0.1 τ

0.1.1 Calculating τ

As we note above, $\sin(\theta) = \cos(\theta)$ at $\theta = \tau * \frac{1}{8}$

This is also where $tan(\theta) = 1$.

 $\arctan(k) = \arctan(a) + \int_a^k \frac{1}{1+y^2} \delta y$

We start from a = 0.

 $\arctan(k) = \arctan(0) + \int_0^k \frac{1}{1+y^2} \delta y$

We know that one of the results for $\arctan(0)$ is 0.

$$\arctan(k) = \int_0^k \frac{1}{1+y^2} \delta y$$

We want k = 1

$$\arctan(1) = \int_0^1 \frac{1}{1+y^2} \delta y$$

$$\frac{\tau}{8} = \int_0^1 \frac{1}{1+y^2} \delta y$$

$$\tau = 8 \int_0^1 \frac{1}{1+y^2} \delta y$$

We know that the $\cos(\theta)$ and $\sin(\theta)$ functions cycle with period τ .

Therefore $cos(n.\tau) = cos(0)$

0.1.2 Calculating τ

As we note above, $\sin(\theta) = \cos(\theta)$ at $\theta = \tau * \frac{1}{8}$

This is also where $tan(\theta) = 1$.

$$\arctan(k) = \arctan(a) + \int_a^k \frac{1}{1+y^2} \delta y$$

We start from a = 0.

$$\arctan(k) = \arctan(0) + \int_0^k \frac{1}{1+y^2} \delta y$$

We know that one of the results for $\arctan(0)$ is 0.

$$\arctan(k) = \int_0^k \frac{1}{1+y^2} \delta y$$

We want k = 1

$$\arctan(1) = \int_0^1 \frac{1}{1+y^2} \delta y$$

$$\frac{\tau}{8} = \int_0^1 \frac{1}{1+y^2} \delta y$$

$$\tau = 8 \int_0^1 \frac{1}{1+y^2} \delta y$$

We know that the $\cos(\theta)$ and $\sin(\theta)$ functions cycle with period τ . Therefore $\cos(n.\tau)=\cos(0)$