Examen d	e T	ecnol	logía.	Diciem	bre	201	7
Nombre:							

1) Realizamos un ensayo de tracción con una probeta de **15 mm de diámetro** y longitud de **referencia de medida de 125 mm**. Los datos obtenidos se recogen en la tabla adjunta:

Fuerza (Kp)	787,5	1575	2362,5	3150	4080	4590	5100	4080	3825 (rompe)
Longitud (mm)	125,1	125,2	125,3	125,4	125,5	125,7	126,28	126,87	128,28
Esfuerzo (N/cm²)									
Deforma- ción									

- A. Dibuja la gráfica esfuerzo deformación. Escoge una escala adecuada. *Expresa el esfuerzo en N/cm*²
- B. Calcula el módulo de Young.
- C. Indica claramente las zonas de la gráfica y sus puntos clave. Explícalas.
- D. Calcula el alargamiento de rotura.

Examen de Tecnología. Diciembre 2017 Nombre:

4) En un diagrama de solubilidad total de un sistema de componentes A y B, la temperatura de fusión de A es de 200 °C y la de B 500 °C. Si los intervalos de solidificación de las aleaciones del 20%, 40% y 80% son, respectivamente, (230°C-350°C), (265°C-400°C) y (350°C-475°C), se pide a) Dibujar el diagrama de equilibrio asignando las fases presentes en cada región del mismo. b) Determinar la composición de las fases de equilibrio para la aleación del 40% de B y la cantidad relativa de cada fase a la temperatura de 300°C. c) Tanto por uno en peso de la fase sólida y de la fase líquida a esa temperatura.

