Maths - MP2I

Eliott Paquet

4 août 2025

Introduction

Ce document réunit l'ensemble de mes cours de Mathématiques de MP2I, ainsi que les TDs (travaux dirigés) les accompagnant. J'ai adapté certaines formulations me paraissant floues ou ne me plaisant pas mais le contenu pur des cours est strictement équivalent. Le document est organisé selon la hiérarchie suivante : chapitre, I), 1), a).

Les éléments des tables des matières initiale et présentes au début de chaque chapitre sont cliquables (amenant directement à la partie cliquée). C'est également le cas des références à des éléments antérieurs de la forme, par exemple, « Démonstration 5.22 ».

Dernier TD corrigé : aucun.

Le nombre total de lignes de latex utilisé pour générer tout ce document est : 7706.

Table des matières

1	Cours	6
1	trigonométrie (Rappels et compléments)	7
	1.1 Cercle trigonométrique	7
	1.1.1 Relation de congruence modulo 2π sur \mathbb{R}	7
	1.2 Cosinus et sinus	8
	1.2.1 Formules et valeur remarquables	8
	1.3 La fonction tangente	10
2	Inégalité et fonction (rappel et compléments)	12
	2.1 Inégalité	12
	2.1.1 Relation d'ordre sur \mathbb{R}	12
	2.2 Valeur absolue d'un réel	17
	2.3 Partie entière d'un réel	18
	2.4 Généralité sur les fonctions	19
	2.5 Fonction et relation d'ordre	22
	2.6 Dérivation des fonctions d'une variable réelle	23
3	Calcul algébrique (rappels et compléments)	30
	3.1 Sommes et produit finis	30
	3.2 Cas des sommes doubles finies	35
	3.3 Système linéaire de deux équations à deux inconnues	36
	3.4 Système linéaire de trois équations à trois inconnues	37
	3.5 Algorithme du Pivot	38

4	Nombr	res complexes	40
	4.1	Généralité	. 40
	4.2	Conugué d'un nombre complexe	. 42
	4.3	module d'un nombre complexe	. 42
	4.4	Nombre complexe de module 1 et trigonométrie	. 43
	4.5	Forme trigonométrique pour les nombres complexes non nuls	. 46
	4.6	Fonctions d'une variable réelle à valeurs complexes	. 47
5	Fonction	ons usuelles : Rappel et complément	49
	5.1	Fonction exponentielle	. 49
	5.2	Fonction logarithmes	. 50
	5.3	Fonctions hyperboliques	. 50
	5.4	Tangente hyperbolique	. 52
	5.5	Arccos	. 53
	5.6	Arcsin	. 53
	5.7	Arctan	. 54
	5.8	Fonction puissances réelles	. 54
	5.9	croissance comparées	. 55
6	Nombr	res complexes (2)	57
	6.1	Équations algébreiques	. 57
	6.1	.1 Préliminaires	57
	6.1	.2 Résolution des équations du second degré dans $\mathbb C$	58
	6.1	.3 Résolution des équations du type $z^n=z_0$ dans $\mathbb C$ avec $n\in\mathbb N^*$	59
	6.2	Exponentielle complexe	. 61
	6.3	Interprétations géométriques	. 62
7	Calcul	de primitives	65
	7.1	Primitives	. 65
	7.2	Primitives usuelles	. 66

	7.3 Ca	alculs de primitives	67
	7.3.1	Deux théorème important	69
	7.3.2	Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$	70
	7.3.3	Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ avec a, b et c des réels et a non nul	70
8	Compléme	ents sur les nombres réels	72
	8.1 Pa	arties denses de \mathbb{R}	72
	8.2 A ₁	oproximation décimale d'un réel	74
	8.3 Bo	orne inférieur et supérieure d'une partie de \mathbb{R}	75
9	Ensemble	application et relation	78
	9.1 Eı	nsemble	78
	9.1.1	Généralité	78
	9.1.2	Inclusion entre ensembles et parties	79
	9.1.3	Egalité entre ensembles	79
	9.1.4	Opérations sur les parties d'un ensemble	80
	9.1.5	Produit cartésien d'un nombre fini d'ensembles	81
	9.2 A ₁	oplication	81
	9.2.1	définition de base	81
	9.2.2	Fonctions particulières	83
	9.2.3	Image directe et image réciproque	83
	9.2.4	Composition d'applications	83
	9.2.5	Injection, surjection	84
	9.2.6	Bijection	84
	9.3 Re	elation Binaire sur un ensemble	85
	9.3.1	Généralité	85
	9.3.2	Relations d'équivalence	85
	9.3.3	Relation d'ordre	86
10	Suites nui	nériques particulières	87

	10.1 Su	ite arithmétique
	10.2 Su	iites géométriques
	10.3 Su	ites arithmético-géométriques
	10.4 Su	tites récurrentes linéaires d'ordre 2 à coefficients constants
	10.5 Ca	as simples de suites récurrentes du type $u_{n+1} = f(u_n)$
11 \$	Suites nui	nériques 96
	11.1 G	énéralité sur les suites réelles
	11.1.1	Définition
	11.1.2	Suites majorées, minorées, bornées
	11.1.3	Suites stationnaires, monotones, strictement monotones
	11.2 Li	mite d'une suite réelle
	11.2.1	Généralités sur les limites
	11.2.2	Cas particulier des limites finies : retour en 0
	11.2.3	Suites convergentes et divergentes
	11.2.4	Opérations sur les limites
	11.2.5	Limite et relation d'ordre
	11.2.6	Existence d'une limite finie
	11.2.7	Existence d'une limite infinie
	11.2.8	Cas des suites monotones
	11.3 Su	ites extraites
	11.3.1	Définition
	11.3.2	Suites extraites et limites
	11.4 Su	ite complexes
	11.4.1	Suite complexe bornée et limite d'une suite complexe
12]	Limite et	continuité 107
	12.1 ét	ude locale des fonctions à valeurs réelles
	12.1.1	Limite en un point a de $\overline{\mathbb{R}}$ appartenant à I ou extrémité de I
	12.1.2	Limite à gauche et à droite en un réel appartenant à I ou extrémité de I 109

	12.1.3	Caractérisation séquentielle de la limite
	12.1.4	Opérations sur les limites
	12.1.5	Limites et relation d'ordre
	12.1.6	Existence d'une limite finie
	12.1.7	Existence d'une limite infinie
	12.1.8	Théorèmes de limite monotone
12.	.2 Co	ntinuité des fonctions à valeurs réelles en un point
	12.2.1	Définition
	12.2.2	Condition nécessaire et suffisante de continuité en un point
	12.2.3	Caractérisation séquentielle de la continuité en un point
	12.2.4	Opérations sur les fonctions continues en un point
	12.2.5	Composition de fonctions continues en un point
	12.2.6	Prolongement par continuité
12.	.3 Co	ntinuité des fonctions sur un intervalle
	12.3.1	Définition
	12.3.2	Théorèmes généraux : combinaison linéaire, produit, quotient, composée 115
	12.3.3	Théorème des valeurs intermédiaires et corollaires
	12.3.4	Théorème des bornes atteintes et corollaire
	12.3.5	Théorème de la bijection
12.	.4 Ca	s des fonctions à valeurs complexes
	12.4.1	Ce qui s'étend aux fonctions complexes
	12.4.2	Ce qui ne s'étend pas aux fonctions à valeurs complexes
	12.4.3	Limite d'une fonction à valeurs complexes

Première partie

Cours

Chapitre 1

trigonométrie (Rappels et compléments)

Sommaire

1.1	Cercle trigonométrique
1.1.1	Relation de congruence modulo 2π sur \mathbb{R}
1.2	Cosinus et sinus
1.2.1	Formules et valeur remarquables
1.3	La fonction tangente

Dans ce chapitre, on rappelle ce qui a été vu en trigonométrie au lycée et on complète avec les formules d'addition et de duplication ainsi que l'étude de la fonction tangente.

1.1 Cercle trigonométrique

On se place dans le plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

Définition 1.1 (Cercle trigonométrique)

On appelle cercle trigonométrique le cercle de centre O et de rayon 1

Propriétés 1.2 (enroulement de la droite des réels sur le cercle trigonométrique) Soit M un point du plan.

Le point M appartient au cercle trigonométrique si, et seulement si, il existe un réel t tel que les coordonnées de M dans le repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ sont $(\cos t\;;\sin t)$

1.1.1 Relation de congruence modulo 2π sur \mathbb{R}

Définition 1.3

Deux réels a et b sont dits congrus modulo 2π s'il existe un entier relatif k tel que $a-b=2k\pi$ Notation : $a\equiv b$ [2π]

Définition/Propriétés 1.4

On dit que la relation \equiv est une relation d'équivalence sur $\mathbb R$ car elle vérifie les propriétés suivantes :

(1) Pour tout réel x, on a : $x \equiv x [2\pi]$.

(réfléxivité)

- (2) Pour tout couple de réels (x, y) tel que $x \equiv y [2\pi]$, on a $y \equiv x [2\pi]$ (symétrie)
- (3) Pour tout triplet de réels (x, y, z) tel que $x \equiv y [2\pi]$ et $y \equiv z [2\pi]$, on a : $x \equiv z [2\pi]$ (transitivité)

1.2 Cosinus et sinus

1.2.1 Formules et valeur remarquables

Formule 1.5 (Formule de base)

Pour tout réel t, on a :

(1)
$$\cos(\pi - t) = -\cos t \ et \sin(\pi - t) = \sin t$$

(2)
$$\cos (\pi + t) = -\cos t \ et \sin (\pi + t) = -\sin t$$

(3)
$$\cos\left(\frac{\pi}{2} - t\right) = \sin t \ et \sin\left(\frac{\pi}{2} - t\right) = \cos t$$

(4)
$$\cos\left(\frac{\pi}{2} + t\right) = -\sin t \ et \sin\left(\frac{\pi}{2} + t\right) = \cos t$$

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos t$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin t$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Remarque 1.6

Soient a et b des réels :

eight
$$a$$
 et b des réels :
$$\begin{cases}
a \equiv b \ [2\pi] \\
\text{ou}
\end{cases} & \iff \begin{cases}
\exists k \in \mathbb{Z}, \ a = b + 2k\pi \\
\text{ou}
\end{cases} \\
\exists k' \in \mathbb{Z}, \ a = -b + 2k'\pi
\end{cases}$$
• $\sin a = \sin b \iff \begin{cases}
a \equiv b \ [2\pi] \\
\text{ou}
\end{cases} & \iff \begin{cases}
\exists k \in \mathbb{Z}, \ a = b + 2k\pi \\
\exists k' \in \mathbb{Z}, \ a = b + 2k\pi
\end{cases} \\
\text{ou}$
• $\sin a = \sin b \iff \begin{cases}
a \equiv b \ [2\pi]
\end{cases} & \iff \begin{cases}
\exists k \in \mathbb{Z}, \ a = -b + 2k'\pi \\
\exists k' \in \mathbb{Z}, \ a = b + 2k'\pi
\end{cases}$

Formule 1.7 (Formule d'addition)

Pour tout couple de réels (a,b) on a:

(1)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

(2)
$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

(3)
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

(4)
$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

Formule 1.8 (Formule de simpson)

Pour tout couple de réels (a,b) on a :

(1)
$$\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b) \iff \frac{1}{2}(\sin(a+b) + \sin(a-b)) = \sin(a)\cos(b)$$

(2)
$$\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b) \iff \frac{1}{2}(\cos(a+b) + \cos(a-b)) = \cos(a)\cos(b)$$

Application 1.9

Calcul:

$$\int_0^{\pi} \sin(x) \cos(3x) \, dx = \int_0^{\pi} \frac{1}{2} \left(\sin(4x) + \sin(2x) \right) \, dx = 0$$

Formule 1.10 (Formule de duplication)

Pour tout réel a, on a :

(1)
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - \sin^2(a)$$

$$(2) \sin(2a) = 2\cos(a)\sin(a)$$

Propriétés 1.11 (Sinus et Cosinus)

- La fonction cos est définie sur \mathbb{R} , paire et périodique de période 2π . Elle est dérivable sur \mathbb{R} et sa dérivée vérifie cos' = $-\sin$
- La fonction sin est définie sur \mathbb{R} , impaire et périodique de période 2π . Elle est dérivable sur \mathbb{R} et sa dérivée vérifie sin' = cos

9

Propriétés 1.12 (Inégalité remarquable)

Pour tout réel t, on a : $|\sin(t)| \le |t|$

Définition/Propriétés 1.13 (Relation fondamentale de la trigonométrie)

 $\forall x \in \mathbb{R}, \cos^2(x) + \sin^2(x) = 1$

Démonstration 1.14

Soit $f: x \longmapsto \cos^2(x) + \sin^2(x)$

alors on a : $f'(x) = -2\sin(x)\cos + 2\sin(x)\cos(x) = 0$

Donc f est constante ainsi $\forall x \in \mathbb{R}, f(x) = f(0) = \cos^2(x) + \sin^2(x) = 1^2 + 0^2 = 1$

La fonction tangente 1.3

Propriétés 1.16

La fonction tan est définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$, impaire et périodique de période π . Elle est dérivable sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$ et sa dérivée vérifie $\tan' = 1 + \tan = \frac{1}{\tan^2}$

Formule 1.17

Pour tout réel t, on a :

- (1) $tan(\pi t) = -tan(t)$
- (2) $tan(\pi + t) = tan(t)$

(n)	t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
(3)	$\tan t$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	NULL

Formule 1.18 (addition et duplication)

Pour tout couple de réels (a,b) n'appartenant pas à l'ensemble $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$, on a :

(1) Si
$$a+b$$
 n'appartient pas à l'ensemble $\left\{\frac{\pi}{2}+k\pi \mid k \in \mathbb{Z}\right\}$ alors $\tan(a+b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}$

(2) Si
$$a-b$$
 n'appartient pas à l'ensemble $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$ alors $\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$

10

(3) Si 2a n'appartient pas à l'ensemble
$$\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$$
 alors $\tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$

Exercice/Exemple 1.19 Soit t réel n'appartenant pas à $\left\{\frac{\pi}{4}+k\frac{\pi}{2}\;\middle|\;k\in\mathbb{Z}\right\}$:

$$\sin(t) = 2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right)$$

$$= \frac{2\sin\left(\frac{t}{2}\right)}{\cos\left(\frac{t}{2}\right)}\cos^2\left(\frac{t}{2}\right)$$

$$= \frac{1}{1+\tan^2\left(\frac{t}{2}\right)} \times 2\tan\left(\frac{t}{2}\right)$$

$$= \frac{2\tan\left(\frac{t}{2}\right)}{1+\tan^2\left(\frac{t}{2}\right)}$$

Chapitre 2

Inégalité et fonction (rappel et compléments)

Sommaire

2.1	Inégalité
2.1.1	Relation d'ordre sur \mathbb{R}
2.2	Valeur absolue d'un réel
2.3	Partie entière d'un réel
2.4	Généralité sur les fonctions
2.5	Fonction et relation d'ordre
2.6	Dérivation des fonctions d'une variable réelle

Dans ce chapitre, sont rassemblés des rappels ou compléments sur les inégalités ainsi que des fondamentaux sur les fonctions de variable réelle à valeurs réelles (sans preuve ni évocation de continuité).

2.1 Inégalité

2.1.1 Relation d'ordre sur \mathbb{R}

Définition 2.1

On dit que la relation \leq est une relation d'équivalence sur \mathbb{R} car elle vérifie les propriétés suivantes :

(1) Pour tout réel x, on a : $x \le x$.

(réfléxivité)

(2) Pour tout couple de réels (x, y) tel que $x \le y$ et $y \le x$, on a y = x

(antisymétrie)

(3) Pour tout triplet de réels (x, y, z) tel que $x \le y$ et $y \le z$, on a : $x \le z$

(transitivité)

Propriétés 2.2 (Compatibilité avec les opérations)

Soit x, y, z, t et a des réels.

- (1) Si $x \le y$ et $z \le t$ alors $x + z \le y + t$
- (2) Si $x \le y$ et $0 \le a$ alors $ax \le ay$
- (3) Si $x \le y$ et $a \le 0$ alors $ay \le ax$
- (4) Si $0 \le x \le y$ et $0 \le z \le t$ alors $0 \le xz \le yt$

Notation 2.3 (Intervalles de \mathbb{R})

Les partie I de \mathbb{R} pouvant s'écrire sous l'une des formes suivantes sont dites intervalles de \mathbb{R} :

- $I = \emptyset$
- $I = \{x \in \mathbb{R} \mid a \le x \le b\} = [a; b] \text{ avec } (a, b) \in \mathbb{R}^2 \text{ et } a \le b$
- $I = \{x \in \mathbb{R} \mid a \le x < b\} = [a ; b[\text{avec } (a,b) \in \mathbb{R} \times (\mathbb{R} \cup \{+\infty\}) \text{ et } a < b\}]$
- $I = \{x \in \mathbb{R} \mid a < x \le b\} = a \mid a : b$ avec $(a, b) \in (\mathbb{R} \cup \{-\infty\}) \times \mathbb{R}$ et $a < b \in A$
- $\bullet \ I = \{x \in \mathbb{R} \mid a < x \leq b\} \underset{\text{notation}}{=} \]a \ ; \ b \ [\ \text{avec} \ (a,b) \in (\mathbb{R} \cup \{-\infty\}) \times (\mathbb{R} \cup \{+\infty\}) \ \text{et} \ a < b \}$

Propriétés 2.4

(1) Passage à l'inverse dans une inégalité

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \leqslant y \iff \frac{1}{y} \leqslant \frac{1}{x}$$

$$\forall x \in \mathbb{R}_{-}^{*}, \ \forall y \in \mathbb{R}_{-}^{*}, \ x \leqslant y \iff \frac{1}{y} \leqslant \frac{1}{x}$$

(2) Passage au carré dans une inégalité

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \le y \iff x^2 \le y^2$$

$$\forall x \in \mathbb{R}_{-}^{*}, \ \forall y \in \mathbb{R}_{-}^{*}, \ x \leq y \iff y^{2} \leq x^{2}$$

(3) Passage à la racine carrée dans une inégalité

$$\forall x \in \mathbb{R}_+, \ \forall y \in \mathbb{R}_+, \ x \leq y \iff \sqrt{x} \leq \sqrt{y}$$

(4) Passage à l'exponentielle ou au logarithme népérien dans une inégalité

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \leq y \iff e^x \leq e^y$$

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \leq y \iff \ln x \leq \ln y$$

Exercice/Exemple 2.5

Montrer $\forall x \in [0;1], \ x(1-x) \le \frac{1}{4}.$

Correction 2.6 (2 Méthode)

Soit $x \in [0;1]$

(1) Raisonnement par équivalence

$$x(1-x) \le \frac{1}{4} \iff 0 \le \frac{1}{4} - x(1-x)$$

$$\iff 0 \le x^2 - x + \frac{1}{4}$$

$$\iff 0 \le \left(x - \frac{1}{2}\right)^2$$

Ceci étant vrai $\forall x \in [0;1]$, car $\Delta = 0$ et $x_0 = \frac{1}{2}$, on conclut $\forall x \in [0;1]$, $x(1-x) \leq \frac{1}{4}$.

(2) étude de la fonction
$$f: [0;1] \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{1}{4} - x(1-x)$

Exercice/Exemple 2.7

Montrer $\forall x \in \mathbb{R}_+^*, x + \frac{1}{x} \ge 2.$

Correction 2.8 Soit $x \in \mathbb{R}_+^*$

$$x + \frac{1}{x} \ge 2 \iff \frac{x^2 + 1}{x} \ge 2$$

$$\iff x^2 - 2x + 1 \ge 0$$

$$\iff (x - 1)^2 \ge 0$$

Ceci étant vrai $\forall x \in \mathbb{R}_+^*$, on conclut $\forall x \in \mathbb{R}_+^*$, $x + \frac{1}{x} \ge 2$.

Exercice/Exemple 2.9

Encadrer $\frac{2x^2-x+1}{x^2+\sqrt{x+2}+3} \text{ pour } x \in [-1\ ; 1].$

Correction 2.10

Soit $x \in [-1; 1]$

(1) numérateur:

$$-1 \le x \le 1 \iff 0 \le x^2 \le 1$$
 $\iff 0 \le 2x^2 \le 2$
 $\iff 0 \le 2x^2 - x + 1 \le 4$

(2) denominateur:

$$-1 \leqslant x \leqslant 1 \iff 0 \leqslant x^2 \leqslant 1$$

$$\iff 4 \leqslant x^2 + \sqrt{x+2} + 3 \leqslant 4 + \sqrt{3}$$

$$\iff \frac{1}{4+\sqrt{3}} \leqslant \frac{1}{x^2 + \sqrt{x+2} + 3} \leqslant \frac{1}{4}$$

Ainsi par produit des deux inégalités on as $0 \le \frac{2x^2 - x + 1}{x^2 + \sqrt{x + 2} + 3} \le 1$ pour $x \in [-1; 1]$.

Exercice/Exemple 2.11

Encadrer $\frac{x - y^2 + 3}{x^2 + y^2 - y}$ pour $\forall (x, y) \in [1; 2]^2$.

Correction 2.12

Soit $x \in [-1; 1]$

(1) <u>numérateur</u> :

$$1 - 4 + 3 \le x - y^2 + 3 \le 2 - 1 + 4 \iff 0 \le x - y^2 + 3 \le 5$$

(2) denominateur:

$$0 \le y - 1 \le 1 \iff 0 \le y^2 - y \le y$$

$$\iff 0 \le y^2 - y \le 2$$

$$\iff 1 \le x^2 + y^2 - y \le 6$$

$$\iff \frac{1}{6} \le \frac{1}{x^2 + y^2 - y} \le 1$$

15

Ainsi par produit des deux inégalités on as $0 \le \frac{x - y^2 + 3}{x^2 + y^2 - y} \le 5$ pour $\forall (x, y) \in [1; 2]^2$.

Définition 2.13 (Parties majorées, majorants, maximum)

Une partie A de $\mathbb R$ est dite majorée s'il existe un réel M tel que, pour tout réel x de A, on a : $x \leq M$. Un tel réel M est alors dit :

- majorant de A dans le cas général.
- maximum de A dans le cas particulier où M appartient à A.

Définition 2.14 (Parties minorées, minorants, minimum)

Une partie A de $\mathbb R$ est dite minorée s'il existe un réel m tel que, pour tout réel x de A, on a : $m \le x$. Un tel réel m est alors dit :

- minorant de A dans le cas général.
- minimum de A dans le cas particulier où m appartient à A.

Exercice/Exemple 2.15

Que dire de
$$B = \left\{ \frac{n}{n^2 + 1} \mid n \in \mathbb{N} \right\}$$
?

Correction 2.16

- B est minorée car $\forall n \in \mathbb{N}, \ 0 \le \frac{n}{n^2 + 1}$ par ailleurs $0 \in B$ donc 0 est un minimum.
- B est majorée par $\frac{1}{2}$. En effent en notant $U_n = \frac{n}{n^2 + 1}$, On voit que (U_n) est strictement décroissante

Exercice/Exemple 2.17

Que dire de
$$C = \left\{ \frac{e^x}{x} \mid x \in \mathbb{R}_+^* \right\}$$
?

Correction 2.18

- C est minorée car $\forall x \in \mathbb{R}_+^*$, $0 \le \frac{e^x}{x}$ donc 0 est un minorant mais pas un minimum
- Supposons que C est majorée alors $\exists M \in \mathbb{R}, \ \forall c \in C, \ c \leq M$ ainsi $\forall x \in \mathbb{R}_+^*, \ \frac{e^x}{x} \leq M$ donc par passage à la limite en $+\infty$ on trouve $+\infty \leq M$ ce qui est absurde donc C n'est pas majorée.

Définition 2.19 (Parties bornées)

Une partie A de \mathbb{R} est dite bornée si elle est majorée et minorée autrement dit s'il existe deux réels m et M tel que, pour tout réel x de A, on a : $m \le x \le M$.

Valeur absolue d'un réel 2.2

Définition 2.20

Pour tout x réel, la valeur absolue de x, notée |x|, est définie par : |x| = $\begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$

Propriétés 2.21

- (1) Pour tout x réel, on a : $0 \le |x|$ et $x \le |x|$
- (2) Pour tout couple(x, y) de réels, on a : |xy| = |x||y|
- (3) Pour tout couple (x, y) de réels tel que y est non nul, on a : $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$

Définition/Propriétés 2.22 (Deux inéquations élémentaires)

Pour tout réel x et tout réel positif α , on a :

- (1) $|x| \le \alpha \iff -\alpha \le x \le \alpha \iff x \in [-\alpha : \alpha]$
- (2) $|x| \ge \alpha \iff x \le -\alpha \text{ ou } \alpha \le x \iff x \in]+\infty; -\alpha] \cup [\alpha; +\infty[$

Définition/Propriétés 2.23 (Interprétation sur la droite des réels)

Soit a un réel et b un réel positif.

L'ensemble des réels x vérifiant $|x-a| \le b$ (resp. $|x-a| \ge b$) est l'ensemble des points de la droite des réels situés à une distance du point a inférieure ou égale (resp. supérieure ou égale) à b.

Propriétés 2.24 (Inégalité triangulaire)

Pour tout couple (x, y) de réels, on a :

$$|x + y| \le |x| + |y|$$

Démonstration 2.25 (inégalité triangulaire)

Soit $(x, y) \in \mathbb{R}^2$

$$|x+y| \le |x| + |y| \iff |x+y|^2 \le (|x|+|y|)^2$$

$$\iff x^2 + 2xy + y^2 \le x^2 + y^2 + 2|x||y|$$

$$\iff xy \le |xy|$$

17

Ce qui est vrai donc l'inégalité est bien démontrer

Exercice/Exemple 2.26

Encadrer
$$\frac{x\cos(x)+1}{\sin(x)+3}$$
 pour $x \in [-\pi; 2\pi]$

Correction 2.27

Soit $x \in [-\pi; 2\pi]$

- numérateur : $|x \cos(x) + 1| \le |x| |\cos(x)| + 1 \le 2\pi + 1 = 2\pi + 1$
- dénominateur : $2 \le |\sin(x) + 3| \le 4$

Ainsi par produit des deux inégalités on as $:0 \le \frac{|x\cos(x)+1|}{|\sin(x)+3|} \le \frac{2\pi+1}{2}$

donc $-\frac{2\pi + 1}{2} \le \frac{x \cos(x) + 1}{\sin(x) + 3} \le \frac{2\pi + 1}{2}$ pour $x \in [-\pi; 2\pi]$.

Propriétés 2.28

Soit un couple (x, y) de réels.

$$||x| - |y|| \le |x - y|$$

Démonstration 2.29

Soit $(x, y) \in \mathbb{R}^2$ x = (x - y) + y donc $|x| \leq |x - y| + |y|$ d'où $|x| - |y| \leq |x - y|$ De même, y = (x - y) + x donc $|y| \leq |x - y| + |x|$ d'où $-|x - y| \leq |x| - |y|$

ainsi on a $-|x - y| \le |x| - |y| \le |x - y|$ donc $||x| - |y|| \le |x - y|$.

Partie entière d'un réel 2.3

Propriétés 2.30

Pour tout réel x, il existe un unique entier n tel que :

$$n \le x < n + 1$$

Définition 2.31

On appelle partie entière de x, notée $\lfloor x \rfloor$, l'unique entier n vérifiant la propriété précédente.

Exemple 2.32

$$[3.14] = 3, [-2.7] = -3 \text{ et } [5] = 5.$$

2.4 Généralité sur les fonctions

Définition 2.33 (Fonction)

Une fonction de variable réelle à valeurs réelles notée f est un objet mathématique qui, à tout élément x d'une partie non vide de \mathbb{R} , associe un et un seul nombre réel noté f(x).

Notation Fonctionnelle:

$$f: A \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x)$$

Définition 2.34

Soit f une fonction de variable réelle à valeurs réelles.

- (1) L'ensemble des réels x pour lesquels f(x) existe est appelé ensemble/domaine de définition de f et souvent noté $D_f = \{x \in \mathbb{R} \mid f(x) \text{ existe}\}$
- (2) Soit $x \in D_f$ La valeur réelle f(x) est appelée image de x par f.
- (3) soit $y \in \mathbb{R}$ S'il existe x dans D_f tel que f(x) = y alors x est dit antécédent de y par f

Définition/Propriétés 2.35 (égalité entre fonction)

Deux fonctions f et g de variable réelle à valeurs réelles sont dites égales si les deux conditions suivantes sont réunies :

- les fonctions f et g ont le même ensemble de définition D;
- pour tout x de D, f(x) = g(x).

dans ce cas, on note f = g.

Exercice/Exemple 2.36

est-ce que les fonctions f et g définies par :

$$f: x \longmapsto \frac{1}{\sqrt{1+x}+1} \text{ et } g: x \longmapsto \frac{\sqrt{1+x}-1}{x}$$

Sont égales?

Correction 2.37

Tout d'abord $\forall x \in D_f \cap D_g$, f(x) = g(x) car :

$$g(x) = \frac{\sqrt{1+x}-1}{x}$$

$$= \frac{\left(\sqrt{1+x}-1\right)\left(\sqrt{1+x}+1\right)}{x\left(\sqrt{1+x}+1\right)}$$

$$= \frac{1+x-1}{x\left(\sqrt{1+x}+1\right)}$$

$$= \frac{x}{x\left(\sqrt{1+x}+1\right)}$$

$$= \frac{1}{\sqrt{1+x}+1} = f(x)$$

 $\text{Donc } f=g \text{ sur } D_f \cap D_g \text{ mais } D_f =]-1 \; ; +\infty] \text{ or } D_g = [-1 \; ; +\infty[\; \backslash \; \{0\} \text{ donc } D_f \neq D_g \text{ donc } f \neq g.$

Définition 2.38 (représentation graphique d'une fonction)

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , l'ensemble de points C_f défini par

$$C_f = \left\{ M(x \; ; \; f(x)) \; \middle| \; x \in D_f \right\}$$

est appelé représentation graphique de f (ou courbe représentative de f).

