2	Rewrite the pending claims as follows:							
3	1. (Original) A transceiver, comprising:							
4	a first interface configured to receive data from a first channel using a first							
5	clock signal and to transmit data to the first channel using a second clock signal;							
6	a second interface configured to receive data from a second channel using a							
7	third clock signal and to transmit data to the second channel using a fourth clock							
8	signal; and							
9	a re-timer configured to re-time data received from the first channel using the							
10	first clock signal and to retransmit the data to the second channel using the fourth							
11	clock signal.							
1	2. (Original) The transceiver of claim 1, wherein							
2	the first channel includes a first clock line for transmission of the first clock							
3	signal and a second clock line for transmission of the second clock signal and the							
4	second channel includes a third clock line for transmission of the third clock signal							
5	and a fourth clock line for transmission of the fourth clocks signal;							
6	the transceiver further comprises:							
7	a first receiver configured to receive data and the first clock signal from the							
8	first channel;							
9	a first transmitter configured to transmit data and the second clock signal to							
10	the first channel;							
11	a second receiver configured to receive data and the third clock signal from							
12	the second channel;							
13	a second transmitter configured to transmit data and the fourth clock signal to							
14	the second channel; and							
15	the re-timer is located between the first receiver and the second transmitter and							
16	is configured to re-time data received from the second channel using the third clock							
17	signal for retransmission, using the second clock signal, onto the first channel.							
1	3. (Original) The transceiver of claim 1, wherein data received by the first							
2	interface from the first channel using the first clock signal is first data; and the							

IN THE CLAIMS:

transceiver further comprises isolation logic to prevent the transceiver from

3

1

- 4 transmitting the first data from the first interface to the first channel using the second
- 5 clock signal.
- 1 4. (Original) The transceiver of claim 1, further comprising isolation logic to
- 2 prevent retransmission of data, received from the first channel, to the second channel.
- 1 5. (Original) The transceiver of claim 1, further comprising latch-up prevention
- logic to prevent feedback of data between the first and second channels.
- 1 6. (Original) The transceiver of claim 1, further comprising a first synchronizing
- 2 unit that synchronizes data transmitted from the first channel to the second channel.
- 7. (Original) The transceiver of claim 6, further comprising a second
- 2 synchronizing unit that synchronizes data transmitted from the second channel to the
- 3 first channel.
- 1 8. (Original) The transceiver of claim 1, wherein the third and fourth clock
- 2 signals are synchronized to the second clock signal.
- 9. (Original) The transceiver of claim 1, further comprising command
- 2 interpretation and command performance circuitry.
- 1 10. (Currently Amended) The transceiver of claim 1, wherein the second and
- 2 forth fourth clock signals are synchronized.
- 1 11. (Currently Amended) A system comprising:
- 2 a first channel;
- a second channel;
- a first device coupled to the first channel;
- 5 a second device coupled to the second channel; and
- a transceiver having latency aligning circuitry coupled to the first channel and
- 7 to the second channel;
- 8 wherein the first and second channels are bi-directional communication
- 9 channels.
- 1 12. (Original) The system of claim 11, wherein at least one of the first and second
- 2 channels comprises a serial link.
- 1 13. (Currently Amended) A system comprising:
- a first channel;
- 3 <u>a second channel;</u>

4	a first device coupled to the first channel;							
5	a second device coupled to the second channel; and							
· 6	a transceiver having latency aligning circuitry coupled to the first channel and							
7	to the second channel;							
8	The system of claim 12, wherein data transmissions from the first device to the							
9	first channel are clocked by a first clock signal and wherein the latency aligning							
10	circuitry aligns the round-trip latency between the first device and the second channe							
11	to an integer number of cycles of the first clock signal.							
1	14. (Currently Amended) A system comprising:							
2	a first channel;							
3	a second channel;							
4	a first device coupled to the first channel;							
5	a second device coupled to the second channel; and							
6	a transceiver having latency aligning circuitry coupled to the first channel and							
7	to the second channel;							
8	The system of claim 12, wherein the system has a round trip latency from the							
9	first device to the second device that is independent of a flight time from the first							
10	device to the <u>transceiver</u> . second-device.							
1	15. (Original) The system of claim 14, wherein the latency aligning circuitry is							
2	configured to compensate for the flight time from the first device to the second							
3	device.							
1	16. (Currently Amended) The system of claim <u>1412</u> , wherein a first latency,							
2	measured by a time required for the transceiver to receive a signal from the first							
3	channel and transmit the signal to the second channel, is dependent upon the flight							
4	time from the first device to the transceiver.							
1	17. (Currently Amended) The system of claim <u>11</u> 12, wherein the transceiver							
2	further comprises isolation logic to prevent retransmission of data, received from the							
3	second first channel, to the second channel.							
1	18. (Currently Amended) The system of claim <u>11</u> 12, wherein the transceiver							
2	further comprises latch-up prevention logic to prevent feedback of data between the							

3

first and second channels.

