FCC Test Report

for

Digital Picture Frame

Model Number : RF-TAO-01

FCC ID : VG4AGAM00090RC

Report Number : RF-U070-0808-205

Date of Receipt: Aug. 27, 2008

Date of Report : Sep. 9, 2008

Prepared for

APEX DISPLAY CO.,LTD

10F.-2, No.348, Sec. 6, Nanjing E. Rd., Neihu District, Taipei City 114, Taiwan (R.O.C)

Prepared by

Central Research Technology Co. EMC Test Laboratory

11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by any U.S. government agency. The test result in the report applies only to the sample tested.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546

Verification of Compliance

Equipment under Test : Digital Picture Frame

Model No. : RF-TAO-01

FCC ID : VG4AGAM00090RC

Manufacturer : APEX DISPLAY CO.,LTD

Applicant : APEX DISPLAY CO.,LTD

Address : 10F.-2, No.348, Sec. 6, Nanjing E. Rd., Neihu District,

Taipei City 114, Taiwan (R.O.C)

Applicable Standards : 47 CFR part 15, Subpart C

Date of Testing : Sep. 1~2, 2008

Deviation : N/A

Condition of Test Sample : Prototype

We, Central Research Technology Co., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

: Cuchy Chen, DATE: Sep. 9, 2008

(Cathy Chen/Technical Manager)

: J. Y. Ch., DATE: Sept. 9, 2008 PREPARED BY

APPROVED BY

(Tsun-Yu Shih/Laboratory Head)

Contents

1.	Gen	eral Description	4	
	1.1	General Description of EUT	4	
	1.2	Test Methodology	4	
	1.3	Applied standards	5	
	1.4	The Support Units	8	
	1.5	Layout of the Setup	8	
	1.6	Test Capability	9	
	1.7	Measurement Uncertainly	11	
2.	Field strength of Fundamental			
	2.1	Limits for Field strength of Fundamental	12	
	2.2	Test Instruments	13	
	2.3	Test Procedures	14	
	2.4	Test Configurations	15	
	2.5	Test Results	16	
3.	Rad	iated Emission Measurement	23	
	3.1	Limit for Radiated Emission Measurement	23	
	3.2	Test Instruments	24	
	3.3	Test Procedures	25	
	3.4	Test Configuration	26	
	3.5	Test Results	27	
Att	achn	nent 1 – Photographs of the Test Configurations		
Att	achn	nent 2 – External Photographs of EUT		
_	_	_		

Attachment 3 – Internal Photographs of EUT

1. General Description

1.1 General Description of EUT

Equipment Under Test: Digital Picture Frame

Model No. : RF-TAO-01

Power in : 3.0Vdc

Test Voltage : 3.0Vdc (Battery*2)

Manufacturer : APEX DISPLAY CO.,LTD

Channel Numbers : 8

Frequency Range : 2402MHz~2433.4MHz

Function Modulation : FSK

Function Description :

The EUT is used to transmit control command only. Please refer to the user's manual for the details.

Channel	Operating Frequency	Chanel	Operating Frequency
	(MHz)		(MHz)
0	2402.0	4	2406.8
1	2411.2	5	2418.0
2	2420.4	6	2425.2
3	2429.6	7	2433.4

1.2 Test Methodology

For this E.U.T., the radiated emissions measurement performed according to the procedures illustrated in ANSI C63.4:2003 and other required were illustrated in separate sections of this test report for detail.

Since the EUT is considered a potable unit, it was pre-tested on the positioned of each 3 axes. Therefore only the test data of the worse case- z axis was used for Radiated test.

Page :4/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.3 Applied standards

(1) Field strength of Fundamental

According to 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamenta	I Field Strength	Field Strength
Frequency	of Fundamental (mV	/m) of Harmonics (uV/m)
902 – 928 MF	lz 50	500
2400 – 2483.	5 MHz 50	500
5725 – 5875	MHz 50	500
24.0 – 24.25	GHz 250	2500

(2) Radiation emission

According to 15.249(d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Page :5/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

(3) Radiated emission limits, general requirements.

According to 15.209, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(uV/m)	(m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Page :6/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(5) Conducted Limit

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
Trequency of Emission (minz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 - 5	56	46
5 - 30	60	50

^{*} Decreases with the logarithm of the frequency.

² Above 38.6

1.4 The Support Units

No.	Unit	Model No./ Serial No.	Teade Name	PowerCode	Supported by lab.
NA	*	*	*	*	*

1.5 Layout of the Setup

Transmitter	

Connecting Cables:

No.	Cable	Length	Shielded	Ferrite Core	Shielded Backshell	Supported by lab.	Note
N/A	*	*	*	*	*	*	*

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fashion as a customer could normal use it.

