

State of Colorado's Water Supply Model (StateMod) Version 12

The State of Colorado's Stream Simulation Model (StateMod) is a monthly water allocation and accounting model capable of making comparative analyses of various historic and future water management policies in a river basin. It is designed to be applied to any river basin through appropriate input data preparation. The following sections are available in this manual:

- Disclaimer
- <u>1.0 Acknowledgement</u>
- 2.0 Introduction
- 3.0 Model Description
- 4.0 Input Description
- <u>5.0 Output Description</u>
- <u>6.0 Model Operation</u>
- 7.0 Technical Notes
- 8.0 Frequently Asked Questions
- 9.0 Supporting Utilities
- 10.0 Discontinued but Supported File Formats
- 11.0 Release Notes
- 12.0 References
- Appendix A Examples

Last updated: November 2008

1.0 Acknowledgment

The State of Colorado's Stream Simulation Model (StateMod) was developed from a model developed previously for the State of Colorado as part of the Green Mountain Pump Back and Exchange Project (Boyle Engineering Corporation, 1986). The model enhancement, support, and renaming by the State of Colorado occurred to provide additional capabilities. Following are the key enhancements made to the 1986 version which are currently included in StateMod while **Table 1.1** summarizes the major enhancements associated with each version:

- Documentation has been prepared.
- Daily simulation capability has been added.
- Well simulation has been added.
- The modified direct solution algorithm (Bennett, Ray R., December 2000) has been added that allows the model to operate with a variable efficiency and soil moisture storage.
- A Graphical User Interface (GUI) has been developed.
- Input files have been reformatted to allow character identifications which are consistent with the State, USGS, and NOAA station naming conventions.
- Output files have been revised to include the following options: detailed accounting of a direct flow, instream flow, wells and reservoir operations; a water balance, an operational rule summary, and formatted output for use by spreadsheet plotting packages.
- Instream Flows may be treated as a reach rather than a series of discrete points.
- The Base Flow module has been completed and is now fully operational for gaged locations.
- The Base Flow module has been enhanced to allow baseflows to be estimated at ungaged locations.
- The Base Flow module has been enhanced to allow baseflows to be estimated at gaged locations when gaps exist in the streamflow data. This allows gaged data to be adjusted for mans impact prior to filling gaps using a technique such as regression.
- Reservoirs may be operated to meet forecasted or predefined target storage contents.
- Reservoir administration associated with the one fill rule has been incorporated through user supplied data.
- The return flow algorithm has been revised to account for the number of days in a month when estimating future returns.
- The water allocation routine has been revised to reoperate whenever a reservoir makes additional water available or a diversion's return flows do not accrue to a downstream node.
- The reservoir operation routines have been revised to operate in accordance with a strict interpretation of the prior appropriation doctrine.
- Reservoir releases to diversions may replace either the full headgate diversion or their consumptive use.
- The reservoir operating routine that allows diversions into a carrier canal which serve one or more diversions and/or reservoirs has been revised. This routine now considers the demand of each structure to be served as well as the available capacity of the carrier structure(s).
- The reservoir operating routine that allows a reservoir to reservoir transfer has been revised.
 This transfer may now involve a physical exchange or a paper exchange (bookover) from one reservoir account to another.

- An operating rule has been implemented which allows an instream flow to operate based on the flow at a river location that is different than the location of the instream flow.
- New operating rules have been developed to accommodate futile calls, interruptible supplies, the La Plata and Rio Grande Compact operations, the San Juan basin recovery implementation plan.
- Allows system losses and ground water salvage to be calculated.
- Project specific coding associated with the Colorado River Basin and the Green Mountain Pump Back and Exchange Project have been removed and incorporated into general operating rules controlled by user specified data.
- Plan structures implemented to model augmentation plan operations, terms and conditions, and water reuse.
- Operating rules developed to allow pro-rata diversion of water rights with augmentation station operations, including leaving ditch losses in the ditch and calculating terms and conditions (e.g., return flow obligations) based on simulated diversions.
- An operating rule has been implemented to represent upstream storage statute in which water can be stored out-of-priority to a senior downstream storage right provided said water is released to the senior reservoir if it is not filled in priority. This rule has been used to represent the Blue River Decree in the Upper Colorado Model.

Table 1.1 Major StateMod Enhancements

Wajor StateWood Enhancements		
Version	Year	Areas of Key Enhancements
2 4.	1995	Baseflow module enhancement
		New reporting capabilities
5.	1996	Allow multiple replacement reservoirs
		Reoperate for non downstream return flows
6.	1996	Enhanced binary file reporting.
		New reporting capabilities
7.	1997	Treat Instream flows as a Reach
		Linked model capability
8.	1998	Daily simulation capability
9.	1999	Well simulation capability
10.	2001	Variable efficiency capability
11.	2006	Plans
		New operating rule data that allow carrier
		losses, annual limits and on/off dates
12.	2007-2008	Irrigation Practice File is allowed to contain 4
		water supply irrigation method combinations
		(Surface Water Flood, Surface Water
		Sprinkler, Ground Water Flood and Ground
		Water Sprinkler)

Last updated: November 2008

Disclaimer

This program is furnished by The State of Colorado (State) and is accepted and used by the recipient upon the expressed understanding that the State makes no warranties, express or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the State shall be under no liability whatsoever to any person by reason of any use made thereof. The program herein belongs to the State of Colorado. Therefore, the recipient further agrees not to assert any proprietary rights therein or to further represent this program to anyone as other than a State program.

Last updated: November 2008

2.0 Introduction

The State of Colorado's Stream Simulation Model (StateMod) is a monthly or daily water allocation and accounting model capable of making comparative analyses for the assessment of various historic and future water management policies in a river basin. It is designed to be applied to any river basin through appropriate input data preparation.

This document was prepared to explain the features and functions of StateMod and presumes the reader has a basic understanding of river operations. It is current for **StateMod version 12**. The documentation is intended for use by engineers, water resource planners or anyone involved in water management decision making. It is structured such that Sections 1 - 3 will stand alone to provide a general description of the model and its features. Sections 4 - 11 and Appendix A and B provide the detail required to develop data sets and implement the model in a river basin.

StateMod's operation, like the stream itself, is governed by its hydrology, water rights, and the associated structures and operating rules. It recognizes five (5) types of water rights: direct flow rights, instream flow rights, reservoir storage rights, well rights, and operational rights. Each of the water rights is given an administration number (rank) and location in the stream system. The model then sorts the water rights by rank and simulates their operation by priority using the Prior Appropriation Doctrine (first in time, first in right). The water right categories are self explanatory with the possible exception of the operational rights, which generally pertain to reservoir operating policies, exchanges, carrier ditch systems, and terms and conditions associated with a water rights operation.

The key components of StateMod are as follows:

- Daily or Monthly Time Step. Simulates in a monthly or daily time step. For a daily simulation, input data requirements may be simplified by allowing the user to: 1. Provide daily data, 2. Estimate daily data by requesting the model divide a monthly value by the number of days in a month, 3. Estimate daily data by requesting the model use a monthly average, or 4. Estimate daily data by requesting the model use monthly data and another gages daily distribution. Daily baseflow data may be developed directly or estimated from monthly baseflow estimates.
- **Network System**. Simulates tributaries and main stem river systems through the use of a tree structured network system.
- **Prior Appropriation Doctrine**. Simulates direct flow, instream flow, storage well and operational rights under the Prior Appropriation doctrine (*First in time First in Right*) as a function of water availability, priority, decreed amount, demand, structure capacity and location.
- **Operational Rules**. Simulates a wide variety of operating agreements and exchanges between one or more structures.
- **Return Flows**. For a given structure, simulates one or more return flow patterns returning to one or more stream nodes to represent the impact of surface and ground water returns on stream operations.

- **Instream Flows**. Simulates Instream Flows as a reach or point.
- Wells. Simulates wells as the sole source to a water user or as a supplemental supply.
- **Plans**. Simulates terms and conditions associated with a water transfer, reusable water supplies or out-of-priority well pumping.
- **Base or Natural Flows**. Estimates a base or natural streamflow from gaged or estimated streamflow, diversion and reservoir data.
- **Modified Direct Solution Algorithm**. Uses an efficient, Modified Direct Solution Algorithm (Bennett, Ray R., December 2000), which allows variable efficiency, soil moisture accounting and immediate (current time step) return flows to be evaluated without having to iterate.
- Variable Efficiency. Allows the user to simulate water use by specifying an average or variable efficiency.
- Soil Moisture Accounting. Simulates soil moisture inflow, use and storage.
- Transmountain Diversions. Simulates transmountain imports and diversions from a basin.
- Call Reporting. Estimates the calling structure and calling right.
- **Graphical User Interface (GUI).** Includes a comprehensive GUI (SMGUI) that allows: 1. Input data to be viewed, edited, and graphed 2. Output data to be viewed and graphed, 3. Map based depiction of basin, hydrology, structure locations, etc.
- **Data Centered Approach.** The entire system operates as a data centered component with a direct link the CDSS database (HydroBase). By providing a list of structures to HydroBase input files can be created and formatted for model input to ensure results are reproducible and easily refreshed for a new study period or database updates.
- **Error Checking**. Performs extensive input data error checking throughout the program.

The following definitions are provided in order to define commonly used terms throughout model documentation:

- Baseflow Represents basin streamflows absent man's influence including diversions, return flows, reservoir operations and pumping. If 100% of man's influence is removed, baseflows are often called virgin flows or natural flows.
- Physical Flow and Available Flow Physical flow represents the amount of water in the stream that occurs at, or above, the node. The physical flow legally available for diversion at a node is termed the available flow. Available flow is the portion of the physical flow that is not required to meet downstream senior water rights. The Modified Direct Solution Algorithm (see Section 7.9) identifies the minimum available flow at all downstream nodes in order to determine the available flow at node that can be diverted.
- Model Calibration Calibration is the process of simulating the river basin under historical conditions, and judiciously adjusting parameter estimates to achieve agreement between observed and simulated values of streamflow gages, reservoir levels, and diversions.
- Diversion structures Represent structures located on the river, such as diversion headgates, pumps and carrier ditches where water is diverted from the river to meet a diversion demand.
- Reservoir Structure Represent storage structures located on or off channel that divert water from the river using reservoir storage rights.
- Demand Structure Represent structures located on the river or off channel that have a demand, which can be met by a different structure such as a carrier, reservoir, or wells.
- Instream Flow Structure or Instream Flow Point Represents a reach on the river (e.g. from tributary headwaters to confluence with main stem river) or a river location (e.g. wastewater treatment plan outfall) where instream flow demands exist.
- Plan Structure Represents a structure used to account for 1. Augmentation Plans, 2. Terms and Conditions associated with a water transfer, and 3. Reusable water supplies.

- Unit Response Function Represent when return flows or depletions will impact the river over time. For example a power plant diversion may have an immediate unit response function while an irrigation diversion or well pumping may have a lagged unit response function.
- Efficiencies Define the amount of diverted water that is consumed versus the amount supplied. When the water supply is at the source (headgate or well head) it is called System Efficiency. System efficiency is commonly split into conveyance efficiency (representing diversions less ditch loss) and application efficiency (representing water use less application loss).
- Consumptive Water Requirement (CIR) The amount of water required for consumption by an irrigation, municipal or instream use. The CIR excludes any conveyance or application efficiencies. For a irrigation demand it is often called Irrigation Water Requirement (IWR), the potential evapotranspiration less effective precipitation

StateMod consists of four (4) major components: the Base Flow module, the Simulation module, the Report module, and the Data Check module.

- 1. The Base Flow module produces a set of streamflows that would have occurred in the basin without a user-specified level of man's development. For example, if a user supplied data that allows 100% of man's influence to be removed, the base flow developed would represent natural stream flows. On the other hand if a user supplies data that allows only 80% of mans influence to be removed, the baseflow developed would represent something in-between (e.g. 80%) natural and developed. The latter in-between approach is often used as a cost effective measure to simplify baseflow development by including relatively large projects and excluding smaller, less significant developments. Note that any developments not included in the baseflow calculation are not ignored, instead their impact on the system is included in the in-between baseflow estimate.
- 2. The Simulation module operates the river system and accounts for inflows, river gains, diversions, instream flows, well pumping, and reservoir operations.
- 3. The Report module processes the results of the Simulation module into user specified reports and graphs data sets.
- 4. The Data Check module reads the input files and performs various data checks.

Following is a general sequence for operating StateMod:

- 1. Develop a stream node network based on the location of key gages, river confluences, reservoirs, diversions, wells, and instream flows.
- 2. Construct the necessary monthly input files using the formats described in Section 4.0.
- 3. Check the input files by executing StateMod's Data Check Module.
- 4. Develop base stream flows by executing StateMod's Base Flow Module.
- 5. Simulate the stream system's operation by executing StateMod's Simulation Module.
- 6. Evaluate results and generate graphs and tables by executing StateMod's Report Module.
- 7. If desired, add daily simulation capability.

The remainder of this document is organized as follows:

Section	Title	Description
3.0	Model Description	Describes the theoretical basis
		of river operations, water
		allocation and reservoir
4 0	Towns Daniel Line	operations
4.0	Input Description	Describes the input format for each data set
5.0	Output Description	Describes the contents of the
		various outputs files
6.0	Model Operation	Describes the model's operation
		from both the screen or command
		line arguments
7.0	Technical Notes	Describes technical details of
		selected portions of
8.0	Emagnontly Agland O/g	the programs operation Describes frequently asked
0.0	Frequently Asked Q's	questions regarding the model's
		operation
Section	Title	Description
9.0	Supporting Utilities	Describes supporting utilities
		available to assist in developing
		a StateMod data set
10.0	Discontinued but	Describes discontinued but supported
	Supported Files	data file formats
11.0	Release Notes	Describes major changes enhancements
		associated with a release version
Appendix A	Examples	Presents several examples which
		demonstrate some of the
		capabilities of the model
		through input files and
		results
Appendix B	Procedures Manual	Presents a sequential approach to
	for a Data Centered	develop StateMod data files
	Approach to StateMod	using a data centered approach

3.0 Model Description

The State of Colorado's Stream Simulation Model (StateMod) is capable of simulating stream diversions, instream demands, well pumping, reservoir operations and river flows on a monthly or daily basis for any stream system using user specified data. To facilitate this simulation, the river basin is divided into a series of river nodes which generally represent gauging stations, river confluences, diversion structures and reservoirs. Accounting is performed on a water right basis while reporting is performed by structure and each river node. The following sections are available in this chapter:

- 3.1 Stream Flow Allocation
- <u>3.2 System Operations</u>
- 3.3 Model Application
- 3.4 Daily Operations
- 3.5 Variable Efficiency
- 3.6 Demands
- 3.7 Soil Moisture Accounting
- 3.8 Wells
- 3.9 Plans

3.1 Stream Flow Allocation

StateMod allocates water to a diversion, instream flow, or reservoir based upon physically available river flow, legally available flow (priority), decreed right, delivery capacity and demand. Because a well may pump water from ground water storage, StateMod allocates water to a well using the same constraints described previously except it is not limited to physical availability of flow in the river. If current or future depletions caused by wells exceed the available flow, the water supply is identified as coming from ground water storage. Demand is an input to StateMod that describes the time varying desire to divert water. It is typically estimated outside the model to reflect historic or future demands associated with agricultural, municipal, and industrial water needs.

The water allocation scheme used in StateMod is the Modified Direct Solution (MDSA) algorithm (Bennett, Ray R., December 2000) that recognizes the impact of a diversion's return flows even when they occur in the same month or day that they were diverted. The MDSA allows water use efficiencies to vary up to a user specified maximum and account for soil moisture contents. The MDSA eliminates the need to iterate between time steps unless reservoir operations (see Section 3.2, Reservoir Operations) or return flows that do not accrue to a downstream node make new water available to the system. Following is an abbreviated description of the stream allocation scheme:

- 1. Water availability is determined at each river node to include both native inflows and return flows accruing from a prior time step.
- 2. The most senior direct, instream, storage, well or operational water right is identified.

- 3. Diversions are estimated to be the minimum of the decreed water right, structure capacity, demand, and available flow in the river. For a direct flow or reservoir right, the available flow in the river is the minimum of the diverting or downstream node plus any of the diverting right's return flow to that node. For an instream right, the available flow in the river is the flow at each river node within the instream reach. For a well, pumping is not constrained by the available flow in the river since pumping may deplete ground water storage.
- 4. Downstream flows are adjusted to reflect the senior diversion and its return flows.
- 5. Return flows for future time periods are determined and stored.
- 6. Well depletions for future time periods are determined and stored.
- 7. The process is repeated by priority for each successive direct, instream, storage, well and operational water right.
- 8. If new water is introduced to the system from a reservoir's operation or return flows accrue to a non-downstream node, the model reoperates the current time step and the process is repeated beginning with the most senior direct, instream, storage or operational right.
- 9. The process is repeated for each month or day of the study period.

_

3.2 System Operations

System operations describe how direct, instream, well and storage rights interact with a water right owner's preferences. Reservoirs store water based on physically available river flow, legally available flow (priority), decreed right, storage capacity, demand, and operating rules. A balance is computed which accounts for the inflows and outflows from a reservoir including natural inflow, pumped inflow, controlled releases, spills, net evaporation and seepage. Downstream river flows associated with a reservoir storage or release are adjusted using the same water allocation procedure outlined in the previous section.

Water is released from a reservoir to satisfy an owner's demand, exchange agreement, augmentation requirement, hydropower goals or target storage values. Reservoirs may have one or more ownership accounts and may be located on the main channel or off-channel. Standard operating policies associated with most river basins are included within StateMod as described in Section 4.

System operations, return flows to non-downstream river nodes, and well pumping have the potential to add additional water to a river which might be available to a senior water right. For example, when a reservoir releases water to meet a target storage level, additional water may become available to a senior downstream right. Similarly, if a ditch returns water to a neighboring non-downstream tributary, those return flows may be used by a senior ditch on that tributary. Finally when the return flow associated with well pumping exceeds its depletion to the river, additional water may become available to a senior downstream right. When such a system operation, non downstream return flow or net accretion occurs, the model automatically reevaluates all water rights in priority in order that senior rights may benefit from the additional water supply.

3.3 Model Application

This section describes the procedure for applying the river and system operations previously described. Sample input and output files are presented in Appendix A. Data files used to drive the model are described in Chapter 4.

StateMod is structured to perform one of 4 interrelated activities:

Base Flows

Simulate

Report

Data Check

The **Base Flow Module** creates a set of "base streamflows" which have the impact of historic diversions, return flows, well pumping, and reservoir storage, release, evaporation and seepage removed. The generation of a "base streamflow" sequence is necessary for a basin planning model in order to analyze a "What If" scenario which includes a proposed water right or operating strategy that may impact historic river operations. This module may be executed by the user to develop a "natural streamflow" sequence if all impacts of man are removed or a "base streamflow" sequence if only selected impacts of man are removed. When the user selects to generate a "base streamflow" rather than a "natural streamflow" sequence, they are implicitly assuming the historic diversion and reservoir operation impacts which are left in the gage will not change significantly under a What If scenario. By including this component within the model, data preparation requirements are reduced significantly and future simulated return flow patterns are, where appropriate, consistent with the base or natural streamflow generation. Note, the base flow module may be executed with missing streamflow data (specified by -999) to allow man's impact to be removed prior to filling missing data gaps using a technique such as regression.

The **Simulate Module** operates the river based on user specified water rights and operating criteria. It begins by reading data that is constant over time such as the river network, reservoir structures, diversion structures, instream flow structures, well structures and water rights. Time varying data such as streamflow, demands and climate data are read. Then for every simulation time step, direct, instream, storage, well and operational rights are simulated from the most senior to junior priority. At the end of each month, results are printed for each river node to a direct access binary file. If a simulation only option is chosen, then the program is complete and detailed reports may be obtained through the Report module. If a simulation plus report option is chosen, then at the end of the simulation period, the binary file is read to produce detailed monthly or daily results in a tabular form for each diversion, instream flow, well structure, reservoir and gage as follows:

Monthly Outputs

- o File *.xdd containing detailed diversion and instream flow results.
- o File *.xre containing detailed reservoir results.
- o File *.xwe containing detailed well structure results.
- o File *.xif containing detailed instream flow reach results.
- o File *.xop containing detailed operational right results.
- o File *.xss containing detailed structure results.

o File *.xpl containing detailed plan structure results.

Daily Outputs

- o File *.xdy containing detailed diversion and instream flow results.
- o File *.xry containing detailed reservoir results.
- o File *.xwy containing detailed well structure results.

Appendix A has examples of each of these files. Note the detailed diversion and instream file (*.xdd) includes information for each river node. Therefore, data associated with the river at every structure, stream gage, confluence, etc. is included. The other standard reports include additional information for a particular structure type or operational activity. For example, the reservoir report includes data for each reservoir account while the instream flow report includes data for each node within an instream flow reach.

The **Report Module** reads the direct access, binary file generated by the simulate module to produce user specified reports and files which may be imported to a number of common spreadsheet packages such as Excel for graphing. Following are the standard reports available:

Monthly Reports

- o Diversion Summary (*.xdd),
- o Reservoir Summary (*.xre),
- o Operational Right Summary (*.xop),
- o Instream Flow Summary (*.xif),
- o Well Summary (*.xwe),
- o Plan Summary (*.xpl),
- o Binary File Data (*.xbn),
- o Water Balance (*.xwb),
- Water Rights List (*.xwr),
- o Graph Data for Diversions and Gages (*.xdg),
- o Graph for Well Structures (*.xwg),
- o Graph Data for Reservoirs (*.xrg),
- o Supply (total diversion), shortage and consumptive use summaries (*.xsu, *.xsh, *.xcu),
- o Selective Output.

Daily Reports

- o Diversion Summary (*.xdy),
- o Reservoir Summary (*.xry),
- o Well Summary (*.xwy).

The **Data Check Module** echoes the streamflow and diversion data, prints a comprehensive list of all water rights sorted by priority, tabulates input data for simplified reporting, and performs selected data checks of the input files including:

- o The Stream network is properly connected,
- o Return flows return to a stream node,
- o Return flow delay tables total 100%,
- o The distribution of return flows to river nodes or losses equals 100%,

- Wells have both a return flow and depletion table,
- o Water rights are assigned to a structure or operation,
- o Structures have a water right,
- o Demands are assigned to a structure,
- o Structures have a demand or operation,
- Area Capacity tables increase,
- o Operational rights are properly specified.

Time varying data files (streamflow, demands, precipitation, etc.) have data for the selected study period and year type including: Calendar Year (January through December), Water Year (October through September) and Irrigation Year (November through October).

3.4 Daily Operations

StateMod can operate on a monthly or daily time step. (See Section 8.7 for a discussion of how to change a monthly model to a daily model). For simplicity StateMod estimates every February has 28 days, therefore any daily data provided for February 29 in a leap year is ignored. The daily capability can be implemented directly or by building upon a monthly model. Constructing a monthly model first is recommended for the following reasons:

- The most difficult part of developing a basin model is understanding the system. By first developing a monthly model, the system operation can be investigated without burdening the user with the volume of information ultimately required for a daily model.
- A daily model is typically developed to be able to simulate large and small flow events that occur within a monthly time step. Therefore, although daily streamflow data will be required, the user may want to estimate the other terms required for daily analysis, such as diversion demands or reservoir targets, using a simplified approach. The ability to supply a simple distribution method to estimate daily data includes the following options:
 - 1. Divide a monthly estimate by the number of days in a month or
 - 2. Set daily data to a monthly average or
 - 3. Use another gages daily distribution or
 - 4. Use a pattern developed by connecting the midpoints of monthly data (common for demand data) or
 - 5. Use a pattern developed by connecting the endpoints of monthly data (common for reservoir data).
- Daily baseflows may be developed directly as daily data or estimated from monthly baseflow estimates.
- For the case where a structure has both daily and monthly data which do not equal, the distribution method described above specifies which controls. This approach provides maximum flexibility to assign daily data.
- The routing of daily streamflows is accounted for by the gain and loss term that results from the base (natural) stream flows estimated by or provided to the model.
- Routing of reservoir releases are not included because 1. StateMod is a primarily a planning model, 2. The additional detail required to properly implement reservoir releases with a travel time component is not justified since the system would have to include some kind of

forecasting to know a reservoir release is required before a reservoir demand occurs and 3. The volume of water potentially delivered early by ignoring a reservoir's travel time is offset by the potential over release that occurs after the demand is satisfied.

3.5 Variable Efficiency

StateMod allows water use efficiency to vary from 0 to a user specified maximum value. The following are noted:

- Variable efficiency uses the Modified Direct Solution Algorithm (Bennett, Ray R., December 2000, Section 7.9).
- Variable efficiency requires consumptive water requirement data be provided for every diversion and well only structure by year. If not provided, it is estimated from the average efficiency data provided in the station file(s) and demand data.
- Variable efficiency for wells may include a value for both flood and sprinkler applications if the acres served by sprinklers are provided.
- Variable efficiency operations may include soil moisture accounting although it is not required.
- Variable efficiency capability applies to all direct diversion, well pumping and carrier to diversion structure operations.
- Variable efficiency capability does not apply to reservoir releases. These operating rules continue to use the average efficiency data provided in the diversion station file (*.dds) to determine the structure's demand from the reservoir.

3.6 Demands

StateMod provides several methods to simulate structure demands. The selection of a demand approach is relatively simple for a system with surface water only. However for a system with both surface and ground water selecting an appropriate demand approach can be critical because diversions, wells and reservoir data often have different water use efficiencies. The following are noted (see Section 7.10 for additional details):

- Demand data may be provided at the supply point (includes inefficient water use) or as a consumptive requirement (includes no inefficient water use). When demands are provided as a consumptive requirement, the model adjusts the demand on-the-fly to include the inefficiencies associated with the water supply source (surface diversion or well) being simulated.
- Demand data can be provided for diversions and wells separately or as a single value that may be served from surface or ground water supplies. The ability to separate or combine demands based on source allows the flexibility to perform both historic and calculated calibration.
- Demands that can be served by both surface and ground water may be simulated using a Maximum Demand Approach. This approach 1. Allows a structure to divert surface water up to their decreed amount and 2. Limits ground water pumping to the consumptive requirement. This approach allows a user to divert surface water that may result in a relatively low water use efficiency but use ground water, as needed, at a relatively high efficiency.

3.7 Soil Moisture Accounting

The State Model has the ability to include soil moisture as a water supply. The following are noted (See Section 7.13 for additional details):

• The soil moisture capacity is calculated as follows:

$$SM = D * A * C$$

Where,

SM = Soil Moisture

D = Soil Depth (average soil depth provided for all structures in the control (*.ctl) file)

A = Area (data provided by structure in the annual time series (*.ipy) file)

C = Soil Moisture Capacity (data provided by structure in the soil parameter (*.par) file)

- The Soil Moisture option allows water to be stored in the soil zone up to its capacity and the diverting structures (direct diversion or well) efficiency.
- StateMod initializes the soil moisture reservoir contents to be 50% of the soil moisture capacity.
- If the irrigated area of a structure is reduced from one year to the next and the resulting soil moisture capacity is exceeded any water in excess of the capacity is estimated to be a loss attributed to that structure.
- The Soil Moisture option requires the variable efficiency option (see Section 3.5) be used.
- In a simulation mode, the Soil Moisture option uses an operating rule to specify an administration date that controls when water is available to be taken out of the soil zone to satisfy a consumptive (not total) demand. In order to represent water use when historic diversions are provided as a demand this operating rule allows water to be taken out of the soil zone when a structure's consumptive irrigation water requirement exists even if the user has specified the structures demand to be zero.
- In the baseflow mode, the Soil Moisture option takes water out of the soil zone to satisfy a consumptive (not total) demand after surface water and well water use occurs. In order to represent water use in baseflow mode, water can be taken out of the soil zone when a structure's consumptive irrigation water requirement exists even if the user has specified the structures diversion and pumping to be zero.

3.8 Wells

The StateMod model allows ground water pumping via wells to be modeled. The following are noted:

- Wells are operated within StateMod as water rights tied to a well structure that may or may not be tied to a diversion structure. Because a well is not connected to a stream except through return flows and depletions it does not need to be included in the network.
- If a well structure is not tied to a surface water structure then well demands are provided in the well demand file.

- If a well structure is tied to a surface water structure, then demands may be provided and treated in several ways as specified by the control variable *icondem*.
- Wells may increase the water supply available at the river at a given time step if well return flows exceed the stream depletion. StateMod checks for such a condition and reoperates to allow senior ditches to benefit from the additional water supply.
- Wells may require two or more delay patterns to represent the delay associated with return flows and depletions. The data for both types of delays are specified in the delay table input file. Note when the sum of return flows to the river is less than 100%, the balance is treated as a loss. Similarly when the sum of depletions to the river is less than 100%, the balance is treated as salvage.
- Wells may cause river flows to go negative when their estimated depletion to the river exceeds the streamflow. StateMod treats such an occurrence as an indication that pumping impacts have depleted ground water storage rather than the stream flow. Under such a case, StateMod allows the pumping to occur and accounts for the source of water as originating from ground water storage. This water is presented in the diversion summary output under the column titled "From/To GW Stor" for each river node and for the whole basin in the water budget report (*.xwb). Note the quantity of water supplied by ground water storage in a simulation time period is taken out of the stream the next time period before any water allocation occurs. The control file variable *iwell* allows the repayment of this water to be limited to a maximum amount to represent stream / ground water systems that are disconnected. Also, since data for this term is generally not observed, baseflow calculations may be influenced by this lack of data.
- Well information is presented in four columns of the diversion summary report. The column titled "From Well" describes the total amount of water pumped and made available to a diversion. The column titled "Well Depletion" represents the impact of a previous months pumping on the river. The column titled "To/From GW Stor" was described above. The column titled "River by Well" represents the impact of the current months pumping on the river. The "Well Depletion" and "River by Well" data are separated because the impact of a previous months pumping on the river influences the water supply available to all users before any diversions occur while the impact of the current months pumping impacts water rights that are junior to the well only. Note by definition, a well structure that is not tied to a diversion has no data under the column "From Well". However, the columns titled "Well Depletion" and "River by Well" include the impact of all well pumping on the river.

3.9 Plans

StateMod includes a "Plan" structure type that allows an augmentation plan, terms and conditions associated with a water transfer or water reuse be simulated. Plan structures can also be used for certain types of unique administrative activities (e.g. out of priority diversions, etc.). Twelve plan types are currently available:

- 1. Accounting Plan (e.g. Changed Water Rights)
- 2. Reservoir Reuse
- 3. Non Reservoir Reuse (e.g. WWTP)
- 4. Transmountain Import
- 5. Reservoir Reuse from Transmountain Import
- 6. Non Reservoir Reuse from Transmountain Import
- 7. Terms and Conditions

- 8. Well Augmentation
- 9. Recharge Plan
- 10. Out-of-Priority Diversion or Storage
- 11. Release Limit Plan (e.g. HUP Pool Release Limit)
- 12. Special Well Augmentation (e.g. Designated Basin, Coffin Wells, etc.)

The following are noted:

- Section 4.49 describes the physical data associated with a plan which includes its ID, name and location in the stream network.
- Water accounted for in various reuse plans be used as a source for many other operating rules (see Section 4.13).
- If a plan is not specified as a part of an operating rule or well water right, StateMod warns the user but assumes there are no terms and conditions to be imposed.
- Total demand and supplies associate with a "plan" are reported as part of the standard stream node output (*.xdd) under the plan ID and appropriate location in the network.
- Detailed reporting of a plan is provided in a standard plan output file (*.xpl).
- 1. Accounting plans are currently implemented for storing pro-rata ownership of diversions or depletions via the direct flow exchange (type 24) and direct flow bypass (type 25) operating rules. Reusable supplies can be released from accounting plans and used to represent reusable water supplies in storage (Reuse Reservoir Plan) or at a WWTP (Non Reservoir ReUse Plan).
- 2. Reservoir reuse plans are located anywhere on the stream network and are used solely to account for reusable water associated with an account in a reservoir. Reservoir reuse plans are typically located adjacent to the associated reservoir. Reusable water supplies are accounted for in reservoir reuse plans are specified within the operating rule.
- 3. Non-reservoir reuse plans are located on the stream network where the WWTP is physically located. Reusable water supplies are accounted for in reservoir reuse plans are specified within the operating rule.
- 4. Transmountain import plans are located at the top of the tributary basin in which water is imported.
- 5. Reservoir reuse plans from transmountain imports are located on the stream network where the reservoir is physically located. Reusable water supplies are accounted for in reservoir reuse plans are specified within the operating rule.
- 6. Non reservoir reuse plans from transmountain imports are located on the stream network where the reservoir is physically located. Reusable water supplies are accounted for in reservoir reuse plans are specified within the operating rule.
- 7. Terms and conditions (T&C) plans are located on the stream network at the most upstream location(s) where the terms and conditions of a water transfer are to be implemented (e.g. if a term and condition of a transfer requires a diversion leave historic return flows at the transfer location, then the plan should be located just downstream of the transfer location). Return flow obligations associated with a term and condition are a function of how much water gets transferred. Therefore when a terms and conditions (T&C) plan is specified, StateMod calculates the obligation on-the-fly for the month it occurs and all associated future months. Future return flow and/or depletion percentages and patterns may be specified to equal the same values as the source structure or the plan itself. The terms and conditions are defined within the operating rule.
- 8. Well augmentation plans should be located on the stream network at the most upstream location(s) where the lagged pumping depletions affect the river. The lagged river depletions associated with operating a well water right out-of-priority represents the demands for a well augmentation plan. The timing pattern of depletions from pumping are included in the unit

- response table (monthly *urm; daily *.urd). Lagged river depletions associated with well pumping are a function of how much pumped water is simulated. When a well augmentation plan is specified, StateMod calculates the lagged river depletion on-the-fly the month it occurs and all associated future months. Operating rules can be used to satisfy this demand when a well is in priority or from other water supplies, including accretions from recharge diversions (Recharge Plan).
- 9. Accretions associated with recharge water rights diverted from the river to recharge sites can be represented in Recharge Plans. Recharge plans are located on the stream network at the location(s) where the lagged river accretions associated with recharge diversions have been separately estimated to occur. The timing pattern of accretions from recharge diversions is included in the unit response table (monthly *urm; daily *.urd). Lagged river accretions associated with recharge diversions are a function of how much recharge diversion is simulated. When a recharge plan is specified, StateMod calculates the lagged river depletion on-the-fly the month it occurs and all associated future months. Operating rules can be used to supply the calculated accretions to meet other demands (e.g. well augmentation plan demands).
- 10. Out-of-Priority plans are used to represent out-of-priority diversions to storage pursuant to the upstream storage statute (e.g. Blue River decree diversions by Denver and Colorado Springs). Accounting for replacement requirements associated with upstream storage statute operations are specified within the operating rule. Operating rules can be used to satisfy this demand when from other water supplies.
- 11. Release limit plans are currently implemented for representing monthly and annual limits to reservoir releases (e.g. Green Mountain Reservoir HUP pool releases to Senate Document 80 beneficiaries).
- 12. Special Well Augmentation Plans are used to represent lagged well depletions to the river system for wells that are considered not tributary to the river system (i.e. Coffin wells and designated basin wells). The timing pattern of depletions from pumping are included in the unit response table (monthly *urm; daily *.urd). Lagged depletions associated with well pumping are a function of how much pumped water is simulated. When a special well augmentation plan is specified, StateMod calculates the lagged depletion on-the-fly the month it occurs and all associated future months.

Last updated: November 2008

4.0 Input Description

This chapter describes the input files required to operate the StateMod Model. Sample data sets are provided in <u>Appendix A</u>. Some data file formats have been superseded over time while continuing to maintain the old format. For a description of the old format see Section <u>10.0 Discontinued but</u> <u>Supported File Formats.</u>

The following Sections are available in this chapter:

- 4.0 Remarks
- 4.1 Response File (*.rsp)
- 4.2 Control File (*.ctl)
- 4.3 River Network File (*.rin)
- 4.4 River Station File (*.ris)
 - 4.4.1 River Gage File (*.rig)
- 4.5 Direct Diversion Station File (*.dds)
- 4.6 Direct Diversion Right File (*.ddr)
- 4.7 Instream Flow Station File (*.ifs)
- 4.8 Instream Flow Right File (*.ifr)
- 4.9 Well Station File (*.wes)
- 4.10 Well Right File (*.wer)
- 4.11 Reservoir Station File (*.res)
- 4.12 Reservoir Right File (*.rer)
- 4.13 Operational File (*.opr)
 - 4.13.1 Reservoir to Instream Flow
 - 4.13.2 Reservoir to a Direct Flow or Reservoir or Carrier
 - 4.13.3 Reservoir to a Carrier
 - 4.13.4 Reservoir Exchange to a Direct Flow
 - 4.13.5 Reservoir Exchange to Storage
 - 4.13.6 Paper Exchange Between Reservoir Accounts (Bookover)
 - 4.13.7 Reservoir to a Carrier by Exchange
 - <u>4.13.8</u> Out-of-Priority Bookover
 - 4.13.9 Release for Target Contents
 - 4.13.10 General Reservoir Replacement

- 4.13.11 Carrier Right to a Ditch or Reservoir
- 4.13.12 Reoperate Water Rights
- 4.13.13 La Plata Compact (Index flow)
- 4.13.14 Carrier with Constrained Demand
- 4.13.15 Interruptible Supply
- 4.13.16 Direct Flow Storage
- 4.13.17 Rio Grande Compact Rio Grande
- 4.13.18 Rio Grande Compact Conejos River
- 4.13.19 Split Channel Operations
- 4.13.20 San Juan Reservoir RIP Operation
- 4.13.21 Wells with Sprinkler Use
- 4.13.22 Soil Moisture Use
- 4.13.23 Downstream Call
- 4.13.24 Direct Flow Exchange
- 4.13.25 Direct Flow Bypass
- 4.13.26 Not Currently Used
- 4.13.27 Plan or Reservoir Use Direct
- 4.13.28 Plan or Reservoir Use by Exchange
- <u>4.13.29</u> Plan Spill
- 4.13.30 Reservoir Rediversion
- 4.13.31 Carrier to a Ditch or Reservoir with Reuse
- 4.13.32 Reuse Plan to a User Direct
- 4.13.33 Reuse Plan to a User by Exchange
- 4.13.34 Bookover with Reuse
- 4.13.35 Import with Reuse
- 4.13.36 Seasonal (Daily) Water Right
- 4.13.37 Augmentation Well
- 4.13.38 Out-of-Priority Diversion
- 4.13.39 Alternate Point Diversion
- 4.13.40 South Platte Compact
- 4.13.41 Storage with Special Limits
- 4.13.42 Plan Reset
- 4.13.43 In-Priority Supply
- 4.13.44 Recharge Well
- 4.13.45 Carrier with Transit Loss
- 4.13.46 Multiple Ownership

- 4.13.47 Accounting Plan Limits
- 4.13.48 Plan or Reservoir Reuse to a Plan Direct
- 4.13.49 Plan or Reservoir Reuse to a Plan Exchange
- 4.14 Precipitation Data File (*.pra or *.pra)
- 4.15 Evaporation Data File (*.eva or *.evm)
- 4.16 Stream Flow File Monthly (*.rim)
- 4.17 Direct Flow Demand File Monthly (*.ddm)
- 4.18 <u>Direct Flow Demand File Annual (*.dda)</u>
- 4.19 <u>Direct Flow Overwrite File Monthly (*.ddo)</u>
- 4.20 <u>Instream Flow Demand File Monthly (*.ifm)</u>
- 4.21 Instream Flow Demand File Annual (*.ifa)
- 4.22 Well Demand Monthly (*.wem)
- 4.23 <u>Delay Table File Monthly (*.dly)</u>
- 4.24 <u>Reservoir Target Content File Annual (*.tar)</u>
- 4.25 <u>Historic Reservoir Content File Monthly (*.eom)</u>
- 4.26 Base Flow File (*.rib)
- 4.27 Historic Streamflow File Monthly (*.rih)
- 4.28 <u>Historic Diversion File Monthly (*.ddh)</u>
- 4.29 Historic Well Pumping File Monthly (*.weh)
- 4.30 San Juan Recovery Plan Sediment File (*.sjr)
- 4.31 Irrigation Parameter Yearly Data File Annual (*.ipy)
- 4.32 Consumptive Water Requirement File Monthly (*.ddc)
- 4.33 Soil Moisture (StateCU Structure) File (*.str or *.par)
- 4.34 Geographic Information File (*.gis)
- 4.35 Output Request File (*.out)
- 4.36 Streamflow File Daily (*.rid)
- 4.37 Direct Flow Demand File Daily (*.ddd)
- 4.38 Instream Flow Demand File Daily (*.ifd)
- 4.39 Well Demand File Daily (*.wed)
- 4.40 Reservoir Target Content File Daily (*.tad)
- 4.41 Irrigation Water Requirement File Daily (*.ddx)
- 4.42 Delay Table File Daily (*.dld)
- 4.43 Historic Streamflow File Daily (*.riy)
- 4.44 Historic Diversion File Daily (*.ddy)
- 4.45 <u>Historic Well Pumping File Daily (*.wey)</u>

- 4.46 <u>Historic Reservoir Content File Daily (*.eoy)</u>
- 4.47 Downstream Call File (*.cal)
- 4.48 Rio Grande Spill (*.xrg)
- 4.49 <u>Plan Data (*.pln)</u>
- 4.50 Well Augmentation Plan Data (*.plw)
- 4.51 <u>Plan Return File (*.prf)</u>
- 4.52 Reservoir Return Flow File (*.rrf)
- 4.53 Reach Data File (*.rch)

4.0 Remarks

Regardless of how the model is applied: Base Flow, Simulate, Report, or Data Check a monthly simulation requires no more than the first 29 files (less may be provided if wells are simulated). Files 30 - 33 are required only if specific detailed analysis such as the San Juan recovery program, variable efficiency and soil moisture accounting are requested. Files 34 is used by the Graphical User interface to present structure location data while file 35 allows the user to limit the volume of output to be provided. Files 36 - 42 are required for a daily simulation while files 43 - 46 are required if a daily baseflow estimated is to be performed. Files 47 - 53 are required for specific, relatively unique applications that include a downstream call, plans, and the Rio Grande Compact. Throughout this documentation a standard file naming convention has been used (e.g. Response file (*.rsp), Control file (*.ctl), etc. where * refers to a basin or scenario). This naming convention is recommended for scenario management but it is not required. Note, when the base streamflow file is generated outside the StateMod baseflow module or represents a file that has been saved for historical purposes, it is typically named *.rim. When the StateMod baseflow results are used for the simulation, the base streamflow file it is typically named *.xbm to ensure data passes from the baseflow module to the simulate module.

In general, the top of each data set contains a variable number of comment cards identified by a "#" in column 1. Only the control (*.ctl) file and operational right (*.opr) files allow comments identified by a '#' below the header and within the data itself. Monthly time series data contain values for each month of the study period. Annual time series contain twelve values to be repeated for each year of the study period.

All structure names and ID's are limited to 24 and 12 characters respectively. To allow free formatted input files there should be no blank characters in the name or ID or they should be in single or double quotes (e.g. instead of My Name use 'My_Name' or "My Name").

Identifiers used throughout the model are limited to 12 characters. However if the standard numbering convention shown below is followed the ID should be limited to 8 characters since 4 of the 12 may be used to identify a well with up to 10 unique water rights (e.g. 12345678W.01). In general, any character may be used as an ID in StateMod although two reports; one related to the operational right file and one related to consumptive use by water district identifier look for specific characters in specific fields to simplify reporting. The Check option generates a report for operating rules which uses the operational right ID to the left of the decimal point to group operational rights from the same

source together. Similarly, the consumptive use report (-xcu) from the Report option presents the diversions by water district by combining all structures that have the first two digits of their ID the same. The following convention is recommended to ensure the reports operate appropriately and that data for different river basins will have unique identifiers:

Item Diversion ID Reservoir ID Well ID Instream Flow ID Instream Flow terminus ID	Source State WD*10000 + ID State WD*10000 + ID State WD*10000 + ID + W State WD*10000 + ID State WD*10000 + ID	Example 570501 573001 575001W 574501 574501_Dwn
Water Right	Associated Structure ID plus .01, .02, etc.	570501.01
Operational Right ID	Source Structure * 10 + .01, .02, etc.	5705010.01
River node with a gage Intermediate River Node	USGS ID Upstream USGS ID + .01	09010400 09010400.01
Precipitation ID Evaporation ID	NOAA ID NOAA ID	5025 5025
Administration Number	State Engineer's Administration Number	16192.10378
Delay (Return Flow) Table ID	1, 2, 3, etc.	
Aggregated diversions	<pre>User WD_XXB###, where WD is the water district XX is the Aggregated type AD = diversion AR = reservoir AM = municipal AS = stock pond) B = basin (W=white, etc.) ### = counter</pre>	40ADW001

4.1 R esponse File (*.rsp)

The response file contains the names of all other data files required to run the model. This file is read by subroutine StateM. Note, that Version 10.30 and greater allows a user to enter response file data using one of two formats; random and sequential. StateMod reads the first file type and based on the occurrence of the character '=' in the first file name it determines if the file is random (contains a '=') or sequential (does not contain a '=').

The random file approach allows file names to be entered in any order as described below under Random Response Format. Any file type that is not required for a simulation is simply not included. Also any file name may be commented out by including a '#' character in column 1. Its format is described in the table below (Random Response Format). For a description of the sequential, old, format see the chapter titled 10.0 Discontinued but Supported File Formats.

Random File Format		
File Descriptor	File Type Sta	andard Suffix
Control =	Control File	*.ctl
River_Network =	River Network File	*.rin
River_Gage =	River Gage File	*.rig
Reservoir_Station =	Reservoir Station	*.res
Diversion_Station =	Diversion Station	*.dds *.ris
StreamGage_Station = Instreamflow_Station =	Stream Gage Station Instream Flow Station	^.ris *.ifs
Well_Station =	Well Station	*.wes
Well_Station =	Well Station	. wes
<pre>Instreamflow_Right =</pre>	Instream Flow Right	*.ifr
Reservoir_Right =	Reservoir Right	*.rer
Diversion_Right =	Diversion Right	*.ddr
Operational_Right =	Operational Right	*.opr
Well_Right =	Well Right	*.wer
Precipitation_Monthly =	Precipitation Monthly	*.pre
Precipitation_Annual =	Precipitation Annual	*.pra
Evaporation_Monthly =	Evaporation Monthly	*.evm
Evaporation Annual =	Evaporation Annual	*.eva
Stream_Base Monthly =	Stream _Base Monthly	*.rim
Diversion_Demand_Monthly =	Diversion Demand Monthly	*.ddm
Diversion_Demand_AverageMonthly	= Diversion Demand Annual	*.dda
Diversion_DemandOverride_Monthly		*.ddo
<pre>Instreamflow_Demand_Monthly =</pre>	_	*.ifm
Instreamflow_Demand_AverageMonth		_
Well_Demand_Monthly =	Well Demand Monthly	*.wem
DelayTable Monthly =	Delay Table Monthly	*.dlv
DelayTable_Monthly = Reservoir Target Monthly =	Delay Table Monthly Reservoir Target Monthly	*.dly *.tar
<pre>DelayTable_Monthly = Reservoir_Target_Monthly = Reservoir_Return =</pre>	Delay Table Monthly Reservoir Target Monthly Reservoir Seepage Return Data	*.dly *.tar *.rrf
Reservoir_Target_Monthly = Reservoir_Return =	Reservoir Target Monthly Reservoir Seepage Return Data	*.tar *.rrf
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly =</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly	*.tar *.rrf *.ipy
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont	*.tar *.rrf *.ipy thly *.iwr
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly =</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly	*.tar *.rrf *.ipy
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture =</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture	*.tar *.rrf *.ipy thly *.iwr *.par
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont	*.tar *.rrf *.ipy thly *.iwr
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly =</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly	*.tar *.rrf *.ipy *.iwr *.par *.eom
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients =</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly thly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly thly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly	*.tar *.rrf *.ipy thly *.iwr *.par *.eom *.rib *.rih
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh
<pre>Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly=</pre>	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly	*.tar *.rrf *.ipy thly *.iwr *.par *.eom *.rib *.rih *.ddh
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request	*.tar *.rrf *.ipy thly *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ddd
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Well_Demand_Daily = Reservoir_Target_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Thly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Reservoir Target Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ddd *.ifd
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ddd *.ifd *.wed *.tad *.tad *.dld
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Well_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Thly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily y = ConsumptiveWaterRequirement Dail	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ddd *.ifd *.wed *.tad *.tad *.dld *.iwd
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Well_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail StreamGage_Historic_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Reservoir Target Daily Delay Table Daily Ly = ConsumptiveWaterRequirement Dail StreamGage Historic Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ifd *.wed *.ifd *.wed *.tad *.dld t.iwd *.tad *.tad *.dld *.iivd *.riy
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Well_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail StreamGage_Historic_Daily = Diversion_Historic_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily y = ConsumptiveWaterRequirement Dail StreamGage Historic Daily Diversion Historic Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ifd *.wed *.tad *.tad *.dld *.iwd *.tad
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail StreamGage_Historic_Daily = Diversion_Historic_Daily = Well_Historic_Daily = Well_Historic_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily Ty = ConsumptiveWaterRequirement Dail StreamGage Historic Daily Diversion Historic Daily Well Historic Daily Well Historic Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ifd *.wed *.tad *.tad *.iwd *.iwd *.iwd *.riy *.ddy *.wey
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Well_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail StreamGage_Historic_Daily = Diversion_Historic_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily y = ConsumptiveWaterRequirement Dail StreamGage Historic Daily Diversion Historic Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ifd *.wed *.tad *.tad *.dld *.iwd *.tad *.ifd *.iwd *.tad *.ddd *.ifd *.wed
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail StreamGage_Historic_Daily = Diversion_Historic_Daily = Well_Historic_Daily = Well_Historic_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily Ty = ConsumptiveWaterRequirement Dail StreamGage Historic Daily Diversion Historic Daily Well Historic Daily Well Historic Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ifd *.wed *.tad *.tad *.iwd *.iwd *.iwd *.riy *.ddy *.wey
Reservoir_Target_Monthly = Reservoir_Return = IrrigationPractice_Yearly = ConsumptiveWaterRequirement_Mont SoilMoisture = Reservoir_Historic_Monthly = StreamEstimate_Coefficients = StreamGage_Historic_Monthly = Diversion_Historic_Monthly = Well_Historic_Monthly = OutputRequest = Stream_Base_Daily = Diversion_Demand_Daily = Instreamflow_Demand_Daily = Well_Demand_Daily = Reservoir_Target_Daily = DelayTable_Daily = ConsumptiveWaterRequirement_Dail StreamGage_Historic_Daily = Diversion_Historic_Daily = Reservoir_Historic_Daily = Reservoir_Historic_Daily = Reservoir_Historic_Daily =	Reservoir Target Monthly Reservoir Seepage Return Data Irrigation Practice Yearly Chly = ConsumptiveWaterRequirement Mont Soil Moisture Reservoir Historic Monthly Stream Estimate Coefficients Stream Gage Historic Monthly Diversion Historic Monthly Well Historic Monthly Output Request Stream Base Daily Direct Flow Demand Daily Instream Flow Demand Daily Well Demand Daily Reservoir Target Daily Delay Table Daily Ly = ConsumptiveWaterRequirement Dail StreamGage Historic Daily Diversion Historic Daily Well Historic Daily Reservoir Historic Daily Reservoir Historic Daily	*.tar *.rrf *.ipy *.iwr *.par *.eom *.rib *.rih *.ddh *.weh *.out *.ddd *.ifd *.wed *.tad *.tad *.dld *.ifd *.wed *.tad *.ddy *.eoy

RioGrande_Spill_Monthly =	Rio Grande Spill file	*.rgs
<pre>GeographicInformation = Network =</pre>	Geographic Information (1) Network File (1)	*.gis *.net
Plan_Data = Plan_Wells = Plan_Return =	Plan Data Plan Well Augmentation Data Plan Return Data	*.pln *.plw *.prf
Reach_Data =	Reach Report Data	*.rch

(1) The Geographic Information (*.gis) and Network (*.net) files are not used by StateMod. However, if included, they allow the StateMod GUI to use them for presentation.

4.2 Control File (*.ctl)

The control file contains information which controls the model simulation. To allow old StateMod data sets to operate without editing, the data after the year type (row 18-1) is assumed to be zero if not provided. An example is provided in Appendix A. Comments, indicated by a # in column 1, may be provided at any location in this file. This file is read by subroutine DATINP.

Row-data Title Data	Variable	Description
1 thru 2 1-1 2-1	headin(i,1) headin(i,2)	Format (a80) Title printed on output Title printed on output
Study Period D 3 through 32 3-1 4-1	ata iystr iyend	Format (i8 or f8.0) Starting year of the simulation Ending year of the simulation
General Contro	l Switches iresop	Switch for output units; 1=cfs for all, 2=acft for all, 3=kaf for all, 4=cfs for daily and acft for monthly 5=cms for all
6-1	moneva	Switch for Evaporation and precipitation data; 0 = monthly; 1=average
7-1 8-1 9-1 10-1	iopflo numpre numeva interv	Switch for Streamflow: 1=total, 2=gains Number of precipitation stations Number of evaporation stations +n =Number of entries in each delay (return flow) pattern -1 =Variable number of entries per delay (return flow) pattern. return data is provided as a percent (e.g. 5.00) -100 =Variable number of entries per delay (return flow) pattern. return data is provided as a decimal (e.g. 0.05).
Factor Data	factor	Eagles to generally from CEC to AE/DAY
11-1	factor	Factor to convert from CFS to AF/DAY (1.9835)

12-1	rfacto	Divisor for streamflow data units; Enter 0 for data provided in CFS, Enter 1.9835 for data provided in AF/Mo
13-1	dfacto	Divisor for diversion data units; Enter 0 for data provided in CFS, Enter 1.9835 data provided in AF/Mo
14-1	ffacto	Divisor for in-stream flow data units; Enter 0 for data provided in CFS, Enter 1.9835 for data provided in AF/Mo
15-1	cfacto	Factor to convert reservoir content data to AF
16-1	efacto	Factor to convert evaporation data to feet/mo
17-1	pfacto	Factor to convert precip. data to feet/mo
18-1	cyrl	Year type Format (a5) (Right justified, all capital letters) CYR = Calendar Year (Jan - Dec)
		WYR = Water Year (Oct - Sep)
		IYR = Irrigation Year (Nov - Oct)
Advanced Contr		
19-1	icondem	Switch for demand data type
		See Section 7.10 for a discussion of the
		Demand options. If simulating wells (iwell > 0 see below)
		1 Historic Demand Approach
		demands for structures with both SW
		and GW rights are provided in a
		separate file (e.g. *.ddm & *.wem)
		and are not added
		(i.e. SW shortages cannot be
		supplied by GW & visa versa)
		2 Historic Sum Demand Approach
		demands for structures with both SW & GW rights are provided separately
		(i.e. the *.ddm and *.wem files
		are added. Demands can be supplied
		by SW or GW)
		3 Structure Demand Approach demands for structures with both SW
		and GW rights are provided
		in one file, the direct diversion
		demand file (e.g. *.ddm).Demands
		for well only lands are provided
		in the well demand file (*.wem)
		Demands can be supplied by SW or GW).
		4 Supply Demand Approach
		Same as 3 but the surface water may be diverted up to their demand even
		if a CIR does not exist.
		See Section 7.10for a detailed
		discussion.
		5 Decreed Demand Approach
		Same as 4 but the Decreed Demand
		Approach is used. See Section 7.10
		for additional discussion.
20-1	ichk	Switch for detailed output
		0 No detailed results 1 Print river network
		1 Print river network 4 Print detailed water right operating data
		5 Print detailed demand data
		J IIII accarred acmand data

		7 Drint detailed mature flow data
		7 Print detailed return flow data
		8 Print detailed daily baseflow data to *.log
		file and daily baseflow results to
		the *.xtp file
		9 Print detailed reoperation data
		10 Echo operational right file read
		11 Print reservoir evaporation details
		20 Override daily ID for testing
		21 Print top of binary file for *.xbn report
		24 Print detailed results of opr. rule 23
		downstream call
		25 Limit daily baseflow output to the river ID specified in variable ccall (24-1)
		30 Do not print daily binary results
		90 Print detailed water use data from return
		91 Print detailed demand data from Bomsec and well water right data from Welrig
		92 Print detailed soil moisture data
		-n Print allocation data at river node n
		100+n Echo operational right file read and
		provide detailed output for an operational
		right type n for the operational right ID
		provided for variable ccall (24-1). Note
		ichk=131 provides details on an operational
		right type 31
		201 Provide detailed output for an instream right
		ID provided for variable ccall (24-1)
		202 Provide detailed output for a reservoir right
		ID provided for variable ccall (24-1)
		203 Provide detailed output for a diversion right
		ID provided for variable ccall (24-1)
		206 Provide detailed output for a well right
		ID provided for variable ccall (24-1)
21-1	ireopx	Switch for reoperation control
		See Section 7.17 for a discussion of the
		Reoperation control
		O Reoperate for reservoir releases and
		returns to non downstream returns
		(default)
		1 Do not reoperate
		-n Reoperate when the sum of reservoir
		releases or downstream return flows
		exceed n in acft.
22-1	ireach	Switch for instream flow reach approach
		See Section 7.3 for a discussion of the
		Instream flow options.
		0 No instream reach approach (Phase II)
		1 Instream reach approach (Phase III)
		2 Same as 0 plus monthly instream
		demands may be provided in the monthly
		may be provided in the monthly
		instream demand file (*.ifm)
		3 Same as 1 plus monthly instream
		demands may be provided in the
		monthly instream demand file
		(*.ifm)
23-1	icall	Switch for detailed call data
		See Section 7.16 for a discussion of the
		Detailed call data
		0 No detailed call data

6 Print detailed daily data

		1 Yes detailed call data
24-1	ccall	Detailed call water right ID (e.g. Section
		Section 4.6 field 1-1 variable (cidvri)
		See Section 7.16 for a discussion of the
		Detailed call data
		Note this variable is not used if
		the control variable icall = 0
25-1	iday	Switch for daily calculations
		See Section 7.6 for a discussion of the
		Daily capability
		0 Monthly analysis
		1 Daily analysis
		2 Daily analysis where the daily demand
		is a monthly total that is decreased
		<pre>by the amount diverted each day (i.e. "daily-decrementing" approach).</pre>
26-1	iwell	Switch for well operations
20 1	IWEII	See Section 7.4 for a discussion of the
		well options.
		0 No well analysis
		-1 No well analysis but the file names are
		included in the response file (*.rsp)
		1 Well analysis with no max
		recharge
		2 Well analysis with a constant max
		recharge assigned as variable
		gwmaxrc in the control file (*.ctl)
		3 Well analysis with a variable max
		recharge assigned as variable gwmaxrc
		(1-4) of the river network file
		(*.rin)
27-1	gwmaxrc(1)	Maximum recharge limit (cfs)
		See Section 7.4 for a description
		of the well options and this variable
		+n Constant maximum recharge limit (cfs).
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the</pre>
00.1		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2.</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
28-1	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
	isjrip	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
28-1		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
29-1	itsfile	<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>
		<pre>+n Constant maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 2. Switch for an annual San Juan Recovery Program (SJRIP) Sediment file See Section 7.18 for a description of the SJRIP 0 No SJRIP (*.sjr) file provided -1 SJRIP file provided in the response</pre>

		requirement (*.iwr or *.ddc) file See Section 7.11 for a discussion of Variable efficiency and use of the annual CU time series data 0 No IWR file provided -1 IWR (*.iwr) file provided in the response (*.rsp)file but not used 1 IWR file provided and variable efficiency used. (requires itsfile from above be > 0) 2 IWR file provided and printed to output but variable efficiency is not used except to limit reservoir releases to days when an IWR exists when iday = 2
31-1	isprink	Switch for sprinkler data (area and efficiency) use See Section 7.12 for a description of the sprinkler options O No sprinkler data used
		1 For baseflow or simulation mode Use sprinkler area, sprinkler efficiency and gwmode data provided in time series file (*.ipy)
32-1	soild	Switch for soil moisture accounting See Section 7.13 for a Description of the Soil Moisture capability 0 No Soil Moisture (*.par) file provided -1 Soil Moisture (*.par) file provided in the response (*.rsp) file but not used +n Soil Moisture (*.par) used where +n is a typical soil zone depth (ft) (e.g. 2.5 - 3.0 ft). Note StateMod sets the initial soil moisture storage to 50% of the soil capacity (see Section 7.13)
33-1	isig	Switch for significant figures behind decimal point in output files O No significant figures 1 One significant figure 2 Two significant figures

4.3 River Network File (*.rin)

The river network file is used to describe the river basin of interest. Note, the last downstream node should be blank. An example is provided in Appendix A. This file is read by subroutine DATINP

Row-data	Variable	Description
1 1-1 1-2	cstaid(1) stanam(i,1)	Format (a12, a24, a12, 1x, a12, 1x, f8.0) River node ID Station name
1-3	cstadn(1)	Downstream node Note leave blank for the end of the network or for a tributary with a futile call
1-4	comment(1)	Comment reserved for structure at this location
1-5	gwmaxr(1)	Variable maximum recharge limit (cfs). Only used when variable iwell of the control file (*.ctl) is set to 3.

Repeat for the number of river nodes

4.4 River Station File (*.ris)

The river station file is used to describe the name and location of nodes where baseflows are known. Baseflows typically consist of streamflow gages (which have a historical time series in the historical stream flow file (*.rih)) and other nodes which have a base flow estimated using information in the base flow data file (*.rib). The number and order of entries corresponds to the Stream flow file. An example is provided in Appendix A. This file is read by subroutine DATINP.

Row-data	Variable	Description
Station Data 1 1-1 1-2 1-3 1-4	<pre>crunid(1) runnam(i,1) cgoto(1) crunidy(1)</pre>	Format (a12, a24, a12, 1x, a12) Stream station ID Station name River node with a stream gage Daily Stream station ID (for daily model only) See Section 7.6 for a detailed discussion
		Enter Stream station ID (crunid) if daily data Will be provided for this station Monthly data controls Enter another stream station ID to use the daily distribution of another but weight values by the monthly total in *.rim file Enter 0 to use the average daily value from the monthly total in the *.rim file Monthly data controls Enter 3 to use the daily value provided in the daily river (*.rid) file Daily data controls Enter 4 to use a daily pattern developed by connecting the midpoints of monthly data Monthly data controls Repeat for the number of stream gages

4.4.1 River Gage File (*.rig)

The river gage file is used to describe the name and location of nodes where gaged streamflows are located. Gaged streamflows have a historical time series in the historical stream flow file (*.rih). This file is part of a future enhancement that clearly separates data in the river station file (*.ris) into gaged and non gaged flow locations. Currently this file is used by the daily baseflow module only. This file is read by subroutine VIRIN.

Row-data	Variable	Description
Station Data 1 1-1 1-2 1-3 1-4	<pre>crunid(1) runnam(i,1) cgoto(1) crunidy(1)</pre>	Format (a12, a24, a12, 1x, a12) Stream Gage station ID Station name River node with a stream gage Daily Stream station ID (for daily model only) See Section 7.6 for a detailed discussion
		Enter Stream station ID (crunid) if daily data Will be provided for this station Monthly data controls Enter another stream station ID to use the daily distribution of another but weight values by the monthly total in *.rim file Monthly data controls Enter 0 to use the average daily value from the monthly total in the *.rim file Monthly data controls Enter 3 to use the daily value provided in the daily river (*.rid) file Daily data controls Enter 4 to use a daily pattern developed by connecting the midpoints of monthly data Monthly data controls Enter Stream station ID (crunid) if daily data will be provided for this station Monthly data controls Enter another stream station ID to use the daily distribution of another but weight values by the monthly total in *.rim file Monthly data controls Enter 0 to use the average daily value from the monthly total in the *.rim file Monthly data controls Enter 3 to use the daily value provided in the daily river (*.rid) file Daily data controls Enter 4 use a daily pattern developed by Connecting the midpoints of monthly data Monthly data controls

Repeat for the number of stream gages

4.5 Direct Diversion Station File (*.dds)

The direct diversion station file contains information to describe the physical properties of each direct diversion in the system. An example is provided in Appendix A. This file is read by subroutine DATINP.

Row-data	Variable	Description
Station Data		
1	71 1747	Format (a12, a24, a12, i8, f8.2, 2i8, 1x, a12)
1-1	cdivid(1)	Diversionstation ID
1-2	divnam(i,1)	Diversion name
1-3	cgoto	River node where diversion is located
1-4	idivsw(1)	Switch; 0=off, 1=on
1-5	divcap(1)	Diversion capacity (CFS)
1-6	dumx	Not currently used
1-7	ireptyp(1)	If a general replacement reservoir option (type 10) is used.
		0 Do not provide general replacement reservoir benefits
		1 Provide 100% replacement
		-1 Provide depletion replacement
1-8	cdividy(1)	Daily Diversion ID (not used for monthly model)
_ 0		See Section 7.6 for a detailed discussion Enter station ID (cdivid) if daily data
		will be provided for this station
		Monthly data generally controls
		Enter another station ID to use the daily
		<pre>distribution of another but weight values by the monthly total in *.ddm file</pre>
		-
		Monthly data generally controls
		Enter 0 to use the average daily value from the monthly data in the *.ddm file
		Monthly data controls
		Enter 3 to use the daily value from
		the daily demand (*.ddd) file
		Daily data controls
		Enter 4 use a daily pattern developed by
		connecting the midpoints of monthly data
		Monthly data controls
		1.01.01.27 44444 001.02.02.0
Diversion Swit	ches	
2		Format(12x, a24, 12x, 2i8, f8.2, f8.0, i8)
2-1	usernam(1)	User name
2-2	idvcom(1)	Data type switch
		1 monthly total demand provided
		(Section 4.17), 2 annual total demand provided
		<pre>(Section 4.18), 3 monthly irrigation water requirement</pre>
		provided (Section 4.17)
		4 annual irrigation water requirement
		provided (Section 4.17)
		5 estimate to be zero
2-3	nrtn(1)	Number of return flow locations or table
<u>.</u> 5	CII (± /	references
2-4	divefc(1)	System efficiency switch. Enter 0-100 % for a
		constant value each month. Enter a negative

		value to provide 12 values, one for each month.
2-5	area(1)	Enter 0; Irrigated acreage (ac) for future Use
2-6	irturn(1)	<pre>Use type; 0 = Storage 1 = Irrigation 2 = Municipal 3 = Carrier 4 = Transmountain 5 = Other</pre>
2-7	demsrc(1)	Demand source code (used for documentation purposes and non StateMod applications to determine if a structure supplies an irrigation demand.) 1 = Irrigated acreage from GIS database 2 = Irrigated acreage from structure file (tia) 3 = Irrigated acreage from GIS database, the primary component of lands served by multiple structures 4 = Same as 3 but data is from the structure file (tia) 5 = Secondary component of lands served by multiple structures 6 = Municipal, industrial or transmountain structure (no acreage data expected) 7 = Carrier structure (no acreage data expected) 8 = Acreage data provided by the user -999 = Acreage data unknown
Monthly Effici	lency Data	
3 3-1	diveff(1,12)	<pre>Free Format (Include if divefc above is < 0) Efficiency % by month for the year type selected (water year, irrigation year, calendar year)</pre>
Return Flow Da 4 4-1 4-2 4-3	crtnid(1) pcttot(1) irtndl(1)	Format (36x, a12, f8.2, i8) River node receiving return flow Percent of return flow to this river node Delay (return flow) table for this return flow Repeat for number of returns (nrtn)

Repeat for number of diversions

4.6 Direct Diversion Rights File (*.ddr)

The direct diversion rights file contains data associated with a diversion right. An example is provided in Appendix A. This file is read by subroutine RIGINP.

Row-data	Variable	Description
Right Data		
1		Format (a12, a24,a12,4x, f12.0,f8.2,i8)
1-1	cidvri(1)	Diversion right ID
1-2	named(1)	Diversion right name
1-3	cgoto	Direct diversion structure ID associated with this right
1-4	irtem(1)	Administration number
1-5	dcrdiv(1)	Decreed amount(CFS)
1-6	idvrsw(1)	Switch
		0=off
		1=on
		+n Begin in year n
		-n Stop after year n
		Repeat for the number of diversion rights

4.7 Instream Flow Station File (*.ifs)

The instream flow station file contains information to describe the physical properties of each instream flow in the system. An example is provided in Appendix A. This file is read by subroutine DATINP.

4.8 Instream Flow Right File (*.ifr)

The instream flow right file contains data associated with an instream flow's water rights. An example is provided in Appendix A. This file is read by subroutine RIGINP.

Row-data	Variable	Description
Right Data		
1		Format (a12, a24,a12, 4x, f12.0, f8.2, i8)
1-1	cifrri	Instream Flow right ID
1-2	namei(1)	Instream Flow right name
1-3	cgoto	Instream structure ID associated with this right
1-3	irtem(1)	Administration number
1-4	dcrifr(1)	Decreed amount(CFS)
1-5	iifrsw(1)	Switch
		0=off
		1=on
		+n Begin in year n
		-n Stop after year n
		Repeat for the number of instream flow rights

4.9 Well Station File (*.wes)

The well station file contains information to describe the physical properties of each well structure in the system. An example is provided in Appendix A. This file is read by subroutine DATINP.

Row-data	Variable	Description
Station Data 1 1-1 1-2 1-3 1-4 1-5	<pre>cdividw(1) divnamw(1) idvstaw(1) idivsww(1) divcapw(1) cdividyw(1)</pre>	Format (a12, a24, a12, i8, f8.2, 1x, a12, 1x, f12.5) Well Station ID Well Station name River node where the well is located Switch; 0=off, 1=on Well capacity (cfs) Daily Well Station ID (not used for monthly model) See Section 7.6 for a detailed discussion
1-7	primary(1)	Enter station ID (cdividw) if daily data will be provided for this station Monthly data controls Enter another station ID to use the daily distribution of another but weight values by the monthly total in *.wem Monthly data controls Enter 0 to use the average daily value from the monthly data in the *.wem file Monthly data controls Enter 3 to use the daily value from the daily well demand (*.wed) file Daily data controls Enter 4 use a daily pattern developed by connecting the midpoints of monthly data Monthly data controls Switch; 0=off Water right priorities determine when water is diverted. This option is commonly called SW primary because SW is typically senior +n=on Well water rights will be adjusted by n. This option is called GW primary because it allows priority of GW rights to be made senior to SW rights when an appropriate value of n is provided (e.g. 15000). Note StateMod operates appropriately if n makes a ground water right negative
Well Switches 2 2-1	idvcow2(1)	Format(36x, a12, 3i8, f8.2, f8.0, i8, f8.0) Diversion this well structure is associated with. Enter NA if this well is not
2-2	idvcomw(1)	associated with a diversion structure Data type switch 1 monthly total demand provided (Section 4.21) 2 Not active. Reserved for annual total demand 3 monthly irrigation water requirement

	<pre>provided(Section 4.21) 4 Not active. Reserved for annual irrigation water requirement 5 estimate to be zero 6 this well station is tied to a direct diversion station and expects demand data provided as a total in file *.ddm (e.g.</pre>	
nrtnw(1)	no well demand data is expected) Number of return flow locations or table	
nrtnw2(1)	references Number of depletion locations or table	
divefcw(1)	References System efficiency	
	Enter 0-100% for a constant value each month. Enter a negative value to provide 12 values, one for each month	
areaw(1)	Irrigated acreage (ac) for future n = Irrigated acreage for this structure -1 = Irrigated acreage provided in the direct diversion station file (*.dds).Use when a structure has both SW and GW supplies	
irturnw(1)	Use type; 1 = irrigation 2 = municipal 3 = commercial 4 = transmountain 5 = other (e.g. augmentation or recharge wells)	
<pre>demsrcw(1)</pre>	Demand source code (used for documentation purposes and non StateMod applications to determine if a structure supplies an irrigation demand) 1 = Irrigated acreage from GIS database 2 = Irrigated acreage from structure file (tia) 3 = Irrigated acreage from GIS database, the primary component of lands served by multiple structures 4 = Same as 3 but data is from the structure file (tia) 5 = Secondary component of lands served by multiple structures 6 = Municipal, industrial or transmountain structure (no acreage data expected) 7 = Carrier structure (no acreage data expected) 8 = Acreage data provided by the user -999 = Acreage data unknown	
ency Data	Free Format (Include if divefc above is < 0)	
diveffw(1,12)	Efficiency % by month for the year type selected (water year, irrigation year, calendar year)	
Return Flow Data		
<pre>crtnidw(1) pcttotw(1)</pre>	Format (36x, a12, f8.2, i8) River node receiving return flow Percent of return flow to this river node	
	<pre>nrtnw2(1) divefcw(1) areaw(1) irturnw(1) demsrcw(1) demsrcw(1) ta crtnidw(1)</pre>	

```
Delay (return flow) table for this return
4 - 3
               irtndlw(1)
                                     flow
                                  Repeat for number of return locations (nrtnw)
Depletion Data
                                  Format (36x, a12, f8.2, i8)
5-1
               crtnidw2(1)
                                 River node receiving depletion
5-2
               pcttotw2(1)
                                  Percent of depletion to this river node
                                  Delay (depletion) table for this return
5-3
               irtndlw2(1)
                                     flow
                                 Repeat for number of depletion locations(nrtnw2)
                                 Repeat for number of wells
```

4.10 Well Right File (*.wer)

The well right file contains data associated with a well structures. An example is provided in Appendix A. This file is read by subroutine RIGINP.

Row-data	Variable	Description
Right Data		
1		Format (a12, a24,a12, 4x, f12.0, f8.2, i8)
1-1	cidvri(1)	Well right ID
1-2	cnamed(1)	Well right name
1-3	cgoto	Well structure ID associated with this right
1-3	irtem(1)	Administration number
1-4	dcrdivw(1)	Decreed amount(CFS)
1-5	idvrsww(1)	Switch
		0=off
		1=on
		+n Begin in year n
		-n Stop after year n
		Repeat for the number of well rights

4.11 Reservoir Station File (*.res)

The reservoir station file contains information to describe the physical properties of each reservoir in the system. Reservoirs may be operated such that they will not (iressw = 1 or 2) or will (iressw = 3) divert above their target. When a reservoir stores above its target and subsequently releases that water as part of an operating rule, the net result is a paper fill which is charged against the reservoir right's one fill limitation and additional water becomes available downstream of the reservoir. An example reservoir station file is provided in Appendix A. This file is read by subroutine GETRES.

Row-data	Variable	Description
Station Data 1 1-1 1-2 1-3 1-4	<pre>cresid(1) resnam(i,1) cgoto iressw(1)</pre>	Format (a12, a24, a12, i8,f8.0, 1x, a12) Reservoirstation ID Reservoir name River node where reservoir is located Switch for reservoir; 0 off, 1 on, Do not adjust for dead storage Do not store above reservoir targets 2 on, Do not store above reservoir targets Adjust maximum ownership and initial storage of the last account by the dead storage volume 3 on, Do not adjust for dead storage Do not store above reservoir target Charge ability to store above a reservoir target to the decree (e.g. paper fill)
1-5	rdate(1)	Date for one fill rule administration +n month for reoperation at the beginning of the month (e.g. 1 = January 1, 2 = February 1, etc.) -1 to do not administer the one fill rule.
1-6	cresidy(1)	Daily reservoir ID (not used for monthly model) See Section 7.6 for a detailed discussion Enter station ID (cresid) if daily data will be provided for this station Monthly data controls Enter another station ID to use the daily distribution of another but weight values by the monthly total in the reservoir target (*.tar) file or reservoir end- of-month (*.eom) file Monthly data controls Enter 0 to use the average daily value from the monthly data in the reservoir target (*.tar) file or reservoir end- of-month (*.eom) file Monthly data controls Enter 3 to use the daily value from the daily reservoir target (*.tad) file or reservoir end-of-day (*.eod) file Daily data controls Enter 4 use a daily pattern developed by Connecting the midpoints of monthly data Monthly data controls Enter 5 to use a daily pattern developed by connecting the end points of monthly data
Physical Data Row 2 2-1 2-2 2-3	<pre>volmin(1) volmax(1) flomax(1) deadst(1) nowner(1)</pre>	Format (24x, 4f8.0, 4i8) Minimum reservoir content (AF) Maximum reservoir content (AF) Maximum flow downstream of the reservoir (e.g. current stream flow plus the reservoir release (CFS) Dead storage in reservoir (AF) Number of owners

```
2-6
               nevapo(1)
                                 Number of evaporation stations for this reservoir
                                 Number of precipitation stations for this reservoir
2-7
               nprecp(1)
                                 Number of area capacity values
2-8
               nrange(1)
Owner Data
Row 3
                                  Format (12x, a12, 3f8.0, i8)
3-1
               ownnam(1)
                                 Owner name
3-2
               ownmax(1)
                                 Maximum storage of owner 1
3-3
               curown(1)
                                 Initial storage of owner 1
3 - 4
                                 Switch for evaporation distribution
               pcteva(1)
                                     O Prorate reservoir evaporation
                                        between all accounts proportionally
                                       based on their current storage volume
                                        n Apply n (%) to this account
                                     -1 No evaporation to this account
3 - 5
               n2own(1)
                                 Ownership data used for one fill calculations
                                     1 Ownership is tied to a first fill
                                        right(s),
                                     2 Ownership is tied to a second fill
                                        right(s)
                                 Repeat for the number of owners (nowner)
Evaporation Data
Row 4
                                 Format (24x, f8.2)
                                 Evaporation station ID for this reservoir
4 - 1
               cevar(1)
                                 Percent of this station to use
4-2
               weigev(1)
                                 Repeat for the number of evap stations
                                     (nevapo)
Precipitation Data
Row 5
                                 Format (24x, f8.2)
5 - 1
               cprer(1)
                                 Precipitation station ID
                                 Percent of this station to use
5-2
              weigpr(1)
                                 Repeat for the number of precipitation stations (nprecp)
Area Capacity Data
Row 6
                                 Format (24x,3f8.0)
6-1
               conten(i,1)
                                 Content in area capacity table for point 1 (AF)
6-2
               surarea(i,1)
                                 Area associated with the content for point 1 (ac)
6-3
               seepage(irg,1)
                                 Seepage associated with the content for
                                    point 1 (AF per month)
                                  Repeat above for nrange(1) values
                                 Repeat rows 1-8 for the number of reservoirs
```

4.12 Reservoir Right File (*.rer)

The reservoir rights file contains data associated with a reservoir's water rights. An example is provided in Appendix A. This file is read by subroutine RIGINP.

Row-data	Variable	Description
Right Data		
		Format (a12,a24,a12,4x,f12.0,f8.0,4i8,a12)
1-1	cirsid(1)	Reservoir right ID
1-2	namer(1)	Reservoir right name
1-3	cgoto	Reservoir station ID associated with this right
1-3	rtem(1)	Administration number
1-4	dcrres(1)	Decreed amount (AF)
1-5	irsrsw(1)	Switch
		0=off
		1=on
		+n Begin in year n
		-n Stop after year n
1-7	iresco(2,1)	Switch for account distribution
		+n Account to be served by this right
		O Fill all accounts based on their
		ratio of their ownership ration
		-n Fill the first n accounts based on
		the ratio of their ownership
1-8	ityrsr(1)	Reservoir right type;
		1 Standard
		-1 Out Of Priority water right
1-9	n2fill(1)	Reservoir right type
		1 First fill,
		2 Second fill
1-10	copid(1)	Associated Out-of-priority operational right
		(include only for Out Of Priority water rights
		(ityrsr = -1)
		Repeat for the number of reservoir rights

4.13 Operational Right File (*.opr)

The operational file describes unique operating criteria within the basin. Use of the terms 'operational rights' and 'operating rules' are used interchangeably herein. The StateMod Model contains the following standard operational rights. This file is read by subroutine OPRINP. Comments, indicated by a # in column 1 may be provided at any location in this file. Because the data associated with this file varies based on the type of operational right selected the input description is repeated for each application.

Beginning with version 12.0 an operating rule file format was adopted that includes six (6) additional variables associated with water reuse, diversion type, etc. For a description of the old (*.par file) format, which StateMod still supports, see the chapter titled **10.0 Discontinued but Supported File Formats.**

Because multiple input file formats may be provided it is recommended the following string be provided near the top of the file before any data: #FileFormatVersion 2. If the format version indicator is not provided StateMod will try to read the file and try to determine the appropriate file type.

The following are noted:

- StateMod operating rules represent water being diverted or transferred from a Source to a Destination with a particular Delivery Method. Identification of these elements is necessary to select the appropriate operating rule for each situation.
- Sources can be the River (for direct flow and storage rights see Sections 4.6 and 4.12), Ground Water (for well rights see Section 4.10), a Reservoir (see Section 4.11) or a Plan structure (see Section 3.9).
- Destinations can be diversion structures, reservoirs, instream flows, or plan structures.
- StateMod operating rules deliver water to meet demands via the river or through a carrier. Water delivered by the river is self explanatory. For example a reservoir release to the river that is later diverted or exchanged from the river by ditch.StateMod considers the delivery method to be a carrier when water is delivered from one structure by another structure without being released to the river. For example the delivery from an off-channel reservoir to an irrigation demand directly located below the reservoir. All carriers such as canals, ditches, laterals, pipelines, tunnels, etc are treated as diversion structures.

Delivery Method R elative to the Source

#	Delivery Method	Description
1	River	Release to the river then divert directly or by
		exchange
2	Carrier	Release to a carrier. Water is transported to a
		user by a canal, it is not released to the stream
		system.
3	Bookover	Transfer from one reservoir account to another
		account or another reservoir (water is not
		physically moved)
4	Alternate_Point	Divert at a different location than the water right
5	Out_Of_Priority	Out of Priority

- A total of 11 generic operating rule types were originally sufficient for development of all of the western slope planning models. Development of the Rio Grande planning model required eight new rule types. One more rule type was added to support revisions to the San Juan model. Two more rule types were added when representation of the Blue River decree operations was added to the Colorado model. Recently, in preparation for the South Platte planning model, 27 new rule types have been added to the StateMod executable, bringing the total to 49 operating rule types.
- The original 11 operating rule types typically addressed a single Source, multiple Destination types, and a single Delivery Method. Pursuant to the continuing development of the model there is some redundancy with the original operating rule types and a subsequent one that provides the same functionality but has more flexibility. For example the Carrier without Loss rule (type 11) can be replaced with the Carrier with Loss rule (type 45) by simply setting the

carrier loss to zero. The documentation herein includes descriptions of all 49 operating rules in order to be backward compatible and because the original 11 rules are generally simpler to apply.

- Examples of the operating rules are provided in a sample operating rule file (<<u>Chapter4_example_opr</u>>).
- Descriptions of each operating rule and their associated input variables, are included in Sections 4.13.1 to 4.13.49.

Figures 1 through 4 are flow charts developed to assist a user to select the appropriate operating rule. Figures 1-3 provide information when the source of water is a Reservoir, Direct Flow Right or a Plan Structure, respectively. Figure 4 provides information for special rules that have been developed for unique circumstances (e.g. Rio Grande compact, South Platte River compact, Augmentation Wells, etc.). These figures can be used by 1. Selecting the appropriate figure based on the source of water, and 2. Selecting the appropriate sub set (Delivery Method, Ownership, Plan Type, Special Rule) that meets a user's needs. Following are five (5) examples of how to use these figures to select the appropriate operating rule:

- Example 1 Release water from a reservoir (Source) to a direct diversion (Destination) by river exchange (Delivery Method)
 - On Figure 1 (Source Reservoir), follow the arrow titled "Delivery via the River by Exchange". Continue down that arrow to the arrow titled Destination "Diversion", resulting in use of type 4 operating rule (see Section 4.13.4).
- Example 2 Diversion of an entire (100%) direct flow right (Source) to an off-channel reservoir (Destination) through a carrier structure (Delivery Method) with or without loss.
 - On Figure 2 (Source Direct Flow Right), follow the arrow titled "Total (100 percent) Amount of Right" to Destination "Carrier to a Diversion or Reservoir", resulting in use of type 11 operating rule (see Section 4.13.11). If carrier losses associated with diversions to storage are to be represented the Destination "Carrier to Reservoir with Loss" would result in use of a Type 45 operating rule (see Section 4.13.45).
- Example 3 Release reusable water stored in a Plan (Source) and Reservoir to meet Terms & Conditions on a neighboring tributary (Destination) via a river exchange (Delivery Method)
 - On Figure 3 (Source Plan Structure) follow the arrow titled "From Reservoir Reuse Plan" to Destination "Terms & Conditions Plan Delivery by Exchange", resulting in use of type 49 operating rule (explained further below in Section 4.13.49).
- Example 4 Represent the South Platte Compact
 - On Figure 4 (Special Operating Rules) select the box titled "Interstate Compacts" to Destination "South Platte Compact", resulting in use of type 40 operating rule (see Section 4.13.40);
- Example 5 Operate an Augmentation Well
 - On Figure 4 (Special Operating Rules) select the box titled "Source Ground Water" to Augmentation Well, resulting in use of type 37 operating rule (explained further below in Section 4.13.49).

Operating Rule Types Based on Source and Destination Structures

Operating Rule Types Based on Source and Destination Structures

Operating Rule Types Based on Source and Destination Structures

Special Operating Rule Types

Interstate Compacts

La Plata Compact (Index Flow) - TYPE 13
Rio Grande Compact Deliveries - TYPE 17
Conejos River Compact Deliveries - TYPE 18
South Platte Compact - TYPE 40
Navajo Reservoir Release for San Juan RIPRAP - TYPE 20

Soil Moisture

Soil Moisture Use Senior to Surface and/or Ground Water Right – TYPE 22

Other

Reoperation (Increase Speed of Simulation) - TYPE 12 Downstream Call Function (Used for Modeling a Portion of a River System) - TYPE 23

Storage Operations

San Juan RIPRAP Releases - TYPE 20
OOP Diversion (Upstream Storage Statute) - TYPE 38
operated with OOP Bookover - TYPE 8
Storage with Special Limits (e.g., Green Mountain 1955
Exchange Limited by Dillon and Colorado Springs OOP
Diversion and Storage Plan) - TYPE 41
Administrative Plan Limit (HUP Releases, Colorado
Springs Operations) - TYPE 47
Plan Reset - TYPE 42

Source – Ground Water

Augmentation Well - TYPE 37 Recharge Well - TYPE 44

Item	Destination or Diverting Structure	Source or Replacement Structure	Operational Activity
4.13.1	Instream Flow	Reservoir	Reservoir to Instream Flow Delivery by the River
4.13.2	Direct Flow or Reservoir	Reservoir	Reservoir to a Direct Flow or reservoir or carrier Delivery by the river or carrier
4.13.3	Direct Flow or Reservoir	Reservoir	Reservoir to a Carrier Delivery by a carrier
4.13.4	Direct Flow	Reservoir	Reservoir Exchange to a Direct Flow Delivery by the river
4.13.5	Reservoir	Reservoir	Reservoir Exchange to Storage Delivery by the river
4.13.6	Reservoir	Reservoir	Paper exchange between reservoir accounts (bookover)
4.13.7	Diversion or Reservoir	Reservoir	Reservoir to a Carrier by Exchange Delivery by the river
4.13.8	Reservoir or Plan	Reservoir or Plan	Out-of-Priority Bookover Bookover of an Out-of-Priority diversion
4.13.9	NA	Reservoir	Release for target contents Delivery by the river
4.13.10	Direct Flow	Reservoir	General Reservoir Replacement By direct release or exchange Delivery by the river
4.13.11	Direct Flow or Reservoir	Water Right	Carrier Right to a ditch or reservoir Delivery by a carrier
4.13.12	NA	NA	Reoperation Reoperate water rights
4.13.13	Instream Flow	Stream Gage	Index flow constraint on an instream flow diversion Note La Plata Compact uses this Operating Rule
4.13.14	Direct Flow or Reservoir	Direct Flow	Carrier Right with Constrained Demand Carrier constrained by the demand At both the destination and source Delivery by the river
4.13.15	Instream Flow	Water Right	Interruptible supply Based on a natural flow estimate Transfer a direct diversion water Right to an instream flow
4.13.16	Direct Flow	Water Right	Direct Flow Storage Allow the unused portion of

a direct flow decree to be stored in a reservoir

4.13.17	Direct Flow	Index Station	Rio Grande Compact - Rio Grande portion
4.13.18	Direct Flow	Index Station	Rio Grande Compact - Conejos River portion
4.13.19	Direct Flow	River	Split Channel Operations
4.13.20	NA	Reservoir	San Juan Reservoir RIP Operation
4.13.21	Well	NA	Wells with Sprinkler Use
4.13.22	Direct Flow and Well	NA	Soil Moisture Use
4.13.23	Downstream Call	River	Downstream Call Operate a downstream call
4.13.24	Direct Flow or Reservoir or Plan	Water Right	Direct Flow Exchange Supply a direct flow or reservoir or plan by exchange of a water right From river or carrier
4.13.25	Direct Flow or Reservoir or Plan	Water Right	Direct Flow Bypass Supply a direct flow or reservoir or Plan by a bypass of a water right From river or carrier
4.13.26	T&C Plan	Reservoir or ReUse Plan	Reservoir, Recharge or ReUse Plan to a T&C Plan Supply a T&C or Augmentation plan from a Reuse Plan, Recharge Plan or a Reservoir
4.13.27	Diversion or Reservoir	Reservoir or Reuse Plan	Reservoir or ReUse Plan to a Diversion or Reservoir Direct with or without destination reuse Supply a diversion or reservoir from a Reservoir or Reuse Plan Directly from the river or a carrier
4.13.28	Diversion or Reservoir	Reservoir or ReUse Plan	Reservoir or ReUse Plan to a Diversion or Reservoir by exchange with or without destination reuse Supply a diversion or reservoir from a reservoir or plan by exchange By Exchange from the river or a carrier
4.13.29	NA	ReUse Plan	ReUse Plan Spill Release water from a plan Delivery by the river

4.13.30	Reservoir	Operating Ru	ale Reservoir Rediversion Redivert water released by another operating rule for a T&C plan
4.13.31	Direct Flow or Reservoir	Water Right	Carrier Right with Reuse
4.13.32	Direct Flow or Reservoir or Carrier	Reservoir & Reservoir Reuse Plan	Plan Reservoir and Plan to a direct flow or reservoir or carrier direct with or without destination reuse Delivery by the river or carrier
4.13.33	Direct Flow or Reservoir or Carrier	Reservoir & Reservoir Reuse Plan	Plan to a Direct Flow or reservoir or carrier by exchange with or without destination reuse Delivery by the river or carrier
4.13.34	Reservoir	Reservoir (bookover)	Bookover with Reuse with Reuse
4.13.35	Direct Flow or Reservoir or Carrier	Import Plan	Import to a Diversion, Reservoir or Carrier with or without Reuse Delivery by the river or carrier
4.13.36	Direct Flow	Water Right	Seasonal (daily) Water Right (e.g. Meadow Rights)
4.13.37	Plan	Well Water Right	Augmentation Well Pump an augmentation well to satisfy a T&C or Well Augmentation plan requirement
4.13.38	Direct Flow or Reservoir or Carrier	Water Right	Out-of-Priority Diversion Divert out-of-priority to a reservoir or a diversion with Respect to a senior reservoir right. Addresses the upstream storage statute.
4.13.39	Well or Diversion	Water Right	Alternate Point Pump or divert using an alternate Point of diversion
4.13.40	Instream Flow	Stream Gage	South Platte Compact Limit compact demand to flow downstream of the Washington County line
4.13.41	Reservoir	Water Right	Storage with Special Limits Limit reservoir storage by the amount diverted by one or more Out-of-Priority Plans
4.13.42	NA	Plan	Plan Reset
4.13.43	Well Augmentation Plan	River	<pre>In-Priority Supply Determine if well depletions from pumping in a prior time step or</pre>

terms and conditions accounted for in a Plan structure are in priority

4.13.44	Recharge Reservoir	Well Water Right	Recharge Well Pump a recharge well to a Recharge Reservoir
4.13.45	Direct Flow or Reservoir	Water Right	Carrier Right with Loss to a ditch or reservoir Delivery by a carrier
4.13.46	Admin Plan	Admin Plan	Multiple Ownership
4.13.47	NA	Plan	Plan Limits
4.13.48D	irect Flow or Reservoir or Carrier		Reservoir or Plan to Plan Direct
4.13.49	Plan or Reservoir Reuse	Plan	Reservoir or Plan to Plan Exchange

4.13.1 Reservoir Release to an Instream Flow (ityopr=1)

The type 1 operating rule provides a method to release water to an instream flow via the river.

Row-data	Variable	Description
Control Data Format (a12, a	124, 12x, 4x, f12.5 1x,a12,1x, 2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri(1)	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly Switch
		<pre>0 No monthly on/off values 12 Number of monthly on/off Switches provided</pre>
1-5	ioprsw(1)	Annual On/Off Switch
		0=off
		1=on
		+n Begin in year n
		-n Stop after year n
Destination Da	ıta	
1-6	ciopde	Destination instream structure
1-7	iopdes(2,1)	Destination instream account (typically 1)
Supply Data		
1-8	ciopso(1)	Supply reservoir ID
1-9	iopsou(2,1)	Supply reservoir account
1-10	ciopso(2)	0
1-11	iopsou(4,1)	0
Type Data		
1ype Data 1-12	ityopr(1)	1
<u> </u>	TC1OPT(T)	-

```
Associated Plan Data
              creuse
                                 NA
Diversion Type
               cdivtyp
                                 NA
Conveyance Loss (%)
1-15
               OprLoss
                                 0
Miscellaneous Limits
1-16
                                 0
               OprLimit
Start Date
1-17
                                 First year of operation
               IoBeq
End Date
1-18
               IoEnd
                                 Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
               imonsw(1)
                                 Monthly switch 0=off, 1=on
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
```

4.13.2 Reservoir Release to a Diversion or Reservoir or Carrier (ityopr=2)

The type 2 operating rule provides a method to release water to a reservoir, direct flow structure or a carrier via the river. In addition, it can be used to constrain a diversion to the capacity of up to 10 intervening structures or carriers. Note a diversion is implicitly constrained by the capacity of the destination structure (variable ciopde, row-data 1-6).

```
Row-data
               Variable
                                 Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12, 1x, 2f8.0, 2i8)
1 – 1
               cidvri(1)
                                 Operational right ID
1-2
                                  Operation right name
               nameo(1)
1-3
               rtem(1)
                                 Administration number
1 - 4
               dumx
                                 Monthly and Intervening Structure
                                  Switch
                                     +n Number of intervening structures
                                        (max = 10)
                                     -n Include -12 monthly on/off
                                        values minus n intervening
                                        structures.
                                  Note, when a negative value is,
                                     provided, it should be -13 or less
                                     for 12 monthly values and 1
                                     intervening structure)
1-5
                                 Annual On/Off Switch
               ioprsw(1)
                                     0 off
                                     1 on
```

+n Begin in year n -n Stop after year n

_				_	
Des	t in	2 ± 1	α n	112	+ 2
בסע		аст	UII.	υa	La

1-6 ciopde Destination diversion ID or reservoir ID
1-7 iopdes(2,1) Destination structure account
For a diversion destination, enter 1
For a reservoir destination, enter
+n Account served by this right
-n Fill first n accounts based on
the ratio of their ownership

Supply Data

1-8	ciopso(1)	Supply reservoir ID
1-9	iopsou(2,1)	Supply reservoir account
1-10	ciopso(2)	0
1-11	iopsou(4,1)	See Section 7.15 for a da

See Section 7.15 for a discussion of the Reservoir demand options.

0 = reservoir demand is not adjusted
+n = Reservoir demand is limited to not
 exceed CIR/n; where n (%) is the efficiency
 of reservoir water use. Note n (%) is
 limited to not exceed the maximum system
 efficiency. Also a +n requires the variable
 efficiency option (ieffmax) from control
 file be on.

-1 = provide depletion replacement

Type Data

1-12 ityopr(1) 2

Associated Plan Data

1-13 creuse NA

```
Diversion Type
1 - 14
               divtyp
                                 NA
Conveyance Loss (%)
               OprLoss
Miscellaneous Limits
1-16
               OprLimit
Start Date
1-17
               IoBeg
                                  First year of operation
End Date
1-18
               IoEnd
                                 First year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
               imonsw(1)
                                  Monthly switch 0=off, 1=on
                                     +n Day first used that month
                                     -n Day last used that month
                                  Note the first entry corresponds to the first
                                     month specified in the control file
Intervening Structure Data
Include only if the monthly switch (dumx) = 1-10 or < -12 1-10 or < -12
Format (36x, 10a12)
3 - 1
               intern(1,1)
                                  For +dumx, Enter dumx intervening
                                     structure ID's
                                  For -dumx, Enter abs(dumx)-12
                                     intervening structure ID's
```

4.13.3 Reservoir Release to a Direct Diversion or Reservoir by a carrier (ityopr=3)

The type 3 operating rule provides a method to release water to a reservoir or direct flow structure by a conduit (e.g. a pipeline or canal that flows directly from a reservoir to a user) rather than the river. In addition, it can be used to constrain a diversion to the capacity of up to 10 intervening structures or carriers. Note a diversion is implicitly constrained by the capacity of the destination structure (variable ciopde, row-data 1-6).

```
Row-data
               Variable
                                 Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
1-1
                                 Operational right ID
               cidvri(1)
1-2
                                 Operational right name
               nameo(1)
1-3
                                 Administration number
               rtem(1)
1 - 4
                                 Monthly and Structure Switch
               dumx
                                     +n Number of intervening structures
                                     (max = 10)
                                     -n Include 12 monthly on/off values
                                       minus n intervening structures
                                       Note, when a negative value is,
                                       provided, it should be -13 or less)
                                 Annual On/Off Switch
               ioprsw(1)
1-5
                                     0=off
```

1=on

+n Begin in year n
-n Stop after year n

Destination Data

1-6 ciopde Destination diversion ID or destination reservoir ID

1-7 iopdes(2,1) Destination structure account

For a diversion destination, enter 1 For a reservoir destination, enter

+n Account to be served by this right-n Fill the first n accounts based on

the ratio of their ownership

Supply Data

1-8 ciopso(1) Supply reservoir ID
1-9 iopsou(2,1) Supply reservoir account
1-10 ciopso(2) 0
1-11 iopsou(4,1)

See Section 7.15 for a discussion of the Reservoir demand options.

O Reservoir demand is not adjusted

+n Reservoir demand is limited to not
 exceed CIR/n; where n (%) is the efficiency
 of reservoir water use. Note n (%) is
 limited to not exceed the max system
 efficiency. Also a +n requires the
 variable efficiency option (ieffmax) from
 control file be on.

Type Data

1-12 ityopr(1) 3

Associated Plan Data

1-13 creuse NA

Diversion Type

1-14 cdivtyp Diversion

Conveyance Loss (%)

1-15 OprLoss 0

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data Free Format

Include only if the monthly switch (dumx) = 12 or less than -12 2-1 imonsw(1) Monthly switch 0=off, 1=on

+n Day first used that month

-n Day last used that month

Note the first entry corresponds to the first month specified in the control file

```
Intervening Structure Data
Include only if the monthly switch (dumx) = 1-10 or < -12 1-10 or < -12
Format (36x, 10a12)
3 - 1
               intern(1,1)
                                 For +dumx, Enter dumx intervening
                                     structure ID's
                                  For -dumx, Enter abs(dumx)-12
                                     intervening structure ID's
```

4.13.4 Reservoir Release to a Direct Diversion by Exchange with the River (ityopr=4)

The type 4 operating rule provides a method to allow a direct flow diversion to occur via a reservoir exchange. In general, an exchange is required whenever a reservoir cannot serve a direct flow diversion or reservoir directly. When the destination variable ciopde (row-data = 1-6) is a structure ID, the exchange is not constrained by the structures water right. When the destination variable ciopde (row-data = 1-6) is a water right, the exchange is limited to its decreed amount less any diversions that have been charged to that right. For a direct diversion the limit is constrained to diversions that have occurred in the current time step. For a reservoir, the limit is constrained by storage that has occurred over the administrative season. The type 4 operating rule implicitly limits the exchange amount to ensure no senior, intervening water rights are impacted. Intervening rights are those water rights that occur between the diversion and a point downstream where the releasing reservoir's water is available.

Row-data

Variable

```
Description
 Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
               cidvri(1)
                                  Operational right ID
1-1
1-2
               nameo(1)
                                  Operational right name
1 - 3
               rtem(1)
                                  Administration number
1 - 4
               dumx
                                  Monthly Switch
                                     0 No monthly on/off values
                                     12 Number of monthly on/off switches provided
1-5
               ioprsw(1)
                                  Annual On/Off Switch
                                     0=off
                                     1=on
                                     +n Begin in year n
                                     -n Stop after year n
Destination Data
1-6
               ciopde
                                  Destination structure ID or water right
1-7
               iopdes(2,1)
                                  Destination structure account, enter 1 for a diversion
Supply Data
1-8
               ciopso(1)
                                  Supply reservoir ID
1 - 9
               iopsou(2,1)
                                  Supply reservoir account
               ciopso(2)
1-10
               iopsou(4,1)
                                  0 = provide 100% replacement
1-11
                                  -1 = provide depletion replacement
Type Data
1-12
                                  4
               ityopr(1)
Associated Plan Data
1-13
                                  NA
               creuse
Diversion Type
1-14
               cdivtyp
                                  NΑ
```

```
Conveyance Loss (%)
1-15
              OprLoss
Miscellaneous Limits
1-16
               OprLimit
Start Date
1-17
               IoBeg
                                 First year of operation
End Date
1-18
               IoEnd
                                 Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                 Monthly switch 0=off, 1=on
               imonsw(1)
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
```

4.13.5 Reservoir Storage by Exchange (ityopr=5)

The type 5 operating rule allows a reservoir to store water by an exchange with another reservoir. When the destination reservoir variable ciopde (row-data = 1-6) is a reservoir ID, the exchange is not constrained by the reservoir's water rights. When the variable ciopde (row-data = 1-6) is a water right, the exchange is limited to the water right specified less any diversions that have been charged to that right during the administrative season.

```
Variable
Row-data
                                  Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
1-1
               cidvri(1)
                                  Operational right ID
1-2
               nameo(1)
                                  Operational right name
1 - 3
               rtem(1)
                                  Administration number
1 - 4
               dumx
                                  Monthly Switch
                                     0 No monthly on/off values
                                     12 Number of monthly on/off switches
                                        provided
1-5
                                  Annual On/Off Switch
               ioprsw(1)
                                     0=off
                                     1=on
                                     +n Begin in year n
                                     -n Stop after year n
Destination Data
1-6
               ciopde
                                  Destination reservoir ID or water right
1 - 7
               iopdes(2,1)
                                  Destination structure account
                                  For a reservoir destination, enter
                                     +n Account to be served by this right
                                     -n Fill the first n accounts based on
                                        the ratio of their ownership
```

```
1-8
               ciopso(1)
                                 Supply reservoir ID
               iopsou(2,1)
                                 Supply reservoir account
1-9
1-10
               ciopso(2)
1-11
               iopsou(4,1)
                                 See Section 7.15 for a discussion of the
                                 Reservoir demand options.
                                    0 = reservoir demand is not adjusted
                                   +n = Reservoir demand is limited to not
                                       exceed CIR/n; where n (%) is the efficiency
                                       of reservoir water use. Note n (%) is
                                       limited to not exceed the max system
                                       efficiency. Also a +n requires the variable
                                       efficiency option (ieffmax) from control
                                       file be on.
1-12
               ityopr(1)
                                 5
Associated Plan Data
1-13
               creuse
                                 NΑ
Diversion Type
1-14
               cdivtyp
                                 NA
Conveyance Loss (%)
                                 0
               OprLoss
Miscellaneous Limits
                                 0
1-16
               OprLimit
Start Date
1-17
                                 First year of operation First year of operation
               IoBeq
End Date
1-18
               IoEnd
                                 First year of operation Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
2-1
               imonsw(1)
                                 Monthly switch 0=off, 1=on
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the
                                    first month specified in the control file
```

4.13.6 Reservoir to Reservoir Transfer (Bookover) (ityopr=6)

The type 6 operating rule allows a reservoir to reservoir bookover to occur. It is commonly used to transfer water from one reservoir storage account to another in a particular month. In addition, it may be used to transfer water from one storage account to another based on the amount of water diverted by another operating rule specified under variable ciopso(2) (row-data 1-10). Finally if variable iopsou(4,1) (row-data 1-11) is set to 99 the transfer can be limited by the amount specified for diversion structure ciopso(2) (row-data 1-10) for the year and month provided in the direct diversion demand file (*.ddm).

Row-data Control Data	Variable	Description
		, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
1 1	1x,a12,1x, 2f8.0,	
1-1 1-2	cidvri(1)	Operational right ID Operational right name
1-3	<pre>nameo(1) rtem(1)</pre>	Administration number
1-4	dumx	Monthly and Structure Switch
		0 No monthly on/off values
		12 Number of monthly on/off switches
		provided
1-5	ioprsw(1)	Annual On/Off Switch
		0=off 1=on
		+n Begin in year n
		n Stop after year n
Destination Da		
1-6 1-7	ciopde iopdes(2,1)	Destination reservoir ID Destination structure account
1-7	10pues(2,1)	For a reservoir destination, enter
		+n Account served by this right
		-n Fill the first n accounts based
		On the ratio of their ownership
Supply Data		
1-8 1-9	ciopso(1)	Supply reservoir ID
1-9	iopsou(2,1) ciopso(2)	Supply reservoir account If not required enter 0
1 10	C10P80(2)	If limited by the amount diverted under
		an operating rule, enter the operating
		rule ID
		If limited by a diversion demand amount
1 11	' (4 1)	enter the diversion structure ID
1-11	iopsou(4,1)	<pre>0 if ciopso(2) is 0 or an operating rule ID</pre>
		99 if ciopso(2) is a diversion structure ID
		-
Type Data		
1-12	ityopr(1)	6
Associated Pla	an Data	
1-13	creuse	NA
Diversion Type		
1-14	cdivtyp	NA
Conveyance Los	ng (%)	
1-15	OprLoss	0
1 10	opiloss.	
Miscellaneous	Limits	
1-16	OprLimit	0
Start Date		
1-17	IoBeg	First year of operation
1 1,	10209	ribe fear of operation
End Date		
1-18	IoEnd	Last year of operation
Monthle Dete		
Monthly Data Free Format		
	f the monthly swite	ch (dumx) = 12 or less than -12
	2	

```
2-1 imonsw(1) Monthly switch 0=off, 1=on
+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first
month specified in the control file
```

4.13.7 Diversion by a Carrier by Exchange (ityopr=7)

1-12

ityopr(1)

7

The type 7 operating rule provides a method to allow a diversion by a carrier via a reservoir exchange. In general, an exchange is required whenever a reservoir cannot serve a demand directly. This operating rule implicitly limits the exchange amount to ensure no senior, intervening water rights are impacted. Intervening rights are those water rights that occur between the storing reservoir and a point downstream where the releasing reservoir's water is available.

```
Row-data
               Variable
                                 Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
1-1
               cidvri(1)
                                 Operational right ID
1-2
              nameo(1)
                                 Operational right name
1-3
                                 Administration number
              rtem(1)
1 - 4
                                 Monthly Switch
               dumx
                                    0 No monthly on/off values
                                    12 Number of monthly on/off switches provided
1-5
               ioprsw(1)
                                 Annual On/Off Switch
                                    0=off
                                    1=on
                                    +n Begin in year n
                                    -n Stop after year n
Destination Data
1-6
              ciopde
                                 Destination - Operational Right ID of the Carrier
1-7
               iopdes(2,1)
                                 Destination account
                                 For a diversion destination, enter 1
                                 For a reservoir destination, enter
                                    +n Account to be served by this right
                                    -n Fill the first n accounts based on
                                       the ratio of their ownership
Supply Data
1-8
               ciopso(1)
                                 Supply reservoir ID
1-9
               iopsou(2,1)
                                 Supply reservoir account
1-10
               ciopso(2)
1-11
               iopsou(4,1)
                                 See Section 7.15 for a discussion of the
                                 Reservoir demand options.
                                    0 = reservoir demand is not adjusted
                                   +n = Reservoir demand is limited to not
                                       exceed CIR/n; where n (%) is the efficiency
                                       of reservoir water use. Note n (%) is
                                       limited to not exceed the max system
                                       efficiency. Also a +n requires the variable
                                       efficiency option (ieffmax) from control
                                       file be on.
Type Data
```

```
Associated Plan Data
             creuse
                               NA
Diversion Type
1-14 cdivtyp
                               NA
Conveyance Loss (%)
                               0
1-15
     OprLoss
Miscellaneous Limits
1-16
                               0
            OprLimit
Start Date
            IoBeg
1-17
                               First year of operation
End Date
1-18
             IoEnd
                               Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                               Monthly switch 0=off, 1=on
              imonsw(1)
                                  +n Day first used that month
                                  -n Day last used that month
                               Note the first entry corresponds to the first
                                  month specified in the control file
Intervening Structure Data
Include only if the monthly switch (dumx) = 1-10 or < -12 1-10 or < -12
Format (36x, 10a12)
             intern(1,1)
                               For +dumx, Enter dumx intervening
                                 structure ID's
                               For -dumx, Enter abs(dumx)-12
                                  intervening structure ID's
```

4.13.8 Out-Of-Priority Reservoir Bookover (ityopr=8)

The type 8 operating rule works in concert with an out-of-priority diversion (type 38) to book water

- 1.From an out-of-priority reservoir account to another reservoir account or
- 2. From an out-of-priority (OOP) plan to reduce its obligation.

This rule was significantly enhanced in July 2006 in order to address 1. Out out-of-priority diversions in addition to out-of-priority storage and 2. Out-of-priority storage and diversions occurring at more than one reservoir and diversion with regard to the same subordinated reservoir.

When the destination is a reservoir the out-of-priority diversion is typically kept in a separate account of the junior reservoir (e.g. an OOP account). Also an out-of-priority plan is used to track the amount taken. If the volume of water stored in the OOP plan exceeds the remaining capacity of the subordinated reservoir right, the Type 8 rule books water from the out-of-priority account to another general purpose account within the junior reservoir and the OOP plan obligation is reduced. To perform this activity the operating rule "associated" with the OOP diversion or storage being booked over must be known to the type 8 operating rule. If the subordinated reservoir right does not fill then a

type 27 operating rule is typically used to transfer the water from the out-of-priority reservoir to the subordinated reservoir and adjust the obligation stored in the OOP Plan.

When the destination is an OOP Plan the out-of-priority diversion is stored under the OOP Plan. Once the volume of water stored in the OOP plan exceeds the remaining capacity of the subordinated reservoir right, the obligation stored in the OOP plan is reduced. To perform this activity the operating rule "associated" with the OOP diversion or storage being booked over must be known to the type 8 operating rule. If the subordinated reservoir right does not fill then a type 27 operating rule is typically used to transfer the water from a reservoir to the subordinated reservoir and adjust the obligation stored in the OOP Plan.

The following are noted:

- The variable ciopso(2) (row-data 1-10) is used to identify the senior decree that is being subordinated.
- The variable intern(n,1) (rule n, value 1) is used to identify the junior decree that will be credited withdiverting water out of priority when booked over.
- The variables intern(n,2) (rule n, value 2) through intern(n,10) (rule n, value 10) are used to identify up to 9 operating rules associated with this OOP plan.
- If the destination is a reservoir all OOP diversions are charged against the junior reservoir's water right when they are booked over to an account where they can be released.
- If the subordinated water right is not filled, the water stored out of priority is released to the subordinated reservoir at the end of the administration year assigned to each reservoir (see variable rdate in a reservoir station file (*.res)).
- The type 8 operating rule has generic applications but was originally developed to handle the Blue River decree that allows OOP storage of water in Dillon Reservoir (an upstream junior reservoir), OOP storage of water in Blue Lake (an upstream reservoir), OOP diversion to Roberts Tunnel (an upstream junior diversion), and an OOP diversion to the Con Hoosier system before Green Mountain Reservoir (a downstream senior) is filled. See Section 7, Frequently Asked Questions, for additional description of the Blue River Decree implementation to the Colorado River Basin.

```
Row-data
              Variable
                                Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
              1x,a12,1x, 2f8.0, 2i8)
1-1
                                Operational right ID
              cidvri(1)
1-2
              nameo(1)
                                Operational right name
1-3
              rtem(1)
                                Administration number
1-4
                                Monthly switch
              dumx
                                Enter 2 if no on/off switches are provided
                                   e.g. one for an associated Water Right and
                                   one for an associated operating Rule
                                Enter -14 if on/off switches are provided
                                   e.g. twelve on/off switches,
                                   one for an associated Water Right and
                                   one for an associated operating Rule
```

1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n Begin in year n -n Stop after year n
Dankinskian D		
Destination D		Dantingting manager to TD and Dlaw TD
1-6 1-7	ciopde iopdes(2,1)	Destination reservoir ID or Plan ID Destination structure account For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based on the ratio of their ownership
Cupply Data		
Supply Data 1-8	ciopso(1)	If the destination is a reservoir enter the supply reservoir ID (same as the destination ID)
1-9	iopsou(2,1)	If the destination is a Plan enter NA If the destination is a reservoir enter the supply reservoir account
1-10	ciopso(2)	If the destination is a Plan enter NA Supply (subordinated) water right ID
1-10	iopsou(4,1)	0
	10,200 (1,1)	
Type Data		
1-12	ityopr(1)	8
Associated Pl	an Data	
1-13	creuse	Out-of-Priority Plan ID
Diversion Typ 1-14		272
1-14	cdivtyp	NA
Conveyance Lo	ss (%)	
1-15	OprLoss	0
Miscellaneous	T imit a	
	OprLimit	0
	0712110	·
Start Date		
1-17	IoBeg	First year of operation
End Date		
ind Date	IoEnd	Last year of operation
Monthly Data Free Format		<pre>itch (dumx) = 12 or less than -12 Monthly switch 0=off, 1=on</pre>
		-n Day last used that month Note the first entry corresponds to the first month specified in the control file
		ociated Reservoirs itch (dumx) = +n or < -12 Format (36x, 10a12)
3-1	intern(1,1)	The destination water right ID
2 2	intorn(1 2)	(the one storing Out-of-Priority)
3-2	intern(1,2)	The OOP operational right associated

4.13.9 Reservoir Target (ityopr=9)

The type 9 operating rule allows reservoir releases to be made from a reservoir to satisfy a target reservoir content specified in the *.tar file. This operating rule is commonly applied to simulate flood control operations where forecast data is are unavailable. In addition, it may be used to simulate hydropower operations when a hydropower demand cannot be specified by other means.

Row-data	Variable	Description
Control Data	24 12x 4x f12 5	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
1-1 1-2 1-3 1-4	1x,a12,1x, 2f8.0, cidvri(1) nameo(1) rtem(1) dumx	
1-5	ioprsw(1)	provided Annual On/Off Switch 0=off 1=on +n Begin in year n -n Stop after year n
Destination Da		
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	NA 0
Source Data 1-8 1-9	<pre>ciopso(1) iopsou(2,1)</pre>	Reservoir ID Reservoir account; Enter 0 to meet target levels by releasing from each account by
1-10 1-11	ciopso(2) iopsou(4,1)	the proportionate amount currently in each 0
Type Data 1-12	ityopr(1)	9
Associated Pla 1-13	n Data creuse	NA
Diversion Type	cdivtyp	NA
Conveyance Los 1-15	s (%) OprLoss	0
Miscellaneous 1-16	Limits OprLimit	0
Start Date		

```
1-17
              IoBeg
                               First year of operation
End Date
1-18
              IoEnd
                               Last year of operation
Monthly Data
Include only if the monthly switch (dumx) = 12
                                Free Format
2-1
                               Monthly switch 0=off, 1=on
              Imonsw(1)
                                   +n Day first used that month
                                   -n Day last used that month
                                Note the first entry corresponds to the first
                                   month specified in the control file
```

4.13.10 General Replacement Reservoir to a Diversion by a Direct Release or Exchange (ityopr=10)

The type 10 operating rule provides a method to supply reservoir water to a large number of structures without supplying individual operating rules for each. The following are noted:

- The operating rule checks whether reservoir replacement water will be supplied to a diversion by a direct reservoir release or exchange.
- The operating rule serves all water rights which are senior to its Administration number which have variable "ireptyp" of the Direct Diversion Station File (*.dds) set to 1 or -1.
- The variable "ireptyp" specified by structure in the diversion station (*.dds) file specifies if replacement releases are to be made for the full diversion (ireptyp=1) or depletion (ireptyp=-1) or not at all (ireptyp=0).
- When more than one replacement reservoir is specified, they are sorted by Administration number and operate by priority, most senior first.
- The replacement reservoir operating rule applies to direct flow structures only, therefore carrier systems must be tied to a replacement reservoir directly. The following are is noted:
- The replacement reservoir operating rule has generic applications but was originally developed to handle the replacement reservoir obligations of Green Mountain Reservoir in the Colorado River Basin.

```
Row-data
             Variable
                              Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
             1x,a12,1x, 2f8.0, 2i8)
1-1
             cidvri(1) Operational right ID
1-2
            nameo(1)
                            Operation right name
1-3
                            Administration number
            rtem(1)
             dumx
1 - 4
                              Monthly Switch
                                 0 No monthly on/off values
                                 12 Number of monthly on/off switches
```

1-5	ioprsw(1)	<pre>provided Annual On/Off Switch 0=off 1=on</pre>
Destination Da	ta	
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	0 0
Source Data 1-8 1-9 1-10 1-11	<pre>ciopso(1) iopsou(2,1) ciopso(2) iopsou(4,1)</pre>	Supply reservoir ID Supply reservoir account NA 0 (not used)
Type Data 1-12	ityopr(1)	10
Associated Pla	n Data	
1-13	creuse	NA
Diversion Type 1-14	cdivtyp	NA
Conveyance Los 1-15	s (%) OprLoss	0
Miscellaneous	Limits OprLimit	O Do not adjust Monthly or Annual Operational limits Operating Rule ID specified in row 3 for which monthly and Annual limits will be INCREASED by the amount released Operating Rule ID specified in row 3 for which monthly and Annual limits will LIMIT the amount released
Start Date		
1-17	IoBeg	First year the operating rule is on
End Date 1-18	IoEnd	Last year the operating rule is on
Monthly Data Free Format Include only i 2-1	f the monthly swit imonsw(1)	<pre>ch (dumx) = 12 or less than -12 Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month Note the first entry corresponds to the first month specified in the control file</pre>

4.13.11 Carrier Right to a Ditch or Reservoir (ityopr=11)

The type 11 operating rule provides a method to divert water to a reservoir or direct flow structure using another structure's water rights. In addition, it can be used to constrain a diversion to the capacity of up to 10 intervening structures. The following are noted:

- A diversion is implicitly constrained by the capacity of the destination structure (variable ciopde).
- The source water right may operate as a standard direct flow right and/or as a carrier. When the variable iopsou(2,1) = 1 the right is used as a carrier only. When the variable iopsou(2,1) = 0 the right is used as both a direct flow right and a carrier right.
- If several operating rules use the same water right, diversions are not allowed to exceed the decreed capacity.
- If the destination is a diversion, the demand is the destination structure's demand. Any return flows use the return flow pattern and locations assigned to the destination structure in the diversion station file (*.dds).
- If the destination is a reservoir, the operating rule demand is the destination reservoir's capacity.
- If the destination is a reservoir and the source is a diversion right, the operating rule diversion IS NOT CHARGED against the reservoir's decree.
- If the destination is a reservoir and the source is a reservoir right, the operating rule diversion IS CHARGED against the reservoir's decree.
- If carrier losses are to be included use a type 45 operating rule.

```
Description
Row-data
              Variable
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
              1x,a12,1x, 2f8.0, 2i8)
              cidvri
                               Operational right ID
                               Operational right name
1-2
             nameo(1)
1-3
             rtem(1)
                               Administration number. Note if
                                   ciopso(1) is a diversion right,
                                   its administration number is
```

1-4	dumx	used and rtem is ignored Monthly and Structure Switch
		<pre>+n Number of intervening structures (max = 10)</pre>
		-n Include -12 for monthly on/off
		values minus n intervening structures
		Note, when a negative value is,
		provided, it should be -13 or less).
1-5	ioprsw(1)	Annual On/Off Switch
		0=off 1=on
		+n=Begin in year n
		-n=Stop after year n
Destination Da	ıta	
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	Destination diversion or reservoir ID Destination structure account,
1-7	10paes (2,1)	1 for a diversion destination
		+n for a reservoir destination,
		+n Account served by this right-n Fill the first n accounts using
		the ratio of their ownership
Source Data		
1-8	ciopso(1)	Water right ID under which the diversion occurs
		Note may be a diversion right or
1-9	iopsou(2,1)	<pre>a reservoir right 0 The source water right (ciopso(1))</pre>
1-9	10ps0d(2,1)	is left on (i.e. it can be used
		as a both a direct flow right
		<pre>and this operating rule). 1 The source water right (ciopso2(1)</pre>
		is turned off (i.e. it can only be used by this operating rule)
1-10	ciopso(2)	NA the water right is administered at
		the location specified in the
		appropriate water right file in the water right is administered at
		location n (e.g. a reservoir right
		is administered at a the location of a carrier)
1-11	iopsou(4,1)	0 Not used
Type Data		
1-12	ityopr(1)	11
Plan Data		
1-13	creuse	NA If the carrier loss is not associated with a recharge source
		+n
		Enter Recharge Plan ID If the carrier loss is a recharge source.
		Note the Plan type must be recharge
		(type 8)
Diversion Type	:	
1-14	cdivtyp	NA

```
Conveyance Loss (%)
1-15
              OprLoss
Miscellaneous Limits
                                 0 No carrier limitation
              OprLimit
                                    +n Carrier limit (cfs) Note this
                                       value is an additional constraint
                                       that is imposed on a carrier
                                       since the capacity of the diverting
                                       structure and all carriers is an
                                       implicit constraint. This value is
                                       typically used to represent the
                                       maximum diversion rate allowed to
                                       fill a reservoir
Start Date
1 - 17
               IoBeg
                                 First year of operation
End Date
1-18
                                 Last year of operation
               IoEnd
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                 Monthly switch 0=off, 1=on
               imonsw(1)
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds
                                    to the first month specified in
                                    the control file
Intervening Structure Data
Include only if the monthly switch (dumx) = 1-10 or < -12 1-10 or < -12
Format (36x, 10a12)
3 - 1
               intern(1,1)
                                 For +dumx, Enter dumx intervening
                                    structure ID's
                                 For -dumx, Enter abs(dumx) - 12
                                    intervening structure ID's
```

4.13.12 Reoperation (ityopr=12)

The type 12 operating rule provides a method to speed up model execution while incurring some level of inaccuracy. It is typically used in coordination with the control file variable ireopx. When the control file variable ireopx is set to 0, all activities that supply new water to the system (reservoir releases, return flows to non downstream tributaries, etc.) automatically cause the model to reoperate with no inaccuracy and this operating rule is not required. When the control file variable ireopx is set to 1, this operating rule initiates reoperation at the Administration number specified. Reoperation, as used herein, restarts the water right allocation procedure from senior to junior in order to allow senior ditches to benefit from any new water that might have been introduced to the system.

```
Row-data
               Variable
                                  Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
1-1
               cidvri
                                  Operational right ID
1-2
               nameo(1)
                                  Operation right name
1-3
               rtem(1)
                                  Administration number
1 - 4
               dumx
1-5
               ioprsw(1)
                                  Annual On/Off Switch
                                     0=off
                                     1=on
                                     +n=Begin in year n
                                     -n=Stop after year n
1-6
               ciopde
Destination Data
1-7
               iopdes(2,1)
                                  0
1-8
               ciopso(1)
                                  0
Supply Data
1-9
               iopsou(2,1)
                                  0
1-10
               ciopso(2)
                                  0
1-11
               iopsou(4,1)
                                  0
Type Data
1-12
               ityopr(1)
                                  12
Associated Plan Data
               creuse
1-13
                                  NA
Diversion Type
1 - 14
               cdivtyp
                                  NA
Conveyance Loss (%)
1-15
               OprLoss
                                  0
Miscellaneous Limits
1-16
               OprLimit
                                  0
Start Date
1-17
                                  First year of operation
               IoBeg
End Date
1-18
               IoEnd
                                  Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
2-1
               imonsw(1)
                                  Monthly switch 0=off, 1=on
                                     +n Day first used that month
                                     -n Day last used that month
                                  Note the first entry corresponds to the first
                                     month specified in the control file
```

4.13.13 La Plata Compact (Index Flow) (ityopr=13)

The type 13 operating rule allows an instream flow to operate based on its location on the river and the flow at a remote location. This rule has generic applications but was originally developed to handle the La Plata River compact in the San Juan River Basin. This compact, in general, limits Colorado's commitment to deliver water to New Mexico based on the flow at an upstream, index gage.

Row-data	Variable	Description
Control Data		
Format (a12, a	24, 12x, 4x, f12.5	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
	1x,a12,1x, 2f8.0,	218)
1-1	cidvri(1)	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly Switch
		0 No monthly on/off values
		12 Number of monthly on/off switches provided
1-5	ioprsw(1)	Annual On/Off Switch
		0=off
		1=on
		+n=Begin in year n
		-n=Stop after year n
Destination Da		
1-6	ciopde	Destination Instream Flow
1-7	iopdes(2,1)	Destination Account, enter 1
Supply Data		
1-8	ciopso(1)	River ID of the Index flow station
1-9	iopsou(2,1)	Percent of the Index flow station available
1-10	ciopso(2)	Instream Flow water right
1-11	iopsou(4,1)	1 The source water right (ciopso(2) is turned off)
		i.e. it can only be used by this operating rule)
Type Data		
1-12	ityopr(1)	13
	10/0F1(1)	
Associated Pla	n Data	
1-13	creuse	NA
Diversion Type		
1-14	cdivtyp	NA
Conveyance Los	s (%)	
1-15	OprLoss	0
Miscellaneous		
1-16	OprLimit	0
Start Date		
	Ta Da si	Dinat was of anomation
1-17	IoBeg	First year of operation
End Date		
1-18	IoEnd	Last year of operation
± ±0	TOHIN	habe year or operacion

```
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
2-1 imonsw(1) Monthly switch 0=off, 1=on
+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first
month specified in the control file
```

4.13.14 Carrier Right with Constrained Demand (ityopr=14)

The type 14 operating rule provides a method to divert water to a reservoir or direct flow structure using another structure's water rights. It is similar to the type 11 operating rule except the amount diverted is constrained to not exceed the demand of the structure associated with the source water right (variable ciopso(1) row-data 1-8). The following are noted:

- When the variable iopsou(2,1) is equal to 0, the diverting structure's demand is limited to the monthly value read from the direct flow demand (*.ddm) file. When the variable iopsou(2,1) is greater than 1, the diverting structure's demand for the year is limited to the annual value read as variable iopsou(2,1).
- The source water right may operate as a standard direct flow right and/or as a carrier. When the variable iopsou(2,1) = 1 is the right is used as a carrier only. When the variable iopsou(2,1) = 0 the right is used as both a direct flow right and a carrier right.

Row-data	Variable	Description
Control Data		
Format (a12, a	24, 12x, 4x, f12.5 1x,a12,1x, 2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number. Note if ciopso(1) is a diversion right, its administration number is used and rtem is ignored.
1-4	dumx	Monthly and Structure Switch +n Number of intervening structures (max = 10) -n Include -12 monthly on/off values minus n intervening structures Note, when a negative value is, provided, it should be -13 or less)
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n=Begin in year n -n=Stop after year n
Destination Da	ta	
1-6	ciopde	Destination diversion ID or reservoirID
1-7	iopdes(2,1)	Destination structure account For a diversion destination, enter 1 For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based on

the ratio of their ownership

Source Data		
1-8	ciopso(1)	Water right ID under which the diversion occurs
1-9	iopsou(2,1)	<pre>(must be a diversion right) 0 The source water right (ciopso(1)) is left on (i.e. it can be used as a both a direct flow right and this operating rule) 1 The source water right (ciopso2(1) is turned off (i.e. it can only be used by this operating rule)</pre>
1-10 1-11	ciopso(2) iopsou(4,1)	 NA (not used) 1 Monthly diversion limit is provided in the direct diversion demand file (*.ddm) for ciopso(2) +n Annual diversion limit (acft). Note any data provided in the direct diversion demand file (*.ddm) is ignored.
Type Data		
1-12	ityopr(1)	14
Associated Pla 1-13	n Data creuse	NA
D' '		
Diversion Type	cdivtyp	NA
Conveyance Los 1-15	ss (%) OprLoss	0
	-	
Miscellaneous 1-16	Limits OprLimit	0
1 10	ОРГИТШІС	
Start Date 1-17	IoBeg	First year of operation
End Date 1-18	IoEnd	Last year of operation
Monthly Data Free Format Include only i 2-1	f the monthly swit imonsw(1)	cch (dumx) = 12 or less than -12 Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month Note the first entry corresponds to the first month specified in the control file
		<pre>fch (dumx) = 1-10 or < -12 1-10 or < -12 For +dumx, Enter dumx intervening structure ID's</pre>
		For -dumx, Enter abs(dumx)-12 intervening structure ID's

4.13.15 Interruptible Supply Direct (ityopr=15)

The type 15 operating rule allows a direct flow diversion's water right (ciopso(2)) to defer its ability to divert in order to supply water to an instream flow located downstream. The rule may or may not operate in a given year based on the flow (iopsou(2)) at a specified location (ciopso(1)) in the network in the month indicated when variable imonsw(i) is equal to 2. The following comments are provided to assist in using and interpreting this operating rule:

- Once a water right has chosen to interrupt their supply and provide water to the instream flow, it cannot reoperate until it is turned off.
- The amount available for diversion is the minimum available to the source water right when it is in priority (i.e. diversion to instream flow = min (instream flow demand, direct diversion water right, direct diversion demand, available flow to direct diversion).
- Variable iopsou(4,1) allows the user to specify if the amount transferred is the total amount diverted or the amount that would have been consumed.
- The monthly on/off switches (imonsw(i)) allows the operating rule to continue from one simulation year through the next (e.g. begin in August of one year and continue through October of the next year). However, this ability requires the operating rule not operate until the first on switch (imonsw(i) = 2) is encountered.
- The Administration number assigned to the source water right overrides the variable rtem(1) provided with the operating rule.
- Because this operating rule has the ability to turn on and off based on a discharge, this operating rule is either on or off (i.e. the user is not allowed to initiate its operation during the study period by specifying a year for variable ioprsw(1).

Row-data	Variable	Description
Source Data Format (a12, a	24, 12x, 4x, f12.5 1x,a12,1x, 2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1 1-2 1-3	cidvri nameo(1) rtem(1)	Operational right ID Operational right name Administration number. Note since ciopso(1) is a water right, its administration number is used and rtem(1) is ignored.
1-4	dumx	Monthly Switch 0=No monthly on/off values 12=Number of monthly on/off switches provided
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n=Begin in year n -n=Stop after year n
Destination Da	ta	
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	Destination instream flow ID 1 Destination structure account

Source Data	ciopso(1)	Stream ID used to determine if the interruptible
1-9	iopsou(2,1)	supply operating rule will be used Natural streamflow (acft) below which the
		<pre>interruptible supply operating rule will be used</pre>
1-10	ciopso(2)	Direct flow diversion water right to be used as the interruptible supply
1-11	iopsou(4,1)	<pre>0 = allow 100% of the decree to be diverted -1 = allow depletion (CU) to be diverted</pre>
Type Data		
1-12	ityopr(1)	15
Associated Pla		N.A.
1-13	creuse	NA
Diversion Type 1-14	cdivtyp	NA
Conveyance Los		
1-15	OprLoss	0
Miscellaneous	Limits OprLimit	0
	OPILIMIO	Q
Start Date 1-17	IoBeg	First year of operation
End Date		
1-18	IoEnd	Last year of operation
Monthly Data Free Format Include only i 2-1	<pre>f the monthly swit imonsw(1)</pre>	<pre>Cch (dumx) = 12 or less than -12 Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month Note the first entry corresponds to the first month specified in the control file</pre>
		-

Intervening Structure Data

Include only if the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

3-1 intern(1,1) For +dumx, Enter dumx intervening structure ID's

For -dumx, Enter abs(dumx)-12 intervening structure ID's

4.13.16 Direct Flow Storage Direct (ityopr=16)

The type 16 operating rule allows a direct flow diversion's water right (ciopso(1)) to store in account (iopdes(2,1) of reservoir (ciopde). The amount stored may be limited by a maximum exchange percent (iopsou(4,1)); which is the same as 100 - a bypass percent. The following comments are provided to assist in using and interpreting this operating rule:

- A water right may operate as a standard direct flow right and/or as a direct flow storage right. When the variable iopsou(2,1) = 0 is the right is used as a direct flow storage right only. When the variable iopsou(2,1) = 1 is the right is used as both a direct flow right and a direct flow storage right.
- The source water right must be associated with 1 user (i.e. multiple users at the same diversion are not supported).
- Because a direct flow storage right may be used to serve both a direct flow storage user and as a direct flow storage right, the Administration number assigned to the operating rule is used in the analysis (i.e. it is not overridden by the source water rights administration number).
- Variable iopsou(4,1) allows the user to specify the maximum percent of the remaining decree that may be stored. This maximum percent is equivalent to 100 a bypass percent.
- Direct flow storage is limited to the irrigation season by evaluating the demand associated with the structure tied to the source water right in the direct flow demand file (*.ddm). In addition, the user may control seasonal demands using the monthly on/off switch (imonsw(i)).
- The amount available for diversion is the minimum physical water available, remaining decree (e.g. some of the decree may have been used for direct diversion purposes), the exchange potential between the direct flow right and the reservoir, the maximum direct flow storage percent, the remaining reservoir volume, the reservoir target, the remaining reservoir account volume.

<pre>Control Data Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,</pre>	Control Data		
	Format (a12, a	a24, 12x, 4x, f12.5	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
1x,a12,1x, 2f8.0, 2i8)	,		
1-1 cidvri Operational right ID	1-1		
1-2 nameo(1) Operational right name	1-2	nameo(1)	
1-3 rtem(1) Administration number	1-3	` '	-
1-4 dumx Monthly and Structure Switch	1-4	, ,	Monthly and Structure Switch
+1 Destination Structure ID			_
(use to provide demand data			(use to provide demand data
when the destination is tied			` ±
to a carrier)			
-n Include -12 monthly on/off values			,
minus n destination structure IDs			_
(use to provide demand data			(use to provide demand data
when the destination is tied			·
to a carrier)			to a carrier)
1-5 ioprsw(1) Annual On/Off Switch	1-5	ioprsw(1)	•
0=off	_ 0	10F12W(1)	
1=on			0 022
+n=Beqin in year n			
-n=Stop after year n			5 .
n book arour your n			n book aroor your n
Destination Data			
1-6 ciopde Destination reservoir ID	1-6	ciopde	Destination reservoir ID
1-7 iopdes(2,1) Destination reservoir account	1-7	iopdes(2,1)	Destination reservoir account
		-	
Source Data	Source Data		
1-8 ciopso(1) Direct Flow water right ID	1-8	ciopso(1)	Direct Flow water right ID
1-9 iopsou(2,1) 0 The source water right (ciopso(1)) is left on	1-9	iopsou(2,1)	O The source water right (ciopso(1)) is left on

(e.g. it can be used as a both a direct flow right and this operating rule)

1 The source water right (ciopso2(1) is turned off (e.g. it can only be used by this operating rule)

1-10 ciopso(2) 0 (not used)

1-11 iopsou(4,1) Maximum direct flow storage percent

Type Data

1-12 ityopr(1) 16

Associated Plan Data

1-13 creuse NA

Diversion Type

1-14 cdivtyp NA

Conveyance Loss (%)

1-15 OprLoss 0

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

2-1 imonsw(1) Monthly switch 0=off, 1=on

+n Day first used that month

-n Day last used that month

Note the first entry corresponds to the first

month specified in the control file

Demand Data

Include only if the monthly switch (dumx) = +n or < -12

Format (36x, 10a12)

3-1 Intern(1,1) Enter the destination structure ID

(use to provide demand datawhen the destination

is tied to a carrier)

4.13.17 Rio Grande Compact - Rio Grande River Direct (ityopr=17)

The type 17 operating rule was developed specifically for the Rio Grande River's portion of the Rio Grande Compact. Unlike most other operating rules, it requires two rows of data. The first row of data expects:

- The destination to be an Instream flow (i.e. an Instream flow right just below the Rio Grande at Labatos gage).
- Source 1 to be the stream gage that represents the index flow (i.e. Rio Grande at Del Norte)
- Source 2 to be the stream gage used to adjust to the discharge at the Instream flow location (i.e. the combined discharge of the Conejos River near La Sauses).

The second row of data expects:

- Qdebt is the year when annual obligation calculations begin to include adjustments for the cumulative surplus / shortage (i.e. 1985)
- Qdebtx is the initial surplus / shortage (acft) for Rio Grande (e.g. 944,000 * 60%).
- Source 3 is not used.
- The Source 4 coefficient represents the annual yield (acft/yr) of the Closed Basin Project to the Rio Grande River.
- The Source 5 coefficient represents the annual discharge of the Norton Drain South to the Rio Grande River.

Row-data	Variable	Description
Control Data		
Format (al2, a	124, 12x, 4x, f12.5	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
	1x,a12,1x, 2f8.0,	2i8)
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right nam
1-3	rtem(1)	Administration number
1-4	dumx	Enter -8 if no monthly switches included.
		Enter -20 if monthly switches are included.
		Note the above allows 2 - 3 rows of data
		to be provided for this operational rule
1-5	ioprsw(1)	Annual On/Off Switch
1 3	10218W(1)	0=off
		1=on
		+n=Begin in year n
		-n=Stop after year n
Destination Da		
		Destination instruments ID
1-6	ciopde	Destination instream flow ID
1-7	iopdes(2,1)	Coefficient (1.0)
Source Data		
1-8	ciopso(1)	Source 1 (Index Gage)ID (Rio Grande at
	<u> </u>	Del Norte)
1-9	iopsou(2,1)	Source 1 coefficient (1.0)

1-10	ciopso(3)	Source 2 (Index Gage) ID (Combined Conejos River nr La Sauses)
1-11	iopsou(4,1)	Source 3 coefficient (-1.0)
Type Data 1-12	ityopr(1)	17
Associated Pla	n Data	
1-13	creuse	NA
Discondion Tuno		
Diversion Type	cdivtyp	NA
Conveyance Los	g (%)	
1-15	OprLoss	0
1-15	Opiloss	U
Miscellaneous	T imita	
1-16	OprLimit	0
1-10	ОРГЫТШІС	U
Start Date		
	ToDoo	First way of apprehian
1-17	IoBeg	First year of operation
End Dake		
End Date	T a 17 a d	Tack was of succession
1-18	IoEnd	Last year of operation
additional Com	nast Bata	
Additional Com		10 4 10 50 0 50 0 2/110 40\\
2		12x, 4x, 12x,f8.0, f8.0, 3(1x, a12, i8))
2-1	qdebt	Year when annual obligation
		calculation includes an adjustment
0 0		for the cumulative surplus shortage
2-2	qdebtx	Initial surplus/shortage (acft) for
		the Rio Grande in the year this
		operating rule begins
2-3	ciopso(5)	Source 3 (not used on Rio Grande)
2-4	iopsou(6,1)	Source 3 Coefficient (1.0)
2-5	ciopso(7)	Source 4 not used (enter Closed Basin)
2-6	iopsou(8,1)	Source 4 Closed Basin annual yield to
		Rio Grande (e.g. 19,200 acft/yr)
2-7	ciopso(9)	Source 5 not used (NortonDrnS)
2-8	iopsou(10,1)	Source 5 Norton Drain South annual yield
		to Rio Grande(e $\alpha = 4000$ acft/yr)

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

imonsw(1) Monthly switch 0=off, 1=on +n Day first used that month

-n Day last used that month

to Rio Grande(e.g. -4000 acft/yr)

Note the first entry corresponds to the first month specified in the control file

4.13.18 Rio Grande Compact - Conejos River Direct (ityopr=18)

The type 18 operating rule was developed specifically for the Conejos River's portion of the Rio Grande Compact. Unlike most other operating rules, it requires two rows of data. The first row of data expects:

- The destination to be an Instream flow (i.e. an Instream flow just below the combine Conejos River near La Sauses).
- Source 1 is the stream gage that represents the first index flow (i.e. Conejos River near Magote).
- Source 2 is the stream gage that represent the second index flow (i.e. Los Pinos River near Ortiz).

The second row of data expects:

1-11

iopsou(4,1)

- Qdebt is the year when annual obligation calculations begin to include adjustments for the cumulative surplus / shortage (i.e. 1985).
- Qdebtx is the initial surplus / shortage (acft) for the Conejos River (e.g. 944,000 * 40%).
- Source 3 is the stream gage that represents the third index flow (San Antonio River at Ortiz).
- The Source 4 coefficient is used to represent the annual yield (acft/yr) of the Closed Basin Project to the Conejos River.
- The Source 5 coefficient is used to represent the annual discharge of the Norton Drain South to the Conejos River.

Note the format of a standard operational right input file has been adjusted to include a third source and account (coefficient).

Row-data	Variable	Description
Control Data		
Format (a12, a	24, 12x, 4x, f12.5 1x,a12,1x, 2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Enter -8 if no monthly switches included Enter -20 if monthly switches are included Note the above allows 2 or 3 rows of data to be recognized for this operational rule
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n=Begin in year n -n=Stop after year n
Destination Da	ta	
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	Destination instream flow ID Coefficient (1.0)
Source Data		
1-8	ciopso(1)	Source 1 (Index Gage)ID (Conejos River near Magote)
1-9	iopsou(2,1)	Source 1 coefficient (1.0)
1-10	ciopso(2)	Source 2 (Index Gage) ID (Los Pinos River near Ortiz)

Source 2 coefficient (1.0)

Type Data	(4)	
1-12	ityopr(1)	18
3	D -1	
Associated Pla		
1-13	creuse	NA
Discondion Esta		
Diversion Type		NTA
1-14	cdivtyp	NA
Conveyance Los	g (%)	
1-15		0
1-13	OprLoss	O .
Miscellaneous	T.imi+e	
1-16	OprLimit	0
1 10	ОРГШТШІС	
Start Date		
1-17	IoBeg	First year of operation
1 1/	TODES	riibe year or operation
End Date		
1-18	IoEnd	Last year of operation
1 10	102114	labe fear of operation
Additional Com	pact Data	
2	_	12x, 4x, 12x,f8.0,f8.0, 3(1x, a12, i8))
2-1	qdebt	Year when annual obligation
	44.000	calculations include an adjustment
		for the cumulative surplus shortage
2-2	qdebtx	Initial surplus/shortage (acft) for
	44-0-0 0-1	the Conejos in the year this operating
		rule begins
2-3	ciopso(5)	Source 3 (Index Gage) ID (San Antonio River
-		at Ortiz)
2-4	iopsou(6,1)	Source 3 Coefficient (1.0)
2-5	ciopso(7)	Source 4 not used (enter ClosedBasin
-		for documentation purposes)
2-6	iopsou(8,1)	Source 4 Closed Basin annual yield to
		Conejos (e.g. 12,800 acft/yr)
2-7	ciopso(9)	Source 5 not used (enter NortonDrnS
	1	for documentation purposes)
2-8	iopsou(10,1)	Source 5 Norton Drain South annual
	<u> </u>	yield to Conejos(e.g. 4000 acft/yr)
Monthly Data		
Free Format		
Include only i	f the monthly swite	ch (dumx) = 12 or less than -12
2-1	imonsw(1)	Monthly switch 0=off, 1=on
		+n Day first used that month
		-n Day last used that month
		Note the first entry corresponds to the first
		month specified in the control file

4.13.19 Split Channel Operations (ityopr=19)

The type 19 operating rule for split channel operations is currently under development. Standard carrier operating rules for each water right associated with the split channel can be used.

4.13.20 San Juan Reservoir RIP Reservoir Operation (ityopr=20)

The type 20 operating rule was developed to simulate Navajo Reservoir (Division 7) operation under the San Juan Recovery Implementation Plan (SJRIP Hydrology Model Documentation March 24, 2000). Unlike most other operating rules, it requires two rows of data. The first row of data expects:

• The source reservoir (ciopso(1)) and account (iopsou(2,1)).

The second row of data expects:

Row-data

- sjmina, the minimum available water for the reservoir (acft).
- sjrela, the average release (cfs).

Variable

Note this operating rule expects a file of perturbation data provided by a sediment transport analysis, to be provided as part of a time series file (*.ipy). This optional file is provided by setting the control file (*.ctl) variable (itsfile) to 1 to indicate a time series file will be read and providing the response file (*.rsp) the time series files name.

Description

Control Data		
Format (a12, a	24, 12x, 4x, f12.5 1x,a12,1x, 2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri(1)	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly Switch
		<pre>0 No monthly on/off values 12 Number of monthly on/off switches provided</pre>
1-5	ioprsw(1)	Annual On/Off Switch
		0=off
		1=on
		+n=Begin in year n -n=Stop after year n
		-n-scop arcer year n
Destination Da		
1-6	ciopde	NA
1-7	iopdes(2,1)	0
Source Data		
1-8	ciopso(1)	Reservoir ID
1-9	iopsou(2,1)	Reservoir account; Enter 0 to meet target
		levels by releasing from each account by the proportionate amount currently in each
1-10	ciopso(2)	0
1-11	iopsou(4,1)	0
	1 , , ,	
Type Data		
1-12	ityopr(1)	20
3	- D -L-	
Associated Plant 1-13		NA
T-T2	creuse	INA
Diversion Type		
1-14	cdivtyp	NA

```
Conveyance Loss (%)
1-15
                                 0
             OprLoss
Miscellaneous Limits
1-16
              OprLimit
Start Date
1-17
               IoBeg
                                 First year of operation
End Date
1-18
               IoEnd
                                 Last year of operation
Additional Data
                                 Format (12x, 24x, 12x, 4x, 12x, f8.0, f8.0)
2-1
              sjmina
                                 Minimum available water (acft)
2-2
               sjrela
                                Average release (af/yr)
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                 Monthly switch 0=off, 1=on
               imonsw(1)
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
```

4.13.21 Wells with Sprinkler Use (ityopr=21)

The type 21 operating rule allows the administration date for wells with sprinklers to be different than that specified by the well water rights (*.wer) file. This operating rule is commonly applied to simulate maximum water supply mode (see Section 7.10) which preferentially meets a structures demand by wells with sprinklers first, surface water second and wells with flood irrigation last. Note this operating rule expects, and checks, that the control file (*.ctl) variables *itsfile*, *ieffmax* and *isprnk* are set appropriately. As described in Section 4.2, the control variable *itsfile* provides sprinkler area, sprinkler efficiency and *gwmode* data; the control variable ieffmax provides flood efficiency data; and the variable isprnk specifies sprinklers will be used. Note the time series file (*.ipy or *.ipy) variable *gwmode* must equal 1 (maximum supply) in order for this operating rule to apply.

```
Row-data
               Variable
                                  Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
1-1
               cidvri(1)
                                  Operational right ID
1 - 2
               nameo(1)
                                 Operational right name
1-3
              rtem(1)
                                 Administration number
1 - 4
               dumx
1-5
               ioprsw(1)
                                  Annual On/Off Switch
                                     0 = off
                                     1=on
                                     +n Begin in year n
                                     -n Stop after year n
Destination Data
1-6
               ciopde
                                  NA
1-7
               iopdes(2,1)
                                  0
```

```
Source Data
1-8
               ciopso(1)
                                  MΔ
1-9
               iopsou(2,1)
                                  0
1-10
               ciopso(2)
                                  NA
1-11
               iopsou(4,1)
Type Data
               ityopr(1)
1 - 12
                                  21
Associated Plan Data
1-13
                                  NA
               creuse
Diversion Type
1 - 14
               cdivtyp
                                  NA
Conveyance Loss (%)
1-15
                                  0
               OprLoss
Miscellaneous Limits
1-16
               OprLimit
Start Date
1-17
               IoBeg
                                  First year of operation
End Date
1-18
               IoEnd
                                  Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
               imonsw(1)
                                  Monthly switch 0=off, 1=on
                                     +n Day first used that month
                                     -n Day last used that month
                                  Note the first entry corresponds to the first
                                     month specified in the control file
```

4.13.22 Soil Moisture Use (ityopr=22)

The type 22 operating rule allows the administration date for soil moisture use to be specified for all ditches and wells with one operational right. This operating rule is commonly applied when soil moisture accounting is included in the analysis (control variable *soild* = 1). Note this operating rule expects, and checks, that the control file (*.ctl) variables *itsfile*, *ieffmax* and *soild* are set appropriately. As described in Section 4.2, the control variable *soild* allows water deliveries in excess of a diversion's consumptive demand to be stored in the soil moisture zone. This operating rule allows the administration date to be specified that controls when water stored in the soil moisture zone is used (e.g. after surface rights, after well right, etc.). Note the soil moisture accounting requires the variable efficiency option be on by setting the annual time series file control variable (itsfile) equal to 10.

```
        Row-data
        Variable
        Description

        Control Data
        Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 1x,a12,1x, 2f8.0, 2i8)

        1-1
        cidvri(1)
        Operational right ID

        1-2
        nameo(1)
        Operational right name

        1-3
        rtem(1)
        Administration number
```

```
1 - 4
               dumx
1-5
                                  Annual On/Off Switch
                ioprsw(1)
                                      0=off
                                      1=on
                                      +n Begin in year n
                                      -n Stop after year n
Destination Data
1-6
               ciopde
                                  NA
1-7
               iopdes(2,1)
                                  0
Source Data
1-8
               ciopso(1)
                                  NA
1-9
               iopsou(2,1)
1-10
               ciopso(2)
                                  NA
1-11
                iopsou(4,1)
Type Data
1-12
               ityopr(1)
                                  22
Associated Plan Data
1-13
               creuse
                                  NA
Diversion Type
1 - 14
               cdivtyp
                                  NA
Conveyance Loss (%)
                                  0
1-15
               OprLoss
Miscellaneous Limits
1-16
               OprLimit
                                  0
Start Date
1 - 17
                                  First year of operation
               IoBeg
End Date
1-18
               IoEnd
                                  Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                  Monthly switch 0=off, 1=on
2-1
                imonsw(1)
                                     +n Day first used that month
                                      -n Day last used that month
                                  Note the first entry corresponds to the first
                                     month specified in the control file
```

4.13.23 Downstream Call Direct (ityopr=23)

The type 23 operating rule allows a downstream call to be provided which limits any upstream diversions, reservoir storage, etc. that are junior to the calls administration number. The following comments are provided to assist in the use and interpretation this operating rule:

• The downstream call must be tied to an instream flow station.

- Call data are specified as a time series in a file named "Downstream_Call (*.cal)" (see Section 4.1 Response Data). Note for a monthly model the call on day 1 is used to estimate the call for that month.
- The amount of water controlled by a downstream call is the minimum of its instream flow water right, its demand, and the available flow in the river when it is called. If the user wants to control the entire flow below a downstream call structure a large decreed amount and demand should be specified.
- For a free river the downstream call's administration number should be entered as the most junior water right in the basin (e.g. 999999).
- The downstream calls administration number specified in the operation right file should be the most junior in the basin. This ensures it is not called as an operating rule prior to a consumptive (diversion, well, reservoir) water right.
- If the quantity of water associated with a downstream call is known then it is recommended the user model it as a standard instream flow (see Section 4.7).

Row-data	Variable	Description
Control Data		
Format (a12, a	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number (enter the most junior in the basin (e.g. 999999))
1-4	dumx	Monthly Switch 0 No monthly on/off values 12 Number of monthly on/off Switches provided
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n=Begin in year n -n=Stop after year n
Destination Da	ta	
1-6	ciopde	Instream flow station
1-7	iopdes(2,1)	1 (not used)
Source Data		
1-8	ciopso(1)	NA (not used)
1-9	iopsou(2,1)	1 (not used)
1-10	ciopso(2)	0 (not used)
1-11	iopsou(4,1)	0 (not used)
Type Data		
1-12	ityopr(1)	23
Associated Pla	n Data	
1-13	creuse	NA
Diversion Type		
1-14	cdivtyp	NA

```
Conveyance Loss (%)
1-15
              OprLoss
Miscellaneous Limits
1-16
             OprLimit
                                Λ
Start Date
1-17
              IoBeg
                                First year of operation
End Date
1-18
              IoEnd
                                Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                Monthly switch 0=off, 1=on
              imonsw(1)
                                   +n Day first used that month
                                   -n Day last used that month
                                Note the first entry corresponds to the first
                                   month specified in the control file
```

4.13.24 Direct Flow Exchange Direct (ityopr=24)

The type 24 operating rule allows a direct flow diversion's water right (ciopso(1)) to be exchanged to another direct flow structure or reservoir (ciopde). The exchange can occur from the river or by a carrier. The amount diverted can be limited to the amount available (Diversion) or its CU (Depletion). The following comments are provided to assist in using and interpreting this operating rule:

- This operating rule controls both the source and exchanged (destination) diversion or storage. Any shortages at the source location are shared with the destination based on ownership of each.
- The **percent ownership** can be supplied that limits the exchange of the source water right.
- The **consumptive use** of the supply data can be specified to limit the exchange. The efficiency of water use for the exchanged water is set in the plan (*.pln) file. It may be set to a fixed efficiency for all months, a constant value for each of 12 months or to the efficiency of the source water right structure.
- The **source water right** may be transferred to a diversion, reservoir or plan (ciopde). When the destination is a plan, the user is typically trying to 1. Satisfy a T&C Plan obligation or 2. Temporarily store the water in an Accounting Plan.
- Because a direct flow exchange right may be used to serve both a direct flow right and as a direct flow exchange right, the administration number assigned to the operating rule is used in the analysis (i.e. it is not overridden by the source water rights administration number).
- Direct flow exchange may be controlled over a season by using the monthly on/off switch (imonsw(im)). Note the monthly on/off switches only control the exchange operation (i.e. the source water right continues to operate independent of the monthly on/off switch).

- Monthly and Annual exchange limits are required as input.
- The **exchange amount** is the minimum physical water available, remaining decree of the exchanging right (e.g. some of the decree may have been used for direct diversion purposes), the exchange potential between the destination and exchange locations, the monthly and annual exchange limits and the destination structure's capacity.
- **Transit losses** between the source and bypass point can be specified by variable OprLoss. Note transit losses are true losses, they are not routed back to the system.
- **Carrier losses** associated with intervening structures may be provided if variable OprLoss is > 0 or = -1 and the variable dumx = 1-10 or < -12. Note carrier losses are routed back to the system using the return flow parameters associated with the carrier structure.
- **Terms and Conditions** (T&C Plans) may be calculated if the source 2 variable (ciopso2) is set to a T&C plan. The variable iousou(4,1) is used to indicate how and when T&C demands are calculated.
 - When ciopso2 = Plan ID and iopsou(4,1)=-1 the destination must be an accounting plan and the T&C Obligation is calculated when water is released from that Accounting plan using a type 27 or 28 rule.
 - When ciopso2 = Plan ID and iopsou(4,1)=1 a standard return pattern is used to calculate the T&C Obligation. A **Standard Return Pattern** calculates the T&C Obligation to be:
 - 1. T&C Obligation (standard) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) * (1.0-CU Factor)), where the CU Factor is provided in row 5. The first value in a standard return flow table corresponds to the month diverted, the second to the month after a diversion, etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - When ciopso2 = Plan ID and iopsou(4,1)=2 a fixed return pattern is used to calculate the T&C Obligation. A **Fixed Return Pattern** calculates the T&C Obligation to be:
 - 1. T&C Obligation (fixed) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) The first value in a fixed return flow table corresponds to the first month in the simulation (e.g. January for a calendar year simulation), the second month to February (again for a calendar year simulation), etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - When ciopso2 = Plan ID and iopsou(4,1)=3 a mixed return pattern is used to calculate the T&C Obligation. **Mixed Return Pattern** contains both a Standard and Fixed component and calculates the T&C Obligation to be:
 - 2. T&C Obligation (standard) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) * (1.0-CU Factor)), where the CU Factor is provided in row 5. The first value in a standard return flow table corresponds to the month diverted, the second to the month after a diversion, etc. Data that associates a

- Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
- 3. T&C Obligation (fixed) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) The first value in a fixed return flow table corresponds to the first month in the simulation (e.g. January for a calendar year simulation), the second month to February (again for a calendar year simulation), etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
- When ciopso2 = Plan ID and iopsou(4,1)=4 a default return pattern is used to calculate the T&C Obligation. A **Default Return Pattern** has a standard component that uses historic return flow data associated with the source water right to calculate the T&C Obligation.
- If the variable ciopso2 is set to a T&C Plan ID and iopsou(4,1) is greater than zero then CU Factors are expected to be provided in card 5. Note the CU Factors typically represent negotiated values to, but not necessarily the same as, the efficiency of the Transfer From Structure. Also these factors are only used when iopsou(4,1) = 1 (Standard Return) or 3 (Mixed Return) even though they are required as input.

Row-data	Variable	Description
Control Data		
Format (a12, a	.24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly and Intervening Structure Switch
1 1	danis	+n Number of intervening structures (max = 10)
		,
		12 Monthly (12) on/off values -n Include -12 monthly on/off
		values minus n intervening
		structures
		Note, when a negative value is,
		provided, it should be -13 or
		less for 12 monthly values and
		one intervening structure
1-5	ioprsw(1)	Annual On/Off Switch
1-5	TOPISW(I)	0=off
		1=on
		— ·
		+n=Begin in year n
		-n=Stop after year n
Destination Da	ta	
1-6	ciopde	Destination structure (Diversion ID,
		Reservoir ID or Plan ID)
1-7	iopdes(2,1)	Destination account
		For a diversion destination, enter 1
		For a plan destination, enter 1
		For a reservoir destination, enter the account
Source Data		
1-8	ciopso(1)	Source water right ID
1-9	iopsou(2,1)	Percent of source water right to exchange
1-10	ciopso(2)	T&C Plan ID
	1/-/	

Enter NA if none or If the destination is an Accounting Plan and the terms and conditions associated with this transfer will be calculated when water is released 1-11 0 if ciopso(2) = NAiopsou(4,1)1 for a standard return pattern 2 for a fixed annual return pattern 3 for a mixed return pattern 4 for a default (source) return pattern -1 the terms and conditions associated with this transfer will be calculated when water is released Type Data 1-12 ityopr(1) 24 Associated Plan Data 1 - 13Reuse Plan ID (enter NA if none) creuse Diversion Type 1-14 Diversion or Depletion cdivtyp Conveyance Loss (%) 1-15 0 No Transit loss OprLoss Note if dumx = 1-10 or < -12carrier loss data cannot be provided for intervening structures +n Transit loss = n% (from Source to Bypass point). Note this is a true loss. returns are not calculated. Also if dumx = 1-10 or < -12 carrier loss data is provided for intervening structures -1 No Transit loss. Note if dumx = 1-10 or < -12 carrier loss data is provided for intervening structures Miscellaneous Limits 1-16 OprLimit 0 Start Date 1-17 First year of operation IoBeg End Date 1-18 IoEnd Last year of operation Monthly Data Free Format Include only if the monthly switch (dumx) = 12 or less than -12 imonsw(1)Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month Note the first entry corresponds to the first month specified in the control file

Include only if OprLoss = 0 and the monthly switch (dumx) = 1-10 or < -12

```
Format (36x, 10a12)
```

3-1 intern(1,1) For +dumx, Enter dumx intervening structure ID's
For -dumx, Enter abs(dumx)-12 intervening structure ID's

Intervening Structure Data with loss

Include only if OprLoss > 0 or = -1 and the monthly switch (dumx) = 1-10 or < -12 See Section 7.39 for the approach used to model an augmentation station (e.g. a structure that carries a diversion, typically with loss, then returns non-lost water to the river).

Free Format

3b-1	intern(1,1)	Intervening structure ID
		(e.g. a Diversion ID or Stream ID)
3b-2	OprLossC(1,1)	Carrier Loss for Structure ID %
3b-3	<pre>InternT(1,1)</pre>	Intervening Structure Type
		Enter Carrier if it is a diversion
		structure located on the river
		Enter Return if it is a return
		location on the River

Repeat for +dumx values

Exchange Limits (Monthly and Annual)

Free Format		
4-1	OprMax(1,1-12)	Monthly exchange limit (af/mo)
4-13	OprMax(1,13)	Annual exchange limit (af/yr)

T&C CU Factors Data

Include only if ciopso(2) is a T&C Plan and iopsou(4,1) is >0 Note the data is only used when iopsou(4,1) is a standard Return pattern (1) or a mixed return pattern(3).

	riee Format				_	_
5	5-1	OprEff(1)	Efficiency	in	month	1
5	5-2	OprEff(2)	Efficiency	in	month	2
5	5-12	OprEff(12)	Efficiency	in	month	12

4.13.25 Direct Flow Bypass Direct (ityopr=25)

The type 25 operating rule allows a direct flow diversion's water right (ciopso(1)) to be bypassed to a direct flow structure, reservoir or plan (ciopde). The diversion can occur from the river or through a carrier. The amount diverted may be limited to the amount available (Diversion) or its CU (Depletion). The following comments are provided to assist in using and interpreting this operating rule:

- A water right may operate as both a standard direct flow right and as a bypass water right.
- The user can supply data that limits the bypass to a percent (ownership) of the water right.
- The user can supply data that limits the bypass to the consumptive use of their portion of the water right. The efficiency of water use is estimated to equal the efficiency of the source water right's structure.

- The source water right may be transferred to a diversion, reservoir or plan (ciopde). When the destination is a plan, the user is typically trying to satisfy a T&C Plan obligation generated by another operating rule with the source water right.
- The user can supply a "Reuse plan" (creuse) that allows consumptive use credits associated with the direct flow bypass to be stored. A "Reuse Plan" may not be assigned when the destination is a plan because it using the full transfer to offset a T&C requirement.
- Because a direct flow bypass right may be used to serve both a direct flow right and as a direct flow bypass right, the administration number assigned to the operating rule is used in the analysis (i.e. it is not overridden by the source water rights administration number).
- Direct flow bypass operations may be controlled over a season by using appropriate demand data and/or the monthly on/off switch (imonsw(im)). Note the monthly on/off switches only control the bypass operation (i.e. the source water right continues to operate independent of the monthly on/off switch).
- Monthly and Annual bypass limits are required as input.
- The amount available for diversion is the minimum physical water available, remaining decree of the exchanging right (e.g. some of the decree may have been used for direct diversion purposes), and the destination structure's capacity and the destination structure's demand.
- **Transit losses** between the source and bypass point can be specified by variable OprLoss. Note transit losses are true losses, they are not routed back to the system.
- Carrier losses associated with intervening structures may be provided if variable OprLoss is > 0 or = -1 and the variable dumx = 1-10 or < -12. Note carrier losses are routed back to the system using the return flow parameters associated with the carrier structure.
- Terms and Conditions (T&C Plans) may be calculated if the source 2 variable (ciopso2) is set to a T&C plan. The variable iousou(4,1) is used to indicate how and when T&C demands are calculated.
 - When ciopso2 = Plan ID and iopsou(4,1)=-1 the destination must be an accounting plan and the T&C Obligation is calculated when water is released from that Accounting plan using a type 27 or 28 rule.
 - When ciopso2 = Plan ID and iopsou(4,1)=1 a standard return pattern is used to calculate the T&C Obligation. A **Standard Return Pattern** calculates the T&C Obligation to be:
 - 1. T&C Obligation (standard) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) * (1.0-CU Factor)), where the CU Factor is provided in row 5. The first value in a standard return flow table corresponds to the month diverted, the second to the month after a diversion, etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - When ciopso2 = Plan ID and iopsou(4,1)=2 a fixed return pattern is used to calculate the T&C Obligation. A **Fixed Return Pattern** calculates the T&C Obligation to be:

- 1. T&C Obligation (fixed) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) The first value in a fixed return flow table corresponds to the first month in the simulation (e.g. January for a calendar year simulation), the second month to February (again for a calendar year simulation), etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
- When ciopso2 = Plan ID and iopsou(4,1)=3 a mixed return pattern is used to calculate the T&C Obligation. **Mixed Return Pattern** contains both a Standard and Fixed component and calculates the T&C Obligation to be:
 - 1. T&C Obligation (standard) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) * (1.0-CU Factor)), where the CU Factor is provided in row 5. The first value in a standard return flow table corresponds to the month diverted, the second to the month after a diversion, etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - 2. T&C Obligation (fixed) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) The first value in a fixed return flow table corresponds to the first month in the simulation (e.g. January for a calendar year simulation), the second month to February (again for a calendar year simulation), etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s)is provided in the plan Return File (*.prf).
- When ciopso2 = Plan ID and iopsou(4,1)=4 a default return pattern is used to calculate the T&C Obligation. A **Default Return Pattern** has a standard component that uses historic return flow data associated with the source water right to calculate the T&C Obligation.
- If the variable ciopso2 is set to a T&C Plan ID and iopsou(4,1) is greater than zero then CU Factors are expected to be provided in card 5. Note the CU Factors typically represent negotiated values related to, but not necessarily the same as, the efficiency of the Transfer From Structure. Also these factors are only used when iopsou(4,1) = 1 (Standard Return) or 3 (Mixed Return) even though they are required as input.

```
Row-data
              Variable
                                 Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
              1x,a12, 1x,2f8.0, 2i8)
1-1
              cidvri
                                 Operational right ID
1-2
              nameo(1)
                                 Operational right name
1-3
                                 Administration number
              rtem(1)
1 - 4
              dumx
                                 Monthly and Intervening Structure
                                 Switch
                                    +n Number of intervening structures
                                       (\max = 10)
                                    12 Monthly (12) on/off values
                                    -n Include -12 monthly on/off
                                       values minus n intervening
                                       structures
                                       Note, when a negative value is,
                                       provided, it should be -13 or
```

1-5	ioprsw(1)	less for 12 monthly values and one intervening structure Annual On/Off Switch 0=off 1=on +n=Begin in year n -n=Stop after year n
Destination Date	ta	
1-6	ciopde	Destination structure (Diversion ID
		Reservoir ID or Plan ID)
1-7	iopdes(2,1)	Destination structure account For a diversion destination, enter 1 For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based on the ratio of their ownership
Source Data		
1-8	ciopso(1)	Source water right ID
1-9	iopsou(2,1)	Percent of source water right to be bypassed
1-10	ciopso(2)	T&C Plan ID Enter NA if none or if the destination is an Accounting Plan and the terms and conditions associated with this transfer will be calculated when water is released
1-11	iopsou(4,1)	0 if ciopso(2) = NA
		<pre>1 for a standard return pattern 2 for a fixed return pattern 3 for a mixed return pattern -1 the terms and conditions associated with this transfer will be calculated when water is released</pre>
Type Data		
1-12	ityopr(1)	25
Associated Plan	n Data	
1-13	creuse	Reuse Plan ID (enter NA if none)
Diversion Type		
1-14	cdivtyp	Diversion or Depletion
Conveyance Loss		
1-15	OprLoss	Note if dumx = 1-10 or < -12 carrier loss data cannot be provided for intervening structures +n Transit loss = n% (from Source to Bypass point). Note this is a true loss, returns are not calculated. Also if dumx = 1-10 or < -12 carrier loss data is provided for intervening structures -1 No Transit loss. Note if dumx = 1-10 or < -12 carrier loss data is provided for intervening structures

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

2-1 imonsw(1) Monthly switch 0=off, 1=on

+n Day first used that month
-n Day last used that month

Note the first entry corresponds to the first month specified in the control file

Intervening Structure Data without loss

Include only if OprLoss = 0 and the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

3-1 intern(1,1) For +dumx, Enter dumx intervening

structure ID's

For -dumx, Enter abs(dumx)-12 intervening structure ID's

if < -12 enter abs(dumx)-12 intervening

structure IDs

Intervening Structure Data with loss

Include only if OprLoss > 0 or = -1 and the monthly switch (dumx) = 1-10 or < -12 See Section 7.39 for the approach used to model an augmentation station (i.e. a structure that carries a diversion, typically with loss, then returns non-lost water to the river).

Free Format

3b-1	intern(1,1)	Intervening structure ID
		(e.g. a Diversion ID or Stream ID)
3b-2	OprLossC(1,1)	Carrier Loss for Structure ID %
3b-3	<pre>InternT(1,1)</pre>	Intervening Structure Type
		Enter Carrier if it is a diversion
		structure located on the river

structure located on the river
Enter Return if it is a return
location on the River

Repeat for +dumx values

Bypass Limits (Monthly and Annual)

Note: Must include 13 values

Free Format

4-1 OprMax(1,1-12) Monthlybypass limit (af/mo) 4-13 OprMax(1,13) Annual bypass limit (af/yr)

T&C CU Factors

Include only if ciopso(2) is a T&C Plan and iopsou(4,1) is >0.

Free Format

5-1	OprEff(1)	Efficiency in month 1
5-2	OprEff(2)	Efficiency in month 2
5-12	OprEff(12)	Efficiency in month 12

4.13.26 Not currently used (ityopr=26)

The type 26 operating rule is not currently in use.

4.13.27 Reservoir or Reuse Plan or Accounting Plan to a Diversion or Reservoir or Carrier with Reuse (ityopr=27)

The type 27 operating rule provides a method to release water from a Reservoir or ReUse plan or Outof-Priority (OOP) Plan, or Accounting plan to a diversion or reservoir directly via the river or by a carrier. The following are noted:

- A "ReUse Plan" is a special structure type that can be used identify the location of a reusable water supply associated with a CU transfer, or transmountain import (see Section 7.23 for more details about plans).
- An "Accounting Plan" is a special structure type that can be used to identify the location of transferred water that might be used for a variety of demands (see Section 7.23 for more details about plans).
- An "OOP Plan" is a special structure type that is associated with a diversion or storage taken out-of-priority by a type 38 operating rule.
- If the source is a Reuse or Accounting Plan, the destination may be reusable (e.g. creuse is a reuse plan (type 3, 4, 5 or 6)).
- If the source is a reservoir, the source data may be tied to an Out-of-Priority Plan (e.g. creuse is a OOP plan (type 9)).
- If carrier losses are calculated (OprLoss>0), the return flow pattern and return locations are those assigned to the SOURCE (CARRIER) structure in the diversion station file (*.dds) (e.g. if the source is a water right tied to structure X, then the return flow pattern and locations are those provided for structure X in the diversion station file (*.dds)).
- If the variable OprLimit is set to 0 no operating rule ID should be provided in row 4. In general, the variable OprLimit should be set to 0 if the release is not constrained to monthly and annual limits and the source structure is not a carrier to this operating rule.
- If the variable OprLimit is set to 1 the operating rule ID specified in row 4's monthly and annual limits will be increased and limit the amount rleased. Also because the capacity of the source structure of the operating rule ID specified in row 4 has already been adjusted the source structure's capacity will not limit the amount diverted.
- If the variable OprLimit is set to 2 the operating rule ID specified in row 4's monthly and annual limits will be decreased and limit the amount release. Also because the capacity of the source structure of the operating rule ID specified in row 4 has already been adjusted the source structure's capacity will not limit the amount diverted.

- If the variable OprLimit is set to 3 the operating rule ID specified in row 4 will limit a release to the amount diverted by the operating rule in row 4.
- If the variable copso2 is set to a T&C plan the terms and conditions associated with a prior water transfer are calculated when the water is used by this operating rule. T&C demands are calculated using efficiency data provided with this operating rule, return flow data provided with the plan file (*.pln). Specifically when the source 2 (ciopso(2)) is set to a T&C plan:
 - The efficiency data used to calculate the T&C obligation is expected in row 5.
 - Other T&C data associated with a T&C obligation (return flow location, percent and table) are provided in a plan return flow file (*.prf).
 - Both standard and fixed T&C (return patterns) can be provided. If the source 2 account (iopsou(4,k) is set to 1, the return flow pattern provided is treated as a standard return flow pattern. If the source 2 account (iopsou(4,k) is set to 2 the return flow pattern is treated as a fixed return flow pattern. Note a standard return pattern is independent of time; it extends from the current time step to the specified number of future time steps. For example a monthly model that diverts in June will estimate November return flows using data provided for return flow value 6 (6 months into the future). A fixed return pattern is time dependent; it estimates a monthly return based on a specified monthly return value. For example a monthly model that diverts in June will estimate November T&C requirements (return flows) using data provided for return flow value 11 (November). When a fixed return pattern is used any returns that may be assigned to a month prior to the time a diversion occurs are not included (e.g. an April obligation = 0 if the diversion occurs in June). Also the fixed return pattern is consistent with the year type modeled (e.g. return flow value 1 = January for a calendar year analysis, 1 = October for a water year analysis, and 1 = November for an irrigation year analysis).
- An Augmentation Structure (i.e. a structure that carries a diversion, typically with loss, then returns non-lost water to the river for subsequent diversion) can be modeled as follows:
 - Variable dumx should be set so that at least two structures will be provided in row 3b.
 - The first carrier should be the Structure ID that diverts water from the stream and has an intervening structure type = Carrier.
 - The second carrier should be a station on the river that has an intervening structure type = Return.
 - Note that conveyance losses can be specified for a intervening structure type = Carrier but not an intervening structure type = Return. This limitation allows losses to be routed to the system using the return flow properties of the carrier structure.
 - If water that returns to the river is subsequently rediverted into another carrier at least three entries should be provided sequentially as follows; 1. An intervening structure with type = Carrier, 2. An intervening structure with type = Return, and 3. An intervening structure with type = Carrier.
 - A maximum of 10 intervening structures (intervening types = Carrier or Return) can be provided.

Row-data	Variable	Description				
Control Data Format (a12, a 1-1 1-2 1-3 1-4	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8) Operational right ID Operational right name Administration number Monthly Intervening Structure Switch +n Number of intervening structures (max = 10) 12 Monthly (12) on/off values -n Include -12 monthly on/off values minus n intervening structures Note, when a negative value is, provided, it should be -13 or				
1-5	ioprsw(1)	less for 12 monthly values and one intervening structure Annual On/Off Switch 0=off 1=on +n Begin in year n -n Stop after year n				
Destination Da	ta					
1-6	ciopde	Destination structure (diversion or reservoir or instream flow or plan)				
1-7	iopdes(2,1)	Destination structure account For a diversion or plan destination, enter 1 For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based On the ratio of their ownership				
Supply Data						
1-8	ciopso(1)	ReUse Plan or Accounting Plan or Reservoir				
1-9	iopsou(2,1)	<pre>If ciopso(1) is a plan enter the ownership % If ciopso(1) is a reservoir enter the account #</pre>				
1-10 1-11	ciopso(2) iopsou(4,1)	<pre>T&C Plan ID (enter NA if none) 0 if ciopso(2) = NA 1 for a standard return pattern 2 for a fixed return pattern 3 for a mixed (standard and fixed) return pattern</pre>				
Type Data						
1-12	ityopr(1)	27				
Associated Plan	Associated Plan Data					
1-13	creuse	If the source is a Reuse Plan ID enter Reuse Plan ID or NA if none If the source is a Reservoir enter the associated Reuse Plan or				

OOP Plan ID

Diversion Type

1-14 cdivtyp

Diversion or Depletion

If the destination is a reservoir set to Diversion

Conveyance Loss (%)

1-15 OprLoss

0 No Transit loss

Note if dumx = 1-10 or < -12 carrier loss data cannot be provided for intervening structures

+n Transit loss = n% (from Source to By

(from Source to Bypass point)
Note this is a true loss that
Does not return to the system.
Also if dumx = 1-10 or < -12
carrier loss data that returns
to the system is provided
for intervening structures.

-1 No Transit loss.
Note if dumx = 1-10 or < -12
carrier loss data that returns
to the system is provided
for intervening structures</pre>

Miscellaneous Limits

1-16 OprLimit

- O Do not adjust Monthly or Annual Operational limits. Also do not recognize the capacity of the structure associated with the operational rule in row 4 is already adjusted.
- 1 Increase monthly and Annual
 Diversion limits of the operational

Rule specified in row 4. Also do recognize the capacity of the structure associated with the operational rule in row 4 is already adjusted.

2 Decrease monthly and annual releases

limits of the operational rule

specified in row 4. Also **do recognize** the capacity of the

structure associated with the operational rule in row 4 is already

3 Limit the amount released by the

amount diverted by the operational $\mbox{ rule in } \mbox{row } 4.$

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first
month specified in the control file

Intervening Structure Data without loss

Include only if OprLoss = 0 and the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

3a-1 intern(1,1) For +dumx, Enter dumx intervening

structure ID's

For -dumx, Enter abs(dumx)-12
 intervening structure ID's

Intervening Structure Data with loss

Include only if OprLoss > 0 or = -1 and the monthly switch (dumx) = 1-10 or < -12 See Section 7.39 for the approach used to model an augmentation station (e.g. a structure that carries a diversion, typically with loss, then returns non-lost water to the river).

Free Format

3b-1	intern(1,1)	Intervening structure ID
		(e.g. a Diversion ID or Stream ID)
3b-2	OprLossC(1,1)	Carrier Loss for Structure ID %
3b-3	<pre>InternT(1,1)</pre>	Intervening Structure Type
		Enter Carrier if it is a diversion
		structure located on the river
		Enter Return if it is a return
		location on the River

Repeat for +dumx values

will LIMIT the Amount released

Associated Operating Rule

Include only if the switch (OprLimit) > 0

Free Format

4-1 cx

If OprLimit=1, Operating Rule ID
for which monthly and Annual limits
will be INCREASED by the Amount
released

If OprLimit=2, Operating Rule ID
for which monthly and Annual limits
will LIMIT the Amount released

If OprLimit=3, Operating Rule ID
for which diversions by that rule

T&C CU Factors

Include only if ciopso(2) is a T&C Plan and iopsou(4,1) is >0.

Free Format		
5-1	OprEff(1)	Efficiency in month 1
5-2		OprEff(2) Efficiency in month 2
5-12	OprEff(12)	Efficiency in month 12

4.13.28 Reservoir or Reuse or Accounting Plan to a Diversion or Reservoir by Exchange (ityopr=28)

The type 28 operating rule provides a method to release water from a Reservoir, ReUse Plan, Accounting Plan or Out-of-Priority (OOP) Plan to a diversion or reservoir or carrier by exchange. The following are noted:

- A "ReUse Plan" is a special structure type that can be used identify the location of a reusable water supply associated with a CU transfer, or transmountain import (see Section 7.23 for more details about plans).
- An "Accounting Plan" is a special structure type that can be used to identify the location of transferred water that might be used for a variety of demands (see Section 7.23 for more details about plans).
- An "OOP Plan" is a special structure type that is associated with a diversion or storage taken out-of-priority by a type 38 operating rule.
- If the source is a Reuse or Accounting Plan, the destination may be reusable (i.e. creuse is a reuse plan (type 3, 4, 5 or 6)).
- If the source is a reservoir, the source data may be tied to an out-of-priority Plan (i.e. creuse is an OOP plan (type 9)).
- If carrier losses are calculated (OprLoss>0), the return flow pattern and return locations are those assigned to the SOURCE (CARRIER) structure in the diversion station file (*.dds) (e.g. if the source is a water right tied to structure X, then the return flow pattern and locations are those provided for structure X in the diversion station file (*.dds)).
- If the variable OprLimit is set to 0 no operating rule ID should be provided in row 4. In addition, because the capacity of the source structure of the operating rule ID specified in row 4 has already been adjust the source structure's capacity **may limit** the amount diverted. In general, the variable OprLimit should be set to 0 if the release is not constrained to monthly and annual limits and the source structure is not a carrier to this operating rule.
- If the variable OprLimit is set to 1 the operating rule ID specified in row 4 will limit its monthly and annual limits adjusted by the amount released. Also because the capacity of the source structure of the operating rule ID specified in row 4 has already been adjust the source structure's capacity will not limit the amount diverted.
- If the variable OprLimit is set to 2 the operating rule ID specified in row 4 will limit a release to that operating rule's monthly and annual limits. Also because the capacity of the source structure of the operating rule ID specified in row 4 has already been adjust the source structure's capacity will not limit the amount diverted.
- If the variable OprLimit is set to 3 the operating rule ID specified in row 4 will not limit a release to that operating rule's monthly and annual limits. However because the capacity of the source structure of the operating rule ID specified in row 4 has already been adjust the source structure's capacity will not limit the amount diverted.

- If the source 2 variable (ciopso2) is set to a T&C plan the terms and conditions associated with a prior water transfer are calculated when the water is used by this operating rule. The variable iousou(4,1) is used to indicate how T&C demands are calculated.
 - When ciopso2 = Plan ID and iopsou(4,1)=1 a standard return pattern is used to calculate the T&C Obligation. A **Standard Return Pattern** calculates the T&C Obligation to be:
 - 1. T&C Obligation (standard) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) * (1.0-CU Factor)), where the CU Factor is provided in row 5. The first value in a standard return flow table corresponds to the month diverted, the second to the month after a diversion, etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - When ciopso2 = Plan ID and iopsou(4,1)=2 a fixed return pattern is used to calculate the T&C Obligation. A **Fixed Return Pattern** calculates the T&C Obligation to be:
 - 2. T&C Obligation (fixed) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) The first value in a fixed return flow table corresponds to the first month in the simulation (e.g. January for a calendar year simulation), the second month to February (again for a calendar year simulation), etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - When ciopso2 = Plan ID and iopsou(4,1)=3 a mixed return pattern is used to calculate the T&C Obligation. **Mixed Return Pattern** contains both a Standard and Fixed component and calculates the T&C Obligation to be:
 - 1. T&C Obligation (standard) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) * (1.0-CU Factor)), where the CU Factor is provided in row 5. The first value in a standard return flow table corresponds to the month diverted, the second to the month after a diversion, etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s)is provided in the plan Return File (*.prf).
 - 2. T&C Obligation (fixed) = (Data in the return flow file (e.g. *.urm)) * ((Released Water) The first value in a fixed return flow table corresponds to the first month in the simulation (e.g. January for a calendar year simulation), the second month to February (again for a calendar year simulation), etc. Data that associates a Plan ID with any number of Return Flow Location(s), Percent(s), and Return Table ID(s) is provided in the plan Return File (*.prf).
 - When ciopso2 = Plan ID and iopsou(4,1)=4 a default return pattern is used to calculate the T&C Obligation. A **Default Return Pattern** has a standard component that uses historic return flow data associated with the source water right to calculate the T&C Obligation.
- If the variable Ciopso2 is set to a T&C Plan ID and iopsou(4,1) is greater than zero then CU Factors are expected to be provided in row 5. Note the CU Factors typically represent negotiated valued related to, but not necessarily the same as, the efficiency of the Transfer

From Structure. Also these factors are only used when iopsou(4,1) = 1 (Standard Return) or 3 (Mixed Return) even though they are required as input.

Row-data	Variable	Description
Control Data Format (al2, a 1-1 1-2 1-3 1-4	<pre>1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx</pre>	Operational right ID Operational right name Administration number Monthly Intervening Structure Switch +n Number of intervening structures (max = 10) 12 Monthly (12) on/off values -n Include -12 monthly on/off values minus n intervening structures Note, when a negative value is, provided, it should be -13 or less for 12 monthly values and one intervening structure
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n Begin in year n -n Stop after year n
Destination Da	ta	
1-6	ciopde	Destination structure (diversion or reservoir or instream flow or plan)
1-7	iopdes(2,1)	Destination structure account For a diversion or plan destination, enter 1 For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based on the ratio of their ownership
Supply Data		
1-8	ciopso(1)	ReUse Plan or Accounting Plan or Reservoir
1-9	iopsou(2,1)	<pre>If ciopso(1) is a plan enter the ownership % If ciopso(1) is a reservoir enter the account #</pre>
1-10	ciopso(2) iopsou(4,1)	<pre>T&C Plan ID (enter NA if none) 0 if ciopso(2) = NA 1 for a standard return pattern 2 for a fixed return pattern 3 for a mixed (standard and fixed) return pattern</pre>
Type Data 1-12	ityopr(1)	28
Associated Plant 1-13	n Data creuse	Reuse Plan ID (enter NA if none)

Diversion Type

1-14 cdivtyp

Diversion or Depletion

If the destination is a reservoir set to Diversion

Conveyance Loss (%)

1-15 OprLoss

0 No Transit loss
 Note if dumx = 1-10 or < -12
 carrier loss data cannot be
 provided for intervening structures
+n Transit loss = n%</pre>

+n Transit loss = n%
(from Source to Bypass point)
Note this is a true loss,
returns are not calculated.
Also if dumx = 1-10 or < -12
carrier loss data is provided
for intervening structures.

-1 No Transit loss.

Note if dumx = 1-10 or < -12

carrier loss data is provided
for intervening structures

Miscellaneous Limits

1-16 OprLimit

O Do not adjust Monthly or Annual Operational limits. Also do not recognize the capacity of the structure associated with the operational rule in row 4 is already adjusted.

1 Adjust monthly and Annual diversion
 limits of the operational rule
 specified in row 4. Also do recognize the

capacity of the structure associated with the operational rule in row 4 is already adjusted.

2 Limit monthly or annual releases by the limits of the operational rule specified in row 4. Also do recognize the

capacity of the structure associated with the operational rule in row 4 is already

adjusted.
3 Do not adjust Monthly or Annual
Operational limits. Do recognize

the capacity of the structure associated with the operational rule in row 4 is already adjusted.

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first
month specified in the control file

Intervening Structure Data without loss

Include only if OprLoss = 0 and the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

3a-1 intern(1,1) For +dumx, Enter dumx intervening

structure ID's

For -dumx, Enter abs(dumx)-12
 intervening structure ID's

Intervening Structure Data with loss

Include only if OprLoss > 0 or = -1 and the monthly switch (dumx) = 1-10 or < -12 See Section 7.39 for the approach used to model an augmentation station (e.g. a structure that carries a diversion, typically with loss, then returns non-lost water to the river).

Free Format

3b-1	intern(1,1)	Intervening structure ID
		(e.g. a Diversion ID or Stream ID)
3b-2	OprLossC(1,1)	Carrier Loss for Structure ID %
3b-3	<pre>InternT(1,1)</pre>	Intervening Structure Type
		Enter Carrier if it is a diversion
		structure located on the river
		Enter Return if it is a return
		location on the River

Repeat for +dumx values

Associated Operating Rule

Include only if the switch (OprLimit) > 0

Free Format

4-1 cx If OprLimit=1, Operating Rule ID for which monthly and Annual limits will be INCREASED by the Amount released

If OprLimit=2, Operating Rule ID
 for which monthly and Annual limits
 will LIMIT the Amount released

T&C CU Factors

Include only if ciopso(2) is a T&C Plan and iopsou(4,1) > 0.

If iopsou(4,1) = 2 (fixed) or 4 (default) enter -1.0 since this data is not used.

Free Format

	- <u> </u>		factor factor			
 5-12	OprFac(12)	CU	factor	in	month	12

Repeat for number of return flow locations

4.13.29 ReUse or Accounting Plan Spill (ityopr=29)

The type 29 operating rule provides a method to spill water from a Reuse Plan or Accounting Plan to the system. The following are noted:

- A "ReUse Plan" is a special structure type that can be used identify the location of a reusable water supply associated with a CU transfer, or transmountain import (see Section 7.23 for more details about plans).
- An "Accounting Plan" is a special structure type that can be used to identify the location of transferred water that might be used for a variety of demands (see Section 7.23 for more details about plans).
- If the reuse plan is tied to a reservoir (e.g. it is a plan type 3 or 5) then source 1 (ciopso(1)) should be a reservoir ID and source 2 (ciopso(2)) should be a Plan ID.
- If the reuse plan is not tied to a reservoir then source 1 (ciopso(1)) should be a plan ID and source 2 (ciopso(2)) should be NA.
- If the variable OprLimit is set to 1 the operating rule ID specified in row 4 will have its monthly and annual limits increased by the amount released.

Row-data	Variable	Description				
Control Data						
Format (a12, a	124, 12x, 4x, f12.5 1x,a12, 1x,2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)				
1-1	cidvri(1)	Operational right ID				
1-2	nameo(1)	Operational right name				
1-3	rtem(1)	Administration number				
1-4	dumx	Monthly Switch				
		0 No monthly on/off values 12 Monthly on/off switches				
1-5	ioprsw(1)	Annual On/Off Switch				
		0=off				
		1=on				
		+n Begin in year n				
		-n Stop after year n				
Destination Da						
1-6	ciopde	NA				
1-7	iopdes(2,1)	0				
Supply Data						
1-8	ciopso(1)	Supply Reservoir ID or ReUse plan ID				
1-9	iopsou(2,1)	Supply Reservoir account or ReUse				
1)	10μ50α(2,1)	Account (enter 0 if not applicable)				
1-10	ciopso(2)	Supply Plan ID				
		Enter NA if none				
1-11	iopsou(4,1)	0				
Type Data						
1-12	ityopr(1)	29				
Aggodiated Dis	Associated Plan Data					
Associated Pla		NTA				
1-13	creuse	NA				

```
Diversion Type
```

1-14 cdivtyp NA

Conveyance Loss (%)

1-15 OprLoss (

Miscellaneous Limits

1-16 OprLimit 0 Do not adjust Monthly or Annual

Operational limits

+n Adjust monthly and Annual limits

of the operational rule specified in row 3 below

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

-1 imonsw(1) Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month

Note the first entry corresponds to the first month specified in the control file

Monthly and Annual Limitation Data

Format (36x, 10a12)

Include only if the switch (OprLimit) = 1

3-1 cx Operating Rule ID for which monthly and annual limits will be increased by the amount spilled

4.13.30 Reservoir Re Diversion (ityopr=30)

The type 30 operating right allows a reservoir to re divert water released in the same time step to a T&C plan by another (type 26) operating rule. This operating rule is similar to a standard reservoir diversion except the amount diverted is limited to the amount released by a prior operating rule (ciopso1). This rule was developed and is commonly used because T&C releases are typically required to benefit other users before the system knows a release was unnecessary. Therefore, when implemented properly, the senior administration number of the T&C release (type 26) operates and makes water available to other water users. Then the junior reservoir re diversion (type 30) operates to try and re store this release if water is available (e.g. the release was not required).

Row-data Variable Description Control Data

```
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 1x,a12, 1x,2f8.0, 2i8)

1-1 cidvri(1) Operational right ID

1-2 nameo(1) Operational right name
```

1-3 rtem(1) Administration number 1 - 4dumx Monthly Intervening Structure Switch +n Number of intervening structures (max = 10)12 Monthly (12) on/off values -n Include -12 monthly on/off values minus n intervening structures Note, when a negative value is, provided, it should be -13 or less for 12 monthly values and 1 intervening structure) Annual On/Off Switch 1-5 ioprsw(1) 0=off 1=on+n Begin in year n -n Stop after year n Destination Data 1-6 Destination reservoir ciopde 1 - 7iopdes(2,1) Destination account Supply Data 1-8 ciopso(1) Operating right ID associated with the release of water to a T&C plan 1-9 0 iopsou(2,1)1-10 ciopso(2) NA 1-11 iopsou(4,1) Type Data 1-12 ityopr(1) 30 Associated Plan Data 1 - 13creuse NA Diversion Type 1 - 14cdivtyp NA Conveyance Loss (%) 1-15 OprLoss 0.0 Miscellaneous Limits 1-16 OprLimit 0.0 Start Date 1-17 IoBeg First year of operation End Date 1-18 Last year of operation IoEnd Monthly Data Free Format Include only if the monthly switch (dumx) = 12 or less than -12 imonsw(1) Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month Note the first entry corresponds to the first month specified in the control file

Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12</pre>

```
Format (36x, 10a12)

3-1 intern(1,1) For +dumx, Enter dumx intervening structure IDs

For -dumx, Enter abs(dumx)-12 intervening structure IDs
```

4.13.31 Carrier Right with Reuse (ityopr=31)

The type 31 operating rule provides a method to divert water to a reservoir or direct flow structure using another structure's water rights. It is similar to the type 11 operating rule except it tracks reusable water associated with the diverted water's return flows. Water may be diverted to a reservoir or direct flow structure using a carrier structure's water rights. In addition, it can be used to constrain a diversion to the capacity of up to 10 intervening structures.

Note a diversion is implicitly constrained by the capacity of the destination structure (variable ciopde 1-6). Also, if several operating rules use the same water right, diversions are not allowed to exceed the decreed capacity. Finally if the destination is a reservoir, the operating rule demand is the destination reservoir's capacity. If the destination is a diversion, the demand is the destination structure's demand.

Row-data	Variable	Description
Control Data		
Format (a12, a	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number. Note if ciopso(1) is a diversion right, its administration number is used and rtem is ignored
1-4	dumx	<pre>Monthly and Structure Switch</pre>
1-5	ioprsw(1)	Annual On/Off Switch 0 off 1 on +n Begin in year n -n=Stop after year n
Destination Da	ta	
1-6 1-7	ciopde iopdes(2,1)	Destination diversion ID or reservoir ID Destination structure account For a diversion destination, enter 1 For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based on the ratio of their ownership
Source Data		
1-8	ciopso(1)	Diversion Water right ID

```
0
1-9
               iopsou(2,1)
               ciopso(2)
1-10
                                 NA
1-11
               iopsou(4,1)
Type Data
1-12
               ityopr(1)
                                  31
Associated Plan Data
1-13
               creuse
                                 Reuse Plan ID (enter NA if none)
Diversion Type
                                 NA
               cdivtyp
Conveyance Loss (%)
                                 0
               OprLoss
Miscellaneous Limits
1-16
                                 0
               OprLimit
Start Date
1-17
               IoBeg
                                 First year of operation
End Date
1-18
               IoEnd
                                 Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
               imonsw(1)
                                 Monthly switch 0=off, 1=on
                                    +n Day first used that month
                                     -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12
Format (36x, 10a12)
3 - 1
               intern(1,1)
                                 For +dumx, Enter dumx intervening
                                    structure ID's
                                 For -dumx, Enter abs(dumx)-12
                                     intervening structure ID's
```

4.13.32 Reuse Plan to a User Direct (ityopr=32)

The type 32 operating rule provides a method to release water from a reservoir and a reservoir reuse plan (plan type 3 or 5) to a reservoir, direct flow structure or a carrier located downstream of the reservoir. Also it can make a direct release from the reservoir to a diversion or reservoir. If the delivery method is a release from the reservoir directly to a demand or reservoir (i.e. no release to the river) the diversion type (cdivtyp) should be set to Direct. If the delivery method is the river and the delivery is intended to meet the destination's demand the diversion type (cdivtyp) should be set to Diversion. If the delivery method is the river and the delivery is intended to meet the consumption associated with the destination's demand the diversion type (cdivtyp) should be set to Depletion. In addition, carriers can be used to constrain a release to the capacity of up to 10 intervening structures or carriers. Note a diversion is implicitly constrained by the capacity of the destination structure (variable ciopde).

Row-data	Variable	Description
Control Data Format (a12, a 1-1 1-2 1-3 1-4	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx	Operational right ID Operation right name Administration number Monthly and Intervening Structure Switch +n Number of intervening structures (max = 10) -n Include -12 monthly on/off values minus n intervening structures Note, when a negative value is, provided, it should be -13 or
1-5	ioprsw(1)	less for 12 monthly values and one intervening structure Annual On/Off Switch 0 off 1 on +n Begin in year n -n Stop after year n
Destination Da	ta	
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	Destination diversion ID or reservoir ID Destination structure account For a diversion destination, enter 1 For a reservoir destination, enter +n Account to be served by this right -n Fill the first n accounts based on the ratio of their ownership
Supply Data		
Supply Data 1-8 1-9 1-10 1-11	<pre>ciopso(1) iopsou(2,1) ciopso(2) iopsou(4,1)</pre>	Supply reservoir ID Supply reservoir account Supply Reservoir Reuse Plan ID at Source See Section 7.15 for a discussion of the Reservoir demand options. 0 = Reservoir demand is not adjusted +n = Reservoir demand is limited to not exceed CIR/n; where n (%) is the efficiency of reservoir water use that is limited to not exceed the max system efficiency Note a +n requires the variable efficiency option (ieffmax) from control file be on
Type Data 1-12	ityopr(1)	32

Associated Plan Data

1-13 creuse Reuse Plan ID for returns (enter NA if none)

```
Diversion Type
                                Diversion or Depletion or Direct
1 - 14
              cdivtyp
Conveyance Loss (%)
1-15
              OprLoss
                                 Λ
Miscellaneous Limits
1-16
              OprLimit
Start Date
                                First year of operation
1-17
              IoBeg
End Date
1-18
                                Last year of operation
              IoEnd
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                 Monthly switch 0=off, 1=on
               imonsw(1)
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12
Format (36x, 10a12)
3 - 1
              intern(1,1)
                                For +dumx, Enter dumx intervening
                                   structure ID's
                                 For -dumx, Enter abs(dumx)-12
                                    intervening structure ID's
```

4.13.33 Reuse Plan to a User by Exchange (ityopr=33)

The type 33 operating rule provides a method to release water from a Reservoir and Reservoir Reuse plan to a reservoir, direct flow structure or a carrier located upstream of the reservoir, by exchange when the receiving structures return flows can be reused. The amount released may equal the destinations demand (Diversion) or consumption (Depletion). In addition, it can be used to constrain a diversion to the capacity of up to 10 intervening structures or carriers. Note a diversion is implicitly constrained by the capacity of the destination structure (variable ciopde, row-data 1-6).

Row-data	Variable	Description
Control Data		
Format (a12,	a24, 12x, 4x, f12.	5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
	1x,a12, 1x,2f8.0	, 2i8)
1-1	cidvri(1)	Operational right ID
1-2	nameo(1)	Operation right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly and Intervening Structure Switch
		+n Number of intervening structures
		$(\max = 10)$
		-n Include -12 monthly on/off
		values minus n intervening
		structures

Note, when a negative value is provided, it should be -13 or less for 12 monthly values and one intervening structure

1-5 ioprsw(1) Annual On/Off Switch

0 off 1 on

+n Begin in year n

-n Stop after year n

Destination Data

For a reservoir destination, enter
+n Account to be served by this right

-n Fill the first n accounts based on the ratio of their ownership

Supply Data

1-8	ciopso(1)	Supply	reservoir	ID		
1-9	iopsou(2,1)	Supply	reservoir	accour	nt	
1-10	ciopso(2)	Supply	Reservoir	Reuse	Plan	ID
1-11	iopsou(4,1)					

See Section 7.15 for a discussion of the Reservoir demand options.

0 = reservoir demand is not adjusted

+n = Reservoir demand is limited to not
 exceed CIR/n; where n (%) is
 the efficiency of reservoir
 water use that is limited to
 not exceed the max system
 efficiency
 Note a +n requires the
 variable efficiency option
 (ieffmax) from control file be
 on

Type Data

1-12 ityopr(1) 33

Associated Plan Data

1-13 creuse Reuse Plan ID for returns (enter NA if none)

Diversion Type

1-14 cdivtyp Diversion or Depletion

Conveyance Loss (%)

1-15 OprLoss 0

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

```
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
               imonsw(1)
                                 Monthly switch 0=off, 1=on
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12
Format (36x, 10a12)
               intern(1,1)
                                 For +dumx, Enter dumx intervening
                                    structure ID's
                                 For -dumx, Enter abs(dumx)-12
                                    intervening structure ID's
```

4.13.34 Reservoir to Reservoir Transfer (Bookover) with a Plan (ityopr=34)

The type 34 operating rule allows a reservoir to reservoir transfer (bookover) to occur where the destination water may be reusable or increase an OOP plan obligation. It is commonly used to transfer water from one reservoir storage account to another in a particular month. The following are noted:

- The destination reservoir may be the same or different than the source reservoir. If they are different the destination reservoir must be located downstream of the source reservoir.
- The amount transferred can be limited to the amount of water diverted by another operating rule (specified under variable ciopso(2)).
- The amount transferred can be limited to the demand of a diversion structure (specified in field ciopso(2)).
- The amount transferred can be limited to the volume of water in an Out-of-Priority (OOP) plan (specified in field ciopso(2)).
- The amount transferred can be booked from one reservoir to another by a carrier (pipeline).
- If water is being transferred from an OOP plan in one reservoir to an OOP plan in another reservoir then:
 - Source 1 should be the source reservoir.
 - Source 2 should be the OOP plan at the source reservoir
 - The destination should be the reservoir receiving the bookover
 - The plan data should be the OOP plan at the destination reservoir

Row-data Variable Description

Format (a12, a		, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
1-1	<pre>1x,a12, 1x,2f8.0, cidvri(1)</pre>	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly and Structure Switch
		0 No monthly on/off values
		12 Number of monthly on/off
		Switches provided
1-5	ioprsw(1)	Annual On/Off Switch
		0=off
		1=on
		+n Begin in year n
		-n Stop after year n
Destination Da	ta	
1-6	ciopde	Destination reservoir ID
1-7	iopdes(2,1)	Destination structure account
_ ,	102000(1/1/	For a reservoir destination, enter
		+n Account to be served by this right
		-n Fill the first n accounts based on
		the ratio of their ownership
Supply Data	. (1)	0 1 ' TD
1-8	ciopso(1)	Supply reservoir ID
1-9	iopsou(2,1)	Supply reservoir account
1-10	ciopso(2)	Transfer Limit
		If not required enter 0
		If limited by the amount diverted under
		an operating rule, enter the operating
		Rule ID.
		If limited by a diversion demand amount
		enter the diversion structure ID.
		If limited by an OOP Plan amount
1 11	i (enter the OOP Plan ID. Enter 0 (Not Used)
1-11	iopsou(4,1)	Enter U (Not Used)
Type Data		
1-12	ityopr(1)	34
Plan Data		
1-13	creuse	Reuse Plan ID or OOP Plan ID
Dissension Tumo		
Diversion Type 1-14	cdivtyp	NA
1 11	carveyp	IVA
Conveyance Los	s (%)	
1-15	OprLoss	0
Miscellaneous		
1-16	OprLimit	O Do not adjust Monthly or Annual
		Operational limits
		1 Limit monthly or annual releases by the limits of the operational
		rule specified in row 3
Start Date		
1-17	IoBeg	First year of operation
End Date	,	
1-18	IoEnd	Last year of operation

```
Monthly Data
```

Free Format

```
Include only if the monthly switch (dumx) = 12 or less than -12
```

imonsw(1) Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month

> Note the first entry corresponds to the first month specified in the control file

Associated Operating Rule

Include only if the switch (OprLimit) =2

Free Format

3-1 Operating Rule ID for which monthly CX

and Annual limits will LIMIT the

amount released

Intervening Structure Data without loss

Include only if the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

4a-1 intern(1,1)For +dumx, Enter dumx intervening

structure ID's

For -dumx, Enter abs(dumx)-12 intervening structure ID's

4.13.35 Import to a Diversion or Reservoir or Carrier with or without Reuse (ityopr=35)

The type 35 operating rule provides a method to import water from outside the system to a reservoir, direct flow structure or a carrier. The imported water may be reused if the variable creuse is set to a reuse plan. In addition, this operating rule can be used to constrain a diversion to the capacity of up to 10 intervening structures or carriers. Note that an import structure should be specified with the same ID in both the diversion station file (*.dds) and plan file (*.pln). Finally monthly import values should be specified as negative demands in the diversion demand file (*.ddm).

Row-data Variable Description

Control Data

```
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12, 1x,2f8.0, 2i8)
1-1
               cidvri(1)
                                 Operational right ID
1-2
               nameo(1)
                                 Operation right name
1-3
              rtem(1)
                                 Administration number
1 - 4
               dumx
                                 Monthly and Intervening Structure
                                 Switch
                                    +n Number of intervening structures
                                       (max = 10)
                                    -n Include -12 monthly on/off
                                       values minus n intervening
                                       structures
                                       Note, when a negative value is,
                                       provided, it should be -13 or
                                    less for 12 monthly values and
                                       one intervening structure
```

0 off

1 on

+n Begin in year n -n Stop after year n

Destination Data

1-6 ciopde Destination diversion ID or reservoir ID or

carrier ID

1-7 iopdes(2,1) Destination structure account

For a diversion destination, enter 1 For a reservoir destination, enter

+n Account to be served by this right
-n Fill the first n accounts based on
 the ratio of their ownership

Supply Data

1-8 ciopso(1) Diversion ID where imported water enters the system

1-9 iopsou(2,1) 0 (not used)

1-10 ciopso(2) NA 1-11 iopsou(4,1) 0

Type Data

1-12 ityopr(1) 35

Associated Plan Data

1-13 creuse Reuse Plan ID (enter NA if none)

Diversion Type

1-14 cdivtyp NA

Conveyance Loss (%)

1-15 OprLoss 0

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

2-1 imonsw(1) Monthly switch 0=off, 1=on

+n Day first used that month

-n Day last used that month

Note the first entry corresponds to the first

month specified in the control file

Intervening Structure Data without loss

Include only if the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

3-1 intern(1,1) For +dumx, Enter dumx intervening

4.13.36 Seasonal (Daily) Water Right Direct (ityopr=36)

The type 36 operating rule provides a method to limit a direct flow water right to begin on a particular day and end on a particular day during a monthly simulation. In addition it may be used in a daily analysis if a diversion has several water rights, with some controlled by their daily demand and others limited toboth their daily demand data and a specified diversion season.

The type 36 operating right has generic applications. It was originally developed to model Meadow Rights that occur in water districts 1 and 64 of the South Platte River.

Row-data	Variable	Description		
Control Data Format (a12, a) 1-1 1-2 1-3 1-4	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx Switch	Operational right ID Operation right name Administration number Monthly and Intervening Structure +n Number of intervening structures (max = 10)		
1-5	ioprsw(1)	<pre>-n Include -12 monthly on/off values minus n intervening structures Note, when a negative value is, provided, it should be -13 or less for 12 monthly values and one intervening structure Annual On/Off Switch 0 off 1 on +n Begin in year n -n Stop after year n</pre>		
Destination Da	ta			
1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	Destination diversion ID Destination structure account, enter 1 for a diversion,		
Supply Data 1-8 1-9 1-10 1-11	<pre>ciopso(1) iopsou(2,1) ciopso(2) iopsou(4,1)</pre>	Diversion Water Right ID 0 (not used) NA 0		
Type Data 1-12	ityopr(1)	36		
Associated Plan Data				
1-13	creuse	NA		

```
Diversion Type
                                Direct
1 - 14
             cdivtyp
Conveyance Loss (%)
1-15
             OprLoss
                                Λ
Miscellaneous Limits
1-16
             OprLimit
Start Date
                                First year of operation
1-17
             IoBeg
End Date
1-18
             IoEnd
                               Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
              imonsw(1)
                                Monthly switch 0=off,
                                   +n Day first used that month
                                   -n Day last used that month
                                Note the first entry corresponds to the first
                                   month specified in the control file
Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12
Format (36x, 10a12)
3 - 1
             intern(1,1)
                                For +dumx, Enter dumx intervening structure ID's
                                For -dumx, Enter abs(dumx)-12
                                   intervening structure ID's
```

4.13.37 Augmentation Well Direct (ityopr=37)

The type 37 operating rule provides a method to pump an Augmentation well in order to satisfy a T&C or Augmentation Plan demand. The source is a well water right. The destination is a T&C or Well Augmentation Plan. The following comments are provided to assist in using and interpreting this rule:

- An augmentation well right is typically tied to a unique (augmentation) Well structure. This allows unique return and depletion data associated with the augmentation well to be provided in the well station file (*.wes). Note that return flows associated with an augmentation are typically assigned a unit response function that routes water to the stream in the same time step that they occur.
- This rule requires source 2 (ciopso(2)) be an "Augmentation plan ID". This allows the augmentation plan requirements associated with the augmentation well to be stored and ultimately satisfied. This plan ID may or may not be the same as the destination plan ID.
- An augmentation well might serve as both a water supply and an augmentation source. This can occur when the same right is assigned to both a standard (irrigation) well structure and an Augmentation well structure. If the administration number assigned in the operational right file is different than the administration number of the source (augmentation) well the operating rule value is used and a warning is printed to the log file. The amount pumped to each demand is limited by the well's total capacity and water right.

Row-data	Variable	Description
Control Data		
	.24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0,	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8)
1-1	cidvri(1)	Operational right ID
1-2	nameo(1)	Operation right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly On/Off Switch
1 1	danar	0 Include no monthly on/off values 12 Include 12 monthly on/off values
1-5	ioprsw(1)	Annual On/Off Switch O off
		1 on
		+n Begin in year n -n Stop after year n
Destination Da	ta	
1-6	ciopde	T&C or Well Augmentation Plan ID
1-7	iopdes(2,1)	0 (not used)
Supply Data		
1-8	ciopso(1)	Well Water Right ID
1-9	iopsou(2,1)	0 (not used)
1-10	ciopso(2)	Plan ID used to track the Augmentation requirement of the Augmentation
		Well pumping
1-11	iopsou(4,1)	0
Type Data		
1-12	ityopr(1)	37
Associated Pla	n Data	
1-13	creuse	NA
Diversion Type	ı	
1-14	cdivtyp	NA
Conveyance Los	s (%)	
1-15	OprLoss	0
Miscellaneous	Timi+a	
1-16	OprLimit	0
Start Date		
1-17	IoBeg	First year of operation
End Date		
1-18	IoEnd	Last year of operation
Monthly Data Free Format		
Include only i	f the monthly swit	ch (dumx) = 12 or less than -12
2-1	imonsw(1)	Monthly switch 0=off, 1=on +n Day first used that month
		-n Day last used that month
		Note the first entry corresponds to the first month specified in the control file

4.13.38 Out-of-Priority Diversion with Plan Direct (ityopr=38)

The type 38, Out-of-Priority Diversion, operating rule provides a method to divert to a reservoir or a diversion out-of-priority with respect to a reservoir based on the upstream storage statute. Source 1 is the senior reservoir right that is being subordinated. Source 2 is the destination reservoir water right that is diverting out-of-priority. The destination is a reservoir or ditch. A plan ID is used to track the volume of water that must be paid back should the subordinated reservoir right go unsatisfied. The following comments are provided to assist in using and interpreting this rule:

- The user must supply an "Out-of-Priority (OOP) Plan ID" associated with the OOP diversion.
- When multiple structures divert with respect to the same subordinated reservoir right, they may
 be provided the same OOP Plan ID or different OOP Plan ID's. Separate OOP Plan ID's are
 recommended if the user is interested in monitoring the demand and supplies associated with
 each OOP diversion. A combined OOP Plan ID is recommended if the user is not interested in
 monitoring the demand and supplies associated with each OOP diversion.
- The administration number provided to the operating rule is typically just senior to the senior subordinated reservoir right.

```
Description
Row-data
               Variable
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12, 1x,2f8.0, 2i8)
               cidvri(1)
                                 Operational right ID
1 – 2
                                Operation right name
              nameo(1)
1-3
                                 Administration number
              rtem(1)
1 - 4
               dumx
                                 Monthly Intervening Structure Switch
                                    +n Number of intervening structures (max = 10)
                                    12 Monthly (12) on/off values
                                    -n Include -12 monthly on/off
                                       values minus n intervening
                                    structures
                                       Note, when a negative value is,
                                       provided, it should be -13 or
                                       less for 12 monthly values and
                                       one intervening structure
                                 Annual On/Off Switch
1-5
               ioprsw(1)
                                    0 off
                                    1 on
                                    +n Begin in year n
                                    -n Stop after year n
Destination Data
1-6
               ciopde
                                 Diversion or Reservoir ID
1 - 7
               iopdes(2,1)
                                 Destination structure account
```

For a diversion destination, enter 1
For a reservoir destination, enter
+n Account to be served by this right
-n Fill the first n accounts based on
the ratio of their ownership

Supply Data

1-8	ciopso(1)	Senior s	subordinated reservoir right ID
1-9	iopsou(2,1)	0 (not i	used)
1-10	ciopso(2)	Junior 1	right ID diverting out of priority
1-11	iopsou(4,1)	0 (not i	used)

Type Data

1-12 ityopr(1) 38

Associated Plan Data

1-13	creuse	Reuse Plan ID (used to store amount diverted
		out-of-priority)

Diversion Type

1-14 cdivtyp NA

Conveyance Loss (%)

1-15 OprLoss 0

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

2-1 imonsw(1) Monthly switch 0=off, 1=on
+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first

Note the first entry corresponds to the first month specified in the control file

Intervening Structure Data

Include only if the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

4.13.39 Alternate Point Direct (ityopr=39)

The type 39 operating rule allows a structure to divert at an Alternate Point using a water right that is assigned to another structure (i.e. not assigned to the Alternate Point). The alternate point can be

located upstream or downstream of the destination structure. The rule allows water to be diverted at one or both locations up to the decreed amount. Source 1 is the water right that allows the diversion. Source 2 is the Alternate Point location. The destination is a diversion. The following comments are provided to assist in using and interpreting this rule:

- If the source structure is no longer capable of diverting, its capacity is typically set to zero in the diversion structure file.
- The administration number provided to the operating rule is typically equal to or slightly junior to the decreed water right.
- The source water right may operate as a standard direct flow right and as an alternate point. The total amount diverted at the decreed location and the alternate point are limited to the decreed amount. When the variable iopsou(2,1) = 0 is the right is used as both a direct flow and alternate point. When the variable iopsou(2,1) = 1 the right is only used as an alternate point.

Row-data	Variable	Description
Control Data Format (a12, a 1-1 1-2 1-3 1-4	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx ioprsw(1)	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8) Operational right ID Operation right name Administration number Monthly On/Off Switch 0 Include no monthly on/off values 12 Include 12 monthly on/off values Annual On/Off Switch 0 off 1 on +n Begin in year n -n Stop after year n
Destination Day 1-6 1-7	ta ciopde iopdes(2,1)	Destination Diversion ID Enter 1
Supply Data 1-8 1-9	<pre>ciopso(1) iopsou(2,1)</pre>	<pre>Water right serving the alternate point 0 The source water right (ciopso(1)) is left on (I.e. it can be used as a both a direct flow right and this operating rule) 1 The source water right (ciopso2(1) is turned off (i.e. it can only be used by this operating rule)</pre>
1-10 1-11	<pre>ciopso(2) iopsou(4,1)</pre>	Alternate Point Location Enter 1
Type Data 1-12	ityopr(1)	39
Associated Plan	n Data creuse	NA
Diversion Type 1-14	cdivtyp	Diversion

```
Conveyance Loss (%)
1-15
                                 0
              OprLoss
Miscellaneous Limits
1-16
              OprLimit
Start Date
1-17
               IoBeg
                                 First year of operation
End Date
1-18
               IoEnd
                                 Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                 Monthly switch 0=off, 1=on
               imonsw(1)
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12
Format (36x, 10a12)
               intern(1,1)
                                 For +dumx, Enter dumx intervening
3 - 1
                                    structure ID's
                                 For -dumx, Enter abs(dumx)-12
                                    intervening structure ID's
```

4.13.40 South Platte Compact (ityopr=40)

The Type 40 operating rule simulates the South Platte Compact by limiting an instream flow (Compact Structure) to not benefit from (call out) any water rights located above an index gage (Balzac at the Washington County line). This compact, in general, limits Colorado's commitment to deliver water to Nebraska based on the gain that occurs between the gage at Balzac (Washington County line) and the gage at the state line (Julesburg). Specifically the type 40 rule calculates the compact demand as follows:

```
Dmax= max(0, Qd (Julesburg) – Qu (Balzac))
Dcompact = min(Qdecree, Qdemand, Dmax)
```

Where:

Dcompact is the compact diversion

Dmax is the maximum diversion

Qd is the flow at the downstream station (Julesburg gage)

Qu is the flow at the upstream station (Balzac gage)

Odecree is the compact decree (120 cfs)

Qdemand is the compact demand (120 cfs during the irrigation season, April 1 - Oct 15)

```
Row-data Variable Description
```

Control Data

```
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
```

	1x,a12,1x, 2f8.0,	2i8)		
1-1	cidvri(1)	Operational right ID		
1-2	nameo(1)	Operational right name		
1-3	rtem(1)	Administration number		
1-4	dumx	Monthly switch 0=off, 1=on +n Day first used that month		
		-n Day last used that month		
		Note the first entry corresponds to the first		
		month specified in the control file		
1-5	ioprsw(1)	Annual On/Off Switch		
		0=off		
		1=on +n=Begin in year n		
		-n=Stop after year n		
		1.1		
Destination Da				
1-6	ciopde	Destination Instream Flow		
1-7	iopdes(2,1)	Destination Account, enter 1		
Supply Data				
1-8	ciopso(1)	River ID of the Upstream flow		
		station (Balzac)		
1-9	iopsou(2,1)	0		
1-10	ciopso(2)	River ID of the Downstream flow		
1-11	iopsou(4,1)	station (Julesburg) 0		
1 11	10pb04(1,1)			
Type Data				
1-12	ityopr(1)	40		
Associated Pla	- D -L-			
1-13	n Data creuse	NA		
1 13	CICUBC	IVA		
Diversion Type				
1-14	cdivtyp	NA		
G	- (0.)			
Conveyance Los	oprLoss	0		
1 13	ОРГПОВВ			
Miscellaneous	Limits			
1-16	OprLimit	0		
Obsert Date				
Start Date 1-17	IoBeq	First year of operation		
1 1,	10009	Tilbe year or operation		
End Date				
1-18	IoEnd	Last year of operation		
Monthly Data				
Monthly Data Free Format				
	f the monthly swit	ch (dumx) = 12 or less than -12		
2-1	imonsw(1)	Monthly switch 0=off, 1=on		
		+n Day first used that month		
		-n Day last used that month		
		Note the first entry corresponds to the first month specified in the control file		
Associated Wat	_			
		ch (dumx) = 1-10 or < -12		
rormat (36x, 1	Format (36x, 10a12) 3-1 intern(1 1) For +dumy Enter dumy limiting			

intern(1,1) For +dumx, Enter dumx limiting

3-1

+n Account to be served by this right

4.13.41 Reservoir Storage with Special Limits Direct (ityopr=41)

The type 41 operating rule allows a reservoir to store reservoir water right up to the volume of water stored in an Out-Of-Priority plan. It was originally developed to simulate the so called "1955 Exchange" on the Blue River that limits storage in Green Mountain to the amount of water diverted out-of-priority by Denver and Colorado Springs with respect to Green Mountain Reservoir. The following are noted:

- Source 1 should be a reservoir water right supplied in the reservoir right file (*.rer). Note when this right is tied to a type 41 operating rule it is turned off and StateMod prints a warning. By turning this right off, StateMod ensures this right no longer diverts as a standard reservoir but instead is controlled by information in the Type 41 operating rule.
- The administration number assigned in the reservoir right file overrides the administration number assigned in the operating rule. Note if the administration numbers are not equal, StateMod warns the user that the data in the reservoir right file controls.
- The destination should be a reservoir.
- The variable intern is used to store up to 10 plans that might limit the reservoir storage.
- The intervening plans should be Out-of-Priority (type 9) Plans.

Row-data Variable Description Control Data Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 1x,a12, 1x,2f8.0, 2i8) 1 - 1cidvri(1) Operational right ID nameo(1) 1-2 Operation right name 1-3 rtem(1) Administration number 1 - 4dumx Monthly and Limiting Plan Switch +n Number of Limiting OOP plans (max = 10)-n Include -12 monthly on/off values minus n limiting OOP Note, when a negative value is, provided, it should be -13 or less for 12 monthly values and one limiting OOP plan) 1-5 ioprsw(1) Annual On/Off Switch 0 off 1 on +n Begin in year n -n Stop after year n Destination Data 1-6 ciopde Reservoir ID iopdes(2,1) 1-7 Destination structure account For a reservoir destination, enter

-n Fill the first n accounts based on the ratio of their ownership

Supply Data

1-8 ciopso(1) Reservoir Water right

1-9 iopsou(2,1) 0 (not used)

1-10 ciopso(2) NA

1-11 iopsou(4,1) 0 (not used)

Type Data

1-12 ityopr(1) 41

Associated Plan Data

1-13 creuse NA

Diversion Type

1-14 cdivtyp Diversion

Conveyance Loss (%)

1-15 OprLoss 0

Miscellaneous Limits

1-16 OprLimit 0

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data

Free Format

Include only if the monthly switch (dumx) = 12 or less than -12

2-1 imonsw(1) Monthly switch 0=off, 1=on

+n Day first used that month
-n Day last used that month

Note the first entry corresponds to the first

month specified in the control file

Limiting OOP Plan Volume Data

Include only if the monthly switch (dumx) = 1-10 or < -12

Format (36x, 10a12)

3-1 intern(1,1) For +dumx, Enter dumx limiting

OOP Plan ID's

For -dumx, Enter abs(dumx)-12 limiting OOP PlanID's

4.13.42 Plan Demand Reset (ityopr=42)

The type 42 operating rule provides a method to reset a plan demand. The following are noted:

- Because a type 42 rule does not provide a water supply it should, in general, only be used be used to mimic historical operations and/or restrict an operational activity to annual operations.
- Source 1 should be one of the following plan types: 1 = Term and Condition, 2 = Well Augmentation, 9 = Out-of-Priority Plan.

Row-data	Variable	Description	
Control Data Format (a12, a 1-1 1-2 1-3 1-4	24, 12x, 4x, f12.5 1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx ioprsw(1)	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12, 2i8) Operational right ID Operational right name Administration number Monthly Switch 0 No monthly on/off values 12 Monthly on/off switches Annual On/Off Switch 0=off 1=on +n Begin in year n -n Stop after year n	
Destination Da	ta		
1-6	ciopde	NA	
1-7	iopdes(2,1)	0	
Supply Data 1-8 1-9	<pre>ciopso(1) iopsou(2,1)</pre>	ReUse plan ID Enter 0	
1-10 1-11	ciopso(2) iopsou(4,1)	NA 0	
Type Data 1-12	ityopr(1)	42	
Associated Plant 1-13	n Data creuse	NA	
Diversion Type 1-14	cdivtyp	NA	
Conveyance Los	s (%) OprLoss	0	
Miscellaneous : 1-16	Limits OprLimit	0	
Start Date 1-17	IoBeg	First year of operation	
End Date	IoEnd	Last year of operation	
Monthly Data Free Format Include only if the monthly switch (dumx) = 12 or less than -12			

Monthly switch 0=off, 1=on
+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first
month specified in the control file

4.13.43 In-Priority Supply (ityopr=43)

The type 43 operating rule provides a method to supply a T&C requirement or a Well Augmentation Requirement if the amount owed in the current time step occurs in priority. The following are noted:

- In order to determine if future pumping depletions can be satisfied In-Priority a well must be tied to an augmentation plan (see Section 4.49)
- The amount of water pumped and its associated depletion over time is reported as part of a standard plan output (*.xpl). Source 1 of this report is reserved for In_Priority_Supply_Now (depletions that occur in priority in the month pumped). Source 'n' will report in-priority depletions (depletions that occur at a time step after the pumping) if an In-Priority Supply(type 43) operating rule is specified.
- Pumping is determined to be In-Priority in the time step it occurs if there is water available in the stream to offset any net depletion at that time. Therefore, it is allocated at the administration number of the well and is not controlled by this operating rule.
- T&C requirement is determined to be In-Priority in the time step it occurs if there is water available in the stream to offset any net depletion at that time. It is allocated at the administration number in this operating rule.
- In-Priority Depletions associated with pumping in a prior time step occur if there is water available in the stream to offset the depletion when they occur at the river. Because future depletions are stored by augmentation plan, not well, this determination is made at the administration number assigned to this In-Priority Supply Operating Rule (type 43).
- It is impractical to determine if future depletions are In-Priority using the administration number of each well because there are often thousands of wells being modeled and future depletions often extend over 20 years. In addition, this estimate is considered appropriate for a planning model because wells are typically junior to most direct flow and storage rights.
- The administration number assigned to an In-Priority Supply Operating Rule (type 43) is typically a decree weighted average priority of the wells associated with the well augmentation plan. The decree weighted average priority is calculated as follows:

```
Admin\_Ave = (sum(WR(j) * Admin(j)) / (sum WR(j)),
```

Where:

Admin_Ave is the weighted average administration number WR(j) is the decreed water right for well j Admin(j) is the administration number of well j sum() is the summation

```
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12, 1x,2f8.0, 2i8)
1-1
               cidvri(1)
                                  Operational right ID
1-2
               nameo(1)
                                  Operational right name
1-3
                                  Administration number
               rtem(1)
1 - 4
               dumx
                                  Monthly Switch
                                     0 No monthly on/off values
                                     12 Monthly on/off switches
1-5
               ioprsw(1)
                                  Annual On/Off Switch
                                  0=off
                                     1=on
                                     +n Begin in year n
                                     -n Stop after year n
Destination Data
1-6
               ciopde
                                  Well Augmentation Plan or
                                     Term and Condition Plan
1-7
               iopdes(2,1)
                                  0
Supply Data
1-8
               ciopso(1)
                                  NA
1-9
               iopsou(2,1)
                                  0
1-10
               ciopso(2)
                                  NA
1-11
               iopsou(4,1)
                                  0
Type Data
1-12
               ityopr(1)
                                  43
Associated Plan Data
1-13
               creuse
                                  NA
Diversion Type
1 - 14
               cdivtyp
                                  NA
Conveyance Loss (%)
1-15
               OprLoss
                                  0
Miscellaneous Limits
1-16
               OprLimit
                                  0
Start Date
1-17
                                  First year of operation
               IoBeg
End Date
1-18
               IoEnd
                                  Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
               imonsw(1)
                                  Monthly switch 0=off, 1=on
                                     +n Day first used that month
                                     -n Day last used that month
                                  Note the first entry corresponds to the first
                                     month specified in the control file
```

Description

Row-data

Variable

4.13.44 Recharge Well(ityopr=44)

The type 44 operating rule provides a method to pump a Recharge well in order to fill a Recharge Reservoir. The following comments are provided to assist in using and interpreting this rule:

- A recharge well operating rule ties a well right (ciopso(1)) to a recharge reservoir (ciopdes(1)) and account (iopdes(2,1)). Typically the recharge reservoir's seepage provides a lagged water supply for an augmentation plan.
- A recharge well only diverts when it is in priority.
- A recharge well is typically located close to the river and has a relatively quick, if not instantaneous, impact on the river. This quick response is not a requirement, simply how they typically operate. If the recharge well has a lagged depletion that is out of priority its augmentation requirement is included in the plan data (creuse). The depletions associated with this source are specified in the well station file (*.wes).
- A recharge well might serve as both a water supply and a recharge reservoir's source. This can occur when the same well right is assigned to both a standard (irrigation) well structure and a type 44 operating rule. If the administration number assigned in the operational right file is different than the administration number of the source (augmentation) well the operating rule value is used and a warning is printed to the log file. The amount pumped to each demand is limited by the well's total capacity and water right.

Row-data	Variable	Description
Control Data		
Format (a12, a	24, 12x, 4x, f12.5	, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
	1x,a12, 1x,2f8.0,	2i8)
1-1	cidvri(1)	Operational right ID
1-2	nameo(1)	Operation right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly On/Off Switch
		O Include no monthly on/off values
		12 Include 12 monthly on/off values
1-5	ioprsw(1)	Annual On/Off Switch
		0 off
		1 on
		+n Begin in year n
		-n Stop after year n
Destination Da	ta	-
1-6	ciopde	Recharge Reservoir
1-7	iopdes(2,1)	Recharge Reservoir Account
Supply Data		
1-8	ciopso(1)	Well Water Right ID
1-9	iopsou(2,1)	0 (not used)
1-10	ciopso(2)	NA (not used)
1-11	iopsou(4,1)	0
1 11	10psou(4,1)	
Type Data		
1-12	ityopr(1)	44
Plan Data		
1-13	creuse	Augmentation Plan used to track future depletion obligations, if any

```
Diversion Type
1-14 cdivtyp
                                NΤΔ
Conveyance Loss (%)
1-15
              OprLoss
Miscellaneous Limits
1-16
              OprLimit
Start Date
1-17
                                First year of operation
              IoBeq
End Date
1-18
              IoEnd
                                Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
                                Monthly switch 0=off, 1=on
               imonsw(1)
                                    +n Day first used that month
                                    -n Day last used that month
                                Note the first entry corresponds to the first
                                   month specified in the control file
Intervening Structure Data without loss
Include only if the monthly switch (dumx) = 1-10 or < -12
Format (36x, 10a12)
3 - 1
              intern(1,1)
                                For +dumx, Enter dumx intervening
                                   structure ID's
                                For -dumx, Enter abs(dumx)-12
                                   intervening structure ID's
```

4.13.45 Carrier with Loss (ityopr=45)

The type 45 operating rule provides a method to divert water to a carrier with loss. The carrier then delivers water to a diversion or reservoir. The source may be a diversion water right or, if delivering to a reservoir, a diversion or reservoir water right. The type 45 rule can include transit losses on up to 10 intervening structures. Transit losses may be true losses from the system or routed back to the system using the return flow properties of the carrier. Also it allows the user to specify a percent of the source right that is owned. This routine is similar to type 11 but includes more extensive treatment of transit losses and water right ownership. The following are noted:

- A diversion is implicitly constrained by the capacity of the destination structure (variable ciopde).
- The source water right may operate as a standard direct flow right and/or as a carrier. When the variable iopsou(2,1) = 0 the right is used as a carrier only. When the variable iopsou(2,1) = 1 the right is used as both a direct flow right and a carrier right.
- If a source right is used by both a direct flow and operating rule total diversions by both the direct flow and operating rule are not allowed to exceed the decreed capacity.
- If the destination is a diversion, the source should be a diversion water right.

- If the destination is a diversion, the demand should be specified at the location where the destination is located (i.e. not the carrier location). Therefore any transit losses between the carrier headgate and the destination will be calculated by StateMod and implicitly included in the river headgate demand.
- If the destination is a reservoir, the source should be a diversion water right or a reservoir water right.
- If the destination is a reservoir, the demand is calculated at the location where the reservoir is located (i.e. not the carrier location). Therefore any transit losses between a river headgate and the destination will be calculated by StateMod and implicitly included in the river headgate demand.
- If the destination is a reservoir and the source is a diversion right, the operating rule diversion IS NOT CHARGED against the reservoir's decree.
- If the destination is a reservoir and the source is a reservoir right, the operating rule diversion IS CHARGED against the reservoir's decree.
- If carrier losses are calculated (OprLoss>0), the return flow pattern and return locations are those assigned to the SOURCE (CARRIER) structure in the diversion station file (*.dds) (e.g. if the source is a water right tied to structure X, then the return flow pattern and locations are those provided for structure X in the diversion station file (*.dds).
- If carrier losses are calculated (OprLoss>0), the plan (creuse) can be used to route return flows to a recharge plan. The plan ID specified must be a recharge plan (type 8).
- Transit losses are reported with the carrier structure, not the destination.
- When the destination is an off-channel reservoir and the source is its water right, the administration location (ciopso2) may be used to administer the reservoir right at a diversion location located on the mainstem. This diversion location is implicitly treated as a carrier.
- When the miscellaneous limit (oprlimit) is set non to a non zero value indicating a limit is provided the source constraint (ipsou(2,k) should be set to 1 to indicate the source water right is controlled by this operating rule. Without this constraint, water may be diverted under the source right, not this operating rule.
- When the miscellaneous limit (oprlimit) is set to 2 the diversion is limited to both the destination demand (ciopde) and the demand of the reservoir structure listed in row 4. The demand of the reservoir structure listed in row 4 is obtained from the monthly target file (*.tam) or daily reservoir target file (*.tad). Note that when the demand (ciopde) is a reservoir the monthly target (along with the capacity, etc.) is implicitly used to limit the amount diverted to a reservoir. However since a reservoirs capacity may go up or down during a time step the voulue diverted may exceed the target value. When data is assigned herein the target is also used as a volumetric limit that cannot be exceeded in a given time step. This option is, typically, only used when the destination is a Recharge Reservoir.
- When the miscellaneous limit (oprlimit) is set to 3 the diversion is limited to both the destination demand (ciopde) and the demand of the diversion structure listed in row 4. The

Row-data	Variable	Description
1-1	124, 12x, 4x, f12.5 1x,a12,1x, 2f8.0, cidvri	Operational right ID
1-2 1-3	nameo(1) rtem(1)	Operational right name Administration number. Note if ciopso(1) is a diversion right, its administration number is used and rtem is ignored
1-4	dumx	Monthly and Structure Switch +n Number of intervening structures (max = 10) -n Include 12 monthly on/off values minus n intervening structures Note, when a negative value is provided, it should be -13 or less
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n=Begin in year n -n=Stop after year n
Destination Da		
1-6 1-7	ciopde iopdes(2,1)	Destination diversion or reservoir ID Destination structure account, 1 for a diversion destination +n for a reservoir destination +n Account served by this right -n Fill the first n accounts using the ratio of their ownership
Source Data		
1-8	ciopso(1)	Water right ID under which the diversion occurs. Note may be a diversion right or a reservoir right
1-9	iopsou(2,1)	<pre>0 The source water right (ciopso(1)) is left on (i.e. it can be used as a both a direct flow right and this operating rule) 1 The source water right (ciopso(1) is turned off (i.e. it can only be used by this operating rule)</pre>
1-10	ciopso(2)	NA the water right is administered at the location specified in the appropriate water right file +n the water right is administered at location n (e.g. a reservoir right is administered at the carrier or the reservoir)
1-11	iopsou(4,1)	+n Percent of the water right ciopso(1) to be used as a source.

Type Data

1-12 ityopr(1) 45

Associated Plan Data

1-13 creuse NA If the carrier loss is not

associated with a recharge source

+n Enter Recharge Plan ID if the carrier loss is a recharge source.

Note the Plan type must be recharge

(type 8).

Diversion Type

1-14 cdivtyp NA

Conveyance Loss (%)

1-15 OprLoss 0 No Transit loss

Note if dumx = 1-10 or < -12 carrier loss data cannot be

provided for intervening structures

+n Transit loss = n%

(from Source to Bypass point). Note this is a true loss, returns to the system are not calculated.

Also if dumx = 1-10 or < -12 carrier loss data that returns to the system is provided for intervening structures.

-1 No Transit loss
 Note if dumx = 1-10 or < -12
 carrier loss data that returns
 to the system is provided
 for intervening structures</pre>

Miscellaneous Limits

1-16 OprLimit 0 The source water right is not Shared with another operating rule.

1 Not currently operational.

- 2 In addition to the destination demand (ciopde) the diversion is limited to the reservoir demand of the structure listed in Row 4.
- 3 In addition to the destination demand (ciopde) the diversion is limited to the diversion demand of the structure listed in Row 4.

Start Date

1-17 IoBeg First year of operation

End Date

1-18 IoEnd Last year of operation

Monthly Data
Free Format

Include only if monthly & structure switch (dumx) = 12 or less than -12

2-1 imonsw(1) Monthly switch 0=off, 1=on

+n Day first used that month

-n Day last used that month

Note the first entry corresponds to

Intervening Structure Data with loss

Include only if the monthly & structure switch (dumx) = 1-10 or < -12

See Section 7.39 for the approach used to model an augmentation station (e.g. a structure that carries a diversion, typically with loss, then returns non-lost water to the river).

Free Format		
3b-1	intern(1,1)	Intervening structure ID
		(e.g. a Diversion ID or Stream ID)
3b-2	OprLossC(1,1)	Carrier Loss for Structure ID %
3b-3	<pre>InternT(1,1)</pre>	Intervening Structure Type
		Enter Carrier if it is a diversion
		structure located on the river
		Enter Return if it is a return
		location on the River

Repeat for +dumx values

Additional Demand constraint Include only if the switch (OprLimit) = 2 or 3

Free F	Tormat	
4-1	CX	If $Oprlimit = 2$ enter the
		diversion ID whos demand
		will limit the amount diverted.
		If $Oprlimit = 3$ enter the
		Recharge reservoir ID whos demand
		will limit the amount diverted.

4.13.46 Multiple Plan Ownership (ityopr=46)

The type 46 operating rule provides a method to distribute water from one accounting plan to multiple user's individual accounting plans at the same priority. It is typically used along with a Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25) when the transferred water is used by more than one owner. The following are noted:

- The source is an accounting plan for which the water supply is typically a water transfer associated with a Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25).
- The destination is two or more accounting plans. Each plan represents the percent ownership of the transferred water from the original accounting plan. Each should be located downstream of the source account.
- After the water is distributed via the Type 46 rule, water is typically released from the destination plans using an Admin Plan Direct Release (type 27), or an Admin Plan Exchange (type 28), or an Admin Plan Spill (type 29).
- The percent ownership is specified using variable iopdes(2,k) as a percent.

```
Row-data
               Variable
                                  Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
               1x,a12,1x, 2f8.0, 2i8)
1-1
               cidvri
                                  Operational right ID
1-2
                                  Operational right name
               nameo(1)
                                  Administration number
1-3
               rtem(1)
1 - 4
                                  Monthly and Structure Switch
               dumx
                                     +n Number of intervening structures
                                        (max = 10)
                                     -n Include -12 for monthly on/off
                                        Values minus n intervening
                                        structures
                                        Note, when a negative value is,
                                        provided, it should be -13
                                        or less)
                                  Annual On/Off Switch
               ioprsw(1)
1-5
                                     0=off
                                     1 = on
                                     +n=Begin in year n
                                     -n=Stop after year n
Destination Data
1-6
               ciopde
                                  Destination plan ID
1 - 7
               iopdes(2,1)
                                 Destination ownership %
Source Data
               ciopso(1)
1-8
                                  Accounting Plan ID
1-9
               iopsou(2,1)
                                  1
               ciopso(2)
                                 NA
1-10
1-11
               iopsou(4,1)
                                 NA
Type Data
1-12
               ityopr(1)
                                  46
Associated Plan Data
1-13
               creuse
                                  NΑ
Diversion Type
1-14
               cdivtyp
                                 Diversion
Conveyance Loss (%)
1-15
               OprLoss
                                 NA
Miscellaneous Limits
                                 +n Number of Destinations
1-16
               OprLimit
Start Date
1-17
               IoBeq
                                  First year of operation
End Date
1-18
               IoEnd
                                 Last year of operation
Repeat the Destination plan ID (ciopde) and Destination ownership %
(iopdes(2,1)) for the number of destinations (OprLimit(k))
Format (81x, a12, i8)
Monthly Data
Free Format
Include only if OprLoss = 0 and the monthly switch (dumx) = 12 or less than -12
2-1
               imonsw(1)
                                 Monthly switch 0=off, 1=on
```

+n Day first used that month
-n Day last used that month
Note the first entry corresponds to the first
month specified in the control file

4.13.47 Accounting Plan Limit (ityopr=47)

The type 47 operating rule provides a method to impose monthly and annual limits for one or more operating rules. It is typically used when the source of the water supply is a "standard" storage right. For example if water is stored in a reservoir under a "standard" storage right, releases to selected users might be limited to the monthly and annual limits imposed by this rule. This rule has generic application but was developed for the Colorado River Basin where replacement reservoir releases from Green Mountain Reservoir, Williams Fork Reservoir and Wolford Mountain Reservoir are limited to 66,000 af/yr. The Accounting Plan assigned as the source in this rule is typically tied to a Replacement Reservoir Release (type 10) or a Direct Flow Release with a Plan (type 27). The following are noted:

- The operating rule's source is an accounting plan that requires a monthly or annual limit. It can be located anywhere in the network.
- The operating rule's destination is null (i.e. the rule simply imposes monthly or annual limits on any water user tied to this plan).
- The administration number specified for this plan is not used by StateMod (i.e. it is simply a place holder).
- The annual limits are reset at the beginning of every simulation year.
- Monthly and annual data is required for this operating rule.

Row-data	Variable	Description
Control Data		
Format (al2, a		, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
	1x,a12,1x, 2f8.0,	
1-1	cidvri	Operational right ID
1-2	nameo(1)	Operational right name
1-3	rtem(1)	Administration number
1-4	dumx	Monthly and Structure Switch
		+n Number of intervening structures
		$(\max = 10)$
		-n Include -12 for monthly on/off
		Values minus n intervening
		structures
		Note, when a negative value is,
		provided, it should be -13 or less)
1-5	ioprsw(1)	Annual On/Off Switch
		0=off
		1=on
		+n=Begin in year n
		-n=Stop after year n

1-6 1-7	<pre>ciopde iopdes(2,1)</pre>	NA NA
Source Data		
1-8	ciopso(1)	Accounting Plan ID
1-9	iopsou(2,1)	1
	1 , , ,	
1-10	ciopso(2)	NA
1-11	iopsou(4,1)	NA
Type Data	<u>.</u>	47
1-12	ityopr(1)	47
Associated Pla	n Data	
1-13	creuse	NA
Diversion Type		
1-14	cdivtyp	Diversion
Conveyange Lea	(%)	
Conveyance Los	OprLoss	NA
1 13	Оргновь	NA
Miscellaneous	Limits	
1-16	OprLimit	0 Do not include Monthly or Annual
		Operational limits
		1 Monthly and Annual diversion
		limits are provided (see row 3)
Start Date		
1-17	IoBeg	First year of operation
1 1/	товед	riibe year or operacion
End Date		
1-18	IoEnd	Last year of operation
Monthly Data		
Free Format	£ 0	+h
Include only 1 2-1	<pre>imonsw(1)</pre>	the monthly switch (dumx) = 12 or less than -12 Monthly switch 0=off, 1=on
2-1	IIIOIISW(I)	+n Day first used that month
		-n Day last used that month
		Note the first entry corresponds
		to the first month specified in
		the control file
		• •
Operating Limits (Monthly and Annual) Include if OprLimit = 1		
3-1	$\begin{array}{ccc} \text{Climit} &= & 1 \\ \text{OprMax}(1, 1-12) \end{array}$	Monthly operating limit (af/mo)
3-13	OprMax(1,1-12) OprMax(1,13)	Annual operating limit (af/yr)
5 15	5F11011(1/15/	

4.13.48 Plan or Reservoir Reuse to a T&C or Augmentation Plan Direct (ityopr=48)

The type 48 operating rule provides a method to release water from a reservoir, recharge site or Reuse Plan to a T&C or Well Augmentation Plan destination (demand) via the river. The following comments are provided:

- A "ReUse Plan" **source** is a special structure type that can be used to provide water supplies that might accrue from a water right transfer or reusable imported water. See Section 7.23 for more details.
- A "Recharge Plan" **source** is a special structure type that can be used to provide water supplies that might accrue from a reservoir or canal seepage.
- A "Special Augmentation" Plan **source** is a plan type that can be used to recognize a physical water supply is not required because of an administrative decision. Examples are wells located in a designated basin or decreed as non tributary.
- A "T&C" Plan destination (**demand**) is a special structure type that can be used to store water Terms and Conditions (demands) that might be imposed on a water use as part of a water transfer.
- An "Augmentation" Plan destination (**demand**) is a plan type that can be used to store water demands imposed on a water use in order to allow a well to pump out of priority.
- A "Special Augmentation" Plan destination (**demand**) is a plan that can be used to store water demands that can be offset by an administrative decision. Examples are wells located in a designated basin or decreed as non tributary.
- If the variable OprLimit is set to 0 no adjustment to monthly or annual diversion limits will be performed. If the variable OprLimit is set to -1 the operating rule ID specified in row 4 will have its monthly and annual diversion limits adjusted by the amount released.

```
Row-data
              Variable
                               Description
Control Data
Format (a12, a24, 12x, 4x, f12.5, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
              1x,a12, 1x,2f8.0, 2i8)
              cidvri(1)
1-1
                               Operational right ID
1-2
             nameo(1)
                              Operational right name
1-3
             rtem(1)
                              Administration number
1-4
              dumx
                               Monthly Switch
                                   0 No monthly on/off values
                                   12 Number of monthly on/off
                                  Switches provided
1-5
              ioprsw(1)
                               Annual On/Off Switch
                                  0=off
                                   1=on
                                  +n Begin in year n
                                   -n Stop after year n
Destination Data
1-6
            ciopde
                               Plan ID (must be a T&C Plan (type 1)
                                   or a Well Augmentation Plan (type
                                   2) or a Special Augmentation Plan
                                   (type 10)
1-7
              iopdes(2,1)
                               0 (Not used)
Supply Data
              ciopso(1)
                               Reservoir ID or Recharge Plan ID or Reuse
1-8
                                  Plan ID or Special Augmentation
                                  Plan ID.
                                If a plan it must be a
```

```
Reservoir Recharge Plan (type 8) or
                                    CU reuse plan (type 3 or 4) or
                                    Transmtn reuse plan (type 5, 6 or
                                    Special Augmentation Plan (type
                                       10)
1-9
               iopsou(2,1)
                                 If ciopso(1) is a reservoir, enter the
                                    reservoir account
                                 If ciopso(1) is a plan, enter NA
1-10
               ciopso(2)
                                 If ciopso(1) is a Recharge Plan enter the
                                    associated Reservoir ID, otherwise enter NA
1-11
               iopsou(4,1)
Type Data
1-12
               ityopr(1)
                                 48
Associated Plan Data
1-13
             creuse
                                 NA
Diversion Type
1-14
              cdivtyp
                                 NA
Conveyance Loss (%)
                                 0
               OprLoss
Miscellaneous Limits
1-16
                                 0
              OprLimit
Start Date
1-17
                                 First year of operation
               IoBeg
End Date
1-18
               IoEnd
                                Last year of operation
Monthly Data
Free Format
Include only if the monthly switch (dumx) = 12 or less than -12
2-1
               imonsw(1)
                                 Monthly switch 0=off, 1=on
                                    +n Day first used that month
                                    -n Day last used that month
                                 Note the first entry corresponds to the first
                                    month specified in the control file
```

4.13.49 Plan or Reservoir Reuse to a T&C or Augmentation Plan by Exchange (ityopr=49)

The type 49 operating rule provides a method to release water from a reservoir, recharge site or Reuse Plan to a T&C or Well Augmentation Plan destination (demand) via an exchange. The following comments are provided:

• A "ReUse Plan" **source** is a special structure type that can be used to provide water supplies that might accrue from a water right transfer or reusable imported water. See Section 7.23 for more details.

- A "Recharge Plan" **source** is a special structure type that can be used to provide water supplies that might accrue from a reservoir or canal seepage.
- A "Special Augmentation" Plan **source** is a plan type that can be used to recognize a physical water supply is not required because of an administrative decision. Examples are wells located in a designated basin or decreed as non tributary.
- A "T&C" Plan destination (**demand**) is a special structure type that can be used to store water Terms and Conditions (demands) that might be imposed on a water use as part of a water transfer.
- A "Augmentation" Plan destination (**demand**) is a plan type that can be used to store water demands imposed on a water use in order to allow a well to pump out of priority.
- A "Special Augmentation" Plan destination (**demand**) is a plan that can be used to store water demands that can be offset by an administrative decision. Examples are wells located in a designated basin or decreed as non tributary.
- If the variable OprLimit is set to 0 no adjustment to monthly or annual diversion limits will be performed. If the variable OprLimit is set to -1 the operating rule ID specified in row 4 will have its monthly and annual diversion limits adjusted by the amount released.

Row-data	Variable	Description
Control Data Format (a12, a2		, f8.0, i8, 3(1x,a12,i8), i8, 1x,a12,
1-1 1-2 1-3 1-4	<pre>1x,a12, 1x,2f8.0, cidvri(1) nameo(1) rtem(1) dumx</pre>	Operational right ID Operational right name Administration number Monthly Switch O No monthly on/off values 12 Number of monthly on/off switches provided
1-5	ioprsw(1)	Annual On/Off Switch 0=off 1=on +n Begin in year n -n Stop after year n
Destination Dat	ca .	
1-6	ciopde	Plan ID (must be a T&C Plan (type 1) or Augmentation Plan (type 2) or Special Augmentation Plan (type 10)
1-7	iopdes(2,1)	0 (Not used)
Supply Data 1-8	ciopso(1)	Reservoir ID or Recharge Plan ID or Reuse Plan ID or Special Augmentation Plan ID If a plan it must be Seepage Plan (type 8) or CU reuse plan (type 3 or 4) or a Transmtn reuse plan (type 5, 6 or 7) or Special Augmentation Plan (type 10)
1-9	iopsou(2,1)	If ciopso(1) is a reservoir, enter the

reservoir account If ciopso(1) is a plan, enter NA 1-10 ciopso(2) If ciopso(1) is a Recharge Plan enter the associated Reservoir ID, otherwise enter NA 1-11 iopsou(4,1)Type Data ityopr(1) 1-12 49 Associated Plan Data 1-13 creuse NA Diversion Type 1-14 NA cdivtyp Conveyance Loss (%) 0 1-15 OprLoss Miscellaneous Limits 1-16 0 OprLimit Start Date 1-17 IoBeg First year of operation End Date 1-18 IoEnd Last year of operation Monthly Data Free Format Include only if the monthly switch (dumx) = 12 or less than -12 imonsw(1) Monthly switch 0=off, 1=on +n Day first used that month -n Day last used that month Note the first entry corresponds to the first month specified in the control file

4.14 Precipitation File - Monthly (*.prm) or Annual (*.pra)

The evaporation file contains total monthly (12 values per simulation year) or annual (12 average values for every year) evaporation data. The type of data provided is controlled by the variable *moneva* from the control file. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		('FT' or 'IN')
1-6	cyr	Year type

```
'CYR'= calendar year (1-12)
'WYR'= water year (10-9)
'IYR'= irrigation year (11-12)

Time Series Data

2 Format (i4, 1x, a12, 12f8.2)
2-1 ipyr Year
2-2 cpreid Precipitation station ID
2-3 preprt(1-12,1) Precipitation (in) for months 1-12
```

Repeat for the number of stations numpre

Repeat for each year of the simulation

4.15 Evaporation File - Monthly (*.evm) or Annual (*.eva)

The evaporation file contains total monthly (12 values per simulation year) or annual (12 average values for every year) evaporation data. The type of data provided is controlled by the variable *moneva* from the control file. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description	
Control Data			
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)	
1-1	ibm	Beginning month of data	
		Enter 1 for January, 10 for October, etc.	
1-2	iby	Beginning year of data	
	1	For monthly data, enter the year (e.g. 1975)	
		For annual data, enter 0	
1-3	iem	Ending month of data	
1-4	iey	Ending year of data	
1-5	cunit	Units of data	
		('FT' or 'IN')	
1-6	cyr	Year type	
		'CYR'= calendar year (1-12)	
		'WYR'= water year (10-9)	
		'IYR'= irrigation year (11-12)	
Time Series Data			
2		Format (i4, 1x, a12, 12f8.2)	
2-1	ieyr	Year	
2-2	cevaid	Evaporation station ID	
3-3	evaprt(1-12,1)	Evaporation for months 1-12	
Repeat for the	number ofstations	numeva	

4.16 Stream Flow File - Monthly (*.rim or *.xbm)

Repeat for each year of the simulation

The streamflow file may contain total baseflows or gains for each month of the simulation period. The control variable *iopflo* identifies which is expected; total baseflow (1) or gains (2). When this file is generated outside Statemod or is generated by Statemod and saved for historic purposes, it is commonly named *.rim. When this file is generated by the Statemod baseflow module it is typically named *.xbm. The user is recommended to rename a StateMod generated baseflow file named *.xbm to *.rim to ensure the preservation of a historic baseflow file and a continuous flow of results from the baseflow module to the simulation module. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description	
Control Data			
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)	
1-1	ibm	Beginning month of data (e.g. 1=Jan)	
1-2	iby	Beginning year of data (e.g. 1975)	
1-3	iem	Ending month of data	
1-4	iey	Ending year of data	
1-5	cunit	Units of data	
		(' ACFT' or 'CFS')	
1-6	cyr	Year type	
		'CYR'= calendar year (1-12)	
		'WYR'= water year (10-9)	
		'IYR'= irrigation year (11-12)	
Time Series Data			
2		Format (i4, 1x, a12, 12f8.0)	
2-1	iryr	Year	
2-2	cistat	Streamflow station ID	
2-3	runoff(1-12,1)	Streamflow or gain (AF) for months 1-12	

Repeat for the number of stations numrun

Repeat for each year of the simulation

4.17 Direct Flow Demand File - Monthly (*.ddm)

The monthly direct flow demand file contains demands for direct diversions for each month of the simulation period. Monthly data is required when the diversion station variable *idvcom* is set to 1 (monthly total demand) or 3 (monthly irrigation water requirement). Data should be entered in the order of the structure file (*.dds). See Section 7.10 for a discussion of various approaches available for specifying demand data; demands may be specified as a total at the headgate or as a consumptive irrigation water requirement at the farm. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Variable	Description
	Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
ibm	Beginning month of data (e.g. 1=Jan)
iby	Beginning year of data (e.g. 1975)
iem	Ending month of data
iey	Ending year of data
	ibm iby iem

```
1 - 5
               cunit
                                 Units of data
                                    (' ACFT' or 'CFS')
1-6
               cyr
                                 Year type
                                    'CYR'= calendar year (1-12)
                                    'WYR'= water year (10-9)
                                    'IYR'= irrigation year (11-12)
Time Series Data
                                 Format (i4, 1x, a12, 12f8.0)
2-1
               idyr
2-2
               cistat
                                 Demand station ID
2-3
               diverm(1-12,1) Demands (AF) for months 1-12
Repeat for the number of stations numdiv
```

Repeat for each year of the simulation

4.18 Direct Flow Demand File - Annual (*.dda)

The annual direct flow demand file contains twelve constant demands which are repeated for each year of the study period. Annual data is required when the diversion station variable *idvcom* is set to 2 (annual total demand) or 4 (annual irrigation water requirement). Data should be entered in the order of the structure file (*.dds). An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description	
Control Data			
1		Format $(i5,1x,i4,5x,i5,1x,i4,a5,a5)$	
1-1	ibm	Beginning month of data (e.g. 1=Jan)	
1-2	iby	Beginning year of data (e.g. 1975)	
1-3	iem	Ending month of data	
1-4	iey	Ending year of data	
1-5	cunit	Units of data	
		(' ACFT' or 'CFS')	
1-6	cyr	Year type 'CYR'= calendar year (1-12) 'WYR'= water year (10-9) 'IYR'= irrigation year (11-12)	
Time Series Data			
2 2-1 2-2	cistat diverm(1-12)	Format (5x, a12, 12f8.0) Demand station ID Demands (AF) for months 1-12	

Repeat for the number of stations

4.19 Direct Flow Demand Overwrite File - Monthly (*.ddo)

The direct flow demand overwrite file contains monthly demands for each year of the study period for selected structures. This file allows a what if scenario to be evaluated quickly without revising the

direct flow demand file. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Format (i4, 1x 1-1 1-2 1-3	a, a12, 12f8.0) idyr cistat diverm(1-12)	Year Demand station ID Demands (AF) for months 1-12
Repeat for the	number of station	s to be overridden
Repeat for eac	h vear of the simu	lation

4.20 Instream Flow Demand - Monthly (*.ifm)

The monthly instream flow demand file contains instream flow demands for each month of the simulation period. Data should be entered in the order of the structure file (*.ifs). To allow StateMod to be backward compatible with old data sets, this file is required only when monthly data is required (e.g. when the instream flow station (*.ifs) file variable *iifcom* is set to 1).

Note negative monthly demands are estimated to be a forecast which is currently only used by the Rio Grande compact simulations (see operation rule types 17 and 18). Also for use by the Rio Grande compact the variable *rspilx* may be used to specify the month when a spill occurred and the prorated portion of the spill attributed to Colorado.

Data should be entered by year with stations in any order. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or ' CFS')
1-6	cyr	Year type
		' CYR'= calendar year (1-12)
		' WYR'= water year (10-9)
		' IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, 1x, a12, 12f8.0, 10x, f8.2)
2-1	idyr	Year
2-2	cistat	Demand station ID
2-3	diverm(1-12,1)	Demands (AF) for months 1-12
		A negative number is treated as a forecast

Repeat for the number of instream flow stations

(1) Note rspilx is only used by the Rio Grande operating rules (types 17 and 18).

4.21 Instream Flow Demand - Annual (*.ifa)

The instream flow demand file contains 12 monthly instream flow demands for use each year of the simulation. Data should be entered in the order of the structure file (*.ifs). An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description	
Control Data			
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)	
1-1	ibm	Beginning month of data (e.g. 1=Jan)	
1-2	iby	Beginning year of data (e.g. 0 for annual data)	
1-3	iem	Ending month of data	
1-4	iey	Ending year of data	
1-5	cunit	Units of data	
		(' ACFT' or 'CFS')	
1-6	cyr	Year type	
		'CYR'= calendar year (1-12)	
		'WYR'= water year (10-9)	
		'IYR'= irrigation year (11-12)	
Time Series Data			
2		Format (5x, a12, 12f8.0)	
2-1	cistat	Instream Flow station ID	
2-2	flowr(1-12,1)	Instream flow requirement for months 1-12	

Repeat for the number of stations numifr

Repeat for each year of the simulation

4.22 Well Demand File - Monthly (*.wem)

The monthly well demand file contains demands for well structures for each month of the simulation period. Data may be entered in any order (i.e. its order is independent of the structure file). Monthly data is required when the diversion station variable *idvcom* is set to 1 (monthly total demand) or 3 (monthly irrigation water requirement). Note when a well structure is tied to a diversion the total demand is provided in the direct diversion station file and no monthly well demand data is required. This approach should have the control file (.ctl) variable *icondem* set to 6. See Section 7.10 for a discussion of various approaches available for specifying demand data; demands may be specified as a total at the headgate or as a consumptive irrigation water requirement at the farm. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)

```
Beginning year of data (e.g. 1975)
1-2
               iby
                                 Ending month of data
1-3
               iem
1-4
                                 Ending year of data
               iey
                                 Units of data
1-5
               cunit
                                    (' ACFT' or 'CFS')
1-6
                                 Year type
               cyr
                                    'CYR'= calendar year (1-12)
                                     'WYR'= water year (10-9)
                                    'IYR'= irrigation year (11-12)
Time Series Data
                                 Format (i4, 1x, a12, 12f8.0)
2-1
               idyr
2-2
               cistatw
                                 Demand station ID
2-3
               divermw(1-12,1) Demands (AF) for months 1-12
```

Repeat for the number of stations numdivw

Repeat for each year of the simulation

4.23 Delay (Return Flow) Table - Monthly (*.dly)

The monthly delay table file contains coefficients to lag return flows. If the variable *interv* of the control file is a positive value, then interv values are expected for every pattern. If variable *interv* of the control file is a -1, then the number of values are specified for each pattern. Note a daily model (control file variable *iday=1*) requires a variable number of return values be provided (variable *interv* must be negative). An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (free)
1-1	idly	Delay table ID
1-2	ndly(1)	Number of entries in delay table idly
		Include only if variable interv of the
		control file is equal to -1

4.24 R eservoir Target File - Monthly (*.tar)

The reservoir target file contains monthly targets for a reservoir's minimum and maximum contents. Data should be entered in the order of the structure (*.res) file. Positive maximum contents are end of month targets. Negative values are forecasted inflows. When forecasted inflows are provided the monthly target is estimated as follows:

Target (im) = Current Storage (im) - (Current Storage (im) - Forecast (im) - End Target) / (Months Remaining +1);

Where:

Target (im) is the reservoir target.

Current Storage (im) is the total reservoir storage in month im.

Forecast (im) is the total inflow for the remaining forecast period. Note for a linear forecast this term is often set to -1.

End Target is the target at the end of the forecast period.

Months remaining is the total of all months remaining to be forecasted in a year.

For example, if the forecast data for April - July = 1,000, -1 -1 700 and the Current Storage in April = 1000. Then the Target in May is:

1000 - (1000 - 1 - 700)/3 = 900. An example reservoir target file is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format $(i5,1x,i4,5x,i5,1x,i4,a5,a5)$
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or 'CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)

```
Time Series Data
                               Format (i4, 1x, a12, 12f8.0, 10x,
                                        f8.2)
2-1
                               Year
              iyr
2-2
                               Reservoir station ID
              cistat
2-3
              conmin(1-12,1)
                               Minimum reservoir targets (AF) for months
                                  1-12
Time Series Data
3-1
                               Year
     iyr
3-2
             xista2
                              Reservoir station ID
3-3
             targetx(1-12,1) Positive values equal the maximum reservoir
                                  targets (AF) by month. Negative values equal
                                  the forecasted inflow for future months
```

Repeat for the number of stations numres

Repeat for each year of the simulation

4.25 Historic Reservoir Content File - Monthly (*.eom)

The historic reservoir content file (*.eom) contains end of month reservoir content data for each year of the study period. Data should be entered in the order of the structure (*.res) file. This data is only used by the Base Flow module to simulate reservoir storage and evaporation impacts on gaged stream flows. It is used by the report module to compare simulated results to gaged observations. An example is provided in Appendix A. This file is read by subroutine VIRGEN.

Row-data	Variable	Description
Control Data		December (45 1-2 44 5-2 45 1-2 44 -5 -5)
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or 'CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, 1x, a12, 12f8.0)
2-1	iryr	Year
2-2	-	Reservoir station ID
2-3		End of Month reservoir contents
2 3	100001(1 12,1)	HIG OF MORELL LEBELVOIL CONCERNS

Repeat for the number of stations numres

Repeat for each year of the simulation

4.26 Base Flow Data (*.rib)

Base flow data is used by the baseflow module to estimate base flows at river nodes that do not have hisoric records using the following formula:

The first term ((FlowB(1)*coefB(1) + FlowB(2)*coefB(2) +) typically represents upstream gaged flows. The second term (pf * (FlowG(1)*coefG(1) + FlowG(2)*coefG(2) +) typically represents the gain between gages. An example is provided in Appendix A. This file is read by subroutine VIRGEN.

```
Row-data
              Variable
                                Description
Base Station Data
                                Format (a12, 8x, i8, 10(f8.3, 1x, a12)
1
              FlowN
                               Intermediate river node ID
1-1
1-2
             mbase
                              Number of base stations to follow
                              Base flow coefficient
1-3
              coefB(1)
1 - 4
              FlowB(1)
                               Base station ID
Repeat for the number of gaged flows (mbase)
Proration Data
                                Format (12x, f8.2, i8, 10(f8.3, 1x,
                                        a12)
2-1
                            Proration factor for gain term
              рf
              nbase
2-2
                               Number of gain stations to follow
                              Base flow coefficient
2-3
              coefG(1)
              FlowG(1)
                               Base station ID
Repeat for the number of gain stations flows (nbase)
Repeat for the number of intermediate nodes where base flows are to be estimated
```

4.27 Historic Streamflow File - Monthly (*.rih)

The monthly historic streamflow file is used by the baseflow module to estimate Base flows at gaged and ungaged locations. The monthly historic streamflow file is also used by the report module to compare simulated results to gaged observations. Note, the base flow module may be executed with missing streamflow data (specified by -999) to allow mans impact to be removed prior to filling missing data gaps using a technique such as regression. An example is provided in Appendix A. This file is read by subroutine VIRGEN.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or 'CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, 1x, a12, 12f8.0)
2-1	iryr	Year
2-2	cistat	Demand station ID
2-3	runoff(1-12,1)	Gaged streamflow for months 1-12
		Enter -999 to indicate missing data

Repeat for the number of gages provided in the river station file (Section 4.4)

Repeat for each year of the simulation

4.28 Historic Diversion File - Monthly (*.ddh)

The monthly historic diversion file is used by the baseflow module to estimate Base flows at gaged and ungaged locations. It is used by the report module to compare simulated results to gaged observations. An example is provided in Appendix A. This file is read by subroutine VIRGEN.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or 'CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ata	
2		Format (i4, 1x, a12, 12f8.0)
2-1	idyr	Year
2-2	cistat	Demand station ID
2-3	diverm(1-12,1)	Recorded diversions for months 1-12

Repeat for the number of demand structures provided in the structure file (Section 4.5)

Repeat for each year of the simulation

4.29 Historic Well Pumping File - Monthly (*.weh)

The monthly historic well pumping file is used by the baseflow module to estimate Base flows at gaged and ungaged locations. It is used by the report module to compare simulated results to gaged observations. An example is provided in Appendix A. This file is read by subroutine VIRGEN.

Row-data	Variable	Description		
Control Data				
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)		
1-1	ibm	Beginning month of data (e.g. 1=Jan)		
1-2	iby	Beginning year of data (e.g. 1975)		
1-3	iem	Ending month of data		
1-4	iey	Ending year of data		
1-5	cunit	Units of data		
		(' ACFT' or 'CFS')		
1-6	cyr	Year type		
		'CYR'= calendar year (1-12)		
		'WYR'= water year (10-9)		
		'IYR'= irrigation year (11-12)		
Time Series Da	ıta			
2		Format (i4, 1x, a12, 12f8.0)		
2-1	idyr	Year		
2-2	cistatw	Well station ID		
2-3	divermw(1-12,1)	Well pumping for months 1-12		
Repeat for the	number of wells p	provided in the structure file (Section 4.9)		
Repeat for each year of the simulation				

4.30 San Juan Recovery Plan (SJRTP) Sedimentation - Annual (*.sjr)

The annual SJRIP sedimentation plan file includes perturbation data for use by the SJRIP operating rule (Type 20). It is only used when the control file (*.ctl) variable is jrip >= 1. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data (Not used) (' ACFT' or 'CFS')
1-6	cyr	Year type 'CYR'= calendar year (1-12) 'WYR'= water year (10-9)
		'IYR'= irrigation year (11-10)

Time Seri	es Data	
2		Free Format
2-1	idly	year
2-2	ndly(1)	0 No sediment perturbation
		1 Yes sediment perturbation

4.31 Irrigation Parameter Yearly Data File - Annual (*.ipy)

The annual CU time series file contains information required to perform calculations using a variable efficiency approach. It is only used when the control file (*.ctl) variable itsfile >= 1. It is formatted exactly the same as the annual time series file used by the consumptive use model (StateCU). The current standard is to provide four water supply irrigation method combinations (Surface Supply Flood Irrigation, Surface Supply Sprinkler Irrigation, Ground Supply Flood Irrigation and Ground Supply Sprinkler Irrigation). For a description of the old (*.ipy file) format, which StateMod still supports, see the chapter titled 10.0 Discontinued but Supported File Formats.

