ENGR 305 Lab 8: Hand Calculations

Sean Balbale

October 29, 2025

1 Part 1: PNP in Active Mode

1.1 Given Parameters

- Voltage Supplies: $V_+ = 15 \,\mathrm{V}, \ V_- = -15 \,\mathrm{V}$
- Design Goals: $I_C=1\,\mathrm{mA},\,V_B=0\,\mathrm{V},\,V_C=-5\,\mathrm{V}$
- Transistor Model: $\beta = 100$
- Assumption: Active region $V_{EB(on)} = 0.7 \,\mathrm{V}$

1.2 Circuit Analysis

The circuit is a standard four-resistor voltage divider bias for a PNP transistor.

- R_E is connected from V_+ to the Emitter.
- \bullet R_C is connected from the Collector to $V_-.$
- R_1 is connected from V_+ to the Base.
- R_2 is connected from the Base to V_- .

Figure 1: Part 1: PNP in Active Mode Circuit

1.3 Calculations

1. Calculate Base and Emitter Currents (I_B, I_E)

The base current is calculated from the collector current and β :

$$I_B = \frac{I_C}{\beta} = \frac{1 \text{ mA}}{100} = 0.01 \text{ mA} = 10 \text{ µA}$$

The emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B = 1 \,\text{mA} + 0.01 \,\text{mA} = 1.01 \,\text{mA}$$

2. Calculate Emitter Voltage (V_E)

The emitter voltage is found relative to the base voltage, using the $V_{EB(on)}$ assumption:

$$V_E = V_B + V_{EB(on)} = 0 \text{ V} + 0.7 \text{ V} = 0.7 \text{ V}$$

3. Calculate Emitter and Collector Resistors (R_E, R_C)

 R_E is calculated using Ohm's law with the voltage drop across it $(V_+ - V_E)$ and the current through it (I_E) :

$$R_E = \frac{V_+ - V_E}{I_E} = \frac{15\,\mathrm{V} - 0.7\,\mathrm{V}}{1.01\,\mathrm{mA}} = \frac{14.3\,\mathrm{V}}{1.01\,\mathrm{mA}} \approx 14.16\,\mathrm{k}\Omega$$

 R_C is calculated using the voltage drop across it $(V_C - V_-)$ and the current through it (I_C) :

$$R_C = \frac{V_C - V_-}{I_C} = \frac{-5 \,\mathrm{V} - (-15 \,\mathrm{V})}{1 \,\mathrm{mA}} = \frac{10 \,\mathrm{V}}{1 \,\mathrm{mA}} = 10 \,\mathrm{k}\Omega$$

4. Calculate Base Biasing Resistors (R_1, R_2) using Thevenin's Theorem

As noted in the lab manual, the problem is not fully specified. We must choose a value for the Thevenin resistance (R_{th}) of the base biasing network to determine its stiffness. A common guideline for stable biasing is $R_{th} \leq 0.1(\beta + 1)R_E$.

1. Choose R_{th} : The stability guideline suggests $R_{th} \leq 0.1(100+1)(14.16\,\mathrm{k}\Omega) \approx 143\,\mathrm{k}\Omega$. Let's choose $R_{th} = 75\,\mathrm{k}\Omega$. 2. Calculate V_{th} : The base voltage is $V_B = V_{th} - I_B R_{th}$. Using the design goals $V_B = 0\,\mathrm{V}$ and $I_B = 10\,\mathrm{\mu}\mathrm{A}$:

$$0 \text{ V} = V_{th} - (10 \,\mu\text{A})(75 \,\text{k}\Omega) \implies V_{th} = 0.75 \,\text{V}$$

