Übungsblatt 3

Abgabefrist: 07. Juni 2024 um 10:00 Uhr

Aufgabe 1

Sei X ein Hausdorff-Raum, der nicht kompakt ist. Wir setzen $\widehat{X} := X \cup \{\infty\}^1$, wobei " ∞ " nur als Symbol für einen zusätzlichen Punkt zu verstehen ist. Außerdem definieren wir

$$\mathcal{T} := \{ U \mid U \subseteq X \text{ offen} \} \cup \{ \widehat{X} \setminus K \mid K \subseteq X \text{ kompakt} \}.$$

Zeigen Sie:

- 1. \mathcal{T} ist eine Topologie auf \widehat{X} .
- 2. $(\widehat{X}, \mathcal{T})$ ist kompakt.

Aufgabe 2

Bezeichne mit \widehat{X} noch einmal die Einpunktkompaktifizierung des topologischen Raumes X.

- 1. Besitzt in Xjeder Punkt eine kompakte Umgebung, so ist \widehat{X} auch ein Hausdorff-Raum
- 2. Zeige, dass $\widehat{\mathbb{R}}$ homö
omorph zur Kreislinie S^1 ist.

Aufgabe 3

Zeigen Sie, dass die Sorgenfrey-Topologie auf \mathbb{R} normal ist.

Aufgabe 4

Sei \sim eine Relation auf einer Menge X.

- 1. Verifizieren Sie, dass die erzeugte Äquivalenzrelation \approx in Konstruktion 5.1 tatsächlich eine Äquivalenzrelation ist.
- 2. Sei X das Intervall [0,1] und $x \sim y : \iff x = 1, y = 0$. Zeigen Sie, dass dann

$$x \approx y \iff x = y \text{ oder } (x, y) \in \{(0, 1), (1, 0)\}.$$

¹Man nennt \widehat{X} die Einpunktkompaktifizierung von X.