

Description

TheVSM210N07uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in Automotive applications and a wide variety of other applications.

General Features

- $V_{DSS} = 75V, I_D = 210A$ $R_{DS(ON)} < 4m\Omega @ V_{GS} = 10V$
- Good stability and uniformity with high E_{AS}
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM210N07-TC	VSM210N07	TO-220C	-	-	-

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DSS}	75	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	210	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	150	Α
Pulsed Drain Current	I _{DM}	840	А
Maximum Power Dissipation	P _D	310	W
Derating factor		2.07	W/℃

Shenzhen VSEEI Semiconductor Co., Ltd

Single pulse avalanche energy (Note 4)	E _{AS}	2200	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 1)	R ₀ JC	0.48	°C/W	
--	-------------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	75			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =75V,V _{GS} =0V			1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V			±200	nA
On Characteristics			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance —	.5℃)/ 40\/ L 40A		2.8	4	mΩ
	$R_{DS(ON)}$	V _{GS} =10V, I _D =40A		4.7	6.5	mΩ
Forward Transconductance	g _{FS}	V _{DS} =25V,I _D =40A	100	165		S
Dynamic Characteristics			•			
Input Capacitance	C _{lss}	\/ -05\/\/ -0\/		11000		PF
Output Capacitance	C _{oss}	$V_{DS}=25V, V_{GS}=0V,$		914		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		695		PF
Switching Characteristics			•			•
Turn-on Delay Time	t _{d(on)}			23		nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =2A, R_L =15 Ω		190		nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω		130		nS
Turn-Off Fall Time	t _f			120		nS
Total Gate Charge	Qg		-	250		nC
Gate-Source Charge	Q _{gs}	ID=30A,VDD=30V,VGS=10V	-	48		nC
Gate-Drain Charge	Q_{gd}		-	98		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _S =40A			1.2	V
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A		63		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note2)		98		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- **1.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 2. Pulse Test: Pulse Width ≤ 400µs, Duty Cycle ≤ 2%.
- 3. EAS condition: Tj=25°C,VDD=37.5V,VG=10V,L=2mH,Rg=25 Ω ,IAS=37A

Test circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance