Matthew Loden

UIN: 808007439

Lab 2: Design of a Three-Stage BJT Amplifier

INTRODUCTION:

In this lab we were given a cascode amplifier with an emitter follower as the third stage to design. The design was to meet certain specifications that will be laid out in the report with the data collected.

CALCULATIONS:

In this lab I used both hand calculations and an excel spread sheet to do most of my calculations. I've attached images of both documents however I've not included the base excel spread sheet as all of the material there was taken from the hand calculations for easier changes.

С	D	Е	F	G	Н	1	J	K	L
Beta	190		gm3	0.6			Rc^2	Rc	С
Ve1	1		re3	1.666667		min	3597983	7009547	-1.04796E+14
Vswi	1.5		Rin	3000		max	6366.667		
lq	0.015		gm1	0.013417					
Af	0.983607		re1	74.53309		Q	31.63993		
Ri3	19418.33								
Ve2>	1.25	Ve2	1.25						
Vx	3.55					(1-k)Rb	186929		
k	0.34					kRb	96296.76		
N	10								
Rc	6000		Rc Ri3	4583.699					
Ic2	0.000335								
RB	283225.8			2.012529					
Re	2981.324								
					0.64				
Rg	77.72709								
75.75213									
Ve3	2.2								
Re3	33.33333								

CIRCUIT:

Below is the circuit used for both the simulations and measurement data collected:

SIMULATION PLOTS:

DC Operation Points:

	Variable	Operating point value
1	-I(Q1:C) I(Ic1)	-283.99462 u
2	-I(Q2:C) I(Ic2)	-280.69519 u
3	I(Q3:C) I(Ic3)	12.47339 m
4	I(Q4:C) I(Ic4)	12.59009 m
5	V(1) V(Vb1)	1.48957
6	V(5) V(Vb2)	1.99208
7	V(2) V(Vb3)	2.61567
8	V(9) V(Vb4)	1.15949
9	V(8) V(Vc1)	1.35969
10	V(2) V(Vc2)	2.61567
11	V(vcc) V(Vc3)	5.00000
12	V(3) V(Vc4)	1.88042
13	V(7) V(Ve1)	856.61648 m
14	V(8) V(Ve2)	1.35969
15	V(3) V(Ve3)	1.88042
16	V(10) V(Ve4)	423.26830 m
17	V(4) V(Vout)	0.00000e+00

Gain:

Rin:

Isupply:

	Variable	Operating point value
1	-I(V1:1)-I(Rb5:1) I(PR1)	13.39093 m

THD:

Waveform:

MEASUREMENT PLOTS:

DC Operation points of the relevant information shown below:

Q1:

Q2:

Q3:

Q4:

The gain is shown below:

The gain is 26.7 dB

The measurement for Rin is shown below:

The difference was 0.809. When this value is plugged into the relevant equation from the calculations portion of the lab, the measured value of Rin becomes $12.706k\Omega$.

Below is the supply current measurement and the input information on the function generator that generated the 5% THD:

Below is the resultant oscilloscope information given the above information

This is the signal amplitude that resulted from the 5% THD shown in the previous data above. The peak-to-peak swing voltage is approximately 0.7 volts.

Below is the maximum unclipped voltage and relevant waveform information:

Results Analyzed

	Calculated	Simulated	Measured
Vc1	1.25volts	1.3569 v	1.343v
Vc2	2.0125volts	2.6156 v	2.516v
Vc3	5volts	5 v	5v
Vc4	2.2volts	1.88 v	926mv
Vb1	1.7volts	1.4895 v	1.702v
Vb2	2volts	1.99 v	1.992v
Vb3	2.0125volts	2.615 v	3.301v
Vb4	1.25volts	1.159 v	1.238v
Ve1	1volt	0.856 v	1.343v
Ve2	1.25volts	1.3596 v	1.367v
Ve3	2.2volts	1.8804 v	2.6v
Ve4	0.55volts	0.423 v	926mV
Ic1	335uA	283uA	450uA
Ic2	335uA	280uA	404uA
Ic3	14.665mA	12.47mA	12.712mA
Ic4	15mA	12.59mA	27.837mA
Isupply	20mA	13.3903mA	13.368mA
Av	30dB	26.7012dB	26.701dB
Rin	3kΩ	12.741kΩ	12.706kΩ
Output Swing @ 5%	1.5volts	0.606volts	0.680volts

The above data is representative of the circuit operating to produce a gain that is slightly smaller than the required for this lab. The small gain leads to the smaller output swing which is almost half of the value required. These differences are most likely due to poor design choices on my initial base resistors being much higher than they need to be. A point of difference can also be found on the collector voltage for the fourth BJT. This value is most likely to Multisim doing something weird with the capacitor on the branch and causing the value to fluctuate wildly. The value should be 0.7 volts lower than the base voltage on BJT 3 however it's not close.