第一章 集合论

1.1 基本概念

1.1.1 集合的记号和运算

定义 1.1.1. 设 X 是一集合,则 X 的所有子集构成的集合称为 X 的幂集,记作 P(X).P(X) 的子集称为 X 上的子集族 (以集合为元素的集合称为族). 显然子集族的子集还是子集族.

定义 1.1.2. 设 F 是子集族, 定义

$$\bigcup \mathcal{F} = \{x \in X | \exists A \in \mathcal{F}, x \in A\} = \bigcup_{A \in \mathcal{F}} A$$
$$\bigcap \mathcal{F} = \{x \in X | \forall A \in \mathcal{F}, x \in A\} = \bigcap_{A \in \mathcal{F}} A$$

1.2 一族集合

定义 1.2.1. 给定指标集 J 和集合 X,J 到 P(X) 的映射 f 称为 (指标集为 J 的) 一族 X 的子集, 对 $\alpha \in J$, $f(\alpha) \triangleq A_{\alpha}$, 从而这一族子集又可记为 $(A_{\alpha})_{\alpha \in J}$

定理 1.2.1. 设 \mathcal{F} 是集合 \mathcal{X} 的子集族, 且 \mathcal{F} 有限交封闭, 令

$$\widetilde{\mathcal{F}} = \{ \bigcup \mathcal{E} | \mathcal{E} \subset \mathcal{F} \}$$

则 \widetilde{F} 仍然有限交封闭,且任意并也封闭

第二章 拓扑空间与连续函数

2.1 拓扑空间

定义 2.1.1. 给定集合 X, 若 X 的子集族 T 满足以下三个条件:

1) \emptyset , $X \in \mathcal{T}$

2)T有限交封闭

3)7 任意并封闭

则称 $T \in X$ 的一个拓扑, 指定了拓扑 T 的集合 X 称为一个拓扑空间, T 中的元素称为开集

例子: 三个特殊拓扑

设 X 为任意集合,X 的所有子集的族是 X 的一个拓扑, 称之为离散拓扑;

仅由 X 和 \emptyset 组成的族也是 X 的一个拓扑, 称之为密着拓扑;

使得 X-U 为有限集或等于 X 的子集 U 组成的族是 X 上的一个拓扑, 称之为有限补拓 扑

定理 2.1.1. 设 (X, \mathcal{T}) 是一个拓扑空间,U 是 X 的子集, 若对任意 U 中的元素 x, 存在 x 的开邻域 U_x , 使得得 $U_x \subset U$, 则 U 为开集

定理 2.1.2. 给定集合 X, 设 $(\mathcal{T}_{\alpha})_{\alpha \in I}$ 是 X 的一族拓扑, 则 $\bigcap \mathcal{T}_{\alpha}$ 是 X 上的拓扑

2.2 基和子基

引理 2.2.1. 给定集合 X, 对 X 上的任意子集族 \mathcal{B} , 存在包含 \mathcal{B} 的最小拓扑

证明. 考虑集合 $\mathcal{F} = \{T | T$ 是拓扑且 $\mathcal{B} \subset T\}$,则 \mathcal{F} 非空,由前文定理可知 $\bigcap \mathcal{F}$ 构成拓扑,即为所求拓扑

定义 2.2.1. 称上述包含子集族 \mathcal{B} 的最小拓扑为 \mathcal{B} 生成的拓扑, 记作 $\mathcal{T}(\mathcal{B})$

定理 2.2.2 (子集族生成拓扑的等价刻画). 给定集合 X, 对 X 上的任意子集族 \mathcal{B} , 则 \mathcal{B} 生成的拓扑为 \mathcal{B} 中元素有限交再任意并得到的集合再加上全集 X

证明. 设这个集合为 \mathcal{T} , 则 $\mathcal{B} \subset \mathcal{T}$. 在由定理 1.2.1 知 \mathcal{T} 构成拓扑, 从而 $\mathcal{T}(\mathcal{B}) \subset \mathcal{T}$. 同时 $\mathcal{T} \subset \mathcal{T}_{\mathcal{B}}$, 其中 $\mathcal{T}_{\mathcal{B}}$ 为包含 \mathcal{B} 的拓扑. 故 $\mathcal{T} \subset \bigcap \mathcal{F}$, 即 $\mathcal{T} \subset \mathcal{T}(\mathcal{B})$, 故 $\mathcal{T} = \mathcal{T}(\mathcal{B})$

考虑到对一般的子集族 \mathcal{B} 作有限交运算再得到拓扑并不容易, 因此我们对子集族 \mathcal{B} 附加一些条件, 使我们无需取交便可得到生成的拓扑

定义 2.2.2. 若集合 X 的子集族 B 满足以下两个条件:

1) $\forall x \in X, \exists B \in \mathcal{B},$ 使得 $x \in B$

 $2)\forall B_1, B_2 \in \mathcal{B}$, 若 $x \in B_1 \cap B_2$, 则 $\exists B_3 \in \mathcal{B}$, 使得 $x \in B_3 \subset B_1 \cap B_2$ 则称 \mathcal{B} 是集合 X 的一组基. \mathcal{B} 中的元素称为基元素 (都为 X 的子集)

注. 1) 即 \mathcal{B} 覆盖全空间 X, 可等价刻画为 $\bigcup \mathcal{B} = X$

2) 即任意两个基元素的交可以写成其他基元素的并, 从而由基生成的拓扑的刻画可从有限交的任意并简化为任意并

通过对一般的子集族附加条件成为基后,我们可以再次给出基所生成的拓扑的刻画

定理 2.2.3. 设 \mathcal{B} 是集合 X 的一组基, 则

$$\mathcal{T}(\mathcal{B}) = \{ U \subset X | \forall x \in U, \exists B \in \mathcal{B}, s.t.x \in B \subset U \}$$

证明. 记 $\mathcal{T} = \{U \subset X | \forall x \in U, \exists B \in \mathcal{B}, s.t.x \in B \subset U\}$, 根据拓扑和基的定义可以证明 \mathcal{T} 是一个拓扑, 由于 $\mathcal{B} \subset \mathcal{T}$, 从而 $\mathcal{T}(\mathcal{B}) \subset \mathcal{T}$. 因此只要证明 $\mathcal{T} \subset \mathcal{T}(\mathcal{B})$

 $\forall U \in \mathcal{T}, x \in U, \exists B_x \in \mathcal{B}, s.t.x \in B_x \subset U,$ 从而 $U = \bigcup_{x \in U} B_x,$ 即 U 为 \mathcal{B} 中元素的任意并, 从而 $U \in \bigcap \mathcal{F},$ 故 $\mathcal{T} \subset \mathcal{T}(\mathcal{B}).$ 所以 $\mathcal{T} = \mathcal{T}(\mathcal{B})$

注. 无论是根据原定义, 还是等价刻画, 都有 $\mathcal{B} \subset \mathcal{T}(\mathcal{B})$

上述定理说明, \mathcal{B} 生成的拓扑 $\mathcal{T}(\mathcal{B})$ 中的元素都是 \mathcal{B} 中元素 (即基元素) 的并. 这点从基的第二个条件也可看出. 因此我们可以给出基生成的拓扑的另一等价刻画

定理 2.2.4. 设 \mathcal{B} 是集合 X 的一组基, 则

$$\mathcal{T}(\mathcal{B}) = \{ \bigcup \mathcal{B}' | \mathcal{B}' \subset \mathcal{B} \}$$

证明. 记 $\mathcal{T}' = \{\bigcup \mathcal{B}' | \mathcal{B}' \subset \mathcal{B}\}, - 方面, \mathcal{B} \subset \mathcal{T}(\mathcal{B}), 从而 \mathcal{T}' \subset \mathcal{T}(\mathcal{B})$

另一方面, $\mathcal{T}(\mathcal{B}) = \{U \subset X | \forall x \in U, \exists B \in \mathcal{B}, s.t. x \in B \subset U\}$, 可得 $\forall U \in \mathcal{T}(\mathcal{B}), U = \bigcup_{x \in U} B_x$. 从 而 $\mathcal{T}(\mathcal{B}) \subset \mathcal{T}'$, 故 $\mathcal{T}(\mathcal{B}) = \{\bigcup \mathcal{B}' | \mathcal{B}' \subset \mathcal{B}\}$

因为基生成的拓扑是唯一的, 我们采用如下说法

定义 2.2.3. 设 \mathcal{T} 是集合 X 上的拓扑, 若 $\mathcal{T}(\mathcal{B}) = \mathcal{T}$, 则称 \mathcal{B} 是 \mathcal{T} 的基

对于给定的拓扑, 它的基总是存在的, 例如 $\mathcal{B} = \mathcal{T}$, 但一般不唯一, 下面我们给出判断子集族 \mathcal{B} 是否是拓扑 \mathcal{T} 的基的方法

定理 2.2.5. 设 (X, T) 是拓扑空间, \mathcal{C} 是一个开集族 (即 $\mathcal{C} \subset \mathcal{T}$), 则 \mathcal{C} 是 \mathcal{T} 的基的充分必要条件是 $\forall U \in \mathcal{T}, \forall x \in U, \exists C \in \mathcal{C}, s.t.x \in C \subset U$

证明. 必要性是由基生成的拓扑的唯一性以及其等价刻画可知, 现考虑充分性. 先证明 \mathcal{C} 是一组基.

