Logistic Regression

Andy Grogan-Kaylor

5 Oct 2020

Key Concepts and Commands

 $\bullet\,$ Fitting a Curve to 2 Possible Values

- Linear models, probit and logit
- y x1 x2 ... $\leftarrow \rightarrow F(y) = \beta_0 + \beta x_1 + \beta x_2...$
- regress y x1 x2 OLS; Linear Model
- logit y x1 x2 Logistic Regression
- probit y x1 x2 Probit Regression
- glm ...

Limited Dependent Variables

- Categorical Dependent Variable
- Binary Dependent Variable
- Limited Dependent Variable

General Social Survey

- . clear all
- . set maxvar 10000
- . use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey/GSS7218_R1.DTA", clear
- . * keep if year == 2018 // keep only most recent year

polviews

think of self as liberal or conservative

```
type: numeric (byte)
         label: POLVIEWS
 range: [1,7] unique values: 7
                                             units: 1
                                         missing .: 0/64,814
                                        missing .*: 9,486/64,814
unique mv codes: 3
    tabulation: Freq.
                        Numeric Label
                             1 extremely liberal
                 1.682
                 6,514
                              2 liberal
                              3 slightly liberal
                 7,010
                21,370
                              4 moderate
                 8,690
                              5 slghtly conservative
                 8,230
                              6 conservative
                 1,832
                              7 extrmly conservative
                 2,326
                              .d DK
                 6,777
                              .i IAP
                   383
                              .n NA
```

Data Management

```
. recode polviews (1/3 = 1)(4/7 = 0), generate(liberal) // dichotomize
(53646 differences between polviews and liberal)
. generate coninc_10K = coninc / 10000 // income in $10K chunks
(6,520 missing values generated)
. label variable coninc_10K "Income 10K Chunks"
. egen income_group = cut(coninc), group(3) // divide income into three groups
(6520 missing values generated)
Reference group for income group is 0
. drop if class == 5
(1 observation deleted)
. recode hispanic (1 = 1)(else = 0), generate(latinx) // Latinx
(41258 differences between hispanic and latinx)
. keep year polviews liberal ///
> age sex ///
> race latinx class ///
> coninc coninc_10K income_group happy govlazy goveqinc // keep only some variables
. save GSSsmall.dta, replace
file GSSsmall.dta saved
```

Visualize

```
. twoway qfit liberal coninc, lwidth(thick) scheme(burd) ///
> title("Liberal Attitudes by Income")
. graph export liberal-income.png, width(500) replace
(file liberal-income.png written in PNG format)
```


Figure 1: Liberal Attitudes and Income

Linear Probability Model

. regress liberal i.race i.income_group							
Source	SS	df	MS Num		er of obs	=	50,191
				F(4,	50186)	=	64.96
Model	52.1435055	4	13.0358764	Prob	> F	=	0.0000
Residual	10071.8678	50,186	.200690786	R-sq	R-squared		0.0052
				- Adj	R-squared	=	0.0051
Total	10124.0113	50,190	.201713713	Root	MSE	=	.44799
liberal	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
race							
black	.0857774	.0059616	14.39	0.000	.074092	6	.0974621
other	.064563	.008817	7.32	0.000	.047281		.0818444
Other	.004000	.000011	1.02	0.000	.047201	0	.0010111
income_group							
1	0082847	.0049636	-1.67	0.095	018013	4	.001444
2	0067437	.0049739	-1.36	0.175	016492	5	.0030051
_cons	.2701971	.0037985	71.13	0.000	. 262752	1	.2776422

Normal and Cumulative Normal Distribution

```
. clear all . \  \  \, \text{set obs 100 // 100 observations} \\  \  \, \text{number of observations } (\_N) \ was \ 0, \ now \ 100 \\ \\  \  \, . \  \, \text{generate } z = \text{runiform}(-5, \ 5) \ // \ \text{randomly distributed } z \ \text{scores} \\
```

. generate mynormaldensities = normalden(z) // normal densities

- . generate myprobabilities = normal(z) // cumulative normal probabilities
- . twoway scatter mynormal densities myprobabilities ${\tt z}$, ${\tt scheme}({\tt michigan})$
- . graph export normal.png, width(500) replace (file normal.png written in PNG format) $\,$

Figure 2: Standard and Cumulative Normal Curves

The Probit Model

```
. use GSSsmall.dta, clear
```

. probit liberal i.race i.latinx i.class i.income_group

Iteration 0: log likelihood = -28929.993
Iteration 1: log likelihood = -28779.708
Iteration 2: log likelihood = -28779.659
Iteration 3: log likelihood = -28779.659

