Techniques de Machine Learning dans l'amélioration d'intégrateurs numériques pour les équations différentielles stochastiques.

Dorian Coudiere sous la supervision d'Adrien Laurent

June 4, 2024

Sommaire

- Nature du problème
- 2 Construction de notre Modèle
- Simualtions numériques
- 4 Conclusion et suite

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$ Intégrateur : $Y_{n+1} = \varphi_h^{f,\sigma}(Y_n)$

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$

Intégrateur : $Y_{n+1} = \phi_h^{f,\sigma}(Y_n)$

Euler-Maruyama : $Y_{n+1}=Y_n+hf(Y_n)+\sqrt{h}\sigma(Y_n)\xi$ $\xi\sim N(0,1)$

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$ Intégrateur : $Y_{n+1} = \varphi_h^{f,\sigma}(Y_n)$

Euler-Maruyama : $Y_{n+1} = Y_n + hf(Y_n) + \sqrt{h}\sigma(Y_n)\xi$ $\xi \sim N(0,1)$

EDS Modifiée:

$$dX = \tilde{f}(X)dt + \tilde{\sigma}(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$ Intégrateur : $Y_{n+1} = \phi_h^{f,\sigma}(Y_n)$

Euler-Maruyama : $Y_{n+1} = Y_n + hf(Y_n) + \sqrt{h}\sigma(Y_n)\xi$ $\xi \sim N(0,1)$

EDS Modifiée:

$$dX = \tilde{f}(X)dt + \tilde{\sigma}(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

$$X_{n+1} = \varphi_h(X_n) = \phi_h^{\tilde{f},\tilde{\sigma}}(X_n)$$

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$

Intégrateur : $Y_{n+1} = \phi_h^{f,\sigma}(Y_n)$

Euler-Maruyama : $Y_{n+1} = Y_n + hf(Y_n) + \sqrt{h}\sigma(Y_n)\xi$ $\xi \sim N(0,1)$

EDS Modifiée:

$$dX = \tilde{f}(X)dt + \tilde{\sigma}(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

$$X_{n+1} = \varphi_h(X_n) = \phi_h^{\tilde{f},\tilde{\sigma}}(X_n)$$

Proposition

On peut écrire les champs modifiés comme des B-séries

EDS:

$$dX = f(X)dt + \sigma(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

Flot exact : $Y(h) = \varphi_h(Y_0)$

Intégrateur : $Y_{n+1} = \phi_h^{f,\sigma}(Y_n)$

Euler-Maruyama : $Y_{n+1} = Y_n + hf(Y_n) + \sqrt{h}\sigma(Y_n)\xi$ $\xi \sim N(0,1)$

EDS Modifiée:

$$dX = \tilde{f}(X)dt + \tilde{\sigma}(X)dW(t)$$
 $X(0) = x \in \mathbb{R}^d$

$$X_{n+1} = \varphi_h(X_n) = \phi_h^{\tilde{f},\tilde{\sigma}}(X_n)$$

Proposition

On peut écrire les champs modifiés comme des B-séries

•
$$\tilde{f}_h(x) = f(x) + \sum_{i=1}^{\infty} h^i f_i(x)$$
 • $\tilde{\sigma}_h(x) = \sigma(x) + \sum_{i=1}^{\infty} h^i \sigma_i(x)$

EDS Linéaire:

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

EDS Linéaire:

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h ilde{f}(x) + \sqrt{h ilde{\sigma}^2(x)} \xi \quad \xi \sim \mathcal{N}(0,1)$$

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h\tilde{f}(x) + \sqrt{h\tilde{\sigma^2}(x)}\xi$$
 $\xi \sim N(0,1)$

• $E[X(h)] = x + h\tilde{f}(x) = x + hf(x) + h^2f_1(x) + h^3f_2(x) + O(h^4)$

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h\tilde{f}(x) + \sqrt{h\tilde{\sigma^2}(x)}\xi$$
 $\xi \sim N(0,1)$

- $E[X(h)] = x + h\tilde{f}(x) = x + hf(x) + h^2f_1(x) + h^3f_2(x) + O(h^4)$
- $Var[X(h)] = h\tilde{\sigma^2}(x) = h\sigma^2(x) + h^2\sigma_1^2(x) + h^3\sigma_2^2(x) + O(h^4)$

