Министерство Образования Российской Федерации МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА

Факультет «Специальное машиностроение» Кафедра «Подводные роботы и аппараты»

Курсовой проект по курсу Детали мехатронных модулей, роботов и основы конструирования "Механизм линейных перемещений"

Выполнил: Шестаков А. А.

группа СМ11-61Б

Руководитель: Иванов С.Е.

Москва, 2020г.

Оглавление

Оглавление	⊥
Техническое задание	3
1. Расчёт передачи винт-гайка	7
2.Выбор двигателя	9
2.1Выбор двигателя по мощности	9
2.2 Предварительная проверка выбора двигателя по моментам	11
3. Кинематический расчёт	13
3.1 Определение общего передаточного отношения	13
3.2 Разбиение общего передаточного отношения по ступеням	13
3.3 Определение чисел зубьев зубчатых колес	14
4. Силовой расчёт	17
5. Расчёт зубчатых колёс на прочность	17
5.1 Выбор материала	18
5.2 Расчёт допустимых напряжений	19
5.3 Расчёт зубчатых передач на изгибную прочность	21
6. Геометрический расчёт	22
7. Проектный расчёт вала	26
8. Выбор подшипников	27
9. Проектный расчёт муфты	28
10.Расчёт вида сопряжения	33
11.Расчёт общей погрешности	34
11.1 Расчёт кинематической погрешности	34
11.2Расчёт погрешности мёртвого хода	36
11.3Расчёт погрешности упругого мёртвого хода	38
11.4 Расчёт суммарной погрешности по методу минимумов максимумов	339
11.5 Погрешность передачи винт-гайка	39
11.6 Общая погрешность	40
12.Проверочный расчёт на перегрузки	49
13.Проверочный силовой расчёт	41
14. Проверочный расчёт резьбы при срезе	50
15. Проверочный расчёт пружины на прочность	51
Список литературы	61

Техническое задание

№ варианта			
Параметры	4		
Сила на выходном звене F , H	150		
Скорость движения выходного звена <i>V</i> , <i>м/с</i>	0,012		
Ход выходного звена S , мм	90		
Диаметр и шаг винта выходной пары <i>d/p, d</i> и <i>p,</i> мм*	12/3		
Тип предохранителя муфты	Фрикционная		
Критерий проектирования	Min погрешности		
Тип электродвигателя	По согласованию с преподавателем		
Тип корпуса	По согласованию с преподавателем		
Ограничитель движения	Механические упоры и микровыключатели		
Вид крепления к основному изделию	По согласованию с преподавателем		
Вывод выходного винта	По согласованию с преподавателем		
Вид выходного конца	По согласованию с преподавателем		
Условия эксплуатации	УХЛ 4.1		
Тип кинематической схемы	По согласованию с преподавателем		

Краткое описание и схема.

Механизмы линейных перемещений широко используются для преобразования вращательного движения в поступательное в устройствах РЭА, оптико-механических приборах, авиационных приборах, робототехнике и медицинской технике. Кинематическая схема одного из возможных вариантов механизма линейных перемещений с выходной парой «винт—гайка» представлена на рисунке.

На рисунке а) движение от двигателя 1 через редуктор 2-5 передается на винт передачи винт гайка 7. Винт имеет возможность вращаться, а гайка — осуществлять линейные перемещения. Перемещение гайки ограничивается концевыми выключателями 8 и механическими упорами 9. Для защиты механизма от перегрузок устанавливается предохранительная муфта 6.

Анализ прототипов

В качестве основных прототипов для курсового проекта (КП) были выбраны модули линейного перемещения компании Purelogic PLLM-71 и PLLM-11. Параметры выбранных изделий указаны на рисунках 1-4.

Частота	Номинальная	Момент на
вращения	скорость	валу эл/дв.,
вала эл/дв.,	перемещения	кгс*см
об/мин	каретки на	
	холостом	
	ходу, м/с	
300	0,025	12

Puc.1. Внешний вид и основные параметры линейного модуля PLLM-71

Рабочий ход	Длина	Масса модуля
модуля, мм	модуля, мм	
100	350	2

Рис. 2. Габаритные и присоединительные размеры линейного модуля PLLM-71

ſ	Частота	Номинальная	Момент на
	вращения	скорость	валу эл/дв.,
	вала эл/дв.,	перемещения	кгс*см
	об/мин	каретки на	
		холостом	
		ходу, м/с	
	500	0,116	20

Рис.3. Внешний вид и основные параметры линейного модуля PLLM-11

Рабочий ход модуля, мм	Длина модуля, мм	Масса модуля, кг
100	291	4

Рис. 4. Габаритные и присоединенные размеры линейного модуля PLLM-11

Анализ прототипов каретки

Для успешной реализации приборного устройства необходимо спроектировать составную часть конструкции, включающую в себя столик, жёстко связанный с гайкой, к которому необходимо крепить нагрузку. Прототипами данной конструкции могут служить модули с линейными подшипниками.

Возможны два варианта реализации каретки: на базе двух полированных валов и винта (схема справа) или винта и одной направляющей некруглого профиля (схема слева).

К достоинствам схемы справа стоит отнести:

- 1. Меньшие суммарные габариты;
- 2. Меньшее количество соединяемых узлов (отсутствует соединение основания каретки с подшипником, подшипники находятся в теле каретки), меньше люфты;
- 3. Изготовление линейных подшипников цилиндрической формы дешевле и проще;

Пример модуля с линейными подшипниками, серия LMAB:

Вывод: в данном КП будет использоваться каретка с двумя направляющими круглого профиля (как на прототипе PLLM-11).

1. Расчёт передачи винт-гайка

Используем трапецеидальную резьбу.

Табл. 1. Геометрические параметры резьбы

Номинальный	Шаг р	Диаметр резьбы				
диаметр		наружный		средний	Внутр	енний
резьбы d		d	D ₄	$d_2=D_2$	d_3	D_1
12	3	12	12,5	10,5	8,5	9

В передачах винт-гайка скольжения для повышения износостойкости и снижения склонности к заеданию гайки изготавливают из материалов, обладающих антифрикционными свойствами, а материал винта должен обладать высокой твёрдостью. Поэтому для изготовления винтов применяют низколегированные стали 65Г, 40Х, 40ХГ с закалкой до твёрдости не менее 45 HRC и последующим шлифованием; стали 40ХФА, 18ХГТ с азотированием для уменьшения искажения формы и размеров винтов в результате закалки. Для тихоходных слабонагруженных винтов используют стали 30, 40, 45 и 50 ГОСТ 1050 – 88 без термической обработки. При малых скоростях вращения гайки изготавливают из малооловянной бронзы Бр.О6Ц6С3, безоловянной бронзы Бр.А9Ж3Л, а также из антифрикционных чугунов АЧВ – 1, АЧК – 1, или серых чугунов СЧ15 и СЧ20 ГОСТ 1412 – 85.

Винт изготавливаем из стали 45;

Гайку изготавливаем из Бр.А9Ж3Л;

Момент нагрузки на винте определяем по формуле:

$$M_{H} = F * \frac{d_2}{2} * tg(\beta + \psi)$$

Где d_2 – внутренний диаметр резьбы;

 ψ – угол подъёма резьбы, который определяется по формуле:

$$\psi = arctg \frac{p * n}{\pi * d_2} = arctg \frac{3 * 1}{\pi * 10.5} = 5.2^{0}$$

Где p — шаг резьбы, n — число заходов.

 β – угол трения, который определяется по формуле:

$$\beta = arctg(f')$$

$$f' = \frac{f}{\cos \alpha/2}$$

Где α – угол резьбы ($\alpha=30^{\circ}$);

f – коэффициент трения скольжения передачи винт гайка.

Выберем материал винта и гайки соответственно сталь 45 и бронза Бр.А9Ж3Л . У таких материалов f=0.10.

$$\beta = arctg(f') = arctg(0.104) = 5.7^{\circ}$$

$$f' = \frac{0.1}{\cos 15^0} = 0.104$$

Поскольку $\psi < \beta$ — условие самоторможения выполнено, следовательно передача самотормозящаяся.

КПД винтовой передачи определим по формуле

$$\eta = \frac{tg(\psi)}{tg(\psi + \beta)} = \frac{tg(5.7)}{tg(10.9)} = 0.51$$

Проверочный расчёт выполнять не будем, так как: во-первых допущения, которые влияют на проверочный расчёт мы не рассматриваем в курсовом проекте, поэтому он совпадает с проектировачным, во-вторых параметры передачи назначены такие, чтобы заведомо проходить проверочные расчёты.

2.Выбор двигателя

2.1Выбор двигателя по мощности

Двигатель следует выбрать с учётом расчётной мощности двигателя, которая должна быть достаточна для перемещения нагрузки в соответствии с техническим заданием.

Расчётная мощность электродвигателя определяется по формуле:

$$P_{p} = \frac{\xi \cdot P_{H}}{\eta_{o}},$$

где P_p — расчётная мощность электродвигателя;

Р_н — расчётная мощность нагрузки;

 $\eta_o=0.5\dots0.95$ — КПД цепи двигатель-нагрузка, выберем $\ \eta_o=0.50,\,\xi-$ коэффициент запаса, выберем $\xi=2.5.$

Расчётная мощность нагрузки вычисляется по формуле:

$$P_H = F * V$$

где F — усилие на выходном звене;

V — скорость движения выходного звена.

$$P_{H} = 150 * 0.012 = 1.8 B_{H}$$

Тогда расчётная мощность двигателя:

$$P_p = \frac{2.3 \cdot 1.8}{0.51 \cdot 0.9} = 9 \text{ Bt.}$$

Теперь выберем двигатель по мощности

$$P_{\scriptscriptstyle {
m \tiny MB}} = M_{\scriptscriptstyle {
m \tiny HOM}} \cdot \omega_{\scriptscriptstyle {
m \tiny MB}}$$

где М_{ном}— номинальный крутящий момент электродвигателя;

 ω – угловая скорость вращения двигателя, определяется по формуле:

$$\omega_{\scriptscriptstyle \mathrm{JB}} = \frac{2\pi}{60}n$$

где п — частота двигателя.

Выбираем предварительно шаговый двигатель

Таблица 2. Паспортные данные FL39ST20-0404A

Угловой шаг	И ш	1.8 град
Момент инерции ротора	J_p	11·10 ⁻⁷ кг·м ²
Macca	m	0,12 кг
Гарантийная наработка двигателя		
Ток фазы		0,4 A
Сопротивление фазы		6.6 Ом
Индуктивность фазы		7.5 мГн
Рабочая температура		-20 до +50 °C
Максимальный нагрев двигателя		80 °C
Максимальная допустимая радиальная		28 H
нагрузка на вал		
Максимальная допустимая осевая		10 H
нагрузка на вал		

Шаговые двигатели FL39ST (1.8°)

А - вал с одной стороны **В** - вал с двух сторон

Угловой шаг	1.8°
Погрешность углового шага	± 5% (полный шаг, без нагрузки)
Погрешность сопротивления обмоток	± 10%
Погрешность индуктивности	± 20%
Рабочая температура	-20°C ~ +50°C
Сопротивление изоляции	≥ 100 MΩ, 500 VDC
Диэлектрическая прочность	500 VAC (1 мин)
Максимальное радиальное биение вала двигателя	0.02 мм (при нагрузке 450 граммов
Максимальное осевое биение вала двигателя	0.08 мм (при нагрузке 450 граммов
Максимальная допустимая радиальная нагрузка на вал	28 H
Максимальная допустимая осевая нагрузка на вал	10 H
Максимальный нагрев двигателя	80°С (при номинальном токе)

Модель	Ток фазы, А	Сопро- тивление фазы, Ом	Индукти- вность фазы, мГн	Момент удержания, г*см	Кол-во выводов	Момент инерции ротора, г*см ²	Bec, кг	Длина, мм	Электр. схема	
FL39ST20-0404A B	0.4	6.6	7.5	650	4	11	44	0.12	20	2
FL39ST20-0506A B	0.5	13	7.5	800	6		0.12	20	1	
FL39ST34-0404A B	0.4	30	32	2100	4		00 040	0.40	0.4	2
FL39ST34-0306A B	0.3	40	20	1300	6	20	0.18	34	1	
FL39ST38-0504A B	0.5	24	45	2900	4		0.0	00	2	
FL39ST38-0806A B	0.8	7.5	6	2000	6	24	0.2	38	1	
FL39ST44-0306AIB	0.3	40	100	2800	6	40	0.25	44	1	

FL39ST20-0404A

24 VDC, 0.455 A / фаза, драйвер М415B, 1/2 шага

Из рис.1 выберем $M_{\text{ном}} = 0.070 \text{ H} \cdot \text{м}$, n = 1800 об/мин.

$$\omega_{\text{дв}} = \frac{2\pi}{60}n = \frac{2\pi}{60}1800 = 188\frac{\text{рад}}{\text{с}}$$

$$P_{_{\text{ДВ}}} \, = M_{_{\text{НОМ}}} \, \cdot \omega_{_{\text{ДВ}}} = \, 0.070 * 188 = 13.2 \; \text{Вт.}$$

Условие $P_{дв} > P_p$ выполняется: 13.2 Bт > 9 Bт, следовательно, по мощности двигатель выбран правильно.

2.2 Предварительная проверка выбора двигателя по моментам.

Для режима частых пусков двигатель должен удовлетворять условию:

$$M_{\text{ном}} \geq M_{\text{с.пр.}} + M_{\text{д.пр.}}$$

где $M_{\mbox{\tiny HOM}}$ — номинальный момент на валу двигателя;

 $M_{\text{с. пр.}}$ — статический приведённый момент;

 $M_{\text{д. пр.}}$ — динамический приведённый момент.

Статический приведённый момент определяется по формуле:

$$M_{\text{с.пр.}} = \frac{M_{\text{H}}}{i_{\text{o}} \cdot \eta_{\text{пер}}},$$

где $M_{\text{с. пр.}}$ — статический приведённый момент;

М_н — момент нагрузки;

 i_{o} — общее передаточное отношение;

 $\eta_{\text{пер}} = 0.9$ — КПД механической передачи;

Момент нагрузки определяем по формуле:

$$M_{H} = F * \frac{d_2}{2} * tg(\beta + \psi)$$

Где d_2 – внутренний диаметр резьбы;

$$M_{\rm H} = 150 * \frac{10.5 * 10^{-3}}{2} * tg(10, 9^0) = 152 \text{ Hmm}.$$

Определим і₀:

$$\omega_{_{
m H}} = v rac{2\pi}{pn} = 12 rac{2\pi}{3*1} = 25 {
m pag/c}$$
 $i_0 = rac{\omega_{_{
m AB}}}{\omega_{_{
m H}}} = 7.5$

Динамический приведённый момент определяется по формуле:

$$M_{\text{д.пр.}} = \epsilon_{\text{\tiny H}} \cdot i_{\text{\tiny 0}} \cdot \left((1 + K_{\text{\tiny M}}) \cdot J_{\text{\tiny p}} + rac{J_{\text{\tiny H}}}{i_{\text{\tiny 0}}^2}
ight)$$

где $\epsilon_{\scriptscriptstyle H}$ — угловое ускорение вращения на выходном звене($\epsilon_{\scriptscriptstyle H}$ = 0, так как не дано по условию, тогда $M_{\scriptscriptstyle Д.пр.}=0$);

 i_0 — общее передаточное отношение, $i_0 = 7.5$

 $K_{\scriptscriptstyle M}$ — коэффициент, учитывающий инерционность собственного зубчатого механизма $K_{\scriptscriptstyle M}$ = 0.7;

 ${
m J}_{
m p}\,$ — момент инерции ротора двигателя (из паспортных данных);

 $J_{\scriptscriptstyle H}$ — момент инерции нагрузки

 $\epsilon_{\mbox{\tiny H}}$ – угловое ускорение нагрузки (примем $\epsilon_{\mbox{\tiny H}}$ = 0, потому что оно не задано)

$$M_{\text{с.пр.}} = \frac{152}{7.5 \cdot 0.9} = 22.5 \text{ Hмм}$$

Выполним предварительную проверку по моментам:

$$70 \text{Hmm} \ge 22.5 \text{ Hmm} + 0$$
 (1.3)

Проверка выполняется, следовательно – двигатель выбран правильно.

3. Кинематический расчёт

Целью расчёта является разработка кинематической схемы привода, разбиение передаточного отношения, определения числа зубьев зубчатых колес.

3.1 Определение общего передаточного отношения

Поскольку предварительно двигатель выбран, можно рассчитать передаточное отношение i_0 цепи двигатель-нагрузка.

$$i_0 = \frac{n_{AB}}{n_H} = \frac{\omega_{AB}}{\omega_H} \tag{2.1}$$

где $\omega_{\rm дв}$ — угловая скорость вращения вала двигателя;

 $\omega_{\rm H}$ — угловая скорость вращения винта.

$$i_0 = \frac{\omega_{\text{\tiny AB}}}{\omega_{\text{\tiny H}}} = 7.5$$

3.2 Разбиение общего передаточного отношения по ступеням

Согласно условию Т3 проектирование будет осуществляться по критерию минимизации погрешности. При расчёте критерию минимизации погрешности число ступеней будет вычисляться по формуле:

$$n = \frac{lgi_0}{lgi_{max}},$$

где n — число ступеней;

 i_0 — общее передаточное отношение цепи

 i_{max} — максимальное передаточное отношение (7,5 ... 10)

Передаточное отношение ступеней рассчитывается по формуле:

$$n = \frac{lgi_0}{lgi_{max}} = \frac{lg7.52}{lg7.5} = 1$$

где п — число ступеней;

$$i_1 < i_i < i_{n-1}$$

Передаточные отношения ступеней сведены в таблицу 3

Таблица 3. Передаточные отношения

i₁₂
7.5

3.3 Определение чисел зубьев зубчатых колес

Пусть число зубьев шестерни $z_{\rm m} = 20$.

Число зубьев колеса рассчитывается по формуле:

$$\mathbf{z}_{\scriptscriptstyle K} \; = \; \mathbf{z}_{\scriptscriptstyle I\!I\!I} \cdot \mathbf{i}_{j} \; \text{,} \label{eq:zk}$$

где $z_{\scriptscriptstyle K}$ — число зубьев колеса;

 $z_{\scriptscriptstyle III}$ — число зубьев шестерни;

 i_j —передаточное отношение одной ступени.

Учитывая рекомендованный ряд, назначаем количества зубьев колес и шестерен:

Таблица 4. Числа зубьев колес редуктора

№ колеса	1	2
№ элементарной передачи		Ι
Число зубьев	20	150

Уточним значения передаточных отношений:

Таблица 5. Уточненные передаточные отношения

Тогда действительное значение передаточного отношения будет отличаться от расчётного на:

$$\Delta i = \frac{|i_{A} - i_{o}|}{i_{o}},$$

где Δi — отличие действительного передаточного отношения от расчётного;

 $i_{\text{д}}$ — действительное передаточное отношение;

 i_o — общее передаточное отношение цепи.

Действительное передаточное отношение рассчитывается по формуле:

$$i_{\pi} = i_{12} \cdot i_{34} \dots$$

$$i_{\pi} = 7.5 = 12.50$$

$$\Delta i = \frac{|7.52 - 7.5|}{7.52} = 0.003$$

 $0.3\% \le 1\%$

По критерию максимальной точности такое отклонение допустимо. В таком случае можно считать выбранные значения чисел зубьев колеса и шестерни подходящими.

Кинематическая схема приведена на рисунке:

4. Силовой расчёт

Целью силового расчёта является определение возникающих в каждой передаче моментов.

Моменты рассчитываются по формуле:

$$M_{ ext{ведущ}} = rac{M_{ ext{ведом}}}{i_i \cdot \eta_i \cdot \eta_{ ext{подш}}}$$

где $M_{\mbox{\tiny Beдущ}}$ — момент на ведущем звене;

 $M_{\mbox{\tiny BEJOM}}$ — момент на ведомом звене;

 i_j — передаточное отношение ступени;

 η_i — КПД передачи $(\eta_i = 0.98)$;

 $\eta_{\text{подш}}$ — КПД подшипников $(\eta_{\text{подш}} = 0.9)$.

