Лекция в Операции над идеалами

🗊 Сумпа, произбедение и пересегение идеалов

Определение 8.1: Пуст $I, J \in k[x_1,...,x_n]$ - идеала lyunoù I u J называется инотество

 $I + J = \{f + g: (f \in I) \land (g \in J)\}$

Предложение 8.1: Пусль $I, J \in k[x_1,...,x_n]$ - идеаль. Тогда их сумпа I+J эвляется наименьшим идеаль $l k[x_1,...,x_n]$, содержащим идеаль I u J. Белее того, если $I = \langle f_1,...,f_r \rangle$ и $J = \langle g_1,...,g_s \rangle$, то $I+J = \langle f_1,...,f_r \rangle$, $g_1,...,g_s \rangle$.

в частности,

< f1,..., fr7 = <f17+...+<fr7

Lorazasenocrbo: Javemuu, rmo $0=0+0\in I+J$. Spegnovoruu, rmo $h_1,h_2\in I+J$, m.e. $h_1=f_1+g_1$ u $h_2=f_2+g_2$, rge $f_1,f_2\in I$, a $g_1,g_2\in J$. Ho morga $h_1+h_2=(f_1+f_2)+(g_1+g_2)$,

где впратения в первой скобие ления в I, а во второй в J, поэтолу h_1+h_2 в I+J. Рассмотрим $h \in I+J$ и $l \in k[x_1,...,x_n]$, многожим h=f+g, где $f \in I$ и $g \in J$. Произведение $l \cdot h = l \cdot (f+g) = l \cdot f + l \cdot g$ очевидно принадлений I+J. Таким образом, сумма I+J дейсявительно является идеалам

Предположим, что идеа H, m.z I < H и J < H. Если $f \in I$ и $g \in J$, то $f, g \in H$. Эначит $f+g \in H$, m.e. $I+J \subset H$. Любой пдеах, содержащий I и J, содержий I и сумиу I+J, потому сумпа I+J — напменьший идеах, содержащий I и J.

Если $I=\langle f_1,...,f_r\rangle$, $J=\langle g_1,...,g_s\rangle$, то $\langle f_1,...,f_r,g_1,...,g_s\rangle$ содержий I и J, поэтому $I+J<\langle f_1,...,f_r,g_1,...,g_s\rangle$. Обратное включение очавидно вледовательно, $\langle f_1,...,f_r\rangle+\langle g_5,...,g_s\rangle=\langle f_1,...,f_r\rangle+\langle g_5,...,g_s\rangle$.

Teopena 8.1: Вих идеанов $I, J \subset k[x_1,...,x_n]$ аффичное линогообразие $V(I+J) = V(I) \wedge V(J)$.

Dokazament cmbo: Ugeanor $I, J \subset I+J$, normany no measure 7.4 $V(1+J) \subset V(I)$ $u V(I+J) \subset V(J)$, m.e. $V(I+J) \subset V(I) \wedge V(J)$

Dokamen objammoe включение. Пусть $x \in V(I) \cap V(J)$, а инотогием $h \in I + J$. Найдугая uncoording $f \in I$ u $g \in J$, m.r. h = f + g. Torga h(x) = f(x) + g(x) = 0 + 0 = 0. Cuegobamessno, morka $x \in V(I+J)$, m.e. $V(I+J) \supset V(I) \wedge V(J)$.

Как нам известно (см. предложение 1.2) для объединения аффиниля

 $V(f_1,...,f_r) \cup V(g_1,...,g_s) = V(f_ig_1, 1 \leq i \leq r, 1 \leq j \leq s)$

Onpegenerue 8.2: Tyen I, J < k[x1,...,xn] - ugeann. Ux mpous begennen I: J наупваетих идеах, поротовённый всевозмотным произведениями f.g, rge f E I u g E J, m.e. I.J := {f, g, + ... + f, g, : f, ..., f, &I, g, ..., g, &J, gaz KEN}

Due $I = \langle f_1, ..., f_r \rangle$, $J = \langle g_1, ..., g_s \rangle$ upour beganne I.J = < fig; 1 \(i \in r \) 1 \(i \) |

Teopena 8.2: $\prod_{g \in \mathcal{F}} I, J \subset k[x_1, ..., x_n] - ugeans, Torga V(I·J) = V(I) \cup V(J)$

Доказачения вледует очевидити образам.

Перейдом к расспотрению переселений преалов. Очевидио, что In J Abereman ugeanow, ease I, J < k[x1,...,xn] - ugeanor. Sociousny $fg \in InJ$, age $f \in I$ is $g \in J$, unserve businesself $I : J \cap J$. B obujest crypal обратного викичения может не быть. Например, если I=J=<x,47, то пропрведение

 $IJ = \langle x^2, xy, y^2 \rangle \subsetneq InT = \langle x, y \rangle$

Ec. I - ugear b $k[x_1,...,x_n]$, a unioroesen $f(b) \in k[t]$, mo bygen oboznavaz repez f:I ugear b $k[x_1,...,x_n,t]$ nopomgénusii unomectou $\{f\cdot h: h\in I\}$

pegionerue 8.2:

- 1) Ecus $I = \langle p_1(x), ..., p_r(x) \rangle \in k[x_1,...,x_n], \text{ mo } b \quad k[x_1,...,x_n,t] \text{ ugeas}$ $f(t)I = \langle f(t)\rho_1(z), ..., f(t)\rho_r(z) \rangle$
- e) Ecu $g(x,t) \in f(t)I$ u ask, mo $g(x,a) \in I$.