4 / 20

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h\tilde{f}(x) + \sqrt{h\tilde{\sigma^2}(x)}\xi$$
 $\xi \sim N(0,1)$

- $E[X(h)] = x + h\tilde{f}(x) = x + hf(x) + h^2f_1(x) + h^3f_2(x) + O(h^4)$
- $Var[X(h)] = h\tilde{\sigma}^2(x) = h\sigma^2(x) + h^2\sigma_1^2(x) + h^3\sigma_2^2(x) + O(h^4)$

Solution exact:

$$X(t) = e^{(\lambda - \frac{\mu^2}{2})t + \mu W(t)} x$$

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h ilde{f}(x) + \sqrt{h ilde{\sigma}^2(x)} \xi \quad \xi \sim {\sf N}(0,1)$$

- $E[X(h)] = x + h\tilde{f}(x) = x + hf(x) + h^2f_1(x) + h^3f_2(x) + O(h^4)$
- $Var[X(h)] = h\tilde{\sigma}^2(x) = h\sigma^2(x) + h^2\sigma_1^2(x) + h^3\sigma_2^2(x) + O(h^4)$

Solution exact:

$$X(t) = e^{(\lambda - \frac{\mu^2}{2})t + \mu W(t)} x$$

- $E[X(t)] = e^{\lambda t} x$
- $Var[X(t)] = e^{2\lambda t}(e^{\mu^2 t} 1)x^2$

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h\tilde{f}(x) + \sqrt{h\tilde{\sigma^2}(x)}\xi$$
 $\xi \sim N(0,1)$

- $E[X(h)] = x + h\tilde{f}(x) = x + hf(x) + h^2f_1(x) + h^3f_2(x) + O(h^4)$
- $Var[X(h)] = h\tilde{\sigma}^2(x) = h\sigma^2(x) + h^2\sigma_1^2(x) + h^3\sigma_2^2(x) + O(h^4)$

Solution exact:

$$X(t) = e^{(\lambda - \frac{\mu^2}{2})t + \mu W(t)} x$$

- $E[X(t)] = e^{\lambda t} x$
- $Var[X(t)] = e^{2\lambda t}(e^{\mu^2 t} 1)x^2$

Fonctions modifiés :

•
$$f_1(x) = \frac{\lambda^2}{2}x$$
 • $f_2(x) = \frac{\lambda^3}{6}x$

EDS Linéaire :

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = X$

Application de l'intégrateur numérique modifié :

Euler Maruyama :
$$X(h) = x + h\tilde{f}(x) + \sqrt{h\tilde{\sigma^2}(x)}\xi$$
 $\xi \sim N(0,1)$

- $E[X(h)] = x + h\tilde{f}(x) = x + hf(x) + h^2f_1(x) + h^3f_2(x) + O(h^4)$
- $Var[X(h)] = h\tilde{\sigma}^2(x) = h\sigma^2(x) + h^2\sigma_1^2(x) + h^3\sigma_2^2(x) + O(h^4)$

Solution exact:

$$X(t) = e^{(\lambda - \frac{\mu^2}{2})t + \mu W(t)} x$$

- $E[X(t)] = e^{\lambda t} x$
- $Var[X(t)] = e^{2\lambda t}(e^{\mu^2 t} 1)x^2$

Fonctions modifiés :

- $f_1(x) = \frac{\lambda^2}{2}x$ $f_2(x) = \frac{\lambda^3}{6}x$
- $\sigma_1^2(x) = (\frac{\mu^4}{2} + 2\lambda\mu^2)x^2$ $\sigma_2^2(x) = (\frac{\mu^6}{6} + \lambda\mu^4 + 2\lambda^2\mu^2)x^2$

Sommaire

- Nature du problème
- 2 Construction de notre Modèle
- 3 Simualtions numériques
- 4 Conclusion et suite

Création du Réseau de neuronnes

$$y_1 = \varphi_h^{f,\sigma}(y_0) = \phi_h^{\tilde{f},\tilde{\sigma}} o \phi_h^{f_{app},\sigma_{app}}$$

Création du Réseau de neuronnes

$$\mathit{y}_1 = arphi_{\mathit{h}}^{\mathit{f},\sigma}(\mathit{y}_0) = \phi_{\mathit{h}}^{ ilde{\mathit{f}}, ilde{\sigma}}
ightarrow \phi_{\mathit{h}}^{\mathit{f}_{\mathit{app}},\sigma_{\mathit{app}}}$$

