Aula 27 Teoria da Complexidade Problema CobVert é NP-completo

Projeto e Análise de Algoritmos

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Construção sim → sim

não → nã

Prof. Eurinardo

Aulas Passadas

PROBLEMA COBVERT

COBVERT é NP-completo COBVERT ∈ NP

COBVERT ∈ NP

Exemplo de Construção

Construção

 $\text{sim} \rightarrow \text{sim}$

 $\tilde{nao} \to \tilde{nao}$

Aulas Passadas

COBVERT COBVERT é NP-comple COBVERT ∈ NP

Exemplo de Construção Construção

não → não

► Problemas "Fáceis" e "Razoáveis"

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC

Aulas Passadas

COBVERT 6 NP-complete
COBVERT € NP

Construção sim → sim

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC
- Redução Polinomial

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Prof. Eurinardo

Aulas Passadas

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Prof. Eurinardo

Aulas Passadas

- ► Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- ► Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

▶ Teorema

$$\blacktriangleright \begin{cases}
B \in NPC \\
B \leq_{p} C \\
C \in NP
\end{cases} \Rightarrow C \in NPC$$

Prof. Eurinardo Aulas Passadas

PROBLEMA COBVERT

COBVERT é NP-completo COBVERT € NP Exemplo de Construção

 $sim \rightarrow sim$

sim → sim

não → não

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$

 $w \to f(w)$
 $sim \leftrightarrow sim$

Teorema

$$\blacktriangleright \begin{cases}
B \in NPC \\
B \leq_p C \\
C \in NP
\end{cases} \Rightarrow C \in NPC$$

► (Cook-Levin) SAT ∈ NPC

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$

$$w \to f(w)$$

$$sim \leftrightarrow sim$$

$$\blacktriangleright \begin{cases}
B \in NPC \\
B \leq_p C \\
C \in NP
\end{cases} \Rightarrow C \in NPC$$

- ► (Cook-Levin) SAT ∈ NPC
- ▶ 3SAT ∈ NPC

 $sim \rightarrow sim$ $não \rightarrow não$

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Teorema

$$\blacktriangleright \left\{
\begin{cases}
B \in NPC \\
B \leq_p C \\
C \in NP
\end{cases}
\Rightarrow C \in NPC$$

- ► (Cook-Levin) SAT ∈ NPC
- ▶ 3SAT ∈ NPC
- ► CLIQUE ∈ NPC

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA COBVERT

COBVERT € NP Exemplo de Construção

sim → si

COBVERT É NP-completo
COBVERT € NP
Exemplo de Construção

 $sim \rightarrow sim$ $não \rightarrow não$

PROBLEMA COBVERT

 $sim \rightarrow sim$ $não \rightarrow não$

PROBLEMA COBVERT

Instância: um grafo G e inteiro positivo k

PROBLEMA COBVERT

Instância: um grafo G e inteiro positivo k

Pergunta: existe um subconjunto de vértices

 $S \subseteq V(G)$ de tamanho k de modo que cada aresta

de G possui uma extremidade em S?

PROBLEMA COBVERT

Instância: um grafo G e inteiro positivo k

Pergunta: existe um subconjunto de vértices $S \subseteq V(G)$ de tamanho k de modo que cada aresta de G possui uma extremidade em S? isto é, existe uma **cobertura por vértices** de tamanho k em G?

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA

COBVERT € NP-completo

Exemplo de Construção Construção

Teorema

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP

Exemplo de Constru Construção

Teorema

PROBLEMA COBVERT *é NP-completo*.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT € NP-completo
COBVERT € NP
Exemplo de Construção

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

sim → sim

Teorema

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

Usaremos o teorema

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

PROBLEMA COBVERT é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_p C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B = 3SAT

PROBLEMA COBVERT é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_p C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = COBVERT

PROBLEMA COBVERT é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = COBVERT. Deste modo,

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_p C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B=3SAT e C= COBVERT. Deste modo, basta mostrar que 3SAT \leq_{p} COBVERT

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_p C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = COBVERT. Deste modo, basta mostrar que 3SAT $\leq_{\mathcal{D}} COBVERT$ e que $COBVERT \in NP$.

