

RUL Base Maintenance

Problem and Data

Remaining Useful Life

The Remaining Useful Life is a key concept in predictive maintenance

The RUL refers to the time until a component becomes unusable

- If we can estimate the RUL of a component
- ...We can schedule maintenance operations only when they are needed

Current best practices are based on preventive maintenance

I.e. on having a fixed maintenance schedule for each component family

- RUL prediction can lead to significant savings
- ...By delaying maintenance operations w.r.t. the schedule
- ...But only as long as we are still able to prevent critical failures

The Dataset

We will consider the NASA <u>C-MAPSS dataset</u>

- The Modular Aero-Propulsion System Simulation (MAPSS)
- ...Is a NASA-developed simulator for turbofan engines

- It comes with both a Military (MAPSS) and commercial versionn (C-MAPSS)
- They different in the attributes of the considered engines

The Dataset

The C-MAPSS system can simulate a number of faults and defects

...And it was used to build a high-quality dataset for a competition

- The dataset consists of 4 "training set" files and 4 "test set" files
- The dataset differ by operating conditions (sea level only or different altitudes)
- ...And by fault types (High Pressure Compressor, fan)
- All engines are assumed to be healthy at the beginning of the simulation

We will focus on the hardest setup

- Multiple operating conditions
- Two fault types

Inspecting the Data

Let's have a look at the row data

```
In [2]: data_raw = util.load_data(data_folder=os.path.join('...', 'data'))
         data_dict = util.split_by_field(data_raw, field='src')
         data = data_dict['train_FD004']
         data.head()
Out[2]:
             src
                        machine cycle p1
                                                    p3
                                                          s1
                                                                 s2
                                                                       s3
                                                                                       ... s13
                                                                                                 s14
                                                                                                         s15
                                                                                                                 s16 s17 s18
                                                                                                                               s19
                                                                                                                                       s20
                                                                                                                                            s21
                                                                                                                                                    rul
                                     42.0049 0.8400 100.0 445.00 549.68 1343.43 1112.93 ... 2387.99 8074.83 9.3335
          0 train_FD004 1
                                                                                                                 0.02 330 2212 100.00 10.62 6.3670
                                                                                                                                                    320
          1 train_FD004 1
                                     20.0020 0.7002 100.0 491.19 606.07 1477.61 1237.50 ... 2387.73 8046.13 9.1913
                                                                                                                 0.02 361 2324 100.00 24.37 14.6552 319
          2 train_FD004 1
                                     42.0038 0.8409 100.0 445.00 548.95 1343.12 1117.05 ... 2387.97 8066.62 9.4007
                                                                                                                 0.02 329 2212 100.00 10.48 6.4213
                                                                                                                                                    318
           3 train_FD004 1
                                                         445.00
                                                                548.70 1341.24 1118.03 ... 2388.02
                                                                                                         9.3369
                                                                                                                 0.02 328 2212 100.00
                                                                                                                                      10.54 6.4176
                                     42.0000
                                             0.8400
                                                    100.0
                                                                                                 8076.05
                                                                                                                                                    317
          4 train_FD004 1
                                     25.0063 0.6207
                                                    60.0
                                                          462.54 536.10 1255.23 1033.59 ... 2028.08 7865.80 10.8366 0.02 305 1915 84.93
                                                                                                                                       14.03 8.6754
                                                                                                                                                    316
           5 rows × 28 columns
```

- Columns "p1, p2, p3" refer to controlled parameters
- Columns "s1" to "s21" refer to sensor reading
- Binning has already been applied in the original dataset