•
$$\tilde{f}_h(y) = f(y) + \sum_{i=1}^n h^i f_i(y) \to f_{app}(y) = f(y) + \sum_{i=1}^n h^i MLP_{1,i}(y) + R_1$$

•
$$\tilde{\sigma}_h(y) = \sigma(y) + \sum_{i=1}^n h^i \sigma_i(y) \rightarrow \sigma_{app}(y) = \sigma(y) + \sum_{i=1}^n h^i MLP_{2,i}(y) + R_2$$

Création du Réseau de neuronnes

$$y_1 = \varphi_h^{f,\sigma}(y_0) = \phi_h^{\tilde{f},\tilde{\sigma}} o \phi_h^{f_{app},\sigma_{app}}$$

•
$$\tilde{f}_h(y) = f(y) + \sum_{i=1}^n h^i f_i(y) \to f_{app}(y) = f(y) + \sum_{i=1}^n h^i MLP_{1,i}(y) + R_1$$

•
$$\tilde{\sigma}_h(y) = \sigma(y) + \sum_{i=1}^n h^i \sigma_i(y) \rightarrow \sigma_{app}(y) = \sigma(y) + \sum_{i=1}^n h^i MLP_{2,i}(y) + R_2$$

Etapes de l'apprentissage de notre modèle :

• On construit un Dataset $(Y0_i, h_i)_{1 \le i \le N}$

- On construit un Dataset $(Y0_i, h_i)_{1 \le i \le N}$
- On calcule pour chaque point du dataset une approximation quasi exact de la valeur réel $(Y1_i)_{1 \le i \le N}$

- On construit un Dataset $(Y0_i, h_i)_{1 \le i \le N}$
- On calcule pour chaque point du dataset une approximation quasi exact de la valeur réel $(Y1_i)_{1 \le i \le N}$
- On calcule la solution approchée par notre réseau en simulant $\phi_h^{\tilde{f},\tilde{\sigma}}(Y0)$

- On construit un Dataset $(Y0_i, h_i)_{1 \le i \le N}$
- On calcule pour chaque point du dataset une approximation quasi exact de la valeur réel $(Y1_i)_{1 \le i \le N}$
- On calcule la solution approchée par notre réseau en simulant $\phi_h^{\tilde{f},\tilde{\sigma}}(Y0)$
- On calcule l'erreur entre la solution exact et la solution donnée par notre réseau de neuronne

- On construit un Dataset $(Y0_i, h_i)_{1 \le i \le N}$
- On calcule pour chaque point du dataset une approximation quasi exact de la valeur réel $(Y1_i)_{1 \le i \le N}$
- On calcule la solution approchée par notre réseau en simulant $\phi_h^{\tilde{f},\tilde{\sigma}}(Y0)$
- On calcule l'erreur entre la solution exact et la solution donnée par notre réseau de neuronne
- On met à jour les différents paramètres des MLP par rétropropagation

Definition

Une fonction de perte est une fonction calculant l'erreur entre la prévision du modèle et la solution exact

Definition

Une fonction de perte est une fonction calculant l'erreur entre la prévision du modèle et la solution exact

Exemple:

• MSE :
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Definition

Une fonction de perte est une fonction calculant l'erreur entre la prévision du modèle et la solution exact

Exemple:

• MSE :
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

• MSE :
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 • MAE : $\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$

Definition

Une fonction de perte est une fonction calculant l'erreur entre la prévision du modèle et la solution exact

Exemple:

• MSE :
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$
 • MAE : $\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$

Construction de notre fonction :

$$\begin{split} \textit{Loss}_{\textit{train}} &= \frac{1}{K} \sum_{k=0}^{K-1} \left[\frac{|E[\phi_{h^{(k)}}^{f_{\textit{app}}(.,h^{(k)}),\sigma_{\textit{app}}(.,h^{(k)})}(y_0^{(k)})] - E[\varphi_{h^{(k)}}^{f,\sigma}(y_0^{(k)})]|}{h^{(k)p+1}} \right. \\ &\left. + \frac{|\textit{Cov}[\phi_{h^{(k)}}^{f_{\textit{app}}(.,h^{(k)}),\sigma_{\textit{app}}(.,h^{(k)})}(y_0^{(k)})] - \textit{Cov}[\varphi_{h^{(k)}}^{f,\sigma}(y_0^{(k)})]|}{h^{(k)p+1}} \right] \end{split}$$

Hyperparamètres

Définition

Un hyperparamètre est un paramètre définit en amont de l'apprentissage et régissant le processus.

