

Figure 10. The variation of the ratio of efficiencies with different values of the cuts $p_{1...mn}$ [left) and $\Delta R_{min}(h, h)$ (right) between two different samples for merged and un-merged annules. The sample parameters are: un-merged: $\kappa: \mu = m_h, \lambda: \mu = 2m_h$, merged with $e_{clus} = 30$ GeV; $\kappa: (\mu = m_h + p_h^{(h)}, E_{Tokus} = 00$ GeV), $\kappa: (\mu = m_h + p_h^{(h)}, E_{Tokus} = 00$ GeV), $\kappa: (\mu = m_h + p_h^{(h)}, E_{Tokus} = 00$ GeV), $\kappa: (\mu = m_h + p_h^{(h)}, E_{Tokus} = 00$ GeV), $\kappa: (\mu = m_h + p_h^{(h)}, E_{Tokus} = 00$ GeV).

able 1.00									
Process	K	λ	α	3	tt	$S/B(\kappa)$	$S/B(\lambda)$	$S/B(\alpha)$	$S/B(\beta)$
σ [fb]	40.20	40.20	40.20	40.20	9×10^{5}	.00004	.00004	.00004	.00004
BRs	2.97	2.97	2.97	2.97	11000	.00027	.00027	.00027	.00027
r cuts	0.78	0.82	0.79	0.80	296.4	.00263	.00277	.00266	.00270
fat jet cuts	0.106	0.104	0.11	0.11	0.93	0.11	0.11	0.12	0.12
$\Delta R(h, h)$	0.106	0.100	0.099	0.101	0.310	0.34	0.32	0.32	0.33
p_{\perp}^{hh}	0.103	0.089	0.895	0.093	0.207	0.50	0.43	0.46	0.45

Table 2. Cross sections for the hh signal and if aMCSSILO background after series of cuts. The un-merged samples κ and λ have $\mu = m_{\lambda}$ and $\mu = 2m_{\lambda}$ respectively and the merged signal samples " α ' and " β " have $\mu = m_{\lambda} + p_{\perp}^{+h}$ and $\mu = 2(m_{\lambda} + p_{\perp}^{+h})$ respectively, as well as $E_{Tabs} = 50$ GeV and $\epsilon_{dN} = 30$ GeV. The final two cuts were chosen to be $AR[h, h) \geq 28$ and $\beta^{h} \sim 80$ GeV.

certaintse in the predictions of the efficiencies of experimental cuts. The uncertainty will inexorably propagate to measurements of the Higgs boson self-coupling. The merged same ples demonstrate theoretical uncertainties on the efficiencies that are 10% or better for the examined observables. We expect such conclusions to remain valid for a future NLO similation matched to the parton shower. We thus recommend the use of samples that include the merged exact one-jet matrix demonstra in all future photomenoslogical or experimental analyses of the process. The Monte Carlo event generator developed for this project is available as an add-en to the ESSIG16+ vertice querents of a little $1/\sqrt{g_{SS}}$ at $1/\sqrt{g_{SS}}$ and $1/\sqrt{g_{SS}}$ an