

кафедра «Вычислительные системы, сети и информационная безопасность»

Издательская система LATEX

Статьи, ссылки, системы контроля версий

Александр Сергеевич Филипченко 797439@edu.rut-miit.ru

План лекции

- 1. Особенности подготовки научных статей в धТЕХ
- 2. Ссылки на элементы документа
- 3. Использование системы контроля версий
- 4. Домашнее задание

BibLaTeX — менеджер библиографии. Состоит из утилиты для работы с .bib файлами biber и пакета biblatex. Алгоритм работы менеджера библиографии:

- 1. программа **xelatex** обнаруживает ссылки (команды \cite) и подключенные источники в формате в документе и по результатам формирует запрос;
- 2. программа **biber** формирует в ответ на запрос LaTeX-файл с нужными библиографическими данными;
- 3. программа **xelatex** выполняет проход для расстановки ссылок и добавления списка литературы в документ;
- 4. программа **xelatex** выполняет дополнительный проход для перерасстановки номеров страниц и внутренних ссылок в документе.

- 1 \documentclass{article}
- 2 \usepackage[utf8]{inputenc}
- 3 \usepackage[english]{babel}
- 4 \usepackage{biblatex}
- 5 \addbibresource{sample.bib}
- 6 \begin{document}
- 7 Let's cite! The Einstein's journal paper \cite{einstein}
- 8 and the Dirac's book \cite{dirac} are physics related items.
- 9 \printbibliography
- 10 \end{document}

Рис. 1: Пример исходного кода с использованием Bibl aTeX

Let's cite! Einstein's journal paper [2] and Dirac's book [1] are physics-related items.

References

- Paul Adrien Maurice Dirac. The Principles of Quantum Mechanics. International series of monographs on physics. Clarendon Press, 1981. ISBN: 9780198520115.
- [2] Albert Einstein. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". In: Annalen der Physik 322.10 (1905), pp. 891—921. DOI: http://dx.doi.org/10.1002/andp.19053221004.

Рис. 2: Результат сборки

Выбор стиля осуществляется через параметр style=stylename при вызове \usepackage). Параметр sorting=option определяет критерий сортировки источников в библиографическом списке.

опция	характеристика
nty	сортировка по имени, названию, году
nyt	сортировка по имени, году, названию
nyvt	сортировка по имени, году, тому, названию
	и иные комбинации этих букв
none	сортировка по порядку цитирования

При подготовке библиографического файла .bib в BibLaTeX существует несколько типов записей, каждый из которых имеет свои специфические параметры.

Тип записи	Характеристика
@book	Книга
@article	Статья в журнале
@conference	Материалы конференции
@thesis	Диссертация или дипломная работа
@report	Технический отчет
@manual	Руководство или инструкция
@misc	Разное (для записей, которые не подходят под другие категории)

Примеры записей в библиографическом файле

Особенности подготовки научных статей в РТЕХ

```
@book{kev,
 author = {MMЯ Фамилия},
 title = \{HasBahue \kappaHu\Gammau\},
 publisher = {Издательство},
      vear
 volume = \{Tom\},
 series = \{Cepus\},
 address
           = {Город},
 edition
           = {Издание},
 isbn
           = \{ISBN\}.
 doi
           = \{DOI\}
```

Рис. 3: Параметры библиографического описания типа «Книга»

```
@article{key,
  author
          = \{\text{Имя Фамилия}\},
  title = {Hasbahue cтатьи},
  iournal = \{Hasbahue журнала\}.
  vear
          = {Год},
  volume
          = \{Tom\},
  number
          = \{Homep\},
          = {Страницы},
  pages
  month
          = {Месяц},
  doi
          = \{DOI\},
  11 r l
          = \{URL\}
```

Рис. 4: Параметры «Статьи»

Каталог изображений

Komanda \graphicspath сообщает LaTeX, что изображения хранятся в каталоге, имя которого передано в качестве параметра.

Включение изображения

Команда \includegraphics непосредственно включает изображение в документ. В качестве параметра ей передаётся имя файла с изображением без расширения. Имя файла с изображением не должно содержать пробелов и многоточий.

Позиционирование

Управлять размерами изобращений можно при помощи параметров **scale**, **width**, **height**. Вместо конкретных численных значений ширины можно, например, задавать размер по ширине текста через **width** = **\textwidth**.

Подписи

Подписи добавляющие краткое описание к изображениям. Вызываются командой \caption, которой в качестве параметра передаётся непсоредственно сам текст подписи. Подписи также поддреживают автонумерацию.