Hyperparamètres

Définition

Un hyperparamètre est un paramètre définit en amont de l'apprentissage et régissant le processus.

Nombres de couches cachés

Hyperparamètres

Définition

Un hyperparamètre est un paramètre définit en amont de l'apprentissage et régissant le processus.

Nombres de couches cachés

Proposition

Toute fonction continue définie sur un ensemble compact peut être approchée d'aussi près que l'on veut par un MLP à une couche cachée avec activation non linéaire.

Définition

Un hyperparamètre est un paramètre définit en amont de l'apprentissage et régissant le processus.

Nombres de couches cachés

Proposition

Toute fonction continue définie sur un ensemble compact peut être approchée d'aussi près que l'on veut par un MLP à une couche cachée avec activation non linéaire.

Nombres de neurones par couches cachés

Définition

Un hyperparamètre est un paramètre définit en amont de l'apprentissage et régissant le processus.

Nombres de couches cachés

Proposition

Toute fonction continue définie sur un ensemble compact peut être approchée d'aussi près que l'on veut par un MLP à une couche cachée avec activation non linéaire.

Nombres de neurones par couches cachés

1 CC 100 Neurones

Définition

Un hyperparamètre est un paramètre définit en amont de l'apprentissage et régissant le processus.

Nombres de couches cachés

Proposition

Toute fonction continue définie sur un ensemble compact peut être approchée d'aussi près que l'on veut par un MLP à une couche cachée avec activation non linéaire.

Nombres de neurones par couches cachés

- Fonction d'activation
 - Sigmoïde : $f(x) = \frac{1}{1+e^{-x}}$

Fonction d'activation

• Sigmoïde : $f(x) = \frac{1}{1+e^{-x}}$ • Tanh : $f(x) = \tanh(x)$

Fonction d'activation

- Sigmoïde : $f(x) = \frac{1}{1 + e^{-x}}$ • Tanh : $f(x) = \tanh(x)$
- ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

- Fonction d'activation
 - Sigmoïde : $f(x) = \frac{1}{1 + e^{-x}}$ • Tanh : $f(x) = \tanh(x)$
 - ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

Algorithme d'optimisation

Fonction d'activation

- Sigmoïde : $f(x) = \frac{1}{1 + e^{-x}}$ • Tanh : $f(x) = \tanh(x)$
- ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

Algorithme d'optimisation

Fonction d'activation

- Sigmoïde : $f(x) = \frac{1}{1 + e^{-x}}$ • Tanh : $f(x) = \tanh(x)$
- ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

Algorithme d'optimisation

Fonction d'activation

• Sigmoïde : $f(x) = \frac{1}{1 + e^{-x}}$

• Tanh : $f(x) = \tanh(x)$

• ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

Algorithme d'optimisation

Learning rate

Fonction d'activation

• Sigmoïde : $f(x) = \frac{1}{1+e^{-x}}$

• Tanh : $f(x) = \tanh(x)$

• ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

Algorithme d'optimisation

Learning rate

$$W_{i+1} = W_i - \eta \frac{\partial L}{\partial W_i}$$

Fonction d'activation

• Sigmoïde : $f(x) = \frac{1}{1+e^{-x}}$

• Tanh : $f(x) = \tanh(x)$

• ReLU:

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

• Algorithme d'optimisation

Learning rate

$$W_{i+1} = W_i - \eta \frac{\partial L}{\partial W_i}$$

Sommaire

- Nature du problème
- 2 Construction de notre Modèle
- Simualtions numériques
- 4 Conclusion et suite

Sommaire

- Nature du problème
- 2 Construction de notre Modèle
- Simualtions numériques
 - EDS Linéaire
 - Pendule Stochastique
- Conclusion et suite

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

Coudiere Dorian Machine Learning for EDS

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$
• $\lambda = 1$ $\mu = 0.1$

13/20

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$ $\bullet \lambda = 1$ $\mu = 0.1$ \bullet Domaine d'entrainement : [0,2]

$$dX = \lambda X dt + \mu X dW \quad \lambda \in \mathbb{R} \quad \mu \in \mathbb{R} \quad X(0) = x$$

