CR410 AA12/13 (Crittografia 1)

Raccolta dei Testi d'Esame

ESAME DI METÀ SEMESTRE

Roma, 3 Aprile 2013.

- 1. Dato il numero binario $n = (101010110)_2$, calcolare $\lceil \sqrt{n} \rceil$ usando l'algoritmo delle approssimazioni successive (Non passare a base 10 e non usare la calcolatrice!)
- 2. Determinare una stima per il numero di operazioni bit necessarie per calcolare $[\sqrt{a}]^{b^a}$ mod b dove $b \leq a^a$. *
- 3. Trovare le soluzioni $X \in \mathbf{Z}$ della congruenza $X^3 \equiv 1 \mod 91$?
- 4. Mostrare che se $f(X) = aX^2 + bX + c \in \mathbf{Z}/k\mathbf{Z}[X]$, le moltiplicazioni nell'anello quoziente $\mathbf{Z}/k\mathbf{Z}[x]/(f(X))$ si possono calcolare in $O(\log^2 k)$ operazioni bit. Vale la stessa conclusione se deg f > 2?
- 5. Si illustri il funzionamento dell'algoritmo di Stein (algoritmo binario) per calcolare il massimo comune divisore di 72 e 90.
- 6. Supponiamo $a, m \in \mathbf{Z}$, e (a, m) = 1. Dimostrare che l'inverso moltiplicativo a^* (mod m) è una potenza di a. Spiegare perchè se m ha al più due fattori primi allora conoscere tale potenza è computazionalmente equivalente a fattorizzare m.
- 7. Dopo aver enunciato il criterio di Korselt per i numeri di Carmichael lo si applichi per mostrare che $2821 = 7 \times 13 \times 31$ è un numero di Carmichael.
- 8. Quale la probabilit che un numero minore di 100 coprimo con 14 risulti primo?
- 9. Calcolare la successione di Miller Rabin di 3 modulo 49.
- 10. Spiegare nei dettagli il funzionamento del crittosistema RSA.

ESAME DI FINE SEMESTRE

Roma, 28 Maggio, 2013.

- 1. Rispondere alle seguenti domande che forniscono una giustificazione di 1 riga:
 - a. Fornire un esempio di un'equazione di Weierstrass singolare.
 - b. E' vero che in alcuni gruppi ciclici il logaritmo discreto è particolarmente facile da calcolare?
 - c. Fornire due esempi di campi finiti \mathbf{F}_q in cui tutti gli elementi di $\mathbf{F}_q^* \setminus \{1\}$ sono generatori.
 - d. Fornire un esempio di un polinomio primitivo in un campo con 9 elementi.
- 2. Enunciare e dimostrare il Teorema di struttura dei sottocampi di \mathbf{F}_{p^n} . Lo si utilizzi per costruire un esempio di campo finito con esattamente 5 sottocampi.
- 3. Supponiamo che n, m siano interi, che $m \equiv 5 \mod 4n$, che $n \equiv 7 \mod 10$. Calcolare il simbolo di Jacobi $\binom{n}{m}$.

^{*} ESERCIZIO RELATIVO AL PROGRAMMA NON SVOLTO NELL'AA 2013/2014

- 4. Spiegare il funzionamento di alcuni sistemi crittografici che basano la propria sicurezza sul problema del logaritmo discreto.
- 5. Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
- 6. Sia $E: y^2 = x^3 x$. Determinare la struttura del gruppo $E(\mathbf{F}_5)$ e calcolare $\#E(\mathbf{F}_{125})$. E' possibile determinare anche la struttura di $E(\mathbf{F}_{125})$?
- 7. Dimostrare che se E è una curva ellittica definita su un campo finito \mathbf{F}_q con caratteristica dispari da un'equazione $y^2 = x^3 + a_2x^2 + a_4x + a_6$, allora i punti di ordine 2 hanno la forma $(\alpha,0)$ dove $\alpha^3 + a_2\alpha^2 + a_4\alpha + a_6 = 0$. Si forniscano esempi di curve ellittiche con 0, 1 e 3 punti di ordine 2 e si spieghi percè non è possibilie che ve ne siano 2.
- 8. Scrivere e dimostrare le formula per l'inverso -P e per il punto 2P del punto $P(x,y) \in E(\mathbf{F}_q)$ dove E è una curva ellittica definita da una equazione di Weierstrass generale.

