

December 1994

OP-07 Low Offset, Low Drift Operational Amplifier

General Description

The OP-07 has very low input offset voltage which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP-07 also features low input bias current and high openloop gain. The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain applications.

The wide input voltage range of $\pm 13V$ minimum combined with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains.

Stability of offsets and gain with time or variation in temperature is excellent.

The OP-07 is available in TO-99 metal can, ceramic or molded DIP.

For improved specifications, see the LM607.

Features

■ Low V_{OS} 75 μV Max

■ Low V_{OS} Drift 0.6 μ V/°C Max

■ Ultra-Stable vs Time 1.0 µV/Month Max
■ Low Noise 0.6 µVp-p Max

■ Low Noise 0.6 µVp-p Max
■ Wide Input Voltage Range ± 14V

■ Wide Supply Voltage Range ±3V to ±18V

■ Fits 725/108A/308A, 741, AD510 Sockets

■ Replaces the µA714

Applications

- Strain Gauge Amplifiers
- Thermocouple Amplifiers
- Precision Reference Buffer
- Analog Computing Functions

Connection Diagram

Dual-In-Line Package

See NS Package Number N08E

TL/H/10550-1

Ordering Information

$T_A = 25^{\circ}C$ $V_{OS}Max$ (μV)	N08E Plastic	Operating Temperature Range
75	OP07EP	СОМ
150	OP07CP	СОМ
150	OP07DP	СОМ

^{*}Also available per SMD #8203602

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature Range} & -65^{\circ}\mbox{C to} & +150^{\circ}\mbox{C} \\ \mbox{Lead Temperature (Soldering, 60 sec.)} & 260^{\circ}\mbox{C} \\ \mbox{Junction Temperature} & -65^{\circ}\mbox{C to} & +150^{\circ}\mbox{C} \\ \end{array}$

Operating Temperature Range

OP-07E, OP-07C, OP-07D 0°C to +70°C

Simplified Schematic

*R2A and R2B are electronically trimmed on chip at the factory for minimum offset voltage.

Electrical Characteristics Unless otherwise specified, $V_S=\pm 15V$, $T_A=25^{\circ}C$. **Boldface** type refers to limits over $0^{\circ}C \leq T_A \leq 70^{\circ}C$

Symbol	Parameter	Conditions	OP-07E			OP-07C			Units
- Jyboi			Min	Тур	Max	Min	Тур	Max	Oilles
V _{OS}	Input Offset Voltage	(Note 1)		30 45	75 130		60 85	150 250	μV
V _{OS/t}	Long-Term V _{OS} Stability	(Note 2)		0.3	1.5		0.4	2.0	μV/Μο
los	Input Offset Current			0.5 0.9	3.8 5.3		0.8 1.6	6.0 8.0	nA
I _B	Input Bias Current			±1.2 ± 1.5	±4.0 ± 5.5		± 1.8 ± 2.2	±7.0 ± 9.0	nA
e _{np-p}	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.35	0.6		0.38	0.65	μV _{p-p}
e _n	Input Noise Voltage Density	f _O = 10 Hz f _O = 100 Hz (Note 3) f _O = 1000 Hz		10.3 10.0 9.6	18.0 13.0 11.0		10.5 10.2 9.8	20.0 13.5 11.5	nV/√Hz
i _{np-p}	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		14	30		15	35	pA _{p-p}
i _n	Input Noise Current Density	f _O = 10 Hz f _O = 100 Hz (Note 3) f _O = 1000 Hz		0.32 0.14 0.12	0.80 0.23 0.17		0.35 0.15 0.13	0.90 0.27 0.18	pA/√Hz
R _{IN}	Input Resistance Differential-Mode	(Note 4)	15	50		8	33		МΩ
R _{INCM}	Input Resistance Common-Mode			160			120		GΩ
IVR	Input Voltage Range		± 13.0	±14.0		± 13	±14		٧
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 13V$	106 103	123 123		100 97	120 120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$ $V_S = \pm 3V \text{ to } \pm 18V$		5 7	20 32		7 10	32 51	μV/V
A _{VO}	Large Signal Voltage Gain	$\begin{split} R_L &\geq 2 k \Omega, V_O = \pm 10 V \\ R_L &\geq 2 k \Omega \\ R_L &\geq 500 \Omega, V_O = \pm 0.5 V, \\ V_S &= \pm 3 V (\text{Note 4}) \end{split}$	200 180 150	500 450 400		120 100 100	400 400 400		V/mV
Vo	Output Voltage Swing	$R_{L} \ge 10 \text{ k}\Omega$ $R_{L} \ge 2 \text{ k}\Omega$ $R_{L} \ge 2 \text{ k}\Omega$ $R_{L} \ge 1 \text{ k}\Omega$	±12.5 ±12.0 ±12.0 ±10.5	±13.0 ±12.8 ± 12.6 ±12.0		±12.0 ±11.5 ±11.0	±13.0 ±12.8 ± 12.6 ±12.0		V
SR	Slew Rate	$R_L \ge 2 k\Omega$ (Note 3)	0.1	0.3		0.1	0.3		V/μs
BW	Closed-Loop Bandwidth	A _{VCL} = +1 (Note 3)	0.4	0.6		0.4	0.6		MHz
R _O	Output Resistance	$V_{O} = 0, I_{O} = 0$		60			60		Ω
P _d	Power Consumption	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load		75 4	120 6		80 4	150 8	mW
	Offset Adj. Range	$R_P = 20 \text{ k}\Omega$		±4			±4		mV
TCV _{OS}	Average Input Offset Voltage Drift Without External Trim	(Note 4)		0.3	1.3		0.5	1.8	μV/°C
TCV _{OS} n	With External Trim	$R_P = 20 \text{ k}\Omega \text{ (Note 4)}$		0.3	1.3		0.4	1.6	
TCI _{OS}	Average Input Offset Current Drift	(Note 3)		8	35		12	50	pA/°C
TCIB	Average Input Bias Current Drift	(Note 3)		13	35		18	50	pA/°C

