Terceiro Relatório de Lab de Circuitos II

Henrique da Silva hpsilva@proton.me

18 de fevereiro de 2023

Sumário

1	Intr	oduçã	0	
2	Aná	álise pr	reliminar	
	2.1	O Circ	cuito	
	2.2		axima	
		2.2.1		
		2.2.2	Análise do circuito 1	
			Análise do circuito 2	
	2.3		ce	
		2.3.1		
		2.3.2	Análise em $100Hz$	
		2.3.3	Análise em $200Hz$	
			Análise em $400Hz$	
			Analise em $480Hz$	
		2.3.6	Analise em $550Hz$	
			Analise em $1100Hz$	
		2.3.8	Tabela de resultados	
3	Med	dicões	em laboratório	
	3.1		a de componentes	
	3.2		os no osciloscopio	
		3.2.1	Análise em $100Hz$	
			Análise em $200Hz$	
		3.2.3	Análise em $400Hz$	
			Tabela de resultados	
	3.3		aração com valores teóricos	
	3.4	_	os	
		3.4.1		
			$de H(jw) e f \dots \dots$	
		3.4.2		
			H(jw) e f	

1 Introdução

Neste relatório, vamos discutir calcular gráficos de Bode de dois circuitos de segunda ordem e medir suas características.

Todos arquivos utilizados para criar este relatório, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/CircuitsII/

2 Análise preliminar

Utilizarei o WxMaxima e LTSpice para fazer a análise teórica do circuito antes de montálo fisicamente.

Após terminar as análises compararei os resultados obtidos nas análises numéricas e em laboratório para verificar sua coerência.

2.1 O Circuito

4 Conclusões

2.2 WxMaxima

2.2.1 Análise geral do circuito

Primeiro fiz manualmente a análise nodal do circuito que vamos construir, e passei ele para o domínio da frequência.

eq1:
$$0 = (Va-Vi)/R1 + Va-s\cdot C1 + (Va/R3) + (Va-V0)/R2;$$

eq2: $0 = -Va/R3 - V0\cdot s\cdot C2;$
 $0 = C1 Va s + \frac{Va-Vi}{R1} + \frac{Va-Vo}{R2} + \frac{Va}{R3}$
 $0 = -C2 V0 s - \frac{Va}{R3}$

Após isso resolvi para Va e V_0

results: linsolve([eq1,eq2],[Va,V0]);

$$[Va = \frac{C2 R2 R3 Vi s}{C1 C2 R1 R2 R3 s^{2} + ((C2 R2 + C2 R1) R3 + C2 R1 R2) s + R1}$$

$$V0 = -\frac{R2 Vi}{C1 C2 R1 R2 R3 s^{2} + ((C2 R2 + C2 R1) R3 + C2 R1 R2) s + R1}$$

Daqui criamos nossa função transferência ${\cal H}.$

Agora com a função H em mãos podemos substituir os valores dos resistores e do capacitor pelos que utilizaremos nos circuitos a serem analisados.

2.2.2 Análise do circuito 1

Fazemos a substituição em H dos valores que utilizaremos no circuito 1.

$$C_1 = 100nF$$

$$C_2 = 10nF$$

$$R_1 = 47k\Omega$$

$$R_2 = 470k\Omega$$

$$R_3 = 470k\Omega$$

H1: at(H, [C1 = 10^-7, C2 = 10^-8,R1=47000, R2=470000, R3=470000]);

Analisamos os pólos e zeros da função transferência e vemos que não há zeros. E os polos estão abaixo:

solve(denom(H1),s);

$$s = -\frac{1000\sqrt{26+6000}}{47}, s = \frac{1000\sqrt{26-6000}}{47}$$

Agora faremos gráficos de Bode para analisar o comportamento da magnitude da função transferência e o ângulo de fase entre as saídas e entradas do circuito.

Figura 1: Magnitude de H(s) do circuito 1.

Figura 2: Fase de H(s) do circuito 1.

Daqui retornei para o domínio do tempo para ter a função que descreve completamente o comportamento da resposta do circuito.

iltH1: ilt((H1·0.8)/s, s, t);
laced -376000.0 by -376000/1 = -376000.0
%e
$$\frac{-\frac{6000 t}{47} \left(\frac{106032 \sinh \left(\frac{1000 \sqrt{26} t}{47} \right)}{\sqrt{26}} + 17672 \cosh \left(\frac{1000 \sqrt{26} t}{47} \right) \right)}{2209}$$

Podemos ver que já que todos termos exceto o -8 dependem de uma exponencial negativa em t, então se nosso tempo tende a infinito, a resposta do circuito tende a -8.

