

Vorlesung

Betriebssysteme

Teil 2 Einführung und Prozesse

Einführung: Historie

Historie von Betriebssystemen:

- erste Rechnergeneration (ca. 1945-1955):
 - Kein Betriebssystem (,Single Purpose Computers'),
 - Programmierung über Steckbrett oder Lochstreifen... keine Programmiersprachen.
- zweite Generation (ca. 1955-1965):
 - Stapelverarbeitung, einfache Job Control.
 - Programmiersprachen: Assembler, Fortran...
- dritte Generation (1965-1980):
 - Mehrbenutzer- und Multiprogrammbetrieb, Steuerung über Terminal (Tastatur und Bildschirm).
 - Programmiersprachen: C, Pascal...
- vierte Generation (ab ca. 1975):
 - Interaktive Systeme mit grafischer Benutzeroberfläche, verteilte Betriebssysteme
 Netzwerkbetriebssysteme,
 - Multiprozessorsysteme. Objektorientierte Programmiersprachen

Microsoft und Windows

- Gründung Microsoft 1975
- Erfolg: MS-DOS ("the day Gary Kildall went flying")
- 100.000 Mitarbeiter, 75 Mrd \$ Umsatz

MICROSOFT

95% Marktanteil auf PCs und Notebooks

FH Bielefeld University of Applied Sciences

Unix

Bell Labs:

Ken Thompson (1. Unix Version 1969, Sprache Assembler, später B),

Dennis Ritchie (Weiterentwicklung der Sprache B zu C), Brian Kernighan

Bild: Dennis Ritchie (stehend) und Ken Thompson bei der UNIX-Portierung auf die PDP-11 an 2 Teletype 33 Terminals (1970)

Linux

- Linus Torvalds 1991
 - Unix Betriebssystem für IBM PC
 - Tanenbaums Minix

- Zukunftsperspektive für Linux
 - Webserver (Microsoft Anteil 20%)
 - Embedded Systems (Microsoft Anteil < ??%)

FH Bielefeld University of Applied Sciences

Linux auf Embedded Systems

Smartphones

Smartphones

	Windows	2
-	Android	25
-	iOS	4
-	Symbian	0
	Palm OS	0

Umfrage Betriebssysteme SoSe 2014

-	Windows	2
•	Android	22
•	iOS	8
•	Symbian	0
	Palm OS	0

Umfrage Betriebssysteme SoSe 2018

	Windows	0
-	Android	2
-	iOS	9
-	Symbian	0
	Palm OS	0

Umfrage Betriebssysteme SoSe 2015

	Windows	1
	Android	30
	iOS	4
	Symbian	0
	Palm OS	0

Umfrage Betriebssysteme SoSe 2016

Windows	3
Android	30
iOS	4
Symbian	0
Palm OS	0

Einführung: Arten

Einteilung von Betriebssystemen:

- Nach Betriebsart:
 - Stapelverarbeitung (batch processing)
 - Programme werden einzeln gestartet und verarbeitet.
 - Klassische Großrechnerbetriebssysteme.
 - Time-Sharing-Betriebssystem
 - Die Rechenleistung wird in Zeitscheiben aufgeteilt.
 - Interaktives Arbeiten (auch mehrerer Benutzer) ist möglich.
 - Echtzeitbetriebssystem
 - Garantierte Antwortzeiten können für Prozesse angegeben werden.
- Nach Rechnerarchitektur
 - Einprozessorsystem
 - Multiprozessorsystem
 - Verteiltes System (Rechenknoten haben eigene CPU und eigenen Speicher)

Einführung: Arten (Forts.)

Einteilung von Betriebssystemen (Forts.):

- Nach Einsatzgebiet
 - Großrechnersysteme
 - Bsp. z/OS (IBM)
 - Server
 - Solaris (SUN), Linux, BSD, Windows Server (Microsoft)
 - Multiprozessorsysteme
 - spezielle Varianten von Windows, UNIX (Solaris)
 - Personalcomputer
 - Windows (XP, Vista, 7, 10), MacOS, Linux
 - Handheldcomputer / Smartphones:
 - Android, iOS, Symbian, Blackberry, Windows Mobile, Palm OS
 - Eingebettete Systeme:
 - QNX, VxWorks
 - Sensorknoten:
 - TinyOS, Java VM

Einführung: Modi

Kern- und Benutzermodus:

- Zum Schutz des Betriebssystems (und damit des Rechners) vor fehlerhaften (oder böswilligen) Applikationen und zum Schutz der Applikationen untereinander haben moderne leistungsfähige Prozessoren ein Privilegiensystem
 - Betriebssystem läuft im Kernmodus (kernel mode, supervisor mode),
 - die Applikationen im Benutzermodus (user mode)

Modus Privileg	Benutzermodus	Kernmodus
Ausführbare Maschinenbefehle	begrenzt	alle
Hardwarezugriffe	nein	Vollzugriff
Zugriff auf MMU	nein	ja
Zugriff auf Systemcode bzw.Daten	Keiner oder nur lesend	ja

Einführung: Schutzebenen

Schutzebenen des Pentium:

- Die Schutzstufe eines Programms ist im PSW codiert.
- Wechsel zwischen den Schutzstufen (Ringen) nur mit CALLS möglich. Kein direkter Einsprung in niedrigeren Ring!

Schutzstufe:	Typische Nutzung:
Ring 0	Betriebssystems- kern (<i>Kernel</i>)
Ring 1	Systemaufrufe
Ring 2	Shared Libraries
Ring 3	Benutzer- programme

Einführung: Systemaufrufe

Betriebssystemaufrufe

Um aus dem Benutzermodus in den Kernmodus zu gelangen, gibt es folgende Möglichkeiten:

- Hardware Unterbrechung (HW Interrupt), z.B.
 - Echtzeit-Uhr (Timer)
 - Anforderung eines E/A Gerät
 - Hardware Fehler (z.B. Stromversorgung, Speicherfehler...)
- Software Unterbrechung (SW Interrupt, Trap)
 - System Aufruf (System Call, Supervisor Call)
 - Software Fehler (z.B. Zugriff auf ungültige Adresse, ungültiger Befehl, Division durch 0 ...)

Einführung: Systemaufrufe (Forts.)

- Aufteilung in Benutzerebene (user) und Systemebene (kernel)
- Ablauf:
- 1. Anwender-Programm benötigt einen BS-Service: System Call.
- Parameter werden in Übergabebereich platziert.
- 3. Steuerung wird an den Systemkern übergeben: Kernel Call (auch: Supervisor Call).
- 4. Kernel: identifiziert Service-Routine und ruft sie auf.
- 5. Service-Routine läuft ab und gibt Ergebnis an den Auftraggeber (Anwender-Programm) zurück.
- Zweiteilung (user kernel) ergibt ungenügende Strukturierung.

Einführung: Aufbau (Forts.)

Aufbau von Betriebssystemen:

- Monolithisches System:
 - Das Betriebssystem ist eine Sammlung von Prozeduren, die sich gegenseitig aufrufen.
 - Jede Prozedur kann beliebige Datenstrukturen verändern.
 - Beispiele: MS-DOS, CMX-RTX (embedded RTOS), ältere Unix Varianten

Einführung: Aufbau (Forts.)

Aufbau von Betriebssystemen:

- Geschichtetes System:
 - Die Teilfunktionen sind hierarchisch gegliedert.
 - Eine horizontale Kommunikation ist nicht möglich.
 - Beispiele: OS/2, moderne Unix-Varianten

Testfrage

- Zusammenarbeit zwischen Anwenderprogramm und BS: Welches sind die Ziele des Kernel-Call-Mechanismus?
- Mögliche Antworten:

Erhöhung der Geschwindigkeit

Vereinfachung der Programmierung

Schutz von Speicherbereichen

Einsparung von Energie

Senkung der Taktfrequenz

Entkopplung von User und System

Einführung: Aufbau (Forts.)

Aufbau von Betriebssystemen

- Client-Server-Modell:
 - Server können auf verteilten Systemen realisiert werden.

Einführung: Aufbau (Forts.)

Aufbau von Windows NT/2000/XP/Vista (nach Tanenbaum):

FH Bielefeld University of Applied Sciences

Einführung: Aufbau (Forts.)

Aufbau von Unix (Kern des System V Release 3):

Testfrage

- Nennen Sie die Basis- oder Kernelfunktionalitäten eines BS!
- Mögliche Antworten:

Prozessmanagement

Dateimanagement

Behandlung von Echtzeitereignissen

Bestimmung der Prozessreihenfolge

Userverwaltung

Verwaltung des virtuellen Speichers

Login

Nachrichtentransport

Motivation & Ziele

Motivation:

- Software für Rechensysteme wird unterteilt in zwei Gruppen:
 - Systemprogramme zum Betrieb des Computers.
 - Anwenderprogramme erfüllen die Anforderungen der Anwender.
- Das Betriebssystem (operating system) ist das wichtigste Systemprogramm.

