Homework: Week 2

Jiaqi Wang

November 26, 2023

1 Exercise 4.9.1

Problem 1.1 Show that for all $a, b \in \mathbb{R}$, if a < b then

$$\inf[a,b) = a$$

Proof. To show that a is an infima we need to show that a is a lower bound and that

$$\begin{array}{c} \text{for all } \epsilon > 0, \\ \text{there exists } x \in [a,b), \\ x < a + \epsilon. \end{array}$$

First we show that a is a lower bound.

Take $x \in [a, b)$.

It holds that $a \leq x$.

We conclude that a is a lower bound.

Now we show that for all $\epsilon > 0$, there exists $x \in [a, b)$, $x < a + \epsilon$.

Take $\epsilon > 0$.

Choose x = a. Then $x \in [a, b)$

It holds that $x = a < a + \epsilon$.

We conclude that $\inf[a, b) = a$.

2 Exercise 4.9.2

Problem 2.1 Let A be a subset of \mathbb{R} . Prove that if $\sup A \in A$ then A has a maximum and $\max A = \sup A$.

Proof. We need to show that $\max A = \sup A$.

Assume $\sup A \in A$.

Choose $x = \sup A$.

It holds that $x \in A$.

Take $a \in A$.

It holds that $a \leq x$.

We conclude that $a = \sup A = \max A$.

3 Exercise 4.9.3

Problem 3.1 Show that

$$\sup[0,4) = 4$$

Proof. We need to show that 4 is an upper bound and that

$$\begin{aligned} &\text{for all } \epsilon > 0, \\ &\text{there exists } x \in [0,4), \\ &x > 4 - \epsilon. \end{aligned}$$

First we show that 4 is an upper bound.

Take $x \in [0, 4)$.

It holds that $x \leq 4$.

We conclude that 4 is an upper bound.

Now we show that for all $\epsilon > 0$, there exists $x \in [0,4)$, $x > 4 - \epsilon$.

Take $\epsilon > 0$.

Choose $x = \max(0, 4 - \frac{\epsilon}{2})$. Then $x \in [0, 4)$

It holds that $x > 4 - \epsilon$.

We conclude that $\sup[0,4)=4$.

Exercise 4.9.5

Problem 4.1 Let A be a non-empty subset of \mathbb{R} . Assume that A is bounded from above. Prove that for all $\lambda \geq 0$, $\sup(\lambda A) = \lambda \sup A$.

Proof. Take $A \subseteq \mathbb{R}$. Suppose A is bounded from above.

It holds that $\sup A$ exists.

Take $\lambda \geq 0$.

By the alternative characterization of the supremum we need to show that $\lambda \sup A$ is an upper bound for λA and that

> for all $\epsilon > 0$, there exists $a \in \lambda A$, $a > \lambda \sup A - \epsilon$.

First we show that $\lambda \sup A$ is an upper bound for λA .

Since $\sup A$ is a supremum for A, it is an upper bound for A.

It holds that $\sup A \geq a$ for all $a \in A$.

It holds that $\lambda \sup A \geq \lambda a$ for all $a \in A$ and $\lambda a \in \lambda A$

We conclude that $\lambda \sup A$ is an upper bound for λA .

Now we show that for all $\epsilon > 0$, there exists $a \in \lambda A$, $a > \lambda \sup A - \epsilon$.

Take $\epsilon > 0$.

Since $\sup A$ is a supremum for A, it is an upper bound for A.

By the alternative characterization of the supremum,

for all $\epsilon_1 > 0$, there exists $a_1 \in A$, $a_1 > \sup A - \epsilon_1$.

Either $\lambda = 0$ or $\lambda > 0$.

- Case $\lambda = 0$, then $\lambda \sup A - \epsilon = -\epsilon < 0$.

Choose a = 0 and $a \in \lambda A$.

It holds that $a = 0 > \lambda \sup A - \epsilon = -\epsilon$.

- Case $\lambda > 0$ Choose $\epsilon_1 = \frac{\epsilon}{\lambda}$. Then $\epsilon_1 > 0$ and there exists $a_1 \in A$, such that $a_1 > \sup A - \epsilon_1 = \sup A - \frac{\epsilon}{\lambda}$

Obtain such $\hat{a_1}$.

Choose $a = \lambda a_1$.

It holds that $a = \lambda a_1 > \lambda \sup A - \epsilon$.

We have shown that for all $\epsilon > 0$, there exists $a = \lambda a_1 \in \lambda A$, $a > \lambda \sup A - \epsilon$.

We conclude that $\sup(\lambda A) = \lambda \sup A$.

5 Exercise 4.9.6

Problem 5.1 Let A be a non-empty subset of \mathbb{R} . Assume that A is bounded from below. Prove that for all $\lambda \geq 0$, $\inf(\lambda A) = \lambda \inf A$.

Proof. We need to show that $\lambda \inf A$ is a lower bound for λA and that

for all $\epsilon > 0$, there exists $a \in \lambda A$, $a < \lambda \inf A + \epsilon$.

First we show that $\lambda \inf A$ is a lower bound for λA . Since $\inf A$ is a infimum for A, it is a lower bound for A. It holds that $\inf A \leq a$ for all $a \in A$ and $\lambda a \in \lambda A$ We conclude that $\lambda \inf A$ is a lower bound for λA .

Now we show that for all $\epsilon > 0$, there exists $x \in \lambda A$, $x < \lambda \inf A + \epsilon$.

Since $\inf A$ is a infimum for A, by the alternative characterization of the infimum it holds that

for all
$$\epsilon_1 > 0$$
,
there exists $a_1 \in A$,
 $a_1 < \inf A + \epsilon_1$.

Either $\lambda = 0$ or $\lambda > 0$.

- Case $\lambda = 0$, then $\lambda \inf A + \epsilon = \epsilon > 0$. Choose a = 0 and $a \in \lambda A$.

It holds that $a = 0 < \lambda \inf A + \epsilon = \epsilon$.

- Case $\lambda > 0$

Choose $\epsilon_1 = \frac{\epsilon}{\lambda}$. Then $\epsilon_1 > 0$ and there exists $a_1 \in A$, such that $a_1 < \inf A + \epsilon_1 = \inf A + \frac{\epsilon}{\lambda}$. Obtain such a_1 .

It holds that $a_1 < \inf A + \frac{\epsilon}{\lambda}$.

It holds that $a = \lambda a_1 < \lambda \inf^{\lambda} A + \epsilon$.

We conclude that $\inf(\lambda A) = \lambda \inf A$