Electrical Characteristics

Unless otherwise specified, $V_S=\pm 15V,\, T_A=25^{\circ}C.$ Boldface type refers to limits over $0^{\circ}C\leq T_A\leq +70^{\circ}C$

Cumbal	Parameter	Conditions		Units		
Symbol		Conditions	Min	Тур	Max	Units
V _{OS}	Input Offset Voltage	(Note 1)		60 85	150 250	μV
V _{OS/t}	Long-Term V _{OS} Stability	(Note 2)		0.5	3.0	μV/Mo
los	Input Offset Current			0.8 1.6	6.0 8.0	nA
I _B	Input Bias Current			±2.0 ± 3.0	±12.0 ± 14.0	nA
e _{np-p}	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.38	0.65	μVр-р
e _n	Input Noise Voltage Density	$f_{O} = 10 \text{ Hz}$ $f_{O} = 100 \text{ Hz} \text{ (Note 3)}$ $f_{O} = 1000 \text{ Hz}$		10.5 10.3 9.8	20.0 13.5 11.5	nV/√Hz
i _{np-p}	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		15	35	рАр-р
i _n	Input Noise Current Density	$f_{O} = 10 \text{ Hz}$ $f_{O} = 100 \text{ Hz} \text{ (Note 3)}$ $f_{O} = 1000 \text{ Hz}$		0.35 0.15 0.13	0.90 0.27 0.18	pA/√ Hz
R _{IN}	Input Resistance Differential-Mode	(Note 4)	7	31		МΩ
R _{INCM}	Input Resistance Common-Mode			120		GΩ
IVR	Input Voltage Range		±13	±14		V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 13V$	94 94	110 106		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$		7 10	32 5 1	μV/V
A _{VO}	Large Signal Voltage Gain	$\begin{array}{l} R_L \leq 2k\Omega, V_O = \pm10V \\ R_L = 2k\Omega, V_O = \pm10V \\ R_L \geq 500\Omega, V_O = \pm0.5V, \\ V_S \pm 3V(\text{Note 4}) \end{array}$	120 100	400 400 400		V/mV
V _O	Output Voltage Swing	$\begin{aligned} R_L &\geq 10 \text{ k}\Omega \\ R_L &\geq 2 \text{ k}\Omega \\ R_L &\geq 2 \text{ k}\Omega \\ R_L &\geq 2 \text{ k}\Omega \\ R_L &\geq 1 \text{ k}\Omega \end{aligned}$	±12.0 ±11.5 ± 11.0	±13.0 ±12.8 ± 12.6 ±12.0		V
SR	Slew Rate	$R_L \ge 2 k\Omega$ (Note 3)	0.1	0.3		V/μs
BW	Closed-Loop Bandwidth	A _{VCL} = +1 (Note 3)	0.4	0.6		MHz
RO	Output Resistance	$V_{O} = 0, I_{O} = 0$		60		Ω
P _d	Power Consumption	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load		80 4	150 8	mW
	Offset Adj. Range	$R_P = 20 \text{ k}\Omega$		±4		mV
TCV _{OS}	Average Input Offset Voltage Drift Without External Trim	(Note 4)		0.7	2.5	μV/°C
TCV _{OS} n	With External Trim	$R_P = 20 \text{ k}\Omega \text{ (Note 4)}$		0.7	2.5	μV/°C
TCI _{OS}	Average Input Offset Current Drift	(Note 3)		12	50	pA/°C
TCIB	Average Input Bias Current Drift	(Note 3)		18	50	pA/°C

Note 1: $V_{\mbox{OS}}$ is measured approximately 0.5 second after application of power.

Note 2: Long-Term Offset Voltage Stability refers to the averaged trend line of V_{OS} vs Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μ V. Parameter is sample tested.

Note 3: Sample Tested.

Note 4: Guaranteed by design.

Test Circuits

Offset Voltage Test Circuit

Low Frequency Noise Test Circuit

TL/H/10550-4

TL/H/10550-5

Optional Offset Nulling Circuit

TL/H/10550-6

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408