MA544: Qual Problems

Carlos Salinas

March 22, 2016

1 MA 544 Spring 2016

1.1 Exam 1 Prep

Problem 1.1. Let $E \subset \mathbf{R}^n$ be a measurable set, $r \in \mathbf{R}$ and define the set $rE = \{ r\mathbf{x} \mid \mathbf{x} \in E \}$. Prove that rE is measurable, and that $|rE| = |r|^n |E|$.

Proof. Define a linear map $T: \mathbf{R}^n \to \mathbf{R}^n$ by $\mathbf{x} \mapsto r\mathbf{x}$. Using the standard basis for \mathbf{R}^n , this map has the matrix presentation

$$T\mathbf{x} = \begin{bmatrix} r & & \\ & \ddots & \\ & & r \end{bmatrix} \mathbf{x} \tag{1}$$

which has determinant det $T = r^n$. By 3.35, we have $|E| = |T(E)| = r^n |E| = |rE|$.

Problem 1.2. Let $\{E_k\}$, $k \in \mathbb{N}$ be a collection of measurable sets. Define the set

$$\liminf_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} E_n \right).$$

Show that

$$\left| \liminf_{k \to \infty} E_k \right| \le \liminf_{k \to \infty} |E_k|.$$

Proof. If the $\underline{\lim}|E_k| = \infty$ the inequality holds trivially. Hence, we may, without loss of generality, assume that $\underline{\lim}|E_k| < \infty$. By 3.20, the set $\underline{\lim}E_k$ is measurable and we have

$$\left| \lim_{k \to \infty} E_k \right| = \left| \bigcup_{k=1}^{\infty} F_k \right|,\tag{2}$$

where $F_k := \bigcap_{n=k}^{\infty} E_n$. Now, note that the collection of sets $F_k' := \bigcup_{\ell=1}^k F_\ell$ forms an increasing sequence of measurable sets $F_k' \nearrow F'$, where $F' = \bigcup_{k=1}^{\infty} F_k = \underline{\lim} E_k$. Then, by 3.26 (i), we have

$$\lim_{k \to \infty} |F_k'| = |F'| = \left| \underline{\lim}_{k \to \infty} E_k \right|. \tag{3}$$

Hence, it suffices to show that $|F'_k| \leq |E_k|$ for all k, but this follows by monotonicity of the outer measure, 3.3, since $F'_k \subset E_k$. Thus, we have the desired inequality

$$\left| \underline{\lim}_{k \to \infty} E_k \right| \le \underline{\lim}_{k \to \infty} |E_k|. \tag{4}$$

Problem 1.3. Consider the function

$$F(x) \coloneqq \begin{cases} |B(\mathbf{0}, x)| & x > 0 \\ 0 & x = 0 \end{cases}.$$

Here $B(\mathbf{0}, r) \coloneqq \{ \mathbf{y} \in \mathbf{R}^n \mid |\mathbf{y}| < r \}$. Prove that F is monotonic increasing and continuous.

Proof. That F is increasing is immediate from the monotonicity of the outer measure since for x < x' we have $B(\mathbf{0}, x) \subset B(\mathbf{0}, x')$ so, by 3.2, we have

$$|F(x)|B(\mathbf{0},x)| \le |B(\mathbf{0},x')| = F(x')$$

as desired.

To see that F is continuous, we will prove the following lemma

Lemma 1. For any x > 0, xB(0,1) = B(0,x).

Proof of lemma. If $\mathbf{y} \in xB(\mathbf{0},1)$ then $\mathbf{y} = x\mathbf{y}'$ for $\mathbf{y}' \in B(\mathbf{0},1)$. Thus, $|\mathbf{y}'| = |\mathbf{y}|/x < 1$ so $|\mathbf{y}| < x$ implies that $\mathbf{y} \in B(\mathbf{0},x)$. Hence, we have the containment $xB(\mathbf{0},1) \subset B(\mathbf{0},x)$.