由于 $X \in \mathcal{T}$, 因此 $\forall x \in X$, $\exists C \in \mathcal{C}$, $s.t.x \in C \subset X$, 满足基的条件一

 $\forall C_1, C_2 \in \mathcal{C} \subset \mathcal{T}, C_1 \cap C_2 \subset \mathcal{T},$ 从而 $\forall x \in C_1 \cap C_2, \exists C_3 \in \mathcal{C}, s.t.x \in C_3 \subset C_1 \cap C_2,$ 满足基的条件二

由条件知 $\mathcal{T} \subset \mathcal{T}(\mathcal{C})$, 再由 $\mathcal{C} \subset \mathcal{T}$, 从最小性和定理 2.2.4 都可以得到 $\mathcal{T}(\mathcal{C}) \subset \mathcal{T}$, 故 $\mathcal{C} \not\in \mathcal{T}$ 的基

通过基来比较其生成的拓扑的粗细

定理 2.2.6. 设 \mathcal{B} 和 \mathcal{B}' 是集合 X 上拓扑 \mathcal{T} 与 \mathcal{T}' 的基,则 $\mathcal{T} \subset \mathcal{T}'$ 的充分必要条件是 $\forall B \in \mathcal{B}, x \in B, \exists B' \in \mathcal{B}', s.t.x \in B' \subset B$

证明. 必要性由 $\mathcal{B} \subset \mathcal{T} \subset \mathcal{T}'$ 可知

充分性: $\forall U \in \mathcal{T}$, 由定义知 $\forall x \in U$, $\exists B \in \mathcal{B}$, $s.t.x \in B \subset U$, 再由条件知 $\exists B' \in \mathcal{B}'$, $s.t.x \in B' \subset U$, 从而 $U \in \mathcal{T}'$

例子:ℝ上的两种拓扑

开区间 (a,b) (a < b) 生成的拓扑称为 \mathbb{R} 的标准拓扑;

半开区间 [a,b) (a < b) 生成的拓扑称为 \mathbb{R} 的下限拓扑

定义 2.2.4. 若子集族 S 満足 $\bigcup S = X$, 则称 S 是 X 的一个子基. 若 $\mathcal{T}(S) = \mathcal{T}$, 则称 S 是 \mathcal{T} 的基

2.3 序拓扑

若 X 是一个全序集, 利用 X 上的序关系来定义一个 X 上的标准拓扑, 称为序拓扑. 这是 \mathbb{R} 上标准拓扑的自然推广

定义 2.3.1. 设 X 是具有全序关系的集合, 且其中元素多于一个, 设 \mathcal{B} 是以下三类集合的族:

- (1)X 中所有的开区间 (a,b)
- $(2)[a_0,b)$ 的区间, 其中 a_0 是 X 中的最小元 (如果存在)
- $(3)(a, b_0]$ 的区间, 其中 b_0 是 X 中的最大元 (如果存在)
- 则子集族 3 是某个拓扑的基,该拓扑就称为序拓扑

例子: 字典序生成的拓扑

例 2.3.1. 设 $X = \{1, 2\} \times \mathbb{Z}_+$, 赋予 X 字典序, 记 $a_n = 1 \times n, b_n = 2 \times n$, 则有

$$a_1 < a_2 < \dots < b_1 < b_2 < \dots$$

证明:由该字典序生成的序拓扑不是一个离散拓扑

证明. 这个拓扑几乎是一个离散拓扑, 因为对于除 b_1 以外的元素, 都是单点集, 即存在只包含该元素的开集, 但对于 b_1 , 不存在只包含 b_1 的开集

2.4 两种构造拓扑的方式

2.4.1 积拓扑

定义 2.4.1. 设 X, Y 是两个拓扑空间, $X \times Y$ 上的积拓扑是以

$$\mathcal{B} = \{U \times V | U \subset X, V \subset Y, U, V$$
是开集}

为基生成的拓扑空间

证明. X, Y 本身也是开集,条件一显然满足;条件二由

$$(U_1 \times V_1) \bigcap (U_2 \times V_2) = (U_1 \bigcap U_2) \times (V_1 \bigcap V_2)$$

立得

注. B 本身不是拓扑

遍历所有开集来获得积拓扑显得麻烦, 我们可以用拓扑的基来刻画积拓扑

定理 2.4.1. 若 \mathcal{B} , \mathcal{C} 是 X, Y 上拓扑的基, 则

$$\mathcal{D} = \{B \times C | B \in \mathcal{B}, C \in \mathcal{C}\}$$

是 $X \times Y$ 上的积拓扑的基

证明. 任取 $W \subset X \times Y$ 是开集, $\forall x \times y \in W$, 则由积拓扑和基的定义, $\exists U \subset X, V \subset Y, U, V$ 是开集, 使得 $x \times y \in U \times V \subset W$. 又 \mathcal{B}, \mathcal{C} 是 X, Y 上拓扑的基,则 $\exists B \in \mathcal{B}, C \in \mathcal{C}$,使得 $x \in B \subset U, y \in C \subset V$,从而 $x \times y \in B \times C \subset W$

定义 2.4.2. 设 $\pi_1: X \times Y \to X$ 定义为:

$$\pi_1(x,y) = x$$

 $\pi_2: X \times Y \to Y$ 定义为:

$$\pi_2(x,y) = y$$

映射 π_1, π_2 分别称为 $X \times Y$ 到其第一分量和第二分量的投影

由此可以引出用子基来刻画积拓扑的方法

定理 2.4.2. 族

$$S = \{\pi_1^{-1}(U) \mid U \neq X + 0 \} \bigcup \{\pi_2^{-1}(V) \mid V \neq Y + 0 \}$$

是 $X \times Y$ 的积拓扑的一个子基.

2.4.2 子空间拓扑

定义 2.4.3. 设 (X,T) 是拓扑空间,A 是 X 的子集. 定义 $T_A = \{U \cap A | U \in T\}$, 则 T_A 是 A 上的拓扑, 称为 A 上的子空间拓扑或子拓扑. 定义了这种拓扑的 A 称为 X 的子空间, T_A 中的元素称为 A 的相对开集. 如果为了明确子拓扑的来源, 则称 T_A 为 T 诱导的子拓扑, 或 A 从拓扑空间 X 继承的子拓扑

注.A 中开集不一定是 <math>X 中的开集

例子: \mathbb{R} 从 \mathbb{R}^2 继承的子拓扑

 \mathbb{R} 作为 \mathbb{R}^2 的子拓扑 = 标准拓扑, 其中的开集不是 \mathbb{R}^2 中的开集

引理 2.4.3. 若Y是X的开集,那么Y的子拓扑的开集是X的开集

定理 2.4.4. 若 \mathcal{B} 是 X 上拓扑的基,则

$$\mathcal{B}_Y = \{B \bigcap Y | B \in \mathcal{B}\}\$$

是Y上子空间拓扑的一个基

证明. 任取 $y \in U \cap Y, U \neq X$ 的开集, 则 $\exists B \in \mathcal{B}$, 使得 $y \in B \subset U$, 从而 $y \in B \cap Y \subset U \cap Y$, 其中 $B \cap Y \in \mathcal{B}_Y$

下面定理揭示了子空间拓扑和积拓扑之间的关系

定理 2.4.5. 若 A, B 分别是拓扑空间 X, Y 上的子空间,则 $A \times B$ 上的积拓扑与作为 $X \times Y$ 的子空间拓扑相同

证明.

注. 即先取子空间拓扑的积拓扑等于积拓扑的子空间拓扑, 两者可以交换顺序

但序拓扑和子空间拓扑没有这么好的相容性,可以举出例子,说明 Y 上的序拓扑和 Y 从 X 上继承的子空间拓扑未必是同一拓扑

例子: 序拓扑与子空间拓扑不同

设 $Y \in \mathbb{R}$ 的子集 $[0,1) \cup \{2\}$. 对于 Y 的子空间拓扑而言, 单点集 2 是开集. 这是由于它是开集 $\left(\frac{3}{2},\frac{5}{2}\right)$ 与 Y 的交的缘故。但是对于 Y 的序拓扑而言,集合 2 不是开集。对于 Y 序拓扑的任何包含 2 的基元素, 形如

 $\{x \mid x \in Y \quad \text{n} \quad a < x \le 2\},$

其中 a 为 Y 中某一点。这种集合必定包含 Y 中小于 2 的点.

定义 2.4.4. 设 Y 是全序集 X 的子集, 如果 $a, b \in Y, a < b$, 就有 $(a, b) \subset Y$, 则称 Y 是凸的定理 2.4.6. 全序集的凸子集 Y 的子空间拓扑和序拓扑相同证明.

2.5 闭集和极限点

定义 2.5.1. 设 A 是拓扑空间 X 的子集, 若 X - A 是开集, 则 A 是闭集

例子: 集合可以又开又闭

例 2.5.1. 考虑实直线上具有子空间拓扑的子集

$$Y = [0,1] \bigcup (2,3)$$

则 [0,1] 与 (2,3) 既是 Y 的开集, 又是 Y 的闭集

定理 2.5.1. 设 X 是拓扑空间,则

- (1)Ø, X 是闭的
- $(2)A_{\alpha}$ 是闭的, 则 $\bigcap_{\alpha \in J} A_{\alpha}$ 是闭的
- $(3)A_1, A_2, \cdots, A_n$ 是闭的, 则 $\bigcup_{i=1}^n A_i$ 是闭的

下面考虑子空间的闭集

定理 2.5.2. 设 Y 是拓扑空间 X 的子空间, 则 A 是 Y 的闭集当且仅当存在 X 的闭集, 使得 $A=Y\cap C$

证明.

定理 2.5.3. 若拓扑空间 X 的子空间 Y 是闭集, 则 Y 中的闭集是 X 中的闭集

定义 2.5.2. 设 $A \in X$ 的子集, 定义 A 的内部

$$\dot{A} = \bigcup_{U \not = X} \bigcup_{X \in \mathcal{A}} U$$

定义 A 的闭包

$$\bar{A} = \bigcap_{C \not = X} \bigcap_{X \in A \subset C} C$$

注. 容易得到以下结论

- (1) 内部: 包含于 A 的最大的 X 的开集
- (2) 闭包: 包含 A 的最小的 X 的闭集
- $(3)\dot{A} \subset A \subset \bar{A}$
- (4)A 是开的 $\Leftrightarrow \dot{A} = A$
- (5)A 是闭的 $\Leftrightarrow \bar{A} = A$

子集在子空间中的闭包

定理 2.5.4. 设 Y 是 X 的子空间, $A \subset Y$, A 在 X 中的闭包是 \bar{A} , 则 A 在 Y 中的闭包为 $\bar{A} \cap Y$

证明.

