INF01 118

Técnicas Digitais para Computação

Transistor MOS
Portas CMOS
Portas Complexas

Aula 4

Transistor MOS

Estruturas MOS

Transistor MOS

Transistor NMOS

Transistor NMOS

da carga colocada no gate (G), cargas de sentido oposto são atraídas para a interface com o óxido, formando o canal do transistor. Se estas cargas forem do mesmo tipo que as cargas presentes nas regiões de fonte (S) e dreno (D), haverá passagem de corrente (I) entre essas regiões através do canal do transistor.

Transistor NMOS

Transistor PMOS

Portas Lógicas básicas

Portas XOR/XNOR

XOR

(XNOR)

 $S = E1 \oplus E2$

$$S = E1 + E2$$

$$S = E1 \bullet E2$$

E	INV
0	1
1	0

E 1	E2	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Circuitos CMOS Estáticos

De Morgan: $A + B = A \cdot B$

- •A lógica PMOS permite conectar o sinal de saída a Vcc (5V), '1' lógico.
- A lógica NMOS permite conectar o sinal de saída a Gnd (0V), '0' lógico.
- Sempre um dos caminhos, para Vcc ou Gnd, estão fechados para a saída, conectando a mesma a 5V ou 0V.

As redes PUP (pull up) e PDN (pull down) são duais nas suas topologias.

INVERSOR CMOS

INVERSOR CMOS

• Equação:

$$S = \overline{E}$$

• Esquema Lógico:

• Tabela Verdade:

E	S
0	1
1	0

• Esquema Elétrico CMOS

"Difusão P"

"Difusão N"

Porta NAND CMOS

E 1	E2	S
0	0	1
0	1	1
1_	0	_1
1	1	

Dica: A SAÍDA É 0 SOMENTE QUANDO TODAS AS ENTRADAS FOREM 1, CASO CONTRÁRIO HAVERÁ 1 NA SAÍDA. CONTRÁRIO DA PORTA 'AND'.

Porta NAND CMOS

• Equação Lógica:

$$S = \overline{A \cdot B}$$

• Esquema Lógico:

$$\frac{A}{B}$$

• Esquema Elétrico:

Porta NOR CMOS

Símbolo:

Equação Booleana:
$$S = E1 + E2$$

 $S = E1 + E2 + ... + En$

Tabela Verdade:

E 1	E2	S
0	0	1
0	1	0
1	0	0
1	1	0

E 1	E2	•••	En	S
0	0		0	1
0	1		0	0
1	0		0	0
1	1	•••	1	0

Dica: A SAÍDA É 1 SOMENTE QUANDO TODAS AS ENTRADAS FOREM 0, CASO CONTRÁRIO HAVERÁ 0 NA SAÍDA. OU SEJA, 1 EM UMA DAS ENTRADAS JÁ GARANTE 0 NA SAÍDA. CONTRÁRIO DA PORTA OR.

Porta NOR CMOS

• Equação:

$$S = \overline{A + B}$$

• Esquema Lógico:

• Esquema Elétrico CMOS

Porta NAND CMOS

Portas CMOS Complexas SCCG (Static CMOS Complex Gate)

Portas CMOS Complexas SCCG (Static CMOS Complex Gate)

Exemplo:

$$S = \overline{A + (B \cdot (C+D))}$$

O funcionamento complementar das redes (P e N) é definido pela topologia dual das redes de "pull up" e de "pull down".

E 1	E2	E3	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Portas CMOS Complexas

SCCG (Static CMOS Complex Gate)

Exemplo: Funções com até 2 transistores em série