Statistics

Let's check some statistics

Out[3]:		p1	p2	р3	s1	s2	s3	s4	s5	s6	s7	s12	s13
	count	61249.000000	61249.000000	61249.000000	61249.000000	61249.000000	61249.000000	61249.000000	61249.000000	61249.000000	61249.000000	61249.00000	0 61249
	mean	23.999823	0.571347	94.031576	472.882435	579.420056	1417.896600	1201.915359	8.031626	11.589457	283.328633	266.735665	2334.4
	std	14.780722	0.310703	14.251954	26.436832	37.342647	106.167598	119.327591	3.622872	5.444017	146.880210	138.479109	128.19
	min	0.000000	0.000000	60.000000	445.000000	535.480000	1242.670000	1024.420000	3.910000	5.670000	136.170000	128.310000	2027.5
	25%	10.004600	0.250700	100.000000	445.000000	549.330000	1350.550000	1119.490000	3.910000	5.720000	142.920000	134.520000	2387.9
	50%	25.001400	0.700000	100.000000	462.540000	555.740000	1367.680000	1136.920000	7.050000	9.030000	194.960000	183.450000	2388.0
	75%	41.998100	0.840000	100.000000	491.190000	607.070000	1497.420000	1302.620000	10.520000	15.480000	394.280000	371.400000	2388.1
	max	42.008000	0.842000	100.000000	518.670000	644.420000	1613.000000	1440.770000	14.620000	21.610000	570.810000	537.490000	2390.4

There are appears to be no missing value

Heatmaps

We'll use a heatmap to get a glance of all data at once

- Time is on the x-axis, every row corresponds to a table column
- Red = below average, blue = above average

A Sample Column

Let's plot one column in deeper detail for a single machine/experiment

■ There might be an increasing trend, but it's quit weak

Remaining Useful life

Let's have a look at the "rul" column

■ It has a saw-tooth pattern, since the duration of each experiment is known

RUL Base Maintenance

RUL Prediction

Say we want to define a RUL-based maintenance policy

How could we tackle that problem?

System Modeling

Let's start from modeling the system

We can view the RUL and the observed data as

$$X, R \sim P(X, R)$$

Since X is observed, we can actually focus on the conditional distribution of R:

$$R \sim P(R \mid X)$$

We can then define the expected RUL given observed values x for X:

$$f(x) = \mathcal{E}_{R \sim P(R|X=x)} [R]$$

This is exactly just the formalization for a classical regression problem

RUL Prediction as Regression

With this information, we can formulate a simple maintenance policy

We will train a regression model $\hat{y} = \hat{f}(x; \theta)$ to approximate f(x)

- We can use any regression approach in principle
- E.g. linear regression, Neural Networks, Random Forests, etc.

Then we trigger maintenance when the estimated RUL becomes too low, i.e.:

$$\hat{y} = \hat{f}(x; \theta) \le \varepsilon$$

- lacksquare eta is the vector of model parameters
- The threshold ϵ must account for possible estimation errors

We now need to define our training and test data How do we proceed?

We now need to define our training and test data

In a practical setting:

- Some run-to-failure experiments will form the training set
- Others run-to-failure experiments will be used for testing

I.e. we split whole experiments rather than individual examples!

Each run-to-failure experiment in our data is associated to a machine

Let's check how many we have:

```
In [9]: print(f'Number of machines: {len(data.machine.unique())}')
Number of machines: 249
```

This is actually a very large number (way more than typically available)

Let's use 75% of the machine for training, the rest for testing

First, we partition the machine indexes:

```
In [10]: tr_ratio = 0.75
    np.random.seed(42)
    machines = data.machine.unique()
    np.random.shuffle(machines)

sep = int(tr_ratio * len(machines))
    tr_mcn = machines[:sep]
    ts_mcn = machines[sep:]
```

Then, we partition the dataset itself:

```
In [11]: tr, ts = util.partition_by_machine(data, tr_mcn)
```


