Efeito do ião comum

O *efeito do ião comum* é o desvio do equilíbrio causado pela adição de um composto que possui um ião comum à substância dissolvida.

A presença de um ião comum **suprime** a ionização de um ácido fraco ou de uma base fraca.

Considere uma mistura de CH₃COONa (electrólito forte) e CH₃COOH (ácido fraco).

CH₃COONa (s)
$$\longrightarrow$$
 Na⁺ (aq) + CH₃COO⁻ (aq) ião CH₃COOH (aq) \longrightarrow H⁺ (aq) + CH₃COO⁻ (aq) comum

Efeito do ião comum

Considere uma mistura do sal NaA com o ácido fraco HA.

$$HA(aq)$$
 $H^+(aq) + A^-(aq)$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$[H^+] = \frac{K_a [HA]}{[A^-]}$$

$$-\log [H^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

Henderson-Hasselbalch

-log [H⁺] = -log
$$K_a$$
 + log $\frac{[A^-]}{[HA]}$

$$pH = pK_a + log \frac{[A^-]}{[HA]} \qquad pK_a = -log K_a$$

-log [H⁺] = -log
$$K_a$$
 + log $\frac{[A^-]}{[HA]}$ pH = p K_a + log $\frac{[base\ conjugada]}{[ácido]}$

$$pK_a = -\log K_a$$

Efeito do ião comum

Qual é o pH de uma solução contendo 0.30 M HCOOH e 0.52 M de HCOOK? *K*a=1.8x10⁻⁴

Mistura de um ácido fraco com a sua base conjugada (sol. tampão)

$$HCOOH(aq) \longrightarrow H^{+}(aq) + HCOO^{-}(aq)$$

Início (M) Equilíbrio (M)

$$0.30$$
 $0.30 - x$

$$0.52$$
 $0.52 + x$

Efeito do ião comum

$$0.30 - x \approx 0.30$$

$$0.52 + x \approx 0.52$$

$$pH = pK_a + log \frac{[HCOO^-]}{[HCOOH]}$$

Concentrações iniciais de ác/base conjugada

HCOOH
$$pK_a = 3.74$$

pH =
$$3.74 + log \frac{[0.52]}{[0.30]} = 3.98$$

Soluções Tampão

Uma **solução tampão** é uma solução de:

- um ácido fraco ou uma base fraca e
- um sal do ácido fraco ou da base fraca

Ambos têm de estar presentes!

Uma solução tampão tem a possibilidade de resistir a variações de pH após a adição de pequenas quantidades de ácido ou base.

Considere uma mistura equimolar de CH₃COOH e CH₃COONa

Adição de ácido forte

$$H^+(aq) + CH_3COO^-(aq) \longrightarrow CH_3COOH(aq)$$

Adição de base forte

$$OH^{-}(aq) + CH_{3}COOH(aq) \longrightarrow CH_{3}COO^{-}(aq) + H_{2}O(l)$$

HCI
$$\longrightarrow$$
 H⁺ + Cl⁻
HCI + CH₃COO⁻ \longrightarrow CH₃COOH + Cl⁻

Soluções Tampão

Qual dos seguintes sistemas é um sistema tampão? (a) KF/HF (b) KBr/HBr, (c) Na₂CO₃/NaHCO₃

- (a) HF é um ácido fraco e F- é a sua base conjugada Solução tampão
- (b) HBr é um ácido forte Não é uma solução tampão
- (c) CO₃²⁻ é uma base fraca e HCO₃- é o seu ácido conjugado Solução tampão

Calcule o pH do sistema tampão $0.30~M~NH_3/0.36~M~NH_4Cl.~$ Qual será o pH depois da adição de 20.0 mL de NaOH 0.050~M~a~80.0~mL da solução tampão? Ka $(NH^{4+}) = 10^{-9.25}$

$$NH_4^+$$
 (aq) \longrightarrow H^+ (aq) + NH_3 (aq)

pH = p
$$K_a$$
 + log $\frac{[NH_3]}{[NH_4^+]}$ p K_a = 9.25 pH = 9.25 + log $\frac{[0.30]}{[0.36]}$ = 9.17

início (moles)
$$0.029 0.001 0.024$$

 $NH_4^+ (aq) + OH^- (aq) \longrightarrow H_2O (I) + NH_3 (aq)$
final (moles) $0.028 0.0$ 0.025

volume final = 80.0 mL + 20.0 mL = 100 mL

$$[NH_4^+] = \frac{0.028}{0.10}$$
 $[NH_3] = \frac{0.025}{0.10}$ $pH = 9.25 + log \frac{[0.25]}{[0.28]} = 9.20$

Titulações

Numa *titulação* uma solução de concentração rigorosamente conhecida é adicionada gradualmente a outra solução de concentração desconhecida até a reacção química entre as duas soluções estar completa.

