

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST245

Estructura de Datos 1

Laboratorio Nro. 2: Notación O grande

Alejandro Arroyave Bedoya

Universidad Eafit Medellín, Colombia aarroyaveb@eafit.edu.co

Nombre completo de integrante 2

Universidad Eafit Medellín, Colombia Correointegrante2@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

1.

	N=100000	N=1000000	N=1000000	N=100000000
ArraySum	15345499	65845892	349323262	2993357161
ArrayMax	20085824	60166279	412444764	3828890620
InsertionSort	6949119446	Más de 1 min	Más de 1 min	Más de 1 min
MergeSort	9230259811	Más de 1 min	Más de 1 min	Más de 1 min

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST245

Estructura de Datos 1

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST245
Estructura de
Datos 1

- **3.** Se puede concluir que la notación O no es tanto para obtener el tiempo exacto de un algoritmo, sino, la escala de x10ⁿ que puede tomar el algoritmo en ejecutarse.
- **4.** Se demora un tiempo que no es ni óptimo ni eficiente, pues a escala de x10ⁿ aparece un número muy extenso, y se puede comprobar al ejecutar el algoritmo con un número grande.
- **5.** Los tiempos en ArraySum son mucho menores que en InsertionSort, pues la complejidad asintótica de ArraySum es de O(n) mientras que la complejidad asintótica de InsertionSort es de O(n²), esto se debe a que en ArraySum hay un ciclo y en InsertionSort hay un ciclo anidado dentro de otro.
- **6.** Para arreglos grandes es mucho más eficiente InsertionSort ya que el tiempo de ejecución es menor, y para arreglos pequeños es más eficiente MergeSort, ya que su tiempo de ejecución es menor, y esto se debe a la recursión con la que se implementa Merge Sort ya que con arreglos de mayor tamaño se empieza a llenar el stack y esto lo vuelve menos eficiente.
- 7. Considera el número más a la izquierda con su igual más a la derecha, tal que tenga el mayor número de elementos entre ellos incluyéndolos

4) Simulacro de Parcial

- **1.** *C.* O(n+m)
- **2.** *D.* O(m*n)
- **3.** *B.* O(ancho)
- **4.** B. O(n³)
- **5.** D. O(n²)