Because multiple input file formats may be provided it is recommended the following string be provided near the top of the file before any data: # FileFormatVersion 2. If the format version indicator is not provided StateMod will try to read the file and try to determine the appropriate file type

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('NA')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-10)
Time Series 1	Data	
2		Format (i4,1x,a12,3f6.0,2f8.0,f12.0,f3.0,f8.0)
2-1	idly	Year
2-2	ID	Structure ID
2-3	ceff	Conveyance efficiency (decimal)
2-4	feff	Maximum flood efficiency (decimal)
2-5	seff	Maximum sprinkler efficiency (decimal)
2-6	AcreSF	Acres with a Surface Water Supply and Flood Irrigation
2-7	AreaSS	Acres with a Surface Water Supply and Sprinkler Irrigation
2-6	AcreGF	Acres with a Ground Water Supply and Flood Irrigation
2-7	AreaG	Acres with a Ground Water Supply and Flood Irrigation
2-8	mprate	Maximum pumping rate (af/mo)
2-9	gwmode	Ground water use mode (see Section 7.10) 1 = maximum supply mode
2-10	areax	<pre>2 = mutual ditch supply mode Total Irrigated acreage for year idly (ac)</pre>
∠ ⊥∪	areax	iotal illigated acreage for year fury (ac)

4.32 Consumptive Water Requirement File - Monthly (*.ddc)

The monthly consumptive water requirement (*.ddc) file contains the consumptive requirement for direct diversion and well only structures for each month of the simulation period. For an irrigation structure the consumptive water requirement is commonly called the Irrigation Water Requirement (IWR). Regardless if the structure is used for irrigation or municipal or industrial use the consumptive water requirement is the amount of water that would be consumed by that structure (e.g. no losses or inefficiencies are included). It is only used when the control file (*.ctl) variable efficiency variable (ieffmax) = 1. Data should be provided for every diversion and well only structure. If data is inadvertently provided for a Well structures that is also served by both Surface water the data provided under the Diversion ID is used. When data is not provided (e.g. for a municipal or non consumptive demand) the CU requirement is set to the structures demand / average efficiency provided in the diversion station (*.dds) file or well station (*.wes) file, respectively. Data can be entered in any order. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-10)
Time Series Da	ta	
2		Format (i4, 1x, a12, 12f8.0)
2-1	idyr	Year
2-2	cistat	Demand station ID
2-3	diverm(1-12,1)	CU requirement(AF) for months 1-12
Repeat for the number of diversion and Well only stations		

Repeat for each year of the simulation

4.33 Soil Moisture (StateCU Structure) File (*.str)

The soil moisture file is the same as the current StateCU structure file. Note that StateMod versions 10.30 and greater use this in order to be consistent with recent StateCU enhancements. For a description of the old (*.str file) format, which StateMod still supports, see the chapter titled 10.0 **Discontinued but Supported File Formats.**

The StateCU structure file (*.str) contains consumptive use parameters by structure that do not change with time. Only the soil moisture data (*.awc) is used by StateMod in order to perform soil moisture

accounting. Other consumptive use information contained in the file (e.g. latitude, location, associated climate stations, etc.) are currently not used.

The soil moisture reservoir available to each structure is the parameter *awc* multiplied by the structures area, multiplied by average depth for every structure in the system specified in the control file (*.ctl) by variable *soild* (feet). It is formatted exactly the same as the soil parameter file used by the consumptive use model (StateCU), therefore it often contains data before or beyond the variable *awc*that is not used by StateMod. Data can be entered in any order. An example is provided in Appendix A. This file is read by subroutine MDAINP during the first year and month of the simulation only.

Because multiple input file formats may be provided it is recommended the following string be provided near the top of the file before any data: # FileFormatVersion 2. If the format version indicator is not provided StateMod will try to read the file and determine the appropriate file type.

Format(a12, 71x, i4, f8.0)

Row-data	Variable	Description	
Control Data			
1		Format (i4, 1x, a12, 12f8.0)	
1-1	cistat	Station ID	
1-2	dum	Latitude	
1-3	dum	Elevation	
1-4	dum	Region1 (e.g. County)	
1-5	dum	Region2 (e.g. Hydrologic unit)	
1-6	dum	Structure Name	
1-6	ncli	# of climate stations	
1-7	awc	Available water content (fraction)	
Format(a12,f6.2,f9.2)			
2-1	dum	Climate ID	
2-2	dum	Temperature station weight	
2-3	dum	Precipitation station weight	

Repeat for the number of stations ncli

4.34 GIS File (*.gis)

The *.gis file contains reference to files which contain GIS data related to structures and maps used by the Graphic User Interface. An example is provided in Appendix A.

Type	Variable	Description
Control Data	type: file name (1	
streamflow: diversion:	filena	streamflow gage file name diversion location file name
reservoirs: precipitation:	filena	reservoir location file precipitation station location file name
basin: rivers:	filena filena	basin file name hydrology file name

4.35 Output R equest (*.out)

The output request file contains data which will limit the extent of selected output file requests. Note, the first two rows of data (variables ftype and parameter) are only used by the special printout request (*.xsp). Rows 3 through n contain reference data for the structure(s) to be printed and are used by the standard printout reports (*.xdd, *.xre, *.xir, *.xwe and *.xop). To eliminate the need to type an output request file, one is automatically generated by the check option (-check) for every type of structure in the system. Note the default name for that file is *.xou. It is commonly renamed to *.out and referenced as such in the response file to avoid it being overwritten whenever a new check run is made. Also the structures to be printed by that file default to print nodes where inflow occurs (FLO) and not print other types of nodes (DIV, RES, ISF, WEL, OTH). An example is provided in Appendix A.

Row-data	Variable	Description
Control Data 1 1-1	ftype	Format (a72) Output type switch Diversion Instream Flow StreamGage Reservoir Well
Parameter Data		
2 2-1	Parameter	Format (a72) For ftype = Diversion, Instream Flow or StreamGage Total_Demand CU_Demand From_River_By_Priority From_River_By_Storage From_River_By_Exchange From_Well From_Carrier_By_Priority From_Carrier_By_Storage Carried_Water From_Soil Total_Supply Total_Short CU_Short Consumptive_Use To_Soil Total_Return Upstream_Inflow Reach_Gain Return_Flow Well_Depletion To_From_GW_Storage River_Inflow River_Divert River_By_Well River_Outflow Available_Flow
		For ftype = Reservoir Initial_Storage

```
River Priority
                  River_Storage
                  River_Exchange
                  Carrier_Priority
                   Carrier_Storage
                   Total_Supply
                   Storage_Use
                   Storage_Exchange
                   Carrier_Use
                  Total_Release
                  Evap
                  Seep Spill
                  Sim EOM
                  Target Limit
                  Fill Limit
                  River_Inflow
                  Total_Release
                   Total_Supply
                  River_By_Well
                  River_Outflow
                   For ftype = Well
                  Demand
                   FromWell
                   Short
                  ConsumptiveWaterUse
                  Return
                  Loss
                  FromRiver
                  FromGWStor
                  FromSalvage
                  Format (a12,1x,a24,1x,a3,1x,i5)
idreq
                  Requested ID
                      Enter ALL, All, all or 0 to get all
                     Enter -999 to indicate last
                         ID requested)
rec24
                  Requested structure name
idtypx
                  Requested structure type
ix
                  Print switch
                      0 do not print
                      1 print
```

Repeat for each structure

3 - 1

3-2

3-3

3 - 4

4.36 Streamflow File - Daily (*.rid)

The daily streamflow file contains baseflows or a daily pattern for each day of the simulation period. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the daily river station variable *crunidy* is set to 3 the river station variable *crunid* is used to indicate daily data controls and any monthly data provided in the monthly streamflow file (*.rim or *.xbm) is ignored. When the river station variable *crunidy* is set to any ID including its own StateMod uses daily data as a pattern to estimate daily data from monthly data as follows:

```
Qd = Dp * Qm / Dm

Where:
Qd = daily estimated flow
Dp = daily flow (pattern)
Qm = monthly flow from the monthly flow file (*.rim)
```

Dm = monthly sum of daily flow (pattern)

This file is only required if the model is operated in a daily mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Description
Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
Beginning month of data (e.g. 1=Jan)
Beginning year of data (e.g. 1975)
Ending month of data
Ending year of data
Units of data ('CFS')
Year type 'CYR'= calendar year (1-12) 'WYR'= water year (10-9) 'IYR'= irrigation year (11-12)
Format (i4, i4, 1x, a12, 31f8.0, f8.0)
Year
Daily station ID
Streamflow (cfs) or pattern (unitless) for days 1-31, etc

Repeat for the number of stream gage stations

Repeat for each year of the simulation

4.37 Direct Flow Demand File - Daily (*.ddd)

The daily direct flow demand file contains direct diversion demands or a daily pattern for each day of the simulation period. Data should be entered in the order of the structure file (*.dds). To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the diversion station variable *cdividy* is set to 3 the diversion station variable *cdivid* is used to indicate daily data controls and any monthly data provided in the monthly direct flow demand file (*.ddm) is ignored. When the diversion station variable *cdividy* is set to any ID including its own (*cdivid*) StateMod uses daily data as a pattern to estimate daily data from monthly data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ıta	
2		Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1	iy	Year
2-2	im	Month
2-2	cdividx	Daily station ID
2-3	diverdx(1-31)	Demand (cfs) or pattern (unitless) for days 1-31, etc.

Repeat for the number of stations numdiv

Repeat for each year of the simulation

4.38 Instream Flow Demand File - Daily (*.ifd)

The daily instream flow demand file contains instream flow demands or a daily pattern for each day of the simulation period. Data should be entered in the order of the structure file (*.ifs). To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the instream flow station variable *cifridy* is set to 3 the instream flow station variable *cifrid* is used to indicate daily data controls and any monthly data provided in the annual instream flow demand file (*.ifa) is ignored. When the diversion station variable *cifridy* is set to any ID including its own (*cifrid*) StateMod uses daily data as a pattern to estimate daily data from monthly data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
oncioi baca		D / - 1
1		Format $(i5,1x,i4,5x,i5,1x,i4,a5,a5)$
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or 'CFS')
1-6	cyr	Year type
	_	'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		2 , , ,
		'IYR'= irrigation year (11-12)

Repeat for the number of instream flows stations

Repeat for each year of the simulation

4.39 Well Demand File - Daily (*.wed)

The daily well demand file contains well demands or a daily pattern for each day of the simulation period. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the well station variable *cdividwy* is set to 3 the well station variable *cdividw* is used to indicate daily data controls and any monthly data provided in the monthly direct flow demand file (*.wem) is ignored. When the diversion station variable *cdividwy* is set to any ID including its own (*cdividw*) StateMod uses daily data as a pattern to estimate daily data from monthly data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily mode with wells on (control file variable *iwell*=1). Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1-1	ibm	Format (i5,1x,i4,5x,i5,1x,i4,a5,a5) Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('CFS')
1-6	cyr	Year type 'CYR'= calendar year (1-12) 'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1	iy	Year
2-2	im	Month
2-2 2-3	cdividxw diverdxw(1-31)	Daily station ID Demand (cfs) or pattern (unitless) for days 1-31, etc.

Repeat for the number of wells

Repeat for each year of the simulation

4.40 R eservoir Target Content File - Daily (*.tad)

The daily reservoir target file contains reservoir targets or a daily pattern for each day of the simulation period. Data should be entered in the order of the structure (*.res) file. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the reservoir station variable *cresidy* is set to 3 the reservoir station variable *cresid* is used to indicate daily data controls and any monthly data provided in the monthly direct flow demand file (*.tar) is ignored. When the reservoir station variable *cresidy* is set to any ID including its own (*cresid*) StateMod uses daily data as a pattern to estimate daily data from monthly data using the same approach described under daily streamflow data (Section 4.36).

This file only required if the model is operated in a daily mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data (' ACFT')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1	iy	Year
2-2	im	Month
2-2	cresidx	Daily station ID
2-3	targex2(1-31)	Maximum reservoir target (acft) or pattern for days 1-31

Repeat for the number of stations numres

Repeat for each year of the simulation

4.41 Irrigation Water Requirement File - Daily (*.ddx)

The daily consumptive water requirement (*.ddx) file contains the CU requirement for direct diversion and well only structures for each day of the simulation period. It is only used when the control file (*.ctl) variable efficiency control (*ieffmax*) = 1. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the diversion station variable *cdividy* is set to the diversion station variable *cdivid* daily data controls and any monthly data provided in the monthly consumptive water requirement file (*.ddc) is ignored. When the river station variable *cdividy* is set to any ID other than its own direct flow station variable *cdivid*.

StateMod uses daily data as a pattern to estimate daily data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily mode with variable efficiency (control file itsfile=1 or 10). Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data
		(' ACFT' or 'CFS')
1-6	cyr	Year type
	-	'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ata	
2		Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1	iy	Year
2-2	im	Month
2-2	cresidx	Daily station ID
2-3	targex2(1-31)	Consumptive Water Requirement(cfs) or pattern for days 1-31

Repeat for the number of stations numdiv

Repeat for each year of the simulation

4.42 Delay Table File - Daily (*.dld)

The daily delay table file contains coefficients to lag return flows. If the variable *interv* of the control file is a positive value, then interv values are expected for every pattern and data is expects to be provided as a percent. If the variable *interv* of the control file is a -1, then the number of values are specified for each pattern and data is expected to be provided as a percent. If the variable *interv* of the control file is a -100, then the number of values are specified for each pattern and data is expected to be provided as a decimal. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1		Format (a8, i4, (12f8.2))
1-1	idly	Delay table ID
1-2	ndly(1)	Number of entries in delay table idly Include only if variable interv of the control file is equal to -1
		or -100
1-3	<pre>dlyratd(j,1)</pre>	Delay factor for time period j

```
Include as a percent if variable interv of
   the control file is positive or equal to -1
Include as a decimal if variable interv
   of the control file is equal to
   -100
```

Include ndly or interv delay entries

Repeat for the number of delay tables used in the diversion station file

4.43 Historic Streamflow File - Daily (*.riy)

The daily historic streamflow file contains streamflows or a daily pattern for each day of the simulation period. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the river station variable *crunidy* is set to 3 the river station variable *crunidy* is used to indicate daily data controls and any monthly data provided in the monthly historic streamflow file (*.rih) is ignored. When the river station variable *crunidy* is set to any ID including its own (*crunid*) StateMod uses daily data as a pattern to estimate daily data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily baseflow mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, i4, 1x, a12, 31f8.0, f8.0)
2-1	idyr	Year
2-2	cistat	Daily station ID
2-3	virindx(1-31)	Historic Streamflow (cfs) or pattern (unitless) for days 1-31, etc.

Repeat for the number of stream gage stations

Repeat for each year of the simulation

4.44 Historic Diversion File - Daily (*.ddy)

The daily historic diversion file contains diversions or a daily pattern for each day of the simulation period. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the diversion station variable *cdividy* is set to 3 the diversion station variable *cdivid* is used to indicate daily data controls and any monthly data provided in the monthly direct flow demand file (*.ddm) is ignored. When the diversion station variable *cdividy* is set to any ID including its own (*cdivid*) StateMod uses daily data as a pattern to estimate daily data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily baseflow mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('CFS')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Time Series Da	ta	
2		Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1	iy	Year
2-2	im	Month
2-2	cdividx	Daily station ID
2-3	diverdx(1-31)	Historic diversion (cfs) or pattern
		(unitless) for days 1-31, etc.
Repeat for the	number of station	s numdiv

4.45 Historic Well Pumping File - Daily (*.wey)

Repeat for each year of the simulation

The daily historic well pumping file contains well pumping or a daily pattern for each day of the simulation period. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the well station variable *cdividyw* is set to 3 the diversion station variable *cdividw* is used to indicate daily data controls and any monthly data provided in the monthly direct flow demand file (*.wem) is ignored. When the diversion station variable *cdividwy* is set to any ID including its own (*cdividw*) StateMod uses daily data as a pattern to estimate daily data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily baseflow mode with wells. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format $(i5,1x,i4,5x,i5,1x,i4,a5,a5)$
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('CFS')
1-6	cyr	Year type
	_	'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
mina danian pa	E -	
Time Series Da	.ta	B /- /- /- /10 2150 0 50 0\
2		Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1	iy	Year
2-2	im	Month
2-2	cdividxw	Daily station ID
2-3	diverdxw(1-31)	
		(unitless) for days 1-31, etc.
Repeat for the	number of wells	
Repeat for each year of the simulation		

4.46 Historic Reservoir Content File - Daily (*.eoy)

The daily historic reservoir content file contains reservoir contents at the end of the day or a daily pattern for each day of the simulation period. Data should be entered in the order of the structure (*.res) file. To simplify the preparation of daily data, StateMod allows the user to provide daily data or a pattern to be used with monthly data. When the reservoir station variable *cresidy* is set to 3 the reservoir station variable *cresid* is used to indicate daily data controls and any monthly data provided in the monthly direct flow demand file (*.tar) is ignored. When the reservoir station variable *cresidy* is set to any ID including its own (*cresid*) StateMod uses the daily data as a pattern to estimate daily data using the same approach described under daily streamflow data (Section 4.36).

This file is only required if the model is operated in a daily baseflow mode. Data can be entered with stations entered in any order. An example is provided in Appendix B. This file is read by subroutine DAYDATA.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('AF')

```
1-6
                                 Year type
               cyr
                                    'CYR'= calendar year (1-12)
                                    'WYR'= water year (10-9)
                                    'IYR'= irrigation year (11-12)
Time Series Data
                                 Format (i4, i4, 1x, a12, 31f8.2, f8.0)
2-1
               iу
                                 Year
2-2
               im
                                 Month
2-2
               cresidx
                                 Daily station ID
2-3
                               Daily reservoir target (acft) or pattern for days 1-31
               targex2(1-31)
```

Repeat for the number of stations numres

Repeat for each year of the simulation

4.47 Downstream Call File (*.cal)

The downstream call file is used in conjunction with a downstream call operating rule type 23. See Section 4.13.23 for a description of this operating rule. This file is typically only used for a daily application. Therefore, when StateMod is executed in a monthly mode the call specified on day 1 is used to represent the monthly call. Note that this file is currently formatted to match an example file provided by the user that requested its implementation. Therefore some data contained in that file (e.g. calling structure, priority date) is not used by StateMod. An example is provided in Appendix B. For a monthly analysis this file is read by subroutine MDAINP. For a daily analysis this file is read by subroutine DAYEST.

Row-data	Variable	Description
Control Data		
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('NA')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
Call Data		
1		Free Format
2-1	icy1	Year
2-2	icm1	Month
2-3	icd1	Day
2-4	dcall1	Administration number of calling right

Repeat for the number of days in simulation

4.48 Rio Grande Spill (*.rgs)

The Rio Grande Spill file contains a file that indicates when Elephant Butte Reservoir historically spilled. Note this file is used only when the Rio Grande Compact is simulated (operating rules 17 and 18) to determine when any debt accrued by Colorado is erased. An example is provided in Appendix A. This file is read by subroutine MDAINP.

Row-data	Variable	Description
Control Data		
1	.,	Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)
1-1	ibm	Beginning month of data (e.g. 1=Jan)
1-2	iby	Beginning year of data (e.g. 1975)
1-3	iem	Ending month of data
1-4	iey	Ending year of data
1-5	cunit	Units of data ('NA')
1-6	cyr	Year type
		'CYR'= calendar year (1-12)
		'WYR'= water year (10-9)
		'IYR'= irrigation year (11-12)
For Rio Grande	Compact Operating	Rules only.
2-1	rspilx(1-12)	0= No Elephant Butte Spill
		+n= Elephant Butte Spill Data
		The integer portion is the month
		of spill (e.g. month 6 = 6)
		The decimal portion is the
		% of Spill that was Colorado's
		Note when a spill occurs:
		If Colorado is in debt it is erased
		If Colorado is in surplus
		their surplus is reduced by %
		cherr surprus is reduced by a

Repeat for the number of years in the simulation

4.49 Plan Data File (*.pln)

The plan station file contains information related to operating a term and condition, well augmentation and reuse plan. It provides data related to the plan including its ID, name, location on the river system, etc. If return flow data is specified for a plan it is provided in the Plan Return File (*.prf). An example is provided in Appendix A. This file is read by subroutine DATINP.

Note this file uses a free format read (which is slowly being added to other parts of StateMod). Therefore Plan ID's and Plan names should be provided with no spaces or in double quotes (e.g. instead of My Name enter "My Name" or My_Name).

Row-data	Variable	Description
Station Data		
1 1-1 1-2 1-3 1-4 1-5	Pid(1) Pname(1) iPsta(1) Pon(1) iPlnTyp(1)	Free Format Plan ID (include _ instead of blanks) Plan name (include _ instead of blanks) River node where the plan is located On (1) or Off (0) switch Plan type
		<pre>1 = Terms and Conditions (T&C) 2 = Well Augmentation 3 = Reuse to a Reservoir 4 = Reuse to a Diversion 5 = Reuse to a Reservoir from Tmtn 6 = Reuse to a Diversion from Tmtn 7 = Trans mountain import 8 = Recharge Plan 9 = Out-of-Priority Diversion or Storage 10 = Special Well Augmentation (e.g.</pre>
1-6	Peff(1)	Plan efficiency Enter 0 if not used Enter 1 to read 12 plan efficiency values (%) Enter 999 to use the source structure's efficiency data
1-7	iPrf(1)	Plan Return Type Enter 0 if no plan return flows will be calculated Enter 1 for a T&C Plan with return data in the plan return flow file (*.prf) Enter 8 for a Recharge Plan with return data in the plan return flow file (*.prf) Enter 999 to use the source structure's return flow data
1-8	iPfail(1)	Plan Failure Switch Used only for a T&C Plan (iPlnTyp = 1) Enter 0 to not turn plan off if it fails Enter 1 to turn a plan off if it fails
1-9	Psto1(1)	<pre>Initial plan storage value (acft) Used only for a T&C Plan (iPlnTyp = 3 or 5)</pre>
1-10	Psource(1)	Source ID of the structure where plan water becomes available (Note this information is currently used only when the plan type is recharge (type 8) from a reservoir
1-11	iPAcc(1)	Source Account of the structure where plan water becomes available (Note this information is currently used only when the plan type is recharge (type 8) from a reservoir

Plan Efficiency Data

Include only if the plan efficiency variable (Peff) = 1

Free Format

2-1 Peff(1,j), j=1,12 Plan efficiency for month 1-12 Note the first entry corresponds to the first month specified in the control file

4.50 Well Augmentation Plan Data File (*.plw)

The well augmentation plan file contains information that allows a well to operate out of priority because it is tied to an augmentation plan. It provides data that ties a plan ID to a well water right ID and the structure served by that well. This file is read by subroutine GetPlnW. The following is noted:

- StateMod allows one well to be tied to more than one structure. When this occurs the well's water right should be distributed to each structure. Typically the distribution to each structure is based on the acres served by each. This distribution limits total pumping by a well to the decreed rate.
- Because a well may be tied to more than one structure the Well Augmentation Plan file (.plw) is tied to both a well right and the structure served by that right. This limits that augmentation requirement for that well to the structure it serves.

Note this file uses a free format read (which is slowly being added to other parts of StateMod). Therefore Plan ID's and Plan names should be provided with no spaces or in double quotes (e.g. instead of My Name enter "My Name" or My_Name).

Row-data	Variable	Description
Free Format		
1-1	cistatP	Plan ID
1-2	cistatW	Well Right ID
1-3	cistatS	Well Structure associated with this Well Right

4.51 Plan Return Flow File (*.prf)

The Plan return file contains return flow data that is used to route canal seepage back to the stream over time. If no plan return flow data is provided any plan seepage is considered a loss. Similarly if the percent return does not equal 100% then the balance (100%-value specified) is considered a loss. An example is provided in Appendix A. This file is read by subroutine GETRES.

Row-data	Variable	Description
Control Data		
1		Free Format
1-1	cistat	Plan ID
1-2	crtnid	River node receiving return flow
1-3	<pre>pcttotPP(1)</pre>	Percent of return flow to this river node
1-4	irtndlPP(1)	Delay (return flow) table for this return
		flow

Repeat for number of return flow locations

Repeat for number of plans with return flow data

4.52 Reservoir Return Flow File (*.rrf)

The Reservoir return file contains return flow data that is used to route reservoir seepage back to the stream over time. If no reservoir return flow data is provided any reservoir seepage is considered a loss. Similarly if the percent return does not equal 100% then the balance (100%-value specified) is considered a loss. An example is provided in Appendix A. This file is read by subroutine GETRES.

Row-data	Variable	Description
Control Data		
1		Free Format
1-1	cistat	Reservoir ID
1-2	crtnid	River node receiving return flow
1-3	pcttotRP(1)	Percent of return flow to this river node
1-4	irtndlRP(1)	Delay (return flow) table for this return flow

Repeat for number of return flow locations

Repeat for number of reservoirs with return flow data

4.53 Reach Data File (*.rch)

The Reach Data file is used to summarize diversion comparison, well comparison, and Consumptive Use reports by reach when the Report option (-report) is specified. To eliminate the need to build a Reach Data file, a preliminary one (*.xrh) is generated by the check option (-check) for every diversion and well in the system. This preliminary Reach Data file contains two main components: Reach Data and Node Data.. An example is provided in Appendix A. The following are noted:

- Reach data is used to define how one stream reach is connected to another.
- Node data is used to assigned a stream (river) node to a stream reach.
- The default name for the preliminary file created by the check option is *.xrh. This preliminary file is commonly revised in an editor to reassign the Reach Data connectivity. In addition sub reaches may be defined to represent structures not bounded by a stream gage. After editing the Reach Data file is typically renamed to *.rch to avoid it being overwritten every time a new check run is made.
- If a river gage (*.rig) file is provided it is used by the Check option to define stream reaches. If one is not provided the Check optin uses data in the historic stream file (*.rih) to identify stream reaches. As described, this preliminary definition of steram reaches may be redefined by the user in an editor.
- The file format is free. Therefore names like My Name should be entered as a single string with a hyphen (e.g. My_Name) or enclosed in double quotes (e.g. "My Name").

Row-data	Variable	Description
1	ctype	Free Format
1-1	ctype	Reach_Data

2-1	RchIdR	Reach ID
2-2	RchNameR	Reach Name
2-3	RchTo	Reach ID reach goes to
2-4	Rrec24	Reach Name reach goes to
2-5	StaID	Stream ID reach goes to

Repeat row 2 for number of Stream Reaches.

Row-data 1	Variable ctype	Description Free Format
1-1	ctype	Node_Data
2-1 2-2 2-3 2-4	StaID RchNameX iRchX RchIDX	River Station ID Reach Name Associated Reach # Reach ID

Repeat row 2 for the number of Stream Nodes.

cdss@state.co.us

Last updated: February2009

5.0 Output Description

This chapter describes the report options available in StateMod. The following sections are available in this chapter:

- 5.0 Remarks
- 5.1 Base Flow Module
- 5.2 <u>Simulate Module</u>
- 5.3 <u>Report Module</u>
- 5.4 Data Check Module

5.0 Remarks

There are numerous output files available from the three modules available in the State Model as described below. Typically an application will use only one or two output files and access the others for checking, plotting, etc. For scenario management, the files are given the simulation name plus a standard three character suffix as described below. Section 6.0 Model Operation describes the output command and how to obtain each output file. (Note, the output command NA indicates the file is generated by a module automatically. Also, unless otherwise noted, all output files are monthly). Appendix A provides example output files.

	ar 1 1	_	Output	~
	Module		File	
1	Base Flow	NA	*.xbi	Base Flow Information at Stream Gage locations
2	Base Flow	NA	*.xbg	Gaged Base Flow Estimates
3	Base Flow		*.xbm	Estimated Gaged and Ungaged Base Flow
4	Base Flow		*.log	Log file
1	Simulate	NA	*.xdd	Direct and Instream Diversion Data Summary
2	Simulate		*.xre	Reservoir Data Summary (total and by account)
3	Simulate		*.xop	Operation Right Summary
4	Simulate		*.xir	Instream Reach Summary
5	Simulate		*.xca	Call Data Summary
6	Simulate	(1)	*.xpl	Plan Data Summary
7	Simulate	(2)	*.xrp	Replacement Reservoir Summary
8	Simulate	(3)	*.xwe	Well Summary
9	Simulate		*.xss	Structure Summary
10	Simulate		*.log	Log file

11	Simulate-Dail	y N/A	*.xdy	Direct and Instream Diversion Data Summary
12	Simulate-Dail	У	*.xry	Reservoir Data Summary (total and by account)
13	Simulate-Dail	У	*.xwy	Well Summary (if wells are used)
1	Report	-xst	*.xdd	Direct and Instream Diversion Data Summary
2	Report		*.xre	Reservoir Data Summary (total and by account)
3	Report		*.xop	Operation Right Summary
4	Report		*.xir	Instream Reach Summary
5	Report		*.xwe	Well Summary
6	Report	-xnm	*.xnm	Detailed Node Accounting For All Structures By Year
7	Report		*.xna	Detailed Node Accounting Average
	Report	-xpl	*.xpl	Detailed Plan Accounting Average
	Report	-xwb	*.xwb	Water Balance
			*.xqw	Ground Water Balance
10	Report	-xwr	*.xwr	Water Right List Sorted by Basin rank
11	Report	-xdg	*.xdg	Direct Diversion, Instream & Gage Graph file
12	Report	-xrq	*.xrq	Reservoir Graph file
	Report	-xwg	*.xwg	Well Graph file
14	Report	-xdc	*.xdc	Diversion Comparison file
	Report	-xrc	*.xrc	Reservoir Comparison file
	Report	-xwc	*.xwc	Well Comparison file
	Report	-xsc	*.xsc	Stream Flow Gage Comparison file
1.0	Donomt		*.xcu	OII Cummo ser
10	Report	-xcu		CU Summary
			*.xsu	Water Supply Summary
			*.xsh	Shortage Summary
			*.xwd	CU by Water District (first 2
1.0			di.	digits of each ID)
	Report	-xrx	*.xrx	River Data Summary
	Report	-xsp	*.xsp	Selected Parameter printout
21	Report	-xbn	*.xbn	ASCII Listing of Binary Direct
	_			and Instream Flow Diversion File
22	Report	-xbr	*.xbr	Binary file Listing of Reservoirs
23	Report	-xdy	*.xdy	Daily Direct and Instream Diversion Data
24	Report	-xry	*.xry	Daily Reservoir Data (total
25	Report	-xwy	*.xwy	and by account) Daily Well Data
	nop of o	7		24227622 2464
26	Report	-xwp	*.xwp	Well to Plan Summary
25	Report	N/A	*.log	Log file
1	Data Check	N/A	*.xcb	Base Flow by River ID
	Data Check	N/A	*.xcd	Direct Demand by River ID
	Data Check	N/A	*.xci	Instream Demand by River ID
	Data Check	N/A	*.XCW	Well Demand by River ID
	Data Check	N/A	*.xwr	Same as *.xwr from the Report option
	Data Check	N/A	*.xtb	Tabular summary of Input Formatted
J	0110011	,	. 2100	saar sammar, or riput rormatted

			for Use in a Standard Report
7 Data Check	N/A	*.xou	List of ID's Formatted for Making ID
			Specific Data Requests
8 Data Check	N/A	*.log	Log file

- (1) Plan output is included only when plan data is provided.
- (2) Replacement reservoir data is included only when a replacement reservoir operating rule is provided.
- (3) Well output is included only when well data is provided and the control switch (iwell) is non zero.

5.1 Base Flow Module Output Files

There are four standard output files from the Base Flow Module; the Base Flow Information File (*.xbi), the Gaged Base Flow Estimate File (*.xbg), the Gaged and Ungaged Base Flow Estimate File (*.xbm), and the Log File (*.log).

5.1.1 Base Flow Information File

The **Base Flow Information** file (*.xbi) contains information associated with the base flow estimates but in a spreadsheet format for checking. It contains the following data:

#	Column	Description
0	Year	Simulation Year
0	Mon	The first month specified in the control file
0	Days	The number of days in the month
0	River ID	River station ID
1	Gaged Flow	The streamflow provided in the stream flow file (Section 4.14)
2	Import (-)	The total imports (indicated as negative diversion)
3	Divert (+)	The total of diversions upstream of the river ID Provided in the diversion files (Section 4.15, 4.16, and 4.17) which result in
		a positive adjustment to the gauged flow
4	Return (-)	The total of current and lagged return flows from upstream diversions and well pumping
5	Well Dep (+)	The total of current and lagged stream depletions from wells (not adjusted for returns)
6	Delta Sto (+)	The total of upstream reservoir storage changes from data in the End of Month content file (Section 4.21) which result in a positive adjustment to the gaged flow
7	Net Evp (+)	The total of upstream net evaporation occurring at upstream reservoirs which result in a positive adjustment to the gaged flow
8		The estimated base flow The estimated base flow with negative values set to zero

5.1.2 Gaged Base Flow Estimate File

The **Gaged Base Flow Estimate** file (*.xbg) contains base flow estimates at each gage location provided in the Stream Station input file (Section 4.4). Note, this file is typically used to allow man's impact to be removed from gaged data prior to filling gaps using a technique such as regression. It contains the following data:

Column	Description
Year	Simulation year
ID	River station ID
Oct	Base flow in Oct (the first month specified in the control file (Section 4.2))
Nov - Dec	Same as above for each month of the year
Total	Total annual flow for the year
Repeat	For each River ID and year

For example,

5.1.3 Other Base Flow Files

The **Base Flow Estimate for Model Input** file (*.xbm) contains gaged and ungaged data in the same format as the gaged base flow estimate file (*.xbg). This file is commonly used as an input file to the Simulate Module.

The **Log File** (*.log) contains a log of the base flow module's operation. Its output file is named *.log.

5.2 Simulate Module Output Files

There are seven (7) standard output files from the Simulate Module. In addition if a plan is modeled then a plan output file is provided. Similarly if a replacement reservoir (type 10) operating rule is

specified, then a replacement reservoir file is produced. Following is a description of the data provided in each

- 1. <u>Diversion Summary File</u>
- 2. Reservoir Summary File
- 3. Well Summary File
- 4. Structure Summary File
- 5. Operations Summary File
- 6. Log File
- 7. Check File
- 8. Replacement Reservoir File
- 9. Plan File

5.2.1 Diversion Summary File

The **Diversion Summary File** (*.xdd) describes diversion and stream flow data at all river nodes. For nodes with stream gages, only the columns containing hydrology data described below (Upstream Inflow, Reach Gain, Return Flow, River Inflow, River Outflow) have non zero values. Nodes with reservoirs are similar to stream gage nodes but include the column River Divert, which may be positive if the reservoir diverts or negative if the reservoir releases. Instream reach data is printed for the upstream node and represents the minimum diverted within the reach. For detailed analysis, file *.xir, provides detailed data for each node within the instream flow reach.

The header of the Demand Summary File (*.xdd) describes the structure ID, account and name. In addition, it describes the administration number, on/off switch, owner, and decreed amount for each water right located at this river node. It then contains a time series for the following:

#	Column	Description
General		
0	Str ID	Structure ID
0	Riv ID	River node ID
0	Year	Year of the simulation
0	Мо	Month of the simulation
Demand		
1	Total Demand	Structure Demand provided in the demand files Note if demand data is provided as a consumptive Value total demand is adjusted using a surface Water efficiency
2	CU Demand	Consumptive Demand. Note if a consumptive demand File (*.ddc) is provided this value is printed. If a consumptive demand file is not provided this value is calculated from demand and efficiency data
From Ri	ver by	
3	Priority	Water Supply from the river by a priority diversion (standard and Operation type 11 diverting structure)
4	Storage	Water Supply from the river by a storage release (Operation type 1 or 2 diverting structure)
5	Exchange	Water Supply from the river via an exchange $(Operation \ type \ 4)$

From We	211	
6	From Well	Water Supply from wells to the structure at this river node.
From Ca	arrier by	
7	Priority	Water Supply from a carrier by a priority diversion
		(Operation type 3 or 11 destination structure)
8	Sto_Exc	Water Supply from a carrier by a storage release or exchange (Operation type 2 or 6 destination structure if not diverting)
Other		
9	Carried Water	Water Supply diverted for carrier purposes. The source will be presented as a From River by Priority, From carrier by Priority, or From River by Storage.
10	From Soil	Water supplied from the soil zone
11	Total Supply	The sum of all water supplies (does not include Carried Water)
Shortag	je	
12	Total Short	The difference between Total demand and total supply
13	CU Short	The difference between the CU demand and CU
T.7 T	T	
Water U	ose CU	Consumptive use of the water supply
15	To Soil	Water diverted to the soil zone.
16	Total Return	Total return flow (note the amount that will return
10	10cai necain	over all return time periods)
17	Loss	Water diverted that is not consumed, to soil or
		returned. Typically is non zero when the sum
		of return locations or delays do not equal 100%.
-	In/Out	
18	Upstream Inflow	Inflow from an upstream node to this reach
19	Reach Gain	Inflow from gains to this node as described in
20	Return Flow	stream inflow file (Section 4.14) Inflow from returns to this node. Note this term
20	Reculii Flow	includes returns from both surface and well supplies in the current time step.
21	Well Depletion	Depletion caused by pumping in prior time steps.
21	well Depletion	Note this term impacts the river inflow (water supply)this month.
22	To_From GWStor	Inflow or outflow to ground water storage. Note
	10_110 0115001	this term is positive when ground water storage
		is required to offset pumping depletions in the
		current month that cause the river to go negative.
		This term is negative when stream flow is
		required to offset water originating
		from ground water storage in prior months.
G1 !		
Station 23	D-1	
	Balance	The gum of inflows to this node
	River Inflow	The sum of inflows to this node The sum of water supplies diverted at this node
24		The sum of water supplies diverted at this node
	River Inflow	The sum of water supplies diverted at this node (does not include From Carrier by Storage or
24	River Inflow River Divert	The sum of water supplies diverted at this node (does not include From Carrier by Storage or From Carrier by Priority)
	River Inflow	The sum of water supplies diverted at this node (does not include From Carrier by Storage or From Carrier by Priority) The depletion caused by a well in this month.
24	River Inflow River Divert	The sum of water supplies diverted at this node (does not include From Carrier by Storage or From Carrier by Priority)
24	River Inflow River Divert	The sum of water supplies diverted at this node (does not include From Carrier by Storage or From Carrier by Priority) The depletion caused by a well in this month. Note this term is similar to a diversion in
24 25	River Inflow River Divert River by Well	The sum of water supplies diverted at this node (does not include From Carrier by Storage or From Carrier by Priority) The depletion caused by a well in this month. Note this term is similar to a diversion in the current month.

5.2.2 Reservoir Summary File

17

River Inflow

The **Reservoir Summary File (*.xre)** describes diversion, release, storage and stream flow data at river nodes that contain a reservoir. The header describes the reservoir ID, account and name. In addition, it describes the administration number, on/off switch, owner, and decreed amount for each water right located at this river node. It then contains a time series for the following:

# General	Column	Description
0 0 0	River ID Account Year Mo	River node ID Reservoir account (0 is the total) Year of the simulation Month of the simulation
1	Initial Storage	Storage at the beginning of month
Water S	upply From River	by
2	Priority	Water Supply from the river by a priority diversion standard and Operation type 11 diverting structure)
3	Storage	Water Supply from the river by a storage release (Operation type 1 or 2 diverting structure)
4	Exchange	Water Supply from the river by an exchange (Operation type 4)
Water S	upply From Carrie	r by
5	Priority	Water Supply from a carrier by a priority diversion (Operation type 30 or 11 destination)
6	Storage	Water Supply from a carrier via a storage release (Operation type 2 or 6 destination structure if not diverting)
7	Total Supply	The sum of all water supplies
Water U	se from Storage t	<u>o</u>
8 9 10 11	River for Use River for Exc. Carrier for Use Total Release	Releases for downstream use (Operation type 1 and 2) Releases for exchange (Operation type 4) Releases to a carrier canal (Operation type 3) Total of all releases
Other		
12 13	Evap Seep and Spill	Net evaporation Seepage and spills
14	EOM Content	End of Month Content
15	Target-0	For the total reservoir (account 0) Target Storage
16	Stor-n Limit BOM Decree Limit	<pre>for accounts (account n) their storage limit The remaining limit to the one fill rule at the beginning of the month</pre>
<u>Statio</u> n	Balance	
1.0	- · - cı	

The sum of inflows to this node

18	Total Release	Total release
19	Total Supply	Total reservoir supplies
20	River by Well	The depletion caused by a well in this month.
		Note this term is similar to a diversion
		in the current month.
21	River Outflow	Outflow from this node

5.2.3 Well Summary File

The **Well Summary File** (*.xwe) describes the structure data (demand, surface supply, ground supply and shortage), use of water (CU, return and loss) and source of water (river, ground water storage and salvage) for every structure that has a well. The header describes the well ID, account and name. In addition, it describes the administration number, on/off switch, owner, and decreed amount for each ground water right located at this structure. It then contains a time series for the following:

#	Column	Description
<u>General</u>		
0	Structure ID River ID	Well Structure ID River node ID
0	Year	Year of the simulation Month of the simulation
0	Мо	Month of the simulation
Demand		
1	Total Demand	Structure Demand provided in the demand files Note if demand data is provided as a consumptive Value total demand is adjusted using a surface Water efficiency
2	CU Demand	Consumptive Demand. Note if a consumptive demand File (*.ddc) is provided this value is printed. If a consumptive demand file is not provided this Value is calculated from demand and efficiency data
Water S	upply	
3	From Well	Water Supply from wells to this structure (e.g. pumping)
4	From SW	Water Supply from other sources (diversions, reservoirs or other Well structures) that are tied to this well structure. Note if this well structure is not tied to a diversion, this column will be zero.
5	From Soil	Water supplied from the soil zone.
6	Total Supply	The sum of all water supplies (does not include carried water
Short		
7	Total Short	The difference between Total demand and total supply.
8	CU Short	The difference between the CU demand and CU
Water U	se	
9	CU	Consumptive use of the water supply
10 11	To Soil	Water diverted to the soil zone.
ΤŢ	Total Return	Total return flow (note the amount that will return over all return time periods)
12	Loss	Water diverted that is not consumed, to soil or

		Returned. Typically is non zero when the sum
		Of return locations or delays do not equal 100%.
13	Total Use	Total water use (CU + To Soil + To Return + Loss)
Water S	ource	
14	From River	Well water supplied by the River in this month.
15	From GWStor	Well water supplied by Ground Water in this month (e.g. lagged depletions).
16	Erom Colinaci	
16	From Salvage	Well water supplied by ET Salvage.
17	From Soil	Well water supplied by the soil zone.
18	Total Source	Total water source (From River + From GWStor
		+ From Salvage + From Soil) node

5.2.4 Structure Summary File

The **Structure Summary File (*.xss)** is a standard output when the variable efficiency option is used (control variable *ieffmax*=1). The report describes structure data related to area, demand, surface water, ground water, soil storage, consumptive use and returns. It was developed to provide data similar to that provided by StateCU, the State's consumptive use model.

Water use when the variable efficiency option is used (ieffmax=1)(demand, surface supply, ground supply and shortage), use of water (CU, return and loss) and source of water (river, ground water storage and salvage) for every structure that has a well. The header describes the structure (diversion or well ID), account and name. In addition, it describes the administration number, on/off switch, owner, and decreed amount for each water right located at this structure. It then contains a time series for the following:

#	Column	Description		
Gene 0 0 0	eral Structure ID Year Mo	Structure ID (diversion or well) Year of the simulation Month of the simulation		
Area 1 2 3	Sprink GW Total	Acres served by a sprinkler Acres served by ground water Total Acres		
Dema	and			
4	Total Demand	Structure Demand provided in the demand files Note if demand data is provided as a consumptive value total demand is adjusted using a surface water efficiency		
5	CU Demand	Consumptive Demand. Note if a consumptive demand file (*.ddc) is provided this value is printed. If a consumptive demand file is not provided this value is calculated from demand and efficiency data		
Surface Water				
6	Divert	Water diverted		
7	ConEff	Percent Conveyance Efficiency		
8	MaxEff	Maximum farm efficiency		
9	To CU	Water consumed		
10	To Soil	Water diverted to soil		
11	Return	Water that will return		

```
12 Loss
                         Water that is lost to system
13 ActEff
                        Percent Actual efficiency (To CU + To Soil)/Divert)
                          * 100
Ground Water
    Pump
                         Water pumped
                  Water pumped
Well capacity
Percent Field efficiency for
Percent sprinkler efficiency
Water diverted to soil
15
   Capacity
                        Percent Field efficiency for non sprinklers
16
    FldEff
17
    SprEff
18 To Soil
19 Return
                       Water that will return
20 Loss
                       Water that is lost to system
21 ActEff
                       Percent Actual efficiency (Pump + To Soil)/Divert
                          * 100
Soil Moisture
                       Volume of water in soil moisture storage
    Soil Storage
Consumptive Use
23
                         Consumptive use of surface and ground water
    SW&GW
24
   Soil
                         Consumptive use of soil moisture
25 Total
                         Total CU (sum of SW&GW and Soil)
Return
26 Total Return
                        Total of all return flows
```

5.2.5 Operation Summary File

The **Operation Summary File** (*.xop) provides a matrix of diversion or release activities associated with each operating right.

5.2.6 Log File

The **Log File** (*.log) contains a log of the simulate module's operation. Its output file is named *.log.

5.2.7 Check File

The **Check File** (*.chk) contains a description of key data and detailed warnings (if any). The check file should always be reviewed following a simulation.

5.2.8 Replacement Reservoir File

The **Replacement Reservoir File** (*.xrp) is a standard output when a Replacement Reservoir (type 10) operating rule is specified. It was developed to provide detailed replacement reservoir operation information. It is particularly useful when more than one replacement reservoir is operational. Note that a release may not equal a diversion if the release is limited to the structures consumptive use. This

"Depletion" Vs "Diversion" option is implemented by structure using variable ireptyp in the diversion station (*.dds) file.

#	Column	Description		
General				
0	Structure ID	Structure ID (diversion or well)		
1	Year	Year of the simulation		
2	Mo	Month of the simulation		
3	Iter	Iteration		
4	Call	Counter to Replace Subroutine per time step		
5	Opr ID	Operational Right ID		
6	Type	Type of Release (Direct or Exchange)		
7	Source ID	Replacement Reservoir		
8	Source Name	Replacement Reservoir Name		
9	Destin. ID	Destination Diversion ID		
10	Destin. Name	Destination Diversion Name		
11	Release	Reservoir release		
12	Tot-Rel	Total Reservoir Release		
13	Divert	Water diverted		
14	Tot-Div	Total diversion		
15	DepAdj	Depletion Adjustment		
16	Rel%	Release %		
17	Divo	Total diverted by this operating right this time step		
18	ishort	Shortage indicator 0=none, 1=yes		

5.2.9 Plan Summary File

The **Plan Summary File (*.xpl)** is a standard output when a Plan structure type is used. The report describes structure data related to a plan including its type, ID and Source. In addition it describes any operating rules that may use the plan (Use) or provide water to the plan (Src). The data printed to a plan depends on the type of plan specified.

Plan Description	Plan Type	Plan Report
1. Terms & Condition Plan	1	5.2.9.1
2. Well Augmentation	2	5.2.9.2
3. Reservoir Reuse Plan	3	5.2.9.3
4. Non Reservoir Reuse	4	5.2.9.4
5. TransMtn Reservoir Reuse	5	5.2.9.3
6. TransMtn Non Reservoir Reuse	6	5.2.9.4
7. Transmountain Import	7	5.2.9.4
8. Recharge Plan	8	5.2.9.4
9. Out-of-Priority Plan	9	5.2.9.5
10. Special Well Augmentation Plan	10	5.2.9.6
11. Accounting Plan	11	5.2.9.7
12. Release Limit Plan	12	5.2.9.8

5.2.9.1 Term and Condition Plan (type 1)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Mo	Month of the simulation
1	Initial Demand	T&C Plan demand at beginning of time step
2	Demand Total	T&C Plan demand at this time step
3	Src 1	Water source 1
		• •
	• •	••
13	Total	Total of all sources
14	Ending Demand	T&C Plan demand at end of time step

5.2.9.2 Well Augmentation Plan (type 2)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Мо	Month of the simulation
1	From Well	Augmentation Well Pumping
2	Plan Demand	Augmentation Plan Demand at this time step Note Plan Demand is well depletion less return flow From this plans pumping
3	Src 1	Water source 1
	• •	••
• •	• •	••
8	Shortage	Plan shortage
9	Total	Total of all sources and shortages

5.2.9.3 Reservoir Reuse Plan (type 3 or 5)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Mo	Month of the simulation
1	Initial Storage	Initial Reuse Plan storage
2	Supply Total	Reuse Plan Total Supply this time step
3	Use 1	Reuse 1
		••
		••
12	Use 10	Reuse 10
13	Total	Total of all uses
14	Ending Storage	Ending Reuse Plan storage

5.2.9.4 Non Reservoir Reuse Plan (type 4, 6, 7 or 8)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Mo	Month of the simulation
1	Supply Total	Reuse Plan Total Supply this time step
2	Use 1	Reuse 1
		••
		••
11	Use 10	Reuse 10
13	Total	Total of all uses

5.2.9.5 Out-of-Priority Plan (type 9)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Мо	Month of the simulation
1	Initial Demand	OOP Plan demand at beginning of time step
2	Demand Total	OOP Plan demand at this time step
3	Src 1	Water source 1
		••
12	Src 10	Water source 10
13	Total	Total of all sources
14	Ending Demand	OOP Plan demand at end of time step

5.2.9.6 Special Well Augmentation Plan (type 10)

#	Column	Description
Genera	1	
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Mo	Month of the simulation
1	Initial Demand	OOP Plan demand at beginning of time step
2	Demand Total	OOP Plan demand at this time step
3	Src 1	Water source 1
	• •	• •
• •	• •	• •
12	Src 10	Water source 10
13	Total	Total of all sources
14	Ending Demand	OOP Plan demand at end of time step

5.2.9.7 Accounting Plan (type 11)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Mo	Month of the simulation
1	Supply Total	Simulated diversion accounted for in Plan
2	Use 1	Reuse 1
		••
		••
21	Use 20	Reuse 20
22	Total	Total of all uses

5.2.9.8 Release Limit Plan (type 12)

#	Column	Description
General		
0	Plan ID	Plan ID
0	River ID	Plan location on the River network
0	Year	Year of the simulation
0	Mo	Month of the simulation
1	Release Limit	Monthly release limit at beginning of time step
2	Use 1	Water source 1
		••
		••
21	Use 10	Water source 20
22	Total	Total of all sources

5.2.10 Other Simulation Files

The **Instream Reach Summary File (*.xir)** provides a matrix of total supply for each node associated with an instream flow reach.

The **Daily Direct Diversion File (*.xdy**) provides the same data as the monthly diversion and instream flow file (*.xdd) but on a daily time step.

The **Daily Reservoir Station file** (*.xry) provides the same data as the monthly reservoir station file (*.xre) but on a daily time step.

The **Daily Well Station file** (*.xwy) provides the same data as the monthly well station file (*.xwe) but on a daily time step.

The **Plan Summary file (*.xpl)** provides a summary of plan data and operational rules tied to a plan.

5.3 Report Module Output Files

There are twenty four (24) output files available from the Report Module as summarized in the table above and described below.

5.3.1 Basin Water Balance

The **Basin Water Balance Report** (-xwb) provides a description of the inflows, outflows and storage changes. Its output file is named *.xwb. It contains a time series for the following:

#	Column	Description
General 0	Year	Year
0	Mo	Month
Inflows	Ohmoom Inflor	Matal inflam to the viscon from model boundaries
1	Stream Inflow	Total inflow to the river from model boundaries and natural gains
2	Return	Total return flow to the river
3	From/To GWStor	Total inflow or outflow from ground water storage
4	From SoilM	Total from soil moisture
5	From Plan	Total from plan. (This includes water diverted
_		into then released from a plan)
6	Total Inflow	Total of inflows (Stream Inflow + Return +
		From/To GW Storage + From SoilM)
Outflows	3	
7	Divert	Total Diversion (From River by Priority + From River
		by Storage + From River by Exchange + From Carrier
		by Storage for operational type 3- Instream
		Diversions, Diversion to Storage From River by Carrier)
8	From River Well	Total well pumping from the River in this month
9	Well Depletion	Total well depletion from the river from pumping in
	-	previous months
10	Res. Evap	Total reservoir evaporation
11	Stream Outflow	Total outflow from the river
12	Reservoir Change	Total reservoir storage change (End of Month Content
13	To SoilM	- Beginning of Month Content) Total to soil moisture
14	SoilM Change	Soil moisture change (End of Month Content -
		Beginning of Month Content)
15	Total Outflow	Total of outflows (Divert + From River by Well +
		Well Depletion + Res. Evap + Stream Outflow +
		Reservoir Change + To SoilM + SoilM Change
Balance		
16	Delta	Difference between inflows and outflows
Other		
17	CU -	Total Consumptive Use
18	Loss	Portion of diversions and pumping that are not consumed or do not return to the stream.
		Calculated to be (Diversion + Pumping) *
		(100 - sum of returns to river)
19	Pumping	Total well pumping
20	Salvage	Portion of well pumping offset by ET salvage.

5.3.2 Water Right Report

The **Water Right Report (-xwr)** provides a sorted list of water rights. Its output file is named *.xwr. It contains the following:

#	Column	Description
1	Rank	Water right rank
2	Туре	Water right type code (see footnote)
3	Admin #	Administration number
4	On/Off	On/Off switch (0=off, 1=on)
5	STR ID #1	Primary structure associated with this right
6	Str ID #2	Secondary structure associated with this right (used only when wells are tied to both a well and diversion structure)
7	Amount	Decreed amount (-1 for an operational right)
8	Right Name	Water right name
9	Structure Name	Associated structure name (blank for an operational right)

5.3.3 Other The **Standard Report** (-xst) produces four files; the Demand Summary File (*.xdd), the Reservoir Summary File (*.xre), the Instream Reach Summary File (*.xir), the Well Summary File (*.xwe) and the Operation Right Summary File (*.xop). These are the same files produced by the simulate option and are described above.

The **Node Accounting Report (-xna)** produces two files: the Detailed Node Accounting (*.xnm) file and Summary Node Accounting (*.xna) file. Both provide the same results as the standard report but are sorted by the stream order provided in the river network file (*.rin). The detailed node accounting file provided data for every month of the study period while the summary provides an annual average.

The **Diversion Graph Report** (-xdg) provides the same data presented in the diversion and stream gage summary report but it is formatted for easy graphing by a spreadsheet or other plotting package (e.g. XMGR for the workstation). Its output file is named *.xdg.

The **Reservoir Graph Report** (-xrg) provides the same data presented in the reservoir summary report but it is formatted for easy graphing by a spreadsheet or other plotting package (e.g. XMGR for the workstation). Its output file is named *.xrg.

The **Well Graph Report (-xwg)** provides the same data presented in the well summary report but it is formatted for easy graphing by a spreadsheet or other plotting package (e.g. XMGR for the workstation). Its output file is named *.xwg.

The **Diversion Comparison Report** (-xdc) compares the total diversion estimated by the model to the gaged record if available in the historic diversion file (*.ddh). Its output file is named *.xdc. If the user specifies –Report as a secondary parameter when executing this option (e.g. –report –xdc – Report) a **Diversion Comparison Summary Report** (.xdc) is generated for each Reach specified in the Reach Data (*.rch) file.

The **Reservoir Comparison Report** (-xrc) compares the end of month contents estimated by the model to the gaged record if available in the historic end of month content file (*.eom). Its output file is named *.xrc.

The **Well Comparison Report (-xwc)** compares the total well pumping estimated by the model to the gaged record if available in the historic well pumping file (*.weh). Its output file is named *.xwc. If the user specifies –Report as a secondary parameter when executing this option (e.g. –report –xwc – Report) a **Well Comparison Summary Report** (.xwc) is generated for each Reach specified in the Reach Data (*.rch) file.

The **Stream Comparison Report (-xsc)** compares the total diversion estimated by the model to the gaged record if available in the historic streamflow file (*.xsc). Its output file is named *.xsc. If the user specifies –Report as a secondary parameter when executing this option (e.g. –report –xsc – Report) a **Stream Comparison Summary Report** (*.xsc) is generated for each Reach specified in the Reach Data (*.rch) file.

The Consumptive Use Water Supply Report (-xcu) provides four output files; *.xcu, *.xsu, *.xsh and *.xwd. The CU summary (*.xcu) presents the total diversion by each structure in a special format required by the CRDSS consumptive use model. The supply summary (*.xsu) presents the total supply to each structure. The shortage summary (*.xsh) presents the shortage associated with each structure. The water district summary (*.xwd) presents the total diversion for each Reach specified in the Reach Data (*.rch) file.

The **River Data Summary Report (-xrx)** provides a summary of data provided by river node. Its output file is named *.xrx.

The **Selected Parameter Report (-xsp)** provides a printout of a selected parameter (e.g. Total_Diversion) available to the standard diversion (*.xdd), reservoir (*.xre) and well (*.xwe) output files. It reads the Output Request file (*.out) to determine the type of output (e.g. Diversion, InstreamFlow, StreamGage, Reservoir or Well), parameter (e.g. Total_Diversion) and ID to print. It creates two output files with the same data in a different format; the output formatted into a matrix is named *.xsp while the output formatted into a column is named *.xs2. Note to get a list of parameters for each data type, enter a dummy variable under parameter type (e.g. x) and review the log file.

The **Daily Selected Parameter Report** (-xds) provides a printout of a selected parameter (e.g. Total_Diversion) available to the standard daily diversion (*.xdy), reservoir (*.xry) and well (*.xwy) output files. It reads the Output Request file (*.out) to determine the type of output (e.g. diversion), parameter (e.g. Total_Diversion) and ID to print. It creates two output files with the same data in a different format; the output formatted into a matrix is named *.xds while the output formatted into a column is named *.xd2. Note to get a list of parameters for each data type (diversion, stream, instream flow, reservoir or well) enter a dummy variable under parameter type (e.g. x) and review the log file.

The **Well to Plan Summary** (-xwp) provides a summary of every well structure and the augmentation plans, if any, associated with a well structure.

The **Log File** (*.log) contains a log of the report module's operation. Its output file is named *.log.

The control file contains a variable named ichk that is used to obtain detailed results. Section 4.2 provides a description of these detailed report options.

5.4 Data Check Output Files

There are eight (8) standard output files from the Data Check Module; (1) the Base Flow File (*.xcb), (2) the Direct Demand File (*.xcd), (3) the Instream Demand File (*.xci), (4) the Well Demand File (*.xcw), (5) the Water Right List file (.xwr), (6) the Output Request File (*.xou), (7) the Reach File (*.xrh) and (8) the Log File (*.log). The first four files are self explanatory and describe the base flow, direct flow demand, instream flow demand and well demand at each river node, respectively. The water right list file is the same as that produced by the Report Module. The Output Request file provides a list of structure which may be used as an input file for data requests by structure. The Reach file provides a list of structure which may be used as an input file for data requests by reach. The log file contains a log of the data check module's operation.

6.0 Model Operation

The State Model is structured to perform one of four (4) interrelated activities:

Base Flows

Simulate

Report

Data Check

These activities may be executed by requesting the desired option from the screen or through command line arguments. For a description of each option, see Section 3.3 of this documentation. The model may be executed from the CRDSS Graphic User Interface, script or by entering the model's name as follows:

statemod [file] [options]

(1) If omitted, the PC version of the model defaults to requesting the desired option from the screen, while the Unix version prints an error message.

Except for the -report option, each of the above requests are straight forward and require only one command line argument. The -report option allows for one or two additional parameters in order to request the desired report and, as appropriate, desired station without requiring data from the screen by the user. (Note, except for the standard output request (-std), the argument name is the same as the output file requested). Following are examples of the report option with second and third parameters supplies:

Argument (1) Result -report -xnm Detailed node accounting for all years and Detailed node accounting average -report -xwb Water Balance -report -xwr Water Right List sorted by basin rank -report -xdg [-station id] Direct Diversion, Instream Diversion and Gage graph file -report -xrg [-station id] Reservoir graph file -report -xwg [-station id] Well graph file -report -xdc Diversion comparison file Reservoir comparison file -report -xrc Well comparison file -report -xwc -report -xsc Stream flow gage comparison file -report -xcu Diversions by ditch formatted for the CU Standard diversion (*.xdd) and reservoir -report -xst (*.xre) output -report -xsp Special parameter report (2).

- (1) If omitted, the PC version of the model defaults to request the desired option from the screen, while the Unix version prints an error message.
- (2) For the special parameter report the output type (e.g. diversion, reservoir, well, stream gage or All) and parameter (e.g. River Outflow) must be specified in the output request file.

7.0 Technical Notes

This chapter provides technical notes on selected portions of the State of Colorado's Stream Simulation Model (State Model). The following sections are available within this chapter:

- 7.1 Baseflows at Gaged Locations
- 7.2 <u>Baseflows at Ungaged Locations</u>
- 7.3 Instream Reach Considerations
- 7.4 Well Operation Considerations
- 7.5 Available Flow
- 7.6 Daily Model Approach
- 7.7 Daily Vs. Monthly Results
- 7.8 Direct Solution Algorithm
- 7.9 Modified Direct Solution Algorithm
- 7.10 Demand Considerations
- 7.11 Variable Efficiency Considerations
- 7.12 Priority of Water Use by Wells Serving Sprinklers
- 7.13 Soil Moisture Accounting
- 7.14 Distribution of Reservoir Water Rights to Accounts
- 7.15 Reservoir Demands
- 7.16 Detailed Call Data
- 7.17 Model Reoperation
- 7.18 San Juan Recovery Program RIP
- 7.19 <u>Model Performance</u>
- 7.20 Replacement Reservoir Operations
- 7.21 Binary Output Files
- 7.22 Equal Administration Numbers
- 7.23 <u>Plan Operations</u>
- 7.24 Release or Exchange for Depletion Vs Diversion
- 7.25 Downstream Call
- 7.26 Call (Control) Reporting
- 7.27 Direct Flow Exchange or Bypass
- 7.28 La Plata Compact Implementation
- 7.29 South Platte Compact
- 7.30 Well Augmentation Requirement
- 7.31 Reservoir Recharge (Seepage) as an Augmentation Supply
- 7.32 Canal Loss (Seepage) as an Augmentation Supply
- 7.33 Augmentation Well as an Augmentation Supply
- 7.34 Accounting Plan Supplies
- 7.35 Accounting Plan Operations
- 7.36 Multiple Ownership
- 7.37 Standard Versus Fixed Unit Response (Return Flow) Patterns
- 7.38 Reservoir Release Limits

- 7.39 <u>Augmentation Station Modeling</u>
- 7.40 Reuse Modeling
- 7.41 Natural Flows with Recharge
- 7.42 Reach Reporting

7.1 Baseflows at Stream Gages

The State Model estimates baseflows at stream gages using the following formula:

$$Qb = Qg + D - R - S + E - I$$

Where:

Qb = Base flow Qg = Gaged flow

D = Upstream diversionsR = Upstream return flows

S = Upstream change in reservoir storage

E = Upstream reservoir evaporation

I = Imports

For example,

7.2 Baseflows at Ungaged Locations

Baseflows at ungaged tributaries are zero unless specified by the user. Therefore, in order to have a water supply in tributary headwaters, an ungaged baseflow must be estimated. Baseflow gains are estimated to occur at a baseflow nodes. Therefore to simulate the river's gain or loss between gaged points, an ungaged baseflow node must be estimated. The State Model estimates baseflows at ungaged locations from baseflow estimates at gaged locations using the following formula:

```
FlowX = (FlowB(1)*coefB(1) + FlowB(2)*coefB(2)+ ....) +
    pf * (FlowG(1)*coefG(1) + FlowG(2)*coefG(2)+ ....)

Where;
FlowX = Flow at intermediate node to be estimated

FlowB = Base flow station(s)
FlowG = Gain flow station(s)

pf = Proration factor for gain term
coefB = Base flow coefficient
coefG = Gain flow coefficient
```

Note the first term (FlowB(1)*coefB(1)...) represents upstream gaged flow while the second term (pf * (FlowG(1)*coefG(1) ...) represents a distribution of the gain which occurs between gaged flow. The terms FlowB and FlowG are commonly gaged streamflow stations. The proration factor (pf) is used to distribute the gain between reaches and is commonly estimated to be a ratio of the drainage area and average annual precipitation at the ungaged location to that in the gaining reach. The coefficients coefB and coefG are provided throughout the formula for special cases, but are typically 1.0 or -1.0.

The general baseflow formula described above is typically implemented with discretion by a modeler to represent the "gain approach" or the "neighboring gage approach". In the "gain approach", each gage is assigned a coefficient that typically represents but is not required to be the "Area*Precipitation" (A*P) term, equal to the product of total area above the gage, and average annual precipitation over the gage's entire drainage area. Ungaged baseflow points are assigned an incremental "A*P", the product of the incremental drainage area above the ungaged baseflow point and below upstream gages, and the average annual precipitation over the incremental area. The above illustrates a hypothetical basin and the areas associated with each of three gages and an ungaged location.

The portion of the baseflow gain below Gages 1 and 2 and above Gage 3, at the Ungaged location between the gages, is the gage-to-gage baseflow gain (BF3 minus (BF2 + BF1)) times the ratio $(A^*P)_{ungaged}/[(A^*P)_{downstream\ gage} - \Sigma\ (A^*P)_{upstream\ gage(s)}]$. Total baseflow at the ungaged location is equal to this term, plus the sum of baseflows at upstream gages. In the example there is only one upstream gage, having baseflow BF1.

A second option for estimating ungaged baseflows is the "neighboring gage approach". In the neighboring gage approach, a baseflow time series is created by multiplying the baseflow series at a specified gage by the ratio $(A*P)_{headwater}/(A*P)_{gage}$. This approach is effective, for example, for an ungaged tributary parallel to and close to a gaged tributary.

Following are general guidelines to selecting the ungaged baseflow approach:

- Use the "gaged approach" at an ungaged location that is dominated by upstream gaged flows or
 when the ungaged location has a relatively large drainage area when compared to gaged data's
 drainage area.
- Use the "neighboring gage approach" when the ungaged location's drainage area is relatively small when compared to gaged data's drainage area. Note, when the neighboring gage approach is taken, the modeler is, in effect, adding a 'new' gage. Therefore, when this approach is implemented, care must be exercised to ensure the gain coefficients (coefG) and proration factor (pf) accurately account for this 'new' gage and its associated drainage area.

7.3 Instream Reach Considerations

The State Model allows instream flows to be modeled as a point or as a reach. The following are noted:

- When modeled as a point only the instream flow location is required as input data.
- When modeled as a reach both the upstream and downstream locations are required as input data.
- When modeled as a reach the data printed to the standard diversion output file (*.xdd) represents the minimum amount diverted by the instream flow within the reach. Therefore one may notice the water available in the river exceeds the amount diverted. The instream reach output file (*.xir) provides data on the minimum instream diversion as well as the diversion at every point within the instream flow reach.

7.4 Well Operation Considerations

The State Model allows ground water pumping via wells to be modeled. The following are noted:

- Wells are operated within StateMod as water rights tied to a well structure that may or may not be tied to a diversion structure. When a well is not tied to a diversion structure it does not need to be included in the network. For such a case, the well structure variable *cgoto* needs to represent the most upstream river node that is impacted by a well's depletion and the variable that links to a ground water structure to a surface water structure, *idvcow2* should be set to N/A.
- If a well structure is not tied to a surface water structure (idvcow2 = N/A) then well demands are provided in the well demand file (*.wem).
- If a well structure is tied to a surface water structure (*idvcow2* = surface structure ID), then demands may be provided and treated in several ways as specified by the control variable *icondem* (see Section 7.10)
- Wells may increase the water supply available at the river at a given time step if well return flows exceed the stream depletion. StateMod checks for such a condition and reoperates to allow senior ditches to benefit from the additional water supply.
- Wells may require two or more delay patterns to represent the delay associated with return flows and depletions. The data for both types of delays are specified in the unit response file (*.urm). Note when the sum of return flows to the river is less than 100%, the balance is treated as a loss. Similarly when the sum of depletions to the river is less than 100%, the balance is

- treated as salvage (i.e. water is supplied from sources other than the river such as native evapotranspiration, incidental losses, etc.)
- Wells may cause river flows to go negative when the well's estimated depletion to the river exceeds the streamflow. StateMod treats such an occurrence as an indication that pumping impacts have depleted ground water storage rather than the stream flow. Under such a case, StateMod allows the pumping to occur and accounts for the source of water as originating from ground water storage. This water is presented in the column "From/To GW Stor" for each river node in the diversion summary output (*.xdd) and for the whole basin in the water budget report (*.xwb). Note the quantity of water supplied by ground water storage in a simulation time period is taken out of the stream the next time period before any water allocation occurs. The control file (*.ctl) variable iwell = 2 or 3 allows the repayment of this water to be limited to a maximum amount to represent a stream ground water system that are disconnected. Also, since data for this term is generally not observed, baseflow calculations may be influenced by this lack of data.
- Well information is presented in four columns of the diversion summary report (*.xdd). The column titled "From Well" describes the total amount of water pumped and made available to a diversion. The column titled "Well Depletion" represents the impact of a previous months pumping on the river. The column titled "To/From GW Stor" was described above. The column titled "River by Well" represents the impact of the current months pumping on the river. The "Well Depletion" and "River by Well" data are separated because the impact of a previous months pumping on the river influences the water supply available to all users before any diversions occur while the impact of the current months pumping impacts water rights that are junior to the well only. Note by definition, a well structure that is not tied to a diversion has no data under the column "From Well". However, the columns titled "Well Depletion" and "River by Well" include the impact of all well pumping on the river.

7.5 Available Flow

"Available Flow" is the minimum of the stream flow at that point on the river and all downstream locations. It is often quite different than the physical flow at that point on the river. Within StateMod, "Available Flow" is tracked and adjusted as each water right is operated by priority. However, the "Available Flow" printed to the diversion summary report (*.xdd) is the final value after all water rights have been operated. Therefore, "Available Flow" is the quantity of water that might be available to a future user at that location who would be the most junior in the system.

In addition, the "Available Flow" is often an indicator on why a structure may be shorted. In general, if the reported Available Flow is greater than zero, then a structure may be shorted only if it is limited by capacity or decree. The "Available Flow" may not be an indicator of why a structure is shorted if the structure is controlled by an operating rule or if the user has imposed limits on when the model will be allowed to reoperate (see the variable ireopx in the control (*.ctl) file). The control file (*.ctl) variables *icall* and *ccall* allow a user to evaluate the transient nature of the "Available Flow" value for an individual water right as it is operated in priority.

7.6 Daily Model Approach

The State Model allows a daily analysis to be performed with or without monthly data being provided. In general providing and preparing a monthly model first is recommended for the following reasons:

- The most difficult part of a basin study is understanding the system. By first developing a monthly model, the system operation can be investigated without burdening the user with the volume of information required for a daily model.
- By requiring monthly data daily baseflow generation is not required. Of course if daily baseflows are developed then the sum of daily baseflows will equal monthly baseflow estimates.
- A daily model is typically developed to be able to simulate large and small flow events that occur within a monthly time step. Therefore although daily streamflow data will be required, the user may want to estimate the other terms required for daily analysis, such as diversion demands or reservoir targets, using a simplified approach. As presented in the table below StateMod provides six options to provide daily data as follows: 1. Estimating daily data to be the average of monthly data, 2. Using the same gage ID as a daily pattern, 3. Using another gage's ID as a daily pattern, 4. Providing daily data, 5. Using a pattern developed by connecting the midpoints of monthly data, or 6. Using a pattern developed by connecting the end points of monthly data.

Option #	Distribution Code	Daily ID Code for Station ID	Description	Controlling Data (1)
1	0	0	Daily data are estimated to be the average of monthly data	Monthly
2	1	Station ID	Daily data are estimated using	
3	2	Another Station's ID Daily data are estimated using the daily pattern provided under another station's ID		Monthly
4	3	Daily data are provided in a daily file		Daily
5	4	Daily data are estimated by connecting the midpoints of monthly data.		Monthly
6	5	5	Daily data are estimated by connecting the endpoints of monthly data	Monthly

(1) For example monthly data controls if the sum of daily data does not equal the monthly data

• As described above, if both daily and monthly data are provided for the same structure and the daily data does not sum to the monthly total, the type of daily distribution specified determines which data (monthly or daily) takes precedence. For example, when option 2 is selected, daily data are used to distribute the monthly value to daily values regardless of what the sum of the daily values equal. Similarly, when option 3 is selected and the sum of daily data does equal the monthly value, the daily values are used.

- For the case where a user supplies monthly data and a representative gage to use for daily data the sum of daily data typically equals the monthly total. Daily data may not equal the monthly total if the representative gage with daily data contains all zeros.
- The routing of daily streamflows is accounted for by the gain and loss term that results from the base (natural) stream flows estimated by or provided to the model.
- Routing of reservoir releases are not included because 1. StateMod is a primarily a planning model, 2. The additional detail required to properly implement reservoir releases with a travel time component is not justified since the system would have to include some kind of forecasting to know when a reservoir release is required before a reservoir demand actually occurs and 3. The volume of water potentially delivered early by ignoring a reservoir's travel time is offset by the potential over release that occurs after the demand is satisfied.
- StateMod allows a user to estimate daily demands by providing a monthly total that is decreased each day in the month that a diversion occurs (see the control file (*.ctl) variable *iday*). This "daily decrementing" capability can be important when simulating a ditch with a significant flood right that typically only diverts a few days a month. When this option is used for ditches without a significant flood right, water rights or canal capacity typically limit the amount diverted in a day. When this option is used the ability to limit reservoir release to occur only when an IWR exists is also recommended (e.g. see the operating rule file (*.opr), type 3, variable *iopsou(4,1)*).

StateMod's ability to use or estimate daily data requires the user be extremely careful when assigning a daily for a given structure. Following are four examples successfully used in prior StateMod applications. The first two examples (**Tables 7.6.1 and 7.6.2**) perform a daily analysis using monthly naturalized (base) flow results. The last two examples (**Table 7.6.3 and 7.6.4**) perform a daily analysis by first calculating daily naturalized (base) flows.

Table 7.6.1 is an example used for a typical Historic Calibration run with Monthly Naturalized (Base) flows. It does not perform a daily naturalized (base) flow analysis to estimate daily naturalized (base) flows. Instead it uses monthly naturalized (base) results and disaggregates them to daily values using historic daily data at a stream gage. Daily diversion data are used to estimate daily historic diversion demands and instream flow demands. Interpolation routines are used to estimate daily reservoir targets and well demands. Note that Daily Diversion Demands are typically equal to Daily Historic Diversions for a Historic Calibration run. Also daily instream flow demands often change from one value to another on a specified day of the month that requires daily data.

Table 7.6.1

Typical Daily ID Assignment for a Historic Calibration Run with Monthly Naturalized (Base)

Flows

File	Daily ID	Comment	
River Station (*.ris)	USGS Gage ID	Estimate daily streamflows by distributing Monthly Baseflows to daily values using daily data at a stream gage. Note the monthly	
` ′		totals in the monthly baseflow file (*.rim or *.xbm) control.	
Diversion Station (*.dds)	3	Daily diversion data (*.ddd) is used to estimate Daily Demands. Note the daily data controls.	
Reservoir Station 5		Estimate daily reservoir targets by connecting the endpoints of data in the Monthly Target file (*.eom).	
Instream Flow	3	Daily instream flow demand data (*.ifd) is used to estimate Daily	
Station	3	Demands. Note the daily data controls.	
Well Station	4	Estimated daily well demands by connecting the midpoints of data in the Monthly Well Demand (*.wem) file.	

Table 7.6.2 is an example used for a typical Daily Calculated Calibration or Daily Baseline run. Similar to the Historic Calibration run it does not perform a daily baseflow analysis to estimate daily streamflows. Instead it uses monthly baseflow results and disaggregates them to daily values using historic daily data at a stream gage. Daily data are used to estimate daily instream flow demands. Interpolation routines are used to estimate daily diversion demands, daily reservoir targets and well demands. Note that Daily Diversion demands are estimated using an interpolation approach because it is the most appropriate technique to estimated future daily diversion demands. Also the approach used to estimate daily reservoir targets, instream flow demands and well demands are the same as those used in **Table 7.6.1**.

Table 7.6.2
Example Daily ID Assignment for a Daily Calculated Calibration or Daily Baseline Run with Monthly Baseflows

File	Daily ID	Comment
River Station		Estimate daily streamflows by distributing Monthly Baseflows to
(*.ris)	USGS Gage ID	daily values using daily data at a stream gage. Note the monthly
(*.118)		totals in the monthly baseflow file (*.rim or *.xbm) control.
Diversion	4	Estimated daily diversion demands by connecting the midpoints
Station (*.dds)	4	of data in the calculated monthly demand (*C.ddm) file.
Reservoir	5	Estimate daily reservoir targets by connecting the endpoints of
Station	3	data in the calculated monthly reservoir target file (*C.tam)
Instream Flow	2	Daily instream flow demand data (*.ifd) is used to estimate
Station	3	Daily Demands. Note the daily data controls.
Well Station	4	Estimated daily well demands by connecting the midpoints of
Well Station	4	data in the Monthly Well Demand (*.wem) file.

Table 7.6.3 is an example used for a Daily Historic Calibration Run with Daily Naturalized (Base) Flows. Unlike the example described in Table 7.6.1 this example does perform a daily baseflow analysis to estimate daily streamflows. Note that daily data are used for streamflow, diversions and instream flows. Interpolation routines are used to estimate daily reservoir contents and daily reservoir targets. An interpolation approach is used for reservoirs and wells because daily reservoir and well data are typically unavailable.

Table 7.6.3
Example Daily ID Assignments for a Daily Historic Calibration Run with Daily Naturalized (Base) Flows

File	Daily ID	Comment
		For the naturalized flow (baseflow) run, use the daily streamflow
River Station		data located in the Daily Historic Streamflow file (*.riy). For a
(*.ris) for Natural	3	simulation run, use the daily naturalized (baseflow) streamflow
Flows		data located in the Daily Streamflow file (*.rid or *.xby) created
		by the daily baseflow module.
Diversion Station		For the naturalized flow (baseflow) run, use the Daily Historic
(*.dds) for	3	Diversion data (*.ddy) to estimate daily historic diversions. For
Baseflows		the simulation run, use the Daily Diversion Demand data (*.ddd)
Dasellows		to estimate daily historic demands.
		For the naturalized flow (baseflow) run, estimate daily reservoir
Reservoir Station	5	end-of-day contents by connecting the endpoints of data in the
Reservoir Station	J	monthly reservoir target file (*.eom). For the simulation run,
		estimate daily reservoir targets by connecting the endpoints of

		data in the Monthly Reservoir Target file (*.tam).
Instream Flow Station	3	For the naturalized flow (baseflow) run, instream flows are not required because they are non consumptive. For the simulation run, use daily instream flow demand data (*.ifd).
Well Station	4	Estimated daily well demands by connecting the midpoints of data in the Monthly Well Demand (*.wem) file.

Table 7.6.4 is an example used for a Daily Calculated or Baseline Run with Daily Naturalized (Base) Flows. Unlike the example described in Table 7.6.2 this example does perform a daily baseflow analysis to estimate daily streamflows. Note that the naturalized (base) runs use daily data for streamflow and diversions. The simulation run uses an interpolation routine for diversion demands and well demands because it is the most appropriate technique to estimate future daily diversion demands. Using a different approach for diversions during a naturalized (base) flow run and a simulation run, requires a different diversion station file be used for each. Interpolation routines are again used to estimate daily historic reservoir contents and daily reservoir targets for both the naturalized (base) and simulation runs because daily reservoir data are typically unavailable.

Table 7.6.4
Example Daily ID Assignments for a Daily Calculated or Baseline Run with Daily Naturalized (Base) Flows

File	Daily ID	Comment		
		For the naturalized flow (baseflow) run, use the daily		
River Station		streamflow data located in the Daily Historic Streamflow file		
(*.ris) for Natural	3	(*.riy). For a simulation run, use the daily naturalized		
Flows		(baseflow) streamflow data located in the Daily Streamflow file		
		(*.rid or *.xby) created by the daily baseflow module.		
	3 for a	For the naturalized flow (baseflow) run, use the Daily Historic		
Diversion Station	naturalized	Diversion data (*.ddy) to estimate daily historic diversions. For		
(*.dds) for	(base) flow run	the simulation run, use the Daily Diversion Demand data		
Baseflows	and 4 for a	(*.ddd) to estimate daily historic demands.		
	simulation run			
		For the naturalized flow (baseflow) run, estimate daily reservoir		
		end-of-day contents by connecting the endpoints of data in the		
Reservoir Station	5	monthly reservoir target file (*.eom). For the simulation run,		
		estimate daily reservoir targets by connecting the endpoints of		
		data in the Monthly Reservoir Target file (*.tam).		
Instream Flow		For the naturalized flow (baseflow) run, instream flows are not		
Station	3	required because they are non consumptive. For the simulation		
Station		run, used daily instream flow demand data (*.ifd).		
		For both the naturalized flow (baseflow) run and the simulation		
Well Station	4	run estimated daily well demands by connecting the midpoints		
		of data in the Monthly Well Demand (*.wem) file.		

7.7 Daily Vs. Monthly Results

One activity performed during the validation of StateMod's daily algorithms compared the results of a daily model to a monthly model by dividing all appropriate daily terms (demands, streamflows and

delay patterns) by the number of days in a month (see example ex1d.*). Results were found to be significantly different, with the daily model providing less water than a monthly model because a monthly model allows all immediate (same month) return flows to be available to a junior diverter while a daily model is limited by the amount that returns on day 1, day 2, day 3, As shown below for a 30 day month, a monthly model that diverts 1,000 ac-ft at 50% efficiency and return 50% in the immediate (diverting) month will have 250 ac-ft available to a junior diverter. A daily model that returns 50% in the immediate (diverting) day will have only 129.167 ac-ft available to a junior diverter in that month.

```
Monthly Total (1,000*.50*.50) = 250 ac-ft

Day 1 = (1,000/30*.50*.50/30) = 0.2778 ac-ft

Day 2 = Day 1 + 0.2778 = 0.5556 ac-ft

Day 3 = Day 2 + 0.2778 = 0.8333 ac-ft

...

Daily Total = 129.167 ac-ft
```

Note, 1. The daily results presented above can be easily replicated in a spreadsheet, 2. Daily results could more closely match monthly results if the appropriate daily return pattern is known. The above example, that estimated the daily pattern to be a monthly pattern divided by the number of days, is probably unrealistic. 3. The difference between a daily and monthly model decrease significantly after 1-2 months of an irrigation season.

7.8 Direct Solution Algorithm

StateMod calculates the amount of water diverted according to the following Direct Solution Algorithm:

Diversion = Min (Capacity, Physically Available, Legally Available, Demand)

Where:

Capacity is self-explanatory.

Physically Available is the minimum of available flow plus immediate return flows at the diversion and all downstream nodes.

Legally Available is the water right.

Demand is self-explanatory.

Following is an example using the simple 5 node network presented in the following figure. As shown in the figure, Dem_1 returns to ISF_1. Similarly Dem_2 returns to Dem_1; Dem_ returns to; and ISF_1 is located at –the bottom of the river system. For simplicity, this example uses average efficiency and assumes the capacity and legal availability are not limiting. Also, calculations are shown only at river nodes where a diversion or instream flows are located. Following are other key data:

Table 7.8
Direct Solution Algorithm Data

Structure	Priority	Location	Demand	Average Efficiency (%)	Immediate Return (%)
Dem_1	1	Dem_1	2,000 ac-ft	20	40
Dem_2	2	Dem_2	3,000 ac-ft	50	50
Dem_3	3	Dem_3	1,000 ac-ft	50	50
ISF_1	4	ISF_1 to ISF.01	65 cfs	0 (1)	100 (1)

The following sequence of steps corresponds to the water right loop that occurs for each time step within StateMod. They demonstrate a key component of the Direct Allocation Algorithm that allows the diversion to be calculated directly as a function of the available flow and immediate return flows without having to iterate.

Step 1 Priority 1 M&I Diversion at Dem_1 wants 2000 AF

Because capacity and legal availability (water right) are assumed to not limit the diversion by Dem_1 is the minimum of the physically available water (available flow at Dem_1 and every other river node downstream) and the demand. Since the minimum available flow is 4,000 and the demand is 2,000, a diversion of 2,000 is allowed using the following formula:

Diversion = Min (Capacity, Physically Available, Legally Available, Demand)

Immediate return flows are then calculated and the available flow adjusted for the next priority as follows (Note as shown in Table 1 Dem_1 has an efficiency of 20% an immediate return percent of 40% and returns water to ISF_1).

Return = Divert * (1.00 - efficiency) * (immediate return)

Return = 2000 * (1.00 - .20) * (.40) = 640

Result Priority 1 (Dem_1) diverts 2000 AF and available flow is adjusted to include immediate return flows (see Available Flow-2)

River ID	Available Flow-1	Diversion (-)	Immediate Returns (+)	Available Flow-2
Dem_3	1000	0	0	1000
Dem_2	3000	0	0	3000
Dem_1	4000 (1)	2000	0	2000
ISF_1	4000	2000	640	2640

(1) Minimum of Available Flow plus Immediate Returns occurs at this river node

Step 2 Priority 2 Irrigation Diversion at Dem_2 wants 3000 AF

Recall that the capacity and legal availability (water right) are assumed to not limit. Therefore, the diversion by Dem_2 is the minimum of the physically available water (available flow) and the demand. Since the minimum available flow is 2,000 at Dem_1 and the demand is 3,000 the diversion is limited to the available flow. This structure may benefit from immediate return flows as follows.

Divert = Min(Available Flow + Return)

Return = Divert * (1.00 - efficiency) * (immediate return)

Divert = Available Flow + Divert * (1.00-efficiency) * (immediate return)

Divert = Available Flow + Divert *.25

Divert = Available Flow / 0.75

Divert = 2000 / .75 = 2667

Immediate return flows are then calculated and the available flow adjusted for the next priority as follows (Note as shown in Table 1 Dem_2 has an efficiency of 50% an immediate return percent of 50% and returns water to River ID 60).

Return = Divert * (1.00 - efficiency) * (immediate return)

Return = 2667 * (1.00 - .50) * (.60) = 667

Result Priority 2 diverts 2667 AF and available flow is adjusted to include immediate return flows (see Available Flow-2)

River ID	Available Flow-1	Diversion (-)	Immediate Returns (+)	Available Flow-2
Dem_3	1000	0	0	1000
Dem_2	3000	2667	0	333
Dem_1	2000 (1)	2667	667	0
ISF_1	2640	2667	667	640

(1) Minimum of Available Flow plus Immediate Returns occurs at this river node

Step 3 Priority 3 Irrigation Diversion at Dem_3 wants 1000 AF

Recall the capacity and legal availability (water right) are assumed to not limit. Therefore, the diversion by Dem_1 is the minimum of the physically available water (available flow) and the demand. Since the minimum available flow is 0 at Dem_1 the diversion is zero. Note because the available flow is zero and this structure cannot benefit from any immediate return flows.

Result Priority 3 diverts 0 AF and available flow is the same (see Available Flow-2)

Note the available flow is 0 at Dem_1 that confirms the structure took the maximum possible without driving the river negative.

River ID	Available Flow-1	Diversion (-)	Immediate Returns (+)	Available Flow-2
Dem_3	1000	0	0	1000
Dem_2	333	0	0	333
Dem_1	0 (4)	0	0	0
ISF_1	640	0	0	640

(4) Minimum of Available Flow plus Immediate Returns occurs at this river node.

Step 4 Priority 4 Instream Flow Demand at ISF_1 wants 65 cfs (3898 AF)

Recall that the capacity and legal availability (water right) are assumed to not limit. Therefore, the diversion by ISF_1 is the minimum of the physically available water, available flow at ISF_1 and every other river node downstream and the demand. Since the minimum available flow is 640 and the demand is 3,898, a diversion of 640 is allowed using the following formula:

Diversion = Min (Capacity, Physically Available, Legally Available, Demand)

Result Priority 4 diverts 640 AF and available flow is adjusted to include immediate return flows (see Available Flow-2)

Note priority 4 diverted water while priority 3 did not. That occurs because of where the diversion is located versus where water is physically available.

River ID	Available Flow-1	Diversion (-)	Immediate Returns (+)	Available Flow-2
Dem_3	1000	0	0	1000
Dem_2	333	0	0	333
Dem_1	0	0	0	0
ISF_1	640 (5)	640	640	640

(5) Minimum of Available Flow plus Immediate Returns occurs at this river node.

In summary the Direct Solution Algorithm is as follows:

For every water right

1. Estimate the diversion using Available flow as a surrogate for as physically available flow using the following:

Diversion = Min (Capacity, Physically Available, Legally Available, Demand)

Where available flow is evaluated at every river node from the diversion downstream

- 2. If the diversion is not limited to available flow the diversion is known and goes to step 4.
- 3. If the diversion is limited to available flow, calculate physically available flow at every downstream node using the following:

Divert = min(Available Flow / (1.00-efficiency) * (immediate return))

Where physical availability includes the location and the % of each immediate return flow to be known.

- 4. Calculate return flows, adjust available flow and go to next water right.
- 5. Go to Step 1 for next right.

7.9 Modified Direct Solution Algorithm

In order to allow StateMod to operate with a variable efficiency and soil moisture storage the Modified Direct Solution Algorithm was developed (Bennett, Ray R. December 2000). The following enhancements were required.

- StateMod must be provided a maximum efficiency value. This is implemented by setting the control file (*.ctl) variable *ieffmax* = 1 and providing maximum efficiency data for each structure for each year in the annual time series file (*.ipy). Note this file is formatted to be the same as the annual time series file used by the consumptive use model, StateCU, except annual irrigated acreage has been added to the end of the file, column 10.
- StateMod must be provided a structure's Consumptive Use Requirement (CUR). This was implemented by setting the control file (*.ctl) variable *itsfile* = 3 or 10. Note for non-agricultural water rights, the CUR is simply the consumptive, not total, demand.
- The Direct Solution Algorithm was revised as follows:

The Modified Direct Solution Algorithm is as follows:

For every water right:

1. Estimate the diversion using Available flow as a surrogate for physically available flow using the following:

Diversion = Min (Capacity, Physically Available, Legally Available, Demand)

Where available flow is evaluated at every river node from the diversion downstream

2. If the diversion is not limited by available flow the maximum diversion is known.

- 2a. Calculate consumptive use as the minimum (Diversion * maximum efficiency, CUR), soil moisture storage as diversion less consumptive use up to the maximum efficiency and soil moisture capacity, total return flow as the Diversion consumptive use soil moisture storage, immediate return flow as the total return flow * immediate return %, and adjusted available flow as available flow less the diversion plus any immediate returns.
- 2b. Go to Step 1 for next water right.
- 3. If the diversion is limited to available flow the maximum diversion could include benefit from immediate return flows.
- 3a. Calculate diversion at every downstream node using the following: (Note by using maximum efficiency the minimum diversion, maximum consumptive use and minimum return flow are calculated.

Divert = min(Available Flow / (1.00-max. efficiency) * (immediate return))

Where physical availability includes the location and the percent of each immediate return flow.

- 3b. Calculate consumptive use as the minimum (Diversion * maximum efficiency, IWR), soil moisture storage as zero, total return flow as the Diversion consumptive use, immediate return flow as the total return flow * immediate return %, and adjusted available flow as available flow less the diversion plus any immediate returns.
- 3c. If the diversion is limited to available flow the maximum diversion has been calculated. Go to Step 1 for the next water right.
- 3d. If the diversion is not limited to the available flow, more water can be diverted but no additional CU can occur (Step 3b ensures the maximum consumptive use has occurred). Therefore the diversion can be increased as follows (Note the diversion is still limited to the water right, capacity and demand).

Divert = Divert + minimum (available flow / immediate return flow)

- 3e. Calculate consumptive use as the minimum (Diversion * maximum efficiency, CUR), soil moisture storage as diversion less consumptive use up to the maximum efficiency and soil moisture capacity, total return flow as the Diversion consumptive use soil moisture storage, immediate return flow as total return flow * immediate return %, and adjusted available flow as available flow less the diversion plus any immediate returns.
- 3f. Go to Step 1 for next water right.

7.10 Demand Considerations

StateMod allows demands for direct diversions and wells to be specified by structure as a total or as an irrigation water requirement by month or by year (12 values repeated year after year). The following are noted:

- When a total demand is provided for a direct diversion structure the variable *idvcom* of the direct diversion station file (*.dds) should be set to 1 for monthly data and 2 for annual data. Similarly for a well structure the variable *idvcomw* of the well station file (*.wes) should be set to 1 for monthly data and 2 for annual data (annual data option for wells is reserved but not yet active). By providing total demand data StateMod recognizes that a structures demand includes inefficiencies associated with conveyance and on farm irrigation practices. The fate of inefficient water is controlled by the return flow data provided. This standard approach is recommended when wells are not part of an analysis.
- When an irrigation water requirement is provided for a direct diversion structure the variable *idvcom* of the direct diversion station file (*.dds) should be set to 3 for monthly data and 4 for annual data. Similarly for a well structure the variable *idvcomw* of the well station file (*.wes) should be set to 3 for monthly data and 4 for annual data (annual data option for wells is reserved but not yet active). By providing an irrigation water requirement as demand data StateMod recognizes that a structure's demand does not includes losses associated with conveyance and on farm irrigation practices. Therefore these adjustments are done within StateMod "on the fly" using the efficiency data provided in the direct diversion station file (*.dds) and the well station file (*.wes). The fate of inefficient water is controlled by the return flow data provided. This approach is recommended when wells are part of an analysis since the system efficiency associated with surface water and ground water are often significantly different.
- When wells are being simulated, the control variable *icondem* of the control file (*.ctl) controls how demand data are provided to and treated by StateMod.
 - **Historic Demand Approach**. Set *icondem* = 1 to indicate surface water demands are provided in the diversion demand file (*.ddm), well demands are provided in the well demand file (*.wem) and no addition to determine a total structure demand occurs. This means that any surface water shortages cannot be supplied by ground water and vice versa. Also, the diversion and well station demand type variables (*idvcom* and *idvcomw*) are typically set to 1 or 3 which means monthly total demands (1) or monthly Irrigation Water Requirement demands (3) will be provided. Note this option is typically used during a historic model calibration when historic diversions and pumping are known.
 - **Historic Sum Demand Approach** . Set *icondem* = 2 to indicate surface water demands are provided in the diversion demand file (*.ddm), well demands are provided in the well demand file (*.wem) and they are added together to determine a total structure demands. This means that any surface water shortages for a structure can be supplied by ground water and vice versa. The priority of the surface and ground water rights (limited by water right, capacity, etc.) dictates which source (surface water or ground water) will try to supply water. Also, the diversion and well station demand type variables (*idvcom and idvcomw*) is typically set to 1 or 3 which means monthly total demands (1) or monthly Irrigation Water Requirement demands (3) will be provided in the monthly well demand file (*.wem). This option is typically used during a calculated calibration to quantify the impact of what occurs when priorities dictate the water supply source.

- structure Demand Approach. Set *icondem* = 3 to indicate one demand is provided for structures served by both surface and ground water in the direct diversion demand file(s) (*.ddm and .dda). For well only lands demand is provided in the well demand file (*.wem). Similar to when *icondem* = 2, this means that any surface water shortages for a structure can be supplied by ground water and vice versa. The priority of the surface and ground water rights (limited by water right, capacity, etc.) dictates which source (surface water or ground water) will try to supply water. Also, the well station demand type variable (*idvcomw*) is typically set to 6 which means demands will be provided in the direct diversion demand file (.ddm) and no demand data are expected in the monthly well demand file. The diversion station demand type variable (*idivcom*) dictates if the data provided in the monthly demand file (*.ddm) is total demand or Irrigation Water Requirement. This option is typically used during a calculated model calibration and a baseline run when a structure's total demand is known but the mixture of surface water and ground water supplies is not.
- **Supply Demand Approach**. Set *icondem* = 4 to indicate data are provided in the same way as when icondem=3 (e.g. for structures with both a surface and ground water supply one demand is provided in the direct diversion demand file(s) (*.ddm) and for well only lands demand is provided in the well demand file (*.wem)). Named the "Supply Demand Approach", this method requires the variable efficiency method be operational (control variable *ieffmax=1*). It allows surface water and ground water demands to operate somewhat independently. Like all demand options surface and ground water use under the Supply Demand Approach are dictated by the priority of each source and when diversion or pumping occurs the structures CIR is reduced as a function of the efficiency of the supply source. The Supply Demand Approach allows surface water to be diverted up to the user-supplied demand even if there is no CIR. Ground water is only allowed to pump when a CIR exists. This option is typically used during a calculated model calibration and a baseline run to better match historic operations. Its net effect is to 1. Divert surface water up to the user specified demand when available and in priority regardless of how efficient or inefficient that surface water will be used, and 2. Pump ground water only when there is a CIR. Note it operates most effectively in conjunction with the sprinkler option which allows a structure to pump preferentially on lands with sprinklers but still divert surface water to meet both CIR and recharge demands.
- **Decreed Demand Approach**. Set *icondem* = 5 to indicate data are provided in the same way as when icondem=3 or 4 (e.g. for structures with both a surface and ground water supply one demand is provided in the direct diversion demand file(s) (*.ddm) and for well only lands demand is provided in the well demand file (*.wem)). Named the "Decreed Demand Approach", this method requires the variable efficiency method be operational (control variable *ieffmax=1*) and operates surface and ground water supplies exactly the same as when icondem=4. In addition, the Decreed Demand Approach overrides demand data provided for structures with both surface and ground water supplies to equal the total of their surface water decrees if there is a CIR in that time step. Like the Supply Demand Approach, the Decreed Demand Approach 1. Allows surface water to be diverted up to the user-supplied demand (water rights) even if there is no CIR and 2. Allows ground water to be pumped only when a CIR exists. This option is typically used during a calculated model calibration and a baseline run to better match historic operations. Note it operates most effectively in conjunction with the sprinkler option which allows a structure to pump preferentially on lands with sprinklers but still divert surface water to meet both CIR and recharge demands.

Note that the Supply Demand Approach (icondem=4) and Decreed Demand Approach (icondem=5) could be extended to assist in determining when to use reservoir supplies (i.e. only make a reservoir release if a CIR exists). StateMod allows reservoir releases to occur only when an IWR exists by specifying the efficiency of water use (variable iopsou(2) of the operation right file) to the reservoir efficiency.

7.11 Variable Efficiency Considerations

StateMod allows efficiency to vary from 0 to a user specified maximum value. The following are noted:

- Variable efficiency uses the Modified Direct Solution Algorithm (Section 7.9).
- Variable efficiency requires the control file (*.ctl) variables *itsfile* and *ieffmax* be set appropriately. When the control variable *itsfile* is set to 3 or 10 conveyance, maximum flood and sprinkler efficiency data provided by structure and year are used. When the control variable *ieffmax* is set to 1, irrigation water requirement (IWR) data provided for every diversion and well only structure by year is used.
- Variable efficiency capability calculates the maximum system efficiency for a diversion to be the conveyance efficiency times the maximum flood efficiency provided in the annual time series file (*.ipy).
- Variable efficiency capability calculates the maximum system efficiency for a well to be the
 maximum flood efficiency or maximum sprinkler efficiency provided in the annual time series
 file (*.ipy). The control file variable *isprnk* controls whether flood or sprinkler efficiency data
 are used. Sprinkler efficiency is used preferentially up to the acres served by sprinklers.
 Thereafter, any remaining acres served by wells are served by using the maximum flood
 efficiency.
- Variable efficiency capability applies to all direct diversion, well pumping and carrier to diversion structure operations.
- Variable efficiency capability uses data in the irrigation water requirement (IWR) file (*.iwr), even if diversion data are provided as IWR data. This allows the model to attempt to provide a demand that is significantly greater than a structure's irrigation water requirement times its maximum efficiency.
- Variable efficiency capability and its associated efficiency data provided in the annual time series file (*.ipy) override the efficiency data provided in the diversion station (*.dds) file and well station (*.wes) file. When the variable efficiency capability is used, the efficiency data provided in the diversion station (*.dds) file and well station (*.wes) file is only used to calculate a headgate or well head demand when demand data are provided as a consumptive irrigation requirement.
- Variable efficiency can be used with or without soil moisture storage (see Section 7.13).

7.12 Priority of Water Use by Wells Serving Sprinklers

StateMod allows the priority of water use by wells serving sprinklers to be specified by the user. The following are noted:

- For both baseflows and simulations, the Priority of water use by wells requires the control file (*.ctl) variables *itsfile* and *ieffmax* be set appropriately. When the control variable *itsfile* is set to 4 or 10 the sprinkler acre and efficiency data provided by structure and year are used. When the control variable *ieffmax* is set to 1, irrigation water requirement (IWR) data provided for every diversion and well only structure by year is used. In addition, the annual time series file (*.ipy) variable *gwmode* controls the priority of wells serving sprinklers using two approaches; Maximum Supply and Mutual Supply. As described in Section 4.39, the Maximum Supply Mode (*gwmode* = 1) allows a structures demand to be served by wells with sprinklers first, then surface water, then wells with flood irrigation. The Mutual Supply Mode (gwmode = 2) serves a structures demand by surface water first, wells with sprinklers first, then surface water, then wells with flood irrigation
- During a simulation run a Sprinkler Use operating rule (type 21, Section 4.13.21) must be used to specify the administration number (priority) of sprinkler well use. This allows the user to quantify what "first" means for the Maximum Supply Mode (wells with sprinklers first). If an operating rule is not provided, well water rights operate in a simulation mode using data provided in the well water right (*.wer) file and sprinkler use is controlled by the control file (*.ctl) variable *isprnk*.
- During a baseflow run operating rule data are never read. Therefore baseflows are calculated using a maximum Supply Mode if the annual time series file (*.ipy) variable *gwmode* is set to 1 and the control file (*.ctl) variables are set as follows: *itsfile* = 10, *ieffmax* = 1, *isprnk* = 1. If any of the above are not set appropriately the Mutual Supply mode is used.

7.13 Soil Moisture Accounting

The State Model has the ability to include soil moisture as a water supply. The following are noted:

• The soil moisture capacity is calculated as follows:

```
SM = D * A * C
```

Where:

SM = Soil Moisture

D = Soil Depth (typically 0-3 feet)

A = Area (data provided in the annual time series (*.ipy) file).

C = Soil Moisture Capacity (data provided in the soil parameter (*.par) file)

- The Soil Moisture option allows water to be stored in the soil zone up to its capacity and the diverting structures (direct diversion or well) efficiency.
- StateMod initializes the soil moisture reservoir contents to be 50% of the soil moisture capacity.
- If the irrigated area of a structure is reduced from one year to the next and the resulting soil moisture capacity is exceeded any water in excess of the capacity is estimated to be a loss from attributed to that structure.
- The Soil Moisture option requires the variable efficiency option (see Section 7.11) be used.
- The Soil Moisture option operates in both the simulation and baseflow modes.
- In a simulation mode, the Soil Moisture option uses an operating rule to specify an administration date that controls when water is available to be taken out of the soil zone to

- satisfy a consumptive (not total) demand. In order to represent water use when historic diversions are provided as a demand this operating rule allows water to be taken out of the soil zone when a structure's consumptive irrigation water requirement exists even if the user has specified the structures demand to be zero.
- In the baseflow mode, the Soil Moisture option takes water out of the soil zone to satisfy a consumptive (not total) demand after surface water and well water use occurs. In order to represent water use in a baseflow mode water can be taken out of the soil zone when a structure's consumptive irrigation water requirement exists even if the user has specified the structures diversion and pumping to be zero.

7.14 Distribution of Reservoir Water Rights to Accounts

The State Model has the ability to assign a reservoir (storage) right to one or more accounts. The following are noted:

- To assign a reservoir water right to a specific account the variable *iresco* of the reservoir right file (*.rer) is set to the account number specified in the reservoir station file (*.res).
- To assign a reservoir water right to serve all accounts the variable *iresco* of the reservoir right file (*.rer) is set -n where n is the first n accounts specified in the reservoir station file (*.res). When storage occurs water is distributed accordingly to the ratio of space available in each account. For example if 30,000 AF is diverted to two accounts that have 20,000 AF and 40,000 AF of space available (account capacity current capacity); the first account will receive 10,000 AF and the second will receive 20,000 AF. Note if a reservoir fills in most years this approach to distribute reservoir water rights typically works well. However, this approach can result in one reservoir account receiving what may be determined to be an inappropriate share of a reservoirs water right; simply because they typically have less of their available space in use. For such a case it is recommended the storage right be broken into a number of sub-rights which are assigned to each account directly. This approach has the additional benefit of being able to properly implement the one-fill rule between accounts.

7.15 Reservoir Demands

The State Model has several operating rules that allow water to be released from a reservoir to a direct flow diversion including operating rule types 2, 3, 4, 10, 11 and 14. The following are noted:

- Releases are limited to available water in the source reservoir and account, the capacity of the structure, the maximum flow in the river, and the structure demand. For a type 4, Exchange, reservoir releases are limited to the exchange potential in the intervening reach.
- When the variable efficiency option is not used (i.e. variable *ieffmax* = 0 from the control (*.ctl) file) reservoir deliveries equal the ditch's demand when the operating right fires. This option is always used when the variable efficiency option is not used and may be useful for a historic calibration run.
- When the variable efficiency option is used (i.e. variable ieffmax = 1 from the control (*.ctl) file) reservoir deliveries when the operating right fires are limited as follows:

Demand = min(D, CIR/n)

Where D = the ditch's demand when the operating right fires

CIR = the structures Consumptive Irrigation requirement

n =the efficiency specified as variable iopsou(4,1) in the operating rule control file. Note n is limited to not exceed the maximum efficiency of the structure to minimize reservoir operations.

This option can be used only when the variable efficiency option is used and is appropriate for a calculated calibration.

7.16 Detailed Call Data

The State Model has the ability to print detailed call data for a diversion, reservoir or instream flow by setting the control file (*.ctl) call variable (icall) = 1 and the call right variable (ccall) to the water right of interest. The following are noted:

- Detailed call output is limited to a diversion, reservoir or instream flow right (i.e. operating rules and wells are not currently supported).
- Results are printed to the *.log file for each iteration. Note that the call can change during a time step if new water (e.g. reservoir releases and non-downstream return flow) become available (see Section 7.17 for additional discussion). Therefore results are printed for every iteration of every time step and the volume of output can be quite large.
- Although the output is limited to when a decree is operating, the volume of water reported as diverted in the detailed output is for the entire structure, not just the right.

7.17 Model Reoperation

System operations, return flows to non-downstream river nodes, and well pumping have the potential to add "new water" to a river which might be available to a senior water right. For example, when a reservoir releases water to meet a target storage level, additional water may become available to a senior downstream right. Similarly, if a ditch returns water to a neighboring non-downstream tributary, a senior ditch on that tributary may use those return flows. Finally when the return flow associated with well pumping exceeds its depletion to the river, additional water may become available to a senior downstream right. The following are noted:

- When "new water" becomes available because of a system operation, non-downstream return flow or net accretion, the model automatically reoperates all water rights in priority in order that senior rights may benefit from the additional water supply.
- The user can control the number of iterations by adjusting the control (*.ctl) file reoperation variable (*ireopx*). This variable allows the user to turn off the reoperation capability or specify a volume before reoperation occurs. Both of these activities can impact results but may be an

- efficient method of operation if the user is interested in testing a new structure or feature and performance is an issue.
- If the user wants to force a reoperation at a specific administration date, a type 12 operating rule can be specified.

7.18 San Juan Recovery Program RIP

The State Model has the ability to simulate the San Juan River Recovery Program Recovery Implementation Plan (SJRIP). The following are noted:

- The SJRIP is implemented by turning on the control (*.ctl) file San Juan Recovery variable (*isjrip*) to 1.
- The SJRIP requires a file of perturbation data provided by a sediment transport analysis to be added to the response (*.rsp) file and provided as input to the model.
- The SJRIP requires a type 20 operating rule be specified.
- Additional details of the SJRIP can be obtained from the report JSRIP Hydrology Model Documentation (March 24, 2000) or by contacting the Colorado Water Conservation Board.

7.19 Model Performance

The State Model performance depends on a number of factors including the computer speed, time step (daily or monthly), delay table size, number of river nodes, number of water rights, reservoir operations, and reoperation control. In general the bigger the model (nodes, diversions, etc.) and smaller the time step (daily Vs monthly) the slower. The following table presents some recent performance information for a relatively large model developed for the Rio Grande basin in Colorado (see Table 7.19.1). As presented in Table 7.19.2 a monthly model ranges from 0.06 to 0.35 minutes per year on two different machines. Similarly a daily ranges from 0.24 to 3.13 minutes per year on a faster machine with a different sized delay table.

Table 7.19.1
Performance Example Model Size

Item	Number
River Nodes	702
Diversions	435
Reservoirs	22
Instream Flow Reaches	30
Well Only Lands	322
Total Water Rights	2,870

Table 7.19.2 Performance Data

Machine	Time Step	Max Delay Table Size	Performance (min/yr)
P-III 486 MHz	Monthly	240 months	0.35
P-III 486 MHz	Daily	240 days	2.40

P-III 486 MHz	Daily	87,600 days	24.4
P-IV 1.5 GHz	Monthly	240 months	0.06
P-IV 1.5 GHz	Daily	240 days	0.24
P-IV 1.5 GHz	Daily	87,600 days	3.13

7.20 Replacement Reservoir Operations

The general replacement reservoir operating rule (type 10) provides a method to supply reservoir water to a large number of structures without supplying individual operating rules for each. The replacement reservoir operating rule checks whether reservoir replacement water will be supplied to a diversion by a direct reservoir release or exchange. The replacement reservoir-operating rule has generic applications but was originally developed to handle the replacement reservoir obligations of Green Mountain Reservoir in the Colorado River Basin. Additional details associated with its operation are as follows:

- It serves all water rights which are senior to its Administration number which have variable the variable "ireptyp" of the Direct Diversion Station File (*.dds) set to offset a diversion (1) or a depletion (-1).
- The ability to release for depletion is currently only active for exchanges (i.e. it is not operational for a direct reservoir to diversion release). The impact of this limitation is offset by StateMod's ability to reoperate after every reservoir release.
- When more than one replacement reservoir is specified, they are sorted by Administration number and operate by priority, most senior first.
- The replacement reservoir-operating rule applies to direct flow structures only. Therefore carrier systems must be tied to a replacement reservoir directly.
- The need to call a replacement reservoir is checked after every direct flow water right is operated. Replacement operations are called only if the right is senior to the most senior replacement reservoir's administration number and it is water short. The replacement routine then checks if a replacement can be provided and ensures that the replacement amount does not exceed the structure's water right, capacity and demand.
- The replacement reservoir operating rule logic is controlled by subroutine Replace. This routine organizes and calls standard StateMod subroutines that control a direct reservoir release (DivresP2) and a reservoir exchange (DivrplP). Therefore reservoir operations are exactly the same when a reservoir operates as a replacement reservoir as they are when the reservoir operates as a standard reservoir.
- Total releases from a replacement reservoir can be limited to monthly or annual volumetric limits (see Section 7.38 Reservoir Release Limits).

7.21 Binary Output Files

StateMod prints a variable number of direct access binary output files, depending on the types of structures and time step (monthly or daily) being simulated. This section describes the contents of the three major structure types (direct diversion, reservoir and wells) for both monthly and daily time steps.

7.21.1 Monthly Binary Direct Diversion File

StateMod prints a monthly direct access binary diversion binary file (*.b43) that describes water use at each river node. The record length is 160 bytes. The units of every data value are ft**3/s. This section describes the content of that file. Note the data presented in bold was added with StateMod Version 11.0. A typical read statement is as follows:

```
Irecs = ((iy-iystr0)*12 + (im-1))*numsta + is + numtop
Read(43,rec=irecs) (dat(i), i=1,ndiv)
Where:
   Irecs
              = the binary record to read
              = the year of interest
   iy
   iystr0
              = the starting year
              = the month of interest
   im
              = the total number of stream nodes
   numsta
              = the stream node of interest
              = the total number of header cards
   numtop
                    (numsta+numdiv+numifr+numres+numrun+numdivw+5+3*maxparm+2)
   dat(i)
              = the data read
              = the number of diversion data elements (maxparm)
   ndiv
```

Row-data 1-1 1-2 1-3	Variable CodeName ver Vdate	Description Program Name Program version Program version date
Row-data	Variable	Description
2-1	iystr0	Beginning year of simulation
2-2	iyend0	Ending year of simulation
Row-data	Variable	Description
3-1	numsta	number of river nodes
3-2	numdiv	number of diversions
3-3	numifr	number of instream flows
3-4	numres	number of reservoirs
3-5	numown	number of reservoir owners (active and inactive)
3-6	nrsact	number of active reservoirs
3-7	numrun	number of base flows
3-8	numdivw	number of well structures (D&W and Well
3-0	iiuliai v w	only)
3-9	numdxw	number of well only structures
3-10	maxparm	number of parameters for a diversion,
		reservoir and well
3-11	ndiv0	number of data elements in the *.b43
		output file
3-12	nres0	number of data elements in the *.b44
2 10	10	output file
3-12	nwelO	number of data elements in the *.b45
		output file
Row-data	Variable	Description

e.g. xmonam(1) = Jan for a calendar yr.
xmonam(1) = 10 for a water year, etc.

Row-data Variable Description

5-1 mthday(1-12) Days per month

(e.g. if xmonam(6) = June mthday(6)=30
if xmonam(6) = March mthday(6) = 31

Row-data Variable Description
6-1 j Counter
6-2 cstaid(j) Station ID
6-3 stanam(I,j), I=1,6) Station Name

Repeat for j=1, numsta (number of river nodes)

Row-data Variable Description

7-1 j Counter

7-2 cdivid(j) Diversion ID

7-3 divnam(I,j), I=1,6) Diversion Name

7-4 idvsta(i) River Node

Repeat for j=1, numdiv (number of diversions)

Row-data Variable Description

8-1 j Counter

8-2 cifrid(j) Instream flow ID

8-3 xfrnam(I,j), I=1,6) Instream flow Name

8-4 ifrsta(i) River Node

Repeat for j=1, numifr (number of instream flows)

Row-data Variable Description 9-1 j Counter 9-2 cresid(j) Reservoir ID 9-3 resnam(I,j), I=1,6) Reservoir Name 9-4 irssta(i) River Node 9-5 iressw(i) On (1) / Off(0) Code 9-6 nowner(i) # of owners

Repeat for j=1, numres+1 (number of reservoirs)

Row-data Variable Description

10-1 j Counter

10-2 crunid(j) Base Flow ID

10-3 runnam(I,j), I=1,6) Base Flow Name

10-4 irusta(i) River Node

Repeat for j=1, numrun (number of base flows)

Row-data Variable Description

11-1 j Counter

11-2 cdividw(j) Well ID

11-3 divnamw(I,j), I=1,6)Well Name

11-4 idvstw(i) River Node

Repeat for j=1, numdivw (number of wells)

Row-data Variable Description
12-1 j Counter
12-2 paramD(j) Diversion Parameter

Repeat for j=1, maxparm (number of parameters)

Row-data	Variable	Description
13-1	j	Counter

13-2 paramR(j) Reservoir Parameter

Repeat for j=1, maxparm (number of parameters)

Row-data	Variable	Description
14-1	j	Counter
14-2	paramW(j)	Well Parameter

Repeat for j=1, maxparm (number of parameters)

Row-data 15-1	Variable unit(1-nx)	Description Units for each data type in a file Where nx is ndivO for *.b43, ndivR for *.b44, and ndivW for *.b42
Row-data	Variable	Description
16-1	dat(1)	Total Demand (Total_Demand)
16-2	dat(2)	CU Demand (CU_Demand)
16-3	dat(3)	Priority Diversion
	,	(From_River_By_Priority)
16-4	dat(4)	Storage Diversion (From_River_By_Storage)
16-5	dat(5)	Exchange Diversion
20 0	aa 5 (5)	(From_River_By_Exchange)
16-6	dat(6)	River Loss (From_River_Loss)
16-7	dat(7)	From Well (From_River_By_Well)
16-8	dat(8)	Carrier by Priority
10 0	446(0)	(From_Carrier_By_Priority)
16-9	dat(9)	Carrier by Exchange
10)	446(3)	(From_Carrier_By_Storage)
16-10	dat(10)	Carried Water (Carried_Water)
16-11	dat(11)	Carried Loss (Carried_Loss)
16-12	dat(11)	From Soil (From_Soil)
16-13	dat(12)	Total Supply (Total_Supply)
16-14	dat(13) dat(14)	Total Short (Total_Short)
16-15		CU Short (CU_Short)
16-16	dat(15)	CU (Consumptive_Use)
16-17	dat(16) dat(17)	To Soil (To_Soil)
16-18		
16-19	dat(18) dat(19)	Total Return (Total_Return) Loss (Loss)
16-20	dat(19)	Upstream Inflow (Upstream_Inflow)
16-21	dat(20) dat(21)	Reach Gain (Reach_Gain)
16-22		Return Flow (Return_Flow)
16-23	dat(22) dat(23)	Well Depletion (Well_Depletion)
16-24		To_From GWStor (To_From_GW_Storage)
16-25	dat(24)	River Inflow (River_Inflow)
	dat(25)	
16-26	dat(26)	River Divert (River_Divert)
16-27	dat(27)	River by Well (River_By_Well)
16-28	dat(28)	River Outflow (River_Outflow)
16-29	dat(29)	Available Flow (Available_Flow)
16-30	dat(30)	<pre>Diversion by an instream Flow (Divert_For_Instream_Flow)</pre>
16-31	dat(31)	Diversion to Power (Divert For Power)
16-32	dat(32)	Diversion from Carrier by Storage
		(Diversion_From_Carrier)
16-34	dat(34)	Released from plan. (This includes 1. Water diverted into then released from a

		plan and 2. Water released from a plan to
		a carrier that returns water to the river)
16-35	dat(35)	Structure type see Table 7.2.1 below
16-36	dat(36)	Number of structures at this node
16-37	dat(37)	Calling river node (-1 means NA)
16-38	dat(38)	Calling right amount (-1 means NA)

Repeat for every river node numsta
Repeat for every month of simulation

Table 7.21.1 Structure Type Codes

Code (na)	Structure Type
< 0	Baseflow node1
< 10,001	Baseflow node only1
0	Well Only
1-5,000	Diversion
5,001 - 7,500	Instream Flow
7,501 - 10,000	Reservoir

 $^{^{1}}$ Note a code of $\overline{1}$ indicates a diversion, a code of -1 indicates a diversion with at baseflow, a code of -10001 indicates a baseflow node only.

7.21.2 Monthly Binary Reservoir File

StateMod prints a direct access binary reservoir file (*.b44) that describes water supply and use for each reservoir and account. The record length is **160 bytes**. The units of every value are ft**3/sec. This section describes the content of that file. Note a typical read statement is as follows:

```
Irecs = ((iy\text{-}iystr0)*12 + (im\text{-}1))*nrsactx + ir1 + numtop
```

Read(44,rec=irecs) (dat(i), i=1,nres)

Where:

Irecs = the binary record to read

iy = the year of interestiystr0 = the starting yearim = the month of interest

nrsactx = the total number of active reservoirs (nract) and total number of active

nd inactive accounts (numown) (i.e. nrsactx = nrsact + numown)

ir1 = the reservoir account of interest (the first account is always the reservoir total)

numtop = the total number of header cards (See 7.21.1)

dat(i) = the data read

nres = the number of reservoir data elements (29)

Fields 1-15 are exactly the same as the Binary Direct Diversion file.

Variable	Description
dat(1)	<pre>Initial Storage (Initial_Storage)</pre>
dat(2)	Priority Diversion (River_Priority)
dat(3)	Storage Diversion (River_Storage)
	dat(1) dat(2)

 $^{^{1}}$ Field 16-33 is a placeholder that currently contains the same data as field 16-19 (loss)

```
16-4
               dat(4)
                                   Exchange Diversion (River Exchange)
                                   River Loss (River Loss)
16-5
               dat(5)
16-6
               dat(6)
                                   Carrier by Priority (Carrier_Priority)
16-7
               dat(7)
                                   Carrier by Sto_Exc (Carrier_Storage)
                                   Carrier Loss (Carrier_Loss)
16-8
               dat(8)
16-9
               dat(9)
                                   Total Supply (Total_Supply)
16-10
                                   Storage Use (Storage_Use)
               dat(10)
16-11
               dat(11)
                                   Storage Exchange (Storage_Exchange)
16-12
               dat(12)
                                   Carrier Use (Carrier_Use)
               dat(13)
                                   Total Reservoir Release (Total_Release)
16-13
16-14
               dat(14)
                                   Reservoir Evaporation (Evap)
                                   Seepage and Spill (Seep_Spill)
16-15
               dat(15)
16-16
               dat(15)
                                   Simulated EOM Contents (Sim_EOM)
16-17
               dat(17)
                                   EOM Target Limit (Target_Limit)
16-18
               dat(18)
                                   One Fill Limit (Fill Limit)
16-19
               dat(19)
                                   River Inflow (River_Inflow)
16-20
               dat(20)
                                   Total Reservoir Release (Total_Release)
16-21
               dat(21)
                                   Total Reservoir Supply (Total_Supply)
16-22
               dat(22)
                                   River by Well (River_By_Well)
                                   River Outflow (River_Outflow)
16-23
               dat(23)
16-24
               dat(24)
                                   Reservoir Carry (Reservoir_Carry)
16-25
               dat(25)
                                   Reservoir Loss (Reservoir_Loss)
16-26
               dat(26)
                                   Reservoir Seepage (Reservoir_Seep)
16-27
               dat(27)
                                   Reservoir account number
                                   Note 0 = total(ridr)
16-28
               dat(28)
                                   Number of accounts for this reservoir
                                   (acc)
16-29
               dat(29)
                                   Reservoir (rnr)
Repeat for every reservoir account
Repeat for every reservoir
Repeat for every month of simulation
```

7.21.3 Monthly Binary Well File

StateMod prints a direct access binary well file (*.b42) that describes water supply and use for each well structure. The record length is 92 bytes. The units of every value are ft**3/sec. This section describes the content of that file. Note a typical read statement is as follows:

```
Irecs = ((iy-iystr0)*12 + (im-1))*numdivw + nw + numtop
Read(42,rec=irecs) (dat(i), I=1,ndivw)
Where:
              = the binary record to read
   Irecs
              = the year of interest
   iy
   iystr0
              = the starting year
              = the month of interest
   im
   numdivw = the total number of wells
   nw
              = the well of interest
              = the total number of header cards (see Section 7.21.1)
   numtop
              = the data read
   dat(i)
   ndivw
              = the number of well data elements (18)
```

Fields 1-14 are exactly the same as the Binary Direct Diversion file.

Row-data	Variable	Description
15-1	dat(1)	Total Demand (Total_Demand)
15-2	dat(2)	Consumptive Use Demand (CU_Demand)
15-3	dat(3)	<pre>From Well (From_Well)</pre>
15-4	dat(4)	<pre>From Surface Water (From_SW)</pre>
15-5	dat(5)	<pre>From Soil Moisture (From_Soil)</pre>
15-6	dat(6)	Total Supply (Total_Supply)
15-7	dat(7)	Total Shortage (Total_Short)
15-8	dat(8)	Consumptive Use Short (CU_Short)
15-9	dat(9)	Total Consumptive Use (Total_CU)
15-10	dat(10)	To Soil Moisture (To_Soil)
15-11	dat(11)	Total Return (Total_Return)
15-12	dat(12)	Loss (Loss)
15-13	dat(13)	Total Use (Total_Use)
15-14	dat(14)	<pre>From River (From_River)</pre>
15-15	dat(15)	To or From Ground Water Storage
		(To_From_GW_Storage)
15-16	dat(16)	<pre>From Salvage (From_Salvage)</pre>
15-17	dat(17)	<pre>From Soil Moisture (From_Soil)</pre>
15-18	dat(18)	Total Supply (Total_Supply)
Repeat fo	r every well	
-	I every werr	

Repeat for every month of simulation

7.21.4 Daily Binary Direct Diversion File

StateMod prints a daily direct access binary diversion binary file (*.b49) that describes water use at each river node and day. The record length is 160 bytes. The units of every value are ft**3/sec. This section describes the content of that file. Note a typical read statement is as follows:

```
Irecs = ((iy-iystr0)*12 + (im-1))*numsta*31 + is + numtop
Read(49,rec=irecs) (dat(i), i=1,ndiv)
```

Where:

All terms are the same as defined for the Monthly Direct Diversion File

7.21.5 Daily Binary Reservoir File

StateMod prints a daily direct access binary reservoir file (*.b50) that describes water use at each reservoir and account by day. The record length is 160 bytes. The units of every value are ft**3/sec. This section describes the content of that file. Note a typical read statement is as follows:

```
Irecs = ((iy-iystr0)*12 + (im-1))*nrsactx + ir1 + numtop
Read(50,rec=irecs) (dat(i), i=1,nres)
```

All terms are the same as defined for the Monthly Direct Diversion File

7.21.6 Daily Binary Well File

StateMod prints a daily well file (*.b65) that describes water use for each well structure. The record length is 92 bytes. This section describes the content of that file. The units of every value are ft**3/sec. Note a typical read statement is as follows:

$$Irecs = ((iy-iystr0)*12 + (im-1))*numdivw*31 + nw + numtop$$

Read(65,rec=irecs) (dat(i), I=1,ndivw)

Where:

All terms are the same as defined for the Monthly Direct Diversion File

7.22 Equal Administration Numbers

StateMod allocates water by priority. Therefore if the administration number of two water rights equal then data are allocated in the order it is read within a file and between data files follows: instream flows, reservoirs, diversions, operating rights and wells. If the above is not appropriate for simulating equal administration numbers then it is recommended the water right be broken into sub rights or that a multiple plan ownership (type 46) operating rule be used.

The following example demonstrates the sub right approach for two rights that have the same administration number of 100.00; one for 10 cfs and another for 5 cfs. As presented, the original water rights have been broken into 5 sub water rights that sum to the original but have a slightly different administration numbers that allows each to divert some water when the supply is limiting. Note more resolution can be obtained by providing any number of sub rights (5, 10, 100, ...).

Section 7.46 describes the multiple plan ownership approach that allows more than one structure with the same administration number to be modeled as if they were multiple owners in a single water right. When the multiple ownership approach is used, the decreed amount should equal the sum of each user and only one location in the river network can be specified.

Right Type	Water Right A Admin. Number	Water Right A Amount (cfs)	Water Right B Admin. Number	Water Right B Amount (cfs)
Original	100.00	10.0	100.00	5.00
Sub Right 1	100.00	2.0	100.01	1.0
Sub Right 2	100.02	2.0	100.03	1.0
Sub Right 3	100.04	2.0	100.05	1.0
Sub Right 4	100.06	2.0	100.07	1.0
Sub Right 5	100.08	2.0	100.09	1.0

7.23 Plan Operations

StateMod includes a "Plan" structure type that allows terms and conditions associated with a water transfer or reuse plan or transmountain import to be simulated. The following are noted:

- Section 4.49 describes the data associated with a plan that includes its ID, name and location in the stream network.
- Plans are located on the stream network at the location where the plan is to be implemented. For example if the terms and conditions of a transfer require historic return flows be maintained at the transfer location, then a Term and Condition (T&C) Plan should be located just downstream of the transfer location. Similarly if a reuse plan allows releases from a water treatment plant to be reused then a Non Reservoir ReUse Plan should be located just below the treatment plant discharge.
- Non Reservoir ReUse Plans and ReUse Reservoir Plans are currently implemented for the direct flow exchange (type 24) and direct flow bypass (type 25) operating rules. T&C Plans are currently implemented for the direct flow exchange (type 24) and direct flow bypass (type 25) operating rules.
- The obligations associated with a term and condition are specified in the operating rule file because they are a function of how much water gets transferred. Therefore when a plan is specified StateMod calculates the obligation on-the-fly for the month it occurs and all associated future months. Future returns and/or depletions are estimated using the same delay information specified for the source structure or in the operating rule that includes the T&C plan.
- Accounting Plans are currently implemented for the direct flow exchange (type 24) and direct flow bypass (type 25) operating rules.
- If a plan is not specified as a part of an operating rule, StateMod warns the user but assumes there are no terms and conditions to be imposed.
- Typically the obligation associated with a term and condition cannot be specified as input because they are a function of how much water gets transferred. Therefore when a plan is specified StateMod calculates the obligation on the fly for the month it occurs and all associated future months. Future returns and/or depletions are estimated using the same delay information specified for the source structure or the plan.
- Non Reservoir ReUse Plans operate within the river and water right system as follows:
 - 1. Reuse water gets stored in the Non Reservoir ReUse Plan automatically when an exchange or bypass occurs (i.e. reuse water does not get returned to the system then rediverted into a Non Reservoir ReUse Plan). This automatic routing of water to a Non Reservoir ReUse Plan results in less return flows to the system from the source structure.
 - 2. The amount routed to a Non Reservoir ReUse Plan is reported as Carried Water in the standard stream node report (*.xdd).
 - 3. The amount released from a Non Reservoir ReUse Plan by an operating rule is reported as a negative diversion (inflow) at the plan location in the standard stream node report (*.xdd).
 - 4. All activities associated with a Non Reservoir ReUse Plan are summarized in the plan output file (*.xpl).
 - 5. All activities associated with an operating rule are summarized in the operating rule output file (*.xop).
- Reservoir ReUse Plans operate within the river and water right system as follows:

- 1. Reuse water gets stored in the destination reservoir and associated ReUse Reservoir Plan automatically when an exchange or bypass occurs.
- 2. The amount routed to a ReUse Reservoir Plan is reported in the standard reservoir report (*.xre).
- 3. The amount stored by a ReUse Reservoir Plan is also reported in the station balance portion of the standard stream node report (*.xdd).
- 4. All activities associated with a ReUse Reservoir Plan are summarized in the plan output file (*.xpl).
- 5. All activities associated with an operating rule are summarized in the operating rule output file (*.xop).
- T&C Plans operate within the river and water right system as follows:
 - 1. T&C demands are calculated when the exchange or bypass is operated.
 - 2. Supplies to a T&C Plan are reported as From River by Storage or From River by Exchange or Plan in the standard stream node report (*.xdd).
 - 3. Total Returns equal Total Supplies in the standard stream node report (*.xdd) because the T&C Plan is non consumptive.
 - 4. All activities associated with a T&C Plan are summarized in the plan output file (*.xpl).
 - 5. All activities associated with an operating rule are summarized in the operating rule output file (*.xop).
- Accounting Plans operate within the river and water right system as follows:
 - 1. Changed water rights gets stored in the Accounting Plan automatically when an exchange or bypass occurs (i.e. reuse water does not get returned to the system then rediverted into a Accounting Plan).
 - 2. The amount routed to an Accounting Plan is reported as From River by Priority in the standard stream node report (*.xdd).
 - 3. The amounts released from an Accounting Plan are reported as From River by Exchange Plan in the standard stream node report (*.xdd).
 - 4. All activities associated with an Accounting Plan are summarized in the plan output file (*.xpl).
 - 5. All activities associated with an operating rule are summarized in the operating rule output file (*.xop).
- Transmountain Import Plans operate within the river and water right system as follows:
 - 1. Transmountain imports are specified as a negative diversion in the diversion demand (*.ddm) file
 - 2. The Transmountain Import Plan ID in the plan file (*.pln) and Import Diversion ID in the station file (*.dds) should be the same.
 - 3. All activities associated with a Transmountain Import Plan are summarized in the plan output file (*.xpl).
 - 4. All activities associated with an operating rule are summarized in the operating rule output file (*.xop).

7.24 R elease or Exchange for Depletion Vs Diversion

Several of StateMod's operating rules allow reservoir releases and exchanges to meet a either a depletion or a diversion amount. The following are noted:

A depletion is defined as follows:

Depletion = Diversion * (1-Efficiency) * ReturnFlow(1); Where:

Efficiency is the efficiency of water use and

ReturnFlow (1) *is the return flow that occurs at the same time step as the diversion.*

The general formula for a release or exchange to meet a diversion is as follows:

Release = min(Demand, Capacity, Supply, Available Flow).

Where:

Demand is the structure demand

Capacity is the demand structures or carriers remaining capacity

Supply is the water supply available from the source

Available Flow is the minimum water available in the exchange reach (not *used if a direct release)*

The general formula for a release or exchange to meet a depletion is as follows:

Release = min(Depletion, Capacity, Supply, Available Flow)

Where:

All terms are defined above.

- In general a reservoir release or exchange can be made to offset a depletion if an engineering study has determined appropriate values for efficiency and return flow patterns.
- Because return flows may accrue to one or more locations within a river network, the amount available to offset a depletion varies depending on where demands and return flows occur on the river. Depletion locations are specified as part of the well structure (*.wes) data. Depletion demands are specified as part of the plan structure (*.pln) data.
- When a reservoir release or exchange is made to offset a depletion StateMod checks to ensure the total diversion amount is available at the destination structure and that the net depletion to the stream does not impact any senior water rights or, for an exchange, the exchange reach to go negative.
- If a user specifies a release or exchange be made to offset a depletion and the supply is limiting, StateMod may release or exchange the entire diversion in order to meet a demand.

7.25 Downstream Call

A type 23 operating rule allows a downstream call to be provide which limits any upstream diversions, reservoir storage, etc. that are junior to the call's administration number. The following comments are provided to assist in the use and interpretation this operating rule:

- The downstream call must be tied to an instream flow station.
- Call data are specified as a time series in a file named "Downstream_Call (*.cal)" (see Section 4.1 Response Data and Section 4.13.23). Note for a monthly model the call on day 1 is used to estimate the call for that month.
- The amount of water controlled by a downstream call is the minimum of its instream flow water right, its demand, and the available flow in the river when it is called. If the user wants to control the entire flow below a downstream call structure a large decreed amount and demand should be specified.

- For a free river the downstream call's administration number should be entered as the most junior water right in the basin (e.g. 999999).
- The downstream call's administration number specified in the operation right file should be the most junior in the basin. This ensures it is not called as an operating rule prior to a consumptive (diversion, well, reservoir) water right.
- If the quantity of water associated with a downstream call is known then it is recommended the user model it as a standard instream flow (see Section 4.7).

7.26 Call (Control) Reporting

StateMod allocates water based on available supply, demand, water rights and capacity using the prior appropriation doctrine (first in time, first in right). Therefore it never has the need to "call out" a structure because a structure only diverts if it is in priority, supply is available and it has capacity. However StateMod does report a control location and control right that, in many but not all cases, occurs where a structure has historically set a call on the river. This information can be a useful for calibration. The approach used by StateMod to identify a controlling (call) location and right is as follows:

- If a structure is shorted because of available supply, then the "control location" where a downstream water supply limit occurs is identified. If there is a structure (diversion, instream flow, reservoir) at the "control location", the "control structure" is identified.
- If a "control structure" does not exist at the "control location" because of natural stream losses, etc. StateMod reports the control structure as "NA".
- If a "control structure" has been identified the "control right" is calculated based on the amount diverted at the "control structure" and the prior appropriation requirement that its senior decrees diverts water before its junior decrees. For example, if the control structure is diverting 100 cfs and it has two rights; one senior for 60 cfs and one junior for 200 cfs then the junior is the controlling right (because the senior is fully satisfied).
- If a "control structure" does not exist, StateMod records the control right as -1 (for not applicable).
- More than one "control structure" and "control right" can occur in a given time step.
- As defined herein, the "control structure" may not necessarily be water short, it is simply the structure that limits an upstream structure from diverting its full water right.
- If a structure benefits from new (non-native) water resulting from a reservoir release or non-downstream return flows then StateMod recalculates the "control location" and "control right" accordingly.
- If the water supply limit ("control location") occurs at the diverting structure itself, it is by definition not a "control location". In such a case StateMod reports the "control location" as "Hgate_Limit" (head gate limit) and the call right as -1.
- If there is no "control location" but a structure is shorted, StateMod reports the call structure as "Cap/Wr_Limit" (capacity or water right limit) and the "control right" as -1.
- Control (call) reporting is currently operational for direct, instream and reservoir rights. Future enhancements may address a call associated with an operational rule.
- The "control location" and "control right" are reported for every structure and time step in the structure summary file (*.xdd). In addition, unique controls (independent of who they are impacting) are reported to the call (control) output file (*.xca).

• If the standard StateMod naming convention is followed and the identifier used at a stream node is the same identifier used for a structure then the "control location" reported in the diversion summary file (*.xdd) is the same as the "control structure". If the standard naming convention is not followed then the call structure can be identified as the structure located at the control location.

7.27 Direct Flow Exchange or Bypass

A type 24 operating rule allows a direct flow diversion's water right to be exchanged to another direct flow structure or reservoir. Similarly a type 25 operating rule allows a direct flow diversion's water right to be bypassed to another direct flow structure or reservoir. The exchange or bypass can occur from the river or by a carrier. The following comments are provided to assist in using and interpreting this operating rule:

- This operating rule controls both the source and exchanged (destination) diversion or storage. Therefore any shortages at the source location are shared at the destination based on ownership of each.
- The user can supply data that limits the bypass or exchange to a percent ownership of the source water right.
- The user can supply data that limits the bypass or exchange to the consumptive use of their portion of the water right.
- The efficiency of water use for the bypassed or exchanged water is set in the plan (*.pln) file. It may be set to a constant efficiency for all months, a constant value for each of 12 months or to the efficiency of the source water right structure.
- The user can supply a "plan ID" that allows terms and conditions associated with the direct flow bypass or exchange to be operated. For example if the bypass or exchange requires historic return flows be left at the head gate then StateMod can automatically assign these return flow obligations to a "plan" which can subsequently be tied to a water supply via an operating rule.
- The user can specify a "plan ID" that allows reuse of the bypassed or exchanged water.
- Because a direct flow right may be used to serve both a direct flow right and the exchange or bypass right, the administration number assigned to the operating rule is used in the analysis (i.e. it is not overridden by the source water rights administration number).
- Direct flow bypass or exchange may be controlled over a season by using the monthly on/off switch (imonsw(im)).
- Monthly and Annual exchange limits may be specified.
- The amount available for exchange is the minimum physical water available, remaining decree of the exchanging right (e.g. some of the decree may have been used for direct diversion purposes), the exchange potential between the destination and exchange locations, the monthly and annual exchange limit and the destination structures capacity. The amount available for bypass is the same listed above without including the exchange potential between the destination and bypass locations.

7.28 La Plata Compact

A type 13 operating rule allows an instream flow to operate based on its location on the river and the flow at a remote location. This rule has generic applications but was originally developed to handle the La Plata River compact in the San Juan River Basin. This compact, in general, calculates Colorado's commitment to deliver water to New Mexico based on the flow at an upstream, index gage. The following are noted:

- The compact demand and location should be modeled as an instream flow.
- The compact operations are controlled by a type 13 operating rule.
- Compact demands are calculated "on-the-fly" to be the minimum of 1. The instream flow (compact) water right, 2. The specified percent (e.g. 50%) of the flow at the compact gage (e.g. 09365500), and .) The demand specified in the instream flow annual demand file (*.ifa). In addition, monthly on/off switches may be specified in the operating rule file.
- Because compact demands are calculated "on-the-fly" the flow at the gage is determined when the operating right fires (i.e. when the operating rule's administration number is in priority.). If a very senior value is specified the flow is typically equal to the natural (base) flow plus any lagged returns to the gage from upstream diversions in a prior time step.
- To obtain additional details on the calculations associated with this operating rule the control file variables *ichk* and *ccall* should be set to 113 (operating rule 13) and 3329990.01 (the operating right ID for the La Plata Compact). Details are provided in the StateMod log file (*.log).
- If the monthly on/off switch is on, the demand printed to the diversion station output file (*.xdd) is the demand calculated "on-the-fly". If the monthly on/off switch is off the demand printed to the diversion station file (*.xdd) is zero, regardless of the value specified in the instream flow demand file (*.ifa)

7.29 South Platte Compact

The South Platte Compact requires Colorado deliver 120 cfs to Nebraska from April 1 to October 15 without calling out any diversions located upstream of the Washington County line (i.e. outside Water District 64). Because StateMod operates water rights from senior to junior the Washington County limitation was implemented using a type 40 operating rule that does the following:

- 1. When water is available and in priority, water is stored in an Accounting Plan (e.g. Compact Plan).
- 2. All other water junior rights (upstream and downstream of the Washington County Line) are operated with the water in the Compact Plan removed (i.e. unavailable for diversion).
- 3. After all water rights have operated
 - a. If the Compact Plan diversion is greater than zero.
 - b. The Accounting plan flows are released to the system (and the flow variable Avail is adjusted).
 - c. All water rights (senior and junior to the Compact) that are upstream of the Washington County line are reoperated.
 - d. Diversions to the Compact are calculated.

The following comments are provided to assist in implementing and using this capability on the South Platte River:

- The type 40 operating rule requires the user provide the location of the Washington County line (e.g. the Balzac gage (ID 06759910)). From this information StateMod is able to determine if a diversion is upstream of Washington County.
- The type 40 operating rule requires the user provide the accounting plan used to store water potentially available to the Compact.
- The compact should be located just downstream of the Julesburg gage so that all the gains and losses upstream of Julesburg are included.
- The type 40 operating rule turns off the source instream flow right so that it is completely controlled by the type 40 operating rule.

7.30 Well Augmentation Requirement

StateMod calculates the depletion at a stream associated with well pumping in the current time step and all future time steps based on the amount pumped, the efficiency of its use, and its associated depletion data (e.g. unit response function). In addition, if a well water right is tied to an augmentation plan any depletion (augmentation requirement) associated with out of priority pumping is stored in that plan in the current and all future time steps. The augmentation requirement is the difference between the well's depletion on the river and the accretions from any associated return flows. These augmentation requirements may be satisfied by a number of sources including:

- 1. In-priority depletions from the stream from pumping in the current time step.
- 2. In-priority depletions from the stream from pumping in prior time steps. By operating rule 43.
- 3. A reservoir by using operating rule type 48
- 4. A reuse plan by operating rule 48
- 5. A recharge plan by operating rule 48
- 6. A diversion by operating rule 38
- 7. An augmentation well by operating rule 37
- 8. A recharge area by operating rule 48

The following comments are provided to assist in using and interpreting this operating rule:

- In order to determine if pumping and future depletions occur in-priority, a well must be tied to an augmentation plan (see Section 4.49).
- The augmentation requirement (demand) associated with any out of priority pumping is the difference between the well's depletion on the river and the accretions from any associated return flows. This demand is calculated in the month the pumping occurs and all future time steps when depletions or accretions will occur at the stream.
- The augmentation requirement is implemented at the augmentation plans location in the network. This location can be important because it will determine how much, if any, depletions may be offset by return flows. Also it is important because the location is used to determine if pumping is occurring in priority.
- Pumping is determined to be in priority at the time step it occurs if there is water available in the stream to offset any net depletions at that time. Therefore it is allocated at the administration number of the well.

- Future depletions associated with pumping in a prior time step are determined to be in priority if there is water available in the stream to offset the net depletions at the time they impact the river. Because future depletions are stored by augmentation plan, not well, this determination is made at the administration number assigned to the In-Priority Supply Operating Rule (type 43).
- It is impractical to determine if future depletions are in priority using the administration number
 of each well because there are often more than a thousand wells being modeled and future
 depletions from each may extend over 20 years. In addition, this estimate is considered
 appropriate for a planning model because wells are typically junior to most direct flow and
 storage rights.
- The administration number assigned to an In-Priority Supply Operating Rule (type 43) is typically calculated to be a decree weighted administration number of the augmentation plan wells.

7.31 Reservoir Recharge (Seepage) as an Augmentation Supply

StateMod allows the location and timing associated with recharge (seepage) from a reservoir (or recharge site) to be used as an augmentation supply. The following comments are provided to assist in implementing and using this capability:

- Reservoir recharge (seepage) is calculated as a function of storage (see Input Data for the Reservoir Station File (*.res)).
- Reservoir recharge (seepage) may be routed to any number of stream locations using any number of unit response functions.
- Reservoir recharge (seepage) return flow properties (location and timing) must be provided in a reservoir return flow file (*.rrf).
- If a reservoir return flow file (*.rrf) is not provided in the response (*.rsp) file any reservoir seepage (recharge) is estimated to be a loss to the system.
- Reservoir recharge (seepage) can become an augmentation supply if it is 1. Associated with a Recharge (type 8) Plan and 2. Is part of a Type 48 (Reservoir or Plan to a T&C Plan or Augmentation Plan) operating rule. When reservoir recharge (seepage) is to be used as an augmentation plan supply the type 48 operating rule requires:
 - The Destination be a T&C Plan (type 1) or a Well Augmentation Plan (type 2)
 - Source 1 be a Recharge Plan (type 8)
- Reservoir recharge (seepage) is reported as a return flow in the standard diversion output (*.xdd) when it enters the stream.
- Reservoir recharge (seepage) is reported as seepage in the standard reservoir output (*.xre).
- Reservoir recharge is reported as a supply and as a use in the standard plan output (*.xpl).
- Reservoir recharge (seepage) loss, if any, is reported as part of the standard water balance output (*.xwb).

7.32 Canal Loss (Seepage) as an Augmentation Supply

StateMod allows the location and timing associated with canal loss (seepage) to be used as an augmentation supply. The following comments are provided to assist in implementing and using this capability:

- Canal loss (seepage) is specified as part of the carrier (type 45) operating rule.
- Canal loss (seepage) may be routed to any number of stream locations using any number of unit response functions.
- Canal loss (seepage) return flow properties must be provided in a plan return flow file (*.prf).
- Canal loss (seepage) can become an augmentation supply if it is 1. Associated with a Recharge (type 8) Plan and 2. Is part of a Plan or Reservoir Reuse to a T&C or Augmentation Plan Direct (Type 48) or by Exchange (Type 49) operating rule. When canal loss (seepage) is to be used as an augmentation plan supply the type 48 or 49 operating rule requires:
 - The Destination be an augmentation plan
 - Source 1 be a recharge plan (type 8)
- If a type 48 or 49 operating rule is not specified then canal seepage returns to the system but is not considered an augmentation (plan) supply.
- Canal loss (seepage) is reported as a supply and as a use in the standard plan output (*.xpl).

7.33 Augmentation Well (Pumping) as an Augmentation Supply

The type 37, Augmentation Well, operating rule provides a method to pump an Augmentation well in order to satisfy a T&C or Augmentation Plan demand. The source is a well water right. The destination is a T&C or Well Augmentation Plan. The following comments are provided to assist in using and interpreting this rule:

- An augmentation well right is typically tied to a unique (augmentation) Well structure. This allows unique return and depletion data associated with the augmentation well to be provided in the well station file (*.wes). This augmentation well structure typically (but is not required to have) a demand equal to zero in the well demand (*.wem) file. Note that return flows associated with an augmentation plan are typically assigned a unit response function that routes water to the stream in the same time step that they occur and for future time steps. Also the augmentation well structure typically has no demand; it is used and controlled by an operating rule.
- The type 37 operating rule requires the second water supply be an "Augmentation plan ID". This allows the augmentation plan requirements associated with the augmentation well pumping to be stored and ultimately satisfied. This plan ID may or may not be the same as the destination plan ID.
- An augmentation well might serve as both a water supply and an augmentation source. This can occur if the same right is assigned to both a standard (irrigation) well structure and an Augmentation well structure. If the administration number assigned in the operating right file is different than the administration number of the source (augmentation) well the operating rule value is used and a warning is printed to the log file. The amount pumped to each demand is limited by the well's total capacity and water right.

7.34 Accounting Plan Supplies

The Plan or Reservoir to a Plan Direct (type 48) and Plan or Reservoir to a Plan by Exchange (type 49) operating rules provide a method to recognize a physical water supply is sometimes not required to offset a T&C or Augmentation Plan requirement. Examples include pumping in a designated basin or pumping by a well decreed as non tributary. The following comments are provided to assist in using and interpreting this rule:

- The source must be a "Special Augmentation" Plan (type 10) that allows StateMod to recognize a physical water supply is not required because of an administrative decision.
- The destination must be the same "Special Augmentation" Plan (type 10) to allow StateMod to recognize demands that can be offset by an administrative decision.

7.35 Accounting Plan Operations

An accounting plan is a special type of Plan that allows water to be temporarily stored and subsequently released for a variety of purposes. Storage within the accounting plan only occurs within the time step when the diversion occurs. Therefore if not used or stored in a reservoir, it must spill. A typical use of an accounting plan would be to temporarily hold a water transfer before it is released to direct diversion, to storage, to offset a T&C Plan requirement, to offset an Augmentation Plan requirement, etc. The following comments are provided to assist in using an accounting plan:

- Water is typically diverted into an accounting plan using a type 24 (Direct Flow Exchange) or type 25 (Direct Flow Bypass) operating rule.
- When water is bypassed to an accounting plan the source structure's capacity is reduced.
- Monthly and annual diversion limits can be imposed when the water is diverted directly to a demand using a type 24 or type 25 operating rule or after it is released from the accounting plan to a demand using a type 27 or type 28 operating rule.
- Water is typically released from an accounting plan using a type 27 (Direct Release from a Plan) or type 28 (Exchange from a Plan) operating rule.
- Because water is only stored in an accounting plan during the time step it diverts, any unused water must be spilled using a type 29 (Plan Spill) operating rule.
- If the terms and conditions associated with each use of water from an accounting plan are the same they may be specified as part of the operating rule used to divert to the plan (e.g. the type 24 or type 25 operating rules).
- If the terms and conditions associated with each use of water from an accounting plan vary, they may be specified as part of the operating rule used to release the water (e.g. the type 27 or type 28 operating rules).
- If the water is spilled from an accounting plan using a type 29 operating rule or released to its original use by a type 27 or 28 operating rule, the user may adjust the monthly and annual diversion limits associated with the initial diversion into the accounting plan. This adjustment is specified when the water is released by the type 27, type 28 or type 29 rules.

7.36 Multiple Ditch Owners

Multiple Ditch owners divert using the same water right and share equally in any water shortages. Unlike a reservoir where multiple accounts are common, multiple owners of a ditch are relatively rare. StateMod provides two methods to simulate multiple ownership. Each approach 1) allows transit losses to be assigned at both the source and when water is released for use and 2) allows Terms and Conditions (T&C Plans) associated with the transfer to be assigned at the source or as water is used by each individual owner.

Method 1 uses the ownership data available to the Type 27 (Release from a Plan Direct) or the Type 28 (Release from a Plan by Exchange). The following are noted: Water is typically diverted into a "shared" accounting plan that is shared by all users using a Direct flow Exchange (type 24) or Direct Flow Bypass (type 25) operating rule.

• From this "shared" accounting plan water can then be released for use based on the ownership percent. The transfer is based on ownership; therefore and supply shortages are shared, based on ownership, by all users.

Method 2 uses the Type 46 Multiple Owner operating rule. The following are noted:

- Water is typically diverted into a "shared" accounting plan that is shared by all users using a Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25) operating rule. The transfer is based on ownership; therefore any supply shortages are shared, based on ownership, by all users.
- From this "shared" accounting plan water can then be transferred to an individual's accounting plan using a Multiple Owner (type 46) operating rule.
- Method 2 has a minor advantage over method 1 because it allows the amount transferred to each owner to be explicitly reported in the plan report (*.xpl).

7.37 Standard versus Fixed Unit Response (Return Flow) Patterns

A unit response function, or return flow pattern is a method used to estimate how return flows or pumping will interact with a stream over time. A standard unit response function is typically developed using an analytic equation such as Glover or by a ground water model such as Modflow. It is time independent in the sense that it can be applied from the current time step to a specified number of future time steps. For example, assume the Standard Return pattern shown in the following table is assigned to a diversion. As shown it extends over six months. A monthly model that diverts in June will estimate return flows for the current month and 5 months in the future, June through November. The return flows for each month use data provided under the 1st through 6th entries of the unit response function. Standard unit response functions are the norm for most ditches.

Pattern/Month	1	2	3	4	5	6	7	8	9	10	11	12	Total
Standard	20	40	20	10	5	5							100
Fixed	9	9	9	0	0	0	0	21	16	12	13	11	100

A fixed unit response function is typically negotiated from long term average data. They often represent winter return flow obligations associated with an irrigation season use of water rights that have been changed to other uses (e.g. municipal). It estimates a time step's return based on a fixed monthly return value. Also return flow obligations are set to zero whenever a zero value follows a non-zero value. For example assume the Fixed Return pattern shown in the table is assigned to a diversion. As shown it extends over 12 months. A monthly model that diverts in June (month 6) will estimate return flows from August to December of the year diverted and January through March of the next year using data provided under the 8th – 12th and 1st - 3rd entries. The following comments are provided to assist in modeling standard versus fixed unit response functions:

- Both standard and fixed unit response data are provided in a unit response (*.urm) file. The file has no distinction between a standard and fixed return flow pattern.
- Fixed unit response data are used to calculate delayed return flows for the month of diversion and the following 11 months. Fixed unit response data should never exceed 12 months.
- When a fixed unit response function is used <u>any</u> returns that may be assigned to a month after a zero return flow value follows a non-zero value is set to zero.
- Fixed unit response patterns are currently used to calculate Term and Conditions (T&C Plan) associated with a release from accounting plans using a Plan to User Direct (type 27) or Plan to User by Exchange (type 28). As described under those operating rules, the variable ciopso(2) is used to indicate the T&C plan while the variable iopsou(4,1) is used to indicate the type of return pattern (fixed or standard).

7.38 Reservoir Release Limits

Reservoir release limits provide a method to impose monthly and annual limits for one or more operating rules. They are typically used when the source of the water supply is one or more "standard" storage rights that serve one or more users. This capability has generic applications but was developed for the Colorado River Basin where replacement reservoir releases from Green Mountain Reservoir and its associated exchanges with Williams Fork Reservoir and Wolford Mountain Reservoir are limited to 66,000 af/yr. In order to impose reservoir release limits the following are noted:

- A Plan Data File (*.pln) is provided in the Response File (*.rsp).
- A Release Limit Plan (type 12) is provided in the plan data file (*.pln) and located anywhere in the River Network File (*.rin).
- A Release Limit Operating Rule (type 47) is provided in the Operating Rule File (*.opr). This rule has the source ID set to the Release Limit Plan ID and contains the monthly and annual release limits.
- Reservoir releases are made using data provided in the Operating Rule File (*.opr). Specifically a Direct Reservoir Release Operating Rule (type 27), Exchange Reservoir Release Operating Rule (type 28), or Replacement Reservoir Operating Rule (type 10) may be used to make reservoir releases up to the limits set in the Release Limit Operating Rule (type 47). Note that a Replacement Reservoir Operating Rule (Type 10) does not allow a release to a carrier. Therefore the type 27, 28 and 10 rules are often used together when imposing reservoir release limits.
- The annual limits are reset at the beginning of every simulation year.

- Results associated with the plan operation are summarized in the Plan Output File (*.xpl). This file reports the beginning of the month release limit, each release (use) that is tied to the plan, and the amount released for each use.
- Results associated with each operating rule continue to be reported in the Operating Rule Output File (*.xop) and Reservoir Output File (*.xre).
- Additional information is available in Chapter 4 under the Plan Station description and the Operating Rule descriptions.

7.39 Augmentation Station Modeling

An Augmentation Station, as defined herein, is a structure that carries a diversion, typically with loss, then returns non-lost water to the river for subsequent rediversion. Augmentation stations are commonly used to implement a water transfer with terms and conditions. They can be simulated by StateMod using a type 27 (Plan or Reservoir Use Direct) or type 28 (Plan or Reservoir Use by Exchange) operating rule as follows:

- The number of intervening structures should be set so that at least two carriers will be provided.
- The first carrier should be the Structure ID that diverts water from the stream and has an intervening structure type = Carrier.
- The second carrier should be a station on the river that has an intervening structure type = Return.
- Note that conveyance losses can be specified for a intervening structure type = Carrier but not an intervening structure type = Return. This limitation allows losses to be routed to the system using the return flow properties of the carrier structure.
- If water that returns to the river is subsequently rediverted into another carrier at least three entries should be provided sequentially as follows; 1. An intervening structure with type = Carrier, 2. An intervening structure with type = Return, and 3. An intervening structure with type = Carrier.
- When StateMod detects the intervening structure type = Return it shepherds any water delivered to the river to the destination or another carrier.

7.40 Reuse Modeling

The State Model includes Plan structures that can be used to track (color) water at a wastewater treatment plant, in the river, in storage, and water imported into the river system. This provides the opportunity for users to differentiate between one-time use water and reusable water when making releases from storage or from plans to meet various demands. General discussion of plans in the modeling environment is included in Section 3.9. The following comments are provided to assist in representing reusable supplies in a model network:

• Reusable supplies can be modeled in a transmountain import plan, a non reservoir reuse, a reuse reservoir and an accounting plan using various operating rules. The various reuse plans

are provided in the plan data file (*.pln) and located anywhere in the River Network File (*.rin).

- Transmountain Import Plans (type 7) are used to recognize water has been imported from outside the system to a reservoir, direct flow structure or a carrier using an Import to Structure (type 35) operating rule. The imported water may be reused if the variable creuse is set to a reuse plan. In addition, this operating rule can be used to constrain a diversion to the capacity of up to 10 intervening structures or carriers. Note that an import structure should be specified with the same ID in both the diversion station file (*.dds) and plan file (*.pln). Finally monthly import values should be specified as negative demands in the diversion demand file (*.ddm).
- Non Reservoir ReUse Plans (type 4) are typically modeled at wastewater treatment plants. The reusable supplies are generated from pro-rata use of diversion structure's rights by exchange (type 24) or direct (type 25) operating rules. Non Reservoir ReUse Plans can also be generated from releases from accounting plans (type 11) via Plan to User Direct (type 27) or Plan to User by Exchange (type 28) operating rules. The Non Reservoir ReUse represents a supply of reusable water for other uses. Water associated with Non Reservoir ReUse Plans cannot be carried over between time steps. Therefore, use of non reservoir reuse plans must include a Plan Spill rule (type 29) to release any unused water to the river system.
- Reuse reservoirs (type 3) are modeled in conjunction with reservoir accounts. Reuse reservoirs are similar to non reservoir reuse plans except water stored in a reuse reservoir can be carried over between time steps.
- Accounting plans (type 11) with reusable supplies are typically used to temporarily store prorata water rights or consumptive use credits diverted off the river system via type 24 or type 25 operating rules. Release of these reusable supplies to other demands (e.g. diversion, reservoir, T&C plan, well augmentation plan) can be represented via Plan to User Direct (type 27) or Plan to User by Exchange (type 28) operating rules.
- Reuse plan ID's (*creuse*) can be assigned in type 24, 25, 27 and 28 operating rules to model reusable supplies.
- Monthly and annual volumetrics (13 total values that do not vary by year) can be specified with use of reusable supplies in type 24, 25, 27 and 28 operating rules.
- Terms and conditions can be specified with use of reusable supplies in type 24, 25, 27 and 28 operating rules.

7.41 Natural Flows with Recharge

As described in Section 7.1, the State Model estimates natural flows at stream gages using the following formula:

$$Qb = Qg + D - R - S + E - I$$

Where:

Qb = Natural flow Qg = Gaged flow

D = Upstream diversionsR = Upstream return flows

S = Upstream change in reservoir storage

E = Upstream reservoir evaporation

I = Imports

When recharge water is part of historic river operations and is to be included in the natural flow calculations, the exact same formula is used. This is appropriate because gaged diversion data typically includes water from all sources (priority, exchange, etc.) and for all uses (irrigation, municipal, recharge, etc.). The following comments are provided to assist in representing reusable supplies in a model network:

- The StateMod Model simulates recharge as a reservoir with seepage. In order to calculate return flows associated with recharge a Reservoir_To_Recharge (*.dre) file must be provided. These data, along with the reservoir seepage characteristics specified in the reservoir station (*.res) file and return flow properties specified in the reservoir return file (*.rre) are used to calculate accretions from a recharge site.
- In order to calculate return flows from a consumptive use (Irrigation, M&I, etc.) a Diversion_To_Recharge (*.dre) file must be provided.
- The above calculations can be confirmed by reviewing the Natural Flow Module's Base Flow Estimate File (*.xbi). The following are noted:
 - o The column titled Divert is the sum of all upstream diversions included in the historic diversion file (*.ddh). Therefore it includes water from all sources (priority, exchange, etc.) and for all uses (irrigation, municipal, recharge, etc.).
 - o The column titled Return includes return flows from consumptive uses as well as recharge.
 - o The column titled Divert to Rech echoes the data provided in the Diversion_To_Recharge (*.dre) file.
 - o The column titled Reservoir to Rech echoes the data provided in the Reservoir_To_Recharge (*.dre) file.
 - o When the historic diversion data are adjusted by the amount diverted to recharge the calculation is not allowed to go negative.
 - o Diversion_To_Recharge data are only required for a reservoir with recharge. If data are not provided the diversion to recharge is estimated to be zero. The ID specified in this file should be the same as the Diversion ID to be adjusted.
 - o Diversion_To_Recharge data are only required for a reservoir with recharge. If data are not provided the diversion to recharge is estimated to be zero. The ID specified in this file should be the same as the Reservoir ID with recharge.

7.42 Reach Reporting

Selected State Model reports have the capability to summarize results by stream reach including the diversion comparison (*.xdc), the stream comparison (*.xsc), the reservoir comparison (*.xrc) and the well comparison (*.xwc). In addition a water budget by reach is automatically generated whenever a water budget (*.xwb) is generated. To facilitate reach processing the following are noted:

- As defined herein, a stream reach is simply an aggregation of structures located within a geographic region of the network.
- As described in section 4.53 the preliminary Reach Data file contains two components; Reach Data and Node Data. Reach data is used to define how one stream reach is connected to another. Node data is used to assign a stream (river) node to a stream reach.

- To eliminate the need to build a Reach Data file, a preliminary one (*.xrh) is generated by the check option (-check) for every structure in the system when a river gage (*.rig) file is provided (see Section 4.4.1). If a river gage (*.rig) file is not provided the Check option assignes one to define preliminary stream reaches. If one is not provided no reach data is generated.
- The default name for the preliminary file created by the check option is *.xrh. This preliminary file is commonly revised in an editor to reassign the Reach Data connectivity. In addition sub reaches may be defined to represent structures not bounded by a stream gage. After editing, the Reach Data file is typically renamed to *.rch to avoid it being overwritten every time a new check run is made.

cdss@state.co.us

Last updated: February 2009

8.0 Frequently Asked Questions

This chapter provides guidance for frequently asked questions regarding the operation of the State of Colorado's Stream Simulation Model (StateMod). The following sections are available in this chapter:

- 8.1 Model Execution
- 8.2 Changing Data
- 8.3 Adding Data
- 8.4 Imports
- 8.5 Abnormal Termination
- 8.6 <u>Implementation of the Blue River Decree</u> (Upstream Storage)
- 8.7 Add Daily Capability to a Monthly Model
- 8.8 Add Wells to an Existing Model
- 8.9 How to Implement a Futile Call
- 8.10 How to Estimate Baseflows at Ungaged Locations when Gaged Locations are Natural Flows
- 8.11 How to Limit the Total Diversion by a Carrier to an Annual Volume
- 8.12 How to Implement the Rio Grande Compact
- 8.13 How to Implement Variable Efficiency
- 8.14 How to Implement the Maximum or Mutual Supply Approaches to SW and GW Use
- 8.15 How to Implement Soil Moisture Accounting
- 8.16 How to Implement Plans
- 8.17 How to Reuse Transmountain Return Flows
- 8.18 How to Reuse Consumptive Use Credits
- 8.19 How to Implement Checks for Model Operations and Calibration Issues
- 8.20 <u>How to Implement a Well Augmentation Plan</u>
- 8.21 How to Implement a Recharge Plan
- 8.22 How to Implement a Special Augmentation Plan

_

8.1 Model Execution

Following are typical operating commands where the base file name is "*Example1*" and the ID requested is "10001":

Operation Command

Base Flow StateMod Example1 -base
Simulate StateMod Example1 -simulate
Report for Water Rights StateMod Example1 -report -xwr

Report Graph output StateMod Example1 -report -xdg -10001

-			

8.2 Changing Data

Following are typical commands to change data.

Operation:

Change a water right priority or amount.

To Do:

- 1. Edit direct diversion (*.ddr).
- 2. Edit reservoir right file (*.rer).
- 3. Edit instream right file (*.ifr).
- 4. Edit operational right file (*.opr).

Operation:

Change a structure location.

To Do:

- 1. Edit direct diversion station (*.dds).
- 2. Edit reservoir station file (*.res).
- 3. Edit instream station file (*.ifs).

Operation:

Have baseflow results be used by the simulation module.

To Do:

1. Revise the response file (*.rsp) base stream flow file to be *.xbm, the results of the baseflow module.

Operation:

Maintain the old baseflow results while testing new baseflow data.

To Do:

1. Name the base stream file to anything except *.xbm. The recommended file name is *.rim.

8.3 Adding Data

Following are typical commands associated with adding data.

Operation:

Add a new river location, which uses existing hydrology data.

To Do:

1. Edit river network file (*.rin).

Operation:

Add a new river location with estimated hydrology data.

To Do:

- 1. Edit the river network file (*.rin).
- 2. Edit the base flow data file (*.rib).
- 3. Rerun the baseflow module.

Operation:

Add a new river location with gaged hydrology data.

To Do:

- 1. Edit the river network file (*.rin).
- 2. Edit the historic streamflow file (*.rih).

Operation:

Add a new diversion to an existing river location.

To Do:

- 1. Edit the diversion station file (*.dds).
- 2. Edit the direct diversion right file (*.ddr).
- 3. Add to the direct diversion demand file monthly (*.ddm) or annual (*.dda).

8.4 Imports

Following are notes related to the treatment of imports.

Operation:

Account for imports during the baseflow generation and use the same diversion station file during simulation.

Approach:

Treat the import like any other diversion. Indicate imports as a negative diversion.

To Do:

Direct Diversion Station (*.dds) file

1. Include an entry in the diversion station file (*.dds) that represents the importing structure's location on the stream system.

Historic Diversion (*.ddh) file

2. Include a negative diversion (import) in the historic diversion file (*.ddh) for the import structure

Direct Diversion Demand (*.ddm) file

3. Include a 0 demand for the import structure.

Note:

You'll see a warning in the *.log that you have no water rights for this structure and a negative diversion (import) for this structure. These warnings are consistent with what you are doing.

You'll see data in the import column of the base flow result information file (*.xbi) that shows how imports were included in the base flow calculations.

By including a 0 demand for this structure in the diversion demand file (*.ddm), the same diversion structure file (*.dds) can be used for base flows and simulation.

Operation:

Tie a direct flow import to a structure during simulation.

Approach:

Operate the structure receiving imported water via an operating rule by:

To Do:

- 1. Including an entry in the diversion station file (*.dds) that represents the importing structures location on the source stream.
- 2. Including the imported structures water rights in the direct diversion water right file (*.ddr).
- 3. Including a type 11 entry in the operating right file (*.opr) which ties a demand to the water right of the structure that imports water. The source will be the water right ID, the destination will be the receiving structure's ID, and the admin # will typically be just junior to the receiving structure's water right.

Note:

See Example 10 for a simple import example for both simulation and baseflow generation.

8.5 Abnormal Model Termination

Following are notes related to abnormal model termination.

Operation:

Model abnormally terminates with some kind of message related to an input file.

To Do:

1. Check the *.log file. It will contain various notes on which files were expected to be read and which files were actually read from the *.rsp file. Chances are your input data error is located in the last file read. Double check that input file with the format described in the documentation.

8.6 Implementation of the Blue River Decree (Upstream Storage)

Following are notes related to implementing the Blue River Decree for the Upper Colorado River Model application.

Operation: Model the Blue River Decree at Dillon Reservoir.

Discussion:

This discussion is a brief summary of the Blue River Decree to provide background information for its operation in StateMod. For a complete discussion of the decree see W.W. Wheeler (1986). In brief, the Blue River Decree allows Dillon Reservoir, Roberts Tunnel, Upper Blue Reservoir and Con Hoosier Tunnel to store or divert out of priority with respect to Green Mountain's first fill decree. The water diverted out of priority to storage or a direct diversion is stored in an Out-of-Priority (OOP) Plan. If the OOP diversion is to a reservoir it is typically kept in a separate account which may not be used until booked over into one of the reservoirs other accounts. Operational rights are used to offset the Out-of-priority Plan requirements if Green Mountain does not fill at a user specified date.

To Do:

Reservoir Water Right (*.rer) file:

- 1. Add an Out-of-Priority Plan for each Out-of-Priority Storage or diversion.
- 2. Add a special Out-of-Priority (OOP) account to each reservoir storing out of priority (i.e. Dillon Reservoir and Upper Blue Reservoir). Note this account should not be tied to any users of the reservoir.

Operating Right (*.opr) file:

- 3. Add a type 34 Out-of-Priority Storage or Diversion operating rule.
- 4. Add a type 8, Out-of-Priority bookover, operational right with the administration number to be just junior to Green Mountain's first decree.

8.7 Add Daily Capability to a Monthly Model

Following are notes related to adding daily capability to a monthly model. Note that daily baseflow generation is not required. Therefore two operations are described herein. Also for daily baseflow generation, the same daily ID data provided in the station files data is used for demands and historic data.

Operation:

Add daily capability to a monthly model without generating daily baseflows.

To Do:

Response (*.rsp) file (see Section 4.1).

1. Add file names for daily streamflows (*.rid), direct diversion demand (*.ddd), instream flow demands (*.ifd), well demand (*.wed), reservoir targets (*.tad) and delay tables (*.dld).

Control (*.ctl) file (see Section 4.2).

- 1. Ensure all the optional data is included at the bottom of the file (see Section 4.2).
- 2. Change the daily option (iday) to 1 to indicate a daily model.

River Station (*.ris) file (see Section 4.4).

1. Add variable *crunidy* to indicate the river station ID to use for daily data.

Direct Diversion Station (*.dds) file (see Section 4.5).

1. Add variable *cdividy* to indicate the diversion station ID to use for daily data.

Instream Flow Station (*.ifs) file (see Section 4.7).

1. Add variable *cifridy* to indicate the instream flow station ID to use for daily data.

Well Station (*.wes) file (see Section 4.8).

1. Add variable *cdividyw* to indicate the well station ID to use for daily data. Note this file is only required if wells are simulated.

Reservoir Station (*.res) file (see Section 4.5).

1. Add variable *cresidy* to indicate the reservoir station ID to use for daily data.

Build the following daily files:

- 1. Direct diversion demand (*.ddd) file.
- 2. Daily instream demand (*.ifd) file.
- 3. Daily well demand (*.wed) file (if wells are simulated).
- 4. Daily reservoir target (*.tad) file.
- 5. Daily return file (*.dld) file.
- 6. Daily Consumptive Requirement (*.ddx) file (if variable efficiency is simulated).

Operation:

Add daily capability to a monthly model including the generation of daily baseflows.

To Do:

All of the above plus:

Response (*.rsp) file (see Section 4.1).

1. Add file names for daily historic streamflow (*.rhy), daily historic diversions (*.dhy), daily historic pumping (*.why) and daily reservoir contents (*.eoy).

Build the following historic daily files:

- 1. Historic daily streamflow (*.riy) file.
- 2. Historic daily diversion (*.ddy) file.
- 3. Historic well pumping file (*.why) file.
- 4. Historic daily reservoir end of content (*.eoy) file.

Note the same daily ID data provided in the station files data is used for both and historic daily data.

8.8 Add Wells to an Existing Model

Following are notes related to adding wells to an existing model.

Operation:

Add wells to an existing model.

To Do:

Response (*.rsp) file

- 1. Add an entry for a well station file (*.wes).
- 2. Add an entry for a well right file (*.wer).
- 3. Add an entry for a well demand file (*.wed).
- 4. Add an entry for an historic well pumping file (*.why).

Control (*.ctl) file

1. Add variable iwell equal to 1.

Delay (*.dly) file

1. Add delay table(s) that represent the impact of well pumping on the river.

Build the following files:

- 1. Well Station File (*.wes).
- 2. Well Right File (*.wer).
- 3. Well Demand file (*.wed).
- 4. Historic Well Pumping File (*.why).

8.9 How to Implement a Futile Call

A futile call, as implemented in StateMod, allows a tributary stream to operate independently of the mainstem. Therefore, the impact of upstream diversions and return flows are not passed downstream of the futile call locations.

Operation:

Implement a futile call.

To Do:

River Network (*.rin) file

- 1. Add a river node downstream of where a futile call occurs and
- 2. Ensure the downstream location (cstadn () of the river network file is blank).

For example:

The following river network where river node Riv_10 flows to Riv_20, which flows to Riv_50, which flows to Riv_60

Station ID Downstream Station ID

Riv 10 Riv 20

Riv 20 Riv 50

Riv_50 Riv_60

Would look like the following if a futile call is added downstream of Riv_20

Riv_10 Riv_20

Riv_ 20 Futile

Futile

Riv_50 Riv_60

8.10 How to Estimate Baseflows at Ungaged Locations when Gaged Locations are Natural Flows

The State Model allows baseflows to be estimated at ungaged locations when the streamflows provided at gaged locations are natural flows. This operation is typically used when the user has filled missing data by regressing natural flows rather than regressing using gaged data.

Operation:

Estimate baseflows at ungaged locations when the streamflows provided at a gaged locations are natural flows.

To Do:

Response (*.rsp) file

Set the historic stream flow file (*.rih) to the file name that contains the natural flows at gaged location.

Baseflow Operation

Execute the model using the special baseflow option by entering -basex or -baseflowx.

Simulate Operation

See the first comment below.

Comments:

When the above procedure is used to generate natural flows at ungaged locations, during simulation the user will probably want the response file to contain historic stream flows rather than the estimate of natural flows at gaged locations. This will ensure model output that compares estimated streamflows to gaged streamflows is correct.

The above procedure could be reproduced using the typical baseflow option (-base or -baseflow) if no diversions and reservoir end of month content data are provided. The -basex or -baseflowx option was added to simplify data preparation.

8.11 How to Limit the Total Diversion by a Carrier to an Annual Volume

The State Model allows a carrier to be limited to an annual diversion volume.

Operation:

Limit a carrier's diversion to an annual volume.

To Do:

Operating Right (*.opr) file

- 1. If the carrier structure does not already exist, add one to the river network (*.rin), the diversion station file (*.dds), the diversion right file (*.ddr) and the diversion demand file (*.ddm). Note, since the objective is to limit the demand to an annual total, the values entered into the diversion demand file (*.ddm) are not used in any calculations but are printed to the structure output (*.xdd) to compare demands to actual diversions.
- 2. Add a type 14 operating rule (Carrier with a constrained demand) where the destination structure is, for example, a reservoir, the destination structure's account is the reservoir's account, the source structure is the carrier's water right and the source account (iopsou(2,1)) is the annual diversion limit in acft.

Comments:

The type 14 operating right is limited by the annual volume, carrier capacity and destination capacity. It is not constrained by the diverting water right.

8.12 How to Implement the Rio Grande Compact

The State Model allows the Rio Grande Compact to be simulated as an operating rule with the following features:

Compact demands are entered as forecasted data in the monthly Instream flow demand file (*.ifm). Note, a negative number indicates the demand data is a forecast value.

Compact data is entered as an operating rule (type 17 for the Rio Grande and type 18 for the Conejos).

For the Rio Grande River's portion: 1. The destination must be an Instream flow (e.g. an Instream flow right just below the Rio Grande at Labatos gage), 2. Source 1 must be a stream gage that represents the index flow (e.g. Rio Grande at Del Norte), and Source 2 must be a stream gage used to adjust to the discharge at the Instream flow location (e.g. the combined discharge of the Conejos River near La Sauses).

For the Conejos River's portion: 1. The destination must be an Instream flow (e.g. an Instream flow right just below the combined discharge of the Conejos River near La Sauses), 2. Source 1 must be a

stream gage (e.g. Conejos River near Magote), 3. Source 2 must be a stream gage (e.g. Los Pinos River near Ortiz), and 4. Source 3 must be a stream gage (e.g. San Antonio River at Ortiz).

Operation:

Implement the Rio Grande Compact for both the Rio Grande and Conejos Rivers.

To Do:

Response (*.rsp) file

1. Add a monthly Instream flow demand (*.ifm) file after the annual Instream flow demand (*.ifa). Note for StateMod to be backward compatible, this file is only read when the variable *iifcom* of the Instream flow station (*.ifs) file indicates monthly data is provided.

Control (*.ctl) file

1. Confirm the variable *ffacto* used to adjust Instream flow data is consistent with the data provided in the both annual Instream flow demand (*.ifa) and monthly Instream flow demand (*.ifm) file.

River Network (*.rin) file

1. Add an Instream flow just demand node downstream of the Rio Grande at Labatos and the Conejos River near La Sauses.

Instream Flow Station (*.ifs) file

1. Add two Instream flow demands to represent the Rio Grande at Labatos and the Conejos River near La Sauses. Set the variable *iifcom* to 1 to indicate monthly data is provided.

Monthly Instream Flow Demand (*.ifm) file

1. Add two monthly Instream flow forecasts for each year and month as negative numbers. One should represent the April to September forecast for the Rio Grande River Index Station (Rio Grande near Del Norte). The second should represent the April to September forecast for the sum of the Conejos River Index stations (Conejos River near Magote, Los Pinos river near Ortiz and the San Antonio river near Ortiz). Note a zero should be entered for months without a forecast.

Operating Right (*.opr) file

- 1. Add an operating right for the Rio Grande River's portion of the compact as a type 17 right. Set the destination to the Instream flow located below the Rio Grande at Labatos gage. Set source 1 to the stream gage that represents the index flow (e.g. Rio Grande at Del Norte) with a coefficient (account) of 1.0. Set source 2 to the stream gage used to adjust to the discharge at the Instream flow location (e.g. the combined discharge of the Conejos River near La Sauses) with a coefficient (account) of -1.0.
- 2. Add an operating right for the Conejos River's portion the compact as a type 18 right. Set the destination to the Instream flow located below the combined discharge of the Conejos River near La Sauses. Set source 1 to the first index stream gage (e.g. Conejos River near Magote) with a

coefficient (account) of 1.0. Set source 2 to the second index stream gage (e.g. Los Pinos River near Ortiz) with a coefficient of 1.0. Set source 3 to the third index stream gage (e.g. San Antonio River at Ortiz) with a coefficient of 1.0. Note to implement the Rio Grande Compact, a third source of data has been added to the right hand side of the operating right file.

-

8.13 How to Implement Variable Efficiency

The State Model allows efficiency to vary from zero to a user specified maximum value. Note that when the Variable Efficiency approach is used the efficiency data provided in the diversion station (*.dds) file and well station (*.wes) file are replaced with the efficiency data provided in the annual times series file (*.ipy). See Section 7 for additional discussion of how this capability was implemented using the Modified Direct Solution Algorithm.

Operation:

Implement variable efficiency capability into StateMod.

To Do:

Control (*.ctl) file

- 1. Set the variable efficiency switch (*ieffmax*) to 1.
- 2. Set the annual time series file switch (*itsfile*) to 1 or 10. As described in the control file documentation, an entry of 1 implements the variable efficiency capability using the product of conveyance and flood irrigation efficiency for diversions and flood irrigation for wells. This data is provided in an annual time series file (see below). An entry of 10 allows sprinkler efficiency to be used on lands with sprinklers, pumping to be limited to acres with ground water, annual pumping volume (capacity) limits, and a ground operating model. These terms are discussed later in this chapter.

Response (*.rsp) file

1. Add an annual time series file (*.ipy) after the reservoir target file (*.tar). Note for StateMod to be backward compatible, this file is only read when the Control file variable *ieffmax* = 1. Add a monthly Irrigation Water Requirement file (*.iwr) after the annual time series file (*.ipy). Note for StateMod to be backward compatible, this file is only read when the Control file variable *ieffmax* = 1. Note this file is formatted to be exactly the same as the monthly irrigation water requirement file (*.ddc) generated as an output by StateCU.

Annual Time Series (*.ipy) file

1. Build an annual time series (*.ipy) file for every structure served by a diversion or wells only (enter 1 value for lands served by both surface and ground water under the ID of the surface water structure). Note this file is formatted to be exactly the same as the annual time series file prepared as input to StateCU.

Irrigation Water Requirement (*.iwr) file

1. Build a monthly irrigation water requirement (*.iwr) file for every structure served by a diversion or wells only (enter 1 value for lands served by both surface and ground water under the ID of the surface water structure). Note this file is formatted to be exactly the same as the irrigation water requirement (*.ddc) file generated by StateCU.

8.14 How to Implement the Maximum or Mutual Supply Approaches to SW and GW Use

The State Model allows the user to operate using a Maximum or Mutual water supply approach. Both require time series data (*.ipy) be provided that contains ground water acreage, sprinkler acreage, efficiency data and water use approach switch. Also both operate from senior to junior using water right data provided. For the Maximum Supply approach an operating rule allows the water right priority of wells associated with lands served by sprinklers to be made senior in order to apply water to lands served by sprinklers before any other source. For the Mutual supply approach there is no operating rule required and wells operate according to the priority provided in the well water right file.

Note that for the maximum supply option to be effectively implemented the annual time series file (*.ipy) needs to contain non zero value for acres served by ground water and acres served by sprinkler.

Operation:

Implement Maximum Supply capability into StateMod.

To Do:

This activity requires the variable efficiency capability be operational. Therefore in addition to the data described in Section 8.12, the following are required:

Control (*.ctl) file

1. Set the sprinkler switch (*isprink*) to 1.

Annual Time Series (*.ipy) file

- 1. Set the water use approach variable (*gwmode*) in the annual time series (*.ipy) file to 1 to indicate the maximum supply option.
- 2. If appropriate, insure the acres served by sprinkler are not zero. (If the acres served by sprinklers are zero then sprinklers cannot be operated at a senior priority.)

Operational Right (*.opr) file

1. Build a Type 21 operating right where the administration date reflects a senior value that will cause wells with sprinklers to operate first.

Operation:

Implement Mutual Supply capability into StateMod.

To Do:

This activity requires the variable efficiency capability be operational. Therefore in addition to the data described in Section 8.12, the following are required:

Control (*.ctl) file

1. Set the sprinkler switch (isprink) to 1.

Annual Time Series (*.ipy) file

1. Set the water use variable (*gwmode*) in the annual time series (*.ipy) file to 2 to indicate the mutual supply option.

8.15 How to Implement Soil Moisture Accounting

The State Model has the ability to include soil moisture as water supply. This feature requires the variable efficiency option be used. It allows water to be stored in the soil zone up to its capacity and the diverting structures (direct diversion or well) efficiency. It uses an operating rule to specify an administration date that controls when water is available to be taken out of the soil zone to satisfy a consumptive (not total) demand. StateMod initializes the soil moisture reservoir contents to be 50% of the soil moisture capacity.

Operation:

Implement soil moisture capability into StateMod.

To Do:

Control (*.ctl) file

- 1. Set the soil moisture switch (*soild*) to a number greater than 0 that represents a typical soil zone depth in feet (e.g. 3.0 feet).
- 2. Set the annual time series file switch (*itsfile*) to 10. As described in the control file documentation, an entry of 10 allows variable efficiency and other more complex water use data to be used.

Response (*.rsp) file

1. Add a soil parameter file (*.par) after the annual time series file (*.ipy). Note for StateMod to be backward compatible, this file is only read when the Control file variable *soild* > 0. Note this file is formatted to be exactly the same as the soil parameter file (*.par) used by the consumptive use model, StateCU.

Soil Parameter (*.par) file

1. Build a soil parameter (*.par) file for every structure served by a diversion or wells only (enter 1 value for lands served by both surface and ground water under the ID of the surface water structure). Note this file is formatted to be exactly the same as the soil parameter file used by the consumptive use model, StateCU.

Operational Right (*.opr) file

1. Add a type 22 operating right that provides the administration number that controls when water is available to be taken out of the soil zone to satisfy a consumptive (not total) demand.

8.16 How to Implement Plans

The State Model has the ability to track supplies and demands resulting from other simulated diversions as plans. A general discussion regarding plans is included in Section 7.23, Section 4.39 and other Sections referenced in parentheses above. The general approach to include plans in a model is discussed below.

Operation:

Include plan structure to model.

- 1. Determine what type of plan structure is needed (see Section 3.9),
- 2. Ensure the response (*.rsp) file has a plan data file provided.
- 3. Add a Plan ID, etc. to the plan station (*.pln) data file.
- 4. For Well Augmentation Plans, assign well ID's to Plan ID's in the well plan (*.plw) data file.
- 5. Add operating rule(s) that include the plan as a destination or source to simulate plan supplies or demands:
 - a. Well augmentation plans (see Section 8.20)
 - b. Recharge plans (see Section 8.21)
 - c. Import plans (see Section 8.17).
 - d. Reuse plans (see Section 8.18).
 - e. Terms and conditions (T&C) plans Specify a T&C Plan ID as source 2 (ciopso(2)) in a Direct Flow Exchange (type 24), Direct Flow Bypass (type 25), Plan to a Structure by Exchange (type 27) or Plan to a Structure Direct (type 28) operating rule (see Sections 4.13.24, 4.13.25, 4.13.27 and 4.13.28).

- f. Out-of-Priority Diversion or Storage Specify an Out-of-Priority Plan ID as the Associated Plan Data in an Out-of-Priority Diversion with Plan operating rule (see Section 4.13.38).
- g. Special Augmentation Plan (See Section 8.22)
- h. Accounting Plan (see Section 8.18).
- i. Release Limit Plan Specify a Release Limit Plan ID as the source of a type 47 Accounting Plan Limit operating rule (see Section 4.13.47).
- 6. Review results printed to the plan (*.xpl) output file.

8.17 How to Reuse Transmountain Return Flows

The State Model has the ability to reuse transmountain imports by allowing the return flows to be tracked as part of a "Reuse Plan".

Operation:

Tie transmountain return flows to a reuse plan.

To Do:

- 1. Ensure the response (*.rsp) file has a plan data file provided.
- 2. Add a "ReUse Plan" ID, etc. to the plan (*.pln) data file.
- 3. Set the return flow location for the transmountain water's first user to the Reuse Plan ID in the diversion station (*.dds) file.
- 4. Add operating rules that allow the reused water to be used by specifying a Plan to a Structure by Exchange (type 27), Plan to a Structure Direct (type 28), and/or a Plan Spill (type 29) operating rule (*.opr).
- 5. Review results printed to the plan (*.xpl) output file.

8.18 How to Reuse Consumptive Use Credits

The StateMod Model has the ability to reuse consumptive use credits by allowing return flows to be routed to a "Reuse Plan" ID. Note that consumptive use credits are always associated with a Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25) operating rule.

Operation:

Reuse Consumptive use credits.

To Do:

- 1. Ensure the response (*.rsp) file has a plan data file provided.
- 2. Add a "ReUse Plan" ID, etc. to the plan (*.pln) data file.
- 3. For a single use of pro-rata water rights, specify a ReUse Plan ID as the Associated Plan Data in a Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25) operating rule to store, or account for in the river, respectively, a Reservoir or Non Reservoir Reuse Plan (see Section 3.9).
- 4. For multiple uses of pro-rata water rights, specify an Accounting Plan ID as the Destination in a Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25) operating rule. Specify the Accounting Plan ID as a source in a Plan to a Structure by Exchange (type 27) or Plan to a Structure Direct (type 28) operating rule. To further account for reusable supplies from the returns from the type 27 or type 28 rules, specify a ReUse Plan ID as the Associated Plan Data in the type 27 or type 28 rules.
- 5. Reusable supplies stored in Non Reservoir ReUse Plans and Accounting Plans cannot be carried over subsequent time steps. Therefore, specify the plan as a source in a Plan Spill operating rule (type 29) with a very junior priority (e.g. 99999.00000)
- 6. Review results printed to the plan (*.xpl) output file.

8.19 How to Implement Checks for Model Operations and Calibration Issues

Following are typical example checks to identify problems with model operations.

Situation:

Negative baseflows occurring at stream gages or base flow nodes in model network. Simulated baseflows at stream gages not meeting historical stream gage recorded flows.

- 1. Review *.log file from –Base Flow module for the *Negative Flows* summary. Identify extent of negative baseflows by the number of months ('Count' column) and magnitude of negative baseflows ('Est' column). Review monthly distribution of negative baseflows for the stream gage ID or base flow node ID in the base flow information (*.xbi) file.
- 2. For stream gages, review the data used to calculate baseflows (diversions, return flows, reservoir contents see Section 7.1). For base flow nodes, review the base flow coefficients and proration factors (see Section 7.2).
- 3. Review the base flow information (*.xbi) file for months with negative baseflows to determine which of the data used to calculate baseflows is causing the calculation to go negative. This is

typically due to simulated return flows greater than historical gaged flows + upstream diversions or data filling techniques; particularly with regard to reservoir contents.

- 4. Review return flows above gage based on topography and acreage location because return flow are subtracted from gage data. Specifically investigate return flows to neighboring tributaries or other locations that bypass a gage. Mis-location of Return Flow ID's (crtnid), Return Flow Percentages (pcttot), and Return Flow Locations (irtndl) can have a significant impact on calculated baseflows.
- 5. The gain approach to estimating baseflows in between stream gages requires a coefficient be provided to distribute the gain or loss. This coefficient can be any value the user feels is justified but is typically the incremental area and precipitation below an upstream gage (see Section 7.2). When the coefficient is the incremental area and precipitation, the data that represents entire drainage area or average precipitation above the baseflow point should be modified to represent only the incremental increase in drainage area and incremental change in average precipitation (usually lower) within the incremental area.
- 6. The gain approach assigns the distribution of gains for main stem gages to tributary gages. This may not be an adequate representation in which case, the neighboring gage should be used (see Section 7.2).
- 7. Review other typical causes for negative baseflows, including filled reservoir contents data (*.eom), problems with physical representation of the basin, etc.

Situation:

Diversion demand not being fully satisfied.

To Do:

- 1. Ensure capacity in diversion structure (*.dds) file is sufficient to meet demand (see 3. below).
- 2. Ensure structure has sufficient water rights (*.ddr) to meet demand (see 3. below).
- 3. Review check output (*.chk) file for the following warning: *Demcons; Warning the following structure has a demand that is limited by water rights or capacity.*
- 4. Ensure sufficient physical flow available to structure by reviewing the River Inflow (Column 25) of the direct diversion summary output (*.xdd) file.
- 5. Ensure sufficient legally available flow to structure by reviewing the Avail Flow (Column 29) and Control Location (Column 30) of the direct diversion summary output (*.xdd) file.

Situation:

Diversion demand not being fully satisfied with supplemental storage supplies.

All of the above plus:

- 1. Ensure reservoir account(s) specified as source(s) in the reservoir release operating rule (*.opr) has water in storage available for release in the reservoir summary file (*.xre).
- 2. Ensure reservoir release to meet demand (beginning storage release to demand) will not cause the reservoir contents to be below the reservoir's Dead Pool (*DeadSt*) assigned in reservoir structure (*.res) file.
- 3. Review reservoir output (*.xre) file for supplies, releases, and limit to reservoir operations.
- 4. Ensure River Inflow to reservoir (River Inflow (+) column in *.xre file) is not equal to, or greater than, reservoir maximum release rate (*FloMax*) assigned in reservoir structure (*.res) file.

Situation:

Reservoir unable to fill to capacity.

To Do:

- 1. Ensure structure has sufficient water rights (*.rer) to meet target.
- 2. Review reservoir target contents (*.tar) file for monthly target equal to reservoir capacity in reservoir structure (*.res) file.
- 3. Ensure sufficient physical flow available to structure. Review River Inflow (Column 25) of direct diversion summary output (*.xdd) file.
- 4. Ensure the water right is assigned to all owners.
- 5. Ensure sufficient legally available flow to structure. Review Avail Flow (Column 29) and Control Location (Column 30) of direct diversion summary output (*.xdd) file.

Situation:

Accounting Plan not storing water associated with pro-rata water right operating rules.

- 1. Ensure the Accounting Plan ID turned ON in plan structure (*.pln) file.
- 2. Ensure the Accounting Plan ID specified as destination (*ciopde*) in Direct Flow Exchange (type 24) or Direct Flow Bypass (type 25) operating rule.
- 3. Ensure the source water right ID specified in operating rule (*ciopso(1)*) is ON in direct diversion right (*.ddr) file.

- 4. Ensure the percentage of source water right specified in operating rule (iopsou(2)) is greater than zero.
- 5. Ensure sufficient physical flow available to source structure. Review River Inflow (Column 25) of direct diversion summary output (*.xdd) file.
- 6. Ensure sufficient legally available flow to source structure. Review Avail Flow (Column 29) and Control Location (Column 30) of direct diversion summary output (*.xdd) file.
- 7. Ensure the operating right is turned on in the month under review.
- 8. Ensure monthly and annual maximum limits specified in operating rule (*OprMax*(1-13)) are not restricting simulated diversion to Accounting Plan.

8.20 How to Implement a Well Augmentation Plan

A well augmentation plan is, typically, the result of an engineering analysis that allows a well to divert out-of-priority and replace the river depletions associated with that pumping with one too many replacement water sources in order to avoid injury to senior water rights. The StateMod Model has the ability to track the location(s) and timing of lagged river depletions associated with pumping a well out-of-priority and providing multiple sources to meet out of priority depletions.

Operation:

Simulate a Well Augmentation Plan

- 1. Add an "Augmentation Plan" ID, etc. to the plan (*.pln) data file.
- 2. Add a Well Augmentation Plan Data file (*.plw) that ties well pumping to an augmentation plan.
- 3. Add an Out-of-Priority (type 38) operating rule that allows depletions from pumping in a prior time step to be met by an in-priority supply.
- 4. Add any one of the following operating rules that have the Well Augmentation Plan as a destination:
 - a. A Direct Flow Exchange (type 24)
 - b. A Direct Flow Bypass (type 25)
 - c. A Plan or Reservoir Use Direct (type 27)
 - d. A Plan or Reservoir Use Exchange (type 28)
 - e. A Plan or Reservoir Reuse to a Plan Direct (type 48)
 - f. A Plan or Reservoir Reuse to a Plan Exchange (type 49)

5. Review results printed to the plan (*.xpl) output file.

8.21 How to Implement a Recharge Plan

A recharge plan is, typically, part of an engineering analysis that allows out-of-priority pumping or terms and conditions associated with a water transfer to be met by a recharge source. The StateMod Model treats a recharge as a reservoir that recharges (seeps) water. StateMod has the ability to track the location(s) and timing of lagged river accretions associated with the recharged water in a recharge plan and operate those water supplies to meet a demand.

Operation:

Simulate a Recharge Plan

To Do:

- 1. Add a "Recharge Plan" ID, etc. to the plan (*.pln) data file.
- 2. Add a "Recharge Site" ID, etc. to the reservoir station (*.res) data file.
- 3. Add associated reservoir data to the reservoir target (*.tam), historic end-of-month (*.eom), and reservoir right (*.rer) files. The reservoir target is typically set to the recharge site capacity. The historic end-of-month value is typically set to zero. The recharge site may or may not have an entry in the reservoir right (*.rer) file. It will have an entry if the structure is filled under a recharge storage decree. It will not have an entry if the structure is filled under a carrier decree. In this latter case, a recharge diversion right will be assigned to a river headgate (*.ddr)
- 4. If the recharge reservoir is filled by a carrier, add a Carrier with Loss (type 45) operating rule that has the recharge reservoir as the destination.
- 5. Add any one of the following operating rules that have the Recharge Plan as a source (water supply):
 - a. A Plan or Reservoir Use Direct (type 27)
 - b. A Plan or Reservoir Use Exchange (type 28)
 - c. A Plan or Reservoir Reuse to a Plan Direct (type 48)
 - d. A Plan or Reservoir Reuse to a Plan Exchange (type 49)
- 6. Review results printed to the plan (*.xpl) output file.

8.22 How to Implement a Special Augmentation Plan

A special augmentation plan is a plan that is used to track the volume of water associated with a specific administrative action. Examples include well pumping from a designated basin, well pumping

that is decreed to be non-tributary, etc. StateMod has the ability to track the activities associated with these administrative actions, even though they, typically, do not result in any demand or need for augmentation.

Operation:

Simulate a Special Augmentation Plan

To Do:

- 1. Add a "Special Augmentation Plan" ID, etc. to the plan (*.pln) data file.
- 2. Add a Well Augmentation Plan Data file (*.plw) that ties well pumping a special augmentation plan.
- 3. Review results printed to the plan (*.xpl) output file.

cdss@state.co.us

Last updated: November 2008

9.0 Supporting Utilities

This section describes supporting utilities which operate outside the State Model to provide additional plotting and linking capabilities. The following sections are available within this chapter:

- 9.1 Big Picture Plot
- 9.2 Basin Linkage
- 9.3 StateMod File Comparison
- 9.4 StateDMI
- 9.5 Tstool DMI
- 9.6 StateCU
- 9.7 SmNewRsp (StateMod Response File Program)
- 9.8 SmDelay (StateMod Delay File Program)

_

9.1 Big Picture Plot

Description

The Big Picture Plot is generated by a FORTRAN program named **delplt.f**. **Delplt** post processes one or more output files from StateMod to generate a file which may be viewed as a table or provided to a plotting program to generate a 'Big Picture Plot'. Output from **Delplt** is always directed to the directory where the response file is located. It has the following capabilities:

• Single, Multiple, Difference, Diffx or Merge file results.

The Single option will process the first file only.

The Multiple option will generate a matrix by ID for up to 5 files.

The Difference option will subtract data from two files (ID's in one file but not another will be treated as zeros).

The Diffx option will subtract data from two files (ID's in one file but not another will be ignored).

The Merge option will concatenate two or more files together.

Operates on both StateMod ASCII and Binary output files.

For ASCII diversion = *.xdd, reservoir = *.xre

- Provides data for one of 20+/- parameters.
- Prints 1, n, or all ID's.
- Prints a specific year, year and month, or average.
- For the Difference option only allows ID's found in one file not in another.

Constraint:

For the ID Option, the code checks for a -999 as an indicator that no more ID's will be provided.

Options

The program is written in FORTRAN. It expects a command file which, if not provided, defaults to 'delplt.in'. Following is the format of a command files:

```
Line 1: Run type (Single, Multiple, Difference,
   Merge or Help)
Line 2: File Name (can be ASCII (e.g. *.xdd) or Binary (e.g. *.b43))
Line 3: Data Type
   Available data types are
      Diversion
       StreamGage (baseflows)
      Stream (same as StreamGage)
      Reservoir
       Instream
       StreamID (baseflows that begin with a USGS Identifier (e.g. 09... or 08...)
Line 3: Parameter
    Available Diversion or streamGage or streamID parameters:
      Total Demand
      CU Demand
      From_River_by_Priority
      From_River_by_Storage
      From_River_by_Exchange
      From_Well
       From_Carrier_by_Priority
      From_Carrier_by_Storage
      Carried Water
       From Soil
      Total_Supply
      Total_Short
       CU_Short
       Consumptive_Use
       To_Soil
      Total_Return
      Upstream Inflow
      Reach Gain
      Return Flow
      Well_Depletion
      To/From_GW_Storage
      River_Inflow
      River_Divert
      River_by_Well
      River_Outflow
```

```
Available_Flow
Available reservoir parameters:
   Initial_Storage
  River_Priority
  River_Storage
  River_Exchange
   Carrier_Priority
  Carrier_Storage
  Total_Supply
  Storage_Use
  Storage_Exchange
  Carrier Use
  Total_Release
  Evap
  Seep_Spill
   SimEOM
  Target_Limit
  Fill_Limit
  River_Inflow
  Total_Release
  Total_Supply
  River_By_Well
  River_Outflow
Line 4: Station ID (0=all, end with a -999)
Line 5: Time (year, year and month, Ave)
```

Example of a Difference Application

```
# Multiple Files, same data type, same parameter,
  three years (1975, 1976 and average)
      Run Type: (Single, Multiple, Difference, Merge or Help):
#
Difference
#
      File:
gunnH.xdd
      Data Type (Diversion, StreamGage, Reservoir, Instream, or
StreamID)
Diversion
      Parameter (same as SMGUI) or type -help
Total_Supply
#
      ID (0=all, n=ID, end with a -999)
0
-999
#
#
      Year or Ave (e.g. Ave or 1989 NOV)
Ave
#
#
```

9.2 Basin Linkage

Description

The Basin Linkage is performed by a FORTRAN program named smlink.f. Smlink does the following:

- Reads 2 to 5 StateMod response (*.rsp) files to generate all the input files required to operate StateMod as a linked basin.
- Allows the user to input replacement commands required to delete nodes where the models overlap or add nodes required to facilitate linkage.
- Generates a log file that records the required dimensions for the StateMod Model and any
 duplicate ID's that need to be revised before a successful execution of StateMod can be
 performed.

Constraints used by the model include:

To link the *.rin file the code searches for a left justified river node name 'End' or 'END'.

The code warns the user if duplicate ID's are provided.

The path of each input file is taken from the path specified in the command files unless a path is provided in the response (*.rsp) file.

Any internal linkage between basins is not done by the program.

File names are limited to 72 characters.

The control information in the *.ctl files must be exactly the same (unit conversions, beginning year, etc.).

To move from a PC to workstation, see notes in subroutines parse, getpath and putpath.

The program assumes the same evaporation, precipitation and delay tables will be used by each basin linked.

Options

Smlink expects a command file which, if not provided, defaults to 'smlink.rsp'. Following is a typical command file:

```
Line 1: Base output file name
Line 2: Input file name 1
Line 3: Input file name 2
```

Example

```
#
# smlink.rsp
#
# Output File
wslope
#
# Input File
/usr2/crdsswork/statemod/yampa/whiteH.rsp
/usr2/crdsswork/statemod/yampa/yampaH.rsp
```

9.3 StateMod File Comparison

The smfc program is written in FORTRAN and expects a command file with data. Smfc does the following for StateMod applications:

• Reads and compares 2 or more StateMod files. The user has the ability to:

Compare all StateMod files associated with a run if the file to be compared is a response (*.rsp) file.

Compare just one file if the file to be compares is anything but a response file (e.g. *.dds, *.res, etc.).

Options

If a command file is not provided, the program defaults to smfc.rsp.

If a response (*rsp) file is provided on the file to compare (line 2) then the code will compare all files contained in the response files.

If any file other than a response if provided then it only compares those two.

Print all lines in a comparison (iprint=0) or only lines where differences occur (iprint=1).

Following is the information in a typical command file:

```
Line 2: Comparison control (e.g. .rsp, .dds, etc)
Line 3: Output file name
Line 4: File 1 to compare
Line 5: File 2 to compare

Example

# Smfc.rsp; response file to smfc.for; StateMod file compare

# 1. iprint 0=print all; 1=print only delta

1 # 2. Files to compare (.rsp = all)
.rsp

# # 3. Output File name
x.out

# # 4. File 1 to compare
/usr2/crdsswork/statemod/white/whiteH.rsp

# 5. File 2 to compare
/usr2/crdsswork/statemod/whiteT/whiteTH.rsp
```

Line 1: Print control (iprint) 0=print all; 1=print only delta

9.4 StateDMI

The StateDMI provides the following assistance to the StateMod Model:

- Creates a river network (*.rin) file that identifies relative location (upstream or downstream) of nodes in a model network.
- Creates a river station (*.ris) file that describes the names and locations of nodes where baseflows are known.
- Creates a stream estimate station coefficient data (*.rib) file with proration coefficients to calculate baseflows for nodes where baseflows are not known.
- Creates a reservoir structure (*.res) file that describes the physical properties of each reservoir in the system.
- Creates a reservoir rights (*.rer) file that contains data associated with reservoir storage rights.
- Creates an instream flow structure (*.ifs) file that describes the physical properties of each instream flow in the system.
- Creates an instream flow rights (*.ifr) file that contains data associated with instream flow water rights.
- Create an instream flow demand (*.ifa) file that contains annual instream flow demands (12 monthly values) for each instream flow.

- Creates a well structure (*.wes) file that describes the physical properties of each well in the system.
- Creates a well rights (*.wer) file that contains data associated with ground water rights.
- Create a well demand (*.wem) file that contains demands for well structures.
- Creates a direct diversion structure (*.dds) file that describes the physical properties of each direct diversion in the system.
- Creates a direct diversion rights (*.ddr) file that contains data associated with diversion water rights.
- Creates an historic diversion (*.ddh) file by extracting diversion data from the CDSS database.
- Fills missing historic diversion data from user supplied information.
- Calculates the average system efficiency for irrigation structures based on historic diversion data and irrigation water requirement data provided by the CU model, StateCU (see below).
- Creates a demand (*.ddm) file based on calculated or user supplied efficiency data and farm irrigation water requirement data provided by the CU model, StateCU (see below).
- Extracts irrigated acreage and crop mix (*.cds) data from the CDSS database.

For a complete description of the StateDMI see CDSS web site (http://cdss.state.co.us).

9.5 TST ool DMI

The TSTool DMI provides the following assistance to the StateMod Model:

- Extracts historic streamflow data from CDSS database.
- Fills missing streamflow data from user supplied parameters.
- Extracts historic reservoir End-of-Month data from CDSS database.
- Fills missing EOM data from user supplied parameters.
- Extracts precipitation and evaporation data to build the net evaporation file (*.eva) for StateMod.

For a complete description of the TSTool DMI see CDSS web site (http://cdss.state.co.us).

9.6 StateCU Model

The StateCU Model provides the following assistance to the StateMod Model:

Provides irrigation water requirement data for estimating irrigation structure efficiencies and calculated demands (as opposed to historic diversions).

For a complete description of the StateCU Model see CDSS web site (http://cdss.state.co.us).

9.7 SmNewR sp StateM od R esponse

The StateMod Response File preprocessor (SmNewRsp) allows a discontinued StateMod response file to be read and a new StateMod file constructed that is consistent with the Version 10.30 update that allows files to be provide in any order using a file descriptor. As presented below SmNewRsp keys on the suffix recommended and typically used in an existing StateMod response file to build a control file that is consistent with version 10.30 and greater. Note that if any existing file that does not contain a standard, recommended name SmNewRsp will warn the user but will not try to determine the file type. Also, since the new response file format was adopted with version 10.30, any files added after that time (e.g. Plans, Reservoir Return Data, etc.) are not processed. Similar to files with a non-standard suffix, SmNewRsp will warn the user but will not try to determine the file type. When a warning is encountered, the output from SmNewRsp will typically require hand editing before they can be successfully used by StateMod.

To execute SmNewName the user simply types:

SmNewName flname.rsp

where flname.rsp is an old sequential StateMod response. The new random response file is named SmNewRsp.out. Also execution notes and warnings are reported in file named SmNewRsp.log.

Files processed by SmNewRsp (those in existence before version 10.30)

# Standard		File	Example
	Suffix	Descriptor	Name
1	*.ctl	Control	rgTWD.ctl
2	*.rin	River_Network	rgTW.rin
3	*.res	Reservoir_Station	rgTW.res
4	*.dds	Diversion_Station	rgTW.dds
5	*.ris	StreamGage_Station	rgTW.ris
6	*.ifs	Instreamflow_Station	rgTW.ifs
7	*.wes	Well_Station	rgTW.wes
8	*.ifr	Instreamflow_Right	rgTW.ifr
9	*.rer	Reservoir_Right	rgTW.rer
10	*.ddr	Diversion_Right	rgTW.ddr
11	*.opr	Operational_Right	rgTW.opr
12	*.wer	Well_Right	rgTW.wer
13	*.dum	Precipitation Monthly	rgTW.pre
14	*.eva	Evaporation_Monthly	rgTW.eva
15	*.rim	Stream_Base_Monthly	rgtw.rim
16	*.ddm	Diversion_Demand_Monthly	rgTW.ddm
17	*.dda	Diversion Demand Average Monthly	rgTW.dda
18	*.ddo	Diversion Demand Override	rgTW.ddo
19	*.ifm	Instreamflow_Demand_Monthly	rgTW.ifm
20	*.ifa	Instreamflow_Demand_AverageMonthly	rgTW.ifa
21	*.wem	Well_Demand_Monthly	rgTW.wem
22	*.dly	DelayTable_Monthly	rgTW.dly
23	*.tar	Reservoir_Target_Monthly	rgTW.tar

24	*.ipy	IrrigationPractice_Yearly	rg.ipy
25	*.iwr	ConsumptiveWaterRequirement_Monthly rg.iwr	
26	*.par	SoilMoisture	rg.par
27	*.eom	Reservoir_Historic_Monthly	rgTW.eom
28	*.rib	StreamEstimate_Coefficients	rgTW.rib
29	*.rih	StreamGage_Historic_Monthly	rgTW.rih
30	*.ddh	Diversion_Historic_Monthly	rgTW.ddh
31	*.weh	Well_Historic_Monthly	rgTW.weh
32	*.gvp	GeographicInformation	rgTW_StateMod.gvp
33	*.out	OutputRequest	RgTW.out
34	*.rid	Stream_Base_Daily	rgTWD.rid
35	*.dum	Dummy	rgTWD.dum
36	*.dum	Dummy	rgTWD.dum
37	*.dum	Dummy	rgTWD.dum
38	*.dum	Dummy	rgTWD.dum
39	*.dld	DelayTable_Daily	rgTwD.dld
40	*.iwd	ConsumptiveWaterRequirement_Daily	rgTWD.iwd
41	*.rhy	StreamGage_Historic_Daily	rgTWD.rhy
42	*.dhy	Diversion_Historic_Daily	RgTWD.dhy
43	*.why	Well_Historic_Daily	RgTWD.why
44	*.eoy	Reservoir_Historic_Daily	RgTWD.eoy

9.8 SmDelay StateMod Delay File Program

The StateMod Delay File Program (SmDelay) allows a daily StateMod delay file (*.dly or *.urD) to be created from an existing StateMod monthly delay file (*.dly or .urM). The approach used to estimate daily data is to construct a pattern by connecting the midpoints of monthly data. The result is a smooth daily estimate.

To execute SmDelay the user simply types:

SmDelay flname.rsp

where flname.rsp is a response file that that includes the name of the existing monthly delay file and the name of the new daily delay file to be created. Following is an example:

cdss@state.co.us

Last updated: November 2008

10.0 Discontinued but Supported File Formats

This section describes input files that are discontinued but continue to be supported. This support is provided to allow prior developments to continue to operate. They include:

- 10.1 Response File (Sequential)
- 10.2 Soil Moisture Parameter File (*.par)
- 10.3 <u>Irrigation Practice (*.ipy) File</u>
- 10.4 Operating Rule (*.opr) File

10.1 R esponse File (*.rsp)

The response file contains the names of all other data files required to run the model. This file is read by subroutine StateM. Note that Version 10.30 and greater allows a user to enter response file data using one of two formats; random and sequential. StateMod reads the first file type and based on the occurrence of the character '=' in the first file name it determines if the file is random (contains a '=') or sequential (does not contain a '=').

The random file approach allows file names to be entered in any order as described below under Random Response Format. Any file type that is not required for a simulation is simply not included. Also any file name may be commented out by including a '#' character in column 1. Its format is described in the Chapter 4.0 Input Description.

The sequential file contains file names or a dummy name for every file type. It is described below. Also to allow StateMod to be backward compatible, well data (*.wes, *.wer, *.wem, and *.weh), the monthly instream demand (*.ifm), San Juan Recovery Plan sediment file (*.sjr), annual time series file (*.ipy), irrigation water requirement file (*.iwr) and soil moisture file (*.par) should not be provided unless specified in the control (*.ctl) file. See files with footnotes in the following table.

Sequential :	File Format	
Row-data	Variable	Description
		Format (a72)
Control and	Network Files	
1-1	filena	<pre>Control file (*.ctl)</pre>
2-1	filena	River Network file (*.rin)
Station File	es	
3-1	filena	Reservoir Station file (*.res)
4-1	filena	Direct Diversion Station file (*.dds)
5-1	filena	River Station file (*.ris)

```
6-1
              filena
                                  Instream Flow Station file (*.ifs)
                                  Well Station file (*.wes)
7-1
              filena (1)
Right Files
8-1
                                  Instream Flow Right file (*.ifr)
              filena
9-1
              filena
                                  Reservoir Right file (*.rer)
              filena
                                  Direct Diversion Right file (*.ddr)
10-1
                                  Operational Right file (.opr)
11 - 1
              filena
              filena (1)
                                  Well Right file (*.wer)
12-1
Climate and Stream Files
            filena
                                  Precipitation file - monthly (*.pre)
                                  Evaporation file - mon or ann (*eva)
14 - 1
             filena
                                  Streamflow file - mon (*.rim or *.xbm)
15-1
             filena
Demand Files
16-1
             filena
                                  Direct Flow demand file - mon (*.ddm)
                                  Direct Flow demand overwrite - mon (*.ddo)
17-1
             filena
18-1
             filena
                                  Direct Flow demand file - ann (*.dda)
             filena (2)
19-1
                                  Instream demand file - monthly (*.ifm)
                                  Instream demand file - annual (*.ifa)
20-1
              filena
21-1
             filena (1)
                                  Well structure demand file - mon(*.wem)
Delay and Reservoir Target Files
22-1
              filena
                                  Delay Table file - monthly (*.dly)
              filena
23-1
                                  Reservoir Target file - mon (*.tar)
Optional Files
24 - 1
             filena (3)
                                  SJRIP sediment file - annual (*.sjr)
25-1
             filena (4)
                                  Annual Time series file - annual (*.ipy)
                               Annual Time series inc.

Consumptive Water Req. - monthly (*.iwr)
             filena (5)
26-1
                                Soil Moisture file - annual (*.par)
27-1
             filena (6)
Historical and Base Streamflow Files
28-1
             filena
                                  Historic Res. EOM data - monthly (*.eom)
29-1
              filena
                                  Base Streamflow data (*.rib)
30-1
             filena
                                 Historic Streamflow data - monthly (*.rih)
                                  Historic Diversion data - monthly (*.ddh)
31-1
              filena
32-1
             filena (1)
                                  Historic Well Pumping - monthly (*.weh)
Output Control Files
33 - 1
             filena
                                  GIS data files (*.gis)
34 - 1
             filena
                                  Output Control file (*.out)
Daily Files
35-1
             filena (7)
                                  Streamflow file - daily (*.rid)
36-1
             filena (7)
                                  Direct Flow demand file - daily (*.ddd)
37-1
             filena (7)
                                  Instream demand file - daily (*.ifd)
             filena(1,7)
                                  Well demand file - daily (*.wed)
38-1
             filena (7)
                                  Reservoir Target file - daily (*.tad)
39-1
40 - 1
             filena (7)
                                  Delay Table file - daily (*.dld)
41-1
             filena (5,7)
                                 Consumptive Water Req. - daily (*.iwd)
42-1
             filena (7)
                                 Historic Streamflow data - daily (*.riy)
43 - 1
             filena (7)
                                 Historic Diversion data - daily (*.ddy)
                                  Historic Well Pumping - daily (*.wey)
44 - 1
              filena (7)
45-1
             filena (7)
                                 Historic Res. EOM data - daily (*.eoy)
```

⁽¹⁾Well data (*.wes, *.wer, *.wem, and *.weh) should only be provided when variable iwell = 1 in the control (*.ctl) file

⁽²⁾ A monthly instream flow file (*.ifm) should only be provided when variable ireach = 2 or 3 in the control (*.ctl) file

- (3) A San Juan Recovery Sediment file (*.sjr) should only be provided when the variable isjrip is not zero in the control (*.ctl) file
- (4) An Annual time series file (*.ipy) should only be provided when the variable itsfile is not zero in the control (*.ctl) file
- (5) An Irrigation water requirement file should only be provided when the variable ieffmax is not zero in the control (*.ctl) file
- (6) A Soil Moisture Parameter file (*.par) should only be provided when the variable soild is not zero in the control (*.ctl) file
- (7) Daily data should only be provided when the variable iday is not zero in the control file

10.2 Soil Parameter File (*.par)

The structure parameter file (*.par) contains soil moisture data required to perform soil moisture accounting. The soil moisture reservoir available to each structure is the parameter *awcr* multiplied by the structures area multiplied by average depth for every structure in the system specified in the control file (*.ctl) by variable *soild* (feet). It is formatted exactly the same as the soil parameter file used by the consumptive use model (StateCU), therefore it often contains data prior to and beyond the variable *awcr* that is not used by StateMod. Data can be entered in any order.

When this discontinued format is provided the following format string should be entered at the top of the file: #FileFormatVersion 1. If the above string is not provided StateMod will try to read the file and try to determine the appropriate type.

Row-data	Variable	Description
Control Data		
1		Format (i4, 1x, a12, 12f8.0)
1-1	cistat	Station ID
1-2	awcr(1-12,1)	Available soil moisture (inches per inch)
		Repeat for the number of stations numdiv

10.3 Irrigation Parameter Yearly Data File - Annual (*.ipy)

The annual CU time series file contains information required to perform calculations using a variable efficiency approach. The current standard is to provide 4 water supply and irrigation method combinations (Surface Supply Flood Irrigation, Surface Supply Sprinkler Irrigation, Ground Supply Flood Irrigation and Ground Supply Sprinkler Irrigation). A discontinued but still supported format includes total ground water and total sprinkler data.

When this discontinued format is provided the following format string should be entered at the top of the file: #FileFormatVersion 1. If the above string is not provided StateMod will try to read the file and try to determine the appropriate file type. Regardless if the file format string is or is not provided the discontinued total ground water and sprinkler data are distributed to four land use types as follows:

Water Supply Irrigation Method	Approach
Ground Supply Sprinkler Irrigation	= Minimum (Total Ground Water and Total
	Sprinkler Irrigation)
Surface Supply Sprinkler Irrigation	= Total Sprinkler – Ground Supply Sprinkler
	Irrigation
Ground Supply Flood Irrigation	= Total Ground Water – Ground Supply Sprinkler
	Irrigation
Surface Supply Flood Irrigation	= Maximum (0.0 or Total Area - Ground Supply
	Sprinkler Irrigation – Surface Supply Sprinkler
	Irrigation – Ground Supply Flood Irrigation).

Row-data	Variable	Description	
Control Data			
1		Format (i5,1x,i4,5x,i5,1x,i4,a5,a5)	
1-1	ibm	Beginning month of data (e.g. 1=Jan)	
1-2	iby	Beginning year of data (e.g. 1975)	
1-3	iem	Ending month of data	
1-4	iey	Ending year of data	
1-5	cunit	Units of data (' NA')	
1-6	cyr	Year type	
		' CYR'= calendar year (1-12)	
		' WYR'= water year (10-9)	
		' IYR'= irrigation year (11-10)	
Time Series Data			
2		Format (i4,1x,a12,3f6.0,2f8.0,f12.0,f3.0,f8.0)	
2-1	idly	year	
2-2	ID	Structure ID	
2-3	ceff	Conveyance efficiency (decimal)	
2-4	feff	Maximum flood efficiency (decimal)	
2-5	seff	Maximum sprinkler efficiency (decimal)	
2-6	gacre	Acres with a ground water supply	
2-7	sacre	Acres with a sprinkler supply	
2-8	mprate	Maximum pumping rate (af/mo)	
2-9	gwmode	Ground water use mode (see Section 7.10) 1 = maximum supply mode 2 = mutual ditch supply mode	
2-10	areax	Irrigated acreage for year idly (ac)	

10.4 Operational Right File (*.opr)

Beginning with version 12.0 an operating rule file format was adopted that includes six (6) additional variables associated with water reuse, diversion type, etc.(see table below). When this discontinued format is provided the following format string should be entered at the top of the file: # FileFormatVersion 1. If the above string is not provided StateMod will try to read the file and try to determine the appropriate file type. Regardless if the file format string is or is not provided the discontinued operating rule file will assign the following default values:

Data Type	Variable	Default Value
Associated Plan Data	creuse	NA
Diversion Type	cdivtyp	NA
Conveyance Loss (%)	OprLoss	0
Miscellaneous Limits	OprLimit	0
Start Date	IoBeg	First year of operation
End Date	IoEnd	Last year of operation

cdss@state.co.us
Last updated: November 2008

11.0 Release Notes

Since the State of Colorado took over the maintenance of the program in 1986 the model has undergone numerous enhancements. As presented in **Table 1** key enhancement occurred in 1988 to allow a daily time step, 1989 to include wells, 2001 to allow variable efficiency, 2006 to include plans (augmentation, administration, re-use, Term & Condition, etc.) and 2007 to allow four land use types (SW Flood, SW Sprinkler, GW Flood and GW Sprinkler) under a single ditch system. With each major enhancement significant effort has been made to maintain existing file formats and processes so that historic applications can be duplicated. In general, a new primary version number (e.g. 9x) was initiated whenever an existing input format, output format, or significantly new process was added. Similarly relatively minor enhancements that do not impact existing formats or process get in a new sub version number (e.g. 9.12).

Table 1.1
Major StateMod Enhancements

Major StateMod Enhancements			
Version	Year	Areas of Key Enhancements	
1.	1986	Original Development	
2 4.	1995	Baseflow module enhancement	
		New reporting capabilities	
5.	1996	Allow multiple replacement reservoirs and	
		reoperate for non-downstream return flows	
6.	1996	Enhanced binary file reporting.	
		New reporting capabilities	
7.	1997	Treat Instream flows as a Reach	
		Linked model capability	
8.	1998	Daily simulation capability	
9.	1999	Well simulation capability	
10.	2001	Variable efficiency capability	
11.	2006	Plans. Operating rules that allow plans,	
		diversion type, carrier losses, annual limits	
		and on/off dates	
12.	2007	Irrigation Practice File is allowed to	
		contain 4 land use types (SW Flood, SW	
		Sprinkler, GW Flood and GW Sprinkler)	

cdss@state.co.us

Last updated: November 2008

12.0 References

- Bennett, Ray R. December 2000. "State of Colorado's Water Resources Model (StateMod) Documentation." Report presented to Colorado Water Conservation Board and Colorado Division of Water Resources. Denver, Colorado.
- Boyle Engineering Corporation. 1986. Green Mountain Pump Back and Exchange Project. Colorado Water and Power Authority, Denver, Colorado.
- Otradovsky, Fred J. 1985.

cdss@state.co.us

Last updated: November 2008

Appendix A Examples

This chapter provides fourteen (14) examples of implementing StateMod. In general, each example builds upon a previous one to include more complex applications. This sequential approach, that builds complexity by adding new elements, is recommended when the model is applied to a real world situation in order to gain confidence with the results and understand the system response without getting prematurely burdened with the more complex operations of a river system. Following are the examples provided in this chapter:

- Example 1 A simple 8 node network with 3 demands and 1 instream flow reach
- Example 2 Same as Example 1 plus a reservoir and an operating rule.
- Example 3 Same as Example 2 plus operating rules to serve a demand and instream flow by a direct reservoir release.
- Example 4 Same as Example 3 plus an operating rule to serve a demand via exchange.
- Example 5 Same as Example 3 plus an operating rule to serve a demand via a carrier (conduit).
- Example 6 Baseflow (natural flow) generation assuming development consistent with Example 4.
- Example 7 Same as Example 3 plus wells.
- Example 8 Same as Example 3 but the simulation uses a daily time step.
- Example 9 Same as Example 1 plus an operating rule to serve a demand via exchange using a portion of another structure's direct flow right.
- Example 10 Same as Example 1 plus operating rules to store a portion of another structure's direct flow right in an accounting plan and then serve a demand by a release from this plan.
- Example 11 Same as Example 10 plus a reservoir and operating rules that calculate terms and conditions (T&C) demands associated with use of the pro-rata water right and serve the T&C demand by a direct reservoir release.
- Example 12 Same as Example 11 plus a reservoir and an operating rule to store a portion of another structure's direct flow rights in a reservoir and associated reservoir reuse plan.
- Example 13 Same as Example 12 plus an operating rule to color reusable effluent in a non reservoir reuse plan.
- Example 14 Same as Example 7 with lagged well depletions assigned to an augmentation well plan.

Example 1

Example 1 is a simple 8-node network with five demands: 1 municipal (Dem_1), 4 irrigation (Dem_2 through Dem_5) and one instream flow reach (ISF). A schematic of Example 1 is presented below:

Input Data:

This simple application requires the following 13 input files (see Example 1 Data) as follows:

- 1. The response (*.rsp) file describes the input data files and directories where they reside.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. It also contains title cards to be used on output files.
- 3. The river network (*.rin) file describes the network. For example, Dem_3 flows to Dem_4, Dem_4 flows to the confluence, etc.
- 4. The river station (*.ris) file describes the inflow locations to the river network. For this example, flows enter the system at river nodes Dem_3, Dem_5 and ISF.01.
- 5. The Streamflow (*.rim) file describes the stream flows into the system. For example, there is 1,000 AF at Dem_3, 3,000 AF at Dem_5, and 4,000 AF at ISF.01 in month 1 of year 1. These values are the same for every month, except May and June when they increase by a factor of 5. Note the streamflow data provided is total flow per the control file (*.ctl) variable *ipflo*.
- 6. The direct diversion station (*.dds) file describes the station characteristics of direct diversions. For example, Dem_3 has a capacity of 5,000 CFS. It is 50% efficient and uses unit response table 1 (*.urm). All (100%) of this diversion's return flows go to Dem 4.

- 7. The direct diversion right (*.ddr) file describes the water rights associated with each direct diversion. For example, Dem_2 has one right for 60 CFS with an administration number of 6.00000.
- 8. The direct flow demand (*.ddm) file describes the demands for each direct diversion structure. For example, Dem_1 has a constant demand of 2,000 AF in all months and years. The period of record contained in the file (1980), units (AF/M) and type of year (WYR, water year) are included in header cards.
- 9. The instream flow (*.ifs) station file describes the Instream flow station data. For example, Instream flow reach ISF is located from ISF to ISF.01.
- 10. The instream flow right (*.ifr) file describes the Instream flow water rights. For example, Instream flow reach ISF has one water right for 65.5 CFS with an administration number of 9.00000.
- 11. The instream flow demand (*.ifa) file describes the Instream flow demands. For example, Instream flow reach ISF has a constant demand of 65.5 CFS for all months and years of the study period. The period of record contained in the file (constant), units (CFS) and type of year (WYR, water year) are included in header cards.
- 12. The monthly unit response file (*.urm) contains monthly return flow patterns. For example, pattern 1 has 5 entries that indicate 50% of return flows in month 1, 50% in month two, and no return flows in months 3 through 5. Note each table contains a variable that indicates how many entries to expect for a given pattern. This approach, which allows the number of values in each table to vary, is the preferred method of supplying unit response data as specified by the control file (*.ctl) variable *interv*.

Results:

The results associated with implementing Example 1 are presented in the following files (see Example 1 Data):

- 1. Water Budget Information (*.xwb) Note the average annual stream inflow is 80,000 AF, the average annual diversion is 71,001 AF, the average annual stream outflow is 49,100 AF and the average annual consumptive use is 28,301 AF.
- 2. Water Right Information (*.xwr). This file, which is sorted by administration number, indicates the most senior water right is 100 CFS and is associated with Dem_1, followed by 60 CFS for Dem_2, 100 CFS for Dem_3, 65.5 CFS for Instream flow ISF, etc.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. Note the diversion with the most senior water right, Dem_1, is always satisfied. Diversions with more junior water rights (Dem_2, Dem_3 and ISF) get shorted for different amounts and times until they are able to benefit from return flows accruing to the system.

Example 2

Example 2 is similar to Example 1 except a reservoir (Res_1) has been added between Dem_5 and Dem_2. A schematic of Example 2 is presented below:

Input Data:

Example 2 requires the following input files (see <u>Example 2 Data</u>) that replace or are in addition to those used in Example 1:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used in previous examples that do not require revision.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. It also contains title cards to be used on output files.
- 3. The reservoir station (*.res) file describes the station characteristics of the reservoir Res_1. For example, Res_1 has a maximum capacity of 100,000 AF, two owners with 50,000 AF each, and 10 area-capacity-seepage data points. The administration date (date when current contents are charged against their decree for that year) is set to 11, November. For reservoir evaporation and precipitation calculations it uses 100% of station ID 5001.
- 4. The reservoir right (*.rer) file describes the water rights associated with each reservoir. For example, Res_1 has one right for 100,000 AF with an administration number of 15.00000. Also the ownership variable (iresro) is set to -2, which indicates the water right fills both (first two) reservoir accounts.

- 5. The operating rule (*.opr) file describes operating rules associated with the reservoir. For example, operating rule Opr_1 allows Res_1 to make a target release (operating rule type 9) at administration number 10.00000.
- 6. The evaporation (*.eva) file describes net evaporation for station 5001. For example, station 5001 has a net evaporation of 0.01 feet in March, 0.13 feet in April, etc. in 1980. Note this file contains net evaporation because the control file (*.ctl) variable *numpre* indicates that no precipitation stations are provided. Since net evaporation is allowed, so too are negative values (more precipitation than evaporation). The control file (*.ctl) variable *efacto* defines the unit of the data to be feet.
- 7. The reservoir target (*.tam) file describes the maximum and minimum reservoir targets. For example, the minimum target is 0 AF and the maximum target is 100,000 AF in all months.

Results:

The results associated with implementing Example 2 are presented in the following files (see Example 2 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as Example 1 at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 71,001 AF, 25,100 AF and 30,956 AF, respectively. The change in diversion, outflow and consumptive use is due to the reservoir right storing water in the high spring runoff months, as illustrated by reservoir change of 21,344 AF.
- 2. Water Right Information (*.xwr). This file, which is sorted by administration number, indicates why average annual diversions, outflow and consumptive use were reduced when comparing Example 2 to Example 1. The reservoir storage right has an administration number of 15.00000, which makes it junior to the water rights of Dem_2, Dem_3 and ISF.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. Note the diversion with the most senior water right, Dem_1, is always satisfied. Diversions with more junior water rights (Dem_2, Dem_3 and ISF) get shorted by the same amounts as Example 1 since reservoir diversions are junior to these water rights.
- 4. Reservoir Summary (*.xre). This file describes the reservoir as a total (account 0) and by each individual account (accounts 1 and 2). Note for the total reservoir, storage is less than the target contents so no releases are made for seepage and spill.
- 5. Operational Right Summary (*.xop). This file summarizes the activities associated with each operating rule. Since no releases were made to reach target contents, it is zero in all months.

Example 3

Example 3 is similar to Example 2 except it contains operating rules that allow the reservoir (Res_1) to supply water to a direct diversion demand (Dem_2) and an instream flow (ISF) by a direct release to the river. A schematic of Example 3 is the same as Example 2, Figure A2.

Input Data:

Example 3 requires the following input files (see <u>Example 3 Data</u>) that replace or are in addition to those used in Example 1:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used in previous examples that do not require revision.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. It also contains title cards to be used on output files.
- 3. The operating rule (*.opr) file describes additional operating rules. For example, Opr_2 allows Res_1, account 1, to make a direct release to Dem_2 using a type 2 operating rule at administration number 9.00000. Opr_3 allows the reservoir to provide water to instream flow ISF via a direct release to the river using a type 1 operating rule at an administration number of 9.00000. Note when administration numbers of the same type (e.g. operating rules) are equal, the model operates in the order that data are read into the program which can be verified by viewing the water right report (*.xwr). Also both operating rules make a direct release to the river because the operating rule destinations (Dem_2 and ISF) are located on the river downstream from the reservoir.

Results:

The results associated with implementing Example 3 are presented in the following files (see <u>Example 3 Data</u>):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as Examples 1 and 2 at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 71,667 AF, 32,152 AF and 31,246 AF, respectively.
- 2. Water Right Information (*.xwr). This file, which is sorted by administration number, indicates that reservoir releases are supplemental to the receiving structure's direct flow and instream flow rights. As described above, when administration numbers of the same type (e.g. operating rules) are equal, the model operates in the order that data are read into the program.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The diversion with the most senior water right, Dem_1, is always satisfied. Dem_2, which is tied to the reservoir, always has no shortages because its demand is supplied by the reservoir. The instream flow ISF gets shorted in some months because Res_1, account 2, does not always have enough water to satisfy the instream demand.
- 4. Reservoir Summary (*.xre). This file provides a water balance at each reservoir. It describes the reservoir as a total (account 0) and by each individual account (accounts 1 and 2). Note the releases made from account 1 are for direct diversion by Dem_2 and from account 2 for ISF. Also, the distribution of the reservoir's priority storage diversion to individual accounts is proportional to their account size except for months where no storage, or very little storage capacity, is available in one of the accounts (see October 1979).

5. Operational Right Summary (*.xop). This file summarizes the activities associated with each operating rule. Note the values presented are the same as those presented in the reservoir summary (*.xre) file and the diversion summary (*.xdd) file. The detail and format provided in this file is especially valuable when more than one operating rule takes water for the same use from the same reservoir.

Example 4

Example 4 is similar to Example 3 except it contains an operating rule that allows the reservoir to supply water to a direct diversion demand (Dem_3) by exchange. A schematic of Example 4 is the same as Example 2, see <u>Figure A2</u>.

Input Data:

Example 4 requires the following 3 input files (see <u>Example 4 Data</u>) that replace those used in Example 3:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used in previous examples that do not require revision.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. It also contains title cards to be used on output files.
- 3. The operating rule (*.opr) file contains an additional operating rule (Opr_4) that allows Res_1, account 1 to provide water to Dem_3 by exchange using a type 4 operating rule at an administration number 9.00000. Note when administration numbers of the same type (e.g. operating rules) are equal, the model operates in the order that data are read into the program which can be verified by viewing the water right report. Also operating rule Opr_4 allows the diversion to occur by exchange because the destination (Dem_3) is located on a tributary that is not downstream from the reservoir.

Results:

The results associated with implementing Example 4 are presented in the following files (see <u>Example 4 Data</u>):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as Examples 1, 2 and 3 at 80,000 AF. However the average annual diversion, outflow, consumptive use, and reservoir change have changed to 73,250 AF, 32,357 AF, 32,009 AF and 13,034 AF respectively.
- 2. Water Right Information (*.xwr). This file, which is sorted by administration number, indicates that reservoir releases are supplemental to their direct flow decrees. Note when administration numbers are equal, the model operates in the order that data are read into the program.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. Note the diversion with the most senior water right, Dem_1, is always satisfied. Dem_2 and Dem_3, which are both tied to the reservoir, are always satisfied by getting a portion of their supply from the reservoir. The instream flow ISF gets shorted in some months because Res_1, account 2, does not always have enough water to satisfy the instream flow demand.

- 4. Reservoir Summary (*.xre). This file provides a water balance at each reservoir. It describes the reservoir as a total (account 0) and by each individual account (accounts 1 and 2). Note the releases are made from account 1 for direct diversion by Dem_2 and for diversion by exchange to Dem_3. The instream flow, ISF, continues to receive water from account 2.
- 5. Operational Right Summary (*.xop). This file summarizes the activities associated with each operating rule. Note the values presented are the same as those presented in the reservoir summary (*.xre) file. The detail provided in this file is especially valuable when more than one operating rule takes water for the same use from the same reservoir.

Example 5 is similar to Example 3 but contains an operating rule that allows the reservoir (Res_1) to supply water to a direct diversion demand (Dem_3) by a carrier (conduit) rather than by an exchange via the river. A schematic of Example 5 is presented below:

Input Data:

Example 5 requires the following input files (see <u>Example 5 Data</u>) that replace those used in Example 3:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used in previous examples that do not require revision.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. It also contains title cards to be used on output files.
- 3. The operating rule (*.opr) file revises an operating rule (Opr_4) that allows the reservoir to provide water to Dem_3 via a carrier (conduit) using a type 3 operating rule at an administration number 9.00000. Note when administration numbers of the same type (e.g. operating rules) are equal, the model operates in the order that data are read into the program which can be verified by viewing the water right report. Also operating rule Opr_4 allows the diversion to occur by a carrier (conduit) because it is a type 3 rule. Finally, there is no limit on the carrier capacity because water is not routed through a diversion structure (i.e. the carrier is not included as a diversion in the model).

Results:

The results associated with implementing Example 5 are presented in the following files (see Example 5 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as Examples 1, 2, 3 and 4 at 80,000 AF. However the average annual diversion, outflow, consumptive use, and reservoir change have changed to 73,444 AF, 32,264 AF, 32,106 AF and 13,030 AF respectively.
- 2. Water Right Information (*.xwr). This file, which is sorted by administration number, indicates that reservoir releases are supplemental to their direct flow decrees. Note when administration numbers are equal, the model operates in the order that data are read into the program.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. Note the diversion with the most senior water right, Dem_1, is always satisfied. Dem_2 and Dem_3, which are both tied to the reservoir, are always satisfied by getting a portion of their demand from the reservoir. The instream flow ISF gets shorted in some months because Res_1, account 2, does not always have enough water to satisfy the instream demand.
- 4. Reservoir Summary (*.xre). This file provides a water balance at each reservoir. It describes the reservoir as a total (account 0) and by each individual account (accounts 1 and 2). Note the releases are made from account 1 for direct diversion by Dem_2 and for diversion by a conduit to Dem_3. The instream flow, ISF, continues to receive water from account 2.
- 5. Operational Right Summary (*.xop). This file summarizes the activities associated with each operating rule. Note the values presented are the same as those presented in the reservoir summary (*.xre) file. The detail provided in this file is especially valuable when more than one operating rule takes water for the same use from the same reservoir.

Example 6 demonstrates a Baseflow (natural) streamflow generation. It recognizes historic streamflow exists or has been estimated at river nodes located just below Dem_3, Res_1 and ISF.01. Example 6 also recognizes the facilities in place are those described under Example 4. A schematic of Example 6 is the same as Example 2, see <u>Figure A2</u>.

Input Data:

Example 6 requires the following input files (see <u>Example 6 Data</u>) that replace those used in Example 4:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used previous examples that do not require revision.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. It also contains title cards to be used on output files.

Results:

The results associated with implementing Example 6 are presented in the following files (see <u>Example 6 Data</u>):

- 1. Baseflow Information (*.xbi). This file describes the Baseflow calculations for each stream gage in a spreadsheet format. As presented in November at Dem_3 the natural flow is estimated to equal 1,556 AF; the historic gaged flow (1,000 AF) plus the historic upstream diversion (556 AF). Similarly in November at ISF, the natural flow is estimated to equal 2,599 AF, equal to the historic gaged flow (4,000 AF) plus the historic upstream diversions (4,456 AF) less historic upstream return flows (1,254 AF) and historic reservoir storage changes (3,961 AF).
- 2. Baseflow Data (*.xbm). This file describes the Baseflow estimates that could be used in a simulation if the file name is referenced in the control file.

Example 7 is similar to Example 1 except it contains three well structures (Wel_1, Wel_2 and Wel_3). Well structures Wel_1 and Wel_2 are the sole source supply to two new users with the same ID's as the well ID's. Well structure Wel_3 is a supplemental supply to a direct diversion (Dem_3). A schematic of Example 7 is presented below:

Input Data:

Example 7 requires the following input files (see <u>Example 7 Data</u>) that replace those used in Example 1:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used in previous examples that do not require revision. The response file includes a well station (*.wes), well right (*.wer), well demand (*.wem) and historic pumping file (*.weh).
- 2. The control (*.ctl) file describes the operational switches and unit conversions. Note: 1. The header cards have been revised to describe the example. 2. The variable icondem has been set to 3 to indicate demands for diversion structures with a supplemental well supply are provided as a total in the diversion demand file (*.ddm). 3. The well operation switch (iwell) has been set to 1 to indicate wells will be simulated.
- 3. The well station file (*.wes) contains well station data. Note 1. Well structures Wel_1 and Wel_2 have the associated diversion ID (divcow2) set to NA to indicate they are a sole source supply. The two wells also have demand code set to 1 to indicate monthly demand data are

expected in the monthly well demand file (*.wem). 2. Well structure Wel_3 has the associated diversion ID (divcow2) set to Dem_3 to indicate it is a supplemental supply to that structure. Wel_3 also has the demand data type (idvcomw) set to 6 to indicate monthly demand data are obtained from the direct diversion demand file (*.ddm) and not the well demand file (*.wem). 3. Wel_1 returns only 50% of its non-consumed water to the system. Since its efficiency is 50%, this implies 25% (50 % * 50%) is lost to the system. 4. Wel_3 depletes the river by 50%. This implies 50% of its pumping is salvaged (i.e. comes from evapotranspiration salvage, storage, etc. but not the river).

- 4. The well right file (*.wer) contains well right data. Note well structure Wel_3 has two water rights; one for 50 cfs and another for 5 cfs.
- 5. The well demand file (*.wem) contains well demand data. Note 1. Data are only provided for Wel_1 and Wel_2, which act as a sole source. The demand for well structure Wel_3 is obtained from the direct diversion demand file (*.ddm) for the structure with which it is associated (Dem_3). 2. If the user, for some reason, provides demand data to a well structure that is not a sole source, StateMod stops and prints a warning to the *.log file.
- 6. The historic well pumping file (*.weh) contains historic or estimated pumping data for each well structure. Note this data are only used by StateMod for baseflow calculations and calibration.
- 7. The unit response file (*.urm) contains both return flow and depletion data (see the comments on the right side of the table). Note StateMod does not differentiate between the two types of unit response data (return and depletion). Rather it is up to the user to specify which table is appropriate for a return flow or depletion calculation.
- 8. The output control file (*.out) contains data for well structures in addition to all other structure types.

Results:

The results associated with implementing Example 7 are presented in the following files (see Example 7 Data):

- 1. Water Budget Information (*.xwb). This file provides a water budget. Note 1. The columns titled From/To GW Storage, From River by Well, and Well Depletion, are non-zero because they are associated with wells. 2. The column From/To GW Storage describes water taken out of or returned to ground water storage. Water comes out of ground water storage only when depletions exceed streamflow. Water is returned to ground water storage when streamflows are available. The columns titled Loss, Pumping, and Salvage on the right hand side of the balance are relatively new additions. The Loss column is non-zero when one or more diversion or well structures have a total return flow percent that is less than 100%. The pumping column is the total pumping which impacts the stream balance through depletions and returns. The Salvage column is non-zero when one or more well structures have a total depletion that is less than 100%. A summary of loss and salvage data calculated for each structure can be printed to the *.log file when the detailed output switch (ichk) is set to 6 in the control file (*.ctl). 3. The information contained in each column of the water budget report (*.xwb) is described in Section 5.3, Report Module Output Files.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note 1. This file, which is sorted by administration number, indicates that the well rights are junior to other water rights in the system. 2. Well structures are type 6. 3. The column titled Str ID #2 describes a second structure associated with a water right. It is set to Dem_3 for well structure Wel_3 to indicate it is a supplemental supply to that direct diversion. This same column is set to -1 to indicate for Wel_1 and Wel_2 and other diversions to indicate they are sole source. 4. When

- administration numbers equal, the model operates in the order that data are read into the program.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The following are noted: 1. The header indicates Dem_3 has a direct flow right for 100 cfs and well rights for 55 cfs. The time series data show well pumping equals the demand not met by a direct flow priority. This occurs because the well structure Wel_3 has adequate capacity and its water rights are junior to the Dem_3 direct flow right. 3. In October 1979, 0 AF is diverted by priority and 1,000 AF is pumped. Because this well has a depletion location at Dem_3, a depletion percentage of 50% and a depletion pattern in month 1 of 25%, the amount taken from the river by a well (River by Well) equals 125 AF (1000 * .50 * .25). This is equivalent to a direct diversion from the river of 125 AF. 4. In November 1979, 778 AF is diverted by priority and 222 AF is pumped.
- 4. Well Summary (*.xwe). This file provides a summary of water use by each well structure. Note 1. Well structures Wel_1 and Wel_2 have no surface water supplies (From SW) because they are the sole source. Well structure Wel_3, which is a supplemental supply, has a non-zero surface water supply value. 2. Well structure Wel_1 is short because it has a demand of 3,000 AF /month and a decree of 10 cfs (615 AF for a 31-day month). 3. In October 1979, well structure Wel_1 consumes 307 AF because it pumps 615 AF and has an efficiency of 50%. 4. For that same month, it obtains 154 AF from the river because it has a 50% depletion and 25% depletion unit response in month 1. The remaining pumped water comes from ground water storage (GwStor) because this well structure has a depletion percentage of 100%. The 100% depletion percentage implies no water is salvaged.
- 5. Ground Water Summary (*.xgw). This file provides a ground water balance with selected inflow and outflow components missing (see footnotes 2 and 3). This file is provided with missing data because the column titled Delta, which represents Total Inflow Total Outflow, can be valuable to a user if interpreted using engineering judgment and local knowledge. For example, if the ground water summary indicates a decrease in ground water storage this decline may represent aquifer mining, other inflows and outflows that are not simulated, or inaccurate return (loss) and depletion (salvage) data. Only engineering judgment and system knowledge can determine which of these possibilities may be occurring. Note that StateMod does not require the ground water system be in balance. However significant, long-term mining may be expected to impact the accuracy of the return flow and depletion patterns provided to the model.

Example 8 is similar to Example 3 except the simulation uses a daily time step. A schematic of Example 8 is the same as Example 2, see <u>Figure A2</u>.

Input Data:

Example 8 requires 5 input files that revise the station files used in Example 3 to include a daily data source ID. Also, this example includes 5 new input files that include daily data for streamflows, direct diversion demands, daily instream demands, daily reservoir targets, and daily return flows (see Example 8 Data).

1. The response (*.rsp) file describes the input data files and directories where they reside. Note 1. The river station file (*.ris), direct diversion station file (*.dds), instream flow station file (.ifs) and reservoir station file (*.res) include a daily data source ID (described below). 2. New files

- have been added to represent daily streamflows (*.rid), daily direct diversion demands (*.ddd), daily instream flow demands (*.ifd), daily reservoir targets (*.tad) and daily unit response functions (*.urd). 3. The directory path is used to reference files from a previous example that does not require revision.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. Note: 1. The title cards (heading) have been revised to describe the example. 2. The daily switch (iday) has been set to 1 to turn on the daily option.
- 3. The river station file (*.ris), direct diversion station file (*.dds), instream flow station file (.ifs) and reservoir station file (*.res) include a variable which indicates how daily data will be provided to StateMod (i.e. variable *crunidy* for the river station file (*.ris)). Note 1. The daily capability of StateMod allows the user to provide daily data, divide a monthly estimate by the number of days in a month, using another gages daily distribution, etc. 2. Station ISF.01 of the river station file (*.ris) has variable *crunidy=Dem_3*. This indicates daily streamflow data at station ISF will be estimated from monthly data using the daily streamflow distribution provided by Dem_3. 3. Direct diversion station Dem_2 of river station file (*.ris) has variable *cdividy = Dem_3*. This indicates daily data at diversion station Dem_2 will be estimated from monthly data using the daily distribution provided by station Dem_3, another agricultural demand. 4. Instream Flow station ISF of the instream flow station file (*.ifs) has variable *cifridy = 0*. This indicates daily data at station ISF will be estimated to equal the monthly average. 5. Reservoir Station Res_1 has variable *cresidy = 3*. This indicates daily data will be provided for this station in the daily reservoir target file (*.tad).
- 4. The daily streamflow (*.rid), daily direct diversion demands (*.ddd), daily instream flow demands (*.ifd), daily reservoir targets (*.tad) and daily unit response (*.ird) contain daily data required for the simulation. Note 1. Daily data are only used if it is specified in a station file; i.e. data provided for a station that is not referenced is ignored by StateMod. 2. Because StateMod allows the user to provide daily data, divide a monthly estimate by the number of days in a month, or use another gage's daily distribution, monthly data are still used extensively by a daily application of StateMod. The only time the monthly sum of daily data takes precedence over the monthly total is when the daily data ID equals the station ID.

Results:

The results associated with implementing Example 8 are presented in the following files (see Example 8 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as Examples 1, 2 and 3 at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 72,944AF, 33,825 AF and 31,887 AF, respectively.
- 2. Water Right Information (*.xwr). This file, which is sorted by administration number, is the same as that associated with Example 3 since the time step has no impact on the water rights used by StateMod.
- 3. Diversion Summary (*.xdd) and Daily Diversion Summary (*.xdy). These files provide a monthly and daily water balance at each river node. Note 1. The monthly total provided by the daily file (*.xdy) equals that provided in the monthly file (*.xdd). 2. Since StateMod's main purpose is to provide planning information, the monthly totals are expected to provide the most concise results of a simulation, even for a daily analysis. Daily data are provided for detailed review and checking. 3. The daily demand for Station Dem_2 is equal to the value provided in the monthly demand file (*.ddm). It only used daily data at station Dem_2 to get a daily distribution. 4. Results are different than a monthly model (Example 3) because of the

- dynamics associated with simulating daily return flows (see Section 7.7, Daily Vs. Monthly Results).
- 4. Reservoir Summary (*.xre) and Daily Reservoir Summary (*.xry). These files provide a monthly and daily water balance at each reservoir. It describes the reservoir as a total (account 0) and by each individual account (accounts 1 and 2). Note 1. The daily reservoir file (*.rey) shows releases made from account 1 for direct diversion by Dem_2 and the release from account 2 for the instream flow ISF sum to equal that reported in the monthly reservoir summary file (*.xre) and the monthly direct diversion file (*.xdd).
- 5. Operational Right Summary (*.xop). This file summarizes the activities associated with each operating rule. Note daily results are not provided since they are generally available in the daily diversion (*.xdy) and daily reservoir (*.xry) files.

Example 9 is similar to Example 1 except it contains an operating rule that allows a pro-rata portion of a direct flow water right to be used at a different direct diversion demand by exchange. A schematic of Example 9 is the same as Example 1, see Figure A1.

Input Data:

Example 9 requires the following input files (see <u>Example 9 Data</u>) that replace or are in addition to those used in Example 1:

- 1. The response (*.rsp) file describes the input data files and directories where they reside.
- 2. The operating rule (*.opr) file contains a type 24 operating rule that allows a pro-rata exchange of a direct diversion right. For example, operating rule Opr_1 allows Dem_3 to take a pro-rata amount (10 percent) of the Dem_2 direct flow water right (Dem_2_WR_1) at administration number 6.00001. Also presented are the monthly and annual volumetric limits for the pro-rata exchange that are required for a type 24 rule. In Example 9, the monthly volumetrics are set to 5,000 AF during the summer (April to October) so as not to limit operations. The type 24 exchange will not simulate during the winter (November to March) since the monthly volumetrics are equal to zero during those months.

Results:

The results associated with implementing Example 9 are presented in the following files (see <u>Example 9 Data</u>):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as Example 1 at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 69,921 AF, 49,726 AF and 22,760 AF respectively.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note this file, which is sorted by administration number, indicates that the pro-rate exchange operating rule (Opr_1) is senior to the Dem_3 direct flow water right. The Dem_2 water right is listed as off since this water right is controlled by Opr_1.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The following are noted: 1. The header indicates Dem_3 has a direct flow right for 100 cfs. 2. The time series data shows a portion of the demand met by Exc_Pln during the summer months when water is provided by the operating rule Opr_1. 3. In April 1980, 357.0 AF is diverted by Exc_Plan and 643.0 AF is diverted from the River by Priority.
- 4. Operational Right Summary (*.xop). This file summarizes the use of water controlled by operating rules. Results indicate that with Opr_1, the full pro-rata amount of the Dem_2 water right (60 cfs * 10% * 1.9835 = 357.0 AF for 30 dys; 368.9 AF for 31 dys) is exchanged to Dem_3.

Example 10 is similar to Example 1 except it contains three new operating rules. The first operating rule stores a portion of a structure's direct flow right in an accounting plan (Pln_1). The second operating rule releases water from this plan to a demand (Dem_3) by exchange. The third operating rule spills any unused water in the accounting plan to the river. A schematic of Example 10 is presented below:

Input Data:

Example 10 requires the following input files (see <u>Example 10 Data</u>) that replace or are in addition to those used in Example 1:

- 1. The response (*.rsp) file describes the input data files and directories where they reside and includes an additional reference to the plan (*.pln) file.
- 2. The plan (*.pln) file describes the station characteristics of the accounting plan structure. Note the plan is a type 11, accounting plan, that allows water to be diverted at the administration number of its source then subsequently released, typically at a junior priority, as needed.
- 3. The operating rule (*.opr) file contains a type 24 operating rule Opr_1 that exchanges a pro-rata amount (10%) of the Dem_2 direct flow water right (Dem_2_WR_1) into the accounting plan (Pln_1) at administration number 6.00001.

- 4. The operating rule (*.opr) file contains a type 28 operating rule Opr_2 that allows the accounting plan (Pln_1) to release to a destination demand (Dem_3) via exchange at administration number 6.00002.
- 5. The operating rule (*.opr) file contains a type 29 operating rule Opr_3 that allows the accounting plan (Pln_1) to spill to the river at administration number 99999.00000. This operating rule is necessary since the accounting plan cannot carry water over subsequent time steps.

Results:

The results associated with implementing Example 10 are presented in the following files (see Example 10 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as previous examples at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 71,835 AF, 50,074 AF and 27,444 AF respectively.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note 1. This file, which is sorted by administration number, indicates that the Pln_1 release to Dem_3 is senior to the Dem_3 direct flow water right, 2. This file also indicates the Pln_1 spill is junior to all other water rights, which is used to ensure no other Plan operations are necessary junior to other water rights. The Dem_2 water right is listed as off since this water right is controlled by Opr_1.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The following are noted: 1. The header indicates Dem_3 a direct flow right for 100 cfs. 2. The time series data shows a portion of the demand met by Exc_Pln during the summer months when water is simulated with Opr_1. 3. In April 1980, 357.0 AF is diverted by Exc_Plan and 643.0 AF is diverted from the River by Priority.
- 4. Plan Summary (*.xpl). This file provides a water balance at each plan node. All of the water supplied to the Plan structure is used by Opr_2, which releases water to Dem_3 by exchange. None of the water is spilled, as shown in the values listed under Use 2.
- 5. Operational Right Summary (*.xop). This file summarizes the use of water controlled by operating rules. Results indicate the full pro-rata amount of the Dem_2 water right (60 cfs * 10% * 1.9835 = 357.0 AF for 30 dys; 368.9 AF for 31 dys) is exchanged to Pln_1. All of the supplies in Pln_1 are released to Dem_3 and none of the Pln_1 contents are spilled. Note the values presented are the same as those presented in the Plan summary (*.xpl) file.

Example 11 is similar to Example 10 except it includes different operations associated with the operating rule that stores a portion of a structure's direct flow right stored in an accounting plan (Pln_1). A second operating rule releases water from this plan to a demand (Dem_4) by exchange and accounts for the terms and conditions (T&C) associated with diverted amounts in a plan (T&CPln_1). The third operating rule releases water from a reservoir (Res_1) to the Terms and Conditions plan. The fourth operating rule spills any unused water from the accounting plan to the river. A schematic of Example 11 is presented below:

Input Data:

Example 11 requires the following input files (see <u>Example 11 Data</u>) that replace or are in addition to those used in Example 10:

- 1. The response (*.rsp) file describes the input data files and directories where they reside.
- 2. The river network file (*.rin) includes the Term and Condition plan (T&CPln_1) and reservoir structure (Res_1) added to the river network.
- 3. The direct diversion file (*.dds) modifies the return flow location for Dem_4 to T&CPln_1.
- 4. The plan (*.pln) file describes the station characteristics of the accounting plan (Pln_1) and the T&C plan (T&CPlan_1) structures.
- 5. The plan return flow file (*.prf) identifies the unit response table for the T&C plan structure (T&CPln_1).

- 6. The operating rule (*.opr) file contains a type 24 operating rule (Opr_1) that exchanges a prorata amount (10%) of the Dem_2 direct flow water right (Dem_2_WR_1) into the accounting plan (Pln 1) at administration number 6.00001.
- 7. The operating rule (*.opr) file contains a type 28 operating rule (Opr_2) that allows a release from the accounting plan (Pln_1) to a destination demand (Dem_4) via release to the river by exchange at administration number 6.00002. In addition, the type 28 rule creates term and condition demands that will need to be replaced. The terms and conditions are calculated onthe-fly and stored under the T&C plan (T&CPln_1) based on simulated diversions and the monthly efficiencies included in the type 28 rule (40 percent).
- 8. The operating rule (*.opr) file contains a type 48 operating rule (Opr_3) that allows a release from a reservoir (Res_1) to meet the Term and Condition plan (T&CPln_1) demand via the rive at administration number 50.00000.
- 9. The operating rule (*.opr) file contains a type 29 operating rule (Opr_4) that allows the accounting plan (Pln_1) to spill to the river at administration number 99999.00000. This operating rule is necessary since the accounting plan cannot carry water over subsequent time steps. In addition, when water is spilled the monthly and annual volumetrics included as part of operating rule Opr_1 are adjusted appropriately (e.g. if 100 AF of water are diverted under operating rule Opr_1 and subsequently spilled by operating rule Opr_4, the full monthly and annual limit still remains.

Results:

The results associated with implementing Example 11 are presented in the following files (see Example 11 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as previous examples at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 73,072 AF, 26,770 AF and 30,700 AF respectively.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note 1. This file, which is sorted by administration number, indicates that the Pln_1 release to Dem_4 is senior to the Dem_4 water right. 2. This file also indicates the reservoir releases to meet the T&CPln_1 is junior to all other water rights except for the Pln_1 spill, which is junior to all other water rights. The junior priority for the Plan spill operating rule is used to ensure no other Plan operations are necessary junior to other water rights. The Dem_2 water right is listed as off since this water right is controlled by Opr_1.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The following are noted: 1. The header indicates Dem_4 has a direct flow right for 100 cfs. 2. The time series data shows the portion of the demand met by Exc_Pln during the summer months when water is diverted into Pln_1 by operating rule Opr_1. 3. In May 1980, 368.9 AF is diverted by Exc_Plan and 131.1 AF is diverted from the River by Priority.
- 4. Reservoir Summary (*.xre). This file provides a water balance at each reservoir node. The following are noted: 1. The output is organized by reservoir for the total of all accounts (Account 0) followed by water balances for each of the accounts in the reservoir (Accounts 1 and 2 for Res_1). 2. The reservoir releases to the T&CPln_1 demand with Opr_3 are indicated in the From Storage to River For Use and Total Release for Accounts 0 and 1. The time series show the use of water to meet the T&CPln_1 demand that are the same as presented in the operating rule summary *.xop) file.
- 5. Plan Summary (*.xpl). This file provides a water balance at each plan node. The following are noted: 1. The header indicates the operating rules associated with Pln_1, which includes the release to Dem_4 and the Plan Spill. 2. The time series show the Supply total associated with

- Opr_1. 3. The time series show the use of water released to Dem_4 associated with Opr_2. 4. The time series show the use of water spilled to the river associated with Opr_4 in *.xop file.
- 6. Plan Summary (*.xpl). The following are noted: 1. The header indicates the operating rules associated with T&CPln 1 include In priority water and releases from a reservoir (Res 1). Note that the In-Priority source is included because some plans (e.g. an Augmentation Plan) allow water to be supplied by this source. 2. The time series data shows the From Exc/Byp provided by the operating right (Opr_2) supplying water to the destination demand that triggers the T&C Plan demand. 3. The Plan Demand is based on the amount diverted after adjusting for the efficiency of the destination structure (Dem 4), and the unit response table associated with the T&CPln_1 identified in the *prf file. For example, in October 1979, 368.9 AF is diverted by Opr 1 (*.xop file). T&C demands are based on (1 – efficiency in *.opr file) = 368.9 AF * (1 - .40) = 221.34 ac-ft total T&C demand. The unit response table 1 in the *.prf file indicates 50% return in month 1 and month 2. Therefore, the T&CPln_1 demand (*.xpl file) is 110.7 AF in November 1979 (221.34 * 50%). The remaining 110.7 AF T&C demand is owed in November 1979. Subsequent month's diversions and T&C calculations associated with operating rules Opr 1 and Opr 2 would be added (superimposed) to the T&C demands calculated in preceding months. For example, in May 1980 through August 1980. 4. The Plan Demand is met by reservoir releases (Src 2 in *.xpl file) to the T&C Plan demand in operating rule Opr 3.
- 7. Operational Right Summary (*.xop). This file summarizes the use of water controlled by operating rules. Results indicate the full pro-rata amount of the Dem_2 water right (60 cfs * 10% * 1.9835 = 357.0 AF for 30 dys; 368.9 AF for 31 dys) is exchanged to Dem_4, limited by the Dem_4 demand. Note the values presented for release by the Reservoir (Res_1) to the T&C demand (T&CPln_1) by operating rule Opr_3 are the same as those presented in the Plan summary (*.xpl) file.

Example 12 is similar to Example 11 except it contains an operating rule (Opr_1) that stores a portion of a structure's direct flow right in a reservoir (Res_1) as a reusable supply (Res_Pln). A schematic of Example 12 is presented below:

Input Data:

Example 12 requires the following input files (see <u>Example 12 Data</u>) that replace or are in addition to those used in Example 11:

- 1. The plan (*.pln) file describes the station characteristics of the reservoir plan structure, including the initial storage contents. Note the reservoir reuse plan is assigned a type 8.
- 2. The operating rule (*.opr) file contains a single type 24 operating rule (Opr_1) that exchanges a pro-rata amount (10%) of the Dem_2 direct flow water right into Res_1, account 2 and the associated reservoir reuse plan (Res_Pln) at administration number 6.00001.

Results:

The results associated with implementing Example 12 are presented in the following files (see Example 12 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as previous examples at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 68,123 AF, 47,522 AF and 29,114 AF respectively.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note 1. This file, which is sorted by administration number, indicates that the exchange of the pro-rata Dem_2 water right to storage is just junior to the Dem_2 water right administration number. The Dem_2 water right is actually turned off since its operation is controlled by Opr_1.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The time series data for Res_1 shows the portion of the Dem_2 water right that was stored in the reservoir account and Reservoir Reuse Plan (see *.xpl file). The remaining portion of the Dem_2 water right (60 cfs * 90% * 1.9835 = 3213.3 AF for 30 dys; 3320.4 AF for 31 dys) is, by default, available to Dem_2. At times the water is legally available, the Dem_2 demand (3,000 AF) is not limited by the remaining pro-rata amount of its water right.
- 4. Reservoir Summary (*.xre). This file provides a water balance at each reservoir node. The following are noted: 1. The output is organized by reservoir for the total of all accounts (Account 0) followed by water balances for each of the accounts in the reservoir (Accounts 1 and 2 for Res_1). 2. The reservoir storage to Account 2, coinciding with Opr_1, is indicated in the From River by Exc_Plan.
- 5. Plan Summary (*.xpl). This file provides a water balance at each plan node. The following are noted: 1. The header indicates the operating rules associated with Res_Pln, which include net evaporation from the reservoir. 2. The time series data shows the Initial Storage for each time step and the Total Supply provided by the operating right supplying water to the plan (Opr_1).

 3. The uses of Res_Pln currently includes only evaporation, which matches the evaporation simulated on the Res_1, account 1 in the *.xre file during months when no other water is stored in that account. For example, in April 1980, the Res_Pln evaporation (Use 1 in *.xpl file) is 4.9 AF, which is equivalent to the evaporation for Res_1, Account 2 in the *.xre file. In May 1980, water is stored in Res_1, Account 2 via Opr_1 but water is also stored in both accounts of Res_1 pursuant to the reservoir storage right. Therefore, during May 1980, the evaporation from Res_Pln (6.1 AF) is only a pro-rata portion of the total evaporation from Res_1 (280.8 AF, Account 0).
- 6. Operational Right Summary (*.xop). This file summarizes the use of water controlled by operating rules. Results indicate 10 percent of the Dem_2 water right (60 cfs * 10% * 1.9835 = 357.0 AF for 30 dys; 368.9 AF for 31 dys) is exchanged to Res_1.

Example 13 is similar to Example 12 except a non reservoir reuse Plan structure (WWTP_Pln) has been added. A schematic of Example 13 is presented below

Input Data:

Example 13 requires the following input files (see <u>Example 13 Data</u>) that replace or are in addition to those used in Example 12:

- 1. The response (*.rsp) file describes the input data files and directories where they reside.
- 2. The river network file (*.rin) includes a non reservoir reuse plan (WWTP_Pln) structure added to the river network.
- 3. The direct diversion file (*.dds) modifies the return flow location for Dem_1 to go to WWTP_Pln.
- 4. The plan (*.pln) file describes the station characteristics of the additional non reservoir reuse plan structure. Note the non reservoir reuse plan is a plan type 3.
- 5. The operating rule (*.opr) file includes a type 25 operating rule (Opr_1) that allows a pro-rata use (100 percent in this case) of the Dem_1 water right to be diverted by Dem_1 and the unused water (return flows) stored in a non reservoir reuse plan structure (WWTP_Pln) at priority 2.0001.

6. The operating rule (*.opr) file includes a type 29 operating rule that allows the non reservoir reuse plan (WWTP_Pln) to spill to the river at administration number 99999.00000.