Donagarenecto: 1) Ecu $g(x,t) \in f(t)I$, mo on ear eyuna enaraenerz buga $h(x,t) \cdot f(t) \cdot p(x)$, $zge h(x,t) \in k[x,...,x_n,t]$ in $p(x) \in I$. Samunen uncorrent buge $p(x) = \sum_{i} q_i(x) p_i(x)$,

rge $q_i(x) \in k[x_i, ..., x_n]$. Torga enpalequibo npegerabienue (8.1) $h(x,t) \cdot f(t) \cdot p(x) = \sum_{i=t}^{r} h(x,t) q_i(x) f(t) p_i(x),$

a gracum, nocuousny characture $h(x,t) \cdot f(t) \cdot p(x) \in \langle f(t)p_{+}(x), ..., f(t)p_{r}(x)\rangle$, mo a anotoesier $g(x,t) \in \langle f(t)p_{+}(x), ..., f(t)p_{r}(x)\rangle$.

2) Ocebuguo nocie rogeranobnu a E k 6 (8.1)

Teopena 8.3: Tyers $I, J \subset k[x_1, ..., x_n]$ - ugean Torga represente $I \cap J = (t I + (1-t)J) \cap k[x_1, ..., x_n]$ Dokazarenerbo: Tyers $f \in I \cap J$, morga $t f \in t \cdot I$, m. $k \notin I$, $u \in (1-t)f \in (1-t)J$,

m.k. $f \in J$. Fockousky $f = t \cdot f + (1-t)f$, mo $f \in t I + (1-t)J$. Savenub, runo $I, J \subset k[x_1, ..., x_n]$, garriotaer $f \in t I + (1-t)J \cap k[x_1, ..., x_n]$. Ten canon somewhere $I \cap J \subseteq t I + (1-t)J \cap k[x_1, ..., x_n]$ goragano.

Dδραποιο, nyero $f \in tI + (1-t)J \cap k[z_1,...,z_n]$, morga υνιοτοκικι f(z) = g(z,t) + h(z,t),

rge $g(x,t) \in t \mathcal{I}$ u $h(x,t) \in (1-t) \mathcal{I}$. Forever b ston polenete t=0, f(x) = g(x,0) + h(x,0) = 0 + h(x,0) = h(x,0),

ige so yrteprogenius 2) npequomenus 82 $h(x,0) \in J$. Anaiomino, noioxub t^{-1} , $f(x) = g(x,1) + h(x,1) = g(x,1) + 0 = g(x,1) \in I$.

Taken oppose, $f \in I \cap J$, m.e. $(tI + (1-t)J) \cap k[x_1,...,x_n] \subset I \cap J$.

Теорена 8.3 дайт бору для анариямического выписления пересегения идеалов $I=\langle f_1,...,f_r\rangle$ и $J=\langle g_1,...,g_s\rangle$: нучено найти базис Гребнера идеала $\langle tf_1,...,tf_r$, $(1-t)g_1,...,(1-t)g_s\rangle$ $\langle tf_1,...,x_n,tJ$

omnocuterono lex: $t > x_{i_1} > ... > x_{i_n}$. Te surventon Sajuca, komopore ne zabuser or t, objection Sajuca ugeara In J.

Гример 8.1: Найдём пересегение $< x^2y> \wedge < xy^2> \subseteq \mathbb{R}[x,y]$. Для этого рассмотрим $t\ I + (1-t)J = < tx^ty, \ (1-t)xy^2> = < tx^ty, \ txy^2 - xy^2>$

6 rossye k[x,y, E].

Botruchum $S_{12}=y\cdot tx^2y-x(txy^2-xy^2)=x^2y^2$. Проверим, что побор $\{tx^4y,txy^2-xy^2,x^4y^4\}$ Образует базис Гребнера относительно lx:t>x>y: $S_{15}=y\cdot tx^4y-t\cdot x^4y^2=0$, $S_{25}=x(txy^2-xy^2)-tx^4y^2=x^2y^4\rightarrow 0$.

Hanpunep, $lcm(x^2y, xy^2) = x^2y^2$. B obyen crysae, gra $f, g \in k[x_1, ..., x_n]$ paccumpun rpegesabrenus $f = c f_1^{a_1} ... f_r^{a_r} \quad n \quad g = c'g_1^{a_1} ... g_s^{a_s}$

в виде степеней разшениях неприводиния иногоченов. Некоторие f: могут с точностью до непущевого инотичен из k совпадай с некоторами д;-ми. без ограничение общности можно скитать, что для некоторого l є {1,..., min(r,s)}

 $f_i = a_i g_i$, $ige a_i \in k-\{0\}$, $ngue 1 \le i \le l$; a gas i, j > l omnowence $\frac{f_i}{g_i} \ge k$. Torga (8.1) $lcm(f,g) = f_1 \qquad \dots f_l \qquad g_{l+1} \dots g_s \cdot f_{l+1} \dots f_r$.