Définition 2.39 (Parité, imparité et périodicité d'une fonction)

- Une fonction f est dite paire si, pour tout x de son domaine de définition, on a : f(-x) = f(x).
- Une fonction f est dite impaire si, pour tout x de son domaine de définition, on a : f(-x) = -f(x).
- Une fonction f est dite périodique de période T si, pour tout x de son domaine de définition, on a : f(x+T) = f(x).

Exercice 2.40

Montrer que toute fonction de \mathbb{R} peut s'écrire de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Correction 2.41 (Analyse-synthèse)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction quelqu'onque

- analyse : Supposons qu'il existe $\begin{cases} p: \mathbb{R} \longmapsto \mathbb{R} \text{ paire} \\ i: \mathbb{R} \longmapsto \mathbb{R} \text{ impaire} \end{cases}$ telles que f = p + iAinsi $\forall x \in \mathbb{R} \begin{cases} f(x) = p(x) + i(x) & (1) \\ f(-x) = p(-x) + i(-x) = p(x) - i(x)(2) \end{cases}$ $-\frac{1}{2} ((1)+(2)) \text{ donne } p: x \longmapsto \frac{f(x) + f(-x)}{2}$ $-\frac{1}{2} ((1)-(2)) \text{ donne } i: x \longmapsto \frac{f(x) - f(-x)}{2}$
- synthèse : vérifions que le seul couple trouvé convient : $\forall x \in \mathbb{R}, f(x) = p(x) + i(x)$

$$--p(-x) = p(x) \text{ et } i(-x) = -i(x)$$

Ainsi f s'écrit de manière unique comme la somme d'une fonction paire et impaire

Définition 2.42 (opération et composition)

Soit f et g deux fonctions de variable réelle à valeurs réelles de domaines de définition D_f et D_g .

- La somme de f et g est la fonction, notée f+g, définie par $f+g: x \longmapsto f(x)+g(x)$. Son domaine de définition D_{f+g} vérifie : $D_{f+g}=D_f\cap D_g$.
- La multiplication de f par le réel α est la fonction, notée αf , définie par $\alpha f: x \longmapsto \alpha f(x)$. Son domaine de définition $D_{\alpha f}$ vérifie : $D_{\alpha f} = D_f$ si $\alpha \neq 0$.
- Le produit de f et g est la fonction, notée fg, définie par $fg: x \longmapsto f(x)g(x)$. Son domaine de définition D_{fg} vérifie : $D_{fg} = D_f \cap D_g$.
- Le quotient de f par g est la fonction , notée fracfg, définie par $fracfg: x \longmapsto \frac{f(x)}{g(x)}$. Son domaine de définition D_{fracfg} vérifie : $D_{fracfg} = D_f \cap \{x \in D_g | g(x) \neq 0\}$.

21

• La composée de g et f est la fonction, notée $g \circ f$, définie par $g \circ f : x \longmapsto g(f(x))$. Son domaine de définition $D_{g \circ f}$ vérifie : $D_{g \circ f} = \{x \in D_f | f(x) \in D_g\}$.

${\bf Exercice/Exemple~2.43}$

Domaine de définition de : $f: D_f \longrightarrow \mathbb{R}$ $x \longmapsto \sqrt{x - \frac{1}{x}}$ Correction 2.44 Soit $x \in D_f$ alors $x - \frac{1}{x} \ge 0 \iff x \ne 0$ et $\frac{x^2 - 1}{x} = \frac{(x - 1)(x + 1)}{x} \ge 0$

X	-∞		-1		0		1	+	-∞
(x - 1)(x+1)		+	0	_		_	0	+	
х		_		_	0	+		+	
f		_	0	+		_	0	+	

ainsi on voit bien que $D_f = [-1; 0[\cup [1; +\infty[$

2.5 Fonction et relation d'ordre

Définition 2.45 (Monotonie)

Soit f une fonction de variable réelle à valeurs réelles et D une partie de son domaine de définition D_f .

- (1) f est dite **croissante** sur D si, pour tout $(x, y) \in D^2$ tel que $x \le y$, on a $f(x) \le f(y)$.
- (2) f est dite **décroissante** sur D si, pour tout $(x, y) \in D^2$ tel que $x \le y$, on a $f(x) \ge f(y)$.
- (3) f est dite **strictement croissante** sur D si, pour tout $(x, y) \in D^2$ tel que x < y, on a f(x) < f(y).
- (4) f est dite **strictement décroissante** sur D si, pour tout $(x, y) \in D^2$ tel que x < y, on a f(x) > f(y).

Remarque : f est dite monotone (resp. strictement monotone) sur D si elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur D.

Remarque 2.46 (Application de la définition)

Sous réserve que cela ait du sens :

- La somme de deux fonctions croissantes (resp. décroissantes) est croissante (resp. décroissante).
- La composée de deux fonctions croissantes (resp. décroissantes) est croissante (resp. décroissante).
- La composée d'une fonction croissante et d'une fonction décroissante est décroissante
- Le produit de deux fonctions <u>positives</u> croissantes (resp. décroissantes) est croissante(resp. décroissante).

Définition 2.47

Soit f une fonction de variable réelle à valeurs réelles de domaine de définition D_f . Soit D une partie non vide de D_f .

(1) f est dite **majorée** sur D si l'ensemble $\{f(x) \mid x \in D\}$ est majoré, c'est-à-dire s'il existe un réel M tel que, pour tout réel x de D, on a : $f(x) \leq M$. Un tel réel M est alors dit :

- majorant de f sur D dans le cas général.
- maximum de f sur D dans le cas particulier où il existe x_0 dans D tel que $M = f(x_0)$.
- (2) f est dite **minoriée** sur D si l'ensemble $\{f(x) \mid x \in D\}$ est minoré, c'est-à-dire s'il existe un réel m tel que, pour tout réel x de D, on a : $m \le f(x)$. Un tel réel m est alors dit :
 - minorant de f sur D dans le cas général.
 - minimum de f sur D dans le cas particulier où il existe x_0 dans D tel que $m = f(x_0)$.
- (3) f est dite **bornée** sur D si f est majorée et minoriée sur D, c'est-à-dire s'il existe deux réels met M tels que, pour tout réel x de D, on a : $m \le f(x) \le M$.

Propriétés 2.48

Soit f une fonction de variable réelle à valeurs réelles de domaine de définition D_f . Alors f est bornée sur D si, et seulement si, la fonction |f| est majorée sur D.

Dérivation des fonctions d'une variable réelle 2.6

Définition 2.49 (dérivée en un point)

Soit f une fonction de variable réelle à valeurs réelles de domaine de définition D_f et x_0 un point de D_f .

f est dite dérivable en x_0 si la fonction $x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie en x_0 .

Dans ce cas, on note $f'(x_0)$ la valeur de cette limite et on l'appelle la dérivée de f en x_0 . Cela reient à déterminer si la fonction $h \mapsto \frac{f(x_0 + h) - f(x_0)}{h}$ admet une limite finie en 0.

Définition 2.50

fonction dérivée f est dite dérivable sur D_f si elle est dérivable en tout point de D_f . Dans ce cas, la fonction $x \mapsto f'(x)$ est appelée fonction dérivée de f et notée f'.

Définition/Propriétés 2.51 (équation de la tangente)

On se place dans le plan muni d'un repère orthonormé (O, i, j).

Soit f une fonction de variable réelle à valeurs réelles et C_f la courbe représentative de f. Soit x_0 un point de D_f .

Si f est dérivable en x_0 , alors la tangente à la courbe C_f au point $M(x_0, f(x_0))$ est la droite d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Définition/Propriétés 2.52 (opération sur les fonctions dérivable)

Soit I et J des intervalles de \mathbb{R} non vide et non réduits à un point.

(1) Combinaison linéaire:

Soit f et g deux fonctions définies sur I et à valeurs réelles et (α, β) deux réels. Si f et g sont dérivables sur I, alors $\alpha f + \beta g$ est dérivable sur I et sa dérivée vérifie :

$$\alpha f + \beta g' = \alpha f' + \beta g'$$

(2) Produit:

Soit f et g deux fonctions définies sur I et à valeurs réelles.

Si f et g sont dérivables sur I, alors fg est dérivable sur I et sa dérivée vérifie :

$$(fg)' = f'g + fg'$$

(3) quotient:

Soit f et g deux fonctions définies sur I et à valeurs réelles tel que g est non nulle sur I.

Si f et g sont dérivables sur I, alors $\frac{f}{g}$ est dérivable et sa dérivée vérifie :

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

(4) Composition:

Soit f une fonction définie sur I et à valeurs réelle tel que, pour tout x de I, f(x) appartient à J Soit g une fonction définie sur J et à valeurs réelles.

Si f est dérivable sur I et g dérivable sur J, alors la composée $g \circ f$ est dérivable sur I et sa dérivée vérifie :

$$(g\circ f)'=g'\circ f\times f'$$

Définition/Propriétés 2.53 (Caractérisation des fonctions constantes ou monotones) Soit f une fonction définie sur un intervalle I et à valeurs réelles.

- (1) f est constante sur I si, et seulement si, pour tout x de I, f'(x) = 0.
- (2) f est croissante sur I si, et seulement si, pour tout x de I, $f'(x) \ge 0$.
- (3) f est décroissante sur I si, et seulement si, pour tout x de I, $f'(x) \leq 0$.
- (4) f est strictement croissante sur I si, et seulement si, les deux conditions suivante sont réunies :
 - (a) pour tout $x \text{ de } I, f'(x) \ge 0$;
 - (b) il n'existe pas de réels a et b dans I avec a < b tels que pour tout x de [a;b], on a f'(x) = 0.
- (5) f est strictement décroissante sur I si, et seulement si, les deux conditions suivante sont réunies :
 - (a) pour tout x de I, $f'(x) \leq 0$;
 - (b) il n'existe pas de réels a et b dans I avec a < b tels que pour tout x de [a;b], on a f'(x) = 0.

Définition/Propriétés 2.54 (dérivées usuelles)

Fonction	Domaine de dérivabilitée	Fonction dérivée
$x \longmapsto a \text{ avec } a \in \mathbb{R}$	\mathbb{R}	$x \longmapsto 0$
$x \longmapsto x^n \text{ avec } n \in \mathbb{N}^*$	\mathbb{R}	$x \longmapsto nx^{n-1}$
$x \longmapsto x^- n \text{ avec } n \in \mathbb{N}^*$	\mathbb{R}^*	$x \longmapsto -nx^{-n-1}$
$x \longmapsto \sqrt{x}$	\mathbb{R}_+^*	$x \longmapsto \frac{1}{2\sqrt{x}}$
$x \longmapsto e^x$	\mathbb{R}	$x \longmapsto e^x$
$x \longmapsto \ln(x)$	\mathbb{R}_+^*	$x \longmapsto \frac{1}{x}$
$x \longmapsto \sin(x)$	\mathbb{R}	$x \longmapsto \cos(x)$
$x \longmapsto \cos(x)$	\mathbb{R}	$x \longmapsto -\sin(x)$
$x \longmapsto \tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}$	$x \mapsto \frac{1}{\cos^2(x)} \text{ ou } x \mapsto \frac{1}{\cos^2(x)}$

Exercice/Exemple 2.55

Calculer
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin^3(x)}{\cos^5(x)} dx$$

Correction 2.56

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin^3(x)}{\cos^5(x)} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^3(x) \times \frac{1}{\cos^2(x)} dx$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^3(x) \times \left(\tan^2(x) + 1\right) dx$$

$$= \left[\frac{1}{4} \left(\tan^4(x)\right)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

$$= \frac{1}{4} \left(\tan^4\left(\frac{\pi}{3}\right) - \tan^4\left(\frac{\pi}{4}\right)\right)$$

$$= \frac{1}{4} \left(\left(\sqrt{3}\right)^4 - 1^4\right)$$

$$= 2$$

Définition/Propriétés 2.57 (étude pratique d'une fonction)

Le plan d'étude d'une fonction f est en général le suivant :

- \bullet Détermination du domaine de définition de f
- Réduction éventuelles du domaine d'étude selon les propriétés de f (parité, périodicité, etc.)
- Limites aux bornes du domaine d'étude
- ullet Etude de la monotonie (le plus souvent, mais pas uniquement, après calcul de la dérivée de f et détermination du signe de celle-ci)
- Construction du tableau de variation de f (limites aux bornes, valeurs remarquables, variations)
- \bullet Tracé de la courbe représentative de f

Définition/Propriétés 2.58 (dérivées d'odre supériéur)

Soit f une fonction définie sur un intervalle I et à valeurs réelles.

On note

$$f^{(0)} = f$$

puis, pour tout entier naturel k tel que la fonction $f^{(k)}$ existe et est déribable sur I, on pose :

$$f^{(k+1)} = \left(f^{(k)}\right)'$$

Si n est un entier naturel, tel que la fonction $f^{(n)}$ existe alors on dit que f est n-fois dérivable sur I et que $f^{(n)}$ est la dérivée d'ordre n (ou dérivée n-ième) de f.

Définition 2.59 (Fonction réciproque)

Soit f une fonction définie sur un intervalle I à valeurs dans J Si, pour tout y de J, l'équation y = f(x) admet une unique solution x dans I notée $x = f^{-1}(y)$ alors :

- $\bullet\,$ la fonction f est dite bijection de I sur J
- ullet la fonction f^{-1} ainsi définie sur J et à valeurs dans I, est dite bijection réciproque de f.

Exemples:

- $\sqrt{}$ est une bijection de \mathbb{R}_+ sur \mathbb{R}_+ de bijection réciproque $f:\mathbb{R}_+ \longrightarrow \mathbb{R}_+$ définie par $f(x)=x^2$.
- \bullet exp est une bijection de $\mathbb R$ sur $\mathbb R_+^*$ de bijection réciproque la fonction ln

Propriétés 2.60 (Propriétés de la bijection réciproque)

Si f est une bijection de I sur J de bijection réciproque notée f^{-1} alors on a :

- (1) pour tout $x \text{ de } I, f(f^{-1}(x)) = x;$
- (2) pour tout y de J, $f^{-1}(f(y)) = y$.

Définition/Propriétés 2.61 (représentation graphique)

on se place dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

Si f est une bijection de I sur J alors la courbe représentative de f et de sa bijection réciproque f^{-1} sont symétriques par rapport à la droite d'équation y = x.

Définition/Propriétés 2.62 (dérivée de la bijection réciproque)

Soit f une bijection de I sur J et si f est dérivable sur I alors sa bijection réciproque f^{-1} est dérivable en tout point y de J tel que $f'(f^{-1}(y)) \neq 0$ avec, dasn ce cas :

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Démonstration 2.63

Soit f une bijection de I sur J, soit y in J tel que $f'(f^{-1}(y)) \neq 0$.

on sait que $f(f^{-1}(y)) = y$ donc en appliquant la définition de la dérivée de fonction composée on a :

$$(f(f^{-1}(y)))' = (y)' \iff f'(f^{-1}(y)) \times (f^{-1}(y))' = 1 \iff (f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))}$$

Définition/Propriétés 2.64 (Trois fonction usuelles trigonométriques)

• Fonction Arccos:

La fonction Arccos est la réciproque de la fonction $c: [0; \pi] \longrightarrow [-1; 1]$ et est donc $x \longmapsto \cos(x)$ définie sur [-1; 1] à valeurs dans $[0; \pi]$ et dérivable sur]-1; 1[de dérivée :

$$\arccos': x \longmapsto \frac{-1}{\sqrt{1-x^2}}$$

• Fonction Arcsin:

La fonction Arccos est la réciproque de la fonction $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \longrightarrow [-1; 1]$ et est donc définie $x \mapsto \sin(x)$

sur [-1;1] à valeurs dans $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ et dérivable sur]-1;1[de dérivée :

$$\arcsin': x \longmapsto \frac{1}{\sqrt{1-x^2}}$$

Fonction Arctan:

 $\begin{array}{c} \underline{\text{Fonction Arctan}}: \\ \text{La fonction Arccos est la réciproque de la fonction} \end{array} \Big] - \frac{\pi}{2} \, ; \, \frac{\pi}{2} \Big[\quad \underset{x}{\longrightarrow} \quad \\ \end{array}$ et est donc définie

sur \mathbb{R} à valeurs dans $\left|-\frac{\pi}{2}\right|$; $\frac{\pi}{2}$ et dérivable sur \mathbb{R} de dérivée :

$$\arctan': x \longmapsto \frac{1}{1+x^2}$$

Démonstration 2.65 (démonstration de la dérivée de la fonction Arccos)

Soit $y \in [-1; 1]$, on note $c : [0; \pi] \longrightarrow [-1; 1]$

$$\begin{split} c'(c^{-1}(y)) &= -\sin(c^{-1}(y)) \\ &= -\sqrt{\sin^2(c^{-1}(y))} \quad \text{car } c^{-1}(y) \in [0 \; ; \pi] \; \text{donc } \sin(c^{-1}(y)) \geq 0 \\ &= -\sqrt{1 - \cos^2(c^{-1}(y))} \\ &= -\sqrt{1 - y^2} \end{split}$$

Ainsi d'après la définition de la dérivée de la bijection réciproque on a : Arccos'(y) = $\frac{-1}{\sqrt{1-v^2}}$

Remarque 2.66 (démonstration d'une relation intéressante entre Arctan(x) et $Arctan(\frac{1}{x})$) Soit $f: x \longmapsto \operatorname{Arctan}\left(\frac{1}{x}\right)$, on as $D_f = \mathbb{R} \setminus \{0\}$ et f dérivable sur D_f

$$f'(x) = \operatorname{Arctan}'\left(\frac{1}{x}\right) \times \left(\frac{1}{x}\right)'$$
$$= \frac{1}{1 + \left(\frac{1}{x}\right)^2} \times \left(\frac{-1}{x^2}\right)$$
$$= \frac{-1}{x^2 + 1}$$

On remarque que $\forall x \in \mathbb{R}^*$, $f'(x) = -\arctan'(x)$ ainsi $\forall x \in \mathbb{R}^*_+$, $f'(x) + \arctan'(x) = 0$ donc $\forall x \in \mathbb{R}^*, \ (f(x) + \operatorname{Arctan}(x))' = 0$

Ainsi il existe c un réel tel que $\forall x \in \mathbb{R}_+^*$, $f(x) + \operatorname{Arctan}(x) = c$

Pour
$$x = 1$$
, $f(1) + \operatorname{Arctan}(1) = c$
$$f(1) + \frac{\pi}{4} = c$$
$$c = \frac{\pi}{2}$$

Ainsi $\forall x \in \mathbb{R}_+^*$, Arctan $\left(\frac{1}{x}\right)$ + Arctan $(x) = \frac{\pi}{2}$

De manière analogue on trouve $\forall x \in \mathbb{R}_{-}^{*}$, $\operatorname{Arctan}\left(\frac{1}{x}\right) + \operatorname{Arctan}\left(x\right) = -\frac{\pi}{2}$

Chapitre 3

Calcul algébrique (rappels et compléments)

Sommaire

3	3.1	Sommes et produit finis
3	3.2	Cas des sommes doubles finies
3	3.3	Système linéaire de deux équations à deux inconnues
3	3.4	Système linéaire de trois équations à trois inconnues
3	3.5	Algorithme du Pivot

3.1 Sommes et produit finis

Notation 3.1

Soit $(a_i)_{i\in I}$ une famille de réels indexée par un ensemble I fini.

La somme (resp. le produit) de tous les réels de la famille est notée $\sum_{i \in I} a_i$ (resp. $\prod_{i \in I} a_i$).

- Si I est l'ensemble vide, on convient que : $\sum_{i \in I} a_i = 0$ et $\prod_{i \in I} a_i = 1$.
- Si $I = \{1, 2, ..., n\}$ avec n un entier naturel non nul, on note $\sum_{i=1}^{n} a_i$ ou $\sum_{1 \le i \le n} a_i$ au lieu de $\sum_{i \in I} a_i$ (resp. $prod_{i=1}^n a_i$ ou $\prod_{1 \le i \le n} a_i$ au lieu de $\prod_{i \in I} a_i$).

Propriétés 3.2 (opération et calcul par paquets)

• Pour toutes familles $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ de réels indexées par I et pour tout couple (α,β) de réels, on a :

$$\sum_{i \in I} (\alpha a_i + \beta b_i) = \alpha \sum_{i \in I} a_i + \beta \sum_{i \in I} b_i \qquad \text{et} \qquad \prod_{i \in I} (a_i b_i) = \left(\prod_{i \in I} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right)$$

• Pour toute famille $(a_i)_{i\in I}$ de réels indexée par I avec $I=I_1\cup I_2$ et $I_1\cap I_2=\emptyset,$ on a :

$$\sum_{i \in I} a_i = \sum_{i \in I_1} a_i + \sum_{i \in I_2} a_i \qquad \text{et} \qquad \prod_{i \in I} a_i = \prod_{i \in I_1} a_i \prod_{i \in I_2} a_i$$

Exercice/Exemple 3.3

Calculer :
$$\sum_{k=1}^{2n} (-1)^k k$$
 avec $n \in \mathbb{N}$

Correction 3.4

$$\sum_{k=1}^{2n} (-1)^k k = \sum_{k=0}^{n-1} (-1)^{2k+1} (2k - +) + \sum_{k=1}^{n} (-1)^{2k} (2k)$$

$$= -\sum_{k=0}^{n-1} (2k + 1) + \sum_{k=1}^{n} 2k$$

$$= -\left(2\sum_{k=0}^{n-1} k + n\right) + 2\sum_{k=1}^{n} k$$

$$= -\left(2\frac{(n-1)n}{2} + n\right) + 2\frac{n(n+1)}{2}$$

$$= n(n+1-n+1-1)$$

$$= n$$

Définition/Propriétés 3.5 (téléscopage)

Soit $(b_i)_{1 \le i \le n}$ une famille <u>finie</u> de réels avec n supérieur ou égal à 2.

- (1) La somme $\sum_{i=1}^n b_{i+1} b_i$ est dire somme télescopique et vaut $b_{n+1} b_1$.
- (2) Si tous les b_i sont non nuls, le produit $\prod_{i=1}^n \frac{b_{i+1}}{b_i}$ est dit produit télescopique et vaut $\frac{b_{n+1}}{b_1}$.

Définition/Propriétés 3.6 (Somme usuelles)

Pour tout entier naturel n et tout réel x différent de 1, on a :

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \qquad \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$$

Démonstration 3.7

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \{1\}$:

• Démonstration de $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$:

$$\sum_{k=1}^{n} (k^2 - (k-1)^2) = n^2 \qquad (*) \qquad \text{(t\'elescopage)}$$

donc via (*) on as:

$$\sum_{k=1}^{n} (k^2 - (k-1)^2) = n^2 \iff \sum_{k=1}^{n} (k^2 - k^2 + 2k - 1) = n^2$$

$$\iff 2\left(\sum_{k=1}^{n} k\right) - n = n^2$$

$$\iff \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

• Démonstration, via un raisonnement similaire, de $\sum_{k=1}^{n} k^2 = \frac{n(2n+1)(n+1)}{6}$, on as :

$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3 \qquad (*) \qquad \text{(t\'elescopage)}$$

donc via (*) on as:

$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3 \iff \sum_{k=1}^{n} (k^3 - k^3 + 3k^2 - 3k + 1) = n^3$$

$$\iff \sum_{k=1}^{n} (3k^2 - 3k + 1) = n^3$$

$$\iff 3 \left(\sum_{k=1}^{n} k^2\right) - 3 \left(\sum_{k=1}^{n} k\right) + n = n^3$$

$$\iff 3 \left(\sum_{k=1}^{n} k^2\right) = 3 \left(\sum_{k=1}^{n} k\right) - n + n^3$$

$$\iff 3 \left(\sum_{k=1}^{n} k^2\right) = \frac{3n(n+1) - 2n + 2n^3}{2}$$

$$\iff 3 \left(\sum_{k=1}^{n} k^2\right) = \frac{n(2n+1)(n+1)}{2}$$

$$\iff \sum_{k=1}^{n} k^2 = \frac{n(2n+1)(n+1)}{6}$$

• Démonstration, via un raisonnement similaire, de $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$, on as :

$$\sum_{k=0}^{n} x^{k} - x^{k+1} = 1 - x^{n+1}$$
 (*) (télescopage)

donc via (*) on as:

$$\sum_{k=0}^{n} x^{k} - x^{k+1} = 1 - x^{n+1} \iff \left(\sum_{k=0}^{n} x^{k}\right) - \left(\sum_{k=0}^{n} x^{k+1}\right) = 1 - x^{n+1}$$

$$\iff \left(\sum_{k=0}^{n} x^{k}\right) - x \left(\sum_{k=0}^{n} x^{k}\right) = 1 - x^{n+1}$$

$$\iff \left(1 - x\right) \left(\sum_{k=0}^{n} x^{k}\right) 1 - x^{n+1}$$

$$\iff \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$$

Définition/Propriétés 3.8 (Factorisation de $a^n - b^n$)

Pour tout n entier naturel non nul et tout couple (a, b) de réels, on a :

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1} \right)$$
$$= (a - b) \sum_{k=0}^{n-1} a^{n-1-k}b^{k}$$
$$= (a - b) \sum_{k=0}^{n-1} a^{k}b^{n-1-k}$$

Démonstration 3.9 (preuve par téléscopage)

Pour tout n entier naturel non nul et tout couple (a, b) de réels, on a :

$$(a-b)\sum_{k=0}^{n-1} a^k b^{n-1-k} = (a-b)\sum_{k=0}^{n-1} a^{n-1-k} b^k$$

$$= \sum_{k=0}^{n-1} (a-b)a^{n-1-k} b^k$$

$$= \sum_{k=0}^{n-1} \left(a^{n-(k)} b^k - a^{n-(k+1)} b^{k+1} \right)$$

$$= a^n b^0 - a^0 b^n \qquad \text{(télescopage)}$$

$$= a^n - b^n$$

Définition/Propriétés 3.10 (coefficients binomiaux)

Soit n un entier naturel non et k entière relatif, on a :

$$(1) \begin{pmatrix} k \\ n \end{pmatrix} = \begin{cases} \frac{n!}{(n-k)!k!} & \text{si } k \in \{0,1,2,\dots,n\} \\ 0 & \text{si } k < 0 \text{ ou } k > n \end{cases}$$

$$(2) \begin{pmatrix} k \\ n \end{pmatrix} = \begin{pmatrix} n-k \\ n \end{pmatrix}$$

$$(3) \begin{pmatrix} k \\ n \end{pmatrix} + \begin{pmatrix} k+1 \\ n \end{pmatrix} = \begin{pmatrix} k+1 \\ n+1 \end{pmatrix}$$

$$(relation de Pascal)$$

(4) $\binom{k}{n}$ est un entier naturel

Définition/Propriétés 3.11 (Formule du binôme de Newton)

Pour tout couple (a, b) de réels et tout entier naturel n, on a :

$$(a+b)^n = \sum_{k=0}^n \binom{k}{n} a^{n-k} b^k = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}$$

Démonstration 3.12 (Formule du binôme par récurrence) Soit a et b des réels

Montrons que
$$\forall n \in \mathbb{N}, \ (a+b)^n = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}$$

On note
$$P(n)$$
 la Propriété « $(a+b)^n = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}$ »

• Initialisation :
$$P(0)$$
 est vrai car
$$\begin{cases} (a+b)^0 &= 1\\ \sum_{k=0}^0 \binom{k}{0} a^k b^{-k} = \binom{0}{0} a^0 b^0 &= 1 \end{cases}$$

• Hérédité Soit $n \in \mathbb{N}$ tel que P(n) est vrai, Montrons que P(n+1) est vrai :

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b) \sum_{k=0}^{n} {k \choose n} a^{k} b^{n-k} \qquad \text{(Hérédité)}$$

$$= \sum_{k=0}^{n} {k \choose n} \left(a^{k+1} b^{n-k} + a^{k} b^{n+1-k} \right)$$

$$= \sum_{k=0}^{n} {k \choose n} a^{k+1} b^{n-k} + \sum_{k=0}^{n} {k \choose n} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n} {k-1 \choose n} a^{k+1} b^{n-(k-1)} + {n \choose n} a^{n+1} b^{0} \sum_{k=1}^{n} {k \choose n} a^{k} b^{n+1-k} + {0 \choose n} a^{0} b^{n+1}$$

$$= \sum_{k=1}^{n} {k \choose n+1} a^{k} b^{n-k+1} + a^{n+1} + b^{n+1}$$

$$= \sum_{k=1}^{n} {k \choose n+1} a^{k} b^{n-k+1} + {n+1 \choose n+1} a^{n+1} + {n+1 \choose n+1} b^{n+1}$$

$$= \sum_{k=0}^{n+1} {k \choose n+1} a^{k} b^{n-k+1}$$

Donc P(n+1) vrai

3.2 Cas des sommes doubles finies

Définition 3.13

Soit A un ensemble fini de couples et $(a_{i,j})_{(i,j)\in A}$ une famille de réels indexée par A. La somme de tous les réels de la famille $(a_{i,j})_{(i,j)\in A}$ est notée $\sum_{(i,j)\in A}a_{i,j}$ et appelée somme double.

Remarque : Si A est l'ensemble vide, on convient que $\sum_{(i,j)\in A} a_{i,j} = 0$

Définition/Propriétés 3.14 (Sommes double rectangulaires)

Dans le cas où $A = \{1, 2, ..., n\} \times \{1, 2, ..., m\}$ avec n et m des entiers naturels non nuls,

• la somme double $\sum_{(i,j)\in A} a_{i,j}$ est rectangulaire

• le somme double
$$\sum_{(i,j)\in A} a_{i,j}$$
 s'écrit aussi $\sum_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant m}} a_{i,j}$

• la somme double
$$\sum_{(i,j)\in A} a_{i,j}$$
 vaut :

$$sum_{(i,j)\in A}a_{i,j} = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} a_{i,j} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{i,j} \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{i,j} \right)$$

• si $(b_i)_{1 \le i \le n}$ et $(c_i)_{1 \le i \le m}$ sont des familles finies de réels, alors :

$$\left(\sum_{i=1}^{n} b_i\right) \left(\sum_{j=1}^{m} c_j\right) = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} b_i c_j$$

Définition/Propriétés 3.15 (somme double triangulaire)

Dans le cas où $A = \{(i, j) \in \mathbb{N}^2 | 1 \le i \le j \le n \}$ avec n un entier naturel non nul,

- La somme double $\sum_{(i,j)\in A} a_{i,j}$ est dite triangulaire.
- \bullet La somme double $\sum_{(i,j)\in A}a_{i,j}$ s'écrit aussi $\sum_{1\leqslant i\leqslant j\leqslant n}a_{i,j}$ et vaut :

$$\sum_{(i,j)\in A} a_{i,i} = \sum_{1 \le i \le j \le n} a_{i,j} = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} a_{i,j} \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} a_{i,j} \right)$$

3.3 Système linéaire de deux équations à deux inconnues

Définition/Propriétés 3.16 (rappel de première)

Dans le plan \mathbb{R}^2 muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , toute droite D admet une équation de la forme

$$ax + by = c$$

où a, b et c sont des réels tels que $(a, b) \neq (0, 0)$. Avec ces notations,

- le vecteur \vec{n} de coordonnées (a,b) est un vecteur normal à D;
- le vecteur \vec{u} de coordonnées (-b,a) est un vecteur directeur de D.

