on ch):

- o Case 'a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U':
 - Print "ch is a vowel."
- o Default:
 - If ch is between 'a' and 'z' or between 'A' and 'Z' then
 - Print "ch is a consonant."
 - Else
 - Print "Invalid input! Please enter an alphabet."

4. **End**

3.	Display Menu:
	0
	1. Calculate HRA (20% of Basic)
	0
	2. Calculate TA (10% of Basic)
	0
	3. Calculate DA (5% of Basic)
	0
	4. Calculate Gross Salary
4.	Input: Read choice from the user.
5.	Process (Using switch on choice):
	o Case 1:
	hra = 0.20 * basic
	Print HRA
	o Case 2:
	ta = 0.10 * basic
	Print TA
	o Case 3:
	da = 0.05 * basic
	Print DA
	o Case 4:
	hra = 0.20 * basic

Q28. Write a c program to find out the salary of an employee using switch case.

o Read basic salary from the user.

Ans:

ALGORITHM

1. Start

2. Input:

- ta = 0.10 * basic
- da = 0.05 * basic
- gross = basic + hra + ta + da
- Print Gross Salary

Default:

Print "Invalid choice!"

6. **End**

Q29.write a C program using switch case to calculate the electricity bill in a house.

Ans:

ALGORITHM

Algorithm: Electricity Bill Calculation

- 1. Start
- 2. **Declare** variables:
 - o units (integer)
 - o choice (integer)
 - o bill (double, initialize to 0)
- 3. Display message: "Enter units consumed:"
- 4. **Read** the value of units
- 5. **Display** the menu:
- 6. Menu:
- 7. 1. Calculate bill
- 8. Display message: "Enter your choice:"
- 9. Read the value of choice
- 10. Use switch(choice) to decide:
 - o Case 1:
 - If units <= 100⇒ bill = units * 5
 - Else if units <= 200⇒ bill = (100 * 5) + (units 100) * 7
 - Else \Rightarrow bill = (100 * 5) + (100 * 7) + (units 200) * 10
 - Display: "Electricity Bill = ₹bill"
 - Break
 - Default:
 - Display: "Invalid choice!"
- 11. **End**

Q30.Write a c program using switch case to display the grade of a student based on their marks.

- a. 95 and above → Grade A+
- b. 90 and 94 \rightarrow Grade A

- c. 80 and 89 → Grade B
- d. 70 and 79→ Grade C
- e. 70 and below → Grade F

Ans:

- 1. Start
- 2. **Declare** an integer variable marks
- 3. Display message: "Enter marks:"
- 4. **Read** the value of marks
- 5. Use switch(marks / 10) to determine the grade category
- 6.Check cases:
 - Case 10: (when marks = 100)
 - Case 9: (when marks = 90–99)
 - o If marks >= 95
 - → Display: "Grade: A+"
 - o Else
 - → Display: "Grade: A"
 - Break
 - Case 8: (when marks = 80–89)
 - → Display: "Grade: B"
 - → Break
 - Case 7: (when marks = 70–79)
 - → Display: "Grade: C"
 - → Break
 - **Default:** (when marks < 70)
 - → Display: "Grade: F"
- 7.**End**

Q31. Print the multiplication table with a c program.

Ans:

- 1. Start
- 2. **Declare** integer variables: n, i, and m
- 3. **Display** message: "Enter the number"

- 4. **Read** the value of n
- 5. **Repeat** the following steps for i = 1 to 10:
 - o Calculate m = i * n
 - o **Display:** i * n = m
- 6. End Loop
- 7. **End**

Q32.Write a c program to find the sum of the n natural numbers.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** integer variables: n, i, and sum = 0
- 3. **Display** message: "Enter the range"
- 4. **Read** the value of n
- 5. **Repeat** the following steps for i = 1 to n:
 - Add i to sum → sum = sum + i
- 6. After the loop ends, Display: "Required sum of the series = sum"
- 7. **END**

Q33.Write a c program to print the factorial of a number using for loop.

Ans:

- 1. Start
- 2. **Declare** integer variables: n, i, and f = 1
- 3. **Display** message: "Enter the number"

- 4. **Read** the value of n
- 5. **If** n < 0
 - o **Display:** "Factorial of a negative number doesn't exist."
- 6. **Else**
 - o **Repeat** the following steps for i = 1 to n:
 - Multiply f = f * i
 - **Display:** "Factorial of n = f"
- 7. End If
- 8. **End**

Q34.Write a c program to print Fibonacci series upto n terms.

Ans:

ALGORITHM

- 1. Start
- 2. **Declare** integer variables: n, i, first = 0, second = 1, next
- 3. Display message: "Enter the number of terms"
- 4. **Read** the value of n
- 5. Display message: "Fibonacci Series:"
- 6. **Repeat** the following steps for i = 0 to n 1:
 - **If** i <= 1 → next = i
 - Else
 - → next = first + second
 - → first = second
 - → second = next
 - **Display** the value of next
- 7. End Loop
- 8.**End**

Q35. Write a c program to print all the prime numbers in a series.

Ans:

- 1. Start
- 2. Declare integer variables: start, end, and i
- 3. Display message: "Enter the starting number of the range"
- 4. Read the value of start
- 5. **Display** message: "Enter the ending number of the range"
- 6. Read the value of end
- 7. Display: "Prime numbers between start and end are:"

- 8. **Repeat** for each number i from start to end:
 - o Call function isPrime(i)
 - Inside isPrime(num):
 - 1. If num <= 1, return 0 (not prime)
 - 2. For each integer j from 2 to $\sqrt{\text{num}}$:
 - If num % j == 0, **return 0** (not prime)
 - 3. Return 1 (prime)
 - o If isPrime(i) returns 1
 - → Display i
- 9. End Loop
- 10. **End**

