

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №5 по курсу «Моделирование»

Тема	Моделирование работы информационного центра	և
Студе	ент Волков Г.В.	
Групі	па <u>ИУ7-71Б</u>	
Преп	одаватели Рудаков И.В.	

Задание

В информационный центр приходят клиенты через интервалы времени 10 ± 2 минуты. Если все 3 имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание запросов за 20 ± 5 , 40 ± 10 , 40 ± 20 минут. Клиенты стараются занять свободного оператора с максимальной производительностью.

Полученные запросы сдаются в накопители, откуда они выбираются на обработку. На первый компьютер поступают запросы от первого и второго операторов, на второй компьютер — от третьего оператора. Время обработки на первом и втором компьютере равно 15 и 30 минутам соответственно.

Смоделировать процесс обработки 300 запросов. Определить вероятность отказа.

Теоретические сведения

Концептуальная модель

На рисунке 1 представлена концептуальная модель задачи.

Рисунок 1 – Концептуальная модель

Схема модели СМО

На рисунке 2 представлена схема модели информационного центра (как системы массового обслуживания).

Рисунок 2 – Схема модели информационного центра (СМО)

В процессе взаимодействия клиентов с информационным центром возможно:

- 1. Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов (по заданию клиент пытается занять свободного оператора с максимальной производительностью).
- 2. Режим отказа в обслуживании клиента, когда все операторы заняты.

Переменные и уравнения имитационной модели

Эндогенные переменные: время обработки задания і-ым оператором, время решения этого задания ј-ым компьютером.

Экзогенные переменные: число обслуженных клиентов (N_0) и число клиентов получивших отказ (N_1) .

Уравнение (вероятность отказа в обслуживании): $P = \frac{N_1}{(N_0 + N_1)}$