Métodos Numéricos

Prof. Dr. Jonatha Costa

2024

Costa, JRO Métodos Numéricos

Organização

1 Resolução de Sistemas Lineares

Introdução

Método de Eliminação de Gauss

Método de Eliminação de Gauss-Jordan

Método de Fatoração LU

LU - Método de Crout

Inversa de uma Matriz

Conceito de Métodos Iterativos

Método de Jacobi

Método de Gauss-Seidel

- Apresentar conteúdo de Resolução de Equações Lineares
 - Métodos diretos
 - * Eliminação de Gauss
 - * Eliminação de Gauss-Jordan
 - * Fatoração LU
 - * Método de Crout
 - * Inversa de uma matriz
 - Métodos Iterativos
 - * Gauss-Jacobi
 - * Gauss-Seidel

Exemplo: Seja um problema de engenharia que requer a solução de um sistema de equações. Usando a lei de kirchhoff, as correntes i_1, i_2, i_3 e i_4 podem ser determinadas com a solução do seguinte sistema de quatro equações:

Figura: Circuito Elétrico

$$\begin{cases} +9i_1 - 4i_2 - 2i_3 = 24 \\ -4i_1 + 17i_2 - 6i_3 - 3i_4 = -16 \\ -2i_1 - 6i_2 + 14i_3 - 6i_4 = 0 \\ -3i_2 - 6i_3 + 11i_4 = 18 \end{cases}$$

Fonte: GILAT, (2008)

オロトオ部トオミトオミト ミーからの

Costa, JR^o Métodos Numéricos 4/3

Exemplo: Seja o cálculo de força nos membros de uma treliça. As forças nos oito membros da treliça são determinadas a partir da solução do seguinte sistema de oito equações:

Figura: Dinâmica de forças

$$\begin{array}{c} 0,9231F_{AC}=1690\\ F_{AB}-0,7809F_{BC}=0\\ F_{CD}+0,8575F_{DE}=0\\ 0,3846F_{CE}-0,3846F_{AC}-0,7809F_{BC}-F_{CD}=0\\ 0,9231F_{AC}+0,6247F_{BC}-0,9231F_{CE}=0\\ -F_{AB}-0,3846F_{AC}=3625\\ 0,6247F_{BC}-F_{BD}=0\\ F_{BD}-0,5145F_{DE}-F_{DF}=0 \end{array}$$

Fonte: GILAT, (2008)

(□▶ ◀鬪▶ ◀불▶ ◀불▶ = = ~♡٩♡

Conceituação

Um sistema de m equações e n variáveis é chamado de sistema de equações lineares e tem a seguinte forma genérica:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

em que: a_{ij} são os coeficientes para $1 \le i \le m, \ 1 \le j \le n, \ x_j$ são as variáveis e b_i são as constantes.

A resolução de um sistema linear consiste em calcular os valores de x_j , para j = 1, ..., n, caso eles existam, que satisfaçam as m equações simultaneamente.

O sistema linear pode ter:

Costa, JR®

- * Mais equações do que incógnitas (m > n);
- * Mais incógnitas do que equações (m < n)
- * O mesmo número de incógnitas e equações (m = n).

Solução única

$$\begin{cases} 2x_1 + x_2 = 3\\ x_1 - 3x_2 = -2 \end{cases}$$

$$x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Figura: Retas concorrentes

Fonte: DIAS,(2019)

◆□ → →□ → →□ → □ → □ Costa, JR® Métodos Numéricos 7/39

$Infinitas\ Soluç\~oes$

Figura: Retas coincidentes

$$\begin{cases} 2x_1 + x_2 = 3\\ 4x_1 - 2x_2 = 6 \end{cases}$$

para o qual $\forall x^* = (\alpha, 3 - 2\alpha)^t$ com $\alpha \in \mathbb{R}$, é solução.

Fonte: DIAS, (2019)

Costa, JR

Métodos Numéricos

8/39

Nenhuma solução

$$\begin{cases} 2x_1 + x_2 = 3\\ 4x_1 + 2x_2 = 2 \end{cases}$$

Determinante de A é nulo. $det(A) = 0 \rightarrow \nexists x^* in \mathbb{R}.$

Figura: Retas Parelelas

Fonte: DIAS,(2019)

As operações elementares entre equações de um sistema linear são:

- Trocar as equações de posição
- Multiplicar uma ou mais equações por constantes (chamamos múltiplos de equações):
- Somar o múltiplo de uma equação por outra e aplicar uma operação elementar entre equações em um sistema linear implicará no sempre mesmo resultado $(x_1, x_2, ..., x_n)$.

