INTEGRALI

Test di autovalutazione

- Sia f una funzione continua su \mathbb{R} , e F una primitiva di f tale che F(2)=5. Allora:
 - esiste $k \in \mathbb{R}$ tale che F(x) f(x) = k, $\forall x \in \mathbb{R}$
 - $F(x) = \int_2^x f(t) \ dt$ (b)
 - F non è derivabile in $x_0 = 2$ (c)
 - $F(x) = 5 + \int_{2}^{x} f(t) dt$ (d)
- 2. Sia I = [a, b], (a < b) e sia f una funzione continua su I. Allora:
 - Può esistere una primitiva di f su I che ha un punto angoloso
 - f ha primitive su I. (b)
 - $\int_a^b f(x) dx$ non è nullo. (c)
 - esiste un punto $c \in [a,b]$ tale che $f(c) = \int_a^b f(x) dx$ (d)
- 3. Sia $F(x) = x^2 + e^x + 1$ una primitiva di f(x). Allora:

 - $f(x) = \int_1^x F(t) dt$ $F(x) = \int_1^x f(t) dt$ (b)
 - Non esiste nessun valore di $a \in \mathbb{R}$ per cui $F(x) = \int_a^x f(t) dt$
 - $f(x) = 2x + e^x + c$ $(c \in \mathbb{R})$ (d)
- 4. Sia $F(x) = \int_1^x \sinh t \, dt$. Allora:
 - F'(1) = 0(a)
 - $F'(1) = \frac{e}{2} \frac{1}{2e}$ (b)
 - F non è derivabile in $x_0 = 1$ (c)
 - (d) F non è continua in $x_0 = 0$
- 5. E' data la funzione integrale $F(x) = \int_5^x \cosh \sqrt{t^2 9} \ dt$. Allora:
 - $(F^{-1})'(0) = \frac{1}{\cosh 4}$ (a)
 - la tangente al grafico di F nel punto $x_0 = 5$ ha equazione $y = 5 + (\cosh 4)(x-5)$ (b)
 - F ha un punto critico in $x_0 = 5$ (c)
 - (d) F è invertibile su \mathbb{R}
- 6. La funzione integrale $F(x) = \int_0^x (t^3 4t) dt$:
 - (a) è sempre crescente
 - (b) ha un punto di minimo in $x_0 = 2$
 - ha un punto di massimo assoluto in $x_0 = 0$ (c)
 - (d) non si annulla mai

- 7. Se $A = \int_{-1}^{1} \sqrt[3]{x^5} \, dx$, allora:
 - $A = 2 \int_0^1 \sqrt[3]{x^5} \, dx$
 - (b) A=0
 - (c) $A = \frac{3}{8}x^{\frac{2}{3}}$
 - $A = x \int_{-1}^{1} \sqrt[3]{x^2} \, dx$ (d)
- 8. L'area A della regione di piano compresa tra le curve $y = \sqrt{x}$ e $y = x^2$ vale:
 - (a)
 - (b)
 - $A = \frac{1}{3}$ $A = \frac{2}{3}$ $A = \int_0^1 (x^2 \sqrt{x}) dx$ A = 1(c)
 - (d)
- 9. L'area A compresa tra il grafico di $f(x) = \frac{x}{\sqrt{1+2x^2}}$ e l'asse delle $x, x \in [-2, 0]$, vale:
 - (a)
 - A = -1 $A = \int_0^{-2} \frac{x}{\sqrt{1 + 2x^2}} dx$ non è limitata (b)
 - (c)
 - (d) A=2
- 10. Siano $f(x) = x^3 + 1, x \in [-1, 1]$ e μ il valor medio integrale di f su [-1, 1]. Allora
 - non esiste nessun valore c nell'intervallo [-1,1] per cui $f(c) = \mu$ (a)
 - (b)
 - (c) $\mu = \int_{-1}^{1} (x^3 + 1) dx$
 - (d)
- 11. Sia $I = \int_0^4 e^{\sqrt{x}} dx$. Allora:
 - (a)
 - $0 \le I < 4$ (b)
 - (c) $4 \le I \le 40$
 - I > 40(d)
- 12. Sia f(x) = x + 1, e sia μ il valor medio integrale di f su [0,2]. Allora:
 - la funzione g(x) = f(x) + 3 ha lo stesso valor medio integrale su [0, 2](a)
 - (b) $\mu = 4$
 - se c = 1 si ha $f(c) = \mu$ (c)
 - esiste un punto $c \in]0,2[$ tale che $f(c) = \frac{f(2)-f(0)}{2-0}$ (d)
- 13. Sia $f(t) = \begin{cases} \sin t & \text{se } 0 \le t < \frac{\pi}{4} \\ \cos t & \text{se } \frac{\pi}{4} \le t \le \frac{\pi}{2} \end{cases}$
 - e sia $F(x) = \int_{\frac{\pi}{4}}^{x} f(t) dt$. Allora:
 - F è continua e derivabile in $\frac{\pi}{4}$
 - F è continua ma non derivabile in $\frac{\pi}{4}$
 - (c) f non è né continua né derivabile in $\frac{\pi}{4}$
 - (d) f è continua e derivabile in $\frac{\pi}{4}$