Définition/Propriétés 3.17 (Système linéaire de deux équations à deux inconnues) Soit a, b, c, a', b' et c' des réels. Le système d'équations

$$(S): \begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$

d'inconnues les réels x et y est dit système linéaire de deux équations à deux inconnues.

Définition/Propriétés 3.18 (Interprétation géométrique)

Dans le cas où $(a,b) \neq (0,0)$ et $(a',b') \neq (0,0)$, résoudre le système (S) revient à déterminer l'intersection entre deux droites D et D' du plan. Trois cas se présentent :

- Les droites sont confondues donc (S) a une infinité de solutions qui forment une droite;
- Les droites sont sécantes donc (S) a une unique solution;
- Les droites sont parallèles non confondues donc (S) n'a pas de solutions.

3.4 Système linéaire de trois équations à trois inconnues

Définition/Propriétés 3.19 (rappel de terminale)

Dans l'espace \mathbb{R}^3 muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, tout plan P admet une équation de la forme

$$ax + by + cz = d$$

où a, b, c et d sont des réels tels que $(a, b, c) \neq (0, 0, 0)$

- le vecteur \vec{n} de coordonnées (a, b, c) est un vecteur normal à P;
- deux vecteurs non colinéaires pris parmi les vecteurs de coordonnées (-b, a, 0), (0, -c, b) et (-c, 0, a) donnent la direction de P.

Définition/Propriétés 3.20 (Système linéaire de deux équations à trois inconnues) Soit a, b, c, d, a', b', c' et d' des réels. Le système d'équations

$$(S): \begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$$

d'inconnues les réels x, y et z est dit système linéaire de deux équations à trois inconnues.

Définition/Propriétés 3.21 (Interprétation géométrique)

Dans le cas où $(a, b, c) \neq (0, 0, 0)$ et $(a', b', c') \neq (0, 0, 0)$, résoudre le système (S) revient à déterminer l'intersection entre deux plans P et P' de l'espace. Trois cas se présentent :

- Les plans sont confondus donc (S) a une infinité de solutions qui forment un plan;
- Les plans sont sécants donc (S) a une infinité de solutions qui forment une droite;
- Les plans sont parallèles non confondus donc (S) n'a pas de solutions.

Définition/Propriétés 3.22 (Système linéaire de trois équations à trois inconnues) Soit a, b, c, d, a', b', c', d', a'', b'', c'' et d'' des réels. Le système d'équations

(S):
$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \\ a''x + b''y + c''z = d'' \end{cases}$$

d'inconnues les réels x, y et z est dit système linéaire de trois équations à trois inconnues.

Définition/Propriétés 3.23 (Interprétation géométrique)

Dans le cas où $(a, b, c) \neq (0, 0, 0)$, $(a', b', c') \neq (0, 0, 0)$ et $(a'', b'', c'') \neq (0, 0, 0)$, résoudre le système (S) revient à déterminer l'intersection entre trois plans P, P' et P'' de l'espace. Cela conduit à distinguer huit cas de figures qui donnent quatre types d'ensemble-solution pour (S):

- Le système (S) a une infinité de solutions qui forment un plan;
- Le système (S) a une infinité de solutions qui forment une droite;
- Le système (S) a une unique solution;
- Le système (S) n'a pas de solutions.

3.5 Algorithme du Pivot

Remarque 3.24 (Remarque préliminaire)

En cycle terminal, de petits systèmes linéaires ont été rencontrés et résolus dans des cas simples, le plus souvent par "substitution".

En MP2I, nous utiliserons en priorité la méthode de résolution par "pivot". Plus efficace et élégante, cette technique sera reprise au semestre 2 dans le chapitre "Matrices" pour résoudre plus généralement des systèmes linéaires de n équations à p inconnues.

Définition/Propriétés 3.25 (Opérations élémentaires)

On reprend les notations des paragraphes III. et IV. et on note L_i la i-ème ligne du système (S). On appelle opérations élémentaires sur les lignes du système linéaire (S):

- (1) l'échange de deux lignes distinctes : $L_i \leftrightarrow L_j$ avec $i \neq j$;
- (2) la multiplication d'une ligne par un réel non nul : $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$;
- (3) l'addition à une ligne du produit d'une autre ligne par un réel non nul : $L_i \leftarrow L_i + \lambda L_j$ avec $i \neq j$ et $\lambda \neq 0$.

Propriétés 3.26 (Propriété importante)

Toute opération élémentaire sur les lignes d'un système linéaire le transforme en un système linéaire équivalent c'est-à-dire un système ayant le même ensemble de solutions.

Définition/Propriétés 3.27 (résolution d'un système linéaire par la méthode du pivot)

La résolution d'un système linéaire par la méthode du pivot se déroule en deux phases :

• <u>phase de descente</u> : en effectuant des opérations élémentaires sur les lignes du système, on transforme le système en un système de forme "triangulaire" ou "trapézoïdale" comme, par exemple,

$$(S1) : \begin{cases} a_1x + b_1y = c_1 \\ b'_1y = c'_1 \end{cases}$$

$$(S2) : \begin{cases} a_1x + b_1y + c_1z = d_1 \\ b'_1y + c'_1z = d'_1 \end{cases}$$

$$(S3) : \begin{cases} a_1x + b_1y + c_1z = d_1 \\ b'_1y + c'_1z = d'_1 \end{cases}$$

- phase de remontée : Le système obtenu est équivalent au système initial ; il est facile à résoudre ce qui permet d'obtenir l'ensemble des solutions du système initial. Dans cette phase de remontée, on peut au choix :
 - effectuer des substitutions successives (moins élégant);
 - utiliser à nouveau des opérations élémentaires sur les lignes pour réduire le système sous forme "diagonale" (plus élégant et facile à coder).

Remarque 3.28

Les opérations élémentaires effectuées lors de la résolution d'un système linéaire par la méthode du pivot (phases de descente et de remontée) doivent systématiquement être indiquées en marge du système étudié pour faciliter la lecture des correcteurs et permettre de retrouver les éventuelles erreurs de calcul.

Remarque 3.29 (Pour aller plus loin (pour ceux qui ont suivi l'option maths expertes))

- Les petits systèmes linéaires décrits au III. et IV. peuvent se traduire matriciellement par une équation matricielle du type AX = B avec A et B des matrices à préciser et X une matrice colonne inconnue.
- \bullet L'effet des opérations élémentaires sur les lignes de ces systèmes peut se traduire matriciellement par des multiplications de la matrice A à gauche par des matrices inversibles bien

Chapitre 4

Nombres complexes

Sommaire

4.1	Généralité
4.2	Conugué d'un nombre complexe
4.3	module d'un nombre complexe
4.4	Nombre complexe de module 1 et trigonométrie
4.5	Forme trigonométrique pour les nombres complexes non nuls 46
4.6	Fonctions d'une variable réelle à valeurs complexes 47

4.1 Généralité

Définition 4.1 (Propriété de C)

On ADMET l'existence d'un ensemble noté \mathbb{C} , dont les éléments sont appelés nombres complexes, tel que :

- (1) \mathbb{C} contient \mathbb{R}
- (2) \mathbb{C} est muni de deux opérations + et × sur \mathbb{C} qui étendent les opérations + et × connues sur \mathbb{R} et suivent les mêmes règles de calcul que celles-ci
- (3) \mathbb{C} contient un élément noté i vérifiant $i^2 = -1$
- (4) Tout élément z de $\mathbb C$ s'écrit de manière une ique sous la forme z=a+ib avec $(a,b)\in\mathbb R^2$

Remarque 4.2

- La forme z=a+ib avec $(a,b)\in\mathbb{R}^2$ est dite forme algébrique du nombre complexe z
 - le réel a est dit partie réelle du nombre complexe z et noté a = Re(z)
 - le réel b est dit partie imaginaire du nombre complexe z et noté $b = \Im z$
- L'unicité d'écriture d'un nombre complexe sous forme algébrique se traduit par : Pour tout réels a, b, a' et b', on a :

$$a+ib=a'+ib'$$
si, et seulement si, $a=a'$ et $b=b'$

Définition/Propriétés 4.3 (Opériation sur C)

L'ensemble $\mathbb{C} = \{a+ib \mid (a,b) \in \mathbb{R}^2\}$ est muni deux opérations + et + et \times définies par, pour tout nombre complexe z de forme algébrique a+ib et tout nombre complexe z' de forme algébrique a'+ib':

$$\begin{cases} z + z' = (a+ib) + (a'+ib') = (a+a') + i(b+b') \\ z \times z' = (a+ib) \times (a'+ib') = (aa'-bb') + i(ab'+a'b) \end{cases}$$

Définition/Propriétés 4.4 (Extension des résultat vus dans R)

(1) Pour tout n entier naturel et tout nombre complexe z différent de 1, on a :

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{k+1}}{1 - z}$$

(2) Pour tout n entier naturel et tout couple (z, z') nombres complexes, on a :

$$(z+z')^n = \sum_{k=0}^n \binom{k}{n} z^k (z')^{n-k} = \sum_{k=0}^n \binom{k}{n} z^{n-k} (z')^k$$

(3) Pour tout n entier naturel et tout couple (z, z') nombres complexes , on a :

$$z^{n}+(z')^{n}=(z-z')\left(z^{n-1}+z^{n-1}z'+\cdots+z(z')^{n-2}+(z')^{n-1}\right)=(z-z')\sum_{k=0}^{n-1}z^{n-1-k}(z')^{k}=(z-z')\sum_{k=0}^{n-1}z^{k}(z')^{n-1-k}$$

Définition/Propriétés 4.5 (Plan complexe : affixe d'un point, d'un vecteur)

Dans toute la suite, on considère le plan usuel muni d'un repère orthonormé direct.

- A tout complexe z, on peut associer le point M de coordonnées (Re(z), Im(z)) dit image de z.
- A tout point M de coordonnées (x, y), on peut associer le complexe z = x + iy dit affixe de M. On identifie donc \mathbb{C} au plan usuel muni d'un repère orthonormé direct et on parle de "plan complexe".

A tout complexe z, on peut aussi associer le vecteur \vec{u} de coordonnées (Re (z), Im (z)) dit image de z et à tout vecteur \vec{u} de coordonnées (x,y), on peut associer le complexe z=x+iy dit affixe de \vec{u} . Ainsi :

- Pour tout vecteur \vec{u} d'affixe z et tout réel α , le vecteur $\alpha \vec{u}$ a pour affixe αz .
- Pour tous vecteurs \vec{u} et $\vec{u'}$ d'affixes respectives z et z', le vecteur $\vec{u} + \vec{u'}$ a pour affixe z + z'.
- Pour tous points M et M' d'affixes respectives z et z', le vecteur $\overrightarrow{MM'}$ a pour affixe z'-z.

4.2 Conugué d'un nombre complexe

Définition 4.6

On appelle conjugué d'un nombre complexe z et on note \overline{z} le nombre complexe défini par :

$$\overline{z} = \operatorname{Re}(z) - i \operatorname{Im}(z)$$

Pour tout nombre complexe z, le point d'affixe \overline{z} et le point d'affixe z sont symétriques par rapport à l'axe des réels dans le plan complexe.

Définition/Propriétés 4.7

Pour tous nombres complexes z et z', on a les propriétés suivantes :

- (1) $z + \overline{z} = 2 \operatorname{Re}(a)$
- (2) $z \overline{z} = -2 \operatorname{Im}(z)$
- (3) $\overline{\overline{z}} = z$
- $(4) \ \overline{z+z'} = \overline{z} + \overline{z'}$
- (5) $\overline{zz'} = \overline{z}\overline{z'}$
- (6) $\frac{\overline{z}}{z'} = \frac{\overline{z}}{z'}$

4.3 module d'un nombre complexe

Définition/Propriétés 4.8

On appelle module d'un nombre complexe z et on note |z| le nombre réel positif défini par :

$$|z| = \sqrt{\left(\operatorname{Re}\left(z\right)\right)^{2} + \left(\operatorname{Im}\left(z\right)\right)^{2}}$$

${\bf D\'efinition/Propri\'e\'t\'es~4.9~(interpr\'etation~g\'eometriques)}$

- Pour tout nombre complexe z, le module |z| est :
 - la distance entre le point d'affixe 0 et le point d'affixe z;
 - la norme de tout vecteur d'affixe z
- Pour tous nombres complexes z et z' le module |z-z'| est :

- la distance entre les points d'affixe z et z';
- la norme du vecteur d'affixe z'-z
- \bullet Soit r un réel positif, z_0 un nombre complexe et M_0 le point d'affixe z_0 .
 - Les points du plan dont l'affixe z vérifie $|z-z_0|=r$ forment le cercle de centre M_0 et de rayon r.
 - Les points du plan dont l'affixe z vérifie $|z-z_0| \le r$ forment le disque de centre $M_0,$ de rayon r

Propriétés 4.10

Pour tous nombres complexes z et z', on a les propriétés suivantes :

- $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$
- $|z|^2 = z\overline{z}$
- $\bullet ||zz'| = |z| ||z'||$
- $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ Dans le cas où z' est non nul
- $\bullet \quad \frac{z}{z'} = \frac{z |z'|}{|z'|^2}$
- $|z+z'| \leq |z| + |z'|$ avec égalité si, et seulement si il existe un réel positif α tel que $z' = \alpha z$

4.4 Nombre complexe de module 1 et trigonométrie

Définition 4.11 (Cercle trigonométrique)

On identifie le cercle trigonométrique et l'ensemble des nombres complexes de module 1 que l'on note :

$$\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

Définition/Propriétés 4.12

Pour tout nombre réel t, on appelle exponentielle imaginaire de t et on note e^{it} le nombre complexe défini par :

$$e^{it} = \cos(t) + i\sin(t)$$

Pour tous nombres réels t et t', on a l'égalité :

$$e^{i(t+t')} = e^{it}e^{it'}$$

Définition/Propriétés 4.13 (Formule D'Euler)

Pour tout nombre réel t, on a les égalités suivantes dites formules d'Euler

$$\cos(t) = \frac{e^{it} + e^{-it}}{2}$$
 et $\sin(t) = \frac{e^{it} - e^{-it}}{2}$

Propriétés 4.14 (Technique de l'angle moitié)

La technique de l'angle moitié permet l'obtention de factorisations classiques à savoir retrouver :

- pour tout t réel, $1 + e^{it} = e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} + e^{i\frac{t}{2}} \right) = 2\cos\left(-\frac{t}{2}\right) e^{i\frac{t}{2}} = 2\cos\left(\frac{t}{2}\right) e^{i\frac{t}{2}}$
- pour tout t réel, $1 e^{it} = e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} e^{i\frac{t}{2}} \right) = 2\sin\left(-\frac{t}{2}\right) e^{i\frac{t}{2}} = -2\sin\left(\frac{t}{2}\right) e^{i\frac{t}{2}}$
- $\bullet \text{ pour tout réel } p \text{ et } q, \, e^{ip} + e^{iq} = e^{i\frac{p+q}{2}} \left(e^{i\frac{p-q}{2}} + e^{-i\frac{p-q}{2}} \right) = 2\cos\left(\frac{p-q}{2}\right) e^{i\frac{p+q}{2}}$
- pour tout réel p et q, $e^{ip} e^{iq} = e^{i\frac{p+q}{2}} \left(e^{i\frac{p-q}{2}} e^{-i\frac{p-q}{2}} \right) = -2\sin\left(\frac{p-q}{2}\right) e^{i\frac{p+q}{2}}$

Remarque:

En écrivant la partie réelle et la partie imaginaire de $e^{ip} \pm e^{iq}$ à partir des deux dernières factorisations, on trouve des formules de factorisation pour $\cos(p) \pm \cos(q)$ et $\sin(p) \pm \sin(q)$

Linéarisation

A l'aide des formules d'Euler et du binôme de Newton, on peut transformer une expression du type $cos(t)^n$ ou $sin(t)^n$ avec t réel et n entier naturel en une combinaison linéaire de cos(pt) ou de sin(pt) avec p un entier naturel. Cela est notamment utile pour du calcul de primitives.

Exercice/Exemple 4.15

Soit $f(x) = (\sin(x))^3$ avec $x \in \mathbb{R}$. Calculer la primitive de f

Correction 4.16

$$(\sin(x))^{3} = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{3}$$

$$= \frac{1}{-8i} \left(e^{3ix} + 3\left(e^{-ix}\right) - 3\left(e^{ix}\right) - e^{-3ix}\right)$$

$$= \frac{1}{-4} \left(\frac{e^{3ix} - e^{-3ix}}{2i} - 3\frac{e^{ix} - e^{ix}}{2i}\right)$$

$$= -\frac{1}{4} \sin(3x) + \frac{3}{4} \sin(x)$$

Donc $F_{\lambda}(x) = \frac{1}{12}\cos(3x) - \frac{3}{4}\cos(x) + \lambda$ pour $\lambda \in \mathbb{R}$

Définition/Propriétés 4.17 (Formule de Moivre)

Pour tout nombre réel t et tout entier relatif n, on a $e^{int} = (e^{it})^n$, c'est-à-dire :

$$\cos(nt) + i\sin(nt) = (\cos(t) + i\sin(t))^n$$

Démonstration 4.18 (Moivre par récurrence) Soit $n \in \mathbb{N}$ et $t \in \mathbb{R}$ Montrons que $\forall (n,t) \in \mathbb{N} \times \mathbb{R}$, $e^{int} = (e^{it})^n$

On note P(n) la Propriété « $e^{int} = (e^{it})^n$ »

- Initialisation : P(0) est vrai car $\begin{cases} \left(e^{it}\right)^0 &= 1\\ e^{it0} &= 1 \end{cases}$
- Hérédité Soit $n \in \mathbb{N}$ tel que P(n) est vrai, Montrons que P(n+1) est vrai :

$$e^{i(n+1)t} = e^{i(n+1)t}$$

$$= e^{int} \times e^{it}$$

$$= (e^{it})^n \times e^{it}$$

$$= (e^{it})^{n+1}$$

Donc P(n+1) Vrai.

Application 4.19 (Applications usuelles importantes)

Soit $C = \sum_{k=0}^n \cos(kt)$ et $S = \sum_{k=0}^n \sin(kt)$ avec $n \in \mathbb{N}$ et $t \in \mathbb{R}$

On Obtient des expressions simplifiées des sommes C et S par le calcul annexe suivant

$$C + iS = \sum_{k=0}^{n} e^{ikt} = \sum_{k=0}^{n} (e^{it})^k = \begin{cases} n+1 & \text{si } t \equiv 0 \ [2\pi] \\ \frac{1 - e^{i(n+1)t}}{1 - e^{it}} & \text{sinon} \end{cases}$$

qui donne

$$C + iS = \begin{cases} n+1 & \text{si } t \equiv 0 \left[2\pi\right] \\ \frac{\left(1 - e^{i(n+1)t}\right)\left(1 - e^{it}\right)}{2\left(1 - \cos\left(t\right)\right)} & \text{sinon} \end{cases}$$

On conclut alors sur les valeurs de C et S en exhibant les parties réelle et imaginaire de C+iS.

4.5 Forme trigonométrique pour les nombres complexes non nuls

Définition/Propriétés 4.20

Tout nombre complexe non nul z peut s'écrire sous la forme

$$z = re^{i\theta}$$

avec r un réel strictement positif et θ un réel. Cette écriture est dite forme trigonométrique de z. Attention

Dans cette écriture de z.

- le réel strictement positif r est unique car il est nécessairement égal à |z|
- le réel θ n'est pas unique car si le réel θ convient alors les réels $\theta' \equiv \theta \, [2\pi]$ conviennent.

Démonstration 4.21

Soit $z \in \mathbb{C}^*$, alors $|z| \neq 0$ donc $\frac{z}{|z|}$ existe avec $\left|\frac{z}{|z|}\right| = \frac{|z|}{||z||} = \frac{|z|}{|z|} = 1$

Donc $\frac{z}{|z|} \in \mathbb{U}$ donc il existe $\theta \in \mathbb{R}$ tel que $\frac{z}{|z|} = e^{i\theta} \iff z = |z| e^{i\theta}$

Ceci prouve l'existence de l'écriture.

 $r \text{ est unique car}: \begin{cases} z = re^{i\theta} \\ z = r'e^{i\theta} \end{cases} \Longrightarrow \begin{cases} |z| = r \\ |z| = r' \end{cases} \Longrightarrow r = r'$

Définition/Propriétés 4.22 (Arguments)

Soit z un nombre complexe non nul. Tous les nombres réels θ tels que z peut s'écrire

$$z = re^{i\theta}$$

46

avec r réel strictement positif sont dits arguments de z

Remarque

Si θ est un argument de z complexe non nul, on peut écrire $\arg(z) \equiv \theta [2\pi]$

Propriétés 4.23

Pour tous nombres complexes non nuls z et z', on a :

(1)
$$\arg(zz') \equiv \arg(z) + \arg(z') [2\pi]$$

(2)
$$\arg\left(\frac{z}{z'}\right) \equiv \arg\left(z\right) - \arg\left(z'\right) \left[2\pi\right]$$

Définition/Propriétés 4.24 (Transformation de $a\cos(t) + b\sin(t)$ en $A\cos(t-\varphi)$)

Soit a, b et t des nombres réels avec $(a, b) \neq (0, 0)$. On peut écrire

$$a\cos(t) + b\sin(t) = \operatorname{Re}\left((a - ib)\left(\cos(t) + i\sin(t)\right)\right) = \operatorname{Re}\left((a - ib)e^{it}\right)$$

puis $a-ib=Ae^{-i\varphi}$ avec A réel strictement positif et φ un réel ce qui donne :

$$a\cos(t)+b\sin(t)=\operatorname{Re}\left((a-ib)e^{it}\right)=\operatorname{Re}\left(Ae^{i(t-\varphi)}\right)$$

Donc $a\cos(t) + b\sin(t) = A\cos(t - \varphi)$

4.6 Fonctions d'une variable réelle à valeurs complexes

Définition 4.25

Une fonction de variable réelle à valeurs complexes notée f est un objet mathématique qui, tout élément x d'une partie non vide de \mathbb{R} , associe un et un seul nombre complexes noté f(x).

Définition/Propriétés 4.26 (Ce qui s'étend aux fonctions de variable réelle à valeurs complexes

- Notation fonctionnelle
- Domaine de définition
- Image d'un réel, antécédent d'un complexe
- Parité, imparité, périodicité
- Somme, produit, quotient de fonctions et multiplication d'une fonction par un complexe
- Dérivation

Définition/Propriétés 4.27 (Ce qui ne s'étend pas aux fonctions de variable réelle à valeurs con

- Composition de fonctions
- Monotonie
- Fonction majorée, minorée ou bornée
- Fonction réciproque

Définition/Propriétés 4.28 (Dérivation)

Soit I un intervalle de \mathbb{R} non vide et non réduit à un point. Soit f une fonction définie sur I à valeurs complexe.

On note $\text{Re}(f): I \longrightarrow \mathbb{R}$ et $\text{Im}(f): I \longrightarrow \mathbb{R}$ les fonctions d'une variable réelle à valeurs réelles définies par :

$$\forall x \in I$$
, $(\text{Re}(f))(x) = \text{Re}(f(x))$ et $(\text{Im}(f))(x) = \text{Im}(f(x))$

On dit que:

- f est dérivable en x_0 si les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ sont dérivables en x_0
- f est dérivable sur I si les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ sont dérivables sur I

Selon le cas de figure, on appelle :

• nombre dérvée de f en x_0 et on note $f'(x_0)$ le nombre complexe suivant :

$$f'(x_0) = (\text{Re}(f)'(x_0)) + (\text{Im}(f)'(x_0))$$

• fonction dérivée de f sur I et on note f' la fonction de variable réelle à valeurs complexes suivante :

$$f' = \left(\operatorname{Re}(f)' \right) + \left(\operatorname{Im}(f)' \right)$$

Propriétés 4.29

(1) Combinaison linéaire

Soit f et g deux fonctions définies sur I et à valeurs complexes et (α, β) un couple de complexes. Si f et g sont dérivables sur I alors $\alpha f + \beta g$ est dérivable sur I et sa dérivée vérifie :

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

(2) Produit

Soit f et g deux fonctions définies sur I et à valeurs complexes . Si f et g sont dérivables sur I alors fg est dérivable sur I et sa dérivée vérifie :

$$(fg)' = f'g + fg'$$

(3) Quotient

Soit f et g deux fonctions définies sur I et à valeurs complexes tel que g ne s'annule pas sur I. Si f et g sont dérivables sur I alors $\frac{f}{g}$ est dérivable sur I et sa dérivée vérifie :

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

Application 4.30 (exemple important)

Soit φ une fonction définie sur I à valeurs complexes. On note $f:I\longrightarrow \mathbb{C}$ la fonction définie sur I par :

$$\forall t \in I, f(t) = e^{\operatorname{Re}(\varphi(t))} e^{i \operatorname{Im}(\varphi(t))}$$

Si φ est dérivable sur I alors f est dérivable sur I et sa dérivée vérifie :

$$\forall t \in I, f'(t) = \varphi'(t)f(t)$$

Remarque

La fonction f sera aussi notée $f = \exp(\varphi)$ après étude de l'exponentielle complexe dans le chapitre « Nombres complexes (2) » ce qui permettra d'écrire $(\exp(\varphi))' = \varphi' \exp(\varphi)$ et donc d'étendre une propriété déjà connue dans le cas où φ est à valeurs réelles.

Chapitre 5

Fonctions usuelles : Rappel et complément

Sommaire

5.1	Fonction exponentielle	 								49
5.2	Fonction logarithmes	 								50
5.3	Fonctions hyperboliques .	 					•			50
5.4	Tangente hyperbolique	 								52
5.5	Arccos	 								53
5.6	Arcsin	 								53
5.7	Arctan	 								54
5.8	Fonction puissances réelles	 					•			54
5.9	croissance comparées	 								55

5.1 Fonction exponentielle

Définition/Propriétés 5.1

Il existe une unique fonction f définie sur \mathbb{R} , dérivable sur \mathbb{R} à valeurs réelles vérifiant f' = f et f(0) = 1

Cette fonction, appelée fonction exponentielle et notée $x \mapsto \exp(x)$ ou $x \mapsto e^x$ vérifie :

- Pour tout x et y des réels, $e^{x+y} = e^x e^y$
- Pour tout x réel, $e^{-x} = \frac{1}{e^x}$
- Pour tout x réel et tout n entier relatif, $e^{nx} = (e^x)^n$
- Pour tout x réel, $e^x > 0$
- La fonction exp est définie et dérivable sur \mathbb{R} .
- La dérivée de exp sur \mathbb{R} est exp.
- La fonction exp est strictement croissante sur \mathbb{R} .
- $\lim_{x \to -\infty} e^x = 0$
- $\bullet \lim_{x \longrightarrow +\infty} e^x = +\infty$
- $\bullet \lim_{x \to 0} \frac{e^x 1}{x} = 1$
- pour tout réel $x, e^x \ge 1 + x$

5.2 Fonction logarithmes

Définition/Propriétés 5.2

La fonction réciproque de la fonction exponentielle est appelée fonction logarithme népérien et notée \ln .

Elle vérifie:

- pour tous x et y réels strictement positifs, $\ell n(xy) = \ell n(x) + \ell n(y)$
- pour tout x réel strictement positif, $\ln\left(\frac{1}{x}\right) = -\ln(x)$
- ln(1) = 0
- pour tout x réel strictement positif et tout n entier relatif, $\ln(x^n) = n \ln(x)$
- la fonction ln est définie et dérivable sur \mathbb{R}_{+}^{*} .
- la dérivée de ln sur \mathbb{R}_+^* est $x \longmapsto \frac{1}{x}$.
- la fonction ln est strictement croissante sur \mathbb{R}_{+}^{*} .
- $\bullet \lim_{x \longrightarrow 0} \ln(x) = +\infty$
- $\lim_{x \to +\infty} e^x = +\infty$
- $\bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
- pour tout réel x > -1, $\ln(1+x) \ge x$

Définition/Propriétés 5.3 (logarithme en base 2 et en base 10)

Les fonctions logarithme en base 2, notée \log_2 , et logarithme en base 10 notée \log_{10} sont définie sur \mathbb{R}_+^* par, pour tout réel x strictement positif :

$$\log_2(x) = \frac{\ln(x)}{\ln(2)}$$
 et $\log_{10}(x) = \frac{\ln(x)}{\ln(10)}$

On as aussi:

- $\log_2(2) = 1$ et $\log_{10}(10) = 1$
- pour tout x entier relatif, $\log_2(2^n) = n$ et $\log_{10}(10^n) = n$
- \log_2 et \log_{10} ont même monotonie et même limites aux bornes de \mathbb{R}_+^* que la fonction ln

5.3 Fonctions hyperboliques

Définition/Propriétés 5.4

(1) On appelle cosinus hyperbolique la fonction, notée ch définie \mathbb{R} par, pour tout x réel,

$$\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$$

(2) On appelle sinus hyperbolique la fonction, notée sh définie \mathbb{R} par, pour tout x réel,

$$\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

Définition/Propriétés 5.5 (Relation fondamentale de la trigonométrie hyperbolique) Pour tout réel x,on a :

$$\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$$

Démonstration 5.6

$$\forall x \in \mathbb{R}, \ \operatorname{ch}^2(x) - \operatorname{sh}^2(x) = (\operatorname{ch}(x) + \operatorname{sh}(x)) \ (\operatorname{ch}(x) - \operatorname{sh}(x)) = (e^x) \ (e^{-x}) = e^0 = 1$$

Définition/Propriétés 5.7 (étude de la fonction ch)

- (1) La fonction che st définie et dérivable sur R
- (2) la dérivée de ch sur \mathbb{R} est la fonction sh
- (3) la fonction che st paire avec ch(0) = 1
- (4) la fonction ch est:
 - (a) strictement décroissante sur \mathbb{R}_{-}^*
 - (b) strictement croissante sur \mathbb{R}_+^*
- (5) $\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty$
- (6) $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$

Définition/Propriétés 5.8 (étude de la fonction sh)

- (1) La fonction sh est définie et dérivable sur \mathbb{R}
- (2) la dérivée de sh sur \mathbb{R} est la fonction ch
- (3) la fonction sh est impaire avec sh(0) = 0
- (4) la fonction sh est strictement croissante sur \mathbb{R}
- (5) $\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$
- (6) $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$

5.4 Tangente hyperbolique

Définition/Propriétés 5.9

On appelle tangente hyperbolique la fonction, notée, th, définie sur $\mathbb R$ par, pour tout x réel

$$th(x) = \frac{ch(x)}{sh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

.