定义 2.5.3. 设 X 是拓扑空间, $x \in X$, 若 U 是 X 中的开集且 $x \in U$, 则称 U 是 x 的一个邻域

定理 2.5.5 (闭包的第一个等价刻画). 设 X 是拓扑空间, $A \subset X, x \in X$, 则

- $(1)x \in \bar{A} \Leftrightarrow \forall U_x, U_x \cap A \neq \emptyset$
- $(2)x \in \overline{A} \Leftrightarrow \forall$ 拓扑X基元素B, 若 $x \in B$, $B \cap A \neq \emptyset$

证明. $x \in \overline{A}$, 从而 $\forall C$, 若 C 是闭集且 $A \subset C$, 就有 $x \in C$, 即对 \forall 开集 U, 若 $A \subset X - U$, 就有 $x \in X - U$. 取逆否命题, 有 \forall 开集 U, 若 $x \in U$, 就有 $U \cap A \neq \emptyset$

定理 2.5.6.

定义 2.5.4. 设 $A \subset X, x \in X$, 若 x 的任意邻域 U, 满足 $U \cap A - \{x\} \neq \emptyset$, 称 x 是 A 的一个极限点

注. 由极限点的定义可以知道 x 如果是 A 的极限点, 一定有 $x \in \overline{A}$

定理 2.5.7 (闭包的第二个等价刻画). 设 $A \subset X, A'$ 是 A 的极限点组成的集合, 则 $\bar{A} = A \cup A'$

证明. 充分性是显然的, 现证必要性. 只要证任意不在 A 中的闭包元素一定在 A' 中, 设x 是上述元素, 那么由于 $x \in \bar{A}$, 有 $\forall U_x, U_x \cap A \neq \emptyset$, 由于 $x \notin A$, 因此 $U_x \cap A \neq x$, 从而 $U_x \cap A - \{x\} \neq \emptyset$, 从而 $x \in A'$

定义 2.5.5. 设 $x_n \in X, n \in \mathbb{Z}^+, x \in X$, 若对 x 的任意邻域 $U,\exists N$, 使得 $\forall n > N, x_n \in U$, 称 $x \in \{x_n\}$ 的一个极限

例 2.5.2. ℝ 中单点集是闭集, 在一般拓扑空间中不成立.

 $X = \{a, b, c\}$, 取 $\mathcal{T} = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$, 则 $X - \{b\} = \{a, c\}$ 不开, 故 $\{b\}$ 不是闭集

例 2.5.3. 点列极限可能不唯一

取 $x_n = b, \forall n \in \mathbb{Z}^+, a, b, c$ 均为 $\{x_n\}$ 的极限

例子: 收敛到任何实数的点列

例 2.5.4. 在 \mathbb{R} 的有限补拓扑中, 序列 $x_n = \frac{1}{n}$ 收敛到任何实数

为了消除这种反常现象,引入 Hausdorff 空间.

定义 2.5.6. X 是拓扑空间, 若 $\forall x, y \in X, x \neq y, \exists x$ 的邻域 U, y 的邻域 $V, \text{s.t.} U \cap V = \emptyset$, 称 X 是一个 Hausdorff 空间

定理 2.5.8. Hausdorff 空间中的有限集都是闭集

证明. 由于闭集的有限并还是闭集, 因此只要证明 Hausdorff 空间中的单点集是闭集即可. 设 $\{x\}$ 是 Hausdorff 空间中的任一单点集, 只要证 $X - \{x\}$ 是开集即可.

 $\forall y \in X - \{x\}$, 由 Hausdorff 空间的定义知, $\exists U_y, s.t.x \notin U_y$, 那么 $y \in U_y \subset X - \{x\}$ 从而 $X - \{x\}$ 是开集, 因此 $\{x\}$ 是闭集

注,证明过程不需要这么强的条件,因此有限集为闭集不能推出 Hausdorff 空间

定理 2.5.9. Hausdorff 空间中的点列最多收敛于一个点

证明. 反证法 □

定理 2.5.10. 任何序拓扑都是 Hausdorff 的

定理 2.5.11. 两个 Hausdorff 空间的积还是 Hausdorff 的

定理 2.5.12. Hausdorff 空间的子空间是 Hausdorff 的

2.6 连续函数

定义 2.6.1. $f: X \to Y$ 是连续的, 如果任意 Y 中的开集 $V, f^{-1}(V)$ 为 X 中的开集

注. 其等价于 Y 的拓扑的任意 (子) 基元素 $B, f^{-1}(B)$ 为开集

例 2.6.1. 对于 $f: \mathbb{R} \to \mathbb{R}$, 上述连续的定义和 $\varepsilon - \delta$ 定义是等价的

定理 2.6.1 (连续性的等价刻画). 设 X, Y 是拓扑空间, $f: X \to Y$, 下列条件等价:

- (1)f 连续
- (2) 对于 X 的任意子集 A, 均有 $f(\bar{A}) \subset \overline{f(A)}$
- (3) 任意 Y 中的闭集 $B, f^{-1}(B)$ 均为 X 的闭集
- (4) 任意 X 中的元素 x 和 f(x) 的邻域 V, 存在 x 的邻域 U, 使得 $f(U) \subset V$

证明. (2)⇒(3) 设 $f^{-1}(B)=A$, 要证 A 是闭集, 只要证 $\overline{A}\subset A$ 即可. 容易知道 $f(A)\subset B$, 从而有

$$f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} = B$$

两边取原像,即得

$$\overline{A} \subset f^{-1}(B) = A$$

于是 $\overline{A} = A$,因此A是闭集

定义 2.6.2. 若 $f: X \to Y$ 是双射, 且 f, f^{-1} 均连续, 称 f 是一个同胚

注. 双射 f 是同胚当且仅当 $U \subset X$ 是开集 $\Leftrightarrow f(U) \subset Y$ 是开集 由于同胚建立起两个拓扑空间开集的一一对应关系, 因此 X 中任何完全依赖于开集的性质 (即拓扑性质) 可以借助同胚 f 传递到 Y 上, 即同胚是保持拓扑性质的一一映射

定义 2.6.3. 设 $f: X \to Y$ 是连续单射,Z = f(X) 是 Y 的子空间, 若

$$f': X \to Z$$

是同胚, 则称 $f: X \to Y$ 是拓扑嵌入 (即 X 同胚于 Y 的一个子空间)

下面给出一些构造连续函数的方法

定理 2.6.2. 设 X, Y, Z 都是拓扑空间.

- (1)(常值函数) 若 $f: X \to Y$ 将整个 X 映到 Y 上的一点 y_0 , 则 f 连续;
- (2)(嵌入) 若 A 为 X 的一个子空间, 则嵌入映射 $i: A \to X$ 连续;
- (3)(复合) 若 $f: X \to Y 与 q: Y \to Z$ 连续, 则映射 $q \circ f: X \to Z$ 连续;
- (4)(限制定义域) 若 $f: X \to Y$ 连续, $A \to X$ 的一个子空间, 则限制映射 $f|_A: A \to Y$ 连续;
- (5)(限制或扩大值域) 设 $f:X\to Y$ 连续,Z 为 Y 中包含像集 f(X) 的一个子空间, 则限制 f 的值域得到的函数 $g:X\to Z$ 也连续. 若 Z 以 Y 为其子空间, 则扩大 f 的值域得到的函数 $h:X\to Z$ 也连续;
- (6)(连续性的局部表示) 设 $\{U_{\alpha} \mid \alpha \in J\}$ 是 X 的开覆盖, $f: X \to Y$ 满足 $f|_{U_{\alpha}}: U_{\alpha} \to Y$ 连续, 则 f 连续

定理 2.6.3 (黏结引理). 设 $X = A \bigcup B, A, B \in X$ 的闭集. 若 $f: A \to Y, g: B \to Y$ 连续, 且满足 $f|_{A \cap B} = g|_{A \cap B}$, 那么函数

$$h: X \to Y \quad x \mapsto \begin{cases} f(x), x \in A \\ g(x), x \in B \end{cases}$$

也连续

定理 2.6.4 (到积空间的映射). 设 A, X, Y 都是拓扑空间

$$f: A \to X \times Y \quad a \mapsto (f_1(a), f_2(a))$$

则 f 连续 $\Leftrightarrow f_1: A \to X, f_2: A \to Y$ 都连续

2.7 积拓扑

2.8 度量拓扑

定义 2.8.1. 集合 X 上的一个度量是一个函数

$$d: X \times X \to \mathbb{R}$$

使得以下三个性质成立:

 $(1)d(x,y) \ge 0$, 当且仅当 x = y 时取等

$$(2)d(x,y) = d(y,x), \forall x, y \in X$$

$$(3)d(x,z) \leqslant d(x,y) + d(y,z), \forall x, y, z \in X$$

定义 2.8.2. 对于 $\forall x \in X, \varepsilon > 0$, 定义所谓以 x 为中心的 ε -球

$$B_d(x,\varepsilon) = \{ y \in X | d(x,y) < \varepsilon \}$$

则以

$$\mathcal{B} = \{B_d(x,\varepsilon)|x\in X, \varepsilon>0\}$$

为基生成的拓扑叫作度量拓扑

证明. 显然 \mathcal{B} 是覆盖全空间 X 的,下面证明任意基元素的交可以表为其他基元素的并. 对 $\forall y \in B_d(x_1, \varepsilon_1) \cap B_d(x_2, \varepsilon_2)$, 取

$$\varepsilon = \min\{\varepsilon_1 - d(x_1, y), \varepsilon_2 - d(x_2, y)\}\$$

则
$$B_d(y,\varepsilon) \subset B_d(x_1,\varepsilon_1) \cap B_d(x_2,\varepsilon_2)$$

