School of Geography and Earth Sciences McMaster University

Applied Spatial Statistics

Area Data I & II

This session:

- Definitions
- Visualization
- Spatial proximity matrices

The difference between spatially continuous data and area data

Time series

Scale of Analysis

- Examples of data in the social sciences
 - Urban population density
 - What is the distribution of population in a city?
 - Links to locational theory
 - Residential insurance coverage
 - Do insurance companies redline neighborhoods?

- Examples of data in the social sciences
 - Urban crime
 - Does criminal behavior follow spatial patterns?
 - Are there spillover effects?
 - Geographic distribution of minorities
 - o Is there spatial segregation of minorities?

- Examples of data in the social sciences
 - Voter turnout
 - What explains voter turnout in elections?

- Area data in the environmental sciences
 - Agricultural experiments in regularly tilled fields
 - Species habitat
 - Intersection between social and environmental sciences
 - NOx spillovers in Europe

Health Issues: Number of dead birds reported (2000)

Health Issues: Dead birds reports

Dead Birds Submitted for West Nile Virus Diagnosis by Health Region in Canada as of October 31, 2001.

Health Issues: Dead birds reports

Socio-economic Issues: **Employment**

Demographic Issues: Aging

Demographic Issues: **Ethnicity**

Goals of Applications: Area data

- The description of important features
- Estimation of an average value over large areas
- The estimation of an average value over small areas
- Explanation of patterns and trends

(first order and second order effects)

Analysis of Area Data

- Main objective is to explain and possibly to forecast
- Analysis follows the usual sequence:
 - Visualization and exploration
 - Modeling
 - First order and second order effects

Definitions

- Region
- Regular lattice
- Irregular lattice
- Zones (Areas)
- Attributes
- First order effects
- Second order effects

Definitions: Region

 Region (R) – Specific area over the surface of the earth that is of interest

Example: Land use change

Definitions: Zones (Areas)

Definitions: Zones (Areas)

$$\mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_3 = \mathcal{R}$$

Definitions: Zones (Areas)

Definitions: Attributes (Area Data)

	$\mathcal{A}_{_{\mathbf{l}}}$	${\cal A}_2$	\mathcal{A}_3	
$Y(\mathcal{A}_i)$		\mathcal{A}_{5}	$\mathcal{A}_{_{6}}$	\mathcal{A}_{7}
$Y(\mathcal{A}_i)$ $X_1(\mathcal{A}_i)$	$\mathcal{A}_{\scriptscriptstyle 4}$	\mathcal{A}_{8}		
•		\mathcal{A}_{9}		
$X_k(\mathcal{A}_i)$				

Definitions: Attributes (Area Data)

$$Y(\mathcal{A}_{i}) = Y_{i}$$

$$X_{1}(\mathcal{A}_{i}) = X_{1i}$$

$$\vdots$$

$$X_{k}(\mathcal{A}_{i}) = X_{2i}$$

First Order Effects

 \circ Expected value of Y for area \mathcal{A}

$$\mu(\mathcal{A}_i) = \mu_i = E[Y(\mathcal{A}_i)]$$

(systematic, deterministic)

Second Order Effects

• Covariance between of $Y(A_i)$ and $Y(A_i)$

$$COV(Y_i, Y_j)$$

(systematic, deterministic? random, unpredictable?)

Visualization of Area Data

- Proportional symbols
- Choropleth maps
- Density equalized maps

Visualization: Choropleth Maps

 Area colors depend on the value of the attribute

Visualization: Choropleth Maps

- Some issues
 - Selection of class intervals
 - Large areas small areas
 - Interpretability

Choropleth Maps: Selection of Class Intervals

Choropleth Maps: Selection of Class Intervals

Choropleth Maps: Large Zones – Small Zones

Choropleth Maps: Interpretability

- Number of classes
- Positive negative attribute values

Choropleth Maps: Interpretability

Number of classes

Choropleth Maps: Interpretability

Positive – Negative attribute values Map of Residuals of Origin Trips Car 1

Visualization: Density Equalized Maps

Example

Fig. 7.2 Density equalised map of unemployment in Britain, 1988

Exploration of Area Data

- Spatial Moving Averages
- Kernel Estimation

Spatial Proximity

 How is proximity defined for area data?

Spatial proximity matrix W

Contiguity

\mathcal{A}_1	\mathcal{A}_2	\mathcal{A}_3	\mathcal{A}_4

 \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_3 \mathcal{A}_4 \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_3 \mathcal{A}_4

$$\mathbf{W} = \left\{ w_{ij} \right\} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ w_{n1} & \cdots & w_{nn} \end{bmatrix}$$

 \circ Definition of weights w_{ij}

$$w_{ij} = \begin{cases} 1 & \text{if } A_j \text{ shares a border with } A_i \\ 0 & \text{otherwise} \end{cases}$$

Contiguity

\mathcal{A}_1	\mathcal{A}_2
\mathcal{A}_3	\mathcal{A}_4
\mathcal{A}_3	\mathcal{A}_4
\mathcal{A}_3	\mathcal{A}_4

 \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_3 \mathcal{A}_4 \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_3 \mathcal{A}_4

o Topology?

o Topology?

o Topology?

- \circ Alternative definition of w_{ij}
 - Length of shared boundary

$$w_{ij} = \frac{l_{ij}}{l_i}$$

- l_{ij} : length of common boundary between \mathcal{A}_j and \mathcal{A}_j
- l_i : perimeter of \mathcal{A}_j

 Zone centroids: transforming area data into point data

 \circ Alternative definition of w_{ij}

$$w_{ij} = \begin{cases} 1 & \text{if centroid of } A_j \text{ is one of } \\ k \text{ nearest neighbors to that of } A_j \\ 0 & \text{otherwise} \end{cases}$$

 \circ Alternative definition of w_{ij}

$$w_{ij} = \begin{cases} 1 & \text{if centroid of } A_j \text{ is within specified} \\ & \text{distance to that of } A_i \end{cases}$$

$$0 & \text{otherwise}$$

 \circ Alternative definition of w_{ij}

$$w_{ij} = \begin{cases} d_{ij}^{\gamma} & \text{if inter-centroid distance } d_{ij} < \delta \\ (\delta > 0; \gamma < 0) \\ 0 & \text{otherwise} \end{cases}$$

- Higher order matrices W
 - First order "neighbors"
 - Second order "neighbors"

Higher order matrices

\mathcal{A}_1	\mathcal{A}_{2}	\mathcal{A}_3	\mathcal{A}_{4}

	\mathcal{A}_1	\mathcal{A}_{2}	\mathcal{A}_3	\mathcal{A}_4
\mathcal{A}_1	0	0	1	0
\mathcal{A}_{2}	0	0	0	1
\mathcal{A}_3	1	0	0	0
\mathcal{A}_{4}	0	1	0	0

Row-standardization of W

Row-standardization of W

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Row-standardization of W

$$\mathbf{W}_{st} =$$

Network data

- The units of analysis are nodes in a network
- For example, cities in a transportation network
- Network connectivity gives the proximity matrix

Next...

- Exploring area data
- First order effects
- Second order effects