Let's have a look at the training data

Out[12]:		src	machine	cycle	p1	p2	р3	s1	s2	s3	s4	•••	s13	s14	s15	s16	s17	s18	s19	s20	s21	rul
	0	train_FD004	1	1	42.0049	0.8400	100.0	445.00	549.68	1343.43	1112.93		2387.99	8074.83	9.3335	0.02	330	2212	100.00	10.62	6.3670	320
	1	train_FD004	1	2	20.0020	0.7002	100.0	491.19	606.07	1477.61	1237.50		2387.73	8046.13	9.1913	0.02	361	2324	100.00	24.37	14.6552	319
	2	train_FD004	1	3	42.0038	0.8409	100.0	445.00	548.95	1343.12	1117.05		2387.97	8066.62	9.4007	0.02	329	2212	100.00	10.48	6.4213	318
	3	train_FD004	1	4	42.0000	0.8400	100.0	445.00	548.70	1341.24	1118.03	•••	2388.02	8076.05	9.3369	0.02	328	2212	100.00	10.54	6.4176	317
	4	train_FD004	1	5	25.0063	0.6207	60.0	462.54	536.10	1255.23	1033.59	•••	2028.08	7865.80	10.8366	0.02	305	1915	84.93	14.03	8.6754	316
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
	60989	train_FD004	248	180	35.0019	0.8409	100.0	449.44	556.28	1377.65	1148.96	•••	2387.77	8048.91	9.4169	0.02	337	2223	100.00	14.66	8.7446	4
	60990	train_FD004	248	181	0.0023	0.0000	100.0	518.67	643.95	1602.98	1429.57	•••	2388.27	8122.44	8.5242	0.03	396	2388	100.00	38.40	23.1079	3
	60991	train_FD004	248	182	25.0030	0.6200	60.0	462.54	536.88	1268.01	1067.09		2027.98	7865.18	10.9790	0.02	309	1915	84.93	14.24	8.4254	2
	60992	train_FD004	248	183	41.9984	0.8414	100.0	445.00	550.64	1363.76	1145.72		2387.48	8069.84	9.4607	0.02	333	2212	100.00	10.37	6.2727	1
	60993	train_FD004	248	184	0.0013	0.0001	100.0	518.67	643.50	1602.12	1430.34	•••	2388.33	8120.43	8.4998	0.03	395	2388	100.00	38.48	23.0767	0

...And at the test data

Out[13]:		src	machine	cycle	p1	p2	рЗ	s1	s2	s3	s4	•••	s13	s14	s15	s16	s17	s18	s19	s20	s21	rul
	321	train_FD004	2	1	41.9998	0.8400	100.0	445.00	548.99	1341.82	1113.16		2387.98	8082.37	9.3300	0.02	331	2212	100.00	10.77	6.2894	298
	322	train_FD004	2	2	9.9999	0.2500	100.0	489.05	604.23	1498.00	1299.54	•••	2388.07	8125.46	8.6088	0.03	368	2319	100.00	28.61	17.3135	297
	323	train_FD004	2	3	42.0079	0.8403	100.0	445.00	549.11	1351.47	1126.43	•••	2387.93	8082.11	9.2965	0.02	330	2212	100.00	10.70	6.4288	296
	324	train_FD004	2	4	42.0077	0.8400	100.0	445.00	548.77	1345.81	1116.64	•••	2387.88	8079.41	9.3200	0.02	330	2212	100.00	10.50	6.2818	295
	325	train_FD004	2	5	24.9999	0.6200	60.0	462.54	537.00	1259.55	1043.95		2028.13	7867.08	10.8841	0.02	307	1915	84.93	14.26	8.5789	294
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
	61244	train_FD004	249	251	9.9998	0.2500	100.0	489.05	605.33	1516.36	1315.28	•••	2388.73	8185.69	8.4541	0.03	372	2319	100.00	29.11	17.5234	4
	61245	train_FD004	249	252	0.0028	0.0015	100.0	518.67	643.42	1598.92	1426.77		2388.46	8185.47	8.2221	0.03	396	2388	100.00	39.38	23.7151	3
	61246	train_FD004	249	253	0.0029	0.0000	100.0	518.67	643.68	1607.72	1430.56	•••	2388.48	8193.94	8.2525	0.03	395	2388	100.00	39.78	23.8270	2
	61247	train_FD004	249	254	35.0046	0.8400	100.0	449.44	555.77	1381.29	1148.18	•••	2388.83	8125.64	9.0515	0.02	337	2223	100.00	15.26	9.0774	1
	61248	train_FD004	249	255	42.0030	0.8400	100.0	445.00	549.85	1369.75	1147.45	•••	2388.66	8144.33	9.1207	0.02	333	2212	100.00	10.66	6.4341	0