推论 **2.8.1.** 集合 U 是由 d 诱导出来的度量拓扑中的开集, 当且仅当对于每一个 $y \in U$, $\exists \delta > 0$ 使得 $B_d(y,\delta) \subset U$

证明. 这里充分性是显然的, 只需证明必要性即可. $\forall y \in U, \exists B_d(x, \varepsilon) \subset U, s.t.y \in B_d(x, \varepsilon)$ 同上构造, $\delta > 0, s.t.B_d(y, \delta) \subset B_d(x, \varepsilon) \subset U$

引理 2.8.2. 设度量 d, d' 诱导了拓扑 $\mathcal{T}, \mathcal{T}', \, \text{则 } \mathcal{T} \subset \mathcal{T}'$ 当且仅当

$$\forall x \in X, \varepsilon > 0, \exists \delta > 0, s.t. B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$$

证明. 必要性. $\forall x \in X, \varepsilon > 0$, 考虑 $B_d(x, \varepsilon)$, 则由于 $\mathcal{T} \subset \mathcal{T}'$, 从而 $B_d(x, \varepsilon) \subset \mathcal{T}'$, 即 $B_d(x, \varepsilon)$ 也是 \mathcal{T}' 的开集. 由上知对 $x \in B_d(x, \varepsilon)$, $\exists \delta > 0$, $s.t.B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$

充分性. 只要证明 \mathcal{T} 的典型基元素 $B_d(x, \varepsilon_0)$ 可以被 \mathcal{T}' 的基元素覆盖即可. $\forall y \in B_d(x, \varepsilon_0)$,由于 $B_d(x, \varepsilon_0)$ 是 \mathcal{T} 的开集, 从而存在 $\varepsilon > 0$, $s.t.B_d(y, \varepsilon) \subset B_d(x, \varepsilon_0)$,再由已知条件可以得到 $\exists \delta > 0$, $s.t.B_{d'}(y, \delta) \subset B_d(y, \varepsilon) \subset B_d(x, \varepsilon_0)$. 从而 $\mathcal{T} \subset \mathcal{T}'$

例子: 两个度量

例 2.8.1. 对于集合 X, 定义

$$d(x,y) = \begin{cases} 1, x \neq y \\ 0, x = y \end{cases}$$

则 d 诱导了 X 上的离散拓扑, 如 $B(x,1) = \{x\}$

例 2.8.2. 对于 $X = \mathbb{R}^n$, 定义欧式度量

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

定义平方度量

$$\rho(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

定义 2.8.3. 设 X 是一个拓扑空间, 若 X 的拓扑可以由一个度量 d 诱导, 称 X 是可度量化的, 并称 (X,d) 是一个度量空间

注. 是否可度量化仅依赖拓扑空间本身, 这是一个拓扑性质, 但是与 *X* 的具体度量有关的一些性质一般不是这样, 他们不是拓扑性质

现在有一个亟待解决的问题:

我们不能简单的把欧式度量和平方度量推广到可数无穷大的情况,因为在这种情况下度量很有可以是无穷大,这是没有意义的.为了解决这个问题,我们引入所谓标准有界度量的概念

定义 2.8.4. 称度量空间 (X,d) 的子集 A 是有界的, 如果

$$\sup\{d(x,y)|x,y\in A\}<+\infty$$

若 A 有界, 则称 $\sup\{d(x,y)|x,y\in A\}$ 是 A 的直径, 记作 diam A

注, 有界性就不是一个拓扑性质, 因为它不由拓扑本身决定, 而依赖于具体度量的选取

定义 2.8.5. 设 (X,d) 是度量空间, 定义

$$\bar{d}(x,y) = \min\{d(x,y), 1\}$$

则 \bar{d} 是一个度量, 且 \bar{d} , d 诱导了相同的拓扑, 称 \bar{d} 为 d 的标准有界度量

证明. 度量的前两个条件是容易验证的,下面证明其满足三角不等式: $\forall x, y, z \in X$,容易得到以下结论

$$\bar{d}(x,z) \leqslant \min\{d(x,y) + d(y,z), 1\}$$

下面进行分类讨论:

case1: $d(x,y) \geqslant 1$ 或 $d(y,z) \geqslant 1$, 则 $\bar{d}(x,z) \leqslant 1 \leqslant \bar{d}(x,y) + \bar{d}(y,z)$

 ${\rm case2:} d(x,y), d(y,z) < 1, 则 \ \bar{d}(x,z) \leqslant \min \{ d(x,y) + d(y,z), 1 \} \leqslant d(x,y) + d(y,z) = \bar{d}(x,y) + \bar{d}(y,z)$

综上 \bar{d} 是一个度量.

注意到 $B_d(x,\varepsilon) = B_{\bar{d}}(x,\varepsilon), \forall x \in X, 0 < \varepsilon \leq 1, 且 \forall \varepsilon > 1, 成立$

$$B_{\bar{d}}(x,\varepsilon) = X$$

则我们有如下的包含链

$$B_{\bar{d}}(x, \min\{\varepsilon, 1\}) = B_d(x, \min\{\varepsilon, 1\}) \subset B_d(x, \varepsilon) \subset B_{\bar{d}}(x, \varepsilon), \forall x \in X, \varepsilon > 0$$

由引理 2.8.2 知 d, d 生成的拓扑相同

现在我们引入由标准有界度量所诱导的一致度量

定义 2.8.6. 对于给定指标集 J 及 $\mathbb{R}^J = \prod_{\alpha \in J} \mathbb{R}$ 中的点 $\boldsymbol{x}, \boldsymbol{y}$ 定义一致度量

$$\bar{\rho}(\boldsymbol{x}, \boldsymbol{y}) = \sup\{\bar{d}(x_{\alpha}, y_{\alpha}) | \alpha \in J\}$$

称 $\bar{\rho}$ 诱导的拓扑是 ℝ^J 的一致拓扑

证明. 三角不等式的证明: $\forall x, y, z \in \mathbb{R}^J$

$$\bar{d}(x_{\alpha}, z_{\alpha}) \leqslant \bar{d}(x_{\alpha}, y_{\alpha}) + \bar{d}(y_{\alpha}, z_{\alpha}) \leqslant \bar{\rho}(\boldsymbol{x}, \boldsymbol{y}) + \bar{\rho}(\boldsymbol{y}, \boldsymbol{z})$$

再遍历 $\alpha \in J$, 即得

$$\bar{\rho}(\boldsymbol{x}, \boldsymbol{z}) \leqslant \bar{\rho}(\boldsymbol{x}, \boldsymbol{y}) + \bar{\rho}(\boldsymbol{y}, \boldsymbol{z})$$

ℝ^ω 是否可度量化与其上拓扑是积拓扑还是箱拓扑是有关的, 一般情况下一致拓扑和积拓 扑及箱拓扑之间有如下关系

定理 2.8.3. \mathbb{R}^J 上的一致拓扑介于箱拓扑和积拓扑之间,即一致拓扑细于积拓扑而粗于箱拓扑; 当 $|J|=\infty$ 时三者不同

证明. 对于积拓扑的典型基元素 $\prod U_{\alpha}$, 设 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ 使得 $U_{\alpha} \neq \mathbb{R}. \forall \boldsymbol{x} \in \prod U_{\alpha}$, 由于 $U_{\alpha_{i}}$ 是 \mathbb{R} 上的开集, 因此我们可以适当的选取 $\varepsilon_{i} > 0$, 使得 $B_{\bar{d}}(x_{\alpha_{i}}, \varepsilon_{i}) \subset U_{\alpha_{i}}$, 取 $\varepsilon = \min_{1 \leq i \leq n} \varepsilon_{i}$. 下面证明 $B_{\bar{\rho}}(\boldsymbol{x}, \varepsilon) \subset \prod U_{\alpha}$

$$\forall \boldsymbol{z} \in B_{\bar{\rho}}(\boldsymbol{x}, \varepsilon) \Leftrightarrow \bar{d}(x_{\alpha_i}, z_{\alpha_i}) < \varepsilon \Leftrightarrow \boldsymbol{z} \in \prod U_{\alpha}$$

从而一致拓扑细于积拓扑

对于一致拓扑中以x为中心的 ε -球,取

$$U = \prod \left(x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2} \right)$$

则 $U \subset B_{\bar{\rho}}(\boldsymbol{x}, \varepsilon)$, 且 U 是箱拓扑中基元素

下面完成对 № 可度量化的证明,此时一定要取积拓扑

定理 2.8.4. № 的积拓扑时可度量化的,且可以由度量

$$D(\boldsymbol{x}, \boldsymbol{y}) = \sup \left\{ \frac{\bar{d}(x_n, y_n)}{n} \right\}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{\omega}$$

诱导

证明.

事实上 \mathbb{R}^{ω} 的箱拓扑是不可度量的,我们将证明可度量空间的一系列性质,再说明 \mathbb{R}^{ω} 的箱拓扑不满足这些性质,从而证明 \mathbb{R}^{ω} 的箱拓扑不可度量

定理 2.8.5. 度量拓扑是 Hausdoff 的

下面我们讨论度量空间与连续函数之间的关系

定理 2.8.6. 设 $(X, d_X), (Y, d_Y)$ 是两个度量空间, 那么

$$f: X \to Y$$

连续当且仅当 $\forall x \in X, \varepsilon > 0, \exists \delta > 0$, 使得

$$d_X(x, x_1) < \delta \Rightarrow d_Y(f(x), f(x_1)) < \varepsilon$$

Г

证明.

