Isomorfismo, composições e transformações inversas

Álgebra Linear para Computação Suzana M. F. de Oliveira

Índice

- Revisão
- Isomorfismo
 - Injetora e sobrejetora
 - Dimensão e transformações lineares
 - Isomorfismo
- Composições
- Transformações inversas
- Resumo
- Bibliografia

Revisão

- Transformações lineares
 - Propriedades
 - (i) $T(k\mathbf{v}) = kT(\mathbf{v})$

[Homogeneidade]

(ii) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

[Aditividade]

- Nuc(T) = $\{v \in V; T(v) = 0\}$
- Im(T): $\{w \in W; T(v) = w, \text{ para algum } v \in V\}$

- Se T: V → W for uma transformação linear de um espaço vetorial V num espaço vetorial W.
 - Definição 1:
 - Dizemos que T é uma transformação injetora se T transformar vetores distintos de V em vetores distintos de W

- Se T: V → W for uma transformação linear de um espaço vetorial V num espaço vetorial W.
 - Definição 1:
 - Dizemos que T é uma transformação injetora se T transformar vetores distintos de V em vetores distintos de W
 - Definição 2:
 - Dizemos que T é uma transformação sobrejetora ou, simplesmente, sobre W, se qualquer vetor em W for a imagem de pelo menos um vetor em V.

- Injetora e sobrejetora
 - Teorema 1:
 - Se T: V → W for uma transformação linear, as afirmações seguintes são equivalentes.
 - (a) T é injetora.
 - (b) $Nuc(T) = \{0\}.$

- Injetora e sobrejetora
 - Teorema 1:
 - Se T: V → W for uma transformação linear, as afirmações seguintes são equivalentes.
 - (a) T é injetora.
 - (b) $Nuc(T) = \{0\}.$
 - Demonstração (a)⇒(b)
 - Como T é linear, sabemos que T(0) = 0 pelo Teorema 1(a)[aula passada].
 - Como T é injetora, não pode haver outros vetores em V que são transformados em 0, de modo que Nuc(T) = {0}

- Injetora e sobrejetora
 - Teorema 1:
 - Se T: V → W for uma transformação linear, as afirmações seguintes são equivalentes.
 - (a) T é injetora.
 - (b) $Nuc(T) = \{0\}.$
 - Demonstração (b)⇒(a)
 - Vamos supor que Nuc(T) = {0}. Dados vetores distintos u e v em V, temos u v ≠ ç. Isso implica que T(u v) ≠ 0 pois, caso contrário, Nuc(T) conteria um vetor não nulo.
 - Como T é linear, segue que

$$T(\mathbf{u}) - T(\mathbf{v}) = T(\mathbf{u} - \mathbf{v}) \neq \mathbf{0}$$

de modo que T transforma vetores distintos de V em vetores distintos de W, ou seja, é injetora.

- Injetora e sobrejetora
 - Teorema 2:

Mudou de W para V

- Se V for um espaço vetorial de dimensão finita e
 T : V → V for um operador linear, as afirmações seguintes são equivalentes.
 - (a) T é injetora.
 - (b) $Nuc(T) = \{0\}.$
 - (c) T é sobrejetor, ou seja, Im(T) = V.

Falta provar que (b) e (c) são equivalentes. DICA: Teorema 4 da aula passada

- Injetora e sobrejetora
 - Exemplo: Dilatações e contrações
 - Se V for um espaço vetorial de dimensão finita e c algum escalar não nulo, então o operador linear T: V → V definido por T(v)=cv é injetor e sobre.
 - O operador T é sobrejetor (e, portanto, injetor),
 pois um vetor v qualquer em V é a imagem do vetor (1/c)v.

- Injetora e sobrejetora
 - Exemplo: Operadores matriciais
 - Se $T_A : \mathbb{R}^n \to \mathbb{R}^n$ for o operador matricial $T_A(\mathbf{x}) = A\mathbf{x}$, então T_A é injetora e sobrejetora se, e somente se, A é invertível

Teorema 4.10.1 Anton

Prova no

- Injetora e sobrejetora
 - Exercício: Operadores de translação
 - Seja V = R∞ o espaço de sequências e considere o operador de translação de V definido por

$$T_1(u_1, u_2, \dots, u_n, \dots) = (0, u_1, u_2, \dots, u_n, \dots)$$

 $T_2(u_1, u_2, \dots, u_n, \dots) = (u_2, u_3, \dots, u_n, \dots)$

- (a) Mostre que T₁ é injetor, mas não sobre.
- (b) Mostre que T₂ é sobre, mas não injetor.