Standardization/Normalization

We will use a Neural Network regressor

...Therefore, we need to make the range of each columns more uniform

We will standardize all parameters and sensor inputs:

```
In [14]: trmean = tr[dt_in].mean()
    trstd = tr[dt_in].std().replace(to_replace=0, value=1) # handle static fields

ts_s = ts.copy()
    ts_s[dt_in] = (ts_s[dt_in] - trmean) / trstd
    tr_s = tr.copy()
    tr_s[dt_in] = (tr_s[dt_in] - trmean) / trstd
```

We will normalize the RUL values (i.e. our regression target)

```
In [15]: trmaxrul = tr['rul'].max()

ts_s['rul'] = ts['rul'] / trmaxrul

tr_s['rul'] = tr['rul'] / trmaxrul
```


Standardization/Normalization

Let's check the results

Out[16]:		machine	cycle	p1	p2	р3	s1	s2	s3	s4	s5	•••	s13	s14
	count	45385.000000	45385.000000	4.538500e+04	•••	4.538500e+04	4.538							
	mean	122.490955	133.323896	2.894775e-16	1.302570e-16	1.178889e-16	4.664830e-15	2.522791e-15	1.727041e-15	-6.633794e-16	1.496703e-16		1.135835e-15	-6.017
	std	71.283034	89.568561	1.000000e+00	•••	1.000000e+00	1.000							
	min	1.000000	1.000000	-1.623164e+00	-1.838222e+00	-2.381839e+00	-1.055641e+00	-1.176507e+00	-1.646830e+00	-1.486984e+00	-1.138606e+00		-2.387561e+00	-2.58
	25%	61.000000	62.000000	-9.461510e-01	-1.031405e+00	4.198344e-01	-1.055641e+00	-8.055879e-01	-6.341243e-01	-6.912917e-01	-1.138606e+00	•••	4.181950e-01	-5.97
	50%	125.000000	123.000000	6.868497e-02	4.154560e-01	4.198344e-01	-3.917563e-01	-6.336530e-01	-4.718540e-01	-5.429267e-01	-2.714913e-01	•••	4.194408e-01	1.862
	75%	179.000000	189.000000	1.218855e+00	8.661917e-01	4.198344e-01	6.926385e-01	7.407549e-01	7.495521e-01	8.439630e-01	6.867534e-01		4.202973e-01	7.086
	max	248.000000	543.000000	1.219524e+00	8.726308e-01	4.198344e-01	1.732749e+00	1.741030e+00	1.837978e+00	2.000975e+00	1.818973e+00		4.383623e-01	2.2

Regression Model

We will start with the simplest possible Neural Network

... Meaning a Linear Regressor!

- We just need to specify that there are no hidden layers
- Why the simplest? As usual, due to Occam's razor

Training

We can now train our model

Training

Let's try with a more complex model

- Now we have two hidden layers
- ...Each with 32 ReLU neurons

Training

Let's check the loss behavior and compare it to Linear Regression

■ There is a modest improvement w.r.t. Linear Regression

Predictions

We can now obtain the predictions and evaluate their quality

What do you think of these results? Are they good or bad?

Predictions

The results so far are not comforting

...But it's worth seeing what is going on over time:

Predictions

The situation is similar on the test set:

Quality Evaluation

Let's try to recap the situation

Our accuracy is quite poor especially for large RUL values

- This may happens since large RUL value are somewhat scarce on the dataset
- ...Or because fault effects become noticeable only after a while

Quality Evaluation

Let's try to recap the situation

Our accuracy is quite poor especially for large RUL values

- This may happens since large RUL value are somewhat scarce on the dataset
- ...Or because fault effects become noticeable only after a while

But perhaps we don't care! Our goal is not a high accuracy

- We just need to stop at the right time
- ...And our model may still be good enough for that

