Lecture 3 Image Color-spaces & Statistics

ECE 1390/2390

Learning Objectives:

- Histograms
- Color schemes
- Gamma-correction
- Hue, saturation

RGB

CMY/CMYK

CMY/CMYK

Half toning

CMYK works well for half-toning. Colors are created from varied size/density of dots. The human eye blends these together to get a color.

Image from wikipedia

Saves ink in printing

• **Brightness**: Mean of intensity over the power spectrum

• Colorfulness: inverse of "variance" of power spectrum

• Saturation: Brightness/Colorfulness

• Radiance. Light power through a solid angle

Units: W·sr⁻¹·m⁻² [sr = steradian; $\theta = \phi = 1$ radian]

• Luminance. Radiance * sensitivity of human eye

Units: $cd \cdot m^{-2}$ [cd = candela]

HSV (Hue-Saturation-Value)

Hue. The "attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors: red, yellow, green, and blue"

Red = 0°

Yellow = 60°

Green = 120°

Blue = 240°

Purple = 300°

Saturation. The "colorfulness of a stimulus relative to its own brightness"

Value. The "attribute of a visual sensation according to which a area appears to emit more or less light"

0 = Black

1 = Full color

Image from wikipedia

HSL (Hue-Saturation-Lightness)

Hue. The "attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors: red, yellow, green, and blue"

Red = 0°

Yellow = 60°

Green = 120°

Blue = 240°

Purple = 300°

Saturation. The "colorfulness of a stimulus relative to its own brightness"

Lightness. The "brightness relative to the brightness of a similarly illuminated white"

0 = Black

1 = White

Image from wikipedia

In 08_ColorSpaces.ipynb

convert to BGR to HSV
lake_img_hsv = cv2.cvtColor(lake_img,cv2.COLOR_BGR2HSV)

Split the HSV (monochromatic images)
H,S,V = cv2.split(lake_img_hsv)

Equalization

$$h(v) = ext{round} \left(rac{ ext{cdf}(v) - ext{cdf}_{ ext{min}}}{(M imes N) - ext{cdf}_{ ext{min}}} imes (L-1)
ight)$$

Histogram matching

Normalization

Match the contrast level (range of intensities)

$$I_N = (I - ext{Min}) rac{ ext{newMax} - ext{newMin}}{ ext{Max} - ext{Min}} + ext{newMin}$$

Gamma correction

Your eye is not linear to intensity

Linear encoding $V_S = 0.00.10.20.30.40.50.60.70.80.91.0$ Linear intensity I = 0.00.10.20.30.40.50.60.70.80.91.0

$$Out = I^{1/\gamma}$$

Alpha Blending

$$egin{aligned} lpha_o &= lpha_a + lpha_b (1-lpha_a) \ C_o &= rac{C_a lpha_a + C_b lpha_b (1-lpha_a)}{lpha_o} \end{aligned}$$