Results:

The results associated with implementing Example 13 are presented in the following files (see Example 13 Data):

- 1. Water Budget Information (*.xwb). Note the average annual stream inflow is the same as previous examples at 80,000 AF. However the average annual diversion, outflow, and consumptive use have changed to 71,001 AF, 25,650 AF and 30,947 AF respectively. The outflow is reduced due to the reservoir right diversions in the high spring runoff months, as illustrated by reservoir change of 20,803 AF.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note 1. This file, which is sorted by administration number, indicates that the pro-rata diversion operating rule (Opr_1) is just senior to the Dem_1 direct flow water right. The Opr_1 administration number is different than the source water right administration number of 2.00000 to help identify the rights as different when reviewing output files. The Dem_1 water right is listed as off since this water right is controlled by Opr_1.
- 3. Diversion Summary (*.xdd). This file provides a water balance at each river node. The following are noted: 1. The header indicates Dem_1 has a direct flow right for 100 cfs. 2. The time series data shows the portion of the demand met by Exc_Pln every month when Dem_1 water right is in priority. For example, in May 1980, 2,000 AF is diverted by Exc_Plan associated with Opr_1 in the *.xop file.
- 4. Plan Summary (*.xpl). This file provides a water balance at each plan node. The following are noted: 1. The header indicates the operating rules associated with WWTP_Pln, which includes the storage spill to the river of unused water at the end of each time step. The time series show the Supply total associated with Opr_1 and the unused water from Dem_1. 3. The time series show the use of water spilled to the river associated with Opr_2 in *.xop file. Note that, since Dem_1 has a four-month unit response pattern, the reusable return flows do not reach steady-state until month 4 (Jan 1980).
- 5. Operational Right Summary (*.xop). This file summarizes the use of water controlled by operating rules. Results indicate the full Dem_1 demand is supplied by Opr_1. Note the values presented for Opr_2 are the same as those presented in the Plan summary (*.xpl) file.

Example 14 is similar to Example 7 except a well augmentation Plan structure (Wel_Pln) has been added. A schematic of Example 14 is presented below

Input Data:

Example 14 requires the following input files (see <u>Example 14 Data</u>) that replace or are in addition to those used in Example 7:

- 1. The response (*.rsp) file describes the input data files and directories where they reside. Note the directory path is used to reference files used in previous examples that do not require revision. The response file includes a plan station (*.pln) and a well plan (*.plw) file.
- 2. The control (*.ctl) file describes the operational switches and unit conversions. Note: 1. The header cards have been revised to describe the example.
- 3. The river network file (*.rin) includes a well augmentation plan (Wel_Pln) structure added to the river network.
- 4. The plan station file (*.pln) contains a well augmentation plan (Wel_Pln).
- 5. The well plan file (*.plw) that ties pumping from two well rights (Wel_2_Wr#1 and Wel_2_Wr#1) to the well augmentation plan (Wel_Pln).

Results:

The results associated with implementing Example 14 are presented in the following files (see Example 14 Data):

- 1. Water Budget Information (*.xwb). This file provides a water budget. Note 1. The results are exactly the same as Example 7 because well augmentation requirements (demands) are simulated but have not been satisfied by adding additional operating rules.
- 2. Water Right Information (*.xwr). This file summarizes water right data. Note 1. The results are exactly the same as Example 7 because well augmentation requirements (demands) are simulated but have not been satisfied by adding additional operating rules.
- 3. Diversion Summary (*.xdd). The results are exactly the same as Example 7 because well augmentation requirements (demands) are simulated but have not been satisfied by adding additional operating rules.
- 4. Well Summary (*.xwe). The results are exactly the same as Example 7 because well augmentation requirements (demands) are simulated but have not been satisfied by adding additional operating rules.
- 5. Ground Water Summary (*.xgw). The results are exactly the same as Example 7 because well augmentation requirements (demands) are simulated but have not been satisfied by adding additional operating rules.
- 6. Plan Summary (*.xpl). This file summarizes data associated with the well augmentation plan Wel_Pln. As shown in October, 1979 total pumping associated with this plan (well rights Wel_2_Wr#1 and Wel_2_Wr#1) was estimated to equal 922 ac-ft. Also shown for that same time period is a 77 ac-ft depletion associated with that pumping.

Last updated: November 2008

```
*.rsp; response file for Statemod Example 1
       This response file lists the StateMod input files necessary for model simulation
# Type
                                            Name
                                          = ex1.ctl
Control
River Network
                                          = ex1.rin
StreamGage Station
                                          = ex1.ris
Stream Base Monthly
                                          = ex1.rim
Diversion Station
                                          = ex1.dds
Diversion_Right
                                          = ex1.ddr
Diversion Demand Monthly
                                          = ex1.ddm
Instreamflow Station
                                          = ex1.ifs
Instreamflow Right
                                          = ex1.ifr
Instreamflow Demand AverageMonthly
                                         = exl.ifa
DelayTable Monthly
                                          = ex1.urm
OutputRequest
                                          = ex1.out
# Exhibit 1.2
# ex*.ctl; Control file for StateMod Example 1
  STATEMOD
  StateMod Operating Rule Example - ex1.* data set
                       STARTING YEAR OF SIMULATION
    1980
             : iystr
             : iyend
                        ENDING YEAR OF SIMULATION
             : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA
                       TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
            : ipflo
            : numpre NO. OF PRECIPITATION STATIONS
            : numeva NO. OF EVAPORATION STATIONS
       1
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
  1.9835
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
            : rfacto DIVISOR FOR STREAM FLOW DATA;
                                                           ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
                                                           ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
             : dfacto DIVISOR FOR DIVERSION DATA;
             : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1 0
             : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
  1.0
             : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
  1.0
             : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
             : cyrl
                       Year type (a5 right justified !!)
             : icondem 1=no add; 2=add, 3=total demand in *.ddm
             : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
             : ireopx Re-operation switch (0=re-operate;1=no re-operation)
             : ireach 0=no instream reach; 1=yes instream flow reach
            : icall
: ccall
                       Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
                        Detailed call water right ID (not used if icall = 0)
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
Switch for well operations See section 7.4 for a discussion of the well options.
             : iday
             : iwell
             : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
             : isjrip San Juan RIP
             : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc. : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
             : isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
: soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
                       Number of significant digits behind decimal point in output files
# Exhibit 1.3
  *.rin; River node network file for StateMod Example 1
  Card 1 Control
   format: (a12, a24, a12, 1x, a12, 1x, f8.0)
                cstaid: Station ID
   Name
                stanam: Station name
   Downstream
                cstadn: Downstream node ID
   Comment
               comment: Alternate identifier/comment.
   GWMax
                gwmaxr: Max recharge limit (cfs) - see iwell in control file.
    ID
                       Name
                                      DownStream
                                                     Comment
                                                                 GWMax
```

```
#-----eb-----exb-----exb-----e
Dem_3
          Exist. Diver. 3/Inflow Dem_4
Dem 4
         Exist. Diver. 4 Riv_50
Dem_5
         Exist. Diver. 5/Inflow Dem_2
Dem_2
         Exist. Diver. 2 Riv_50
Riv_50
         Confluence
                               Dem_1
       Exist. Diver. 1
Dem 1
                              ISF
ISF
          Top Instream Flow
                              ISF.01
ISF.01
         Bottom Instream Flow
# Exhibit 1.4
# *.ris; Streamflow station file for StateMod Example 1
 ************
    Card 1 Control format: (a12, a24, a12, 1x, a12)
           crunid: Station ID
#
  Name runnam: Station name
River ID cgoto: River node with stream gage
#
  Name
  Daily ID crunidy: Daily stream station ID.
                 Name
                              River ID
                                          Daily ID
#----eb-----exb-----exb-----
     Exist. Diver. 3/Inflow Dem_3
                                          Dem_3
Dem 3
         Exist. Diver. 5/Inflow Dem_5
Dem 5
                                          Dem 5
ISF.01
         Bottom Instream Flow ISF.01
                                          Dem 3
# Exhibit 1.5
# *.rim; Monthly streamflow file StateMod Example 1
 ************
    Card 1 Control format: (i4, 1x, a12, 12f8.0)
#
#
    Year
            iryr:
                           Year
            cistat:
                           Station id
    ID
    runoff(1-12):
                           Streamflow by month = virinp(im,np) for station np
#
                                                                               Jul
# Yr ID
                  Oct
                                              Feb
                        Nov
                              Dec
                                     Jan
                                                     Mar
                                                            Apr May Jun
                                                                                      Aug
                                                                                               Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
  10/1979 -
               9/1980 AF/M WYR
                1000. 1000. 1000.
1980 Dem_3
                                     1000.
                                            1000.
                                                    1000.
                                                           1000.
                                                                  5000. 5000.
                                                                               1000.
                                                                                     1000.
                                                                                             1000.
20000.
1980 Dem 5
                3000. 3000. 3000.
                                      3000. 3000.
                                                    3000.
                                                           3000. 15000. 15000.
                                                                               3000.
                                                                                     3000.
                                                                                             3000.
60000.
1980 ISF.01
                 4000. 4000. 4000.
                                      4000. 4000. 4000.
                                                           4000. 20000. 20000.
                                                                               4000.
                                                                                      4000.
                                                                                              4000.
80000.
# Exhibit 1.6
# *.dds; Direct Diversion Station file for StateMod Example 1
#> Direct Diversion Station File
#>
#> Card 1 format (a12, a24, a12, i8, f8.2, 2i8, 1x, a12)
#>
#> ID
             cdivid: Diversion station ID
             divnam: Diversion name cgoto: River node for diversion
#> Name
#> Riv ID
             idivsw: Switch 0=off, 1=on
#> On/Off
#> Capacity divcap: Diversion capacity (CFS)
              dumx: Not currently used
#>
            ireptyp: Replacement reservoir option (see StateMod doc)
#> RepType
#> Daily ID cdividy: Daily diversion ID
#>
#> Card 2 format (12x, a24, 12x, 2i8, f8.2, f8.0, 2i8)
#>
#> User Name usernam: User name.
  DemType idvcom: Demand data type switch (see StateMod doc)
#>
   #-Ret
#>
              nrtn:
                     Number of return flow table ref
             divefc: Annual system efficiency
#> Eff
                     Irrigated acreage
#>
  Area
              area:
  UseType irturn: Use type (see StateMod doc)
#>
             demsrc: Demand source (see StateMod doc)
#> Demsrc
#>
#> Card 3 format (free format)
#>
    diveff (12): System efficiency % by month
#>
#>
#> Card 4 format (36x, a12, f8.2, i8)
```

```
crtnid: River node receiving return flow pottot: Percent of return flow to the interest of the control of the c
#>
#> Ret ID
    Ret %
                     pcttot: Percent of return flow to this river node
#>
    Table #
                     irtndl: Delay (return flow) table for this return flow.
#>
#>
                                           Riv ID On/Off Capacity
#> ID
                                                                                                  RepType Daily ID
            ---eb-----eb-----eb-----eb-----eb-----eb-----eb-----exb------e
#>----
                                                                  DemType #-Ret Eff % Area UseType DemSrc
                    User Name
#>
#>xxxxxxxxxb----eb----eb-----eb-----eb-----eb-----eb-----eb-----
          ... Monthly Efficiencies...
                                                    Ret ID
                                                                      Ret % Table #
Dem_3
                                                                               1 5000.00
                                                                                                   1
Dem_3
                Irrigation Demand _3
                                                                                                                 0 Dem_3
                                                                                                    50.
                                                                                                             0.00
                                                                                                                                         0
                                                                               1 1
                                                   Dem_4
                                                                        100.00
                                                                                                             0 Dem_4
                                                                       1 5000.00
             Irrigation Demand _4 Dem_4
Dem_4
                                                                       1 1
100.00 1
                                                                                                    50.
                                                                                                             0.00
                                                                                                                                         Ω
                                                   Riv_50
                                                                        1 5000.00
Dem 5
                Irrigation Demand 5
                                                 Dem_5
                                                                                                      1
                                                                                                                 0 Dem 5
                                                                       1 1
100.00 1
                                                                                                    50.
                                                                                                             0.00
                                                                                                                                         0
                                                   Dem_2
                                                                        1 5000.00
Dem 2
                Irrigation Demand 2
                                                 Dem_2
                                                                                                                    Dem_2
                                                                        1 1
100.00 1
                                                                                                    50.
                                                                                                             0.00
                                                                                                                                         0
                                                   Dem_1
                                                                                                            0 Dem_1
1
                                                                                                   1
                                                                        1 5000.00
                Municipal Demand _1
Dem 1
                                                   Dem_1
                                                                                                   20.
                                                                                                             0.00 1
                                                                               1 1
                                                                                                                                         0
                                                   ISF
                                                                        100.00
# Exhibit 1.7
  *.ddr; Direct Diversion Right for StateMod Example 1
        Card 1 Control
        format: (a12, a24, a12, f16.5, f8.2, i8)
        TD
                   cidvri: Diversion right ID
                    named: Diversion right name
        Name
                      cgoto: Direct Diversion Structure ID associated with this right
        Struct
        Admin # irtem: Administration number
                                   (small is senior).
       Decree dcrdiv: Decreed amount (cfs)
On/Off idvrsw: Switch 0 = off, 1 = on
                                  YYYY = on for years >= YYYY.
                                  -YYYY = off for years > YYYY.
                                                 Struct
     TD
                                                                          Admin # Decree On/Off
                         Name
#EndHeader
#-----eb-----eb-----eb-----eb-----eb-----eb-----
Dem_4_WR_1 Irrigation Demand _4
Dem_5_WR_1 Irrigation Demand _5
                                                   Dem_4
                                                                                10.00000 100.00
                                                                                                                 1
                                                                               15.00000 100.00
                                                   Dem_5
                                                                                 6.00000 60.00
2.00000 100.00
Dem_2_WR_1 Irrigation Demand _2 Dem_2
Dem_1_WR_1 M&I Demand _1 Dem_1
                                                                                                                 1
                                                  Dem_1
# Exhibit 1.8
  *.ddm; Direct Flow Diversion Demands for StateMod Example 1
       ************
        Card 1 Control format: (i4, 1x, a12, 12f8.0
                  idvr:
                                             Year
                    cistat:
                                             Station id
        TD
                                            Demand for month 1-12 ( ) = diver(im,nu) for station nu
       diverm(1-12):
# Yr ID Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
                                                                                                                                                              Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
   10/1979 -
                        9/1980 AF/M WYR
                          1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000.
1980 Dem_3
12000
                                                                                                                                              500.
                            500. 500.
                                                     500.
                                                                500.
                                                                            500.
                                                                                       500.
                                                                                                   500.
                                                                                                               500.
                                                                                                                         500.
                                                                                                                                  500.
                                                                                                                                                             0.
1980 Dem 4
5500
                           0. 0. 0. 0. 0. 0. 0. 0. 0.
1980 Dem_5
                                                                                                                                                 0.
                                                                                                                                                             0.
0.
1980 Dem_2
                          3000. 3000. 3000. 3000. 3000. 3000. 3000.
                                                                                                             3000. 3000. 3000. 3000. 3000.
36000.
                           2000. 2000. 2000. 2000. 2000.
                                                                                      2000
                                                                                                 2000
                                                                                                             2000
                                                                                                                        2000 2000 2000
1980 Dem 1
                                                                                                                                                           2000
24000.
```

```
# *.ifs; Instream Flow Station file for StateMod Example 1
 *************
 Instream Flow Station File
# Card1 format: (a12,a24,a12,i8,1x,a12,1x,a12,i8)
            cifrid: Instream Flow ID
 TD
#
  Name cfrnam: Instream Flow Name
Riv ID cgoto: Upstream river ID wh
On/Off ifrrsw: Switch; 0=off, 1=on
 Name
             cgoto: Upstream river ID where instream flow is located
#
 Riv ID
 Downstream ifrrdn: Downstream river ID where instream flow is located
                    (blank indicates downstream=upstream)
 DailyID cifridy: Daily instream flow ID (see StateMod doc)
DemandType iifcom: Demand type switch (see StateMod doc)
#
# ID
                            Riv ID On/Off Downstream
                                                        DailyID DemandType
         Name
#-----eb-----exb-----eb-----e
TSF
         Instream Demand
                             TSF
                                            1 0
# Exhibit 1.10
 *.ifr; Instream Flow Right file for StateMod Example 1
 ***********
   Card 1 Control format: (a12, a24, a12, F16.5, f8.2, i8)
                    Instream flow right ID
Instream flow right name
 ID
          cifrri:
 Name
#
          namei:
                    Instream flow station associated with the right Priority or Administration number
 Structure cgoto:
Admin# irtem:
 Admin#
 Decree dcrifr: Decreed amount (cfs)
On/Off iifrsw: Switch 0 = off 1.
#
                    Switch 0 = off, 1 = on
YYYY = on for years >= YYYY
                     -YYYY = off for years > YYYY
                                          Admin# Decree On/Off
# ID
            Name
                            Structure
#-----eb-----eb-----eb-----e
                           ISF
ISF_WR_1 Instream Flow 1
                                             9.00000 65.50
# Exhibit 1.11
# *.ifa; Annual Instream Flow Demand File for StateMod Example 1
 *************
    Card 1 Control
    format: (Free)
          cistat:
                       Instream ID
Instream Flow Demand by month
   Td
       flowr(1-12):
                Oct Nov Dec
                                   Jan Feb
                                                Mar Apr May Jun Jul Aug
# NA TD
                                                                                        Sep
Average
10/ 0 - 9/ 0 CFS WYR
                65.5 65.5
                             ISF
65.5
# Exhibit 1.12
# ex*.urm; Return flow delay table for StateMod Example 1
   Card 1 Control format: (16x, i8, 12f8.0)
  ID
           idlv:
                         Delay table id
    Ret dlyrat(1-n,idl): Return for month n, station idl
                                                        Ret1-12 coincides with months in year type in
#
.ctl file
50. 0. 0. 0. Irrigation Return Table 30. 20. 10. 0. M&I Return Table
     1 5
          5.0
                 5.0
     2 5
           40.
# Exhibit 1 13
# *.out; Output request file for StateMod Example 1
# Type (e.g. Diversion, StreamGage, Reservoir, InstreamFlow, Well or All)
A11
#
```

```
# Parameter (e.g. Total_Supply, Sim_EOM, River_Outflow or All)
All
#
# ID Name Type and Print Code (0=no, 1=yes);
# Note: id = All prints all
# id = -999 = stop
#
       default is to turn on all stream gages (FLO)
#
All
          Exist. Diver. 3/Inflow
Dem_3
           Exist. Diver. 4
Exist. Diver. 5/Inflow
Exist. Diver. 2
                                       DIV
Dem_4
                                                  1
                                                 1
Dem_5
Dem_2
Riv_50
                                          DIV
                                                  1
                                                  1
          Confluence
                                          OTH
Dem_1
ISF
            Exist. Diver. 1
                                          DIV
                                                   1
            Top Instream Flow
                                          ISF
                                                  1
ISF.01
          Bottom Instream Flow
                                          ISF
-999
#
 *.xwb
              Water Budget
#
   STATEMOD
  StateMod Operating Rule Example - ex1.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
# Run date: 9/15/ 8 8:38: 6
                9/15,
Monthly
# Time Step:
#
```

Water Budget ACFT

Water Budget ACFT

From/To

Stream

Well Re	eservoir Reservoir	Str	eam	Reserv	oir	110	То	SoilM		110 11110.	_
Year Mo	Inflow R	eturn	G	WStorag	e	SoilM	10	Plan Inflo	w Divert	by Well	
Depletion	Inflow R Evaporation Se	epage	Outf	low	Chai	nge	Sc	ilM Change			
Total								_			
	Delta										
	4000.0 1								1666 7	0 0	0.0
0.0	0.0 640.0	306.7	0 0	0.0	0 0	0.0	0 0	0.0 5306.7 5206.7	1722	0.0	0.0
0.0	0.0		0.0		0.0		0.0	3300.7	0.0 1/33	3	0.0
	4000.0	2675 6		0 0		0 0		0 0 6675	5 5555 6	0 0	0.0
0.0	0.0 1120.0	2075.0	0.0	0.0	0.0	0.0	0.0	6675.6	0.0 2177	8	0.0
0.0	0.0										
1979 DEC	4000.0	3291.9		0.0		0.0		0.0 7291.	5851.9	0.0	0.0
0.0	0.0 1440.0		0.0		0.0			7291.9			
0.0	0.0										
1980 JAN								0.0 7550.			
0.0	0.0 1600.0		0.0		0.0		0.0	7550.6	0.0 2375	3	0.0
0.0	0.0										
	4000.0							0.0 7583.			
	0.0 1600.0		0.0		0.0		0.0	7583.5	0.0 2391	8	0.0
0.0	0.0 4000.0	2504 5		0 0		0 0		0.0 7594.	- F004 F	0 0	0.0
1980 MAR 0.0	0.0 1600.0	3594.5	0 0	0.0		0.0					
0.0	0.0 1600.0		0.0		0.0		0.0	7594.5	0.0 2397	3	0.0
	4000.0	3508 2		0 0		0 0		0.0 7598.	5998 2	0.0	0.0
0.0	0.0 1600.0			0.0				7598.2			
0.0	0.0		0.0		0.0		0.0	7370.2	2333	_	0.0
1980 MAY	20000.0	3724.5		0.0		0.0		0.0 23724.	5 6500.0	0.0	0.0
0.0	0.0 17224.5		0.0		0.0			23724.5			0.0
0.0	0.0										
1980 JUN	20000.0							0.0 23850.			
0.0	0.0 17350.0		0.0		0.0		0.0	23850.0	0.0 2650	0	0.0
0.0	0.0										
1980 JUL				0.0				0.0 7725.			
0.0	0.0 1725.0		0.0		0.0		0.0	7725.0	0.0 2400	0	0.0
0.0	0.0 4000.0	2600 0		0 0		0 0		0.0 7.600		0 0	0.0
	0.0 1600.0					0.0	0 0	0.0 7600. 7600.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	0.0
0.0	0.0		0.0		0.0		0.0	7600.0	0.0 2400	U	0.0
	4000.0	3600 0		0 0		0 0		0 0 7600	6000 0	0 0	0.0
0.0	0.0 1600.0	3000.0	0.0	0.0	0.0	0.0	0.0	7600.0	0.0 2400.	0	0.0
0.0											
1980 Tot	80000.0 4	0100.5		0.0		0.0		0.0 120100.	71000.9	0.0	0.0
0.0	0.0 49099.5		0.0		0.0		0.0	120100.5	0.0 28300	5	0.0
0.0	0.0										

From

From Total

From River

Well Year Deple	Re Mo etion	Stream servoir Reservoir St Inflow Return Evaporation Seepage	ream Reser	voir	To	om Total SoilM an Inflow Change		om River
Tota								
Outfl	OW	Delta CU						
							1666 7	
Ave 0.0	OCT	4000.0 1306.7 0.0 640.0	/ 0.0	0.0	0 0	5306.7	4666.7	0.0
0.0		0.0 640.0	0.0	0.0	0.0	5306.7	0.0 1/33.3	0.0
Ave	NOV			0.0	(0.0 6675.6	5555.6	0.0 0.0
0.0	IVOV	0.0 1120.0		0.0		6675.6		
0.0		0.0	0.0	0.0	0.0	0075.0	0.0 2177.0	0.0
Ave	DEC	4000.0 3291.9	0.0	0.0		0.0 7291.9	5851.9	0.0 0.0
0.0			0.0	0.0		7291.9	0.0 2325.9	0.0
0.0		0.0						
Ave	JAN	4000.0 3550.6		0.0		0.0 7550.6	5950.6	0.0 0.0
0.0		0.0 1600.0	0.0	0.0	0.0	7550.6	0.0 2375.3	0.0
0.0		0.0						
Ave	FEB	4000.0 3583.5					5983.5	0.0 0.0
0.0		0.0 1600.0	0.0	0.0	0.0	7583.5	0.0 2391.8	0.0
0.0		0.0						
Ave	MAR	4000.0 3594.5					5994.5	
0.0		0.0 1600.0	0.0	0.0	0.0	7594.5	0.0 2397.3	0.0
0.0	3.00	0.0		0 0		0 0 7500 0	5000 0	0.0 0.0
Ave 0.0	APR	4000.0 3598.2 0.0 1600.0		0.0			5998.2 0.0 2399.1	
0.0		0.0	0.0	0.0	0.0	7390.2	0.0 2399.1	0.0
Ave	MAY			0.0	(n n 23724 5	6500.0	0.0 0.0
0.0	11111	0.0 17224.5					0.0 2650.0	0.0
0.0		0.0	0.0	0.0	0.0	2372113	2030.0	0.0
Ave	JUN	20000.0 3850.0	0.0	0.0	(0.0 23850.0	6500.0	0.0 0.0
0.0		0.0 17350.0		0.0		23850.0		0.0
0.0		0.0						
Ave	JUL	4000.0 3725.0		0.0			6000.0	0.0 0.0
0.0		0.0 1725.0	0.0	0.0	0.0	7725.0	0.0 2400.0	0.0
0.0		0.0						
Ave	AUG	4000.0 3600.0					6000.0	
0.0		0.0 1600.0	0.0	0.0	0.0	7600.0	0.0 2400.0	0.0
0.0		0.0						
Ave	SEP		0.0	0.0	0 0	7600.0	6000.0	0.0 0.0
0.0		0.0 1600.0 0.0	0.0	0.0	0.0	7600.0	0.0 2400.0	0.0
0.0		0.0						
Ave	Tot	80000.0 40100.5	0.0	0 0		0 0 120100 5	71000.9	0.0 0.0
0.0	100		0.0	0.0	0 0		0.0 28300.5	
0.0		0.0	5.0	0.0	0.0	120100.5	0.0 20300.3	0.0
							0.0 (6)	
							(0)	

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency

+ \max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

- (4) Salvage is not part of the Stream Water Balance. It is the portion of well pumping that does not impact the stream
- (5) From Plan is water from a reuse plan.
 (6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:
 - 0. af/yr for Diverted to Storage. 1
 - 2 $\ensuremath{\text{0.}}$ af/yr for a Diversion Carrier.
 - 0. af/yr for a Reservior Carrier. 3
 - 0. af/yr for a Plan Carrier. 0. af/yr Total 4

*.xwr; Water Right Information

```
#
# *.xwr
             Water rights list sorted by basin rank
   STATEMOD
#
  StateMod Operating Rule Example - ex1.* data set
# Statemod Version:
                    12.289 Date = 2008/09/12)
                     9/15/ 8 8:38: 9
# Run date:
                    Monthly
 Time Step:
```

```
#
#
#
 Where:
                    = Water right basin rank
  1. Rank
   2. Type
                    = Water right type
                    1=Instream,
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
                    5=Operational,
                    6=Well,
   3. Admin #
                    = Administration Number
#
   4. On/Off
                    = On or Off switch
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
#
                    0=off
                   1=on
#
                   +n=begin in year n
                   -n=stop in year n
 5. Str Id #1
#
                    = Primary structure for this right
  6. Str Id #2
                    = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                   = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                    = Water right name
                    = Primary structure for this right
  9. Str Name #1
# 10. Str Name #2
                    = Secondary structure for this right (-1=N/A)
                                       Admin # On/Off Str ID #1
   Rank ID
                                                                     Str ID #2
                                                                                       Amount Right Name
                          Type
                          Str Name #2
Str Name #1
                                           (4)
                                                   (5) (6)
                                                                     (7)
                                                                                           (8) (9)
#
    (1) (2)
                           (3)
(10)
                           (11)
#
      1 Dem_1_WR_1
                             3
                                       2.00000
                                                     1 Dem_1
                                                                                      100.000 c M&I Demand _1
                                                                     -1
Municipal Demand _1
2 Dem_2_WR_1
                             3
                                       6.00000
                                                                     - 1
                                                                                       60.000 c Irrigation Demand _2
                                                     1 Dem 2
Irrigation Demand _2
3 Dem_3_WR_1
                                       7.00000
                                                                                      100.000 c Irrigation Demand _3
                             3
                                                     1 Dem 3
                                                                     -1
Irrigation Demand _3
                                       9.00000
                                                     1 ISF
                                                                     -1
                                                                                      65.500 c Instream Flow 1
      4 ISF WR 1
                             1
Instream Demand
                             3
                                      10.00000
                                                                     -1
                                                                                      100.000 c Irrigation Demand 4
      5 Dem_4_WR_1
                                                     1 Dem 4
Irrigation Demand _4
      6 Dem 5 WR 1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                     -1
                                                                                      100.000 c Irrigation Demand 5
Irrigation Demand _5
#
 *.xdd
             Diversion Summary
   STATEMOD
   StateMod Operating Rule Example - ex1.* data set
                     12.289 Date = 2008/09/12)
# Statemod Version:
                     9/15/ 8 8:37:44
 Run date:
 Time Step:
                    Monthly
   Diversion Summary ACFT
     STATEMOD
     StateMod Operating Rule Example - ex1.* data set
PAGE NO
          1
    STRUCTURE ID (0 = total) : Dem_3
                                                  -1
    STRUCTURE ACCT (0 = total): 0
    STRUCTURE NAME
                            : Irrigation Demand _3
    RIVER LOCATION - FROM
                                            Exist. Diver. 3/Inflow
                             : Dem_3
    RIVER LOCATION - TO
                             : Dem 3
                                             Exist. Diver. 3/Inflow
    STRUCTURE DATA
                              :
                                                    af@30
                                                             af@31
                                           cfs
                                          5000.
                                                  297525.
                                                            307442.
      Diversion Capacity
                                   1
      Diversion Rights
                                    1
                                           100
                                                    5950
                                                             6149
                             :
                                                              0.
      Well Capacity
                              :
                                    1
                                            0.
                                                     0.
      Well Rights
                                    Ω
                                             Ω
                                                                 Ω
                                                       0.
```

Number of rights =

Demand From River By From Carrier By

				mand			iver By			From	Carrier	By
Carried									_			
	re River	m 1							From	======		=====
Exchang	re From Total		CU Mo Total	10	Total Priorty St				Well	Priorty	O+ - E	T
Bypass		Short			Return		EXC_PIN s Infl		well	Priorty	SLO_EXC	LOSS
Буравв	SM Supply	SHOLL	SHOLL C	D POITM	Recuiii	LOS	s IIIII	OW				
	Station In	/O11+			Q+ a+	ion Ba	lance					
Reach	Return Well		River Riv				Control					
Gain	Flow Deplete											
Dem 3	Dem 3		OCT 1000.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 1	0.000	500.0 0.	0.0	0.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
0.0	0.0 1000.0	0.0 De	em_1	100.000	0							
Dem_3	Dem_3	1979	NOV 1000.0	500.0	555.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 555.6	444.4	222.2 277.	0.0	277.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
555.6	0.0 444.4	0.0	Dem_1	100.0	000							
Dem_3	Dem_3		DEC 1000.0		851.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 851.9		74.1 425.			0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
851.9	0.0 148.1			100.0								
Dem_3			JAN 1000.0		950.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 950.6		24.7 475.		475.3	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
950.6	0.0 49.4		_									
Dem_3	_		FEB 1000.0		983.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 983.5		8.2 491.		491.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
983.5	0.0 16.5	0.0	_			0 0	0 0	0 0	2 2		0 0	
Dem_3 0.0	Dem_3 0.0 994.5	5.5	MAR 1000.0 2.7 497.		994.5 497.3	0.0	0.0	0.0 1000.0	0.0	0.0	0.0	0.0
994.5	0.0 994.5			100.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
994.5 Dem 3	0.0 5.5 Dem 3		APR 1000.0		998.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 998.2	1.8	0.9 499.		499.1	0.0		1000.0	0.0	0.0		1000.0
998.2	0.0 550.2			100.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		MAY 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.		500.0	0.0		5000.0	0.0	0.0		5000.0
1000.0	0.0 4000.0				.000	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
Dem 3	Dem 3		JUN 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.		500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	4000.0	NA C	-1	.000							
Dem_3	Dem_3	1980	JUL 1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0) Hgate_Limit	-1	.000							
Dem_3	Dem_3	1980	AUG 1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0				0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0) Hgate_Limit		.000							
Dem_3	Dem_3		SEP 1000.0		1000.0	0.0		0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0		0.0 500.			0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0) Dem_1		.000							
Dem 3		1000	TOT 12000.0	6000 0	10224 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 10334.2 1									0.0		20000.0
10334.2					1.000	0.0	0.0	20000.0	0.0	0.0	0.0	20000.0
10334.2	0.0 3003.	0 1222.	.J NA		1.000							
Dive	rsion Summary	ACET										

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex1.* data set

PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 100. 5950. 6149. Well Capacity : 1 0. 0. 0. 0. Well Rights : 0 0. 0. 0.

Water Use Shortage Demand From River By From Carrier By

Station In/Out Station Balance

Reach Return Well From/To River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right

Dem_4	Dem_4	1979 OCT	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 1000.0	500.0 250.0 0.0 Dem 1	0.0	0.0	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
Dem 4	0.0 1000.0 Dem 4	1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	444.4	0.0	138.9	0.0	0.0	583.3
0.0	0.0 583.3	0.0 Dem_1	0.0	100.000	0.0	0.0	444.4	0.0	138.9	0.0	0.0	583.3
		1979 DEC	F00 0		0.0	0 0	0.0	0 0	0 0	0.0	0.0	0 0
Dem_4	Dem_4 0.0 0.0		500.0	250.0 0.0	0.0	0.0		0.0	0.0	0.0		0.0
0.0			0.0	100.000	0.0	0.0	148.1	0.0	351.9	0.0	0.0	500.0
0.0 Dem 4	0.0 500.0 Dem_4	0.0 Dem_1 1980 JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	49.4	0.0	450.6	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF	0.0	100.000	0.0	0.0	49.4	0.0	450.6	0.0	0.0	500.0
			F00 0	250.0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_4	Dem_4	1980 FEB 500.0 250.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 500.0	500.0 250.0 0.0 Dem 1	0.0	0.0	0.0	0.0	16.5	0.0	483.5	0.0	0.0	500.0
0.0		0.0 Dem_1 1980 MAR	F00 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0.0
Dem_4	Dem_4 0.0 0.0		500.0	250.0	0.0	0.0	0.0 5.5	0.0	0.0	0.0	0.0	
0.0	0.0 500.0		0.0	0.0	0.0	0.0	5.5	0.0	494.5	0.0	0.0	500.0
0.0		0.0 Dem_1 1980 APR	F00 0		0.0	0 0	0 0	0 0	0 0	0.0	0.0	0.0
Dem_4	Dem_4		500.0	250.0		0.0	0.0	0.0	0.0			
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	1.8	0.0	498.2	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	499.5	0.0	0.0	4499.5
500.0	0.0 3999.5			-1.0								
Dem_4	Dem_4	1980 JUN	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0		4000.0 NA		-1.0								
Dem_4	Dem_4	1980 JUL	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4				1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		4500.0 2250.0	500.0	0.0	500.0	0.0	9665.8	0.0	4917.1	0.0	0.0	14582.9
1000.0	0.0 13582.	9 7999.5 NA		-1.	000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex1.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _5
RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow
RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 100. 5950. 6149. Well Capacity : 1 0. 0. 0. 0. Well Rights : 0 0. 0. 0. 0.

Shortag	e		Water	Use										
					Deman	f		From R	iver By			From	Carrier	By
Carried			=====	======	======			=====	===					
Structu	re	River		==				=====		=====	From	======		
Exchang	e Fr	om Total	Total	CU		To	Total		Upst:	rm				
ID		ID	Year	Mo 1	otal	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	S	M Supply	Short	Short	CU	SoilM	Return	Los	s Inflo	OW				
		Station I	n/Out				Stat	ion Ba	lance					
======		=======		======				=====						
Reach	Retu	rn Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flow	Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_5		Dem_5	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 Det	m_1		100.000								
Dem_5		Dem_5	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	m_2		60.000								
Dem_5		Dem_5	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 Det	m_2		60.000								
Dem_5		Dem_5	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	m_2		60.000								

Dem_5	Dem_5	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0 1	L2000.0 NA		-1.000								
Dem_5	Dem_5	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0 1	L2000.0 NA		-1.000								
Dem_5	Dem_5	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	60000.0
0.0	0.0 60000.0 2	24000.0 NA		-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex1.* data set PAGE NO. 4

STRUCTURE ID (0 = total) : Dem_2

STRUCTURE ID (0 = total) : Dem_2 =
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _2
RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2
RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

cfs af@30 af@31 STRUCTURE DATA : # 5000. 297525. 307442. 60. 3570. 3689. 0. 0. 0. 0. 0. 0. 0. : 1 : 1 : 1 : 0 Diversion Capacity Diversion Rights Well Capacity Well Rights

Shortage	Water Use						
	Dema	and	From River By		From	Carrier By	
Carried	=======================================		=======				
Structure River	======		=======================================	From	=======		-==
Exchange From Total	Total CU	To Total	Upstrm				
ID ID	Year Mo Total		orage Exc_Pln Loss	Well	Priorty	Sto_Exc Lo	ວຣຣ
Bypass SM Supply	Short Short CU	SoilM Return	Loss Inflow				
Station In	/Out	Stat	ion Balance				
	====================================	.=========		=			
Reach Return Well	From/To River River	River River	Avail Control Control	L			
Gain Flow Deplete (GW Stor Inflow Diver	rt By Well Outflow	Flow Location Right				
Dem_2 Dem_2	1979 OCT 3000.0	1500.0 2666.7	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 2666.7	333.3 166.7 1333.3	0.0 1333.3	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
2666.7 0.0 333.3		100.000					
Dem_2 Dem_2	1979 NOV 3000.0	1500.0 3000.0	0.0 0.0 0.0	0.0	0.0		0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
3000.0 0.0 0.0	3	-1.000					
Dem_2 Dem_2		1500.0 3000.0	0.0 0.0 0.0	0.0	0.0		0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
3000.0 0.0 0.0	3	-1.000					
Dem_2 Dem_2		1500.0 3000.0	0.0 0.0 0.0	0.0	0.0		0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					
Dem_2 Dem_2	1980 FEB 3000.0		0.0 0.0 0.0	0.0	0.0		0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					
Dem_2 Dem_2		1500.0 3000.0	0.0 0.0 0.0	0.0	0.0		0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					
Dem_2 Dem_2		1500.0 3000.0	0.0 0.0 0.0	0.0	0.0		0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0 300	00.0
3000.0 0.0 0.0	3	-1.000					
Dem_2 Dem_2		1500.0 3000.0	0.0 0.0 0.0	0.0	0.0	0.0 (0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 15000.0 0.0	0.0	0.0	0.0 1500	JU.U
3000.0 0.0 12000.0	12000.0 NA	-1.000					

Dem_2	Dem_2	1980	JUN	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
3000.0	0.0 12000.0	12000.0	NA		-1	.000							
Dem_2	Dem_2	1980	JUL	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	AUG	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	SEP	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	TOT	36000.0	18000.0	35666.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 35666.7	333.3	166.7	17833.3	0.0	17833.3	0.0	60000.0	0.0	0.0	0.0	0.0	60000.0
35666.7	0.0 24333.3	3 24000.	0 NA		- 3	1.000							
	2.3 21000.												

Gage Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex1.* data set PAGE NO. $\,\,$

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

Shortag	je	Water	Use										
~ .				Deman				iver By			From	Carrier	By
Carrie		=====											
Structu		m-+-1	CU	======	To		=====			From	======	======	=====
ID	ge From Total ID	Total Year		Total		Total iorty St	02000 T	Upst:	Loss	Well	Priorty	Cto Erro	Togg
Bypass	SM Supply	Short	Short	Total CU	SoilM	Return	orage i Loss	_		well	Priorty	SCO_EXC	LOSS
Буравв	SM Supply	SHOLL	SHOLL	CU	SOTIM	Reculii	LOSS	5 1111.1	UW				
	Station In	,					ion Bal						
Reach	Return Well	From/To		= ===== River		River		Control					
Gain	Flow Deplete	- , -						Location					
NA	Riv 50	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1333.3	0.0	0.0	0.0	0.0	1333.3
0.0	0.0 1333.3	0.0 NA		0.0	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
NA	Riv 50	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	583.3	0.0	0.0	0.0	0.0	583.3
0.0	0.0 583.3	0.0 NA			-1.000								
NA	Riv_50	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50		JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 500.0	0.0	0.0	0.0	0.0 -1.000	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
NA	0.0 500.0 Riv 50	0.0 NA 1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 0.0 NA		0.0	-1.000	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		15999.5	0.0	125.0	0.0		16124.5
0.0	0.0 16124.5 13			0.0	-1.000	0.0	0.0	10000.0	0.0	120.0	0.0	0.0	
NA	Riv 50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	16000.0	0.0	250.0	0.0	0.0	16250.0
0.0	0.0 16250.0 13	452.4 NA			-1.000								
NA	Riv_50	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	125.0	0.0	0.0	625.0
0.0	0.0 625.0	0.0 NA			-1.000								
NA	Riv_50	1980	AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50		SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv 50	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		37916.2	0.0	500.0	0.0		38416.2
0.0	0.0 38416.2 26			0.0	-1.000	0.0	3.0		0.0	200.0	0.0	3.0	

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex1.* data set PAGE NO. $\,$ 6

STRUCTURE ID (0 = total) : Dem_1

STRUCTURE 1D (0 = total): Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. Diversion Capacity Diversion Rights 1 100. 5950. 6149. Well Capacity 0. : 0. 0. 0. 1 Well Rights 0 0. 0.

Shortag	е	Water	Use	Dema	ınd		From R	iver Rv			From	Carrier	. By
Carried		=====				=======					FIOII	Callici	Бу
	re River								=====	From	======		=====
Exchang	e From Total	Total	CU		To	Total		Upst	rm				
ID	ID	Year	Мо	Total	CU	Priorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Sho	rt CU	SoilM	Return	Los	s Infl	OW				
	Station In						ion Ba						
Reach	Return Well												
Gain Dem 1	Flow Deplete (ow Diver 2000.0		11 OUTI10W 2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0		1333.3	0.0	666.7	0.0	0.0	2000.0
2000.0	0.0 2000.0		NA	400.0		.000	0.0	1333.3	0.0	000.7	0.0	0.0	2000.0
Dem 1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0		1600.0	0.0			1416.7	0.0	0.0	2000.0
2000.0	0.0 0.0		NA	100.0		.000	0.0	303.3	0.0	1110.7	0.0	0.0	2000.0
Dem 1	Dem 1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	JAN	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000	0 0		0 0	0 0		0 0	
Dem_1	Dem_1	0.0		2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 2000.0	0.0 2000.0	0.0		400.0		1600.0 .000	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0 Dem 1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0		16124.5	0.0	1500.0	0.0		17624.5
2000.0	0.0 15624.5			400.0		.000	0.0	10124.5	0.0	1300.0	0.0	0.0	17024.5
Dem 1	Dem 1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0		1600.0		16250.0		1500.0	0.0		17750.0
2000.0	0.0 15750.0					.000							
Dem_1	Dem_1	1980	JUL	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	625.0	0.0	1500.0	0.0	0.0	2125.0
2000.0	0.0 125.0	0.0	NA		-1	.000							
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0		400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0					.000							
Dem_1	Dem_1						0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 24000.0	0.0		4800.0			0.0	38416.2	0.0	17083.3	0.0	0.0	55499.5
24000.0	0.0 31499.5	26649.	5 NA		-	1.000							
Dirro	waion Cummour.	A CET											

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex1.* data set PAGE NO. 7

5001 STRUCTURE ID (0 = total) : ISF

STRUCTURE 1D (0 = total): 1SF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

cfs af@30 STRUCTURE DATA af@31 0. 0. 0. Diversion Capacity Diversion Rights 66. 3898. 4027. Well Capacity Well Rights : 1 0. 0. : 0 0. 0. 0. 0.

Shortag		Water	Demai	nd		From R	iver Bv			From	Carrier	Bv
Carried	l	=====	========			======	===			110	0011101	21
Structu	re River		=======			=====		====	From	======		=====
Exchang	e From Total	Total	CU Mo Total	To	Total		Upst:	rm	W-11	David and base	O+	T
ID Bymagg	ID Supply	Short	Short CU	SoilM	Paturn	orage .	EXC_PIN	LOSS	well	Priorty	Sto_Exc	Loss
Буравь	ын эцргу	SHOLU	31101 C	SOLIM	Kecuiii	LOS	p 111111	Ow				
======	Station I		=======================================		Stat			======				
Reach	Return Well	From/To	River River	River	River	Avail	Control	Control				
Gain			Inflow Divert									
ISF	ISF	1979	OCT 4027.5	0.0	640.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
640 0	0.0 640.0	3387.5	OCT 4027.5 0.0 0.0 Hgate_Limit NOV 3897.6 0.0 0.0 Hgate_Limit DEC 4027.5 0.0 0.0 Hgate_Limit JAN 4027.5	_1 (640.0	0.0	0.0	0.0	640.0	0.0	0.0	640.0
TSF	TSF	1979	NOV 3897 6	0 0	1120 0	0 0	0 0	0 0	0 0	0 0	0 0	0.0
0.0	0.0 1120.0	2777.6	0.0 0.0	0.0	1120.0	0.0	0.0	0.0	1120.0	0.0	0.0	1120.0
1120.0	0.0 1120.	0.0	Hgate_Limit	-1	.000							
ISF	ISF	1979	DEC 4027.5	0.0	1440.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1440.0	2587.5	0.0 0.0	0.0	1440.0	0.0	0.0	0.0	1440.0	0.0	0.0	1440.0
1440.0	0.0 1440.	0.0	Hgate_Limit	-1	.000							
ISF	ISF	1980	JAN 4027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0	2427.5	0.0 0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	U.U 1600.	1000	0.0 0.0 Hgate_Limit FEB 3637.7	-1	1600 0	0 0	0 0	0 0	0 0	0.0	0 0	0.0
0 0	0 0 1600 0	2037 7	0 0 0 0	0.0	1600.0	0.0	0.0	0.0	1600 0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0 0.0	FEB 3637.7 0.0 0.0 Hgate_Limit MAR 4027.5 0.0 0.0 Hgate_Limit APR 3897.6	-1	.000	0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
ISF	ISF	1980	MAR 4027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0	2427.5	0.0 0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.	0.0	Hgate_Limit	-1	.000							
ISF	ISF	1980	APR 3897.6	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
												1600.0
1600.0	0.0 1600.	0.0	Hgate_Limit	-1	.000							
ISF	1SF	1980	MAY 4027.5	0.0	4027.5	0.0	0.0	0.0	1.00.0	0.0	0.0	17004 5
0.0 4027 F	0.0 4027.5	0.0 5 12107 0	0.0 0.0	_1	4027.5	0.0	15024.5	0.0	1000.0	0.0	0.0	1/224.5
4027.5 TSF	U.U 1/224.:	1980	Hgate_Limit MAY 4027.5 0.0 0.0 NA JUN 3897.6	0 0	3897 6	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0 3897.6	0.0	0.0 0.0	0.0	3897.6	0.0	15750.0	0.0	1600.0	0.0	0.0	17350.0
3897.6	0.0 17350.	0 13452.4	NA	-1	.000							
ISF	ISF	1980	JUL 4027.5	0.0	1725.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1725.0	2302.5	0.0 0.0	0.0	1725.0	0.0	125.0	0.0	1600.0	0.0	0.0	1725.0
1725.0	0.0 1725.	0.0	Hgate_Limit	-1	.000							
ISF	ISF	1980	JUN 3897.6 0.0 0.0 NA JUL 4027.5 0.0 0.0 Hgate_Limit AUG 4027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0	2427.5	0.0 0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	U.U 1600.	U U.O	0.0 0.0 Hgate_Limit SEP 3897.6	-1	1600 0	0 0	0 0	0 0	0.0	0 0	0 0	0 0
0 0	151	1980	SEP 3897.6	0.0	1600.0	0.0	0.0	0.0	1600 0	0.0	0.0	1600 0
1600 0	0.0 1000.0	2297.0 0 00	Hoate Limit	-1	000.0	0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
1000.0	0.0 1000.	0.0	0.0 0.0 Hgate_Limit	_								
ISF	ISF	1980	TOT 47420.5	0.0	22450.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 22450.1 2	4970.5	0.0 0.0	0.0	22450.1	0.0	31499.5	0.0	17600.0	0.0	0.0	49099.5
22450.1	0.0 49099	.5 26649.	TOT 47420.5 0.0 0.0 5 NA	-:	1.000							
	rsion Summary											
	'ATEMOD											
		ng Rule E	xample - ex1.*	data s	et							
PAGE NO	_		•									
GED.	TIGHTINE TO (0	1 -1 - 1 >	. Danafla	100	2.2							

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage	Water Use				
	Demar	d From River By		From Carri	er By
Carried	=======================================	=======================================			
Structure River	=======		From	=========	======
Exchange From Total	Total CU	To Total Upstrm			
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_E	xc Loss
Bypass SM Supply	Short Short CU	SoilM Return Loss Inflow			
Station In	/Out	Station Balance			
			==		
Reach Return Well	From/To River River	River River Avail Control Control	01		
Gain Flow Deplete	GW Stor Inflow Divert	By Well Outflow Flow Location Right			
Baseflow ISF.01	1979 OCT 0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0	
Baseflow ISF.01 0.0 0.0	1979 OCT 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0	

Baseflow	ISF.01 0.0	1979 NC	0.0 0.0	0.0	0.0	0.0	0.0 1120.0	0.0	0.0	0.0	0.0	0.0 1120.0
	1120.0	0.0 NA	0.0	-1.000	0.0	0.0	1120.0	0.0	0.0	0.0	0.0	1120.0
Baseflow	ISF.01	1979 DE	C 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0			0.0	0.0	0.0		1440.0	0.0	0.0	0.0	0.0	1440.0
0.0 0.0	1440.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 JA	N 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 FE	B 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 MA	AR 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 AF	PR 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 MA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	17224.5	0.0	0.0	0.0	0.0	17224.5
0.0 0.0	17224.5 1	3197.0 NA		-1.000								
Baseflow	ISF.01	1980 JU	JN 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	17350.0	0.0	0.0	0.0	0.0	17350.0
0.0 0.0	17350.0 1	3452.4 NA		-1.000								
Baseflow	ISF.01	1980 JU	L 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1725.0	0.0	0.0	0.0	0.0	1725.0
0.0 0.0	1725.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 AU	IG 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 SE	P 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA		-1.000								
Baseflow	ISF.01	1980 TC	O. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	49099.5	0.0	0.0	0.0	0.0	49099.5
0.0 0.0	49099.5 2	6649.5 NA		-1.000								

```
*.rsp; response file for Statemod Example 2
      This response file lists the StateMod input files necessary for model simulation
# Type
                                         Name
                                       = ex2.ct1
Control
River Network
                                       = ex2.rin
StreamGage Station
                                       = ..\ex1\ex1.ris
Stream Base Monthly
                                       = ..\ex1\ex1.rim
Diversion Station
                                       = ... \times 1 \times 1.dds
Diversion_Right
                                       = ..\ex1\ex1.ddr
Diversion_Demand_Monthly
                                       = ..\ex1\ex1.ddm
Reservoir_Station
                                       = ex2.res
Reservoir Right
                                       = ex2.rer
Reservoir_Target_Monthly
                                       = ex2.tam
Evaporation Monthly
                                       = ex2.eva
Instreamflow Station
                                       = ... ex1 ex1.ifs
Instreamflow Right
                                       = ..\ex1\ex1.ifr
Instreamflow Demand AverageMonthly
                                       = ..\ex1\ex1.ifa
Operational Right
                                       = ex2.opr
DelayTable Monthly
                                       = ..\ex1\ex1.urm
OutputRequest
                                       = ex2.out
# Exhibit 2.2
# ex*.ctl; Control file for StateMod Example 2
 STATEMOD
 StateMod Operating Rule Example - ex2.* data set
           : iystr STARTING YEAR OF SIMULATION
                      ENDING YEAR OF SIMULATION
            : iyend
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
           : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      0
           : numpre NO. OF PRECIPITATION STATIONS
      Ω
           : numeva NO. OF EVAPORATION STATIONS
           : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
     -1
           : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
 1.9835
            : rfacto DIVISOR FOR STREAM FLOW DATA;
                                                       ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
                                                       ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.9835
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
 1.0
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
 1.0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
 WYR
            : cyrl
                    Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
            : ichk
                      detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall Detailed call water right ID (not used if icall = 0)
            : iday
                      Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : iwell
                      Switch for well operations See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isirip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
: isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
            Number of significant digits behind decimal point in output files
# Exhibit 2 3
 *.rin; River node network file for StateMod Example 2
  Card 1 Control
  format: (a12, a24, a12, 1x, a12, 1x, f8.0)
               cstaid: Station ID
               stanam: Station name
  Name
```

```
Downstream cstadn: Downstream node ID
    Comment comment: Alternate identifier/comment.

GWMax gwmaxr: Max recharge limit (cfs) - see iwell in control file.
   GWMax
#
                                                  DownStream
                                                                     Comment
                             Name
#-----eb-----exb-----exb-----e
Dem_3 Exist. Diver. 3/Inflow Dem_4
Dem_4 Exist. Diver. 4 Riv_50
Dem_5 Exist. Diver. 5/Inflow Res_1

        Dem_5
        Exist. Diver. 5/Inflow
        Res_1

        Res_1
        Exist. Reservoir
        Dem_2

        Dem_2
        Exist. Diver. 2
        Riv_50

        Riv_50
        Confluence
        Dem_1

        Dem_1
        Exist. Diver. 1
        ISF

        ISF
        Top Instream Flow
        ISF.01

        ISF.01
        Bottom Instream Flow

# Exhibit 2.4
# *.res; Reservoir station file for StateMod Example 2
   ***************
        Card 1 Control (RESSTA) format: (a12, a24, a12, i8, f8.0)
#
                    cresid: Reservoir Id
        Name resnam: Reservoir name
Riv ID cgoto: Node where Reservoir is located
On/Off iressw: Switch 0 = off, 1 = on
Adim Dat rdate: Administration date for 1 fill rule
        DailyX cresidy; for daily model, ID of station with daily data
                                                Riv ID
# TD
              Name
                                                                 On/Off Adim Dat DailyX
#----eb----eb----eb----eb----eb----eb----eb----e
        Card 2 Control (cont.) format: (24x, 4f8.0, 4i8)
        Minimum Vol volmin: Min storage (ac-ft)
        Maximum volmax: Max storage (ac-ft)
Discharg flomax: Max discharge (cfs)
#
        DeadSt deadst: Dead storage (ac-ft)
# Owner nowner: Number of owners
        # Eva nevapo: Number of evaporation Stations
# Pre nprecp: Number of precipitation Stations
        # Table nrange: Number of area capacity curves (min=10)
Card 3 Ownership format: (24x, 3f8.0, i8)
        Ownmax Ownmax: Maximum storage for that owner (ac-ft)
        Ownmax Ownmax. Maximum Stolage for that owner (ac 12, Sto-1 curown: Initial stroage for that owner (ac-ft)

Evp Typ pcteva: Enter 0; prorate evaporation based on current storage

Fill # n2own: Ownership type 1=First fill; 2=Second fill
                                   Ownmax Sto-1 Evp Typ Fill #
#----eb----eb----eb----eb----e
        Card 4 Evaporation (EVAP) format: (24x, 10(a12,f8.0))
        Evp ID cevar: Evaporation station
        Evp % weigev: Evaporation station weight (%)
# NA
                                Evp Id
                                                    Evp % Evp ID
                                                                                Evp %
#----eb----eb----eb----eb----eb-----
        Card 5 Precipitation (PREC) format: (8x, i8, 4f8.0)
        Pre ID cprer: Precipitation station
Pre % weigpr: Precipitation station weight (%)
         Pre Id Pre % Pre ID Pre %
        Card 6 Area Capacity (SACURV)
```

```
format: (24x, 8f8.2)
#
             Minimum of 11 entries
#
#
     Cont
             conten: Content (ac-ft)
     Area suarea: Area (ac)
#
                     Cont
                           Area Cont Area
      -----eb-----eb-----e
 **********
     Card 7 Seepage (SEEP) format: (16x, 8f8.2)
#
             Minimum of 11 entries
             sepcon: Content (ac-ft)
     Cont
     Seep seepage: Sepage rate (ac-ft/mo)
                     Cont Seep Cont Seep
    ----eb----eb----e
 *************
     Format Summary
#
                                Riv ID On/Off Adim Dat
# ID
         Name
# NA
                      Minimum Maximum Dischrg DeadSt \# Owner \# Eva \# Pre \# Table
                     Ownmax Sto-1 Evp Typ Fill #
Evp Id Evp % Evp ID
Pre Id Pre % Pre ID
# NA
# NA
                                                      Evp %
# NA
                                                     Pre %
          Reservoir_1
                      Res_1 1 11.3
0.100000.999999. 0. 2
Res 1
                                                                      1
                                                                              10
          Control 0. 100000. 999999.

Res_1 Own_1 50000. 49975. 0.

Res_1 Own_2 50000. 25. 0.
          Res_1 Own_2 succ.
Evap 5001
Precip 5001
                                 100.
100.
                                0.
          Cap/Area/Sep 0. 0.
Cap/Area/Sep 20000. 639.
                                          0.
                                          0.
           Cap/Area/Sep 30000.
                                846.
                                          0.
                                         0.
           Cap/Area/Sep 40000.
                               1061.
           Cap/Area/Sep 50000.
                                1274.
                                          0.
           Cap/Area/Sep 60000.
                                1451.
                                          0.
           Cap/Area/Sep
                       70000.
                                1603.
                                          0.
           Cap/Area/Sep 80000.
                                1742.
                                          0.
           Cap/Area/Sep 90000.
                                1870.
                                          0.
           Cap/Area/Sep 100000.
                                2023.
# Exhibit 2.5
 ex*.rer; Reservoir rights file for StateMod Example 2
 ************
    Card 1 Control format: (al2, a24, al2,4x,fl2.5,i8, f8.0, 8i8)
#
#
            cirsid:
                             Reservoir right ID
     Name
             namer:
                             Reservoir name
                             Reservoir ID associated with this right
     Struct cgoto:
             irtem: Priority or administration Number (smaller is most senoir)

dcrres(k): Storage right (af)

irsrsw(k): Switch 0 = off,1 = on

iresco(2,k): Ownership code (Enter a negative if ownership goes to the first (n) accounts
     Admin # irtem:
     Right
     On/Off
     Owner
              \begin{array}{lll} ityrsr(k)\colon & Reservoir \ type \ 1= \ onstream; \ 2=off \ channel \ served \ by \ a \ carrier \\ n2fill(k)\colon & Right \ type \ 1=First \ fill, \ 2=Second \ fill \\ \end{array} 
     Type
     Fill # n2fill(k):
       Name
                                                   Admin # Right On/Off Owner Type Fill #
                                Struct
#-----eb----eb----eb----eb----eb----eb----eb----eb----eb-----eb-----eb-----
Res_1_WR_1 Reservoir_1
                                Res 1
                                                   15 00000 100000
                                                                         1
                                                                               - 2
                                                                                       1
# Exhibit 2.6
# *.tam; Minimum and Maximum Target content data for StateMod Example 2
                   Oct Nov Dec Jan Feb Mar Apr May
                                                                                    Jul Aug
# Yr TD
                                                                             Jun
                                                                                                      Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
 10/1979 -
               9/1980 ACFT WYR
                                                             0.
1980 Res_1
                                                      0.
                                                                     0.
                0.
                                                                             0.
                                                                                     0.
1980 Res_1
# Exhibit 2.6
# *.tam; Minimum and Maximum Target content data for StateMod Example 2
# Yr ID
                   Oct Nov Dec Jan Feb
                                                                                    Jul
                                                        Mar
                                                                Apr
                                                                     May
                                                                               Jun
                                                                                           Aug
                                                                                                      Sep
Total
```

```
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
  --0
  10/1979 -
                9/1980 ACFT WYR
1980 Res_1
                          0.
                                 0.
                                      0. 0. 0. 0. 0.
                                                                        0.
                                                                                 0.
                   0.
                                                                                        0.
               100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.
1980 Res 1
# Exhibit 2.7
 *.eva; Evaporation data for StateMod Example 2
 ************
#
#
    #
           iery:
     Id
                            station id
            ceva:
     evaprt(1-12,ieva):
                            Evap for month 1-12 (ft)
# Yr TD
                  Oct.
                         Nov
                              Dec
                                              Feb
                                                    Mar
                                                                  Mav
                                                                          Jun
                                                                                Jul
                                       Jan
                                                           Apr
                                                                                       Αιια
                                                                                               Sep
Total
#
  10/1979 -
                9/1980 AF/M WYR
1980 5001
                 0.00 0.00
                               0.00
                                      0.00
                                             0.00
                                                    0.01
                                                          0.13
                                                                  0.11
                                                                         0.26 0.15 0.12
                                                                                              0.10
EVAP
# Exhibit 2.8
# *.opr; operating rules file for Statemod Example 2
      This file lists the operating rules used in model simulation
#
              GUIDE TO COLUMN ENTRIES
#
#
     _____
                 ID number of operating rule that is used to separate operating rule output in *.xop file
       TD
                Name of operating rule - used for descriptive purposes only
       Name
       Admin#
                Administration number used to determine priority of operational water rights relative to other
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
                Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
       # Str
StateMod program the number of entries on next line)
                1 for ON and 0 for OFF
       On/Off
                Destination of operating rule whose demand is to be met by simulating the operating rule
#
       Dest. ID
       Dest Ac
                Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
       Soul TD
                ID number of primary source of water under which water right is being diverted in operating rule -
typically a water right, reservoir, or Plan structure
                Account of Soul - typically 1 for a diversion structure and account number for reservoir source
       Soul Ac
       Sou2 ID
#
                 ID of Plan where reusable storage water or reusable ditch credits is accounted
                Percentage of Plan supplies available for operation
#
       Sou2 Ac
                Rule type corresponding with definitions in Chapter 4 of StateMod documentation
#
       Type
       ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
                'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
      Div Type
credits to Dest1
                 'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
       OprLoss Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
StateMod documentation, Section 4.13)
                Capacity limit for carrier structures different from capacity in .dds file (used to represent
      T.imit
constricted conveyance capacity for winter deliveries to reservoirs)
       Comments Description of rule type
                                                 Admin# # Str On/Off Dest Id
                                                                             Dest Ac Soul Id
# ID
          Name
                              NA
                                                                                                  Sou1
---e-b-----eb-----exb------exb------exb-----exb-----
                                             10.00000 0. 1 0 0 Res_1
on 0 0 0 9999 Reservoir Release to Target
Opr_1 Opr_Res_1_to_Target
                        9 NA
                                      Diversion
0 0
                  Ω
# Exhibit 2.9
# *.out; Output request file for StateMod Example 2
# Type (e.g. Diversion, StreamGage, Reservoir, InstreamFlow, Well or All)
A11
# Parameter (e.g. Total_Supply, Sim_EOM, River_Outflow or All)
A11
# ID Name Type and Print Code (0=no, 1=yes);
# Note: id = All prints all
      id = -999 = stop
      default is to turn on all stream gages (FLO)
All
```

```
Exist. Diver. 3/Inflow
Dem 3
Dem 4
         Exist. Diver. 4
                               DTV
         Exist. Diver. 5/Inflow
Dem 5
                               DTV
Res_1
         Exist. Reservoir
                                RES
Dem_2
         Exist. Diver. 2
                               DTV
Riv_50
         Confluence
                                OTH
         Exist. Diver. 1
Dem 1
                               DTV
ISF
         Top Instream Flow
                                ISF
                                      1
ISF.01
         Bottom Instream Flow
                               ISF
-999
 *.xwb
           Water Budget
  STATEMOD
  StateMod Operating Rule Example - ex2.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
# StateMod ... 9/15/ 8
# Run date: 9/15/ 8
Monthly
                 9/15/ 8 9:17: 7
                         Water Budget ACFT
                                                   From
           Stream
                                 From/To
                                           From
                                                             Total
                                                                              From River
      Reservoir Reservoir
                                                 To
Well
                         Stream
                                Reservoir
                                                     SoilM
Well Reservoir Reservoir Science Scilm
Year Mo Inflow Return GWStorage SoilM
Depletion Evaporation Seepage Outflow Change
                                                    Plan Inflow
                                          SoilM
                                                                      Divert
                                                                                by Well
                                                   SoilM
                                                             Change
Total
                      CU
                              Loss
           Delta
                                       Pumping
                                                    Salvage
Outflow
4000.0 1306.7
                                                      0.0 5306.7
                                                                    4666.7
1979 OCT
                                  0.0
                                            0.0
                                                                                             0.0
         0.0 640.0
0.0
                                                      5306.7
0.0
                             0.0
                                       0.0
                                                 0.0
                                                                    0.0 1733.3
                                                                                        0.0
0.0
            4000.0 2675.6
                                                      0.0 6675.6
1979 NOV
                                   0.0
                                             0.0
                                                                       5555.6
                                                                                    0.0
                                                                                              0.0
         0.0 1120.0
0.0
0.0
                             0.0
                                       0.0
                                                 0.0
                                                      6675.6
                                                                    0.0 2177.8
                                                                                        0.0
0.0
           .0
4000.0 3291.9
                                                      0.0 7291.9
1979 DEC
                                   0.0
                                             0.0
                                                                       5851.9
                                                                                    0.0
                                                                                              0.0
         0.0 1440.0
                                                        7291.9
                                                                    0.0 2325.9
0.0
                             0.0
                                       0.0
                                                 0.0
                                                                                        0.0
         0.0
            4000.0 3550.6
                                                      0.0 7550.6
1980 JAN
                                   0.0
                                             0.0
                                                                       5950.6
                                                                                    0.0
                                                                                              0.0
                                                       7550.6
         0.0 1600.0
0.0
                             0.0
                                       0.0
                                                 0.0
                                                                    0.0 2375.3
                                                                                        0.0
         0.0
0.0
           .0
4000.0 3583.5
                                                      0.0 7583.5
1980 FEB
                                   0.0
                                             0.0
                                                                       5983.5
                                                                                    0.0
                                                                                              0.0
         0.0 1600.0
0.0
                                                        7583.5
0.0
                             0.0
                                                                    0.0 2391.8
                                       0.0
                                                 0.0
                                                                                        0.0
            )
4000.0 3594.5
                                                      0.0 7594.5
1980 MAR
                                             0.0
                                                                       5994.5
                                                                                    0.0
                                   0.0
                                                                                              0.0
                                                       7594.5
25.3
          0.0 1600.0 -25.3
                                                                     0.0 2422.5
                                        0.0
                                                  0.0
                                                                                         0.0
         0.0
0.0
            )
4000.0 3598.2
                                                      0.0 7598.2
1980 APR
                                             0.0
                                                                       5998.2
                                                                                              0.0
         4000.0 3550.2
0.0 1600.0 -328.4
                                   0.0
                                                                                    0.0
                                                       7598.2
                                                                      0.0 2727.5
328.4
                                        0.0
                                                  0.0
                                                                                          0.0
0.0
           0
20000.0
3724.5
                                                      0.0 23724.5
1980 MAY
                                   0.0
                                             0.0
                                                                       6500.0
                                                                                    0.0
                                                                                              0.0
           0.0 5224.5 11700.8
299.2
                                                      23724.5
                                                                      0.0 2949.2
                                        0.0
                                                  0.0
                                                                                          0.0
0.0
         0.0
         20000.0 3850.0
                                                                      6500.0
                                                      0.0 23850.0
1980 JUN
                                             0.0
                                                                                              0.0
                                                      23850.0
           0.0 5350.0 11195.2
804.8
                                                                      0.0 3454.8
                                        0.0
                                                  0.0
                                                                                          0.0
                                                                       6000.0
0 0
         0 0
            )
4000.0 3725.0
                                                      0.0 7725.0
1980 JUL
                                   0.0
                                             0.0
                                                                                    0.0
                                                                                              0.0
                                                      7725.0
           0.0 1725.0 -487.4
487.4
                                        0.0
                                                  0.0
                                                                      0.0 2887.4
                                                                                          0.0
0.0
         0.0
            4000.0 3600.0
                                                      0.0 7600.0
1980 AUG
                                   0.0
                                             0.0
                                                                       6000.0
                                                                                    0.0
                                                                                              0.0
           0.0 1600.0 -388.4
                                                      7600.0
388.3
                                        0.0
                                                  0.0
                                                                      0.0 2788.3
                                                                                          0.0
0.0
         0.0
           0
4000.0 3600.0
                                                          7600.0
1980 SEP
                                                                       6000 0
                                                      0.0
                                                                                   0 0
                                                                                              0 0
                                  0 0
                                             0 0
                                                       7600.0
           0.0 1600.0 -322.5
                                                                      0.0 2722.5
322.5
                                        0.0
                                                  0.0
                                                                                          0.0
         0.0
0.0
                                                     0.0 120100.5
           80000.0
                    40100.5
                                                                       71000.9
1980 Tot.
         80000.0 40100.5 0.0 0.0
0.0 25099.5 21344.1 0.0
                                  0.0
                                            0.0
                                                                                   0.0
                                                                                             0.0
                                                                       0.0 30956.4
                                                   0.0 120100.5
                                                                                          0 0
2655.9
0.0
                        Water Budget ACFT
                               From/To
                                                   From
           Stream
                                           From
                                                             Total
                                                                               From River
      Reservoir Reservoir Stream Reservoir
                                                 To SoilM
Year Mo Inflow Return GWStorage
Depletion Evaporation Seepage Outflow C
                                          SoilM
                                                    Plan Inflow
                                                                      Divert
                                                                                bv Well
                                       Change
                                                  SoilM
                                                           Change
Total
                      CU
            Delta
                               Loss
                                       Pumping
                                                    Salvage
```

Ave OCT 4000.0 1306.7 0.0 0.0 0.0 5306.7 4666.7 0.0 0.0 0.0 0.0 Ave OCT 4000.0 1306.7 0.0

0.0

0.0	
Ave DEC 4000.0 3291.9 0.0 0.0 0.0 7291.9 5851.9 0.0 0.0 0.0 0.0 1440.0 0.0 0.0 0.0 7291.9 0.0 2325.9 0.0 0.0 0.0 0.0 0.0 0.0 7550.6 5950.6 0.0 0.0 0.0 0.0 0.0 0.0 7550.6 0.0 2375.3 0.0 0.0 0.0 0.0 0.0 7583.5 5983.5 0.0 0.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0	0 0
Ave DEC 4000.0 3291.9 0.0 0.0 0.0 7291.9 5851.9 0.0 0.0 0.0 0.0 1440.0 0.0 0.0 0.0 7291.9 0.0 2325.9 0.0 0.0 0.0 0.0 0.0 0.0 7550.6 5950.6 0.0 0.0 0.0 0.0 0.0 0.0 7550.6 0.0 2375.3 0.0 0.0 0.0 0.0 0.0 7583.5 5983.5 0.0 0.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0	J. U
Ave DEC 4000.0 3291.9 0.0 0.0 0.0 7291.9 5851.9 0.0 0.0 0.0 0.0 7291.9 5851.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
0.0 0.0 1440.0 0.0 0.0 0.0 0.0 7291.9 0.0 2325.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0 0
0.0	J. U
Ave JAN 4000.0 3550.6 0.0 0.0 0.0 7550.6 5950.6 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 7550.6 0.0 2375.3 0.0 Ave FEB 4000.0 3583.5 0.0 0.0 0.0 7583.5 5983.5 0.0 0.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0	
0.0 0.0 1600.0 0.0 0.0 0.0 7550.6 0.0 2375.3 0.0 0.0 Ave FEB 4000.0 3583.5 0.0 0.0 0.0 7583.5 5983.5 0.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0
0.0 0.0 Ave FEB 4000.0 3583.5 0.0 0.0 0.0 7583.5 5983.5 0.0 (0.0 0.0 1600.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0 (0.0 0.0 0.0	J. U
Ave FEB 4000.0 3583.5 0.0 0.0 0.0 7583.5 5983.5 0.0 (0.0 0.0 1600.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0 (0.0 0.0 0.0 0.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0 (
0.0 0.0 1600.0 0.0 0.0 0.0 7583.5 0.0 2391.8 0.0 0.0 0.0	0 0
0.0	J. U
Ave MAR 4000.0 3594.5 0.0 0.0 0.0 7594.5 5994.5 0.0 (25.3 0.0 1600.0 -25.3 0.0 0.0 7594.5 0.0 2422.5 0.0	
25.3 0.0 1600.0 -25.3 0.0 0.0 7594.5 0.0 2422.5 0.0	0 0
25.5 0.0 1000.0 -25.5 0.0 0.0 /594.5 0.0 2422.5 0.0	J. U
0.0 0.0	
Ave APR 4000.0 3598.2 0.0 0.0 0.0 7598.2 5998.2 0.0	n n
AVE AFR 400.0 3390.2 0.0 0.0 0.0 7598.2 0.0 2727.5 0.0	
328.4 0.0 1000.0 -328.4 0.0 0.0 7378.2 0.0 2727.3 0.0	
Ave MAY 20000.0 3724.5 0.0 0.0 0.0 23724.5 6500.0 0.0	n n
299.2 0.0 5224.5 11700.8 0.0 0.0 23724.5 0.0 2949.2 0.0	J. U
259.2 0.0 5224.3 11700.8 0.0 0.0 23724.3 0.0 2549.2 0.0	
Ave JUN 20000.0 3850.0 0.0 0.0 0.0 23850.0 6500.0 0.0 (n n
804.8 0.0 5350.0 11195.2 0.0 0.0 23850.0 0.0 3454.8 0.0	
0.0 0.0	
Ave JUL 4000.0 3725.0 0.0 0.0 0.0 7725.0 6000.0 0.0	n n
487.4 0.0 1725.0 -487.4 0.0 0.0 7725.0 0.0 2887.4 0.0	,.0
0.0 0.0	
Ave AUG 4000.0 3600.0 0.0 0.0 0.0 7600.0 6000.0 0.0	ი ი
388.3 0.0 1600.0 -388.4 0.0 0.0 7600.0 0.0 2788.3 0.0	
0.0 0.0	
Ave SEP 4000 0 3600 0 0 0 0 0 7600 0 6000 0 0 0	ი ი
Ave SEP 4000.0 3600.0 0.0 0.0 0.0 7600.0 6000.0 0.0 322.5 0.0 1600.0 -322.5 0.0 0.0 7600.0 0.0 2722.5 0.0	
0.0 0.0	
Ave Tot 80000.0 40100.5 0.0 0.0 0.0 120100.5 71000.9 0.0 2655.9 0.0 25099.5 21344.1 0.0 0.0 120100.5 0.0 30956.4 0.0	0.0
2655.9 0.0 25099.5 21344.1 0.0 0.0 120100.5 0.0 30956.4 0.0	
0.0 0.0	
0.0 (6)	
71000.9	

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency

+ max (Resevoir Evaporation (Evap), 0.0). (2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

(4) Salvage is not part of the Stream Water Balance.

It is the portion of well pumping that does not impact the stream $% \left(1\right) =\left(1\right) \left(1\right) \left$

(5) From Plan is water from a reuse plan.

(6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:

0. af/yr for Diverted to Storage. 1 2

0. af/yr for a Diversion Carrier. 3

 ${\tt O.}$ af/yr for a Reservior Carrier. 4

 $\ensuremath{\text{0.}}$ af/yr for a Plan Carrier.

0. af/yr Total

0. af/yr Total

```
*.xwr
             Water rights list sorted by basin rank
   STATEMOD
   StateMod Operating Rule Example - ex2.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
# Run date:
                    9/15/ 8 9:17: 4
# Time Step:
                    Monthly
```

8

*.xwr; Water Right Information Number of rights =

#

#

#

```
Where:
  1. Rank
                    = Water right basin rank
                     = Water right type
  2. Type
                    1=Instream,
                    2=Reservoir,
#
                    3=Diversion,
                    4=Power,
                    5=Operational,
#
                    6=Well,
  3. Admin #
                    = Administration Number
#
                    = On or Off switch
  4. On/Off
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
#
                    1=on
#
                   +n=begin in year n
#
                   -n=stop in year n
                    = Primary structure for this right
#
  5. Str Id #1
                    = Secondary structure for this right (-1=N/A)\# 7. Amount
#
  6. Str Id #2
                                                                                      = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                    = Water right name
                    = Primary structure for this right
 9. Str Name #1
# 10. Str Name #2
                    = Secondary structure for this right (-1=N/A)
                                       Admin # On/Off Str ID #1
  Rank ID
                                                                     Str ID #2
                                                                                       Amount Right Name
                         Type
                          Str Name #2
Str Name #1
#
    (1) (2)
                           (3)
                                           (4)
                                                   (5) (6)
                                                                     (7)
                                                                                            (8) (9)
(10)
                           (11)
#
                             3
                                       2.00000
                                                                                      100.000 c M&I Demand _1
      1 Dem 1 WR 1
                                                     1 Dem 1
                                                                     -1
Municipal Demand _1
      2 Dem 2 WR 1
                             3
                                       6.00000
                                                     1 Dem 2
                                                                                       60.000 c Irrigation Demand _2
                                                                     -1
Irrigation Demand 2
      3 Dem 3 WR 1
                             3
                                       7.00000
                                                     1 Dem 3
                                                                     -1
                                                                                      100,000 c Trrigation Demand 3
Irrigation Demand _3
      4 ISF_WR_1
                                       9.00000
                                                                                       65.500 c Instream Flow 1
                             1
                                                     1 ISF
                                                                     -1
Instream Demand
      5 Dem_4_WR_1
                             3
                                      10.00000
                                                     0 Dem 4
                                                                                      100.000 c Irrigation Demand 4
                                                                     -1
Irrigation Demand \_4
      6 Opr_1
                           109
                                      10.00000
                                                     1 -1
                                                                     -1
                                                                                       -1.000 x Opr_Res_1_to_Target
      7 Res_1_WR_1
                                                                     -1
                                                                                   100000.000 a Reservoir 1
                             2
                                      15.00000
                                                     1 Res 1
Reservoir 1
     8 Dem 5 WR 1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                     -1
                                                                                      100.000 c Irrigation Demand _5
Irrigation Demand _5
 *.xdd
             Diversion Summary
#
   STATEMOD
   StateMod Operating Rule Example - ex2.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
                     9/15/ 8 9:17: 1
# Run date:
 Time Step:
                    Monthly
  Diversion Summary ACFT
    STATEMOD
    StateMod Operating Rule Example - ex2.* data set
PAGE NO
         1
   STRUCTURE ID (0 = total) : Dem_3
                                                   - 1
   STRUCTURE ACCT (0 = total): 0
   STRUCTURE NAME
RIVER LOCATION - FROM
                            : Irrigation Demand _3
                             : Dem_3
                                         Exist. Diver. 3/Inflow
   RIVER LOCATION - TO
                             : Dem 3
                                             Exist. Diver. 3/Inflow
   STRUCTURE DATA
                                    #
                                                    af@30
                                                              af@31
                                           cfs
     Diversion Capacity
                                   1
                                          5000
                                                  297525
                                                            307442
                                           100.
                                                    5950.
                                                              6149.
     Diversion Rights
                              :
                                    1
     Well Capacity
                              :
                                    1
                                             0.
                                                       0.
                                                                0.
     Well Rights
                                    Ω
                                                       Ω
                                                                 Ω
                                             Ω
```

Structu	re River		=======	===== =:	=======	======	:======	====	From	======	.======	=====
Exchang	e From Total	Total	CU	To	Total		Upst:	rm				
ID	ID	Year	Mo Total	CU P	riorty St	orage E	xc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short CU	SoilM	Return	Loss	Infl	OW				
	Station In/					ion Bal						
Reach Gain	Return Well Flow Deplete G	From/To		River	River		Control					
Gain Dem 3	Dem 3		OCT 1000.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 10		500.0 0.0	0.0	0.0	0.0		1000.0	0.0	0.0	0.0	1000.0
0.0	0.0 1000.0	0.0 Dei		100.000		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		NOV 1000.0	500.0	555.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0			222.2 277.8	0.0	277.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
555.6	0.0 444.4	0.0	Dem 1	100.0	00							
Dem_3	Dem_3	1979	DEC 1000.0	500.0	851.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 851.9 1	48.1	74.1 425.9	0.0	425.9	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
851.9	0.0 148.1	0.0	Dem_1	100.0	00							
Dem_3	Dem_3		JAN 1000.0	500.0	950.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		49.4	24.7 475.3	0.0	475.3	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
950.6	0.0 49.4		Dem_1	100.0								
Dem_3	Dem_3		FEB 1000.0	500.0	983.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 983.5	16.5	8.2 491.8	0.0	491.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
983.5	0.0 16.5		Dem_1	100.0		0 0	0 0	0 0	0 0			0 0
Dem_3	Dem_3		MAR 1000.0	500.0	994.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 994.5 0.0 5.5	5.5	2.7 497.3		497.3	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
994.5 Dem 3			Dem_1 APR 1000.0	100.0	998.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	Dem_3 0.0 998.2	1.8	0.9 499.1	0.0	499.1	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
998.2	0.0 998.2		0.9 499.1 Dem 1	100.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		MAY 1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	1197.0		-1.		0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 3	Dem 3	1980	JUN 1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0			-1.								
Dem 3	Dem 3	1980	JUL 1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0	Hgate_Limit	-1.	000							
Dem_3	Dem_3	1980	AUG 1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0		Hgate_Limit	-1.	000							
Dem_3	Dem_3		SEP 1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0	Dem_1	100.	000							

Dem_3 Dem_3 1980 TOT 12000.0 6000.0 10334.2 0.0 0.0 10334.2 1665.8 832.9 5167.1 0.0 5167.1 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 20000.0 0.0 0.0 0.0 0.0 0.0 0.0 20000.0 10334.2 0.0 9665.8 2649.5 NA -1.000

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 STRUCTURE ACCT (0 = total): 0

RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.
		•	٠.	٠.	

Shortage	<u>:</u>		Water	Use									
	Demand From River By									From Carrier	Ву		
Carried			=====		=====		=======		===				
Structur	e Ri	ver		==	======		=======			====	From	==========	=====
Exchange	From	Total	Total	CU		To	Total		Upst	rm			
ID	ID		Year	Mo T	otal	CU Pr	iorty Sto	orage E	Exc_Pln	Loss	Well	Priorty Sto_Exc	Loss
Bypass	SM	Supply	Short	Short	CU	SoilM	Return	Loss	Infl	OW			
	St	ation I	n/Out				Stat	ion Bal	ance				
	Return		From/To		River				Control	Control			
Gain	F.TOM	nebrete	GW Stor	Intlow	Divert	RA Mell	Outflow	F.TOM	Location	Right			

Gain | Dem_4 | 1979 OCT | 500.0 | 250.0 | 0.0 0.0 0.0 0.0 1000.0 0.0 Dem_4 0.0 0.0 0.0

Dem_4		1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	444.4	0.0	138.9	0.0	0.0	583.3
0.0	0.0 583.3	0.0 Dem_1		100.000								
Dem_4	Dem_4	1979 DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0		0.0	0.0	148.1	0.0	351.9	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 JAN	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	49.4	0.0	450.6	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	16.5	0.0	483.5	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	5.5	0.0	494.5	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 APR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	1.8	0.0	498.2	0.0	0.0	500.0
0.0		0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	499.5	0.0	0.0	4499.5
500.0	0.0 3999.5	1197.0 NA		-1.0	00							
Dem_4	Dem_4	1980 JUN	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0	1452.4 NA		-1.0	00							
Dem_4	Dem_4	1980 JUL	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								

Dem_4 0.0 1000.0 500.0 -1.000

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex2.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3 STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME RIVER LOCATION - FROM : Irrigation Demand _5 : Dem_5 Exist. D

Exist. Diver. 5/Inflow Exist. Diver. 5/Inflow : Dem_5 RIVER LOCATION - TO

STRUCTURE DATA cfs af@30 af@31 5000. Diversion Capacity Diversion Rights 297525. 307442. 1 6149. 1 100. 5950. : Well Capacity 0. 0. : 0. 1 Well Rights 0 0. 0. 0.

Shortag	je	Water	Use										
				Deman	d	1	From R	iver By			From	Carrier	By
Carried	l	=====	======	======				===					
Structu	ıre River		==	======					====	From	======		
Exchang	ge From Total	Total	CU		To	Total		Upst	cm				
ID	ID	Year	Mo I	otal	CU Pr	iorty Sto	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Los	s Inflo	WC				
	Station I						ion Ba	lance					
Reach	Return Well	From/To		River		River		Control					
Gain	Flow Deplete				-			Location	_				
Dem_5	Dem_5	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 De	m_1		100.000								
Dem_5	Dem_5	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 De	m_2		60.000								
Dem_5	Dem_5	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 De	m_2		60.000								
Dem_5	Dem_5	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 De	m_2		60.000								

Dem_5	Dem_5	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem 5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0		60000.0	0.0	0.0		60000.0
0.0	0.0 60000.0	0.0 NA	0.0	-1.000	0.0	0.0	0.0	00000.0	0.0	0.0	0.0	00000.0
0.0	0.0 00000.0	U.U NA		-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set PAGE NO. 4

STRUCTURE ID (0 = total) : Res_1 7501

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Reservoir_1

RIVER LOCATION - FROM : Res_1 Exist. Reservoir

RIVER LOCATION - TO : Res_1 Exist. Reservoir

STRUCTURE DATA TRUCTURE DATA : # af

Capacity : 1 100000.

Reservoir Rights : 1 100000. : # af

Shortag	е		Water	Use		_								
					Deman				iver By			From	Carrier	r By
Carried			=====								_			
Structu		River	_						=======		From	======		
	e F	rom Total	Total	CU	_	To	Total		Upst					
ID		ID	Year		otal				Exc_Pln_		Well	Priorty	Sto_Exc	c Loss
Bypass		SM Supply	Short	Short	CU	SoilM	Return	Los	s Infl	OW				
		Station In	ı/Out				Stat	ion Ba	lance					
======	====				=====									
Reach		urn Well	From/To		River		River		Control					
Gain	Flo	w Deplete							Location	_				
Res_1		Res_1	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0		0.0 De			100.000								
Res_1		Res_1	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0		0.0 De	_		60.000								
Res_1		Res_1		DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	_		60.000								
Res_1		Res_1	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	m_2		60.000								
Res_1		Res_1	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	m_2		60.000								
Res_1		Res_1	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	m_2		60.000								
Res_1		Res_1	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	m_2		60.000								
Res_1		Res_1	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
12000.0		0.0 3000	.0 0.	0 Dem_2		60.	000							

Res_1	Res_1	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
12000.0	0.0 3000.0	0.0 Dem_2		60.	000							
Res_1	Res_1	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res 1	Res 1	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0		60000.0	0.0	0.0	0.0		60000.0
24000.0				-1.								

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex2.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2

STRUCTURE 1D (0 = total): Dem_2 4

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _2

RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2

RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

STRUCTURE DATA : # cfs af@30 af@31 297525. 5000. Diversion Capacity 307442. Diversion Rights 3570. 60. : 3689. Well Capacity
Well Rights 0. 0. 0. 1 0 0. 0. 0.

Shortag	e	Water	Use										
	Demand From River By										From	Carrier	Ву
Carried		=====	=====										
Structu				======			=====			From	======		
	e From Total	Total	CU		То	Total		Upst:				a. =	_
ID	ID	Year	Mo	Total		Priorty St	_		Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Shor	rt CU	SoilM	Return	Los	s Inflo	WC				
	Station In						ion Ba						
Reach	Return Well	From/To			River	River		Control					
Gain	Flow Deplete												
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2666.7	333.3	166.7	1333.3	0.0	1333.3	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2666.7	0.0 333.3	0.0	Dem_1	L	100	.000							
Dem_2	Dem_2	1979	NOV	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgate	e_Limit	-1	.000							
Dem_2	Dem_2	1979	DEC	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgate	e_Limit	-1	.000							
Dem_2	Dem_2	1980	JAN	3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e_Limit		.000							
Dem_2	Dem_2		FEB	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0		_	e_Limit		.000							
Dem_2	Dem_2	1980		3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e_Limit		.000							
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0		_	e_Limit		.000							
Dem_2	Dem_2	1980		3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			2000 0		.000	0.0	0.0	0.0	0.0	0 0	0.0	0 0
Dem_2 0.0	Dem_2 0.0 3000.0	1980 0.0		3000.0 1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	0.0
3000.0	0.0 3000.0		NA	1500.0		.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			Limit		.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			Limit		.000	0.0	3000.0	0.0	0.0	0.0	0.0	5000.0
Dem 2	Dem 2	1980		3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e Limit		.000	0.0	5000.0	0.0	0.0	0.0	0.0	2300.0
2000.0	0.0	0.0	11946		_								

Gage Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set

PAGE NO. 6

RIVER LOCATION - FROM : Riv_50 RIVER LOCATION - TO : Riv_50 Confluence Confluence

Shortag		Water Use	Deman				ver By			From	Carrier	Ву
Carried Structu		========							From	======	======	
	e From Total	Total CU		To	Total		Upst:		110			
ID	ID	Year Mo	Total		iorty St	orage F	- I	Loss	Well	Priorty	Sto Exc	Loss
Bypass	SM Supply	Short Sho		SoilM	Return	Loss				1110101	000_2110	2000
	Station In					ion Bal						
Reach	Return Well	From/To Rive		River	River		Control					
Gain	Flow Deplete						Location					
NA	Riv 50	1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0		0.0	0.0		1333.3	0.0	0.0	0.0	0.0	1333.3
0.0	0.0 1333.3	0.0 NA		-1.000								
NA	Riv 50	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0		0.0	0.0	0.0	583.3	0.0	0.0	0.0	0.0	583.3
0.0	0.0 583.3	0.0 NA		-1.000								
NA	Riv 50	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3999.5	0.0	125.0	0.0	0.0	4124.5
0.0		197.0 NA		-1.000								
NA	Riv_50	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	4000.0	0.0	250.0	0.0	0.0	4250.0
0.0		452.4 NA		-1.000								
NA	Riv_50	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	125.0	0.0	0.0	625.0
0.0	0.0 625.0	0.0 NA		-1.000								
NA	Riv_50	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	13916.2	0.0	500.0	0.0	0.0	14416.2
0.0	0.0 14416.2 2	649.5 NA		-1.000								
D	raion Cummant	3 CTT										

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set PAGE NO. 7

STRUCTURE DATA cfs af@30 af@31 5000. 297525. 307442. Diversion Capacity Diversion Rights 100. 5950.

Well Capacity : 1 0. 0. 0. Well Rights : 0 0. 0. 0.

Shortage	Water					From River By				From	Carrier	Dyr
Carried	=====											=
Structure River Exchange From Total	al Total	CU ==	======	To	Total	======	Upst:		From	=======	=====	=====
ID ID	Year	Mo T	otal	CU I	Priorty St		xc_Pln	Loss	Well	Priorty :	Sto_Exc	Loss
Bypass SM Supp	ly Short	Short	CU	SoilM	Return	Loss	Inflo	υM				
Station						ion Bal						
Reach Return Well					River							
Gain Flow Deple							Location 0.0		0.0	0 0	0 0	0.0
Dem_1 Dem_1 0.0 2000.0	0.0	OCT 20	400.0		2000.0 1600.0	0.0	1333.3	0.0	0.0 666.7	0.0	0.0	0.0 2000.0
2000.0 0.0 Dem 1 Dem 1		NA NOV 20	100 0		.000 2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0	0.0		400.0		1600.0	0.0	583.3		1416.7	0.0	0.0	2000.0
2000.0 0.0 Dem_1 Dem_1		NA DEC 20	100 0		.000 2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.0		1500.0	0.0	0.0	2000.0
2000.0 0.0 Dem_1 Dem_1		NA JAN 20	0.00		.000 2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.0		1500.0	0.0	0.0	2000.0
2000.0 0.0 Dem_1 Dem_1		NA FEB 20	0.00		.000 2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 2000.0	0.0	0.0 NA	400.0		1600.0 .000	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
Dem_1 Dem_1		MAR 20	00.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 2000.0 0.0	0.0		400.0		1600.0 .000	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
Dem_1 Dem_1	1980	APR 20		400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 2000.0 0.0	0.0 0.0 0.0	0.0 NA	400.0		1600.0 .000	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
Dem_1 Dem_1	1980	MAY 20		400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 2000.0 0.0 362	0.0 1.5 1197.0		400.0		1600.0 .000	0.0	4124.5	0.0	1500.0	0.0	0.0	5624.5
Dem_1 Dem_1	1980	JUN 20		400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 2000.0 0.0 375	0.0 0.0 1452.4		400.0		1600.0 .000	0.0	4250.0	0.0	1500.0	0.0	0.0	5750.0
Dem_1 Dem_1 0.0 0.0 2000.0		JUL 20	00.0 400.0		2000.0 1600.0	0.0	0.0 625.0	0.0	0.0 1500.0	0.0	0.0	0.0 2125.0
2000.0 0.0 12			400.0		.000	0.0	025.0	0.0	1500.0	0.0	0.0	2125.0
Dem_1 Dem_1 0.0 0.0 2000.0	1980 0.0	AUG 20	00.0 400.0		2000.0 1600.0	0.0	0.0 500.0	0.0	0.0 1500.0	0.0	0.0	0.0 2000.0
2000.0 0.0	0.0	NA		-1	.000							
Dem_1 Dem_1 0.0 0.0 2000.0		SEP 20			2000.0 1600.0	0.0	0.0 500.0	0.0	0.0 1500.0	0.0	0.0	0.0 2000.0
		NA		-1	.000							
					24000.0		0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 24000.0	0.0	0.0 4		0.0	19200.0		14416.2		17083.3	0.0		31499.5
24000.0 0.0 74	99.5 2649.	5 NA		-0	1.000							
Diversion Summary	ACFT											
STATEMOD StateMod Opera	ing Rule E	xample -	ex2.*	data se	et							
PAGE NO. 8	5	-										
STRUCTURE ID (0	= total)	: ISF		500	01							
STRUCTURE ACCT STRUCTURE NAME		: 0 : Instre	am Dema	nd								
RIVER LOCATION	- FROM	: ISF		Top Ins	stream Flo							
RIVER LOCATION	- TO	: ISF.01	=	Bottom	Instream	Flow						
STRUCTURE DATA		: #	С	fs	af@30	af@31						
Diversion Capa		: 1		0.	0.	0.						
Diversion Rigl Well Capacity		: 1		6. 0.	3898.	4027. 0.						
Well Rights		: 0		0.	0.	0.						

Shortage			Water	Use										
					Demai	nd		F	rom Rive	r By			From Carrier	Ву
Carried			======		== =====	=====	===	=======						
Structure	Ri	ver					==				=====	From		=====
Exchange	From	Total	Total	CU		T	'o	Total		Upst	rm			
ID	ID		Year	Mo	Total	CU	Pr	iorty Sto	rage Exc	_Pln	Loss	Well	Priorty Sto_Exc	Loss
Bypass	SM	Supply	Short	Shor	t CU	Soil	M	Return	Loss	Infl	Low			

Station In/Out Station Balance

======											
Reach	Return Well From/To River	River	River	River	Avail	Control	Control				
Gain	Flow Deplete GW Stor Inflo	w Divert	By Well	L Outflow	Flow	Location	Right				
ISF	ISF 1979 OCT	4027.5	0.0	640.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 640.0 3387.5 0.0	0.0	0.0	640.0	0.0	0.0	0.0	640.0	0.0	0.0	640.0
640.0	0.0 640.0 0.0 Hgate_	Limit	-1.00	00							
ISF	ISF 1979 NOV	3897.6	0.0 1	1120.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1120.0 2777.6 0.0	0.0	0.0	1120.0	0.0	0.0	0.0	1120.0	0.0	0.0	1120.0
1120.0	0.0 1120.0 0.0 Hgate	Limit	-1.0	000							
ISF	ISF 1979 DEC		0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1440.0 2587.5 0.0	0.0	0.0	1440.0	0.0	0.0	0.0	1440.0	0.0	0.0	1440.0
1440.0	0.0 1440.0 0.0 Hgate		-1.0								
ISF	ISF 1980 JAN		0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427.5 0.0	0.0		1600.0	0.0	0.0	0.0	1600.0	0.0		1600.0
1600.0	0.0 1600.0 0.0 Hgate		-1.0								
ISF	ISF 1980 FEB		0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2037.7 0.0	0.0		1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0 0.0 Hgate		-1.0		0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
TSF	ISF 1980 MAR		0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427.5 0.0	0.0		1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0 0.0 Hgate		-1.0		0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
TSF	ISF 1980 APR		0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2297.6 0.0	0.0		1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0 0.0 Hgate		-1.0		0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
ISF	ISF 1980 MAY		0.0 4		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5 0.0 0.0	0.0		4027.5	0.0	3624.5	0.0	1600.0	0.0	0.0	5224.5
4027.5	0.0 5224.5 1197.0 NA	0.0	-1.0		0.0	3024.3	0.0	1000.0	0.0	0.0	3224.3
ISF		3897.6	0.0 3		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3897.6 0.0 0.0			3897.6	0.0	3750.0	0.0	1600.0	0.0	0.0	5350.0
3897.6	0.0 5350.0 1452.4 NA	0.0	-1.0		0.0	3/30.0	0.0	1000.0	0.0	0.0	3330.0
ISF	ISF 1980 JUL	4027 E	0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1725.0 2302.5 0.0	0.0		1725.0	0.0	125.0	0.0	1600.0	0.0		1725.0
1725.0	0.0 1725.0 2302.5 0.0 0.0 1725.0 0.0 Hgate		-1.0		0.0	125.0	0.0	1600.0	0.0	0.0	1/25.0
1725.U ISF	ISF 1980 AUG		0.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427.5 0.0	0.0		1600.0	0.0	0.0		1600.0	0.0		1600.0
			-1.0		0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0			0.0 1		0 0	0 0	0 0	0.0	0 0	0.0	0 0
ISF	ISF 1980 SEP 0.0 1600.0 2297.6 0.0		0.0		0.0	0.0	0.0	1600.0	0.0		0.0 1600.0
0.0					0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0 0.0 Hgate										
				450 1		0 0	0 0	2 2		0 0	0.0
ISF		7420.5	0.0 22		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 22450.1 24970.5 0.0		0.0 2		0.0	7499.5	0.0	17600.0	0.0	0.0	25099.5
22450.1	0.0 25099.5 2649.5 NA		-1.	.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set

PAGE NO. 9

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage	e	Water Use										
			Deman	d		From R	iver By			From	Carrier	By
Carried		=========		======			===					
Structu	re River	:		===== ==				=====	From	======		
Exchange	e From Total	Total CU		To	Total		Upst	rm				
ID	ID	Year Mo	Total	CU Pr	iorty St	orage I	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Short	CU	SoilM	Return	Loss	s Infl	OW				
					a		,					
	Station In	n/Out			Stat	ion Bal	Lance					
The second secon			= ======	======	River		Control					
Reach	Return Well	From/To River	River									
Gain		GW Stor Inflo					Location		0 0	0 0	0 0	0 0
Baseflov		1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	640.0	0.0	0.0	0.0	0.0	640.0
0.0	0.0 640.0	0.0 NA		-1.000								
Baseflow		1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1120.0	0.0	0.0	0.0	0.0	1120.0
0.0	0.0 1120.0	0.0 NA		-1.000								
Baseflow	w ISF.01	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
0.0	0.0 1440.0	0.0 NA		-1.000								
Baseflow	w ISF.01	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0	0.0 NA		-1.000								
Baseflow	w ISF.01	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0	0.0 NA		-1.000								

Baseflow	ISF.01	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA			-1.000								
Baseflow	ISF.01	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA			-1.000								
Baseflow	ISF.01	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	5224.5	0.0	0.0	0.0	0.0	5224.5
0.0 0.0		1197.0 NA			-1.000								
Baseflow	ISF.01	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	5350.0	0.0	0.0	0.0	0.0	5350.0
	5350.0	1452.4 NA			-1.000								
Baseflow	ISF.01	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	1725.0	0.0	0.0	0.0	0.0	1725.0
	1725.0	0.0 NA			-1.000								
Baseflow	ISF.01	1980	AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
	1600.0	0.0 NA			-1.000								
Baseflow	ISF.01	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0	1600.0	0.0 NA			-1.000								
Baseflow	ISF.01	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0	0.0	0.0	0.0	0.0		25099.5	0.0	0.0	0.0	0.0	25099.5
0.0 0.0	25099.5	2649.5 NA			-1.000								
#													
#													
# *.xre	Reserv	oir Summar	У										
#													
# STATEMO	D												

StateMod Operating Rule Example - ex2.* data set

Statemod Version: 12.289 Date = 2008/09/12) # Run date: 9/15/ 8 9:17: 1

Run date: 9/15/ o Monthly

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set

PAGE NO. 1

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total
RESERVOIR OWNER : Total
RIVER LOCATION : Exist. Reservoir

STRUCTURE DATA : # af : 1 100000. : 1 100000. Capacity Reservoir Rights

From Storage to Station Balance

						Stati	.OII balai	iice				
				From I	River By			From Car	rier By			
=======	==				Targt_(O BOM	======	=======		=		
		Initial					== ====	=======		== Total	River	River
tal	Seep	& EOM	Stor_n	Decree	River	River	River					
Acc Year	. Mo	Storage	Prior	ity Stora	age Exc_E	Pln Los	s Pri	orty Sto_	Exc Lo	ss Bypass	SM	Supply
ease Evap	Spill	Content	Limit	Limit	Inflow	Release	Dvert					
											0.0	0.0
					3000.0	0.0						
0 1979	NOV	50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	50000.01	0.0000	50000.0	3000.0	0.0	0.0	0.0	3000.0			
0 1979	DEC	50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	50000.01	0.0000	50000.0	3000.0	0.0	0.0	0.0	3000.0			
0 1980) JAN	50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	50000.01	0.0000	50000.0	3000.0	0.0	0.0	0.0	3000.0			
0 1980) FEB	50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	50000.01	0.0000	50000.0	3000.0	0.0	0.0	0.0	3000.0			
0 1980) MAR	50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25.3	0.0	49974.71	0.0000	50000.0	3000.0	0.0	0.0	0.0	3000.0			
0 1980) APR	49974.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
328.4	0.0	49646.41	0.0000	50000.0	3000.0	0.0	0.0	0.0	3000.0			
0 1980) MAY	49646.4	12000.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0
299.2	0.0	61347.21	0.0000	50000.0	15000.0	0.0	12000.0	0.0	3000.0			
0 1980) JUN	61347.2	12000.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0
804.8	0.0	72542.41	0.0000	38000.0	15000.0	0.0	12000.0	0.0	3000.0			
	tal Acc Year ease Evap er flow 0.0 0.1975 0.0 0.1975 0.0 0.1980 0.0 0.1980 25.3 0.1980 328.4 0.1980 299.2 0.1980	Acc Year Mo ease Evap Spill er flow	Tinitial tal Seep & EOM Acc Year Mo Storage ease Evap Spill Content er flow 0 1979 OCT 50000.0 0.0 50000.01 0 1979 NOV 50000.0 0.0 0.0 50000.01 0 1979 DEC 50000.0 0.0 0.0 50000.01 0 1980 JAN 50000.0 0.0 0.0 50000.01 0 1980 FEB 50000.0 0.0 0.0 50000.01 0 1980 FEB 50000.0 0.0 0.0 50000.01 0 1980 MAR 50000.0 25.3 0.0 49974.71 0 1980 APR 49974.7 328.4 0.0 49646.41 0 1980 MAY 49646.4 299.2 0.0 61347.21 0 1980 JUN 61347.2	tal Seep & EOM Stor_n Acc Year Mo Storage Prior: ease Evap Spill Content Limit er flow 0 1979 OCT 50000.0 0.0 0.0 0.0 50000.0100000.0 0.1979 NOV 50000.0 0.0 0.0 0.0 50000.0100000.0 0 1979 DEC 50000.0 0.0 0.0 0.0 50000.0100000.0 0 1980 JAN 50000.0 0.0 0.0 0.0 50000.0100000.0 0 1980 FEB 50000.0 0.0 0 1980 FEB 50000.0 0.0 0 1980 MAR 50000.0 0.0 25.3 0.0 49974.7100000.0 0 1980 APR 49974.7 0.0 328.4 0.0 49646.4100000.0 0 1980 MAY 49646.4 12000.0 299.2 0.0 61347.2100000.0	Initial ====================================	Targt_tal Seep & EOM Stor_n Decree River Acc Year Mo Storage Priority Storage Exc_lease Evap Spill Content Limit Limit Inflow er flow 0 1979 OCT 50000.0 0.0 0.0 0.0 3000.0 0.0 0.0 50000.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	From River By Targt_0 BOM Initial ====================================	From River By Targt_0 BOM ====== Initial ====================================	Targt_0 BOM ===================================	From River By Targt_0 BOM ===================================	From River By Targt_0 BOM ===================================	From River By BoM ===================================

Res_1	0.0	0 1980 487.4		2542.4 2055.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1		0 1980		2055.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	388.3	0.0 7	1666.61	.00000.0	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		0 1980	SEP 7	1666.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	322.5	0.0 7	1344.11	0.0000.0	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		0 1980	TOT 5	0.0000	24000.0	0.0	0.0	0.0	0.0	0.0	0.0	24000.0	0.0	0.0
0.0	0.0	2655.9	0.0 7	1344.1	-1.0	-1.0	60000.0	0.0	24000.0	0.0	36000.0			

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set

PAGE NO. 2

RESERVOIR ID : Res_1 : Reservoir_1 RESERVOIR NAME

RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total

RESERVOIR OWNER : Res_1 Own_1
RIVER LOCATION : Exist. Reservoir

From Obstine Dal

Storage	to							Stati	ion Baland	ce				
						From 1	River By		I	From Car	rier By			
======			==				Targt_	0 BOM	======					
				Initia	1 =====	======						Total	River	River
Carrier	Tota	al	Seep	& EOM	Stor_n	Decree	River	River	River					
Reservo	ir	Acc Year	Mo	Storage	e Prior	ity Stor	age Exc_	Pln Los	ss Prio	rty Sto_	Exc Loss	Bypass	SM	Supply
Short	Rele	ase Evap	Spill	Content	t Limit	Limit	Inflow	Release	Dvert					
River	Rive	r												
by Well	Outf	low												
Res_1		1 1979		49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	50000.0	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1979	NOV	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	50000.0	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1979	DEC	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	50000.0	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	JAN	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	50000.0	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	FEB	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	50000.0	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	MAR	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	25.3	0.0	49949.7	50000.0	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	APR	49949.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	328.2	0.0	49621.5	50025.3	50000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980		49621.5	90.2	0.0	0.0	0.0	0.0	0.0	0.0	90.2	0.0	0.0
0.0	0.0	241.3	0.0	49470.5	50353.6	50000.0	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		1 1980	JUN	49470.5	164.4	0.0	0.0	0.0	0.0	0.0	0.0	164.4	0.0	0.0
0.0	0.0	544.6	0.0	49090.3	38652.8	38000.0	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		1 1980		49090.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	329.9	0.0	48760.4	27457.6	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	AUG	48760.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	262.8	0.0	48497.6	27945.0	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	SEP	48497.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	218.3	0.0	48279.3	28333.4	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980	TOT	49975.0	254.6	0.0	0.0	0.0	0.0	0.0	0.0	254.6	0.0	0.0
0.0	0.0	1950.3	0.0	48279.3	-1.0	-1.0	60000.0	0.0	24000.0	0.0	36000.0			

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex2.* data set

PAGE NO. 3

: Res_1 RESERVOIR NAME : Reservoir_1

RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total RESERVOIR OWNER : Res_1 Own_2 RIVER LOCATION : Exist. Reservoir

Station Balance Storage to From River By From Carrier By Initial ====== Total River River

From

River River 2 1979 OCT by Well Outflow 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0 0 Res_1 25.0 50000.0 50000.0 3000.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 2 1979 NOV 0.0 0.0 0 0 Res_1 25.0 0.0 0.0 3000.0 25.0 50000.0 50000.0 3000.0 0.0 0 0 0 0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0

Res_1		2 1979	DEC			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0		50000.0		3000.0	0.0	0.0	0.0	3000.0			0 0
Res_1		2 1980	JAN	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0		50000.0		3000.0	0.0	0.0	0.0	3000.0			0 0
Res_1		2 1980	FEB	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0		50000.0		3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	MAR	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0		50000.0		3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	APR		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.2	0.0		50025.3		3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	MAY		11909.8	0.0	0.0	0.0	0.0	0.0		11909.8	0.0	0.0
0.0	0.0	57.9	0.0	11876.7	50353.6	50000.0	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		2 1980	JUN	11876.7	11835.6	0.0	0.0	0.0	0.0	0.0	0.0	11835.6	0.0	0.0
0.0	0.0	260.2	0.0	23452.2	38652.8	38000.0	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		2 1980	JUL	23452.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	157.6	0.0	23294.6	27457.6	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	AUG	23294.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	125.5	0.0	23169.0	27945.0	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	SEP	23169.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	104.3	0.0	23064.7	28333.4	26000.0	3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	TOT	25.0	23745.4	0.0	0.0	0.0	0.0	0.0	0.0	23745.4	0.0	0.0
0.0	0.0	705.7	0.0	23064.7	-1.0	-1.0	60000.0	0.0	24000.0	0.0	36000.0	#		
# # *.xop)	Operation	nal R	ight Div	ersion S	ummary								
# STA	TEMOD	Operating	Dul.	Erromple	0350 *	data go	L							
# Sta	rcemoa	Operating	Rule	Example	- exz."	uata se	L							
# State	mod V	ersion: 1	2.28	9 Date =	2008/09	/12)								
# Run d	late:	9	/15/	8 9:17	: 1									
# Time			nthl											
#	L			4										
#														

Operational Right Summary ACFT

	Opr_1 ce 1 = Res_1			= Opr_Re	es_1_to_T = 0	arget	Opr T Year	'ype = On =		in # = r Off =	999	10.00000	
YEAR	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOT
1980	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ΔVC	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0

Example 3

```
*.rsp; response file for Statemod Example 3
      This response file lists the StateMod input files necessary for model simulation
# Type
                                         Name
                                       = ex3.ct1
Control
River Network
                                       = ... ex2 ex2.rin
StreamGage_Station
                                       = ..\ex1\ex1.ris
Stream Base Monthly
                                       = ..\ex1\ex1.rim
Diversion Station
                                       = ... ex1 ex1.dds
Diversion_Right
                                       = ... ex1 ex1.ddr
Diversion_Demand_Monthly
                                       = ... ex1 ex1.ddm
Reservoir_Station
                                       = ..\ex2\ex2.res
                                       = ..\ex2\ex2.rer
Reservoir_Right
Reservoir_Target_Monthly
                                       = ... ex2 ex2.tam
Evaporation Monthly
                                       = ..\ex2\ex2.eva
Instreamflow Station
                                       = ... ex1 ex1.ifs
Instreamflow Right
                                       = ... \exp[-x_1.ifr]
Instreamflow Demand AverageMonthly
                                       = ..\ex1\ex1.ifa
Operational Right
                                       = ex3.opr
DelayTable Monthly
                                       = ..\ex1\ex1.urm
                                       = ..\ex2\ex2.out
OutputRequest
# Exhibit 3.2
# ex*.ctl; Control file for StateMod Example 3
 STATEMOD
 StateMod Operating Rule Example - ex3.* data set
           : iystr STARTING YEAR OF SIMULATION
                      ENDING YEAR OF SIMULATION
            : iyend
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
           : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      Ω
           : numpre NO. OF PRECIPITATION STATIONS
      Ω
           : numeva NO. OF EVAPORATION STATIONS
           : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
     -1
           : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
 1.9835
            : rfacto DIVISOR FOR STREAM FLOW DATA;
                                                      ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1 9835
                                                       ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
 1.0
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
 1.0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
 WYR
            : cyrl
                    Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
            : ichk
                      detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall Detailed call water right ID (not used if icall = 0)
            : iday
                      Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : iwell Switch for well operations See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isirip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n : isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
      0
            Number of significant digits behind decimal point in output files
# Exhibit 3 3
 *.opr; operating rules file for Statemod Example 3
      This file lists the operating rules used in model simulation
                    GUIDE TO COLUMN ENTRIES
      _____
          TD
                       ID number of operating rule that is used to separate operating rule output in *.xop file
          Name
                     Name of operating rule - used for descriptive purposes only
          Admin#
                    Administration number used to determine priority of operational water rights relative to other
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
```

```
StateMod program the number of entries on next line)
         On/Off
                   1 for ON and 0 for OFF
         Dest ID
                   Destination of operating rule whose demand is to be met by simulating the operating rule
#
                   Account at destination to be met by operating rule - typically 1 for a diversion structure and
         Dest Ac
account number for reservoir destination
        Soul ID ID number of primary source of water under which water right is being diverted in operating rule
 typically a water right, reservoir, or Plan structure
         Soul Ac Account of Soul - typically 1 for a diversion structure and account number for reservoir source
         Sou2 ID
                   ID of Plan where reusable storage water or reusable ditch credits is accounted
                   Percentage of Plan supplies available for operation
         Sou2 Ac
#
         Type
                   Rule type corresponding with definitions in Chapter 4 of StateMod documentation
         ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
         Div Type
                   'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                      'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
                  Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
         OprLoss
StateMod documentation, Section 4.13)
         Limit Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
        Comments Description of rule type
# ID
                                                   Admin# # Str On/Off Dest Id
                               NA
                                                                                  Dest Ac Soul Id
          Name
Ac Sou2 Id Sou2 Ac Type ReusePlan Div Type
                                                   OprLoss Limit Comments
# -----eb----eb----eb----eb----eb----eb----eb----eb-----eb-----eb-----eb-----eb-----
---e-b-----eb-----exb------exb-----exb-----exb-----
                                                                    1 0
                                                10.00000
                                                              0.
          Opr_Res_1_to_Target
                                                                                         0 Res 1
0pr_1
                                                                       0 9999 Reservoir Release to Target
0 0
                  0
                        9 NA
                                        Diversion
                                                         0
                                                               0
Opr_2
          Opr_Res_1_to_Dem_2
                                                   9.00000
                                                              0.
                                                                      1 Dem_2
                                                                                         1 Res 1
                                                                      0 9999 Reservoir Release to
                                                        0
                                                               0
1 0
                 0
                         2 NA
                                        NA
Diversion
                                                               1 ISF
0 0
Opr_3
          Opr_Res_1_to_ISF
                                                   9.00000
                                                             0.
                                                                                         1 Res 1
                                                         Ω
                                                                     0 9999 Reservoir Release to
                        1 NA
                                        NA
2. 0
                  0
Instream Flow
#
 *.xwb
            Water Budget
#
   STATEMOD
#
  StateMod Operating Rule Example - ex3.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
# Run date: 9/15/ 8 9:37: 8
# Time Step:
                  Monthly
#
                           Water Budget ACFT
                                    From/To
                                                From
                                                                   Total
                                                                                       From River
             Stream
                                                         From
       Reservoir Reservoir Stream
                                                      То
                                    Reservoir
                                                          SoilM
           Inflow
                                 GWStorage
                                              SoilM
                                                          Plan
                                                                   Inflow
Year
     Mο
                      Return
                                                                             Divert
                                                                                        bv Well
                                           Change
Depletion Evaporation
                      Seepage
                               Outflow
                                                        SoilM
                                                                   Change
Total
             Delta CU
                                          Pumping 50417.8
                                 Loss
Outflow
______
            4000.0 1417.8
1979 OCT
                                     0.0
                                                                             5111.1
                                                                                           0.0
                                                                                                      0.0
          0.0 665.0
                                                            5417 8
                                                                           0.0 1955.6
                            -358 3
                                                                                                0 0
0 0
                                           0 0
                                                     0 0
0.0
          0.0
             4000.0
                                                           0.0
1979 NOV
                        2823.7
                                      0.0
                                                 0.0
                                                                    6823.7
                                                                              5703.7
                                                                                            0.0
                                                                                                       0.0
0.0
          0.0 1120.0
                                0.0
                                           0.0
                                                     0.0
                                                            6823.7
                                                                           0.0 2251.9
                                                                                                0.0
0.0
          0.0
             4000.0 3341.2
                                                            0.0 7341.2
1979 DEC
                                                                              5901.2
                                      0.0
                                                 0.0
                                                                                            0.0
                                                                                                       0.0
          0.0 1440.0
                                                             7341.2
                                                                           0.0
                                0.0
                                           0.0
                                                     0.0
                                                                                   2350.6
                                                                                                0.0
0.0
0.0
          0.0
             4000.0
                                                            0.0
1980 JAN
                        3567.1
                                      0.0
                                                 0.0
                                                                   7567.1
                                                                              5967.1
                                                                                            0.0
                                                                                                       0.0
               1600.0
                                                                           0.0
          0.0
                                0 0
                                           0 0
                                                     0 0
                                                             7567 1
                                                                                   2383 5
                                                                                                0 0
0 0
0.0
          0.0
             4000.0
                                                            0.0 7589.0
1980 FEB
                        3589.0
                                      0.0
                                                 0.0
                                                                              5989.0
                                                                                            0.0
                                                                                                       0.0
          0.0 1600.0
                                0.0
                                                     0.0
                                                             7589.0
                                                                           0.0 2394.5
                                                                                                0.0
0.0
                                           0.0
0.0
          0.0
            .U
4000.0 3596.3
                                                            0.0 7596.3
1980 MAR
                                      0 0
                                                 0.0
                                                                              5996.3
                                                                                            0 0
                                                                                                       0 0
25.1
                                                              7596.3
           0.0 1600.0
                                            0.0
                                                      0.0
                                                                            0.0 2423.3
                               -25.1
                                                                                                 0.0
0 0
          0.0
             )
4000.0 3598.8
                                                                7598.8
                                                                              5998.8
1980 APR
                                                 0.0
                                                            0.0
                                      0.0
                                                                                            0.0
                                                                                                       0.0
                                                            7598.8
            0.0 1600.0 -326.4
                                            0 0
                                                       0 0
                                                                             0.0 2725.8
326 4
                                                                                                  0 0
0.0
          0.0
            20000.0 3724.7
                                                           0.0
1980 MAY
                                      0.0
                                                 0.0
                                                                   23724.7
                                                                              6500.0
                                                                                            0.0
                                                                                                       0.0
            0.0 5224.7 11702.2
                                                            23724.7
                                            0 0
                                                       0 0
                                                                             0.0 2947.8
                                                                                                  0 0
297 8
0.0
          0.0
            20000.0 3850.0
1980 JIIN
                                                                 23850.0
                                                           0.0
                                                                              6500 0
                                                                                                      0 0
                                      0 0
                                                 0 0
                                                                                            0 0
```

0.0

0.0 23850.0

0.0 3452.1

0.0

Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling

Str

0.0 5350.0 11197.9

802.1

0 0

0 0

1980 JUL	4000.0 3725.0	0.0	0.0	0.	0 7725.0	6000.0	0.0 0.0
481.2 0.0	4000.0 3725.0 0.0 4027.5 -278	33.7	0.0	0.0	7725.0	0.0 2881.2	0.0
	0.0 4000.0 3600.0	0.0	0.0	0.	0 7600.0	6000.0	0.0 0.0
375.0	0.0 4027.5 -280		0.0		7600.0		0.0
0.0 1980 SEP	0.0 4000.0 3600.0	0.0	0.0	0.	0 7600.0	6000.0	0.0 0.0
304.3	0.0 3897.6 -260			0.0	7600.0		0.0
0.0	0.0						
1000 Tot	90000 0 40433 6	0 0	0.0	0	0 120422 6	71667 2	0.0 0.0
2611.9	80000.0 40433.6 0.0 32152.3 140	0.0	0.0	0.0	120433.7	0.0 31245.5	5 0.0
0.0	0.0 Water E						
		2					
	Stream ervoir Reservoir Stream	From/T	o From	From	Total	From	ı River
Well Res	ervoir Reservoir Stream	n Reserv	oır e SoilM	TO Dlan	SO1IM Inflow	Divert by	, Well
Depletion	Inflow Return Evaporation Seepage Ou	itflow	Change	SoilM	Change	Divere Dy	WCII
Total							
Outflow	Delta CU						
ATTO OCT	4000.0 1390.0	0 0	0 0	0	0 5390 0	5000 0	0.0
0.0	0.0 665.0 -275.	.0	0.0	0.0	Ave OCT	4000.0 1417.	.8 0.0
0.0	0.0 5417.8 5111.	1	0.0	0.0	0.0	0.0 665.0	-358.3
0.0 Ave NOV	0.0 665.0 -275. 0.0 5417.8 5111. 0.0 5417.8 0. 4000.0 2823.7	0.0	0.0	0.0	0.0	5703.7	0.0 0.0
0.0	0.0 1120.0 0.	. 0	0.0	0.0	6823.7	0.0 2251.9	0.0
0.0 Ave DEC	0.0 4000.0 3341.2	0 0	0.0	0	0 72/1 2	5901.2	0.0 0.0
0.0	0.0 1440.0 0.		0.0		7341.2	0.0 2350.6	0.0
0.0	0.0 4000.0 3567.1	0 0	0.0	0	0 7567 1	F067 1	0.0 0.0
Ave JAN 0.0	0.0 1600.0 0.	0.0	0.0		0 7567.1 7567.1	5967.1 0.0 2383.5	0.0 0.0
0.0	0.0						
Ave FEB 0.0	4000.0 3589.0 0.0 1600.0 0.		0.0		0 7589.0 7589.0	5989.0 0.0 2394.5	0.0 0.0
0.0	0.0						
Ave MAR 25.1	4000.0 3596.3 0.0 1600.0 -25					5996.3 0.0 2423.3	0.0 0.0
0.0	0.0			0.0	7330.3	0.0 2425.5	
Ave APR	4000.0 3598.8		0.0			5998.8 0.0 2725.8	
326.4 0.0	0.0 1600.0 -32 0.0	40.4	0.0	0.0	7598.8	0.0 2/25.8	0.0
	20000.0 3724.7	0.0	0.0			6500.0	
297.8 0.0	0.0 5224.7 1170 0.0	12.2	0.0	0.0	23724.7	0.0 2947.8	0.0
	20000.0 3850.0	0.0	0.0			6500.0	
802.1 0.0	0.0 5350.0 1119 0.0	97.9	0.0	0.0	23850.0	0.0 3452.1	0.0
Ave JUL	4000.0 3725.0					6000.0	
481.2 0.0	0.0 4027.5 -278 0.0					0.0 2881.2	
Ave AUG	4000.0 3600.0 0.0 4027.5 -280	0.0	0.0	0.	0 7600.0	6000.0	0.0 0.0
375.0	0.0 4027.5 -280	2.5	0.0	0.0	7600.0	0.0 2775.0	0.0
0.0 Ave SEP	0.0 4000 0 3600 0	0 0	0 0	0	0 7600 0	6000 0	0 0 0 0
304.3	4000.0 3600.0 0.0 3897.6 -260	1.8	0.0	0.0	7600.0	0.0 2704.3	0.0
0.0	0.0						
Avo Tot	90000 0 40432 6	0.0	0 0	^	0 120422 6	71667 2	0.0
2611.9	80000.0 40433.6 0.0 32152.3 140	0.0	0.0	0.0	120433.7	0.0 31245.5	5 0.0
0.0	0.0						

0.0 (6)

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency + max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

(4) Salvage is not part of the Stream Water Balance.

It is the portion of well pumping that does not impact the stream

(5) From Plan is water from a reuse plan.

- (6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:
 - 0. af/yr for Diverted to Storage. 1
 - 2 $\mbox{O.}$ af/yr for a Diversion Carrier.

```
0. af/yr Total
#
  *.xwr
              Water rights list sorted by basin rank
#
#
   STATEMOD
   StateMod Operating Rule Example - ex3.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
                      9/15/ 8 9:37:12
# Run date:
 Time Step:
                     Monthly
  *.xwr; Water Right Information
        Number of rights =
                                    10
#
#
 Where:
                     = Water right basin rank
  1. Rank
  2. Type
                     = Water right type
                    1=Instream.
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
                    5=Operational,
                    6=Well.
   3. Admin #
                    = Administration Number
   4. On/Off
                     = On or Off switch
#
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
                   1=on
                   +n=begin in year n
                   -n=stop in year n
  5. Str Id #1
                     = Primary structure for this right
 6. Str Id #2
                     = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                       = Decreed capacity & unit
(c=CFS, a=AF)
                     = Water right name
# 8. Right Name
                     = Primary structure for this right
 9. Str Name #1
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
   Rank ID
                                       Admin # On/Off Str ID #1
                                                                     Str ID #2
                                                                                         Amount Right Name
                          Type
                          Str Name #2
Str Name #1
#
    (1) (2)
                           (3)
                                           (4)
                                                   (5) (6)
                                                                     (7)
                                                                                            (8) (9)
(10)
                           (11)
#
      1 Dem_1_WR_1
                                                     1 Dem_1
                                                                                      100.000 c M&I Demand _1
                             3
                                       2.00000
                                                                     -1
Municipal Demand _1
                             3
                                       6 00000
                                                                     - 1
                                                                                       60.000 c Irrigation Demand _2
      2 Dem 2 WR 1
                                                     1 Dem 2
Irrigation Demand _2
      3 Dem 3 WR 1
                             3
                                       7.00000
                                                     1 Dem 3
                                                                     -1
                                                                                      100.000 c Irrigation Demand 3
Irrigation Demand _3
                                       9.00000
                                                                                       65.500 c Instream Flow 1
      4 ISF_WR_1
                            1
                                                     1 ISF
                                                                     -1
Instream Demand
      5 Opr_2
                           102
                                       9 00000
                                                                     - 1
                                                                                       -1.000 x Opr_Res_1_to_Dem_2
                                                     1 Dem 2
Irrigation Demand _2
                           101
                                       9 00000
                                                     1 TSF
                                                                     - 1
                                                                                       -1.000 x Opr_Res_1_to_ISF
      6 Opr_3
Instream Demand
      7 Dem_4_WR_1
                            3
                                      10.00000
                                                                                      100.000 c Irrigation Demand _4
                                                     1 Dem_4
                                                                     -1
Irrigation Demand _4
                           109
                                      10.00000
                                                                                       -1.000 x Opr_Res_1_to_Target
       8 Opr_1
                                                     1 -1
                                                                     -1
      9 Res_1_WR_1
                                                                                   100000.000 a Reservoir_1
                             2
                                      15.00000
                                                     1 Res 1
                                                                     -1
Reservoir 1
     10 Dem 5 WR 1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                     -1
                                                                                      100.000 c Irrigation Demand _5
Irrigation Demand 5
 *.xdd
#
              Diversion Summary
   STATEMOD
```

0. af/yr for a Reservior Carrier.
0. af/yr for a Plan Carrier.

StateMod Operating Rule Example - ex3.* data set

Statemod Version: 12.289 Date = 2008/09/12)
Run date: 9/15/8 9:37: 2
Time Step: Monthly

Diversion Summary ACFT STATEMOD

_

StateMod Operating Rule Example - ex3.* data set PAGE NO. 1

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	е	Demai	nd		From Ri	iver By			From	Carrier	Ву		
Carried		=====						===					
Structu				=======		======			=====	From	======		=====
	e From Total	Total	CU		To	Total		Upst					
ID	ID	Year	Мо	Total		riorty St			Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Sho	rt CU	SoilM	Return	Loss	s Infl	OW				
	Charlian To	/O 1				Q1 - 1	·						
	Station In						ion Bal						
Reach	Return Well	From/To			River	River		Control					
Gain	Flow Deplete	- ,		ow Diver									
Dem 3	Dem 3	1979		1000.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		.000.0	500.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
0.0	0.0 1000.0	0.0 De		0.0	100.000	0.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem_3	Dem 3	1979	_	1000.0	500.0	703.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		296.3	148.1	351.9	0.0	351.9	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
703.7	0.0 296.3	0.0	Dem 1		100.0	00							
Dem 3	Dem 3	1979	DEC	1000.0	500.0	901.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 901.2	98.8	49.4	450.6	0.0	450.6	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
901.2	0.0 98.8	0.0	Dem_1		100.0	00							
Dem_3	Dem_3	1980	JAN	1000.0	500.0	967.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 967.1	32.9	16.5	483.5	0.0	483.5	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
967.1	0.0 32.9	0.0	Dem_1		100.0	00							
Dem_3	Dem_3	1980	FEB	1000.0	500.0	989.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 989.0	11.0	5.5	494.5	0.0	494.5	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
989.0	0.0 11.0		Dem_1		100.0								
Dem_3	Dem_3	1980		1000.0	500.0	996.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 996.3	3.7	1.8	498.2	0.0	498.2	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
996.3	0.0 3.7		Dem_1		100.0								
Dem_3	Dem_3	1980		1000.0	500.0	998.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 998.8	1.2	0.6	499.4	0.0	499.4	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
998.8	0.0 1.2		Dem_1		100.0								
Dem_3	Dem_3			1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0		0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0 Dem 3	0.0 4000.0 Dem 3			1000 0	-1. 500.0		0.0	0.0	0 0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	1000.0 500.0	0.0	500.0	0.0	0.0	0.0 5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0			500.0	-1.		0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
Dem 3	Dem 3			1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0			e Limit	-1.		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3			1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0			e_Limit	-1.		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3	1980		1000.0	500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0		1000.0	0.0	0.0		1000.0
1000.0	0.0 0.0		Dem_		100.		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem_3	Dem_3	1980			5000.0 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 10556.2 1			5278.1		5278.1	0.0	0.0	20000.0	0.0	0.0	0.0	20000.0
10556.2	0.0 9443.	8 2649	.6 NA		-1	.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

STRUCTURE ID (0 = total) : Dem_4

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	re	Water Us	e Dema	and		From Ri	iver By			From	Carrier	Ву
Carried		=======	=====			=====	===					
	re River					======			From	======		=====
_	e From Total				Total		Upst				~	_
ID	ID		o Total		riorty St				Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short S	hort CU	SOIIM	Return	Loss	s Infl	OW				
	Station I	n/Out			Q+a+	ion Bal	lance					
======	:========	,	=======================================									
Reach	Return Well	From/To Ri		r River			Control					
Gain	Flow Deplete	GW Stor In	flow Dive	rt By Wel	l Outflow	Flow	Location	Right				
Dem 4	Dem_4	1979 00			111.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 111.1	388.9 194	.4 55.6	0.0	55.6	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
111.1	0.0 888.9	0.0 ISE	1	100.0	00							
Dem_4	Dem_4	1979 NO	V 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250	.0 0.0	0.0	0.0	0.0	296.3	0.0	175.9	0.0	0.0	472.2
0.0	0.0 472.2	0.0 ISF		100.000								
Dem_4	Dem_4	1979 DE	C 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250	.0 0.0	0.0	0.0	0.0	98.8	0.0	401.2	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 J <i>I</i>			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250	.0 0.0		0.0	0.0	32.9	0.0	467.1	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 FI			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250	.0 0.0		0.0	0.0	11.0	0.0	489.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 MZ			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250		0.0	0.0	0.0	3.7	0.0	496.3	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 AI			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250		0.0	0.0	0.0	1.2	0.0	498.8	0.0	0.0	500.0
0.0 Dem 4	0.0 500.0 Dem 4	0.0 Dem_1 1980 MA		100.000 250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0		1.0 250.0		250.0		4000.0	0.0	499.7	0.0	0.0	4499.7
500.0	0.0 3999.7			-1.0		0.0	4000.0	0.0	499.7	0.0	0.0	4499.7
Dem 4	Dem 4	1980 JU		250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0		.0 250.0		250.0		4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0			-1.0		0.0	1000.0	0.0	300.0	0.0	0.0	1500.0
Dem_4	Dem 4	1980 JU		250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250			0.0	0.0		0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000		0.0	0.0	0.0	300.0	0.0	0.0	500.0
Dem_4	Dem_4	1980 AU	rg 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250			0.0	0.0		0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 SE	P 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	.0 0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
 Dem_4	Dem 4	1980 TO	T 5500.0	2750 0	1111.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1111.1						9443.8		5028.1	0.0		14471.9
1111.1	0.0 13360.			-1.		0.0	, , , , , ,	0.0	3020.1	0.0	0.0	/
			-	±.								
Dive	rsion Summary	ACFT										

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _5
RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow
RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA : # cfs af@30 af@31 : 1 5000. 297525. 307442. : 1 100. 5950. 6149. : 1 0. 0. 0. Diversion Capacity Diversion Rights Well Capacity

Well Rights : 0 0. 0. 0.

Shortage Water Use Demand From River By From Carrier By TIOM RIVEL B Carried Total CU To Total Upstrm
Year Mo Total CU Priorty Storage Exc_Pln Loss
Short Short CU SoilM Return Loss Inflow River Structure From ______ Exchange From Total Well ID ID Bypass SM Supply TD ID Priorty Sto Exc Loss Station In/Out Station Balance ______ Reach Return Well From/To River River River River Avail Control Control Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Gain Dem_5 1979 OCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 3000.0 0.0 0.0 3000.0 0.0 ISF 100.000 0.0 1979 NOV 0.0 0.0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 3000.0 0.0 Dem 2 60.000 0.0 1979 DEC 0.0 0.0 Dem_5 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 Dem_2 60.000 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 JAN 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_2 0.0 0.0 3000.0 60.000 0.0 Dem 5 Dem_5 1980 FEB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 3000.0 0.0 0.0 3000.0 0.0 Dem 2 60.000 0.0 0.0 0.0 Dem_5 1980 MAR 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 Dem 2 60.000 0.0 0.0 Dem_5 0.0 0.0 0.0 0.0 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 3000.0 0.0 0.0 3000.0 0.0 Dem_2 0.0 60.000 0.0 0.0 0.0 0.0 Dem_5 Dem 5 1980 MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15000.0 0.0 0.0 15000.0 0.0 0.0 0.0 Dem_2 60.000 0.0 0.0 15000.0 0.0 0.0 0.0 1980 JUN 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 Dem_5 0.0 0.0 0.0 0.0 0.0 15000.0 0.0 15000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_2 0.0 15000.0 60.000 0.0 1980 JUL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 Dem_5 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ISF 0.0 3000.0 100.000 0.0 1980 AUG 0.0 0.0 0.0 0.0 Dem_5 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 ISF 100.000 0.0 0.0 0.0 0.0 0.0 0.0 1980 SEP 0.0 0.0 0.0 0.0 Dem_5 0.0 Dem 5 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ISF 0.0 3000.0 100.000 0.0 0.0 0.0 Dem_5 0.0 0.0 1980 TOT 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 60000.0 0.0 0.0 0.0 0.0 0.0 60000.0 0.0 0.0 60000.0 -1.000 Diversion Summary ACFT STATEMOD StateMod Operating Rule Example - ex3.* data set PAGE NO. 4 STRUCTURE ID (0 = total) : Res_1 7501 STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Reservoir_1
RIVER LOCATION - FROM : Res_1 Exist. Reservoir : Res_1 RIVER LOCATION - TO Exist. Reservoir

 STRUCTURE DATA
 :
 #
 af

 Capacity
 :
 1
 100000.

 Reservoir Rights
 :
 1
 100000.

Shortage Water Use Demand From River By From Carrier By Demand From River Carried Total CU To Total Upstrm
Year Mo Total CU Priorty Storage Exc_Pln Loss
Short Short CU SoilM Return Loss Inflow Structure River ============== From Exchange From Total ID TD Well Priorty Sto Exc Loss SM Supply

Station In/Out Station Balance

Res_1 Res_1 1979 OCT 0.0 0	Reach Gain	Return Well Flow Deplete G	From/To River	River Divert		River		Control				
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 - 0.0 3000.0 - 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 0</td> <td>0 0</td> <td>0 0 0 0</td>										0 0	0 0	0 0 0 0
100.00												
Res_1 Res_1 1979 NOV				0.0			0.0	5000.0	0.0	0.0	0.0	0.0 3000.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				0 0			0 0	0 0	0 0	0 0	0 0	0 0 0 0
O. O. O. O. O. D. DEC O. O. O. O. O. O. O. O												
Res_1 Res_1 1979 DEC 0.0				0.0		0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0				0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
O.O												
Res_1 Res_1 1980 JAN 0.0 <t< td=""><td></td><td></td><td></td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>3000.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0 3000.0</td></t<>				0.0		0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0				0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
O. O. O. O. Dem_2 Co. O. O. O. O. O. O. O.		_										
Res_1				0.0		0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0				0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
O. O. O. O. Dem_2 O. O. Dem_2 O. O. O. O. O. O. O. O		_										
Res_1 Res_1 1980 MAR 0.0 <t< td=""><td></td><td></td><td></td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>3000.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0 3000.0</td></t<>				0.0		0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0				0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0 3000.0 0.0 Dem_2 60.000 Res_1 Res_1 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		_										
Res_1 Res_1 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0.0		0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0				0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0 3000.0 0.0 Dem_2 60.000 Res_1 Res_1 1980 MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_	_										
Res_1 Res_1 1980 MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0.0		0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0				0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
12000.0	_											
Res_1 Res_1 1980 JUN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							0.0	15000.0	0.0	0.0	0.0	0.0 13000.0
0.0							0 0	0 0	0 0	0 0	0 0	0 0 0 0
12000.0												
Res_1 Res_1 1980 JUL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							0.0	15000.0	0.0	0.0	0.0	0.0 15000.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							0 0	0 0	0 0	0 0	0 0	0 0 0 0
2302.5												
Res_1 Res_1 1980 AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0.0			0.0	3000.0	0.0	0.0	0.0	0.0 3000.0 -
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				0 0			0 0	0 0	0 0	0 0	0 0	0 0 0 0
2427.5												
Res_1 Res_1 1980 SEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							0.0	3000.0	0.0	0.0	0.0	0.0 3000.0 -
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							0 0	0 0	0 0	0 0	0 0	0 0 0 0
2297.6 0.0 5297.6 0.0 ISF 100.000 Res_1 Res_1 1980 TOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
Res_1 Res_1 1980 TOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0.0			0.0	3000.0	0.0	0.0	0.0	0.0 3000.0 -
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60000.0 0.0 0.0 0.0 0.0 60000.0			0.0 ISF									
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60000.0 0.0 0.0 0.0 0.0 60000.0												
	Res_1	Res_1	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
	0.0	0.0 0.0	0.0 0.0	0.0			0.0	60000.0	0.0	0.0	0.0	0.0 60000.0
16614.1 0.0 43385.9 0.0 NA -1.000	16614.1	0.0 43385.9	0.0 NA		-1.	000						

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2 4

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _2

RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2

RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. 307442. 60. 3570. 3689. : 1 : 1 Diversion Capacity Diversion Rights Well Capacity Well Rights 0. 0. 0. 0. 1

Shortage	Water Use						
	Dema	ınd	From River By		From	Carrier	Ву
Carried	=======================================		=======				
Structure River	======	=======================================		=== From	======		
Exchange From Total	Total CU	To Total	Upstrm	ı			
ID ID	Year Mo Total	-	torage Exc_Pln L	loss Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short CU	SoilM Return	Loss Inflow	I			
Station Ir	n/Out	Sta	tion Balance				
Reach Return Well	From/To River River	River River	Avail Control C	Control			
Gain Flow Deplete	GW Stor Inflow Diver	t By Well Outflo	w Flow Location R	Right			
Dem_2 Dem_2	1979 OCT 3000.0	1500.0 2666.7	333.3 0.0	0.0 0.0	0.0	0.0	0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3358.3	0.0 0.0	0.0	0.0	3358.3
3000.0 0.0 358.3	0.0 Dem_1	100.000					
Dem_2 Dem_2	1979 NOV 3000.0	1500.0 3000.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0	0.0 0.0	0.0	0.0	3000.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					
Dem_2 Dem_2	1979 DEC 3000.0	1500.0 3000.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0	0.0 0.0	0.0	0.0	3000.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					

Dem_2	Dem_2	1980 JAN 3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_2	Dem_2	1980 FEB 3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_2	Dem_2	1980 MAR 3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_2	Dem_2	1980 APR 3000.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_2	Dem_2	1980 MAY 3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 NA	-1.000							
Dem_2	Dem_2		1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 NA	-1.000							
Dem_2	Dem_2		1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0		0.0	5302.5	0.0	0.0	0.0	0.0	5302.5
3000.0	0.0 2302.5	0.0 Hgate_Limit	-1.000							
Dem_2	Dem_2	1980 AUG 3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0		0.0	5427.5	0.0	0.0	0.0	0.0	5427.5
3000.0		0.0 Hgate_Limit								
Dem_2	Dem_2		1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0	5297.6	0.0	0.0	0.0	0.0	5297.6
3000.0	0.0 2297.6	0.0 Hgate_Limit	-1.000							
	·									
										
_	Dem_2		18000.0 35666.7	333.3	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 36000.0	0.0 0.0 18000.0		0.0 4	43385.9	0.0	0.0	0.0	0.0	43385.9
36000.0	0.0 7385.9	0.0 NA	-1.000							

Gage Summary ACFT

STATEMOD
StateMod Operating Rule Example - ex3.* data set

PAGE NO. 6

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

Shortag	je	Water Use									Q	_
Carried	1	==========	Deman				iver By			From	Carrier	ВУ
Structu	=						=== ========		From			
	ge From Total	Total CU		To	Total		 Upst		FIOIII			
TD	TD		otal		iorty St	orage 1		Loss	Well	Priorty	Sto Exc	Logg
Bypass	SM Supply	Short Short	CU	SoilM	Return	Los	_		METT	PIIOICY	SCO_EAC	LUSS
Буразз	on suppry	DIIOI C DIIOI C	CO	DOTIM	Reculii	пов	3 11111	OW				
	Station Ir	n/Out.			Stat	ion Bal	lance					
======		-, 	=====					======				
Reach	Return Well	From/To River	River	River	River	Avail	Control	Control				
Gain	Flow Deplete	GW Stor Inflow	Divert	By Well	Outflow	Flow	Location	Right				
NA	Riv_50	1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1247.2	0.0	27.8	0.0	0.0	1275.0
0.0	0.0 1275.0	0.0 NA		-1.000								
NA	Riv_50	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	472.2	0.0	27.8	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA		-1.000								
NA	Riv_50	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3999.7	0.0	125.0	0.0	0.0	4124.7
0.0	0.0 4124.7 1	1197.2 NA		-1.000								
NA	Riv_50	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	4000.0	0.0	250.0	0.0	0.0	4250.0
0.0	0.0 4250.0 1	1452.4 NA		-1.000								
NA	Riv_50	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	2802.5	0.0	125.0	0.0	0.0	2927.5
0.0	0.0 2927.5	0.0 NA		-1.000								

NA 0.0	Riv_50 0.0 0.0	1980 AUG 0.0 0.0	0.0	0.0	0.0	0.0	0.0 2927.5	0.0	0.0	0.0	0.0	0.0 2927.5
0.0	0.0 2927.5	0.0 NA		-1.000								
NA	Riv_50	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	2797.6	0.0	0.0	0.0	0.0	2797.6
0.0	0.0 2797.6	0.0 NA		-1.000								
NA	Riv_50	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 21302.3	0.0 0.0 2649.6 NA	0.0	0.0 -1.000	0.0	0.0	20746.7	0.0	555.6	0.0	0.0	21302.3

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 7

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	e	Water	Use	Dema	nd	:	From R	iver By			From	Carrier	By
Carried		=====											2
Structu	re River				=====	=======			=====	From	======		=====
	e From Total	Total	CU		To			Upst					
ID	ID	Year	Mo	Total	CU	Priorty St		Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Sho	rt CU	SoilM	Return	Los	s Infl	.OW				
	Station In/						ion Ba						
Reach		From/To			River			control					
Gain	Flow Deplete G	- ,				ll Outflow							
Dem 1	Dem 1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0		1275.0	0.0	750.0	0.0	0.0	2025.0
2000.0	0.0 25.0	0.0		100.0		.000	0.0	1273.0	0.0	750.0	0.0	0.0	2025.0
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0	0.0	500.0		1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem_1	Dem_1	1979	DEC	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0		0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	JAN	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	FEB	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0			-1	.000							
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem_1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem_1	Dem_1	1980				2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	4124.7	0.0	1500.0	0.0	0.0	5624.7
2000.0	0.0 3624.7			2000		.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_1	Dem_1	1980		2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 5750.0
0.0	0.0 2000.0 0.0 3750.0	0.0	0.0	400.0		1600.0 .000	0.0	4250.0	0.0	1500.0	0.0	0.0	5/50.0
Dem 1	Dem 1	1980		2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0		2927.5	0.0	1500.0	0.0	0.0	4427.5
2000.0	0.0 2427.5	0.0		400.0		.000	0.0	2921.5	0.0	1300.0	0.0	0.0	4427.3
Dem 1	Dem_1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0		2927.5	0.0	1500.0	0.0	0.0	4427.5
2000.0	0.0 2427.5	0.0		100.0		.000	0.0	2527.5	0.0	1300.0	0.0	0.0	1127.5
Dem 1	Dem 1	1980		2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0		2797.6		1500.0	0.0		4297.6
2000.0	0.0 2297.6	0.0				.000							
Dem_1	Dem_1	1980				24000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 24000.0	0.0	0.0	4800.0		19200.0	0.0	21302.3	0.0	17250.0	0.0	0.0	38552.3
24000.0	0.0 14552.3	2649.	6 NA		-	1.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE 1D (0 = total): 1SF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity Diversion Rights	: -	1	0. 66.	0. 3898.	0.
Well Capacity	:	1	0.	3898.	4027.
Well Rights	:	0	0.	0.	0.

Shortag		Water		Deman	d		From R	iver By ===			From	Carrier	Ву
Carried		=====											
				=======						From	======		
	e From Total ID						l Stamaga I			Woll	Darionter	Cto Eva	Toda
ID Propaga	SM Supply	Chort	Chor	+ CTT	COLIM	Dotur	storage i	EXC_PIN	TOSS	метт	PLIOLCA	SCO_EXC	LUSS
Буравь	SM Suppry	SHOLL	SHOT		SOTIM	Ketur.	II LOS	5 1111.1	O W				
	Station In/	Out				St	ation Bal	lance					
======	=======================================												
Reach	Return Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flow Deplete G	W Stor	Inflo	w Divert	By Wel	1 Outfl	ow Flow	Location	Right				
ISF	ISF								0.0	0.0	0.0	0.0	0.0
0.0	0.0 665.0 33 0.0 665.0	62.5	0.0	0.0	0.0	665.0	0.0	25.0	0.0	640.0	0.0	0.0	665.0
665.0	0.0 665.0	0.0	Hgate_	Limit	-1.0	000							
ISF	ISF	1979	NOV	3897.6	0.0	1120.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0	ISF 0.0 1120.0 27 0.0 1120.0	77.6	0.0	0.0	0.0	1120.0	0.0	0.0	0.0	1120.0	0.0	0.0	1120.0
	0.0 1120.0	0.0	Hgate	_Limit	-1.	.000							
ISF	ISF	1979	DEC	4027.5	0.0	1440.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0	0.0 1440.0 25 0.0 1440.0	87.5	0.0	0.0	0.0	1440.0	0.0	0.0	0.0	1440.0	0.0	0.0	1440.0
	0.0 1440.0	0.0	Hgate	_Limit	-1.	.000	0 0		0 0	0 0		0 0	0 0
ISF	ISF	1980	JAN	4027.5	0.0	1600.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0 1600.0	0.0 1600.0 24 0.0 1600.0	27.5	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
ISF	0.0 1600.0 ISF	1000	ндате	_Limit 3637.7	-1.	1600 0	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	1600 0 20	1980	0.0	3037.7	0.0	1600.0	0.0	0.0		1600.0	0.0		1600.0
1600.0	0.0 1600.0 20 0.0 1600.0	3/./ n n	U.U	U.U Timit	_1	1000.0	0.0	0.0	0.0	1600.0	0.0	0.0	1000.0
ISF	ISF	1980	MAD	4027.5	0 0	1600	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0 0 1600 0 24	27 5	0 0	0 0	0.0	1600.0	0.0	0.0		1600.0	0.0		1600.0
1600.0	0.0 1600.0 24 0.0 1600.0	27.J N N	U.U Haste	T.imi+	_1	1000.0	0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
TSF	ISF	1980	APR	3897.6	0 0	1600 0	0 0	0.0	0.0	0.0	0.0	0.0	0.0
	0 0 1600 0 22	97 6	0.0	0.0	0.0	1600.0	0.0	0.0		1600.0	0.0		1600.0
1600.0	0.0 1600.0 22 0.0 1600.0	0.0	Hoate	Limit	-1.	000	0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
ISF	ISF	1980	MAY	4027.5	0 0	4027 5	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0				0.0					0.0		0.0		5224.7
4027.5	0.0 5224.7			0.0	-1.	000	0.0	3021.7	0.0	1000.0	0.0	0.0	555111
ISF	ISF	1980	JUN	3897.6			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3897.6			0.0					0.0	1600.0	0.0	0.0	5350.0
3897.6	0.0 5350.0	1452.4	NA			000							
ISF	ISF	1980	JUL	4027.5	0.0	1725.0	2302.5	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5	0.0	0.0	0.0	0.0	4027.5	0.0	2427.5	0.0	1600.0	0.0	0.0	4027.5
4027.5	0.0 4027.5	0.0	Hgate	_Limit	-1.	.000							
ISF	ISF	1980	AUG	4027.5	0.0	1600.0	2427.5	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5	0.0	0.0	0.0	0.0	4027.5	0.0	2427.5	0.0	1600.0	0.0	0.0	4027.5
4027.5	0.0 4027.5 0.0 4027.5	0.0	Hgate	_Limit	-1.	000							
TSF	TSF	1980	SED	3897 6	0 0	1600 0	2297 6	0 0	0 0	0 0	0.0	0.0	0.0
0.0	0.0 3897.6	0.0	0.0	0.0	0.0	3897.6	0.0	2297.6	0.0	1600.0	0.0	0.0	3897.6
3897.6	0.0 3897.6 0.0 3897.6	0.0	Hgate	_Limit	-1.	.000							
		1000			0 0 0	0.450.3	7050 6	0 0	0 0	0 0	0 0	0 0	0 0
	ISF												
0.0	0.0 29502.6 179				0.0		0.0	1455∠.3	0.0	1/600.0	0.0	0.0	34154.3
∠950∠.6	0.0 32152.3	∠049.	AVI O		-]								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 9

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage Water Use

Demand From River By From Carrier By

g		Maddi	050	Deman		1		_			From	Carrier	Ву
Carried Structure			==	======						From	======		
Exchange ID Bypass	From Tota ID SM Suppl	l Total Year y Short	Mo T	otal	CU Pr	iorty St		Upst: Exc_Pln Inflo	Loss	Well	Priorty	Sto_Exc	Loss
21	Station	_					ion Bal						
		.=======				======	======						
	eturn Well low Deplet							Control Location					
Baseflow	ISF.01	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 665.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	665.0	0.0	0.0	0.0	0.0	665.0
Baseflow		1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 1120.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1120.0	0.0	0.0	0.0	0.0	1120.0
Baseflow		1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 1440.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
Baseflow		1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 1600.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow		1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 1600.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow		1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 1600.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow		1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 1600.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow	ISF.01	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 5224.7	0.0 1197.2 NA	0.0	0.0	0.0 -1.000	0.0	0.0	5224.7	0.0	0.0	0.0	0.0	5224.
Baseflow	ISF.01	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0	0.0 1452.4 NA	0.0	0.0	0.0 -1.000	0.0	0.0	5350.0	0.0	0.0	0.0	0.0	5350.0
Baseflow	ISF.01	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 4027.5	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	4027.5	0.0	0.0	0.0	0.0	4027.5
Baseflow	ISF.01	1980	AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 4027.5	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	4027.5	0.0	0.0	0.0	0.0	4027.5
Baseflow	ISF.01	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 3897.6	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	3897.6	0.0	0.0	0.0	0.0	3897.6
Baseflow	ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0 0.0 .0 32152.3	0.0 2649 6 NA	0.0	0.0	0.0 -1.000	0.0	0.0	32152.3	0.0	0.0	0.0	0.0	32152.3
ŧ	. 0 52152.5	2013.0 1111			1.000								
*.xre	Reserv	roir Summar	v										
#			1										
‡ STATEN ‡ StateN	MOD Mod Operati	ng Rule Ex	ample -	ex3.* d	ata set								
#	_	_	=										
	d Version: e:				2)								
	ep:	Monthly											
# #													
Reservo	oir Summary EMOD	ACF.I.											
State	eMod Operat 1	ing Rule E	xample -	ex3.*	data set								
RESERV	VOIR ID		: Res_1										
RESERV	VOIR NAME		: Reserv										
	VOIR ACCOUN VOIR OWNER			0000.;	where ac	count 0	ıs the	total					
	LOCATION		: Exist.	Reserv	oir								
Gubita	TURE DATA		: #		af								
	acity ervoir Righ	ıts	: 1	10000 10000									

Storage to Station Balance

From

	From River By		From Carrier By			
=======================================	Targt_0	BOM	=======================================			
	Initial ===========	=====	== ====================================	Total	River	River

Carrier Total Seep & EOM Stor_n Decree River River River Reservoir Acc Year Mo Storage Priority Storage Exc_Pln Loss Priorty Sto_Exc Loss Bypass SM Supp
Reservoir Acc Year Mo Storage Priority Storage Exc_Pln Loss Priorty Sto_Exc Loss Bypass SM Supp
Short Release Evap Spill Content Limit Limit Inflow Release Dvert
River River
by Well Outflow
Res_1 0 1979 OCT 50000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 358.3 0.0 0.0 49641.7100000.0 50000.0 3000.0 358.3 0.0 0.0 3358.3
Res_1 0 1979 NOV 49641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 49641.7100000.0 50358.3 3000.0 0.0 0.0 0.0 3000.0
Res_1 0 1979 DEC 49641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 49641.7100000.0 50358.3 3000.0 0.0 0.0 0.0 3000.0
Res_1 0 1980 JAN 49641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 49641.7100000.0 50358.3 3000.0 0.0 0.0 3000.0
Res_1 0 1980 FEB 49641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 49641.7100000.0 50358.3 3000.0 0.0 0.0 0.0 3000.0
Res_1 0 1980 MAR 49641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 25.1 0.0 49616.6100000.0 50358.3 3000.0 0.0 0.0 0.0 3000.0
Res_1 0 1980 APR 49616.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 326.4 0.0 49290.2100000.0 50358.3 3000.0 0.0 0.0 0.0 3000.0
Res_1 0 1980 MAY 49290.2 12000.0 0.0 0.0 0.0 0.0 0.0 0.0 12000.0 0.0 0.
0.0 0.0 297.8 0.0 60992.4100000.0 50358.3 15000.0 0.0 12000.0 0.0 3000.0
Res_1 0 1980 JUN 60992.4 12000.0 0.0 0.0 0.0 0.0 0.0 12000.0 0.0 0.0
0.0 0.0 802.1 0.0 72190.3100000.0 38358.3 15000.0 0.0 12000.0 0.0 3000.0
Res_1 0 1980 JUL 72190.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2302.5 0.
$0.0 \ \ 2302.5 \ \ \ 481.2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Res_1 0 1980 AUG 69406.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$0.0 \\ 2427.5 \\ 375.0 \\ 0.0 \\ 66604.1100000.0 \\ 26358.3 \\ 3000.0 \\ 2427.5 \\ 0.0 \\ 0.0 \\ 5427.5$
Res 1 0 1980 SEP 66604.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2297.6 0.
0.0^{-} 2297.6 304.3 0.0 64002.3100000.0 26358.3 3000.0 2297.6 0.0 0.0 5297.6
Res_1 0 1980 TOT 50000.0 24000.0 0.0 0.0 0.0 0.0 0.0 0.0 24000.0 7385.9 0.
0.0 7385.9 2611.9 0.0 64002.3 -1.0 -1.0 60000.0 7385.9 24000.0 0.0 43385.9

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 2

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_1
RIVER LOCATION : Exist. Reservoir

													Fr	om
Stora	ge to								ion Balance					
						From I	River By				rier By			
=====	======		==				Targt_0		=======					
					_					=====		Total	River	River
	er Tot			& EOM		Decree			River					
Reser		Acc Year				-	_		ss Priort	y Sto_	Exc Loss	Bypass	s SM	Supply
Short	Rele	ase Evap S	Spill	Content	t Limit	Limit	Inflow	Release	Dvert					
	er Rive													
-	ll Outf			40000		0 0	0 0	0 0	0 0		0 0		222 2	0 0
Res_1	222 2	1 1979		49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	333.3	0.0
0.0	333.3	0.0		49641.7			3000.0	358.3	0.0	0.0	3358.3			0 0
Res_1		1 1979		49641.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		49641.7			3000.0	0.0	0.0	0.0	3000.0			0 0
Res_1		1 1979		49641.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		49641.7			3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980		49641.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		49641.7			3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980		49641.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		49641.7			3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980		49641.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	25.1		49616.6			3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980		49616.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	326.4	0.0	49290.1		50358.3	3000.0	0.0	0.0	0.0	3000.0			
Res_1		1 1980		49290.1	168.0	0.0	0.0	0.0	0.0	0.0	0.0	168.0	0.0	0.0
0.0	0.0	240.3	0.0	49217.8	50709.9	50358.3	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		1 1980		49217.8	240.6	0.0	0.0	0.0	0.0	0.0	0.0	240.6	0.0	0.0
0.0	0.0	543.5	0.0	48915.0	39007.6	38358.3	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		1 1980	JUL	48915.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	336.8	0.0	48578.2	27809.7	26358.3	3000.0	2302.5	0.0	0.0	5302.5			
Res_1		1 1980	AUG	48578.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	272.0	0.0	48306.2	30593.4	26358.3	3000.0	2427.5	0.0	0.0	5427.5			
Res_1		1 1980	SEP	48306.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	228.6	0.0	48077.6	33395.9	26358.3	3000.0	2297.6	0.0	0.0	5297.6			
Res 1		1 1980		49975.0	408.6	0.0	0.0	0.0	0.0	0.0	0.0	408.6	333.3	0.0
0.0	333.3	1972.6		48077.6	-1.0		60000.0		24000.0		43385.9	400.0	333.3	0.0
0.0	233.3	19/4.0	0.0	10U//.0	-1.0	-1.0	00000.0	1303.9	24000.0	0.0	13303.9			

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 3

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_2
RIVER LOCATION : Exist. Reservoir

From

												Fr	om
Storage to					F	D.: D		ion Balance		D			
========	.=======	==			FLOIII	River By Tarqt (========		rrier By			
											= Total	River	Rive
Carrier Tot		_								Ton Ton	- D	. GM	G 1
Reservoir Short Rele									y Sto_	_EXC Los	s sypass	S SM	Suppi
JIOI C RCIC	abe Evap	OPILI	COIICCIIC	DIMILO	DIMIC	IIIIIOW	ncrease	DVCIC					
River Rive													
oy Well Outf			05.0								0 0	05.0	
Res_1	2 1979 0.0	0.0			0.0	0.0	0.0 358.3			0.0 3358.3	0.0	25.0	0.0
Res_1				0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		50358.3	50358.3	3000.0	0.0	0.0	0.0	3000.0			
les_1				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 des_1	0.0 2 1980	0.0		0.0	0.0	3000.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0
0.0		0.0				3000.0	0.0	0.0			0.0	0.0	0.0
Res_1		FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0				3000.0	0.0	0.0		3000.0	0 0		
tes_1	2 1980 0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0 3000.0	0.0	0.0	0.0
Res_1				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0				3000.0	0.0	0.0		3000.0			
les_1	2 1980			11832.0	0.0	0.0	0.0	0.0	0.0		11832.0	0.0	0.0
0.0 0.0	57.5		11774.5 11774.5		0.0	15000.0	0.0	12000.0	0.0	3000.0	11759.4	0.0	0.0
Res_1 0.0 0.0			23275.3					12000.0		3000.0	11/39.4	0.0	0.0
Res_1	2 1980			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2302.5	0.0
2302.5			20828.4					0.0		5302.5			
	2 1980			0.0	0.0		0.0		0.0		0.0	2427.5	0.0
0.0 2427.5 Res_1			18297.9 18297.9	0.0			0.0		0.0	5427.5	0.0	2297.6	0.0
0.0 2297.6										5297.6			
				22501 4							22501 4	7050 6	0 0
Res_1 0.0 7052.6	639 2	0 0	15924 6	-1 0	0.0 -1.0	0.0	0.0 7385 9	24000 0	0.0	0.0	23591.4	7052.6	0.0
1.0 7032.0	033.2	0.0	13721.0	1.0	1.0	00000.0	7505.5	21000.0	0.0	13303.5π			
<u> </u>													
dox.*	Operatio	nal R	ight Dive	rsion Su	ummary								
‡ 													
STATEMOI StateMod		Rule	Example	- ex3.*	data se	t							
#													
# Statemod V					/12)								
Run date: Time Step:				3									
; iime step. ‡	. 14	IOIICIII	Y										
Operational	. Right Sun	mary	ACFT										
ID = Opr 1		Nar	me = Opr	Res 1 to	Target	raO	Type =	9 Adm	in # =	=	10.00000)	
Source 1 =	Res_1	Des	stination	= 0		Yea	ar On =	9 Adm: 0 Yea:	r Off	= 9999	10.00000		
EAR OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOT	
.980 0.0 .VG 0.0		0.0							0.0		0.0	0.0	
.vg 0.0	0.0	0.	0.0	0.0	0.	0 0.0	0.1	0.0	0.0	0.0	0.0	0.0	
Operational	Right Sun	mary	ACFT										
ID = Opr_2	Dog 1		me = Opr_				Type = ar On =		in # =		9.00000)	
Source 1 = YEAR OCT	NOV	DEC	stination JAN	FEB	MAR		MAY		r Off JUL	= 9999 AUG	SEP	TOT	
.980 333.3		0.0							0.0		0.0	333.3	
.VG 333.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	333.3	
Operational	Right Com	marv	ACET										
OPETALIONAL	. AIGHL BUII	шат у	ACLI										
ID = Opr_3		Nar	me = Opr_	Res_1_to	_ISF	Opr	Type =	1 Adm:	in # =	=	9.00000)	
Source 1 =			stination				ar On =		r Off				
ZEAR OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOT	
L980 25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2302.5	5 2427.5	2297.6	7052.6	
23.0	. 0.0	0.1	0.0	0.0	0.			0.0		. 212/.3	2271.0	,002.0	

cdss@state.co.us
Last updated: September 2008

Example 4

```
*.rsp; response file for Statemod Example 4
      This response file lists the StateMod input files necessary for model simulation
# Type
                                      Name
Control
                                    = ex4.ct1
                                     = ..\ex2\ex2.rin
River Network
StreamGage Station
                                    = ..\ex1\ex1.ris
Stream Base Monthly
                                     = ..\ex1\ex1.rim
Diversion Station
                                    = ..\ex1\ex1.dds
Diversion_Right
                                    = ... ex1 ex1.ddr
Diversion_Demand_Monthly
                                     = ... ex1 ex1.ddm
Reservoir_Station
                                    = ..\ex2\ex2.res
                                    = ..\ex2\ex2.rer
Reservoir_Right
Reservoir_Target_Monthly
                                    = ... ex2 ex2.tam
Evaporation Monthly
                                    = ..\ex2\ex2.eva
Instreamflow Station
                                    = ... ex1 ex1.ifs
Instreamflow Right
                                    = ... \exp[-x_1.ifr]
Instreamflow Demand AverageMonthly
                                    = ..\ex1\ex1.ifa
Operational Right
                                    = ex4.opr
DelayTable Monthly
                                    = ..\ex1\ex1.urm
                                    = ..\ex2\ex2.out
OutputRequest
# Exhibit 4.3
# *.opr; operating rules file for Statemod Example 4
      This file lists the operating rules used in model simulation
                   GUIDE TO COLUMN ENTRIES
     _____
         TD
                     ID number of operating rule that is used to separate operating rule output in *.xop file
         Name
                   Name of operating rule - used for descriptive purposes only
                   Administration number used to determine priority of operational water rights relative to other
         Admin#
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
         # Str Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
StateMod program the number of entries on next line)
         On/Off 1 for ON and 0 for OFF
Dest ID Destination of operating rule whose demand is to be met by simulating the operating rule
         Dest Ac
                   Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
                   ID number of primary source of water under which water right is being diverted in operating rule
         Soul ID
 typically a water right, reservoir, or Plan structure
         Soul Ac
                    Account of Soul - typically 1 for a diversion structure and account number for reservoir source
          Sou2 TD
                    ID of Plan where reusable storage water or reusable ditch credits is accounted
          Sou2 Ac Percentage of Plan supplies available for operation
                   Rule type corresponding with definitions in Chapter 4 of StateMod documentation
          Type
          ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
         Div Type 'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                       'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
         OprLoss Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
StateMod documentation, Section 4.13)
        Limit Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
         Comments Description of rule type
                                                    Admin# # Str On/Off Dest Id
          Name
                                                                                   Dest Ac Soul Id
Ac Sou2 Id
---e-b-----eb-----eb-----exb------exb-----exb-----exb-----
                                            10.00000 0. 1 0
version 0 0 0
Opr_1
        Opr_Res_1_to_Target
                                                                                            0 Res 1
                                                                          0 9999 Reservoir Release to Target
                                         Diversion
0 0
                  0
                          9 NA
                                                                 0 1 Dem_2
0 0 9999
                                                               0.
Opr_2
          Opr_Res_1_to_Dem_2
                                                    9.00000
                                                                                           1 Res 1
                                                           Ο
                                                                        0 9999 Reservoir Release to
                                         NΑ
1 0
                                                                  . 1 ISF
Diversion
Opr_3 Opr_Res_1_to_ISF
                                                    9.00000
                                                                0.
                                                                                            1 Res 1
0 1 NA Instream Flow
                                                                         0 9999 Reservoir Release to
                                         NA
                                                                      1 Dem_3
0 99
Opr_4 Opr_Res_1_to_Dem_3
                                                    9.00000
                                                                                            1 Res 1
                                                                          0 9999 Reservoir Release to
                       4 NA
                                                                   0
1 0
                  Ω
                                         NΑ
                                                           Ω
Diversion by Exchange
```

Water Budget

STATEMOD
StateMod Operating Rule Example - ex4.* data set

Statemod Version: 12.29.00 Date = 2008/09/15)
Run date: 9/24/8 12:45:23
Time Step: Monthly
#

Water Budget ACFT

		Water	Budget AC	FT						
Well Re	Stream servoir Reservo	oir Stre	From/T	o From	F: To	rom Total	Fro	m Rive	r	
Year Mo	Inflow	Return	GWStorag	e SoilM	P.	lan Inflow	v Divert b	y Well		
Depletion	Evaporation	Seepage	Outflow	Change	Soil	lM Change				
Total										
	Delta									
1979 OCT	4000.0						6250.0	0.0		0.0
	0.0 665	.0 -121	12.5	0.0	0.0	5702.5	0.0 2525.0		0.0	
0.0	0.0	2100 5	0.0	0.0		0.0 7100 1	5000 0	0 0		0.0
1979 NOV 0.0							6000.0 0.0 2400.0	0.0		0.0
0.0	0.0									
1979 DEC							6000.0	0.0		0.0
0.0	0.0 1440 0.0	. 0	0.0	0.0	0.0	7440.0	0.0 2400.0		0.0	
1980 JAN	4000.0						6000.0			0.0
0.0		. 0	0.0	0.0	0.0	7600.0	0.0 2400.0		0.0	
0.0 1980 FEB	0.0 4000.0	3600.0	0.0	0.0		0.0 7600.0	6000.0	0.0		0.0
0.0	0.0 1600					7600.0				
0.0	0.0	2600 0	0.0	0.0		2600	6000	0 0		0 0
	4000.0 0.0 1600					7600.0	0 6000.0 0.0 2424.7			0.0
0.0	0.0		21.,	0.0	0.0	7000.0	0.0 2121.7		0.0	
1980 APR	4000.0	3600.0	0.0	0.0			6000.0			0.0
320.9 0.0	0.0 160 0.0	00.0 -	-320.9	0.0	0.0	7600.0	0.0 2720.9		0.0	
		3725.0	0.0	0.0		0.0 23725.0	6500.0	0.0		0.0
	20000.0 0.0 52	25.0 11	706.2	0.0	0.0	23725.0	0.0 2943.8	É	0.0	
0.0	0.0	2050 0	0.0	0.0		0.0 23850.0	6500.0	0 0		0 0
794.7	20000.0 0.0 53!	3850.0 50.0 11	205.3	0.0		23850.0				0.0
0.0	0.0									
1980 JUL	4000.0 0.0 402	3725.0	0.0	0.0			6000.0			0.0
477.0 0.0	0.0 40:	27.5 -2	2779.5	0.0	0.0	7725.0	0.0 2877.0		0.0	
1980 AUG	4000.0 0.0 402	3600.0	0.0	0.0		0.0 7600.0	6000.0	0.0		0.0
		27.5 -2	2799.0	0.0	0.0	7600.0	0.0 2771.5	,	0.0	
1000 CED	0.0	3600 0	0 0	0 0		0.0 7600 (6000 0	0 0		0 0
301.3	0.0 389	97.6 -2	2598.9	0.0	0.0	7600.0	0 6000.0 0.0 2701.3	,	0.0	0.0
0.0										
									-	
1980 Tot	80000.0	41225.0	0.0	0.0		0.0 121225.0	73250.0 0.0 32008.	0.0		0.0
2583.9 0.0	0.0 32	357.0	13034.0	0.0	0.0	121225.0	0.0 32008.	9	0.0	
0.0	0.0									
		Water	Budget AC	FT						
	Stream		From/T	o From	ra ra	rom Total	Fro	m Rive	r	
Well Re	servoir Reservo	nir Stre	am Reserv	oir	To	SoilM				
							v Divert b	y Well		
Depletion	Evaporation	Seepage	Outflow	Change	Soi.	IM Change				
Total										
	Delta									
Ave OCT	4000 0	1702 5				====== 0 0 5702 F	6250.0	0 0		0.0
0.0	0.0 665		12.5	0.0	0.0	5702.5	0.0 2525.0	0.0	0.0	0.0
0.0	0.0	2162 -								
Ave NOV 0.0	4000.0 0.0 1324						6000.0 0.0 2400.0	0.0	0.0	0.0
0.0	0.0									
Ave DEC	4000.0	3440.0	0.0	0.0		0.0 7440.0	6000.0	0.0		0.0
0.0	0.0 1440 0.0	. 0	0.0	0.0	0.0	7440.0	0.0 2400.0		0.0	
0.0	5.0									

Ave	JAN	4000.0 0.0 1	3600. 600.0	0.0	0.0	0.0	0.0	0.0	0.0 760	7600.0	6000. 0.0	0 2400.0	0.0	0.0	0.0
0.0		0.0													
Ave	FEB	4000.0	3600.	0	0.0		0.0		0.0	7600.0	6000.	0	0.0		0.0
0.0		0.0 1	600.0	0.0		0.0		0.0	760	0.0	0.0	2400.0		0.0	
0.0		0.0													
Ave	MAR	4000.0	3600.	0	0.0		0.0		0.0	7600.0	6000.	0	0.0		0.0
24.7		0.0	1600.0	-24.7		0.0		0.0	76	00.0	0.0	2424.7		0.0	
0 0		0 0													
Ave	APR	4000.0	3600.	0	0.0		0.0		0.0	7600.0	6000.	0	0.0		0.0
320.9		0.0	1600.0	-320.9		0.0		0.0	7	600.0	0.0	2720.9		0.0	
0.0		0.0													
Ave	MAY	20000.0	3725.	0	0.0		0.0		0.0	23725.0	6500.	0	0.0		0.0
293.8		0.0	5225.0	11706.2		0.0		0.0	23	725.0	0.0	2943.8		0.0	
		0.0													
		20000.0													0.0
794.7		0.0	5350.0	11205.3		0.0		0.0	23	850.0	0.0	3444.7		0.0	
		0.0													
		4000.0								7725.0					0.0
477.0		0.0	4027.5	-2779.5		0.0		0.0	7	725.0	0.0	2877.0		0.0	
		0.0													
Ave	AUG	4000.0	3600.	0	0.0		0.0		0.0	7600.0	6000.	0	0.0		0.0
371.5		0.0	4027.5	-2799.0		0.0		0.0	7	600.0	0.0	2771.5		0.0	
0.0		0.0													
Ave	SEP	4000.0	3600.	0	0.0		0.0		0.0	7600.0	6000.	0	0.0		0.0
301.3		0.0	3897.6	-2598.9		0.0		0.0	7	600.0	0.0	2701.3		0.0	
0.0		0.0													
		80000.0													0.0
2583.9	9	0.0	32357.0	13034.0	1	0.0		0.0	12	1225.0	0.0	32008.9)	0.0)
0.0		0.0													
											0.	0 (6)			
											73250.	0			

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency + max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

(4) Salvage is not part of the Stream Water Balance.

It is the portion of well pumping that does not impact the stream

(5) From Plan is water from a reuse plan.

(6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:

0. af/yr for Diverted to Storage. 1 2 0. af/yr for a Diversion Carrier.

0. af/yr for a Reservior Carrier. 3

0. af/yr for a Plan Carrier. 4

0.af/yr Total

```
#
#
# *.xwr
             Water rights list sorted by basin rank
#
   STATEMOD
   StateMod Operating Rule Example - ex4.* data set
# Statemod Version: 12.29.00 Date = 2008/09/15)
                     9/24/ 8 12:45:22
# Run date:
 Time Step:
                    Monthly
 *.xwr; Water Right Information
        Number of rights =
                                   11
```

Where: 1. Rank = Water right basin rank 2. Type = Water right type 1=Instream, 2=Reservoir, 3=Diversion, 4=Power, 5=Operational, 6=Well,

#

#

#

#

#

```
3. Admin #
                    = Administration Number
   4. On/Off
                     = On or Off switch
      Note: Certain operating rules may cause a structure to
#
           be turned off since if it is controlled by an
            operating rule
#
                    0=off
                   1=on
#
                   +n=begin in year n
                   -n=stop in year n
  5. Str Id #1
#
                     = Primary structure for this right
  6. Str Id #2
                     = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                     = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                     = Water right name
                     = Primary structure for this right
  9. Str Name #1
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
   Rank ID
                                       Admin # On/Off Str ID #1
                                                                     Str ID #2
                                                                                         Amount Right Name
                          Type
                          Str Name #2
Str Name #1
#
    (1) (2)
                           (3)
                                           (4)
                                                   (5) (6)
                                                                      (7)
                                                                                             (8) (9)
(10)
                           (11)
#
       1 Dem_1_WR_1
                             3
                                       2.00000
                                                                      -1
                                                                                       100.000 c M&I Demand _1
                                                     1 Dem 1
Municipal Demand _1
      2 Dem 2 WR 1
                             3
                                       6.00000
                                                                                        60.000 c Irrigation Demand _2
                                                     1 Dem 2
                                                                      -1
Irrigation Demand \_2
      3 Dem 3 WR 1
                             3
                                       7.00000
                                                     1 Dem 3
                                                                      -1
                                                                                       100.000 c Irrigation Demand _3
Irrigation Demand _3
      4 ISF WR 1
                                                                                        65.500 c Instream Flow 1
                                       9.00000
                             1
                                                     1 ISF
                                                                      -1
Instream Demand
       5 Opr_2
                           102
                                       9.00000
                                                     1 Dem 2
                                                                      -1
                                                                                        -1.000 x Opr_Res_1_to_Dem_2
Irrigation Demand _2
      6 Opr_3
                           101
                                       9.00000
                                                                                        -1.000 x Opr_Res_1_to_ISF
                                                     1 TSF
                                                                      -1
Instream Demand
      7 Opr_4
                           104
                                       9.00000
                                                     1 -1
                                                                      -1
                                                                                        -1.000 x Opr_Res_1_to_Dem_3
      8 Dem_4_WR_1
                                      10.00000
                                                                                       100.000 c Irrigation Demand _4
                             3
                                                     1 Dem 4
                                                                      -1
Irrigation Demand \_4
      9 Opr_1
                           109
                                      10.00000
                                                     1 -1
                                                                      -1
                                                                                        -1.000 x Opr Res 1 to Target
     10 Res_1_WR_1
                             2
                                      15.00000
                                                     1 Res 1
                                                                      -1
                                                                                   100000.000 a Reservoir 1
Reservoir_1
     11 Dem 5 WR 1
                                                     1 Dem_5
                                                                                       100.000 c Irrigation Demand _5
                             3
                                      15.00000
                                                                      -1
Irrigation Demand _5
#
#
  *.xdd
             Diversion Summary
   STATEMOD
   StateMod Operating Rule Example - ex4.* data set
# Statemod Version: 12.29.00 Date = 2008/09/15)
# Run date: 9/24/ 8 12:45:19
# Time Step:
                     Monthly
   Diversion Summary ACFT
     STATEMOD
     StateMod Operating Rule Example - ex4.* data set
PAGE NO. 1
    STRUCTURE ID (0 = total) : Dem_3
                                                   - 1
    STRUCTURE ACCT (0 = total): 0
                              : Irrigation Demand _3
    STRUCTURE NAME
    RIVER LOCATION - FROM
                                            Exist. Diver. 3/Inflow
                              : Dem_3
    RIVER LOCATION - TO
                              : Dem 3
                                             Exist. Diver. 3/Inflow
    STRUCTURE DATA
                              :
                                    #
                                            cfs
                                                    af@30
                                                              af@31
                                          5000
                                                  297525
                                                             307442
                                    1
      Diversion Capacity
                                                              6149.
                                           100.
                                                    5950.
      Diversion Rights
                              :
                                    1
      Well Capacity
                              :
                                    1
                                             Ω
                                                      Ω
                                                                 Ω
      Well Rights
                                    0
                                             0.
                                                       0.
                                                                 0.
Shortage
                         Water Use
```

Silot cage	Water ose	Demand	From River By	From Carrier By
Carried		=======================================	========	
Structure River	==	=======================================	From	=======================================
Exchange From Total	Total CU	To Total	Upstrm	

ID ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss Bypass SM Supply Short Short CU SoilM Return Loss Inflow ID

Dypabb	Di. Duppi	DIIOI C	DIIOI C	501111	Reculii	200	5 11111	o.,				
======	Station In					ion Ba =====						
Reach	Return Well											
Gain	Flow Deplete											
Dem_3	Dem_3		OCT 1000.0		0.0		1000.0		0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0				.000							
Dem_3	Dem_3		NOV 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0			-1			0 0	0 0	0 0	0 0		0 0
Dem_3	Dem_3		DEC 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0			0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0		Hgate_Limit JAN 1000.0		.000 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_3 0.0	Dem_3 0.0 1000.0	0.0	0.0 500.0	0.0		0.0		1000.0	0.0	0.0		1000.0
1000.0	0.0 1000.0				.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
			Hgate_Limit		1000.0	0 0	0 0	0 0	0 0	0 0	0.0	0 0
Dem_3 0.0	Dem_3 0.0 1000.0	0.0	FEB 1000.0 0.0 500.0		500.0	0.0	0.0	0.0 1000.0	0.0	0.0	0.0	0.0
1000.0	0.0 1000.0		0.0 500.0 Dem 1		.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	0.0 0.0 Dem 3		MAR 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0		500.0	0.0		1000.0	0.0	0.0		1000.0
1000.0	0.0 1000.0		Dem 1		.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		APR 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0	0.0		0.0		1000.0	0.0	0.0		1000.0
1000.0	0.0 1000.0				.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		MAY 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0		500.0	0.0		5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0				.000	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 3	Dem 3		JUN 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0		500.0	0.0		5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0				.000	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 3	Dem 3		JUL 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0		500.0	0.0		1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0		Hgate Limit			0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		AUG 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0			0.0		1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0		Hgate_Limit		.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3		SEP 1000.0		1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0 500.0			0.0			0.0	0.0		1000.0
1000.0	0.0 0.0		Dem 1		.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem_3	Dem_3		TOT 12000.0				1000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 12000.0	0.0	0.0 6000.0			0.0	0.0	20000.0	0.0	0.0	0.0	20000.0
12000.0	0.0 8000.	0 2649.	9 NA	-	1.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex4.* data set

PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water Use				
	Demar	nd From River By		From Carrier	By
Carried	=======================================				
Structure River	=======		From	==========	
Exchange From Total	Total CU	To Total Upstrm			
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc	Loss
Bypass SM Supply	Short Short CU	SoilM Return Loss Inflow			
Station Ir	/Out	Station Balance			
Station Ir	:/Out ====================================	Station Balance	=		
Reach Return Well	From/To River River	River River Avail Control Contro	= 1		
Reach Return Well	From/To River River		= 1		
Reach Return Well	From/To River River	River River Avail Control Contro	= 1 0.0	0.0 0.0	0.0
Reach Return Well Gain Flow Deplete Dem_4 Dem_4	From/To River River GW Stor Inflow Divert	River River Avail Control Contro By Well Outflow Flow Location Right	0.0	0.0 0.0	0.0 250.0

Dem_4	Dem_4	1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1979 DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 APR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem 4	Dem 4	1980 MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0	1197.5 NA		-1.0	00							
Dem 4	Dem 4	1980 JUN	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0	1452.4 NA		-1.0	00							
Dem 4	Dem_4	1980 JUL	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem 4	Dem 4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem 4	Dem 4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000		0.0	0.0	0.0	300.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 101		100.000								
Dem 4	Dem 4	1980 TOT	5500.0	2750.0	1250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		4250.0 2125.0	625.0	0.0	625.0	0.0	8000.0	0.0	5750.0	0.0		13750.0
1250.0		0 2649.9 NA		-1.								
	==500.											

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex4.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _5
RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow
RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. 307442. 100. 5950. 6149. 0. 0. 0. 0. 0. 0. 0. : 1 : 1 Diversion Capacity Diversion Rights Well Capacity
Well Rights : 1 0

Shortage	Water	Use									
]	Demand	1	From R	iver By			From	Carrier	Ву
Carried	=====	:====== =:				===					
Structure Rive		====:		=======				From	=======		=====
Exchange From 5		CU	To	Total		Upsti					
ID ID	Year	Mo Tota		iorty Sto	_	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM St	pply Short	Short	CU SoilM	Return	Loss	s Inflo	W				
						_					
Stat:	on In/Out			Stat	ion Bal	lance					
		.======= =:				=======	~				
Reach Return We	- , -		iver River	River							
-	lete GW Stor		ivert By Well				_				
Dem_5 Dem_!	1979		.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0 0.0 3000	.0 0.0 IS	F	100.000								
Dem_5 Dem_!	1979	NOV 0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0 0.0 3000	.0 0.0 IS	F	100.000								
Dem_5 Dem_!	1979	DEC 0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0 0.0 3000	.0 0.0 De	m_2	60.000								
Dem_5 Dem_!	1980	JAN 0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0 0.0 300	.0 0.0 De	em_2	60.000								

Dem_5	Dem_5	1980 FEB	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 MAR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 APR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 MAY	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 JUN	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 JUL	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	100.000								
Dem_5	Dem_5	1980 AUG	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	100.000								
Dem_5	Dem_5	1980 SEP	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	100.000								
Dem 5	Dem 5	1980 TOT	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	60000.0
0.0	0.0 60000.0	0.0 NA	-1.000								

STATEMOD

StateMod Operating Rule Example - ex4.* data set PAGE NO. 4

7501

STRUCTURE ID (0 = total) : Res_1 7501
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Reservoir_1
RIVER LOCATION - FROM : Res_1 Exist. Reservoir
RIVER LOCATION - TO : Res_1 Exist. Reservoir

: # STRUCTURE DATA Capacity : 1 100000.
Reservoir Rights : 1 100000.

Shortag	•	Water Use	Deman		:		_			From	Carrier	Ву
Carried	l	==========		======	======	=====	===					
Structu	ıre River			===== ==		=====		====	From	======		=====
_	ge From Total	Total CU		To	Total		Upst:					
ID	ID		Total		iorty St	_	_	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Short	CU	SoilM	Return	Los	s Inflo	WC				
							_					
	Station In	,				ion Ba						
Reach	Return Well	From/To River	River		River		Control					
Gain	Flow Deplete						Location					0 0
Res_1 0.0	Res_1 0.0 0.0	1979 OCT 0.0 0.0	0.0	0.0	0.0	0.0	0.0 3000.0	0.0	0.0	0.0	0.0	0.0
1212.5	0.0 0.0	0.0 U.U	0.0	100.0		0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -
Res 1	0.0 4212.5 Res 1	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -
142.0	0.0 0.0	0.0 U.U	0.0	100.00		0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -
142.0 Res 1	0.0 3142.0 Res 1	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0.0	60.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Res 1	Res 1	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0.0	60.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Res 1	Res 1	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0.0	60.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Res 1	Res 1	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0.0	60.000	0.0	0.0	5000.0	0.0	0.0	0.0	0.0	5000.0
Res 1	Res 1	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000			,					
Res 1	Res 1	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0		15000.0	0.0	0.0	0.0		15000.0
12000.0	0.0 3000.	0 0.0 Dem_2		60.	000							

Res_1	Res_1	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0	
12000.0	0.0 30	0.00	0 Dem_2		60.	000								
Res_1	Res_1	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -	-
2302.5	0.0 530	2.5 0.0	ISF		100.0	00								
Res_1	Res_1	1980	AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -	-
2427.5	0.0 542	7.5 0.0	ISF		100.0	00								
Res_1	Res_1	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -	-
2297.6	0.0 529	7.6 0.0	ISF		100.0	00								
Res_1	Res_1	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	0.0	60000.0	
15618.0	0.0 443	32.0 0.	0 NA		-1.	000								

STATEMOD

StateMod Operating Rule Example - ex4.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2 4

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _2

RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2

RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity Diversion Rights	: -	1	5000.	297525. 3570.	307442.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	e	Water	Use										
				Dema				iver By			From	Carrier	By
Carried		=====	=====							_			
Structu			~	======						From	======		=====
	e From Total	Total	CU		То			Upst				a. =	_
ID	ID	Year	Mo	Total		Priorty S			Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Sho	rt CU	SoilM	Returr	n Los:	s Infl	OW				
	Station In/						ation Ba						
Reach		From/To			r River			Control					
Gain	Flow Deplete G												
Dem_2	Dem_2			3000.0			333.3	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	4212.5	0.0	0.0	0.0	0.0	4212.5
3000.0	0.0 1212.5		Dem_			.000		0 0			0 0		0 0
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 3000.0	0.0 3000.0 0.0 142.0	0.0		1500.0		1500.0	0.0	3142.0	0.0	0.0	0.0	0.0	3142.0
Dem 2	0.0 142.0 Dem 2			e_Limit 3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 3000.0					.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2	1980		e_Limit 3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0		0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e_Limit		.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e_Limit		.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2	1980		3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0		0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e_Limit		.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem_2	Dem 2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e Limit		.000							
Dem 2	Dem 2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0				.000							
Dem_2	Dem 2	1980	JUN	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_2	Dem_2	1980	JUL	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	5302.5	0.0	0.0	0.0	0.0	5302.5
3000.0	0.0 2302.5	0.0	Hgate	e_Limit	-1	.000							
Dem_2	Dem_2	1980	AUG	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	5427.5	0.0	0.0	0.0	0.0	5427.5
3000.0	0.0 2427.5	0.0	Hgate	e_Limit	-1	.000							

Dem_2	Dem_2	1980	SEP 3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1500.0	0.0 1500.0	0.0	5297.6	0.0	0.0	0.0	0.0	5297.6
3000.0	0.0 2297.6	0.0	Hgate Limit	-1.000							
			5								
Dem_2	Dem_2	1980 1	TOT 36000.0 1	18000.0 35666.7	333.3	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 36000.0	0.0	0.0 18000.0	0.0 18000.0	0.0	44382.0	0.0	0.0	0.0	0.0	44382.0
36000.0	0.0 8382.0	0.0	NA	-1.000							

Gage Summary ACFT STATEMOD

Shortage Water Use

StateMod Operating Rule Example - ex4.* data set

PAGE NO. 6

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

51101 043	, .	Hacci	obc	Deman	d		From R	iver By			From	Carrier	Ву
Carried		=====		= =====									
Structu		l m-+-1	CU =	======	To	Total	=====			From	======		=====
_	ge From Total			m-+-1				Upst		Well	D	G+ - F	T
ID Bypass	ID SM Supply	Year Short	Mo '	Total CU	SoilM	iorty St Return	orage . Los:	_	Loss	well	Priorty	Sto_Exc	Loss
вураss	SM Suppry	y Short	SHOLL	CU	SOTIM	Recurn	LOS	s IIIII	OW				
	Station :						ion Ba						
Reach	Return Well	From/To		River		River		Control					
Gain	Flow Deplete	e GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
NA	Riv_50	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1212.5	0.0	62.5	0.0	0.0	1275.0
0.0	0.0 1275.0	0.0 NA			-1.000								
NA	Riv_50	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	642.0	0.0	62.5	0.0	0.0	704.5
0.0	0.0 704.5	0.0 NA			-1.000								
NA	Riv_50	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	4000.0	0.0	125.0	0.0	0.0	4125.0
0.0	0.0 4125.0	1197.5 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	4000.0	0.0	250.0	0.0	0.0	4250.0
0.0		1452.4 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2802.5	0.0	125.0	0.0	0.0	2927.5
0.0	0.0 2927.5	0.0 NA			-1.000								
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2927.5	0.0	0.0	0.0	0.0	2927.5
0.0	0.0 2927.5	0.0 NA		0 0	-1.000			0 0	0 0	0 0		0 0	0 0
NA	Riv_50	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2797.6	0.0	0.0	0.0	0.0	2797.6
0.0	0.0 2797.6	0.0 NA			-1.000								
NA	Riv_50	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		20882.0	0.0	625.0	0.0		21507.0
0.0		2649.9 NA		0.0	-1.000	0.0	0.0	_ , , , , , ,	0.0	020.0	0.0	0.0	

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex4.* data set PAGE NO. 7

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Carried Structure River Structure River Total CU To Total Upstrm ID ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss Exchange SM Supply Short Short CU SoilM Return Loss Inflow Return Loss Inflow	Shortage	Water Use	Damand		Di	P			F	g	D
Structure River Structure River Structure River River River River River River River River River Avail Control Cont	Demand From River By Carried ====================================								From	Carrier	ву
Exchange From Total Total CU To Total Upstrm ID ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss Bypass SM Supply Short Short CU SoilM Return Loss Inflow Station In/Out Station Balance								From		.======	
Station In/Out Station Balance Station In/Out Station Balance Station In/Out Station Balance Station In/Out Station Balance Station Balanc		Total CU	To	Total		Upsti	cm				
Station In/Out Station Balance Reach Return Well From/To River River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Dem_1 Dem_1 1979 OCT 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ID ID	Year Mo	Total CU I	Priorty Sto	orage E	xc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Reach Return Well From/To River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Dem_1 Dem_1 1979 OCT 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Bypass SM Suppl	/ Short Short	CU SoilM	Return	Loss	Infl	w				
Reach Return Well From/To River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Dem_1 Dem_1 1979 OCT 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											
Reach Return Well From/To River River River River Avail Control Control Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Location Right Dem_1 Dem_1 1979 OCT 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		,									
Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Dem_1 Dem_1 1979 OCT 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000.0 0.0 400.0 0.0 1600.0 0.0 1275.0 0.0 750.0 0.0 0.0 2025.0 2000.0 0.0 25.0 0.0 NA -1.000 Dem_1 Dem_1 1979 NOV 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000.0 0.0 204.5 0.0 NA -1.000 Dem_1 Dem_1 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 1500.0 0.0 0.0 Dem_1 Dem_1 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											
Dem_1 Dem_1 1979 OCT 2000.0 400.0 2000.0 2025.0 2000.0 0.0 25.0 0.0 NA -1.000 -1.000 0.0 </td <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		. ,									
2000.0 0.0 25.0 0.0 NA -1.000 Dem_1 Dem_1 1979 NOV 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 704.5 0.0 1500.0 0.0 0.0 2204.5 2000.0 0.0 204.5 0.0 NA -1.000 Dem_1 Dem_1 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								0.0	0.0	0.0	0.0
Dem_1 Dem_1 1979 NOV 2000.0 400.0 2000.0 0.0	0.0 0.0 2000.0	0.0 0.0	400.0 0.0	1600.0	0.0	1275.0	0.0	750.0	0.0	0.0	2025.0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 704.5 0.0 1500.0 0.0 0.0 2204.5 2000.0 0.0 204.5 0.0 NA -1.000 Dem_1 Dem_1 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2000.0 0.0 25	.0 0.0 NA	-1	.000							
2000.0 0.0 204.5 0.0 NA -1.000 Dem_1 Dem_1 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0											0.0
Dem_1 Dem_1 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					0.0	704.5	0.0	1500.0	0.0	0.0	2204.5
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 500.0 0.0 1500.0 0.0 0.0 2000.0 2000.0 0.0 0.0 NA -1.000					0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0 0.0 0.0 NA -1.000 Dem 1 Dem 1 1980 JAN 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					0 0	0 0	0 0	0 0	0 0	0 0	0 0
Delic_1											
2000.0 0.0 0.0 0.0 NA -1.000					0.0	300.0	0.0	1300.0	0.0	0.0	2000.0
Dem 1 Dem 1 1980 FEB 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 500.0 0.0 1500.0 0.0 0.0 2000.0											
2000.0 0.0 0.0 NA -1.000		.0 0.0 NA									
Dem_1 Dem_1 1980 MAR 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dem_1 Dem_1	1980 MAR 20	000.0 400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$0.0 \qquad 0.0 2000.0 \qquad 0.0 \qquad 0.0 400.0 \qquad 0.0 1600.0 \qquad 0.0 500.0 \qquad 0.0 1500.0 \qquad 0.0 0.0 2000.0$	0.0 0.0 2000.0	0.0 0.0	400.0 0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0 0.0 0.0 NA -1.000											
Dem_1 Dem_1 1980 APR 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 500.0 0.0 1500.0 0.0 0.0 2000.0					0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0 0.0 0.0 NA -1.000 Dem 1 Dem 1 1980 MAY 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_1 Dem_1 1980 MAY 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											
2000.0 0.0 3625.0 1197.5 NA -1.000					0.0	4125.0	0.0	1500.0	0.0	0.0	3023.0
Dem 1 Dem 1 1980 JUN 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 4250.0 0.0 1500.0 0.0 5750.0	_										
2000.0 0.0 3750.0 1452.4 NA -1.000											
Dem_1	Dem_1 Dem_1	1980 JUL 20			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 2927.5 0.0 1500.0 0.0 0.0 4427.5	0.0 0.0 2000.0	0.0 0.0	400.0 0.0	1600.0	0.0	2927.5	0.0	1500.0	0.0	0.0	4427.5
2000.0 0.0 2427.5 0.0 NA -1.000	2000.0 0.0 2427	.5 0.0 NA	-1	.000							
Dem_1 Dem_1 1980 AUG 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 2927.5 0.0 1500.0 0.0 0.0 4427.5					0.0	2927.5	0.0	1500.0	0.0	0.0	4427.5
2000.0 0.0 2427.5 0.0 NA -1.000											
Dem_1											
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 2797.6 0.0 1500.0 0.0 4297.6 2000.0 0.0 2297.6 0.0 NA -1.000					0.0	2/9/.6	0.0	1500.0	0.0	0.0	4297.6
2000.0 0.0 2297.6 0.0 NA -1.000	2000.0 0.0 2297		-1	.000							
Dem_1 Dem_1 1980 TOT 24000.0 4800.0 24000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dem_1 Dem_1	1980 TOT 240	000.0 4800.0	24000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$0.0 \qquad 0.0 \ 24000.0 \qquad 0.0 0.0 \ 4800.0 \qquad 0.0 \ 19200.0 \qquad 0.0 \ 21507.0 \qquad 0.0 \ 17250.0 \qquad 0.0 0.0 \ 38757.0$					0.0	21507.0	0.0	17250.0	0.0	0.0	38757.0
24000.0 0.0 14757.0 2649.9 NA -1.000	24000.0 0.0 1475	7.0 2649.9 NA	-:	1.000							

STATEMOD

StateMod Operating Rule Example - ex4.* data set PAGE NO. 8

STRUCTURE ID (0 = total) : ISF 5001
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Instream Demand
RIVER LOCATION - FROM : ISF Top Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA af@30 : # af@31 cfs 0. 0. 0. Diversion Capacity ___ Diversion Capacity
Diversion Rights
Well Capacity
Well Rights 3898. 4027. : 1 66. : 1 0 0. 0. 0. 0. 0. 0.

Carried			•
	Demand	From River By	From Carrier By

Carried ===				=				-
Structure River	=======				From	=======		
Exchange From Total Tot	tal CU	To Total	1	Upstrm				
	ear Mo Total	-			Well	Priorty	Sto_Exc	Loss
Bypass SM Supply Sho	ort Short CU	SoilM Return	n Loss	Inflow				
Station In/Out			ation Balan					
	m/To River River				1			
Gain Flow Deplete GW St					0.0	0 0	0 0	0 0
	979 OCT 4027.5 5 0.0 0.0				0.0	0.0	0.0	0.0
		0.0 665.0 -1.000	0.0	25.0 0.0	640.0	0.0	0.0	665.0
	979 NOV 3897.6		142.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1324.5 2573.3		0.0 1182.5			1120.0	0.0		1324.5
	0.0 Hgate Limit	-1.000	0.0	204.5 0.0	1120.0	0.0	0.0	1324.5
	979 DEC 4027.5	0.0 1440.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1440.0 2587.		0.0 1440.0			1440.0	0.0		1440.0
	0.0 Hgate Limit	-1.000	0.0	0.0 0.0	1110.0	0.0	0.0	1110.0
	980 JAN 4027.5	0.0 1600.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2427.		0.0 1600.0			1600.0	0.0		1600.0
	0.0 Hgate Limit	-1.000	0.0	0.0	1000.0	0.0	0.0	1000.0
	980 FEB 3637.7		0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2037.		0.0 1600.0			1600.0	0.0		1600.0
	0.0 Hgate Limit	-1.000						
ISF ISF 19	980 MAR 4027.5	0.0 1600.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2427.	5 0.0 0.0	0.0 1600.0	0.0	0.0 0.0	1600.0	0.0	0.0	1600.0
	0.0 Hgate Limit	-1.000						
ISF ISF 19	980 APR 3897.6	0.0 1600.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2297.0	6 0.0 0.0	0.0 1600.0	0.0	0.0 0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0	0.0 Hgate_Limit	-1.000						
ISF ISF 19	980 MAY 4027.5	0.0 4027.5	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5 0.0		0.0 4027.5	0.0 3	3625.0 0.0	1600.0	0.0	0.0	5225.0
4027.5 0.0 5225.0 119		-1.000						
	980 JUN 3897.6	0.0 3897.6	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 3897.6 0.0		0.0 3897.6	0.0 3	3750.0 0.0	1600.0	0.0	0.0	5350.0
3897.6 0.0 5350.0 14		-1.000						
	980 JUL 4027.5	0.0 1725.0		0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5 0.0		0.0 4027.5	0.0 2	2427.5 0.0	1600.0	0.0	0.0	4027.5
	0.0 Hgate_Limit	-1.000						
	980 AUG 4027.5	0.0 1600.0		0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5 0.0		0.0 4027.5	0.0 2	2427.5 0.0	1600.0	0.0	0.0	4027.5
		-1.000	0000			0 0		0 0
	980 SEP 3897.6			0.0 0.0	0.0	0.0	0.0	0.0
	0.0 0.0		0.0 2	2297.6 0.0	1600.0	0.0	0.0	3897.6
3897.6 0.0 3897.6	0.0 Hgate_Limit	-1.000						
ISF ISF 19	980 TOT 47420.5	0 0 22512 6	7194 5	0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 29707.1 17713.4		0.0 22312.0			17600.0	0.0		32357.0
29707.1 0.0 32357.0 20		-1.000	5.0 14	1.57.0	1,000.0	0.0	0.0	
		1.000						

STATEMOD

StateMod Operating Rule Example - ex4.* data set

PAGE NO. 9

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage	Water Use							
		Demand	From R	iver By		From	Carrier	By
Carried	==========			===				
Structure River	===	=======================================	=========		= From	======	======	=====
Exchange From Total	Total CU	To	Total	Upstrm				
ID ID	Year Mo To	otal CU Pr	iorty Storage	Exc_Pln Los	ss Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short	CU SoilM	Return Los	s Inflow				
Station In	/Out		Station Ba	lance				
=======================================					====			
Reach Return Well	From/To River	River River	River Avail	Control Con	itrol			
Gain Flow Deplete	GW Stor Inflow	Divert By Well	Outflow Flow	Location Rig	jht			
Baseflow ISF.01	1979 OCT	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	665.0	0.0 0.0	0.0	0.0	665.0
0.0 0.0 665.0	0.0 NA	-1.000						
Baseflow ISF.01	1979 NOV	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	1324.5	0.0 0.0	0.0	0.0	1324.5
0.0 0.0 1324.5	0.0 NA	-1.000						

Baseflow ISF.01	1979 DEC 0.0 0.0	0.0	0.0	0.0	0.0	0.0 1440.0	0.0	0.0	0.0	0.0	0.0 1440.0
0.0 0.0 1440.0	0.0 NA	0.0	-1.000	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
Baseflow ISF.01	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0	0.0 NA		-1.000								
Baseflow ISF.01	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0		1600.0
0.0 0.0 1600.0	0.0 NA		-1.000								
Baseflow ISF.01	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0	0.0 NA		-1.000								
Baseflow ISF.01	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0	0.0 NA		-1.000								
Baseflow ISF.01	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	5225.0	0.0	0.0	0.0	0.0	5225.0
0.0 0.0 5225.0	1197.5 NA		-1.000								
Baseflow ISF.01	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	5350.0	0.0	0.0	0.0	0.0	5350.0
0.0 0.0 5350.0	1452.4 NA		-1.000								
Baseflow ISF.01	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	4027.5	0.0	0.0	0.0	0.0	4027.5
0.0 0.0 4027.5	0.0 NA		-1.000								
Baseflow ISF.01	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	4027.5	0.0	0.0	0.0	0.0	4027.5
0.0 0.0 4027.5	0.0 NA		-1.000								
Baseflow ISF.01	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3897.6	0.0	0.0	0.0	0.0	3897.6
0.0 0.0 3897.6	0.0 NA		-1.000								
Baseflow ISF.01		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0		32357.0	0.0	0.0	0.0		32357.0
0.0 0.0 32357.0	2649.9 NA	0.0	-1.000	0.0	0.0	32337.0	0.0	0.0	0.0	0.0	32337.0
#	voir Summary										
# STATEMOD	ing Rule Example -	ex4.* da	ata set								
# # Statemod Version: # Run date: # Time Step:	12.29.00 Date = 2 9/24/8 12:45:1 Monthly		5)								
#											

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex4.* data set

PAGE NO. 1

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total
RESERVOIR OWNER : Total
RIVER LOCATION : Exist. Reservoir

From Storage

to								St	tatio	on Bala	ınce				
						From R	iver by			From C	arrier	by			
							Targ	st_0	BOM						
			I	nitial									Total	River	River
Carri	er Tota	ıl	Seep	&	EOM Sto	or_n De	cree Ri	ver R	iver	Rive	r Ri	ver Ri	ver		
Reser	voir		S	torage	Priorty	Storage	Exc_Pln	Loss	Prio	orty St	o_Exc	Loss	Supply	For Use	For Exc
for U	se Releas	se Evap	Spi	11 Cont	ent L	imit I	imit Inf	low Rele	ease	Diver	t by W	ell Outf	low		
ID		Acc Year	Mo	NA	(+)	(+)	(+)	(-)		(+)	(+)	(-)	NA	(-)	(-)
(-)	NA	(-)	(-)	NA	NA	NA	(+)	(+)		(-)	(-)	NA			
				(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)	(11)
(12)	(13)	(14)	(15)	(16)	(17	(18	(19)	(20)	(21)	(22)	(23)			
															
Res_1		0 1979	OCT 5	0.000	145.8	0.0	0.0	0.0		0.0	0.0	0.0	145.8	358.3	1000.0
0.0	1358.3	0.0	0.0 4	8787.51	0.0000.0	50000.0	3000.0	1358.3	14	45.8	0.0	4212.5			
Res_1		0 1979	NOV 4	8787.5	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	142.0	0.0
0.0	142.0	0.0	0.0 4	8645.51	0.0000.0	51212.5	3000.0	142.0		0.0	0.0	3142.0			
Res_1		0 1979	DEC 4	8645.5	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0 4	8645.51	0.0000.0	51212.5	3000.0	0.0		0.0	0.0	3000.0			

Res_1	0 1980	JAN	48645.5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	48645.5100000.0	51212.5	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	FEB	48645.5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	48645.5100000.0	51212.5	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	MAR	48645.5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	24.7	0.0	48620.8100000.0	51212.5	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	APR	48620.8 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	320.9	0.0	48299.9100000.0	51212.5	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	MAY	48299.9 12000.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0
0.0 0.0	293.8	0.0	60006.1100000.0	51212.5	15000.0	0.0	12000.0	0.0	3000.0			
Res_1	0 1980	JUN	60006.1 12000.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0
0.0 0.0	794.7	0.0	71211.4100000.0	39212.5	15000.0	0.0	12000.0	0.0	3000.0			
Res_1	0 1980	JUL	71211.4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2302.5	0.0
0.0 2302.5	477.0	0.0	68431.9100000.0	27212.5	3000.0	2302.5	0.0	0.0	5302.5			
Res_1	0 1980	AUG	68431.9 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2427.5	0.0
0.0 2427.5	371.5	0.0	65632.9100000.0	27212.5	3000.0	2427.5	0.0	0.0	5427.5			
Res_1	0 1980	SEP	65632.9 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2297.6	0.0
0.0 2297.6	301.3	0.0	63034.0100000.0	27212.5	3000.0	2297.6	0.0	0.0	5297.6			
Res_1	0 1980	TOT	50000.0 24145.8	0.0	0.0	0.0	0.0	0.0	0.0	24145.8	7527.9	1000.0
0.0 8527.9	2583.9	0.0	63034.0 -1.0	-1.0	60000.0	8527.9	24145.8	0.0	44382.0			

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex4.* data set

PAGE NO. 2

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_1
RIVER LOCATION : Exist. Reservoir

From Storage to Station Balance

Carrier Total Seen & EOM Storn Decree	River River River River
Reservoir Storage Priorty Storage Exc_F	n Loss Priorty Sto_Exc Loss Supply For Use For E
for Use Release Evap Spill Content Limit Limit	nflow Release Divert by Well Outflow
ID Acc Year Mo NA $(+)$ $(+)$	
(-) NA (-) (-) NA NA NA () (+) (-) NA
(1) (2) (3) () (5) (6) (7) (8) (9) (10) (1
(12) (13) (14) (15) (16) (17) (18) (9) (20) (21) (22) (23)
Res 1 1 1979 OCT 49975.0 3.9 0.0 0	0 0.0 0.0 0.0 0.0 3.9 333.3 1000
Res_1 1 1979 OCT 49975.0 3.9 0.0 0 0.0 1333.3 0.0 0.0 48645.5 50000.0 50000.0 3000	
Res 1 1 1979 NOV 48645.5 0.0 0.0 0	
0.0 0.0 0.0 48645.5 51212.5 51212.5 3000	
Res 1 1 1979 DEC 48645.5 0.0 0.0 0	
0.0 0.0 0.0 48645.5 51354.5 51212.5 3000	
Res 1 1 1980 JAN 48645.5 0.0 0.0 0	
0.0 0.0 0.0 48645.5 51354.5 51212.5 3000	
Res 1 1 1980 FEB 48645.5 0.0 0.0 0	
0.0 0.0 0.0 48645.5 51354.5 51212.5 3000	
Res 1 1 1980 MAR 48645.5 0.0 0.0 0	
0.0 0.0 24.7 0.0 48620.8 51354.5 51212.5 3000	
Res 1 1 1980 APR 48620.8 0.0 0.0 0	
0.0 0.0 320.9 0.0 48299.9 51379.2 51212.5 3000	
Res 1 1 1980 MAY 48299.9 394.6 0.0 0	0 0.0 0.0 0.0 0.0 394.6 0.0 0
0.0 0.0 237.3 0.0 48457.2 51700.1 51212.5 15000	0 0.0 12000.0 0.0 3000.0
Res_1 1 1980 JUN 48457.2 462.9 0.0 0	0 0.0 0.0 0.0 0.0 462.9 0.0 0
0.0 0.0 539.9 0.0 48380.2 39993.9 39212.5 15000	0 0.0 12000.0 0.0 3000.0
Res_1 1 1980 JUL 48380.2 0.0 0.0	0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 334.9 0.0 48045.3 28788.6 27212.5 3000	0 2302.5 0.0 0.0 5302.5
Res_1 1 1980 AUG 48045.3 0.0 0.0 0	0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 270.4 0.0 47774.9 31568.1 27212.5 3000	0 2427.5 0.0 0.0 5427.5
Res_1 1 1980 SEP 47774.9 0.0 0.0 0	0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 227.3 0.0 47547.6 34367.1 27212.5 3000	0 2297.6 0.0 0.0 5297.6
Res 1 1 1980 TOT 49975.0 861.4 0.0 0	0 0.0 0.0 0.0 0.0 861.4 333.3 1000
0.0 1333.3 1955.4 0.0 47547.6 -1.0 -1.0 60000	

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex4.* data set

PAGE NO. 3

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_2
RIVER LOCATION : Exist. Reservoir

Station Balance From Carrier by to From River by

									From		by			
				Initial					BOM			Total	River	 River
Carrie			See						iver Riv Priorty S				For Use	For Exc
	se Relea	se Evap	Sp	ill Cont	tent Li	imit L	imit In	flow Rel	ease Dive	ert by W	ell Outf	low		
ID (-)	NA	Acc Year	Mo (-)	NA NA	(+) NA	NA	(+) (+)	(+)	(-)	(+) (-)	(–) NA	NA	(-)	(-)
(12)	(13)	(14)	(15)		(2)				(6)				(10)	(11)
 Res_1		2 1979	OCT	25.0	142.0	0.0	0.0	0.0	0.0	0.0	0.0	142.0	25.0	0.0
0.0 Res_1		0.0 2 1979	0.0	142.0 142.0	50000.0	50000.0	3000.0		145.8 0.0	0.0	4212.5	0.0	142.0	0.0
0.0	142.0	0.0	0.0		51212.5						3142.0	0.0	142.0	0.0
Res_1	0.0	2 1979 0.0	DEC 0.0	0.0	0.0 51354.5	0.0	0.0			0.0	0.0	0.0	0.0	0.0
Res_1		2 1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 Res_1		0.0 2 1980	0.0 FEB	0.0	51354.5	0.0	3000.0			0.0	3000.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0		51354.5	51212.5	3000.0			0.0	3000.0	0.0	0.0	0.0
Res_1		2 1980 0.0	0.0	0.0	0.0 51354.5		3000.0			0.0	3000.0	0.0	0.0	0.0
Res_1		2 1980 0.0	APR 0.0	0.0	0.0 51379.2	0.0	0.0			0.0	0.0	0.0	0.0	0.0
Res_1		2 1980	MAY	0.0	11605.4	0.0	0.0	0.0	0.0	0.0	0.0	11605.4	0.0	0.0
0.0 Res 1		56.5 2 1980			51700.1 11537.1		15000.0		12000.0	0.0		11537.1	0.0	0.0
0.0	0.0	254.8	0.0	22831.1	39993.9	39212.5	15000.0	0.0	12000.0	0.0	3000.0			
Res_1	2302.5			22831.1 20386.6	0.0 28788.6	0.0 27212.5	0.0 3000.0		0.0	0.0	0.0 5302.5	0.0	2302.5	0.0
Res_1	2427.5	2 1980 101.1			0.0 31568.1	0.0	0.0			0.0	0.0 5427.5	0.0	2427.5	0.0
Res_1		2 1980	SEP	17858.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2297.6	0.0
0.0	2297.6	74.0	0.0	15486.4	34367.1	27212.5	3000.0	2297.6	0.0	0.0	5297.6			
D 1					02004 5							02204 5	7104 5	
	7194.5	2 1980 628.5							24145.8	0.0	0.0 44382.0	23284.5	/194.5	0.0
# # Stat	temod Ve	Operating ersion: 12. 9 Mo	29.00	Date =	2008/09/		Ē							
-		Right Summ	-											
	Opr_1 ce 1 = F OCT	es_1 NOV	Nam Des DEC	ne = Opr tination JAN	n = 0	o_Target MAR	Op Ye APR	ar On =		dmin # = ear Off JUL	= 9999 AUG	10.0000 SEP	TOT	
1980	0.0	0.0	0.0							0.0				
AVG	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.	0.0	0.0	0.0	0.0	0.	U
Opera	ational	Right Summ	ary	ACFT										
	Opr_2				_Res_1_to			r Type =		dmin # =		9.0000	00	
Sour	ce 1 = F OCT	les_1 NOV	Des DEC	tination JAN	n = Dem_2 FEB			ar On = MAY		ear Off JUL	= 9999 AUG	SEP	TOT	
1980	333.3	0.0	0.0							0.0		0.0		_
AVG	333.3	0.0	0.0							0.0				
Opera	ational	Right Summ	ary	ACFT										
	Opr_3	_			_Res_1_to	TOP	020	r Type =	1 Ad	lmin # =		9.0000	0.0	
Sour	ce 1 = F		Des	tination	n = ISF		Ye	ar On =	0 Ye	ear Off	= 9999			
YEAR	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOT	_
1980 AVG	25.0 25.0	142.0 142.0	0.0							2302.5 2302.5			7194. 7194.	
Opera	ational	Right Summ	ary	ACFT										
	Opr_4	1			_Res_1_to			r Type =		dmin # =		9.0000	00	
YEAR	ce 1 = F OCT	NOV	Des DEC	tination JAN	n = Dem_3 FEB		Ye APR	ar On = MAY		ear Off JUL	= 9999 AUG	SEP	TOT	

1980	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0
AVG	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0

cdss@state.co.us
Last updated: September 2008

Example 5

Diversion by Carrier

```
*.rsp; response file for Statemod Example 5
      This response file lists the StateMod input files necessary for model simulation
# Type
                                      Name
                                    = ex5.ctl
Control
                                    = ..\ex2\ex2.rin
River Network
StreamGage Station
                                    = ..\ex1\ex1.ris
Stream Base Monthly
                                    = ..\ex1\ex1.rim
Diversion Station
                                    = ..\ex1\ex1.dds
Diversion_Right
                                    = ... ex1 ex1.ddr
Diversion_Demand_Monthly
                                    = ... ex1 ex1.ddm
Reservoir_Station
                                    = ..\ex2\ex2.res
                                    = ..\ex2\ex2.rer
Reservoir_Right
Reservoir_Target_Monthly
                                    = ... ex2 ex2.tam
Evaporation Monthly
                                    = ..\ex2\ex2.eva
Instreamflow Station
                                    = ... ex1 ex1.ifs
Instreamflow Right
                                    = ... \exp[-x_1.ifr]
Instreamflow Demand AverageMonthly
                                    = ..\ex1\ex1.ifa
Operational Right
                                    = ex5.opr
DelayTable Monthly
                                    = ..\ex1\ex1.urm
OutputRequest
                                    = ..\ex2\ex2.out
# Exhibit 5.3
# *.opr; operating rules file for Statemod Example 5
      This file lists the operating rules used in model simulation
                   GUIDE TO COLUMN ENTRIES
     _____
         TD
                     ID number of operating rule that is used to separate operating rule output in *.xop file
         Name
                   Name of operating rule - used for descriptive purposes only
                  Administration number used to determine priority of operational water rights relative to other
         Admin#
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
         # Str Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
StateMod program the number of entries on next line)
         On/Off 1 for ON and 0 for OFF
Dest ID Destination of operating rule whose demand is to be met by simulating the operating rule
         Dest Ac
                   Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
                   ID number of primary source of water under which water right is being diverted in operating rule
         Soul ID
 typically a water right, reservoir, or Plan structure
         Soul Ac
                   Account of Soul - typically 1 for a diversion structure and account number for reservoir source
         Sou2 TD
                    ID of Plan where reusable storage water or reusable ditch credits is accounted
         Sou2 Ac Percentage of Plan supplies available for operation
                   Rule type corresponding with definitions in Chapter 4 of StateMod documentation
         Type
         ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
         Div Type 'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                      'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
         OprLoss Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
StateMod documentation, Section 4.13)
        Limit Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
        Comments Description of rule type
                                                    Admin# # Str On/Off Dest Id
          Name
                                                                                  Dest Ac Soul Id
Ac Sou2 Id
10.00000 0. 1 0 0 Res_1
version 0 0 0 9999 Reservoir Release to Target
Opr_1
        Opr_Res_1_to_Target
                                        Diversion
0 0
                  0
                          9 NA
                                                                0 0 9999
0 1 Dem_2
0 0 9999
                                                              0.
Opr_2
          Opr_Res_1_to_Dem_2
                                                    9.00000
                                                                                          1 Res 1
                                                          0
                                                                       0 9999 Reservoir Release to
                                        NΑ
1 0
                                                                 . 1 ISF
Diversion
Opr_3 Opr_Res_1_to_ISF
                                                    9.00000
                                                               0.
                                                                                           1 Res 1
0 1 NA Instream Flow
                                                                        0 9999 Reservoir Release to
                                        NA
                                                                     1 Dem_3
0 99
Opr_4 Opr_Res_1_to_Dem_3
1 0 0 3
                                                    9.00000
                                                                                           1 Res 1
                                                                         0 9999 Reservoir Release to
                                                                  0
                  0 3 NA
                                        NΑ
                                                           Ω
```

Water Budget

STATEMOD StateMod Operating Rule Example - ex5.* data set

Statemod Version: 12.289 Date = 2008/09/12)
Run date: 9/15/8 10:58: 7
Time Step: Monthly
#

Water Budget ACFT

		Wate	er Budget AC	FT						
Well Re	Stream servoir Reserv	oir Str	eam Reserv	oir	To	SoilM	Fro			
Year Mo	Inflow	Return	GWStorag	e SoilM	Pl	an Inflow	Divert b	y Well		
Depletion	Evaporation	Seepage	Outilow	Change	S011	.M Change				
Total	D.11.	ar.	•	B	0.1					
	Delta									
1979 OCT	4000.0	1751.1	0.0	0.0		0.0 5751.1	6444.4	0.0		0.0
0.0	0.0 665	5.0 -13	358.3	0.0	0.0	5751.1	0.0 2622.2		0.0	
	4000.0	3231.1	0.0	0.0		0.0 7231.1	6000.0	0.0		0.0
0.0		1.1	0.0	0.0	0.0	7231.1	0.0 2400.0		0.0	
0.0 1979 DEC	0.0 4000.0	3440.0	0.0	0.0		0.0 7440.0	6000.0	0.0		0.0
0.0							0.0 2400.0		0.0	
0.0	0.0	2600 0	0.0	0.0		0.0 7600.0	6000.0	0 0		0.0
1980 JAN 0.0							0.0 2400.0	0.0	0.0	0.0
0.0	0.0									
1980 FEB 0.0						0.0 7600.0 7600.0	6000.0 0.0 2400.0	0.0		0.0
0.0	0.0		0.0	0.0	0.0	7000.0	0.0 2400.0		0.0	
	4000.0						6000.0			0.0
24.7	0.0 160 0.0	00.0	-24.7	0.0	0.0	7600.0	0.0 2424.7		0.0	
1980 APR	4000.0	3600.0	0.0	0.0		0.0 7600.0	6000.0	0.0		0.0
320.9		500.0	-320.9	0.0	0.0	7600.0	0.0 2720.9		0.0	
0.0 1980 MAY	20000.0	3725.0	0.0	0.0		0.0 23725.0	6500.0	0.0		0.0
	20000.0 0.0 52	225.0 1	1706.2	0.0		23725.0				
0.0	0.0	2050 0	0 0	0.0		0.0 23850.0	6500.0	0 0		0.0
794.7	20000.0 0.0 53	3550.0	.1205.3	0.0		23850.0				0.0
0.0	0.0									
1980 JUL 477.0	4000.0 0.0 40	3725.0 - 3725.0	2779 5	0.0		7725.0	6000.0 0.0 2877.0			0.0
0.0	0.0									
1980 AUG	4000.0 0.0 40	3600.0	0.0	0.0			6000.0			0.0
0.0	0.0					7600.0				
1980 SEP	4000.0	3600.0	0.0	0.0		0.0 7600.0	6000.0 0.0 2701.3	0.0		0.0
301.3		397.6 -	2598.9	0.0	0.0	7600.0	0.0 2701.3		0.0	
1980 Tot	80000.0	41322.2	0.0	0.0		0.0 121322.2	73444.4	0.0		0.0
2583.8	0.0 32	2263.7	13030.3	0.0	0.0	121322.2	73444.4 0.0 32106.	0	0.0	
0.0	0.0									
		Wate	r Budget AC	FT						
	Stream		Erom/T	o Erom	₽~	com Total	Fro	m Dirro	20	
Well Re	servoir Reserv	oir Str	eam Reserv	nir	To	SoilM				
							Divert b	y Well		
Depletion	Evaporation	Seepage	Outflow	Change	Soil	.M Change				
Total										
	Delta									
							6444.4	0.0		0.0
0.0	0.0 665		58.3	0.0	0.0	5751.1	0.0 2622.2		0.0	
0.0 Ave NOV	0.0 4000.0	3231 1	0 0	0 0		0 0 7231 1	6000.0	0 0		0.0
0.0	0.0 1231			0.0			0.0 2400.0	0.0	0.0	0.0
0.0	0.0	2440 0	2 2			0.0	6000	0 0		0 0
Ave DEC 0.0	4000.0 0.0 1440			0.0	0.0	7440.0	6000.0 0.0 2400.0	U.U	0.0	0.0
0.0	0.0									

Ave JAN	4000.0 360	0.0	0.0		0.0		0.0	7600.0	6000.0)	0.0		0.0
0.0	0.0 1600.0	0.0		0.0		0.0	7600	. 0	0.0	2400.0		0.0	
	0.0												
Ave FEB	4000.0 360	0.0	0.0		0.0		0.0	7600.0	6000.0)	0.0		0.0
0.0	0.0 1600.0	0.0		0.0		0.0	7600	. 0	0.0	2400.0		0.0	
0.0	0.0												
Ave MAR	4000.0 360	0.0	0.0		0.0		0.0	7600.0	6000.0)	0.0		0.0
24.7	0.0 1600.0	-24.7		0.0		0.0	760	0.0	0.0	2424.7		0.0	
0.0	0.0												
Ave APR	4000.0 360	0.0	0.0		0.0		0.0	7600.0	6000.0)	0.0		0.0
320.9	0.0 1600.0	-320.9		0.0		0.0	760	00.0	0.0	2720.9		0.0	
0.0	0.0												
Ave MAY	20000.0 372 0.0 5225.0	5.0	0.0		0.0		0.0	23725.0	6500.0)	0.0		0.0
293.8	0.0 5225.0	11706.2		0.0		0.0	237	25.0	0.0	2943.8		0.0	
0.0	0.0												
Ave JUN	20000.0 385	0.0	0.0		0.0		0.0	23850.0	6500.0)	0.0		0.0
	0.0 5350.0												
0.0	0.0												
Ave JUL	4000.0 372	5.0	0.0		0.0		0.0	7725.0	6000.0)	0.0		0.0
477.0	0.0 4027.5	-2779.5		0.0		0.0	77:	25.0	0.0	2877.0		0.0	
0.0	0.0												
Ave AUG	4000.0 360	0.0	0.0		0.0		0.0	7600.0	6000.0)	0.0		0.0
371.5	0.0 4027.5	-2799.0		0.0		0.0	760	00.0	0.0	2771.5		0.0	
0.0	0.0												
Ave SEP	4000.0 360	0.0	0.0		0.0		0.0	7600.0	6000.0)	0.0		0.0
301.3	0.0 3897.6	-2598.9		0.0		0.0	760	00.0	0.0	2701.3		0.0	
0.0													
Ave Tot	80000.0 4132	2.2	0.0		0.0		0.0	121322.2	73444.4	1	0.0		0.0
2583.8	0.0 32263.7	13030.3		0.0		0.0	121	322.2	0.0	32106.0		0.0	1
0.0	0.0												
									0.0	(6)			
									73444.4	_ 1			
									/3774.5	I.			

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency + max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

(4) Salvage is not part of the Stream Water Balance.

It is the portion of well pumping that does not impact the stream

(5) From Plan is water from a reuse plan.

(6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:

0. af/yr for Diverted to Storage. 1 0. af/yr for a Diversion Carrier. 2 $\mbox{O.}$ af/yr for a Reservior Carrier. 3

0. af/yr for a Plan Carrier. 0. af/yr Total 4

```
*.xwr
             Water rights list sorted by basin rank
#
   STATEMOD
   StateMod Operating Rule Example - ex5.* data set
```

Statemod Version: 12.289 Date = 2008/09/12) 9/15/ 8 10:58:10 # Run date:

Monthly Time Step:

#

#

#

```
*.xwr; Water Right Information
      Number of rights =
                                 11
```

```
#
# Where:
  1. Rank
                    = Water right basin rank
  2. Type
                     = Water right type
                    1=Instream,
                    2=Reservoir,
#
                    3=Diversion,
#
                    4=Power,
                    5=Operational,
#
                    6=Well,
```

```
3. Admin #
                   = Administration Number
   4. On/Off
                    = On or Off switch
     Note: Certain operating rules may cause a structure to
#
           be turned off since if it is controlled by an
           operating rule
#
                   0=off
                   1=on
#
                  +n=begin in year n
                   -n=stop in year n
 5. Str Id #1
#
                    = Primary structure for this right
  6. Str Id #2
                    = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                   = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                    = Water right name
 9. Str Name #1
                    = Primary structure for this right
# 10. Str Name #2
                    = Secondary structure for this right (-1=N/A)
   Rank ID
                                      Admin # On/Off Str ID #1
                                                                    Str ID #2
                                                                                       Amount Right Name
                         Type
                         Str Name #2
Str Name #1
#
    (1) (2)
                          (3)
                                          (4)
                                                  (5) (6)
                                                                    (7)
                                                                                          (8) (9)
(10)
                          (11)
#
      1 Dem_1_WR_1
                            3
                                      2.00000
                                                                    -1
                                                                                     100.000 c M&I Demand _1
                                                    1 Dem 1
Municipal Demand _1
      2 Dem 2 WR 1
                            3
                                      6.00000
                                                                                      60.000 c Irrigation Demand _2
                                                    1 Dem 2
                                                                    -1
Irrigation Demand \_2
      3 Dem 3 WR 1
                            3
                                      7.00000
                                                    1 Dem 3
                                                                    -1
                                                                                     100.000 c Irrigation Demand _3
Irrigation Demand _3
      4 ISF WR 1
                                                                                      65.500 c Instream Flow 1
                                      9.00000
                            1
                                                    1 ISF
                                                                    -1
Instream Demand
      5 Opr_2
                          102
                                      9.00000
                                                    1 Dem 2
                                                                    -1
                                                                                      -1.000 x Opr Res 1 to Dem 2
Irrigation Demand _2
      6 Opr_3
                          101
                                      9.00000
                                                                                      -1.000 x Opr_Res_1_to_ISF
                                                    1 TSF
                                                                    -1
Instream Demand
      7 Opr_4
                          103
                                      9.00000
                                                    1 -1
                                                                    -1
                                                                                      -1.000 x Opr_Res_1_to_Dem_3
      8 Dem_4_WR_1
                                     10.00000
                                                                                     100.000 c Irrigation Demand _4
                            3
                                                    1 Dem 4
                                                                    -1
Irrigation Demand \_4
      9 Opr 1
                          109
                                     10.00000
                                                    1 -1
                                                                    -1
                                                                                      -1.000 x Opr Res 1 to Target
     10 Res_1_WR_1
                            2
                                     15.00000
                                                    1 Res 1
                                                                    -1
                                                                                  100000.000 a Reservoir 1
Reservoir_1
     11 Dem 5 WR 1
                                                    1 Dem_5
                                                                                     100.000 c Irrigation Demand _5
                            3
                                     15.00000
                                                                    -1
Irrigation Demand _5
#
 *.xdd
             Diversion Summary
#
   STATEMOD
   StateMod Operating Rule Example - ex5.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
                     9/15/ 8 10:58: 2
# Run date:
# Time Step:
                    Monthly
  Diversion Summary ACFT
    STATEMOD
    StateMod Operating Rule Example - ex5.* data set
PAGE NO. 1
   STRUCTURE ID (0 = total) : Dem_3
                                                  - 1
   STRUCTURE ACCT (0 = total): 0
                            : Irrigation Demand _3
   STRUCTURE NAME
   RIVER LOCATION - FROM
                                           Exist. Diver. 3/Inflow
                             : Dem_3
   RIVER LOCATION - TO
                             : Dem 3
                                            Exist. Diver. 3/Inflow
   STRUCTURE DATA
                             :
                                   #
                                           cfs
                                                   af@30
                                                             af@31
                                         5000
                                                 297525
                                                           307442
                                   1
     Diversion Capacity
                                          100.
                                                   5950.
                                                             6149.
     Diversion Rights
                             :
                                   1
                                   1
     Well Capacity
                             :
                                            Ω
                                                     Ω
                                                               Ω
     Well Rights
                                   0
                                            0.
                                                      0.
                                                                0.
```

ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss SM Supply Short Short CU SoilM Return Loss Inflow ID Bypass

	Station In/	Out		ion Ba						
Reach	Return Well		r River River		Control					
Gain	Flow Deplete G	W Stor Inflow Dive								
Dem_3	Dem_3	1979 OCT 1000.0	500.0 0.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0	0.0 500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
0.0	0.0 1000.0	0.0 Dem_1	100.000							
Dem_3	Dem_3	1979 NOV 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_3	Dem_3	1979 DEC 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_3	Dem_3	1980 JAN 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Limit	-1.000							
Dem_3	Dem_3	1980 FEB 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0	0.0 500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Dem_1	100.000							
Dem_3	Dem_3	1980 MAR 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0	0.0 500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Dem_1	100.000	0 0	0 0	2 2	0 0		0 0	0 0
Dem_3	Dem_3	1980 APR 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0	0.0 500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Dem_1	100.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_3	Dem_3	1980 MAY 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 1000.0	0.0 1000.0	0.0 0.0 500.0	0.0 500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
	0.0 4000.0		-1.000 500.0 1000.0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_3 0.0	Dem_3 0.0 1000.0	1980 JUN 1000.0 0.0 0.0 500.0		0.0	0.0	0.0 5000.0	0.0	0.0	0.0	0.0
1000.0	0.0 1000.0		-1.000	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
Dem 3	Dem 3	1980 JUL 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0		0.0		1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Limit	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3	1980 AUG 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0		0.0		1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Limit	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3	1980 SEP 1000.0	500.0 1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500.0		0.0		1000.0	0.0	0.0		1000.0
1000.0	0.0 0.0	0.0 Dem 1	100.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3	1980 TOT 12000.0	6000.0 11000.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0
Dem_3 0.0	0.0 12000.0	0.0 0.0 6000.0		0.0		20000.0	0.0	0.0		20000.0
11000.0		0.0 0.0 6000.0) 2649.9 NA	0.0 6000.0 -1.000	0.0	0.0	∠∪∪∪∪.∪	0.0	0.0	0.0	∠∪∪∪∪.0
11000.0	0.0 9000.0	J 2049.9 NA	-1.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex5.* data set

PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA : # cfs af@30 af@31 297525. 5000. : 1 : 1 Diversion Capacity 307442. Diversion Rights 100. 5950. 6149. 0. 0. 0. : Well Capacity 1 Well Rights 0 0. 0. 0.

Shortage	Water Use			
	Deman	d From River By		From Carrier By
Carried	=======================================	=======================================		
Structure River	=======		From	
Exchange From Total	Total CU	To Total Upstrm		
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc Loss
Bypass SM Supply	Short Short CU	SoilM Return Loss Inflow		
Station In	/Out	Station Balance		
=======================================				
Reach Return Well	From/To River River	River River Avail Control Control		
Gain Flow Deplete (GW Stor Inflow Divert	By Well Outflow Flow Location Right		
Dem_4 Dem_4	1979 OCT 500.0	250.0 444.4 0.0 0.0 0.0	0.0	0.0 0.0 0.0
0.0 0.0 444.4	55.6 27.8 222.2	0.0 222.2 0.0 1000.0 0.0	250.0	0.0 0.0 1250.0
444.4 0.0 805.6	0.0 ISF	100.000		

Dem_4	Dem_4	1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1979 DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 APR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0	1197.5 NA		-1.0	00							
Dem_4	Dem_4	1980 JUN	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0	1452.4 NA		-1.0	00							
Dem_4	Dem_4	1980 JUL	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4			2750.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0			722.2	0.0	722.2	0.0	9000.0	0.0	5750.0	0.0	0.0	14750.0
1444.4	0.0 13305.	6 2649.9 NA		-1.	000							

STATEMOD

StateMod Operating Rule Example - ex5.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _5
RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow
RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA cfs af@30 : # af@31 5000. 297525. 307442. 6149. ____1 Diversion Capacity : Diversion Rights
Well Capacity
Well Rights 6149. 100. 5950. 1 0. 0. 0. 0

Shortac	re .	Water	Use										
	, -			Deman	d		From R:	iver By			From	Carrier	Ву
Carried	ì	======		=====		======	=====	===					
Structu	ıre River		==	======	===== ==		=====		====	From	======		=====
Exchang	ge From Total	Total	CU		To	Total		Upst:	rm				
ID	ID	Year	Mo T	otal	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Loss	s Inflo	wc				
	Station Ir	ı/Out				Stat	ion Bal	lance					
======				=====			=====						
Reach	Return Well	From/To		River		River		Control					
Gain	Flow Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_5	Dem_5	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISE	P		100.000								
Dem_5	Dem_5	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem	n_2		60.000								
Dem_5	Dem_5	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Den	n_2		60.000								
Dem_5	Dem_5	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Den	n_2		60.000								

Dem_5	Dem_5	1980 FEB	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 MAR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 APR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 MAY	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 JUN	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem_2	60.000								
Dem_5	Dem_5	1980 JUL	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	100.000								
Dem_5	Dem_5	1980 AUG	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	100.000								
Dem_5	Dem_5	1980 SEP	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	100.000								
						0 0	0.0		0 0	0 0	0 0
Dem_5	Dem_5	1980 TOT	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	60000.0
0.0	0.0 60000.0	0.0 NA	-1.000								

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex5.* data set PAGE NO. 4

7501

STRUCTURE ID (0 = total) : Res_1 7501
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Reservoir_1
RIVER LOCATION - FROM : Res_1 Exist. Reservoir
RIVER LOCATION - TO : Res_1 Exist. Reservoir

: # STRUCTURE DATA Capacity : 1 100000.
Reservoir Rights : 1 100000.

Shortage Water Use Demand From River By									From	Carrier	Ву
Carried	l	=========	= ========			===					
Structu	re River	=					====	From	======		=====
Exchang	ge From Total	Total CU	To	Total		Upst:	rm				
ID	ID	Year Mo	Total CU	Priorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Short	CU SoilM	Return	Loss	s Infl	OW				
	Station I	,			ion Bal						
Reach	Return Well	From/To River	River River	River		Control					
Gain	Flow Deplete					Location					
Res_1	Res_1	1979 OCT	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
358.3	0.0 3358.3	0.0 ISF	100.								
Res_1	Res_1	1979 NOV	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.00								
Res_1	Res_1	1979 DEC	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.00								
Res_1	Res_1	1980 JAN	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.00	-							
Res_1	Res_1	1980 FEB	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.00								
Res_1	Res_1	1980 MAR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.00								
Res_1	Res_1	1980 APR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	60.00								
Res_1	Res_1	1980 MAY	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
12000.0	0.0 3000	.0 0.0 Dem_2	6	0.000							

Res_1	Res_1	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0	
12000.0	0.0 300	0.0 Dem	_2	60.	000								
Res_1	Res_1	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -	
2302.5	0.0 5302	.5 0.0 ISF		100.0	00								
Res_1	Res_1	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -	
2427.5	0.0 5427	.5 0.0 ISF		100.0	00								
Res_1	Res_1	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -	
2297.6	0.0 5297	.6 0.0 ISF		100.0	00								
Res_1	Res_1	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	0.0	60000.0	
16614.1	0.0 4338	5.9 0.0 NA		-1.	000								

STATEMOD

StateMod Operating Rule Example - ex5.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity Diversion Rights 5000. 297525. 60. 3570. 3689. 1 Well Capacity
Well Rights 0. 0. 0. 0 0. 0. 0.

Shortage Water Use					Demand From River By						From	Carrier	Bv
Carried	.ed ====================================												-
Structu	re River		==		====== :		======		=====	From	======		
Exchang	ge From Total	Total	Total CU To Total Upstrm										
ID	ID	Year	Mo T	Total	CU I	Priorty S	torage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Los	s Infl	ow				
	Station In/						tion Ba						
Reach		From/To			River			Control					
Gain	Flow Deplete G												
Dem_2	Dem_2		OCT 30				333.3	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1 Dem 1	1500.0		1500.0	0.0	3358.3	0.0	0.0	0.0	0.0	3358.3
3000.0	0.0 358.3		NOV 30	200		.000	0.0	0 0	0.0	0.0	0.0	0.0	0.0
Dem_2 0.0	Dem_2 0.0 3000.0	0.0	0.0 1			1500.0	0.0	0.0 3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 3000.0		Hgate I			.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2	1979	_		1500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0		0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0		Hgate_I			.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2	1980			1500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1			1500.0		3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0		Hgate I			.000	0.0	3000.0	0.0	0.0	0.0	0.0	5000.0
Dem 2	Dem 2		FEB 30				0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1			1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgate_I	Limit	-1	.000							
Dem_2	Dem_2	1980	MAR 30	0.00	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0		Hgate_I			.000							
Dem_2	Dem_2		APR 30				0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1			1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0		Hgate_I			.000							
Dem_2	Dem_2		MAY 30				0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1	1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0				.000							
Dem_2	Dem_2	1980			1500.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0 1	1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0		200		.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_2 0.0	Dem_2 0.0 3000.0	1980 0.0	JUL 30			1500.0	0.0	0.0 5302.5	0.0	0.0	0.0	0.0	0.0
3000.0	0.0 3000.0		0.0 I			.000	0.0	530∠.5	0.0	0.0	0.0	0.0	5302.5
3000.0 Dem 2	0.0 2302.5 Dem 2		AUG 30				0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0							0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0 0 1	1500.0	0 0	1500.0	0 0	5427.5	0.0	0.0	0.0	0 0	5427.5

Dem_2	Dem_2	1980 SEP	3000.0	1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0	1500.0	0.0 1500.0	0.0	5297.6	0.0	0.0	0.0	0.0	5297.6
3000.0	0.0 2297.6	0.0 Hgat	e Limit	-1.000							
			_								
Dem 2	Dem 2	1980 TOT	26000 0 1	L8000.0 35666.7	333.3	0.0	0.0	0.0	0.0	0.0	0.0
_	_								0.0		
0.0	0.0 36000.0	0.0 0.0	18000.0	0.0 18000.0	0.0	43385.9	0.0	0.0	0.0	0.0	43385.9
36000.0	0.0 7385.9	0.0 NA		-1.000							

Gage Summary ACFT STATEMOD

StateMod Operating Rule Example - ex5.* data set

PAGE NO. 6

RIVER LOCATION - FROM : Riv_50
RIVER LOCATION - TO : Riv_50 Confluence Confluence

Shortag	age Water Use Demand From River By							From	Carrier	Day			
Carried									FIOIII	Calliel	БУ		
Structu			=:						====	From	======		
Exchang	ge From Total	Total	CU		To	Total		Upst:	rm				
ID	ID	Year	Mo '	Total	CU Pr	iorty St	orage I	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	y Short	Short	CU	SoilM	Return	Loss	s Infl	OW				
	Station I						ion Bal						
Reach	Return Well	From/To		 River		River		Control					
Gain	Flow Deplete		Inflow			Outflow		Location					
NA	Riv_50		OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		1163.9	0.0	111.1	0.0	0.0	1275.0
0.0	0.0 1275.0	0.0 NA			-1.000								
NA	Riv_50	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	111.1	0.0	0.0	611.1
0.0	0.0 611.1	0.0 NA			-1.000								
NA	Riv_50		DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50		JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50		FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 500.0	0.0	0.0	0.0	0.0 -1.000	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
NA	0.0 500.0 Riv 50	0.0 NA 1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA	0.0	0.0	-1.000	0.0	0.0	300.0	0.0	0.0	0.0	0.0	300.0
NA	Riv 50		APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv 50	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	4000.0	0.0	125.0	0.0	0.0	4125.0
0.0	0.0 4125.0	1197.5 NA			-1.000								
NA	Riv_50	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	4000.0	0.0	250.0	0.0	0.0	4250.0
0.0		1452.4 NA			-1.000								
NA	Riv_50		JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2802.5	0.0	125.0	0.0	0.0	2927.5
0.0	0.0 2927.5	0.0 NA			-1.000								
NA	Riv_50		AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2927.5	0.0	0.0	0.0	0.0	2927.5
0.0 NA	0.0 2927.5	0.0 NA 1980	SEP	0 0	-1.000 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	Riv_50 0.0 0.0	0.0	0.0	0.0	0.0	0.0		2797.6	0.0	0.0	0.0	0.0	2797.6
0.0	0.0 2797.6	0.0 0.0 NA	0.0	0.0	-1.000	0.0	0.0	2/9/.6	0.0	0.0	0.0	0.0	2/9/.0
0.0	0.0 2/9/.6	U.U NA			-1.000								
NA	Riv_50	 1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		20691.5	0.0	722.2	0.0		21413.7
0.0	0.0 21413.7	2649.9 NA	0.0	0.0	-1.000	0.0	0.0	20091.5	0.0	144.4	0.0	0.0	51TLJ./
0.0	U.U 21713./	LUIJ.J INA			1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex5.* data set PAGE NO. 7

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage		From	Carrier By			
Carried	From River By					
Structure River		From	======			
Exchange From Total	Total CU	To Total	Upstrm			
ID ID	Year Mo Total		torage Exc_Pln Loss	Well	Priorty	Sto_Exc Loss
Bypass SM Supply	Short Short CU	SoilM Return	Loss Inflow			
Station In/	/ O E	G+-	tion Balance			
Station in/				_		
		r River River	Avail Control Contro			
			w Flow Location Right			
Dem_1 Dem_1	1979 OCT 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0		0.0 1275.0 0.0	750.0	0.0	0.0 2025.0
2000.0 0.0 25.0	0.0 NA	-1.000				
Dem_1 Dem_1	1979 NOV 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0		0.0 611.1 0.0	1500.0	0.0	0.0 2111.1
2000.0 0.0 111.1	0.0 NA	-1.000		0 0	0 0	0.0 0.0
Dem_1 Dem_1 0.0 0.0 2000.0	1979 DEC 2000.0 0.0 0.0 400.0	400.0 2000.0 0.0 1600.0	0.0 0.0 0.0 0.0 500.0 0.0	0.0 1500.0	0.0	0.0 0.0 0.0 2000.0
2000.0 0.0 2000.0	0.0 0.0 400.0 0.0 NA	-1.000	0.0 500.0 0.0	1500.0	0.0	0.0 2000.0
Dem_1 Dem_1	1980 JAN 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0			1500.0	0.0	0.0 2000.0
2000.0 0.0 0.0	0.0 NA	-1.000				
Dem_1 Dem_1	1980 FEB 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0	0.0 500.0 0.0	1500.0	0.0	0.0 2000.0
2000.0 0.0 0.0	0.0 NA	-1.000				
Dem_1 Dem_1	1980 MAR 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0		0.0 500.0 0.0	1500.0	0.0	0.0 2000.0
2000.0 0.0 0.0	0.0 NA	-1.000			0 0	
Dem_1 Dem_1 0.0 0.0 2000.0	1980 APR 2000.0	400.0 2000.0 0.0 1600.0	0.0 0.0 0.0 0.0 500.0 0.0	0.0 1500.0	0.0	0.0 0.0 0.0 2000.0
2000.0 0.0 2000.0	0.0 0.0 400.0	-1.000	0.0 500.0 0.0	1500.0	0.0	0.0 2000.0
Dem 1 Dem 1	1980 MAY 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0			1500.0	0.0	0.0 5625.0
2000.0 0.0 3625.0	1197.5 NA	-1.000				
Dem_1 Dem_1	1980 JUN 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0	0.0 4250.0 0.0	1500.0	0.0	0.0 5750.0
	1452.4 NA	-1.000				
Dem_1 Dem_1	1980 JUL 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0		0.0 2927.5 0.0	1500.0	0.0	0.0 4427.5
2000.0 0.0 2427.5	0.0 NA	-1.000		0 0	0 0	0.0
Dem_1 Dem_1 0.0 0.0 2000.0	1980 AUG 2000.0 0.0 0.0 400.0	400.0 2000.0 0.0 1600.0	0.0 0.0 0.0 0.0 2927.5 0.0	0.0 1500.0	0.0	0.0 0.0 0.0 4427.5
2000.0 0.0 2427.5	0.0 NA	-1.000	0.0 2927.5 0.0	1500.0	0.0	0.0 4427.5
Dem 1 Dem 1	1980 SEP 2000.0	400.0 2000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 2000.0	0.0 0.0 400.0			1500.0	0.0	0.0 4297.6
2000.0 0.0 2297.6	0.0 NA	-1.000				
						
Dem_1		4800.0 24000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 24000.0 24000.0 0.0 14663.7	0.0 0.0 4800.0	0.0 19200.0 -1.000	0.0 21413.7 0.0	17250.0	0.0	0.0 38663.7
24000.0 0.0 14663.7	7 2649.9 NA	-1.000				

STATEMOD

StateMod Operating Rule Example - ex5.* data set PAGE NO. $\, 8 \,$

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Fl Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Demand Fro	om River By From Carrier By	7
------------	-----------------------------	---

a				Deman	···		11011111	IVCI Dy			110111	CULLICI	D_I
Carried ====================================										From		======	
	e From Total									FIOIII			
TD		Year						opst Exc_Pln		Woll	Priorty	Cto Eva	Logg
	SM Supply							s Infl		METT	PIIOICY	SCO_EAC	LUSS
Буразь	SM Suppry	SHOLC	SHOLC	CU	SOTIM	Recui	.1 105;	5 11111	OW				
	Station In	/Ou+				C+	ation Bal	lango					
	3tation ii			_									
Reach	Return Well												
	Flow Deplete	- , -								_			
ISF	ISF					640.0	25.0		0.0	0.0	0.0	0.0	0.0
									0.0	640.0	0.0	0.0	665.0
665.0	0.0 005.0 0	0 0	Hoate L	imit	-1	003.0	0.0	25.0	0.0	010.0	0.0	0.0	005.0
ISF	0.0 665.0 3 0.0 665.0 ISF	1979	NOV 38	397 6	0 0	1231 1	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1231.1 2	666 5	0.0	0.0	0.0	1231 1	0.0	111.1		1120.0	0.0		1231.1
1231.1	0.0 1231.1						0.0		0.0	1120.0	0.0	0.0	1001.1
ISF	ISF					1440.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1440.0 2						0.0			1440.0	0.0		1440.0
1440.0	0.0 1440.0		Hgate 1	imit.	-1	000							
ISF	ISF	1980	JAN 40	127.5	0.0	.000 1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2	427.5	0.0	0.0	0.0	1600.0	0.0			1600.0	0.0		1600.0
	0.0 1600.0			Limit	-1	.000							
ISF	ISF	1980	FEB 36	537.7	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2					1600.0				1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0	Hgate I	Limit	-1	.000							
ISF	ISF	1980	MAR 40	027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0 0 1600 0 2	427 5	0 0	0 0	0 0	1600 0	0 0		0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0 1980	Hgate I	Limit	-1	.000							
ISF	ISF	1980	APR 38	397.6	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0 0 1600 0 2	297 6	0 0	0 0	0 0	1600 0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0	Hgate I	Limit	-1	.000							
ISF	0.0 1600.0 ISF	1980	MAY 40	027.5	0.0	4027.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5	0.0	0.0			4027.5		3625.0	0.0	1600.0	0.0	0.0	5225.0
4027.5	0.0 5225.0				-1	.000							
ISF	ISF	1980	JUN 38	397.6	0.0	3897.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3897.6	0.0	0.0	0.0	0.0	3897.6	0.0	3750.0	0.0	1600.0	0.0	0.0	5350.0
3897.6	0.0 5350.0	1452.4	NA		-1	.000							
ISF	ISF	1980	JUL 40	027.5	0.0	1725.0	2302.5	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5						0.0	2427.5	0.0	1600.0	0.0	0.0	4027.5
4027.5	0.0 4027.5	0.0	Hgate_I	Limit	-1	.000							
ISF	ISF	1980	AUG 40	027.5	0.0	1600.0	2427.5	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5	0.0	0.0	0.0	0.0	4027.5	0.0	2427.5	0.0	1600.0	0.0	0.0	4027.5
4027.5	0.0 4027.5 0.0 4027.5 ISF	0.0	Hgate_1	Limit	-1	.000							
ISF	ISF	1980	SEP 38	397.6	0.0	1600.0	2297.6	0.0	0.0	0.0			0.0
0.0	0.0 3897.6	0.0	0.0	0.0	0.0	3897.6	0.0	2297.6	0.0	1600.0	0.0	0.0	3897.6
3897.6	0.0 3897.6	0.0	Hgate_I	Limit	-1	.000							
ISF	ISF	1980	TOT 474	120.5	0.0	22561.2	7052.6	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 29613.8 17	8.608	0.0	0.0	0.0	29613.8	0.0	14663.7	0.0	17600.0	0.0	0.0	32263.7
29613.8	0.0 32263.	/ 2649.	9 NA		-1	1.000							

STATEMOD

StateMod Operating Rule Example - ex5.* data set

PAGE NO. 9

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage	2		Water	Use										
		Demand						From R	iver By			From	Carrier	Ву
Carried			======		=====				===					
Structur	e R									====	From			
Exchange	Fro	m Total	Total	CU		To	Total		Upst:	rm				
ID	I	D	Year	Mo T	otal	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM	Supply	Short	Short	CU	SoilM	Return	Los	s Infl	ow				
	S	tation Ir	n/Out				Stat	ion Ba	lance					
======	=====	=======			=====	======	======			======				
Reach	Retur	n Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flow	Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Baseflow	7 I	SF.01	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	665.0	0.0	0.0	0.0	0.0	665.0
0.0	0.0	665.0	0.0 NA			-1.000								
Baseflow	ı I	SF.01	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1231.1	0.0	0.0	0.0	0.0	1231.1
0.0	0.0	1231.1	0.0 NA			-1.000								

0.0 0.0 1440.0 0.0 NA -1.000 Baseflow ISF.01 1980 JAN 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow 0.0	ISF.01 0.0	1979 0.0	DEC 0.0	0.0	0.0	0.0	0.0	0.0 1440.0	0.0	0.0	0.0	0.0	0.0 1440.0
Baseflow ISF.01 1980 JAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					0.0		0.0	0.0	1110.0	0.0	0.0	0.0	0.0	1110.0
0.0 0.0 1600.0 0.0 NA -1.000 Baseflow ISF.01 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 0.0 NA -1.000 Baseflow ISF.01 1980 FEB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 1600.0 0.0 0.0 1600.0 0.0 0.0 1600.0 0.0 0.0 1600.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
0.0 0.0 1600.0 0.0 NA -1.000 Baseflow ISF.01 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow	ISF.01	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 1600.0	0.0 0.0	1600.0	0.0 NA			-1.000								
	Baseflow	ISF.01	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 0.0 NA -1.000	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
	0.0 0.0	1600.0	0.0 NA			-1.000								
Baseflow ISF.01 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow	ISF.01	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 1600.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0 0.0 NA -1.000	0.0 0.0	1600.0	0.0 NA			-1.000								
Baseflow ISF.01 1980 MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow	ISF.01	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5225.0 0.0 0.0 0.0 0.0 5225.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5225.0	0.0	0.0	0.0	0.0	5225.0
0.0 0.0 5225.0 1197.5 NA -1.000	0.0 0.0	5225.0	1197.5 NA			-1.000								
Baseflow ISF.01 1980 JUN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow	ISF.01	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5350.0 0.0 0.0 0.0 0.0 5350.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5350.0	0.0	0.0	0.0	0.0	5350.0
0.0 0.0 5350.0 1452.4 NA -1.000	0.0 0.0	5350.0	1452.4 NA			-1.000								
Baseflow ISF.01 1980 JUL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow	ISF.01	1980		0.0		0.0	0.0	0.0			0.0		0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4027.5 0.0 0.0 0.0 0.0 4027.5	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4027.5	0.0	0.0	0.0	0.0	4027.5
0.0 0.0 4027.5 0.0 NA -1.000	0.0 0.0	4027.5	0.0 NA											
Baseflow ISF.01 1980 AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
					0.0		0.0	0.0	4027.5	0.0	0.0	0.0	0.0	4027.5
0.0 0.0 4027.5 0.0 NA -1.000														
Baseflow ISF.01 1980 SEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
					0.0		0.0	0.0	3897.6	0.0	0.0	0.0	0.0	3897.6
0.0 0.0 3897.6 0.0 NA -1.000	0.0 0.0	3897.6	0.0 NA			-1.000								
							_							
Baseflow ISF.01 1980 TOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Baseflow	ISF.01	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32263.7 0.0 0.0 0.0 32263.7	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32263.7	0.0	0.0	0.0	0.0	32263.7
0.0 0.0 32263.7 2649.9 NA -1.000	0.0 0.0	32263.7	2649.9 NA			-1.000								
#														

*.xre Reservoir Summary

STATEMOD

StateMod Operating Rule Example - ex5.* data set

Statemod Version: 12.289 Date = 2008/09/12)

Run date: 9/15/ 8 10:58: 2

Monthly # Time Step:

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex5.* data set

PAGE NO. 1

: Res_1 RESERVOIR ID RESERVOIR NAME : Reservoir_1

RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total RESERVOIR OWNER : Total

RIVER LOCATION : Exist. Reservoir

STRUCTURE DATA : # af : 1 100000. : 1 100000. Capacity Reservoir Rights

From Storage to Station Balance

From River By From Carrier By
Targt_0 BOM -----From River By Initial ======= Total River River River by Well Outflow 0 1979 OCT 50000.0 0.0 0 0 0 0 0.0 0.0 0.0 0 0 0 0 358 3 0 0 Res 1 0.0 48641.7100000.0 50000.0 3000.0 358.3 1000.0 1358.3 0.0 0.0 0.0 3358.3 0.0 0 1979 NOV 48641.7 0.0 0.0 0.0 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48641.7100000.0 51358.3 3000.0 0 0 0.0 0.0 0.0 3000.0 0 0 0 1979 DEC 48641.7 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48641.7100000.0 51358.3 3000.0 0.0 3000.0 0 0 0.0 0.0 0.0 0 1980 JAN 48641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48641.7100000.0 51358.3 3000.0 0.0 0.0 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 0 0 0 1980 FEB 48641.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 0.0 0.0 48641.7100000.0 51358.3 3000.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0

Res_1	0 1980	MAR 48641.7 0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0
0.0 0.0	24.7	0.0 48617.0100000.0	51358.3 3000.0	0.0 0.	0.0	3000.0			
Res_1	0 1980	APR 48617.0 0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0
0.0 0.0	320.9	0.0 48296.1100000.0	51358.3 3000.0	0.0 0.	0.0	3000.0			
Res_1	0 1980	MAY 48296.1 12000.0	0.0 0.0	0.0 0.	0.0	0.0	12000.0	0.0	0.0
0.0 0.0	293.8	0.0 60002.3100000.0	51358.3 15000.0	0.0 12000.	0.0	3000.0			
Res 1	0 1980	JUN 60002.3 12000.0	0.0 0.0	0.0 0.	0.0	0.0	12000.0	0.0	0.0
0.0 0.0	794.7	0.0 71207.6100000.0	39358.3 15000.0	0.0 12000.	0.0	3000.0			
Res 1	0 1980	JUL 71207.6 0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	2302.5	0.0
0.0 2302.5	477.0	0.0 68428.1100000.0	27358.3 3000.0	2302.5 0.	0.0	5302.5			
Res 1	0 1980	AUG 68428.1 0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	2427.5	0.0
0.0 2427.5	371.5	0.0 65629.2100000.0	27358.3 3000.0	2427.5 0.	0.0	5427.5			
Res 1	0 1980	SEP 65629.2 0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	2297.6	0.0
0.0 2297.6	301.3	0.0 63030.3100000.0	27358.3 3000.0	2297.6 0.	0.0	5297.6			
Res 1	0 1980	TOT 50000.0 24000.0	0.0 0.0	0.0 0.	0.0	0.0	24000.0	7385.9	0.0
1000.0 8385.			1.0 -1.0 6000			0.0 43385			

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex5.* data set

PAGE NO.

RESERVOIR ID : Res 1 RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1

RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total

RESERVOIR OWNER : Res_1 Own_1 RIVER LOCATION : Exist. Reservoir

From Station Balance Storage to From River By From Carrier By Targt_0 BOM =========== _____ Initial ====== Total River Short Release Evap Spill Content Limit Limit Inflow Release Dvert River River by Well Outflow 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 333.3 0.0 0.0 0.0 48641. 1 1979 NOV 48641.7 0.0 48641.7 50000.0 50000.0 3000.0 0.0 358.3 0.0 3358.3 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 48641.7 51358.3 51358.3 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 Res_1 1 1979 DEC 48641.7 0.0 0.0 0.0 0.0 0.0 48641.7 0.0 1 1980 JAN 48641.7 0.0 1 0.0 0.0 48641.7 51358.3 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48641.7 51358.3 51358.3 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 48641.7 51358.3 51358.3 3000.0 0.0 0.0 3000.0 0.0 0.0 1 1980 FEB 48641.7 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48641.7 51358.3 51358.3 3000.0 0.0 3000.0 0.0 0.0 0.0 1 1980 MAR 48641.7 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.7 0.0 48617.0 51358.3 51358.3 3000.0 0.0 3000.0 0.0 0.0 0.0 1 1980 APR 48617.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 320.9 0.0 48296.1 51383.0 51358.3 3000.0 0.0 3000.0 0.0 0.0 0.0 395.5 1 1980 MAY 48296.1 395.5 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 48454.3 51703.9 51358.3 15000.0 0.0 12000.0 0.0 3000.0 237.3 0.0 1 1980 JUN 48454.3 463.7 0.0 0.0 463.7 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12000.0 0.0 48378.1 39997.7 39358.3 15000.0 0.0 3000.0 0.0 0.0 539.9 1 1980 JUL 48378.1 0.0 0.0 0.0 0 0 0 0 Res 1 0.0 0.0 0 0 0 0 0 0 0.0 0.0 48043.2 28792.4 27358.3 3000.0 2302.5 0.0 334.9 0.0 0.0 5302.5 Res_1 1 1980 AUG 48043.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 270.4 0.0 47772.9 31571.9 27358.3 3000.0 2427.5 0.0 0.0 5427.5 0.0 0.0 1 1980 SEP 47772.9 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 227.3 0.0 47545.6 34370.8 27358.3 3000.0 2297.6 0.0 0.0 5297.6 0.0 0.0 0.0 0.0 859.2 333.3

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex5.* data set

PAGE NO. 3

RESERVOIR ID : Res 1 RESERVOIR NAME : Reservoir 1

RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total

RESERVOIR OWNER : Res_1 Own_2 RIVER LOCATION : Exist. Reservoir

Station Balance Storage to

From River By From Carrier By Targt_0 BOM ============ _____

Initial ====== Total River River

Carrier Total Seep & EOM Stor_n Decree River River River From

0.0

Reser Short		Acc Year ase Evap							ss Priorty Dvert	y Sto_	Exc Los	s Bypass	SM	Supply
by We	ver Rive	low	OCITI	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0
Res_1 0.0 Res_1	25.0	2 1979 0.0 2 1979	0.0	25.0 0.0 0.0	0.0 50000.0 0.0	50000.0	0.0 3000.0 0.0	0.0 358.3 0.0	0.0 0.0 0.0	0.0	0.0 3358.3 0.0	0.0	0.0	0.0
0.0 Res_1	0.0	0.0	0.0			51358.3	3000.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0
0.0 Res_1	0.0	0.0 2 1980	0.0			51358.3	3000.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0
0.0 Res_1	0.0	0.0 2 1980	0.0			51358.3	3000.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0
0.0 Res_1	0.0	0.0 2 1980	0.0			51358.3	3000.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0
0.0 Res_1	0.0	0.0 2 1980	0.0 APR	0.0	51358.3	51358.3	3000.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0
0.0 Res_1		0.0 2 1980	0.0 MAY		51383.0 11604.5	51358.3	3000.0	0.0	0.0	0.0	3000.0	11604.5	0.0	0.0
0.0 Res_1		56.5 2 1980	JUN	11548.0	11536.3		0.0	0.0	12000.0	0.0	3000.0	11536.3	0.0	0.0
0.0 Res_1	_	254.8 2 1980	JUL	22829.5	0.0	39358.3	0.0	0.0	12000.0	0.0	3000.0	0.0	2302.5	0.0
Res_1	_	142.1	AUG	20384.9	0.0	27358.3	3000.0	2302.5	0.0	0.0	0.0	0.0	2427.5	0.0
Res_1	-	101.1	SEP	17856.3	0.0		3000.0	2427.5	0.0	0.0	5427.5	0.0	2297.6	0.0
0.0	2297.6	74.0		15484.7	34370.8	27358.3	3000.0		0.0	0.0	5297.6			
0.0	7052.6	2 1980 628.5		25.0 15484.7	23140.8		0.0	0.0	0.0	0.0	0.0 43385.9	23140.8	7052.6	0.0
#		Operation	nal Di	aht Divo	raion C	umm a ray								
#	STATEMOD	operacion	nai Ki	giic bive	I STOIL D	animar y								
		Operating	Rule	Example	- ex5.*	data set	5							
# Rur	date:		9/15/	8 10:58:		/12)								
#	ne Step:	Мо	onthly	7										
#		Pinh G		3.GPF										
	ational	Right Sum			Pog 1 +	o_Target	Onz	Time -	9 Admi	in # =		10.00000		
	cce 1 = 1			tination JAN			Yea	Type = r On = MAY	0 Year		= 9999 AUG	SEP	TOT	
1980	0.0	0.0	0.0							0.0			0.0	
AVG	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
-		Right Sum	-											
Sour	: Opr_2 :ce 1 = 1		Des	ne = Opr_ stination	n = Dem_	2	Yea	Type =	0 Year	in # = r Off 	= 9999	9.00000		
YEAR	OCT	NOV -	DEC	JAN	FEB		APR	MAY	JUN -	JUL	AUG	SEP	TOT	
1980 AVG	333.3 333.3	0.0	0.0							0.0			333.3 333.3	
Oper	ational	Right Summ	mary	ACFT										
	opr_3	Res 1		ne = Opr_ stination		o_ISF	_	Type =		in # = r Off	= 9999	9.00000	ı	
YEAR	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY		JUL	AUG	SEP	TOT	
1980 AVG	25.0 25.0	0.0	0.0							2302.5 2302.5			7052.6 7052.6	
Oper	ational	Right Summ	mary	ACFT										
	opr_4	Res 1		ne = Opr_ stination				Type =		in # = r Off		9.00000	ı	
YEAR	OCT	NOV	DEC	JAN	FEB		APR	MAY	JUN	JUL	AUG	SEP	TOT	
1980 AVG	1000.0	0.0	0.0							0.0			1000.0	

Example 6

```
*.rsp; response file for Statemod Example 6
       This response file lists the StateMod input files necessary for model simulation
# Type
                                           Name
Control
                                         = ex6.ctl
                                         = ..\ex2\ex2.rin
River Network
StreamGage Station
                                        = ..\ex1\ex1.ris
Stream Base Monthly
                                         = ..\ex1\ex1.rim
StreamGage Historic Monthly
                                        = ex6.rih
Diversion_Station
                                        = ..\ex1\ex1.dds
Diversion Right
                                        = ..\ex1\ex1.ddr
Diversion_Demand_Monthly
                                        = ..\ex1\ex1.ddm
Diversion Historic Monthly
                                        = ex6.ddh
Reservoir_Station
                                        = ..\ex2\ex2.res
Reservoir Right
                                        = ..\ex2\ex2.rer
Reservoir_Target_Monthly
                                        = ..\ex2\ex2.tam
Reservoir_Historic_Monthly
                                        = ex6.eom
Evaporation Monthly
                                         = ..\ex2\ex2.eva
Instreamflow Station
                                         = ... ex1 ex1.ifs
Instreamflow Right
                                         = ... ex1 ex1.ifr
Instreamflow_Demand_AverageMonthly
                                        = ..\ex1\ex1.ifa
                                        = ..\ex4\ex4.opr
Operational Right
DelayTable Monthly
                                         = ..\ex1\ex1.urm
OutputRequest
                                         = ... ex2 ex2.out
# Exhibit 6.2
# ex*.ctl; Control file for StateMod Example 6
  STATEMOD
  StateMod Baseflow Example - ex6.* data set
            : iystr STARTING YEAR OF SIMULATION
    1980
            : iyend ENDING YEAR OF SIMULATION
    1980
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      Ω
            : numpre NO. OF PRECIPITATION STATIONS : numeva NO. OF EVAPORATION STATIONS
      0
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
  1.9835
            : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
                                                         ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1 0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
  1.0
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
  1.0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
            : cyrl Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
            : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall Detailed call water right ID (not used if icall = 0)
            : iday
            : iday Switch for daily calculations 0 Monthly analysis, 1 Daily analysis : iwell Switch for well operations See section 7.4 for a discussion of the well options.
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isjrip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
            : isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
            : soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
                      Number of significant digits behind decimal point in output files
# Exhibit 6.3
  *.rih; Historic monthly streamflow file for StateMod Example 6
```

```
#
#
     Year
             iryr:
                            Year
#
     ID
             cistat:
                            Station id
     runoff(1-12):
                            Streamflow by month = virinp(im,np) for station np
#
# Yr ID
                  Oct
                         Nov
                                        Jan
                                               Feb
                                                      Mar
                                                                                   Jul
                               Dec
                                                             Apr
                                                                     May
                                                                            Jun
                                                                                          Aug
                                                                                                 Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
#
  10/1979 -
                9/1981 AF/M WYR
1980 Dem_3
                 1000.
                        1000.
                                1000.
                                       1000.
                                              1000.
                                                     1000.
                                                            1000.
                                                                   5000.
                                                                          5000.
                                                                                 1000.
                                                                                        1000.
                                                                                                1000.
20000.
1980 Dem_5
                 3000.
                        3000.
                                3000.
                                       3000.
                                              3000.
                                                     3000.
                                                            3000. 15000. 15000.
                                                                                 3000.
                                                                                        3000.
                                                                                                3000.
60000.
1980 ISF.01
                 4000.
                        4000.
                                4000.
                                       4000.
                                              4000.
                                                     4000.
                                                            4000.
                                                                  20000. 20000.
                                                                                 4000.
                                                                                         4000.
                                                                                                4000.
80000.
1981 Dem 3
                 1000.
                        1000.
                                1000.
                                       1000.
                                              1000.
                                                     1000.
                                                            1000.
                                                                   5000.
                                                                          5000.
                                                                                 1000.
                                                                                        1000.
                                                                                                1000.
20000.
1981 Dem 5
                 3000.
                        3000.
                                3000.
                                       3000.
                                                            3000. 15000. 15000.
                                                                                                3000.
                                              3000.
                                                     3000.
                                                                                 3000.
                                                                                         3000.
60000.
1981 ISF.01
                 4000.
                        4000.
                                4000.
                                       4000.
                                              4000.
                                                     4000.
                                                            4000. 20000. 20000.
                                                                                                4000.
                                                                                 4000.
                                                                                         4000.
80000.
# Exhibit 6.4
 *.ddh; Direct Flow Historical Diversions for StateMod Example 6
 ***********
     Card 1 Control format: (i4, 1x, a12, 12f8.0
#
#
#
             idvr:
     Year
                            Year
                            Station id
#
     TD
             cistat:
     diverm(1-12):
                            Gaged Diversions for month 1-12
# Yr ID
                  Oct
                                               Feb
                                                                                   Jul
                         Nov
                               Dec
                                        Jan
                                                      Mar
                                                             Apr
                                                                     May
                                                                            Jun
                                                                                          Aug
                                                                                                 Sep
Total
#
                9/1980 AF/M WYR
  10/1979 -
1980 Dem_3
                         556.
                                 852.
                                        951.
                                               984.
                                                      995.
                                                             998.
                                                                   1000.
                                                                          1000.
                                                                                 1000.
                                                                                        1000.
                                                                                               1000.
                    0.
10336.
1980 Dem 4
                    0.
                                                0.
                                                      200.
                                                             345.
                                                                    456.
                           0.
                                  0.
                                         0.
                                                                           500.
                                                                                  500.
                                                                                         240.
                                                                                                  0.
2241.
                                                       0.
1980 Dem 5
                    0.
                           0.
                                  0.
                                         0.
                                                0.
                                                              0.
                                                                     0.
                                                                            0.
                                                                                   0.
                                                                                          0.
                                                                                                  0.
0.
1980 Dem_2
                 2458.
                        2259.
                                2290.
                                       2758.
                                              2880.
                                                     3000.
                                                            3000.
                                                                   3000.
                                                                          3000.
                                                                                 3000.
                                                                                         3000.
                                                                                               1500.
32145.
1980 Dem 1
                 2000.
                        2000.
                                2000.
                                       2000.
                                                                                                2000.
                                              2000.
                                                     2000.
                                                            2000.
                                                                   2000.
                                                                          2000.
                                                                                 2000.
                                                                                        2000.
24000.
# Exhibit 6.5
 *.eom; End of month contents for StateMod Example
 ************
     Card 1 Control format: (i4, 1x, a12, 12f8.0)
#
     Year
            irvr:
                            Year
             cistat:
                            Station id
#
     TD
     resolv(1-12):
                           end of Month reservoir contents
#
#
# Yr ID
                   Oct
                       Nov Dec Jan
                                                                                 Jul
                                               Feb
                                                      Mar
                                                             Apr
                                                                     Mav
                                                                            Jun
                                                                                        Aug
                                                                                                 Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
  10/1979 -
                9/1980 ACFT WYR
                46039. 43261. 40674. 38246. 36209. 33772. 31358. 43248. 54924. 52296. 49714. 47292.
1980 Res_1
#
 *.xbi
            Base flow information at stream gauge locations
#
#
#
   STATEMOD
   StateMod Baseflow Example - ex6.* data set
# Statemod Version: 12.289 Date = 2008/09/12)
                   9/15/ 8 11:49: 9
# Run date:
 Time Step:
                  Monthly
#
```

Naturalized Flow Estimate Information From 1979 OCT To 1980 SEP

Note: Annual Average Naturalized Flows have negatives set to zero

Divert includes diversion from stream by all sources (priority, storage, exchange)

Return includes returns from diversions & wells

Wel Dep includes immediate and lagged depletions
Note: Ground Water storage to maintain streamflow at or greater than zero (To_From_GW_Stor) is not included

Naturalized Flow Informat	cion ACFT	Import Divort	Return Well	Dolta	Not	Total	w/o (-)
Year Mon Days River ID ToSoilM FrSoilM	Flow	(-) (+)	(-) Dep (+)			Total Base Flow	
ToSoilM FrSoilM	CU Loss (1) (12) (13)	(2)	Name (4) (5)	(6)	(7)	(8)	(9)
1979 OCT 31 Dem_3 0. 0.	1000.	0. 0. Evide	0. 0. Diver. 3/Inflow	0.	0.	1000.	1000.
1979 OCT 31 Dem_5	3000.	0. 0.	0. 0.	0.	0.	3000.	3000.
0. 0. 1979 OCT 31 ISF.01 0. 0.	0.	0. 4458.	Diver. 5/Inflow 1254. 0. Instream Flow	-3961.	0.	3243.	3243.
Naturalized Flow Informat							
Year Mon Days River ID	Gauged Flow CU Loss (1)	Import Divert (-) (+) Pumping River	Return Well (-) Dep (+)	Delta Sto (+)	Net Evp (+)	Total Base Flow	w/o (-) Base Flow
(10) (11)	(12) (13)	(2) (3) (14) (15)	(4) (5)	(6)	(7)	(8)	(9)
1979 NOV 30 Dem_3 . 0.	1000. 278. 0.	0. 556. 0. Exist.	0. 0. Diver. 3/Inflow	0.	0.	1556.	1556.
1979 NOV 30 Dem_5	3000.	0. 0.	0. 0. Diver. 5/Inflow	0.	0.	3000.	3000.
1979 NOV 30 ISF.01	4000.	0. 4815.	2438. 0. Instream Flow	-2778.	0.	3599.	3599.
Naturalized Flow Informat	cion ACFT	Tourist Discount	Dahaan Mall	D-1+-	27.5	Total	//
Year Mon Days River ID ToSoilM FrSoilM	Gauged Flow CU Loss	Import Divert (-) (+) Pumping River	Return Well (-) Dep (+) Name	Delta Sto (+)		Base Flow	w/o (-) Base Flow
(10) (11)	(1)	(2) (3)	(4) (5)	(6)	(7)	(8)	(9)
	1000.	0. 852.	0. 0.	0.	0.	1852.	1852.
0. 0. 1979 DEC 31 Dem_5	426. 0. 3000.		Diver. 3/Inflow 0. 0.	0.	0.	3000.	3000.
0. 0. 1979 DEC 31 ISF.01 0. 0.	0. 0. 4000. 1971. 0.	0. 5142.	Diver. 5/Inflow 2929. 0. Instream Flow	-2587.	0.	3626.	3626.
Naturalized Flow Informat	ion ACFT						
Year Mon Days River ID		Import Divert (-) (+) Pumping River	Return Well (-) Dep (+)	Delta Sto (+)		Total Base Flow	
(10) (11)	(1)	(2) (3)		(6)	(7)	(8)	(9)
1980 JAN 31 Dem_3	1000.	0. 951.	0. 0.	0.	0.	1951.	1951.
0. 0. 1980 JAN 31 Dem_5	476. 0. 3000.	0. 0.	Diver. 3/Inflow 0. 0.	0.	0.	3000.	3000.
0. 0. 1980 JAN 31 ISF.01 0. 0.	4000.	0. Exist. 0. 5709. 0. Bottom	3313. 0.	-2428.	0.	3968.	3968.
Naturalized Flow Informat		o. Boccom	TIBELEAU TIOW				
Year Mon Days River ID	Gauged Flow	(-) (+)	Return Well (-) Dep (+)	Delta Sto (+)	Net Evp (+)	Total Base Flow	w/o (-) Base Flow
ToSoilM FrSoilM			Name (4) (5)	(6)	(7)	(8)	(9)
1980 FEB 28 Dem_3	1000.	0. 984. 0. Exist.	0. 0. Diver. 3/Inflow	0.	0.	1984.	1984.
1980 FEB 28 Dem_5	3000.	0. 0. 0 Erist	Diver. 3/Inflow 0. 0. Diver. 5/Inflow	0.	0.	3000.	3000.
1980 FEB 28 ISF.01 0. 0.	0. 0. 4000. 2332. 0.	0. 5864.	3493. 0.	-2037.	0.	4334.	4334.
Naturalized Flow Informat		Import Divert	Return Well	Delta	Net	Total	w/o (-)

ToSoilM	ys River ID FrSoilM	CU	Flow Loss	(-) Pumping	(+) River	$ \mbox{(-)} \qquad \mbox{Dep (+)} \\ \mbox{Name} $	Sto (+)	Evp (+)	Base Flow	Base Flo
(10) 			(I)	(2)	(3)	(4) (5)	(6)	(7)	(8)	(9
1 000 MAR			1000		005	0. 0.	0.	0.	1995.	1995
0.	0. 31 Dem 5	498.	0.	0.	Exist.	Diver. 3/Inflow 0. 0. Diver. 5/Inflow 3615. 0.	0.	0.	3000.	3000
0.	0.	0.	0.	0.	Exist.	Diver. 5/Inflow	0.			
1980 MAR 0.	31 ISF.01 0.	2516.	4000.	0.	6195. Bottom	3615. 0. Instream Flow	-2437.	19.	4162.	4162
Naturalized	Flow Inform	ation ACF G	T auged	Import	Divert	Return Well	Delta	Net	Total	w/o (-
Year Mon Da ToSoilM	ys River ID FrSoilM	CU	Flow Loss	(-) Pumping	(+) River	Return Well (-) Dep (+) Name (4) (5)	Sto (+)	Evp (+)	Base Flow	Base Flo
(10)	(11)	(12)	(1)	(2)	(15)	(4) (5)	(6)	(7)	(8)	(
 1980 APR	30 Dem_3		1000.	0.	998.	0. 0.	0.	0.	1998.	199
0. 1980 APR	0. 30 Dem 5	499.	0. 3000.	0.	Exist.	0. 0. 0. Diver. 3/Inflow 0. 0. Diver. 5/Inflow 3734. 0.	0.	0.	3000.	300
0.	0.	0.	0.	0.	Exist.	Diver. 5/Inflow	2414		4407	440
0.	0.	2804.	0.	0.	Bottom	1 Instream Flow	-2414.	232.	4427.	442
Naturalized	Flow Informa	ation ACF G	T auged	Import	Divert	Return Well	Delta	Net	Total	w/o (
Year Mon Da ToSoilM	ys River ID FrSoilM	CU	Flow	(-) Pumping	(+) River	Return Well (-) Dep (+) Name (4) (5)	Sto (+)	Evp (+)	Base Flow	Base Fl
(10)	(11)	(12)	(13)	(14)	(15)	(4) (5)	(6)	(/)	(8)	
1000 MAY	21 Dom 2				1000.	0. 0.	0.	0.	6000.	600
0. 1980 MAY	0. 31 Dem_5	500. 1	0. 5000.	0.	Exist.	Diver. 3/Inflow 0. 0. Diver. 5/Inflow 3800. 0.	0.	0.	15000.	1500
0.	0.	0.	0.	0.	Exist.	Diver. 5/Inflow	11890.	219.	34765.	3476
0.	0.	2847.	0.	0.	Bottom	Instream Flow	11090.	219.	34705.	34/0
Naturalized		α.		Import	Divert	Return Well	Delta	Net	Total	w/o (
Year Mon Da ToSoilM	ys River ID FrSoilM	CU	Flow Loss	(-) Pumping	(+) River	(-) Dep (+) Name (4) (5)	Sto (+)	Evp (+)	Base Flow	Base Fl
(10)	(11)	(12)	(1)	(2)	(3) (15)	(4) (5)	(6)	(7)	(8)	(
 1980 JUN	30 Dem_3		5000.	0.	1000.	0. 0.	0.	0.	6000.	600
0.	0. 30 Dem 5	500.	0.	0.	Exist.	Diver. 3/Inflow 0. 0. Diver. 5/Inflow 3839	0.	0.	15000.	1500
0.	0.	0.	0.	0.	Exist.	Diver. 5/Inflow	0.			
1980 JUN 0.	30 ISF.01 0.	3292	0000.							3497
		3232.	0.	0.	6500. Bottom	3839. 0. Instream Flow	11676.	642.	34979.	
	Flow Inform	ation ACF	Т	0.	Bottom	n Instream Flow	11070.			
		ation ACF G	T auged : Flow Loss	0. Import (-) Pumping	Bottom Divert (+) River	Return Well (-) Dep (+)	Delta Sto (+)	Net Evp (+)	Total Base Flow	w/o (Base Fl
Year Mon Da ToSoilM	ys River ID FrSoilM	ation ACF Ga CU (12)	T auged Flow Loss (1) (13)	0. Import (-) Pumping (2) (14)	Divert (+) River (3) (15)	n Instream Flow	Delta Sto (+)	Net Evp (+)	Total Base Flow	w/o (Base Fl
Year Mon Da	ys River ID FrSoilM (11)	ation ACF G CU (12)	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14)	Divert (+) River (3) (15)	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+)	Net Evp (+)	Total Base Flow (8)	w/o (Base Fl
Year Mon Da	ys River ID FrSoilM (11)	ation ACF G CU (12)	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14)	Divert (+) River (3) (15)	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+)	Net Evp (+)	Total Base Flow (8)	w/o (Base Fl
Year Mon Da	ys River ID FrSoilM (11)	ation ACF G CU (12)	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14)	Divert (+) River (3) (15)	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+)	Net Evp (+)	Total Base Flow (8)	w/o (Base Fl
Year Mon Da	ys River ID FrSoilM (11) (11) (11) (11) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	Acr G CU (12) 500.	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14) 0. 0. 0.	Divert (+) River (3) (15) 1000. Exist. 6500.	Return Well (-) Dep (+)	Delta Sto (+)	Net Evp (+)	Total Base Flow (8)	w/o (Base Fl
Year Mon Da ToSoilM (10)	ys River ID FrSoilM (11) (11) (11) (11) (11) (11) (11) (11	Action ACF G (12) 500. 0. 3048.	T auged : Flow Loss (11) (13) 1000. 0.3000. 0.4000. 0.	0. Import (-) Pumping (2) (14) 0. 0. 0. 0. 0.	Divert (+) River (3) (15) 1000. Exist. 0. Exist. 6500. Bottom	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+) (6) 0. 02628.	Net Evp (+) (7) 0. 0.	Total Base Flow (8) 2000. 3000. 4420.	w/o (Base Fl (
Year Mon Da ToSoilM (10)	ys River ID FrSoilM (11) (11) (11) (11) (11) (11) (11) (11	Action ACF G (12) 500. 0. 3048.	T auged : Flow Loss (11) (13) 1000. 0.3000. 0.4000. 0.	0. Import (-) Pumping (2) (14) 0. 0. 0. 0. 0.	Divert (+) River (3) (15) 1000. Exist. 0. Exist. 6500. Bottom	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+) (6) 0. 02628.	Net Evp (+) (7) 0. 0.	Total Base Flow (8) 2000. 3000. 4420.	w/o (Base Fl (
Year Mon Da ToSoilM (10) 0.1980 JUL 0.1980 JUL 0.1980 JUL 0.1980 JUL ToSoilM	ys River ID FrSoilM (11) 31 Dem_3 0. 31 Dem_5 0. 31 ISF.01 0. Flow Informative River ID FrSoilM	ation ACF G (12) 500. 0. 3048. ation ACF G	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14) 0. 0. 0. 0. 0. Import (-) Pumping (2)	Divert (+) River (3) (15) 1000. Exist. 6500. Bottom Divert (+) River (3)	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+) (6) 0. -2628. Delta Sto (+)	Net Evp (+) (7) 0. 0. 398.	Total Base Flow (8) 2000. 3000. 4420. Total Base Flow	w/o (Base Fl 200 442 w/o (Base Fl
Year Mon Da ToSoilM (10)	ys River ID FrSoilM (11) 31 Dem_3 0. 31 Dem_5 0. 31 ISF.01 0. Flow Information PresoilM (11) (11)	Sation ACF G CU (12) Solution ACF G CU (12) CU (12)	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14) 0. 0. 0. 0. 0. Umport (-) Pumping (2) (14)	Divert (+) River (3) (15) 1000. Exist. 6500. Bottom Divert (+) River (-) River (-)	Return Well (-) Dep (+) Name (4) (5) 0. 0. 0. Diver. 3/Inflow 0. 0. Diver. 5/Inflow 3850. 0. Instream Flow Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+) (6) 02628. Delta Sto (+) (6)	Net Evp (+) (7) 0. 0. 398. Net Evp (+) (7)	Total Base Flow (8) 2000. 3000. 4420. Total Base Flow (8)	w/o (Base Fl 200 300 4422 w/o (Base Fl (
Year Mon Da ToSoilM (10)	ys River ID FrSoilM (11) 31 Dem_3 0. 31 Dem_5 0. 31 ISF.01 0. Flow Information PresoilM (11) (11)	Sation ACF G CU (12) Solution ACF G CU (12) CU (12)	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14) 0. 0. 0. 0. 0. Umport (-) Pumping (2) (14)	Divert (+) River (3) (15) 1000. Exist. 6500. Bottom Divert (+) River (-) River (-)	Return Well (-) Dep (+) Name (4) (5) 0. 0. 0. Diver. 3/Inflow 0. 0. Diver. 5/Inflow 3850. 0. Instream Flow Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+) (6) 02628. Delta Sto (+) (6)	Net Evp (+) (7) 0. 0. 398. Net Evp (+) (7)	Total Base Flow (8) 2000. 3000. 4420. Total Base Flow (8)	w/o (Base Fl (200 300 442
Year Mon Da ToSoilM (10)	ys River ID FrSoilM (11) 31 Dem_3 0. 31 Dem_5 0. 31 ISF.01 0. Flow Information PresoilM (11) (11)	Sation ACF G CU (12) Solution ACF G CU (12) CU (12)	T auged : Flow Loss (1) (13)	0. Import (-) Pumping (2) (14) 0. 0. 0. 0. 0. Umport (-) Pumping (2) (14)	Divert (+) River (3) (15) 1000. Exist. 6500. Bottom Divert (+) River (-) River (-)	Return Well (-) Dep (+) Name (4) (5)	Delta Sto (+) (6) 02628. Delta Sto (+) (6)	Net Evp (+) (7) 0. 0. 398. Net Evp (+) (7)	Total Base Flow (8) 2000. 3000. 4420. Total Base Flow (8)	w/o (Base Fl (200 300 442 w/o (Base Fl ()

Naturalized Flow Information ACFT Well Net Total w/o (-) Gauged Import Divert Return Delta Year Mon Days River ID (-) Dep (+) (-)(+) Sto (+) Evp (+) Base Flow Base Flow Flow ToSoilM FrSoilM Loss Pumping River Name (2) (3) (4) (5) (6) (7) (8) (1) (13) (14) (15) (10) (11) (12) 1 30 Dem_3 1000. 1000. 0. 0. 0. 2000. 2000. 0. 0. 500. 0. 0. Exist. Diver. 3/Inflow 1980 SEP 30 Dem_5 3000. 0. 0. 0. 0. 0. 3000. 3000. 0. Exist. Diver. 5/Inflow 0. 0. 0. 0. 1980 SEP 30 ISF.01 4000. 4500. 3285. 3039. -2422. 246. 3039. 0. 1896. 0. 0. Bottom Instream Flow

Base Flow Estimate Information ACFT From 1980 OCT To 1980 SEP

Note: Annual Average Base Flows have negatives set to zero

Divert includes diversion from stream by all sources (priority, storage, exchange)

Return includes returns from diversions & wells

Wel Dep includes immediate and lagged depletions

CU does include net reservoir evaporation

Note: Ground Water storage to maintain streamflow at or greater than zero (To_From_GW_Stor) is not included

											_			
1			Gau	ged 1	Import		Divert	Retur	n We	ell	Delta	Net	Total	w/o (-)
	То			1	()		(.)	,) Da	/ · · ·	Sto (+)	E (,)	D El	Dana Elas
rear		y River ID SoilM	F'.	TOW	(-)		(+)) (–) рер	(+)	Sto (+)	EAD (+)	Base Flow	Base Flow
1	SOLIM	SOLIM	CU							E /	(6)	(7)	/ 0 \	(0)
1	(10)	(11)						(4	, (5)	(6)	(/)	(0)	(9)
1	(10)	(11)	(12)	(13)	(14)	(15)							
T									_					
Δve	OCT	Dem_3	10	0.0			0	0		0	0.	0.	1000.	1000.
	0.	0.	0.						3/Inflow	٠.	٠.	٠.	1000.	1000.
	NOV	Dem_3	10							0.	0.	0.	1556.	1556.
	0.	0.	278.						3/Inflow					
	DEC	Dem 3	10								0.	0.	1852.	1852.
	0.		426.			0.	Exist.	Diver.	3/Inflow					
Ave	JAN	Dem_3	10	00.	0.		951.	0		0.	0.	0.	1951.	1951.
	0.	0.	476.	0.		0.	Exist.	Diver.	3/Inflow					
Ave	FEB	Dem_3	10	00.	0.		984.	0		0.	0.	0.	1984.	1984.
	0.	0.	492.	0.		0.	Exist.	Diver.	3/Inflow					
	MAR	Dem_3	10	00.							0.	0.	1995.	1995.
	0.	0.	498.			0.	Exist.	Diver.	3/Inflow					
	APR	Dem_3	10								0.	0.	1998.	1998.
	0.	0.	499.			0.	Exist.	Diver.	3/Inflow					
	MAY	Dem_3	50								0.	0.	6000.	6000.
	0.	0.	500.						3/Inflow					
	JUN	Dem_3	50						•		0.	0.	6000.	6000.
	0.	0.	500.						3/Inflow					
	JUL	Dem_3	10								0.	0.	2000.	2000.
	0.	0.	500.	0.		0.	Exist.	Diver.	3/Inflow					
	AUG		100	00.	0.		1000.	0	•	0.	0.	0.	2000.	2000.
	0.		500.	0.		0.	Exist.	Diver.	3/Inflow					
	SEP		10								0.	0.	2000.	2000.
l	0.	0.	500.	0.		0.	Exist.	Diver.	3/Inflow					
Ave	Ann			00.						0.	0.	0.	30336.	30336.
	0.	0.	5168.	0.		0.	Exist.	Diver.	3/Inflow					

Base Flow Estimate Information ACFT From 1980 OCT To 1980 SEP

Note: Annual Average Base Flows have negatives set to zero

Divert includes diversion from stream by all sources (priority, storage, exchange)

Return includes returns from diversions & wells

Wel Dep includes immediate and lagged depletions

CU does include net reservoir evaporation

Note: Ground Water storage to maintain streamflow at or greater than zero (To_From_GW_Stor) is not included

			(Gauged	Import	Divert	Return	Well	Delta	Net	Total	w/o (-)
	To	From										
Yea	r Mon Day	y River ID		Flow	(-)	(+)	(-)	Dep (+)	Sto (+)	Evp (+)	Base Flow	Base Flow
	SoilM	SoilM	CU	Los	s Pumpi	ng River	Name					
				(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	(10)	(11)	(12)	(13	(1	.4) (15)						
_												
Αv	re OCT	Dem_5		3000.	0.	0.	0.	0.	0.	0.	3000.	3000.
	0.	0.	0.	0	١.	0. Exist.	Diver. 5/	Inflow				
A٦	re NOV	Dem_5		3000.	0.	0.	0.	0.	0.	0.	3000.	3000.
	0.	0.	0.	0	١.	0. Exist.	Diver. 5/	Inflow				
Αv	re DEC	Dem_5		3000.	0.	0.	0.	0.	0.	0.	3000.	3000.
	0.	0.	0.	0	١.	0. Exist.	Diver. 5/	Inflow				

	Ave JAN	1	Dem_5	3000.		0.	0.	0.	0.	0.	0.	3000.	3000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	ow				
	Ave FEB	3	Dem_5	3000.		0.	0.	0.	0.	0.	0.	3000.	3000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				
	Ave MAR	2	Dem_5	3000.		0.	0.	0.	0.	0.	0.	3000.	3000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				
	Ave APR	Į.	Dem_5	3000.		0.	0.	0.	0.	0.	0.	3000.	3000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	ow				
	Ave MAY		Dem_5	15000.		0.	0.	0.	0.	0.	0.	15000.	15000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				
	Ave JUN	1	Dem_5	15000.		0.	0.	0.	0.	0.	0.	15000.	15000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				
	Ave JUL		Dem_5	3000.		0.	0.	0.	0.	0.	0.	3000.	3000.
		0.	0.	0.			0. Exist. D	iver. 5/Infl	OW				
	Ave AUG	}	Dem_5	3000.		0.	0.	0.	0.	0.	0.	3000.	3000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				
	Ave SEP)	Dem_5	3000.				0.		0.	0.	3000.	3000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				
_													
	Ave Ann		_					0.		0.	0.	60000.	60000.
		0.	0.	0.	0.		0. Exist. D	iver. 5/Infl	OW				

Base Flow Estimate Information ACFT From 1980 OCT To 1980 SEP

Note: Annual Average Base Flows have negatives set to zero

Divert includes diversion from stream by all sources (priority, storage, exchange)

Return includes returns from diversions & wells

Wel Dep includes immediate and lagged depletions

TOTAL

CU does include net reservoir evaporation
Note: Ground Water storage to maintain streamflow at or greater than zero (To_From_GW_Stor) is not included

ı	To	From	Ga	uged	Import	Divert	Return		Well	Delta	Net	Total	w/o (-)
(ear	Mon Day SoilM		CU	Flow Los	(-)	(+) River	(-) Name	Der	9 (+)	Sto (+)	Evp (+)	Base Flow	Base Flow
	(10)	(11)	(12)	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)
Ave	OCT	ISF.01		1000.	0.	4458.	1254.		0.	-3961.	0.	3243.	3243.
Ave		0. ISF.01		1000.	0.	4815.	Instream 2438.		0.	-2778.	0.	3599.	3599.
Ave		0. ISF.01		1000.	0.	5142.	Instream 2929.		0.	-2587.	0.	3626.	3626.
Ave		0. ISF.01		1000.	0.	5709.	Instream 3313.		0.	-2428.	0.	3968.	3968.
 Ave 	FEB	0. ISF.01 0.	2254. 4 2332.	1000.	0. 0.	5864.	Instream 3493. Instream		0.	-2037.	0.	4334.	4334.
Ave 	MAR	ISF.01 0.		1000.	0.	6195.	3615.		0.	-2437.	19.	4162.	4162.
Ave 		ISF.01 0.		1000.	0.	6343.	3734. Instream		0.	-2414.	232.	4427.	4427.
Ave		ISF.01 0.		0000.	0.	6456.	3800. Instream		0.	11890.	219.	34765.	34765.
Ave	JUN 0.	ISF.01 0.	20 3292.	0000.	0.	6500.	3839. Instream		0.	11676.	642.	34979.	34979.
Ave	JUL 0.	ISF.01 0.		1000.	0.	6500. Bottom	3850. Instream	Flow	0.	-2628.	398.	4420.	4420.
Ave	AUG 0.	ISF.01 0.	2827.	1000.	0.		3785. Instream	Flow	0.	-2582.	307.	4180.	4180.
Ave	SEP 0.	ISF.01 0.	1896.	1000.	0.	4500. Bottom	3285. Instream	Flow	0.	-2422.	246.	3039.	3039.
Ave 	Ann 0.	ISF.01 0.	80 29225.	0000.	0.	68722. Bottom	39336. Instream	Flow	0.	-2708.	2064.	108742.	108742.
‡ ‡										_			
	tbm :	Base Flow	Results -	- Monthl	-У								
‡		aseflow Ex	_										
‡ Run	temod Vera date and e Step:	time:	2.289 (20 9/15/ 8 thly										
· 													

9/1980 A	CFT WYR										
1000.	1556.	1852.	1951.	1984.	1995.	1998.	6000.	6000.	2000.	2000.	2000.
2000	2000	2000	2000	2000	2000	2000	15000	15000	2000	2000	2000
3000.	3000.	3000.	3000.	3000.	3000.	3000.	15000.	15000.	3000.	3000.	3000.
3243.	3599.	3626.	3968.	4334.	4162.	4427.	34765.	34979.	4420.	4180.	3039.
	1000. 3000.	1000. 1556. 3000. 3000.	1000. 1556. 1852. 3000. 3000. 3000.	1000. 1556. 1852. 1951. 3000. 3000. 3000. 3000.	1000. 1556. 1852. 1951. 1984. 3000. 3000. 3000. 3000. 3000.	1000. 1556. 1852. 1951. 1984. 1995. 3000. 3000. 3000. 3000. 3000. 3000.	1000. 1556. 1852. 1951. 1984. 1995. 1998. 3000. 3000. 3000. 3000. 3000. 3000. 3000.	1000. 1556. 1852. 1951. 1984. 1995. 1998. 6000. 3000. 3000. 3000. 3000. 3000. 3000. 15000.	1000. 1556. 1852. 1951. 1984. 1995. 1998. 6000. 6000. 3000. 3000. 3000. 3000. 3000. 15000. 15000.	1000. 1556. 1852. 1951. 1984. 1995. 1998. 6000. 6000. 2000. 3000. 3000. 3000. 3000. 3000. 15000. 15000. 3000.	1000. 1556. 1852. 1951. 1984. 1995. 1998. 6000. 6000. 2000. 2000. 3000. 3000. 3000. 3000. 3000. 15000. 15000. 3000. 3000.

cdss@state.co.us
Last updated: September 2008

Example 7

```
*.rsp; response file for Statemod Example 7
            This response file lists the StateMod input files necessary for model simulation
# Type
                                                                         Name
                                                                      = ex7.ct1
Control
River Network
                                                                      = ex7.rin
StreamGage Station
                                                                      = ..\ex1\ex1.ris
Stream Base Monthly
                                                                      = ..\ex1\ex1.rim
Diversion Station
                                                                      = ... \times 1 \times 1.dds
Diversion_Right
                                                                      = ... ex1 ex1.ddr
Diversion Demand Monthly
                                                                      = ... ex1 ex1.ddm
Instreamflow Station
                                                                      = ... ex1 ex1.ifs
Instreamflow Right
                                                                      = ... ex1 ex1.ifr
Instreamflow Demand AverageMonthly
                                                                      = ..\ex1\ex1.ifa
Well Station
                                                                      = ex7.wes
Well_Right
                                                                      = ex7.wer
Well Demand Monthly
                                                                      = ex7.wem
Well Historic Monthly
                                                                      = ex7.weh
DelayTable Monthly
                                                                      = ex7.urm
OutputRequest
                                                                      = ..\ex1\ex1.out
# Exhibit 7.2
# ex*.ctl; Control file for StateMod Example 7
   STATEMOD
   StateMod Operating Rule Example - ex7.* data set
                   : iystr STARTING YEAR OF SIMULATION : iyend ENDING YEAR OF SIMULATION
      1980
      1980
                     : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
                     : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA
                    : ipflo TYPE OF STREAM INFLOW. 1 FOR The strength of the stren
                                       TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
                     : numeva NO. OF EVAPORATION STATIONS
           1
                     : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
   1 9835
                     : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
                     : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
   1.9835
                     : dfacto DIVISOR FOR DIVERSION DATA;
                                                                                                  ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
   1.9835
                     : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
                      : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
   1.0
                     : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
   1.0
                     : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
   1.0
   WYR
                     : cyrl Year type (a5 right justified !!)
                     : icondem 1=no add; 2=add, 3=total demand in *.ddm
                     : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
                     : ireopx Re-operation switch (0=re-operate;1=no re-operation)
                     : ireach 0=no instream reach; 1=yes instream flow reach
                     : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data : ccall Detailed call water right ID (not used if icall = 0)
                                        Switch for daily calculations 0 Monthly analysis, 1 Daily analysis \,
                     : iwell Switch for well operations See section 7.4 for a discussion of the well options.
                     : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
                     : isjrip San Juan RIP
                     : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
                     : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
                     : isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
: soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
                      : isiq
                                     Number of significant digits behind decimal point in output files
# Exhibit 7.3
   *.rin; River node network file for StateMod Example 7
   Card 1 Control format: (a12, a24, a12, 1x, a12, 1x, f8.0)
                           cstaid: Station ID
    Name stanam: Station name
Downstream cstadn: Downstream node ID
```

```
Comment: Alternate identifier/comment.
               gwmaxr: Max recharge limit (cfs) - see iwell in control file.
  GWMax
#
                      Name
                                       DownStream
                                                       Comment
#-----eb-----exb-----exb-----exb-----exb-----exb-----exb------exb------exb------
Dem_3 Exist. Diver. 3/Inflow Dem_4
Wel_3 Exist. Well_3 Dem_3
Dem_4 Exist Diver 4 Piver 4
          Exist. Diver. 4 Riv_5(
Exist. Diver. 5/Inflow Dem_2
                                       Riv_50
Dem 4
Dem_5

        Dem_5
        Exist. Diver. 5/Inflow
        Dem_2

        Dem_2
        Exist. Diver. 2
        Riv_50

        Wel_2
        Exist. Well_2
        Dem_2

        Riv_50
        Confluence
        Dem_1

        Dem_1
        Exist. Diver. 1
        ISF

        Wel_1
        Exist. Well_1
        Dem_1

        ISF
        Top Instream Flow
        ISF.01

ISF.01
            Bottom Instream Flow
# Exhibit 7.4
# *.wes; Well structure file for StateMod Example 7
     Card 1 Control format: (a12, a24, a12, i8, f8.0, 1x, a12)
#
      ID cwelid: Well ID Name divnamw: Well name
      Riv ID cgoto: (idvstaw) River Node where well is located On/Off idivsww: Switch O=off; l=on Capacty divcapw: Well capacity (cfs)
      Daily ID cdividwx; Well ID to use for daily data
                                      Riv ID
                                                     ON/Off Capacty Daily ID
Card 2 User Data
      format: (12x, 24x, a12, 2i8, 2f8.0)
      DivID cgoto2 (divcow2) Diversion this well is tied to (N/A if not tied to a diversion)
      DemCode idvcomw: Code 1=input demand evrey year, 2=constant monthly, 3=jansen hayes,
                          4=blaney criddle, 5=zero, 6=tied to a direct diversion
      #-Ret nrtnw: Number of return flow locations
      #-Net nrtnw: Number of return from locations
#-Dep nrtnw2: Number of depletion locations
Eff % diveffw: System efficiency (%)
Area areaw: Not used; enter 0
Type irturnw: Use type; 0-3=Inbasin; 4=Transmountain
      Source demsrcw: Irrig acreage source (1=GIS, 2=tia, 3=GIS-primary, 4=tia-primary, 5=secondary, 6=M&I no acreage, 7=carrier no acreage, 8=user),
Card 3 Variable Efficiency Data (Enter if diveff < 0)
      format: (free)
Card 4 Return Flow Data (Enter nrtnw values)
format: (36x, al2, f8.0, i8)
      Ret Id crtnidw: River ID receiving return flow
      Ret % pcttotw: Percent of return flow to location
Table # irtndlw: Return flow table id
                                      NA
                                                     Ret ID Ret % Table #
#----eb----eb----eb----e
      Card 5 Depletion Data (Enter nrtnw2 values) format: (36x, a12, f8.0, i8)
      Dep Id crtnidw2: River ID depleted by diversion
     Dep % pcttotw2: Percent of depletion to location Table # irtndlw2: Return (depletion) table id
#1 TD
                                       Riv TD
                                                      ON/Off Capacty Daily ID Primary
                                                                                                   Plan TD
#-----eb-----exb-----exb-----exb-----exb-----exb------exb------exb-------
#2NA N/A DivID DemCode #-Ret #-Dep Eff % Area Type Source #-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
                                                                                                    Type Source
                                       Ret ID
                                                      Ret % Table #
#4 NA
            -----eb----eb----e
#-----
#5 NA
                                       Dep ID
                                                      Dep % Table #
Wel_1 Well Structure 1
                                       Wel_1 1 5000. Wel_1
                                                                                     0 NA
50. 0. 1
                                     Wel_2
          Well Structure 2
                                                                                    0
                                                                                                    NA
```

```
50.
                                NA
                                                                                             8
                                                         1 Rtn01
                                Dem_1
                                             100.00
                                Dem 1
                                             100.00
                                                         3 Dep03
Wel_3
        Well_3 to Dem_3
                                                     5000. Wel_3
                                                                      0
                                Dem 3
                                                 1
                                                                                  NA
                                Dem 3
                                                                      50.
                                                        1
                                                         1 Rtn01
                                             100.00
                                Dem_4
                                              50.00
                                                         3 Dep03
                                Dem 3
# Exhibit 7.5
 *.wer; Well right file for StateMod Example 7
 ************
     Card 1 Control format: (a12, a24, a12, 4x, f12.5, f8.0, i8)
#
             crigidw:
                            Well right ID
     Name
                            Well right name
             namew:
                            Well Structure ID associated with this right
     Struct
            cqoto:
     Admin # rtem:
                            Priority or Administration number (if used)
             dcrwel(k):
                            Well right (cfs)
     Right
     On/Off
                            Switch 0 = off, 1 = on
            iwelrsw(k):
# ID
                                Struct
                                                            Right On/Off
          Name
                                               Admin#
#----eb-----
                               -eb----eb----eb----eb----e
Wel_1 Wr#1 Wel_1 to Wel_1 Wel_2 Wr#1 Wel_2 to Wel_2
                                Wel_1
                                                   20.00000 10.00
                                                                       1
                                                   20.00000
                                Wel 2
                                                             5.00
                                                                       1
                                                   20.00000
Wel_3 Wr#1 Wel_3 to Dem_3
                                Wel 3
                                                             50.00
                                                                       1
Wel 3 Wr#2 Wel 4 to Dem 3
                                                   20.00000
                                                             5.00
                                                                       1
                                Wel 3
# Exhibit 7.6
 *.wem; Well structure demand file for StateMod Example 7
 ************
#
     Card 1 Control format: (i4, 1x, a12, 12f8.0
#
             idyr:
     Year
             cistat:
                             Station id
#
     ID
                            Demand for month 1-12 ( ) = diver(im,nu) for station nu
     diverm(1-12):
# Yr ID
                   Oct
                                                                                    Jul
                          Nov
                                Dec
                                         Jan
                                                Feb
                                                       Mar
                                                              Apr
                                                                    Mav
                                                                             Jun
                                                                                            Aug
                                                                                                   Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
                 9/1980 AF/M WYR
  10/1979 -
1980 Wel_1
                  3000. 3000.
                                3000.
                                       3000.
                                               3000.
                                                      3000.
                                                             3000.
                                                                     3000.
                                                                                          3000.
                                                                                                  3000.
                                                                            3000.
                                                                                   3000.
36000.
1980 Wel 2
                  1000. 1000.
                                1000.
                                       1000.
                                               1000.
                                                      1000.
                                                             1000.
                                                                     1000.
                                                                            1000.
                                                                                   1000.
                                                                                          1000.
                                                                                                 1000.
12000.
# Exhibit 7.7
 *.wes; Historic Well Pumping file for StateMod Example 7
 ************
#
     Card 1 Control format: (i4, 1x, a12, 12f8.0
     Year
             idyr:
                             Station id
     TD
             cistat:
     diverm(1-12):
                            Demand for month 1-12 ( ) = diver(im,nu) for station nu
# Yr ID
                   Oct
                                                                                    Jul
                          Nov
                                Dec
                                         Jan
                                                Feb
                                                        Mar
                                                               Apr
                                                                      Mav
                                                                             Jun
                                                                                          Aug
                                                                                                   Sep
Total
# -e-b-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
#
                 9/1980 AF/M WYR
  10/1979 -
1980 Wel_1
                                 615.
                                        615.
                                                              595.
                                                                             595.
                                                                                           615.
                                                                                                   595.
                   615.
                          595.
                                                555.
                                                       615.
                                                                      615.
                                                                                    615.
7240
                  307.
                                                278.
                          298.
                                 307.
                                        307.
                                                       307.
                                                              298.
                                                                     307.
                                                                            298.
                                                                                    307.
                                                                                           307.
                                                                                                   298.
1980 Wel 2
3620
1980 Wel_3
                  1000.
                          350.
                                 454.
                                        755.
                                                766.
                                                       835.
                                                              885.
                                                                      0.
                                                                            0.
                                                                                    475.
                                                                                           558.
                                                                                                   678.
6757
# Exhibit 7.8
# *.urm; Return flow delay table for StateMod Example 7
#
     Card 1 Control format: (16x, i8, 12f8.0)
#
#
```

```
ID
           idly: Delay table id
            dlyrat(1-n,idl): Return for month n, station idl Ret1-12 coincides with months in year type in .ctl
    Ret
file
#
# ID
             Ret 1 Ret 2 Ret 3 Ret 4 Ret 5 Ret 6 Ret 7 Ret 8 Ret 9 Ret 10 Ret 11 Ret 12
    -----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
#
             50.
                    50.
                           0.
                                  0.
                                          0.
     1 5
                                               Irrigation Return Table

    Irrigation Return Table
    M&I Return Table
    Well Depletion Table

      2 5
             40.
                    30.
                           20.
                                  10.
      3 5
                    25.
                           25.
             25.
                                 25.
                                        0.
#
#
 *.xwb
           Water Budget
   STATEMOD
   StateMod Operating Rule Example - ex5.* data set
# Statemod Version: 12.29.05 Date = 2008/10/23)
# Run date: 11/6/8 15:46:13
# Time Step: Monthly
                          Water Budget ACFT
                                              From From
To SoilM
SoilM Plan (5)
             Stream
                                 From/To
                                             From
                                                                  Total From River
                                                                                                  Well
                      Stream Reservoir
Return GWStorage
                                                                  Total
Inflow Divert (6) by Well Depletion
Reservoir Reservoir
Year Mo Inflow
                                Change
                                                                                     CU (1) Loss
Evaporation
              Seepage
                       Outflow
                                               SoilM Change
                                                                  Outflow Delta
(2) Pumping (3) Salvage (4)
                          (+)
               (+)
                                                (+)
                                                          (+)
                                                                      NA
                                                                                (-)
                                                                                          (-)
                                                                                                     ( - )
                              ( - )
                    ( - )
                                         ( - )
                                                    ( - )
                                                                          NA
                                                                                    NA
                                                                                                NA
                                                               NA
NA
          NA
               (1) (2) (13)
                                                         (5)
                                               (4)
                                                                               (7)
                                    (3)
                                                                    (6)
                                                                                          (8)
                                                    (15)
                                                               (16)
                                                                         (17)
                                                                                    (18)
(10)
          (11)
                                         (14)
                                                                                               (19)
(20)
          (21)
                        1751.1
              4000.0
                                     0.0
                                                          0.0
1979 OCT
                                                          0.0 5751.1 6444.4
5751.1 0.0 2622.2
                                                0.0
                                                                                          0.0
                                                                                                     0.0
                                    0.0
         0.0 665.0 -1358.3
                                               0.0
0.0
                                                                                          0.0
0.0
          0.0
              4000 0 3231 1
                                                         0 0
                                     0 0
                                               0.0
                                                                  7221 1
                                                                             6000 0
                                                                                          0 0
                                                                                                     0.0
                                                                                                       0
                                                                                                       0
                                                                                                       0
                                                                                                       0
                                                                                                       0
                                                                                                       0
```

1979 NOV	4000.0 3231.3	1	0.0		0.0		0.0 7231.1	6000.0	0.0		0.0
0.0	0.0 1231.1	0.0		0.0		0.0	7231.1	0.0 2400.0		0.0	
0.0	0.0										
1979 DEC	4000.0 3440.0	0	0.0		0.0		0.0 7440.0	6000.0	0.0		0.0
0.0	0.0 1440.0	0.0		0.0		0.0	7440.0	0.0 2400.0		0.0	
0.0	0.0										
	4000.0 3600.0	0	0.0		0.0		0.0 7600.0	6000.0	0.0		0.0
0.0	4000.0 3600.0 0.0 1600.0	0.0		0.0		0.0	7600.0	0.0 2400.0		0.0	
0.0	0.0										
	4000.0 3600.0	n	0 0		0 0		0 0 7600 0	6000 0	0 0		0 0
0.0	0.0 1600.0										0.0
	0.0	0.0		0.0		0.0	7000.0	0.0 2100.0		0.0	
	4000.0 3600.0	n	0 0		0 0		0 0 7600 0	6000 0	0 0		0 0
24 7	0.0 1600.0	-247	0.0	0 0	0.0	0 0	7600.0	0 0 2424 7	0.0	0 0	0.0
0.0		-24.7		0.0		0.0	7000.0	0.0 2424.7		0.0	
	4000.0 3600.0	0	0 0		0 0		0 0 7600 0	6000 0	0 0		0 0
1900 APK	0.0 1600.0	220 0	0.0	0 0	0.0	0 0	7600.0	0.000.0	0.0	0 0	0.0
		-320.9		0.0		0.0	7600.0	0.0 2/20.9		0.0	
0.0	0.0	0	0 0		0 0		0.00 03705 0	6500 0	0 0		0 0
1980 MAY	20000.0 3/25.0	11706 0	0.0	0 0	0.0	0 0	0.0 23725.0	6500.0	0.0	0 0	0.0
293.8	20000.0 3725.0 0.0 5225.0 0.0	11/06.2		0.0		0.0	23/25.0	0.0 2943.8		0.0	
0.0	0.0	•						5500.0			
1980 JUN	20000.0 3850.0	0	0.0								
	0.0 5350.0	11205.3		0.0		0.0	23850.0	0.0 3444.7		0.0	
0.0											
	4000.0 3725.0										
	0.0 4027.5	-2779.5		0.0		0.0	7725.0	0.0 2877.0		0.0	
0.0	0.0										
1980 AUG	4000.0 3600.0	0	0.0		0.0		0.0 7600.0	6000.0	0.0		0.0
	0.0 4027.5	-2799.0		0.0		0.0	7600.0	0.0 2771.5		0.0	
0.0	0.0										
1980 SEP	4000.0 3600.0	0	0.0		0.0		0.0 7600.0	6000.0	0.0		0.0
301.3	0.0 3897.6	-2598.9		0.0		0.0	7600.0	0.0 2701.3		0.0	
0.0	4000.0 3600.0 0.0 3897.6 0.0										
		_									
1980 Tot	80000.0 41322.:	2	0.0		0.0		0.0 121322.2	73444.4	0.0		0.0
2583.8	0.0 32263.7	13030.3		0.0		0.0	121322.2	0.0 32106.0)	0.0	
0.0											

Water Budget ACFT	ater	ACFT	Budget	1
-------------------	------	------	--------	---

	Stream		From/To	From	From	Total	From River	Well
Reservoir	Reservoir	Stream	Reservoir	To	SoilM	Total		

Evaporation	Inflow Seepage (3) Salvage (4)	Outflow	Cha	ange		SoilM	С	hange	Outflow	Delta	. C	Well U (1)	Deple Los	etion ss
	(+)	(+)	((+)		(+)		(+)	NA	(-)		(-)		(-)
(-)	(-)		(-)		(-)		(-)		NA	NA	NA		NA	
NΙΔ	NΔ													
	(1) (11) (12 (21)	(2)	(3)		(4)		(5)	(6)	(7)		(8)		(9)
(10)	(11) (12)	(13)		(14)		(15)		(16)	(17)	(18)		(19)	
(20)	(21)													
Ave OCT	4000.0	1751 1	(۰ ۵		0.0		0 0	5751 1	6444.4		0 0		0.0
0.0	0.0 665.0	_135.1	:03	. 0	0 0					0.0 26				0.0
0.0	0.0	133			0.0		0.0	373	1.1	0.0 20	22.2		0.0	
	4000.0	3231.1	(0.0		0.0		0.0	7231.1	6000.0		0.0		0.0
0.0	0.0 1231.1									0.0 24				
0.0	0.0													
Ave DEC	4000.0	3440.0	(0.0		0.0		0.0	7440.0	6000.0		0.0		0.0
0.0	0.0 1440.0		0.0		0.0		0.0	744	0.0	0.0 24	00.0		0.0	
0.0	0.0													
	4000.0									6000.0				0.0
0.0	0.0 1600.0		0.0		0.0		0.0	760	0.0	0.0 24	00.0		0.0	
0.0	0.0													
	4000.0									6000.0				0.0
0.0	0.0 1600.0		0.0		0.0		0.0	760	0.0	0.0 24	00.0		0.0	
0.0	0.0	2600 0	,						7600 0	5000				
	4000.0					0.0				6000.0				0.0
	0.0 1600.	0 -	24.7		0.0		0.0	76	00.0	0.0 2	424.7		0.0	
	0.0 4000.0	3600 0	(0 0		0 0	7600 0	6000.0		0 0		0 0
320.9	0.0 1600	0 -	.220 0	. 0	0 0	0.0								
	0.0	- 0	320.9		0.0		0.0	,	000.0	0.0	2/20.9		0.0	
Ave MAY	20000 0	3725 0	(0 0		0.0		0 0	23725 0	6500.0		0 0		0.0
293.8	20000.0 0.0 5225	.0 11	706.2		0.0	0.0				0.0				
0.0	0.0													
Ave JUN	20000.0 0.0 5350	3850.0	(0.0		0.0		0.0	23850.0	6500.0		0.0		0.0
794.7	0.0 5350	.0 11	205.3		0.0					0.0				
0.0	0.0													
Ave JUL	4000.0	3725.0	(0.0		0.0				6000.0				0.0
477.0	0.0 4027	.5 -2	779.5		0.0		0.0	7	725.0	0.0	2877.0		0.0	
0.0	0.0													
Ave AUG	4000.0 0.0 4027	3600.0	(0.0		0.0				6000.0				0.0
371.5 0.0	0.0 4027	.5 -2	1799.0		0.0		0.0	./	600.0	0.0	2771.5		0.0	
	4000.0	2600 0	,			0 0		0 0	7600 0	6000 0		0 0		0 0
Ave SEP	0.0 3897	3600.0	\F00 0	0.0	0 0	0.0	0 0	0.0	7600.0	6000.0	2701 2	0.0	0.0	
0.0		.6 -2	398.9		0.0		0.0	/	600.0	0.0	2/01.3		0.0	
0.0	0.0													
Ave Tot	80000.0	41322.2	(0.0		0.0		0.0	121322.2	73444.4		0.0		0.0
2583.8	80000.0 0.0 3226	3.7 1	3030.3		0.	0	0.0	12	1322.2	0.0	32106.0		0.0)
0.0	0.0													
										0.0	(6)			
									_					

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency

+ max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns (4) Salvage is not part of the Stream Water Balance.

73444.4

It is the portion of well pumping that does not impact the stream $% \left(1\right) =\left(1\right) \left(1\right)$

(5) From Plan is water from a reuse plan.

(6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:

0. af/yr for Diverted to Storage. 1 2

3 0. af/yr for a Reservior Carrier. 4

0. af/yr for a Plan Carrier.

0. af/yr Total

.xwr Water rights list sorted by basin rank # STATEMOD # StateMod Operating Rule Example - ex7. data set # Statemod Version: 12.29.05 Date = 2008/10/23) 11/ 7/ 8 6:29:30 Monthly # # Run date: # Time Step:

```
*.xwr; Water Right Information
        Number of rights =
                                    10
#
#
#
#
#
 Where:
#
  1. Rank
                     = Water right basin rank
                     = Water right type
   2. Type
                    1=Instream.
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
#
                    5=Operational,
                    6=Well,
#
  3. Admin #
                    = Administration Number
   4. On/Off
                     = On or Off switch
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
#
                    1=on
                   +n=begin in year n
                   -n=stop in year n
  5. Str Id #1
                    = Primary structure for this right
#
  6. Str Id #2
                     = Secondary structure for this right (-1=N/A)# 7. Amount = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                     = Water right name
                     = Primary structure for this right
  9. Str Name #1
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
                                       Admin # On/Off Str ID #1
                                                                      Str ID #2
   Rank ID
                                                                                         Amount Right Name
                          Type
Str Name #1
                          Str Name #2
                                           (4)
                                                   (5) (6)
                                                                      (7)
                                                                                            (8) (9)
    (1) (2)
                           (3)
(10)
                           (11)
#
      1 Dem_1_WR_1
                             3
                                       2.00000
                                                                                       100.000 c M&I Demand 1
                                                     1 Dem 1
                                                                      -1
Municipal Demand 1
      2 Dem 2 WR 1
                             3
                                       6.00000
                                                                                        60.000 c Irrigation Demand _2
                                                     1 Dem 2
                                                                      - 1
Irrigation Demand _2
      3 Dem_3_WR_1
                             3
                                       7.00000
                                                     1 Dem 3
                                                                                       100.000 c Irrigation Demand 3
                                                                      - 1
Irrigation Demand _3
      4 ISF_WR_1
                                       9.00000
                             1
                                                     1 TSF
                                                                      -1
                                                                                        65.500 c Instream Flow 1
Instream Demand
      5 Dem 4 WR 1
                             3
                                      10.00000
                                                                                       100.000 c Irrigation Demand _4
                                                     1 Dem 4
                                                                      -1
Irrigation Demand 4
      6 Dem_5_WR_1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                      -1
                                                                                       100,000 c Trrigation Demand 5
Irrigation Demand _5
      7 Wel_1_Wr#1
                                      20.00000
                                                                                        10.000 c Wel_1 to Wel_1
                             6
                                                     1 Wel 1
                                                                      -1
Well Structure 1
                                                                                         5.000 c Wel_2 to Wel_2
                                      20.00000
      8 Wel_2_Wr#1
                             6
                                                     1 Wel 2
                                                                      -1
Well Structure 2
                                                                                        50.000 c Wel_3 to Dem_3
                             6
      9 Wel_3_Wr#1
                                      20.00000
                                                     1
                                                        Wel_3
                                                                     Dem_3
Well_3 to Dem_3
                          Irrigation Demand _3
                                                     6
                                                         3
     10 Wel_3_Wr#2
                             6
                                      20.00000
                                                     1
                                                        Wel_3
                                                                      Dem_3
                                                                                         5.000 c Wel_4 to Dem_3
Well_3 to Dem_3
                          Irrigation Demand _3
#
#
 *.xdd
             Diversion Summary
   STATEMOD
   StateMod Operating Rule Example - ex7.* data set
# Statemod Version: 12.29.00 Date = 2008/09/15)
# Run date: 11/ 2/ 8 14: 8:29
# Time Step:
                     Monthly
#
   Diversion Summary ACFT
     STATEMOD
    StateMod Operating Rule Example - ex7.* data set
PAGE NO.
          1
    STRUCTURE ID (0 = total) : Dem_3
                                                   - 1
    STRUCTURE ACCT (0 = total): 0
    STRUCTURE NAME
                             : Irrigation Demand _3
    RIVER LOCATION - FROM
                                        Exist. Diver. 3/Inflow
                              : Dem_3
```

Exist. Diver. 3/Inflow

RIVER LOCATION - TO

: Dem_3

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	5000.	297525.	307442.
Well Rights	:	2	55.	3273.	3382.

Shortag	re	Water Use				F D	D			F	g:	D
Carried	ı	Demand From River By									Carrier	ву
Structu					From							
	re From Total	Total C	:U	To	Total		 Upst		riom			
TD	TD TD	Year Mo				orage	Exc_Pln		Well	Priorty	Sto_Exc	Logg
Bypass	SM Supply		ort CU	SoilM	Return	_			WCII	rriorcy	DCO_BRC	довь
DIPADD	Di. Duppi	511010 51	.010 00	501111	11004211	200		· · ·				
	Station In					ion Ba						
Reach	Return Well	From/To Riv		River	River		Control		l			
Gain	Flow Deplete								1000		•	•
Dem_3	Dem_3	1979 OCT		500.	0.	0.	0.	0.	1000.	0.	0.	0.
0.	0. 1000.	0. 0.		0.	500.	0.	0.	1000.	0.	0.	0.	1000.
	25. 875.	0. Dem_1 1979 NOV		100.000 500.	778.	0.	0.	0.	222.	0.	0.	0.
Dem_3	Dem_3			0.	778. 500.	0.	0.	1000.	222.	125.	0.	0. 875.
0. 778.	0. 1000. 28. 69.	0. 0. 0. NA	500.	-1.000		υ.	0.	1000.	0.	125.	0.	8/5.
	28. 69. Dem 3	0. NA 1979 DEC	1000.	500.	694.	0.	0.	0.	306.	0.	0.	0.
Dem_3 0.	0. 1000.	0. O.		0.	500.	0.	0.	1000.	0.	153.	0.	847.
694.	38. 115.	0. NA	500.	-1.000		υ.	0.	1000.	0.	155.	0.	047.
Dem 3	Dem 3	1980 JAN	1000.	500.	544.	0.	0.	0.	456.	0.	0.	0.
0.	0. 1000.	0. 0.		0.	500.	0.	0.	1000.	0.	191.	0.	809.
544.	57. 208.	0. NA	500.	-1.000		0.	0.	1000.	0.	191.	0.	009.
Dem 3	Dem 3	1980 FEE	1000.	500.	634.	0.	0.	0.	366.	0.	0.	0.
0.	0. 1000.	0. 0.		0.	500.	0.	0.	1000.	0.	123.	0.	877.
634.	46. 197.	0. NA	500.	-1.000		٠.	0.	1000.	0.	123.	0.	077.
Dem 3	Dem 3	1980 MAR	1000.	500.	607.	0.	0.	0.	393.	0.	0.	0.
0.	0. 1000.	0. 0.		0.	500.	0.	0.	1000.	0.	141.	0.	859.
607.	49. 203.	0. NA	500.	-1.000		٠.	٠.	1000.	٠.		٠.	033.
Dem 3	Dem 3	1980 APR	1000.	500.	602.	0.	0.	0.	398.	0.	0.	0.
0.	0. 1000.	0. 0.		0.	500.	0.	0.	1000.	0.	152.	0.	848.
602.	50. 196.	0. NA	500.	-1.000		٠.	٠.	1000.	٠.	152.	٠.	010.
Dem_3	Dem_3	1980 MAY	1000.		1000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1000.	0. 0.		0.	500.	0.	0.	5000.	0.	145.	0.	4855.
1000.	0. 3855.	3855. NA		-1.00	0							
Dem 3	Dem 3	1980 JUN	1000.	500.	1000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1000.	0. 0.	500.	0.	500.	0.	0.	5000.	0.	99.	0.	4901.
1000.	0. 3901.	3901. NA		-1.00	0							
Dem_3	Dem_3	1980 JUI	1000.	500.	899.	0.	0.	0.	101.	0.	0.	0.
0.	0. 1000.	0. 0.	500.	0.	500.	0.	0.	1000.	0.	50.	0.	950.
899.	13. 39.	0. NA		-1.000								
Dem_3	Dem_3	1980 AUG	1000.	500.	781.	0.	0.	0.	219.	0.	0.	0.
0.	0. 1000.	0. 0.	500.	0.	500.	0.	0.	1000.	0.	13.	0.	987.
781.	27. 179.	0. NA		-1.000								
Dem_3	Dem_3	1980 SEF	1000.	500.	745.	0.	0.	0.	255.	0.	0.	0.
0.	0. 1000.	0. 0.	500.	0.	500.	0.	0.	1000.	0.	40.	0.	960.
745.	32. 183.	0. NA		-1.000								
	·											
	Dem 3		12000.	6000.	8284.	0.	0.	0.	3716.	0.	0.	0.
0.	0. 12000.	0. 0.		0.	6000.	0.		20000.	0.	1231.		18769.
8284.	464. 10021.	7757. NA		-1.00				•				•

Gage Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO. 2

RIVER LOCATION - FROM : Wel_3 Exist. Well_3 RIVER LOCATION - TO : Wel_3 Exist. Well_3

Shortage	Water Use			
	Dema	and From River By		From Carrier By
Carried	=======================================			
Structure River	======		From	
Exchange From Total	Total CU	To Total Upstrm		
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc Loss
Bypass SM Supply	Short Short CU	SoilM Return Loss Inflow		

Station In/Out Station Balance

Reach Return Well From/To River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right

NA		Wel_3	1979	OCT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.		0. NA			-1.000								
NA		Wel_3	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
							_					_		
NA		Wel_3	1980	TOT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA : # cfs af@30 af@31 5000. 1 -297525. Diversion Capacity Diversion Rights Well Capacity Well Rights 307442. 100. 5950. 6149. : 1 0. 0. 0. 0. 0

Shortage	9		Wate	r Use										
					Deman	d	1	From R	iver By			From	Carrier	By
Carried			=====		= =====				===					
Structur	re	River		=		===== ==					From	======		
Exchange	e Fr	om Total	Total	CU		To	Total		Upst:	cm				
ID		ID	Year	Mo	Total	CU Pr	iorty St	orage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	S	M Supply	Short	Short	CU	SoilM	Return	Los	s Infl	WC				
		Station I	n/Out				Stat:	ion Ba	lance					
======					= =====				=======					
Reach		rn Well		o River	River		River		Control					
Gain	Flow	Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_4		Dem_4	1979	OCT	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	500.	250.	0.	0.	0.	0.	875.	0.	250.	0.	0.	1125.
0.	0.	1125.	0. Det	n_1	1	00.000								
Dem_4		Dem_4	1979	NOV	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	500.	250.	0.	0.	0.	0.	69.	0.	500.	0.	0.	569.
0.	0.	569.	0. IS	F	1	00.000								
Dem_4		Dem_4	1979	DEC	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	500.	250.	0.	0.	0.	0.	115.	0.	500.	0.	0.	615.
0.	0.	615.	0. IS	F	1	00.000								

Dem_4	Dem_4	1980 JAN	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	208.	0.	500.	0.	0.	708.
0.	0. 708.	0. ISF		100.000								
Dem_4	Dem_4	1980 FEB	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.		0.	0.	0.	197.	0.	500.	0.	0.	697.
0.	0. 697.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 MAR		250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	203.	0.	500.	0.	0.	703.
0.	0. 703.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 APR	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	196.	0.	500.	0.	0.	696.
0.	0. 696.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 MAY	500.	250.	500.	0.	0.	0.	0.	0.	0.	0.
0.	0. 500.	0. 0.	250.	0.	250.	0.	3855.	0.	500.	0.	0.	4355.
500.	0. 3855.	3855. NA		-1.000)							
Dem_4	Dem_4	1980 JUN	500.	250.	500.	0.	0.	0.	0.	0.	0.	0.
0.	0. 500.	0. 0.	250.	0.	250.	0.	3901.	0.	500.	0.	0.	4401.
500.	0. 3901.	3901. NA		-1.000)							
Dem_4	Dem_4	1980 JUL	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	39.	0.	500.	0.	0.	539.
0.	0. 539.	0. ISF		100.000								
Dem_4	Dem_4	1980 AUG	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.		0.	0.	0.	179.	0.	500.	0.	0.	679.
0.	0. 679.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	0. 0.	0.	0.	0.	0.	183.	0.	500.	0.	0.	683.
0.	0. 683.	0. ISF		100.000								
 Dem_4		1980 TOT	5500.	2750.	1000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1000.	4500. 2250.	500.	0.	500.	0.	10021.	0.	5750.	0.	0.	15771.
1000.	0. 14771	. 7757. NA		-1.00	00							

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 4

STRUCTURE ID (0 = total) : Dem_5 -3

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _5

RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow

RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	e		Water	Use										
					Deman	d		From R	iver By			From	Carrier	Ву
Carried			=====		=====	======		=====	===					
Structu	re	River		==	======	===== ==		=====		====	From	======		=====
Exchang	e F	rom Total	Total	CU		To	Total		Upst:					
ID		ID	Year	Mo I	otal	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Supply	Short	Short	CU	SoilM	Return	Los	s Infl	OW				
		Station I	n/Out				Stat	ion Ba	lance					
======	====	=======			======	======		=====						
Reach	Ret	urn Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flo	w Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_5		Dem_5	1979	OCT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_1	1	00.000								
Dem_5		Dem_5	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								

Dem_5		Dem_5	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	15000.	0.	0.	0.	15000.
0.	0.	15000.	12000. NA			-1.000								
Dem_5		Dem_5	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	15000.	0.	0.	0.	15000.
0.	0.	15000.	12000. NA			-1.000								
Dem_5		Dem_5	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
 Dem_5		 Dem_5	1980	TOT	0.	0.	0.	₀ .	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	60000.	0.	0.	0.	60000.
0.	0.	60000.	24000. NA			-1.000								

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2 4
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _2
RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2
RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	60.	3570.	3689.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage			Wate:	r Use	Demar	nd		From R	iver By			From	Carrier	- Bv
Carried			=====		== =====				-			110111	CUITICI	. Dj
Structure	e	River				:				=====	From	======		
Exchange		From Total	Total	CU		To	Total		Upst	rm				
ID		ID	Year	Mo	Total	CU Pi	riorty St	orage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Supply	Short	Shor	t CU	SoilM	Return	Los	s Infl	OW				
		Station In	,					ion Ba						
		======= turn Well	From/To			River	River		======= Control					
		ow Deplete												
Dem 2		Dem 2	1979	OCT		1500.	2833.	0.	0.	0.	0.	0.	0.	0.
_	0.		167.	83.	1417.	0.	1417.	0.	3000.	0.	0.	0.	0.	3000.
2833.		0. 167.	0.	Dem 1		100.00	00							
Dem_2		Dem_2	1979	NOV	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.	0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0. 0.	0.	Hgate_	_Limit	-1.0	0.0							
Dem_2		Dem_2	1979	DEC	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.	0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0. 0.		Hgate_	_Limit	-1.0	0.0							
Dem_2		Dem_2	1980	JAN	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.	0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0. 0.		Hgate_	_Limit	-1.0	0.0							
Dem_2		Dem_2	1980	FEB	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.	0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0. 0.		Hgate_		-1.0	0.0							
Dem_2		Dem_2	1980		3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
	0.	3000.	0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0. 0.		Hgate_		-1.0								
Dem_2		Dem_2	1980			1500.	3000.	0.	0.	0.	0.	0.	0.	0.
	0.	3000.	0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0. 0.		Hgate_		-1.00								
Dem_2		Dem_2	1980			1500.	3000.	0.	0.	0.	0.	0.	0.	0.
	0.		0.	0.	1500.	0.	1500.	0.	15000.	0.	0.	0.	0.	15000.
3000.		0. 12000.				-1.0								
Dem_2		Dem_2	1980	JUN		1500.	3000.	0.	0.	0.	0.	0.	0.	0.
	0.		0.	0.	1500.	0.	1500.	0.	15000.	0.	0.	0.	0.	15000.
3000.		0. 12000.	12000.	NA		-1.0	0.0							

Dem_2		Dem_2		1980	JUL	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.		0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0.	0.	0.	Hgate	_Limit	-1.	000							
Dem_2		Dem_2		1980	AUG	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.		0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0.	0.	0.	Hgate	_Limit	-1.	000							
Dem 2		Dem 2		1980	SEP	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0.	3000.		0.	0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.		0.	0.	0.	Hgate	_Limit	-1.	000							
Dem 2	_			1980	TOT	36000.	18000.	35833.		0.	0.	0.	0.	0.	0.
0.	0.	35833.	16	57.	83.	17917.		17917.	0.	60000.	0.	0.	0.	0.	60000.
35833.	٠.	0. 241		24000				.000	٠.		٠.	٠.	٠.	٠.	

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 6

12502

: Well Structure 2 DM : Wel_2 Exist. Well_2 : Wel_2 Exist. Well_2

STRUCTURE DATA : # cfs af@30 af@31 Well Capacity Well Rights 5000. 297525. 307442. 307. 298. 5.

Shortag	e		Water	. Use	Demai	nd	<u>:</u>	From R	iver By			From	Carrier	Bv
Carried			=====			=======			_			110	0011101	21
Structu	re	River						=====		====	From	=======	.======	=====
Exchang	e F	rom Total	Total	CU		To	Total		Upst:	rm				
ID		ID	Year	Mo	Total	CU Pr	iorty St	orage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Supply	Short	Short	t CU	SoilM	Return	Los	s Infl	OW		-		
		Station I	,					ion Ba						
Reach		urn Well	From/To			River	River		Control					
Gain	Flo	w Deplete												
Wel_2		Wel_2		OCT	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Den	_		100.000		_				_		
Wel_2		Wel_2	1979		1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. ISE			100.000		_				_		
Wel_2	_	Wel_2	1979		1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. ISE			100.000	•			•	205			
Wel_2	•	Wel_2	1980		1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. ISE			100.000	•			•	0.770			
Wel_2	•	Wel_2	1980		1000.	500.	0.	0.	0.	0.	278.	0.	0.	0.
0.	0.	278. 0.	722. 0. Den	361.	139.	0.	139.	0.	0.	0.	0.	0.	0.	0.
0. Wel 2	υ.	Wel 2	0. Den 1980	_		100.000 500.	0	0.	0	0	307.	0.	0.	0.
weı_∠ 0.	0.	wei_2 307.	693.	MAR 346.	1000. 154.	0.	0. 154.	0.	0. 0.	0. 0.	0.	0.	0.	0.
0.	0.	0.	0. Den			100.000	154.	υ.	0.	0.	υ.	0.	0.	0.
Wel 2	υ.	Wel 2	1980		1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	wei_2 298.	702.	351.	149.	0.	149.	0.	0.	0.	290.	0.	0.	0.
0.	0.	0.	0. Den			100.000	149.	0.	0.	0.	0.	0.	0.	0.
Wel 2	0.	Wel 2	1980		1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate_Lim:		-1.000	131.	٠.	٥.	٠.	٠.	٠.	٠.	٠.
Wel 2	٠.	Wel 2	1980		1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate Lim:		-1.000	± 17.	٠.	٥.	٠.	٠.	٠.	٠.	٠.
Wel 2	٠.	Wel 2	1980	_	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. ISE			100.000	101.	٠.	٠.	٠.	•	٠.	٠.	٠.
Wel 2		Wel 2	1980		1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Den	n_1		100.000								
Wel_2		Wel_2	1980	SEP	1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. ISE	7	:	100.000								

Gage Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO. 7

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

Shortag	e		Water	Use										
Carried					Demar	nd =======			iver By			From	Carrie	r By
Structu		River	=====						====		From	======		
Exchang			al Total	CU		 То	Total		 Upst		FIOIII			
ID	ег	ID	Year		Total		iorty St	orago	-	Loss	Well	Priorty	C+o Fy	a Logg
Bypass		SM Suppl		Short	CU	SoilM	Return	Los			METT	PIIOICY	SCO_EAG	LUSS
Буравь		SM Suppl	ry SHOLC	31101 C	CU	SOTIM	Recuiii	LUS	.p 11111	.Ow				
		Station	In/Out				Stat	ion Ba	lance					
======	====				======		======	=====						
Reach	Ret	urn Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flo	w Deplet	te GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
NA		Riv_50	1979	OCT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1292.	0.	0.	0.	0.	1292.
0.	0.	1292.	0. NA			-1.000								
NA		Riv_50	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	569.	0.	0.	0.	0.	569.
0.	0.	569.	0. NA			-1.000								
NA		Riv_50	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	615.	0.	0.	0.	0.	615.
0.	0.	615.	0. NA			-1.000								
NA		Riv_50	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	708.	0.	0.	0.	0.	708.
0.	0.	708.	0. NA			-1.000								
NA		Riv_50	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	697.	0.	0.	0.	0.	697.
0.	0.	697.	0. NA			-1.000								
NA		Riv_50	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	703.	0.	0.	0.	0.	703.
0.	0.	703.	0. NA			-1.000								
NA		Riv_50	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	696.	0.	0.	0.	0.	696.
0.	0.	696.	0. NA			-1.000								
NA		Riv_50	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	15855.	0.	125.	0.	0.	15980.
0.	0.	15980.	12386. NA			-1.000								
NA		Riv_50	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	15901.	0.	250.	0.	0.	16151.
0.	0.	16151.	12749. NA			-1.000								
NA	_	Riv_50	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	539.	0.	125.	0.	0.	664.
0.	0.	664.	0. NA			-1.000								
NA		Riv_50	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	679.	0.	0.	0.	0.	679.
0.	0.	679.	0. NA			-1.000								
NA	_	Riv_50	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	683.	0.	0.	0.	0.	683.
0.	0.	683.	0. NA			-1.000								
NA		Riv 50	1980	TOT	0.	0.	0.	o.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	38938.	0.	500.	0.	0.	39438.
0.	0.	39438.	25135. NA			-1.000							- *	

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 8

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 100. 5950. 6149. Well Capacity : 1 0. 0. 0.

Well Rights : 0 0. 0. 0.

Shortag	re	Wate:	r Use										
g	ı			Deman				iver By			From	Carrier	By
Carried Structu		=====						===		From	======		
	re River re From Total	Total	CU					Upst:		From	======	======	=====
ID	ID ID	Year		Total				Exc_Pln		Well	Priorty	Sto Evo	Logg
Bypass	SM Supply					Return		s Infl		WEII	FIIOLCY	DCO_EAC	. 1055
Буравь	Dii Duppiy	DIIOI C	DIIO	10 00	DOILL	RECULII	100	5 11111	O W				
	Station I	n/Out				Stat	tion Ba	lance					
======	=========			=== =====						=			
Reach	Return Well	From/To	o Rive	r River	River	River	Avail	Control	Contro	1			
Gain	Flow Deplete												
Dem_1	Dem_1	1979		2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.		0.	1292.	0.	785.	0.	0.	2077.
2000.	77. 0.		NA		-1.0								
Dem_1	Dem_1		NOV	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.		0.	569.	0.	1610.	77.	0.	2102.
2000.	74. 28.		NA	0000	-1.0		0	0	0	0	0	0	0
Dem_1 0.	Dem_1 0. 2000.	0.	DEC	2000. 400.	400.	2000. 1600.	0. 0.	0. 615.	0. 0.	0. 1651.	0. 151.	0.	0. 2115.
2000.	77. 38.			400.	-1.0		0.	015.	0.	1051.	151.	0.	2115.
Dem 1	Dem 1		JAN	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.		0.	708.	0.	1654.	228.	0.	2134.
2000.	77. 57.			100.	-1.0		٠.	700.	٠.	1031.	ZZO.	٠.	2131.
Dem 1	Dem_1		FEB	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.		0.	697.	0.	1646.	228.	0.	2115.
2000.	69. 46.	0.	NA		-1.0	000							
Dem_1	Dem_1	1980	MAR	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.	0.	400.	0.	1600.	0.	703.	0.	1646.	223.	0.	2126.
2000.	77. 49.				-1.0	000							
Dem_1	Dem_1	1980	APR	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.	1600.	0.	696.	0.	1651.	223.	0.	2124.
2000.	74. 50.				-1.0								
Dem_1	Dem_1		MAY	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.	0.	400.	0.	1600.	0.	15980.	0.	1651.	221.	0.	17411.
2000.	77. 15334.			2000	-1.0		0	0	0	0	0	0	0
Dem_1	Dem_1 0. 2000.	1980		2000. 400.	400.	2000. 1600.	0. 0.	0.	0. 0.	0.	0.	0. 0.	0. 17574.
0. 2000.	74. 15500.	0. 12749.		400.	-1.0		0.	16151.	0.	1651.	228.	υ.	1/5/4.
Dem 1	Dem 1	1980		2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.	1600.	0.	664.	0.	1651.	226.	0.	2090.
2000.	77. 13.			100.	-1.0		٠.	001.	٠.	1031.	ZZO.	٠.	2000.
Dem 1	Dem 1	1980		2000.	400.		0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.		400.	0.	1600.	0.	679.	0.	1654.	228.	0.	2104.
2000.	77. 27.	0.	NA		-1.0	000							
Dem_1	Dem_1	1980	SEP	2000.	400.	2000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2000.	0.	0.	400.	0.	1600.	0.	683.	0.	1651.	228.	0.	2106.
2000.	74. 32.	0.	NA		-1.0	000							
				04000	1000	04000		^	^	^	^	^	•
Dem_1			TOT 0.			24000.	0.	0.	0.	0.	0.	0.	0.
0. 24000.	0. 24000. 905. 31174	0.		4800.		19200. .000	υ.	39438.	υ.	18902.	2261.	0.	56079.
24000.	JUD. JII/4	. 25135	. INA		-1	.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO. 9

STRUCTURE ID (0 = total) : Wel_1 12501
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Well Structure 1
RIVER LOCATION - FROM : Wel_1 Exist. We
RIVER LOCATION - TO : Wel_1 Exist. We : Well Structure 1
: Wel_1 Exist. Well_1
: Wel_1 Exist. Well_1

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. Well Capacity Well Rights 307442. 595. 10. 615.

Shortage		Water U	Use			
			Demand	d From River By		From Carrier By
Carried		======		=======================================		
Structure	River		========	===== =================================	From	=======================================
Exchange	From Total	Total	CU	To Total Upstrm		
ID	ID	Year	Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc Loss
Bypass	SM Supply	Short	Short CU	SoilM Return Loss Inflow		

Station In/Out Station Balance

Reach	Ret	urn Well		o Rive	=== ===== r River	River	River		Control					
Gain	Flo	w Deplet	e GW Stor	Inflo	ow Divert	t By Well	Outflow	Flow	Location	Right				
Wel_1		Wel_1	1979	OCT	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hg	ate_Lir	nit	-1.000								
Wel 1		Wel 1	1979	NOV	3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.	595.	2405.	1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hq	ate_Lir	nit	-1.000								
Wel_1		Wel 1	1979		3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hg	ate_Lir	nit	-1.000								
Wel 1		Wel 1	1980	JAN	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate Lir		-1.000								
Wel 1		Wel 1	1980	FEB	3000.	1500.	0.	0.	0.	0.	555.	0.	0.	0.
0.	0.	555.	2445.	1222.	278.	0.	139.	139.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hq	ate_Lir	nit	-1.000								
Wel 1		Wel 1	1980		3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate Lir	nit	-1.000								
Wel_1		Wel_1	1980	_	3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.	595.	2405.	1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hq	ate Lir	nit	-1.000								
Wel 1		Wel 1	1980	MAY	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Ha	ate Lir	nit	-1.000								
Wel 1		Wel 1	1980	JUN	3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.	595.	2405.	1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hq	ate_Lir	nit	-1.000								
Wel_1		Wel_1	1980		3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hq	ate Lir	nit	-1.000								
Wel 1		Wel 1	1980	AUG	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hq	ate Lir	nit	-1.000								
Wel 1		Wel_1	1980	SEP	3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.		2405.	1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hg			-1.000								
Wel_1		Wel_1		TOT		18000.	0.	0.	0.	0.	7240.	0.	0.	0.
0.	0.		28760. 1		3620.		1810.	1810.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 10

STRUCTURE ID (0 = total) : ISF 5001
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Instream Demand
RIVER LOCATION - FROM : ISF Top Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water Use										
		Deman	d		From R	iver By			From	Carrier	By
Carried	=========	== =====	======	======	=====	===					
Structure River			===== ==	======	=====		=====	From	======		
Exchange From Tota	al Total CU		To	Total		Upst	rm				
ID ID	Year Mo	Total	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supp	ly Short Shor	t CU	SoilM	Return	Los	s Infl	ow				
Station	In/Out			Stat	ion Ba	lance					
=======================================		== =====	======	======	=====						
Reach Return Well	From/To River	River	River	River	Avail	Control	Control				
Gain Flow Deple	te GW Stor Inflo	w Divert	By Well	Outflow	Flow	Location	Right				
ISF ISF	1979 OCT	4027.	0.	640.	0.	0.	0.	0.	0.	0.	0.
0. 0. 640.	3387. 0.	0.	0.	640.	0.	0.	0.	717.	0.	77.	794.
640. 154. 640	. 0. Hgate_L	imit	-1.000								
ISF ISF	1979 NOV	3898.	0.	997.	0.	0.	0.	0.	0.	0.	0.
0. 0. 997.	2901. 0.	0.	0.	997.	0.	28.	0.	1271.	154.	0.	1145.
997. 149. 997	. 0. Hgate_L	imit	-1.000								

ISF	ISF 1979	DEC 4027.	0. 1250.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1250. 2777.	0. 0.	0. 1250.	0.	38.	0.	1591.	302.	77.	1404.
1250.	154. 1250. 0.	Hgate_Limit	-1.000							
ISF	ISF 1980	JAN 4027.	0. 1201.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1201. 2827.	0. 0.	0. 1201.	0.	57.	0.	1754.	456.	0.	1355.
1201.	154. 1201. 0.	Hgate_Limit	-1.000							
ISF	ISF 1980	FEB 3638.	0. 1266.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1266. 2371.	0. 0.	0. 1266.	0.	46.	0.	1746.	456.	69.	1405.
1266.	139. 1266. 0.	Hgate_Limit	-1.000							
ISF	ISF 1980	MAR 4027.	0. 1195.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1195. 2832.	0. 0.	0. 1195.	0.	49.	0.	1746.	446.	0.	1349.
1195.	154. 1195. 0.	Hgate_Limit	-1.000							
ISF	ISF 1980	APR 3898.	0. 1280.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1280. 2617.	0. 0.	0. 1280.	0.	50.	0.	1751.	446.	74.	1429.
1280.	149. 1280. 0.	Hgate_Limit	-1.000							
ISF	ISF 1980	MAY 4027.	0. 4027.	0.	0.	0.	0.	0.	0.	0.
0.	0. 4027. 0.	0. 0.	0. 4027.	0.	15334.	0.	1751.	441.	-77.	16567.
4027.	154. 16413. 12386.	NA	-1.000							
ISF	ISF 1980	JUN 3898.	0. 3898.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3898. 0.	0. 0.	0. 3898.	0.	15500.	0.	1751.	456.	0.	16795.
3898.	149. 16646. 12749.	NA	-1.000							
ISF	ISF 1980	JUL 4027.	0. 1236.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1236. 2792.	0. 0.	0. 1236.	0.	13.	0.	1751.	451.	77.	1390.
	154. 1236. 0.		-1.000							
ISF	ISF 1980	AUG 4027.	0. 1248.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1248. 2780.	0. 0.	0. 1248.	0.	27.	0.	1754.	456.	77.	1402.
1248.	154. 1248. 0.		-1.000							
ISF	ISF 1980	SEP 3898.	0. 1178.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1178. 2719.	0. 0.	0. 1178.	0.	32.	0.	1751.	456.	0.	1327.
1178.	149. 1178. 0.	Hgate_Limit	-1.000							
ISF	ISF 1980	TOT 47421.	0. 19417.		0.	0.	0.	0.	0.	0.
0.		0. 0.		0.	31174.	0.	19336.			46361.
19417.		. NA								

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 11

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage		Water	Use										
~				Deman				-			From	Carrie	r By
Carried		=====											
Structure	River			======			=====			From	======		======
_	From Total		CU		To	Total		Upst					
ID	ID	Year		otal'				Exc_Pln		Well	Priorty	Sto_Ex	c Loss
Bypass	SM Supply	y Short	Short	CU	SoilM	Return	Los	s Infl	.OW				
	Station :	In/Out				Stat	ion Ba	lance					
	eturn Well	From/To			River	River		Control					
Gain F	low Deplete	e GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	n Right				
Baseflow	ISF.01	1979	OCT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0	. 0.	0.	0.	0.	0.	0.	0.	640.	0.	0.	0.	0.	640.
0. 0	640.	0. NA			-1.000								
Baseflow	ISF.01	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0	. 0.	0.	0.	0.	0.	0.	0.	997.	0.	0.	0.	0.	997.
0. 0	. 997.	0. NA			-1.000								
Baseflow	ISF.01	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0	. 0.	0.	0.	0.	0.	0.	0.	1250.	0.	0.	0.	0.	1250.
0. 0	. 1250.	0. NA			-1.000								
Baseflow	ISF.01	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0	. 0.	0.	0.	0.	0.	0.	0.	1201.	0.	0.	0.	0.	1201.
0. 0	. 1201.	0. NA			-1.000								
Baseflow	ISF.01	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0	. 0.	0.	0.	0.	0.	0.	0.	1266.	0.	0.	0.	0.	1266.
0. 0	. 1266.	0. NA			-1.000								
Baseflow	ISF.01	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0		0.	0.	0.	0.	0.	0.	1195.	0.	0.	0.	0.	1195.
0. 0		0. NA			-1.000								
Baseflow	ISF.01	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0		0.	0.	0.	0.	0.	0.	1280.	0.	0.	0.	0.	1280.
0. 0		0. NA	٠.		-1.000	٥.	٠.	1200.	٠.	٥.	٠.	٠.	1200.
Baseflow	ISF.01	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0		0.	0.	0.	0.	0.	0.	16413.	0.	0.	0.	0.	16413.
0. 0		0. 12386. NA	0.		-1.000	٠.	0.	10413.	0.	0.	0.	0.	TOTIS.
0. 0	. 10413.	12300. NA			-1.000								

Basef	low	ISF.01	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	16646.	0.	0.	0.	0.	16646.
0.	0.	16646.	12749. NA			-1.000								
Basef	low	ISF.01	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1236.	0.	0.	0.	0.	1236.
0.	0.	1236.	0. NA			-1.000								
Basef	low	ISF.01	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1248.	0.	0.	0.	0.	1248.
0.	0.	1248.	0. NA			-1.000								
Basef	low	ISF.01	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1178.	0.	0.	0.	0.	1178.
0.	0.	1178.	0. NA			-1.000								
Basef	low	ISF.01	1980	TOT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	44551.	0.	0.	0.	0.	44551.
0.	0.	44551.	25135. NA			-1.000								

*.xwe Well Structure Summary

#

STATEMOD StateMod Operating Rule Example - ex7.* data set

Statemod Version: 12.29.05 Date = 2008/10/23)
Run date: 11/ 7/ 8 6:29:30
Time Step: Monthly
#

Well Water Only Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO.

STRUCTURE ID (0 _ total) : Wel_1
STRUCTURE ACCT (0 _ total): 0
STRUCTURE NAME : Well Structure 1

af@31 STRUCTURE DATA cfs af@30 297525. 307442. Well Capacity Well Rights 5000. 10. 595. 615.

Water Use		Demand Water Source	Water Sug	pply		Sho	ort		
			rom From	From	Total	Total	CU	Total	То
Total Structure River	Total		From Total	Soil	Supply	Short	Short	CU	Soil
Return Loss Carried ID ID	Use Year	River GwStor Salvage Mo N/A N/A	Soil Source (+) (+)	(+)	N/A	N/A	N/A	(+)	(+)
(+) (+)	N/A	(+) (+) (+)	(+) N/A	(5)	(()	(7)	(0)	(0)	(10)
(11) (12) (13)	(14)		3) (4) (18) (19)	(5)	(6)	(7)	(8)	(9)	(10)
Wel_1 Wel_1			15. 0.	0.	615.	2385.	1193.	307.	0.
154. 154. 0. Wel_1 Wel_1	615. 1979	154. 461. 0. OCT 3000.0 1500.0 61	0. 615. 4.9 0.0	0.0	614.9	2385.1	1192.6	307.4	0.0
153.7 153.7 0.0 Wel_1 Wel_1	614.9 1979	153.7 461.2 0.0 OCT 3000.00 1500.00 614	0.0 614.9 .89 0.00	0.00	614.89	2385.11	1192.56	307.44	0.00
153.72 153.72 0.00 Wel_1 Wel_1		153.72 461.16 0.00 NOV 3000. 1500. 5	0.00 614.8 95. 0.	39 0.	595.	2405.	1202.	298.	0.
149. 0.	595.	149. 446. 0.	0. 595.						
Wel_1 Wel_1 148.8 148.8 0.0	1979 595.0	NOV 3000.0 1500.0 59 148.8 446.3 0.0	5.0 0.0 0.0 595.0	0.0	595.0	2404.9	1202.5	297.5	0.0
Wel_1 Wel_1 148.76 148.76 0.00		NOV 3000.00 1500.00 595 148.76 446.29 0.00	.05 0.00 0.00 595.0	0.00	595.05	2404.95	1202.47	297.52	0.00
Wel_1 Wel_1	1979	DEC 3000. 1500. 6	15. 0.	0.	615.	2385.	1193.	307.	0.
154. 154. 0. Wel_1 Wel_1	615. 1979	154. 461. 0. DEC 3000.0 1500.0 61	0. 615. 4.9 0.0	0.0	614.9	2385.1	1192.6	307.4	0.0
153.7 153.7 0.0 Wel_1 Wel_1	614.9	153.7 461.2 0.0 DEC 3000.00 1500.00 614	0.0 614.9 .89 0.00	0.00	614 89	2385.11	1192 56	307.44	0.00
153.72 153.72 0.00	614.89	153.72 461.16 0.00	0.00 614.8	39					
Wel_1 Wel_1 154. 154. 0.	1980 615.	JAN 3000. 1500. 6 154. 461. 0.	15. 0. 0. 615.	0.	615.	2385.	1193.	307.	0.
Wel_1 Wel_1 153.7 153.7 0.0		JAN 3000.0 1500.0 61		0.0	614.9	2385.1	1192.6	307.4	0.0
Wel_1 Wel_1	1980	JAN 3000.00 1500.00 614	.89 0.00	0.00	614.89	2385.11	1192.56	307.44	0.00
153.72 153.72 0.00 Wel_1 Wel_1	1980	153.72 461.16 0.00 FEB 3000. 1500. 5	0.00 614.8 55. 0.	0.	555.	2445.	1222.	278.	0.
139. 139. 0. Wel_1 Wel_1	555. 1980	139. 417. 0. FEB 3000.0 1500.0 55	0. 555. 5.4 0.0	0.0	555.4	2444.6	1222.3	277.7	0.0
138.8 138.8 0.0	555.4	138.8 416.5 0.0	0.0 555.4	ŀ					
Wel_1 Wel_1 138.85 138.85 0.00		FEB 3000.00 1500.00 555 138.85 416.54 0.00	.38 0.00 0.00 555.3		555.38	2444.62	1222.31	277.69	0.00
Wel_1 Wel_1 154. 154. 0.	1980 615.	MAR 3000. 1500. 6 154. 461. 0.	15. 0. 0. 615.	0.	615.	2385.	1193.	307.	0.
Wel_1 Wel_1	1980	MAR 3000.0 1500.0 61	4.9 0.0	0.0	614.9	2385.1	1192.6	307.4	0.0
153.7 153.7 0.0 Wel_1 Wel_1	614.9 1980	153.7 461.2 0.0 MAR 3000.00 1500.00 614	0.0 614.9 .89 0.00		614.89	2385.11	1192.56	307.44	0.00
153.72 153.72 0.00	614.89	153.72 461.16 0.00	0.00 614.8		F0F	2405.	1000	200	0.
Wel_1 Wel_1 149. 149. 0.	1980 595.	APR 3000. 1500. 5 149. 446. 0.	95. 0. 0. 595.	0.	595.	2405.	1202.	298.	0.
Wel_1 Wel_1 148.8 148.8 0.0	1980 595.0	APR 3000.0 1500.0 59 148.8 446.3 0.0	5.0 0.0 0.0 595.0	0.0	595.0	2404.9	1202.5	297.5	0.0
Wel_1 Wel_1	1980	APR 3000.00 1500.00 595	.05 0.00	0.00	595.05	2404.95	1202.47	297.52	0.00
148.76 148.76 0.00 Wel_1 Wel_1	595.05 1980	148.76 446.29 0.00 MAY 3000. 1500. 6	0.00 595.0 15. 0.	0.	615.	2385.	1193.	307.	0.
154. 154. 0.	615.	154. 461. 0.	0. 615.				1100 6	207.4	0.0
Wel_1 Wel_1 153.7 153.7 0.0		MAY 3000.0 1500.0 61 153.7 461.2 0.0		0.0	614.9	2385.1	1192.6	307.4	0.0
Wel_1 Wel_1 153.72 153.72 0.00		MAY 3000.00 1500.00 614 153.72 461.16 0.00	.89 0.00 0.00 614.8		614.89	2385.11	1192.56	307.44	0.00
Wel_1 Wel_1	1980	JUN 3000. 1500. 5	95. 0.	0.	595.	2405.	1202.	298.	0.
149. 149. 0. Wel_1 Wel_1		149. 446. 0. JUN 3000.0 1500.0 59		0.0	595.0	2404.9	1202.5	297.5	0.0
148.8 148.8 0.0 Wel_1 Wel_1	595.0	148.8 446.3 0.0 JUN 3000.00 1500.00 595	0.0 595.0				1202.47	207 52	0.00
148.76 148.76 0.00	595.05	148.76 446.29 0.00	0.00 595.0)5					
Wel_1 Wel_1 154. 154. 0.		JUL 3000. 1500. 6 154. 461. 0.		0.	615.	2385.	1193.	307.	0.
Wel_1 Wel_1	1980	JUL 3000.0 1500.0 61	4.9 0.0	0.0	614.9	2385.1	1192.6	307.4	0.0
153.7 153.7 0.0	614.9	153.7 461.2 0.0	0.0 614.9	,					

Wel_1	Wel_1	1980 JUL 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 119	92.56 307.44 0.00
153.72	153.72 0.00	614.89 153.72 461.16 0.00 0.00 614.89	
Wel_1	Wel_1	1980 AUG 3000. 1500. 615. 0. 0. 615. 2385. 1	1193. 307. 0.
154.	154. 0.	615. 154. 461. 0. 0. 615.	
Wel_1	Wel_1	1980 AUG 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 11	192.6 307.4 0.0
153.7	153.7 0.0	614.9 153.7 461.2 0.0 0.0 614.9	
Wel_1	Wel_1	1980 AUG 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 119	92.56 307.44 0.00
153.72	153.72 0.00	614.89 153.72 461.16 0.00 0.00 614.89	
Wel_1	Wel_1	1980 SEP 3000. 1500. 595. 0. 0. 595. 2405. 1	L202. 298. 0.
149.	149. 0.	595. 149. 446. 0. 0. 595.	
Wel_1	Wel_1	1980 SEP 3000.0 1500.0 595.0 0.0 0.0 595.0 2404.9 12	202.5 297.5 0.0
148.8	148.8 0.0	595.0 148.8 446.3 0.0 0.0 595.0	
Wel_1	Wel_1	1980 SEP 3000.00 1500.00 595.05 0.00 0.00 595.05 2404.95 120	02.47 297.52 0.00
148.76	148.76 0.00	595.05 148.76 446.29 0.00 0.00 595.05	
Wel_1	Wel_1	1980 TOT 36000. 18000. 7240. 0. 0. 7240. 28760. 14	1380. 3620. 0.
1810.	1810. 0.	7240. 1810. 5430. 0. 0. 7240.	

Well Water Only Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO.

STRUCTURE ID (0 _ total) : Wel_2
STRUCTURE ACCT (0 _ total): 0
STRUCTURE NAME : Well Structure 2

STRUCTURE DATA cfs af@30 af@31 297525. Well Capacity Well Rights 5000. 307442. 5. 298. 307.

Water U	Jse		Demand Water Source		er Sup	pply		Sho	rt		
Total		Total	Total CU		From Total	From	Total	Total	CU	Total	То
Structu Return	re River Loss Carried		From From F: Demand Demand River GwStor Sal		SW	Soil	Supply	Short	Short	CU	Soil
ID	ID	Year	Mo N/A N/A	(+)	(+)	(+)	N/A	N/A	N/A	(+)	(+)
(+)	(+) (+)	N/A	(+) (+) (+ (+) (+)		N/A (4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12) (13)	(14)	(15) (16) (1	7) (18)	(19)						
Wel_2		1979				0.	307.	693.	346.	154.	0.
154. Wel_2	0. 0. Wel $_2$	307. 1979	77. 231. OCT 1000.0 500.0		307. 0.0	0.0	307.4	692.6	346.3	153.7	0.0
153.7 Wel_2	0.0 0.0 Wel_2	307.4 1979	76.9 230.6 OCT 1000.00 500.00	0.0 0.0 307.44			307.44	692.56	346.28	153.72	0.00
153.72 Wel_2	0.00 0.00 Wel_2	307.44	76.86 230.58		307.4		298.	702.	351.	149.	0.
149.	0. 0.	298.	74. 223.	0.	298.						
Wel_2 148.8	Wel_2 0.0 0.0	1979 297.5		297.5 0.0 0.0		0.0	297.5	702.5	351.2	148.8	0.0
Wel_2 148.76	Wel_2 0.00 0.00	1979 297.52	NOV 1000.00 500.00 74.38 223.14		0.00 297.5		297.52	702.48	351.24	148.76	0.00
Wel_2	Wel_2	1979	DEC 1000. 500.	307.	0.	0.	307.	693.	346.	154.	0.
154. Wel_2	0. 0. Wel_2	307. 1979	77. 231. DEC 1000.0 500.0	0. 0. 307.4		0.0	307.4	692.6	346.3	153.7	0.0
153.7 Wel_2	0.0 0.0 Wel_2	307.4 1979	76.9 230.6 DEC 1000.00 500.00	0.0 0.0			307.44	692 56	346.28	153.72	0.00
153.72	0.00 0.00	307.44	76.86 230.58	0.00	307.4	14					
Wel_2 154.	Wel_2 0. 0.	1980 307.		307. 0. 0.		0.	307.	693.	346.	154.	0.
Wel_2 153.7	Wel_2 0.0 0.0	1980 307.4		307.4 0.0 0.0		0.0	307.4	692.6	346.3	153.7	0.0
Wel_2	Wel_2	1980	JAN 1000.00 500.00	307.44	0.00	0.00	307.44	692.56	346.28	153.72	0.00
153.72 Wel_2	Wel_2	307.44 1980	FEB 1000. 500.	278.	0. 0.	0.	278.	722.	361.	139.	0.
139. Wel_2	0. 0. Wel_2	278. 1980		0. 0. 277.7	278. 0.0	0.0	277.7	722.3	361.2	138.8	0.0
138.8 Wel_2	0.0 0.0 Wel 2	277.7	69.4 208.3 FEB 1000.00 500.00	0.0 0.0	277.7		277.69	722.31	361.15	138.85	0.00
138.85	0.00 0.00	277.69	69.42 208.27	0.00	277.6	59					
Wel_2 154.	Wel_2 0. 0.	1980 307.		307. 0. 0.	0. 307.	0.	307.	693.	346.	154.	0.
Wel_2 153.7	Wel_2 0.0 0.0	1980 307.4		307.4 0.0 0.0		0.0	307.4	692.6	346.3	153.7	0.0
Wel_2 153.72	Wel_2	1980	MAR 1000.00 500.00	307.44	0.00	0.00	307.44	692.56	346.28	153.72	0.00
Wel_2	Wel_2	307.44 1980	APR 1000. 500.	0.00 0.00 298.	0.	0.	298.	702.	351.	149.	0.
149. Wel_2	0. 0. Wel_2	298. 1980		0. 0. 297.5	298. 0.0	0.0	297.5	702.5	351.2	148.8	0.0
148.8 Wel_2	0.0 0.0 Wel 2	297.5		0.0 0.0			297 52	702.48	351.24	148.76	0.00
148.76	0.00 0.00	297.52	74.38 223.14	0.00	297.5	52					
Wel_2 154.	Wel_2 0. 0.	307.	MAY 1000. 500. 77. 231.	0. 0.	0. 307.		307.	693.	346.	154.	0.
Wel_2 153.7	Wel_2 0.0 0.0	1980 307.4	MAY 1000.0 500.0 76.9 230.6		0.0	0.0	307.4	692.6	346.3	153.7	0.0
Wel_2	Wel_2	1980	MAY 1000.00 500.00	307.44	0.00	0.00	307.44	692.56	346.28	153.72	0.00
153.72 Wel_2	Wel_2	1980	76.86 230.58 JUN 1000. 500.	298.	0.	0.	298.	702.	351.	149.	0.
149. Wel_2	0. 0. Wel_2	298. 1980	74. 223. JUN 1000.0 500.0		298. 0.0	0.0	297.5	702.5	351.2	148.8	0.0
148.8 Wel_2	0.0 0.0 Wel_2	297.5	74.4 223.1 JUN 1000.00 500.00	0.0		5	297.52		351.24		0.00
148.76	0.00 0.00	297.52	74.38 223.14	0.00	297.5	52					
Wel_2 154.	Wel_2 0. 0.	1980 307.	JUL 1000. 500. 77. 231.		0. 307.	0.	307.	693.	346.	154.	0.
Wel_2 153.7	Wel_2 0.0 0.0	1980	JUL 1000.0 500.0 76.9 230.6	307.4	0.0	0.0	307.4	692.6	346.3	153.7	0.0
133./	0.0 0.0	30/.4	10.9 230.6	0.0	307.4						

Wel_2	Wel_2	1980 JUL 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28 153.72 0	.00
153.72	0.00 0.00	307.44 76.86 230.58 0.00 0.00 307.44	
Wel_2	Wel_2	1980 AUG 1000. 500. 307. 0. 0. 307. 693. 346. 154.	0.
154.	0. 0.	307. 77. 231. 0. 0. 307.	
Wel_2	Wel_2	1980 AUG 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3 153.7	0.0
153.7	0.0 0.0	307.4 76.9 230.6 0.0 0.0 307.4	
Wel_2	Wel_2	1980 AUG 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28 153.72 0	.00
153.72	0.00 0.00	307.44 76.86 230.58 0.00 0.00 307.44	
Wel_2	Wel_2	1980 SEP 1000. 500. 298. 0. 0. 298. 702. 351. 149.	0.
149.	0. 0.	298. 74. 223. 0. 0. 298.	
Wel_2	Wel_2	1980 SEP 1000.0 500.0 297.5 0.0 0.0 297.5 702.5 351.2 148.8	0.0
148.8	0.0 0.0	297.5 74.4 223.1 0.0 0.0 297.5	
Wel_2	Wel_2	1980 SEP 1000.00 500.00 297.52 0.00 0.00 297.52 702.48 351.24 148.76 0	.00
148.76	0.00 0.00	297.52 74.38 223.14 0.00 0.00 297.52	
Wel_2	Wel_2	1980 TOT 12000. 6000. 3620. 0. 0. 3620. 8380. 4190. 1810.	0.
1810.	0. 0.	3620. 905. 2715. 0. 0. 3620.	

Well Water Only Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO.

STRUCTURE ID (0 _ total) : Wel_3
STRUCTURE ACCT (0 _ total): 0
STRUCTURE NAME : Well_3 to Dem_3

cfs STRUCTURE DATA af@30 af@31 5000. 297525. 307442. Well Capacity Well Rights 55. 3273. 3382.

Water U	se		Demand Water Source	Water Su	pply		Sho	rt 		
			Total CU	From From	From	Total	Total	CU	Total	То
Total Structu		Total	Demand Demand	om From Tota Well SW	Soil	Supply	Short	Short	CU	Soil
Return ID	Loss Carried ID	Use Year	River GwStor Salv Mo N/A N/A	age Soil Sour	ce (+)	N/A	N/A	N/A	(+)	(+)
(+)	(+) (+)	N/A	(+) (+) (+)		(· /	14/21	14/11	14/11	(' /	(. ,
(11)	(12) (13)	(14)	(1) (2) (15) (16) (17	(3) (4) (18) (19)	(5)	(6)	(7)	(8)	(9)	(10)
Wel_3		1979	OCT 1000. 500.	1000. 0.		1000.	0.	0.	500.	0.
500. Wel_3	0. 0. Dem_3	1000. 1979	125. 375. 500 OCT 1000.0 500.0	. 0. 1000. 1000.0 0.0	0.0	1000.0	0.0	0.0	500.0	0.0
500.0 Wel_3	0.0 0.0 Dem_3	1000.0 1979	125.0 375.0 500 OCT 1000.00 500.00			1000.00	0.00	0.00	500.00	0.00
500.00 Wel 3			125.00 375.00 500	.00 0.00 1000.	00		0.	0.	500.	0.
wei_3 500.	Dem_3 0. 0.	1000.	NOV 1000. 500. 806. 83. 111		0.	1000.	0.	0.	500.	0.
Wel_3 500.0	Dem_3 0.0 0.0	1979 1000.0	NOV 1000.0 500.0 805.6 83.3 111	222.2 777.8 .1 0.0 1000.	0.0	1000.0	0.0	0.0	500.0	0.0
Wel_3	Dem_3	1979	NOV 1000.00 500.00	222.22 777.78	0.00	1000.00	0.00	0.00	500.00	0.00
500.00 Wel_3	0.00 0.00 Dem_3		805.56 83.33 111 DEC 1000. 500.	.11 0.00 1000. 306. 694.	00	1000.	0.	0.	500.	0.
500. Wel_3	0. 0. Dem_3	1000. 1979	732. 115. 153 DEC 1000.0 500.0	. 0. 1000. 306.2 693.8	0.0	1000.0	0.0	0.0	500.0	0.0
500.0	0.0 0.0	1000.0	732.1 114.8 153	.1 0.0 1000.	0					
Wel_3 500.00	Dem_3 0.00 0.00	1979 1000.00		306.18 693.82 .09 0.00 1000.		1000.00	0.00	0.00	500.00	0.00
Wel_3	Dem_3	1980 1000.	JAN 1000. 500.	456. 544.	0.	1000.	0.	0.	500.	0.
500. Wel_3	Dem_3	1980	601. 171. 228 JAN 1000.0 500.0	456.4 543.6	0.0	1000.0	0.0	0.0	500.0	0.0
500.0 Wel_3	0.0 0.0 Dem_3	1000.0 1980	600.7 171.1 228 JAN 1000.00 500.00	.2 0.0 1000. 456.39 543.61		1000.00	0.00	0.00	500.00	0.00
500.00	0.00 0.00	1000.00	600.66 171.15 228	.20 0.00 1000.	00					
Wel_3 500.	Dem_3 0. 0.	1980 1000.	FEB 1000. 500. 680. 137. 183	366. 634. 0. 1000.	0.	1000.	0.	0.	500.	0.
Wel_3 500.0	Dem_3 0.0 0.0	1980 1000.0	FEB 1000.0 500.0 679.9 137.2 182	365.8 634.2 .9 0.0 1000.	0.0	1000.0	0.0	0.0	500.0	0.0
Wel_3	Dem_3	1980	FEB 1000.00 500.00	365.79 634.21	0.00	1000.00	0.00	0.00	500.00	0.00
500.00 Wel_3	0.00 0.00 Dem_3		679.93 137.17 182 MAR 1000. 500.	.89 0.00 1000. 393. 607.	0.	1000.	0.	0.	500.	0.
500. Wel_3	0. 0. Dem_3	1000. 1980	656. 147. 197 MAR 1000.0 500.0	. 0. 1000. 393.0 607.0	0.0	1000.0	0.0	0.0	500.0	0.0
500.0	0.0 0.0	1000.0	656.1 147.4 196	.5 0.0 1000.	0					
Wel_3 500.00	Dem_3 0.00 0.00		MAR 1000.00 500.00 656.11 147.38 196	393.02 606.98 .51 0.00 1000.		1000.00	0.00	0.00	500.00	0.00
Wel_3 500.	Dem_3 0. 0.	1980 1000.	APR 1000. 500. 652. 149. 199	398. 602. . 0. 1000.	0.	1000.	0.	0.	500.	0.
Wel_3	Dem_3	1980	APR 1000.0 500.0	397.6 602.4	0.0	1000.0	0.0	0.0	500.0	0.0
500.0 Wel_3	0.0 0.0 Dem_3	1000.0 1980	652.1 149.1 198 APR 1000.00 500.00			1000.00	0.00	0.00	500.00	0.00
500.00	0.00 0.00	1000.00	652.12 149.09 198	.79 0.00 1000.	00					
Wel_3 500.	Dem_3 0. 0.		MAY 1000. 500. 1000. 0.			1000.	0.	0.	500.	0.
Wel_3 500.0	Dem_3		MAY 1000.0 500.0 1000.0 0.0 0			1000.0	0.0	0.0	500.0	0.0
Wel_3	Dem_3	1980	MAY 1000.00 500.00	0.00 1000.00	0.00	1000.00	0.00	0.00	500.00	0.00
500.00 Wel_3	0.00 0.00 Dem 3		1000.00 0.00 0 JUN 1000. 500.		00	1000.	0.	0.	500.	0.
500.	0. 0.	1000.	1000. 0. 0	. 0. 1000.						
Wel_3 500.0		1000.0	JUN 1000.0 500.0 1000.0 0.0 0	.0 0.0 1000.	0	1000.0	0.0	0.0	500.0	0.0
Wel_3 500.00	Dem_3 0.00 0.00		JUN 1000.00 500.00 1000.00 0.00 0			1000.00	0.00	0.00	500.00	0.00
Wel_3	Dem_3	1980	JUL 1000. 500.	101. 899.	0.	1000.	0.	0.	500.	0.
500. Wel_3	0. 0. Dem_3	1000. 1980	911. 38. 51 JUL 1000.0 500.0			1000.0	0.0	0.0	500.0	0.0
500.0	_		911.4 38.0 50							

Wel_3 500.00	Dem_3 0.00 0.00			.00 500.00 37.97 50		98.75 0.00 0 1000.00	0 1000.00	0.00	0.00	500.00	0.00
Wel_3 500.	Dem_3	1980	AUG 10	00. 500.	219.	781. 0.	. 1000.	0.	0.	500.	0.
Wel_3	0. 0. Dem_3		809. AUG 100		218.5 7		1000.0	0.0	0.0	500.0	0.0
500.0 Wel_3	Dem_3		AUG 1000	81.9 109 .00 500.00	218.53 78		1000.00	0.00	0.00	500.00	0.00
500.00 Wel_3	Dem_3	1980		81.95 109 00. 500.	255.	1000.00 745. 0.	. 1000.	0.	0.	500.	0.
500. Wel_3	0. 0. Dem_3	1000.			255.0 7		1000.0	0.0	0.0	500.0	0.0
500.0 Wel_3 500.00	Dem_3			95.6 127 .00 500.00 95.61 127	254.95 74	1000.0 45.05 0.00 0 1000.00	1000.00	0.00	0.00	500.00	0.00
Wel_3 6000.	Dem_3 0. 0.	1980 12000.	TOT 120	00. 6000. 1393. 185		3284. 0. 12000.	. 12000.	0.	0.	6000.	0.
#											
_	Ground 1	Water Bu	dget								
# STATE				7 4 1.1							
#	eMod Operating				et.						
# Run dat # Time St #	od Version: 12 te: tep: 1	11/ 7/ 8		8/10/23)							
#											
			Ground W	ater Budget	A CET						
		Fr	Ground W	ater Budget From	ACFT From	Total		From Rive	er	Well	
Reservoir Year Mo Evaporati	Recharge	ir GW		From			Divert	From Rive		Well pletion	
Year Mc Evaporati Stream Outflow	n Recharge ion Seepage Reservoir Change	ir GW e To SoilM	om/To Storage SoilM Change	From SoilM Total Outflow	From Plan Delta	Inflow CU Loss	Pumping	by Well Salvage	L De		
Year Mo Evaporati Stream Outflow ====== 1979 OCT	Recharge Reservoir Change 3978	ir GW e To SoilM =====	om/To Storage SoilM Change 356.	From SoilM Total Outflow	From Plan Delta	Inflow CU Loss	Pumping	by Well Salvage	L De		77.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOW	Reservoir Change 3978 3905.	TO SoilM ======	SoilM Change =====356. 500.	From SoilM Total Outflow	From Plan Delta	Inflow CU Loss	Pumping	by Well Salvage	L De	pletion	77. 0.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1979 DEC	Reservoir Change ====================================	TO SoilM ====== . 428 8.	SoilM Change ======= 356. 500. 251. 111.	From SoilM Total Outflow 0.	From Plan Delta -1.	Inflow CU Loss ===== 4333.	Pumping == ====== 1922.	by Well Salvage = ======= 1752.	L De	epletion	
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1.	Reservoir Change ====================================	TO SoilM ====================================	SoilM Change ====== 356. 500. 251.	From SoilM Total Outflow 0. 356.	From Plan Delta -11.	Inflow CU Loss ==== 4333. 4653.	Pumping == ====== 1922. 1115.	Salvage = 1752. 3381.	L De	154. 149.	0.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1979 DEC	Reservoir Change ====================================	TO SOILM ======= . 428	SoilM Change =======356. 500. 251. 111. 269.	From SoilM Total Outflow 0. 356.	Plan Delta -11.	CU Loss ===== 4333. 4653. 4937.	Pumping == ====== 1922. 1115. 1229.	Salvage =	L De	154. 149. 154.	0. 77.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1979 DEC -1. 1980 JAN -1. 1980 FEE -1. 1980 MAR	Reservoir Change ====================================	TO SoilM ====== 428 8265216.	SoilM Change ======356. 500. 251. 111. 269. 153. 288. 228. 228. 183.	From SoilM Total Outflow = 0. 356. 607. 875. 807.	Plan Delta -111.	CU Loss 4333. 4653. 4937. 5224.	Pumping == ====== 1922. 1115. 1229.	by Well Salvage 1752. 3381. 3742.	De	154. 149. 154. 154.	0. 77. 0.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1979 DEC -1. 1980 JAN -1. 1980 FEE -1.	Reservoir Change ====================================	TO SoilM ======= . 428	SoilM Change ======= 356. 500. 251. 111. 269. 228. 228. 228. 280. 197. 273.	From SoilM Total Outflow = ======== 0. 356. 607. 875. 807. 810. 821.	From Plan Delta -1111.	CU Loss 4333. 4653. 4937. 5224. 5078.	Pumping ======== 1922. 1115. 1229. 1379. 1199.	by Well Salvage = 1752. 3381. 3742. 3907. 3893.	De	154. 149. 154. 154. 139.	0. 77. 0. 69.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1980 JAN -1. 1980 FEE -1. 1980 MAR -1.	Reservoir Change ====================================	TO SOILM ======= . 428 8	SoilM Change ======= 356. 500. 251. 111. 269. 153. 288. 228. 228. 280. 197.	From SoilM Total Outflow = ======== 0. 356. 607. 875. 807. 810. 821.	Plan Delta -11111.	CU Loss 4333. 4653. 4937. 5224. 5078. 5151.	Pumping ======== 1922. 1115. 1229. 1379. 1199.	by Well Salvage = 1752. 3381. 3742. 3907. 3893.	De	154. 149. 154. 154. 139.	0. 77. 0. 69.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1980 JAN -1. 1980 FEE -1. 1980 MAR -1. 1980 APR -1.	Reservoir Change	TO SoilM ======= . 428	SoilM Change ======= 356. 500. 251. 111. 269. 153. 288. 228. 254. 183. 280. 197. 273. 199. 231. 0.	From SoilM Total Outflow = 0. 356. 607. 875. 807. 810. 821. 807.	From Plan Delta -111111.	CU Loss 	Pumping == ====== 1922. 1115. 1229. 1379. 1199. 1315. 1290.	by Well Salvage 1752. 3381. 3742. 3907. 3893. 3893. 3902.	De	154. 149. 154. 154. 154. 139. 154.	0. 77. 0. 69. 0.
Year Mc Evaporati Stream Outflow ======= 1979 OCT -1. 1979 NOV -1. 1979 DEC -1. 1980 JAN -1. 1980 MAR -1. 1980 APR -1. 1980 MAY -1.	Reservoir Change ====================================	TO SoilM ======= . 428	SoilM Change ======== 356. 500. 251. 111. 269. 153. 288. 228. 254. 183. 280. 197. 273.	From SoilM Total Outflow =	From Plan Delta -11111111.	CU Loss 4333. 4653. 4937. 5224. 5078. 5151. 5140. 5348.	Pumping ======== 1922. 1115. 1229. 1379. 1199. 1315. 1290. 922.	by Well Salvage 1752. 3381. 3742. 3907. 3893. 3902. 4027.	De	154. 149. 154. 154. 139. 154. 149.	0. 77. 0. 69. 0. 74.
Year Mc Evaporati Stream Outflow ====== 1979 OCT -1. 1979 NOV -1. 1980 JAN -1. 1980 MAR -1. 1980 MAR -1. 1980 MAR -1. 1980 MAY -1. 1980 MAY -1.	Reservoir Change ====================================	TO SoilM ======= . 428	SoilM Change ====================================	From SoilM Total Outflow = 0. 356. 607. 875. 807. 810. 821. 807. 783.	From Plan Delta -111111.	CU Loss	Pumping == ======= 1922. 1115. 1229. 1379. 1199. 1315. 1290. 922. 893.	by Well Salvage 1752. 3381. 3742. 3907. 3893. 3902. 4027. 4152. 4027.	De	154. 149. 154. 154. 139. 154. 149.	0. 77. 0. 69. 0. 7477. 0.
Year Mc Evaporati Stream Outflow ======= 1979 OCT -1. 1979 NOV -1. 1980 JAN -1. 1980 FEE -1. 1980 MAR -1. 1980 MAY -1. 1980 MAY -1. 1980 JUN -1.	Reservoir Change	TO SoilM ======= . 428	SoilM Change ======= 356. 500. 251. 111. 269. 153. 288. 228. 280. 197. 273. 199. 231. 0. 223. 0. 243. 51.	From SoilM Total Outflow = 0. 356. 607. 875. 807. 810. 821. 807. 783.	From Plan Delta -1111111111.	Tnflow CU Loss ==== 4333. 4653. 4937. 5224. 5078. 5151. 5140. 5348. 5303. 5031.	Pumping ======== 1922. 1115. 1229. 1379. 1199. 1315. 1290. 922. 893. 1024.	by Well Salvage 1752. 3381. 3742. 3907. 3893. 3902. 4027. 4152. 4027.	De	154. 149. 154. 139. 154. 149. 154.	0. 77. 0. 69. 0. 7477.

Reservoir Year Mo Evaporatio	Reservoi Recharge on Seepage	r GWS	,		From Plan	Tota		Divert	From River	Well Depletion	
Stream Outflow	Reservoir Change	To SoilM =====	SoilM Change	Total Outflow	Delta	CU ====	Loss	Pumping	Salvage		

Ground Water Budget ACFT

Outfl	Low Char	ige SoilM	Change	Outflow	Delta	CU Loss	Pumping	Salvage		
=====		=========	========	========	=======	=====	== ======	=======		
Ave	OCT	3978.	356.	0.	-1.	4333.	1922.	1752.	154.	77.
-1.	3905.	428.	500.							
Ave	NOV		251.	356.	-1.	4653.	1115.	3381.	149.	0.
-1.	4644.	8.	111.							
Ave	DEC	4061.	269.	607.	-1.	4937.	1229.	3742.	154.	77.
-1.	5202.	-265.	153.							

1980 Tot 49046. 3179. 8014. -1. 60240. 14576. 44488. 1810. 374. -1. 59587. 654. 1858.

Ave		4061.			-1.	5224.	1379.	3907.	154.	0.
	FEB	-216. 4017.	254.		-1.	5078.	1199.	3893.	139.	69.
		-222. 4061.		810.	-1.	5151.	1315.	3893.	154.	0.
-1.		-210.								
Ave	APR	4046.	273.	821.	-1.	5140.	1290.	3902.	149.	74.
-1.	5416.	-275.	199.							
Ave	MAY	4311.	231.	807.	-1.	5348.	922.	4027.	154.	-77.
-1.	5027.	322.	0.							
Ave	JUN	4296.	223.	783.	-1.	5303.	893.	4152.	149.	0.
-1.	5194.	109.	0.							
Ave	JUL	4061.	243.	727.	-1.	5031.	1024.	4027.	154.	77.
-1.	5282.	-251.	51.							
Ave	AUG	4061.	258.	697.	-1.	5016.	1141.	3907.	154.	77.
-1.	5279.	-263.	109.							
Ave	SEP	4046.	255.	724.	-1.	5026.	1148.	3902.	149.	0.
-1.	5199.	-173.	127.							
Ave		49046.		8014.	-1.	60240.	14576.	44488.	1810.	374.

Note: (1) Recharge = Divert + Pumping - CU - Soil Moisture Change. Recharge and CU are for both surface and ground water. CU does not include reservoir evaporation.

cdss@state.co.us

Last updated: November 2008

⁽²⁾ Other Inflows to ground water not modeled include natural stream loss, precipitation recharge, boundary $\verb"inflow", etc."$

⁽³⁾ Other Outflows from ground water not modeled include natural stream gain, boundary outflow, CU by native

species, etc.

(4) Delta is Total Inflow - Total Outflow but remember Other Inflows and Other Outflows are not included.

(5) Salvage is not part of the Ground Water Balance because it is a net change from native ET to agricultural

Example 8

```
*.rsp; response file for Statemod Example 8
       This response file lists the StateMod input files necessary for model simulation
# Type
                                           Name
                                         = ex8.ctl
Control
River Network
                                         = ... ex2 ex2.rin
StreamGage Station
                                         = ..\ex1\ex1.ris
Stream Base Monthly
                                         = ..\ex1\ex1.rim
Diversion Station
                                         = ..\ex1\ex1.dds
Diversion_Right
                                         = ..\ex1\ex1.ddr
Diversion_Demand_Monthly
                                         = ... ex1 ex1.ddm
Reservoir_Station
                                         = ..\ex2\ex2.res
                                         = ..\ex2\ex2.rer
Reservoir Right
Reservoir_Target_Monthly
                                         = ... ex2 ex2.tam
Evaporation Monthly
                                         = ..\ex2\ex2.eva
Instreamflow Station
                                         = ... ex1 ex1.ifs
Instreamflow Right
                                         = ... \exp[-x_1.ifr]
Instreamflow Demand AverageMonthly
                                         = ..\ex1\ex1.ifa
Operational Right
                                         = ..\ex3\ex3.opr
DelayTable Monthly
                                         = ..\ex1\ex1.urm
                                         = ..\ex1\ex1.out
OutputRequest
                                         = ex8.rid
Stream Base Daily
Diversion Demand Daily
                                         = ex8.ddd
Instreamflow Demand Daily
                                         = ex8.ifd
Reservoir_Target_Daily
                                         = ex8.tad
DelayTable Daily
                                         = ex8.urd
# Exhibit 8.2
 *.ctl; Control file for StateMod Example 8
  STATEMOD
  StateMod Operating Rule Example - ex3.* data set
           : iystr STARTING YEAR OF SIMULATION
    1980
             : iyend
                      ENDING YEAR OF SIMILATION
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      0
            : numpre NO. OF PRECIPITATION STATIONS
      0
            : numeva NO. OF EVAPORATION STATIONS
      1
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
  1.9835
            : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo : dfacto DIVISOR FOR DIVERSION DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
  1 9835
                                                          ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.0
             : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
 1.0
  1.0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
            : cyrl Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
             : ichk
                       detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall Detailed call water right ID (not used if icall = 0)
            : idav
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : iwell Switch for well operations See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isjrip San Juan RIP
: itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
            : isprink O=off, 1=Maximum Supply, 2=Mutual Supply
            : soild O=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
             : isiq
                       Number of significant digits behind decimal point in output files
# Exhibit 8.3
  *.rid; Stream Flow Daily (cfs), total in ac-ft for StateMod Example 8
        iy, im, cid, (q(i,j), j=1,32)
           format(i5, i5, 1x, a12, 31f8.2, f8.0)
```

т													
													_
10/1979 -	0 / 1	000 CEC	- WVD		_								
		980 CFS	WYR	16.06	16.06	16.06	16.06	16.06	16.06	16.06	16.06	16.06	16.06
1979 10 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.										
1979 10 Dem_5		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1979 11 Dem_3		16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	0.00	1000.	10.01	10.01	10.01	10.01	10.01	10.01	10.01	10.01	10.01	10.01
				FO 40	50.42	FO 40	FO 40						
1979 11 Dem_5		50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42		50.42	50.42
50.42 50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 50.42	50.42	0.00	3000.										
1979 12 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.										
1979 12 Dem_5		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1980 1 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.	40	40	40	40	40	40	40	40	40	40 = 5
1980 1 Dem_5		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1980 2 Dem_3		18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01
18.01 18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01
18.01 0.00	0.00	0.00	1000.										
1980 2 Dem_5		54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02
54.02 54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02
54.02 0.00	0.00	0.00	3000.	34.02	34.02	34.02	34.02	34.02	34.02	34.02	34.02	34.02	34.02
	0.00			16.06	16.06	16.06	16.06	16.06	16.06	16.06	16.06	16.06	16.06
1980 3 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.										
1980 3 Dem_5		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1980 4 Dem_3		16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81		16.81	16.81										
	16.81			16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	0.00	1000.										
1980 4 Dem_5		50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 50.42	50.42	0.00	3000.										
1980 5 Dem_3		81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32
81.32 81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32	81.32
81.32 81.32	81.32	81.32	5000.										
1980 5 Dem_5		243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95
243.95 243.95			243.95	243.95		243.95		243.95	243.95	243.95	243.95		243.95
				243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95	243.95
243.95 243.95													
1980 6 Dem_3		84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03
84.03 84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03
84.03 84.03	84.03	0.00	5000.										
1980 6 Dem_5		252.08	252.08	252.08	252.08	252.08	252.08	252.08	252.08	252.08	252.08	252.08	252.08
252.08 252.08		252.08						252.08					
252.08 252.08			15000.										
1980 7 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
		16.26		10.20	10.20	10.20	10.∠0	10.20	10.20	10.20	10.20	10.20	10.20
16.26 16.26	16.26		1000.	40 50	40 50	40 50	40 70	40 50	40 50	40 50	40 50	40 50	40 50
1980 7 Dem_5		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1980 8 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.										
1980 8 Dem_5		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
_	48.79			48.79		48.79		48.79		48.79			
48.79 48.79		48.79	48.79	40./9	48.79	40./9	48.79	40./9	48.79	40./9	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1980 9 Dem_3		16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	0.00	1000.										
1980 9 Dem_5		50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 50.42	50.42	0.00	3000.		•		*		•	-	-	-	•

```
# Exhibit 8.4
# *.ddd; Demand Daily (cfs), total in ac-ft for StateMod Example 8
# iy, im, cid, (q(i,j), j=1,32)
# format(i5, i5, 1x, a12, 31f8.2, f8.0)
#
```

d(v, 12)	4(4/11)	q(x, z)	9(2,10)	q(x, x)	9(2,10)
$\alpha(x.27)$	$\alpha(x 28)$	a(x 29)	$\alpha(x.30)$	a(x 31)	Total

						-	-						-
10/1979 -	9/19	981 CFS	WYR		-								
1979 10 Dem_3	2/12	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.	0 10	0 10	0 10	0 10	0 12	0 10	0 12	0 10	0 10	0 10
1979 10 Dem_4 8.13 8.13	8.13	8.13 8.13											
8.13 8.13	8.13	8.13	500.	0.13	0.13	0.13	0.15	0.13	0.13	0.15	0.13	0.13	0.13
1979 10 Dem_5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 1979 10 Dem_2	0.00	0.00 48.79	0. 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.										
1979 10 Dem_1		32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
32.52 32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
32.52 32.52 1979 11 Dem 3	32.52	32.52 16.81	2000. 16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81	0.00	1000.										
1979 11 Dem_4		8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40
8.40 8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40
8.40 8.40 1979 11 Dem_5	8.40	0.00	500. 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.										
1979 11 Dem_2	50.40	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 50.42 50.42 50.42	50.42	50.42 0.00	50.42 3000.	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
1979 11 Dem 1	30.42	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62
33.62 33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62
33.62 33.62	33.62	0.00	2000.										
1979 12 Dem_3 16.26 16.26	16.26	16.26 16.26											
16.26 16.26	16.26	16.26	10.26	10.20	10.20	10.20	10.20	10.20	10.20	10.20	10.20	10.20	10.20
1979 12 Dem_4		8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13
8.13 8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13
8.13 8.13	8.13	8.13	500.	0.00	0 00	0 00	0.00	0.00	0.00	0.00	0.00	0 00	0.00
1979 12 Dem_5 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1979 12 Dem_2		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.	20 50	20 50	20 50	22 52	20 50	20 50	20 50	20 50	20 50	20 50
1979 12 Dem_1 32.52 32.52	32.52	32.52 32.52											
32.52 32.52	32.52	32.52	2000.	32.32	32.32	32.32	32.32	32.32	32.32	32.32	32.32	32.32	32.32
1980 1 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26 1980 1 Dem_4	16.26	16.26 8.13	1000. 8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13
8.13 8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13
8.13 8.13	8.13	8.13	500.										
1980 1 Dem_5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 1980 1 Dem_2	0.00	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79	48.79	3000.	20 55	20 55	20 55	20 55	20 55	20 55	20 55	20 55	20 55	20 52
1980 1 Dem_1 32.52 32.52	32.52	32.52 32.52											
32.52 32.52	32.52	32.52	2000.	24.34	24.34	J4.J4	J4.J4	24.34	24.34	24.34	24.34	24.34	24.34
1980 2 Dem_3	-	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01
18.01 18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01
18.01 0.00 1980 2 Dem_4	0.00	0.00 9.00	1000. 9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
9.00 9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
9.00 0.00	0.00	0.00	1000.										
1980 2 Dem_5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 1980 2 Dem_2	0.00	0.00 54.02	0. 54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02
54.02 54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02	54.02
54.02 0.00	0.00	0.00	3000.										
1980 2 Dem_1 36.02 36.02	36 00	36.02 36.02	36.02	36.02 36.02	36.02	36.02 36.02	36.02	36.02	36.02	36.02	36.02	36.02	36.02
36.02 36.02	36.02 0.00	0.00	36.02 1000.	JU.U∠	36.02	JU.U∠	36.02	36.02	36.02	36.02	36.02	36.02	36.02
1980 3 Dem_3		16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26 16.26	16.26	16.26	1000.	0 1 2	0 12	0 12	0 12	0 1 2	0 1 2	0 1 2	0 1 2	0 12	0 1 2
1980 3 Dem_4 8.13 8.13	8.13	8.13 8.13											
8.13 8.13	8.13	8.13	500.										

1980	3 Dem_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1980	3 Dem_2		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79 48.79	48.79 48.79	48.79 48.79	48.79 3000.	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
1980	3 Dem_1		32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
32.52 32.52	32.52 32.52	32.52 32.52	32.52 32.52	32.52 2000.	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
1980	4 Dem_3	32.32	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 1980	16.81 4 Dem_4	16.81	0.00 8.40	1000. 8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40
8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40
8.40 1980	8.40 4 Dem_5	8.40	0.00	500. 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.	FO 40	E0 40	FO 40	FO 40						
1980 50.42	4 Dem_2 50.42	50.42	50.42 50.42											
50.42	50.42	50.42	0.00	3000.										
1980 33.62	4 Dem_1 33.62	33.62	33.62 33.62											
33.62	33.62	33.62	0.00	2000.										
1980 81.32	5 Dem_3 81.32	81.32	81.32 81.32											
81.32	81.32	81.32	81.32	5000.										
1980 8.13	5 Dem_4 8.13	8.13	8.13 8.13											
8.13	8.13	8.13	8.13	500.	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
1980	5 Dem_5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1980	5 Dem_2		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79 48.79	48.79 48.79	48.79 48.79	48.79 3000.	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
1980	5 Dem_1		32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
32.52 32.52	32.52 32.52	32.52 32.52	32.52 32.52	32.52 2000.	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
1980	6 Dem_3	32.32	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03
84.03 84.03	84.03 84.03	84.03 84.03	84.03 0.00	84.03 5000.	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03	84.03
1980	6 Dem_4	04.03	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40
8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40	8.40
8.40 1980	8.40 6 Dem_5	8.40	0.00	500. 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 1980	0.00 6 Dem_2	0.00	0.00 50.42	0. 50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42	50.42
50.42 1980	50.42 6 Dem_1	50.42	0.00 33.62	3000. 33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62
33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62	33.62
33.62 1980	33.62 7 Dem_3	33.62	0.00 16.26	2000. 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26	16.26	16.26	16.26	1000.	0 10									0 12
1980 8.13	7 Dem_4 8.13	8.13	8.13 8.13											
8.13	8.13	8.13	8.13	500.										
1980 0.00	7 Dem_5 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.										
1980 48.79	7 Dem_2 48.79	48.79	48.79 48.79											
48.79	48.79	48.79	48.79	3000.										
1980 32.52	7 Dem_1 32.52	32.52	32.52 32.52											
32.52	32.52	32.52	32.52	2000.	32.32	32.32	32.32	32.32	32.32	32.32	32.32	32.32	32.32	32.32
1980 16.26	8 Dem_3 16.26	16.26	16.26 16.26	16.26 16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
16.26	16.26	16.26	16.26	1000.	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26
1980	8 Dem_4	0.10	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13
8.13 8.13	8.13 8.13	8.13 8.13	8.13 8.13	8.13 500.	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13	8.13
1980	8 Dem_5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1980	8 Dem_2		48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
48.79 48.79	48.79 48.79	48.79 48.79	48.79 48.79	48.79 3000.	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79	48.79
1980	8 Dem_1		32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
32.52 32.52	32.52 32.52	32.52 32.52	32.52 32.52	32.52 2000.	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52	32.52
1980	9 Dem_3		16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
16.81 16.81	16.81 16.81	16.81 16.81	16.81	16.81 1000.	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81	16.81
TO.0T	10.01	10.01	0.00	1000.										

```
0.00
                               0.00
                                      0.00
                                             0.00
                                                     0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
                                                                                    0.00
                                                                                            0.00
                                                                                                    0.00
                                                                                                           0.00
1980
     9 Dem 4
       0.00
0.00
                                                                                                          0.00
               0 00
                      0.00
                             0.00
                                     0.00
                                             0.00
                                                     0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
                                                                                   0.00
                                                                                          0.00
                                                                                                  0.00
0.00
               0.00
                      0.00
                              0.
      9 Dem_5
                       0.00
                               0.00
                                      0.00
                                              0.00
                                                      0.00
                                                             0.00
                                                                     0.00
                                                                            0.00
                                                                                    0.00
                                                                                            0.00
                                                                                                   0.00
                                                                                                           0.00
1980
      0.00
                              0.00
                                     0.00
                                             0.00
                                                     0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
                                                                                                          0.00
0.00
                      0.00
                                                                                   0.00
                                                                                           0.00
                                                                                                 0.00
       0.00
               0.00
                      0.00
0.00
                                0.
      9 Dem_2
                              50.42
                                      50 42
                                             50.42
                                                     50.42
                                                             50.42
                                                                    50.42
                                                                            50.42
                                                                                   50.42
                                                                                                  50.42
1980
                      50.42
                                                                                           50 42
               50.42
50.42
       50.42
                      50.42
                              50.42
                                     50.42
                                             50.42
                                                     50.42
                                                            50.42
                                                                    50.42
                                                                            50.42
                                                                                   50.42
                                                                                           50.42
                                                                                                  50.42
                                                                                                          50.42
50.42 50.42
               50.42
                       0.00
                              3000
1980
     9 Dem_1
                                     33.62
                                             33.62
                                                     33.62
                                                            33.62
                                                                    33.62
                                                                            33.62
                                                                                   33.62
                                                                                           33.62
                                                                                                  33.62
                                                                                                          33.62
                      33.62
                              33.62
     33.62
                                                                           33.62 33.62 33.62 33.62 33.62
                                                    33.62
33.62
                      33.62
                              33.62
                                     33.62
                                             33.62
                                                            33.62
                                                                    33.62
33.62
      33.62
              33.62
                       0.00
                              2000.
# Exhibit 8.5
# *.rid; Instream Flows Daily (cfs) for StateMod Example 8
  ************
     Card 1 Control
     format: (i4, i4, 1x, a12, 31f8.0)
             iryr:
     Year
                              Year
             cistat:
                             Station id
     TD
     runoff(1-12):
                             Streamflow by month = virinp(im,np) for station np
                    q(x,1) q(x,2) q(x,3) q(x,4) q(x,5) q(x,6) q(x,7) q(x,8) q(x,9) q(x,10) q(x,11) q(x,12)
# iy im cid
q(x,13) \ q(x,14) \ q(x,15) \ q(x,16) \ q(x,17) \ q(x,18) \ q(x,19) \ q(x,20) \ q(x,21) \ q(x,22) \ q(x,23) \ q(x,24) \ q(x,25) \ q(x,26)
q(x,27) q(x,28) q(x,29) q(x,30) q(x,31) Total
                 9/1980 CFS WYR
65.50 65.50 65.50 65.50 65.50 65.50 65.50
.50 65.50 65.50 65.50 65.50 65.50 65.50
.50 65.50 65.50 65.50 65.50 65.50 65.50
  10/1979 -
                                                                                   65.50 65.50 65.50 65.50
1979 10 Isf 1
              65.50
65.50 65.50
65.50 65.50
                                                                                  65.50
                                                                                          65.50 65.50 65.50
             65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
1979 11 Isf_1
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                           65.50
                      65.50
                                                                                                  65.50
                                                                                                          65.50
                                                                                                 65.50
65.50 65.50
                      65.50
                                             65.50
                                                     65.50 65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                          65.50
                                                                                                          65.50
65.50
       65.50
              65.50
                      65.50
                               504.16
                                         4027.
                              65.50 65.50 65.50
65.50 65.50 65.50
1979 12 Isf_1
                                                     65 50
                                                            65.50
                                                                    65.50
                                                                            65 50
                                                                                   65.50
                                                                                           65 50
                                                                                                 65.50
                      65.50
65.50
      65.50
               65.50
                                                     65.50
                                                            65.50
                                                                                   65.50
                                                                                           65.50
                      65.50
                                                                    65.50
                                                                            65.50
                                                                                                  65.50
                                                                                                          65.50
                              504.16 4027.
      65.50
              65.50
65.50
                      65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
1980 1 Isf_1
65.50 65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                            65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                  65.50
                                                                                                          65.50
                      65.50
               65.50
                      65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                            65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                  65.50
                                                                                                          65.50
                               504.16
                                       4027.
65.50
       65.50
               65.50
                      65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
1980 2 Tsf 1
                                                            65.50
                                                                    65.50
                      65.50
                                                     65.50
                                                                           65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                 65.50
               65.50
                                             65.50
65.50
      65.50
                      65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                          65.50
                                                                                                 65.50
                                                                                                          65.50
                              504.16 4027.
65.50
       65.50
              65.50
                      65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
1980 3 Tsf 1
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                  65.50
                                                                                                          65.50
                      65.50
                                                                                                 65.50
65.50
      65.50
                                                                                          65.50
                      65.50
                                             65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                                          65.50
                               504.16
                                       4027.
65.50
      65.50
               65.50
                      65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
1980 4 Isf 1
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                 65.50
                      65.50
               65.50
65.50
      65.50
                      65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                          65.50 65.50
                                                                                                          65.50
                              504.16 4027.
65.50
       65.50
              65.50
                      65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                  65.50
1980 5 Tsf 1
                      65.50
                                                                                                          65.50
               65.50
65.50
      65.50
                      65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                          65.50
                                                                                                 65.50
                                                                                                          65.50
                               504.16
                                       4027.
65.50
       65.50
               65.50
                      65.50
                             65.50 65.50 65.50
65.50 65.50 65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                            65.50
                                                                                   65.50
                                                                                           65.50 65.50
                                                                                                          65.50
1980 6 Tsf 1
                      65.50
              65.50
65.50
      65.50
                      65.50
                                             65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                           65.50
                                                                                   65.50
                                                                                          65.50
                                                                                                 65.50
                                                                                                          65.50
65.50 65.50
                              504.16 4027.
              65.50
                      65.50
                              65.50 65.50 65.50
65.50 65.50 65.50
1980 7 Tsf 1
                                                                                          65.50 65.50
65.50 65.50
                      65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                            65.50
                                                                                   65.50
                                                                                                          65.50
65.50
               65 50
      65 50
                      65 50
                                             65 50
                                                     65 50
                                                            65 50
                                                                    65 50
                                                                           65 50
                                                                                   65 50
                                                                                                          65 50
                               504.16
65.50
      65.50
              65.50
                      65.50
                                       4027.
                              65.50 65.50 65.50
65.50 65.50 65.50
1980 8 Isf 1
                      65.50
                                                     65.50
                                                            65.50
                                                                    65.50
                                                                            65.50
                                                                                   65.50
                                                                                           65.50
                                                                                                 65.50
                                                                                                          65.50
      65.50
               65.50
                                                     65.50
                                                            65.50
65.50
                      65.50
                                                                    65.50
                                                                            65.50
                                                                                   65.50
                                                                                          65.50 65.50
                                                                                                          65.50
65.50
       65.50
              65.50
                      65.50
                              504.16 4027.
                              65.50 65.50 65.50
65.50 65.50 65.50
                                                     65.50 65.50 65.50 65.50 65.50 65.50 65.50
65.50 65.50 65.50 65.50 65.50 65.50
1980 9 Tsf 1
                                                                                                          65.50
                      65.50
65.50 65.50
               65.50
                      65.50
                                                                                                         65.50
                              504 16
                                      4027
              65 50
                      65 50
65 50 65 50
# Exhibit 8 6
# *.tad; Daily Targets (ac-ft) for StateMod Example 8
       iy, im, cid, (q(i,j), j=1,32)
     format(i4, i4, 1x, a12, 31f8.2, f8.0)
q(x,27) q(x,28) q(x,29) q(x,30) q(x,31) Total
```

#____x__

^{10/1979 - 9/1980} AF/M WYR

1979 10 Res_1 99999. 99999. 100000.

1979 12 Res_1 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. $100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.$ 100000. 100000. 100000. 100000. 504.16 1000. 1980 1 Res_1 100000. 504.16 1000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 1980 2 Res_1 100000. 100000 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 504.16 1000. 1000000. 1000000. 1000000. 1000000. 1000000. 100000. 100000. 100000. 1000 100000. 1000000. 1000000. 1000000. 1000000. 1000000. 100000. 100000. 100000. 1000000. 1000000. 1000000. 100000 1980 5 Res_1 100000. 000. 100000. 100000. 504.16 1000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 1980 6 Res 1 100000. 100000 100000. 1000000. 1000000. 1000000. 1000000. 1000000. 100000. 100000. 100000. 1000000. 1000000. 1000000. 100000 100000. 100000. 504.16 1000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 1980 8 Res_1 $100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.\ 100000.$ 100000. 100000. 100000. 100000. 100000. 504.16 1000. 1980 9 Res_1 100000. 1000000. 1000000. 1000000. 1000000. 100000. 100000. 100000. 10000 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.

*.xwb Water Budget

STATEMOD

StateMod Operating Rule Example - ex3.* data set

Statemod Version: 12.29.00 Date = 2008/09/15)

Run date: 11/ 2/ 8 15: 5:11

Time Step: Daily

#

Water Budget ACFT

Well Res	Stream servoir Reservoi	r Stream 1	Reserv	oir		To	Soil	M					
Year Mo	Inflow	Return GW	Storage	e S	oilM	P	lan	Inflow	Divert	by	Well		
Depletion	Evaporation S	Seepage Outflo	OW	Chang	е	Soi	lM	Change					
Total													
	Delta												
1979 OCT	4000.0	3494.6	0.0		0.0		0.0	7494.6	5957.0		0.0		0.0
	0.0 1573.4	-35.8		0.0		0.0	7494.	6	0.0 2	378.5		0.0	
0.0		2525 1						FF06 1	5005.0				
	4000.0	3596.1	0.0	0 0	0.0		0.0	7596.1	5997.8	200	0.0		0.0
0.0		0.0		0.0		0.0	/596.	T	0.0 2	398.9		0.0	
0.0	0.0	2600						T.C.O.O.O.	5000				
1979 DEC	4000.0 0.0 1602.8	3602.8	0.0	0 0	0.0		0.0	7602.8	6000.0	400 0	0.0		0.0
0.0	0.0 1602.8	0.0		0.0		0.0	7602.	В	0.0 2	400.0		0.0	
		2600 0	0 0		0 0		0 0	7600 0	6000 0		0 0		0.0
1980 JAN 0.0	4000.0	3600.0	0.0	0 0	0.0	0 0	7.00	7600.0	6000.0	400 0	0.0	0 0	0.0
	0.0 1600.0 0.0	0.0		0.0		0.0	7600.	U	0.0 2	100.0		0.0	
	4000.0	2507 6	0 0		0 0		0 0	7507 6	F002 1		0 0		0 0
0.0		3587.0	0.0	0 0	0.0	0 0	0.0	/58/.6	5993.1	206 5	0.0	0 0	0.0
0.0	0.0 1594.5	0.0		0.0		0.0	/58/.	ь	0.0 2	396.5		0.0	
	4000.0	2600 0	0 0		0 0		0 0	7600 0	6000 0		0 0		0 0
1980 MAR	0.0 1609.	3609.0	0.0	0 0	0.0	0 0	7.00	7609.0	0000.0	2425 2	0.0	0 0	0.0
0.0	0.0 1009.	0 -25.2		0.0		0.0	7009	.0	-0.1	2423.2		0.0	
	4000.0	2506 1	0 0		0 0		0 0	7506 1	E007 0		0 0		0 0
	0.0 1598												
0 0	0 0												
1000 MAV	20000	2010 0	0 0		0 0		0 0	22040 0	6500 0		0 0		0.0
200 MAI	0 0 5240	11700 0	0.0	0 0	0.0	0 0	2204	23040.0	0.0	2040 0	0.0	0.0	
0 0	20000.0 0.0 5348 0.0	11/00.9		0.0		0.0	2304	0.0	0.0	2949.0		0.0	
1980 .TIIN	20000.0	3847 1	0 0		0 0		0 0	23847 1	6500 0		0 0		0 0
	0.0 5347				0.0				0.0				
0.0		.1 11107.5		0.0		0.0	2501	,	0.0	3132.1		0.0	
1980 .TITT.	4000 0	3607 0	0 0		0 0		0 0	7607 0	6000 0		0 0		0 0
481 3	4000.0 0.0 4027	5007.0	0.0	0 0	0.0	0 0	760	7 0	0 0	2881 3	0.0	0 0	0.0
0.0	0.0	.5 2,01.7		0.0		0.0	,00		0.0	2001.3		0.0	
1980 ATTG	4000.0	3600 0	0 0		0 0		0 0	7600 0	6000 0		0 0		0 0
375.1	0.0 4027	7.5 -2802 6	0.0	0.0	3.3	0.0	760	0.0	0.0	2775.1	3.0	0.0	0.0
0.0	0.0 4027 0.0	2002.0		3.0		3.0	, , ,					3.0	

1980 SEP 304.4 0.0	4000.0 3596.1 0.0 3897.6 0.0	0.0	0.0	0.0	7596.1 596.1	5997.8 0.0 2703.3	0.0	0.0
1980 Tot 2614.9 0.0	80000.0 43585.1 0.0 33824.6 0.0	0.0	0.0	0.0	123585.1 3585.2	72943.6 0.0 31886.7	0.0	0.0
	Wat	er Budget AC	EFT					
Year Mo	Stream servoir Reservoir St Inflow Return Evaporation Seepage	ream Reserv GWStorag	oir ge SoilM	Plan	ilM Inflow		n Rive	
	Delta CU							
	4000.0 3494.6 0.0 1573.4 0.0	0.0	0.0	0.0	7494.6	5957.0 0.0 2378.5	0.0	0.0
Ave NOV 0.0 0.0	4000.0 3596.1 0.0 1598.3 0.0		0.0		7596.1 5.1	5997.8 0.0 2398.9	0.0	0.0
Ave DEC 0.0 0.0	4000.0 3602.8 0.0 1602.8 0.0		0.0		7602.8 2.8	6000.0 0.0 2400.0	0.0	0.0
Ave JAN 0.0 0.0	4000.0 3600.0 0.0 1600.0		0.0		7600.0		0.0	0.0
Ave FEB 0.0 0.0	4000.0 3587.6 0.0 1594.5 0.0		0.0		7587.6 7.6	5993.1 0.0 2396.5	0.0	0.0
Ave MAR 25.2 0.0	4000.0 3609.0 0.0 1609.0 0.0		0.0		7609.0 09.0	6000.0 -0.1 2425.2	0.0	0.0
Ave APR 327.3	4000.0 3596.1 0.0 1598.3 0.0		0.0	0.0	7596.1 596.1	5997.8 0.0 2726.2	0.0	0.0
Ave MAY 299.0	20000.0 3848.8 0.0 5348.8 0.0		0.0	0.0	23848.8 848.8	6500.0 0.0 2949.0		0.0
Ave JUN 802.4 0.0	20000.0 3847.1 0.0 5347.1 0.0		0.0	0.0	23847.1 847.0	6500.0 0.0 3452.4		0.0
Ave JUL 481.3	4000.0 3607.0 0.0 4027.5 0.0	0.0	0.0	0.0	7607.0 607.0	6000.0 0.0 2881.3		0.0
Ave AUG 375.1 0.0	4000.0 3600.0 0.0 4027.5 0.0		0.0	0.0	7600.0 600.0	6000.0 0.0 2775.1		0.0
Ave SEP 304.4	4000.0 3596.1	0.0	0.0	0.0				
Ave Tot 2614.9	80000.0 43585.1 0.0 33824.6	0.0	0.0	0.0	123585.1 3585.2	72943.6 0.0 31886.7 0.0 (6)	0.0	

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency

- + max (Resevoir Evaporation (Evap), 0.0).
- (2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream
- (3) Pumping is not part of the Stream Balance.
 - Its impact on the stream is included in the From River by Well and Well Depletion columns

72943.6

- (4) Salvage is not part of the Stream Water Balance.
- It is the portion of well pumping that does not impact the stream $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$
- (5) From Plan is water from a reuse plan.
 (6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:
 - 0. af/yr for Diverted to Storage. 1
 - 2 $\ensuremath{\text{0.}}$ af/yr for a Diversion Carrier.
 - 3 $\ensuremath{\text{0.}}$ af/yr for a Reservior Carrier.
 - 0. af/yr for a Plan Carrier.0. af/yr Total 4

```
#
  *.xwr
              Water rights list sorted by basin rank
#
#
   STATEMOD
   StateMod Operating Rule Example - ex3.* data set
# Statemod Version: 12.29.00 Date = 2008/09/15)
                     11/ 2/ 8 15: 5: 7
 Run date:
                     Daily
 Time Step:
  *.xwr; Water Right Information
                                     10
        Number of rights =
#
#
 Where:
  1. Rank
                     = Water right basin rank
                     = Water right type
  2. Type
                    1=Instream,
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
                    5=Operational,
                    6=Well.
#
  3. Admin #
                     = Administration Number
  4. On/Off
                     = On or Off switch
     Note: Certain operating rules may cause a structure to be turned off since if it is controlled by an
           operating rule
                    0=off
#
                    1=on
                   +n=begin in year n
                   -n=stop in year n
= Primary structure for this right
 5. Str Id #1
                     = Secondary structure for this right (-1=N/A)# 7. Amount
# 6. Str Id #2
                                                                                      = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                     = Water right name
                     = Primary structure for this right
# 9. Str Name #1
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
  Rank ID
                                       Admin # On/Off Str ID #1
                                                                     Str ID #2
                          Type
                                                                                          Amount Right Name
                          Str Name #2
Str Name #1
                                                                      (7)
                                                                                              (8) (9)
    (1) (2)
                                            (4)
                                                    (5) (6)
                           (3)
(10)
                           (11)
      1 Dem_1_WR_1
                                                                                        100.000 c M&I Demand 1
                             3
                                        2.00000
                                                      1 Dem 1
                                                                       -1
Municipal Demand _1
                             3
      2 Dem 2 WR 1
                                        6.00000
                                                      1 Dem 2
                                                                       -1
                                                                                         60.000 c Irrigation Demand 2
Irrigation Demand _2
                             3
                                       7.00000
                                                      1 Dem_3
                                                                       -1
                                                                                        100.000 c Irrigation Demand _3
      3 Dem_3_WR_1
Irrigation Demand _3
      4 ISF WR 1
                             1
                                       9.00000
                                                      1 ISF
                                                                       -1
                                                                                         65.500 c Instream Flow 1
Instream Demand
      5 Opr_2
                           102
                                       9.00000
                                                      1. Dem_2
                                                                       -1
                                                                                         -1.000 x Opr_Res_1_to_Dem_2
Irrigation Demand _2
                           101
                                       9.00000
      6 Opr_3
                                                      1 ISF
                                                                       -1
                                                                                         -1.000 x Opr_Res_1_to_ISF
Instream Demand
      7 Dem_4_WR_1
                            3
                                      10 00000
                                                                       - 1
                                                                                        100.000 c Irrigation Demand _4
                                                      1 Dem 4
Irrigation Demand \_4
      8 Opr_1
                                                      1 -1
                                                                      -1
                           109
                                      10.00000
                                                                                         -1.000 x Opr_Res_1_to_Target
      9 Res_1_WR_1
                             2
                                      15.00000
                                                                       -1
                                                                                    100000.000 a Reservoir_1
                                                      1 Res_1
Reservoir 1
     10 Dem 5 WR 1
                             3
                                                      1 Dem_5
                                                                       - 1
                                                                                        100.000 c Irrigation Demand _5
                                      15.00000
Irrigation Demand _5
 *.xdd
#
             Diversion Summary
  STATEMOD
  StateMod Operating Rule Example - ex3.* data set
# Statemod Version: 12.29.00 Date = 2008/09/15)
                     11/ 2/ 8 15: 4:56
# Run date:
                     Daily
# Time Step:
```

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 1

STRUCTURE ID (0 = total) : Dem_3 STRUCTURE ACCT (0 = total): 0

Diversion Capacity : 1 5000. 297525. 307442.

Diversion Rights : 1 100. 5950. 6149.

Well Capacity : 1 0. 0. 0.

: 0 0. 0. 0. STRUCTURE DATA

Shortage		and	From River By		From C	arrier By
Carried Structure River					=======	=======
Exchange From Total			Upstrm			
ID ID Bypass SM Supply	Year Mo Total Short Short CU		torage Exc_Pln Loss Loss Inflow	Well	Priorty S	to_Exc Loss
Bypass SM Supply	Short Short Co	SOIIM RELUIN	LOSS INIIOW			
Station In			cion Balance			
Reach Return Well		 r River River				
			v Flow Location Right	L		
Dem 3 Dem 3	1979 OCT 1000.0		0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 953.4	46.6 23.3 476.7		0.0 0.0 1000.0	0.0		0.0 1000.0
953.4 0.0 46.6	0.0 Hgate_Limit	-1.000	0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
Dem_3 Dem_3	1979 NOV 1000.0	500.0 997.8	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 997.8	2.2 1.1 498.9	0.0 498.9	0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
997.8 0.0 2.2	0.0 Dem_1	100.000				
Dem_3 Dem_3	1979 DEC 1000.0		0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0		0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
1000.0 0.0 0.0		-1.000				
Dem_3 Dem_3	1980 JAN 1000.0		0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0		0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
1000.0 0.0 0.0		-1.000	0.0	0 0	0 0	0 0 0 0
Dem_3 Dem_3 0.0 0.0 993.1	1980 FEB 1000.0 6.9 3.5 496.5	500.0 993.1 0.0 496.5	0.0 0.0 0.0 0.0 0.0 1000.0	0.0	0.0	0.0 0.0
993.1 0.0 6.9	0.0 Dem 1	100.000	0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
Dem 3 Dem 3	1980 MAR 1000.0	500.0 1000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0		0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
1000.0 0.0 0.0		-1.000				
Dem_3 Dem_3	1980 APR 1000.0	500.0 997.8	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 997.8	2.2 1.1 498.9	0.0 498.9	0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
997.8 0.0 2.2	0.0 Dem_1	100.000				
Dem_3 Dem_3	1980 MAY 1000.0	500.0 1000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0	0.0 500.0	0.0 0.0 5000.0	0.0	0.0	0.0 5000.0
	1321.3 NA	-1.000				
Dem_3 Dem_3	1980 JUN 1000.0	500.0 1000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0		0.0 0.0 5000.0	0.0	0.0	0.0 5000.0
1000.0 0.0 4000.0 Dem 3 Dem 3	1449.5 NA 1980 JUL 1000.0	-1.000 500.0 1000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0		0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
1000.0 0.0 0.0		-1.000	0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
Dem 3 Dem 3	1980 AUG 1000.0	500.0 1000.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 1000.0	0.0 0.0 500.0		0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
1000.0 0.0 0.0	0.0 Hgate_Limit	-1.000				
Dem_3 Dem_3	1980 SEP 1000.0	500.0 997.8	0.0 0.0 0.0	0.0	0.0	0.0 0.0
0.0 0.0 997.8	2.2 1.1 498.9	0.0 498.9	0.0 0.0 1000.0	0.0	0.0	0.0 1000.0
997.8 0.0 2.2	0.0 Dem_1	100.000				
	1980 TOT 12000.0			0.0	0.0	0.0 0.0
0.0 0.0 11940.0			0.0 0.0 20000.0	0.0	0.0	0.0 20000.0
11940.0 0.0 8060.	0 2770.8 NA	-1.000				

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4

RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	re	Water Use	Demar	nd		From R:	iver By			From	Carrier	Ву
Carried	l	========										_
Structu	re River		=======						From	======		
	e From Total			To	Total		Upst:					
ID	ID	Year Mo					Exc_Pln		Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Sho	rt CU	SoilM	Return	Loss	s Infl	WC				
	Station I	n/Out			Stat	ion Bal	lance					
Reach	Return Well			River			Control					
Gain		GW Stor Infl										
Dem_4	Dem_4	1979 OCT	500.0	250.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3.6	496.4 248.2	1.8	0.0	1.8	0.0	46.6	0.0	468.6	0.0	0.0	515.2
3.6	0.0 511.6	0.0 ISF	500.0	100.000					0 0	0 0		0 0
Dem_4	Dem_4	1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 500.8	500.0 250.0 0.0 Dem 1	0.0	0.0	0.0	0.0	2.2	0.0	498.7	0.0	0.0	500.8
Dem 4	Dem 4	1979 DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0			0.0	0.0	0.0	0.0	500.3	0.0	0.0	500.3
0.0	0.0 500.3	0.0 ISF	0.0	100.000	0.0	0.0	0.0	0.0	300.3	0.0	0.0	300.3
Dem 4	Dem 4	1980 JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0		0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF	0.0	100.000	0.0	0.0	0.0	0.0	300.0	0.0	0.0	500.0
Dem 4	Dem 4	1980 FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0		0.0	0.0	0.0	6.9	0.0	495.7	0.0	0.0	502.6
0.0	0.0 502.6	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.9	0.0	0.0	500.9
0.0	0.0 500.9	0.0 ISF		100.000								
Dem_4	Dem_4	1980 APR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	2.2	0.0	498.7	0.0	0.0	500.8
0.0	0.0 500.8	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.3	0.0	0.0	4500.3
500.0		1321.3 NA	F00 0	-1.00		0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_4 0.0	Dem_4 0.0 500.0	1980 JUN 0.0 0.0	500.0 250.0	250.0	500.0 250.0	0.0	0.0 4000.0	0.0	0.0 499.7	0.0	0.0	0.0 4499.7
500.0		1449.5 NA	250.0	-1.00		0.0	4000.0	0.0	499.7	0.0	0.0	4499.7
Dem_4	Dem_4	1980 JUL	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0		0.0	0.0	0.0	0.0	0.0	500.3	0.0	0.0	500.3
0.0	0.0 500.3	0.0 ISF	0.0	100.000		0.0	0.0	0.0	300.3	0.0	0.0	300.3
Dem 4	Dem 4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0		0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	2.2	0.0	498.7	0.0	0.0	500.8
0.0	0.0 500.8	0.0 ISF		100.000								
Dem_4	Dem_4	1980 TOT					0.0	0.0	0.0	0.0	0.0	0.0
0.0		4496.4 2248.2	501.8	0.0		0.0	8060.0	0.0	5961.7	0.0	0.0	L4021.6
1003.6	0.0 13018.	1 2770.8 NA		-1.0	000							

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _5

RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow

RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	:	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage Water Use From River By Demand From Carrier By

Carried	1		Dema			riom R.	-			FIOIII	Callici	БУ
Structu		=======	==== ====	 					From			
	ge From Total	Total (יטי	 To	Total		 Upst		FIOIII			
ID	ID						-		Well	D	O+ - E	
Bypass	SM Supply	Year Mo Short Sh	ort CU		riorty St Return	orage i		Loss	well	Priorty	SCO_EXC	LOSS
Буравв	SM Suppry	21101.0	.016 60	SOTIM	Recuiii	LOS	5 1111.1	.Ow				
	Station In	/Ou+			Ctat	ion Ba	lango					
	Station in											
Reach	Return Well	From/To Riv		River	River		Control					
Gain	Flow Deplete	. ,							-			
Dem 5	Dem 5	1979 OCT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0		3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0 0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem_5	Dem_5	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem_5	Dem_5	1980 FEE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2	0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1980 MAF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0		3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2	0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1980 APF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0		3000.0	0.0	0.0		3000.0
0.0	0.0 3000.0	0.0 Dem_2	0.0	60.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0		15000.0	0.0	0.0		15000.0
0.0	0.0 15000.0	0.0 Dem_2		60.000								
Dem 5	Dem 5	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	0.0 Dem 2		60.000								
Dem 5	Dem 5	1980 JUI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		100.000								
Dem 5	Dem 5	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		100.000								
Dem 5	Dem_5	1980 SEE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.		0.0	0.0	0.0		3000.0	0.0	0.0		3000.0
0.0	0.0 3000.0	0.0 ISF		100.000								
												_
Dem_5	Dem_5	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	60000.0
0.0	0.0 60000.0	0.0 NA		-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO.

STRUCTURE ID (0 = total) : Res_1 7501

STRUCTURE ACCT (0 = total): 0

Reser

STRUCTURE DATA : # af Capacity : 1 100000.
Reservoir Rights : 1 100000.

Water Use Shortage Demand From River By From Carrier By

Station In/Out Station Balance

Reach Return Well From/To River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right

Res_1	Res_1	1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
-35.8	0.0 3035.8	0.0 Dem_2		60.00								
Res_1	Res_1	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Res_1	Res_1	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 2		60.000								
Res 1	Res 1	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
12000.0	0.0 3000.0	0.0 Dem_2	2	60.0	000							
Res 1	Res 1	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
12000.0	0.0 3000.0	0.0 Dem 2	2	60.0	000							
Res 1	Res 1	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -
2420.5	0.0 5420.5	0.0 ISF		100.0	00							
Res_1	Res_1	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -
2427.5	0.0 5427.5	0.0 ISF		100.0	00							
Res 1	Res_1	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0 -
2299.3	0.0 5299.3	0.0 ISF		100.0	00							
Res_1	Res_1	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	0.0	60000.0
16816.9	0.0 43183.1	0.0 NA		-1.	000							
16816.9	0.0 43183.1	0.0 NA		-1.	000							

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigat
RIVER LOCATION - FROM : Dem_2

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. __ _ Diversion Capacity 307442. 60. 3570. 3689. : 1 Well Capacity
Well Rights 0. : 1 0. 0. 0. 0

Shortage	Water Use						
	Dema	ind :	From River By		From	Carrier	By
Carried	=======================================		=======				
Structure River	=======		===========	From	=======		
Exchange From Total	Total CU	To Total	Upstrm				
ID ID	Year Mo Total	CU Priorty St	orage Exc_Pln Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short CU	SoilM Return	Loss Inflow				
Station Ir	ı/Out	Stat	ion Balance				
	- ,	River River	Avail Control Control				
Gain Flow Deplete		-	Flow Location Right				
Dem_2 Dem_2		1500.0 2989.2	10.8 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3035.8 0.0	0.0	0.0	0.0	3035.8
3000.0 0.0 35.8	3	-1.000					
Dem_2 Dem_2	1979 NOV 3000.0	1500.0 3000.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					
Dem_2 Dem_2	1979 DEC 3000.0	1500.0 3000.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 3000.0	0.0 0.0 1500.0	0.0 1500.0	0.0 3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0 0.0 0.0	0.0 Hgate_Limit	-1.000					

Dem_2	Dem_2	1980	JAN	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0			e_Limit		.000							
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980		3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	APR	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	MAY	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_2	Dem_2	1980	JUN	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_2	Dem_2	1980	JUL	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	5420.5	0.0	0.0	0.0	0.0	5420.5
3000.0	0.0 2420.5	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	AUG	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	5427.5	0.0	0.0	0.0	0.0	5427.5
3000.0	0.0 2427.5	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2	1980	SEP	3000.0	1500.0	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0	0.0	1500.0	0.0	1500.0	0.0	5299.3	0.0	0.0	0.0	0.0	5299.3
3000.0	0.0 2299.3	0.0	Hgat	e_Limit	-1	.000							
Dem_2	Dem_2			36000.0			10.8	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 36000.0	0.0		18000.0		18000.0	0.0	43183.1	0.0	0.0	0.0	0.0	43183.1
36000.0	0.0 7183.1	0.	0 NA		- 3	1.000							

Gage Summary ACFT STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. $\,\,$ 6

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

Shortag	je	Water	Use										
				Deman				-			From	Carrier	By
Carried		======											
Structu		_		======			======			From	======		
Exchang	•	Total	CU		То	Total	_	Upsti					_
ID	ID	Year		otal		iorty St			Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Loss	Inflo	WC				
	Station In	/011t				Stat	ion Bal	ance					
======	.========	,		======									
Reach	Return Well	From/To		River		River		Control					
Gain	Flow Deplete	GW Stor	Inflow	Divert	By Well		Flow	Location	Right				
NA	Riv 50		OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	547.4	0.0	1.8	0.0	0.0	549.2
0.0	0.0 549.2	0.0 NA			-1.000								
NA	Riv 50	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.8	0.0	0.0	0.0	0.0	500.8
0.0	0.0 500.8	0.0 NA			-1.000								
NA	Riv_50	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.3	0.0	0.0	0.0	0.0	500.3
0.0	0.0 500.3	0.0 NA			-1.000								
NA	Riv_50	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 NA			-1.000								
NA	Riv_50	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	502.6	0.0	0.0	0.0	0.0	502.6
0.0	0.0 502.6	0.0 NA			-1.000								
NA	Riv_50	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.9	0.0	0.0	0.0	0.0	500.9
0.0	0.0 500.9	0.0 NA			-1.000								
NA	Riv_50		APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.8	0.0	0.0	0.0	0.0	500.8
0.0	0.0 500.8	0.0 NA			-1.000								
NA	Riv_50		MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	4000.3	0.0	246.0	0.0	0.0	4246.2
0.0		321.3 NA			-1.000								
NA	Riv_50		JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3999.7	0.0	249.9	0.0	0.0	4249.6
0.0		449.5 NA			-1.000								
NA	Riv_50		JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2920.8	0.0	4.2	0.0	0.0	2925.0
0.0	0.0 2925.0	0.0 NA			-1.000								

NA	Riv_50	1980 AUG	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	2927.5	0.0	0.0	0.0	0.0	2927.5
0.0	0.0 2927.5	0.0 NA	-1.000								
NA	Riv_50	1980 SEP	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	2800.1	0.0	0.0	0.0	0.0	2800.1
0.0	0.0 2800.1	0.0 NA	-1.000								
NA	Riv_50	1980 TOT	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	20201.1	0.0	501.8	0.0	0.0	20702.9
0.0	0.0 20702.9	2770.8 NA	-1.000								

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 7

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	Ω	0	0	Ω

Shortag	e	Water	Use	Demai	nd	:	Erom Di	inor Bu			From	Carrier	Dry
Carried		=====				:========					FIOIII	Calliel	БУ
Structu									=====	From	======		=====
	e From Total	Total	CU		To	Total		Upst:		110			
TD	ID	Year	Мо	Total		Priorty St	orage F	-	Loss	Well	Priorty	Sto_Exc	Logg
Bypass	SM Supply	Short	Shor		SoilM	Return	Loss			WCII	rrrorcy	DCO_BAC	довь
Dypabb	Dir Duppij	DIIOLC	51101		DOILL	RCCULII	ДОВЬ	, 11111	O W				
	Station In/	Out				Stat	ion Bal	lance					
======													
Reach	Return Well	From/To	Rive	r River	River	River	Avail	Control	Control				
Gain	Flow Deplete G	W Stor	Inflo	ow Diver	t By We	ll Outflow	Flow		Right				
Dem_1	Dem_1	1979	OCT	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	549.2	0.0	1475.8	0.0	0.0	2025.0
2000.0	0.0 25.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1979	NOV	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.8	0.0	1499.2	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1979	DEC	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.3	0.0	1500.8	0.0	0.0	2001.1
2000.0	0.0 1.1	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	JAN	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	FEB	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	502.6	0.0	1497.4	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	MAR	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.9	0.0	1502.6	0.0	0.0	2003.5
2000.0	0.0 3.5	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	APR	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	500.8	0.0	1499.2	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	MAY	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	4246.2	0.0	1500.8	0.0	0.0	5747.0
2000.0	0.0 3747.0	1321.3	NA		-1	.000							
Dem_1	Dem_1	1980	JUN	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	4249.6	0.0	1499.2	0.0	0.0	5748.8
2000.0	0.0 3748.8	1449.5	NA		-1	.000							
Dem_1	Dem_1	1980	JUL	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	2925.0	0.0	1500.8	0.0	0.0	4425.8
2000.0	0.0 2425.8	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	AUG	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	2927.5	0.0	1500.0	0.0	0.0	4427.5
2000.0	0.0 2427.5	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	SEP	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	2800.1	0.0	1499.2	0.0	0.0	4299.3
2000.0	0.0 2299.3	0.0	NA		-1	.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE ACCI (0 - LOCATI). 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water		Deman	d		From R	iver By			From	Carrier	Ву
Carried Structure River		===		=====			 =======	====			======	
Exchange From Total	Year	Мо То	tal	CU I	Priorty		Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short	Short	CU	SOIIM	Retur	n Los	s Infl	OW				
Station In	,					ation Ba						
Reach Return Well												
Gain Flow Deplete												
ISF ISF		OCT 402				25.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 1573.4			0.0			0.0	25.0	0.0	1548.4	0.0	0.0	1573.4
1573.4 0.0 1573.4		Hgate_Li				0 0	0 0	0 0	0 0	0 0	0 0	0 0
ISF ISF 0.0 0.0 1598.3		NOV 389 0.0							0.0 1598.3	0.0	0.0	0.0 1598.3
1598.3 0.0 1598.3		0.0 Hgate_Li				0.0	0.0	0.0	1598.3	0.0	0.0	1598.3
TSF TSF		DEC 402			1602.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1602.8 2		0.0							1601.7	0.0		1602.8
1602.8 0.0 1602.8) Hgate Li		-1								
ISF ISF	1980	JAN 402	7.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2	2427.5	0.0				0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0) Hgate_Li		-1								
ISF ISF		FEB 363			1594.5			0.0	0.0	0.0	0.0	0.0
0.0 0.0 1594.5		0.0				0.0	0.0	0.0	1594.5	0.0	0.0	1594.5
1594.5 0.0 1594.5		Hgate_Li		-1		0 0			0 0		0 0	
ISF ISF		MAR 402 0.0			1609.0			0.0	0.0	0.0	0.0	0.0
0.0 0.0 1609.0 2 1609.0 0.0 1609.0		0.0 Hgate_Li				0.0	3.5	0.0	1605.5	0.0	0.0	1609.0
ISF ISF		APR 389			1598.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1598.3									1598.3	0.0		1598.3
1598.3 0.0 1598.3				-1		0.0	0.0	0.0	10,000	0.0	0.0	10,0.0
ISF ISF		MAY 402			4027.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5	0.0	0.0	0.0	0.0	4027.5	0.0	3747.0	0.0	1601.7	0.0	0.0	5348.8
4027.5 0.0 5348.8	3 1321.3	NA		-1	.000							
ISF ISF		JUN 389			3897.6		0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 3897.6	0.0	0.0				0.0	3748.8	0.0	1598.3	0.0	0.0	5347.1
3897.6 0.0 5347.3				-1								
ISF ISF		JUL 402			1607.0		0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5 4027.5 0.0 4027.5	0.0			-1		0.0	2425.8	0.0	1601.7	0.0	0.0	4027.5
ISF ISF		AUG 402			1600.0	2427 5	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5	0.0								1600.0	0.0	0.0	4027.5
4027.5 0.0 4027.5) Hgate Li				0.0	2127.3	0.0	1000.0	0.0	0.0	1027.5
ISF ISF		SEP 389				2299.3	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 3897.6	0.0	0.0	0.0	0.0	3897.6				1598.3	0.0	0.0	3897.6
3897.6 0.0 3897.6												
	1000	TOT 4742		0.0	22001 5	7170 3	0 0	0 0	0 0	0 0	0 0	0.0
ISF ISF 0.0 0.0 31053.8 16							0.0 14677.9		0.0	0.0	0.0	0.0 33824.6
31053.8 0.0 33824			0.0		31053.8 1.000	0.0	140//.9	0.0	19140./	0.0	0.0	33824.6
51055.0 0.0 55024	U 211U.	O INC		-	1.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set PAGE NO. 9

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage Water Use Demand From Carrier By From River By Demand From River Carried Total CU To Total Upstrm
Year Mo Total CU Priorty Storage Exc_Pln Loss
Short Short CU SoilM Return Loss Inflow Structure River -----From ========= Exchange From Total ID ID Bypass SM Supply Well Priorty Sto_Exc Loss Bypass SM Supply Station In/Out Station Balance ______ Reach Return Well From/To River River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Baseflow ISF.01 1979 OCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 1573.4 0.0 0.0 0.0 0.0 1573.4 0.0 0.0 0.0 0.0 1573.4 -1.000 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 1979 DEC 0.0 0.0 0.0 NA 0.0 0.0 0.0 1598.3 0.0 0.0 1598.3 0.0 0.0 0.0 1598.3 -1.000 0.0 0.0 Baseflow ISF.01 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 1602.8 0.0 0.0 0.0 1602.8 0.0 0.0 0.0 0.0 1602.8 -1.000 0.0 NA 1980 JAN 0.0 0.0 0.0 NA 0.0 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 -1.000 0.0 0.0 Baseflow ISF.01 1980 FEB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 1594.5 0.0 0.0 0.0 0.0 1594.5 0.0 1594.5 -1.000 0.0 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 1980 APR 0.0 0.0 1609.0 0.0 0.0 1609.0 0.0 0.0 0.0 0.0 1609.0 0.0 -1.000 0.0 0.0 Baseflow ISF.01 0 0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 1598.3 0.0 0.0 0.0 0.0 1598.3 0.0 0.0 0.0 0.0 1598.3 -1.000 1980 MAY Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5348.8 0.0 5348.8 0.0 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5347.1 0.0 5347.1 0.0 0.0 0.0 0.0 -1.000 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 4027.5 0.0 0.0 0.0 0.0 1980 JUL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 1980 AUG 0.0 0.0 0.0 NA 0.0 0.0 4027.5 0.0 4027.5 0.0 0.0 0.0 0.0 -1.000 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4027.5 0.0 4027.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4027.5 -1.000 0.0 0.0 Baseflow ISF.01 1980 SEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 3897.6 0.0 3897.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3897.6 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33824.6 0.0 0.0 33824.6 0.0 0.0 0.0 -1.000 # *.xdy Daily Diversion Summary # STATEMOD
StateMod Operating Rule Example - ex3.* data set # Statemod Version: 12.29.00 Date = 2008/09/15) # Run date: 11/2/8 15: 4:56
Time Step: Daily Diversion Summary ACET ST St429429429Dem_429429429429Irrigation Demand _3 Dem_Exist. Diver. 3/Inflow Dem_Exis t. Diver. 3/Inflow STRUCTURE DATA cfs af@30 af@31 # Diversion Capacity :
Diversion Rights :
Well Capacity : 307442. 5000. 297525. 1 5950. 6149. 1 100 0. 0. 0. 0. 1 Well Rights Ω Ω

Water Use Station In/Out Shortage Station Balance or From Total Total CU ______

River River River Avail Control Control

Structure River From Upstrm Reach Return Well From/To River Year Mo Day NA NA NA NA (+)((-) NA IVI. NA
(1) (2) (3) (4) (5) (6)
(16) (17) (18) (19) (20) (21)
(31) (7) (6) (8) (9) (10)(14) (15) (11) (12) (13) (22) (23) (24) (25) (28) (29) (30) (26)1 32.3 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_3 1979 OCT Dem 3 0.0 0.0 0.0 32.3 32.3 16.1 0.0 0.0 0.0 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 100.000 2 32.3 16.1 22.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 32.3 16.1 22.7 U.U U.U4 0.0 11.4 0.0 0.0 32.3 Dem 3 1979 OCT 0.0 Dem 3 11.4 0.0 22.7 0.0 9. 9.6 0.0 0.0 0.0 32.3 4.8 0.0 100.000 22.7 9.6 0.0 Dem 1 100.000 32.3 16.1 29.1 0.0 0.0 0.0 .5 0.0 14.5 0.0 0.0 32.3 Dem_3 1979 OCT 0.0 0.0 Dem 3 14.5 0.0 29.1 0.0 3.2 0.0 0.0 0.0 32.3 0.0 3.2 1.6 100.000 0.0 Dem 1 29.1 10U.UUU 32.3 16.1 31.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .6 0.0 15.6 0.0 0.0 32.3 0.0 0.0 0.0 32.3 1979 OCT Dem 3 0.0 Dem 3 15.6 0.0 31.2 0.0 0.5 1.1 31.2 0.0 1.1 0.0 Dem 3 Dem 3 0.0 31.9 0.0 0.4 0.0 0.0 100.000 0.4 31.9 0.0 Dem_1 Dem_3 1979 OCT 6 32.3 16.1 32.1 0.0 0.0 0.0 0.0 0.0 0.0 Dem 3 0.0 32.1 0.0 0.1 0.1 0.1 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 100.000 0.0 Dem_1 32.1 0.1) 16.1 32.2 0.0 0.0 0.0 0.0 0.0 0.0 32.3 16.1 32.2 U.U U.U1 0.0 16.1 0.0 0.0 32.3 Dem 3 Dem 3 1979 OCT 0.0 16.1 0.0 100.000 8 32.3 1 0.0 32.2 0.0 0.0 0.0 0.0 0.0 32.3 0.0 0.0 Dem_1 32.2 0.0 100.000 32.3 16.1 32.2 0.0 0.0 0.0 .1 0.0 16.1 0.0 0.0 32.3 Dem_3 0.0 32.2 0.0 0.0 1979 OCT 0.0 0.0 0.0 Dem 3 0.0 0.0 0.0 16.1 0.0 32.3 0.0 100.000 0.0 0.0 Dem 1 32.2 0.0 100.000 32.3 16.1 32.3 0.0 0.0 0.0 0.0 .1 0.0 16.1 0.0 0.0 32.3 0.0 Dem 3 1979 OCT 0.0 0.0 0.0 Dem 3 0 0 0.0 32.3 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 0.0 Dem_3 Dem 3 0.0 0.0 32.3 0.0 0.0 0.0 100.000 0.0 32.3 0.0 Dem_1 Dem_3 1979 OCT 11 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_3 0.0 32.3 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 .. Dem_1 100.000 1979 OCT 12 32 2 U.U Dem_1 100.000 1979 OCT 12 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 32.3 0.0 Dem_3 Dem 3 0.0 0.0 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 0.0 Dem_1 100.000 1979 OCT 13 32.3 1 100.000 32.3 16.1 32.3 0.0 0.0 0.0 .1 0.0 16.1 0.0 0.0 32.3 32.3 0.0 1979 OCT 13 32.3 0.0 0.0 16.1 0.0 16.1 0.0 0.0 Dem_1 100.000 1979 OCT 14 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 Dem_3
0.0 32.3
0.0 0.0 0.0 0.0 0.0 Dem 3 0.0 0.0 32.3 0.0 0.0 32.3 Dem_3 Dem 3 0.0 0.0 0.0 0.0 32.3 0.0 0.0 32.3 0 0 0 0 0.0 Dem_1 100.000 1979 OCT 15 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 32.3 0.0 0.0 0.0 Dem_3 Dem_3 0.0 0.0 32.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 32.3 0.0 Dem_3 1979 OCT 16 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 3 0.0 0.0 16.1 0.0 32.3 0.0 16.1 0.0 0.0 32.3 0 0 0 0 0.0 32.3 0 0 0.0 U.U 10.1 0.0 10.1 0.0 0.0 0.0 0.0 0.0 0.0 1979 OCT 17 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 32.3 32.3 0.0 0.0 Dem_3
0.0 32.3
0.0 0.0 0 0 0 0 0 0 Dem_3 0.0 0.0 0.0 Hgate_Limit -1.000
1979 OCT 18 32.3 16.1 32.3 0.0 0.0 0.0
0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 0.0 32.3 32.3 0.0 1979 OCT 18 J...

0.0 0.0 16.1 0.0 16.1

0.0 Hgate_Limit -1.000

1070 OCT 19 32.3 16.1 32.3

0.0 16.1 Dem_3 0.0 0.0 0.0 Dem 3 0.0 32.3 0.0 0.0 0.0 0.0 32.3 0.0 0.0 32 3 0.0 Dem_3 0.0 0.0 0.0 Dem 3 0.0 0.0 0.0 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 32.3 0 0 0.0 Hgate_Limit -1.000 1979 OCT 20 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3 0.0 Dem 3 0.0 0 0 Dem_3 0 0 0.0 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 32.3 0.0 Dem_3 0.0 0.0 Dem 3 0.0 32.3 0.0 0.0 0.0 0.0 32.3 0 0 32.3 0.0 Dem_3
0.0 32.3 0 0 Dem_3 0.0 0.0 0.0 32.3 0.0 Hgate_Limit -1.000

Dem_3	Dem_3	1979 OCT 23	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3		0.0 Hgate_Limi									
Dem_3		1979 OCT 24									
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_3	Dem_3	1979 OCT 25	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_3	Dem_3	1979 OCT 26	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate Limi	t -1.000								
Dem 3	Dem 3	1979 OCT 27	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi									
Dem_3	Dem_3	1979 OCT 28	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_3	Dem_3	1979 OCT 29	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_3		1979 OCT 30									
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_3	Dem_3	1979 OCT 31	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0	16.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limi	t -1.000								
											-
		1980 TOT -1									
		46.6 23.3 4		476.7	0.0	0.0 10	00.0	0.0	0.0	0.0 10	0.00
953.4	0.0 46.6	0.0 NA	-1.000								

Shortage Carried		Water Use		Statio	n In/Out From Ri	ver By		S	tation B From	alance Carrier	By
								_			
or F	rom Total To	otal CU		otal		tam De	nah Dot	From	ell From	/To Di	
River	River River	Avail Control		JLAI	ups	CIII Re	acii ket	urii w	ell Flou	1/10 K1	ver
Structu		AVAII CONCIOI		Priorty	Storage	Exc Pln	Logg	Well	Priorty	Sto Exc	Loss
Exchang		Short Short		M Return	_				-	_	
	Divert by Well			n Kecurn Right	1 1033	1111 104	Gain	FIOW	Depiece	GW DCOL	
ID	ID ID		NA NA	_	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA NA	NA NA	NA NA	NA NA	NA NA		(+)				
(-)	(-) (+)	NA NA	NA NA	1421	1421	(.)	(· /	(· /	()	(' /	(·)
()	()	1411 1411	(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12) (13)	(14) (15)	(16) (17)	(18)	(19)	(20)		(22)	(23)	(24)	(25)
(26)	(27) (28)		(31)	(10)	(± 2)	(20)	(21)	(22)	(23)	(21)	(23)
(20)	(27) (20)	(25) (30)	(31)								
											-
Dem 3	Dem 3	1979 NOV 1	33.3 16.7	31.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 31.9		5.9 0.0	15.9	0.0		33.3	0.0	0.0		33.3
31.9	0.0 1.4	0.0 Dem_1	100.000								
Dem_3	Dem 3	1979 NOV 2		32.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.9			16.4	0.0			0.0	0.0		33.3
32.9	0.0 0.5	0.0 Dem_1	100.000								
Dem 3	Dem 3	1979 NOV 3		33.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.2		6.6 0.0	16.6	0.0		33.3	0.0	0.0		33.3
33.2	0.0 0.2	0.0 Dem_1	100.000								
Dem_3	Dem_3	1979 NOV 4		33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3		6.6 0.0	16.6	0.0		33.3	0.0	0.0		33.3
33.3	0.0 0.1	0.0 Dem 1	100.000								
Dem 3	Dem 3	1979 NOV 5		33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3		6.7 0.0	16.7	0.0		33.3	0.0	0.0	0.0	33.3
33.3	0.0 0.0	0.0 Dem_1	100.000								
		_									
Dem 3	Dem 3	1979 NOV 6	33.3 16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3	0.0 0.0 1	6.7 0.0	16.7	0.0	0.0	33.3	0.0	0.0	0.0	33.3
33.3	0.0 0.0	0.0 Dem_1	100.000								
Dem_3	Dem_3	1979 NOV 7	33.3 16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3	0.0 0.0 1	6.7 0.0	16.7	0.0	0.0	33.3	0.0	0.0	0.0	33.3
33.3	0.0 0.0	0.0 Dem_1	100.000								
Dem_3	Dem_3	1979 NOV 8	33.3 16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3	0.0 0.0 1	6.7 0.0	16.7	0.0	0.0	33.3	0.0	0.0	0.0	33.3
33.3	0.0 0.0	0.0 Dem_1	100.000								
Dem_3	Dem_3	1979 NOV 9	33.3 16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3	0.0 0.0 1	6.7 0.0	16.7	0.0	0.0	33.3	0.0	0.0	0.0	33.3
33.3	0.0 0.0	0.0 Dem_1	100.000								
Dem_3	Dem_3	1979 NOV 10	33.3 16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33.3	0.0 0.0 1	6.7 0.0	16.7	0.0	0.0	33.3	0.0	0.0	0.0	33.3
33.3	0.0 0.0	0.0 Dem_1	100.000								

or From Total Total CU To Total Upstrm Reach Return Well From/To River River River Avail Control Control Structure River SoilM Supply Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor Inflow Divert by Well Outflow Flow Location Right ID ID Year Mo Day NA								
Carried		Statio						
	1980 TOT -1 100 2.2 1.1 498.9	00.0 500.0 997.8 9 0.0 498.9				0.0	0.0 0.0	
33.3 0.0 0.0	0.0 Dem_1							
33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3	0.0 Dem_1 1979 NOV 29 10.0 0.0 16.	7 0.0 16.7 100.000 33.3 16.7 33.3 7 0.0 16.7	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 33.3	
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem 3 Dem 3	1979 NOV 27 0.0 0.0 16. 0.0 Dem_1 1979 NOV 28	100.000 33.3 16.7 33.3	0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 33.3	
33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0	1979 NOV 26 1		0.0	0.0 0.0 0.0 33.3	0.0	0.0	0.0 0.0	
0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3	1979 NOV 25 1	100.000 33.3 16.7 33.3 7 0.0 16.7	0.0	0.0 33.3 0.0 0.0 0.0 33.3	0.0	0.0	0.0 33.3 0.0 0.0 0.0 33.3	
Dem_3	0.0 0.0 16. 0.0 Dem_1 1 1979 NOV 24	100.000 33.3 16.7 33.3	0.0	0.0 0.0 0.0 33.3	0.0	0.0	0.0 0.0 0.0 33.3	
33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0	0.0 Dem_1 1979 NOV 22 0.0 0.0 16.	100.000 33.3 16.7 33.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0	
33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3	0.0 Dem_1	100.000 33.3 16.7 33.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 33.3	
0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3	0.0 0.0 16.0 0.0 Dem_1 1 1979 NOV 20		0.0	0.0 33.3	0.0	0.0	0.0 33.3 0.0 0.0 0.0 33.3	
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3	1979 NOV 18 1 0.0 0.0 16.7 0.0 Dem_1	33.3 16.7 33.3	0.0	0.0 0.0 0.0 33.3	0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0	
33.3 0.0 0.0 Dem_3 Dem_3 0.0 33.3 33.3 0.0 0.0	0.0 Dem_1 1979 NOV 17 10.0 0.0 16.	100.000 33.3 16.7 33.3		0.0 0.0	0.0	0.0	0.0 0.0	
0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3	0.0 Dem_1 : 1979 NOV 16 :	7 0.0 16.7 100.000 33.3 16.7 33.3 7 0.0 16.7	0.0		0.0	0.0	0.0 0.0	
0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3	0.0 0.0 16.7 0.0 Dem_1 1 1979 NOV 15	7 0.0 16.7 100.000 33.3 16.7 33.3 7 0.0 16.7	0.0	0.0 33.3	0.0	0.0	0.0 0.0 0.0 0.0 0.0 33.3	
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3	1979 NOV 13 0.0 0.0 16.0 0.0 Dem_1	33.3 16.7 33.3	0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 33.3	
33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0	0.0 Dem_1 1979 NOV 12 0.0 0.0 16.	100.000 33.3 16.7 33.3		0.0 0.0 0.0 33.3	0.0	0.0	0.0 0.0	
Dem_3 Dem_3 0.0 0.0 33.3		33.3 16.7 33.3 7 0.0 16.7		0.0 0.0 0.0 33.3	0.0	0.0	0.0 0.0 0.0 33.3	

(11) (12) (13)	(14) (15)	(16) (17)	(18) (1	.9) (20)	(21)	(22)	(23)	(24)	(25)
(26) (27) (28)	(29) (30)	(31)							

		1979 DEC 1 32.3 16.1				0.0	0.0	0.0 0.0
0.0	0.0 32.3	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1979 DEC 2 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate Limit -1.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 32.3
Dem_3 0.0	Dem_3 0.0 32.3	1979 DEC 3 32.3 16.1 0.0 0.0 16.1 0.0		0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1979 DEC 4 32.3 16.1			0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 32.3	0.0	0.0	0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1979 DEC 5 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0	Dem_3 0.0 32.3	1979 DEC 6 32.3 16.1 0.0 0.0 16.1			0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1979 DEC 7 32.3 16.1		0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0 32.3 Dem_3	0.0 32.3 0.0 0.0 Dem 3	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000 1979 DEC 8 32.3 16.1	16.1	0.0	0.0 32.3	0.0	0.0	0.0 32.3
0.0	0.0 32.3 0.0 0.0		16.1	0.0	0.0 32.3	0.0	0.0	0.0 32.3
Dem_3 0.0	Dem_3 0.0 32.3	1979 DEC 9 32.3 16.1 0.0 0.0 16.1	32.3 16.1	0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 10 32.3 16.1 0.0 0.0 16.1 0.0				0.0	0.0	0.0 0.0 0.0 32.3
32.3	0.0 0.0	0.0 Hgate_Limit -1.000	10.1	0.0	0.0 32.3	0.0	0.0	0.0 52.5
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1979 DEC 11 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0
Dem_3 0.0	Dem_3 0.0 32.3	1979 DEC 12 32.3 16.1 0.0 0.0 16.1 0.0			0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 13 32.3 16.1 0.0 0.0 16.1 0.0			0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3	0.0 32.3 0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1979 DEC 14 32.3 16.1			0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 32.3	0.0	0.0	0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1979 DEC 15 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1979 DEC 16 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						0.0 0.0 0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1979 DEC 17 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 32.3
Dem_3 0.0	Dem_3 0.0 32.3	1979 DEC 18 32.3 16.1 0.0 0.0 16.1 0.0	32.3 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 19 32.3 16.1 0.0 0.0 16.1 0.0						0.0 0.0 0.0 32.3
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1979 DEC 20 32.3 16.1						
0.0 32.3	0.0 32.3 0.0 0.0	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1	0.0	0.0 32.3	0.0	0.0	0.0 32.3
Dem_3 0.0	Dem_3 0.0 32.3	1979 DEC 21 32.3 16.1 0.0 0.0 16.1 0.0	32.3 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 22 32.3 16.1 0.0 0.0 16.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 23 32.3 16.1 0.0 0.0 16.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 24 32.3 16.1 0.0 0.0 16.1 0.0	32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
32.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1979 DEC 25 32.3 16.1 0.0 0.0 16.1 0.0	32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
32.3	0.0 0.0	0.0 Hgate_Limit -1.000						

Dem_3	Dem_3	1979 DEC 26									
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1979 DEC 27	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1979 DEC 28	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1979 DEC 29	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem 3	Dem 3	1979 DEC 30	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
		3 –									
Dem_3	Dem 3	1979 DEC 31	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate Limit	-1.000								
		3									
											-
Dem 3	Dem 3	1980 TOT -1 1	000.0 500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.0 0.0 500									
1000.0		0.0 NA									
	0.0										

Water Use Station In/Out Station Balance Shortage From River By From Carrier By Carried Total CU _____ From ____

or From Total Total CU To Total Upstrm Reach Return Well From/To River River River Avail Control Control Structure River Year Mo Day NA NA (+) (+) (+) (-) (+) (+) (+) (-) NA NA NA NA NA NA (+) (+) (+) (+) (+) (+) (+) NA NA NA NA NA (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (29) (30) (12) (13) (27) (28) (11) (29) (30) (26) 1980 JAN 1 32.3 16.1 32.3 0.0 0.0 0.0 0.0 U.U U.U 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 0.0 32.3 Dem 3 Dem 3 0.0 32.3 0.0 0.0 0.0 U.U 10.1 0.0 10.1 0.0 Hgate_Limit -1.000 1980 JAN 2 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 0.0 32.3 Dem_3
0.0 32.3
0.0 0 0 Dem 3 0.0 0.0 32.3 Dem_3 Dem 3 0.0 32.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000
1980 JAN 4 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 Hgate_Limit -1.000
0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 32.3
0.0 Hgate_Limit -1.000
1980 JAN 5 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 32.3 0.0 Dem_3
0.0 32.3
0.0 0.0 Dem 3 0.0 0.0 0.0 32.3 0.0 32.3 Dem_3
0.0 32.3
0.0 0.0 Dem_3 0.0 0.0 32.3 0 0 0.0 Hgate_Limit -1.000 32.3 1980 JAN 6 32.3 0.0 0.0 16.1 32.3 16.1 32.3 0.0 0.0 0.0 0.0 6.1 0.0 16.1 0.0 0.0 32.3 0.0 Dem 3 0.0 0.0 0.0 0.0 Dem 3 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 Hgate_Limit -1.000 1980 JAN 7 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3 0.0 0.0 32.3 Dem_3 Dem 3 0.0 32.3 0.0 16.1 0.0 0.0 32.3 0.0 0.0 32.3 0.0 0.0 Hgate_Limit -1.000 1980 JAN 8 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 32.3 0.0 Dem_3
0.0 32.3
0.0 0.0 Dem 3 0.0 32.3 0.0 Dem_3
0.0 32.3
0.0 0.0 Dem_3 0.0 32.3 Dem_3
0.0 32.3 Dem_3 0 0 0.0 0.0 0.0 Hgate_Limit -1.000 32.3 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 32.3 32.3 0.0 0.0 1980 JAN 11 32.3 0.0 0.0 16.1 Dem 3 Dem 3 0.0 0.0 0.0 32.3 0.0 U.U 10.1 0.0 10.1 0.0 Hgate_Limit -1.000 1980 JAN 12 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 0 0 32 3 Dem_3 0.0 32.3 0.0 0.0 Dem 3 0 0 0.0 Hgate_Limit -1.000 1980 JAN 13 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 32.3 Dem_3
0.0 32.3
0.0 0.0 Dem_3 0.0 32.3 0.0 Hgate_Limit -1.000

Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 14 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0
Dem_3 0.0 32.3	0.0 32.3	1980 JAN 15 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						0.0 0.0 0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 16 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 17 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 18 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 19 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 20 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 21 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 22 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000			0.0 0.0		0.0	0.0 0.0
Dem_3 0.0 32.3		1980 JAN 23 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1	0.0		0.0	0.0	0.0 0.0
Dem_3 0.0 32.3		1980 JAN 24 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1	0.0		0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	0.0 32.3	1980 JAN 25 32.3 16.: 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JAN 26 32.3 16.1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0
Dem_3 0.0 32.3		1980 JAN 27 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1	0.0	0.0 32.3	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3		1980 JAN 28 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1	0.0		0.0	0.0	0.0 0.0
Dem_3 0.0 32.3 Dem 3		1980 JAN 29 32.3 16.: 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000 1980 JAN 30 32.3 16.:	16.1	0.0		0.0	0.0	0.0 0.0 0.0 0.0 0.0
0.0 32.3	0.0 32.3 0.0 0.0	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						
0.0	0.0 32.3 0.0 0.0	1980 JAN 31 32.3 16.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1	0.0	0.0 32.3	0.0	0.0	
Dem_3 0.0 1000.0	Dem_3 0.0 1000.0 0.0 0.0	1980 TOT -1 1000.0 500.0 0.0 0.0 500.0 0.0 0.0 NA -1.000	1000.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0

Shortag	5				Station In/Out From River By						Station Balance From Carrier By			
Carried	Į.													
					Total	CU					From			
or F	rom T	otal T	otal	CU		To To	otal	Ups	trm Re	ach Reti	ırn V	Well From	n/To Ri	ver
River	River	River	Avail C	ontrol	Cont	rol								
Structu	re Ri	.ver			Demand	Demand	Priorty	Storage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang	Soil	M Suppl	y Short	Short	CU	Soil	M Return	Loss	Inflow	Gain	Flov	w Deplete	e GW Stor	
Inflow	Divert	by Well	Outflow	Flow	Location	I	Right							
ID	II)	Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA NA		N	A								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (3	0)	(3	1)								

Dem_3 0.0 31.1	Dem_3 0.0 31.1 0.0 4.6	1980 FEB 1 4.6 2.3 0.0 Dem 1	35.7 17.9 15.6 0.0 100.000	31.1 15.6	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 34.2 Dem 3	Dem_3 0.0 34.2 0.0 1.5 Dem_3	1.5 0.8 1 0.0 Dem_1	35.7 17.9 17.1 0.0 100.000 35.7 17.9	17.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 35.7
0.0 35.2 Dem_3	0.0 35.2 0.0 0.5 Dem_3	0.5 0.3 0.0 Dem_1 1980 FEB 4	17.6 0.0 100.000 35.7 17.9	17.6 35.5	0.0	0.0 35.7	0.0	0.0	0.0 35.7
0.0 35.5 Dem_3 0.0	0.0 35.5 0.0 0.2 Dem_3 0.0 35.7	1980 FEB 5 0.1 0.0	100.000 35.7 17.9 17.8 0.0	35.7	0.0	0.0 0.0	0.0	0.0	0.0 35.7 0.0 0.0 0.0 35.7
35.7 Dem_3 0.0	0.0 0.1 Dem_3 0.0 35.7	1980 FEB 6	100.000 35.7 17.9 17.8 0.0					0.0	0.0 0.0 0.0 35.7
35.7 Dem_3 0.0	0.0 0.0 Dem_3 0.0 35.7		100.000 35.7 17.9 17.9 0.0					0.0	0.0 0.0 0.0 35.7
35.7 Dem_3 0.0 35.7	0.0 0.0 Dem_3 0.0 35.7 0.0 0.0	0.0 Dem_1 1980 FEB 8 0.0 0.0 0.0 Dem_1				0.0 0.0 0.0 35.7		0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 9 0.0 0.0 0.0 Dem_1	35.7 17.9			0.0 0.0		0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 10 0.0 0.0 0.0 Dem_1							0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0		35.7 17.9 17.9 0.0 100.000						0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 12	35.7 17.9 17.9 0.0 100.000		0.0	0.0 0.0		0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0		35.7 17.9 17.9 0.0 100.000		0.0	0.0 0.0		0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	0.0 0.0 0.0 Dem_1	100.000	17.9	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	0.0 0.0	35.7 17.9 17.9 0.0 100.000						0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0		35.7 17.9 17.9 0.0 100.000			0.0 0.0		0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7	1980 FEB 17 0.0 0.0	35.7 17.9	35.7 17.9		0.0 0.0		0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 18 0.0 0.0 0.0 Dem_1	17.9 0.0 100.000	17.9	0.0	0.0 35.7	0.0	0.0	
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	0.0 0.0 0.0 Dem_1	17.9 0.0 100.000	17.9	0.0	0.0 35.7	0.0	0.0	
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 20 0.0 0.0 0.0 Dem_1							
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 21 0.0 0.0 0.0 Dem_1						0.0	
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	0.0 0.0 0.0 Dem_1	100.000	17.9	0.0	0.0 35.7	0.0	0.0	0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	0.0 0.0 0.0 Dem_1	100.000	17.9	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 24 0.0 0.0 0.0 0.0 Dem_1	17.9 0.0 100.000	17.9	0.0		0.0	0.0	0.0 0.0
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	0.0 0.0 0.0 Dem_1	35.7 17.9 17.9 0.0 100.000					0.0	0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 26 0.0 0.0 0.0 Dem_1	35.7 17.9 17.9 0.0 100.000						0.0 0.0 0.0 35.7
Dem_3 0.0 35.7	Dem_3 0.0 35.7 0.0 0.0	1980 FEB 27 0.0 0.0	35.7 17.9						0.0 0.0 0.0 35.7

Dem_3	Dei	m_3	1980	FEB	28	35.7	17.9	35.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	35.7	0.0	0.0		17.9	0.0	17.9	0.0	0.0	35.7	0.0	0.0	0.0	35.7
35.7	0.0	0.0	0.0 E	0em_1		100.0	00								
															_
			1000			1000 0		002 1	0 0	0 (0 0	0 0	0 0	0 0
1)⊕m ⊀	1)61	m ⊀	1980	.1.().1.	-	1000	500 0	993 1	() ()	() (0 0	() ()	() ()	() ()	()

1980 TOT -1 1000.0 500.0 993.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6.9 3.5 496.5 0.0 496.5 0.0 0.0 1000.0 0.0 0.0 0.0 1000.0 0.0 NA -1.000 0.0 993.1 0.0 0.0 6.9 Station In/Out Shortage Water Use Station Balance From River By From Carrier By Carried Total CU ____ To Total or From Total Total CU To River River River Avail Control Control Upstrm Reach Return Well From/To River Loss (12) (13) (27) (28) (11) (26) Dem_3 Dem 3 0.0 32.3 0.0 0.0 U.U 16.1 U.U 10.1 0.0 0.0 32.3 Dem_3 Dem 3 0.0 32.3 0.0 0.0 U.U 10.1 32.3 0.0 Dem_3 Dem 3 0.0 32.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000
1980 MAR 4 32.3 16.1 32.3 0.0 0.0 0.0
0.0 16.1 0.0 16.1 0.0 0.0 32.3
0.0 Hgate_Limit -1.000
1980 MAR 5 32.3 16.1 32.3 0.0 0.0 0.0
0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 32.3 0.0 Dem_3 0.0 32.3 0.0 0.0 0.0 0.0 0.0 Dem 3 0.0 0.0 0.0 32.3 0.0 32.3 0.0 Dem_3 0.0 0.0 Dem_3 0.0 0.0 32.3 0.0 32.3 0.0 0.0 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 32.3 6 32.3 16.1 32.3 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 1980 MAR 6 0.0 0.0 1 0.0 0.0 Dem 3 0.0 0.0 Dem 3 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 0.0 Hgate_Limit -1.000 1980 MAR 7 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 Dem 3 Dem 3 0.0 32.3 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 32.3 0.0 0.0 0.0 Dem_3 Dem 3 0.0 32.3 0.0 0.0 32.3 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 52.3 0.0 Hgate_Limit -1.000 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 Hgate_Limit -1.000 1980 MAR 10 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 32.3 0.0 0.0 0.0 0.0 Dem 3 Dem 3 0.0 32.3 0.0 0.0 0.0 0.0 0.0 32.3 0.0 32.3 Dem_3 0.0 0.0 Dem_3 0.0 0.0 0.0 32.3 0 0 0 0 0 0 0 0 0.0 0.0 0.0 Hgate_Limit -1.000 32.3 1980 MAR 11 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 Dem 3 0.0 0.0 0.0 0.0 Dem 3 0.0 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 Hgate_Limit -1.000 1980 MAR 12 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 Dem 3 Dem 3 0.0 32.3 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 1980 MAR 13 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 32.3 0.0 0.0 0.0 0.0 Dem_3
0.0 32.3
0.0 0.0 Dem 3 0.0 0.0 0.0 32.3 0.0 0.0 16.1 0.0 16.1 0.0 0.0 52.3 0.0 Hgate_Limit -1.000 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 Hgate_Limit -1.000 1980 MAR 15 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 32.3 0.0 0.0 0.0 0.0 Dem_3 Dem 3 0.0 32.3 0.0 0.0 0.0 0.0 0.0 32.3 0.0 32.3 Dem_3 0.0 0.0 Dem_3 0.0 0.0 0.0 32.3 0 0 0 0 0 0 0 0 0.0 0.0 Hgate_Limit -1.000 32.3 32.3 16.1 32.3 0.0 0.0 0.0 5.1 0.0 16.1 0.0 0.0 32.3 0.0 1980 MAR 16 32.3 0.0 0.0 16.1 0.0 Dem 3 Dem 3 0.0 0.0 0.0 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 U.U 10.1 0.0 10.1 0.0 Hgate_Limit -1.000 1980 MAR 17 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 0 0 32 3 Dem_3 Dem_3 0.0 32.3 0.0 0.0 0.0 0.0 0.0 0.0 32.3 0 0 0.0 Hgate_Limit -1.000 1980 MAR 18 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 0.0 32.3 32.3 Dem_3
0.0 32.3
0.0 0.0 Dem_3 0.0 32.3 0.0 Hgate_Limit -1.000

Dem_3	Dem_3 0.0 32.3	1980 MAR 19 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1980 MAR 20 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 32.3	0.0 32.3 0.0 0.0	0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 32.3 0.0 Hgate_Limit -1.000	3
Dem_3	Dem_3 0.0 32.3	1980 MAR 21 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
32.3 Dem 3	0.0 32.3 0.0 0.0 Dem 3	0.0 Hgate_Limit -1.000 1980 MAR 22 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0	
0.0	0.0 32.3	0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 Hgate_Limit -1.000	
Dem_3 0.0	Dem_3 0.0 32.3	1980 MAR 23 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1980 MAR 24 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3	
0.0 32.3 Dem 3	0.0 32.3 0.0 0.0 Dem 3	0.0 0.0 16.1 0.0 16.1 0.0 0.0 32.3 0.0 0.0 0.0 32.3 0.0 Hgate_Limit -1.000 1980 MAR 25 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0	
0.0	0.0 32.3 0.0 0.0	0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3 0.0 32.3 0.0 32.3	
Dem_3	Dem_3	1980 MAR 26 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0.0	0.0 32.3 0.0	0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3 0.0 Hgate_Limit -1.000	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 MAR 27 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
Dem_3 0.0	Dem_3 0.0 32.3	1980 MAR 28 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1980 MAR 29 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0.0	0.0 32.3	0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3 0.0 Hgate_Limit -1.000	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 MAR 30 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
Dem 3	Dem 3	1980 MAR 31 32.3 16.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0.0	0.0 32.3 0.0 0.0	0.0 0.0 16.1 0.0 16.1 0.0 32.3 0.0 0.0 32.3 0.0 Hgate_Limit -1.000	
		1980 TOT -1 1000.0 500.0 1000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
		0.0 NA -1.000	
Shortag	re	Water Use Station In/Out Station Balance	
Carried		Water Use Station In/Out Station Balance From River By From Carrier By	
		tal CU To Total Upstrm Reach Return Well From/To River Avail Control Control Demand Demand Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc I	
Exchang	re River SoilM Supply Divert by Well	Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor	Loss
ID (+)	ID NA NA	Outflow Flow Location Right Year Mo Day NA NA (+) (+) (+)((-) (+) (+) (+)(NA NA NA NA NA NA NA (+) (+) (+) (-) (+) (+)	
(-)	(-) (+)	NA NA NA (1) (2) (3) (4) (5) (6) (7) (8) (9) ((10)
(11) (26)	(12) (13) (27) (28)	(14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (29) (30) (31)	5)
Dem_3 0.0	Dem_3 0.0 31.9	1980 APR 1 33.3 16.7 31.9 0.0 0.0 0.0 0.0 0.0 0.0 15.9 0.0 15.9 0.0 33.3 0.0 0.0 0.0 33.3	0.0
31.9 Dem_3	0.0 1.4 Dem_3	0.0 Dem_1 100.000 1980 APR 2 33.3 16.7 32.9 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0.0	0.0 32.9 0.0 0.5	0.5 0.2 16.4 0.0 16.4 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 Dem_1 100.000	
Dem_3 0.0 33.2	Dem_3 0.0 33.2 0.0 0.2	1980 APR 3 33.3 16.7 33.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	υ.υ 3
			0.0

0.0

0.0 0.2 Dem_3 0.0 33.3 0.0 0.1 Dem_3 0.0 33.3 0.0 0.0

Dem_3

0.0 33.3 Dem_3

0.0 33.3

Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 0.0	1980 APR 6 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 7 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 8 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 9 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 10 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 10 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 33.3 0.0 0.0	1980 APR 11 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 12 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 13 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 14 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 14 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 15 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 15 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 Dem_3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 33.3 33.3 0.0 0.0 33.3 0.0 0.0 0.0	1980 APR 16 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 17 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 18 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 19 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 19 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 20 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 20 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000	0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3	0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 0.0 0.0 33.3
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 Dem_3 0.0 0.0 33.3 0.0 0.0 33.3 0.0 0.0 33.3 33.3 0.0 0.0	1980 APR 21 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 22 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 23 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 24 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 24 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 25 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 25 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000	0.0 0.0 33.3	0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_3 Dem_3 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 0.0 0.0 33.3 33.3 0.0 0.0 Dem_3 Dem_3 0.0 Dem_3 Dem_3 0.0 0.0 33.3 33.3 33.3 0.0 0.0	1980 APR 26 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 27 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 28 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 29 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 29 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 30 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 30 33.3 16.7 33.3 0.0 0.0 16.7 0.0 16.7 0.0 Dem_1 100.000 1980 APR 30 16.7 0.0 16.7 0.0 Dem_1 100.000 100.000 100.000	0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 33.3	0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
	1980 TOT -1 1000.0 500.0 997.8 2.2 1.1 498.9 0.0 498.9 0.0 NA -1.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

From Carrier By

Carried

			Total CU				From		
River		otal CU Avail Control	To To Control			trm Reach Ret			ı/To River
	g SoilM Supply Divert by Well	y Short Short Outflow Flow L	CU SoilM ocation F	M Return Right	Loss		Flow	Deplete	Sto_Exc Loss GW Stor
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA NA NA	NA NA NA NA	(+) NA	(+) NA	(+)((-)	(+)	(+)	(+) ((-)
(11)	(12) (13) (27) (28)	(14) (15)				(5) (6) (20) (21)	(7)	(8)	(9) (10) (24) (25)
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 129.0	1980 MAY 1 0.0 0.0 1 40.7 NA		32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 129.0	1980 MAY 2 0.0 0.0 1 43.2 NA		32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 129.0	1980 MAY 3	32.3 16.1	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3 0.0	Dem_3 0.0 32.3	1980 MAY 4 0.0 0.0 1	32.3 16.1	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0 32.3	0.0 129.0 Dem_3 0.0 32.3 0.0 129.0				0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3 0.0	Dem_3 0.0 32.3		6.1 0.0		0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3	1980 MAY 7 0.0 0.0 1	-1.000 32.3 16.1 .6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3		6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3		6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0 32.3	0.0 129.0 Dem_3 0.0 32.3 0.0 129.0	42.7 NA 1980 MAY 10 0.0 0.0 1 42.7 NA			0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3	Dem_3 0.0 32.3			32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3			32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3		6.1 0.0		0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	Dem_3 0.0 32.3	42.7 NA 1980 MAY 14 0.0 0.0 1	32.3 16.1 .6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0 32.3	0.0 129.0 Dem_3 0.0 32.3 0.0 129.0	42.7 NA 1980 MAY 15 0.0 0.0 1 42.7 NA	-1.000 32.3 16.1 6.1 0.0 -1.000	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3 0.0	Dem_3	1980 MAY 16 0.0 0.0 1	6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3	42.7 NA 1980 MAY 17 0.0 0.0 1	32.3 16.1 .6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3	42.7 NA 1980 MAY 18 0.0 0.0 1	32.3 16.1 6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
32.3 Dem_3 0.0	0.0 129.0 Dem_3 0.0 32.3	42.7 NA 1980 MAY 19 0.0 0.0 1	32.3 16.1 .6.1 0.0						
32.3 Dem_3 0.0 32.3	0.0 129.0 Dem_3 0.0 32.3 0.0 129.0	42.7 NA 1980 MAY 20 0.0 0.0 1 42.7 NA	32.3 16.1 .6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 129.0	1980 MAY 21 0.0 0.0 1 42.7 NA	6.1 0.0	32.3 16.1	0.0	0.0 0.0 0.0 161.3	0.0	0.0	0.0 0.0 0.0 161.3

Dem_3	Dem_3	1980 MAY	22 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3	0.0 0.0	16.1	0.0 16.1	0.0	0.0 161.3	0.0	0.0	0.0 161.3
32.3	0.0 129.0		-1.0						
Dem_3	Dem_3	1980 MAY	23 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0	42.7 NA	-1.0	00					
Dem 3	Dem 3	1980 MAY	24 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0	42.7 NA	-1.0	00					
Dem 3	Dem 3	1980 MAY	25 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3	0.0 0.0	16.1	0.0 16.1	0.0	0.0 161.3	0.0	0.0	0.0 161.3
32.3	0.0 129.0	42.7 NA	-1.0	00					
Dem 3	Dem 3	1980 MAY	26 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0		-1.0						
Dem 3	Dem 3			16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0		-1.0						
Dem 3	Dem 3	1980 MAY	28 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0		-1.0						
Dem 3	Dem 3	1980 MAY	29 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0	42.7 NA	-1.0	00					
Dem 3	Dem 3	1980 MAY	30 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0		-1.0						
Dem 3	Dem 3	1980 MAY	31 32.3	16.1 32.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 32.3			0.0 16.1					
32.3	0.0 129.0	42.7 NA	-1.0	00					
Dem_3	Dem_3	1980 TOT	-1 1000.0	500.0 1000.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 1000.0	0.0 0.0	500.0	0.0 500.0	0.0	0.0 5000.0	0.0	0.0	0.0 5000.0
1000.0	0.0 4000.0								

Station In/Out

Station Balance

Shortage

Water Use

Carried	, - 1						From Ri	ver By		~	Fron	Carrier	Ву
			_	Total	CII					From			
or F	rom Tota	l Total	CU	IOCAI	To To				Reach Ret			n/To Ri	ver
River		iver Avail	Control	Cont	rol								
	ıre River			Demand	Demand	Priorty	Storage	Exc_Plr	l Loss	Well	Priorty	Sto_Exc	Loss
Exchang		Supply Shor					l Loss	Inflo	ow Gain	Flow	Deplete	GW Stor	
	-	Well Outflow		Location	1 I	Right (+)							, ,
ID	ID		Mo Day						(-)				
(+)		NA NA	NA	NA .		NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	+) NA N	NA.	1		(2)	(4)			(=)	(0)	(0)	(10)
(11)	(10)	12) (14)	(15)	(1)					(6)				
(11)						(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	28) (29) ((30)	(3	3 I)								
						_							
Dem 3	Dem 3	1980		33 3	16 7	33.3	0 0	0 0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33		0.0	16.7		16.7			166.7		0.0	0.0 1	
33.3	0.0 13			-1.0		10.7	0.0	0.0	1001,	0.0	0.0	0.0	
Dem 3	Dem 3			33.3		33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33		0.0	16.7		16.7	0.0		166.7		0.0	0.0 1	
33.3	0.0 13	3.3 47.9 N	IA.	-1.0									
Dem_3	Dem_3	1980	JUN 3	33.3	16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33	.3 0.0	0.0	16.7	0.0	16.7	0.0	0.0	166.7	0.0	0.0	0.0 1	66.7
33.3	0.0 13	3.3 48.2 N	JA.	-1.0	000								
Dem_3	Dem_3	1980	JUN 4	33.3	16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33	.3 0.0	0.0	16.7	0.0	16.7	0.0	0.0	166.7	0.0	0.0	0.0 1	66.7
33.3	0.0 13	3.3 48.4 N	JA.	-1.0	000								
Dem_3	Dem_3					33.3			0.0		0.0	0.0	0.0
0.0	0.0 33	.3 0.0	0.0	16.7	0.0	16.7	0.0	0.0	166.7	0.0	0.0	0.0 1	66.7
33.3	0.0 13	3.3 48.4 N	IA.	-1.0	000								
Dem 3	Dem_3	1980	JIIN 6	33.3	16 7	33 3	0 0	0 0	0.0	0 0	0 0	0.0	0.0
0.0	0.0 33		0.0	16.7					166.7		0.0	0.0 1	
33.3	0.0 13			-1.0								-	
Dem 3	Dem 3	1980		33.3		33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33		0.0	16.7		16.7	0.0		166.7		0.0	0.0 1	66.7
33.3	0.0 13			-1.0	000								
Dem 3	Dem 3	1980				33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33	.3 0.0	0.0	16.7	0.0	16.7	0.0	0.0	166.7	0.0	0.0	0.0 1	66.7
33.3	0.0 13	3.3 48.4 N	JA.	-1.0	000								
Dem_3	Dem_3	1980	JUN 9	33.3	16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33	.3 0.0	0.0	16.7	0.0	16.7	0.0	0.0	166.7	0.0	0.0	0.0 1	66.7
33.3	0.0 13	3.3 48.4 N	IA.	-1.0	000								

Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 133.3	0.0 0.0	33.3 16.7 .6.7 0.0 16.	33.3 0.0 7 0.0	0.0 0.0 0.0 166.7	0.0	0.0	0.0 0.0 0.0 166.7
Dem_3 0.0 33.3 Dem 3	Dem_3 0.0 33.3 0.0 133.3 Dem 3	0.0 0.0 1 48.4 NA	33.3 16.7 6.7 0.0 16. -1.000 33.3 16.7	7 0.0			0.0	0.0 0.0 0.0 166.7 0.0 0.0
0.0 33.3 Dem_3	0.0 33.3 0.0 133.3 Dem_3	0.0 0.0 1 48.4 NA 1980 JUN 13	.6.7 0.0 16. -1.000 33.3 16.7	7 0.0 33.3 0.0	0.0 166.7	0.0	0.0	0.0 166.7
0.0 33.3 Dem_3 0.0	0.0 33.3 0.0 133.3 Dem_3 0.0 33.3	48.4 NA 1980 JUN 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33.3 0.0	0.0 166.7 0.0 0.0 0.0 166.7	0.0	0.0	0.0 166.7 0.0 0.0 0.0 166.7
33.3 Dem_3 0.0 33.3	0.0 133.3 Dem_3 0.0 33.3 0.0 133.3	48.4 NA 1980 JUN 15	-1.000 33.3 16.7 .6.7 0.0 16.	33.3 0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 166.7
Dem_3	Dem_3 0.0 33.3	1980 JUN 16	33.3 16.7 6.7 0.0 16.				0.0	0.0 0.0 0.0 166.7
33.3 Dem_3 0.0 33.3	0.0 133.3 Dem_3 0.0 33.3 0.0 133.3	1980 JUN 17	-1.000 33.3 16.7 .6.7 0.0 16. -1.000		0.0 0.0 0.0 166.7	0.0	0.0	0.0 0.0 0.0 166.7
Dem_3 0.0 33.3 Dem_3	Dem_3 0.0 33.3 0.0 133.3 Dem 3	0.0 0.0 1 48.4 NA	33.3 16.7 .6.7 0.0 16. -1.000 33.3 16.7	7 0.0	0.0 166.7	0.0	0.0	0.0 0.0 0.0 166.7
0.0 33.3 Dem_3	0.0 33.3 0.0 133.3 Dem_3	0.0 0.0 1 48.4 NA 1980 JUN 20	.6.7 0.0 16. -1.000 33.3 16.7	7 0.0 33.3 0.0	0.0 166.7	0.0	0.0	0.0 166.7
0.0 33.3 Dem_3	0.0 33.3 0.0 133.3 Dem_3	48.4 NA	.6.7 0.0 16. -1.000 33.3 16.7				0.0	0.0 166.7
0.0 33.3 Dem_3	0.0 33.3 0.0 133.3 Dem_3	0.0 0.0 1 48.4 NA 1980 JUN 22	6.7 0.0 16. -1.000 33.3 16.7	7 0.0 33.3 0.0	0.0 166.7	0.0	0.0	0.0 166.7
0.0 33.3 Dem_3 0.0	0.0 33.3 0.0 133.3 Dem_3 0.0 33.3	48.4 NA 1980 JUN 23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33.3 0.0		0.0	0.0	0.0 166.7 0.0 0.0 0.0 166.7
33.3 Dem_3 0.0 33.3	0.0 133.3 Dem_3 0.0 33.3 0.0 133.3		33.3 16.7 .6.7 0.0 16.				0.0	0.0 0.0 0.0 166.7
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 133.3	1980 JUN 25	33.3 16.7 .6.7 0.0 16. -1.000			0.0	0.0	0.0 0.0 0.0 166.7
Dem_3 0.0 33.3	$ \begin{array}{ccc} 0.0 & \overline{33.3} \\ 0.0 & 133.3 \end{array} $	0.0 0.0 1 48.4 NA	33.3 16.7 .6.7 0.0 16. -1.000	7 0.0	0.0 166.7	0.0		
Dem_3 0.0 33.3 Dem_3	0.0 33.3 0.0 133.3	0.0 0.0 1 48.4 NA	33.3 16.7 .6.7 0.0 16. -1.000 33.3 16.7	7 0.0	0.0 166.7	0.0	0.0	0.0 166.7
0.0 33.3 Dem_3	0.0 33.3 0.0 133.3 Dem_3	0.0 0.0 1 48.4 NA 1980 JUN 29	.6.7 0.0 16. -1.000 33.3 16.7	7 0.0 33.3 0.0	0.0 166.7	0.0	0.0	0.0 166.7
0.0 33.3 Dem_3 0.0	0.0 33.3	48.4 NA 1980 JUN 30 0.0 0.0	33.3 16.7 .6.7 0.0 16.	33.3 0.0	0.0 0.0	0.0	0.0	0.0 0.0
33.3	0.0 133.3	48.4 NA	-1.000					
Dem_3 0.0 1000.0	Dem_3 0.0 1000.0	1980 TOT -1 0.0 0.0 50 1449.5 NA	1000.0 500.0 10 00.0 0.0 500. -1.000	0.00 0.0	0.0 0.0 0.0 5000.0	0.0	0.0	0.0 0.0 0.0 5000.0

Total CU From

or From Total Total CU To Total Upstrm Reach Return Well From/To River
River River River Avail Control
Structure River Soilm Supply Short Short CU Soilm Return Loss Inflow Gain Flow Deplete GW Stor
Inflow Divert by Well Outflow Flow Location Right

ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA NA NA NA NA NA NA	NA (+) A NA		(+)((-)		(+)	(+)((-)
(11) (26)	(12) (13) (27) (28)	(11) (14) (15) (16) (11) (29) (30) (31)		(4)		(7) (22)	(8)	(9) (10) (24) (25)
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 1 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	0 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 2 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 3 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 4 32.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0		16.1 32.3 0 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 6 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate Limit -1.000	16.1 32.3 0 16.1	0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0		16.1 32.3 0 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 8 32.3 0.0 0.0 16.1 0.0		0.0	0.0 0.0	0.0	0.0	0.0 0.0
32.3 Dem_3 0.0	Dem_3 0.0 32.3 0.0 0.0	0.0 Hgate_Limit -1.000 1980 JUL 9 32.3 0.0 0.0 16.1 0.0		0.0	0.0 0.0	0.0	0.0	0.0 0.0
32.3 Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	0.0 Hgate_Limit -1.000 1980 JUL 10 32.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 11 32.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	0 16.1	0.0	0.0 0.0		0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 13 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	0 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 14 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	0 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 15 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 16 32.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1 32.3 0 16.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 17 32.3 10.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	0 16.1					
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 18 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1 32.3 0 16.1					
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 19 32.3 : 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1 32.3 0 16.1					
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 20 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	16.1 32.3					
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 21 32.3 10.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000	0 16.1	0.0	0.0 32.3	0.0	0.0	0.0 32.3
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 22 32.3 10.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 23 32.3 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 24 32.3 1 0.0 0.0 16.1 0.0 0.0 Hgate_Limit -1.000						
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 JUL 25 32.3	0 16.1					

Dem_3	Dem_3	1980 JUL 26	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1980 JUL 27	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1980 JUL 28	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1980 JUL 29	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1980 JUL 30	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1980 JUL 31	32.3 16.1	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32.3	0.0 0.0 16	.1 0.0	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3
32.3	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_3	Dem_3	1980 TOT -1 1	000.0 500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 500	.0 0.0 5	0.00	0.0	0.0 10	0.00	0.0	0.0	0.0 10	00.0
1000.0	0.0 0.0	0.0 NA	-1.000								

Shorta		Water Use	Station In/Out From River By						Station Balance From Carrier By			
or River	River River	otal CU Avail Control	To T Control	otal	Ups	strm Re			Well From		.ver	
Exchar	ture River ng SoilM Supply	y Short Short	Demand Demand CU Soil						Priorty v Deplete			
ID (+)	W Divert by Well ID NA NA	Year Mo Day NA NA	Location : NA NA NA NA		(+) NA	(+)((-)	(+)	(+)	(+)((+)	
(-) (11) (26)	(-) (+) (12) (13) (27) (28)	NA NA (14) (15) (29) (30)	NA (1) (2) (16) (17) (31)		(4) (19)		(6) (21)	(7) (22)		(9) (24)		
Dem_3	Dem_3 0.0 32.3	1980 AUG 1 0.0 0.0	32.3 16.1 16.1 0.0	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
32.3 Dem_3 0.0 32.3	0.0 0.0 Dem_3 0.0 32.3 0.0 0.0		32.3 16.1 16.1 0.0	32.3 16.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Dem_3 0.0 32.3 Dem 3	Dem_3 0.0 32.3 0.0 0.0 Dem_3	1980 AUG 3 0.0 0.0 0.0 Hgate_Limit 1980 AUG 4	16.1 0.0 t -1.000	16.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 32.3 Dem_3	0.0 32.3 0.0 0.0 Dem_3	0.0 0.0 0.0 Hgate_Limit 1980 AUG 5	16.1 0.0 t -1.000 32.3 16.1	32.3	0.0	0.0	32.3	0.0	0.0	0.0	32.3	
0.0 32.3	0.0 32.3 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.1 0.0 t -1.000	16.1	0.0	0.0	32.3	0.0	0.0	0.0	32.3	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	0.0 Hgate_Limit	16.1 0.0 t -1.000	16.1	0.0		0.0	0.0	0.0	0.0		
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	0.0 Hgate_Limit	16.1 0.0 t -1.000	16.1	0.0		32.3	0.0	0.0	0.0	32.3	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 AUG 8 0.0 0.0 0.0 Hgate_Limi	16.1 0.0 t -1.000	16.1	0.0		0.0	0.0	0.0	0.0	32.3	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	0.0 Hgate_Limit	16.1 0.0 t -1.000	16.1	0.0		32.3	0.0	0.0	0.0	32.3	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 AUG 10 0.0 0.0 0.0 Hgate_Limi	16.1 0.0	32.3 16.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 AUG 11 0.0 0.0 0.0 Hgate_Limi	32.3 16.1 16.1 0.0 t -1.000	32.3 16.1	0.0	0.0	0.0	0.0	0.0	0.0		
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0		32.3 16.1 16.1 0.0 t -1.000	32.3 16.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Dem_3 0.0 32.3 Dem_3 0.0 32.3 Dem_3	Dem_3 0.0 32.3 0.0 0.0 Dem_3	1980 AUG 13 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 14 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 15 32.3 16.1 32.3	0.0	0.0 32.3 0.0 0.0 0.0 32.3 0.0 0.0	0.0	0.0	0.0 0.0 0.0 32.3 0.0 0.0 0.0 32.3
0.0 32.3 Dem_3	0.0 32.3 0.0 0.0 Dem_3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 18.1 1980 AUG 16 32.3 16.1 32.3			0.0	0.0	0.0 32.3
0.0 32.3 Dem_3	0.0 32.3 0.0 0.0 Dem_3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 17 32.3 16.1 32.3	0.0	0.0 32.3	0.0	0.0	0.0 32.3
0.0 32.3 Dem_3 0.0	0.0 32.3 0.0 0.0 Dem_3 0.0 32.3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 18 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1	0.0	0.0 32.3 0.0 0.0 0.0 32.3	0.0	0.0	0.0 32.3 0.0 0.0 0.0 32.3
32.3 Dem_3 0.0	Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1980 AUG 19 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1		0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
32.3 Dem_3 0.0 32.3	0.0 0.0 Dem_3 0.0 32.3 0.0 0.0	0.0 Hgate_Limit -1.000 1980 AUG 20 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000			0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 AUG 21 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000		0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3	Dem_3 0.0 32.3 0.0 0.0	1980 AUG 22 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_3 0.0 32.3 Dem_3	Dem_3 0.0 32.3 0.0 0.0 Dem 3	1980 AUG 23 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 24 32.3 16.1 32.3	0.0	0.0 0.0 0.0 32.3	0.0	0.0	0.0 0.0 0.0 32.3
0.0 32.3 Dem_3 0.0	0.0 32.3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 25 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1	0.0	0.0 32.3	0.0	0.0	0.0 32.3
32.3 Dem_3	0.0 0.0 Dem_3	0.0 Hgate_Limit -1.000 1980 AUG 26 32.3 16.1 32.3		0.0 0.0	0.0	0.0	0.0 0.0
0.0 32.3 Dem_3	0.0 32.3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 27 32.3 16.1 32.3	0.0	0.0 32.3	0.0	0.0	0.0 32.3
0.0 32.3 Dem_3	Dem_3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 28 32.3 16.1 32.3		0.0 32.3	0.0	0.0	0.0 32.3
0.0 32.3 Dem_3 0.0	0.0 32.3 0.0 0.0 Dem_3 0.0 32.3	0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000 1980 AUG 29 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1	0.0	0.0 32.3 0.0 0.0 0.0 32.3	0.0	0.0	0.0 32.3 0.0 0.0 0.0 32.3
32.3 Dem_3 0.0 32.3	Dem_3 0.0 32.3	0.0 Hgate_Limit -1.000 1980 AUG 30 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000			0.0	0.0	
Dem_3 0.0 32.3	0.0 0.0	1980 AUG 31 32.3 16.1 32.3 0.0 0.0 16.1 0.0 16.1 0.0 Hgate_Limit -1.000	0.0	0.0 0.0	0.0	0.0	0.0 0.0
	Dem_3	1980 TOT -1 1000.0 500.0 1000.0 0.0 0.0 NA -1.000	0.0	0.0 0.0	0.0	0.0	0.0 0.0

Shortage Water Use		Station In/Out From River By				S	Station Balance From Carrier By						
Carried													-
				Total	CU					From			
or From	Total T	otal	CU		То То	tal	Ups	trm Rea	ach Reti	urn W	ell From	n/To Riv	ver
River River	River	Avail C	ontrol	Cont	rol								
Structure R	iver			Demand	Demand	Priorty	Storage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang Soi	1M Suppl	y Short	Short	CU	SoilM	I Return	Loss	Inflow	Gain	Flow	Deplete	e GW Stor	
Inflow Diver	t by Well	Outflow	Flow	Location	R	light							
ID I	D	Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+) NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-) (-)	(+)	NA NA		N	A								
				(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11) (12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26) (27)	(28)	(29) (3	0)	(3	1)								

Dem_3 0.0 31.9	Dem_3 0.0 31.9 0.0 1.4	1980 SEP 1 33.3 16.7 31.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0)
Dem_3 0.0 32.9	Dem_3 0.0 32.9 0.0 0.5	1980 SEP 2 33.3 16.7 32.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0)
Dem_3 0.0 33.2	Dem_3 0.0 33.2 0.0 0.2	1980 SEP 3 33.3 16.7 33.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0)
Dem_3 0.0	Dem_3 0.0 33.3 0.0 0.1	1980 SEP 4 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
33.3 Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	0.0 Dem_1 100.000 1980 SEP 5 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 Dem_1 100.000)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 6 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 7 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	0.0 Dem_1 100.000 1980 SEP 8 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 Dem_1 100.000)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 9 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 10 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3	Dem_3 0.0 33.3	1980 SEP 11 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
33.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 33.3	0.0 Dem_1 100.000 1980 SEP 12 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3)
33.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 33.3	0.0 Dem_1 100.000 1980 SEP 13 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3)
33.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 33.3 0.0 0.0	0.0 Dem_1 100.000 1980 SEP 14 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3)
33.3 Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	0.0 Dem_1 100.000 1980 SEP 15 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 Dem_1 100.000)
Dem_3 0.0	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 16 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
33.3 Dem_3 0.0	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 17 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
33.3 Dem_3 0.0 33.3	Dem_3 0.0 33.3	0.0 Dem_1 100.000 1980 SEP 18 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 Dem_1 100.000)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 19 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 20 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 21 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0	Dem_3 0.0 33.3	0.0 Dem_1 100.000 1980 SEP 22 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3	
33.3 Dem_3 0.0	0.0 0.0 Dem_3 0.0 33.3 0.0 0.0	0.0 Dem_1 100.000 1980 SEP 23 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3	
33.3 Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	0.0 Dem_1 100.000 1980 SEP 24 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 16.7 0.0 0.0 33.3 0.0 0.0 0.0 33.3 0.0 Dem_1 100.000)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 25 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)
Dem_3 0.0 33.3	Dem_3 0.0 33.3 0.0 0.0	1980 SEP 26 33.3 16.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.)

Dem_3	Dem_3	1980 SEP 27	33.3 16.7	33.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 33.3	0.0 0.0	16.7 0.0	16.7	0.0	0.0 33.3	0.0	0.0	0.0 33.3
33.3	0.0 0.0	0.0 Dem_1	100.000						
Dem_3	Dem_3	1980 SEP 28	33.3 16.7	33.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 33.3	0.0 0.0	16.7 0.0	16.7	0.0	0.0 33.3	0.0	0.0	0.0 33.3
33.3	0.0 0.0	0.0 Dem_1	100.000						
Dem_3	Dem_3	1980 SEP 29	33.3 16.7	33.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 33.3	0.0 0.0	16.7 0.0	16.7	0.0	0.0 33.3	0.0	0.0	0.0 33.3
33.3	0.0 0.0	0.0 Dem_1	100.000						
Dem_3	Dem_3	1980 SEP 30	33.3 16.7	33.3	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 33.3	0.0 0.0	16.7 0.0	16.7	0.0	0.0 33.3	0.0	0.0	0.0 33.3
33.3	0.0 0.0	0.0 Dem_1	100.000						
		·							
3		1980 TOT -1	1000.0 500.0	997.8	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 997.8	2.2 1.1	498.9 0.0 4	98.9	0.0	0.0 1000.0	0.0	0.0	0.0 1000.0
997.8	0.0 2.2	0.0 NA	-1.000						

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage Water Use Carried				Statio	n In/Out From Ri	lver By		S	Station B From	alance Carrier	Ву
_							1 -	From		· ·	
or F River		otal CU Avail Control		tal	Ups	strm Rea	acn Ret	urn w	Well From	/TO Ri	ver
Structu		Avail Concion		Driorty	Storage	Evc Pln	T.Ogg	Well	Priorty	Sto Exc	Loss
Exchang		y Short Short									
	Divert by Well	Outflow Flow	Location R	ight							
ID	ID	Year Mo Day	NA NA	(+)	(+)		(-)		(+)		(-)
(+)	NA NA	NA NA	NA NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-) (+)	NA NA	NA								
(11)	(10) (12)	(14) (15)	(1) (2)							(9)	(10)
(11) (26)	(12) (13) (27) (28)	(14) (15)	(16) (17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(20)	(27) (20)	(29) (30)	(31)								
Dem_4	Dem_4	1979 OCT 1		3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3.6	12.5 6.3	1.8 0.0	1.8	0.0	32.3	0.0	0.0	0.0	0.0	32.3
3.6	0.0 28.7	0.0 ISF	100.000								
Dem_4 0.0	Dem_4	1979 OCT 2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 0.0 0.0 15.2	16.1 8.1 0.0 Dem 1	0.0 0.0 100.000	0.0	0.0	9.6	0.0	5.7	0.0	0.0	15.2
Dem 4	Dem 4	1979 OCT 3	16.1 8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	3.2		12.9	0.0		16.1
0.0	0.0 16.1	0.0 Dem_1	100.000								
Dem_4	Dem_4	1979 OCT 4	16.1 8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	1.1	0.0	15.1	0.0	0.0	16.1
0.0	0.0 16.1	0.0 ISF	100.000								
Dem_4 0.0	Dem_4 0.0 0.0	1979 OCT 5 16.1 8.1	16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 Dem 1	100.000	0.0	0.0	0.4	0.0	15.8	0.0	0.0	10.1
0.0	0.0 10.1	0.0 Dem_1	100.000								
Dem_4	Dem_4	1979 OCT 6	16.1 8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	0.1	0.0	16.0	0.0	0.0	16.1
0.0	0.0 16.1	0.0 Dem_1	100.000								
Dem_4	Dem_4		16.1 8.1	0.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	16.1
0.0 Dem 4	0.0 16.1 Dem 4	0.0 ISF 1979 OCT 8	100.000 16.1 8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	0.0		16.1	0.0		16.1
0.0	0.0 16.1	0.0 Dem 1	100.000	0.0	0.0	0.0	0.0	10.1	0.0	0.0	10.1
Dem_4	Dem_4	_	16.1 8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	16.1
0.0	0.0 16.1	0.0 Dem_1	100.000								
Dem_4	Dem_4	1979 OCT 10					0.0		0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	16.1
0.0	0.0 16.1	0.0 ISF	100.000								
Dem 4	Dem 4	1979 OCT 11	16.1 8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0		0.0		16.1	0.0	0.0	
0.0	0.0 16.1	0.0 ISF	100.000								

Structu	ıre River 7 SoilM Supp	Total CU Avail Control bly Short Short	Demand Demand	Priorty I Return	Storage Loss	Exc_Pln Inflow	Loss Well Gain Flo	Priorty w Deplete	Sto_Exc Loss GW Stor
Shortag Carried	1	Water Use					From		
0.0	0.0 3.6 0.0 511.6	1980 TOT -1 496.4 248.2 0.0 NA	500.0 250.0 1.8 0.0 -1.000	1.8	0.0	46.6	0.0 468.6	0.0	0.0 515.2
Dem_4 0.0 0.0	0.0 0.0 0.0 16.1	1979 OCT 31 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 Dem_4 0.0 0.0	0.0 0.0	0.0 ISF 1979 OCT 30 16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0	16.1 8.1 0.0 ISF 1979 OCT 29 16.1 8.1	0 0 0 0	0.0	0.0	0.0	0 0 16 1	0 0	0 0 16 1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1979 OCT 27 16.1 8.1 0.0 ISF 1979 OCT 28	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 OCT 26 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000				0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1979 OCT 25 16.1 8.1 0.0 ISF	100.000 16.1 8.1 0.0 0.0 100.000		0.0	0.0	0.0 0.0		0.0 0.0 0.0 16.1
0.0 0.0 Dem_4 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0	16.1 8.1 0.0 ISF 1979 OCT 24 16.1 8.1	0.0 0.0 100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 16.1 0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1979 OCT 22 16.1 8.1 0.0 ISF 1979 OCT 23	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1 0.0 0.0	0.0	0.0 0.0 0.0 16.1 0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 OCT 21 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1979 OCT 20 16.1 8.1 0.0 ISF	100.000 16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1		0.0 0.0
0.0 0.0 Dem_4 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0	16.1 8.1 0.0 ISF 1979 OCT 19 16.1 8.1	0.0 0.0 100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 16.1 0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1979 OCT 17 16.1 8.1 0.0 ISF 1979 OCT 18	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 OCT 16 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 OCT 15 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000		0.0		0.0 0.0 0.0 16.1	0.0	0.0 0.0
0.0 Dem_4 0.0 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1979 OCT 14 16.1 8.1 0.0 Dem_1	100.000 16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0	16.1 8.1 0.0 Dem_1 1979 OCT 13 16.1 8.1	100.000 16.1 8.1	0.0	0.0		0.0 16.1 0.0 0.0 0.0 16.1		0.0 16.1 0.0 0.0 0.0 16.1
Dem_4 0.0	Dem_4	1979 OCT 12 16.1 8.1	16.1 8.1 0.0 0.0				0.0 0.0 0.0 16.1		

					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
						(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (30)	(3	31)								

Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 17.5	1979 NOV 1 16.7 8.3 0.0 ISF	16.7 8.3 0.0 0.0 100.000		0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 17.5
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 2 16.7 8.3 0.0 ISF		0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 3 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0 16.5	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 4 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0		0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 5 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000		0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 6 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7		16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 8 16.7 8.3 0.0 ISF	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 9 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0		0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 10 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000		0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 11 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 12 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 13 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0		0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 14 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0		0.0	0.0	0.0 0.0 0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 15 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000		0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 Dem 1	0.0 0.0 100.000	0.0	0.0	0.0		0.0		0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 17 16.7 8.3 0.0 Dem_1	0.0 0.0	0.0	0.0	0.0		16.7		0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 18 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 19 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 20 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0	16.7	0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 21 16.7 8.3 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 22 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 23 16.7 8.3 0.0 Dem_1	100 000							
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 24 16.7 8.3 0.0 Dem_1	0.0 0.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1979 NOV 25 16.7 8.3 0.0 Dem_1	0.0 0.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.0 16.7 Dem_4 .0 0.0 .0 16.7	1979 NOV 26 16.7 8.3 0.0 Dem_1 1979 NOV 27 16.7 8.3 0.0 Dem_1 1979 NOV 28 16.7 8.3 0.0 Dem_1 1979 NOV 29 16.7 8.3 0.0 Dem_1 1979 NOV 30 16.7 8.3 0.0 Dem_1	16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0 16.7 0.0 16.7 0.0 16.7 0.0 16.7 0.0 98.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7
Shortage Carried		Water Use		Station	n In/Out From Ri	ver By		S	tation B From	alance Carrier By
Structure Exchang Inflow Di ID (+) N (-) (-)	iver River River SoilM Supp ivert by Wel	Avail Control	To To Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17)	Priorty : Return ight (+) NA	Storage : Loss (+) NA (4)	Exc_Pln Inflow (+)((+)	Loss	Well Flow (+) (+) (7)	Priorty Deplete (+) (-) (8)	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.0 0.0 .0 16.1 Dem_4 .0 0.0	1979 DEC 1 16.1 8.1 0.0 ISF 1979 DEC 2 16.1 8.1 0.0 ISF 1979 DEC 3 16.1 8.1 0.0 ISF 1979 DEC 4 16.1 8.1 0.0 ISF 1979 DEC 5 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 16.4 0.0 16.1 0.0 16.1 0.0 16.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 16.4 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dem_4 .0 0.0 .0 16.1 .0 16.1 .0 16.1 .0 16.1 .0 0.0	1979 DEC 6 16.1 8.1 0.0 ISF 1979 DEC 7 16.1 8.1 0.0 ISF 1979 DEC 8 16.1 8.1 0.0 ISF 1979 DEC 9 16.1 8.1 0.0 ISF 1979 DEC 10 16.1 8.1 0.0 ISF 1979 DEC 11 16.1 8.1 0.0 ISF 1979 DEC 11 16.1 8.1 0.0 ISF 1979 DEC 12 16.1 8.1 0.0 ISF 1979 DEC 13 16.1 8.1 0.0 ISF 1979 DEC 13 16.1 8.1 0.0 ISF	0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.1 0.0 16.1 0.0 16.1 0.0 16.1 0.0 16.1 0.0 16.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1

Dem_4 0.0 0.0	0.0 0.0	1979 DEC 15 16.1 8.1 0.0 ISF							0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1979 DEC 16 16.1 8.1 0.0 ISF 1979 DEC 17	0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4 0.0 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF 1979 DEC 18 16.1 8.1 0.0 ISF		0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 16.1 0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem 4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1979 DEC 19 16.1 8.1 0.0 ISF 1979 DEC 20	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1 0.0 0.0
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 DEC 22 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 16.1
Dem_4 0.0 0.0 Dem 4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1979 DEC 23 16.1 8.1 0.0 ISF 1979 DEC 24	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem 4	0.0 0.0 0.0 16.1 Dem 4		0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	1979 DEC 23 16.1 8.1 0.0 ISF	0.0 0.0						
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 DEC 26 16.1 8.1 0.0 ISF			0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 DEC 27 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 DEC 28 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1979 DEC 29 16.1 8.1 0.0 ISF 1979 DEC 30	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.1
0.0	0.0 0.0 0.0 16.1		0.0 0.0				0.0 16.1		0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1979 DEC 31 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000				0.0 0.0 0.0 16.1		
		1980 TOT -1 500.0 250.0	500.0 250.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0		0.0 NA		0.0	0.0	0.0	0.0 500.3	0.0	0.0 500.3
Shortag Carried	ge 1	Water Use		Statio	n In/Out From Ri	ver By		Station E From	Balance Carrier By
or F	From Total	Fotal CU Avail Control	Total CU To To	tal	Ups	trm Re	From	 Well From	n/To River
Exchang	ıre kiver ; SoilM Suppl	ly Short Short	CU SoilM	Priorty Return	storage Loss	Inflow	Loss Well Gain Flo	Priorty w Deplete	Sto_Exc Loss GW Stor
Inflow ID (+) (-)	7.7.7. 7.7.7.	Outflow Flow Year Mo Day NA NA	NT70 NT70	7A T 7A	74.77	(,)	(1)	/ \	(1) (1)
(11)		NA NA NA (14) (15) (29) (30)		(3)	(4) (19)	(5) (20)	(6) (7) (21) (22)	(8)	(9) (10) (24) (25)
 Dem_4		1980 JAN 1	16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0	1980 JAN 1 16.1 8.1 0.0 ISF	100.000	0.0	0.0	0.0	U.U 16.1	0.0	U.U 16.1

Dem_4 0.0 0.0	0.0 0.0 0.0 16.1	0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0 Dem 4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1980 JAN 3 16.1 8.1 0.0 ISF 1980 JAN 4	0.0 0.0	0.0	0.0		0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 5	0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1		100.000						
Dem_4 0.0 0.0 Dem 4	Dem_4 0.0 0.0 0.0 16.1 Dem 4			0.0	0.0	0.0	0.0 16.1		0.0 0.0 0.0 16.1
0.0 0.0 Dem 4	0.0 0.0 0.0 16.1 Dem 4	16.1 8.1	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0	16.1 8.1	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	1980 JAN 10	100.000 16.1 8.1	0.0	0.0			0.0	0.0 16.1
0.0		0.0 ISF	0.0 0.0						0.0 16.1
Dem_4 0.0 0.0		0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1980 JAN 12 16.1 8.1 0.0 ISF 1980 JAN 13	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4	0.0 0.0		0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 0.0		0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0		1980 JAN 16 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0			0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem 4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1980 JAN 17 16.1 8.1 0.0 ISF 1980 JAN 18	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0	16.1 8.1 0.0 ISF 1980 JAN 19	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 20	100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	100.000						
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1980 JAN 21 16.1 8.1 0.0 ISF 1980 JAN 22	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 23	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 24	0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 25	100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 26	100.000						
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	1980 JAN 26 16.1 8.1 0.0 ISF 1980 JAN 27	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 JAN 28	0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1

Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF	0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1
Shortag	re	Water Use		Statio	n In/Out	ver By		S	Station B	alance Carrier Ry
Carried	L									
or F	rom Total T	Cotal CU Avail Control	Total CU To To	tal	Ups	trm Re	ach Retur	From on W	Well From	ı/To River
Structu Exchang	re River SoilM Suppl	y Short Short.	Demand Demand CU SoilM	Priorty Return	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc Loss
Inflow ID (+)	ID	Outflow Flow Year Mo Day NA NA	Location R NA NA NA NA	(+)				(+)		
(11) (26)	(12) (13)	NA NA NA NA (14) (15) (29) (30)	NA (1) (2) (16) (17) (31)	(3)	(4)	(5)	(6)	(7)	(8)	(9) (10)
Dem_4 0.0 0.0 0.0 Dem_0	0.0 0.0 0.0 20.4 Dem_4 0.0 0.0 0.0 17.9 Dem_4 0.0 0.0 17.9 Dem_4 0.0 0.0 17.9 Dem_4 0.0 0.0 0.0 17.9 Dem_4 0.0 0.0	1980 FEB 1 17.9 8.9 0.0 Dem_1 1980 FEB 2 17.9 8.9 0.0 ISF 1980 FEB 3 17.9 8.9 0.0 Dem_1	17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 0.0 17.9 8.9 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 4.6 0.0 1.5 0.0 0.5 0.0 0.2	0.0 15 0.0 0.0 16 0.0 17 0.0 0.0 17	0.0 5.3 0.0 7.3 0.0 7.7	0.0	0.0 0.0 0.0 20.4 0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9
Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 17.9 Dem_4 0.0 0.0	17.9 8.9 0.0 ISF 1980 FEB 9 17.9 8.9 0.0 ISF 1980 FEB 10	0.0 0.0 100.000 17.9 8.9 0.0 0.0 17.9 8.9 0.0 100.000 17.9 8.9 0.0 100.000 17.9 8.9 0.0 17.9 8.9 0.0 0.0 17.9 8.9 0.0 0.0 17.9 8.9 0.0 0.0 17.9 8.9 0.0 0.0 17.9 8.9	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 17 0.0 0.0 17 0.0 17	7.8 0.0 7.9 0.0 7.9 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 17.9 0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9 0.0 0.0
Dem_4 0.0 0.0 Dem_1	Dem_4 0.0 0.0 0.0 17.9 Dem_4 0.0 0.0	1980 FEB 11 17.9 8.9 0.0 Dem_1 1980 FEB 12 17.9 8.9 0.0 Dem_1 1980 FEB 13 17.9 8.9 0.0 Dem_1 1980 FEB 14 17.9 8.9 0.0 Dem_1 1980 FEB 15 17.9 8.9 0.0 Dem_1 1980 FEB 15	0.0 0.0 100.000 17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 100.000 17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 0.0 100.000 17.9 8.9 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 17 0.0 17 0.0 17 0.0 17 0.0 17	7.9 0.0 7.9 0.0 7.9 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 17.9 0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9 0.0 0.0

0.0 0.0 0.0 17.9 8.9 0.0 0.0 0.0 0.0 17.9 0.0 0.0 17.9 0.0 0.0 17.9 0.0 0.0 17.9 0.0 0.	Dem_4 0.0	0.0 0.0	1980 FEB 16 17.9 8.9	0.0 0.0						
Dem_4	Dem_4	Dem_4	1980 FEB 17	17.9 8.9						0.0 0.0 0.0 17.9
Dem_4	Dem_4	Dem_4	1980 FEB 18	17.9 8.9						
O. O. O. O. O. O. Dem_4 1980 FEB 20 17.9 8.9 0.0 0	Dem_4	Dem_4	1980 FEB 19	17.9 8.9						
Dem_4	Dem_4	Dem_4	0.0 Dem_1 1980 FEB 20	100.000 17.9 8.9	0.0	0.0	0.0	0.0 0.0	0.0	
0.0	0.0	0.0 17.9	0.0 Dem_1	100.000						
0.0	0.0	0.0 0.0 0.0 17.9	17.9 8.9 0.0 Dem_1	0.0 0.0 100.000	0.0	0.0	0.0	0.0 17.9	0.0	0.0 17.9
0.0	0.0	0.0 0.0	17.9 8.9	0.0 0.0						
Dem_4	0.0	0.0 0.0	17.9 8.9	0.0 0.0						
Dem_4 Dem_4 1980 FEB 25 17.9 8.9 0.0 <t< td=""><td>Dem_4 0.0</td><td>Dem_4 0.0 0.0</td><td>1980 FEB 24 17.9 8.9</td><td>17.9 8.9 0.0 0.0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dem_4 0.0	Dem_4 0.0 0.0	1980 FEB 24 17.9 8.9	17.9 8.9 0.0 0.0						
Dem_4	Dem_4 0.0	Dem_4 0.0 0.0	1980 FEB 25 17.9 8.9	17.9 8.9 0.0 0.0						
0.0 0.0 17.9 0.0 Dem_1 100.000 Dem_4 Dem_4 Dem_4 1980 FEB 27 17.9 8.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Dem_4	Dem_4	1980 FEB 26	17.9 8.9						
0.0 0.0 17.9 0.0 Dem_1 100.000 Dem_4 Dem_4 1980 FEB 28 17.9 8.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 Dem_4	0.0 17.9 Dem_4	0.0 Dem_1 1980 FEB 27	100.000 17.9 8.9	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 17.9 8.9 0.0 0.0 0.0 0.0 0.0 17.9 0.0 0.0 17.9 0.0 0.0 17.9 0.0 Dem_1 100.000	0.0 Dem_4	0.0 17.9 Dem_4	0.0 Dem_1 1980 FEB 28	100.000 17.9 8.9	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
			0.0 Dem_1	100.000		U.U ————	U.U 		U.U 	U.U 17.9
Dem_4 Dem_4 1980 TOT -1 500.0 250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			1980 TOT -1	500.0 250.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 0.0 500.0 250.0 0.0 0.0 0.0 0.0 6.9 0.0 495.7 0.0 0.0 502.6 0.0 0.0 502.6 0.0 NA -1.000					0.0	0.0	6.9	0.0 495.7	0.0	0.0 502.6

~					From Ri	ver By			Fron	Carrier	By
Carried	1										
			Total CU					From			
or F	rom Total 1	Total CU Avail Control	To To	tal	Ups	strm Re	ach Ret	turn V	Well From	n/To Ri	ver
										Sto_Exc	
		ly Short Short			ı Loss	Inflow	Gair	n Flov	v Deplete	GW Stor	
Inflow		l Outflow Flow		Right							
ID	ID	Year Mo Day	NA NA								
(+)	NA NA	NA NA	NA NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-) (+)	NA NA	NA								
			(1) (2)								
(11)	(12) (13)		(16) (17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27) (28)	(29) (30)	(31)								
											
Dem_4			16.1 8.1								
0.0	0.0 0.0	16.1 8.1	0.0 0.0	0.0	0.0	0.0	0.0	17.0	0.0	0.0	17.0
0.0	0.0 17.0	0.0 ISF	100.000	0 0	0 0	0 0					0 0
Dem_4	Dem_4		16.1 8.1								
0.0	0.0 0.0	16.1 8.1		0.0	0.0	0.0	0.0	16.1	0.0	0.0	16.1
0.0	0.0 16.1	0.0 ISF	100.000	0 0	0 0	0 0					0 0
Dem_4	Dem_4	1980 MAR 3				0.0					
0.0	0.0 0.0 0.0 16.1	16.1 8.1		0.0	0.0	0.0	0.0	16.1	0.0	0.0	16.1
	0.0 16.1 Dem 4	0.0 ISF	100.000 16.1 8.1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_4 0.0	0.0 0.0	1980 MAR 4						16.1			
0.0	0.0 0.0	0.0 ISF	100.000	0.0	0.0	0.0	0.0	10.1	0.0	0.0	10.1
Dem 4	0.0 16.1 Dem 4		16.1 8.1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_4 0.0	_										
	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	100.000	0.0	0.0	0.0	0.0	16.1	0.0	0.0	16.1
0.0	0.0 16.1	U.U 15F	100.000								
Dem 4	Dem 4	1980 MAR 6	161 01	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0 0.0		0.0 0.0								
0.0	0.0 0.0	0.0 ISF	100.000	0.0	0.0	0.0	0.0	10.1	0.0	0.0	10.1
0.0	0.0 10.1	U.U ISF	100.000								

Shortage

Water Use

Station In/Out Station Balance
From River By From Carrier By

	- 1	1000 5	16.1	0.0					
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 MAR 7 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0
Dem_4 0.0	Dem_4 0.0 0.0	1980 MAR 8 16.1 8.1	16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0	0.0 16.1 Dem_4 0.0 0.0	0.0 ISF 1980 MAR 9 16.1 8.1	100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	0.0 ISF 1980 MAR 10	100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0	Dem_4 0.0 0.0	1980 MAR 11 16.1 8.1	16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4	0.0 16.1 Dem_4	0.0 ISF 1980 MAR 12	100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 MAR 13 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0
Dem_4 0.0	Dem_4 0.0 0.0	1980 MAR 14 16.1 8.1	16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0	0.0 16.1 Dem_4 0.0 0.0	0.0 ISF 1980 MAR 15 16.1 8.1	100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0	0.0 16.1	0.0 ISF	100.000	0.0	0.0	0.0	0.0 10.1	0.0	0.0 10.1
Dem_4 0.0	Dem_4 0.0 0.0	1980 MAR 16 16.1 8.1	16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0	0.0 16.1 Dem_4 0.0 0.0	0.0 ISF 1980 MAR 17 16.1 8.1	100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4	0.0 16.1 Dem_4	0.0 ISF 1980 MAR 18	100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 MAR 19	0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 MAR 20 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4	Dem_4	1980 MAR 21	16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	16.1 8.1 0.0 ISF 1980 MAR 22	0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 MAR 23 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0	Dem_4	1980 MAR 24 16.1 8.1	16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4	0.0 16.1 Dem_4	1980 MAR 25	100.000						
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0	Dem_4 0.0 0.0	16.1 8.1	16.1 8.1 0.0 0.0						
0.0 Dem_4 0.0	0.0 16.1 Dem_4 0.0 0.0	0.0 ISF 1980 MAR 27 16.1 8.1	100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0			
0.0 Dem_4	0.0 16.1 Dem_4	0.0 ISF 1980 MAR 28	100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4	0.0 ISF	0.0 0.0 100.000 16.1 8.1				0.0 16.1		
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 MAR 30 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4	Dem_4	1980 MAR 31	16.1 8.1						
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF		0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0	1980 TOT -1 500.0 250.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 500.9	0.0	0.0 0.0 0.0 500.9
0.0	0.0 500.9	0.0 NA	-1.000						

From Carrier By

Carried

	From Total 5	Total CII	Total CU		IIng	trm Pe	ach Pet	From	——————————————————————————————————————	/To Piver
		Total CU Avail Control	Control	rear	OPS	CIM RC	acii ket	ulli v	WCII FION	710 KIVEI
	ure River	ly Short Short	Demand Demand							
Inflow	Divert by Well	l Outflow Flow	Location F	Right						
ID (+)	ID NA NA		NA NA							(+)((-
(-)	(-) (+)	NA NA NA NA	NA NA	INA	NA	(+)	(+)	(+)	(-)	(+) (+)
(33)	(10)	(14)	(1) (2)							
(11) (26)	(12) (13) (27) (28)	(29) (30)	(16) (17)	(18)	(19)	(20)	(21)	(22)	(23)	(24) (25)
			·							·
Dem_4		1980 APR 1	16.7 8.3				0.0	0.0		0.0 0.
0.0	0.0 0.0 0.0 17.5	16.7 8.3 0.0 ISF	0.0 0.0 100.000	0.0	0.0	1.4	0.0	16.0	0.0	0.0 17.5
Dem_4	Dem_4		16.7 8.3			0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0	0.0	0.0	0.5	0.0	16.2	0.0	0.0 16.7
0.0 Dem_4	0.0 16.7 Dem_4	0.0 ISF 1980 APR 3	100.000 16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0		0.0	0.2	0.0	16.5	0.0	0.0 16.7
0.0 Dem 4	0.0 16.7 Dem 4	0.0 Dem_1 1980 APR 4	100.000 16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0			0.1		16.6		0.0 16.7
0.0 Dem 4	0.0 16.7 Dem 4	0.0 Dem_1 1980 APR 5	100.000 16.7 8.3	0.0	0 0	0.0	0.0	0 0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3								
0.0	0.0 16.7	0.0 Dem_1	100.000							
Dem_4	Dem_4	1980 APR 6	16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
0.0 Dem_4	0.0 16.7 Dem_4		100.000 16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0			0.0		16.7	0.0	0.0 16.7
0.0 Dem_4	0.0 16.7 Dem 4	0.0 Dem_1 1980 APR 8	100.000 16.7 8.3	0 0	0 0	0.0	0.0	0 0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0			0.0		16.7	0.0	0.0 16.7
0.0 Dem_4	0.0 16.7 Dem 4	0.0 ISF 1980 APR 9	100.000	0 0	0 0	0.0	0.0	0 0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3				0.0		16.7	0.0	0.0 16.7
0.0	0.0 16.7	0.0 Dem_1	100.000	0.0	0.0	0 0	0 0	0 0	0.0	0.0
Dem_4 0.0	Dem_4 0.0 0.0	1980 APR 10 16.7 8.3	16.7 8.3 0.0 0.0							
0.0	0.0 16.7	0.0 Dem_1	100.000							
Dem_4	Dem_4	1980 APR 11	16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0				0.0		0.0	0.0 16.7
0.0 Dem_4	0.0 16.7 Dem_4	0.0 Dem_1 1980 APR 12	100.000 16.7 8.3	0 0	0.0	0 0	0.0	0 0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0		0.0	0.0		16.7	0.0	0.0 16.7
0.0 Dem_4	0.0 16.7 Dem_4	0.0 Dem_1 1980 APR 13	100.000	0 0	0 0	0 0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3				0.0		16.7		0.0 16.7
0.0 Dem_4	0.0 16.7 Dem_4	0.0 Dem_1 1980 APR 14	100.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0
0.0	0.0 0.0	16.7 8.3								
0.0	0.0 16.7 Dem_4	0.0 Dem_1		0 0	0 0	0 0	0 0	0 0	0 0	0 0 0
Dem_4 0.0	0.0 0.0	1980 APR 15 16.7 8.3								
0.0	0.0 16.7	0.0 Dem_1	100.000							
Dem_4	Dem_4	1980 APR 16	16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
0.0 Dem 4	0.0 16.7 Dem 4	0.0 Dem_1 1980 APR 17	100.000 16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0							
0.0 Dem 4	0.0 16.7 Dem 4	0.0 Dem_1 1980 APR 18	100.000 16.7 8.3	0 0	0 0	0 0	0 0	0 0	0 0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0							
0.0 Dem_4	0.0 16.7 Dem_4	0.0 Dem_1 1980 APR 19	100.000 16.7 8.3	0.0	0 0	0 0	0 0	0 0	0 0	0.0
0.0	0.0 0.0	1980 APR 19	0.0 0.0							
0.0	0.0 16.7	0.0 Dem_1	100.000	0.0	0 0	0.0	0 0	0 0	0.0	0.0
Dem_4 0.0	Dem_4 0.0 0.0		16.7 8.3 0.0 0.0							
0.0	0.0 16.7	0.0 Dem_1								
Dem_4	Dem_4	1980 APR 21	16.7 8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.
0.0	0.0 0.0	16.7 8.3	0.0 0.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0 16.7
0.0	0.0 16.7	0.0 Dem_1	100.000							

Dem_4 Dem_4 0.0 0.0 0.0 0.0 0.0 16.7 Dem_4 Dem_4 0.0 0.0 0.0 0.0 Dem_4 Dem_4 0.0 0.0 0.0 0.0 0.0 0.0 16.7 Dem_4 Dem_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7	1980 APR 22 16.7 8.3 0.0 Dem_1 1980 APR 23 16.7 8.3 0.0 Dem_1 1980 APR 24 16.7 8.3 0.0 Dem_1 1980 APR 25 16.7 8.3 0.0 Dem_1 1980 APR 25	16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000 16.7 8.3 0.0 0.0 100.000	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 16.7 0.0 0.0 0.0 0.0 16.7 0.0 0.0	0.0	0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7
Dem_4 Dem_4 0.0 0.0 0.0 0.0 0.0 16.7 Dem_4 Dem_4 0.0 0.0 0.0 0.0 0.0 0.0 16.7 Dem_4 Dem_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1980 APR 26 16.7 8.3 0.0 Dem_1 1980 APR 27 16.7 8.3 0.0 Dem_1 1980 APR 28 16.7 8.3 0.0 Dem_1 1980 APR 29 16.7 8.3 0.0 Dem_1 1980 APR 30 16.7 8.3 0.0 Dem_1 1980 APR 30 16.7 8.3 0.0 Dem_1 1980 APR 30		0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 16.7 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0 16.7 0.0 0.0 16.7	0.0	0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7
Shortage Carried	Water Use		Statio	n In/Out From River By		Station I Fron	Balance n Carrier By
		Total CU			From	ı	
or From Total River River River Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28)	ly Short Short l Outflow Flow	Demand Demand	Priorty Return ight (+) NA (3)	Storage Exc_Pl Loss Infl	n Loss Wellow Gain Flo)((-) (+ (+) (+)	Well From Priorty Well Professor (+) (-)	(+)((-) (+) (+)
Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA (-) (-) (+) (11) (12) (13)	ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Demand Demand CU SoilM NA NA NA NA NA NA NA (1) (2) (16) (17) (31)	Priorty Return ight (+) NA (3) (18) 16.1 8.1 16.1 8.1 16.1 8.1 16.1 16.1	Storage Exc_Pl Loss Infl (+) (+) (4) (5 (19) (20)	Dow Gain Floor Ow Ga	Well From Priorty Well From Priorty Well From Priorty Well From Priorty Well From Prior Pr	Sto_Exc Loss e GW Stor (+) ((-) (+) (+) (24) (25) (25) (25) (25) (25) (25) (25) (25

Dem_4 0.0 16.1 Dem_4 0.0 16.1 Dem_4 0.0 16.1 Dem_4 0.0 16.1 Dem_4 0.0	0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0	42.7 NA 1980 MAY 12 0.0 0.0 42.7 NA 1980 MAY 13 0.0 0.0 42.7 NA 1980 MAY 14 0.0 0.0 42.7 NA 1980 MAY 15 0.0 0.0	8.1 0.0 -1.000 16.1 8.1 8.1 0.0 -1.000 16.1 8.1 8.1 0.0 -1.000 16.1 8.1 8.1 0.0 -1.000 16.1 8.1	8.1 16.1 8.1 16.1 8.1 16.1 16.1	0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2
Dem_4 0.0 16.1 Dem_4 0.0 16.1 Dem_4 0.0 16.1 Dem_4 0.0 16.1 Dem_4 0.0	Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1	1980 MAY 16 0.0 0.0 42.7 NA 1980 MAY 17 0.0 0.0 42.7 NA 1980 MAY 18 0.0 0.0 42.7 NA 1980 MAY 19 0.0 0.0 42.7 NA 1980 MAY 20	8.1 0.0 -1.000 16.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8	8.1 16.1 8.1 16.1 8.1 16.1 16.1	0.0 0.0 0.0 129.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0	0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2
0.0 16.1 Dem_4 0.0 16.1	0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0	42.7 NA 1980 MAY 22 0.0 0.0 42.7 NA 1980 MAY 23 0.0 0.0 42.7 NA 1980 MAY 24 0.0 0.0 42.7 NA 1980 MAY 25	8.1 0.0 -1.000 16.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8	8.1 16.1 8.1 16.1 8.1 16.1 16.1	0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0	$\begin{array}{cccc} 0.0 & 0.0 \\ 0.0 & 145.2 \\ & 0.0 & 0.0 \\ 0.0 & 145.2 \\ & 0.0 & 0.0 \\ 0.0 & 145.2 \\ & 0.0 & 0.0 \\ 0.0 & 145.2 \\ & 0.0 & 0.0 \\ 0.0 & 145.2 \\ & 0.0 & 0.0 \\ 0.0 & 145.2 \\ \end{array}$
Dem_4 0.0 16.1	0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0 Dem_4 0.0 16.1 0.0 129.0	42.7 NA 1980 MAY 27 0.0 0.0 42.7 NA 1980 MAY 28 0.0 0.0 42.7 NA 1980 MAY 29 0.0 0.0 42.7 NA 1980 MAY 30 0.0 0.0 42.7 NA 1980 MAY 31 0.0 0.0 42.7 NA	8.1 0.0 -1.000 16.1 8.1 8.1 8.1 0.0 -1.000 16.1 8.1 8.1 8.1 8.1 8.1 8.1 0.0 -1.000 16.1 8.1 8.1 0.0 -1.000 16.1 8.1 8.1 0.0 -1.000	8.1 16.1 8.1 16.1 8.1 16.1 8.1 16.1 8.1	0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0 0.0 0.0 0.0 129.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2 0.0 0.0 0.0 145.2
Dem_4 0.0 500.0	Dem_4 0.0 500.0 0.0 4000.3	1980 TOT -1 0.0 0.0 2 1321.3 NA	500.0 250.0 50.0 0.0 2 -1.000	500.0	0.0 0.0 0.0 4000.0	0.0 0.0 0.0 500.3	0.0	0.0 0.0 0.0 4500.3

Total CU From

or From Total Total CU To Total Upstrm Reach Return Well From/To River
River River River Avail Control
Structure River Demand Demand Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss
Exchang SoilM Supply Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor
Inflow Divert by Well Outflow Flow Location Right

ID (+) (-)	ID NA NA (-) (+)		NA NA NA NA	NA		(+) (+)	(-)	(+) (+)
(11) (26)	(12) (13) (27) (28)	(14) (15) (29) (30) — —— —— ——		(18)	(4) (5) (19) (20)			(9) (10) (24) (25)
Dem_4 0.0 16.7 Dem_4 0.0 16.7	Dem_4 0.0 16.7 0.0 133.1 Dem_4 0.0 16.7 0.0 133.3	1980 JUN 1 0.0 0.0 46.2 NA 1980 JUN 2 0.0 0.0 47.9 NA	16.7 8.3 8.3 0.0 -1.000 16.7 8.3 8.3 0.0 -1.000		0.0 133.3		0.0	0.0 0.0 0.0 149.7 0.0 0.0 0.0 150.0
Dem_4 0.0 16.7	Dem_4 0.0 16.7 0.0 133.3	1980 JUN 3 0.0 0.0 48.2 NA	16.7 8.3 8.3 0.0 -1.000	16.7 8.3	0.0 0.0	0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 150.0
Dem_4 0.0 16.7 Dem_4 0.0	Dem_4 0.0 16.7 0.0 133.3 Dem_4 0.0 16.7	1980 JUN 4 0.0 0.0 48.4 NA 1980 JUN 5 0.0 0.0	16.7 8.3 8.3 0.0 -1.000 16.7 8.3 8.3 0.0	16.7 8.3			0.0	0.0 0.0 0.0 150.0 0.0 0.0 0.0 150.0
16.7 Dem_4	0.0 133.3 Dem_4	48.4 NA	-1.000 16.7 8.3		0.0 0.0		0.0	0.0 0.0
0.0 16.7 Dem_4 0.0	0.0 16.7 0.0 133.3 Dem_4 0.0 16.7	0.0 0.0	8.3 0.0	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0 0.0 0.0 0.0 150.0
16.7 Dem_4 0.0 16.7	0.0 133.3 Dem_4 0.0 16.7 0.0 133.3	48.4 NA 1980 JUN 8 0.0 0.0 48.4 NA	-1.000 16.7 8.3 8.3 0.0 -1.000	16.7 8.3	0.0 0.0		0.0	0.0 0.0
Dem_4 0.0 16.7	Dem_4 0.0 16.7 0.0 133.3		16.7 8.3 8.3 0.0 -1.000	16.7 8.3	0.0 0.0 0.0 133.3		0.0	0.0 0.0 0.0 150.0
Dem_4 0.0 16.7	Dem_4 0.0 16.7 0.0 133.3	1980 JUN 10 0.0 0.0 48.4 NA	16.7 8.3 8.3 0.0 -1.000		0.0 0.0		0.0	0.0 0.0 0.0 150.0
Dem_4 0.0 16.7 Dem_4	Dem_4 0.0 16.7 0.0 133.3 Dem_4	1980 JUN 11 0.0 0.0 48.4 NA 1980 JUN 12	16.7 8.3 8.3 0.0 -1.000 16.7 8.3	8.3		0.0 0.0 0.0 16.7 0.0 0.0	0.0	0.0 0.0 0.0 150.0
0.0 16.7 Dem_4 0.0	0.0 16.7 0.0 133.3 Dem_4 0.0 16.7	0.0 0.0 48.4 NA 1980 JUN 13 0.0 0.0	8.3 0.0 -1.000 16.7 8.3 8.3 0.0	8.3	0.0 133.3 0.0 0.0 0.0 133.3	0.0 16.7 0.0 0.0 0.0 16.7	0.0	0.0 150.0 0.0 0.0 0.0 150.0
16.7 Dem_4 0.0	0.0 133.3 Dem_4 0.0 16.7	48.4 NA 1980 JUN 14 0.0 0.0	-1.000 16.7 8.3 8.3 0.0		0.0 0.0 0.0 133.3	0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 150.0
16.7 Dem_4 0.0 16.7	0.0 133.3 Dem_4 0.0 16.7 0.0 133.3	48.4 NA 1980 JUN 15 0.0 0.0 48.4 NA	8.3 0.0	16.7 8.3	0.0 0.0 0.0 133.3		0.0	0.0 0.0 0.0 150.0
Dem_4 0.0 16.7	Dem_4 0.0 16.7 0.0 133.3	0.0 0.0 48.4 NA	8.3 0.0 -1.000	8.3	0.0 0.0 0.0 133.3	0.0 16.7	0.0	0.0 150.0
Dem_4 0.0 16.7	Dem_4 0.0 16.7 0.0 133.3	0.0 0.0 48.4 NA	16.7 8.3 8.3 0.0 -1.000 16.7 8.3	8.3	0.0 0.0 0.0 133.3	0.0 16.7	0.0	0.0 0.0 0.0 150.0
Dem_4 0.0 16.7 Dem_4	Dem_4 0.0 16.7 0.0 133.3 Dem_4	1980 JUN 18 0.0 0.0 48.4 NA 1980 JUN 19	8.3 0.0 -1.000	8.3		0.0 16.7	0.0	0.0 150.0
0.0 16.7 Dem_4	0.0 16.7 0.0 133.3 Dem_4	0.0 0.0 48.4 NA 1980 JUN 20	8.3 0.0 -1.000 16.7 8.3	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0
0.0	0.0 16.7 0.0 133.3	48.4 NA	-1.000		0.0 133.3			
Dem_4 0.0 16.7 Dem_4	Dem_4 0.0 16.7 0.0 133.3 Dem_4	1980 JUN 21 0.0 0.0 48.4 NA 1980 JUN 22		8.3	0.0 0.0 0.0 133.3			0.0 0.0 0.0 150.0 0.0 0.0
0.0 16.7 Dem_4	0.0 16.7 0.0 133.3 Dem_4	0.0 0.0 48.4 NA 1980 JUN 23	8.3 0.0 -1.000 16.7 8.3	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0
0.0 16.7 Dem_4 0.0	0.0 16.7 0.0 133.3 Dem_4 0.0 16.7	0.0 0.0 48.4 NA 1980 JUN 24 0.0 0.0	8.3 0.0 -1.000 16.7 8.3 8.3 0.0	8.3 16.7 8.3	0.0 0.0	0.0 0.0	0.0	0.0 150.0 0.0 0.0 0.0 150.0
16.7 Dem_4 0.0 16.7	0.0 133.3 Dem_4 0.0 16.7 0.0 133.3	48.4 NA	-1.000 16.7 8.3 8.3 0.0 -1.000		0.0 0.0		0.0	0.0 0.0 0.0 150.0

Dem 4	Dem 4	1980 JUN 26	16.7 8.3	16 7	0 0 0 0	0 0 0 0	0 0	0 0 0 0
0.0	0.0 16.7		8.3 0.0					
16.7	0.0 133.3	48.4 NA	-1.000	0.5	0.0 155.5	0.0 10.7	0.0	0.0 130.0
				16 5	0 0 0 0	0 0 0 0	0 0	0 0 0 0
Dem_4	Dem_4		16.7 8.3					
0.0	0.0 16.7	0.0 0.0	8.3 0.0	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0
16.7	0.0 133.3	48.4 NA	-1.000					
Dem_4	Dem_4	1980 JUN 28	16.7 8.3	16.7	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 16.7	0.0 0.0	8.3 0.0	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0
16.7	0.0 133.3	48.4 NA	-1.000					
Dem_4	Dem_4	1980 JUN 29	16.7 8.3	16.7	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 16.7	0.0 0.0	8.3 0.0	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0
16.7	0.0 133.3	48.4 NA	-1.000					
Dem_4	Dem_4	1980 JUN 30	16.7 8.3	16.7	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 16.7	0.0 0.0	8.3 0.0	8.3	0.0 133.3	0.0 16.7	0.0	0.0 150.0
16.7	0.0 133.3	48.4 NA	-1.000					
	·							
Dem_4	Dem_4	1980 TOT -1	500.0 250.0	500.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 500.0	0.0 0.0 2	50.0 0.0 2	50.0	0.0 4000.0	0.0 499.7	0.0	0.0 4499.7
500.0	0.0 3999.7	1449.5 NA	-1.000					

Station In/Out Water Use Station Balance Shortage From River By From Carrier By Carried CU _ Total From or From Total Total CU To Total Upstrm Reac River River Avail Control Control Structure River

Demand Demand Priorty Storage Exc_Pln

Sympletic Chart Upstrm Reach Return Well From/To River Structure River River Demand Demand Priorty Storage Exc_Pln Loss Well Priorty Sto_BAC
Exchang SoilM Supply Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor
Inflow Divert by Well Outflow Flow Location Right
ID ID Year Mo Day NA NA (+) (+) (+) (-) (+) (+) (+)
(+) NA (+) (+) (+) (+) (-) (+) Loss (+) (+)((-) (+) (+) (+)(NA (+) (+) (+) (-) (+) (+) (14) (15) (12) (13) (27) (28) (16) (1 (11)(29) (30) (26) Dem_4 Dem 4 0.0 0.0 0.0 16.4 0.0 0.0 1980 JUL 16.1 8.1 0.0 ISF Dem_4
0.0 0.0
0.0 16.1 Dem 4 0.0 0.0 Dem_4 Dem 4 0.0 0.0 0.0 16.1 16.1 8.1 0.0 ISF 0.0 0.0 0.0 0.0 Dem_4 Dem 4 16.1 8.1 0.0 ISF 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 16.1 100.000 5 16.1 8.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1980 JUL 5 16.1 16.1 8.1 0.0 0.0 ISF 100. Dem_4 0.0 0.0 0.0 16.1 Dem 4 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 100.000 0.0 6 16.1 8.1 0.0 0.0 100.000 7 16.1 8.1 1980 JUL 0.0 0.0 0.0 0.0 0.0 0.0 0 0 Dem 4 Dem_4 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 16.1 8.1 0.0 ISF 0.0 0.0 0.0 0.0 0.0 0.0 16.1 8.1 0.0 0.0 1980 JUL Dem_4 Dem 4 0.0 ISF 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 16.1 100.000 16.1 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 1980 JUL 8 16.1 8.1 Dem_4 0.0 0.0 Dem 4 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.1 ISF 100.000 1980 JUL 9 16.1 8.1 6.1 8.1 0.0 0.0 0.0 ISF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_4 Dem 4 0.0 ISF 100.000 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 0.0 1980 JUL 10 16.1 8.1 0.0 ISF 16.1 8. 0.0 0.0 Dem_4 0.0 0.0 0.0 16.1 Dem 4 0.0 0.0 0.0 0.0 16.1 0.0 16.1 0.0 0.0 0.0 ISF

1980 JUL 11 16.1 8.1

16.1 8.1 0.0 0.0

0.0 ISF 100.000

1980 JUL 12 16.1 8.1

2 1 0.0 0.0 0.0 100.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 4 Dem_4 0 0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 16.1 0.0 16.1 8.1 0.0 ISF 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Dem 4 Dem_4 0.0 0.0 0.0 16.1 0.0 16.1 8.1 0.0 0.0 0.0 0.0 16.1 0.0 0.0 16.1 100.000 16.1 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 ISF 0 0 Dem_4 Dem_4 0.0 0.0 0.0 16.1 0.0 0.0 Dem_4 Dem 4 0.0 0.0 0.0 0.0 0.0 16.1

Exchang	ID NA NA (-) (+) (12) (13) (27) (28)	NA NA NA NA (14) (15)	(16) (17)	(18)	(4)	(5)	(6) (7) (21) (22)	(8)	(9) (10) (24) (25)
Exchang Inflow ID (+)	ID NA NA (-) (+)	NA NA NA NA	NA	/ 21	/ 4 \	/ = \	/ 6\ / 7\		(0) (10)
Exchang		Year Mo Day	NA NA	(+)	(+) NA	(+)((+) (+)	(+)	(+) ((-)
or From Total Total CU River River River Avail Control Structure River Exchang SoilM Supply Short Shor: Inflow Divert by Well Outflow Flow		oly Short Short	Demand Demand CU SoilM Location	Priorty Return ight	Storage Loss	Exc_Pln Inflow	Loss Well Gain Flow	Priorty v Deplete	Sto_Exc Loss GW Stor
Carrie	d								
Shorta	ge	Water Use		Statio	on In/Out		S	Station E	Balance
Dem_4 0.0 0.0	0.0 0.0	1980 TOT -1 500.0 250.0 0.0 NA	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 JUL 31 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1980 JUL 30 16.1 8.1 0.0 ISF	100.000 16.1 8.1 0.0 0.0 100.000				0.0 0.0 0.0 0.0 16.1	0.0	0.0 0.0
0.0 0.0 Dem_4	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0	1980 UOL 28 16.1 8.1 0.0 ISF 1980 JUL 29 16.1 8.1	0.0 0.0 100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 16.1 0.0 0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1980 JUL 27 16.1 8.1 0.0 ISF 1980 JUL 28	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1 0.0 0.0	0.0	0.0 0.0 0.0 16.1 0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 JUL 26 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4 0.0 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF 1980 JUL 25 16.1 8.1 0.0 ISF	0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000		0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 16.1 0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1980 JUL 23 16.1 8.1 0.0 ISF 1980 JUL 24	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1980 JUL 22 16.1 8.1 0.0 ISF	100.000 16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 Dem_4 0.0	0.0 16.1 Dem_4 0.0 0.0	0.0 ISF 1980 JUL 21 16.1 8.1	100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 0.0 Dem_4 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0	16.1 8.1 0.0 ISF 1980 JUL 20 16.1 8.1	0.0 0.0 100.000 16.1 8.1 0.0 0.0	0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0 16.1 0.0 0.0 0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1980 JUL 18 16.1 8.1 0.0 ISF 1980 JUL 19	16.1 8.1 0.0 0.0 100.000 16.1 8.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0 Dem_4 0.0 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1980 JUL 17 16.1 8.1 0.0 ISF	100.000 16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0	Dem_4	1980 JUL 16 16.1 8.1	100.000 16.1 8.1 0.0 0.0				0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
0.0	0.0 16.1	0.0 ISF				0.0	0.0 16.1	0.0	0.0 16.1

Dem_4 0.0	0.0 0.0	1980 AUG 2 16.1 8.1	0.0 0.0						
0.0 Dem_4 0.0 0.0	0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1980 AUG 3 16.1 8.1 0.0 ISF				0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 4				0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 5 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000					0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 6 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 7 16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 8 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0			0.0 0.0	0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1 Dem_4	1980 AUG 9 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0				0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	0.0 0.0 0.0 16.1	1980 AUG 10 16.1 8.1 0.0 ISF							
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 11 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0				0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 12 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 13 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 0.0
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1980 AUG 14 16.1 8.1 0.0 ISF 1980 AUG 15	0.0 0.0 100.000	0.0	0.0		0.0 0.0	0.0	0.0 0.0 0.0 16.1
0.0	0.0 0.0 0.0 16.1	1980 AUG 13 16.1 8.1 0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 16 16.1 8.1 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	0.0 ISF	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0		1980 AUG 18 16.1 8.1 0.0 ISF 1980 AUG 19	0.0 0.0	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0 Dem 4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1980 AUG 19 16.1 8.1 0.0 ISF 1980 AUG 20	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF							
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 23 16.1 8.1 0.0 ISF 1980 AUG 24	100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0 Dem_4	Dem_4 0.0 0.0 0.0 16.1 Dem 4	1980 AUG 24 16.1 8.1 0.0 ISF 1980 AUG 25	0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	1980 A0G 25 16.1 8.1 0.0 ISF							
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	16.1 8.1 0.0 ISF	16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.1	0.0	0.0 16.1
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.1	1980 AUG 28 16.1 8.1 0.0 ISF							

Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0	0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1 Dem_14 0.0 0.0 0.0 16.1 Dem_4 0.0 0.0 0.0 16.1	0.0 ISF 1980 AUG 31 16.1 8.1 0.0 ISF	0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000 16.1 8.1 0.0 0.0 100.000	0.0	0.0	0.0	0.0 1	6.1 0.0 6.1 0.0 6.1	0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1
Shortag	je	Water Use		Statio	n In/Out	ver Bv		S	Station B From	alance Carrier Rv
	Carried									
or F	rom Total T	otal CU Avail Control	Total CU To To	tal	Ups	trm Re	ach Retu	From rn V	Vell From	/To River
Structu Exchang	re River s SoilM Suppl	y Short Short	Demand Demand CU SoilM	Priorty Return	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc Loss
Inflow ID (+)	TD -	Outflow Flow Year Mo Day NA NA NA NA	NA NA	(+)	(+) NA	(+)((-)	(+)	(+)	(+)((-)
(-) (11) (26)	(12) (13)	NA NA (14) (15) (29) (30)	(1) (2) (16) (17) (31)	(3)	(4)	(5)	(6)	(7)	(8)	(9) (10)
Dem_4 0.0 0.0 0.0 Dem_4 0.0	Dem_4 0.0 0.0 0.0 17.5 Dem_4 0.0 0.0 16.7 Dem_4 0.0 0.0 0.0 16.7	1980 SEP 1 0.0 0.0 0.0 ISF 1980 SEP 2 0.0 0.0 0.0 ISF 1980 SEP 3 0.0 0.0 0.0 ISF 1980 SEP 4 0.0 0.0 0.0 ISF 1980 SEP 5 0.0 0.0	0.0 0.0 0.0 0.0 100.000 0.0 0.0 100.000 0.0 0.0 100.000 0.0 0.0 100.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.2 0.0	0.0 0.0 1 0.0 0.0 1 0.0 0.0 1 0.0 0.0 1 0.0 1	0.0 6.2 0.0 6.5 0.0	0.0 0.0 0.0 0.0 0.0	0.0 17.5 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7
Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0 Dem_4 0.0 Dem_4 0.0 0.0 Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 0.0 0.0 ISF 1980 SEP 7 0.0 0.0 0.0 ISF 1980 SEP 8 0.0 0.0 0.0 ISF 1980 SEP 9 0.0 0.0 0.0 ISF 1980 SEP 10	0.0 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0 100.000 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 1 0.0 1 0.0 1 0.0 1	6.7 0.0 6.7 0.0 6.7 0.0 6.7	0.0 0.0 0.0 0.0 0.0 0.0	0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7
Dem_4 0.0 0.0 0.0 Dem_1	Dem_4 0.0 0.0 0.0 16.7 Dem_4 0.0 0.0 16.7 Dem_4 0.0 0.0 0.0 16.7	0.0 0.0 0.0 ISF 1980 SEP 12 0.0 0.0 0.0 ISF 1980 SEP 13 0.0 0.0 0.0 ISF 1980 SEP 14 0.0 0.0 0.0 ISF 1980 SEP 15	100.000 0.0 0.0 100.000 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	6.7 0.0 6.7 0.0 6.7 0.0 6.7	0.0 0.0 0.0 0.0 0.0 0.0	0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7

Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1980 SEP 16 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000				0.0 0.0		0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1980 SEP 17 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000		0.0		0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7		0.0 0.0 0.0 0.0 100.000		0.0		0.0 0.0	0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7		0.0 0.0 0.0 0.0 100.000				0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 0.0	0.0 0.0 0.0 0.0 100.000						
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0	0.0 16.7	0.0	0.0 0.0
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7		0.0 0.0 0.0 0.0 100.000						0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7		0.0 0.0 0.0 0.0 100.000					0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1980 SEP 24 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000		0.0		0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1980 SEP 25 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000				0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	1980 SEP 26 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000						
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0		0.0 0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0 0.0 16.7	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.7
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 16.7		0.0 0.0 0.0 0.0 100.000						
Dem_4 0.0 0.0	Dem_4 0.0 0.0 0.0 500.8	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 -1.000					0.0	

Diversion Summary ACFT

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water Use								Station E	Balance n Carrier	By
Carried						————					D _f
		Total	CU					From			
or From Total To	tal CU		То То	tal	Ups	trm Re	ach Ret	urn V	Well From	n/To Ri	ver
River River River	Avail Control	Contr	ol								
Structure River		Demand	Demand	Priorty	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang SoilM Supply	Short Short	CU	SoilM	Return	Loss	Inflow	Gain	Flow	v Deplete	e GW Stor	
Inflow Divert by Well	Outflow Flow	Location	R	ight							
ID ID	Year Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+) NA NA	NA NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-) (-) (+)	NA NA	NA	1								
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11) (12) (13)	(14) (15)	(16)		(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26) (27) (28)	(29) (30)	(31	.)								