On the other hand, if $\mathbf{y} \in B(\mathbf{0}, x)$ then $|\mathbf{y}| < x$ so $|\mathbf{y}/x| < 1$. Hence, $\mathbf{y}/x \in B(\mathbf{0}, 1)$ so $x(\mathbf{y}/x) = \mathbf{y} \in B(\mathbf{0}, x)$. Thus, $B(\mathbf{0}, x) \subset xB(\mathbf{0}, x)$ and equality holds.

In light of Lemma 1 and 3.35, for x > 0, we have

$$F(x) = |B(\mathbf{0}, x)| = |xB(\mathbf{0}, 1)| = x^n |B(\mathbf{0}, 1)|.$$
(5)

It is clear that F is continuous on the interval $[0,\infty)$ since F is a polynomial in x.

Problem 1.4. Let $f: \mathbf{R} \to \mathbf{R}$ be a function. Let C be the set of all points at which f is continuous. Show that C is a set of type G_{δ} .

Proof. From the topological definition of continuity, f is continuous at $x \in C$ if and only if for every neighborhood U of f(x), the preimage $f^{-1}(U)$ is a neighborhood of x. Now,

Let $x \in C$. Then, by the definition of continuity, for every natural number n > 0 there exists $\delta > 0$ such that $|x - x'| < \delta$ implies

$$|f(x) - f(x')| < \frac{1}{2n}.$$
 (6)

Let $x'', x' \in B(x, \delta)$. Then, by the triangle inequality, we have

$$|f(x') - f(x)''| = |f(x') - f(x) - (f(x'') - f(x))|$$

$$\leq |f(x') - f(x)| + |f(x'') - f(x)|$$

$$< \frac{1}{2n} + \frac{1}{2n}$$

$$= \frac{1}{n}.$$
(7)

In view of these estimates, define the set

$$A_n := \left\{ x \in \mathbf{R} \mid \text{ there exists } \delta > 0 \text{ such that } x', x'' \in B(x, \delta) \text{ implies } |f(x') - f(x'')| < \frac{1}{n} \right\}. (8)$$

Good Lord, that was a long definition! We claim that $C = \bigcap_{n=1}^{\infty} A_n$ and that A_n is open for all n. First, let us show that $C = \bigcap_{n=1}^{\infty} A_n$. Let $x \in C$. Then for every n > 0, there exists $\delta > 0$ such that $|x-x'| < \delta$ implies |f(x)-f(x')| < 1/n. Thus, $x \in A_n$ for all n so $x \in \bigcap A_n$. On the other hand, if $x \in \bigcap A_n$ for every n > 0, there exists $\delta > 0$ such that $|x-x'| < \delta$ implies |f(x)-f(x')| < 1/n.

Fix $\varepsilon > 0$. By the Archimedean principle, there exists N > 0 such that $\varepsilon > 1/N$. Then, since $x \in A_N$ it follows that for some $\delta' > 0$, $|x - x'| < \delta'$ implies $|f(x) - f(x')| < 1/N < \varepsilon$. Thus, $x \in C$ and we conclude that $C = \bigcap_{n=1}^{\infty} A_n$.

Lastly, we show that A_n is open. Let $x \in A_n$. Then there exists $\delta > 0$ such that $|x - x'| < \delta$ implies |f(x) - f(x')| < 1/n. In particular, this means that $B(x, \delta) \subset A_n$ for any $x' \in B(x, \delta)$ satisfies |f(x) - f(x')| < 1/n. Thus, A_n is open and we conclude that $C = \bigcap_{n=1}^{\infty} A_n$ is a G_{δ} set.

Problem 1.5. Let $f: \mathbf{R} \to \mathbf{R}$ be a function. Is it true that if the sets $\{f = r\}$ are measurable for all $r \in \mathbf{R}$, then f is measurable?

Proof. No. Recall that, by definition, or 4.1, f is measurable if and only if $\{f > a\}$ for all $a \in \mathbf{R}$.

Problem 1.6. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of measurable functions on **R**. Prove that the set $\{x \mid \lim_{k\to\infty} f_k(x) \text{ exists}\}$ is measurable.