3. Solve for R_1 and R_2 : We use the definitions of V_{th} and R_{th} for a voltage divider with split supplies (V_+, V_-) :

$$V_{th} = \frac{R_2V_+ + R_1V_-}{R_1 + R_2} = \frac{R_2}{R_1 + R_2}(V_+ - V_-) + V_-$$

$$R_{th} = \frac{R_1R_2}{R_1 + R_2}$$

Substituting known values into the V_{th} equation:

$$0.75 \,\mathrm{V} = \frac{R_2}{R_1 + R_2} (15 \,\mathrm{V} - (-15 \,\mathrm{V})) + (-15 \,\mathrm{V})$$

$$R_2 = \frac{R_2}{R_2} = \frac{15.75}{R_2}$$

15.75 V =
$$\frac{R_2}{R_1 + R_2}$$
(30 V) $\implies \frac{R_2}{R_1 + R_2} = \frac{15.75}{30} = 0.525$

This implies $\frac{R_1}{R_1+R_2}=1-0.525=0.475$. Now substitute into the R_{th} equation:

$$R_{th} = R_1 \left(\frac{R_2}{R_1 + R_2} \right) \implies 75 \,\mathrm{k}\Omega = R_1 (0.525)$$

$$R_1 = \frac{75 \,\mathrm{k}\Omega}{0.525} \approx 142.9 \,\mathrm{k}\Omega$$

$$R_{th} = R_2 \left(\frac{R_1}{R_1 + R_2} \right) \implies 75 \,\mathrm{k}\Omega = R_2 (0.475)$$

$$R_2 = \frac{75 \,\mathrm{k}\Omega}{0.475} \approx 157.9 \,\mathrm{k}\Omega$$

2 Part 2: PNP in Saturation Mode

Figure 2: Part 2: PNP in Saturation Mode Circuit (Same topology as Part 1)

2.1 Given Parameters

- Voltage Supplies: $V_+ = 15 \,\mathrm{V}, \, V_- = -15 \,\mathrm{V}$
- Assumption: Saturation model $V_{EB(sat)} = 0.8 \text{ V}$

2.2 Calculations

1. Calculate Emitter and Base Voltages (V_E, V_B)

The emitter voltage is found from the given collector voltage and V_{EC} :

$$V_E = V_C + V_{EC} = -2 \text{ V} + 0.2 \text{ V} = -1.8 \text{ V}$$

The base voltage is found using the $V_{EB(\text{sat})}$ assumption:

$$V_B = V_E - V_{EB(sat)} = -1.8 \,\mathrm{V} - 0.8 \,\mathrm{V} = -2.6 \,\mathrm{V}$$

2. Calculate Emitter and Collector Resistors (R_E, R_C)

 R_E is calculated using the voltage drop $(V_+ - V_E)$ and current I_E :

$$R_E = \frac{V_+ - V_E}{I_E} = \frac{15 \,\text{V} - (-1.8 \,\text{V})}{1.2 \,\text{mA}} = \frac{16.8 \,\text{V}}{1.2 \,\text{mA}} = 14 \,\text{k}\Omega$$

 R_C is calculated using the voltage drop $(V_C - V_-)$ and current I_C :

$$R_C = \frac{V_C - V_-}{I_C} = \frac{-2 \,\mathrm{V} - (-15 \,\mathrm{V})}{1 \,\mathrm{mA}} = \frac{13 \,\mathrm{V}}{1 \,\mathrm{mA}} = 13 \,\mathrm{k}\Omega$$

3. Calculate β_{forced}

First, find the base current I_B :

$$I_B = I_E - I_C = 1.2 \,\mathrm{mA} - 1.0 \,\mathrm{mA} = 0.2 \,\mathrm{mA}$$

Now, calculate the forced β :

$$\beta_{\text{forced}} = \frac{I_C}{I_B} = \frac{1 \text{ mA}}{0.2 \text{ mA}} = 5$$

4. Calculate Base Biasing Resistors (R_1, R_2) using Thevenin's Theorem

Again, the problem is not fully specified, requiring a choice for R_{th} . Given the large base current $(I_B = 0.2 \,\mathrm{mA})$, a stiff voltage divider (low R_{th}) is appropriate.