For radiated emission, measurement of radiated emission from digital circuit is performed with normal transmitting.

Page :8/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4.

Test Room	Type of Test Room	Descriptions	
TR1	10m semi-anechoic chamber		
IKI	(23m×14m×9m)	Complying with the NSA requirements in	
TR10	3m semi-anechoic chamber	documents CISPR 22 and ANSI C63.4.	
IKIU	$(9m \times 6m \times 6m)$	For the radiated emission measurement.	
TR11	3m semi-anechoic chamber	Tor the radiated emission measurement	
IKII	$(9m \times 6m \times 6m)$		
TR4	Shielding Room	For the RF conducted emission	
1174	(5m×3m×3m)	measurement.	
TR5	Shielding Room	For the conducted emission	
185	(8m×5m×4m)	measurement.	

Page :9/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited/filed/authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
A correction	R.O.C. (Taiwan)	TAF	0905	ISO/IEC 17025
Accreditation Certificate	R.O.C. (Taiwan)	BSMI	SL2-IN-E-0033, SL2-IS-E-0033, SL2-R1/R2-E-0033, SL2-A1-E-0033	ISO/IEC 17025
	USA	FCC	474046, TW1021	Test facility list & NSA Data
Site Filing Document	Canada	IC	4699A-1,-2,-3	Test facility list & NSA Data
	Japan	VCCI	R-1527,C-1609,T-131,T-1441	Test facility list & NSA Data
Authorization	Germany	TUV	10021687-2007	ISO/IEC 17025
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.7 Measurement Uncertainly

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2..

Test Item	Measurement Uncertainty	
Radiated Emission: (30MHz~200MHz)	Horizontal: 2.8 dB;Vertical: 3.5 dB	
Radiated Emission: (200MHz~1GHz)	Horizontal: 3.4 dB; Vertical: 2.8 dB	
Radiated Emission: (above 1GHz)	Horizontal: 2.5 dB; Vertical: 2.4 dB	
Line Conducted Emission	ESH2-Z5	3.1 dB
	ENV 4200	3.8 dB

Page :11/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2. Field strength of Fundamental

Result: PASS

2.1 Limits for Field strength of Fundamental

Fundamental Frequency	Peak	Average
□ 902 – 928 MHz	500mV/m (114dBuV/m)	50mV/m (94dBuV/m)
☑ 2400 – 2483.5 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 5725 – 5875 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 24.0 – 24.25 GHz	2500 mV/m (128dBuV/m)	250 mV/m (108dBuV/m)

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration Due	
Equipment	Wanulacturer	Serial No.	Calibration Date	Date	
Spectrum Analyzer	Agilent	E4407B/ MY45106706	2008/3/19	2009/3/18	
Horn Antenna	EMCO	3117/ 57408	2008/2/25	2009/2/24	
Pre-Amplifier	MITEQ	AFS6- 02001800-35- 10P-6/866643	2007/12/19	2008/12/18	
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	2008/6/30	2009/6/29	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required

Instrument Setting

RBW	VBW	Detector	Trace	Comment
1MHz	3MHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature: 27°C; Relative Humidity: 68%

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.
- c. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the interference receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine higher emission level and record it.
- g. The beamwidth of receiving horn antenna should keep covering EUT when the receiving horn antenna height varied.
- h. Then measure frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- Set the spectrum detector to be Peak or Average to find out the maximum level occurred.
- j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- k. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Configurations 2.4

Page :15/43

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.5 Test Results

Test Mode : Transmitter

Test Distance : 3m Tester : Bill

Frequency (MHz)	Polarization	Reading Data (dBuV)		Factor	Output Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
(PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
2402.0	V	118.68	117.56	-27.60	91.08	89.96	114	94	22.92	4.04
	Н	120.01	119.38	-27.60	92.41	91.78	114	94	21.59	2.22
2449.0	V	119.27	118.98	-27.58	91.69	91.40	114	94	22.31	2.60
2418.0	Н	119.52	119.00	-27.58	91.94	91.42	114	94	22.06	2.58
2433.4	V	118.63	118.32	-27.58	91.05	90.74	114	94	22.95	3.26
	Н	119.81	119.36	-27.58	92.23	91.78	114	94	21.77	2.22

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Output Field Strength

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2402MHz Vertical Polarization- Peak

2402MHz Vertical Polarization- Average

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2402MHz Horizontal Polarization- Peak

2402MHz Horizontal Polarization- Average

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2418MHz Vertical Polarization- Peak

2418MHz Vertical Polarization- Average

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2418MHz Horizontal Polarization- Peak

2418MHz Horizontal Polarization- Average

Page :20/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2433.4MHz Vertical Polarization- Peak

