

Arquitetura Híbrida para Robôs Móveis Baseada em Funções de Navegação com Interação Humana

Prof. Dr. Valdir Grassi Junior Depto. de Engenharia Elétrica EESC/USP

Estrutura da Apresentação

- Introdução
 - Motivação
 - Arquiteturas para robôs móveis
 - Planejamento de Movimento
 - Funções de navegação
 - Interação homem-robô
- Arquitetura desenvolvida
- Implementação e Resultados
- Conclusão

Introdução

Motivação

- Robôs móveis autônomos
- Interação do homem com o robô
- Aplicações:

Arquitetura para robôs móveis

- Descreve uma maneira de se construir o software de controle do robô a partir de componentes básicos
 - Componentes presentes no sistema
 - Interação dos componentes entre si
- Têm um papel de guia na implementação do sistema
 - Restrições na forma como o sistema deve ser implementado
- Componentes básicos:
 - Percepção, planejamento e atuação

į

Classificação das arquiteturas

- Deliberação:
 - Tomada de decisão ou planejamento baseado em um modelo interno do mundo;
- Reação:
 - Execução de ações pré-definidas em resposta a informações sensoriais obtidas localmente;
- Classificação:
 - Arquiteturas deliberativas
 - Arquiteturas reativas
 - Arquiteturas híbridas (deliberativas/reativas)

Características das arquiteturas

- · Arquiteturas deliberativas
 - Modelos internos do mundo (ambiente)
 - Informações globais
 - Representação simbólica e algoritmos complexos de planejamento
 - Resposta mais lenta a mudanças no ambiente
- Arquiteturas reativas
 - Nenhum modelo interno do mundo
 - Informações locais
 - Ações pré-definidas a determinados estímulos (simplicidade computacional)
 - Resposta mais rápida a mudanças no ambiente

7

Interação homem-robô

- Sistemas autônomos, semi-autônomos, teleoperados;
- Papel do homem na interação:
 - Supervisor;
 - Operador;
 - Parceiro de tarefa;
 - Mecânico ou Programador;
 - Espectador;

Supervisor

- Homem define objetivos de navegação, tarefas e missões para que o robô execute
- Supervisiona execução das tarefas

Operador

- Interação de forma mais intensa,
- Interfere de forma mais específica e contínua nas ações do robô

0

Parceiro de tarefa

- O homem ajuda o robô a desempenhar sua tarefa como um colega de trabalho
 - Realizando parte da tarefa que o robô é incapaz de fazer

Mecânico ou Programador

- O homem interage fazendo modificações no hardware ou software do sistema
 - Exemplo: robôs enviados à Marte

Espectador

- Homem precisa ter certo entendimento das atividades do robô para compartilhar o ambiente com ele
 - Exemplo: aspirador de pó autônomo

11

Planejamento de movimento

- Determinar os movimentos que o robô deve realizar para alcançar uma posição ou configuração desejada sem que ocorram colisões
- Métodos de planejamento de movimento:
 - Roadmaps
 - Decomposição em células
 - Campos potenciais
 - Planejamento baseado em amostragem

Espaço de Configuração

- Variável de configuração de um robô permite a descrição completa do robô relativo a um sistema de coordenadas fixo no ambiente
- Número de parâmetros que descrevem a configuração de um robô é igual ao número de graus de liberdade
- Espaço de configuração é o conjunto de todas as configurações possíveis do robô
- Espaço de configuração X Espaço de trabalho (ou de tarefa, ou operacional)

Espaço de Configuração

Robô Circular

 Robô é considerado como um ponto no espaço de configurações

Decomposição em Células

Campo Potencial

- Introduzido por Khatib (1986)
 - Abordagem local: sem completo conhecimento sobre o ambiente

Potencial de atração

Potencial de repulsão

Funções de Navegação

- Rimon e Koditschek (1992)
- Função potencial sem mínimos locais
- · Conhecimento global do ambiente necessário
 - Definida no espaço de configurações livres do robô
- Função calculada para uma posição de destino desejada (objetivo)
- A partir de qualquer posição no ambiente, o robô pode ser conduzido ao objetivo da função

Funções de Navegação

- Propriedades:
 - Suave no espaço livre de configuração (C_{free})
 - Único mínimo global no objetivo
 - Uniformemente máxima na fronteira de C_{free}
 - Função do tipo Morse
 - Hessiano da função nos pontos críticos (ex: pontos de sela) é não-singular, ou seja, os pontos críticos são pontos de equilíbrio instável.
- Convergência para praticamente todo q_{init} em C_{free}

25

Funções de Navegação

Função de navegação:

$$\phi_{\kappa}(q) = \frac{\|q - q_{goal}\|^{2}}{\left[\|q - q_{goal}\|^{2} + \beta(q)\right]_{\mu}^{1/\kappa}}$$

$$\beta \equiv \prod_{i=0}^{M} \beta_i(q)$$

Ambiente circular:

$$\beta_0(q) = -\|q - q_0\|^2 + \rho_0^2$$

Obstáculos:

$$\beta_j(q) = \|q - q_j\|^2 - \rho_j^2$$

Funções de Navegação

- · Dificuldades:
 - Definição de uma função analítica para ambientes de geometria complexa
 - Determinar um valor para o parâmetro k
- Alternativas:
 - Mapeamento difeomórfico entre um ambiente de esferas e um ambiente de geometrica complexa
 - Decomposição do ambiente em regiões de geometria mais simples e sequenciamento de controladores
 - Cálculo numérico de funções de navegação

