

SOTA review and analysis

Michele Yin, Roberto Mazzaro, Andrea Bonora, Filippo Daniotti, Giovanni Ambrosi

What is it:

- Train and test on dataset
- In real world we have a slightly different dataset
- Model doesn't work!

What is it:

 $\{X_s, Y_s\}$

 $\{X_t\}$

Why:

- Reuse datasets
 - Labels are very expensive
- Improve real world performances

Outline:

- Discrepancy based methods
- Adversarial based methods
- Other methods:
 - Teacher Student methods
 - Optimal Transport methods
 - Reconstruction-based methods
- Our experiments

Key Idea:

- Align source and target feature distributions
- Hundreds or more techniques available and explored

How:

- Measure a distance between source and target distributions
- Minimize this distance

$$MMD(X_S, X_T) = \frac{1}{|X_S|} \sum_{x_s \in X_S} \phi(x_s) - \frac{1}{|X_T|} \sum_{x_t \in X_T} \phi(x_t)$$

In general

$$L = L_{cls}(Y_s, \hat{Y}_s) + \lambda L_{align}(X_s, X_t)$$

Disadvantages:

- MMD is a measure of **first order** statistics. Distributions may have same mean but different variance.
- CORAL aligns the second order moments
 - Deep CORAL: Correlation Alignment for Deep Domain Adaptation [2016]
- Many variations to consider higher order moments
 - HoMM: Higher-order Moment Matching for Unsupervised Domain Adaptation
 [2019]
- Some ideas are to use a kernel function to map feature space into a Hilbert space

Many more

Domain adaptation layers:

- Introduce domain adaptation layers
 - Learning Transferable Features with Deep Adaptation Networks [2015]

• More layers to learn a domain adaptation

Clustering or Entropy minimization:

- When target classes reside on a decision boundary we get bad domain adaptation results
- Use a clustering algorithm to push classes further from the decision boundary
 - Joint Domain Alignment and Discriminative Feature Learning for Unsupervised
 Deep Domain Adaptation [2018]

Clustering or Entropy minimization:

- Consider label information to perform clustering
 - Contrastive Adaptation Network for Unsupervised Domain Adaptation [2019]

Pseudo-labelling:

Deep Subdomain Adaptation Network for Image Classification [2021]

Align label specific subdomain instead of global alignment

Domain Adversarial Network [DANN 2015]:

- Label Predictor -> min. classification loss
- **Domain Predictor** -> min. domain loss
- Feature Extractor -> min. classification loss
 - -> max. domain loss
- Important: Gradient Reversal Layer (GRL)

Adversarial Discriminative DA [ADDA 2017]:

- Pre-train Source encoder
- Fool Discriminator -> learn Target encoder
- Use Target encoder with Source Classifier
- Important: Weight sharing, GAN loss

Conditional Domain Adversarial Network [CDAN 2017]:

- Exploit discriminative information conveyed in the classifier prediction
- Exploit domain specific features representation
- Condition the discriminator using Multilinear mapping (small datasets) Randomized
 Multilinear mapping (bigger datasets) -> Entropy conditioning

GAN based methods:

- PixelDA 2016: generate target images, work at pixel level, train directly task specific classifier
- **GenerateToAdapt 2017:** generate target images, work at **feature level**, gen. images used only from the **discriminator**

Cycle Consistency [CyCADA 2018]:

- GAN based
- Introduce cycle loss
- Image level adaptation: pixel GAN loss, cycle loss, semantic consistency loss
- Feature level adaptation: feature GAN loss, source task loss

Cycle Consistency [SBADA-GAN 2019]:

- GAN based
- Cycle both for target and source
- Source like target images are automatically annotated with pseudo-labels and are used by the classifier

Fine-grained ADA [FADA 2020]:

- Use fine-grained discriminator
- Include class information
- Allow class level alignment

Discriminator free ADA [DALN 2022]:

- Category Classifier used as Discriminator
- Introduce NWD (Nuclear-norm Wasserstein Discrepancy)
- NWD + Classifier used as discriminator
- High values on the diagonal of source self-correlation matrix (supervised training)
- High values also on off-diagonal element for target
- Encourage intra and inter class correlation between source and target
- Can be applied to other UDA methods

