

"Vírus de computadores são uma lenda urbana" (Peter Norton, 1988).

Sistemas de Numeração Posicionais e conversão de bases

Paulo Ricardo Lisboa de Almeida

- Nós nos acostumamos a trabalhar com a base 10
 - Algarismos válidos são 0,1,2,...,9
- Mas a escolha da base 10 é arbitrária
 - Por que usamos a base 10?
 - Existem outras bases que usamos no nosso dia a dia?

- O conjunto de algarismos válidos é dado de acordo com a base que estamos trabalhando
 - Para a base 10, os numerais são 0,1,2,...9
 - E para as bases
 - 8
- ?
- 5
- 7
- 2
- 7

- O conjunto de algarismos válidos é dado de acordo com a base que estamos trabalhando
 - Para a base 10, os numerais são 0,1,2,...9
 - E para as bases
 - 8
- \bullet 0,1,2,3,4,5,6,7
- 5
- 0,1,2,3,4
- 2
- 0,1

• De maneira geral, dada uma base β qualquer, quais são os algarismos válidos para essa base?

- De maneira geral, dada uma base β qualquer, quais são os algarismos válidos para essa base?
 - 0,1, ..., β-1

- Precisamos saber a base que estamos trabalhando para obter o valor de um número
- As bases serão representadas como subscritos nos números.
- Exemplos
 - 11₁₀ é o número onze na base 10
 - 11, é o número um um na base binária.
- Caso a base seja omitida, assumiremos a base 10.

Algarismos mas e menos significativos

- Dado o número a seguir, qual o algarismo que tem o "maior impacto" no número
 - 347

Algarismos mas e menos significativos

- Dado o número a seguir, qual o algarismo que tem o "maior impacto" no número
 - Na nossa forma ocidental de escrever
 - O número mais a esquerda é o mais significativo
 - O número mais a direita é o menos significativo
- O dígito menos significativo está na posição 0, o valor a sua esquerda na posição 1, o próximo na posição 2, ...
 - Notação posicional
- Exemplo
 - 347 210 **←** Posição

 Dados os números e suas bases, podemos então os escrever em suas formas polinomiais

•
$$347_{10} = 3 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

Multiplicamos cada algarismo individual pela base elevada a posição do algarismo

Exercício

- Mostre a forma polinomial do valor a seguir
 - 1330

Exercício

Mostre a forma polinomial do valor a seguir

•
$$1330 = 1 \times 10^3 + 3 \times 10^2 + 3 \times 10^1 + 0 \times 10^0$$

- De maneira geral
- Um número inteiro em uma base β , representado por $(a_i, a_{i-1}, ..., a_2, a_1, a_0)_{\beta}$, $0 \le a_{\kappa} \le (\beta 1)$, k = 1, ..., j

- De maneira geral
- Um número inteiro em uma base β , representado por $(a_i, a_{i-1}, ..., a_2, a_1, a_0)_{\beta}$, $0 \le a_{\kappa} \le (\beta 1)$, k = 1, ..., j
- Pode ser escrito na forma polinomial:
 - $a_i \beta^j + a_{i-1} \beta^{j-1} + ... + a_2 \beta^2 + a_1 \beta^1 + a_0 \beta^0$

- Através da forma polinomial podemos transformar de uma base β qualquer para decimal.
- Mostre a forma polinomial do valor a seguir
- 10110₂

- Através da forma polinomial podemos transformar de uma base β qualquer para decimal.
- Mostre a forma polinomial do valor a seguir

•
$$10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

- Através da forma polinomial podemos transformar de uma base β qualquer para decimal.
- Mostre a forma polinomial do valor a seguir

•
$$10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

• O resultado do polinômio nos dá o valor convertido para decimal

•
$$10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22_{10}$$

- E como fica o polinômio para o valor a seguir?
 - 243,51₁₀

- E como fica o polinômio para o valor a seguir?
 - 243,51₁₀
- Quando lidamos com valores fracionários o processo é o mesmo
- Valores "após a vírgula" possuem índices de posição negativos
 - 243,51 2 1 0 -1-2 Posição
 - $243,51_{10} = 2 \times 10^2 + 4 \times 10^1 + 3 \times 10^0 + 5 \times 10^{-1} + 1 \times 10^{-2}$

Exercício

- 1.Converta os seguintes números para a base decimal. Faça os exercícios "passo a passo", mostrando seus polinômios e resultado final.
- a) 1₂
- b) 1000₂
- c) 1101101₂
- d) 10_{8}
- e) 736₈
- f) 11,01₂
- g) $5,47_8$

Exercício

1.Converta os seguintes números para a base decimal. Faça os exercícios "passo a passo", mostrando seus polinômios e resultado final.

- a) 1₂
- b) 1000₂
- c) 1101101₂
- d) 10_{8}
- e) 736₈
- f) 11,01₂
- g) $5,47_8$

Decimal para outras bases

- Para a conversão de decimal para uma base β qualquer, realizamos sucessivas divisões inteiras por β
- Tomamos o resto das divisões como o algarismo na base β, onde o resto da última divisão é o algarismo mais significativo
- Exemplo de conversão do número 23₁₀ para binário.

Decimal para outras bases

• Exemplo de conversão do número 23_{10} para binário (β =2).

Decimal para outras bases

- Exemplo de conversão do número 23₁₀ para binário (β=2).
 - LSB (Least Significant Bit): Bit menos significativo
 - MSB (Most Significant Bit): Bit mais significativo

• Logo, $23_{10} = 10111_2$

Exercícios

- 2. Converta os seguintes números da base decimal para as bases especificadas
- a) 251₁₀ para base 2
- b) 128₁₀ para base 2
- c) 143₁₀ para base 8
- d) 73₁₀ para base 8
- 3. Converta para base decimal
- a) $0,101_{2}$
- b) 111,001₂
- c) 1001,010101₂
- d) 74,754₈

Exercícios

4. Escreva um programa em uma linguagem de sua preferência para converter valores inteiros da base 10 para uma base especificada pelo usuário. Submeta no Moodle o código fonte do programa.

Exercícios

```
Respostas: 

2.
a) 11111011_2 b) 10000000_2 c) 217_8 d) 111_9

3.
a) 0.101_2 = 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 0 + 0.5 + 0 + 0, 125 = 0.625_{10} b) 7.125_{10} c) 9.328125_{10}
```


Referências

- TOCCI, R.J.; WIDMER, N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011.
- RUGGIERO, M.; LOPES, V. da R. **Cálculo numérico: aspectos teóricos e computacionais**. Makron Books do Brasil, 1996.
- NULL, L.; LOBUR, J. Princípios Básicos de Arquitetura e Organização de Computadores. 2014. Bookman, 2009. ISBN 9788577807666.