Fazendo esta análise numericamente abaixo verificamos este resultado.

Com a função que descreve o comportamento do circuito no tempo em mãos, podemos montar seu gráfico e analisar seu comportamento a qualquer tempo.

Figura 3: Gráfico de $V_0(t)$ do circuito 1.

Observamos que a função atinge valor final de -8V.

E chega a 10% deste valor em 9.2ms e 90% em 122.2ms.

2.2.3 Análise do circuito 2

Fazemos a substituição em H dos valores que utilizaremos no circuito 1.

$$C_1 = 100nF$$

$$C_2 = 10nF$$

$$R_1 = 470k\Omega$$

$$R_2 = 470k\Omega$$

$$R_3 = 47k\Omega$$

Analisamos os pólos e zeros da função transferência e vemos que não há zeros. E os polos estão abaixo:

solve(denom(H2),s);

$$s = -\frac{8000 \% i + 6000}{47}, s = \frac{8000 \% i - 6000}{47}$$

Agora faremos gráficos de Bode para analisar o comportamento da magnitude da função transferência e o ângulo de fase entre as saídas e entradas do circuito.

Figura 4: Magnitude de H(s) do circuito 2.

Figura 5: Fase de H(s) do circuito 2.

Daqui retornei para o domínio do tempo para ter a função que descreve completamente o comportamento da resposta do circuito.

iltH2: ilt((H2·5)/s, s,t);

%e
$$\frac{-\frac{6000 t}{47} \left(\frac{33135 \sin \left(\frac{8000 t}{47} \right)}{4} + 11045 \cos \left(\frac{8000 t}{47} \right) \right)}{2209}$$

Podemos ver que já que todos termos exceto o -5 dependem de uma exponencial negativa em t, então se nosso tempo tende a infinito, a resposta do circuito tende a -5.

Fazendo esta análise numericamente abaixo verificamos este resultado.

Com a função que descreve o comportamento do circuito no tempo em mãos, podemos montar seu gráfico e analisar seu comportamento para qualquer tempo.

Figura 6: Gráfico de $V_0(t)$ do circuito 2.

Observamos que a função atinge valor final de -5V.

E chega a 10% deste valor em 2.4ms e 90% em 10.9ms.

A partir de 10.9ms a função estará contida entre 90% e 110% do valor final.

2.3 LTSpice

Montagem do circuito

No LTSpice montaremos o circuito e mediremos seu ângulo de fase e a magnitude da função transferência, com estes valores criaremos um gráfico e compararemos com o gráfico de Bode.

eq:: 0 = $(V_0 + V_0)H(H + V_0 + C + F_0)H(H) + (V_0 + V_0)H(G)$ eq:: 0 = $-V_0H(H + V_0 + V_0) + V_0$ 0 = $CT V_0 + \frac{V_0 - V_0}{2} + \frac{V_0 - V_0}{2} + \frac{V_0}{2}$ 0 = $CT V_0 + \frac{V_0}{2}$

2.3.1 Analise em 40Hz

eq1: 0 = (Va-Vijili1 + Va-SC1 + (Varii3) = (Va-Vijili2 eq2: 0 = Varii3 - Vi0-SC2 0 = C1 Vi0 1 = \frac{Va-Vi0}{A2} + \frac{Va-Vi0}{A2} + \frac{Va-Vi0}{A2} 0 = C2 Vi0 5 - \frac{Va-Vi0}{A2}

$$V_f = 117.10115mV$$

 $V_i = 199.76772mV$
 $Magnitude(H) = 0.586186547$
 $Fase = -1.68605608$

2.3.2 Análise em 100Hz

 $\begin{aligned} & \text{eq.1: } 0 = (V_0 \cup M_0^{-1})^{-1} + V_0 \text{ is } C1 + (V_0 M_0^{-1})^{-1} + (N_0 \cup V_0^{-1})^{-1} \\ & \text{eq.2: } 0 = (N_0 M_0^{-1})^{-1} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} \\ & 0 = CT \cdot M_0^{-1} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} \\ & 0 = CT \cdot M_0^{-1} + \frac{(N_0 - M_0^{-1})^{-1}}{N_0^{-1}} + \frac{(N_0$

$V_f =$	303.64554mV
$V_i =$	199.34196mV
Magnitude(H) =	1.52323946
Fase =	-1.60226153