PROBLEMA COBVERT é NP-completo.

Demonstração.

COBVERT ∈ NP

PROBLEMA COBVERT é NP-completo.

Demonstração.

COBVERT ∈ NP

Certificado:

PROBLEMA

Teorema

PROBLEMA COBVERT é NP-completo.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G*

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto C de vértices de G

Verificação:

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto C de vértices de G

Verificação:

|C|=k?

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

► |C| = k? O(k) = O(n)

PROBLEMA COBVERT é NP-completo.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

|C| = k? O(k) = O(n), basta contar.

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* **Verificação**:

- ightharpoonup |C| = k? O(k) = O(n), basta contar.
- ▶ toda aresta de G possui pelo menos uma extremidade em C?

Aulas Passadas

PROBLEMA
COBVERT
COBVERT € NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* **Verificação**:

- |C| = k? O(k) = O(n), basta contar.
- ► toda aresta de *G* possui pelo menos uma extremidade em C? $O(kn^2) = O(n^3)$

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* **Verificação**:

- ightharpoonup |C| = k? O(k) = O(n), basta contar.
- ► toda aresta de G possui pelo menos uma extremidade em C? $O(kn^2) = O(n^3)$, basta percorrer todas as arestas de G

Prof Furinardo

Aulas Passadas

PROBLEMA
COBVERT é NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* **Verificação**:

- ightharpoonup |C| = k? O(k) = O(n), basta contar.
- ▶ toda aresta de G possui pelo menos uma extremidade em C? O(kn²) = O(n³), basta percorrer todas as arestas de G (existem O(n²) arestas)

Prof Furinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* **Verificação**:

- ightharpoonup |C| = k? O(k) = O(n), basta contar.
- ▶ toda aresta de G possui pelo menos uma extremidade em C? O(kn²) = O(n³), basta percorrer todas as arestas de G (existem O(n²) arestas) e verificar se alguma de suas extremidades está em C

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* **Verificação**:

- ightharpoonup |C| = k? O(k) = O(n), basta contar.
- ▶ toda aresta de G possui pelo menos uma extremidade em C? $O(kn^2) = O(n^3)$, basta percorrer todas as arestas de G (existem $O(n^2)$ arestas) e verificar se alguma de suas extremidades está em C ($|C| = k \le n$)

Prof. Eurinardo Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

PROBLEMA COBVERT é NP-completo.

Demonstração.

COBVERT ∈ NP

Certificado: conjunto *C* de vértices de *G* Verificação:

- |C| = k? O(k) = O(n), basta contar.
- toda aresta de G possui pelo menos uma extremidade em C? $O(kn^2) = O(n^3)$, basta percorrer todas as arestas de G (existem $O(n^2)$ arestas) e verificar se alguma de suas extremidades está em C(|C| = k < n) o que resulta num tempo total de $O(kn^2) = O(n^3)$.

Prof Furinardo

Aulas Passadas

COBVERT ← NP

sim → sim

Aulas I assaua

Teorema

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

sim → sim

Teorema

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

3SAT ≤_p COBVERT

(i)
$$\langle \phi \rangle \rightarrow \langle G, k \rangle$$

3SAT ≤_p COBVERT

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$
- (ii) $\mathsf{sim} \to \mathsf{sim}$

Prof. Eurinardo

Aulas Passadas

COBVERT ← NP

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$
- (ii) $sim \rightarrow sim$
- (iii) não → não

Teoria da Complexidade

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA

COBVERT é NP-completo COBVERT € NP

Exemplo de Construção Construção

não → não

COBVERT É NP-completo COBVERT € NP Exemplo de Construção

Construção

não → não

 $\phi = (x_1 \lor x_2 \lor x_2) \land (x_1 \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2})$

$$\phi = (x_1 \vee x_2 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2})$$

Exemplo de Construção

CobVert é NP-completo CobVert ∈ NP

Exemplo de Construção

 $sim \rightarrow sim$ $não \rightarrow não$

Exemplo de Construção

sim → sin não → nã

Exemplo de Construção

sim → sim

CobVert é NP-completo CobVert ∈ NP

Exemplo de Construção

sim → sir

COBVERT é NP-completo COBVERT ∈ NP

Exemplo de Construção

sim → sir não → nã

COBVERT é NP-completo

Exemplo de Construção

sim → si

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complet

Exemplo de Construção

siffi → s não → i

COBVERT é NP-complete

Exemplo de Construção

sim → si não → n

Aulas Passadas

PROBLEMA
COBVERT
COBVERT 6 NP-complete

Exemplo de Construção

sim → s não → i

COBVERT é NP-completo

Exemplo de Construção

 $sim \rightarrow si$ $não \rightarrow n$

$$k = v + 2c$$

Teoria da Complexidade

Teorema

PROBLEMA COBVERT é NP-completo.

Demonstração.

 $3SAT \leq_{p} COBVERT$

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA COBVERT COBVERT é NP-completo

COBVERT € NP

Exemplo de Construção

Construção

não → não

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(i)
$$<\phi> \rightarrow <$$
 $G,k>$

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT é NP-completo

Exemplo de Constru Construção

não → nã

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(i) $<\phi> \rightarrow <$ G, k> (Construção)

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

Construção

PROBLEMA COBVERT é NP-completo. Demonstração.

Teorema

$3SAT \leq_{p} COBVERT$

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G:

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi> \rightarrow < G, k>$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

 $sim \rightarrow sim$ $não \rightarrow não$

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi> \rightarrow < G, k>$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em ϕ ;

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

~

PROBLEMA COBVERT é NP-completo.

Demonstração.

$3SAT \leq_{p} COBVERT$

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G:
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em ϕ ; e
 - (d) k = v + 2c

Aulas Passadas

Construção

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi> \rightarrow < G, k>$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em φ; e
 - (d) k = v + 2c, onde v é a quantidade de variáveis de ϕ

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi> \rightarrow < G, k>$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em φ; e
 - (d) k = v + 2c, onde v é a quantidade de variáveis de ϕ e c é a quantidade de cláusulas de ϕ .

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi>
 ightarrow <$ G,k> (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em φ; e
 - (d) k = v + 2c, onde v é a quantidade de variáveis de ϕ e c é a quantidade de cláusulas de ϕ .

Redução Polinomial?

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi>
 ightarrow <$ G,k> (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em φ; e
 - (d) k = v + 2c, onde v é a quantidade de variáveis de ϕ e c é a quantidade de cláusulas de ϕ .

Redução Polinomial?

2v + 3c vértices

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi>
 ightarrow <$ G,k> (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em φ; e
 - (d) k = v + 2c, onde v é a quantidade de variáveis de ϕ e c é a quantidade de cláusulas de ϕ .

Redução Polinomial?

2v + 3c vértices

v + 6c arestas

Aulas Passadas

PROBLEMA
COBVERT
COBVERT É NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

- (i) $<\phi> \rightarrow < G, k>$ (Construção)
 - (a) para cada variável x de ϕ , criar vértices x e \overline{x} ; e uma aresta $x\overline{x}$ em G;
 - (b) para cada cláusula de $(x \lor y \lor z)$ de ϕ , criar um ciclo de tamanho 3 (x, y, z) em G;
 - (c) ligar os vértices variáveis aos vértices cláusulas que correspondem ao mesmo literal em ϕ ; e
 - (d) k = v + 2c, onde v é a quantidade de variáveis de ϕ e c é a quantidade de cláusulas de ϕ .

Redução Polinomial?

$$\left. egin{aligned} 2v + 3c & ext{v\'ertices} \\ v + 6c & ext{arestas} \end{aligned}
ight.
ightarrow O(v+c)$$

Prof. Eurinardo

Aulas Passadas

PROBLEMA

COBVERT

COBVERT é NP-completo

COBVERT ∈ NP

Exemplo de Construção

Construção

 $sim \rightarrow sim$ $não \rightarrow não$

 $\phi = (x_1 \vee x_2 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2})$

$$k = v + 2c$$

Prof. Eurinardo

Aulas Passadas

Construção

Aulas Passadas

Construção

$$k = v + 2c$$

.

