16. feladat

Minden számítógépes hálózat csomópontokból és bizonyos csomópontpárok között kiépített közvetlen kétirányú adatátvitelt biztosító kommunikációs vonalakból épül fel. A feladatban szereplő hálózatról tudjuk, hogy bármely két csomópont között pontosan egy olyan útvonal létezik, amely összeköti a két csomópontot. Adott p és q csomópont távolsága az a legkisebb k egész szám, amelyre létezik olyan $p=p_0,p_1,\ldots,p_k=q$ csomópontsorozat, hogy p_i és p_{i+1} $(i=0,\ldots,k-1)$ között van kiépített kommunikációs vonal. Minden csomópont fontos jellemzője az az érték, amely a többi csomóponttól vett távolság értékek maximuma, jelölje ezt az értéket adott p csomópontra $\rho(p)$. Ki kell jelölni a hálózat egy olyan c csomópontját, amelyre a $\rho(c)$ érték a legkisebb. Az ilyen csomópontot a hálózat központjának nevezzük.

Írjon olyan programot, amely meghatározza egy hálózat központját!

Bemenet

A standard bemenet első sora egy egész számot tartalmaz, a csomópontok n számát ($1 \le n \le 10000$). A csomópontokat az $1, \ldots, n$ számokkal azonosítjuk. A további n-1 sor mindegyike két egész számot tartalmaz: u v, ($1 \le u, v \le n$), amely azt jelenti, hogy az u és v csomópont között közvetlen kétirányú adatátviteli vonal van kiépítve. A bemenet teljesíti azt a feltételt, hogy bármely két csomópont között pontosan egy útvonal létezik.

Kimenet

A standard kimenet első és egyetlen sora egy egész számot tartalmazzon, egy olyan csomópont sorszámát, amely a hálózat központja! Ha több ilyen lehet, akkor bármelyik megadható.

Példa bemenet és kimenet

bemenet	kimenet
8	3
1 3	
3 6	
3 2	
2 4	
2 5	
6 7	
6 8	

Időlimit: 0.1 mp

Memórialimit: 32 MB