2.3.3 Análise em 200Hz

 $\begin{aligned} & \text{eq1: } 0 = (V_0 \times W_0^2) + V_0 \times C1 + (V_0 \times W_0^2) + (V_0 \times W_0^2) \\ & \text{eq2: } 0 = \mathcal{X}_0 W_0^2 + \mathcal{X}_0 \times W_0^2 + \frac{V_0 \times W_0^2}{A^2} + \frac{V_0}{A^2} \\ & 0 = C1 \cdot W_0 \times \frac{W_0^2}{A^2} + \frac{V_0 \times W_0^2}{A^2} + \frac{V_0^2}{A^2} \\ & 0 = C2 \cdot W_0 \times \frac{W_0^2}{A^2} + \frac{V_0^2}{A^2} + \frac{V_0^2}{A^2} \end{aligned}$

$V_f =$	704.6312mV
$V_i =$	199.46039mV
Magnitude(H) =	3.53268737
Fase =	-1.67119113

2.3.4 Análise em 400Hz

 $\begin{aligned} & \text{eq1: } 0 = (V_0 \times V_0 V_0 V_1 V_1 \times V_0 \times CT \times (V_0 V_1 V_2 \times V_0 \times V_0 V_1 V_2 \times V_0 V_0 V_1 V_2 \times V_0 \times CT \\ & \text{eq2: } 0 = cT \times V_0 \times$

$$V_f = 3.7148299V$$

 $V_i = 199.72118mV$
 $Magnitude(H) = 18.6104333$
 $Fase = -2.06820459$

2.3.5 Analise em 480Hz

 $\begin{aligned} & \text{eq.t. } 0 = (\text{Va-VgH1} + \text{Va-y-C1} + (\text{Va-VgH2}) + (\text{Va-VgH2}), \\ & \text{eq.t. } 0 = \text{VaH2} - \text{VD-C2}, \\ & 0 = \text{C1 Vgr}_3 + \frac{\text{Va-Vg}}{\text{A1}} + \frac{\text{Va-Vg}}{\text{B2}} + \frac{\text{Va}}{\text{B2}}, \\ & 0 = (\text{Q Vg}) - \frac{\text{Vg}}{\text{A2}}. \end{aligned}$

$V_f =$	9.7253442V
$V_i =$	199.42436mV
Magnitude(H) =	48.7670824
Fase =	-3.13491022

2.3.6 Analise em 550Hz

$$\begin{split} & \text{eq:} C = (Va + Vg)RT + Va + CT + \{Va RRT\} + (Va + Vg)RR\\ & \text{eq:} C = -VaRTS + VD + CT\\ & C = CT Ma + \frac{Va + M}{AT} + \frac{Ma + M}{82} + \frac{Ma}{82}\\ & C = C2 Mb + \frac{M}{AT} + \frac{M}{82} + \frac{Ma}{82} \end{split}$$

$$V_f = 4.1496957V$$

 $V_i = 199.35122mV$
 $Magnitude(H) = 20.8160035$
 $Fase = -2.01155708$

2.3.7 Analise em 1100Hz

 $\begin{aligned} 0 &= (2.89 \pm \frac{32}{89} \\ 0 &= (2.89 \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \\ 0 &= (2.89 \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \\ 0 &= (2.89 \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \\ 0 &= (2.89 \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} \pm \frac{32}{89} + \frac{32}{89} \pm \frac{32}{89} \\ 0 &= (2.89 \pm \frac{32}{89} \pm \frac{32}{89$

$V_f =$	724.81506mV
$V_i =$	199.55853mV
Magnitude(H) =	3.6320926
Fase =	-1.65494612

2.3.8 Tabela de resultados

Freq (Hz)	— H (jw) —	Fase (H)
40	0.586186547	-1.68605608
100	1.52323946	-1.60226153
200	3.53268737	-1.67119113
400	18.6104333	-2.06820459
480	48.7670824	-3.1349102
550	20.8160035	-2.01155708
1100	3.6320926	-1.65494612
2200	1.55687244	-4.68032157
5500	0.595261852	1.60939706
11000	0.296616925	-4.65829159

3 Medições em laboratório

Vamos inicialmente fazer as medições dos componentes a serem usados.

3.1 Tabela de componentes

$$C_1 = 104.89nF$$

 $C_2 = 101.28nF$
 $R_1 = 465.1omega$
 $R_2 = 473.7omega$
 $R_3 = 46.25omega$

Fase = -1.98548656 $V_f = 0.09V$ $V_i = 199.57788mV$ Magnitude(H) = 0.04325V

21.5V

0.106V

21.394

1.24407069

3.2 Médicos no osciloscopio

Análise em 40Hz

eq1:
$$0 = (V_0 \cdot V)J/R1 + V_0 \cdot s \cdot C1 + (V_0 I/R3) + (V_0 \cdot V)J/R2$$
;
eq2: $0 = V_0 I/R3 - V_0 \cdot s \cdot C2$;
 $0 = C1 V_0 \cdot s + \frac{V_0 \cdot V}{R1} + \frac{V_0 \cdot V_0}{R2} + \frac{V_0}{R3}$
 $0 = \cdot C2 V_0 \cdot s \cdot \frac{V_0}{R2}$