APPELLO A

Roma, 7 Giugno, 2013.

- 1. Si descriva un algoritmo per calcolare in tempo polinomiale la parte intera di $m^{1/5}$ per ogni intero positivo m.
- 2. Descrivere l'algoritmo di moltiplicazione di Karatsuba. *
- 3. Dimostrare che se p è primo, allora $x^4 \equiv 1 \mod p$ ammette $\gcd(p-1,4)$ soluzioni. Determinare un velore di m tale che $X^4 \equiv 1 \mod m$ ammette esattamente 32 soluzioni.
- 4. Calcolare il simbolo di Legendre $\left(\frac{97543}{21345}\right)$ utilizzando le propritetà dei simboli di Jacobi.
- 5. Si illustri l'algoritmo di Euclide esteso con particolare riguardo alle relazioni ricorsive per il calcolo dell'identità di Bezout. Lo si abblichi per calcolare l'identità di Bezout tra 54 e 98.
- 6. Si determini la probabilità che un polinomio irriducibile su \mathbf{F}_5 di grado 6 risulti primitivo
- 7. Determinare i polinomi minimi e gli ordini degli elementi di \mathbf{F}_{16} .
- 8. Considerare una curva ellittica E definita su un campo con 2^{10} elementi. Supponiamo che $P \in E(\mathbf{F}_{2^{10}})$ abbia ordine 7 e che $Q \in E(\mathbf{F}_{2^{10}})$ abbia ordine 19. Se sappiamo che $E(\mathbf{F}_{2^{10}})$ non è ciclico, cosa possiamo dire della sua struttura?
- 9. Sia $E: y^2 = x^3 + x$, Dimostrare che se $p \equiv 1 \mod 4$ allora il gruppo $E(\mathbf{F}_p)$ non è ciclico. Determinare tale gruppo nel caso in cui p = 3.
- 10. Spiegare il funzionamento di tutti i protocolli crittografici incontrati nel corso.

^{*} RELATIVO AL PROGRAMMA NON SVOLTO NELL'AA 2013/2014

- 1. Si descrivano le complessità delle operazioni elementari tra interi.
- 2. Descrivere l'algoritmo dei quadrati successivi in un qualsiasi monoide moltiplicativo discutendone la complessità.
- 3. Dimostrare che il gruppo moltiplicativo di un campo finito è ciclico.
- 4. Dopo aver descritto la nozione di base forte, si dimostri che tutte le basi modulo un primo sono forti e si fornisca un esempio di un numero composto e di una sua base forte (non banale cioè diversa da -1).
- 5. Si descriva e si dimostri il Teorema Cinese dei resti discutendo in particolare l'analisi della complessità per determinare le soluzioni di un sistema di congruenze.
- 6. Si descriva il reticolo dei sottocampi di \mathbf{F}_{2^6} e per ciascun sottocampo proprio, si elenchino i polinomi irriducibili e quelli primitivi.
- 7. Determinare i polinomi minimi e gli ordini degli elementi di \mathbf{F}_{9} .
- 8. Fornite un esempio di curva ellittica definita su un campo con 25 elementi per cui $E(\mathbf{F}_{25} \text{ non è ciclico}.$
- 9. Sia $E: y^2 = x^3 5x + 8$ e siano $P = (6,3), Q = (9,10) \in E(\mathbf{F}_{37})$. Calcolare $2P \in P + Q$.
- 10. Spiegare il funzionamento di tutti i protocolli crittografici incontrati nel corso.

APPELLO C

Roma, 3 Febbraio 2014.