RISPOSTE

1. RISPOSTA ESATTA: (d).

La risposta (a) è errata: si ha f(x) = F'(x); non è detto pertanto che la differenza F(x) - F'(x) sia costante.

La risposta (c) è errata in quanto, essendo f continua su \mathbb{R} , per il teorema fondamentale del calcolo integrale, si ha F'(x) = f(x), $\forall x \in \mathbb{R}$; dunque F è derivabile con derivata continua su \mathbb{R} .

La risposta (b) è errata in quanto, se $F(x) = \int_2^x f(t)dt$, si ha F(2) = 0. Questa osservazione mostra anche che la risposta (d) è esatta, in quanto, se $F(x) = 5 + \int_2^x f(t)dt$, si ha F(2) = 5 (oltre a F'(x) = f(x)).

2. RISPOSTA ESATTA: (b).

Per il teorema fondamentale del calcolo integrale, le funzioni $F(x) = \int_c^x f(t)dt$, al variare di $c \in [a, b]$, sono primitive di f(x). Dunque la risposta (b) è esatta.

La risposta (a) è errata, in quanto, se F(x) è una qualunque primitiva di f(x) su I, si ha F'(x) = f(x), $\forall x \in I$; dunque, se f è continua su I, F è derivabile (con derivata continua) su I e non può avere punti angolosi.

La risposta (c) è errata: come controesempio , si consideri la funzione $f(x) = \sin x$, sull'intervallo $[0, 2\pi]$.

La risposta (d) è errata: si consideri ad esempio la funzione f(x) = 1 sull'intervallo [0,2]. (La risposta (d) sarebbe esatta se il valore dell'integrale definito fosse diviso per b-a, come afferma il teorema della media integrale).

3. RISPOSTA ESATTA: (c).

La risposta (a) è errata: per definizione di primitiva, si ha F'(x) = f(x), mentre dalla (a) si avrebbe (per il teorema fondamentale) f'(x) = F(x).

La risposta (b) è errata: infatti F(1)=2+e, mentre, se fosse $F(x)=\int_1^x f(t)\ dt$, si avrebbe F(1)=0.

La risposta (c) è esatta, in quanto F(x) non si annulla per nessun valore di $a \in \mathbb{R}$. La (d) è errata, in quanto $f(x) = F'(x) = 2x + e^x$.

4. RISPOSTA ESATTA: (b).

Infatti, per il teorema fondamentale del calcolo integrale, $F'(x) = \sinh x$ e dunque $F'(1) = \sinh(1) = \frac{e-e^{-1}}{2} = \frac{e}{2} - \frac{1}{2e}$. Dunque (b) è vera mentre (a) è falsa.

La risposta (c) è errata, in quanto, poiché F(x) è una primitiva di f(x) su \mathbb{R} e f è continua, F è derivabile (con derivata continua) su \mathbb{R} e dunque anche in $x_0 = 1$.

Lo stesso ragionamento prova che F(x) è derivabile, e dunque continua, in $x_0 = 0$; pertanto la (d) è falsa.

5. RISPOSTA ESATTA: (a).

Infatti $(F^{-1})'(0) = \frac{1}{F'(5)}$, in quanto F(5) = 0. Inoltre $F'(x) = \cosh \sqrt{x^2 - 9}$ e dunque $F'(5) = \cosh \sqrt{25 - 9} = \cosh 4$. Dunque (a) è vera e (c) è falsa, perché $F'(5) \neq 0$.

La tangente al grafico di F nel punto di ascissa $x_0 = 5$ è la retta di equazione y = F(5) + F'(5)(x - 5) e dunque $y = (\cosh 4)(x - 5)$. Pertanto la risposta (b) è errata.

