ECE 4370 Project 6 Report

Cody Baker, BSEE Candidate

Brendan Blacklock, BSCE Candidate

Aidan Daniel, BSCE Candidate

1. C. Elegans Dataset CNN Classification

Source of libraries used for CNN Implementation	Python 3.10.1, using: PyTorch 1.11.0 with torchvision 0.12.0 OpenCV 4.5.5.64 NumPy 1.22.1
Complexity of network employed (number of learnable parameters)	 First convolutional layer: 8 x (5x5x1) + 8 = 208 Second convolutional layer: 16 x (5x5x8) + 16 = 3216 Fully-connected network: 16 x (8x8) = 1024 Total learnable parameters: 1024 + 3216 + 208 = 4448
Training information	 2 Convolution layers consisting of 2D Convolution ReLU Max Pooling 1 Linear Layer in fully -connected network Optimizers: Mini-Batch stochastic gradient descent with momentum Batch size = 1000 Rho = 0.08
Training and testing execution times	 3. Beta = 0.94 Cross-entropy loss function Training time: 3 minutes, 22 seconds Testing time: 11.8 seconds

• Training information (confusion matrix plus accuracy)

n = 8301	Actual K = 0	Actual K = 1
Predicted K = 0	3988	300
Predicted K =1	145	3868
Classification accuracy	94.6 %	

• Testing information (confusion matrix plus accuracy)

n = 2075	Actual K = 0	Actual K =1
Predicted $K = 0$	1020	67
Predicted K =1	35	953
Classification accuracy	95.1 %	