Self-adaptive RE-weighted ADA [2020]:

- Use **conditional entropy** (obtained from conditional distribution) to reweight samples
- If conditional entropy high -> poorly aligned -> increase weight of adversarial loss
- Pseudo label for target
- Use **triplet loss** to obtain between source and pseudo labels to train feature extractor
- Allow good inter class separation and intra class compactenes

Adversarial-Learned Loss for DA [ALDA 2020]:

- Adversarial learning only aligns feature distribution but don't consider if target features are discriminative
- Self-training learn discriminative target features
- Combine the two methods to obtain better features alignment
- Discriminator generate confusion matrix
- Obtain corrected pseudo-labels multiplying pseudo-labels by CM

MetaAlign [2021]:

- Meta learning: one task is meta train task, other task use for validation
- This scheme opt. in a coordinated way both tasks (domain alignment and classification)
- Maximize inner product of the gradients of the two tasks
- Can be applied to other UDA methods

Gradient Distribution Alignement [FGDA 2021]:

- Constrain feature gradients of two domains to have similar distributions
- Apply Jacobian regularization to improve model generalization
- Pseudo labels used to compute target loss
- Self-supervised pseudo labeling, online during first steps, then offline
- Can be applied to other methods

Re-energizing Domain Discrimination with Sample Relabeling [RADA 2021]:

- Use dynamic domain labels
- Relabel well aligned target samples as source domain
- Make less separable distributions more separable
- Compute average entropy of domain discrimination (if high poorer discrimination)
- Compute MMD (Maximum Mean Discrepancy) that indicate how good is the alignment
- Well aligned -> can't be well distinguish by domain discriminator (entropy higher than a threshold)
- Can be applied to other UDA methods

Smooth Domain Adversarial Training [SDAT 2022]:

- Reach a **smoother minima** of **task loss** leads to better **generalization**
- Not the same for adversarial loss.
- SDAT requires additional gradient computation step
- Compute Hessian matrix of classification task for source
- Compute Trace and the maximum eigenvalue -> indicative of high smoothness (if low better)
- Can be applied to other UDA methods

Incremental Methods

In incremental learning the input data are continuously used to extend the existing model's knowledge.

Incremental Unsupervised Domain-Adversarial Training of Neural Networks [iDANN 2020]:

- Builded upon the existing DANN approach
- Self-labeling
- Label-smoothing: $y_i' = (1 \epsilon)y_i + \frac{\epsilon}{L}$
- Policies to select samples for the labeling phase:
 - Confidence Policy
 - kNN Policy

Information Based

Hypotheses Transfer Learning (HTL) + Unsupervised Domain Adaptation (UDA): The knowledge from a source domain is transferred solely through hypotheses and adapted to the target domain in an unsupervised manner.

Hypothesis Disparity Regularized Mutual Information Maximization [HDMI 2020]:

- Transfer knowledge from a set of source hypotheses to a corresponding target set of target hypotheses
- *M* hypothesis use a shared feature extractor and *M* independent classifier
- Adapt the source hypotheses into a set of corresponding target hypotheses by maximizing the MI between the empirical target input distribution and the predicted target label distribution induced by the target hypotheses.

Optimal Transport

Optimal transport is the general problem of moving **one distribution of mass to another** as efficiently as possible.

Different ways to compute the distance:

- Total variation
- Hellinger
- L₂
- X²

Optimal Transport

Teacher Imitation Domain Adaptation with Optimal Transport [TIDOT 2021]:

- Two cooperative agents: a teacher and a student
- P_{ς} and P_{τ} are the data distributions for the source and the target domain
- h_s : well-qualified classifier that gives accurate prediction for data instances on X_s sampled from P_s
- Goal: learn h_{τ}
- Minimize the proposed objective function consisting in:
 - \circ Loss of the teacher h_s
 - OT-based imitation learning term

$$\min_{h_S, h_T, G} \left\{ \mathcal{L}^S + \alpha \mathcal{R}^{WS} \right\},$$

$$\mathcal{L}^S = \frac{1}{N_S} \sum_{i=1}^{N_S} \ell\left(h_S\left(G\left(\mathbf{x}_i^S\right)\right), y_i^S\right)$$

$$\mathcal{R}^{WS} = \mathcal{W}_d\left(\mathbb{P}_{T, h_T}, \mathbb{P}_{S, h_S}\right)$$