В LATEX мы можем помечать нумерованные объекты (разделы, формулы и т. д.), а затем использовать эту метку для ссылки на них в других местах. Те же команды применимы и к окружению рисунков. Оперирует тремя основными компонентами:

- \label{marker} маркер можно рассматривать как имя, которое мы даем объекту, на который хотим сослаться. Важно добавить осле нумерованного элемента, например, иначе метка не сможет «зацепиться» за нужный номер или счетчик.
- \ref{marker} выводит номер, присвоенный объекту, помеченному маркером.
- \pageref{marker} выводит номер страницы, на которой появился объект, помеченный маркером.

```
\begin{equation} \label{eq:solve}
x^2 - 5x + 6 = 0
\end{equation}
\begin{equation}
x_1 = \frac{5 + \sqrt{25 - 4 \times 6}}{2} = 3
\end{equation}
\begin{equation}
x_2 = \frac{5 - \sqrt{25 - 4 \pm 6}}{2} = 2
\end{equation}
and so we have solved equation~\earef{eq:solve}
```

Рис. 5: Ссылаемся на первую формулу

$$x^{2} - 5x + 6 = 0$$

$$x_{1} = \frac{5 + \sqrt{25 - 4 \times 6}}{2} = 3$$

$$x_{2} = \frac{5 - \sqrt{25 - 4 \times 6}}{2} = 2$$
and so we have solved equation 1 (1)

Рис. 6: Результат сборки

Системы контроля версий — специализированное программное обеспечение, предназначенное для синхронизации актуальных версий файлов и документов между рабочими местами участников проекта, ведение истории изменений.

Преимущества

- Отслеживание изменений. СКВ позволяет фиксировать каждое изменение в файлах, что дает возможность вернуться к предыдущим версиям при необходимости. Это особенно полезно, если что-то пошло не так.
- Совместная работа. Несколько разработчиков могут работать над одним проектом одновременно, не опасаясь конфликтов. СКВ помогает объединять изменения и разрешать конфликты, если они возникают.

Преимущества

- История изменений. СКВ сохраняет полную историю изменений, включая информацию о том, кто и когда вносил изменения. Это позволяет легко отслеживать, когда и почему были сделаны определенные изменения.
- **Безопасность**. СКВ обеспечивает резервное копирование данных. Если файл был случайно удален или поврежден, его можно восстановить из предыдущей версии.
- Управление версиями. СКВ позволяет создавать разные ветки разработки, что дает возможность экспериментировать с новыми функциями или исправлениями, не влияя на основную версию проекта.

Репозиторий

Место, где хранятся все файлы проекта и их история изменений. Репозиторий может быть локальным (на вашем компьютере) или удаленным (на сервере).

Коммит

Фиксация изменений в репозитории. Каждый коммит содержит информацию о том, какие изменения были внесены, кто их сделал и когда.

Ветка

Отдельная линия разработки, которая позволяет работать над новыми функциями или исправлениями, не влияя на основную (главную) версию проекта. Ветки позволяют параллельно разрабатывать разные версии проекта.

Слияние

Процесс объединения изменений из одной ветки в другую. Слияние может быть автоматическим или требовать разрешения конфликтов. если

Конфликт Ситуация, когда изменения в разных ветках затрагивают одни и те же строки

кода, и система не может автоматически определить, какие изменения следует сохранить.

Тег

Метка, которая используется для обозначения конкретной версии или состояния проекта. Теги часто используются для обозначения релизов.

Клонирование

Процесс создания локальной копии удаленного репозитория. Это позволяет пользователям работать с проектом на своем компьютере.

Форк

Копия репозитория, созданная для внесения изменений, которая может быть предложена для слияния обратно в оригинальный репозиторий.

Пример графа истории проекта с контролем ревизий; ствол — зелёный, ветви —- жёлтый, а граф не является деревом из-за наличия слияний (красные стрелки).

git init

Создает новый локальный репозиторий в текущей директории.

git clone url

Клонирует удаленный репозиторий на локальный компьютер.

git add filename

Добавляет изменения в указанных файлах в индекс для последующего коммита.

git commit -m "message"

Фиксирует изменения в индексе с сообщением о коммите.

git branch

Показывает список всех веток в репозитории. Если указать имя ветки, команда создаст новую ветку.

git checkout branch

Переключает на указанную ветку.

git merge branch

Объединяет изменения из указанной ветки в текущую ветку.

git remote

Показывает список удаленных репозиториев. Можно использовать с параметрами для добавления, удаления или изменения удаленных репозиториев.

git push remote branch

Отправляет изменения из локальной ветки в удаленный репозиторий.

git pull remote branch

Загружает изменения из удаленного репозитория и объединяет их с текущей веткой.

Данная презентация подготовлена с использованием СКВ **git**. Справа приведена ссылка на соответсвующий репозитой на платформе «GitHub».

На основе созданного шаблона написать доклад про архитектуру 16-разрядных микропроцессоров Intel 8086.

Требования

- использовать систему контроля версий;
- объём от 10 страниц;
- использовать источники с портала eLibary и Киберленинка;
- сортировать список использованных источников по фамилиям авторов
- должны быть формулы, таблицы и картинки.