- 1. Rispondere alle seguenti domande che forniscono una giustificazione di 1 riga:
 - a. E' vero che se E è una curva ellittica definita su \mathbf{F}_{2^n} , allora non ha mai un equazione della forma $y^2 = x^3 + ax + b$?
 - b. E' vero che se tutti i fattori primi di n-1 sono più piccoli di $\log n$, allora è possibile determinare un fattore non banale di n in modo rapido? come?
 - c. E' vero che se p > 3, il polinomio $X^2 + 2 \in \mathbf{F}_p$ è irriducibile per alcuni valori di p ma non tutti?
 - d. E' vero che esistono modi per moltiplicare interi con complessità inferiore a quella quadratica?*
- 2 Se $n \in \mathbb{N}$, sia $\tau(n)$ il numero dei divisori di n. Supponiamo che sia nota la fattorizzazione (unica) di $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$. Fornire una stima per il numero di operazioni bit necessarie per calcolare $\tau(n)$. (Suggerimento: Usare il fatto che τ è una funzione moltiplicativa e calcolare una formula per $\tau(p^{\alpha})$).
- 3. Siano m, n interi tali che $m \equiv 3 \mod 4$, che $m \equiv 2 \mod n$ e che $n \equiv 1 \mod 8$. Si calcoli il seguente simbolo di Jacobi: $\left(\frac{(11m+n)^7}{m}\right)$.

^{*} ESERCIZIO RELATIVO AL PROGRAMMA NON SVOLTO NELL'AA 2013/2014

- 4. Illustrare l'algoritmo dei quadrati successivi in un gruppo analizzandone la complessità. Considerare la curva ellittica $E: y^2 = x^3 x$. Illustrare l'algoritmo appena descritto calcolando [5](1,0) dove $(1,0) \in E(\mathbf{F}_7)$.
- 5. Si dia la definizione di pseudo primo forte in base 2 e si mostri che se $n=2^{\alpha}+1$ è pseudo primo forte in base 2, allora $2^{2^{\beta}} \equiv -1 \mod n$ per qualche $\beta < \alpha$.
- 6. Fissare una radice primitiva di ${\bf F}_{2^4}$ ed utilizzarla per simulare un scambio chiavi alla Diffie–Hellmann.
- 7. Dopo aver definito la nozione di polinomio primitivo su un campo finito, si calcoli la probabilità che un polinomio irriducibile f di grado 8 su \mathbf{F}_5 risulti primitivo?.
- 8. Fattorizzare $f(x) = (x^{12} + 5x^2 + 1)(x^2 + x + 2)(x^{10} + x^2 + 1)$ su \mathbf{F}_2 e determinare il numero di elementi del campo di spezzamento di f.
- 9. Dopo aver verificato che si tratta di una curva ellittica, determinare (giustificando la risposta) l'ordine e la struttura del gruppo dei punti razionali della curva ellittica su \mathbf{F}_7

$$y^2 = x^3 - x + 5.$$

APPELLO X

Roma, 13 Settembre 2013.

- 1. Si descrivano:
 - -a- L'algoritmo dei quadrati successivi;
 - -b- L'algoritmo MCD-binario;
 - -c- L'algoritmo di Pollard per la fattorizzazione degli interi;
 - -d- L'algorimo di Pholig-Hellman per il calcolo dei logaritmi discreti;
 - -e- Dopo aver descritto la nozione di algoritmo probabilistico di tipo Montecarlo, l'algoritmo di Miller-Rabin.
- 2. Determinare ordine e struttura di $E(\mathbf{F}_5)$ dove $E: y^2 = x^3 + 2$.
- 3. Dopo aver descritto quali sono i fattori irriducibili in $\mathbf{F}_p[x]$ di $x^{p^6} x$ (p primo), nel caso in cui p = 2, li si elenchino tutti specificando quali tra questi sono primitivi.
- 4. Siano $n \in m$ interi tali che $m \equiv 3 \mod 4$, $m \equiv 2 \mod n$ e $n \equiv 1 \mod 8$. Si calcoli il simbolo di Jacobi $\left(\frac{(5m+n)^7}{m}\right)$.
- 5. Dimostrare che se \mathbf{F}_q è un campo finito di caratteristica dispari, allor esiste sempre una curva ellittica su \mathbf{F}_q con gruppo dei punti razionali non ciclico.
- 6. Si descrivano i principali algoritmi di cifratura e decifratura.