Costa, JR® Métodos Numéricos 10/39

O sistema pode ser escrito na forma de um produto matricial Ax = b, em que as matrizes são definidas por:

$$[\mathbf{A}] = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix}, [\mathbf{x}] = \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} [\mathbf{b}] = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}$$

Em que:

- $A \notin a \text{ matriz } (m, n) \text{ dos coeficientes}$
- x é o vetor das variáveis(n linhas)
- b é o vetor das constantes(m linhas), termos independentes
- Obter a solução de Ax = b implica em se obter os escalares x_1, x_2, \dots, x_n que permitam escrever b como combinação linear das n colunas de A.

$$[\mathbf{b}] = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Costa, JR® Métodos Numéricos 11/39

Métodos de soluções para Sistemas Lineares

Métodos Diretos - São aqueles que fornecem uma solução exata, a menos que existam erros de arredondamento.

- $x = A^{-1}b$
- Eliminação de Gauss;
- Pivotamento
- Fatoração LU

Métodos Indiretos - São aqueles que geram uma sequência de vetores x(k) a partir de uma aproximação inicial x(0).

- Método Iterativo de Gauss:
- Método Iterativo de Gauss-Jacobi.

4□ → 4回 → 4 重 → 4 重 → 9 Q ○ Costa, JR®

Método da Eliminação de Gauss

Este método consiste em transformar o sistema linear original Ax = b em um sistema linear equivalente A * x = b* com matriz dos coeficientes **triangular superior**.

Figura: Eliminação de Gauss

Fonte: DIAS, (2019)

Método da Eliminação de Gauss

$Considera \~c\~oes$

- Supor que a matriz A seja quadrada m=n e não singular.
- Adotado as seguintes notações
 - * i = 1, 2, ..., m (i-ésima linha);
 - * j = 1, 2, ..., n (j-ésima coluna);
 - * k = 1, ... (k-ésima etapa da eliminação)
 - * $a_{ij}^{(k)} \in b_i^{(k)}$

Uma matriz é singular se e somente se seu determinante é nulo.

《□トペラトベミト ミ ぐ)へ(** Costa, JR[®] Métodos Numéricos 14/39

Método da Eliminação de Gauss

Procedimento:

Para cada fase k = 1, 2, ..., n da eliminação (ou pivoteamento):

- Determinar o pivô $a_{kk}^{(k)} \neq 0$ (ou não muito pequeno).
- Eliminar (zerar) os elementos da coluna $a_{ik}^{(k)}$ abaixo da k-ésima linha do pivô, para $i = k + 1, \ldots, n$.
- Determinar uma constante m_{ik} , de modo que, ao multiplicá-la pela k-ésima linha do pivô e subtrair com a *i*-ésima linha, esse elemento deverá ser zerado.

$$a_{ik}^{(k)} - m_{ik} a_{kk}^{(k)} = 0 m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$$

Costa, JR® Métodos Numéricos

Método da Eliminação de Gauss

Procedimento:

Figura: Eliminação de Gauss - Procedimento

Fonte: DIAS,(2019)
Métodos Numéricos

Figura: Pivotação

Após o Passo 1, a segunda equação tem um elemento pivô zero

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & 0 & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ b'_4 \end{bmatrix}$$

Usando pivotação, troca-se a segunda equação pela terceira.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & 0 & a'_{23} & a'_{24} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_3 \\ b'_2 \\ b'_4 \end{bmatrix}$$

Método da Eliminação de Gauss com Pivotação

• Se durante o procedimento de Eliminação de Gauss uma equação pivô tiver um elemento pivô nulo e o sistema de equações tiver solução, uma equação com um elemento pivô diferente de zero sempre poderá ser encontrada.

Resolva o sistema linear:
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

• Forma matricial Ax=b

$$\left| \begin{array}{ccc|c} 10 & 2 & 1 \\ 1 & 5 & 1 \\ 2 & 3 & 10 \end{array} \right| . \left| \begin{array}{c} x1 \\ x2 \\ x3 \end{array} \right| = \left| \begin{array}{c} 7 \\ -8 \\ 6 \end{array} \right|$$

(1) Método de Gauss

- 4 □ b 4 圊 b 4 悥 b - 悥 - 쒸익♡

Método de Eliminação de Gauss-Jordan

- A equação pivô é normalizada com a divisão de todos os seus termos pelo coeficiente pivô. Isso faz com que o coeficiente pivô seja igual a 1.
- A equação pivô é utilizada na eliminação dos elementos fora da diagonal principal em TODAS as demais equações, ou seja, o processo de eliminação aplica-se às equações acima e abaixo da equação pivô.
- A manipulação da equação pivô segue a mesma estrutura de Gauss para a obtenção dos elementos elementos fora da diagonal.

