Robotics

Estimation and Learning with Dan Lee

Week 2. Kalman Filter

2.4 Non-linear Kalman filters

- Linearize around the transition function
 - Jacobian represents the derivative in matrix form
- Calculate the uncertainty update via linearization

• Covariance prediction $p(x_{t+1}|x_t) = \mathcal{N}(Ax_t, AP_tA^T + \Sigma_m)$ $p(x_{t+1}|x_t) = \mathcal{N}\left(f(x_t), \frac{\partial f}{\partial x}P_t\frac{\partial f^T}{\partial x} + \Sigma_m\right)$

Kalman Gain

$$K = PC^{T}(\Sigma_{o} + CPC^{T})^{-1}$$

$$K = P \frac{\partial h^{T}}{\partial x} \left(\Sigma_{o} + \frac{\partial h}{\partial x} P_{t} \frac{\partial h^{T}}{\partial x} \right)^{-1}$$

Overall update

$$\hat{x}_t = f(x_{t-1}) + K(z_t - h(f(x_t)))$$

$$\hat{P}_t = P - K \frac{\partial h}{\partial x} P$$

- Noise distribution characterized by a set of points
- Transform these points in non-linear fashion
- Re-estimate mean and covariance for recalculating
 Gaussian distribution to characterize uncertainty

- Model the distribution based on a set of sigma points
 - Statistics of these points captures the distribution

- Approximate new distribution by computing the statistics of the $sigma\ points\ \mathcal{X}_i$
- Approximate a Gaussian with first two moments

- State prediction
 - Mean of Sigma points run through dynamic system

$$x_{t+1|x_t} = \frac{1}{N_{\mathcal{X}}} \sum_{i} f(\mathcal{X}_i)$$

- Uncertainty prediction
 - Covariance of sigma points run through dynamic system

$$P_{t+1|x_t} = \frac{1}{N_{\mathcal{X}}} \sum_{i} (f(X_i) - x_{t+1|x_t}) (f(X_i) - x_{t+1|x_t})^T$$

- Expected Observation
 - Mean of Sigma points' expected obsrvation

$$z_{t+1|x_t} = \frac{1}{N_{\mathcal{X}}} \sum_{i} h(f(\mathcal{X}_i))$$

Recall Linear System $K = PC^{T}(\Sigma_{o} + CPC^{T})^{-1}$

- Kalman Gain
 - Utilize sigma points, not observation model

$$K = \frac{1}{N_{\mathcal{X}}} \sum_{i} (f(\mathcal{X}_{i}) - x_{t+1|x_{t}}) (h(f(\mathcal{X}_{i})) - z_{t+1|x_{t}})^{T}$$

$$\cdot \left(\frac{1}{N_{\mathcal{X}}} \sum_{i} (h(f(\mathcal{X}_{i})) - z_{t+1|x_{t}}) (h(f(\mathcal{X}_{i})) - z_{t+1|x_{t}})^{T} \right)^{-1}$$

- Update just as the linear filter
 - The covariance update will be slightly different
- See notes for good resources on further details

Particle Filter

- Take the unscented filter to the limit, and use many points to characterize the distribution
- Distribution is not limited to Gaussian
- Discuss in Week 4