DIJKSTRA'S ALGORITHM

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Agenda

Greedy algorithms

2 Dijkstra's algorithm

3 Bibliography

Greedy algorithms

Greedy algorithms: constructs a solution through a sequence of steps, each expanding a partially constructed solution

On each step, the choice made must be:

- Feasible: satisfies the problem's constraints
- Locally optimal: best feasible local choice
- Irrevocable: cannot be changed later

Let G be a weighted graph and $v \in V$ (*source*), finds the shortest path from v to all other nodes in V

■ Single-source shortest paths

Applications

- Transport planning
- Communication networks
- Social networks
- Robotics
- Pathfinding
- Puzzles
- etc.

Dijkstra's algorithm: cannot be used on weighted graphs with negative weights

Agenda

1 Greedy algorithms

Dijkstra's algorithm

3 Bibliography

First, find the closest node to v (itself)

On the i-th step:

- Knows the (i-1)-th closest nodes to v (they form a tree)
- Since there are no negative weights, the next closest one is adjacent to one of the i - 1 closest nodes to v
- After chosing the i-th closest node (w), updates the possible shortest paths to yet unchosen nodes (u) if $d_w + weight(w, u) < d_u$

Dijkstra's algorithm¹

Tree vertices	Remaining vertices	Illustration
a(-, 0)	b (a , 3) c(-, ∞) d(a , 7) e(-, ∞)	3 D 4 C 6 6 7 0 4 0 0
b(a, 3)	$c(b, 3+4)$ $d(b, 3+2)$ $e(-, \infty)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
d(b, 5)	c (b , 7) e(d, 5 + 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c(b, 7)	e(d, 9)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
e(d, 9)		

Source: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011. <

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
          setMark(G, i, UNVISITED);
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
          repeat
 6
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	×	×	×	×	×
Distance	0	∞	∞	∞	∞
Parent	_	_	_	_	_

(A,A,0)

4 D > 4 A > 4 B > 4 B >

LINIVERSIDADE FEDERAL DE PERNAMBLICO

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	_		_		
	Α	В	С	D	E
Mark	√	×	×	×	×
Distance	0	∞	∞	∞	∞
Parent	Α	_	_	_	_

4 D > 4 A > 4 B > 4 B >

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	_		_		
	Α	В	С	D	E
Mark	√	×	×	×	×
Distance	0	10	3	20	∞
Parent	Α	_	_	_	_

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	√	×	√	×	×
Distance	0	10	3	20	∞
Parent	Α	_	Α	_	_

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
           D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
           setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
           repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
           until getMark(G, v) = UNVISITED;
 9
           setMark(G, v, VISITED); P[v] \leftarrow p;
10
           w \leftarrow first(G, v);
11
           while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	√	×	√	×	×
Distance	0	5	3	20	18
Parent	Α	_	Α	_	-

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	_		_		
	Α	В	С	D	E
Mark	√	√	√	×	×
Distance	0	5	3	20	18
Parent	Α	С	Α	_	_

4 D F 4 P F 4 P F 4 P

Universidade Federal de Pernambuco

13/24

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
           D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
           setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
           repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
           until getMark(G, v) = UNVISITED;
 9
           setMark(G, v, VISITED); P[v] \leftarrow p;
10
           w \leftarrow first(G, v);
11
           while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	√	√	√	×	×
Distance	0	5	3	10	18
Parent	Α	С	Α	_	-

4 D F 4 P F 4 P F 4 P

Universidade Federal de Pernambuco

14/24

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	_		_		
	Α	В	С	D	E
Mark	√	√	√	√	×
Distance	0	5	3	10	18
Parent	Α	С	Α	В	_

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
           D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
           repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
           until getMark(G, v) = UNVISITED;
 9
           setMark(G, v, VISITED); P[v] \leftarrow p;
10
           w \leftarrow first(G, v);
11
           while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	√	√	√	√	×
Distance	0	5	3	10	18
Parent	Α	С	Α	В	-

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	_		_		
	Α	В	С	D	E
Mark	√	√	√	√	√
Distance	0	5	3	10	18
Parent	Α	С	Α	В	С

(A,D,20)

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	√	√	√	√	✓
Distance	0	5	3	10	18
Parent	Α	С	Α	В	С

(A,D,20)

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
          repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
10
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	Α	В	С	D	E
Mark	√	√	✓	✓	√
Distance	0	5	3	10	18
Parent	Α	С	Α	В	С

(A,D,20)

4 D F 4 P F 4 P F 4 P

Universidade Federal de Pernambuco

19/24

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
           D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
 6
           repeat
                (p, v) \leftarrow removemin(H);
                if v = NULL then return:
 8
           until getMark(G, v) = UNVISITED;
 9
           setMark(G, v, VISITED); P[v] \leftarrow p;
10
           w \leftarrow first(G, v);
11
           while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Let s = A

	_		_		
	Α	В	С	D	E
Mark	√	√	√	√	√
Distance	0	5	3	10	18
Parent	Α	С	Α	В	С

(A,D,20)

4 D F 4 P F 4 P F 4 P

Algorithm: void

Dijkstra(Graph G, int s, int[] D)

```
for i \leftarrow 0 to n(G) - 1 do
          D[i] \leftarrow \infty; P[i] \leftarrow -;
 2
          setMark(G, i, UNVISITED);
 3
     H[1] \leftarrow (s, s, 0) ; D[s] \leftarrow 0;
     for i \leftarrow 0 to n(G) - 1 do
          repeat
                (p, v) \leftarrow removemin(H);
 7
                if v = NULL then return:
 8
          until getMark(G, v) = UNVISITED;
 9
          setMark(G, v, VISITED); P[v] \leftarrow p;
          w \leftarrow first(G, v);
11
          while w < n(G) do
12
                if getMark(G, w) \neq VISITED \land
13
                  D[w] > D[v] + weight(G, v, w) then
                      D[w] \leftarrow D[v] + weight(G, v, w);
14
                      insert(H, (v, w, D[w]));
15
                w \leftarrow next(G, v, w);
16
```

Time efficiency

■ Matrix and no heap

$$\Theta(|V|^2 + E|) = \Theta(|V|^2),$$

since $|E| \in O(|V|^2)$

- Better for dense graphs
- List and heap

$$\Theta((\mid V \mid + \mid E \mid) \log \mid V \mid)$$

Better for sparse graphs

4 D F 4 D F 4 D F 4 D

Agenda

Bibliography

Bibliography

Chapter 9 (pp. 333-337) Anany Levitin.

Introduction to the Design and Analysis of Algorithms. 3rd edition. Pearson. 2011.

Chapter 11 (pp. 389–393) Clifford Shaffer.

Data Structures and Algorithm Analysis. Dover, 2013.

DIJKSTRA'S ALGORITHM

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