Dem_5	Dem_5	1979 OCT 1	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
0.0 0. Dem_5	.0 96.8 Dem_5	0.0 ISF 1979 OCT 2	100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5	.0 96.8 Dem_5 .0 0.0	0.0 Dem_2 1979 OCT 3 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	.0 96.8 Dem_5 .0 0.0	0.0 Dem_2 1979 OCT 4 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	.0 96.8 Dem_5 .0 0.0 .0 96.8	0.0 Dem_2 1979 OCT 5 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 6 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 7 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0	1979 OCT 8 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 9 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 10 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
0.0 0.	Dem_5	1979 OCT 11 0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	.0 96.8 Dem_5 .0 0.0 .0 96.8	0.0 Dem_2 1979 OCT 12 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0	1979 OCT 13 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 14 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 15 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
0.0	Dem_5 .0 0.0 .0 96.8	1979 OCT 16 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 17 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.		1979 OCT 18 0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8		0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 96.8			0.0 0.0 0.0 96.8
0.0	Dem_5 .0 0.0 .0 96.8	1979 OCT 20 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0.0			0.0 0.0 0.0 96.8
0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 21 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000					0.0	
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 22 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 23 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 24 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8	1979 OCT 25 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 96.8			
0.0	Dem_5 .0 0.0 .0 96.8	1979 OCT 26 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 96.8	0.0		0.0 0.0 0.0 96.8
Dem_5 0.0 0.	Dem_5 .0 0.0 .0 96.8		0.0 0.0			0.0 0.0			

Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 Dem_2	60.000	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8
Shortage	Water Use		Statio	n In/Out From Ri	ver By	S	Station E Fron	Balance a Carrier By
	otal CU Avail Control	Total CII	tal	Ups	trm Reach Ret	From		n/To River
Exchang SoilM Supply Inflow Divert by Well ID ID (+) NA NA		Location R NA NA	ight	(+)	Inflow Gair (+)((-) (+) (+)	(+)		(+)((-)
(+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28)	NA NA NA (14) (15) (29) (30) — — — — —	NA (1) (2) (16) (17)		NA (4) (19)				
Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 Dem_5 Dem_5 0.0 0.0 0.0 Dem_5 Dem_5 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2 1979 NOV 2 0.0 0.0 0.0 Dem_2 1979 NOV 3 0.0 0.0 0.0 Dem_2 1979 NOV 4 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000		0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2 1979 NOV 7 0.0 0.0 0.0 Dem_2 1979 NOV 8 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 100.0
Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 100.0 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1979 NOV 11 0.0 0.0 0.0 Dem_2 1979 NOV 12 0.0 0.0 0.0 Dem_2 1979 NOV 13 0.0 0.0 0.0 Dem_2 1979 NOV 14 0.0 0.0 0.0 Dem_2 1979 NOV 15 0.0 Dem_2 0.0 Dem_2 1979 NOV 15 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000	0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 16 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000		0.0	0.0 0.0 0.0 100.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 17 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 18 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0 Dem 5	Dem_5 0.0 0.0 0.0 100.0 Dem_5	1979 NOV 19 0.0 0.0 0.0 Dem_2 1979 NOV 20	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0	0.0	0.0	0.0 0.0 0.0 100.0
0.0 0.0	0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0		0.0	0.0 100.0		0.0	0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 21 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 22 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 23 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0 Dem 5	Dem_5 0.0 0.0 0.0 100.0 Dem_5	1979 NOV 24 0.0 0.0 0.0 Dem_2 1979 NOV 25	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0
0.0 0.0	0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0	0.0		0.0 100.0	0.0		0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 26 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1979 NOV 28 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 100.0 Dem 5	1979 NOV 29 0.0 0.0 0.0 Dem_2 1979 NOV 30	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0
0.0 0.0	0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2		0.0	0.0	0.0 100.0		0.0	0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 3000.0	1980 TOT -1 0.0 0.0	0.0 0.0 0.0 -1.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Shortag Carried		Water Use		Statio	n In/Out From Ri	ver By		Station E From	alance Carrier By
or I	From Total To	otal CU	Total CU To To	tal	Ups	trm Reach Ret	From urn W	 Well From	ı/To River
Structi Exchang	ure River g SoilM Supply	Avail Control Short Short Outflow Flow	Demand Demand CU SoilM	I Return					
ID (+) (-)		Year Mo Day		(+)					
(11)	(12) (13) (27) (28)	(14) (15)	(1) (2) (16) (17) (31)	(18)	(19)	(5) (6) (20) (21)			
		1979 DEC 1	0.0 0.0	0.0	0.0		0.0	0.0	0.0 0.0
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 Dem_2 1979 DEC 2	0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 0.0		0.0	0.0 0.0
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5		0.0 0.0 60.000 0.0 0.0 0.0 0.0		0.0		0.0		0.0 0.0
0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 60.000 0.0 0.0 0.0 0.0 60.000	0.0		0.0 96.8 0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1979 DEC 5 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2 1979 DEC 7	0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 Dem_2 1979 DEC 8 0.0 0.0 0.0 Dem 2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0	0.0	0.0	0.0 96.8
0.0	0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	1979 DEC 11 0.0 0.0 0.0 Dem_2 1979 DEC 12	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2 1979 DEC 13	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2 1979 DEC 14	0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 Dem_2 1979 DEC 15	60.000 0.0 0.0	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8			0.0 96.8 0.0 0.0
0.0 0.0 Dem 5	0.0 0.0 0.0 96.8 Dem_5	0.0 Dem_2	60.000			0.0 96.8			
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2 1979 DEC 17	0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 Dem_2 1979 DEC 18	60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0		
0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0	0.0 Dem_2 1979 DEC 19	60.000 0.0 0.0	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8
0.0 Dem_5 0.0	0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 Dem_2 1979 DEC 20	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0	Dem_5	1979 DEC 21	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0
0.0 Dem_5 0.0 0.0	0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	1979 DEC 22	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1979 DEC 23 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem 5	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0		0.0 96.8
0.0 0.0	0.0 0.0 0.0 96.8		0.0 0.0			0.0 96.8			
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2 1979 DEC 30	0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0	0.0 0.0 0.0 96.8	0.0 Dem_2	60.000			0.0 96.8			
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0

Dem_5		Dem_5	1980	TOT -1	0.0	0.0	0.0	0.0	0	.0 0.0	0.0	0.0	0	.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.	0
0.0	0.0	3000.0	0.0 NA		-1.00	0									

Station In/Out Shortage Water Use Station Balance From River By From Carrier By Carried CU _ Total From or From Total Total CU To Total From Total Total CU To Total Upstrm Reac River River Avail Control Control ure River Demand Demand Priorty Storage Exc_Pln Upstrm Reach Return Well From/To River River (14) (15) (16) (1 (31) (11)(12)(13) (28) (26) (29) (30) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 60.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 1980 JAN Dem 5 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 2 96.8 0.0 0.0 0.0 0.0 Dem_5 1980 JAN Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 96.8 60.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .0 0.0 0.0 0.0 0.0 96.8 0.0 Dem 2 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 JAN 0.0 0.0 3 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 60.000 0.0 Dem_2 0.0 0.0 U. 0.0 0.0 0.0 0.0 Dem 5 Dem_5 1980 JAN 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 60.000 0.0 0.0 0.0 0.0 0.0 Dem_2 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 JAN 0.0 0.0 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 Dem_2 60.000 0.0 0.0 0.0 Dem_5 0.0 0.0 Dem 5 1980 JAN 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 96.8 0.0 0.0 0.0 .0 60.000 0.0 0.0 Dem_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 0.0 0.0 1980 JAN 0.0 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 Dem 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 JAN 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.000 0.0 Dem_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1980 JAN 0.0 Dem 5 Dem 5 0.0 0.0 0.0 0.0 0.0 60.000 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 Dem_2 1980 JAN 10 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 0.0 0.0 0.0 96.8 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 Dem_2 60.000 0.0 0.0 0.0 0.0 0.0 1980 JAN 11 0.0 0.0 0.0 0 0 0 0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 96.8 0.0 0.0 0.0 60.000 0.0 Dem_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 JAN 12 0.0 0.0 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 60.000 0.0 0.0 0.0 0.0 0.0 Dem 2 0.0

1980 JAN 13 0.0 0.0

1980 JAN 14

1980 JAN 15

1980 JAN 16

1980 JAN 17

1980 JAN 18

0.0 0.0

0.0 Dem_2 1980 JAN 19 0.0 0.0

0.0 Dem 2

0.0 Dem_2

0.0 0.0

0.0 0.0

0.0 0.0

0.0 Dem_2

0.0 0.0

0.0 Dem_2

0.0 Dem_2

0.0 Dem 2

Dem_5

Dem_5

Dem_5

0.0 0.0 0.0 96.8

Dem_5

Dem_5

Dem_5

Dem_5 0.0 0.0

0.0 0.0 0.0 96.8

0.0 0.0 0.0 96.8

0.0 0.0 0.0 96.8

0.0 96.8

0.0

96.8

0.0 0.0 0.0 96.8

0.0

0.0

Dem 5

Dem 5

0.0

0.0

0.0

0.0

0.0

0 0

0.0

0 0

0.0

0 0

Dem 5

Dem 5

Dem 5

Dem 5

Dem_5

0 0

0.0

0.0

0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0

0.0

0.0

0.0

0.0

60.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .0 0.0 0.0 0.0 0.0 96.8

0.0 96.8

0.0 96.8

0.0 96.8

0.0

0.0 0.0 96.8

0.0 96.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

.0 60.000 0.0

60.000

0.0 0.0

0.0 0.0

0.0 0.0

60.000

0.0 0.0

60 000

0.0

0.0

0 0

60.000

0.0

0.0 96.8

0.0

0 0

0.0

0.0 96.8

0.0

0.0 96.8

0.0 96.8

0.0 0.0

96.8

0.0

0.0

0.0

0 0

0.0

0.0

0 0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0 0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JAN 20 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2 1980 JAN 22	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5 0.0 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 Dem_2 1980 JAN 23	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5		1980 JAN 24 0.0 0.0 0.0 Dem_2 1980 JAN 25	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8	0.0 Dem_2	0.0 0.0 60.000						
0.0 0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 JAN 27	0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5 0.0	0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 Dem_2 1980 JAN 28	60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JAN 29 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JAN 30 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JAN 31 0.0 0.0 0.0 Dem_2		0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8
 Dem_5		1980 TOT -1	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 0.0 3000.0	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
Shortag	ge	0.0 0.0 0.0 NA				0.0 3000.0 ver By			
Shortag	ge 1	Water Use		Statio	n In/Out From Ri	ver By	S	Station B From	alance Carrier By
Shortag Carried or I River Structu	ge From Total To River River ure River g SoilM Supply	Water Use Otal CU Avail Control Other Short Short	Total CU To To Control Demand Demand CU SoilM	Statio tal Priorty Return	n In/Out From Ri Ups Storage Loss	ver By trm Reach Ret Exc_Pln Loss	From urn W	Station B From Well From	alance Carrier By //To River Sto_Exc Loss
Shortag Carried or I River Structu	ge From Total To River River ure River g SoilM Supply	Water Use Otal CU Avail Control Other Short Outflow Flow Year Mo Day NA NA	Total CU To To Control Demand Demand CU SoilM Location R NA NA	Statio tal Priorty Return ight (+) NA	n In/Out From Ri Ups Storage Loss (+) NA	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-) (+) (+)	From well Flow (+)	From Well From Priorty Deplete (+) (-)	Carrier By L/To River Sto_Exc Loss GW Stor (+)((-)(+)(+)
Carried or I River Structu Exchang Inflow ID (+)	From Total To River River are River y SoilM Supply Divert by Well ID	Water Use Otal CU Avail Control Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18)	n In/Out From Ri Ups Storage Loss (+) NA (4) (19)	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-) (+) (+) (5) (6) (20) (21)	From well (+) (+) (7)	From Well From Priorty Deplete (+) (-) (8)	Ealance I Carrier By I/To River Sto_Exc Loss I GW Stor (+)((-) (+) (+) (9) (10)
Carried or In River Structu Exchang Inflow ID (+) (-) (11) (26) Dem_5 0.0	From Total To River River IT River River IT River SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13) (27) (28) 	Water Use Otal CU Avail Control 7 Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU TO TO Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	statio tal Priorty Return ight (+) NA (3) (18)	n In/Out From Ri Ups Storage Loss (+) NA (4) (19)	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-) (+) (+) (5) (6) (20) (21)	From Well (+) (7) (22)	From From From From From From Friorty Fri	Adlance A Carrier By A/To River Sto_Exc Loss GW Stor (+)((-) (+) (+) (9) (10) (24) (25) 0.0 0.0
Carried or In River Structus Exchang Inflow ID (+) (-) (11) (26) Dem_5 0.0 Dem_5 0.0 0.0	From Total To River River gree River green SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13) (27) (28)	Water Use Cotal CU Avail Control Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU TO TO TO Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	station tal Priorty Return ight (+) NA (18) 0.0 0.0 0.0	n In/Out From Ri Ups Storage Loss (+) NA (4) (19) 0.0 0.0	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-)(+) (5) (6) (20) (21) 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1	From Well (+) (7) (22)	From	Aslance A Carrier By A/To River Sto_Exc Loss A GW Stor (+)((-)(+)(+)(25)
Carried or I River Structu Exchang Inflow ID (+) (-) (11) (26) Dem_5 0.0 Dem_5 0.0	From Total To River River gree River gree SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13) (27) (28)	Water Use Dotal CU Avail Control V Short Short Outflow Flow Year Mo Day NA NA (14) (15) (29) (30) 1980 FEB 1 0.0 0.0 0.0 Dem_2 1980 FEB 2 0.0 0.0 0.0 Dem_2 1980 FEB 3 0.0 0.0 0.0 Dem_2 1980 FEB 3 0.0 0.0 0.0 Dem_2 1980 FEB 3 0.0 0.0 0.0 Dem_2	Total CU Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (18) 0.0 0.0 0.0 0.0 0.0	n In/Out From Ri Ups Storage Loss (+) NA (4) (19) 0.0 0.0 0.0 0.0 0.0	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-) (+) (+) (5) (6) (20) (21) 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1	From Well (+) (7) (22)	From	Aslance A Carrier By A/To River Sto_Exc Loss GW Stor (+)((-)(+) (9) (10) (24) (25) 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1
Carried or I River Structu Exchang Inflow ID (+) (-) (11) (26) Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 Dem_5 0.0	From Total To River River gree River gree River green SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13) (27) (28)	Water Use	Total CU Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	n In/Out From Ri Ups Storage Loss (+) NA (4) (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-)(+)(-)(+)(20)(21)	From Well (+) (+) (22) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Station B From From Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Aslance A Carrier By Interpretation of the property of the pr
Shortage Or I River Structu Exchang Inflow ID (+) (-) (11) (26) Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 Dem_5	From Total To River River River River G SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13) (27) (28)	Water Use Dotal CU Avail Control Water Mo Day NA NA NA NA (14) (15) (29) (30) 1980 FEB 1 0.0 0.0 0.0 Dem_2 1980 FEB 2 0.0 0.0 0.0 Dem_2 1980 FEB 3 0.0 0.0 0.0 Dem_2 1980 FEB 4 0.0 0.0 0.0 Dem_2 1980 FEB 4 0.0 0.0 0.0 Dem_2 1980 FEB 5 0.0 0.0 0.0 Dem_2 1980 FEB 5 0.0 0.0 0.0 Dem_2 1980 FEB 6	Total CU Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	n In/Out From Ri Ups Storage Loss (+) NA (4) (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ver By trm Reach Ret Exc_Pln Loss Inflow Gair (+)((-)(+) ((5) (6)(20) (21)	From Well (+) (+) (22)	Station B From From Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Aslance A Carrier By I/To River Sto_Exc Loss StoW Stor (+)((-)(+) (9) (10) (24) (25) 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 7 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0		0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 8 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 9 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 10 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 11 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 12 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 13 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 14 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 15 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 16 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 17 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 18 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 19 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 20 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 21 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 22 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0 0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 23 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 24 0.0 0.0 0.0 Dem_2	60.000	0.0	0.0	0.0 107.1	0.0		
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 25 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	0.0 0.0	0.0 0.0	0.0	0.0	0.0 107.1	0.0	0.0	0.0 107.1
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 27 0.0 0.0 0.0 Dem_2 1980 FEB 28	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 107.1	1980 FEB 28 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 107.1	0.0	0.0	0.0 0.0 0.0 107.1
Dem 5							0.0	0.0	0.0.0.0
0.0	0.0 0.0 0.0 3000.0	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
Shortag	ge	Water Use		Statio	on In/Out From Ri	ver Bv	S	Station E From	Balance n Carrier By
or I River	From Total T River River	otal CU Avail Control	To To	tal	Ups	trm Reach Ret	turn W	Well From	n/To River

Exchang	re River SoilM Supply	y Short Short Outflow Flow	Demand Demand CU Soil						
ID (+) (-)	ID NA NA (-) (+)		NA NA NA NA	(+)	(+) NA	(+)((+)			(+)((-)
(11)	(12) (13) (27) (28)		(1) (2) (16) (17) (31)	(18)	(19)	(5) (6 (20) (21)		(8)	(9) (10) (24) (25)
Dem_5	Dem_5	1980 MAR 1 0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0		0.0	0.0 0.0 0.0 0.0 96.8
0.0 Dem_5 0.0 0.0	0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 Dem_2 1980 MAR 2 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8		0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 3 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 4 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8		0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8		0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8			0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 7 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 8 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 9 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 10 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000			0.0 0. 0.0 96.8		0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 11 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 0.	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0 Dem 5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	1980 MAR 12 0.0 0.0 0.0 Dem_2 1980 MAR 13	0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem 5	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0	0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 60.000						
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8		0.0 0.0						0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 21 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 22 0.0 0.0	0.0 0.0 0.0 0.0 60.000	0.0		0.0 0. 0.0 96.8		0.0	
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 23 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0. 0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 24	0.0 0.0						

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 25 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	1980 MAR 26 0.0 0.0 0.0 Dem_2 1980 MAR 27 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0 0.0 60.000	0.0	0.0	0.0	0.0 96.8 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0	96.8 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 0.0 0.0 60.000				0.0 96.8			0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 MAR 31 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 3000.0	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Shortag	ge	Water Use		Statio	n In/Out From Ri	ver By		S	tation E From	Balance n Carrier By
Carrie	d									
River Structu Exchang	River River ure River g SoilM Supply	otal CU Avail Control / Short Short Outflow Flow Year Mo Day	Control Demand Demand CU Soil	Priorty I Return	Storage Loss	Exc_Pln Inflo	Loss v Gain	Well Flow	Priorty	Sto_Exc Loss
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA NA NA	NA NA NA	NA	NA	(+)	(+)	(+)		(+) (+)
(11)	(12) (13) (27) (28)	(14) (15) (29) (30)								
Dem_5 0.0 0.0 Dem 5	0.0 0.0 0.0 100.0		0.0 0.0 60.000	0.0	0.0			0.0	0.0	0.0 0.0 0.0 100.0
0.0 0.0 Dem 5		0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0 100.0
0.0 0.0 Dem 5	0.0 0.0 0.0 100.0 Dem_5	0.0 0.0 0.0 Dem_2 1980 APR 4	0.0 0.0 60.000 0.0 0.0							
0.0 0.0 Dem_5	0.0 0.0 0.0 100.0 Dem_5		0.0 0.0 60.000	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 Dem_5	0.0 0.0 0.0 100.0 Dem_5	_	0.0 0.0 60.000							
0.0 0.0 Dem_5	0.0 0.0 0.0 100.0 Dem_5	0.0 0.0 0.0 Dem_2		0.0		0.0	100.0	0.0	0.0	
0.0 0.0 Dem_5	0.0 0.0 0.0 100.0 Dem_5	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0		0.0	100.0	0.0	0.0	
0.0	0.0 0.0 0.0 100.0	0.0 APR 0 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0		0.0	0.0	
Dem_5 0.0 0.0			0 0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
Dom -	Dem_5 0.0 0.0 0.0 100.0	1980 APR 9 0.0 0.0 0.0 Dem_2	60.000	0.0	0.0		100.0		0.0	0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0	1980 APR 9 0.0 0.0 0.0 Dem_2 1980 APR 10	0.0 0.0 60.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 100.0

Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 100.0 Dem_5 0.0 0.0 100.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 0.0 100.0 Dem_5 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 APR 13 0.0 0.0 0.0 Dem_2 1980 APR 14 0.0 0.0 0.0 Dem_2 1980 APR 15 0.0 0.0	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2 1980 APR 17 0.0 0.0 0.0 Dem_2 1980 APR 18 0.0 0.0 0.0 Dem_2 1980 APR 19 0.0 0.0 0.0 Dem_2 1980 APR 20 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0
Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 APR 22 0.0 0.0 0.0 Dem_2 1980 APR 23 0.0 0.0 0.0 Dem_2 1980 APR 24 0.0 0.0 0.0 Dem_2 1980 APR 24	60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 100.0	0.0 Dem_2 1980 APR 27 0.0 0.0 0.0 Dem_2 1980 APR 28 0.0 0.0 0.0 Dem_2 1980 APR 29 0.0 0.0 0.0 Dem_2 1980 APR 30 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Shortag Carried or F River	from Total To	Water Use otal CU Avail Control	Total CU To To Control	tal	Ups	ver By trm Reach Ret	From urn W		n/To River
Exchanc	g SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13)	V Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	CU SoilM Location R NA NA NA NA (1) (2) (16) (17)	Return ight (+) NA (3)	(+) NA (4)	Inflow Gain (+)((-) (+) (+) (5) (6)	(+) (+) (7)	(+) (-)	(+)((-) (+) (+) (9) (10)

Dem_5	Dem_5	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
0.0 Dem_5 0.0 0.0	0.0 483.9 Dem_5 0.0 0.0 0.0 483.9	0.0 Dem_2 1980 MAY 2 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 3 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 4 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 5 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 6 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 7 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 8 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 9 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 10 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0	Dem_5	1980 MAY 11 0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0
0.0 Dem_5 0.0	0.0 483.9 Dem_5 0.0 0.0	0.0 Dem_2 1980 MAY 12 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
0.0 Dem_5 0.0	0.0 483.9 Dem_5 0.0 0.0	0.0 Dem_2 1980 MAY 13 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
0.0 Dem_5 0.0	0.0 483.9 Dem_5 0.0 0.0	0.0 Dem_2 1980 MAY 14 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
0.0 Dem_5 0.0 0.0	0.0 483.9 Dem_5 0.0 0.0 0.0 483.9	0.0 Dem_2 1980 MAY 15 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5	Dem_5	1980 MAY 16	0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
0.0 Dem_5 0.0	0.0 483.9 Dem_5 0.0 0.0 0.0 483.9	0.0 Dem_2 1980 MAY 17 0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0
0.0 Dem_5 0.0	Dem_5 0.0 0.0	0.0 Dem_2 1980 MAY 18 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
0.0 Dem_5 0.0	0.0 483.9 Dem_5 0.0 0.0	1980 MAY 19 0.0 0.0	0.0 0.0			0.0 0.0 0.0 483.9			
0.0 Dem_5 0.0 0.0	0.0 483.9 Dem_5 0.0 0.0 0.0 483.9	0.0 Dem_2 1980 MAY 20 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 483.9			
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 21 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 22 0.0 0.0 0.0 Dem_2	0.0 0.0			0.0 0.0 0.0 483.9			
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 23 0.0 0.0 0.0 Dem_2	0.0 0.0			0.0 0.0 0.0 483.9			
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 24 0.0 0.0 0.0 Dem_2	0.0 0.0			0.0 0.0 0.0 483.9			
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9	1980 MAY 25	0.0 0.0 0.0 0.0 60.000			0.0 0.0 0.0 483.9			
Dem_5	Dem_5	0.0 0.0				0.0 0.0 0.0 483.9			
0.0 Dem_5 0.0 0.0	0.0 483.9 Dem_5 0.0 0.0 0.0 483.9	0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0 0.0 483.9

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 483.9 Dem_5 0.0 0.0 0.0 15000.0		0.0 0.0	0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0 0.0
Shortag	ge	Water Use		Statio	n In/Out From Ri	ver By	S	Station E Fron	Balance a Carrier By
River Structu	From Total To River River ure River	otal CU Avail Control y Short Short	Demand Demand	tal Priorty	Ups Storage	trm Reach Ret	From urn W	Well From	n/To River Sto_Exc Loss
Inflow ID	Divert by Well ID	Outflow Flow Year Mo Day	Location R	ight (+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA NA (-)	NA NA NA NA	NA NA NA (1) (2)	NA (3)		(+) (+)	(7)	(-)	
(11)	(12) (13) (27) (28)	(14) (15) (29) (30) — —— —— ——	(16) (17) (31)	(18)	(19)	(20) (21)	(22)	(23)	(24) (25)
Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 500.0	0.0 0.0 0.0 Dem_2 1980 JUN 2 0.0 0.0 0.0 Dem_2 1980 JUN 3 0.0 0.0 0.0 Dem_2 1980 JUN 4 0.0 0.0 0.0 Dem_2 1980 JUN 5 0.0 0.0 0.0 Dem_2 1980 JUN 6 0.0 0.0 0.0 Dem_2 1980 JUN 7 0.0 0.0 0.0 Dem_2 1980 JUN 7 0.0 0.0 0.0 Dem_2 1980 JUN 8 0.0 0.0 0.0 Dem_2 1980 JUN 8 0.0 0.0 0.0 Dem_2 1980 JUN 9 0.0 0.0 0.0 Dem_2 1980 JUN 9 0.0 0.0 0.0 Dem_2 1980 JUN 9 0.0 0.0 0.0 Dem_2 1980 JUN 10 0.0 Dem_2 1980 JUN 10 0.0 Dem_2	0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 500.0 0.0 500.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 500.0
Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 Dem_5 0.0 Dem_5 0.0 Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 500.0 Dem_5	0.0 0.0 0.0 Dem_2 1980 JUN 12 0.0 0.0 0.0 Dem_2 1980 JUN 13 0.0 0.0 0.0 Dem_2 1980 JUN 14 0.0 0.0 0.0 Dem_2 1980 JUN 15	0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 0.0 0.0 0.0

Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 500.0 Dem_5 0.0 0.0 0.0 500.0 Dem_5 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 JUN 17 0.0 0.0 0.0 Dem_2 1980 JUN 18 0.0 0.0	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0	0.0 500.0 0.0 0.0 0.0 500.0	0.0	0.0	
0.0 Dem_5 0.0 0.0 Dem_5 0.0	0.0 500.0 Dem_5 0.0 0.0 0.0 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1980 JUN 19 0.0 0.0 0.0 Dem_2 1980 JUN 20 0.0 0.0		0.0	0.0	0.0 0.0	0.0	0.0	
Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 500.0 Dem_5 0.0 0.0 0.0 500.0 Dem_5 0.0 0.0 0.0 500.0 Dem_5 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 JUN 22 0.0 0.0 0.0 Dem_2 1980 JUN 23 0.0 0.0 0.0 Dem_2 1980 JUN 24 0.0 0.0 0.0 Dem_2 1980 JUN 25 0.0 0.0	0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 500.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0
Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 0.0 Dem_5 0.0	Dem_5 0.0 0.0 0.0 500.0 Dem_5 0.0 0.0	1980 JUN 26 0.0 0.0 0.0 Dem_2 1980 JUN 27 0.0 0.0 0.0 Dem_2 1980 JUN 28 0.0 0.0 0.0 Dem_2 1980 JUN 29 0.0 0.0 0.0 Dem_2 1980 JUN 30	0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 0.0 0.0 500.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 500.0 0.0 500.0
	Dem_5 0.0 0.0 0.0 15000.0	1980 TOT -1	0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0 15000.0	0.0	0.0	0.0 0.0
Shortag	_	Water Use		Statio	n In/Out From Ri	ver By	S	Station E From	alance Carrier By
Structu	ure River g SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13)	otal CU Avail Control y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17)	Priorty Return ight (+) NA (3)	Storage Loss (+) NA (4)	Exc_Pln Loss Inflow Gain (+)((-) (+) (+) (5) (6)	Well Flow (+) (+)	Priorty Deplete (+) (-) (8)	Sto_Exc Loss : GW Stor (+)((-) (+) (+) (9) (10)
Dem_5 0.0 0.0 Dem_5 0.0 Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 ISF 1980 JUL 2 0.0 0.0 0.0 ISF 1980 JUL 3	0.0 0.0 0.0 0.0 100.000 0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8

Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JUL 5 0.0 0.0 0.0 ISF	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 ISF 1980 JUL 7	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0	0.0 ISF 1980 JUL 8 0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0 Dem_5 0.0 0.0	0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 0.0 0.0 ISF		0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 ISF	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 ISF 1980 JUL 15	0.0 0.0	0.0	0.0	0.0 0.0			
0.0 0.0 Dem 5	0.0 0.0 0.0 96.8 Dem_5	0.0 ISF	0.0 0.0 100.000						
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 ISF 1980 JUL 17	0.0 0.0 100.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0	0.0 ISF 1980 JUL 18	0.0 0.0 100.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	
0.0 Dem_5 0.0	0.0 96.8 Dem_5 0.0 0.0	0.0 ISF 1980 JUL 19 0.0 0.0	100.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0	0.0		0.0 0.0
0.0 Dem_5 0.0 0.0	0.0 96.8 Dem_5 0.0 0.0 0.0 96.8	0.0 ISF 1980 JUL 20 0.0 0.0 0.0 ISF	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JUL 21 0.0 0.0	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	1980 JUL 22	0.0 0.0	0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0 0.0 0.0 96.8
Dem_5 0.0 0.0 Dem_5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	1980 JUL 23 0.0 0.0 0.0 ISF 1980 JUL 24	100.000	0.0	0.0	0.0 0.0 0.0 96.8 0.0 0.0	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 ISF 1980 JUL 25	0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0	0.0 0.0 0.0 96.8	0.0 0.0 0.0 ISF	100.000						
Dem_5 0.0 0.0 Dem 5	Dem_5 0.0 0.0 0.0 96.8 Dem_5	1980 JUL 26 0.0 0.0 0.0 ISF 1980 JUL 27		0.0	0.0	0.0 0.0 0.0 0.0 0.0		0.0	
0.0 0.0 Dem_5	0.0 0.0 0.0 96.8 Dem_5	0.0 0.0 0.0 ISF 1980 JUL 28	0.0 0.0 100.000 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0 96.8
0.0 0.0 Dem_5 0.0	0.0 0.0 0.0 96.8 Dem_5 0.0 0.0	0.0 0.0 0.0 ISF 1980 JUL 29 0.0 0.0	0.0 0.0 100.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8
0.0 Dem_5 0.0	0.0 96.8 Dem_5 0.0 0.0	0.0 ISF 1980 JUL 30 0.0 0.0	100.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0 Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 96.8	0.0 ISF 1980 JUL 31 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 0.0 0.0 100.000			0.0 0.0 0.0 96.8			

Dem_5		Dem_5	1980	TOT -1	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0	0	.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.	0
0.0	0.0	3000.0	0.0 NA		-1.00	0									

Station In/Out Shortage Water Use Station Balance From River By From Carrier By Carried CU _ Total From or From Total Total CU To Total From Total Total CU To Total Upstrm Reac River River Avail Control Control ure River Demand Demand Priorty Storage Exc_Pln Upstrm Reach Return Well From/To River River (14) (15) (16) (1 (31) (11)(12)(13) (26) (29) (30) (27)(28) 1980 AUG Dem 5 Dem 5 0.0 0.0 0.0 0.0 0.0 ISF 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 1980 AUG 0.0 0.0 0.0 ISF Dem_5 2 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 100.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 1980 AUG 0.0 Dem_5 3 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 100.000 0.0 ISF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1980 AUG 0.0 0.0 Dem 5 Dem 5 4 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 100.000 0.0 ISF 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 1980 AUG 0.0 0.0 0.0 ISF 0.0 0.0 0.0 Dem_5 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 100.000 0.0 0.0 0.0 0.0 0.0 Dem_5 Dem 5 1980 AUG 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ISF 0.0 0.0 0.0 96.8 0.0 0.0 0.0 100.000 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 AUG 7 0.0 0.0 0.0 Dem 5 0.0 0.1 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 ISF 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 AUG 0.0 0.0 8 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.000 0.0 ISF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1980 AUG 9 0.0 Dem 5 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 100.000 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 1980 AUG 10 0.0 0.0 0.0 ISF 0.0 Dem_5 0.0 0.0 0.0 96.8 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 100.000 0.0 0.0 0.0 0.0 0.0 1980 AUG 11 0.0 0.0 0.0 0 0 0 0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 ISF 0.0 0.0 0.0 96.8 0.0 96.8 0.0 0.0 0.0 100.000 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1980 AUG 12 Dem_5 0.0 0.0 Dem 5 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 100.000 0.0 ISF 0.0 0.0 0.0 0.0 0.0 1980 AUG 13 0.0 0.0 0.0 Dem_5 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.000 0.0 ISF 0.0 0.0 0.0 0.0 0.0 1980 AUG 14 0.0 0.0 0.0 0.0 Dem_5 Dem 5 0 0 0 0 0.0 0.0 100.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 96.8 0.0 ISF 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 1980 AUG 15 0.0 0.0 0.0 ISF 0.0 0.0 0.0 0.0 Dem_5 Dem 5 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 100 000 0 0 0.0 0.0 1980 AUG 16 0.0 0.0 0.0 0.0 0.0 0 0 0 0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 ISF 0.0 96.8 0.0 0.0 0.0 96 8 0.0 0.0 0.0 0.0 0 0 0.0 0.0 1980 AUG 17 0.0 0.0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 96.8 0.0 ISF 0 0 0.0 1980 AUG 18 0.0

0.0

0.0 96.8

0.0

0.0

Dem 5

Dem_5

0 0

0.0

0.0 0.0

Dem_5

Dem_5

0.0 0.0 0.0 96.8

0.0 0.0

0.0 96.8

0.0 0.0

1980 AUG 19 0.0 0.0 0.0 0.0 0 0.0 ISF 100.000

0.0 ISF

0 0

Dem_5 Dem_5 0.0 0.0 0.0 0.0 96.8	1980 AUG 20 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0	0.0 0.0 0.0 ISF 1980 AUG 22	0.0 0.0 0.0 0.0 100.000 0.0 0.0	0.0	0.0	0.0	96.8	0.0	0.0	0.0	96.8
0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 96.8	0.0 ISF 1980 AUG 23 0.0 0.0 0.0 ISF	100.000 0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 96.8
Dem_5 Dem_5 0.0 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0	0.0 0.0 0.0 ISF 1980 AUG 25	0.0 0.0 0.0 0.0 100.000 0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0	96.8	0.0	0.0	0.0	96.8
0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 0.0 96.8		0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0	0.0 0.0 0.0 ISF 1980 AUG 28		0.0	0.0	0.0	96.8	0.0	0.0	0.0	96.8
0.0 0.0 96.8 Dem_5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0	0.0 ISF 1980 AUG 29 0.0 0.0 0.0 ISF	100.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0
Dem_5 Dem_5 0.0 0.0 0.0 0.0 96.8 Dem_5 Dem_5	0.0 0.0 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	96.8	0.0	0.0	0.0	96.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8	0.0 0.0 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0	96.8	0.0	0.0	0.0	96.8
Dem_5 Dem_5	1980 TOT -1			0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0 0.0 0.0 0.0 0.0 3000.0	0.0 0.0	0.0 0.0 -1.000	0.0	0.0	0.0 30	00.0	0.0	0.0	0.0 30	00.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0 -1.000	0.0	0.0	0.0 30	00.0	0.0	0.0	0.0 30	00.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 Shortage Carried or From Total Siver River River	0.0 0.0 0.0 NA Water Use Fotal CU Avail Control	Total CU	0.0 Statio	0.0 n In/Out From Ri Ups	ver By	ach Ret	0.0 S From urn W	0.0 Station E From	0.0 30	By ver
O.0 O.0 O.0 O.0 O.0 3000.0 Shortage Carried or From Total River River River Structure River Exchang SoilM Supplinflow Divert by Wellid	0.0 0.0 0.0 NA Water Use Fotal CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day	Total CU To To Control Demand Demand CU SoilM Location R NA NA	Statio tal Priorty Return ight (+)	n In/Out From Ri Ups Storage Loss (+)	ver By trm Rea Exc_Pln Inflow (+)(ach Ret Loss Gain	From urn Well Flow	O.0 Station B From Well From Priorty Deplete (+)	alance Carrier A/To Ri	By ver Loss
O.0 O.0 O.0 O.0 O.0 3000.0 Shortage Carried or From Total River River River Structure River Exchang SoilM Suppl	0.0 0.0 0.0 NA Water Use Fotal CU Avail Control	Total CU To To Control Demand Demand CU SoilM Location R NA NA NA NA NA NA (1) (2) (16) (17)	Statio tal Priorty Return ight (+) NA (3)	n In/Out From Ri Ups Storage Loss (+) NA (4)	ver By trm Rea Exc_Pln Inflow (+)((+) (5)	ach Ret Loss Gain (-) (+) (6)	From urn Well Flow (+) (+)	O.0 Station E From Tell From Priorty Deplete (+) (-) (8)	Salance Carrier T/To Ri Sto_Exc GW Stor (+)((+) (9)	By ver Loss (+) (10)
O.0	Water Use Fotal CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To To Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Station tal Priorty Return (+) NA (18) (18)	n In/Out From Ri Ups Storage Loss (+) NA (19)	ver By trm Rea Exc_Pln Inflow (+)((+) (20)	ach Ret Loss Gain (-) (+) (6) (21)	From Well (+) (7) (22)	O.0 Station E From Well From Priorty Deplete (+) (-) (8) (23)	O.O 30 Balance Carrier I/TO Ri Sto_Exc GW Stor (+)((+) (9) (24) 0.0	By Ver Loss (+) (10) (25) 0.0
O.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 Shortage Carried Or From Total 7. River River River River River River Exchang SoilM Supplinflow Divert by WelliD ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28)	0.0 0.0 0.0 NA Water Use Fotal CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To To Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	Station tal Priorty Return ight (+) NA (18) 0.0 0.0 0.0 0.0	0.0 n In/Out From Ri Ups Storage Loss (+) NA (4) (19) 0.0 0.0 0.0	ver By trm Rea Exc_Pln Inflow (+)((+) (20) 0.0 0.0 10 0.0 0.0	ach Ret Loss Gain (-) (+) (6) (21) 0.0 00.0 0.0	From Well Flow (+) (22) 0.0 0.0 0.0 0.0	0.0 Station E From Well From Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0	0.0 30 Balance Carrier 1/To Ri Sto_Exc GW Stor (+)((+) (9) (24) 0.0 0.0 1 0.0 0.0	Do . 0 By Ver Loss (+) (10) (25) 0.0 00.0 0.0 0.0
O.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 Shortage Carried Or From Total River River River Structure River Exchang SoilM Supplinflow Divert by WelliD ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28) Shortage SoilM Supplinflow Divert by WelliD ID ID (+) NA NA (-) (-) (-) (+) (10) (10) (26) (27) (28) Shortage SoilM Supplinflow SoilM Supplied Soi	0.0 0.0 0.0 NA Water Use Fotal CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To To Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	0.0 Station tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0 0.0 0.0	0.0 n In/Out From Ri Ups Storage Loss (+) NA (19) 0.0 0.0 0.0 0.0 0.0	ver By trm Rea Exc_Pln Inflow (+)((+) (5) (20) 0.0 0.0 10	ach Ret Loss Gain (-) (1) (21) 0.0 0.0 0.0 0.0 0.0	From wrn Well Flow (+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	O.0 Station E From Well From Priorty Deplete (+) (-) (8) (23) 0.0 0.0	0.0 30 Balance Carrier A/TO Ri Sto_Exc GW Stor (+)((+) (24) 0.0 0.0 1	By ver Loss (-) (10) (25) 0.0 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
O.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 Shortage Carried Or From Total River River River Structure River Exchang SoilM Supplinflow Divert by Welling ID ID ID ID ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28) Shortage ID	0.0 0.0 0.0 NA Water Use Fotal CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30) 1980 SEP 1 0.0 0.0 0.0 ISF 1980 SEP 2 0.0 0.0 0.0 ISF 1980 SEP 3 0.0 0.0 0.0 ISF 1980 SEP 3 0.0 0.0 0.0 ISF 1980 SEP 4	Total CU To To To Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	0.0 Station tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 n In/Out From Ri Ups Storage Loss (+) NA (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ver By trm Rea Exc_Pln Inflow (+)((+) (20) 0.0 0.0 10 0.0 10 0.0 0.0 10 0.0 0.0 10	ach Ret Loss Gain (+) (6) (21) 0.0 00.0 0.0 00.0 0.0 00.0	From well Flow (+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Station E From Well From Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 30 Salance Carrier 1/To Ri Sto_Exc GW Stor (+)((+) (24) 0.0 0.0 1 0.0 0.0 1 0.0 0.0 1 0.0 0.0 1	By Ver Loss (+) (25) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

Dem_5	Dem_5	0.0 0.0	0.0 0.0				0.0	0.0	0.0 0.0 0.0 100.0
0.0 Dem_5 0.0 0.0	0.0 100.0 Dem_5 0.0 0.0 0.0 100.0	0.0 ISF 1980 SEP 8 0.0 0.0 0.0 ISF	100.000 0.0 0.0 0.0 0.0 100.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 9 0.0 0.0 0.0 ISF	0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 10 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 11 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 12 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 13 0.0 0.0 0.0 ISF		0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 14 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 15 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 16 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 17 0.0 0.0 0.0 ISF			0.0	0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 18 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000		0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 19 0.0 0.0 0.0 ISF		0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 20 0.0 0.0 0.0 ISF			0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 21 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000			0.0 0.0	0.0	0.0	0.0 0.0 0.0 100.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 22 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 23 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	0.0 100.0	0.0 0.0 0.0 ISF	100.000	0.0					
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0		0.0 0.0 0.0 0.0 100.000						
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 26 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0		0.0 0.0 0.0 0.0 100.000						
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0		0.0 0.0						
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 29	0.0 0.0 0.0 0.0 100.000						
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 100.0	1980 SEP 30	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Dem_5 0.0 0.0	Dem_5 0.0 0.0 0.0 3000.0	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0

482482482Res_482482482482Reservoir_1

Res_Exist. Reservoir

Res Exis

t. Reservoir

0.0

STRUCTURE DATA 100000 Reservoir Rights 100000.

Water Use Station In/Out Station Balance Shortage From River By From Carrier Bv Carried Total CU ______ From _____ To Total Upstrm Reach Return Well From/To River Control From Total Total CU River River Avail Control Well Priorty Sto_Exc Loss (-)(12) (13) (27) (28) (31) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1979 OCT 1 Res 1 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 132.5 0.0 96.8 0.0 0.0 0.0 0 0 0.0 100.000 0.0 0.0 0.0 0.0 0.0 0.0 ISF -35.8 0.0 1979 OCT 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 Res_1 Res 1 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 96.8 0.0 96.8 0.0 Dem 2 0.0 0.0 0.0 0.0 0.0 0.0 1979 OCT Res_1 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 .0 60.000 0.0 0.0 0.0 Dem_2 0.0 0.0 0.0 0.0 0.0 Res_1 1979 OCT 4 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 Dem_2 1979 OCT 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 5 Res 1 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 60.000 0.0 0.0 Dem_2 Res_1 1979 OCT 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 .0 .000 .000 0.0 Dem 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 1979 OCT Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 Dem_2 1979 OCT 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 .0 60.000 0.0 0.0 0.0 Dem_2 0.0 96.8 0.0 0.0 0.0 0.0 Res_1 1979 OCT 9 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 96.8 0.0 60.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 Dem_2 1979 OCT 10 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 Res 1 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0 0 0.0 Dem_2 1979 OCT 11 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 .0 60.000 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 2 0.0 0.0 0.0 0.0 0.0 0.0 1979 OCT 12 Res_1 Res 1 0.0 0.0 0.0 0.0 .0 60.000 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 Dem 2 0.0 0.0 0.0 0.0 1979 OCT 13 0.0 0.0 0.0 Res 1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 96.8 0.0 96.8 0 0 0 0 60.000 0.0 0.0 96.8 0.0 Dem_2 0.0 0.0 0.0 0.0 Res_1 1979 OCT 14 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 60.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 Dem_2 1979 OCT 15 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 Res_1 0.0 0.0 0.0 96.8 0.0 0.0 96.8 0.0 0.0 0 0 0.0 Dem_2 1979 OCT 16 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 0.0 0.0 0 0 Res 1 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 96.8 0.0 0.0 0.0 60.000 0.0 0.0 Dem 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 1979 OCT 17 0 0 0 0 0 0 Res 1 0.0 0.0 0.0 96 8 0 0 0 0 Res 1 Res_1 0.0 0.0 0.0 96.8 0.0

Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
Res_1 Res_1 0.0 0.0 0.0 0.0 96.8	1979 OCT 20 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 96.	0.0
Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
0.0 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1	0.0 0.0 0.0 Dem_2 1979 OCT 23	0.0 0.0 60.000 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
0.0 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0	0.0 Dem_2 1979 OCT 24	0.0 0.0 60.000 0.0 0.0 0.0 0.0	0.0		0.0	0.0	0.0	0.0 96. 0.0 0.0 96.	0.0
0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 0.0 96.8	0.0 Dem_2 1979 OCT 25 0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 96.8	1979 OCT 26	0.0 0.0							
Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 96.8	1979 OCT 27 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1	0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
0.0 0.0 0.0 0.0 0.0 96.8	0.0 Dem_2	0.0 0.0 60.000							
Res_1 Res_1 0.0 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2		0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.	8
Res_1 Res_1 0.0 0.0 0.0 -35.8 0.0 3035.8			0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
Shortage Carried	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	Statio	n In/Out From River By		S	Station E From	alance Carrier By	
Shortage Carried	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	Statio	n In/Out From River By		S	Station E From	alance Carrier By	
Shortage Carried or From Total River River River Structure River Exchang SoilM Supp	1980 TOT -1 0.0 0.0 0.0 NA Water Use Total CU Avail Control	Total CU To Control Demand Demand CU SoilM	Statio tal Priorty Return	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow	ach Ret Loss Gair	From urn W Well Flow	From Well From Priorty Deplete	dalance Carrier By //To River Sto_Exc	Loss
Shortage Carried or From Total River River River Structure River	Total CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA	Total CU To To Control Demand Demand CU SoilM Location R NA NA	tal Priorty Return ight (+) NA	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+)	Loss Gair.	From urn Well Flow (+)	Jell From Priorty Deplete (+) (-)	Carrier By I/To River Sto_Exc GW Stor (+)((+) (+)	Loss
Shortage Carried or From Total River River River Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA	1980 TOT -1 0.0 0.0 0.0 NA Water Use Total CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA	Total CU To To Control Demand Demand Location R NA NA NA NA (1) (2) (16) (17) (31)	tal Priorty Return ight (+) NA (3) (18)	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20)	Loss Gair (-) (+) (6) (21)	From urn Well Flow (+) (7) (22)	Jell From Priorty Deplete (+) (-) (8)	Carrier By L/To River Sto_Exc GW Stor (+)((+) (+) (9)	Loss (-)
Shortage Carried or From Total River River River Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28) Res_1 Res_1 0.0 0.0 0.0	1980 TOT -1 0.0 0.0 0.0 NA Water Use Total CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To To Control Demand Demand Location R NA NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18)	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20)	Loss Gair (-) (+) (6) (21)	From urn Well Flow (+) (+) (22)	From Well From Priorty Deplete (+) (-) (8) (23)	Carrier By L/To River Sto_Exc GW Stor (+)((+) (+) (9) (24) (2	(-)) (10) 5)
Shortage Carried or From Total River River River Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28) Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total CU Avail Control 1980 TOT -1 0.0 0.0 0.0 NA Water Use Total CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30) 1979 NOV 1 0.0 0.0 0.0 Dem_2 1979 NOV 2 0.0 0.0 Dem_2 0.0 Dem_2 0.0 Dem_2	Total CU To To To Control Demand Demand CU SoilM Location R NA NA (1) (2) (16) (17) (31)	tal Priorty Return ight (+) NA (3) (18) 0.0 0.0	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+) (+) (NA (+) (4) (5) (19) (20)	Loss Gair (-) (+) (6) (21)	From wrn Well Flow (+) (7) (22)	Priorty Deplete (+) (-) (8) (23) 0.0 0.0	Malance 1 Carrier By M/To River Sto_Exc 1 GW Stor (+)((+) (+) (9) (24) (2 0.0 0.0 100.	(10) 5) 0.0 0.0
Shortage Carried or From Total River River River Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28) Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 100.0	Total CU Avail Control 1980 TOT -1 0.0 0.0 NA Water Use Total CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	tal Priorty Return ight (+) NA (18) 0.0 0.0 0.0 0.0 0.0	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5)(19) (20) 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loss Gair (-) (+) (6) (21) - 0.0 0.0 0.0 0.0 0.0 0.0	From urn Well Flow (+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Tell From Priorty Deplete (+) (-) (8) (23) (23) (0.0) (0.0) (0.0) (0.0) (0.0)	Alance A Carrier By I/To River Sto_Exc GW Stor (+) (+) (24) (2 0.0 0.0 100. 0.0 0.0 100.	(-)) (10) 5) 0.0 0 0.0 0 0.0
Shortage Carried or From Total River River River Structure River Exchang SoilM Supp Inflow Divert by Wel ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28) Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 100.0 Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1980 TOT -1 0.0 0.0 0.0 NA Water Use Total CU Avail Control ly Short Short 1 Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Tal Priorty Return ight (+) NA (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20) 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loss Gair (-) (+) (6) (21)	From urn Well (+) (+) (22) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Tell From Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Calance Carrier By L/To River Sto_Exc GW Stor (+) (+) (24) (2 0.0 0.0 100. 0.0 0.0 100. 0.0 0.0 0.0 100. 0.0 0.0 0.0 100.	(-)) (10) 5) 0.0 0 0.0 0 0.0 0 0.0 0 0.0

0.0 0.0 0.0 0.0 Res_1 Res_0 0.0 0.0	0.0 0.0 0.0 0.1 00.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 0.1 00.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 Dem_2 0.0 0.0 0.0 Dem_2	0 0.0 0.0 0.0 60.000 7 0.0 0.0 0.0 60.000 8 0.0 0.0 60.000 9 0.0 0.0 60.000 10 0.0 0.0 60.000 10 0.0 0.0 0.0 0.0 60.000 10 0.0 0.0 0.0 0.0 0.0 60.000 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Res_1 Res 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 100.0 0.0 Dem_2 1 1979 NOV 0.0 0.0 Dem_2 2 5_1 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_2 2 5_1 1979 NOV 0.0 0.0 Dem_2 2 5_1 1979 NOV 0.0 0.0 Dem_2 3_1 1979 NOV	0 0.0 0.0 0.0 60.000 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.000 14 0.0 0.0 60.000 15 0.0 0.0 0.0 60.000 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 Res_1 Res 0.0 Res_1 Res 0.0 0.0 Res_1 Res 0.0 0.0 Res_1 Res	100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 Dem_2 0.0 0.0 0.0 100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 Dem_2 s_1 1979 NOV	0 0.0 0.0 0.0 60.000 17 0.0 0.0 0.0 60.000 18 0.0 0.0 60.000 19 0.0 0.0 60.000 20 0.0 0.0 60.000 20 0.0 0.0 0.0 60.000 20 0.0 0.0 0.0 0.0 60.000 20 0.0 0.0 0.0 60.000 20 0.0 0.0 0.0 0.0 0.0 60.000 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0	100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 0.1 100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 100.0 0.0 Dem_2 s_1 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0 0.0 60.000 22 0.0 0.0 60.000 23 0.0 0.0 60.000 24 0.0 0.0 60.000 25 0.0 0.0 60.000 25 0.0 0.0 0.0 60.000 25 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 100.0
	0.0 0.0 0.0 0.0 0.0 100.0 0.0 Dem_2 3 1 1979 NOV 0.0 0.0 Dem_2 3 1 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0.0 0.0 60.000 27 0.0 0.0 60.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

From Carrier By

Carried

			Total CU					From			
River	River River	otal CU Avail Control				trm Re			ell From		
Structu Exchang Inflow	g SoilM Supply	y Short Short Outflow Flow		Priorty Return ight						Sto_Exc GW Stor	
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA NA NA	NA NA NA NA	(+) NA	(+) NA	(+)((+)	(+)	(+)	(+)((-)
(11)	(12) (13) (27) (28)	(14) (15) (29) (30)	(1) (2) (16) (17) (31)		(4)	(5) (20)	(6) (21)	(7) (22)	(8)	(9)	(10) (25)
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1979 DEC 1 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1979 DEC 2 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1979 DEC 3 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1979 DEC 4 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0 0.0 0.0 60.000	0.0		0.0 96.8	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1979 DEC 6 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
Res_1 0.0	Res_1	1979 DEC 7 0.0 0.0	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 Dem_2 1979 DEC 8 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 Dem_2 1979 DEC 9 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0 0.0	0.0 96.8 Res_1 0.0 0.0 0.0 96.8	0.0 Dem_2 1979 DEC 10 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 0.0 60.000	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Res_1	Res_1	1979 DEC 11 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 Dem_2 1979 DEC 12 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 Dem_2 1979 DEC 13 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	
0.0 Res_1 0.0 0.0	0.0 96.8 Res_1 0.0 0.0 0.0 96.8	0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	Res_1	0.0 0.0	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0		0.0 0.0								
0.0 Res_1 0.0	0.0 96.8 Res_1 0.0 0.0	0.0 0.0	60.000 0.0 0.0 0.0 0.0								
0.0 Res_1 0.0 0.0	0.0 96.8 Res_1 0.0 0.0 0.0 96.8	0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0 0.0 0.0 60.000								

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Res_1 0 0.0 0 96.8 Res_1 0 0.0	0.0 0.0 0.0 Dem_2 1979 DEC 23 0.0 0.0 0.0 Dem_2 1979 DEC 24 0.0 0.0 0.0 Dem_2 1979 DEC 25 0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000	0.0 0.0 0.0 0.0	0.0 96.4 0.0 96.4 0.0 96.4 0.0 96.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 96. 0.0 96. 0.0 96. 0.0 96.	0.0
0.0 0.0 0.0 0.0 Res_1 0.0 0.0 0.0 0.0 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Res_1	0.0 0.0 0.0 Dem_2 1979 DEC 27 0.0 0.0 0.0 Dem_2 1979 DEC 28 0.0 0.0 0.0 Dem_2 1979 DEC 29 0.0 0.0 0.0 Dem_2 1979 DEC 30 0.0 0.0 0.0 Dem_2 1979 DEC 31 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0	0.0 96.4 0.0 96.4 0.0 96.4 0.0 96.4 0.0 96.4 0.0 96.4	0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 96. 0.0 96. 0.0 96. 0.0 96. 0.0 96. 0.0 96.	.8 0.0 .8 0.0 .8 0.0 .8
	.0 0.0	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0				0.0		
Structure Exchang Inflow Di ID	n Total T iver River River SoilM Suppl ivert by Well	y Short Short Outflow Flow Year Mo Day	Total CU To To Control Demand Demand CU SoilM Location R	tal Priorty Return ight (+)	Upstrm Storage Exc Loss I:	Reach Re Pln Loss nflow Gai	From turn W Well n Flow (+)	Priorty Deplete	/To River Sto_Exc GW Stor (+)(Loss
Carried or From River Ri Structure Exchang Inflow Di ID (+) N (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	n Total Tiver River River SoilM Supplivert by Well ID NA NA NA (+)	otal CU Avail Control y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To Control Demand Demand CU SoilM Location R NA NA NA NA NA NA	Tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0 0.0	Upstrm Storage Exc Loss I: (+) NA (+ (4) (19) (2) 0.0 0.0 96.0 0.0 0.0 96.0 0.0 96.0	Reach Re Pln Loss fflow Gai (+)((-))	From Well (+) (+) (22) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (-) (8) (23) 0.0 0.0 0.0 0.0	/To River Sto_Exc GW Stor (+)((+) (+)	(-) +) (10) 25) 0.0 .8 0.0 .8

Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0 0.0 0.0 60.000							
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 12 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 96.8	0.0	0.0	0.0	0.0	96.8
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 0.0 0.0 60.000					0.0		
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 14 0.0 0.0	0.0 0.0 0.0 0.0 60.000		0.0 0.0			0.0		
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 15 0.0 0.0	0.0 0.0 0.0 0.0 60.000						0.0	
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 16 0.0 0.0 0.0 Dem 2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0	
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 17	0.0 0.0	0.0	0.0	.0 0.0	0.0	0.0		
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 18	0.0 0.0							
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 19	0.0 0.0							
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 20	0.0 0.0 0.0 0.0 60.000							
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 21 0.0 0.0 0.0 Dem_2	0.0 0.0		0.0 0.0			0.0		
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0	0.0	0.0 0.0			0.0	0.0	
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 24 0.0 0.0	0.0 0.0 0.0 0.0 60.000		0.0 0.0			0.0		
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 25 0.0 0.0	0.0 0.0 0.0 0.0 60.000							
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0 0.0 0.0 60.000							
Res_1 0.0 0.0	Res_1 0.0 0.0	1980 JAN 27 0.0 0.0	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	96.8
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	0.0 Dem_2 1980 JAN 28 0.0 0.0 0.0 Dem_2		0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 96.8
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8	1980 JAN 29	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 96.8
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 96.8		0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
Res_1 0.0 0.0	0.0 0.0 0.0 96.8	1980 JAN 31 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0 0	0 0
Res 1									0.0	0 0
0.0	0.0 0.0 0.0 3000.0	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 3000.0	0.0	0.0	0.0	0.0 300	0.0
Shorta	ge	Water Use		Statio	on In/Out From River Po	7	S	Station E	Balance	Bv
or : River	From Total T River River	otal CU Avail Control	TOTAL CU TO TO Control	tal	Upstrm	Reach Ret	From turn V	Well From	n/To Riv	ver

Exchang		y Short Short Outflow Flow	CU							
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA NA NA	NA I	NA (·	(+) NA		(+)	(+)	(+)	(+)((-)
(11)	(12) (13) (27) (28)	(14) (15)	(1)	17) (18)		(5)	(6)	(7)	(8)	(9) (10) (24) (25)
										·
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 1 0.0 0.0 0.0 Dem_2	0.0 0.0 0 60.000		0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 2 0.0 0.0 0.0 Dem_2	0.0 0.0 0 60.000		0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 3 0.0 0.0 0.0 Dem_2	0.0 0.0 0 60.000	0.0 0.0		0.0	0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0	Res_1 0.0 0.0	1980 FEB 4 0.0 0.0	0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0
0.0 Res_1 0.0 0.0	0.0 107.1 Res_1 0.0 0.0 0.0 107.1	0.0 Dem_2 1980 FEB 5 0.0 0.0 0.0 Dem_2	60.000 0.0 0.0 0.0 60.000	0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 6 0.0 0.0 0.0 Dem_2	0.0 0.0 0 60.000	0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 7 0.0 0.0	0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	0.0 Dem_2 1980 FEB 8 0.0 0.0	0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0
Res_1 0.0	Res_1 0.0 0.0	0.0 Dem_2 1980 FEB 9 0.0 0.0	0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0
0.0 Res_1 0.0 0.0	0.0 107.1 Res_1 0.0 0.0 0.0 107.1	0.0 Dem_2 1980 FEB 10 0.0 0.0 0.0 Dem_2		0.0 0.0		0.0	0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 11 0.0 0.0 0.0 Dem_2	0.0 0.0 0 60.000		0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 12 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 60.000		0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 13 0.0 0.0 0.0 Dem_2	0.0 0.0 0 60.000			0.0	0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 14 0.0 0.0 0.0 Dem 2	0.0	.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 15 0.0 0.0 0.0 Dem_2	0.0	0.0 0						0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 16 0.0 0.0 0.0 Dem_2		0.0 0.0				0.0		0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 17 0.0 0.0 0.0 Dem 2	0.0 0.0 0 60.000		0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 18 0.0 0.0 0.0 Dem_2			0.0		0.0	0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 19 0.0 0.0 0.0 Dem_2			0.0			0.0	0.0	0.0 0.0 0.0 107.1
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 20	0.0	0.0 0.0	0.0					
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 107.1	1980 FEB 21 0.0 0.0 0.0 Dem_2		0.0 0.0	0.0			0.0	0.0	0.0 0.0
0.0 Res_1 0.0 0.0	0.0 107.1 Res_1 0.0 0.0 0.0 107.1	1980 FEB 22 0.0 0.0 0.0 Dem_2			0.0	0.0		0.0	0.0	0.0 0.0
Res_1 0.0	Res_1 0.0 0.0	1980 FEB 23 0.0 0.0			0.0			0.0	0.0	0.0 0.0
0.0 Res_1 0.0 0.0	0.0 107.1 Res_1 0.0 0.0 0.0 107.1	0.0 Dem_2 1980 FEB 24 0.0 0.0 0.0 Dem_2	0.0		0.0			0.0	0.0	0.0 0.0

Res_1 Res_1 0.0 0.0 0.0 0.0 107.1 Res_1 Res_1	1980 FEB 25 0.0 0.0 0.0 Dem_2 1980 FEB 26		0.0	0.0 0.0 0.0 107.1	0.0	0.0	0.0	0.0 0.0 0.0 107.1
0.0 0.0 0.0 0.0 0.0 107.1 Res_1 Res_1 0.0 0.0 0.0 0.0 0.0 107.1 Res_1 Res_1	0.0 0.0 0.0 Dem_2 1980 FEB 27 0.0 0.0 0.0 Dem_2 1980 FEB 28	0.0 0.0 60.000 0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0	0.0	0.0		0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 107.1 ————————————————————————————————————	0.0 0.0	0.0 0.0	0.0	0.0 107.1	0.0			
0.0 0.0 0.0 0.0 0.0 3000.0	0.0 NA	0.0 0.0 -1.000						
Shortage Carried	Water Use		Statio	n In/Out From River By			Station E Fron	Balance Carrier By
or From Total To River River River Structure River	otal CU Avail Control	Total CU To To Control Demand Demand	tal	Upstrm Re			Well From	n/To River
Exchang SoilM Supply Inflow Divert by Well ID ID	y Short Short Outflow Flow	CU SoilM	Return ight		Gair	ı Flow	Deplete	e GW Stor
(+) NA NA (-) (-) (+)	NA NA NA NA	NA NA NA (1) (2)	NA		(+)	(+)	(-)	(+) (+)
(11) (12) (13) (26) (27) (28)	(14) (15) (29) (30) — — — —			(19) (20)			(23)	
Res_1	0.0 0.0 0.0 Dem_2 1980 MAR 2 0.0 0.0 Dem_2 1980 MAR 3 0.0 0.0 0.0 Dem_2 1980 MAR 4 0.0 0.0 0.0 Dem_2 1980 MAR 5 0.0 0.0 0.0 Dem_2 1980 MAR 6 0.0 0.0 0.0 Dem_2 1980 MAR 6 0.0 0.0 0.0 Dem_2 1980 MAR 7 0.0 0.0 0.0 Dem_2 1980 MAR 8 0.0 0.0 0.0 Dem_2 1980 MAR 8 0.0 0.0 0.0 Dem_2 1980 MAR 9 0.0 0.0 0.0 Dem_2 1980 MAR 9 0.0 0.0 0.0 Dem_2 1980 MAR 9 0.0 0.0 0.0 Dem_2 1980 MAR 10	0.0 0.0 60.000 0.0 0.0 0.0 0.0 60.000	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8
0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 96.8 Res_1 Res_1 0.0 Res_1 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 96.8	1980 MAR 11 0.0 0.0 0.0 Dem_2 1980 MAR 12 0.0 0.0 0.0 Dem_2 1980 MAR 13 0.0 0.0 0.0 Dem_2 1980 MAR 14 0.0 0.0 0.0 Dem_2 1980 MAR 14	0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 96.8

Res_1 0.0 0.0 Res_1 0.0	Res_1 0.0 0.0 0.0 96.8 Res_1 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 MAR 17	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 Res_1 0.0 0.0 Res_1	0.0 96.8 Res_1 0.0 0.0 0.0 96.8 Res_1	0.0 Dem_2 1980 MAR 18 0.0 0.0 0.0 Dem 2	60.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
0.0 0.0 Res_1 0.0	0.0 0.0 0.0 96.8 Res_1 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2 1980 MAR 20	0.0 0.0 60.000 0.0 0.0 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
Res_1 0.0 0.0 Res 1	Res_1 0.0 0.0 0.0 96.8 Res_1	1980 MAR 21 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 0.0 Res_1 0.0 0.0	0.0 0.0 0.0 96.8 Res_1 0.0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2 1980 MAR 23 0.0 0.0	0.0 0.0 60.000 0.0 0.0 0.0 0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 96.8 0.0 0.0 0.0 96.8
Res_1 0.0 0.0 Res_1 0.0	Res_1 0.0 0.0 0.0 96.8 Res_1 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 MAR 25	60.000 0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 Res_1 0.0 0.0	0.0 96.8 Res_1 0.0 0.0 0.0 96.8	1980 MAR 26 0.0 0.0 0.0 Dem 2	60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
Res_1 0.0 0.0 Res_1 0.0	Res_1 0.0 0.0 0.0 96.8 Res_1 0.0 0.0	0.0 0.0 0.0 Dem_2 1980 MAR 28 0.0 0.0	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 Res_1 0.0 0.0 Res_1	0.0 96.8 Res_1 0.0 0.0 0.0 96.8 Res_1	0.0 0.0 0.0 Dem_2 1980 MAR 30	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 0.0 Res_1 0.0	0.0 0.0 0.0 96.8 Res_1 0.0 0.0	0.0 Dem_2 1980 MAR 31 0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 Res_1	0.0 96.8 	0.0 Dem_2 	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 3000.0	0.0 0.0 0.0 NA	-1.000						
Shortag Carried		Water Use		Static	on In/Out From River By			From	Carrier By
Structu Exchang	re River s SoilM Suppl	otal CU Avail Control y Short Short	Demand Demand CU Soil	otal Priorty M Return	Upstrm Re Storage Exc_Pln Loss Inflo	each Ret Loss w Gair	urn Well n Flow	Well From Priorty Deplete	n/To River Sto_Exc Loss GW Stor
Inflow ID (+) (-)	Divert by Well ID NA NA (-) (+)	Outflow Flow Year Mo Day NA NA NA NA	Location F NA NA NA NA NA (1) (2)	(+) NA	(+) (+) NA (+)	((-)	(+) (+)	(+)	(+)((-) (+) (+)
(11)	(12) (13) (27) (28)	(14) (15) (29) (30) — — — —	(16) (17)	(18)	(19) (20)	(21)	(22)	(23)	(24) (25)
Res_1 0.0 0.0 Res_1 0.0	0.0 0.0 0.0 100.0 Res 1	1980 APR 1 0.0 0.0 0.0 Dem_2 1980 APR 2 0.0 0.0	0.0 0.0 60.000	0.0	0.0 100.0	0.0	0.0	0.0	0.0 100.0
0.0	0.0 100.0	0.0 0.0 0.0 Dem_2	60.000						

Res_1	Res_1	0.0 0.0	0.0 0.0		0.0 0.0				0.0 0.0
0.0 Res_1 0.0 0.0	0.0 100.0 Res_1 0.0 0.0 0.0 100.0	1980 APR 4			0.0 0.0		0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 5	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0	0.0 0.0 0.0 0.0 60.000		0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 7	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0			0.0 0.0		0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0		0.0 0.0		0.0 0.0		0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 12 0.0 0.0			0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 13 0.0 0.0			0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0	0.0 0.0 0.0 0.0 60.000		0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0			0.0 0.0		0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0		0.0 0.0		0.0 0.0				0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 17	0.0 0.0		0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	60.000	0.0	0.0 100.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 100.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 20 0.0 0.0 0.0 Dem_2			0.0 0.0				0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0		0.0 0.0		0.0 0.0				
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 22 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 100.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 100.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	0.0 0.0 0.0 Dem_2	0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 100.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 25 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 26 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 27	0.0 0.0		0.0 0.0		0.0	0.0	0.0 0.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 28 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 100.0
Res_1 0.0 0.0	Res_1 0.0 0.0 0.0 100.0	1980 APR 29 0.0 0.0 0.0 Dem_2	0.0 0.0	0.0	0.0 0.0 0.0 100.0	0.0	0.0	0.0	0.0 0.0

0.0 0	Res_1 .0 0.0 .0 100.0		0.0 0.0		0.0 0.0				0.0 0.0
0.0	Res_1 .0 0.0 .0 3000.0			0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Shortage Carried	-	Water Use		Statio	n In/Out From River By		S	Station B From	alance Carrier By
or Fro River R Structure		Avail Control	To To Control	tal	Upstrm Re	ach Ret		Well From	
Inflow D ID (+)			Location R	ight		(-)	(+)	_	(+)((-)
	12) (13) 27) (28)	(14) (15) (29) (30)			(4) (5) (19) (20)	(6)	(22)	(8)	(9) (10) (24) (25)
0.0 0 387.1	Res_1 .0 0.0 0.0 96.8 Res_1	1980 MAY 1 0.0 0.0 0.0 Dem_2 1980 MAY 2	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 483.9
387.1 Res_1 0.0 0	.0 0.0 0.0 96.8 Res_1 .0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2 1980 MAY 3 0.0 0.0 0.0 Dem_2	0.0 0.0 60.000 0.0 0.0 0.0 0.0 60.000	0.0	0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 483.9 0.0 0.0 0.0 483.9
0.0 0 387.1 Res_1 0.0 0	Res_1 .0 0.0 0.0 96.8 Res_1 .0 0.0 0.0 96.8	1980 MAY 4 0.0 0.0 0.0 Dem_2 1980 MAY 5 0.0 0.0 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0 0.0 60.000	0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9
387.1	Res_1 .0 0.0 0.0 96.8 Res_1	0.0 0.0 0.0 Dem_2 1980 MAY 7	0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0
387.1 Res_1 0.0 0	.0 0.0 0.0 96.8 Res_1 .0 0.0 0.0 96.8	0.0 0.0 0.0 Dem_2 1980 MAY 8 0.0 0.0	0.0 0.0 60.000 0.0 0.0 0.0 0.0	0.0	0.0 483.9	0.0	0.0	0.0	0.0 483.9 0.0 0.0 0.0 483.9
Res_1 0.0 0 387.1 Res_1 0.0 0	.0 0.0 0.0 96.8 Res_1 .0 0.0	0.0 0.0 0.0 Dem_2 1980 MAY 10 0.0 0.0	0.0 0.0 60.000 0.0 0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 483.9
0.0 0 387.1	.0 0.0 0.0 96.8	0 0 0 0	0 0 0 0	0 0	0.0 0.0 0.0 483.9 0.0 0.0	0 0	0 0	0 0	0 0 483 9
0.0 0 387.1 Res_1	Res_1 .0 0.0 0.0 96.8 Res_1	0.0 Dem_2 1980 MAY 13	60.000	0.0	0.0 483.9	0.0	0.0	0.0	0.0 483.9
387.1 Res_1 0.0 0	.0 0.0 0.0 96.8 Res_1 .0 0.0 0.0 96.8	0.0 Dem_2 1980 MAY 14 0.0 0.0	60.000 0.0 0.0 0.0 0.0	0.0	0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 483.9
Res_1 0.0 0	Res_1 .0 0.0 0.0 96.8	0.0 0.0	0.0 0.0 0.0 0.0 60.000	0.0	0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 0.0 0.0 483.9
0.0 0 387.1 Res_1	.0 0.0 0.0 96.8 Res_1	0.0 0.0 0.0 Dem_2 1980 MAY 17	0.0 0.0 60.000 0.0 0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0	0.0	0.0	0.0	0.0 483.9
387.1 Res_1 0.0 0	.0 0.0	0.0 Dem_2 1980 MAY 18	60.000 0.0 0.0 0.0 0.0	0.0	0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 0.0

387.1 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 387.1 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 387.1 0.0 96.8 Res_1 Res_1 0.0 0.0 0.0 387.1 0.0 96.8 Res_1	0.0 Dem_2 1980 MAY 20 0.0 0.0 Dem_2 1980 MAY 21 0.0 0.0 0.0 Dem_2 1980 MAY 22 0.0 0.0 0.0 Dem_2 1980 MAY 22	60.000 0.0 0.0 60.000 0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9
0.0 0.0 0.0	0.0 Dem_2 1980 MAY 24 0.0 0.0 0.0 Dem_2 1980 MAY 25 0.0 0.0	60.000 0.0 0.0 0.0 0.0 60.000 0.0 0.0	0.0	0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 0.0 0.0 483.9
0.0 0.0 0.0 387.1 0.0 96.8 Res_1 Res_1 0.0 387.1 0.0 96.8 Res_1 0.0 96.8 Res_1 0.0 0.0 387.1 0.0 96.8 Res_1 Res_1 Res_1 0.0 0.0 96.8 Res_1 Res_1 0.0 0.0 96.8 Res_1 0.0 0.0 0.0	0.0 0.0 Dem_2 1980 MAY 27 0.0 0.0 Dem_2 1980 MAY 28 0.0 0.0 Dem_2 1980 MAY 29 0.0 0.0 0.0	0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9
0.0 0.0 0.0 387.1 0.0 96.8 Res_1 Res_1	0.0 0.0 0.0 Dem_2 1980 MAY 31 0.0 0.0	0.0 0.0 60.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 483.9 0.0 0.0 0.0 483.9	0.0	0.0	0.0	0.0 483.9
Res_1 Res_1 0.0 0.0 0.0 12000.0 0.0 3000.0	0.0 NA	-1.000						
Shortage Carried or From Total To River River River Structure River	0.0 NA Water Use tal CU Avail Control	Total CU To To Control Demand Demand	Statio tal Priorty	on In/Out From River By Upstrm Re Storage Exc_Pln	ach Ret Loss	From urn W	etation E From ell From	Salance n Carrier By n/To River Sto_Exc Loss
Shortage Carried or From Total To River River River Structure River Exchang SoilM Supply Inflow Divert by Well ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28)	Water Use tal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	Station tal Priorty Return ight (+) NA (3) (18)	Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20)	ach Ret Loss Gain (-) (+) (6)	From urn Well Flow (+)	ell From Priorty Deplete (+) (-) (8)	Balance n Carrier By n/To River Sto_Exc Loss e GW Stor (+)((-) (+) (+) (9) (10)

Res_1 0.0 400.0	Res_1 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0	0.0 Dem_2		0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 500.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	
Res_1 0.0 400.0	Res_1 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0 Dem_2 1980 JUN 12 0.0 0.0 0.0 0.0 0.0 0.0 Dem_2 1980 JUN 14 0.0 0.0 Dem_2 1980 JUN 15 0.0 0.0 0.0 Dem_2 1980 JUN 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000	0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 0.0 0.0 500.0
Res_1 0.0 400.0	Res_1 0.0 0.0 0.0 100.0 Res_1 0.0 0.0 0.0 100.0 Res_1 0.0 0.0	1980 JUN 16 0.0 Dem_2 1980 JUN 17 0.0 O.0 Dem_2 1980 JUN 18 0.0 O.0 Dem_2 1980 JUN 19 0.0 Dem_2 1980 JUN 20 0.0 Dem_2 1980 JUN 20 0.0 Dem_2 1980 JUN 20 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000	0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0			0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 500.0 0.0 0.0 0.0 500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 500.0
Res_1 0.0 400.0	Res_1 0.0 0.0	0.0 0.0 0.0 Dem_2		0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 0.0 0.0 500.0	0.0	0.0	0.0	0.0 500.0
Res_1 0.0 400.0	0.0 0.0	1980 JUN 26 0.0 0.0 0.0 Dem_2 1980 JUN 27 0.0 0.0 Dem_2 1980 JUN 28 0.0 0.0 Dem_2 1980 JUN 29 0.0 0.0 0.0 Dem_2 1980 JUN 30 0.0 Dem_2 1980 JUN 30 0.0 Dem_2	0.0 0.0 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0 60.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 500.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 500.0 0.0 0.0 0.0 500.0 0.0 500.0 0.0 0.0 0.0 500.0
Res_1 0.0 12000.0	Res_1 0.0 0.0 0.0 3000.0	1980 TOT -1 0.0 0.0 0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 15000.0	0.0	0.0	0.0	0.0 0.0

Station In/Out From River By From Carrier By

Carried

			Total CU					From		
or E River	rom Total To River River	otal CU Avail Control	To To Control	tal	Ups	trm Re	ach Ret	urn W	ell From	ı/To River
Structu Exchang Inflow	are River g SoilM Supply		Demand Demand CU SoilM	Priorty Return ight		Exc_Pln Inflow			-	Sto_Exc Loss GW Stor
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA	NA NA NA NA NA NA	(+) NA	(+) NA	(+)((-)	(+)	(+)	(+)((-)
(11)	(12) (13) (27) (28)	(14) (15)	(1) (2) (16) (17) (31)	(3)	(4)	(5) (20)	(6) (21)	(7) (22)	(8)	(9) (10) (24) (25)
Res_1 0.0 -72.0	Res_1 0.0 0.0 0.0 168.8	1980 JUL 1 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 -77.8	Res_1 0.0 0.0 0.0 174.6	1980 JUL 2 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.1	Res_1 0.0 0.0 0.0 174.9	1980 JUL 3 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 4 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 5 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 6 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 7 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 8 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 9 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 10 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 11 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
-78.3 Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 12 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0	1980 JUL 13 0.0 0.0	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	0.0 0.0		0.0 0.0	0.0	0.0	96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	0.0 0.0		0.0 0.0 0.0 0.0 100.000							0.0 0.0 0.0 96.8
Res_1	Res_1	1980 JUL 16	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
-78.3 Res_1 0.0	0.0 175.1 Res_1 0.0 0.0 0.0 175.1	1980 JUL 17	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
-78.3 Res_1 0.0 -78.3	0.0 175.1 Res_1 0.0 0.0 0.0 175.1	1980 JUL 18	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
-78.3 Res_1 0.0 -78.3	0.0 175.1 Res_1 0.0 0.0 0.0 175.1	1980 JUL 19	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
-78.3 Res_1 0.0 -78.3	Res_1 0.0 0.0	1980 JUL 20	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 JUL 21 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8

Res_1	Res_1 0.0 0.0	1980 JUL 22 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
-78.3	0.0 175.1	0.0 ISF	100.000						
Res_1	Res_1	0.0 ISF 1980 JUL 23	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
-78.3	0.0 175.1	0.0 ISF	100.000						
Res 1	Res 1	1980 JUL 24	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0				0.0 96.8				
-78.3	0.0 175.1	0.0 ISF	100.000						
Res 1		1980 JUL 25		0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0		0.0 0.0							
-78.3	0.0 175.1	0.0 ISF	100.000						
Res 1	Pog 1	1980 JUL 26	0 0 0 0	0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0	0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0
	0.0 175.1	0.0 0.0	100 0.0	0.0	0.0 90.8	0.0	0.0	0.0	0.0 90.0
Res 1	Pag 1	0.0 ISF 1980 JUL 27	0 0 0 0	0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0	0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0
		0.0 ISF		0.0	0.0 50.0	0.0	0.0	0.0	0.0 50.0
Res 1		1980 JUL 28		0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0	0.0 0.0				0.0 96.8				
		0.0 ISF		0.0	0.0 50.0	0.0	0.0	0.0	0.0 50.0
Res 1		1980 JUL 29	0 0 0 0	0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0		0.0 0.0							
	0.0 175 1	0.0 TSF	100 000	0.0	0.0 30.0	0.0	0.0	0.0	0.0 50.0
Res 1	Res 1	0.0 ISF 1980 JUL 30	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0 0 0 0	0.0 0.0	0.0 0.0	0 0	0.0 96.8	0.0	0 0	0 0	0.0 96.8
	0.0 175 1	0.0 ISF	100 000	0.0	0.0 30.0	0.0	0.0	0.0	0.0 30.0
, 0.5	0.0 1/5.1	0.0 101	100.000						
		1980 JUL 31							
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0 96.8
-78.3	0.0 175.1	0.0 ISF	100.000						
Res_1	Res_1	1980 TOT -1 0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 3000.0	0.0	0.0	0.0	0.0 3000.0 -
2420.5	0.0 5420.5	0.0 NA	-1.000						

Shortage Carried		Water Use						Balance Carrier	Ву				
					Total CU					Exam			
or F	From Tota	al To	tal CU					strm Re				n/To Ri	ver
	ure River				Demand Demand			Exc_Pln s Inflow				Sto_Exc GW Stor	
	-	y Well			Location R	_							
ID (+) (-)		NA (+)	Year Mo D NA NA NA NA	ay	NA NA NA NA	(+) NA	(+) NA		(+)	(+)		(+)((+)
(11)	(12)	(13)	(14) (15) (29) (30)		(1) (2) (16) (17) (31)			(5)			(8)		(10) (25)
Res_1 0.0		0.0	1980 AUG 0.0 0.0	1	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0 96.8
-78.3 Res 1	0.0 1 Res 1	175.1 1	0.0 ISF 1980 AUG	2	100.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		0.0	0.0 0.0		0.0 0.0	0.0	0.0	96.8	0.0	0.0	0.0	0.0	96.8
-78.3 Res 1	0.0 1 Res 1	175.1 1	0.0 ISF 1980 AUG	3	100.000	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 175.1	0.0 0.0 0.0 ISF	-	0.0 0.0	0.0	0.0		0.0	0.0	0.0		96.8
Res_1	Res_1	1	1980 AUG	4	0.0 0.0	0.0		0.0	0.0	0.0			
0.0 -78.3		0.0 175.1	0.0 0.0 0.0 ISF		0.0 0.0	0.0	0.0	96.8	0.0	0.0	0.0	0.0	96.8
Res_1	Res_1		1980 AUG	5	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 -78.3		0.0 175.1	0.0 0.0 0.0 ISF		0.0 0.0 100.000	0.0	0.0	96.8	0.0	0.0	0.0	0.0	96.8
Res_1	Res_1	1	1980 AUG	6	0.0 0.0	0.0		0.0				0.0	0.0
0.0 -78.3		0.0 175.1	0.0 0.0 0.0 ISF		0.0 0.0	0.0	0.0	96.8	0.0	0.0	0.0	0.0	96.8
Res_1 0.0	Res_1		1980 AUG 0.0 0.0	7	0.0 0.0	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0 96.8
-78.3		175.1	0.0 ISF	0	100.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Res_1 0.0 -78.3		0.0 175.1	1980 AUG 0.0 0.0 0.0 ISF	8	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	
Res_1 0.0 -78.3	Res_1		1980 AUG 0.0 0.0 0.0 ISF	9	0.0 0.0 0.0 0.0 100.000	0.0	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0 96.8

Res_1 0.0 -78.3			0.0 0.0 0.0 0.0 100.000							
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 11 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0		0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 12 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 13 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 14 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 15 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 16 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 17 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 18 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 19 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 20 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 21 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 22 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 23 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 24 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 25 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0		
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 26 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8		0.0	0.0	0.0 0.0 0.0 96.8	
Res_1	Res_1	1980 AUG 27	0.0 0.0						0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 28 0.0 0.0 0.0 TSF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78 3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 29 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	0.0 0.0 0.0 175.1 Res_1 0.0 0.0 0.0 175.1 Res_1 0.0 0.0 0.0 175.1 Res_1 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1	1980 AUG 30 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8	
Res_1 0.0 -78.3	Res_1 0.0 0.0 0.0 175.1	1980 AUG 31 0.0 0.0 0.0 ISF	0.0 0.0 0.0 0.0 100.000	0.0	0.0 0.0 0.0 96.8	0.0	0.0	0.0		
	Res_1 0.0 0.0 0.0 5427.5				0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 3000.0 -	
2427.5	0.0 5427.5	U.O NA	-1.000							
Shortage Water Use			Station In/Out From River By					Station Balance From Carrier By		
Carried										
or F River	rom Total To River River	tal CU Avail Control	To To Control	tal	Upstrm R	each Ret	urn W	Jell From	n/To River	

) (25)
(1) (2) (3) (4) (5) (6) (7) (8) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (26) (27) (28) (29) (30) (31)) (25)
Res 1 Res 1 1980 SEP 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0	
Res_1 Res_1 1980 SEP 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	100.0
Res_1 Res_1 1980 SEP 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	100.0
-76.8	0.0 0.0
-76.6 0.0 176.6 0.0 ISF 100.000 Res_1 Res_1 1980 SEP 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0	100.0
Res_1 Res_1 1980 SEP 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	100.0
Res_1 Res_1 1980 SEP 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	100.0
	100.0
Res_1 Res_1 1980 SEP 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	100.0
	100.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0
-76.6 0.0 176.6 0.0 ISF 100.000 Res_1 Res_1 1980 SEP 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0
-76.6	0.0 0.0
-76.6 0.0 176.6 0.0 ISF 100.000 Res_1 Res_1 1980 SEP 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0	100.0
Res_1 Res_1 1980 SEP 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Res_1 Res_1 1980 SEP 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	100.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0
	0.0 0.0
-76.6 0.0 176.6 0.0 ISF 100.000 Res_1 Res_1 1980 SEP 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0
Res_1 Res_1 1980 SEP 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100.0
Res_1 Res_1 1980 SEP 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0
-76.6 0.0 176.6 0.0 ISF 100.000 Res_1 Res_1 1980 SEP 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0

Res_1													0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 10	0.0	0.0	0.0	0.0	0.0 100	. 0
-76.6	0.0	176.6	0.0	ISF	100.	000								
Res_1	Res	_1	1980	SEP 26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 10	0.0	0.0	0.0	0.0	0.0 100	. 0
-76.6	0.0	176.6	0.0	ISF	100.	000								
Res_1	Res	_1	1980	SEP 27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 10	0.0	0.0	0.0	0.0	0.0 100	.0
-76.6	0.0	176.6	0.0	ISF	100.	000								
Res_1	Res	_1	1980	SEP 28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 10	0.0	0.0	0.0	0.0	0.0 100	1.0
-76.6	0.0	176.6	0.0	ISF	100.	000								
Res_1	Res	_1	1980	SEP 29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 10	0.0	0.0	0.0	0.0	0.0 100	.0
-76.6	0.0	176.6	0.0	ISF	100.	000								
Res_1	Res	_1	1980	SEP 30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 10	0.0	0.0	0.0	0.0	0.0 100	.0
-76.6	0.0	176.6	0.0	ISF	100.	000								
Res_1	Res	_1	1980	TOT -1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 300	0.0	0.0	0.0	0.0	0.0 3000	.0 -
2299.3	0.0	5299.3	0.0) NA	-1	.000								

Diversion Summary ACFT
ST St499499499Dem_499499499Irrigation Demand _2 Dem_Exist. Diver. 2 Dem_Exis

t. Diver. 2

STRUCTURE DATA # cfs af@30 af@31 1 1 Diversion Capacity Diversion Rights Well Capacity Well Rights 297525. 307442. 5000. 3570. 3689. 60. : 1 0. 0. 0. 0 0. 0. 0.

Shortag	Shortage Water Use		Station In/Out From River By						Station Balance From Carrier		Ву
Carried	l										
			Total CU					From			
or F	rom Total To	otal CU Avail Control	To To	otal	Ups	trm Re	ach Ret	urn W		/To Ri	ver
River	River River	Avail Control	Control								
Structu	re River		Demand Demand	Priorty	Storage	Exc_Pln	Loss	Well		Sto_Exc	
		/ Short Short		1 Return	Loss	Inflow	Gain	Flow	Deplete	GW Stor	
		Outflow Flow I		Right	(.)	(.) (()	(.)	(.)	(.) (()
ID (+)	ID NA NA	Year Mo Day NA NA	NA NA	(+) NA	(+) NA		(-)		(+)	(+)(
(+)	(-) (+)	NA NA	NA NA NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-) (+)	NA NA	(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12) (13)	(14) (15)	(16) (17)			(20)			(23)		(25)
(26)	(27) (28)		(31)	(10)	(= >)	(20)	(21)	(22)	(23)	(21)	(23)
Dem_2	Dem_2	1979 OCT 1	96.8 48.4		10.8	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 96.8		18.4 0.0	48.4	0.0 1	32.5	0.0	0.0	0.0	0.0 1	32.5
96.8	0.0 35.8	0.0 Dem_1	100.000								
Dem_2	Dem_2	1979 OCT 2		96.8		0.0	0.0	0.0	0.0	0.0	
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 4 0.0 Hgate_Limit	1 000	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.6 Dem 2	Dem 2	1979 OCT 3		96.8	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8		18.4 0.0	48.4	0.0		0.0	0.0	0.0		
96.8	0.0 0.0	0.0 Hgate_Limit		10.1	0.0	50.0	0.0	0.0	0.0	0.0	,,,,
Dem 2	Dem 2			96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8		18.4 0.0	48.4	0.0		0.0	0.0	0.0	0.0	96.8
96.8	0.0 0.0	0.0 Hgate_Limit	-1.000								
Dem_2	Dem_2	1979 OCT 5	96.8 48.4	96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8	0.0 0.0 4	18.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8	0.0 0.0	0.0 Hgate_Limit	-1.000								
_											
Dem_2	Dem_2 0.0 96.8	1979 OCT 6				0.0	0.0	0.0	0.0		
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 4 0.0 Hgate Limit		48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8 Dem 2	Dem 2	1979 OCT 7		96.8	0 0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8		18.4 0.0	48.4		96.8	0.0	0.0	0.0	0.0	
96.8	0.0 0.0	0.0 Hgate Limit		10.1	0.0	50.0	0.0	0.0	0.0	0.0	,,,,
Dem 2	Dem 2	1979 OCT 8		96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8		18.4 0.0	48.4	0.0		0.0	0.0	0.0		96.8
96.8	0.0 0.0	0.0 Hgate_Limit									
Dem_2	Dem_2	1979 OCT 9		96.8		0.0	0.0		0.0	0.0	0.0
0.0	0.0 96.8		18.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8	0.0 0.0	0.0 Hgate_Limit	-1.000								

Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0		4 96.8 48.4	0.0 0.0 0.0 96.8				0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 11 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 12 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 13 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4		0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 14 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4		0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 15 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 16 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0		
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 17 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 OCT 18 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4		0.0		0.0	0.0 0.0
Dem_2 0.0 96.8 Dem 2	Dem_2 0.0 96.8 0.0 0.0 Dem_2	1979 OCT 19 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 OCT 20 96.8 48.	48.4		0.0		0.0	0.0 0.0
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 96.8		0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8		1979 OCT 21 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 96.8
Dem_2 0.0 96.8		1979 OCT 22 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8 Dem_2	Dem_2 0.0 96.8 0.0 0.0 Dem_2	1979 OCT 23 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 OCT 24 96.8 48.	48.4	0.0 96.8	0.0		0.0	0.0 0.0 0.0 96.8
0.0 96.8 Dem_2	0.0 96.8	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 OCT 25 96.8 48.	48.4	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0		0.0 96.8
Dem_2 0.0 96.8		0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8 Dem 2	0.0 96.8	1979 OCT 27 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 OCT 28 96.8 48.	48.4	0.0 96.8	0.0	0.0	0.0	
0.0 96.8 Dem 2	0.0 96.8	0.0 0.0 48.4 0.0 0.0 Hgate Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 96.8 Dem_2	0.0 0.0	1979 OCT 29 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 OCT 30 96.8 48. 0.0 0.0 48.4 0.0						
0.0 96.8	0.0 0.0	0.0 Hgate_Limit -1.000						
96.8	0.0 0.0	1979 OCT 31 96.8 48. 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
					0.0	0.0	0.0	0.0 0.0
0.0	0.0 3000.0	1980 TOT -1 3000.0 1500. 0.0 0.0 1500.0 0.0 0.0 NA -1.000	1500.0	0.0 3035.8	0.0	0.0	0.0	0.0 3035.8
Shortag	ge	Water Use	Statio	on In/Out From River Ry		S	tation B	alance Carrier By
Carried								
or F River	From Total To River River	Total Cotal Cotal Cotal Control	Total	Upstrm Re	ach Ret	rrom urn W	ell From	/To River

	Demand Demand Priort y Short Short CU SoilM Retu Outflow Flow Location Right	y Storage Exc_Pln Loss rn Loss Inflow Gair		
ID ID (+) NA NA (-) (-) (+)	Year Mo Day NA NA (+ NA NA NA NA NA NA NA NA NA) (+) (+)((-) NA (+) (+)	(+) (+)	(+)((-)
(11) (12) (13) (26) (27) (28)	(14) (15) (16) (17) (18) (29) (30) (31)	(19) (20) (6) (19) (20) (21)	(7) (8) (22) (23)	(9) (10) (24) (25)
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 1 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 100.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 2 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 100.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 3 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 4 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 5 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 6 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate Limit -1.000	0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 7 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate Limit -1.000	0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0 100.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 8 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0 100.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 9 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 10 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 11 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 100.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 12 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 100.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 13 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 100.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 14 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 100.0 0.0	0.0 0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	-	0.0 100.0 0.0	0.0 0.0	0.0 100.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 16 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000			
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 17 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000			
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 18 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000			
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 19 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate Limit -1.000			
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 20 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000			
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 21 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0 0.0 0.0 0.0 0.0		
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 22 100.0 50.0 100.	0 0.0 0.0 0.0 0.0		0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1979 NOV 23 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000			0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0	1979 NOV 24 100.0 50.0 100. 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000			

Carried							———					-
Shortag	e	Water Use				n In/Out From Riv				tation B From		r Dir
Dem_2 0.0 3000.0	Dem_2 0.0 3000.0 0.0 0.0		1500.0	0.0 19								0.000.0
0.0 100.0		0.0 0.0 0.0 Hgate_			50.0	0.0 10	0.0	0.0	0.0	U.U	0.0	100.0
_	Dem_2 0.0 100.0	1979 NOV 0.0 0.0										
		0.0 Hgate_										
0.0	0.0 100.0	0.0 0.0	50.0	0.0	50.0	0.0 10	0.0	0.0	0.0	0.0	0.0	100.0
Dem_2		1979 NOV			100.0	0.0	0.0	0.0	0.0	0.0	0.0	0
100.0		0.0 Hgate			30.0	0.0 10	0.0	0.0	0.0	0.0	0.0	100.0
0.0	0.0 100.0	0.0 0.0										
100.0 Dem 2		0.0 Hgate_ 1979 NOV			100 0	0 0	0 0	0 0	0 0	0 0	0 0	0
0.0	0.0 100.0	0.0 0.0			50.0	0.0 10	0.0	0.0	0.0	0.0	0.0	100.0
Dem_2		1979 NOV									0.0	
100.0		0.0 Hgate_										
0.0	0.0 100.0		50.0									
Dem 2	Dem 2	1979 NOV	26 100 0	50 0	100 0	0 0	0 0	0 0	0 0	0 0	0 0	0
100.0	0.0 0.0	0.0 Hgate_	Limit -1.	.000								
0.0	0.0 100.0		50.0									
Dem 2	Dem 2	1979 NOV	25 100 0	50.0	100 0	0 0	0 0	0 0	0 0	0 0	0.0	0

			Total CII					From			
or F	rom Total To River River	tal CU	To To	tal	Ups	strm Re	ach Ret	urn W	ell From	ı/To Ri	ver
River	River River	Avail Control	Control	D	Q+	Die Die	T	1/1 a 1 1	D	C+	T
	ıre River ; SoilM Supply	Short Short									
Inflow	Divert by Well	Outflow Flow	Location F	r Kecuri Riaht	1 105	5 IIIIIOW	Gain	FIOW	Depicee	GW DCOI	
ID	Divert by Well	Year Mo Day	NA NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA NA	NA NA	NA NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-) (+)	NA NA	NA								
(11)	(10) (12)	(14) (15)	(1) (2)		(4)		(6)	(7)	(8)	(9)	(10)
(11) (26)		(14) (15) (29) (30)		(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(20)	(27) (20)	(25) (50)	(31)								
D 0		1070 PEG 1	06.0 40.4		0 0	0 0	0 0	0.0	0 0	0 0	0 0
Dem_2 0.0	Dem_2 0.0 96.8		48.4 0.0						0.0		0.0
96.8		0.0 Hgate_Limi		10.1	0.0	30.0	0.0	0.0	0.0	0.0	50.0
Dem_2	Dem_2	1979 DEC 2		96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8			48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8		0.0 Hgate_Limi		06.0	0 0	0 0	0 0	0.0	0.0	0 0	0 0
Dem_2 0.0	Dem_2 0.0 96.8	1979 DEC 3 0.0 0.0	48.4 0.0	48.4	0.0	0.0	0.0	0.0	0.0		0.0
96.8		0.0 Hgate Limi		10.1	0.0	30.0	0.0	0.0	0.0	0.0	90.0
Dem_2	Dem_2	1979 DEC 4		96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8		48.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8		0.0 Hgate_Limi									
Dem_2 0.0	Dem_2 0.0 96.8	1979 DEC 5 0.0 0.0									
96.8	0.0 90.0	0.0 Hgate Limi		10.1	0.0	30.0	0.0	0.0	0.0	0.0	90.0
		-									
Dem_2	Dem_2		96.8 48.4								
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0		48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8 Dem_2	0.0 0.0 Dem 2	0.0 Hgate_Limi 1979 DEC 7		96.8	0 0	0 0	0 0	0 0	0.0	0 0	0.0
0.0	0.0 96.8		48.4 0.0					0.0	0.0	0.0	
96.8	0.0 0.0	0.0 Hgate_Limi									
Dem_2	Dem_2	1979 DEC 8				0.0	0.0	0.0	0.0		0.0
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 0.0 Hgate Limi	48.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
Dem_2	Dem_2		96.8 48.4	96.8	0 0	0.0	0.0	0.0	0.0	0 0	0.0
0.0	0.0 96.8		48.4 0.0			96.8	0.0	0.0	0.0		96.8
96.8	0.0 0.0	0.0 Hgate_Limi									
Dem_2	Dem_2		96.8 48.4			0.0		0.0			
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 0.0 Hgate_Limi	48.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
90.8	0.0 0.0	0.0 Hgate_LIMI	L -1.000								
Dem_2	Dem_2	1979 DEC 11	96.8 48.4	96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8		48.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8	0.0	0.0 Hgate_Limi		0.5			0 0		0 0		0 0
Dem_2 0.0	Dem_2 0.0 96.8	1979 DEC 12 0.0 0.0	96.8 48.4				0.0	0.0	0.0	0.0	0.0
96.8	0.0 96.8	0.0 Hgate Limi		40.4	0.0	20.0	0.0	0.0	0.0	0.0	20.0
Dem_2	Dem_2	1979 DEC 13		96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 96.8	0.0 0.0		48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8	0.0 0.0	0.0 Hgate_Limi	t -1.000								

Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 DEC 14 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0		0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	0.0 96.8	1979 DEC 15 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 DEC 16 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8		1979 DEC 17 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8		1979 DEC 18 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8 Dem 2	$ \begin{array}{cccc} 0.0 & 96.8 \\ 0.0 & 0.0 \end{array} $	1979 DEC 19 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 DEC 20 96.8 4:	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0
0.0 96.8	0.0 96.8	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000					0.0	
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 DEC 21 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8		1979 DEC 22 96.8 40 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0		0.0 0.0
Dem_2 0.0 96.8		1979 DEC 23 96.8 4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0		
Dem_2 0.0 96.8 Dem_2	Dem_2 0.0 96.8 0.0 0.0 Dem_2	1979 DEC 24 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 DEC 25 96.8 4:	48.4	0.0 96.8	0.0	0.0		0.0 96.8
0.0 96.8	0.0 96.8	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1979 DEC 26 96.8 4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0		0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8		1979 DEC 27 96.8 4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0			0.0 96.8
Dem_2 0.0 96.8 Dem 2	Dem_2 0.0 96.8 0.0 0.0 Dem_2	1979 DEC 28 96.8 4: 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 DEC 29 96.8 4:	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0
0.0 96.8 Dem 2	0.0 96.8	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000 1979 DEC 30 96.8 49	48.4	0.0 96.8	0.0	0.0	0.0	0.0 96.8
0.0 96.8	0.0 96.8 0.0 0.0	0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 96.8
Dem_2 0.0 96.8	0.0 0.0	1979 DEC 31 96.8 40 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4		0.0	0.0		
Dem_2	Dem_2 0.0 3000.0	1980 TOT -1 3000.0 150 0.0 0.0 1500.0 0.0	0.0 3000.0 1500.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
3000.0	0.0 0.0	0.0 NA -1.000						

Shortage Water Use			Station In/Out From River By					:	Station Balance From Carrier By					
Carried	l													
				-	Total	CU					From			
or F	rom T	otal T	otal	CU		To T	otal	Ups	trm Re	ach Ret	urn 1	Well From	n/To Ri	ver
River	River	River	Avail C	ontrol	Cont	rol								
Structu	ıre Ri	ver			Demand	Demand	Priorty	Storage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang	Soil	M Suppl	y Short	Short	CU	Soil	M Return	Loss	Inflow	Gain	Flo	w Deplete	e GW Stor	
Inflow	Divert	by Well	Outflow	Flow	Location		Right							
ID	II)	Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA NA	L	N	A								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (3	0)	(3	1)								

Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 1 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 2 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 3 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 4 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 5 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 6 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 7 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 8 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 9 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 10 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 11 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 12 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 13 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 14 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 15 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 16 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8	1980 JAN 17 96.8 48.4		0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 18 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 19 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 20 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 21 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000					0.0	
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 22 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 23 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 24 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 25 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 26 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 JAN 27 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						0.0 0.0

0.0 0.0 96.8 96.8 0.0 0.0 Dem_2 Dem_2 0.0 96.8 96.8 0.0 0.0 Dem_2 Dem_2 0.0 96.8 96.8 0.0 0.0 Dem_2 Dem_2 Dem_2 0.0 0.0 96.8 96.8 0.0 0.0 Dem_2	1980 JAN 28 96.8 48.4 0.0 0.0 48.4 0.0 48. 0.0 Hgate_Limit -1.000 1980 JAN 29 96.8 48.4 0.0 0.0 48.4 0.0 48. 0.0 Hgate_Limit -1.000 1980 JAN 30 96.8 48.4 0.0 0.0 48.4 0.0 48. 0.0 Hgate_Limit -1.000 1980 JAN 31 96.8 48.4 0.0 0.0 48.4 0.0 48. 0.0 Hgate_Limit -1.000 1980 JAN 31 96.8 48.4 0.0 0.0 48.4 0.0 48. 0.0 Hgate_Limit -1.000 1980 JAN 31 96.8 38.4 0.0 0.0 1500.0 1500.0 30 0.0 0.0 1500.0 0.0 1500.0 30 0.0 0.0 1500.0 0.0 1500.0 0.0	4 0.0 96.8 96.8 0.0 0.0 4 0.0 96.8 96.8 0.0 0.0 4 0.0 96.8 96.8 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 96.8 0 0.0 0.0 0.0 96.8 0 0.0 0.0 0.0 96.8 0 0.0 96.8
Shortage	Water Use S	tation In/Out From River By		Statior F1	ı Balance com Carrier By
or From Total To River River River Structure River	Total CU otal CU To Total Avail Control Control Demand Demand Pri	Upstrm Re	each Retu	rn Well Fr	com/To River
Exchang SoilM Supply	y Short Short CU SoilM R Outflow Flow Location Righ	eturn Loss Inflow	. Gain	Flow Deple	ete GW Stor
	NA NA NA	A NA (+)		(+) (-)	(+) (+) (-)
(11) (12) (13)	(_ / , (_ / ,	(3) (4) (5) 3) (19) (20)		(7) (8 (22) (23)	
0.0 0.0 107.1 107.1 0.0 0.0 Dem_2 Dem_2 0.0 107.1 107.1 0.0 0.0 Dem_2 Dem_2 0.0 0.0 107.1 107.1 0.0 0.0 Dem_2 Dem_2 0.0 0.0 107.1 107.1 0.0 0.0 107.1 107.1	1980 FEB 1 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 2 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 3 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 4 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 4 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 5 107.1 53.6 1	0.0 107.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1 0.7.1 0.0 0.0 0.0 107.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 107.1 0 0.0 0.0 0.0 107.1 0 0.0 0.0
Dem_2 Dem_2 0.0 107.1 107.1 0.0 0.0 Dem_2 Dem_2 0.0 0.0 107.1 107.1 0.0 Dem_2 Dem_2 0.0 107.1 107.1 107.1 0.0 0.0 Dem_2 0.0 Dem_2 Dem_2 0.0 107.1 107.1 0.0 0.0 107.1 0.0 0.0 Dem_2 0.0 107.1 107.1 0.0 0.0 107.1 0.0 0.0 107.1 0.0 0.0 0.0	1980 FEB 11 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 12 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 13 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 14 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 14 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000 1980 FEB 15 107.1 53.6 1 0.0 0.0 53.6 0.0 53. 0.0 Hgate_Limit -1.000	0.0 107.1 07.1 0.0 0.0 0.0 107.1 07.1 0.0 0.0 0.0 107.1 07.1 0.0 0.0 0.0 107.1	0.0 0.0 0.0 0.0 0.0 0.0		0.0 107.1 0 0.0 0.0 0.0 107.1 0 0.0 0.0 0.0 107.1 0 0.0 0.0 0.0 107.1

0.0 0.0 107.1 107.1 0.0 0.0 Dem_2 0.0 107.1 107.1 0.0 0.0 107.1 107.1 0.0 0.0 107.1 107.1 0.0 0.0 0.0 107.1 107.1 0.0 0.0 0.0	1980 FEB 16 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 17 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 18 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 19 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 19 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 20 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000	53.6 107.1 53.6 107.1 53.6 107.1 53.6	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0
Dem_2 Dem_2 0.0 107.1 107.1 0.0 0.0 Dem_2 Dem_2 0.0 107.1 0.0 0.0 Dem_2 Dem_2 0.0 Dem_2 Dem_2 0.0 107.1 0.0 0.0 Dem_2 Dem_2 0.0 Dem_2 Dem_2 0.0 0.0 107.1 1	0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 24 107.1 53.6 0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 25 107.1 53.6	53.6 107.1 53.6 107.1 53.6 107.1 53.6	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1
Dem_2 Dem_2 0.0 0.0 107.1 107.1 0.0 0.0	0.0 0.0 53.6 0.0 0.0 Hgate_Limit -1.000 1980 FEB 28 107.1 53.6	53.6 107.1 53.6 107.1 53.6	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0 0.0 107.1	0.0	0.0	0.0	0.0 107.1 0.0 0.0 0.0 107.1 0.0 0.0
Dem_2 Dem_2 0.0 0.0 3000.0	1980 TOT -1 3000.0 1500.0 0.0 1.0 0.0 0	3000.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 3000.0	1980 TOT -1 3000.0 1500.0 0.0 0.0 1500.0 -1.000	3000.0	0.0 0.0	0.0	0.0	0.0	0.0 3000.0
Dem_2 Dem_2 0.0 0.0 3000.0 3000.0 0.0 0.0 Shortage Carried or From Total To	1980 TOT -1 3000.0 1500.0 0.0 0.0 1500.0 0.0 1 0.0 NA	3000.0 Statio Dtal Priorty M Return Right (+) NA (3) (18)	0.0 0.0 0.0 0.0 0.0 0.0 3000.0 n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (5)(19) (20)	ach Ret Loss Gain (-) (+) (6) (21)	From wrn Well Flow (+) (22)	tation B From ell From Priorty Deplete (+) (-) (8)	0.0 3000.0 Salance Carrier By VTO River Sto_Exc Loss GW Stor (+)((-)(+)(+)(+)(+)(-)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)

Dem_2 0.0	Dem_2 0.0 96.8	1980 MAR 6 96.8 48.4 96.8 0.0 0.0 48.4					
96.8 Dem_2 0.0 96.8	0.0 0.0 Dem_2 0.0 96.8 0.0 0.0	0.0 Hgate_Limit -1.000 1980 MAR 7 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000		0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 8 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate Limit -1.000		0.0		0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 9 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000		0.0		0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 10 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000				0.0	
Dem_2	Dem_2 0.0 96.8 0.0 0.0		0.0 0.0 0.0 96.8	0.0	0.0		0.0 0.0 0.0 96.8
96.8 Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	0.0 Hgate_Limit -1.000 1980 MAR 12 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 13 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8	1980 MAR 14 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 15 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 96.8
Dem_2	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 16 96.8 48.4 96.8 0.0 0.0 48.4	0.0 0.0	0.0	0.0	0.0	0.0 0.0
96.8 Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	0.0 Hgate_Limit -1.000 1980 MAR 17 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 18 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 19 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 20 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000				0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 21 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8		0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8	1980 MAR 22 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 23 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 24 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 25 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 26 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 0.0 0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 27 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 28 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 29 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 96.8	0.0	0.0	0.0	0.0 96.8
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 0.0	1980 MAR 30 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000					
Dem_2 0.0 96.8	0.0 96.8 0.0 0.0	1980 MAR 31 96.8 48.4 96.8 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 96.8	0.0	0.0	0.0	0.0 0.0 0.0 96.8

Shortage Water Use Station In/Out Station Balance From River By From Carrier By

					From Rive	er By			From	Carrier I	Зу
Carried											
or F	rom Total To	otal CU	Total CU		Upsti	rm Rea	ach Ret	From urn W	 Well From	/To Rive	
River	River River	otal CU Avail Control	Control								_
Exchang	re River SoilM Supply	y Short Short	CU Soil	M Return	Loss						
Inflow	Divert by Well	Outflow Flow L Year Mo Day	ocation I	Right (+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA NA	NA NA	NA NA	NA						(+)	
(-)	(-) (+)	NA NA	NA (1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11) (26)	(12) (13) (27) (28)	(14) (15) (29) (30)	(16) (17) (31)	(18)	(19)	(20)	(21)	(22)	(23)		(25)
								-			
Dem_2 0.0	Dem_2 0.0 100.0		100.0 50.0 50.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
100.0	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_2 0.0	Dem_2 0.0 100.0	0.0 0.0 5	100.0 50.0 50.0 0.0		0.0 100		0.0	0.0	0.0	0.0	
100.0 Dem_2	0.0 0.0 Dem_2	0.0 Hgate_Limi 1980 APR 3	t -1.000 100.0 50.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 100.0	0.0 0.0 5	0.0		0.0 100		0.0	0.0	0.0	0.0 100	
100.0 Dem_2	0.0 0.0 Dem_2		100.0 50.0			0.0	0.0	0.0	0.0	0.0	0.0
0.0 100.0	0.0 100.0 0.0	0.0 0.0 5 0.0 Hgate_Limi	50.0 0.0 t -1.000	50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	0.0
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 5	100.0 50.0 50.0 0.0		0.0 0.0 100		0.0	0.0	0.0	0.0	
100.0	0.0 0.0	0.0 Hgate_Limi		50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	J. U
Dem_2	Dem_2	1980 APR 6	100.0 50.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 100.0 0.0 0.0	0.0 0.0 5 0.0 Hgate_Limi	50.0 0.0 + -1 000	50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	0.0
Dem_2	Dem_2	1980 APR 7	100.0 50.0				0.0	0.0	0.0	0.0	0.0
0.0 100.0	0.0 100.0 0.0 0.0	0.0 0.0 5 0.0 Hgate_Limi	50.0 0.0 t -1.000	50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	0.0
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 8 0.0 0.0 5	100.0 50.0 50.0 0.0	100.0 50.0	0.0 0.0 100		0.0	0.0	0.0	0.0	0.0
100.0	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 9 0.0 0.0 5	100.0 50.0	50.0	0.0		0.0	0.0	0.0	0.0	0.0
100.0 Dem_2	0.0 0.0 Dem_2	0.0 Hgate_Limi 1980 APR 10		100 0	0.0	0 0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 100.0	0.0 0.0 5	0.0		0.0 100		0.0	0.0	0.0	0.0 100	
100.0	0.0 0.0	0.0 Hgate_Limi									
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 11 0.0 0.0 5	100.0 50.0 50.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	
100.0		0.0 Hgate_Limi 1980 APR 12	t -1.000								
Dem_2 0.0	Dem_2 0.0 100.0	0.0 0.0 5	0.0	100.0 50.0	0.0 100		0.0	0.0	0.0	0.0	0.0
100.0 Dem_2	0.0 0.0 Dem 2	0.0 Hgate_Limi 1980 APR 13	t -1.000 100.0 50.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 100.0	0.0 100.0 $0.0 0.0$	0.0 0.0 5 0.0 Hgate_Limi	0.0	50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	0.0
Dem_2	Dem_2	1980 APR 14	100.0 50.0								
0.0 100.0	0.0 100.0 0.0 0.0	0.0 0.0 5 0.0 Hgate_Limi		50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	0.0
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 15 0.0 0.0 5									
100.0	0.0 0.0	0.0 Hgate_Limi		30.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	
Dem_2	Dem_2	1980 APR 16	100.0 50.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 100.0	0.0 100.0 0.0 0.0	0.0 0.0 5 0.0 Hgate Limi		50.0	0.0 100	0.0	0.0	0.0	0.0	0.0 100	0.0
Dem_2	Dem_2	1980 APR 17	100.0 50.0						0.0		
0.0 100.0	0.0 100.0 0.0 0.0	0.0 0.0 5 0.0 Hgate_Limi	t -1.000		0.0 100			0.0	0.0	0.0 100	
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 18 0.0 0.0 5			0.0				0.0	0.0	
100.0	0.0 0.0	0.0 Hgate_Limi	t -1.000								
Dem_2 0.0	Dem_2 0.0 100.0	1980 APR 19 0.0 0.0 5	0.0		0.0					0.0	
100.0 Dem_2	0.0 0.0 Dem_2	0.0 Hgate_Limi 1980 APR 20		100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 100.0	0.0 0.0 5	0.0		0.0 100						
100.0	0.0 0.0	0.0 Hgate_Limi	-1.000								

Dem_2	Dem_2	1980	APR 2	100.0	50.0	100.0	0.	.0 0	0.0	0.0	0.0	0.0	0.	0	0.0
0.0	0.0 100.0	0.0	0.0	50.0	0.0	50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0	0.0	Hgate_L:	imit −1.	000										
Dem_2	Dem_2	1980	APR 22	100.0	50.0	100.0	0.	.0 0	0.0	0.0	0.0	0.0	0.	0	0.0
0.0	0.0 100.0	0.0	0.0	50.0	0.0	50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0	0.0	Hgate_L:	imit −1.	000										
Dem_2	Dem_2	1980	APR 23	3 100.0	50.0	100.0	0.	.0 0	0.0	0.0	0.0	0.0	0.	0	0.0
0.0	0.0 100.0	0.0	0.0	50.0	0.0	50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0	0.0	Hgate_L:	imit −1.	000										
Dem_2	Dem_2	1980	APR 24	100.0	50.0	100.0	0.	.0 0	0.0			0.0	0.	0	0.0
0.0	0.0 100.0	0.0	0.0	50.0	0.0	50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0	0.0	Hgate_L:	imit −1.	000										
Dem_2	Dem_2	1980	APR 25	100.0	50.0	100.0	0.	.0 0	0.0	0.0	0.0	0.0	0.	0	0.0
0.0	0.0 100.0	0.0	0.0	50.0	0.0	50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0	0.0	Hgate_L:	imit −1.	.000										
Dem_2	Dem_2			100.0								0.0			
0.0	0.0 100.0	0.0	0.0	50.0	0.0	50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0			imit −1.											
Dem_2	Dem_2			7 100.0									0.		
0.0	0.0 100.0			50.0		50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0				imit -1.											
Dem_2	Dem_2			3 100.0									0.		
0.0	0.0 100.0			50.0		50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0				imit -1.											
Dem_2	Dem_2			100.0									0.		
0.0	0.0 100.0			50.0		50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	. 0
100.0				imit -1.											
Dem_2				100.0									0.		
0.0	0.0 100.0			50.0		50.0	0.0	100.0		0.0	0.0	0.0	0.0	100.	0
100.0	0.0 0.0	0.0	Hgate_L:	imit -1.	000										
Dem_2	Dem_2	1980	TOT -	L 3000.0	1500.0	3000.0	0.	. 0 (0.0	0.0	0.0	0.0	0.	0	0.0
0.0	0.0 3000.0	0.0	0.0	L500.0	0.0 1	500.0	0.0	3000.0		0.0	0.0	0.0	0.0	3000.	0
3000.0	0.0 0.0	0.0) NA	-1	.000										

Shortage Carried		Water Use			Stat	ion In/Ou From R	t iver By		S	Station E From	Balance n Carrier	Ву
	m	1	Tot			Up					/m	
or From River River		tal CU Avail Contro	1		Total	Up	strm Re	acn ket	urn w	ell Fron	n/To Ri	ver
		117411 0011010		nd Demar		y Storage						
_		Short Sh				rn Los	s Inflow	Gain	Flow	Deplete	GW Stor	
Inflow Diver	t by Well o	Outflow Fl Year Mo D			Right IA (+) (+)	(,) ((-)	(+)	(+)	(+)((-)
(+) NA	NA NA	NA NA	ay NA		NA NA	NA			(+)	(-)	. , ,	(+)
(-) (-)	(+)	NA NA					(' /	(-)	. ,	,	(-)	(-)
					2) (3			(6)			(9)	(10)
(11) (12)	(13)	(14) (15)	(16)		(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26) (27)	(28)	(29) (30)		(31)								
												•
_	em_2	1980 MAY		.8 48.				0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0 0.0	48.4	0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8 0.0 Dem_2 D	0.0	0.0 NA 1980 MAY		1.000	4 96.	p n n	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0		0.0 0.0	48.4	0.0	48.4	0.0		0.0	0.0	0.0		96.8
96.8 0.0	0.0	0.0 NA	_	1.000								
Dem_2 D		1980 MAY			4 96.		0.0	0.0	0.0	0.0		
0.0 0.0	96.8	0.0 0.0	48.4		48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8 0.0 Dem 2 D	0.0 em 2	0.0 NA 1980 MAY		1.000 .8 48.	4 96.	8 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	96.8	0.0 0.0		0.0	48.4		96.8	0.0	0.0	0.0		96.8
96.8 0.0	0.0	0.0 NA		1.000								
	em_2	1980 MAY			4 96.		0.0		0.0	0.0		
0.0 0.0	96.8	0.0 0.0		0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8 0.0	0.0	0.0 NA	-	1.000								
Dem 2 D	em 2	1980 MAY	6 96	.8 48.	4 96.	8 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	_	0.0 0.0	48.4		48.4		96.8	0.0	0.0	0.0	0.0	96.8
	0.0	0.0 NA		1.000								
Dem_2 D	_	1980 MAY 0.0 0.0	7 96 48.4	.8 48.	48.4		0.0 96.8		0.0	0.0	0.0	
0.0 0.0 96.8 0.0	96.8 0.0	0.0 NA		1.000	48.4	0.0	90.8	0.0	0.0	0.0	0.0	90.8
	em_2	1980 MAY		.8 48.	4 96.	8 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	96.8	0.0 0.0	48.4	0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0	96.8
96.8 0.0	0.0	0.0 NA		1.000								
Dem_2 D	em_2 96.8	1980 MAY 0.0 0.0	9 96 48.4		48.4		0.0 96.8	0.0	0.0	0.0	0.0	0.0
96.8 0.0	0.0	0.0 NA		1.000	40.4	0.0	20.0	0.0	0.0	0.0	0.0	20.0
0.0												

		tal CU Avail Control									
Shortag Carried										alance Carrier By	
Dem_2 0.0	Dem_2 0.0 3000.0 0.0 0.0	1980 TOT -1 0.0 0.0 15	3000.0 1500.0 300.0 0.0 1	3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
96.8	Dem_2 0.0 96.8 0.0 0.0	0.0 NA 	-1.000								0.0
96.8 Dem_2 0.0 96.8	0.0 0.0 Dem_2 0.0 96.8 0.0 0.0	0.0 0.0 0.0 NA 1980 MAY 30 0.0 0.0 0.0 NA	$\begin{array}{c} -1.000 \\ 96.8 & 48.4 \\ 48.4 & 0.0 \\ -1.000 \end{array}$	96.8 48.4	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
Dem_2 0.0 96.8 Dem_2 0.0	0.0 96.8 0.0 0.0 Dem 2	0.0 0.0 0.0 NA 1980 MAY 29	48.4 0.0 -1.000 96.8 48.4	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	8
Dem_2 0.0 96.8	Dem 2	0.0 NA 1980 MAY 27 0.0 0.0 0.0 NA 1980 MAY 28	968 484	96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
96.8 Dem_2	0.0 0.0 Dem_2 0.0 96.8	0.0 NA 1980 MAY 26 0.0 0.0	-1.000 96.8 48.4	96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_2 0.0 96.8 Dem_2 0.0	0.0 96.8 0.0 0.0	1980 MAY 24 0.0 0.0 0.0 NA 1980 MAY 25 0.0 0.0	$\begin{array}{ccc} 48.4 & 0.0 \\ -1.000 & \\ 96.8 & 48.4 \end{array}$	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	0.0
96.8 Dem_2 0.0 96.8	0.0 0.0 Dem_2 0.0 96.8 0.0 0.0	0.0 NA 1980 MAY 23 0.0 0.0 0.0 NA	$\begin{array}{c} -1.000 \\ 96.8 & 48.4 \\ 48.4 & 0.0 \\ -1.000 \end{array}$	96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 96.8 Dem_2 0.0	0.0 96.8	0.0 0.0 0.0 NA 1980 MAY 22 0.0 0.0	$\begin{array}{ccc} 48.4 & 0.0 \\ -1.000 & \\ 96.8 & 48.4 \end{array}$	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	0.0
Dem_2 0.0 96.8 Dem_2	Dem_2 0.0 96.8 0.0 0.0 Dem_2	1980 MAY 20 0.0 0.0 0.0 NA 1980 MAY 21	48.4 0.0 -1.000	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	8
96.8 Dem_2 0.0 96.8	0.0 0.0 Dem_2 0.0 96.8 0.0 0.0	0.0 NA 1980 MAY 19 0.0 0.0 0.0 NA	$ \begin{array}{rrr} -1.000 \\ 96.8 & 48.4 \\ 48.4 & 0.0 \\ -1.000 \end{array} $	96.8	0.0	0.0	0.0	0.0	0.0	0.0 0.0 96.8	0.0
Dem_2 0.0 96.8 Dem_2 0.0	0.0 96.8 0.0 0.0	1980 MAY 17 0.0 0.0 0.0 NA 1980 MAY 18 0.0 0.0	$\begin{array}{ccc} 48.4 & 0.0 \\ -1.000 & \\ 96.8 & 48.4 \end{array}$	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	0.0
Dem_2 0.0 96.8 Dem 2	0.0 96.8 0.0 0.0	1980 MAY 16 0.0 0.0 0.0 NA	48.4 0.0	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	8
96.8 Dem_2 0.0 96.8	0.0 0.0 Dem_2 0.0 96.8 0.0 0.0	0.0 NA 1980 MAY 15 0.0 0.0 0.0 NA	96.8 48.4 48.4 0.0	96.8	0.0	0.0 96.8	0.0	0.0	0.0	0.0 0.0 96.8	0.0
0.0 96.8 Dem_2 0.0	0.0 96.8	0.0 0.0 0.0 NA 1980 MAY 14 0.0 0.0	$\begin{array}{ccc} 48.4 & 0.0 \\ & -1.000 \\ & 96.8 & 48.4 \end{array}$	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	0.0
96.8 Dem_2 0.0 96.8 Dem 2	Dem_2 0.0 96.8	0.0 NA 1980 MAY 12 0.0 0.0 0.0 NA 1980 MAY 13	96.8 48.4 48.4 0.0 -1.000	48.4	0.0	96.8	0.0	0.0	0.0	0.0 96.8	8
Dem_2 0.0	Dem_2 0.0 96.8	1980 MAY 11 0.0 0.0	96.8 48.4 48.4 0.0	96.8	0.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0
96.8	0.0 96.8 0.0 0.0	0 0 MA	-1 000								_

Structure River Exchang SoilM Suppl Inflow Divert by Well	y Short Short	CU SoilM		Storage Exc_Pln Loss Inflow			Priorty Deplete	
ID ID (+) NA NA (-) (-) (+)		NA NA NA NA NA NA NA NA	(+) NA	(+) (+)(NA (+)	(+)	(+)	(+)	(+)((-)
(11) (12) (13) (26) (27) (28)		(1) (2) (16) (17) (31)	(3)	(4) (5) (19) (20)	(6)	(22)	(8)	(9) (10) (24) (25)
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	0.0 NA	0.0 0.0 -1.000	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 100.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0			100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0			100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 100.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0			100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 5	100.0 50.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0		100.0 50.0 0.0 0.0 -1.000	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 7	100.0 50.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 8	100.0 50.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 9	100.0 50.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 10	100.0 50.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	0.0 NA	0.0 0.0 -1.000	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	0.0 NA	0.0 0.0 -1.000	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	0.0 NA	0.0 0.0 -1.000	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	0.0 NA	0.0 0.0 -1.000	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 100.0	1980 JUN 15 0.0 0.0 50 0.0 NA	0.0 0.0						
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 16 0.0 0.0 50 0.0 NA	0.0 0.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 17 0.0 0.0 50 0.0 NA	0.0 0.0						
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 18 0.0 0.0 50 0.0 NA	100.0 50.0 0.0 0.0						0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 19 0.0 0.0 50 0.0 NA	100.0 50.0 0.0 0.0	100.0 50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 20 0.0 0.0 5 0.0 NA	100.0 50.0 0.0 0.0						
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 21 0.0 0.0 5 0.0 NA	0.0 0.0						
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 22 0.0 0.0 50 0.0 NA	100.0 50.0 0.0 0.0						
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 23 0.0 0.0 5 0.0 NA	100.0 50.0 0.0 0.0						
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 0.0	1980 JUN 24 0.0 0.0 50 0.0 NA	100.0 50.0 0.0 0.0						

Dem_2 0.0 100.0		1980 JUN 25 0.0 0.0 5 0.0 NA	100.0 50.0 50.0 0.0 -1.000	100.0 50.0	0.0 0.0 0.0 100.0	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 100.0	Dem_2 0.0 100.0 0.0 0.0	0.0 NA	0.0 0.0	100.0 50.0	0.0 0.0	0.0			0.0 0.0
Dem_2 0.0 100.0	Dem_2 0.0 100.0 0.0 0.0	0.0 NA	0.0 0.0	50.0	0.0 0.0		0.0	0.0	0.0 0.0
Dem_2 0.0 100.0	Dem_2 0.0 100.0 0.0 0.0	0.0 NA	0.0 0.0	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
Dem_2 0.0 100.0 Dem_2	Dem_2 0.0 100.0 0.0 0.0 Dem_2	1980 JUN 29 0.0 0.0 5 0.0 NA 1980 JUN 30	0.0 0.0	50.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 100.0
0.0	0.0 100.0 0.0 0.0	0.0 0.0 5 0.0 NA	0.0						
 Dem_2		1980 TOT -1	3000.0 1500.0	3000.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 3000.0	1980 TOT -1 0.0 0.0 150 0.0 NA	00.0 0.0 19	500.0	0.0 3000.0	0.0	0.0	0.0	0.0 3000.0
Shortag Carried		Water Use		Statio	n In/Out From River By		S	tation B From	Balance Carrier By
		tal CU	Total CU				From		
River	River River	tal CU Avail Control	Control						
Exchang	SoilM Supply	Short Short	CU Soil	M Return	Loss Inflow	Gain	Flow		
TD		37 M- D	373 373	/ . \	(.)	()	(,)	(,)	() ()
(+) (-)	NA NA (-) (+)	Year Mo Day NA NA NA NA	NA NA NA	NA	(+) (+)(NA (+)	(+)	(+)	(-)	(+)((-)
(+)	NA NA (+) (12) (13)	NA NA	NA NA NA (1) (2)	NA (3)	NA (+)	(+)	(+)	(-)	(+) (+) (10)
(+) (-) (11) (26)	NA NA (-) (+) (12) (13) (27) (28)	NA NA NA (14) (15) (29) (30)	NA NA NA (1) (2) (16) (17) (31)	NA (3) (18)	NA (+) (4) (5) (19) (20)	(+) (6) (21)	(+) (7) (22)	(-) (8) (23)	(+) (+) (10)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28)	NA N	NA NA NA NA (1) (2) (16) (17) (31)	NA (3) (18) ————————————————————————————————————	NA (+) (4) (5) (19) (20)	(+) (6) (21) 	(+) (22) (22) 0.0	(-) (8) (23) 	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8	NA NA NA (14) (15) (29) (30)	NA NA NA NA (1) (2) (16) (17) (31)	96.8 48.4 96.8	NA (+) (4) (5) (19) (20) 0.0 0.0 0.0 168.8 0.0 0.0 0.0 174.6	(+) (21) (21) 0.0 0.0 0.0	(+) (22) (22) 0.0 0.0 0.0	(-) (8) (23) 	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 77.8 0.0 77.8 0.0 78.1	NA NA NA (14) (15) (29) (30)	NA NA NA NA NA (1) (2) (16) (17) (31)	96.8 48.4 96.8 48.4 96.8	NA (+) (4) (5) (19) (20) 0.0 0.0 0.0 168.8 0.0 0.0 0.0 174.6 0.0 0.0 0.0 174.9	(+) (21) (21) 0.0 0.0 0.0 0.0 0.0	(+) (22) 0.0 0.0 0.0 0.0 0.0	(-) (8) (23) 0.0 0.0 0.0 0.0	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.1	NA NA NA (14) (15) (29) (30)	NA NA NA NA (1) (2) (16) (17) (31)	NA (3) (18) 96.8 48.4 96.8 48.4 96.8 48.4	NA (+) (4) (5) (19) (20)	(+) (21) (21) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (22) 0.0 0.0 0.0 0.0 0.0 0.0	(-) (8) (23) 0.0 0.0 0.0 0.0 0.0	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.3 Dem_2 0.0 96.8	NA NA NA (14) (15) (29) (30)	NA NA NA NA NA (1) (2) (16) (17) (31)	96.8 48.4 96.8 48.4 96.8 48.4 96.8	NA (+) (4) (5) (19) (20)	(+) (21) (21) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.3 Dem_2 0.0 96.8 0.0 78.3 Dem_2 0.0 96.8 0.0 78.3	NA NA NA (14) (15) (29) (30)	NA NA NA NA (1) (2) (16) (17) (31)	96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8	NA (+) (4) (5) (19) (20)	(+) (21) (21) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.3	NA NA NA (14) (15) (29) (30)	NA NA NA (1) (2) (16) (17) (31) (31) (31) (31) (31) (31) (31) (31	96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8	NA (+) (4) (5) (19) (20) 0.0 0.0 0.0 168.8 0.0 0.0 0.0 174.6 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1 0.0 0.0 0.0 0.0	(+) (21) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.3 Dem_2 0.0 96.8	NA NA NA (14) (15) (29) (30)	NA NA NA NA NA NA NA (1) (2) (16) (17) (31)	96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8	NA (+) (4) (5) (19) (20) 0.0 0.0 0.0 168.8 0.0 0.0 0.0 174.9 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1 0.0 0.0 0.0 175.1	(+) (21) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(+) (+) (9) (10) (24) (25)
(+) (-) (11) (26) ————————————————————————————————————	NA NA (-) (+) (12) (13) (27) (28) Dem_2 0.0 96.8 0.0 72.0 Dem_2 0.0 96.8 0.0 77.8 Dem_2 0.0 96.8 0.0 78.1 Dem_2 0.0 96.8 0.0 78.3 Dem_2 0.0 96.8	NA NA NA (14) (15) (29) (30)	NA NA NA (1) (2) (16) (17) (31) (31) (31) (31) (31) (31) (31) (31	96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8 48.4 96.8	NA (+) (4) (5) (19) (20)	(+) ((6) (21) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(+) (+) (9) (10) (24) (25)

0.0 Hgate_Limit -1.000 1980 JUL 13 96.8 48.4 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.4 0.0 48.4 0.0 175.1 0.0 0.0 0.0 0.0 175.1

0.0 0.0

Dem_2

0.0

96 8

Dem_2 0 0

96.8

Dem_2 0.0 96.8

Dem_2

0.0 96.8 0.0 78.3

Dem_2
0.0 96.8
0.0 78.3

Dem_2
0.0 96.8
0.0 78.3

0.0 Hgate_Limit -1.000

Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 14 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 15 96.8 48.4		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 16 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 17 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 18 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 19 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 20 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 21 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8	1980 JUL 22 96.8 48.4		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8	1980 JUL 23 96.8 48.4		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8	1980 JUL 24 96.8 48.4	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 25 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 26 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 27 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 28 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 29 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 JUL 30 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	0.0 78.3	1980 JUL 31 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000	48.4		0.0	0.0		0.0 0.0 0.0 175.1
 Dem_2		1980 TOT -1 3000.0 1500.0 0.0 1 1500.0	3000.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 3000.0 0.0 2420.5	0.0 0.0 1500.0 0.0 1 0.0 NA -1.000	500.0	0.0 5420.5	0.0	0.0	0.0	0.0 5420.5

Shortage Wate	er Use	:	Station In/Out From Ri			S	tation B From	alance Carrier	By
Carried									-
	Total	CU				From .			
or From Total Total	CU	To Total	l Ups	strm Rea	ch Retu	ırn W	ell From	/To Ri	ver
River River River Avai	il Control Cont	rol							
Structure River	Demand	Demand Pr	iorty Storage	Exc Pln	Loss	Well :	Priorty	Sto Exc	Loss
Exchang SoilM Supply Sh			Return Loss		Gain	Flow	Deplete	GW Stor	
Inflow Divert by Well Outfl		ı Riql	ht				-		
ID ID Yea	ar Mo Day NA	NA	(+) (+)	(+)((-)	(+)	(+)	(+)((-)
(+) NA NA NA	NA NA		NA NA		(+)			(+)	(+)
(-) (-) (+) NA	NA N	IA							
	(1)	(2)	(3) (4)	(5)	(6)	(7)	(8)	(9)	(10)
(11) (12) (13) (14)	(15) (16)	(17)	18) (19)	(20)	(21)	(22)	(23)	(24)	(25)
(26) (27) (28) (29)		1)		, -,	. ,	, ,	, -,	, ,	, -,

Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 1 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 2 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 3 96.8 48.4	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 4 96.8 48.4	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 5 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 6 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 7 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 8 96.8 48.4		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 9 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 10 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 11 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate Limit -1.000	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 12 96.8 48.4		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 13 96.8 48.4	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 14 96.8 48.4	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 15 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 16 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate Limit -1.000	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 17 96.8 48.4	96.8 48.4	0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 18 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 175.1	0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 19 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 20 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 21 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 22 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 23 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 24 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000			0.0	0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 25 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000				0.0	0.0	0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 26 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						0.0 0.0 0.0 175.1
Dem_2 0.0 96.8	Dem_2 0.0 96.8 0.0 78.3	1980 AUG 27 96.8 48.4 0.0 0.0 48.4 0.0 0.0 Hgate_Limit -1.000						0.0 0.0 0.0 175.1

Dem_2 Dem_2 0.0 0.0 96.8 96.8 0.0 78.3	0.0 Hgate_Limit -1.000 1980 AUG 30 96.8 48.4 9 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000 1980 AUG 31 96.8 48.4 9 0.0 0.0 48.4 0.0 48.4 0.0 Hgate_Limit -1.000	0.0 175.1 6.8 0.0 0.0 6.8 0.0 0.0 6.8 0.0 175.1 6.8 0.0 0.0 6.8 0.0 175.1 6.8 0.0 0.0 6.0 175.1		0.0 0.0 175.1 0.0 0.0 0.0 0.0 0.0 0.0 175.1 0.0 0.0 0.0 0.0 0.0 175.1 0.0 0.0 0.0 0.0
Shortage	Water Use St	ation In/Out From River By		Station Balance From Carrier By
Carried	Total CII			·om
or From Total To River River River Structure River	tal CU To Total Avail Control Control	Upstrm Re		Well From/To River
Exchang SoilM Supply Inflow Divert by Well	Demand Demand Price Short Short CU SoilM Recountflow Flow Location Right	turn Loss Inflow	Gain F	'low Deplete GW Stor
ID ID (+) NA NA (-) (-) (+)	Year Mo Day NA NA NA NA NA NA NA NA NA		(+) (+)	+) (+) (+) (-)
(11) (12) (13) (26) (27) (28)		3) (4) (5)) (19) (20)	(6) ((21) (22)	
Dem_2 Dem_2 0.0 100.0 100.0 0.0 77.1 Dem_2 Dem_2 0.0 100.0 100.0 0.0 76.8 Dem_2 Dem_2 0.0 100.0 100.0 0.0 76.6	1980 SEP 1 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000 1980 SEP 2 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000 1980 SEP 3 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 4 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 4 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 5 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 6 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 6 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 7 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 7 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 7 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 8 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 9 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 9 100.0 50.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 9 100.0 50.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 9 100.0 50.0 50.0 10 0.0 Hgate_Limit -1.000	0.0 177.6 0.0 0.0 0.0 0.0 177.1 0.0 0.0 176.8 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6		0.0 0.0 176.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 176.6 0.0 0.0 0.0 176.6 0.0 0.0 0.0 176.6 0.0 0.0 0.0 176.6
Dem_2 Dem_2 0.0 0.0 100.0 100.0 0.0 76.6 Dem_2 Dem_2 0.0 0.0 100.0 100.0 Dem_2 0.0 0.0 100.0 100.0 Dem_2 0.0 0.0 100.0	1980 SEP 11 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000 1980 SEP 12 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000 1980 SEP 13 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000 1980 SEP 14 100.0 50.0 10 0.0 0.0 50.0 0.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 14 100.0 50.0 10 0.0 Hgate_Limit -1.000 1980 SEP 15 100.0 50.0 50.0 0.0 Hgate_Limit -1.000 1980 SEP 15 100.0 50.0 50.0 0.0 Hgate_Limit -1.000	0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 176.6 0.0 0.0 176.6 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 0.0 176.6 0.0 0.0 0.0 0.0 0.0 176.6

Dem_2	Dem_2	1980 SEP 16 100.0 50.0 100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0 $0.0 76.6$	0.0 0.0 50.0 0.0 50.0 0.0 Hqate Limit -1.000	0.0 176.6	0.0	0.0	0.0	0.0 176.6
Dem_2	Dem_2	1980 SEP 17 100.0 50.0 100.0		0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0	0.0 0.0 50.0 0.0 50.0	0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0 Dem 2	0.0 76.6 Dem 2	0.0 Hgate_Limit -1.000 1980 SEP 18 100.0 50.0 100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0	0.0 0.0 50.0 0.0 50.0	0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0 Dem 2	0.0 76.6 Dem 2	0.0 Hgate_Limit -1.000 1980 SEP 19 100.0 50.0 100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0	0.0 0.0 50.0 0.0 50.0	0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0 Dem 2	0.0 76.6 Dem 2	0.0 Hgate_Limit -1.000 1980 SEP 20 100.0 50.0 100.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0		0.0 176.6			0.0	0.0 176.6
100.0	0.0 76.6	0.0 Hgate_Limit -1.000					
Dem_2	Dem_2	1980 SEP 21 100.0 50.0 100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0		0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0 Dem 2	0.0 76.6 Dem 2	0.0 Hgate_Limit -1.000 1980 SEP 22 100.0 50.0 100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0	0.0 0.0 50.0 0.0 50.0	0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0 Dem 2	0.0 76.6	0.0 Hgate_Limit -1.000 1980 SEP 23 100.0 50.0 100.0	0.0.0.0	0.0	0.0	0.0	0.0 0.0
0.0	Dem_2 0.0 100.0	0.0 0.0 50.0 0.0 50.0 0.0 0.0 50.0 0.0 50.0	0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0	0.0 76.6	0.0 Hgate_Limit -1.000					
Dem_2 0.0	Dem_2 0.0 100.0	1980 SEP 24 100.0 50.0 100.0 0.0 0.0 50.0 0.0 50.0	0.0 0.0 0.0 176.6	0.0	0.0	0.0	0.0 0.0 0.0 176.6
100.0	0.0 76.6	0.0 Hgate_Limit -1.000					
Dem_2 0.0	Dem_2 0.0 100.0	1980 SEP 25 100.0 50.0 100.0 0.0 0.0 50.0 0.0 50.0	0.0 0.0 0.0 176.6	0.0	0.0	0.0	0.0 0.0 0.0 176.6
100.0	0.0 100.0	0.0 Hgate_Limit -1.000	0.0 176.6	0.0	0.0	0.0	0.0 176.6
_							
Dem_2 0.0	Dem_2 0.0 100.0	1980 SEP 26 100.0 50.0 100.0 0.0 0.0 50.0 0.0 50.0	0.0 0.0 0.0 176.6		0.0	0.0	0.0 0.0 0.0 176.6
100.0	0.0 76.6	0.0 Hgate_Limit -1.000					
Dem_2 0.0	Dem_2 0.0 100.0	1980 SEP 27 100.0 50.0 100.0 0.0 0.0 50.0 0.0 50.0	0.0 0.0 0.0 176.6	0.0	0.0	0.0	0.0 0.0 0.0 176.6
100.0	0.0 76.6	0.0 Hgate_Limit -1.000	0.0 170.0		0.0	0.0	0.0 170.0
Dem_2	Dem_2	1980 SEP 28 100.0 50.0 100.0		0.0	0.0	0.0	0.0 0.0
0.0 100.0	0.0 100.0 0.0 76.6	0.0 0.0 50.0 0.0 50.0 0.0 Hgate_Limit -1.000	0.0 176.6	0.0	0.0	0.0	0.0 176.6
Dem_2	Dem_2	1980 SEP 29 100.0 50.0 100.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 100.0	0.0 100.0 0.0 76.6	0.0 0.0 50.0 0.0 50.0 0.0 Hgate Limit -1.000	0.0 176.6	0.0	0.0	0.0	0.0 176.6
Dem_2		3 =	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 100.0		0.0 176.6	0.0	0.0	0.0	0.0 176.6
100.0	0.0 76.6	0.0 Hgate_Limit -1.000					
Dem 2	Dem 2	1980 TOT -1 3000.0 1500.0 3000.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 3000.0	0.0 0.0 1500.0 0.0 1500.0			0.0	0.0	
3000.0	0.0 2299.3	0.0 NA -1.000					

Gage Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

Confluence RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50

Shortage Water Use Station In/Out Station Balance From River By From Carrier By Carried Total CU From From To Total Upstrm Reach Return Well From/To River or From Total Total CU To River River River Avail Control Control From Total Total CU (10)(12) (13) (27) (28) (29) (30) (31) (26)1979 OCT 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA -1.000 Riv_50 NA 0.0 0.0 64.4 0.0 0.9 0.0 0.0 65.3 0.0 0.0 0.0 65.3 0.0 0.0 0.0 Riv_50 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.9 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 1979 OCT 0.0 0.0 0.0 NA Riv_50 3 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 16.1 0.0 U.O NA 1979 OCT 4 0.0 0.0 0.0 Riv_50 0.0 NA 0.0 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 1979 OCT 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 Riv_50 5 0.0 0.0 NA 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 16.1 -1.000 0.0 16.1 0.0 Riv_50 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 16.1 -1.000 0.0 NA 1979 OCT 7 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Riv_50 NA 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 16.1 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 1979 OCT 0.0 0.0 0.0 NA Riv_50 8 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 16.1 0.0 U.O NA 1979 OCT 9 0.0 0.0 Riv_50 0.0 0.0 NA 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 16.1 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 1979 OCT 10 0.0 0.0 0.0 NA 0.0 16.1 0.0 0.0 Riv_50 0.0 0.0 0.0 0.0 NA 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 -1.000 0.0 16.1 Riv_50 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 16.1 0.0 -1.000 0.0 0.0 NA 1979 OCT 12 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Riv_50 NA 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 Riv_50 1979 OCT 13 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.0 0.0 16.1 0.0 0.0 0.0 0.0 16.1 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.0 0.0 NA 1979 OCT 14 0 0 0.0 0.0 0.0 NA Riv_50 0.0 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 16.1 0.0 1979 OCT 15 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 Riv_50 0.0 0.0 NA 0.0 0.0 0.0 16.1 0.0 0 0 0.0 0.0 0 0 0.0 0.0 16.1 -1.000 0.0 16.1 Riv_50 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 16.1 0.0 -1.000 -0 0.0 0.0 NA 1979 OCT 17 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA Riv_50 0.0 0.0 0.0 16.1 0.0 0.0 0.0 NA 0 0 0.0 Riv_50 0.0 NΑ 0.0 0.0 0.0 16.1 0.0 0 0

0.0 0.0 0.0 0.0 NA I	16.1 Riv_50	0.0 0.0 0.0 NA 1979 OCT 20	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0	0.0
0.0 0.0	16.1	0.0 NA	0.0 0.0 -1.000							
0.0 0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	-1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA		0.0	0.0 16.1	0.0	0.0	0.0	0.0	16.1
0.0 0.0	0.0		0.0 0.0 -1.000							
0.0 0.0	0.0 16.1	0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 16.1	0.0	0.0	0.0	0.0	0.0 16.1
NA I	Riv_50 0.0	0.0 0.0	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 54	0.0 19.2
NA I O.0 0.0 O.0 O.0 Shortage	Riv_50 0.0 549.2	0.0 0.0 0.0 NA Water Use	0.0 0.0 -1.000	0.0 Statio	0.0 547.4 n In/Out From River By	0.0	1.8 S	0.0 Station E From	0.0 54	19.2 By
NA I O.0 0.0 O.0 O.0 Shortage	Riv_50 0.0 549.2	0.0 0.0 0.0 NA Water Use	0.0 0.0 -1.000	0.0 Statio	0.0 547.4 n In/Out From River By	0.0	1.8 S	0.0 Station E From	0.0 54	19.2 By
NA I 0.0 0.0 0.0 0.0 Shortage Carried or From River River Structure I Exchang So:	Riv_50 0.0 549.2 Total Totar River River River ilM Supply	0.0 0.0 0.0 NA Water Use al CU Avail Control Short Short	Total CU To Control Demand Demand CU SoilM	0.0 Statio tal Priorty Return	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow	ach Ret	1.8 From urn W Well Flow	0.0 Station E From Priorty Deplete	0.0 54 Salance Carrier I/To Riv Sto_Exc	By Jer Loss
NA I 0.0 0.0 0.0 0.0 Shortage Carried or From River River Structure I Exchang So: Inflow Diver ID (+) NA	Total	0.0 0.0 0.0 NA Water Use Cal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA	Total CU To Control Demand Demand CU SoilM Location R NA NA	Statio tal Priorty Return ight (+)	n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(ach Ret Loss Gain	From urn Well Flow	0.0 Station E From Well From Priorty Deplete (+)	alance Carrier //To Riv Sto_Exc GW Stor	By Ver Loss
NA I 0.0 0.0 0.0 0.0 Shortage Carried or From River River Structure I Exchang So: Inflow Dives ID (+) NA (-) (-) (11) (12)	Total	0.0 0.0 0.0 0.0 0.0 0.0 NA Water Use Tal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To To Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18)	0.0 547.4 n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20)	ach Ret Loss Gain (-) (+) (6) (21)	From urn Well Flow (+) (+) (22)	ell From Priorty Deplete (+) (-) (8)	0.0 54 Salance Carrier A/TO Riv Sto_Exc GW Stor (+)((+) (9)	By Loss (-) (+) (10)
NA	Total Total Total River River GID NA (+) (13) (28)	0.0 0.0 0.0 0.0 0.0 0.0 NA Water Use Lal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA NA (14) (15) (29) (30)	Total CU TO TO Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (18)	0.0 547.4 n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20)	ach Ret Loss Gain (-) (+) (6) (21)	From well flow (+) (7) (22)	Tell From Priorty Deplete (+) (-) (8) (23)	0.0 54 Malance Carrier 1/To Riv Sto_Exc GW Stor (+)((+) (9) (24) 0.0	By Ver Loss (-) (+) (10) (25)
NA	Total	0.0 0.0 0.0 0.0 0.0 0.0 NA Water Use Cal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU TO TO CONTROL Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18) 0.0 0.0	0.0 547.4 n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+) (+) ((4) (5) (19) (20)	ach Ret Loss Gain (-) (+) (6) (21)	From urn Well Flow (+) (22) 0.0 0.0 0.0	ell From Priorty Deplete (+) (-) (8) (23) 0.0 0.0	0.0 54 Salance Carrier A/To Riv Sto_Exc GW Stor (+)((+) (9) (24) 0.0	By Ver Loss (-) (+) (10) (25) 0.0 17.5
NA Find NA	Total	0.0 0.0 0.0 0.0 0.0 0.0 NA Water Use Lal CU Avail Control Short Short Outflow Flow Year Mo Day NA	Total CU TO TO Control Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Statio tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0	0.0 547.4 n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)((14) (5)((19) (20) 0.0 0.0 0.0 17.5 0.0 0.0 0.0 16.7	ach Ret Loss Gain (-) (+) (6) (21) 0.0 0.0 0.0	From urn W Well Flow (+) (22) 0.0 0.0 0.0 0.0	0.0 Station E From Priorty Deplete (+) (-) (8) (23)	0.0 54 Malance Carrier A/To Riv Sto_Exc GW Stor (+)((+) (9) (24) 0.0 0.0 0.0	By Ter Loss (-) (+) (10) (25) 0.0 17.5 0.0 16.7
NA	Total	0.0 0.0 0.0 0.0 0.0 0.0 NA Water Use Cal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU To To To Control Demand Demand CU SoilM Location R NA NA (1) (2) (16) (17) (31)	0.0 Statio tal Priorty Return ight (+) NA (18) 0.0 0.0 0.0 0.0 0.0 0.0	0.0 547.4 n In/Out From River By Upstrm Re Storage Exc_Pln Loss Inflow (+) (+) (+)(NA (+) (4) (5) (19) (20) 0.0 0.0 17.5 0.0 0.0 0.0 16.7	0.0 ach Ret Loss Gain (-) (+) (6) (21) 0.0 0.0 0.0 0.0 0.0	1.8 From urn W Well Flow (+) (+) (22) 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Station E From Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 54 Salance Carrier 1/To Riv Sto_Exc GW Stor (+)((+) (24) 0.0 0.0 0.0 0.0 0.0 0.0	By Ver Loss (-) (+) (10) (25) 0.0 17.5 0.0 16.7 0.0

NA 0.0	Riv_50 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
0.0 NA 0.0 0.0	0.0 16.7 Riv_50 0.0 0.0 0.0 16.7	0.0 NA 1979 NOV 7 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 8 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 9 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 10 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 11 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 12 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 13 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 14 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 15 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 17 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 18 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 19 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 20 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 21 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 22 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 23 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 25 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0				0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 26 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0					
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 27 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7	0.0		0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 28 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 16.7			0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 29 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 16.7	0.0		0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1979 NOV 30 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 16.7				0.0 0.0 0.0 16.7
NA	Riv_50	1980 TOT -1	0.0 0.0		0.0 0.0	0 0	0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 500.8	0.0 0.0	0.0 0.0 -1.000	0.0	0.0 500.8	0.0	0.0	0.0	0.0 500.8

From Carrier By

Carried

or	From Total To	otal CU	Total CU		Ups	strm Re	ach Ret	From urn W	 Well From	/To River
	River River ure River	Avail Control	Control Demand Demand	Priorty	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc Loss
Exchar	ng SoilM Supply 7 Divert by Well	y Short Short	CU SoilM	M Returr Right	1 Loss	Inflow	Gain	Flow	<i>D</i> eplete	GW Stor
ID	ID	Year Mo Day	NA NA	(+)						
(+) (-)	NA NA (-)	NA NA NA NA	NA NA NA							(+) (+)
(11) (26)	(12) (13) (27) (28)	(29) (30)	(16) (17)	(18)	(19)	(20)	(21)			(9) (10) (24) (25)
NA 0.0	Riv_50	1979 DEC 1 0.0 0.0	0.0 0.0						0.0	
0.0 NA	0.0 16.4 Riv_50	0.0 NA	-1.000 0.0 0.0					0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 16.1		0.0 0.0 -1.000					0.0	0.0	0.0 16.1
NA 0.0	Riv_50 0.0 0.0	0.0 0.0	0.0 0.0					0.0	0.0	0.0 0.0 0.0 16.1
0.0 NA 0.0	0.0 16.1 Riv_50 0.0 0.0	0.0 NA 1979 DEC 4 0.0 0.0	-1.000 0.0 0.0 0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1
0.0 0.0 NA	0.0 0.0 0.0 16.1 Riv 50	0.0 NA	-1.000 0.0 0.0							0.0 0.0
0.0	0.0 0.0 0.0 16.1		0.0 0.0 -1.000							
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	0.0 0.0	0.0 0.0 0.0 0.0 -1.000					0.0	0.0	
NA 0.0	Riv_50 0.0 0.0	1979 DEC 7 0.0 0.0	0.0 0.0		0.0		0.0	0.0	0.0	0.0 0.0 0.0 16.1
0.0 NA	0.0 16.1 Riv_50	1979 DEC 8	-1.000 0.0 0.0					0.0	0.0	0.0 0.0
0.0 0.0 NA	0.0 0.0 0.0 16.1 Riv_50		0.0 0.0 -1.000 0.0 0.0		0.0		0.0	0.0	0.0	0.0 16.1
0.0	0.0 0.0 0.0 16.1	0.0 0.0			0.0		0.0	0.0	0.0	0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1979 DEC 10 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000							
NA 0.0	Riv_50 0.0 0.0 0.0 16.1	1979 DEC 11 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000					0.0	0.0	0.0 0.0 0.0 16.1
0.0 NA 0.0	Riv_50 0.0 0.0	1979 DEC 12 0.0 0.0	0.0 0.0				0.0	0.0	0.0	0.0 0.0 0.0 16.1
0.0 NA 0.0	0.0 16.1 Riv_50 0.0 0.0	0.0 NA 1979 DEC 13 0.0 0.0	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array} $					0.0		0.0 0.0 0.0 16.1
0.0 NA 0.0	0.0 16.1 Riv_50 0.0 0.0	1979 DEC 14	-1.000 0.0 0.0 0.0 0.0	0.0						
0.0 NA 0.0	0.0 16.1 Riv_50 0.0 0.0		-1.000 0.0 0.0 0.0 0.0							
0.0 NA	0.0 16.1 Riv_50	0.0 NA	-1.000 0.0 0.0							
0.0	$ \begin{array}{ccc} 0.0 & 0.0 \\ 0.0 & 16.1 \end{array} $	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	16.1	0.0	0.0	0.0	0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1979 DEC 17 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000						0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1979 DEC 18 0.0 0.0	0.0 0.0	0.0	0.0	16.1	0.0		0.0	
NA 0.0	Riv_50 0.0 0.0	0.0 0.0		0.0		0.0 16.1			0.0	0.0 0.0 0.0 16.1
0.0 NA 0.0 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1979 DEC 20 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	0.0 0.0	0.0 0.0 -1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1

NA 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 NA 0.0	Riv_50 0.0 0.0 0.0 16.1	1979 DEC 22 0.0 0.0 0.0 NA 1979 DEC 23 0.0 0.0 0.0 NA 1979 DEC 24 0.0 0.0 0.0 NA 1979 DEC 25 0.0 0.0 0.0 NA		0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0	0.0	0.0	0.0	0.0 16 0.0 16 0.0 16 0.0 16	0.0 5.1 0.0 5.1 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1 Riv_50 0.0 0.0 0.0 16.1 Riv_50 0.0 0.0 0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0 NA 1979 DEC 31 0.0 0.0 NA	0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 16 0.0 16 0.0 16 0.0 16 0.0 16 0.0 16 0.0 16	0.0 5.1 0.0 5.1 0.0 5.1 0.0 5.1 0.0 5.1
Shorta		Water Use			n In/Out From River By			tation E From	Balance Carrier E	Зу
Struct Exchar Inflow ID (+) (-)	From Total T River River cure River g SoilM Suppl Divert by Well ID NA NA (-) (+)	NA NA NA NA	Demand Demand CU SoilM Location R NA NA NA NA NA (1) (2)	tal Priorty Returnight (+) NA (3)	Upstrm Restrance Exc_Pln Loss Inflow (+) (+) NA (+) (4) (5)	Loss Gair	From Well (+)	Priorty Deplete (+) (-) (8)	(+)((+) ((+) (Loss (-) (+)
or River Struct Exchar Inflow ID (+)	From Total T River River cure River g SoilM Suppl Divert by Well ID NA NA (-) (+)	Y Short Short Outflow Flow Year Mo Day NA NA NA (14) (15) (29) (30)	Demand Demand CU SoilM NA NA NA NA NA (1) (2) (16) (17) (31)	Ttal Priorty Return (+) NA (3) (18)	Upstrm Research Resea	Loss Gair (-) (+) (6) (21)	From Well Flow (+) (+) (22) - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Priorty Deplete (+) (-) (8) (23) (23) (0.0	Sto_Exc :GW Stor (+)((+) ((9) (24) ((-) (+) (10) (25)

Shorta	_	Water Use		Statio	on In/Out From River By		S	Station E From	alance Carrier By
NA 0.0 0.0						0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	0.0 0.0 0.0 16.1	1980 JAN 31 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0 0.0
0.0 NA 0.0 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1980 JAN 30 0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	0.0 0.0 0.0 NA 1980 JAN 29	0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.1 Riv_50	1980 JAN 27 0.0 0.0 0.0 NA 1980 JAN 28	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 0.0 0.0 16.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1980 JAN 26 0.0 0.0	-1 000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 16.1
0.0 NA 0.0 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1980 JAN 25 0.0 0.0 0.0 NA	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ -1.000 \end{array} $		0.0 0.0			0.0	
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	0.0 0.0 0.0 NA 1980 JAN 24 0.0 0.0	0.0 0.0 -1.000 0.0 0.0 0.0 0.0	0.0		0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.1 Riv_50	1980 JAN 22 0.0 0.0 0.0 NA 1980 JAN 23	0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1 0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
0.0 NA 0.0 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1980 JAN 20 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000			0.0	0.0	0.0	0.0 0.0
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.1 Riv_50	0.0 0.0 0.0 NA 1980 JAN 18	-1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1980 JAN 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
0.0 NA 0.0 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1980 JAN 15 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 -1.000	0.0			0.0	0.0	0.0 0.0
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	0.0 0.0 0.0 NA 1980 JAN 14 0.0 0.0	0.0 0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1	0.0	0.0	0.0	0.0 16.1 0.0 0.0 0.0 16.1
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.1 Riv_50		0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0 0.0 0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1980 JAN 11 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0		0.0		0.0	0.0 16.1
0.0	0.0 16.1	0.0 0.0 0.0 NA	-1.000						

Exchano	re River SoilM Suppl	y Short Short Outflow Flow	Demand Demand CU SoilM							
ID (+) (-)	ID NA NA (-) (+)		NA NA NA NA	(+)	(+) NA				(+)	(+)((-)
(11)	(12) (13) (27) (28)	(14) (15)	(1) (2) (16) (17) (31)	(18)	(19)		(6)	(22)	(8)	(9) (10) (24) (25)
NA	Riv_50	1980 FEB 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 NA	0.0 0.0 0.0 20.4 Riv_50	0.0 0.0 0.0 NA 1980 FEB 2	0.0 0.0 -1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 20.4
0.0 0.0 NA	0.0 0.0 0.0 17.9 Riv_50	0.0 0.0 0.0 NA 1980 FEB 3	0.0 0.0 -1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 17.9
0.0 0.0 NA	0.0 0.0 0.0 17.9 Riv 50	0.0 0.0 0.0 NA 1980 FEB 4	0.0 0.0 -1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 17.9
0.0 0.0 NA	0.0 0.0 0.0 17.9 Riv_50	0.0 0.0 0.0 NA 1980 FEB 5	0.0 0.0 -1.000 0.0 0.0	0.0		17.9	0.0	0.0	0.0	0.0 17.9
0.0	0.0 0.0 0.0 17.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0		17.9				
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 6 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0		0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 7 0.0 0.0 0.0 NA		0.0	0.0	0.0 17.9	0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 8 0.0 0.0 0.0 NA		0.0			0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 9 0.0 0.0 0.0 NA		0.0		0.0 17.9	0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 10 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000			0.0 17.9	0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 11 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0		0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 12 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 17.9	0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 13 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 17.9	0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 14 0.0 0.0 0.0 NA	0.0 0.0		0.0		0.0	0.0	0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 15	0.0 0.0 0.0 0.0 -1.000							0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000							
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 17 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000					0.0	0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 18 0.0 0.0 0.0 NA						0.0	0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 19 0.0 0.0 0.0 NA							0.0	0.0 0.0 0.0 17.9
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 20 0.0 0.0 0.0 NA								
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 21 0.0 0.0 0.0 NA								
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 22 0.0 0.0 0.0 NA				0.0 17.9		0.0	0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 23 0.0 0.0 0.0 NA				0.0 17.9		0.0	0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 17.9	1980 FEB 24 0.0 0.0	0.0 0.0 0.0 0.0 -1.000							

NA 0.0 0.0 NA 0.0	Riv_50 0.0 0.0 0.0 17.9 Riv_50 0.0 0.0	1980 FEB 25 0.0 0.0 0.0 NA 1980 FEB 26 0.0 0.0	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9	0.0	0.0	0.0	0.0 0.0 0.0 17.9 0.0 0.0 0.0 17.9
0.0 NA 0.0 0.0 NA 0.0	0.0 17.9 Riv_50 0.0 0.0 0.0 17.9 Riv_50 0.0 0.0 17.9 7.0 0.0 0.0 17.9	0.0 NA 1980 FEB 27 0.0 0.0 0.0 NA 1980 FEB 28 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 17.9 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 17.9 0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 502.6	1980 TOT -1 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 502.6
Shorta Carrie	_	Water Use		Statio	n In/Out From River By		S	Station E From	Balance Carrier By
River Struct Exchan	River River ure River g SoilM Suppl	y Short Short Outflow Flow	Control Demand Demand CU SoilM	tal Priorty	Loss Inflow	Loss Gair	Well n Flow	Well From Priorty Deplete	
(+) (-) (11) (26)	NA NA (-) (+) (12) (13) (27) (28)	NA NA NA (14) (15)	NA NA NA (1) (2) (16) (17) (31)	NA (3)	NA (+) (4) (5)	(+)	(+)	(-)	(+) (+)
NA 0.0 0.0 0.0	Riv_50 0.0 0.0 0.0 17.0 Riv_50 0.0 0.0 0.0 16.1	1980 MAR 1 0.0 0.0 0.0 NA 1980 MAR 2 0.0 0.0 0.0 NA 1980 MAR 3 0.0 0.0 0.0 NA 1980 MAR 4 0.0 0.0 0.0 NA 1980 MAR 5 0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 17.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 17.0 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1
NA 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 NA 0.0	Riv_50 0.0 0.0 0.0 16.1	0.0 0.0 0.0 NA 1980 MAR 7 0.0 0.0 0.0 NA 1980 MAR 8 0.0 0.0 0.0 NA 1980 MAR 9 0.0 0.0 0.0 NA 1980 MAR 10	0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1
NA 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 NA 0.0	Riv_50 0.0 0.0 0.0 16.1 Riv_50 0.0 0.0 16.1 Riv_50 0.0 16.1 Riv_50 0.0 16.1	0.0 0.0 0.0 NA 1980 MAR 12 0.0 0.0 0.0 NA 1980 MAR 13 0.0 0.0 0.0 NA 1980 MAR 14 0.0 0.0 0.0 NA 1980 MAR 14	0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0 0.0 16.1

NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1980 MAR 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 16.1
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.1 Riv 50	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
0.0 NA 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1980 MAR 20 0.0 0.0	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	0.0 0.0 0.0 NA		0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.1 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
0.0 0.0 NA	0.0 0.0 0.0 16.1 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.1	0.0	0.0	0.0	0.0 16.1
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	1980 MAR 25	0.0 0.0 -1.000 0.0 0.0 0.0 0.0	0.0		0.0	0.0		
0.0 NA	0.0 16.1 Riv_50	0.0 NA 1980 MAR 26	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 NA 0.0	0.0 0.0 0.0 16.1 Riv_50 0.0 0.0	0.0 0.0 0.0 NA 1980 MAR 27 0.0 0.0	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	
0.0 NA 0.0	0.0 16.1 Riv_50 0.0 0.0	0.0 NA 1980 MAR 28 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0			0.0 0.0 0.0 16.1
0.0 NA 0.0 0.0	0.0 16.1 Riv_50 0.0 0.0 0.0 16.1	0.0 NA 1980 MAR 29 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000					0.0	0.0 0.0 0.0 16.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1	1980 MAR 30	0.0 0.0 0.0 0.0 -1.000						
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.1		0.0 0.0 -1.000						
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 500.9		0.0 0.0 0.0 0.0 -1.000				0.0		0.0 0.0 0.0 500.9
Shortag Carried		Water Use		Statio	on In/Out From River By			Station E Fron	Balance n Carrier By
or F	From Total To	otal CU Avail Control	Total CU			Reach Ret	From	 Vell From	/To River
Structi	ire River		Demand Demand	Priorty	Storage Exc_Pi	n Loss	well	Priorty	Sto_Exc Loss
ID (+) (-)	ID NA NA (-) (+)	y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15)	NA NA NA NA NA NA NA	(+) NA	(+) (+ NA (+)	(+)	(+)	(+)	(+)((-)
(11)	(27) (28)	(14) (15) (29) (30)	(31)						
NA							_		
0.0 0.0 NA	0.0 0.0 0.0 17.5 Riv_50	1980 APR 1 0.0 0.0 0.0 NA 1980 APR 2 0.0 0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 17.5	0.0	0.0	0.0	0.0 17.5
0.0	0.0 0.0 0.0 16.7	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7

NA 0.0	Riv_50	0.0 0.0			0.0 0.0 0.0 16.7			0.0	0.0 0.0 0.0 16.7
0.0 NA 0.0 0.0	0.0 16.7 Riv_50 0.0 0.0 0.0 16.7	0.0 NA 1980 APR 4 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1980 APR 5 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 16.7			0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1980 APR 6 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 16.7		0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7		0.0 0.0 0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 0.0 0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 16.7	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 0.0 0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
0.0	0.0 0.0 0.0 16.7	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.7			0.0	0.0 16.7
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 16.7	1980 APR 11 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.7	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.7 Riv_50	1980 APR 12 0.0 0.0 0.0 NA 1980 APR 13	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 0.0 0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA		0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7
0.0	0.0 0.0 0.0 16.7	0.0 0.0 0.0 NA	-1.000		0.0 16.7			0.0	
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 16.7 Riv_50	1980 APR 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0		0.0 0.0 0.0 16.7			0.0	0.0 0.0 0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA 1980 APR 18	0.0 0.0 -1.000	0.0	0.0 16.7		0.0	0.0	0.0 0.0
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA 1980 APR 19		0.0	0.0 16.7		0.0	0.0	0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50		0.0 0.0 -1.000 0.0 0.0			0.0	0.0		0.0 16.7
0.0 0.0	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 -1.000						
NA 0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA	0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA 1980 APR 23	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA 1980 APR 24	-1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 0.0
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50 0.0 0.0	0.0 0.0 0.0 NA 1980 APR 25	-1.000	0.0	0.0 16.7	0.0	0.0	0.0	0.0 0.0
0.0 0.0 NA	0.0 0.0 0.0 16.7	0.0 NA	-1.000						
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50	0.0 0.0 0.0 NA 1980 APR 28	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 16.7
0.0 0.0 NA	0.0 0.0 0.0 16.7 Riv_50		-1.000 0.0 0.0	0.0	0.0 16.7	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 16.7	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 16.7	0.0	0.0	0.0	U.U 16.7

NA 0.0 0.0 	Riv_50 0.0 0.0 0.0 16.7	1980 APR 30 0.0 0.0 0.0 NA 	-1.000		0.0 16.7	0.0		0.0	0.0 0.0 0.0
0.0	0.0 0.0 0.0 500.8	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 500.8	0.0	0.0	0.0	0.0 500.8
Shortag Carried		Water Use		Statio	on In/Out From River By		S	Station B From	alance Carrier By
or F	rom Total T River River	otal CU Avail Control	Total CU				From		/To River
Structu Exchang Inflow ID	g SoilM Suppl	y Short Short Outflow Flow Year Mo Day	CU SoilM Location R	Return ight	Storage Exc_Pln Loss Inflow (+) (+)(Gain		Deplete	
(+) (-)	NA NA (+)	NA NA NA NA	NA N	NA	NA (+)	(+)	(+)	(-)	(+) (+)
(11)	(12) (13) (27) (28)	(14) (15) (29) (30)	(1) (2) (16) (17) (31)		(4) (5) (19) (20)	(6)	(22)	(8)	(9) (10) (24) (25)
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 133.3	1980 MAY 1 0.0 0.0 40.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.3	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 2 0.0 0.0 43.2 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 3 0.0 0.0 42.8 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 4 0.0 0.0 42.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 5 0.0 0.0 42.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 6 0.0 0.0 42.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 7 0.0 0.0 42.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 8 0.0 0.0 42.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0		0.0	0.0 8.1	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1		0.0 0.0		0.0 0.0 0.0 129.0				
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 10 0.0 0.0 42.7 NA	0.0 0.0		0.0 0.0 0.0 129.0				
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	0.0 0.0	0.0 0.0 -1.000		0.0 0.0 0.0 129.0				0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 12 0.0 0.0 42.7 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1		0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1		0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.0	0.0	0.0	0.0	0.0 0.0 0.0 137.1
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 15	0.0 0.0		0.0 0.0 0.0 129.0			0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 16 0.0 0.0 42.7 NA			0.0 0.0 0.0 129.0				
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1				0.0 0.0				0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 18	0.0 0.0		0.0 0.0 0.0 129.0				

NA 0.0 0.0	Riv_50 0.0 0.0 0.0 137.1	1980 MAY 19 0.0 0.0 42.7 NA	0.0 0.0		0.0 0.0 0.0 129.0			
NA		1980 MAY 20		0 0	0 0 0 0	0 0 0 0	0 0	0 0 0 0
0.0		0.0 0.0						
0.0	0.0 137.1		-1.000	0.0	0.0 125.0	0.0 0.1	0.0	0.0 137.1
0.0	0.0 137.1	12.7 1111	1.000					
NA	Riv_50	1980 MAY 21	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 22						0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 23	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0						
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 24	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 25	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 26						
0.0	0.0 0.0			0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1		-1.000					
NA	Riv_50	1980 MAY 27						
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1		-1.000					
NA	Riv_50	1980 MAY 28						
0.0	0.0 0.0			0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 29						
0.0	0.0 0.0	0.0 0.0		0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
NA	Riv_50	1980 MAY 30	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0		0.0 0.0		0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
	-1 -2							
NA	Riv_50	1980 MAY 31	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0		0.0 0.0		0.0	0.0 129.0	0.0 8.1	0.0	0.0 137.1
0.0	0.0 137.1	42.7 NA	-1.000					
								
NA		1000 TOT 1			0 0 0 0	0 0 0 0	0 0	0 0 0 0
0.0	V V V V	1980 TOT -1 0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0		1321.3 NA		0.0	0.0 4000.3	0.0 240.0	0.0	0.0 4240.2
0.0	0.0 4240.2	1321.3 NA	-1.000					

Shortag		Water Use		Station	In/Out From River By	s	Station Balance From Carrier By
			Total CII			From	
or I	From Total To	otal CU					Well From/To River
River	River River	Avail Control	Control		-		
Structi	ıre River		Demand Demand	Priorty S	torage Exc_Pln	Loss Well	Priorty Sto_Exc Loss
Exchang	g SoilM Supply	y Short Short	CU SoilM	Return	Loss Inflow	Gain Flow	Deplete GW Stor
		Outflow Flow	Location R	ight			
	ID						(+) (+)((-)
	NA NA	NA NA		NA	NA (+)	(+) (+)	(-) (+) (+)
(-)	(-) (+)	NA NA	NA	(2)	(4) (5)	(6) (7)	(0) (10)
(11)	(12) (13)						(8) (9) (10) (23) (24) (25)
(26)	(27) (28)	(29) (30)		(18)	(19) (20)	(21) (22)	(23) (24) (25)
(20)	(27) (20)	(2) (30)	(31)				
NA	Riv_50	1980 JUN 1	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 133.1	0.0 8.2	0.0 0.0 141.3
0.0	0.0 141.3	46.2 NA					
NA	_						0.0 0.0 0.0
0.0			0.0 0.0	0.0	0.0 133.3	0.0 8.3	0.0 0.0 141.7
0.0	0.0 141.7		-1.000				
NA							0.0 0.0 0.0
0.0				0.0	0.0 133.3	0.0 8.3	0.0 0.0 141.7
0.0	0.0 141.7	48.2 NA					
NA	_						0.0 0.0 0.0
0.0			0.0 0.0	0.0	0.0 133.3	0.0 8.3	0.0 0.0 141.7
0.0 NA	0.0 141.7	48.4 NA	-1.000	0 0	0 0 0 0	0.0	
0.0							0.0 0.0 0.0 0.0 0.0 141.7
0.0	0.0 0.0	0.0 0.0 48.4 NA		0.0	0.0 133.3	0.0 8.3	0.0 0.0 141.7
0.0	0.0 141.7	40.4 NA	-1.000				

NA 0.0 0.0 0.0	Riv_50 0.0 0.0 141.7 Riv_50 0.0 0.0 141.7 Riv_50 0.0 0.0 141.7 Riv_50 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7	1980 JUN 7 0.0 0.0 48.4 NA 1980 JUN 8 0.0 0.0 48.4 NA 1980 JUN 9 0.0 0.0 48.4 NA 1980 JUN 10	0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3	0.0 0.0 0.0 0.0 0.0	8.3 0.0 8.3 0.0 8.3 0.0 8.3	0.0 0.0 0.0 0.0 0.0	
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.141.7 Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7	1980 JUN 11 0.0 0.0 48.4 NA 1980 JUN 12 0.0 0.0 48.4 NA 1980 JUN 13 0.0 0.0 48.4 NA 1980 JUN 14 0.0 0.0 48.4 NA 1980 JUN 15 0.0 0.0 48.4 NA	0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0 0.0 0.0	8.3 0.0 8.3 0.0 8.3 0.0	0.0 0.0 0.0 0.0 0.0	0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7
NA 0.0 0.0	Riv_50 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7	1980 JUN 16 0.0 0.0 48.4 NA 1980 JUN 17 0.0 0.0 48.4 NA 1980 JUN 18 0.0 0.0 48.4 NA 1980 JUN 19 0.0 0.0 48.4 NA 1980 JUN 20 0.0 0.0 48.4 NA	$\begin{array}{ccccc} -1.000 & & & & \\ & 0.0 & & 0.0 & \\ 0.0 & & 0.0 & \\ -1.000 & & 0.0 & \\ 0.0 & & 0.0 & \\ -1.000 & & 0.0 & \\ 0.0 & & 0.0 & \\ -1.000 & & 0.0 & \\ -1.000 & & 0.0 & \\ 0.0 & & 0.0 & \\ \end{array}$	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3	0.0 0.0 0.0 0.0 0.0	8.3 0.0 8.3 0.0 8.3 0.0 8.3	0.0 0.0 0.0 0.0 0.0	0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7
NA 0.0 0.0 NA 0.0 0.0 NA 0.0 NA 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0	Riv_50 0.0 0.0 0.0 141.7 Riv_50 0.0 0.0 141.7 Riv_50 0.0 0.0 0.0 141.7	48.4 NA 1980 JUN 23 0.0 0.0 48.4 NA 1980 JUN 24 0.0 0.0 48.4 NA 1980 JUN 25	0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 133.3 0.0 0.0 0.0 133.3 0.0 0.0 0.0 133.3 0.0 0.0	0.0 0.0 0.0 0.0 0.0	8.3 0.0 8.3 0.0 8.3 0.0 8.3	0.0 0.0 0.0 0.0 0.0	0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7
NA 0.0 0.0		0.0 0.0 48.4 NA 1980 JUN 27 0.0 0.0 48.4 NA 1980 JUN 28 0.0 0.0 48.4 NA 1980 JUN 29 0.0 0.0 48.4 NA 1980 JUN 30 0.0 0.0 48.4 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	0.0 133.3	0.0 0.0 0.0 0.0 0.0	8.3 0.0 8.3 0.0 8.3 0.0	0.0 0.0 0.0 0.0 0.0	0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7 0.0 0.0 0.0 141.7
NA 0.0 0.0	Riv_50	1980 TOT -1 0.0 0.0 1449.5 NA	0.0 0.0			0.0 0.0 2	0.0	0.0	0.0 0.0 0.0 4249.6

From River By From Carrier By

Carried

		otal CU	To To	tal	Up	strm Re	ach Ret	From urn W		n/To Ri	ver
River Struct	River River ure River	Avail Control	Control Demand Demand	Priorty	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchan	g SoilM Suppl Divert by Well	y Short Short Outflow Flow		I Return ight	Los	s Inflow	Gain	Flow	Deplete	GW Stor	
ID (+)	ID NA NA	Year Mo Day NA NA	NA NA	(+) NA	(+) NA	(+)((-)	(+)	(+)	(+)((-)
(-)	(-) (+)	NA NA	NA								
(11)	(12) (13)	(14) (15)	(1) (2) (16) (17)		(4) (19)	(5) (20)	(6) (21)	(7) (22)	(8)	(9) (24)	(10) (25)
(26)	(27) (28)	(29) (30)	(31)								
NA 0.0	Riv_50	1980 JUL 1 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 NA	0.0 92.6 Riv_50	0.0 NA 1980 JUL 2	-1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	93.9	0.0	0.0	0.0		93.9
0.0 NA	0.0 93.9 Riv_50	0.0 NA 1980 JUL 3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.3	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	94.3	0.0	0.0	0.0	0.0	94.3
NA 0.0	Riv_50 0.0 0.0	1980 JUL 4 0.0 0.0	0.0 0.0	0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0	0.0 94.4
0.0 NA	0.0 94.4 Riv_50	0.0 NA 1980 JUL 5	-1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0		94.4	0.0	0.0	0.0		94.4
NA	Riv_50	1980 JUL 6	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA	0.0 0.0	0.0		94.4	0.0	0.0	0.0		94.4
NA	Riv_50	1980 JUL 7	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	94.4	0.0	0.0	0.0		94.4
NA 0.0	Riv_50 0.0 0.0	1980 JUL 8 0.0 0.0	0.0 0.0	0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0	0.0 94.4
0.0 NA	0.0 94.4 Riv_50	0.0 NA 1980 JUL 9	-1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	94.4	0.0	0.0	0.0	0.0	94.4
NA 0.0	Riv_50 0.0 0.0	1980 JUL 10 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 94.4	0.0 NA	-1.000								
NA 0.0	Riv_50 0.0 0.0	1980 JUL 11 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 NA	0.0 94.4 Riv_50	0.0 NA 1980 JUL 12	-1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA	0.0 0.0	0.0	0.0	94.4	0.0	0.0	0.0		94.4
NA 0.0	Riv_50 0.0 0.0	1980 JUL 13 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 94.4	0.0 NA	0.0 0.0 -1.000								
NA 0.0	Riv_50 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	94.4	0.0	0.0	0.0	0.0	94.4
0.0 NA	0.0 94.4 Riv_50	0.0 NA 1980 JUL 15	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	94.4	0.0	0.0	0.0	0.0	94.4
NA	Riv_50	1980 JUL 16	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 94.4		0.0 0.0 -1.000 0.0 0.0								
NA 0.0	Riv_50 0.0 0.0		0.0 0.0							0.0	
0.0 NA	0.0 94.4 Riv_50	0.0 NA 1980 JUL 18	-1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	$ \begin{array}{cccc} 0.0 & 0.0 \\ 0.0 & 94.4 \end{array} $	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	94.4	0.0	0.0	0.0	0.0	
NA 0.0	Riv_50 0.0 0.0	1980 JUL 19 0.0 0.0	0.0 0.0							0.0	
0.0 NA	0.0 94.4 Riv_50	0.0 NA	-1.000 0.0 0.0								
0.0	0.0 0.0 0.0 94.4	0.0 0.0	0.0 0.0								
NA	0.0 94.4 Riv_50		0.0 0.0	0.0	0 0	0 0	0.0	0 0	0 0	0 0	0 0
0.0	0.0 0.0 0.0 94.4	0.0 0.0	0.0 0.0	0.0	0.0	94.4	0.0	0.0	0.0	0.0	94.4
0.0	0.0 94.4	0.0 NA	-1.000								

NA 0.0 0.0 NA 0.0 0.0 NA 0.0 NA 0.0 NA 0.0 0.0 NA 0.0	Riv_50 0.0 0.0 0.0 94.4 Riv_50 0.0 94.4	1980 JUL 22 0.0 0.0 0.0 NA 1980 JUL 23 0.0 0.0 0.0 NA 1980 JUL 24 0.0 0.0 0.0 NA 1980 JUL 25 0.0 0.0 0.0 NA	-1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 -1.000 0.0 0.0	0.0 0.0 0.0 0.0	0.0 94.4 0.0 0. 0.0 94.4 0.0 0. 0.0 94.4	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0
NA 0.0 0.0		0.0 0.0 NA 1980 JUL 27 0.0 0.0 NA 1980 JUL 28 0.0 0.0 0.0 0.0 NA 1980 JUL 29 0.0 0.0 0.0 0.0 NA 1980 JUL 30 0.0 NA 1980 JUL 31 0.0 0.0 NA 1980 JUL 31 0.0 0.0 NA		0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4 0.0 0.0 0.0 94.4
Shorta	ge	Water Use		Static	n In/Out From River By		S	Station E	Balance n Carrier By
or River Struct Exchan Inflow (+) (-)	From Total T River River ure River g SoilM Suppl Divert by Well ID NA NA (-) (+)	Cotal CU Avail Control Y Short Short Outflow Flow Year Mo Day NA NA NA NA	Total CU To To Control Demand Demand C CU SoilM Location R NA NA NA NA (1) (2)	Priorty Return ight (+) NA (3)	Upstrm Storage Exc_Pl Loss Infl (+) (+) NA (+)	Reach Ret	From Well (+)	Priorty Deplete (+) (-)	n/To River Sto_Exc Loss
or River Struct Exchan Inflow (+) (-)	From Total T River River ure River ig SoilM Suppl Divert by Well ID NA NA (-) (+) (12) (13)	Cotal CU Avail Control Ty Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU CONTrol Demand Demand CU SoilM Location R NA NA (1) (2) (16) (17) (31)	Priorty Return (+) NA (3) (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Upstrm Storage Exc_Pl Loss Infl (+) (+) (4) (5 (19) (20)	Reach Ret n Loss ow Gair)((-) (+)) (6) (21) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	From Well (+) (+) (7) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Priorty Deplete (+) (-) (8) (23) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1/To River Sto_Exc Loss GW Stor (+)((-)(+)(+)(-)(+)(-)(+)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)

		Total CU Avail Control							
Shorta	ige	Water Use		Static	on In/Out From River By		S	Station E From	alance Carrier By
NA 0.0 0.0		1980 TOT -1 0.0 0.0 0.0 NA			0.0 0.0	0.0	0.0	0.0	0.0 0
NA 0.0 0.0	0.0 0.0 0.0 94.4	1980 AUG 31 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 94.4	0.0	0.0	0.0	0.0 94.4
0.0 NA 0.0 0.0	0.0 94.4 Riv_50 0.0 0.0 0.0 94.4		-1.000 0.0 0.0 0.0 0.0 -1.000						
0.0 0.0 NA 0.0	0.0 0.0 0.0 94.4 Riv_50 0.0 0.0	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 94.4	0.0	0.0	0.0	0.0 94.4
0.0 NA 0.0 0.0	0.0 0.0 0.0 94.4 Riv 50	0.0 NA 1980 AUG 28	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0 94.4
0.0 NA 0.0	0.0 94.4 Riv_50 0.0 0.0		-1.000 0.0 0.0 0.0 0.0		0.0 0.0				0.0 0
0.0 0.0 NA 0.0	0.0 0.0 0.0 94.4 Riv_50 0.0 0.0	0.0 0.0	0.0 0.0 -1.000 0.0 0.0 0.0 0.0		0.0 94.4 0.0 0.0 0.0 94.4		0.0		
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 94.4 Riv_50	1980 AUG 23 0.0 0.0 0.0 NA 1980 AUG 24	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0 00 0
0.0 0.0 NA 0.0	0.0 0.0 0.0 94.4 Riv_50 0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA 1980 AUG 22 0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000	0.0			0.0	0.0	0.0 94.4 0.0 0 0.0 94.4
0.0 0.0 NA	0.0 0.0 0.0 94.4 Riv_50	0.0 NA 1980 AUG 21	0.0 0.0 -1.000 0.0	0.0	0.0 0.0	0.0	0.0		0.0 0
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 94.4 Riv_50	1980 AUG 19 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0 0.0 0
0.0 0.0 NA 0.0 0.0	0.0 0.0 0.0 94.4 Riv_50 0.0 0.0 0.0 94.4	0.0 0.0 0.0 NA 1980 AUG 18 0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 94.4 0.0 0.0 0.0 94.4	0.0	0.0	0.0	0.0 94.4 0.0 0 0.0 94.4
NA 0.0 0.0 NA	Riv_50 0.0 0.0 0.0 94.4 Riv_50	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0 94.4
0.0 NA 0.0 0.0	0.0 94.4 Riv_50 0.0 0.0 0.0 94.4	0.0 NA 1980 AUG 15	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	
0.0 0.0 NA 0.0	0.0 0.0 0.0 94.4 Riv_50 0.0 0.0	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0	0.0	0.0 94.4	0.0	0.0	0.0	0.0 94.4
0.0 NA 0.0 0.0	0.0 94.4 Riv_50 0.0 0.0 0.0 94.4 Riv_50	0.0 0.0 0.0 NA	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ -1.000 \\ 0.0 & 0.0 \end{array} $	0.0	0.0 0.0	0.0	0.0	0.0	0.0 94.4
NA 0.0	Riv_50 0.0 0.0	1980 AUG 11 0.0 0.0	0.0 0.0		0.0 0.0			0.0	
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 94.4		0.0 0.0 0.0 0.0 -1.000						

Exchan		y Short Short Outflow Flow		M Return						
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA NA NA	NA NA NA NA NA NA NA		(+) NA	(+)((+)	(+)	(+)((-)
(11)	(12) (13) (27) (28)	(14) (15) (29) (30)	(1) (2) (16) (17) (31)	(18)	(4)	(20)	(6)	(22)	(8)	(9) (10) (24) (25)
NA 0.0	Riv_50	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 95.1
0.0 NA 0.0	0.0 95.1 Riv_50 0.0 0.0	0.0 NA 1980 SEP 2 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0 NA 0.0	0.0 93.8 Riv_50 0.0 0.0	0.0 NA 1980 SEP 3 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 93.4
0.0 NA 0.0	0.0 93.4 Riv_50 0.0 0.0 0.0 93.3	0.0 NA 1980 SEP 4 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0 NA 0.0 0.0	0.0 93.3 Riv_50 0.0 0.0 0.0 93.3	0.0 NA 1980 SEP 5 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 6 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3		0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 8 0.0 0.0 0.0 NA		0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 9 0.0 0.0 0.0 NA		0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 10 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0		0.0 93.3	0.0	0.0	0.0	0.0 0.0
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 11 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 12 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 13 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0		93.3	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	1980 SEP 14 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0		93.3	0.0	0.0	0.0	0.0 0.0 0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3		0.0 0.0 -1.000							
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3		0.0 0.0 0.0 0.0 -1.000							
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0 0.0 NA		0.0	0.0	93.3	0.0	0.0	0.0	0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0 0.0 NA	-1.000	0.0	0.0	93.3	0.0	0.0	0.0	0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0 0.0 NA	-1.000	0.0	0.0	93.3	0.0	0.0	0.0	0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0	0.0 0.0 0.0 0.0 -1.000							
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3		0.0 0.0 0.0 0.0 -1.000							
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	93.3	0.0	0.0	0.0	0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	93.3	0.0	0.0	0.0	0.0 93.3
NA 0.0 0.0	Riv_50 0.0 0.0 0.0 93.3	0.0 0.0	0.0 0.0 0.0 0.0 -1.000							

NA	Riv_50	1980 SEP 25	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 93.3
0.0	0.0 93.3	0.0 NA	-1.000						
NA	Riv_50	1980 SEP 26	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 93.3
0.0	0.0 93.3	0.0 NA	-1.000						
NA	Riv_50	1980 SEP 27	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 93.3
0.0	0.0 93.3	0.0 NA	-1.000						
NA	Riv_50	1980 SEP 28	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 93.3
0.0	0.0 93.3	0.0 NA	-1.000						
NA	Riv_50	1980 SEP 29	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 93.3
0.0	0.0 93.3	0.0 NA	-1.000						
NA	Riv_50	1980 SEP 30	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 93.3	0.0	0.0	0.0	0.0 93.3
0.0	0.0 93.3	0.0 NA	-1.000						
NA			0.0 0.0					0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 2800.1	0.0	0.0	0.0	0.0 2800.1
0.0	0.0 2800.1	0.0 NA	-1.000						

Diversion Summary ACFT
ST_St534534534534534534534Municipal Demand _1 Dem_Exist. Diver. 1 Dem_Exis

t. Diver. 1

STRUCTURE DATA : # cfs af@30 af@31 1 1 1 5000. 297525. Diversion Capacity Diversion Rights Well Capacity Well Rights 307442. 100. 5950. 0. 0. 6149. : 0 0. 0.

Shortage		Water Use			Statio	n In/Out From Ri	iver By		S	Station B From	alance Carrier	Ву
Carried												
			Tota	l CU					From			
or From	Total To	tal CU		то т	otal	Ups	strm Re	ach Ret	urn V	Well From	/To Ri	ver
River Riv	er River	Avail Control	l Co:	ntrol								
Structure	River		Deman	d Demand	Priorty	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
		Short Sho				Loss	s Inflow	Gair	ı Flov	v Deplete	GW Stor	
		Outflow Flo	ow Locati	on	Right	, ,		, ,		, ,	, , ,	, ,
ID (+) NA	ID	Year Mo Da	ay N. NA	A NA NA	NA	(+)	(+)	(-)	(+)	(+)	(+)((-)
(+) NA (-) (-)		NA NA	NA		NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(+)	INA INA) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11) (12) (13)	(14) (15)										
(26) (27		(29) (30)			(10)	(= >)	(20)	(21)	(22)	(23)	(21)	(23)
(=-, (=-	, (=-,	(== / (== /		(/								
_	Dem_1	1979 OCT	1 64.	5 12.9	64.5	0.0					0.0	0.0
0.0 0.0		0.0 0.0	12.9		51.6	0.0	65.3	0.0	24.2	0.0	0.0	89.5
	0 25.0	0.0 NA	-1									
_	Dem_1	1979 OCT		5 12.9							0.0	
0.0 0.0 64.5 0.		0.0 0.0	12.9		51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
	0 0.0 Dem 1	0.0 NA 1979 OCT	-1 3 64.	.000 5 12.9	64 5	0 0	0 0	0 0	0.0	0.0	0.0	0.0
0.0 0.0	_	0.0 0.0	12.9					0.0		0.0		
64.5 0.		0.0 NA		.000	31.0	0.0	10.1	0.0	10.1	0.0	0.0	04.5
Dem 1	Dem 1	1979 OCT			64.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	_	0.0 0.0	12.9		51.6	0.0		0.0		0.0		
64.5 0.	0.0	0.0 NA	-1	.000								
Dem_1	Dem_1	1979 OCT	5 64.	5 12.9							0.0	0.0
0.0 0.0	64.5	0.0 0.0	12.9		51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
64.5 0.	0.0	0.0 NA	-1	.000								
_	Dem_1	1979 OCT		5 12.9			0.0		0.0		0.0	
0.0 0.0 64.5 0.	64.5 0 0.0	0.0 0.0 0.0 NA	12.9	0.0	51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
	Dem_1	1979 OCT	7 64.		64.5	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0 0.0		0.0 0.0	12.9		51.6	0.0		0.0		0.0		
	0 0.0	0.0 NA		.000	31.0	0.0	10.1	0.0	10.1	0.0	0.0	01.5
Dem 1	Dem 1	1979 OCT		5 12.9	64.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	64.5	0.0 0.0	12.9				16.1		48.4		0.0	64.5
64.5 0.		0.0 NA		.000								
Dem_1	Dem_1	1979 OCT	9 64.		64.5					0.0	0.0	0.0
0.0 0.0			12.9		51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
64.5 0.	0.0	0.0 NA	-1	.000								

Dem_1 0.0 64.5	0.0 64.5		10 64.5 12. 12.9 0.0 -1.000					
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	0.0 0.0	11 64.5 12. 12.9 0.0 -1.000					
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT 1	12 64.5 12. 12.9 0.0 -1.000					
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT 3	13 64.5 12. 12.9 0.0 -1.000					0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT 1	14 64.5 12. 12.9 0.0 -1.000					0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		15 64.5 12. 12.9 0.0 -1.000					
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		16 64.5 12. 12.9 0.0					
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT	17 64.5 12. 12.9 0.0					
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT 1	18 64.5 12. 12.9 0.0 -1.000					0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	0.0 0.0 0.0 NA	19 64.5 12. 12.9 0.0 -1.000	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	0.0 0.0	20 64.5 12. 12.9 0.0 -1.000	9 64.5 51.6	0.0 0.0 0.0 16.1	0.0 0.0	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	0.0 0.0	21 64.5 12. 12.9 0.0 -1.000					0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT 2	22 64.5 12. 12.9 0.0 -1.000		0.0 0.0 0.0 16.1		0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1979 OCT 2	23 64.5 12. 12.9 0.0				0.0	
Dem_1 0.0 64.5		0.0 0.0 0.0 NA	24 64.5 12. 12.9 0.0 -1.000	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		25 64.5 12. 12.9 0.0 -1.000					
Dem_1 0.0 64.5	0.0 64.5	0.0 0.0	26 64.5 12. 12.9 0.0 -1.000					
Dem_1 0.0 64.5	0.0 64.5	0.0 0.0	27 64.5 12. 12.9 0.0 -1.000	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
64.5	Dem_1 0.0 64.5 0.0 0.0	1979 OCT 2 0.0 0.0 0.0 NA	$ \begin{array}{rrr} & -1.000 \\ 28 & 64.5 & 12. \\ & 12.9 & 0.0 \\ & -1.000 \end{array} $	9 64.5 51.6	0.0 0.0 0.0 16.1	0.0 0.0 0.0 48.4	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1979 OCT 2 0.0 0.0 0.0 NA	$\begin{array}{cccc} & -1.000 \\ 29 & 64.5 & 12. \\ & 12.9 & 0.0 \\ & -1.000 \\ 30 & 64.5 & 12. \end{array}$	9 64.5 51.6	0.0 0.0	0.0 0.0	0.0	0.0 0.0
Dem_1 0.0 64.5	0.0 64.5	1979 OCT 3 0.0 0.0 0.0 NA	12.9 0.0	9 64.5 51.6	0.0 0.0 0.0 16.1	0.0 0.0 0.0 48.4	0.0	0.0 0.0 0.0 64.5
0.0 64.5	0.0 64.5 0.0 0.0	0.0 0.0 0.0 NA	31 64.5 12. 12.9 0.0 -1.000	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
0.0	0.0 2000.0 0.0 25.0	0.0 0.0 0.0 NA	-1 2000.0 400. 400.0 0.0 -1.000	1600.0	0.0 549.2	0.0 1475.8	0.0	0.0 2025.0
Shortag	ge	Water Use		Statio	on In/Out From River By		Station E	Balance n Carrier By
or F River	rom Total To River River	tal CU Avail Control	Total C To L Control	Total	Upstrm R	each Return	Well From	n/To River

Exchano	re River g SoilM Supply	Demand Demand Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss 7 Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor Outflow Flow Location Right
ID (+) (-)	ID NA NA (-) (+)	Year Mo Day NA NA (+) (+) (+)((-) (+) (+) (+)((-) NA NA NA NA NA NA NA (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
(11)	(12) (13) (27) (28)	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (29) (30) (31) ————————————————————————————————————
Dem_1 0.0	Dem_1 0.0 66.7	1979 NOV 1 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
66.7 Dem_1 0.0 66.7	0.0 0.0 Dem_1 0.0 66.7 0.0 0.0	0.0 NA -1.000 1979 NOV 2 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 66.7 0.0 NA -1.000
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 3 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 4 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 5 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 6 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 7 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 8 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 9 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 10 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 11 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 12 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7 Dem_1	Dem_1 0.0 66.7 0.0 0.0 Dem 1	1979 NOV 13 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 66.7 Dem_1	0.0 66.7	0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 66.7 0.0 NA -1.000 1979 NOV 15 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 66.7	0.0 66.7 0.0 0.0	0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 66.7 0.0 NA -1.000
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 16 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 17 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 18 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7 Dem_1	Dem_1 0.0 66.7 0.0 0.0 Dem_1	1979 NOV 19 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 66.7	0.0 66.7 0.0 0.0	0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 66.7 0.0 NA -1.000
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 21 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 22 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 23 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 0.0 66.7	Dem_1 0.0 66.7 0.0 0.0	1979 NOV 24 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 0.0	0.0 0.0 1	66.7 13.3 .3.3 0.0 -1.000	66.7 53.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0 66.7
Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 0.0		.3.3 0.0 -1.000	53.3	0.0	16.7	0.0	50.0	0.0	0.0	66.7
Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 0.0 Dem_1 Dem_1		.3.3 0.0 -1.000	53.3	0.0	16.7	0.0	0.0	0.0	0.0	0.0
0.0 0.0 66.7 66.7 0.0 0.0 Dem_1 Dem_1	0.0 0.0 1	.3.3 0.0 -1.000	53.3	0.0	16.7	0.0	50.0	0.0	0.0	
0.0 0.0 66.7 66.7 0.0 0.0 Dem_1 Dem_1	0.0 0.0 1	.3.3 0.0 -1.000	53.3	0.0	16.7	0.0	50.0	0.0	0.0	
0.0 0.0 66.7 66.7 0.0 0.0	0.0 0.0 1	3.3 0.0								
	1980 TOT -1 0.0 0.0 40 .0 0.0 NA	0.0 0.0 16	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Shortage Carried	Water Use		Statio	n In/Out From Ri	iver By		S	Station E From	Balance Carrie	r By
Exchang SoilM Sup Inflow Divert by We ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28)	ll Outflow Flow I Year Mo Day NA NA NA NA (14) (15)	ocation INA NA NA NA NA NA NA (1) (2)	(+) NA (3)	(+) NA (4)	(+)((+)	(-) (+)	(+) (+)	(+)	(+)	((-) (+) (10)
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 1.1	0.0 0.0 1	64.5 12.9 2.9 0.0 -1.000					0.0			0.0
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0	0.0 0.0 1 0.0 NA	-1.000	51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0	0.0 0.0 1 0.0 NA	.2.9 0.0 -1.000	51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0	0.0 NA	.2.9 0.0 -1.000	51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0		.2.9 0.0 -1.000	51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0			C4 F	0 0	0 0					
01.5	0.0 NA	2.9 0.0	51.6	0.0	16.1	0.0	48.4	0.0	0.0	64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0	0.0 0.0 1 0.0 NA 1979 DEC 7 0.0 0.0 1	.2.9 0.0 -1.000 64.5 12.9 .2.9 0.0	51.6 64.5 51.6	0.0	0.0	0.0	48.4 0.0 48.4	0.0	0.0	0.0 64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0 Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0	0.0 0.0 1 0.0 NA 1979 DEC 7 0.0 0.0 1 0.0 NA 1979 DEC 8 0.0 0.0 1 0.0 NA	$\begin{array}{cccc} .2.9 & 0.0 & \\ & -1.000 & \\ 64.5 & 12.9 & \\ 2.9 & 0.0 & \\ & -1.000 & \\ 64.5 & 12.9 & \\ 2.9 & 0.0 & \\ & -1.000 & \\ \end{array}$	51.6 64.5 51.6 64.5 51.6	0.0	0.0 16.1 0.0 16.1	0.0	0.0 48.4 0.0 48.4	0.0	0.0	0.0 64.5 0.0 64.5
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 0.0 Dem_1 Dem_1 0.0 0.0 64.5	0.0 0.0 1 0.0 NA 1979 DEC 7 0.0 0.0 1 0.0 NA 1979 DEC 8 0.0 0.0 1 0.0 NA 1979 DEC 9 0.0 0.0 1 0.0 NA	$\begin{array}{ccccc} 2.9 & 0.0 & \\ & -1.000 & \\ 64.5 & 12.9 & \\ 2.9 & 0.0 & \\ & -1.000 & \\ 64.5 & 12.9 & \\ 2.9 & 0.0 & \\ & -1.000 & \\ 64.5 & 12.9 & \\ 2.9 & 0.0 & \\ & -1.000 & \\ \end{array}$	51.6 64.5 51.6 64.5 51.6 64.5 51.6	0.0 0.0 0.0 0.0 0.0	0.0 16.1 0.0 16.1 0.0 16.1	0.0	48.4 0.0 48.4 0.0 48.4 0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 64.5 0.0 64.5 0.0 64.5

0.0 NA -1.000 1979 DEC 13 64.5 12.9 64.5 0.0 16.1 0.0 48.4 0.0 0.0 64.5 0.0 NA -1.000 10.0 NA -1.000

0.0

Dem 1

0.0

64 5

Dem 1

 Dem_1 0.0 64.5

0 0 64.5 Dem_1

0.0

0.0 64.5

Dem_1
0.0 64.5
0.0 0.0

Dem_1
0.0 64.5
0.0 0.0

0.0

Dem_1 0.0 64.5 Dem_1 0.0 64.5		1979 DEC 1 0.0 0.0 0.0 NA 1979 DEC 1 0.0 0.0 0.0 NA	4 64.5 12.9 12.9 0.0 -1.000 5 64.5 12.9 12.9 0.0 -1.000	51.6	0.0 16.1	0.0 48.4	0.0	.0 64.5
Dem_1 0.0 64.5 Dem_1 0.0 64.5 Dem_1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 64.5 0.0 0.0 Dem_1 0.0 64.5 0.0 0.0	0.0 0.0 0.0 NA 1979 DEC 1 0.0 0.0 0.0 NA 1979 DEC 1	7 64.5 12.9 12.9 0.0	51.6 64.5 51.6 64.5	0.0 16.1 0.0 0.0 0.0 16.1 0.0 0.0	0.0 48.4 0.0 0.0 0.0 48.4	0.0 0	0.0 64.5 0.0 0.0 .0 64.5
64.5 Dem_1 0.0 64.5 Dem_1 0.0	0.0 0.0 Dem_1 0.0 64.5 0.0 0.0 Dem_1 0.0 64.5	0.0 NA 1979 DEC 1 0.0 0.0 0.0 NA 1979 DEC 2 0.0 0.0		64.5 51.6 64.5	0.0 0.0 0.0 16.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0
Dem_1 0.0 64.5 Dem_1 0.0	Dem_1 0.0 64.5	0.0 0.0 0.0 NA 1979 DEC 2 0.0 0.0	2 64.5 12.9 12.9 0.0	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
64.5 Dem_1 0.0 64.5 Dem_1 0.0	Dem_1 0.0 64.5 0.0 0.0 Dem_1 0.0 64.5	0.0 0.0 0.0 NA 1979 DEC 2 0.0 0.0	3 64.5 12.9 12.9 0.0 -1.000 4 64.5 12.9 12.9 0.0	51.6	0.0 16.1	0.0 48.4	0.0 0.0	0.0 64.5
64.5 Dem_1 0.0 64.5	Dem_1 0.0 64.5	0.0 NA 1979 DEC 2 0.0 0.0 0.0 NA	5 64.5 12.9 12.9 0.0	64.5 51.6	0.0 0.0 0.0 16.1	0.0 0.0 0.0 48.4	0.0	0.0 0.0
Dem_1 0.0 64.5 Dem_1	Dem_1	0.0 0.0 0.0 NA 1979 DEC 2	6 64.5 12.9 12.9 0.0 -1.000 7 64.5 12.9	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
0.0 64.5 Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	0.0 NA 1979 DEC 2 0.0 0.0 0.0 NA	12.9 0.0 -1.000 8 64.5 12.9 12.9 0.0 -1.000	64.5 51.6	0.0 0.0 0.0 16.1	0.0 0.0	0.0	0.0 0.0
Dem_1 0.0 64.5 Dem_1 0.0 64.5	0.0 64.5 0.0 0.0 Dem_1 0.0 64.5	0.0 0.0 0.0 NA 1979 DEC 3	9 64.5 12.9 12.9 0.0 -1.000 0 64.5 12.9 12.9 0.0 -1.000	51.6	0.0 16.1	0.0 48.4	0.0	0.0 64.5
0.0	0.0 64.5	0.0 0.0 0.0 NA		51.6		0.0 48.4		
Dem_1 0.0 2000.0	Dem_1 0.0 2000.0 0.0 1.1	1980 TOT - 0.0 0.0 0.0 NA	1 2000.0 400.0 400.0 0.0 1 -1.000	2000.0 600.0	0.0 0.0	0.0 0.0 0.0 1500.8	0.0	0.0 0.0

Shortag	ge		Water (Ise			Statio	n In/Out From Ri			S	tation E Fron	Balance n Carrier	Ву
Carrie	1													
				-	Total	CU					From			
or I	rom I	otal T	otal	CU		то то	tal	Ups	trm Re	ach Ret	urn W	ell Fron	n/To Ri	ver
River	River	River	Avail (ontrol	Cont	rol								
Structi	ıre Ri	ver			Demand	Demand	Priorty :	Storage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang	g Soil	M Suppl	y Short	Short	CU	SoilM	Return	Loss	Inflow	Gain	Flow	Deplete	e GW Stor	
Inflow	Divert	by Well	Outflow	Flow	Location	R	ight							
ID	II)	Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA NA	1	N	A								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (3	30)	(3	1)								

Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 JAN 1 0.0 0.0 12. 0.0 NA	9 0.0 51.6 -1.000	0.0 16.1	0.0 48.4	0.0	0.0 64.5
Dem_1 0.0 64.5 Dem 1	Dem_1 0.0 64.5 0.0 0.0 Dem 1	1980 JAN 2 0.0 0.0 12. 0.0 NA 1980 JAN 3	9 0.0 51.6 -1.000	0.0 16.1	0 0.0 0.0 0.0 48.4	0.0	0.0 64.5
0.0 64.5	0.0 64.5 0.0 0.0	0.0 0.0 12. 0.0 NA	9 0.0 51.6 -1.000	0.0 16.1	0.0 48.4		
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 JAN 4 0.0 0.0 12. 0.0 NA			0 0.0 0.0		
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 JAN 5 0.0 0.0 12. 0.0 NA	64.5 12.9 64 9 0.0 51.6 -1.000	0.0 0.16.1	0.0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	0.0 64.5	1980 JAN 6 0.0 0.0 12. 0.0 NA	9 0.0 51.6	0.0 0.1 0.0 16.1	0.0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 JAN 7 0.0 0.0 12. 0.0 NA	64.5 12.9 64 9 0.0 51.6	0.0 0.1 0.0 16.1	0.0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 JAN 8 0.0 0.0 12.	64.5 12.9 64 9 0.0 51.6	0.0 0.1 0.0 16.1	0.0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 JAN 9 0.0 0.0 12. 0.0 NA	64.5 12.9 64 9 0.0 51.6	0.0 0.1 0.0 16.1	0.0 0.0 0.0	0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 JAN 10 0.0 0.0 12.	64.5 12.9 64				
Dem_1	Dem_1 0.0 64.5	1980 JAN 11 0.0 0.0 12.	9 0.0 51.6				
64.5 Dem_1 0.0	Dem_1 0.0 64.5	0.0 NA 1980 JAN 12 0.0 0.0 12.	64.5 12.9 64 9 0.0 51.6				
64.5 Dem_1 0.0	Dem_1 0.0 64.5	0.0 NA 1980 JAN 13 0.0 0.0 12.	64.5 12.9 64 9 0.0 51.6	0.0 0.1 0.1	0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
64.5 Dem_1 0.0	0.0 0.0 Dem_1 0.0 64.5	0.0 NA 1980 JAN 14 0.0 0.0 12.	64.5 12.9 64				
64.5 Dem_1 0.0 64.5	0.0 0.0 Dem_1 0.0 64.5 0.0 0.0	0.0 NA 1980 JAN 15 0.0 0.0 12. 0.0 NA	64.5 12.9 64 9 0.0 51.6				
Dem_1 0.0	Dem_1 0.0 64.5	1980 JAN 16 0.0 0.0 12.	9 0.0 51.6				
64.5 Dem_1 0.0	Dem_1 0.0 64.5		64.5 12.9 64 9 0.0 51.6				
64.5 Dem_1 0.0	Dem_1 0.0 64.5	1980 JAN 18 0.0 0.0 12.	9 0.0 51.6				
64.5 Dem_1 0.0	0.0 0.0 Dem_1 0.0 64.5	0.0 NA 1980 JAN 19 0.0 0.0 12.	64.5 12.9 64 9 0.0 51.6	0.0 0.1 0.0 16.1	0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
64.5 Dem_1 0.0 64.5	0.0 0.0 Dem_1 0.0 64.5 0.0 0.0	0.0 NA 1980 JAN 20 0.0 0.0 12. 0.0 NA	64.5 12.9 64 9 0.0 51.6	0.0 0.1	0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
Dem_1 0.0	Dem_1 0.0 64.5	1980 JAN 21 0.0 0.0 12.	9 0.0 51.6	0.0 0.1 0.0 16.1	0 0.0 0.0	0.0	0.0 0.0 0.0 64.5
64.5 Dem_1 0.0	0.0 0.0 Dem_1 0.0 64.5	0.0 NA 1980 JAN 22 0.0 0.0 12.	64.5 12.9 64				
64.5 Dem_1 0.0	0.0 0.0 Dem_1 0.0 64.5	0.0 NA 1980 JAN 23 0.0 0.0 12.	64.5 12.9 64				
64.5 Dem_1 0.0	0.0 0.0 Dem_1 0.0 64.5	0.0 NA 1980 JAN 24 0.0 0.0 12.	64.5 12.9 64				
64.5 Dem_1 0.0 64.5	0.0 0.0 Dem_1 0.0 64.5 0.0 0.0	0.0 NA 1980 JAN 25 0.0 0.0 12. 0.0 NA	64.5 12.9 64				
Dem_1 0.0	Dem_1 0.0 64.5	1980 JAN 26 0.0 0.0 12.					
64.5 Dem_1 0.0 64.5	0.0 0.0 Dem_1 0.0 64.5 0.0 0.0	0.0 NA 1980 JAN 27 0.0 0.0 12.	-1.000 64.5 12.9 64 9 0.0 51.6	4.5 0.0 0.	0 0.0 0.0	0.0	0.0 0.0
04.5	0.0 0.0	U.U IVA	1.000				

	0.0 0.0 12.9 0.0 51.6 0.0 16.1 0.0 48.4 0.0 0.0 64.5 0.0 NA -1.000 1980 JAN 29 64.5 12.9 64.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Shortage	Water Use Station In/Out Station Balance From River By From Carrier By
Structure River Exchang SoilM Supply	Total CU From otal CU To Total Upstrm Reach Return Well From/To River Avail Control Control Demand Demand Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss y Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor
ID ID	
(+) NA NA (-) (-) (+)	NA NA NA NA NA NA (+) (+) (+) (-) (+) (+) NA NA NA
(11) (12) (13) (26) (27) (28)	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (29) (30) (31) — — — — — — — — — — — — — — — — — — —
Dem_1 Dem_1 0.0 0.0 71.4 71.4 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4 71.4 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4	0.0 0.0 14.3 0.0 57.1 0.0 20.4 0.0 51.0 0.0 0.0 71.4 0.0 NA -1.000
0.0 0.0 71.4 71.4 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4 71.4 0.0 0.0	0.0 0.0 14.3 0.0 57.1 0.0 17.9 0.0 53.6 0.0 0.0 71.4 0.0 NA
Dem_1 Dem_1 0.0 0.0 71.4 71.4 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4 0.0 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4 0.0 0.0 0.0 Dem_1 Dem_1 0.0 0.0 Dem_1 Dem_1 0.0 0.0 71.4 0.0 0.0 0.0 71.4 0.0 0.0 0.0	1980 FEB 11 71.4 14.3 71.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Dem_1 Dem_1 0.0 71.4 71.4 0.0 0. Dem_1 Dem_1 0.0 0.0 71.4 71.4 71.4 0.0 0. Dem_1 Dem_1 0. 0.0 0.0 71.4 71.4 0.0 0. Dem_1 Dem_1 0. 0.0 71.4 0.0 0. Dem_1 Dem_1 0. 0. Dem_1 Dem_1 0. 0. 71.4 0.0 0. 71.4 71.4 0.0 0. 0.	0.0 0.0 1 0.0 NA 1980 FEB 17 0.0 0.0 1 0.0 NA 1980 FEB 18 0.0 0.0 1 0 0.0 NA 1980 FEB 19 0.0 0.0 1 0 0.0 NA 1980 FEB 20 0.0 0.0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 17.9 .4 0.0 0.0 0.0 17.9 .4 0.0 0.0 0.0 17.9 .4 0.0 0.0 0.0 17.9	0.0 53.6 0.0 0.0 0.0 53.6 0.0 0.0 0.0 53.6 0.0 53.6	0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71.	4 0.0 4 0.0 4 0.0
Dem_1 Dem_1 0.0 71.4 71.4 0.0 0. Dem_1 Dem_1 0. 0.0 71.4 71.4 71.4 0.0 0. Dem_1 Dem_1 0. 0.0 71.4 0.0 0. Dem_1 Dem_1 0. 0. 71.4 0.0 0. 71.4 70.0 0.0 71.4 71.4 0.0 0. 71.4 0.0 0. 71.4 71.4 0.0 0.	0.0 0.0 1 0.0 NA 1980 FEB 22 0.0 0.0 1 0 0.0 NA 1980 FEB 23 0.0 0.0 1 0 0.0 NA 1980 FEB 24 0.0 0.0 1 0 0.0 NA 1980 FEB 25 0.0 0.0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 17.9 .4 0.0 0.0 .4 0.0 0.0 .4 0.0 0.0 .4 0.0 0.0 .4 0.0 0.0 .4 0.0 0.0	0.0 53.6 0.0 0.0 0.0 53.6 0.0 0.0 0.0 53.6 0.0 0.0	0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71.	4 0.0 4 0.0 4 0.0
Dem_1 Dem_1 0.0 0.0 71.4 71.4 0.0 0.	0.0 0.0 1 0.0 NA 1980 FEB 27 0.0 0.0 1 0 0.0 NA 1980 FEB 28	71.4 14.3 71 4.3 0.0 57.1 -1.000 71.4 14.3 71 4.3 0.0 57.1 -1.000	0.0 17.9 .4 0.0 0.0 0.0 17.9 .4 0.0 0.0 0.0 17.9	0.0 53.6 0.0 0.0 0.0 53.6 0.0 0.0	0.0 0.0 71. 0.0 0.0 71. 0.0 0.0 71.	0.0 4
Dem_1 Dem_1 0.0 0.0 2000.0	1980 TOT -1 0.0 0.0 40	2000.0 400.0 2000 0.0 0.0 1600.0	.0 0.0 0.0 0.0 0.0 0.0 502.6	0.0 0.0 0.0 1497.4	0.0 0.0 0.0 0.0 0.0 2000.	0.0
Dem_1 Dem_1 0.0 0.0 2000.0 2000.0 0.0		2000.0 400.0 2000 0.0 0.0 1600.0 -1.000				
Dem_1	Total CU er Avail Control pply Short Short ell Outflow Flow L Year Mo Day NA NA NA NA (14) (15)	2000.0 400.0 2000 0.0 0.0 1600.0 -1.000 Sta Total CU To Total Control Demand Demand Prior CU SoilM Ret ocation Right NA NA NA NA NA (1) (2) ((16) (17) (18) (31)	Upstrm Recry Storage Exc_Pln arn Loss Inflow (+) (+) (+) (+) (+) (NA (+) (5) (19) (20)	From each Return W Loss Well W Gain Flow ((-) (+) (+) (+) (6) (7)	retation Balance From Carrier By Well From/To River Priorty Sto_Exc Deplete GW Stor (+) (+) (+) (+) (8) (9)	Loss (-))

Dem_1 0.0	Dem_1 0.0 64.5	0.0 0.0	64.5 12.9 12.9 0.0 5							
64.5 Dem_1 0.0 64.5	0.0 0.0 Dem_1 0.0 64.5 0.0 0.0	1980 MAR 7	-1.000 64.5 12.9 12.9 0.0 5:							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 8	64.5 12.9 12.9 0.0 50 -1.000							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 9	64.5 12.9 12.9 0.0 5						0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 10	64.5 12.9 12.9 0.0 5							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		64.5 12.9 12.9 0.0 5							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 12 0.0 0.0	64.5 12.9 12.9 0.0 5:						0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 13 0.0 0.0	64.5 12.9 12.9 0.0 5:						0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 MAR 14 0.0 0.0	64.5 12.9 12.9 0.0 50 -1.000		0.0		0.0		0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 15	64.5 12.9 12.9 0.0 5: -1.000							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 16 0.0 0.0 0.0 NA	64.5 12.9 12.9 0.0 5	64.5 1.6 (0.0	0.0 0.	0.0		0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 17	64.5 12.9 12.9 0.0 5		0.0 0.0 16.			0.0	0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 18	64.5 12.9 12.9 0.0 5			0.0 0.0			0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 19	64.5 12.9 12.9 0.0 5		0.0 0.0 16.				0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		64.5 12.9 12.9 0.0 5: -1.000							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		64.5 12.9 12.9 0.0 5							
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 MAR 22	64.5 12.9 12.9 0.0 5			0.0 0.0			0.0	
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 23	64.5 12.9 12.9 0.0 5							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 24 0.0 0.0 0.0 NA	64.5 12.9 12.9 0.0 5: -1.000	64.5 1.6 (0.0	0.0 0.	0.0	0.0	0.0	0.0 4.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		64.5 12.9 12.9 0.0 5: -1.000							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 26 0.0 0.0 0.0 NA	64.5 12.9 12.9 0.0 5:	64.5 1.6 (0.0 0.0 16.	0.0 0.0	0.0	0.0	0.0	0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 27	64.5 12.9 12.9 0.0 5	64.5 1.6 (0.0	0.0 0.0	0.0	0.0	0.0	0.0 4.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 28	64.5 12.9 12.9 0.0 5	64.5 1.6 (0.0 0.0 16.	0.0 0.0	0.0	0.0	0.0	0.0 4.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0		64.5 12.9 12.9 0.0 5: -1.000							
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 0.0	1980 MAR 30 0.0 0.0 0.0 NA	64.5 12.9 12.9 0.0 5 -1.000	64.5 1.6 (0.0 0.0 16.	0.0 0.0	0.0	0.0	0.0	0.0 4.5
Dem_1 0.0 64.5	0.0 64.5 0.0 0.0	0.0 0.0 0.0 NA	64.5 12.9 12.9 0.0 5: -1.000	1.6 (1 0.0				

Station In/Out Station Balance Shortage Water Use From River By From Carrier By Carried Well Priorty Sto Exc Loss Year Mo Day NA NA NA (+) (+) (+)

NA NA NA NA NA NA (1) (+) (+)

NA NA NA (1) (2) (3) (4) (5) (6) (7)

(14) (15) (16) (17) (18) (19) (20) (21) (22) NA (+) (+) (+) (-) (+) (7) (8) (9) (10 23) (24) (25) (10)(23) (11) (13) (31) (28) (29) (30) (26)(27)0.0 0.0 Dem_1 Dem 1 0.0 66.7 0.0 0.0 0.0 0.0 66.7 0.0 0.0 NA -1. 1980 APR 2 66.7 0.0 0.0 13.3 0.0 0.0 66.7 0.0 Dem_1 0.0 Dem 1 0.0 66.7 0.0 0.0 0.0 0.0 66.7 0.0 0.0 NA -1.000 1980 APR 3 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 66.7 Dem_1 0.0 0.0 Dem 1 0.0 66.7 0.0 0.0 0.0 66.7 0.0 0.0 66.7 Dem_1 Dem 1 0.0 0.0 66.7 0.0 0.0 0.0 0.0 66.7 0.0 0.0 NA -1.000 1980 APR 5 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 66.7 0.0 0.0 0.0 Dem 1 Dem 1 0.0 0.0 66.7 0.0 0.0 66.7 0.0 0.0 0.0 0.0 NA -1.000 66.7 1980 APR 6 66.7 13.3 66.7 0.0 0.0 0.0 Dem 1 0.0 0.0 0.0 Dem 1 0.0 13.3 0.0 66.7 0.0 0. 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 0.0 -1.000 7 66 7 0.0 U.O NA -1.000 1980 APR 7 66.7 13.3 66.7 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 NA -1.000 1980 APR 8 66.7 13.3 66.7 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 NA -1.000 0.0 NA 0.0 66.7 0.0 0.0 0.0 Dem_1 Dem 1 0.0 0.0 66.7 0.0 0.0 0.0 50.0 0.0 0.0 66.7 0.0 66.7 0.0 Dem_1 0.0 0.0 0.0 Dem 1 0.0 66.7 0.0 0.0 13.3 0.0 55.5 0.0 NA -1.000 1980 APR 9 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 50.0 0.0 0.0 66.7 0.0 0.0 0.0 66.7 Dem_1 0.0 Dem 1 0.0 66.7 0.0 0.0 0.0 0.0 13.3 0.0 0.0 66.7 0.0 0.0 NA -1.000 1980 APR 10 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 66.7 0.0 0.0 Dem_1 Dem 1 0.0 0.0 66.7 0.0 0. 0.0 0.0 66.7 0.0 0.0 0.0 NA -1.000 66.7 1980 APR 11 66.7 13.3 66.7 0.0 0.0 0.0 Dem 1 0.0 0.0 0.0 Dem 1 0.0 0.0 66.7 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 13.3 0.0 0.0 0.0 NA -1.000 1980 APR 12 66.7 13.3 66.7 0.0 0.0 0.0 NA -1.000 1980 APR 13 66.7 13.3 66.7 0.0 0.0 0.0 NA -1.000 1980 APR 13 66.7 13.3 66.7 0.0 0.0 66.7 0.0 0.0 Dem_1
0.0 66.7
0.0 0.0 0.0 0 0 0 0 Dem 1 0.0 0.0 50.0 0.0 66.7 0.0 66.7 13.3 66.7 0.0 0.0 .3 0.0 53.3 0.0 16.7 66.7 0.0 0.0 0.0 0.0 Dem_1 0.0 Dem 1 0.0 66.7 0.0 13.3 0.0 50.0 0.0 0.0 0.0 0.0 66.7 0.0 NA -1.000 1980 APR 14 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 0.0 66.7 Dem 1 0.0 Dem 1 0.0 66.7 0.0 0.0 0.0 0.0 66.7 0.0 0.0 NA -1.000 1980 APR 15 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0 0.0 66.7 0.0 0.0 Dem_1
0.0 66.7
0.0 0.0 0 0 Dem_1 0.0 0.0 0.0 66.7 0.0 NA -1.000 66.7 0.0 1980 APR 16 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 Dem 1 Dem 1 0.0 0.0 1980 F.L.

0.0 0.0 13.3 U.U

0.0 NA -1.000

1980 APR 17 66.7 13.3 66.7 0.0 0.0

0.0 13.3 0.0 53.3 0.0 16.7 0.0 0.0 13.3 0.0 53.3 0.0 66.7 0.0 0.0 0.0 50.0 66.7 0 0 0 0 0 0 66.7 0.0 66.7 0.0 0.0 Dem_1
0.0 66.7
0.0 0.0 0.0 0.0 0 0 0 0 Dem_1 0.0 0.0 50.0 0.0 66.7 0.0 0.0 66 7 0.0 0.0 1980 APR 18 00...
0.0 0.0 13.3 0.0 53.3 0.0
0.0 NA -1.000
1980 APR 19 66.7 13.3 66.7 0.0 0.0 0.0 0.0
^ 0.0 13.3 0.0 53.3 0.0 16.7 0.0 50.0

^ 0.0 0.0 0.0 0.0 0.0 0.0 Dem 1 0.0 Dem_1 0.0 0.0 66.7 0.0 0.0 0.0 0.0 66.7 66 7 0.0 0.0 0.0

0.0

0 0

0.0

Dem_1 0.0 66.7 0.0 0.0

Dem_1
0.0 66.7
0.0 0.0

0.0 0.0 13.3 0.0 NA -1.

