PUTTING A NUMBER ON RESTORATION SUCCESS: A NEW TIME-SERIES APPROACH

Audun Rugstad¹, Bert van der Veen¹, Bob O'Haraⁱ

Norwegian University of Science and Technology, NTNU

BACKGROUND & OBJECTIVES

- To reach international goals for ecological restoration, upscaling and adaptive management is required
- To achive this, scientists need better quantitative tools for assessing and comparing restoration outcomes¹
- We present a novel approach to model restoration of communities relative to a reference, aimed at providing better statistical estimates of the following:

3. *Compare effec- tiveness* of different treatments

THE MODEL

- 1. A **disturbance gradient** is approximated by estimating the **latent predictor variable** (*u*) that best explain differences in species composition between all restored and control sites.
- 2. The temporal change in LV values (u_i s) for **restored sited** is modeled as a **mean-reverting** (AR-1) process relative to the control mean (u_i), with terms shared per treatment group g:

CASE STUDY

We tested a "proof of concept" implementation of our method on the following experimental restoration ecology dataset:²

DATA

- 80 permanent **vegetation plots** sampled over **12 years** after disturbance
- 5 **treatment groups** (g=5) of increasing disturbance (10 plots each) + 20 **control** plots

MODEL FITTING

- 1. GLLVM fitted using the \boldsymbol{R} package \boldsymbol{gllvm}^3
- 2. AR-1 model fitted to the estimated site scores as a multivariate autoregressive state-space model using the **R** package **MARSS**⁴

RESULTS

Figure 1. Fitted values for the time series model (red lines) on the latent variable values (black dots), for experimentally disturbed sites (left) and pristine control sites (right). Dotted line = mean of the latent variable scores for the control sites (u_c). Shaded area = 95% confidence interval.

Figure 3. A: 20 year forecast for an example vegetation plot (site 1, group 1), based on the time series model. Blue line = forecast. Shaded areas = 80% and 95% prediciton intervals. B: Simulation histogram of

number of years untilugis reached, based on the model fit. N=10 000

Figure 4. Parameter estimates for the different treatment groups and the control plots (1-5 in increasing dgree of disturbance) (c). A: Autoregressive parameter (rho). B: variance of the noise parameter (sigma).

WHAT ARE (GL)LVMs?

- A framework for model-based ordination and joint species distribution modeling³
- Latent variables = the random effect predictors estimated to best explain species covariances in the dataset.
- L.V.s have the same interpretation as ordination axes in e.g. NMDS, but are
- model-based!
- Link-scale responses of species to L.V.s can be both linear and quadratic.
- Like GLMs, allows for specification of response distribution (poisson, binomial etc.)
- Allows for residual plots, AIC etc.

CONCLUSIONS

- 1. Case study seems to effectively **capture different temporal dynamics** between control and resored sites (fig. 2
- 2. Offers possibility for **forecasting and prediction** (Fig. 3)
- NB: MUST be taken with a grain of salt, as uncertainty does not propagate between models
- 3. Differing estimates i.e. of the "attraction" to the reference (ρ) and the random noise (σ) allows for **comparison between treatment groups** (Fig. 4)

NEXT STEPS

- Incorporate the time series model presented here into the estimation of the latent variables as a "proper" one-step model
- > Necessary for correctly estimating parameter uncertainty etc.
- More model flexibility to account for different study designs
- Create user-friendly software for ecologists
- Test in real-world restoration settings

Interested? Contact me: E-mail: audunrug@ntnu.no

BASIC MODEL

CONCEPTUAL REPRESENTATION

REFERENCES

¹Brudvig, L. A. (2017). Toward prediction in the restoration of biodiversity. Journal of Applied Ecology, 54(4), 1013–1017.

² Rydgren, K., Halvorsen, R., Töpper, J. P., Auestad, I., Hamre, L. N., Jongejans, E., & Sulavik, J. (2019). Advancing restoration ecology: A new approach to predict time to recovery. Journal of Applied Ecology, 56(1), 225–234

⁴ Elizabeth E. Holmes, Eric J. Ward, Mark D. Scheuerell and Kellie Wills (2024). MARSS: Multivariate Autoregressive State-Space Modeling. R package version 3.11.9..

⁵ Niku, J., Brooks, W., Herliansyah, R., Hui, F. K. C., Korhonen, P., Taskinen, S., van der Veen, B., and Warton, D. I. (2024). gllvm: Generalized Linear Latent Variable Models. R package version 2.0.

