

UNITED STATES AIR FORCE IERA

Comparing Cleanup Costs to Risk for Selected USAF Pump and Treat Systems: Remediating Trichloroethylene Contaminated Aquifers

Anthony Jasek

KARTA Technologies, Incorporated 5555 N.W. Parkway San Antonio, TX 78249

Betty West

February 2000

20010905 180

Approved for public release;

distribution is unlimited.

Air Force Institute for Environment, Safety and Occupational Health Risk Analysis Risk Analysis Directorate Risk Assessment Division 2513 Kennedy Circle Brooks Air Force Base TX 78235-5123

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United State Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: Defense Technical Information Center, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA 22161-2103.

ELIZABETH A. MAULL, Ph.D., GS-13
Toxicologist, Environmental Sciences Branch

KENNETH L. COX, Lt Col, USAF,MC,SFS Chief, Risk Assessment Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE A	ND DATES COVERED
	February 2000		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Comparing Cleanup Costs to Rish		and Treat Systems:	F41624-96-D-1002
Remediating Trichloroethylene C	ontaminated Aquifers		
6. AUTHOR(S)			1
Jasek, Anthony and West, Betty			
7. PERFORMING ORGANIZATION			8. PERFORMING ORGANIZATION REPORT NUMBER
KARTA Technologies, Incorpora	ited		REPORT NOWIDER
5555 N.W. Parkway			
San Antonio, Tx 78249			
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRE	SS(FS)	10. SPONSORING/MONITORING
Air Force Institute for Environme			AGENCY REPORT NUMBER
Risk Analysis Directorate	one, ourse, unit of our person		
Risk Assessment Division			IERA-RS-BR-TR-2001-0002
2513 Kennedy Circle			
Brooks AFB, TX 78235 11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION AVAILABILITY Approved for public release; dist			12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 wor	ds)		
		rating at U.S. Air Force (U	SAF) installations having ground
water contaminated with Trichlor	roethylene (TCE). As part	of this study, it was found	that in 1997 the USAF was operating
86 P&T systems at 49 of its insta	llations.		
The EPA regulated TCE in drink			
			asibility of detection at the time. This
			to the EPA's Office of Ground and
Drinking Water in support of a re			andard for TCE to be based on a
scientifically sound standard rather than the current policy based standard.			
Statistical forecasting was performed on 4 P&T sites to determine when operations of the P&T systems could be terminated			
based on the different cleanup levels of 5, 50, and 100 ppb. The statistical model algorithm was also used to forecast the			
lifetime excess cancer risk at the sites based on the TCE contaminant level. Cumulative costs and price to capture each			
gallon of TCE through time was also determined. By just considering the 4 sites the cost savings realized from raising the			
TCE MCL from 5 to 50 ppb would be approximately \$60 million and from 5 to 100 ppb would be approximately \$72 million. If the average cost savings from the 4 sites was applied to the 61 TCE sites, an estimated \$0.9 billion to \$1.1			
1	-		an estimated \$0.9 billion to \$1.1
billion could be saved by raising	the TCE MCL to 50 ppb o	or 100 ppb, respectively.	15. NUMBER OF PAGES
14. SUBJECT TERMS trichloroethylene; pump and treat remediation; cost benefit analysis			
tricinorocinyiene; pump and trea	i icinculation, cost benefit	ana y 515	98 16. PRICE CODE
	18. SECURITY CLASSIFICATI		FICATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	UL Standard Form 298 (Rev. 2-89) (FG)

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

EXECUTIVE SUMMARY	
INTRODUCTION	2
Background	4
Limitations of P&T Systems in Remediating TCE Contaminated Aquifers	5
Putting Risks in Perspective	7
METHODOLOGY	9
Inventory of USAF P&T Systems	9
Forecasting Contaminant Concentrations	10
Forecasting Lifetime Excess Cancer Risks	10
Assessing the Costs	11
RESULTS	13
Results of Data Gathering	13
Forecast of Contaminant Concentrations	
OT-12, Plant 44	14
LF-05, Wright Patterson AFB	
OT-24, Wurtsmith AFB	
SS-17/21/47, Wurtsmith AFB	
Assessing the Costs	17
OT-12, Plant 44	17
LF-05, Wright Patterson AFB	17
OT-24, Wurtsmith AFB	21
SS-17/21/47, Wurtsmith AFB	25
COST EFFECTIVENESS ANALYSIS	
CEA, OT-12, Plant 44	33
CEA, LF-05, Wright Patterson AFB	33
CEA, OT-24, Wurtsmith AFB	34
CEA, SS-17/21/47, Wurtsmith AFB	
CONCLUSIONS	
RECOMMENDATIONS	
REFERENCES	38
APPENDIXES:	
A Inventory of US Air Force Installation Pump and Treat Groundwater	
Remediation Systems	41
B USAF TCE Contaminated Groundwater Sites Having P&T Systems	
with Historical Significance	
C. Observed and Predicted TCF Concentrations at 4 USAF P&T Sites	71

LIST OF TABLES

TABLE 1. Cancer Agents and Lifetime Risk	8
TABLE 2. Forecast of Individual Well Cleanup Dates With	
Different MCLs, OT-12, Plant 44	5
TABLE 3. Forecast of Individual Well Cleanup Dates With	
Different MCLs, LF-05, Wright Patterson AFB1	
TABLE 4. Costs and Risks at Different Cleanup Goals2	29
TABLE 5. Comparison of Cost Effectiveness Analysis for Four Sites	5
LIST OF FIGURES	
FIGURE 1. Cumulative Gallons TCE vs Cumulative Costs,	
OT-12, Plant 441	8
FIGURE 2. Yearly Average TCE Captured vs Cumulative Costs,	
OT-12, Plant 441	9
FIGURE 3. Average of Lifetime Cancer Risk vs Cumulative Cost,	
OT-12, Plant 442	20
FIGURE 4. Cumulative Gallons TCE vs Cumulative Costs,	
LF-05, Wright Patterson AFB2	22
FIGURE 5. Yearly Average TCE Captured vs Cumulative Costs,	
LF-05, Wright Patterson AFB2	23
FIGURE 6. Average of Lifetime Cancer Risk vs Cumulative Cost,	
LF-05, Wright Patterson AFB	4
FIGURE 7. Cumulative Gallons TCE vs Cumulative Costs,	
Mission St. P&T, Wurtsmith AFB	:6
FIGURE 8. Gallons TCE Captured vs Cumulative Costs,	
Mission St. P&T, Wurtsmith AFB	:7
FIGURE 9. Average of Lifetime Cancer Risk vs Cumulative Cost,	
Mission St. P&T, Wurtsmith AFB	8:
FIGURE 10. Cumulative Gallons TCE vs Cumulative Costs,	
Arrow St. P&T, Wurtsmith AFB	0
FIGURE 11. Gallons TCE Captured vs Cumulative Costs,	
	31
FIGURE 12. Average of Lifetime Cancer Risk vs Cumulative Cost,	
Arrow St. P&T, Wurtsmith AFB	2
APPENDIX C:	
FIGURE 1. Observed and Predicted TCE	
Concentrations in Well M-23, Plant 447	12
FIGURE 2. Observed and Predicted TCE	_
Concentrations in Well M-25, Plant 447	/3
FIGURE 3. Observed and Predicted TCE	_
Concentrations in Well M-2b, Plant 447	' 4
FIGURE 4 Observed and Predicted TCF	

FIGURE 4. Observed and Predicted TCE Concentrations in Well M-3a, Plant 44	75
FIGURE 5. Observed and Predicted TCE	
Concentrations in Well M-41, Plant 44	76
FIGURE 6. Observed and Predicted TCE	
Concentrations in Well M-5, Plant 44	77
FIGURE 7. Observed and Predicted TCE	
Concentrations in Well M-7, Plant 44	78
FIGURE 8. Observed and Predicted TCE	
Concentrations in Well M-8, Plant 44	79
FIGURE 9. Observed and Predicted TCE	
Concentrations in Well M-9, Plant 44	80
FIGURE 10. Observed and Predicted TCE	
Concentrations in Well HD-11, WPAFB	81
FIGURE 11 Observed and Predicted TCE	
Concentrations in Well CW5-55, WPAFB	82
FIGURE 12. Observed and Predicted TCE	_
Concentrations in Well CW5-85, WPAFB	83
FIGURE 13. Observed and Predicted TCE	
Concentrations in Well MW-131m, WPAFB	84
FIGURE 14. Observed and Predicted TCE	
Concentrations in Well MW-132, WPAFB	85
FIGURE 15. Observed and Predicted TCE	
Concentrations in Arrow St. Influent, Wurtsmith AFB	86
FIGURE 16. Observed and Predicted TCE	
Concentrations in Mission St. Influent, Wurtsmith AFB.	87

ACKNOWLEDGEMENTS

The Health Risk Assessment Branch (AFIERA/RSRE) of the Human Systems Center undertook a study concerning USAF P&T remediation systems operating at TCE contaminated groundwater sites. The study was conducted under the guidance of Dr. Elizabeth Maull, staff toxicologist for AFIERA/RSRE.

A major portion of this project involved gathering extensive amounts of data concerning the operation of P&T systems at Air Force installations. Many people assisted in supplying this data to us. Major Jeff Ogden of the Department of Defense Office of the Inspector General was a source of much of the construction and operational cost data which was derived from their project, "Evaluation of DoD Waste Site Groundwater Pump-and-Treat Operations."

Mr. John Rogers, Senior Statistician at Westat, authored a Microsoft Excel workbook program which was used to forecast aquifer contaminant concentrations. His work was essential to this project in determining P&T system operating time based on the different TCE cleanup levels of 5 ppb, 50 ppb, and 100 ppb. Captain Mahendra Kabbur, USAF, BSC, also assisted us in our use of statistics for forecasting contaminant levels. Dr. Nicholas Giardino, staff toxicologist for AFIERA/RSH, helped us in assessing our data and in portraying our findings. In addition, numerous personnel at various bases supplied us with information concerning the P&T systems at their location.

COMPARING CLEANUP COSTS TO RISKS FOR SELECTED USAF PUMP AND TREAT SYSTEMS REMEDIATING TRICHLOROETHYLENE CONTAMINATED AQUIFERS

EXECUTIVE SUMMARY

In the United States, from 300,000 to 400,000 contaminated sites are scheduled for cleanup in the coming decades, at an estimated total cost as high as \$500 billion to \$1 trillion (National Research Council, 1997). Pump and Treat (P&T) remediation systems are in place, or will be in the future, at many of these sites to remediate contaminants that have migrated into the groundwater. Many are questioning the ability of conventional technologies such as P&T to remediate contaminated aquifers.

This study investigates P&T systems operating at U.S. Air Force (USAF) installations having groundwater contaminated with Trichloroethylene (TCE). As part of this study, it was found that in 1997 the USAF was operating eighty-six P&T systems at forty-nine of its installations. The operation of many of these cleanup systems is expected to continue for an additional 20-40 years.

The Environmental Protection Agency (EPA) regulated TCE in drinking water in 1987 at a level of 5 parts per billion (ppb). Studies of groups of humans exposed to TCE have consistently indicated no overall increase in cancer risk, although small uncertain increases in certain types of cancer have been observed. This study is a compilation of information on Air Force installation pump and treat systems to submit to the EPA's Office of Drinking Water in support of a review and possible revision of the TCE Drinking Water Standard to a scientifically defensible level. Physiologically based pharmacokinetic models support a safe level of TCE in drinking water up to 2 orders of magnitude higher than the current policy based standard, or somewhere between 50 ppb and 200 ppb (Bogen, 1997). At a minimum, cleanup standards addressing drinking water aquifers should be considerably relaxed for non-potable water aquifers.

This study involved several steps. First, an inventory of all the USAF P&T systems was performed (Appendix A). This involved contacting and gathering information from 101 AF installations located in the 50 U.S. states and Guam. The search revealed that the Air Force has 86 P&T systems, 61 of which have TCE as a contaminant of concern. More detailed information was gathered on thirty-one of the TCE sites. From this information statistical forecasting was

performed on 15 sites to estimate when P&T systems could be turned off based on the different remediation goals of 5 ppb, 50 ppb, and 100 ppb. Data from only 4 of the 15 sites was useable in the statistical forecasting model used for this study. Analytical data collected over time from eight of the sites, or 53%, showed increasing or very erratic concentration trends. This finding further illustrates the inefficiency of pump and treat systems in remediating TCE contaminated aquifers. Data from only 4, or 27%, of the systems studied showed a consistent downward contamination trend and were progressing toward cleanup. The remaining 3 sites had too little data to undergo statistical forecasting.

The fundamental purpose of remediating contaminated sites is to reduce risks to human health and the environment. However, reducing a small amount of risk can come at a high cost.

Automobile side door protection standards save lives at \$1.3 million each. OSHA asbestos regulations save one life at \$89.3 million. EPA asbestos regulations save lives at \$104.2 million each. The proposed OSHA formaldehyde standard cost \$72 billion per life saved (Morrall, 1986). At the four sites studied, the cost to eliminate one lifetime excess cancer risk as the cleanup levels are reduced ranged from \$9K to \$2.4 M. The cost for each ppb reduction in TCE concentration for the four sites ranged from \$5K to \$1.4M. Considering just the 4 sites for which the statistical forecasting model was used, the cost savings realized from raising the TCE Drinking Water Standard or Maximum Contaminant Level (MCL) from 5 to 50 ppb would be approximately \$60 million and from 5 to 100 ppb would be approximately \$72 million. If the average cost savings from these 4 sites was applied to the 61 USAF TCE sites, \$0.9 billion and \$1.1 billion could be saved by raising the TCE MCL to 50 ppb or 100 ppb respectively.

INTRODUCTION

Over the past quarter century, the United States has placed a high priority on cleaning up sites where contaminants have leaked, spilled, or been disposed of in the soil and groundwater. Anywhere from 300,000 to 400,000 contaminated sites are scheduled for cleanup in the coming decades, at an estimated total cost as high as \$500 billion to \$1 trillion (National Research Council, 1994; Russell et al., 1991). The Office of Management and Budget estimates the costs of remediation at contaminated sites on property owned by the Departments of Defense, Energy,

Interior, and Agriculture and the National Aeronautics and Space Administration will total between \$234 and \$389 billion over the next 75 years (Federal Facilities Policy Group, 1995).

The Environmental Protection Agency (EPA) estimates the following numbers of US government sites need some type of cleanup (HTIS, 1998):

- Department of Defense (21,400): fuels, solvents, industrial waste, unexploded ordnance;
- Department of Energy (10,000): radioactive and hazardous wastes, mixed waste, and fossil fuel;
- Department of the Interior (26,000): mining and other municipal and industrial wastes;
- Department of Agriculture (3,000): hazardous and mining wastes, other chemical wastes;
- National Aeronautical and Space Administration (730): fuels, solvents, industrial wastes.

Contaminants at many of these sites have migrated into the groundwater where P&T remediation systems are in place or will be in the future. Many are questioning the ability of conventional technologies such as P&T to remediate contaminated aquifers. Pump and treat systems are one of the most widely used groundwater cleanup technologies. These systems extract contaminated groundwater and convey it to the surface where it is treated to remove the unwanted contaminants. They can be used to cleanup groundwater or to contain a plume, thereby preventing spread of contamination. The systems came into wide use in the mid-1980s; however, by the early 1990s regulators and scientists began questioning their effectiveness (DoD IG, 1997).

A 1994 National Research Council (NRC) study of conventional groundwater cleanup systems at 77 contaminated sites determined that groundwater cleanup goals had been achieved at only 8 of the sites and that full achievement of cleanup goals was highly unlikely with the in-place technologies at 34 of the 77 sites (NRC, 1994; MacDonald and Kavanaugh, 1994, 1995). The lack of commercially available technologies that can restore contaminated groundwater at reasonable cost has led to increasing pressure to limit waste cleanups to sites that pose immediate risks to human health rather than applying costly and potentially ineffective conventional cleanup systems. The American Society of Testing and Materials (ASTM) in 1995 issued a standard entitled "Standard Guide for Risk-Based Corrective Action Applied at Petroleum

Release Sites" (known as RBCA) that outlines a procedure for limiting the cleanup of underground storage tanks sites to those posing immediate risks (ASTM, 1995). RBCA is a process for determining site-specific risk factors and setting site-specific cleanup goals. If RBCA were widely applied at all types of contaminated sites, a large percentage of sites currently marked for remediation would not be actively cleaned up (Begley, 1996) and many systems currently operating would be turned off much sooner.