Dem 1

Dem_1 0.0 66.7

0 0 66.7

Dem_1	Dem_1	1980 APR	21 66.7 13.3	66.7	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0	0.0 66.7	0.0 0.0	13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0		-1.000				
Dem_1	Dem_1	1980 APR	22 66.7 13.3	66.7	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0	0.0 66.7	0.0 0.0	13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0	0.0 NA	-1.000				
Dem_1	Dem_1	1980 APR	23 66.7 13.3	66.7	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0	0.0 66.7	0.0 0.0	13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0	0.0 NA	-1.000				
Dem_1	Dem_1	1980 APR	24 66.7 13.3	66.7	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0	0.0 66.7	0.0 0.0	13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0	0.0 NA	-1.000				
Dem_1	Dem_1						0.0 0.0 0.0
0.0	0.0 66.7	0.0 0.0	13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0	0.0 NA	-1.000				
Dem_1	Dem_1						0.0 0.0 0.0
0.0	0.0 66.7	0.0 0.0	13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0		-1.000				
Dem_1	Dem_1						0.0 0.0 0.0
0.0	0.0 66.7		13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0		-1.000				
Dem_1	Dem_1						0.0 0.0 0.0
0.0	0.0 66.7		13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0		-1.000				
Dem_1	Dem_1						0.0 0.0 0.0
0.0	0.0 66.7		13.3 0.0	53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0		-1.000				
Dem_1	Dem_1						0.0 0.0 0.0
0.0	0.0 66.7			53.3	0.0 16.7	0.0 50.0	0.0 0.0 66.7
66.7	0.0 0.0	0.0 NA	-1.000				
Dem_1	Dem_1	1980 TOT	-1 2000.0 400.0	2000.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
				00.0	0.0 500.8	0.0 1499.2	0.0 0.0 2000.0
2000.0	0.0 0.0	0.0 NA	-1.000				

Station In/Out

Station Balance

Shortage

Carried	1			2000	From River By		From Carrier By	
			markal CI			F		
or F	rom Total	Total CU			Upstrm Re		n Well From/To River	
River	River Riv	ver Avail Contro	ol Control		=			
	ıre River		Demand Demand	l Priorty	Storage Exc_Pln	Loss Well	Priorty Sto_Exc Lo	SS
Exchang					n Loss Inflow	v Gain Flo	ow Deplete GW Stor	
	-		low Location	Right				
ID	ID	Year Mo I	•				(+) (+)(
(+)	NA NA			NA	NA (+)	(+) (+)	(-) (+) (+)	
(-)	(-) (+)) NA NA	NA					
							(8) (9) (1	- /
(11)	(12) (13) (16) (17)	(18)	(19) (20)	(21) (22)	(23) (24) (25)	
(26)	(27) (28	3) (29) (30)	(31)					
Dem 1		1980 MAY	1 64.5 12.9	61 E	0.0 0.0	0.0 0.0	0.0 0.0 0	. 0
0.0	0.0 64.5			51.6			0.0 0.0 182.5	. 0
64.5	0.0 118		-1.000	31.0	0.0 133.3	0.0 49.2	0.0 0.0 182.5	
Dem 1	Dem 1	1980 MAY		64.5	0.0 0.0	0 0 0 0	0.0 0.0 0	.0
0.0	0.0 64.5		12.9 0.0	51.6	0.0 137.1	0.0 48.4	0.0 0.0 185.5	. 0
64.5	0.0 121		-1.000	31.0	0.0 157.1	0.0 10.1	0.0 0.0 105.5	
Dem 1	Dem 1	1980 MAY		64.5	0.0 0.0	0.0 0.0	0.0 0.0 0	0.0
0.0	0.0 64.5			51.6	0.0 137.1			
64.5	0.0 121		-1.000	31.0	0.0 137.11	0.0 10.1	0.0 0.0 100.0	
Dem 1	Dem 1	1980 MAY		64.5	0.0 0.0	0.0 0.0	0.0 0.0 0	0.0
0.0	0.0 64.5			51.6				
64.5	0.0 121	.0 42.7 NA	-1.000					
Dem_1	Dem_1	1980 MAY	5 64.5 12.9	64.5	0.0 0.0	0.0 0.0	0.0 0.0 0	0.0
0.0	0.0 64.5	0.0 0.0	12.9 0.0	51.6	0.0 137.1	0.0 48.4	0.0 0.0 185.5	
64.5	0.0 121	.0 42.7 NA	-1.000					
Dem_1	Dem_1	1980 MAY	6 64.5 12.9			0.0 0.0		0.0
0.0	0.0 64.5			51.6	0.0 137.1	0.0 48.4	0.0 0.0 185.5	
64.5	0.0 121		-1.000					
Dem_1	Dem_1	1980 MAY		64.5		0.0 0.0		0.0
0.0	0.0 64.			51.6	0.0 137.1	0.0 48.4	0.0 0.0 185.5	
64.5	0.0 121		-1.000					
Dem_1	Dem_1	1980 MAY	8 64.5 12.9		0.0 0.0	0.0 0.0		0.0
0.0	0.0 64.			51.6	0.0 137.1	0.0 48.4	0.0 0.0 185.5	
64.5	0.0 121		-1.000					
Dem_1	Dem_1	1980 MAY			0.0 0.0			0.0
0.0	0.0 64.9			51.6	0.0 137.1	0.0 48.4	0.0 0.0 185.5	
64.5	0.0 121	.0 42.7 NA	-1.000					

Dem_1 0.0 64.5			0 64.5 12.9 12.9 0.0 -1.000					
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 121.0		1 64.5 12.9 12.9 0.0 -1.000					
Dem_1 0.0 64.5 Dem_1	Dem_1 0.0 64.5 0.0 121.0 Dem_1	0.0 0.0 42.7 NA	$\begin{array}{cccc} 2 & 64.5 & 12.9 \\ 12.9 & 0.0 \\ & -1.000 \\ 3 & 64.5 & 12.9 \end{array}$	51.6	0.0 137.1	0.0 48.4	0.0	0.0 185.5
0.0 64.5 Dem_1	0.0 64.5 0.0 121.0 Dem_1	0.0 0.0 42.7 NA	12.9 0.0 -1.000 4 64.5 12.9	51.6	0.0 137.1	0.0 48.4	0.0	0.0 185.5
0.0 64.5 Dem_1	0.0 64.5 0.0 121.0 Dem_1	42.7 NA 1980 MAY 15	5 64.5 12.9	64.5	0.0 0.0	0.0 0.0		0.0 0.0
0.0 64.5 Dem_1	0.0 64.5 0.0 121.0 Dem_1	42.7 NA	12.9 0.0 -1.000 5 64.5 12.9					
0.0 64.5 Dem_1	0.0 64.5 0.0 121.0 Dem_1	0.0 0.0 42.7 NA 1980 MAY 1	12.9 0.0 -1.000 7 64.5 12.9	51.6	0.0 137.1	0.0 48.4	0.0	0.0 185.5
0.0 64.5 Dem_1 0.0	0.0 64.5 0.0 121.0 Dem_1 0.0 64.5	42.7 NA 1980 MAY 18	12.9 0.0 -1.000 3 64.5 12.9 12.9 0.0	64.5	0.0 0.0	0.0 0.0	0.0	
64.5 Dem_1 0.0	0.0 121.0 Dem_1 0.0 64.5	42.7 NA 1980 MAY 19		64.5	0.0 0.0	0.0 0.0	0.0	0.0 0.0
64.5 Dem_1 0.0 64.5	0.0 121.0 Dem_1 0.0 64.5 0.0 121.0		0 64.5 12.9 12.9 0.0					
Dem_1 0.0	Dem_1 0.0 64.5	1980 MAY 23	1 64.5 12.9 12.9 0.0					0.0 0.0 0.0 185.5
64.5 Dem_1 0.0 64.5	0.0 121.0 Dem_1 0.0 64.5 0.0 121.0		2 64.5 12.9 12.9 0.0		0.0 0.0 0.0 137.1	0.0 0.0 0.0 48.4	0.0	0.0 0.0 0.0 185.5
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 121.0	0.0 0.0 42.7 NA	3 64.5 12.9 12.9 0.0 -1.000	51.6	0.0 137.1	0.0 48.4	0.0	0.0 0.0 0.0 0.0 185.5
Dem_1 0.0 64.5 Dem_1	Dem_1 0.0 64.5 0.0 121.0 Dem 1	0.0 0.0 42.7 NA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.6	0.0 137.1	0.0 48.4	0.0	0.0 0.0 0.0 185.5 0.0 0.0
0.0 64.5	0.0 64.5 0.0 121.0	0.0 0.0 42.7 NA	12.9 0.0 -1.000	51.6	0.0 137.1	0.0 48.4	0.0	0.0 185.5
Dem_1 0.0 64.5 Dem_1	Dem_1 0.0 64.5 0.0 121.0 Dem_1	0.0 0.0 42.7 NA	$\begin{array}{cccc} 5 & 64.5 & 12.9 \\ 12.9 & 0.0 \\ & -1.000 \\ 7 & 64.5 & 12.9 \end{array}$	51.6	0.0 137.1	0.0 48.4	0.0	0.0 0.0 0.0 185.5 0.0 0.0
0.0 64.5	0.0 64.5 0.0 121.0	0.0 0.0 42.7 NA	12.9 0.0 -1.000 3 64.5 12.9 12.9 0.0	51.6	0.0 137.1	0.0 48.4	0.0	0.0 185.5
64.5 Dem_1	0 0 121 0	42 7 NA	12.9 0.0 -1.000 9 64.5 12.9 12.9 0.0					
0.0 64.5 Dem_1 0.0	0.0 64.5 0.0 121.0 Dem_1 0.0 64.5	42.7 NA 1980 MAY 30	-1.000 -1.000 0 64.5 12.9 12.9 0.0	51.6 64.5 51.6	0.0 137.1 0.0 0.0 0.0 137.1	0.0 48.4	0.0	0.0 185.5 0.0 0.0 0.0 185.5
64.5	0.0 121.0	42.7 NA	-1.000 1 64.5 12.9 12.9 0.0					
64.5	0.0 121.0	42.7 NA	12.9 0.0 -1.000					
Dem_1 0.0		1980 TOT -3	1 2000.0 400.0 400.0 0.0 1				0.0	0.0 0.0 0.0 5747.0
Shortag	ge	Water Use		Statio	n In/Out From River By	3	Station E From	Balance 1 Carrier By
or F River	rom Total To River River	tal CU Avail Control	Total CU To T Control	otal	Upstrm Re	ach Return W	Well From	n/To River

Exchang		upply Short Shor	t CU Soil	Priorty M Return Right	Storage Exc_Pln Loss Inflow			Sto_Exc Loss e GW Stor
ID (+) (-)	ID NA N. (-) (+	Year Mo Day A NA NA		5	(+) NA (+)	(+) (+)	(+)	(+)((-)
(11)	(12) (1 (27) (2	3) (14) (15) 8) (29) (30)	(1) (2) (16) (17) (31)	(18)		(6) (7) (21) (22)	(8)	(9) (10) (24) (25)
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 123	7 0.0 0.0 .8 46.2 NA	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.3	0.0 0.0	0.0	0.0 0.0 0.0 190.5
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 4 7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 5 7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 8 7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 9 7 0.0 0.0	66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 10 7 0.0 0.0		66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125		13.3 0.0 -1.000	53.3	0.0 0.0 0.0 141.7	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125		66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125		66.7 13.3 13.3 0.0 -1.000	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125		13.3 0.0	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0			0.0 0.0 0.0 141.7			
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0	13.3 0.0	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 17 7 0.0 0.0	66.7 13.3 13.3 0.0		0.0 0.0 0.0 141.7			
Dem_1 0.0	Dem_1 0.0 66.	1980 JUN 18 7 0.0 0.0	66.7 13.3 13.3 0.0		0.0 0.0 0.0 141.7			
66.7 Dem_1 0.0	0.0 125 Dem_1 0.0 66.	1980 JUN 19 7 0.0 0.0	66.7 13.3 13.3 0.0	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
66.7 Dem_1 0.0 66.7	0.0 125 Dem_1 0.0 66. 0.0 125	1980 JUN 20 7 0.0 0.0	66.7 13.3 13.3 0.0		0.0 0.0 0.0 141.7			
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	7 0.0 0.0	13.3 0.0	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0 66.7	Dem_1 0.0 66. 0.0 125	1980 JUN 22 7 0.0 0.0	66.7 13.3 13.3 0.0	66.7 53.3	0.0 0.0	0.0 0.0 0.0 50.0	0.0	0.0 0.0 0.0 191.7
Dem_1 0.0	Dem_1 0.0 66.	1980 JUN 23 7 0.0 0.0	66.7 13.3 13.3 0.0	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7
66.7 Dem_1 0.0 66.7	0.0 125 Dem_1 0.0 66. 0.0 125	1980 JUN 24 7 0.0 0.0	66.7 13.3 13.3 0.0	66.7 53.3	0.0 0.0 0.0 141.7	0.0 0.0	0.0	0.0 0.0 0.0 191.7

0.0 0.0 66.7 66.7 0.0 125.0 Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 125.0	48.4 NA -1.000 1980 JUN 26 66.7 13.3 0.0 0.0 13.3 0.0 53 48.4 NA -1.000 1980 JUN 27 66.7 13.3 0.0 0.0 13.3 0.0 53 48.4 NA -1.000 1980 JUN 28 66.7 13.3 0.0 0.0 13.3 0.0 53 48.4 NA -1.000 1980 JUN 29 66.7 13.3 0.0 0.0 13.3 0.0 53 48.4 NA -1.000 1980 JUN 30 66.7 13.3 0.0 0.0 13.3 0.0 53 48.4 NA -1.000 1980 JUN 30 66.7 13.3 0.0 0.0 13.3 0.0 53 48.4 NA -1.000	3.3 0.0 141.7 66.7 0.0 0.0 3.3 0.0 141.7 66.7 0.0 0.0 3.3 0.0 141.7 66.7 0.0 0.0 3.3 0.0 141.7 66.7 0.0 0.0 3.3 0.0 141.7	0.0 50.0 0.0 0.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0 50.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2000.0 0.0 3748.8	1449.5 NA -1.000 Water Use	Station In/Out From River By	Si	
Carried _				
Structure River Exchang SoilM Supply Inflow Divert by Well (ID ID ID (+) NA NA	tal CU tal CU TO Total Avail Control Control Demand Demand Pr Short Short CU SoilM Outflow Flow Location Rig Year Mo Day NA NA NA NA NA NA	riorty Storage Exc_Pln Return Loss Inflow ght (+) (+) (+) (+)(Loss Well 1 Gain Flow (-) (+)	Priorty Sto_Exc Loss Deplete GW Stor (+) (+) (-)
(26) (27) (28)	NA NA NA NA (1) (2) (14) (15) (16) (17) (29) (30) (31)		(6) (7) (21) (22)	(8) (9) (10) (23) (24) (25)
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 77.3 Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 77.8 Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.1 Dem_1 Dem_1 0.0 0.0 64.5 0.0 78.1 Dem_1 Dem_1 0.0 0.0 64.5	1980 JUL 1 64.5 12.9 0.0 0.0 12.9 0.0 5: 0.0 NA -1.000 1980 JUL 2 64.5 12.9	64.5 0.0 0.0 1.6 0.0 92.6 64.5 0.0 93.9 64.5 0.0 94.3 64.5 0.0 94.4 64.5 0.0 0.0	0.0 49.2 0.0 0.0 0.0 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0 48.4	0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 64.5 64.5 0.0 78.3 Dem_1 Dem_1 0.0 64.5 64.5 64.5 64.5 0.0 78.3 Dem_1 Dem_1 0.0 64.5 0.0 78.3 Dem_1 0.0 64.5 64.5 0.0 78.3 Dem_1 Dem_1 0.0 0.0 64.5 64.5 64.5 0.0 78.3 Dem_1 Dem_1 0.0 0.0 64.5 64.5 64.5 0.0 78.3 Dem_1 Dem_1 0.0 0.0 64.5 64.5 64.5 0.0 78.3 Dem_1 Dem_1 0.0 0.0 64.5 64.5 64.5 0.0 78.3	1980 JUL 6 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 7 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 8 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 9 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 10 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 11 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 11 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 12 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 12 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 13 64.5 12.9 0.0 0.0 12.9 0.0 53 0.0 NA -1.000 1980 JUL 13 64.5 12.9 0.0 0.0 12.9 0.0 53	1.6 0.0 94.4 64.5 0.0 0.0 1.6 0.0 94.4 64.5 0.0 0.0 1.6 0.0 94.4 64.5 0.0 0.0 1.6 0.0 94.4 64.5 0.0 0.0 1.6 0.0 94.4 64.5 0.0 0.0 1.6 0.0 94.4 64.5 0.0 0.0 1.6 0.0 94.4 64.5 0.0 0.0	0.0 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0 0.0 0.0 48.4	0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 142.8 0.0 0.0 0.0 0.0 0.0 142.8

0.0 0.0 64.5 64.5 0.0 78.3 Dem_1 Dem_1	1980 JUL 14 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000 1980 JUL 15 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000	51.6 0.0 94.4 64.5 0.0 0	0.0 48.4	0.0 0.0 142.8
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 16 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 17 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			0.0 0.0 0.0 0.0
Dem_1 Dem_1 0.0 64.5	1980 JUL 18 64.5 12.9 0.0 0.0 12.9 0.0			
Dem_1 Dem_1 0.0 64.5	0.0 NA -1.000 1980 JUL 19 64.5 12.9 0.0 0.0 12.9 0.0			0.0 0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 64.5	0.0 NA -1.000 1980 JUL 20 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000	64.5 0.0 0 51.6 0.0 94.4	0.0 0.0 0.0	0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 21 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			
Dem_1 Dem_1 0.0 64.5	1980 JUL 22 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			
Dem_1 Dem_1 0.0 64.5	1980 JUL 23 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			
Dem_1 Dem_1 0.0 64.5	1980 JUL 24 64.5 12.9	64.5 0.0 0 51.6 0.0 94.4	0.0 0.0 0.0	0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 25 64.5 12.9	64.5 0.0 0 51.6 0.0 94.4	0.0 0.0 0.0	0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 26 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			
Dem_1 Dem_1 0.0 64.5	1980 JUL 27 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 64.5	1980 JUL 28 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			0.0 0.0 0.0 0.0 142.8
Dem_1 Dem_1 0.0 64.5	1980 JUL 29 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000			
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 30 64.5 12.9			
Dem_1 Dem_1 0.0 0.0 64.5 64.5 0.0 78.3	1980 JUL 31 64.5 12.9 0.0 0.0 12.9 0.0 0.0 NA -1.000	64.5 0.0 0 51.6 0.0 94.4	0.0 0.0 0.0	0.0 0.0 0.0 0.0 142.8
0.0 0.0 2000.0	1980 TOT -1 2000.0 400.0 0.0 0.0 400.0 0.0 16 0.0 NA -1.000	2000.0 0.0 0 500.0 0.0 2925.0	.0 0.0 0.0 0.0 1500.8	0.0 0.0 0.0 0.0 4425.8
Shortage	Water Use	Station In/Out	5	Station Balance
Carried		From River B	У	From Carrier By

					Total	CU .					From			
or	From T	otal T	otal	CU		To To	tal	Upst	trm Rea	ach Reti	ırn V	Well From	a/To Ri	ver
River	River	River	Avail C	ontrol	Cont:	rol								
Struct	ure Ri	ver			Demand	Demand 1	Priorty :	Storage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchan	g Soil	M Suppl	y Short	Short	CU	SoilM	Return	Loss	Inflow	Gain	Flov	w Deplete	e GW Stor	
Inflow	Divert	by Well	Outflow	Flow	Location	R	ight							
ID	ID		Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA NA		N.	A								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (3	0)	(3	1)								

0.0 64.5	0.0 64.5	1980 AUG 1 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000	0.0 0.0	0.0 0.0 48.4 0.0	0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 2 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000	4 0.0	48.4 0.0	0.0 142.8
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 3 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 4 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000	4 0.0	48.4 0.0	0.0 142.8
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 5 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 6 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 7 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 8 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 9 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 10 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 11 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000	0.0 0.0	0.0 0. 48.4 0.0	0.0 0.0 0.0
64.5 Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 AUG 12 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 AUG 13 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5	1980 AUG 14 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 15 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1	Dem_1 0.0 64.5	1980 AUG 16 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94.			0.0 0.0 0.0
64.5 Dem_1 0.0 64.5	Dem_1 0.0 64.5	0.0 NA -1.000 1980 AUG 17 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 18 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 19 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000	0.0 0.0	0.0 0. 48.4 0.0	0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 20 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000	0.0 0.0	0.0 0. 48.4 0.0	0.0 0.0 0.0
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 21 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 22 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 23 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 24 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1 0.0 64.5	Dem_1 0.0 64.5 0.0 78.3	1980 AUG 25 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			
Dem_1	Dem_1 0.0 64.5	1980 AUG 26 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94.			
64.5 Dem_1 0.0 64.5	0.0 78.3 Dem_1 0.0 64.5 0.0 78.3	0.0 NA -1.000 1980 AUG 27 64.5 12.9 64.5 0.0 0.0 0.0 12.9 0.0 51.6 0.0 94. 0.0 NA -1.000			

Dem_1 Dem_1 0.0 64.5 64.5 0.0 64.5 Dem_1 0.0 64.5 64.5 0.0 78.3 Dem_1 0.0 64.5 64.5 0.0 78.3 Dem_1 Dem_1 Dem_1 0.0 64.5 64.5 0.0 78.3 78.3	1980 AUG 28 64.5 12.9 64.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 2000.0	1980 TOT -1 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shortage Carried	Water Use Station In/Out Station Balance From River By From Carrier By
Structure River Exchang SoilM Supply Inflow Divert by Well	Total CU To Total Upstrm Reach Return Well From/To River Avail Control Control Demand Demand Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss Short Short CU SoilM Return Loss Inflow Gain Flow Deplete GW Stor Outflow Flow Location Right Year Mo Day NA NA NA NA NA (+) (+) (+) (-) (+) (+) (+) (-) NA NA NA NA NA NA NA NA (+) (+) (+) (+) (-) (+) (+) (+) NA NA NA (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (29) (30) (31)
Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 77.6 Dem_1 Dem_1 0.0 0.0 0.0 66.7 66.7 0.0 77.1 Dem_1 Dem_1 0.0 66.7 0.0 76.8 Dem_1 Dem_1 0.0 66.7 0.0 76.6 Dem_1 Dem_1 Dem_1 0.0 66.7 0.0 76.6 66.7 0.0 76.6 76.6	1980 SEP
Dem_1 Dem_1 0.0 66.7 66.7 0.0 76.6 Dem_1 Dem_1 0.0 66.7 0.0 76.6 Dem_1 Dem_1 0.0 0.0 66.7 0.0 76.6 Dem_1 Dem_1 0.0 66.7 66.7 0.0 76.6 0.0 76.6 Dem_1 Dem_1 0.0 76.6 0.0 76.6 Dem_1 Dem_1 0.0 76.6 0.0 76.6 0.0 76.6 0.0 0.0 66.7 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 76.6 0.0 0.0 0.0 0.0	1980 SEP 6 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1 Dem_1 0.0 66.7 66.7 0.0 76.6 Dem_1 Dem_1 0.0 66.7 66.7 0.0 76.6 Dem_1 Dem_1 0.0 66.7 66.7 0.0 76.6 Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 76.6 Dem_1 Dem_1 Dem_1 0.0 0.0 66.7 66.7 0.0 76.6 Dem_1 0.0 76.6 0.0 76.6 76.6	1980 SEP 11 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Dem_1 Dem_
Dem_1 Dem_
Dem_1
Dem_1 Dem_1 Dem_1 Dem_1 Dem_1 1980 SEP 19 66.7 13.3 66.7 0.0
Dem_1
0.0
Dem_1
Dem_1
O_O
Dem_1
Dem_1
0.0
0.0
66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 22 66.7 13.3 66.7 0.0 <t< td=""></t<>
0.0
66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 23 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Dem_1
0.0
66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 24 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <
Dem_1
0.0
66.7
Dem_1 Dem_1 1980 SEP 25 66.7 13.3 66.7 0.0
0.0
Dem_1
0.0
0.0
66.7
Dem_1 Dem_1 1980 SEP 27 66.7 13.3 66.7 0.0
0.0 0.0 66.7 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 28 66.7 13.3 0.0 53.3 0.0 93.3 0.0 50.0 0.0 0.0 143.3 66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 28 66.7 13.3 66.7 0.0 93.3 0.0 50.0 0.0 0.0 0.0 0.0 Dem_1 Dem_1 1980 SEP 29 66.7 13.3 66.7 0.0 93.3 0.0 50.0 0.0 0.0 0.0 143.3 Dem_1 Dem_1 1980 SEP 29 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 66.7 0.0 0.0 13.3 0.0 53.3 0.0 93.3 0.0 50.0 0.0 0.0 0.0 143.3
66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 28 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 29 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dem_1 Dem_1 1980 SEP 28 66.7 13.3 66.7 0.0
0.0 0.0 66.7 0.0 0.0 13.3 0.0 53.3 0.0 93.3 0.0 50.0 0.0 0.0 143.3 66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 29 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
66.7 0.0 76.6 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 29 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 0.0 13.3 0.0 53.3 0.0 93.3 0.0 50.0 0.0 0.0 143.3
0.0^{-} 0.0 $\overline{66.7}$ 0.0 0.0 13.3 0.0 53.3 0.0 93.3 0.0 50.0 0.0 0.0 143.3
66.7 0.0 76.6 0.0 NA -1.000
Dem_1 Dem_1 1980 SEP 30 66.7 13.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 66.7 0.0 0.0 13.3 0.0 53.3 0.0 93.3 0.0 50.0 0.0 0.0 143.3
66.7 0.0 76.6 0.0 NA -1.000
Dem_1 Dem_1 1980 TOT -1 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0^{-} 0.0 200.0 0.0 0.0 0.0 400.0 0.0 1600.0 0.0 2800.1 0.0 1499.2 0.0 0.0 4299.3
2000.0 0.0 2299.3 0.0 NA -1.000

Diversion Summary ACFT ST St551551551SF 551551551551Instream Demand om Instream Flow

ISF Top Instream Flow ISF.Bott

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	Ω	Ο	Ω	Ω

Shortag			Water U	Jse			Statio	n In/Out From Riv			S	tation E From	Balance Carrier	Ву
Carried	Į													
				-	Total	CU					From			
or F	rom T	otal T	otal	CU		To To	tal	Upst	trm Rea	ach Ret	urn W	ell From	n/To Ri	ver
River	River	River	Avail C	Control	Cont	rol								
Structu	ıre Ri	.ver			Demand	Demand	Priorty	Storage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang	Soil	.M Suppl	y Short	Short	CU	SoilM	I Return	Loss	Inflow	Gain	Flow	Deplete	GW Stor	
Inflow	Divert	by Well	Outflow	Flow	Location	R	light							
ID	ID)	Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA NA	4	N	A								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (3	30)	(3	1)								

ISF 0.0 45.6	ISF 0.0 45.6 0.0 45.6	1979 OCT 1 129.9 0.0 84.3 0.0 0.0 0.0 4 0.0 Hgate_Limit -1.000						
ISF 0.0 36.1	ISF 0.0 36.1 0.0 36.1	1979 OCT 2 129.9 0.0 93.8 0.0 0.0 0.0 3 0.0 Hgate_Limit -1.000				0.0 0.0 0.0 36.1	0.0	0.0 0.0 0.0 36.1
ISF 0.0 46.5	ISF 0.0 46.5 0.0 46.5	1979 OCT 3 129.9 0.0 83.5 0.0 0.0 0.0 4 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 46.5
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 4 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0			0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 5 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6 51.6	0.0	0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 6 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 7 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 8 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 9 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 10 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000						0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 11 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000				0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 12 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0		0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 13 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6		1979 OCT 14 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000 1979 OCT 15 129.9 0.0	51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000						0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 16 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000				0.0 0.0 0.0 51.6	0.0	
ISF 0.0 51.6		1979 OCT 17 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0		0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	0.0 51.6	1979 OCT 18 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6 ISF	ISF 0.0 51.6 0.0 51.6 ISF	1979 OCT 19 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000 1979 OCT 20 129.9 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
0.0 51.6	0.0 51.6 0.0 51.6	78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 21 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 22 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 23 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0	0.0	0.0 51.6
ISF 0.0 51.6 ISF	ISF 0.0 51.6 0.0 51.6 ISF	1979 OCT 24 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000 1979 OCT 25 129.9 0.0	51.6	0.0	0.0	0.0 0.0	0.0	0.0 51.6
0.0 51.6	0.0 51.6 0.0 51.6	78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 26 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 27 129.9 0.0 78.3 0.0 0.0 0.0 5 0.0 Hgate_Limit -1.000						

ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 OCT 28 78.3 0.0 0.0 Hgate Limi	0.0 0.0				0.0 0.0 0.0 51.6	0.0	
ISF	ISF			51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000						
ISF	ISF	1979 OCT 30	129.9 0.0	51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000						
ISF	ISF	1979 OCT 31	129.9 0.0	51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000						
ISF 0.0 1573.4	0.0 1573.4 2	1980 TOT -1 2454.1 0.0 0.0 NA	0.0 0.0 19						

Station In/Out Water Use Station Balance Shortage From River By From Carrier By Carried Total CU _____ From _____
To Total Upstrm Reach Return Well From/To River Loss (+) (+)((-) (+) (+) (+) (+) (NA (+) (+) (+) (+) (7) (8) 22) (23) (8) (9) (10 23) (24) (25) (10) (1) (14) (15) (16) (11) (12) (13) (31) (26)(27)(28) (29) (30) 1979 NOV 1 129.9 0.0 52.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.6 0.0 0.0 0.0 52.3 0.0 0.0 0.0 52.3 0.0 0.0 52.3 ISF ISF 0.0 52.3 0.0 52.3 0.0 52.3 52.3 0.0 0.0 ISF 0.0 52.8 0.0 52.8 TSF 0.0 77.1 0.0 0.0 0.0 52.0 0.0 0.0 0.0 1979 NOV 3 129.9 0.0 53.2 0.0 0.0 76.8 0.0 0.0 0.0 53.2 0.0 0.0 52.8 ISF
0.0 53.2
0.0 53.2 0.0 53.2 0.0 0.0 0.0 0.0 0.0 0.0 TSF 0.0 USF 0.0 53.2 ISF 0.0 53.3 0.0 F 0.0 53.2 0.0 0.0 53.2 76.8 0.0 0.0 Hgate_Limit -1.000 1979 NOV 4 129.9 0.0 53.3 0.0 0.0 0.0 0.0 0.0 76.6 0.0 0.0 0.0 53.3 0.0 0.0 53.3 0.0 53.2 ISF 0.0 53.3 0.0 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 1979 NOV 5 129.9 0.0 53.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 76.6 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 53.3 0.0 0.0 53.3 53.3 ISF 0.0 53.3 0.0 53.3 TSF 0.0 53.3 ISF 1979 NOV 6 129.9 0.0 53.3 0.0 0.0 0.0 76.6 0.0 0.0 53.3 0.0 0.0 53.3 0.0 0.0 ISF 0.0 0.0 0.0 53.3 0.0 53.3 0.0 53.3 0.0 0.0 53.3 0.0 53.3 53.3 0.0 0.0 ISF 0.0 53.3 0.0 TSF 0.0 53.3 0.0 0.0 53.3 0.0 76.6 53.3 0.0 53.3 0.0 53.3 0.0 0.0 0.0 ISF 0.0 53.3 0.0 53.3 TSF 0.0 0.0 0.0 USF 0.0 53.3 ISF 0.0 53.3 0.0 53.3 0.0 0.0 53.3 0.0 76.6 0.0 Hgate_Limit -1.000 1979 NOV 9 129.9 0.0 53.3 0.0 0.0 0.0 76.6 0.0 0.0 0.0 53.3 0.0 0.0 5.0 53.3 0.0 0.0 0.0 ISF 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 1979 NOV 10 129.9 0.0 53.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 53.3 0.0 0.0 53.3 0.0 0.0 53.3 53.3 ISF 0.0 53.3 0.0 53.3 TSF 0.0 53.3 ISF 1979 NOV 11 129.9 0.0 53.3 0.0 0.0 0.0 0.0 76.6 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 TSF 0.0 0.0 53.3 0.0 53.3 0 0 0 0 0 0 53.3 53.3 ISF 0.0 53.3 ISF 0.0 53 3 0.0 53.3 0.0 53.3 ISF 0.0 53.3 0.0 53.3 ISF 0.0 53.3 0.0 53.3 TSF 0.0 0.0 53 3 0.0 0.0 0.0 ISF 0.0 53.3 0.0 0.0 53.3 0.0 0.0 Hgate_Limit -1.000 1979 NOV 15 129.9 0.0 53.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 76.6 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 53.3 53.3 ISF 0.0 53.3 0.0 53.3 TSF 0.0 0.0 Hgate_Limit -1.000 53.3

ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1979 NOV 16 129.9 76.6 0.0 0.0 0. 0.0 Hgate_Limit -1.000	.0 53.3					0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1979 NOV 17 129.9 76.6 0.0 0.0 0. 0.0 Hqate Limit -1.000	.0 53.3			0.0 0.0	0.0	0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1979 NOV 18 129.9 76.6 0.0 0.0 0. 0.0 Hgate_Limit -1.000	0.0 53.3			0.0 0.0	0.0	0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1979 NOV 19 129.9 76.6 0.0 0.0 0. 0.0 Hqate Limit -1.000	.0 53.3			0.0 0.0		
ISF 0.0	ISF 0.0 53.3	1979 NOV 20 129.9 76.6 0.0 0.0 0.	0.0 53.3					
53.3	0.0 53.3	0.0 Hgate_Limit -1.000						
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1979 NOV 21 129.9 76.6 0.0 0.0 0. 0.0 Hqate Limit -1.000	.0 53.3					
ISF 0.0	ISF 0.0 53.3	1979 NOV 22 129.9 76.6 0.0 0.0 0.	0.0 53.3					0.0 0.0 0.0 53.3
53.3 ISF 0.0	0.0 53.3 ISF 0.0 53.3		0.0 53.3			0.0 0.0 0.0 53.3		
53.3 ISF 0.0	0.0 53.3 ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1979 NOV 24 129.9 76.6 0.0 0.0 0.	0.0 53.3			0.0 0.0 0.0 53.3		
53.3 ISF	0.0 53.3 ISF	0.0 Hgate_Limit -1.000 1979 NOV 25 129.9		0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0 53.3	0.0 53.3 0.0 53.3	76.6 0.0 0.0 0. 0.0 Hgate_Limit -1.000		0.0	0.0	0.0 53.3	0.0	0.0 53.3
ISF 0.0	ISF 0.0 53.3	1979 NOV 26 129.9 76.6 0.0 0.0 0.						
53.3 ISF		0.0 Hgate_Limit -1.000 1979 NOV 27 129.9						
0.0	0.0 53.3		.0 53.3			0.0 53.3		
ISF 0.0			.0 53.3				0.0	
53.3 ISF	ISF	0.0 Hgate_Limit -1.000 1979 NOV 29 129.9	0.0 53.3					
0.0 53.3		0.0 Hgate_Limit -1.000					0.0	0.0 53.3
ISF 0.0 53.3	0.0 53.3 0.0 53.3	1979 NOV 30 129.9 76.6 0.0 0.0 0. 0.0 Hgate_Limit -1.000	.0 53.3	0.0	0.0			
ISF 0.0 1598.3		1980 TOT -1 3897.6 299.3 0.0 0.0 0. 0.0 NA -1.00	.0 1598.3				0.0	

Carrie	ed.							From Ri	ver By			Fron	Carrier	Ву
					Total	CU					From			
or						To To	otal	Ups	trm Re	ach Ret	urn I	Well From	n/To Ri	ver
River	River	River	Avail	Control	Cont	rol								
Struct	ure Ri	iver			Demand	Demand	Priorty	Storage	Exc_Pln	Loss	Well	Priorty	_	
Exchan					rt CU		M Return	Loss	Inflow	Gair	ı Flo	w Deplete	GW Stor	
					w Location									
ID	II		Year				(+)							
(+)	NA	NA	NA	NA		NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(–)	(+)	NA I		I.									
					(1)									
(11)	(12)	(13)			(16)		(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29)	(30)	(3	31)								
ISF			1070		1 129.9			0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0		76.2		0.0				1.1		52.6			
53.7		53.7			mit -1.0		55.7	0.0	1.1	0.0	32.0	0.0	0.0	55.7
ISF	0.0 IS				2 129.9		E2 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0				0.0						52.1			52.1
52.1		52.1			mit -1.0		JZ.I	0.0	0.0	0.0	JZ.1	0.0	0.0	JZ.1
ISF		SF			3 129.9		E1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0		78.1		0.0						51.8			51.8
51.8		51.8			mit -1.0		31.0	0.0	0.0	0.0	31.0	0.0	0.0	31.0
ISF	IS				4 129.9		51 6	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0		78.3		0.0		51.6	0.0			51.6	0.0		51.6
51.6	0.0				mit -1.0		52.0				51.0	3.0	5.0	51.0
31.0	3.0	31.0	0.0	iigacc_ni	1.0	, , , ,								

Station In/Out

Station Balance

Shortage

ISF 0.0 51.6	0.0 51.6	1979 DEC 5 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6 51.6	0.0	0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 6 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0 0.0 51.6		0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 7 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6				0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 8 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6		0.0	0.0 0.0	0.0	0.0 0.0 0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 9 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 10 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000				0.0 0.0 0.0 51.6	0.0	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 11 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 12 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0		0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 13 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 14 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 15 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000					0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 16 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 17 129.9 0.0 78.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 18 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 0.0 0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 19 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 1979 DEC 20 129.9 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 0.0 0.0 0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	78.3 0.0 0.0 0.0 0.0 0.0 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 21 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 22 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 23 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6 ISF	ISF 0.0 51.6 0.0 51.6 ISF	1979 DEC 24 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 1979 DEC 25 129.9 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
0.0 51.6	0.0 51.6 0.0 51.6	78.3 0.0 0.0 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 26 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000						
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 27 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 28 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 29 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 1979 DEC 30 129.9 0.0	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	78.3 0.0 0.0 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	51.6	0.0	0.0	0.0 51.6	0.0	0.0 51.6
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1979 DEC 31 129.9 0.0 78.3 0.0 0.0 0.0 0.0 Hgate_Limit -1.000						

ISF	ISF	1980 TOT -1	4027.5	0.0 1602.8	0.0	0.0	0.0 0.0	0.0	0.0 0.0
0.0	0.0 1602.8	2424.7 0.0	0.0	0.0 1602.8	0.0	1.1	0.0 1601.7	0.0	0.0 1602.8
1602.8	0.0 1602	.8 0.0 NA	-1.	.000					

Shortage Water Use Station In/Out Station Balance From River By From Carrier By Carried CU _ Total From or From Total Total CU To Total From Total Total CU To Total Upstrm Reach Retu River River Avail Control Control ure River Demand Demand Priorty Storage Exc_Pln Loss Upstrm Reach Return Well From/To River River Loss (+) (+)((-) (+) (+) (+)(NA (+) (+) (+) (-) (+) (+) (14) (15) (16) (1 (31) (11)(12)(13) (26) (27) (29) (30) (28) TSF TSF 0.0 51.6 0.0 51.6 0.0 51.6 51.6 0.0 ISF ISF 0.0 51.6 0.0 51.6 0.0 51.6 0.0 0.0 51.6 0.0 0.0 Hgate_Limit -1.000 1980 JAN 3 129.9 0.0 51.6 0.0 0.0 0.0 0.0 0.0 78.3 0.0 0.0 0.0 51.6 0.0 0.0 51.6 0.0 51.6 51.6 0.0 ISF ISF 0.0 51.6 0.0 51.6 0.0 51.6 0.0 0.0 0.0 0.0 ISF 0.0 51.6 0.0 F 51.6 51.6 0.0 0.0 0.0 ISF 0.0 0.0 0.0 51.6 0.0 Hgate_Limit -1.000 1980 JAN 5 129.9 0.0 51.6 78.3 0.0 0.0 0.0 51.6 51.6 51.6 0.0 51.6 0.0 0.0 0.0 0.0 0.0 0.0 ISF 0.0 51.6 0.0 51.6 TSF 0.0 0.0 0.0 51.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 51.6 0.0 1980 JAN 6 129.9 0.0 51.6 0.0 TSF TSF 0.0 0.0 0.0 0.0 78.3 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 51.6 0.0 0.0 0.0 51.6 78.3 0.0 0.0 U.U 51.0 0.0 Hgate_Limit -1.000 1980 JAN 7 129.9 0.0 51.6 78.3 0.0 0.0 51.6 ISF 0.0 51.6 0.0 51 51.6 51.6 0.0 51.6 0.0 0.0 0.0 TSF 0.0 0.0 0.0 0.0 0.0 0.0 51.6 0.0 51.6 78.3 0.0 0.0 0.0 Hgate_Limit -1.000 1980 JAN 8 129.9 0.0 51.6 0.0 0.0 0.0 0.0 78.3 0.0 0.0 0.0 51.6 0.0 0.0 51.6 51.6 51.6 ISF 0.0 51.6 0.0 51.6 0.0 0.0 ISF 0.0 51.6 0.0 0.0 0.0 78.3 0.0 U.U U.U SILO C.C SILO ISF 0.0 51.6 0.0 51 51.6 51.6 0.0 0.0 0.0 TSF 0.0 0.0 51.6 0.0 51.6 51.6 0.0 0.0 ISF 0.0 51.6 0.0 51.6 TSF 0.0 0.0 51 6 0.0 0.0 Hgate_Limit -1.000 51.6 1980 JAN 11 129.9 0.0 51.6 0.0 0.0 0.0 TSF ISF 0.0 0 0 0 0 1980 JAN 11 129.9 U.U 51.6 U.U 0.78.3 0.0 0.0 0.0 51.6 0.0 0.0 1980 JAN 12 129.9 0.0 51.6 0.0 0.0 78.3 0.0 0.0 0.0 51.6 0.0 0.0 0.0 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 ISF 0.0 51.6 0.0 51 51.6 51.6 0.0 0.0 TSF 0.0 0.0 0.0 0.0 51.6 0.0 51.6 0.0 0.0 0.0 Hgate_Limit -1.000 1980 JAN 13 129.9 0.0 51.6 0.0 0.0 0.0 0.0 78.3 0.0 0.0 0.0 51.6 0.0 0.0 51.6 51.6 51.6 ISF 0.0 0.0 ISF 0.0 51.6 0.0 51.6 0.0 51.6 0.0 0.0 0.0 ISF 0.0 51.6 0.0 5 51.6 51.6 0.0 0 0 0 0 TSF 0.0 0.0 78.3 0.0 51.6 51.6 51.6 0.0 0.0 ISF 0.0 51.6 0.0 51.6 TSF 0.0 51.6 0.0 0.0 0.0 Hgate_Limit -1.000 51.6 1980 JAN 16 129.9 0.0 51.6 0.0 U.U
78.3 0.0 0.0 0.0 51.6 0.0 0.0
0.0 Hgate_Limit -1.000
1980 JAN 17 129.9 0.0 51.6 0.0 0.0
78.3 0.0 0.0 0.0 51.6 0.0 0.0 ISF 0.0 0.0 0 0 TSF 0 0 0 0 0.0 51.6 0.0 51.6 0.0 0.0 51.6 0.0 51.6 0.0 51 6 51.6 0.0 ISF 0.0 51.6 0.0 51.6 0.0 TSF 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 51 6 1980 JAN 18 129.9 78.3 0.0 0.0 0. 0.0 ISF 0.0 51.6 0.0 51.6 0.0 ISF 0.0 0.0 0.0 51.6 0.0 51.6 0.0 0.0 0.0 0.0 51.6 0 0 0.0 Hgate_Limit -1.000 1980 JAN 19 129.9 0.0 51.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 0.0 0.0 0.0 51.6 0.0 0.0 51.6 0.0 51.6 51.6 51.6 ISF 0.0 51.6 0.0 51.6 TSF 0.0 0.0 Hgate_Limit -1.000 51.6

ISF 0.0	ISF 0.0 51.6	1980 JAN 20 178.3 0.0 0	129.9 0.0	51.6 51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51.6	0.0 51.6	0.0 Hgate_Limit	-1.000								
ISF 0.0	ISF 0.0 51.6	1980 JAN 21 78.3 0.0 0									
51.6	0.0 51.6	0.0 Hgate Limit		31.0	0.0	0.0	0.0 5	01.0	0.0	0.0 5	1.0
ISF	ISF	1980 JAN 22	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0 0		51.6	0.0	0.0	0.0 5	51.6	0.0	0.0 5	1.6
51.6		0.0 Hgate_Limit 1980 JAN 23		F1 C	0 0	0 0	0 0	0 0	0 0	0 0	0 0
ISF 0.0	0.0 51.6	78.3 0.0 0									
51.6		0.0 Hgate Limit		31.0	0.0	0.0	0.0	,1.0	0.0	0.0	1.0
ISF	ISF	1980 JAN 24	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0 0	.0 0.0	51.6	0.0	0.0	0.0 5	1.6	0.0	0.0 5	1.6
51.6	0.0 51.6	0.0 Hgate_Limit 1980 JAN 25	-1.000								
ISF 0.0	ISF 0.0 51.6	1980 JAN 25 1 78.3 0.0 0	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51.6		0.0 Hgate_Limit		51.0	0.0	0.0	0.0 5	01.0	0.0	0.0 5	1.0
31.0	0.0 51.0	0.0 Hgacc_Bimic	1.000								
ISF	ISF	1980 JAN 26									
0.0	0.0 51.6	78.3 0.0 0		51.6	0.0	0.0	0.0 5	1.6	0.0	0.0 5	1.6
51.6		0.0 Hgate_Limit									
ISF 0.0	ISF 0.0 51.6	1980 JAN 27 78.3 0.0 0	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51.6		0.0 Hgate Limit		31.0	0.0	0.0	0.0 3	01.0	0.0	0.0 3	1.0
ISF		1980 JAN 28		51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0 0	.0 0.0								
51.6		0.0 Hgate_Limit									
ISF		1980 JAN 29									
0.0 51.6	0.0 51.6 0.0 51.6	78.3 0.0 0 0.0 Hgate Limit		51.6	0.0	0.0	0.0 5	1.6	0.0	0.0 5	1.6
ISF	0.0 51.6 ISF		-1.000 129 9 0 0	51 6	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0		78.3 0.0 0	.0 0.0	51.6	0.0	0.0	0.0 5	51.6	0.0	0.0 5	1.6
51.6		0.0 Hgate_Limit									
ISF		1980 JAN 31									
0.0 51.6		78.3 0.0 0 0.0 Hgate_Limit		51.6	0.0	0.0	0.0 5	1.6	0.0	0.0 5	1.6
51.0	0.0 51.0	0.0 ngate_bimit	-1.000								
ISF	ISF	1980 TOT -1 4	027.5 0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		427.5 0.0 0 0.0 NA		00.0	0.0	0.0	U.O 160	0.0	0.0	U.O 160	0.0
T000.0	U.U 1600.C	U.U NA	-1.000								

Shortag			Water	Use			Statio	n In/Out From Ri	ver By		٤	Station E From	Balance n Carrier	Ву
Carrie	1													
				_	Total	CU					From			
or E	rom T	otal To	otal	CU	Total Cont	To To	otal	Ups	trm Re	ach Re	turn V	Vell From	n/To Ri	ver
River	River	River	Avail	Control	Cont	rol								
Structi	ıre Ri	ver			Demand	Demand	Priorty	Storage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang	g Soil	M Supply	y Shor	t Shor	rt CI	J Soil	M Return	l Loss	Inflow	Gai	n Flov	v Deplete	e GW Stor	
			Outflow	Flow	/ Location	n I	Right							
	ID				v NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA N	A	(1) (16)	IA								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)					(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (30)	(3	31)								
ISF	IS	 F	1980	FEB 1	129.9	0.0	53.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	53.8	76.1	0.0	0.0	0.0	53.8	0.0	0.0	0.0	53.8	0.0	0.0	53.8
53.8	0.0	53.8	0.0 H	gate_Lim	nit -1.0	000								
ISF	IS	F	1980	FEB 2	129.9	0.0	55.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	55.5	74.4	0.0	0.0	0.0	55.5	0.0	0.0	0.0	55.5	0.0	0.0	55.5
55.5	0.0	55.5	0.0 H	gate_Lim	nit -1.0	000								
ISF	IS	F	1980	FEB 3	129.9	0.0	56.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	56.6	73.3	0.0	0.0	0.0	56.6	0.0	0.0	0.0	56.6	0.0	0.0	56.6
56.6	0.0				nit -1.0									
ISF	IS	F	1980	FEB 4	129.9	0.0	57.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	57.1	72.8	0.0	0.0	0.0	57.1	0.0	0.0	0.0	57.1	0.0	0.0	57.1
57.1	0.0				nit -1.0									
ISF	IS	F	1980	FEB 5	129.9	0.0	57.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	57.1	72.8	0.0	0.0	0.0	57.1	0.0	0.0	0.0	57.1	0.0	0.0	57.1
57.1	0.0	57.1	0.0 H	gate_Lim	nit -1.0	000								
ISF	тс	F	1980	FER 6	129.9	0 0	57 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0	0.0		72.8		0.0								0.0	
57.1	0.0				nit -1.0							3.0	3.0	

ISF 0.0	ISF 0.0 57.1	1980 FEB 7 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1					
57.1 ISF 0.0 57.1	0.0 57.1 ISF 0.0 57.1 0.0 57.1	0.0 Hgate_Limit -1.000 1980 FEB 8 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 9 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1	1980 FEB 10 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 11 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000				0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 12 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 13 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 14 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 15 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000				0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 16 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hqate Limit -1.000				0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1	1980 FEB 17 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1	1980 FEB 18 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1	1980 FEB 19 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate Limit -1.000	0.0	0.0	0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 20 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 21 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000				0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1	1980 FEB 22 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	1980 FEB 23 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1		1980 FEB 24 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000	0.0	0.0	0.0 57.1	0.0	0.0 0.0 0.0 57.1
ISF 0.0 57.1		1980 FEB 25 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000					
ISF 0.0	ISF 0.0 57.1	1980 FEB 26 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1	0.0 0.0	0.0	0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
57.1 ISF 0.0	ISF 0.0 57.1	0.0 Hgate_Limit -1.000 1980 FEB 27 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1	0.0 0.0	0.0	0.0 0.0 0.0 57.1	0.0	0.0 0.0 0.0 57.1
57.1 ISF 0.0 57.1	ISF 0.0 57.1 0.0 57.1	0.0 Hgate_Limit -1.000 1980 FEB 28 129.9 0.0 57. 72.8 0.0 0.0 0.0 57.1 0.0 Hgate_Limit -1.000	0.0	0.0	0.0 57.1	0.0	0.0 0.0 0.0 57.1
0.0	0.0 1594.5 2	1980 TOT -1 3637.7 0.0 1594. 2043.3 0.0 0.0 0.0 1594.5 5 0.0 NA -1.000	0.0	0.0	0.0 0.0 0.0 1594.5	0.0	0.0 0.0 0.0 1594.5

Shortage Water Use Station In/Out Station Balance
From River By From Carrier By
Carried

or From Total Total CU Total Upstrm Reach Return Well From/To River River River Avail Control Control

Exchang		De y Short Short. Outflow Flow Loc		I Return							oss
ID (+)	ID NA NA	Year Mo Day NA NA N	NA NA	(+) NA	(+) NA	(+)((+)	(+)	(+)(
(-) (11) (26)	(-) (+) (12) (13) (27) (28)	(14) (15) (1	NA (1) (2) .6) (17) (31)	(3)	(4)	(5)	(6) (21)	(7) (22)	(8)	(9) (24) (25)	10)
ISF 0.0 58.4	ISF 0.0 58.4 0.0 58.4			58.4 58.4	0.0	0.0	0.0	0.0 54.9	0.0	0.0 58.4	0.0
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 MAR 2 1 76.6 0.0 0. 0.0 Hgate_Limit	0.0	53.3 53.3	0.0	0.0	0.0	0.0	0.0	0.0 53.3	0.0
ISF 0.0 52.2	ISF 0.0 52.2 0.0 52.2	1980 MAR 3 1	29.9 0.0	52.2 52.2	0.0	0.0	0.0	0.0 52.2	0.0	0.0 52.2	0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 4 1 78.3 0.0 0.	29.9 0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	0.0
ISF 0.0	ISF 0.0 51.6		29.9 0.0		0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	0.0
51.6 ISF	0.0 51.6 ISF 0.0 51.6	1980 MAR 6 1	.29.9 0.0		0.0	0.0	0.0	0.0 51.6	0.0	0.0	
0.0 51.6 ISF	0.0 51.6 ISF	78.3 0.0 0. 0.0 Hgate_Limit 1980 MAR 7 1	-1.000 .29.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0		0.0
0.0 51.6 ISF	0.0 51.6 0.0 51.6 ISF		-1.000 .29.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0		0.0
0.0 51.6 ISF	0.0 51.6 0.0 51.6 ISF	0.0 Hgate_Limit 1980 MAR 9 1	29.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0		0.0
0.0 51.6 ISF	0.0 51.6 0.0 51.6 ISF	78.3 0.0 0. 0.0 Hgate_Limit 1980 MAR 10 1	-1.000 .29.9 0.0		0.0	0.0	0.0	0.0	0.0	0.0 51.6	0.0
0.0 51.6	0.0 51.6 0.0 51.6	78.3 0.0 0. 0.0 Hgate_Limit			0.0	0.0		51.6	0.0	0.0 51.6	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	0.0 Hgate_Limit	0 0.0	51.6	0.0	0.0		51.6	0.0	0.0 51.6	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	0.0 Hgate_Limit	0 0.0	51.6	0.0	0.0		51.6	0.0	0.0 51.6	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 13 1 78.3 0.0 0. 0.0 Hgate_Limit	0 0.0	51.6	0.0	0.0		0.0 51.6	0.0	0.0 51.6	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	0.0 Hgate_Limit	0 0.0	51.6	0.0	0.0		0.0 51.6	0.0	0.0 51.6	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 15 1 78.3 0.0 0. 0.0 Hgate_Limit	0.0								
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 16 1 78.3 0.0 0. 0.0 Hgate_Limit	0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 17 1 78.3 0.0 0. 0.0 Hgate_Limit	29.9 0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 18 1 78.3 0.0 0. 0.0 Hgate_Limit	29.9 0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 19 1 78.3 0.0 0. 0.0 Hgate Limit	29.9 0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 20 1 78.3 0.0 0. 0.0 Hgate_Limit	0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 (0.0
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 21 1 78.3 0.0 0. 0.0 Hgate_Limit	0.0								
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 22 1 78.3 0.0 0. 0.0 Hgate_Limit	29.9 0.0						0.0	0.0 0.0	
ISF 0.0 51.6	ISF 0.0 51.6 0.0 51.6	1980 MAR 23 1 78.3 0.0 0. 0.0 Hgate_Limit	29.9 0.0							0.0 0.0	
ISF 0.0 51.6	ISF 0.0 51.6	1980 MAR 24 1 78.3 0.0 0. 0.0 Hgate_Limit	29.9 0.0	51.6 51.6	0.0	0.0	0.0	0.0 51.6	0.0	0.0 0.0	0.0

ISF		1980 MAR 25									
0.0		78.3 0.0		51.6	0.0	0.0	0.0	51.6	0.0	0.0	51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000								
ISF	ISF	1980 MAR 26	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0	51.6	0.0	0.0	51.6
51.6	0.0 51.6										
ISF	ISF	1980 MAR 27	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0	51.6	0.0	0.0	
51.6	0.0 51.6										
ISF	ISF	1980 MAR 28	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0	51.6	0.0	0.0	51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000								
ISF	ISF	1980 MAR 29	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0	51.6	0.0	0.0	51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000								
ISF	ISF	1980 MAR 30									
0.0	0.0 51.6	78.3 0.0	0.0 0.0	51.6	0.0	0.0	0.0	51.6	0.0	0.0	51.6
51.6	0.0 51.6	0.0 Hgate_Limi	t -1.000								
TSF	ISF	1980 MAR 31	129.9 0.0	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 51.6										
51.6		0.0 Hgate_Limi									
	TSF	1000 mom 1	4027.5 0.0	1600 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
ISF 0.0		2418.5 0.0									
				009.0	0.0	3.5	0.0 16	005.5	0.0	0.0 16	09.0
1609.0	0.0 1609	0.0 NA	-1.000								
Shortag	e	Water Use			n In/Out				tation B		
					From Ri	ver By			From	Carrier	By

Shortage Carried	Water Use	Station In/	Out River By 	Station Fro	Balance m Carrier By —————
	Total CU	т		From	
or From Total T	otal CU To T Avail Control Control	otal	Jpstrm Reach	Return Well Fro	m/To River
Structure River Exchang SoilM Suppl	Avail Control Control Demand Demand y Short Short CU Soil Outflow Flow Location	l Priorty Stora M Return L	ge Exc_Pln Lo	ss Well Priorty	Sto_Exc Loss
ID ID (+) NA NA (-) (-) (+)	Year Mo Day NA NA NA NA NA NA NA NA NA	4 (+)		(+) (+)	
(11) (12) (13) (26) (27) (28)				6) (7) (8) (22) (23)	
ISF ISF 0.0 0.0 52.3 52.3 0.0 52.3	1980 APR 1 129.9 0.0 77.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000		.0 0.0 0.0	0.0 0.0 0.0 52.3 0.0	0.0 0.0 0.0 0.0 52.3
ISF ISF 0.0 0.0 52.8 52.8 0.0 52.8	1980 APR 2 129.9 0.0 77.1 0.0 0.0 0.0 0.0 Hgate_Limit -1.000		0.0 0.0	0.0 0.0 0.0 52.8 0.0	0.0 0.0 0.0 52.8
ISF ISF 0.0 0.0 53.2	1980 APR 3 129.9 0.0	53.2 0.0	0.0 0.0	0.0 0.0 0.0 53.2 0.0	0.0 0.0 0.0 53.2
ISF ISF 0.0 0.0 53.3	1980 APR 4 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000		0.0 0.0	0.0 0.0 0.0 53.3 0.0	0.0 0.0 0.0 53.3
ISF ISF 0.0 0.0 53.3 53.3 0.0 53.3	1980 APR 5 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000			53.3 0.0	0.0 0.0 0.0 53.3
ISF ISF 0.0 0.0 53.3 53.3 0.0 53.3	1980 APR 6 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	53.3 0.0	0.0 0.0	0.0 0.0 0.0 53.3 0.0	0.0 0.0 0.0 53.3
	1980 APR 7 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	53.3 0.0	0.0 0.0		0.0 53.3
	0.0 Hgate_Limit -1.000	53.3 0.0	0.0 0.0		0.0 53.3
	1980 APR 9 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	53.3 0.0	0.0 0.0	0.0 0.0 0.0 53.3 0.0	0.0 53.3
ISF ISF 0.0 0.0 53.3 53.3 0.0 53.3	1980 APR 10 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000				0.0 0.0
ISF ISF 0.0 0.0 53.3 53.3 0.0 53.3	1980 APR 11 129.9 0.0 76.6 0.0 0.0 0.0 0.0 Hgate_Limit -1.000	53.3 0.0 53.3 0.0		53.3 0.0	

ISF 0.0 53.3		1980 APR 12 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000					
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 13 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000	3.3 0.0	0.0	0.0 53.3		0.0 0.0
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 14 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000	3.3 0.0	0.0	0.0 53.3		0.0 0.0
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 15 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 16 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000				0.0	0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 17 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0 0.0
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 18 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 19 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000			0.0 0.0	0.0	0.0 0.0 0.0 53.3
ISF 0.0 53.3	ISF 0.0 53.3 0.0 53.3	1980 APR 20 129.9 0.0 76.6 0.0 0.0 53 0.0 Hgate_Limit -1.000				0.0	0.0 0.0 0.0 53.3
ISF 0.0	ISF 0.0 53.3	1980 APR 21 129.9 0.0 76.6 0.0 0.0 53				0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 22 129.9 0.0 76.6 0.0 0.0 0.0 53			0.0 0.0 0.0 53.3	0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 23 129.9 0.0 76.6 0.0 0.0 0.0 53			0.0 0.0 0.0 53.3	0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 24 129.9 0.0 76.6 0.0 0.0 0.0 53			0.0 0.0 0.0 53.3	0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0 53.3	ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 25 129.9 0.0 76.6 0.0 0.0 0.0 53 0.0 Hgate_Limit -1.000					0.0 0.0 0.0 53.3
ISF 0.0	ISF 0.0 53.3	1980 APR 26 129.9 0.0 76.6 0.0 0.0 53				0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	0.0 53.3 ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 27 129.9 0.0 76.6 0.0 0.0 0.0 53	53.3 0.0	0.0	0.0 0.0 0.0 53.3	0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	0.0 53.3 ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 28 129.9 0.0 76.6 0.0 0.0 0.0 53			0.0 0.0 0.0 53.3	0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	ISF 0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 29 129.9 0.0 76.6 0.0 0.0 0.0 53	3.3 0.0	0.0	0.0 53.3	0.0	0.0 0.0 0.0 53.3
53.3 ISF 0.0	0.0 53.3	0.0 Hgate_Limit -1.000 1980 APR 30 129.9 0.0 76.6 0.0 0.0 0.0 53	53.3 0.0 3.3 0.0	0.0	0.0 0.0 0.0 53.3	0.0	0.0 0.0 0.0 53.3
		0.0 Hgate_Limit -1.000 					
ISF 0.0 1598.3	ISF 0.0 1598.3 2 0.0 1598.3	1980 TOT -1 3897.6 0.0 1 2299.3 0.0 0.0 0.0 1598 3 0.0 NA -1.000	1598.3 0.0 3.3 0.0	0.0	0.0 0.0 0.0 1598.3	0.0	0.0 0.0 0.0 1598.3

Shortage			Water I	Ise			Statio	n In/Out From Ri	ver By		S	Station E Fron	Balance n Carrier	Ву
Carried														
				-							From			
or F	rom To	tal To	otal	CU		To To	otal	Ups	trm Re	ach Ret	urn W	Well From	n/To Ri	ver
River	River	River	Avail (ontrol	Cont	rol								
Structu	re Riv	er			Demand	Demand	Priorty	Storage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Exchang	SoilM	Suppl	y Short	Short	CU	Soil	M Return	Loss	Inflow	Gain	Flow	Deplete	GW Stor	
Inflow	Divert	by Well	Outflow	Flow	Location	1	Right							
ID	ID		Year	Mo Day	NA	NA	(+)	(+)	(+)((-)	(+)	(+)	(+)((-)
(+)	NA	NA	NA	NA	NA	NA	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)
(-)	(-)	(+)	NA NA	1	N	A								
					(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
(26)	(27)	(28)	(29) (3	30)	(3)	1)								

ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 1 0.0 0.0 40.7 NA	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0	0.0 0.0 0.0 52.6	0.0	0.0 0.0 0.0 170.7
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 2	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0 0.0 121.0	0.0 0.0 0.0 52.1	0.0	0.0 0.0 0.0 173.1
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 3	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0 0.0 121.0	0.0 0.0 0.0 51.8	0.0	0.0 0.0 0.0 172.8
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 4	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	0.0 129.9		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	0.0 129.9		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 8	129.9 0.0 129.9 0.0 0.0 129.9				0.0 0.0 0.0 172.6
ISF 0.0 129.9	0.0 129.9	1980 MAY 9 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9 -1.000	0.0 0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	0.0 129.9	1980 MAY 10 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9 -1.000	0.0 0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 11 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0 0.0 121.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 12	129.9 0.0 129.9 0.0 0.0 129.9				
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 13	129.9 0.0 129.9 0.0 0.0 129.9				
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 14	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	0.0 129.9		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0			129.9 0.0 129.9 0.0 0.0 129.9				
ISF 0.0	ISF 0.0 129.9	1980 MAY 17	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0 0.0 121.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6	1980 MAY 18 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9 -1.000	0.0 0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6	1980 MAY 21 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9	0.0 0.0 0.0 121.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6	1980 MAY 22	129.9 0.0 129.9 0.0 0.0 129.9				
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6	1980 MAY 24 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9 -1.000	0.0 0.0	0.0 0.0 0.0 51.6	0.0	0.0 0.0 0.0 172.6
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6	1980 MAY 25 0.0 0.0 42.7 NA	129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	ISF 0.0 129.9 0.0 172.6		129.9 0.0 129.9 0.0 0.0 129.9 -1.000				
ISF 0.0 129.9	ISF 0.0 129.9	1980 MAY 27	129.9 0.0 129.9 0.0 0.0 129.9 -1.000				

129.9 0.0 ISF	129.9 172.6 SF 129.9 172.6 SF 129.9 172.6 SF 129.9 172.6 SF	0.0 0.0 42.7 NA 1980 MAY 29 0.0 0.0 42.7 NA 1980 MAY 30 0.0 0.0 42.7 NA 1980 MAY 31 0.0 0.0 42.7 NA 1980 MAY 31 0.0 0.0 42.7 NA	0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000	0.0 121.0 0.0 0.0 0.0 121.0 0.0 0.0 0.0 121.0 0.0 0.0 0.0 121.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6	0.0 0.0 172.6 0.0 0.0 0.0 0.0 172.6 0.0 0.0 0.0 0.0 172.6 0.0 0.0 172.6 0.0 0.0 172.6
Shortage		Water Use	Statio	on In/Out From River By	S	Station Balance From Carrier By
Carried						
Structure R: Exchang Soi: Inflow Divers	iver lM Supply t by Well D	Short Short Outflow Flow Year Mo Day	CU SoilM Return Location Right NA NA (+) NA NA NA	Storage Exc_Pln Loss Inflow (+) (+)(NA (+)	Loss Well Gain Flow (-) (+) (+)	Priorty Sto_Exc Loss W Deplete GW Stor (+) (+) (-) (+)
(11) (12)	(13)					(8) (9) (10) (23) (24) (25)
0.0 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 12	129.9 176.1 SF 129.9 177.8 SF 129.9 178.2 SF 129.9 178.3	0.0 0.0 46.2 NA 1980 JUN 2 0.0 0.0 47.9 NA 1980 JUN 3 0.0 48.2 NA 1980 JUN 4 0.0 48.4 NA 1980 JUN 5	129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000	0.0 123.8 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 0.0	0.0 52.3 0.0 0.0 0.0 52.8 0.0 0.0 0.0 53.2 0.0 0.0 0.0 53.3	0.0 0.0 176.1 0.0 0.0 0.0 0.0 177.8 0.0 0.0 0.0 0.0 178.2 0.0 0.0 178.3 0.0 0.0 0.0
129.9 0.0 ISF I: 0.0 0.0	129.9 178.3 SF 129.9 178.3 SF 129.9 178.3 SF 129.9 178.3 SF 129.9 178.3	0.0 0.0 48.4 NA 1980 JUN 7 0.0 0.0 48.4 NA 1980 JUN 8 0.0 0.0 48.4 NA 1980 JUN 9 0.0 0.0 48.4 NA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 0.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0	0.0 0.0 0.0 0.0 178.3 0.0 0.0 0.0 0.0 178.3 0.0 0.0 178.3 0.0 0.0 178.3
0.0 0.0 129.9 0.0 1SF IS 0.0 0.0 129.9 0.0 1SF IS 0.0 0.0 1SF IS 0.0 0.0 129.9 0.0 1SF IS 0.0 0.0 129.9 0.0 1SF IS 0.0 0.0 0.0 1SF IS 0.0 0.0 0.0	SF 129.9 178.3 SF 129.9 178.3 SF 129.9 178.3 SF 129.9 178.3 SF 129.9 178.3	0.0 0.0 48.4 NA 1980 JUN 12 0.0 0.0 48.4 NA 1980 JUN 13 0.0 0.0 48.4 NA 1980 JUN 14 0.0 0.0 48.4 NA	0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 129.9 0.0 129.9 -1.000 129.9 0.0 129.9	0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0	0.0 0.0 0.0 0.0 178.3

0.0 0.0 129.9 129.9 0.0 178.3 ISF 0.0 0.0 129.9 1SF 0.0 0.0 129.9	0.0 0.0 48.4 NA 1980 JUN 17 0.0 0.0 48.4 NA 1980 JUN 18 0.0 0.0 48.4 NA 1980 JUN 19 0.0 0.0 48.4 NA 1980 JUN 20	129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 129.9 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9	0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 0.0 0.0	0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3
129.9 0.0 178.3 ISF 1SF 0.0 129.9 129.9 0.0 178.3 ISF 0.0 129.9 129.9 0.0 178.3 ISF 1SF 0.0 0.0 129.9 129.9 0.0 178.3 ISF 1SF 0.0 178.3 ISF 1SF 0.0 178.3 ISF 1SF 0.0 129.9 129.9 0.0 178.3 ISF 1SF 0.0 129.9	0.0 0.0 48.4 NA 1980 JUN 22 0.0 0.0 48.4 NA 1980 JUN 23 0.0 0.0 48.4 NA 1980 JUN 24 0.0 0.0 48.4 NA 1980 JUN 25 0.0 0.0 48.4 NA	129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9	0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 0.0 0.0	0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3
0.0 0.0 129.9 129.9 0.0 178.3 ISF ISF 0.0 129.9 129.9 0.0 178.3 ISF ISF 0.0 0.0 129.9 129.9 0.0 178.3 ISF ISF 0.0 0.0 129.9 129.9 0.0 178.3 ISF ISF	0.0 0.0 48.4 NA 1980 JUN 27 0.0 0.0 48.4 NA 1980 JUN 28 0.0 0.0 48.4 NA 1980 JUN 29 0.0 0.0 48.4 NA 1980 JUN 30 0.0 0.0	0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 -1.000 129.9 0.0 129.9 -1.000 129.9 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9	0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 0.0	0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3 0.0 0.0 0.0 178.3
ISF ISF 0.0 0.0 3897.6 3897.6 0.0 5347.1	0.0 0.0		0.0 3748.8	0.0 1598.3	0.0	0.0 0.0 0.0 5347.1
Shortage Carried	Water Use	Statio	n In/Out From River By		Station Ba From	alance Carrier By
or From Total T River River River Structure River Exchang SoilM Suppl Inflow Divert by Well ID ID (+) NA NA (-) (-) (+) (11) (12) (13) (26) (27) (28)	y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU TO Total Control Demand Demand Priorty CU SoilM Return Location Right NA NA NA NA NA (1) (2) (3) (16) (17) (18) (31)	Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20)	Loss Well Gain Flow (-) (+) (+) (+) (6) (7) (21) (22)	Priorty: Well From, Priorty: W Deplete (+) (-) (8) (23)	/To River Sto_Exc Loss GW Stor (+)((-) (+) (+) (9) (10) (24) (25)
ISF	1980 JUL 1 0.0 0.0 0.0 Hgate_Lir 1980 JUL 2 0.0 0.0 0.0 Hgate_Lir 1980 JUL 3 0.0 0.0 0.0 Hgate_Lir	- 129.9 0.0 57.9 0.0 0.0 129.9 nit -1.000 129.9 0.0 52.1 0.0 0.0 129.9 nit -1.000 129.9 0.0 51.8 0.0 0.0 129.9	72.0 0.0 0.0 77.3 77.8 0.0 0.0 77.8	0.0 52.6 0.0 0.0 0.0 52.1 0.0 0.0 0.0 51.8	0.0	0.0 129.9 0.0 0.0 0.0 129.9 0.0 0.0

ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	0.0 0.0	0.0	0.0 129.9	51.6 78.3 9 0.0	0.0 78.3	0.0 0.0 51	0.0	0.0	0.0 0.0
ISF 0.0 129.9 ISF	ISF 0.0 129.9 0.0 129.9 ISF	0.0 0.0 0.0 Hgate	0.0 e_Limit -1	0.0 129.9	0.0	78.3	0.0 51	. 6	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 129.9 ISF	0.0 129.9	0.0 0.0 0.0 Hgate	0.0 e_Limit -1	0.0 129.9	0.0	78.3	0.0 51	. 6	0.0	0.0 129.9
0.0 129.9 ISF	ISF	0.0 Hgate 1980 JUL	e_Limit -1 9 129.9	0.0	51.6 78.3	0.0	0.0	0.0	0.0	0.0 129.9
0.0 129.9 ISF 0.0	0.0 129.9 0.0 129.9 ISF 0.0 129.9	0.0 Hgate 1980 JUL	e_Limit -1 10 129.9	0.0	51.6 78.3	0.0	0.0	0.0		0.0 129.9 0.0 0.0 0.0 129.9
	0.0 129.9 ISF	0.0 Hgate	e_Limit -1	.000						0.0 0.0
0.0 129.9 ISF	0.0 129.9 0.0 129.9 ISF	0.0 0.0 0.0 Hgate 1980 JUL	0.0 e_Limit -1 12 129.9	0.0 129.9 .000 0.0 5	9 0.0 51.6 78.3	78.3	0.0 51	0.0	0.0	0.0 129.9
0.0 129.9 ISF 0.0	0.0 129.9 0.0 129.9 ISF 0.0 129.9	0.0 Hgate 1980 JUL	e_Limit -1 13 129.9	0.0 129.9 .000 0.0 5 0.0 129.9	51.6 78.3	0.0	0.0	0.0	0.0	0.0 129.9 0.0 0.0 0.0 129.9
129.9 ISF 0.0	0.0 129.9 0.0 129.9 ISF 0.0 129.9	0.0 Hgate 1980 JUL	e_Limit -1 14 129.9		51.6 78.3	0.0	0.0	0.0		0.0 0.0 0.0 0.0 0.0 129.9
129.9 ISF 0.0 129.9	0.0 129.9	1980 JUL	0.0	0.0 5	51.6 78.3 9 0.0	0.0 78.3	0.0	0.0	0.0	0.0 0.0 0.0 129.9
ISF 0.0	ISF 0.0 129.9	1980 JUL	16 129.9	0.0						0.0 0.0 0.0 129.9
129.9 ISF 0.0 129.9	0.0 129.9 ISF 0.0 129.9 0.0 129.9	1980 JUL	17 129.9 0.0	0.0 5 0.0 129.9						0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 JUL 0.0 0.0	18 129.9 0.0	0.0 5 0.0 129.9	51.6 78.3 9 0.0	0.0 78.3	0.0	0.0	0.0	0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	0.0 0.0 0.0 Hgate	0.0 Limit -1	0.0 129.9 .000	0.0	78.3	0.0 51	. 6	0.0	0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	0.0 0.0	0.0	0.0 129.9						0.0 0.0
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	0.0 0.0 0.0 Hgate	0.0 Limit -1	0.0 129.9 .000	0.0	78.3	0.0 51	. 6	0.0	0.0 0.0 0.0 129.9
ISF 0.0 129.9	0.0 129.9	0.0 Hgate	_Limit -1	.000						0.0 0.0
ISF 0.0 129.9 ISF	ISF 0.0 129.9 0.0 129.9 ISF	0.0 0.0 0.0 Hgate	0.0 Limit -1	0.0 129.9 .000	0.0	78.3	0.0 51	. 6	0.0	0.0 0.0 0.0 129.9 0.0
0.0 129.9 ISF	0.0 129.9	0.0 0.0 0.0 Hgate 1980 JUL	0.0 e_Limit -1 25 129.9	0.0 129.9 .000 0.0 5	9 0.0 51.6 78.3	78.3	0.0 51	0.0	0.0	0.0 129.9
0.0 129.9		0.0 0.0 0.0 Hgate	0.0 e_Limit -1	0.0 129.9 .000	0.0	78.3	0.0 51	. 6	0.0	0.0 129.9
ISF 0.0 129.9 ISF	ISF 0.0 129.9 0.0 129.9 ISF	0.0 0.0 0.0 Hgate	0.0 Limit -1	0.0 129.9 .000	0.0	78.3	0.0 51	. 6	0.0	0.0 0.0 0.0 0.0 0.0 0.0
0.0 129.9 ISF	0.0 129.9 0.0 129.9 ISF	0.0 0.0 0.0 Hgate	0.0 e_Limit -1	0.0 129.9 .000	0.0	78.3	0.0 51	. 6	0.0	0.0 129.9
0.0 129.9 ISF	0.0 129.9 0.0 129.9 ISF	0.0 0.0 0.0 Hgate 1980 JUL	0.0 e_Limit -1 29 129.9	0.0 129.9 .000 0.0 5	9 0.0 51.6 78.3	78.3	0.0 51	0.0	0.0	0.0 129.9
0.0 129.9 ISF 0.0	0.0 129.9 0.0 129.9 ISF 0.0 129.9	0.0 Hgate 1980 JUL	e_Limit -1 30 129.9	0.0	51.6 78.3	0.0	0.0	0.0	0.0	0.0 129.9 0.0 0.0 0.0 129.9
129.9 ISF	0.0 129.9 ISF	0.0 Hgate	e_Limit -1 31 129.9	0.0	51.6 78.3	0.0	0.0	0.0	0.0	0.0 0.0
0.0 129.9	0.0 129.9 0.0 129.9	0.0 0.0	0.0	0.0 129.9	0.0	78.3	0.0 51	. 6	0.0	0.0 129.9

								_	_		_			_	_	
ISF	ISF	1980	TOT -1	4027.5	0.0	1607.0	2420	.5 0	. 0	0.	. 0	0.0	0.0	0	. 0	0.0
	0 0 4005 5		0 0	0 0	0 0 40	0.5		0405 0	_		1601 -				4000	_
0.0	0.0 4027.5	0.0	0.0	0.0	0.0 40	27.5	0.0	2425.8	U).0	T00T.7	/	0.0	0.0	4027.	5
4007 F	0 0 4027 5	0 0	3.7.73	1	0.00											

0.0 4027.5 0.0 NA Shortage Water Use Station In/Out Station Balance From River By From Carrier By Carried CU _ Total or From Total Total CU To Total From Total Total CU To Total Upstrm Reach Retu River River Avail Control Control ure River Demand Demand Priorty Storage Exc_Pln Loss Upstrm Reach Return Well From/To River River (-) (+) (+) (+) (+) (+) (+) (14) (15) (16) (1 (31) (11)(12)(13) (26) (29) (30) (28) TSF TSF 0.0 129.9 0.0 129.9 0.0 0.0 U.U Hgate_Limit -1.000 1980 AUG 2 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 70.2 129.9 ISF 0.0 0.0 ISF 0.0 129.9 0.0 129.9 0.0 78.3 0.0 51.6 0.0 0.0 129.9 0.0 0.0 129.9 ISF 0.0 Hgate_Limit -1.000 1980 AUG 3 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 0.0 129.9 ISF 0.0 129.9 0.0 129.9 0.0 0.0 0.0 Hgate_Limit -1.000 129.9 0.0 51.6 78.3 0.0 0.0 0.0 1980 AUG 4 129.9 0.0 51.6 0.0 0.0 0.0 129.9 0.0 0.0 ISF ISF 0.0 78.3 0.0 0.0 129.9 0.0 51.6 0.0 0.0 Hgate_Limit -1.000 0.0 129.9 U.U Hgate_Limit -1.000 1980 AUG 5 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 9 129.9 ISF 0.0 129.9 0.0 0.0 0.0 TSF 0.0 51.6 0.0 129.9 0.0 0.0 0.0 0.0 Hgate_Limit -1.000 0.0 129.9 129.9 0.0 1980 AUG 6 129.9 0.0 51.6 78.3 0.0 TSF TSF 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 0.0 Hgate_Limit -1.000 0.0 0.0 0.0 0.0 129.9 0.0 129.9 0.0 0.0 0.0 51.6 1980 AUG 7 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129 9 0.0 70.0 ISF 0.0 129.9 0.0 129.9 ISF 129.9 0.0 TSF 0.0 0.0 0.0 51.6 0.0 0.0 0.0 Hgate_Limit -1.000 1980 AUG 8 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 129.9 0.0 ISF 0.0 129.9 0.0 129.9 0.0 0.0 129.9 0.0 0.0 -1.000 U.U Hgate_Limit -1.000 1980 AUG 9 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 0.0 Hgate_Limit -1.000 0.0 Hgate_Limit 129.9 0.0 TSF TSF 0.0 0.0 129.9 0.0 129. 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000 1980 AUG 10 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 129.9 129.9 0.0 0.0 ISF 0.0 129.9 TSF 0.0 129.9 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000 129.9 1980 AUG 11 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 Hgate_Limit -1.000 0.0 0.0 TSF 0.0 0 0 ISF 0 0 0.0 129.9 0.0 129.9 0.0 0.0 51.6 0.0 129.9 ISF 0.0 129.9 0.0 129.9 ISF 0.0 Hgate_Limit -1.000 1980 AUG 12 129.9 0.0 51.6 78.3 0.0 0.0 0.0 TSF 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 0.0 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000 1980 AUG 13 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 129.9 0.0 ISF 0.0 129.9 0.0 0.0 129.9 0.0 0.0 129.9 0.0 Hgate_Limit -1.000 129.9 ISF 0.0 129.9 0.0 129 0.0 51.6 78.3 0.0 0.0 1980 AUG 14 129.9 0.0 51.6 78.3 U.U 0.0 0.0 0.0 129.9 0.0 78.3 0.0 0 0 0 0 0 0 TSF 0.0 0.0 0.0 51.6 0.0 0.0 129.9 0.0 Hgate_Limit 129.9 129.9 U.U Hgate_Limit -1.000 1980 AUG 15 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 ISF 0.0 129.9 0.0 0.0 TSF 0.0 0.0 129.9 0.0 0.0 0.0 Hgate_Limit -1.000 129 9 0.0 129.9 1980 AUG 16 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 Hgate_Limit -1.000 0.0 0.0 TSF 0.0 0 0 ISF 0 0 0.0 129.9 0.0 129.9 0.0 0.0 51.6 0.0 129.9 0.0 1980 AUG 17 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 129 9 0.0 70.2 1 129 9 ISF 0.0 129.9 0.0 TSF 0.0 0.0 0.0 51.6 0.0 0.0 0.0 129.9 0.0 129.9 ISF 0.0 Hgate_Limit -1.000 129 9 0.0 Hgate_Limit -1.000 1980 AUG 18 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 0.0 0.0 ISF 0.0 0.0 129.9 0.0 129.9 ISF 0.0 129.9 0.0 129.9 0.0 0.0 129.9 0 0 0.0 Hgate_Limit -1.000 1980 AUG 19 129.9 0.0 51.6 78.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129.9 0.0 78.3 0.0 51.6 0.0 0.0 129. 129.9 0 0 TSF 0.0 0.0 129.9 0.0 0.0 Hgate_Limit -1.000 129.9 0.0 129.9

0.0	0.0 129.9	1980 AUG 20 0.0 0.0 0.0 Hgate_Lim	0.0 0.0	51.6 129.9	78.3 0.0 7	0.0	0.0	0.0 51.6	0.0	0.0	0.0 29.9
ISF 0.0 129.9 ISF 0.0 129.9 ISF 0.0	0.0 129.9 ISF 0.0 129.9 0.0 129.9 ISF 0.0 129.9 0.0 129.9 ISF 0.0 129.9 1SF 0.0 129.9 1SF	1980 AUG 21 0.0 0.0 0.0 Hgate_Lim 1980 AUG 22 0.0 0.0 Hgate_Lim 1980 AUG 23 0.0 0.0 0.0 Hgate_Lim 1980 AUG 24 0.0 0.0 0.0 Hgate_Lim 1980 AUG 25 0.0 Hgate_Lim 1980 AUG 25 0.0 Hgate_Lim	it -1.000 129.9 0.0 0.0 0.0 it -1.000 129.9 0.0 0.0 0.0 it -1.000 129.9 0.0 0.0 0.0 it -1.000 129.9 0.0 0.0 0.0	51.6 129.9 51.6 129.9 51.6 129.9	78.3 0.0 7 78.3 0.0 7 78.3 0.0 7	0.0 8.3 0.0 8.3 0.0	0.0	0.0 51.6 0.0 51.6 0.0	0.0 0.0 0.0 0.0	0.0 0.0 12 0.0 0.0 12 0.0 0.0 12	0.0 29.9 0.0 29.9 0.0
0.0 129.9 ISF 0.0 129.9 ISF 0.0 129.9 ISF 0.0 129.9 ISF	0.0 129.9 0.0 129.9 ISF 0.0 129.9 0.0 129.9 ISF 0.0 129.9 0.0 129.9 ISF 0.0 129.9 0.0 129.9 0.0 129.9	1980 AUG 26 0.0 0.0 0.0 Hgate_Lim 1980 AUG 27 0.0 0.0 Hgate_Lim 1980 AUG 28 0.0 0.0 0.0 Hgate_Lim 1980 AUG 29 0.0 0.0 0.0 Hgate_Lim 1980 AUG 30 0.0 Hgate_Lim 1980 AUG 30 0.0 Hgate_Lim	0.0 0.0 it -1.000 129.9 0.0 0.0 it -1.000 129.9 0.0 it -1.000 129.9 0.0 it -1.000 129.9 0.0 it -1.000 129.9 0.0 0.0 it -0.00 0.0 it -0.00 0.0 0.0 it -0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	129.9 51.6 129.9 51.6 129.9 51.6 129.9	78.3 0.0 7 78.3 0.0 7 78.3 0.0 7	0.0 8.3 0.0 8.3 0.0 8.3	0.0	0.0 51.6 0.0 51.6 0.0 51.6	0.0	0.0 12 0.0 0.0 12 0.0 0.0 12 0.0 12	0.0 29.9 0.0 29.9 0.0 29.9
0.0 129.9 ————	0.0 129.9 0.0 129.9	1980 AUG 31 0.0 0.0 0.0 Hgate_Lim	0.0 0.0 it -1.000	129.9	0.0 7	8.3	0.0	0.0	0.0	0.0	0.0
ISF 0.0 4027.5	ISF 0.0 4027.5 0.0 4027.5	1980 TOT -1 0.0 0.0 0.0 NA		1600.0 027.5							
ISF 0.0 4027.5 Shortage	ISF 0.0 4027.5 0.0 4027.5	1980 TOT -1 0.0 0.0 0.0 NA	4027.5 0.0 0.0 0.0 4 -1.000	1600.0 027.5 Station	n In/Out From Riv	er By		S	tation B From	alance Carrier	Ву
Shortage Carried or Fr River Structur Exchang ID (+) (-) (11)	ISF 0.0 4027.5 0.0 4027.5 0.0 4027.5 com Total To River River e River SoilM Supply Divert by Well ID NA NA (-) (+) (12) (13) (27) (28)	1980 TOT -1 0.0 0.0 0.0 NA Water Use tal CU Avail Control Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU Total CU Soil: Location NA NA NA NA (1) (2) (16) (17) (31)	otal Priorty SM Return Right (1) (3) (18)	Upst Storage E Loss (+) NA (4) (19)	rm Read (xc_Pln Inflow (+)((+)((5)(20)	Loss Gain	From urn Well Flow	tation B From ell From Priorty Deplete (+)	alance Carrier /To Riv Sto_Exc GW Stor (+)(By Ver Loss (-)

ISF 0.0	ISF 0.0 129.9	1980 SEP 7 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9			
129.9 ISF 0.0 129.9	0.0 129.9 ISF 0.0 129.9 0.0 129.9	0.0 Hgate_Limit -1.000 1980 SEP 8 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000	76.6 0.0 0.0 76.6	0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 9 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000			
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 10 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000			
ISF 0.0	ISF 0.0 129.9	1980 SEP 11 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9			0.0 0.0 0.0 0.0 0.0 129.9
129.9 ISF 0.0	0.0 129.9 ISF 0.0 129.9	0.0 Hgate_Limit -1.000 1980 SEP 12 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9		0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
129.9 ISF 0.0 129.9	ISF 0.0 129.9	0.0 Hgate_Limit -1.000 1980 SEP 13 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9	1980 SEP 14 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 15 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000			
ISF 0.0	ISF 0.0 129.9	1980 SEP 16 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9			0.0 0.0 0.0 0.0 129.9
129.9 ISF 0.0 129.9	0.0 129.9 ISF 0.0 129.9 0.0 129.9	0.0 Hgate_Limit -1.000 1980 SEP 17 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 18 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000		0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 19 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000		0.0 0.0	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 20 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000			
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 21 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate Limit -1.000			
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 22 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000			
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 23 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000			0.0 0.0 0.0 0.0 129.9
129.9	0.0 129.9 0.0 129.9	1980 SEP 24 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000	0.0 76.6	0.0 53.3	0.0 0.0 129.9
ISF 0.0 129.9	0.0 129.9	1980 SEP 25 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000	76.6 0.0 0.0 76.6	0.0 0.0	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 26 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000	76.6 0.0 0.0 76.6	0.0 0.0 0.0 53.3	0.0 0.0 0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 27 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000	0.0 76.6	0.0 53.3	0.0 0.0 129.9
ISF 0.0 129.9	ISF 0.0 129.9 0.0 129.9	1980 SEP 28 129.9 0.0 53.3 0.0 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000	0.0 76.6	0.0 53.3	0.0 0.0 129.9
ISF 0.0 129.9 ISF		1980 SEP 29 129.9 0.0 53.3 0.0 0.0 0.0 129.9 0.0 Hgate_Limit -1.000 1980 SEP 30 129.9 0.0 53.3	0.0 76.6	0.0 53.3	0.0 0.0 129.9
0.0 129.9	0.0 129.9	0.0 0.0 0.0 129.9 0.0 53.3 0.0 Hgate_Limit -1.000			
ISF	ISF	1980 TOT -1 3897.6 0.0 1598.3 0.0 0.0 0.0 3897.6	2299.3 0.0	0.0 0.0	0.0 0.0 0.0
0.0 3897.6	0.0 3897.6	0.0 0.0 0.0 0.0 3897.6 0.0 NA -1.000	U.U 2299.3	U.U 1598.3	U.U 3897.6

From Carrier By Carried

		Total CU	7	Upstrm		From		- (T)
River River River Structure River		Demand Demand						n/To River Sto_Exc Loss
Exchang SoilM Supply Inflow Divert by Well ID ID	y Short Short Outflow Flow Year Mo Day	Location R	Return ight (+)				_	
(+) NA NA (-) (-) (+)	NA NA NA NA	NA NA NA	NA	NA (+)	(+)	(+)	(+)	(+) ((-)
(11) (12) (13) (26) (27) (28)	(14) (15) (29) (30)	(1) (2) (16) (17) (31)				(7) (22)	(8)	(9) (10) (24) (25)
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 45.6	1979 OCT 1 0.0 0.0 0.0 NA		0.0	0.0 0. 0.0 45.6	0.0	0.0	0.0	0.0 0.0 0.0 45.6
Baseflow ISF.01 0.0 0.0	1979 OCT 2 0.0 0.0	0.0 0.0	0.0	0.0 0. 0.0 36.1	0.0	0.0	0.0	0.0 0.0 0.0 36.1
0.0 0.0 36.1 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1979 OCT 3 0.0 0.0	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array} $	0.0	0.0 0. 0.0 46.5	0.0	0.0	0.0	0.0 0.0 0.0 46.5
0.0 0.0 46.5 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1979 OCT 4 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0		-1.000 0.0 0.0		0.0 0.	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 51.6	0.0	0.0	0.0	0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1979 OCT 6 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0. 0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0	1979 OCT 7 0.0 0.0	0.0 0.0	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1979 OCT 8 0.0 0.0	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array} $	0.0	0.0 0. 0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1979 OCT 9 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0. 0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	0.0 NA 1979 OCT 10 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0	1979 OCT 11	0.0 0.0	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1979 OCT 12 0.0 0.0	-1.000 0.0 0.0	0.0	0.0 0. 0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01	0.0 NA 1979 OCT 13	-1.000 0.0 0.0	0.0	0.0 0.	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	0.0 0.0 0.0 NA 1979 OCT 14	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 51.6	0.0	0.0	0.0	0.0 51.6
0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	0.0 0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 51.6	0.0	0.0	0.0	0.0 51.6
0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 51.6	0.0	0.0		
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 OCT 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0	1979 OCT 17 0.0 0.0	0.0 0.0	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	-1.000 0.0 0.0 0.0 0.0						0.0 0.0 0.0 51.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0		$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array} $						
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	0.0 NA 1979 OCT 20	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.	0.0	0.0	0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 OCT 21 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0. 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6	1979 OCT 22 0.0 0.0 0.0 NA 1979 OCT 23 0.0 0.0 0.0 NA 1979 OCT 24 0.0 0.0 0.0 NA 1979 OCT 25 0.0 0.0 0.0 NA	-1.000 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0 0.0 0.0 0.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0 51.6 0.0 0 0.0 51.6 0.0 51.6	0.0
	0.0 0.0 0.0 NA 1979 OCT 27 0.0 0.0 NA 1979 OCT 28 0.0 0.0 0.0 NA 1979 OCT 29 0.0 0.0 0.0 NA 1979 OCT 30 0.0 NA 1979 OCT 31 0.0 0.0 0.0 NA	-1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000	0.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6	0.0	0.0	0.0	0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6	00.0
0.0 0.0 0.0 0.0 1573.4 Shortage	0.0 NA Water Use	0.0 0.0 -1.000	Statio						
or From Total T River River River Structure River Exchang SoilM Suppl	otal CU Avail Control y Short Short	To To Control Demand Demand CU SoilM	tal Priorty Return	Upstrm Re Storage Exc_Pln	ach Ret	From urn W	Tell From	/To River Sto_Exc Lo	oss
or From Total T River River River Structure River Exchang SoilM Suppl Inflow Divert by Well	otal CU Avail Control y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15)	Total CU TO TO Control Demand Demand CU SoilM Location R NA NA NA NA NA NA	tal Priorty Return ight (+) NA (3)	Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5)	Loss Gain	From Well (+)	Priorty Priorty Deplete	/To River Sto_Exc Lo GW Stor (+)((+) (+) (9) (:	(-) 10)
or From Total T River River River Structure River Exchang SoilM Suppl Inflow Divert by Well ID ID (+) NA NA (-) (-) (+) (11) (12) (13)	Otal CU Avail Control y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Total CU TO TO Control Demand Demand CU SoilM Location R NA NA NA (1) (2) (16) (17) (31)	Tal Priorty Return ight (+) NA (3) (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Upstrm Re Storage Exc_Pln Loss Inflow (+) (+)(NA (+) (4) (5) (19) (20) 0.0 0.0 0.0 52.3 0.0 0.0 0.0 52.8 0.0 0.0 0.0 53.2 0.0 0.0 0.0 53.2	Loss Gain (-) (+) (6) (21) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	From wrn Well Flow (+) (+) (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(ell From Priorty Deplete (+) (-) (8) (23) (23) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/To River Sto_Exc Lo GW Stor (+)((+) (+) (9) (25)	(-)

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3	0.0 0.0			0.0 0.0 0.0 53.3				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01	0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0	0.0 0.0 0.0 53.3
0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0	0.0	0.0 53.3	0.0	0.0	0.0	0.0 53.3 0.0 0.0 0.0 53.3
0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	0.0 NA 1979 NOV 14 0.0 0.0 0.0 NA	-1.000 0.0 0.0		0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3	1979 NOV 15 0.0 0.0 0.0 NA			0.0 0.0 0.0 53.3		0.0		0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01	0.0 0.0 0.0 NA		0.0	0.0 0.0			0.0	0.0 0.0 0.0 53.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0 53.3	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 53.3	0.0	0.0	0.0	0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 53.3	0.0	0.0	0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 53.3	0.0	0.0	0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3		0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3				0.0 0.0 0.0 53.3			0.0	0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3	1979 NOV 22 0.0 0.0	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	1979 NOV 23 0.0 0.0	0.0 0.0		0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	1979 NOV 24	0.0 0.0		0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	1979 NOV 25	0.0 0.0		0.0 0.0 0.0 53.3				0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3	0.0 0.0			0.0 0.0 0.0 53.3			0.0	0.0 0.0 0.0 53.3
	1979 NOV 27 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 53.3	0.0	0.0	0.0	
Baseflow ISF.01 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 53.3
0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3
0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3	0.0 NA 1979 NOV 30 0.0 0.0 0.0 NA	0.0 0.0	0.0	0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0	1980 TOT -1 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 0.0 1598.3	0.0	0.0	0.0	0.0 0.0 0.0 0.0 1598.3
0.0 0.0 1598.3	U.O NA	-1.000						

Station In/Out Station Balance
From River By From Carrier By Shortage Water Use Carried _____

Total CU From

or From Total Total CU To Total Upstrm Reach Return Well From/To River
River River River Avail Control
Structure River Soilm Supply Short Short CU Soilm Return Loss Inflow Gain Flow Deplete GW Stor
Inflow Divert by Well Outflow Flow Location Right

ID ID (+) NA NA (-) (-) (+)		NA NA NA NA NA	(+) NA						(+)((-)
(11) (12) (13) (26) (27) (28)		(1) (2) (16) (17)	(18)						(9) (10) (24) (25)
Baseflow ISF.01 0.0 0.0 0.0 0.0 53.7	1979 DEC 1 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0					0.0	0.0 0.0 0.0 0.0 53.7
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 52.1	1979 DEC 2 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	52.1		0.0	0.0	0.0 0.0 0.0 52.1
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.8	1979 DEC 3 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0			0.0	0.0	0.0 0.0 0.0 51.8
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 4 0.0 0.0 0.0 NA	0.0 0.0 -1.000		0.0				0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 5 0.0 0.0 0.0 NA	0.0 0.0 -1.000						0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0	0.0 0.0 0.0 0.0 -1.000					0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 7 0.0 0.0	0.0 0.0 0.0 0.0 -1.000					0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 8 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 10 0.0 0.0 0.0 NA	0.0 0.0 -1.000						0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 13 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01		0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
0.0 0.0 0.0 0.0 0.0 51.6		0.0 0.0						0.0	0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 16 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000							
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 17 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 18 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1979 DEC 19 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0		0.0	0.0	0.0	0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 20 0.0 0.0 0.0 NA	0.0 0.0 -1.000							
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 21 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000			0.0 51.6				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 22 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000			0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 23 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1979 DEC 24 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1979 DEC 25 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000			0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA 	0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	51.6 0.0 51.6 0.0 51.6 0.0 51.6	0.0		0.0	0.0 5 0.0 5 0.0 5 0.0 5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shortage	Water Use		Statio	on In/Out	t iver By		S	Station E	alance	
Carried				From R	iver By 			From	Carrier	Ву
or From Total To River River River Structure River Exchang SoilM Supply Inflow Divert by Well	y Short Short	To To Control Demand Demand CU SoilM	tal Priorty	Up: Storage		ach Ret Loss	urn W Well	Priorty		Loss
ID ID (+) NA NA	Year Mo Day	NA NA	(+) NA		(+)((+)(
(-) (-) (+) (11) (12) (13) (26) (27) (28)	NA NA (14) (15) (29) (30)	NA (1) (2) (16) (17) (31)			(5) (20)			(8)		
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	1980 JAN 1 0.0 0.0 0.0 NA 1980 JAN 2	0.0 0.0 -1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	0.0 0.0 0.0 NA 1980 JAN 3		0.0	0.0	0.0		0.0			0.0
0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	0.0 0.0 0.0 NA 1980 JAN 4	-1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	0.0 NA 1980 JAN 5	0.0 0.0 -1.000 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 -1.000								
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 5	51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0	0.0 0.0 0.0 0.0 -1.000	0.0	0.0	51.6	0.0	0.0	0.0	0.0 5	1.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 8 0.0 0.0 0.0 NA	$\begin{array}{ccc} -1.000 & & & & \\ 0.0 & & 0.0 & \\ 0.0 & & 0.0 & \\ -1.000 & & & \end{array}$	0.0	0.0	0.0 51.6	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 0.0 0.0	1980 JAN 9 0.0 0.0	0.0 0.0	0.0	0.0	51.6	0.0	0.0	0.0	0.0 5	1.6
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	0.0 0.0	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0	0.0 51.6	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0	0.0 0.0 0.0 0.0 -1.000								
0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1980 JAN 12	0.0 0.0								

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6				0.0 0.0 0.0 51.6				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 14 0.0 0.0 0.0 NA	0.0 0.0		0.0 0.0 0.0 51.6			0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 15	0.0 0.0		0.0 0.0 0.0 51.6				
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1980 JAN 16 0.0 0.0 0.0 NA			0.0 0.0 0.0 51.6				0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 17 0.0 0.0			0.0 0.0 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 18 0.0 0.0			0.0 0.0 0.0 51.6	0.0		0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	0.0 0.0			0.0 0.0 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 20	0.0 0.0		0.0 0.0 0.0 51.6				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 21 0.0 0.0 0.0 NA			0.0 0.0 0.0 51.6			0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6				0.0 0.0 0.0 51.6		0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6				0.0 0.0 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6		0.0 0.0		0.0 0.0 0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1980 JAN 25	0.0 0.0		0.0 0.0 0.0 51.6				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 26 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 51.6				0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	1980 JAN 27 0.0 0.0 0.0 NA			0.0 0.0 0.0 51.6			0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1980 JAN 28 0.0 0.0 0.0 NA						0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6	1980 JAN 29 0.0 0.0			0.0 0.0 0.0 51.6			0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6		0.0 0.0		0.0 0.0 0.0 51.6				
0.0 0.0 51.6	1980 JAN 31 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 51.6	0.0	0.0	0.0	0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 1600.0	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 1600.0	0.0	0.0	0.0	0.0 0.0
Shortage Carried	Water Use		Statio	n In/Out From River By		S	tation E From	Balance n Carrier By
		Total CU				From		
or From Total To River River River Structure River	Avail Control	Control Demand Demand	Priorty		Loss	Well	Priorty	Sto_Exc Loss
Exchang SoilM Supply Inflow Divert by Well ID ID	Outflow Flow Year Mo Day	Location R NA NA	ight (+)	(+) (+)((-)	(+)	(+)	(+)((-)
(+) NA NA (-) (-) (+)		NA (1) (2)	(3)	NA (+)	(6)	(7)	(8)	(9) (10)
(11) (12) (13) (26) (27) (28)	(14) (15) (29) (30)	(16) (17) (31)	(18)	(19) (20)	(21)	(22)	(23)	(24) (25)

Baseflow ISF.01	1980 FEB 1	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0		0.0 53.8			0.0	0.0 53.8
0.0 0.0 53.8 Baseflow ISF.01	0.0 NA 1980 FEB 2	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 55.5	0.0	0.0	0.0	0.0 55.5
0.0 0.0 55.5 Baseflow ISF.01	0.0 NA 1980 FEB 3	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 56.6	0.0	0.0	0.0	0.0 56.6
0.0 0.0 56.6 Baseflow ISF.01	0.0 NA 1980 FEB 4	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FEB 5	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0 0.0 NA		0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1	U.U NA	-1.000						
Baseflow ISF.01		0.0 0.0						0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
Baseflow ISF.01		0.0 0.0					0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
Baseflow ISF.01		0.0 0.0	0.0		0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
Baseflow ISF.01 0.0 0.0 0.0	1980 FEB 9 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 57.1	0.0	0.0	0.0	0.0 0.0 0.0 57.1
0.0 0.0 57.1	0.0 NA	-1.000						0.0 57.1
Baseflow ISF.01 0.0 0.0 0.0	1980 FEB 10 0.0 0.0	0.0 0.0					0.0	0.0 0.0 0.0 57.1
0.0 0.0 57.1	0.0 0.0 0.0 NA	-1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
Baseflow ISF.01	1980 FEB 11	0.0 0.0	0 0	0.0 0.0	0 0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0		0.0 57.1			0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FEB 12	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0		0.0		0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FEB 13	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0		0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FEB 14	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FEB 15	-1.000 0.0 0.0	0 0	0.0 0.0	0 0	0 0	0 0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0		0.0 57.1				
0.0 0.0 57.1	0.0 NA	-1.000						
Baseflow ISF.01	1980 FEB 16			0.0 0.0			0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
Baseflow ISF.01	1980 FEB 17	0.0 0.0					0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
Baseflow ISF.01	1980 FEB 18	0.0 0.0						
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	-1.000					0.0	
Baseflow ISF.01	1980 FEB 19	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	-1.000		0.0 57.1				
Baseflow ISF.01	1980 FEB 20	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0 0.0 0.0 57.1	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
D	1000 EED 01	0.0 0.0	0 0	0.0.0	0.0	0 0	0.0	0.0.00
Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA	-1.000 0.0 0.0	0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA	-1.000 0.0 0.0	0.0	0 0 0 0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FER 24	-1.000 0.0 0.0	0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 57.1	0.0	0.0	0.0	0.0 57.1
0.0 0.0 57.1 Baseflow ISF.01	0.0 NA 1980 FEB 25	-1.000 0.0 0.0	0.0	0.0 0.0	0 0	0 0	0 0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0						
0.0 0.0 57.1	0.0 NA	-1.000						
Baseflow ISF.01		0.0 0.0						
0.0 0.0 0.0 0.0 0.0 57.1		0.0 0.0 -1.000	U.U	U.U 57.1	U.U	U.U	U.U	0.0 57.1

Baseflow ISF.01 0.0 0.0 0.0 0.0 57.1 Baseflow ISF.01 0.0 0.0 0.0 0.0 57.1	1980 FEB 27 0.0 0.0 0.0 NA 1980 FEB 28 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 57.1 0.0 57.1	0.0	0.0	0.0	0.0	0.0 57.1 0.0 57.1
Baseflow ISF.01 0.0 0.0 0.0 0.0 1594.5	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 -1.000		0.0 0.0 1594.5	0.0 0.0	0.0	0.0	0.0 0.0 15	0.0 94.5
Shortage Carried	Water Use		Statio		Ву				Ву
or From Total To River River River Structure River Exchang SoilM Supply Inflow Divert by Well	Avail Control Short Short	Demand Demand CU SoilM	Priorty I Return	Storage Exc_	_Pln Loss	Well	Well From		Loss
ID ID (+) NA NA (-) (-) (+)	Year Mo Day NA NA NA NA	NA NA NA NA	(+) NA	NA (+)		(+)	(+)	(+)((+)
(11) (12) (13) (26) (27) (28)	(14) (15) (29) (30)	(1) (2) (16) (17) (31)			(6) (21)		(23)	(9)	(10)
Baseflow ISF.01 0.0 0.0 58.4 Baseflow ISF.01 0.0 0.0 58.4 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 52.2 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01	0.0 0.0 0.0 0.0 0.0 NA 1980 MAR 4 0.0 0.0 0.0 NA 1980 MAR 5 0.0 0.0 NA 1980 MAR 6 0.0 0.0 NA 1980 MAR 7 0.0 0.0 NA 1980 MAR 8 0.0 0.0 NA 1980 MAR 8 0.0 0.0 NA 1980 MAR 9 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 58.4 0.0 53.3 0.0 52.2 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 53.3 0.0 52.2 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6
0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6	0.0 NA 1980 MAR 11 0.0 0.0 0.0 NA 1980 MAR 12 0.0 0.0 0.0 NA 1980 MAR 13 0.0 0.0 0.0 NA 1980 MAR 14 0.0 0.0 0.0 NA 1980 MAR 15 0.0 0.0 0.0 NA 1980 MAR 15 0.0 0.0 0.0 NA 1980 MAR 16 0.0 0.0 0.0 NA 1980 MAR 16 0.0 0.0 0.0 NA	0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 51.6 0.0 51.6 0.0 51.6 0.0 51.6

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 551.6	0.0 0.0 0.0 NA 1980 MAR 19 0.0 0.0 0.0 NA 1980 MAR 20	0.0 0.0	0.0	0.0 51.6 0.0 0.0 0.0 51.6	0.0	0.0	0.0	0.0 51.6 0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6	0.0 0.0 0.0 NA 1980 MAR 22 0.0 0.0 0.0 NA 1980 MAR 23 0.0 0.0 0.0 NA 1980 MAR 24 0.0 0.0 0.0 NA 1980 MAR 24	$\begin{array}{ccccc} -1.000 & & & & & \\ 0.0 & & & & & & \\ 0.0 & & & & & \\ -1.000 & & & & \\ 0.0 & & & & \\ 0.0 & & & & \\ -1.000 & & & \\ 0.0 & & & \\ 0.0 & & & \\ \end{array}$	0.0 0.0 0.0 0.0 0.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 51.6	0.0 0.0 0.0 0.0 0.0 NA 1980 MAR 28 0.0 0.0 NA 1980 MAR 29 0.0 0.0 0.0 NA 1980 MAR 30 0.0 0.0 NA 1980 MAR 30 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6 0.0 0.0 0.0 51.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 1609.0 Shortage	1980 TOT -1 0.0 0.0	-1.000	0.0 0.0		0.0	S	Station B	alance
Carried or From Total T	y Short Short Outflow Flow Year Mo Day NA NA NA NA (14) (15) (29) (30)	Demand Demand CU SoilM Location R NA NA NA NA (1) (2) (16) (17) (31)	Priorty Return ight (+) NA (3) (18)	Storage Exc_Pln Loss Inflo (+) (+) NA (+) (4) (5) (19) (20)	Loss w Gair ((-) (+)	Well (+) (+) (7)	Priorty Deplete (+) (-) (8)	Sto_Exc Loss : GW Stor (+)((-) (+) (+)
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 52.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 52.8 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.2 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.2 Boxeflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3	1980 APR 1 0.0 0.0 0.0 NA 1980 APR 2 0.0 0.0 0.0 NA 1980 APR 3 0.0 0.0 0.0 NA	0.0 0.0 -1.000 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 52.3 0.0 0.0 0.0 52.8 0.0 0.0 0.0 53.2	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 52.3 0.0 0.0 0.0 52.8 0.0 0.0 0.0 53.2

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 53.3	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3			0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 53.3 Baseflow ISF.01	0.0 NA 1980 APR 11 0.0 0.0 0.0 NA 1980 APR 12 0.0 0.0 0.0 NA 1980 APR 13 0.0 0.0 0.0 NA 1980 APR 14 0.0 0.0 0.0 NA 1980 APR 14	-1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0		0.0 0.0		0.0		0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 NA 1980 APR 16 0.0 0.0 0.0 NA 1980 APR 17 0.0 0.0 0.0 NA 1980 APR 18 0.0 0.0 0.0 NA 1980 APR 19 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3	0.0	0.0	0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 53.3 Baseflow ISF.01	1980 APR 20 0.0 0.0 0.0 NA 1980 APR 21 0.0 0.0 0.0 NA 1980 APR 22 0.0 0.0 0.0 NA 1980 APR 23 0.0 0.0 0.0 NA 1980 APR 23 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000 0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 NA 1980 APR 25 0.0 0.0 0.0 NA 1980 APR 26 0.0 0.0 0.0 NA 1980 APR 27 0.0 0.0 0.0 NA 1980 APR 27	0.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0	0.0	0.0	0.0	0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3
0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 0.0 0.0 53.3 Baseflow ISF.01 0.0 0.0 53.3	0.0 NA 1980 APR 29 0.0 0.0 0.0 NA 1980 APR 30 0.0 0.0 0.0 NA 	0.0 0.0 -1.000 0.0 0.0 -1.000 -1.000 -1.000	0.0	0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3	0.0	0.0	0.0	0.0 0.0 0.0 53.3 0.0 0.0 0.0 53.3

From Carrier By

Carried

		Total CU				From		
River River River				Upstrm Re			ell From	
Structure River Exchang SoilM Suppl Inflow Divert by Well	ly Short Short l Outflow Flow	CU SoilM	Priorty Return ight	Storage Exc_Pln Loss Inflow				Sto_Exc Loss GW Stor
ID ID (+) NA NA (-) (-) (+)	Year Mo Day NA NA NA NA	NA NA NA NA	(+) NA	(+) (+)(NA (+)	(-)	(+)	(+)	(+)((-)
(11) (12) (13) (26) (27) (28)	(14) (15)	(1) (2) (16) (17) (31)		(4) (5) (19) (20)	(6) (21)	(7) (22)	(8)	(9) (10) (24) (25)
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 170.7	1980 MAY 1 0.0 0.0 40.7 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 170.7	0.0	0.0	0.0	0.0 0.0 0.0 170.7
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 173.1	1980 MAY 2 0.0 0.0 43.2 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 173.1	0.0	0.0	0.0	0.0 0.0 0.0 173.1
Baseflow ISF.01 0.0 0.0	1980 MAY 3 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 172.8	0.0	0.0	0.0	0.0 0.0 0.0 172.8
0.0 0.0 172.8 Baseflow ISF.01 0.0 0.0 0.0	42.8 NA 1980 MAY 4 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 172.6	42.7 NA 1980 MAY 5 0.0 0.0 42.7 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
Baseflow ISF.01 0.0 0.0 0.0	1980 MAY 6	0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	42.7 NA 1980 MAY 7 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	42.7 NA 1980 MAY 8 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	42.7 NA 1980 MAY 9 0.0 0.0	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array} $	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 172.6	42.7 NA 1980 MAY 10 0.0 0.0 42.7 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 172.6		0.0	0.0	0.0 0.0 0.0 172.6
Baseflow ISF.01 0.0 0.0 0.0	1980 MAY 11 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	42.7 NA 1980 MAY 12 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	42.7 NA 1980 MAY 13 0.0 0.0	-1.000 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 0.0	42.7 NA 1980 MAY 14 0.0 0.0	0.0 0.0	0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 172.6	42.7 NA 1980 MAY 15 0.0 0.0 42.7 NA	-1.000 0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
Baseflow ISF.01 0.0 0.0 0.0		0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0		0.0 0.0 0.0 172.6				
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0		0.0 0.0 0.0 172.6				
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0			0.0 0.0 0.0 172.6				
0.0 0.0 172.6 Baseflow ISF.01 0.0 0.0 0.0 0.0 172.6	42.7 NA 1980 MAY 20 0.0 0.0 42.7 NA	0.0 0.0	0.0	0.0 0.0 0.0 172.6	0.0	0.0	0.0	0.0 0.0 0.0 172.6
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 172.6	1980 MAY 21 0.0 0.0 42.7 NA	0.0 0.0		0.0 0.0 0.0 172.6				

	01 1980 MAY 22							
0.0 0.0 0.0 0.0 17			0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
Baseflow ISF.			0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0								
0.0 0.0 17			0.0	0.0 1/2.0	0.0	0.0	0.0	0.0 1/2.0
Baseflow ISF.			0 0	0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0		0.0 0.0	0.0	0.0 172 6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17			0.0	0.0 1/2.0	0.0	0.0	0.0	2,210
Baseflow ISF.			0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0								
0.0 0.0 17								
Baseflow ISF.	01 1980 MAY 26 0.0 0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17	2.6 42.7 NA	-1.000						
Baseflow ISF.	01 1980 MAY 27	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0			0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17	2.6 42.7 NA	-1.000						
Baseflow ISF.								
0.0 0.0			0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17								
Baseflow ISF.		0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0		0.0 0.0	0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17		-1.000						
Baseflow ISF.								
0.0 0.0			0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17	2.6 42.7 NA	-1.000						
Baseflow ISF.	01 1980 MAY 31 0.0 0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0	2.6 42.7 NA	0.0 0.0	0.0	0.0 172.6	0.0	0.0	0.0	0.0 172.6
0.0 0.0 17	2.6 42.7 NA	-1.000						
				·				
Pagoflow TCF	01 1980 TOT -1			0 0 0 0	0 0	0 0	0 0	0 0 0 0
0.0 0.0								
	8.8 1321.3 NA		0.0	0.0 3340.0	0.0	0.0	0.0	0.0 3340.0
0.0 551	10.0 1021.0 141	1.000						

Shortage	Water Use		Statio	n In/Out From River By		St	tation B From	alance Carrier By	
Carried		·							
		Total CU				From			
or From Total 1	Total CU	To Tot		Upstrm Re	ach Reti	_		/To River	
River River River	Avail Control								
Structure River		Demand Demand P						Sto_Exc Lo	SS
	ly Short Short			Loss Inflow	Gain	Flow	Deplete	GW Stor	
Inflow Divert by Well	Year Mo Day	Location Ri NA NA	.ght (+)	(+) (+)(()	(,)	(,)	(+)(`
(+) NA NA	NA NA	NA NA	NA		(+)			(+)((+)	-)
(-) (-) (+)	NA NA	NA NA	IVA	NA (+)	(+)	(+)	(-)	(+) (+)	
() ()	1411 1411	(1) (2)	(3)	(4) (5)	(6)	(7)	(8)	(9) (1	0)
(11) (12) (13)	(14) (15)						(23)	(24) (25)	
(26) (27) (28)		(31)	/	, -, , -,	,	* *	/	, , , , , , , , , , , , , , , , , , , ,	
Baseflow ISF.01	1980 JUN 1	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0		.0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 176.1	0.0	0.0	0.0	0.0 176.1	
0.0 0.0 176.1	46.2 NA	-1.000							
Baseflow ISF.01	1980 JUN 2	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0		. 0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 177.8	0.0	0.0	0.0	0.0 177.8	
0.0 0.0 177.8 Baseflow ISF.01	47.9 NA 1980 JUN 3	-1.000 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0	. 0
0.0 0.0 0.0	1980 JUN 3 0.0 0.0		0.0	0.0 178.2	0.0	0.0	0.0	0.0 178.2	. 0
0.0 0.0 178.2	48.2 NA	-1.000	0.0	0.0 1/6.2	0.0	0.0	0.0	0.0 1/6.2	
Baseflow ISF.01	1980 JUN 4		0.0	0.0 0.0	0.0	0.0	0.0	0.0 0	. 0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3	
0.0 0.0 178.3	48.4 NA	-1.000	0.0	2,0.0	0.0	0.0	0.0	0.0 1/0.5	
Baseflow ISF.01			0.0	0.0 0.0	0.0	0.0	0.0	0.0 0	. 0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3	
0.0 0.0 178.3	48.4 NA	-1.000							
Baseflow ISF.01	1980 JUN 6		0.0			0.0		0.0	.0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3	
0.0 0.0 178.3	48.4 NA	-1.000							
Baseflow ISF.01	1980 JUN 7		0.0	0.0 0.0	0.0	0.0	0.0		. 0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3	
0.0 0.0 178.3	48.4 NA	-1.000	0 0		0 0		0 0		•
Baseflow ISF.01	1980 JUN 8	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0		. 0
0.0 0.0 0.0 0.0 0.0 178.3	0.0 0.0 48.4 NA	0.0 0.0 -1.000	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3	
0.0 0.0 1/8.3 Baseflow ISF.01	48.4 NA 1980 JUN 9		0.0	0.0 0.0	0.0	0.0	0.0	0.0 0	. 0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3	. 0
0.0 0.0 178.3	48.4 NA	-1.000	0.0	0.0 ±/0.5	0.0	0.0	0.0	0.0 1/0.5	
0.0 170.3	IU.I NA	1.000							

0.0 0.0	0.0 178.3	1980 0.0 48.4 NA	0.0	0.0 0.0 -1.000	0.0	0.0 0.0 0.0 178.3	0.0	0.0	0.0	0.0 0.0 0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	-1.000	0.0	0.0 0.0 0.0 178.3	0.0		0.0	0.0 0.0 0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0		0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA		0.0 0.0 -1.000						0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	-1.000	0.0	0.0 178.3	0.0	0.0	0.0	0.0 0.0
	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 0.0 0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	-1.000		0.0 178.3		0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA		0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 0.0
	0.0 178.3	0.0 48.4 NA		0.0 0.0 -1.000	0.0	0.0 0.0 0.0 178.3	0.0	0.0	0.0	0.0 0.0 0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 -1.000	0.0		0.0		0.0	0.0 178.3
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3	48.4 NA		0.0 0.0 -1.000						
0.0 0.0	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0			
0.0 0.0 0.0 0.0 Baseflow	0.0 178.3	0.0 48.4 NA	0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0	0.0	0.0	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0	0.0 178.3 ISF.01	0.0 48.4 NA 1980	0.0 JUN 30	0.0 0.0 -1.000 0.0 0.0	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
0.0 0.0 0.0 0.0	0.0 178.3	0.0	0.0	0.0 0.0 -1.000	0.0	0.0 178.3	0.0	0.0	0.0	0.0 178.3
Baseflow 0.0 0.0 0.0 0.0	ISF.01 0.0 5347 1 1	1980 0.0 449.5 NA	TOT -1	0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 5347.1	0.0	0.0	0.0	0.0 0.0 0.0 5347.1

Station In/Out Station Balance
From River By From Carrier By Shortage Water Use Carried _____

Total CU From

or From Total Total CU To Total Upstrm Reach Return Well From/To River
River River River Avail Control
Structure River Soilm Supply Short Short CU Soilm Return Loss Inflow Gain Flow Deplete GW Stor
Inflow Divert by Well Outflow Flow Location Right

ID ID (+) NA NA (-) (-) (+)	Year Mo Day NA NA NA NA	NA NA NA NA NA	(+) NA	(+) (+)(NA (+)				
(11) (12) (13) (26) (27) (28)		(1) (2) (16) (17)	(18)	(4) (5) (19) (20)				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 1 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 2 0.0 0.0 0.0 NA	0.0 0.0		0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0 0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 5	0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0	0.0 0.0		0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 7 0.0 0.0	-1.000 0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 8 0.0 0.0			0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 9 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9		0.0 0.0		0.0 0.0 0.0 129.9			0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0 -1.000	0.0		0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0			0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 15	0.0 0.0		0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0		0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 18 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 19 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	1980 JUL 20 0.0 0.0 0.0 NA	0.0 0.0		0.0 0.0				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 21 0.0 0.0 0.0 NA			0.0 0.0 0.0 129.9			0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 22 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 23 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 JUL 24 0.0 0.0 0.0 NA		0.0	0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	1980 JUL 25 0.0 0.0			0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA 	-1.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 129.9 0.0 0.0 0.0 129.9 0.0 0.0 0.0 129.9 0.0 0.0 0.0 129.9 0.0 0.0	0.0	0.0	0.0	
Shortage	Water Use		Statio	on In/Out		S	Station E	Balance
Carried				n In/Out From River By			Fron	Carrier By
Structure River Exchang SoilM Supply	y Short Short	To To Control Demand Demand CU SoilM	tal Priorty Return	Upstrm Re Storage Exc_Pln Loss Inflow	ach Ret Loss	urn W Well	Tell From	
Inflow Divert by Well ID ID (+) NA NA	Year Mo Day			(+) (+)(NA (+)				
(-) (+)	NA NA			(4) (5)	(6)	(7)	(8)	(9) (10)
(11) (12) (13) (26) (27) (28)	(14) (15) (29) (30)	(16) (17) (31)	(18)	(19) (20)	(21)	(22)	(23)	(24) (25)
Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1980 AUG 2 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1980 AUG 3 0.0 0.0	0.0 0.0		0.0 129.9	0.0		0.0	
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1980 AUG 4 0.0 0.0	$ \begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array} $	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	0.0 NA 1980 AUG 5 0.0 0.0 0.0 NA	$\begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & -1.000 \end{array}$	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0		0.0 0.0 0.0 129.9				
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	1980 AUG 7 0.0 0.0	0.0 0.0		0.0 0.0 0.0 129.9				
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1980 AUG 8 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	0.0 NA 1980 AUG 9 0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129 9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	0.0 NA 1980 AUG 10	-1.000 0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0
Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	0.0 0.0	$\begin{array}{cccc} -1.000 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ -1.000 \end{array}$	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9

Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0	0.0 0.0		0.0 0.0 0.0 129.9				
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	0.0 NA 1980 AUG 14 0.0 0.0 0.0 NA	0.0 0.0		0.0 0.0 0.0 129.9			0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	1980 AUG 15 0.0 0.0	0.0 0.0		0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	1980 AUG 16 0.0 0.0 0.0 NA			0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 AUG 17 0.0 0.0	0.0 0.0		0.0 0.0 0.0 129.9			0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 AUG 21 0.0 0.0 0.0 NA			0.0 0.0 0.0 129.9			0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0		0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 AUG 26 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 AUG 27 0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000		0.0 0.0 0.0 129.9			0.0	
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 AUG 28 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	0.0 0.0 0.0 NA	0.0 0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 AUG 30 0.0 0.0 0.0 NA			0.0 0.0 0.0 129.9				
0.0 0.0 129.9	1980 AUG 31 0.0 0.0 0.0 NA	0.0 0.0 -1.000	0.0	0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 4027.5	1980 TOT -1 0.0 0.0 0.0 NA	0.0 0.0 0.0 -1.000	0.0	0.0 0.0 0.0 4027.5	0.0	0.0	0.0	0.0 0.0 0.0 0.0 4027.5
Shortage	Water Use		Statio	n In/Out From River By		S	tation E From	Balance n Carrier By
Carried		Total CU				From		
or From Total To River River River Structure River	Avail Control	Control Demand Demand	Priorty		Loss	Well	Priorty	Sto_Exc Loss
Exchang SoilM Supply Inflow Divert by Well ID ID (+) NA NA	y Short Short Outflow Flow Year Mo Day NA NA	Location R NA NA	ight (+)	(+) (+)(NA (+)	(-)	(+)	(+)	(+)((-)
(+) NA NA (-) (-) (+) (11) (12) (13)	NA NA	NA (1) (2)	(3)	(4) (5) (19) (20)	(6)	(7)	(8)	(9) (10)
(26) (27) (28)	(29) (30)	(31)	(10)	(12)	(22)	(22)	(20)	(23)

0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0 129.9				
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	1980 SEP 2 0.0 0.0	0.0 0.0	0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	1980 SEP 3 0.0 0.0	0.0 0.0	0.0 0.0 0.0 129.9		0.0	0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9			0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0				
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0	1980 SEP 7 0.0 0.0	0.0 0.0	0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
0.0 0.0 129.9 Baseflow ISF.01 0.0 0.0 0.0 0.0 129.9	1980 SEP 8 0.0 0.0		0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 9 0.0 0.0	0.0 0.0	0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 10	0.0 0.0	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 11 0.0 0.0 0.0 NA	0.0 0.0	0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 12 0.0 0.0		0.0 0.0 0.0 129.9			0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 14 0.0 0.0	0.0 0.0 0.0 0.0 -1.000	0.0 0.0 0.0 129.9	0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 15	0.0 0.0	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 16 0.0 0.0 0.0 NA		0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 17	0.0 0.0	0.0 0.0 0.0 129.9				0.0 0.0 0.0 129.9
		0.0 0.0		0.0	0.0	0.0	0.0 0.0 0.0 129.9
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9			0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0 0.0 0.0 -1.000	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9			0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 22	0.0 0.0	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 23 0.0 0.0 0.0 NA	0.0 0.0	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 24 0.0 0.0 0.0 NA	0.0 0.0	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9	1980 SEP 25	0.0 0.0	0.0 0.0 0.0 129.9				
Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 129.9		0.0 0.0	0.0 0.0 0.0 129.9				

Baseflow ISF.01	1980 SEP 27	0.0 0.0	0 0	0 0 0 0	0 0	0 0	0 0	0.0 0.0
0.0 0.0 0.0		0.0 0.0					0.0	
0.0 0.0 129.9	0.0 NA	-1.000	0.0	0.0 125.5	0.0	0.0	0.0	0.0 120.0
Baseflow ISF.01		0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0			0.0 129.9			0.0	
0.0 0.0 129.9	0.0 NA	-1.000						
Baseflow ISF.01	1980 SEP 29		0 0	0.0 0.0	0 0	0 0	0 0	0 0 0 0
0.0 0.0 0.0	0.0 0.0			0.0 129.9			0.0	
0.0 0.0 129.9	0.0 NA	-1.000						
Baseflow ISF.01		0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0		0.0 0.0						
0.0 0.0 129.9	0.0 NA							
Baseflow ISF.01	1980 TOT -1	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
0.0 0.0 0.0		0.0 0.0						
0.0 0.0 3897.6	0.0 NA							
#								
#								

```
# *.xre
            Reservoir Summary
```

STATEMOD

StateMod Operating Rule Example - ex3.* data set

Statemod Version: 12.29.00 Date = 2008/09/15)
Run date: 11/ 2/ 8 15: 4:56
Time Step: Daily

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 1

: Res_1 : Reservoir_1 RESERVOIR ID RESERVOIR NAME

RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total RESERVOIR OWNER : Total RIVER LOCATION : Exist. Reservoir

STRUCTURE DATA : # af 100000. Capacity Reservoir Rights 100000.

From Storage to Station Balance

From River By From Carrier By Targt_0 BOM ===================================													
========		=											
											== Total	River	River
Carrier Tota						River							
Reservoir								ss Priort	ty Sto_	Exc Los	ss Bypass	s SM	Supply
Short Relea	se Evap S	pill	Content	Limit	Limit	Inflow	Release	Dvert					
River River													
by Well Outfl	OW												
Res 1	0 1979	OCT	50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	35.8	0.0
0.0 35.8	0.0	0.0	49964.210	0.0000	50000.0	3000.0	35.8	0.0	0.0	3035.8			
Res_1	0 1979	NOV	49964.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	49964.210	0.0000	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1979	DEC	49964.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	49964.210	0.0000	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	JAN	49964.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	49964.210	0.0000	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	FEB	49964.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	49964.210	0.0000	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	MAR	49964.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	25.2	0.0	49939.110	0.0000	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	APR	49939.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	327.3	0.0	49611.810	0.0000	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1	0 1980	MAY	49611.8	12000.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0
0.0 0.0	299.0	0.0	61312.710	0.0000	50035.8	15000.0	0.0	12000.0	0.0	3000.0			
Res_1	0 1980	JUN	61312.7	12000.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0
0.0 0.0	802.4	0.0	72510.210	0.0000	38035.7	15000.0	0.0	12000.0	0.0	3000.0			
Res_1	0 1980	JUL	72510.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2420.5	0.0
0.0 2420.5	481.3	0.0	69608.410	0.0000	26035.7	3000.0	2420.5	0.0	0.0	5420.5			
Res_1	0 1980	AUG	69608.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2427.5	0.0
0.0 2427.5	375.1		66805.810			3000.0	2427.5	0.0	0.0	5427.5			
Res_1	0 1980		66805.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2299.3	0.0
0.0 2299.3	304.4	0.0	64202.110	0.0000.0	26035.7	3000.0	2299.3	0.0	0.0	5299.3			

Res_1 0 1980 TOT 50000.0 24000.0 0.0 0.0 0.0 0.0 0.0 0.0 24000.0 7183.1 0.0 0.0 7183.1 2614.9 0.0 64202.1 -1.0 -1.0 60000.0 7183.1 24000.0 0.0 43183.1

Reservoir Summary ACFT

StateMod Operating Rule Example - ex3.* data set

PAGE NO.

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1

RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total

RESERVOIR OWNER : Res_1 Own_1 RIVER LOCATION : Exist. Reservoir

From Storage to Station Balance From River By From Carrier By Targt_0 BOM =========== _____ Initial ======= Total River River Short Release Evap Spill Content Limit Limit Inflow Release Dvert River River by Well Outflow 0.0 0.0 1 1979 OCT 49975.0 0.0 0.0 0.0 0.0 10.8 Res 1 0.0 0.0 0.0 35.8 0.0 49964.2 50000.0 50000.0 3000.0 0.0 10.8 0.0 0.0 0.0 3035.8 1 1979 NOV 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 49964.2 50035.8 50035.8 3000.0 0.0 0.0 3000.0 0.0 0.0 1 1979 DEC 49964.2 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 49964.2 50035.8 50035.8 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 JAN 49964.2 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 49964.2 50035.8 50035.8 3000.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 1 1980 FEB 49964.2 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 49964.2 50035.8 50035.8 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 1 1980 MAR 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Res 1 0.0 25.2 0.0 0.0 49939.0 50035.8 50035.8 3000.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 1 1980 APR 49939.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49611.7 50061.0 50035.8 3000.0 327.3 0.0 3000.0 0.0 1 1980 MAY 49611.7 125.9 0.0 0.0 125.9 0.0 Res 1 0.0 0.0 0.0 1 1980 JUN 49471.2 261.3 0.0 0.0 0.0 0.0 12000.0 0.0 3000.0 266.4 0.0 0.0 12000.0 0.0 0.0 0.0 261.3 0.0 0.0 0.0 Res 1 0.0 589.8 0.0 3000.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 331.9 0.0 48810.7 27489.7 26035.7 3000.0 2420.5 0.0 5420.5 0.0 0.0 1 1980 AUG 48810.7 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5427.5 0.0 0.0 0.0 0.0 0.0 0.0 387.2 10.8 0.0

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 3

RESERVOIR ID : Res 1 RESERVOIR NAME : Reservoir 1

RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total

RESERVOIR OWNER : Res_1 Own_2
RIVER LOCATION : Exist. Reservoir

From

Station Balance Storage to From River By From Carrier By Targt_0 BOM ------ Total River River Carrier Total Seep & EOM Stor_n Decree River River River Reservoir Acc Year Mo Storage Priority Storage Exc_Pln Loss Priorty Sto_Exc Loss Bypass SM Supply Short Release Evap Spill Content Limit Inflow Release Dvert River River by Well Outflow 25.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 50000.0 50000.0 3000.0 Res_1 2 1979 OCT 0.0 0.0 0.0 0.0 35.8 0.0 0.0 0.0 0.0 25.0 0.0 25 0 0 0 3035 8 0 0 0.0 2 1979 NOV Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 3000.0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 3000.0 0.0 2 1979 DEC Res_1 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0 0 0 0 0 0 0.0 0.0 0.0 3000.0 0 0 0 0 0 0 0 0 Res 1 0 0 0.0 3000.0 0.0 0.0

Res_1		2 1980	MAR	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	50061.0	50035.8	3000.0	0.0	0.0	0.0	3000.0			
Res_1		2 1980	MAY	0.0	11874.1	0.0	0.0	0.0	0.0	0.0	0.0	11874.1	0.0	0.0
0.0	0.0	32.5	0.0	11841.5	50388.3	50035.8	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		2 1980	JUN	11841.5	11738.7	0.0	0.0	0.0	0.0	0.0	0.0	11738.7	0.0	0.0
0.0	0.0	212.6	0.0	23367.6	38687.3	38035.7	15000.0	0.0	12000.0	0.0	3000.0			
Res_1		2 1980	JUL	23367.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2420.5	0.0
0.0 24	420.5	149.4	0.0	20797.6	27489.7	26035.7	3000.0	2420.5	0.0	0.0	5420.5			
Res 1		2 1980	AUG	20797.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2427.5	0.0
0.0 24	427.5	107.2	0.0	18262.9	30391.6	26035.7	3000.0	2427.5	0.0	0.0	5427.5			
Res 1		2 1980	SEP	18262.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2299.3	0.0
0.0 22	299.3	79.2			33194.2			2299.3	0.0	0.0	5299.3			
 Res_1		2 1980	TOT	25.0	23612.8	0.0	0.0	0.0	0.0	0.0	0.0	23612.8	7172.3	0.0
0.0 71	172.3	581.0	0.0	15884.4	-1.0	-1.0	60000.0	7183.1	24000.0	0.0	43183.1			
#														
#														
# *.xry	y	Daily Res	ervi	or Summa	ry									
#	=	=			_									
	ATEMOD													
# Sta	ateMod	Operating	Rule	Example	- ex3.*	data se	t							
#														
# State	emod V	ersion: 12.	29.00	0 Date =	2008/09	/15)								
# Run d				8 15: 4		,								
	Step:		ily	0 10 1	30									
# 111110	осср.	Da	1											
#														
π														

```
#
#
#
*.xry Daily Reservior Summary
#
# STATEMOD
# StateMod Operating Rule Example - ex3.* data set
#

Statemod Version: 12.29.05 Date = 2008/10/23)
# Run date: 11/6/8 15:48: 5
# Time Step: Daily
#
```

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 1

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total
RESERVOIR OWNER : Total
RIVER LOCATION : Exist. Reservoir

STRUCTURE DATA : # Capacity : 1 100000.
Reservoir Rights : 1 100000.

																		From	n
Storag	ge to									St	ation	n Bal	lance	:					
							Fr	om River Tar	by			Fron	n Car	rie	r by				
			_		Tu 11 1 . 1			Tar	gt_0	BOM							m. i . 1		
Piwer	Carrier	Total			Initiai	FOM	Stor	n Dear	oo Pir		Pivo		Pivo		Pivo		Total	River	
Reserv	voir	Total			Storage	Priort	v Sto	_n becr rage Exc	Pln	Loss	Prio	rtv	Sto	Exc	LIVE	OSS	NIVEI Vlaaus	For Use	For
Exc fo	or Use Re	elease	Evap	Si	oill Con	tent	Limit	Limit	Inflo	w Rel	ease	Div	rert	by 1	Well	Outf	low		
ID		Acc Year	Mo	Day	NA	(+	·)	(+)	(+)	(-)		(+)		(+)		(-)	NA	(-)	(-
)	(-)	NA	(-)	(-)	NA	NA	NA	(+)	(+)	(-	-)	(-)	N	A		
(33)	(10)	(12)	(3.4)		(1)	(2	!)	(3)	(4)	(5)	(00)	6)	(01)	7)	(00)	(8)	(9)	(10)	
(11)	(12)	(13)	(14)																
Res_1		0 1979	OCT	1	50000.0	0.	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	35.8	
0.0	0.0	35.8	0.0					50000.0									2.5		
Res_1		0 1979			49964.2			0.0										0.0	
0.0		0.0	0.0					50000.0										0 0	
Res_1	0.0	0 1979 0.0	0.0		49964.2			0.0 50000.0										0.0	
Res_1	0.0	0.0			49964.2			0.0										0.0	
0.0	0.0	0.0	0.0					50000.0					0.0				6.8		
Res_1		0 1979	OCT	5	49964.2	0.	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0 499	64.2100	000.0	50000.0	96.8	8	0.0		0.0		0.0	9	6.8		
D 1		0 1979	OCE	_	10061 0	0	0	0.0	0 0	0 0		0 0		0 0		0 0	0 0	0 0	
Res_1 0.0	0.0	0.0	0.0					50000.0										0.0	
Res_1	0.0	0.0			49964.2			0.0										0.0	
0.0	0.0	0.0	0.0		0.0 499	64.2100	000.0	50000.0	96.8	В	0.0		0.0		0.0	9	6.8		
Res_1		0 1979			49964.2			0.0										0.0	
0.0		0.0	0.0					50000.0											
Res_1 0.0	0.0	0 1979 0.0	0.0		49964.2			0.0 50000.0										0.0	
Res_1	0.0	0.0						0.0										0.0	
0.0	0.0	0.0	0.0					50000.0					0.0	0.0		9		0.0	
Res_1		0 1979						0.0										0.0	
0.0 Res_1	0.0	0.0 0 1979	0.0 OCT	1 2	49964.2			50000.0										0.0	
0.0	0.0	0.0	0.0	12				50000.0										0.0	
Res_1		0 1979		13	49964.2			0.0										0.0	
0.0	0.0	0.0	0.0				000.0	50000.0											
Res_1		0 1979		14	49964.2			0.0										0.0	
0.0	0.0	0.0 0 1979	0.0	1 -				50000.0									6.8	0.0	
Res_1 0.0	0.0	0.0	0.0	15	49964.2			50000.0										0.0	
0.0	0.0	0.0	0.0		0.0 1,,,	0112100		50000.0	,,,,	9	0.0		0.0		0.0				
Res_1		0 1979	OCT	16	49964.2			0.0								0.0	0.0	0.0	
0.0	0.0	0.0	0.0					50000.0								9			
Res_1		0 1979		17	49964.2			0.0										0.0	
0.0 Res_1	0.0	0.0 0 1979	0.0	1.0	49964.2			50000.0										0.0	
0.0	0.0	0.0	0.0	10				50000.0										0.0	
Res_1		0 1979		19	49964.2			0.0										0.0	
0.0	0.0	0.0	0.0					50000.0											
Res_1				20				0.0						0.0				0.0	
0.0	0.0	0.0	0.0		0.0 499	64.2100	0000.0	50000.0	96.8	8	0.0		0.0		0.0	9	6.8		
Res_1		0 1979	OCT	2.1	49964.2	0	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0					50000.0										0.0	
Res_1		0 1979	OCT	22	49964.2	0.	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0					50000.0											
Res_1	0 0	0 1979		23	49964.2			0.0										0.0	
0.0 Res_1	0.0	0.0 0 1979	0.0 OCT	24				50000.0								0 0		0.0	
0.0	0.0	0.0	0.0	24				50000.0								9		0.0	
Res_1		0 1979		25	49964.2			0.0										0.0	
0.0	0.0	0.0	0.0		0.0 499	64.2100	000.0	50000.0	96.8	В	0.0		0.0		0.0	9	6.8		

Res_1		0 1979	OCT	26	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964	.2100000.0	50000.0	96.8		0.0		0.0		0.0	96.8		
Res_1		0 1979	OCT	27	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964	.2100000.0	50000.0	96.8		0.0		0.0		0.0	96.8		
Res_1		0 1979	OCT	28	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964	.2100000.0	50000.0	96.8		0.0		0.0		0.0	96.8		
Res_1		0 1979	OCT	29	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964	.2100000.0	50000.0	96.8		0.0		0.0		0.0	96.8		
Res_1		0 1979	OCT	30	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964	.2100000.0	50000.0	96.8		0.0	(0.0		0.0	96.8		
Res 1		0 1979	OCT	31	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964	.2100000.0	50000.0	96.8		0.0		0.0		0.0	96.8		
Res_1		0 1980	TOT	-1	50000.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	35.8
0.0	0.0	35.8	0.0		0.0	.0 -1.0	-1.0	3000.0		35.8		0.0		0.0	3035.8		

From Station Balance Storage to From Carrier by From River by Targt_0 Initial ______ Seep & EOM Stor_n Decree River Ri Total River Carrier Total Seep & Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc Loss Supply For Use For Reservoir Exc for Use Release Evap Spill Content Limit Limit Inflow Release Divert by Well Outflow ID Acc Year Mo Day (-)(-(-) NA (-)) (9) (10) (11)(12)(13) (14)0.0 0.0 1 49964.2 0.0 0 1979 NOV 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 1979 NOV 2 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 1979 NOV 3 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 NOV 4 49964.2 0.0 Res 1 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 0.0 0.0 5 49964.2 0.0 0.0 0.0 NOV Res 1 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 6 49964.2 Res 1 0 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0 1979 7 49964.2 0.0 0.0 0.0 0.0 0.0 Res 1 NOV 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 8 49964.2 Res 1 NOV 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 9 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 NOV 0.0 Res 1 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 100.0 0.0 0.0 0 1979 0.0 0.0 0.0 0.0 0.0 0.0 10 49964.2 0.0 0.0 Res 1 NOV 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 100.0 0.0 0.0 0.0 0.0 11 49964.2 0.0 0.0 Res 1 0 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 0.0 0.0 12 49964.2 0.0 0.0 NOV 0.0 0.0 Res 1 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 13 49964.2 0.0 0.0 0.0 Res 1 NOV 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 Res 1 0 1979 NOV 14 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 NOV 15 49964.2 0.0 0.0 Res 1 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 1979 NOV 16 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0 1979 NOV 17 49964.2 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0 0 0 0 0 0 0 0 18 49964.2 0.0 0.0 0.0 0.0 0.0 Res 1 0 1979 NOV 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 19 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 Res 1 NOV 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 20 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0 1979 Res 1 NOV 0 0 0 0 0.0 0.0 100.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 0.0 21 49964.2 0.0 0.0 0 1979 NOV 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 Res 1 NOV 22 49964.2 0.0 0.0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 23 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 Res 1 NOV 0 0 0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 24 49964 2 0 0 0 0 Res 1 NOV 0.0 0.0 0.0 0.0 0 1979 25 49964 2 0 0 0 0 Res 1 NOV

0.0 49964.2100000.0 50035.8 100.0 0.0 0.0 0.0 100.0

0.0

0.0

0.0

0.0

Res_1		0 1979		26	49964.2	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.					0.0	0.0		0.0	100.0		
Res_1		0 1979	NOV	27	49964.2	0.0	0.0	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	100.0		0.0	0.0	0	0.0	100.0		
Res_1		0 1979	NOV	28	49964.2	0.0	0.0	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	100.0		0.0	0.0	0	0.0	100.0		
Res_1		0 1979	NOV	29	49964.2	0.0	0.0	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	100.0		0.0	0.0	0	0.0	100.0		
Res_1		0 1979	NOV	30	49964.2	0.0	0.0	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	100.0		0.0	0.0	0	0.0	100.0		
		0 1980			10064 2			0 0	0 0					0 0	0 0	0 0
Res_1		0 1980	TOT	- T	49964.2	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 0.	.0 -1.0	-1.0	3000.0		0.0	0.0	0	0.0	3000.0		

From Station Balance Storage to From Carrier by From River by Targt_0 BOM Initial _____ Seep & EOM Stor_n Decree River Riv Total Total River Carrier Seep & Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc Loss Supply For Use For Reservoir Or Use Release Evap Spill Content Limit Limit Inflow Release Divert by Well Outflow

Acc Year Mo Day NA (+) (+) (+) (-) (+) (+) (-) (-)

(-) NA (-) (-) NA NA NA (+) (+) (+) (-) (-) NA

(1) (2) (3) (4) (5) (6) (7) (8) (5

(12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) Exc for Use Release (-TD (-)(10)(11) 0.0 0.0 1 49964.2 0 1979 0.0 0.0 0.0 0.0 Res 1 DEC 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 2 49964.2 0.0 0.0 0.0 0.0 0.0 0 1979 0.0 Res 1 DEC 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 3 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 Res 1 DEC 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 4 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 DEC 0.0 Res 1 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 5 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 0.0 Res_1 DEC 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 6 49964.2 0.0 0.0 0 1979 DEC 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0 1979 7 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 DEC 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 8 49964.2 0.0 0.0 Res 1 DEC 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 9 49964.2 0.0 0.0 Res 1 DEC 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 49964.2 0.0 DEC 0.0 Res 1 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 11 49964.2 0.0 DEC 0.0 Res_1 0.0 0.0 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0 1979 12 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 DEC 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 49964.2 0 1979 Res 1 DEC 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 14 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 0.0 Res 1 DEC 0.0 49964.2100000.0 50035.8 96.8 15 49964.2 0.0 0.0 0.0 0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 0 0 0 0 Res 1 DEC 0 0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 16 49964.2 0 1979 DEC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0 1979 17 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DEC 0.0 0.0 Res 1 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18 49964 2 0 0 0 0 Res 1 DEC 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 0 0 0 0 Res 1 DEC 0.0 49964.2 0.0 0.0 0.0 0.0 0.0 96.8 0.49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0 1979 DEC 20 49964.2 0.0 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0 1979 DEC 21 49964.2 0 0 0 0 Res_1 0.0 0.0 0.0 0.0 0.0 0 0 0.0 49964.2100000.0 50035.8 96.8 22 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0 1979 0.0 Res 1 DEC 0 0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 23 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 Res 1 DEC 0 0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.0 24 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0 1979 DEC 0.0 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8 0 0 0 0 0 0 0 0 25 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0 1979 DEC 0.0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1979 DEC 26 49964.2 Res_1 0 0 0.0 49964.2100000.0 50035.8 96.8 0.0 0.0 0.0 96.8

0.0

0.0

0.0 0.0

Res_1 0.0	0.0	0 1979 0.0	DEC :		49964.2 0.0 49964.			0.0 96.8				0.0	0.0	0.0	0.0	0.0
Res_1		0 1979	DEC :	28	49964.2	0.0	0.0	0.0	0.0	0 .	. 0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		0 1979	DEC :	29	49964.2	0.0	0.0	0.0	0.0	0 .	. 0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		0 1979	DEC :	30	49964.2	0.0	0.0	0.0	0.0	0 .	. 0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		0 1979	DEC	31	49964.2	0.0	0.0	0.0	0.0	0	. 0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0 49964.	2100000.0	50035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		0 1980	TOT	-1	49964.2	0.0	0.0	0.0	0.0	0	. 0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0	.0 -1.0	-1.0	3000.0		0.0	0.0		0.0	3000.0		

Storage to Station Balance

Stora	ge to					F	rom River Tar	by				lance n Carr	rier	by			110	
			_	Ini	tial		Tar	gt_0	BOM							otal	River	
	Carrier	Total		Seep	&	EOM Sto												_
Reser		elease	Evap			Priorty Steent Limi											For Use	For
ID	01 000 10					(+)			(-)		(+)		+)	(-		NA	(-)	(-
)	(-)	NA	(-)			A NA		(+)		+)			(-)		NA	(0)	(10)	
(11)	(12)	(13)	(14)			(2) (16) (1									3) (23		(10)	
													`					
						0.0											0 0	
Res_1 0.0	0.0	0 1980 0.0	JAN 0.0			0.0 4.2100000.).0 0		.0 96.8		0.0	
Res_1		0 1980		2 499		0.0		0.0					0.0		. 0		0.0	
0.0	0.0	0.0	0.0			4.2100000.						0.0			96.8		0 0	
Res_1	0.0	0 1980 0.0	JAN 0.0	3 499		0.0 4.2100000.	0.0 1.50035.8	0.0			0.0	0.0	0.0	.0	.0 96.8		0.0	
Res_1		0.0		4 499		0.0	0.0	0.0		0.0	0.0		0.0		.0	0.0	0.0	
0.0	0.0	0.0	0.0			4.2100000.				0.0		0.0		.0	96.8			
Res_1		0 1980		5 499		0.0	0.0		0.0		0.0		0.0	0.		0.0	0.0	
0.0	0.0	0.0	0.0	0.0	49964	4.2100000.	50035.8	96.8	3	0.0		0.0	0	.0	96.8	3		
Res_1		0 1980	JAN	6 499	64.2	0.0	0.0	0.0	0.0		0.0	(0.0	0	. 0	0.0	0.0	
0.0	0.0	0.0	0.0			4.2100000.						0.0			96.8			
Res_1	0.0	0 1980		7 499		0.0	0.0	0.0					0.0		. 0		0.0	
0.0 Res 1		0.0 0 1980	0.0 JAN	8 499		4.2100000. 0.0		0.0				0.0).0	.0	96.8 .0		0.0	
0.0	0.0	0.0	0.0			4.2100000.						0.0		.0	96.8			
Res_1		0 1980		9 499		0.0		0.0					0.0		. 0		0.0	
0.0 Res 1	0.0	0.0 0 1980	0.0 JAN	10 499		4.2100000. 0.0	0.0		0.0		0.0	0.0	0.0	.0	96.8 .0	0.0	0.0	
0.0	0.0	0.0	0.0			4.2100000.				0.0		0.0		.0	96.8		0.0	
Res_1	0 0	0 1980		11 499		0.0	0.0	0.0	0.0		0.0		0.0		. 0	0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	0.0 JAN	12 499		4.2100000. 0.0		0.0	0.0			0.0).0	.0	96.8 .0		0.0	
0.0	0.0	0.0	0.0			4.2100000.				0.0		0.0		.0	96.8			
Res_1		0 1980		13 499		0.0		0.0	0.0		0.0		0.0	0		0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	0.0 JAN	0.0		4.2100000. 0.0	0.0	96.8		0.0	0.0	0.0	0.0	.0	96.8 .0		0.0	
0.0	0.0	0.0	0.0			4.2100000.				0.0		0.0		.0	.u 96.8		0.0	
Res_1		0 1980		15 499	64.2	0.0	0.0	0.0	0.0		0.0		0.0		. 0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	49964	4.2100000.	50035.8	96.8	3	0.0		0.0	0	.0	96.8	3		
Res 1		0 1980	JAN	16 499	64 2	0.0	0.0	0.0	0.0		0.0	(0.0	0	. 0	0.0	0.0	
0.0	0.0	0.0	0.0			4.2100000.				0.0		0.0		.0	96.8		0.0	
Res_1		0 1980		17 499		0.0	0.0	0.0	0.0		0.0		0.0		. 0	0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	0.0 JAN	0.0 18 499		4.2100000. 0.0		96.8				0.0		.0	96.8 .0		0.0	
0.0	0.0	0.0	0.0			4.2100000.	0.0 0.035.8			0.0	0.0	0.0).0 0	.0	.u 96.8		0.0	
Res_1		0 1980		19 499		0.0		0.0			0.0		0.0		. 0	0.0	0.0	
0.0	0.0	0.0	0.0			4.2100000.				0.0		0.0		.0	96.8		0 0	
Res_1 0.0	0.0	0 1980 0.0	JAN 0.0	20 499		0.0 4.2100000.			0.0		0.0	0.0	0.0	.0		0.0	0.0	
0.0	0.0	0.0	0.0	0.0	4000	1.2100000.	30033.0	50.0	,	0.0		0.0	U	. 0	20.0	'		
Res_1		0 1980				0.0											0.0	
0.0		0.0				4.2100000.											0.0	
Res_1 0.0	0.0	0 1980 0.0	0.0			0.0 4.2100000.											0.0	
Res_1		0 1980		23 499	64.2	0.0	0.0	0.0	0.0		0.0	C	0.0	0 .	. 0	0.0	0.0	
0.0	0.0	0.0	0.0			4.2100000.												
Res_1 0.0	0.0	0 1980 0.0	JAN 0.0			0.0 4.2100000.		0.0									0.0	
Res_1		0.0				0.0											0.0	
0.0	0.0	0.0	0.0			4.2100000.												
Pog 1		0 1980	T 7 7 T	26 400	64.2	0 0	0.0	0 0	0 0		0 0	,	١ ٥	0	0	0 0	0.0	
Res_1 0.0	0.0	0.0	0.0			0.0 4.2100000.											0.0	
		· · ·												-				

Res_1	0.0	0 1980 0.0	0.0	7 49964.2 0.0 0.0 49964.21000	00.0 50035.8		0.0	0.0	96.8	0.0
Res_1		0 1980	JAN 2	3 49964.2 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0 49964.21000	00.0 50035.8	96.8	0.0	0.0 0.0	96.8	
Res_1		0 1980	JAN 2	9 49964.2 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0 49964.21000	00.0 50035.8	96.8	0.0	0.0 0.0	96.8	
Res_1		0 1980	JAN 3	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0 49964.21000	00.0 50035.8	96.8	0.0	0.0	96.8	
Res_1		0 1980	JAN 3	1 49964.2 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0 49964.21000	00.0 50035.8	96.8	0.0	0.0	96.8	
Res_1 0.0	0.0	0 1980 0.0	TOT -	49964.2 0.0		0.0 0.0		0.0		0.0

Storage to Station Balance From

Storag	ge to			Station Balance From River by From Carrier b Targt_0 BOM	у	
			_	Initial	Total River	- :
River Reserv	Carrier voir	Total		Seep & EOM Stor_n Decree River River River River Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc		e For
		lease		Spill Content Limit Limit Inflow Release Divert by Wel		
ID)	(-)	Acc Year NA		(-) NA NA NA (+) (+) (-)	(-) NA (-) NA) (-
(11)	(12)	(13)	(14)	(1) (2) (3) (4) (5) (6) (7) (15) (16) (17) (18) (19) (20) (21) (2	(8) (9) (10) 2) (23))
						-
 Res_1		0 1980	FEB		0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.	0 107.1	
Res_1 0.0	0.0	0 1980 0.0	FEB 0.0	2 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0 107.1)
Res_1	0.0	0.0		3 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.		
Res_1	0 0	0 1980		4 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0 Res_1	0.0	0.0 0 1980	0.0 FEB	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0. 5 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0 107.1 0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.		
Res_1		0 1980	FEB	6 49964.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0		0 107.1	
Res_1 0.0	0.0	0 1980 0.0	FEB 0.0	7 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0 107.1)
Res 1	0.0	0.0		8 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.	0 107.1	
Res_1	0 0	0 1980		9 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0 Res_1	0.0	0.0 0 1980	0.0 FEB	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.0 0.0 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0 107.1 0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.		
Res_1		0 1980	FEB	1 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.		
Res_1 0.0	0.0	0 1980 0.0	FEB 0.0	2 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0 107.1	J
Res_1	0.0	0 1980		3 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0		0 107.1	
Res_1 0.0	0.0	0 1980 0.0	FEB 0.0	4 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0 107.1)
Res_1	0.0	0.0		5 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.	0 107.1	
Res_1		0 1980		6 49964.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0 Res 1	0.0	0.0 0 1980	0.0 FEB	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0. 7 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0 107.1 0.0 0.0 0.0	1
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.0		J
Res_1		0 1980	FEB	8 49964.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.		
Res_1 0.0	0.0	0 1980 0.0	FEB 0.0	9 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0 107.1	J
Res_1	0.0	0 1980		0 49964.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.	0 107.1	
Res_1		0 1980		1 49964.2 0.0 0.0 0.0 0.0 0.0 0.0)
0.0 Res_1	0.0	0.0 0 1980	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0. 2 49964.2 0.0 0.0 0.0 0.0 0.0 0.0		1
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.0		•
Res_1		0 1980		3 49964.2 0.0 0.0 0.0 0.0 0.0 0.0)
0.0 Res_1	0.0	0.0 0 1980	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0. 4 49964.2 0.0 0.0 0.0 0.0 0.0 0.0		1
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.0 0.0		,
Res_1		0 1980	FEB	5 49964.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0)
0.0	0.0	0.0	0.0	0.0 49964.2100000.0 50035.8 107.1 0.0 0.0 0.	0 107.1	
Res_1	0.0	0 1980 0.0	FEB 0.0	6 49964.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0)

Res_1 0.0 Res_1 0.0	0.0	0 1980 0.0 0 1980 0.0	0.0	28 4996	49964.2 4.2	0.0 100000.0 0.0 100000.0	0.0	107.1	0.0	0.0	.0 0.0	0.0	0.0	0.0	0.0
Res_1	0.0	0 1980 0.0	TOT 0.0	-1 4996·	4.2		0.0	0.0	0.0	0.0	.0	0.0	0.0	0.0	0.0

														From	
Storag	e to							St	ation 1	Balanc	e				
					From	River	by		F	rom Ca	rrie	r by			
			_	Tnitial		Targ	gt_0	BOM					Total	River	
River	Carrier	Total		Initial Seep & EOM Storage Prior	Stor n	Decre	ee Riv	er	River	Riv	er	River	River	KIVEL	
Reserv	oir	10041		Storage Prior	ty Storac	e Exc	Pln	Loss	Prior	ty Sto	Exc	Loss	Supply	For Use Fo	r
	r Use Re	elease	Evap	Spill Content	Limit	Limit	- Inflow	Rel	ease 1	Divert	by	Well Out	flow		
				Day NA ((-)	(
)	(-)	NA	(-)	(-) NA									NA		
				(1) ((10)	
(11)	(12)	(13)		(15) (16)											
Res_1		0 1980	- MλD	1 49964.2 0	.0 0.		0 0	0 0			0 0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49963.410									96.8	0.0	
Res 1	0.0	0 1980										0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49962.610									96.8		
Res_1		0 1980	MAR	3 49962.6 0	.0 0.	0	0.0	0.0	0	.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49961.810									96.8		
Res_1		0 1980										0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49961.010					0.0	0.0			96.8		
Res_1	0 0	0 1980					0.0			.0	0.0		0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49960.210	0000.0 50	035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		0 1980	MAR	6 49960.2 0	.0 0.	0	0.0	0 0	Λ	. 0	0 0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49959.310										3.0	
Res_1	-	0 1980										0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49958.510	0000.0 50	035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		0 1980	MAR										0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49957.710											
Res_1		0 1980			.0 0.		0.0					0.0		0.0	
0.0 Res 1	0.0	0.0 0 1980	0.8 MAR	0.0 49956.910							0 0		96.8	0.0	
0.0	0.0	0.0	0.8	10 49956.9 0 0.0 49956.110			0.0			.0			96.8	0.0	
0.0	0.0	0.0	0.0	0.0 40000.110	0000.0 30	033.0	50.0		0.0	0.0		0.0	50.0		
Res_1		0 1980	MAR	11 49956.1 0	.0 0.	0	0.0	0.0	0	. 0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49955.310									96.8		
Res_1		0 1980	MAR	12 49955.3 0	.0 0.	0	0.0	0.0	0	.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49954.410											
Res_1	0 0	0 1980			.0 0.							0.0		0.0	
0.0	0.0	0.0	0.8 MAR	0.0 49953.610 14 49953.6 0			96.8							0.0	
Res_1 0.0	0.0	0 1980 0.0	0.8	0.0 49952.810						0.0		0.0	96.8	0.0	
Res_1	0.0	0 1980					0.0			.0	0.0		0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49952.010					0.0	0.0		0.0	96.8	0.0	
Res_1		0 1980			.0 0.		0.0			.0			0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49951.210											
Res_1		0 1980			.0 0.							0.0		0.0	
0.0	0.0	0.0	0.8 MAR	0.0 49950.410								0.0		0.0	
Res_1 0.0	0.0	0 1980 0.0	0.8	18 49950.4 0 0.0 49949.610								0.0	96.8	0.0	
Res_1	0.0	0 1980										0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49948.710											
Res_1		0 1980	MAR	20 49948.7 0	.0 0.	0	0.0	0.0	0	.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49947.910	0000.0 50	035.8	96.8		0.0	0.0		0.0	96.8		
		0		01 40045 5					_						
Res_1	0 0			21 49947.9 0										0.0	
0.0	0.0	0.0	0.8 MAD	0.0 49947.110 22 49947.1 0	0000.0 50 .0 0.									0.0	
Res_1 0.0	0.0	0.0	0.8	0.0 49946.310										0.0	
Res_1	0.0	0 1980										0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49945.510											
Res_1		0 1980	MAR	24 49945.5 0	.0 0.	0	0.0	0.0	0	.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49944.710								0.0	96.8		
Res_1	0 0	0 1980										0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49943.910	υυυυ.O 50	035.8	96.8		0.0	0.0		U.U	96.8		
Res_1		0 1980	MAR	26 49943.9 0	.0 0.	0	0 0	0 0	Λ	. 0	0 0	0 0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49943.010										0.0	
Res_1	0.0	0 1980					0.0						0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49942.210											
Res_1		0 1980		28 49942.2 0	.0 0.	0	0.0	0.0	0	.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.8	0.0 49941.410									96.8		
Res_1				29 49941.4 0								0.0		0.0	
0.0	0.0	0.0	0.8	0.0 49940.610	υυυυ.Ο 50	035.8	96.8		0.0	0.0		0.0	96.8		

Res_1 0.0	0.0	0 1980 0.0	MAR 0.8	30	49940.6 0.0 49939	0.0 .8100000.0	0.0 50035.8	0.0 96.8	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0
Res_1 0.0	0.0	0 1980 0.0	MAR 0.8	31	49939.8 0.0 49939	0.0	0.0	96.8	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0
Res_1 0.0	0.0	0 1980 0.0	TOT 0.8	-1	49964.2 0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Storage	e to					Ex	om Dirrow	brr	Sta	ation Ba			brr			From
			_			FI	om River Tar	gt_0	BOM		m Car	rrier	. DÀ			

Storag	ge to						Fr	om River	by	St			lance m Car		r by			Fro	m
			_		Initial			Tar	gt_0	BOM							Total	River	
River	Carrier	Total			Seep &		Stor	_n Decr	ee Riv	/er	Rive	er	Rive	r	Rive	er		KIVEI	
Reserv		-1			Storage													For Use	For
ID EXC IC	or Use Re	Acc Year			pill Cont NA			(+)	(+)	(-)		(+)		(+)		(-)	. low NA	(-)	(-
)	(-)		(-)	_	-) 1	NA	NA	NA	(+)	(+)	(-	-)	(-	-)		IΑ	,	,
(11)	(12)	(13)	(14)			(16)			(4)		(20)		(21)	7)	(22)	(8)	(9)	(10)	
Res_1 0.0	0.0	0 1980 0.0	APR 10.9	1	49939.0			0.0 50035.8			0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	0.0		2	49928.0	0.		0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9		0.0 4993				100.0		0.0		0.0		0.0		0.0		
Res_1	0.0	0 1980		3	49917.1	0.		0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	10.9	4	0.0 4990 49906.2	0. . 0		0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9	-	0.0 4989						0.0		0.0	0.0	0.0		0.0	0.0	
Res_1		0 1980		5	49895.2	0.		0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	10.9		0.0 4988	34.3100	0.00	50035.8	100.0)	0.0		0.0		0.0	10	0.0		
Res_1		0 1980	APR	6	49884.3	0.	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	10.9		0.0 498						0.0		0.0		0.0	10	0.0		
Res_1	0 0	0 1980		7	49873.4	0.		0.0 50035.8	0.0	0.0		0.0		0.0	0 0	0.0	0.0	0.0	
0.0 Res 1	0.0	0.0 0 1980	10.9 APR	8	49862.5	0.		0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9	Ü	0.0 498						0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Res_1		0 1980		9	49851.5	0.		0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	10.9	1.0	0.0 4984 49840.6			50035.8	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9	10				50035.8			0.0		0.0	0.0	0.0		0.0	0.0	
D 1		0 1000	3.00	- 1 - 1	40000 7	0	0	0 0	0 0	0 0		0 0		0 0		0 0	0 0	0 0	
Res_1 0.0	0.0	0 1980 0.0	10.9	TT	49829.7	0. 18 8100		0.0 50035 8	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	0 1980		12	49818.8	0.		0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9						100.0		0.0		0.0		0.0	10			
Res_1 0.0	0.0	0 1980 0.0	APR 10.9	13	49807.8	0. 0. 0100		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	0.0		14	49796.9	0.		0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9					50035.8			0.0		0.0		0.0		0.0		
Res_1 0.0	0.0	0 1980 0.0	APR 10.9	15	49786.0 0.0 497	0. 75 1100		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.5		0.0 157	,3.1100	000.0	30033.0	100.0	,	0.0		0.0		0.0	10			
Res_1	0.0	0 1980		16	49775.1	0.		0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	10.9	17	0.0 4976 49764.2	0.		0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.9					50035.8			0.0		0.0	0.0	0.0		0.0	0.0	
Res_1		0 1980		18	49753.3	0.		0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 0 1980	10.9	10	0.0 4974 49742.4	42.4100 0.		50035.8	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0		1)					100.0						0.0		0.0	0.0	
Res_1					49731.5											0.0		0.0	
0.0	0.0	0.0	10.9		0.0 4972	20.6100	000.0	50035.8	100.0)	0.0		0.0		0.0	10	0.0		
Res_1		0 1980	APR	21	49720.6	0.	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	10.9						100.0										
Res_1 0.0	0.0	0.0	APR 10.9	22	49709.7				0.0		0.0		0.0			0.0		0.0	
Res_1	0.0	0.0		23	49698.8	0.		0.0	0.0			0.0		0.0		0.0		0.0	
0.0	0.0	0.0	10.9		0.0 4968			50035.8	100.0)	0.0		0.0			10			
Res_1 0.0	0.0	0 1980 0.0	APR 10.9	24	49687.9			0.0	0.0		0.0		0.0			0.0		0.0	
Res_1	0.0			25	49677.0			0.0				0.0			0.0	0.0		0.0	
0.0	0.0	0.0	10.9	-					100.0		0.0		0.0			10		2.0	
Res_1		0 1980	APR	26	49666.1	0.	0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	10.9		0.0 496	55.2100	000.0	50035.8	100.0)	0.0		0.0		0.0	10	0.0		
Res_1	0 0			27	49655.2			0.0	0.0							0.0		0.0	
0.0 Res_1	0.0	0.0	10.9 APR	28	0.0 4964 49644.3			50035.8	100.0							0.0		0.0	
0.0	0.0	0.0	10.9	20					100.0		0.0		0.0			10		0.0	
Res_1				29	49633.4			0.0	0.0			0.0		0.0		0.0		0.0	
0.0	0.0	0.0	10.9		U.O 4962	22.6100	000.0	50035.8	100.0	J	0.0		0.0		0.0	10	0.0		

Res_1 0.0	0.0				0.0 L1.7100000.0							0.0
Res_1		0 1980	TOT -	49939.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 0	0 0	0 0	10 9	0 0	0 0 _1 0	_1 0	3000 0	0 (0 0	0 0	3000 0	

Stora	age to						Fr	om Rive: Ta:	r by	St BOM	atio	n Bala From	nce Carrie	er by		Total	Fro	m
			_		Initial											Total	River	
River Reser	r Carrie: cvoir	Total			Seep & Storage		Stor	_n Dec:	ree Ri	.ver	Riv	er R	iver	Rive	er	River		For
Exc f	for Use I			Sı	oill Cont	tent	Limit	Limi	Inflo	w Rel	ease	Dive	rt by	Well	Out	Elow		
ID)	(-)	Acc Year NA	Mo (-)		NA -) I				(+) (+)) (–)		NA NA	(-)	(-
,	()	IVA	()	((4)						(8)		(10)	
(11)	(12)	(13)	(14)		(15)	(16)	(17) (1	3) (1	.9)	(20) (21)	(22))	(23)		
Res_1		0 1980		1	49611.7 0.0 4998												0.0	
0.0 Res_1	0.0 L	0.0 0 1980	8.9 MAY	2	49989.9	39.9100 387.		0.0	0.0	0.0		387	0.0		0.0	96.8 387.1	0.0	
0.0		0.0	9.0		0.0 5036			49648.	7 483.		0.0	387		0.0		96.8		
Res_1		0 1980	MAY 9.0	3	50368.0	387.		0.0	0.0	0.0		0.0	0.0	0.0	0.0	387.1	0.0	
Res_1	0.0 L	0.0 0 1980		4	0.0 5074 50746.1			0.0		0.0	0.0	387	0.0			387.1	0.0	
0.0	0.0	0.0	9.1		0.0 5112	24.1100	000.0	48874.	5 483.	9	0.0	387		0.0		96.8		
Res_1	L 0.0	0 1980 0.0	MAY 9.1	5	51124.1 0.0 5150	387.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	387.1 96.8	0.0	
0.0	0.0	0.0	9.1		0.0 5150	JZ.1100	000.0	4040/.	1 403.	9	0.0	307	. 1	0.0	-	90.0		
Res_1		0 1980		6	51502.1	387.		0.0	0.0	0.0		0.0	0.0		0.0		0.0	
0.0 Res_1	0.0	0.0 0 1980	9.2 MAY	7	0.0 5188 51880.0	30.0100 387.		0.0	0.0	0.0	0.0	387	0.0	0.0		96.8 387.1	0.0	
0.0	0.0	0.0	9.2		0.0 522	57.8100	000.0				0.0	387		0.0		96.8		
Res_1	L 0.0	0 1980	MAY 9.3	8	52257.8	387.		0.0	0.0	0.0		0.0	0.0		0.0		0.0	
0.0 Res_1		0.0 0 1980		9	0.0 5263 52635.7	35.7100 387.		0.0	0.0	0.0		0.0	0.0	0.0		96.8 387.1	0.0	
0.0	0.0	0.0	9.3		0.0 530	13.5100	000.0	46939.	483.	9	0.0	387	.1	0.0		96.8		
Res_1	L 0.0	0 1980 0.0	MAY 9.4	10	53013.5 0.0 5339	387.			0.0	0.0	0.0	0.0 387	0.0	0.0	0.0	387.1 96.8	0.0	
0.0	0.0	0.0	9.4		0.0 555	91.2100	000.0	40551.	403.	9	0.0	307	. 1	0.0		90.0		
Res_1		0 1980		11	53391.2			0.0	0.0	0.0		0.0	0.0		0.0		0.0	
0.0 Res 1	0.0	0.0 0 1980	9.4 MAY	1 2	0.0 5376 53768.9	38.9100 387.			3 483. 0.0	9		387	.1	0.0	0.0	96.8 387.1	0.0	
0.0	0.0	0.0	9.5		0.0 541							387		0.0		96.8	0.0	
Res_1		0 1980		13	54146.5	387.		0.0	0.0	0.0		0.0	0.0			387.1	0.0	
0.0 Res 1	0.0	0.0 0 1980	9.5 MAY	14	0.0 5452 54524.1				0.0	0.0	0.0	387	0.0	0.0		96.8 387.1	0.0	
0.0	0.0	0.0	9.6		0.0 5490	01.6100	000.0	45003.	5 483.	9	0.0	387	.1	0.0	9	96.8		
Res_1	L 0.0	0 1980 0.0	MAY 9.6	15	54901.6 0.0 552	387.		0.0	0.0	0.0	0.0	0.0 387	0.0	0.0		387.1 96.8	0.0	
0.0	0.0	0.0	9.0		0.0 552	79.1100	000.0	44010.	1 403.	9	0.0	307	. 1	0.0	-	90.0		
Res_1		0 1980		16	55279.1	387.		0.0	0.0	0.0		0.0	0.0		0.0		0.0	
0.0 Res_1	0.0	0.0 0 1980	9.6 MAY	17	0.0 556! 55656.6	387.		44229.1 0.0	3 483. 0.0	9	0.0	387	0.0	0.0	0.0	96.8 387.1	0.0	
0.0	0.0	0.0	9.7	Τ,	0.0 5603						0.0			0.0		96.8	0.0	
Res_1		0 1980		18	56034.0	387.		0.0		0.0		0.0	0.0			387.1	0.0	
0.0 Res_1	0.0	0.0 0 1980	9.7 May	19	0.0 5641 56411.3	387.		0.0	0.0	0.0	0.0	387	0.0	0.0	0.0	96.8 387.1	0.0	
0.0	0.0	0.0	9.8		0.0 5678	38.6100	000.0	43068.	483.	9	0.0	387	.1	0.0	9	96.8	0.0	
Res_1	L 0.0	0 1980 0.0	MAY 9.8	20	56788.6												0.0	
0.0	0.0	0.0	9.8		0.0 571	55.9100	000.0	42080.	483.	9	0.0	387	. 1	0.0	3	90.8		
Res_1				21	57165.9												0.0	
0.0 Res_1	0.0	0.0	9.9 MAY	22	0.0 5754 57543.1											96.8 387.1	0.0	
0.0	0.0	0.0	9.9	22	0.0 5792												0.0	
Res_1				23	57920.3				0.0							387.1	0.0	
0.0 Res_1	0.0	0.0 0 1980	10.0 MAY	24	0.0 5829 58297.4			41519.			0.0	387				96.8 387.1	0.0	
0.0	0.0	0.0	10.0	21	0.0 586							387				96.8	0.0	
Res_1		0 1980		25	58674.5				0.0			0.0	0.0			387.1	0.0	
0.0	0.0	0.0	10.1		0.0 590	51.5100	000.0	40745.	4 483.	9	0.0	387	.1	0.0	2	96.8		
Res_1				26	59051.5				0.0)	0.0		0	0.0		0.0	
0.0 Res_1	0.0	0.0	10.1 MAY	27	0.0 5942 59428.5				3 483. 0.0							96.8 387.1	0.0	
0.0	0.0	0.0	10.2	41	0.0 5980							387				96.8	0.0	
Res_1				28	59805.4				0.0			0.0		0		387.1	0.0	
0.0 Res_1	0.0	0.0	10.2 MAY	29	0.0 6018 60182.3			39584.	1 483. 0.0	9		387	0.0			96.8 387.1	0.0	
0.0	0.0	0.0	10.3	ري	0.0 605			39197.	483.	9	0.0	387	.1	0.0		96.8	3.0	
Res_1				30	60559.1				0.0			0.0				387.1	0.0	
0.0	0.0	0.0	10.3		0.0 6093	oo.9100	000.0	30009.	483.	9	0.0	387	.1	0.0	2	96.8		

Res_1 0.0												0.0 387.1 0.0 96.8	0.0
Res_1		0 1980	TOT	-1	49611.7	12000.0	0.0	0.0	0.0	0.0	0.0	0.0 12000.0	0.0
0.0	0.0	0.0	10.3		0.0	0.0 -1.0	-1.0	15000.0		0.0 12000	.0 (0.0 3000.0	

																	Fro	m	
Storag	e to									St	ation	Bala	ance						
							Fro	m River	by gt_0			From	Carrie	er by					
			_					Tar	gt_0	BOM	I								
D	a	m. i . 1			Initial		G1							·		Total	River		
Reserv	Carrier	Total		2	Seep &	EOM	Stor_	n Decr	ee Ki	ver	Rive	er i	kiver	RIVE	er	River	For Has	Fox	
		lease			Storage oill Cont												ror use	FOI	
ID ID		Acc Year						(+)			casc					NA.	(-)		(-
	(-)		(-)		-) 1		NA	NA	(+)		+)	(-)		-)		NA	()		,
,	,		. ,	٠												(9)	(10)		
(11)	(12)	(13)	(14))	(15)											(23)			
Res_1		0 1980		1	61312.7							0.0)	0.0		0.0		
0.0	0.0	0.0	25.3	_	0.0 6168							400		0.0		00.0	0 0		
Res_1 0.0	0.0	0 1980 0.0	25.4	2	61687.4 0.0 6206	400.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	400.0	0.0		
Res_1	0.0	0.0		3	62061.9	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	25.5	,	0.0 6243						0.0	400		0.0		00.0	0.0		
Res_1		0 1980		4	62436.4	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	25.6		0.0 6281	0.8100	0.00	36835.7	500.	0	0.0	400	0.0	0.0	1	0.00			
Res_1		0 1980		5	62810.8	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	25.7		0.0 6318	35.01000	0.00	36435.7	500.	0	0.0	400	0.0	0.0	1	00.0			
D 1		0 1000		_	63105 0	400	0	0 0	0 0	0 0		0 0	0 0		0 0	400 0	0 0		
Res_1 0.0	0.0	0 1980 0.0	25.8	ь	63185.0 0.0 6355	400.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	400.0	0.0		
Res_1	0.0	0.0		7	63559.2	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	25.9	,	0.0 6393						0.0	400		0.0		00.0	0.0		
Res_1		0 1980		8	63933.3	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	26.0		0.0 6430	7.3100	0.00	35235.7	500.	0	0.0	400	0.0	0.0	10	0.00			
Res_1		0 1980	JUN	9	64307.3	400.0	0	0.0	0.0	0.0		0.0	0.0)	0.0	400.0	0.0		
0.0	0.0	0.0	26.1		0.0 6468						0.0	400		0.0		0.00			
Res_1	0 0	0 1980		10	64681.1	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	26.2		0.0 6505	4.91000	000.0	34435.7	500.	U	0.0	400	J. 0	0.0	Τ.	0.00			
Res_1		0 1980	.TITN	11	65054.9	400.0	n	0.0	0.0	0.0		0.0	0.0	1	0.0	400.0	0.0		
0.0	0.0	0.0	26.3		0.0 6542							400		0.0		00.0	0.0		
Res 1	0.0	0 1980		12	65428.6	400.0			0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0	0.0	0.0	26.4		0.0 6580	2.2100	0.00	33635.7	500.	0	0.0	400	0.0	0.0	1	00.0			
Res_1		0 1980		13	65802.2	400.0		0.0	0.0	0.0		0.0	0.0)	0.0	400.0	0.0		
0.0	0.0	0.0	26.5		0.0 6617							400		0.0		00.0			
Res_1	0 0	0 1980		14	66175.7	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0 Res_1	0.0	0.0 0 1980	26.6	1 =	0.0 6654 66549.1	400.			500.0	0.0	0.0	400	0.0	0.0	0.0	400.0	0.0		
0.0	0.0	0.0	26.7	13	0.0 6692								0.0	0.0		00.0	0.0		
0.0	0.0	0.0	20.7		0.0 0032	12.1100	000.0	32133.7	500.	0	0.0	100		0.0	-	50.0			
Res_1		0 1980	JUN	16	66922.4	400.0	0	0.0	0.0	0.0		0.0	0.0)	0.0	400.0	0.0		
0.0	0.0	0.0	26.8		0.0 6729	5.6100	0.00	32035.7	500.	0	0.0	400	0.0	0.0	10	0.00			
Res_1		0 1980	JUN	17	67295.6	400.0		0.0	0.0	0.0		0.0	0.0)	0.0	400.0	0.0		
0.0	0.0	0.0	26.9		0.0 6766						0.0	400		0.0		00.0			
Res_1	0 0	0 1980		18	67668.7	400.0		0.0	0.0	0.0		0.0	0.0		0.0	400.0	0.0		
0.0 Res_1	0.0	0.0 0 1980	27.0	1.0	0.0 6804 68041.7	400.0		0.0	500.0	0.0	0.0	400	0.0	0.0	0.0	400.0	0.0		
0.0	0.0	0.0	27.1	19	0.0 6841							400		0.0		00.0	0.0		
Res 1	0.0			20	68414.6				0.0						0.0	400.0	0.0		
0.0	0.0				0.0 6878														
Res_1				21	68787.4							0.0)		400.0	0.0		
0.0	0.0	0.0	27.3		0.0 6916								0.0			00.0			
Res_1	0 0	0 1980		22	69160.1							0.0				400.0	0.0		
0.0 Res_1	0.0	0.0 0 1980	27.4	22	0.0 6953 69532.7			0.0	0.0	0.0		400	0.0 0.0		0.0	400.0	0.0		
0.0	0.0	0.0	27.5	23	0.0 6990							400		0.0		00.0	0.0		
Res_1	0.0	0 1980		2.4	69905.2	400.0		0.0	0.0	0.0		0.0	0.0		0.0		0.0		
0.0	0.0	0.0	27.6		0.0 7027						0.0		0.0	0.0		0.00			
Res_1		0 1980		25	70277.6	400.0	0	0.0	0.0			0.0	0.0)	0.0	400.0	0.0		
0.0	0.0	0.0	27.7		0.0 7064	19.91000	0.00	28435.7	500.	0	0.0	400	0.0	0.0	1	0.00			
		0					•	0 6		_							.=		
Res_1	0 0	0 1980		26	70649.9				0.0			0.0				400.0	0.0		
0.0 Res_1	0.0	0.0 0 1980	27.8	27	0.0 7102 71022.2	400.0		28035.7	0.0			400	0.0 0.0	0.0	0.0	400.0	0.0		
0.0	0.0	0.0	27.8	21	0.0 7139							400		0.0		400.0	0.0		
Res_1	0.0	0.0		28	71394.3			0.0	0.0			0.0	0.0		0.0		0.0		
0.0	0.0	0.0	27.9		0.0 7176							400		0.0		00.0	0.0		
Res_1		0 1980		29	71766.4			0.0	0.0	0.0		0.0	0.0		0.0		0.0		
0.0	0.0	0.0	28.0		0.0 7213							400		0.0		0.00			
Res_1	0 0	0 1980		30	72138.4			0.0		0.0		0.0	0.0		0.0		0.0		
0.0	0.0	0.0	28.1		0.0 7251	10.31000	0.00.0	26435.7	500.	0	0.0	400	0.0	0.0	10	00.0			

torag	re to																n
						From	Dimor	bur	Sta	tion :	Balan	ice Iarrio	r bu				
						FIOIII	River Taro	by gt_0	BOM	r.	I OIII C	.arrre	r by				
			_	Initial											Total	River	
iver eserv	Carrier oir	Total		Seep & Storage						River Prior						For Use	For
	r Use Re			Spill Cont													
D	(-)		Mo (-)	Day NA (-) N				(+)	(-)		+)	(+)	-)	(-) NA	NA	(-)	
	(-)	IVA	(-)		(2)									(8)	(9)	(10)	
11)	(12)	(13)	(14)					(19					(22)		23)	, -,	
es_1		0 1980		1 72510.3	0.0	0.		0.0	0.0			0.0		0.0	0.0	72.0	
.0	0.0	72.0	15.7	0.0 7242						72.0	0.		0.0	168		72.0	
es_1		0 1980		2 72422.5	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	77.8	
.0	0.0	77.8	15.7	0.0 7232						77.8	0.		0.0	174		70 1	
es_1 .0	0.0	0 1980 78.1	15.7	3 72329.0 0.0 7223	0.0	0. nn n 26		96.8	0.0	78.1	.0	0.0	0.0	0.0	0.0	78.1	
es_1	0.0	0 1980		4 72235.2	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	78.3	
. 0	0.0	78.3	15.7	0.0 7214				96.8		78.3	0.		0.0	175			
es_1		0 1980		5 72141.2	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	78.3	
. 0	0.0	78.3	15.7	0.0 7204	17.210000	00.0 26	035.7	96.8	7	78.3	0.	0	0.0	175	5.1		
s_1	0 0	0 1980		6 72047.2	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	78.3	
0 es_1	0.0	78.3 0 1980	15.7 JUL	0.0 7195 7 71953.3	0.0	00.0 26 0.		96.8	0.0	78.3 0	0.	0.0		175	0.0	78.3	
0	0.0	78.3	15.6	0.0 7185						78.3	0.		0.0			,0.5	
s_1		0 1980	JUL	8 71859.3	0.0	0.	0	0.0	0.0	0	.0	0.0		0.0	0.0	78.3	
0	0.0	78.3	15.6	0.0 7176						78.3	0.		0.0	175			
es_1 0	0.0	0 1980 78.3	JUL 15.6	9 71765.4 0.0 7167	0.0	0. nn n as		96.8	0.0	0 78.3	.0	0.0	0.0	0.0	0.0	78.3	
s_1	0.0	0 1980		10 71671.5	0.0	00.0 26		0.0	0.0		.0	0.0		0.0	0.0	78.3	
0	0.0	78.3	15.6	0.0 7157						78.3	0.		0.0	175		70.3	
s_1		0 1980	JUL	11 71577.6	0.0			0.0	0.0	0	.0	0.0		0.0	0.0	78.3	
0	0.0	78.3	15.6	0.0 7148						78.3	0.			175			
s_1	0 0	0 1980		12 71483.7	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	78.3	
0 s_1	0.0	78.3 0 1980	15.6 JUL	0.0 7138 13 71389.8	0.0			96.8	0.0	78.3 n	0.	0.0	0.0	175	0.0	78.3	
0	0.0	78.3	15.6	0.0 7129						78.3	0.		0.0			70.5	
s_1		0 1980		14 71295.9	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	78.3	
. 0	0.0	78.3	15.6	0.0 7120						78.3	0.		0.0				
es_1 .0	0.0	0 1980 78.3	JUL 15.5	15 71202.0 0.0 7110	0.0 0.210000	0. 00.0 26		96.8	0.0	0 78.3	.0	0.0	0.0	0.0 175	0.0	78.3	
es_1		0 1980	JUL	16 71108.2	0.0	0.	0	0.0	0.0	0	. 0	0.0		0.0	0.0	78.3	
. 0	0.0	78.3	15.5	0.0 7101	4.410000			96.8		78.3	0.	0	0.0	175	5.1		
es_1		0 1980		17 71014.4	0.0			0.0	0.0		.0	0.0		0.0	0.0	78.3	
. 0	0.0	78.3	15.5	0.0 7092						78.3	0.		0.0	175		70.0	
es_1	0 0	0 1980		18 70920.5 0.0 7082	0.0	0.		0.0	0.0		.0	0.0		0.0	0.0	78.3	
.0 es_1	0.0	78.3 0 1980	15.5 JUL	19 70826.7	0.0	00.0 26		96.8	0.0	78.3 n	0.	0.0	0.0	0.0	0.0	78.3	
0	0.0	78.3	15.5	0.0 7073						78.3				175		70.5	
s_1		0 1980	JUL	20 70732.9	0.0	0.	0	0.0	0.0	0	.0	0.0		0.0	0.0	78.3	
. 0	0.0	78.3	15.5	0.0 7063									0.0	175			
es_1 .0	0.0	0 1980 78.3	JUL 15.5	21 70639.2 0.0 7054												78.3	
0 es_1	0.0			22 70545.4				0.0						0.0	0.0	78.3	
0	0.0	78.3	15.5	0.0 7045												,0.5	
s_1	-		JUL	23 70451.6	0.0	0.	0	0.0	0.0	0	.0	0.0		0.0	0.0	78.3	
0	0.0	78.3	15.4	0.0 7035													
s_1	0 0			24 70357.9				0.0						0.0	0.0	78.3	
0 s_1	0.0	78.3 0 1980	15.4	0.0 7026 25 70264.1				96.8						0.0	0.0	78.3	
0	0.0	78.3	15.4	0.0 7017										175		70.3	
s_1				26 70170.4				0.0				0.0		0.0	0.0	78.3	
0	0.0	78.3	15.4	0.0 7007												E0 0	
es_1	0.0	0 1980 78.3		27 70076.7 0.0 6998				0.0						0.0	0.0	78.3	
.0 es_1	0.0		15.4	28 69983.0	0.0			96.8		78.3 0				0.0	0.0	78.3	
.0	0.0	78.3	15.4	0.0 6988												10.3	
s_1	- · · -			29 69889.3				0.0		0				0.0	0.0	78.3	
. 0	0.0	78.3	15.4	0.0 6979	5.710000	00.0 26	035.7	96.8	7	78.3	0.	0	0.0	175	5.1		
es_1 .0	0.0	0 1980 78.3	JUL 15.3	30 69795.7 0.0 6970										0.0	0.0	78.3	
	0.0	10.3	15.3	0.0 09/0	. U L U U U U	∪∪.∪ ∠6	035./	90.8	4	0.3	υ.	U	0.0	1/5	,.⊥		
•																	
es_1		0 1980	JUL	31 69702.0	0.0	0.	0	0.0	0.0	0	.0	0.0		0.0	0.0	78.3	

																F'roi	.n
Stora	ge to					_		,		ation			,				
						F'r	om River					Carrie					
			_	T 2 4	1		Targ	gt_0	BOM						otal		
Piwer	Carrier	Total			cial _	EOM Stor	n Dear	ao Piv		Pivo						River	
Reser		IOCAI				riorty Sto										For Use	For
	or Use R	elease	Evap			nt Limit										101 000	101
ID						(+)								-)	NA	(-)	(-
)	(-)		(-)	(-)			NA	(+)			(-		-)	NA			
				((1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
(11)	(12)	(13)	(14)	(15)) (16) (17) (18) (19)	(20)		(21)	(22)	(23)		
																50.0	
Res_1	0.0	0 1980 78.3		1 6960		0.0.8100000.0	0.0	0.0			0.0			.0	0.0	78.3	
Res_1		0 1980	12.3	2 6951		0.0	0.0	0.0	0.0		0.0	0.0		175.1	0.0	78.3	
0.0	0.0	78.3	12.2			.3100000.0		96.8		78.3		0.0	0.0	175.1		70.5	
Res_1		0 1980		3 6942		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.2	0.0	69336	.7100000.0	26035.7	96.8	7	78.3		0.0	0.0	175.1			
Res_1		0 1980	AUG	4 6933	36.7	0.0	0.0	0.0	0.0		0.0	0.0	0	.0	0.0	78.3	
0.0	0.0	78.3	12.2			.2100000.0				78.3		0.0	0.0	175.1			
Res_1		0 1980		5 6924		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.2	0.0	69155	.7100000.0	26035.7	96.8	1	78.3		0.0	0.0	175.1			
Res 1		0 1980	AIIC	6 6915	55.7	0.0	0.0	0.0	0.0		0.0	0.0	0	. 0	0.0	78.3	
0.0	0.0	78.3	12.2			.1100000.0		96.8		78.3		0.0	0.0	175.1		,0.5	
Res_1		0 1980		7 6906		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.2			.6100000.0		96.8		78.3		0.0	0.0	175.1			
Res_1		0 1980		8 6897		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.2			.2100000.0				78.3		0.0	0.0	175.1		50.0	
Res_1 0.0	0.0	0 1980 78.3	12.2	9 6888		0.0.7100000.0	0.0	0.0 96.8	0.0	78.3	0.0	0.0	0.0	.0 175.1	0.0	78.3	
Res_1		0 1980		10 6879		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.2			.2100000.0				78.3		0.0	0.0	175.1		70.5	
Res_1		0 1980	AUG	11 6870	03.2	0.0	0.0	0.0	0.0		0.0	0.0	0	.0	0.0	78.3	
0.0	0.0	78.3	12.2			.8100000.0				78.3		0.0	0.0	175.1			
Res_1		0 1980		12 6861		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.1			.3100000.0				78.3		0.0	0.0	175.1		70.3	
Res_1 0.0	0.0	0 1980 78.3	12.1	13 6852		0.0 .9100000.0	0.0	0.0 96.8	0.0	78.3	0.0	0.0	0.0	.0 175.1	0.0	78.3	
Res_1	0.0	0 1980		14 6843		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.1			.4100000.0		96.8		78.3		0.0	0.0	175.1			
Res_1		0 1980	AUG	15 6834	11.4	0.0	0.0	0.0	0.0		0.0	0.0	0	.0	0.0	78.3	
0.0	0.0	78.3	12.1	0.0	68251	.0100000.0	26035.7	96.8	7	78.3		0.0	0.0	175.1			
D 1		0 1000	3.770	16 6005	-1 0	0 0	0 0	0 0	0 0		0 0	0 0	0	0	0 0	70.3	
Res_1 0.0	0.0	0 1980 78.3	12.1	16 6825		0.0	0.0	0.0 96.8	0.0	78.3	0.0	0.0	0.0	.0 175.1	0.0	78.3	
Res_1	0.0	0 1980		17 6816		0.0	0.0	0.0	0.0		0.0	0.0		.0	0.0	78.3	
0.0	0.0	78.3	12.1			.2100000.0		96.8		78.3		0.0	0.0	175.1		70.5	
Res_1		0 1980	AUG	18 6807	70.2	0.0	0.0	0.0	0.0		0.0	0.0	0	.0	0.0	78.3	
0.0	0.0	78.3	12.1	0.0	67979	.8100000.0	26035.7	96.8	7	78.3		0.0	0.0	175.1			
Res_1		0 1980		19 6797		0.0	0.0	0.0	0.0		0.0	0.0		. 0	0.0	78.3	
0.0	0.0	78.3	12.1			.5100000.0				78.3		0.0	0.0	175.1		70 2	
Res_1 0.0	0.0	0 1980 78.3	12.1	20 6788		0.0.1100000.0	0.0 26035 7		0.0		0.0	0.0	0.0	.0 175.1	0.0	78.3	
0.0	0.0	70.5	12.1	0.0	01155	.1100000.0	20033.7	30.0		, 0.5		0.0	0.0	1,3.1			
Res_1		0 1980	AUG	21 6779	99.1	0.0	0.0	0.0	0.0		0.0	0.0	0	.0	0.0	78.3	
0.0	0.0		12.0			.7100000.0								175.1			
Res_1		0 1980				0.0									0.0	78.3	
0.0	0.0	78.3	12.0			.4100000.0										E0 0	
Res_1	0.0	0 1980 78.3	AUG 12.0	23 6761		0.0		0.0							0.0	78.3	
Res_1		0 1980		24 6752				0.0						.0	0.0	78.3	
0.0	0.0	78.3	12.0			.7100000.0								175.1		70.5	
Res_1		0 1980				0.0		0.0							0.0	78.3	
0.0	0.0	78.3	12.0	0.0	67347	.4100000.0	26035.7	96.8	7	78.3		0.0	0.0	175.1			
Res_1		0 1980				0.0									0.0	78.3	
0.0 Res_1	0.0	78.3 0 1980	12.0			.1100000.0	0.0									78.3	
0.0	0.0	78.3	12.0			.8100000.0										18.3	
Res_1		0 1980						0.0						.0	0.0	78.3	
0.0	0.0	78.3	12.0			.6100000.0								175.1			
Res_1				29 6707	76.6	0.0	0.0	0.0	0.0		0.0	0.0			0.0	78.3	
0.0	0.0	78.3	12.0			.3100000.0						0.0		175.1		_	
Res_1						0.0									0.0	78.3	
0.0	0.0	78.3	12.0	0.0	00896	.0100000.0	20035.7	96.8	`	18.3		U.U	0.0	1/5.1			
Res_1		0 1980	AUG	31 6689	96.0	0.0	0.0	0.0	0.0		0.0	0.0	0	. 0	0.0	78.3	
0.0	0.0	78.3				.8100000.0										. 5 . 5	

ID	ir	Total	-	From River by From Carrier by Targt_0 BOM	
Reservo: Exc for ID	ir	Total		Initial Total	River
) (·	TT	10001		Seep & EOM Stor_n Decree River River River River River Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc Loss Supply 1	For Use For
) (-		lease Acc Year		Spill Content Limit Limit Inflow Release Divert by Well Outflow Day NA $(+)$ $(+)$ $(+)$ $(-)$ $(+)$ $(+)$ $(-)$ NA	(-) (-
(11)	-)		(-)	(-) NA NA NA (+) (+) (-) NA	
·/	(12)	(13)	(14)	(1) (2) (3) (4) (5) (6) (7) (8) (9) (15) (16) (17) (18) (19) (20) (21) (22) (23)	(10)
Res_1		0 1980	SEP	1 66805.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	77.6
0.0 Res_1	0.0	77.6 0 1980	10.3 SEP	0.0 66717.9100000.0 26035.7 100.0 77.6 0.0 0.0 177.6 2 66717.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	77.1
0.0	0.0	77.1	10.3	0.0 66630.5100000.0 26035.7 100.0 77.1 0.0 0.0 177.1	
Res_1 0.0	0.0	0 1980 76.8	10.3	3 66630.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.8
Res_1	0 0	0 1980 76.6		4 66543.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	76.6
0.0 Res_1	0.0	0 1980	10.2 SEP	0.0 66456.7100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 5 66456.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.2	0.0 66369.9100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1		0 1980		6 66369.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.2 SEP	0.0 66283.0100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 7 66283.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.2	0.0 66196.2100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1 0.0	0.0	0 1980 76.6	SEP 10.2	8 66196.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	76.6
Res_1	0 0	0 1980		9 66109.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.2 SEP	0.0 66022.6100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 10 66022.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.2	0.0 65935.9100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1		0 1980		11 65935.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.2 SED	0.0 65849.1100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 12 65849.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.2	0.0 65762.3100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1 0.0	0.0	0 1980 76.6	SEP 10.2	13 65762.3	76.6
Res_1	0 0	0 1980	SEP	14 65675.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.2 SEP	0.0 65588.8100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 15 65588.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.2	0.0 65502.1100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1		0 1980		16 65502.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.1 SEP	0.0 65415.4100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 17 65415.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.1	0.0 65328.6100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	76.6
Res_1 0.0	0.0	0 1980 76.6	10.1	18 65328.6	76.6
Res_1 0.0	0.0	0 1980 76.6	SEP 10.1	19 65241.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	76.6
Res_1	0.0	0 1980		20 65155.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.1	0.0 65068.5100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1		0 1980		21 65068.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.1 SEP	0.0 64981.9100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 22 64981.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.1	0.0 64895.2100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1 0.0	0.0	0 1980 76.6	SEP 10.1	23 64895.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	76.6
Res_1	0 0	0 1980		24 64808.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.1 SEP	0.0 64721.9100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 25 64721.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.1	0.0 64635.2100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1		0 1980		26 64635.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.1 SEP	0.0 64548.6100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 27 64548.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.0	0.0 64461.9100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	
Res_1 0.0	0.0	0 1980 76.6	SEP 10.0	28 64461.9	76.6
Res_1		0 1980	SEP	29 64375.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0 Res_1	0.0	76.6 0 1980	10.0 SEP	0.0 64288.7100000.0 26035.7 100.0 76.6 0.0 0.0 176.6 30 64288.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	76.6
0.0	0.0	76.6	10.0	0.0 64202.1100000.0 26035.7 100.0 76.6 0.0 0.0 176.6	

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO. 2

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_1
RIVER LOCATION : Exist. Reservoir

From Storage to Station Bala

Stora	ge to						Fr	om Rive Tai	by					lance n Car		r by				110	
			_		Initial			Taı	rgt_0	В	MC							То	tal	River	
River	Carrier	Total		5	Seep &	E	OM Stor	_n Deci	ree 1	River		Rive	er	Rive	er	Rive	er			111101	
Reser			D		Storage														ply	For Use	For
ID Exc I	or use k	Release Acc Year						(+)	(+)		-) ste		(+)		(+)		(-)		NA	(-)	(-
)	(-)	NA	(-)				NA	NA	(+)	(+	⊢)	(-	-)	(-)	1	NA			
(11)	(12)	(13)	(14)		(1)		(2)) (17							(21)		(22)		(23)		(10)	
(11)	(12)					(10			, , 	(1)				(21)							
D 1					40075 0															10.0	
Res_1 0.0	0.0	1 1979 10.8	0.0	Τ	49975.0		0.0 50000.0					35.8	0.0	0.0	0.0	0.0		32.5	0.0	10.8	
Res_1		1 1979	OCT	2	49964.2		0.0	0.0	0.0	0	. 0		0.0		0.0		0.0		0.0	0.0	
0.0	0.0	0.0 1 1979	0.0 OCT	2	0.0 499 49964.2	64.2	50035.8	50000.0	0.0		. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
Res_1 0.0	0.0	0.0	0.0	3		64.2	50035.8					0.0	0.0	0.0		0.0		96.8	0.0	0.0	
Res_1		1 1979		4	49964.2		0.0	0.0	0.0		. 0		0.0		0.0		0.0		0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	5	0.0 499 49964.2		50035.8	50000.0		6.8	. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
0.0	0.0	0.0	0.0	5			50035.8			6.8		0.0	0.0	0.0	0.0	0.0		96.8	0.0	0.0	
D 1		1 1070	o am	_	10061 0		0 0	0 0	0 0	0	0		0 0		0 0		0 0		0 0	0.0	
Res_1 0.0	0.0	1 1979 0.0	OCT 0.0	ь	49964.2 0.0 499		0.0 50035.8	0.0 50000.0	0.0	6.8	. 0		0.0	0.0	0.0		0.0	96.8	0.0	0.0	
Res_1		1 1979	OCT	7	49964.2		0.0	0.0	0.0	0	. 0		0.0		0.0		0.0		0.0	0.0	
0.0	0.0	0.0	0.0 OCT	0	0.0 499 49964.2		50035.8					0.0	0 0	0.0	0 0	0.0		96.8	0 0	0 0	
Res_1 0.0	0.0	1 1979 0.0	0.0	8			50035.8	0.0 50000.0	0.0		. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
Res_1		1 1979		9	49964.2		0.0	0.0	0.0	0	. 0		0.0		0.0		0.0		0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	1.0	0.0 499 49964.2	64.2	50035.8		0.0			0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
0.0	0.0	0.0	0.0	10		64.2	50035.8	0.0 50000.0		6.8		0.0	0.0	0.0	0.0	0.0		96.8	0.0	0.0	
		1 1070			10051 0					•	•										
Res_1 0.0	0.0	1 1979 0.0	OCT 0.0	TT	49964.2 0.0 499		0.0 50035.8	0.0 50000.0	0.0	6.8	. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
Res_1		1 1979	OCT	12	49964.2		0.0	0.0	0.0	0	. 0		0.0		0.0		0.0		0.0	0.0	
0.0	0.0	0.0	0.0 OCT	1 2	0.0 499 49964.2	64.2	50035.8	50000.0	0.0		. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
Res_1 0.0	0.0	1 1979 0.0	0.0	13		64.2	50035.8					0.0	0.0	0.0	0.0	0.0		96.8	0.0	0.0	
Res_1		1 1979		14	49964.2		0.0	0.0	0.0	0	. 0		0.0		0.0		0.0		0.0	0.0	
0.0 Res 1	0.0	0.0 1 1979	0.0 OCT	15	0.0 499 49964.2		50035.8		0.0	6.8	. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
0.0	0.0	0.0	0.0	13			50035.8			6.8		0.0	0.0	0.0	0.0	0.0		96.8	0.0	0.0	
D 1		1 1070	OCITI	1.0	10064 2		0 0	0 0	0 0	0	0		0 0		0 0		0 0		0 0	0.0	
Res_1 0.0	0.0	1 1979 0.0	OCT 0.0	10	49964.2 0.0 499		0.0 50035.8	0.0 50000.0	0.0		. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
Res_1		1 1979		17	49964.2		0.0	0.0	0.0	0	. 0		0.0		0.0		0.0		0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	1 Ω	0.0 499 49964.2		50035.8	50000.0	0.0		. 0	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
0.0	0.0	0.0	0.0	10			50035.8					0.0	0.0	0.0	0.0	0.0		96.8	0.0	0.0	
Res_1		1 1979		19	49964.2		0.0	0.0	0.0		. 0		0.0		0.0		0.0		0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	2.0	49964.2		50035.8	0.0		6.8 0		0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
0.0	0.0	0.0	0.0				50035.8							0.0				96.8		0.0	
Res_1		1 1979	OCT	21	49964.2		0 0	0 0	0 0	0	Λ		0 0		0 0		0 0		0.0	0.0	
0.0	0.0	0.0	0.0		0.0 499														0.0	0.0	
Res_1				22	49964.2														0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	23	0.0 499 49964.2		50035.8												0.0	0.0	
0.0	0.0	0.0	0.0	23			50035.8												0.0	0.0	
Res_1		1 1979		24	49964.2				0.0										0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	25	49964.2		50035.8												0.0	0.0	
0.0	0.0	0.0	0.0				50035.8													0	
Res_1		1 1979	ОСТ	26	49964.2		0.0	0 0	0.0	0	n		0 0		0 0		0 0		0.0	0.0	
0.0	0.0	0.0	0.0	∠0			50035.8												0.0	0.0	
Res_1		1 1979		27	49964.2		0.0		0.0										0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 OCT	28	0.0 499 49964.2															0.0	
0.0	0.0	0.0	0.0				50035.8					0.0		0.0				96.8		0	

Res_1 0.0	0.0	1 1979 0.0	OCT 0.0		49964.2 0.0 49964.2	0.0 50035.8		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 0.0	0.0	1 1979 0.0	OCT 0.0		49964.2 0.0 49964.2	0.0 50035.8	0.0 50000.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0	0.0 96.8	0.0	0.0
Res_1 0.0	0.0	1 1979 0.0	OCT 0.0		49964.2 0.0 49964.2	0.0 50035.8		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 0.0	0.0	1 1980 10.8	TOT 0.0	-1	49975.0 0.0 0.0	0.0	0.0	0.0	0.0	55.8	0.0	0.0	0.0	0.0	0.0	10.8

Storag	ge to				F	rom River	bv	Stat	ion Bal Fron	lance m Carrie:	r bv		From	
			_			Tar	gt_0	BOM _						
River	Carrier	Total		Initia Seep &	EOM Sto	r_n Decr	ee Rive	 er R	iver	River	River	Total River	River	
Reserv				Storag	Priorty St	orage Exc	_Pln I	Loss P	riorty	Sto_Exc	Loss	Supply	For Use I	For
Exc fo	r Use Re		-	-	ntent Limi A (+)					-		flow NA	(-)	(–
)	(-)				NA NA							NA	(-)	(-
(11)	(10)	(12)	(14)		(2)								(10)	
(11)	(12)	(13)	(14)	(15)	(16) (1	./) (18	(19)			(21)	(22)	(23)		
Res_1 0.0	0.0	1 1979 0.0	0.0	1 49964. 0.0 49	0.0 964.2 50035.						0.0	0.0	0.0	
Res_1		1 1979		2 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res 1	0.0	0.0 1 1979	0.0 NOV	0.0 49 3 49964.	964.2 50035. 2 0.0	0.0	100.0	0.0	0.0	0.0		0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8	100.0	0	.0	0.0	0.0 1	00.0	0.0	
Res_1 0.0	0.0	1 1979 0.0	NOV 0.0	4 49964.	0.0 964.2 50035.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	1 1979		5 49964.		0.0	0.0	0.0	0.0				0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8	100.0	0	.0	0.0	0.0 1	00.0		
Res_1		1 1979	NOV	6 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0		964.2 50035.					0.0		00.0	0 0	
Res_1 0.0	0.0	1 1979 0.0	NOV 0.0	7 49964. 0.0 49	0.0 964.2 50035.	0.0 8 50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1		1 1979		8 49964.		0.0	0.0	0.0	0.0				0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 NOV	9 49964.	964.2 50035. 2 0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8	100.0	0	.0	0.0	0.0 1	00.0		
Res_1 0.0	0.0	1 1979 0.0	NOV 0.0	10 49964. 0.0 49	0.0 964.2 50035.	0.0 8 50035.8	0.0 100.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1		1 1979	NOV	11 49964.	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0		964.2 50035.					0.0		.00.0	0.0	
Res_1 0.0	0.0	1 1979 0.0	NOV 0.0	12 49964.	0.0 964.2 50035.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	1 1979		13 49964.		0.0	0.0	0.0	0.0				0.0	
0.0	0.0	0.0	0.0		964.2 50035.				.0	0.0		00.0	0 0	
Res_1 0.0	0.0	1 1979 0.0	NOV 0.0	14 49964. 0.0 49	0.0 964.2 50035.	0.0 8 50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1		1 1979		15 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8	100.0	0	. 0	0.0	0.0 1	00.0		
Res_1		1 1979		16 49964.		0.0	0.0	0.0	0.0		0.0		0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 NOV	0.0 49 17 49964.	964.2 50035. 2 0.0	0.0	100.0	0.0	0.0	0.0	0.0 1		0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8	100.0	0	.0	0.0	0.0 1	00.0		
Res_1 0.0	0.0	1 1979 0.0	0.0	18 49964. 0.0 49	0.0 964.2 50035.	0.0 8 50035.8	100.0	0.0	0.0	0.0		0.0	0.0	
Res_1		1 1979	NOV	19 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
0.0 Res_1	0.0	0.0	0.0 NOV		964.2 50035. 2 0.0						0.0 1		0.0	
0.0	0.0	0.0			964.2 50035.								0.0	
Res_1		1 1979	NOV	21 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8							2 2	
Res_1 0.0	0.0	1 1979	0.0	22 49964. 0.0 49	0.0 964.2 50035.		0.0						0.0	
Res_1		1 1979	NOV	23 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 NOV	0.0 49 24 49964.	964.2 50035. 2 0.0		100.0						0.0	
0.0	0.0	0.0	0.0	0.0 49	964.2 50035.	8 50035.8	100.0	0	.0	0.0	0.0 1	00.0		
Res_1 0.0	0.0	1 1979 0.0	NOV 0.0		0.0 964.2 50035.								0.0	
		1 1070	MOTT	26 42264		0 0	0 0	0 0	0.0	2 2	2 2	0.0	0 0	
Res_1 0.0	0.0	0.0	0.0		0.0 964.2 50035.								0.0	
Res_1		1 1979	NOV	27 49964.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 1 1979	0.0 NOV		964.2 50035. 2 0.0								0.0	
0.0	0.0	0.0	0.0		964.2 50035.									

Res_1 0.0	0.0	1 1979 0.0	NOV 2 0.0	9 49964.2 0.0 49964.2	0.0 50035.8		0.0 0.0 100.0	0.0	0.0	0.0 0.0	0.0
Res_1	0 0	1 1979		49964.2	0.0		0.0		0.0	0.0 0.0	0.0
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8	50035.8	100.0	0.0 0.0	0.0	100.0	
Res_1	0.0	1 1980 0.0	TOT -	1 49964.2	0.0		0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0

From Storage to Station Balance

														Fro	m
Storage	e to							St	ation E	Balanc	e				
					From	River	by		Fı	rom Ca	rrie	r by			
			_	Initial										Pinor	
River (arrier	Total		Initial Seep & E Storage Pri	OM Storn	Decre	e Riv		River	Riv	er	River	. IOLAI River	KIVEL	
Reservo	oir	10041		Storage Pri	ortv Storac	e Exc	Pln	Loss	Priort	tv Sto	Exc	Loss	Supply	For Use	For
Exc for	r Use Re	elease	Evap	Spill Content	Limit	Limit	Inflow	Rel	ease I	Divert	by	Well Out	flow		
ID				Day NA										(-)	(
)	(-)	NA	(-)	(-) NA								-)			
				(1)										(10)	
(11)	(12)	(13)	(14)	(15) (16) (17)	(18)	(19)	(20)	(21	.)	(22)	(23)		
D 1		 1 1979		1 40064 2										0 0	
Res_1 0.0	0.0	0.0	0.0	1 49964.2 0.0 49964.2										0.0	
Res 1	0.0	1 1979		2 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2										0.0	
Res_1	0.0	1 1979		3 49964.2	0.0 0.		0.0					0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979	DEC	4 49964.2	0.0 0.	0	0.0	0.0	0.	. 0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		1 1979		5 49964.2			0.0			. 0		0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		
D 1		1 1000	D=~	C 400C4 0	0 0 0	0	0 0	0 0	_	0	0 0	^ ^			
Res_1 0.0	0.0	1 1979 0.0	DEC 0.0	6 49964.2 0.0 49964.2								0.0		0.0	
0.0 Res_1	0.0	1 1979		7 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2									96.8	0.0	
Res_1	0.0	1 1979		8 49964.2									0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979	DEC	9 49964.2	0.0 0.	0	0.0	0.0	0.	. 0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979		10 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		
D 1		1 1070	DEG	11 40064 0	0 0 0	0	0 0	0 0	0	0	0 0	0 0	0.0	0 0	
Res_1 0.0	0.0	1 1979 0.0	0.0	11 49964.2 0.0 49964.2									96.8	0.0	
Res 1	0.0	1 1979		12 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2										0.0	
Res_1		1 1979		13 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		1 1979		14 49964.2								0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2								0.0	96.8		
Res_1		1 1979		15 49964.2			0.0			.0				0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		1 1979	DEC	16 49964.2	0.0 0.	0	0 0	0 0	0	0	0 0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2										0.0	
Res_1	0.0	1 1979		17 49964.2	0.0 0.							0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979		18 49964.2									0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		
Res_1		1 1979		19 49964.2									0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2										0 0	
Res_1	0 0			20 49964.2 0.0 49964.2										0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	90.8		0.0	0.0		0.0	90.8		
Res_1		1 1070	DEC	21 49964.2	0 0 0	n	0 0	0 0	٥	٥	0 0	0 0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2										0.0	
Res_1	0.0			22 49964.2										0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979	DEC	23 49964.2	0.0 0.	0	0.0	0.0	0.	. 0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979		24 49964.2									0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2									96.8		
Res_1	0 0	1 1979		25 49964.2										0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	JUU33.8 5U	0.55.8	90.8		0.0	0.0		0.0	20.0		
Res_1		1 1979	DEC	26 49964.2	0.0 0.	0	0.0	0.0	0 .	. 0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0 49964.2										2.0	
Res_1		1 1979		27 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2											
Res_1		1 1979		28 49964.2								0.0		0.0	
0.0	0.0	0.0	0.0	0.0 49964.2									96.8		
Res_1	0 0			29 49964.2										0.0	
0.0	0.0	0.0	0.0	0.0 49964.2	50035.8 50	035.8	96.8		0.0	0.0		0.0	96.8		

Res_1 0.0	0.0	1 1979 0.0		49964.2 0.0 49964.2			0.0 96.8	0.0	0.0	0.0	 0.0 96.8	0.0	0.0
Res_1 0.0	0.0	1 1979 0.0		49964.2 0.0 49964.2					0.0	0.0	 0.0	0.0	0.0
Res_1	0.0	1 1980 0.0	TOT 0.0	49964.2 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0

Stora	ge to								St	atio	n Ba	lance	e				From	n
						Fr	om River	by	DOM		Fro	m Cai	rrie	r by				
			_		Initial		om River Tar	gt_0 	БОМ							Total	River	
	Carrier	Total			Seep & E	OM Stor	_n Decr	ee Riv	ver	Riv	er	Rive	er	Rive	er			_
Reserv	701r or Use Re				Storage Pri pill Content												For Use	For
					NA												(-)	(-
)	(-)	NA	(-)		-) NA										N			
(11)	(12)	(13)	(14)		(15) (16									(22		(23)	(10)	
					10061 0													
Res_1 0.0	0.0	1 1980 0.0	0.0	1	49964.2 0.0 49964.2		0.0 50035 8										0.0	
Res_1	0.0	1 1980		2	49964.2	0.0		0.0						0.0	0.0		0.0	
0.0	0.0	0.0	0.0		0.0 49964.2					0.0		0.0			9			
Res_1	0.0	1 1980 0.0	JAN 0.0	3	49964.2 0.0 49964.2	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	1 1980		4	49964.2	0.0		0.0			0.0		0.0	0.0	0.0		0.0	
0.0	0.0	0.0	0.0		0.0 49964.2					0.0		0.0		0.0	9	6.8		
Res_1		1 1980		5	49964.2	0.0		0.0			0.0		0.0		0.0		0.0	
0.0	0.0	0.0	0.0		0.0 49964.2	50035.8	50035.8	96.8	8	0.0		0.0		0.0	9	6.8		
Res_1		1 1980	JAN	6	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0	_	0.0 49964.2					0.0		0.0			9			
Res_1	0.0	1 1980 0.0	JAN 0.0	./	49964.2 0.0 49964.2	0.0		0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	1 1980		8	49964.2	0.0		0.0			0.0		0.0		0.0		0.0	
0.0	0.0	0.0	0.0		0.0 49964.2		50035.8	96.8	8	0.0		0.0			9			
Res_1	0 0	1 1980		9	49964.2	0.0		0.0			0.0		0.0		0.0		0.0	
0.0 Res_1	0.0	0.0 1 1980	0.0 JAN	1.0	0.0 49964.2 49964.2	0.0		96.8		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0 49964.2					0.0		0.0	0.0	0.0		6.8	0.0	
		1 1000			10061 0	0 0	0 0	0 0										
Res_1 0.0	0.0	1 1980 0.0	JAN 0.0	11	49964.2 0.0 49964.2	0.0 50035 8	0.0					0.0	0.0	0.0	0.0	0.0	0.0	
Res_1	0.0	1 1980		12	49964.2	0.0		0.0		0.0	0.0		0.0		0.0		0.0	
0.0	0.0	0.0	0.0		0.0 49964.2										9			
Res_1	0 0	1 1980		13	49964.2	0.0		0.0			0.0		0.0		0.0		0.0	
0.0 Res_1	0.0	0.0 1 1980	0.0 JAN	14	0.0 49964.2 49964.2	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0 49964.2					0.0		0.0		0.0		6.8		
Res_1	0.0	1 1980		15	49964.2	0.0		0.0			0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0 49964.2	50035.8	50035.8	96.8	8	0.0		0.0		0.0	9	6.8		
Res_1		1 1980	JAN	16	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0 49964.2													
Res_1 0.0	0.0	1 1980 0.0	JAN 0.0	17	49964.2 0.0 49964.2	0.0		0.0		0.0		0.0	0.0	0.0	0.0		0.0	
Res_1	0.0	1 1980		18	49964.2	0.0	0.0					0.0	0.0		0.0		0.0	
0.0	0.0	0.0	0.0		0.0 49964.2					0.0		0.0		0.0		6.8		
Res_1 0.0	0.0	1 1980		19	49964.2 0.0 49964.2	0.0		0.0									0.0	
Res_1	0.0				49964.2												0.0	
0.0	0.0	0.0	0.0		0.0 49964.2													
Res_1		1 1000	TAN	21	49964.2	0 0	0.0	0 0	0 0		0 0		0 0		0 0	0.0	0.0	
0.0	0.0	0.0	0.0	21	0.0 49964.2												0.0	
Res_1		1 1980		22			0.0										0.0	
0.0	0.0	0.0	0.0		0.0 49964.2													
Res_1	0.0	1 1980 0.0	JAN 0.0	23	49964.2 0.0 49964.2	0.0		0.0									0.0	
Res_1	0.0	1 1980		24		0.0		0.0									0.0	
0.0	0.0	0.0	0.0		0.0 49964.2													
Res_1	0.0	1 1980 0.0	JAN 0.0	25	49964.2 0.0 49964.2	0.0 50035 8		0.0								0.0	0.0	
0.0	0.0																	
Res_1				26	49964.2		0.0										0.0	
0.0	0.0	0.0 1 1980	0.0 JAN	27	0.0 49964.2 49964.2		50035.8										0.0	
Res_1 0.0	0.0	0.0	0.0	۷/	49964.2 0.0 49964.2												0.0	
Res_1		1 1980	JAN	28	49964.2	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0 49964.2												0 0	
Res_1	0.0	0.0	JAN 0.0	29	49964.2 0.0 49964.2		0.0 50035.8					0.0		0.0		0.0	0.0	
								,,,,	-	5		5		5				

Res_1 0.0	0.0	1 1980 0.0	JAN 3	0.0 49964.2 0.0 49964.2	0.0 50035.8	0.0 50035.8		0.0	0.0	0.0	96.8	0.0
Res_1 0.0	0.0	1 1980 0.0	JAN 3	1 49964.2 0.0 49964.2	0.0 50035.8	0.0 50035.8					96.8	0.0
Res_1	0.0	1 1980 0.0	TOT -	1 49964.2 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0

										O.L.		D - 1							m
torag	e to						Fr	om River	bv		ation				bv.				
			_					om River Tar	gt_0	BOM									
	Carrier				initial . ep &												Total	River	
eserv		IOLAI						_n Decr rage Exc									Supply	For Use	Fo
		Release	Evap					Limit											
		Acc Year						(+)	(+)	(-)		(+)		+)		(-)		(-)	
	(-)	NA	(-)						(+)		+)			7)			NA (9)	(10)	
11)	(12)	(13)	(14)					(3)					(21)	,,	(22)		(23)	(10)	
							`												
es_1 .0	0.0	1 1980 0.0	0.0					0.0 50035.8					0.0	0.0	0.0		0.0 07.1	0.0	
.o es_1	0.0	1 1980			19964.2		0.0	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
. 0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8	107.		0.0		0.0		0.0		07.1		
es_1	0 0	1 1980			19964.2		0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	
.0 es_1	0.0	0.0 1 1980	0.0 FEB		1.0 4996 19964.2		0.0	50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	07.1	0.0	
.0	0.0	0.0	0.0					50035.8			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
es_1		1 1980		5 4	19964.2		0.0	0.0	0.0	0.0		0.0		0.0			0.0	0.0	
0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8	107.		0.0		0.0		0.0	1	07.1		
og 1		1 1980	صعط	c 4	10064 2		0 0	0 0	0 0	0 0		n n	,			0 0	0 0	0 0	
es_1 .0	0.0	0.0	FEB 0.0		19964.2).0 4996		0.0 50035.8	0.0 50035.8	0.0 107.	0.0		0.0	0.0	0.0	0.0		0.0 07.1	0.0	
es_1		1 1980			19964.2		0.0	0.0	0.0	0.0		0.0		0.0	0	0.0		0.0	
0	0.0	0.0	0.0			4.2	50035.8	50035.8		1	0.0		0.0		0.0	1	07.1		
s_1		1 1980			19964.2		0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	
0	0.0	0.0 1 1980	0.0 FEB).0 4996 [,] 19964.2		0.0	50035.8	107.	0.0	0.0	0.0	0.0	0.0	0.0		07.1 0.0	0.0	
s_1 0	0.0	0.0	0.0					50035.8			0.0	0.0		0.0	0.0		0.0	0.0	
s_1		1 1980			19964.2		0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	
0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8	107.	1	0.0		0.0		0.0	1	07.1		
_ 1		1 1000	FFD	11 /	10064 0		0 0	0 0	0 0	0 0		0 0	,			0 0	0 0	0 0	
s_1 0	0.0	1 1980 0.0	FEB 0.0		19964.2 1 0 4996		0.0 50035 8	0.0 50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 07.1	0.0	
s_1	0.0	1 1980			19964.2		0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
0	0.0	0.0	0.0					50035.8			0.0		0.0		0.0		07.1		
s_1		1 1980			19964.2		0.0	0.0	0.0			0.0		0.0		0.0		0.0	
0 1	0.0	0.0	0.0 FEB					50035.8	107.	1 0.0	0.0	0.0	0.0		0.0		07.1	0.0	
s_1 0	0.0	1 1980 0.0	0.0		19964.2 1 0 4996		0.0 50035 8	0.0 50035.8			0.0	0.0	0.0	0.0	0.0	0.0	0.0 07.1	0.0	
s_1	0.0	1 1980			19964.2		0.0	0.0		0.0		0.0		0.0	0.0	0.0		0.0	
0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8	107.		0.0		0.0		0.0	1	07.1		
_ 1		1 1000	FFD	1 (1	10064 0		0 0	0 0	0 0	0 0		0 0	,			0 0	0 0	0.0	
es_1 .0	0.0	1 1980 0.0	FEB 0.0		19964.2 1 0 4996		0.0	0.0 50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 07.1	0.0	
s_1	0.0	1 1980			19964.2		0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0		0.0	
0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8			0.0		0.0		0.0	1	07.1		
s_1	0 0	1 1980			19964.2		0.0	0.0	0.0			0.0		0.0		0.0		0.0	
0 s 1	0.0	0.0 1 1980	0.0					50035.8										0.0	
0	0.0	0.0	0.0					50035.8										0.0	
s_1		1 1980															0.0	0.0	
0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8	107.	1	0.0		0.0		0.0	1	07.1		
es_1		1 1980	EED	21 /	19964.2		0.0	0.0	0.0	0 0	(n n	(0.0	0.0	0.0	
.0	0.0	0.0	0.0					50035.8										0.0	
s_1		1 1980		22 4	19964.2		0.0	0.0	0.0	0.0		0.0	(0.0		0.0	0.0	0.0	
0	0.0	0.0	0.0				50035.8	50035.8											
s_1	0 0	1 1980			19964.2			0.0										0.0	
0 s_1	0.0	0.0 1 1980	0.0).0 4996 [,] 19964.2		50035.8	50035.8	107.								07.1 0.0	0.0	
s_1 0	0.0	0.0	0.0					50035.8										0.0	
s_1		1 1980	FEB	25 4	19964.2		0.0	0.0	0.0	0.0		0.0	(0.0		0.0	0.0	0.0	
0	0.0	0.0	0.0	0	0.0 4996	4.2	50035.8	50035.8	107.	1	0.0		0.0		0.0	1	07.1		
s_1		1 1020	FFD	26 4	19964 2		0 0	0 0	0 0	0 0		n n	() (0 0	0.0	0.0	
0	0.0	0.0	0.0					50035.8										0.0	
s_1				27 4	19964.2		0.0	0.0	0.0	0.0		0.0	(0.0		0.0	0.0	0.0	
0	0.0	0.0	0.0					50035.8											
s_1	0 0				19964.2												0.0	0.0	
0	0.0	0.0	0.0	U	.0 4996	4.2	50035.8	50035.8	TU/.	T	0.0		U.U		0.0	Τ	U / . I		

 $0.0 \qquad 0.0 \qquad 0.0 \qquad 0.0 \qquad -1.0 \qquad -1.0 \quad 3000.0 \qquad 0.0 \qquad 0.0 \qquad 0.0 \quad 3000.0$ 0 0

From

Station Balance Storage to From Carrier by From River by Targt_0 BOM _ Initial _____ Total River
Seep & EOM Stor_n Decree River River River River River
Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc Loss Supply For Use For River Carrier Total Reservoir Reservoir
Exc for Use Release Evap Spill Content Limit Limit Inflow Release Divert by Well Outflow (10)1 49964.2 0.0 0.0 0.0 Res 1 1 1980 MAR 0.0 0.0 0.0 0.0 0.0 49963.4 50035.8 50035.8 0.0 0.0 0.0 0.8 96.8 0.0 0.0 0.0 96.8 1 1980 2 49963.4 0.0 0.0 0.0 0.0 0.0 0.0 0 0 Res 1 MAR 0.0 49962.6 50036.6 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.8 96.8 0.0 1 1980 3 49962.6 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 MAR 0 0 96.8 0.0 0.0 49961.8 50037.4 50035.8 0.0 0.0 0.0 0.0 0.8 0.0 1 1980 4 49961.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 Res_1 MAR 0.0 49961.0 50038.2 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.8 0.0 0.0 1 1980 5 49961.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 MAR 0.0 0.0 49960.2 50039.0 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0 0 0.8 0.0 6 49960.2 0.0 0.0 Res_1 1 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49959.3 50039.8 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 7 49959.3 0.0 0.0 0.0 0.0 0.0 1 1980 0.0 0.0 0.0 MAR 0.0 Res 1 0.0 49958.5 50040.7 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.8 8 49958.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 0.0 MAR 0.0 Res 1 0.0 49957.7 50041.5 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 1 1980 9 49957.7 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 MAR 0.0 0.0 49956.9 50042.3 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.8 0.0 0.0 0.0 1 1980 MAR 10 49956.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 49956.1 50043.1 50035.8 96.8 0.0 0.0 0.0 96.8 0 0 0.0 0.8 0.0 1 1980 MAR 11 49956.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 49955.3 50043.9 50035.8 96.8 0.0 96.8 0.0 0.0 0.8 12 49955.3 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 0.0 Res 1 MAR 0.0 49954.4 50044.7 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 13 49954.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 Res 1 MAR 0.0 0.0 49953.6 50045.6 50035.8 96.8 0.0 0.0 96.8 0.0 0.0 0.0 0.8 1 1980 14 49953.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 MAR 0.0 0.0 49952.8 50046.4 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.8 0.0 1 1980 MAR 15 49952.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 49952.0 50047.2 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.8 0.0 1 1980 MAR 16 49952.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 49951.2 50048.0 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 17 49951.2 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 0.0 0.0 0.0 Res 1 MAR 0.0 49950.4 50048.8 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1 1980 MAR 18 49950.4 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 49949.6 50049.6 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.8 1 1980 0.0 0.0 Res 1 MAR 0.0 0.0 0.8 0.0 0.0 0.0 0.0 1 1980 0.0 Res 1 MAR 0.0 0.0 0.0 0 0 0 0 0 0 0.8 Res 1 1 1980 MAR 21 49947.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49947.1 50052.1 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.8 96.8 0.0 22 49947.1 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 Res 1 MAR 0.0 0.0 49946.3 50052.9 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.8 0.0 23 49946.3 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 Res 1 MAR 0.0 0.0 49945.5 50053.7 50035.8 96.8 0.0 0.0 0.0 96.8 0 0 0 0 0.8 0 0 24 49945.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 1 1980 MAR 0.0 0.0 49944.7 50054.5 50035.8 96.8 0.0 0.0 0.0 96.8 0 0 0.8 0 0 0 0 Res 1 1 1980 MAR 0.0 96.8 0.0 0.0 0.0 0.8 26 49943.9 0.0 0.0 Res 1 1 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49943.0 50056.1 50035.8 96.8 0.0 0.0 0.0 96.8 0 0 0 0 0 0 0.8 27 49943.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 0.0 0.0 Res 1 MAR 0.0 0.0 49942.2 50057.0 50035.8 96.8 0.0 0.0 0.0 0 0 0 0 0 0 0.8 28 49942.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 Res 1 MAR 0.0 0.0 49941.4 50057.8 50035.8 96.8 0.0 0.0 0.0 0 0 0 0 0 0 0.8 29 49941.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 1 1980 MAR 0.0 0.0 49940.6 50058.6 50035.8 96.8 0.0 0.0 0.0 96.8 0.0 0.0 0.0 0.8 30 49940.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1980 MAR Res 1 0 0 0.0 49939.8 50059.4 50035.8 96.8 0.0 0.0 96.8 0.0 0.0 0.0 1 1980 MAR 31 49939.8 0.0 0.0 0.0 Res 1 0.0 0.0 0 0 0.0

Storag	ge to			Station Balance From River by From Carrier by Targt_0 BOM	From	n
			_	Initial To	tal River	
River Reserv	Carrier	Total		Seep & EOM Stor_n Decree River River River River River Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc Loss Sup		For
	or Use Re	elease	Evap	Spill Content Limit Limit Inflow Release Divert by Well Outflow	pry for use	FOI
ID		Acc Year	_	Day NA (+) (+) (+) (-) (+) (-)	NA (-)	(-
)	(-)	NA	(-)	(-) NA NA NA (+) (+) (-) NA	0) (10)	
(11)	(12)	(13)	(14		9) (10)	
 Res_1		1 1980		1 49939.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	
0.0	0.0	0.0	10.9	0.0 49928.0 50061.0 50035.8 100.0 0.0 0.0 0.0 100.0	0 0 0 0	
Res_1 0.0	0.0	1 1980 0.0	10.9	2 49928.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
Res_1		1 1980		3 49917.1 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49906.2 50082.9 50035.8 100.0 0.0 0.0 100.0	0 0 0 0	
Res_1 0.0	0.0	1 1980 0.0	10.9	4 49906.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0	
Res_1	0.0	1 1980			0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49884.3 50104.8 50035.8 100.0 0.0 0.0 0.0 100.0		
Res_1		1 1980		6 49884.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0 1 1980	10.9	0.0 49873.4 50115.7 50035.8 100.0 0.0 0.0 0.0 100.0 7 49873.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
Res_1 0.0	0.0	0.0	10.9	0.0 49862.5 50126.6 50035.8 100.0 0.0 0.0 0.0 100.0	0.0 0.0	
Res_1		1 1980		8 49862.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49851.5 50137.5 50035.8 100.0 0.0 0.0 0.0 100.0	0 0 0 0	
Res_1 0.0	0.0	1 1980 0.0	10.9	9 49851.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49840.6 50148.5 50035.8 100.0 0.0 0.0 0.0 100.0	0.0 0.0	
Res_1	0.0	1 1980		10 49840.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49829.7 50159.4 50035.8 100.0 0.0 0.0 0.0 100.0		
Res_1		1 1980		11 49829.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0 Res_1	0.0	0.0 1 1980	10.9	0.0 49818.8 50170.3 50035.8 100.0 0.0 0.0 0.0 100.0 12 49818.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49807.8 50181.2 50035.8 100.0 0.0 0.0 0.0 100.0	0.0	
Res_1		1 1980			0.0 0.0	
0.0 Res_1	0.0	0.0 1 1980	10.9	0.0 49796.9 50192.2 50035.8 100.0 0.0 0.0 0.0 100.0 14 49796.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49786.0 50203.1 50035.8 100.0 0.0 0.0 0.0 100.0	0.0	
Res_1 0.0	0.0	1 1980 0.0	APR 10.9	15 49786.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
Res_1		1 1980	APR	16 49775.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49764.2 50224.9 50035.8 100.0 0.0 0.0 0.0 100.0		
Res_1	0 0	1 1980		17 49764.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0 Res_1	0.0	0.0 1 1980	10.9 APR	0.0 49753.3 50235.8 50035.8 100.0 0.0 0.0 0.0 100.0 18 49753.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49742.4 50246.7 50035.8 100.0 0.0 0.0 0.0 100.0	0.0	
Res_1		1 1980		19 49742.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0 Res_1	0.0	0.0	10.9	0.0 49731.5 50257.6 50035.8 100.0 0.0 0.0 0.0 100.0 20 49731.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9		0.0	
Res_1	0.0				0.0 0.0	
0.0 Res_1	0.0		10.9 APR	0.0 49709.7 50279.4 50035.8 100.0 0.0 0.0 0.0 100.0 22 49709.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49698.8 50290.3 50035.8 100.0 0.0 0.0 0.0 100.0	0.0	
Res_1					0.0 0.0	
0.0 Res_1	0.0	0.0	10.9	0.0 49687.9 50301.2 50035.8 100.0 0.0 0.0 0.0 100.0 24 49687.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49677.0 50312.1 50035.8 100.0 0.0 0.0 0.0 100.0	0.0	
Res_1 0.0	0.0	1 1980 0.0	APR 10.9	25 49677.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
Res 1	- · · ·				0.0 0.0	
0.0	0.0		10.9			
Res_1		1 1980	APR	27 49655.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49644.3 50344.8 50035.8 100.0 0.0 0.0 0.0 100.0	0.0 0.0	
Res_1 0.0	0.0		10.9	28 49644.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0	
Res_1		1 1980	APR	29 49633.4 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	
0.0	0.0	0.0	10.9	0.0 49622.6 50366.6 50035.8 100.0 0.0 0.0 0.0 100.0		
Res_1 0.0	0.0	1 1980 0.0	APR 10.9	0.0 49611.7 50377.4 50035.8 100.0 0.0 0.0 0.0 100.0	0.0 0.0	
					0.0 0.0	
Res_1						

From Storage to

							- T	^	DOM		I I OIII Cu		1 21			
			_	Initial			Tar	gt_u	BOM					Total	River	
River	Carrier	Total		Seep &	EOM	Stor	n Decr	ee Riv	rer	Rive	er Riv	er	River	River	111101	
Reser	voir			Storage	Prior	ty Sto:	rage Exc	_PIN	Loss	Pri	orty Sto	_Exc	Los	s Supply	For Use	For
				Spill Con												
				Day NA											(-)	(
)	(-)			(-)				(+)				(7)		NA) (9)	(10)	
(11)	(12)			(15)										(23)	(10)	
(± ± /	(12)	(13)	(± ± /	(13)										(23)		
Res_1		1 1980		1 49611.7			0.0							0.0	0.0	
0.0		0.0 1 1980	8.9				50035.8					0.0		96.8 1 0.0	0.0	
Res_1 0.0	0.0	0.0	MA1 8.9	2 49605.8		.1	49648.7	0.0			0.0 387.1		0.0		0.0	
Res_1		1 1980		3 49600.0		.1	0.0	0.0	0.0		0.0	0.0		1 0.0	0.0	
0.0	0.0	0.0	8.8	0.0 495	94.3 4	9632.0	49261.6	483.9			387.1		0.0	96.8		
Res_1		1 1980		4 49594.3		. 2		0.0			0.0	0.0		2 0.0	0.0	
0.0	0.0	0.0	8.8				48874.5			0.0	387.1 0.0	0.0	0.0	96.8 3 0.0	0.0	
Res_1 0.0	0.0	1 1980 0.0	8.8	5 49588.7 0.0 495		.3 8875 9		0.0		0.0			0.0	96.8	0.0	
0.0	0.0	0.0	0.0	0.0 193	05.1 1	0075.5	10107.1	103.2	,	0.0	307.1		0.0	50.0		
Res_1		1 1980	MAY	6 49583.1	3	. 3	0.0	0.0	0.0		0.0	0.0	3.	3 0.0	0.0	
0.0	0.0	0.0	8.8				48100.3									
Res_1		1 1980		7 49577.7		.4	0.0	0.0			0.0			4 0.0 96.8	0.0	
0.0 Res_1	0.0	0.0 1 1980	8.8 MAY	8 49572.3		.5	47713.2	0.0			387.1 0.0			5 0.0	0.0	
0.0	0.0	0.0	8.7				47326.1				387.1		0.0	96.8	0.0	
Res_1		1 1980	MAY	9 49567.1		. 5		0.0	0.0		0.0	0.0	3.	5 0.0	0.0	
0.0	0.0	0.0	8.7				46939.0						0.0			
Res_1				10 49561.9		.6	0.0 46551.9	0.0	0.0		0.0 387.1	0.0		6 0.0	0.0	
0.0	0.0	0.0	8.7	0.0 495	30.8 4	0980.5	40551.9	483.9	,	0.0	387.1		0.0	96.8		
Res_1		1 1980	MAY	11 49556.8	3	. 7	0.0	0.0	0.0		0.0	0.0	3.	7 0.0	0.0	
0.0	0.0	0.0	8.7				46164.8				387.1		0.0			
Res_1		1 1980		12 49551.8		. 8		0.0			0.0	0.0		8 0.0	0.0	
0.0 Res_1	0.0	0.0 1 1980	8.7	13 49546.9		.8	45777.7 0.0	483.9	0.0	0.0	387.1	0.0	0.0	96.8 8 0.0	0.0	
0.0	0.0	0.0	8.6				45390.6				387.1		0.0	96.8	0.0	
Res_1		1 1980		14 49542.1		.9	0.0	0.0	0.0		0.0	0.0		9 0.0	0.0	
0.0	0.0	0.0	8.6				45003.5			0.0			0.0	96.8		
Res_1		1 1980		15 49537.4		.0	0.0		0.0		0.0	0.0		0.0	0.0	
0.0	0.0	0.0	8.6	0.0 495	32.8 4	5098.4	44616.4	483.9	,	0.0	387.1		0.0	96.8		
Res_1		1 1980	MAY	16 49532.8	4	. 0	0.0	0.0	0.0		0.0	0.0	4.	0.0	0.0	
0.0	0.0	0.0	8.6				44229.3				387.1					
Res_1		1 1980		17 49528.2		.1		0.0	0.0		0.0	0.0		1 0.0	0.0	
0.0 Res_1	0.0	0.0 1 1980	8.6 MAY	18 49523.8		4343.4	43842.2	483.9			387.1 0.0		0.0	96.8 2 0.0	0.0	
0.0	0.0	0.0	8.6				43455.1				387.1			96.8	0.0	
Res_1		1 1980	MAY	19 49519.4		.3			0.0		0.0	0.0		3 0.0	0.0	
0.0	0.0	0.0	8.5				43068.0				387.1		0.0	96.8		
Res_1		1 1980		20 49515.1		.3	0.0		0.0		0.0	0.0		3 0.0	0.0	
0.0	0.0	0.0	8.5	0.0 495	11.0 4	3211.4	42080.9	483.9	,	0.0	387.1		0.0	96.8		
Res 1		1 1980	MAY	21 49511.0	4	. 4	0.0	0.0	0.0		0.0	0.0	4.	4 0.0	0.0	
0.0	0.0	0.0	8.5	0.0 495	06.9 4	2834.1	42293.8	483.9	9	0.0						
Res_1				22 49506.9											0.0	
0.0 Res_1	0.0	0.0	8.5 MAY	0.0 495 23 49502.9											0.0	
0.0	0.0	0.0	8.5												0.0	
Res_1		1 1980	MAY	24 49499.0	4	.7	0.0	0.0	0.0		0.0	0.0	4.	7 0.0	0.0	
0.0	0.0	0.0	8.5	0.0 494	95.2 4	1702.6	41132.5	483.9	9	0.0	387.1		0.0	96.8		
Res_1				25 49495.2											0.0	
0.0	0.0	0.0	8.4	0.0 494	91.5 4	1325.5	40745.4	483.9)	0.0	387.1		0.0	96.8		
Res_1		1 1980	MAY	26 49491.5	4	. 8	0.0	0.0	0.0		0.0	0.0	4.	8 0.0	0.0	
0.0	0.0	0.0	8.4													
Res_1		1 1980		27 49487.8											0.0	
0.0	0.0	0.0		0.0 494												
Res_1	0.0		MAY 8.4	28 49484.3			0.0 39584.1								0.0	
0.0 Res_1		0.0 1 1980		29 49480.9											0.0	
0.0	0.0	0.0		0.0 494											0.0	
Res_1		1 1980	MAY	30 49477.6	5	.1	0.0	0.0	0.0		0.0	0.0	5.	1 0.0	0.0	
0.0	0.0	0.0	8.4	0.0 494	74.3 3	9440.9	38809.9	483.9	9	0.0	387.1		0.0	96.8		
Res_1		1 1000	MVA	31 49474.3	_	2	0 0	0 0	0 0		0 0	0 0	E	2 0 0	0.0	
0.0	0.0	0.0		0.0 494											0.0	
Res_1				-1 49611.7											0.0	
0.0	U.U	0.0	8.3	0.0	U.U	-1.0	-1.0	T2000.0	J	U.U	1∠000.0		U.U 3	000.0		

From Storage to

					From River by		From Carrier by	•		
			_	Initial	Targt_0	BOM		Total	River	
River	Carrier	Total		Seep & EOM	Stor_n Decree	River	River River Riv	er River		_
eserv	olr r Use Re	elease	Evap	Storage Priorty Spill Content I	Storage Exc_Pln .imit	Loss flow Rela	Priorty Sto_Exc ease Divert by Well	Loss Supply	For Use	For
D D		Acc Year	Mo	Day NA (+)	(+) (+)			(-) NA	(-)	
	(-)	NA	(-)	(-) NA			+) (-) (-)	NA (2)	(10)	
11)	(12)	(13)	(14)	(1) (2)	(17) (18)			(8) (9)	(10)	
		 1 1980		1 40471 2					0.0	
les_1 0.0	0.0	0.0	20.3		587.3 38035.7 5		0.0 0.0	5.5 0.0	0.0	
es_1		1 1980	JUN	2 49456.4 5.7	0.0 0.0	0.0	0.0 0.0	5.7 0.0	0.0	
. 0	0.0	0.0	20.3		312.6 37635.7 5				0 0	
es_1 .0	0.0	1 1980 0.0	20.2	3 49441.8 5.9 0.0 49427.4 379	0.0 0.0 938.1 37235.7 5		0.0 0.0 0.0 400.0 0.0	5.9 0.0	0.0	
es_1		1 1980	JUN	4 49427.4 6.1	0.0 0.0	0.0	0.0 0.0	6.1 0.0	0.0	
. 0	0.0	0.0	20.2		563.6 36835.7 5			100.0	0 0	
es_1 .0	0.0	1 1980 0.0	20.1	5 49413.4 6.3 0.0 49399.6 371	3 0.0 0.0 -89.2 36435.7 5		0.0 0.0 0.0 400.0 0.0	6.3 0.0	0.0	
.0	0.0	1 1980 0.0	JUN 20.1	6 49399.6 6.5	0.0 0.0 315.0 36035.7 5			6.5 0.0	0.0	
.u .es_1	0.0	1 1980		7 49386.0 6.7				6.7 0.0	0.0	
. 0	0.0	0.0	20.0	0.0 49372.7 364	140.8 35635.7 5	00.0	0.0 400.0 0.0	100.0		
es_1 .0	0.0	1 1980 0.0	JUN 20.0	8 49372.7 7.0	0.0 0.0 066.7 35235.7 5			7.0 0.0	0.0	
.u es_1	0.0	1 1980		9 49359.7 7.2				7.2 0.0	0.0	
. 0	0.0	0.0	19.9	0.0 49347.0 356		00.0	0.0 400.0 0.0			
es_1	0.0	1 1980 0.0	JUN 19.9	10 49347.0 7.4	0.0 0.0 318.9 34435.7 5		0.0 0.0 0.0 400.0 0.0	7.4 0.0	0.0	
. 0	0.0	0.0	17.7	0.0 19331.3 333	10.5 51155.7 5	00.0	0.0 100.0 0.0	100.0		
.es_1	0 0			11 49334.5 7.6				7.6 0.0	0.0	
.0 es_1	0.0	0.0 1 1980	19.8 JUN	12 49322.3 7.8	945.1 34035.7 5 3 0.0 0.0			100.0 7.8 0.0	0.0	
. 0	0.0	0.0	19.8		571.4 33635.7 5					
es_1	0.0	1 1980 0.0	JUN 19.8	13 49310.3 8.1				8.1 0.0	0.0	
.0 es 1	0.0			14 49298.6 8.3	.97.8 33235.7 5 3 0.0 0.0			8.3 0.0	0.0	
. 0	0.0	0.0	19.7	0.0 49287.2 338	324.3 32835.7 5	00.0	0.0 400.0 0.0			
es_1 .0	0.0	1 1980 0.0	JUN 19.7	15 49287.2 8.5 0.0 49276.1 334	0.0 0.0 150.9 32435.7 5		0.0 0.0 0.0	8.5 0.0	0.0	
es_1		1 1980	JUN	16 49276.1 8.8	3 0.0 0.0	0.0	0.0 0.0	8.8 0.0	0.0	
.0	0.0	0.0	19.6	0.0 49265.2 330	77.6 32035.7 5	00.0	0.0 400.0 0.0	100.0		
es_1 .0	0.0	1 1980 0.0	JUN 19.6	17 49265.2 9.0	0.0 0.0 704.4 31635.7 5			9.0 0.0	0.0	
es_1	0.0			18 49254.6 9.2				9.2 0.0	0.0	
. 0	0.0	0.0	19.5		331.3 31235.7 5		0.0 400.0 0.0			
es_1 .0	0.0	1 1980	JUN 19.5	19 49244.3 9.5	0.0 0.0 958.3 30835.7 5			9.5 0.0	0.0	
es_1	0.0			20 49234.2 9.7				9.7 0.0	0.0	
.0	0.0	0.0	19.5	0.0 49224.5 315	585.4 30435.7 5	00.0	0.0 400.0 0.0	100.0		
es 1		1 1980	JUN	21 49224.5 9.9	0.0 0.0	0.0	0.0 0.0	9.9 0.0	0.0	
. 0	0.0	0.0	19.4				0.0 400.0 0.0			
es_1 .0	0.0	1 1980 0.0	JUN 19.4				0.0 0.0		0.0	
.u es_1	0.0			23 49205.8 10.4			0.0 0.0		0.0	
.0	0.0	0.0	19.3				0.0 400.0 0.0			
es_1 .0	0.0	1 1980 0.0	JUN 19.3		7 0.0 0.0 094.8 28835.7 5		0.0 0.0	10.7 0.0	0.0	
es_1	0.0			25 49188.3 10.9	0.0 0.0	0.0	0.0 0.0	10.9 0.0	0.0	
. 0	0.0	0.0	19.3	0.0 49179.9 297	22.4 28435.7 5	00.0	0.0 400.0 0.0	100.0		
es_1		1 1980	JUN	26 49179.9 11.2	0.0 0.0	0.0	0.0 0.0	11.2 0.0	0.0	
. 0	0.0	0.0	19.2	0.0 49171.9 293	50.1 28035.7 5	00.0	0.0 400.0 0.0	100.0		
es_1 .0	0.0	1 1980 0.0	JUN 19.2				0.0 0.0 0.0 400.0 0.0		0.0	
.u es_1	0.0						0.0 400.0 0.0		0.0	
. 0	0.0	0.0	19.1	0.0 49156.7 286	505.7 27235.7 5	00.0	0.0 400.0 0.0	100.0		
es_1 .0	0.0		JUN 19.1	29 49156.7 11.9 0.0 49149.5 282			0.0 0.0		0.0	
.u es_1	0.0						0.0 0.0		0.0	
. 0	0.0	0.0	19.1		861.6 26435.7 5	00.0	0.0 400.0 0.0			
es_1							0.0 0.0 2		0.0	
0.0	0.0			0.0 0.0						

From Storage to

From River by From Carrier by Targt_0 BOM

			_	Initial			gt_0 	BOM				Total	River	
River Reserv	Carrier	Total		Seep & 1 Storage Pr	JOH DOOL	_11 Dec1							For Use	For
Exc fo	or Use Re	lease	Evap	Spill Content	Limit	Limit	Inflow	Rele	ease Di	vert by	Well Out	flow		
ID)	(-)		Mo (-)	Day NA (-) NA						(+) -) (NA NA	(-)	(-
,				(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		(10)	
(11)	(12)	(13)	(14)	(15) (10								(23)		
Res_1	0.0	1 1980 0.0	JUL 10.7	1 49142.7 0.0 49132.0	0.0	0.0							0.0	
Res_1	0.0	1 1980		2 49132.0	0.0		0.0						0.0	
0.0 Res_1	0.0	0.0 1 1980	10.7	0.0 49121.4 3 49121.4	1 27577.5 0.0	26035.7 0.0		0.0		0.0		.74.6	0.0	
0.0	0.0	0.0	10.7	0.0 49110.					78.1	0.0		74.9	0.0	
Res_1	0.0	1 1980		4 49110.7	0.0	0.0	0.0	0.0			0.0		0.0	
0.0 Res_1	0.0	0.0 1 1980	10.7 JUL	0.0 49100.0 5 49100.0	0.0	0.0	0.0		78.3 0.0	0.0		.75.1	0.0	
0.0	0.0	0.0	10.7	0.0 49089.	27858.8	26035.7	96.8	7	78.3	0.0	0.0 1	75.1		
Res_1		1 1980	JUL	6 49089.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	10.7	0.0 49078.					78.3	0.0		75.1	0 0	
Res_1 0.0	0.0	1 1980 0.0	10.7	7 49078.7 0.0 49068.0	0.0 28046.7	0.0 26035.7		0.0		0.0		0.0	0.0	
Res_1		1 1980	JUL	8 49068.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 1 1980	10.7 JUL	0.0 49057.3 9 49057.3	0.0	26035.7	96.8	0.0	78.3 0.0	0.0		.75.1	0.0	
0.0	0.0	0.0	10.7	0.0 49046.	28234.6	26035.7	96.8	7	78.3	0.0	0.0 1	75.1		
Res_1	0.0	1 1980 0.0	JUL 10.7	10 49046.6 0.0 49035.9	0.0 28328.5		0.0 96.8	0.0	0.0 78.3	0.0		0.0	0.0	
Res_1	0.0	1 1980 0.0	JUL 10.7	11 49035.9 0.0 49025.3	0.0 2.28422.4	0.0 26035.7		0.0			0.0		0.0	
Res_1		1 1980	JUL	12 49025.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0	10.7	0.0 49014.0 13 49014.6	5 28516.3 0.0	26035.7 0.0		0.0		0.0		.75.1	0.0	
0.0	0.0	0.0	10.7	0.0 49003.					78.3	0.0		75.1	0.0	
Res_1	0.0	1 1980 0.0	JUL 10.7	14 49003.9 0.0 48993.2	0.0	0.0		0.0		0.0		0.0	0.0	
Res_1	0.0			15 48993.2	0.0	0.0	0.0	0.0					0.0	
0.0	0.0	0.0	10.7	0.0 48982.	28797.9	26035.7	96.8	7	78.3	0.0	0.0 1	75.1		
Res_1				16 48982.4	0.0	0.0		0.0					0.0	
0.0 Res_1	0.0	0.0	10.7	0.0 48971.' 17 48971.7	7 28891.8 0.0	26035.7 0.0		0.0			0.0 1		0.0	
0.0	0.0	0.0	10.7	0.0 48961.					78.3	0.0	0.0 1			
Res_1	0.0	1 1980 0.0	JUL 10.7	18 48961.0 0.0 48950.3	0.0	0.0		0.0		0.0		0.0	0.0	
Res_1	0.0			19 48950.3	0.0	0.0		0.0					0.0	
0.0	0.0	0.0	10.7	0.0 48939.0 20 48939.6	5 29173.3 0.0		96.8 0.0	0.0	78.3 0.0	0.0		.75.1	0.0	
Res_1	0.0	0.0	10.7	0.0 48928.					78.3	0.0		75.1	0.0	
Res_1		1 1000	TIIT	21 48928.9	0.0	0 0	0 0	0 0	0 0	0.0	0 0	0.0	0.0	
0.0	0.0	0.0	10.7	0.0 48918.	29360.8	26035.7	96.8	7	78.3	0.0			0.0	
Res_1	0.0			22 48918.2 0.0 48907.4									0.0	
Res_1	0.0			23 48907.4									0.0	
0.0	0.0	0.0	10.7	0.0 48896.									0.0	
Res_1 0.0	0.0	0.0	10.7	24 48896.7 0.0 48886.0									0.0	
Res_1	0 0			25 48886.0									0.0	
0.0	0.0	0.0	10.7	0.0 48875.	29735.9	26035.7	96.8	1	/8.3	0.0	0.0 1	75.1		
Res_1	0.0			26 48875.2									0.0	
0.0 Res_1	0.0	0.0 1 1980	10.7 JUL	0.0 48864.! 27 48864.5									0.0	
0.0	0.0	0.0	10.7	0.0 48853.	29923.3	26035.7	96.8	7	78.3	0.0	0.0 1	75.1		
Res_1 0.0	0.0	1 1980 0.0	JUL 10.7	28 48853.7 0.0 48843.0						0.0			0.0	
Res_1		1 1980	JUL	29 48843.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 1 1980	10.7	0.0 48832.2 30 48832.2									0.0	
0.0	0.0	0.0	10.8	0.0 48821.									3.0	
Res_1		1 1980	JIII.	31 48821.5	0.0	0.0	0.0	0 0	0 0) ՈՈ	0 0) 00	0.0	
0.0	0.0			0.0 48810.									0.0	
Res_1				-1 49142.7									0.0	
0.0	0.0	0.0	10.8	0.0	-1.0	-1.0	3000.0	242	20.5	0.0	0.0 54	120.5		

From River by From Carrier by Targt_0 BOM

			_	I	nitial		Tar	gt_0	BOM				Total	River	
River	Carrie	er Total		Se	- L	O., D.O.,									_
		Release			torage Pri ll Content									For Use	For
ID					NA									(-)	(-
)	(-)	NA	(-)		NA			(+)			(-)		NA		
(11)	(12)	(13)	(14)		(1)									(10)	
(11)	(12)	(13)	(14)										(23)		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8810.7 .0 48802.1	0.0	0.0						0.0	0.0	
Res_1	0.0	1 1980			8802.1	0.0		0.0			0.0			0.0	
0.0	0.0	0.0	8.6		.0 48793.5					78.3	0.0		175.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8793.5 .0 48784.9	0.0	0.0		0.0	0.0 78.3	0.0		0.0 L75.1	0.0	
Res_1	0.0	1 1980			8784.9	0.0	0.0	0.0	0.0			0.0		0.0	
0.0	0.0	0.0	8.6		.0 48776.3								175.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8776.3 .0 48767.7	0.0	0.0	0.0		0.0 78.3	0.0		0.0 L75.1	0.0	
0.0	0.0	0.0	0.0	U	.0 48707.7	30733.0	20033.7	90.0		70.3	0.0	0.0	173.1		
Res_1		1 1980			8767.7	0.0	0.0	0.0	0.0					0.0	
0.0 Res_1	0.0	0.0 1 1980	8.6 AUG		.0 48759.1 8759.1	30844.3	26035.7		0.0	78.3 0.0	0.0		L75.1) 0.0	0.0	
0.0	0.0	0.0	8.6		.0 48750.5						0.0		. 0.0 L75.1	0.0	
Res_1		1 1980	AUG	8 4	8750.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 1 1980	8.6 AUG		.0 48741.8 8741.8	31025.4 0.0	26035.7 0.0	96.8 0.0	0.0	78.3 0.0			L75.1) 0.0	0.0	
0.0	0.0	0.0	8.6		.0 48733.2					78.3	0.0		L75.1	0.0	
Res_1	_	1 1980	AUG	10 4	8733.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
0.0	0.0	0.0	8.6	0	.0 48724.6	31206.3	26035.7	96.8		78.3	0.0	0.0 1	175.1		
Res_1		1 1980	AUG	11 4	8724.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	8.6		.0 48716.0								175.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8716.0 .0 48707.3	0.0 31387 3	0.0 26035 7	0.0 96.8					0.0 L75.1	0.0	
Res_1	0.0	1 1980			8707.3	0.0	0.0	0.0			0.0			0.0	
0.0	0.0	0.0	8.6		.0 48698.7					78.3	0.0		L75.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8698.7 .0 48690.1	0.0 31568 1	0.0 26035 7		0.0		0.0	0.0	0.0 L75.1	0.0	
Res_1	0.0	1 1980			8690.1	0.0	0.0	0.0	0.0					0.0	
0.0	0.0	0.0	8.6	0	.0 48681.4	31658.6	26035.7	96.8		78.3	0.0	0.0 1	175.1		
Res 1		1 1980	AUG	16 4	8681.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	8.6		.0 48672.8	31749.0	26035.7			78.3	0.0		175.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8672.8 .0 48664.1	0.0	0.0		0.0		0.0	0.0		0.0	
Res_1	0.0	1 1980			8664.1	0.0	0.0		0.0		0.0			0.0	
0.0	0.0	0.0	8.6		.0 48655.5					78.3	0.0		175.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.6		8655.5 .0 48646.9	0.0 32020 2	0.0 26035 7	0.0 96.8	0.0	0.0 78.3	0.0		0.0 L75.1	0.0	
Res_1	0.0	1 1980			8646.9	0.0		0.0	0.0					0.0	
0.0	0.0	0.0	8.6	0	.0 48638.2	32110.5	26035.7	96.8		78.3	0.0	0.0 1	175.1		
Res 1		1 1980	ΔIIG	21 4	8638.2	0.0	0 0	0 0	0 0	0 (0.0	0 0	0.0	0.0	
0.0	0.0	0.0	8.7	0	.0 48629.6	32200.9	26035.7	96.8		78.3				0.0	
Res_1	0 0				8629.6							0.0		0.0	
0.0 Res_1	0.0	0.0 1 1980			.0 48620.9 8620.9									0.0	
0.0	0.0	0.0	8.7	0	.0 48612.2	32381.6	26035.7	96.8		78.3	0.0	0.0 1	175.1		
Res_1 0.0	0.0	1 1980 0.0	AUG 8.7		8612.2 .0 48603.6									0.0	
Res_1	0.0	1 1980			8603.6									0.0	
0.0	0.0	0.0	8.7	0	.0 48594.9	32562.3	26035.7	96.8		78.3	0.0	0.0 1	175.1		
Res 1		1 1000	ΔIIC	26 4	8594.9	0 0	0 0	0 0	0 0	0 (n n n	0 0) 0 0	0.0	
0.0	0.0	0.0			.0 48586.3									0.0	
Res_1			AUG	27 4	8586.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 1 1980	8.7		.0 48577.6 8577.6									0.0	
0.0	0.0	0.0	8.7	0	.0 48568.9	32833.2	26035.7	96.8		78.3	0.0	0.0 1	175.1	0.0	
Res_1	0 0				8568.9									0.0	
0.0 Res_1	0.0	0.0 1 1980	8.7 AUG		.0 48560.2 8560.2									0.0	
0.0	0.0	0.0	8.7		.0 48551.6									0.0	
Dog 1		1 1000	7, 7, 7, 7	21 4	0551 (0 0	0 0	0 0	0 0	0 1	n 00	0 0		0 0	
Res_1 0.0	0.0	0.0			8551.6 .0 48542.9									0.0	
Pog 1		 1 1980			0010 7									0.0	
Res_1 0.0		0.0												0.0	

From Station Balance

From River by From Carrier by Targt_0 BOM ____

				Targt_0 BOM Total R	iver
	Carrier	Total		Seep & EOM Stor_n Decree River River River River River	
eserv			_	Storage Priorty Storage Exc_Pln Loss Priorty Sto_Exc Loss Supply For	Use For
	or Use Re			Spill Content Limit Limit Inflow Release Divert by Well Outflow	/ \
D	(-)	Acc Year NA	(-)	Day NA (+) (+) (+) (-) (+) (+) (-) NA (-) NA NA NA (+) (+) (-) (-) NA	(-)
	()	1421	` '		(10)
11)	(12)	(13)	(14)		, -,
es_1 .0	0.0	1 1980 0.0	SEP 7.5	1 48542.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0
.u es 1	0.0	1 1980		2 48535.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48527.9 33282.1 26035.7 100.0 77.1 0.0 0.0 177.1	0.0
es_1		1 1980		3 48527.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48520.5 33369.5 26035.7 100.0 76.8 0.0 0.0 176.8	
s_1		1 1980		4 48520.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
. 0	0.0	0.0	7.5	0.0 48513.0 33456.5 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1 0	0 0	1 1980 0.0		5 48513.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
U	0.0	0.0	7.5	0.0 48505.5 33543.3 26035.7 100.0 76.6 0.0 0.0 176.6	
s_1		1 1980	SEP	6 48505.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48498.0 33630.1 26035.7 100.0 76.6 0.0 0.0 176.6	-
es_1		1 1980	SEP	7 48498.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48490.5 33717.0 26035.7 100.0 76.6 0.0 0.0 176.6	
s_1	0 0	1 1980		8 48490.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0 es_1	0.0	0.0 1 1980	7.5 SEP	0.0 48483.0 33803.8 26035.7 100.0 76.6 0.0 0.0 176.6 9 48483.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48475.6 33890.6 26035.7 100.0 76.6 0.0 0.0 176.6	0.0
.o es_1	0.0	1 1980	SEP	10 48475.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
. 0	0.0	0.0	7.5	0.0 48468.1 33977.4 26035.7 100.0 76.6 0.0 0.0 176.6	- · -
es_1		1 1980		11 48468.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48460.6 34064.1 26035.7 100.0 76.6 0.0 0.0 176.6	0 0
es_1 .0	0.0	1 1980 0.0	SEP 7.5	12 48460.6	0.0
s_1	0.0	1 1980	SEP	13 48453.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48445.6 34237.7 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1		1 1980	SEP	14 48445.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48438.1 34324.4 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1		1 1980		15 48438.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
. 0	0.0	0.0	7.5	0.0 48430.6 34411.2 26035.7 100.0 76.6 0.0 0.0 176.6	
es 1		1 1980	SEP	16 48430.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48423.1 34497.9 26035.7 100.0 76.6 0.0 0.0 176.6	0.0
es_1		1 1980	SEP	17 48423.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48415.5 34584.6 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1		1 1980	SEP	18 48415.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0 es_1	0.0	0.0 1 1980	7.5 SEP	0.0 48408.0 34671.4 26035.7 100.0 76.6 0.0 0.0 176.6 19 48408.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48400.5 34758.1 26035.7 100.0 76.6 0.0 0.0 176.6	0.0
es_1	0.0	1 1980	SEP	20 48400.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48393.0 34844.8 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1		1 1980		21 48393.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48385.5 34931.5 26035.7 100.0 76.6 0.0 0.0 176.6 22 48385.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0
es_1 .0	0.0	0.0	7.5	22 48385.5	0.0
.u es_1	0.0			23 48378.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48370.4 35104.8 26035.7 100.0 76.6 0.0 0.0 176.6	3.0
es_1	- · · -	1 1980		24 48370.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
. 0	0.0	0.0	7.5	0.0 48362.9 35191.5 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1		1 1980		25 48362.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
. 0	0.0	0.0	7.5	0.0 48355.4 35278.1 26035.7 100.0 76.6 0.0 0.0 176.6	
s_1		1 1980	GED	26 48355.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48347.8 35364.8 26035.7 100.0 76.6 0.0 0.0 176.6	0.0
es_1	0.0	1 1980		27 48347.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
0	0.0	0.0	7.5	0.0 48340.3 35451.4 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1		1 1980			0.0
. 0	0.0	0.0	7.5	0.0 48332.8 35538.1 26035.7 100.0 76.6 0.0 0.0 176.6	
es_1	0 0			29 48332.8	0.0
.0 es_1	0.0	0.0	7.5 SED	0.0 48325.2 35624.7 26035.7 100.0 76.6 0.0 0.0 176.6 30 48325.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
.0	0.0	0.0	7.5	0.0 48317.7 35711.3 26035.7 100.0 76.6 0.0 0.0 176.6	5.0
		1 1980	TOT	-1 48542.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
es_1 .0	0.0	0.0		0.0 0.0 -1.0 -1.0 3000.0 2299.3 0.0 0.0 5299.3	

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex3.* data set

PAGE NO.

RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_2
RIVER LOCATION : Market of the control of the RESERVOIR ID : Res_1

RIVER LOCATION : Exist. Reservoir

												_							Fro	m	
Stora	ge to						Fr	om Piver	by	St	ation	Bal From	lance	rio	r hv						
			_				r r	om River Tar	gt_0	BOM		PION	ii Car	110	L Dy						
					Initia	1												tal	River		
	Carrier	Total		5	Seep &	E	OM Stor	_n Decr	ee Ri	ver	Rive	r	Rive	r	Riv	er	Rive	r			
Reser		elease			SCOLAS	IC PII	OILY SLO	rage EAC		повр	PIIO	тсу	300_	EAC	-	цовь	3 ևթյ	БТА	For Use	For	
ID	or ose k	Acc Year														(-)		NA	(-)		(
)	(-)	NA	(-)		-)				(+)			(-		(-			Ά				
(33)	(10)	(12)	(3.4)				(2)												(10)		
(11)	(12)	(13)	(14)		(15)	(16) (17) (18) (1	9)	(20)		(2I)		(22)	(23)				
Res_1		2 1979		1			0.0											0.0	25.0		
0.0	0.0	25.0	0.0		0.0		50000.0									13					
Res_1 0.0	0.0	2 1979 0.0	OCT 0.0	2	0.0		0.0 50035.8	0.0			0.0			0.0	0.0	0.0	6.8	0.0	0.0		
Res_1		2 1979		3	0.0		0.0		0.0							-		0.0	0.0		
0.0	0.0	0.0	0.0	3	0.0		50035.8						0.0		0.0		6.8	0.0	0.0		
Res_1		2 1979	OCT	4	0.	0	0.0		0.0									0.0	0.0		
0.0	0.0	0.0	0.0	_	0.0		50035.8						0.0			9					
Res_1 0.0	0.0	2 1979 0.0	OCT 0.0	5	0.0		0.0 50035.8		0.0		0.0	0.0	0.0	0.0	0.0	0.0	6.8	0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	30033.0	50000.0	90.	0	0.0		0.0		0.0	9	0.0				
Res_1		2 1979	OCT	6	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8									9	6.8				
Res_1		2 1979	OCT	7	0.		0.0		0.0							0.0		0.0	0.0		
0.0 Res_1	0.0	0.0 2 1979	0.0 OCT	Ω	0.0		50035.8		0.0				0.0			9 n n		0.0	0.0		
0.0	0.0	0.0	0.0	o	0.0		50035.8						0.0			9		0.0	0.0		
Res_1		2 1979	OCT	9	0.		0.0	0.0	0.0			0.0				0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0		50035.8				0.0		0.0		0.0		6.8				
Res_1		2 1979		10	0.		0.0		0.0			0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8	50000.0	96.	8	0.0		0.0		0.0	9	6.8				
Res_1		2 1979	OCT	11	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8								0.0	9	6.8				
Res_1		2 1979	OCT	12			0.0		0.0									0.0	0.0		
0.0	0.0	0.0 2 1979	0.0 OCT	1 2	0.0		50035.8		96.									0.0	0.0		
Res_1	0.0	0.0	0.0	13	0.0		50035.8						0.0			0.0		0.0	0.0		
Res_1		2 1979	OCT	14		0	0.0		0.0							0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0		50035.8				0.0		0.0		0.0		6.8				
Res_1		2 1979	OCT	15	0.		0.0		0.0			0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8	50000.0	96.	8	0.0		0.0		0.0	9	6.8				
Res 1		2 1979	OCT	16	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0		0.0		50035.8														
Res_1		2 1979	OCT	17			0.0		0.0							0.0		0.0	0.0		
0.0	0.0	0.0	0.0	1.0	0.0		50035.8						0.0			9		0 0	0 0		
Res_1 0.0	0.0	2 1979 0.0	OCT 0.0	18	0.0		0.0 50035.8		0.0		0.0		0.0	0.0	0.0		6.8	0.0	0.0		
Res_1		2 1979	OCT	19		0	0.0		0.0			0.0		0.0	0.0	0.0		0.0	0.0		
0.0	0.0	0.0	0.0				50035.8										6.8				
Res_1		2 1979			0.													0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8	50000.0	96.	8	0.0		0.0		0.0	9	6.8				
Res_1		2 1979	OCT	21	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0				50035.8														
Res_1							0.0												0.0		
0.0	0.0	0.0	0.0				50035.8														
Res_1	0.0	0.0	0.0				0.0 50035.8												0.0		
Res_1		2 1979			0.0			0.0											0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8	50000.0	96.	8	0.0		0.0		0.0	9	6.8				
Res_1							0.0											0.0	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8	50000.0	96.	8	0.0		0.0		0.0	9	6.8				
Res_1		2 1979	ОСТ	26	Ω	0	0.0	0.0	0.0	0 0		0.0		0 . N		0.0		0.0	0.0		
0.0	0.0	0.0	0.0				50035.8												3.0		
Res_1		2 1979		27	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0	0.0		
0.0	0.0	0.0	0.0				50035.8														
Res_1	0.0	2 1979	OCT 0.0	28			0.0 50035.8											υ.υ	0.0		
0.0	0.0	0.0	0.0		0.0	0.0	50035.8	50000.0	90.	O	0.0		0.0		U.U	9	0.8				

Storage	e to							rom River		Sta	tior	n Bal			r bv			From
Res_1 0.0	0.0	2 1980 25.0	TOT 0.0	-1	25	0.	0.0	0.0	0.0	0.0	35.8	0.0	0.0	0.0	0.0	0.0	0.0	25.0
Res_1 0.0	0.0	2 1979 0.0	OCT 0.0	31	0.0	.0 0.	0.0 0 50035.8	0.0 3 50000.0	0.0 96.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0 96.8	0.0	0.0
Res_1 0.0	0.0	2 1979 0.0	OCT 0.0	30		.0	0.0	0.0 3 50000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1	0.0	2 1979 0.0	OCT	29	0.0	.0	0.0 0.50035 8	0.0 3 50000.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

													_					Fro	n
Stora	ge to						En.	om River Tar	by	St	atior	ı Ba	lance	e rrio	r hu				
							FI	Tar	at 0	BOM		FIO	ii Cai	LIIC	т ру				
			_	I	nitia:	L											Total	River	
	Carrier	Total					OM Stor	_n Decr	ee Riv	7er	Rive	er	Rive	er	Rive	er			
Reser		. 1																For Use	For
		elease Acc Year																(-)	(
	(-)	NA	(-)	(-)	141	NA	NA	NA	(+)	((+)	()	-)	((-)	N	'A	()	,
					(1)	(2)	(3)	(4)	(5)	((6)		(7)	(8)	(9)	(10)	
(11)	(12)	(13)	(14)) (15)	(16) (18					(21))	(22))	(23)		
Res_1		2 1979	NOV	1	0.0)	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0		0.0	0.0					50035.8											
Res_1		2 1979			0.0		0.0		0.0		0 0			0.0		0.0		0.0	
0.0 Res_1		0.0 2 1979	0.0 NOV		.0		0.0	50035.8	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		.0			50035.8			0.0		0.0			10		0.0	
Res_1		2 1979		4	0.0		0.0	0.0	0.0					0.0		0.0	0.0	0.0	
0.0		0.0	0.0		.0			50035.8			0.0		0.0			10		0.0	
Res_1 0.0	0.0	2 1979 0.0	NOV 0.0		0.0		0.0 50035 8	0.0 50035.8	100 0		0 0		0.0		0.0	0.0		0.0	
0.0	0.0	0.0	0.0	U		0.0	50055.0	50055.0	100.0	•	0.0		0.0		0.0	10			
Res_1		2 1979			0.0		0.0		0.0							0.0		0.0	
0.0	0.0	0.0	0.0		0.0			50035.8								10		0.0	
Res_1 0.0	0.0	2 1979 0.0	NOV 0.0				0.0 50035 8	0.0 50035.8				0.0	0.0	0.0		0.0	0.0	0.0	
Res_1		2 1979			0.0		0.0		0.0							0.0		0.0	
0.0	0.0	0.0	0.0		.0			50035.8			0.0		0.0			10			
Res_1		2 1979			0.0		0.0		0.0							0.0		0.0	
0.0 Res 1		0.0 2 1979	0.0 NOV		0.0		0.0	50035.8	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0		.0			50035.8			0.0		0.0		0.0		0.0	0.0	
		0 1050						0 0											
Res_1 0.0	0.0	2 1979 0.0	NOV 0.0	11			0.0	0.0 50035.8	100.0				0 0			0.0		0.0	
Res_1		2 1979			0.0		0.0		0.0							0.0		0.0	
0.0	0.0	0.0	0.0		.0			50035.8			0.0		0.0			10			
Res_1 0.0		2 1979 0.0	NOV 0.0		0.0		0.0	0.0 50035.8	0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Res_1		2 1979			0.0		0.0		0.0			0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0					50035.8											
Res_1		2 1979			0.0		0.0		0.0			0.0		0.0		0.0		0.0	
0.0	0.0	0.0	0.0	0	. 0	0.0	50035.8	50035.8	100.0)	0.0		0.0		0.0	10	0.0		
Res_1		2 1979	NOV	16	0.0)	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		.0			50035.8								10			
Res_1		2 1979			0.0		0.0	0.0 50035.8	0.0						0 0	0.0		0.0	
0.0 Res_1		0.0 2 1979	0.0 NOV		0.0		0.0			0.0	0.0	0.0	0.0	0.0		10	0.0	0.0	
0.0		0.0	0.0					50035.8					0.0		0.0		0.0		
Res_1		2 1979					0.0		0.0							0.0		0.0	
0.0 Res 1	0.0	0.0	0.0					50035.8										0.0	
0.0		0.0						50035.8										0.0	
Res_1	0.0							0.0 50035.8										0.0	
0.0 Res_1		0.0 2 1979	0.0 NOV					0.0										0.0	
0.0	0.0	0.0	0.0					50035.8										0.0	
Res_1		2 1979						0.0										0.0	
0.0 Res_1	0.0	0.0 2 1979	0.0				50035.8	50035.8	100.0							0.0		0.0	
0.0	0.0	0.0	0.0					50035.8										0.0	
Res_1		2 1979	NOV	25	0.0)	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0	.0	0.0	50035.8	50035.8	100.0)	0.0		0.0		0.0	10	0.0		
Res_1		2 1979	NOV	26	0.0)	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0			0.0	50035.8	50035.8	100.0)	0.0		0.0		0.0	10	0.0		
Res_1		2 1979						0.0										0.0	
0.0 Res_1	0.0	0.0 2 1979	0.0 NOV		.0			50035.8								0.0		0.0	
0.0	0.0	0.0	0.0					50035.8								10		0.0	
-		-		-		. •		/ -								-			

Res_1 0.0 Res_1 0.0	0.0	2 1979 0.0 2 1979 0.0	NOV 29 0.0 NOV 30 0.0	0.0 0.0	0.0	50035.8	100.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0
Res_1	0.0	2 1980 0.0	TOT -3	0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0 0.0 3000.0	0.0

1													From	
Remark Color Col	Storage to	0			_			Sta	ation_Ba	alance				
Remark Color Col					Fro	m River	by	DOM	Fro	om Carri	er by			
River Carrier				Tnitial		Targ	ar_n	BOM				Total	Piver	
Rever for Use Necleane Every Spill Content Limit Lim	River Car	rier Tota		Seep &	EOM Stor	n Decre	ee Riv	er	River	River	River	River	KIVEI	
Rever for Use Necleane Every Spill Content Limit Lim	Reservoir		='	Storage	Priorty Stor	age Exc	_Pln	Loss	Priorty	y Sto_Ex	c Loss	s Supply	For Use Fo	or
1	Exc for U	se Release	Evap	Spill Con	ntent Limit	Limit	_ Inflow	Rele	ease D	ivert by	Well Out	tflow		
Care													(-)	(
Nee_1 131 132 133 144 155 165 173 188 190 100 121 121 123 12) (-)	NA	(-)											
Res.	(44)	10) (10)											(10)	
Remail 2 1979 BCC 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(11) (.	12) (13)												
Remail 2 1979 BCC 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0														
0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Res 1	2 19	79 DEC	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0	0.0	.0 0.0	0.0	0.0	0.0 50035.8	50035.8	96.8		0.0	0.0	0.0	96.8		
Res_1	Res_1	2 19	9 DEC										0.0	
0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0														
Res_1		2 17											0.0	
0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0													0 0	
Res_1													0.0	
Res_1													0 0	
0.0														
0.0														
Res_1	Res_1												0.0	
0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0													0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0													0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Res 1												0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0	.0 0.0	0.0	0.0										
Res_1												0.0	0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	.0 0.0	0.0	0.0	0.0 50035.8	50035.8	96.8		0.0	0.0	0.0	96.8		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	D 1	2 10	70 DEG	11 0.0	0.0	0 0	0 0	0 0	0 /		0 0 (0 0	0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 0.0 96.8 Res_1	Res 1												0.0	
Res_1	_													
Res_1	Res_1		9 DEC										0.0	
0.0														
Res_1 2 1979 DEC 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1													0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1	0.0		0.0	0.0	0.0 50055.0	50055.0	50.0		0.0	0.0	0.0	, , ,		
Res_1	Res_1	2 19	9 DEC										0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
Res_1	Res_1												0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1	Res_1												0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1														
Res_1	Res_1												0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	.0 0.0	0.0	0.0	0.0 50035.8	50035.8	96.8		0.0	0.0	0.0	96.8		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dog 1	2 10	o pea	21 0.0	0.0	0 0	0 0	0 0	0 /	n 0	0 0 (0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
Res_1	Res_1	2 19	9 DEC										0.0	
0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 25 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0														
Res_1	Res_1												0.0	
0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0 0	
Res_1													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	2.0											
Res_1 2 1979 DEC 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Res_1												0.0	
0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
Res_1 2 1979 DEC 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_												0.0	
0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 0.0 96.8 Res_1 2 1979 DEC 29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0 0	
Res_1 2 1979 DEC 29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0.0	
0.0 0.0 0.0 0.0 0.0 0.0 50035.8 50035.8 96.8 0.0 0.0 96.8	Res_1												0.0	
	0.0	.0 0.0	0.0	0.0	0.0 50035.8	50035.8	96.8		0.0	0.0	0.0	96.8		

Res_1 0.0	0.0	2 1979 0.0	DEC 0.0	30	0.0	0.0 0.0 50035.8	0.0 50035.8			0.0		0.0 0.0 96.8	0.0
Res_1	0.0	2 1979 0.0	DEC 0.0	31 0.0	0.0	0.0 0.0 50035.8				0.0		0.0 0.0	0.0
Res_1 0.0	0.0	2 1980 0.0	TOT 0.0	-1 0.0	0.0		0.0	0.0 0	0.0	0.0	0.0	0.0 0.0	0.0

Stora	ge to						Ex	om Divo	. br	St	atio	n Bal	lance	e	n br			Fro	n
River	Carrier	Total	-	I Se	nitia		Fr OM Stor	om Rivei Tai	by gt_0 ree Ri	BOM ———		Froi	n Cai	rrie	r by		Total River	River	
	Carrier voir			5	Storag	e Pri	orty Sto	rage Exc	_Pln	Loss	Pri	orty	Sto_	_Exc	1	Loss	Supply	For Use	For
	or Use Rei	lease Acc Year					Limit											(-)	(-
)		NA																. ()	\
(11)	(12)	(13)	(14)				(2)								(22		(23)	(10)	
 Res_1		2 1980	 ΜΔΤ.		0		0.0		0 0	0 0		0 0		0 0		0 0	0.0	0.0	
0.0	0.0	0.0	0.0				50035.8											0.0	
Res_1		2 1980			0.		0.0		0.0									0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 JAN		0.0 0.		50035.8		96. 0.0							0.0		0.0	
0.0	0.0	0.0	0.0		0.0		50035.8				0.0		0.0		0.0		6.8	0.0	
Res_1		2 1980	JAN		0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0		50035.8						0.0			9			
Res_1 0.0	0.0	2 1980 0.0	JAN 0.0		0.		0.0 50035.8		0.0 3 96.			0.0	0.0	0.0	0.0		0.0 6.8	0.0	
Res_1		2 1980	JAN	6	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0		50035.8						0.0			9			
Res_1	0.0	2 1980 0.0	JAN 0.0		0. 0.0		0.0 50035.8		0.0				0.0			0.0		0.0	
Res_1	0.0	2 1980	JAN		0.		0.0		0.0			0.0		0.0		0.0		0.0	
0.0	0.0	0.0	0.0	C	0.0	0.0	50035.8	50035.8	96.	8	0.0		0.0			9			
Res_1	0 0	2 1980	JAN		0.		0.0		0.0			0.0				0.0		0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 JAN		0.0 0.		50035.8		0.0		0.0	0.0	0.0	0.0		0.0		0.0	
0.0	0.0	0.0	0.0		0.0		50035.8				0.0		0.0	0.0	0.0		6.8	0.0	
Res_1		2 1980	JAN	11	0.				0.0					0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0		0.0		50035.8						0.0			9		0 0	
Res_1 0.0	0.0	2 1980 0.0	JAN 0.0	12	0. 0.0		0.0 50035.8		0.0			0.0			0 0	0.0		0.0	
Res_1	0.0	2 1980	JAN		0.		0.0		0.0							0.0		0.0	
0.0	0.0	0.0	0.0		0.0		50035.8				0.0		0.0		0.0		6.8		
Res_1	0 0	2 1980			0.		0.0		0.0			0.0		0.0		0.0		0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 JAN		0.0		50035.8		0.0		0.0	0.0	0.0	0.0	0.0	0.0	6.8	0.0	
0.0	0.0	0.0	0.0				50035.8				0.0		0.0		0.0		6.8		
Res_1		2 1980		16	0.		0.0	0.0								0.0		0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 JAN).0 0.		50035.8		3 96.1 0.0									0.0	
0.0	0.0	0.0	0.0		0.0		50035.8						0.0			9		0.0	
Res_1		2 1980			0.		0.0		0.0			0.0				0.0		0.0	
0.0	0.0	0.0	0.0		0.0		50035.8						0.0		0.0		6.8	0 0	
Res_1 0.0	0.0	2 1980 0.0					0.0 50035.8		0.0									0.0	
Res_1	0.0			20	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
	0.0																		
Res_1 0.0	0.0	0.0	JAN 0.0				0.0 50035.8											0.0	
Res_1	0.0	2 1980					0.0											0.0	
0.0	0.0	0.0	0.0	C	0.0	0.0	50035.8	50035.8	96.	8	0.0		0.0		0.0	9	6.8		
Res_1		2 1980			0.				0.0									0.0	
0.0 Res 1	0.0	0.0 2 1980	0.0 JAN				50035.8											0.0	
0.0	0.0	0.0	0.0				50035.8											0.0	
Res_1							0.0											0.0	
0.0	0.0	0.0	0.0	C	0.0	0.0	50035.8	50035.8	96.	8	0.0		0.0		0.0	9	6.8		
Res_1	0 0						0.0											0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 .TAN				50035.8											0.0	
0.0	0.0	0.0	0.0				50035.8											0.0	
Res_1		2 1980	JAN	28	0.	0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0				50035.8											0 0	
Res_1 0.0	0.0	2 1980 0.0	JAN 0.0		0.		0.0 50035.8		0.0 3 96.									0.0	

Res_1 0.0	0.0	2 1980 0.0	JAN 3	0.0	0.0	0.0 0 50035.8			0.0		0.0	96.8	0.0
Res_1 0.0	0.0		JAN 3	0.0	0.0	0.0 0 50035.8			0.0			0.0 0.0 96.8	0.0
Res_1	0.0	2 1980 0.0	TOT -	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0

Storage	e to					Fr	om River	by	St	ation	n Bal From	lance n Car	rie	r by			Fro	m
River (Carrier	Total	-	Initi Seep &	E	OM Stor		ee Riv	rer	Rive	er	Rive	er	Riv	er	River	River For Use	
Exc for	r Use Re	lease	Evap	Spill C	ontent	Limit	Limit	Inflow	n Rel	ease	Div	vert	by V	Well	Outf	low		
	(–)			Day (-)				(+)					(+)			NA JA	. (-)	
(11)	(12)	(13)	(14)			(2)								(22		(23)	(10)	
 Res_1		2 1980				0.0											0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0		50035.8	50035.8	107.1		0.0			0.0		0.0	0.0 0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1 0.0	0.0	2 1980 0.0	FEB 0.0	3 0.0		0.0 50035.8	0.0 50035.8	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.1	0.0	
Res_1		2 1980	FEB	4 0	.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0 5 0	0.0	50035.8	50035.8	107.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	
0.0	0.0	0.0	0.0	0.0		50035.8				0.0	0.0	0.0	0.0	0.0		7.1	0.0	
Res_1		2 1980	FEB		.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0 7 0		50035.8			0.0			0.0	0.0	0.0	0.0	0.0 0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1 0.0	0.0	2 1980 0.0	FEB 0.0	8 0.0	.0	0.0 50035.8	0.0 50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.1	0.0	
Res_1		2 1980	FEB	9 0	.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res 1	0.0	0.0 2 1980	0.0 FEB	0.0	0.0	50035.8	50035.8			0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1		0.0		0.0		0.0	10	7.1		
Res_1		2 1980	FEB	11 0		0.0	0.0		0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0	0.0	50035.8	50035.8	107.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1 0.0	0.0	2 1980 0.0	FEB 0.0	13 0		0.0 50035.8		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.1	0.0	
Res_1		2 1980	FEB	14 0	.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0 15 0	.0	50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8				0.0		0.0		0.0	10	7.1		
Res_1		2 1980	FEB		.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0 17 0		50035.8		0.0					0.0		0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1 0.0	0.0	2 1980 0.0	FEB 0.0	18 0		0.0 50035.8	0.0 50035.8	0.0 107.1			0.0	0.0	0.0	0.0	0.0	0.0 0.1	0.0	
Res_1	0 0	2 1980		19 0		0.0	0.0			0 0			0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980		20 0		50035.8									0.0		0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1				21 0													0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0													0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1 0.0	0.0	2 1980 0.0	FEB 0.0	23 0.0													0.0	
Res_1		2 1980	FEB	24 0	.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 FEB	0.0 25 0													0.0	
0.0	0.0	0.0	0.0	0.0													2.70	
Res_1		2 1980															0.0	
0.0 Res_1	0.0	0.0	0.0 FEB	0.0 27 0													0.0	
0.0	0.0	0.0	0.0	0.0	0.0	50035.8	50035.8	107.1	-	0.0		0.0		0.0	10	7.1		
Res_1 0.0	0.0	2 1980 0.0		28 0.0													0.0	
								_01						5				

iver								om River Tar	gt_0				ı Carı						
ıver			_	Init													otal	River	
eserv		Total		Stor	rage	Prio	rty Sto		_Pln	Loss	Pric	orty	Sto_E	xc	Loss	s Suj	pply	For Use	For
xc fo D	or Use Re	lease Acc Year						Limit								flow		(-)	
	(-)	NA	(–)				NA 2)	NA (3)	(+) (4)			(- (6)		(-) 7)	(8)	NA)	(9)	(10)	
11)	(12)	(13)	(14)	(15))	(16)	(17) (18) (19				(21)		22)	(23)		
es_1		2 1980	MAR					0.0						0.0			0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50035.8 0.0	50035.8		0.0		0.0	0.0	0.0	.0		0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50036.6 0.0	50035.8	96.8 0.0			0.0	0.0	0.0	.0	96.8)	0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0		0.0		50035.8 0.0			0.0		0.0		.0	96.8	0.0	0.0	
. 0	0.0	0.0	0.0	0.0		0.0	50038.2	50035.8	96.8	3	0.0		0.0	0	. 0	96.8			
es_1 0	0.0	2 1980 0.0	MAR 0.0	5	0.0		0.0 50039.0	0.0 50035.8	0.0 96.8	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
es_1	0 0	2 1980	MAR	6	0.0		0.0	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
0 s_1	0.0	0.0 2 1980	0.0 MAR		0.0		0.0	50035.8	0.0			0.0		0.0	.0 0.0		0.0	0.0	
0 s_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50040.7 0.0	50035.8	96.8	0.0	0.0	0.0	0.0	0.0	.0	96.8)	0.0	0.0	
0 s_1	0.0	0.0 2 1980	0.0 MAR	0.0		0.0		50035.8			0.0		0.0		.0	96.8		0.0	
0	0.0	0.0	0.0	0.0		0.0	50042.3	50035.8	96.8	3	0.0		0.0	0	. 0	96.8			
s_1 0	0.0	2 1980 0.0	MAR 0.0	0.0	0.0		0.0 50043.1	0.0 50035.8	0.0 96.8	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
s_1		2 1980	MAR		0.0		0.0	0.0		0.0		0.0		0.0	0.0		0.0	0.0	
) s_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		0.0	50035.8	0.0	0.0		0.0	0.0	0.0	.0 0.0	96.8)	0.0	0.0	
) ຮ_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50044.7 0.0	50035.8	96.8	0.0		0.0	0.0	0.0	.0	96.8	0.0	0.0	
0 s_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0	0.0		50035.8 0.0	96.8		0.0		0.0		.0	96.8	0.0	0.0	
0	0.0	0.0	0.0	0.0		0.0	50046.4	50035.8	96.8	3	0.0		0.0	0	. 0	96.8			
s_1 0	0.0	2 1980 0.0	MAR 0.0	0.0	0.0		0.0 50047.2	0.0 50035.8	0.0 96.8	0.0	0.0	0.0	0.0	0.0	0.0	96.8	0.0	0.0	
s_1 0	0.0	2 1980 0.0	MAR 0.0	16 0.0	0.0		0.0	0.0 50035.8	0.0	0.0		0.0	0.0	0.0	0.0	96.8	0.0	0.0	
s_1		2 1980	MAR	17	0.0		0.0	0.0	0.0	0.0		0.0	(0.0	0.0)	0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50048.8 0.0	50035.8	96.8 0.0	0.0	0.0	0.0	0.0	0.0	.0 0.0	96.8)	0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50049.6 0.0	50035.8	96.8	0.0	0.0	0.0	0.0	0.0	.0	96.8	0.0	0.0	
.0 es 1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		50050.4 0.0	50035.8	96.8 0.0		0.0	0.0	0.0		.0	96.8	0.0	0.0	
. 0	0.0	0.0	0.0	0.0				50035.8					0.0		.0	96.8		0.0	
es_1 0	0.0	2 1980 0.0	MAR 0.0					0.0 50035.8										0.0	
s_1 0	0.0	2 1980		22	0.0		0.0	0.0	0.0	0.0		0.0	(0.0	0.0)	0.0	0.0	
s_1		0.0 2 1980	MAR	23	0.0		0.0	50035.8	0.0	0.0		0.0	C	0.0	0.0)	0.0	0.0	
0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0	0.0		0.0	50035.8 0.0	0.0	0.0		0.0	(0.0	0.0)	0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0				50035.8										0.0	
0	0.0	0.0	0.0					50035.8											
s_1 0	0.0	2 1980 0.0	MAR 0.0					0.0 50035.8										0.0	
s_1	0.0	2 1980 0.0	MAR 0.0	27	0.0		0.0	0.0 50035.8	0.0	0.0		0.0	(0.0	0.0)	0.0	0.0	
.0 es_1		2 1980	MAR	28	0.0		0.0	0.0	0.0	0.0		0.0	C	0.0	0.0)	0.0	0.0	
.0 es_1	0.0	0.0 2 1980		0.0 29	0.0		0.0	50035.8	0.0	0.0		0.0	C	0.0	0.0)	0.0	0.0	
.0 es_1	0.0	0.0 2 1980	0.0 MAR	0.0				50035.8										0.0	
.0	0.0	0.0	0.0					50035.8										3.0	
es_1 .0	0.0	2 1980 0.0	MAR 0.0					0.0 50035.8										0.0	

Storag	ge to				Fr	om River	by		ation Ba Fro		r by		Froi	п
			-	Initial			gt_0					Total	River	
River Reserv	Carrier voir	Total		Seep &	EOM Stor								For Use	For
Exc fo	or Use Re	lease Acc Year			tent Limit							flow NA	(-)	(
)	(-)		(-)	(-)	NA NA	NA	(+)	(+) (-) (-) 1	NA		`
(11)	(12)	(13)	(14)		(16) (17	(3) (18	(19))			(22)	(23)	(10)	
Res_1	0.0	2 1980 0.0	APR 0.0	1 0.0		0.0					0.0		0.0	
Res_1		2 1980	APR	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR	0.0 3 0.0	0.0 50072.0 0.0	0.0	0.0	0.0		0.0		0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR	0.0 4 0.0	0.0 50082.9	50035.8	100.0	0.0	0.0	0.0	0.0 10	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0 50093.8	50035.8	100.0		0.0	0.0	0.0 1	0.00		
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	5 0.0	0.0 0.0 50104.8	0.0 50035.8	100.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1		2 1980		6 0.0		0.0	0.0	0.0				0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR	0.0 7 0.0	0.0 50115.7 0.0	0.0	100.0	0.0		0.0		0.0	0.0	
0.0	0.0	0.0 2 1980	0.0 APR	0.0	0.0 50126.6				0.0	0.0		0.0	0.0	
Res_1 0.0	0.0	0.0	0.0	0.0	0.0 50137.5					0.0		0.0	0.0	
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	9 0.0	0.0 0.0 50148.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	10 0.0		0.0	0.0	0.0			0.0	0.0	0.0	
Res_1		2 1980	APR	11 0.0			0.0	0.0				0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR	0.0	0.0 50170.3 0.0	0.0	100.0	0.0		0.0	0.0 10	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0 50181.2	50035.8	100.0		0.0	0.0		0.00	0 0	
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	0.0	0.0 0.0 50192.2	0.0 50035.8	100.0	0.0		0.0		0.0	0.0	
Res_1	0.0	2 1980 0.0	APR 0.0	0.0	0.0 0.0 50203.1	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Res_1	0.0	2 1980 0.0		15 0.0		0.0	0.0	0.0			0.0	0.0	0.0	
Res_1	0.0	2 1980 0.0	APR 0.0	16 0.0	0.0 0.0 50224.9	0.0	0.0	0.0		0.0		0.0	0.0	
Res_1		2 1980	APR	17 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR	0.0	0.0 50235.8	50035.8	100.0	0.0	0.0	0.0	0.0 10	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0 50246.7	50035.8	100.0		0.0	0.0	0.0 1	0.00		
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	19 0.0 0.0	0.0 0.0 50257.6	0.0 50035.8	100.0	0.0	0.0	0.0		0.0	0.0	
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	0.0	0.0 0.0 50268.5	0.0 50035.8	0.0		0.0		0.0	0.0	0.0	
Res_1	0.0	2 1980 0.0			0.0 0.0 50279.4								0.0	
Res_1		2 1980	APR	22 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR		0.0 50290.3								0.0	
0.0 Res 1	0.0	0.0 2 1980	0.0 APR		0.0 50301.2 0.0								0.0	
0.0	0.0	0.0	0.0		0.0 50312.1								0.0	
Res_1 0.0	0.0	2 1980 0.0	APR 0.0	0.0	0.0 0.0 50323.0	0.0 50035.8							0.0	
Res_1	0 0	2 1980			0.0								0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0 APR		0.0 50333.9								0.0	
0.0 Res_1	0.0	0.0 2 1980	0.0	0.0	0.0 50344.8 0.0	50035.8	100.0		0.0	0.0	0.0 1	0.00	0.0	
0.0	0.0	0.0	0.0	0.0	0.0 50355.7	50035.8	100.0		0.0	0.0	0.0 1	0.00		
Res_1 0.0	0.0	2 1980 0.0	APR 0.0		0.0 0.0 50366.6								0.0	
Res_1 0.0	0.0		APR 0.0	30 0.0	0.0 0.0 50377.4	0.0 50035.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Res_1 0.0	0.0	2 1980 0.0			0.0								0.0	

From Storage to

					F	rom River	. pA	DOM	F'1	rom Car	riei	r by			
			_	Tnitial	F:	Tar	gt_0	BOM					Total	River	
River	Carrier	Total		Seep &	EOM Sto	r n Decr	ee Riv	er	River	Rive		River	River	KIVEI	
Reserv	voir	IOCAI		Storage :	Priorty St	orage Exc	Pln	Loss	Priort	tv Sto	Exc	Loss	Supply	For Use	For
		lease	Evap	Spill Cont											
		Acc Year	Mo	Day NA	(+)	(+)								(-)	(
)	(-)	NA	(-)	(-) N.	A NA	NA	(+)				(-		NA		
				(1)	(2)	(3)								(10)	
(11)	(12)	(13)	(14)	(15)	(16) (1	7) (18	(19)	(20)	(21)		(22)	(23)		
		2 1980		1 0.0	20/ 1			0 0			0 0	20/ 1	0.0	0.0	
Res_1 0.0	0.0	0.0	0.0		4.1 50388.								96.8	0.0	
Res_1	0.0	2 1980		2 384.1	384.0		0.0					384.0		0.0	
0.0	0.0	0.0	0.1		8.0 50010.								96.8		
Res_1		2 1980	MAY	3 768.0	384.0	0.0	0.0	0.0	0	.0	0.0	384.0	0.0	0.0	
0.0	0.0	0.0	0.2	0.0 115	1.8 49632.	0 49261.6	483.9					0.0	96.8		
Res_1		2 1980		4 1151.8			0.0		0			383.9		0.0	
0.0	0.0	0.0	0.3		5.4 49253.				0.0				96.8	0 0	
Res_1	0 0	2 1980		5 1535.4			0.0					383.8		0.0	
0.0	0.0	0.0	0.3	0.0 191	8.9 488/5.	9 48487.4	483.9		0.0	387.1		0.0	96.8		
Res_1		2 1980	MAY	6 1918.9	383.8	0.0	0.0	0.0	0	.0	0 0	383.8	0.0	0.0	
0.0	0.0	0.0	0.4		2.3 48497.									0.0	
Res_1		2 1980		7 2302.3	383.7		0.0					383.7		0.0	
0.0	0.0	0.0	0.5	0.0 268	5.5 48120.	0 47713.2	483.9		0.0	387.1		0.0	96.8		
Res_1		2 1980		8 2685.5			0.0					383.6		0.0	
0.0	0.0	0.0	0.5		8.6 47742.								96.8		
Res_1	0 0	2 1980		9 3068.6	383.6		0.0					383.6		0.0	
0.0 Res_1	0.0	0.0	0.6	10 3451.6	1.6 47364. 383.5		0.0						96.8 0.0	0.0	
0.0	0.0	0.0	0.7		4.4 46986.					387.1			96.8	0.0	
0.0	0.0	0.0	0.,	0.0 303	1.1 10,000.	3 10331.7	100.5		0.0	307.11		0.0	,		
Res_1		2 1980	MAY	11 3834.4	383.4	0.0	0.0	0.0	0 .	.0	0.0	383.4	0.0	0.0	
0.0	0.0	0.0	0.7		7.0 46608.					387.1			96.8		
Res_1		2 1980		12 4217.0		0.0					0.0	383.3		0.0	
0.0	0.0	0.0	0.8		9.6 46231.					387.1			96.8		
Res_1	0 0	2 1980		13 4599.6	383.3		0.0	0.0				383.3	0.0 96.8	0.0	
0.0 Res 1	0.0	0.0 2 1980	0.9 MAY	14 4982.0	2.0 45853. 383.2		0.0	0.0				383.2		0.0	
0.0	0.0	0.0	0.9		4.3 45475.				0.0	387.1	0.0		96.8	0.0	
Res_1		2 1980		15 5364.3	383.1		0.0				0.0	383.1		0.0	
0.0	0.0	0.0	1.0	0.0 574	6.4 45098.	4 44616.4	483.9		0.0	387.1		0.0	96.8		
Res_1	0 0	2 1980		16 5746.4			0.0							0.0	
0.0 Res 1	0.0	0.0 2 1980	1.1 MAY	17 6128.4	8.4 44720.: 383.0	9 44229.3 0.0		0.0				383.0	96.8	0.0	
0.0	0.0	0.0	1.1		0.2 44343.					387.1			96.8	0.0	
Res_1		2 1980		18 6510.2	382.9		0.0					382.9		0.0	
0.0	0.0	0.0	1.2	0.0 689	1.9 43966.	0 43455.1	483.9		0.0	387.1		0.0	96.8		
Res_1		2 1980		19 6891.9	382.8		0.0					382.8		0.0	
0.0	0.0	0.0	1.3		3.5 43588.							0.0			
Res_1	0 0	2 1980		20 7273.5	382.8		0.0					382.8		0.0	
0.0	0.0	0.0	1.3	0.0 /65	5.0 43211.	4 42680.9	483.9		0.0	387.1		0.0	96.8		
Res 1		2 1980	MAY	21 7655.0	382.7	0.0	0 0	0.0	0 .	0	0 0	382.7	0.0	0.0	
0.0	0.0	0.0		0.0 803										0.0	
Res_1				22 8036.2	382.6	0.0	0.0	0.0	0	. 0	0.0	382.6	0.0	0.0	
0.0	0.0	0.0													
Res_1				23 8417.4										0.0	
0.0	0.0	0.0	1.5	0.0 879 24 8798.4	8.4 42079.	7 41519.6	483.9	0 0	0.0	387.1	0 0	0.0	96.8	0 0	
Res_1 0.0	0.0	0.0	1.6	24 8798.4 0 0 917	382.4 9.3 41702.	0.U 6 41132 5	U.U . 493 0	0.0	n n	.U 387 1	0.0	382.4	96 8	0.0	
Res 1	0.0			25 9179.3										0.0	
0.0	0.0	0.0	1.6	0.0 956	0.0 41325.	5 40745.4	483.9		0.0	387.1	0.0	0.0	96.8	0.0	
Res_1				26 9560.0										0.0	
0.0	0.0	0.0	1.7												
Res_1				27 9940.6										0.0	
0.0	0.0	0.0	1.8	0.0 1032 28 10321.1	1.1 40571.	5 39971.2	483.9	0 0	0.0	387.1	0 0	0.0	96.8	0 0	
Res_1 0.0	0.0	0.0	MAY 1.8	0.0 1070	382.1 1.4 40194.	U.U 6 39594 1	U.U 422 0	0.0	O 0	.U 387 1	U.U	30Z.I	0.U 96 8	0.0	
Res_1	0.0			29 10701.4										0.0	
0.0	0.0	0.0													
Res_1		2 1980	MAY	30 11081.6	382.0	0.0	0.0	0.0	0 .	.0	0.0	382.0	0.0	0.0	
0.0	0.0	0.0	1.9	0.0 1146	1.6 39440.	9 38809.9	483.9		0.0	387.1		0.0	96.8		
		0			201 2	0. 6	0 0		_	•		222			
Res_1				31 11461.6										0.0	
0.0	0.0	0.0		0.0 1184											
Res_1		2 1980	TOT	-1 0.0	11874.1	0.0	0.0	0.0	0	.0	0.0	11874.1	0.0	0.0	
0.0	0.0	0.0	2.0	0.0	0.0 -1.	0 -1.0	15000.0)	0.0 12	2000.0		0.0 30	00.0		

From Storage to Station Balance

					From River by		From Carrier by		
			_	- 1.1.5	Targt_0	BOM	I		
	Carrier	Total		Initial	Ctom n Dogmoo Di		Total	River	
eserv	oir	IOLAI		Storage Priort	v Storage Exc Pln	Loss	River River River River Priorty Sto_Exc Loss Supply F	or Use	For
	r Use Re	lease	Evap	Spill Content	Limit Limit Inflo	w Rel	ease Divert by Well Outflow		
D		Acc Year	Mo	Day NA (+) (+) (+)	(-)	(+) (+) (-) NA	(-)	
	(-)	NA	(-)	(-) NA		([)		(10)	
11)	(12)	(13)	(14)				(6) (7) (8) (9) (20) (21) (22) (23)	(10)	
es_1	0 0	2 1980 0.0	JUN 5.0		5 0.0 0.0 687.3 38035.7 500.			0.0	
.0 es_1	0.0	2 1980		2 12231.0 394.		0.0		0.0	
.0	0.0	0.0	5.2		312.6 37635.7 500.			0.0	
es_1		2 1980		3 12620.2 394.		0.0		0.0	
. 0	0.0	0.0	5.3		938.1 37235.7 500.			0 0	
es_1 .0	0.0	2 1980 0.0	JUN 5.5	4 13009.0 393.	9 0.0 0.0 563.6 36835.7 500.	0.0	0.0 0.0 393.9 0.0 0.0 400.0 0.0 100.0	0.0	
.s_1	0.0	2 1980		5 13397.4 393.		0.0		0.0	
0	0.0	0.0	5.6	0.0 13785.5 37	189.2 36435.7 500.	J	0.0 400.0 0.0 100.0		
		0 1000		C 12005 5 222	- 00 00		0.0 0.0 0.0 5	2 2	
es_1 .0	0.0	2 1980 0.0	JUN 5.8	6 13785.5 393.	5 0.0 0.0 815.0 36035.7 500.	0.0 n		0.0	
.u es_1	0.0	2 1980		7 14173.2 393.		0.0		0.0	
. 0	0.0	0.0	5.9	0.0 14560.5 36	440.8 35635.7 500.	0	0.0 400.0 0.0 100.0		
es_1	0 0	2 1980		8 14560.5 393.		0.0		0.0	
.0 es 1	0.0	0.0 2 1980	6.0 JUN	0.0 14947.5 36 9 14947.5 392.	066.7 35235.7 500. 8 0.0 0.0	0.0	0.0 400.0 0.0 100.0 0.0 0.0 392.8 0.0	0.0	
.0	0.0	0.0	6.2		692.7 34835.7 500.			0.0	
es_1		2 1980	JUN	10 15334.2 392.	6 0.0 0.0	0.0	0.0 0.0 392.6 0.0	0.0	
.0	0.0	0.0	6.3	0.0 15720.4 35	318.9 34435.7 500.	J	0.0 400.0 0.0 100.0		
es_1		2 1980	JUN	11 15720.4 392.	4 0.0 0.0	0.0	0.0 0.0 392.4 0.0	0.0	
.0	0.0	0.0	6.5		945.1 34035.7 500.			0.0	
es_1		2 1980	JUN	12 16106.3 392.	2 0.0 0.0	0.0	0.0 0.0 392.2 0.0	0.0	
. 0	0.0	0.0	6.6		571.4 33635.7 500.		0.0 400.0 0.0 100.0	0 0	
es_1 .0	0.0	2 1980 0.0	JUN 6.8	13 16491.9 391.	9 0.0 0.0 197.8 33235.7 500.	0.0	0.0 0.0 391.9 0.0 0.0 400.0 0.0 100.0	0.0	
es_1	0.0	2 1980		14 16877.1 391.		0.0		0.0	
. 0	0.0	0.0	6.9		824.3 32835.7 500.		0.0 400.0 0.0 100.0		
es_1	0 0	2 1980		15 17261.9 391.		0.0		0.0	
. 0	0.0	0.0	7.0	0.0 1/646.3 33	450.9 32435.7 500.	J	0.0 400.0 0.0 100.0		
es_1		2 1980	JUN	16 17646.3 391.	2 0.0 0.0	0.0	0.0 0.0 391.2 0.0	0.0	
. 0	0.0	0.0	7.2		077.6 32035.7 500.				
es_1	0.0	2 1980		17 18030.4 391.		0.0		0.0	
.0 es_1	0.0	0.0 2 1980	7.3 JUN	18 18414.0 390.	704.4 31635.7 500. 8 0.0 0.0	0.0		0.0	
. 0	0.0	0.0	7.5		331.3 31235.7 500.		0.0 400.0 0.0 100.0		
es_1		2 1980		19 18797.4 390.		0.0		0.0	
.0	0.0	0.0 2 1980	7.6 JUN		958.3 30835.7 500. 3 0.0 0.0	0.0		0.0	
es_1 .0	0.0	0.0	7.7		3 0.0 0.0 585.4 30435.7 500.		0.0 400.0 0.0 100.0	0.0	
				****		-			
es_1		2 1980					0.0 0.0 390.1 0.0	0.0	
.0 es 1	0.0	0.0	7.9 .TIIN				0.0 400.0 0.0 100.0 0.0 0.0 389.8 0.0	0.0	
.0	0.0	0.0	8.0		8			0.0	
es_1		2 1980	JUN	23 20326.9 389.	6 0.0 0.0	0.0	0.0 0.0 389.6 0.0	0.0	
. 0	0.0	0.0	8.1		467.3 29235.7 500.			2 2	
es_1 .0	0.0	2 1980 0.0	JUN 8.3	24 20708.3 389. 0 0 21089 4 30	3 0.0 0.0 094.8 28835.7 500.	0.0 n		0.0	
.o es_1	0.0	2 1980					0.0 0.0 389.1 0.0	0.0	
. 0	0.0	0.0	8.4		722.4 28435.7 500.				
		0 1000		06 01480 0 000	0 0 0 0 0		0.0. 0.0 0.0 0.0	2 2	
es_1 0	0.0	2 1980 0.0	JUN 8.5		8 0.0 0.0 350.1 28035.7 500.		0.0 0.0 388.8 0.0 0.0 400.0 0.0 100.0	0.0	
s_1	0.0	2 1980		27 21850.3 388.			0.0 0.0 388.6 0.0	0.0	
. 0	0.0	0.0	8.7	0.0 22230.2 28	977.8 27635.7 500.	0	0.0 400.0 0.0 100.0		
es_1		2 1980		28 22230.2 388.			0.0 0.0 388.3 0.0	0.0	
.0 es_1	0.0	0.0	8.8 .TIIN		605.7 27235.7 500.		0.0 400.0 0.0 100.0 0.0 0.0 388.1 0.0	0.0	
.0	0.0	0.0	8.9		233.6 26835.7 500.			0.0	
es_1		2 1980	JUN	30 22988.8 387.	8 0.0 0.0	0.0	0.0 0.0 387.8 0.0	0.0	
. 0	0.0	0.0	9.1	0.0 23367.6 27	861.6 26435.7 500.)	0.0 400.0 0.0 100.0		
		2 1000			7 0 0 0 0 0		0.0 0.0 11720 7	0.0	
es_1		2 1900	101	1 11011.5 11/50.	7 0.0 0.0	0.0	0.0 0.0 11738.7 0.0 0.0 12000.0 0.0 3000.0	0.0	

From Storage to

From River by
Targt_0 BOM __

				T-2-2-1		Targ		BOM					Direct
inor	Carrier	Total		Initial	EOM Stor	n Dogra	o Pin	or Pir	or F	inor	Pivor	Total	River
eserv		Total			Priorty Stor								For IIse
					ent Limit								101 000
)		Acc Year			(+)				(+)			NA	(-)
	(-)		(-)	(-)				(+)	(-)		-)	NA	
				(1)	(2)	(3)	(4)	(5)			(8)	(9)	(10)
11)	(12)	(13)	(14) (15)	(16) (17)	(18)	(19) (20) ((21)	(22)	(23)	
es_1		2 1980			0.0								72.0
. 0	0.0	72.0	5.1		90.5 27489.7							68.8	77.0
es_1	0.0	2 1980	JUL 5.0		0.0 0.7.7 27577.5	0.0	96.8	0.0	0.0	0.0	0.0	0.0 74.6	77.8
.0 es_1	0.0	77.8 2 1980			0.0	0.0	0.0	77.8	0.0	0.0	0.0 1		78.1
.0	0.0	78.1	5.0		24.5 27671.0					0.0		74.9	/0.1
es 1	0.0	2 1980			0.0	0.0	0.0	0.0	0.0	0.0	0.0		78.3
.0	0.0	78.3	5.0		11.2 27764.8					0.0		75.1	70.5
es_1		2 1980		5 23041.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0		78.3
. 0	0.0	78.3	5.0	0.0 229	57.9 27858.8	26035.7				0.0	0.0 1	75.1	
es_1		2 1980	JUL	6 22957.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.3
. 0	0.0	78.3	5.0	0.0 228	74.6 27952.8	26035.7	96.8			0.0	0.0 1	75.1	
es_1		2 1980		7 22874.6	0.0	0.0	0.0	0.0	0.0	0.0			78.3
. 0	0.0	78.3	5.0		91.3 28046.7					0.0		75.1	
es_1		2 1980		8 22791.3	0.0		0.0		0.0	0.0	0.0		78.3
. 0	0.0	78.3	4.9		08.1 28140.7					0.0		75.1	
es_1	0 0	2 1980			0.0	0.0	0.0	0.0	0.0	0.0	0.0		78.3
.0	0.0	78.3 2 1980	4.9 JUL		24.8 28234.6	0.0	96.8	78.3	0.0	0.0		75.1	78.3
es_1 .0	0.0	78.3	4.9		11.6 28328.5					0.0		75.1	78.3
. 0	0.0	70.3	4.9	0.0 223	11.0 20320.3	20033.7	30.0	70.3			0.0 1	/3.1	
es_1		2 1980	JUL	11 22541.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.3
.0	0.0	78.3	4.9		8.4 28422.4					0.0		75.1	
es_1		2 1980	JUL		0.0		0.0	0.0	0.0	0.0	0.0	0.0	78.3
. 0	0.0	78.3	4.9	0.0 223	75.2 28516.3	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
es_1		2 1980	JUL	13 22375.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.3
. 0	0.0	78.3	4.9	0.0 222	92.1 28610.2	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
es_1		2 1980			0.0		0.0	0.0		0.0	0.0		78.3
. 0	0.0	78.3	4.9		08.9 28704.1					0.0		75.1	
es_1		2 1980		15 22208.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0		78.3
. 0	0.0	78.3	4.8	0.0 221	25.8 28797.9	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
es 1		2 1980	JUL	16 22125.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.3
.0	0.0	78.3	4.8		12.6 28891.8							75.1	70.5
es_1	0.0	2 1980			0.0	0.0	0.0	0.0	0.0	0.0			78.3
.0	0.0	78.3	4.8		59.5 28985.6					0.0		75.1	
es_1		2 1980	JUL		0.0		0.0	0.0		0.0	0.0	0.0	78.3
. 0	0.0	78.3	4.8	0.0 218	76.4 29079.5	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
es_1		2 1980			0.0	0.0	0.0	0.0	0.0	0.0	0.0		78.3
. 0	0.0	78.3	4.8		93.3 29173.3					0.0		75.1	
es_1		2 1980		20 21793.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0		78.3
. 0	0.0	78.3	4.8	0.0 217	10.3 29267.1	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
		0 1000		01 01 11 0 0				0 0	0 0		0 0		50.0
es_1	0 0			21 21710.3	0.0 27.2 29360.8			0.0					78.3
.0 es 1	0.0	78.3			0.0							75.1	78.3
.0	0.0	78.3			14.2 29454.6								10.3
.u es 1	0.0			23 21544.2				0.0					78.3
.0	0.0	78.3	4.7		51.2 29548.4								, , , ,
es_1					0.0			0.0					78.3
. 0	0.0	78.3	4.7	0.0 213	78.2 29642.1	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
es_1		2 1980	JUL	25 21378.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.3
. 0	0.0	78.3	4.7	0.0 212	95.2 29735.9	26035.7	96.8	78.3	C	0.0	0.0 1	75.1	
es_1					0.0								78.3
. 0	0.0	78.3	4.7		12.2 29829.6								
s_1	0 0				0.0								78.3
. 0	0.0	78.3	4.6		29.3 29923.3								70 3
es_1 0	0.0	78.3	4.6		0.0 46.3 30017.0								78.3
.u es_1	0.0				0.0								78.3
.0	0.0	78.3	4.6		53.4 30110.7								10.3
.u es_1	0.0			30 20963.4				0.0					78.3
.0	0.0	78.3	4.6		30.5 30204.3								70.3
-		,	5	2.3 200		,							
es_1		2 1980	JUL	31 20880.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.3
.0	0.0	78.3			7.6 30298.0								
		2 1000	TOT	-1 23367.6	0.0	0 0	Λ Λ	0 0	0 0	0 0	0 0	0 0	2420 5
s_1 0					0.0 -1.0								2120.5

From

(–

From River by From Carrier by Targt_0 BOM ____

River Carrier Total See 6 EXC See 1 EXC See 6 EXC See 2 EXC See 2 EXC See 2 EXC				_	Targt_0 BOM Total River	
Name Name Name Sever		702210	m Total		Initial Total River	
Stoce for the Senioran	servo	carrie oir	r IOLAI		Storage Priorty Storage Exc Pln Loss Priorty Sto Exc. Loss Supply For Use F	'or
1	c for	r Use I	Release	Evap	Spill Content Limit Limit Inflow Release Divert by Well Outflow	-
The color of the			Acc Year	Mo	$ \text{Day} \qquad \text{NA} \qquad (+) \qquad (+) \qquad (+) \qquad (-) \qquad (+) \qquad (+) \qquad (-) \qquad \text{NA} \qquad (-) $	
11 12 13 14 15 15 16 17 18 19 12 12 12 12 12 12 12	((-)				
	1 \	(12)	(13)	(14)	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (15) (16) (17) (18) (19) (20) (21) (22) (23)	
.0 0.0 78.3 3.7 0.0 20715.7 30381.6 266135.7 96.8 78.3 0.0 0.0 1.75.1 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0	± /	(± 2)				
.0 0.0 78.3 3.7 0.0 20715.7 301391.6 26035.7 96.8 78.3 0.0 0.0 1.75.1 0.0 78.6 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0						
mal 2 1980 ANG 2 20715.7					1 20797.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
0.0						
cs_1 2 1980 ADG 3 20833.7.7 0.0						
ea_1			2 1980			
0.0		0.0				
ea_1		0 0				
ea_1						
0. 0		0.0				
10	1		0 1000	3.770		
Sel		0 0				
.0		5.0				
0 0 0 78.3 3.6 0 0.0 20142.3 31025.4 26035.7 96.8 78.3 0.0 0.0 175.1 87.8 1 2 1980 AUG 11 19978.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.5 0.0 19978.6 31206.3 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 1.5 0.0 19978.6 31206.3 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 1.5 0.0 19978.6 31206.3 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 1.5 0.0 19978.6 31206.3 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 11 19978.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 12 19806.8 31296.8 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 12 19886.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 12 19886.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 12 19886.8 13294.8 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 12 19815.0 31387.3 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 13 19815.0 31387.3 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 13 19815.0 31387.3 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 175.1 88.1 0 2 1980 AUG 14 0737.3 23.2 1447.7 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 175.1 89.1 89.1 89.1 89.1 89.1 89.1 89.1 89		0.0	78.3	3.6	0.0 20224.2 30934.9 26035.7 96.8 78.3 0.0 0.0 175.1	
Sect 1		<u> </u>				
0 0 0 78.3 3.5 0.0 20060.5 31115.8 26035.7 96.8 78.3 0.0 0.0 1.75.1 8.8.1 2 1980 AUG 10 20060.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
Reg. 1						
es_1 0.0 2 1980 AUG 11 19978.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78 0.0 78.3 3.5 0.0 19896.8 31296.8 26035.7 96.8 78.3 0.0 0.0 175.1 0.0 78 0.0 0.0 78.3 3.5 0.0 19815.0 31387.3 26035.7 96.8 78.3 0.0 0.0 175.1 0.0 78 0.0 0.0 78.3 3.5 0.0 19815.0 31387.3 26035.7 96.8 78.3 0.0 0.0 175.1 0.0 78 0.0 0.0 78.3 3.5 0.0 19733.2 31477.7 26035.7 96.8 78.3 0.0 0.0 175.1 0.0 0.0 78 0.0 0.0 78.3 3.5 0.0 19733.2 31477.7 26035.7 96.8 78.3 0.0 0.0 175.1 0.0 0.0 78 0.0 0.0 78.3 3.5 0.0 19651.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						
0.0 78.3 3.5 0.0 19896.8 31296.8 26035.7 96.8 78.3 0.0 0.0 175.1 1	0	0.0	78.3	3.5	0.0 19978.6 31206.3 26035.7 96.8 78.3 0.0 0.0 175.1	
0.0 78.3 3.5 0.0 19896.8 31296.8 26035.7 96.8 78.3 0.0 0.0 175.1 1	g 1		2 1990	ΔIIC	11 19978.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
Section 1		0.0				
Sec. 1						
0.0 78.3 3.5 0.0 19733.2 31477.7 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 2180.0 0.0 78.3 3.5 0.0 19951.4 31568.1 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.5 0.0 19959.6 31658.6 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.5 0.0 19569.6 31658.6 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.5 0.0 19569.6 31658.6 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.5 0.0 194878.3 31749.0 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 1.75.1 78.3 1.0 0.0 78.3 3.5 0.0 194878.3 31749.0 26035.7 96.8 78.3 0.0 0.0 0.0 0.0 0.0 1.75.1 78.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0				
182 1 2 1980 AUG 14 19733.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0 0				
0.0		0.0				
0.0 78.3 3.5 0.0 19569.6 31658.6 26035.7 96.8 78.3 0.0 0.0 175.1 2 1980 AUG 16 19569.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 2 1980 AUG 17 19487.8 31749.0 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.5 0.0 19487.8 31749.0 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.4 0.0 19406.1 31839.4 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.4 0.0 19406.1 31839.4 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.4 0.0 19324.3 31929.8 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.4 0.0 19324.3 31929.8 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.4 0.0 19242.6 32020.2 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 19160.9 32110.5 26035.7 96.8 78.3 0.0 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 19160.9 32110.5 26035.7 96.8 78.3 0.0 0.0 0.0 1.75.1 0.0 78.3 3.4 0.0 19160.9 32110.5 26035.7 96.8 78.3 0.0 0.0 0.0 1.75.1 0.0 78.3 3.4 0.0 19079.2 32200.9 26035.7 96.8 78.3 0.0 0.0 0.0 1.75.1 0.0 78.3 3.4 0.0 19079.2 32200.9 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 0.0 78.3 3.4 0.0 19079.2 32200.9 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 19079.2 32200.9 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 19979.2 32200.9 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 18997.5 32291.3 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 18997.5 32291.3 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 18997.5 32291.3 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 188834.2 2471.9 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 188834.2 32471.9 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.4 0.0 18955.5 32562.3 26035.7 96.8 78.3 0.0 0.0 1.0 175.1 0.0 78.3 3.3 0.0 18567.6 32831.2 26035.7 96.8 78.3 0.0 0.0 0.0 1.0 175.1 0.0 78.3 3.3 0.0 185893.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 0.0 78.3 3.3 0.0 185893.3 32742.9 26035.7 96.8 78.3 0.0 0.0 0.0 1.75.1 0.0 78.3 3.3 0.0 185893.3 32742.9 26035.7 96.8 78.3 0.0 0.0 0.0 1.75.1 0.0 78.3 3.3 0.0 185893.3 32742.9 26035.7 96.8 78.3 0.0 0.0 0.0 1.0 175.1 0.0 78.3 3.3 0.0 185893.3 32742.9 26035.7 96.8 78.3 0.		0.0				
2 1980 AUG 16 19569.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 21980 AUG 20 19242.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 21980 AUG 20 19242.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						
0.0	0	0.0	78.3	3.5	0.0 19569.6 31658.6 26035.7 96.8 78.3 0.0 0.0 175.1	
0.0	s 1		2 1980	AUG	16 19569.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
0.0		0.0			0.0 19487.8 31749.0 26035.7 96.8 78.3 0.0 0.0 175.1	
## 1						
0.0		0.0				
## 1		0.0				
2 1980 AUG 2 1910 AUG 20 19242.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 28s_1 2 1980 AUG 21 19160.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 28s_1 2 1980 AUG 21 19160.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					19 19324.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
0.0 78.3 3.4 0.0 19160.9 32110.5 26035.7 96.8 78.3 0.0 0.0 175.1 2 1980 AUG 21 19160.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
88_1						
0.0 78.3 3.4 0.0 19079.2 32200.9 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 22 19079.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 22 1980 AUG 22 19079.5 32291.3 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 23 18997.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	U	0.0	78.3	3.4	0.0 19100.9 32110.5 20035.7 90.8 78.3 0.0 0.0 175.1	
2 1980 AUG 22 19079.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			2 1980	AUG	21 19160.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
0.0		0.0				
2 1980 AUG 23 18997.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 2 1980 AUG 24 18915.8 32381.6 26035.7 96.8 78.3 0.0 0.0 175.1 2 1980 AUG 24 18915.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.4 0.0 18834.2 32471.9 26035.7 96.8 78.3 0.0 0.0 0.0 175.1 2 1980 AUG 25 18834.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0 0				
0.0 78.3 3.4 0.0 18915.8 32381.6 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 24 18915.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0.0				
2 1980 AUG 24 18915.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0.0	78.3	3.4	0.0 18915.8 32381.6 26035.7 96.8 78.3 0.0 0.0 175.1	
es_1	s_1			AUG	24 18915.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
0.0 78.3 3.3 0.0 18752.5 32562.3 26035.7 96.8 78.3 0.0 0.0 175.1 es_1 2 1980 AUG 26 18752.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0.0				
2 1980 AUG 26 18752.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78 20 1980 AUG 26 18752.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 175.1 2 1980 AUG 27 18670.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0				
0.0	•	,				
2 1980 AUG 27 18670.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
0.0 0.0 78.3 3.3 0.0 18589.3 32742.9 26035.7 96.8 78.3 0.0 0.0 175.1 2 1980 AUG 28 18589.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.3 0.0 18507.6 32833.2 26035.7 96.8 78.3 0.0 0.0 175.1 2 1980 AUG 29 18507.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0.0	78.3	3.3	0.0 18670.9 32652.6 26035.7 96.8 78.3 0.0 0.0 175.1 27 18670.9 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
2 1980 AUG 28 18589.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.3 0.0 18507.6 32833.2 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 29 18507.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 0.0 18426.0 32923.4 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 30 18426.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0			0.0 18589.3 32742.9 26035.7 96.8 78.3 0.0 0.0 175.1	
0 0.0 78.3 3.3 0.0 18507.6 32833.2 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 29 18507.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.3 0.0 18426.0 32923.4 26035.7 96.8 78.3 0.0 0.0 175.1 21980 AUG 30 18426.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0			28 18589.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
0 0.0 78.3 3.3 0.0 18426.0 32923.4 26035.7 96.8 78.3 0.0 0.0 175.1 2 1980 AUG 30 18426.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0	0.0	78.3	3.3	0.0 18507.6 32833.2 26035.7 96.8 78.3 0.0 0.0 175.1	
2 1980 AUG 30 18426.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0 0			29 18507.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3	
.0 0.0 78.3 3.3 0.0 18344.5 33013.7 26035.7 96.8 78.3 0.0 0.0 175.1 es_1 2 1980 AUG 31 18344.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.3 3.3 0.0 18262.9 33104.0 26035.7 96.8 78.3 0.0 0.0 175.1 es_1 2 1980 TOT -1 20797.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0.0				
es_1		0.0				
.0 0.0 78.3 3.3 0.0 18262.9 33104.0 26035.7 96.8 78.3 0.0 0.0 175.1 es_1 2 1980 TOT -1 20797.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						
es_1 2 1980 TOT -1 20797.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2427		0 0				
es_1	U	0.0				
es_1 2 1980 TOT -1 20797.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2427						
0 0.0 2427.5 3.3 0.0 0.0 -1.0 -1.0 3000.0 2427.5 0.0 0.0 5427.5					-1 20797.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2427.5	
	0	0.0	2427.5	3.3	0.0 0.0 -1.0 -1.0 3000.0 2427.5 0.0 0.0 5427.5	

Station Balance

							Fr	om River Tar	by		F	rom (Carrie:	r by				
Piver	Carrier	Total	-		Initial										r Pi	Total	River	
ICCDCI					bcorage		orca pec	rage bac		порр	TITOI	c, c	со_пис		.000	upp I	For Use	For
	or Use Re	lease Acc Year															(-)	(-
		NA	(-)	(-) 1	ΝA	NA	NA	(+)	(-	+)	(-)	(-)	NA			
(11)	(12)				(1) (15)												(10)	
Res_1 0.0	0.0	2 1980 77.6	SEP 2.8	1	18262.9			0.0 26035.7	100.0		0 77.6		0.0		0.0		77.6	
Res_1		2 1980	SEP	2	18182.5		0.0	0.0	0.0	0.0	0	.0	0.0		0.0	0.0	77.1	
0.0 Res_1	0.0	77.1 2 1980	2.8 SEP	3	18102.6	J2.6	0.0	26035.7 0.0	0.0		77.1				177. 0.0	0.0	76.8	
0.0	0.0	76.8	2.8		0.0 180		33369.5	26035.7	100.0		76.8	0	. 0	0.0	176.	8		
Res_1 0.0	0.0	2 1980 76.6	SEP 2.8	4	18023.0		0.0 33456 5	0.0 26035.7		0.0		.0 0	0.0		0.0 176.		76.6	
Res_1		2 1980	SEP	5	17943.7		0.0	0.0	0.0	0.0	0	.0	0.0		0.0	0.0	76.6	
0.0	0.0	76.6	2.8		0.0 178	54.4	33543.3	26035.7	100.0		76.6	0	. 0	0.0	176.	6		
Res_1		2 1980		6	17864.4		0.0	0.0	0.0	0.0		. 0			0.0	0.0	76.6	
0.0 Res_1	0.0	76.6 2 1980	2.7 SEP	7	0.0 1778 17785.0	35.0	33630.1 0.0	26035.7 0.0	100.0		76.6 0				176. 0.0	0.0	76.6	
0.0	0.0	76.6	2.7	,		05.7		26035.7					.0		176.		70.0	
Res_1	0.0	2 1980 76.6	SEP 2.7	8	17705.7		0.0	0.0 26035.7			0		0.0		0.0 176.		76.6	
Res_1		2 1980		9	17626.4	20.4	0.0	0.0	0.0	0.0		.0			0.0	0.0	76.6	
0.0	0.0	76.6	2.7	1.0		47.1		26035.7							176.		76.6	
Res_1 0.0	0.0	2 1980 76.6	SEP 2.7	10	17547.1 0.0 174	57.8	0.0 33977.4	0.0 26035.7	0.0 100.0		0 76.6		0.0		0.0 176.	0.0	76.6	
D 1		2 1980	CED	11	17467.8		0 0	0 0	0 0	0.0	0	0	0 0		0 0	0.0	76.6	
Res_1 0.0	0.0	76.6	SEP 2.7	1.1			0.0 34064.1	0.0 26035.7	0.0			.0			0.0 176.		76.6	
Res_1		2 1980		12	17388.5	20 2		0.0	0.0		0				0.0		76.6	
0.0 Res_1	0.0	76.6 2 1980	2.7 SEP	13	17309.3	19.3	0.0	26035.7 0.0	0.0	0.0		.0			176. 0.0	0.0	76.6	
0.0	0.0	76.6	2.7			30.0		26035.7					. 0	0.0	176.			
Res_1 0.0	0.0	2 1980 76.6	SEP 2.7	14	17230.0 0.0 171	50.8	0.0 34324.4	0.0 26035.7	0.0	0.0		.0	0.0		0.0 176.		76.6	
Res_1		2 1980		15	17150.8		0.0	0.0	0.0	0.0	0	.0	0.0		0.0	0.0	76.6	
0.0	0.0	76.6	2.6		0.0 170	/1.5	34411.2	26035.7	100.0		76.6	0	. 0	0.0	176.	6		
Res_1		2 1980		16	17071.5		0.0	0.0	0.0			. 0			0.0	0.0	76.6	
0.0 Res_1	0.0	76.6 2 1980	2.6 SEP	17	16992.3	92.3	0.0	26035.7 0.0	0.0			.0			176. 0.0	0.0	76.6	
0.0	0.0	76.6	2.6		0.0 169	13.1	34584.6	26035.7	100.0	, ,	76.6	0	.0	0.0	176.			
Res_1 0.0	0.0	2 1980 76.6	SEP 2.6	18	16913.1	33.9	0.0 34671.4	0.0 26035.7			0 76.6		0.0		0.0 176.		76.6	
Res_1		2 1980	SEP	19	16833.9		0.0	0.0	0.0	0.0	0	.0	0.0		0.0	0.0	76.6	
0.0 Res_1	0.0	76.6 2 1980	2.6 SEP	20	0.0 1679 16754.7		0.0	26035.7 0.0					0.0		176. 0.0		76.6	
0.0	0.0	76.6						26035.7										
Res_1		2 1980	SEP	21	16675.5		0.0	0.0	0.0	0.0	0	. 0	0.0		0.0	0.0	76.6	
0.0	0.0	76.6	2.6		0.0 165	96.4	34931.5	26035.7	100.0		76.6	0	. 0	0.0	176.	6		
Res_1 0.0	0.0	2 1980 76.6	SEP 2.6	22	16596.4			0.0 26035.7					0.0		0.0 176.	0.0	76.6	
Res_1		2 1980	SEP	23	16517.2		0.0	0.0	0.0	0.0	0	. 0	0.0		0.0	0.0	76.6	
0.0 Res_1	0.0	76.6 2 1980	2.6 SEP	24	0.0 1643			26035.7 0.0			76.6 0				176. 0.0	6	76.6	
0.0	0.0	76.6	2.5		0.0 163	59.0	35191.5	26035.7	100.0	, ,	76.6	0	. 0	0.0	176.	6		
Res_1	0.0	2 1980 76.6	SEP 2.5	25	16359.0			0.0 26035.7			0 76.6				0.0 176.	0.0	76.6	
Res_1	0.0	2 1980 76.6	SEP 2.5	26	16279.8		0.0 35364 8	0.0 26035.7	100 0			.0			176	0.0	76.6	
Res_1		2 1980	SEP	27	16200.7		0.0	0.0	0.0	0.0	0	.0	0.0		0.0	0.0	76.6	
0.0 Res_1	0.0	76.6 2 1980	2.5 SEP	28	0.0 161: 16121.6			26035.7 0.0					.0		176. 0.0	0.0	76.6	
0.0	0.0	76.6	2.5		0.0 160	12.5	35538.1	26035.7	100.0		76.6	0	. 0	0.0	176.	6		
Res_1 0.0	0.0	2 1980 76.6	SEP 2.5	29	16042.5			0.0 26035.7	100 0		0 76 6		0.0		0.0 176.	0.0	76.6	
Res_1		2 1980	SEP	30	15963.5		0.0	0.0	0.0	0.0	0	. 0	0.0		0.0	0.0	76.6	
0.0	0.0	76.6	2.5		0.0 158	34.4	35711.3	26035.7	100.0) '	76.6	0	.0	0.0	176.	6		

*.xop Operational Right Diversion Summary
STATEMOD
StateMod Operating Rule Example - ex3.* data set

```
# Statemod Version: 12.29.00 Date = 2008/09/15)
              11/ 2/ 8 15: 4:56
# Run date:
# Time Step:
                    Daily
#
Operational Right Summary ACFT
                        Name = Opr_Res_1_to_Target
                                                        Opr Type =
 ID = Opr_1
                                                                          Admin # =
                                                                                            10.00000
                                                                        Year Off =
                                                        Year On =
 Source 1 = Res_1
                        Destination = 0
      OCT
               NOV
YEAR
                       DEC
                              JAN
                                       FEB
                                               MAR
                                                       APR
                                                               MAY
                                                                       JUN
                                                                               JUL
                                                                                       AUG
                                                                                               SEP
                                                                                                       TOT
1980
        0.0
                0.0
                        0.0
                                0.0
                                        0.0
                                                0.0
                                                        0.0
                                                                0.0
                                                                        0.0
                                                                                0.0
                                                                                        0.0
                                                                                                0.0
                                                                                                        0.0
AVG
               0.0
                        0.0
                                0.0
                                                                0.0
                                                                        0.0
                                                                                0.0
                                                                                        0.0
                                                                                                        0.0
        0.0
                                        0.0
                                                0.0
                                                        0.0
                                                                                                0.0
Operational Right Summary ACFT
                                                                      2 Admin # = 0 Year Off =
 ID = Opr_2
                                                        Opr Type =
                        Name = Opr_Res_1_to_Dem_2
                                                                                             9.00000
 Source 1 = Res_1
                        Destination = Dem_2
                                                        Year On =
                                                                                      9999
            NOV
YEAR
      OCT
                              JAN
                                               MAR
                                                              MAY
                                                                      JUN JUL
                                                                                      AUG
                                                                                               SEP
                                                                                                       TOT
                       DEC
                                                       APR
       10.8
                 0.0
                        0.0
                                0.0
                                        0.0
                                                0.0
                                                        0.0
                                                                0.0
                                                                        0.0
                                                                                0.0
                                                                                        0.0
                                                                                                0.0
                                                                                                       10.8
AVG
                                                                0.0
                0.0
                        0.0
                                0.0
                                        0.0
                                                0.0
                                                        0.0
                                                                        0.0
                                                                                0.0
                                                                                        0.0
                                                                                                0.0
                                                                                                       10.8
       10.8
Operational Right Summary ACFT
                                                                      1 Admin # = 0 Year Off =
ID = Opr_3
Source 1 = Res_1
                                                        Opr Type =
                                                                                             9.00000
                        Name = Opr_Res_1_to_ISF
                        Destination = ISF
                                                        Year On =
                                                                                      9999
      OCT
YEAR
               NOV
                      DEC
                               JAN
                                       FEB
                                               MAR
                                                       APR
                                                               MAY
                                                                      JUN
                                                                             JUL
                                                                                      AUG
                                                                                               SEP
                                                                                                       TOT
                                                                        0.0 2420.5
                                                                                             2299.3 7172.3
2299.3 7172.3
1980
       25.0
                0.0
                        0.0
                                0.0
                                        0.0
                                                0.0
                                                                0.0
                                                                                     2427.5
                                                        0.0
AVG
                                0.0
                                                0.0
                                                        0.0
                                                                0.0
                                                                        0.0 2420.5 2427.5
       25.0
                0.0
                        0.0
                                        0.0
```

cdss@state.co.us

Last updated: November 2008

Example 9

```
# Exhibit 9.1
  *.rsp; response file for Statemod Example 9
      This response file lists the StateMod input files necessary for model simulation
# Type
                                          Name
                                        = ex9.ctl
Control
River Network
                                        = ... ex1 ex1.rin
StreamGage_Station
                                        = ..\ex1\ex1.ris
Stream Base Monthly
                                        = ..\ex1\ex1.rim
Diversion Station
                                        = ..\ex1\ex1.dds
Diversion_Right
                                        = ... ex1 ex1.ddr
Diversion Demand Monthly
                                        = ... ex1 ex1.ddm
Instreamflow Station
                                        = ... ex1 ex1.ifs
Instreamflow Right
                                        = ... ex1 ex1.ifr
Instreamflow Demand AverageMonthly
                                        = ..\ex1\ex1.ifa
Operational Right
                                        = ex9.opr
DelayTable_Monthly
                                        = ..\ex1\ex1.urm
OutputRequest
                                        = ... ex1 ex1.out
# Exhibit 9.2
# ex*.ctl; Control file for StateMod Example 9
  STATEMOD
  StateMod Operating Rule Example - ex9.*
            : iystr STARTING YEAR OF SIMULATION
    1980
    1980
            : iyend
                      ENDING YEAR OF SIMULATION
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
           : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
            : numpre NO. OF PRECIPITATION STATIONS
            : numeva NO. OF EVAPORATION STATIONS
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
  1.9835
            : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
                                                        ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
  Ω
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
  1.0
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
  1.0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
            : cyr1
                      Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
      6
            : ichk
                       detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall
                       Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall Detailed call water right ID (not used if icall = 0)
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : idav
            : iwell
                       Switch for well operations See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isjrip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
            : isprink O=off, 1=Maximum Supply, 2=Mutual Supply
            : soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth : isig Number of significant digits behind decimal point in output files
# Exhibit 9.3
  *.opr; operating rules file for Statemod Example 9
      This file lists the operating rules used in model simulation
                     GUIDE TO COLUMN ENTRIES
      _____
          TD
                        ID number of operating rule that is used to separate operating rule output in *.xop file
          Name
                     Name of operating rule - used for descriptive purposes only
          Admin#
                     Administration number used to determine priority of operational water rights relative to other
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
          # Str
                     Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
StateMod program the number of entries on next line)
          On/Off
                      1 for ON and 0 for OFF
          Dest ID
                     Destination of operating rule whose demand is to be met by simulating the operating rule
```

```
Account at destination to be met by operating rule - typically 1 for a diversion structure and
         Dest Ac
account number for reservoir destination
         Soul ID ID number of primary source of water under which water right is being diverted in operating rule
 typically a water right, reservoir, or Plan structure
                   Account of Soul - typically 1 for a diversion structure and account number for reservoir source
         Soul Ac
         Sou2 ID
#
                   ID of Plan where reusable storage water or reusable ditch credits is accounted
         Sou2 Ac
                   Percentage of Plan supplies available for operation
                   Rule type corresponding with definitions in Chapter 4 of StateMod documentation
#
         Type
         ReusePlan
                   ID of Plan where reusable return flows or diversions to storage are accounted
         Div Type
                   'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                      'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
                  Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
         OprLoss
StateMod documentation, Section 4.13)
                 Capacity limit for carrier structures different from capacity in .dds file (used to represent
         Limit
constricted conveyance capacity for winter deliveries to reservoirs)
         Comments Description of rule type
# TD
                               NA
                                                   Admin# # Str On/Off Dest Id
          Name
                                                                                   Dest Ac Soul Id
                                                                                                      Sou1
Ac Sou2 Id Sou2 Ac Type ReusePlan Div Type
                                                   OprLoss Limit Comments
____eb----eb----eb----exb-----exb-----exb-----exb-----
                                                                    1 Dem_3
       Opr_Pro_Rata_Exchange
                                                   6.00001
                                                              0.
                                                                                          1 Dem 2 WR 1
Opr 1
                         24 NA
                                        Diversion
                                                                            9999 Direct Flow Exchange of
10 NA
                  0
                                                                       0
Pro-Rata Water Right
    5000.
              0.
                     0.
                           0.
                                   0.
                                          0. 5000.
                                                      5000.
                                                              5000. 5000.
                                                                            5000.
                                                                                   5000. 35000.0
#
 *.xwb
#
            Water Budget
#
#
   STATEMOD
  StateMod Operating Rule Example - ex9.*
                   12.289 Date = 2008/09/12)
# Statemod Version:
 Run date:
                   9/15/ 8 12: 8:18
 Time Step:
                  Monthly
                           Water Budget ACFT
             Stream
                                    From/To
                                                From
                                                          From
                                                                    Total
                                                                                        From River
Well
      Reservoir Reservoir
                           Stream
                                                             SoilM
                                    Reservoir
                                                      To
                                  GWStorage
Year
     Mo
            Inflow
                     Return
                                               SoilM
                                                          Plan
                                                                    Inflow
                                                                              Divert
                                                                                         by Well
Depletion Evaporation
                      Seepage
                                Out.flow
                                           Change
                                                        SoilM
                                                                   Change
Total
                       CU
              Delta
                                            Pumping
                                                         Salvage
Outflow
                                   Loss
_____
                               -----
                                                            0.0
1979 OCT
              4000.0
                                                                    5306.7
                      1306.7
                                      0.0
                                                 0.0
                                                                               4666.7
                                                                                             0.0
                                                                                                       0.0
               640.0
                                                                           0.0 1733.3
          0.0
                                0.0
                                                      0.0
                                                              5306.7
                                                                                                 0.0
0.0
                                           0.0
0.0
          0.0
1979 NOV
             4000.0
                                                            0.0
                        2675.6
                                      0.0
                                                 0.0
                                                                    6675.6
                                                                               5555.6
                                                                                             0.0
                                                                                                       0.0
          0.0 1120.0
                                0.0
                                                             6675.6
                                                                           0.0 2177.8
                                           0.0
                                                      0.0
                                                                                                 0.0
0.0
          0.0
0.0
            4000.0
1979 DEC
                         3291.9
                                      0.0
                                                 0.0
                                                            0.0
                                                                    7291.9
                                                                               5851.9
                                                                                             0.0
                                                                                                       0.0
               1440.0
                                                                           0.0
          0.0
                                0.0
                                                              7291.9
0.0
                                           0.0
                                                      0.0
                                                                                   2325.9
                                                                                                 0.0
0 0
          0.0
             4000.0
                                                            0.0
                        3550.6
1980 JAN
                                      0.0
                                                 0.0
                                                                    7550.6
                                                                               5950.6
                                                                                             0.0
                                                                                                       0.0
                 1600.0
0.0
          0.0
                                0.0
                                           0.0
                                                      0.0
                                                              7550.6
                                                                           0.0
                                                                                   2375.3
                                                                                                 0.0
0.0
          0.0
                                                            0.0
             4000.0
1980 FEB
                        3583.5
                                      0.0
                                                 0.0
                                                                    7583.5
                                                                               5983.5
                                                                                             0.0
                                                                                                       0.0
               1600.0
          0.0
                                0.0
                                                              7583.5
                                                                           0.0 2391.8
0.0
                                           0.0
                                                      0.0
                                                                                                 0.0
0.0
          0.0
1980 MAR
             4000.0
                                                 0.0
                                                            0.0
                                                                   7594.5
                                                                               5994.5
                                                                                             0.0
                        3594.5
                                      0.0
                                                                                                       0.0
          0.0 1600.0
                                0.0
                                                             7594.5
                                                                           0.0 2397.3
0.0
                                           0.0
                                                      0.0
                                                                                                 0.0
0 0
          0 0
             4000.0
1980 APR
                         3531.3
                                      0.0
                                                 0.0
                                                            0.0
                                                                    7531.3
                                                                               5730.9
                                                                                             0.0
                                                                                                       0.0
          0.0
                  1800.5
                                                                           0.0
0.0
                                0.0
                                           0.0
                                                      0.0
                                                              7531.3
                                                                                   2265.4
                                                                                                 0.0
0.0
          0.0
             20000.0
                                                            0.0
1980 MAY
                        3657.7
                                      0.0
                                                 0.0
                                                                   23657.7
                                                                               6500.0
                                                                                             0.0
                                                                                                       0.0
                17157.7
                                                             23657 7
                                                                           0 0
0 0
          0 0
                                0 0
                                           0 0
                                                      0 0
                                                                                   2650.0
                                                                                                 0 0
0.0
          0.0
```

0.0

0.0

0.0

0.0

23850.0

7687.1

7483 4

7434.7

23850.0

7687.1

7483.4

7434.7

6500 0

5848.3

5685.4

5653 6

0.0 2226.8

2650.0

2324.2

2242 7

0.0

0.0

0.0

0 0

0.0

0.0

0 0

0.0

0.0

0 0

0.0

0 0

0.0

0.0

0 0

0 0

0.0

0.0

0 0

0.0

0.0

0 0

0.0

0.0

0.0

0.0

0 0

0.0

0.0

0 0

0.0

20000 0

4000.0

0.0 1838.8

4000.0

4000.0

1798.0

1781.2

0.0

0 0

0.0

0 0

0.0

0.0

0.0

17350.0

3850.0

3687.1

3483.4

3434 7

0.0

0.0

0 0

0.0

1980 JUN

1980 JUL

1980 AUG

1980 SEP

0.0

0 0

0.0

0 0

0.0

0.0

0.0

0.0

			- <u></u>				
1980 0.0 0.0) Tot	80000.0 39647.0 0.0 49726.2 0.0	0.0	0.0		69920.9 0.0 0.0 27760.4	0.0
		Wat	er Budget A	CFT			
		Stream	From/	To From	From Total	From River	i
Well Year Deple	Re Mo etion	servoir Reservoir St	ream Reser	voir	To SoilM	Divert by Well	
Tota Outf	low	Delta CU					
Ave	OCT		0.0	0.0		4666.7 0.0 0.0 1733.3	0.0
0.0 Ave 0.0	NOV	0.0 4000.0 2675.6 0.0 1120.0		0.0	0.0 6675.6 0.0 6675.6		0.0
0.0 Ave 0.0	DEC	0.0 4000.0 3291.9 0.0 1440.0				5851.9 0.0 0.0 2325.9	0.0
0.0 Ave 0.0	JAN	0.0 4000.0 3550.6 0.0 1600.0			0.0 7550.6 0.0 7550.6	5950.6 0.0 0.0 2375.3	0.0
0.0 Ave 0.0 0.0	FEB	0.0 4000.0 3583.5 0.0 1600.0		0.0	0.0 7583.5 0.0 7583.5	5983.5 0.0 0.0 2391.8	0.0
0.0 Ave 0.0 0.0	MAR	4000.0 3594.5 0.0 1600.0 0.0	0.0	0.0	0.0 7594.5 0.0 7594.5	5994.5 0.0 0.0 2397.3	0.0
Ave 0.0	APR	4000.0 3531.3 0.0 1800.5 0.0	0.0	0.0	0.0 7531.3 0.0 7531.3		0.0
Ave 0.0	MAY	20000.0 3657.7 0.0 17157.7 0.0	0.0	0.0	0.0 23657.7 0.0 23657.7	6500.0 0.0 0.0 2650.0	0.0
Ave 0.0 0.0	JUN	20000.0 3850.0 0.0 17350.0 0.0	0.0	0.0	0.0 23850.0 0.0 23850.0	6500.0 0.0 0.0 2650.0	0.0
Ave 0.0 0.0	JUL	4000.0 3687.1 0.0 1838.8 0.0	0.0	0.0	0.0 7687.1 0.0 7687.1		0.0
Ave 0.0	AUG	4000.0 3483.4 0.0 1798.0 0.0	0.0	0.0	0.0 7483.4	0.0 2242.7	0.0
Ave 0.0 0.0	SEP	4000.0 3434.7 0.0 1781.2 0.0			0.0 7434.7 0.0 7434.7		0.0

39647.0 80000.0 0.0 0.0 0.0 119647.0 69920.9 0.0 Ave Tot 0.0 0.0 49726.2 0.0 0.0 0.0 119647.0 0.0 27760.4 0.0 0.0 0.0 0.0 (6)

0.0

69920.9

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency

- + max (Resevoir Evaporation (Evap), 0.0). (2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream
- (3) Pumping is not part of the Stream Balance.
- Its impact on the stream is included in the From River by Well and Well Depletion columns
- (4) Salvage is not part of the Stream Water Balance. It is the portion of well pumping that does not impact the stream
- (5) From Plan is water from a reuse plan.
- (6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:
 - 0. af/yr for Diverted to Storage. 1 2
 - 0. af/yr for a Diversion Carrier.
 - 3
 - 4
 - af/yr Total

```
STATEMOD
   StateMod Operating Rule Example - ex9.*
 Statemod Version: 12.289 Date = 2008/09/12)
Run date: 9/15/ 8 12: 8:12
 Time Step:
                     Monthly
  *.xwr; Water Right Information
        Number of rights =
#
#
 Where:
                     = Water right basin rank
  1. Rank
   2. Type
                     = Water right type
                    1=Instream.
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
                    5=Operational,
                    6=Well,
   3. Admin #
                    = Administration Number
#
                     = On or Off switch
   4. On/Off
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
                    1=on
                   +n=begin in year n
#
                   -n=stop in year n
  5. Str Id #1
6. Str Id #2
                     = Primary structure for this right
                     = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                       = Decreed capacity & unit
(c=CFS, a=AF)
# 8. Right Name
                     = Water right name
 9. Str Name #1
                     = Primary structure for this right
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
                                       Admin # On/Off Str ID #1
                                                                      Str ID #2
                                                                                         Amount Right Name
   Rank ID
                          Type
                          Str Name #2
Str Name #1
                                           (4)
                                                    (5) (6)
                                                                      (7)
                                                                                             (8) (9)
    (1) (2)
                           (3)
(10)
                           (11)
#
      1 Dem_1_WR_1
                             3
                                       2.00000
                                                                      -1
                                                                                       100.000 c M&I Demand 1
                                                     1 Dem 1
3
                                       6.00000
                                                                                        60.000 c Irrigation Demand _2
                                                     0 Dem 2
                                                                      -1
Irrigation Demand _2
                           124
                                       6.00001
                                                                                        -1.000 x Opr_Pro_Rata_Exchange
      3 Opr 1
                                                     1 -1
                                                                      -1
      4 Dem 3 WR 1
                             3
                                       7.00000
                                                                                       100.000 c Irrigation Demand _3
                                                     1 Dem 3
                                                                      -1
Irrigation Demand _3
      5 ISF WR 1
                                       9.00000
                                                                                        65.500 c Instream Flow 1
                             1
                                                     1 ISF
                                                                      - 1
Instream Demand
      6 Dem 4 WR 1
                             3
                                      10.00000
                                                     1 Dem 4
                                                                      - 1
                                                                                       100.000 c Irrigation Demand 4
Irrigation Demand _4
      7 Dem 5 WR 1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                      -1
                                                                                       100.000 c Irrigation Demand _5
Irrigation Demand 5
 *.xdd
             Diversion Summary
#
#
   STATEMOD
   StateMod Operating Rule Example - ex9.*
# Statemod Version:
                      12.289 Date = 2008/09/12)
                      9/15/ 8 12: 8: 4
 Run date:
#
 Time Step:
                     Monthly
   Diversion Summary ACFT
     STATEMOD
     StateMod Operating Rule Example - ex9.*
PAGE NO.
          1
    STRUCTURE ID (0 = total) : Dem_3
    STRUCTURE ACCT (0 = total): 0
    STRUCTURE NAME
                             : Irrigation Demand _3
    RIVER LOCATION - FROM
                              : Dem_3
                                             Exist. Diver. 3/Inflow
```

RIVER LOCATION - TO : Dem_3 Exist. Diver. 3/Inflow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	:	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water Use	Demand						From	Carrier	Bv
Carried	=========				-					-2
Structure River					.======	====	From	======		
Exchange From Total	l Total CU	To	Total		Upst:	rm				
ID ID	Year Mo	Total CU	Priorty St	orage E	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	y Short Shor	t CU SoilM	Return	Loss	Infl	WC				
Station				ion Bal						
Provide Private Wall										
	From/To River GW Stor Inflo									
Dem 3 Dem 3	1979 OCT		574.4	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0 0.0 943.4				0.0		1000.0	0.0	0.0	0.0	1000.0
943.4 0.0 56.		100.		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3 Dem 3	1979 NOV		888.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 888.9			444.4	0.0		1000.0	0.0	0.0	0.0	1000.0
888.9 0.0 111.3		100.		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3 Dem 3	1979 DEC		963.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 963.0	37.0 18.5	481.5 0.0	481.5	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
963.0 0.0 37.	0.0 Dem_1	100.	000							
Dem_3 Dem_3	1980 JAN	1000.0 500.0	987.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 987.7		493.8 0.0	493.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
987.7 0.0 12.		100.								
Dem_3 Dem_3	1980 FEB		995.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 995.9			497.9	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
995.9 0.0 4.1		100.								
Dem_3 Dem_3	1980 MAR		998.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 998.6			499.3	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
998.6 0.0 1.		100. 1000.0 500.0	643.0	0.0	357.0	0 0	0 0	0.0	0.0	0.0
Dem_3 Dem_3 0.0 0.0 1000.0	1980 APR 0.0 0.0		500.0	0.0		0.0	0.0	0.0	0.0	1000.0
	.0 0.0 Hgate		.000	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3 Dem 3	1980 MAY			0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0	0.0 0.0		500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0 0.0 4000			.000	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
Dem 3 Dem 3	1980 JUN			0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0		500.0 0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0 0.0 4000	.0 4000.0 NA	-1	.000							
Dem_3 Dem_3	1980 JUL	1000.0 500.0	631.1	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0	0.0 0.0	500.0 0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0 0.0 0	.0 0.0 Hgate		.000							
Dem_3 Dem_3	1980 AUG			0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0	0.0 0.0	500.0 0.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
	.0 0.0 Hgate		.000							
Dem_3 Dem_3	1980 SEP			0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0	0.0 0.0		500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0 0.0 0		_	.000							
		2000.0 6000.0	9230 6		2546.8	0.0	0.0	0.0	0.0	0.0
0.0 0.0 11777.4			5888.7	0.0		20000.0	0.0	0.0		20000.0
	2.6 8000.0 NA		1.000	0.0	0.0		0.0	0.0	0.0	

Diversion Summary ACFT
STATEMOD
StateMod Operating Rule Example - ex9.*
PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Water Use Shortage D --- - -- --From River By From Carrior By

			Dema	nd		From R	iver By			From	Carrier	Ву
Carried		========										
	re River		======						From	=======	======	
	e From Total			To	Total		Upst					
ID	ID	Year Mo	Total				Exc_Pln		Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Shor	t CU	SoilM	Return	Loss	s Infl	OW				
	Station I	n /011+			Ctot	ion Bal	lango					
======		, ouc ========	== =====	=======				======				
Reach	Return Well	From/To River	River	River	River	Avail	Control	Control				
Gain	Flow Deplete	GW Stor Inflo	w Diver	t By Well	l Outflow	Flow	Location	Right				
Dem_4	Dem_4	1979 OCT	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	56.6	0.0	235.8	0.0	0.0	292.5
0.0	0.0 292.5	0.0 Dem_1		100.000								
Dem_4	Dem_4	1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	111.1	0.0	458.1	0.0	0.0	569.2
0.0	0.0 569.2	0.0 Dem_1		100.000								
Dem_4	Dem_4	1979 DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 500.0	500.0 250.0 0.0 Dem 1	0.0	0.0	0.0	0.0	37.0	0.0	463.0	0.0	0.0	500.0
Dem 4	0.0 500.0 Dem 4	1980 JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	12.3	0.0	487.7	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem 1	0.0	100.000	0.0	0.0	12.5	0.0	407.7	0.0	0.0	300.0
Dem 4	Dem 4	1980 FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	4.1	0.0	495.9	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1	0.0	100.000	0.0	0.0		0.0	133.3	0.0	0.0	500.0
Dem 4	Dem 4	1980 MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	1.4	0.0	498.6	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4	1980 APR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	499.7	0.0	0.0	499.7
0.0	0.0 499.7	0.0 ISF		100.000								
Dem_4	Dem_4	1980 MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0			-1.00								
Dem_4	Dem_4	1980 JUN	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 500.0	0.0 500.0	0.0 0.0	250.0	0.0 -1.00	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
Dem 4	0.0 4000.0 Dem 4	1980 JUL	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF	0.0	100.000	0.0	0.0	0.0	0.0	300.0	0.0	0.0	500.0
Dem 4	Dem 4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem 4	Dem 4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF		100.000								
Dem_4	Dem_4		5500.0	2750.0	L000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		4500.0 2250.0	500.0	0.0	500.0	0.0	8222.6	0.0	5638.7	0.0	0.0	13861.3
1000.0	0.0 12861.	3 8000.0 NA		-1.0	000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex9.*

PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _5

RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow

RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	Ω	0	0	Ω

Shortage		Water U	Jse							
_				Demand	Fi	om River By			From Carrier	Ву
Carried		======								
Structure F	River		===				=====	From	=========	=====
Exchange Fro	om Total	Total	CU	To	Total	Ups	trm			
ID 1	D	Year	Mo To	otal CU	Priorty Sto	age Exc_Pln	Loss	Well	Priorty Sto_Exc	Loss
Rymage SN	/ Supply	Short	Short	CII SoilM	Return	Loss Inf	low			

Station In/Out Station Balance ______

Reach	Return Well	From/To River	River		River		Control					
Gain	Flow Deplete						Location					
Dem_5	Dem_5	1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_1	1	00.000								
Dem_5	Dem_5	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_1	1	00.000								
Dem 5	Dem 5	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 1	1	00.000								
Dem 5	Dem_5	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 1	1	00.000								
Dem 5	Dem 5	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem 1		00.000								
Dem 5	Dem_5	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		00.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	5000.0
Dem 5	Dem 5	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		00.000	0.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
Dem 5	Dem_5	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0		15000.0	0.0	0.0		15000.0
0.0	0.0 15000.0 1			-1.000	0.0	0.0	0.0	13000.0	0.0	0.0	0.0	13000.0
Dem 5	Dem 5	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0		15000.0	0.0	0.0		15000.0
0.0	0.0 15000.0 1			-1.000	0.0	0.0	0.0	13000.0	0.0	0.0	0.0	13000.0
Dem 5	Dem 5	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		00.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		00.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	Dem 5	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF		00.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 ISF	1	00.000								
Dem 5	Dem 5	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0		60000.0	0.0	0.0		60000.0
0.0	0.0 60000.0 2			-1.000	0.0	0.0	0.0	0.0000.0	0.0	0.0	0.0	00000.0
0.0	0.0 60000.0 2	4000.0 NA		-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex9.*

PAGE NO. 4

STRUCTURE ID (0 = total) : Dem_2 4

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _2

RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2

RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. 307442. : 1 : 1 : 1 Diversion Capacity Diversion Rights Well Capacity Well Rights 60. 3570. 0. 0. 0. 0. 3689. 0. 0

Shortage	Water Use						
	Demai	nd :	From River By		From	Carrier	Ву
Carried	=======================================		=======				
Structure River	=======			From	======		=====
Exchange From Total	Total CU	To Total	Upstrm				
ID ID	Year Mo Total	-	orage Exc_Pln Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short CU	SoilM Return	Loss Inflow				
Station In	/Out	Stat	ion Balance				
	- ,	River River	Avail Control Control				
Gain Flow Deplete	GW Stor Inflow Divert	t By Well Outflow	Flow Location Right				
Dem_2 Dem_2	1979 OCT 3000.0	1500.0 1723.3	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 1723.3 1	276.7 638.3 861.7	0.0 861.7	0.0 3000.0 0.0	0.0	0.0	0.0	3000.0
1723.3 0.0 1276.7	0.0 Cap/Wr_Limit	-1.000					
Dem_2 Dem_2	1979 NOV 3000.0	1500.0 2666.7	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 2666.7	333.3 166.7 1333.3	0.0 1333.3	0.0 3000.0 0.0	0.0	0.0	0.0	3000.0
2666.7 0.0 333.3	0.0 Cap/Wr_Limit	-1.000					
Dem_2 Dem_2	1979 DEC 3000.0	1500.0 2888.9	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 2888.9	111.1 55.6 1444.4	0.0 1444.4	0.0 3000.0 0.0	0.0	0.0	0.0	3000.0
2888.9 0.0 111.1	0.0 Cap/Wr_Limit	-1.000					

Dem_2	Dem_2	1980	JAN	3000.0	1500.0	2963.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2963.0	37.0	18.5	1481.5	0.0	1481.5	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2963.0	0.0 37.0					.000							
Dem_2		1980					0.0	0.0	0.0	0.0	0.0		0.0
0.0	0.0 2987.7			1493.8		1493.8	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2987.7	0.0 12.3												
Dem_2		1980					0.0	0.0	0.0	0.0	0.0		0.0
0.0	0.0 2995.9			1497.9		1497.9	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2995.9	0.0 4.1			Wr_Limit		.000							
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2730.9					1365.4	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2730.9	0.0 269.1			_									
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0 3000.0	0.0		1500.0		1500.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
3000.0	0.0 12000.0					.000							
Dem_2	Dem_2						0.0	0.0	0.0	0.0	0.0		0.0
0.0	0.0 3000.0			1500.0		1500.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
3000.0	0.0 12000.0					.000							
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2848.3			1424.2			0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2848.3	0.0 151.7												
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2685.4					1342.7	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2685.4	0.0 314.6					.000							
Dem_2	Dem_2			3000.0			0.0	0.0	0.0	0.0	0.0		0.0
0.0	0.0 2653.6					1326.8	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2653.6	0.0 346.4	0.0	Cap/	Wr_Limit	-1	.000							
Dem 2	Dem 2	1980	TOT :	36000.0	18000.0	33143.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 33143.5 2	2856.5 1	428.3	16571.7	0.0	16571.7	0.0	60000.0	0.0	0.0	0.0	0.0	60000.0
33143.5	0.0 26856.	5 24000.	0 NA		- 3	1.000							

Gage Summary ACFT
STATEMOD
StateMod Operating Rule Example - ex9.*
PAGE NO. 5

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

Shortag	e		Water	Use	Deman	d	:	From R	iver By			From	Carrier	ву
Carried			=====				======							
Structu		River									From	======		=====
Exchang	e Fi	rom Total	Total Year	CU Mo T	otal	To CU Pr	Total		Upst Exc Pln		Well	Priorty	O+ - E	
Bypass		ענ SM Supply		Short	CU	SoilM	Return	orage . Los			well	Priorty	SLO_EXC	LOSS
Буравв		SM Suppry	SHOLL	SHOLU	CU	SOIIM	Recuiii	LOS	s IIIII	OW				
		Station Ir	,					ion Ba						
Reach		urn Well	From/To		River		River		Control					
Gain		w Deplete	- , -	Inflow					Location					
NA		Riv 50	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1569.2	0.0	0.0	0.0	0.0	1569.2
0.0	0.0	1569.2	0.0 NA			-1.000								
NA		Riv_50	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	902.5	0.0	0.0	0.0	0.0	902.5
0.0	0.0	902.5	0.0 NA			-1.000								
NA		Riv_50	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	611.1	0.0	0.0	0.0	0.0	611.1
0.0	0.0	611.1	0.0 NA			-1.000								
NA		Riv_50	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	537.0	0.0	0.0	0.0	0.0	537.0
0.0	0.0	537.0	0.0 NA			-1.000								
NA		Riv_50	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	512.3	0.0	0.0	0.0	0.0	512.3
0.0	0.0	512.3	0.0 NA			-1.000								
NA		Riv_50	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	504.1	0.0	0.0	0.0	0.0	504.1
0.0	0.0	504.1	0.0 NA			-1.000								
NA		Riv_50	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	768.8	0.0	0.0	0.0	0.0	768.8
0.0	0.0	768.8	0.0 NA			-1.000								
NA		Riv_50	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16000.0	0.0	125.0	0.0	0.0	16125.0
0.0	0.0	16125.0 13	3130.2 NA			-1.000								
NA		Riv_50	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16000.0	0.0	250.0	0.0	0.0	16250.0
0.0	0.0	16250.0 13	3452.4 NA			-1.000								
NA		Riv_50	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	651.7	0.0	125.0	0.0	0.0	776.7
0.0	0.0	776.7	0.0 NA			-1.000								

NA	Riv_50	1980 AUG	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0	.0 0.0	0.0	814.6	0.0	0.0	0.0	0.0	814.6
0.0	0.0 814.6	0.0 NA	-1.	000							
NA	Riv_50	1980 SEP	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	.0 0.0	0.0	846.4	0.0	0.0	0.0	0.0	846.4
0.0	0.0 846.4	0.0 NA	-1.	000							
						0 0	0 0	0 0	0 0	0 0	0 0
NA	Riv_50		0.0 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	.0 0.0	0.0	39717.8	0.0	500.0	0.0	0.0	40217.8
0.0	0.0 40217.8 26	5582.6 NA	-1.	000							

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex9.*

PAGE NO. 6

Shortage

STRUCTURE ID (0 = total): Dem 1 STRUCTURE ACCT (0 = total): 0

Water Use

: Municipal Demand _1 STRUCTURE NAME

Exist. Diver. 1 RIVER LOCATION - FROM : Dem_1 RIVER LOCATION - TO : Dem 1 Exist. Diver. 1

STRUCTURE DATA : # cfs af@30 af@31 1 Diversion Capacity 5000. 297525. Diversion Rights : 1 100. 5950. 6149. 0. 0. 0. Well Capacity : 1 0 Well Rights 0. 0. 0.

From River By From Carrier By Demand Carried _____ River Structure From Total CU To Total Upstrm
Year Mo Total CU Priorty Storage Exc_Pln Loss
Short Short CU SoilM Return Loss Inflow Exchange From Total ID Well TD Priorty Sto Exc. Loss SM Supply Bypass Station In/Out Station Balance ______ Return Well From/To River River River River Avail Control Control Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Reach Return Well Gain 1979 OCT 2000.0 400.0 2000.0 0.0 1600.0 -1 1000 Dem_1 0.0 0.0 0.0 1569.2 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 2000.0 0.0 2000.0 0.0 0.0 430.8 0.0 0.0 0.0 NA 1979 NOV 2000.0 0.0 0.0 400.0 0.0 0.0 Dem_1 2000.0 -1.000 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 1600.0 0.0 2000.0 0.0 902.5 0.0 1097.5 0.0 2000.0 0.0 0.0 0.0 0.0 Dem_1 2000.0 0.0 NA -1.000 Dem_1
0.0 2000.0 1979 DEC 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 0.0 1600.0 0.0 0.0 400.0 0.0 1388.9 0.0 2000.0 0.0 0.0 611.1 0.0 0.0 NA 1980 JAN 2000.0 0.0 0.0 Dem_1 2000.0 -1.000 Dem_1
0.0 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 1600.0 0.0 400.0 0.0 537.0 0.0 1463.0 0.0 2000.0 0.0 0.0 0.0 0.0 0.0 Dem_1 2000.0 0.0 NA -1.000 400.0 2000.0 0.0 1600.0 em_1 0.0 2000.0 1980 FEB 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 0.0 1487.7 0.0 0.0 400.0 0 0 2000 0 0 0 0 0 512 3 0 0 0.0 NA 1980 MAR 2000.0 0.0 0.0 Dem_1 2000.0 -1.000 0.0 Dem_1 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 0.0 1495.9 0.0 0.0 2000.0 0.0 504.1 0.0 0.0 Dem_1 0.0 NA 2000.0 -1.000 0.0 400.0 2000.0 0.0 1600.0 Dem_1
0.0 2000.0 1980 APR 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_1 0.0 0.0 1431.7 0.0 2200.5 0.0 400.0 0.0 768.8 0.0 0.0 0.0 200.5 2000.0 0.0 NA -1.000 1980 MAY 2000.0 0.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 Dem_1 Dem 1 0.0 0.0 400.0 0 0 2000 0 0 0 0 0 1600 0 0 0 16125 0 0 0 1432 7 0 0 0 0 17557 7 0 0 -1.000 2000.0 0.0 15557.7 13130.2 NA 400.0 2000.0 0.0 1600.0 1980 JUN 2000.0 0.0 Dem_1 Dem 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1500.0 0.0 2000.0 0.0 0.0 400.0 0.0 16250.0 0.0 17750.0 0.0 0.0 0.0 15750.0 13452.4 NA Dem_1 1980 JUL 2000.0 2000.0 -1.000 0 0 0 0 400.0 2000.0 0 0 0 0 0 0 0 0 Dem_1 0 0 0.0 0.0 400.0 0.0 2000.0 0.0 1600.0 0.0 776.7 0.0 1462.1 0.0 2238.8 0.0 0.0 0.0 238.8 0 0 NA 2000 0 -1 000 0.0 0.0 0.0 0.0 1980 AUG 2000.0 400.0 2000.0 0.0 1600.0 0.0 0.0 Dem 1 0.0 Dem_1 0 0 2000 0 0.0 0.0 400.0 0.0 1383.4 0 0 2198 0 0 0 0.0 814.6 0.0 0.0 198.0 0.0 NA 2000.0 -1.000 1980 SEP 2000.0 Dem_1 0.0 Dem_1 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 2181.2 0 0 2000 0 0.0 0.0 400.0 0 0 846 4 0.0 1334.7 0.0 0 0 -1.000 0.0 NA 2000.0 0.0 181.2

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex9.*

PAGE NO. 7

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand
RIVER LOCATION - FROM : ISF Top Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Fl Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Pichte		Λ	0	0	Λ

	ter Use Dema:	nd	From River By		From Carrier By
Structure River					
Exchange From Total Tot			Upstrm		
ID ID Ye			corage Exc_Pln L		Priorty Sto_Exc Loss
Bypass SM Supply Sho	rt Short CU	SoilM Return	Loss Inflow	•	
Station In/Out		Q+a+	ion Balance		
=======================================				=====	
Reach Return Well From					
Gain Flow Deplete GW St					
ISF ISF 19	79 OCT 4027.5	0.0 640.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 640.0 3387.5	0.0 0.0	0.0 640.0	0.0 0.0	0.0 640.0	0.0 0.0 640.0
640.0 0.0 640.0 0	.0 Hgate_Limit	-1.000			
ISF ISF 19	79 NOV 3897.6	0.0 1120.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1120.0 2777.6	0.0 0.0	0.0 1120.0	0.0 0.0	0.0 1120.0	0.0 0.0 1120.0
	0.0 Hgate_Limit	-1.000			
	79 DEC 4027.5	0.0 1440.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1440.0 2587.5		0.0 1440.0	0.0 0.0	0.0 1440.0	0.0 0.0 1440.0
	0.0 Hgate_Limit	-1.000			
	80 JAN 4027.5	0.0 1600.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1600.0 2427.5		0.0 1600.0	0.0 0.0	0.0 1600.0	0.0 0.0 1600.0
	0.0 Hgate_Limit	-1.000			
	80 FEB 3637.7	0.0 1600.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1600.0 2037.7		0.0 1600.0	0.0 0.0	0.0 1600.0	0.0 0.0 1600.0
	0.0 Hgate_Limit	-1.000			
	80 MAR 4027.5	0.0 1600.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1600.0 2427.5		0.0 1600.0	0.0 0.0	0.0 1600.0	0.0 0.0 1600.0
	0.0 Hgate_Limit	-1.000	0 0 0 0	0 0 0 0	
ISF ISF 19	80 APR 3897.6 0.0 0.0	0.0 1800.5 0.0 1800.5	0.0 0.0 0.0 200.5	0.0 0.0 0.0 1600.0	0.0 0.0 0.0 0.0 0.0 1800.5
	0.0 U.U 0.0 Hgate Limit	-1.000	0.0 200.5	0.0 1600.0	0.0 0.0 1800.5
	0.0 Hgate_LIMIt 80 MAY 4027.5	0.0 4027.5	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 4027.5 0.0		0.0 4027.5	0.0 15557.7	0.0 1600.0	0.0 0.0 17157.7
4027.5 0.0 4027.5 0.0		-1.000	0.0 15557.7	0.0 1600.0	0.0 0.0 1/15/./
	0.2 NA 80 JUN 3897.6	0.0 3897.6	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 3897.6 0.0		0.0 3897.6	0.0 15750.0	0.0 1600.0	0.0 0.0 17350.0
3897.6 0.0 17350.0 1345		-1.000	0.0 13730.0	0.0 1000.0	0.0 0.0 17330.0
	80 JUL 4027.5	0.0 1838.8	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1838.8 2188.7		0.0 1838.8	0.0 238.8	0.0 1600.0	0.0 0.0 1838.8
	0.0 Hgate_Limit	-1.000	2.0 200.0	0.0 1000.0	0.0 0.0 1000.0
	80 AUG 4027.5	0.0 1798.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1798.0 2229.5		0.0 1798.0	0.0 198.0	0.0 1600.0	0.0 0.0 1798.0
	0.0 Hgate Limit	-1.000	0.0 190.0	0.0 1000.0	0.0 0.0 1/20.0
	80 SEP 3897.6	0.0 1781.2	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 1781.2 2116.4		0.0 1781.2		0.0 1600.0	0.0 0.0 1781.2
		-1.000			
	- · · · J · · · · _				
ISF ISF 19	80 TOT 47420.5	0.0 23143.5	0.0 0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0 23143.5 24277.0		0.0 23143.5		0.0 17600.0	0.0 0.0 49726.2
23143.5 0.0 49726.2 265		-1.000	0.0 22120.2	0.0 1/000.0	0.0 0.0 45/20.2
23213.3 0.0 13,20.2 203	02.0 1411	1.000			

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex9.*

PAGE NO. 8

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Bottom Instream Flow

RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

		Water	Use	Deman	d		From R	iver Bv			From	Carrier	Bv
Carried		=====		= =====	======			===		_			_
Structure Exchange E	River Trom Total	Total	CU =:		To	Total	=====	Upst		From	======	======	=====
ID	ID	Year	Mo	Total	CU Pr	iorty St		Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Loss	s Infl	OW				
	Station In						ion Bal						
	urn Well	From/To			River	River		Control					
	ow Deplete												
Baseflow 0.0	ISF.01 0.0	1979 0.0	OCT 0.0	0.0	0.0	0.0	0.0	0.0 640.0	0.0	0.0	0.0	0.0	0.0 640.0
0.0 0.0	640.0	0.0 NA			-1.000								
Baseflow 0.0 0.0	ISF.01 0.0	1979 0.0	NOV 0.0	0.0	0.0	0.0	0.0	0.0 1120.0	0.0	0.0	0.0	0.0	0.0 1120.0
0.0 0.0	1120.0	0.0 NA			-1.000								
Baseflow 0.0	ISF.01 0.0	1979 0.0	DEC 0.0	0.0	0.0	0.0	0.0	0.0 1440.0	0.0	0.0	0.0	0.0	0.0 1440.0
	1440.0	0.0 NA		0.0	-1.000	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
Baseflow	ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0 1600.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow	ISF.01	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0 1600.0	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow	ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 Baseflow	1600.0 ISF.01	0.0 NA 1980		0.0	-1.000 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1800.5	0.0	0.0	0.0		1800.5
0.0 0.0 Baseflow	1800.5 ISF.01	0.0 NA 1980		0.0	-1.000 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		17157.7	0.0	0.0	0.0		17157.7
	17157.7 13 ISF.01			0 0	-1.000 0.0	0 0	0.0	0 0	0 0	0.0	0.0	0.0	0 0
Baseflow 0.0		1980 0.0	0.0	0.0	0.0	0.0		0.0 17350.0	0.0	0.0	0.0		0.0 17350.0
	17350.0 13				-1.000								
Baseflow 0.0 0.0	ISF.01 0.0	1980 0.0	JUL 0.0	0.0	0.0	0.0	0.0	0.0 1838.8	0.0	0.0	0.0	0.0	0.0 1838.8
0.0 0.0	1838.8	0.0 NA			-1.000								
Baseflow 0.0 0.0	ISF.01 0.0	1980 0.0	AUG 0.0	0.0	0.0	0.0	0.0	0.0 1798.0	0.0	0.0	0.0	0.0	0.0 1798.0
	1798.0	0.0 NA		0.0	-1.000	0.0	0.0	1790.0	0.0	0.0	0.0	0.0	1790.0
Baseflow		1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0 1781.2	0.0 0.0 NA	0.0	0.0	0.0 -1.000	0.0	0.0	1781.2	0.0	0.0	0.0	0.0	1781.2
Baseflow	ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0 49726.2 26	0.0 582.6 NA	0.0	0.0	0.0 -1.000	0.0	0.0	49726.2	0.0	0.0	0.0	0.0	49726.2
	, 15,20.2 20	302.0 1411			1.000								
# #													
# *.xop	Operatio	nal Righ	t Diver	sion Sum	mary								
# STATEMO	ער												
	od Operating	Rule Ex	ample -	ex9.*									
#	*******	10 000 5	0	000/00/1	2.\								
	Version:	9/15/ 8			۷)								
): M	onthly											
# Run date: # Time Ster													
# Run date: # Time Ster #													
# Run date: # Time Ster # #	al Right Sum	mary AC	FT										
# Run date: # Time Step # #	_	-		B::	manale :	2	m ·	0.4	a		C 0000		
# Run date: # Time Step # # Coperations ID = Opr_1	_	Name	= Opr_P:		Exchange		Type = On =		dmin # = ear Off		6.00001		
# Run date: # Time Step # # Operations ID = Opr_1 Source 1 =	- - Dem_2_WR_1	Name			Exchange MAR		Type = On = MAY		dmin # = ear Off JUL		6.00001 SEP	TOT	
<pre># Run date: # Time Step # # Operations ID = Opr_J Source 1 =</pre>	Dem_2_WR_1 NOV	Name Desti	= Opr_P: nation	= Dem_3		Year	On =	0 Y JUN 	ear Off JUL	= 9999 AUG	SEP		

Example 10

```
# Exhibit 10.1
   *.rsp; response file for Statemod Example 10
           This response file lists the StateMod input files necessary for model simulation
           This response file is the same as ex9.rsp except for changes to address new
           plan structure and associated operating rules
# Type
                                                                       Name
                                                                    = ex10.ctl
Control
River Network
                                                                    = ex10.rin
StreamGage Station
                                                                    = ..\ex1\ex1.ris
Stream Base Monthly
                                                                    = ..\cdot ex1\cdot ex1.rim
Diversion Station
                                                                    = ... ex1 ex1.dds
Diversion_Right
                                                                    = ... \exp \cdot \cdot \cdot
Diversion Demand Monthly
                                                                    = ... ex1 ex1.ddm
Instreamflow Station
                                                                    = ... ex1 ex1.ifs
Instreamflow Right
                                                                    = ... ex1 ex1.ifr
{\tt Instreamflow\_Demand\_AverageMonthly}
                                                                    = ..\ex1\ex1.ifa
Plan Data
                                                                    = ex10.pln
Operational Right
                                                                    = ex10.opr
DelayTable Monthly
                                                                    = ..\ex1\ex1.urm
Output Request.
                                                                    = ex10.out
# Exhibit 10.2
# ex*.ctl; Control file for StateMod Example 10
   STATEMOD
   StateMod Operating Rule Example - ex10.*
                                      STARTING YEAR OF SIMULATION
      1980
                   : iystr
: iyend
                                      ENDING YEAR OF SIMULATION
      1980
                     : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
                    : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA
                   : ipflo TYPE OF STREAM INFLOW. 1 FOR The strength of the stren
                                      TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
                    : numeva NO. OF EVAPORATION STATIONS
           1
                    : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
   1 9835
                    : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
                    : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
   1.9835
                                                                                                ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
   1.9835
                     : dfacto DIVISOR FOR DIVERSION DATA;
                     : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
                     : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
   1.0
                     : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
   1.0
                     : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
   1.0
   WYR
                     : cyrl Year type (a5 right justified !!)
                    : icondem 1=no add; 2=add, 3=total demand in *.ddm
                    : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
                     : ireopx Re-operation switch (0=re-operate;1=no re-operation)
                    : ireach 0=no instream reach; 1=ves instream flow reach
                    : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data : ccall Detailed call water right ID (not used if icall = 0)
                                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis \,
                    : iwell Switch for well operations See section 7.4 for a discussion of the well options.
                    : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
                    : isjrip San Juan RIP
                     : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
                     : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
                    : isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
: soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
                     : isiq
                                     Number of significant digits behind decimal point in output files
# Exhibit 10.3
   *.rin; River node network file for StateMod Example 10
   Card 1 Control format: (a12, a24, a12, 1x, a12, 1x, f8.0)
                           cstaid: Station ID
    Name
                           stanam: Station name
    Downstream cstadn: Downstream node ID
```

```
comment: Alternate identifier/comment.
  Comment
  GWMax
             gwmaxr: Max recharge limit (cfs) - see iwell in control file.
                                 DownStream
#
                   Name
                                               Comment
                                                          GWMax
#-----eb-----exb-----exb-----exb-----exb-----exb-----exb------exb------exb------
       Exist. Diver. 3/Inflow Dem_4
Dem 3
           Exist. Diver. 4 Riv_50
Dem 4
           Exist. Diver. 5/Inflow Pln_1
Dem 5
Pln_1
          Plan Structure Dem_2
Dem_2
          Exist. Diver. 2
                                  Riv 50
Riv_50
          Confluence
                                 Dem 1
Dem_1
          Exist. Diver. 1
                                  ISF
           Top Instream Flow
ISF
                                 ISF.01
ISF.01
          Bottom Instream Flow
# Exhibit 10.4
# ex*.pln; Plan file for StateMod Example 10
 ***********
     Card 1 Control format: (a12, a24, a12, 5i8)
#
     Plan ID:
                          Pid
                                 Include _ instead of blanks
                          Pname Include _ instead of blanks
iPsta River node where the plan is located
     Plan Name:
     Plan Location
     Plan On/Off:
                         Pon On (1) or Off (0) switch
     Plan Type
                          iPlnTyp 1 = Terms and Conditions (T&C)
                                   2 = Well Augmentation
                                   3 = Reservoir Reuse
                                   4 = Non Reservoir Reuse (e.g., WWTP)
                                   5 = Reuse to a Reservoir from Tmtn
                                   6 = Reuse to a Diversion from Tmtn
                                   7 = Transmountain import
                                   8 = Recharge Plan
                                   9 = Out-of-Priority Diversion or Storage
                                  10 = Special Well Augmentation (e.g., Designated Basin, Coffin Wells, etc.)
                                  11 = Accounting Plan (e.g., changed water rights)
                                  12 = Release Limit Plan (e.g., HUP Pool Release Limit)
     Plan Efficiency (%) Peff
                                  Enter 0 if not used
                                  Enter 1 to read 12 plan efficiency values (%)
                                  Enter -1 if data is provided in an Operating Rule file (*.opr)
                                  Enter 999 to use the source structure's efficiency
     Plan Return Flow ID iPrf
                                  Enter 0 if not used
                                  Enter 1 if data is provided in an Plan Return Flow file (*.prf)
                                  Enter 999 to use the source structure's return flow pattern
     Plan Failure Switch iPfail Used only for a T&C Plan (iPlnTyp = 1) Enter 0 to not turn plan off if it fails
                                  Enter 1 to turn a plan off if it fails
                                  1 = Do stop and accumulate failures to be paid in subsequent time steps
     Plan Initial Storage Pstol
                                  Storage in Plan structure at beginning of simulation
                                  0 for non-Reuse Reservoir plans (iPlnTyp<>3)
                                  >= 0 for Reuse Reservoir plans (iPlnTyp=3) - set equal to storage in associated
reservoir (*.res) account
     Plan Source
                          Psource Source ID of the structure where plan water becomes available
                                 Note this information is currently used only when the plan type is
                                  recharge (type 8) from a reservoir
    Plan Account
                         iPAcc Source Account of the structure where plan water becomes available
                                  Note this information is currently used only when the plan type is
                                  recharge (type 8) from a reservoir
# TD
                                 RiverLoc
                                              ON/Off iPtype Peff iPrf iPfail Pstol Psource
          Name
                                                                                                       TPAcc
AccountingPlan Pln_1
# Exhibit 10 5
 *.opr; operating rules file for Statemod Example 10
      This file lists the operating rules used in model simulation
                    GUIDE TO COLUMN ENTRIES
     _____
                   ID number of operating rule that is used to separate operating rule output in *.xop file
         TD
          Name
                    Name of operating rule - used for descriptive purposes only
          Admin#
                   Administration number used to determine priority of operational water rights relative to other
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
         # Str Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
StateMod program the number of entries on next line)
         On/Off 1 for ON and 0 for OFF
          Dest ID
                    Destination of operating rule whose demand is to be met by simulating the operating rule
          Dest Ac
                    Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
        Soul ID ID number of primary source of water under which water right is being diverted in operating rule
- typically a water right, reservoir, or Plan structure
# Soul Ac Account of Soul - typically 1 for a diversion structure and account number for reservoir source
          Sou2 ID ID of Plan where reusable storage water or reusable ditch credits is accounted
```

```
Sou2 Ac Percentage of Plan supplies available for operation
#
         Type
                  Rule type corresponding with definitions in Chapter 4 of StateMod documentation
         ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
         Div Type 'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                      'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
         OprLoss Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
StateMod documentation, Section 4.13)
         Limit Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
# Comments Description of rule type
# ID Name NA Admin# # Str On/Off Dest Id Dest Ac Soul Id Soul
Ac Sou2 Id Sou2 Ac Type ReusePlan Div Type OprLoss Limit Comments
# -----eb----eb----eb----eb----eb----eb----eb-----eb-----eb-----
# ID Name
Opr_1 Opr_Pro_Rata_Exchange_to_AcctPlan
                                           6.00001 0. 1 Pln_1
Version 0 0 0 99
                                                              0
          0
                                   Diversion
                                                                      0 9999 Direct Flow Exchange of
10 NA
Pro-Rata Water Right

0. 0. 0.
5000. 0. 0. 0. 0. 5000. 5000. 5000. 5000. 5000. 5000. 35000. 0pr_2 Opr_AcctPlan_Release 6.00002 0. 1 Dem_3 1 Pln_1 100 NA 0 28 NA Diversion 0 0 0 9999 Accounting Plan to Demand by Exchange
                                                  999.00000 0. 1 NA 0 Pln_
0 0 0 9999 spill Acct_Plan
Opr_3 Opr_AcctPlan_Spill
                                               99999.00000
                                                                                         0 Pln 1
              0 29 NA
0 NA
                                     NA
# Exhibit 10.6
# *.out; Output request file for StateMod Example 10
# Type (e.g. Diversion, StreamGage, Reservoir, InstreamFlow, Well or All)
All
# Parameter (e.g. Total_Supply, Sim_EOM, River_Outflow or All)
All
# ID Name Type and Print Code (0=no, 1=yes);
# Note: id = All prints all
# id = -999 = stop
      default is to turn on all stream gages (FLO)
#
All
Dem 3
          Exist. Diver. 3/Inflow
                                  DTV
                                  DTV
Dem_4
          Exist. Diver. 4
                                          1
          Exist. Diver. 5/Inflow
Dem 5
                                  DIV
                                          1
Pln_1
          Plan Structure
                                   ОТН
                                          1
          Exist. Diver. 2
Dem 2
                                  DIV
                                         1
Riv_50
          Confluence
                                   ОТН
                                         1
          Exist. Diver. 1
Dem 1
                                   DIV
          Top Instream Flow
TSF
                                   TSF
                                          1
ISF.01
          Bottom Instream Flow
                                  ISF
-999
#
#
# *.xwb
            Water Budget
  STATEMOD
  StateMod Operating Rule Example - ex10.*
# Statemod Version: 12.289 Date = 2008/09/12)
# Run date:
                   9/15/ 8 12:43:32
# Time Step:
                  Monthly
#
                           Water Budget ACFT
                                                        From
             Stream
                                    From/To
                                               From
                                                                    Total
                                                                                      From River
      Reservoir Reservoir Stream
Well
                                    Reservoir
                                                      To SoilM
Year Mo Inflow Return GWStorage SoilM
Depletion Evaporation Seepage Outflow Change
                                                       Plan Inflow
                                                                             Divert
                                                                                        by Well
                                           Change
                                                       SoilM
                                                                 Change
Total
            Delta
                         CU
                                  Loss
Outflow
                                           Pumping
                                                        Salvage
1979 OCT 4000.0 1297.8 0.0 0.0 368.9 5666.7
          4000.0 1297.8
                                                                          5000.0
                                                                                           0 0
                                                                                                      0 0
          0.0 666.7
0.0
                                                     0.0 5666.7
                                0.0
                                                                          0.0 1715.5
0.0
          0.0
                                                                                                0.0
0.0
                                                                           5543.7
1979 NOV
                                                                                            0 0
                                                                                                       0 0
0.0
                                                                           0.0 2171.8
                                                                                                 0.0
          0.0

4000.0

3287.9

0.0

0.0

0.0

0.0
                                                0.0 0.0 7287.9 0.0 7287.9
0 0
```

0.0

1979 DEC

0.0

0 0 0.0

5847.9

0.0 2323.9

0.0

0.0

1980 0.0	JAN	4000.0 3549.3 0.0 1600.0		0.0	0.0	0.0		0.0 7549.3 7549.3		0.0	0.0	0.0
0.0 1980 0.0	FEB	0.0 4000.0 3583.1 0.0 1600.0	0.0	0.0	0.0	0.0	0.0	0.0 7583.1 7583.1	5983.1 0.0 2391.6	0.0	0.0	0.0
0.0	MAR	0.0		0.0	0.0	0.0	0.0	0.0 7594.4	5994.4	0.0	0.0	0.0
0.0		0.0 1600.0 0.0	0.0		0.0		0.0	7594.4	0.0 2397.2		0.0	
0.0	APR	4000.0 3509.0 0.0 1867.4	0.0	0.0	0.0	0.0	0.0	357.0 7866.0 7866.0	5998.6 0.0 2220.8	0.0	0.0	0.0
0.0 1980 0.0	MAY	0.0 20000.0 3635.4 0.0 17135.4	0.0	0.0	0.0	0.0	0.0	368.9 24004.3 24004.3	6868.9 0.0 2650.0	0.0	0.0	0.0
	JUN	0.0 20000.0 3850.0		0.0		0.0		357.0 24207.0	6857.0	0.0		0.0
0.0 0.0 1980	JUL	0.0 17350.0 0.0 4000.0 3632.8	0.0	0.0	0.0	0.0	0.0	24207.0 368.9 8001.7	0.0 2650.0 6000.0	0.0	0.0	0.0
0.0		0.0 2001.7 0.0	0.0		0.0		0.0	8001.7	0.0 2215.5		0.0	
1980 0.0 0.0	AUG	4000.0 3392.5 0.0 1853.6 0.0	0.0	0.0	0.0	0.0	0.0	368.9 7761.4 7761.4	5907.8 0.0 2169.4	0.0	0.0	0.0
	SEP	4000.0 3366.6 0.0 1838.9 0.0	0.0		0.0		0.0			0.0		0.0
1980 0.0 0.0		80000.0 39362.4 0.0 50073.8 0.0							71835.4 0.0 27444.3	0.0		0.0
			er Budget									
Reser	voir	Stream Reservoir Stream	From Reservo	n/To oir		From To		From Total SoilM Total	From	River		Well
Year Evapo	Mo ration	Stream Reservoir Stream Inflow Return Seepage Outfloo	GWStor v Ch	age ange		SoilM SoilM	Pl	an (5) Inflow Change Outflow	Divert (6) b	y Well CU (1)	Deple Los	tion s
(2) P	umping	(3) Salvage (4) (+) (+)		(+)		(+)		(+) NA	(-)	(-)		(-)
(-)												
NA		NA	(-)			(1)		NA		(0)	NA	(0)
		NA (1) (2)	(3)		(4)		NA (5) (6)	(7)	(8)		(9)
NA (10)		NA (1) (2) (11)	(3)		(4)		NA (5) (6)	(7)	(8)		(9)
NA (10) (20) ————————————————————————————————————		NA (1) (2) (11) (21) (21) (21) (12) (12) ((13)	3)		(4)		NA (5) (6)	(17) (18)	0.0		0.0
NA (10) (20) ————————————————————————————————————	OCT	NA (1) (2) (11) (21) (21) (21) (21) (21) ((13)	0.0	0.0	0.0	0.0	NA (5) (6) (16) 368.9 5666.7 5666.7	(17) (18) 5000.0 0.0 1715.5 5543.7	0.0	0.0	
NA (10) (20) ————————————————————————————————————	OCT	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0	0.0	0.0	0.0	0.0	NA (5) (6) (16) 368.9 5666.7 5666.7 0.0 6663.7	(7) (17) (18) 5000.0 0.0 1715.5 5543.7 0.0 2171.8	0.0	0.0	0.0
NA (10) (20) (20) Ave 0.0 0.0 Ave 0.0 0.0 0.0 Ave 0.0 0.0 0.0 Ave 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OCT NOV DEC	NA (1) (2) (11) (12) (21)	0.0	0.0	0.0	0.0	0.0	NA (5) (6) (16) 368.9 5666.7 5666.7 0.0 6663.7 6663.7 0.0 7287.9	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9	0.0	0.0	0.0
NA (10) (20) (20) Ave 0.0 Ave 0.0 Ave 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 Ave 0.0 Ave 0.0 Ave 0.0 Ave 0.0 Ave 0.0	OCT NOV DEC JAN	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0	0.0	0.0	0.0	0.0	NA (5) (6) (16) 368.9 5666.7 5666.7 0.0 6663.7 6663.7 0.0 7287.9	(7) (17) (18) 5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3	0.0	0.0	0.0
NA (10) (20) (20) Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 Ave 0.0	OCT NOV DEC JAN FEB	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0	0.0	0.0	0.0	0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 7287.9 0.0 7549.3	(7) (17) (18) 5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6	0.0	0.0	0.0
NA (10) (20) (20) (20) (20) (20) (20) (20) (2	OCT NOV DEC JAN FEB	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0	3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 0.0 7594.4	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 2391.6	0.0	(19) 0.0 0.0 0.0 0.0	0.0
NA (10) (20) (20) Ave 0.0 Ave 0.0 Ave 0.0 Ave 0.0	OCT NOV DEC JAN FEB MAR	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0	3) 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0	0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7287.9 0.0 7549.3 7549.3 0.0 7594.4 357.0 7866.0	(7) (17) (18) 5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 2391.6	0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0	0.0
NA (10) (20) Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 Ave 0.0 Ave 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 0.0	OCT NOV DEC JAN FEB MAR APR	NA (1) (2) (11) (21) (12	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 7583.1 0.0 7594.4 357.0 7866.0	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 2391.6 5994.4 0.0 2397.2	0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
NA (10) (20) Ave 0.0 0.0 Ave 0.0	OCT NOV DEC JAN FEB MAR APR	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 7583.1 0.0 7594.4 357.0 7866.0 7866.0	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 2391.6 5994.4 0.0 2397.2 5998.6 0.0 2220.8 6868.9	0.0 0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0	0.0
NA (10) (20) Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0	OCT NOV DEC JAN FEB MAR APR MAY JUN	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0 0.0 0.0 0.0 0.0 0.0 0.0	3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 7583.1 0.0 7594.4 357.0 7866.0 368.9 24004.3 24004.3	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 2391.6 5994.4 0.0 2397.2 5998.6 0.0 2220.8 6868.9 0.0 6857.0	0.0 0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
NA (10) (20) Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave	OCT NOV DEC JAN FEB MAR APR JUN JUL	NA (1) (2) (11) (21) (21) (21) (21) (21) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 7583.1 0.0 7594.4 357.0 7866.0 368.9 24004.3 24004.3 357.0 24207.0 24207.0	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 2391.6 5998.6 0.0 2220.8 6868.9 0.0 2650.0 6857.0 0.0 2650.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
NA (10) (20) Ave 0.0 0.0 Ave	OCT NOV DEC JAN FEB MAR APR JUN JUL AUG	NA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 0.0 7594.4 357.0 7866.0 368.9 24004.3 24004.3 357.0 24207.0 24207.0 368.9 8001.7 8001.7	5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 23233.9 5949.3 0.0 2391.6 5983.1 0.0 5983.1 0.0 5983.1 0.0 2397.2 5998.6 0.0 2220.8 6868.9 0.0 6857.0 0.0 6857.0 0.0 6000.0 0.0 2215.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0
NA (10) (20) Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG	NA	(13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(14) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(15) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 0.0 7594.4 357.0 7866.0 368.9 24004.3 24004.3 357.0 24207.0 24207.0 368.9 8001.7 8001.7	(7) (17) (17) (18) 5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 5998.6 0.0 2220.8 6868.9 0.0 6868.9 0.0 6857.0 0.0 6857.0 0.0 6000.0 0.0 2215.5 5907.8 0.0 2169.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
NA (10) (20) Ave 0.0 0.0 Ave 0.0 0.0 Ave 0.0	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG	NA	(13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(14) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(15) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	NA (5) (6) (16) 368.9 5666.7 0.0 6663.7 0.0 7287.9 0.0 7549.3 7549.3 0.0 7583.1 0.0 7594.4 357.0 7866.0 368.9 24004.3 24004.3 357.0 24207.0 24207.0 368.9 8001.7 8001.7	(7) (17) (17) (18) 5000.0 0.0 1715.5 5543.7 0.0 2171.8 5847.9 0.0 2323.9 5949.3 0.0 2374.6 5983.1 0.0 5998.6 0.0 2220.8 6868.9 0.0 6868.9 0.0 6857.0 0.0 6857.0 0.0 6000.0 0.0 2215.5 5907.8 0.0 2169.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0

```
80000.0
                           39362.4
                                            0.0
                                                        0.0
                                                                 2546.8
                                                                           121909.2
                                                                                         71835.4
                                                                                                          0.0
                                                                                                                      0.0
Ave
      Tot
0.0
            0.0
                    50073.8
                                                 0.0
                                                             0.0 121909.2
                                                                                      0.0 27444.3
                                                                                                               0.0
0.0
            0.0
 Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency
           + max (Resevoir Evaporation (Evap), 0.0).
        (2) Loss is not part of the Stream Water Balance.
            It is the portion of a diversion, well pumping
            and reservoir seepage that does not return to
            the stream
        (3) Pumping is not part of the Stream Balance.
            Its impact on the stream is included in the From River by Well and Well Depletion columns
        (4) Salvage is not part of the Stream Water Balance.
            It is the portion of well pumping that does not impact the stream
        (5) From Plan is water from a reuse plan.
        (6) Divert does not include diversions by an
            instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has
            reduced by:
                      0. af/yr for Diverted to Storage.
                      0. af/yr for a Diversion Carrier.
              2
                      0. af/yr for a Reservior Carrier.
              3
              4
                      0. af/yr for a Plan Carrier.
                      0. af/yr Total
#
  *.xwr
              Water rights list sorted by basin rank
#
#
   STATEMOD
   StateMod Operating Rule Example - ex10.*
# Statemod Version: 12.289 Date = 2008/09/12)
                      9/15/ 8 12:43:29
# Run date:
 Time Step:
                     Monthly
  *.xwr; Water Right Information
        Number of rights =
#
#
 Where:
                     = Water right basin rank
  1. Rank
                     = Water right type
  2. Type
                    1=Instream.
                    2=Reservoir.
                    3=Diversion,
                    4=Power,
                    5=Operational,
                    6=Well.
  3. Admin #
                    = Administration Number
#
  4. On/Off
                     = On or Off switch
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
                    1=on
                   +n=begin in year n
                   -n=stop in year n
  5. Str Id #1
                     = Primary structure for this right
                     = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                         = Decreed capacity & unit
  6. Str Id #2
(c=CFS, a=AF)
# 8. Right Name
                     = Water right name
                     = Primary structure for this right
  9. Str Name #1
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
                                        Admin # On/Off Str ID #1
   Rank ID
                          Type
                                                                      Str ID #2
                                                                                           Amount Right Name
                          Str Name #2
Str Name #1
                                                                                              (8) (9)
    (1) (2)
                           (3)
                                            (4)
                                                    (5) (6)
                                                                       (7)
(10)
                            (11)
#
                                                                                       100.000 c M&I Demand _1
      1 Dem_1_WR_1
                             3
                                        2.00000
                                                      1 Dem_1
                                                                       -1
Municipal Demand _1
                             3
                                                                                         60.000 c Irrigation Demand _2
      2 Dem_2_WR_1
                                        6.00000
                                                      0 Dem_2
                                                                       -1
Irrigation Demand \_2
```

3 Opr_1 Opr_Pro_Rata_Exchange_to	124	6.00001	1	-1	-1	-1.000 x	
4 Opr_2	128	6.00002	1	-1	-1	-1.000 x Opr_AcctPlan_1	Release
5 Dem_3_WR_1 Irrigation Demand _3	3	7.00000	1	Dem_3	-1	100.000 c Irrigation Dem	mand _3
6 ISF_WR_1 Instream Demand	1	9.00000	1	ISF	-1	65.500 c Instream Flow	1
7 Dem_4_WR_1 Irrigation Demand _4	3	10.00000	1	Dem_4	-1	100.000 c Irrigation Det	mand _4
8 Dem_5_WR_1 Irrigation Demand _5	3	15.00000	1	Dem_5	-1	100.000 c Irrigation Den	mand _5
9 Opr_3 # #	129	99999.00000	1	-1	-1	-1.000 x Opr_AcctPlan_s	Spill
# *.xdd Diversion # STATEMOD # StateMod Operating R # Statemod Version: 12 # Run date: 9/ # Time Step: Mon # Diversion Summary AC STATEMOD StateMod Operating PAGE NO. 1 STRUCTURE ID (0 = to STRUCTURE ACCT (0 = STRUCTURE NAME RIVER LOCATION - FRO RIVER LOCATION - TO	.289 Date 15/ 8 12 thly FT Rule Exametal) : 1 total): 1	mple - ex10.*	t. Div				

af@31

307442. 6149. 0. 0.

STRUCTURE DATA

Diversion Capacity Diversion Rights Well Capacity Well Rights #

cfs

5000. 100. 0. 0.

af@30

297525. 5950. 0.

Shortag	re	Water Use	_							_		_
a			Demar		1		_			From	Carrier	Ву
Carried		=========							F			
Structu	re River re From Total		=======	To	Total				From	======		=====
Exchang ID	ID ID	Total CU Year Mo	Total			T	Upst: Exc Pln		Well	Priorty	0+ - F	T
Bypass	SM Supply	Short Shor		SoilM	Return	Jrage I	_		well	PLIOLCA	SCO_EXC	LUSS
Буравв	SM Supply	SHOLC SHOL	L CU	SOLIM	Recurii	LOSS	5 1111.1	OW				
	Station In					ion Bal						
					River		Control					
Reach Gain	Return Well Flow Deplete (From/To River		River								
Dem 3	Dem 3	1979 OCT			631.1	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0	500.0	0.0	500.0	0.0		1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 1000.0			-1.0		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3	1979 NOV			885.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0			443.0	0.0	443.0	0.0		1000.0	0.0	0.0	0.0	1000.0
885.9	0.0 114.1	0.0 Dem 1	115.0	100.00		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Dem 3	1979 DEC	1000.0		962.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 962.0		481.0	0.0	481.0	0.0		1000.0	0.0	0.0		1000.0
962.0	0.0 38.0	0.0 Dem 1		100.00	0							
Dem 3	Dem 3		1000.0	500.0	987.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 987.3	12.7 6.3	493.7	0.0	493.7	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
987.3	0.0 12.7	0.0 Dem_1		100.00	0							
Dem_3	Dem_3	1980 FEB	1000.0	500.0	995.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 995.8	4.2 2.1	497.9	0.0	497.9	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
995.8	0.0 4.2	0.0 Dem_1		100.00	0							
Dem_3	Dem_3		1000.0	500.0	998.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 998.6	1.4 0.7	499.3	0.0	499.3	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
998.6	0.0 1.4	0.0 Dem_1		100.00								
Dem_3	Dem_3		1000.0		643.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0	500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate		-1.0								
Dem_3	Dem_3		1000.0		631.1	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0	500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0			-1.0								
Dem_3	Dem_3		1000.0		643.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0	500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	4000.0 NA		-1.0	00							

Dem_3 0.0	Dem_3 0.0 1000.0	1980 JUL 1000	0.0 500.0 631.3 0.0 0.0 500		368.9	0.0	0.0	0.0	0.0	0.0 1000.0
1000.0	0.0 0.0	0.0 Hgate_Li		0.0	0.0	1000.0	0.0	0.0	0.0	2000.0
Dem_3	Dem_3	1980 AUG 100	0.0 500.0 631.3	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 5	0.0 0.0 500	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Li	nit -1.000							
Dem_3	Dem_3	1980 SEP 100	.0 500.0 643.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.0 5	0.0 0.0 500	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0 Hgate_Li	nit -1.000							
Dem_3 0.0 11829.6		1980 TOT 1200 170.4 85.2 59 4 8000.0 NA			2546.8	0.0 20000.0	0.0	0.0	0.0	0.0 20000.0

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex10.*

PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irriga
RIVER LOCATION - FROM : Dem_4 2

STRUCTURE DATA cfs af@30 af@31 5000. 297525. Diversion Capacity Diversion Rights 100. 5950. 6149. 1 : Well Capacity
Well Rights 1 0. : 0. 0. 0. 0 0. 0.

Shortag	le		Wate	r Use	Dema	nd		From Riv	ver Bv			From	Carrier	Bv
Carried	l		=====				======					110	0011101	21
Structu	ıre	River			=======	===== =	=======	======	======	====	From	======		
Exchang	e Fr	om Total	Total	CU		To	Total		Upst:	cm				
ID		ID	Year	Mo	Total	CU P	riorty S	torage Ex	xc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	5	M Supply	Short	Shor	t CU	SoilM	Return	Loss	Infl	w				
		Station I						tion Bala			_			
Dem 4		Dem 4	1979	OCT	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	250.0	0.0	0.0	250.0
0.0	0.0	250.0	0.0 I			100.000								
Dem_4		Dem_4	1979	NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	114.1	0.0	471.5	0.0	0.0	585.6
0.0	0.0	585.6	0.0 I	SF		100.000								
Dem_4		Dem_4	1979	DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	38.0	0.0	462.0	0.0	0.0	500.0
0.0	0.0	500.0	0.0 De	em_1		100.000								
Dem_4		Dem_4	1980	JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	12.7	0.0	487.3	0.0	0.0	500.0
0.0	0.0	500.0	0.0 De	em_1		100.000								
Dem_4		Dem_4	1980	FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	4.2	0.0	495.8	0.0	0.0	500.0
0.0	0.0	500.0	0.0 De			100.000								
Dem_4		Dem_4		MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	1.4	0.0	498.6	0.0	0.0	500.0
0.0	0.0	500.0	0.0 De	_		100.000								
Dem_4		Dem_4	1980		500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	499.6	0.0	0.0	499.6
0.0	0.0	499.6	0.0 I			100.000								
Dem_4		Dem_4		MAY	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	500.0	0.0	0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0		0 4000.0				-1.0								
Dem_4		Dem_4	1980	JUN	500.0	250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0		0 4000.0				-1.0								
Dem_4		Dem_4	1980		500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0	500.0	0.0 I		500 O	100.000		0 0						
Dem_4		Dem_4	1980		500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 500.0	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0			0.0 I 1980		0.0	100.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_4		Dem_4												
0.0	0.0	0.0 500.0	0.0 0.0 I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0	500.0	0.0 1)r		100.000								

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex10.*

PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3

STRUCTURE ACCT (0 = total): 0

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 100. 5950. 6149. Well Capacity : 1 0. 0. 0. Well Rights : 0 0. 0. 0.

Shortag	je	Water Use	Demand	From R	iver By		From	Carrier By
Carried	l		:= ========		-			ourrier by
Structu	ıre River	=				From	======	
Exchang	ge From Total	Total CU	To	Total	Upstrm			
ID	ID			riorty Storage		Well	Priorty	Sto_Exc Loss
Bypass	SM Supply	Short Short	CU SoilM	Return Los	s Inflow			
	a							
	Station In			Station Ba	.1ance .=======	_		
Reach	Return Well	From/To River	River River		Control Control			
Gain	Flow Deplete				Location Right	=		
Dem 5	Dem 5	1979 OCT	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0		0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 ISF	100.000					
Dem 5	Dem 5	1979 NOV	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 ISF	100.000					
Dem_5	Dem_5	1979 DEC	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 Dem_1	100.000					
Dem_5	Dem_5	1980 JAN	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 Dem_1	100.000					
Dem_5	Dem_5	1980 FEB	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 Dem_1	100.000					
Dem_5	Dem_5	1980 MAR	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 Dem_1	100.000					
Dem_5	Dem_5	1980 APR	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 ISF	100.000					
Dem_5	Dem_5	1980 MAY	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 15000.0	0.0	0.0	0.0 15000.0
0.0	0.0 15000.0 12		-1.000					
Dem_5	Dem_5	1980 JUN	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 15000.0	0.0	0.0	0.0 15000.0
0.0	0.0 15000.0 12		-1.000					
Dem_5	Dem_5	1980 JUL	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 ISF	100.000				0 0	
Dem_5	Dem_5	1980 AUG	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 ISF 1980 SEP	100.000	0.0 0.0	0 0 0 0	0.0	0 0	0.0 0.0
Dem_5	Dem_5 0.0 0.0			0.0 0.0	0.0 0.0 0.0 3000.0	0.0	0.0	0.0 0.0 0.0 3000.0
0.0	0.0 0.0 0.0 3000.0	0.0 0.0 0.0 ISF	0.0 0.0 100.000	0.0 0.0	0.0 3000.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	U.U ISF	100.000					
Dem_5	Dem_5	1980 TOT	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 60000.0	0.0	0.0	0.0 60000.0
0.0	0.0 60000.0 24	000.0 NA	-1.000					

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex10.*

PAGE NO. 4

STRUCTURE ID (0 = total) : Pln_1 10001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : AccountingPlan

RIVER LOCATION - FROM : Pln_1 Plan Structure RIVER LOCATION - TO : Pln_1 Plan Structure

Shortage	e	Water	Use										
Carried		======		Deman	d ======	From River By				From Carrier By			
	re River e From Total							Upstr		From =	======		====
ID	ID	Year	Mo To	otal	CU Pr	iorty Sto	rage E	Exc_Pln :	Loss	Well P	riorty S	to_Exc	Loss
Bypass									W				
	Station In												
Reach	Return Well	From/To	River	River	River	River	Avail	Control	Control				
	Flow Deplete Pln 1							Location 368.9		0.0	0.0	0.0	0.0
368.9	0.0 0.0	0.0	0.0		0.0								
0.0 Pln 1	0.0 3000.0 Pln 1	0.0 NA 1979		0.0	-1.000 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 3000.0			0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0 Pln_1	Pln_1	0.0 NA 1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 3000.0	0.0 0.0 NA		0.0	0.0 -1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Pln_1	Pln_1	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 3000.0	0.0 0.0 NA		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Pln_1	Pln_1	1980 0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 3000.0	0.0 0.0 NA		0.0	-1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Pln_1 0.0	Pln_1 0.0 0.0	1980 0.0		0.0		0.0	0.0	0.0 3000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 NA			-1.000								
	Pln_1 0.0 0.0	1980 0.0			0.0			357.0 .0 3000.0		0.0	0.0	0.0	0.0 3000.0
0.0 Pln_1	0.0 3000.0 Pln 1	0.0 NA		0 0	-1.000 0.0	0.0	0 0	368.9	0.0	0.0	0.0	0.0	0.0
368.9	0.0 0.0	0.0	0.0	0.0	0.0			.0 15000.0			0.0		15000.0
0.0 Pln_1	0.0 15000.0 12 Pln 1				-1.000 0.0	0.0	0 0	357.0	0.0	0.0	0.0	0.0	0.0
357.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		0 15000.0			0.0		15000.0
0.0 Pln_1	0.0 15000.0 12 Pln_1		JUL	0.0	-1.000 0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	0.0
368.9 0.0	0.0 0.0 0.0 3000.0	0.0 0.0 NA			0.0	0.0	0.	.0 3000.0	0.0	0.0	0.0	0.0	3000.0
Pln_1	Pln_1	1980	AUG	0.0	0.0	0.0		368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 NA			-1.000		0.	.0 3000.0	0.0	0.0	0.0	0.0	3000.0
Pln 1	Pln 1	1980	SEP	0.0	0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
357.0 0.0	0.0 0.0	0.0 0.0 NA	0.0	0.0	-1.000	0.0	0.	.0 3000.0	0.0	0.0	0.0	0.0	3000.0
2546.8	Pln_1 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2546.8	0.0	0.0	0.0	0.0	60000.0
0.0	0.0 60000.0 24	000.0 NA			-1.000								
	rsion Summary	ACFT											
	ATEMOD ateMod Operatin	g Rule E	xample -	ex10.*									
PAGE NO	. 5												
	UCTURE ID (0 =				4								
	UCTURE ACCT (0 UCTURE NAME		: U : Irrigat	tion De	mand _2								
	ER LOCATION - F ER LOCATION - T		: Dem_2 : Dem_2		Exist. D. Exist. D.								
ICI V	BR BOCHITON I	J	· Dem_2	•	DAIDC. D	IVCI. Z							
STR	UCTURE DATA		: #	C	fs a	£@30	af@31						
	iversion Capaci iversion Rights		: 1	500		525. 30 570.	7442. 3689.						
W	ell Capacity		: 1 : 1		0.	0.	0.						
W	ell Rights		: 0		0.	0.	0.						

Shortage		Water Us	e			
			Demand	From River By		From Carrier By
Carried		=======	===== =================================	========		
Structure	River		=======================================		From	=======================================
Exchange	From Total	Total	CU To Tota	al Upstrm		
ID	ID	Year N	No Total CU Priorty	Storage Exc_Pln Loss V	Well	Priorty Sto_Exc Loss
Bypass	SM Supply	Short S	hort CU SoilM Retu	n Loss Inflow		

Station In/Out Station Balance

======		=====		======				
Reach	Return Well From/To River River River River		Control					
Gain	Flow Deplete GW Stor Inflow Divert By Well Outflow	Flow	Location	Right				
Dem_2	Dem_2 1979 OCT 3000.0 1500.0 1631.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1631.1 1368.9 684.5 815.5 0.0 815.5	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
1631.1	0.0 1368.9 0.0 Cap/Wr Limit -1.000							
Dem 2	Dem 2 1979 NOV 3000.0 1500.0 2657.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2657.8 342.2 171.1 1328.9 0.0 1328.9	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2657.8	0.0 342.2 0.0 Cap/Wr Limit -1.000							
Dem 2	Dem 2 1979 DEC 3000.0 1500.0 2885.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2885.9 114.1 57.0 1443.0 0.0 1443.0	0.0		0.0	0.0	0.0	0.0	3000.0
2885.9	0.0 114.1 0.0 Cap/Wr_Limit -1.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2 1980 JAN 3000.0 1500.0 2962.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2962.0 38.0 19.0 1481.0 0.0 1481.0		3000.0	0.0	0.0	0.0	0.0	3000.0
2962.0	0.0 38.0 0.0 Cap/Wr Limit -1.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2 1980 FEB 3000.0 1500.0 2987.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2987.3 12.7 6.3 1493.7 0.0 1493.7		3000.0	0.0	0.0	0.0	0.0	3000.0
		0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2987.3	0.0 12.7 0.0 Cap/Wr_Limit -1.000							
Dem_2	Dem_2 1980 MAR 3000.0 1500.0 2995.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2995.8 4.2 2.1 1497.9 0.0 1497.9	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2995.8	0.0 4.2 0.0 Cap/Wr_Limit -1.000							
Dem_2	Dem_2 1980 APR 3000.0 1500.0 2641.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2641.6 358.4 179.2 1320.8 0.0 1320.8	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2641.6	0.0 358.4 0.0 Cap/Wr_Limit -1.000							
Dem_2	Dem_2 1980 MAY 3000.0 1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0 0.0 0.0 1500.0 0.0 1500.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
3000.0	0.0 12000.0 12000.0 NA -1.000							
Dem_2	Dem_2 1980 JUN 3000.0 1500.0 3000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0 0.0 0.0 1500.0 0.0 1500.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
3000.0	0.0 12000.0 12000.0 NA -1.000							
Dem 2	Dem 2 1980 JUL 3000.0 1500.0 2631.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2631.1 368.9 184.5 1315.5 0.0 1315.5	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2631.1	0.0 368.9 0.0 Hgate Limit -1.000							
Dem 2	Dem 2 1980 AUG 3000.0 1500.0 2538.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2538.8 461.2 230.6 1269.4 0.0 1269.4		3000.0	0.0	0.0	0.0	0.0	3000.0
2538.8	0.0 461.2 0.0 Cap/Wr Limit -1.000							
Dem 2	Dem 2 1980 SEP 3000.0 1500.0 2527.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0			3000.0	0.0	0.0	0.0		3000.0
2527.7	0.0 472.3 0.0 Cap/Wr_Limit -1.000	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
2321.1								
	·							
Dem 2	Dem 2 1980 TOT 36000.0 18000.0 32459.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 32459.0 3541.0 1770.5 16229.5 0.0 16229.5		60000.0	0.0	0.0	0.0		60000.0
		0.0	00000.0	0.0	0.0	0.0	0.0	0.0000.0
32459.0	0.0 27541.0 24000.0 NA -1.000							

Gage Summary ACFT STATEMOD StateMod Operating Rule Example - ex10.* PAGE NO. 6

RIVER LOCATION - FROM : Riv_50 Confluence RIVER LOCATION - TO : Riv_50 Confluence

Shortag	je	Water Use								
			Demand	From	n River By			From	Carrier	Ву
Carried	l	=========	= =========		=====					
Structu	ıre River	=					From	======		=====
Exchang	•	Total CU	To	Total	Upst					
ID	ID			iorty Storag	_		Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Short	CU SoilM	Return I	oss Infl	.OW				
	Station Ir	,		Station						
		-								
Reach	Return Well	From/To River	River River		il Control					
Gain		GW Stor Inflow 1979 OCT	Divert By Well	0.0		_	0 0	0 0	0.0	0.0
NA 0.0	Riv_50 0.0 0.0	1979 OCT 0.0 0.0	0.0 0.0		0.0	0.0	0.0	0.0		1618.9
0.0	0.0 0.0	0.0 NA	-1.000	0.0	1.0 1618.9	0.0	0.0	0.0	0.0	1018.9
NA	0.0 1618.9 Riv 50	0.0 NA 1979 NOV	0.0 0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0
	_		0.0 0.0			0.0	0.0	0.0		927.8
0.0	0.0 0.0 0.0 927.8	0.0 0.0 0.0 NA	-1.000	0.0	0.0 927.8	0.0	0.0	0.0	0.0	927.8
				0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0
NA	Riv_50	1979 DEC	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 614.1	0.0	0.0	0.0	0.0	614.1
0.0	0.0 614.1	0.0 NA	-1.000	0 0 0	0 0 0	0 0	0.0	0 0	0 0	0 0
NA	Riv_50	1980 JAN	0.0 0.0	0.0 0.		0.0		0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	538.0	0.0	0.0	0.0	0.0	538.0
0.0	0.0 538.0	0.0 NA	-1.000							
NA	Riv_50	1980 FEB	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 512.7	0.0	0.0	0.0	0.0	512.7
0.0	0.0 512.7	0.0 NA	-1.000							
NA	Riv_50	1980 MAR	0.0 0.0	0.0 0.		0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 504.2	0.0	0.0	0.0	0.0	504.2
0.0	0.0 504.2	0.0 NA	-1.000							

NA	Riv_50	1980 A	PR 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	858.1	0.0	0.0	0.0	0.0	858.1
0.0	0.0 858.1	0.0 NA		-1.000								
NA	Riv_50	1980 M	AY 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	16000.0	0.0	125.0	0.0	0.0	16125.0
0.0	0.0 16125.0	13107.9 NA		-1.000								
NA	Riv_50	1980 J	UN 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	16000.0	0.0	250.0	0.0	0.0	16250.0
0.0	0.0 16250.0	13452.4 NA		-1.000								
NA	Riv_50	1980 J	UL 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	868.9	0.0	125.0	0.0	0.0	993.9
0.0	0.0 993.9	0.0 NA		-1.000								
NA	Riv_50	1980 A	UG 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	961.2	0.0	0.0	0.0	0.0	961.2
0.0	0.0 961.2	0.0 NA		-1.000								
NA	Riv_50	1980 S	EP 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	972.3	0.0	0.0	0.0	0.0	972.3
0.0	0.0 972.3	0.0 NA		-1.000								
NA	Riv_50	1980 T	OT 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	40376.2	0.0	500.0	0.0	0.0	40876.2
0.0	0.0 40876.2	26560.3 NA		-1.000								

STATEMOD

StateMod Operating Rule Example - ex10.* PAGE NO. 7

STRUCTURE ID (0 = total) : Dem_1

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. 1 Diversion Capacity : 307442. Diversion Rights Well Capacity Well Rights 100. 5950. 6149. : 1 0. 0. 0. : 1 0 0. 0.

Shortag	e	Water	Use	Deman	ıd		From R	iver By			From	Carrier	By
Carried		======						-			110111	CULLICI	D _I
Structu	re River			=======					====	From	=======		=====
Exchang	e From Total	Total	CU		To	Total		Upst	rm				
ID	ID	Year	Mo	Total	CU I	riorty St	orage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Sho	rt CU	SoilM	Return	Los	s Infl	OW				
	Station In/						ion Ba						
====== Reach	Return Well	From/To			River	River		Control					
Gain	Flow Deplete 0	- ,				River Ll Outflow							
Dem 1	Dem 1					2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0		1618.9	0.0	407.8	0.0	0.0	2026.7
2000.0	0.0 26.7	0.0		400.0		.000	0.0	1010.5	0.0	407.0	0.0	0.0	2020.7
Dem 1	Dem 1			2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0			1072.2	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0		100.0		.000	0.0	227.0	0.0	1072.2	0.0	0.0	2000.0
Dem 1	Dem 1		DEC	2000.0		2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0			1600.0	0.0			1385.9	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0				.000							
Dem 1	Dem 1	1980	JAN	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	538.0	0.0	1462.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	FEB	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	512.7	0.0	1487.3	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1	1980	MAR	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	504.2	0.0	1495.8	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	Dem_1		APR	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	858.1	0.0	1409.3	0.0	0.0	2267.4
2000.0	0.0 267.4	0.0				.000							
Dem_1	Dem_1	1980	MAY			2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	16125.0	0.0	1410.4	0.0	0.0	17535.4
2000.0	0.0 15535.4					.000							
Dem_1	Dem_1	1980				2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	16250.0	0.0	1500.0	0.0	0.0	17750.0
2000.0	0.0 15750.0					.000							
Dem_1	Dem_1	1980	JUL			2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0		1600.0	0.0	993.9	0.0	1407.8	0.0	0.0	2401.7
2000.0	0.0 401.7	0.0	NA		-1	.000							

Dem_1 0.0	Dem_1 0.0 2000.0	1980 AUG 2000.0 0.0 0.0 400.0	400.0 2000.0 0.0 1600.0	0.0 0.0 0.0 961.2	0.0 0.0 0.0 1292.5	0.0	0.0 0.0 0.0 2253.6
2000.0	0.0 253.6	0.0 NA	-1.000			0 0	
Dem_1 0.0	Dem_1 0.0 2000.0	1980 SEP 2000.0 0.0 0.0 400.0	400.0 2000.0 0.0 1600.0	0.0 0.0 0.0 972.3	0.0 0.0 0.0 1266.6	0.0	0.0 0.0 0.0 2239.0
2000.0	0.0 238.9	0.0 NA	-1.000				
Dem_1	Dem_1	1980 TOT 24000.0	4800.0 24000.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
0.0 24000.0	0.0 24000.0 0.0 32473.8	0.0 0.0 4800.0 3 26560.3 NA	0.0 19200.0 -1.000	0.0 40876.2	0.0 15597.6	0.0	0.0 56473.8

STATEMOD

StateMod Operating Rule Example - ex10.*

PAGE NO. 8

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	e V	Water U										
			De	mand		From R	iver By			From	Carrier	Ву
Carried				======			===					
					=======				From	======		=====
	e From Total To		CU	_			Upst					
ID			Mo Total		Priorty St	_	_		Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply Sh	hort	Short C	U Soil	M Return	Loss	s Infl	WC				
	a				a							
	Station In/Out					tion Bal						
Reach	Return Well Fro											
Gain		- , -							=			
TSF			CT 4027.5			0.0		_	0.0	0.0	0.0	0.0
0.0	0.0 666.7 3360		0.0 0.			0.0		0.0	640.0	0.0	0.0	666.7
666.7	0.0 666.7				000.7	0.0	20.7	0.0	040.0	0.0	0.0	000.7
TSF			OV 3897.6	0 0	1120 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1120.0 2777					0.0			1120.0	0.0		1120.0
1120.0	0.0 1120.0		gate Limit	-	1.000	0.0	0.0	0.0	1120.0	0.0	0.0	1120.0
ISF			EC 4027.5			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1440.0 2587		0.0 0.			0.0			1440.0	0.0		1440.0
1440.0			gate Limit		1.000							
ISF			AN 4027.5		1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427	.5	0.0 0.	0 0.	0 1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0 H	gate_Limit	-	1.000							
ISF	ISF	1980 F	EB 3637.7	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2037	. 7	0.0 0.	0 0.	0 1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0 H	gate_Limit	-	1.000							
ISF	ISF	1980 M	IAR 4027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427	.5	0.0 0.		0 1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0			[gate_Limit		1.000							
ISF			PR 3897.6	0.0	1867.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1867.4 2030		0.0 0.		0 1867.4	0.0	267.4	0.0	1600.0	0.0	0.0	1867.4
1867.4	0.0 1867.4				1.000							
ISF			IAY 4027.5		4027.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0			0.0 0.		0 4027.5	0.0	15535.4	0.0	1600.0	0.0	0.0	17135.4
4027.5	0.0 17135.4 133				1.000							
ISF			UN 3897.6		3897.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0			0.0 0.		0 3897.6	0.0	15750.0	0.0	1600.0	0.0	0.0	17350.0
3897.6	0.0 17350.0 134				1.000	0 0		0 0			0 0	
ISF			UL 4027.5		2001.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 2001.7	0.0 2001.7 2025		0.0 0.		0 2001.7 1.000	0.0	401.7	0.0	1600.0	0.0	0.0	2001.7
2001.7 ISF			Igate_Limit AUG 4027.5			0.0	0.0	0.0	0 0	0.0	0.0	0.0
0.0	ISF 0.0 1853.6 2173		0.0 4027.5			0.0			0.0 1600.0	0.0		1853.6
1853.6			0.0 0. Igate_Limit			0.0	253.0	0.0	1600.0	0.0	0.0	1853.0
ISF					1838.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1838.9 2058					0.0			1600.0		0.0	
	0.0 1838.9					0.0	230.9	0.0	1000.0	0.0	0.0	1030.9
1030.5		0.0 11	igace_brilire		1.000							
ISF					23513.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 23513.5 23907	. 0	0.0 0.	0 0.	0 23513.5	0.0	32473.8	0.0	17600.0	0.0	0.0	50073.8
23513.5	0.0 50073.8 26	6560.3	NA		-1.000							

STATEMOD

StateMod Operating Rule Example - ex10.*

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Structure River Kenhame From Total Total OU To Total Upstrm Signature Signat	Shortage	Water Use	Dema:	nd		From R	iver By			From	Carrier	Ву
Exchange From Total Total Cu	Carried								E			_
Station In/Out	Exchange From Total		======						From	======	======	=====
Reach Return Well From Tor River Biver River Rayal Control Control Right RearPlow Deplete GW Stor Inflow Divert By Well Outfor Plow Location Right Stor Plow Property Control Control Right Stor Plow Property Control Right Control Control Control Right Control Control Right Control						_			Well	Priorty	Sto_Exc	Loss
Reach Return Well Prom/To River Can Flow Flow Can Flow Deptete 60 Stor Inflow Divert By Well Outflow Flow Double Control Right Baseflow ISP.01 1979 DCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
Baseflow ISP.01 1979 OCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-			-					0 0	0.0	0.0	0.0
0.0 0.0 666.7 0.0 NA -1.000 Basesflow ISF-01 1979 NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 NA		-1.000								
0.0 0.0 1120.0 0.0 NA -1.000 Baseflow ISF.01 1980 JAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 1.440.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1440.0 0.0 0.0 0.0 0.0 0.0 1440.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0		0.0	0.0	1120.0	0.0	0.0	0.0	0.0	1120.0
0.0 0.0 1440.0 0.0 NA -1.000 Baseflow ISF.01 1980 JNN 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 1600.0 0.0 NA -1.000 Baseflow ISF.01 1980 FEB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
Baseflow ISF.01 1980 JAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0		0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
0.0 0.0 1600.0 0.0 NA -1.000 Baseflow ISP.01 1980 MAR 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baseflow ISP.01 1980 FBB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			0.0		0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0.0								
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Baseflow ISF.01 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
0.0 0.0 1867.4 0.0 NA -1.000 Baseflow ISF.01 1980 MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0		0.0	0.0	1007.4	0.0	0.0	0.0	0.0	1007.4
0.0 0.0 17135.4 13107.9 NA												
Baseflow ISF.01 1980 JUN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0		0.0	0.0	17135.4	0.0	0.0	0.0	0.0	17135.4
0.0 0.0 17350.0 13452.4 NA			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 1980 JUL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0		0.0	0.0	17350.0	0.0	0.0	0.0	0.0	17350.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 1980 AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0 0.0 1853.6 0.0 NA -1.000 Baseflow ISF.01 1980 SEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
0.0 0.0 1838.9 0.0 NA -1.000 Baseflow ISF.01 1980 TOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0		0.0	0.0	1838.9	0.0	0.0	0.0	0.0	1838.9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
# *.xpl Plan # *.xpl Plan # *STATEMOD	0.0 0.0 0.0	0.0 0.0		0.0								
# *.xpl Plan # # STATEMOD # StateMod Operating Rule Example - ex10.* # # Statemod Version: 12.289 Date = 2008/09/12) # Run date: 9/15/ 8 12:43:24 # Time Step: Monthly	0.0 0.0 50073.8 265 #	60.3 NA		-1.000								
# STATEMOD # StateMod Operating Rule Example - ex10.* # Statemod Version: 12.289 Date = 2008/09/12) # Run date: 9/15/ 8 12:43:24 # Time Step: Monthly #	#											
# StateMod Operating Rule Example - ex10.* # Statemod Version: 12.289 Date = 2008/09/12) # Run date: 9/15/ 8 12:43:24 # Time Step: Monthly #	# ".xp1 Plan											
# Statemod Version: 12.289 Date = 2008/09/12) # Run date: 9/15/ 8 12:43:24 # Time Step: Monthly		Rule Example	- ex10.*									
# Time Step: Monthly				12)								
	# Time Step: Mc		: 24									
	#											

Plan Summary ACFT
Plan Number = 1
Plan Type = 11 Accounting_Plan
Plan ID = Pln_1
Plan Name = AccountingPlan
Plan Source = Dem_2

```
Use
    1 ID = Opr_2
                            Name = Opr_AcctPlan_Release
                                                             Opr Type = 28 Destination = Dem_3
                                                                                                          Status =
On
         ID = Opr_3
                            Name = Opr_AcctPlan_Spill
                                                             Opr Type = 29
Use
                                                                             Destination = NA
                                                                                                          Status =
On
                                          Plan Uses
                        Year Mo Supply
Plan
           River
______
-----
         ID
                                  Total Use 1 Use 2 Use 3 Use 4
                                                                         Use 5 Use 6 Use 7 Use 8 Use 9 Use
10 Use 11 Use 12 Use 13 Use 14 Use 15 Use 16 Use 17 Use 18 Use 19
  Plan Uses
-----
Use 20
       Total
                                                                     0.0
                                                                             0.0
Pln 1
                        1979 OCT
                                    368.9
                                            368.9
                                                      0.0
                                                             0.0
                                                                                     0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
           Pln 1
0.0
       0 0
              0.0
                       0.0
                               0.0
                                      0.0
                                              0.0
                                                      0.0
                                                             0.0
                                                                     0.0
                                                                             0.0
                                                                                   368.9
                        1979
Pln 1
            Pln 1
                              NOV
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
0.0
       0.0
               0.0
                       0.0
                               0.0
                                      0.0
                                                      0.0
                                                                     0.0
                                              0.0
                                                              0.0
                                                                             0.0
                                                                                     0.0
                        1979
                                                                                            0.0
Pln 1
            Pln 1
                                      0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                                    0.0
                                                                                                            0.0
                              DEC
                                              0.0
                                                                                     0.0
       0.0
              0.0
                       0.0
0.0
                               0.0
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                        1980
Pln 1
            Pln 1
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
                              JAN
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
       0.0
               0.0
                       0.0
                               0.0
0.0
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                        1980
Pln 1
            Pln 1
                              FEB
                                      0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
       0.0
                       0.0
0.0
              0.0
                               0.0
                                      0.0
                                                      0.0
                                                                     0.0
                                              0.0
                                                             0.0
                                                                             0.0
                                                                                     0.0
                        1980
Pln_1
            Pln 1
                              MAR
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
       0.0
                       0.0
               0.0
                               0.0
                                      0.0
                                              0.0
                                                                     0.0
0.0
                                                      0.0
                                                             0.0
                                                                             0.0
                                                                                     0.0
Pln 1
            Pln 1
                        1980
                                    357.0
                                            357.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
                              APR
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
       0.0
               0.0
                       0.0
                                      0.0
                                             0.0
0.0
                               0.0
                                                      0.0
                                                             0.0
                                                                     0.0
                                                                             0.0
                                                                                   357.0
                        1980
            Pln 1
                                                                                            0.0
Pln 1
                              MAY
                                    368.9
                                            368.9
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                                                                                                    0.0
                                                                                                            0.0
       0.0
               0.0
                       0.0
                                      0.0
0.0
                               0.0
                                             0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                   368.9
                        1980
                                    357.0
                                            357.0
                                                                                            0.0
                                                                                                    0.0
Pln_1
            Pln 1
                              JUN
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                                                                                                            0.0
       0.0
              0.0
                       0.0
                                      0.0
                                             0.0
                                                                     0.0
                                                                                   357.0
0.0
                               0.0
                                                      0.0
                                                              0.0
                                                                             0.0
Pln_1
                        1980
            Pln 1
                              JUL
                                    368.9
                                            368.9
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                     0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
       0.0
               0.0
                       0.0
0.0
                               0.0
                                      0.0
                                             0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                   368.9
                        1980
Pln 1
            Pln 1
                                    368.9
                                            368.9
                                                                     0.0
                                                                             0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
                              AUG
                                                      0.0
                                                              0.0
                                                                                     0.0
0.0
       0.0
              0.0
                       0.0
                               0.0
                                      0.0
                                             0.0
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                   368.9
Pln_1
            Pln 1
                       1980
                                    357.0
                                            357.0
                                                                                            0.0
                                                                                                    0.0
                              SEP
                                                      0.0
                                                              0.0
                                                                     0.0
                                                                             0.0
                                                                                    0.0
                                                                                                            0.0
       0.0
                       0.0
               0.0
                               0.0
                                                                                   357.0
0.0
                                      0.0
                                             0.0
                                                      0.0
                                                             0.0
                                                                     0.0
                                                                             0.0
Pln 1
                        1980
                              TOT
                                                      0.0
                                                                             0.0
                                                                                     0.0
                                   2546.8
                                           2546.8
                                                              0.0
                                                                     0.0
                                                                                            0.0
                                                                                                    0.0
                                                                                                            0.0
            Pln 1
             0.0
       0.0
                       0.0
                                                                             0.0 2546.8
0.0
                              0.0
                                      0.0
                                              0.0
                                                      0.0
                                                             0.0
                                                                     0.0
#
#
 *.xop
             Operational Right Diversion Summary
   STATEMOD
  StateMod Operating Rule Example - ex10.*
# Statemod Version: 12.289 Date = 2008/09/12)
                     9/15/ 8 12:43:24
# Run date:
# Time Step:
                    Monthly
 Operational Right Summary ACFT
                                                                       Admin # =
 ID = Opr 1
                        Name = Opr_Pro_Rata_Exchange_to Opr Type =
                                                                   2.4
                                                                                          6.00001
 Source 1 = Dem_2_WR_1
                                                                        Year Off =
                                                                                    9999
                        Destination = Pln 1
                                                      Year On =
                                                                    Ω
             NOV
                             JAN
                                              MAR
                                                                     JUN
                                                                             JUL
YEAR
     OCT
                      DEC
                                      FEB
                                                      APR
                                                             MAY
                                                                                    AUG
                                                                                            SEP
                                                                                                    TOT
                               0.0
1980
      368.9
                0.0
                        0.0
                                       0.0
                                               0.0
                                                     357.0
                                                             368.9
                                                                    357.0
                                                                            368.9
                                                                                    368.9
                                                                                           357.0 2546.8
AVG
      368.9
               0.0
                        0.0
                               0.0
                                       0.0
                                               0.0
                                                     357.0
                                                             368.9
                                                                    357.0
                                                                            368.9
                                                                                    368.9
                                                                                           357.0 2546.8
Operational Right Summary ACFT
                                                                                           6.00002
 ID = Opr_2
                        Name = Opr AcctPlan Release
                                                       Opr Type =
                                                                   28
                                                                       Admin # =
 Source 1 = Pln 1
                                                                        Year Off =
                                                                                    9999
                        Destination = Dem 3
                                                      Year On =
                                                                    Ω
             NOV
YEAR
      OCT
                       DEC
                              JAN
                                      FEB
                                              MAR
                                                      APR
                                                             MAY
                                                                     JUN
                                                                             JUL
                                                                                    AUG
                                                                                            SEP
                                                                                                    TOT
1980
      368.9
                0.0
                        0.0
                               0.0
                                       0.0
                                               0.0
                                                     357.0
                                                             368.9
                                                                    357.0
                                                                            368.9
                                                                                    368.9
                                                                                            357.0 2546.8
AVG
      368.9
               0.0
                        0.0
                               0.0
                                       0.0
                                               0.0
                                                     357.0
                                                            368.9
                                                                    357.0
                                                                            368.9
                                                                                    368.9
                                                                                           357.0 2546.8
Operational Right Summary ACFT
                        Name = Opr_AcctPlan_Spill
                                                                   29
                                                                                      99999.00000
 ID = Opr 3
                                                       Opr Type =
                                                                       Admin # =
 Source 1 = Pln 1
                                                                        Year Off =
                                                                                    9999
                        Destination = NA
                                                       Year On =
                                                                    Ω
              NOV
                                                                     NUL
YEAR
      OCT
                      DEC
                              JAN
                                      FEB
                                              MAR
                                                      APR
                                                             MAY
                                                                             JUL
                                                                                     AUG
                                                                                            SEP
                                                                                                    TOT
1980
        0 0
                0 0
                        0 0
                               0 0
                                       0 0
                                                       0 0
                                                              0 0
                                                                      0 0
                                                                              0 0
                                                                                             0 0
                                                                                                     0 0
                                               0 0
                                                                                      0 0
AVG
        0.0
                0.0
                        0.0
                               0.0
                                       0.0
                                               0.0
                                                       0.0
                                                              0.0
                                                                      0.0
                                                                              0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                     0.0
```

Example 11

```
*.rsp; response file for Statemod Example 11
      This response file lists the StateMod input files necessary for model simulation
# Type
                                          Name
                                        = ex11.ctl
Control
River Network
                                        = ex11.rin
StreamGage Station
                                        = ..\ex1\ex1.ris
Stream Base Monthly
                                        = ..\ex1\ex1.rim
Diversion Station
                                        = ex11.dds
Diversion_Right
                                        = ... \exp \cdot dr
Diversion_Demand_Monthly
                                        = ... ex1 ex1.ddm
Reservoir_Station
                                        = ..\ex2\ex2.res
                                        = ..\ex2\ex2.rer
Reservoir_Right
Reservoir_Target_Monthly
                                        = ... ex2 ex2.tam
Evaporation Monthly
                                        = ..\ex2\ex2.eva
Instreamflow Station
                                        = ..\ex1\ex1.ifs
Instreamflow Right
                                        = ... \exp[-x_1.ifr]
Instreamflow_Demand_AverageMonthly
                                        = ..\ex1\ex1.ifa
                                        = ex11.pln
Plan Data
Plan Return
                                        = ex11.prf
Operational Right
                                        = ex11.opr
DelayTable Monthly
                                        = ..\ex1\ex1.urm
                                        = ex11.out.
OutputRequest
# Exhibit 11.2
# ex*.ctl; Control file for StateMod Example 11
  STATEMOD
  StateMod Operating Rule Example - ex11.*
           : iystr STARTING YEAR OF SIMULATION
    1980
                       ENDING YEAR OF SIMULATION
    1980
             : iyend
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. O FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      0
           : numpre NO. OF PRECIPITATION STATIONS : numeva NO. OF EVAPORATION STATIONS
      Ω
      1
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
  1.9835
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
            : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
  1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
                                                         ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
  1.0
  1 0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
            : cyrl Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
            : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall
                       Detailed call water right ID (not used if icall = 0)
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : iday
            : iwell \, Switch for well operations \, See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isirip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
            : isprink O=off, 1=Maximum Supply, 2=Mutual Supply
            : soild    0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
             : isig
                      Number of significant digits behind decimal point in output files
  *.rin; River node network file for StateMod Example 11
  Card 1 Control
  format: (a12, a24, a12, 1x, a12, 1x, f8.0)
```

```
cstaid: Station ID
#
 ID
  Name
             stanam: Station name
  Downstream cstadn: Downstream node ID
  Comment comment: Alternate identifier/comment.

GWMax gwmaxr: Max recharge limit (cfs) - see iwell in control file.
 GWMax
#
                               DownStream
                  Name
                                           Comment
                                                      GWMax
#-----eb-----exb-----exb-----exb-----exb-----exb-----exb------exb------exb------
Dem_3 Exist. Diver. 3/Inflow Dem_4
         Exist. Diver. 4 T&CPln
Exist. Diver. 5/Inflow Pln_1
                               T&CPln_1
Dem 4
Dem 5
Pln_1
          Plan Structure
                           Dem_2
         Exist. Diver. 2
Dem 2
                               Res 1
          Exist. Reservoir
                               T&CPln 1
Res 1
T&CPln_1 T&C Plan
                               Dem 1
Dem_1
          Exist. Diver. 1
                               ISF
                              ISF.01
          Top Instream Flow
ISF
ISF.01
          Bottom Instream Flow
# Exhibit 11.4
# *.dds; Direct Diversion Station file for StateMod Example 11
..
#>******************
#> Direct Diversion Station File
#>
#> Card 1 format (a12, a24, a12, i8, f8.2, 2i8, 1x, a12)
#>
#> ID
              cdivid: Diversion station ID
#> Name
             divnam: Diversion name
#> Riv ID
              cgoto: River node for diversion
#> On/Off
             idivsw: Switch 0=off, 1=on
#> Capacity divcap:
                      Diversion capacity (CFS)
              dumx:
                      Not currently used
#>
  RepType ireptyp: Replacement reserv
Daily ID cdividy: Daily diversion ID
#> RepType
                      Replacement reservoir option (see StateMod doc)
#>
#>
#> Card 2 format (12x, a24, 12x, 2i8, f8.2, f8.0, 2i8)
#>
#> User Name usernam: User name.
  DemType idvcom: Demand data type switch (see StateMod doc)
#>
   #-Ret
               nrtn: Number of return flow table ref
#>
            divefc: Annual system efficiency
   Eff
Area
#>
             area: Irrigated acreage
#>
   UseType irturn: Use type (see StateMod doc)
Demsrc demsrc: Demand source (see StateMod doc)
#>
#>
  Demsrc
#>
#> Card 3 format (free format)
#>
    diveff (12): System efficiency % by month
#>
#>
"> Card 4 format (36x, a12, f8.2, i8)
#>
             crtnid: River node receiving return flow
#> Ret ID
           pcttot: Percent of return flow to this river node
irtndl: Delay (return flow) table for this return flow.
#> Ret. %
#> Table #
#>
                                Riv ID On/Off Capacity
                                                              RepType Daily ID
#> TD
                 Name
#>----eb-----eb-----eb-----eb-----eb-----eb-----exb------e
#> User Name
                                    DemType #-Ret Eff % Area UseType DemSrc
#>xxxxxxxxxb----eb----eb----eb----eb----eb-----eb-----eb-----
         ... Monthly Efficiencies...
#>
#>b-----
#>
                                Ret ID Ret % Table #
1
         Irrigation Demand _3 Dem_3 1 5000.00
Dem_3
                                                                     0 Dem_3
                                                             50.
                                                                   0.00
                                                                                    0
                                            1 1
100.00 1
                               Dem_4
                                                             1
                                            1 5000.00
          Irrigation Demand _4 Dem_4
Dem 4
                                                                      0 Dem_4
                                                             50.
                                                 1 1
                                                                   0.00
                                                                                     0
                               T&CPln_1
                                            100 00
                                                             1
                                                                   0 Dem_5
        Irrigation Demand _5 Dem_5
                                            1 5000.00
Dem_5
                                            1 1
100.00 1
                                                             50.
                                                                   0.00
                                                                                    0
                               Dem_2
                                            1 5000.00
        Irrigation Demand _2 Dem_2
                                                              1
Dem 2
                                                                      0 Dem_2
                                                             50.
                                                                   0.00 1
                                                1 1
                                                                                     Ω
                               Dem 1
                                            100.00
                                                        1
                                                             1
                                                                   0 Dem_1
Dem_1
                                            1 5000.00
        Municipal Demand _1
                               {\tt Dem\_1}
                                                             20.
                                                                   0.00
                                            1 1
100.00 2
                                                                             1
                                                                                     0
                               TSF
# Exhibit 11.5
# ex*.pln; Plan file for StateMod Example 11
Card 1 Control format: (a12, a24, a12, 5i8)
     Plan TD:
                       Pid Include _ instead of blanks
```

```
Pname Include _ instead of blanks iPsta River node where the plan is located
#
     Plan Location
     Plan On/Off:
                          Pon
                                  On (1) or Off (0) switch
#
                          iPlnTyp 1 = Terms and Conditions (T&C)
     Plan Type
                                   2 = Well Augmentation
                                   3 = Reservoir Reuse
                                    4 = Non Reservoir Reuse (e.g., WWTP)
                                    5 = Reuse to a Reservoir from Tmtn
                                    6 = Reuse to a Diversion from Tmtn
                                    7 = Transmountain import
                                    8 = Recharge Plan
                                    9 = Out-of-Priority Diversion or Storage
                                  10 = Special Well Augmentation (e.g., Designated Basin, Coffin Wells, etc.)
                                  11 = Accounting Plan (e.g., changed water rights)
                                  12 = Release Limit Plan (e.g., HUP Pool Release Limit)
     Plan Efficiency (%) Peff
                                  Enter 0 if not used
                                  Enter 1 to read 12 plan efficiency values (%)
                                  Enter -1 if data is provided in an Operating Rule file (*.opr)
                                  Enter 999 to use the source structure's efficiency
     Plan Return Flow ID iPrf
                                  Enter 0 if not used
                                  Enter 1 if data is provided in an Plan Return Flow file (*.prf)
                                  Enter 999 to use the source structure's return flow pattern
     Plan Failure Switch iPfail Used only for a T&C Plan (iPlntype = 1)
                                  Enter 0 to not turn plan off if it fails
                                  Enter 1 to turn a plan off if it fails
                                  {\tt 1} = Do stop and accumulate failures to be paid in subsequent time steps Storage in Plan structure at beginning of simulation
     Plan Initial Storage Pstol
                                  0 for non-Reuse Reservoir plans (iPtype<>3)
                                  >= 0 for Reuse Reservoir plans (iPtype=3) - set equal to storage in associated
reservoir (*.res) account
                          Psource Source ID of the structure where plan water becomes available
     Plan Source
                                  Note this information is currently used only when the plan type is
                                  recharge (type 8) from a reservoir
                          i PAcc
     Plan Account
                                  Source Account of the structure where plan water becomes available
                                  Note this information is currently used only when the plan type is
                                  recharge (type 8) from a reservoir
                                               ON/Off iPtype Peff iPrf iPfail Pstol Psource
# TD
                                 RiverLoc
          Name
                                                                                                         TPAcc
#-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----
          AccountingPlan Pln_1 1 11 0 0 0 Dem_2 0
Pln 1
                                                                                   Ω
                                                                                            0 Pln 1
T&CPln 1
           T&C Plan
                                  T&CPln 1
# Exhibit 11.6
 *.prf; Plan Return file for StateMod Example 11
# Plan Return Flow File (*.prf)
     Card 1 Control
     Free Format
     cistat
                        Plan ID
                        River node receiving return flow
     crtnid
     pcttotPP(1)
                        Percent of return flow to this river node
     irtndlPP(1)
                        Delay (return flow) table for this return flow
# Plan TD NA
                                                Ret % Table #
                                  Ret ID
#----eb----eb----eb----e
T&CPln 1
                                  T&CPln 1
                                                100.00
# Exhibit 11.7
 *.opr; operating rules file for Statemod Example 11
      This file lists the operating rules used in model simulation
                    GUIDE TO COLUMN ENTRIES
#
     -----
                      ID number of operating rule that is used to separate operating rule output in *.xop file
         ID
          Name
                    Name of operating rule - used for descriptive purposes only
          Admin#
                  Administration number used to determine priority of operational water rights relative to other
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
         # Str Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
StateMod program the number of entries on next line)
          On/Off \, 1 for ON and 0 for OFF Dest ID \, Destination of operating rule whose demand is to be met by simulating the operating rule
          Dest Ac
                    Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
          Soul ID ID number of primary source of water under which water right is being diverted in operating rule
 typically a water right, reservoir, or Plan structure
          Soul Ac Account of Soul - typically 1 for a diversion structure and account number for reservoir source
#
          Sou2 ID
                     ID of Plan where reusable storage water or reusable ditch credits is accounted
          Sou2 Ac Percentage of Plan supplies available for operation
                    Rule type corresponding with definitions in Chapter 4 of StateMod documentation
#
          Type
          ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
```

Plan Name:

```
credits to Dest1
                   'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
       OprLoss Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
StateMod documentation, Section 4.13)
# Limit Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
# Comments Description of rule type
                                             Admin# # Str On/Off Dest Id Dest Ac Soul Id Soul
        Name
                            NA
Ac Sou2 Id Sou2 Ac Type ReusePlan Div Type OprLoss Limit Comments
# -----eb----eb----eb----eb----eb----eb----eb----eb----eb-----eb----
1 Dem 2 WR 1
                0
                     24 NA
                                   Diversion
                                                                    9999 Direct Flow Exchange of
Pro-Rata Water Right
  5000. 0. 0. 0.
_2 Opr_AcctPlan_Release
                              0. 0. 5000. 5000.
                                                       5000. 5000. 5000. 5000. 35000.0
                                                       0.
                                                             1 Dem_4
Opr_2
                                            6.00002
                                                                               1 Pln 1
                                                                0 9999 Accounting Plan to Demand
100 T&CPln_1
             1 28 NA
                                   Diversion
by Exchange
          0. 0. 0. 0. 0.
                                           40. 40.
                                                                    40.
  40.
                                                        40.
                                                              40.
                                                             1 T&CPln_1
     Opr_Reservoir_Release_to_T&C
Opr_3
                                           50.00000
                                                                               0 Res_1
                                                       0.
I NA 0 48 NA
Plan Demand
                                  NA
                                                               0 9999 Reservoir Release to T&C
Opr_4 Opr_AcctPln-Spill
                                          99999.00000
                                                       0. 1 NA
1 0
                                                                               0 Pln 1
                                                               0 9999 AcctPlan Spill
             0 29 NA
0 NA
                                   NA
                                                  0
                            Opr 1
# Exhibit 11.8
# *.out; Output request file for StateMod Example 11
# Type (e.g. Diversion, StreamGage, Reservoir, InstreamFlow, Well or All)
A11
# Parameter (e.g. Total Supply, Sim EOM, River Outflow or All)
All
# ID Name Type and Print Code (0=no, 1=yes);
# Note: id = All prints all
  id = -999 = stop
     default is to turn on all stream gages (FLO)
All
Dem_3
         Exist. Diver. 3/Inflow
                              DTV
         Exist. Reservoir
Res_1
                               RES
                                     1
         Exist. Diver. 4
Exist. Diver. 5/Inflow
                               DTV
Dem_4
                                     1
                               DIV
Dem 5
                                     1
                               ОТН
Pln_1
         Plan Structure
                                     1
         Exist. Diver. 2
Dem 2
                               DIV
T&CPln_1
         T&C Plan
                               OTH
                                     1
Dem_1
         Exist. Diver. 1
                               DTV
                                     1
         Top Instream Flow
ISF
                               ISF
                                     1
ISF.01
         Bottom Instream Flow
                               TSF
-999
# *.xwb
         Water Budget
  STATEMOD
 StateMod Operating Rule Example - ex11.*
# Statemod Version: 12.289 \text{ Date} = 2008/09/12)
                 9/15/ 8 13: 5:24
# Run date:
# Time Step:
                Monthly
                        Water Budget ACFT
                                         From
                                                                            From River
           Stream
                                From/To
                                                            Total
Well Reservoir Reservoir Stream Reservoir
                                        SoilM Pran
SoilM
                                                To SoilM
Year Mo Inflow Return GWStorage Soil
Depletion Evaporation Seepage Outflow Change
                                                   Plan
                                                            Inflow Divert
                                                                              by Well
                                                           Change
Total
                    CU
Out.flow
           Delta
                              Loss
                                      Pumping
                                                 Salvage
0.0 368.9 5675.6
         4000.0 1306.7 0.0
0.0 750.7 -110.7
0.0
1979 OCT
                                                                    5035 6
                                                                                 0 0
                                                                                           0 0
                                     0.0
0.0
                                               0.0 5675.6
                                                                  0.0 1733.3
                                                                                      0.0
        0.0

4000.0

2675.6

0.0

1230.7 -110.7 0.0
                                          0.0
                                              0.0 6675.6 (
0 0
                                                                     5555.6
1979 NOV
                                                                                 0.0
                                                                                           0.0
                                                                  0.0 2177.8
0 0
0.0
         0.0
```

Div Type 'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable

1979 DEC 0.0	4000.0		0.0	0.0	0.0		7291.9			0.0	0.0	0.0
0.0 1980 JAN 0.0	0.0 1600.0	3550.6	0.0	0.0	0.0	0.0	7550.6 550.6	5950.6 0.0 23	75.3	0.0	0.0	0.0
0.0 1980 FEB 0.0	0.0 1600.0	3583.5	0.0	0.0	0.0	0.0	7583.5 883.5	5983.5 0.0 23	91.8	0.0	0.0	0.0
0.0 1980 MAR 25.2	0.0 4000.0 0.0 1600.0	3594.5 -25	0.0	0.0	0.0	0.0	7594.5 '594.5	5994.5 0.0 2	422.4	0.0	0.0	0.0
0.0 1980 APR 326.9	0.0 4000.0 0.0 1707.3	3598.2 1 -43	0.0	0.0	0.0	357.0 0.0	7955.2 7955.2	6355.2 0.0	2725.9	0.0	0.0	0.0
0.0 1980 MAY 297.5	0.0 20000.0 0.0 5442.3	3724.5 3 1148	0.0	0.0	0.0	368.9 0.0 2	24093.5 4093.5	6868.9 0.0	2947.5	0.0	0.0	0.0
0.0 1980 JUN 799.9	0.0 20000.0 0.0 5567.8	3850.0 8 1098	0.0	0.0	0.0	357.0 0.0 2	24207.0	6857.0 0.0	3449.9	0.0	0.0	0.0
0.0 1980 JUL 483.9	0.0	3725.0	0.0	0.0	0.0	368.9 0.0	8093.9	6368.9	2883.9	0.0	0.0	0.0
0.0	0.0	3600.0	0.0	0.0	0.0	368.9	7968.9	6368.9	2784.8	0.0	0.0	0.0
0.0	0.0	3481.0	0.0		0.0	357.0		5881.0	2481.1	0.0		0.0
0.0	0.0						/838.0				0.0	
1980 Tot	80000.0 3: 0.0 26770	9981.4	0.0		0.0		122528.3	73071.7		0.0		0.0
	0.0 26770 0.0	.4 200	48.9	0.0		0.0 1	.22528.3	0.0	30699.7	,	0.0	
		Water B	udget AC									
Reservoir Year Mo	Stream Reservoir Si Inflow I Seepage (tream Re Return G	From/To servoir WStorage	S	From To oilM	SoilM	Total Total Inflow	Divert (6)				Well
		Outliow	Change		DOTIN	Citarige	UULLIOW	Derta		.0 (1)	дов	
(2) Pumping	(3) Salvage (4) (+) (-)	(+)	(+)		(+)	(+)		(-) NA		(-)		(-)
(2) Pumping	(3) Salvage (4) (+) (-) NA (1) (11) (12)	(+) (-	(+)	(-)	(+)	(+) (-) (5)	NA	(-) NA (7)	NA	(-)	NA	(-)
(2) Pumping (-) NA (10)	(3) Salvage (4) (+) (-) (-) NA (1)	(+) (-	(+)	(-)	(+)	(+) (-) (5)	NA NA (6)	(-) NA (7)	NA	(-)	NA	(-)
(2) Pumping (-) NA (10) (20) ————————————————————————————————————	(3) Salvage (4) (-) (-) NA (1) (11) (12) (21) 4000.0 0.0 750.7	(+) (-) (2) (1) ——————————————————————————————————	(+)) (3) 3)	(14)	(+)	(15)	NA NA (6) (16)	(-) NA (17) 5035.6	NA (18)	(-)	NA	(-)
(2) Pumping (-) NA (10) (20) ————————————————————————————————————	(3) Salvage (4) (-) (-) NA (1) (11) (12) (21) (21) (12) 4000.0 750.7 0.0 4000.0	(+) (- (2) (1 ————————————————————————————————————	(+)) (3) 3) 0.0 7	(-) (14)	(+) (4) 0.0	(+) (-) (15) (15) 368.9 0.0 56	NA NA (6) (16) 5675.6	(-) NA (7) (17) 5035.6 0.0 17	NA (18)	(-) (8)	NA (19)	(-)
(2) Pumping (-) NA (10) (20)	(3) Salvage (4) (-) (-) NA (1) (11) (12) (21) 4000.0 0.0 750.7 0.0 4000.0 0.0 1230.7 0.0 4000.0	(+) (- (2) (1 1306.7 -110. 2675.6 -110. 3291.9	(+)) (3) 3) 7 0.0 7 0.0	(-) (14)	(+) (4) 0.0 0.0	(+) (-) (15) (15) (15) (15) (15) (15) (16) (17) (17) (18) (19) (19) (19) (19) (19) (19) (19) (19	NA NA (6) (16) 5675.6 675.6 7291.9	(-) NA (7) (17) 5035.6 0.0 17 5555.6 0.0 21 5851.9	NA (18) 33.3	(-) (8) 0.0 0.0	NA (19)	(-)
(2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 0.0 Ave DEC 0.0 0.0 Ave JAN	(3) Salvage (4) (+) (-) (-) NA (1) (11) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 7 0.0 0	(-) (14) 0.0 0.0	(+) (4) 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 56 0.0 66 0.0 72	NA NA (6) (16) 5675.6 7291.9 7550.6	(-) NA (7) (17) 5035.6 0.0 17 5555.6 0.0 21 5851.9 0.0 23	NA (18) 33.3 77.8 25.9	(-) (8) 0.0 0.0	NA (19) 0.0 0.0	(-) (9) 0.0
(2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 Ave DEC 0.0 0.0 Ave JAN 0.0 0.0 Ave FEB	(3) Salvage (4) (+) (-) (-) NA (1) (11) (12) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0	(-) (14) 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 0.0 0.0 0.0 72 0.0 0.0 75	NA NA (6) (16) 5675.6 755.6 7291.9 7550.6 7583.5	(-) NA (7) (17) 5035.6 0.0 17 5555.6 0.0 21 5851.9 0.0 23 5950.6 0.0 23	NA (18) 33.3 77.8 25.9 75.3	(-) (8) 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0	(-) (9) 0.0 0.0
(2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 0.0 Ave DEC 0.0 0.0 Ave JAN 0.0 0.0 Ave FEB 0.0 0.0 Ave MAR	(3) Salvage (4) (+) (-) (-) NA (1) (11) (12) (21)	(+) (- (2) (1 1306.7 -110. 2675.6 -110. 3291.9 0. 3550.6 0. 3583.5 0.	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0 0 0.0	(-) (14) 0.0 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 56 0.0 0.0 0.0 72 0.0 0.0 75 0.0 0.0	NA NA (6) (16) 5675.6 755.6 7291.9 7550.6 7583.5 7594.5	(-) NA (7) (17) 5035.6 0.0 17 5555.6 0.0 21 5851.9 0.0 23 5950.6 0.0 23 5983.5 0.0 23 5994.5	NA (18) 33.3 77.8 25.9 75.3	(-) (8) 0.0 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0	(-) (9) 0.0 0.0 0.0
(2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 0.0 Ave DEC 0.0 0.0 Ave JAN 0.0 0.0 Ave FEB 0.0 0.0 Ave MAR 25.2 0.0 Ave APR	(3) Salvage (4) (+) (-) (-) NA (1) (11) (11) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0 0 0.0 0.0	(-) (14) 0.0 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 0.0 0.0 0.0 0.0 72 0.0 0.0 75 0.0 75 0.0 357.0	NA NA (6) (16) 5675.6 7591.9 7550.6 7583.5 7594.5 7955.2	(-) NA (7) (17) 5035.6 0.0 5555.6 0.0 21 5851.9 0.0 23 5950.6 0.0 23 5983.5 0.0 23 6355.2	NA (18) 33.3 77.8 25.9 75.3 91.8 422.4	(-) (8) 0.0 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0 0.0	(-) (9) 0.0 0.0 0.0 0.0 0.0
(2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 Ave DEC 0.0 0.0 Ave JAN 0.0 0.0 Ave JAN 0.0 0.0 Ave FEB 0.0 0.0 Ave MAR 25.2 0.0 Ave APR 326.9 0.0 Ave MAY	(3) Salvage (4) (+) (-) (-) NA (1) (11) (11) (12) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0 0 0.0 4.0	(-) (14) 0.0 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 56 0.0 0.0 0.0 72 0.0 0.0 75 0.0 0.0 357.0 0.0 368.9	NA (6) (16) 5675.6 7550.6 7550.6 7594.5 7594.5 7955.2 24093.5	(-) NA (7) (17) 5035.6 0.0 5035.6 0.0 5851.9 0.0 5950.6 0.0 23 5983.5 0.0 5994.5 0.0 6355.2 0.0 6868.9	NA (18) 33.3 77.8 25.9 75.3 91.8 422.4 2725.9	(-) (8) 0.0 0.0 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0 0.0	(-) (9) 0.0 0.0 0.0 0.0 0.0
(2) Pumping (-) NA (10) (20) ———————————————————————————————————	(3) Salvage (4) (+) (-) (-) NA (1) (11) (11) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0 0.0 4.0 4.7	(-) (14) 0.0 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 0.0 0.0 0.0 0.0 0.0 75 0.0 0.0 75 0.0 357.0 0.0 368.9 0.0 2	NA NA (6) (16) 5675.6 755.6 7291.9 7550.6 7583.5 7594.5 7955.2 7955.2 7955.2 74093.5	(-) NA (7) (17) 5035.6 0.0 5035.6 0.0 5555.6 0.0 21 5983.5 0.0 23 5994.5 0.0 23 6355.2 0.0 6868.9 0.0	NA (18) 33.3 77.8 25.9 75.3 91.8 422.4 2725.9	(-) (8) 0.0 0.0 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (9) 0.0 0.0 0.0 0.0 0.0
(2) Pumping (-) NA (10) (20)	(3) Salvage (4) (+) (-) (-) NA (1) (11) (11) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0 0 0.0 4.7 0.0 2.3	(-) (14) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (-) (5) (15) 368.9 0.0 0.0 0.0 0.0 0.0 75 0.0 0.0 75 0.0 357.0 0.0 357.0 0.0 2	NA NA (6) (16) 5675.6 7550.6 7594.5 7955.2 24093.5 24207.0 4207.0	(-) NA (7) (17) 5035.6 0.0 5035.6 0.0 5555.6 0.0 5851.9 0.0 5983.5 0.0 5983.5 0.0 23 5994.5 0.0 6857.0 0.0 6857.0 0.0	NA (18) 33.3 77.8 25.9 75.3 91.8 422.4 2725.9 2947.5 3449.9	(-) (8) 0.0 0.0 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (9) 0.0 0.0 0.0 0.0 0.0 0.0
(2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 Ave DEC 0.0 0.0 Ave JAN 0.0 0.0 Ave FEB 0.0 0.0 Ave MAR 25.2 0.0 Ave APR 326.9 0.0 Ave APR 326.9 0.0 Ave JUN 799.9 0.0 Ave JUL 483.9	(3) Salvage (4) (+) (-) (-) NA (1) (11) (11) (12) (21)	(+) (- (2) (1	(+)) (3) 3) 7 0.0 7 0.0 0 0.0 0 0.0 0 4.0 4.7 0.0 2.3 0.0	(-) (14) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(+) (4) 0.0 0.0 0.0 0.0 0.0 0.0	(+) (-) (15) (15) 368.9 0.0 0.0 0.0 0.0 0.0 0.0 75 0.0 0.0 75 0.0 357.0 0.0 368.9 0.0 368.9 0.0 368.9 0.0	NA NA (6) (16) 5675.6 755.6 7291.9 7550.6 7583.5 7594.5 7955.2 7955.2 7955.2 74093.5 24207.0	(-) NA (7) (17) 5035.6 0.0 5035.6 0.0 5555.6 0.0 5851.9 0.0 5950.6 0.0 5983.5 0.0 5994.5 0.0 6355.2 0.0 6868.9 0.0 6868.9 0.0 6368.9 0.0	NA (18) 33.3 77.8 25.9 75.3 91.8 422.4 2725.9 2947.5 3449.9 2883.9	(-) (8) 0.0 0.0 0.0 0.0 0.0 0.0	NA (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(-) (9) 0.0 0.0 0.0 0.0 0.0 0.0

```
0.0 357.0 /030...
          4000.0 3481.0
0.0 2067.7 -429.8
                                                            357.0 7838.0
Ave
     SEP
                                      0.0
                                                                                   5881.0
                                                                                                 0.0
                                                                                                             0.0
                                                                                 0.0 2481.1
                                               0.0
319.1
0.0
           0.0
                                               0.0
                      39981.4
                                                                    122528.3
                                                            2546.8
                                                                                   73071.7
              80000.0
                                        0.0
                                                                                                  0.0
                                                                                                             0.0
Ave 2637.2 0.0
Ave
                                               0.0
                   26770.4
                                20048.9
                                                                 122528.3
                                                                                          30699.7
                                                                                                         0.0
             0.0
                                                          0.0
                                                                                   0.0
 Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency
          + max (Resevoir Evaporation (Evap), 0.0).
       (2) Loss is not part of the Stream Water Balance.
           It is the portion of a diversion, well pumping
           and reservoir seepage that does not return to
           the stream
        (3) Pumping is not part of the Stream Balance.
           Its impact on the stream is included in the From River by Well and Well Depletion columns
        (4) Salvage is not part of the Stream Water Balance.
           It is the portion of well pumping that does not impact the stream
        (5) From Plan is water from a reuse plan.
        (6) Divert does not include diversions by an
           instream flow or a T&C plan. Also to avoid
           double accounting with reservoir storage it has
           reduced by:
                   0. af/yr for Diverted to Storage.
             2
                     0. af/yr for a Diversion Carrier.
                     0. af/yr for a Reservior Carrier.
             3
             4
                     0. af/yr for a Plan Carrier.
                     0. af/yr Total
#
 *.xwr
            Water rights list sorted by basin rank
#
#
   STATEMOD
   StateMod Operating Rule Example - ex11.*
# Statemod Version: 12.289 Date = 2008/09/12)
                    9/15/ 8 13: 5:26
 Run date:
 Time Step:
                   Monthly
 *.xwr; Water Right Information
       Number of rights =
                                 11
#
#
# Where:
                   = Water right basin rank
  1. Rank
                   = Water right type
  2. Type
                   1=Instream,
                   2=Reservoir,
                   3=Diversion,
                   4=Power,
                   5=Operational,
                   6=Well,
                = Administration Number
  3. Admin #
  4. On/Off
                   = On or Off switch
     Note: Certain operating rules may cause a structure to
         be turned off since if it is controlled by an
          operating rule
#
                   0=off
                  1=on
                  +n=begin in year n
#
                  -n=stop in year n
                   = Primary structure for this right
  5. Str Id #1
                   = Secondary structure for this right (-1=N/A)# 7. Amount = Decreed capacity & unit
# 6. Str Id #2
(c=CFS, a=AF)
                   = Water right name
# 8. Right Name
                   = Primary structure for this right
 9. Str Name #1
# 10. Str Name #2
                   = Secondary structure for this right (-1=N/A)
                                    Admin # On/Off Str ID #1 Str ID #2
 Rank ID
                        Type
                                                                                  Amount Right Name
                        Str Name #2
Str Name #1
                                        (4)
   (1) (2)
                         (3)
                                                (5) (6)
                                                                 (7)
                                                                                       (8) (9)
(10)
                         (11)
                                                                                100.000 c M&I Demand _1
                           3
      1 Dem_1_WR_1
                                     2.00000
                                                  1 Dem_1
                                                                  -1
Municipal Demand _1
                          3
                                     6.00000
                                                                                  60.000 c Irrigation Demand _2
     2 Dem 2 WR 1
                                                  0 Dem_2
                                                                  -1
```

Irrigation Demand _2

```
6.00001
                                                                                     -1.000 x
      3 Opr_1
                          124
                                                                    -1
Opr_Pro_Rata_Exchange_to
      4 Opr_2
                          128
                                      6.00002
                                                    1 -1
                                                                    -1
                                                                                     -1.000 x Opr_AcctPlan_Release
      5 Dem_3_WR_1
                                      7.00000
                                                    1 Dem_3
                            3
                                                                    -1
                                                                                    100.000 c Irrigation Demand _3
Irrigation Demand _3
      6 ISF_WR_1
                            1
                                      9.00000
                                                   1 ISF
                                                                                     65.500 c Instream Flow 1
                                                                    -1
Instream Demand
      7 Dem_4_WR_1
                            3
                                     10.00000
                                                    1 Dem_4
                                                                                    100.000 c Irrigation Demand _4
                                                                    -1
Irrigation Demand _4
                            2
      8 Res_1_WR_1
                                     15.00000
                                                    1 Res_1
                                                                    -1
                                                                                 100000.000 a Reservoir_1
Reservoir 1
      9 Dem_5_WR_1
                            3
                                     15.00000
                                                    1 Dem_5
                                                                                    100.000 c Irrigation Demand _5
                                                                    -1
Irrigation Demand _5
     10 Opr_3
                                     50.00000
                                                                    -1
                                                                                     -1.000 x
                          148
                                                    1 -1
Opr_Reservoir_Release_to
     11 Opr_4
                          129
                                  99999.00000
                                                                    -1
                                                                                     -1.000 x Opr_AcctPln-Spill
                                                    1 -1
#
#
 *.xdd
             Diversion Summary
#
   STATEMOD
  StateMod Operating Rule Example - ex11.*
# Statemod Version: 12.29.00 Date = 2008/09/15)
# Run date: 11/ 2/ 8 11:24:57
                    Monthly
# Time Step:
  Diversion Summary ACFT
    STATEMOD
    StateMod Operating Rule Example - ex11.*
PAGE NO.
    STRUCTURE ID (0 = total) : Dem_3
    STRUCTURE ACCT (0 = total): 0
    STRUCTURE NAME
                          RIVER LOCATION - FROM
RIVER LOCATION - TO
                            : Dem_3
                                           Exist. Diver. 3/Inflow
   STRUCTURE DATA
                            : #
                                         cfs
                                                   af@30
                                                            af@31
                                   1
                                         5000.
                                                 297525.
                                                           307442.
     Diversion Capacity
     Diversion Rights
                             :
                                   1
                                          100.
                                                  5950.
                                                            6149.
     Well Capacity
                                            0.
                                                      0.
                                                               0.
     Well Rights
                                   0
                                            0.
                                                      0.
                                                               0.
```

Snortag	re .		wate	r use										
					Demai	nd		From R	iver By			From	Carrier	Ву
Carried			=====			======		=====	===					
Structu					======			=====		====	From	======		=====
	e From	Total		CU		To	Total		Upst:					
ID	ID		Year	Mo	Total		-	_	Exc_Pln		Well	Priorty	Sto_Exc	Loss
Bypass	SM	Supply	Short	Shor	rt CU	SoilM	Return	Loss	s Infl	OW				
	0.5	tion I	- /0				0+-+	ion Bal	1					
	SL6	ICTOH II	,						tance					
Reach	Return	woll			r River				Control					
Gain			- ,						Location					
Dem 3	Den				1000.0		666.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	_		166.7		0.0		0.0		1000.0	0.0	0.0	0.0	1000.0
666.7			110.7		333.3	100.00		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Den		1979		1000 0		888.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	_	111.1	55.6	444.4		444.4	0.0		1000.0	0.0	0.0	0.0	1000.0
888.9		111.1				100.00		0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem 3	Den		1979		1000.0		963.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 9	_	37.0	18.5	481.5		481.5	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
963.0	0.0	37.0				100.00								
Dem 3	Den		1980		1000.0		987.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 9	87.7	12.3	6.2	493.8	0.0	493.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
987.7	0.0	12.3	0.0	Dem_1		100.00	0.0							
Dem_3	Den	1_3	1980	FEB	1000.0	500.0	995.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 9	95.9	4.1	2.1	497.9	0.0	497.9	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
995.9	0.0	4.1	0.0	Dem_1		100.00	0.0							
Dem_3	Den	1_3	1980	MAR	1000.0	500.0	998.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 9	98.6	1.4	0.7	499.3	0.0	499.3	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
998.6	0.0	1.4	0.0	Dem_1		100.00	0.0							
Dem_3	Den	1_3	1980	APR	1000.0	500.0	999.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	99.5	0.5	0.2	499.8	0.0	499.8	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
999.5	0.0	0.5	0.5	Dem_1		100.00	0.0							

Shortage

Water Use

Dem_3	Dem_3	1980	MAY	1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	1414.8	NA		-1	.000							
Dem_3	Dem_3	1980	JUN	1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	1670.2	NA		-1	.000							
Dem_3	Dem_3	1980	JUL	1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0	Hgate	e_Limit	-1	.000							
Dem_3	Dem_3	1980	AUG	1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0	0.0	500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0	0.0	Hgate	e_Limit	-1	.000							
Dem_3	Dem_3	1980	SEP	1000.0	500.0	881.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 881.0 1	19.0	59.5	440.5	0.0	440.5	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
881.0	0.0 119.0	119.0	Dem_1		100.	000							
Dem_3	Dem_3	1980	TOT :	12000.0	6000.0	11381.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 11381.2	18.8	309.4	5690.6	0.0	5690.6	0.0	0.0	20000.0	0.0	0.0	0.0	20000.0
11381.2	0.0 8618.8	3425.	9 NA		-	1.000							

STATEMOD

StateMod Operating Rule Example - ex11.*

PAGE NO. 2

Shortage

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0

STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4

Water Use

STRUCTURE DATA cfs af@30 af@31 : 1 -Diversion Capacity 5000. 297525. 307442. Diversion Rights : 100. 5950. 6149. 0. 0. Well Capacity 0. : 1 0 Well Rights 0. 0. 0.

Demand From River By From Carrier By rrom River Carried River Structure From ============ From Total Total CU To Total Upstrm

ID Year Mo Total CU Priorty Storage Exc_Pln Loss

SM Supply Short Short CU SoilM Return Loss Inflow Exchange From Total Total Well Priorty Sto_Exc Loss TD Bypass Station In/Out Station Balance ______ Reach Return Well From/To River River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right Dem_4 1979 OCT 500.0 250.0 0.0 0.0 368.9 0.0 0.0 368.9 131.1 65.5 184.5 0.0 184.5 0.0 333.3 0.0 0.0 131.1 110.7 Dem_1 100.000 0.0 0.0 0.0 0.0 Dem_4 0.0 368.9 0.0 0.0 0.0 166.7 500.0 0.0 0.0 131.1 110.7 Dem_1 368.9 1979 NOV 500.0 250.0 0.0 500.0 250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_4 Dem_4 0.0 0.0 0.0 500.0 0.0 0.0 111.1 0 0 388 9 0 0 0.0 0 0 0 0 0 0 500 0 110.7 Dem_1 1979 DEC 500.0 250.0 100.000 0.0 500.0 Dem_4 0.0 Dem 4 250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 500.0 0.0 0.0 0.0 0.0 37.0 0.0 463.0 0.0 0.0 0.0 500.0 0.0 Dem_1 100.000 0.0 500.0 250.0 1980 JAN 500.0 250.0 Dem_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.3 487.7 0.0 500.0 0.0 Dem_1 500.0 100.000 0.0 0.0 1980 FEB 500.0 500.0 250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 4 Dem_4 250.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 495 9 0 0 0 0 500 0 0 0 4 1 0.0 500.0 0.0 Dem_1 100.000 0.0 1980 MAR 500.0 250.0 500.0 Dem 4 Dem_4 250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 498.6 0.0 500.0 0.0 ISF 0.0 500.0 100.000 0.0 500.0 0 0 0 0 357 0 Dem_4 1980 APR 0 0 0 0 0 0 0 0 Dem_4 250.0 0 0 0.0 357.0 143.0 71.5 0.0 143.0 107.1 Dem_1 0.0 178.5 0.0 0.5 143.0 71.5 178.5 0.0 0.0 0.0 499.5 0.0 500.0 100 000 357 0 500.0 250.0 131.1 0.0 250.0 0.0 368.9 0.0 0.0 0.0 0.0 0.0 1980 MAY Dem_4 Dem 4 0.0 500.0 0 0 0.0 4000.0 0 0 4499 9 0 0 0.0 250.0 0.0 499 9 0 0 0.0 3999.9 1414.8 NA -1.000 500.0 250.0 143.0 0.0 250.0 Dem_4 1980 JUN 500.0 0 500.0 0.0 0.0 250.0 0.0 357.0 Dem 4 0.0 0.0 0.0 0.0 0.0 0.0 500.0 0.0 0.0 0.0 4000.0 1670.2 NA 0.0 4000.0 0.0 500.0 0.0 4500.0 0 0 0 0 -1.000 500.0 250.0 0.0 0.0 184.5 Dem_4 1980 JUL 500.0 0.0 368.9 131.1 65.5 184.5 0.0 131.1 131.1 ISF 0.0 368.9 0.0 0.0 0 0 0 0 0 0 0 0 0 0 Dem_4 0.0 500.0 0.0 500.0 0.0 0.0 368 9 100.000

Dem_4	Dem_4	1980	AUG	500.0	250.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 368.9	131.1	65.5	184.5	0.0	184.5	0.0	0.0	0.0	500.0	0.0	0.0	500.0
368.9	0.0 131.1	131.1	ISF		100.00	0.0							
Dem_4	Dem_4	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	119.0	0.0	470.2	0.0	0.0	589.3
0.0	0.0 589.3	467.7 Det	m_1		100.000								
 Dem_4		1980	TOT	5500.0	2750.0	274.0	0.0	2189.8	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2463.8	3036.2 1	518.1	1231.9	0.0	1231.9	0.0	8618.8	0.0	5470.4	0.0	0.0	L4089.1
2463.8	0.0 11625.	3 4143.4	NA		-1.0	000							

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex11.*

PAGE NO.

Shortage

STRUCTURE ID (0 = total): Dem 5 -3 STRUCTURE ACCT (0 = total): 0

: Irrigation Demand _5 STRUCTURE NAME RIVER LOCATION - FROM

Water Use

Exist. Diver. 5/Inflow : Dem_5 RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA af@30 : # cfs af@31 307442. Diversion Capacity 1 5000. 297525. Diversion Rights : 1 100. 5950. 6149. 0. 0. Well Capacity : 1 0. 0 Well Rights 0. 0. 0.

Demand From River By From Carrier By Carried _____ River =========== From Structure Total CU To Total Upstrm Year Mo Total CU Priorty Storage Exc_Pln Loss Total Exchange From Total ID Well TD Priorty Sto Exc Loss Short Short CU SoilM Return Loss SM Supply Inflow Bypass Station In/Out Station Balance ------From/To River River River Avail Control Control Reach Return Well Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right 1979 OCT Dem_5 0.0 0.0 0.0 3000.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 110.7 Dem_1 100.000 0.0 1979 NOV 0.0 0.0 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 3000.0 110.7 Dem_1 100.000 0.0 0.0 0.0 1979 DEC Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 Dem_1 0.0 3000.0 100.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 JAN 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 Dem_1 100.000 0.0 0.0 1980 FEB 0.0 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 3000.0 0 0 0 0.0 3000.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 3000.0 0.0 Dem 1 100.000 0.0 1980 MAR 0.0 0.0 0.0 ISF 0.0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 0.0 3000.0 0.0 0.0 3000.0 100.000 0.0 0.0 Dem_5 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0.0 3000.0 0.0 0.0 0.0 3000.0 107.1 Dem 1 100.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dem 5 Dem_5 1980 MAY 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15000 0 0 0 0 0 0 0 15000 0 0 0 0 0 0.0 Res_1 0.0 0.0 15000.0 100000.000 0.0 0.0 0.0 Dem 5 Dem_5 1980 JUN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15000.0 0.0 0.0 0.0 0.0 15000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res_1 100000.000 0.0 15000.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 Dem 5 Dem_5 1980 JUL 0 0 0.0 0.0 0.0 3000.0 0.0 0.0 217.8 ISF 0.0 0.0 0.0 0.0 3000.0 0.0 3000.0 0.0 0.0 0.0 0.0 100 000 0 0 0.0 0.0 0.0 0.0 0.0 Dem_5 1980 AUG 0.0 0.0 0.0 0.0 0.0 Dem 5 0 0 0 0 0 0 0 0 0.0 0.0 3000.0 0 0 3000 0 0 0 0.0 0.0 0 0 0.0 0 0 221.4 ISF 100.000 0.0 0.0 3000.0 0.0 1980 SEP 0.0 0.0 0.0 0.0 Dem 5 Dem_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3000.0 0.0 0 0 0.0 0 0 0.0 3000.0 0.0 0.0 0 0 0.0 0.0 3000.0 357.0 Dem_2 60.000

STATEMOD

StateMod Operating Rule Example - ex11.*

STRUCTURE ID (0 = total) : Pln_1 10001

STRUCTURE ACCT (0 = total): 0

Shortag	re	Water										
Carried	L	=====	======	Deman	d ======] :=======	From R:	iver By ===			From C	Carrier By
Structu	re River		==	======					===	From		
	e From Total		CU		To	Total		Upstrn	n			
ID	ID	Year	Mo T	otal	CU Pr	iorty Sto	orage 1	Exc Pln I	Loss	Well	Priorty S	Sto Exc Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Loss	s Inflow	V		-	
	Station I	,				Stat						
	=========											
Reach	Return Well											
Gain												
Pln_1	Pln_1		OCT					368.9				0.0 0.0
368.9	0.0 0.0					0.0	0	.0 3000.0	0.	0 0.	0.0	0.0 3000.0
0.0	0.0 3000.0				-1.000							
Pln_1	Pln_1		NOV		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0		0.0		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0		110.7 NA			-1.000							
Pln_1	Pln_1	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 NA		0 0	-1.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0
Pln_1	Pln_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0 0.0 3000.0	0.0		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
0.0		0.0 NA 1980		0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Pln_1 0.0	Pln_1 0.0 0.0	0.0		0.0	0.0	0.0		3000.0	0.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 0.0 NA		0.0	-1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
Pln 1	Pln 1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
0.0	0.0 0.0	0.0			0.0	0.0		3000.0	0.0	0.0	0.0	0.0 3000.0
0.0	0.0 3000.0	0.0 NA			-1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0 3000.0
Pln 1	Pln 1		APR		0.0	0.0	0 0	357.0	0.0	0.0	0.0	0.0 0.0
357.0	0.0 0.0				0.0			.0 3000.0				0.0 3000.0
0.0	0.0 3000.0				-1.000	0.0	O	.0 3000.0	٠.	0 0.	0.0	0.0 3000.0
Pln 1	Pln 1		MAY		0.0	0.0	0 0	368.9	0.0	0.0	0.0	0.0 0.0
368.9	0.0 0.0		0.0		0.0			.0 15000.0				0.0 15000.0
0.0	0.0 15000.0				-1.000							
Pln 1	Pln 1				0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0 0.0
357.0	0.0 0.0		0.0		0.0			.0 15000.0				0.0 15000.0
0.0	0.0 15000.0				-1.000		-					
Pln_1	Pln_1				0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0 0.0
368.9	0.0 0.0				0.0			.0 3000.0	0.			0.0 3000.0
0.0	0.0 3000.0	217.8 NA			-1.000							
Pln_1	Pln_1 0.0 0.0	1980	AUG	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0 0.0
368.9	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0	.0 3000.0	0.	0 0.	0.0	0.0 3000.0
0.0	0.0 3000.0	221.4 NA			-1.000							
Pln_1	Pln_1	1980	SEP	0.0	0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0 0.0
357.0	0 0 0 0	0 0	0 0	0 0	0.0	0.0	0	.0 3000.0	0.	0 0.	0.0	0.0 3000.0
0.0	0.0 3000.0	357.0 NA			-1.000							
	Pln_1	1000				0.0		2546 9	0 0	0 0	0 0	0.0 0.0
2546.8	D U U	U U U	101	0.0	0.0	0.0	0.0) O.U	0.0	0.0	0.0 0.0 60000.0
2546.8	0.0 60000.0	U.U	0.0	υ.	_1 000	U . (. (00000.0	, 0	.0 0		0.0 00000.0
0.0	0.0 00000.0	1124.0 NA			-1.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex11.*

PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2

STRUCTURE ID (0 = total): Dem_2 4

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Irrigation Demand _2

RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2

RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

: # cfs af@30 af@31 STRUCTURE DATA

Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 60. 3570. 3689. Well Capacity : 1 0. 0. 0. 0. Well Rights : 0 0. 0. 0. 0.

	ier By
Carried ====================================	
Structure River ====================================	=======
Exchange From Total Total CU To Total Upstrm ID ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_	Exc Loss
Bypass SM Supply Short Short CU SoilM Return Loss Inflow	
Station In/Out Station Balance	
Reach Return Well From/To River River River Avail Control	
Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right	
Dem_2 Dem_2 1979 OCT 3000.0 1500.0 1631.1 0.0 0.0 0.0 0.0 0.0 0.0 0.	
	.0 3000.0
1631.1 0.0 1368.9 110.7 Cap/Wr_Limit -1.000 Dem 2 Dem 2 1979 NOV 3000.0 1500.0 2666.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0
	.0 3000.0
2666.7 0.0 333.3 110.7 Cap/Wr Limit -1.000	.0 3000.0
Dem_2 Dem_2 1979 DEC 3000.0 1500.0 2888.9 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
	.0 3000.0
2888.9 0.0 111.1 0.0 Cap/Wr_Limit -1.000	
Dem_2 Dem_2 1980 JAN 3000.0 1500.0 2963.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 2963.0 37.0 18.5 1481.5 0.0 1481.5 0.0 3000.0 0.0 0.0 0.0 0.0 2963.0 0.0 37.0 0.0 Cap/Wr_Limit -1.000	.0 3000.0
Dem 2 Dem 2 1980 FEB 3000.0 1500.0 2987.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0
	.0 3000.0
2987.7 0.0 12.3 0.0 Cap/Wr_Limit -1.000	
Dem_2 Dem_2 1980 MAR 3000.0 1500.0 2995.9 0.0 0.0 0.0 0.0 0.0 0.0 0.	
	.0 3000.0
2995.9 0.0 4.1 0.0 Cap/Wr_Limit -1.000 Dem 2 Dem 2 1980 APR 3000.0 1500.0 2641.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0
	.0 3000.0
2641.6 0.0 358.4 107.1 Cap/Wr_Limit -1.000	
Dem_2 Dem_2 1980 MAY 3000.0 1500.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
	.0 15000.0
3000.0 0.0 12000.0 0.0 NA -1.000 Dem_2 Dem_2 1980 JUN 3000.0 1500.0 3000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0
	.0 15000.0
3000.0 0.0 12000.0 0.0 NA -1.000	.0 13000.0
Dem_2 Dem_2 1980 JUL 3000.0 1500.0 2631.1 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
	.0 3000.0
2631.1 0.0 368.9 217.8 Hgate_Limit -1.000	
Dem_2 Dem_2 1980 AUG 3000.0 1500.0 2631.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 2631.1 368.9 184.5 1315.5 0.0 1315.5 0.0 3000.0 0.0 0.0 0.0 0.0 2631.1 0.0 368.9 221.4 Hgate_Limit -1.000	.0 3000.0
Dem_2 Dem_2 1980 SEP 3000.0 1500.0 2643.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0
	.0 3000.0
2643.0 0.0 357.0 357.0 Hgate_Limit -1.000	
Dem_2 Dem_2 1980 TOT 36000.0 18000.0 32679.8 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
	.0 60000.0
32679.8 0.0 27320.2 1124.6 NA -1.000	
Diversion Summary ACFT	
STATEMOD	
StateMod Operating Rule Example - ex11.*	
PAGE NO. 6	

STRUCTURE ID (0 = total) : Res_1 7501
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Reservoir_1
RIVER LOCATION - FROM : Res_1 Exist. Reservoir
RIVER LOCATION - TO : Res_1 Exist. Reservoir

af

 Shortage
 Water Use
 Demand
 From River By
 From Carrier By

 Carried
 Structure
 River
 From Carrier By

 Exchange
 From Total
 Total
 Upstrm

ID ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss Bypass SM Supply Short CU SoilM Return Loss Inflow ID

		ation In/					ion Bal	lance							
Reach	Return		From/To						Control						
Gain			- , -						Location						
Res 1		s 1	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1368.9	0.0	0.0	0.0	0.0	1368.9	_
110.7		1479.6	110.7			100.00									
Res 1	Res	s 1	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	333.3	0.0	0.0	0.0	0.0	333.3	_
110.7	0.0	444.0	110.7	Dem 1		100.00	0								
Res 1		s 1	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	111.1	0.0	0.0	0.0	0.0	111.1	
0.0	0.0	111.1	0.0 De	m 1		100.000									
Res_1	Rea	s_1	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	37.0	0.0	0.0	0.0	0.0	37.0	
0.0	0.0	37.0	0.0 De	m_1		100.000									
Res_1	Res	s_1	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.3	0.0	0.0	0.0	0.0	12.3	
0.0	0.0	12.3	0.0 De	m_1		100.000									
Res_1	Res	s_1	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	0.0	0.0	0.0	4.1	
0.0	0.0	4.1	0.0 IS			100.000									
Res_1	Res	s_1	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	358.4	0.0	0.0	0.0	0.0	358.4	-
107.1	0.0	465.5	107.1			100.00									
Res_1		s_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0	0.0	0.0	12000.0	
11782.2				0 Hgate_		-1.									
Res_1		s_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12000.0	0.0	0.0	0.0	0.0	12000.0	
11782.2				0 Hgate_		-1.									
Res_1		s_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	368.9	-
217.8	0.0	586.7	217.8			100.00									
Res_1		s_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	368.9	-
221.4	0.0	590.3	221.4			100.00									
Res_1		s_1	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0	357.0	-
110.7	0.0	467.7	357.0	NA 		-1.00	0 								
Res_1		s_1	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27320.2	0.0	0.0	0.0	0.0	27320.2	
22686.1	. 0.0	0 4634.0	1124.	6 NA		-1.	000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex11.*

PAGE NO. 7

Shortage	Water Use									
		Demand		From R	iver By			From	Carrier	By
Carried					===					
Structure River						====	From	======		=====
Exchange From Total	Total CU		To Total		Upst:	rm				
ID ID	Year Mo	Total CU	-	torage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Shor	t CU Soi	llM Return	Los	s Infl	OW				
Station In/O				tion Ba						
	rom/To River				Control					
Gain Flow Deplete GW		-	Well Outflo			_				
T&CPln_1 T&CPln_1	1979 OCT	110.7 0.		110.7	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 0.0		110.7	0.0	1610.7	0.0	92.2	0.0	0.0	1702.9
0.0 0.0 1702.9 11	0.7 NA	-1.	.000							
T&CPln_1 T&CPln_1	1979 NOV	110.7 0.	0.0	110.7	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 110.7	0.0 0.0	0.0	110.7	0.0	944.0	0.0	92.2	0.0	0.0	1036.2
0.0 0.0 1036.2 11	0.7 NA	-1.	.000							
T&CPln_1 T&CPln_1	1979 DEC	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	611.1	0.0	0.0	0.0	0.0	611.1
0.0 0.0 611.1	0.0 NA	-1.	.000							
T&CPln_1 T&CPln_1	1980 JAN	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	537.0	0.0	0.0	0.0	0.0	537.0
0.0 0.0 537.0	0.0 NA	-1.	.000							

T&CPln_1 T&CPln_1 1980 FEB	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0 0.0		0.0 512.3	0.0	0.0	0.0	0.0	512.3
0.0 0.0 512.3 0.0 NA	-1.00		0 0 0 0	0 0	0 0	0 0	0 0	0.0
T&CPln_1 T&CPln_1 1980 MAR 0.0 0.0 0.0 0.0 0.0	0.0 0.0		0.0 0.0 0.0 504.1	0.0 L 0.0	0.0	0.0	0.0	0.0 504.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 504.1 0.0 NA	-1.00		0.0 504.	0.0	0.0	0.0	0.0	504.1
T&CPln 1 T&CPln 1 1980 APR	107.1 0.0		07.1 0.0	0.0	0.0	0.0	0.0	0.0
	0.0 0.0				89.3	0.0	0.0	
0.0 0.0 107.1 0.0 0.0 0.0 0.0 0.0 697.7 107.1 NA	-1.00		0.0 608.5	0.0	89.3	0.0	0.0	697.7
	217.8 0.0	-	217.8 0.0	0.0	0.0	0.0	0.0	0.0
			0.0 4217.		214.3	0.0	0.0	4431.9
			0.0 4217.	/ 0.0	214.3	0.0	0.0	4431.9
	-1.00		1	2 2	0 0	0 0	0 0	
T&CPln_1 T&CPln_1 1980 JUN	217.8 0.0		217.8 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 217.8 0.0 0.0	0.0 0.0		0.0 4217.8	0.0	250.0	0.0	0.0	4467.8
0.0 0.0 4467.8 1670.2 NA	-1.00	-	1	2 2	0 0	0 0	0 0	
T&CPln_1 T&CPln_1 1980 JUL	217.8 0.0		217.8 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 217.8 0.0 0.0	0.0 0.0		0.0 717.8	0.0	217.2	0.0	0.0	935.0
0.0 0.0 935.0 217.8 NA	-1.00	-						
T&CPln_1 T&CPln_1 1980 AUG	221.4 0.0		221.4 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 221.4 0.0 0.0	0.0 0.0		0.0 721.4	1 0.0	184.5	0.0	0.0	905.8
0.0 0.0 905.8 221.4 NA	-1.00							
T&CPln_1 T&CPln_1 1980 SEP	110.7 0.0		10.7 0.0		0.0	0.0	0.0	0.0
0.0 0.0 110.7 0.0 0.0	0.0 0.0		0.0 1057.0	0.0	92.2	0.0	0.0	1149.2
0.0 0.0 1149.2 467.7 NA	-1.00	10						
T&CPln 1 T&CPln 1 1980 TOT	1313.9 0.0	0.0 13	313.9 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1313.9 0.0 0.0		1313.9	0.0 16259.4		1231.9	0.0		17491.3
0.0 0.0 17491.3 4320.4 NA	-1.00	10						

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex11.* PAGE NO. 8

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 100. 5950. 6149. Well Capacity : 1 0. 0. 0. Well Rights : 0 0. 0. 0.

Shortage Water Use										
	Demand From River By									
Carried										
Structure River			From =							
Exchange From Total	Total CU	To Total Upstrm								
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well F	Priorty Sto_Exc	Loss					
Bypass SM Supply	Short Short CU	SoilM Return Loss Inflow								
Station In										
December 12			=							
	- ,	River River Avail Control Control Tt By Well Outflow Flow Location Right	1							
Dem 1 Dem 1	JW Stor Initiow Diver	400.0 2000.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0 0.0 1702.9 0.0		0.0 0.0	2110.7					
2000.0 0.0 110.7		-1.000	407.0	0.0 0.0	2110.7					
Dem 1 Dem 1	1979 NOV 2000.0	400.0 2000.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0 0.0 1036.2 0.0		0.0 0.0	2110.7					
2000.0 0.0 110.7		-1.000	10/4.4	0.0 0.0	2110.7					
Dem 1 Dem 1	1979 DEC 2000.0		0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0		1388.9	0.0 0.0	2000.0					
2000.0 0.0 0.0	0.0 NA	-1.000	1300.5	0.0 0.0	2000.0					
Dem 1 Dem 1	1980 JAN 2000.0	400.0 2000.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0 0.0 537.0 0.0		0.0 0.0	2000.0					
2000.0 0.0 0.0	0.0 NA	-1.000	1100.0	0.0	2000.0					
Dem 1 Dem 1	1980 FEB 2000.0	400.0 2000.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0		1487.7	0.0 0.0	2000.0					
2000.0 0.0 0.0	0.0 NA	-1.000								
Dem 1 Dem 1	1980 MAR 2000.0	400.0 2000.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0 0.0 504.1 0.0	1495.9	0.0 0.0	2000.0					
2000.0 0.0 0.0	0.0 NA	-1.000								
Dem 1 Dem 1	1980 APR 2000.0		0.0	0.0 0.0	0.0					
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0 0.0 697.7 0.0	1409.4	0.0 0.0	2107.1					
2000.0 0.0 107.1	107.1 NA	-1.000								

Dem_1	Dem_1	1980	MAY	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	4431.9	0.0	1410.4	0.0	0.0	5842.3
2000.0	0.0 3842.3	1414.8	NA		-1	.000							
Dem_1	Dem_1	1980	JUN	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	4467.8	0.0	1500.0	0.0	0.0	5967.8
2000.0	0.0 3967.8	1670.2	NA		-1	.000							
Dem_1	Dem_1	1980	JUL	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	935.0	0.0	1407.8	0.0	0.0	2342.8
2000.0	0.0 342.8	217.8	NA		-1	.000							
Dem_1	Dem_1	1980	AUG	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	905.8	0.0	1315.5	0.0	0.0	2221.4
2000.0	0.0 221.4	221.4	NA		-1	.000							
Dem_1	Dem_1	1980	SEP	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	1149.2	0.0	1318.5	0.0	0.0	2467.7
2000.0	0.0 467.7	467.7	NA		-1	.000							
Dem_1	Dem_1	1980	TOT 2	24000.0	4800.0	24000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 24000.0	0.0	0.0	4800.0	0.0	19200.0	0.0	17491.3	0.0	15679.2	0.0	0.0	33170.4
24000.0	0.0 9170.4	4320.4	l NA		-	1.000							

STATEMOD

StateMod Operating Rule Example - ex11.*

PAGE NO. 9

Shortage

Water Use

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Pichte		Λ	0	Λ	Λ

2	_	Demand From River By							From Carrier By				
Carried	=			= ======			======	===					
Structu	re River	=====	From	======		=====							
Exchang	e From Total T	Total	CU		To	Total		Upst	rm				
ID	ID	Year	Mo	Total	CU I	riorty St	orage I	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply S	Short	Short	CU	SoilM	Return	Loss	s Infl	OW				
	Station In/Ou	ıt				Stat	ion Bal	lance					
======				= ======			======		======				
Reach	Return Well Fr	com/To	River	River	River	River	Avail	Control	Control				
Gain	Flow Deplete GW	Stor	Inflow	Divert	By We	ll Outflow	Flow	Location	Right				
ISF	ISF	1979	OCT 4	027.5	0.0	640.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 640.0 3387	7.5	0.0	0.0			0.0	110.7	0.0	640.0	0.0	0.0	750.7
640.0	0.0 750.7 1	L10.7 H	Igate_L	imit	-1.0	000							
ISF	ISF	1979	NOV 3	897.6	0.0	1120.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1120.0 2777	7.6	0.0	0.0	0.0	1120.0	0.0	110.7	0.0	1120.0	0.0	0.0	1230.7
1120.0	0.0 1230.7	110.7	Hgate_	Limit	-1	.000							
ISF			DEC 4			1440.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1440.0 2587	7.5	0.0	0.0	0.0	1440.0	0.0	0.0	0.0	1440.0	0.0	0.0	1440.0
1440.0	0.0 1440.0	0.0	Hgate_	Limit	-1	.000							
ISF	ISF	1980	JAN 4	027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427	7.5	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0	Hgate_	Limit	-1	.000							
ISF	ISF	1980	FEB 3	637.7	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2037	7.7	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0	Hgate_	Limit	-1	.000							
ISF	ISF	1980	MAR 4		0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2427	7.5	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0	0.0 1600.0	0.0	Hgate_	Limit	-1	.000							
ISF	ISF	1980	APR 3	897.6	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2297	7.6	0.0	0.0	0.0	1600.0	0.0	107.1	0.0	1600.0	0.0	0.0	1707.1
1600.0	0.0 1707.1	107.1	Hgate_	Limit	-1	.000							
ISF	ISF	1980	MAY 4	027.5	0.0	4027.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5	0.0	0.0	0.0	0.0	4027.5	0.0	3842.3	0.0	1600.0	0.0	0.0	5442.3
4027.5	0.0 5442.3 1	1414.8	NA		-1	.000							
ISF	ISF	1980	JUN 3	897.6	0.0	3897.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		0.0	0.0		0.0	3897.6	0.0	3967.8	0.0	1600.0	0.0	0.0	5567.8
3897.6	0.0 5567.8 1	L670.2	NA		-1	.000							
ISF	ISF	1980	JUL 4	027.5		1725.0	0.0		0.0	0.0	0.0	0.0	0.0
0.0	0.0 1725.0 2302						0.0	342.8	0.0	1600.0	0.0	0.0	1942.8
1725.0	0.0 1942.8	217.8	Hgate_	Limit	-1	.000							

ISF	ISF	1980 AU	G 4027.5	0.0 1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2	2427.5 0	.0 0.0	0.0 1600.0	0.0	221.4	0.0	1600.0	0.0	0.0	1821.4
1600.0	0.0 1821.4	1 221.4 Hg	ate_Limit	-1.000							
ISF	ISF	1980 SE	P 3897.6	0.0 1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1600.0 2	2297.6 0	.0 0.0	0.0 1600.0	0.0	467.7	0.0	1600.0	0.0	0.0	2067.7
1600.0	0.0 2067.7	7 467.7 Hg	ate_Limit	-1.000							
ISF	ISF		т 47420.5	0.0 22450.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 22450.1 24	1970.5 0	.0 0.0	0.0 22450.1	0.0	9170.4	0.0	17600.0	0.0	0.0	26770.4
22450.1	0.0 26770.	4 4320.4 N	A	-1.000							

Diversion Summary ACFT STATEMOD StateMod Operating Rule Example - ex11.*
PAGE NO. 10

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Shortage	Water	ater Use Demand From River By						From Carrier By				
Carried	======						-			110111	CULLICI	21
Structure River		==	.======	===== ==	======		=======	=====	From	======		=====
Exchange From Total	Total	CU		To	Total		Upst:	rm				
ID ID	Year	Мо Т	otal	CU Pr		orage 1	Exc Pln		Well	Priorty	Sto Exc	Loss
Bypass SM Supply	Short	Short	CU	SoilM	-	_	_			1		
11 1												
Station Ir	n/Out				Stat	ion Bai	lance					
Reach Return Well				River			Control					
Gain Flow Deplete												
Baseflow ISF.01	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	750.7	0.0	0.0	0.0	0.0	750.7
0.0 0.0 750.7	110.7 NA			-1.000								
Baseflow ISF.01	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1230.7	0.0	0.0	0.0	0.0	1230.7
0.0 0.0 1230.7	110.7 NA		0 0	-1.000	0 0			0 0				0 0
Baseflow ISF.01	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
0.0 0.0 1440.0	0.0 NA 1980	T 2 2 7	0 0	-1.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0.0
Baseflow ISF.01 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0	0.0 0.0 NA	0.0	0.0	-1.000	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
Baseflow ISF.01	1980	FFD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0		1600.0	0.0	0.0	0.0		1600.0
0.0 0.0 1600.0	0.0 NA	0.0	0.0	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
Baseflow ISF.01	1980	MAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0		1600.0	0.0	0.0	0.0		1600.0
0.0 0.0 1600.0	0.0 NA	0.0	0.0	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
Baseflow ISF.01	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0		1707.1	0.0	0.0	0.0		1707.1
0.0 0.0 1707.1	107.1 NA			-1.000								
Baseflow ISF.01	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	5442.3	0.0	0.0	0.0	0.0	
0.0 0.0 5442.3 1	1414.8 NA			-1.000								
Baseflow ISF.01	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	5567.8	0.0	0.0	0.0	0.0	5567.8
0.0 0.0 5567.8 1	1670.2 NA			-1.000								
Baseflow ISF.01	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1942.8	0.0	0.0	0.0	0.0	1942.8
0.0 0.0 1942.8	217.8 NA			-1.000								
Baseflow ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1821.4	0.0	0.0	0.0	0.0	1821.4
0.0 0.0 1821.4	221.4 NA			-1.000								
Baseflow ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2067.7	0.0	0.0	0.0	0.0	2067.7
0.0 0.0 2067.7	467.7 NA			-1.000								
Baseflow ISF.01	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	26770.4	0.0	0.0	0.0	0.0	26770.4
0.0 0.0 26770.4	4320.4 NA			-1.000								

```
STATEMOD
  StateMod Operating Rule Example - ex12.*
# Statemod Version: 12.29.00 Date = 2008/09/15)
# Run date: 11/2/8 12:12:6
# Time Step: Monthly
  Reservoir Summary ACFT
    STATEMOD
    StateMod Operating Rule Example - ex12.*
PAGE NO.
   RESERVOIR ID
   RESERVOIR NAME
                        : Res 1
                        : Reservoir_1
   RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total
   RESERVOIR OWNER : Total
RIVER LOCATION : Exist. Reservoir
   STRUCTURE DATA
                       : #
                                    af
                                100000.
     Capacity
    Capacity : Reservoir Rights :
                                100000.
                                                                                       From
                                                  Station Balance
Storage to
                                     From River By
                                                         From Carrier By
                                       Targt_0 BOM =============
Carrier Total
                      Initial ====== Total River River
                 Seep & EOM Stor_n Decree River River River
Reservoir Acc Year Mo Storage Priority Storage Exc_Pln Loss Priorty Sto_Exc Loss Bypass SM Supply
Short Release Evap Spill Content Limit Limit Inflow Release Dvert
 River River
by Well Outflow
                                            0.0
                                                   0.0
            0 1979 OCT 50000.0 0.0 0.0
                                                          0.0
                                                                 0.0
                                                                        0.0
                                                                               0.0
                                                                                   110.7
                                                                                            0.0
Res 1
          0.0
    110.7
                   0.0 49889.3100000.0 50000.0 1368.9 110.7
                                                                 0.0 1479.6
0.0
                                                           0.0
            0 1979 NOV 49889.3 0.0 0.0
                                             0.0
                                                    0.0
                                                                       0.0
                                                                              0.0 110.7
                                                                                            0.0
Res 1
                                                           0.0
                                                                 0.0
    110.7
                   0.0 49778.6100000.0 50110.7
            0.0
                                                  110.7
0.0
                                            333.3
                                                           0.0
                                                                 0.0
                                                                       444.0
            0 1979 DEC 49778.6 0.0
                                                                              0.0
Res 1
                                             0.0 0.0
                                                                                     0.0
                                                                                            0.0
                                      0.0
                                                           0.0
                                                                 0.0
                                                                       0.0
          0.0 0.0 49778.6100000.0 50110.7 111.1
                                                                 0.0 111.1
0.0
      0.0
                                                    0.0
                                                           0.0
                                      0.0
            0 1980 JAN 49778.6 0.0
                                                                              0.0
                                                                                     0.0
Res 1
                                             0.0
                                                    0.0
                                                           0.0
                                                                 0.0
                                                                        0.0
                                                                                            0.0
                                                   0.0
    0.0
                   0.0 49778.6100000.0 50110.7
                                            37.0
0.0
            0.0
                                                           0.0
                                                                 0.0
                                                                       37.0
            0 1980 FEB 49778.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49778.6100000.0 50110.7 12.3
            0 1980 FEB 49778.6 0.0
                                             0.0 0.0
12.3 0.0
                                                                        0.0
                                                                              0.0
                                                                                   0.0
Res 1
                                                           0.0
                                                                 0.0
                                                                                            0.0
      0.0
0.0
                                                           0.0
                                                                 0.0
                                                                       12.3
             0 1980 MAR 49778.6 0.0 0.0
                                            0.0
4.1
                                                                              0.0
                                                                                   0.0
Res 1
                                                    0.0
                                                           0.0
                                                                 0.0
                                                                        0.0
                                                                                            0.0
     0.0 25.2
                  0.0 49753.5100000.0 50110.7
                                                   0.0
0.0
                                                           0.0
                                                                 0.0
                                                                        4.1
            0 1980 APR 49753.5 0.0 0.0
                                                                              0.0 107.1
                                             0.0
                                                           0.0
                                                                        0.0
                                                                                            0.0
Res_1
                                                    0.0
                                                                 0.0
   107.1
          326.9 0.0 49319.5100000.0 50110.7 358.4 107.1
                                                                 0.0 465.5
0.0
                                                           0.0
            0 1980 MAY 49319.5 12000.0
                                                                        0.0 12000.0 217.8
                                      0.0
                                             0.0
                                                    0.0
                                                           0.0
                                                                 0.0
                                                                                            0.0
Res 1
    217.8
           297.5 0.0 60804.2100000.0 50110.7 12000.0
0.0
                                                  217.8 12000.0
                                                                 0.0
                                                                      217.8
            0 1980 JUN 60804.2 12000.0 0.0
                                                                       0.0 12000.0 217.8
Res 1
                                             0.0
                                                    0.0
                                                          0.0
                                                                 0.0
                                                                                            0.0
   217.8
           799.9 0.0 71786.5100000.0 38110.7 12000.0
                                                  217.8 12000.0
0.0
                                                                 0.0
                                                                      217.8
            0 1980 JUL 71786.5 0.0 0.0
                                                                              0.0 217.8
Res 1
                                             0.0
                                                    0.0 0.0
                                                                 0.0
                                                                        0.0
                                                                                            0.0
0.0 217.8
           483.9 0.0 71084.8100000.0 26110.7
                                                  217.8
                                            368.9
                                                           0.0
                                                                 0.0
                                                                       586.7
            0 1980 AUG 71084.8 0.0 0.0
                                                  0.0
221.4
                                                                             0.0 221.4
Res_1
                                             0.0
                                                           0.0
                                                                 0.0
                                                                       0.0
                                                                                            0.0
           384.8 0.0 70478.7100000.0 26110.7
                                           368.9
                                                                 0.0
0.0 221.4
                                                                      590.3
                                                           0.0
                                                    0.0
            0 1980 SEP 70478.7 0.0 0.0
                                                                              0.0 110.7
Res 1
                                             0.0
                                                           0.0
                                                                 0.0
                                                                       0.0
                                                                                            0.0
0.0 110.7 319.1 0.0 70048.9100000.0 26110.7 357.0
                                                  110 7
                                                          0 0
                                                                 0 0
                                                                       467 7
0.0 24000.0 1313.9
                                                                 0.0 0.0
0.0 4634.0
                                                                                            0.0
  Reservoir Summary ACFT
    STATEMOD
   StateMod Operating Rule Example - ex12.*
PAGE NO. 2
   RESERVOIR NAME : Res_1
                        : Reservoir_1
   RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total RESERVOIR OWNER : Res_1 Own_1
   RESERVOIR OWNER
   RIVER LOCATION
                        : Exist. Reservoir
                                                                                        From
Storage to
                                                   Station Balance
                                     From River By
                                                         From Carrier By
                                       Targt_0 BOM ============
Initial ====== Total River River
Reservoir Acc Year Mo Storage Priority Storage Exc_Pln Loss Priorty Sto_Exc Loss Bypass SM Supply Short Release Evap Spill Content Limit Inflow Release Dvert
```

River River by Well Outflow

Res 1	1 1979	OCT 49975.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.7	0.0
0.0 110.7	0.0	0.0 49864.	3 50000.0	50000.0	1368.9	110.7	0.0	0.0	1479.6			
Res 1	1 1979	NOV 49864.	3 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.7	0.0
0.0 110.7	0.0	0.0 49753.	6 50110.7	50110.7	333.3	110.7	0.0	0.0	444.0			
Res_1	1 1979	DEC 49753.	6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0 49753.	6 50221.4	50110.7	111.1	0.0	0.0	0.0	111.1			
Res_1	1 1980	JAN 49753.	6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0 49753.	6 50221.4	50110.7	37.0	0.0	0.0	0.0	37.0			
Res_1	1 1980	FEB 49753.	6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0 49753.	6 50221.4	50110.7	12.3	0.0	0.0	0.0	12.3			
Res_1	1 1980	MAR 49753.	6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	25.2	0.0 49728.	5 50221.4	50110.7	4.1	0.0	0.0	0.0	4.1			
Res_1	1 1980	APR 49728.	5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	107.1	0.0
0.0 107.1	326.7	0.0 49294.	7 50246.5	50110.7	358.4	107.1	0.0	0.0	465.5			
Res_1	1 1980	MAY 49294.	7 167.0	0.0	0.0	0.0	0.0	0.0	0.0	167.0	217.8	0.0
0.0 217.8	239.8	0.0 49004.	1 50680.5	50110.7	12000.0	217.8	12000.0	0.0	217.8			
Res_1	1 1980	JUN 49004.	1 304.9	0.0	0.0	0.0	0.0	0.0	0.0	304.9	217.8	0.0
0.0 217.8	541.0	0.0 48550.	2 39195.8	38110.7	12000.0	217.8	12000.0	0.0	217.8			
Res_1	1 1980	JUL 48550.	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	217.8	0.0
0.0 217.8	326.8	0.0 48005.	7 28213.5	26110.7	368.9	217.8	0.0	0.0	586.7			
Res_1	1 1980	AUG 48005.	7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	221.4	0.0
0.0 221.4	259.5	0.0 47524.	8 28915.2	26110.7	368.9	221.4	0.0	0.0	590.3			
Res_1	1 1980	SEP 47524.	8 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.7	0.0
0.0 110.7	215.0	0.0 47199.	1 29521.3	26110.7	357.0	110.7	0.0	0.0	467.7			
Res_1	1 1980	TOT 49975.			0.0	0.0		0.0	0.0	471.9	1313.9	0.0
0.0 1313.9	1933.9	0.0 47199.	1 -1.0	-1.0	27320.2	1313.9	24000.0	0.0	4634.0			

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO.

RESERVOIR ID : Res 1 RESERVOIR NAME : Reservoir 1

RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total

RESERVOIR OWNER : Res_1 Own_2

RIVER LOCATION : Exist. Reservoir

From Station Balance Storage to From River By From Carrier By Targt_0 BOM ============= _____ Initial ====== Total River River Carrier Total Reservoir Acc Year Mo Storage Priority Storage Exc_Pln Loss Priority Sto_Exc Loss Bypass SM Supply Short Release Evap Spill Content Limit Limit Inflow Release Dvert River River by Well Outflow 2 1979 OCT 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 25.0 50000.0 50000.0 1368.9 0.0 110.7 0.0 1479.6 0.0 0.0 0.0 0.0 2 1979 NOV Res 1 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 50110.7 50110.7 0.0 0.0 0.0 333.3 110.7 0.0 0.0 444.0 0.0 2 1979 DEC 0.0 Res 1 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 111.1 0.0 0.0 25.0 50221.4 50110.7 0.0 0.0 0.0 0.0 0.0 111.1 2 1980 JAN Res_1 0.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 50221.4 50110.7 0.0 0.0 0.0 37.0 0.0 0.0 0.0 0.0 2 1980 FEB 0.0 0.0 Res 1 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 25.0 50221.4 50110.7 0 0 0 0 0 0 12 3 0 0 0 0 0 0 12 3 Res 1 2 1980 MAR 25.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 50221.4 50110.7 0.0 0.0 0.0 4.1 2 1980 APR 25.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 24.8 50246.5 50110.7 0.0 0.2 0.0 358.4 107.1 0.0 0.0 465.5 2 1980 MAY 24.8 11833.0 0.0 0.0 0.0 0.0 0.0 11833.0 0.0 0.0 Res 1 0.0 0.0 57.7 0.0 11800.1 50680.5 50110.7 12000.0 217.8 12000.0 217.8 0.0 0.0 2 1980 JUN 11800.1 11695.1 0.0 11695.1 0.0 0.0 0.0 0.0 0.0 0.0 Res 1 0.0 ${\tt 0.0\ 23236.3\ 39195.8\ 38110.7\ 12000.0}$ 0.0 0.0 258.9 217.8 12000.0 0.0 217.8 0.0 2 1980 JUL 23236.3 0 0 0 0 0 0 0 0 Res 1 0 0 0 0 0 0 0 0 0 0 157.1 0.0 0.0 0.0 23079.2 28213.5 26110.7 368.9 217.8 0.0 0.0 586.7 Res 1 2 1980 AUG 23079.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22953.9 28915.2 26110.7 0.0 125.3 368.9 221.4 0.0 0.0 590.3 2 1980 SEP 22953.9 Res 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 104.1 0.0 22849.8 29521.3 26110.7 357.0 0 0 0 0 110 7 0.0 0 0 467 7 0.0 2 1980 TOT 0.0 0.0 23528.1 0.0 Res 1 0.0 703.3 0.0 22849.8 -1.0 0 0 0 0 4634 0 0 0 # # # ------# *.xpl Plan

STATEMOD

StateMod Operating Rule Example - ex11.*

Statemod Version: 12.29.00 Date = 2008/09/15)

```
# Run date: 11/ 2/ 8 11:24:57
# Time Step: Monthly
```

#

Plan Summary ACFT
Plan Number = 1
Plan Type = 11 Accounting_Plan
Plan ID = Pln_1
Plan Name = AccountingPlan
Plan Source = Dem_2

Use 1 ID = Opr_2 Opr Type = 28 Destination = Dem_4 Name = Opr_AcctPlan_Release Status =

On Use 2 ID = Opr_4 Name = Opr_AcctPln-Spill Opr Type = 29 Destination = NA Status = On

Plan Uses

Plan River Year Mo Supply ______ ID ID Total Use 1 Use 2 Use 3 Use 4 Use 5 Use 6 Use 7 Use 8 Use 9 Use 10 Use 11 Use 12 Use 13 Use 14 Use 15 Use 16 Use 17 Use 18 Use 19

10 000		050 12 0	DC 13 0DC		000 13	OBC 10	000 17 0	DC 10 01	50 15					
Plan	uses													
======		===												
Use 20	Tot	al												
Pln_1		Pln_1	1979	OCT	368.9	368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.9			
Pln_1		Pln_1	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Pln_1		Pln_1	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Pln_1		Pln_1	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Pln_1		Pln_1	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Pln_1		Pln_1	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Pln_1		Pln_1	1980	APR	357.0	357.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	357.0			
Pln_1		Pln_1	1980	MAY	368.9	368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.9			
Pln_1		Pln_1	1980	JUN	357.0	357.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	357.0			
Pln_1		Pln_1	1980	JUL	368.9	368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.9			
Pln_1		Pln_1	1980	AUG	368.9	368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.9			
Pln_1		Pln_1	1980	SEP	357.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	357.0			
Pln 1		Pln 1	1980	TOT	2546.8	2189.8	357.0	0.0	0.0	0.0	0.0		0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2546.8	0.0	0.0	0.0

 Plan Summary
 ACFT

 Plan Number
 = 2

 Plan Type
 = 1 T&C_Requirement

 Plan ID
 = T&CPln_1

 Plan Name
 = T&C_Plan
 Plan Source = Pln_1

Src 1 ID = In_Priority Name = In_Priority_Present Opr Type = -1 Source = In_Priority Status = On Src 2 ID = Opr_3 Name = Opr_Reservoir_Release_to Opr Type = 48 Source = Res_1 Status = On

Plan Sources

Plan River Year Mo From Plan _______ -----

ID ID Exc/Byp Demand Src 1 Src 2 Src 3 Src 4 Src 5 Src 6 Src 7 Src 8 Src 9 Src 10 Src 11 Src 12 Src 13 Src 14 Src 15 Src 16 Src 17 Src 18

PIa	n Sour	ces	Redivert				Performance							
=====	=====			=====			======			======				
Src 19	Src	20 Short	Total St	ore 1	Store 2	Store 3	Total	Switch	Status	Total				
T&CPln	_1	T&CPln_1	1979	OCT	368.9	110.7	0.0	110.7	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.7	0.0
0.0	0.0	0.0	Off	Off	0.0									
T&CPln	_1	T&CPln_1	1979	NOV	0.0	110.7	0.0	110.7	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.7	0.0
0.0	0.0	0.0	Off	Off	0.0									
T&CPln	_1	T&CPln_1	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	Off	Off	0.0									

T&CP1: 0.0 0.0	n_1 0.0 0.0	T&CPln_1 0.0 0.0	1980 0.0 Off	JAN 0.0 Off	0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	FEB 0.0 Off	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	MAR 0.0 Off	0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	APR 0.0 Off	357.0 0.0 0.0	107.1	0.0	107.1	0.0	0.0	0.0	0.0	0.0 107.1	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	MAY 0.0 Off	368.9 0.0 0.0	217.8	0.0	217.8	0.0	0.0	0.0	0.0	0.0 217.8	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	JUN 0.0 Off	357.0 0.0 0.0	217.8	0.0	217.8 0.0	0.0	0.0	0.0	0.0	0.0 217.8	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	JUL 0.0 Off	368.9 0.0 0.0	217.8	0.0	217.8	0.0	0.0	0.0	0.0	0.0 217.8	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	AUG 0.0 Off	368.9 0.0 0.0	221.4	0.0	221.4	0.0	0.0	0.0	0.0	0.0 221.4	0.0
T&CP1: 0.0 0.0		T&CPln_1 0.0 0.0	1980 0.0 Off	SEP 0.0 Off	0.0	110.7	0.0	110.7	0.0	0.0	0.0	0.0	0.0 110.7	0.0
T&CPl		T&CPln_1	1980	TOT	2189.8	1313.9		1313.9	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 #	0.0	0.0 0.0	0.0 Off	0.0 Off	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1313.9	0.0
	caccinoa	Operating												
# Sta: # Run # Time #	date: e Step:		1/ 2/ 8 1 onthly	1:24:	2008/09/	15)								
# # Sta: # Run # Time # # Opera	date: e Step: ational Opr_1	1: Mo	1/ 2/ 8 1 onthly mary ACF	1:24: TT = Opr_	2008/09/ 57	15) _Exchange _MAR		Type = r On = MAY		min # = ar Off = JUL	9999 AUG	6.00001 SEP	TOT	
# # Sta: # Run # Time # Oper: ID = Source	date: e Step: ational Opr_1 ce 1 =	Right Summ Dem_2_WR_1 NOV 0.0	1/ 2/ 8 1 onthly mary ACF Name = Destin	1:24: TT = Opr_nation	2008/09/ 57 Pro_Rata = Pln_1 FEB 0.0	_Exchange	Yea	r On =	0 Ye	ar Off =		SEP 357.0		
# # Sta # Run # Time # # Opera Source YEAR	date: e Step: ational Opr_1 ce 1 = OCT 368.9 368.9 ational	Right Summ Dem_2_WR_1 NOV 0.0	1/ 2/ 8 1 onthly mary ACF Name = Destire DEC 0.0 0.0 mary ACF	TT = Opr_sation JAN 0.0 0.0	2008/09/ 57 Pro_Rata = Pln_1 FEB 0.0	_Exchange MAR 0.0 0.0	Yea APR 357.0 357.0	mAY 368.9 368.9	0 Ye. JUN 357.0	ar Off = JUL = 368.9 368.9	AUG 368.9	SEP 357.0 357.0	TOT 2546.8 2546.8	
# # Sta: # Run # Time # # Opera Source YEAR	date: e Step: ational Opr_1 ce 1 = OCT 368.9	Right Summ Dem_2_WR_1 NOV 0.0 0.0 Right Summ	1/ 2/ 8 1 ponthly mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name =	TT = Opr_nation JAN	2008/09/ 57 Pro_Rata = Pln_1 FEB 0.0	_Exchange MAR 0.0 0.0	Yea APR 357.0 357.0	mAY 368.9	0 Ye. JUN 357.0 357.0	ar Off = JUL = 368.9	AUG 368.9 368.9	SEP 357.0	TOT 2546.8 2546.8	
# # Sta # Run # # Time # # Opera	date: e Step: ational Opr_1 ce 1 = OCT 368.9 368.9 ational Opr_2 ce 1 =	Right Summ Dem_2_WR_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 0.0	1/ 2/ 8 1 ponthly mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin	TT = Opr_dation JAN 0.0 0.0	2008/09/ 57 Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0	Yea APR 357.0 357.0	Type = r On =	0 Ye. JUN 357.0 357.0 28 Ada 0 Ye.	ar Off = JUL 368.9 368.9 min # = ar Off =	368.9 368.9	SEP 357.0 357.0 6.00002 SEP 0.0	TOT 2546.8 2546.8	
# Star # Run # Time # # Opera Source YEAR	date: e Step: ational Opr_1 ce 1 = OCT 368.9 ational Opr_2 ce 1 = OCT 368.9	Right Summ Dem_2_WR_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 0.0	mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0	TT Opr_lation JAN 0.0 0.0 TT Opr_lation JAN 0.0 0.0	2008/09/ 57 Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0 0.0 _Release MAR 0.0	Yea APR 357.0 357.0 Opr Yea APR	Type = mAY Type = mAY 368.9 Type = mAY 368.9	0 Ye. JUN 357.0 28 Adi 0 Ye. JUN 357.0	ar Off = JUL = 368.9 = 368.9 = ar Off = JUL = 368.9	368.9 368.9 368.9 9999 AUG	SEP 357.0 357.0 6.00002 SEP 0.0	TOT 2546.8 2546.8 TOT 2189.8	
# # Sta: # Run # Time # # Opera	date: e Step: ational Opr_1 ce 1 = OCT 368.9 ational Opr_2 ce 1 = OCT 368.9	Right Summ Right Summ Dem_2_WR_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 0.0 0.0 Right Summ	1/ 2/ 8 1 ponthly mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Name = Name	TT Opr_dation JAN O.0 OTT Opr_dation JAN O.0 TT Opr_dation JAN O.0 TT OTT TT OTT	Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0 Release MAR 0.0 0.0	Yea APR 357.0 357.0 Opr Yea APR 357.0 357.0	Type = r On = MAY Type = r On = MAY 368.9 368.9 368.9	0 Ye. JUN 357.0 357.0 28 Add 0 Ye. JUN 357.0 357.0	ar Off = JUL = 368.9 = 368.9 = ar Off = JUL = 368.9	368.9 368.9 9999 AUG 368.9 368.9	SEP 357.0 357.0 6.00002 SEP 0.0	TOT 2546.8 2546.8 TOT 2189.8 2189.8	
# # Star # Run # # Time # # # Opera To = Source YEAR	date: e Step: ational Opr_1 ce 1 = OCT 368.9 368.9 ational Opr_2 ce 1 = OCT 368.9 ational Opr_3 ce 1 =	Right Summ Pln_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 0.0 Right Summ Res_1 NOV 110.7	mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC	TT Opr_lation JAN O.0 O.0 TT Opr_lation JAN O.0 TT Opr_lation JAN O.0 O.0 TT	Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0 Release MAR 0.0 0.0	Yea APR 357.0 357.0 Opr Yea APR 357.0 357.0	Type = r On = MAY 368.9 368.9 Type = r On = MAY 368.9 368.9 Type = r On = MAY 217.8	0 Ye. JUN 357.0 28 Adi 0 Ye. JUN 357.0 357.0 48 Adi 0 Ye.	ar Off = JUL 368.9 368.9 min # = JUL 368.9 368.9 min # = ar Off = ar Off = ar Off =	AUG 368.9 368.9 9999 AUG 368.9 368.9	SEP 357.0 357.0 6.00002 SEP 0.0 0.0 50.00000 SEP 110.7	TOT 2546.8 2546.8 TOT 2189.8 2189.8	
# # Sta: # Run # Time # #	date: e Step: ational Opr_1 ce 1 = OCT 368.9 368.9 ational Opr_2 ce 1 = OCT 368.9 ational Opr_1 110.7	Right Summ Pln_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 0.0 Right Summ Res_1 NOV 110.7	1/ 2/ 8 1 onthly mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0	TT Opr_lation JAN 0.0 0.0 TT Opr_lation JAN 0.0 0.0 TT Opr_lation JAN 0.0 0.0	Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0 Release MAR 0.0 0.0 r_Release n_1 MAR 0.0	Yea APR 357.0 357.0 Opr Yea APR 357.0 357.0 _to Opr Yea APR 107.1	Type = r On = MAY 368.9 368.9 Type = r On = MAY 368.9 368.9 Type = r On = MAY 217.8	0 Ye. JUN 357.0 357.0 28 Add 0 Ye. JUN 357.0 48 Add 0 Ye. JUN 217.8	ar Off = JUL = 368.9 368.9 min # = JUL = 368.9 368.9 min # = ar Off = JUL = 217.8	AUG 368.9 368.9 9999 AUG 368.9 9999 AUG 221.4	SEP 357.0 357.0 6.00002 SEP 0.0 0.0 50.00000 SEP 110.7	TOT 2546.8 2546.8 TOT 2189.8 2189.8	
# # Sta: # Run # Time # #	date: e Step: ational Opr_1 ce 1 = OCT 368.9 368.9 ational Opr_2 ce 1 = OCT 368.9 ational Opr_3 ce 1 = OCT 110.7 ational Opr_4 ce 1 =	Right Summ Right Summ Dem_2_WR_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 0.0 Right Summ Res_1 NOV 110.7 Right Summ	1/ 2/ 8 1 onthly mary ACF Name = Destin DEC 0.0 0.0 mary ACF	TT Opr_lation JAN O.0 O.0 TT Opr_lation JAN O.0 O.0 TT Opr_lation JAN O.0 TT Opr_lation JAN O.0 O.0 TT Opr_lation JAN O.0 O.0 TT Ination JAN O.0 O.0 TT Ination JAN O.0 O.0	2008/09/ 57 Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0 _Release MAR 0.0 0.0 r_Release	Yea APR 357.0 Opr Yea APR 357.0 157.0 Opr Yea APR 107.1 Opr Yea APR 0 Opr Yea APR	Type = r On = MAY 368.9 Type = r On = MAY 368.9 Type = r On = MAY 217.8 Type = r On = r On = MAY 217.8	0 Ye. JUN 357.0 28 Adi 0 Ye. JUN 357.0 357.0 48 Adi 0 Ye. JUN 217.8 217.8	ar Off = JUL = 368.9	9999 AUG 368.9 9999 AUG 368.9 368.9 9999 AUG	SEP 357.0 357.0 6.00002 SEP 0.0 0.0 50.00000 SEP 110.7 110.7	TOT 2546.8 2546.8 TOT 2189.8 2189.8 TOT	
# # Sta: # Run # Time # # # Opera	date: e Step: ational Opr_1 ce 1 = OCT 368.9 368.9 ational Opr_2 ce 1 = OCT 368.9 ational Opr_1 10.7 110.7 ational Opr_4	Right Summ Pln_1 NOV 0.0 0.0 Right Summ Pln_1 NOV 110.7 110.7 Right Summ	1/ 2/ 8 1 ponthly mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 0.0 mary ACF Name = Destin DEC 0.0 Name = Destin DEC	TT Opr_lation JAN O.0 O.0 TT Opr_lation JAN O.0 O.0 TT Opr_lation JAN O.0 TT Opr_lation JAN O.0 TT Opr_lation JAN O.0 O.0	2008/09/ 57 Pro_Rata = Pln_1 FEB	_Exchange MAR 0.0 0.0 _Release MAR 0.0 0.0 r_Release n_1 MAR 0.0 0.0	Yea APR 357.0 357.0 Opr Yea APR 357.0 357.0 _to Opr Yea APR 107.1 0pr	Type = r On = MAY 368.9 368.9 Type = r On = MAY 368.9 368.9 Type = r On = MAY 217.8 217.8	0 Ye. JUN 357.0 28 Adn 0 Ye. JUN 357.0 357.0 48 Adn 0 Ye. JUN 217.8 217.8	ar Off = JUL = 368.9 368.9 min # = JUL = 368.9 min # = ar Off = JUL = 217.8 217.8 min # =	AUG 368.9 368.9 9999 AUG 368.9 9999 AUG 221.4 9999	SEP 357.0 357.0 6.00002 SEP 0.0 0.0 50.00000 SEP 110.7	TOT 2546.8 2546.8 TOT 2189.8 2189.8 TOT 1313.9 1313.9	

Example 12

```
# Exhibit 12.1
  *.rsp; response file for Statemod Example 12
      This response file lists the StateMod input files necessary for model simulation
# Type
                                          Name
                                        = ex12.ctl
Control
River Network
                                        = ex12.rin
StreamGage Station
                                        = ..\ex1\ex1.ris
Stream Base Monthly
                                        = ..\ex1\ex1.rim
Diversion Station
                                        = ..\ex11\ex11.dds
Diversion_Right
                                        = ... ex1 ex1.ddr
Diversion_Demand_Monthly
                                        = ... ex1 ex1.ddm
Reservoir_Station
                                        = ..\ex2\ex2.res
                                        = ..\ex2\ex2.rer
Reservoir Right
Reservoir_Target_Monthly
                                        = ... ex2 ex2.tam
Evaporation Monthly
                                        = ..\ex2\ex2.eva
Instreamflow Station
                                        = ..\ex1\ex1.ifs
Instreamflow Right
                                        = ... \exp[-x_1.ifr]
Instreamflow_Demand_AverageMonthly
                                        = ..\ex1\ex1.ifa
Plan Data
                                        = ex12.pln
Plan Return
                                        = ..\ex11\ex11.prf
Operational Right
                                        = ex12.opr
DelayTable Monthly
                                        = ..\ex1\ex1.urm
                                        = ex12.out.
OutputRequest
# Exhibit 12.2
# ex*.ctl; Control file for StateMod Example 12
  STATEMOD
  StateMod Operating Rule Example - ex12.*
           : iystr STARTING YEAR OF SIMULATION
    1980
                       ENDING YEAR OF SIMULATION
    1980
             : iyend
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. O FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      0
           : numpre NO. OF PRECIPITATION STATIONS : numeva NO. OF EVAPORATION STATIONS
      Ω
      1
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
  1.9835
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
            : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
  1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
                                                         ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
  1.0
  1 0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
            : cyrl Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
            : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall
                       Detailed call water right ID (not used if icall = 0)
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : iwell \, Switch for well operations \, See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isirip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
            : isprink O=off, 1=Maximum Supply, 2=Mutual Supply
            : soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
            : isig
                      Number of significant digits behind decimal point in output files
  *.rin; River node network file for StateMod Example 12
  Card 1 Control
  format: (a12, a24, a12, 1x, a12, 1x, f8.0)
```

```
cstaid: Station ID
  ID
  Name stanam: Station name
Downstream cstadn: Downstream node ID
  Comment comment: Alternate identifier/comment.

GWMax gwmaxr: Max recharge limit (cfs) - see iwell in control file.
  GWMax
#
                     Name
                                    DownStream
                                                  Comment
                                                              GWMax
#-----eb-----exb-----exb-----exb-----exb-----exb-----exb------exb------exb------
Dem_3 Exist. Diver. 3/Inflow Dem_4
          Exist. Diver. 4 T&CPln
Exist. Diver. 5/Inflow Pln_1
                                    T&CPln_1
Dem 4
Dem 5
Pln_1
           Plan Structure
                             Dem_2
           Exist. Diver. 2
Dem_2
                                    Res 1
          Exist. Reservoir
Reservoir Plan
                                   Res Pln
Res 1
Res Pln
                                    T&CPln 1
           T&C Plan
T&CPln_1
                                    Dem 1
Dem_1
                                    ISF
           Exist. Diver. 1
TSF
           Top Instream Flow
                                    ISF.01
          Bottom Instream Flow
ISF.01
# Exhibit 12.4
# ex*.pln; Plan file for StateMod Example 12
  ************
     Card 1 Control
      format: (a12, a24, a12, 5i8)
      Plan ID:
                            Pid
                                    {\tt Include \_ instead \ of \ blanks}
                           Pname Include _ instead of blanks
iPsta River node where the plan is located
Pon On (1) or Off (0) switch
      Plan Name:
      Plan Location
      Plan On/Off:
                           iPlnTyp 1 = Terms and Conditions (T&C)
      Plan Type
                                     2 = Well Augmentation
                                     3 = Reservoir Reuse
                                      4 = Non Reservoir Reuse (e.g., WWTP)
                                      5 = Reuse to a Reservoir from Tmtn
                                      6 = Reuse to a Diversion from Tmtn
                                      7 = Transmountain import
                                     8 = Recharge Plan
                                     9 = Out-of-Priority Diversion or Storage
                                    10 = Special Well Augmentation (e.g., Designated Basin, Coffin Wells, etc.)
                                    11 = Accounting Plan (e.g., changed water rights)
                                    12 = Release Limit Plan (e.g., HUP Pool Release Limit)
      Plan Efficiency (%) Peff
                                    Enter 0 if not used
                                    Enter 1 to read 12 plan efficiency values (%)
                                    Enter -1 if data is provided in an Operating Rule file (*.opr)
                                    Enter 999 to use the source structure's efficiency
      Plan Return Flow ID iPrf
                                    Enter 0 if not used
                                    Enter 1 if data is provided in an Plan Return Flow file (*.prf)
                                    Enter 999 to use the source structure's return flow pattern
      Plan Failure Switch iPfail Used only for a T&C Plan (iPlntype = 1)
                                    Enter 0 to not turn plan off if it fails
                                    Enter 1 to turn a plan off if it fails
                                    1 = Do stop and accumulate failures to be paid in subsequent time steps
      Plan Initial Storage Pstol
                                    Storage in Plan structure at beginning of simulation
                                    0 for non-Reuse Reservoir plans (iPtype<>3)
>= 0 for Reuse Reservoir plans (iPtype=3) - set equal to storage in associated
reservoir (*.res) account
     Plan Source
                            Psource Source ID of the structure where plan water becomes available
                                    Note this information is currently used only when the plan type is
                                    recharge (type 8) from a reservoir
     Plan Account
                          iPAcc Source Account of the structure where plan water becomes available
                                    Note this information is currently used only when the plan type is
                                    recharge (type 8) from a reservoir
                                                  ON/Off iPtype
                                                                   Peff iPrf iPfail Pstol Psource
           Name
                                   RiverLoc
#----eh----eh----eh-----eh-----eh-----eh-----eh-----eh-----eh-----exh------eh-----
                                               1 11 0 0 0 0 Dem_2 0
1 3 0 0 0 25 Res_1 0
1 1 1 -1 1 0 0 Pln_1
         AccountingPlan Pln_1
Pln_1
Res Pln
           ReservoirAcctingPln
                                    Res_Pln
          T&C_Plan
T&CPln_1
                                    T&CPln 1
# Exhibit 12.5
# *.opr; operating rules file for Statemod Example 12
      This file lists the operating rules used in model simulation
                     GUIDE TO COLUMN ENTRIES
      _____
        ID
                      ID number of operating rule that is used to separate operating rule output in *.xop file
                    Name of operating rule - used for descriptive purposes only
Administration number used to determine priority of operational water rights relative to other
          Name
          Admin#
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
# # Str Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling StateMod program the number of entries on next line)
         On/Off 1 for ON and 0 for OFF
```

```
Destination of operating rule whose demand is to be met by simulating the operating rule
          Dest ID
          Dest Ac
                    Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
                    ID number of primary source of water under which water right is being diverted in operating rule
          Soul ID
 typically a water right, reservoir, or Plan structure
          Soul Ac
                    Account of Soul - typically 1 for a diversion structure and account number for reservoir source
          Sou2 ID
                    ID of Plan where reusable storage water or reusable ditch credits or terms and conditions
obligations is accounted
          Sou2 Ac Percentage of Plan supplies available for operation
                    Rule type corresponding with definitions in Chapter 4 of StateMod documentation
          Type
          ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
          Div Type
                    'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                       'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Dest1
                   Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
          OprLoss
StateMod documentation, Section 4.13)
          Limit
                   Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
         Comments Description of rule type
                                                      Admin# # Str On/Off Dest Id
                                                                                     Dest Ac Soul Id
# ID
          Name
                                 NA
                                                                                                            Sou1
Ac Sou2 Id Sou2 Ac Type ReusePlan Div Type
                                                       OprLoss Limit Comments
# -----eb----eb----eb----eb----eb----eb----eb----eb-----eb-----eb-----eb-----eb-----
---e-b-----eb-----exb------exb-----exb-----exb-----
                                                                 0.
       Opr_Pro_Rata_Direct_to_AcctPlan
                                                                        1 Res_1
                                                      6.00001
                                                                                               2 Dem 2 WR 1
Opr 1
                                                                  0
                                                            0
                                                                           0 9999 Direct Flow Diversion of
10 NA
           0
                         25 Res_Pln
                                          Diversion
Pro-Rata Water Right
   5000. 0.
                      0.
                            0.
                                    0.
                                             0. 5000. 5000. 5000. 5000. 5000. 5000. 35000.0
# Exhibit 12.6
# *.out; Output request file for StateMod Example 12
# Type (e.g. Diversion, StreamGage, Reservoir, InstreamFlow, Well or All)
A11
# Parameter (e.g. Total Supply, Sim EOM, River Outflow or All)
All
# ID Name Type and Print Code (0=no, 1=yes);
# Note: id = All prints all
       id = -999 = stop
#
       default is to turn on all stream gages (FLO)
#
All
           Exist. Diver. 3/Inflow
                                     DTV
Dem 3
                                            1
Res_1
           Exist. Reservoir
                                     RES
                                            1
Res_Pln
                                     ОТН
           Reservoir Plan
                                            1
                                     DIV
Dem 4
           Exist. Diver. 4
                                            1
           Exist. Diver. 5/Inflow
                                     DTV
Dem 5
                                            1
Pln 1
           Plan Structure
                                     OTH
Dem 2
           Exist. Diver. 2
                                     DTV
                                            1
           T&C Plan
T&CPln_1
                                     OTH
                                            1
           Exist. Diver. 1
Dem 1
                                     DIV
                                            1
TSF
           Top Instream Flow
                                     TSF
                                            1
ISF.01
           Bottom Instream Flow
                                     ISF
-999
#
#
 *.xwb
             Water Budget
   STATEMOD
  StateMod Operating Rule Example - ex12.*
# Statemod Version: 12.29.05 Date = 2008/10/23)
                   11/ 6/ 8 15:56:17
# Run date:
                   Monthly
# Time Step:
                             Water Budget ACFT
              Stream
                                    From/To
                                                   From
                                                              From
                                                                         Total
                                                                                           From River
                                                                                                            Well
Reservoir
           Reservoir
                         Stream Reservoir
                                                    Tο
                                                            SoilM
                                                                        Total
                                                                        Inflow Divert (6)
                                                                                                       Depletion
Year Mo
               Inflow
                          Return GWStorage
                                                  SoilM
                                                          Plan (5)
                                                                                              by Well
Evaporation
               Seepage
                          Outflow
                                      Change
                                                   SoilM
                                                             Change
                                                                        Outflow
                                                                                     Delta
                                                                                               CU (1)
                                                                                                        Loss
(2) Pumping (3) Salvage (4)
                 (+)
                             (+)
                                         (+)
                                                    (+)
                                                               (+)
                                                                            NA
                                                                                      (-)
                                                                                                  (-)
                                                                                                             (-)
           (-)
                                 (-)
                                             (-)
                                                         (-)
(-)
                       (-)
                                                                     NΑ
                                                                                 NΑ
                                                                                            NΑ
                                                                                                       NΑ
NA
           NA
```

(1)

(11)

(21)

(10)

(20)

(12)

(2)

(13)

(3)

(14)

(4)

(15)

(5)

(16)

(6)

(17)

(7)

(18)

(9)

(8)

(19)

0.0	4000.0 1183.7 0.0 640.0 3							5183.7 83.7	4174.8 0.0 14	187.4		0.0	0.0
0.0 1979 NOV 0.0	0.0 4000.0 2511.6 0.0 1120.0		0.0	0.0	0.0	0.0	0.0 65	6511.6 11.6		95.8	0.0	0.0	0.0
0.0 1979 DEC 0.0	0.0 4000.0 3237.2 0.0 1440.0		0.0	0.0	0.0	0.0	0.0	7237.2	5797.2 0.0 22	298.6	0.0	0.0	0.0
0.0 1980 JAN 0.0	0.0 4000.0 3532.4 0.0 1600.0	(0.0	0.0	0.0		0.0		5932.4		0.0	0.0	0.0
0.0 1980 FEB	0.0 4000.0 3577.5 0.0 1600.0	(0.0		0.0		0.0	7577.5	5977.5		0.0		0.0
0.0 0.0 1980 MAR	0.0 4000.0 3592.5	(0.0	0.0	0.0		0.0		5992.5	388.7	0.0		0.0
0.0	0.0 1600.0 0.0 4000.0 3478.5	-25.4	0.0	0.0	0.0	0.0	0.0	7478.5	0.0 2 5521.5		0.0	0.0	0.0
330.9 0.0 1980 MAY	0.0 1600.0 0.0 20000.0 3605.4	26.1	0.0	0.0	0.0	0.0	0.0	7478.5 23605.4	0.0 6500.0		0.0		0.0
280.8 0.0	0.0 16360.2 0.0 20000.0 3850.0	464.3	0.0	0.0		0.0		3605.4		2930.8		0.0	0.0
667.5 0.0	0.0 16718.3 0.0	-35.8		0.0		0.0	2	3850.0	0.0	3317.5		0.0	
384.2 0.0	0.0	-15.3	0.0		0.0	0.0		7632.8	5631.1		0.0	0.0	
307.3	4000.0 3354.0 0.0 1600.0 0.0		0.0		0.0	0.0	0.0	7354.0 7354.0	5385.1 0.0				0.0
	4000.0 3276.0 0.0 1600.0			0.0	0.0	0.0			5319.0 0.0				0.0
1980 Tot	80000.0 38831.5 0.0 47511.3	- (0.0		0.0		0.0	118831.5	68122.5		0.0		0.0
0.0	0.0 47511.3	945.2		0.0)	0.0) 1	18831.5	0.0	29113.7		0.0)
0.0	0.0 47511.3 0.0 Wate)	0.0	0 1	18831.5	0.0	29113.7		0.0)
0.0	0.0 Wate	r Budget	ACI	FT									
0.0	0.0 Wate	r Budget	ACI	FT									
Reservoir Year Mo Evaporation (2) Pumping	O.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (+) (+)	From, Reservoor GWStore	ACI /To ir age ange (+)	FT S	From To SoilM SoilM (+)	So Plar	From oilM n (5) Change	Total Total Inflow Outflow	Divert (6) Delta	From R by		Deple Los	Well etion ss
Reservoir Year Mo Evaporation (2) Pumping (-) NA	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4)	From, Reservo: GWStora (-)	ACH /To ir age ange (+)	FT (-)	From To SoilM SoilM (+)	So Plar (From pilM n (5) Change (+)	Total Total Inflow Outflow NA	Divert (6) Delta (-) NA (7)	From R by a C	iver Well U (1) (-)	Deple Los NA	Well etion ss
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20)	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4)	From, Reservo: GWStora (-) (13)	ACH /To ir age ange (+)	FT	From To SoilM SoilM (+)	Sc Plar ((-) (15)	From cilM n (5) Change (+)	Total Total Inflow Outflow NA NA (6)	Divert (6) Delta (-) NA (7) (17)	From R by a C NA (18)	iver Well U (1) (-)	Deple Los NA	Well etion ss (-)
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20)	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4)	From, Reservo: GWStora (-) (13)	ACH /To ir age ange (+)	FT	From To SoilM SoilM (+)	Sc Plar ((-) (15)	From cilM n (5) Change (+)	Total Total Inflow Outflow NA NA (6)	Divert (6) Delta (-) NA (7)	From R by a C NA (18)	iver Well U (1) (-)	Deple Los NA	Well etion ss (-)
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20) ————————————————————————————————————	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (+) (+) (-) (-) NA (1) (12) (21) 4000.0 1183.7	From, Reservo: GWStore (-) (13)	ACI /To ir age ange (+) 3)	(-) (14)	From To SoilM SoilM (+)	Sc Plan (From oilM o (5) Change (+)	Total Total Inflow Outflow NA NA (6)	Divert (6) Delta (-) NA (7) (17)	From R by a C NA (18)	iver Well U (1) (-) (8)	Deple Los	Well etion ss (-)
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20) ————————————————————————————————————	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4)	From, Reservo: GWStora (-) (13)	ACF/To ir age annge (+) 3)	(-) (14)	From To SoilM (+) (4)	(-) (15)	From pilM n (5) Change (+) (5) 0.0 51	Total Total Inflow Outflow NA NA (6) (16) 5183.7	Divert (6) Delta (-) NA (7) (17)	From R by NA (18)	iver Well (-) (-) (-) (-) 0.0	Deple Los NA (19)	Well etion ss (-)
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 0.0	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (-) (-) NA (1) (2) (11) (12) (21) 4000.0 1183.7 0.0 640.0 3 0.0 4000.0 2511.6	From, Reservo. GWStora (-) (13)	ACI	(-) (14)	From To SoilM (+) (4)	(-) (15) 0.0	From pilM (5) Change (+) (5) 0.0 51 0.0 65	Total Total Inflow Outflow NA NA (6) (16) 5183.7 83.7 6511.6 11.6	Divert (6) Delta (-) NA (7) (17)	From R by a C NA (18)	iver Well U (1) (-) (8) 0.0 0.0	Deple Los NA (19) 0.0	Well etion ss (-) (9)
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20) ————————————————————————————————————	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (+) (-) NA (1) (2) (11) (12) (21) 4000.0 1183.7 0.0 640.0 3 0.0 4000.0 2511.6 0.0 1120.0 0.0 4000.0 3237.2	From, Reservo: GWStora (-) (13) (688.9	ACI	(-) (14) 	From To SoilM (+) (4) 0.0 0.0 0.0	So Plar ((-) (15) (15) (15) (15) (15) (15) (15) (15	From DilM (5) Change (+) (5) 0.0 51 0.0 72 0.0	Total Total Inflow Outflow NA NA (6) (16) 5183.7 83.7 6511.6 11.6 7237.2 37.2	Divert (6) Delta (-) NA (7) (17)	From R by a C NA (18)	iver Well (-) (8) 0.0 0.0	Deple Los NA (19) 0.0 0.0	Well etion as (-) (9)
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20)	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (-) (-) NA (1) (2) (11) (12)	From, Reservo: GWStora (-) (13) (-) (68.9 0.0	ACI /To ir age ange (+) 3) 0.0	(-) (14) 0.0 0.0 0.0	From To SoilM (+) (4) (4) 0.0 0.0 0.0 0.0	(-) (15) 0.0 0.0 0.0	From pilM (a (5) Change (+) (5) 0.0 51 0.0 72 0.0 75 0.0	Total Total Inflow Outflow NA NA (6) (6) (16) 5183.7 83.7 6511.6 7237.2 7532.4 32.4 7577.5	Divert (6) Delta (-) NA (7) (17)	From R by NA (18)	(8) 0.0 0.0 0.0	Deple Los NA (19) 0.0 0.0 0.0	Well etion ss (-) (9) 0.0 0.0
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20) ————————————————————————————————————	0.0 Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (+) (-) NA (1) (2) (21)	From, Reservo. GWStora (-) (13)	ACTO ir agge ange (+) 3)	(-) (14) 0.0 0.0 0.0 0.0	From To SoilM (+) (4) (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(-) (15) 0.0 0.0 0.0 0.0	From pilM (5) Change (+) (5) 0.0 65 0.0 75 0.0 75 0.0 0.0	Total Total Inflow Outflow NA NA (6) (6) (16) 5183.7 83.7 6511.6 11.6 7237.2 37.2 7532.4 32.4 7577.5 7592.5	Divert (6) Delta (-) NA (7) (17)	From R by a C NA (18)	iver Well (-) (-8) 0.0 0.0 0.0 0.0	Deple Los NA (19) 0.0 0.0 0.0 0.0	Well etion ss (-) (9) 0.0 0.0 0.0
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20)	Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (+) (-) NA (1) (2) (11) (12) (21)	From, Reservo. GWStora (-) (13) (13) (1688.9) (10.0	ACITO ir agge age ange (+) 3)	(-) (14) 0.0 0.0 0.0 0.0	From To SoilM (+) (4) (4) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(-) (15) 0.0 0.0 0.0 0.0 0.0	From pilm (5) Change (+) (5) 0.0 51 0.0 75 0.0 75 0.0 75 0.0 75 0.0 0.0 75 0.0	Total Total Inflow Outflow NA NA (66) (16) 5183.7 83.7 6511.6 11.6 7237.2 37.2 7532.4 32.4 7577.5 7592.5 592.5	Divert (6) Delta (-) NA (7) (17) 4174.8 0.0 14 0.0 20 5797.2 0.0 22 0.0 22 0.0 23 5932.4 0.0 23 5977.5 0.0 23 5992.5 0.0 25	From R by NA (18)	U (1) (8) (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.	Deple Los NA (19) 0.0 0.0 0.0 0.0 0.0	Well etion ss (-) (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Reservoir Year Mo Evaporation (2) Pumping (-) NA (10) (20) Ave OCT 0.0 0.0 Ave NOV 0.0 Ave DEC 0.0 0.0 Ave JAN 0.0 0.0 Ave FEB 0.0 0.0 Ave FEB 0.0 0.0 Ave APR 330.9 0.0	Stream Reservoir Stream Inflow Return Seepage Outflow (3) Salvage (4) (-) (-) NA (1) (2) (11) (12) (21)	From, Reservo: GWStora (-) (13) (13) (14) (15) (16) (16) (17) (17) (17) (17) (17) (17) (17) (17	ACF /To ir age ange (+) 3) 0.0 0.0 0.0 0.0 0.0 0.0	(-) (14) 0.0 0.0 0.0 0.0 0.0	From To To SoilM (+) (4) (4) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(-) (15) 0.0 0.0 0.0 0.0 0.0	From oilM of (5) Change (+) (5) 0.0 65 0.0 7	Total Total Inflow Outflow NA NA (6) (6) (16) 5183.7 83.7 6511.6 7237.2 7532.4 32.4 7577.5 7592.5 592.5 7478.5 7478.5	Divert (6) Delta (-) NA (7) (17) 4174.8 0.0 14 0.0 5797.2 0.0 5992.4 0.0 23 0.0 5992.5 0.0 5521.5 0.0	From R by NA (18)	iver Well U (1) (-) (8) 0.0 0.0 0.0 0.0 0.0	Deple Los NA (19) 0.0 0.0 0.0 0.0 0.0 0.0	Well etion ss (-) (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

_

- -

- -

```
3850.0
                                        20000.0
                                                                                                                                                                                                           23850.0
                                                                                                                                                                                                                                                      6500.0
Ave
               JUN
                                                                                                                        0.0
                                                                                                                                                          0.0
                                                                                                                                                                                          0.0
                                                                                                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                                                                                                                   0.0
                                     0.0 16718.3
                                                                                                                                                                                                                                                 0.0 3317.5
667.5
                                                                                                     -35.8
                                                                                                                                            0.0
                                                                                                                                                                              0 0
                                                                                                                                                                                              23850.0
                                                                                                                                                                                                                                                                                                                     0.0
0.0
                                  0.0
                JUL
                                             4000.0
                                                                             3632.8
                                                                                                                        0.0
                                                                                                                                                          0.0
                                                                                                                                                                                           0.0
                                                                                                                                                                                                                     7632.8
                                                                                                                                                                                                                                                       5631.1
                                                                                                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                                                                                                                  0.0
Ave
384.2
                                       0.0
                                                     1632.8
                                                                                                     -15.3
                                                                                                                                            0.0
                                                                                                                                                                              0.0
                                                                                                                                                                                             7632.8
                                                                                                                                                                                                                                                  0.0
                                                                                                                                                                                                                                                                          2599.8
                                                                                                                                                                                                                                                                                                                     0.0
0.0
                                  0.0
                                                                  3354.0
                                                                                                                                                                                            0.0 7354.0
                                      4000.0
                                                                                                                                                          0.0
                                                                                                                                                                                                                                                       5385.1
                                                                                                                                                                                                                                                                                                                                  0.0
Ave
                AUG
                                                                                                                        0.0
307.3
                                                               1600.0
                                                                                                                                            0.0
                                                                                                                                                                              0.0
                                                                                                                                                                                                  7354.0
                                                                                                                                                                                                                                                                          2399.9
                                                                                                                                                                                                                                                                                                                     0.0
                                       0.0
                                                                                                        61.6
                                                                                                                                                                                                                                                  0.0
0.0
                                  0.0
                                                                                                                                                                                                          7276.0
                                          4000.0
                                                                              3276.0
                                                                                                                                                                                           0.0
                                                                                                                                                                                                                                                       5319.0
Ave
                SEP
                                                                                                                        0.0
                                                                                                                                                          0.0
                                                                                                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                                                                                                                  0.0
                                                                                                                                                                                                     7276.0
256.3
                                       0.0
                                                                1600.0
                                                                                                     100.7
                                                                                                                                            0.0
                                                                                                                                                                              0.0
                                                                                                                                                                                                                                                  0.0
                                                                                                                                                                                                                                                                          2315.8
                                                                                                                                                                                                                                                                                                                     0.0
0.0
                                  0.0
                                          80000.0
                                                                           38831.5
                                                                                                                                                          0.0
                                                                                                                                                                                                               118831.5
                                                                                                                                                                                                                                                    68122.5
Ave
                Tot
                                                                                                                        0.0
                                                                                                                                                                                           0.0
                                                                                                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                                                                                                                  0.0
2252.5
                                                           47511.3
                                                                                                       945.2
                                                                                                                                               0.0
                                                                                                                                                                                 0.0 118831.5
                                                                                                                                                                                                                                                    0.0 29113.7
                                                                                                                                                                                                                                                                                                                       0.0
                                          0.0
0.0
                                  0 0
                                                                                                                                                                                                                                                       -357.0 (6)
                                                                                                                                                                                                                                                     67765.5
     Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency
                                + max (Resevoir Evaporation (Evap), 0.0).
                       (2) Loss is not part of the Stream Water Balance.
                                  It is the portion of a diversion, well pumping
                                  and reservoir seepage that does not return to
                                  the stream
                       (3) Pumping is not part of the Stream Balance.
                                  Its impact on the stream is included in the From River by Well and Well Depletion columns
                       (4) Salvage is not part of the Stream Water Balance.
                                  It is the portion of well pumping that does not impact the stream % \left( 1\right) =\left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right)
                       (5) From Plan is water from a reuse plan.
                       (6) Divert does not include diversions by an
                                  instream flow or a T&C plan. Also to avoid
                                  double accounting with reservoir storage it has
                                  reduced by:
                                                     2547. af/yr for Diverted to Storage.
                                       1
                                                         0. af/yr for a Diversion Carrier.
                                                             0. af/yr for a Reservior Carrier.
                                       3
                                                             0. \ \text{af/yr} for a Plan Carrier.
                                                     -357. af/yr Total
#
#
     *.xwr
                                       Water rights list sorted by basin rank
#
#
           STATEMOD
         StateMod Operating Rule Example - ex12.*
                                                            12.289 \text{ Date} = 2008/09/12)
# Statemod Version:
                                                             9/15/ 8 15:10:39
     Run date:
     Time Step:
                                                          Monthly
      *.xwr; Water Right Information
                        Number of rights =
#
#
#
     Where:
#
       1. Rank
                                                         = Water right basin rank
        2. Type
                                                          = Water right type
                                                        1=Instream,
                                                        2=Reservoir.
#
                                                        3=Diversion,
#
                                                        4=Power.
#
                                                        5=Operational,
                                                        6=Well,
                                                        = Administration Number
#
        3. Admin #
        4. On/Off
                                                          = On or Off switch
                Note: Certain operating rules may cause a structure to
                                 be turned off since if it is controlled by an
                                 operating rule
#
                                                        0=off
                                                       1 = on
#
                                                      +n=begin in year n
#
                                                      -n=stop in year n
     5. Str Id #1
                                                        = Primary structure for this right
                                                          = Secondary structure for this right (-1=N/A)# 7. Amount
        6. Str Id #2
                                                                                                                                                                                                                                         = Decreed capacity & unit
 (c=CFS, a=AF)
# 8. Right Name
                                                          = Water right name
                                                          = Primary structure for this right
      9. Str Name #1
                                                          = Secondary structure for this right (-1=N/A)
# 10. Str Name #2
```

# # Rank ID Str Name #1 # (1) (2)	Type Str Name #	‡2	On/Off	Str ID #1	Str ID #2		Right Name
(10)	(11)						
1 Dem_1_WR_1 Municipal Demand _1	3	2.00000	1	Dem_1	-1	100.000 c	M&I Demand _1
2 Dem_2_WR_1	3	6.00000	0	Dem_2	-1	60.000 c	Irrigation Demand _2
Irrigation Demand _2							
3 Opr_1 Opr_Pro_Rata_Direct_to_A	125	6.00001	1	-1	-1	-1.000 x	
4 Dem_3_WR_1	3	7.00000	1	Dem_3	-1	100.000 c	Irrigation Demand _3
Irrigation Demand _3 5 ISF_WR_1	1	9.00000	1	ISF	-1	65.500 c	Instream Flow 1
Instream Demand 6 Dem_4_WR_1	3	10.00000	1	Dem_4	-1	100.000 c	Irrigation Demand _4
Irrigation Demand _4 7 Res_1_WR_1	2	15.00000	1	Res_1	-1	100000.000 a	Reservoir 1
Reservoir_1 8 Dem_5_WR_1	3	15.00000		Dem_5	-1		
Irrigation Demand _5	3	13.00000	_	Dem_5	1	100.000 €	iiiigacion bemana _5
#							
# Diversion S	Zimmo xiz						
#	ouillilar y						
<pre># STATEMOD # StateMod Operating Ru</pre>	ıle Example	- ex12.*					
# # Statemod Version: 12.29							
# Run date: 11/	2/ 8 12:12:						
# Time Step: Mont	thly						
#							
Diversion Summary ACF STATEMOD StateMod Operating F		e - ex12.*					
PAGE NO. 1							
STRUCTURE ID (0 = tot STRUCTURE ACCT (0 = t		_3	-1				
STRUCTURE NAME	: Irri	gation Dema					
RIVER LOCATION - FROM RIVER LOCATION - TO	M : Dem_ : Dem_	_3 Ex	ist. Div ist. Div	rer. 3/Inflow rer. 3/Inflow	i i		
STRUCTURE DATA	:	# cfs	af@	30 af@31			
Diversion Capacity							
Diversion Rights Well Capacity		1 100. 1 0.		0. 6149. 0. 0.			
Well Rights		0 0.		0. 0.			
Shortago	Water Hae						

Shortage Water Use			
Demand From Riv	er By	From Carrier	By
Carried ====================================	=		
Structure River ====================================	======= Fro	m =========	=====
Exchange From Total CU To Total	Upstrm		
ID ID Year Mo Total CU Priorty Storage Ex	c_Pln Loss Wel	<pre>1 Priorty Sto_Exc</pre>	Loss
Bypass SM Supply Short Short CU SoilM Return Loss	Inflow		
Station In/Out Station Bala	nce		
	ontrol Control		
Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow L			
Dem_3 Dem_3 1979 OCT 1000.0 500.0 543.7 0.0	0.0 0.0 0	.0 0.0 0.0	0.0
0.0 0.0 543.7 456.3 228.2 271.8 0.0 271.8 0.0	0.0 1000.0	0.0 0.0 0.0	1000.0
543.7 0.0 456.3 0.0 Dem_1 100.000			
Dem_3 Dem_3 1979 NOV 1000.0 500.0 847.9 0.0	0.0 0.0 0	.0 0.0 0.0	0.0
0.0 0.0 847.9 152.1 76.1 423.9 0.0 423.9 0.0	0.0 1000.0	0.0 0.0 0.0	1000.0
847.9 0.0 152.1 0.0 Dem_1 100.000			
Dem_3 Dem_3 1979 DEC 1000.0 500.0 949.3 0.0	0.0 0.0 0	.0 0.0 0.0	0.0
0.0 0.0 949.3 50.7 25.4 474.6 0.0 474.6 0.0	0.0 1000.0	0.0 0.0 0.0	1000.0
949.3 0.0 50.7 0.0 Dem_1 100.000			
Dem_3 Dem_3 1980 JAN 1000.0 500.0 983.1 0.0	0.0 0.0 0	.0 0.0 0.0	0.0
0.0 0.0 983.1 16.9 8.5 491.5 0.0 491.5 0.0	0.0 1000.0	0.0 0.0 0.0	1000.0
983.1 0.0 16.9 0.0 Dem_1 100.000			
Dem_3 Dem_3 1980 FEB 1000.0 500.0 994.4 0.0	0.0 0.0 0	.0 0.0 0.0	0.0
0.0 0.0 994.4 5.6 2.8 497.2 0.0 497.2 0.0	0.0 1000.0	0.0 0.0 0.0	1000.0
994.4 0.0 5.6 0.0 Dem_1 100.000			

Dem_3	Dem_3	1980 MAR	1000.0	500.0 99	8.1 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 998.1	1.9 0.	9 499.1	0.0 4	99.1 0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
998.1	0.0 1.9	0.0 Dem_	1	100.000							
Dem_3	Dem_3	1980 APR	1000.0	500.0 88	0.4 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 880.4	119.6 59.	8 440.2	0.0 4	40.2 0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
880.4	0.0 119.6	0.0 Dem_	1	100.000							
Dem_3	Dem_3	1980 MAY	1000.0	500.0 100	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.	0 500.0	0.0 5	0.0 0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	3970.1 NA		-1.000							
Dem_3	Dem_3	1980 JUN	1000.0	500.0 100	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.	0 500.0	0.0 5		0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0	0.0 4000.0	4000.0 NA		-1.000							
Dem_3	Dem_3		1000.0	500.0 100	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	0.0 0.	500.0	0.0 5	0.0 0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0	0.0 0.0		te_Limit	-1.000							
Dem_3	Dem_3	1980 AUG	1000.0	500.0 84	6.3 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 846.3		9 423.1	0.0 4	23.1 0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
846.3	0.0 153.7	0.0 Dem_		100.000							
Dem_3	_	1980 SEP		500.0 82	9.7 0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 829.7	170.3 85.	1 414.9	0.0 4	14.9 0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
829.7	0.0 170.3	0.0 Dem_	1	100.000							
	· ———										
Dem_3	Dem_3			6000.0 1087		0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 10872.9 1		5436.4	0.0 54		0.0	20000.0	0.0	0.0	0.0	20000.0
10872.9	0.0 9127.	1 7970.1 NA		-1.00	0						

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. Diversion Capacity Diversion Rights : 100. 5950. 6149. 1 0. 0. 0. Well Capacity 1 Well Rights 0. 0. 0

Shortag	ge	Water Use										
Demand From River By										From	Carrier	Ву
Carried		========							_			
Structu		- 1				======			From	======		=====
Exchang	•			То	Total	_	Upsti					_
ID	ID	Year Mo	Total	CU Pr SoilM	iorty St	_	_	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	y Short Shor	rt CU	SOIIM	Return	Loss	s iniid	οW				
	Station I	In/Out				ion Bal						
Reach	Return Well	From/To River		====== River	River		Control					
Gain		GW Stor Inflo										
Dem 4	Dem 4	1979 OCT	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	456.3	0.0	135.9	0.0	0.0	592.2
0.0	0.0 592.2	0.0 Dem 1	0.0	100.000	0.0	0.0	150.5	0.0	100.0	0.0	0.0	3,2.2
Dem 4	Dem 4	1979 NOV	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	152.1	0.0	347.9	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1979 DEC	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	50.7	0.0	449.3	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 JAN	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	16.9	0.0	483.1	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 FEB	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	5.6	0.0	494.4	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 MAR	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	1.9	0.0	498.1	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_1	500.0	100.000		0 0	0 0	0 0	0 0			
Dem_4	Dem_4 0.0 0.0	1980 APR 500.0 250.0	500.0	250.0	0.0	0.0	0.0 119.6	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0 0.0 589.3		0.0	0.0	0.0	0.0	119.6	0.0	469.6	0.0	0.0	589.3
0.0		0.0 Dem_1 1980 MAY	500.0	100.000	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_4 0.0	Dem_4 0.0 500.0	1980 MAY 0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	470.1	0.0	0.0	4470.1
500.0	0.0 300.0		250.0	-1.00		0.0	4000.0	0.0	4/0.1	0.0	0.0	44/0.1
Dem 4	Dem 4	1980 JUN	500.0		500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 0.0	250.0	0.0	250.0	0.0	4000.0	0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0		230.0	-1.00		3.0	1000.0	0.0	300.0	0.0	3.0	1300.0
500.0	0.0 1000.0	. 1500.0 1411		1.00	-							

Dem_4 0.0	Dem_4 0.0 0.0	1980 JUL 500.0 250.0	500.0	250.0	0.0	0.0	0.0	0.0	0.0 500.0	0.0	0.0	0.0
0.0	0.0 500.0	0.0 ISF		100.000	0.0	0.0	0.0	0.0	300.0	0.0	0.0	300.0
Dem_4	Dem_4	1980 AUG	500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 250.0	0.0	0.0	0.0	0.0	153.7	0.0	461.6	0.0	0.0	615.3
0.0	0.0 615.3	0.0 Dem_1		100.000								
Dem_4	Dem_4	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	170.3	0.0	419.0	0.0	0.0	589.3
0.0	0.0 589.3	0.0 ISF		100.000								
 Dem_4	Dem_4	1980 TOT	5500.0 2	2750.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0	4500.0 2250.0	500.0	0.0	500.0	0.0	9127.1	0.0	5229.0	0.0	0.0	14356.1
1000.0	0.0 13356	.1 7970.1 NA		-1.	000							

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irriga
RIVER LOCATION - FROM : Dem_5 -3

RIVER LOCATION - TO

STRUCTURE DATA af@30 cfs af@31 5000. 297525. Diversion Capacity Diversion Rights 100. 5950. 6149. 1 Well Capacity
Well Rights 0. 0. 0. : 0 0. 0. 0.

Shortag	re		Water	Use										
					Deman				ver By			From	Carrier	By
Carried			=====			======								
Structu		River			======			======			From	======	======	=====
Exchang	re Fr	rom Tota		CU		To	Total		Upst					
ID		ID	Year		Total		iorty St			Loss	Well	Priorty	Sto_Exc	Loss
Bypass	5	SM Suppl	y Short	Short	CU	SoilM	Return	Loss	Infl	.OW				
		Station	,					ion Bal						
			=======											
Reach		ırn Well	From/To			River	River		Control					
Gain	Flov			Inflow		2			Location					
Dem_5		Dem_5	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De			100.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_5	0 0	Dem_5	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 De	_		100.000	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_5 0.0	0.0	Dem_5 0.0	1979 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 3000.0	0.0	0.0	0.0	0.0
0.0		3000.0	0.0 0.0 De			100.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5		Jun 5		JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0		3000.0	0.0 0.0 De			100.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	0.0	Dem 5	1980	HEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0		3000.0	0.0 De			100.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5		Dem 5	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0		3000.0	0.0 De			100.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	0.0	Dem 5	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0		3000.0	0.0 De			100.000	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
Dem 5	0.0	Dem 5	1980	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		15000.0	0.0	0.0		15000.0
0.0			11254.9 NA		0.0	-1.000	0.0	0.0	0.0	10000.0	0.0	0.0	0.0	15000.0
Dem 5		Dem_5	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		15000.0	0.0	0.0		15000.0
0.0			11368.3 NA		0.0	-1.000	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
Dem 5		Dem 5	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 Re	s 1	100	000.000								
Dem 5		Dem 5	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0		3000.0	0.0 De			100.000								
Dem 5		Dem 5	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 IS	F		100.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO.

STRUCTURE ID (0 = total) : Pln_1 10001

Shortag	je	Water	Use	Doman	a	,	Exam D	irrom Drr			Exom	Carrier	Der
Carried	1					:=======		iver By			From	Carrier	ву
	re River							 ========	====	From	======		=====
	ge From Total	Total	CU		To	Total		Upst:	rm				
ID	ID	Year	Mo I	otal	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Loss	s Infl	OW				
======	Station In			. ======			ion Bal						
Reach	Return Well	From/To			River			Control					
Gain	Flow Deplete (W Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Pln_1	Pln_1	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA			-1.000								
Pln_1	Pln_1	1979		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA 1979		0 0	-1.000 0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0
Pln_1 0.0	Pln_1	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	3000.0
0.0	0.0 0.0 0.0 3000.0	0.0 0.0 NA		0.0	0.0 -1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Pln 1	Pln 1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		0.0	-1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Pln 1	Pln 1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA			-1.000								
Pln_1	Pln_1	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA			-1.000								
Pln_1	Pln_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA			-1.000								
Pln_1	Pln_1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0 112			0 0	-1.000	0 0	0 0	0.0	0 0	0 0	0 0	0.0	0.0
Pln_1 0.0	Pln_1 0.0 0.0	1980 0.0	0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0		15000.0
0.0	0.0 0.0			0.0	0.0 -1.000	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
Pln 1	Pln 1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		0.0	-1.000	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
Pln 1	Pln 1	1980		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0		3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA			-1.000								
Pln_1	Pln_1	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA			-1.000								
Dl- 1		1000				0.0			0 0	0.0	0.0	0 0	0.0
Pln_1 0.0	Pln_1 0.0 0.0	1980 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60000.0
0.0	0.0 0.0 0.0			0.0	-1.000	0.0	0.0	0.0000	0.0	0.0	0.0	0.0	0.0000
0.0		AM I.C.			-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1
Diversion Rights : 1 5000. 297525. 307442. 60. 3570.

: 1 0. : 0 0. Well Capacity 0.

Well Rights

Shortage Water Use	From River By		From Carrie	r Bv
Carried ====================================			1	
Structure River ====================================		=========	======	
	Total Upstr		Date of Girls D	
	rty Storage Exc_Pln eturn Loss Inflo		Priorty Sto_Ex	c Loss
Bypass SM Supply Short Short CO Solim Re	eturn Loss Iniic	ow.		
Station In/Out	Station Balance			
		======		
Reach Return Well From/To River River River R				
Gain Flow Deplete GW Stor Inflow Divert By Well O				
Dem_2 Dem_2 1979 OCT 3000.0 1500.0 1633		0.0 0.0	0.0 0.0	0.0
	15.5 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
1631.1 0.0 1368.9 0.0 Cap/Wr_Limit -1.000 Dem 2 Dem 2 1979 NOV 3000.0 1500.0 254	3.7 0.0 0.0	0.0 0.0	0.0 0.0	0.0
0.0 0.0 2543.7 456.3 228.2 1271.8 0.0 12°		0.0 0.0	0.0 0.0	
2543.7 0.0 456.3 0.0 Cap/Wr Limit -1.000	71.0 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
Dem_2 Dem_2 1979 DEC 3000.0 1500.0 284	7.9 0.0 0.0	0.0 0.0	0.0 0.0	0.0
0.0 0.0 2847.9 152.1 76.1 1423.9 0.0 14	23.9 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
2847.9 0.0 152.1 0.0 Cap/Wr_Limit -1.000				
Dem_2 Dem_2 1980 JAN 3000.0 1500.0 294		0.0 0.0	0.0 0.0	0.0
0.0 0.0 2949.3 50.7 25.4 1474.6 0.0 14	74.6 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
2949.3 0.0 50.7 0.0 Cap/Wr_Limit -1.000	3.1 0.0 0.0	0.0 0.0	0.0 0.0	0.0
Dem_2 Dem_2 1980 FEB 3000.0 1500.0 298: 0.0 0.0 2983.1 16.9 8.5 1491.5 0.0 149		0.0 0.0	0.0 0.0	
2983.1 0.0 16.9 0.0 Cap/Wr Limit -1.000	91.3 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
Dem 2 Dem 2 1980 MAR 3000.0 1500.0 299	4.4 0.0 0.0	0.0 0.0	0.0 0.0	0.0
0.0 0.0 2994.4 5.6 2.8 1497.2 0.0 149		0.0 0.0	0.0 0.0	
2994.4 0.0 5.6 0.0 Cap/Wr_Limit -1.000				
Dem_2 Dem_2 1980 APR 3000.0 1500.0 264		0.0 0.0	0.0 0.0	0.0
0.0 0.0 2641.1 358.9 179.5 1320.5 0.0 133	20.5 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
2641.1 0.0 358.9 0.0 Cap/Wr_Limit -1.000				
Dem_2 Dem_2 1980 MAY 3000.0 1500.0 3000 0.0 0.0 3000.0 0.0 0.0 1500.0 0.0 150		0.0 0.0	0.0 0.0	0.0
0.0 0.0 3000.0 0.0 0.0 1500.0 0.0 15 3000.0 0.0 12000.0 11254.9 NA -1.000	0.0 15000.0	0.0 0.0	0.0 0.0	15000.0
Dem_2 Dem_2 1980 JUN 3000.0 1500.0 300	0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0
0.0 0.0 3000.0 0.0 0.0 1500.0 0.0 150		0.0 0.0		15000.0
3000.0 0.0 12000.0 11368.3 NA -1.000		***	***	
Dem_2 Dem_2 1980 JUL 3000.0 1500.0 263	1.1 0.0 0.0	0.0 0.0	0.0 0.0	0.0
0.0 0.0 2631.1 368.9 184.5 1315.5 0.0 133	15.5 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
2631.1 0.0 368.9 0.0 Res_1 100000.000				
Dem_2 Dem_2 1980 AUG 3000.0 1500.0 253		0.0 0.0	0.0 0.0	0.0
0.0 0.0 2538.8 461.2 230.6 1269.4 0.0 12	59.4 0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
2538.8	9.2 0.0 0.0	0.0 0.0	0.0 0.0	0.0
0.0 0.0 2489.2 510.8 255.4 1244.6 0.0 1246.1		0.0 0.0	0.0 0.0	
2489.2 0.0 510.8 0.0 Cap/Wr_Limit -1.000	0.0 3000.0	0.0 0.0	0.0 0.0	3000.0
1000		0 0 0 0	0 0 0 0	0 0
Dem_2 Dem_2 1980 TOT 36000.0 18000.0 32249 0.0 0.0 32249.7 3750.3 1875.2 16124.8 0.0 1613		0.0 0.0	0.0 0.0	0.0
32249.7 0.0 27750.3 22623.1 NA -1.00		0.0 0.0	0.0 0.0	0.0000.0
52215.1 0.0 21130.3 22023.1 MA -1.00	-			

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 6

7501

STRUCTURE ID (0 = total) : Res_1
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Reserve
RIVER LOCATION - FROM : Res_1
RIVER LOCATION - TO : Res_1 : Reservoir_1 : Res_1 : Res_1 Exist. Reservoir Exist. Reservoir

STRUCTURE DATA : # af Capacity : 1 100000. : 1 100000. Reservoir Rights

Shortage			Water	Use											
					Demar	nd		Fro	om River	Ву			From	Carrier	By
Carried			======		== =====			======							
Structure	Riv	ver			=======		=====	======		====	=====	From	======		=====
Exchange	From	Total	Total	CU		To	то о	tal		Upst	rm				
ID	ID		Year	Mo	Total	CU	Priort	y Stora	age Exc_	Pln	Loss	Well	Priorty	Sto_Exc	Loss
Rymagg	SM	Supply	Short	Shor	+ CII	Soil	/ Ret	urn	Logg	Tnf1	OW				

Station In/Out Station Balance

	=========	==========										
Reach	Return Well	From/To River		River	River		Control					
Gain	Flow Deplete	GW Stor Inflow	Diver	t By Well	Outflow	Flow	Location	Right				
Res_1	Res_1	1979 OCT	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 368.9	0.0 0.0	0.0	0.0	368.9	0.0	1368.9	0.0	0.0	0.0	0.0	1368.9
368.9	0.0 1000.0	0.0 Dem_1		100.00	0							
Res_1	Res_1	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	456.3	0.0	0.0	0.0	0.0	456.3
0.0	0.0 456.3	0.0 Dem_1		100.000								
Res_1	Res_1	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	152.1	0.0	0.0	0.0	0.0	152.1
0.0	0.0 152.1	0.0 Dem_1		100.000								
Res_1	Res_1	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	50.7	0.0	0.0	0.0	0.0	50.7
0.0	0.0 50.7	0.0 Dem_1		100.000								
Res_1	Res_1	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	16.9	0.0	0.0	0.0	0.0	16.9
0.0	0.0 16.9	0.0 Dem_1		100.000								
Res_1	Res_1	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	5.6
0.0	0.0 5.6	0.0 Dem_1		100.000								
Res_1	Res_1	1980 APR	0.0	0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 357.0	0.0 0.0	0.0	0.0	357.0	0.0	358.9	0.0	0.0	0.0	0.0	358.9
357.0	0.0 1.9	0.0 Dem_1		100.00								
Res_1	Res_1	1980 MAY	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 368.9	0.0 0.0	0.0	0.0	368.9	0.0	12000.0	0.0	0.0	0.0	0.0	12000.0
745.1	0.0 11254.9	11254.9 NA		-1.00	0							
Res_1	Res_1	1980 JUN	0.0	0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 357.0	0.0 0.0	0.0	0.0	357.0	0.0	12000.0	0.0	0.0	0.0	0.0	12000.0
631.7	0.0 11368.3	11368.3 NA		-1.00	0							
Res_1	Res_1	1980 JUL	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 368.9	0.0 0.0	0.0	0.0	368.9	0.0	368.9	0.0	0.0	0.0	0.0	368.9
368.9	0.0 0.0	0.0 NA		-1.00	0							
Res_1	Res_1	1980 AUG	0.0	0.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	0.0
0.0	0.0 368.9	0.0 0.0	0.0	0.0	368.9	0.0	461.2	0.0	0.0	0.0	0.0	461.2
368.9	0.0 92.2	0.0 Dem_1		100.00	0							
Res_1	Res_1	1980 SEP	0.0	0.0	0.0	0.0	357.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 357.0	0.0 0.0	0.0	0.0	357.0	0.0	510.8	0.0	0.0	0.0	0.0	510.8
357.0	0.0 153.7	0.0 ISF		100.00	0							
 Res_1	Res 1		0.0	0.0	0.0		2546.8	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2546.8	0.0 0.0	0.0		2546.8		27750.3	0.0	0.0	0.0		27750.3
3197.7	0.0 24552.6		0.0	-1.0		0.0	21130.3	0.0	0.0	0.0	0.0	2,750.5
3171.1	0.0 24332.0	ZZVZJ.INA		1.0	0.0							

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 7

Shortage	Water Use									
		Demand	F	From River By			From	Carrier	Ву	
Carried	=========									
Structure River	==					From				
Exchange From Tota	al Total CU	To	Total	Ups	trm					
ID ID	Year Mo T	otal CU Pr	iorty Sto	orage Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss	
Bypass SM Suppl	y Short Short	CU SoilM	Return	Loss Inf	low					
Station In/Out Station Balance										
	,	=========	=======							
Reach Return Well	From/To River	River River	River	Avail Control	Control					
Gain Flow Deplet		Divert By Well	Outflow	Flow Location	n Right					
Res Pln Res Pln	1979 OCT	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 1000.0	0.0	0.0	0.0	0.0	1000.0	
0.0 0.0 1000.0	0.0 NA	-1.000								
Res_Pln Res_Pln	1979 NOV	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 456.3	0.0	0.0	0.0	0.0	456.3	
0.0 0.0 456.3	0.0 NA	-1.000								
Res_Pln Res_Pln	1979 DEC	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 152.1	0.0	0.0	0.0	0.0	152.1	
0.0 0.0 152.1	0.0 NA	-1.000								
Res_Pln Res_Pln	1980 JAN	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 50.7	0.0	0.0	0.0	0.0	50.7	
0.0 0.0 50.7	0.0 NA	-1.000								
Res_Pln Res_Pln	1980 FEB	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 16.9	0.0	0.0	0.0	0.0	16.9	
0.0 0.0 16.9	0.0 NA	-1.000								

Res_Pln		Res_Pln	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	5.6
0.0	0.0	5.6	0.0 NA			-1.000								
Res_Pln		Res_Pln	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	1.9
0.0	0.0	1.9	0.0 NA			-1.000								
Res_Pln		Res_Pln	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11254.9	0.0	0.0	0.0	0.0	11254.9
0.0	0.0	11254.9	11254.9 NA			-1.000								
Res_Pln		Res_Pln	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11368.3	0.0	0.0	0.0	0.0	11368.3
0.0	0.0	11368.3	11368.3 NA			-1.000								
Res_Pln		Res_Pln	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0 NA			-1.000								
Res_Pln		Res_Pln	1980	AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	92.2	0.0	0.0	0.0	0.0	92.2
0.0	0.0	92.2	0.0 NA			-1.000								
Res_Pln		Res_Pln	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	153.7	0.0	0.0	0.0	0.0	153.7
0.0	0.0	153.7	0.0 NA			-1.000								
Res_Pln		Res_Pln	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0			0.0	0.0	0.0	0.0	0.0	24552.6	0.0	0.0	0.0	0.0	24552.6
0.0	0.0	24552.6	22623.1 NA			-1.000								

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 8

Shortage	Water Use								
G		Demand		From River By			From	Carrier	Ву
Carried Structure River	=======================================			======================================		From	======		
Exchange From Total	Total CU		To Total	Ups	rm				
ID ID	Year Mo T	otal CU	Priorty St	orage Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short	CU Soi	.lM Return	Loss Inf	low				
Station In/									
	From/To River	River Riv		Avail Control					
Gain Flow Deplete G				Flow Location					
T&CPln 1 T&CPln 1	1979 OCT	0.0 0.		0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 1592.2	0.0	0.0	0.0	0.0	1592.2
0.0 0.0 1592.2	0.0 NA		.000						
T&CPln_1 T&CPln_1	1979 NOV	0.0 0.	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 956.3	0.0	0.0	0.0	0.0	956.3
0.0 0.0 956.3	0.0 NA	-1.	.000						
T&CPln_1 T&CPln_1	1979 DEC	0.0 0.	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 652.1	0.0	0.0	0.0	0.0	652.1
0.0 0.0 652.1	0.0 NA	-1.	.000						
T&CPln_1 T&CPln_1	1980 JAN	0.0 0.	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 550.7	0.0	0.0	0.0	0.0	550.7
0.0 0.0 550.7	0.0 NA	-1.	.000						
T&CPln_1 T&CPln_1	1980 FEB	0.0 0.	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 516.9	0.0	0.0	0.0	0.0	516.9
0.0 0.0 516.9	0.0 NA	-1.	.000						
T&CPln_1 T&CPln_1	1980 MAR	0.0 0.	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 505.6	0.0	0.0	0.0	0.0	505.6
0.0 0.0 505.6	0.0 NA	-1.	.000						
T&CPln_1 T&CPln_1	1980 APR	0.0 0.	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 591.1	0.0	0.0	0.0	0.0	591.1
0.0 0.0 591.1	0.0 NA		.000						
T&CPln_1 T&CPln_1	1980 MAY	0.0 0.		0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0 15225.0	0.0	125.0	0.0	0.0	15350.0
0.0 0.0 15350.0 123			.000						
T&CPln_1 T&CPln_1	1980 JUN	0.0 0.		0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 15368.3	0.0	250.0	0.0	0.0	15618.3
0.0 0.0 15618.3 128			.000						
T&CPln_1 T&CPln_1	1980 JUL	0.0 0.		0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 500.0	0.0	125.0	0.0	0.0	625.0
0.0 0.0 625.0	0.0 NA		.000						
T&CPln_1 T&CPln_1	1980 AUG	0.0 0.		0.0 0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0		0.0	0.0 707.5	0.0	0.0	0.0	0.0	707.5
0.0 0.0 707.5	0.0 NA	-1.	.000						

T&CPln_ 0.0 0.0	0.0	T&CPln_1 0.0 743.0	1980 0.0 0.0 NA	SEP 0.0	0.0	0.0 0.0 -1.000	0.0	0.0	0.0 743.0	0.0	0.0	0.0	0.0	0.0 743.0
							_							
T&CPln_	1	T&CPln_1	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	37908.8	0.0	500.0	0.0	0.0	38408.8
0.0	0.0	38408.8 2	5153.4 NA			-1.000								

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 9

STRUCTURE ID (0 = total) : Dem_1

STRUCTURE ID (0 = total) : Dem_1 5

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Municipal Demand _1

RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1

RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Structure														
Structure Stru	Shortage	e	Water	Use	_	,						_	~ .	_
	Carried											From	Carrier	ву
Part										=====	From	======		=====
Station In Station Short Clu Solim Return Balance Station Short Clu Solim Return Balance Station Short Clu Solim Return Balance Station Short Clu Short Short	Exchange	e From Total	Total	CU		То	Total		Upst	rm				
Station Infount From/To River Ri	ID		Year	Mo	Total	CU I	Priorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Reach Reach Reach Reach Flow Deplete GW Stor Stor Cort Inflow Diverte By Well Outflow Plow Location Right Reach Reach	Bypass	SM Supply	Short	Sho	rt CU	SoilM	Return	Loss	s Infl	OW				
Real Return Well														
Calin Flow Deplete GW Stor														
0.0 0.0 0.0 0.0 400.0 0.0 1600.0 0.0 1592.2 0.0 407.8 0.0 0.0 2000.0 2000.0 0.0 0.0 0.0 400.0 2000.0 0.0	Gain	Flow Deplete (W Stor	Infl	ow Divert	By We	ll Outflov	v Flow	Location	Right				
Dem_1	Dem_1	Dem_1	1979	OCT	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem					400.0			0.0	1592.2	0.0	407.8	0.0	0.0	2000.0
0.0 0.0 0.0 0.0 400.0 0.0 1600.0 956.3 0.0 1043.7 0.0 0.0 2000.0 2000.0 0.0														
Dem_1	_	_												
Dem.					400.0			0.0	956.3	0.0	1043.7	0.0	0.0	2000.0
0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 652.1 0.0 1347.9 0.0 0.0 2000.0 2000.0 0.0					2000			0 0	0 0	0 0	0 0	0 0	0 0	0 0
2000.0	_													
Dem_1					400.0			0.0	052.1	0.0	1347.9	0.0	0.0	2000.0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 550.7 0.0 1449.3 0.0 0.0 2000.0 2000.0 0.0					2000 0			0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_1														
Dem_1					100.0			0.0	330.7	0.0	1117.0	0.0	0.0	2000.0
0.0 0.0 2000.0 0.0 0.0 0.0 1600.0 0.0 516.9 0.0 1483.1 0.0 0.0 2000.0 Dem_1 Dem_1 1980 MAR 2000.0 400.0 2000.0 0.0					2000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_1	0.0	0.0 2000.0	0.0			0.0	1600.0	0.0	516.9	0.0	1483.1	0.0	0.0	2000.0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 505.6 0.0 1494.4 0.0 0.0 2000.0 2000.0 0.0	2000.0	0.0 0.0	0.0	NA		-1	.000							
2000.0	Dem_1	Dem_1	1980	MAR	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_1		0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	505.6	0.0	1494.4	0.0	0.0	2000.0
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 591.1 0.0 1408.9 0.0 0.0 2000.0 2000.0 0.0														
Dem_1														
Dem_1					400.0			0.0	591.1	0.0	1408.9	0.0	0.0	2000.0
0.0 0.0 2000.0 0.0 400.0 0.0 1600.0 0.0 15350.0 0.0 1410.3 0.0 0.0 16760.2 2000.0 0.0 14760.2 12332.7 NA -1.000 0.0 <t< td=""><td></td><td></td><td></td><td></td><td>2000</td><td></td><td></td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td></t<>					2000			0 0	0 0	0 0	0 0	0 0	0 0	0 0
2000.0 0.0 14760.2 12332.7 NA -1.000 Dem_1 Dem_1 1980 JUN 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	_													
Dem_1 Dem_1 1980 JUN 2000.0 400.0 2000.0 0.0					400.0			0.0	15350.0	0.0	1410.3	0.0	0.0	10/00.2
0.0 0.0 2000.0 0.0 400.0 0.0 1600.0 0.0 15618.3 0.0 1500.0 0.0 0.0 17118.3 2000.0 0.0 15118.3 12820.7 NA -1.000 0.0 <t< td=""><td></td><td></td><td></td><td></td><td>2000 0</td><td></td><td></td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td><td>0 0</td></t<>					2000 0			0 0	0 0	0 0	0 0	0 0	0 0	0 0
2000.0 0.0 15118.3 12820.7 NA -1.000 Dem_1 Dem_1 1980 JUL 2000.0 400.0 2000.0 0.0 0.0 625.0 0.0 1407.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	_	_												
0.0 0.0 2000.0 0.0 400.0 0.0 1600.0 0.0 625.0 0.0 1407.8 0.0 0.0 2032.8 2000.0 0.0 32.8 0.0 NA -1.000 -1.000 0.0 </td <td></td>														
2000.0 0.0 32.8 0.0 NA -1.000 Dem_1 Dem_1 1980 AUG 2000.0 400.0 2000.0 2000.0 0.0 0.0 1292.5 0.0 0.0 2000.0 0.0 0.0 2000.0 0.0 0.0 0.0 0.0 2000.0 0.0	Dem_1	Dem_1	1980	JUL	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_1 Dem_1 1980 AUG 2000.0 400.0 2000.0 0.0	0.0	0.0 2000.0	0.0	0.0	400.0	0.0	1600.0	0.0	625.0	0.0	1407.8	0.0	0.0	2032.8
0.0 0.0 2000.0 0.0 0.0 400.0 0.0 1600.0 0.0 707.5 0.0 1292.5 0.0 0.0 2000.0 2000.0 0.0 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 2000.0 400.0 2000.0 0.0 1600.0 0.0 743.0 0.0 1257.0 0.0 0.0 2000.0	2000.0	0.0 32.8	0.0	NA		-1	.000							
2000.0 0.0 0.0 NA -1.000 Dem_1 Dem_1 1980 SEP 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dem_1	Dem_1	1980	AUG	2000.0	400.0	2000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_1 Dem_1 1980 SEP 2000.0 400.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					400.0			0.0	707.5	0.0	1292.5	0.0	0.0	2000.0
$0.0 0.0 20\overline{0}0.0 0.0 0.0 400.0 0.0 1600.0 0.0 743.0 0.0 1257.0 0.0 0.0 2000.0$														
	_	_												
					400.0			0.0	743.0	0.0	1257.0	0.0	0.0	2000.0
	2000.0	0.0 0.0	0.0	NA		-1	.000							
Dem_1	 Dem_1		1980	TOT	24000.0 4	1800.0	24000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 24000.0 0.0 0.0 4800.0 0.0 19200.0 0.0 38408.8 0.0 15502.5 0.0 0.0 53911.3	_	_												
24000.0 0.0 29911.3 25153.4 NA -1.000	24000.0	0.0 29911.3	3 25153.	4 NA		-	1.000							

StateMod Operating Rule Example - ex12.* PAGE NO. 10

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -		0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water	Demai	nd	1	From Ri	iver By			From	Carrier	Ву
						==					-
Structure River				=======				From	======		=====
Exchange From Total						Upst					
		Mo Total		riorty St				Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short	Short CU	SollM	Return	Loss	s Inflo	WC				
Station In					ion Bal						
Reach Return Well											
Gain Flow Deplete		OCT 4027.5			0.0 F.TOM		0.0	0.0	0.0	0.0	0.0
	19/9	OCT 4027.5	0.0	640.0			0.0		0.0	0.0	640.0
0.0 0.0 640.0 3 640.0 0.0 640.0 ISF ISF	387.5	U.U U.U	1.0	640.0	0.0	0.0	0.0	640.0	0.0	0.0	640.0
TSF TSF	1070	MOV 2007 6	-1.0	1120 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1120.0 2	1979 177 6	0 0 0 0	0.0	1120.0	0.0			1120.0	0.0		1120.0
0.0 0.0 1120.0 2 1120.0 0.0 1120.0	,,,,,	Hoate Limit	-1	000	0.0	0.0	0.0	1120.0	0.0	0.0	1120.0
TSF TSF	1979	DEC 4027.5	0 0	1440 0	0.0		0.0	0.0	0.0	0.0	0.0
					0.0			1440.0	0.0		1440.0
0.0 0.0 1440.0 2 1440.0 0.0 1440.0	0.0	Hgate Limit	-1.	000							
ISF ISF	1980	JAN 4027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2	127.5	0.0 0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0	0 0	Hoate Limit	- 1	000							
ISF ISF	1980	FEB 3637.7	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2	37.7	0.0 0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0	0.0	Hgate_Limit									
ISF ISF	1980	MAR 4027.5	0.0	1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2					0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0	0.0	Hgate_Limit	-1.	000							
ISF ISF		APR 3897.6			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2					0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0											
		MAY 4027.5			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 4027.5				4027.5	0.0	14760.2	0.0	1600.0	0.0	0.0	16360.2
4027.5 0.0 16360.2			-1.		0 0		0 0			0 0	
		JUN 3897.6 0.0 0.0		3897.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 3897.6 3897.6 0.0 16718.3			-1.	3897.6	0.0	15118.3	0.0	1600.0	0.0	0.0	16718.3
3897.6 U.U 16718.3 TSF TSF		JUL 4027.5		1632.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1632.8 2		0.0 0.0			0.0			1600.0	0.0		1632.8
		Hgate_Limit	-1.		0.0	32.8	0.0	1600.0	0.0	0.0	1032.8
ISF ISF		AUG 4027.5		1600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2		0.0 0.0			0.0			1600.0	0.0		1600.0
1600.0 0.0 1600.0	0.0	Hgate_Limit	-1	000	0.0	0.0	0.0	1000.0	0.0	0.0	1000.0
TSF TSF	1980	SED 3897 6	0 0	1600 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1600.0 2	297.6	0.0 0.0	0.0	1600.0	0.0	0.0	0.0	1600.0	0.0	0.0	1600.0
1600.0 0.0 1600.0	0.0	Hgate_Limit	-1.	000							
		TOT 47420.5				0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 22357.8 25		0.0 0.0			0.0	29911.3	0.0	17600.0	0.0	0.0	47511.3
22357.8 0.0 47511.	3 25153.4	1 NA	-1	.000							

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 11

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

Demand From River By From Carrier By Carried _____ ------Structure River From ========== Exchange From Total Total CU To Total Upstrm
Year Mo Total CU Priorty Storage Exc_Pln Loss
Short Short CU SoilM Return Loss Inflow Total CU To Total Upstrm TD Well Priorty Sto Exc Loss SM Supply Bypass Station In/Out Station Balance ______ Reach Return Well From/To River River River River Avail Control Control Gain Flow Deplete GW Stor Inflow Divert By Well Outflow Flow Location Right 0.0 0.0 0.0 0.0 0.0 0.0 0.0 640.0 Baseflow ISF.01 1979 OCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 640.0 0.0 0.0 0.0 NA 1979 NOV 0.0 0.0 0.0 0.0 0.0 640.0 -1.000 0.0 0.0 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 1120.0 -1.000 0.0 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 1979 DEC 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 1440.0 0.0 0.0 0.0 0.0 0.0 0.0 1440.0 0.0 0.0 1440.0 0.0 NA -1.000 Baseflow ISF.01 1980 JAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 1600.0 0.0 -1.000 ISF.01 1980 FEB 0.0 0.0 0.0 0.0 Baseflow 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 1600.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 -1.000 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 1600.0 1980 MAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 1600.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.000 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 1600.0 0.0 -1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16360.2 0.0 16360.2 0.0 0.0 0.0 0.0 -1.000 1980 JUN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16718.3 0.0 16718.3 0.0 0.0 0.0 0.0 0.0 0.0 -1.000 Baseflow ISF.01 1980 JUL 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 1632.8 0.0 1632.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1632.8 -1.000 0.0 Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 1980 AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 1600.0 0.0 1600.0 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 -1.000 0.0 1980 SEP Baseflow ISF.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA 0.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 1600.0 0.0 0.0 0.0 1600.0 0.0 -1.000 1980 TOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47511.3 0.0 0.0 0.0 0.0 47511.3 -1.000 # *.xre Reservoir Summary STATEMOD StateMod Operating Rule Example - ex12.* # Statemod Version: 12.29.00 Date = 2008/09/15) 11/ 2/ 8 12:12: 6 # Run date: # Time Step: Monthly Reservoir Summary ACFT STATEMOD StateMod Operating Rule Example - ex12.* RESERVOIR ID : Res 1 RESERVOIR NAME : Reservoir 1

PAGE NO. 1

RESERVOIR ACCOUNT & AMOUNT: 0 100000.; where account 0 is the total

RESERVOIR OWNER : Total

: Exist Reservoir RIVER LOCATION

STRUCTURE DATA : аf 1 100000 Capacity : Reservoir Rights : 100000.

> Station Balance From River by by From Carrier by Targt_0 BOM _____

From Storage

to

			Initial								Total	River	River
Carrier	То	tal	Seep &	EOM Sto	or_n Dec	cree Riv	ver Ri	ver Riv	zer Ri	ver Ri	ver		
Reservo	oir		Storage	Priorty				Priorty S		Loss		For Use	For Exc
for Use	e Rele	ase Evap	Spill Con	tent L:	imit Li	imit Infl	low Rele	ase Dive	ert by W	Well Outf	low		
ID		Acc Year	Mo NA		(+)	(+)	(-)	(+)	(+)	(-)	NA	(-)	(-)
(-)	NA	(-)	(-) NA		NA	(+)	(+)	(-)	(-)	NA			
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(12)	(13)	(14)	(15) (16) (17	(18)	(19)	(20)	(21)	(22)	(23)			
Res 1		0 1979	OCT 50000.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	368.9	0.0	0.0
0.0	0.0	0.0	0.0 50368.9			1368.9	0.0	368.9	0.0	1000.0	300.5	0.0	0.0
Res 1	0.0	0 1979	NOV 50368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0 50368.9			456.3	0.0	0.0	0.0	456.3	0.0	0.0	0.0
Res 1	0.0	0 1979	DEC 50368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0 50368.9			152.1	0.0	0.0	0.0	152.1			
Res 1		0 1980	JAN 50368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0 50368.9	100000.0	49631.1	50.7	0.0	0.0	0.0	50.7			
Res_1		0 1980	FEB 50368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0 50368.9	100000.0	49631.1	16.9	0.0	0.0	0.0	16.9			
Res_1		0 1980	MAR 50368.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	25.4	0.0 50343.5		49631.1	5.6	0.0	0.0	0.0	5.6			
Res_1		0 1980	APR 50343.5	0.0	0.0	357.0	0.0	0.0	0.0	0.0	357.0	0.0	0.0
0.0	0.0	330.9	0.0 50369.7			358.9	0.0	357.0	0.0	1.9			
Res_1		0 1980	MAY 50369.7	376.2	0.0	368.9	0.0	0.0	0.0	0.0	745.1	0.0	0.0
0.0	0.0	280.8	0.0 50834.0				0.0	745.1		11254.9			
Res_1		0 1980	JUN 50834.0	274.7	0.0	357.0	0.0	0.0	0.0	0.0	631.7	0.0	0.0
0.0	0.0	667.5	0.0 50798.2				0.0	631.7		11368.3			
Res_1		0 1980	JUL 50798.2	0.0	0.0	368.9	0.0	0.0	0.0	0.0	368.9	0.0	0.0
0.0	0.0	384.2	0.0 50782.9			368.9	0.0	368.9	0.0	0.0			
Res_1		0 1980	AUG 50782.9	0.0	0.0	368.9	0.0	0.0	0.0	0.0	368.9	0.0	0.0
0.0	0.0	307.3	0.0 50844.5			461.2	0.0	368.9	0.0	92.2	255.0		
Res_1		0 1980	SEP 50844.5	0.0	0.0	357.0	0.0	0.0	0.0	0.0	357.0	0.0	0.0
0.0	0.0	256.3	0.0 50945.3		48980.2	510.8	0.0	357.0 	0.0	153.7			
 Res_1		0 1980	TOT 50000.0	650.9	0.0	2546.8	0.0	0.0	0.0	0.0	3197.7	0.0	0.0
0.0	0.0	2252.5	0.0 50945.3	-1.0	-1.0	27750.3	0.0	3197.7	0.0	24552.6			

Reservoir Summary ACFT

STATEMOD
StateMod Operating Rule Example - ex12.*

PAGE NO. 2

RESERVOIR ID : Res_1
RESERVOIR NAME : Reservoir_1
RESERVOIR ACCOUNT & AMOUNT: 1 50000.; where account 0 is the total
RESERVOIR OWNER : Res_1 Own_1
RIVER LOCATION : Exist. Reservoir

From Storage

to								Sta	tion Bal	Lance				3
						From R	iver by		From	Carrier	by			
							Targ	t_0 E	BOM					
				Initial								Total	River	River
Carrie	r Tot	al	See	& q≘	EOM Sto	or_n Dec	cree Ri	ver Riv	er Riv	ver Ri	ver Ri	ver		
Reservo	oir			Storage	Priorty	Storage	Exc_Pln	Loss P	riorty S	Sto_Exc	Loss	Supply	For Use	For Exc
for Use	e Relea	se Evap	Sr	oill Cont	tent L:	imit Li	imit Inf	low Relea	se Dive	ert by W				
ID		Acc Year	Mo	NA	(+)	(+)	(+)	(-)	(+)	(+)	(-)	NA	(-)	(-)
(-)	NA	(-)	(-)	NA	NA	NA	(+)	(+)	(-)	(-)	NA			
				(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(12)	(13)	(14)	(15)	(16	(17)	(18)	(19)	(20)	(21)	(22)	(23)			
Res_1		1 1979		49975.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0			50000.0		1368.9	0.0	368.9	0.0	1000.0			
Res_1		1 1979		49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0			49631.1		456.3	0.0	0.0	0.0	456.3			
Res_1		1 1979		49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	49631.1	49631.1	152.1	0.0	0.0	0.0	152.1			
Res_1		1 1980	JAN	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	49631.1	49631.1	50.7	0.0	0.0	0.0	50.7			
Res_1		1 1980	FEB	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	49975.0	49631.1	49631.1	16.9	0.0	0.0	0.0	16.9			
Res_1		1 1980	MAR	49975.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	25.2	0.0	49949.8	49631.1	49631.1	5.6	0.0	0.0	0.0	5.6			
Res_1		1 1980	APR	49949.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	326.0	0.0	49623.8	49656.5	49631.1	358.9	0.0	357.0	0.0	1.9			
Res_1		1 1980	MAY	49623.8	376.2	0.0	0.0	0.0	0.0	0.0	0.0	376.2	0.0	0.0
0.0	0.0	274.7	0.0	49725.3	49630.3	49631.1	12000.0	0.0	745.1	0.0	11254.9			
Res_1		1 1980	JUN	49725.3	274.7	0.0	0.0	0.0	0.0	0.0	0.0	274.7	0.0	0.0
0.0	0.0	648.5	0.0	49351.5	49166.0	49254.9	12000.0	0.0	631.7	0.0	11368.3			
Res_1		1 1980	JUL	49351.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	370.6	0.0	48980.9	49201.8	48980.2	368.9	0.0	368.9	0.0	0.0			
Res_1		1 1980	AUG	48980.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	294.3	0.0	48686.6	49217.1	48980.2	461.2	0.0	368.9	0.0	92.2			
Res_1		1 1980	SEP	48686.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	243.7	0.0	48442.9	49155.5	48980.2	510.8	0.0	357.0	0.0	153.7			

0.0 0.0 650.9 0.0 0.0 0.0 24552.6

Reservoir Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex12.*

PAGE NO. 3

: Res_1 : Reservoir_1 RESERVOIR ID RESERVOIR NAME

RESERVOIR ACCOUNT & AMOUNT: 2 50000.; where account 0 is the total RESERVOIR OWNER : Res_1 Own_2
RIVER LOCATION : Exist. Reservoir

From Storage Station Balance

to								St	ation Balan	ce			Fro	m Storag
						From R	iver by		From Ca		r by			
							Targt_	0	BOM					
				Initial							 .	Total	River	Rive
arrie		al		p &			cree Rive		ver River			ver.		
leservo					Priorty				Priorty Sto				For Use	For Ex
IOT USE ID	e Relea	se Evap Acc Year	Mo	NA NIT		(+)		w kele	ease Divert	(+)	well Outl	.10w NA	(-)	(-
(-)	NA	(-)	(-)	NA NA		NA		(+)	(-)	(-)	NA	IVA	(-)	(-
()	1411	()	()	(1)	(2)	(3)		(5)		(7)	(8)	(9)	(10)	(11
(12)	(13)	(14)	(15)			(18		(20)		(22			(,	,
Res_1		2 1979	OCT	25.0	0.0	0.0	368.9	0.0	0.0	0.0	0.0	368.9	0.0	0.
0.0	0.0	0.0	0.0	393.9	50000.0	0.0	1368.9	0.0	368.9	0.0	1000.0			
Res_1		2 1979	NOV	393.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
0.0	0.0	0.0	0.0	393.9	49631.1	0.0	456.3	0.0	0.0	0.0	456.3			
Res_1		2 1979	DEC	393.9	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.
0.0	0.0	0.0	0.0		49631.1	0.0		0.0	0.0	0.0	152.1			
Res_1		2 1980	JAN	393.9	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.
0.0	0.0	0.0	0.0		49631.1	0.0		0.0	0.0	0.0	50.7			
Res_1		2 1980	FEB	393.9	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.
0.0	0.0	0.0	0.0		49631.1	0.0		0.0	0.0	0.0	16.9			
Res_1		2 1980	MAR	393.9	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.
0.0	0.0	0.2	0.0		49631.1	0.0		0.0	0.0	0.0	5.6	257.0	0 0	0
Res_1	0 0	2 1980	APR	393.7	0.0	0.0		0.0	0.0	0.0	0.0	357.0	0.0	0.
0.0	0.0	4.9	0.0		49656.5	0.0		0.0	357.0	0.0	1.9	368.9	0.0	0.
Res_1	0.0	2 1980	MAY	745.9		0.0		0.0	0.0	0.0	0.0	308.9	0.0	0.
0.0	0.0	6.1 2 1980	0.0 JUN	1108.7	49630.3	0.0	12000.0 357.0	0.0	745.1 0.0	0.0	11254.9	357.0	0.0	0.
Res_1).0	0.0	19.0	0.0		49166.0		12000.0	0.0	631.7		11368.3	337.0	0.0	0.
Res 1	0.0	2 1980	JUL	1446.7	0.0	0.0		0.0	0.0	0.0	0.0	368.9	0.0	0.
0.0	0.0	13.6	0.0		49201.8	0.0		0.0	368.9	0.0	0.0	300.5	0.0	٥.
Res_1	0.0	2 1980	AUG	1802.0	0.0	0.0		0.0	0.0	0.0	0.0	368.9	0.0	0.
0.0	0.0	13.0	0.0		49217.1	0.0		0.0	368.9	0.0	92.2	300.3	0.0	٠.
Res_1		2 1980		2157.9	0.0	0.0		0.0	0.0	0.0	0.0	357.0	0.0	0.
0.0	0.0	12.6	0.0		49155.5	0.0		0.0	357.0	0.0	153.7			
Res_1		2 1980	TOT	25.0	0.0		2546.8		0.0	0.0	0.0	2546.8	0.0	0.0
0.0 #	0.0	69.5	0.0	2502.3	-1.0	-1.0	27750.3	0.0	3197.7	0.0	24552.6			
# # # *.xp]		Plan												
#														
	ATEMOD		_											
‡ Sta	ateMod	Operating	Rule	Example	- ex12.*									
	1 ***	10	00 00	D.L.	0000/00/	15)								
# State # Run o		rsion: 12.				15)								
	Step:		/ Z/ nthly	8 12:12	- 6									
# 11111E	step.	MO	пспту											
# #														
#														
Plan Sı	1mm 2 25 7	ACFT												
Plan Su Plan Nu	-	= 1												
Plan Ty			Accou	nting_P	lan									
Plan II		= Pln_1												

Plan ID = PIn_I Plan Name = AccountingPlan Plan Source = Dem_2

Plan Uses

River Year Mo Supply ______ ID ID

Plan Uses _____ Use 20 Total 0.0 0.0 0.0 Pln_1 Pln_1 1979 OCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1979 NOV 0.0 Pln_1 Pln_1 0.0 1979 DEC Pln 1 Pln 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Pln_1 1980 JAN 0.0 0.0 Pln 1 0.0 Pln 1 Pln_1 1980 FEB 0.0 Pln_1 1980 MAR 0.0 Pln 1 0.0 Pln_1 1980 APR 0.0 0.0 Pln 1 0.0 Pln 1 Pln_1 1980 MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Pln 1 Pln 1 1980 JUN 0.0 Pln 1 1980 JUL 0.0 0.0 Pln 1 0.0 1980 AUG Pln 1 0.0 0.0 0.0 Pln 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Pln_1 1980 SEP 0.0 Pln 1 0.0

Plan Summary ACFT Plan Number =

0.0

= 2 = 3

Plan Type 3 Reuse_Reservoir

= Res_Pln Plan ID

Plan Name = ReservoirAcctingPln

Pln_1

0.0

Plan Source = Res_1

Opr Type = 25 Destination = NA Use 1 TD = NA Net_Evap Status = Name =

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

On

Pln_1

0.0

Plan Uses

0.0

0.0

0.0

0.0

Year Mo Initial Supply Plan River

1980 TOT

0.0 0.0

ID ID Storage Total Use 1 Use 2 Use 3 Use 4 Use 5 Use 6 Use 7 Use 8 Use 9 Use 10 Use 11 Use 12 Use 13 Use 14 Use 15 Use 16 Use 17 Use 18 Use 19 ID

Ending Plan Uses _____ Use 20 Total Storage Res_Pln Res_Pln 1979 OCT 0.0 0.0 0.0 0.0 0.0 25.0 393.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 393.9 0.0 0.0 0.0 0.0 0.0 0.0 Res_Pln Res_Pln 1979 0.0 0.0 0.0 0.0 1979 NOV 393.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 393.9 0.0 0.0 0.0 0.0 0.0 0.0 Res_Pln Res_Pln 0.0 0.0 1979 DEC 393.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 393.9 0.0 0.0 0.0 0.0 Res_Pln Res_Pln 0.0 0.0 1980 JAN 393.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 393 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1980 FEB 393.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 393.9 0.0 Res_Pln Res Pln 1980 MAR 393.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 393.7 Res_Pln Res Pln 1980 APR 393.7 357.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 745.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9 1980 MAY 745 9 Res Pln Res Pln 368 9 0 0 6.1 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 1108.7 Res_Pln 1980 JUN 1108.7 Res Pln 357 0 0 0 19.0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.0 1446.7 Res_Pln 1980 JUL 1446.7 Res Pln 368.9 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.6 1802.0 Res Pln 1980 AUG Res Pln 1802.0 368.9 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 13 0 2157 9 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 1980 SEP Res_Pln 2157.9 357.0 Res Pln 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 12 6 2502 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1980 TOT Res_Pln Res_Pln 1980 TOT 0.0 0.0 0.0 0.0 0.0 2157.9 0.0 2571.8 0.0 0.0 69.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.5 2502.3

Plan Summary ACFT
Plan Number = 3
Plan Type = 1 T&C_Requirement

= T&CPln_1 Plan TD Plan Name = T&C_Plan Plan Source = Pln_1

Plan Sources

Year Mo From Plan Plan River -----------Exc/Byp Demand Src 1 ID ID Exc/Byp Demand Src 1 Src 2 Src 3 9 Src 10 Src 11 Src 12 Src 13 Src 14 Src 15 Src 16 Src 17 Src 18 Src 3 Src 4 Src 5 Src 6 Src 7 Src 8 Src Plan Sources ReDivert Performance Src 19 Src 20 Short Total Store 1 Store 2 Store 3 Total Switch Status Total 0.0 0.0 0.0 0.0 0.0 T&CPln_1 T&CPln 1 1979 OCT 0.0 Off 0.0 0.0 Off 0.0 T&CPln_1 T&CPln_1 1979 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NOV 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Off Off 0.0 T&CPln_1 T&CPln 1 1979 DEC 0.0 Off 0.0 Off 0.0 1980 JAN 0.0 0.0 0.0 T&CPln_1 T&CPln 1 0.0 Off Off 0.0 T&CPln_1 1980 FEB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T&CPln 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Off Off 0.0 T&CPln_1 T&CPln 1 1980 MAR 0.0 Off Off 0.0 T&CPln_1 T&CPln 1 1980 APR 0.0 Off Off 0.0 1980 MAY 0.0 0.0 0.0 T&CPln_1 T&CPln 1 0.0 Off Off 0.0 T&CPln_1 T&CPln 1 1980 JUN 0.0 Off 0.0 0.0 Off 0.0 T&CPln_1 0.0 0.0 0.0 0.0 0.0 T&CPln 1 1980 JUL 0.0 Off Off 0.0 T&CPln_1 T&CPln 1 1980 AUG 0.0 Off 0.0 0.0 Off 0.0 T&CPln_1 T&CPln 1 1980 SEP 0.0 Off 0.0 0.0 0.0 Off 0.0 T&CPln_1 T&CPln_1 1980 TOT 0.0 Off Off 0.0 *.xop Operational Right Diversion Summary STATEMOD StateMod Operating Rule Example - ex12.* # Statemod Version: 12.29.00 Date = 2008/09/15) 11/ 2/ 8 12:12: 6 # Run date: # Time Step: Monthly Operational Right Summary ACFT $ID = Opr_1$ Name = Opr_Pro_Rata_Direct_to_A Opr Type = 25 25 Admin # = 0 Year Off = 6.00001 Source 1 = Dem_2_WR_1 9999 Destination = Res 1 Year On = NOV OCT JUN JUL YEAR DEC JAN FEB MAR APR MAY AUG SEP TOT

357.0

357.0

0.0

0.0

368.9

368 9

368.9

368 9

368.9

368.9

357.0

357.0

357.0 2546.8

357.0 2546.8

368.9

368 9

1980

AVG

0.0 0.0

0.0

0 0

0.0

0.0

0.0

0 0

Example 13

```
*.rsp; response file for Statemod Example 13
      This response file lists the StateMod input files necessary for model simulation
# Type
                                          Name
                                        = ex13.ctl
Control
River Network
                                        = ex13.rin
StreamGage Station
                                        = ..\ex1\ex1.ris
Stream Base Monthly
                                        = ..\ex1\ex1.rim
Diversion Station
                                        = ex13.dds
Diversion_Right
                                        = ... ex1 ex1.ddr
Diversion_Demand_Monthly
                                        = ... ex1\ex1.ddm
Reservoir_Station
                                        = ..\ex2\ex2.res
                                        = ..\ex2\ex2.rer
Reservoir_Right
Reservoir_Target_Monthly
                                        = ... ex2 ex2.tam
Evaporation Monthly
                                        = ..\ex2\ex2.eva
Instreamflow Station
                                        = ..\ex1\ex1.ifs
Instreamflow Right
                                        = ... \exp[-x_1.ifr]
Instreamflow_Demand_AverageMonthly
                                        = ..\ex1\ex1.ifa
Plan Data
                                        = ex13.pln
Plan Return
                                        = ..\ex11\ex11.prf
Operational Right
                                        = ex13.opr
DelayTable Monthly
                                        = ..\ex1\ex1.urm
                                        = ex13.out
OutputRequest
# Exhibit 13.2
# ex*.ctl; Control file for StateMod Example 13
  STATEMOD
  StateMod Operating Rule Example - ex13.*
           : iystr STARTING YEAR OF SIMULATION
    1980
             : iyend ENDING YEAR OF SIMULATION
    1980
            : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. O FOR VARIANT DATA. 1 FOR CONS. DATA : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
      0
           : numpre NO. OF PRECIPITATION STATIONS : numeva NO. OF EVAPORATION STATIONS
      Ω
      1
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
      -1
            : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
  1.9835
            : rfacto DIVISOR FOR STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
  1.9835
  1.9835
            : dfacto DIVISOR FOR DIVERSION DATA;
                                                         ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
            : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
 1.0
            : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
            : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
  1.0
  1 0
            : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  WYR
            : cyrl Year type (a5 right justified !!)
            : icondem 1=no add; 2=add, 3=total demand in *.ddm
            : ichk detailed output switch 0 = off, 1=print river network, ... (see documetnation)
            : ireopx Re-operation switch (0=re-operate;1=no re-operation)
            : ireach 0=no instream reach; 1=yes instream flow reach
            : icall Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
            : ccall Detailed call water right ID (not used if icall = 0)
                       Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
            : iday
            : iwell \, Switch for well operations \, See section 7.4 for a discussion of the well options.
            : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
            : isirip San Juan RIP
            : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc.
            : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
            : isprink O=off, 1=Maximum Supply, 2=Mutual Supply
            : soild    0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
            : isig
                      Number of significant digits behind decimal point in output files
 *.dds; Direct Diversion Station file for StateMod Example 13
#> Direct Diversion Station File
#> Card 1 format (a12, a24, a12, i8, f8.2, 2i8, 1x, a12)
#>
#> ID
               cdivid: Diversion station ID
```

```
#> Name divnam: Diversion name
#> Riv ID cgoto: River node for diversion
#> On/Off idivsw: Switch 0=off, 1=on
  Capacity
             divcap:
                      Diversion capacity (CFS)
#>
               dumx: Not currently used
#>
#> RepType
            ireptyp: Replacement reservoir option (see StateMod doc)
  Daily ID cdividy: Daily diversion ID
#>
#>
#> Card 2 format (12x, a24, 12x, 2i8, f8.2, f8.0, 2i8)
#>
#> User Name usernam: User name.
#>
  DemType idvcom:
                      Demand data type switch (see StateMod doc)
   #-Ret
               nrtn: Number of return flow table ref
#>
   Eff
Area
             divefc:
                      Annual system efficiency
#>
              area: Irrigated acreage
#>
   UseType irturn: Use type (see StateMod doc)
Demsrc demsrc: Demand source (see StateMod doc)
#>
#>
  Demsrc
#>
#> Card 3 format (free format)
#>
     diveff (12): System efficiency % by month
#>
#>
#> Card 4 format (36x, a12, f8.2, i8)
#>
#> Ret ID
             crtnid: River node receiving return flow
           pcttot: Percent of return flow to this river node irtndl: Delay (return flow) table for this return flow.
#> Ret %
#> Table #
#>
                                 Riv ID On/Off Capacity
#> TD
                 Name
                                                               RepType Daily ID
#>
#>xxxxxxxxxb----eb----eb----eb-----eb-----eb-----eb-----eb-----
#> ... Monthly Efficiencies...
#>b-----
                               Ret ID Ret % Table #
#>
1
                                                                      0 Dem_3
         Irrigation Demand _3 Dem_3 1 5000.00
Dem 3
                                                                   0.00
                                             1 1
100.00 1
                                                              50.
                                                                                      0
         Dem_4
Irrigation Demand _4 Dem_4
                                                               1
                                            1 5000.00
Dem 4
                                                                       0 Dem 4
                                                              50.
                                                                     0.00
                                                                                      0
                                                  1 1
                                T&CPln_1
                                             100.00
                                                              1
                                                                    0 Dem_5
Dem_5 Irrigation Demand _5 Dem_5
                                             1 5000.00
                                                              50.
                                             1 1
100.00 1
                                                                     0.00
                                                                                      0
                                Dem 2
        Irrigation Demand _2 Dem_2
                                             1 5000.00
Dem 2
                                                              1
50.
                                                                       0 Dem_2
                                                                     0.00 1
                                                  1 1
                                                                                      0
                                                              1
                                Dem_1
Dem_1
                                             100.00
                                                                    0 Dem_1
                                                         1
                                             1 5000.00
Dem 1
         Municipal Demand _1
                                                             20. 0.00 1
                                            1 1
100.00 2
                                                                                      0.0
                                WWTP Pln
# Exhibit 13.5
# ex*.pln; Plan file for StateMod Example 13
    Card 1 Control
     format: (a12, a24, a12, 5i8)
                        Pid Include _ instead of blanks
Pname Include _ instead of blanks
     Plan TD:
     Plan Name:
     Plan Location
                        iPsta River node where the plan is located Pon On (1) or Off (0) switch
                        Pon
     Plan On/Off:
                        iPlnTyp 1 = Terms and Conditions (T&C)
     Plan Type
                                 2 = Well Augmentation
                                 3 = Reservoir Reuse
                                 4 = Non Reservoir Reuse (e.g., WWTP)
                                 5 = Reuse to a Reservoir from Tmtn
                                 6 = Reuse to a Diversion from Tmtn
                                 7 = Transmountain import
                                 8 = Recharge Plan
                                 9 = Out-of-Priority Diversion or Storage
                                10 = Special Well Augmentation (e.g., Designated Basin, Coffin Wells, etc.)
                                11 = Accounting Plan (e.g., changed water rights)
                                12 = Release Limit Plan (e.g., HUP Pool Release Limit)
     Plan Efficiency (%) Peff
                                Enter 0 if not used
                                Enter 1 to read 12 plan efficiency values (%)
                                Enter -1 if data is provided in an Operating Rule file (*.opr)
                                Enter 999 to use the source structure's efficiency
     Plan Return Flow ID iPrf
                                Enter 0 if not used
                                Enter 1 if data is provided in an Plan Return Flow file (*.prf)
                                Enter 999 to use the source structure's return flow pattern
     Plan Failure Switch iPfail Used only for a T&C Plan (iPlntype = 1)
                                Enter 0 to not turn plan off if it fails
                                Enter 1 to turn a plan off if it fails
                                1 = Do stop and accumulate failures to be paid in subsequent time steps
```

```
Plan Initial Storage Pstol Storage in Plan structure at beginning of simulation
                                  0 for non-Reuse Reservoir plans (iPtype<>3)
                                  >= 0 for Reuse Reservoir plans (iPtype=3) - set equal to storage in associated
reservoir (*.res) account
    Plan Source
                          Psource Source ID of the structure where plan water becomes available
                                  Note this information is currently used only when the plan type is
#
                                  recharge (type 8) from a reservoir
     Plan Account
                         iPAcc
                                  Source Account of the structure where plan water becomes available
#
                                  Note this information is currently used only when the plan type is
                                  recharge (type 8) from a reservoir
                                              ON/Off iPtype
                                                                       iPrf iPfail Pstol Psource
# ID
           Name
                                 RiverLoc
                                                               Peff
       ---eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----eb-----exb------eb-----
                                                                                          0 Dem_2
Pln 1
      AccountingPlan Pln_1
                                                 1
                                                          11 0
                                                                       0 0
                                                                                 0 25 Res_1
0 0 Pln_1
0 0 Dom 1
                                                         3
                                 Res_Pln
                                                                 0
Res Pln
           ReservoirAcctingPln
                                                   1
                                                                          0
                                                                                                        Ω
                                                                         1
                                                                                0
                                                  1
                                  T&CPln_1
T&CPln 1
           T&C Plan
                                                                 -1
                                                                                                        0
         ReusableEffluentPln
WWTP Pln
                               WWTP_Pln
                                                                  Ω
# Exhibit 13.6
 *.opr; operating rules file for Statemod Example 13
      This file lists the operating rules used in model simulation
                   GUIDE TO COLUMN ENTRIES
     _____
#
                     ID number of operating rule that is used to separate operating rule output in *.xop file
                    Name of operating rule - used for descriptive purposes only
          Name
         Admin#
                   Administration number used to determine priority of operational water rights relative to other
operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file)
        # Str Number of carrier structures, monthly on/off switches, or monthly volumetrics (flag telling
StateMod program the number of entries on next line) \# On/Off 1 for ON and 0 for OFF
          Dest. ID
                    Destination of operating rule whose demand is to be met by simulating the operating rule
          Dest Ac
                   Account at destination to be met by operating rule - typically 1 for a diversion structure and
account number for reservoir destination
         Soul ID ID number of primary source of water under which water right is being diverted in operating rule
 typically a water right, reservoir, or Plan structure

Soul Ac Account of Soul - typically 1 for a diversion structure and account number for reservoir source
          Sou2 ID
                    ID of Plan where reusable storage water or reusable ditch credits or terms and conditions
obligations is accounted
          Sou2 Ac Percentage of Plan supplies available for operation
                    Rule type corresponding with definitions in Chapter 4 of StateMod documentation
          Type
          ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted
          Div Type 'Diversion' indicates pro-rata diversion of source water right priority or exchange of reusable
credits to Dest1
                       'Depletion' indicates pro-rata diversion of source water right priority consumptive use or
augmentation of upstream diversions at Destl
         OprLoss Percentage of simulated diversion lost in carrier ditch (only applies to certain rules - see
StateMod documentation, Section 4.13)
         Limit Capacity limit for carrier structures different from capacity in .dds file (used to represent
constricted conveyance capacity for winter deliveries to reservoirs)
         Comments Description of rule type
                                                     Admin# # Str On/Off Dest Id
# TD
          Name
                                 NA
                                                                                     Dest Ac Soul Id
Ac Sou2 Id Sou2 Ac Type ReusePlan Div Type
____eb----eb----eb----exb-----exb-----exb-----exb-----exb-----
                                                                                      1 Dem_1_WR_1
Opr_1 Opr_Direct_Flow_With_Reuse
100 NA 0 25 WMTP Pln
                          With_Reuse 1.99999 0. 1 Dem_1 25 WWTP_Pln Diversion 0 0 0
                                                                           0 9999 Direct Flow Diversion of
                    0
Pro-Rata Water Right 5000. 5000. 5000. 5000. 5000. 5000.
                                                 5000. 5000. 5000. 5000. 5000. 5000. 60000.0 99999.00000 0. 1 NA 0 WMTP_Flan 0 0 0 9999 Spill WWTP_Plan
Opr_2
                         29 NA
          Opr_WWTPPlan_Spill
                                                                                              0 WWTP_Pln
0 NA
                                       NA
                  0
# Exhibit 13.7
# *.out; Output request file for StateMod Example 13
# Type (e.g. Diversion, StreamGage, Reservoir, InstreamFlow, Well or All)
A11
# Parameter (e.g. Total_Supply, Sim_EOM, River_Outflow or All)
Δ11
# ID Name Type and Print Code (0=no, 1=yes);
# Note: id = All prints all
# id = -999 = stop
#
       default is to turn on all stream gages (FLO)
#
Δ11
          Exist. Diver. 3/Inflow
Dem 3
                                    DTV
Res_1
          Exist. Reservoir
                                    RES
                                           1
Res Pln
           Reservoir Plan
                                    OTH
                                           1
Dem_4
          Exist. Diver. 4
                                    DTV
                                           1
          Exist. Diver. 5/Inflow
Dem 5
                                    DTV
                                            1
```

Pln_1

Plan Structure

ОТН

1

```
Exist. Diver. 2
T&C Plan
Dem_2
                                             DIV
                                                       1
T&CPln_1
                                              OTH
                                                       1
Dem_1
             Exist. Diver. 1
                                              DIV
                                                       1
WWTP_Pln
             ReusableEffluentPlan
                                              OTH
                                                       1
                                                      1
ISF
             Top Instream Flow
                                              ISF
ISF.01
             Bottom Instream Flow
                                              ISF
-999
#
 *.xwb
                Water Budget
#
# STATEMOD
# StateMod Operating Rule Example - ex13.*
# Statemod Version: 12.29.00 Date = 2008/09/15)
# Run date: 9/24/8 10:25:14
# Time Step: Monthly
                        Monthly
# Time Step:
```

Water Budget ACFT

Well Res	Stream ervoir Reservo	0+			rom From			From Rive	r
Year Mo	Inflow	Return	GWStorag	e SoilM	I Plan	Inflow	Divert	by Well	
Depletion	Evaporation	Seepage	Outflow	Change	SoilM	Change			
Total									
Outflow	Delta		Loss		_				
	4000.0	666.7	0.0	0.0	640.0	5306.7	4666.7	0.0	
0.0	0.0 640. 0.0	. 0	0.0	0.0	0.0 5	306.7	0.0 17	33.3	0.0
1979 NOV	4000.0					6675.6		0.0	0.0
0.0	0.0 1120. 0.0	. 0	0.0	0.0	0.0 6	675.6	0.0 21	77.8	0.0
1979 DEC	4000.0	1851.9	0.0	0.0		7291.9			0.0
0.0	0.0 1440. 0.0	. 0	0.0	0.0	0.0 7	291.9	0.0 23	25.9	0.0
1980 JAN	4000.0	1950.6	0.0	0.0	1600.0	7550.6		0.0	0.0
0.0	0.0 1600. 0.0	. 0	0.0	0.0	0.0 7	550.6	0.0 23	75.3	0.0
	4000.0	1983.5	0.0	0.0	1600.0	7583.5	5983.5	0.0	0.0
0.0	0.0 1600.	. 0	0.0	0.0	0.0 7	583.5	0.0 23	91.8	0.0
1980 MAR	0.0 4000.0	1994.5	0.0	0.0	1600.0	7594.5	5994.5	0.0	0.0
25.3	0.0 1600 0.0	0.0	-25.3	0.0	0.0	7594.5	0.0 2	422.5	0.0
0.0 1980 APR	4000.0	1998.2	0.0	0.0	1600.0	7598.2	5998.2	0.0	0.0
328.4	0.0 160 0.0	0.00	-328.4	0.0	0.0	7598.2	0.0	2727.5	0.0
1980 MAY	20000.0	2124.5	0.0	0.0	1600.0	23724.5	6500.0	0.0	0.0
298.5	0.0 562	27.5 1	1298.5	0.0	0.0	23724.5	0.0	2948.5	0.0
0.0 1980 JUN	20000.0	2250.0	0.0	0.0	1600.0	23850.0	6500.0	0.0	0.0
	20000.0	97.6 1	1051.2	0.0	0.0	23850.0	0.0	3451.2	0.0
	0.0 4000.0	2125.0	0.0	0.0	1600.0	7725.0	6000.0	0.0	0.0
485.2	0.0 172	25.0	-485.2	0.0		7725.0		2885.2	0.0
0.0 1980 AUG	0.0 4000.0	2000.0	0.0	0.0	1600.0	7600.0	6000.0	0.0	0.0
386.5	0.0 160			0.0	0.0	7600.0	0.0	2786.5	0.0
	0.0 4000.0	2000.0	0.0	0.0	1600.0	7600.0	6000.0	0.0	0.0
321.1	0.0 160					7600.0			0.0
0.0	0.0								
1980 Tot	80000.0	22500.5	0.0	0.0	17600.0	120100.5	71000.9	0.0	0.0
2646.2	80000.0 0.0 256	550.1	20803.3	0.0	0.0	120100.5	0.0	30946.6	0.0
0.0	0.0								
		Wate	r Budget AC	FT					
	Stream		From/To	From	ı From	Total		From River	Well
Reservoir	Reservoir	Stream	Reservoir	To	SoilM	Total	D: (C)	1	Decil at the
rear Mo Evaporation	Stream Reservoir Inflow Seepage	Return Outflow	Gwslorage Change	Soil Soil	M Pian (5) M Chang	e Outflow	Delta (פּן	CU (1)	Loss Loss
(2) Pumping	(3) Salvage (4	4)				NA			
(-)	(+)	(+)	(+)	(+)	(-)	NA NA	(-) NA	(-) NA	(-) NA
NA	NA					1.6	/ 7\		(0)
(10)	(11) (1	(∠) L2)	(13)	(14)	(15)	(6) (16)	(17)	(18)	(9) (19)
(20)	(21)								

Ave OCT	4000.0 666.		0.0		0.0	640.0	5306.7	4666.7		0.0		0.0
0.0	0.0 640.0 0.0	0.0		0.0		0.0 5	306.7	0.0 17	733.3		0.0	
	4000.0 1555.	6 0	0.0		0.0	1120.0	6675.6	5555.6		0.0		0.0
0.0		0.0		0.0		0.0 6	675.6	0.0 21	77.8		0.0	
0.0	0.0											
Ave DEC	4000.0 1851.	9 0	0.0		0.0	1440.0	7291.9	5851.9		0.0		0.0
0.0	0.0 1440.0	0.0		0.0		0.0 7	291.9	0.0 23	325.9		0.0	
0.0	0.0											
Ave JAN	4000.0 1950.	6 0	0.0		0.0	1600.0	7550.6	5950.6		0.0		0.0
0.0	0.0 1600.0	0.0		0.0		0.0 7	550.6	0.0 23	375.3		0.0	
0.0	0.0											
Ave FEB	4000.0 1983.	5 0	0.0		0.0	1600.0	7583.5	5983.5		0.0		0.0
0.0	0.0 1600.0	0.0		0.0		0.0 7	583.5	0.0 23	391.8		0.0	
	0.0											
Ave MAR	4000.0 1994.	5 0	0.0		0.0	1600.0	7594.5	5994.5		0.0		0.0
25.3	0.0 1600.0	-25.3		0.0		0.0	7594.5	0.0 2	2422.5		0.0	
	0.0											
Ave APR	4000.0 1998.	2 0	0.0		0.0	1600.0	7598.2	5998.2		0.0		0.0
328.4	0.0 1600.0	-328.4		0.0		0.0	7598.2	0.0	2727.5		0.0	
0.0	0.0											
Ave MAY	20000.0 2124.	5 C	0.0		0.0	1600.0	23724.5	6500.0		0.0		0.0
298.5	0.0 5627.5	11298.5		0.0		0.0	23724.5	0.0	2948.5		0.0	
0.0												
	20000.0 2250.											
	0.0 5497.6	11051.2		0.0		0.0	23850.0	0.0	3451.2		0.0	
0.0												
	4000.0 2125.											0.0
485.2	0.0 1725.0	-485.2		0.0		0.0	7725.0	0.0	2885.2		0.0	
0.0	0.0											
Ave AUG	4000.0 2000.	0 0	0.0		0.0	1600.0	7600.0	6000.0		0.0		
386.5	0.0 1600.0 0.0	-386.5		0.0		0.0	7600.0	0.0	2786.5		0.0	
0.0	0.0											
Ave SEP	4000.0 2000.	0 0	0.0		0.0	1600.0	7600.0	6000.0		0.0		0.0
321.1	0.0 1600.0 0.0	-321.0		0.0		0.0	7600.0	0.0	2721.1		0.0	
0.0	0.0											
7 Mai	00000 0 00500				0 0	17600 0	120100 5	71000 0		0 0		0 0
Ave Tot	80000.0 22500. 0.0 25650.1	5 00000	J. U	0 0	U.U	17600.0	120100.5	71000.9	20046 5	U.U	0 0	0.0
2646.2	0.0 25650.1 0.0	∠0803.3		0.0		0.0	120100.5	0.0	30946.6		0.0	
0.0	0.0							0.0	(6)			
								0.0	(6)			

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency + max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

71000.9

(4) Salvage is not part of the Stream Water Balance. It is the portion of well pumping that does not impact the stream

(5) From Plan is water from a reuse plan.

(6) Divert does not include diversions by an instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:

0. af/yr for Diverted to Storage. 1

0. af/yr for a Diversion Carrier.
0. af/yr for a Reservior Carrier. 2

3

0. af/yr for a Plan Carrier. 4

0. af/yr Total

#

```
##
  *.xwr
               Water rights list sorted by basin rank
#
#
    STATEMOD
#
   StateMod Operating Rule Example - ex13.*
# Statemod Version: 12.29.00 Date = 2008/09/15)
# Run date: 9/24/ 8 10:25:16
                       Monthly
# Time Step:
  *.xwr; Water Right Information
#
         Number of rights =
```

```
#
#
 Where:
                    = Water right basin rank
  1. Rank
                     = Water right type
  2. Type
                    1=Instream,
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
#
                    5=Operational,
                    6=Well,
  3. Admin #
                    = Administration Number
#
   4. On/Off
                     = On or Off switch
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
                    1=on
#
                   +n=begin in year n
                   -n=stop in year n
#
   5. Str Id #1
                     = Primary structure for this right
   6. Str Id #2
                     = Secondary structure for this right (-1=N/A)# 7. Amount
                                                                                      = Decreed capacity & unit
(c=CFS, a=AF)
                     = Water right name
# 8. Right Name
                     = Primary structure for this right
 9. Str Name #1
# 10. Str Name #2
                     = Secondary structure for this right (-1=N/A)
                                       Admin # On/Off Str ID #1
   Rank TD
                                                                     Str ID #2
                                                                                       Amount Right Name
                          Type
Str Name #1
                          Str Name #2
                                                                                            (8) (9)
                           (3)
                                           (4)
                                                   (5) (6)
                                                                     (7)
    (1) (2)
(10)
                           (11)
      1 Opr_1
                           125
                                       1.99999
                                                     1 -1
                                                                     -1
                                                                                       -1.000 x
Opr_Direct_Flow_With_Reu
                                                                                      100.000 c M&I Demand _1
       2 Dem 1 WR 1
                             3
                                       2.00000
                                                     0 Dem 1
                                                                     -1
Municipal Demand _1
                             3
                                       6.00000
                                                     1 Dem 2
                                                                                       60.000 c Irrigation Demand _2
       3 Dem 2 WR 1
                                                                     -1
Irrigation Demand 2
                             3
                                       7.00000
                                                                                      100.000 c Irrigation Demand 3
      4 Dem_3_WR_1
                                                     1 Dem 3
                                                                     - 1
Irrigation Demand _3
                                       9.00000
      5 ISF WR 1
                             1
                                                     1 TSF
                                                                                       65.500 c Instream Flow 1
                                                                     - 1
Instream Demand
      6 Dem 4 WR 1
                                      10.00000
                                                                                      100.000 c Irrigation Demand _4
                             3
                                                     1 Dem 4
                                                                     -1
Irrigation Demand 4
      7 Res_1_WR_1
                             2.
                                      15.00000
                                                                                   100000.000 a Reservoir 1
                                                     1 Res 1
                                                                     -1
Reservoir 1
      8 Dem 5 WR 1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                     -1
                                                                                      100,000 c Trrigation Demand 5
Irrigation Demand _5
                           129
                                   99999.00000
       9 Opr 2
                                                     1 -1
                                                                     -1
                                                                                       -1.000 x Opr_WWTPPlan_Spill
#
#
 *.xdd
             Diversion Summary
#
   STATEMOD
   StateMod Operating Rule Example - ex13.*
# Statemod Version: 12.29.00 Date = 2008/09/15)
                    11/ 2/ 8 13:47:28
 Run date:
 Time Step:
                     Monthly
#
   Diversion Summary ACFT
     STATEMOD
     StateMod Operating Rule Example - ex13.*
PAGE NO.
          1
    STRUCTURE ID (0 = total) : Dem_3
    STRUCTURE ACCT (0 = total): 0
                             : Irrigation Demand _3
    STRUCTURE NAME
    RIVER LOCATION - FROM
                              : Dem_3
                                             Exist. Diver. 3/Inflow
    RIVER LOCATION - TO
                              : Dem_3
                                             Exist. Diver. 3/Inflow
    STRUCTURE DATA
                                                    af@30
                                                              af@31
                                    #
                              :
                                           cfs
                                    1
                                          5000.
                                                  297525.
                                                            307442
      Diversion Capacity
      Diversion Rights
                              :
                                    1
                                           100.
                                                   5950.
                                                              6149.
```

0.

0.

0.

#

Well Capacity

Well Rights : 0 0. 0. 0.

Shortage	Water U	Jse Dema	nd		From Ri	iver By			From	Carrier	By
Carried Structure River	======	======				===					-
Structure River		======			======			From	======		
Exchange From Tota	l Total	CU	To	Total		Upst	rm				
ID ID	Year	Mo Total	CU F	riorty St	orage I	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Suppl	y Short	Short CU	SoilM	Return	Loss	s Infl	OW				
Station				Stat							
Reach Return Well											
Gain Flow Deplet											
Dem_3 Dem_3	1979 C	CT 1000.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	1000.0 50	0.0	0.0	0.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
0.0 0.0 1000.0		.1									
Dem_3 Dem_3		IOV 1000.0						0.0	0.0	0.0	0.0
0.0 0.0 555.6					0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
555.6 0.0 444.											
Dem_3 Dem_3					0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 851.9					0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
851.9 0.0 148.		_									
Dem_3 Dem_3					0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 950.6		475.3			0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
950.6 0.0 49.		em_1 'EB 1000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_3 Dem_3 0.0 0.0 983.5		8.2 491.8					1000.0	0.0	0.0		1000.0
983.5 0.0 16.					0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
Dem_3 Dem_3					0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 994.5	190U M	2 7 497 3	0.00	494.5			1000.0	0.0	0.0		1000.0
994.5 0.0 5.					0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
		PR 1000.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 998.2	1.8	0.9 499.1	0.0	499.1			1000.0	0.0	0.0		1000.0
998.2 0.0 1.											
Dem_3 Dem_3	1980 M	AY 1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0 0.0 4000	.0 1600.0 N	ΙA	-1.	000							
Dem_3 Dem_3		UN 1000.0	500.0	1000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 1000.0		0.0 500.0			0.0	0.0	5000.0	0.0	0.0	0.0	5000.0
1000.0 0.0 4000			-1.								
Dem_3 Dem_3				1000.0	0.0			0.0	0.0		0.0
0.0 0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0 0.0 0	.0 0.0 H	Igate_Limit	-1.	.000							
Dem_3 Dem_3 0.0 0.0 1000.0	1980 A	UG 1000.0	500.0	1000.0	0.0			0.0	0.0	0.0	
0.0 0.0 1000.0	0.0	0.0 500.0	0.0	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0 0.0 0 Dem_3 Dem_3 0.0 0.0 1000.0	.0 0.0 H	Igate_Limit	-1.	1000	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Dem_3 Dem_3	1980 S	SEP 1000.0	500.0	1000.0	0.0	0.0	1000 0	0.0	0.0	0.0	1.000
0.0 0.0 1000.0	0.0	0.0 500.0	100	500.0	0.0	0.0	1000.0	0.0	0.0	0.0	1000.0
1000.0 0.0 0	.0 0.0 L	em_1	100.	.000							
Dem_3 Dem_3	1980 т	OT 12000.0	6000.0 1	0334.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 10334.2	1665.8 83	2.9 5167.1	0.0	5167.1	0.0	0.0	20000.0	0.0	0.0	0.0	20000.0
10334.2 0.0 966	5.8 3200.0	NA	-1	.000							
Diversion Summary	ACFT										
STATEMOD											

StateMod Operating Rule Example - ex13.* PAGE NO. 2

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA : # cfs af@30 af@31 : 1 5000. 297525. 307442. : 1 100. 5950. 6149. : 1 0. 0. 0 Diversion Capacity Diversion Rights Well Capacity Well Rights 0. 0. 0. 0. 0

Shortage		Water [Use			
			Dema	nd From River By		From Carrier By
Carried		=======		=======================================		
Structure	River		=======	===== =================================	From	=======================================
Exchange	From Total	Total	CU	To Total Upstrm		
ID	ID	Year	Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc Loss
Bypass	SM Supply	Short	Short CU	SoilM Return Loss Inflow		

Station In/Out Station Balance

======		========			======							
Reach	Return Well	From/To R	iver River	River	River	Avail	Control	Control				
Gain	Flow Deplete	GW Stor I	nflow Diver	t By Well	Outflow	Flow	Location	Right				
Dem_4	Dem_4	1979 O	CT 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 25	0.0 0.0	0.0	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
0.0	0.0 1000.0	0.0 Dem_	1	100.000								
Dem_4	Dem_4	1979 N	ov 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 25	0.0 0.0	0.0	0.0	0.0	444.4	0.0	138.9	0.0	0.0	583.3
0.0	0.0 583.3	0.0 Dem_	1	100.000								
Dem_4	Dem_4	1979 D	EC 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 25	0.0 0.0	0.0	0.0	0.0	148.1	0.0	351.9	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_	1	100.000								
Dem_4	Dem_4	1980 J	AN 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 25	0.0 0.0	0.0	0.0	0.0	49.4	0.0	450.6	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem	1	100.000								
Dem 4	Dem 4	1980 F	EB 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	500.0 25	0.0 0.0	0.0	0.0	0.0	16.5	0.0	483.5	0.0	0.0	500.0
0.0	0.0 500.0	0.0 ISF.		-1.000								
Dem 4	Dem 4	1980 M		250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		0.0 0.0	0.0	0.0	0.0	5.5	0.0	494.5	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem_		100.000								
Dem 4	Dem 4	1980 A		250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		0.0 0.0	0.0	0.0	0.0	1.8	0.0	498.2	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem		100.000								
Dem 4	Dem 4	1980 M			500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0		0.0 250.0	0.0	250.0	0.0		0.0	499.5	0.0	0.0	4499.5
500.0	0.0 3999.5			-1.00		0.0	1000.0	0.0	100.0	0.0	0.0	1100.0
Dem 4	Dem 4	1980 J		250.0	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 500.0		0.0 250.0	0.0	250.0	0.0		0.0	500.0	0.0	0.0	4500.0
500.0	0.0 4000.0			-1.00		0.0	4000.0	0.0	300.0	0.0	0.0	4500.0
Dem 4	Dem 4	1980 J		250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		0.0 0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	125.0 ISF	0.0 0.0	100.000	0.0	0.0	0.0	0.0	300.0	0.0	0.0	300.0
Dem 4	Dem 4	1980 A	UG 500.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		0.0 0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem		100.000	0.0	0.0	0.0	0.0	300.0	0.0	0.0	300.0
Dem 4	Dem 4	1980 S		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		0.0 0.0	0.0	0.0	0.0		0.0	500.0	0.0	0.0	500.0
0.0	0.0 500.0	0.0 Dem		100.000	0.0	0.0	0.0	0.0	500.0	0.0	0.0	500.0
Dem_4	Dem_4	1980 T	OT 5500.0	2750.0 1	000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 1000.0			0.0	500.0	0.0	9665.8	0.0	4917.1	0.0	0.0	14582.9
1000.0		9 3325.0 N		-1.0								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex13.*

PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_5 -3
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _5
RIVER LOCATION - FROM : Dem_5 Exist. Diver. 5/Inflow
RIVER LOCATION - TO : Dem_5 Exist. Diver. 5/Inflow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	е		Water	Use										
					Deman	d		From R	iver By			From	Carrier	By
Carried			=====						===					
Structu	re R	iver		==		===== ==				====	From	======		
Exchang	e Fro	m Total	Total	CU		To	Total		Upst:	rm				
ID	I	D	Year	Mo 7	otal	CU Pr	iorty St	orage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM	Supply	Short	Short	CU	SoilM	Return	Los	s Infl	WC				
	S	tation I	n/Out				Stat	ion Ba	lance					
======	=====	======			=====	======		=====	=======					
Reach	Retur	n Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flow	Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_5	D	em_5	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 Det	m_1		100.000								
Dem_5	D	em_5	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0	3000.0	0.0 Det	m_2		60.000								

Dem_5	Dem_5	1979 DE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 JA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 FE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 MA	R 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 AP	R 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 MA	Y 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0	.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	403.0 ISF		100.000								
Dem_5	Dem_5	1980 JU	N 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0	.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	147.6 ISF		100.000								
Dem_5	Dem_5	1980 JU	L 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0	.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 AU	G 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0	.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
Dem_5	Dem_5	1980 SE	P 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0	.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 Dem_2		60.000								
 Dem 5			T 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0		.0 0.0	0.0	0.0	0.0		60000.0	0.0	0.0		60000.0
0.0	0.0 60000.0	550.5 NA		-1.000	0.0	0.0	0.0	55000.0	0.0	0.0	0.0	55000.0
0.0	0.0 00000.0	JJU.J INA		-1.000								

STATEMOD

StateMod Operating Rule Example - ex13.*

PAGE NO. 4

Shortag	ge	Water Use	Demand	1	<u>:</u>	Erom D	ivor Bu			From	Carrier	Dyr
Carried	1						-			FIOII	Calliel	Бу
Structu							 ========		From	=======		=====
	e From Total			То	Total		Upst		110			
TD	TD		Total			orage 1	Exc Pln		Well	Priorty	Sto Exc	Loss
Bypass	SM Supply	Short Short	CU	SoilM	Return	Los	_					
	Station I	n/Out			Stat	ion Ba	lance					
======												
Reach	Return Well	From/To River	River		River		Control					
Gain		GW Stor Inflow										
Pln_1	Pln_1	1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000	0 0			0 0			0 0	0 0
Pln_1	Pln_1	1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	403.0 NA		-1.000								

Pln_1	Pln_1	1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	15000.0	0.0	0.0	0.0	0.0	15000.0
0.0	0.0 15000.0	147.6 NA		-1.000								
Pln_1	Pln_1	1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	3000.0	0.0	0.0	0.0	0.0	3000.0
0.0	0.0 3000.0	0.0 NA		-1.000								
Pln_1	Pln_1	1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	60000.0	0.0	0.0	0.0	0.0	60000.0
0.0	0.0 60000.0	550.5 NA		-1.000								

STATEMOD

StateMod Operating Rule Example - ex13.*

PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2

STRUCTURE 1D (0 = total) : Dem_2 4

STRUCTURE ACCT (0 = total) : 0

STRUCTURE NAME : Irrigation Demand _2

RIVER LOCATION - FROM : Dem_2 Exist. Diver. 2

RIVER LOCATION - TO : Dem_2 Exist. Diver. 2

STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. Diversion Capacity 60. Diversion Rights 3570. 3689. 1 Well Capacity
Well Rights 0. 0. 0. 0 0. 0.

Shortag	re	Water Use	Demand	From Rive	er Bv		From	Carrier	BV
Carried					-				-
Structu	re River	====		.=======	========	From	=======		
Exchang	e From Total	Total CU	To Tot	al	Upstrm				
ID	ID	Year Mo Tot	al CU Priorty	Storage Exc	c_Pln Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short Short	CU SoilM Retu	ırn Loss	Inflow				
	Station In/	Out	S	Station Balar	nce				
Reach			iver River Rive		ontrol Control				
Gain	-		ivert By Well Outf		_				
Dem_2	Dem_2		.0 1500.0 2666.7		0.0 0.0	0.0	0.0	0.0	0.0
0.0		333.3 166.7 133		3 0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
2666.7	0.0 333.3	0.0 Dem_1	100.000						
Dem_2	Dem_2		.0 1500.0 3000.0		0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150		0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Lim			0 0 0 0	0 0	0 0	0 0	0 0
Dem_2	Dem_2		.0 1500.0 3000.0		0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0			0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0		0.0 Hgate_Lim	.0 1500.0 3000.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
Dem_2 0.0	Dem_2 0.0 3000.0	0.0 0.0 150			3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 3000.0	0.0 0.0 150 0.0 Hgate Lim		0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2	1980 FEB 3000		0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150			3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Lim		0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2		.0 1500.0 3000.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150			3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate Lim		0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
Dem 2	Dem 2	1980 APR 3000		0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150			3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate Lim							
Dem 2	Dem 2		.0 1500.0 3000.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150			5000.0 0.0	0.0	0.0		15000.0
3000.0	0.0 12000.0	403.0 NA	-1.000						
Dem 2	Dem 2		.0 1500.0 3000.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150	0.0 0.0 1500.	0 0.0 1	5000.0 0.0	0.0	0.0	0.0	15000.0
3000.0	0.0 12000.0	147.6 NA	-1.000						
Dem_2	Dem_2	1980 JUL 3000	.0 1500.0 3000.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150	0.0 0.0 1500.	0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Lim	it -1.000						
Dem_2	Dem_2	1980 AUG 3000	.0 1500.0 3000.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
0.0	0.0 3000.0	0.0 0.0 150	0.0 0.0 1500.	0.0	3000.0 0.0	0.0	0.0	0.0	3000.0
3000.0	0.0 0.0	0.0 Hgate_Lim	it -1.000						

Dem_2 0.0 3000.0	Dem_2 0.0 3000.0 0.0 0.0		P 3000.0 .0 1500.0 ate_Limit	1500.0 3000.0 0.0 1500.0 -1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dem_2 0.0 35666.7		33.3 166	.7 17833.3	18000.0 35666.7 0.0 17833.3 -1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0

STATEMOD

StateMod Operating Rule Example - ex13.* PAGE NO. 6

7501

STRUCTURE ID (0 = total) : Res_1
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Reservoir_1
RIVER LOCATION - FROM : Res_1 E
RIVER LOCATION - TO : Res_1 E Exist. Reservoir Exist. Reservoir

STRUCTURE DATA : # af Capacity : 1 100000.
Reservoir Rights : 1 100000.

Carried River Structure Structure River Structure River Structure Structure River Structure Structure River Structure Structure Structure River Structure Structure	Shortag	re	Water Use	_								
Structure River Total Total Ups Ups	Carried	İ		Demand 			_			From	Carrier	By
Exchange From Total Tota									From			
The paper The									FIOIII			
Symbol S	_					orage 1	-		พอไไ	Priorty	Sto Evo	T.Ogg
Station In/Out					-	_	_		METT	PIIOICY	SCO_EAC	LUSS
Reach Return Nell From/To River Бураза	SM Suppry	SHOLC SHOLC	CO SOLIM	Kecurii	LOS:	5 1111.1	O W					
Reach												
Main												
Res_1 Res_1 1979 OCT O.0	Reach	Return Well	From/To River									
0.0 0.0 333.3 0.0 0m_1 100.00 0.0 0.0 0.0 0.0 0.0 333.3 0.0 0.0	Gain	Flow Deplete G										
0.0 0.0 333.3 0.0 Dem_1 100.000 Res_1 Res_1 1979 NOV 0.0								0.0			0.0	
Res_1						0.0	333.3	0.0	0.0	0.0	0.0	333.3
0.0	0.0	0.0 333.3										
0.0	Res_1	Res_1	1979 NOV	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1979 DEC 0.0 0.	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 0.0	0.0 NA	-1.000								
0.0 0.0 0.0 0.0 0.0 NA	Res_1	Res_1	1979 DEC	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 JAN 0.0 <t< td=""><td>0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 0.0	0.0 NA	-1.000								
0.0 0.0 0.0 0.0 NA	Res_1	Res_1	1980 JAN	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 FEB 0.0 <t< td=""><td>0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 0.0	0.0 NA	-1.000								
0.0	Res 1	Res 1	1980 FEB	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 MAR 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 0.0	0.0 NA	-1.000								
0.0	Res 1	Res 1	1980 MAR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 APR 0.0 0.0 0.0 0.0 0.0 0.0 </td <td>0.0</td> <td>0.0 0.0</td> <td>0.0 0.0</td> <td>0.0 0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0 0.0	0.0 NA	-1.000								
0.0	Res 1	Res 1	1980 APR	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 MAY 0.0 <t< td=""><td>0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0 NA	-1.000								
11597.0	Res 1	Res 1	1980 MAY	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 JUN 0.0 <t< td=""><td>0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0</td><td>0.0</td><td>12000.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>12000.0</td></t<>	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	12000.0	0.0	0.0	0.0	0.0	12000.0
0.0 0	11597.0	0.0 403.0	403.0 ISF	100	.000							
11852.4	Res 1	Res 1	1980 JUN	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 JUL 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	12000.0	0.0	0.0	0.0	0.0	12000.0
Res_1 Res_1 1980 JUL 0.0	11852.4	0.0 147.6	147.6 ISF	100	.000							
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 NA -1.000 Res_1 Res_1 1980 AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		_	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_1 Res_1 1980 AUG 0.0 <	0.0											
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 NA -1.000 Res_1 Res_1 1980 SEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_	_										
Res_1 Res_1 1980 SEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.						0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0 0	0 0	0 0	0 0	0 0	0 0	0 0
						0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res 1 Res 1 1980 TOT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Reg 1	Res 1	1980 TOT					0 0	0 0	0 0	0 0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
23449.5 0.0 883.9 550.5 NA -1.000						0.0	_1000.0	0.0	0.0	0.0	0.0	

StateMod Operating Rule Example - ex13.* PAGE NO.

STRUCTURE ID (0 = total) : Res_Pln 10002

STRUCTURE ACCT (0 = total): 0

Shortage		Wate	r Use										
Carried		=====	======	Deman				iver By ===			From	Carrier	Ву
Structure							=====			From	======		=====
Exchange ID	From T	otal Total Year		Total	To CU Pr	Total iorty St	orago I	Upst	rm Loss	Well	Driorty	Sto Exc	Logg
Bypass	SM Su				SoilM	Return	Loss	_		WCII	FIIOLCY	DCO_EAC	повв
	Stati	on In/Out				Stat	ion Bal	Lance					
	Return We	- ,	o River		River	River		Control					
		lete GW Stor						Location		0 0			0 0
Res_Pln	Res_P			0.0	0.0	0.0	0.0	0.0 333.3	0.0	0.0	0.0	0.0	0.0
	0.0 0 0.0 333	.0 0.0 .3 0.0 N	0.0	0.0	0.0 -1.000	0.0	0.0	333.3	0.0	0.0	0.0	0.0	333.3
Res Pln	Res P		NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N		0.0	-1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res Pln	Res P		DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N		0.0	-1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res Pln	Res P		JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N			-1.000								
Res Pln	Res P		FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	.0 0.0 N	A		-1.000								
Res_Pln	Res_P	ln 1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	.0 0.0 N			-1.000								
Res_Pln	Res_P		APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N			-1.000								
Res_Pln	Res_P		MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0	0.0	0.0	0.0	0.0	0.0	403.0	0.0	0.0	0.0	0.0	403.0
	0.0 403				-1.000								
Res_Pln	Res_P		JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0	0.0	0.0	0.0	0.0	0.0	147.6	0.0	0.0	0.0	0.0	147.6
	0.0 147		A JUL	0 0	-1.000 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res_Pln 0.0 0	Res_P	in 1980 .0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N		0.0	-1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res Pln	Res P		AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	_	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N		0.0	-1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res Pln	Res P		SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	_	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		.0 0.0 N		0.0	-1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Res Pln	Res_P	ln 1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-		.0 0.0	0.0	0.0	0.0	0.0	0.0	883.9	0.0	0.0	0.0	0.0	883.9
	0.0 883			0.0	-1.000	0.0	0.0	003.9	0.0	0.0	0.0	0.0	003.9
0.0	003	., JJU.J N			1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex13.*

PAGE NO. 8

STRUCTURE ID (0 = total) : T&CPln_1 10003

Shortage	Water Use			
	Demai	nd From River By		From Carrier By
Carried	=======================================	=======================================		
Structure River	=======	===== =================================	From	=======================================
Exchange From Total	Total CU	To Total Upstrm		
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc Loss
Bypass SM Supply	Short Short CII	SoilM Return Loss Inflow		

Station In/Out Station Balance

Reach Return Well From/To River	= ====== River		River		Control					
Gain Flow Deplete GW Stor Inflow					Location					
T&CPln 1 T&CPln 1 1979 OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	1333.3	0.0	0.0	0.0	0.0	1333.3
0.0 0.0 1333.3 0.0 NA		-1.000								
T&CPln 1 T&CPln 1 1979 NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	583.3	0.0	0.0	0.0	0.0	583.3
0.0 0.0 583.3 0.0 NA		-1.000								
T&CPln 1 T&CPln 1 1979 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln 1 T&CPln 1 1980 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	4402.5	0.0	125.0	0.0	0.0	4527.5
0.0 0.0 4527.5 1600.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	4147.6	0.0	250.0	0.0	0.0	4397.6
0.0 0.0 4397.6 1600.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	125.0	0.0	0.0	625.0
0.0 0.0 625.0 125.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	500.0	0.0	0.0	0.0	0.0	500.0
0.0 0.0 500.0 0.0 NA		-1.000								
T&CPln_1 T&CPln_1 1980 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	14466.7	0.0	500.0	0.0	0.0	14966.7
0.0 0.0 14966.7 3325.0 NA		-1.000								

Diversion Summary ACFT STATEMOD

StateMod Operating Rule Example - ex13.* PAGE NO. 9

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA : # cfs af@30 af@31 : 1 5000. : 1 100. : 1 0. : 0 0. 297525. 307442. 5950. 6149. 0. 0. 0. 0. Diversion Capacity Diversion Rights Well Capacity Well Rights

Shortage	Water Use						
	Dema	nd F	rom River By		From	Carrier	Ву
Carried	=======================================	==========	=======				
Structure River	=======	=======================================	=======================================	From	=======		=====
Exchange From Total	Total CU	To Total	Upstrm				
ID ID	Year Mo Total	CU Priorty Sto	rage Exc_Pln Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short CU	SoilM Return	Loss Inflow				
Station In	/Out	Stati	on Balance				
=======================================							
Reach Return Well	From/To River River	River River	Avail Control Control				
Gain Flow Deplete	GW Stor Inflow Diver	t By Well Outflow	Flow Location Right				
Dem_1 Dem_1	1979 OCT 2000.0	400.0 0.0	0.0 2000.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0	0.0 1333.3 0.0	666.7	0.0	0.0	2000.0
2000.0 0.0 0.0	0.0 NA	-1.000					
Dem_1 Dem_1	1979 NOV 2000.0	400.0 0.0	0.0 2000.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0 2000.0	0.0 0.0 400.0	0.0 1600.0	0.0 583.3 0.0	1416.7	0.0	0.0	2000.0
2000.0 0.0 0.0	0.0 NA	-1.000					

Dem 1	Dem 1	1979 DEC :	2000.0	400.0	0.0	0 0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0		1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 2000.0	0.0 NA		-1.		0.0	300.0	0.0	1300.0	0.0	0.0	2000.0
Dem 1	Dem 1		2000.0	400.0	0.0	0.0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0 NA		-1.	000							
Dem_1	Dem_1	1980 FEB	2000.0	400.0	0.0	0.0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0 NA		-1.	000							
Dem_1	Dem_1	1980 MAR	2000.0	400.0	0.0	0.0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0 NA		-1.	000							
Dem 1	Dem 1	1980 APR	2000.0	400.0	0.0	0.0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0	0.0	1600.0	0.0	500.0	0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0 NA		-1.	000							
Dem 1	Dem 1		2000.0	400.0	0.0	0.0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0	0.0	1600.0	0.0	4527.5	0.0	1500.0	0.0	0.0	6027.5
2000.0	0.0 4027.5			-1.								
Dem 1	Dem 1		2000.0	400.0	0.0	0.0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0	0.0	1600.0	0.0	4397.6	0.0	1500.0	0.0	0.0	5897.6
2000.0	0.0 3897.6	1600.0 NA		-1.		0.0	1337.0	0.0	1500.0	0.0	0.0	5057.0
Dem 1	Dem 1		2000.0	400.0	0.0	0 0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0		1600.0	0.0	625.0	0.0	1500.0	0.0	0.0	2125.0
2000.0	0.0 125.0	125.0 NA		-1.		0.0	023.0	0.0	1500.0	0.0	0.0	2120.0
Dem 1	Dem 1		2000.0	400.0	0.0	0 0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0	0.0 0.0	400.0		1600.0	0.0		0.0	1500.0	0.0	0.0	2000.0
2000.0	0.0 0.0	0.0 NA	100.0	-1.		0.0	300.0	0.0	1300.0	0.0	0.0	2000.0
Dem 1	Dem 1		2000.0	400.0	0.0	0 0	2000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 2000.0			0.0				0.0		0.0	0.0	2000.0
2000.0	0.0 2000.0	0.0 NA		-1.		0.0	300.0	0.0	1300.0	0.0	0.0	2000.0
2000.0	0.0 0.0	U.U NA		-1.	000							
Dem 1	Dem 1	1980 TOT 2	4000.0 4	1800.0	0.0	0.0	24000.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 24000.0		4800.0						17083.3	0.0		32050.1
24000.0		3325.0 NA	-000.0	-1		0.0	/	0.0	000.0	0.0	0.0	
	2.2 0000.2			_								

STATEMOD

StateMod Operating Rule Example - ex13.*

PAGE NO. 10

STRUCTURE ID (0 = total) : WWTP_Pln 10004

Shortage	Water Use		
		from River By	From Carrier By
Carried			
Structure River			rom ========
Exchange From Total			
ID ID			ell Priorty Sto_Exc Loss
Bypass SM Supply	Short Short CU	SoilM Return Loss Inflow	
Station In/	Out	Station Balance	
		River River Avail Control Control	
		By Well Outflow Flow Location Right	
WWTP_Pln WWTP_Pln			0.0 0.0 0.0 0.0
640.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	
-640.0 0.0 640.0	0.0 NA	-1.000 0.0 0.0 0.0 0.0 0.0	
WWTP_Pln WWTP_Pln			
1120.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
-1120.0 0.0 1120.0			
		0.0 0.0 0.0 0.0	
		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	0.0 NA		
		0.0 0.0 0.0 0.0 0.0	
		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
-1600.0 0.0 1600.0		-1.000	
WWTP_Pln WWTP_Pln	1980 FEB 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
1600.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
-1600.0 0.0 1600.0		-1.000 0.0 0.0 0.0 0.0 0.0	
WWTP_Pln WWTP_Pln			
1600.0 0.0 0.0 -1600.0 0.0 1600.0		0 0.0 0.0 0.0 0.0 0.0 -1.000	0.0 0.0 0.0 0.0
WWTP_Pln WWTP_Pln		0.0 0.0 0.0 0.0 0.0	
1600.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
-1600.0 0.0 1600.0 WWTP Pln WWTP Pln		-1.000 0.0 0.0 0.0 0.0 0.0	
1600.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	1600.0 NA		0.0 0.0 0.0 4027.5
-1000.0 0.0 5627.5	IOUU.U NA	-1.000	

WWTP_Pln	WWTP_Pln	1980 JUN 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
1600.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 3897.6	0.0 0.0	0.0 0.0 3897.6
-1600.0	0.0 5497.6	1600.0 NA	-1.000			
WWTP_Pln	WWTP_Pln	1980 JUL 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
1600.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 125.0	0.0 0.0	0.0 0.0 125.0
-1600.0	0.0 1725.0	125.0 NA	-1.000			
WWTP_Pln	WWTP_Pln	1980 AUG 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0
1600.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0
-1600.0	0.0 1600.0	0.0 NA	-1.000			
WWTP_Pln	WWTP_Pln	1980 SEP 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
1600.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0
-1600.0	0.0 1600.0	0.0 NA	-1.000			
WWTP_Pln	WWTP_Pln	1980 TOT 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0

Diversion Summary ACFT

Shortage

STATEMOD StateMod Operating Rule Example - ex13.*

PAGE NO. 11

STRUCTURE ID (0 = total) : ISF 5001

Water Use

STRUCTURE 1D (0 = total) : 1SF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Fl Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity Diversion Rights	: -		0. 66.	0.	0. 4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

SHOT Cay		Water		Deman				iver By			From	Carrier	Ву
Carried		=====	======	=====	======		=====	===					
Structu	re River		==	======			=====		====	From	======	======	=====
Exchang	e From Tota	l Total	CU		To	Total		Upst:	rm				
ID	ID	Year	Mo T	otal	CU Pr	ciorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto Exc	Loss
Bypass	SM Suppl	y Short	Short	CU	SoilM	Return	Loss				-		
		-											
	Station						ion Ba						
======		=======		=====	======		=====						
Reach	Return Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flow Deplet	e GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
ISF	ISF	1979	OCT 40	27.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	4027.5	0.0	0.0	0.0	0.0	0.0	640.0	0.0	0.0	0.0	0.0	640.0
0.0	0.0 640.0	640.0 Hg	ate_Limi	t	-1.000								
ISF	ISF	1979	NOV 38	97.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	3897.6	0.0	0.0	0.0	0.0	0.0	1120.0	0.0	0.0	0.0	0.0	1120.0
0.0	0.0 1120.0	1120.0 Hg	ate_Limi	t	-1.000								
ISF	ISF	1979	DEC 40	27.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	4027.5	0.0	0.0	0.0	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
0.0	0.0 1440.0	1440.0 Hg	ate Limi	t	-1.000								
ISF	ISF		JAN 40		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	4027.5	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0	1600.0 Hg	ate Limi	t	-1.000								
ISF	ISF		FEB 36		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	3637.7	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0	1600.0 IS	F.01		-1.000								
ISF	ISF	1980	MAR 40	27.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	4027.5	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0	1600.0 Ha	ate Limi	t	-1.000								
ISF	ISF		APR 38		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 0.0	3897.6	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0			t.	-1.000								
ISF	ISF		MAY 40		0.0 4	1027.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 4027.5	0.0	0.0	0.0		4027.5	0.0	5627.5	0.0	0.0	0.0	0.0	5627.5
4027.5		.5 1600.0			-1.0								
ISF	ISF	1980	JUN 38	97.6	0.0 3		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 3897.6	0.0	0.0	0.0		3897.6		5497.6	0.0	0.0	0.0	0.0	5497.6
3897.6		.6 1600.0			-1.0								
ISF	ISF	1980	JUL 40	27.5		125.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		3902.5	0.0	0.0		125.0		1725.0	0.0	0.0	0.0		1725.0
125.0	0.0 1725.				-1.00		0.0	_,,	0.0	0.0	0.0	0.0	_ , _ 5 . 5
ISF	ISF		AUG 40		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0		4027.5	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	1600.0
0.0	0.0 1600.0				-1.000	0.0	0.0	_000.0	0.0	0.0	0.0	0.0	_000.0
5.0	5.0 1000.0	1000.0 119	~~~	_	1.000								

ISF 0.0 0.0

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex13.*

PAGE NO. 12

STRUCTURE ID (0 = total) : Baseflow -10003

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Bottom Instream Flow

RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

_	ter Use	Deman	nd		From R	iver By			From	Carrier	Bv
Carried ===		= =====				===			110	0011101	21
Structure River Exchange From Total Tot						Ingt		From	======	:======	
ID ID Ye	ar Mo	Total	CU Pr	ciorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply Sho	rt Short	CU	SoilM	Return	Los	s Infl	OW				
Station In/Out				Stat	ion Ba	lance					
Reach Return Well From Gain Flow Deplete GW St											
Baseflow ISF 01 19	79 OCT	0 0	0 0	0 0	0 0	0 0	0 0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	640.0	0.0	0.0	0.0	0.0	640.0
0.0 0.0 0.0 0.0 0.0 0.0 640.0 640.0 Baseflow ISF.01 19	NA 79 NOV	0 0	-1.000	0 0	0 0	0 0	0 0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	1120.0	0.0	0.0	0.0		1120.0
0.0 0.0 0.0 0.0 0.0 0.0 1120.0 1120.0 Baseflow ISF.01 19	NA		-1.000								
Baseflow ISF.01 19	79 DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0 1440.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1440.0 185.01 19.0 0.0 0.0 0.0 0.0 0.0	NA	0.0	-1.000	0.0	0.0	1440.0	0.0	0.0	0.0	0.0	1440.0
Baseflow ISF.01 19	80 JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0 1600.0 Baseflow ISF.01 19	NA 80 FEB	0 0	-1.000	0 0	0 0	0 0	0.0	0.0	0.0	0.0	0.0
Baseflow ISF.01 19 0.0 0.0 0.0 0.0 0.0 0.0 1600.0 1600.0 Baseflow ISF.01 19	0.0	0.0	0.0	0.0	0.0	1600.0	0.0				1600.0
0.0 0.0 1600.0 1600.0	NA		-1.000								
Baseflow ISF.01 19	80 MAR	0.0	0.0	0.0	0.0	0.0 1600.0	0.0				0.0 1600.0
0.0 0.0 1600.0 1600.0	NA	0.0	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
0.0 0.0 1600.0 1600.0 Baseflow ISF.01 19	80 APR	0.0	0.0	0.0				0.0		0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 1600.0 1600.0 Baseflow ISF.01 19	0.0	0.0	0.0	0.0	0.0	1600.0	0.0	0.0	0.0	0.0	1600.0
0.0 0.0 1600.0 1600.0 Baseflow TSF 01 19	NA 80 MAY	0 0	-1.000 0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0 0	0 0	0 0		5627.5					5627.5
0.0 0.0 5627.5 1600.0	NA		-1.000								
Baseflow ISF.01 19	80 JUN	0.0	0.0	0.0		0.0 5497.6			0.0	0.0	0.0 5497.6
0.0 0.0 5627.5 1600.0 Baseflow ISF.01 19 0.0 0.0 0.0 0.0 0.0 5497.6 1600.0	NA	0.0	-1.000	0.0	0.0	3457.0	0.0	0.0	0.0	0.0	3437.0
Baseflow ISF 01 10	an .tttt.	0 0	0 0	0 0		0.0		0.0		0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	1725.0	0.0	0.0	0.0	0.0	1725.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	80 AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	1600.0	0.0			0.0	
0.0 0.0 1600.0 1600.0	NA		-1.000								
Baseflow ISF.01 19	80 SEP	0.0	0.0	0.0	0.0	0.0 1600 0	0.0		0.0	0.0	0.0
0.0 0.0 1600.0 1600.0 Baseflow ISF.01 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	NA	0.0	-1.000	0.0	0.0	1000.0	0.0	0.0	0.0	0.0	1000.0
Baseflow ISF.01 19	80 TOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 25650.1 17600.0	0.0	0.0	0.0	0.0	0.0	25650.1	0.0	0.0	0.0	0.0	25650.1
0.0 0.0 25650.1 17600.0	NA		-1.000								
#											
#											
# # *.xpl Plan											
#											
# STATEMOD											
<pre># StateMod Operating Rule #</pre>	Example -	ex13.*									
# Statemod Version: 12.29.0	0 Date = 2	008/09/1	.5)								

Run date: 11/ 2/ 8 13:47:28 # Time Step: Monthly

_

Plan Summary ACFT
Plan Number = 1
Plan Type = 11 Accounting_Plan

Plan Type Plan ID Plan Name Plan Type = 11 Accounting
Plan ID = Pln_1
Plan Name = AccountingPlan
Plan Source = Dem_2

Plan Uses

Plan		River		Y	ear	Мо	Supply																			
		======					======	====	====	=====	===	====	====	====	====	====	====	====	====	====	====	====	====	====	==:	====
	=====		=====	===:	====		mark all		-		0		2		4		_		_		-		0		^	
ID	11	ID	TT	1 2	TT	1 /	Total	Use Use		Use		Use		Use		Use	5	Use	ь	Use	/	Use	8	Use	9	Use
10 U	se II	Use 12	use	13	use	14	Use 15	use	16	Use	Ι/	Use	18	Use	19											
р1	an Use	s																								
	=====																									
Use 2	0 To	tal																								
Pln_1		Pln_1		19	979	OCT	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0)	0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		19	979	NOV	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0)	0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		19	979	DEC	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0)	0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		19	980	JAN	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0)	0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		1	980	FEB	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0)	0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		19	980	MAR	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0)	0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		19	980	APR	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1			980	MAY	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1		19	980	JUN	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0			0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1			980	JUL	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0			0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1			980	AUG	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0			0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0							
Pln_1		Pln_1			980	SEP	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0) - ——	0.0		0.0		0.0		0.0		0.0		0.0							_
Pln 1		Pln_1			980	TOT	0.0)	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0
0.0	0.0	0.0		0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		3.0			-

Plan Summary ACFT
Plan Number = 2
Plan Type = 3 Reuse_Reservoir
Plan ID = Res_Pln
Plan Name = ReservoirAcctingPln
Plan Source = Res_1

Plan Uses Plan River Year Mo Initial Supply

=====	=====													
=====	=====			=										
ID		ID		S	torage To	tal U	se 1 Us	e 2 Us	e 3 U	se 4 Use	e 5	Use 6	Use 7	Use 8
Use 9	Use 1	.0 Use 11	Use 12	Use 13	Use 14	Use 15	Use 16	Use 17	Use 18	Use 19				
Pla	n Uses	Endi	ing											
=====	=====	=== =====	===											
Use 20	Tot	al Stora	age											
Res_Pl	n	Res_Pln	1979	OCT	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1979	NOV	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1979	DEC	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1980	JAN	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1980	FEB	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1980	MAR	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1980	APR	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pl	n	Res_Pln	1980	MAY	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	

Res_Pln	Res_Pln	1980	JUN	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pln	Res_Pln	1980	JUL	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pln	Res_Pln	1980	AUG	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pln	Res_Pln	1980	SEP	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	
Res_Pln	Res_Pln	1980	TOT	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	

Plan Summary ACFT
Plan Number = 3
Plan Type = 1 T&C_Requirement
Plan ID = T&CPln_1
Plan Name = T&C_Plan
Plan Source = Pln_1

Plan Sources

River Year Mo From Plan ______

-----ID ID Exc/Byp Demand Src 1 Src 2 Src 3 Src 4 Src 5 Src 6 Src 7 Src 8 Src 9 Src 10 Src 11 Src 12 Src 13 Src 14 Src 15 Src 16 Src 17 Src 18

Plan Sour	ces	R	eDive	rt			Perfor	mance					
==========					=======	======			=======				
Src 19 Src	20 Short	Total St	ore 1	Store 2	Store 3	Total	Switch	Status	Total				
T&CPln 1	T&CPln 1	1979	OCT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln 1	T&CPln 1	1979	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln_1	T&CPln_1	1979	DEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln 1	T&CPln 1	1980	JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln_1	T&CPln_1	1980	FEB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln_1	T&CPln_1	1980	MAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln_1	T&CPln_1	1980	APR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln 1	T&CPln 1	1980	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln 1	T&CPln 1	1980	JUN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln 1	T&CPln 1	1980	JUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln 1	T&CPln 1	1980	AUG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
T&CPln_1	T&CPln_1	1980	SEP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									
ms and m	T&CPln 1	1980	TOT	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0
T&CPln_1	_									0.0			
0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	Off	Off	0.0									

Plan Summary ACFT
Plan Number = 4
Plan Type = 4 Reuse_Diversion
Plan ID = WWTP_Pln
Plan Name = ReusableEffluentPln
Plan Source = Dem_1

Use 1 ID = Opr_2 On

Name = Opr_WWTPPlan_Spill Opr Type = 29 Destination = NA

Status =

)															
	ID Use 12 Use	e 13 Use	14	Total Use 15	Use 1 Use 16	Use 2 Use 1		se 3 se 18	Use Use		Use 5	Use 6	Use 7 U	ise 8	Use 9
Plan Use															
e 20 Tot	tal					_									
P_Pln 0.0	WWTP_Pln 0.0	1979 0.0	OCT 0.0	640.0	640.0).0).0	0.0		0.0	0.0	0.0 640.0	0.0	0.0	0
P_Pln	WWTP_Pln	1979	NOV	1120.0	1120.0	C	.0	0.0		0.0	0.0	0.0	0.0	0.0	0
0.0 P_Pln	0.0 WWTP Pln	0.0 1979	0.0 DEC	0.0 1440.0	0.0 1440.0).0).0	0.0		0.0	0.0	1120.0	0.0	0.0	0
0.0	0.0	0.0	0.0	0.0	0.0		.0	0.0		0.0	0.0	1440.0	0.0	0.0	
P_Pln 0.0	WWTP_Pln 0.0	1980 0.0	JAN 0.0	1600.0	1600.0).0).0	0.0		0.0	0.0	0.0 1600.0	0.0	0.0	0
P_Pln	WWTP_Pln	1980	FEB	1600.0	1600.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
0.0		0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	1600.0	0 0	0 0	0
P_Pln 0.0	WWTP_Pln 0.0	1980 0.0	MAR 0.0	1600.0	1600.0).0).0	0.0		0.0	0.0	0.0 1600.0	0.0	0.0	0
P_Pln	WWTP_Pln	1980			1600.0		.0	0.0		0.0	0.0	0.0	0.0	0.0	0
0.0 P_Pln	0.0 WWTP_Pln	0.0 1980	0.0 MAY	0.0 1600.0	0.0).0).0	0.0		0.0	0.0	1600.0	0.0	0.0	0
0.0		0.0	0.0	0.0	0.0		1.0	0.0		0.0	0.0		0.0	0.0	U
P_Pln	WWTP_Pln	1980	JUN		1600.0		.0	0.0		0.0	0.0	0.0	0.0	0.0	0
0.0 P_Pln	0.0 WWTP Pln	0.0 1980	0.0 JUL	0.0 1600.0	0.0).0).0	0.0		0.0	0.0	1600.0	0.0	0.0	0
0.0		0.0	0.0	0.0	0.0		1.0	0.0		0.0	0.0		0.0	0.0	U
P_Pln	WWTP_Pln	1980			1600.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
0.0 P_Pln	0.0 WWTP_Pln	0.0 1980	0.0 SEP	0.0 1600.0	0.0 1600.0).0).0	0.0		0.0	0.0	1600.0	0.0	0.0	0
0.0		0.0	0.0	0.0	0.0		0.0	0.0		0.0		1600.0	0.0	0.0	O
 P_Pln	WWTP_Pln	1980	ТОТ	17600.0	17600.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
	0.0	0.0	0.0		0.0		0.0	0.0		0.0		17600.0			
.xop	Operation	nal Right	Div	ersion S	ummary										
STATEMOI															
StateMod	d Operating	Rule Exa	mple	- ex13.	*										
	Version: 12				/15)										
	. 1:		3:47	:28											
ima Ctan	. 1410	DITCHTY													
ime Step															
ime Step															
	l Right Sum	mary ACF	Т												
erational		Name =	Opr										1.99999		
erational = Opr_1 urce 1 =	Dem_1_WR_1	Name = Destin	Opr atio	n = Dem_	1		Year	On =	() 3	Year Off	= 9999			
erational = Opr_1 urce 1 =		Name = Destin	Opr atio	n = Dem_	1		Year	On =	() 3	Year Off	= 9999			
= Opr_1 urce 1 = R OCT	Dem_1_WR_1	Name = Destin DEC 2000.0 2	Opr ation JAN	n = Dem_1 FEB 2000.0	MAR 2000.0	200 200	Year PR 0.0	On = MAY	0 20	JUN OO.0	Year Off JUL 2000.	= 9999 AUG 2000.0	SEP 2000.0	TOT 24000.0	
= Opr_1 urce 1 = OCT 0 2000.0	Dem_1_WR_1 NOV 0 2000.0	Name = Destin DEC 2000.0 2	Opr ation JAN 000.0	n = Dem_1 FEB 2000.0	MAR 2000.0	200 200	Year PR 0.0	On = MAY	0 20	JUN OO.0	Year Off JUL 2000.	= 9999 AUG 2000.0	SEP 2000.0	TOT 24000.0	
erationa = Opr_1 urce 1 = R OCT 0 2000.0 2000.0	Dem_1_WR_1 NOV 0 2000.0 0 2000.0	Name = Destin DEC 2000.0 22000.0 2	Opration JAN 000.0	n = Dem_ FEB 0 2000.0	MAR 2000.0	200 200 200	Year APR 00.0	On = MAY 2000.	0 20 0 20	MUL 00.00.0	Year Off JUL 2000.	= 9999 AUG 2000.0 2000.0	SEP 2000.0 2000.0	TOT 24000.0 24000.0	
erationa = Opr_1 urce 1 = R OCT 0 2000. 2000. erationa = Opr_2 urce 1 =	Dem_1_WR_1 NOV 0 2000.0 0 2000.0	Name = Destin DEC	Opriation JAN 000.0 000.0 T Opriation	m = Dem_ FEB 0 2000.0 0 2000.0	1 MAR 0 2000.0 0 2000.0	200 0 200 0 200	Year APR 00.0 00.0 Opr Year	On = MAY 2000. 2000. Type = On =	0 200 20	MUU	Year Off JUL D 2000. D 2000. Admin # Year Off	= 9999 AUG 0 2000.0 0 2000.0 = 9999	SEP 2000.0 2000.0	TOT 24000.0 24000.0	
0 = Opr_1 purce 1 = R 0CT 0 2000.0 2000.0 perationa	Dem_1_WR_1 NOV 0 2000.0 0 2000.0	Name = Destin DEC 2000.0 2 2000.0 2 mary ACF	Opration JAN 000.0	m = Dem_ FEB 0 2000.0 0 2000.0	1 MAR 0 2000.0 0 2000.0	200 0 200 0 200	Year APR 00.0 00.0	On = MAY 2000. 2000.	0 200 20	JUN JUN	Year Off JUL D 2000. D 2000. Admin # Year Off	= 9999 AUG 0 2000.0 0 2000.0 = 9999	SEP 2000.0 2000.0	TOT 24000.0 24000.0	
erational e = Opr_1 urce 1 = R OCT 0 2000.0 2000.0 erational e = Opr_2 urce 1 = R OCT	Dem_1_WR_1 NOV 0 2000.0 0 2000.0	Name = Destin DEC 2000.0 2 2000.0 2 mary ACF Name = Destin DEC	Opriation JAN 000.0 T Opriation JAN	m = DemFEB 0 2000.0 0 2000.0	1 MAR 0 2000.0 0 2000.0 n_Spill	200	Year APR 00.0 00.0 Opr Year	On = MAY	0 20 20 20	JUN 1 000.0	Year Off JUL 2000. 2000. Admin # Year Off JUL	= 9999 AUG	SEP 2000.0 2000.0 9999.00000 SEP	TOT 24000.0 24000.0	

Example 14

```
# Exhibit 14.1
  *.rsp; response file for Statemod Example 14
       This response file lists the StateMod input files necessary for model simulation
# Type
                                            Name
                                          = ex14.ctl
Control
River Network
                                          = ex14.rin
StreamGage Station
                                          = ..\ex1\ex1.ris
Stream Base Monthly
                                          = ..\ex1\ex1.rim
Diversion Station
                                          = ..\ex1\ex1.dds
Diversion_Right
                                          = ... ex1 ex1.ddr
Diversion Demand Monthly
                                          = ... ex1 ex1.ddm
Instreamflow Station
                                          = ... ex1 ex1.ifs
Instreamflow Right
                                          = ... ex1 ex1.ifr
Instreamflow Demand AverageMonthly
                                          = ..\ex1\ex1.ifa
                                          = ..\ex7\ex7.wes
Well Station
Well_Right
                                          = ..\ex7\ex7.wer
Well Demand Monthly
                                          = ..\ex7\ex7.wem
Well_Historic_Monthly
                                          = ..ex7\ex7.weh
                                          = ..ex7\ex7.urm
DelayTable Monthly
OutputRequest
                                          = ..\ex1\ex1.out
# Plan Data
Plan_Data
                                          = ex14.pln
Plan_Wells
                                          = ex14.plw
# Exhibit 14.2
# ex*.ctl; Control file for StateMod Example 14
  STATEMOD
  StateMod Operating Rule Example - ex14.* data set
                        STARTING YEAR OF SIMULATION
    1980
             : iystr
                        ENDING YEAR OF SIMULATION
             : iyend
    1980
             : iresop OUTPUT UNIT OPTION. 1 FOR [CFS], 2 FOR [AF], 3 FOR [KAF]
            : moneva TYPE OF EVAP. DATA. 0 FOR VARIANT DATA. 1 FOR CONS. DATA
            : ipflo TYPE OF STREAM INFLOW. 1 FOR TOTAL FLOW. 2 FOR GAINS
       1
            : numpre NO. OF PRECIPITATION STATIONS
            : numeva NO. OF EVAPORATION STATIONS
       1
            : interv NO. OF TIME INTERVALS IN DELAY TABLE. MAXIMUM=60.
  1.9835
             : factor FACTOR TO CONVERT CFS TO AC-FT/DAY (1.9835)
                                                           ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
            : rfacto DIVISOR FOR STREAM FLOW DATA;
  1.9835
  1.9835
             : dfacto DIVISOR FOR DIVERSION DATA;
                                                           ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
             : ffacto DIVISOR FOR IN-STREAM FLOW DATA; ENTER 0 FOR DATA IN cfs, ENTER 1.9835 FOR DATA IN af/mo
             : cfacto FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
  1.0
  1.0
             : efacto FACTOR TO CONVERT EVAPORATION DATA TO FEET
             : pfacto FACTOR TO CONVERT PRECIPITATION DATA TO FEET
  1.0
  WYR
             : cvr1
                        Year type (a5 right justified !!)
             : icondem 1=no add; 2=add, 3=total demand in *.ddm
             : ichk
                        detailed output switch 0 = off, 1=print river network, ... (see documetnation)
             : ireopx Re-operation switch (0=re-operate;1=no re-operation)
             : ireach 0=no instream reach; 1=yes instream flow reach
             : icall
                        Switch for detailed call data 0 No detailed call data, 1 Yes detailed call data
             : ccall
                        Detailed call water right ID (not used if icall = 0)
                        Switch for daily calculations 0 Monthly analysis, 1 Daily analysis
Switch for well operations See section 7.4 for a discussion of the well options.
             : iwell
             : gwmaxrc Constant Maximum stream loss (cfs). Only used if iwell = 2
             : isjrip San Juan RIP
             : itsfile -1 skip *.tsp, 0=no tsfile, 1=variable n, 10 max n, well area, capaciaty, etc. : ieffmax -1 skip *.iwr, 0 no *.iwr, 1 yes *.iwr, 2=read but use ave n
             : isprink 0=off, 1=Maximum Supply, 2=Mutual Supply
: soild 0=no *.par, 1=yes *.par but not used, n=yes *.par file with n typical soil depth
                        Number of significant digits behind decimal point in output files
# Exhibit 14.3
  *.rin; River node network file for StateMod Example 14
  Card 1 Control format: (a12, a24, a12, 1x, a12, 1x, f8.0)
```

```
ID cstaid: Station ID
Name stanam: Station name
Downstream cstadn: Downstream node ID
#
  TD
  Name
  Comment comment: Alternate identifier/comment.
#
  GWMax
             gwmaxr: Max recharge limit (cfs) - see iwell in control file.
 ID
                   Name
                                 DownStream
                                               Comment
                                                          GWMax
#-----eb-----exb-----exb-----e
Dem_3 Exist. Diver. 3/Inflow Dem_4
Wel_3 Exist. Well_3 Dem_3
Dem 4
          Exist. Diver. 4
                                  Wel Pln
        Well_Augmentation_Plan Riv_50
Wel Pln
Dem_5 Exist. Diver. 5/Inflow Dem_2 Exist. Diver. 2 Riv_5
                               Riv_50
Wel_2
          Exist. Well 2
                                 Dem 2
          Confluence
Riv_50
                                 Dem 1
          Exist. Diver. 1
Exist. Well_1
Dem 1
                                 ISF
Wel 1
                                 Dem 1
           Top Instream Flow
TSF
                                 TSF.01
ISF.01
          Bottom Instream Flow
# Exhibit 14.4
# ex*.pln; Plan file for StateMod Example 14
 *************
     Card 1 Control
     format: (a12, a24, a12, 5i8)
     Plan ID:
                         Pid Include _ instead of blanks
Pname Include _ instead of blanks
     Plan Name:
     Plan Location
                         iPsta River node where the plan is located Pon On (1) or Off (0) switch
                         Pon
     Plan On/Off:
                         iPlnTyp 1 = Terms and Conditions (T&C)
     Plan Type
                                   2 = Well Augmentation
                                   3 = Reservoir Reuse
                                   4 = Non Reservoir Reuse (e.g., WWTP)
                                   5 = Reuse to a Reservoir from Tmtn
                                   6 = Reuse to a Diversion from Tmtn
                                   7 = Transmountain import
                                   8 = Recharge Plan
                                   9 = Out-of-Priority Diversion or Storage
                                  10 = Special Well Augmentation (e.g., Designated Basin, Coffin Wells, etc.)
                                  11 = Accounting Plan (e.g., changed water rights)
                                  12 = Release Limit Plan (e.g., HUP Pool Release Limit)
     Plan Efficiency (%) Peff
                                 Enter 0 if not used
                                  Enter 1 to read 12 plan efficiency values (%)
                                  Enter -1 if data is provided in an Operating Rule file (*.opr)
                                  Enter 999 to use the source structure's efficiency
     Plan Return Flow ID iPrf
                                  Enter 0 if not used
                                  Enter 1 if data is provided in an Plan Return Flow file (*.prf)
                                  Enter 999 to use the source structure's return flow pattern
     Plan Failure Switch iPfail Used only for a T&C Plan (iPlntype = 1)
                                  Enter 0 to not turn plan off if it fails
                                  Enter 1 to turn a plan off if it fails \ 
                                  1 = Do stop and accumulate failures to be paid in subsequent time steps
     Plan Initial Storage Psto1
                                  Storage in Plan structure at beginning of simulation
                                  0 for non-Reuse Reservoir plans (iPtype<>3) >= 0 for Reuse Reservoir plans (iPtype=3) - set equal to storage in associated
reservoir (*.res) account
     Plan Source
                          Psource Source ID of the structure where plan water becomes available
                                 Note this information is currently used only when the plan type is
                                  recharge (type 8) from a reservoir
     Plan Account
                         i PAcc
                                  Source Account of the structure where plan water becomes available
                                 Note this information is currently used only when the plan type is
                                 recharge (type 8) from a reservoir
                                RiverLoc ON/Off iPtype Peff iPrf iPfail Psto1 Psource
# ID
         Name
1 2 0
                                                                      0 0 0 NA 0
Wel_Pln Well_Augmentation_Plan Wel_Pln
# Exhibit 14.5
# *.plw; Well Plan file for StateMod Example 14
# Plan Well File
# Generated by SmPlan.f:
         1. Extracting all wells (structure type 2) tied to a plan
# format(free)
# Plan ID WellRightID StructureID Comments
#-----exh-----xh-----exh------exh------
#
```

#

#

```
Wel_Pln Wel_1_Wr#1 Wel_1
Wel_Pln Wel_2_Wr#1 Wel_2

#
#
#
*.xwb Water Budget
#
# STATEMOD
# StateMod Operating Rule Example - ex14.* data set
#
# Statemod Version: 12.29.05 Date = 2008/10/23)
# Run date: 11/6/8 16:20:58
# Time Step: Monthly
```

Water Budget ACFT

Reservoir Year Mo Evaporation	Stream Reservoir Inflow Seepage	Stream Return Outflow	Fr Reser GWSt	om/To voir orage Change		From To SoilM SoilM	Pl	From SoilM lan (5) Change		Total Total Inflow Outflow	Dive	rt (6) Delta	From River by Well CU (1	Dep	Well eletion
(-)	(+) (-) (-)	(+)		(+)		(+)		(+)	NA	NA	NA	(-)	(-) NA		(-)
	NA (1) (12 (21)									(6)			(8)		(9)
1979 OCT	4000. 0. 640. 500.			77.	0.	0.	0.	0. 582	 29.	5829.	0.	4833.	356.	154.	0.
1979 NOV 0.	4000. 0. 997.	3381.	0.	0.	0.	0.	0.	0. 738		7381.	0.	5778. 2846		149.	356.
1979 DEC 0.	4000. 0. 1250.	3742.	0.	77.	0.	0.	0.	0. 781		7819.	0.	5694. 2861	269. L.		607.
1980 JAN 0.	153. 4000. 0. 1201.	3907.	0.	0.	0.	0.	0.	0. 790		7907.	0.	5544. 2861	288. L.		875.
1980 FEB 0.	4000. 0. 1266.	3893.	0.	69.	0.	0.	0.	0. 796		7962.	0.	5634. 2817	254. 7.		807.
1980 MAR 0.	183. 4000. 0. 1195.	3893.	0.	0.	0.	0.	0.	0. 789		7893.	0.	5607. 2861	280.		810.
1980 APR 0.	197. 4000. 0. 1280.	3902.	0.	74.	0.	0.	0.	0. 79		7977.	0.	5602. 2846			821.
1980 MAY 0.	199. 20000. 0. 16413.	4027.	0.	-77.	0.	0.	0.	0. 239!		23951.	0.	6500. 3111	231.		807.
0.	0. 20000. 0. 16646.	4152.	0.	0.	0.	0.	0.	0. 241		24152.	0.	6500. 3096	223.		783.
0	0. 4000. 0. 1236.	4027.	0.	77.	0.	0.	0.	0. 810		8104.	0.	5899. 2861	243.	154.	727.
0.	4000. 0. 1248.	3907.	0.	77.	0.	0.	0.	0. 798		7984.	0.	5781. 2861	258.	154.	697.
1980 SEP 0.	109. 4000. 0. 1178. 127.		0.	0.	0.	0.	0.		02.		0.	5745. 2846			724.
	80000.			374.		0.		0.				69117.	3179.		8014.
0. 14576.	0. 44551. 1858.		0.		0.		0.	12486	62.		0.	34646	5. 1	810.	
		Wate		et AC											
Reservoir Year Mo Evaporation	Inflow	Stream Return Outflow	Reser GWSt	orage		From To SoilM SoilM	Pl	From SoilM an (5) Change		Total	Dive	rt (6)	From River by Well CU (1	Dep	letion
	(3) Salvage (4) (+)			(+)		(+)		(+)		NA		(-)	(-) NA		(-)

(10) (20)	(11) (21) (12)	(2)	(13)	(3)	(14)	(4)	(15)	(5)	(6)	(17	(7)	(8) (19	(9)
	4000. 0. 640. 500.			77.	0.						4833. 2778.	356. 154.	0.
Ave NOV	4000. 0. 997. 111.	3381.		0.			0.	0. 7381.				251. 149.	356.
Ave DEC 0.	4000. 0. 1250.	3742.		77.	0.		0.	0. 7819.			5694. 2861.	269. 154.	607.
Ave JAN	153. 4000. 0. 1201. 228.	3907.		0.	0.	0.	0.	0. 7907.		0.	5544. 2861.	288. 154.	875.
Ave FEB 0.	4000. 0. 1266.	3893.		69.	0.	0.	0.	0. 7962.			5634. 2817.	254. 139.	807.
1199. Ave MAR 0.	183. 4000. 0. 1195. 197.	3893.	0.	0.		0.	0.				5607. 2861.	280. 154.	810.
Ave APR 0.	4000. 0. 1280.	3902.		74.			0.	0. 7977.	7977.	0.	5602. 2846.	273. 149.	821.
Ave MAY	199. 20000. 0. 16413.	4027.		-77.	0.		0.				6500. 3111.		807.
Ave JUN 0.	0. 20000. 0. 16646.			0.		0.	0.				6500. 3096.	223. 149.	783.
Ave JUL 0.	0. 4000. 0. 1236.	4027.	0.	77.		0.	0.	0. 8104.	8104.	0.	5899. 2861.	243. 154.	727.
Ave AUG	51. 4000. 0. 1248. 109.	3907.	0.	77.		0.	0.				5781. 2861.	258. 154.	697.
Ave SEP 0.	109. 4000. 0. 1178. 127.	3902.		0.		0.	0.	0. 7902.	7902.	0.	5745. 2846.	255. 149.	724.
Ave Tot 0. 14576.	80000. 0. 44551. 1858.	44488.	0.	374.	0.	0.	0.	0. 124862.	124862.	0.	69117. 34646. 0. (6)	3179. 1810.	8014.

Note: (1) Consumptive Use (CU) = Diversion (Divert) * Efficiency + From Well * Efficiency + max (Resevoir Evaporation (Evap), 0.0).

(2) Loss is not part of the Stream Water Balance. It is the portion of a diversion, well pumping and reservoir seepage that does not return to the stream

(3) Pumping is not part of the Stream Balance.

Its impact on the stream is included in the From River by Well and Well Depletion columns

69117.

(4) Salvage is not part of the Stream Water Balance. It is the portion of well pumping that does not impact the stream

(5) From Plan is water from a reuse plan.

(6) Divert does not include diversions by an $\,$ instream flow or a T&C plan. Also to avoid double accounting with reservoir storage it has reduced by:

0. af/yr for Diverted to Storage. 1

 $\ensuremath{\text{0.}}$ af/yr for a Diversion Carrier. 2

3 ${\tt O.}$ af/yr for a Reservior Carrier.

0. af/yr for a Plan Carrier.
0. af/yr Total 4

#

#

```
#
#
  *.xwr
                Water rights list sorted by basin rank
    StateMod Operating Rule Example - ex14.* data set
# Statemod Version: 12.29.05 Date = 2008/10/23)
# Run date: 11/6/8 16:21:25
# Time Step:
                       Monthly
#
```

```
*.xwr; Water Right Information
#
        Number of rights =
                                    1.0
#
#
#
 Where:
                    = Water right basin rank
#
   1. Rank
  2. Type
                    = Water right type
                    1=Instream,
                    2=Reservoir,
                    3=Diversion,
                    4=Power,
                    5=Operational,
                    6=Well,
   3. Admin #
                    = Administration Number
   4. On/Off
                    = On or Off switch
     Note: Certain operating rules may cause a structure to
           be turned off since if it is controlled by an
           operating rule
                    0=off
#
                   1=on
                   +n=begin in year n
#
                   -n=stop in year n
                    = Primary structure for this right
#
   5. Str Id #1
                    = Secondary structure for this right (-1=N/A)\# 7. Amount
  6. Str Id #2
                                                                                    = Decreed capacity & unit
(c=CFS. a=AF)
# 8. Right Name
                    = Water right name
                    = Primary structure for this right
 9. Str Name #1
# 10. Str Name #2
                    = Secondary structure for this right (-1=N/A)
   Rank ID
                                       Admin # On/Off Str ID #1
                                                                     Str ID #2
                          Type
                                                                                       Amount Right Name
Str Name #1
                          Str Name #2
    (1) (2)
                                           (4)
                                                   (5) (6)
                                                                     (7)
                                                                                            (8) (9)
                           (3)
(10)
                           (11)
                             3
                                       2.00000
                                                                                      100.000 c M&I Demand 1
      1 Dem 1 WR 1
                                                     1 Dem 1
                                                                     -1
Municipal Demand _1
                             3
                                       6.00000
                                                     1 Dem 2
                                                                     -1
                                                                                       60.000 c Irrigation Demand 2
      2 Dem 2 WR 1
Irrigation Demand 2
                             3
                                       7.00000
                                                                                      100.000 c Irrigation Demand 3
      3 Dem 3 WR 1
                                                     1 Dem 3
                                                                     - 1
Irrigation Demand _3
      4 ISF_WR_1
                                       9.00000
                                                                                       65.500 c Instream Flow 1
                            1
                                                     1 TSF
                                                                     -1
Instream Demand
      5 Dem 4 WR 1
                             3
                                      10.00000
                                                                                      100.000 c Irrigation Demand _4
                                                     1 Dem 4
                                                                     -1
Irrigation Demand 4
      6 Dem_5_WR_1
                             3
                                      15.00000
                                                     1 Dem 5
                                                                                      100.000 c Irrigation Demand _5
                                                                     -1
Irrigation Demand _5
                             6
                                                                                       10.000 c Wel 1 to Wel 1
      7 Wel 1 Wr#1
                                      20.00000
                                                     1 Wel 1
                                                                     -1
Well Structure 1
                             6
                                      20.00000
                                                                                        5.000 c Wel_2 to Wel_2
      8 Wel 2 Wr#1
                                                     1 Wel 2
                                                                     -1
Well Structure 2
                            6
                                                                                       50.000 c Wel_3 to Dem_3
      9 Wel_3_Wr#1
                                      20.00000
                                                     1
                                                       Wel_3
                                                                     Dem 3
Well_3 to Dem_3
                          Irrigation Demand _3
                                                     6
                                                         3
                                      20.00000
                                                                                        5.000 c Wel_4 to Dem_3
     10 Wel 3 Wr#2
                            6
                                                     1
                                                       Wel_3
                                                                     Dem 3
Well_3 to Dem_3
                          Irrigation Demand _3
                                                         4
 *.xdd
             Diversion Summary
   STATEMOD
   StateMod Operating Rule Example - ex14.* data set
# Statemod Version: 12.29.05 Date = 2008/10/23)
                    11/ 6/ 8 16:20:47
# Run date:
                    Monthly
#
 Time Step:
   Diversion Summary ACFT
     STATEMOD
     StateMod Operating Rule Example - ex14.* data set
PAGE NO
          1
    STRUCTURE ID (0 = total) : Dem_3
                                                   -1
    STRUCTURE ACCT (0 = total): 0
    STRUCTURE NAME
                             : Irrigation Demand _3
    RIVER LOCATION - FROM
                                            Exist. Diver. 3/Inflow
                             : Dem_3
    RIVER LOCATION - TO
                                             Exist. Diver. 3/Inflow
                              : Dem_3
```

STRUCTURE DATA

:

cfs

af@30

af@31

Diversion Capacity	:	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	5000.	297525.	307442.
Woll Bights		2	5.5	2272	2202

Water Use Station In/Out Station Balance Shortage Demand From River By From Carrier By Carried From CU To Total Well From/To Exchang From Total Total Upstrm Reach Return Control River River River Avail Control River Total CU Priorty Storage Exc_Pln Well Priorty Sto_Exc Structure River Loss Loss Short Bypass SoilM Supply Short SoilM Return Loss Inflow Gain Flow Deplete GW Stor Inflow Divert by Well Outflow Flow Location Right NA ID NA (+) (+) (-) (+) ID Year Mo (+)(+)(+)(-)(+)NA NA NA NΑ NA NΑ NA NA (+)(+)(+)(-)(+)(+) (-) (-)NA NA (+)NA (1) (3) (4) (5) (6) (9) (2) (7) (8) (10) (14) (15) (11) (12) (13) (17) (18) (19) (20) (21) (22) (23) (25) (16) (24)(27) (28) (29) (30) (26)(31) 1979 OCT Dem_3 1000. 500. 0. 0. 0. 1000. 0. 0. Dem 3 0. 0. 0. 0. 1000. 0. 0. 500. 0. 500. 0. 0. 1000. 0. 0. 1000. 0. 0. Dem_1 125. 875. 100.000 0. 1000. 778. 0. 222. 0. Dem_3 Dem 3 1979 NOV 0. 0. 0. 0. 500. 1000. 0. 0. 0. NA 500. 500. 0. 0. 0. 0. 1000. 0. 125. 875. 0. 0. 778. -1.000 28. 69. Dem_3 . 1000. 1979 DEC 1000. 500. 694. 0. 0. 0. 306. 0. 0. 0. Dem_3 1000. 0. 0. 0. 500. 0. 500. 0. 0. 0. 153. 0. 847. 38. 115. 0. NA 694. -1.000 Dem_3 500. 1000. 0. 0. 456. 0. Dem_3 1980 JAN 0. 0. 0. 0. 1000. 57. 208. 0. 0 0. NA 0. 0. 500. 0. 500. 0. 0. 1000. 0. 191. 809. 0. 0. -1.000 544. Dem_3
0. 1000.
46. 197 500. 1980 FEB 1000. 0. 0. 0. 366. 0. Dem 3 634. 0. 0. 0. NA 0. 500. 0. 500. 1000. 877. 0. 0. 0. 0. 123. 0. 197. -1.000 634. Dem_3
0. 1000 0. 500. Dem_3 1980 MAR 1000. 607. 0. 393. 0. 0. 0. 0. 0. 1000. 49. 203. 0. 0. NA 500. 500. 1000. 141. 859. 0. 0. 0. 0. 0. 0. 607. -1.000 Dem_3
0. 1000. 500. 1980 APR 602. 0. ${\tt Dem_3}$ 1000. 0. 0. 398. 0. 0. 0. 0. 0. 0. NA 0. 500. 0. 500. 0. 0. 1000. 0. 152. 0. 848. 50. 196. 602. -1.000 Dem_3 1000. 500. 1000. 0. 0. 0. 0. 1980 MAY 0. 0. 0. Dem_3 1000. 0. 500. 5000. 4855. 0. 0. 500. 0. 145. Ο. 0. 0. 0. 1000. 0. 3855. 3855. NA -1.000 1980 JUN 500. 1000. Dem 3 1000. 0. 0. 0. 0. 0. 0. Dem 3 0. 0. 1000. 5000. 4901. 0. 0. 500. 0. 500. 0. 0. 0. 99. 0. 1000. 0. 3901. 3901. NA -1.000 Dem_3 1980 JUL 1000. 500. 899. 0. 0. 0. 101. 0. 0. 0. Dem_3 1000. 0. 0. 0. NA 500. 0. 0. 500. 0. 0. 0. 1000. 0. 50. 0. 950. 899. 13. 39. -1.000 Dem_3 500. 1000. 781. 0. 0. 0. 219. 0. Dem_3 0. 1000. 1980 AUG 0. 0. Dem_3 0. 0. 0. 500. 1000. 987. 0. 500. 0. 0. 0. 13. 0. 0. NA -1.000 781. 27. 179. Dem_3
0. 1000.
32. 183. 500. 745. 1000 0 1980 SEP Ω Ω 255 Ω Ω Ω Dem_3 0. 0. 0. 500. 0. 500. 0. 0. 1000. 0. 40. 0. 960. 0. NA 745. -1.000 0. 1980 TOT 12000. 6000. Dem_3 Dem 3 8284. 0. 0. 0. 3716. 0. 0. Dem_3
0. 12000. 6000. 6000. 20000. 0. 18769. 0. 0. 0. 0. 0. 0. 0. 1231. 7757. NA 8284. 464. 10021. -1.000 # *.xdd Diversion Summary STATEMOD StateMod Operating Rule Example - ex7.* data set # Statemod Version: 12.29.00 Date = 2008/09/15) 11/ 2/ 8 14: 8:29 Run date: Time Step: Monthly Diversion Summary ACFT STATEMOD StateMod Operating Rule Example - ex7.* data set

PAGE NO. 1

STRUCTURE ACCT (0 = total): 0

cfs af@30 STRUCTURE DATA : # Diversion Capacity : 1
Diversion Rights : 1
Well Capacity : 1
Well Rights 5000. 297525. 307442. 100. 5950. 5000. 297525. 6149. 307442. Well Rights 55. 3273. 3382.

Shortage	Water Use								
		Demand		River By		From Carrier By			By
Carried	=========								
Structure River						From	======		
Exchange From Total	Total CU	To	Total	Upst		W-11	D	O+	T
ID ID			riorty Storage	EXC_PIN SS Infl	Loss	Well	Priorty	Sto_Exc	Loss
Bypass SM Supply	Short Short	CU SoilM	Return Lo	ss Inii	OW				
Station Ir	\/O11+		Station B	alance					
=======================================	,				=======				
Reach Return Well		River River		l Control					
	GW Stor Inflow								
Dem 3 Dem 3		00. 500.	0. 0.	0.	0.	1000.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	1000.	0.	0.	0.	1000.
0. 125. 875.	0. Dem_1	100.000							
Dem_3 Dem_3	1979 NOV 10	00. 500.	778. 0.	0.	0.	222.	0.	0.	0.
0. 0. 1000.	0. 0. 5	00. 0.	500. 0.	0.	1000.	0.	125.	0.	875.
778. 28. 69.	0. NA	-1.000)						
Dem_3 Dem_3	1979 DEC 10	00. 500.	694. 0.	0.	0.	306.	0.	0.	0.
0. 0. 1000.	0. 0. 5	00.	500. 0.	0.	1000.	0.	153.	0.	847.
694. 38. 115.	0. NA	-1.000							
Dem_3 Dem_3		00. 500.	544. 0.	0.	0.	456.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	1000.	0.	191.	0.	809.
544. 57. 208.	0. NA	-1.000							
Dem_3 Dem_3		00. 500.	634. 0.	0.	0.	366.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	1000.	0.	123.	0.	877.
634. 46. 197.	0. NA	-1.000							
Dem_3 Dem_3		00. 500.	607. 0.	0.	0.	393.	0.	0.	0.
0. 0. 1000.		00.	500. 0.	0.	1000.	0.	141.	0.	859.
607. 49. 203.	0. NA	-1.000		_			_		
Dem_3		00. 500.	602. 0.	0.	0.	398.	0.	0.	0.
0. 0. 1000.		00.	500. 0.	0.	1000.	0.	152.	0.	848.
602. 50. 196.	0. NA	-1.000 00. 500.		0	0	0	0	0.	0.
Dem_3 Dem_3 0. 0. 1000.		00. 500. 00. 0.	1000. 0.	0. 0.	0.	0. 0.	0.	0.	4855.
1000. 0. 3855.	0. 0. 5 3855. NA	-1.00		0.	5000.	0.	145.	0.	4855.
Dem 3 Dem 3			1000. 0.	0.	0.	0.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	5000.	0.	99.	0.	4901.
1000. 0. 3901.	3901. NA	-1.00		٥.	3000.	٥.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠.	1701.
Dem 3 Dem 3		00. 500.	899. 0.	0.	0.	101.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	1000.	0.	50.	0.	950.
899. 13. 39.	0. NA	-1.000		٠.	1000.	٠.	50.	••	,,,,,
Dem 3 Dem 3		00. 500.	781. 0.	0.	0.	219.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	1000.	0.	13.	0.	987.
781. 27. 179.	0. NA	-1.000)						
Dem 3 Dem 3		00. 500.	745. 0.	0.	0.	255.	0.	0.	0.
0. 0. 1000.		00. 0.	500. 0.	0.	1000.	0.	40.	0.	960.
745. 32. 183.	0. NA	-1.000)						
Dem_3 Dem_3	1980 TOT 120		8284. 0.	0.	0.	3716.	0.	0.	0.
0. 0. 12000.		00.	6000. 0.	0.	20000.	0.	1231.	0.	18769.
8284. 464. 10021.	7757. NA	-1.00	00						

Gage Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO. 2

RIVER LOCATION - FROM : Wel_3 Exist. Well_3 RIVER LOCATION - TO : Wel_3 Exist. Well_3

Shortage		Water T	Use			
			Dema	nd From River By		From Carrier By
Carried		======		=======		
Structure	River		=======		From	=======================================
Exchange	From Total	Total	CU	To Total Upstrm		
ID	ID	Year	Mo Total	CU Priorty Storage Exc_Pln Loss	Well	Priorty Sto_Exc Loss
Bypass	SM Supply	Short	Short CU	SoilM Return Loss Inflow		

Station In/Out Station Balance

======														
Reach		urn Well	From/To			River	River		Control					
Gain	Flo	w Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
NA		Wel_3	1979	OCT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
NA		Wel_3	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								
														_
NA		Wel_3	1980	TOT	0.	0.	0.	₀ .	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 3

STRUCTURE ID (0 = total) : Dem_4 2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigation Demand _4
RIVER LOCATION - FROM : Dem_4 Exist. Diver. 4
RIVER LOCATION - TO : Dem_4 Exist. Diver. 4

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	5000.	297525.	307442.
Diversion Rights	:	1	100.	5950.	6149.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortag	re		Water	Use										
					Deman	d		From R	iver By			From	Carrier	By
Carried	l		=====			======		=====	===					
Structu	ıre	River		=:		===== ==		=====		====	From	======		=====
Exchang	re F	rom Total	Total	CU		To	Total		Upst:	rm				
ID		ID	Year	Mo 5	Total	CU Pr	iorty St	orage 1	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Supply	Short	Short	CU	SoilM	Return	Los	s Infl	OW				
		Station I	n/Out				Stat	ion Ba	lance					
======	====	=======	=======	======	= =====	======	=======	=====	=======	======				
Reach	Ret	urn Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flo	w Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_4		Dem_4	1979	OCT	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	500.	250.	0.	0.	0.	0.	875.	0.	250.	0.	0.	1125.
0.	0.	1125.	0. Dem	1_1	1	00.000								
Dem_4		Dem_4	1979	NOV	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	500.	250.	0.	0.	0.	0.	69.	0.	500.	0.	0.	569.
0.	0.	569.	0. ISF	7	1	00.000								

Dem_4	Dem_4	1979 DEC		250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	115.	0.	500.	0.	0.	615.
0.	0. 615.	0. ISF		100.000								
Dem_4	Dem_4	1980 JAN		250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	208.	0.	500.	0.	0.	708.
0.	0. 708.	0. ISF		100.000								
Dem_4	Dem_4	1980 FEB		250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.		0.	0.	0.	197.	0.	500.	0.	0.	697.
0.	0. 697.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 MAR		250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	203.	0.	500.	0.	0.	703.
0.	0. 703.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 APR	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	196.	0.	500.	0.	0.	696.
0.	0. 696.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 MAY	500.	250.	500.	0.	0.	0.	0.	0.	0.	0.
0.	0. 500.	0. 0.	250.	0.		0.	3855.	0.	500.	0.	0.	4355.
500.	0. 3855.	3855. NA		-1.00	0							
Dem_4	Dem_4	1980 JUN	500.	250.	500.	0.	0.	0.	0.	0.	0.	0.
0.	0. 500.	0. 0.	250.	0.	250.	0.	3901.	0.	500.	0.	0.	4401.
500.	0. 3901.	3901. NA		-1.00	0							
Dem_4	Dem_4	1980 JUL	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.	0.	0.	0.	0.	39.	0.	500.	0.	0.	539.
0.	0. 539.	0. ISF		100.000								
Dem_4	Dem_4	1980 AUG	500.	250.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	500. 250.		0.	0.	0.	179.	0.	500.	0.	0.	679.
0.	0. 679.	0. Dem_1		100.000								
Dem_4	Dem_4	1980 SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0. 0.	0. 0.	0.	0.	0.	0.	183.	0.	500.	0.	0.	683.
0.	0. 683.	0. ISF		100.000								
 Dem_4		1980 TOT	5500.	2750.	1000.	₀ .	0.	0.	0.	0.	0.	0.
0.	0. 1000.	4500. 2250.	500.	0.	500.	0.	10021.	0.	5750.	0.	0.	15771.
1000.	0. 14771	. 7757. NA		-1.0	00							

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 4

STRUCTURE ID (0 = total) : Dem_5

STRUCTURE DATA cfs af@30 : # af@31 : 1 : 1 : 7 5000. 297525. Diversion Capacity Diversion Rights 5950. 6149. 100. 0. Well Capacity 0. 0. 0. 0. Well Rights 0

Shortag	je		Water	Use										
					Deman	d		From R	iver By			From	Carrier	Ву
Carried	l		=====		=====	======			===					
Structu	ıre	River		==		===== ==			=======	=====	From	======		
Exchang	je I	rom Total	Total	CU		To	Total		Upst:	rm				
ID		ID	Year	Mo T	otal	CU Pr	iorty St	orage :	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Supply	Short	Short	CU	SoilM	Return	Los	s Infl	OW				
		Station In	n/Out				Stat	ion Ba	lance					
======	====				=====									
Reach	Ret	urn Well	From/To	River	River	River	River	Avail	Control	Control				
Gain	Flo	w Deplete	GW Stor	Inflow	Divert	By Well	Outflow	Flow	Location	Right				
Dem_5		Dem_5	1979	OCT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_1	1	00.000								
Dem_5		Dem_5	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								

Dem_5		Dem_5	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
Dem_5		Dem_5	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	<u>_</u> 2		60.000								
Dem_5		Dem_5	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	15000.	0.	0.	0.	15000.
0.	0.	15000.	12000. NA			-1.000								
Dem_5		Dem_5	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	15000.	0.	0.	0.	15000.
0.	0.	15000.	12000. NA			-1.000								
Dem_5		Dem_5	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	<u>_</u> 2		60.000								
Dem_5		Dem_5	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	<u>_</u> 2		60.000								
Dem_5		Dem_5	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	3000.	0.	0.	0.	3000.
0.	0.	3000.	0. Dem	_2		60.000								
 Dem_5	_	 Dem_5	1980			0.	0.		0.	0.	0.	0.	0.	0.
0.		0.	0.	0.	0.	0.	0.	0.	0.		0.	0.	0.	
0.			24000. NA		٠.	-1.000		٠.	٠.		٠.	٠.	٠.	

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 5

STRUCTURE ID (0 = total) : Dem_2
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Irrigat
RIVER LOCATION - FROM : Dem_2
RIVER LOCATION - TO : Dem_2

Herman School Control
STRUCTURE DATA : # cfs af@30 af@31 5000. 297525. 307442. 60. 3570. 3689. 1 1 Diversion Capacity : Diversion Capacity
Diversion Rights
Well Capacity
Well Rights : 0. 0. 0. 1

Shortag	ge	Wate:	r Use									
			Den	nand	F	rom R	iver By			From	Carrier	By
Carried		=====		========			===					
Structu	ıre River		======	====== ===			=======	====	From	======		=====
Exchang	ge From Total	Total	CU	To	Total		Upst	rm				
ID	ID	Year	Mo Total	CU Pri	orty Sto	rage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short CU	J SoilM	Return	Los	s Infl	OW				
	Station In	/Out			Stati	lon Ba	lance					
======				.=======								
Reach	Return Well	From/To	o River Rive	r River	River	Avail	Control	Control				
Gain	Flow Deplete	GW Stor	Inflow Dive	ert By Well	Outflow	Flow	Location	Right				
Dem 2	Dem 2	1979			2833.	0.	0.	0.	0.	0.	0.	0.
0.	0. 2833.	167.	83. 1417.	0. 1	417.	0.	3000.	0.	0.	0.	0.	3000.
2833.	0. 167.	0.	Dem 1	100.000)							
Dem_2	Dem_2	1979	NOV 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0.	Hgate_Limit	-1.000)							
Dem 2	Dem 2	1979	DEC 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0.	Hgate_Limit	-1.000)							
Dem_2	Dem_2	1980	JAN 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.		Hgate_Limit	-1.000)							
Dem_2	Dem_2	1980	FEB 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0.	Hgate_Limit	-1.000)							
Dem_2	Dem_2	1980	MAR 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0.	Hgate_Limit	-1.000)							
Dem_2	Dem_2	1980	APR 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0.	Hgate_Limit	-1.000)							
Dem_2	Dem_2	1980	MAY 3000.	1500. 3	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0.	0. 1500.	0. 1	500.	0.	15000.	0.	0.	0.	0.	15000.
3000.	0. 12000.	12000.	NA	-1.000)							

Dem_2	Dem_2	1980 JUN	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0. 0.	1500.	0.	1500.	0.	15000.	0.	0.	0.	0.	15000.
3000.	0. 12000.	12000. NA		-1.	000							
Dem_2	Dem_2	1980 JUL	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0. 0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0. Hgate_	_Limit	-1.	000							
Dem_2	Dem_2	1980 AUG	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0. 0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0. Hgate	_Limit	-1.	000							
Dem_2	Dem_2	1980 SEP	3000.	1500.	3000.	0.	0.	0.	0.	0.	0.	0.
0.	0. 3000.	0. 0.	1500.	0.	1500.	0.	3000.	0.	0.	0.	0.	3000.
3000.	0. 0.	0. Hgate_	_Limit	-1.	000							
Dem 2			36000.	18000.	35833.		0.	0.	0.	0.	0.	0.
_	_											
0.			17917.		17917.	0.	60000.	0.	0.	0.	0.	60000.
35833.	0. 24167.	24000. NA		-1	.000							

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 6

STRUCTURE ID (0 = total) : Wel_2 12502

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Well Structure 2

RIVER LOCATION - FROM : Wel_2 Exist. Well_2

RIVER LOCATION - TO : Wel_2 Exist. Well_2

STRUCTURE DATA : # cfs af@30 af@31 : 1 5000. 297525. 307442. : 1 5. 298. 307. Well Capacity Well Rights 5.

Shortag				r Use	Dema				iver By			From	Carrier	Ву
Carried			=====								_			
Structu					======				=======		From	======		
_	le F	From Total		CU	m. i . i	To	Total		Upst:		** - 1 1	B	G1 - F	
ID		ID	Year Short		Total t CU	SoilM	iorty St Return	orage Los		Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Supply	Short	Shor	t CO	SOLIM	Return	LOS	s IIIII	OW				
		Station In	,					ion Ba						
		urn Well		====== o River		====== River	River							
Reach Gain		ow Deplete	- ,						Control Location					
Wel 2	FIC	Wel 2	1979		1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	Wei_2 307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Det			100.000	134.	٠.	٥.	0.	٠.	0.	0.	٠.
Wel 2	٠.	Wel 2		NOV	1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. IS			100.000		٠.	٠.	٠.	٠.	٠.	٠.	٠.
Wel 2		Wel 2		DEC	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. IS			100.000								
Wel 2		Wel 2	1980	JAN	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. IS	F		100.000								
Wel_2		Wel_2	1980	FEB	1000.	500.	0.	0.	0.	0.	278.	0.	0.	0.
0.	0.	278.	722.	361.	139.	0.	139.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Det	m_1		100.000								
Wel_2		Wel_2	1980	MAR	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Det			100.000								
Wel_2		Wel_2		APR	1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Det			100.000								
Wel_2		Wel_2		MAY	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	_	ate_Lim		-1.000			_					
Wel_2	_	Wel_2		JUN	1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	_	ate_Lim		-1.000	0	0	0	0	207	0	0	0
Wel_2	0	Wel_2		JUL	1000.	500.	0.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307. 0.	693.	346.	154.	0.	154.	0.	0.	0.	0.	0.	0.	0.
0. Wel 2	0.		0. IS		1000.	100.000 500.	0.	0.	0.	0.	307.	0.	0.	0.
weı_∠ 0.	0.	Wel_2 307.	693.	AUG 346.	154.	0.	0. 154.	0.	0.	0.	307.	0.	0.	0.
0.	0.	307.	0. Det			100.000	154.	υ.	υ.	υ.	υ.	υ.	υ.	υ.
Wel 2	υ.	Wel 2	1980	_	1000.	500.	0.	0.	0.	0.	298.	0.	0.	0.
0.	0.	wei_2 298.	702.	351.	149.	0.	149.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. IS			100.000	447	٠.	٠.	٠.	٠.	٥.	٠.	٠.
٠.	٠.	٠.	J. 10.	-										

Wel_2		Wel_2	1980	TOT 12	000. 60	000.	0.	0.	0.	0.	3620.	0.	0.	0.
0.	0.	3620.	8380. 41	L90. 1	310.	0. 18	310.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA		-1	.000								

Gage Summary ACFT STATEMOD

StateMod Operating Rule Example - ex7.* data set

RIVER LOCATION - FROM : Riv_50 RIVER LOCATION - TO : Riv_50 Confluence Confluence

Shortag	ge		Water	Use	Demar	ad		Exam D	iver By			Enom	Carrier	. Dr.
Carried	4		=====			.1a =======			-			FLOIII	Calllel	. Бу
Structi		River								=====	From	======		
		rom Tota	al Total	CU		To	Total		Upst	rm				
ID	_	ID	Year	Mo	Total	CU Pr	iorty St	orage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass		SM Suppl	ly Short	Short	CU	SoilM	Return	Los	s Infl	OW				
		Station						ion Ba						
Reach		urn Well	From/To			River	River		Control					
Gain NA	F.T.C	w Deplet Riv 50	te GW Stor 1979	Inflow OCT	Diverτ 0.	By Well $0.$	Outilow	P.TOM	Location 0.	Right 0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1292.	0.	0.	0.	0.	1292.
0.	0.	1292.	0. NA	0.	0.	-1.000	0.	0.	1292.	0.	0.	0.	0.	1292.
NA	0.	Riv 50	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	569.	0.	0.	0.	0.	569.
0.	0.	569.	0. NA	٠.	٠.	-1.000	٥.	٠.	505.	٠.	٠.	٠.	٠.	505.
NA	•	Riv 50	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	615.	0.	0.	0.	0.	615.
0.	0.	615.	0. NA			-1.000								
NA		Riv_50	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	708.	0.	0.	0.	0.	708.
0.	0.	708.	0. NA			-1.000								
NA		Riv_50	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	697.	0.	0.	0.	0.	697.
0.	0.	697.	0. NA			-1.000								
NA		Riv_50	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	703.	0.	0.	0.	0.	703.
0.	0.	703.	0. NA			-1.000								
NA		Riv_50	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	696.	0.	0.	0.	0.	696.
0.	0.	696.	0. NA		0	-1.000 0.	0.	0	0.	0.	0.	0	0	0.
NA 0.	0.	Riv_50 0.	1980 0.	MAY 0.	0. 0.	0.	0.	0.	15855.	0.	125.	0. 0.	0. 0.	15980.
0.	0.	15980.	12386. NA	0.	0.	-1.000	0.	0.	15855.	0.	125.	0.	0.	15980.
NA	0.	Riv_50	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.01	0.	0.	0.	0.	15901.	0.	250.	0.	0.	16151.
0.	0.	16151.	12749. NA	٥.	٥.	-1.000	٥.	٥.	13701.	٥.	250.	0.	٥.	10131.
NA	٠.	Riv 50	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	539.	0.	125.	0.	0.	664.
0.	0.	664.	0. NA			-1.000								
NA		Riv 50	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	_0.	0.	0.	0.	0.	0.	0.	679.	0.	0.	0.	0.	679.
0.	0.	679.	0. NA			-1.000								
NA		Riv_50	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	683.	0.	0.	0.	0.	683.
0.	0.	683.	0. NA			-1.000								
									^	^	^	^	^	•
NA 0.	0	Riv_50	1980 0.	TOT 0.	0.	0. 0.	0. 0.	0.	0. 38938.	0. 0.	0. 500.	0. 0.	0. 0.	0.
0.	0.	0. 39438.	0. 25135. NA	υ.	0.	-1.000	υ.	0.	30930.	υ.	500.	υ.	υ.	39438.
υ.	υ.	JJ430.	23133. NA			1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO. 8

STRUCTURE ID (0 = total) : Dem_1 5
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Municipal Demand _1
RIVER LOCATION - FROM : Dem_1 Exist. Diver. 1
RIVER LOCATION - TO : Dem_1 Exist. Diver. 1

STRUCTURE DATA : # cfs af@30 af@31 Diversion Capacity : 1 5000. 297525. 307442. Diversion Rights : 1 100. 5950. 6149. Well Capacity : 1 0. 0. 0. Well Rights : 0 0. 0. 0. 0.

Shortage	Water Use		
~	Dema	-	From Carrier By
Carried Structure River			From ==========
Exchange From Total	Total CU	To Total Upstrm	From ==========
ID ID	Year Mo Total	CU Priorty Storage Exc_Pln Loss	Well Priorty Sto_Exc Loss
Bypass SM Supply			Well Filotty Sto_Exc Loss
Bypass SM Supply	SHOLE SHOLE CO	SOTIM RECUIN LOSS INITIOW	
Station In/	/Out	Station Balance	
			:=
Reach Return Well	From/To River River	River River Avail Control Control	1
Gain Flow Deplete G		By Well Outflow Flow Location Right	
Dem_1 Dem_1	1979 OCT 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 1292. 0.	785. 0. 0. 2077.
2000. 77. 0.	0. NA	-1.000	
Dem_1 Dem_1	1979 NOV 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 569. 0.	1610. 77. 0. 2102.
2000. 74. 28.	0. NA	-1.000	0 0 0
Dem_1 Dem_1	1979 DEC 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000. 2000. 77. 38.	0. 0. 400.	0. 1600. 0. 615. 0. -1.000	1651. 151. 0. 2115.
2000. //. 38. Dem 1 Dem 1	0. NA 1980 JAN 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 708. 0.	1654. 228. 0. 2134.
2000. 77. 57.	0. NA	-1.000	1034. 220. 0. 2134.
Dem 1 Dem 1	1980 FEB 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 697. 0.	1646. 228. 0. 2115.
2000. 69. 46.	0. NA	-1.000	
Dem_1 Dem_1	1980 MAR 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 703. 0.	1646. 223. 0. 2126.
2000. 77. 49.	0. NA	-1.000	
Dem_1 Dem_1	1980 APR 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 696. 0.	1651. 223. 0. 2124.
2000. 74. 50.	0. NA	-1.000	
Dem_1 Dem_1	1980 MAY 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 15980. 0.	1651. 221. 0. 17411.
	12386. NA	-1.000	
Dem_1 Dem_1	1980 JUN 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 16151. 0.	1651. 228. 0. 17574.
	12749. NA 1980 JUL 2000.	-1.000 400. 2000. 0. 0. 0.	0. 0. 0. 0.
Dem_1 Dem_1 0. 0. 2000.	0. 0. 400.	0. 1600. 0. 664. 0.	0. 0. 0. 0. 1651. 226. 0. 2090.
2000. 77. 13.	0. 0. 400. 0. NA	-1.000 U. 664. U.	1651. 226. 0. 2090.
Dem 1 Dem 1	1980 AUG 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 679. 0.	1654. 228. 0. 2104.
2000. 77. 27.	0. NA	-1.000	1031. 220. 0. 2101.
Dem 1 Dem 1	1980 SEP 2000.	400. 2000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 2000.	0. 0. 400.	0. 1600. 0. 683. 0.	1651. 228. 0. 2106.
2000. 74. 32.	0. NA	-1.000	
Dem_1 Dem_1	1980 TOT 24000.	4800. 24000. 0. 0. 0.	0. 0. 0. 0.
0. 0. 24000.	0. 0. 4800.		18902. 2261. 0. 56079.
24000. 905. 31174.	25135. NA	-1.000	

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set PAGE NO. 9

STRUCTURE ID (0 = total) : Wel_1 12501
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Well Structure 1
RIVER LOCATION - FROM : Wel_1 Exist. Well_1
RIVER LOCATION - TO : Wel_1 Exist. Well_1

: # STRUCTURE DATA cfs af@30 af@31 5000. 297525. 307442. Well Capacity Well Rights 615. 10. 595.

Water Use Shortage

Demand From River By From Carrier By -----Carried ID ID Year Mo Total CU Priorty Storage Exc_Pln Loss Well Priorty Sto_Exc Loss Bypass SM Supply Short Short CU SoilM Return Loss Inflow

Bypass	٤	SM Suppl	y Short	Short	CU	SoilM	Return	Los	s Infl	OW				
		Station						ion Ba						
Reach Gain	Reti	ırn Well	From/To	o River	River	River	River	Avail	Control	Control				
Wel 1	riov	Wel 1			3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	_		1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hqa	ate Limi	.t	-1.000								
Wel_1		Wel_1	1979	NOV	3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.	595.	2405.	1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hga	ate_Limi	.t	-1.000								
Wel_1		Wel_1	1979	DEC	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate_Limi		-1.000								
Wel_1		Wel_1	1980		3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.		1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate_Limi		-1.000								
Wel_1	_	Wel_1		FEB	3000.	1500.	0.	0.	0.	0.	555.	0.	0.	0.
0.	0.			1222.	278.	0.	139.	139.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate_Limi		-1.000	•		•		615	•		
Wel_1 0.	0.	Wel_1 615.	1980 2385.	MAR 1193.	3000. 307.	1500.	0. 154.	0.	0. 0.	0. 0.	615. 0.	0. 0.	0. 0.	0.
0.	0.	0.		1193. ate Limi		0. -1.000	154.	154.	0.	0.	0.	0.	0.	0.
Wel_1	0.	Wel 1			3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.	595.		1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.		izuz. ate Limi		-1.000	149.	149.	٥.	0.	٥.	0.	0.	0.
Wel 1	٠.	Wel 1	1980	_	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	_		1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.		ate_Limi		-1.000								
Wel 1		Wel 1	1980		3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.	595.	2405.	1202.	298.	0.	149.	149.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hga	ate_Limi	.t	-1.000								
Wel_1		Wel_1	1980	JUL	3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.	2385.	1193.	307.	0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. Hga	ate_Limi	.t	-1.000								
Wel_1		Wel_1	1980		3000.	1500.	0.	0.	0.	0.	615.	0.	0.	0.
0.	0.	615.		1193.		0.	154.	154.	0.	0.	0.	0.	0.	0.
0.	0.	0.	_	ate_Limi		-1.000								
Wel_1		Wel_1			3000.	1500.	0.	0.	0.	0.	595.	0.	0.	0.
0.	0.			1202.		0.	149.	149.	0.	0.	0.	0.	0.	0.
0.		0.	0. Hga			-1.000								
Wel 1		Wel 1	1980	TOT 3	6000.	18000.	0.	0.	0.	0.	7240.	0.	0.	0.
0.	0.		28760. 14		3620.			1810.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0. NA			-1.000								

Diversion Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO. 10

STRUCTURE ID (0 = total) : ISF 5001

STRUCTURE ACCT (0 = total): 0

STRUCTURE NAME : Instream Demand

RIVER LOCATION - FROM : ISF Top Instream Flow

RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

STRUCTURE DATA	:	#	cfs	af@30	af@31
Diversion Capacity	: -	1	0.	0.	0.
Diversion Rights	:	1	66.	3898.	4027.
Well Capacity	:	1	0.	0.	0.
Well Rights	:	0	0.	0.	0.

Shortage	Water Use				
	Demar	nd From River By	7	From Carrier	Ву
Carried	=======================================				
Structure River	=======		====== From	==========	
Exchange From Total	Total CU	To Total U	ostrm		
ID ID	Year Mo Total	CU Priorty Storage Exc_Pla	n Loss Well	Priorty Sto_Exc	Loss
Bypass SM Supply	Short Short CU	SoilM Return Loss In	nflow		
Station In	/Out	Station Balance			
=======================================		.======================================			
Reach Return Well	From/To River River	River River Avail Contro	ol Control		
Gain Flow Deplete	GW Stor Inflow Divert	By Well Outflow Flow Locat:	ion Right		
ISF ISF	1979 OCT 4027.	0. 640. 0. 0	. 0. 0.	0. 0.	0.
101	1979 OCT 4027.	0. 640. 0. 0	. 0. 0.	٠. ٠.	
	387. 0. 0.	0. 640. 0. 0		0. 77.	794.

ISF	ISF 197	9 NOV 3898.	0. 997.	0.	0.	0.	0.	0.	0.	0.
0.	0. 997. 2901.		0. 997.	0.	28.	0.	1271.	154.	0.	1145.
997.	149. 997. 0. ISF 197	Hgate_Limit	-1.000							
ISF	ISF 197	9 DEC 4027.	0. 1250.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1250. 2777.	0. 0.	0. 1250.	0.	38.	0.	1591.	302.	77.	1404.
1250.	154. 1250. 0	. Hgate_Limit	-1.000							
ISF	ISF 198	0 JAN 4027.	0. 1201.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1201. 2827.	0. 0.	0. 1201.	0.	57.	0.	1754.	456.	0.	1355.
1201.	154. 1201. 0	. Hgate Limit	-1.000							
ISF	ISF 198	0 FEB 3638.	0. 1266.	0.	0.	0.	0.	0.	0.	0.
0.	0. 1266. 2371.	0. 0.	0. 1266.	0.	46.	0.	1746.	456.	69.	1405.
1266.	139. 1266. 0		-1.000							
			0. 1195.	0.	0.	0	0.	0.	0	0.
0.	0. 1195. 2832.		0. 1195.	0.	49.	0.		446.		1349.
	154. 1195. 0		-1.000	٠.		٠.	1,10.	110.	٠.	1317.
ISF	ISF 198		0. 1280.	0.	0.	Λ	0.	0.	0.	0.
0.			0. 1280.	0.		0.		446.	74.	
	149. 1280. 0		-1.000	٠.	50.	٠.	1,21.	110.	,	1127.
ISF	ISF 198	0 MAY 4027.	0. 4027.	Λ	0.	0.	0.	0.	0	0.
0.	0. 4027. 0.	0 1111 1027.	0. 4027.		15334.	0.		441.		16567.
4027.	154. 16413. 12386		-1.000	٠.	13334.	٠.	1/51.	111.	, , .	10307.
ISF		0 JUN 3898.	0. 3898.	0.	0.	0.	0.	0.	0	0.
0.	0. 3898. 0.		0. 3898.		15500.	0.		456.		16795.
3898.	149. 16646. 12749		-1.000	0.	13300.	0.	1/31.	430.	0.	10/93.
		0 JUL 4027.	0. 1236.	0	0.	0.	0.	0.	0	0.
0.			0. 1236.	0.		0.	1751.	451.	77	1390.
	154. 1236. 2792.		-1.000	υ.	13.	υ.	1/51.	451.	//.	1390.
	ISF 198			0	0	0	0	0	0	0
			0. 1248.	0.		0.	0.	0.		0.
0.			0. 1248.	0.	27.	0.	1754.	456.	//.	1402.
	154. 1248. 0		-1.000							
ISF	ISF 198		0. 1178.	0.				0.		0.
0.			0. 1178.	0.	32.	0.	1751.	456.	0.	1327.
1178.	149. 1178. 0	. Hgate_Limit	-1.000							
					_		_			
ISF		0 TOT 47421.		0.		0.				
	0. 19417. 28004.			0.	31174.	0.	19336.	4522.	374.	46361.
19417.	1810. 44551. 2513	5. NA	-1.000							

Diversion Summary ACFT

STATEMOD

Shortage

StateMod Operating Rule Example - ex7.* data set PAGE NO. 11

Water Use

STRUCTURE ID (0 = total) : Baseflow -10003
STRUCTURE ACCT (0 = total): 0
STRUCTURE NAME : Bottom Instream Flow
RIVER LOCATION - FROM : ISF.01 Bottom Instream Flow
RIVER LOCATION - TO : ISF.01 Bottom Instream Flow

2222 20032			Demand From River By					From Carrier By					
Carried		=====	======	======	======	=======		===					
Structure	River		==		=====				====	From	======	======	
Exchange 1	From Total	Total	CU		To	Total		Upst	rm				
ID	ID	Year	Mo 1	otal	CU Pr	iorty St	orage	Exc_Pln	Loss	Well	Priorty	Sto_Exc	Loss
Bypass	SM Supply	Short	Short	CU	SoilM	Return	Los	s Infl	ow				
	Station I	,					ion Ba						
	turn Well	From/To		River		River		Control Location	Control				
Baseflow	ow Deplete ISF.01	1979	OCT	0.	O.	0.	F.TOM	Location 0.	Right 0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0.	0.	0.	0.	640.	0.	0.	0.	0.	640.
0. 0.	640.	0. 0. NA	0.		-1.000	0.	0.	640.	0.	0.	0.	0.	040.
Baseflow	TSF.01	1979	NOV	0.	0.	0.	0.	0.	0.	0.	0 -	0.	0.
0. 0.	0.	0.	0.		0.	0.	0.	997.	0.	0.	0.	0.	997.
0. 0.	997.	0. NA	0.		-1.000	0.	0.	991.	0.	0.	0.	0.	221.
Baseflow	ISF.01	1979	DEC	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0.	0.	0.	0.	1250.	0.	0.	0.	0.	1250.
0. 0.		0. NA	٠.		-1.000	٠.	٠.	1230.	٥.	٠.	٠.	٠.	1230.
Baseflow	ISF.01	1980	JAN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0.	0.	0.	0.	1201.	0.	0.	0.	0.	1201.
0. 0.	1201.	0. NA			-1.000								
Baseflow	ISF.01	1980	FEB	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0.	0.	0.	0.	1266.	0.	0.	0.	0.	1266.
0. 0.	1266.	0. NA			-1.000								
Baseflow	ISF.01	1980	MAR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0.	0.	0.	0.	1195.	0.	0.	0.	0.	1195.
0. 0.	1195.	0. NA			-1.000								
Baseflow	ISF.01	1980	APR	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0.	0.	0.	0.	1280.	0.	0.	0.	0.	1280.
0. 0.	1280.	0. NA			-1.000								

Basef	low	ISF.01	1980	MAY	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	16413.	0.	0.	0.	0.	16413.
0.	0.	16413.	12386. NA			-1.000								
Basef	low	ISF.01	1980	JUN	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	16646.	0.	0.	0.	0.	16646.
0.	0.	16646.	12749. NA			-1.000								
Basef	low	ISF.01	1980	JUL	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1236.	0.	0.	0.	0.	1236.
0.	0.	1236.	0. NA			-1.000								
Basef	low	ISF.01	1980	AUG	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1248.	0.	0.	0.	0.	1248.
0.	0.	1248.	0. NA			-1.000								
Basef	low	ISF.01	1980	SEP	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	1178.	0.	0.	0.	0.	1178.
0.	0.	1178.	0. NA			-1.000								
Basef	low	ISF.01	1980	TOT	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	44551.	0.	0.	0.	0.	44551.
0.	0.	44551.	25135. NA			-1.000								

#
#
*.xwe Well Structure Summary
#
STATEMOD
StateMod Operating Rule Example - ex14.* data set
#

Well Water Only Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex14.* data set

PAGE NO.

STRUCTURE ID (0 _ total) : Wel_1
STRUCTURE ACCT (0 _ total): 0
STRUCTURE NAME : Well Structure 1

cfs STRUCTURE DATA af@30 af@31 297525. Well Capacity Well Rights 5000. 307442. 10. 595. 615.

Use			Demand Water Supply Short Water Source		Water
======					
Structu			Total CU From From From Total CU	Total	To
	otal From Fro				
ID Return	ID Loss Carrie		Mo Demand Demand Well SW Soil Supply Short Short River GwStor Salvage Soil Source	CU	Soil
			River GwStor Salvage Soll Source		
Wel_1	Wel_1	1979		307.	0.
154.	154. 0.	615.	154. 461. 0. 0. 615.	207.4	
Wel_1 153.7	Wel_1 153.7 0.0	1979 614.9	OCT 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 1192.6 153.7 461.2 0.0 0.0 614.9	307.4	0.0
Wel_1	Wel_1		OCT 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 1192.56	307.44	0.00
153.72			153.72 461.16 0.00 0.00 614.89		
Wel_1	Wel_1	1979		298.	0.
149. Wel_1	149. 0. Wel_1	595. 1979	149. 446. 0. 0. 595. NOV 3000.0 1500.0 595.0 0.0 0.0 595.0 2404.9 1202.5	297.5	0.0
148.8	148.8 0.0	595.0	148.8 446.3 0.0 0.0 595.0	291.3	0.0
Wel_1	Wel_1	1979	NOV 3000.00 1500.00 595.05 0.00 0.00 595.05 2404.95 1202.47	297.52	0.00
148.76	148.76 0.00		148.76 446.29 0.00 0.00 595.05		
Wel_1 154.	Wel_1 154. 0.	1979 615.	DEC 3000. 1500. 615. 0. 0. 615. 2385. 1193. 154. 461. 0. 0. 615.	307.	0.
Wel_1	Wel_1		DEC 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 1192.6	307.4	0.0
153.7	153.7 0.0	614.9	153.7 461.2 0.0 0.0 614.9		
Wel_1	Wel_1		DEC 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 1192.56	307.44	0.00
153.72 Wel_1	153.72 0.00 Wel_1	614.89 1980	153.72 461.16 0.00 0.00 614.89 JAN 3000. 1500. 615. 0. 0. 615. 2385. 1193.	307.	0.
154.	wei_i 154. 0.	615.	154. 461. 0. 0. 615.	307.	0.
Wel_1	Wel_1		JAN 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 1192.6	307.4	0.0
153.7	153.7 0.0	614.9	153.7 461.2 0.0 0.0 614.9		
Wel_1 153.72	Wel_1 153.72 0.00		JAN 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 1192.56 153.72 461.16 0.00 0.00 614.89	307.44	0.00
Wel 1	Wel_1	1980		278.	0.
139.	139. 0.	555.	139. 417. 0. 0. 555.		
Wel_1	Wel_1		FEB 3000.0 1500.0 555.4 0.0 0.0 555.4 2444.6 1222.3	277.7	0.0
138.8 Wel 1	138.8 0.0 Wel_1	555.4	138.8 416.5 0.0 0.0 555.4 FEB 3000.00 1500.00 555.38 0.00 0.00 555.38 2444.62 1222.31	277 60	0.00
138.85			138.85 416.54 0.00 0.00 555.38	277.05	0.00
Wel_1	Wel_1	1980		307.	0.
154.	154. 0.	615.	154. 461. 0. 0. 615.		
Wel_1 153.7	Wel_1 153.7 0.0	1980 614.9	MAR 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 1192.6 153.7 461.2 0.0 0.0 614.9	307.4	0.0
Wel 1	Wel_1		MAR 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 1192.56	307.44	0.00
153.72			153.72 461.16 0.00 0.00 614.89		
Wel_1	Wel_1	1980		298.	0.
149. Wel_1	149. 0. Wel_1	595.	149. 446. 0. 0. 595. APR 3000.0 1500.0 595.0 0.0 0.0 595.0 2404.9 1202.5	297.5	0.0
148.8	148.8 0.0	595.0	148.8 446.3 0.0 0.0 595.0	257.5	0.0
Wel_1	Wel_1		APR 3000.00 1500.00 595.05 0.00 0.00 595.05 2404.95 1202.47	297.52	0.00
148.76			148.76 446.29 0.00 0.00 595.05		
Wel_1 154.	Wel_1 154. 0.	1980 615.	MAY 3000. 1500. 615. 0. 0. 615. 2385. 1193. 154. 461. 0. 0. 615.	307.	0.
Wel 1	Wel_1		MAY 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 1192.6	307.4	0.0
153.7	153.7 0.0	614.9	153.7 461.2 0.0 0.0 614.9		
Wel_1			MAY 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 1192.56	307.44	0.00
153.72 Wel_1	Wel_1		153.72 461.16 0.00 0.00 614.89 JUN 3000. 1500. 595. 0. 0. 595. 2405. 1202.	298.	0.
149.	149. 0.	595.	149. 446. 0. 0. 595.	200.	٥.
Wel_1	Wel_1		JUN 3000.0 1500.0 595.0 0.0 0.0 595.0 2404.9 1202.5	297.5	0.0
148.8	148.8 0.0		148.8 446.3 0.0 0.0 595.0	007 50	0.00
Wel_1 148.76	Wel_1 148.76 0.00		JUN 3000.00 1500.00 595.05 0.00 0.00 595.05 2404.95 1202.47 148.76 446.29 0.00 0.00 595.05	297.52	0.00
Wel_1	Wel_1		JUL 3000. 1500. 615. 0. 0. 615. 2385. 1193.	307.	0.
154.	154. 0.	615.	154. 461. 0. 0. 615.		
Wel_1	Wel_1		JUL 3000.0 1500.0 614.9 0.0 0.0 614.9 2385.1 1192.6	307.4	0.0
153.7 Wel_1	153.7 0.0 Wel_1		153.7 461.2 0.0 0.0 614.9 JUL 3000.00 1500.00 614.89 0.00 0.00 614.89 2385.11 1192.56	307 44	0.00
153.72			153.72 461.16 0.00 0.00 614.89	507.11	0.00
Wel_1	Wel_1	1980	AUG 3000. 1500. 615. 0. 0. 615. 2385. 1193.	307.	0.
154.	154. 0.	615.	154. 461. 0. 0. 615.		

Wel_1	Wel_1	1980	AUG 3000.0 1500.0	614.9	0.0	0.0	614.9	2385.1	1192.6	307.4	0.0
153.7	153.7 0.0	614.9	153.7 461.2 (0.0	614.9						
Wel_1	Wel_1	1980	AUG 3000.00 1500.00	614.89	0.00	0.00	614.89	2385.11	1192.56	307.44	0.00
153.72	153.72 0.00	614.89	153.72 461.16 (0.00	614.89						
Wel_1	Wel_1	1980	SEP 3000. 1500.	595.	0.	0.	595.	2405.	1202.	298.	0.
149.	149. 0.	595.	149. 446. (0.	595.						
Wel_1	Wel_1	1980	SEP 3000.0 1500.0	595.0	0.0	0.0	595.0	2404.9	1202.5	297.5	0.0
148.8	148.8 0.0	595.0	148.8 446.3 (0.0	595.0						
Wel_1	Wel_1	1980	SEP 3000.00 1500.00	595.05	0.00	0.00	595.05	2404.95	1202.47	297.52	0.00
148.76	148.76 0.00	595.05	148.76 446.29 (0.00	595.05						
					_						
Wel_1	Wel_1	1980	TOT 36000. 18000.	7240.	0.	0.	7240.	28760.	14380.	3620.	0.
1810.	1810. 0.	7240.	1810. 5430.	0. 0.	7240.						

Well Water Only Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO.

STRUCTURE ID (0 _ total) : Wel_2
STRUCTURE ACCT (0 _ total): 0
STRUCTURE NAME : Well Structure 2

STRUCTURE DATA cfs af@30 af@31 Well Capacity Well Rights 5000. 297525. 307442. 5. 298. 307.

			Demand Water Supply Short	Wate	er
Use			Water Source		
Structure		======	Total CU From From Total Total CU	Total To	
Total Tot	tal From Fro		rom From Total		
ID Return	ID Loss Carrie	Year d Use	Mo Demand Demand Well SW Soil Supply Short Short River GwStor Salvage Soil Source	CU Soil	
Wel_2	Wel_2	1979	OCT 1000. 500. 307. 0. 0. 307. 693. 346.	154. 0.	
154. Wel_2	0. 0. Wel_2	307. 1979	77. 231. 0. 0. 307. OCT 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3	153.7 0.0	
153.7 Wel_2	0.0 0.0 Wel_2	307.4	76.9 230.6 0.0 0.0 307.4 OCT 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28	153.72 0.00	
153.72	0.00 0.00	307.44	76.86 230.58 0.00 0.00 307.44		
Wel_2 149.	Wel_2 0. 0.	1979 298.	NOV 1000. 500. 298. 0. 0. 298. 702. 351. 74. 223. 0. 0. 298.	149. 0.	
Wel_2	Wel_2	1979	NOV 1000.0 500.0 297.5 0.0 0.0 297.5 702.5 351.2	148.8 0.0	
148.8 Wel_2	0.0 0.0 Wel_2	297.5 1979	74.4 223.1 0.0 0.0 297.5 NOV 1000.00 500.00 297.52 0.00 0.00 297.52 702.48 351.24 1	148.76 0.00	
148.76 Wel_2	0.00 0.00 Wel_2	297.52 1979	74.38 223.14 0.00 0.00 297.52 DEC 1000. 500. 307. 0. 0. 307. 693. 346.	154. 0.	
154.	0. 0.	307.	77. 231. 0. 0. 307.		
Wel_2 153.7	Wel_2 0.0 0.0	1979 307.4	DEC 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3 76.9 230.6 0.0 0.0 307.4	153.7 0.0	
Wel_2	Wel_2	1979	DEC 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28 1	153.72 0.00	
153.72 Wel_2	0.00 0.00 Wel_2	307.44 1980	76.86 230.58 0.00 0.00 307.44 JAN 1000. 500. 307. 0. 0. 307. 693. 346.	154. 0.	
154. Wel 2	0. 0. Wel_2	307.	77. 231. 0. 0. 307. JAN 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3	153.7 0.0	
153.7	0.0 0.0	307.4	76.9 230.6 0.0 0.0 307.4		
Wel_2 153.72	Wel_2 0.00 0.00	1980 307.44		153.72 0.00	
Wel_2	Wel_2	1980	FEB 1000. 500. 278. 0. 0. 278. 722. 361.	139. 0.	
139. Wel_2	0. 0. Wel_2	278. 1980	69. 208. 0. 0. 278. FEB 1000.0 500.0 277.7 0.0 0.0 277.7 722.3 361.2	138.8 0.0	
138.8 Wel_2	0.0 0.0 Wel_2	277.7 1980	69.4 208.3 0.0 0.0 277.7 FEB 1000.00 500.00 277.69 0.00 0.00 277.69 722.31 361.15 1	L38.85 0.00	
138.85	0.00 0.00	277.69	69.42 208.27 0.00 0.00 277.69		
Wel_2 154.	Wel_2 0. 0.	1980 307.	MAR 1000. 500. 307. 0. 0. 307. 693. 346. 77. 231. 0. 0. 307.	154. 0.	
Wel_2	Wel_2		MAR 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3	153.7 0.0	
153.7 Wel_2	0.0 0.0 Wel_2	307.4 1980	76.9 230.6 0.0 0.0 307.4 MAR 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28	153.72 0.00	
153.72 Wel_2	0.00 0.00 Wel_2	307.44 1980	76.86 230.58 0.00 0.00 307.44 APR 1000. 500. 298. 0. 0. 298. 702. 351.	149. 0.	
149.	0. 0.	298.	74. 223. 0. 0. 298.		
Wel_2 148.8	Wel_2 0.0 0.0	1980 297.5	APR 1000.0 500.0 297.5 0.0 0.0 297.5 702.5 351.2 74.4 223.1 0.0 0.0 297.5	148.8 0.0	
Wel_2 148.76	Wel_2 0.00 0.00	1980 297.52	APR 1000.00 500.00 297.52 0.00 0.00 297.52 702.48 351.24 1 74.38 223.14 0.00 0.00 297.52	148.76 0.00	
Wel_2	Wel_2	1980		154. 0.	
154. Wel_2	0. 0. Wel_2	307. 1980	77. 231. 0. 0. 307. MAY 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3	153.7 0.0	
153.7	0.0 0.0	307.4	76.9 230.6 0.0 0.0 307.4		
Wel_2 153.72	Wel_2 0.00 0.00		MAY 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28 1 76.86 230.58 0.00 0.00 307.44	153.72 0.00	
Wel_2 149.	Wel_2 0. 0.	1980 298.	JUN 1000. 500. 298. 0. 0. 298. 702. 351. 74. 223. 0. 0. 298.	149. 0.	
Wel_2	Wel_2	1980	JUN 1000.0 500.0 297.5 0.0 0.0 297.5 702.5 351.2	148.8 0.0	
148.8 Wel_2	0.0 0.0 Wel_2		74.4 223.1 0.0 0.0 297.5 JUN 1000.00 500.00 297.52 0.00 0.00 297.52 702.48 351.24 1	L48.76 0.00	
148.76	0.00 0.00	297.52	74.38 223.14 0.00 0.00 297.52	154	
Wel_2 154.	Wel_2 0. 0.	307.	JUL 1000. 500. 307. 0. 0. 307. 693. 346. 77. 231. 0. 0. 307.	154. 0.	
Wel_2 153.7	Wel_2 0.0 0.0		JUL 1000.0 500.0 307.4 0.0 0.0 307.4 692.6 346.3 76.9 230.6 0.0 0.0 307.4	153.7 0.0	
Wel_2	Wel_2	1980	JUL 1000.00 500.00 307.44 0.00 0.00 307.44 692.56 346.28 1	153.72 0.00	
153.72 Wel_2	0.00 0.00 Wel_2		76.86 230.58 0.00 0.00 307.44 AUG 1000. 500. 307. 0. 0. 307. 693. 346.	154. 0.	
154.	0. 0.	307.	77. 231. 0. 0. 307.		

Wel_2	Wel_2	1980	AUG 1000.0 500.0 307.4	0.0 0.0	307.4	692.6	346.3	153.7	0.0
153.7	0.0 0.0	307.4	76.9 230.6 0.0 0	0.0 307.4					
Wel_2	Wel_2	1980	AUG 1000.00 500.00 307.44	0.00 0.00	307.44	692.56	346.28	153.72	0.00
153.72	0.00 0.00	307.44	76.86 230.58 0.00	307.44					
Wel_2	Wel_2	1980	SEP 1000. 500. 298.	0. 0.	298.	702.	351.	149.	0.
149.	0. 0.	298.	74. 223. 0. 0). 298.					
Wel_2	Wel_2	1980	SEP 1000.0 500.0 297.5	0.0 0.0	297.5	702.5	351.2	148.8	0.0
148.8	0.0 0.0	297.5	74.4 223.1 0.0	0.0 297.5					
Wel_2	Wel_2	1980	SEP 1000.00 500.00 297.52	0.00 0.00	297.52	702.48	351.24	148.76	0.00
148.76	0.00 0.00	297.52	74.38 223.14 0.00	0.00 297.52					
Wel 2	Wel 2	1980	TOT 12000. 6000. 3620.	0. 0.	3620.	8380.	4190.	1810.	0.
1810.	0. 0.	3620.	905. 2715. 0.	0. 3620.					

Well Water Only Summary ACFT

STATEMOD

StateMod Operating Rule Example - ex7.* data set

PAGE NO.

STRUCTURE ID (0 _ total) : Wel_3
STRUCTURE ACCT (0 _ total): 0
STRUCTURE NAME : Well_3 to Dem_3

cfs af@30 af@31 STRUCTURE DATA 5000. 297525. 307442. Well Capacity Well Rights 55. 3273. 3382.

			Demand		r Supply		Sho	rt		Water		
Use Water Source												
Structure		======	Total CU	From Fro		Total	==== Total	CU	Total	To		
Total Tot	al From Fr		From From Total									
ID Return	ID Loss Carri	Year ed Use	Mo Demand Demand River GwStor Salv		Soil ource	Supply	Short	Short	CU	Soil		
Return Loss Carriet Use River Gwstor Salvage Soil Source												
Wel_3	Dem_3	====== 1979	OCT 1000. 500.		0. 0.	1000.	0.	0.	500.	0.		
500.	0. 0.	1000.	125. 375. 500 OCT 1000.0 500.0		000.	1000 0	0 0	0 0	500.0	0 0		
Wel_3 500.0	Dem_3 0.0 0.0	1979 1000.0	125.0 375.0 500		.0 0.0 000.0	1000.0	0.0	0.0	500.0	0.0		
Wel_3 500.00	Dem_3 0.00 0.00	1979 1000.00			00 0.00 000.00	1000.00	0.00	0.00	500.00	0.00		
Wel_3	Dem_3	1979	NOV 1000. 500.	222. 77	8. 0.	1000.	0.	0.	500.	0.		
500. Wel_3	0. 0. Dem_3	1000. 1979	806. 83. 111 NOV 1000.0 500.0	. 0. 1	000. .8 0.0	1000.0	0.0	0.0	500.0	0.0		
500.0 Wel_3	0.0 0.0 Dem_3	1000.0	805.6 83.3 111 NOV 1000.00 500.00			1000.00	0.00	0.00	500.00	0.00		
500.00	0.00 0.00	1000.00	805.56 83.33 111	.11 0.00 1	000.00	1000.00	0.00			0.00		
Wel_3 500.	Dem_3 0. 0.	1979 1000.	DEC 1000. 500. 732. 115. 153	306. 69	4. 0. 000.	1000.	0.	0.	500.	0.		
Wel_3	Dem_3	1979	DEC 1000.0 500.0	306.2 693	.8 0.0	1000.0	0.0	0.0	500.0	0.0		
500.0 Wel_3	0.0 0.0 Dem_3	1000.0 1979	732.1 114.8 153 DEC 1000.00 500.00			1000.00	0.00	0.00	500.00	0.00		
500.00 Wel 3	0.00 0.00 Dem 3	1000.00 1980	732.09 114.82 153 JAN 1000. 500.	.09 0.00 1 456. 54	000.00 4. 0.	1000.	0.	0.	500.	0.		
500.	0. 0.	1000.	601. 171. 228	. 0. 1	000.		0.	0.		0.		
Wel_3 500.0	Dem_3 0.0 0.0	1980 1000.0	JAN 1000.0 500.0 600.7 171.1 228	456.4 543 .2 0.0 1		1000.0	0.0	0.0	500.0	0.0		
Wel_3	Dem_3	1980	JAN 1000.00 500.00	456.39 543.	61 0.00	1000.00	0.00	0.00	500.00	0.00		
500.00 Wel_3	0.00 0.00 Dem_3	1000.00	600.66 171.15 228 FEB 1000. 500.	366. 63	000.00 4. 0.	1000.	0.	0.	500.	0.		
500. Wel 3	0. 0. Dem 3	1000.	680. 137. 183 FEB 1000.0 500.0	. 0. 1	000.	1000.0	0.0	0.0	500.0	0.0		
500.0	0.0 0.0	1000.0	679.9 137.2 182	.9 0.0 1	0.00.							
Wel_3 500.00	Dem_3 0.00 0.00		FEB 1000.00 500.00 679.93 137.17 182		21 0.00 000.00	1000.00	0.00	0.00	500.00	0.00		
Wel_3	Dem_3	1980	MAR 1000. 500.	393. 60	7. 0.	1000.	0.	0.	500.	0.		
500. Wel_3	0. 0. Dem_3	1000. 1980	656. 147. 197 MAR 1000.0 500.0	. 0. 1 393.0 607	000.	1000.0	0.0	0.0	500.0	0.0		
500.0		1000.0	656.1 147.4 196 MAR 1000.00 500.00			1000.00	0.00	0.00	500.00	0.00		
Wel_3 500.00		1000.00	656.11 147.38 196	.51 0.00 1	000.00	1000.00	0.00			0.00		
Wel_3 500.	Dem_3 0. 0.	1980 1000.	APR 1000. 500. 652. 149. 199	398. 60 . 0. 1	2. 0. 000.	1000.	0.	0.	500.	0.		
Wel_3	Dem_3	1980	APR 1000.0 500.0	397.6 602	.4 0.0	1000.0	0.0	0.0	500.0	0.0		
500.0 Wel_3	0.0 0.0 Dem_3	1000.0 1980	652.1 149.1 198 APR 1000.00 500.00			1000.00	0.00	0.00	500.00	0.00		
500.00 Wel_3	0.00 0.00 Dem 3	1000.00 1980	652.12 149.09 198 MAY 1000. 500.	.79 0.00 1 0. 100	000.00	1000.	0.	0.	500.	0.		
500.	0. 0.	1000.	1000. 0. 0	. 0. 1	000.							
Wel_3 500.0	Dem_3 0.0 0.0		MAY 1000.0 500.0 1000.0 0.0 0	0.0 1000		1000.0	0.0	0.0	500.0	0.0		
Wel_3	Dem_3	1980	MAY 1000.00 500.00	0.00 1000.	0.00	1000.00	0.00	0.00	500.00	0.00		
500.00 Wel_3	0.00 0.00 Dem_3		1000.00 0.00 0 JUN 1000. 500.			1000.	0.	0.	500.	0.		
500. Wel_3	0. 0. Dem 3		1000. 0. 0 JUN 1000.0 500.0			1000.0	0.0	0.0	500.0	0.0		
500.0	0.0 0.0	1000.0	1000.0 0.0 0	.0 0.0 1	0.00							
Wel_3 500.00	Dem_3 0.00 0.00		JUN 1000.00 500.00 1000.00 0.00 0			1000.00	0.00	0.00	500.00	0.00		
Wel_3	Dem_3	1980	JUL 1000. 500.	101. 89	9. 0.	1000.	0.	0.	500.	0.		
500. Wel_3	0. 0. Dem_3	1980	JUL 1000.0 500.0		.7 0.0	1000.0	0.0	0.0	500.0	0.0		
500.0 Wel_3	0.0 0.0 Dem 3	1000.0	911.4 38.0 50 JUL 1000.00 500.00	.6 0.0 1		1000.00	0.00	0.00	500.00	0.00		
500.00	0.00 0.00	1000.00	911.40 37.97 50	.63 0.00 1	000.00							
Wel_3 500.	Dem_3 0. 0.		AUG 1000. 500. 809. 82. 109		1. 0. 000.	1000.	0.	0.	500.	0.		

	Dem_3 0.0 0 Dem_3	0.0 1000		8.8	81.9	0.0 218.5 109.3 0	0.0 1000.0		1000.0	0.0	0.0	500.0	0.0
500.00		0.00 1000			81.95		.00 1000.00	0.	1000.	0.	0.	500.	0.
	00 Dem_3). 1000 19	. 77'		96. .0 50	127. 0). 1000. 745.0	0.0	1000.0	0.0	0.0	500.0	0.0
500.0 (Wel_3	0.0 C	0.0 1000	.0 770 80 SEP	6.9 1000.	95.6 00 500	127.5 0 0.00 254.95	0.0 1000.0		1000.00	0.00	0.00		0.00
Wel_3 6000. #	Dem_3	19 0. 1200		1200 49.		000. 3716. 1858.		0.	12000.	0.	0.	6000.	0.
# # *.xgw #		nd Water	Budget										
# STATEMO # StateMo		ing Rule	Example	e - ex	14.* da	ıta set							
# # Statemod # Run date: # Time Ster # #	:	11/ 6/	8 16:2		/10/23)								
			Gro	und Wa	ter Bud	lget ACFT							
013-	m 1	Fro	m River		Well	Other	Total		Total				To/Fr
Other Year Mo Outflows(3)		e(1)				Inflows(2)	Inflow		Pumping	Reti	ırn	Loss	GwStorage
(-)			(+)		(+)	(+)	NA		(-)	((–)	(-)	(-)
		(12	(2)		(3)	(4)	(5)		(6)	(7)	(8)	(9)
1979 OCT		978.	356.		0.	-1.	4333.		1922.	175	52.	154.	77.
1979 NOV	40	428.)46.	251.		356.	-1.	4653.		1115.	338	31.	149.	0.
1979 DEC	40	8.	269.		607.	-1.	4937.		1229.	374	12.	154.	77.
1980 JAN	40	-265. 061.	288.		875.	-1.	5224.		1379.	390)7.	154.	0.
1980 FEB		-216.)17.	254.		807.	-1.	5078.		1199.	389	93.	139.	69.
1980 MAR		-222. 061.	280.		810.	-1.	5151.		1315.	389	93.	154.	0.
1980 APR	40	-210. 046.	273.		821.	-1.	5140.		1290.	390	02.	149.	74.
1980 MAY		311.	231.		807.	-1.	5348.		922.	402	27.	154.	-77.
1980 JUN	42	322. 296.	223.	0.	783.	-1.	5303.		893.	415	52.	149.	0.
-1. 5 1980 JUL	40	061.	243.	0.	727.	-1.	5031.				27.	154.	77.
-1. 5 1980 AUG	40	061.	258.		697.	-1.	5016.		1141.	390	07.	154.	77.
-1.	40 5199.)46. -173.	255.	127.	724.	-1.			1148.	390)2.	149.	0.
	490)46.	3179.			-1.			14576.	4448	38.	1810.	374.
			Gro	und Wa	ter Bud	lget ACFT							
Other	Total					Other							To/Fr
Year Mo Outflows(3)	Recharge	e(1) Eflow	by Well Delta(4	Depi	letion vage(5)	Inflows(2)	Inflow		Pumping	Reti	ırn	Loss	GwStorage
(-)		(+)	(+)		(+)	(+)	NA		(-)	((–)	(-)	(-)
(10)	(1)	(2)		(3)	(4)	(5)		(6)	(7)	(8)	(9)
		978.	356.		0.	-1.	4333.		1922.	175	52.	154.	77.
Ave NOV	40	428.	251.		356.	-1.	4653.		1115.	338	31.	149.	0.
Ave DEC	40	8.	269.		607.	-1.	4937.		1229.	374	12.	154.	77.
-1.	5202.	-265.		153.									

Ave		4061.			-1.	5224.	1379.	3907.	154.	0.
-1.		-216. 4017.			-1.	F070	1100	2002	120	60
Ave -1.		-222.		807.	-1.	50/8.	1199.	3893.	139.	69.
		4061.		810	-1.	5151.	1315.	3893.	154.	0.
		-210.			±.	3131.	1313.	3073.	131.	٠.
		4046.			-1.	5140.	1290.	3902.	149.	74.
-1.		-275.								
Ave	MAY	4311.	231.	807.	-1.	5348.	922.	4027.	154.	-77.
-1.	5027.	322.	0.							
Ave	JUN	4296.	223.	783.	-1.	5303.	893.	4152.	149.	0.
-1.	5194.	109.	0.							
Ave	JUL	4061.	243.	727.	-1.	5031.	1024.	4027.	154.	77.
-1.		-251.	51.							
		4061.			-1.	5016.	1141.	3907.	154.	77.
		-263.								
		4046.		724.	-1.	5026.	1148.	3902.	149.	0.
-1.	5199.	-173.	127.							
Ave	Tot	49046.	3179.	8014.	-1.	60240.	14576.	44488.	1810.	374.
-1.	61248.	-1008.	1858.							

Note: (1) Recharge = Divert + Pumping - CU - Soil Moisture Change. Recharge and CU are for both surface and ground water. CU does not include reservoir evaporation.

cdss@state.co.us

Last updated: November 2008

⁽²⁾ Other Inflows to ground water not modeled include natural stream loss, precipitation recharge, boundary

inflow, etc.

(3) Other Outflows from ground water not modeled include natural stream gain, boundary outflow, CU by native

species, etc.

(4) Delta is Total Inflow - Total Outflow but remember Other Inflows and Other Outflows are not included.

(5) Salvage is not part of the Ground Water Balance because it is a net change from native ET to agricultural

Chapter4_example.opr

without Destination Reuse

```
# Operating rule types listed below are described in detail in StateMod
documentation,
# Section 4.13.x where 'x' is the rule type listed below.
# This .opr file contains example operating rules that can be copied to a
blank file to start
# development of operating rules for a different application. These examples
have the correct
# format and can be expanded based on information in Section 4.13 of the
StateMod documentation
# and the specific applications for which the rules are to be used.
# Start new .opr file with header line below that starts with "# ID
Name"
#
#
#
#
               OPERATING RULE TYPES
#
      _____
         Reservoir to an Instream Flow
#
#
         Reservoir to a Direct Flow or Reservoir or Carrier
#
     3
         Reservoir to a Carrier
#
        Reservoir Exchange to a Direct Flow
#
        Reservoir Exchange to Storage
#
     6
         Paper Exchange Between Reservoirs
#
     7
         Reservoir to a Carrier by Exchange
#
         Out-of-Priority Book Over
         Release for Target Contents
#
#
     10
        General Reservoir Replacement
#
     11 Carrier to a Ditch or Reservoir
#
     12 Re-operate Water Rights
     13 Index flow Constraint on an Instream Flow Diversion
#
     14 Carrier with Constrained Demand
#
#
     15 Interruptible Supply
#
     16 Direct Flow Storage
     17 Rio Grande Compact - Rio Grande
#
#
     18 Rio Grande Compact - Conejos River
#
     19 Split Channel Operations
#
     20 San Juan Reservoir RIP Operation
#
     21 Wells with Sprinkler Use
     22 Soil Moisture Use
#
#
     23 Downstream Call
#
     24 Direct Flow Exchange of a Pro-Rata Water Right
     25 Direct Flow Bypass of a Pro-Rata Water Right
#
#
         Reservoir or Recharge or Reuse Plan
         Reservoir or Reuse Plan to a Diversion or Reservoir Direct with or
```

- 28 Reuse Plan to a Diversion or Reservoir by Exchange with or without Destination Reuse 29 Reuse Plan Spill 30 Reservoir Re-Diversion # 31 Carrier to a Ditch or Reservoir with Reusable Return Flows # 32 Reservoir and Plan to a Direct Flow or reservoir or Carrier Direct with or without Destination Reuse 33 Reservoir and Plan to a Direct Flow or Reservoir or Carrier by Exchange with or without Destination Reuse 34 Reservoir to Reservoir Transfer with Reuse # 35 Import to a Diversion, Reservoir or Carrier with or without Reuse 36 Seasonal (daily) On and Off Capability (e.g. Meadow Rights) # 37 Augmentation Well # 38 Out-of-Priority Diversion (addresses the upstream storage statute) # 39 Alternate Point Diversion # 40 South Platte Compact # 41 Reservoir Storage with Special Limits # # 42 Plan Reset 43 In-Priority Well Depletion # # 44 Recharge Well 45 Carrier with Transit Loss (allows multiple carriers and associated # loses) # 46 Multiple Ownership Plans (distributes Plan contents to multiple plans) 47 Administration Plan Limits # # 48 Plan or Reservoir Reuse to a Plan Direct 49 Plan or Reservoir Reuse to a Plan by Exchange # # # # GUIDE TO COLUMN ENTRIES ______ # ID number of operating rule that is used to separate operating rule output in *.xop file Name Name of operating rule - used for descriptive purposes only # Administration number used to determine priority of operational water rights relative to other operations and direct diversion, reservoir, instream flow, and well rights (see tabulation in *.xwr file) Number of carrier structures, monthly on/off switches, or # Str monthly volumetrics (flag telling StateMod program the number of entries on next line) On/Off 1 for ON and 0 for OFF Dest ID Destination of operating rule whose demand is to be met by simulating the operating rule Account at destination to be met by operating rule - typically Dest Ac 1 for a diversion structure and account number for reservoir destination ID number of primary source of water under which water right is being diverted in operating rule - typically a water right, reservoir, or Plan structure Soul Ac Account of Soul - typically 1 for a diversion structure and account number for reservoir source Sou2 ID ID of Plan where reusable storage water or reusable ditch credits is accounted # Sou2 Ac Percentage of Plan supplies available for operation Rule type corresponding with definitions in Chapter 4 of StateMod documentation
- # ReusePlan ID of Plan where reusable return flows or diversions to storage are accounted

```
Div Type 'Diversion' indicates pro-rata diversion of source water right
priority or exchange of reusable credits to Dest1
             'Depletion' indicates pro-rata diversion of source water right
priority consumptive use or augmentation of upstream diversions at Dest1
   OprLoss Percentage of simulated diversion lost in carrier ditch (only
applies to certain rules - see StateMod documentation, Section 4.13)
# Limit Capacity limit for carrier structures different from capacity
in .dds file (used to represent constricted conveyance capacity for winter
deliveries to reservoirs)
   Comments Description of rule type
# Note - multiple *.opr input file formats may be provided. It is recommended
the following string be provided near the top of the file before any data: #
FileFormatVersion 2
# If the format version indicator is not provided StateMod will try to read
the file and try to determine the appropriate file type.
#
#
           OPERATING RULE EXAMPLES
 ______
# ID
           Name
                                 NA
                                                     Admin#
                                                              # Str
On/Off Dest Id
               Dest Ac Soul Id
                                     Soul Ac Sou2 Id
                                                        Sou2 Ac
                                                                   Type
ReusePlan Div Type OprLoss Limit Comments
# -----eb----eb----eb----eb-----
-e-b-----eb-----eb-----eb-----eb-----exb---
-----exb-----exb-----exb-----
# FileFormatVersion 2
##########
# Type 1
          Reservoir to an Instream Flow
           Green Mountain Reservoir (ID 363543) release from Historic Users
Pool (Account 1) to meet 15-mile reach fish flows (ID 952002)
           during August through September only (12 monthly switches for USGS
Water Year simulation included on second line)
                                                 99999.93011
3635430.28 Opr HUP to Fish Flow
                                                               12.
1 952002
                   1 363543
                                      1 0
                                                                 1 NA
NA
                  0
                         0
                                 0
                                    9999
                                 1 0 0 0 0 0 0 0 0 1 1 1
##########
           Reservoir to a Direct Flow or Reservoir or Carrier
           Williams Fork Reservoir (ID 513709) release from GMR1 Pool
(Account 4) to meet Farmers Irrigation Company (ID 952011) demand
           carried through Silt Pump Canal (ID 390663 on second line)
5137090.30 Opr WFR-Silt Project
                                                 39041.00002
                                                                 1.
                   1 513709
1 950011
                                       4 0
                                                          1
                                                                 2 NA
NA
                  0
                         0
                                0 9999
                                 390663
#########
           Reservoir to a Carrier
# Type 3
           Meadow Creek Reservoir (ID 513686) release from Denver/Englewood
Pool (Account 1) directly to Moffat Tunnel (ID 510728) without using the river
```

```
5136860.02 Opr MCrkRes to 510728
                                                     31259.30134
                                                                    0.
                                         1 0
1 510728
                     1 513686
                                                                       3 NA
                        0
                                    0
NA
                                         9999
##########
           Reservoir Exchange to a Direct Flow
# Type 4
           Meadow Creek Reservoir (ID 513686) release from Vail Ditch Pool
(Account 2) to the upstream Vail Ditch (ID 510941) via the river by exchange
5136860.01 Opr MCkRes->VailIrDivSys
                                                     31259.30134
                                          2 0
1 510941
                     1 513686
                                                               0
                                                                       4 NA
                    Λ
                          0
                                    0
                                         9999
NΑ
#
#########
           Reservoir Exchange to Storage
# Type 5
            Wolford Mountain Reservoir (ID 503668) release from Colorado
Springs Replacement Pool (Account 1) to first two accounts (-2 below) in
upstream
            Granby Reservoir (ID 514620) via the river by exchange
5036680.17 Opr Wolford - Granby Ex
                                                     31258.00007
                                                                      0.
                    -2 503668
                                          9 0
1 514620
                                                               Ω
                                                                       5 NA
NA
                    0
                                    0
                                         9999
#
#########
# Type 6
            Paper Exchange Between Reservoirs
            Bookover of water from Vega Reservoir (ID 723844) Project
Irrigation Pool (Account 1) to Vega Reservior Power Exchange Pool (Account 3),
limited
            by amount of water simulated through operating rule ID 7205830.01
(Cottonwood Branch Pipeline direct diversion water right carried to Molina
Power
           Plant - see Type 11 example below)
7238440.19 Opr Vega Bookovr for 583
                                                     37486.00001
1 723844
                                          1 7205830.01
                     3 723844
                                                                       б NA
                                         9999
NA
                                   0
#
#########
# Type 7
           Reservoir to a Carrier by Exchange
           Rifle Gap Reservoir (ID 393508) release from Silt Pool (Account 1)
to Grass Valley Canal (ID 390563) via river by exchange to meet simulated
            Type 11 carrier diversion in operating rule ID 3905630.01 (Grass
Valley Canal direct flow right to Dry Elk Valley Irrigation)
3935080.01 Opr RifleGap to G.Valley
                                                     37503.36902
                                                                      0.
1 3905630.01
                     1 393508
                                          1 0
                                                               0
                                                                       7 NA
                    0
                           0
                                   0
                                         9999
NA
##########
# Type 8
           Out-of-Priority Bookover
            Bookover water stored in Upper Blue Lakes Out-of-Priority (OOP)
account (Reservoir ID 363570, Account 2) to the general purpose account in
Upper Blue Lakes (Account 3)
           The OOP diversions via the Upper Blue Lakes storage right (ID
363570.01 - first entry on third line) subordinated to the Green Mountain
Reservoir storage right (ID 363543.01)
```

```
occur via a Type 38 OOP Diversion rule (ID 3635700.08 - second
entry on third line)
            The type 8 OOP bookover simulates once the 363543.01 storage right
is paper filled and occurs during the July through October period (12 switches
on second line)
            The amount of water booked over reduces the OOP Plan (ID
36357000PPLN) by the same amount
3635700.15 OOP_Upper_Blue_Bookover
                                                      99999.00000
                                                                     -14.
                     3 363570
                                                                        8
1 363570
                                          2 363543.01
                                                                Λ
36357000PPLN NA
                                                 0
                                                       9999
                                    0 0 0 0 0 0 1 1 1 1 0 0
                                    363570.01
                                                 3635700.08
#########
# Type 9
            Release for Target Contents
            Release water proportionally from all accounts (Account 0) in
Williams Fork Reservoir (ID 513709) to meet target contents in *.tar file
            (Dest ID = 0 and Dest Account = 0 in operating rule)
                                                      99999.99999
5137090.15 Opr Williams Fork target
                                                                       0.
                     0 513709
1 0
                                          0 0
                                                                0
                                                                        9 NA
NA
                                    0
                                         9999
#
##########
# Type 10 General Reservoir Replacement
            Wolford Mountain Reservoir (ID 503668) releases from Denver R1
Pool (Account 5) over the 1985 to 1996 period to supply reservoir water to a
#
            large number of structures without supplying individual operating
rules for each. Beneficiaries of reservoir releases from this operating rule
            have direct flow water right (*.ddr) administration numbers senior
to the operating rule's administration number (48965.99994) and variable
            "ireptyp" in the direct diversion station (*.dds) file set to 1 or
-1.
5036680.31 Opr Wolf Replace1 (hist)
                                                      48965.99994
                                                                       0.
1 0
                     1 503668
                                          5 0
                                                                0
                                                                       10 NA
                    0
                            0
                                 1985
                                         1996
NA
#
#########
# Type 11 Carrier to a Ditch or Reservoir Using a Direct Flow Right
            Carry water through Cottonwood Branch Pipeline (ID 720583) using
its direct diversion right (ID 720583.01) to Molina Power Plant (ID 720807)
7205830.01 Opr Cottonwood-Molina
                                                      37486.00000
                                                                       0.
1 720807
                     1 720583.01
                                          1 NA
                                                                0
                                                                       11 NA
NA
                            0
                                    0
                                         9999
#
#
            Carrier to a Reservoir using a Storage
            Carry water through North Horse Supply Canal (NHorseSup) to Haines
Flat Reservoir (ID HainesRes) using its storage right (ID HainesRes.01)
            The primary difference with the previou rule is the storage right
is not administered at the location of the reservoir right but, instead, is
administered on a neighboring tributary at the location of Sou2 ID NHorseSup
            Opr_Fill_Haines_NHorse
Haines.01
                                                        2008.0000
                                                                       1.
1 HainesRes
                     1 HainesRes.01
                                          0 NHorseSup
                                                                0
                                                                       11 NA
NA
                    Ω
                            0
                                  0
                                         9999
```

NHorseSup

```
#
#########
# Type 12 Re-operate Water Rights
            Limit tolerance of reoperation in the model based on user
specified administration number (50000.0), as necessary, to stop run-time
errors
#
            (i.e. ireopx > 1000 iteration limit)
                                                     99999.99999
ReopLimit.01 Opr_Limit_Reoperation
                                                                      0.
                     0 0
                                          0 0
                                                                      12 NA
                    0
                                    0
                                         9999
NA
                            0
#########
# Type 13 Index Flow Constraint on an Instream Flow Diversion
            Operate La Plata Compact as most senior water right (admin. no.
0.00001) to deliver to downstream location (instream flow ID 332999) based on
percentage (50%)
            of index gage(La Plata River at Hesperus - ID 09365500) over June
to December period (12 monthly switches for Irrigation Year simulation
included on line 2)
#
3329990.01 Opr LaPlata Compact
                                                      0000.00001
                                                                     12.
                     1 09365500
                                         50 332999.01
                                                                      13 NA
                                                               1
                            0
                                    0
                                         9999
                                    1 1 0 0 0 0 0 1 1 1 1 1
#########
# Type 14 Carrier with Constrained Demand
           Limit water carried through Willow Creek Feeder (ID 510958) using
its senior water right (ID 510958.01) to fill the first two accounts
(Destination
            Account = -2) in Granby Reservoir (ID 514620) by the amount
historically diverted by Willow Creek Feeder included in direct diversion
demand (*.ddm) file
#
5109580.01 Opr WCrkFeeder to Granby
                                                     31258.00000
                                                                      0.
                                          1 0
                    -2 510958.01
1 514620
                                                               1
                                                                      14 NA
NA
                            0
                                         9999
#########
           Interruptible Supply
# Type 15
            Dedicate Louden Ditch (ID 0400530) junior water right (ID
0400530.03) to instream flow reach (ID BigT_ISF) when downstream gage flows at
ID 06741510 drop below
#
            3000 acre-feet per month (~50 cfs)
            One hundred percent of the decree (zero value after water right ID
0400530.03) can be used as an interruptible supply during the May through
October period (12 switches on Line 2)
            Opr_DirectFlowToISFReach
ISFDonate
                                                     32224.00000
                                                                     12
                                       3000 0400530.03
                                                                      15 NA
1 BigT_ISF
                     1 06741510
                                                               0
NA
                            0
                                    0
                                         9999
                                   0 0 0 0 1 1 1 1 1 1 0 0
##########
# Type 16 Direct Flow Storage
```

```
Limit water carried through Willow Creek Feeder (ID 510958) using
its senior water right (ID 510958.01) to fill the first two accounts
           Account = -2) in Granby Reservoir (ID 514620) by the amount
historically diverted by Willow Creek Feeder included in direct diversion
demand (*.ddm) file
           This rule is similar to the Type 14 rule above except that it
requires a bypass of 40 percent of the water right, thereby limiting the
direct flow storage
           to 60 percent (variable listed before rule type 16) of the Willow
Creek Feeder senior water right
#########
5109580.01 Opr WCrkFeeder to Granby
                                                    31258.00000
                                                                    1.
                   -2 510958.01
                                        1 0
                                                     60
                                                                    16 NA
                   0
                           0
                                  0
                                        9999
NA
#
# Type 17 Rio Grande Compact - Rio Grande
           Starting in 1969, determine Colorado's Rio Grande Compact delivery
requirements to downstream location (ID RGCOM) based on index flows at the Rio
Grande
#
           at Del Norte gage (ID 08220000) and the Conejos River nr La Sauses
(ID 08249000)
           Include water from source IDs ClosedBasin and NortonSouth
#
RGCOM.01
                                                       1.00000 -20.
           Opr Compact-RioGrande
1969 RGCOM
                     1. 08220000
                                           1. 08249000
                                                              -1.
Diversion
                   0
                          0 1969
                                        9999
                                                                 1985.
0.
                     1 ClosedBasin
                                    19200 NortonSouth
                                                          -4000
                                   1 1 1 1 1 1 1 1 1 1 1 1
#
#########
# Type 18 Rio Grande Compact - Conejos River
           Starting in 1969, determine Colorado's Rio Grande Compact delivery
requirements to downstream location (ID RGCOM) based on index flows at the
Conejos River
           nr Magote gage (ID 08246500) and the San Antonito River at Ortiz
(ID 08247500)
           Include water from source IDs ClosedBasin and NortonSouth
COCOM.01
           Opr Compact-Conejos
                                                       1.00000 -20.
                      1. 08246500
1969 COCOM
                                           1. 08247500
                                                               1.
                                                                      18 NA
Diversion
                           0 1969
                                        9999
                                                                 1985.
0. 08248000
                     1 ClosedBasin
                                      16000 NortonSouth
                                                           4000
                                   1 1 1 1 1 1 1 1 1 1 1 1
#
#########
# Type 19 Split Channel Operations
#
           Currently Under Development
#
#########
# Type 20 San Juan Reservoir RIP Operation
           Simulate Navajo Reservoir (ID Navajo) operations under the San
Juan Recovery Implementation Plan
```

```
- first entry on second line) is in Account 1 (variable listed after Navajo
ID) with an average
            release of 120 cfs (second entry on second line)
#
#
                                                     32224.00000
                                                                       0.
            Opr SJRIPRAPwithNavajoRes
SJRIPRAP
                     0 Navajo
                                          1 0
                                                                       20 NA
1 NA
                    0
                                         9999
NA
                            n
                                    0
                                    45000
                                             120
#
#########
# Type 21 Wells with Sprinkler Use
            Operate wells serving sprinkler-irrigated lands first based on
input priority (admin. no. 36525.0) senior to ground water rights (*.wer) in
order to maximize water supply mode
Opr_Soil.01 Opr_Soil_Moisture
                                                     36525.00000
                                                                       0.
                                                                       22 NA
1 NA
                     0 NA
                                          0 0
                                                                Λ
                    0
                                         9999
NA
#########
# Type 22 Soil Moisture Use
            Water deliveries in excess of a diversion's consumptive demand can
be stored in the soil moisture zone, with this operating rule defining the
priority (admin. no. 100000.0)
            water stored in the soil moisture zone is used (e.g. after surface
rights, after well right, etc.).
Opr_Spr.01 Opr_Sprinkler
                                                   100000.00000
                                                                       0.
1 NA
                                          0 0
                                                                       21 NA
                     0 NA
                                                                0
                    0
                           -1
                                   0
                                         9999
NA
#########
# Type 23 Downstream Call
            Operate downstream call (modeled as instream flow node ID
DwnCall). Priorities of daily calls defined in call *.cal) file. Priority of
Type 23 operating rule set as most
            junior water right in basin to ensure the call's instream flow
demand does not simulate prior to any other water rights.
Opr_Dwncall Opr_Dwncall
                                                     999999.00000
                                                                       0.
1 DwnCall
                                          1 0
                                                                       23 NA
                     1 N/A
                    0
                            0
                                         9999
NA
                                    0
#########
# Type 24 Direct Flow Exchange of a Pro-Rata Water Right
            Exchange water diverted in priority associated with portion (100%)
of Burlington Canal (ID 0200802) water right (ID 0200802.03) to upstream
Accounting Plan structure (ID Bur10Split),
            limited by monthly exchange amounts (ac-ft values listed on line
#
2)
OprBurl.01 Opr_Burlington_10.28-AccSplit
                                                      5205.00000
                                                                       0.
1 BurlOSplit
                    1 0200802.03
                                        100 NA
                                                                0
                                                                       24 NA
Diversion
                    0
                                    0
                                         9999
                            0
                                   5000.
                             5000.
                                             5000.
                                                     5000.
                                                             5000.
        0.
                0.
                        0.
                                                                      5000.
                  0. 25000.0
5000.
          0.
```

Release water when a minimum amount of storage water (45000 ac-ft

```
# Type 25 Direct Flow Bypass of a Pro-Rata Water Right
            Bypass water diverted in priority associated with portion (71.3%)
of Fisher Ditch (ID 0700570) water right (ID 0700507.01) to downstream demand
(ID CherokPP)
            carried through Fisher Ditch with 10% ditch loss (line 2) limited
#
by monthly bypass amounts (ac-ft values listed on line 3)
            Opr_ChangedFisherToAcctPSCO
Fish.01
                                                       4198.00000
                                                                       1.
                     1 0700570.01
                                       71.3 NA
                                                                       24 NA
1 CherokPP
                                                                Λ
Diversion
                   -1
                            0
                                         9999
                                    0700570
                                                10 Carrier
                      0.
                             308.
                                     615.
                                             796.
                                                      923.
                                                              796.
                                                                      548.
               0.
376.
          0.
                  0. 4366.0
#
#########
# Type 26 Reservoir or Recharge or Reuse Plan
            Not currently used - Replaced with Type 48 and Type 49 Plan
releases to meet Plan demands
#########
# Type 27 Reservoir or Reuse Plan to a Diversion or Reservoir Direct with or
without Destination Reuse
            Release water from Accounting Plan (ID LBBur10Pln) directly to
Little Burlington Ditch (ID 0200915) through
            a carrier (Burlington Canal ID 0200802) without destination Reuse
(cReuse = NA after "27")
OpLBBurl.02 Opr_LittleBurl10.28ToIrrig
                                                       5205.00002
                                                                       1.
1 0200915
                     1 LBBur10Pln
                                                                       27 NA
                                          0 NA
                                                                0
Diversion
                    0
                            0
                                         9999
                                    0200802
                                                Carrier
##########
# Type 28 Reuse Plan to a Diversion or Reservoir by Exchange with or without
Destination Reuse
            Release water from Accounting Plan (ID CoorsWanPln) to Coors
demand (ID CoorsAB_Wtr) by exchange through
            a carrier (Wannamaker Ditch ID 0200802) with reusable return flows
stored in Non Reservoir Reuse Plan (ID CoorsReuse)
            Opr_ChangedWanToBrewery
                                                      61000.00000
                                                                       1.
Wann.03
1 CoorsAB_Wtr
                     1 CoorsWanPln
                                          0 NA
                                                                0
                                                                       28
                                                 0
                                                       9999
CoorsReuse Diversion
                                         0
                                    0700698
                                                Carrier
#########
# Type 29
           Reuse Plan Spill
            Spill unused water stored in accounting plan (ID Bur10Split) since
it can't be carried over to subsequent time steps
OprSpill.02 Opr_Burl10Split-Spill
                                                      99999.00000
                                                                       0.
1 NA
                     0 BurlOSplit
                                          0 NA
                                                                0
                                                                       29 NA
                    0
                                    0
                            0
NA
                                         9999
##########
# Type 30 Reservoir Rediversion
```

##########

```
Not currently used - Previously used in concert with Type 26 rule,
which has been replaced with Type 48/Type 49 rules
            Releases from Type 48/Type 49 rules are limited by the destination
plan demands, which precludes excess releases being made
#
            that would be rediverted under a Type 30 rule
#
#########
# Type 31 Carrier to a Ditch or Reservoir with Reusable Return Flows
            Carry water through Pecks Gulch diversion (ID 0700537 on line 3)
using its water right (ID 0700537.02) to Hole In the Ground Reservoir
            (ID 0704492) using portion (100%) of Barr Lake storage right (ID
0200802.01) over the November to March period (12 monthly
            switches for Irrigation Year included on line 2) with stored water
accounted for in Reservoir Reuse Plan (ID CC_HIG_Sto)
Pecks.03
            Opr_Pecks_to_HIG
                                                     43829.19751
                                                                     -13.
0 0704492
                     1 0700537.02
                                          0 N/A
                                                                       31
                                 Λ
                                                 0
                                                      9999
CC HIG Sto
                                         0
             NA
                                    1 1 1 1 1 1 0 0 0 0 0 0
                                    0700537
#########
# Type 32 Reservoir and Plan to a Direct Flow or Reservoir or Carrier Direct
with or without Destination Reuse
            Release water from reservoir (ID 0704492) and associated Reservoir
Reuse Plan (ID CC_HIG_Sto) to Central City demand (ID CC_WTP)
            directly with reusable return flows stored in Non Reservoir Reuse
Plan (ID CCReusePlan)
#
            Opr_HIG_to_CC_WTP
                                                     52731.00001
                                                                       0.
HIG.01
                                          1 CC_HIG_Sto
                     1 0704492
                                                                       32
0 CC WTP
                                 0
                                         0
CCReusePlan NA
                                                 0
                                                      9999
#########
# Type 33 Reservoir and Plan to a Direct Flow or Reservoir or Carrier by
Exchange with or without Destination Reuse
            Release water from reservoir (ID 0203699) and associated Reservoir
Reuse Plan (ID WGLksPln) to Thornton demand (ID THIN_DMD)
           by exchange with reusable return flows stored in Non Reservoir
Reuse Plan (ID MetroTh)
            Opr_WGL_Reusable_To_THIN_DMD
                                                     55835.00004
                                                                       0.
WGL.04
                                          1 WGLksPln
1 THIN DMD
                     1 0203699
                                                               0
                                                                       33
                                         0
                                                 0
                                                      9999
MetroTh
             Diversion
                                 n
#
##########
# Type 34 Reservoir to Reservoir Transfer with Reuse
            Bookover water stored in Upper Blue Lakes (ID 363570, Account 1)
and associated Out-of-Priority Plan (36357000PPLN) to first five accounts
(Account -5)
            in Green Mountain Reservoir (ID 363543) on August 1 each year (-1
switch on second line)
                                                         1.00008
                                                                      12.
3635700.12 Opr UBlue to Gr Mtn Book
1 363543
                    -5 363570
                                          1 NA
                                                                       27
                                                                0
36357000PPLN Diversion
                                                 0
                                                      9999
                                 0
                                         0
                                    0 0 0 0 0 0 0 0 0 0 -1 0
#
```

```
##########
# Type 35
            Import to a Diversion, Reservoir or Carrier with or without Reuse
            Supply demand (ID Dem 3) with imported water (ID Import) with
unused water from Dem_3 operations stored as reusable supplies in an Import
Plan (ID TmReuse)
#
Opr Import
            Opr_Import to Dem_3
                                                          3.00000
                                                                       0.
                                                                       35
1 Dem_3
                     1 Import
                                          1 0
                                                                0
TmReuse
             NA
#########
            Seasonal (daily) On and Off Capability (e.g. Meadow Rights)
# Type 36
            Operate a direct flow meadow right (ID 0100517.01) for Deuel and
Snyder Canal (ID 0100517) through May 15 only
            (12 monthly switches for Calendar Year simulation included on line
2)
#
Opr_Mead.01 Opr_Meadow_D&S_01
                                                       100.00000
                                                                      12.
1 0100517
                     1 0100517.01
                                          0 0
                                                                       36 NA
                    0
NA
                           -1
                                    0
                                         9999
                                    1 1 1 1 -15 0 0 0 0 0 0 0
#
##########
           Augmentation Well
# Type 37
            Operate augmentation well water right (ID Aug_Well_Wr) to meet
plan demand (ID Well_Plan) with lagged depletions from augmentation well
pumping accounted for in ID Well_Plan2
AugWell2Wel Opr_AugWell2Wel
                                                         21.10000
                                                                       0.
1 Well Plan
                     1 Aug_Well_Wr
                                         0 Well Plan2
                                                                       37 NA
                                                               Ω
                            0
                                    0
                                         9999
NA
#########
# Type 38 Out-of-Priority Diversion (addresses the upstream storage statute)
with operating rule priority senior to diversion structure's water right
            Operate Con-Hoosier Tunnel (ID 954683) diversions against Green
Mountain Reservoir storage right (ID 363543.01)
            (admin. no. 31257.99995) to that storage right priority over the
April to July period (12 monthly swithces for
            USGS Water Year included on line 2) and account for those
diversions in an out-of-priority plan structure (ID 5468300PPLN)
9546830.03 Opr_OOP_Cont_Hoosier
                                                     31257.99995
                                                                      12.
                     1 363543.01
                                                                       38
                                          0 364683.01
                                                                0
95468300PPLN Diversion
                                         0
                                                 0
                                                       9999
                                    0 0 0 0 0 0 1 1 1 1 0 0
#
#########
           Alternate Point Diversion
# Type 39
            Operate water right (ID Dem_2_Wr#1) to meet demand (ID Dem_2) at
alternate point of diversion (ID Alt_Div)
Or_AltPoint Opr_AlternatePoint
                                                          1.00000
                                                                       0.
                                                                       39 NA
                     1 Dem 2 Wr#1
                                                               0
1 Dem 2
                                          1 Alt Div
Diversion
                    0
                            0
                                    0
                                         9999
##########
# Type 40 South Platte Compact
```

```
Operate Compact at State line (represented by instream flow ID
649999) to meet Compact requirement
            (120 cfs with 6/14/1897 priority date (admin. no. 17332.0),
represented as instream flow water right
            ID 649999.01) based on the river gain between the Balzac gage (ID
06759910) and the Julesburg gage
            (ID 06764000) over the April 1 to October 15 season (represented
as instream flow demand (*.ifr) for
            ID 649999)
#
#
Compact.01 Opr Compact
                                                     17332.00000
                                                                      1.
1 6499999
                     1 06759910
                                          0 06764000
                                                                      40 NA
NA
                    0
                          -1
                                    0
                                         9999
                                    6499999.01
#
##########
# Type 41 Reservoir Storage with Special Limits
            Implement 1955 exchange as part of Blue River Decree by limiting
Green Mountain Reservoir (ID 363543) storage diversions (ID 363543.01)
            to the first 5 accounts in the reservoir (Destination Account = -
5) up to the volume of water stored out-of-priority by Con-Hoosier Tunnel,
            Upper Blue Lakes, Roberts Tunnel, and Dillon Reservoir, as
accounted for in the respective out-of-priority Plans
            (95468300PPLN, 36357000PPLN, 36468400PPLN, 36451200PPLN) over the
April to July period (12 monthly swithces for USGS Water Year included on line
                                                                    -16.
3635430.29
            Opr_1955_B_R_Decree_Exch
                                                     38628.00000
1 363543
                    -5 363543.04
                                          0 NA
                                                                      41 NA
                                         9999
Diversion
                    0
                            0
                                    0
                                    0 0 0 0 0 0 1 1 1 1 0 0
                                    95468300PPLN 36357000PPLN 36468400PPLN
36451200PPLN
#
#########
# Type 42 Plan Reset
            Zero out accounting plan for Con-Hoosier Tunnel (ID 95468300PPLN)
on March 31 (12 monthly switces for USGS Water Year included on line 2)
954683PLN.1 Opr_Reset_C-Hoosier_Plan
                                                     99999.99999
                                                                     12.
1 NA
                     0 95468300PPLN
                                          0 NA
                                                               0
                                                                      42 NA
                                 0
                    0
                            Ω
                                         9999
NA
                                    0 0 0 0 0 31 0 0 0 0 0
#########
            In-Priority Well (or T&C) Depletion
            Meet return flow obligations accounted for in T&C Plan (ID
FHL SPRRFs) with river flows based on input priority (admin. no. 55385.0)
                                                     55385.00000
ThFHL_RF.01 Opr_FHL_SPRRFs_in_Priority
                                                                      0.
1 FHL_SPRRFs
                     0 NA
                                          0 NA
                                                               0
                                                                      43 NA
                    0
                            0
                                    0
NA
                                         9999
#########
# Type 44 Recharge Well
            Operate recharge well water right (ID Rch_Well_Wr) to recharge
pond (ID Res_1). Recharge pond seepage accounted for based on seepage
characteristics in reservoir structure (*.res) file and
```

```
#
            reservoir delay table (*.rrf) file
Opr_RchWell Opr_Carrier
                                                         1.00000
                                                                      0.
                                          0 NA
                                                                      44 NA
1 Res 1
                     1 Rch_Well_Wr
                                   0
NA
                    Ω
                           0
                                         9999
#
##########
# Type 45 Carrier with Transit Loss (allows multiple carriers and associated
loses)
            Carry water through Burlington Canal (Carrier ID 0200802) to Barr
Lake (ID 0203837) using portion (100%) of Barr Lake storage right (ID
0200802.01)
#
            with losses through carrier (28%)
#
Barr.01
            Opr_BarrFill1
                                                     13108.00000
                                                                      1.
1 0203837
                     1 0203837.01
                                          0 0200802
                                                                      45 NA
                                                             100
                    0
                            0
                                    0
                                         9999
                                    0200802
                                                 28
                                                           Carrier
##########
# Type 46 Multiple Ownership Plans (distributes Plan contents to multiple
plans)
            Split portion of water diverted into Accounting Plan (ID
BurlOSplit - see Type 24 or 25 above) to number (4)
           of Accounting Plans (ThBur10Pln, LBBur10Pln, FBBur10Pln,
HIDBur10Pln) owned by users of the total portion of
            water diverted from the river based on their specific percentages
(21%, 25%, 50%, 4%, respectively) of the total portion diverted
OprBurl.06 Opr_Burlington_10.28Split-Acc_DemX
                                                      5205.00001
                                                                      0.
                    21 BurlOSplit
                                         1 NA
                                                                      46 NA
                                                               0
                                    0
Diversion
                    0
                            4
                                         9999
LBBur10Pln
                  25
FBBur10Pln
                  50
HIDBur10Pln
                  4
#########
# Type 47 Administration Plan Limits
          Limit releases associated with plan structure (ID RepLimitPLN) to
monthly and annual amounts listed on Line 2
           The operating rule that defines the limits of the RepLimitPLN (ID
HUPLimit.01) is typically used in General Reservoir Replacement (type 10) or
Plan release
           to demand (type 27) operating rules as a limit on the operation of
these other operating rules - an example of this secondary operating rule (ID
3635430.14)
#
           is included below the Type 47 rule
                                                         1.00000
HUPLimit.01 Opr Annual HUP Limit
                                                                      0.
1 NA
                     1 RepLimitPLN
                                          1 0
                                                                      47 NA
Diversion
                    0
                                    0
                                         9999
                            0
 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
```

```
1.
3635430.14 Opr GM=>OMID Pump (futr)
                                                   46674.00000
                                       7 0
                                                                   27 NA
1 950004
                   1 363543
Diversion
                        2
                                       9999
                                  720646
                                  HUPLimit.01
#
# Type 48 Plan or Reservoir Reuse to a Plan Direct
          Meet term and conditions return flow obligations (ID Burl_RFs) with
release of Non Reservoir Reuse Plan supplies (ID MetroTh) directly via the
river
Metro.01 Opr_RFsFromMetroWWTP
                                                   90000.00000
                                                                   0.
                                                                   48 NA
1 Burl_RFs
                   1 MetroTh
                                       NA NA
                                                            0
NA
                   0
                      0
                                  0
                                      9999
#
#
#########
# Type 49 Plan or Reservoir Reuse to a Plan by Exchange
          Meet well augmentation plan requirements (ID Well_Plan) with
releases from Reservoir Reuse Plan supplies (ID RchResPl) and associated
Reservoir Account (ID RchRes, Account 1) via the river by exchange
Replace.01 Opr_RechPitToWellAugPlan
                                                   90000.00000
                                                                   0.
1 Well Plan
                   1 RchResPl
                                       0 RchRes
                                                            1
                                                                   49 NA
                       0
                                 0
                                       9999
                   Ω
NA
```

<u>cdss@state.co.us</u> Last updated: November 2008