Figura: Gauss-Jordan

Fonte: GILAT,(2008)

Resolva o sistema linear:
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

(2) Método de Gauss-Jordan

$$\begin{vmatrix} 10 & 2 & 1 & 7 \\ 1 & 5 & 1 & -8 \\ 2 & 3 & 10 & 6 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{vmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = -2 \\ x_3 = 1 \end{cases}$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ · ㅌ · 쒸٩)(

Costa, JR[®] Métodos Numéricos 20/39

Fatoração LU

A base deste método, assim como o método da eliminação de Gauss, é o uso de uma propriedade elementar de sistemas de equações lineares que estabelece o seguinte:

- A solução de um sistema linear Ax = b não se altera se o submetivermos a uma sequência de operações tais como:
 - * Multiplicação de uma equação (linha) por uma constante não nula;
 - * Soma do múltiplo de uma equação a outra;
 - * Troca de posição de duas ou mais equações.
- Seja o sistema linear Ax = b, este processo de fatoração consiste em decompor a matriz A em um produto de dois ou mais fatores, na forma:

$$[A]=[L][U]$$

em que:

- * L = Matriz triangular inferior (Decomposição LU)
- * U = Matriz triangular superior (Eliminação de Gauss)

Fatoração LU

- Seja o sistema linear: $\begin{cases} Ax = b \\ LUx = b \end{cases}$
- Considerando, Ux = y temos então dois sistemas: Ly = b
- Decomposição de Matriz [a]:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ m_{21} & 1 & 0 & 0 \\ m_{31} & m_{32} & 1 & 0 \\ m_{41} & m_{42} & m_{43} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

- Os elementos diagonais de [L] são todos iquais a 1 e os elementos abaixo desta são os multiplicadores m_{ij} que multiplicam a equação pivô quando ela é usada para eliminar os elementos abaixo do coeficiente pivô no método de Gauss;
- A matriz triangular superior [U] é a matriz de coeficientes [a] obtida ao final do procedimento de Eliminação de Gauss.

Costa, JR®

Resolva o sistema linear:
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

(3) Fatoração LU

- Aplicar o método de Eliminação de Gauss na Matriz A para obtenção de L e U;
 - Então, para a matriz A dada, tem-se:

$$L = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0,1 & 1 & 0 \\ 0,2 & 0,54 & 1 \end{array}\right) \ e \ U = \left(\begin{array}{ccc} 10 & 2 & 1 \\ 0 & 4,8 & 0,9 \\ 0 & 0 & 9,31 \end{array}\right)$$

ullet Resolver os dois sistemas lineares equivalentes obtidos pelas substituição A=LU

•
$$Ly = b; L = \begin{vmatrix} 1 & 0 & 0 \\ 0,1 & 1 & 0 \\ 0,2 & 0,54 & 1 \end{vmatrix} \cdot \begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix} = \begin{vmatrix} 7 \\ -8 \\ 6 \end{vmatrix} \rightarrow y = \begin{vmatrix} 7 \\ -8,7 \\ 9,31 \end{vmatrix}$$

• $Ux = y; U = \begin{vmatrix} 10 & 2 & 1 \\ 0 & 4,8 & 0,9 \\ 0 & 0 & 9,31 \end{vmatrix} . \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 7 \\ -8,7 \\ 9,31 \end{vmatrix} \to x = \begin{vmatrix} 1 \\ -2 \\ 1 \end{vmatrix}$

Fatoração LU - Método de Crout

As matrizes L e U são da forma

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 & 0 \\ L_{21} & L_{22} & 0 & 0 \\ L_{31} & L_{32} & L_{33} & 0 \\ L_{41} & L_{42} & L_{43} & L_{44} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} & U_{14} \\ 0 & 1 & U_{23} & U_{24} \\ 0 & 0 & 1 & U_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Resolvendo o produto L e U, tem-se:

Costa, JR®

$$= \left[\begin{array}{ccccc} L_{11} & L_{11}U_{12} & L_{11}U_{13} & L_{11}U_{14} \\ L_{21} & L_{21}U_{12} + L_{22} & L_{21}U_{13} + L_{22}U_{23} & L_{21}U_{14} + L_{22}U_{24} \\ L_{31} & L_{31}U_{12} + L_{32} & L_{31}U_{13} + L_{32}U_{23} + L_{33} & L_{31}U_{14} + L_{32}U_{24} + L_{33}U_{34} \\ L_{41} & L_{41}U_{12} + L_{42} & L_{41}U_{13} + L_{42}U_{23} + L_{43} & L_{41}U_{14} + L_{42}U_{24} + L_{43}U_{34} + L_{44} \end{array} \right]$$

Métodos Numéricos

Fatoração LU - Método de Crout

Igualando os elementos correspem quentes em ambos os lados da equação, pode-se encontrar os elementos das matrizes [L] e [U], como sendo:

• Na primeira linha:

$$L_{11} = a_{11}; U_{12} = \frac{a_{12}}{L_{11}}; U_{13} = \frac{a_{13}}{L_{11}}; U_{14} = \frac{a_{14}}{L_{11}}$$

• Na segunda linha:

$$L_{21} = a_{21}; L_{22} = a_{22} - L_{21}U_{12};$$

$$U_{23} = \frac{a_{23} - L_{21}U_{13}}{L_{22}}; U_{24} = \frac{a_{24} - L_{21}U_{14}}{L_{22}}$$

E assim sucessivamente!

Costa, JR

Métodos Numéricos

25/39

Inversa de uma Matriz

• A inversa de uma matriz quadrada [a] é a matriz $[a]^{-1}$ tal que o produto das duas matrizes fornece a identidade.

$$[A][A]^{-1} = [I]$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A solução da identidade é obtida através da solução das quatro equações:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ x_{41} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ x_{42} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_{13} \\ x_{23} \\ x_{33} \\ x_{43} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_{14} \\ x_{24} \\ x_{34} \\ x_{44} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Costa, JR[©] Métodos Numéricos 26/39

Método Iterativos

Consiste em colocar cada incógnita x_i em função das outras variáveis, conforme segue:

Figura: Iterativos

$$\begin{array}{c} a_{11}x_1+a_{12}x_2+a_{13}x_3+a_{14}x_4=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3+a_{24}x_4=b_2\\ a_{31}x_1+a_{32}x_2+a_{33}x_3+a_{34}x_4=b_3\\ a_{41}x_1+a_{42}x_2+a_{43}x_3+a_{44}x_4=b_4 \end{array}$$
 Escrevendo as equações em uma forma explícita
$$\begin{array}{c} x_1=[b_1-(a_{12}x_2+a_{13}x_3+a_{14}x_4)]/a_{11}\\ x_2=[b_2-(a_{21}x_1+a_{23}x_3+a_{24}x_4)]/a_{22}\\ x_3=[b_3-(a_{31}x_1+a_{32}x_2+a_{34}x_4)]/a_{33}\\ x_4=[b_4-(a_{21}x_1+a_{42}x_2+a_{43}x_3)]/a_{44} \end{array}$$

Fonte: GILAT, (2008)

Destacam-se os métodos:

- Jacobi os valores das incógnitas no lado direito da equação são atualizados todos de uma vez no final de cada iteração.
- Gauss-Seidel em que o valor de cada incógnita é atualizado (e usado no cálculo da nova estimativa das demais incógnitas dentro da mesma iteração) assim que se calcula uma nova estimativa para essa incógnita.

Método Iterativos

- O processo de solução começa com a escolha de valores iniciais para as incógnitas (primeira solução estimada).
- Na primeira iteração, a primeira solução assumida é substituída no lado direito das equações, e os novos valores calculados para as incógnitas formam a segunda solução estimada.
- Na segunda iteração, a segunda solução é substituída de volta nas equações para que novos valores sejam obtidos para as incógnitas, e isso constitui a terceira solução estimada.
- As iterações continuam da mesma forma e, quando o método "dá certo", as soluções obtidas durante as iterações sucessivas convergem para a solução real.

Destacam-se os métodos:

- Jacobi os valores das incógnitas no lado direito da equação são atualizados todos de uma vez no final de cada iteração.
- Gauss-Seidel em que o valor de cada incógnita é atualizado (e usado no cálculo da nova estimativa das demais incógnitas dentro da mesma iteração) assim que se calcula uma nova estimativa para essa incógnita.