Proof. The idea here should be to rewrite

$$E := \left\{ x \middle| \lim_{k \to \infty} f_k(x) \text{ exists} \right\}$$
 (9)

as a countable union/intersection of measurable sets. Let $x \in E$. By the Cauchy criterion, for every N > 0 there exists a positive integer M such that $m, n \ge M$ implies $|f_n(x) - f_m(x)| < 1/N$. With this in mind, define

$$E_N := \left\{ x \mid \text{ there exists } M \text{ such that } m, n \ge M \text{ implies } |f_n(x) - f_m(x)| < \frac{1}{N} \right\}.$$
 (10)

Then, like for Problem 1.4, it is not too hard to see that the E_n 's are open and that $E = \bigcap_{n=1}^{\infty} E_n$. Thus, E is a G_{δ} set and therefore measurable.

Problem 1.7. A real valued function f on an interval [a,b] is said to be absolutely continuous if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every finite disjoint collection $\{(a_k,b_k)\}_{k=1}^N$ of open intervals in (a,b) satisfying $\sum_{k=1}^N b_k - a_k < \delta$, one has $\sum_{k=1}^N |f(b_k) - f(a_k)| < \varepsilon$. Show that an absolutely continuous function on [a,b] is of bounded variation on [a,b].

Proof. Suppose $f:[a,b] \to \mathbf{R}$ is absolutely continuous. Then for fixed $\varepsilon=1$, there exists a $\delta>0$ such that for every finite disjoint collection $\{(a_kb_k)\}_{k=1}^N$ of open intervals in (a,b) satisfying $\sum_{k=1}^N b_k - a_k < \delta$, we have $\sum_{k=1}^N |f(b_k) - f(a_k)| < \varepsilon$. Let $\Gamma := \{x_k\}_{k=1}^N$ be a partition of [a,b] into closed intervals such that $x_{k+1} - x_k < \delta$, then by absolute continuity we have

$$V[f;\Gamma] = \sum_{k=1}^{N} |f(x_{k+1}) - f(x_k)|$$

$$< 1.$$
(11)

Thus, $f \in BV[a, b]$.

Problem 1.8. Let f be a continuous function from [a,b] into \mathbf{R} . Let $\chi_{\{c\}}$ be the characteristic function of a singleton $\{c\}$, i.e., $\chi_{\{c\}}(x)=0$ if $x\neq c$ and $\chi_{\{c\}}(c)=1$. Show that

$$\int_{a}^{b} f \, d\chi_{\{c\}} = \begin{cases} 0 & \text{if } c \in (a, b) \\ -f(a) & \text{if } c = a \\ f(a) & \text{if } c = b \end{cases}.$$

Proof.

2 Exam 1

2.1 Exam 2 Prep

Problem 2.1. Define for $\mathbf{x} \in \mathbf{R}^n$,

$$f(\mathbf{x}) := \begin{cases} |\mathbf{x}|^{-(n+1)} & \text{if } \mathbf{x} \neq \mathbf{0}, \\ 0 & \text{if } \mathbf{x} = \mathbf{0}. \end{cases}$$

Prove that f is integrable outside any ball $B(0,\varepsilon)$, and that there exists a constant C>0 such that

$$\int_{\mathbf{R}^n \setminus B_{\varepsilon}(\mathbf{0})} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \le \frac{C}{\varepsilon}.$$

Proof. What does it mean for a measurable function f to be integrable over a set $E \subset \mathbf{R}^n$, i.e., that f belong to $L^1(E)$? It means that

$$\int_{E} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} < \infty,$$

or equivalently that the integral of the absolute value of f be finite.

