CLAIMS

What is claimed is:

1	1.	A method for signal line termination, the method comprising:
2		sensing a current flowing through a termination node which terminates a
3		plurality of signal lines; and
4		adjusting a voltage at the termination node to reduce a magnitude of the
5		current.
1	2.	A method as in claim 1, wherein a voltage regulator adjusts the voltage based
2		on the current that is sensed.
1	3.	A method as in claim 2, wherein the voltage regulator increases the voltage
2		when the current is flowing out of the termination node from the signal lines;
3		and, the voltage regulator decreases the voltage when the current is flowing
4		into the termination node into the signal lines.
1	4.	A method as in claim 1, wherein signals transmitted on the plurality of signal
2		lines are substantially balanced.
1	5.	A method as in claim 4, wherein the plurality of signal lines comprises a pair
2		of differential signals.

- 1 6. A method as in claim 4, wherein an average of less than two lines are used to transmit each bit of information in the plurality of signal lines.
- 1 7. A method as in claim 1, wherein the current results from terminating a first
 2 signal line carrying a balanced signal and a second signal line carrying a
 3 compliment of the balanced signal.
- 1 8. A method as in claim 1, wherein the magnitude of the current is reduced to a level that is substantially zero.
- 1 9. A method as in claim 1, further comprising:
- 2 filtering a high frequency component on the termination node.
- 1 10. A method as in claim 9, wherein the high frequency component is filtered relative to ground.
- 1 11. A method as in claim 1, wherein the voltage at the termination node provides
 2 a reference to each of a plurality of buffers to receive the plurality of signals
 3 respectively.
- 1 12. An apparatus for signal line termination, the apparatus comprising:
- 2 a termination node to terminate a plurality of signal lines;

3	a current sensor coupled to the termination node, the current sensor
4	determining a current flowing through a termination node; and
5	a voltage regulator coupled with the termination node and the current sensor
6	the voltage regulator adjusting a voltage at the termination node to
7	reduce a magnitude of the current.

- 1 13. An apparatus as in claim 12, wherein the voltage regulator adjusts the voltage based on feedback from the current sensor.
- 1 14. An apparatus as in claim 13, wherein the voltage regulator increases the
 2 voltage when the current is flowing out of the termination node from the
 3 signal lines; and, the voltage regulator decreases the voltage when the current
 4 is flowing into the termination node into the signal lines.
- 1 15. An apparatus as in claim 12, wherein signals transmitted on the plurality of signal lines are substantially balanced.
- 1 16. An apparatus as in claim 15, wherein the plurality of signal lines comprises a pair of differential signals.
- 1 17. An apparatus as in claim 15, wherein an average of less than two lines are
 2 used to transmit each bit of information in the plurality of signal lines.

- 1 18. An apparatus as in claim 12, wherein the current results from terminating a
- 2 first signal line carrying a balanced signal and a second signal line carrying a
- 3 compliment of the balanced signal.
- 1 19. An apparatus as in claim 12, wherein the magnitude of the current is reduced
- 2 to a level that is substantially zero.
- 1 20. An apparatus as in claim 12, further comprising:
- a filter coupled to the terminal node, the filter filtering a high frequency
- 3 component on the termination node.
- 1 21. An apparatus as in claim 20, wherein the high frequency component is
- 2 filtered relative to ground.
- 1 22. An apparatus as in claim 12, further comprising:
- a plurality of buffers to receive the plurality of signals respectively;
- 3 wherein the voltage at the termination node provides a reference to each of
- 4 the plurality of buffers.
- 1 23. A circuit for signal line termination, the circuit comprising:
- 2 means for sensing a current flowing through a termination node which
- 3 terminates a plurality of signal lines; and

4		means for adjusting a voltage at the termination node to reduce a magnitude
5		of the current.
1	24.	A circuit as in claim 23, wherein said means for adjusting comprises a
2		voltage regulator to adjust the voltage based on an output of said means for
3		sensing.
1	25.	A circuit as in claim 24, wherein the voltage regulator increases the voltage
2		when the current is flowing out of the termination node from the signal lines;
3		and, the voltage regulator decreases the voltage when the current is flowing
4		into the termination node into the signal lines.
1	26.	A circuit as in claim 23, wherein signals transmitted on the plurality of signal
2		lines are substantially balanced.
1	27.	A circuit as in claim 26, wherein the plurality of signal lines comprises a pair
2		of differential signals.
1	28.	A circuit as in claim 26, wherein an average of less than two lines are used to
2		transmit each bit of information in the plurality of signal lines.