Общий момент нагрузки рассчитывается по формуле:

$$\mathbf{M}_{\boldsymbol{\Sigma}} = \mathbf{M}_{\scriptscriptstyle \mathrm{H}} + \mathbf{M}_{\scriptscriptstyle \boldsymbol{\Lambda}} = \mathbf{M}_{\scriptscriptstyle \mathrm{H}} + \boldsymbol{J}_{\scriptscriptstyle \mathrm{H}} \cdot \boldsymbol{\epsilon}_{\scriptscriptstyle \mathrm{H}},$$

 $\epsilon_{{\scriptscriptstyle H}}$ – угловое ускорение нагрузки (примем $\epsilon_{{\scriptscriptstyle H}}$ = 0, потому что оно не задано)

 $J_{\scriptscriptstyle H}$ — момент инерции нагрузки;

где М_н – момент нагрузки;

f – коэффициент трения скольжения передачи винт гайка

 $M_{\mbox{\tiny {\rm J}}}$ – динамический момент нагрузки;

 $J_{\scriptscriptstyle H}$ – момент инерции нагрузки;

 $\epsilon_{\!\scriptscriptstyle H}$ –угловое ускорение вращения выходного вала.

Тогда

$$M_{\Sigma} = M_{\rm H} = \ 152 \ + \ 0 = \ 152$$
Нмм
$$M_{\rm II} = \frac{152}{0.98} = 172 \ {\rm Hmm}$$

$$M_{\rm I} = \frac{172}{0.9 * 0.98 * 7.5} = 26 \text{ Hmm}$$

Выполним предварительную проверку правильности выбора двигателя: $M_{\text{пуск}} = M_{\text{дв.ном}} \geq M_1 \; \text{По паспортным данным } M_{\text{дв.ном}} = 70 \; \text{Нмм, то есть}$ 70 > 26.

Значит выбранный двигатель подходит.

5. Расчёт зубчатых колёс на прочность

Целью расчёта является определение модуля зацепления зубчатых колёс, обеспечивающего работоспособность в течение заданного срока службы.

5.1 Выбор материала

Для цилиндрической передачи открытого типа с небольшими окружными скоростями в качестве материала для шестерён будет использоваться углеродистая сталь 45, а в качестве материала для колёс — сталь 35 в соответствии с рекомендациями. Зубья шестерён будут выполнены из материалов с более высокой твёрдостью рабочих поверхностей по сравнению с колёсами для повышения долговечности зубчатой передачи.

Таблица 7. Характеристики используемых материалов

	Шестерня	Колесо			
Материал	Сталь 45	Сталь 35			
Модуль упругости Е, МПа	2.105				
Коэффициент линейного расширения α·10 ⁻⁶ , 1/°C	12				
Плотность ρ , Γ/cm^3	7,8				
Твёрдость	240HB	215HB			
Термообработка	поверхностная закалка				
Предел прочности $\sigma_{\scriptscriptstyle B}$, МПа	a 830 730				
Предел текучести $\sigma_{\scriptscriptstyle T}$, МПа	600	550			

5.2 Расчёт допустимых напряжений

Расчётное число циклов нагружения определяется по формуле:

$$N_H = 60 \cdot n \cdot c \cdot L$$

где п — частота вращения зубчатого колеса;

с = 1 — число колёс, находящихся в зацеплении с рассчитываемым;

L — срок службы передачи.

$$N_1 \ = \ 60 \cdot 100 \cdot 1 \cdot 1800 = 4.3*10^7$$

$$N_2 = 60 \cdot 100 \cdot 1 \cdot \frac{1800}{75} = 0.6 \cdot 10^7$$

Коэффициент долговечности определяется соотношением:

$$K_{FL} = \sqrt[m]{\frac{4 \cdot 10^6}{N_H}},$$

где m = 6 — показатель степени для материалов с твёрдостью HB < 350 [2];

 N_{H} — расчётное число циклов нагружения.

При $N_H > 4 \cdot 10^6$ принимают $K_{FL} = 1$ [2]. Таким образом для каждой шестерни и для каждого колеса $K_{FL} = 1$.

$$K_{FL1} = \sqrt[6]{\frac{4 \cdot 10^6}{7.2 \cdot 10^7}} = 1$$

$$K_{FL2} = \sqrt[6]{\frac{4 \cdot 10^6}{0.96 \cdot 10^7}} = 1$$

В таком случае можно определить допускаемое напряжение изгиба:

$$[\sigma_{F}] = \frac{\sigma_{FR} \cdot K_{FC} \cdot K_{FL}}{S_{F}},$$

где σ_{FR} — предел выносливости при изгибе;

 $K_{FC} = 0,65$ — коэффициент, учитывающий цикл нагружения колеса для реверсивных передач;

 $K_{FL} = 1$ — коэффициент долговечности;

 $S_F = 2,5$ — коэффициент запаса прочности для особо ответственных передач.

Предел выносливости при изгибе рассчитывается из соотношения :

$$σ_{FR} = 1.8 \cdot HB$$
, ΜΠα

где НВ — твёрдость материала колеса.

Допускаемые напряжения на изгиб для шестерен и колёс будут равны:

$$\sigma_{FR1}=432\ M\Pi a$$
 $\sigma_{FR2}=387\ M\pi a$ $[\sigma_{F1}]=rac{432*0.65*1}{2.5}=112 M\pi a$ $[\sigma_{F2}]=rac{387*0.65*1}{2.5}=100 M\Pi a$

5.3 Расчёт зубчатых передач на изгибную прочность

Для открытых передач модуль зацепления определяется из изгибной прочности:

$$m = K_m \sqrt[3]{\frac{M \cdot Y_F \cdot K}{z \cdot \psi_m \cdot [\sigma_F]'}}$$

где $K_m = 1,4$ — коэффициент для прямозубых колёс [1];

М — крутящий момент, действующий на рассчитываемое колесо (по данным силового расчёта);

Y_F — коэффициент формы зуба для прямозубых цилиндрических колёс.

z — число зубьев рассчитываемого колеса;

K = 1,1 — коэффициент расчётной нагрузки [1];

 $\psi_m = 10$ — коэффициент ширины зубчатого венца для мелкомодульных передач;

 $[\sigma_F]$ — допускаемое напряжение изгиба.

Для каждой передачи расчёт производится по тому зубчатому колесу (из пары шестерня — зубчатое колесо), для которого отношение $Y_F/[\sigma_F]$ больше. Модуль зацепления для каждой пары колёс будет равен:

	1	2
Y_F	4.15	3.73
$\overline{[\sigma_F]}$	112 = 0.0371	100 = 0.0373

Значение $\frac{Y_F}{[\sigma_F]}$ больше для колеса номер 2 значит, расчёт модуля зацепления будет вестись по ним.

Тогда модули зацепления цилиндрических передач будут равны:

$$m_{12} = 1.4 \cdot \sqrt[3]{rac{172 \ \mathrm{H} \cdot \mathrm{mm} \cdot 3.73 \cdot 1.1}{150 \cdot 10 \cdot 100 \ \mathrm{M}\Pi \mathrm{a}}} = 0.24 \ \mathrm{mm}$$

Значения модулей зацепления округляются в соответствии с ГОСТ 9563-60. Поскольку мы не учитываем динамический момент, то назначим модули колёс с запасом и выберем $m_{12} = 0.5$ мм.

6. Геометрический расчёт

Целью расчёта является определение основных размеров передач и их элементов.

Основные геометрические размеры цилиндрических зубчатых передач указаны на рисунке 2.

Рисунок 2 - Геометрические параметры цилиндрической зубчатой передачи

В данном приводе используются цилиндрические прямозубые передачи, поэтому угол наклона зубьев $\beta = 0^{\circ}$.

Делительный диаметр определяется соотношением:

$$d = \frac{m \cdot z}{\cos \beta'}$$

где d — делительный диаметр;

т — модуль зацепления рассчитываемой пары колёс;

z — число зубьев рассчитываемого колеса;

 $\beta = 0^{\circ}$ — угол наклона зубьев.

$$d_1 = 0.5 \text{ mm} \cdot 20 = 10.0 \text{ mm}$$

$$d_2 = 0.5 \; \mathrm{mm} \cdot 150 = 75.0 \; \mathrm{mm}$$

Диаметр вершин зубьев определяется по формуле:

$$d_a = \frac{m \cdot z}{\cos \beta} + 2m(h_a^* + x),$$

где d_a — диаметр вершин зубьев;

т — модуль зацепления рассчитываемой пары колёс;

 $\beta = 0^{\circ}$ — угол наклона зубьев;

z — число зубьев;

 $h_a^* = 1$ — коэффициент высоты головки зуба [1];

х = 0 — коэффициент смещения.

$$d_{a1} = 10.0 \text{ mm} + 2 \cdot 0.5 \text{ mm} \cdot (1+0) = 11.0 \text{ mm}$$

$$d_{a2} = 75.0 \text{ мм} + 2 \cdot 0.5 \text{ мм} \cdot (1+0) = 76.0 \text{ мм}$$

Диаметр впадин определяется по формуле:

$$d_f = \frac{m \cdot z}{\cos \beta} - 2m(h_a^* + c^* - x),$$

где d_f — диаметр впадин зубьев;

т — модуль зацепления рассчитываемой пары колёс;

z — число зубьев;

 $\beta = 0^{\circ}$ — угол наклона зубьев;

 $h_a^* = 1$ — коэффициент высоты головки зуба ;

 $c^* = 0.25$ — коэффициент радиального зазора $1.0 \le m \le 0.1$ мм по ГОСТ 9587-81;

х = 0 — коэффициент смещения.

$$d_{f1} = 10.0 \text{ m} - 2 \cdot 0.5 \text{ mm} \cdot (1 + 0.25 + 0) = 8.75 \text{ mm}$$
 $d_{f2} = 75.0 \text{ mm} - 2 \cdot 0.5 \text{ mm} \cdot (1 + 0.25 - 0) = 73.75 \text{ mm}$

Окружной шаг определяется по формуле:

$$p = m \cdot \pi$$
,

где р — окружной шаг;

т — модуль зацепления рассчитываемой пары колёс.

$$p_{12} = 0.5 \text{ mm} * 3.14 = 1.57 \text{ mm}$$

Ширина колеса определяется по формуле:

$$b_{\kappa}=\psi_m\cdot m\text{,}$$

где b_{κ} — ширина колеса;

 $\psi_m = 10$ — коэффициент ширины зубчатого венца для мелкомодульных передач;

т — модуль зацепления рассчитываемой пары колёс.

Тогда ширина колёс будет равна:

$$b_2 = 6 * 0.5 \text{ mm} = 3 \text{ mm}$$

Ширина шестерни определяется по формуле:

$$b_{\text{III}} = b_{\kappa} + m$$
,

где $b_{\text{ш}}$ — ширина шестерни;

b_к — ширина колеса;

т — модуль зацепления рассчитываемой пары колёс.

$$b_1 = 3 + 0.5 \,\mathrm{mm} = 3.5 \,\mathrm{mm}$$

Межосевое расстояние определяется по формуле:

$$a_{\omega} = \frac{0.5 \cdot m \cdot (z_{\kappa} + z_{\text{III}})}{\cos \beta},$$

где a_{ω} — делительное межосевое расстояние;

т — модуль зацепления рассчитываемой пары колёс;

z_к — число зубьев колеса;

z_ш — число зубьев шестерни;

 $\beta = 0^{\circ}$ — угол наклона зубьев.

$$a_{\omega 12} = 0.5 \cdot 0.5 \text{ MM} \cdot (20 + 75) = 42.5 \text{ MM}$$

В таблице 8 сведены все расчитанные геометрические параметры зубчатых колес

Таблица 8. Геометрические параметры зубчатых колес

Параметр № колеса	Z	d, мм	d _а , мм	d _f , мм	<i>b</i> ,	$a_{\omega},$
1	20	10	11	8.75	3.5	42.5
2	150	75	76	73.75	3	

7. Проектный расчёт вала

Диаметр вала исходя из условия крутильной прочности определяется выражением:

$$d \geq \sqrt[3]{\frac{M_{\kappa p}}{0.2[\tau]_{\kappa p}}},$$

где $M_{\rm KD}$ — крутящий момент на валу,

 $[\tau]_{\kappa p}$ – предельные крутильные напряжения:

$$[\tau]_{\mathrm{Kp}} \approx 0.56 \frac{\sigma_{-1}}{n}$$

где σ_{-1} – предел выносливости при симметричном цикле нагружения,

n — коэффициент запаса.

Для изготовления вала выберем сталь 45 с $\sigma_{-1}=412~\mathrm{M}\Pi a$ и коэффициент запаса n=2.

$$d_I \ge \sqrt[3]{rac{0.026 \ \mathrm{H} \cdot \mathrm{M}}{0.2 \cdot 115 \ \mathrm{M}\Pi \mathrm{a}}} = 1 \ \mathrm{MM}$$

$$d_{II} \ge \sqrt[3]{rac{0.172 \text{ H} \cdot \text{m}}{0.2 \cdot 115 \text{ M}\Pi a}} = 1.9 \text{ mm}$$

Выберем для $d_{II}=12$ мм, поскольку это дано нам по условию, а на $d_{I}=5$ мм, потому что это выходной вал двигателя.

8. Выбор подшипников

В качестве опор будет использоваться шарикоподшипники.

Предварительный выбор шарикоподшипников будет осуществляться по диаметру цапфы. Предварительно диаметр цапфы для каждого вала можно определить из выражения

$$d_{II} = d - (2..3)$$
MM,

где d – диаметр вала.

Для одной цапфы выходного вала выберем подшипник: 1000099

Параметры подшипника : внутренний диаметр -9 мм, наружный диаметр -20 мм, высота -6 мм, масса -0.008 кг, грузоподъёмность статическая — 1050 H, грузоподъёмность динамическая - 2680 H.

Для второй цапфы выберем подшипник 1000097, необходимо это сделать потому что, внутренний диаметр резьбы $d_2 = 8,5$ мм, а это меньше 9мм => выбираем подшипник с меньшим внутренним диаметром.

Параметры подшипника: внутренний диаметр — 7 мм, наружный диаметр — 17 мм, высота — 5 мм, масса — 0,005 кг, грузоподъёмность статическая — 770 H, грузоподъёмность динамическая - 2020 H.

9. Проектный расчёт муфты

Данный расчёт будет проводиться для предохранительной фрикционной муфты. Поставим эту муфту на 2 вал.

Предохранительный момент фрикционной муфты рассчитывается по следующей формуле:

$$M_{\text{пр}}^{\text{M}} = k \cdot M_{II}$$
,

где k – коэффициент запаса (k = 1,3)

$$M_{\text{пр}}^{\text{M}} = 1.3 \cdot 0.172 = 0.224 \,\mathrm{H} \cdot \mathrm{M},$$

С другой стороны:

$$M_{\pi p}^{M}=M_{\tau p}$$
,

где $M_{\text{тр}}$ – момент трения, рассчитывающийся по формуле:

$$\mathbf{M}_{\mathrm{Tp}} = f_{\mathrm{Tp}} \cdot F_2 \cdot R_{\mathrm{np}},$$

где f –коэффициент трения в фрикционной паре (0,8 для пары стальметаллокерамика без смазки [3]);

 F_2 – сила прижатия пружины;

$$R_{\rm np} = \frac{1}{3} \cdot \frac{d^3 - d_0^3}{d^2 - d_0^2},$$

где d – внешний диаметр фрикционного диска: (71 мм);

$$d = (3 \dots 6) d_{\text{вала}}$$

 d_0 – внутренний диаметр фрикционного диска (12 мм).

$$R_{\rm np} = \frac{1}{3} \cdot \frac{71^3 - 16^3}{71^2 - 16^2} = 24.24 \text{ MM}$$

Исходя из условий эксплуатации, выберем пружины II класса и 2 разряда. Их описывает ГОСТ 13771-86.

$$F_2 = \frac{1}{n} \frac{M_{\text{пр}}}{f_{\text{TD}} \cdot R_{\text{пр}} \cdot 10^{-3}} = \frac{1}{4} \frac{0,224}{0,8 \cdot 24.24 \cdot 10^{-3}} = 2.84 \text{ H}$$

Где n – число пружин(4).

Сила пружины при максимальной деформации определяется соотношением:

$$F_3 = \frac{F_2}{1 - \delta},$$

где F_2 — сила пружины при рабочей деформации;

 $\delta = 0,05...0,25$ — относительный инерционный зазор пружины сжатия для пружин сжатия I и II классов.

Тогда:

$$F_3 = \frac{2.84}{1 - 0.05} \dots \frac{2.84}{1 - 0.25} = 3 \dots 3.8$$

Найдём по ГОСТ 13771-86 подходящий виток.

Таблица 9. Основные параметры витка пружины

Из ГОСТ 13771-86 выберем подходящий виток по F _{oc} : Виток №54					
Foc, H	d, мм	D, мм	С _{1,} Н/м	S' ₃ , MM	

3,55	0.3	3,2	3,257	1,091

Средний диаметр пружины определяется соотношением:

$$D=D_1-d,$$

где D_1 — наружный диаметр пружины;

d — диаметр проволоки.

Отсюда:
$$D = 3.2 - 0.3 = 2.9 \text{ мм}$$

Индекс пружины определяется соотношением:

$$i = \frac{D}{d}$$
,

где D — средний диаметр пружины;

d — диаметр проволоки.

Отсюда:

$$i = \frac{2.9}{0.3} = 9.67$$

Выберем рабочий ход h = 8 мм.

Тогда определим жёсткость пружины с:

$$c = \frac{F_2 - F_1}{h} = \frac{3,17 - 0}{8} = 0,4 \frac{H}{MM}$$

Рабочее число витков пружины ищем:

$$n = \frac{c_1}{c} = \frac{3.257}{0.4} = 8,25 \approx 8,5$$

Уточнённая жёсткость пружины с*:

$$c^* = \frac{c_1}{n} = \frac{3.257}{8,5} = 0.38 \text{ H/MM}$$

Пусть опорных витков $n_2=1,5.$ Общее число витков определяется соотношением:

$$n_1 = n + n_2,$$

$$n_1 = 8.5 + 1.5 = 10$$

Деформация пружины определяется соотношением:

$$s = \frac{F_2}{c},$$

Тогда предварительная деформация пружины:

$$s_1 = \frac{0}{0.38} = 0$$

Рабочая деформация пружины:

$$s_2 = \frac{3,17}{0.38} = 8,24 \text{ MM}$$

Максимальная деформация пружины:

$$s_3 = \frac{3,55}{0,38} = 9,23 \text{ MM}$$

Длина пружины при максимальной деформации определяется по формуле:

$$l_3 = (n_1 + 1 - n_3) \cdot d,$$

где n_1 — общее число витков;

 $n_3 = 2$ — число обработанных витков;

d — диаметр проволоки. Тогда:

$$l_3 = (10 + 1 - 2) \cdot 0.3 = 2.7 \text{ MM}$$

Длина пружины в свободном состоянии определяется по формуле:

$$l_0 = l_3 + s_3$$
,

где l_3 — длина пружины при максимальной деформации;

Тогда:

$$l_0 = 2.7 + 9.23 = 11.93 \text{ mm}$$

Длина пружины при рабочей деформации определяется по формуле:

$$l_2 = l_0 - s_2,$$

где l_0 — длина пружины при максимальной деформации;

 s_2 — рабочая деформация пружины.

Тогда:

$$l_2 = 11.93 - 8.24 = 3.69 \text{ mm}$$

Шаг пружины в свободном состоянии определяется по формуле:

$$t=s_3'+d,$$

где $s_3' = 1,091$ мм — максимальная деформация одного витка пружины согласно;

d — диаметр проволоки.

Тогда:

$$t = 1,091 + 0,3 = 1,391$$
 MM.

10. Расчёт вида сопряжения

Выберем вид сопряжения из условия:

$$J_p \leq J_{n \min}$$

где j_p — расчётное значение бокового зазора;

 $j_{n \ min}$ — минимальное значение гарантированного бокового зазора для соответствующего вида сопряжения.

Расчётное значение бокового зазора определяется по формуле [1]:

$$J_p = J_n^t + J_c$$

где j_p — расчётное значение бокового зазора;

 j_n^t — боковой зазор, компенсирующий изменение рабочей температуре;

ј_с — боковой зазор, необходимый для размещения слоя смазки.

а_{w12} = 42,5мм Температурный диапазон из условий эксплуатации УХЛ4.1

$$T = +1...+40 \text{ }^{\circ}\text{C}$$

Выбор материала:

Для зубчатых колёс — сталь $K_{rp} = 12.4*10^{-6}$

Для корпуса — аллюминий $K_{\rm rp} = 22.2*10^{-6}$

При T = +40 °C:

$$J_{\,\mathrm{n}12}^{\mathrm{t}} = 0.684 \cdot 42.5 \cdot [12.4 \cdot 10^{-6} - 22.2 \cdot 10^{-6}] (40^{\mathrm{o}} - 20^{\mathrm{o}}) = -5.7$$
 мкм

 $J_{n12}^{t} = -5.7 \text{ MKM}$

При T = +1 °C

$$J_{\,\mathrm{n}12}^{\mathrm{t}} = 0.684 \cdot 42.5 \cdot [12.4 \cdot 10^{-6} - 22.2 \cdot 10^{-6}](1^{\mathrm{o}} - 20^{\mathrm{o}}) = 5$$
,4 мкм

 $J_{n12}^{t} = 5.4 \text{ MKM}$

Для компенсации температурного диапазона +1...40°, необходим зазор

$$J_{n12}^{t} = 5.4 \text{ MKM}$$

Значение зазора, необходимого для размещения смазки для быстроходных передач, определяется по формуле [1]:

$$J_c = 0.01 * m,$$

где т - модуль зацепления

$$J_c = 0.01 * 0.5 = 5 \text{ MKM}$$

Тогда получим расчётное значение бокового зазора:

$$J_p = 5.4 + 5 = 10,4$$
 мкм

Гарантированный боковой зазор $j_{n\, {
m min}}$, мим

Зубчатые колеса с модулем m < I мм							
Вид	Обозна-	Межосевое расстояние а , мм					•
опря- кинеі	емнэн	До 12	Св. I2 до 20	Св. 20 до 32	Св. 32 до 50	Св. 50 до 80	Св. 80 до 125
H	$j_{n ext{min}}$	0	0	0	0	0	0
G		6	8	9	II	13	15
F		9	II	13	16 .	19	22
E		15	18	21	25	30	35
D		22	27	33	39	46	54

Допуски на смещение исходного контура $T_{_{\! H}}$, мкм

Назначим в соответствии с ГОСТ9178-81 вид сопряжения Е.

11. Расчёт общей погрешности

11.1 Расчёт кинематической погрешности

Назначим 8 степень точности на зубатые колёса

Допуски на погрешность профиля $f_{\mathfrak{f}}$

Обозначение	Модуль	Сте	Степень точности		
допуска	m, MM	. 6	7	8	
f_f	От 0, I до 0,5 Св. 0,5 до I	7 ,8	9	II II	

Нормы кинематической точности цилиндрических передач. Допуски на радиальное биение зубчатого вения F_r

Cre-			Делите	льный д	риаметр	d, MM	
TOT- HOT-	Модуль т, мм	To 12	Св. I2 до 20	Св.20 до 32	Св.32 до 50	Св.50 до 85	Св.80 до 125
СТИ		Допуски F_r , мю					
	От 0, 1 до 0,5	II	12	14	16	19	22
6	Св. 0,5 до I	15	16	18	20	22	25
7	От 0,1 до 0,5 Св. 0,5 до I	16 21	18 22	20 24	22. 26	26 30	30 36
8	От 0, I до 0,5 Св. 0,5 до I	19 26	2I 28	25 30	28 34	32 38	38 45

Исходя их таблиц, подбираем значения допусков:

Допуски на кинематическую погрешность определяются по формуле:

$$F_i' = F_p + f_f$$

где F_p — допуск на накопленную погрешность шага зубчатого колеса; f_f — допуск на погрешность профиля зуба.

$$F'_{i1} = F_p + f_f = 19 + 9 = 28 \text{ MKM}$$

Обозначе- ние коэф- фициента фазовой компенса-		Отношение чисел зубьев							
		От I.C	The state of the s	Св. 2.0		Св. 3,0 до 3,5	Св. 3.5 до 4.0		
THIN	1	31	ачение ко	эфўиціент	а фазової	компенсал	DATA		
K 0,98			0,85	0,83	0,93	0,97	0,96		
K _s 0,30		0,76	0,75	0,74	0,75	0,8			
603на-	T	Отношение чисел зубьев колес							
noton- noton- notra asobon	Св	4,0	Св. 4,5 до 5,0	Св. 5,0 до 5,5	Св. 5,5 до 6,0	Св. 6,0 до 6,5	CB. 6,5		
минента фазовой компенсаци							и		
K	0	,96	0,96	0,98	0,96	0,97	0,98		
Ks	0	,90	0.87	0,85	0,88	0,94	0,99		

Минимальное значение кинематической погрешности для передач 7-й степени точности определяется по формуле [1]:

$$F_{i0\mathrm{min}}' = 0.62 \cdot K_S \cdot K_\phi \cdot (F_{i1}' + F_{i2}')$$

где K_S — коэффициент фазовой компенсации;

 K_{ϕ} — коэффициент учитывающий угол поворота ведомого колеса;

$$\begin{split} &F^{'}{}_{i2} = F_p + f_f = 32 + 9 = 41 \text{ мкм} \\ &F^{'}{}_{i0min12} = 0.71 * K_s * (F^{'}{}_{i1} + F^{'}{}_{i2}) * K_\phi = 0.71 * 0.99 * (28 + 41) * 1 = 48,5 \text{ мкм} \\ &\phi_2 >> 360, \text{ тогда } K_{\phi12} = 1 \end{split}$$

Переведём получившиеся значения в угловые минуты.

Угловая погрешность элементарной передачи определяется по формуле:

$$\Delta \varphi_{i0} = 6.88 \cdot \frac{F'_{i0}}{d}$$

где F'_{i0} — кинематическая погрешность;

d — диаметр ведомого звена.

$$\delta \phi_{min12} = \frac{6.88*48.5}{75} = 4.4'$$

Теперь найдём максимальную кинематическую погрешность.

Максимальное значение кинематической погрешности определяется по формулам:

$$F'_{i0max} = K \cdot K_{\phi} \cdot \left(\sqrt{(F'_{iiii})^2 + E^2_{\Sigma M1}} + \sqrt{(F'_{i\kappa})^2 + E^2_{\Sigma M2}} \right),$$

где К — коэффициент фазовой компенсации;

 F_{im}' и $F_{i\kappa}'$ — допуски на кинематическую погрешность шестерни и колеса;

 K_{ϕ} — коэффициент учитывающий угол поворота ведомого колеса;

 $E_{\Sigma M_{I\!I\!I}}^2$ и $E_{\Sigma M_K}^2$ =0— погрешности монтажа шестерни и колеса.

$$F'_{i0max12} = K * \left[\sqrt{F'^2_{i1} + 0^2} + \sqrt{F'^2_{i2} + 0^2} \right] * K_{\phi12} = 0.98*(28 + 41)*1 = 67.6 \text{ mkm}$$

Переведём получившиеся значения в угловые минуты:

$$\delta \phi_{\text{max}12} = \frac{6.88*67.6}{75} = 6.2'$$

11.2Расчёт погрешности мёртвого хода

Минимальная погрешность мёртвого хода определяется по следующей формуле

$$j_{t \min} = \frac{j_{n \min}}{\cos \alpha \cdot \cos \beta}$$

где $j_{n \ min}$ — минимальное значение гарантированного бокового зазора соответствующей передачи;

 $\alpha = 20^{\circ}$ — угол исходного профиля колеса;

 $\beta = 0^{\circ}$ — угол наклона боковой сто роны профиля.

$$J_{tmin12} = \frac{Jn12}{cos20} = 30/cos20 = 31.9 \text{ MKM}$$

Переведём в минуты:

$$J\phi_{min12} = \frac{6.88*31.9}{75} = 2.9'$$

	i 3y	бчатне	колеса с	модулем	m < I	мм					
Вид сопря- жения	Степень точно- сти по нормам плавно- сти	Делительний диаметр d , мм									
		Jr 12	Св. 12 до 20	Св. 20 до 32	Св. 32 до 50	Св. 50 до 80	Св. 80 до I25				
I	3	3	4.	5	. 6	7	8				
H	3 - 7	5	6	7	8	9	ΙÌ				
(a	3 - 6	12	14	16	18	22	25				
	7	Ię .	I8'.	20	22	26 .	28.				
	. 8	22	24.	26	. 28	30	32				
	3 - 6	18	22	26	. 30	35	40				
	7	22	24	28	32	36	42				
[8	26	30	34	- 38	42	45				
	3 - 7	28	32	38	45	53	60				
1	8	35	40	45	50 ·	55	63				
,	3 - 7	40	55	60	70	80	90				
	8	50	55	60	70	80	95				

					цилиндриче		
Д	опуски	на	радиальное	оиение	зубчатого	вонц	$\mathbf{a} F_r$

Cre-		Делительный диаметр d , мм						
TOY-	Модуль т, мм	До 12	Св. 12 до 20	Св.20 до 32	Св.32 до 50	Св.50 до 85	Св.80 до 125	
CTH		Допуски F, , мим						
1 4 4	От 0, I до 0,5	II	12	14	16	. 19	22	
6 Св.	Св. 0,5 до I	15	16	18	20.	22	25	
7	От 0,1 по 0,5 Св. 0,5 до I	16 21	18	20 24.	22. 26	26 30	30 36	
8	От 0, I до 0,5 Св. 0,5 до I	I9 26	2I 28	25 30	28 34	32 38	38 45	

	Эу	бчатые к	олеса с	модулем	m < 1	MIM			
Вид эпря- эния	Вид до- пуска	Допуски на радиальное биение зубчатого венца F_{r} *							
	00KOBO- 10 38- 30pa	Св. IO до I2	Св. 12 до 16	Св. 16 до 20	Св. 20 до 25	Св. 25 до 32	Св. 32 до 40		
Н	h e	20	. 25	30	34	40	50		
G·	g	.22	28	32	38	45	53		
F	f	25	30	36	42	50	60		
E,D	е	30	34	40	48	56	70		

Вид ∞пря- вния	обозна- Обозна-	Межосевое расстояние а , мм						
		До 12	Св. 12 до 20	Св. 20 до 32	Св. 32 до 50	Св. 50 до 80	Св. 80 до 125	
H		±8	±9	±II,	±14	±16	±18	
G		±II	±I4	±16	±20	755	±28	
F	fa	±18	±22	±25	±32	±35	±28	
E		±30	±36	±40	<u>+</u> 50	±60	±70	
D		±45	±55	±63	±80	±90	±II0	

Максимальное значение мёртвого хода определяется по формуле:

 $j_{t \text{ max}} = 0.7 \cdot (E_{HS_{III}} + E_{HS_{K}}) + \sqrt{0.5 \cdot (T_{HIII}^2 + T_{HK}^2) + 2 \cdot f_a^2 + \Delta p_{III}^2 + \Delta p_{K}^2}$

где E_{HS} — наименьшее смещение исходного контура зубчатого колеса;

 T_{H} — допуск на смещение исходного контура зубчатого колеса;

f_а — допуск на отклонение межосевого расстояния передачи;

Δp — радиальный зазор в опорах зубчатого колеса.

$$\begin{split} &J_{tmax12} = 0.7(E_{hs1} + E_{hs2}) + \sqrt{0.5(Th1^2 + Th2^2) + 2fa^2 + Gr1^2 + Gr2^2} = \\ &= 0.7(35 + 56) + sqrt(0.5*(40^2 + 70^2) + 2*60^2 + 0 + 13^2) = 166,75 \text{ MKM} \end{split}$$

Теперь переведём в угловые минуты

$$J_{\phi_{\text{max}12}} = \frac{6.88*58.7}{75} = 15.3'$$

11.3Расчёт погрешности упругого мёртвого хода

$$\Delta \varphi = \frac{2M_{kp} \cdot L}{G \cdot Ip}$$

где $M_{\kappa p}$ — крутящий момент на валу;

1 — длина рабочего участка вала;

 $G = 8 \cdot 10^4 \, \text{М}$ Па — модуль упругости второго рода для стали;

 J_p — полярный момент инерции сечения.