引理 2.8.7 (序列引理). 设 $A \subset X$, 若 $x_n \in A$, $x_n \to x$, 则 $x \in \bar{A}$. 若 X 是可度量化空间, 则 逆命题也成立

证明. 第一个命题是显然的. 设 d 是诱导该拓扑的一个度量, 则对于 $x \in \bar{A}$, 取 $x_n \in A \cap B_d\left(x,\frac{1}{n}\right)$. 对于 x 的任何开集 U, 存在 $B_d(x,\varepsilon) \subset U$. 取 $N > \frac{1}{\varepsilon}$, $\forall n > N, x_n \in U$. 现在可以证明 \mathbb{R}^ω 的箱拓扑不可度量

例 2.8.3. 证明 \mathbb{R}^{ω} 的箱拓扑不可度量

证明.

定理 2.8.8. 若 X 是可度量化空间, 则 $f: X \to Y$ 连续的充分必要条件是对于 X 中每个收敛序列 $x_n \to x, f(x_n) \to f(x)$

定义 2.8.7. 设 Y 是度量空间, 称 $f_n: X \to Y$ 一致收敛于 $f: X \to Y$. 若 $\forall \varepsilon > 0, \exists N > 0, s.t.n > N, \forall x \in X$, 成立

$$d(f_n(x), f(x)) < \varepsilon$$

定理 2.8.9. 设 $f_n: X \to Y$ 连续且一致收敛于 $f: X \to Y$, 则 f 连续

证明. 设 $V \subset Y$ 是开集, 那么要证明 $f^{-1}(V)$ 是一个开集即可. 取 $x_0 \in f^{-1}(V)$, 只要证明存在覆盖 x_0 且包含于 $f^{-1}(V)$ 的开集即可.

先考虑 $f(x_0) \in V$, 由于 Y 是度量空间, 因此存在 $\varepsilon > 0$, 使得 $B(f(x_0), \varepsilon) \subset V$.

由于 $f_n: X \to Y$ 连续且一致收敛于 $f: X \to Y$, 因此 $\exists N > 0$, 使得 $\forall n \geq N, \forall x \in X$, 成立

$$d(f_n(x), f(x)) < \frac{\varepsilon}{3}$$

特别地我们有

$$d(f_N(x), f(x)) < \frac{\varepsilon}{3}$$

第三章 连通性和紧致性

在数学分析中,关于连续函数有两个基本结论:介值定理和最值定理。本章我们将引入连通性和紧致性这两个重要的概念,由此将上述定理推广到拓扑空间中。无论是连通性还是紧致性,我们都需要回答两方面问题: 1.为什么这个性质重要; 2.如何得到这些性质。回答第一个问题就是要从这些性质中推出其他我们关心的性质,回答第二个问题就是证明或构造一些空间满足这些性质

3.1 连通空间

定义 3.1.1. 设 X 是拓扑空间,U,V 是 X 上不交的非空开集, 若 $X = U \cup V$, 则称 U,V 是 X 的分割. 如果 X 上不存在分割, 则称 X 是连通的. 设 Y 是 X 的子集, 若子空间 Y(不) 连通, 则称 Y 是 (X) 连通的子集或 Y 是 (X) 连通的

 \dot{x} . X 连通等价于 X 的既开又闭子集只有 X 与 \varnothing

例 3.1.1. ℝ 是连通的

这在我们对实数域朴素的理解里是正常的,毕竟实数是连续且完备的,中间没有"窟窿",不可能找到两个不交的非空开集的并等于实数集. 这个结论的严格证明需要用到多条引理与定理,下面将一一介绍这些定理,并最终完成对实数集连通性的证明

引理 3.1.1 (子空间连通性的刻画)**.** 设 Y 是 X 的子空间, 则不交的非空子集 A,B 是 Y 的分割当且仅当 $A \cup B = Y, A' \cap B = B' \cap A = \emptyset$

例子

例 3.1.2. X 的平凡拓扑,X 是连通的

X 的离散拓扑, 且 $|X| \ge 2$, 则 X 不连通

 $Y = [-1,0) \cup J(0,1] \subset \mathbb{R}$, 不连通

 $Y = [-1,1] \subset \mathbb{R}$, 连通

ℚ ⊂ ℝ 不连通, 进一步, ℚ 的连通子空间都是单点集

引理 3.1.2. 设 X = U | V 是分割, $Y \in X$ 的连通子空间,那么 $Y \subset U$ 或 $Y \subset V$

证明. 设 $Y \nsubseteq U, Y \nsubseteq V$, 那么 $Y \cap U \neq \emptyset, Y \cap V \neq \emptyset$, 从而 $Y = (Y \cap U) \sqcup (Y \cap V)$

定理 3.1.3. 设 $A_{\alpha} \subset X$ 是连通子空间, $\alpha \in J$, $\bigcap_{\alpha \in J} A_{\alpha} \neq \emptyset$, 那么 $Y = \bigcup_{\alpha \in J} A_{\alpha}$ 也连通

证明. 设 $Y = U \bigsqcup V$, 由于 $\bigcap_{\alpha \in J} A_{\alpha} \neq \emptyset$, 故取 $x \in \bigcap_{\alpha \in J} A_{\alpha}$, 不妨设 $x \in U$. 由于 A_{α} 均是连通的, 从而 $A_{\alpha} \in U$ 或 $A_{\alpha} \in V$, $\forall \alpha \in J$, 但 $x \in U$, 从而 $A_{\alpha} \in U$, $\forall \alpha \in J$. 那么意味着 $V = \emptyset$, 这与分割的定义矛盾

对于有限个连通子空间,有以下更弱的条件,只要求它们两两有交

定理 3.1.4. 设 $A_{\alpha} \subset X$ 是连通子空间, $A_n \cap A_{n+1} \neq \emptyset$, 则 $\bigcap A_n$ 连通

定理 3.1.5. 设 A 是 X 的连通子空间,A \subset B \subset \overline{A} = A \bigcup A', 则 B 是连通的,特别地 \overline{A} 是连通的

证明. 设 $B = U \sqcup V$, 其中 $\overline{U} \cap V = U \cap \overline{V} = \emptyset$. 由引理 3.1.2 知 $A \subset U$ 或 $A \subset V$, 不妨设 $A \subset U$, 从而有 $\overline{A} \subset \overline{U}$, 因此 $\overline{A} \cap V = \emptyset$, 所以 $V = \emptyset$, 这与分割的定义矛盾

定理 3.1.6. 若 $f: X \to Y$ 连续, 且 X 连通, 则 f(X) 也连通

证明. 假设存在分割 $f(X) = A \mid B$, 则有 X 的分割

$$X = f^{-1}(A) \mid f^{-1}(B)$$

矛盾! 因此 f(X) 连通

定理 3.1.7. 有限多个连通空间的积是连通的

证明. 特别地, 根据归纳法, 我们只需对 n=2 的情况证明即可. 设 X,Y 连通, 我们只要证明 $X\times Y$ 连通即可

先取 $a \times b \in X \times Y$, 我们考虑构造一系列经过 $a \times b$ 的连通子空间, 使得它们的并为积空间. $\forall x \in X$, 构造

$$T_x = (x \times Y) \bigcup (X \times b)$$

由于 $x \times Y$ 同胚于 $Y, X \times b$ 同胚于 X, 从而它们都是连通的, 且它们还有公共的交点 $x \times b$, 从而 T_x 也是连通

显然

$$X \times Y = \bigcup_{x \in X} T_x$$

例子: \mathbb{R}^{ω} 的连通性

从而 $X \times Y$ 是连通的

既然有限个连通子空间的积是连通的,那么我们很自然的会去思考可数无穷个连通子空间的积是否连通,乃至不可数无穷个连通子空间的积是否连通.与前相同,这也依赖于积空间上的拓扑.

例 3.1.3. \mathbb{R}^{ω} 对箱拓扑是不连通的

证明.

M 3.1.4. \mathbb{R}^{ω} 对积拓扑是连通的

证明.

存在一般性的结论:

定理 3.1.8. 若 X_{α} 均连通, 则 $\prod_{\alpha \in J} X_{\alpha}$ 在积拓扑下连通

3.2 ℝ 的连通子空间

介值定理从根本上依赖于 \mathbb{R} 的连通性, 在证明 \mathbb{R} 的连通性之前, 我们先将介值定理进行适当的推广:

定理 3.2.1. 设 X 是连通的,Y 是序拓扑空间, $f: X \to Y$ 是连续的. 若 $a,b \in X, r \in Y$ 介于 f(a), f(b) 之间,则存在 $c \in X$ 使得 f(c) = r. 换言之, $r \in f(X)$

证明. 同样用反证法, 我们假设 $r \notin f(X)$, 则有 X 的分割

$$X=f^{-1}((-\infty,r))\bigsqcup f^{-1}((r,+\infty))$$

这里挖去了点r,但由于其不是f的像,所有没有影响,这样就导出了矛盾 在证明 \mathbb{R} 的连通性之前,先给一个例子

例子:ℝ 的下限拓扑不是连通的

例 3.2.1. ℝ 的下限拓扑不是连通的

证明. 用定义来证不是那么清楚, 我们考虑连通的等价刻画, 即既开又闭的集合只有全集和空集, 事实上 $\forall a < b, [a, b)$ 都是既开又闭的, 因此不是连通的

ℝ 的连通性具有普遍性, 我们将其性质剥离出来, 在更一般的情况下证明连通性, 即所谓线性连续统

定义 3.2.1. 若全序集 L 满足下列条件:

- (1)L 的任何非空有上界的子集必有上确界
- $(2)\forall x < y, \exists z \in (x, y)$

则称 L 为一个线性连续统

定理 3.2.2. 线性连续统在序拓扑下都是连通的, 且 L 的区间和射线均连通

证明. 考虑到 L 以及 L 的任何区间及射线都是凸集, 因此考虑证明若集合 Y 是 L 的凸子集, 则 Y 是连通的. 设存在分割 $Y = A \bigsqcup B$, 任取 $a \in A, b \in B$, 不妨设 a < b, 此时 $[a,b] \subset Y$, 这样我们得到了一个 [a,b] 的分割

$$[a,b] = ([a,b] \cap A) | | | ([a,b] \cap B)$$

记 $A' = [a, b] \cap A, B' = [a, b] \cap B$, 设 $c = \sup A'$, 由于 $b \in A'$ 的一个上界, 从而有 $c \in [a, b]$, 分为两种情况来讨论:

case1: $c \in B'$, 这意味着 $c \notin A$, 从而 $c \neq a$. 由于 B' 是

定义 3.2.2. 设 $x, y \in X, x$ 到 y 的道路是一个连续映射 $f: [0,1] \to X$, 使得 f(0) = x, f(1) = y. 若 $\forall x, y \in X$ 均可由道路连通, 则称 X 是道路连通的

命题 3.2.1. 若 X 是道路连通的. 则 X 是连通的

证明. 依然是反证法, 假设 X 存在分割 $X = A \bigsqcup B$, 任取 $x \in A, y \in B$, 由 X 道路连通可知存在连续映射 $f: [0,1] \to X$, 使得 f(0) = x, f(1) = y. [0,1] 是连通的, 进而 f([0,1]) 也是连通的. 这是 X 的一个连通子空间, 从而 $f([0,1]) \subset A$ 或 $f([0,1]) \subset B$, 这是矛盾的

3.3 紧致空间

3.3.1 定义及例子

定义 3.3.1. 设 $\mathcal{A} = \{U_{\alpha} \mid \alpha \in J\}$ 是 X 的开集族, 若 $X = \bigcup_{\alpha \in J} U_{\alpha}$, 称 \mathcal{A} 为 X 的一个开覆盖

定义 3.3.2. 若 X 的任意开覆盖都有有限子覆盖,称 X 是紧的,即存在 $\alpha_1,\alpha_2,\cdots,\alpha_n,s.t.X=\bigcup_{i=1}^n U_{\alpha_i}$

一些例子

1)X 上的离散拓扑紧致当且仅当 X 是有限集, 事实上任何有限集都是紧的

3.3.2 紧空间的性质

定理 3.3.1. 若 X 紧致,Y 是 X 的闭集, 则 Y 紧致

证明. 设 $\mathcal{A} = \{V_{\alpha} \mid \alpha \in J\}$ 是 Y 的一个开覆盖, 则 $\forall \alpha \in J$, 存在 X 的开集 U_{α} , 使得 $V_{\alpha} = U_{\alpha} \cap Y$, 令

$$\mathcal{B} = \{ U_{\alpha} \mid \alpha \in J \} \big[J \{ X - Y \}$$

则 \mathcal{B} 是 X 的一个开覆盖, 由 X 紧致, 知存在 X 的有限子覆盖 ℓ , 使得

$$\ell - \{X - Y\} = \{U_{\alpha_1}, U_{\alpha_2}, \cdots, U_{\alpha_n}\}$$

于是 $Y \subset \bigcup_{i=1}^{n} U_{\alpha_i}$, 两边交Y, 得

$$Y = \bigcup_{i=1}^{n} (U_{\alpha_i} \cap Y) = \bigcup_{i=1}^{n} V_{\alpha_i}$$

因此 Y 有有限子覆盖, 故 Y 是紧致的

定理 **3.3.2** (Hausdoff 空间中的紧致子空间的必要条件)**.** 若 X 是一个 Hausdoff 空间,Y 是 X 的一个紧致子空间,那么 Y 是闭集

证明. [经典证明] 取 $x \in X - Y, \forall y \in Y$, 由于 X 是一个 Hausdoff 空间, 则存在 x 的邻域 U_y 和 y 的邻域 V_y , 使得 $U_y \cap V_y = \varnothing$. 令 y 遍历 Y, 得到 Y 的开覆盖

$$\mathcal{A} = \{ V_y \cap Y \mid y \in Y \}$$

由于 Y 是紧致的, 因此存在 y_1, y_2, \dots, y_n , 使得

$$Y = \{V_{y_i} \cap Y \mid 1 \leqslant i \leqslant n\}$$

令
$$U = \bigcap_{i=1}^{n} U_{y_i}$$
, 则 $U \in X$ 的邻域, 且 $U \cap Y = \emptyset$, 即 $U \subset X - Y$

推论 3.3.3. 设 C_1, C_2 为 Hausdorff 空间中不交的紧子集, 则存在不交开集 U_1, U_2 , 使得 $C_i \subset U_i, i=1,2$

证明. 由上述证明可以看出: $\forall x \in C_1$, 存在 x 的邻域 U_x 和开集 V_x , 使得 $U_x \cap V_x = \varnothing$, $C_2 \subset V_x$. 取有限个 U_{x_i} 覆盖 C_1 , 令 $U_1 = \bigcup_{i=1}^n U_{x_i}$, $U_2 = \bigcap_{i=1}^n V_{x_i}$ 即可

定理 3.3.4. 若 $f: X \to Y$ 是连续映射, X 紧致, 则 f(X) 紧致

证明.

推论 3.3.5. 设 $f: X \to Y$ 是连续双射, X 紧致, Y 是一个 Hausdoff 空间, 则 f 是同胚

证明. 只要证明 $f^{-1}(x)$ 是连续映射即可, 也即对 X 中任意闭集 A, f(A) 是 Y 中的闭集 首先由定理3.3.1知 A 是紧致, 再由定理 3.3.4, 知 f(A) 是 Y 中的紧子集, 最后由定理 3.3.2知 f(A) 是闭集

注. 由于同胚建立起两个拓扑空间开集的一一对应关系, 保持了拓扑空间的拓扑性质, 因此结论也暗含着 Y 紧致和 X 是一个 Hausdoff 空间

为了证明有限多个紧致空间的积还是紧致的, 先证明一个引理

引理 3.3.6 (管状引理). 已知 Y 是紧集, 设 $x \in X, x \times Y \subset N$, 其中 N 是 $X \times Y$ 的开集, 则存在 x 的邻域 U. 使得 $U \times Y \subset N$

证明. $\forall y \in Y, x \times y \in N$, 于是存在 $X \times Y$ 的基元素 $U_y \times V_y \subset N, U_y, V_y$ 分别为 X, Y 中的开集, 使得

$$x \times y \in U_y \times V_y \subset N$$

于是 $x \in U_y, y \in V_y$ 这样就构造了 Y 的开覆盖 $\{V_y \mid y \in Y\}$, 由于 Y 紧致, 因此存在有限子覆盖 V_{u_1}, \dots, V_{u_n} , 再取

$$U = \bigcap_{i=1}^{n} U_{y_i}$$

于是
$$U \times Y \subset U \times \bigcup_{i=1}^{n} V_{y_i} \subset \bigcup_{i=1}^{n} (U_{y_i} \times V_{y_i}) \subset N$$

定理 3.3.7. 若 X_1, X_2, \dots, X_n 紧致, 则 $X_1 \times X_2 \times \dots \times X_n$ 紧致

证明. 由归纳法, 知只需证明 n=2 的情况即可, 记 $X_1=X, X_2=Y$ 设 \mathcal{A} 是 $X\times Y$ 的一个开覆盖, 我们先考虑竖线, $\forall x\in X, x\times Y$ 紧致, 因此存在 $U_{x,1},\cdots,U_{x,n_x}\in\mathcal{A}$, 使得

$$x \times Y \subset \bigcup_{i=1}^{n_x} U_{x,i}$$

即每一条竖线都有有限子覆盖, 再根据管状引理 3.3.6, 将竖线拓宽成管子, 这样可以得到开集, 存在 $U_x \subset X$, 使得

$$U_x \times Y \subset \bigcup_{i=1}^{n_x} U_{x,i}$$

同时我们得到了 X 的一个开覆盖 $\{U_x \mid x \in X\}, X$ 紧致, 因此有有限子覆盖 $X = \bigcup_{i=1}^m U_{x_i}$ 于是

$$X \times Y = \bigcup_{i=1}^{m} (U_{x_i} \times Y) \subset \bigcup_{i=1}^{m} \bigcup_{j=1}^{n_x} U_{x_i,j}$$

得证

3.4 ℝ 的紧子空间

实数里的紧集是最基本且常用的例子,但紧致这个拓扑性质并不直观,下面我们需要回答的问题是实数中的紧集是什么样的?