Ecu y f u g rum obique unomuserei no $lcm(f,g) = f \cdot g$.

lugobameuro, $\langle x^{i}y \rangle \wedge \langle xy^{i} \rangle = \langle x^{i}y^{i} \rangle$.

Предложение $\ell.3$: Ecan $I=\langle f \rangle$ и $J=\langle g \rangle$ – главняе идеам в $k[x_1,...,x_n]$, то переихение $I \cap J=\langle h \rangle$, где h=lom(f,g), т.е. тоте является влавням идеами. Фоказаченного: Пусть h=lom(f,g), тогда, если иногочен $p\in \langle f \rangle \wedge \langle g \rangle$, то же делийся на f и g, а значит p деличае на k, т.е. $p\in \langle h \rangle$. Іледовачено, $\langle f \rangle \wedge \langle g \rangle = \langle h \rangle$.

Opamue, orehigue, zme, ecui h=lcm(f,q), mo $h\in 47$ is $h\in 97$. Takun opazei, $h \in 47 \land 97$.

Предложение 8.4: Вля $f, g \in k[x_1,...,x_n]$ их наибольший общий деличен $g(d(f,g) = \frac{f.g}{lem(f,g)}$

Доказахельство: Заметин, что в силу разложения f,g в произведение степеней неприводимях множийскей и соотношения (3.1), справедшьо соотношение

 $lem(f,g) \cdot gcd(f,g) = f \cdot g$.

Teopena 8.4: Nyca $I, I \in k[x_1, ..., x_n]$ - ugeans. Torga $V(I \cap I) = V(I) \cup V(I)$.

Dokajarensorbo: Nyer rocka $x \in V(1) \cup V(1)$, morga $x \in V(1)$ um $x \in V(1)$, m.e. f(x) = 0 get been $f \in I$ um f(x) = 0 get been $f \in I$. Orebuguo, rmo morga f(x) = 0 get been $f \in I \cap I$, znarum $x \in V(I \cap I)$. Takun obpazon, $V(I) \cup V(I) \subseteq V(I \cap I)$.

Обратно, мог знаем, что $I:J\subset I\cap J$. Тогда $V(I\cap J)\subset V(I:J)=V(I)\cup V(J)$ по теорем 8.2.

Pregioneenie 8.5: Éau I, J - ugeain, mo $\sqrt{I \cap J} = \sqrt{I'} \cap \sqrt{J}$.

Doxagazensorbo: Echi $f \in \overline{I} \cap \overline{J}$, the gre heremopore yelded mill emenew $f^m \in \overline{I} \cap \overline{J}$. Tak ear $f^m \in I$, the first Anaromens $f \in \sqrt{J}$. Therefore, $\sqrt{I} \cap \overline{J} \cap \sqrt{J}$.

Objamus, nyers $f \in VInVI$, morga cycycotycor years mz1 u pz1, mz. $f^m \in I$ u $f^n \in I$. Comensors $f^{m*p} = f^m$. $f^n \in InI$, noorowy $f \in VInI$.

в.г. Замыкание по варискому и частное идеалов

Івнения, что для мистейва $S \in k^m$ (пеобазательно аффициого многообразия) $I(S) := \{f \in k[x_1,...,x_n]: f(a_{i,...,a_n}) = 0 \text{ для вих } (a_{i,...,a_n}) \in S\}$ эклетах радикамноги идеалам. Образ V(I(S)) эклетах аффицион многообразили.

Предиомение 8.6: Вля $S \subset k^n$ ардиние многообразие V(I(S)) Авляета напленьним аффинал многообразием, содержащим множество S'_i т.е., ясли $W \subset k^n$ — аффинал многообразие, содержащее S'_i то $V(I(S)) \subset W$.

Dokazaresscribo: Mycro $S \subset W$, morga $I(W) \subset I(S)$, u $V(I(S)) \subset V(I(W))$. Ho, echi W - apopuluse uncrossposus, mo V(I(W) = W.

Определение 8.4° Заможание по Зарнекому нодиномества арфинното пространства — это наименьний арфинис многообрадие, содержащее это подинометью; т.е., если $S \subset k^n$, то заможний но Зарискаму $\overline{S} = V(I(S))$.

Tax rax $S \subset \overline{S}$, mo $I(\overline{S}) \subset I(S)$. Ecm $f \in I(S)$, mo $S \subset V(f)$, guarut $S \subset \overline{S} \subset V(f)$. Ho morga $u \in I(\overline{S})$, maxim objection $I(\overline{S}) \subset I(S)$. Umax, $I(S) = I(\overline{S})$