This study is primarily concerned with P&T systems operating at U.S. Air Force (USAF) installations having Trichloroethylene (TCE) contaminated groundwater. As part of this study, it was found the USAF is operating eighty-six P&T systems at forty-nine of its installations. Trichloroethylene is the predominant contaminant of concern; it is present at sixty-one, or 71%, of the P&T systems and more will be operating in the future. The operation of many of these cleanup systems is expected to continue for an additional 20-40 years. The restoration of these sites has the potential to cost the USAF, and thus the taxpayers, several billion dollars over the next decade. Clearly, the time is right for a reevaluation of these systems and their cleanup goals.

Background

TCE was used widely by the USAF as a metal degreaser and solvent for over 40 years. It is especially valuable because of its cleaning properties, low flammability, and lack of a measurable flashpoint. TCE is a colorless, volatile liquid, and an unsaturated aliphatic hydrocarbon. In 1995, U.S. demand for TCE was about 128 million pounds (Halogenated Solvents Industry Alliance, Inc., 1996).

The Environmental Protection Agency (EPA) regulated TCE in drinking water in 1987 at a level of 5 parts per billion (ppb) (ATSDR, 1997). At that time TCE was considered a probable human carcinogen based on the results of animal bioassays. Using the animal bioassay data, a concentration of 3.1 ppb was established to equal an excess cancer risk of 1 in one million (1E-6). This translates to an excess cancer risk of 1.6 in one million in the case of the 5 ppb MCL established for TCE using the assumption that a 70 kg man consumes 2 liters of water a day, 350 days a year, for a residence time of 30 years. In establishing a drinking water MCL, EPA

established a non-enforceable health goal of zero and set the enforceable MCL at 5 ppb based on technological feasibility. One ppb is equivalent to one drop in 17,000 gallons. Studies of groups of humans exposed to TCE have consistently indicated no significant overall increase in cancer risk, although small uncertain increases in specific types of cancer have been observed. A retrospective study of 7,000 U.S. aircraft maintenance workers, followed for an average of 25 years, failed to demonstrate any significant association between exposure to TCE and an excess rate of cancer. A similar study of 2,600 exposed workers found no increase in cancer mortality despite additional exposure through contaminated groundwater (Halogenated Solvents Industry Alliance, Inc., 1996). The International Agency for Research on Cancer

(IARC) has reviewed TCE four times. In the first 3 reviews IARC concluded that TCE could not

reclassified TCE as 2A (possibly carcinogenic to humans) (International Agency for Research on

Cancer, 1995). Health and Welfare Canada proposed (and finalized) a Maximum Acceptable

Concentration for TCE in drinking water of 50 ppb which is ten times the MCL in the U.S.

be classified with regard to its possible carcinogenicity in humans. However, in 1995, IARC

considered the epidemiological evidence as suggestive of a cancer hazard to humans and

Conventional technologies for cleaning contaminated groundwater are based on the principle that if enough water is pumped from the site, the contaminants will eventually be flushed out. A pump and treat system extracts contaminated groundwater then conveys it to the surface where it is treated to remove the unwanted contaminants. As mentioned earlier, TCE is the predominant contaminant of concern for sixty-one USAF P&T remediation systems. Each of these systems have, on average, an additional 22 years of operation (Karta Technology, Inc., 1997).

Limitations of P&T Systems in Remediating TCE Contaminated Aquifers

The effectiveness of P&T systems depends directly on site conditions and contaminant chemistry. As the complexity of the contaminated site increases, the likelihood that a P&T system will attain a cleanup goal that meets drinking-water standards decreases. Particularly difficult to cleanup are the chlorinated solvents such as TCE (DoD IG, 1997). Because of their widespread use in many applications, TCE and other chlorinated solvents are among the most common groundwater contaminants. Nine of the 20 most common chemicals found in

groundwater at Superfund sites are chlorinated solvents. TCE is the contaminant most commonly detected in groundwater at Superfund sites (NRC, 1994).

The movement and dispersion of TCE in the subsurface differs depending on whether the solvents were released in a dissolved or undissolved form. If released in dissolved form, TCE migration is governed largely by hydrogeologic processes. If released in undissolved form, the liquid TCE will migrate downward through the soil column under the force of gravity. A portion of the solvent will be retained in the soil pores, but if sufficient TCE is present, it will saturate the available soil space and continue moving downward until it encounters a physical barrier or the water table. When encountering the water table, it will spread out along the water table until enough mass accumulates to overcome capillary forces (Schwille, 1988). Due to the much greater density of TCE relative to water, it will penetrate the surface of the water table and travel downward by gravity until it is diminished by sorption or it encounters an aquitard (low permeability formation). If there is sufficient liquid mass, it can accumulate along the aquitard and pool in low areas and irregularities where removal ability is greatly diminished (Cohen and Mercer, 1993).

The flushing process employed by P&T systems has limited effectiveness, especially for cleaning up undissolved sources of contamination beneath the water table. Key contaminant and subsurface properties that interfere with flushing include the following (NRC, 1994; MacDonald and Kavanaugh, 1994, 1995):

Immiscibility of contaminants with water: Many contaminants are extremely difficult to flush from the subsurface because of their relatively low solubility in water.

Diffusion of contaminants into micropores and zones with limited water mobility: The microscopic pores and zones with limited water mobility into which contaminants may diffuse are extremely difficult to flush with water because of their small size and inaccessibility.

Sorption of contaminants to subsurface materials: Flushing out contaminants that have sorbed to underground soils is a very slow process because of the slow rate of desorption.

Heterogeneity of the subsurface: Prediction models for determining the routes of travel of contaminants and of water used to flush out contaminants are not always accurate because of the heterogeneous nature of the subsurface.

Putting Risks in Perspective

The fundamental purpose of remediation technology is to reduce risks to human health and the environment. Determining the amount of risk present at a site can be very difficult because quantitative estimates of health and environmental risks at contaminated sites are highly uncertain (NRC, 1997). Other factors complicate efforts to determine the health effects of exposure to contaminated groundwater and the effects of reducing this exposure. Detecting health effects for which there is a long interval between exposure and the onset of sickness may be difficult. Also, the control group (group of people not living near the contaminated site) may also have been exposed to contaminants from some other source, such as the work place. Factors such as smoking, poor diet, and absence of prenatal and preventive health care may bias the results of health investigations (NRC, 1994). The result of these uncertainties is that opinions about the risks posed by site contamination can vary depending on who conducted the investigation and who interprets the results.

Health and safety risks comprise one aspect of our lives that we would all like to eliminate. Unfortunately our economic resources limit us in our ability to do so. If the entire American Gross National Product were devoted to preventing fatal accidents, we would be able to spend an average of only \$55 million per fatality (Viscusi, 1993). Other demands on these limited resources such as food, housing, and recreation, would further limit the amount which could be spent on risk reduction.

The US government has many opportunities to reduce the risks faced by its citizens. Airplane cabin fire protection costs \$200,000 per life saved. Automobile side door protection standards save lives at \$1.3 million each. OSHA asbestos regulations save a life at \$89.3 million while EPA asbestos regulations save lives at \$104.2 million each. A proposed OSHA formaldehyde standard would cost \$72 billion per life saved (Morrall, 1986). Which of these regulations are cost effective and which are over priced for the amount of risk that is alleviated? Cancer is an

endpoint of great concern to people. Table 1 shows cancer risks from environmental agents (US EPA, 1991).

TABLE 1. CANCER AGENTS AND LIFETIME RISK

Cancer Causing Agents or Situations	Approximate Lifetime Risk of Cancer
Exposure to the sun	1 in 3
Cigarette smoking (pack or more per day)	1 in 100
Natural radon in home indoor air	8 in 100
Outside radiation (radon and cosmic rays)	1 in 1,000
Persons in room with smoker	7 in 10,000
Man-made chemicals in home indoor air	2 in 10,000
Outdoor air in industrialized areas	1 in 10,000
Human-made chemicals in most foods	1 in 100,000 or less
Chemical exposure at most uncontrolled	1 in 10,000 to 1 in 1,000,000
hazardous waste sites	== = = = = = = = = = = = = = = = = = =

Studies show that people are less concerned about natural risks, such as radon, than they are about unfamiliar risks, such as living near an uncontrolled hazardous waste site. Most hazardous waste sites pose cancer risks ranging from 1 in 10,000 to 1 in a 1,000,000 before cleanup; or 100 to 10,000 times less than the cancer risks posed by radon in homes. But people are far more concerned about contracting cancer from hazardous waste sites, even if cancer risks are as small as 1 in a 1,000,000. The hazardous waste site is man-made, less understood, and is therefore perceived to be more threatening than radon in homes. However, radon in homes presents far greater danger than most hazardous waste sites (US EPA, 1991).

Each of us has different levels of risk that we find acceptable. There is no universally acceptable level. There are also levels of risk which we have very little control over. In the U.S., men have a 1 in 2 lifetime risk of developing cancer. For women the risk is 1 in 3 (American Cancer Society). Of course practicing a healthy lifestyle can somewhat reduce an individual's odds of contracting cancer. Sixteen individuals in a population of 10 million, may experience an increased risk of contracting cancer through ingestion of 5 ppb TCE in their drinking water over a lifetime. This equates to an excess cancer risk of 0.0000016. Theoretically, the probablity (0.5) of contracting cancer by American males is increased to only 0.5000016 by exposure to 5 ppb TCE in drinking water. The lifetime risk of death by motor vehicle accident in the U.S. is 1 in 65 people; death by an accident in the home is 1 out of 130 people, and 1 out of 12 smokers will die

from lung cancer. When placed in perspective, the lifetime cancer risks encountered by exposure to 5 ppb TCE in drinking water is negligible but is costing the US billions of dollars. It should also be noted that very few of the TCE contaminated aquifers could be classified as drinking water aquifers. Primarily, aquifers contaminated with TCE are shallow and have always been unsuitable as a drinking water resource due to low productivity or other characteristics that would require excessive water treatment. In retrospect, when conducting the survey, we should have questioned how many of the contaminated aquifers were, or had been, used as a drinking water resource. Those aquifers which have never been, and will never be, used as a drinking water resource should not be required to undergo rigorous and expensive remediation processes unless they may possibly spread the contamination to other resources or become an exposure pathway.

METHODOLOGY

Inventory of USAF P&T Systems

The first task for this project was an inventory of all USAF P&T systems (Appendix A). This involved contacting 101 AF installations and gathering the following information: site identification number, contaminants and their cleanup goal, type of P&T, date system became operational, size of plume, whether the system is achieving or progressing toward cleanup goals, and estimated date to achieve cleanup. This search revealed the Air Force has 86 P&T systems, 61 of which have TCE as a contaminant of concern.

More detailed information was gathered on thirty-one of these sites (Appendix B) which have TCE as the major contaminant and had been operating for a minimum of 1.5 years. From this information, analytical data from 15 sites was run through a statistical forecasting model to estimate when P&T systems could be turned off based on proposed remediation goals of 5 ppb, 50 ppb, and 100 ppb. The statistical program was developed by John Rogers, Senior Statistician at Westat. This program is based on a Microsoft Excel workbook using regression analysis to predict future contaminant trends. The analysis is performed using the history of analytical results obtained from sampling rounds. The remaining 16 of the 31 sites had characteristics which made them unsuitable for contaminant concentration forecasting in this study. Primary reasons were lack of analytical data, complex hydrogeology, lack of containment, and no

appreciable remediation progress. The statistical forecasting model was able to predict cleanup dates for only 4 of the 15 sites. Only these 4 sites showed a consistent downward contaminant concentration trend and were progressing toward cleanup. A statistical model was used in lieu of a groundwater model to forecast contaminant levels since the extensive hydrogeological data needed for the sites in most cases did not exist.

Forecasting Contaminant Concentrations

The statistical program used to derive estimates of cleanup periods produces a graph of the TCE concentrations for that well or system influent over time after analytical data gathered from the site is incorporated into it. It assigns an exponential trendline to the data points as well as a 95% Upper Confidence Interval (UCI). The trendline is basically an average of the sampling concentrations. The UCI forms an upper bound under which all sampling concentrations fall. It is assumed the aquifer TCE concentration will reach the various cleanup levels at some year between that designated by the trendline and UCI. However, the 95% UCI level is used to predict a conservative time point when that well or system influent will reach the cleanup levels of 100 ppb, 50 ppb, and 5 ppb TCE.

When using individual well data, once the prediction of future operating time to achieve a cleanup level has been made for each well at a site, the median of the cleanup dates for the wells is found and this is designated as the predicted date in which that site P&T system can be shut down based on a particular cleanup level. If using system influent concentration data, the data is fed into the model and the resulting graph predicts the various cleanup intervals. Graphs of the concentrations and their trendlines over time at various sites can be seen in Appendix C.

Forecasting Lifetime Excess Cancer Risks

The forecasting of lifetime excess cancer risk at the 4 sites was accomplished by using the statistical model algorithm. The model developed risk curves based on the years when the monitoring wells or system sampling point reached each of the 3 contamination levels. The risk curves are plotted against the P&T system cumulative costs. This was done to illustrate that the costs to operate a P&T system increases greatly over time to alleviate a very small amount of risk.

The risk is based on the assumption that lifetime excess cancer risk through exposure to increasing concentrations of TCE progresses in a linear fashion. We assumed the lifetime excess cancer risk through the ingestion of 5 ppb TCE in drinking water is 1.6 in one million; exposure to 50 ppb would be 16 in one million and at 100 ppb the risk would be 32 in one million. Risk curves were developed based on the dates the aquifer would reach these 3 levels of contamination. The risk curves were generated by using the same algorithms used in the contaminant forecasting model to graph the trendline and 95% UCI contaminant concentration curves. The model was first used to forecast contaminant concentrations and then risk was derived based on the forecasted year the aquifer would reach those concentrations. The trendline is an average of the sampling concentrations and is used as a representation of the average risk. The 95% UCI forms an upper bound under which, almost certainly, all sampling concentrations would fall and would conservatively represent an upper boundary of potential risk. This allows for a range of risk. It is assumed that the actual risk falls somewhere between these two boundaries. Figures 3, 6, 9, and 12 show the changes in average lifetime cancer risk superimposed on the cumulative costs for the 4 sites amenable to concentration forecasting.

Assessing the Costs

For this study only direct system costs were considered. Costs that can be attributed to a P&T system are the Remedial Investigation and Feasibility Study (RI/FS), design, installation, operations and maintenance, components, monitoring for system performance, and long term monitoring after achieving the remediation goal. For the purpose of this study it is assumed that RI/FS, long term monitoring, and design costs would be the same whether the cleanup goals were 5, 10, or 100 ppb. Therefore, baseline costs only consider system installation, operations and maintenance, major component replacement and repairs, and monitoring for system performance. The costs provided by the installations were given as 1996 costs except for installation costs that reflect the year the system was installed. All costs were converted to constant year 1996 dollars and then spread over the years of operation using the Office of the Secretary of Defense inflation index issued 14 January 1998.

Cumulative costs and price to capture each gallon of TCE through time was also determined based on system construction and modification costs, operation and maintenance, monitoring, and system replacement costs. Costs were extrapolated from 1996 costs to other years of operation. Installation costs, Operation and Maintenance (O&M), monitoring, and major component replacement costs were primarily obtained from the Department of Defense Office of the Inspector General's project, "Evaluation of DoD Waste Site Groundwater Pump-and-Treat Operations." Installation costs were converted to constant FY 1996 dollars and then spread over the years of expected operation by using the Office of the Secretary of Defense inflation rate for non-personnel issued by SAF/FMC, 14 January 1998. Graphic comparisons (Figures 1-12) were then made between cumulative costs versus excess cancer risk, amounts of TCE captured, and yearly average TCE captured.

