Functions

Adam Wyner CS3518, Spring 2017 University of Aberdeen Reading: relevant chapters of any book on Discrete Maths. For example, Rosen 7th ed.

Functions

- From calculus, you know the concept of a real-valued function f, which assigns to each number $x \in \mathbf{R}$ one particular value y = f(x), where $y \in \mathbf{R}$.
- Example: f defined by the rule $f(x) = x^2$
- Roughly, functions say "the so-and-so of ..."
- Functions are also called operations, mappings, etc.

Functions

- To understand functions more precisely, one needs the mathematical notion of a set
- We assume you are familiar with "naïve set theory" (as opposed to axiomatic set theory).
- In a nutshell:

Reminder of main set concepts

- \cup , \cap , -, \in , \varnothing , \overline{S}
- =, \subseteq , \subseteq , \subset , \supset , $\not\subset$, etc.
- {a,b,...} (def. of a set by enumeration) $\{x \mid P(x)\}$ (def. by set builder notation)
- $x \in S$, $S \subseteq T$, S = T, $S \subset T$.
- **P**(*S*) (power set of *S*),
- A × B (Cartesian product of A and B)

Reminder of main set concepts

- Important sets of numbers:
 - N are the natural numbers {1, 2, 3, 4, ...}
 - Z are the integers {...-3, -2, -1, 0, 1, 2, 3, ...}
 - Q are the rational numbers $\{x/y: x \in Z, y \in N\}$
 - Irrational numbers cannot be expressed as in Q (factions), e.g. π .
 - R are the real numbers, the rational and irrational
- A relation on A is a subset of A x A. e.g., on, N, the relation < is
 {(0,1),(0,2), (1,2),...}
- Set equality proof techniques, e.g., to prove A=B, prove each of: A ⊆ B and B ⊆ A

Function: formal definition

- A function (or "mapping") f from A to B, written $f: A \rightarrow B$, is an assignment of exactly one element $f(x) \in B$ to each element $x \in A$.
- Generalisations:
 - Functions of *n* arguments: $f: (A_1 \times A_2 ... \times A_n) \rightarrow B.$
 - A partial (non-total) function f assigns zero or one elements of B to each element $x \in A$. In such a case, it is possible that there are elements of A that are not mapped to any element of B. If we say just "function" in the following, we mean a total function.

Functions precisely

- We can represent a function f: A → B as a set of ordered pairs f ={(a, f(a)) | a ∈ A}. This makes f a relation between A and B: f is a subset of A x B.
- But (total) functions are special:
 - for every $a \in A$, there is at least one pair (a,b). Formally: $\forall a \in A \exists b \in B ((a,b) \in f)$
 - for every $a \in A$, there is at most one pair (a,b). Formally: ¬ $\exists a,b,c \ ((a,b) \in f \land (a,c) \in f \land b \neq c)$
- A relation over numbers can be represented as a set of points on a plane. (A point is a pair (x,y))
 - A function is then a curve (set of points), with only one y
 for each x.

Useful diagrams

Functions can be represented graphically in several ways:

• A set S over universe U can be viewed as a function from the elements of U to ...

• A set S over universe U can be viewed as a function from the elements of U to ...

... {**T**, **F**}, saying for each element of U whether it is in S or not. This is called the characteristic function of S.

Suppose $U=\{0,1,2,3,4\}$. Then:

$$S = \{1,3\}$$
 is

$$S(0) = S(2) = S(4) = F.$$

$$S(1) = S(3) = T$$
.

• A set operator, such as \cap or \cup , can be viewed as a function from ... to ...

A set operator such as ∩ or ∪ can be viewed as a function
 ...

... from (ordered) pairs of sets to sets.

Example: \cap ({1,3},{3,4}) = {3}

A new notation

- Y^X is the set F of all possible functions $f: X \to Y$.
- Thus, $f \in Y^X$, where f (bold-italic) is a particular f (italic), is another way of saying $f: X \to Y$.
- This notation is especially appropriate, because for finite X, Y, we have $|F| = |Y|^{|X|}$; that is, the number of functions in F is the number of elements in Y to the power of the number of elements in X.

Some function terminology

- If $f: A \rightarrow B$ and f(a) = b, where $a \in A \& b \in B$, then we say:
 - − *A* is the *domain* of *f*.
 - − *B* is the *codomain* of *f*.
 - − *b* is the *image* of *a* under *f*.
 - a is a pre-image of b under f.
- In general, b may have more than 1 pre-image.
 - The range $R \subseteq B$ of f is $R = \{b \mid \exists a f(a) = b \}$.

We also say the *signature* of f is $A \rightarrow B$.

Range versus Codomain

- The range of a function may not be its whole codomain.
- The codomain is the set that the function is *declared* to map all domain values into.
- The range is the *particular* set of values in the codomain that the function *actually* maps elements of the domain to.

Choosing the right (co)domain

Consider the function f such that f(x) = 100/xIs f a (total) function from Int to R?

- f is a partial function from Int to R
- f is a (total) function from Int-{0} to R

Consider the function g such that g(x) = VxIs g a (total) function from R to R?