- $ullet \lambda = 1 \ \mu = 0.1 ullet \ {
 m Domaine \ d'entrainement} : [0,2]$
- •Intégrateur numérique : Euler-Maruyama

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

- $ullet \lambda = 1 \; \mu = 0.1 \; ullet \; {
 m Domaine \; d'entrainement} : [0,2]$
- •Intégrateur numérique : Euler-Maruyama
- •Amélioration de l'ordre cherchée : 2 $ilde{f} = f + hf_1 + h^2f_2$

• Diminution de la perte par 100

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

- $ullet \lambda = 1 \ \mu = 0.1 ullet \ {
 m Domaine \ d'entrainement} : [0,2]$
- •Intégrateur numérique : Euler-Maruyama
- •Amélioration de l'ordre cherchée : 2 $ilde{f} = f + hf_1 + h^2f_2$

- Diminution de la perte par 100
- Pas d'overfitting

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

- • $\lambda = 1 \ \mu = 0.1$ Domaine d'entrainement : [0,2]
- •Intégrateur numérique : Euler-Maruyama
- •Amélioration de l'ordre cherchée : 2 $\tilde{f} = f + hf_1 + h^2f_2$

Pas d'overfitting

$$dX = \lambda X dt + \mu X dW$$
 $\lambda \in \mathbb{R}$ $\mu \in \mathbb{R}$ $X(0) = x$

- • $\lambda = 1 \ \mu = 0.1$ Domaine d'entrainement : [0,2]
- •Intégrateur numérique : Euler-Maruyama
- •Amélioration de l'ordre cherchée : 2 $\tilde{f} = f + hf_1 + h^2f_2$

Pas d'overfitting

Étude des MLP

Sommaire

- Nature du problème
- 2 Construction de notre Modèle
- Simualtions numériques
 - EDS Linéaire
 - Pendule Stochastique
- Conclusion et suite

$$\begin{cases} dX = f(q, p)(dt + \circ dW) \\ f(q, p) = J\nabla H(q, p) = \begin{pmatrix} p \\ -\sin(q) \end{pmatrix} \\ H(q, p) = \frac{p^2}{2} + \sin(q) \end{cases}$$

$$\begin{cases} dX = f(q,p)(dt + \circ dW) \\ f(q,p) = J\nabla H(q,p) = \begin{pmatrix} p \\ -\sin(q) \end{pmatrix} \\ H(q,p) = \frac{p^2}{2} + \sin(q) \\ \text{MidPoint Stochastique}: \ X_1 = X_0 + f(\frac{X_0 + X_1}{2})h + \sigma(\frac{X_0 + X_1}{2})\sqrt{h}\xi \end{cases}$$

$$\begin{cases} dX = f(q,p)(dt + \circ dW) \\ f(q,p) = J\nabla H(q,p) = \begin{pmatrix} p \\ -\sin(q) \end{pmatrix} \\ H(q,p) = \frac{p^2}{2} + \sin(q) \\ \text{MidPoint Stochastique}: X_1 = X_0 + f(\frac{X_0 + X_1}{2})h + \sigma(\frac{X_0 + X_1}{2})\sqrt{h}\xi \\ \text{Domaine d'entrainement}: \\ [-\pi, \pi]x[-1.5, 1.5] \end{cases}$$

$$\begin{cases} dX = f(q, p)(dt + \circ dW) \\ f(q, p) = J\nabla H(q, p) = \begin{pmatrix} p \\ -\sin(q) \end{pmatrix} \\ H(q, p) = \frac{p^2}{2} + \sin(q) \end{cases}$$

MidPoint Stochastique : $X_1 = X_0 + f(\frac{X_0 + X_1}{2})h + \sigma(\frac{X_0 + X_1}{2})\sqrt{h}\xi$

Domaine d'entrainement :

$$[-\pi,\pi]x[-1.5,1.5] \rightarrow \begin{pmatrix} \frac{\pi}{3}\cos(\theta) + \epsilon_1\\ \sin(\theta) + \epsilon_2 \end{pmatrix} \theta \in [0,2\pi], \epsilon_1\epsilon_2 \in [-0.2,0.2]$$

$$\begin{cases} dX = f(q, p)(dt + \circ dW) \\ f(q, p) = J\nabla H(q, p) = \begin{pmatrix} p \\ -\sin(q) \end{pmatrix} \\ H(q, p) = \frac{p^2}{2} + \sin(q) \end{cases}$$