Полярный момент инерции определяется по формуле:

$$J_p \approx 0.1 \cdot d^4$$

где d — диаметр вала;

Произведём расчёт для всех валов:

$$J_{p2} = 0.1 * 0.012^4$$

$$\Delta \varphi_{II} = \frac{2*0.172\cdot0.11}{8*10^4*10^6*0.1*0.012^4} = 2,3*10^{-4}$$
 рад

$$arDelta arphi_I = 0$$
 рад.

В минутах:

$$\Delta \varphi_{II} = 2.3 * 10^{-4} * 180 * \frac{60}{3.1416} = 0.78'$$

$$\Delta \varphi_I = 0$$

$$\Delta \varphi_{\text{ymx}} = 0.78$$
'

11.4 Расчёт суммарной погрешности по методу минимумов максимумов

1) Суммарная кинетическая погрешность

$$\delta \varphi_{\Sigma} = \delta \varphi_{max12} = 6.2'$$

2) Суммарная погрешность мёртвого хода

$$J_{\varphi\Sigma} = 1 \cdot J_{\varphi max} = 15.3'$$

Общая погрешность положения выходного вала ЭМП определённая по методу максимумов-минимумов задаётся выражением:

$$\Delta_{\Sigma} = \delta \varphi_{\Sigma P} + \delta j_{\Sigma P} + \Delta \varphi_{\Sigma}' + \Delta \varphi_{P}^{\Pi P}$$

где $\delta \phi_{\Sigma P}$ — суммарная кинематическая по методу максимумов-минимумов;

 $\delta j_{\Sigma P}$ — суммарная погрешность мёртвого хода по методу максимумов-минимумов;

 $\Delta\phi_{\Sigma}^{'}$ — суммарная погрешность упругого мёртвого хода;

 $\Delta\phi_P^{\Pi P}$ - приведённая погрешность шага двигателя.

$$\Delta \varphi_P^{\Pi P} = \frac{\Delta \varphi_P}{i_0} = \frac{\Delta \varphi_P}{i_0} = \frac{5.4'}{7.5} = 0,72$$

$$\Delta_{\Sigma} = 6.2' + 15.3' + 0.78' + 0.72' = 23'$$

11.5 Погрешность передачи винт-гайка

Кинематическая погрешность:

$$F'_{i0min} = 0.62 \cdot \delta t_{\Sigma}$$
 ; $F'_{i0min} = 0.62 \cdot 50 = 31$ mkm

$$F'_{i0max} = \sqrt{\delta t_{\Sigma}^{2} + E_{\Sigma M}^{2}}; \qquad F'_{i0max} = \sqrt{50^{2} + 0} = 50$$
мкм

 Γ де δt_{Σ} - накопленная погрешность шага резьбы $(\delta t_{\Sigma}=50~{
m MKM})$

Погрешность мёртвого хода:

$$J_{tmin} = b^{\prime\prime} \cdot tg\varphi$$

где b'' - нижнее предельное отклонение среднего диаметра винта.

Из ГОСТ 9562-81 следует, что b''=180мкм

$$J_{tmin} = 180 \cdot tg$$
5.2 = $180 \cdot tg$ 5,2 = 16,4 мкм

$$J_{tmax} = b' \cdot tg\varphi + \sqrt{\left((b'' - b') \cdot tg\varphi\right)^2 + (btg\varphi)^2 + \sigma_{\alpha 1}^2 + \sigma_{\alpha 2}^2},$$

где b'=0 - верхнее предельное отклонение среднего диаметра винта; $b=236 {\rm мкm}$ - верхнее отклонение D_2 гайки;

$$J_{tmax} = 0 \cdot tg$$
5,2 + $\sqrt{\left((180 - 0) \cdot tg$ 5,2 $\right)^2 + (236 \cdot tg$ 5,2 $)^2 + 50^2} = 56$ мкм

Суммарная погрешность передачи винт-гайка:

$$\Delta x_{B-\Gamma} = J_{tmax} + F'_{i0max}$$

$$\Delta x_{\rm B-\Gamma} = 56 + 50 = 106$$
мкм

11.6 Общая погрешность

Переведем общую погрешность положения входного вала редуктора в общую погрешность положения каретки в мм:

$$\Delta x_{p} = \frac{P \cdot \Delta_{\Sigma}}{z \cdot 360 \cdot 60'}$$

где Р – шаг резьбы;

z – количество заходов резьбы;

 Δ_{Σ} - общая погрешность положения выходного вала в минутах

$$\Delta x_p = \frac{3 \cdot 23}{1 \cdot 360 \cdot 60} = 3,1 \text{MKM}$$

Общая погрешность положения каретки:

$$\Delta x_{\Sigma} = \Delta x_{p} + \Delta x_{B-\Gamma}$$

$$\Delta x_{\Sigma} = 3,1$$
мкм + 106мкм = 109,1мкм

12. Проверочный силовой расчёт

1) Найдём уточнённое значение КПД передач

Уточнённые значения КПД цилиндрической зубчатой передачи рассчитаем по формуле:

$$\eta_{\text{nep}}^* = 1 - \frac{\pi f C \varepsilon_{\nu}}{2} \left(\frac{1}{z_1} + \frac{1}{z_2} \right)$$

f-коэффициент трения

 ε_{v} – коэффициент перекрытия, ε_{v} =1,5 (для приборостроения)

С- коэффициент нагрузки

$$C = \frac{F + 2.92}{F + 0.174}$$

где $F = \frac{2M}{d}$ -окружная сила, действующая на зубчатое колесо.

Если F≥30 H, то C=1

Произведём расчёт:

$$F = \frac{2 \cdot M_{II}}{d_2} = \frac{2 \cdot 152}{75} = 4,6 H = c = \frac{4,6 + 2.92}{4,6 + 0.174} = 1,58$$

$$\eta^* = 1 - \pi \cdot f \cdot \varepsilon_v \cdot c \cdot 0.5 \cdot \left(\frac{1}{z_1} + \frac{1}{z_2}\right)$$

$$\eta_{12}^* = 1 - \pi \cdot 0.06 \cdot 1.5 \cdot 1.58 \cdot 0.5 \cdot \left(\frac{1}{20} + \frac{1}{150}\right) = 0.987$$

2) Найдём моменты инерций зубчатых колёс

$$J_2 = \frac{\pi \cdot b_2 \cdot \rho \cdot d_2^{-4} \cdot 10^{-12}}{32} = \frac{\pi \cdot 5 \cdot 7.8 \cdot 75^4 \cdot 10^{-1}}{32} = 1,33 \cdot 10^{-4} \text{кг} \cdot \text{м}^2$$

$$J_1 = \frac{\pi \cdot b_1 \cdot \rho \cdot d_1^{-4} \cdot 10^{-12}}{32} = \frac{\pi \cdot 5.5 \cdot 7.8 \cdot 10^4 \cdot 10^{-12}}{32} = 3,83 \cdot 10^{-8} \text{кг} \cdot \text{м}^2$$

3) Очевидно, что угловое ускорение имеет переменное значение по времени. Предположим, что максимальное значение угловое ускорение будет принимать в момент пуска двигателя.

Значение углового ускорения рассчитывается по формуле:

$$\varepsilon = \frac{M_{\text{III.A.}} - M_{\text{CT.пp}}}{J_{\text{пp}}^*},$$

где $M_{\text{ш.д.}} = 0.07 \text{H} \cdot \text{м}$ – момент шагового двигателя;

 $M_{\text{с.пр}}^*$ - приведённый уточнённый статический момент;

 $J_{\rm np}^*$ - приведённый момент инерции редуктора.

$$M_{ ext{c.пp}}^* = rac{M_{ ext{H}}}{i_0 * \eta_{ ext{пер}}^* * \eta_{ ext{подш}}}$$
 $\eta_{ ext{пер}}^* = 0.987$ $M_{ ext{c.пp}}^* = rac{0.152 \cdot 10^3}{7.5 \cdot 0.987 \cdot 0.99} = 20.63 ext{H} \cdot ext{мм}$ $J_{ ext{пр}}^* = J_p + J_{\Sigma 1} + J_{\Sigma 2} rac{J_2 + J_{ ext{H}}}{i_{12}^2}$

где J_p —момент инерции ротора, $J_{\sum i}$ — суммарный момент инерции на валу двигателя.

$$J_{\Sigma 1} = J_1 = 3,83 \cdot 10^{-8} \mathrm{кr} \cdot \mathrm{m}^2$$
 $J_{\Sigma 2} = rac{J_2 + J_{\mathrm{му} \phi \mathrm{ты}} + J_{\mathrm{H}}}{i_{12}^2}$

Где $J_{\rm H}$ — момент инерции нагрузки, $J_{\rm муфты}$ — момент инерции муфты

$$J_{\rm H} = \frac{m \cdot p \cdot z \cdot \vartheta}{2 \cdot \pi},$$

Где m=0,15кг – масса каретки;

р – шаг резьбы:

z – число витков резьбы в каретке;

v – скорость движения каретки:

$$J_{\rm H} = \frac{0.150 \cdot 0.003 \cdot 5 \cdot 0.012}{2 \cdot \pi} = 8.7 \cdot 10^{-7} \text{ кг} \cdot \text{м}^2,$$

Момент инерции муфты примем равным моменту инерции зубчатого колеса, умноженному на коэффициент k. Выберем k=2

$$J_{\text{муфты}} = J_2 * k = 2,66 \cdot 10^{-4} \text{кг} \cdot \text{м}^2$$

$$J_{\text{пр}}^* = 11 \cdot 10^{-7} + 3,83 \cdot 10^{-8} + \frac{3 * 1,33 * 10^{-4} + 8.7 \cdot 10^{-7}}{7.5^2}$$
$$= 7,1 \cdot 10^{-6} \text{ кг} \cdot \text{м}^2$$
$$\varepsilon = \frac{0,07 - 0,02063}{7.1 \cdot 10^{-6}} = 6.9 \cdot 10^3 \frac{\text{рад}}{\text{c}^2}$$

Уточнённый динамический приведённый момент рассчитывается по формуле:

$$M_{\text{д.пр.}}^* = J_{\text{пр}}^* \cdot \varepsilon$$
 $M_{\text{д.пр.}}^* = 7,1 \cdot 10^{-6} \text{ кг} \cdot \text{м}^2 \cdot 6.9 \cdot 10^3 = 0,04937 \text{ H} \cdot \text{м}$
Проверим условие:
$$M_{\text{ш.д.}} \geq M_{\text{с.пр}}^* + M_{\text{д.пр.}}^*,$$

$$70 \text{ H} \cdot \text{мм} \geq 20,63 \text{ H} \cdot \text{мм} + 49,37 \text{ H} \cdot \text{мм}$$

$$70 \text{ H} \cdot \text{мм} \geq 70 \text{ H} \cdot \text{мм}$$

Условие выполняется.

