

Impact of Air Injection on Jet Noise

Brenda Henderson and Tom Norum
NASA Langley Research Center

Fall Acoustics Technical Working Group
December 4 – 5, 2007
Cleveland, OH

Objective

Determine impact of core fluidic chevrons on noise produced by dual stream jets

- Broadband shock noise - supersonic
- Mixing noise – subsonic and supersonic

Jet Noise Sources

Shock Noise

Mixing Noise

- Mixing noise
- Mach wave radiation
- Crackle
- Shock associated noise
- Broadband
- Discrete
- STOVL noise/tones

Courtesy of D. Papamoschou

NASA Langley (LSAWT)

Low Speed Aeroacoustics Wind Tunnel

Jet Engine Simulator (JES)

Generation II Fluidic Chevrons

Nozzle design was the result of a partnership between NASA Langley Research Center and Goodrich Aerostructures under SAA1-561

Generation III Fluidic Chevrons

- Core fluidic chevron nozzle
- 8 injectors
 - 4 pairs independently controlled
- No common plenum

Fluidic Chevron Nozzles

Three Air Injection Nozzles

- 6I steep injection
- 6I shallow injection
- 8I steep injection
 - azimuthal control

Chevron Mixing Enhancement

- Enhanced mixing shortens potential core and reduces volume of acoustic sources

Characteristics of Fluidic Chevrons

Experiments

NPR _c	TTR _c
1.93	1
2.04	1
2.17	1
2.30	2.5

Single Stream Experiments

- Fan stream operated at tunnel conditions

NPR _c	TTR _c	NPR _f	TTR _f
1.56	2.66	1.75	1.16
1.61	2.13	2.23	1.05
1.82	2.13	2.23	1.05
2.04	2.39	2.23	1.05
1.61	2.26	2.35	1.17
1.82	2.26	2.35	1.17
2.04	2.39	2.35	1.17
2.17	2.46	2.35	1.17
2.04	2.39	2.45	1.04
2.17	2.46	2.5	1.05

Dual Stream Experiments

Free-stream Mach number = 0.10

Single Stream Results

Baseline

$$NPR_c = 2.17$$

Baseline nozzle and injection nozzles with IPR = 1.0 have similar noise characteristics

Effect of Increasing NPR_c

Well defined shock noise
peak at $NPR_c = 2.17$

Injection at Low Supersonic Speeds

$NPR_c = 1.93$

- Injector noise is suppressed
- Increases in IPR produce reductions in mixing noise near peak jet noise angle

Injection for Well-Defined Shock Noise

$NPR_c = 2.17$

Increases in IPR produce reductions in shock noise and mixing noise

Azimuthal Control for Shock Noise

NPR_c = 2.17

Significant shock noise reduction can be achieved with injection near pylon

$$\frac{\dot{m}_{\text{injection}_{1,2}}}{\dot{m}_{\text{core}}} = 1.1\%$$

Impact of Injection on Sideline Directivity

Dual Stream Results

Injection at Subsonic Core and Fan Speeds

$$NPR_c = 1.56$$

$$NPR_f = 1.75$$

Mixing noise reduction can be achieved with injection near observation side of jet

$$\frac{\dot{m}_{injection,2}}{\dot{m}_{core}} = 1.6\%$$

Injection at Subsonic Core and Fan Speeds

$$\text{NPR}_c = 1.56$$
$$\text{NPR}_f = 1.75$$

Nozzle	IPR	EPNL (EPNdB)	Injection Mass (% Core)
Baseline		90.4	
Air Injection	All = 2.3	89.6	2.9
Air Injection	1,2,3 = 1.4 & 4 = 2.3	89.4	1.6

Injection produces mixing noise reduction at peak jet noise angle with slight increase in high frequency noise at 90°

Baseline Results at $NPR_f = 2.23$

Increasing NPR_c

- Decreases shock noise peak
- Increases mixing noise near peak jet noise angle

Injection at Subsonic Core Speeds

Increasing IPR decreases shock peak

$$NPR_c = 1.61$$

$$NPR_f = 2.23$$

Azimuthal Control at Subsonic Core Speeds

$$NPR_c = 1.61$$

$$NPR_f = 2.23$$

No noise reduction with Gen III nozzle due to low mass flow rates or steeper injectors

Injection at Supersonic Core Speeds

Increases in IPR produce reductions in noise near peak jet noise angle

$$NPR_c = 2.04$$

$$NPR_f = 2.23$$

Injection at Subsonic Core Speeds

$NPR_c = 1.82$

$NPR_f = 2.35$

Increasing IPR

- Has no impact on broadband shock noise
- Slightly reduces noise at peak jet noise angle

Points of Discussion

- Injection impacts shock structure and stream disturbances through enhanced mixing
 - May impact constructive interference between acoustic sources
- High fan pressures may inhibit mixing produced by core injectors
 - Fan stream injection may be required for better noise reduction

Future Plans

- Modification of Gen II nozzles to allow for some azimuthal control
 - Will allow for higher mass flow rates
 - Will allow for shallower injection angles
- Flow field study – spring, 2008
- CFD analysis of flow

Conclusions

- Injection can reduce well-defined shock noise
- Injection reduces mixing noise near peak jet noise angle