Ziele der Veranstaltung: Vermittlung von

- Wissen:
 - Aufbau von Betriebssystemen
 - Grundlegende Konzepte (u.a. nebenläufige Prozesses, Multi-Threading,...)
- Praktischen Kenntnissen:
 - Analyse und Konzeption von Betriebssystemkomponenten
 - Realisierung in C
 - Programmierung in der Shell
 - Keine Klickanleitung "wie installiere ich Windows"

Grundvoraussetzungen

Grundlegende Kenntnisse:

- Aufbau von Rechensystemen (CPU, Speicher, E/A,...)
 - Was ist ein Register? ALU? MMU?

Programmierkenntnisse in C:

- Grundlegende Konzepte:
 - Datentypen, Kontrollstrukturen, Schleifen, Funktionen, Zeiger / Speicherverwaltung
 - Entwicklungsprozess (edit, compile, link, execute)
- Programmierung in der Unix (Linux) Umgebung
 - gcc, make, ...
 - Beispiel: Ubuntu 12.04
- Binärsystem
 - Bits und Bytes

Einführung Hardware: Von-Neumann Rechner

Intel 8086 – Vier 16 Bit Register

12.55.5574
COUNTY THE THE

A STATE OF THE STA
Quelle: http://de.wikipedia.org/wiki/X86-Prozessor

Allg	jeme	ine	
Arb	eitsr	egiste	er

AX	АН	AL
ВХ	ВН	BL
CX	СН	CL
DX	DH	DL

Akkumulator Basisregister

Zählerregister

Datenregister

Segmentregister

CS	
DS	
ES	
SS	

Codesegment

Datensegment

Extrasegment

Stacksegment

Adress- und Indexregister

SP	Stapelzeiger
BP	Basiszeiger
DI	Zielindex
SI	Quellindex

IP

Befehlszeiger

SR

Statusregister (PSW)

Intel Pentium – Acht 32-Bit Register

- Kompatibel zum 8086
- Acht Gleitkommaregister

	31 1	5	U	U	
EAX		АН	AL	AX	
EBX		ВН	BL	вх	
ECX		СН	CL	СХ	
EDX		DH	DL	DX	

Registerbezeichnungen:

[E]AX: Akkumulator [E]BX: Basisregister [E]CX: Zählregister [E]DX: Datenregister

AMD64 bzw. Intel 64 (Core-i Serie)

- Sechzehn 64 Bit Register
- Acht 64 Bit Gleitkommaregister
- Sechzehn 128 Bit Mediaregister

Table 3-2. Addressable General Purpose Registers

Register Type	Without REX	With REX
Byte Registers	AL, BL, CL, DL, AH, BH, CH, DH	AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L - R15L
Word Registers	AX, BX, CX, DX, DI, SI, BP, SP	AX, BX, CX, DX, DI, SI, BP, SP, R8W - R15W
Doubleword Registers	EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP	EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D
Quadword Registers	N.A.	RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15

Quelle: Intel® 64 and IA-32 Architectures Software Developer's Manual

FH Bielefeld University of Applied Sciences

Speicherhierarchie

- L1 ist kleiner und schneller als L2
- L2 ist kleiner und schneller als L3
- L3 ggf. außerhalb des Chip

FH Bielefeld University of Applied Sciences

Mehrkern Chips

- Zwei Prozessorkerne mit integriertem L1 Cache
- L2 und L3 Cache auf dem Die

Quelle: Böttcher, A.: Rechneraufbau und Rechnerarchitektur, Springer-Verlag, 2006

Intel Core i5

Hardwaremodell (vereinfacht)

Skizze: Motherboard Core-i-Serie von Intel

Einführung: Virtualisierung

Techniken:

- Betriebssystem-Virtualisierung
- Plattform-Virtualisierung:
 - Vollständige Virtualisierung
 - Typ-I Hypervisor
 - Typ-II Hypervisor
 - Para-Virtualisierung

Typ-I und Typ-II Hypervisor (Abb. aus Tanenbaum)

Figure 1-29. (a) A type I hypervisor. (b) A type 2 hypervisor.

Vielen Dank für Ihre Aufmerksamkeit