28

Difeomorfismo

- Mapeamento entre dois espaços
 - suave, bijetor, e com inversa suave
- Propriedades da função de navegação são mantidas

Sequenciamento de funções de navegação

- Sequenciamento de controladores
 - Burridge; Rizzi; Koditschek (1999)
 - Cada função potencial definida no seu domínio de convergência
- Sequência de funís
- Decomposição do ambiente em células
 - Conner, Rizzi e Choset (2003)

30

Arquitetura Desenvolvida

Comportamento deliberativo de navegação

Função de navegação: $\phi(q)$

Para atingir o objetivo: $\dot{\phi}(q) < 0$

Possível controlador (gradiente

negativo): $\dot{\alpha} = \dot{\alpha}$

 $\dot{q}=u_{\phi}=-\nabla\phi\big(q\big)$

Semi-espaço admissível (Esposito; Kumar, 2002)

Comportamento reativo de desvio de obstáculos

Função de restrição imposta pelo obstáculo

$$g_i = g_i(z_i, f_i, q)$$

Distância ao obstáculo deve aumentar

$$\dot{g}_i \leq 0$$

Espaço admissível

$$F=U_{_{\phi}}\cap U_{_{g}}$$

40

Combinando entrada do usuário com comportamento deliberativo

Combinando entrada do usuário com desvio de obstáculo

44

Algoritmo de coordenação de entradas de controle

- Se existe entrada de controle do usuário:
 - Coordena entrada do usuário com comportamento deliberativo de navegação (alcançar objetivo);
 - Coordena entrada resultante com comportamento reativo de desvio de obstáculos (integridade física do robô);
- Senão:
 - Coordena comportamento deliberativo de navegação (alcançar objetivo) com comportamento reativo de desvio de obstáculo (integridade física do robô);

Implementação e Resultados

Mapeamento e Localização

- Localização:
 - Odometria
- Mapeamento
 - Mapa fornecido a priori
 - Não é atualizado durante navegação

55

Espaço de configurações

 Mapa do laboratório expandido: robô é considerado como um ponto no espaço de configurações

Planejador de movimento

- Algoritmo wave-front (programação dinâmica)
- Aproximação de uma função de navegação

3.5	2.5	1.5	1	1.5
3	2	1 ←	- 0	→ 1
		1.5	1	1.5
		2.5	2	2.5
5.5	4.5	3.5	3	3.5

57

Função potencial de navegação objetivo da função de navegação 58

Outros aspectos de implementação

- Seletor de comportamentos manual
- Monitor de progresso e replanejamento n\u00e3o foram implementados nesta vers\u00e3o
- Coordenador de entradas de controle implementado conforme método desenvolvido
 - Comportamento deliberativo de navegação
 - Comportamento reativo de desvio de obstáculos
 - Entrada do usuário através de um joystick

59

Experimentos

- Três modos de operação:
 - Autônomo
 - Manual
 - Semi-autônomo
- Dois ambientes diferentes
- Presença de obstáculo não modelado no mapa
 - Este obstáculo não foi levado em consideração no planejamento da trajetória

Modo de operação autônomo

61

Modo de operação autônomo

Modo de operação semi-autônomo

- (a) plano deliberativo
- (c) comportamento reativo
- (b) entrada do usuário

6

Modo de operação semi-autônomo

- (a) Plano deliberativo
- (c) Entrada do usuário modificada
- (b) entrada do usuário
- (d) comportamento reativo

Modo de operação autônomo

Sem obstáculos

Com obstáculo não modelado

Modo manual e modo semi-autônomo

Modo manual

Modo semi-autonomo

Desempenho do sistema

- Remote Objects Control Interface ROCI
 - Plataforma de programação
 - Modular, distribuida
 - Integração dos módulos em tarefas descritas em um arquivo XML
- Pentium 4, 2.4GHz, Windows 2000
- Sensor laser a 5Hz
- Odometria a 9Hz
- Velocidade da cadeira de rodas 0.13m/s

RRT: Rapidly-exploring Random Trees

Robô Autônomo para Inspeção de Cordões de Solda

Okamoto, Jun ; Grassi, Valdir ; Amaral, Paulo Faria Santos ; Pinto, Benedito Geraldo Miglio ; Pipa, Daniel ; Pires, Gustavo Pinto ; Martins, Marcus Vinicius Maciel . Development of an Autonomous Robot for Gas Storage Spheres Inspection. Journal of Intelligent & Robotic Systems, v. 1, p. 1-1-13, 2011.

Problema Proposto

Protótipo do Robô

Detecção Visual do Cordão

Detecção Visual do Cordão

Controle Servo Visual

