Olasılık ve İstatistik hatırlatma VIP

Afshine Amidi ve Shervine Amidi

April 30, 2019

Ayyüce Kızrak ve Başak Buluz tarafından çevrilmiştir

Olasılık ve Kombinasyonlara Giriş

- \Box Örnek alanı Bir deneyin olası tüm sonuçlarının kümesidir, deneyin örnek alanı olarak bilinir veSile gösterilir.
- \square Olay Örnek alanın herhangi bir Ealt kümesi, olay olarak bilinir. Yani bir olay, deneyin olası sonuçlarından oluşan bir kümedir. Deneyin sonucu E'de varsa, E'nin gerçekleştiğini söyleriz.
- \square Olasılık aksiyomları HerEolayı için, Eolayının meydana gelme olasılığı P(E)olarak ifade edilir:

(1)
$$\boxed{0 \leqslant P(E) \leqslant 1}$$
 (2) $\boxed{P(S) = 1}$ (3) $\boxed{P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)}$

 \square Permütasyon – Permütasyon, n nesneler havuzundan r nesnelerinin belirli bir sıra ile düzenlenmesidir. Bu tür düzenlemelerin sayısı P(n,r) tarafından aşağıdaki gibi tanımlanır:

$$P(n,r) = \frac{n!}{(n-r)!}$$

 $\hfill \Box$ Kombinasyon – Bir kombinasyon, sıranın önemli olmadığı n nesneler havuzundan r nesnelerinin bir düzenlemesidir. Bu tür düzenlemelerin sayısı C(n,r) tarafından aşağıdaki gibi tanımlanır:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Not: $0 \le r \le n$ için $P(n,r) \ge C(n,r)$ değerine sahibiz.

Koşullu Olasılık

 \square Bayes kuralı – A ve B olayları için P(B) > 0 olacak şekilde:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Not: $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

 \square Parça – Tümideğerleri için $A_i\neq\varnothing$ olmak üzere $\{A_i,i\in[\![1,n]\!]\}$ olsun. $\{A_i\}$ bir parça olduğunu söyleriz eğer:

$$\forall i \neq j, A_i \cap A_j = \emptyset \quad \text{ve} \quad \bigcup_{i=1}^n A_i = S$$

Not: Örneklem uzaydaki herhangi bir B olayı için $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$ 'ye sahibiz.

 \square Genişletilmiş Bayes kuralı formu – $\{A_i, i \in [\![1,n]\!]\}$ örneklem uzayının bir bölümü olsun. Elde edilen:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

 \square Bağımsızlık – İki olay A ve B birbirinden bağımsızdır ancak ve ancak eğer:

$$P(A \cap B) = P(A)P(B)$$

Rastgele Değişkenler

- \square Rastgele değişken Genellikle X olarak ifade edilen rastgele bir değişken, bir örneklem uzayındaki her öğeyi gerçek bir çizgiye eşleyen bir fonksiyondur.
- \square Kümülatif dağılım fonksiyonu (KDF) Monotonik olarak azalmayan ve $\lim_{x\to -\infty} F(x)=0$ ve $\lim_{x\to -\infty} F(x)=1$ olacak şekilde kümülatif dağılım fonksiyonu F şu şekilde tanımlanır:

$$F(x) = P(X \leqslant x)$$

Not: $P(a < X \le B) = F(b) - F(a)$.

- \Box Olasılık yoğunluğu fonksiyonu (OYF) Olasılık yoğunluğu fonksiyonu $f,\,X$ 'in rastgele değişkenin iki bitişik gerçekleşmesi arasındaki değerleri alması ihtimalidir.
- $\hfill \square$ OYF ve KDF'yi içeren ilişkiler Ayrık (D) ve sürekli (C) olaylarında bilmeniz gereken önemli özelliklerdir.

Olay	KDF F	OYF f	OYF Özellikleri		
(D)	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	$f(x_j) = P(X = x_j)$	$0 \leqslant f(x_j) \leqslant 1 \text{ ve } \sum_j f(x_j) = 1$		
(C)	$F(x) = \int_{-\infty}^{x} f(y)dy$	$f(x) = \frac{dF}{dx}$	$f(x) \geqslant 0 \text{ ve } \int_{-\infty}^{+\infty} f(x) dx = 1$		

 \square Varyans – Genellikle Var(X) veya σ^2 olarak ifade edilen rastgele değişkenin varyansı, dağılım fonksiyonunun yayılmasının bir ölçüsüdür. Aşağıdaki şekilde belirlenir:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

 \square Standart sapma – Genellikle σ olarak ifade edilen rastgele bir değişkenin standart sapması, gerçek rastgele değişkenin birimleriyle uyumlu olan dağılım fonksiyonunun yayılmasının bir ölçüsüdür. Aşağıdaki şekilde belirlenir:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

 \square Beklenti ve Dağılım Momentleri – Burada, ayrık ve sürekli durumlar için beklenen değer E[X], genelleştirilmiş beklenen değer E[g(X)], k. Moment $E[X^k]$ ve karakteristik fonksiyon $\psi(\omega)$ ifadeleri verilmiştir :