Ponto de equivalência – é o ponto no qual a reacção está completa

Indicador – é uma substância que muda de cor no (ou perto do) ponto de equivalência

Adição lenta de base ao ácido desconhecido até...

o indicador mudar de cor (rosa)

Titulações ácido forte/base forte

NaOH
$$(aq)$$
 + HCI (aq) \longrightarrow H₂O (I) + NaCl (aq)
OH⁻ (aq) + H⁺ (aq) \longrightarrow H₂O (I)

Titulações ácido fraco/base forte

CH₃COOH (aq) + NaOH (aq) \longrightarrow CH₃COONa (aq) + H₂O (I) CH₃COOH (aq) + OH⁻ (aq) \longrightarrow CH₃COO⁻ (aq) + H₂O (I) No ponto de equivalência (pH > 7):

$$CH_3COO^-(aq) + H_2O(l) \longrightarrow OH^-(aq) + CH_3COOH(aq)$$

Titulações ácido fraco/base forte

 V_{HA} = volume do ácido a titular; V_{B} = volume base adicionado; V_{T} = V_{HA} + V_{B} Balanço de massas:

$$[HA]_0 = [A^-] + [HA]$$

Balanço de cargas:

$$[H^+] = [OH^-] + [A^-]$$

Equilibrios:

$$K_{w} = [H^{+}][OH^{-}]$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Aproximações:

HA é um ácido fraco logo HA é mais abundante que A- em solução

Quando HA está presente fornece iões H⁺ em quantidade muito superior àquela pH que vem da autoprotólise da H₂O

Quando predomina um excesso de base, os iões OH- por ela fornecidos dominam sobre aqueles que possam vir da autoprotólise da H₂O

Titulações ácido fraco/base forte

Antes de começar a titulação:

HA é um ácido fraco logo HA é mais abundante que A- em solução

Quando HA está presente fornece iões H⁺ em quantidade muito superior àquela que vem da autoprotólise da H₂O

Balanço de massas:

$$[HA]_0 = [HA]_t = C_{HA} = [HA] + [A^-]$$

$$[HA] = [HA]_0 - [A^-] \approx [HA]_0$$

Balanço de cargas:

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_{a} = \frac{[H^{+}]^{2}}{[HA]_{0}}$$

$$[H^+] = \sqrt{K_a[HA]_0} = \sqrt{K_aC_{HA}}$$

$$[H^{+}] = [A^{-}]$$

$$pH = 1/2pKa - 1/2log [HA]_0$$

Titulações ácido fraco/base forte

Antes do ponto de equivalência:

Após a adição de alguma base, a concentração de A- é predominantemente devida à reacção:

$$HA(aq) + OH^{-}(aq) \longrightarrow A^{-}(aq) + H_2O(l)$$

[A⁻] = concentração devida à reacção de HA com o titulante = [B]V_B/V_T (despreza-se a contribuição da dissociação de HA)

[HA] = n° de moléculas restantes – n° de moléculas convertidas em sal = $=([HA]_0V_{HA}/V_T) - ([B]V_B/V_T)$

$$K_a = \frac{[H^+][A^-]}{[HA]} <=> pH = pK_a + log \frac{[A^-]}{[HA]}$$
 Solução tampão

Com [A⁻] e [HA] calculados pelas expressões anteriores

Titulações ácido fraco/base forte

Antes do ponto de equivalência, no ponto de meia titulação (quando volume de base = metade Vpe) :

Quando as concentrações de ácido e base conjugada são iguais:

$$pH = pK_a + log \frac{[A^-]}{[HA]} \iff pH = pK_a$$

Deste modo o pKa pode ser obtido através de uma leitura directa do pH da mistura

Titulações ácido fraco/base forte

No ponto de equivalência:

[H⁺] deve-se à influência de [OH⁻] no equilíbrio de autoprotólise da água e os iões [OH⁻] devem-se à transferência da H₂O para A⁻ :

$$A^{-}(aq) + H_2O(l) \longrightarrow HA(aq) + OH^{-}(aq)$$

[A-] = proveniente da neutralização de HA, uma vez que a contribuição do equilíbrio anterior deverá ser muito pequena

$$[A^{-}] = ([HA]_{0}V_{HA}/V_{T}) - ([B]V_{B}/V_{T})$$

A contribuição da autoprotólise da água para [OH-] deverá ser muito pequena quando comparada com o equilíbrio anterior, pelo que [HA] = [OH-]

$$K_{b} = \frac{\text{[HA] [OH-]}}{\text{[A-]}} = \frac{\text{[OH-]}^{2}}{\text{[A-]}} <=> \text{[OH-]} = \sqrt{K_{b} \text{[A-]}} \text{ sol. base fraca}$$