A cost effectiveness analysis was also performed on the four sites as a way of comparing the amount of TCE concentration and risk reduced to the amount of remediation dollars spent to attain the various cleanup levels. Cost effectiveness analysis is a way of determining the return on investment. Applying the amount of dollars spent installing and operating a P&T system against the improvement in environmental quality or its affect on lifetime excess cancer risks, can reveal a cost effectiveness ratio (JAMA, 1996). Cost effectiveness ratios for the four sites are depicted in Table 5 located in the Cost Effectiveness Analysis section.

Most of the system costs gathered for the 31 TCE sites in Appendix B were derived from the DoD Office of the Inspector General's survey of P&T systems. Where component replacement costs were not provided they were estimated as being 75% of the system construction and modification costs. Where TCE price per gallon figures were not provided they were estimated based on system operation, maintenance, monitoring, and amortized system construction and modification costs. Where other contaminants are present, costs for TCE and its breakdown products were estimated as a portion of the costs. If the installation could not provide us with the amount of TCE captured it was estimated using system influent concentrations and pumping rates. For the 4 sites for which contaminant forecasting was performed, Figures 1, 4, 7, and 10 display graphs of Cumulative Gallons of TCE versus Cumulative Costs, and figures 2, 5, 8, and 11 display graphs of Yearly TCE Captured versus Cumulative Costs.

RESULTS

Results of Data Gathering

An inventory of all the USAF P&T systems (Appendix A) was performed by contacting 101 Air Force installations. The following information was disclosed:

- The USAF is operating eighty-six P&T systems at forty-nine installations.
- Trichloroethylene is the predominant contaminant of concern; it is present at sixty-one, or 71%, of the P&T systems.
- The study also revealed that forty-three, or 50%, of the systems are achieving containment of the contaminant plume per the site POC we spoke with.
- Fifty, or 58%, are progressing towards established cleanup goals.
- Sixty of the systems have an estimated date when they will achieve cleanup and can cease operation in 1 to 47 years. The average is 22 additional years of operation.
- The known contaminant plume sizes ranged from 0.03 to 1,470 acres. The average is 134 acres.

More detailed information was gathered for thirty-one sites from the inventory which have TCE as the major contaminant and have been in operation at least 1.5 years (Appendix B). The following information was disclosed:

- In constant FY96 dollars, \$168.5 million was spent to install the 31 treatment systems for an average of \$8 million each.
- Operations, maintenance, and monitoring costs for the 31 systems totaled \$19 million in 1996 alone.
- The combined operating period for the 31 systems for which influent data was gathered totaled 101 years and roughly 35,000 gallons of TCE was captured during this time.
- This averages out to 347 gallons recovered per year from the 31 systems or 11 gallons per P&T system per year.
- Cost per gallon of TCE recovered varied from a low of \$6 at Kelly AFB to a high of almost \$2 million per gallon at Otis ANG.
- Average cost of TCE recovered from the 31 systems is \$206,000 per gallon.

Forecast of Contaminant Concentrations

Analytical data from the following 15 P&T sites was examined for use in the statistical forecasting model: OT-12, Plant 44; WP-07, Hill AFB; LF-05, McChord AFB; SD-19, Myrtle Beach AFB; LF-05, Wright Patterson AFB; OT-24 and SS-17/21/47, Wurtsmith AFB; FSA-1, Plant 4; LF-1 and LF-3, Arnold AFB; LF-02, Fairchild AFB; GC-070, George AFB; OT-01, Tinker AFB; SS-016, Travis AFB; and DP-02, KI Sawyer AFB. These sites were chosen based

on the following criteria: TCE was the primary contaminant of concern; the site had a fairly consistent alluvial geology, the P&T system was servicing a single aquifer and had been in operation at least 2.5 years.

Data from only 4 of the 15 sites was useable in the model. Analytical data collected over time from eight of the sites, or 53%, showed increasing or very erratic concentration trends. This finding further illustrates the inefficiency of pump and treat systems in remediating TCE contaminated aquifers. Only 4 of the 15 systems studied showed a consistent downward contamination trend and were progressing toward cleanup. The remaining 3 sites had too little data to undergo statistical forecasting. The statistical forecasting model performs best on those sites which have been consistently sampled over a number of years and show a downward contaminant concentration trend. The following sites fit these qualifications: OT-12 at Plant 44, LF-05 at Wright Patterson AFB, OT-24 and SS-17/21/47 at Wurtsmith AFB.

OT-12, PLANT 44

This system has been in operation since 1987 and has an extensive monitoring and extraction well network. The site has one of the largest estimated plume sizes of 440 acres and, of all the systems studied, has the highest system influent flow rate of 3,800 gallons per minute (GPM). Contaminant forecasting was performed on nine monitoring wells located in the central plume area. Table 2 lists the nine monitoring wells and the forecasted years when each is predicted to reach 100 ppb, 50 ppb, and 5 ppb. The concentration forecasting graphs for these wells can be seen in Appendix C. To determine when the *aquifer* TCE concentration would reach the three target cleanup levels, the median year that each individual well reached the target cleaning level was calculated. Using this method it was determined the aquifer TCE concentration would drop to 100 ppb in the year 2002. If the TCE MCL was raised to 50 ppb the system could be stopped in 2007 and the current TCE MCL of 5 ppb would be reached in 2026. By raising the MCLs to 50 ppb or 100 ppb, 19 to 24 years of operating expenses could be saved respectively.

LF-05, WRIGHT PATTERSON AFB

The P&T system at LF-05 has been operating since 1992. System flow rate is 700 GPM and groundwater treatment is accomplished in air sparging tanks. Plume size is roughly 4 acres.

TCE analytical data from five monitoring wells was analyzed and contaminant concentrations were forecasted. Four of the wells had a consistent downward concentration trend through time, however well MW-132 showed a slightly increasing trend. The concentration graphs can be seen in Appendix C. MW-132 is the most downgradient well and its possible that groundwater having a high TCE concentration may have been downgradient of the extraction system at installation, was not captured, and is now moving through the area in the vicinity of MW-132. It is also possible this well is situated in an area having somewhat higher transmissivity rates than at the other well locations and this may be responsible for the slightly increasing concentration trend. Data from well MW-132 was not used as part of the forecast since a downward concentration trend is required.

TABLE 2. FORECAST OF INDIVIDUAL WELL CLEANUP DATES WITH DIFFERENT MCLS, OT-12, PLANT 44

Well	<u>100 ppb</u>	<u>50 ppb</u>	<u>5 ppb</u>
M-23	2003	2007	2021
M-25	1994	1997	2004
M-2B	2002	2007	2026
M-3A	2000	2004	2020
M-5	2014	2019	2038
M-7	2002	2005	2018
M-8	2007	2030	2127
M-9	1997	2010	2102
M-41	2011	2016	2035
Median	2002	2007	2026

Table 3 lists the four monitoring wells and the forecasted years when each is predicted to reach 100 ppb, 50 ppb, and 5 ppb. The concentration forecasting graphs for these wells can be seen in Appendix C. To determine when the aquifer TCE concentration would reach the three target cleanup levels, the median year that each of the 4 individual well reached the target cleanup level was calculated. Using this method it was determined the aquifer TCE concentration would drop

to 100 ppb in 1998 and to 50 ppb in the year 2000. It will reach the current TCE MCL of 5 ppb in the year 2006. By raising the MCL to 50 ppb or 100 ppb, 6 to 8 years of operating expenses could be saved respectively.

TABLE 3. FORECAST OF INDIVIDUAL WELL CLEANUP DATES WITH DIFFERENT MCLS, LF-05, WRIGHT PATTERSON AFB

Well	<u>100 ppb</u>	<u>50 ppb</u>	<u>5 ppb</u>
HD-11	1998	2000	2005
131-M	1998	2000	2006
CW5-85	2002	2005	2017
CW5-55	1996	1998	2003
Median	1998	2000	2006

OT-24, WURTSMITH AFB

The P&T at OT-24, also known as Mission Drive, has been operating since May 1988. Remediation is accomplished through air stripping and system flow rate is 180 GPM. Plume size is roughly 109 acres.

Monitoring wells at this site are not sampled on a scheduled basis. However the treatment system influent is sampled weekly and is the primary means of monitoring this site. TCE sampling data from July of 1993 to May of 1997 was run through the statistical forecasting tool. Influent TCE concentrations were no more than 100 ppb in 1997 and it was determined with 95% confidence that influent TCE concentration would be no more than 50 ppb in the year 2000 and 5 ppb in the year 2007. It is understood that sampling a system's influent is not as good an indicator of aquifer conditions as the sampling of monitoring wells but it will still allow for a rough estimate of attainment periods.

SS-17/21/47, WURTSMITH AFB

This site is also known as the Arrow Street site. It has been at various stages of operation since 1981. It employs an air stripper with granular activated carbon as a backup. The plume size is roughly 48 acres and system flow rate is 590 GPM.

Monitoring of TCE concentrations at this site is accomplished primarily by sampling the P&T system influent. TCE sampling data from July of 1993 to May of 1997 was run through the statistical forecasting tool. All TCE sample concentrations were below 100 ppb and did not exceed 50 ppb in 1996. If the TCE MCL was 100 ppb this site may have not required remediation and with an MCL of 50 ppb the system may have shut down in 1996. It was determined with 95% confidence that the influent TCE concentration would decrease to 5 ppb in the year 2041. The concentration graph for this site can also be seen in Appendix C.

Assessing the Costs

OT-12, PLANT 44

The statistical forecasting model used for this study predicted the TCE concentration at this site would reach 100 ppb in 2002, 50 ppb in 2007, and 5 ppb in 2026. By the year 2026 the system is predicted to only capture 0.4 gallons TCE for that year at a cost of \$306K or \$764K/gallon. If the MCL was raised to 50 ppb or 100 ppb the TCE per gallon costs would be \$71K and \$38K respectively. Cumulative costs to operate the P&T system until 2002 would be \$26M, until 2007 it would cost \$37M, and \$87M if operated until 2026. When the aquifer TCE concentration reaches 100 ppb, estimated to occur in 2002, 1,700 gallons of TCE will have been captured at a cost of \$15,000 per gallon. By 2007 a total of 1,948 gallons of TCE will have been captured at a cost of \$19,000 per gallon. By the year 2026, when its predicted the TCE concentration will reach 5 ppb, 2,186 gallons of TCE will have been captured at a cost of \$40,000 per gallon. Figures 1 and 2 are graphs of Cumulative Gallons TCE Versus Cumulative Costs and Yearly Average TCE Captured Versus Cumulative Costs, respectively. Figure 3 graphs the Lifetime Excess Cancer Risk versus Cumulative Costs for this site. Table 4 (Page 29) lists the various predicted costs and risks associated with the three MCLs for this site.

LF-05, WRIGHT PATTERSON AFB

Through the use of the forecasting model, it was determined this aquifer would reach a contaminant concentration of 100 ppb in 1998, 50 ppb in 2000, and the current TCE MCL of 5 ppb in the year 2006. By raising the MCL to 50 ppb or 100 ppb, 6 to 8 years of operating

Figure 1. Cumulative Gallons TCE VS Cumulative Costs, OT-12, Plant 44

Cumulative Gallons TCE Captured

Figure 2. Yearly Average TCE Captured VS Cumulative Costs, OT-12, Plant 44

Figure 3. Lifetime Excess Cancer Risk VS Cumulative Cost, OT-12, Plant 44

expenses could be saved respectively. By the year 2006, it is anticipated that the P&T system will achieve the predicted 5 ppb cleanup level. For the year 2006, it is estimated that only 0.06 gallons of TCE will be captured for a cost of \$390K or \$6.5M per gallon. If the MCL was raised to 50 or 100 ppb the cost per gallon would decrease to \$2.1M or \$492K respectively. Cumulative costs to operate the system until 1999, 2000, or 2006 would be \$2.7M, \$3.5M, or \$6.3M, respectively.

When the aquifer TCE concentration reaches 100 ppb, estimated to occur in 1998, 6.6 gallons of TCE will have been captured at a cost of \$409K per gallon. By 2000, a total of 6.9 gallons of TCE will have been captured at a cost of \$507K per gallon. By the year 2006, when its predicted the TCE concentration will reach 5 ppb, 7.3 gallons of TCE will have been captured at a cost of \$863K per gallon. Table 5 (page 35) summarizes these findings. Figure 4 graphs Cumulative Gallons TCE versus Cumulative Costs for this site and Figure 5 graphs Yearly Average TCE Captured versus Cumulative Costs. Figure 6 graphs the Lifetime Excess Cancer Risk versus Cumulative Costs. Table 4 (page 29) lists the various predicted costs and risks associated with the three MCLs for this site.

OT-24, WURTSMITH AFB

Using the statistical model it was predicted the influent TCE concentration at OT-24 would be no more than 100 ppb in 1997, 50 ppb in the year 2000, and 5 ppb in the year 2007. When the aquifer TCE concentration reaches 100 ppb, 42.5 gallons of TCE will have been captured at a cost of \$14K per gallon. By 2000, a total of 50.6 gallons of TCE will have been captured at a cost of \$19K per gallon. By the year 2007, when its predicted the TCE concentration will reach 5 ppb, 52.1gallons of TCE will have been captured at a cost of \$26K per gallon. In the year 2007 alone, the cost to recover a gallon of TCE would be \$262K although it is predicted the P&T system will only capture 1.52 gallons between 2003 and 2007. If the MCL was raised to 50 or 100 ppb the cost per gallon would decrease to \$45K or \$8K respectively. Cumulative costs to operate the system until 1997 would be \$593K, \$956K until 2000, and \$1,353K if operated until 2007.

Figure 4. Cumulative Gallons TCE VS Cumulative Costs, LF-05, WPAFB

Figure 5. Yearly Average TCE Captured VS Cumulative Costs, LF-05, WPAFB

Figure 6. Lifetime Excess Cancer Risk VS Cumulative Costs, LF-05, WPAFB

Table 4 (page 29) lists the various predicted costs and risks associated with the three MCLs for this site. Figure 7 graphs cumulative gallons TCE versus cumulative costs for this site and Figure 8 graphs gallons TCE captured versus cumulative costs. Figure 9 graphs the lifetime excess cancer risk versus cumulative costs for this site. Figures 7 and 8 are graphed in 5-year increments due to the nature of the data collection.

SS-17/21/47, WURTSMITH AFB

The predicted year for the influent concentration of this system to reach 5 ppb is 2041. The 50 ppb concentration was reached in 1996. Influent concentrations have always been below 100 ppb. In the year 2041, when the system influent concentration reaches 5 ppb, the cost to recover a gallon of TCE would be \$947K. It is predicted the P&T system will only capture 1.02 gallons for the 4 years between 2038 and 2041. Cumulative costs to operate the system until 2041 would be \$6.8M. If the P&T had been operated only until 1996 the cumulative costs would have been \$1M for a savings of \$5.8M.

When the system influent TCE concentration reached 50 ppb in 1996, roughly 31 gallons of TCE had been captured at a cost of \$32K per gallon. By the year 2041, when its predicted the TCE influent concentration will reach 5 ppb, 97gallons of TCE will have been captured at a cost of \$70K per gallon. Table 4 summarizes lists the various predicted costs and risks associated with the three MCLs for this site. Figure 10 graphs Cumulative Gallons TCE versus Cumulative Costs for this site and Figure 11 graphs Gallons TCE Captured versus Cumulative Costs. Figure 12 graphs the Lifetime Excess Cancer Risk versus Cumulative Costs for this site. Figures 10 - 12 are graphed in 5-year increments due to the nature of the data collection.

COST EFFECTIVENESS ANALYSIS

Cost effectiveness analysis (CEA) is a way of determining the return on investment. The cost effectiveness ratios for the four sites studied are summarized in Table 5.

Figure 7 Cumulative Gallons TCE VS Cumulative Costs, Mission St. P&T, Wurtsmith AFB

Figure 8. Gallons TCE Captured VS Cumulative Costs, Mission St. P&T, Wurtsmith AFB

Figure 9. Lifetime Excess Cancer Risk VS Cumulative Costs, Mission St. P&T, Wurtsmith AFB

TABLE 4. COSTS AND RISKS AT DIFFERENT CLEANUP GOALS

TCE Concentration (ppb)	Year Achieved	Price/Gal TCE (that year)	Cumulative Costs	TCE Captured (total gals)	Average Price / Gallon TCE	Average Range of Risks*
PLANT 44, OT-12						
100	2002	\$38 K	\$26 M	1,760	\$15 K	1.5E-05 (5.1E-05)
50	2007	\$71 K	\$37 M	1,948	\$19 K	7.1E-06 (2.6E-05)
2	2026	\$764 K	\$87 M	2,186	\$40 K	7.0E-07 (4.6E-06)
WRIGHT PATTERSON AFB, LF-05	VAFB, LF-05					
100	1998	\$492 K	\$2.7 M	9.9	\$409 K	7.5E-06 (3.4E-05)
50	2000	\$2.1 M	\$3.5 M	6.9	\$507 K	4.1E-06 (1.8E-5)
5	2006	\$6.5 M	\$6.3 M	7.3	\$863 K	7.1E-07 (3.6E-06)
WURTSMITH AFB, OT-24	F-24					
100	1997	\$8 K	\$593 K	42.5	\$14 K	1.6E-05 (3.9E-05)
50	2000	\$45 K	\$956 K	50.6	\$19 K	1.5E-05 (6.0E-06)
\$	2007	\$262 K	\$1,353 K	52.1	\$26 K	5.9E-07 (1.6E-06)
WURTHSMITH AFB, SS-17/21/47	SS-17/21/47					
100	NA	NA	NA	NA	NA	NA
50	1996	\$12 K	\$1 M	31	\$32 k	1.0E-05 (1.7E-05)
5	2041	\$947 K	\$6.8 M	26	\$70 K	3.2E-07 (1.7E-06)
* Dang to the Trang I in a or I lange 105th Confidence I im	o or I Inner 95th Con		t of the Trend I ine (in narenthesis)			

* Based on the Trend Line or Upper 95th Confidence Limit of the Trend Line (in parenthesis).

Figure 10. Cumulative Gallons TCE VS Cumulative Costs, Arrow St. P&T, Wurtsmith AFB

Figure 11. Gallons TCE Captured VS Cumulative Costs, Arrow St. P&T, Wurtsmith AFB

Figure 12. Lifetime Excess Cancer Risk VS Cumulative Costs Arrow St. P&T, Wurtsmith AFB

CEA, OT-12, Plant 44

At Plant 44, a reduction in the contaminant level from 100 ppb to 50 ppb (50%) requires an increase in cost of approximately 39%, or approximately \$205 thousand per each unit (ppb) of reduction in contamination. A reduction in the contaminant level from 50 ppb to 5 ppb (90% decrease) requires an increase in costs of approximately 139% or more than \$1.1 million for each ppb of contaminant reduction.

For site OT-12, analytical data from nine individual monitoring wells was available. For this site the year in which each of the wells was expected to reach a given cleanup goal was statistically determined and an average of when all the wells would reach a given cleanup level was estimated. Therefore, not all the wells would reach a given goal simultaneously and the risk associated with the average time would not necessarily be equivalent to that associated with 5 ppb, 50 ppb, or 100 ppb concentrations. For OT-12, Plant 44, the UCI predicts that a TCE concentration of 100 ppb is likely to be reached in 2002. The range of Lifetime Excess Cancer Risk (LECR) associated with the trendline and 95% UCI of the trendline is 15 – 51 individuals per one million, respectively. It is predicted that the range of LECR will be 7.1 – 26 individuals per one million, based on when the trendline reaches 50 ppb and the 95% UCI of the trendline; and at 5 ppb the predicted LECR will range from 0.7 – 4.6 individuals per one million exposed. The cost to reduce one LECR per million population from 100 ppb to 50 ppb is predicted to fall between \$410 thousand and \$1.3 million. The cost to reduce one LECR per million population from 50 ppb to 5 ppb is predicted to be between \$2.4 and \$7.9 million.

CEA, LF-05, Wright Patterson AFB

At LF-05, a reduction in the contaminant level from 100 ppb to 50 ppb (50%) requires an increase in cost of approximately 30% or approximately \$17 thousand per each ppb or unit of reduction in contamination. A reduction in the contaminant level from 50 ppb to 5 ppb (90% decrease) requires an increase in costs of approximately 76% or more than \$60 thousand for each ppb of contaminant reduction.

For site LF-05, analytical data from four individual monitoring wells was available. As with OT-12, the year in which each of the wells was expected to reach a given cleanup goal was statistically determined and an average of when all the wells would reach a given cleanup level

was estimated. Therefore, not all the wells would reach a given goal simultaneously and the risk associated with the average time would not necessarily be equivalent to the risk associated with 5 ppb, 50 ppb, or 100 ppb concentrations. For this site, the UCI predicts that a TCE concentration of 100 ppb was likely to have been achieved in 1998. The range of Lifetime Excess Cancer Risk (LECR) associated with the trendline and 95% upper confidence interval of the trendline is 7.5 – 34 individuals per one million, respectively. It is predicted that the range of LECR will be 4.1 – 18 individuals per one million, based on when the trendline reaches 50 ppb and the 95% UCI of the trendline; and at 5 ppb the predicted LECR will range from 0.71 – 3.6 individuals per one million exposed. The cost to reduce one LECR per million population from 100 ppb to 50 ppb is predicted to be between \$52 thousand and \$244 thousand. The cost to reduce one LECR per million population from 50 ppb to 5 ppb is predicted at between \$188 thousand and \$798 thousand.

CEA, OT-24, Wurtsmith AFB

At Mission St. P&T a reduction in the contaminant level from 100 ppb to 50 ppb requires an increase in cost of approximately 36% or approximately \$5 K per ppb reduction in contamination. A reduction in the contaminant level from 50 ppb to 5 ppb (90% decrease) requires an increase in costs of approximately 68% or more than \$12 K for each ppb of contaminant reduction.

For OT-24, the UCI predicts that a TCE concentration of 100 ppb was likely to have been achieved in 1997. The range of Lifetime Excess Cancer Risk (LECR) associated with the trendline and 95% upper confidence interval of the trendline is 16-39 individuals per one million, respectively. It is predicted that the range of LECR will be 6-15 individuals per one million, based on when the trendline reaches 50 ppb and the 95% UCI of the trendline; and at 5 ppb the predicted LECR will range from 0.59-1.6 individuals per one million exposed. The cost to reduce one LECR per million population from 100 ppb to 50 ppb is predicted to be between \$9 K and \$21 K. The cost to reduce one LECR per million population from 50 ppb to 5 ppb is predicted to be between \$41 K and \$101 K.

The primary means of obtaining contaminant concentrations at this site and SS-17/21/47 is at the treatment system influent which is a combination of effluent from all the extraction wells.

Consequently, averaging of individual well information was not required. The statistical model used to develop the risk curves determines the years in which the site will reach the 3 contamination levels. The risk level is predicted to reach these levels sometime within the predicted year but the model predicts only in yearly increments. Consequently, the predicted level of risk at OT-24 and SS-17/21/47 may be slightly different than the expected risk associated with that of 5 ppb, 50 ppb, or 100 ppb TCE.

CEA, SS-17/21/47, Wurtsmith AFB

At Arrow St. P&T the influent contamination was under 100 ppb at the time the P&T system was installed. The cost to reduce one LECR per million population from 50 ppb to 5 ppb is predicted to be between \$375 K and \$592 K. For this site, the UCI predicts that a TCE concentration of 50 ppb was likely to have been achieved in 1996. The range of Lifetime Excess Cancer Risk (LECR) associated with the trendline and 95% upper confidence interval of the trendline is 10 – 17 individuals per one million, respectively. It is predicted that the range of LECR will be 0.32 – 1.7 individuals per one million, based on when the trendline reaches 5 ppb and the 95% UCI of the trendline. A reduction in the contaminant level from 50 ppb to 5 ppb (90% decrease) requires an increase in costs of approximately 54% or more than \$127 K for each ppb of contaminant reduction.

TABLE 5. COMPARISON OF COST EFFECTIVENESS ANALYSIS FOR FOUR SITES

Site	Range	of LECR/I		Cost Range to I of LECI		1	uce 1 Unit of nination
	100 ppb	50 ppb	5 ppb	From 100 to 50 ppb	From 50 to 5 ppb	From 100 to 50 ppb	From 50 to 5 ppb
OT-12, AF Plant 44	15 to 51	7.1 to 26	0.7 to 4.6	\$410K to \$1.1M	\$2.4M to \$7.9M	\$205K	\$1.4M
LF-05, Wright-Patterson	7.5 to 34	4.1 to 18	0.71 to 3.6	\$52K to \$244K	\$188K to \$798K	\$17K	\$60K
OT-24 (Mission), Wurtsmith AFB	16 to 39	6 to 15	0.59 to 1.6	\$9K to \$21K	\$41K to \$101K	\$5K	\$12K
SS-17/21/47 (Arrow), Wurtsmith		10 to 17	0.32 to 1.7	NA	\$375K to \$592K	NA	\$127K

CONCLUSIONS

It is apparent from the data gathered and the forecast modeling performed that operating a P&T system to remediate an aquifer contaminated with TCE is an expensive, lengthy, and ineffective solution. It is also clear that attempting to remediate a TCE contaminated aquifer down to 5 ppb is often impossible to accomplish within a limited time frame with only limited funds to do so.

The EPA regulated TCE in drinking water in 1989 at a level of 5 ppb based on the results of animal bioassays. In establishing a drinking water MCL, EPA established a health goal of zero and set the enforceable MCL at 5 ppb based on the feasibility of detection at the time. The perceived increase in lifetime excess cancer risk involved by raising the TCE MCL from 5 to 50 or 100 ppb is justified by the millions of dollars which would be saved. By just considering the above 4 sites the cost savings realized from raising the TCE MCL from 5 to 50 ppb would be approximately \$60 million and from 5 to 100 ppb would be approximately \$72 million. At USAF installations alone there are 61 P&T sites where TCE is a contaminant and many more exist where remediation has not begun. If the average cost savings from the 4 sites was applied to the 61 TCE sites, an estimated \$0.9 billion to \$1.1 billion could be saved by raising the TCE MCL to 50 ppb or 100 ppb respectively. These are conservative figures as the four sites considered have decreasing contaminant concentration trends and many of the remaining TCE sites do not.

As mentioned earlier, currently one in two, or 0.5 of American males will contract cancer. This number theoretically increases to only 0.5000016 by exposure to 5 ppb TCE in drinking water over a lifetime. The billions saved by raising the MCL could better be used in cancer research, making our highways safer, or in a myriad of other more cost-effective uses.

RECOMMENDATIONS

To better address the problems associated with aquifers contaminated with TCE some or all of the following steps should be taken:

- This study should be expanded to include, at a minimum, an inventory of all the DoD
 P&Ts to gain better insight into the magnitude of the groundwater remediation
 problem faced by this country's military installations.
- The MCL for TCE should be based on science and not policy.
- Regulatory policy should differentiate between drinking and non-drinking water aquifers.
- Risk-based cleanup guidelines should be established which would define cleanup activities based on the potential risk involved at each site.

REFERENCES

- American Cancer Society. Statistics taken from the ACS web page <www.cancer.org>.
- ASTM (American Society of Testing and Materials). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. E1739-95. West Conshohocken, PA.: ASTM.
- ATSDR (Agency for Toxic Substances and Disease Registry). 1997. Public Health Statement: Trichloroethylene. October 23, 1997.
- Begley, R. 1996. Risk-based remediation guidelines take hold. Environmental Science & Technology 30(10): 438A-441A.
- Bogen, K.T., and L.S. Gold. 1997. Regulatory Toxicology and Pharmacology. 25(1): 26-42. Feb 1997.
- Cohen, R.M., and J.W. Mercer. 1993. DNAPLE Site Evaluation. Boca Raton, FL.: C.K. Smoley.
- DoD IG (Department of Defense Office of the Inspector General). 1997. Evaluation of DoD Waste Site Groundwater Pump-and Treat Operations (Draft). Project No. 6CB-0057. October 21, 1997.
- Federal Facilities Policy Group. 1995. Improving Federal Facilities Cleanup. Washington, DC: Council on Environmental Quality, Office of Management and Budget.
- Halogenated Solvents Industry Alliance, Inc. 1996. Trichloroethylene-White Paper, June 1996. 2001 L Street, NW-Suite 506A, Washington, DC 20036.
- HTIS (Hazardous Technical Information Services). 1998. HTIS Bulletin. EPA Offices Involved in Federal Site Cleanup and Reuse. Volume 8, Number 2. March-April 1998.
- International Agency for Research on Cancer (IARC). 1995. Dry Cleaning, Some Chlorinated Solvents and Other Industrial Chemicals, Volume 63. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: Internatinal Agency for Research on Cancer, World Health Organization. 1995
- JAMA (Journal of the American Medical Association). Oct 9,1996 -- Vol 276, No. 14, pp. 1172-1177
- Karta Technology, Inc. 1997. Inventory of U.S. Air Force Installation Pump and Treat Groundwater Remediation Systems. San Antonio, TX. September 1997.
- MacDonald, J.A., and M.C. Kavanaugh. 1994. Restoring Contaminated Groundwater: An Achievable Goal? Environmental Science & Technology 28(8): 362A-368A.

- MacDonald, J.A., and M.C. Kavanaugh. 1995. Superfund: The Cleanup Standard Debate. Water Environment & Technology 7(2): 55-61.
- Morral, John F. III. A Review of the Record. Regulation. Nov./ Dec. 1986.
- National Research Council. 1994. Alternatives for Groundwater Cleanup. Washington, DC: National Academy Press.
- National Research Council . 1997. Innovations in Ground Water and Soil Cleanup. Washington, DC: National Academy Press.
- Russell, M., E. W. Colglazier, and M. R. English. 1991. Hazardous Waste Remediation: The Task Ahead. Knoxville: University of Tennessee, Waste Management Research and Education Institute
- Schwille, F. 1988. Dense Chlorinated Solvents in Porous and Fractured Media (translated by J.F. Pankow). Chelsea, Mich.: Lewis Publishers.
- US EPA. 1991. Environmental Risk: Your Guide to Analyzing and Reducing Risk. US EPA Region 5. Publication Number 905/9-91/017. October 1991
- Viscusi, W. Kip. 1993. The Value of Risks to Life and Health. Journal of Economic Literature. Vol. XXXI, December 1993, pp. 1912-1946.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A

Inventory of US Air Force Installation Pump and Treat Groundwater Remediation Systems

Inventory of all AF Pump and Treat Systems

nents	eet t	at .		te et		#
Comments	on TCE spreadsheet	on TCE spreadsheet		on TCE spreadsheet		on TCE spreadsheet
Estimated Date to Achieve Cleanup	Interim Action, not estimated	2013	2013	2013	2013	2002
Progressing Toward Cleanup Goals?	yes	yes	yes	yes	yes	yes
System Achieving Containment?	yes	source reduction action, not for containment	yes	not for containment	no, plume has enlarged	yes
Date System Size of Plume Operational (acres)	100	550 (100ppb boundary)	not known, removes GW on top of clay layers above large plume	60 (West plume of Terrace Alluvial)	60 (West plume of Terrace Alluvial)	440
Date System Operational	9508	9405	9603	9210	9702	8704
Type P&T	Shallow Tray Air Stripper	Air Stripping and GAC	SVE, Dual Phase Extraction, Tray Air Stripper	O/W sep, Air Stripper, GAC	Air Stripping and GAC	Air Stripping and GAC
Contaminants and Cleanup Level (ppb)	TCE 5 1,1-DCE 7 1,2-DCA 5 TCA 200	TCE 400 (prevents TCE level in Paluxy Aquifer from exceeding 5)	TCE 5 cis-1,2-DCE 70 trans-1,2-DCE 100	TCE 5, cis- 1,2-DCE 70, trans-1,2-DCE 100, BTEX (no CU level, BRA stated levels do not cause excess risk)	TCE 5 cis-1,2-DCE 70 trans-1,2-DCE 100	TCE 5 DCE 7 TCA 200
Name and Title of POC	George Walters Environmental Engineer DSN 785-7716 X434	Rick Wice Program Manager IT Corp. 412/858-3309	Rick Wice Program Manager IT Corp. 412/858-3309	Rick Wice Program Manager IT Corp. 412/858-3309	Rick Wice Program Manager IT Corp. 412/858-3309	Capt. Hackathorn AFCEE Team Chief DSN 240-4176
Site ID (IRP Site #)	LF-05	OT-22 (East Parking Lot)	SS-16 (Bldg 181)	FSA-1 (fuel saturation area)	LF-03 (Landfill #3)	01-12
Installation	AF Plant 3	AF Plant 4	AF Plant 4	AF Plant 4	AF Plant 4	AF Plant 44

