Ableitung

Definition

Betrachte $f: X \to Y$ mit $X, Y \subset \mathbb{R}$ und $x_0 \in X$

f ist differenzierbar im Punkt x_0 mit Ableitung $f'(x_0)$

$$\Leftrightarrow f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0)$$
 für $x \to x_0$

$$\Leftrightarrow f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(Zum Vergleich:) f ist stetig im Punkt x_0

$$\Leftrightarrow f(x) = f(x_0) + o(1)$$
 für $x \to x_0$

$$\Leftrightarrow f(x_0) = \lim_{x \to x_0} f(x)$$

Grundregeln				
Summe	(f+g)' = f'+g'			
konstanter Faktor	$(\lambda f)' = \lambda f'$			
Produktregel	(fg)' = f'g + fg'			
Quotientenregel	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$			
Kettenregel	$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$	$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$		
Umkehrfunktion	$g'(y) = \frac{1}{f'(g(y))}$	$\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}$		

Potenzen und Logarithmus			
f(x)	f'(x)	Bedingungen	
const	0		
x^n	nx^{n-1}	$n \in \mathbb{Z}$ und $x \neq 0$ wenn $n < 0$	
x^a	ax^{a-1}	$a \in \mathbb{R} \text{ und } x > 0$	
$\log x$	$\frac{1}{x}$	x > 0	
e^x	e^x		
a^x	$a^x \cdot \log a$	a > 0	

Kreisfunktionen		
f(x)	f'(x)	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$\frac{1}{\cos^2 x}$	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	
$\arctan x$	$\frac{1}{1+x^2}$	

Hyperbelfunktionen		
f(x)	f'(x)	
$\sinh x$	$\cosh x$	
$\cosh x$	$\sinh x$	
$\tanh x$	$\frac{1}{\cosh^2 x}$	
arsinh x	$\frac{1}{\sqrt{1+x^2}}$	
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$	
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$	