2433.4MHz Vertical Polarization- Average

Page :21/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2433.4MHz Horizontal Polarization- Peak

2433.4MHz Horizontal Polarization- Average

Page :22/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page :23/43

3. **Radiated Emission Measurement**

Result: PASS

3.1 **Limit for Radiated Emission Measurement**

Limit for Harmonics Radiation Emission Measurement

Fundamental Frequency	Field Strength of Harmonics
□ 902 – 928 MHz	500 uV/m (54dBuV/m)
☑2400 – 2483.5 MHz	500 uV/m (54dBuV/m)
□ 5725 – 5875 MHz	500 uV/m (54dBuV/m)
□ 24.0 – 24.25 GHz	2500 uV/m(68dBuV/m)

Limit for Other Emissions except Harmonics

Frequency (MHz)	Quasi-peak (dΒμV/m)				
30 to 88	40				
88 to 216	43.5				
216 to 960	46				
960 to 1000	54				
Frequency (MHz)	Peak (dΒμV/m) Average (dΒμV/				
Above 1000	74 54				

Note 1- The lower limit shall apply at the transition frequency.

Note 2- Additional provisions may be required for cases where interference occurs.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESI26/837491/015	2008/5/5	2009/5/4
Spectrum Analyzer	Agilent	E4407B/ MY45106706	2008/3/19	2009/3/18
Broadband Antenna	EMCO	3142C/ 52088	2008/7/27	2009/7/26
Antenna	EMCO	3117/ 57408	2008/2/25	2009/2/24
Antenna	EMCO	3116/ 58959	2008/2/14	2009/2/13
Pre-Amplifier	MITEQ	AFS6-02001800- 35-10P-6/866643	2007/12/19	2008/12/18
Pre-Amplifier	Mini Circuit	ZKL-2/ 004	2008/8/14	2009/8/13
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	2008/6/30	2009/6/29

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required

Instrument Setting

RBW	VBW	Detector	Trace	Comment
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	1MHz	Peak	Maxhold	Above 1GHz Peak
1MHz	10Hz	Peak	Maxhold	Above 1GHz Average

Climatic Condition

Ambient Temperature: 27°C; Relative Humidity: 68%

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- c. For the measurement of frequency below 1000MHz, the EUT was set 10m away from the interference receiving antenna for the limit of Class A equipment or CISPR 22. For Class B equipment and the measurement of frequency above 1000MHz, the EUT was set 3m away from the interference receiving antenna.
- d. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- e. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.
- f. For measurement of frequency above 1000MHz, the beamwidth of receiving horn antenna should keep covering EUT when the receiving horn antenna height varied.
- g. Then measure each frequency found from step e. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. Finely tune the antenna and turntable around the recorded position of each frequency found from step f.
- i. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per CISPR 16-1 to find out the maximum level occurred.
- j. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any.
- k. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- I. Change the receiving antenna to another polarization to measure radiated emission by following step d. to k. again.
- m. If the peak emission level measured from step e. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.

3.4 Test Configuration

Radiated Emission Measurement below 1000MHz

Radiated Emission Measurement above 1000MHz

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.5 Test Results

Band Edge

Test Mode : Transmitter

Test Distance : 3m Tester : Bill

Test Range Polarization		Frequency (MHz)	Reading Data (dBuV)		Correction Factor (dB/m)	Emission (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	` ,	PK.	AV.	PK.		AV.	PK.	AV.	PK.	AV.	
Lowest	V	2375.85	72.15	62.30	-27.67	44.48	34.63	74	54	29.52	19.37
	Н	2377.85	72.77	62.30	-27.66	45.11	34.64	74	54	28.89	19.36
Highest	V	2501.26	73.05	61.86	-27.53	45.52	34.33	74	54	28.48	19.67
	Н	2502.22	73.72	62.23	-27.53	46.19	34.70	74	54	27.81	19.30

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission Level
- 4. "*": The emission is too low to be measured.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Lowest Range

Vertical- Peak

Vertical- Average

Horizontal- Peak

Horizontal- Average

Highest Range

Vertical- Peak

Vertical- Average

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Horizontal- Peak

Horizontal- Average

Page :31/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL: 886-2-25984542

Radiated Emission Measurement

Radiated Emission Measurement below 1000MHz

Test Mode : 2402MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Vertical Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2402MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2418MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2418MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Page :35/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2433.4MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2433.4MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission Measurement above 1000MHz

Test Mode : 2402MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2402MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

Page :39/43

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2418MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2418MHz, Transmitter

Test Distance: 3m Tester: Bill

Polarization : Horizontal Frequency Range : 1GHz ~ 25GHz

Note:

- Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

Test Mode : 2433.4MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

Test Mode : 2433.4MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.