Comments	System effluent is drinking water source				The state of the s	on TCE spreadsheet	on TCE spreadsheet
Estimated Date to Achieve Cleanup	ted tred	2027	2003	2000		2025	2024
Progressing Toward Cleanup Goals?	yes	Ϋ́	yes	NA	yes	yes	yes
System Achieving Containment?	not known	VV	yes	V Z	yes	yes	under study
Size of Plume (acres)	currently not delineated	ຕ .	3	2	-	20	125
Date System Operational	9702	system construction completed 9609 but awaiting regulator clearance to	9601	system construction completed 9604 but awaiting regulator clearance to operate	9507	9501	9412
Type P&T	Air Stripper	Air Stripper	O/W Sep., Air Stripper, GAC	GAC	Bioslurper	Air Stripping Tank, diffuser type	Air Stripping, GAC, pH adjustment
Contaminants and Cleanup Level (ppb)	TCE 5	TCE 5	POL 5,000	POL 5,000	POL 5,000	Benzene 5,000 TCE 5,000 MC 5,000 PCE 5,000 Vinyl Chloride 2,000	TCE 200,000 PCE 5,000 1,1,1-TCA 5,000 1,1-DCE 5,000 1,1-DCA 5,000
Name and Title of POC	Bill Oxford Booz-Allen AFCEE Technical Assistant 210/244-4244	Steve Richards IRP RPM DSN 858-3472	Steve Richards IRP RPM DSN 858-3472	Steve Richards IRP RPM DSN 858-3472	Steve Richards IRP RPM DSN 858-3472	Capt. Mike Hunter RPM DSN 340-6089	Capt. Mike Hunter RPM DSN 340-6089
Site ID (IRP Site #)	System pulls from several sites	SS-01	SS-13	FT-04	Bldg. 1845 (no IRP # assigned)	LF-03	LF-01
Installation	Andersen AFB	Andrews AFB	Andrews AFB	Andrews AFB	Andrews AFB	Arnold AFB	Arnold AFB

			T		7	T	1	T
Comments				on TCE spreadsheet		on TCE spreadsheet		
Estimated Date to Achieve Cleanup	2027	2027	2027	unknown	2004-2005	2009	2016	9708
Progressing Toward Cleanup Goals?	yes	yes	yes	ou	yes	0	0	yes (has cleaned aquifer to DW
System Achieving Containment?	under study	under study	under study	no, additional extraction wells being added	no, feasibility study almost complete, need more extraction wells	yes	yes	yes
Size of Plume (acres)	20	360	300	143	33	193	193 (both systems pulling from same plume)	2
Date System Operational	9703	9611	9611	9412	9605	9407	9611	6096
Type P&T	Solvent Sep., Air Stripper, GAC, pH adjustment	Air Stripper, GAC, pH adjustment	Air Stripper, GAC, pH adjustment	Air Stripper	NV/OX	Air Stripping	GAC	GAC
Contaminants and Cleanup Level (ppb)	1,1-DCE 10.01 PCE 5 1,1,1-TCA 5,000	Benzene 5,000 1,2-DCA 5,000 1,1-DCE 7,000 MC 5,000 PCE 5,000 1,1,1-TCA 200,000 TCE 5,000 TCE 5,000	TCE 5,000 1,1,1-TCA 200,000 1,1-DCA 5,000 1,1-DCE 5,000 Benzene 5,000 PCE 5,000 Toluene 1,000K	TCE 5 cis-1,2-DCE 6 PCE 5	TCE 5 and fuels, fuels CU level not established	TCE 5 DCA PCE Vinyl Chloride	TCE not established	gasoline Illinois UST regs Benzene 5
Name and Title of POC	Capt. Mike Hunter RPM DSN 340-6089	Capt. Mike Hunter RPIM DSN 340-6089	Capt. Mike Hunter RPM DSN 340-6089	Doug Coleman DSN 368-2667	Roby Greg Environmental Engineer DSN 240-6716	Todd Lanning Environmental Engineer 209/726-4304	Todd Lanning Environmental Engineer 209/726-4304	Virgil Krone Environmental Engineer 217/892-3240
Site ID (IRP Site #)	WP-8	WP-6	SS-22	LF-13				ST-10
Installation	Arnold AFB	Arnold AFB	Arnold AFB	Beale AFB	Brooks AFB	Castle Airport	Castle Airport	Chaunute AFB

Comments			currently removing free product, final action in place by end of FY98			
Estimated Date to Achieve Cleanup		completed 9602	possibly by the end of 2000	unknown, nat. atten. will be final remediation mechanism	unknown, nat. atten. will be final remediation mechanism	unknown, nat. atten. will be final remediation mechanism
Progressing Toward Cleanup Goals?	standards)	Cleanup Achieved, system shutdown 9602	yes	yes, system pułling out contaminants	yes, system pulling out contaminants	yes, system pulling out contaminants
System Achieving Containment?		yes	yes	not trying to achieve containment, just lower conc. in hot spots, GW movement very slow	not trying to achieve containment, just lower conc. in hot spots, GW movement very slow	not trying to achieve containment, just lower conc. in hot spots, GW movement very slow
Size of Plume (acres)		0.7	0.03	unknown	unknown	unknown
Date System Operational		9510	6096	9611	9703	9704
Туре Р&Т		O/W Separator, 2 particulate bag filters, then Air Stripper	Bioslurper	Air Stripper, cat. ox. for vapors, GAC for polishing	Air Stripper, cat. ox. for vapors, GAC for polishing	Air Stripper, cat. ox. for vapors, GAC for polishing
Contaminants and Cleanup Level (ppb)		BTEX EPA DW Stand. B 5 T 1,000 E 700 X 10,000	fuel, BTEX not yet established	BTEX and TCE no final ROD, remove contaminants down to level where nat. atten. can take over	BTEX and TCE no final ROD, remove contaminants down to level where nat. atten.	BTEX and TCE no final ROD, remove contaminants down to level where nat. atten. can take over
Name and Title of POC		Karen Oden Chief of Restoration DSN 228-5595	Randal Looney Environmental Engineer 501/532-6550	Bob Woods Chief of Restoration DSN 527-1407	Bob Woods Chief of Restoration DSN 527-1407	Bob Woods Chief of Restoration DSN 527-1407
Site ID (IRP Site #)		ST-35	SWMU-21 (RCRA #)	ST-045	ST-016	ST-005
Instaliation		Davis Monthan AFB	Eaker AFB	Edwards AFB	Edwards AFB	Edwards AFB

			·				
Comments					on TCE spreadsheet	on TCE spreadsheet	
Estimated Date to Achieve Cleanup	unknown, nat. atten. will be final remediation mechanism	2040	2040	8086	2025	2016	2000
Progressing Toward Cleanup Goals?	yes, system pulling out contaminants	OL .	OL	yes	yes	Phase II on line a short time, contaminants are being removed	yes
System Achieving Containment?	not trying to achieve containment, just lower conc. in hot spots, GW movement very slow	partial contain- ment	yes	yes	yes	Phase II on line a short time, preliminary indications are they have containment	yes
Size of Plume (acres)	unknown	0.25	0.5	12	unknown	009	0.5
Date System Operational	9704	1990	1991	9310	9509	0111	9310
Type P&T	Air Stripper, cat. ox. for vapors, GAC for polishing	Air Stripper	Air Stripper	3 interceptor trenches, O/W Sep., Air Stripper	Air Stripping and GAC	Air Stripper	skimmer pump collecting free product
Contaminants and Cleanup Level (ppb)	BTEX and TCE no final ROD, remove contaminants down to level where nat. atten can take over	POL and Vinyl Chloride Benzene 1 Vinyl Chloride 1 Total Volatile Organics 50	Gasoline combined BTEX in 1,000s (unsure)	fuel oil EPA DW Stand. B 5 T 1,000 E 700 X 10,000	TCE 5	TCE not established	JP-4 B 98.6 T 20,440 E 10,220 X 204,400
Name and Title of POC	Bob Woods Chief of Restoration DSN 527-1407	Steve Williams Project Manager DSN 872-7791 X210	Steve Williams Project Manager DSN 872-7791 X210	Larry Underbakke RPM DSN 317-552-1741	Mark Connally, Bruce Oshita IRP DERA Chief DSN 657-5170	Bob Sommer BRAC Environmental Coordinator 619/246-5360	Valerie Stacy RPM 765/688-4595
Site ID (IRP Site #)	D-0015	SS-01	01-35	ST-41	LF-02	GC-070	ST-08
Installation	Edwards AFB	Eglin AFB	Eglin AFB	Elmendorf AFB	Fairchild AFB	George AFB	Grissom ARB

Ø						
Comments	on TCE spreadsheet		on TCE spreadsheet			on TCE spreadsheet
Estimated Date to Achieve Cleanup	2021	hope to shutdown in a year and nat. atten. thereafter	2023	2006	free product removed 9801, GW and soil clean by 2001	2023
Progressing Toward Cleanup Goals?	CU levels not established but system is removing contaminants	no, one plume has expanded	yes	too early to tell	yes	yes yes yes
System Achieving Containment?	yes	yes, tight soils, primarily to collect free product	yes	too early to tell	yes	no yes yes
Size of Plume (acres)	unknown	2 plumes combined less than 1 acre, RI not complete	27	unknown	Φ	45 14 3
Date System Operational	4010	6096	9303	9607	9607	9311
Type P&T	Air Stripping	O/W Sep, sand filtration, GAC	GAC	Air Stripper	Air Stripper, Carbon Polishing	50% H2O2 & UV/OX
Contaminants and Cleanup Level (ppb)	1,1-DCA, 1,1- DCE, 1,2-DCE, PCE, TCE CU levels not established, going to risk based levels eventually	Aviation Gas, Jet Fuel, #2 Heating Oil RI not complete	TCE 5, PCE 5 TCA 1,2-DCE Methylene Chloride, Toluene Beta- BHC Lindane	TCE 5 TCA 200 trans- 1,2-DCE 100 1,1-DCE 7	JP-4 Removing free product only, remainder to natural attenuate	TCE 5, trans- 1,2-DCE 600, Vinyl Chloride 2, cis-1,2-DCE 600, Carbon Tet 5, Chlorobenzene
Name and Title of POC	Thomas Best Environmental Engineer DSN 478-4495	Robert Spelfogel Environmental Engineer DSN 478-8207	Howie Aubertin Project Manager 801/775-3651	Howie Aubertin Project Manager 801/775-3651	Warren Ness IRP Chief 505/475-3931	Brian Stahl Zone 1 PM DSN 945-1815
Site ID (IRP Site #)	FT-01, WP-11, WP-	ST-21	WP-07	OT-26	SS-59	LF-012 LF-014 LF-015 (Zone 1)
Installation	Hanscom AFB	Hanscom AFB	Hill AFB	Hill AFB	Holloman AFB	Kelly AFB

Comments	on TCE spreadsheet	on TCE spreadsheet	on TCE spreadsheet	on TCE spreadsheet		system has very low pump rate & only collects free product	
Estimated Date to Achieve Cleanup	2023	2022	not been determined	unknown	summer of 98	9811	not established
Progressing Toward Cleanup Goals?	yes yes yes yes	yes yes no	yes	installed to protect production water wells	yes	yes	system strictly for containment
System Achieving Containment?	yes yes yes	yes yes no	OL .	yes	yes	yes	yes
Size of Plume (acres)	141.4 9.0 9. 3	426	591	83.3	3.7	unsure, no dissolved phase plume, only free product	160
Date System Operational	9311	9602	9503	9406	9510	9511	9611
Type P&T	50% H2O2 & UV/OX	O/W Sep., metals precip., filtration, UV/OX	O/W Air Stripper	O/W sep., Air Stripper	Air Stripper	GAC	Air Stripper
Contaminants and Cleanup Level (ppb)	TCE 5, PCE 5, Vinyl Chloride 2, cis-1,2-DCE 600, Toluene 1,000, Chloroethane 730, Chlorobenzene 100, trans-1,2- DCE 600	JP-4, TCE 5, PCE 5, Chlorobenzene 100	5 ene	0 000 ene	JP-4 CU levels unknown	Diesel Fuel and Heating Oil TPH 1,600	TCE 5, breakdown products
Name and Title of POC	Rhonda Hampton Zone 2 & 3 PM DSN 945-1815	Rhonda Hampton Zone 2 & 3 PM DSN 945-1815	Rhonda Hampton Zone 2 & 3 PM DSN 945-1815	Mark Hansen Environmental Engineer 906/346-3090 X30	John Ties, IRP Program Manager, and Richard Jubie DSN 574-7193	Dennis Strange BEC 207/328-7082	Bill Jacobs BRAC Program Mgr. (Booz-Allen) 210/244-4239
Site ID (IRP Site #)	SS-002 SS-042 E1R0 WP-022 (Zone 2)	SS-038 ST-006 SS-040 (Zone 3)	(Zoue 5)	DP-02	ST-26	SS-04	GW OU-5 (didn't have IRP#)
Installation	Kelly AFB	Kelly AFB	Kelly AFB	KI Sawyer AFB	Langley AFB	Loring AFB	Lowry AFB

	,						
Comments	FL will allow them to shut down early before CU to long term monitor for nat. att.	FL will allow them to shut down early before CU to long term monitor for nat. att.		on TCE spreadsheet	on TCE spreadsheet	on TCE spreadsheet	on TCE spreadsheet
Estimated Date to Achieve Cleanup	within 3 yrs	66	not established, system review in 2 years	no estimation	2000	2044	2034, new ROD probably extend it
Progressing Toward Cleanup Goals?	too early to	yes	yes	yes	yes	yes	No cleanup levels established, system for containment
System Achieving Containment?	too early to tell	yes	no, attainment being achieved by tight soils	yes	yes	yes	no, currently in Phase I, Phase III in 2001 will complete containment
Size of Plume (acres)	not yet defined	not yet defined	20	1,280	36	40	230
Date System Operational	9707	9507	95	92, major system modification 9706	8502	9402	91
Type P&T	Air Stripper	O/W Separator then Air Stripper	Air Stripper and GAC	GAC	Air Stripper	GAC	High Vacuum Two-Phase Extraction & GAC
Contaminants and Cleanup Level (ppb)	POL Benzene 1 MPBE 50 Volatile Organic Aromatics 50	POL Benzene 1 MPBE 50 Volatile Organic Aromatics 50	JP-4 Benzene 5	TCE 5 1,1-DCE 6 Bis(2- ethylhexyl)phthal ate 4	TCE 5	TCE 5 cis-1,2-DCE 70, 1,1-DCE .07, Vinyl Chloride .04	TCE 5 PCE 5 Methylene Chloride 5 Toluene 150
Name and Title of POC	Mark Canfield RPM 813/828-2567	Mark Canfield RPM 813/828-2567	John Satrom BEC 909/697-6722	John Satrom BEC 909/697-6722	Paul Bernheisel AFCEE Rep. 916/364-4007	David Burdette RPM DSN 984-3913	Jim Caligiure 916/643-0830 X151
Site ID (IRP Site #)	FT-23	ST-38	FT-33	FS-31	NPL-12 AC&W	LF-05	HVTPE (High Vacuum Two-Phase Extraction)
Installation	MacDill AFB	MacDill AFB	March AFB	March AFB	Mather AFB	McChord AFB	McCiellan AFB