• g is a total function from R+ to R x R, e.g. g(4)= (2,-2)

Images of sets under functions

- Given $f: A \rightarrow B$, and $S \subseteq A$,
- The *image* of *S* under *f* is the set of all images (under *f*) of the elements of *S*.

```
f(S) := \{f(s) \mid s \in S\}:= \{b \mid \exists s \in S : f(s) = b\}.
```

- The range of f equals the image (under f) of ...
- := means 'defined as'.

Images of sets under functions

- Given $f: A \rightarrow B$, and $S \subseteq A$,
- The *image* of *S* under *f* is the set of all images (under *f*) of the elements of *S*.

```
f(S) := \{f(s) \mid s \in S\}:= \{b \mid \exists s \in S : f(s) = b\}.
```

The range of f equals the image (under f) of the domain of f.

One-to-one functions

- A function is *one-to-one* (1-1), or *injective*, or *an injection*, iff every element of its range has *only* 1 pre-image.
 - Formally: given $f: A \rightarrow B$, "f is injective" :≡ $(\neg \exists x, y: x \neq y \land f(x) = f(y))$.
- In other words: only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - In this case, domain and range have the same cardinality.
- What about codomain? It may be larger.

One-to-one illustration

• Are these relations one-to-one functions?

One-to-one illustration

• Are these relations one-to-one functions?

One-to-one illustration

• Are these relations one-to-one functions?

Sufficient conditions for 1-1ness

- For functions *f* over numbers, we say:
 - f is strictly increasing iff x > y → f(x) > f(y) for all x,y in domain;
 - f is strictly decreasing iff x > y → f(x) < f(y) for all x,y in domain;
- If f is either strictly increasing or strictly decreasing, then f must be one-to-one.
 - Does the converse hold?

• A function $f: A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain

```
\forall b \in B, \exists a \in A: f(a) = b.
```

Consider "country of birth of": A → B, where A=people, B=countries.
 Is this a function?
 Is it an injection?
 Is it a surjection?

- A function $f: A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain
- Consider "country of birth of": A → B, where A=people, B=countries.
 Is this a function? Yes (always 1 c.o.b.)
 Is it an injection? No (many have same c.o.b.)
 Is it a surjection? Probably yes (every country is the country of birth of someone, but...)

- A function $f: A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain
- In predicate logic:

- A function $f: A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain.
- In predicate logic:

$$\forall b \in B \exists a \in A f(a) = b$$

- A function $f: A \to B$ is onto or surjective or a surjection iff its range is equal to its codomain $(\forall b \in B \exists a \in A f(a) = b)$.
- e.g., for domain and codomain Z, the function f(x) = x+1 is injective and surjective.

Example

Claim: if f: $Z \rightarrow Z$ and f(x) = x + 1, then f is 1-to-1 and also onto, where **Z** is the set of **all** integers

- Proof that f is onto: Consider any arbitrary element a of Z. We have f(a 1) = a, where $a \in Z$.
- Proof that f is 1-to-1: Suppose f(u) = f(w) = a. In other words,
 u + 1 = a and w + 1 = a. It follows that u = w.

• Are these functions *onto* their depicted co-domains?

• Are these functions *onto*?

1-1/injective functions

• Are these functions 1-1?

1-1/injective functions

• Are these functions 1-1?

• A function is said to be *a one-to-one* **correspondence**, or *a bijection* iff it is <u>both</u> one-to-one <u>and</u> onto.

Two terminologies for talking about functions

- 1. injection = one-to-one
- 2. surjection = onto
- 3. bijection = one-to-one correspondence

$$3 = 1 \& 2$$

- For bijections $f:A \rightarrow B$, there exists a function that is the inverse of f, written $f^{-1}: B \rightarrow A$
- Intuitively, this is the function that undoes everything that f does
- Formally, it's the unique function such that

. . .

- For bijections $f:A \rightarrow B$, there exists an *inverse* of f, written f^{-1} : $B \rightarrow A$
- Intuitively, this is the function that undoes everything that f does
- Formally, it is the unique function such that
 - f composed with f^{-1} is the identity function on A, I_A

$$f^{-1} \circ f = I_A$$

- A function f composed with a function g, f 0 g, is a function where, applied to an argument x, (f o g)(x) = (f(g(x))).
- The identity function simply returns the input value.

- Example 1: Let f: $\mathbb{Z} \to \mathbb{Z}$ be defined as f(x) = x + 1. What is f^{-1} ?
- Example 2: Let g: $\mathbb{Z} \to \mathbb{N}$ be defined as g(x) = |x|. What is g^{-1} ?

- Example 1: Let $f: \mathbf{Z} \to \mathbf{Z}$ be defined as f(x) = x + 1. What is f^{-1} ?
- f⁻¹ is the function (let's call it h), where h: $Z \rightarrow Z$ defined as h(x) = x 1.
- Proof:

$$h \circ f = I$$

$$h(f(x)) = (x + 1) - 1 = x$$

- Example 2: Let g: $\mathbb{Z} \to \mathbb{N}$ be defined as g(x) = |x|. What is g^{-1} ?
- This was a trick question: there is no such function, since g is not a bijection: There is no function h such that h(|x|) = x and h(|x|) = -x
- (NB There is a relation h for which this is true.)

Cardinality (informal)

- The cardinality of a finite set is its number of elements
- E.g., $card({a,b,c}) = card({e,f,g}) = 3$
- Note: for finite sets X and Y, card(X) = card(Y) if and only if there exists a bijection between X and Y.