1	29.	A circuit as in claim 23, wherein the current results from terminating a first
2		signal line carrying a balanced signal and a second signal line carrying a
3		compliment of the balanced signal.
1	30.	A circuit as in claim 23, wherein the magnitude of the current is reduced to a
2		level that is substantially zero.
1	31.	A circuit as in claim 23, further comprising:
2		filtering a high frequency component on the termination node.
1	32.	A circuit as in claim 31, wherein the high frequency component is filtered
2		relative to ground.
1	33.	A circuit as in claim 23, wherein the voltage at the termination node provides
2		a reference to each of a plurality of buffers to receive the plurality of signals
3		respectively.
1	34.	An apparatus, comprising:
2		a first input buffer;
3		a first signal line termination;
4		a first signal line coupled with said first input buffer and said first signal line

5

termination, said first signal line to receive a first signal;

O		a second input buffer;
7		a second signal line termination;
8		a second signal line coupled with said second input buffer and said second
9		signal line termination, said second signal line to receive a second
10		signal;
11		a first termination node coupled with said first signal line termination and
12		said second signal line termination, said first termination node having
13		a termination potential, said termination potential providing as a
14		reference potential to said first input buffer and said second input
15		buffer;
16		a third input buffer;
17		a third signal line coupled with the third input buffer, said termination
18		potential providing a reference potential to said third input buffer,
19		said third signal line to receive a third signal; and
20		a second termination node coupled to the third signal line.
1	35.	An apparatus as in claim 34, further comprising:
2		a fourth input buffer; and
3		a fourth signal line coupled with the fourth input buffer and the second
4		termination node, said termination potential providing a reference
5		potential to said fourth input buffer to receive a fourth signal;

1

36.

An apparatus as in claim 34, further comprising:

2		a voltage regulator coupled between said first termination node and a system
3		potential reference, said voltage regulator having a first output
4		coupled with said first termination node; and
5		a current sensor coupled to said first termination node, said current sensor
6		having a second output coupled with said voltage regulator which
7		adjusts the first output to reduce a current sensed by the current
8		sensor.
1	37.	An apparatus as in claim 36, wherein when said current is flowing out of said
2		first termination node, the first output of said voltage regulator is increased;
3		when said current is flowing into said first termination node, the first output
4		of said voltage regulator is decreased; and, wherein said current is reduced to
5		a level that is substantially zero.
1	38.	An apparatus as in claim 36, further comprising:
2		a filter connected between said second termination node and said system
3		potential reference.
1	39.	An apparatus as in claim 34, wherein said first signal is substantially
2		balanced; and, said second signal is an inverse of said first signal.

An apparatus, comprising:

an input buffer;

1

2

40.

3		a signal line termination;
4		a signal line coupled with said input buffer and said signal line termination,
5		said signal line to receive a balanced signal;
6		a termination node coupled with said signal line termination, said termination
7		node having a termination potential;
8		a reference node to provide a reference potential to said input buffer; and
9		a voltage regulator coupled between said reference node and a system
10		potential reference, said voltage regulator having a first output
11		coupled with said reference node; and
12		a current sensor coupled to said reference node, said current sensor having a
13		second output coupled with said voltage regulator which adjusts the
14		first output to reduce a current sensed by the current sensor.
1	41.	An apparatus as in claim 40, wherein when said current is flowing out of said
2		reference node, the first output of said voltage regulator is increased; when
3		said current is flowing into said reference node, the first output of said
4		voltage regulator is decreased; and, wherein said current is reduced to a level
5		that is substantially zero.
1	42.	An apparatus as in claim 40, further comprising:
2		a filter connected between said reference node and said termination node.

43.

An apparatus as in claim 40, further comprising:

2		a filter connected between said termination node and a system potential
3		reference.
1	44.	An apparatus, comprising:
2		a differential input buffer;
3		a differential signal line termination;
4		a differential signal line coupled with said differential input buffer and said
5		differential signal line termination, said differential signal line to
6		receive a pair of differential signal;
7		a reference node coupled with said differential signal line termination;
8		a first input buffer coupled with said reference node, said first input buffer
9		receiving a reference potential from said reference node;
10		a first signal line termination;
11		a first signal line coupled with said first input buffer and said first signal line
12		termination, said first signal line to receive a first signal; and
13		wherein said first and second signal line terminations terminate at different
14		nodes.
1	45.	An apparatus as in claim 44 further comprising:
2		a voltage regulator coupled between said reference node and a system
3		potential reference, said voltage regulator having a first output
4		coupled with said reference node; and

5		a current sensor coupled to said reference node, said current sensor having a
ó		second output coupled with said voltage regulator which adjusts the
7		first output to reduce a current sensed by the current sensor.
ĺ	46.	An apparatus as in claim 44, wherein when said current is flowing out of said
2		reference node, the first output of said voltage regulator is increased; when
3		said current is flowing into said reference node, the first output of said
1		voltage regulator is decreased; and, wherein said current is reduced to a level
5		that is substantially zero.
l	47.	An apparatus as in claim 44, further comprising:
2		a filter coupled between said differential signal line termination and a system
3		potential reference.