Значения уточнённых моментов на каждом валу:

$$\varepsilon_2 = \frac{\varepsilon}{i_0}; \qquad \varepsilon_2 = \frac{6.9 \cdot 10^3}{7,5} = 9,2 \cdot 10^2 \frac{\text{рад}}{\text{c}^2}$$

$$M_{II}^* = \frac{(M_{\text{H}} + J_{\text{H}} \cdot \varepsilon_2)}{\eta_{\text{подш}}} + \varepsilon_2 \cdot (J_2 + J_{\text{муфты}}),$$

$$M_{II}^* = \frac{0,152 + 8,7 \cdot 10^{-7} \cdot 9,2 \cdot 10^2}{0,99} + 9,2 \cdot 10^2 \cdot 3 \cdot 1,33 \cdot 10^{-4} = 0,52 \text{ H} \cdot \text{м}$$

$$M_I^* = \frac{M_{II}^*}{i_{12} \cdot \eta_{12}^* \cdot \eta_{\text{подш}}} + \varepsilon \quad \cdot (J_1 + J_{\text{p}})$$

$$M_I^* = \frac{M_{II}^*}{7.5 \cdot 0.987 \cdot 0.99} + 9,2 \cdot 10^2 \cdot (11 \cdot 10^{-7} + 3,83 \cdot 10^{-8}) = 0,07 \text{ H} \cdot \text{м}$$

$$M_{II} = 0.172 \text{ H} \cdot \text{M}$$
 $M_{II\Sigma}^* = 0.52 \text{ H} \cdot \text{M}$

$$M_I = 0.026 \text{ H} \cdot \text{M}$$
 $M_{I\Sigma}^* = 0.070 \text{ H} \cdot \text{M}$

Вывод: видно, что полученные значения не совпадают со значениями в проектном расчёте, поэтому нужно проверить полученные значения модуля зубчатых колёс, диаметров валов и провести проектный расчёт муфты с новыми занчениями моментов. Выбранный в проектном расчёте двигатель FL28STH51-0956A походит.

13. Проверка значения модуля зубчатых колёс и диаметров валов.

модули зацепления цилиндрических передач будут равны:

$$m_{12} = 1.4 \cdot \sqrt[3]{rac{0.52 \,\mathrm{H} \cdot \mathrm{mm} \cdot 3.73 \cdot 1.1}{150 \cdot 10 \cdot 100 \,\mathrm{M}\Pi \mathrm{a}}} = 0.39 \,\mathrm{mm}$$

Выбранный нами m = 0.5 мм, значит значение модуля зубчатых колёс менять не нужно.

Для изготовления вала выберем сталь 45 с $\sigma_{-1}=412~\mathrm{M}\Pi a$ и коэффициент запаса n=2.

$$d_I \ge \sqrt[3]{rac{0.07 \; \mathrm{H} \cdot \mathrm{M}}{0.2 \cdot 115 \; \mathrm{M}\Pi \mathrm{a}}} = 1.4 \; \mathrm{MM}$$

$$d_{II} \ge \sqrt[3]{rac{0.52 \ \mathrm{H} \cdot \mathrm{M}}{0.2 \cdot 115 \ \mathrm{M}\Pi \mathrm{a}}} = 2,8 \ \mathrm{MM}$$

Выбранные диаметры валов также изменять не нужно.

Предохранительный момент фрикционной муфты рассчитывается по следующей формуле:

$$\mathbf{M}_{\text{IID}}^{\text{M}} = k \cdot \mathbf{M}_{II}$$

где k – коэффициент запаса (k = 1,1)

$$M_{np}^{M} = 1.1 \cdot 0.52 = 0.224 \text{ H} \cdot \text{M},$$

С другой стороны:

$$M_{np}^{M}=M_{rp}$$
,

где $M_{\text{тр}}$ – момент трения, рассчитывающийся по формуле:

$$\mathbf{M}_{\mathrm{Tp}} = f_{\mathrm{Tp}} \cdot F_2 \cdot R_{\mathrm{np}},$$

где f –коэффициент трения в фрикционной паре (0,8 для пары стальметаллокерамика без смазки [3]);

 F_2 – сила прижатия пружины;

$$R_{\rm np} = \frac{1}{3} \cdot \frac{d^3 - d_0^3}{d^2 - d_0^2},$$

где d – внешний диаметр фрикционного диска: (71 мм);

$$d = (3 ... 6) d_{\text{вала}}$$

 d_0 – внутренний диаметр фрикционного диска (12 мм).

$$R_{\rm np} = \frac{1}{3} \cdot \frac{71^3 - 16^3}{71^2 - 16^2} = 24.24 \text{ mm}$$

Исходя из условий эксплуатации, выберем пружины II класса и 2 разряда. Их описывает ГОСТ 13771-86.

$$F_2 = \frac{1}{n} \frac{M_{\text{np}}}{f_{\text{Tn}} \cdot R_{\text{np}} \cdot 10^{-3}} = \frac{1}{4} \frac{0,224}{0,8 \cdot 24.24 \cdot 10^{-3}} = 4,83 \text{ H}$$

Где n – число пружин(4).

Сила пружины при максимальной деформации определяется соотношением:

$$F_3 = \frac{F_2}{1 - \delta},$$

где F_2 — сила пружины при рабочей деформации;

 $\delta = 0.05...0.25$ — относительный инерционный зазор пружины сжатия для пружин сжатия I и II классов.

Тогда:

$$F_3 = \frac{4,83}{1 - 0.05} \dots \frac{4,83}{1 - 0.25} = 5 \dots 6.4$$

Найдём по ГОСТ 13771-86 подходящий виток.

Таблица 9. Основные параметры витка пружины

Из ГОСТ 13771-86 выберем подходящий виток по F _{oc} : Виток №87							
F _{oc} , H	d, мм	D, мм	С _{1,} Н/м	S' ₃ , MM			
5,60	0.36	3,4	5,876	0,954			

Средний диаметр пружины определяется соотношением:

$$D=D_1-d,$$

где D_1 — наружный диаметр пружины;

d — диаметр проволоки.

Отсюда:
$$D = 3.4 - 0.36 = 3,04$$
 мм

Индекс пружины определяется соотношением:

$$i = \frac{D}{d}$$
,

где *D* — средний диаметр пружины;

d — диаметр проволоки.

Отсюда:

$$i = \frac{3,04}{0.36} = 8,44$$

Выберем рабочий ход h = 8 мм.

Тогда определим жёсткость пружины с:

$$c = \frac{F_2 - F_1}{h} = \frac{5.6 - 0}{8} = 0.7 \frac{H}{MM}$$

Рабочее число витков пружины ищем:

$$n = \frac{c_1}{c} = \frac{5,876}{0.7} = 8,39 \approx 8,5$$

Уточнённая жёсткость пружины с*:

$$c^* = \frac{c_1}{n} = \frac{5,876}{8.5} = 0,69 \text{ H/mm}$$

Пусть опорных витков $n_2=1,5.$ Общее число витков определяется соотношением:

$$n_1=n+n_2,$$

$$n_1 = 8.5 + 1.5 = 10$$

Деформация пружины определяется соотношением:

$$s=\frac{F_2}{c},$$

Тогда предварительная деформация пружины:

$$s_1 = \frac{0}{0.69} = 0$$

Рабочая деформация пружины:

$$s_2 = \frac{5,09}{0,69} = 7,36 \text{ MM}$$

Максимальная деформация пружины:

$$s_3 = \frac{5,60}{0.69} = 8,10 \text{ MM}$$

Длина пружины при максимальной деформации определяется по формуле:

$$l_3 = (n_1 + 1 - n_3) \cdot d,$$

где n_1 — общее число витков;

 $n_3 = 2$ — число обработанных витков;

d — диаметр проволоки. Тогда:

$$l_3 = (10 + 1 - 2) \cdot 0.36 = 3.24 \text{ MM}$$

Длина пружины в свободном состоянии определяется по формуле:

$$l_0 = l_3 + s_3,$$

где l_3 — длина пружины при максимальной деформации;

Тогда:

$$l_0 = 3.24 + 8.10 = 11.34 \text{ MM}$$

Длина пружины при рабочей деформации определяется по формуле:

$$l_2=l_0-s_2,$$

где l_0 — длина пружины при максимальной деформации;

 s_2 — рабочая деформация пружины.

Тогда:

$$l_2 = 11.34 - 7,36 = 3.99$$
 мм

Шаг пружины в свободном состоянии определяется по формуле:

$$t = s_3' + d,$$

где $s_3' = 0,954$ мм — максимальная деформация одного витка пружины согласно;

d — диаметр проволоки.

Тогда:

$$t = 0.954 + 0.36 = 1.314$$
 MM.

