Tutorial 11: Quadratic Curves (cntd.)

Dr. Mohammad Reza Bahrami

Innopolis University
Course of Essentials of Analytical Geometry and Linear Algebra I

November 13, 2020

Last weeks' topics

- ☐ Quadratic Curves
 - > Parabolas
 - > Circles
 - > Ellipses

Content

- Quadratic Curves
 - > <u>Hyperbolas</u>
 - > Rotation of axes

Conic Sections

Conic sections are the curves obtained by intersecting a plane and a right circular cone.

- ❖ A plane perpendicular to the cone's axis cuts out a circle;
- ❖ A plane parallel to a side of the cone produces a parabola;
- ❖ A plane at an arbitrary angle to the axis of the cone forms an ellipse;
- ❖ A plane parallel to the axis cuts out a hyperbola.

*Figure from internet.

Hyperbola (1/2)

A **hyperbola** is the set of points in a plane such that the absolute value of the difference of the distance of each point from two fixed points is constant. Each fixed point is called a *focus*, and the point midway between the foci is called the *center*. The line containing the foci is the **transverse axis**. The graph is made up of two parts called **branches**. Each branch intersects the transverse axis at a point called the *vertex*.

The standard form of the equation

of a hyperbola with center at (h, k) can be seen in figure.

The vertices are a units from the center, and the foci are c units from the center. Moreover, $c^2 = a^2 + b^2$.

 $\frac{(v-k)}{a^2} - \frac{(v-k)}{b^2} = 1$ y (h, k+c) (h, k) (h, k-c)

Transverse axis is horizontal.

Transverse axis is vertical.

Hyperbola (2/2)

Asymptotes of a Hyperbola

Each hyperbola has two asymptotes that intersect at the center of the hyperbola.

The asymptotes pass through the corners of a rectangle of dimensions 2a by 2b, with its center at (h, k), as shown in figure.

Equations of Asymptotes of a Hyperbola	
Asymptotes for horizontal transverse axis	Asymptotes for vertical transverse axis
$y = k \pm \frac{b}{a}(x - h)$	$y = k \pm \frac{a}{b}(x - h)$

The conjugate axis of a hyperbola is the line segment of length 2b joining (h, k + b) and (h, k - b) if the transverse axis is horizontal, and the line segment of length 2b joining (h + b, k) and (h - b, k) if the transverse axis is vertical.

Find the standard form of the equation of the hyperbola having vertices (3, -5) and (3, 1) and having asymptotes

$$y = 2x - 8$$
 and $y = -2x + 4$

as shown in figure.

Solution:

Rotation (1/2)

It is known that the equation of a conic with axes parallel to the coordinate axes has a standard form that can be written in the general form

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$
. Horizontal or vertical axes

In this section, you will study the equations of conics whose axes are rotated so that they are not parallel to either the x-axis or the y-axis. The general equation for such conics contains an xy-term.

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
 Equation in xy – plane

To eliminate this xy-term, you can use a procedure called **rotation of axes**. The objective is to rotate the x- and y-axes until they are parallel to the axes of the conic. The rotated axes are denoted as the x'-axis and the y'-axis, as shown in the figure.

Rotation of Axes to Eliminate an xy-Term

The general second-degree equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

can be rewritten as

$$A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$$

by rotating the coordinate axes through an angle θ , where $\cot 2\theta = \frac{A-C}{B}$ The coefficients of the new equation are obtained by making the substitutions

$$x = x' \cos \theta - y' \sin \theta$$
 and $y = x' \sin \theta + y' \cos \theta$.

Rotation (2/2)

Rotation Invariants

The rotation of the coordinate axes through an angle θ that transforms the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ into the form $A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$ has the following rotation invariants.

- 1) F = F'
- 2) A + C = A' + C'
- 3) $B^2 4AC = (B')^2 4A'C'$

Note that because B' = 0, the invariant $B^2 - 4AC$ reduces to $B^2 - 4AC = -4A'C'$ Discriminant

Classification of Conics by the Discriminant

The graph of the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ is, except in degenerate cases, determined by its discriminant as follows.

- 1. Ellipse or circle: $B^2 4AC < 0$
- 2. Parabola: $B^2 4AC = 0$
- 3. Hyperbola: $B^2 4AC > 0$

 \triangleright Rotate the axes to eliminate the xy-term in the equation xy - 1 = 0. Then write the equation in standard form and sketch its graph.

> Rotate the axes to eliminate the xy-term in the equation

$$7x^2 - 6\sqrt{3}xy + 13y^2 - 16 = 0.$$

Then write the equation in standard form and sketch its graph.

Solution:

> Rotate the axes to eliminate the xy-term in the equation

$$x^2 - 4xy + 4y^2 + 5\sqrt{5}y + 1 = 0.$$

Then write the equation in standard form and sketch its graph.

Solution:

☐ Quadratic Surfaces

Good Luck