GKR

circuit C of 882e S, depth of Jan-in 2

Wi > MLE of Wi

W: {0,13 ×7 → F

[∞]₁ · √ | γ_{1,7} : ξο,13^κ; → ξο,13^κ; take 1/p label a of a gode at layeri of label of gote blc in layer i+1

1=0 So=2 layer 0

P=1 S1=4 layer 1 K=2

P=28,-4 layer 2

 $\bigotimes_{\mathsf{D}} \bigotimes_{\mathsf{C}(\mathsf{D},\mathsf{D})} \bigotimes_{\mathsf{C}(\mathsf{D},\mathsf{$

3. 2, 3,

add; $\{a_i,b_i\}^{k_i+2k_i+1} \rightarrow \{a_i,b_i\}$ add; $\{a_i,b_i,c\}=1$ iff $\{b_i,c\}=\{a_{i,j},b_i\}_{i=1,j},b_i\}$ mult: $\{a_i,b_i,c\}^{k_i+2k_i+1} \rightarrow \{a_i,b_i\}$ mult: $\{a_i,b_i,c\}^{k_i+2k_i+1} \rightarrow \{a_i,b_i\}$

for each layer i, add; multi depend only on the circuit C and not on the input 2 to C

In contrast the function N; does depend on x Les cause N; maps each gate label at layer is to the value of the gate when C is evaluated on support a

Detailed description

- de Herations, one for each layer of the circuit
 each stevation; stouts with P claiming a value for $W_1(\tau_1)$ for some point $\tau_1 \in F^{K_2}$ (say $1=1 \Rightarrow S=4 \Rightarrow K_1=2$) $\Rightarrow W_1(\tau_1) \quad \tau_1 \in F^2$

So= 2 Ko So = 2 $\kappa_0 = 1$ D: $\{0,1\}$ > F maps label of an ofp gate to claimed value of yp

eval. B(m)

$$\bigotimes_{0}$$
 $\bigotimes_{(0,i)}$ \bigotimes_{2} $\bigotimes_{3(i,i)}$

2, 3₂ 0₃

The purpose of iteration i is to reduce the claim about the value of $\widetilde{W}_i(r_i)$ to a claim about $\widetilde{W}_{i+1}(r_{i+1})$ for some $r_{i+1} \in \mathbb{F}^{k_{i+1}}$, in the sense that it is safe for \mathcal{V} to assume that the first claim is true as long as the second claim is true. To accomplish this, the iteration applies the sum-check protocol to a specific polynomial derived from W_{i+1} , add_i, and mult_i. Our description of the protocol actually makes use of a simplification due to Thaler [Tha15].

$$\text{No.} (r_0) \rightarrow N_{r_0}(r_1)$$
 $\text{No.} (r_0) \rightarrow N_{r_0}(r_1)$
 $\text{No.} (r_0) \rightarrow N_{r_0}(r_1)$

suncheak on polynomial derived from \widetilde{W}_{i+1} , add, and multi

$$\widetilde{W}_{i}(z) = \sum_{b,c \in \{0,c\}^{K_{i+1}}} \widetilde{add}_{i}(z,b,c) \left(\widetilde{W}_{i+1}(b) + \widetilde{W}_{2i+1}(c)\right) + \widetilde{wull}_{i}(z_{i}b_{i}c)\widetilde{W}_{i+1}(b).\widetilde{W}_{i+1}(c)\right)$$

$$LHS and RHS agree for all $a \in \{0,1\}^{K_{i}}$$$

since.

add:
$$(a,b,c) = \begin{cases} 1 & \text{if } (b,c) = (!n, (a), !n_2,(a)) \\ 0 & \text{otherwise} \end{cases}$$

Similarity for mult: (G,b,c) + (b,f)+fo,12 11-1

$$\Rightarrow \quad \alpha = \quad \widetilde{W}_{1+r} \left(\operatorname{Pn}_{1}(\alpha) \right) + \widetilde{W}_{1+r} \left(\operatorname{Pn}_{2}(\alpha) \right) = \quad W_{1+r} \left(\operatorname{Pn}_{1}(\alpha) \right) + W_{1+r} \left(\operatorname{Pn}_{2}(\alpha) \right) = \quad W_{1} \left(\operatorname{A} \right)$$

$$= \quad W_{1} \left(\operatorname{A} \right)$$

$$= \quad \widetilde{W}_{1} \left(\operatorname{A} \right)$$

In order to check the prover's claim about William venifies applies sum-check protocol to

$$f_{r_1}^{(r)}(b,c) = add_r(r_1,b,e)(\widetilde{N}_{r+1}(b) + \widetilde{N}_{r+1}(c)) + mult_r(r_1,b,e) \cdot \widetilde{N}_{r+1}(b) \cdot \widetilde{N}_{r+1}(c)$$