Aulas Passadas

COBVERT é NP-complete COBVERT € NP Exemplo de Construção

 $\begin{array}{c} {\sf Construção} \\ {\sf sim} \, \to \, {\sf sim} \end{array}$

não → ná

$$k = v + 2c$$

Prof. Eurinardo

Aulas Passadas

PROBLEMA COBVERT

COBVERT É NP-complete COBVERT € NP Exemplo de Construção CONSTRUÇÃO

sim → sii

$$k = v + 2c$$

Prof. Eurinardo

$$k = v + 2c$$

Aulas Passadas

PROBLEMA COBVERT COBVERT É NP-complete

COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

Aulas Passadas

COBVERT É NP-completo
COBVERT € NP
Exemplo de Construção

Construção sim → sim

$$k = v + 2c$$

Aulas Passadas

PROPLEMA

COBVERT É NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

sim → si

$$k = v + 2c$$

Prof. Eurinardo

Aulas Passadas

PROBLEMA

COBVERT É NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

sim → sii

$$k = v + 2c$$

PROBLEMA COBVERT é NP-completo.

Demonstração.

 $3SAT \leq_{p} COBVERT$

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

COBVERT 6 NP-completo

Exemplo de Constr Construção sim → sim

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(ii) $sim \rightarrow sim$

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA COBVERT

COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção

sim → sin

$3SAT \leq_{p} COBVERT$

(ii) $\sin \rightarrow \sin$ Se ϕ é sim no 3SAT PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

COBVERT é NP-completo
COBVERT € NP
Exemplo de Construção

sim → sin

3SAT ≤_p COBVERT

(ii) sim \to sim Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção

sim → sim

3SAT ≤_p COBVERT

(ii) sim \rightarrow sim Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Escolha os vértices variáveis de G que correspondem aos literais V

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

sim → sim não → não

3SAT ≤_p COBVERT

(ii) sim \rightarrow sim Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Escolha os vértices variáveis de G que correspondem aos literais V e, para cada cláusula C, escolha dois vértices cláusulas de C

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

$3SAT \leq_p COBVERT$

(ii) sim \rightarrow sim Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Escolha os vértices variáveis de G que correspondem aos literais V e, para cada cláusula C, escolha dois vértices cláusulas de C de modo que o terceiro vértice cláusula corresponda a um literal V.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complet
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

3SAT ≤_p COBVERT

(ii) $\sin \rightarrow \sin$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Escolha os vértices variáveis de G que correspondem aos literais V e, para cada cláusula C, escolha dois vértices cláusulas de C de modo que o terceiro vértice cláusula corresponda a um literal V. Veja que temos v+2c=k vértices escolhidos.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complet
COBVERT E NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

3SAT ≤_p COBVERT

(ii) $\operatorname{sim} \to \operatorname{sim}$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Escolha os vértices variáveis de G que correspondem aos literais V e, para cada cláusula C, escolha dois vértices cláusulas de C de modo que o terceiro vértice cláusula corresponda a um literal V. Veja que temos v+2c=k vértices escolhidos. Note que cada aresta de G possui uma extremidade que é um vértice escolhido:

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

 $sim \rightarrow sim$ $não \rightarrow não$

$3SAT \leq_p COBVERT$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Escolha os vértices variáveis de G que correspondem aos literais V e, para cada cláusula C, escolha dois vértices cláusulas de C de modo que o terceiro vértice cláusula corresponda a um literal V. Veja que temos v + 2c = k vértices escolhidos. Note que cada aresta de G possui uma extremidade que é um vértice escolhido: para as arestas criadas em (a) temos que um dos literais x ou \overline{x} foi escolhido;

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(ii) $sim \rightarrow sim$

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA COBVERT

COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção

sim → sin

3SAT ≤_p COBVERT

(ii) sim → sim para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT € NP
Exemple de Construção

sim o sim

3SAT ≤_p COBVERT

(ii) sim → sim
 para as arestas criadas em (b) temos que dois
 vértices do ciclo foram escolhidos; e para cada
 aresta criada em (c)

