Question 1. Ensemble Learning True/False [2 + 2 = 4 points]

For a binary classification problem, you are given a collection of base classifiers where every base classifier has an error rate of ϵ . The ensemble prediction is simply the majority vote of the predictions of the base classifiers. State whether the following statements are "true" or "false." No explanation needed.

a) If $\epsilon = 0.3$ and the predictions of all base classifiers are independent, the error rate of the ensemble classifier will be smaller than ϵ . [2 points]

[Total points: 30]

True.

b) If $\epsilon = 0.3$ and all base classifiers are identical, the error rate of the ensemble classifier will be smaller than ϵ . [2 points]

False.

Question 2. Clustering True/False [3 + 3 + 3 = 9 points]

For the following questions, give an answer and a short (1 or 2 sentences) explanation. For the rest of this question, "agglomerative hierarchical clustering" refers to procedures such as single link, complete link, and group average, while "k-means clustering" refers to k-means with random initialization of centroids and Euclidean distance.

a) Agglomerative hierarchical clustering procedures are better able to handle outliers than k-means. [3 points]

True.

K-means are sensitive to owtliers.

b) For any given data set, different runs of k-means can produce different clusterings, but agglomerative hierarchical clustering procedures will always produce the same clustering. [3 points]

True.

In agglomerative hierarchical clustering, we calculate the distance between random mean centroid and each point and then determine the cluster belongings. So it is always the same.

c) When clustering a dataset using K-means, SSE is guaranteed to monotonically decrease as the number of clusters increases. [3 points]

True.

As the number of cluster increases, the mean square error decreases and the algorithm becomes more stable as less iteractions.

Question 3 (Computing SSE) [2 + 2 + 2 = 6 points]

Consider the four data points shown in Figure below. The distance between each point to the center C is R.

(i) Compute the total SSE of the data points from the centroid, C. [2 points]

(ii) Compute the total SSE of the data points to the origin, O. [2 points]

$$4(a^2+b^2+R^2)$$

(iii) Use your approach in (ii) to compute the SSE for the 8 data points shown below with respect to the centroid, D. [2 points]

Question 4 (Hierarchical Clustering) [5 + 3 + 3 = 11 points]

Consider a set of 5 points in two-dimensional space, shown in the following table

Point ID	X	Y
1	9	8
2	6	8
3	6	4
4	10	6
5	3	1

Assuming Euclidean distance as the distance measure, answer the following questions:

a) Compute the matrix of pair-wise distances between the 5 points, where the $(i, j)^{th}$ entry in the matrix corresponds to the distance between point i and point j. [5 points]

Pair-wise Distances	Point 1	Point 2	Point 3	Point 4	Point 5
Point 1	0	3	5	175	185
Point 2	3	0	4	N20	VE8
Point 3	5	4	0	120	N18
Point 4	J5 = 2,24	JZ0=4.47	N20	0	N74
Point 5	N85=9,22	158=7.62	J18=4,24	J74=8.60	0

b) Use the single link (MIN) hierarchical clustering technique for clustering these 5 points, and show the dendrogram of the clustering. The Y-axis of the dendrogram (height at which two clusters are merged) can be chosen to be the pair-wise distance between the two clusters. [3 points]

c) Use the complete link (MAX) hierarchical clustering technique for clustering these 5 points, and show the dendrogram of the clustering. The Y-axis of the dendrogram (height at which two clusters are merged) can be chosen to be the pair-wise distance between the two clusters. [3 points]