La risposta (d) è errata: è vero che $F'(x) = \cosh \sqrt{x^2 - 9} > 0, \forall x \in \text{Dom}(F), \text{ ma} \text{Dom}(F) \neq \mathbb{R}.$

6. RISPOSTA ESATTA: (b).

Poiché F(0) = 0, la (d) è falsa. Inoltre esistono valori di $x \in \mathbb{R}$ per cui F(x) > 0 (ad esempio, F(10) > 0). Quindi anche (c) è falsa.

Si ha $F'(x) = x^3 - 4x = x(x-2)(x+2)$. Dunque i punti di ascissa $x = 0, x = \pm 2$ sono punti critici di F. Dallo studio del segno di F' e degli intervalli di monotonia di F si deduce che F è decrescente negli intervalli $]-\infty,-2[$ e]0,2[; si ricava inoltre che il punto x=0 è un punto di massimo relativo, mentre i punti $x=\pm 2$ sono punti di minimo relativo. Dunque (a) è falsa mentre (b) è vera.

7. RISPOSTA ESATTA: (b).

La funzione $f(x) = \sqrt[3]{x^5}$ è dispari. Dunque (b) è esatta, mentre (a) e (c) sono errate. La (d) è errata, perché x non può essere portata fuori dal segno di integrazione.

8. RISPOSTA ESATTA: (a).

La regione di piano è situata nel primo quadrante, delimitata sopra dalla curva $y = \sqrt{x}$ e sotto dalla parabola $y = x^2$. Pertanto la sua area si calcola come $A = \int_0^1 (\sqrt{x} - x^2) \ dx$, e vale $\frac{1}{3}$.

9. RISPOSTA ESATTA: (b).

La funzione $f(x) = \frac{x}{\sqrt{1+2x^2}}$ è continua. Dunque l'area cercata è un valore finito. Pertanto (c) è falsa.

Si osservi che f(x) assume valori negativi se $x \in [-2,0]$. Pertanto l'area richiesta è data da $A=-\int_{-2}^0 \frac{x}{\sqrt{1+2x^2}} \ dx = \int_0^{-2} \frac{x}{\sqrt{1+2x^2}} \ dx$. Dunque (b) è vera.

Eseguendo il calcolo, si trova:

$$A = \int_0^{-2} \frac{x}{\sqrt{1+2x^2}} dx = \frac{1}{2} \left[\sqrt{1+2x^2} \right]_0^{-2} = 1$$

Dunque (d) è falsa.

La risposta (a) è errata, in quanto un'area per definizione è un numero positivo.

10. RISPOSTA ESATTA: (d).

Per definizione, $\mu = \frac{1}{2} \int_{-1}^{1} f(x) dx$. Eseguendo il calcolo si trova $\mu = 1$. Pertanto (d) è vera, mentre (b) e (c) sono false.

La risposta (a) è errata, perché contraddice il teorema della media integrale.

11. RISPOSTA ESATTA: (c).

Se $x \in [0,4]$, si ha $0 \le \sqrt{x} \le 2$ e dunque $1 \le e^{\sqrt{x}} \le e^2$. Pertanto :

$$\int_0^4 1 \ dx \le \int_0^4 e^{\sqrt{x}} \ dx \le \int_0^4 \ e^2 \ dx \quad \text{e dunque} \quad 4 \le \int_0^4 e^{\sqrt{x}} \ dx \le 4e^2.$$

Dunque (c) è vera mentre (a), (b) e (d) sono false.

12. RISPOSTA ESATTA: (c).

Per definizione $\mu = \frac{1}{2} \int_0^2 (x+1) dx = 2 = f(1) \neq \frac{1}{2} \int_0^2 (x+3) dx$. Dunque (c) è vera mentre (a) e (b) sono false .

La risposta (d) è falsa in quanto $\frac{f(2)-f(0)}{2-0}=1$. Ora f(x)=1 se e solo se x=0, mentre in] 0, 2 [il punto x=0 non è compreso.

Si ricordi che, per il teorema di Lagrange, esiste invece un punto $c \in [0,2]$ tale che $f'(c) = \frac{f(2) - f(0)}{2 - 0}$.

13. RISPOSTA ESATTA: (a).

La funzione f(t) è continua su $\left[0, \frac{\pi}{2}\right]$ ma non è derivabile in $x = \frac{\pi}{4}$. Dunque (c) e (d) sono false.

Essendo f(t) continua, per il teorema fondamentale del calcolo integrale la funzione integrale F(x) è derivabile (e dunque continua) in $\left[0,\frac{\pi}{2}\right]$.

Dunque (a) è vera mentre (b) è falsa.