MidPoint Stochastique : $X_1 = X_0 + f(\frac{X_0 + X_1}{2})h + \sigma(\frac{X_0 + X_1}{2})\sqrt{h}\xi$

Domaine d'entrainement :

$$[-\pi,\pi]x[-1.5,1.5] \rightarrow \left(\begin{array}{c} \frac{\pi}{3}\cos(\theta)+\epsilon_1\\ \sin(\theta)+\epsilon_2 \end{array}\right) \ \theta \in [0,2\pi], \epsilon_1\epsilon_2 \in [-0.2,0.2]$$

$$\begin{cases} dX = f(q, p)(dt + \circ dW) \\ f(q, p) = J\nabla H(q, p) = \begin{pmatrix} p \\ -\sin(q) \end{pmatrix} \\ H(q, p) = \frac{p^2}{2} + \sin(q) \end{cases}$$

MidPoint Stochastique : $X_1 = X_0 + f(\frac{X_0 + X_1}{2})h + \sigma(\frac{X_0 + X_1}{2})\sqrt{h}\xi$

Domaine d'entrainement :

$$[-\pi,\pi]x[-1.5,1.5] \rightarrow \left(\begin{array}{c} \frac{\pi}{3}\cos(\theta)+\epsilon_1\\ \sin(\theta)+\epsilon_2 \end{array}\right) \ \theta \in [0,2\pi], \epsilon_1\epsilon_2 \in [-0.2,0.2]$$

• Diminution de la perte par 10

- Diminution de la perte par 10
- Apprentissage stable

- Diminution de la perte par 10
- Apprentissage stable
- ullet Pas d'overfitting o Dropout

- Apprentissage stable
- ullet Pas d'overfitting o Dropout

- Diminution de la perte par 10
- Apprentissage stable
- ullet Pas d'overfitting o Dropout

• Plage de h assez réduite

Étude de l'amélioration

- Diminution de la perte par 10
- Apprentissage stable
- $\bullet \ \mathsf{Pas} \ \mathsf{d'overfitting} \to \mathsf{Dropout}$

- Plage de h assez réduite
- Augmentation de l'ordre

 Point Milieu Simple : Oscillation autour de la valeur initiale

- Point Milieu Simple : Oscillation autour de la valeur initiale
- Point Milieu Modifié:
 Oscillation pour des temps faibles puis divergence faible de l'erreur.

- Point Milieu Simple : Oscillation autour de la valeur initiale
- Point Milieu Modifié:
 Oscillation pour des temps faibles puis divergence faible de l'erreur.
- Contrairement aux EDOs, pas vraiment une méthode symplectique

- Point Milieu Simple : Oscillation autour de la valeur initiale
- Point Milieu Modifié:
 Oscillation pour des temps faibles puis divergence faible de l'erreur.
- Contrairement aux EDOs, pas vraiment une méthode symplectique
- Solution potentielle : Réseaux de neuronnes Hamiltonien

Sommaire

- Nature du problème
- 2 Construction de notre Modèle
- 3 Simualtions numériques
- 4 Conclusion et suite

Résumé:

• Définition d'un modèle approximant le champs modifié

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

Suite du travail :

• Etudes d'autres exemples

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

- Etudes d'autres exemples
 - Bruit Additif : $dX = f(X)dt + \sigma dW, \sigma \in \mathbb{R}$

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

- Etudes d'autres exemples
 - Bruit Additif : $dX = f(X)dt + \sigma dW, \sigma \in \mathbb{R}$
 - EDS Standard

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

- Etudes d'autres exemples
 - Bruit Additif : $dX = f(X)dt + \sigma dW, \sigma \in \mathbb{R}$
 - EDS Standard
- Test d'augmentations d'ordres plus grands

Résumé:

- Définition d'un modèle approximant le champs modifié
- Réglage des hyperparamètres du modèle
- Apprentissage sur 2 cas tests significatifs

- Etudes d'autres exemples
 - Bruit Additif : $dX = f(X)dt + \sigma dW, \sigma \in \mathbb{R}$
 - EDS Standard
- Test d'augmentations d'ordres plus grands
- Réduire la complexité en temps et en mémoire