Définition/Propriétés 5.10 (étude de la fonction th)

- (1) La fonction the est définie et dérivable sur \mathbb{R}
- (2) la dérivée de th
 sur \mathbb{R} est la fonction $1 th^2 = \frac{1}{ch^2}$
- (3) la fonction the est impaire avec donc th(0) = 0
- (4) la fonction the st strictement croissante sur \mathbb{R}
- (5) $\lim_{x \to -\infty} \operatorname{th}(x) = -1$
- (6) $\lim_{x \to +\infty} \operatorname{th}(x) = 1$

Définition/Propriétés 5.11 (formule d'addition et de duplication)

Pour tout couple de réel (a, b), on a :

- (1) $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$
- (2) $\operatorname{ch}(a-b) = \operatorname{ch}(a)\operatorname{ch}(b) \operatorname{sh}(a)\operatorname{sh}(b)$
- (3) $\operatorname{sh}(a+b) = \operatorname{ch}(a)\operatorname{sh}(b) + \operatorname{sh}(a)\operatorname{ch}(b)$
- (4) $\operatorname{sh}(a-b) = \operatorname{ch}(a)\operatorname{sh}(b) \operatorname{sh}(a)\operatorname{ch}(b)$
- (5) $th(a+b) = \frac{th(a) + th(b)}{1 + th(a) th(b)}$
- (6) $th(a-b) = \frac{th(a) th(b)}{1 th(a) th(b)}$
- (7) $\operatorname{ch}(2a) = \operatorname{ch}^2(a) \operatorname{sh}^2(a) = 2 \operatorname{ch}^2(a) 1 = 2 \operatorname{sh}^2(a) + 1$
- (8) $\operatorname{sh}(2a) = 2\operatorname{sh}(a)\operatorname{ch}(a)$
- (9) $th(2a) = \frac{2 th(a)}{1 + th^2(a)}$

5.5Arccos

Définition/Propriétés 5.12

La fonction $c:[0;\pi] \longrightarrow [-1;1]$ définie par :

Pour tout
$$x$$
 dans $c(x) = cos(x)$

est une bijection de $[0; \pi]$ sur [-1; 1] de bijection réciproque $c^{-1}: [-1; 1] \longrightarrow [0; \pi]$ notée Arccos Autrement dit:

- pour tout réel y dans [-1; 1], l'équation $y = \cos(x)$ admet une unique solution dans $[0; \pi]$
- pour tout réel y dans [-1; 1], Arccos(y) est l'unique réel de $[0; \pi]$ donc le cosinus est égal à y Par ailleurs la fonction Arccos possède ces propriétés :
 - (1) la fonction Arccos est définie sur [-1; 1] et dérivable sur]-1; 1[
 - (2) la dérivée de Arccos sur]-1; 1[est la fonction Arccos' : $x \mapsto \frac{-1}{\sqrt{1-x^2}}$
 - (3) la fonction Arccos est strictement décroissante sur [-1; 1]

Arcsin 5.6

Définition/Propriétés 5.13 La fonction $s: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \longrightarrow [-1; 1]$ définie par :

Pour tout
$$x$$
 dans, $s(x) = \sin(x)$

est une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur [-1; 1] de bijection réciproque $s^{-1}: [-1; 1] \longrightarrow \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ notée Arcsin

Autrement dit:

- pour tout réel y dans [-1; 1], l'équation $y = \sin(x)$ admet une unique solution dans $\left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$
- pour tout réel y dans [-1; 1], Arcsin(y) est l'unique réel de $\left|-\frac{\pi}{2}; \frac{\pi}{2}\right|$ donc le sinus est égal à y Par ailleurs la fonction Arcsin possède ces propriétés :
 - (1) la fonction Arcsin est définie sur [-1; 1] et dérivable sur]-1; 1[
 - (2) la dérivée de Arcsin sur]-1; 1[est la fonction Arcsin' : $x \mapsto \frac{1}{\sqrt{1-x^2}}$
 - (3) la fonction Arcsin est impaire sur]-1; 1[
 - (4) la fonction Arcsin est strictement croissante sur [-1; 1]

5.7 Arctan

Définition/Propriétés 5.14

La fonction $t: \left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$ définie par :

Pour tout
$$x$$
 dans $, t(x) = \tan(x)$

est une bijection de $\left]-\frac{\pi}{2} ; \frac{\pi}{2} \right[$ sur \mathbb{R} de bijection réciproque $t^{-1} : \mathbb{R} \longrightarrow \left]-\frac{\pi}{2} ; \frac{\pi}{2} \right[$ notée Arctan Autrement dit :

- pour tout réel y dans \mathbb{R} , l'équation $y = \tan(x)$ admet une unique solution dans $\left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2}$
- pour tout réel y dans \mathbb{R} , Arctan(y) est l'unique réel de $\left]-\frac{\pi}{2}\right]$; $\frac{\pi}{2}$ donc la tangente est égal à y Par ailleurs la fonction Arctan possède ces propriétés :
 - (1) la fonction Arctan est définie et dérivable sur \mathbb{R}
 - (2) la dérivée de Arctan sur \mathbb{R} est la fonction Arctan' : $x \mapsto \frac{1}{1+x^2}$
 - (3) la fonction Arctan est impaire sur \mathbb{R}
 - (4) la fonction Arctan est strictement croissante sur \mathbb{R}
 - (5) $\lim_{x \to -\infty} \operatorname{Arctan}(x) = -\frac{\pi}{2}$
 - (6) $\lim_{x \to +\infty} \operatorname{Arctan}(x) = \frac{\pi}{2}$

5.8 Fonction puissances réelles

Définition 5.15

Soit α un réel.

La fonction f_{α} définie sur \mathbb{R}_{+}^{*} par

$$\forall x \in \mathbb{R}_+^*, \ f_\alpha(x) = e^{\alpha \ln(x)}$$

est notée $f_\alpha: x \longmapsto x^\alpha$ et appelée fonction puissances (réelle). Elle respecte ces propriétés :

- \bullet la fonction $x \longmapsto x^\alpha$ est définie et dérivable sur \mathbb{R}_+^*
- la dérivée de $x \longmapsto x^{\alpha}$ sur \mathbb{R}_{+}^{*} est $x \longmapsto \alpha x^{\alpha-1}$
- la fonction $x \longmapsto x^{\alpha}$ est :
 - strictement croissante sur \mathbb{R}_+^* pour $\alpha > 0$
 - strictement décroissante sur \mathbb{R}_+^* pour $\alpha < 0$

•
$$\lim_{x \to 0} x^{\alpha} = \begin{cases} 0 & \text{pour } \alpha > 0 \\ +\infty & \text{pour } \alpha < 0 \end{cases}$$

•
$$\lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \text{pour } \alpha > 0 \\ 0 & \text{pour } \alpha < 0 \end{cases}$$

Propriétés 5.16

Pour tout couple de réels α, β et tout couple de réels strictement positifs (x, y), on a :

$$\ln(x^{\alpha}) = \alpha \ln(x)$$
 $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$ $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$ $(x^{\alpha})^{\beta} = x^{\alpha\beta}$

Définition/Propriétés 5.17 (cas particulier des puissances entières)

Les fonctions vues ci-dessus étendent les notions de puissances entières déjà connues sur \mathbb{R} ou \mathbb{R}^* :

- pour tout entier naturel n, la fonction $f_n: x \longmapsto \prod_{k=1}^n x$ est notée $x \longmapsto x^n$ elle est définie sur \mathbb{R} , dérivable sur \mathbb{R} et de dérivée $x \longmapsto nx^{n-1}$
- pour tout entier relatif strictement négatif n, la fonction $f_n: x \longmapsto \prod_{k=1}^{-n} x^{-1}$ est notée $x \longmapsto x^n$ elle est définie sur \mathbb{R}^* , dérivable sur \mathbb{R}^* et de dérivée $x \longmapsto nx^{n-1}$

5.9 croissance comparées

Définition/Propriétés 5.18 (Cas des fonctions $x \longrightarrow \ln(x), x \longrightarrow x^{\alpha}$ et $x \longrightarrow e^{x}$ avec $\alpha > 0$) Pour tout α réel strictement positif, lems croissances comparées des fonctions $x \longmapsto \ln(x), x \longmapsto x^{\alpha}$ et $x \longmapsto e^{x}$ se résument à :

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \qquad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0 \qquad \lim_{x \to 0} x^{\alpha} \ln(x) = 0$$

Remarques : On en déduit les croissances comparées en $+\infty$ des fonctions précédentes prises deux à deux :

• comparaison du logarithme népérien avec les puissances réelles ou l'exponentielle en $+\infty$:

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \qquad \lim_{x \to +\infty} \frac{\ln(x)}{e^x} = 0$$

• comparaison des puissances réelles avec le logarithme népérien ou l'exponentielle en +∞

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{\ln(x)} = +\infty \qquad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0$$

 \bullet comparaison de l'exponentielle avec le logarithme népérien ou les puissances réelles en $+\infty$

55

$$\lim_{x \to +\infty} \frac{e^x}{\ln(x)} = +\infty \qquad \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = \alpha$$

Définition/Propriétés 5.19 (Cas des fonctions $x \longrightarrow |\ln(x)|^{\beta}$, $x \longrightarrow x^{\alpha}$ et $x \longrightarrow e^{\gamma x}$) Pour tous réels strictement positifs α, β et γ , les croissances comparées des fonctions $x \longmapsto |\ln(x)|^{\beta}$, $x \longmapsto x^{\alpha}$ et $x \longmapsto e^{\gamma x}$ se résument à :

$$\lim_{x \longrightarrow +\infty} \frac{|\ln(x)|^{\beta}}{x^{\alpha}} = 0 \qquad \lim_{x \longrightarrow +\infty} \frac{x^{\alpha}}{e^{\gamma x}} = 0 \qquad \lim_{x \longrightarrow 0} x^{\alpha} |\ln(x)|^{\beta} = 0$$

Chapitre 6

Nombres complexes (2)

Sommaire

6.1	Équations algébreiques
6.1.1	Préliminaires
6.1.2	Résolution des équations du second degré dans \mathbb{C}
6.1.3	Résolution des équations du type $z^n = z_0$ dans \mathbb{C} avec $n \in \mathbb{N}^*$
6.2	Exponentielle complexe
6.3	Interprétations géométriques

6.1 Équations algébreiques

6.1.1 Préliminaires

Définition 6.1 (Définition d'une fonction polynomiale)

Une fonction $P: \mathbb{C} \longrightarrow \mathbb{C}$ est dite fonction polynomiale à coefficients complexes s'il existe un entier naturel n et un n+1-uplet de nombres complexes (b_0, b_1, \ldots, b_n) tel que pour tout z de \mathbb{C} ,

$$P(z) = b_0 + b_1 z + \dots + b_n z^n = \sum_{k=0}^{n} b_k z^k$$

Propriétés 6.2 (Propriétés de factorisation)

Soit P une fonction polynomiale à coefficients complexes et a un nombre complexe.

Si a est une racine de P, autrement dit si P(a)=0, alors il existe une fonction polynomiale à coefficients complexes Q tel que, pour tout z de \mathbb{C} , on a :

$$P(z) = (z - a)Q(z)$$

6.1.2 Résolution des équations du second degré dans $\mathbb C$

Définition/Propriétés 6.3 (cas particulier des équations du type $z^2 = z_0$)

Soit z_0 et z des nombres complexes de formes algébriques respectives $x_0 + iy_0$ et x + iy

$$z^2 = z_0 \text{ six et seulement si }, \begin{cases} x^2 - y^2 &= x_0 \\ x^2 + y^2 &= \sqrt{x_0^2 + y_0^2} \\ 2xy &= y_0 \end{cases}$$

Définition/Propriétés 6.4 (Cas général)

soit a, b et c des nombres complexes avec a non nul.

• Racines

Les solutions de l'équations polynomiale $az^2 + bz + c = 0$ d'inconnue le nombre complexe z sont :

$$z_1 = \frac{-b - \delta}{2a}$$
 et $z_2 = \frac{-b + \delta}{2a}$

où δ est une "racine carré" de $\Delta=b^2-4ac$, autrement dit où δ est un nombre complexe vérifiant :

$$\delta^2 = \Delta$$

• Somme et produit des racines (formules de Viète)

Les racines z_1 et z_2 de la fonction polynomiale $P: z \longmapsto az^2 + bz + c$ vérifient :

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$

Démonstration 6.5 (Formule des solutions du cas général) soit a, b et c des nombres complexes avec a non nul. Soit $z \in \mathbb{C}$

$$az^{2} + bz + c = a\left(z^{2} + \frac{b}{a}z + \frac{c}{a}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{(2a)^{2}}\right) \qquad \text{on pose } \Delta = b^{2} - 4ac$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \left(\frac{\delta}{2a}\right)^{2}\right) \qquad \text{on pose } \delta \text{ comme } \text{étant la "racine carré" } \text{de } \Delta$$

$$= a\left(z + \frac{b}{2a} - \frac{\delta}{2a}\right)\left(z + \frac{b}{2a} + \frac{\delta}{2a}\right)$$

$$= a\left(z - z_{1}\right)\left(z - z_{2}\right) \text{ avec}$$

$$\begin{cases} z_{1} = \frac{-b - \delta}{2a} \\ z_{2} = \frac{-b + \delta}{2a} \end{cases}$$

Démonstration 6.6 (Formule de viète)

soit a, b et c des nombres complexes avec a non nul.

Soit $P: z \longmapsto az^2 + bz + c$

$$P(z) = az^2 + bz + c = a(z - z_1)(z - z_2) = a(z^2 - (z_1 + z_2)z + z_1z_2)$$

donc par identification:

$$\begin{cases} b = -a(z_1 + z_2) \\ c = az_1z_2 \end{cases} \iff \begin{cases} -\frac{b}{a} = z_1 + z_2 \\ \frac{c}{a} = z_1z_2 \end{cases}$$

6.1.3 Résolution des équations du type $z^n = z_0$ dans \mathbb{C} avec $n \in \mathbb{N}^*$

Définition 6.7

Soit n un entier naturel non nul et z_0 un nombre complexe.

On appelle racine n- ième de z_0 tout nombre complexe tel que $z^n = z_0$

Définition/Propriétés 6.8 (Cas particulier où $z_0 = 1$)

• Racines

Il y a n racine n-ième de l'unité qui sont les nombres complexes suivants :

$$\omega_k = e^{i\frac{2k\pi}{n}} \text{ avec } k \in [0; n-1]$$

• L'ensemble des raicnes

— L'ensemble des racines *n*-ièmes de l'unité est noté

$$\mathbb{U}_n = \{ z \in \mathbb{R} \mid z^n = 1 \}$$

— Les points dont les affixes sont les racines n-ièmes de l'unité sont les sommets d'un polygone régulier à n côtés, de centre O et inscrit dans \mathbb{U} .

Démonstration 6.9

Soit $z \in \mathbb{C}$ tel que $z^n = 1$

z = 0 n'est pas solution donc $\exists (r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}, \ z = re^{i\theta}$

$$z^{n} = 1 \iff r^{n}e^{i\theta n} = 1e^{i\times 0}$$

$$\iff \begin{cases} r^{n} = 1\\ n\theta \equiv 0[2\pi] \end{cases}$$

$$\iff \begin{cases} r\\ \theta \equiv 0 \left[\frac{2\pi}{n}\right] \end{cases} = 1$$

Ainsi
$$S = \mathbb{U}_n = \left\{ e^{i\frac{k2\pi}{n}} \mid k \in \mathbb{Z} \right\}$$

On note $f: \mathbb{Z} \longrightarrow \mathbb{C}$ alors on sait que f est n périodique car $\forall k \in \mathbb{Z}, \begin{cases} k+n \in \mathbb{Z} \\ k-n \in \mathbb{Z} \end{cases}$ et

$$f(k+n) = e^{i\frac{2(k+n)\pi}{n}}$$

$$= e^{i\frac{2k\pi}{n}} \times e^{i\frac{2n\pi}{n}}$$

$$= e^{i\frac{2k\pi}{n}} \times 1$$

$$= f(k)$$

$$\text{Donc } S = \mathbb{U}_n = \Big\{ e^{i\frac{k2\pi}{n}} \ \Big| \ k \in \llbracket 0 \ ; n-1 \rrbracket \Big\}.$$

Montrons que $\dot{\mathbb{U}}_n$ contient n élément autrement dit que :

$$\forall (k, k') \in [0; n-1]^2, \ k < k', \implies e^{i\frac{k2\pi}{n}} \neq e^{i\frac{k'2\pi}{n}}$$

Par l'absurde :

Soit k et k' dans $[\![0:n-1]\!]$ avec k < k', supposons que $e^{i\frac{k2\pi}{n}} = e^{i\frac{k'2\pi}{n}}$

alors
$$\frac{k2\pi}{n} \equiv \frac{k'2\pi}{n} [2\pi]$$

donc il existe
$$k'' \in \mathbb{N}^*$$
 tel que $\frac{k2\pi}{n} - \frac{k'2\pi}{n} = 2k''\pi$ car $k' - k > 0$

donc il existe
$$k'' \in \mathbb{N}^*$$
 tel que $\frac{k2\pi}{n} - \frac{k'2\pi}{n} = 2k''\pi \operatorname{car} k' - k > 0$
Ainsi $k' - k = nk''$ avec
$$\begin{cases} k' - k \in [1 ; n - 1] & \operatorname{car} 0 \leq k < k' \leq n - 1 \\ nk'' \in [n ; +\infty[] & \operatorname{car} k'' \in \mathbb{N}^* \end{cases}$$

<u>Ce qui est absurde et prouve que $e^{i\frac{k2\pi}{n}} \neq e^{i\frac{k'2}{n}}$ </u>

conclusion

Il y as exactement n racine n-ièmes de l'unité qui sont les $\omega_k = e^{i\frac{k2\pi}{n}}$ pour $k \in [0; n-1]$

Définition/Propriétés 6.10 (Cas général)

Il y a n racines n- ièmes pour le nombre complexe non nul z_0 de forme trigonométrique $z_0 = r_0 e^{i\theta_0}$ qui sont les nombres complexes suivants :

$$\sqrt[n]{r_0}e^{i\left(\frac{\theta_0}{n}+\frac{2k\pi}{n}\right)}$$
 avec $k \in [0; n-1]$

Exemple 6.11

$$\mathbb{U}_3 = \left\{1, \exp\left(\frac{2i\pi}{3}\right), \exp\left(\frac{4i\pi}{3}\right)\right\}$$

$$\mathbb{U}_4 = \left\{1, \exp\left(\frac{2i\pi}{4}\right), \exp\left(\frac{4i\pi}{4}\right), \exp\left(\frac{6i\pi}{4}\right)\right\} = \left\{1, i, -1, -i\right\}$$

$$\mathbb{U}_4 = \left\{ 1, \exp\left(\frac{2i\pi}{5}\right), \exp\left(\frac{4i\pi}{5}\right), \exp\left(\frac{6i\pi}{5}\right), \exp\left(\frac{8i\pi}{5}\right) \right\}$$

Exponentielle complexe 6.2

Définition 6.12

Pour tout nombre complexe z, on appelle exponentielle de z le nombre complexe noté e^z le nombre complexe e^z défini par :

$$e^z = e^{\operatorname{Re}(z)} e^{i \operatorname{Im}(z)}$$

dont le module est $|e^z| = e^{\text{Re}(z)}$ et les arguments vérrfient $\arg(e^z) \equiv \text{Im}(z)$ [2 π]

Propriétés 6.13

Soit un couple de nombres complexe (z, z')

• on as l'égalité suivante :

$$e^{z+z'} = e^z e^{z'}$$

on en déduit les propriétés suivantes :

$$-\frac{1}{e^z} = e^{-z}$$

- pour tout entier relatif n, on a : $e^{nz} = (e^z)^n$
- $e^z = e^{z'}$ si et seulement si, $z z' \in 2i\pi\mathbb{Z}$ en notant $2i\pi\mathbb{Z} = \{2ik\pi \mid k \in \mathbb{Z}\}$

Définition/Propriétés 6.14 (Résolution de l'équations $e^z = a$ avec a un nombre complexe) Soit a un nombre complexe.

- Si a est nul alors l'équation $e^z=a$ n'a pas de solution dans $\mathbb C$
- \bullet Si a est non nul alors l'équation $e^z=a$ possède une infinité de solutions dans $\mathbb C$ qui sont les nombres complexes

$$z = \ln(z) + i\theta$$

avec r le module de a et θ un argument de a.

6.3 Interprétations géométriques

Définition/Propriétés 6.15 (Module et arguments de $\frac{z'-\omega}{z-\omega}$)

Soit ω, z et z' des nombres complexes tel que $\omega \neq z$ et $\omega \neq z'$ de points images notés Ω, M et M'. Alors:

$$\left| \frac{z' - \omega}{z - \omega} \right| = \frac{\Omega M'}{\Omega M} \text{ et } \arg \left(\frac{z' - \omega}{z - \omega} \right) = \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \right) [2\pi]$$

Définition/Propriétés 6.16 (Traduction de l'alignement et l'orthogonalité)

Soit Ω, M et M' trois points du plan tels que $\Omega \neq M$ et $\Omega \neq M'$ d'affixes respectivement notées ω, z et z'

- Les points Ω, M et M' sont alignés si, et seulement si, $\frac{z'-\omega}{z-\omega}$ est un réel
- Les droites ΩM et $\Omega M'$ sont orthogonales si, et seulement si, $\frac{z'-\omega}{z-\omega}$ est un imaginaire pur.

62

Définition/Propriétés 6.17 (Ecriture complexe de transformations du plan vues au collège)

Dans ce paragraphe, M et M' sont deux points du plan complexe d'affixes respectives z et z'.

• <u>Translation</u>

Soit b un nombre complexe.

M' est l'image par M par la translation de vecteur d'affixe b si, et seulement si

$$z' = z + b$$

• Homothétie

Soit α un nombre réel et Ω un point du plan d'affixe ω .

M' est l'image par M par l'Homothétie de centre Ω et de rapport α si, et seulement si

$$z' - \omega = \alpha(z - \omega)$$

• Rotation

Soit θ un nombre réel et Ω un point du plan d'affixe ω .

M' est l'image par M par la rotation de centre Ω et d'angle θ si, et seulement si

$$z' - \omega = e^{i\theta}(z - \omega)$$

Définition/Propriétés 6.18 (Applicaitons $z \longrightarrow az + b$ avec $(a,b) \in \mathbb{C}^* \times \mathbb{C}$)

Soit $(a,b) \in \mathbb{C}^* \times \mathbb{C}$. L'application f de \mathbb{C} dans \mathbb{C} définie par

$$f(z) = az + b$$

est dite similitude directe.

Interprétation géométrique : Pour tout $z \in \mathbb{C}$, on note M le point d'affixe z et M' le point d'affixe z' = f(z)

• Cas où a = 1

On a alors l'équivalence suivante : z' = f(z) so et seulement si, z' - z = bL'application f est donc la translation de vecteur d'affixe b.

• Cas où $a \neq 1$

f admet alors un point fixe ω donné par $\omega = \frac{b}{1-a}$ dont le point image image est noté Ω On en déduit les équivalences suivantes :

$$z'=f(z)$$
 si, et seulement si, $z'-\omega=a'(z-\omega)$
si, et seulement si, $z'-\omega=|a|\left(e^{i\arg(a)}(z-\omega)\right)$

63

si, et seulement si,
$$z'-\omega=e^{i\arg(a)}\left(\left|a\right|\left(z-\omega\right)\right)$$

L'application f est donc la composée commutative :

- de l'Homothétie de centre Ω et de rapport |a|
- de la rotation de centre Ω et d'angle $\arg(a)$

Définition/Propriétés 6.19 (Applicaitons $z \longrightarrow a\overline{z} + b$ avec $(a,b) \in \mathbb{C}^* \times \mathbb{C}$)

Soit $(a, b) \in \mathbb{C}^* \times \mathbb{C}$.

L'application g de $\mathbb C$ dans $\mathbb C$ définie par

$$g(z) = a\overline{z} + b$$

est dite similitude indirect. Elle peut s'écrire sous la forme de la composée non commutative.

$$g = f \circ s$$

avec:

- $\bullet \ s: z \longmapsto \overline{z}$ qui est la symétrie axiale d'axe de la droite des réels
- $f: z \longmapsto az + b$ qui est une similitude directe.

Chapitre 7

Calcul de primitives

Sommaire

7.1	Primitives	65
7.2	Primitives usuelles	66
7.3	Calculs de primitives	67
7.3.1	Deux théorème important	69
7.3.2	Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$	70
7.3.3	Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ avec a, b et c des réels et a non nul	70

Notation 7.1

- I et J désige des intervalles de \mathbb{R} , non vides et non réduits à un point
- $\bullet~\mathbb{K}$ désigne l'ensemble \mathbb{R} ou \mathbb{C}

7.1 Primitives

Définition/Propriétés 7.2

Soit $f: I \longrightarrow \mathbb{K}$ une fonction quelconque.

On dit qu'une fonction $F: I \longrightarrow \mathbb{K}$ est une primitive de f sur I si F est dérivable sur I de dérivée f Si f admet une primitive F sur I alors l'ensemble des primitives de f sur I est $\{x \longmapsto F(x) + \lambda \mid \lambda \in \mathbb{K}\}$

Théorème 7.3 (Théorème fondamental de l'analyse)

Si f CONTINUE sur I alors:

- ullet pour tout x_0 réel, la fonction $F:\int_{x_0}^x f(t)dt$ est une primitive de f sur I
- ullet la fonction f admet des primitives sur I

Définition/Propriétés 7.4 (Application au calcul d'intégrales sur un segment)

Si f est **CONTINUE** sur I et F uine primitive de f sur I alors, pour tout réels a et b dans I, on a :

$$\int_{a}^{b} f(t)dt = F(b) - F(a) \underset{\text{notation}}{=} [F]_{b}^{a}$$

7.2 Primitives usuelles

Définition/Propriétés 7.5 (Puissances entière ou réelles)

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto x^n \text{ avec } n \in \mathbb{N}$	$x \longmapsto \frac{1}{n+1} x^{n+1}$	$\mathbb R$
$x \longmapsto x^n \text{ avec } n \in \mathbb{Z} \setminus \{-1\}$	$x \longmapsto \frac{1}{n+1} x^{n+1}$	\mathbb{R}^*
$x \longmapsto \frac{1}{x}$	$x \longmapsto \ln(x)$	\mathbb{R}^*
$x \longmapsto \frac{1}{2\sqrt{x}}$	$x \longmapsto \sqrt{x}$	\mathbb{R}_+^*
$x \longmapsto x^{\alpha} \text{ avec } \alpha \in \mathbb{R} \setminus \mathbb{Z}$	$x \longmapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$	\mathbb{R}_+^*

Définition/Propriétés 7.6 (Exponentielle à valeurs réelles ou complexes et logarithme népérier

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto e^{\lambda x} \text{ avec } \lambda \in \mathbb{K}^*$	$x \longmapsto \frac{1}{\lambda} e^{\lambda x}$	$\mathbb R$
$x \longmapsto e^x$	$x \longmapsto e^x$	${\mathbb R}$
$x \longmapsto \ln(x)$	$x \longmapsto x \ln(x) - x$	\mathbb{R}_+^*

Définition/Propriétés 7.7 (Fonctions hyperboliques)

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto \operatorname{ch}(x)$	$x \longmapsto \operatorname{sh}(x)$	$\mathbb R$
$x \longmapsto \operatorname{sh}(x)$	$x \longmapsto \operatorname{ch}(x)$	$\mathbb R$
$x \longmapsto 1 - \operatorname{th}^2(x)$	$x \longmapsto \operatorname{th}(x)$	$\mathbb R$
$x \longmapsto \frac{1}{\operatorname{ch}^2(x)}$	$x \longmapsto \operatorname{th}(x)$	$\mathbb R$

Définition/Propriétés 7.8 (Fonctions circulaires et fonctions circulaires réciproques)

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto \cos(x)$	$x \longmapsto \sin(x)$	$\mathbb R$
$x \longmapsto \sin(x)$	$x \longmapsto -\cos(x)$	$\mathbb R$
$x \longmapsto 1 + \tan^2(x)$	$x \longmapsto \tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$
$x \longmapsto \frac{1}{\cos^2(x)}$	$x \longmapsto \tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$
$x \longmapsto \frac{-1}{\sqrt{1-x^2}}$	$x \longmapsto \operatorname{Arccos}(x)$]-1;1[
$x \longmapsto \frac{1}{\sqrt{1-x^2}}$	$x \longmapsto \operatorname{Arcsin}(x)$]-1;1[
$x \longmapsto \frac{1}{1+x^2}$	$x \longmapsto \operatorname{Arctan}(x)$	\mathbb{R}

7.3 Calculs de primitives

Définition/Propriétés 7.9

• Primitives d'une combinaison linéaire de fonctions

Si $f: I \longrightarrow \mathbb{K}$ et $g: I \longrightarrow \mathbb{K}$ sont des fonctions qui admettent des primitives sur I notées F et G alors, pour tous α et β dans \mathbb{K} , la fonction $\alpha f + \beta g: I \longmapsto \mathbb{K}$ admet pour primitive sur I la fonction $\alpha F + \beta G$

• Primitives d'une fonction dérivée de fonctions composées

Si $u: I \longrightarrow \mathbb{R}$ est une fonction dérivable sur I tel que pour tout x de I, u(x) appartient à J et si $g: J \longmapsto \mathbb{K}$ est une fonction dérivable sur I alors une primitive de la fonction $f: x \longmapsto u'(x)g'(u(x))$ sur I est la fonction $F: x \longmapsto g(u(x))$.

Dans le tableau ci-dessous (à savoir retrouver à partir des primitives usuelles), I désigne un intervalle sur lequel u est dérivable et tel que, pour tout x de I, u(x) appartient au domaine de dérivabilité de F.

Si la fonction f est	alors une primitive de f est
$x \longmapsto u'(x) (u(x))^{\alpha} \text{ avec } \alpha \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{1}{\alpha+1} \left(u(x) \right)^{\alpha+1}$
$x \longmapsto \frac{u'(x)}{u(x)}$	$x \longmapsto \ln(u(x))$
$x \longmapsto u'(x)e^{\lambda u(x)} \text{ avec } \lambda \in \mathbb{K}^*$	$x \longmapsto \frac{1}{\lambda} e^{\lambda u(x)}$
$x \longmapsto u'(x) \ln (u(x))$	$x \longmapsto u(x) \ln(u(x)) - u(x)$
$x \longmapsto u'(x) \operatorname{ch}(u(x))$	$x \longmapsto \operatorname{sh}(u(x))$
$x \longmapsto u'(x) \operatorname{sh}(u(x))$	$x \longmapsto \operatorname{ch}(u(x))$
$x \longmapsto u'(x) \left(1 + \operatorname{th}^2(u(x))\right)$	$x \longmapsto \operatorname{th}(u(x))$
$x \longmapsto u'(x) \cos(u(x))$	$x \longmapsto \sin(u(x))$
$x \longmapsto u'(x)\sin(u(x))$	$x \longmapsto -\cos(u(x))$
$x \longmapsto u'(x) \left(1 + \tan^2\left(u(x)\right)\right)$	$x \longmapsto \tan(u(x))$
$x \longmapsto \frac{-u'(x)}{\sqrt{1 - u^2(x)}}$	$x \longmapsto \operatorname{Arccos}(u(x))$
$x \longmapsto \frac{u'(x)}{\sqrt{1 - u^2(x)}}$	$x \longmapsto \operatorname{Arcsin}(u(x))$
$x \longmapsto \frac{u'(x)}{1 + u^2(x)}$	$x \longmapsto \operatorname{Arctan}(u(x))$

7.3.1 Deux théorème important

Définition 7.10 (préliminaire)

Une fonction $f:I \longrightarrow \mathbb{K}$ est dite de classe \mathscr{C}^1 sur I si f est dérivable sur I et de dérivée continue sur I

Théorème 7.11 (Intégration par parties)

Si u et v sont deux fonctions de classe \mathscr{C}^1 sur I alors, pour tous réels a et b dans I, on a :

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$

Démonstration 7.12

Soit u et v deux applications de $\mathscr{C}^1(I,\mathbb{R})$ alors $\forall (a,b) \in I^2$:

$$\int_{a}^{b} (uv)'(t)dt = \int_{a}^{b} (u'v + uv')(t)dt$$
$$[uv]_{a}^{b} = \int_{a}^{b} (u'v)(t)dt + \int_{a}^{b} (uv')(t)dt$$
$$\int_{a}^{b} u'(t)v(t)dt = [uv]_{a}^{b} - \int_{a}^{b} (uv')(t)dt$$

Théorème 7.13 (Changement de variable)

 $Si \ \varphi : J \longmapsto \mathbb{R} \ est \ fonction \ de \ classe \ \mathscr{C}^1 \ sur \ J \ tel \ que, \ pour \ tout \ t \ de \ J, \ \varphi(t) \ appartient \ à \ I$ et

Si $f: I \longrightarrow \mathbb{K}$ est fonction continue sur I tel que, pour touts α et β dans J, on a:

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx$$

Démonstration 7.14

Soit $\varphi: J \longmapsto \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur J tel que, pour tout t de J, $\varphi(t)$ appartient à I et $f: I \longmapsto \mathbb{K}$ une fonction continue sur I tel que, pour touts α et β dans J, alors :

f possède une primitive sur I (car f est continue I) que l'on note F.

On note aussi $G: t \mapsto F(\varphi(t))$ qui est dérivable sur J par composition ainsi $G': t \mapsto F'(\varphi(t)) \times \varphi'(t)$, alors:

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{min}^{max} G'(t)dt$$

$$= [G(t)]_{\alpha}^{\beta}$$

$$= F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$= [F]_{\varphi(\alpha)}^{\varphi(\beta)}$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx$$

7.3.2 Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$

Définition/Propriétés 7.15 ()

• Préliminaire

Soit f et F des fonctions définies sur un intervalle I à valeurs complexes.

- (1) f admet des primitives sur I si, et seulement si, Re (f) et Im (f) admettent des primitives sur I.
- (2) F est une primitive de f sur I si, et seulement si, $\begin{cases} \operatorname{Re}(F) & \text{est une primitive de } \operatorname{Re}(f) & \text{sur } I \\ \operatorname{Im}(()F) & \text{est une primitive de } \operatorname{Im}(f) & \text{sur } I \end{cases}$
- Une application usuelle du résultat précédent

Soit a et b des réels tels que $(a, b) \neq (0, 0)$.

On note $\lambda = a + ib$ et f_{λ} la fonction définie sur \mathbb{R} par, pour tout x réel

$$f_{\lambda}(x) = e^{ax}\cos(bx) + ie^{ax}\sin(bx) = e^{ax}e^{bx} = e^{(a+ib)x} = e^{\lambda x}$$

La fonction $F_{\lambda}: x \longmapsto \frac{1}{\lambda}e^{\lambda x}$ est une primitive de f_{λ} sur \mathbb{R} donc :

- la fonction $\operatorname{Re}(F_{\lambda})$ est une primitive de la fonction $\operatorname{Re}(F_{\lambda}): x \longmapsto e^{ax} \cos(bx)$ sur \mathbb{R}
- la fonction $\operatorname{Im}(F_{\lambda})$ est une primitive de la fonction $\operatorname{Im}(F_{\lambda}): x \longmapsto e^{ax} \sin(bx)$ sur $\mathbb R$

7.3.3 Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ avec a, b et c des réels et a non nul

Application 7.16

Soit a, b et c des réels avec a non nul et g la fonction $g : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $g(x) = ax^2 + bx + c$ Trois cas se présentent :

(1) Si g admet deux racines réelles distinctes r_1 et r_2 alors il existe deux réels α_1 et α_2 tel que :

$$\forall x \in R \setminus \{r_1, r_2\}, \frac{1}{ax^2 + bx + c} = \frac{\alpha_1}{x - r_1} + \frac{\alpha_2}{x - r_2}$$

Dans ce cas,

une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ sur tout intervalle I inclus dans $R \setminus \{r_1, r_2\}$ est :

$$x \longmapsto \alpha_1 \ln |x - r_1| + \alpha_2 \ln |x - r_2|$$

(2) si g admet une racine réelle double r alors il existe un réel α tel que :

$$\forall x \in R \setminus \{r\}, \frac{1}{ax^2 + bx + c} = \frac{\alpha}{(x - r)^2}$$

Dans ce cas,

une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ sur tout intervalle I inclus dans $\mathbb{R} \setminus \{r\}$ est :

$$x \longmapsto \frac{-\alpha}{x-r}$$

(3) Si g n'admet pas de racines réelles alors, en écrivant g sous forme canonique, on peut trouver trois réels α, β et γ tel que :

$$\forall \in \mathbb{R}, \frac{1}{ax^2 + bx + c} = \frac{\alpha}{\left(\frac{x+\beta}{\gamma}\right)^2 + 1}$$

Dans ce cas,

une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ sur tout intervalle I inclus dans \mathbb{R} est :

$$x \longmapsto \alpha \gamma \arctan\left(\frac{x+\beta}{\gamma}\right)$$

Chapitre 8

Compléments sur les nombres réels

Sommaire

8.1	Parties denses de \mathbb{R}
8.2	Approximation décimale d'un réel
8.3	Borne inférieur et supérieure d'une partie de $\mathbb R$

8.1 Parties denses de \mathbb{R}

Définition/Propriétés 8.1 (Généralité)

Une partie X de R est dite dense dans \mathbb{R} si elle rencontre tout intervalle ouvert non vide de \mathbb{R} .

En pratique:

Pour étable qu'une partie X de R est dense dans R à l'aide de cette définition, on montre que tout intervalle du type a; b avec a et b des réels tel que a < b, contient au moins un élément de A.

Exemple 8.2

- ullet Les ensembles $\mathbb N$ et $\mathbb Z$ sont des parties de $\mathbb R$ qui ne sont pas denses dans $\mathbb R$
- Les ensemble \mathbb{Q} et \mathbb{R}/\mathbb{Q} sont des parties de \mathbb{R} qui sont denses dans \mathbb{R}

Démonstration 8.3 (Preuve de Q dense dans \mathbb{R})

Soit a et b des réels avec a < b.

Montrons que]a; b[contient un élément de \mathbb{Q} , c'est à dire $\exists (p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $a < \frac{p}{q} < b$ autrement dit qa

Ainsi pour que p existe il faut que :

$$qa - qb > 1$$
 $\operatorname{car} p \in \mathbb{Z}$ $q(a - b) > 1$ $q > \frac{1}{b - a}$ $\operatorname{car} b > a$ Prenons $q = \left\lfloor \frac{1}{b - a} \right\rfloor + 1$ $\operatorname{car} \frac{1}{b - a} > \left\lfloor \frac{1}{b - a} \right\rfloor + 1$

Prenons
$$p = \lfloor qa \rfloor + 1$$
, donc $p - 1 \le qa < p$ or $p < qb$ car $q > \frac{1}{b - a} \iff qb - qa > 1 \iff qb > qa + 1 \ge \lfloor qa \rfloor + 1 = p$ Ainsi $qa avec $q = \left\lfloor \frac{1}{b - a} \right\rfloor + 1$ et $p = \lfloor qa \rfloor + 1$.$

conclusion

Tout intervalle réel de type]a; b[avec a < b contient un rationnel donc par définition, \mathbb{Q} est dense dans \mathbb{R} .

Démonstration 8.4 (preuve que $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R})

• <u>Préliminaire</u> : Démonstration que $\sqrt{2}$ est irrationnel On suppose qu'il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ avec p et q premier entre eux tel que $\frac{p}{q} = \sqrt{2}$ alors :

$$\frac{p}{q} = \sqrt{2} \iff \sqrt{2}q = p$$

$$\implies 2q^2 = p^2 \qquad \text{donc } p^2 \text{ est pair ce qui explique } p \text{ pair}$$

$$\implies 2q^2 = (2k)^2 \qquad \text{en posant } p = 2k \text{ avec } k \in \mathbb{Z}$$

$$\implies 2q^2 = 4k^2$$

$$\implies 2k^2 = q^2 \qquad \text{donc } q^2 \text{ est pair et donc } q \text{ aussi}$$

Ce qui est absurde car p et q sont premier entre eux donc ils ne peuvent pas être tous les deux pair. conclusion $\sqrt{2}$ est irrationnel.

• Preuve que $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R}

Soit a et b des réels avec a < b.

Montrons que a; b[contient un irrationnel :

Par densité de \mathbb{Q} dans \mathbb{R} , $\left| \frac{a}{\sqrt{2}} \right|$; $\frac{b}{\sqrt{2}} \left| \right|$ contient un rationnel r

on a donc
$$\frac{a}{\sqrt{2}} < r < \frac{b}{\sqrt{2}} \implies a < \sqrt{2}r < b$$

 $\sqrt{2r} \in]a$; b[et $\sqrt{2}r$ est irrationnel car sinon $\sqrt{2}r$ serait rationnel et alors $\sqrt{2}r \times \frac{1}{r} = \sqrt{2}$

donc $\sqrt{2} \in \mathbb{Q}$ ce qui est faux.

Donc]a; b[contient un irrationnel.

$$-$$
 Si $r = 0$

On résone de même manière mais sur avec un intervalle]0; b[et $]0; \frac{b}{\sqrt{2}}[$

Ainsi on trouve $r' \in \left[0 ; \frac{b}{\sqrt{2}}\right] \cap \mathbb{Q}$ puis $r'\sqrt{2} \in \left[0 ; b\right[\cap (\mathbb{R}\backslash\mathbb{Q})\right]$

Donc]a; b[contient un irrationnel.

conclusion Tout intervalle réel de type]a; b[avec a < b contient un irrationnel donc par définition, $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R} .

Théorème 8.5 (Caractérisation séquentiel des parties denses dans \mathbb{R})

Une partie X de $\mathbb R$ est dense dans $\mathbb R$ si, et seulement si, tout réel est limite d'une suite d'élément de X

Démonstration 8.6

Soit X une partie de $\mathbb R$ On procède par double implication.

 \implies On suppose que X est dense dans \mathbb{R} , soit x un réel et $n \in \mathbb{N}$

alors $\left]x-\frac{1}{n+1}\right.$; $x\left[$ contient un élément de (u_n) de X par densité de X dans $\mathbb R$

Donc $\forall n \in \mathbb{N}, x - \frac{1}{n+1} < u_n < x \text{ or } x - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} x \text{ et } x \xrightarrow[n \to +\infty]{} x \text{ donc par théorème}$ d'encadrement $u_n \xrightarrow[n \to +\infty]{} x$

conclusion

tour réel x est limite d'une suite (u_n) d'élement de X

On suppose que tout réel est limite d'une suite d'élement de X

Soit $(a, b) \in \mathbb{R}^2$ avec a < b et $\ell \in]a; b[$

par hypothèse, il existe une suite (u_n) telle que $\forall n \in \mathbb{N}, u_n \in X$ et $u_n \xrightarrow[n \to +\infty]{} \ell$

par définition de la limite, a : b qui contient ℓ contient aussi tous les termes de la suite (u_n) à

partir d'un certain rang d'où l'existence de $\begin{cases} u_{n_0} \in X \\ u_{n_0} \in]a; b[$

 ${\rm conclusion}$

 \overline{X} est dense car pour tout a; b[avec a < b il existe un élément (ici u_{n_0}) de X dans a; b[

conclusion

Par double implication le théorème est vérifié

8.2 Approximation décimale d'un réel

 $D\'{e}finition/Propri\'{e}t\'{e}s~8.7~(rappel)$

L'ensemble des nombres décimaux est notée \mathbb{D} et définie par $\mathbb{D} = \left\{ \frac{p}{10^n} \mid (p, n) \in \mathbb{Z} \times \mathbb{N} \right\}$

Propriétés 8.8 (Approximation décimales d'un réel)

Soit x un réel et n un entier naturel. Il existe un unique nombre décimal d_n tel que :

$$10^n d_n \in \mathbb{Z}$$
 et $d_n \le x \le d_n + 10^{-n}$

Par ailleurs pour tout réel x les suites de nombres décimaux (d_n) et $(d_n + 10^{-n})$ définie ci-dessus sont convergentes de limite égal àx donc, par caractérisation séquentielle, l'ensemble \mathbb{D} est dense dans \mathbb{R}

Définition/Propriétés 8.9 (Dévelopement décimal d'un réel)

Soit x un réel et (d_n) la suite des valeurs décimales approchées de x à 10^{-n} près par défaut. Alors :

- Pour tout k dans Ns, il existe un unique entier a_k dans [0; 9] tel que $d_k d_{k-1} = \frac{a_k}{10^k}$
- Pour tout n dans \mathbb{N} , $d_n = \sum_{k=0}^n \frac{a_k}{10^k}$ avec $a_0 = \lfloor x \rfloor$

Puisque la suite (d_n) converge vers x, on peut donc écrire que :

$$x = \lim_{n \to +\infty} \left(\sum_{k=0}^{n} \frac{a_k}{10^k} \right) = \sum_{k=0}^{+\infty} \frac{a_k}{10^k} = a_0, a_1 a_2 \dots$$

ce qu'on appelle un "dévellopement décimal illimié de x".

Par ailleurs:

L'existence et l'unicité d'un tel a_k résulte du fait que : $\forall k \in \mathbb{N}^*, 10^k (d_k - d_{k-1}) \in [0; 9]$. L'expression de d_n sous forme de somme finie s'obtient alors par sommation des égalités $d_k - d_{k-1} = \frac{a_k}{10^k}$ et télescopage

8.3 Borne inférieur et supérieure d'une partie de \mathbb{R}

Définition 8.10

Soit X une partie de \mathbb{R} . S'il existe :

- \bullet le plus petit des majorants de X est appelé borne supérieure de X et noté sup X
- \bullet le plus grand des minorants de X est appelé borne inférieure de X et noté inf X

Remarques:

- \bullet les bornes supérieure ou inférieure de X ne sont pas nécessairement dans X.
- En revanche,
 - si X admet un maximum alors X admet une borne supérieure, égale au maximum de X;
 - si X admet un minimum alors X admet une borne inférieure, égale au minimum de X.

Propriétés 8.11 (Propriété dite de la borne supérieure/inférieur)

- toute partie non vide et majorée de R admet une borne supérieure.
- \bullet Toute partie non vide et minorée de $\mathbb R$ admet une borne inférieure.

Définition/Propriétés 8.12 (Traduction séquentielle de la borne supérieure/inférieure) Soit X une partie de \mathbb{R} .

- Si X est non vide et minorée alors il existe une suite d'éléments de X de limite inf X.
- Si X est non vide et majorée alors il existe une suite d'éléments de X de limite sup X.
- Si X est non vide et non minorée alors il existe une suite d'éléments de X de limite $-\infty$.
- Si X est non vide et non majorée alors il existe une suite d'éléments de X de limite $+\infty$.

Définition/Propriétés 8.13 (Droite achevée R)

On appelle droite achevée l'ensemble noté $\overline{\mathbb{R}}$ défini par :

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

On y étend la relation d'ordre \leq , l'addition et la multiplication connues sur \mathbb{R} avec les conventions :

- (1) $\forall x \in \mathbb{R}, -\infty < x + \infty$
- $(2) (-\infty) + (-\infty) = -\infty$
- $(3) (+\infty) + (+\infty) = +\infty$
- (4) $\forall x \in \mathbb{R}, x + (-\infty) = (-\infty) + x = -\infty$
- (5) $\forall x \in \mathbb{R}, x + (+\infty) = (+\infty) + x = +\infty$

(6)
$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (-\infty) = (-\infty) \times x = \begin{cases} +\infty & \text{si } x < 0 \\ -\infty & \text{si } x > 0 \end{cases}$$

(7) $\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (+\infty) = (+\infty) \times x = \begin{cases} -\infty & \text{si } x < 0 \\ -\infty & \text{si } x > 0 \end{cases}$

(7)
$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (+\infty) = (+\infty) \times x = \begin{cases} -\infty & \text{si } x < 0 \\ -\infty & \text{si } x > 0 \end{cases}$$

Définition/Propriétés 8.14 (Caractérisation des intervalles de R)

Une partie X de \mathbb{R} est un intervalle de \mathbb{R} si, et seulement si, pour tous réels a et b dans X tels que $a \leq b$ le segment [a;b] est inclus dans X

Démonstration 8.15

On rappelle que I est un intervalle de $\mathbb R$ si I est de l'une des formes suivantes :

- I = ∅
- $I = \{x \in \mathbb{R} \mid a \le x \le b\} = [a; b] \text{ avec } (a, b) \in \mathbb{R}^2 \text{ et } a \le b$
- $I = \{x \in \mathbb{R} \mid a \le x < b\} = a \in [a ; b[avec (a, b) \in \mathbb{R} \times (\mathbb{R} \cup \{+\infty\}) et a < b\}]$
- $I = \{x \in \mathbb{R} \mid a < x \le b\} = a \mid a \mid b$ avec $(a, b) \in (\mathbb{R} \cup \{-\infty\}) \times \mathbb{R}$ et $a < b \mid a \mid b$
- $\bullet \ \ I = \{x \in \mathbb{R} \mid a < x \leq b\} \underset{\text{notation}}{=} \]a \ ; \ b \ [\ \text{avec} \ (a,b) \in (\mathbb{R} \cup \{-\infty\}) \times (\mathbb{R} \cup \{+\infty\}) \text{ et } a < b \}$

Soit X une partie de \mathbb{R} . Dans le cas où X est l'ensemble vide, l'équivalence attendue est immédiate. On se place donc, dans la suite, dans le cas où X est une partie non vide de \mathbb{R} et on raisonne par double implication

- On suppose que X est un intervalle de \mathbb{R} X est alors d'une des formes 2, 3, 4 ou 5 indiquées ci-dessus. Ainsi, pour tous réels α et β dans X tels que $\alpha \leq \beta$, on a bien $[\alpha; \beta] \subseteq X$
- On suppose que : $\forall (\alpha, \beta) \in X^2, \alpha \leq \beta \implies [\alpha ; \beta] \subseteq X$ En considérant X comme partie de la droite achevée $\overline{\mathbb{R}}$, on peut noter $m = \inf X$ et $M = \sup X$ Montrons que m; M[m] m]
 - Soit $t \in]m$; M[Alors le réel t n'est pas un majorant de X (car t est strictement inférieur à M qui est le plus petit des majorants de X) et le réel t n'est pas un minorant de X(car t est strictement supérieur à m qui est le plus grand es minorants de X).

Il existe $\operatorname{donc}(\alpha,\beta) \in X^2$ tel que $\alpha < t < \beta$ ce qui prouve que t appartint à l'intervalle $]\alpha$; $\beta[$ donc au segment $[\alpha;\beta]$. Comme les réels α et β appartiennent à X, l'hypothèse faite sur x donne $[\alpha;\beta] \subseteq X$ ce qui prouve, en particulier, que t appartient à X conclusion]m; $M[\subseteq X]$

— Soit $t \in X$ Alors, par définition de m et X, on a : $m \le t \le M$ c'est à dire $t \in [m; M]$ conclusion $X \subseteq [m; M]$

On a donc montré que m; $M[\subseteq X \subseteq [m; M]$. Cela implique que X, vue comme partie de $\overline{\mathbb{R}}$ est égale à l'une des parties suivantes m; M[, m; M], m; M[ou [m; M].

Comme X est une partie de \mathbb{R} , on en déduit que X est bien de l'une des formes 2, 3, 4 ou 5 indiquées ci-dessus donc que X est un intervalle de \mathbb{R}

conclusion X est un intervalle de $\mathbb R$ si, et seulement si, $\forall (\alpha,\beta) \in X^2, \alpha \leq \beta \implies [\alpha;\beta] \subseteq X$

Chapitre 9

Ensemble, application et relation

Sommaire

9.1	Ensemble
9.1.1	Généralité
9.1.2	Inclusion entre ensembles et parties
9.1.3	Egalité entre ensembles
9.1.4	Opérations sur les parties d'un ensemble
9.1.5	Produit cartésien d'un nombre fini d'ensembles
9.2	Application
9.2.1	définition de base
9.2.2	Fonctions particulières
9.2.3	Image directe et image réciproque
9.2.4	Composition d'applications
9.2.5	Injection, surjection
9.2.6	Bijection
9.3	Relation Binaire sur un ensemble
9.3.1	Généralité
9.3.2	Relations d'équivalence
9.3.3	Relation d'ordre

9.1 Ensemble

9.1.1 Généralité

Définition 9.1

- Un ensemble est une collection d'objets, sans répétition et non ordonnée.
- Les objets de l'ensemble sont appelés les éléments de l'ensemble.
 - Si x est un élément de l'ensemble E, on dit que x appartient à E et on note $x \in E$.
 - Dans le cas contraire, on dit que x n'appartient pas à E et on note $x \notin E$.
- L'ensemble sans élément est appelé l'ensemble vide et noté \emptyset .
- Les ensembles avec un seul élément sont appelés des singletons.
- Les ensembles avec deux éléments sont appelés des paires.

Définition/Propriétés 9.2 (Modes de définition d'un ensemble)

Un ensemble E peut être défini :

- \bullet en extension, c'est-à-dire en explicitant tous les éléments de l'ensemble E, dans le cas où il compte un nombre fini d'éléments appelé cardinal de l'ensemble. Les éléments de l'ensemble sont ainsi tous cités entre accolades. Par exemple :
 - $E = \{i\}$ singleton contenant le nombre complexe i;
 - $E = \{\cos, \sin\}$ paire contenant les fonctions cosinus et sinus;
 - $E = \{2, 3, 5, 7\}$ ensemble des nombres premiers inférieurs à 10;
 - $E = \{3, 4, ..., 10\}$ ensemble des entiers compris entre 3 et 10 au sens large (noté aussi [3; 10]).
- en compréhension, c'est-à-dire en donnant des propriétés vérifiées par les éléments de l'ensemble et eux seuls. Là encore, on utilise des accolades. Par exemple :
 - $E = \{x \in \mathbb{R} \mid x \equiv 0 \ [2\pi]\}$ ensemble des réels congrus à 0 modulo 2π ;
 - $-E = \{f : \mathbb{R} \longrightarrow \mathbb{R} \mid \forall x \in \mathbb{R}, f(-x) = f(x)\}$ ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} ;
 - $E = \left\{ z \in \mathbb{C} \mid \exists k \in \mathbb{Z}, z = e^{\frac{2ik\pi}{5}} \right\}$ ensemble des racines 5-ièmes de l'unité.
 - $E = \{\alpha e \mid \alpha \in \mathbb{R}\}$ ensemble des fonctions de la forme $x \longmapsto \alpha e^x$ lorsque α parcourt \mathbb{R} .

9.1.2 Inclusion entre ensembles et parties

Définition/Propriétés 9.3

Soit E un ensemble.

- Inclusion
 - On dit qu'un ensemble F est inclus dans E et on note $F \subseteq E$, si tous les éléments de F appartiennent à E, c'est-à-dire : $\forall x, (x \in F \implies x \in E)$.
- Parties
 - On dit qu'un ensemble F est une partie ou un sous-ensemble de E si F est inclus dans E.
- Ensemble des parties
 - On note $\mathscr{P}(E)$ l'ensemble des parties de E, c'est-à-dire $\mathscr{P}(E) = \{A \mid A \subseteq E\}$.

9.1.3 Egalité entre ensembles

Définition/Propriétés 9.4

- Définition
 - On dit que deux ensembles E et F sont égaux, et on note E=F, s'ils ont les mêmes éléments, c'est-à-dire : $\forall x, (x \in E \iff x \in F)$.
- Caractérisation de l'égalité par double inclusion Deux ensembles E et F sont égaux si, et seulement si, $E \subseteq FetF \subseteq E$.

9.1.4 Opérations sur les parties d'un ensemble

Définition/Propriétés 9.5

Soit E un ensemble et, A et B deux parties de E.

Soit I un ensemble et $\{A_i \mid i \in I\}$ un ensemble de parties de E.

• Réunion

On appelle réunion de A et B, et on note $A \cup B$, la partie de E définie par $A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$.

Plus généralement, on définit la réunion de parties A_i de E, avec i qui varie dans un ensemble I:

$$\bigcup_{i \in I} A_i = \left\{ x \in E \mid \exists i_0 \in I, x \in A_{i_0} \right\}$$

• Intersection

On appelle intersection de A et B, et on note $A \cap B$, la partie de E définie par $A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$.

Plus généralement, on définit l'intersection de parties A_i de E, avec i qui varie dans un ensemble I:

$$\bigcap_{i \in I} A_i = \{ x \in E \mid \forall i \in I, x \in Ai \}$$

• Différence

On appelle différence de B dans A, et on note $A \backslash B$, la partie de E définie par $A \backslash B = \{x \in E \mid x \in A \text{ et } X \notin B\}$.

• Complémentaire

On appelle complémentaire de A dans E la partie $E \setminus A = \{x \in E \mid x \notin A\}$ qui est encore notée \overline{A} ou A^c (en l'absence d'ambiguité sur l'ensemble dans lequel le complémentaire est considéré).

• Quelques règles de calcul ou loi de Morgan

$$- \left(\bigcup_{i \in I} A_i\right) \cap B = \bigcup_{i \in I} (A_i \cap B) \text{ et } \left(\bigcap_{i \in I} A_i\right) \cup B = \bigcap_{i \in I} (A_i \cup B)$$

$$- \overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i} \text{ et } \overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i}$$

• Recouvrement disjoint et partition d'un ensemble

L'ensemble $\{A_i \mid i \in I\}$ de parties de E est dit partition de E si les conditions suivantes sont réunies :

$$--E = \bigcup_{i \in I} A_i$$

 $-\forall i \in I, A_i \neq \emptyset$

Démonstration 9.6 (Loi de Morgan)

Soit E un ensemble et A_i des parties de E où $i \in I$ et B une partie de E.

• Distributivité de l'intersection sur l'union :

$$x \in \left(\bigcup_{i \in I} A_i\right) \cap B \iff \left(x \in \bigcup_{i \in I} A_i\right) \text{ et } (x \in B)$$

$$\iff \left(\exists i_0 \in I, x \in A_{i_0}\right) \text{ et } (x \in B)$$

$$\iff \exists i_0 \in I, x \in A_{i_0} \cap B$$

$$\iff x \in \bigcup_{i \in I} (A_i \cap B)$$

$$\bullet \ \overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i} :$$

$$x \in \overline{\bigcap_{i \in I} A_i} \iff x \notin \bigcap_{i \in I} A_i$$

$$\iff \exists A_{i_0}, x \notin A_{i_0}$$

$$\iff x \in \overline{A_{i_0}}$$

$$\iff x \in \bigcup_{i \in I} \overline{A_i}$$

9.1.5 Produit cartésien d'un nombre fini d'ensembles

Définition/Propriétés 9.7

Soit E_1, \ldots, E_n des ensembles.

On appelle produit cartésien de E_1, \ldots, E_n l'ensemble noté $E_1 \times \cdots \times E_n$ défini par :

$$E_1 \times \cdots \times E_n = \{(x_1, \dots, x_n) \mid \forall i [1; n], x_i \in E_i\}$$

9.2 Application

9.2.1 définition de base

Définition/Propriétés 9.8

Une application f de E (ensemble de départ) dans F (ensemble d'arrivée) est un objet mathématique qui, à tout élément x de E, associe un unique élément de F noté f(x) Notation fonctionnelle :

$$\begin{array}{ccc} f: & E & \longrightarrow & F \\ & x & \longmapsto & f(x) \end{array}$$

Définition/Propriétés 9.9 (Image et antécédent)

Soit $f: E \longrightarrow F$ une application.

- Pour tout x élément de E, f(x) est un élément de F appelé l'image de x par f.
- Soit $y \in F$. S'il existe x dans E tel que y = f(x) alors x est dit un antécédent de y par f.

Définition/Propriétés 9.10 (Ensemble des applications)

L'ensemble des applications de E dans F est noté $\mathscr{C}^{\mathcal{F}}(E,F)$ ou F^{E} .

Définition/Propriétés 9.11 (Egalité entre applications)

On dit que deux applications f et g sont égales, et on note f=g, si les conditions suivantes sont réunies :

- f et g ont le même ensemble de départ E et le même ensemble d'arrivée F;
- pour tout x de E, f(x) = g(x).

Définition/Propriétés 9.12 (Graphe)

Soit $f: E \longrightarrow F$ une application.

On appelle graphe de f la partie G de $E \times F$ définie par :

$$G = \{(x ; f(x)) \mid x \in E\}$$

9.2.2 Fonctions particulières

Définition/Propriétés 9.13

• Fonction indicatrice d'une partie Soit A une partie de E. L'application f de E dans $\{0,1\}$ définie par :

$$\forall x \in E, f(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

est dite fonction indicatrice de A et notée $\mathbb{1}_A$.

• Restriction

Soit $f: E \longrightarrow F$ une application et A une partie de E.

L'application $g:A\longmapsto F$ définie par $\forall x\in A, g(x)=f(x)$ est dite restriction de f à A et notée $f|_A$.

• Prolongement

Soit A une partie de E et $h: A \longrightarrow F$ une application.

Toute application $f: E \longrightarrow F$ telle que $f|_A = h$ est dite prolongement de h à E.

9.2.3 Image directe et image réciproque

Définition/Propriétés 9.14

Soit $f: E \longrightarrow F$ une application.

• Image:

Soit A une partie de E. On appelle image directe de A par f la partie de F définie par :

$$f(A) = \{ y \in F \mid \exists x \in A, y = f(x) \} = \{ f(x) \mid x \in A \}$$

C'est l'ensemble des images par f des éléments de A.

• Image réciproque : Soit B une partie de F . On appelle image réciproque de B par f la partie de E définie par :

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}$$

C'est l'ensemble des antécédents par f des éléments de B.

9.2.4 Composition d'applications

Définition/Propriétés 9.15

Soit $f: E \longmapsto F$ et $g: F \longmapsto G$ deux applications. L'application $h: E \longmapsto G$ définie par :

$$\forall x \in E, h(x) = g(f(x))$$

est dite composée des applications f et g et notée $h = g \circ f$.

9.2.5 Injection, surjection

Définition/Propriétés 9.16

Une application $f: E \longmapsto F$ est dite :

- Définitions :
 - injection si tout élément de F a au plus un antécédent par f .
 - surjection si tout élément de F a au moins un antécédent par f .
- Caractérisations pratiques :
 - f est une injection si, et seulement si : $\forall (x,x') \in E^2, f(x) = f(x') \implies x = x'$.
 - f est une surjection si, et seulement si : $\forall y \in F, \exists x \in E, y = f(x)$.
- Composition:

La composée de deux injections (resp. surjections) est une injection (resp. surjection).

Démonstration 9.17 (Composition)

• injection :

 $\overline{\text{Soit } f: E} \longmapsto F \text{ et } g: F \longmapsto G \text{ deux fonctions injective}$

 $\forall (x, x') \in E^2 \text{ tel que } g(f(x)) = g(f(x'))$

On a f(x) = f(x') car g est une injection

et donc x = x' car f est une injection

conclusion $\forall (x, x') \in E^2, g(f(x)) = g(f(x')) \implies x = x' \text{ donc } g \circ f \text{ injective}$

• surjection :

 $\overline{\text{Soit } f: E} \longmapsto F \text{ et } g: F \longmapsto G \text{ deux fonctions surjectives}$

Soit $z \in G$ alors $\exists y \in F, z = g(y)$ car g surjective

Soity $\in F$ alors $\exists x \in E, y = f(x)$ car f surjective

conclusion $\forall z \in G, \exists x \in E \text{ tel que } z = g(f(x)) \text{ donc } g \circ f \text{ surjective}$

9.2.6 Bijection

Définition/Propriétés 9.18

• Définitions :

Une application $f: E \mapsto F$ est dite bijection si tout élément de F a un unique antécédent par f.

Dans ce cas, l'application $f^{-1}: F \longmapsto E$ définie par :

$$\forall y \in F, f^{-1}(y) = x \text{ avec } x \text{ l'unique élément de } E \text{ tel que } y = f(x)$$

est dite bijection réciproque de f et vérifie :

$$f \circ f^{-1} = \mathrm{id}_F$$
 et $f^{-1} \circ f = \mathrm{id}_F$

• Caractérisation pratique :

Une application $f: E \mapsto F$ est une bijection si, et seulement si, f est une injection et une surjection.

• Composition :

- La composée de deux bijections est une bijection.
- La bijection réciproque de la composée $g \circ f$ où f et g sont des bijections est l'application

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

9.3 Relation Binaire sur un ensemble

9.3.1 Généralité

Définition/Propriétés 9.19

• Définitions :

On appelle relation binaire sur un ensemble E toute partie $\mathcal R$ de $E\times E$.

Pour tout $(x, y) \in \mathcal{R}$:

- on dit que x est en relation avec y par la relation \mathcal{R} ;
- on note usuellement xRy
- Propriétés :

 $\overline{\text{On dit qu'une relation binaire } \mathcal{R} \text{ sur un ensemble } E \text{ est :}$

- réflexive si : $\forall x \in E, x \Re x$;
- transitive si : $\forall (x, y, z) \in E^3$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \implies x\mathcal{R}z$;
- symétrique si : $\forall (x, y) \in E^2, x \Re y \implies y \Re x$;
- antisymétrique si : $\forall (x, y) \in E^2$, $(xRyetyRx) \implies x = y$.
- Quelques exemples déjà rencontrés :
 - (1) Sur un ensemble E: la relation d'égalité.
 - (2) Sur l'ensemble $\mathcal{P}(E)$ des parties d'un ensemble E: la relation d'inclusion.
 - (3) Sur l'ensemble \mathbb{R} : les relations \leq , < et la relation de congruence modulo un réel non nul.
 - (4) Sur l'ensemble $\mathscr{C}^{\mathcal{F}}(D,\mathbb{R}) = \mathbb{R}^D$ des applications d'une partie D de \mathbb{R} dans \mathbb{R} : la relation \leq .
 - (5) Sur l'ensemble Z : les relations de divisibilité | et de congruence modulo un entier non nul.

9.3.2 Relations d'équivalence

Définition/Propriétés 9.20

• Définitions :

Toute relation binaire sur un ensemble E qui est réflexive, transitive et symétrique est dite relation d'équivalence sur E. Les relations d'équivalence sont souvent notées \sim, \simeq ou equiv.

• Théorème :

Soit \sim une relation d'équivalence sur un ensemble E. Alors la famille d'ensembles $(\{y \in E \mid x \sim y\})_{x \in E}$ est une partition de E.

- Exemples des relations de congruence
 - La relation de congruence modulo 2π est une relation d'équivalence sur \mathbb{R} . Les classes d'équivalence sont les ensembles $x + 2\pi \mathbb{Z} = \{x + 2n\pi \mid n \in Z\}$ avec x qui décrit $[0; 2\pi]$.
 - La relation de congruence modulo $n \in \mathbb{N}^*$ est une relation d'équivalence sur \mathbb{Z} . Les classes d'équivalence sont les ensembles $r + n\mathbb{Z} = \{r + nq \mid q \in \mathbb{Z}\}$ avec r qui décrit [0; n-1].

9.3.3 Relation d'ordre

Définition/Propriétés 9.21

• Définitions :

Toute relation binaire sur un ensemble E qui est réflexive, transitive et antisymétrique est dite relation d'ordre sur E. Les relations d'ordre sont souvent notées \leq , \leq , \leq ou \leq .

• Ordre partiel et ordre total :

Une relation d'ordre \leq sur un ensemble E est dite totale si :

$$\forall (x, y) \in E^2, x \le youy \le x$$

Dans le cas contraire, la relation d'ordre \leq est dite partielle.

• Minorant, majorant, maximum, minimum, etc:

Les notions de partie minorée, majorée ou bornée ainsi que celles de minorant, majorant, minimum, maximum, borne inférieure ou borne supérieure vues pour les parties de \mathbb{R} peuvent être étendues aux parties d'un ensemble muni d'une relation d'ordre.

Par exemple, pour E un ensemble muni d'une relation d'ordre \leq et A une partie de E:

- A est dite majorée pour \leq s'il existe M dans E tel que, pour tout élément x de A, on a : $x \leq M$.
 - Dans ce cas, on dit que M est un majorant de A pour \leq .
- si A admet un majorant M pour \leq qui appartient à A alors celui-ci est unique et est appelé le maximum de A ou le plus grand élément de A pour \leq .

Chapitre 10

Suites numériques particulières

Sommaire

10.1	Suite arithmétique
10.2	Suites géométriques
10.3	Suites arithmético-géométriques
10.4	Suites récurrentes linéaires d'ordre 2 à coefficients constants 90
10.5	Cas simples de suites récurrentes du type $u_{n+1} = f(u_n)$ 95

10.1 Suite arithmétique

Définition 10.1

Soit (u_n) une suite réelle (resp. complexe).

La suite (u_n) est dite arithmétique s'il existe un réel (resp. complexe) r tel que :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r$$

Le nombre r est unique et appelé raison de la suite (u_n) .

Définition/Propriétés 10.2 (Expression du terme général)

Si (u_n) est une suite arithmétique réelle (resp. complexe) de raison r alors :

$$\forall p \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq p \implies u_n = u_p + (n - p) \, r$$

Définition/Propriétés 10.3 (Limite)

Soit (u_n) une suite arithmétique réelle (resp. complexe) de raison r.

- Si r = 0 alors (u_n) converge vers u_0 .
- Si $r \neq 0$ alors (u_n) diverge avec, dans le cas où la suite est réelle, $u_n \longrightarrow \begin{cases} +\infty & \text{si } r > 0 \\ -\infty & \text{si } r < 0 \end{cases}$

Définition/Propriétés 10.4 (Somme finie de termes consécutifs)

Si (u_n) est une suite arithmétique réelle (resp. complexe) de raison r alors

$$\forall p \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant p \implies \sum_{k=p}^{n} u_k = \frac{\left(u_p + u_n\right)\left(n - p + 1\right)}{2}$$

10.2 Suites géométriques

Définition 10.5

Soit (u_n) une suite réelle (resp. complexe).

La suite (u_n) est dite géométrique s'il existe un réel (resp. complexe) q tel que :

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n$$

Le nombre q est unique et appelé raison de la suite (u_n) .

Définition/Propriétés 10.6 (Expression du terme général)

Si (u_n) est une suite géométrique réelle (resp. complexe) de raison q alors :

$$\forall p \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant p \implies u_n = q^{n-p} \times u_p$$

Définition/Propriétés 10.7 (Limite)

Soit (u_n) une suite géométrique réelle (resp. complexe) de raison q.

- Si |q| < 1 ou $u_0 = 0$ alors (u_n) converge vers 0.
- Si |q| = 1 et $u_0 \neq 0$ alors (u_n) diverge sauf dans le cas particulier q = 1 où elle converge vers u_0 .
- Si |q| > 1 et $u_0 \neq 0$ alors (u_n) diverge avec, dans le cas où la suite est réelle et q > 1,

$$u_n \longrightarrow \begin{cases} +\infty & \text{si } u_0 > 0 \\ -\infty & \text{si } u_0 < 0 \end{cases}$$

Définition/Propriétés 10.8 (Somme finie de termes consécutifs)

Si (u_n) est une suite géométrique réelle (resp. complexe) de raison q alors

$$\forall p \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq p \implies \sum_{k=p}^{n} u_k = \begin{cases} u_p \times \frac{1-q^{n-p+1}}{1-q} & \text{si } q \neq 1 \\ u_p \times (n-p+1) & \text{si } q = 1 \end{cases}$$

88

10.3 Suites arithmético-géométriques

Définition 10.9

Soit (u_n) une suite réelle (resp. complexe).

La suite (u_n) est dite arithmético-géométrique s'il existe des réels (resp. complexes) a et b tels que

$$\forall n \in \mathbb{N}, u_{n+1} = a \times u_n + b$$

Remarques:

- Si a=1, on retrouve les suites arithmétiques de raison b.
- Si b = 0, on retrouve les suites géométriques de raison a.

Définition/Propriétés 10.10 (Expression du terme général)

Soit (u_n) une suite arithmético-géométrique définie par la donnée de u_0 réel (resp. complexe) et par :

$$\forall n \in \mathbb{N}, u_{n+1} = a \times u_n + b$$

avec a et b des réels (resp. complexes) tel que $a \neq 1$

Méthode d'obtention du terme général

On montre que:

• La seule suite (v_n) constante qui vérifie $\forall n \in \mathbb{N}, v_{n+1} = a \times v_n + b$ est donnée par :

$$\forall n \in \mathbb{N}, v_n = \frac{b}{1-a}$$

• La suite w_n définie par $\forall n \in \mathbb{N}, w_n = u_n - v_n$ est alors une suite géométrique de raison a donc :

$$\forall n \in \mathbb{N}, w_n = w_0 \times a^n$$

on en déduit que :

$$\forall n \in \mathbb{N}, u_n = \frac{b}{1-a} + \left(u_0 + \frac{b}{1-a}\right)a^n$$

Définition/Propriétés 10.11 (Limite)

Soit (u_n) une suite arithmético-géométrique définie par la donnée de son premier terme (u_0) et par :

$$\forall n \in \mathbb{N}, u_{n+1} = a \times u_n + b$$

avec a et b des réels (resp. complexes) tels que $a \neq 1$

- Si |a| < 1 ou $u_0 = \frac{b}{1 a}$
- Si $|a| \ge 1$ et $u_0 \ne \frac{b}{1-a}$ alors (u_n) diverge avec, dans le cas où la suite est réelle et a > 1,

$$u_n \longrightarrow \begin{cases} +\infty & \text{si } u_0 > \frac{b}{1-a} \\ -\infty & \text{si } u_0 < \frac{b}{1-a} \end{cases}$$

10.4 Suites récurrentes linéaires d'ordre 2 à coefficients constants

Définition 10.12

Soit (u_n) une suite réelle (resp. complexe).

La suite (u_n) est dite récurrente linéaire homogène d'ordre 2 à coefficients constants s'il existe des réels (resp. complexes) a et b tel que

$$\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0$$

Définition/Propriétés 10.13 (Equation caractéristique associée)

Soit a et b deux réels (resp. complexes).

La recherche de suites géométriques non nulles de raison q vérifiant la relation de récurrence

$$(E): \forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0$$

conduit à l'équation dite "équation caractéristique" suivante :

$$(EC): q^2 + aq + b = 0.$$

Définition/Propriétés 10.14 (Expression du terme général)

- (1) Cas où (u_n) est COMPLEXE et vérifie $\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0$ avec $(a, b) \in \mathbb{C}^2$.
 - ullet Si EC a deux racines distinctes q_1 et q_2 alors il existe des complexes λ_1 et λ_2 tel que

$$\forall n \in \mathbb{N}, u_n = \lambda_1 q_1^n + \lambda_2 q_2^n$$

• Si EC a une racine double q alors il existe des complexes λ_1 et λ_2 tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda_1 + \lambda_2 n) q^n$$

- (2) Cas où (u_n) est RÉELLE et vérifie $\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0$ avec $(a, b) \in \mathbb{R}^2$.
 - Si EC a deux racines distinctes q_1 et q_2 alors il existe des réels λ_1 et λ_2 tel que

$$\forall n \in \mathbb{N}, u_n = \lambda_1 q_1^n + \lambda_2 q_2^n$$

• Si EC a une racine double q alors il existe des réels λ_1 et λ_2 tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda_1 + \lambda_2 n) q^n$$

• Si EC a deux racines complexes non réelles q et \overline{q} alors il existe des réels λ_1 et λ_2 tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda_1 \cos(\theta n) + \lambda_2 \sin(n\theta)) r^n$$

avec $re^{i\theta}$ forme trigonométrique de q.

Démonstration 10.15 (Suite complexes récurrentes linéaire d'ordre 2 à coefficients constants) Soit a et b des complexes avec $b \neq 0$

On cherche à expliciter l'ensemble $\mathcal{E}_{a,b}$ des suites $(u_n)_{n\in\mathbb{N}}$ de complexes qui vérifient :

$$\forall n \in \mathbb{N}, u_{n+2} + au_{n+1}bu_n = 0$$

Préliminaire :

(1) Combinaison linéaire d'éléments de $\mathcal{E}_{a,b}$:

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites appartenant à $\mathcal{E}_{a,b}$ alors pour tout couple (λ_1, λ_2) de complexes la suite $(\lambda_1 u_n + \lambda_2 v_n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$ autrement dit, $\mathcal{E}_{a,b}$ est stable par combinaison linéaire,

<u>Démonstration</u>: On suppose les hypothèses réunies, en notant $(w_n)_{n\in\mathbb{N}}=(\lambda_1u_n+\lambda_2v_n)_{n\in\mathbb{N}}$ on a :

$$\forall n \in \mathbb{N}, w_{n+2} + aw_{n+1} + bw_n = (\lambda_1 u_{n+2} + \lambda_2 v_{n+2}) + a (\lambda_1 u_{n+1} + \lambda_2 v_{n+1}) + b (\lambda_1 u_n + \lambda_2 v_n)$$

$$= \lambda_1 (u_{n+2} + au_{n+1} + bu_n) + \lambda_2 (v_{n+2} + av_{n+1} + bv_n)$$

$$= \lambda_1 (0) + \lambda_2 (0) \text{ car } (u_n)_{n \in \mathbb{N}} \text{ et } (v_n)_{n \in \mathbb{N}} \text{ appartienment à } \mathcal{E}_{a,b}$$

$$= 0$$

Par conséquent, $(w_n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$.

(2) Recherche de suites géométriques dans $\mathcal{E}_{a,b}$:

soit q un complexe non nul.

La suite $(q^n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$ si, et seulement si, q est racine de l'équation suivante.

$$(EC): q^2 + aq + b = 0$$

(EC) est dite équation caractéristique associée à $\mathcal{E}_{a,b}$

<u>Démonstration</u>:

La suite
$$(q^n)_{n\in\mathbb{N}}$$
 appartient à $\mathcal{E}_{a,b}$ si, et seulement si : $\forall n\in\mathbb{N}, q^{n+2}+aq^{n+1}bq^n=0$
si, et seulement si : $\forall n\in\mathbb{N}, q^n\left(q^2+aq+b\right)=0$
si, et seulement si : $\forall n\in\mathbb{N}, q^2+aq+b=0$ car $\forall n\in\mathbb{N}, q^n\neq0$
si, et seulement si : $q^2+aq+b=0$

Détermination des éléments de $\mathcal{E}_{a,b}$:

• Cas où l'équation (EC) a deux racines complexes distinctes q_1 et q_2 .

Dans ce cas, q_1 et q_2 sont tous deux non-nuls car $q_1q_2=b$ (Formule de Viète) et $b\neq 1$

Pour tout complexes λ_1 et λ_2 , la suite $(\lambda_1 q_1^n + \lambda_2 q_2^n)_{n \in \mathbb{N}}$ appartient alors à $\mathcal{E}_{a,b}$ par combinaison linéaire d'élément de $\mathcal{E}_{a,b}$

Montrons qu'il n'y a pas d'autres suites que celles trouvées ci-dessus dans $\mathcal{E}_{a,b}$:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à $\mathcal{E}_{a,b}$

analyse on suppose qu'il existe λ_1 et λ_2 des complexes tel que $\forall n \in \mathbb{N}, u_n = \lambda_1 q_1^n + \lambda_2 q_2^n$.

on a alors en particulier,
$$\begin{cases} u_0 = \lambda_1 + \lambda_2 \\ u_1 = \lambda_1 q_1 + \lambda_2 q_2 \end{cases}$$

Avec les opérations sur les lignes suivantes $q_1L_1 - L_2$ et $q_2L_1 - L_2$, on en déduit que

$$q_1u_0 - u_1 = \lambda_2(q_1 - q_2)$$
 $q_2u_0 - u_1 = \lambda_1(q_2 - q_1)$

Comme q_1 et q_2 sont distincts, on obtient finalement :

$$\lambda_1 = \frac{u_0 q_2 - u_1}{q_2 - q_1} \qquad \lambda_2 = \frac{u_1 - u_0 q_1}{q_2 - q_1}$$

synthèse pour tout $n \in \mathbb{N}$, on note $w_n = u_n - \lambda_1 q_1^n - \lambda_2 q_2^n$ avec les nombres complexes λ_1 et λ_2 trouvées dans l'analyse

Un calcul simple donne alors

$$w_0 = w_1 = 0 \tag{1}$$

Par ailleurs la suite $(w_n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$ comme combinaison linéaire d'éléments de $\mathcal{E}_{a,b}$ donc

$$\forall n \in \mathbb{N}, w_{n+2} + aw_{n+1} + bw_n = 0 \tag{2}$$

Par récurrence immédiate en utilisant (1) et (2), on trouve que $(w_n)_{n\in\mathbb{N}}$ est la suite nulle ce qui prouve que

$$\forall n \in \mathbb{N}, u_n = \lambda_1 q_1^n + \lambda_2 q_2^n$$

Ainsi si $(u_n)_{n\in\mathbb{N}}$ est une suite de $\mathcal{E}_{a,b}$ alors il existe des complexes λ_1 et λ_2 tel que $(u_n)_{n\in\mathbb{N}} = (\lambda_1q_1^n + \lambda_2q_2^n)_{n\in\mathbb{N}}$

conclusion si l'équation caractéristique (EC) a deux racines complexes distinctes q_1 q_2 alors

$$\mathcal{E}_{a,b} = \left\{ \left(\lambda_1 q_1^n + \lambda_2 q_2^n \right)_{n \in \mathbb{N}} \mid (\lambda_1, \lambda_2) \in \mathbb{C}^2 \right\}$$

• cas où l'équation caractéristique (EC) a une racine complexe double q

Le discriminant de (EC) est alors nul $(\operatorname{donc} a^2 = 4b)$ et $q = -\frac{1}{2}a$ ce qui implique que q est non nul sinon on aurait a = b = 0 ce qui est exclu par hypothèse sur b.

Pour tout complexes, λ_1 et λ_2 , la suite $(\lambda_1 q^n + \lambda_2 n q^n)_{n \in \mathbb{N}}$ appartient alors à $\mathcal{E}_{a,b}$ par combinaison linéaire d'élément de $\mathcal{E}_{a,b}$

En, effet $(q^n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$ (d'après le Préliminaire 2) et $(nq^n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$ car

$$\forall n \in \mathbb{N}, (n+2) q^{n+2} + a (n+1) q^{n+1} + b n q^n = n q^n \left(q^2 + a q + b \right) + q^n \left(2q^2 + a q \right)$$
$$= n q^n (0) + q^n (0)$$
$$= 0$$

Montrons qu'il n'y a pas d'autres suites que celles trouvées ci-dessus dans $\mathcal{E}_{a,b}$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à $\mathcal{E}_{a,b}$

analyse on suppose qu'il existe λ_1 et λ_2 des complexes tels que $\forall n \in \mathbb{N}, u_n = \lambda_1 q^n + \lambda_2 n q^n$

On a alors, en particulier,
$$\begin{cases} u_0 &= \lambda_1 \\ u_1 &= \lambda_1 q + \lambda_2 q \end{cases}$$

Comme q est non nul, on trouve :

$$\lambda_1 = u_0 \qquad \lambda_2 = \frac{u_1 - u_0 q}{q}$$

synthèse pour tout $n \in \mathbb{N}$, on note $w_n = u_n - \lambda_1 q^n - \lambda_2 n q^n$ avec les nombres complexes λ_1 et λ_2 trouvées dans l'analyse.

Un calcul simple donne alors :

$$w_0 = w_1 = 0 (1)$$

Par ailleurs, la suite $(w_n)_{n\in\mathbb{N}}$ appartient à $\mathcal{E}_{a,b}$ comme combinaison linéaire d'élément de $\mathcal{E}_{a,b}$ donc

$$\forall n \in \mathbb{N}, w_{n+2} + aw_{n+1} + bw_n = 0 \tag{2}$$

Par récurrence immédiate en utilisant (1) et (2), on trouve que $(w_n)_{n\in\mathbb{N}}$ est la suite nulle ce qui provoque que

$$\forall n \in \mathbb{N}, u_n = \lambda_1 q^n + \lambda_2 n q^n$$

Ainsi si $(v_n)_{n\in\mathbb{N}}$ est une suite de $\mathcal{E}_{a,b}$ alors il existe des complexes λ_1 et λ_2 tel que $(u_n)_{n\in\mathbb{N}} = (\lambda_1 q^n + \lambda_2 n q^n)_{n\in\mathbb{N}}$

conclusion si l'équation caractéristique (EC) a une racine complexe double q alors

$$\mathcal{E}_{a,b} = \left\{ (\lambda_1 q^n + \lambda_2 n q^n)_{n \in \mathbb{N}} \mid (\lambda_1, \lambda_2) \in \mathbb{C}^2 \right\}$$

Démonstration 10.16 (Suite réelles récurrentes linéaire d'ordre 2 à coefficients constants) Soit a et b des réels avec $b \neq 0$

On cherche à expliciter l'ensemble $\mathcal{E}_{a,b}$ des suites $(u_n)_{n\in\mathbb{N}}$ de réels qui vérifient :

$$\forall n \in \mathbb{N}, u_{n+2} + au_{n+1}bu_n = 0$$

on appelle toujours <u>équation caractéristique</u> associée à $\mathcal{E}_{a,b}$ l'équation $(EC):q^2+aq+b=0$

Les deux cas suivants se traitent de la même manière que pour les suites compelxes

• Cas où l'équation (EC) a deux racines réelles distinctes q_1 et q_2 .

conclusion si l'équation caractéristique (EC) a deux racines réelles distinctes q_1 q_2 alors

$$\mathcal{E}_{a,b} = \left\{ \left(\lambda_1 q_1^n + \lambda_2 q_2^n \right)_{n \in \mathbb{N}} \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2 \right\}$$

• cas où l'équation caractéristique (EC) a une racine réelle double q

conclusion si l'équation caractéristique (EC) a une racine réelle double q alors

$$\mathcal{E}_{a,b} = \left\{ (\lambda_1 q^n + \lambda_2 n q^n)_{n \in \mathbb{N}} \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2 \right\}$$

• Cas où l'équation (EC) a deux racines complexes conjuguées non réelles q et \overline{q} .

Comme q et \overline{q} sont distincts (car q n'est pas réel), on sait que les suites complexes vérifiant

$$\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0$$

sont les suites $(\lambda_1 q^n + \lambda_2 \overline{q}^n)_{n \in \mathbb{N}}$ avec $(\lambda_1, \lambda_2) \in \mathbb{C}^2$

Déterminons parmi ces suites <u>celles qui sont à valeurs réelles</u> en utilisant les propriété de la conjugaison.

 $(\lambda_1 q^n + \lambda_2 \overline{q}^n)_{n \in \mathbb{N}} \text{ est à valeurs réelles si, et seulement si, } \forall n \in \mathbb{N}, \lambda_1 q^n + \lambda_2 \overline{q}^n = \overline{\lambda_1 q^n + \lambda_2 \overline{q}^n}$ si, et seulement si, $\forall n \in \mathbb{N}, \lambda_1 q^n + \lambda_2 \overline{q}^n = \overline{\overline{\lambda_1} \overline{q}^n + \overline{\lambda_2} q^n}$ si, et seulement si, $\forall n \in \mathbb{N}, \left(\lambda_1 - \overline{\lambda_2}\right) q^- \left(\overline{\lambda_1} - \lambda_2\right) \overline{q}^n = 0$ si, et seulement si, $\forall n \in \mathbb{N}, \left(\lambda_1 - \overline{\lambda_2}\right) q^- \overline{\left(\lambda_1 - \overline{\lambda_2}\right) q^n} = 0$ si, et seulement si, $\forall n \in \mathbb{N}, 2 \operatorname{Im} \left(\left(\lambda_1 - \overline{\lambda_2}\right) q^n\right) = 0$

- Si $(\lambda_1 q^n + \lambda_2 \overline{q}^n)_{n \in \mathbb{N}}$ est à valeurs réelles, on a donc Im $(\lambda_1 \overline{\lambda_2}) q^0 = 0$ et Im $(\lambda_1 \overline{\lambda_2}) q = 0$ La première égalité donne $\lambda_1 - \overline{\lambda_2} \in \mathbb{R}$. La seconde égalité implique alors que $(\lambda_1 - \overline{\lambda_2})$ Im (q) = 0 puis que $(\lambda_1 - \overline{\lambda_2}) = 0$ (car q n'est pas réel donc sa partie imaginaire est non nulle). Ainsi $\lambda_1 = \lambda_2$.
- Réciproquement, si $\lambda_1 = \overline{\lambda_2}$ alors, pour tout n entier naturel, on a $2i \operatorname{Im} \left(\left(\lambda_1 \overline{\lambda_2} q^n \right) \right) = 0$ donc, avec les équivalences précédentes $(\lambda_1 q^n + \lambda_2 \overline{q}^n)_{n \in \mathbb{N}}$ est à valeurs réelles.

En résumé : les suites de $\mathcal{E}_{a,b}$ sont donc les suites $\left(\lambda_1 q^n + \overline{\lambda_1} \overline{q}^n\right)_{n \in \mathbb{N}}$ avec λ_1 complexe quelconque.