Put $E := \mathbf{R}^n \setminus B_{\varepsilon}(\mathbf{0})$ and $E' := \mathbf{R} \setminus B_{\varepsilon}(\mathbf{0})$. Now, suppose f is given as in the statement of the problem. It is enough to prove the inequality

$$\int_{E} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} < \frac{C}{\varepsilon} \tag{12}$$

to show that f belongs to $L^1(E)$. Hence, we proceed in this spirit. First, let us jot down some estimates on the integral. For any $\mathbf{x} \in B_{\varepsilon}(\mathbf{0})$, $|\mathbf{x}| < \varepsilon$ so the integral

$$\int_{B_{\varepsilon}(\mathbf{0})} f(\mathbf{x}) \, d\mathbf{x} = \int_{B_{\varepsilon}(\mathbf{0})} \frac{d\mathbf{x}}{|\mathbf{x}|^{n+1}} \ge \int_{B_{\varepsilon}(\mathbf{0})} \frac{d\mathbf{x}}{\varepsilon^{n+1}} = \frac{\operatorname{Vol} B_{\varepsilon}(\mathbf{0})}{\varepsilon^{n+1}}$$
(13)

for every $\varepsilon > 0$, hence it diverges.

Now, taking the integral of f directly we have

$$\int_{E} f(\mathbf{x}) d\mathbf{x} = \int_{E} \frac{d\mathbf{x}}{|\mathbf{x}|^{n+1}}$$

$$= \int_{E} \frac{d\mathbf{x}}{\left(\sqrt{x_1^2 + \dots + x_n^2}\right)^{n+1}}$$

$$= \int \dots \int_{E'} \frac{dx_1 \dots dx_n}{\left(\sqrt{x_1^2 + \dots + x_n^2}\right)^{n+1}}$$

$$= \int \dots \int_{E'} \left[\int_{E'} \frac{dx_1}{\left(\sqrt{x_1^2 + \dots + x_n^2}\right)^{n+1}} \right] dx_2 \dots dx_n$$

make the substitution, $\tan \theta_1 = x_1/\sqrt{x_2^2 + \dots + x_n^2}$ with $\theta_1 \in (-\infty, \tan^{-1}(-\varepsilon)) \cup (\tan^{-1}(\varepsilon), \infty)$

$$= \int \cdots \int_{E'} \left[\int_{E'} \sec^2 \theta_1 \cos \theta_1 d\theta_1 \right] dx_2 \cdots dx_n$$
$$= \int \cdots \int_{E'} \left[\int_{E'} \sec \theta_1 d\theta_1 \right] dx_2 \cdots dx_n$$

Problem 2.2. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on \mathbb{R}^n , and assume that f_k converges pointwise almost everywhere to a function f. If

$$\int_{\mathbf{R}^n} f = \lim_{k \to \infty} \int_{\mathbf{R}^n} f_k < \infty,$$

show that

$$\int_{E} f = \lim_{k \to \infty} \int_{E} f_k$$

for all measurable subsets E of \mathbf{R}^n . Moreover, show that this is not necessarily true if $\int_{\mathbf{R}^n} f = \lim_{k \to \infty} f_k = \infty$.

Proof.

Problem 2.3. Assume that E is a measurable set of \mathbb{R}^n , with $\lambda(E) < \infty$. Prove that a nonnegative function f defined on E is integrable if and only if

$$\sum_{k=0}^{\infty} \lambda(\{\mathbf{x} \in E : f(\mathbf{x}) \ge k\}) < \infty.$$

Proof.

Problem 2.4. Suppose that E is a measurable subset of \mathbf{R}^n , with $\lambda(E) < \infty$. If f and g are measurable functions on E, define

$$\rho(f,g) = \int_E \frac{|f-g|}{1+|f-g|}.$$

Prove that $\rho(f_k, g) \to 0$ as $k \to \infty$ if and only if f_k converges to f as $k \to \infty$.

Proof.

Problem 2.5. Define the gamma function $\Gamma: [0, \infty) \to \mathbf{R}$ by

$$\Gamma(y) := \int_0^\infty e^{-u} u^{y-1} \, \mathrm{d}u,$$

and the beta function $\beta \colon [0, \infty) \times [0, \infty) \to \mathbf{R}$ by

$$\beta(x,y) := \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

- (a) Prove that the definition of the gamma function is well-posed, i.e., the function $u \mapsto e^{-u}u^{y-1}$ is in $L([0,\infty))$ for all $y \in [0,\infty)$.
- (b) Show that

$$\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Proof.

Problem 2.6.	
Proof.	•
Problem 2.7.	
Proof.	