Note that the verifier does not know the polynomial \tilde{W}_{i+1} (as this polynomial is defined in terms of gate values at layer i+1 of the circuit, and unless i+1 is the input layer, the verifier does not have direct access to the values of these gates), and hence the verifier does not actually know the polynomial $f_{r_i}^{(i)}$ that it is applying the sum-check protocol to. Nonetheless, it is possible for the verifier to apply the sum-check protocol to $f_{r_i}^{(i)}$ because, until the final round, the sum-check protocol does not require the verifier to know anything about the polynomial other than its degree in each variable (see Remark 4.2). However, there remains the issue that \mathcal{V} can only execute the final check in the sum-check protocol if she can evaluate the polynomial $f_{r_i}^{(i)}$ at a random point. This is handled as follows.

Let us denote the random polvet at which
$$i$$
 must evaluate $f^{(2)}$ by (b^*, c^*) where $b^* \in F^{K_{2+1}}$ and $c^* \in F^{K_{2+1}}$ are the last K_{2+1} entries $c^* \in F^{K_1}$ and $c^* \in F^{K_{2+1}}$ are the last K_{2+1} entries $c^* \in F^{K_1}$.

Note that
$$b^{*}$$
 and c^{*} may evaluating $f_{v_{i}}$ (b^{*}, c^{*}) unequires evaluating have non-Bodean entries ω add; (v_{i}, b^{*}, c^{*}) , mult; (v_{i}, b^{*}, c^{*}) \widetilde{w}_{i+1} (b^{*}) , and \widetilde{w}_{i+1} (c^{*})

For many circuits, particularly those whose wiring pattern displays repeated structure, \mathcal{V} can evaluate $\widetilde{\mathrm{add}}_i(r_i,b^*,c^*)$ and $\widetilde{\mathrm{mult}}_i(r_i,b^*,c^*)$ on her own in $O(k_i+k_{i+1})$ time as well. For now, assume that \mathcal{V} can indeed perform this evaluation in $\mathrm{poly}(k_i,k_{i+1})$ time, but this issue will be discussed further in Section 4.6.6.

I cannot however evaluate
$$\widetilde{W}_{tt}$$
 (b*) and \widetilde{W}_{ptt} (c*)

Les instead V asks P to simply provide values say z_1 and z_2 , and uses iteration it to verify that these values are as claimed.

pre condition for the classes a value for
$$W_{i+1}(Y_{i+1})$$
 for a single posted $Y_{i+1}(Y_{i+1})$ is that $Y_{i+1}(Y_{i+1})$

for a single pt.

7, EFK, (K=2) so I needs to reduce verifying both $\widetilde{N}_{i+1}(b^*)=z_1$ and $\widetilde{N}_{i+1}(c^*)=z_2$ to verifying $\widetilde{W}_{P+1}\left(Y_{P+1}\right)$ at a single rpt EF rpti Pn the sense that It is safe for i to accept the claimed values $\widetilde{W}_{P+1}(b^{*})$ and $\widetilde{W}_{P+1}(c^{*})$ as long as the value of Nin (Tin) is as claimed Reducing to Verification of a Single Point let $l: F \rightarrow F^{K_{1+1}}$ be the unique line such that $\frac{l(0)=b^{\#}}{l} \quad \text{and} \quad \underline{l(1)=c^{\#}}$ P sends a univociate polynomial A K=2 q of degree at most kitt that is claimed to be Nitto l (nestriction of Nitto to the line 1) Challenge line ℓ $\sqrt{2}$ checks that $q(0) = Z_1$ and 4(1) = Z2 preks a random point rtef. asks P to prove that $\widetilde{W}_{l+1}(l|r^*)) = q_l(r^*)$ as long as I is convinced that $\widetilde{W}_{PH}\left(\mathcal{L}\left(r^{*}\right)\right) = q(r^{*})$ it's safe for v to believe

that q does in fact equal will of

The Final Iteration. At the final iteration d, \mathcal{V} must evaluate $\widetilde{W}_d(r_d)$ on her own. But the vector of gate values at layer d of \mathcal{C} is simply the input x to \mathcal{C} . By Lemma 3.8, \mathcal{V} can compute $\widetilde{W}_d(r_d)$ on her own in O(n) time, where recall that n is the size of the input x to \mathcal{C} .