Optimal Transport

Other methods:

- MOST [2021]: multi source domain adaptation using teacher-student learning
- LAMDA [2021]: Wasserstein distance used to not only quantify the data shift but also to define the label shift directly
- MLOT [2020]: optimizes a Mahalanobis distance leading to a transportation plan that adapts better
- RWOT [2020]: inspired by prototypical networks. The idea is to shrink the subspace reliability to measure the sample-level domain discrepancy across domains by exploiting spatial prototypical information and intra-domain structure dynamically
- ETD [2020]: builds an attention-aware transport distance

SSL and UDA

Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners [arXiv 2021]:

Frame SSL as a special case of UDA

- Apply standard SSL methods on UDA tasks
 - consistent improvement over source only
 - steady baseline

Self-Training Based

Gradual Domain Adaptation via Self-Training of Auxiliary Models [arXiv 2021]:

- Models trained on source get worse as domain divergence increases
- Idea: train auxiliary models on intermediate domains through self-training
- Generate intermediate domains:
 - first: start with pure source
 - o intermediate: gradually increase proportion of samples drawn from *target*
 - o end with pure *target*

Self-Supervised Based

Unsupervised Domain Adaptation through Self-Supervision [arXiv 2019]:

• Self-Supervision: train with auxiliary tasks on artificially altered versions of the available data

- In UDA:
 - shared feature extractor
 - supervised task head (source only)
 - SS task heads (source and target)
- Multi-task loss

$$\min_{\phi,h_k,k=1...K} \quad \mathcal{L}_0(S;\phi,h_0) + \sum_{k=1}^K \mathcal{L}_k(S,T;\phi,h_k)$$

Self-Supervised Based

Self-Supervised CycleGAN for Object-Preserving Image-to-Image Domain Adaptation

[ECCV2020]:

Pick CycleGAN, add Self-Supervised Siamese network S

- Divide image in patches, sample two
- Two SS tasks:
 - content registration: relative position
 - domain classification: patch classification
- content consistency loss

$$\mathcal{L}_{cc} = \frac{1}{M \times N} \sum_{x=1}^{M} \sum_{y=1}^{N} (\tilde{p}_{x,y}^{A} - \tilde{p}_{x,y}^{B})^{2}$$

Deep metric learning

M(etric)-ADDA (2018):

- Learn a distance metric -> clustering
 - examples with same label close as possible
 - examples with different labels as far as possible;

Deep metric learning

Source model training:

optimization of the triplet loss:

$$\mathcal{L}(\theta_S) = \sum_{(a_i, p_i, n_i)} \max(||f_{\theta_S}(a_i) - f_{\theta_S}(p_i)||^2 - ||f_{\theta_S}(a_i) - f_{\theta_S}(n_i)||^2 + m, 0)$$

- a_i = anchor example (picked randomly)
- p_i = example with same label of ai
- n = example with different label wrt pi

Deep metric learning

Target model training:

Adapt loss for target encoder:

$$\mathcal{L}_{A}(\theta_{T_{E}}, \theta_{D}) = \min_{\theta_{D}} \max_{\theta_{T_{E}}} - \sum_{i \in S} \log D_{\theta_{D}}(E_{\theta_{S}}(X_{S_{i}})) - \sum_{i \in T} \log (1 - D_{\theta_{D}}(E_{\theta_{T_{E}}}(X_{T_{i}})))$$

Magnet loss for decoder:

$$\mathcal{L}_C(\theta_T) = \sum_{i \in T} \min_j ||f_{\theta_T}(x_i) - C_j||^2$$

