WHAT IS CLAIMED IS:

2

1

- 3 1. A biodegradable wellbore fluid comprising a first synthetic internal olefin having
- 4 from 16 to 18 carbon atoms (C_{16-18} IO), a second synthetic internal olefin having between
- 5 15 to 18 carbon atoms (C₁₅₋₁₈ IO), and a third synthetic internal olefin having 15 to 16
- 6 carbon atoms (C_{15-16} IO).

7

- 8 2. The wellbore fluid of claim 1 wherein the first internal olefin is present in a range
- 9 of about 40 to about 60 percent by weight of the wellbore fluid and wherein the second
- 10 internal olefin is present in range of about 15 to about 40 percent by weight of the
- wellbore fluid and wherein the third olefin is present in range of about 10 to about 30
- 12 percent by weight of the wellbore fluid.

13

14 3. The wellbore fluid of claim 1 further comprising a C_{16} alpha olefin (C_{16} AO).

15

- 16 4. The wellbore fluid of claim 3 wherein the C_{16} alpha olefin (C_{16} AO) is present in
- the range of about 10 to about 20 percent by weight of the wellbore fluid.

18

19 5. The wellbore fluid of claim 1 further comprising a non-oleaginous phase.

20

- 21 6. The wellbore fluid of claim 5 wherein said non-oleaginous phase comprises from
- about 1% to about 70% by volume of said fluid.

23

- 7. The fluid of claim 6 wherein said non-oleaginous phase is selected from the group
- 25 consisting of fresh water, seawater, a brine containing organic or inorganic dissolved
- salts, a liquid containing water-miscible organic compounds, and combinations thereof.

27

- 28 8. The wellbore fluid of claim 1 further comprising a weighting agent, wherein the
- 29 weighting agent is selected from the group consisting of calcium carbonate, dolomite,
- 30 siderite, barite, celestite, iron oxides, manganese oxides, ulexite, carnalite, sodium
- 31 chloride and combinations thereof.

1	
2	9. A method of formulating the continuous phase of a hydrocarbon based drilling
3	fluid, the method comprising:
4	determining the toxicity of a selection of hydrocarbon components;
5	determining the biodegradability of the selection of hydrocarbon components;
6	determining the polycyclic aromatic hydrocarbon content of the hydrocarbon
7	components
8	blending the selection hydrocarbon components in a manner which produces a
9	hydrocarbon based drilling fluid that has a toxicity score of ≤ 1 and has a biodegradation
10	rate ratio ≤ 1 .
11	
12	10. The method of claim 9 wherein the selection of hydrocarbons is selected from the
13	group consisting of a first synthetic internal olefin having from 16 to 18 carbon atoms
14	$(C_{16-18} IO)$, a second synthetic internal olefin having between 15 to 18 carbon atoms $(C_{15-18} IO)$
15	$_{18}$ IO), and a third synthetic internal olefin having 15 to 16 carbon atoms (C $_{15\text{-}16}$ IO) and
16	mixtures thereof.
17	
18	11. The method of claim 9, wherein the selection of hydrocarbons is selected from the
19	group consisting of a first synthetic internal olefin having from 16 to 18 carbon atoms
20	$(C_{16-18} \mathrm{IO})$, a second synthetic internal olefin having between 15 to 18 carbon atoms $(C_{15}.$
21	$_{18}$ IO), a third synthetic internal olefin having 15 to 16 carbon atoms (C $_{15\text{-}16}$ IO) and an
22	alpha olefin having 16 carbon atoms (C ₁₆ AO) and mixtures thereof.
23	·
24	12. The method of claim 9, wherein the selection of hydrocarbons are selected from the
25	group consisting of a $C_{16\text{-}18}$ IO having a C_{16} isomer content of greater than 50% w/w and
26	a C ₁₈ isomer content greater than 30% w/w; a C ₁₅₋₁₈ IO having a C ₁₅ isomer content of
27	greater than 20% w/w; a C ₁₆ isomer content greater than 20%; a C ₁₇ isomer content
28	greater than 20%; and a C_{18} isomer content greater than 15% w/w; a $C_{15\text{-}16}$ IO having a
29	C_{15} isomer content of greater than 40% w/w and a C_{16} isomer content greater than 40% $$
30	w/w; a C ₁₆ alpha olefin having a C ₁₆ isomer content of greater than 90% w/w; and

31

mixtures thereof.

1 2 13. A method of formulating a wellbore fluid, the method comprising blending a first 3 synthetic internal olefin having from 16 to 18 carbon atoms (C₁₆₋₁₈ IO), a second synthetic 4 internal olefin having between 15 to 18 carbon atoms (C₁₅₋₁₈ IO), and a third synthetic 5 internal olefin having 15 to 16 carbon atoms (C₁₅₋₁₆ IO) to form said biodegradable wellbore fluid. 6 7 8 14. The method of claim 13 further comprising blending an alpha olefin having 16 9 carbon atoms (C₁₆ AO). 10 11 15. A method of drilling a well comprising, attaching a cutting bit to a length of drill 12 pipe, rotating said cutting bit, removing cuttings from around said bit with a drilling fluid 13 wherein the drilling fluid is a biodegradable wellbore fluid which comprises a first 14 synthetic internal olefin having from 16 to 18 carbon atoms (C₁₆₋₁₈ IO), a second synthetic 15 internal olefin having between 15 to 18 carbon atoms (C₁₅₋₁₈ IO), and a third synthetic 16 internal olefin having 15 to 16 carbon atoms ($C_{15-16}IO$). 17 18 16. The method of claim 15, wherein the well bore fluid further comprises an alpha olefin 19 having 16 carbon atoms (C_{16} AO). 20 21 17. The method of claim 15, wherein the C_{16-18} internal olefin has a C_{16} isomer content of 22 greater than 50% w/w and a C₁₈ isomer content greater than 30% w/w; wherein the C₁₅₋₁₈ 23 IO has a C₁₅ isomer content of greater than 20% w/w; a C₁₆ isomer content greater than 24 20%; a C₁₇ isomer content greater than 20%; and a C₁₈ isomer content greater than 15% w/w; and wherein the C₁₅₋₁₆ IO has a C₁₅ isomer content of greater than 40% w/w and a 25 26 C₁₆ isomer content greater than 40% w/w. 27

18. The method of claim 16, wherein the C_{16} alpha olefin has a C_{16} isomer content of greater than 90% w/w.

30

35