Pour faire apparaître une forme de terme général plus explicite (sans nombres complexes), on écrit q sous forme trigonométrique $q = re^{i\theta}(r > 0$ et θ réel) et λ_1 sous forme algébrique $\lambda_1 = \alpha_1 + i\beta_1(\alpha_1)$ et β_1 réels)

On a alors:

$$\lambda_1 q^n + \overline{\lambda_1} \overline{q}^n = 2\operatorname{Re}\left(\lambda_1 q^n\right) = 2\operatorname{Re}\left(r^n \left(\alpha_1 + i\beta_1\right) e^{in\theta}\right) = 2r^n \left(\alpha_1 \cos\left(n\theta\right) - \beta \sin\left(n\theta\right)\right)$$

ce qui peut encore s'écrire sous la forme

$$u_n = r^n \left(\mu_1 \cos \left(n\theta \right) + \mu_2 \sin \left(n\theta \right) \right)$$

avec $(\mu_1, \mu_2) \in \mathbb{R}^2$ conclusion : Si l'équation (EC) a deux racines complexes conjuguées non réelles q et \overline{q} alors

$$\mathcal{E}_{a,b} = \left\{ r^n \left(\mu_1 \cos(n\theta) + \mu_2 \sin(n\theta) \right) \mid (\mu_1, \mu_2) \in \mathbb{R}^2 \right\}$$

où r = |q| et θ est un argument de q.

10.5 Cas simples de suites récurrentes du type $u_{n+1} = f(u_n)$

Définition 10.17

On s'intéresse à la suite réelle (u_n) définie par récurrence par la donnée de :

$$u_0 \in I \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

avec I un intervalle de \mathbb{R} , non vide et non réduit à un point et $f: I \longrightarrow I$ une fonction.

Définition/Propriétés 10.18 (Limite éventuelle)

Si (u_n) converge vers un réel $\ell \in I$ en lequel f est continue alors $f(\ell) = \ell$. Attention :

- La réciproque de la propriété précédente est FAUSSE.
- La recherche des réels $\ell \in I$ tel que $f(\ell) = \ell$ fournit uniquement les limites éventuelles de (u_n) .
- Une étude complémentaire permet de conclure si (u_n) converge vers une des valeurs trouvées.

Dans certains cas, l'étude de la fonction $g: x \mapsto f(x) - x$ peut être utile pour montrer l'existence de racines pour g qui sont les limites éventuelles de (u_n) .

Définition/Propriétés 10.19 (Monotonie éventuelle)

Pour montrer une monotonie éventuelle de (u_n) , on regarde si le signe de

$$u_{n+1} - un = \begin{cases} f(u_n) - u_n & (1) \\ f(u_n) - f(u_{n_1}) & (2) \end{cases}$$

est fixe lorsque n varie dans \mathbb{N}^* ou à partir d'un certain rang.

- Dans certains cas, l'étude de la fonction $g: x \mapsto f(x) x$ peut aider à déterminer le signe de (1).
- Dans le cas où f est CROISSANTE sur I,
 - une récurrence simple avec (2) montre que, pour tout $n \in \mathbb{N}$, $u_{n+1} u_n$ est du signe de $u_1 u_0$:

$$\begin{cases} \text{Si } u_0 < u_1 \text{ alors } (u_n) \text{est croissante} \\ \text{Si } u_0 > u_1 \text{ alors } (u_n) \text{est décroissante} \end{cases}$$

— l'étude de la fonction $g: x \mapsto f(x) - x$ peut être utile pour déterminer le signe $u_1 - u_0 = f(u_0) - u_0$.

Chapitre 11

Suites numériques

Sommaire

11.1	Généralité sur les suites réelles	96
11.1.1	Définition	96
11.1.2	Suites majorées, minorées, bornées	97
11.1.3	Suites stationnaires, monotones, strictement monotones	98
11.2 I	$f Limite\ d$ 'une suite réelle $f \ldots$	98
11.2.1	Généralités sur les limites	98
11.2.2	Cas particulier des limites finies : retour en 0	99
11.2.3	Suites convergentes et divergentes	99
11.2.4	Opérations sur les limites	99
11.2.5	Limite et relation d'ordre	00
11.2.6	Existence d'une limite finie	01
11.2.7	Existence d'une limite infinie	01
11.2.8	Cas des suites monotones	02
11.3	Suites extraites	03
11.3.1	Définition	03
11.3.2	Suites extraites et limites	03
11.4	Suite complexes	05
11.4.1	Suite complexe bornée et limite d'une suite complexe	06

11.1 Généralité sur les suites réelles

11.1.1 Définition

Définition/Propriétés 11.1

Toute fonction u définie sur $\mathbb N$ et à valeurs dans $\mathbb R$ est dite suite réelle. Notations usuelles

- \bullet Pour tout $n\in\mathbb{N}$ est noté u_n (terme général de la suite)
- \bullet La fonction u est notée $(u_n)_{n\in\mathbb{N}}$ ou $(u_n)_{n\geqslant 0}$ ou encore (u_n)

Remarque

Plus généralement, on appelle suite réelle et on note $(u_n)_{n \ge p}$ toutes fonctions u définie sur

$$\llbracket p : +\infty \rrbracket = \{ n \in \mathbb{N} \mid n \geqslant p \}$$

et à valeurs dans \mathbb{R} avec p un entier fixé.

Définition/Propriétés 11.2 (Modes de définition d'une suite)

Une suite réelle (u_n) peut être définie :

- (1) explicitement par la donnée, pour tout entier naturel n, de l'expression de u_n en fonctions de n
- (2) implicitement par la donnée d'une propriété vérifiée par les termes de la suite
- (3) par récurrence

11.1.2 Suites majorées, minorées, bornées

Définition/Propriétés 11.3

Soit (u_n) une suite réelle et $A = \{u_n \mid n \in \mathbb{N}\}$ la partie de \mathbb{R} contenant tous les termes de la suite.

- La suite (u_n) est dite <u>majorée</u> si A est majorée c'est-à-dire s'il existe <u>un réel</u> M tel que, pour tout entier naturel n, on a $u_n \leq M$
- La suite (u_n) est dite <u>minorée</u> si A est minorée c'est-à-dire s'il existe un réel m tel que, pour tout entier naturel n, on a $m \le u_n$
- La suite (u_n) est dite <u>bornée</u> si A est bornée c'est-à-dire s'il existe des réels M et m tel que, pour tout entier naturel n, on a $m \le u_n \le M$

Définition/Propriétés 11.4 (Caractérisation du caractère borné)

Une suite réelle (u_n) est bornée si, et seulement si, la suite $(|u_n|)$ est majorée par un réel strictement positif.

11.1.3 Suites stationnaires, monotones, strictement monotones

Définition/Propriétés 11.5

Une suite réelle (u_n) est dite :

- stationnaire s'il existe un entier naturel p tel que, pour tout entier n supérieur à p, on a $u_n = u_p$
- <u>croissante</u> si, pour tout entier naturel n, on a $u_n \leq u_{n+1}$
- décroissante si, pour tout entier naturel n, on a $u_{n+1} \leq u_n$
- strictement croissante si, pour tout entier naturel n, on a $u_n < u_{n+1}$
- strictement décroissante si, pour tout entier naturel n, on a $u_{n+1} < u_n$
- monotone si elle est croissante ou décroissante.
- strictement décroissante si elle est strictement croissante ou strictement décroissante

11.2 Limite d'une suite réelle

11.2.1 Généralités sur les limites

Définition/Propriétés 11.6 (Définition d'une limite finie)

Soit (u_n) une suite réelle et ℓ un réel.

On dit que la suite (u_n) a pour limite ℓ si tout segment centrée en ℓ contient tous les termes de la suite (u_n) à partir d'un certain rang, ce qui se traduit par

$$\forall x \in \mathbb{R}^*, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0, \Longrightarrow |u_n - \ell| \leqslant \varepsilon$$

Définition/Propriétés 11.7 (Définition d'une limite infinie)

Soit (u_n) une suite réelle.

• On dit que la suite (u_n) a pour limite $+\infty$ si tout intervalle du type $[A; +\infty[$ contient tous les termes de la suite (u_n) à partir d'un certain rang, ce qui se traduit par :

$$\forall A \in \mathbb{R}^*, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0, \implies u_n \geqslant A$$

• On dit que la suite (u_n) a pour limite $-\infty$ si tout intervalle du type $]\![-\infty; A]\![$ contient tous les termes de la suite (u_n) à partir d'un certain rang, ce qui se traduit par :

$$\forall A \in \mathbb{R}^*, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0, \implies u_n \leqslant A$$

Propriétés 11.8 (Unicité de la limte d'une suite)

Si (u_n) est une suite réelle de limite ℓ alors ℓ est unique et notée $\ell = \lim u_n$ ou $u_n \longrightarrow \ell$

11.2.2 Cas particulier des limites finies : retour en 0

Définition/Propriétés 11.9

Soit (u_n) une suite réelle et ℓ un réel.

Pour tout $n \in \mathbb{N}, |u_n - \ell| = |(u_n - \ell) - 0| = ||u_n - \ell| - 0|$ donc :

- \bullet la suite (u_n) a pour limite (ℓ) si, et seulement si, la suite $(u_n-\ell)$ converge vers 0
- la suite (u_n) a pour limite (ℓ) si, et seulement si, la suite $|u_n \ell|$ converge vers 0

11.2.3 Suites convergentes et divergentes

Définition 11.10

Une suite réelle (u_n) est dite :

- \bullet convergente si elle admet une limite réelle ℓ et, dans ce cas, on dit que (u_n) converge vers ℓ
- divergente sinon.

Propriétés 11.11

- (1) Toute suite réelle convergente est bornée.
- (2) Toute suite réelle non bornée est divergente.

11.2.4 Opérations sur les limites

Soit (u_n) et u'_n deux suites réelles et α un réel.

Définition/Propriétés 11.12

(1) Addition

- (a) Si $u_n \longrightarrow \ell$ avec $\ell \in \mathbb{R}$ et $u'_n \longrightarrow \ell'$ avec $\ell' \in \mathbb{R}$ alors $u_n + u'_n \longrightarrow \ell + \ell'$
- (b) Si $u_n \longrightarrow +\infty$ et $u_n' \longrightarrow \ell'$ avec $\ell' \in \mathbb{R} \cup \{+\infty\}$ alors $u_n + u_n' \longrightarrow +\infty$
- (c) Si $u_n \longrightarrow -\infty$ et $u_n' \longrightarrow \ell'$ avec $\ell' \in \mathbb{R} \cup \{-\infty\}$ alors $u_n + u_n' \longrightarrow -\infty$

(2) Multiplication par un réel.

- (a) Si $u_n \longrightarrow \ell$ avec $\ell \in \mathbb{R}$ alors $\alpha u_n \longrightarrow \alpha \ell$
- (b) Si $u_n \longrightarrow +\infty$ alors $\alpha u_n \longrightarrow \begin{cases} +\infty & \text{si } \alpha > 0 \\ 0 & \text{si } \alpha = 0 \\ -\infty & \text{si } \alpha < 0 \end{cases}$ (c) Si $u_n \longrightarrow -\infty$ alors $\alpha u_n \longrightarrow \begin{cases} +\infty & \text{si } \alpha < 0 \\ 0 & \text{si } \alpha = 0 \\ -\infty & \text{si } \alpha > 0 \end{cases}$

(3) Produit

- (a) Si $u_n \longrightarrow \ell$ avec $\ell \in \mathbb{R}$ et $u'_n \longrightarrow \ell'$ avec $\ell' \in \mathbb{R}$ alors $u_n u'_n \longrightarrow \ell \ell'$
- (b) Si $u_n \longrightarrow +\infty$ et $u'_n \longrightarrow \ell'$ avec $\ell' \in \overline{\mathbb{R}} \setminus \{0\}$ alors $u_n u'_n \longrightarrow \begin{cases} +\infty & \text{si } \ell' > 0 \\ -\infty & \text{si } \ell' < 0 \end{cases}$ (c) Si $u_n \longrightarrow -\infty$ et $u'_n \longrightarrow \ell'$ avec $\ell' \in \overline{\mathbb{R}} \setminus \{0\}$ alors $u_n u'_n \longrightarrow \begin{cases} -\infty & \text{si } \ell' > 0 \\ +\infty & \text{si } \ell' < 0 \end{cases}$

(4) Inverse

- (a) Si $u_n \longrightarrow \ell$ avec $\ell \in Rs$ alors $\frac{1}{u_n} \longrightarrow \frac{1}{\ell}$
- (b) Si $u_n \longrightarrow \ell$ avec $\ell \in \{+\infty, -\infty\}$ alors $\frac{1}{u_n} \longrightarrow 0$
- (c) Si $u_n \longrightarrow 0$ avec les termes u_n strictement positifs à partir d'un certain rang alors $\frac{1}{u} \longrightarrow +\infty$
- (d) Si $u_n \longrightarrow 0$ avec les termes u_n strictement négatifs à partir d'un certain rang alors

Limite et relation d'ordre 11.2.5

Définition/Propriétés 11.13 (Passage à la limite d'une inégalité large)

Soit (u_n) et (u'_n) deux suites réelles convergentes respectivement vers des réels ℓ et ℓ'

S'il existe un entier n_0 tel que $\forall n \in \mathbb{N}, \ n \leq n_0 \implies u_n \leq u_n'$ alors $\ell \leq \ell'$

Définition/Propriétés 11.14 (Signes des termes d'une suite et signe de la limite) Soit (u_n) une suite réelle de limite ℓ appartenant $\overline{\mathbb{R}}$.

- Si $\ell > 0$ alors il existe un rang à partir duquel tous les termes u_n sont strictement positif
- Si $\ell < 0$ alors il existe un rang à partir duquel tous les termes u_n sont strictement négatif

11.2.6 Existence d'une limite finie

Théorème 11.15 (Théorème d'encadrement)

Soit (u_n) , (v_n) et (w_n) trois suites réelles et ℓ un réel.

S'il existe un entier n_0 tel que $\forall n \in \mathbb{N}$, $n \ge n_0 \implies v_n \le u_n \le w_n$ et si (v_n) et (w_n) convergent vers ℓ alors (u_n) converge vers ℓ .

Propriétés 11.16 (pratique)

Soit (u_n) et (v_n) deux suites réelles et ℓ un réel.

S'il existe un rang à partir duquel on a

$$|u_n - \ell| \le v_n$$
 avec (v_n) convergente vers 0

alors (u_n) converge vers ℓ .

Définition/Propriétés 11.17 (Conséquence)

Soit (u_n) et (v_n) deux suites réelles.

- (1) Si (u_n) converge vers un réel ℓ alors $(|u_n|)$ converge vers $|\ell|$.
- (2) Si (u_n) converge vers un réel 0 et v_n est bornée alors $(u_n v_n)$ converge vers 0

11.2.7 Existence d'une limite infinie

Théorème 11.18 (Théorème de minoration)

Soit (u_n) et (v_n) deux suites réelles.

S'il existe un entier n_0 tel que $\forall n \in \mathbb{N}, n \leq n_0 \implies v_n \leq u_n$ et si (v_n) a pour limite $+\infty$ alors (u_n) a pour limite $+\infty$

Théorème 11.19 (Théorème de majoration)

Soit (u_n) et (v_n) deux suites réelles.

S'il existe un entier n_0 tel que $\forall n \in \mathbb{N}, n \leq n_0 \implies v_n \geq u_n$ et si (v_n) a pour limite $-\infty$ alors (u_n) a pour limite $-\infty$

11.2.8 Cas des suites monotones

Théorème 11.20 (Théorèmes de la limite monotone)

- Si (u_n) est une suite réelle croissante et majorée alors (u_n) converge vers $\ell = \sup \{u_n \mid n \in \mathbb{N}\}$
- Si (u_n) est une suite réelle croissante et non majorée alors (u_n) a pour limite $+\infty$
- Si (u_n) est une suite réelle décroissante et minorée alors (u_n) converge vers $\ell = \inf \{u_n \mid n \in \mathbb{N}\}$
- Si (u_n) est une suite réelle décroissante et non minorée alors (u_n) a pour limite $-\infty$

Théorème 11.21 (Théorème des suites adjacentes)

Soit (u_n) et (v_n) deux suites réelles.

Si (u_n) est croissante, (v_n) est décroissante et $(v_n - u_n)$ converge vers 0 alors (u_n) et (v_n) convergent vers une même limite réelle ℓ qui vérifie $\forall n \in \mathbb{N}, u_n \leq \ell \leq v_n$

Démonstration 11.22 (Théorème des suites adjacentes) On suppose les hypothèses réunies.

• Montrons tout d'abord que : $\forall n \in \mathbb{N}, u_v \leq v_n$

Raisonnons par l'absurde en supposant qu'il existe un entier naturel n_0 tel que $v_{n_0} < u_{n_0}$. Par monotonie des suites (u_n) et (v_n) , on en déduit :

$$\forall n \in \mathbb{N}, n \geq n_0 \implies v_n \leq v_{n_0} < u_{n_0} \leq u_n$$

ce qui donne

$$\forall n \in \mathbb{N}, u_{n_0} - v_{n_0} \leq u_n - v_n$$

La suite $(u_n - v_n)$ étant convergente de limite nulle, par passage à la limite dans une inégalité large, on obtient alors : $u_{n_0} - v_{n_0} \le 0$ ce qui contredit l'hypothèse fait que $v_{n_0} < u_{n_0}$

 $\operatorname{con\underline{clusion}}: \forall n \in \mathbb{N}, u_n \leq v_n$

• Montrons alors que les suites (u_n) et (v_n) convergent.

Par décroissance de la suite (v_n) et le résultat trouvé ci-dessus, on a : $\forall n \in \mathbb{N}, u_n \leq v_0$. La suite (u_n) est donc croissante et majorée. Par théorème de la limite monotone, on en déduit que la suite (u_n) converge

De même, la suite (v_n) est décroissante et minorée (par u_0) donc elle converge.

On note $\ell = \lim u_n$ et $\ell' = \lim v_n$. Par opération algébrique sur les limites, la suite $(u_n - v_n)$ converge vers $\ell - \ell'$. Par unicité de la limite, l'hypothèse faite sur la suite $(u_n - v_n)$ donne alors $(\ell - \ell' = 0)$ donc $\ell = \ell'$

<u>conclusion</u>: les suites (u_n) et (v_n) convergent vers une même limite ℓ .

- \bullet Montrons que $\forall n \in \mathbb{N}, u_n \leq \ell \leq v_n$ Par théorème de la limite monotone,
 - comme u_n est croissante et convergente vers ℓ , on a $\ell = \sup_{n \in \mathbb{N}} u_n$
 - comme v_n est décroissante et convergente vers ℓ , on a $\ell = \inf_{n \in \mathbb{N}} u_n$

conclusion : $\forall n \in \mathbb{N}, u_n \leq \ell \leq v_n$

11.3 Suites extraites

11.3.1 Définition

Définition 11.23

Soit (u_n) une suite réelle.

On appelle suite extraite de (u_n) toute suite (v_k) telle que $\forall k \in \mathbb{N}, v_k = u_{\varphi(k)}$ avec φ une fonction strictement croissante définie sur \mathbb{N} et à valeurs dans \mathbb{N} .

11.3.2 Suites extraites et limites

Propriétés 11.24

Si u_n est une suite réelle de limite $\ell \in \mathbb{R}$ alors toutes les suites extraites de (u_n) ont la même limite ℓ .

Démonstration 11.25 (Suites extraites et limites) Résultat préliminaire

Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une fonction strictement croissante.

On a $\varphi(0) \ge 0$. Soit $k \in \mathbb{N}$ tel que $\varphi(k) \ge k$ alors par stricte croissance de φ , $\varphi(k+1) > \varphi(k)$ donc, puisque φ est à valeurs dans \mathbb{N} , on a $\varphi(k+1) \ge \varphi(k) + 1$ et enfin $\varphi(k+1) \ge k + 1$.

Par principe de récurrence, on a donc :

$$\forall k \in \mathbb{N}, \varphi(k) \geqslant k$$

• On suppose que u est une suite réelle de limite réelle ℓ et $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une fonction strictement croissante.

Soit $\varepsilon \in \mathbb{R}_+^*$. Par hypothèse sur la suite u il existe un entier naturel n_0 tel que pour tout entier naturel n supérieur ou égal à n_0 , on a $|u_n - \ell \leq \varepsilon|$

Soit $k \in \mathbb{N}$ tel que $k \ge n_0$. Alors par stricte croissance de φ et avec le résultat préliminaire, on a $\varphi(k) \ge \varphi(n_0) \ge n_0$ ce qui permet d'obtenir, avec ce qui précède, $|u_{\varphi(k)} - \ell| \le \ell$

Autrement dit, la suite $(u_{\varphi(k)})$ a pour limite ℓ .

• On suppose que u est une suite réelle de limite $+\infty$ et $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ une fonction strictement croissante.

Soit $A \in \mathbb{R}_+^*$. Par hypothèse sur la suite u, il existe un entier naturel n_0 tel que pour tout entier naturel n supérieur ou égal à n_0 , on a $u_n \ge A$

Soit $k \in \mathbb{N}$ tel que $k \ge n_0$. Comme ci-dessus obtient $u_{\varphi(k)} \ge A$.

En résumé : $\forall A \in Rps, \exists n_0 \in \mathbb{N}, k \geq n_0 \implies u_{\varphi(k)} \geq A$

• Le cas où u est une suite réelle de limite $-\infty$ se traite de la même façon.

<u>Conclusion</u>: Si u est une suite réelle de limite $k \in \mathbb{R}$ alors toute suite extraite de u a pour limite ℓ .

Définition/Propriétés 11.26 (Utilisation de suites extraites pour prouver une divergence) Soit (u_n) une suite réelle.

- S'il existe une suite extraite de (u_n) qui diverge alors la suite (u_n) diverge
- S'il existe deux suites extraites de (u_n) de limites réelles différentes alors la suite (u_n) diverge

Définition/Propriétés 11.27 (Utilisation des suites extraites pour prouver une convergence) Soit (u_n) une suite réelle.

Si les suites u_{2n} et (u_{2n+1}) ont pour limite ℓ avec ℓ appartenant à $\overline{\mathbb{R}}$ alors (u_n) a pour limite ℓ

Théorème 11.28 (Théorème de Bolzano-Weierstrass)

Toute suite réelle bornée admet une suite extraite convergente.

Démonstration 11.29 (Théorème de Bolzano-Weierstrass)

• Montrons le résultat annoncé dans le cas des suites réelles

On suppose que (u_n) est une suite réelle bornée.

 (u_n) admet donc une borne inférieure et une borne supérieure; on note $m=\inf_{n\in\mathbb{N}}u_n$ et $M=\sup_{n\in\mathbb{N}}u_n$.

- Construction d'une suite de segments par dichotomie
 - (1) On note I_0 le segment $[m; M] : I_0$ est de longueur de M-m et contient tous les termes de la suite u_n .

- (2) L'un des deux segments $\left[m ; \frac{m+M}{2}\right]$ ou $\left[\frac{m+M}{2} ; M\right]$ contient nécessairement une infinité de termes de la suite (u_n) ; on le note $I_1 : I_1$ est inclus dans I_0 , est de longueur $\frac{M-m}{2}$ et contient une infinité de termes de la suite (u_n)
- (3) à partir de I_1 , on construit un segment noté I_2 inclus dans I_1 , de longueur $\frac{M-m}{2^2}$ et qui contient une infinité de termes de la suite (u_n)

En répétant l'opération on construit ainsi une suite de segments (I_n) telle que :

- (1) $\forall n \in \mathbb{N}, I_{n+1} \subseteq I_n$
- (2) pour tout $n \in \mathbb{N}$, I_n est de longueur $\frac{M-m}{2^n}$
- (3) pour tout $n \in \mathbb{N}$, I_n contient une infinité de termes de la suite.

Dans chaque segment I_n , il y a une infinité de termes de la suite (u_n) . Il existe donc une application $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que

$$\forall n \in \mathbb{N}, u_{\varphi(n)} \in I_n$$

— Montrons que la suite $(u_{\varphi(n)})$ ainsi construite, qui est extraite de (u_n) , est une suite convergente.

Pour tout $n \in \mathbb{N}$, on note $I_n = [\alpha_n ; \beta_n]$. Par décroissance de la suite (I_n) pour l'inclusion, la suite α_n est croissante et la suite (β_n) est décroissante. Par ailleurs, la suite $(\beta_n - \alpha_n)$ est égale à la suite $\frac{(M-m)}{2^n}$ donc elle converge vers 0.

Par théorème des suites adjacentes, on en déduit que les suites (α_n) et (β_n) convergent vers une même limite ℓ . Le théorème d'encadrement utilisé avec les inégalités $\forall n \in \mathbb{N}, \alpha_n \leq u_{\varphi(n)} \leq \beta_n$ permet alors de conclure que la suite $(u_{\varphi(n)})$ converge vers ℓ .

• Montrons le résultat annoncé dans le cas des suites complexes Soit u_n une suite bornée de \mathbb{C} .

Alors $(x_n) = (\text{Re}(u_n))$ et $(y_n) = (\text{Im}(u_n))$ sont deux suites bornées de \mathbb{R}

On peut donc extraire de (x_n) une suite convergente $x_{\varphi_1(n)}$ notée (a_n)

La suite $(y_{\varphi_1(n)})$, notée (β_n) , est alors une suite bornée de \mathbb{R} , car elle est extraite de la suite bornée (y_n) de \mathbb{R} . On peut donc extraire de (b_n) une suite convergente $(\beta_{\varphi_2(n)})$ notée (β_n)

La suite $(a_{\varphi_2(n)})$, notée (α_n) , est alors convergente puisqu'elle est extraite de la suite convergente (a_n)

On en déduit que la suite $(\alpha_n + i\beta_n)$ est une suite extraite de (u_n) qui converge. Conclusion de toute suite bornée de complexes, on peut extraire une suite convergente

11.4 Suite complexes

Définition 11.30

Toute fonction u définie sur \mathbb{N} et à valeurs dans \mathbb{C} est dite suite complexe.

Définition/Propriétés 11.31 (Ce qui s'étend aux suites complexes)

- Notation séquentielle, modes de définition d'une suite, suite stationnaire
- Limite finie : définition et caractérisation (cf. infra), unicité, opérations sur les limites finies
- Convergence et divergence
- Suite bornée : définition (cf. infra), lien avec la convergence
- Suites extraites : définitions, propriétés, théorème de Bolzano-Weierstrass

Définition/Propriétés 11.32 (Ce qui ne s'étend pas aux suites complexes)

- Notation de limite infinie
- Résultats utilisant la relation d'ordre dont les théorèmes d'existence de limite.

11.4.1 Suite complexe bornée et limite d'une suite complexe

Définition 11.33

Une suite complexe (u_n) est dite bornée s'il existe un réel strictement positif M tel que, pour tout entier natureln, $|u_n| \leq M$

Définition 11.34 (Limite d'une suite complexe)

Soit (u_n) une suite complexe et ℓ un complexe.

On dit que la suite (u_n) a pour limite ℓ si tout disque fermé centré en ℓ contient tous les termes de la suite (u_n) à partir d'un certain rang, ce qui se traduit par

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \Longrightarrow |u_n - \ell| \leqslant \varepsilon$$

Définition/Propriétés 11.35 (Caractérisation de la limite d'une suite complexe) Soit (u_n) une suite complexe et ℓ un complexe.

La suite complexe (u_n) a pour limite ℓ si et seulement si, les suites réelles $(\text{Re}(u_n))$ et $\text{Im}(u_n)$ ont respectivement pour limites $\text{Re}(\ell)$ et $\text{Im}(\ell)$

Chapitre 12

Limite et continuité

Sommaire

12.1 étude locale des fonctions à valeurs réelles	108
12.1.1 Limite en un point a de $\overline{\mathbb{R}}$ appartenant à I ou extrémité de I .	108
12.1.2 Limite à gauche et à droite en un réel appartenant à I ou extrén	mité de I . 109
12.1.3 Caractérisation séquentielle de la limite	109
12.1.4 Opérations sur les limites	109
12.1.5 Limites et relation d'ordre	111
12.1.6 Existence d'une limite finie	111
12.1.7 Existence d'une limite infinie	112
12.1.8 Théorèmes de limite monotone	112
12.2 Continuité des fonctions à valeurs réelles en un point .	113
12.2.1 Définition	113
12.2.2 Condition nécessaire et suffisante de continuité en un point $$	113
12.2.3 Caractérisation séquentielle de la continuité en un point \dots	113
12.2.4 Opérations sur les fonctions continues en un point	113
12.2.5 Composition de fonctions continues en un point	114
12.2.6 Prolongement par continuité	114
12.3 Continuité des fonctions sur un intervalle	114
12.3.1 Définition	114
12.3.2 Théorèmes généraux : combinaison linéaire, produit, quotient, c	omposée 115
12.3.3 Théorème des valeurs intermédiaires et corollaires	115
12.3.4 Théorème des bornes atteintes et corollaire	
12.3.5 Théorème de la bijection	118
12.4 Cas des fonctions à valeurs complexes	119
12.4.1 Ce qui s'étend aux fonctions complexes	
12.4.2 Ce qui ne s'étend pas aux fonctions à valeurs complexes	119
12.4.3 Limite d'une fonction à valeurs complexes	120

Notation 12.1

Dans ce chapitre, I et J désignent des intervalles de \mathbb{R} , non vides et non réduits à un point.

12.1 étude locale des fonctions à valeurs réelles

12.1.1 Limite en un point a de $\overline{\mathbb{R}}$ appartenant à I ou extrémité de I

Définition 12.2

Soit f une fonction définie sur I à valeur dans \mathbb{R}

- Cas où a est un réel, appartenant à I ou extrémité de I. On dit que f admet pour limite ℓ en a si : $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists \delta \in \mathbb{R}_+^*$, $\forall x \in I$, $|x - a| \leq \delta \implies |f(x) - \ell| \leq \varepsilon$
- cas où $a = +\infty$ est extrémité de IOn dit que f admet pour limite ℓ en $+\infty$ si : $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists B \in \mathbb{R}_+^*$, $\forall x \in I$, $x \ge B \implies |f(x) - \ell| \le \varepsilon$
- cas où $a = -\infty$ est extrémité de IOn dit que f admet pour limite ℓ en $-\infty$ si : $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists B \in \mathbb{R}_-^*$, $\forall x \in I$, $x \leq B \implies |f(x) - \ell| \leq \varepsilon$

Définition 12.3 (Définitions d'une limite infinie)

 \bullet cas où a est un réel, appartenant à I ou extrémité de I.

