

Brazil against the advance of Covid-19

07th May

Crislânio Macêdo

Diagnosis of COVID-19 and its clinical spectrum

Al and Data Science supporting clinical decisions(from 28th Mar to 1st Apr)

source

Task Details

Predict confirmed **COVID-19** cases among suspected cases. Based on the results of laboratory tests commonly collected for a suspected **COVID-19** case during a visit to the emergency room, would it be possible to predict the test result for **SARS-Cov-2** (positive/negative)?

Content

- 1. Glimpse of Data
 - 1.1 Imports 1.2 Read in Data
- Exploratory Data Analysis 2.1 Examine the Distribution of the Target Column 2.2 Examine
 Missing Values 2.3 Handling missing values 2.4 Column Types 2.5 Correlations
- 3. Visualizations
- 4. Encoding Variables 4.1 Label Encoding
- Feature Selection 5.1 Remove Collinear features 5.2 Remove features with greater than a threshold percentage of missing values 5.3 Feature Selection through Feature Importances 5.4 LGB Shap Values
- 6. Modeling 6.1 Confusion Matrix function 6.2 Gradient Boosting Model function 6.3 XGB
- 7. Ensembling With StackNet 7.1 StackNet Modeling 7.1 Evaluation StackNet ROC_AUC
- 8. General Findings
- 9. End Notebooks

kaggle

Demo

Original features 111, after reduction 21 features.

9 features required for 0.95 of cumulative importance $\,$

kaggle

Research Question

What is the best way to predict positive results?

Focus on reducing false negatives. VS

Focus on reducing false positives. VS

Focus on a custom balance?

Results - StackNet

StackNet allows you to define all kinds of models. For example, Sklearn models, **LightGBM**, **RandomForest** and **CatBoost** can all be used with StackNet.

The **StackNetClassifier** will perform cross-validation (CV) and will output the CV scores for each model. To make sure we can output a probability of pacient result for sarscov2 exam result we specify "use_proba=True".

Results - StackNet

A model with high recall achieves good results in finding positive patients among those true positive patients. But, the hospital may not have enough resources to apply the necessary procedures for all patients assigned with a positive label if that number is too high.

Hence, an ideal model is one that is well-balanced, i.e., one that has high recall but it does not over-assign patients with positive labels.

Results - StackNet

kaggle

Classification report train

					Co
Confusion mat	rix:				
[[3558 1]					
[363 28]]					
Classification	report:				
	precision	recall	f1-score	support	
0	0.91	1.00	0.95	3559	
1	0.97	0.07	0.13	391	
accuracy			0.91	3950	
macro avg	0.94	0.54	0.54	3950	
weighted avg	0.91	0.91	0.87	3950	

What proportion of actual positives was identified correctly?

Our model has a recall of 7% —in other words, it correctly identifies 7% of all positive tests results for SARS-Cov-2.

What proportion of positive identifications was actually correct? 97%

Our model has a precision of 97%—in other words, when it predicts a positive test result for SARS-Cov-2, it is correct 97% of the time.

Results

	Train_Recall	Test_Recall	Test_Specificity	Optimize	Mean_RecSpe
SVC_default	0.689608	0.546218	0.484158	0.333806	0.515188
LogisticRegression_default	0.77478	0.621849	0.452475	0.387974	0.537162
DecisionTreeClassifier_default	0.820591	0.848739	0.335644	0.546120	0.592192
KNeighborsClassifier_default	0.582707	0.411765	0.645545	0.258521	0.528655
LogisticRegression_search	1	0.915966	0.140594	0.560892	0.52828
LogisticRegression_optimize	1	0.907563	0.167327	0.559516	0.537445
DecisionTreeClassifier_optimize	0.988869	0.89916	0.262376	0.571803	0.580768
SVC_optimize	1	0.697479	0.370297	0.432043	0.533888
KNeighborsClassifier_optimize	0.582707	0.420168	0.646535	0.265441	0.533351
$Balanced Random Forest Classifier_optimize \\$	0.988869	0.89916	0.262376	0.571803	0.580768
RandomForestClassifier_optimize	0.988869	0.89916	0.262376	0.571803	0.580768

Recall: the proportion of positive cases that were identified correctly.

Specificity: the proportion of negative cases that have been correctly identified.

Better custom balance model is Balanced Random Forest with: **recall: 89.9%**, **specificity: 26%**

Focus on reducing false positives: log. regression **91.5%**

This result helps the hospital to release patients who obtained a pre-analysis diagnosed as NEGATIVE by the artificial intelligence system.

A situation in Brazil will improve #StayHome

References

- COVID19: Recall
- Brazil against the advance of Covid-19
- EDA first try / python lgb / shap
- XGB | LGB | CB
- <u>LigthGBM simple FE</u>
- Optimizing Imbalanced Classification
- Feature Selection
- Ensembling With StackNet
- EDA and Prediction

References

- Kaggle @CaesarLupum
- Github @crislanio
- Linkedin @crislanio
- Medium @crislanio.ufc
- Twitter @crs_macedo

Thanks!