14. Проверочный расчёт на перегрузки

Расчет производится по следующим формулам:

$$\sigma_{F} \cdot K_{\Pi} \leq [\sigma_{\text{изг}}]_{max}$$

$$K_{\Pi} = \frac{M_{\text{пуск}}}{M_{I\Sigma}}$$

$$[\sigma_{\text{изг}}]_{max} \approx 0.8 \cdot \sigma_{\text{T}}$$

$$\sigma_{\text{изг}} = \frac{2 \cdot M \cdot Y_{F} \cdot K}{z \cdot \psi_{m} \cdot m^{3}}$$

Для стали 45: $\sigma_T=355$ МПа, $[\sigma_{\rm \scriptscriptstyle HST}]_{max}\approx 0.8\cdot 355=284$ - у шестерней Для стали 35: $\sigma_T=315$ МПа, $[\sigma_{\rm \scriptscriptstyle HST}]_{max}\approx 0.8\cdot 315=252$ - у колёс

$$K_{\Pi} = \frac{M_{\Pi}}{M_{I\Sigma}} = \frac{0.070}{0.070} = 1$$

$$K_{\Pi} \cdot \sigma_{p} \leq [\sigma_{\text{M3}\Gamma}]_{max} \approx 0.8 \cdot \sigma_{T}$$

$$K_{\Pi} \cdot \sigma_{p1} = 1 \cdot \frac{2 \cdot 39 \cdot 4.15 \cdot 1.4}{20 \cdot 10 \cdot 0.9^{3}} = 31 \text{ M}\Pi \text{a}$$

$$K_{\Pi} \cdot \sigma_{p2} = 1 \cdot \frac{2 \cdot 258 \cdot 3.73 \cdot 1.4}{88 \cdot 10 \cdot 0.9^{3}} = 19 \text{ M}\Pi \text{a}$$

$$\sigma_{\rm H} = Z_M Z_{\rm H} Z_{\varepsilon} \sqrt{\frac{K \cdot M_2 \cdot (1 + i_{12})^2}{d_2 \cdot b \cdot a_{\omega} \cdot i_{12}}}$$

Где $z_H = 1,77$ – коэффициент, учитывающий форму соприкасающихся поверхностей

 z_M - коэффициент, учитывающий механические свойства материала $z_\xi = 0.9$ – коэффициент, учитывающий влияние торцевого перекрытия.

$$\sqrt{K} \cdot \sigma_{\rm H} \leq [\sigma_{\rm H}]_{max}$$

$$[\sigma_{\rm H}]_{max} \approx 2.8 \cdot \sigma_{T} = 2.8 \cdot 315 = 882 \, \rm M\Pi a$$

$$\sqrt{K} \cdot \sigma_{\rm H12} = \sqrt{1} \cdot 190 \cdot 1.77 \cdot 0.9 \sqrt{\frac{1.4 \cdot 258 \cdot (1 + 7.5)^{2}}{75 \cdot 10^{-3} \cdot 5 \cdot 10^{-3} \cdot 42.5 \cdot 10^{-3} \cdot 7.5}}$$

$$= 496 \, \rm M\Pi a$$

$$K_{\Pi} \cdot \sigma_{p1} < 284 \, \rm M\Pi a$$

$$K_{\Pi} \cdot \sigma_{p2} < 252 \, \rm M\Pi a$$

$$\sqrt{K} \cdot \sigma_{\rm H12} < 882 \, \rm M\Pi a$$

Вывод: выбранные материалы проходят данный расчёт, значит ничего менять в конструкции не надо.

15. Проверочный расчёт резьбы при срезе

Расчёт ведётся по формуле:

$$\tau_{\text{kp}} \leq [\tau_{\text{kp}}] = 0.2 \cdot \sigma_{\text{B}}$$

Для стали 45, из которой сделан винт, $\sigma_{\scriptscriptstyle B} = 840~{\rm M}\Pi a$

$$[\tau_{\text{\tiny KD}}] = 730 * 0.2 = 168 \text{M}\Pi \text{a}$$

$$\tau_{\rm kp} = \frac{F_{\alpha}}{\pi * d_3 * z * b}$$

Где F_{α} – осевая сила ($F_{\alpha}=150$ H);

 d_3 - внутренний диаметр резьбы ($d_3 = 8,5$);

z – число витков резьбы в каретке (z = 5);

b — толщина витка резьбы при основании резьбы (b = 0.644*p = 0.644*0.003 = 0.002).

$$au_{\text{kp}} = \frac{150}{\pi * 0.0085 * 5 * 0.002} = 0.56 \text{M}\Pi \text{a}$$

Условие $\tau_{\rm kp} \leq [\tau_{\rm kp}]$ выполняется, значит расчёт пройден. В других проверочных расчётах нет надобности так как винт спроектирован так, чтобы заведомо их пройти.

15. Проверочный расчёт пружины на прочность

Расчёт ведётся по формуле:

$$\tau_3 \le [\tau_3]$$

$$\tau_3 = K \frac{8 * F_3 * D}{\pi * d^3}$$

Где $K = \frac{4*i-1}{4*i-4} - \frac{0.65}{i}$ – коэффициент, учитывающий кривизну витков пружины (i = 9,67).

$$K = \frac{4 * 9.67 - 1}{4 * 9.67 - 4} - \frac{0.65}{9.67} = 1.02$$

$$\tau_3 = K \frac{8 * 3.55 * 2.9}{\pi * 0.3^3} = 790 \text{ H/mm}^2$$

$$\tau_3 \le [\tau_3]$$

По ГОСТ 9389-75 для проволоки с d=0.3мм $Rm=3040~H/мм^2$

Согласно ГОСТ 13764-86 для пружин II класса

$$[\tau_3] = 0.52Rm = 1580 \text{ H/mm}^2$$

Условие $\tau_3 \leq [\tau_3]$ выполняется, значит выбранный упругий элемент проходит этот расчёт. Вносить изменения в конструкция нет необходимости.

17. Проверочный расчёт вала.

Проведём расчёт в САПР системе SolidWorks.

Выберем материал

Настроим крепления – поставим подшипники на цапфы.

Нагрузим участок вала со шпонкой моментом $M^*_{II\Sigma}=0.52~\mathrm{H\cdot M}$.

Зафиксируем положение участка, на котором есть гайка.

Создадим сетку

Запустим симуляцию.

Видно, что опасное сечение находится в проточке, где начинается резьба.

Увеличим в этом месте сетку

Запустим ещё раз симуляцию

Вывод: максимальное напряжение $\sigma_{max}=1.2$ МПа, а $\sigma_{0.2}=640$ МПа. Следовательно вал удовлетворяет условиям прочности с большим запасом.

18. Расчёт опор качения по динамической грузоподъёмности.

Рассчитаем значения радиальной и осевой силы:

$$F_{\text{окр}} = \frac{M_{II}^*}{75/2} = \frac{520}{37,5} = 13,87 \text{ H}$$
 $F_r = \frac{F_{\text{окр}} * tg\alpha}{cos\beta} = 5,07 \text{ H}$
 $F_{\text{oc}} = F_{\text{окр}} * tg\beta = 0 \text{ H}$

Расчёт будем проводить для подшипника 1000097, так как его динамическая грузоподъёмность меньше, чем у подшипника 1000099.

Параметры подшипника 1000097: внутренний диаметр -7 мм, наружный диаметр -17 мм, высота -5 мм, масса -0,005 кг, грузоподъёмность статическая -770 H, грузоподъёмность динамическая -2020 H.

$$C_r = 2020 \text{ H}$$

Из паспорта.

Динамическая радиальная эквивалентная нагрузка подшипников рассчитывается по формуле:

$$P_r = X * F_r + Y * F_{oc}$$

 $X = 1, Y = 0 \Gamma OCT 18855 - 2013$

$$P_r = 5.07 \text{ H}$$

Поскольку $P_r < C_r$ то, номинальный ресурс вычисляем по формуле:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = 66$$
млн. оборотов

Переведём в часы:

$$L_{10}^{\mathbf{q}} = \frac{L_{10} * 2\pi * 10^6}{\omega * 3600}$$

Где ω — частота вращения вала, на котором установлен подшипник. (В данном случаем $\omega = \omega_{\rm H} = 25 \frac{\rm pag}{\rm c}$)

$$L_{10}^{\text{ч}} = \frac{66 * 2\pi * 10^6}{25 * 3600} = 4600 \text{ч}.$$

Расчётный ресурс подшипника больше чем заявленный срок службы привода (400 часов), а значит подшипник выбран верно.

Приложения

ЛИР-119А

MSW-2 Series技术特性 Specification

1.规格 Rating:1A 125/250VAC

4.耐电压 Dielectric strength:1000VAC, 1Minute

2.接触电阻 Contact Resistance:30mΩmax

5:环境温度 Ambient Temperature:-25℃~+65℃

3.绝缘电阻 Insulation Resistance:250VDC 100MΩmin

6.电气寿命 Electrical Life:30,000 Cycles

微动开关

Micro Switches

型号(TYPE): MSW-22

技术特性 (Specification)

- 1. 规格 (Rating):1A 125/250V AC
- 2. 接触电阻(Contact R):30mΩ max
- 3. 绝缘电阻(Insulation R):250V DC 100MΩ min
- 4. 耐电压 (Dielectric Strength):1 Minute 1000V AC
- 5. 环境温度(Ambient Temperature):-25℃~+65℃
- 6. 电气寿命(Electrical Life):30, 000 Cycles

外型图 (Outline Drawing)

安装尺寸 (Mounting)

电路图 (Circuitry)

Список литературы.

- 1. Кокорев Ю.А., Жаров В.А., Торгов А.М. Расчет электромеханического привода. Изд-во МГТУ, 1995, 132 с.
- 2. Расчет деталей машин на ЭВМ. Под ред. Решетова Д.Н. Высш. Школа, 1985.
- 3. И.С. Потапцев, А.А. Буцев, Е.В.Матвеенко Расчёт и конструирование элементов приборных устройств Конструирование приборных муфт. Издательство МГТУ им. Н.Э.Баумана, 2001
- 4. Коваленко А.П., Буцев А.А., Выбор исполнительных электродвигателей приборных устройств. МВТУ, 1981.
- 5. Элементы приборных устройств. Курсовое проектирование. Под ред. Тищенко О.Ф. Высш. Школа. 1982, ч.1, ч.2.
- 6. Пивораров В.Н., Шевцов Ю.А., Жаров В.А. Применение ЭВМ в курсовом проекте. МВТУ, 1985.
- 7. Торгов А.М. Оптимизация передаточных отношений многоступенчатых передач с применением решения на ЭВМ, М. МГТУ, 1989, 36с.
- 8. Расчет деталей машин на ЭВМ. Под ред. Решетова Д.Н. Высш. Школа, 1985.
- 9. Дружинин Ю.А., Зубов В.А., Лавров В.Ю. Проектирование механизмов приборов и вычислительных систем с применением ЭВМ. М. Высш. Школа, 1988. 160с