Politechnika Wrocławska	Ćwiczenia laboratoryjne	
	Data wykonania ćwiczenia	Data oddania sprawozdania
	04.12.2019	05.12.2019
	Ćwiczenie 4	
Termin: Środa, 9:15	Jednofazowe obwody RLC z warystorem	
	Autor	Kacper Borucki
	Nr indeksu	245365

1. Cel ćwiczenia

Celem ćwiczenia była symulacja prostych obwodów jednofazowych z warystorem.

2. Zakres ćwiczenia

- Zamodelowanie jednofazowego układu z warystorem.
- Dobór napięcia odniesienia oraz charakterystyki warystora.
- Zbadanie przebiegów napięcia na odbiorniku w kilku konfiguracjach wyłączników.
- Zbadanie przebiegów napięcia podczas pojawienia się przepięcia w obwodzie.

3. Zadane parametry

- E = 130V

•
$$R_{obc} = 13 \Omega$$

• $L_{obc} = 60 mH$
• $i_w = k \left(\frac{u}{U_{ref}}\right)^{\alpha}$; $k = 1mA$, $\alpha = 50$

4. Schemat symulowanego obwodu

5. Przebiegi

A) Symulacja przy $W1: T_{\rm cl} = -1$, $T_{op} = 0.005~s; W2: otwarty~cały~czas$

Wykres 1: Przebieg napięcia na rezystorze R_{obc}

Wykres 2: Przebieg napięcia na cewce L_{obc} (powiększenie)

Wykres 3: Przebieg napięcia na całym odbiorniku (powiększenie)

B) Symulacja przy $W1: T_{\rm cl} = -1$, $T_{op} = 0.05~s$; W2: zamknięty~cały~czas

(file cw-4.pl4; x-var t) v:XX0005

Wykres 5: Przebieg napięcia na cewce L_{obc} (powiększenie)

Wykres 6: Przebieg napięcia na całym odbiorniku (powiększenie)

C) Symulacja podczas przepięcia, W1 zamknięty cały czas, W2 otwarty cały czas Wykres 7: Przebieg napięcia na rezystorze R_{obc}

Wykres 8: Przebieg napięcia na cewce L_{obc} (powiększenie)

Wykres 9: Przebieg napięcia na całym odbiorniku (powiększenie)

D) Symulacja podczas przepięcia, W1 zamknięty cały czas, W2 zamknięty cały czas Wykres 10: Przebieg napięcia na rezystorze R_{obc}

Wykres 11: Przebieg napięcia na cewce L_{obc} (powiększenie)

Wykres 12: Przebieg napięcia na całym odbiorniku (powiększenie)

6. Charakterystyka prądowo-napięciowa warystora

7. Uwagi i wnioski

- Podczas przeprowadzania symulacji, w badanym obwodzie bez zastosowanego warystora pojawiały się znaczne przepięcia, rzędu kilkuset kV. W rzeczywistości te wartości byłyby prawdopodobnie mniejsze, niemniej jednak wciąż mogłyby doprowadzić do uszkodzenia obwodu.
- Zastosowanie warystora pozwoliło na znaczące ograniczenie pojawiających się w obwodzie przepięć, do wartości nieznacznie przekraczających znamionowe napięcie zasilające sieci. Wynika z tego jasno sens stosowania warystorów jako ograniczników przepięć.
- Podczas wystąpienia przepięcia zewnętrznego, podobnie jak w przypadku operacji
 łączenia, zastosowanie warystora pozwoliło na znaczące zmniejszenie wartości przepięcia
 zgodnie z charakterystyką zastosowanego warystora.
- Na podstawie wyników symulacji można wywnioskować, że operacje łączeniowe w obwodzie prądu stałego mogą prowadzić do bardzo dużych przepięć na elementach indukcyjnych, czego skutki należy ograniczać.