...e como $K_{a}K_{b} = K_{w}$ pH = 1/2p K_{a} + 1/2p K_{w} + 1/2log[A-]

Titulações ácido fraco/base forte

Após o ponto de equivalência:

O pH é determinado pela base forte adicionada em excesso (após o ponto de equivalência).

$$[OH^{-}] = ([B]V_B/V_T) - ([HA]_0V_{HA}/V_T)$$

$$[H^{+}] = K_{w} / [OH^{-}]$$
 $pH = pK_{w} + log[OH^{-}]$

 V_{HA} = volume do ácido a titular V_{B} = volume base adicionado V_{T} = V_{HA} + V_{B}

Titulações ácido forte/base fraca

$$HCI(aq) + NH_3(aq) \longrightarrow NH_4CI(aq)$$

 $H^+(aq) + NH_3(aq) \longrightarrow NH_4CI(aq)$

No ponto de equivalência (pH < 7):

$$NH_4^+ (aq) + H_2O (I) \longrightarrow NH_3 (aq) + H^+ (aq)$$

100 mL de HNO₂ 0.10 *M* são titulados com uma solução de NaOH 0.10 *M*. Qual é o pH no ponto de equivalência?

Início (moles) 0.01 0.01
$$HNO_2 (aq) + OH^- (aq) \longrightarrow NO_2^- (aq) + H_2O (I)$$
 final (moles) 0.0 0.01

Volume final = 200 ml No p.e. pH de sol. base fraca

$$[NO_2^{-1}] = \frac{0.01}{0.200} = 0.05 M$$

$$NO_2^-(aq) + H_2O(I) \longrightarrow OH^-(aq) + HNO_2(aq)$$

Início (*M*) 0.05 0.00 0.00
Equilíbrio (*M*) 0.05 - *x x*

$$K_b = \frac{[OH^-][HNO_2]}{[NO_2^-]} = \frac{x^2}{0.05 - x} = 2.2 \times 10^{-11}$$
 pOH = 5.98
 $0.05 - x \approx 0.05$ $x \approx 1.05 \times 10^{-6} = [OH^-]$ pH = 14 - pOH = 8.02

Indicadores ácido base

HIn
$$(aq) \longrightarrow H^+(aq) + In^-(aq)$$

$$\frac{[HIn]}{[In^-]} \ge 10 \quad \text{Predomina a cor do ácido (HIn)}$$

$$\frac{[HIn]}{[In^-]} \le 10 \quad \text{Predomina a cor da base (In-)}$$

Some Common Acid-Base Indicators				
	Color			
Indicator	In Acid	In Base	pH Range*	
Thymol blue	Red	Yellow	1.2-2.8	
Bromophenol blue	Yellow	Bluish purple	3.0-4.6	
Methyl orange	Orange	Yellow	3.1-4.4	
Methyl red	Red	Yellow	4.2-6.3	
Chlorophenol blue	Yellow	Red	4.8 - 6.4	
Bromothymol blue	Yellow	Blue	6.0 - 7.6	
Cresol red	Yellow	Red	7.2 - 8.8	
Phenolphthalein	Colorless	Reddish pink	8.3-10.0	

^{*} The pH range is defined as the range over which the indicator changes from the acid color to the base color.

Titulação de um ácido forte com base forte

Indicadores ácido base

Que indicador(es) escolheria para a titulação de HNO₂ com KOH ?

Ácido fraco titulado com base forte.

No ponto de equivalência, base conjugada de ácido fraco.

No ponto de equivalência, pH > 7

Vermelho de cresol ou fenolftaleína

Some Common Acid-Base Indicators				
	Color			
Indicator	In Acid	In Base	pH Range*	
Thymol blue	Red	Yellow	1.2-2.8	
Bromophenol blue	Yellow	Bluish purple	3.0-4.6	
Methyl orange	Orange	Yellow	3.1-4.4	
Methyl red	Red	Yellow	4.2-6.3	
Chlorophenol blue	Yellow	Red	4.8 - 6.4	
Bromothymol blue	Yellow	Blue	6.0 - 7.6	
Cresol red	Yellow	Red	7.2-8.8	
Phenolphthalein	Colorless	Reddish pink	8.3–10.0	