- Injetora e sobrejetora
 - Exercício: Operadores de translação
 - Seja V = R∞ o espaço de sequências e considere o operador de translação de V definido por

$$T_1(u_1, u_2, \dots, u_n, \dots) = (0, u_1, u_2, \dots, u_n, \dots)$$

 $T_2(u_1, u_2, \dots, u_n, \dots) = (u_2, u_3, \dots, u_n, \dots)$

- (a) Mostre que T_1 é injetor, mas não sobre.
 - O operador T_1 é injetor porque sequências distintas de \mathbb{R}^{∞} claramente têm imagens distintas.
 - Esse operador não é sobrerejetor porque, por exemplo, nenhum vetor em \mathbb{R}^{∞} é aplicado na sequência (1, 0, 0, . . . , 0, . . .).

- Injetora e sobrejetora
 - Exercício: Operadores de translação
 - Seja V = R∞ o espaço de sequências e considere o operador de translação de V definido por

$$T_1(u_1, u_2, \dots, u_n, \dots) = (0, u_1, u_2, \dots, u_n, \dots)$$

 $T_2(u_1, u_2, \dots, u_n, \dots) = (u_2, u_3, \dots, u_n, \dots)$

- (b) Mostre que T₂ é sobre, mas não injetor.
 - O operador T₂ não é injetor porque, por exemplo, ambos os vetores (1, 0, 0, ..., 0, ...) e (2, 0, 0, ..., 0, ...) são transformados em (0, 0, ..., 0, ...).
 - Esse operador é sobrejetor porque qualquer sequência de números reais pode ser obtida com uma escolha apropriada dos números $u_2, u_3, \ldots, u_n, \ldots$

- Dimensão e transformações lineares
 - Fatos importantes seguintes sobre uma transformação linear T : V → W no caso em que V e W são de dimensão finita
 - Se dim(W) < dim(V), então T não pode ser injetora.
 - Se dim(V) < dim(W), então T não pode ser sobrejetora.

Informalmente: Se uma transformação linear transformar um espaço "maior" num espaço "menor", então alguns pontos do espaço "maior" devem ter a mesma imagem; O outro é semelhante.

iso = "idêntico" morfo = "forma"

- Definição 3:
 - Se uma transformação linear T : V → W for injetora e sobrejetora, dizemos que T é um isomorfismo e que os espaços vetoriais V e W são isomorfos.

Espaços isomorfos têm a mesma "forma algébrica", mesmo se consistirem em objetos de tipos distintos.

Operação em P ₂	Operação em R ³
$3(1 - 2x + 3x^2) = 3 - 6x + 9x^2$	3(1, -2, 3) = (3, -6, 9)
$(2 + x - x^2) + (1 - x + 5x^2) = 3 + 4x^2$	(2, 1, -1) + (1, -1, 5) = (3, 0, 4)
$(4 + 2x + 3x^2) - (2 - 4x + 3x^2) = 2 + 6x$	(4, 2, 3) - (2, -4, 3) = (2, 6, 0)

Esse é um dos mais importantes resultados da Álgebra Linear

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

- Demonstração
 - Seja V um espaço vetorial real de dimensão n.
 - Sejam \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n uma base qualquer de V e $\mathbf{u} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$ (1)

a representação de um vetor **u** em V como uma combinação linear dos vetores da base

Defina a transformação T : V → ℝⁿ por

$$T(\mathbf{u}) = (k_1, k_2, \dots, k_n) \tag{2}$$

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn
- Demonstração
 - Linear:

Propriedades!

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Para provar que V é isomorfo a ℝ¹, devemos encontrar uma **transformação linear** T: V → ℝ¹ que seja **injetora** e **sobre**.

- Demonstração
 - Linear: Sejam u e v dois vetores de V e a um escalar e sejam

$$\mathbf{u} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$
 e $\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \cdots + d_n \mathbf{v}_n$ (3) as representações de \mathbf{u} e \mathbf{v} como combinações lineares dos vetores da base.

- Segue de (1) que

$$T(a\mathbf{u}) = T(ak_1\mathbf{v}_1 + ak_2\mathbf{v}_2 + \dots + ak_n\mathbf{v}_n)$$

= $(ak_1, ak_2, \dots, ak_n)$
= $a(k_1, k_2, \dots, k_n) = aT(\mathbf{u})$

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Para provar que V é isomorfo a ℝ¹, devemos encontrar uma **transformação linear** T: V → ℝ¹ que seja **injetora** e **sobre**.