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção

 $sim \rightarrow sim$ $não \rightarrow não$

3SAT ≤_p COBVERT

(ii) sim → sim para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b₁

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

 $sim \rightarrow sin$ $não \rightarrow nã$

3SAT ≤_p COBVERT

(ii) sim → sim para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b₁ e a outra extremidade que é um vértice cláusula b₂

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

 $sim \rightarrow sim$ $não \rightarrow não$

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(ii) $sim \rightarrow sim$ para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b_1 e a outra extremidade que é um vértice cláusula b_2 e vemos que se b_1 não é escolhido

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(ii) sim → sim para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b₁ e a outra extremidade que é um vértice cláusula b₂ e vemos que se b₁ não é escolhido é porque corresponde a um literal F para a valoração

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

 $sim \rightarrow sim$ $não \rightarrow não$

3SAT ≤_p COBVERT

(ii) sim → sim para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b₁ e a outra extremidade que é um vértice cláusula b₂ e vemos que se b₁ não é escolhido é porque corresponde a um literal F para a valoração e, nessa situação

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

3SAT ≤_p COBVERT

(ii) sim → sim para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b₁ e a outra extremidade que é um vértice cláusula b₂ e vemos que se b₁ não é escolhido é porque corresponde a um literal F para a valoração e, nessa situação, b₂ é escolhido.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(ii) $sim \rightarrow sim$ para as arestas criadas em (b) temos que dois vértices do ciclo foram escolhidos; e para cada aresta criada em (c) temos que ela tem uma extremidade que é vértice variável b_1 e a outra extremidade que é um vértice cláusula b_2 e vemos que se b_1 não é escolhido é porque corresponde a um literal F para a valoração e, nessa situação, b₂ é escolhido. Desde modo os vértices escolhidos formam uma cobertura por vértices de tamanho kpara G.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

Aulas Passadas

PROBLEMA

COBVERT É NP-completo COBVERT € NP Exemplo de Construção

 $sim \rightarrow sin$ $não \rightarrow nã$

$$k = v + 2c$$

PROBLEMA COBVERT é NP-completo.

Demonstração.

 $3SAT \leq_{p} COBVERT$

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

COBVERT € NP-completo
COBVERT € NP

Exemplo de Construç
Construção
sim → sim

não ightarrow não

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) não → não

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complet

CoBVERT ∈ NP

Exemplo de Construção

Construção

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) não \rightarrow não (sim \leftarrow sim)

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

COBVERT é NP-completo
COBVERT € NP

Exemplo de Constru Construção sim → sim

$3SAT \leq_{p} COBVERT$

(iii) não \rightarrow não (sim \leftarrow sim) Suponha que temos uma cobertura C, com tamanho k=v+2c, para o grafo G (grafo construído a partir de ϕ). PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
Construção

 $sim \rightarrow sim$ $não \rightarrow não$

PROBLEMA COBVERT é NP-completo.

Demonstração.

$3SAT \leq_{p} COBVERT$

(iii) não \rightarrow não (sim \leftarrow sim) Suponha que temos uma cobertura C, com tamanho k = v + 2c, para o grafo G (grafo construído a partir de ϕ). Como temos v + 2c vértices em C PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT É NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) não \rightarrow não (sim \leftarrow sim) Suponha que temos uma cobertura C, com tamanho k = v + 2c, para o grafo G (grafo construído a partir de ϕ). Como temos v + 2c vértices em C, necessariamente temos que C possui um vértice para cada estrutura criada em (a)

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) não \rightarrow não (sim \leftarrow sim) Suponha que temos uma cobertura C, com tamanho k = v + 2c, para o grafo G (grafo construído a partir de ϕ). Como temos v + 2c vértices em C, necessariamente temos que C possui um vértice para cada estrutura criada em (a) e dois vértices para cada estrutura criada em (b)

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT € NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) não \rightarrow não (sim \leftarrow sim) Suponha que temos uma cobertura C, com tamanho k=v+2c, para o grafo G (grafo construído a partir de ϕ). Como temos v+2c vértices em C, necessariamente temos que C possui um vértice para cada estrutura criada em (a) e dois vértices para cada estrutura criada em (b) uma vez que temos que cobrir as arestas criadas em (a) e (b)

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT É NP
Exemplo de Construção
CONSTRUÇÃO