1	19.	(Currently A	Amended)	The sys	stem of	claim	1112.	wherein	the t	transceiver

- 2 further comprises a first synchronizing unit that synchronizes data transmitted from
- 3 the first channel to the second channel.
- 1 20. (Original) The system of claim 19, wherein the transceiver further comprises
- a second synchronizing unit that synchronizes data transmitted from the second
- 3 channel to the first channel.
- 1 21. (Currently Amended) The system of claim <u>11</u>12, wherein the transceiver
- 2 further comprises power logic that turns off the transceiver when the transceiver does
- 3 not need to transmit.
- 1 22. (Currently Amended) The system of claim <u>1312</u>, wherein data transmissions
- from the first device to the first channel are clocked by the [[a]] first clock signal, data
- transmissions from the transceiver to the first channel are clocked by a second clock
- 4 signal, data transmissions from the second device to the second channel are clocked
- by a third clock signal and data transmissions from the transceiver to the second
- 6 device are clocked by a fourth clock signal.
- 1 23. (Original) The system of claim 22, wherein the second and fourth clock
- 2 signals are synchronized.
- 1 24. (Currently Amended) The system of claim <u>1142</u>, wherein the transceiver
- 2 further comprises at least one phase locked loop that performs clock recovery.
- 1 25. (Currently Amended) A memory system comprising:
- a memory controller coupled to a primary channel;
- a first transceiver, having latency aligning circuitry, coupled to the primary
- 4 channel and to a first stick channel.
- a first memory device having a programmable delay coupled to the first stick
- 6 channel; and
- 7 a second memory device having a programmable delay coupled to the primary
- 8 channel or the first stick channel;
- 9 wherein the primary and first stick channels are bi-directional communication
- 10 channels.

1	26.	(Original) The memory system of claim 25, further comprising a second
2	transc	eiver having latency aligning circuitry coupled to the stick channel and a second
3	stick c	hannel.

- 27. (Currently Amended) A memory system comprising:
- 2 <u>a memory controller coupled to a primary channel;</u>

1

7 8

9

10

11

12

1

2

- a first transceiver, having latency aligning circuitry, coupled to the primary
 channel and to a first stick channel.
- 5 <u>a first memory device having a programmable delay coupled to the first stick</u>
 6 <u>channel; and</u>
 - a second memory device having a programmable delay coupled to the primary channel or the first stick channel;
 - The memory system of claim 26, wherein the latency aligning circuitry of the first and second transceivers aligns a respective round-trip latency between the memory controller and each of the transceivers to a respective integer number of clock cycles.
- 1 28. (Original) The memory system of claim 27, wherein the round-trip latency
 2 between the memory controller and the first transceiver is a first integer number of
 3 clock cycles and the round-trip latency between the memory controller and the second
 4 transceiver is a second integer number of clock cycles and the first and second integer
 5 numbers are different.
 - 29. (Currently Amended) The memory system of claim <u>2726</u>, further comprising a third memory device having programmable delay coupled to the second stick channel.
- 1 30. (Original) The memory system of claim 29, wherein the first memory device
 2 has a first programmed delay, the second memory device has a second programmed
 3 delay, the third memory device has a third programmed delay and wherein the first,
 4 second and third programmed delays are selected such that response latencies of the
 5 first, second and third memory devices are substantially equal.
- 1 31. (Currently Amended) The memory system of claim 2725, wherein the first 2 memory device has a first programmed delay and the second memory device has a 3 second programmed delay and wherein the first and second programmed delays are

- 4 selected such that response latencies of the first and second memory devices are
- 5 substantially equal.
- 1 32. (Currently Amended) The memory system of claim <u>27</u>25, wherein the
- transceiver further comprises power logic to power off one or more of the transceivers
- when such transceivers do not need to transmit.