Deep metric learning

Final loss for target:

$$\mathcal{L}(\theta_T, \theta_D) = \underbrace{\mathcal{L}_A(\theta_{T_E}, \theta_D)}_{\text{Adapt}} + \underbrace{\mathcal{L}_C(\theta_T)}_{\text{C-Magnet}}$$

- M-ADDA works better than vanilla ADDA for the presence of the decoder
 - improves the training of the target encoder (unsupervised part)
 - guarantees better alignment between the two domains

Visual domain adaptation

Heuristic Domain Adaptation (2020):

- Based on A* search
- Heuristic function H(x) that guides a generator function G(x)

$$G(x) = F(x) - H(x)$$

Visual domain adaptation

- Fundament network computes:
 - adversarial discrepancy on classification responses;
 - domain invariant representation
- Heuristic network
 - learns local features
 - ensures that it does not model any domain-specific representation
- Cosine similarity to look at the relationship between the representations of deep networks.

$$cos(\theta) = \frac{G(x) \cdot H(x)}{|G(x)| |H(x)|}$$

Visualizing adapted knowledge in DL

Visualizing adapted knowledge (2021):

- Translate a target image x from its domain to a new image x;
 - Feed source model with the generated image
 - The target model with the original one -> source-free training

Visualizing adapted knowledge in DL

- Relationship preserving (loss): ensures similar distributions from the target and source CNNs after a successful knowledge distillation
 - MSE between Gram matrices;

- Knowledge distillation (loss): learns semantic information and transfer it to the generator
 - Kullback-Leibler divergence;

Project status

Implementations:

universal t-SNE plotter for standardized testing

Tested methods:

- baseline model
- coral alignment
- dan
- cdan
- dann

Test environment: Google COLAB

Source Only results

back pack

bike_helmet bookcase

calculator

desk chair

desk_lamp desktop computer

file_cabinet headphones keyboard

laptop_computer letter tray

mobile_phone monitor

mouse mug paper_notebook pen

phone printer projector punchers ring binder

speaker stapler

tape_dispenser trash can

bike

t-SNE Source Only:

- Backbone: ResNet-34
- Dataset: Office-31
 - Source: Amazon
 - Target: Webcam
- Drops accuracy from 83% to 48%

Target

CORAL results

TSNE of the embeddings

t-SNE CORAL:

back pack

bike_helmet bookcase

desk chair

desk lamp

file_cabinet headphones keyboard

desktop computer

laptop_computer letter tray

mobile_phone monitor

mouse mug paper_notebook pen

phone printer projector punchers ring binder

ruler

scissors speaker stapler

tape_dispenser trash_can

bike

bottle calculator

- Backbone: ResNet-34
- Dataset: Office-31
 - Source: Amazon
 - Target: Webcam
- Improve from 48% accuracy to 61% on target

DAN results

TSNE of the embeddings

t-SNE DAN:

back pack

bike_helmet bookcase

calculator desk chair

desk_lamp desktop computer

file_cabinet headphones

keyboard

ruler scissors speaker stapler tape dispenser

trash can

laptop_computer letter tray

mobile_phone monitor mouse mug paper_notebook pen phone printer projector punchers ring binder

bike

- Backbone: ResNet-34
- Dataset: Office-31
 - Source: Amazon
 - Target: Webcam
- Improve from 48% accuracy to 81% on target

Target

DANN results

t-SNE DANN:

back pack

bike_helmet bookcase

calculator desk chair

desk_lamp desktop_computer file cabinet

headphones keyboard

laptop_computer letter tray

mobile_phone monitor mouse mug paper_notebook pen phone printer projector punchers ring binder

scissors speaker

stapler tape_dispenser trash_can

bike

- Backbone: ResNet-34
- Dataset: Office-31
 - Source: Amazon
 - Target: Webcam
- Improve from 48% accuracy to 81% on target

CDAN results

TSNE of the embeddings

t-SNE CDAN:

back pack

bike_helmet bookcase

desk_lamp desktop computer

file cabinet

headphones keyboard

laptop_computer letter tray

mobile phone

paper_notebook pen

monitor mouse

phone printer projector punchers ring binder

ruler

speaker stapler

tape_dispenser trash can

bike

bottle calculator desk chair

- Backbone: ResNet-34
- Dataset: Office-31
 - Source: Amazon
 - Target: Webcam
- Improve from 48% accuracy to 86% on target

Future works

Ideas:

- Test more recent papers
- Merge different approaches
 - o In particular add reconstruction and discrepancy to other methods

Discrepancy Based

Class imbalance:

 Normalized Wasserstein for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation

Discrepancy Based

One big problem:

Assume that we can use the same backbone for both source and target

• It has been proven that in deep networks, eventually features do transition from

general to domain specific.