For a proper evaluation, we need a cost model

We will assume that:

We consider one step of operation as our value unit

■ ...So we can express the failure cost in terms of operating steps

We will assume that:

We consider one step of operation as our value unit

■ ...So we can express the failure cost in terms of operating steps

Every run end with either failure or maintenance:

- Assuming that the failure cost is higher than maintenance cost
- ...We can diseregard the maintenance cost

We will assume that:

We consider one step of operation as our value unit

■ ...So we can express the failure cost in terms of operating steps

Every run end with either failure or maintenance:

- Assuming that the failure cost is higher than maintenance cost
- ...We can diseregard the maintenance cost

A traditional preventive maintenance policy is also available

- We will never trigger maintenance ealier that such policy
- We only gain value if we beat such policy

The whole cost formula for a single machine will be:

$$cost(\hat{y}), \varepsilon) = op_profit(\hat{y}, \varepsilon) + fail_cost(\hat{y}, \varepsilon)$$

Where:

$$op_profit(\hat{y}, \varepsilon) = -\max(0, stop_time(\hat{y}, \varepsilon) - s)$$

$$fail_cost(\hat{y}, \varepsilon) = \begin{cases} C \text{ if } \max(\hat{y}) \ge \varepsilon \\ 0 \text{ otherwise} \end{cases}$$

- ullet If we fail, we pay $oldsymbol{C}$ cost unit more than maintenance
- Profit is modeled as a negative cost
- ullet We only make profit if we stop after $oldsymbol{s}$ units

Normally, we would proceed as follows

- *s* is determined by the preventive maintenance schedule
- C must be determined by discussing with the customer

In our example, we will derive both from data

First, we collect all failure times

Then, we define s and C based on statistics

```
In [30]: print(failtimes.describe())
         safe_interval = failtimes.min()
         maintenance_cost = failtimes.max()
                  249,00000
         count
                  245.97992
         mean
                   73.11080
         std
                  128.00000
         min
                  190.00000
         25%
                  234.00000
         75%
                  290.00000
                  543.00000
         max
         Name: cycle, dtype: float64
```

- \blacksquare For the safe interval s, we choose the minimum failure time
- ullet For the maintenance cost $oldsymbol{C}$ we choose the largest failure time

Threshold Choice

We can then choose the threshold θ as usual

```
In [31]: cmodel = util.RULCostModel(maintenance_cost=maintenance_cost, safe_interval=safe_interval)
         th_range = np.arange(-10, 100)
         tr_thr = util.opt_threshold_and_plot(tr['machine'].values, tr_pred, th_range, cmodel, figsize=figsize)
         print(f'Optimal threshold for the training set: {tr_thr}')
         Optimal threshold for the training set: 10
           80000
           60000
           40000
           20000
          -20000
                                                     20
                                                                                                                     80
                                                                                                                                          100
```


Evaluation

Let's see how we fare in terms of cost

```
In [32]: tr_c, tr_f, tr_sl = cmodel.cost(tr['machine'].values, tr_pred, tr_thr, return_margin=True)
    ts_c, ts_f, ts_sl = cmodel.cost(ts['machine'].values, ts_pred, tr_thr, return_margin=True)
    print(f'Avg. cost: {tr_c/len(tr_mcn):.2f} (training), {ts_c/len(ts_mcn):.2f} (test)')

Avg. cost: -99.11 (training), -110.17 (test)
```

We can also evaluate the margin for improvement:

```
In [33]: print(f'Avg. fails: {tr_f/len(tr_mcn):.2f} (training), {ts_f/len(ts_mcn):.2f} (test)')
    print(f'Avg. slack: {tr_sl/len(tr_mcn):.2f} (training), {ts_sl/len(ts_mcn):.2f} (test)')

Avg. fails: 0.00 (training), 0.00 (test)
    Avg. slack: 17.16 (training), 13.76 (test)
```

- Slack = distance between when we stop and the failure
- The results are quite good and we also generalize fairly well