On dit que f admet pour limite $+\infty$ en a si : $\forall A \in \mathbb{R}_+^*$, $\exists \delta \in \mathbb{R}_+^*$, $\forall x \in I$, $|x-a| \le \delta \implies f(x) \ge A$ On dit que f admet pour limite $-\infty$ en a si : $\forall A \in \mathbb{R}^*$ $\exists \delta \in \mathbb{R}^*$ $\forall x \in I$ $|x-a| \le \delta \implies f(x) = 0$

On dit que f admet pour limite $-\infty$ en a si : $\forall A \in \mathbb{R}_{+}^{*}$, $\exists \delta \in \mathbb{R}_{+}^{*}$, $\forall x \in I$, $|x - a| \leq \delta \implies f(x) \leq A$

• cas où $a = +\infty$ est extrémité de I

On dit que f admet pour limite $+\infty$ en $+\infty$ si : $\forall A \in \mathbb{R}_+^*$, $\exists B \in \mathbb{R}_+^*$, $\forall x \in I$, $x \ge B \implies f(x) \ge A$ On dit que f admet pour limite $-\infty$ en $+\infty$ si : $\forall A \in \mathbb{R}_+^*$, $\exists B \in \mathbb{R}_+^*$, $\forall x \in I$, $x \ge B \implies f(x) \le A$

• cas où $a = -\infty$ est extrémité de I

On dit que f admet pour limite $+\infty$ en $-\infty$ si : $\forall A \in \mathbb{R}_+^*$, $\exists B \in \mathbb{R}_-^*$, $\forall x \in I$, $x \leqslant B \implies f(x) \geqslant A$ On dit que f admet pour limite $-\infty$ en $-\infty$ si : $\forall A \in \mathbb{R}_+^*$, $\exists B \in \mathbb{R}_-^*$, $\forall x \in I$, $x \leqslant B \implies f(x) \leqslant A$

Définition/Propriétés 12.4 (Unicité)

Si f admet une limite ℓ en a alors celle-ci est unique et on note $f(x) \xrightarrow[x \to a]{} \ell$ ou $\lim_{x \to a} f(x) = \ell$.

Définition/Propriétés 12.5 (Existence d'une limite en un point où la fonction est définie) Si f est définie en a et possède une limite en a alors $\lim_{x \to a} f(x) = f(a)$.

Définition/Propriétés 12.6 (condition nécessaire d'existence de limite)

Si f possède une limite finie en a alors f est bornée au voisinage de a.

12.1.2 Limite à gauche et à droite en un réel appartenant à I ou extrémité de I.

Notation 12.7

Soit f une fonction définie sur I, à valeurs dans \mathbb{R} .

Définition 12.8

Soit a un point de \mathbb{R} , appartenant à I ou extrémité de I.

- (1) On dit que f admet une limite à gauche en a si la restriction $f_{|I\cap]-\infty;a[}$ admet une limite en a Dans ce cas, on note $\lim_{x \to a^-} f(x)$ ou $\lim_{x \to a^-} f(x)$ la limite obtenue.
- (2) On dit que f admet une limite à droite en a si la restriction $f_{|I\cap]a;+\infty[}$ admet une limite en a Dans ce cas, on note $\lim_{x \to a^+} f(x)$ ou $\lim_{x \to a} f(x)$ la limite obtenue.

Définition/Propriétés 12.9 (Condition nécessaire et suffisante d'existence de limite) Soit a un point de \mathbb{R} appartenant à I mais pas extrémité de I

f admet une limite en a si, et seulement si, les trois conditions suivantes sont réunies :

- (1) f a une limite à gauche en a.
- (2) f a une limite à droite en a
- (3) $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

12.1.3 Caractérisation séquentielle de la limite

Théorème 12.10

Soit f une fonction définie sur I, à valeurs dans \mathbb{R} Soit a un point de $\overline{\mathbb{R}}$, appartenant à I ou extrémité de I, et ℓ un point de $\overline{\mathbb{R}}$

f admet une limite ℓ en a si, et seulement si, pour toute suite (x_n) d'éléments de I qui admet pour limite a, la suite réelle $(f(x_n))$ admet pour limite ℓ

12.1.4 Opérations sur les limites

Définition/Propriétés 12.11

Soit a un point de \mathbb{R} , appartenant à I ou extrémité de I. Soit f et g deux fonctions définies sur I et à valeurs réelles et λ un réel

(1) Addition

- (a) Si $f(x) \xrightarrow[x \to a]{} \ell$ avec $\ell \in \mathbb{R}$ et $g \xrightarrow[x \to a]{} \ell'$ avec $\ell' \in \mathbb{R}$ alors $(f+g)(x) \xrightarrow[x \to a]{} \ell + \ell'$
- (b) Si $f(x) \xrightarrow[x \to a]{} +\infty$ et $g(x) \xrightarrow[x \to a]{} \ell'$ avec $\ell' \in \mathbb{R} \cup \{+\infty\}$ alors $(f+g)(x) \xrightarrow[x \to a]{} +\infty$ (c) Si $f(x) \xrightarrow[x \to a]{} -\infty$ et $g(x) \xrightarrow[x \to a]{} \ell'$ avec $\ell' \in \mathbb{R} \cup \{-\infty\}$ alors $(f+g)(x) \xrightarrow[x \to a]{} -\infty$

(2) Multiplication par un réel.

(a) Si
$$f(x) \xrightarrow[x \to a]{} \ell$$
 avec $\ell \in \mathbb{R}$ alors $\lambda f(x) \xrightarrow[x \to a]{} \lambda \ell$

(b) Si
$$f(x) \xrightarrow[x \to a]{} +\infty$$
 alors $\lambda f(x) \xrightarrow[x \to a]{} \begin{cases} +\infty & \text{si } \lambda > 0 \\ 0 & \text{si } \lambda = 0 \\ -\infty & \text{si } \lambda < 0 \end{cases}$

(c) Si
$$f(x) \xrightarrow[x \to a]{} -\infty$$
 alors $\lambda f(x) \xrightarrow[x \to a]{} \begin{cases} +\infty & \text{si } \lambda < 0 \\ 0 & \text{si } \lambda = 0 \\ -\infty & \text{si } \lambda > 0 \end{cases}$

(a) Si
$$f(x) \underset{x \to a}{\longrightarrow} \ell$$
 avec $\ell \in \mathbb{R}$ et $g(x) \underset{x \to a}{\longrightarrow} \ell'$ avec $\ell' \in \mathbb{R}$ alors $(fg)(x) \underset{x \to a}{\longrightarrow} \ell \ell'$

(b) Si
$$f(x) \xrightarrow[x \to a]{} +\infty$$
 et $g(x) \xrightarrow[x \to a]{} \ell'$ avec $\ell' \in \overline{\mathbb{R}} \setminus \{0\}$ alors $(fg)(x) \xrightarrow[x \to a]{} \{+\infty \text{ si } \ell' > 0 \\ -\infty \text{ si } \ell' < 0\}$
(c) Si $f(x) \xrightarrow[x \to a]{} -\infty$ et $g(x) \xrightarrow[x \to a]{} \ell'$ avec $\ell' \in \overline{\mathbb{R}} \setminus \{0\}$ alors $(fg)(x) \xrightarrow[x \to a]{} \{-\infty \text{ si } \ell' > 0 \\ +\infty \text{ si } \ell' < 0\}$

(c) Si
$$f(x) \xrightarrow[x \to a]{} -\infty$$
 et $g(x) \xrightarrow[x \to a]{} \ell'$ avec $\ell' \in \overline{\mathbb{R}} \setminus \{0\}$ alors $(fg)(x) \xrightarrow[x \to a]{} \{-\infty$ si $\ell' > 0$

On suppose que f ne s'annule pas sur un voisinage de a sauf éventuellement en a.

(a) Si
$$f(x) \xrightarrow[x \to a]{} \ell$$
 avec $\ell \in Rs$ alors $\frac{1}{f(x)} \xrightarrow[x \to a]{} \frac{1}{\ell}$

(b) Si
$$f(x) \xrightarrow[x \to a]{} \ell$$
 avec $\ell \in \{+\infty, -\infty\}$ alors $\frac{1}{f(x)} \xrightarrow[x \to a]{} 0$

(c) Si
$$f(x) \xrightarrow[x \to a]{} 0$$
 avec les termes $f(x)$ strictement positifs au voisinage de a alors $\frac{1}{f(x)} \xrightarrow[x \to a]{} +\infty$

(d) Si
$$f(x) \xrightarrow[x \to a]{} 0$$
 avec les termes $f(x)$ strictement négatifs au voisinage de a alors $\frac{1}{f(x)} \xrightarrow[x \to a]{} 0$

(5) Composition

Soit f une fonction définie sur I et à valeurs réelles telle que $f(I) \subseteq J$.

Soit g une fonction définie sur J et à valeurs réelles.

Soit a un point de $\overline{\mathbb{R}}$, appartenant à I ou extrémité de I.

Soit b un point de $\overline{\mathbb{R}}$, appartenant à J ou extrémité de J.

Soit ℓ un point de \mathbb{R} .

Si f admet pour limite b en a et si g admet pour limite ℓ en b alors $g \circ f$ admet pour limite ℓ en a. Autrement dit,

$$f(x) \xrightarrow[x \to a]{} b \text{ et } g(y) \xrightarrow[y \to b]{} \ell \implies g \circ f(x) \xrightarrow[x \to a]{} \ell$$

12.1.5 Limites et relation d'ordre

Soit a un point de $\overline{\mathbb{R}}$, appartenant à I ou extrémité de I.

Définition/Propriétés 12.12 (Passage à la limite d'une inégalité large) Soit $(\ell, \ell') \in \overline{\mathbb{R}} \times \overline{\mathbb{R}}$

Si f et g sont deux fonctions définies sur I, à valeurs réelles telles que $f \leq g$ au voisinage a avec f de limite ℓ en a et g de limite ℓ' en a alors $\ell \leq \ell'$

Définition/Propriétés 12.13 (Signe de la fonction et signe de la limite)

Soit f une fonction définie sur I, à valeurs réelles, de limite $\ell \in \mathbb{R}$ en a.

- Si $\ell > 0$ alors f est strictement positive au voisinage de a.
- Si $\ell < 0$ alors f est strictement négative au voisinage de a.

12.1.6 Existence d'une limite finie

Soit a un point de \mathbb{R} , appartenant à I ou extrémité de I.

Théorème 12.14 (Théorème d'encadrement)

Soit f une fonction définie sur I et à valeurs réelles, et ℓ un nombre réel. S'il existe deux fonctions g et h définies sur I, à valeurs réelles telles que $g \le f \le h$ au voisinage de a avec g et h de même limite finie ℓ en a alors f admet pour limite ℓ en a.

Définition/Propriétés 12.15 (Propriété pratique)

Soit f et g deux fonctions définies sur I, à valeurs réelles, et ℓ un nombre réel. S'il existe un voisinage de a sur lequel on a pour tout x, $|f(x) - \ell| \le g(x)$ avec g de limite 0 en a alors f a pour limite ℓ en a.

Définition/Propriétés 12.16 (Corollaires de la propriété pratique)

Soit f et g deux fonctions définies sur I, à valeurs réelles.

- Si f a pour limite le réel ℓ en a alors |f| a pour limite $|\ell|$ en a.
- $\bullet\,$ Si f a pour limite 0 en a et si g est bornée au voisinage de a alors fg a pour limite 0 en a

12.1.7 Existence d'une limite infinie

Soit f une fonction définie sur I et à valeurs réelles.

Soit a un point de \mathbb{R} , appartenant à I ou extrémité de I.

Théorème 12.17 (Théorème de minoration)

S'il existe une fonction g définie sur I, à valeurs réelles, telle que $g \leq f$ au voisinage de a avec g de limite $+\infty$ en a alors f admet pour limite $+\infty$ en a.

Théorème 12.18 (Théorème de majoration)

S'il existe une fonction h définie sur I, à valeurs réelles telle que $f \leq h$ au voisinage de a avec h de limite $-\infty$ en a alors f admet pour limite $-\infty$ en a.

12.1.8 Théorèmes de limite monotone

Théorème 12.19

Soit $(a,b) \in \mathbb{R} \times \mathbb{R}$ avec a < b.

- Cas où la fonction $f:]a ; b[\longrightarrow \mathbb{R} \text{ définie sur }]a ; b[\text{ est } \underline{CROISSANTE}]$
 - Si f est croissante et majorée alors f admet une limite finie en b et $\lim_{x \to b^{-}} f(x) = \sup_{x \in]a;b[} (f(x))$
 - Si f est croissante et non majorée alors f admet pour limite $+\infty$ en b.
 - Si f est croissante et minorée alors f admet une limite finie en a et $\lim_{x \to a^+} f(x) = \inf_{x \in]a;b[} (f(x))$
 - Si f est croissante et non minorée alors f admet pour limite $-\infty$ en a.
- Cas où la fonction f:]a; b[$\longrightarrow \mathbb{R}$ définie sur]a; b[est <u>DECROISSANTE</u>
 - Si f est décroissante et minorée alors f admet une limite finie en b et $\lim_{x \to b^-} f(x) = \inf_{x \in]a;b[} (f(x))$
 - Si f est décroissante et non minorée alors f admet pour limite $-\infty$ en b.
 - Si f est décroissante et majorée alors f admet une limite finie en a et $\lim_{x \to a^+} f(x) = \sup_{x \in]a;b[} (f(x))$
 - Si f est décroissante et non majorée alors f admet pour limite $+\infty$ en a.

12.2 Continuité des fonctions à valeurs réelles en un point

Soit f une fonction définie sur I, à valeurs dans \mathbb{R} et a un réel appartenant à I.

12.2.1 Définition

Définition 12.20

- (1) f est dite continue en a si f admet pour limite f(a) en a.
- (2) f est dite continue à gauche en a si la restriction $f_{|I\cap]-\infty;a[}$ est continue en a c'est-à-dire si $\lim_{x\longrightarrow a^-} f(x)$ existe et vaut f(a).
- (3) f est dite continue à droite en a si la restriction $f_{|I\cap]a;+\infty[}$ est continue en a c'est-à-dire si $\lim_{x\to a^+} f(x)$ existe et vaut f(a).

12.2.2 Condition nécessaire et suffisante de continuité en un point

Définition/Propriétés 12.21

f est continue en a si, et seulement si, elle est continue à gauche et à droite en a.

12.2.3 Caractérisation séquentielle de la continuité en un point

Définition/Propriétés 12.22

f est continue en a si, et seulement si, pour toute suite (x_n) d'éléments de I qui admet pour limite a, la suite réelle $(f(x_n))$ admet pour limite f(a).

12.2.4 Opérations sur les fonctions continues en un point

Définition/Propriétés 12.23

Soit f et g deux fonctions définies sur I, à valeurs réelles.

(1) Combinaison linéaire

Si f et g sont continues en a et (λ, μ) est un couple de réels alors $\lambda f + \mu g$ est continue en a.

(2) Produit

Si f et g sont continues en a alors fg est continue en a.

(3) Quotient

Si f et g sont continues en a et si g ne s'annule pas au voisinage de a alors fg est continue en a.

12.2.5 Composition de fonctions continues en un point

Définition/Propriétés 12.24

Soit f une fonction définie sur I et à valeurs réelles tel que, pour tout x de I, f(x) appartient à J. Soit g une fonction définie sur J et à valeurs réelles.

Soit a un réel de I.

Si f est continue en a et si g est continue en f(a) alors $g \circ f$ est continue en a.

12.2.6 Prolongement par continuité

Définition/Propriétés 12.25

Soit b un réel n'appartenant pas à I mais extrémité de I.

Si f admet une limite finie ℓ en b alors le prolongement de f à $I \cup \{b\}$ noté $\tilde{f}: I \cup b \longrightarrow \mathbb{R}$ défini par $\forall x \in I, \tilde{f}(x) = f(x)$ et $\tilde{f}(b) = \ell$ est continu en b et appelé prolongement par continuité de f en b.

12.3 Continuité des fonctions sur un intervalle

12.3.1 Définition

Définition 12.26

Une fonction définie sur I, à valeurs dans R est dite continue sur I si elle est continue en tout a de I. L'ensemble des fonctions continues sur I à valeurs dans R est souvent noté $\mathcal{C}(I,\mathbb{R})$ ou \mathcal{C}^I

12.3.2 Théorèmes généraux : combinaison linéaire, produit, quotient, composée

Théorème 12.27

- $\forall (f,g) \in (\mathcal{C}(I,\mathbb{R}))^2, \forall (\alpha,\beta) \in \mathbb{R}^2, \alpha f + \beta g \in \mathcal{C}(I,\mathbb{R})$
- $\forall (f,g) \in (\mathscr{C}(I,\mathbb{R}))^2, fg \in \mathscr{C}(I,\mathbb{R})$
- $\forall (f,g) \in (\mathscr{C}(I,\mathbb{R}))^2, g(I) \subseteq \mathbb{R}^*, \frac{f}{g} \in \mathscr{C}(I,\mathbb{R})$
- $\forall f \in \mathscr{C}(I, \mathbb{R}), \forall g \in \mathscr{C}(J, \mathbb{R}), f(I) \subseteq J \implies g \circ f \in \mathscr{C}(I, \mathbb{R})$

12.3.3 Théorème des valeurs intermédiaires et corollaires

Théorème 12.28 (Théorème des valeurs intermédiaires)

Soit f une fonction définie sur I à valeurs dans \mathbb{R} et, a et b deux points de I. Si f est continue sur I avec $f(a) \leq f(b)$ alors f atteint toute valeur intermédiaire entre f(a) et f(b)

Démonstration 12.29

On suppose les hypothèses réunies. Dans le cas a = b, le résultat attendu est immédiat. On se place donc dans le cas a < b (sans perte de généralité) avec f(a) < f(b) (car le cas f(a) = f(b) est immédiat).

Soit y un réel de l'intervalle f(a); f(b).

Montrons, en suivant le principe de dichotomie, qu'il existe un réel x dans [a;b] tel que y=f(x).

- On note $a_0 = a, b_0 = b$; on a alors $f(a_0) < y < f(b_0)$.
- Etape 1 : on pose $m_0 = \frac{1}{2}(a_0 + b_0)$.
 - si $y = f(m_0)$ alors on a bien trouvé un réel x dans [a; b] tel que y = f(x) : c'est terminé!
 - si $f(a_0) < y < f(m_0)$, on pose $(a_1, b_1) = (a_0, m_0)$ et on continue la recherche de x dans $[a_1; b_1]$.
 - si $f(m_0) < y < f(b_0)$, on pose $(a_1, b_1) = (m_0, b_0)$ et on continue la recherche de x dans $[a_1; b_1]$.

Dans ces deux derniers cas, on a : $f(a_1) < y < f(b_1)$ et on passe à l'étape 2.

- Etape 2 : on pose $m_1 = \frac{1}{2}(a_1 + b_1)$.
 - si $y = f(m_1)$ alors on a bien trouvé un réel x dans [a; b] tel que y = f(x) : c'est terminé!
 - si $f(a_1) < y < f(m_1)$, on pose $(a_2, b_2) = (a_1, m_1)$ et on continue la recherche de x dans $[a_2; b_2]$.
 - si $f(m_1) < y < f(b_1)$, on pose $(a_2, b_2) = (m_1, b_1)$ et on continue la recherche de x dans $[a_2; b_2]$.

Dans ces deux derniers cas, on a : $f(a_2) < y < f(b_2)$ et on passe à l'étape 3...0.

Dans ce processus, s'il existe un entier k_0 tel que $f(m_{k_0}) = y$, c'est terminé! Sinon, on a créé une suite croissante (a_k) et une suite décroissante (b_k) telles que la suite $(a_k - b_k) = \left(\frac{b-a}{2^k}\right)$ a pour limite 0.

Ces suites sont donc adjacentes. Par théorème, elles convergent vers une même limite réelle ℓ qui vérifie $\forall k \in \mathbb{N}, a_k \leq \ell \leq b_k$ donc, en particulier, $a_0 \leq \ell \leq b_0$ c'est-à-dire $a \leq \ell \leq b$.

Comme f est continue, on en déduit alors que les suites $(f(a_k))$ et $(f(b_k))$ convergent vers $f(\ell)$.

De plus, par construction des suites (a_k) et (b_k) , on a : $\forall k \in \mathbb{N}$, $f(a_k) < y < f(b_k)$. Par passage à la limite, on trouve donc : $f(\ell) \le y \le f(\ell)$ puis, par antisymétrie, $f(\ell) = y$ et c'est terminé!

Conclusion: f atteint toute valeur intermédiaire entre f(a) et f(b).

Définition/Propriétés 12.30 (Image d'un intervalle)

L'image d'un intervalle de R par une fonction continue à valeurs réelles est un intervalle de R.

Démonstration 12.31

On suppose que f est une fonction définie, continue sur un intervalle I et à valeurs réelles.

Montrons que f(I) est un intervalle de \mathbb{R} à l'aide de la caractérisation des intervalles vue dans le chapitre "Compléments sur les réels".

Soit α et β deux réels quelconques de f(I) tels que $\alpha < \beta$.

Alors il existe a et b deux réels de I tels que $\alpha = f(a)$ et $\beta = f(b)$.

Pour tout réel y de $[\alpha; \beta]$, le théorème des valeurs intermédiaires assure alors l'existence d'un réel x compris entre a et b tel que y = f(x). Comme a et b sont des réels appartenant à l'intervalle I, le réel x appartient aussi à l'intervalle I ce qui prouve que y appartient à f(I).

Ainsi : $\forall (\alpha, \beta) \in (f(I))^2, \alpha < \beta \implies [\alpha ; \beta] \subseteq f(I)$.

Par caractérisation des intervalles, on en déduit que f(I) est un intervalle.

Définition/Propriétés 12.32 (Cas des fonctions continues strictement monotones)

Si $f: I \longrightarrow R$ est continue et strictement croissante sur I, intervalle de bornes a et b avec a < b, alors

- pour I = [a ; b], on a : f(I) = [f(a) ; f(b)]
- pour I =]a; b[, on a : $f(I) = \left| \lim_{x \to a^+} f(x) \right|$; $\lim_{x \to b^-} f(x) \left| \right|$
- pour $I = [a ; b[, \text{ on a} : f(I) = \left[f(a) ; \lim_{x \to b^{-}} f(x) \right]$
- pour I =]a; b], on $a: f(I) = \left[\lim_{x \to a^+} f(x); f(b) \right]$

12.3.4 Théorème des bornes atteintes et corollaire

Théorème 12.33 (Théorème des bornes atteintes)

Si f est une fonction continue sur un segment et à valeurs réelles alors f est bornée et atteint ses bornes.

Démonstration 12.34

On suppose les hypothèses réunies.

f étant continue sur l'intervalle [a;b] et à valeurs réelles, l'image de [a;b] par f est un intervalle J. On note m la borne inférieure de J et M la borne supérieure de l'intervalle J considéré comme partie de la droite achevée $\overline{\mathbb{R}}$.

Par propriété (vue dans le chapitre "Compléments sur les réels"), il existe une suite (y_n) d'éléments de J de limite m.

Comme J = f([a;b]), il existe alors une suite (x_n) d'éléments de [a;b] telle que $\forall n \in \mathbb{N}, y_n = f(x_n)$.

La suite (x_n) étant à valeurs dans [a;b], elle est bornée. D'après le théorème de Bolzano-Weiestrass, elle admet donc une suite extraite convergente. On note $x_{\varphi(n)}$ une telle suite et ℓ sa limite.

On a donc:

- $y_{\varphi(n)} \longrightarrow m$ comme suite extraite d'une suite convergente de limite m;
- $x_{\varphi(n)} \longrightarrow \ell$;
- f continue en ℓ car f continue sur [a;b] et $\ell \in [a;b]$, comme limite d'une suite à valeurs dans [a;b].

On peut donc passer à la limite dans les égalités

$$\forall n \in \mathbb{N}, y_{\varphi(n)} = f\left(x_{\varphi(n)}\right)$$

Cela donne $m = f(\ell)$ et prouve donc que m est un réel et que m est atteint par f.

On montre de même que M est un réel atteint par f.

Conclusion : f est bornée et atteint ses bornes.

Définition/Propriétés 12.35 (Image d'un segment)

L'image d'un segment de R par une fonction continue à valeurs réelles est un segment de R.

12.3.5 Théorème de la bijection

Définition/Propriétés 12.36 (Continuité et injectivité)

Toute fonction continue sur un intervalle, à valeurs réelles et injective, est strictement monotone.

Remarque La réciproque est fausse; en revanche, toute fonction strictement monotone sur un intervalle est injective.

Démonstration 12.37

Soit I un intervalle de \mathbb{R} , non vide et non réduit à un point, et $f:I\longrightarrow R$ continue et injective.

Raisonnons par l'absurde en supposant que f n'est ni strictement croissante, ni strictement décroissante. Alors, il existe $(a,b) \in I^2$ tel que a < b et $f(a) \ge f(b)$ et il existe $(a',b') \in I^2$ tel que a' < b' et $f(a') \le f(b')$.

On note $g:[0;1] \longrightarrow \mathbb{R}$ définie par : $\forall t \in [0;1], g(t) = f((1-t)a'+ta) - f((1-t)b'+tb)$. Par théorèmes généraux, g est continue sur [0;1] avec g(0) = f(a') - f(b') et g(1) = f(a) - f(b) donc $g(0) \le 0$ et $g(1) \ge 0$. Par théorème des valeurs intermédiaires, il existe alors $t_0 \in [0;1]$ tel que g(t0) = 0.

Ainsi $f((1-t_0)a'+t_0a)=f((1-t_0)b'+t_0b)$ puis, par injectivité de f, $(1-t_0)a'+t_0a=(1-t_0)b'+t_0b$ ce qui donne $(1-t_0)(b'-a')+t_0(b-a)=0$. Comme les termes $(1-t_0)(b'-a')$ et $t_0(b-a)$ sont positifs, on en déduit que $(1-t_0)(b'-a')=t_0(b-a)=0$ et enfin, comme b'-a' et b-a sont strictement positifs, on trouve $1-t_0=0$ et $t_0=0$ ce qui est absurde.

Conclusion: f est strictement monotone.

Théorème 12.38 (Théorème de la bijection)

Si f est une fonction à valeurs réelles définie, continue et strictement monotone sur un intervalle I alors f réalise une bijection de I sur J = f(I) dont la bijection réciproque f^{-1} est définie, continue et strictement monotone sur J avec même monotonie que f.

Démonstration 12.39

On suppose les hypothèses réunies.

f est injective (car strictement monotone) donc l'application $\tilde{f}: I \mapsto f(I)$ définie par $\forall x \in I, \tilde{f}(x) = f(x)$ est injective et surjective donc est une bijection : on dit que f réalise une bijection de I sur J = f(I). De plus, comme f est continue et à valeurs réelles, J = f(I) est un intervalle de R, non vide (puisque I est non vide) et non réduit à un point de \mathbb{R} (puisque I n'est pas réduit à un point et que f est injective).

La bijection réciproque $f^{-1}: J \mapsto I$, notée plus simplement f^{-1} , est définie sur J et strictement monotone de même monotonie que f. En effet, si on suppose que f est strictement croissante (par ex), alors pour tout $(x, y) \in J^2$ tel que x < y, on a $f^{-1}(x) < f^{-1}(y)$ (sinon on aurait $f^{-1}(x) \ge f^{-1}(y)$

puis par stricte croissance de f, $x \ge y$ ce qui est faux) donc f^{-1} est strictement croissante sur J par définition.

Soit $\lambda \in J$. Comme f^{-1} est strictement monotone sur J, le corollaire du théorème de limite monotone prouve (sous réserve que cela ait du sens) que $\ell = \ell i m_{\lambda^-} f^{-1}$ existe, est finie et appartient à I. Par continuité de f en ℓ , $\lim_{x \to \ell} f(x) = f(\ell)$ puis par composition de limites, $\lim_{y \to \lambda^-} f\left(f^{-1}(y)\right) = f(\ell)$ ce qui donne $f(\ell) = \lambda$ puis $\ell = f^{-1}(\lambda)$ et prouve que f^{-1} est continue à gauche en λ . On montre de même (sous réserve que cela ait du sens) la continuité à droite ce qui prouve la continuité de f^{-1} en tout λ de J.

 $\underline{\text{Conclusion}}: f^{-1}$ est définie, continue et strictement monotone sur J avec même monotonie que f.

12.4 Cas des fonctions à valeurs complexes

12.4.1 Ce qui s'étend aux fonctions complexes

Définition/Propriétés 12.40

- Limite finie:
 - définition et caractérisations (cf infra);
 - unicité;
 - opérations sur les limites finies;
 - lien entre existence d'une limite finie en un point et caractère borné au voisinage de ce point.
- Continuité en un point et sur un intervalle.

12.4.2 Ce qui ne s'étend pas aux fonctions à valeurs complexes

Définition/Propriétés 12.41

- Notion de limite infinie.
- Résultats utilisant la relation d'ordre dont les théorèmes d'existence de limite.

12.4.3 Limite d'une fonction à valeurs complexes

Définition/Propriétés 12.42

Soit f une fonction définie sur I et à valeurs complexes, et ℓ un nombre complexe.

 $\underline{\text{D\'efinition}}$:

Soit a un point de I ou une extrémité de I.

On dit que f a pour limite ℓ en a si la fonction à valeurs réelles $|f - \ell|$ a pour limite 0 en a. Caractérisations:

- f admet pour limite ℓ en a (point de I ou extrémité de I) si, et seulement si, Re(f) et Im(f) admettent respectivement pour limite $\text{Re}(\ell)$ et $\text{Im}(\ell)$ en a.
- f est continue en a (point de I) si, et seulement si, Re(f) et Im(f) le sont.
- f est continue sur I si, et seulement si, Re(f)etIm(f) le sont.