$$V_f = 0.565V$$
 $V_i = 0.092V$
 $Magnitude(H) = 0.473$
 $Fase = -1.5833627$

3.2.1 Análise em 100Hz

eq1:
$$0 = (Va-VI)/R1 + Va-v-C1 + (Va/R3) + (Va-VO)/R2$$
;
eq2: $0 = Va/R3 - V0-s-C2$;
 $0 = C1 Va s + \frac{Va-VI}{R1} + \frac{Va-V0}{R2} + \frac{Va}{R3}$
 $0 = -C2 V0 s - \frac{Va}{cs}$

$$V_f = 1.52V$$
 $V_i = 0.09425V$
 $Magnitude(H) = 1.42575$
 $Fase = -1.57079633$

3.2.2 Análise em 200Hz

eq1:
$$0 = (Va \cdot Vi)/R1 + Va \cdot s \cdot C1 + (Va/R3) + (Va \cdot V0)/R2$$
;
eq2: $0 = Va/R3 \cdot V0 \cdot s \cdot C2$;
 $0 = C1 \ Va \ s + \frac{Va \cdot V}{R2} + \frac{Va \cdot V}{R2} + \frac{Va}{R3}$
 $0 = \cdot C2 \ V0 \ s \cdot \frac{Va}{R2}$

$$V_f = 3.5425V$$
 $V_i = 0.097V$
 $Magnitude(H) = 3.4455$
 $Fase = -1.55822996$

3.2.3 Análise em 400Hz

eq1:
$$0 = (Va-VI)/R1 + Va-s-C1 + (Va/R3) + (Va-VO)/R2$$
;
eq2: $0 = Va/R3 - V0-s-C2$;
 $0 = CT Va s + \frac{Va-Vu}{R1} + \frac{Va-Vv}{R2} + \frac{Va}{R3}$
 $0 = -C2 V0 s - \frac{Va}{R3}$

3.2.4 Tabela de resultados

Fase =

 $V_f =$

 $V_i =$

Magnitude(H) =

Freq (Hz)	— H (jw) —	Fase (H)
40	0.473	-1.5833627
100	1.42575	-1.57079633
200	3.4455	-1.55822996
400	21.394	-1.98548656
480	36.65	-3.40799971
550	16.71800	2.07345115
1100	3.6320926	1.58964588
2200	0.575	1.65876092
5500	0.61	0.552920307
11000	0.04325	1.24407069

3.3 Comparação com valores teóricos

Podemos ver que os valores de magnitude ficaram coerentes com ambas análises teóricas, e os de fases para frequências baixas também, mas tive problemas para entender o sentido do sinal da fase a medida que a frequência subia.

3.4 Gráficos

3.4.1 Escala log-log da magnitude de H(jw) e f

eq1:
$$0 = (Va-Vi)/R1 + Va\cdot s\cdot C1 + (Va/R3) + (Va/R3) + (Va/R3 - Va/R3 - Va/R3 - Va/R3) + (Va/R3) + (Va/R3$$

$$0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - V0}{R2} + \frac{Va}{R3}$$

$$0 = -C2 \ V0 \ s - \frac{Va}{R3}$$

3.4.2 Escala semilog da fase de H(jw) e f

eq1:
$$0 = (Va-Vi)/R1 + Va\cdot s\cdot C1 + (Va/R3) + (Va-V0)/R2$$
;
eq2: $0 = -Va/R3 - V0\cdot s\cdot C2$;

$$0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - V0}{R2} + \frac{Va}{R3}$$

$$0 = -C2 \ V0 \ s - \frac{Va}{R3}$$

4 Conclusões

Conseguimos com sucesso fazer a análise numérica por dois meios, utilizando o LTSpice e WxMaxima, e comparamos os resultados.

Nos resultados práticos, a magnitude da função transferência foi coerente com os resultados esperados, porém a fase em frequências baixas se manteve coerente, porém em frequências altas ela se tornou inconsistente.

Creio que por erros das minhas medidas, eu não fui consistente em usar o mesmo cursor na mesma onda de entrada ou saída.

A frequência de saída começou adiantada em relação a frequência de entrada, e à medida que aumentamos a frequência ela se atrasa até que é ultrapassada pela entrada.

Creio que isso faria com que a fase se inverta.

Mas em suma creio que tivemos sucesso em nos familiarizar com as ferramentas de análise de circuitos elétricos numéricos.