Probit regression Number of obs = 48,767 LR chi2(8) = 300.67 Prob > chi2 = 0.0000 Log likelihood = -28779.659 Pseudo R2 = 0.0052

liberal	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
race						
black	. 2556235	.0176569	14.48	0.000	.2210165	.2902305
other	.1917797	.0263808	7.27	0.000	.1400744	.2434851
1.latinx	0105591	.0128091	-0.82	0.410	0356644	.0145462
class						
working class	0533243	.0268567	-1.99	0.047	1059624	0006861
middle class	.0364691	.0275156	1.33	0.185	0174605	.0903987
upper class	.1287644	.0426698	3.02	0.003	.0451331	.2123957
income_group						
1	0277126	.0153164	-1.81	0.070	0577322	.002307

```
2 | -.0430226 .0159505 -2.70 0.007 -.074285 -.0117602

_cons | -.597907 .0258768 -23.11 0.000 -.6486245 -.5471894
```

The Logistic Distribution

```
. clear all
. set obs 100 // 100 observations
number of observations (_N) was 0, now 100
. generate z = runiform(-5, 5) // randomly distributed z scores
. generate mylogisticdensities = logisticden(z) // logistic densities
. generate mylogisticprobabilities = logistic(z) // cumulative logistic probabilities
. twoway scatter mylogisticdensities mylogisticprobabilities z, scheme(michigan)
. graph export logistic.png, width(500) replace
(file logistic.png written in PNG format)
```


Figure 3: Standard and Cumulative Logistic Curves

The Logit (Logistic) Model

```
. use GSSsmall.dta, clear
. logit liberal i.race i.latinx i.class i.income_group
Iteration 0: log likelihood = -28929.993
Iteration 1: log likelihood = -28780.507
Iteration 2: log likelihood = -28779.998
Iteration 3: log likelihood = -28779.998
```

20812010 108102				LR chi2(8)	=	299.99
				Prob > chi	.2 =	0.0000
Log likelihood	= -28779.998			Pseudo R2	=	0.0052
liberal	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
race						
black	.4224471	.0289399	14.60	0.000	.3657258	.4791683
other	.3178327	.0433273	7.34	0.000	.2329127	.4027526
1.latinx	018475	.0214155	-0.86	0.388	0604486	.0234985
class						
working class	0889014	.0446312	-1.99	0.046	176377	0014258
middle class	.0599663	.0456742	1.31	0.189	0295536	.1494862
upper class	.2126988	.0704279	3.02	0.003	.0746626	.3507349
income_group						
1	0454226	.0255762	-1.78	0.076	095551	.0047057
2	0697336	.0266137	-2.62	0.009	1218954	0175718
_cons	9703756	.0430156	-22.56	0.000	-1.054685	8860666

Number of obs

48,767

Comparison of LPM, Probit and Logistic Coefficients

NB: Negative vs. positive β . Statistically significant vs. not statistically significant.

- . quietly probit liberal i.race i.latinx i.class i.income_group
- . est store myprobit

Logistic regression

- . quietly logit liberal i.race i.latinx i.class i.income_group
- . est store mylogit
- . est table myprobit mylogit, star

Variable	myprobit	mylogit		
race black other	.25562351*** .19177974***	.42244708***		
latinx 1	0105591	01847504		
class working c middle cl upper class	05332425* .03646909 .12876439**	08890139* .05996631 .21269875**		
income_group 1 2	02771262 04302264**	04542261 06973358**		
_cons	59790698***	9703756***		

legend: * p<0.05; ** p<0.01; *** p<0.001

Logistic Model (2)

Derivation of logistic model from linear probability model. Using instructor notes

$$\ln\left(\frac{P(y)}{1 - P(y)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

Interpretation of Odds Ratios (Robert Mare)

0 < OR < 1

indicates that an increase in x is associated with a decrease in y.

 $1 < OR < \infty$

indicates that an increase in x is associated with an increase in y.

Logistic Model With Odds Ratios

. logit liberal i.race i.latinx i.class i.income_group, or

Iteration 0: log likelihood = -28929.993
Iteration 1: log likelihood = -28780.507
Iteration 2: log likelihood = -2879.998

Iteration 3: log likelihood = -28779.998

Logistic regression Number of obs 48,767

Log likelihood = -28779.998

LR chi2(8) Prob > chi2 Pseudo R2 299.99 0.0000 0.0052

liberal	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
race						
black	1.52569	.0441534	14.60	0.000	1.44156	1.614731
other	1.374146	.059538	7.34	0.000	1.262271	1.495937
1.latinx	.9816946	.0210234	-0.86	0.388	.9413422	1.023777
class						
working class	.9149358	.0408347	-1.99	0.046	.8383019	.9985752
middle class	1.061801	.048497	1.31	0.189	.9708789	1.161237
upper class	1.237012	.0871201	3.02	0.003	1.077521	1.420111
income_group						
1	.9555936	.0244404	-1.78	0.076	.908872	1.004717
2	.9326423	.024821	-2.62	0.009	.885241	.9825817
_cons	.3789407	.0163004	-22.56	0.000	.3483023	.4122742

Note: _cons estimates baseline odds.

A Poem About Logistic Regression

Complete Determination

See handout

Rare Events

- Statistical power
- Complete determination

Predicted Probabilities

Discussion

The General Linear Model

Interaction Terms

See interactive demo, or example script.

https://agrogan 1. github. io/newstuff/categorical/logistic-interactions-2/logistic-interactions-2. html