Attention module to select the domain

Domain Conditioned Adaptation
 Network

Discrepancy Based

One big problem:

- Adapt the backbone by learning transformation of source and target network
 - Residual Parameter Transfer for Deep Domain Adaptation

Adversarial Based

Summarizing:

- Domain Adversarial Network contain the core idea
- Next years several architectures have been developed
- **Equilibrium problem:** even though discriminator is fully confused, sufficient similarity between two distributions cannot be guaranteed because gradient for well aligned samples is low so we have few driving power for training
- Nowadays several strategies to solve this problem have been proposed
- Many of them are can be added to other UDA schemes

Adversarial Based

Dynamic Weighted Learning for Unsupervised Domain Adaptation(2020):

- Dynamically adjust weights in order to have balanced domain alignment and class discrimination;
 - measure degree of alignment each iteration
 - \circ construct dynamic balance factor to control weights (τ)
- MMD and LDA or data alignment
- scatter matrix J(w) for class discrimination;
- training controlled by au

Slide di Esempio

Advantages:

- monitoring degree of alignment real-time;
- avoid model bias during training;
- more universal and applicable to cross-domain data scenarios;
- more efficient with unbalanced number of sample or with different statistics/distributions;

SSL and UDA

Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners [arXiv 2021]:

- Frame SSL as a special case of UDA
- Consider a SSL setting:
 - \circ labelled data can only represent a subdomain of distribution P_{ssl}
 - \circ pick the sub-domain with smallest possible support P_{small}
 - \circ P_{small} and P_{ssl} are distributions of source and target domains respectively
- Apply standard SSL methods on UDA tasks
 - consistent improvement over baseline
- Combinations:
 - SSL regularizers on UDA techniques
 - UDA approaches to SSL tasks

Self-Training Based

Meta Self-Learning for Multi-Source Domain Adaptation [ICCV Workshop 2021]:

- Combine self-learning with the idea of meta-learning
- Meta-learning: 'training operations on model itself ("learn to learn")
- MAML: find best initialization parameters
 - requires second-order derivative

Optimal Transport

Joint Distribution Optimal Transportation for Domain Adaptation [JDOT 2017]:

- Assumption: there exists a non-linear transformation between the joint feature/label space distribution of the two domain (source and train) that can be estimated with optimal transport.
- Handle a change in both marginal and conditional distributions
- Transformation T will be expressed through a coupling between both joint distribution:

$$\gamma_0 = \operatorname*{argmin}_{\boldsymbol{\gamma} \in \Pi(\mathcal{P}_s, \mathcal{P}_t)} \int_{(\Omega \times \mathcal{C})^2} \mathcal{D}(\mathbf{x}_1, y_1; \mathbf{x}_2, y_2) d\boldsymbol{\gamma}(\mathbf{x}_1, y_1; \mathbf{x}_2, y_2),$$

- Impossible to find the optimal coupling
- Replace y2 by a proxy f(x2): $\mathcal{P}_t^f = (x, f(x))_{x \sim \mu_t}$ (f: $\Omega \rightarrow C$)
- The goal is to estimate a prediction f on the target domain

$$\min_{f,\gamma \in \Delta} \sum_{ij} \mathcal{D}(\mathbf{x}_i^s, \mathbf{y}_i^s; \mathbf{x}_j^t, f(\mathbf{x}_j^t)) \boldsymbol{\gamma}_{ij} \quad \equiv \quad \min_{f} W_1(\hat{\mathcal{P}}_s, \hat{\mathcal{P}_t^f})$$

(W1 is the 1-Wasserstein distance for the loss)