Olay	E[X]	E[g(X)]	$E[X^k]$	$\psi(\omega)$
(D)	$\sum_{i=1}^{n} x_i f(x_i)$	$\sum_{i=1}^{n} g(x_i) f(x_i)$	$\sum_{i=1}^{n} x_i^k f(x_i)$	$\sum_{i=1}^{n} f(x_i)e^{i\omega x_i}$
(C)	$\int_{-\infty}^{+\infty} x f(x) dx$	$\int_{-\infty}^{+\infty} g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty} f(x)e^{i\omega x}dx$

 $\hfill \Box$ Rastgele değişkenlerin dönüşümü-Xve Ydeğişkenlerinin bazı fonksiyonlarla bağlanır. f_X ve f_Y 'ye sırasıyla Xve Y'nin dağılım fonksiyonu şöyledir:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

 \Box Leibniz integral kuralı – g, x'e ve potansiyel olarak c'nin, c'ye bağlı olabilecek potansiyel c ve a,b sınırlarının bir fonksiyonu olsun. Elde edilen:

$$\boxed{\frac{\partial}{\partial c} \left(\int_a^b g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_a^b \frac{\partial g}{\partial c}(x) dx}$$

 \blacksquare Chebyshev'in eşitsizliği – X beklenen değeri μ olan rastgele bir değişken olsun. $k,\sigma>0$ için aşağıdaki eşitsizliği elde edilir:

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Ortak Dağılımlı Rastgele Değişkenler

 \square Koşullu yoğunluk – Y'ye göre X'in koşullu yoğunluğu, genellikle $f_{X\mid Y}$ olarak elde edilir:

$$f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

 \square Bağımsızlık – İki rastgele değişkenin X ve Yolması durumunda bağımsız olduğu söylenir:

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

 \Box Marjinal yoğunluk ve kümülatif dağılım – f_{XY} ortak yoğunluk olasılık fonksiyonundan:

Olay	Marjinal yoğunluk	Kümülatif fonksiyon
(D)	$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$	$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i, y_j)$
(C)	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y)dy$	$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x',y')dx'dy'$

 \square Kovaryans – σ_{XY}^2 veya daha genel olarak $\mathrm{Cov}(X,Y)$ olarak elde ettiğimiz iki rastgele değişken olan Xve Y'nin kovaryansını aşağıdaki gibi tanımlarız:

$$Cov(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

 \square Korelasyon – $\sigma_X,\sigma_Y,$ Xve Y'nin standart sapmalarını elde ederek, ρ_{XY} olarak belirtilen rastgeleXve Ydeğişkenleri arasındaki korelasyonu şu şekilde tanımlarız:

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Not: X, Y'nin herhangi bir rastgele değişkeni için $\rho_{XY} \in [-1,1]$ olduğuna dikkat edin. Eğer X ve Y bağımsızsa, $\rho_{XY} = 0$ olur.

☐ Ana dağıtımlar – İşte akılda tutulması gereken ana dağıtımlar:

Tür	Dağılım	OYF	$\psi(\omega)$	E[X]	Var(X)
(D)	$X \sim \mathcal{B}(n, p)$ Binomial	$P(X = x) = \binom{n}{x} p^x q^{n-x}$ $x \in [0,n]$	$(pe^{i\omega}+q)^n$	np	npq
	$X \sim \text{Po}(\mu)$ Poisson	$P(X = x) = \frac{\mu^x}{x!}e^{-\mu}$ $x \in \mathbb{N}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
(C)	$X \sim \mathcal{U}(a, b)$ Tekdüze	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	$X \sim \mathcal{N}(\mu, \sigma)$ Gauss	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	μ	σ^2
	$X \sim \operatorname{Exp}(\lambda)$ Üstel	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Parameter estimation

 \square Rastgele örnek – Rastgele bir örnek, bağımsız ve aynı şekilde Xile dağıtılan $X_1,...,X_n$ değişkeninin rastgele değişkenidir.

□ Tahminci (Kestirimci) – Tahmin edici, istatistiksel bir modelde bilinmeyen bir parametrenin değerini ortaya çıkarmak için kullanılan verilerin bir fonksiyonudur.

 \Box Önyargı – Bir tahmin edicinin önyargısı $\hat{\theta},~\hat{\theta}$ dağılımının beklenen değeri ile gerçek değer arasındaki fark olarak tanımlanır, yani:

$$\operatorname{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta$$

Not: $E[\hat{\theta}] = \theta$ olduğunda bir tahmincinin tarafsız olduğu söylenir.

 \square Örnek ortalaması – Rastgele bir numunenin numune ortalaması, dağılımın gerçek ortalamasını to tahmin etmek için kullanılır, genellikle \overline{X} olarak belirtilir ve şöyle tanımlanır:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \square Örnek varyansı – Rastgele bir örneğin örnek varyansı, bir dağılımın σ^2 gerçek varyansını tahmin etmek için kullanılır, genellikle s^2 veya $\hat{\sigma}^2$ olarak elde edilir ve aşağıdaki gibi tanımlanır:

$$s^{2} = \hat{\sigma}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

 $\hfill \Box$ Merkezi Limit Teoremi – Ortalama μ ve varyans σ^2 ile verilen bir dağılımın ardından rastgele bir $X_1,...,X_n$ örneğine sahip olalım.

$$\overline{X} \underset{n \to +\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$