Comments					E	very low pump rate, very tight soils, little migration	very low pump rate, very tight soils, little migration	
Ö					on TCE spreadsheet	very low p rate, very soils, little migration	very low p rate, very soils, little migration	
Estimated Date to Achieve Cleanup	2034, new ROD probably extend it	not established	not established	2005				
Progressing Toward Cleanup Goals?	No cleanup levels established, system for containment	too early to tell but systems are capturing contaminants	too early to tell but systems are capturing contaminants	yes				
System Achieving Containment?	no, currently in Phase I, Phase III in 2001 will complete containment	no, currently in Phase I, Phase III in 2001 will complete containment	no, currently in Phase I, Phase III in 2001 will complete containment	no, currently in Phase I, Phase III in 2001 will complete containment	no, currently in Phase I, Phase III in 2001 will complete containment	yes	yes	yes
Size of Plume (acres)	183	183	183	183	390	10	2	free product plume .3
Date System Operational	96	96	96	9707	8705	9701	9610	8801
Type P&T	GAC	GAC	GAC	Dual Phase Extraction, Air Stripper	LGAC	Air Stripper	GAC	free product recovery, air stripper
Contaminants and Cleanup Level (ppb)	TCE 5 PCE 5 Methylene Chloride 5 Toluene 150	TCE 5 PCE 5 Methylene Chloride 5 Toluene 150	TCE 5 PCE 5 Methylene Chloride 5 Toluene 150	TCE 5 PCE 5 Methylene Chloride 5 Toluene 150	TCE 5 PCE 5 Methylene Chloride 5 Toluene 150	TCE 5	TCE 5	Aviation Gas B 5, T 1000, E 700, X 10000, MEK 4000, MIK 300, Acetone 700
Name and Title of POC	Jim Caligiure 916/643-0830 X151	Vern Imes IRP Manager DSN 743-3885	Vern Imes IRP Manager DSN 743-3885	Joanne Bentley Environmental Engineer DSN 783-1951				
Site ID (IRP Site #)	Bldg 336	Bidg. 431	Bldg. 621	DPE (Dual Phase Extraction)	GTP (Groundwater Treatment Plant)	SS-03	LS-11	SS-07
Installation	McClellan AFB	McCiellan AFB	McClellan AFB	McClellan AFB	McClellan AFB	McConnell AFB	McConnell AFB	Minneapolis-St. Paul Air Reserve Station

on TCE spreadsheet		on TCE spreadsheet, Norton has 1 plume and 2 P&Ts	on TCE spreadsheet		on TCE spreadsheet	on TCE spreadsheet	on TCE spreadsheet
2005	less than 20 yrs	originally 10- 15 yrs but will exceed this	originally 10- 15 yrs but will exceed this	interim action, not determined	unknown, extraction well system must be modified before cleanup can be obtained	another system to startup 9709	2010
yes	yes	yes	yes	goals not determined, no ROD	no, extraction wells not screened deep enough, TCE migrated below and past them	too early to tell	yes
yes	yes	no, plume has enlarged, not sure of extent	no, plume has enlarged, not sure of extent	not yet determined	no, extraction wells not screened deep enough, TCE migrated below and past them	too early to tell	yes
50	system working 2 plumes, 25 & 100 acres	904, both systems working on same plume	904, both systems working on same plume	15-17	4.5	20-30	7.25
9504	9511	9301	9503	9611	9310	9708	9510
Air Sparging	Air Stripper	Air Stripper, liquid phase GAC	Air Stripper	GW extracted and pumped into sanitary sewer, no treatment	GAC	GAC	Air Stripper Catalytic Oxidation
TCE 5 1,2-DCE Vinyl Chloride	JP-4, JP-8 not yet determined	TCE 5	TCE 5	TCE 50 DCE 20 Vinyl Chloride 5	TCE, BCE, 1,1,2,2-TCE still negotiating, currently background concentration	TCE Non-Detect	POL, TCE NH GW Cieanup Stds. TCE 5
Richard Souza BEC 803/238-6119	Jim Pedrick, Chief of Restoration DSN 682-6103	Gerry Jungwirth Field Engineer 909/382-5064	Gerry Jungwirth Field Engineer 909/382-5064	Dave Overbey 402/294-7621	Tim Forden Jacobs Engineering 508/564-5746	Tim Forden Jacobs Engineering 508/564-5746	Kevin Thomas AFCEE Team Chief DSN 240-5271
SD-19	ST-27	CG-097 (CBA PAT)	CG-097 (BB PAT)	LF-12	CS-4	SD-5	FDTA-2 (Site 8)
Myrtle Beach AFB	Nellis AFB	Norton AFB	Norton AFB	Offutt AFB	Otts ANG	Otis ANG	Pease AFB
	SD-19 Richard Souza TCE 5 Air Sparging 9504 50 yes 2005 BEC 1,2-DCE 1,2-DCE Yinyl Chloride Vinyl Chlorid	SD-19 Richard Souza TCE 5 Air Sparging 9504 50 yes 2005 BEC 1,2-DCE 403/238-6119 Vinyl Chloride 1,2-DCE 1,2-	SD-19 Richard Souza TCE 5 (1,2-DCE) Air Sparging 9504 (1,2-DCE) 50 (1,2-DCE) yes (1,2-DCE) 2005 (1,2-DCE) 803/238-6119 Vinyl Chloride of Restoration of Restoration of Restoration of Restoration of Restoration of Restoration (1,2-DCE) Air Stripper (1,2-DCE) 4 Air	SD-19 Richard Souza TCE 5 Air Sparging 9504 50 yes 2005 803/238-6119 Vinyl Chloride 1,2-DCE Air Stripper 9511 system yes 1958 ST-27 Jim Pedrick, Chief Jim Pedrick, Chi	SD-19 Richard Souza TOE 5 Air Sparging 9504 50 yes yes 2005	SD-19 Richard Souza TCE 5 Air Sparging 9504 50 yes yes 2005	ST-27 Jim Pendent Souza 1,2,0,0

Comments				purpose of this system is to depress groundwater table to expose vadose zone to bioventing & SVE			
Estimated Date to Achieve Cleanup	unknown	unknown	unknown	free product recovery complete 2-3 yrs, vadose zone cleanup by bioremediati on & SVE 5-	not established	free product removal in 2 years, no estimate of remainder	2023
Progressing Toward Cleanup Goals?	no CU level established for this site	purpose is to lower GW table for SVE	too early to tell	purpose is for free product recovery & depression of GW table to expose vadose zone	2	goals not established	yes
System System Achieving Containment?	yes	yes	too early to tell	purpose is for free product recovery & depression of GW table to expose vadose zone	treatability study, containment not a goal	yes at recovery trench	currently no, enhancement mods complete summer 98
Size of Plume (acres)	0.44	0.2	54	150	5-10	27.5 overall, 2 acre free product	1,470
Date System Operational	9703	6096	9707	9303, operated as a small pilot plant untill system was greatly expanded 9702	9701	£6	9509
Type P&T		Air Stripper, Catalytic Oxidation	GAC		Air Stripper	Bioslurping then to Oil/Water Separator	Air Stripper, GAC
Contaminants and Cleanup Level (ppb)	no CU level, site is fractured bedrock, drove sheet pilings around it, system depresses water table and clean water flows in	POL, TCE NH GW Cleanup Stds. TCE 5	TCE 5	jet fuels and solvents, primarily TCE NYSDEC soil contaminants published in HWR-94-4046	Acetone, MEK, TCE, DCE, other breakdown products CU level not established	JP-4 Interim Action, not determined	TCE 2 Carbon Tetrachloride 5
Name and Title of POC	Kevin Thomas AFCEE Team Chief DSN 240-5271	Kevin Thomas AFCEE Team Chief DSN 240-5271	Kevin Thomas AFCEE Team Chief DSN 240-5271	Brady Baker Environmental Engineer 518/563-2871	Brady Baker Environmental Engineer 518/563-2871	Bob Bird RPM DSN 424-4194	Chris Morriss Project Manager DSN 838-5020
Site ID (IRP Site #)	Site 32	Site 81	Zone 3	FT-002	SS-016	SS-07	SS-02
Installation	Pease AFB	Pease AFB	Pease AFB	Plattsburg AFB	Plattsburg AFB	Pope AFB	Reese AFB

Comments			on TCE spreadsheet	on TCE spreadsheet		Used for dewatering soil for Biovent system. Turned off 9510 and evaluated for nat. atten. Regulators do not agree to remediation by nat. atten. and they are currently reviewing regulator comments.	on TCE spreadsheet
Estimated Date to Achieve Cleanup	2023	2002	2022	2026	2004	¥	no estimation
Progressing Toward Cleanup Goals?	yes	system will operate for 5 yrs then be evaluated	yes	goals not yet agreed to but contaminants being removed	too early to tell	2	yes
System Achieving Containment?	yes	yes	yes	no, intended as a hot spot/source control system	no, more extraction wells and interceptor trench in 99	0	containing area for which it was designed, part of plume has migrated off base
Size of Plume (acres)	114	2	220	70	SS-07 50 ST-12 not yet defined	ო	53
Date System Operational	9509	9211	9406	9602	9701		9206
Type P&T	Air Stripper, GAC	currently a skimmer and are installing a Bioslurper	Air Stripping and GAC	GAC, UV/OX		GAC	Air Sparging Tanks
Contaminants and Cleanup Level (ppb)	TCE 5	JP-4 Base & state are working to establish a risk based CU level	TCE 5 1,2-DCE 5 1,2-DCA 5 Chlorobenzene 5	TCE 5	SS-07 TCE ST-12 TCE and Methlyene Chloride 5 for each	POL, BTEX B 29,000 T 63,000 E 8,100 X 179,000	TCE 5 PCE 5 DCE 5
Name and Title of POC	Chris Moriss Project Manager DSN 838-5020	Greg Ditzler Acting Technical Manager 919/736-6501	Keith Buehler Project Engineer DSN 884-3058	Mark Sandy Env. Engineer DSN 837-3739	Donita Hazlett Assistant to IRP Chief DSN 448-6248	Jack Yamauchi Environmental Mgmt. DSN 276-1921	John Wolfe DSN 787-2201 X244
Site ID (IRP Site #)	LF-03	SS-04	OT-01 (Bldg. 3001)	SS-016	System currently It pumping from SS-07, A eventually also from ST-12	IRP Site 1	LF-05
Installation	Reese AFB	Seymour Johnson AFB	Tinker AFB	Travis AFB	Vance AFB	Vandenberg AFB	Wright Patterson AFB

Comments		on TCE spreadsheet	on TCE spreadsheet
Estimated Date to Achieve Cleanup	2004	2036	2012
Progressing Toward Cleanup Goals?	yes	yes	yes
System Achieving Containment?	yes	no, southern portion of plume being pulled by other systems	yes
Date System Size of Plume Operational (acres)	4	109	48
Date System Operational	9201	8805	8010
Type P&T	Air Stripper	Air Stripper	Air Stripper, GAC as backup
Contaminants and Cleanup Level (ppb)	Benzene 5	TCE 5	TCE 5
Name and Title of POC	Paul Rekowski BRAC Environmental Coordinator 517/739-5161	Paul Rekowski BRAC Environmental Coordinator 517/739-5161	Paul Rekowski BRAC Environmental Coordinator 517/739-5161
Site ID (IRP Site #)	SS-06 (Benzene Plant)	OT-24 (Mission Drive)	SS-17/21/47 (Arrow Street)
Installation	Wurtsmith AFB	Wurtsmith AFB	Wurtsmith AFB
	<u> </u>	5	5

Appendix B

USAF TCE Contaminated Groundwater Sites Having P&T Systems with Historical Significance

TCE Sites Having Pump and Treat Systems with Historical Significance

	Estimate d Replace- & M ment Costs Compo- nents			700V				2,200K 89K			1,200K 85K	-	300K (repairs,	ment, 701K preven- (1995)	tive mainte- nance)			187K*** 12K	
	Service Life of Re Major n Compo Co			~ ~				 2			15		(re	15 pre				30 18	
	System Se Const. & Li Modifica- N tion Cc Costs -n		7000	Y002'.			2.267.6	×			1,093K			28,900 K			-	250K	_
	Cost per Gal of TCE Captur-ed		700	406 6				24. / K"			176.6K**			10,355				10X	
	Amount of TCE Captured Since Startup (gal)		ú	o 0				48		0	(9604-	(80)		1,600				0.2	
	Period of Source Activity		1				1942-	1991		Βig	70's- early	s,,08		50's- 70's				1971-	
	Gallon s of TCE Re- leased		1	מש				nuku			unkn			unkn				unku	
	System Start-up yr/mo		0010	8006				9405			9210			8704				9501	
	Туре Р&Т		Shallow	tray Air Stripping			Air Stripping &	Carbon Adsorption		O/W Sep.,	Air Stripper,	GAC	Δir	Stripping & Carbon	Adsorption		Air.	orripping tank,	
	Influent ntration pb	9	200	7	5	2,500	2,000			260	96		112	13	S	4.8	18.2	11.4	
	System Influent Concentration ppb	TCE	1,1-DCE	1,2-DCA	1,1,1-TCA	TCE	cis-1,2-DCE			TCE	cis-1,2-DCE		TCE	DCE	TCA	Benzene	TCE	MC	
	iants & ation at up	17,000	16,500	20	10,900	62,000	1,900	14	46	100-200	100-500	100-500	10,700	2,800	890	18,000	110,000	78,000	
	Contaminants & Concentration at Startup ppb	TCE	1,1-DCE	1,2-DCA	1,1,1-TCA	TCE	cis-1,2-DCE	trans 1,2- DCE	Benzene	TCE	trans-1,2- DCE	Vinyl Chloride	TCE	DCE	TCA	Benzene	TCE	MC	
	Site ID (IRP Site #)		LF-5	(landfill)			OT-22	(east parking lot/flightline)			FSA-1 (Fuel Spill Area 1)			OT-12 (SP-344)			c L	(muni/ind	
	installation		AF Plant 3	Tulsa, OK			AF Plant 4	(FT Worth, TX)		i i	(Ft Worth,	₹		AF Plant 44				Arnold	Y
ı								N			<u>س</u>							S	

TCE Sites Having Pump and Treat Systems with Historical Significance

_									_				- -			
	Yearly O & M Costs 1996		20K				40 X				310K			190K		300K
Estimated	Replace- ment Costs of Compo- nents		1,650	4			86K				5,625K*	•		5,850K*		750K
	Service Life of Major Compo		စ္တ				9				20	}		99		30
	System Const. & Modifica- tion Costs		2.200K				850K				7 500K))		7.800K	-	4,900K
	Cost per Gal of TCE Captur-ed		833.33				215,914				131K**	<u>{</u>		23.5K** (TCE	captured in 1996)	117K
Amountof	TCE Captured Since Startup (gal)		720				7.4				20.6 (etartun-	9610)		19.4 (cantured	in 1996)	2.3
	Period of Source Activity		1956-	1982			40's-	s .09			1041.2	; ;		1950s-	1970s	1941- 1981
	Gallons of TCE Re- leased		unkno	S			19				706	? #		unkno	C A	35.5
	System Start-up yr/mo		9412	;			9412	!			7070	940		2502	8	9111
	Type P&T		Air Stripping, Carbon	Adsorption ph adjustment	Î		Ąį	Stripping			Air	Stripping		Air Stripping &	Carbon Adsorption	Air Stripping
	tion	1,732	704	183	35 (9708)	78				120	4.6		5.7 (9609)	290 (9612)		10
	System Influent Concentration ppb	TCE	PCE	TCA	1,1-DCA	TCE				TCE	PCE		cis-1,2-DCE	TCE		TCE
	ants & tion at ID	13,000K	5,600K	2,800K	1,200K	290	48	17K 7.6K	YO. /	220				1,800	130	470
	Contaminants & Concentration at Startup	TCE	PCE	TCA	1,1-DCA	TCE	1,2-DCE	1,1,2 TCA	2	TCE	PCE	DCA	Vinyl Chloride	TCE	1,2-DCE	TCE
	Site ID (IRP Site #)		LF-1 (hazardous	waste landfill)		!	LF-13	(inactive landfill)		OT-29	(OU-1 MBS	GW Plume,	HSZ)	LF-02	(Craig Koad Landfill)	GC-070 (NEDA NE disposal TCE Plume)
	Installation		Arnold	AFB				Beale AFB			altac	AFB		Fairchild	AFB	George
				ဖ			ı	_				80			თ	19
										_						

TCE Sites Having Pump and Treat Systems with Historical Significance

y ₹ S O Sits	•		×					"						<u> </u>				 ¥	
R M Costs 1996			X 969					356K						450K				450K	
Estimated Replace- ment Costs of Compo- nents		6.354	K***					4,500K	•				2.250	* *			2.625	** *	
Service Life of Major Compo			ဝင္က ()					စ္က					(ဓ္က				e E	
System Const. & Modifica- tion Costs		,	8,472K					3,934K			,			3,000K				3,500K	
Cost per Gal of TCE Captur-ed		28.7K**	captured in 1996)					320					548 TCE	captured in 1996)			, E	captured in 96)	
Amount of TCE Captured Since Startup (gal)		426*	(startup- 9708)					23,000					330*	(captured in 1996)			1,094*	(captured in 1996)	
Period of Source Activity	1) late 60s-	1973 2)	1966- 1972 3) early 1960s			-	1967_	1975					unkno	w			early	70's- 1982	
Gallons of TCE Re- leased		4,876 (all	conta mi- nants)					82,500					unkno	MM			unkno	L/A	
System Start-up yr/mo			9104					9303					;	9311			;	9311	
Type P&T		Air	Stripping			Carbon	Adsorption	with	Stripping				50% H2O2	& UV Oxidation			50% H2O2	& UV Oxidation	
Influent htration ob	400	88	1,400	485	<25	×100						X07		42K	192K	50K	23K	2.2K	80K
System Influent Concentration ppb	TCE	TCA	cis-DCE	TCE	PCE	TCA						TCE		Vinyl Chloride	cis-1,2-DCE	TCE	PCE	Vinyl Chloride	cis-1,2-DCE
ants & ation at up	3,730	340	009	000'068	008'6	33,000						13K,	16K	260	23K	490	5K	18K	50K
Contaminants & Concentration at Startup ppb	TCE	TCA	cis-DCE	TCE	PCE	TCA	1,2-DCE	Methylene	Toluene	Beta-BHC	Lindane	TCE	PCE	Vinyl Chloride	cis-1,2-DCE	TCE	PCE	Vinyl Chloride	1,2-DCE
Site ID (IRP Site #)		3 sites,	FT-01, WP-12			WP-07	(DNAPL	Recovery	2)				LF-012	LF-015 (Zone 1)	`` !	SS-002	SS-042	E1R0 WP-022	(Zone Z)
Installation		Hansoom	AFB					HIII AFB					:	Kelly AFB			:	Kelly AFB	,
			-					5					!	<u>ნ</u>			,	4	

TCE Sites Having Pump and Treat Systems with Historical Significance

% M & M Costs 1996		450K			507.5K		420K combin	ed O&M, monitori ng &	SVE)	400K (O&M and Monitori ng		148K		
Estimated Replace- ment Costs of Compo- nents	·	3,000	<u>.</u>		3,000	۷		442K***		1,882.5 K***		578K***	·	
Service Life of Major Compo -nents		Ç.	3		15 (assu	med)		15 (assu med)		15 (assu med)		20		
System Const. & Modifica- tion Costs		A DOOK	i i		4.000K			589K		2,510K		¥5.	another 754K)	
Cost per Gal of TCE Captur-ed		121** (TCE	9701- 9703)		60K**			255K (includes SVE)		123.3K**		\$1 440K		
Amount of TCE Captured Since Startup (gal)		104.4* (captured	9701- 9703)		41			2		9.2 (startup- 9611)		1.16	96/8	
Period of Source Activity		unkno	N.		1960-	1980		60s- 70s		1918- 1993		1941-	1972	
Gallons of TCE Re- leased		unkno	S		unkno	W.		unkno wn		31		25	R -	
System Start-up yr/mo		9000	9700		9406	3		9205		9412		0403		
Type P&T		O/W Sep, metals	precip, filtration, UV OX		Air Stripping,	Catalytic Oxidation	Granular	Activated Carbon (SVE system	also)	Air Stripping		Granular	Carbon	
fluent	20K	₩	1.5K	¥	. 27		33			90-170	16.5	14	<1.3	<1.8
System Influent Concentration ppb	TCE	PCE	Vinyl Chloride	1,2-DCE	TCE		TCE			TCE	TCE	cis-1,2- DCE	Vinyl Chloride	1,1-DCE
ants & tion at Ip	6.5K,	31K	840	8.1K	1,000	89	1,400	260	63	90-160	82	210	0.2	1.8
Contaminants & Concentration at Startup	TCE	PCE	Vinyl Chloride	1,2-DCE	TCE	1,1,1-TCA	TCE	1,2-DCE	Bisphtha- late	TCE	TCE	cis- 1,2- DCE	Vinyl Chloride	1,1-DCE
Site ID (IRP Site #)		SS-038 ST-006	SS-040 (Zone 3)		DP-02	(Drainage Pond #2)		FS-31		AC&W		LF-05 (Base	Landfill/Burn Trench)	
Installation			Kelly AFB		KI Sawver	AFB.		March AFB		Mather AFB		McChord	AFB	
			15		!	9		17		18			<u>0</u>	

TCE Sites Having Pump and Treat Systems with Historical Significance

PCE cis-1,2- DCE cis-1,2- DCE 1,2- DCA 1,2- DCA Methylene Chloride Chloride Chloride Chloride Chloride S	Site ID (IRP Site #)		Contaminants & Concentration at Startup	nants & ation at up b	Syste Con	System Influent Concentration ppb	Type P&T	System Start-up yr/mo	Gallons of TCE Re- leased	Period of Source Activity	Amount of TCE Captured Since Startup (gal)	Cost per Gal of TCE Captur-ed	System Const. & Modifica- tion Costs	Service Life of Major Compo	Replace- Replace- ment Costs of Compo- nents	Yearly O & M Costs 1996
PCE 4 As, now	TCE >		^	>1,000	TCE	381										
Cis-1,2- Plume, Cis-1,2- LGAC Cis-1, Conginally Cis-1,2- Polume, Conginally Conginally Conginally Conginally Cis-1,2- Polume, Cis-1,2- Conginally Conginally Cis-1,2- Cis-1,2- Cis-1,2- Conginally Cis-1,2- Ci	PCE	PCE			PCE	4	:									
Cis-1.2- Plume, Cis-2. Plume,	Groundwater 1,2-DCA	1,2-DCA					Originally AS, now	8705	5,000 base-	1956- late	3,000	1,800	21,500	15	3,090K	2,600K
TCE 485 High 1,2-DCA 0.5 1936-base-base-base-blum 1,800 9403 1936-base-base-base-base-base-base-base-blumide 1,800 9403 5,000 hase-base-base-base-base-base-base-base-b	Plant) cis-1,2-	cis-1,2- DCE			cis-1,2- DCE	43 (avg. in plume, not system influent)	reac		wide	1970s	† 2	(2881)	۷			
cis-1,2- 10 PCE 72 High 1,2- DCA 0.5 1936- base- tiges wide 1,800 g403) 5,000 base- tiges wide 1,800 g403) 5,300K 15 365K Methylene Chloride Chloride chloride pilume, not 2 Extraction pilume, pilume, not 4 GAC 4 GAC 1 GAC	TCE	TCE			TCE	485										
PCE 72 High Vacuum Two- Phase Chloride 5,000 Phase Chloride 1936- 1965 2403 3,462 1986- 1965 9403 1,800 19403 5,300K 5,300K 15 365K Chloride chloride not not influ- influ- influ- 2 Extraction 8 GAC 49403 5,300K 15 365K	cis-1,2- DCE	cis-1,2- DCE			cis-1,2- DCE	10										
1,2-DCA 0.5 Vacuum Two- Phase 5,000 base- 1965 1,800 base-	PCE		ģ		PCE	72	ij									
Methylene 2 Phase Chloride 91 base Surfaction 9403 base B403 5,500N base B403 15 base B403 3,500N base B403 15 base B	1,2-DCA	l	bined		1,2- DCA	0.5	Vacuum Two-	3	5,000	1936-	3,462 base-	1,800	7000	ų	7	1,270K
1.4 (avg. in plume, not system influ-	(HVTPE) Concent ration	Concen	Concen ration		Methylene Chloride	2	Phase Extraction	<u></u>	wide	1965	wide 9403	(9403)	V006,6	2	Vege	1993
	000'09	000'09	000'09			1.4	& GAC			-						
						(avg. in plume,										·
system system influ-					Toluene	ığ.										
						system influ-										

TCE Sites Having Pump and Treat Systems with Historical Significance

					·····			
Yearly O & M Costs 1996		79.5K		300K	450K		141K	
Estimated Replace- ment Costs of Compo-		2,500K		1,885 K***	5,577 K***		1,000K	1
Service Life of Major Compo		15		15	. 15		6	
System Const. & Modifica- tion Costs		1,335K		2,513K	7,436K		2,162K	
Cost per Gal of TCE Captur-ed		64K		149K**	54K**		1,987K**	
Amount of TCE Captured Since Startup (gal)		16.3		15.5	17.6	startup- 9709,	assump- tion	based on a P&T technical review)
Period of Source Activity		65-87		1940's - 1960's	1940's - 1960's	1040	1946 and 1955-	1983
Gallons of TCE Re- leased		76-105		174.4 (both syste ms at base on same plume)	(both syste ms at base on same plume)		55-75	
System Start-up yr/mo		9504		9301	9503		9310	
Type P&T		Air Sparging		Air Stripper, liquid phase activated carbon	Air Stripping		Carbon Adsorption	
luent	146	420	16	24 (9703)	9. 9.	4		
System Influent Concentration ppb	тсе	1,2-DCE	Vinyl Chloride	TCE	TCE	TCE		
ints & tion at p	1,400	2,190	100	91.5	26.7	62	24	4
Contaminants & Concentration at Startup ppb	TCE	1,2-DCE	Vinyl Chloride	TCE	TCE	TCE	PCE	1,1,2,2-TCA
Site ID (IRP Site #)	SD-19 (B324	engine shop solvent vat	plume)	CG-097 (CBA PAT)	CG-097 (BB PAT)		CS-4 (Chemical Spill #4)	
Installation		Myrtle Beach	<u> </u>	Norton AFB	Norton AFB		Otis ANG	
		22		23	24		25	

TCE Sites Having Pump and Treat Systems with Historical Significance

Site ID Cor	ទីទី	ntaminan Icentratic Startup	Contaminants & Concentration at Startup	System Influent Concentration	fluent ation	Type P&T	System Start-up	Gallons of TCE Re-	Period of Source	Amount of TCE Captured Since	Cost per Gal of TCE	System Const. & Modifica-	Service Life of Major	Estimated Replace- ment Costs of	Yearly O & M Costs
qdd	qdd	م ا		add.		:: = -	,	leased	Activity	Startup (gal)	Captur-ed	Costs	-nents	Compo- nents	1996
TCE (conc.		(conc.	_	TCE	3									B1 - 1	
known	known	known		В	17			7.7							
	told by		1	3	8	Ąi								system	
Team Chief	Team Chief		٠. ا	1	6	Stripper,	9510	unkno	1961-	0.05*	303.4K**	6,123K	15	expecte d to run	489K (1,827K
that			ו יי	×	36	Oxidation		\$	000					only 15 vrs	total)
	conc. has changed little)			Vinyl Chloride	20										
TCE 330K T	330K		-	TCE	4,000										
PCE 1,200 P	1,200		Ď.	PCE	210	Air									
OT-01 (Bidg 3001) 1,2-DCE 4,600	_	4,600				Carbon	9406	unkno	50's- early 80's	550 of VOCs	\$2,955	12,000 K	8	9,000 K***	830K
1,2-DCA 700		002				, Hi Temp Steam									
Chloroben 940 To	940		Ī	Toluene	200	•									
SS-016 (oil spill TCE 175,000 Tuarea)	175,000		-	TCE	1,500	Carbon Adsorption UV/OX	9602	165	1943- 1981	19	34K**	1,800K	15	1,350 K***	10.5K
TCE 770 T	770		F	тсе	56										370K
PCE 62		62				Air	9112 modifi	unkno	1945-	113	17//**	2007	ç	1,687.5	(include s O&M
1,2-DCE 45	45		-	1,2-DCE	17 (9702)	tanks	ed 9207	U _M	1991	9703)	<u> </u>	4,430A	3	<u>.</u>	and Monitori
Vinyl Chloride	ide	14													ng)

TCE Sites Having Pump and Treat Systems with Historical Significance

Contaminants & System Influent Concentration at Ppb System Influent Concentration at Concentration at Start-up Ppb Cystem Of TCE Source Start-up Ppb System of TCE Source Start-up Ppb System of TCE Concentration at Concentration ppb System of TCE Start-up Pc Pc Start-up Pc	0 ,,	<u> </u>	¥
ontaminants & System Influent Concentration at Concentration at Period Period TCE Construction at Concentration at Ppb PBT Start-up Ppb Ppb Ppb Ppb Ppb Ppb Ppb Ppb Ppb Pp		40.5	40.5
ontaminants & System Influent Concentration at Concentration at Period Period TCE Construction at Concentration at Ppb PBT Start-up Ppb Ppb Ppb Ppb Ppb Ppb Ppb Ppb Ppb Pp	Estimated Replace- ment Costs of Compo-	450K***	1,000K
ontaminants & System Influent Concentration at Ppb PBT Start-up Ppb Ppb Start-up Ppb Ppb Start-up Ppb Re- Start-up Re- Source Since TCE TCE Start-up Re- Source Startup Captured Gal of Captured Gal of Captured Gal of Captured Gal of Captured (captured 9307-	Service Life of Major Compo	18	30
ontaminants & System Influent Concentration at Ppb PBT Start-up Ppb Ppb Start-up Ppb Ppb Start-up Ppb Re- Start-up Re- Source Since TCE TCE Start-up Re- Source Startup Captured Gal of Captured Gal of Captured Gal of Captured Gal of Captured (captured 9307-	System Const. & Modifica- tion Costs	Ж009	200K
Startup ppb Startup PgT Pg- Startup PgT Pg- Startup PgT Pg- Startup PgT Pg- PgT	Cost per Gal of TCE Captur-ed	12,400**	8.4K**
ontaminants & System Influent Concentration at Start-up ppb ppb Sartup ppb Sartup ppb Sartup ppb Sartup ppb Sartup PgT Start-up Respectively Start-up Respectively Start-up Respectively Stripping Stripping Windows Stripping Stripping Stripping Windows PgT TCE 30 Mindows		42.5* (captured from 9307- 9703)	31.5* (captured from 9307- 9703)
ontaminants & System Influent Concentration at Concentration ppb ppb Start-up ppb s	Period of Source Activity	1959-?	1959-7
ontaminants & System Influent Concentration at Concentration ppb ppb app and a stripping and a stripping and a stripping.	Gallons of TCE Re- leased	unkno wn	unkno wn
ontaminants & System Influent Concentration at Concentration ppb ppb app and a stripping and a stripping and a stripping.	System Start-up yr/mo	8805	8010
ontaminants & System Infi Startup ppb ppb 300 TCE		Air Stripping	Air Stripping, GAC as backup
ontaminants & System I Concen Startup pp pp pp 300 TCE	fluent ation	61 (9703)	30
ontaminant Startup ppb	System Inf Concentra ppb	TCE	TCE
Contamin Concentra Start. Ppb	ants & tion at ip	300	14,774
	Contamin Concentra Startu ppb	TCE	
Installation (IRP Site #) Wurtsmith (Mission Drive) Wurtsmith SS-17/21/47 AFB (Arrow St.)	Site ID (IRP Site #)		
untsmith AFB untsmith AFB	Installation	Wurtsmith AFB	Wurtsmith
3 3		93	34