 $sim \rightarrow sim$ $não \rightarrow não$

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) $\tilde{nao} \rightarrow \tilde{nao} (sim \leftarrow sim)$ Suponha que temos uma cobertura C, com tamanho k = v + 2c, para o grafo G (grafo construído a partir de ϕ). Como temos v + 2c vértices em C, necessariamente temos que C possui um vértice para cada estrutura criada em (a) e dois vértices para cada estrutura criada em (b) uma vez que temos que cobrir as arestas criadas em (a) e (b). Para os vértices na cobertura C que foram criados em (a)

Prof. Eurinardo Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT É NP
Exemplo de Construção
CONSTRUÇÃO

Demonstração.

3SAT ≤_p COBVERT

(iii) $\tilde{nao} \rightarrow \tilde{nao} (sim \leftarrow sim)$ Suponha que temos uma cobertura C, com tamanho k = v + 2c, para o grafo G (grafo construído a partir de ϕ). Como temos v + 2c vértices em C, necessariamente temos que C possui um vértice para cada estrutura criada em (a) e dois vértices para cada estrutura criada em (b) uma vez que temos que cobrir as arestas criadas em (a) e (b). Para os vértices na cobertura C que foram criados em (a) dê a valoração ao seu literal correspondente como V e o seu literal complementar como F.

PAA - Aula 27

Prof. Eurinardo

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT € NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

COBVERT é NP-completo COBVERT € NP Exemplo de Construção

 $sim \rightarrow sim$ $não \rightarrow não$

Teorema

PROBLEMA COBVERT é NP-completo.

Demonstração.

$3SAT \leq_{p} COBVERT$

(iii) não \rightarrow não (sim \leftarrow sim)

PROBLEMA COBVERT é NP-completo.

Demonstração.

$3SAT \leq_p COBVERT$

(iii) não \rightarrow não (sim \leftarrow sim) Como temos que

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

$3SAT \leq_p COBVERT$

(iii) não \rightarrow não (sim \leftarrow sim) Como temos que, para cada cláusula

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

3SAT ≤_p COBVERT

(iii) não → não (sim ← sim)
 Como temos que, para cada cláusula, existe um vértice cláusula que não está na cobertura

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-completo
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

3SAT ≤_p COBVERT

(iii) não → não (sim ← sim) Como temos que, para cada cláusula, existe um vértice cláusula que não está na cobertura e a aresta criada em (c) que sai dele está coberta pelo vértice variável

Prof. Eurinardo Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

3SAT ≤_p COBVERT

(iii) não → não (sim ← sim) Como temos que, para cada cláusula, existe um vértice cláusula que não está na cobertura e a aresta criada em (c) que sai dele está coberta pelo vértice variável (para o qual valoramos seu literal como V)

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO
sim → sim

PROBLEMA COBVERT *é NP-completo*.

Demonstração.

3SAT ≤_p COBVERT

(iii) não → não (sim ← sim) Como temos que, para cada cláusula, existe um vértice cláusula que não está na cobertura e a aresta criada em (c) que sai dele está coberta pelo vértice variável (para o qual valoramos seu literal como V), então cada cláusula possui pelo menos um literal V.

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT ∈ NP
Exemplo de Construção
CONSTRUÇÃO

PROBLEMA COBVERT é NP-completo.

Demonstração.

3SAT ≤_p COBVERT

(iii) não → não (sim ← sim) Como temos que, para cada cláusula, existe um vértice cláusula que não está na cobertura e a aresta criada em (c) que sai dele está coberta pelo vértice variável (para o qual valoramos seu literal como V), então cada cláusula possui pelo menos um literal V. Portanto, temos que nossa valoração satisfaz φ.

Aulas Passadas

PROBLEMA
COBVERT
COBVERT é NP-complete
COBVERT É NP
Exemplo de Construção
CONSTRUÇÃO

Prof. Eurinardo

Aulas Passadas

SIPSER, M. Introdução a teoria da computação. 2 ed. Thompson Learning, and 2007.

Prof. Eurinardo

Aulas Passadas

COBVERT é NP-complete COBVERT É NP Exemplo de Construção Construção

não → não

Obrigado!