What is claimed is:

- 1. In an integrated circuit wireless communication device, a method for
- 2 Viterbi decoding comprising:
- receiving a transmitted signal over a channel substantially characterized by a
- 4 scalar gain value and a noise value;
- 5 processing the gain value and noise value to determine a branch metric by
- 6 determining a log of the scalar gain value and subtracting therefrom a log of the noise
- 7 value and subtracting therefrom the log of a first constant to form a first sum, and
- 8 determining an antilog of the first sum and subtracting therefrom a second constant to
- 9 form a second sum, the second sum corresponding to the branch metric; and
- providing the branch metric to a Viterbi decoder.
- 1 2. The method of claim 1, wherein the processing of the gain value and noise
- 2 value to determine a branch metric scaling further comprises adding a log of a location
- 3 information scaling factor to the first sum.
- The method of claim 1, wherein the processing of the gain value and noise
- 2 value to determine a branch metric further comprises rounding out any fractional bits in
- 3 the second sum.
- 1 4. The method of claim 1, wherein the processing of the gain value and noise
- 2 value to determine a branch metric further comprises saturating the second sum.
- The method of claim 1, wherein the processing of the gain value and noise
- 2 value to determine a branch metric further comprises using a processor to calculate a
- 3 branch metric (M) using the equation $M = \left[\frac{1}{C_1} \frac{|H|^2 k_{loc}^2}{\sigma^2} C_2 \right]$.
- 1 6. The method of claim 1, wherein the log of the scalar gain value is
- 2 determined by:
- determining a lower integer boundary L for the scalar gain value which is a bit

4	position of a most significant "1" in a binary representation of the scalar gain value;
5	interpolating an interpolated value between L and L+1 using a lookup table
6	indexed by P next most significant bits of the scalar gain value; and
7	concatenating the lower integer boundary L and the interpolated value to form the
8	log of the scalar gain value.
1	7. The method of claim 6, wherein the determination of a lower integer
2	boundary L comprises left shifting the scalar gain value a required number of shifts until
3	an N-1 bit position contains a one value, and then subtracting the required number of
4	shifts from the N-1 value.
1	8. The method of claim 1, wherein the log of the noise value is determined
2	by:
3	determining a first value which is a bit position of the most significant "1" in an
4	N-bit binary representation of the noise value;
5	determining a second value by interpolating between the first value and the first
6	value plus one using a lookup table; and
7	concatenating the first value and the second value as a most significant bits
8	portion and least significant bits portion, respectively, to form the log of the noise value.
1	9. The method of claim 1, wherein the antilog of the first sum is determined
2	by:
3	right shifting the first sum by R bits to generate a left shift control signal; and
4	using the R least significant bits of the first sum as an index into a lookup table to
5	generate an intermediate value which is left shifted under control of the left shift control
6	signal to generate the antilog of the first sum.
1	10. The method of claim 1, wherein the processing of the gain value and noise
2	value are performed by a PHY module in a wireless interface device.
1	11. An article of manufacture having at least one recordable medium having

stored thereon executable instructions and data which, when executed by at least one

2

3	processing device, cause the at least one processing device to compute a branch metric
4	for a Viterbi decoder, comprising implementing a multiplication operation of a first term
5	and a second term in the branch metric computation by:
6	adding a log of the first term to a log of the second term to form a first sum; and
7	determining the antilog of the first sum.
1	12. The article of manufacture of claim 11, wherein the processing device
2	computes a branch metric for a Viterbi decoder by
3	computing a $\log_2 H ^2$ value, where H represents a scalar gain value for a
4	transmission channel;
5	subtracting a $\log_2 \sigma^2$ value from the $\log_2 H ^2$ value to form a first sum, where σ^2
6	represents the a noise variance value for the transmission channel;
7	subtracting a $\log_2 C_1$ value from the first sum to form a second sum, where the C_1
8	value has been pre-computed and stored in memory;
9	computing an antilog of the second sum; and
10	subtracting a C_2 value which has been stored in memory from the antilog of the
11	second sum to form a branch metric.
1	13. The article of manufacture of claim 12, wherein processing device rounds
2	out any fractional bits in the branch metric and saturates the branch metric to a
3	predetermined range.
1	14. An apparatus for decoding a signal, the apparatus comprising:
2	means for receiving a sampled signal;
3	means for demapping the received sampled signal into a branch metric
4	comprising means for performing multiplication operations in a log domain using an
5	adder circuit and means for performing division operations in a log domain using an
6	subtractor circuit; and
7	means for providing the branch metric a Viterbi decoder.

- 1 15. The apparatus of claim 14, where the means for demapping comprises a 2 means for calculating a log function.
- 1 16. The apparatus of claim 14, where the means for demapping comprises a 2 means for calculating an antilog function.
- 1 The apparatus of claim 14, where the means for demapping comprises a 2 means for calculating a branch metric (M) using the equation $M = \left[\frac{1}{C_1} \frac{|H|^2 k_{loc}^2}{\sigma^2} C_2 \right]$.
- 1 18. The apparatus of claim 14, where the means for demapping comprises a 2 means for calculating a branch metric (M) using the equation $M = \left[\frac{1}{C_1} \frac{|H|^2}{\sigma^2} C_2\right]$.
- 1 19. The apparatus of claim 14, where the means for demapping comprises
 2 an input for accepting a first value representing the scalar gain for a transmission 3 channel;
 - a log unit that accepts the first value from the input and determines a log of the first value;
- a first subtractor for subtracting a log of a second value from the log of the first value to form a first difference, said second value representing a measure of additive white Gaussian noise for a channel over which the sampled signal was transmitted;
- a second subtractor for subtracting a log of a first constant from the first
 difference to form a second difference;

4 5

- 11 a first adder for adding a log of a location information scaling factor (k_{loc}) to the 12 second difference to form a first sum;
- an antilog unit that accepts the first sum and determines an antilog of the first sum;

15	a second adder for adding the antilog of the first sum to a second constant to a
16	preliminary branch metric, where the second constant comprises an offset that is a
17	function of a transmit constellation for the transmit channel; and
18	a saturation unit for saturating the preliminary branch metric to generate the
19	branch metric.
1	20. The apparatus of claim 19, wherein the first subtractor and second
2	subtractor are implemented as a single circuit.