Assignment -3 Python Programming

Assignment Date	30 September 2022		
Student Name	NAVEEN BALAJI.N.T		
Student Roll Number	311419205023		
Maximum Marks	2 Marks		

import libraries

```
In [1]: import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          %matplotlib inline
          import seaborn as sns
In [2]:
          df = pd.read_csv('../input/abalone.csv')
In [3]: df.head()
 Out[3]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
         0 M 0.455
                         0.365 0.095
                                           0.5140
                                                        0.2245
                                                                    0.1010
                                                                               0.150
                                                                                       15
                                                        0.0995
                                                                                        7
         1 M 0.350
                         0.265 0.090
                                           0.2255
                                                                    0.0485
                                                                               0.070
         2 F 0.530
                         0.420 0.135
                                           0.6770
                                                        0.2565
                                                                    0.1415
                                                                               0.210
                                                                                        9
         3 M 0.440
                        0.365
                               0.125
                                          0.5160
                                                        0.2155
                                                                    0.1140
                                                                               0.155 10
         4 | 0.330
                         0.255 0.080
                                                        0.0895
                                                                    0.0395
                                                                               0.055
                                           0.2050
                                                                                      7
In [4]: df.describe()
```

t[4]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
	75 %	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

```
In [5]:
    df['age'] = df['Rings']+1.5
    df = df.drop('Rings', axis = 1)
```

EDA

```
In [6]: sns.heatmap(df.isnull())
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcc468da358>

In [7]: sns.pairplot(df) Out[7]: cseaborn.axisgrid.PairGrid at 0x7fcc3caa8160> tgb 0.4 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.1 - 0.1 - 0.5 - 0.1 - 0.5 - 0.1 - 0.1 - 0.5 - 0.1 - 12 1 10 0.8 E 0.6 0.2 3.0 4 2.5 Whole weight 15 150 -125 -100 -0.75 -0.50 -0.50 -

```
numerical_features = df.select_dtypes(include = [np.number]).columns
           categorical_features = df.select_dtypes(include = [np.object]).columns
In [10...
           numerical_features
          Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
Out[10]:
                 'Viscera weight', 'Shell weight', 'age'],
                dtype='object')
In [11...
           categorical_features
          Index(['Sex'], dtype='object')
Out[11]:
In [12...
           plt.figure(figsize = (20,7))
           sns.heatmap(df[numerical_features].corr(),annot = True)
          <matplotlib.axes._subplots.AxesSubplot at 0x7fcc29714dd8>
Out[12]:
                                                                                                                                                             - 1.0
```


In
$$\hat{A}$$
 [13... sns.countplot(x = 'Sex', data = df, palette = 'Set3')

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcc26ba6748>

Male : age majority lies in between 7.5 years to 19 years Female: age majority lies in between 8 years to 19 years Immature: age majority lies in between 6 years to < 10 years

Data Preprocessing

```
In [15... # outlier handling
df = pd.get_dummies(df)
dummy_df = df

In [16... var = 'Viscera weight'
```

```
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
In [18...
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
In [20... var = 'Shucked weight'
   plt.scatter(x = df[var], y = df['age'])
   plt.grid(True)
```


In [22-var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)


```
In [23... df.drop(df[(df['Whole weight'] >= 2.5) &
              (df('age'] < 25)].index, inplace = True)
df.drop(df[(df['Whole weight']<2.5) & (
df['age'] > 25)].index, inplace = True)
In [24... var = 'Diameter'
              plt.scatter(x = df[var], y = df['age'])
              plt.grid(True)
              20.0
              17.5
              15.0
              12.5
              10.0
               7.5
               2.5
In [25...
               \label{eq:dfdf} $$ df.drop(df[(df['Diameter'] < 0.1) \& $$
                           (df['age'] < 5)].index, inplace = True)</pre>
               df.drop(df[(df['Diameter']<0.6) & (</pre>
```

```
df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter']>=0.6) & (
df['age'] < 25)].index, inplace = True)</pre>
```

In [26... var = 'Height' plt.scatter(x = df[var], y = df['age']) plt.grid(True)

Model Selection

1)Linear regression

```
In [33...
           from sklearn.linear_model import LinearRegression
In [34...
           lm = LinearRegression()
           lm.fit(X_train, y_train)
          LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
                   normalize=False)
In [35...
           y_train_pred = lm.predict(X_train)
           y_test_pred = lm.predict(X_test)
In [36...
            from sklearn.metrics import mean absolute error, mean squared error
           s = mean_squared_error(y_train, y_train_pred)
           print('Mean Squared error of training set :%2f'%s)
           p = mean_squared_error(y_test, y_test_pred)
           print('Mean Squared error of testing set :%2f'%p)
          Mean Squared error of training set :3.551893
          Mean Squared error of testing set :3.577687
           from sklearn.metrics import r2 score
           s = r2_score(y_train, y_train_pred)
           print('R2 Score of training set:%.2f'%s)
           p = r2_score(y_test, y_test_pred)
           print('R2 Score of testing set:%.2f'%p)
          R2 Score of training set:0.54
          R2 Score of testing set:0.53
```

2)Ridge

```
In [38…
           from sklearn.linear_model import Ridge
In [39...
           ridge_mod = Ridge(alpha=0.01, normalize=True)
           ridge_mod.fit(X_train, y_train)
           ridge_mod.fit(X_test, y_test)
           ridge_model_pred = ridge_mod.predict(X_test)
           ridge_mod.score(X_train, y_train)
Out[39]: 0.5307346478347332
In [40...
           ridge_mod.score(X_test, y_test)
          0.5272608729607438
Out[40]:
In [41...
           plt.scatter(y_test, ridge_model_pred)
           plt.xlabel('True Values')
           plt.ylabel('Predictions')
          Text(0, 0.5, 'Predictions')
 Out[41]:
            18
            16
```


$3) \ Random Forest Regression$

```
In [46...
            from sklearn.ensemble import RandomForestRegressor
In [47...
            regr = RandomForestRegressor(max_depth=2, random_state=0,
                                          n_estimators=100)
In [48...
           regr.fit(X_train, y_train)
           regr.fit(X_test, y_test)
           Random ForestRegressor(bootstrap=True,\ criterion='mse',\ max\_depth=2,
 Out[48]:
                      {\tt max\_features='auto',\ max\_leaf\_nodes=None,}
                      min_impurity_decrease=0.0, min_impurity_split=None,
                      min_samples_leaf=1, min_samples_split=2,
                      min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
                      oob score=False, random state=0, verbose=0, warm start=False)
In [49...
           y_train_pred = regr.predict(X_train)
           y_test_pred = regr.predict(X_test)
           regr.score(X_train, y_train)
          0.4287379777803546
 Out[49]:
In [50...
           regr.score(X_test, y_test)
Out[50]: 0.43753106247261264
```