Amount of TCE captured determined by system TCE influent concentration and pumping rate, 100% capture assumed

** Cost/Gallon TCE captured determined by O&M, monitoring, and amortized system construction and modification costs. Where other contaminants are present, costs for TCE and its breakdown products were estimated as a portion of the costs

*** Estimated replacement cost is 75% of system construction and modification cost

TCE Sites Having Pump and Treat Systems with Historical Significance

a S o E	
Syste m Flow Rate (GPM) 3,820 80 80 403	
Organic Carbon % 0.0001 (low limestone) 0.004 (avg. for alluvial deposits) 0.0039 0.0039 0.00805	
Aquifer Bulk Density g/cm³ g/cm³ g/cm³ 1.6 (avg. for sand) 1.81 1.81 1.81 1.44 (silty sand and gravel) 1.4-1.8 1.38-1.60	
Aquifer Porosity 0.05 (low lime- stone) 0.25 0.25 0.12-0.46 20-30	
Aquifer Transmissivity (ft²/d) (ft²/d) 0.0009-0.16 0.16 68 68 600-900 600-900 7,000 7,150	
Aquifer Saturated Thickness (ft) 3-4 3-4 10 100 30 5-50 avg. 27.5	
Aquifer Hydraulic Conduct- ivity (ft/d) 0.0003- 0.04 1.28 1.28 70 70 70	
Estimated Date to Achieve Cleanup interim action, no estimate 2013 2013 2024 2024 2024	
Progressing Toward Cleanup Goals? yes yes yes yes yes yes concentra- tion in TCE concentra- tion ob- served	
System Achieving Contain- ment? source reduction action, not contain- ment not for contain- ment not sextraction wells being additional extraction wells being additional extraction wells being additional extraction source area, Phase 1 complete- remove area, Phase 2 will be complete- remove area, Phase 2 will be complete ment source area, phase 2	on contain- ment
Size of Plume (acres) 100 100 100 550 (100ppb bound-ary) 143 143 193	
Monitoring Costs 1996 60K 60K 68.5K 68.5K 123K	
Site ID (IRP Site #) LF-5 (landfill) OT-22 (east parking lot flight-line) FSA-1 (Fuel Spiil Area 1) OT-12 (SP-344) LF-1 (hazard-ous waste landfill) LF-13 (inactive landfill) LF-13 (nactive landfill) NBS GW Plume, shallow HSZ)	
2	
AF Plant 3 Tulsa, OK Tulsa, OK Tulsa, OK TX) AF Plant 4 (Ft Worth, TX) AF Plant 4 AF Plant AFB AFB AFB AFB AFB AFB	

TCE Sites Having Pump and Treat Systems with Historical Significance

					
Com- ments					
Syste m Flow Rate (GPM)	194- 255	650	266	. ω	32.5
Total Organic Carbon %	0.1 (alluvial sand and gravel)	upper .011 lower .016	0.04	0.3-1.9	non detect
Aquifer Bulk Density g/cm³	1.5 (sandy gravel)	1.71	6.	1.76	1.4 (lower end of sand)
Aquifer Porosity	0.3 (sandy gravel)	.20	24	25-35	25
Aquifer Trans- missi- vity (ft²/d)	28,000- 52,000	upper avg. 808 lower avg. 90	surface 0.75- 4,200 lower 0.25- 7,500 bedrock 200- 30,000	172.8- 806.4	1.5-1208
Aquifer Saturated Thickness (ft)	70-130	upper 0-85 lower 30- 150	surface 15 lower 5-60 bedrock 100	12-30	بن 8
Aquifer Hydraulic Conduct- ivity (ft/d)	400 (sandy gravel)	upper aquifer 1-39 lower 1	surface 0.05-280 lower 0.05-125 bedrock 2- 300	6.22-34	3-151
Estimated Date to Achieve Cleanup	2025	2016	2201	2023	2023
Progressing Toward Cleanup Goals?	yes	Phase II on line a short time, contaminant s are being removed	Cleanup level not established, will be driven by risk assessment	yes	yes yes yes
System Achieving Contain- ment?	yes	Phase II on line a short time, preliminary preliminary are they have contain-ment	yes	yes	no yes yes
Size of Plume (acres)	124	009	65.5 (includes all plumes in 3 aquifers)	27	45 14 3
Monitoring Costs 1996	75K	150K	100K (programed for 1998)	25K	900K
Site ID (IRP Site #)	LF-02 (Craig Road Landfill)	GC-070 (NEDA NE disposal TCE Plume)	3 sites, 1 system FT-01, WP-11,	WP-07 (DNAPL Recovery System OU 2)	LF-012 LF-014 LF-015 (Zone 1)
Installation	Fairchild AFB	George	Hanscom AFB	Hill AFB	Kelly AFB
	o	10	-	12	£

TCE Sites Having Pump and Treat Systems with Historical Significance

Com- ments					influent TCE concentra -tion has changed	
					influe TCE conce -tion I chang	
System Flow Rate (GPM)	50	30	764	150	180	140
Total Organic Carbon %	0.0004 (lower end of alluvial sand)	0.0004 (lower end of alluvial sand)	0.01-0.5	0.004 (avg. for alluvial deposits)	0.004 (mid- range of alluvial sand & gravel)	0.1 (retarda- tion factor 2, advec- tion vel. 0.5 ft/d)
Aquifer Bulk Density g/cm	1.4 (lower end of sand)	1.4 (lower end of sand)	1.83	1.8	1.78 (mid- range of sand & & gravel)	1.6
Aquifer Porosity	0.35	9:0	0.25	0272	0.2	0.15
Aquifer Trans- missi- vity (ft²/d)	0.3-510	434	shallow avg. 17,195 deep avg. 29,865	606	2,000	4,050
Aquifer Saturated Thickness (ft)	1-17	6-13 Avg. <8	60-200	75	60-70	75
Aquifer Hydraulic Conduct- ivity (ft/d)	0.3-30	Avg. 62	shallow area of aquifer 79- 283, deep area 28-57	0.1-200 avg. 12	0.4-1.4	54
Estimated Date to Achieve Cleanup	2023	2022	no estimate	no estimation	2000	2044
Progressing Toward Cleanup Goals?	yes yes yes	yes yes no	system installed to protect production water wells	yes	yes	yes
System Achieving Contain- ment?	yes yes yes yes	yes yes no	<u>Б</u>	yes	yes	yes
Size of Plume (acres)	141.4 9.0 0.9 0.3	426	83.3	23	36	40
Monitoring Costs 1996	500K	500K	44K	420K (combined O&M, monitoring & SVE)	400K (O&M and Monitoring	35K
Site ID (IRP Site #)	SS-002 SS-042 E1R0 WP-022 (Zone 2)	SS-038 ST-006 SS-040 (Zone 3)	DP-02 (Drainage Pond #2)	FS-31	AC&W	LF-05 (Base Landfill/ Burn Trench)
Installation	Kelly AFB	Kelly AFB	KI Sawyer AFB	March AFB	Mather AFB	McChord AFB
	14	15	16	17	6	19

TCE Sites Having Pump and Treat Systems with Historical Significance

Com- ments				aquifer very hetero- geneous, both	systems at base on same plume
System Flow Rate (GPM)	694		100	444	2,500
Total Organic Carbon %	0.2	0.001-	.00145	0.1	0.1
Aquifer Bulk Density g/cm³	1.25	1.2-1.3	1.4 (sand)	1.7	1.7
Aquifer Porosity	0.45	0.35-	.27	4.0	4.0
Aquifer Trans- missi- vity (ft²/d)	850 100- 1,100 2,000	A 100- 900 B 250- 500 C 500- 2,000	748	14,000- 80,000 avg. 42,000	14,000- 80,000 avg. 42,000
Aquifer Saturated Thickness (ft)	(3 zones) 25, 25, 50	Zone A 35 B 65 C 65	30-50	45	45
Aquifer Hydraulic Conduct- ivity (ft/d)	17.7-20	10	18.7	940 (calculated from transmissi vity)	940 (calculated from transmis- sivity)
Estimated Date to Achieve Cleanup	2034, new ROD probably push it back	2034, new ROD probably push it back	2005	originally 10-15 yrs but will exceed	originally 10-15 yrs but will exceed
Progressing Toward Cleanup Goals?	No cleanup levels established	No cleanup levels established	yes	yes	Current System Interim Action
System Achieving Contain- ment?	no, currently in Phase I, Phase III in 2001 will complete contain-	no, currently in Phase I, Phase III in 2001 will complete contain-	yes	no, plume has extended, not sure of extent	no, plume has extended, not sure of extent
Size of Plume (acres)	390		31.3	904 (both systems at base on same plume)	904 (both systems at base on same plume)
Monitoring Costs 1996	1,700K		187K	50K	70K
Site ID (IRP Site #)	GTP (Ground-water Treatment Plant) OU B/C (HVTPE)		SD-19 (B324 engine shop solvent vat plume)	CG-097 (CBA PAT)	CG-097 (BB PAT)
Installation	McClellan AFB McClellan AFB		Myrtle Beach AFB	Norton AFB	Norton AFB
	21 20		22	23	24

TCE Sites Having Pump and Treat Systems with Historical Significance

Com- ments		low concentra tion of tion of aquifer, aquifer, primary primary purpose is to remove			
ÖĚ		low concent tion of TCE in aquifer, primary purpose is to is to remove fuel			
System Flow Rate (GPM)		23	140	69	694
Total Organic Carbon %	0.0002	0.002	3.9	0.004 (mid- range alluvial sand & gravel)	0.004 (mid- range alluvial sand & gravel)
Aquifer Bulk Density g/cm ³	2	1.7	1.8	1.8 (mid- range for sand & gravel)	1.8 (mid- range for gravel)
Aquifer Porosity	0.33	0.4 (avg. for sand)	0.32	0.18	0.25- 0.34
Aquifer Trans- missi- vity (ft²/d)	90,000	110	8.5-22.8	16-1,053	22,000- 100,000
Aquifer Saturated Thickness (ft)	250	22	5-20	5-40 (avg. 30)	71-150
Aquifer Hydraulic Conduct- ivity (#/d)	200	ro ·	1.7-2.8	0.000005-	308-666
Estimated Date to Achieve Cleanup	unknown, extraction well system must be modified before cleanup can be	2010	2022	2026	2005-2007
Progressing Toward Cleanup Goals?	no, extraction wells not screened deep enough, TCE migrated below and	System influent concentration has changed little	yes	Cleanup goals not agreed to	yes
System Achieving Contain- ment?	no, extraction wells not screened deep enough, TCE migrated below and past them	yes	yes	no, system used for source control	containing area for which it was designed
Size of Plume (acres)	180	7.25	220	02	4
Monitoring Costs 1996	500K	489K (816K total)	618.3K	100K	370K (includes O&M and Monitoring)
Site ID (IRP Site #)	CS-4 (Chemical Spill #4)	FDTA-2 (Site 8)	OT-01 (Bldg 3001)	SS-016 (oil spill area)	LF-05
Installation	Otis ANG	Pease AFB	Tinker AFB	Travis AFB	Wright Patterson AFB
	25	26	27	28	29

TCE Sites Having Pump and Treat Systems with Historical Significance

Com- ments		
System Flow Rate (GPM)	183	593
Total Organic Carbon %	0.001 (lower end of alluvial sand)	0.001 (lower end of alluvial sand)
Aquifer Bulk Density g/cm³	1.4 (lower end of sand)	1.4 (lower end of sand)
Aquifer Porosity	0.35 (specific yield .2)	0.35 (specific yield .2)
Aquifer Trans- missi- vity (ft²/d)	5,000-	5,000-
Aquifer Saturated Thickness (ft)	avg. 45	avg. 45
Aquifer Hydraulic Conduct- ivity (ft/d)	avg. for deep wells 31.2 shallow wells 16.4	75-310
Estimated Date to Achieve Cleanup	2036	2012
Progressing Toward Cleanup Goals?	yes	yes
System Achieving Contain- ment?	9	yes
Size of Plume (acres)	109	48
Monitoring Siz Costs Pli 1996 (ac	27.3K	36.4K
Site ID (IRP Site (#)	OT-24 (Mission Drive)	SS- 17/21/47 (Arrow St.)
Installation	Wurtsmith AFB	Wurtsmith AFB
	30	3.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix C

Observed and Predicted TCE Concentrations at 4 USAF P&T Sites

Figure 1. Observed and Predicted TCE Concentrations in Well M-23, Plant 44

Predicted Concentration = exp(412.13 -0.2041*Year). Expected variation around the prediction is about +/- 60%. Based on 42 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 2. Observed and Predicted TCE Concentrations in Well M-25, Plant 44

Predicted Concentration = exp(668.20 -0.3336*Year). Expected variation around the prediction is about +/- 81%. Based on 43 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 3. Observed and Predicted TCE Concentrations in Well M-2B, Plant 44

Predicted Concentration = exp(333.06 -0.1648*Year). Expected variation around the prediction is about +/- 61%. Based on 43 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 4. Observed and Predicted TCE Concentrations in Well M-3A, Plant 44

Predicted Concentration = exp(422.83 -0.2102*Year). Expected variation around the prediction is about +/- 99%. Based on 43 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 5. Observed and Predicted TCE Concentrations in Well M-41, Plant 44

Predicted Concentration = exp(359.71 -0.1775*Year). Expected variation around the prediction is about +/- 65%. Based on 43 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 6. Observed and Predicted TCE Concentrations in Well M-5, Plant 44

Predicted Concentration = exp(320.71 -0.1575*Year). Expected variation around the prediction is about +/- 37%. Based on 42 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 7. Observed and Predicted TCE Concentrations in Well M-7, Plant 44

Predicted Concentration = exp(531.85 -0.2648*Year). Expected variation around the prediction is about +/- 127%. Based on 43 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 8. Observed and Predicted TCE Concentrations in Well M-8, Plant 44

Predicted Concentration = exp(127.94 -0.0620*Year). Expected variation around the prediction is about +/- 40%. Based on 42 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 9. Observed and Predicted TCE Concentrations in Well M-9, Plant 44

Predicted Concentration = exp(184.87 -0.0910*Year). Expected variation around the prediction is about +/- 74%. Based on 43 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 10. Observed and Predicted TCE Concentrations in Well HD-11, WPAFB

Predicted Concentration = exp(903.86 -0.4506*Year). Expected variation around the prediction is about +/- 43%. Based on 25 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Predicted Concentration = exp(1274.50 -0.6376*Year). Expected variation around the prediction is about +/- 125%. Based on 14 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 12. Observed and Predicted TCE Concentrations in Well CW5-85, WPAFB

Predicted Concentration = exp(473.85 -0.2348*Year). Expected variation around the prediction is about +/- 29%. Based on 25 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Predicted Concentration = exp(1138.92 -0.5688*Year). Expected variation around the prediction is about +/- 94%. Based on 21 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 14. Observed and Predicted TCE Concentrations in Well MW-132, WPAFB

Predicted Concentration = exp(-66.93 + 0.0353*Year). Expected variation around the prediction is about +/- 17%. Based on 20 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 15. Observed and Predicted TCE Concentrations in Arrow St. Influent, Wurtsmith AFB

Predicted Concentration = exp(155.59 -0.0763*Year). Expected variation around the prediction is about +/- 29%. Based on 202 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.

Figure 16. Observed and Predicted TCE Concentrations in Mission St. Influent, Wurtsmith, AFB

Predicted Concentration = exp(668.90 -0.3329*Year). Expected variation around the prediction is about +/- 31%. Based on 200 measurements. Any conclusions may be sensitive to assumptions, including an assumption of exponential decay and a serial correlation of 0.4.