定理 3.4.1. 若全序集 X 有上确界性质,则 X 中闭区间 [a,b] 紧致

推论 3.4.2. \mathbb{R} 中的闭区间 [a,b] 紧致

定理 3.4.3. \mathbb{R}^n 中的紧集即为欧式度量下的有界闭集

证明. 必要性: 设 $A \subset \mathbb{R}^n$ 是紧集,则由定理 3.3.2知 A 是闭集. 构造 A 的开覆盖

$$\mathcal{A} = \{ B(\mathbf{0}, n) \mid n \geqslant 1 \}$$

由 A 的紧性, 知 $\exists N$, 使得 $A \subset B(\mathbf{0}, N)$, 即 A 有界

充分性: 设 A 是有界闭集, 则 $\exists N$, 使得

$$A \subset [-N, N]^n$$

由推论 3.4.2知 [-N, N] 是紧的, 从而 $[-N, N]^n$ 也是紧的, 再由定理 3.3.1知 A 是紧的

推论 3.4.4. 欧氏空间中的闭球是紧的

下面推广极值定理

定理 3.4.5 (极值定理). 设 $f: X \to Y$ 连续,X 紧致,Y 是序拓扑空间,则存在 $c, d \in X$,使得

$$f(c) \leqslant f(x) \leqslant f(d), \forall x \in X$$

证明. 由定理 3.3.4知 f(X) 是 Y 中的紧子集, 只要证明 Y 的紧子集 A 一定有最大最小值, 下面只证最大值

假设 A 无最大元, 也即 $\forall a_0 \in A, \exists a \in A,$ 使得 $a_0 < a$, 也即 $a_0 \in (-\infty, a)$, 则有 A 的开覆盖

$$\mathcal{A} = \{(-\infty, a) \mid a \in A\}$$

由 A 的紧性, 知存在 a_1, \dots, a_n , 使得 $A \subset \bigcup_{i=1}^n (-\infty, a_i)$

取
$$a = \max_{1 \le i \le n} a_i$$
, 则 $a \in A$ 但 $a \notin \bigcup_{i=1}^n (-\infty, a_i)$, 矛盾下面推广一致连续, 先做一些准备

定义 3.4.1. 设 (X,d) 是度量空间, 设 $x \in X, A \subset X$ 非空, 定义 x 到 A 的距离为

$$d(x,A) = \inf_{a \in A} d(x,a)$$

引理 3.4.6. 取定子集 A, 则 d(x,A) 是 $X \to \mathbb{R}$ 的连续函数

证明.

$$d(x,a) \leqslant d(y,a) + d(x,y) \quad \forall a \in A$$

$$\Rightarrow d(x,A) \leqslant d(x,a) \leqslant d(y,a) + d(x,y)$$

$$\Rightarrow d(x,A) \leqslant d(y,A) + d(x,y)$$

$$\Rightarrow |d(x,A) - d(y,A)| \leqslant d(x,y)$$

定理 3.4.7 (Lebesgue 数引理). 设 (X,d) 紧致, $A \in X$ 的开覆盖,则存在 $\delta > 0$ 使得任意 $A \subset X$, 若 diam $A < \delta$,则存在 $U \in A$,使得 $A \subset U$.称 δ 为 A 的一个 Lebesgue 数

证明. 若 $X \in \mathcal{A}$, 则结论平凡, 下面设 $X \notin \mathcal{A}$, 首先要构造出 δ . 由于 X 紧致, 存在开集 $U_1, U_2, \cdots, U_n \in \mathcal{A}$, 使得

$$\bigcup_{i=1}^{n} U_i = X$$

设 $C_i = X - U_i$, 定义以下函数 f:

$$f: X \to \mathbb{R}$$

$$x \mapsto \frac{1}{n} \sum_{i=1}^{n} d(x, C_i) = f(x)$$

由上述引理, 知 f(x) 是连续函数. $\forall x \in X, \exists 1 \leqslant i \leqslant n$, 使得 $x \in U_i$, 于是 $\exists \varepsilon > 0$, 使得 $x \in B(x, \varepsilon) \subset U_i$, 则

$$d(x, C_i) > 0$$

从而 $\forall x \in X, f(x) > 0$, 由最值定理, 知 f(x) 存在最小值 $\delta > 0$, 下证该数就是所求的 Lebesgue 数

对于 $A \subset X$, 特别地, 我们只需证明存在 $1 \leq i \leq n$, 使得 $A \subset U_i$ 即可. 任取 $x_0 \in A$, 由于 $\operatorname{diam} A < \delta$, 因此 $A \subset B(x_0, \delta)$, 记 $d(x_0, C_m) = \max_{1 \leq i \leq n} d(x_0, C_i)$, 于是

$$\delta \leqslant f(x_0) \leqslant d(x_0, C_m)$$

这表明 $B(x_0, \delta) \cup C_m = \emptyset$, 于是 $A \cup C_m = \emptyset$, 进而 $A \subset U_m$

定义 3.4.2. 设 $(X, d_X), (Y, d_Y)$ 是度量空间, 对于函数 $f: X \to Y$, 若 $\forall \varepsilon > 0, \exists \delta > 0$, 使得 若 $\forall x_1, x_2 \in X, d_X(x_1, x_2) < \delta$, 就有 $d_Y(f(x_1), f(x_2)) < \varepsilon$, 则称 f 一致连续

定理 3.4.8. 若函数 $f:(X,d_X)\to (Y,d_Y)$ 连续, 且 (X,d_X) 紧致, 则 f 一致连续

定理 3.4.9 (紧致性的闭集刻画). 设 C_{α} , $\alpha \in J$ 是闭集, 若 $\forall \alpha_1, \alpha_2, \cdots, \alpha_n \in J$, $\bigcap_{i=1}^n C_{\alpha_i} \neq \emptyset$, 则 $\bigcap_{\alpha} C_{\alpha} = \emptyset$

3.5 极限点紧性

定义 3.5.1. 若 X 中任意无穷子集都存在极限点, 则称 X 极限点紧致

定理 3.5.1 (紧致蕴含极限点紧致). 若 X 紧致, 则 X 极限点紧致

定义 3.5.2. 若 X 中任意序列 $\{x_n\}$ 存在收敛子列, 称 X 列紧

定理 3.5.2. 若 X 是度量空间,则下列条件等价:

- (1)X 紧致
- (2)X 极限点紧致
- (3) X 列紧

3.6 局部紧致性

定义 3.6.1. 设 $x \in X$, 若存在紧子空间 $C \subset X$ 和 x 的邻域 U, 使得 $U \subset C$, 称 X 在 x 处局 部紧; 若 X 在任意 $x \in X$ 处局部紧, 称 X 局部紧

注. 若 X 紧致,则 X 局部紧,取 C=X,这是平凡的

例子:ℚ 不是局部紧

例 3.6.1. 证明: 有理数集 ℚ 不是局部紧的

证明. 若 \mathbb{Q} 局部紧致,则任意 $x \in \mathbb{Q}$ 存在邻域 $U = (a,b) \cap \mathbb{Q}$ 包含于 \mathbb{Q} 的一个紧子空间 C.C 是闭集. 取无理数 $c \in (a,b)$. 那么 C 的闭集 $[a,c] \cap \mathbb{Q}$ 亦是紧空间. 取 (a,c) 中趋于 c 的有理数列 x_n . 那么 $[a,c] \cap \mathbb{Q}$ 的开覆盖 $\{[a,x_n) \cap \mathbb{Q} \mid n \in \mathbb{Z}_+\}$ 不存在有限子覆盖,矛盾

引理 3.6.1. 设 X 为 Hausdorff 空间, 则 X 在 x 处局部紧当且仅当对包含 x 的任意开集 U 存在开集 V 满足 $x \in V \subset \overline{V} \subset U$, 且 \overline{V} 紧致

证明. 由定义知存在包含于紧子集 C 的 x 的邻域 U_0 , 由于 X 是 Hausdorff 的, 因此 C 是 闭集, 从而 $\overline{U_0} \subset C$. 对 x 的任意邻域,C - U 是 C 的闭集, 从而是紧子集. 于是取分离 x 与 C - U 的开集 V_1, V_2 , 满足 $V_1 \cap V_2 = \varnothing$. 同时 $X - V_2$ 是 X 的闭集, 于是 $\overline{V_1} \subset X - V_2$. 从而有 $\overline{V_1 \cap U_0} \subset \overline{V_1} \cap \overline{U_0} \subset (X - V_2) \cap C = C - V_2 \subset U$

推论 3.6.2. 设 X 是局部紧的 Hausdorff 空间, A 是 X 的开集或闭集, 则 A 也是局部紧的

证明. 若 A 是开集, 由上述引理知成立; 若 A 是闭集, $\forall x \in A$, 由于 X 是局部紧 Hausdorff 空间,于是存在包含于紧子集 C 的 x 的开邻域 U,则 $U \cap A$ 是 A 中 x 的开邻域, 而 $C \cap A$ 是 C 中的相对闭集,从而也是紧集,由定义知 A 在 x 处局部紧,再由任意性知 A 是局部紧的

定义 3.6.2. 若 Y 是紧致 Hausdorff 空间,X 是真子空间, $\overline{X} = Y$, 称 Y 是 X 的一个紧化. 若 Y - X 为单点集, 称 Y 为 X 的单点紧化

定理 3.6.3. 若 X 存在单点紧化,则 X 一定是局部紧 Hausdorff 空间

证明. 设 Y 是 X 的单点紧化,即 $\overline{X} = Y,Y$ 是紧致 Hausdorff 空间, $Y - X = \{\infty\}$ 是单点集首先 X 是 Y 的子空间,因此 X 还是 Hausdorff 空间. $\forall x \in X$,由于 Y 是 Hausdorff 空间,因此存在 x,∞ 的邻域 U,V,使得 $U \cap V = \varnothing$,取 C = Y - V.有以下事实成立: $U \subset V,C \subset X,C$ 是 Y 中的闭集.又 Y 是紧致 Hausdorff 空间,因此 C 是紧集,从而 X 是局部紧 Hausdorff 空间

引理 3.6.4. 紧子集的有限并还是紧的

定理 3.6.5. 若 X 是非紧局部紧的 Hausdorff 空间, 则在同胚意义下 X 存在唯一的单点紧化: 若 Y,Y' 是 X 的单点紧化, 则存在同胚 $f:Y\to Y'$, 使得 $f|_X=id_X$

证明. 存在性: $\diamondsuit Y = X \sqcup \{\infty\},$

第四章 可数性公理和分离公理

4.1 可数性公理

定义 4.1.1. 设 $x \in X$, 若存在 x 的邻域的可数族 \mathcal{B}_x , 使得任意 x 的邻域 U, 存在 $B \in \mathcal{B}_x$, 使得 $B \subset U$, 则称 X 在 x 处有可数基 \mathcal{B}_x . 若 X 在任意 x 处都有可数基, 则称 X 是第一可数的