1. Choose R_{th} : Let's choose $R_{th}=3.5\,\mathrm{k}\Omega$. 2. Calculate V_{th} : Using $V_B=V_{th}-I_BR_{th}$:

$$-2.6 \,\mathrm{V} = V_{th} - (0.2 \,\mathrm{mA})(3.5 \,\mathrm{k}\Omega)$$

$$-2.6 \text{ V} = V_{th} - 0.7 \text{ V} \implies V_{th} = -1.9 \text{ V}$$

3. Solve for R_1 and R_2 : Using the same Thevenin equations as in Part 1:

$$V_{th} = \frac{R_2}{R_1 + R_2} (V_+ - V_-) + V_-$$
$$-1.9 \,\text{V} = \frac{R_2}{R_1 + R_2} (30 \,\text{V}) - 15 \,\text{V}$$
$$13.1 \,\text{V} = \frac{R_2}{R_1 + R_2} (30 \,\text{V}) \implies \frac{R_2}{R_1 + R_2} = \frac{13.1}{30} \approx 0.4367$$

This implies $\frac{R_1}{R_1+R_2}=1-0.4367=0.5633$. Now substitute into the R_{th} equation:

$$R_{th} = R_1 \left(\frac{R_2}{R_1 + R_2} \right) \implies 3.5 \,\mathrm{k}\Omega = R_1 (0.4367)$$

$$R_1 = \frac{3.5 \,\mathrm{k}\Omega}{0.4367} \approx 8.01 \,\mathrm{k}\Omega$$

$$R_{th} = R_2 \left(\frac{R_1}{R_1 + R_2} \right) \implies 3.5 \,\mathrm{k}\Omega = R_2 (0.5633)$$

$$R_2 = \frac{3.5 \,\mathrm{k}\Omega}{0.5633} \approx 6.21 \,\mathrm{k}\Omega$$

3 Part 3: Diode-Connected PNP

Figure 3: Part 3: Diode-Connected PNP Circuit

3.1 Given Parameters

• Voltage Supplies: $V_+ = 15 \,\mathrm{V}, \ V_- = -15 \,\mathrm{V}$

• Design Goals: $I_C = 1 \,\mathrm{mA}$

• Given Component: $R_E = 15 \,\mathrm{k}\Omega$

• Transistor Model: $\beta = 100$

• Circuit: Diode-connected $(V_B = V_C)$

• Assumption: Active region $V_{EB(on)} = 0.7 \,\mathrm{V}$

3.2 Calculations

1. Operating Region

In a diode-connected BJT, the base and collector are shorted, so $V_{BC} = V_B - V_C = 0 \text{ V}$. This places the transistor at the boundary between the active and saturation regions. It will operate in the **Active Region**, as it cannot enter saturation (V_{BC} cannot become positive for a PNP).

2. Calculate Currents (I_B, I_E)

$$I_B = \frac{I_C}{\beta} = \frac{1 \text{ mA}}{100} = 0.01 \text{ mA}$$

$$I_E = I_C + I_B = 1 \,\text{mA} + 0.01 \,\text{mA} = 1.01 \,\text{mA}$$

3. Calculate Voltages (V_E, V_C)

The emitter voltage is determined by the V_{+} supply, R_{E} , and I_{E} :

$$V_E = V_+ - (I_E \cdot R_E) = 15 \,\text{V} - (1.01 \,\text{mA} \cdot 15 \,\text{k}\Omega) = 15 \,\text{V} - 15.15 \,\text{V} = -0.15 \,\text{V}$$

The collector (and base) voltage is found relative to the emitter:

$$V_C = V_B = V_E - V_{EB(on)} = -0.15 \text{ V} - 0.7 \text{ V} = -0.85 \text{ V}$$

4. Calculate Collector Resistor (R_C)

The circuit configuration is $V_+ \to R_E \to \text{Emitter}$; Base $\to \text{Collector} \to R_C \to V_-$. The current flowing out of the shared Base-Collector node and through R_C is the sum of I_B and I_C , which equals I_E .

$$I_{R_C} = I_B + I_C = I_E = 1.01 \,\mathrm{mA}$$

 R_C is calculated using the voltage drop $(V_C - V_-)$ and current I_E :

$$R_C = \frac{V_C - V_-}{I_E} = \frac{-0.85 \,\mathrm{V} - (-15 \,\mathrm{V})}{1.01 \,\mathrm{mA}} = \frac{14.15 \,\mathrm{V}}{1.01 \,\mathrm{mA}} \approx 14.01 \,\mathrm{k}\Omega$$