CECS 271 MATLAB Assignment 5

Dr. Todd Ebert

Due Date: December 4th

Exercises

For this lab it is important to define an implement a function f(t) that represents the function for which Fourier coefficients are to be computed. The default for f(t) is $f(t) = t^2$, but **be prepared** to change f(t) during the demo.

- 1. Provide a script that allows the user to input i) an integer $k \geq 0$, and ii) a parameter that indicates either cosine or sine, and prints an approximation of the Fourier coefficient c_k (if cosine) or d_k (if sine). Use Simpsion's rule for the integral approximation with n=100 segments. Note: use n=100 segments in all subsequent exercises when approximating a Fourier coefficient.
- 2. Provide a script that allows the user to input an integer n > 0, and prints the sum-squared error that occurs when approximating f(t) with $p_n(t)$, the n th-order trigonometric polynomial with respect to f(t). In other words, approximate

sse =
$$\int_0^{2\pi} (f(t) - p_n(t))^2 dt$$
.

using Simpson's rule with 1000 segments.

3. Provide a script that allows the user to input i) an integer n > 0, and ii) a positive integer m > 0, and then plots both f(t) and $p_n(t)$ (see previous exercise) on the same axes over the interval $[0, 2\pi]$ using m evenly distributed t-values (e.g. linspace $(0, 2\pi, m)$).