显然度量空间 (X,d) 一定是第一可数的,可以取 $\mathcal{B}_x = \{B(x,\frac{1}{n}) \mid n \in \mathbb{Z}^+\}$. 对第一可数性 进行加强,得到第二可数性

定义 4.1.2. 若 X 有可数基 B, 则称 X 是第二可数的

注. 第二可数蕴含第一可数, 取 $\mathcal{B}_x = \mathcal{B}$ 即可

定理 4.1.1. 若 X 第二可数,则 X 的子空间 Y 第二可数;若 X_n 第二可数, $\forall n \in \mathbb{Z}^+$,则 $\prod\limits_{n=1}^\infty X_n$ 在积拓扑下第二可数

定义 4.1.3. 若 $A \subset X$, $\overline{A} = X$, 则称 A 在 X 中稠密

有理数在实数中稠密

例 4.1.1. 在分析学中知任何实数都可以用有理数列进行逼近, 因此 $\overline{\mathbb{Q}} = \mathbb{R}$, 从而 \mathbb{Q} 在 \mathbb{R} 中稠密

先给出一个关于稠密性十分有用的引理

引理 **4.1.2.** 若 \mathcal{B} 是 X 的基, $A \subset X$, $A \cap B \neq \emptyset$, $\forall B \in \mathcal{B}$, 则 $\overline{A} = X$

证明. $\forall x \in X$, 对于 x 的任何邻域 U, 存在基元素 $B \in \mathcal{B}$, $s.t.x \in B \subset U$. 由于 $B \cap A \neq \varnothing$, 故 $U \cap A \neq \varnothing$

定理 4.1.3. 设 X 是第二可数的,则成立

- (1)X 是可分的, 即 X 有可数的稠密子集;
- (2)X 是 Lindelöf 空间, 即 X 的任意开覆盖必有可数子覆盖.

证明. (1) 设 $\mathcal{B} = \{B_n \mid n \in \mathbb{Z}^+\}$ 是 X 的可数基, 取 $x_n \in B_n, n \in \mathbb{Z}^+$, 于是记 $A = \{x_n \mid n \in \mathbb{Z}^+\}$, 则 $\forall B \in \mathcal{B}, B \cap A \neq \emptyset$. 由上述引理知 $\overline{A} = X$, 即 A 在 X 中稠密

(2) 设 $\mathcal{B} = \{B_n \mid n \in \mathbb{Z}^+\}$ 是 X 的可数基, \mathcal{A} 是 X 的任意一个开覆盖, $\forall x \in X$, $\exists n_x \in \mathbb{Z}^+$, 使得 $x \in B_{n_x} \subset U_x, U_x \in \mathcal{A}$. 取出所有的 n_x , 记 $J = \{n_x \mid x \in X\} \subset \mathbb{Z}^+$ 是一个可数集. 于是 $\{B_n \mid n \in J\}$ 是 X 的一个可数开覆盖, 又每个 B_n 对应一个 U_n , 于是 $\{U_n \mid n \in J\}$ 就是 X 开覆盖 \mathcal{A} 的可数子覆盖

ℝ ҉ 满足除第二可数以外的所有性质

例 4.1.2. 证明:ℝℓ 不是第二可数的, 但是第一可数的, 且是可分的 Lindelöf 空间

证明. (1) \mathbb{R}_{ℓ} 不是第二可数的, 即证明 \mathbb{R}_{ℓ} 的基一定是不可数的: $\forall x \in \mathbb{R}$, [x, x+1) 是 \mathbb{R}_{ℓ} 的 开集, 于是存在 $B_x \in \mathcal{B}$, 使得 $x \in B_x \subset [x, x+1)$, 这表明 $x \in B_x$ 的最小值, 即对每个 x 都存在一个以 x 为最小值的基元素, 由于 \mathbb{R} 不可数, 从而 \mathcal{B} 也不可数

- $(2)\mathbb{R}_{\ell}$ 是第一可数的: $\forall x \in \mathbb{R}$, 取 $\mathcal{B} = \{[x, x + \frac{1}{n}) \mid n \in \mathbb{Z}^+\}$ 即可
- (3) \mathbb{R}_{ℓ} 是可分的: 取有理数集 \mathbb{Q} 即可, 这是因为 [a,b) 中一定有有理数, 由上述引理知 \mathbb{Q} 在 \mathbb{R}_{ℓ} 中稠密

 $(4)\mathbb{R}_{\ell}$ 是 Lindelöf 空间:

4.2 分离公理

定义 4.2.1. 设X中的单点集都是闭集.

若对 X 中任意 x 和不含 x 的闭集 B, 存在包含 x 和 B 的不交开集, 则 X 是正则的; 若对 X 中任意不交闭集 A, B, 存在包含 A, B 的不交开集, 则 X 是正规的.

注. 正规蕴含正则蕴含 Hausdorff

引理 4.2.1 (正则和正规性的等价刻画). 设X中的单点集都是闭集.

- (1)X 正则当且仅当对任意点 $x\in X$ 和 x 的任意邻域 U, 都存在包含 x 的开集 $V\subset U$, 使得 $\overline{V}\subset U$
- (2)X 正规当且仅当对 X 中的任意闭集 A 和包含 A 的开集 U, 都存在开集 $A \subset V$, 使得 $\overline{V} \subset U$

定理 4.2.2. ①设 X 正则, 那么 X 的任意子空间 Y 正则;

②设 $X_{\alpha}, \alpha \in J$ 正则, 那么积空间 $\prod X_{\alpha}$ 正则

4.3 正规空间

定理 4.3.1. 若正则空间 X 有可数集,则 X 是正规的

定理 4.3.2. 可度量化空间是正规的

证明.

定理 4.3.3. 紧致 Hausdorff 空间是正规的

第五章 习题

习题 5.0.1. 映射 $f: X \to Y$ 称为一个开映射, 如果对于 X 的每一个开集 U, 集合 f(U) 是 Y 中的一个开集. 证明: $\pi_1: X \times Y \to X$ 及 $\pi_2: X \times Y \to Y$ 都是开映射

证明. 先考虑 π_1 , 对于任意 $X \times Y$ 中的开集 U, 对于其中任意的元素 $u \in U$, 由于 U 是开集, 就一定存在形如 $A \times B$ 的基元素, 使得 $u \in A \times B \subset U$. 那么 $\pi_1(u) \in A \subset \pi_1(U)$, 由于 A 是开集, 从而 $\pi_1(U)$ 是开集. 同理可证 π_2 是开映射

注. 积拓扑开集的一般形式难以确定, 所以直接设 $U = A \times B$ 来证明 A, B 均是开集是很困难的. 从定义出发, 证明像集的每一点都可以被开元素覆盖, 这里需要引入基元素, 因为积拓扑的基可以是两拓扑开集的积

习题 5.0.2. 证明 $\mathbb{R} \times \mathbb{R}$ 上的字典序拓扑和积拓扑 $\mathbb{R}_d \times \mathbb{R}$ 是同一拓扑

证明. 一般的开集过于复杂, 从基元素出发来考虑, 离散拓扑的基就是单点集的族 □

5.1 连续函数

习题 5.1.1. 设 $A \subset X, f: A \to Y$ 连续,Y 是一个 Hausdoff 空间. 证明: 若 f 可以扩充为一个连续函数 $g: \bar{A} \to Y$, 则 g 由 f 唯一决定

证明. 不能用点列函数值的极限来定义极限点处的值, 因为这里的 X 不一定是可度量化的, 意味着对于 $x \in \bar{A}$, 不一定存在趋近于 x 的点列. 证明唯一性的题目, 设有两个满足题设条件的函数 $g,h:\bar{A}\to Y$, 由于它们都由 f 扩充而来, 从而它们在 A 上的定义是一样的, 只要证明它们在 A' 上也有相同的定义

设 $g,h: \bar{A} \to Y$ 连续且 $g|_A = h|_A = f$. 需要对任意 $x \in \bar{A}$ 证明 g(x) = h(x). 反证法 设 $g(x) \neq h(x)$. 由于 Y 是 Hausdorff 空间, g(x) 和 h(x) 有不交的邻域 U 和 V. 由连续性, $g^{-1}(U) \cap h^{-1}(V)$ 是 \bar{A} 的开集. 由 $x \in g^{-1}(U) \cap h^{-1}(V)$ 易知存在 $y \in g^{-1}(U) \cap h^{-1}(V) \cap A$. 那 么 $g(y) = f(y) = h(y) \in U \cap V$,与 U, V 不交矛盾.

第五章 习题 32

习题 5.1.2 (小测 3). 设 $f: X \to Y$ 是拓扑空间的连续映射, 其图像 $\Gamma_f = \{x \times f(x) \mid x \in X\}$ 为积空间 $X \times Y$ 的子空间. 证明映射 $g: X \to \Gamma_f, x \mapsto x \times f(x)$ 是同胚.

证明. 要证明三件事:g 是双射;g 连续; g^{-1} 连续. 其中 g 是双射是显然的, 而 g^{-1} 是连续映射等价于 g 是开映射, 对 X 的任意开集 U, 有

$$g(U) = (U \times Y) \bigcap \Gamma_f$$

因此 g(U) 的确是开集, 故 g^{-1} 是连续映射.

习题 5.1.3. 设 X 是以 d 为度量的一个度量空间.

- (a) 证明: $d: X \times X \to \mathbb{R}$ 是连续的;
- (b) 设 X' 是一个空间, 作为集合与 X 相同. 证明: 若 $d: X' \times X' \to \mathbb{R}$ 连续, 则 X' 的拓扑细于 X 的拓扑

5.2 连通性和紧致性

习题 5.2.1. 空间 (0,1), (0,1] 彼此不同胚