- Demonstração
 - Linear: Sejam u e v dois vetores de V e a um escalar e sejam

$$\mathbf{u} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$
 e $\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \cdots + d_n \mathbf{v}_n$ (3) as representações de \mathbf{u} e \mathbf{v} como combinações lineares dos vetores da base.

E segue de (2) que

$$T(\mathbf{u} + \mathbf{v}) = T((k_1 + d_1)\mathbf{v}_1 + (k_2 + d_2)\mathbf{v}_1 + \dots + (k_n + d_n)\mathbf{v}_n)$$

$$= (k_1 + d_1, k_2 + d_2, \dots, k_n + d_n)$$

$$= (k_1, k_2, \dots, k_n) + (d_1, d_2, \dots, d_n)$$

$$= T(\mathbf{u}) + T(\mathbf{v})$$

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn
- Demonstração
 - Injetora:

Se **u** e **v** forem distintos em V, então suas imagens em \mathbb{R}^n também são

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

- Demonstração
 - Injetora: Se u ≠ v segue de (3) que k_i ≠ d_i para pelo menos um i.
 - Assim,

$$T(\mathbf{u}) = (k_1, k_2, \dots, k_n) \neq (d_1, d_2, \dots, d_n) = T(\mathbf{v})$$

mostrando que **u** e **v** têm imagens distintas por T.

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn
- Demonstração
 - Sobrejetora:

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

Se existe v em V que T(v)=w para todo w em \mathbb{R}^n

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Para provar que V é isomorfo a ℝⁿ, devemos encontrar uma **transformação linear** T: V → ℝⁿ que seja **injetora** e **sobre**.

- Demonstração
 - Sobrejetora: Para um vetor qualquer w em ℝn

$$\mathbf{w}=(k_1,k_2,\ldots,k_n)$$

- Segue de (2) que **w** é a imagem por T do vetor

$$\mathbf{u} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_n \mathbf{v}_n$$

- Teorema 3:
 - Qualquer espaço vetorial real de dimensão n é isomorfo a Rn

Observação: Isso é uma aplicação de coordenadas

- Exemplo: O isomorfismo natural de P_{n-1} em Rⁿ
 - Isomorfismo natural transforma a base natural $\{1, x, x^2, ..., x^{n-1}\}$ de P^{n-1} na base canônica de R^n

$$1 = 1 + 0x + 0x^{2} + \dots + 0x^{n-1} \qquad \xrightarrow{T} \qquad (1, 0, 0, \dots, 0)$$

$$x = 0 + x + 0x^{2} + \dots + 0x^{n-1} \qquad \xrightarrow{T} \qquad (0, 1, 0, \dots, 0)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x^{n-1} = 0 + 0x + 0x^{2} + \dots + x^{n-1} \qquad \xrightarrow{T} \qquad (0, 0, 0, \dots, 1)$$

Definição 4:

" T_2 bola T_1 "

Se T₁: U → V e T₂: V → W forem transformações lineares, então a composição de T₂ com T₁, denotada por T₂ ○ T₁ é a aplicação definida pela fórmula

$$(T_2 \circ T_1)(\mathbf{u}) = T_2(T_1(\mathbf{u}))$$

em que u é um vetor em U

É exigido que o domínio de T₂ (que é V) contenha a imagem de T₁

- Teorema 4:
 - Se T₁: U → V e T₂: V → W forem transformações lineares,
 - então (T₂∘T₁) : U → W também é uma transformação linear.

Precisaria provar as propriedades de linearidade: Homogeneidade e aditividade

- Exemplo: Transformações lineares
 - Sejam T₁: P₁ → P₂ e T₂: P₂ → P₂ as transformações lineares dadas por

$$T_1(p(x)) = xp(x)$$
 e $T_2(p(x)) = p(2x + 4)$

Então a composição (T₂○T₁) : P₁ → P₂ é

$$(T_2 \circ T_1)(p(x)) = T_2(T_1(p(x))) = T_2(xp(x)) = (2x+4)p(2x+4)$$

– Em particular, se $p(x) = c_0 + c_1 x$, então

$$(T_2 \circ T_1)(p(x)) = (T_2 \circ T_1)(c_0 + c_1 x) = (2x + 4)(c_0 + c_1(2x + 4))$$
$$= c_0(2x + 4) + c_1(2x + 4)^2$$

- Exemplo: Operador identidade
 - Se T: V → V for um operador linear qualquer e
 I: V → V o operador identidade, então, dado qualquer vetor v em V, temos

$$(T \circ I)(\mathbf{v}) = T(I(\mathbf{v})) = T(\mathbf{v})$$

 $(I \circ T)(\mathbf{v}) = I(T(\mathbf{v})) = T(\mathbf{v})$

- Segue que (ToI) e (IoT) são iguais a T

$$T \circ I = T$$
 e $I \circ T = T$

- Se T: V → W for uma transformação linear, então Im(T), é o subespaço de W consistindo em todas as imagens por T de vetores em V
- Se T for injetora, então cada vetor w em Im(T) é a imagem de um único vetor v em V.
- Com isso, é possível definir uma nova aplicação, denominada transformação inversa de T e denotada por T⁻¹, que transforma w de volta em v

- Pode ser provado que T⁻¹ : Im(T) → V é uma transformação linear.
- Além disso, segue da definição de T-1 que

$$T^{-1}(T(\mathbf{v})) = T^{-1}(\mathbf{w}) = \mathbf{v}$$

$$T(T^{-1}(\mathbf{w})) = T(\mathbf{v}) = \mathbf{w}$$

de modo que T e T-1, aplicadas em sucessão e em qualquer ordem, cancelam uma o efeito da outra

- Exercício: Ache a transformação inversa
 - A transformação linear T : Pⁿ → Pⁿ⁺¹ dada por $T(\mathbf{p}) = T(p(x)) = xp(x)$

Provar que é injetora, e depois achar T⁻¹

- Exercício: Ache a transformação inversa
 - A transformação linear T : Pⁿ → Pⁿ⁺¹ dada por $T(\mathbf{p}) = T(p(x)) = xp(x)$
 - Se

$$p = p(x) = c_0 + c_1 x + \dots + c_n x^n$$
 e $\mathbf{q} = q(x) = d_0 + d_1 x + \dots + d_n x^n$

forem polinômios distintos, então eles diferem em pelo menos um coeficiente

Logo

$$T(\mathbf{p}) = c_0 x + c_1 x^2 + \dots + c_n x^{n+1}$$
 e $T(\mathbf{q}) = d_0 x + d_1 x^2 + \dots + d_n x^{n+1}$

também diferem em pelo menos um coeficiente

- Exercício: Ache a transformação inversa
 - Por ser injetora, T tem inversa.
 - Nesse caso, a imagem de T é apenas um subespaço de Pⁿ⁻¹ consistindo em todos os polinômios com termo constante zero.
 - Segue que T^{-1} : $Im(T) \rightarrow P^n$ é dada pela fórmula

$$T^{-1}(c_0 x + c_1 x^2 + \dots + c_n x^{n+1}) = c_0 + c_1 x + \dots + c_n x^n$$

Por exemplo, no caso em que n ≥ 3

$$T^{-1}(2x - x^2 + 5x^3 + 3x^4) = 2 - x + 5x^2 + 3x^3$$

- Teorema 5:
 - Se T₁: U → V e T₂: V → W forem transformações lineares injetoras, então
 - (a) $T_2 \circ T_1$ é injetora e
 - (b) $(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$.

Mostrar que T₂oT₁ transforma vetores distintos de U em vetores distintos em W

Prova no Teorema 8.3.2 do Anton

- Injetora e sobrejetora
- Isomorfismo: Aplicação das coordenadas

$$\mathbf{u} \xrightarrow{T} (k_1, k_2, \dots, k_n) = (\mathbf{u})_S$$

• Composições $T_2 \circ T_1$ U T_1 U T_2 T_2 T_2 T_3 T_4 T_4 T_4 T_5 T_7 T_8 T_8

Transformações inversas

- Exercícios de fixação:
 - Anton seção 8.2
 - 1-2
 - 11
 - Anton seção 8.3
 - 1
 - 3
 - 12
 - 14

- Próxima aula:
 - Matrizes de transformações lineares arbitrárias

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; RORRES, Chris. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.
 - Seção 8.2 e 8.3
 - DE ARAUJO, Thelmo. Álgebra Linear: Teoria e Aplicações. Rio de Janeiro: SBM, 2014.
 - Capítulo 6