Método Iterativos

Em um sistema com n equações:

• As equações explícitas para as incógnitas $[x_i]$ são:

$$x_i = \frac{1}{a_{ii}} \left[b_i - \left(\sum_{j=1, j \neq i}^n a_{ij} x_j \right) \right] \tag{1}$$

$$i=1,2,\ldots,n$$

• Uma condição suficiente para a convergência ocorre se, em cada uma das linhas da matriz de coeficientes [a], o valor absoluto do elemento diagonal for maior que a soma dos valores absolutos dos elementos fora da diagonal.

$$|a_{ii}| \le \sum_{j=1, j \ne i}^{n} |a_{ij}|$$

* Essa condição é suficiente, mas não necessária para a convergência do método iterativo e, quando ocorre a matriz [a] é classificada como diagonalmente dominante.

Método Iterativos de Jacobi

- Um valor inicial é escolhido para cada uma das incógnitas, $x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)}$ assumindo-se que o valor inicial de todas seja zero, caso não haja informações iniciais a respeito.
- A segunda estimativa da solução, $x_1^{(2)}, x_2^{(2)}, \ldots, x_n^{(2)}$, é calculada com a substituição do lado direito da equação 1 de modo que se tem:

$$x_i^{(2)} = \frac{1}{a_{ii}} \left[b_i - \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(1)} \right) \right], \ i = 1, 2, \dots, n$$

ullet Em geral, a (k+1)-ésima estimativa da solução é calculada a partir da k-ésima estimativa usando:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) \right], \ i = 1, 2, \dots, n$$

• As iterações continuam até que as diferenças entre os valores obtidos nas iterações sucessivas sejam pequenas ou que o valor absoluto do erro relativo estimado de todas as incógnitas for menor que um valor ε predeterminado:

$$\left| \frac{x_i^{(k+1)} - x_i^{(k)}}{x_i^{(k)}} \right| \le \varepsilon \ , \ i = 1, 2, \dots, n$$

Costa, JR[©] Métodos Numéricos 30/39

Resolva o sistema linear:

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7\\ x_1 + 5x_2 + x_3 = -8\\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

Método de Jacobi

- Descrição de equações x_i :
 - $x_1 = (7 (2x_2 + x_3))/10$
 - $x_2 = (-8 (x_1 + x_2))/5$
 - $x_3 = (6 (2x_1 + 3x_2))/10$

 - Ponto de partida: $x_1 =$ $0, x_2 = 0, x_3 = 0$
- Segunda iteração $x_i^{(k=2)}$:
- - $x_1^{(2)} = (7 (2.0 + 0))/10 = 0,7$
 - $x_2^{(2)} = (-8 (0+0))/5 = -1, 6$
 - $x_3^{(2)} = (6 (2.0 + 3.0))/10 =$
 - Após a segunda iteração: $x_1 =$ $0, 7, x_2 = -1, 6, x_3 = 0, 6$

- Terceira iteração $x_{\cdot}^{(k=3)}$:
 - $x_1^{(3)} = (7 (2 \cdot (-1, 6) + 0, 6))/10 = 0,96$
 - $x_2^{(3)} = (-8 (0,7+0,6))/5 = -1,86$
 - $x_2^{(3)} = (6 (2.(0,7) + 3.(-1,6))/10 = 0.94$
 - Após a terceira iteração: $x_1 = 0.96, x_2 =$ $-1.86, x_3 = 0.94$
- Quarta iteração $x_{:}^{(k=4)}$:
 - $x_1^{(4)} = (7 (2 \cdot (-1, 86) + 0, 94))/10 = 0,978$
 - $x_2^{(4)} = (-8 (0.96 + 0.94))/5 = -1.98$
 - $x_2^{(4)} = (6 (2.(0,96) + 3.(-1,86))/10 =$ 0.966
 - Após a quarta iteração: $x_1 = 0,978, x_2 =$ $-1.98, x_3 = 0.966$

Método Iterativos de Gauss-Seidel

- No método de Gauss-Seidel, valores iniciais são assumidos para as incógnitas x_2, x_3, \ldots, x_n , (exceto x_1), assumindo-se que o valor inicial de todas seja zero, caso não haja informações iniciais a respeito.
- x_1 é obtido pela substituição dos valores assumidos na equação 1.
- Em seguida, o novo valor de x_2 é obtido pela substituição dos valores assumidos na equação 1 para i=2, e assim por diante até que i=n, para concluir a **primeira iteração.**
- Em seguida, a segunda iteração começa com i = 1, em que um novo valor é calculado para x_1 , e assim por diante.
- No método de Gauss-Seidel, os valores atuais das incógnitas são utilizados no cálculo do novo valor da próxima incógnita.

Método Iterativos de Gauss-Seidel

A aplicação da equações (1) no método de Gauss-Seidel leva à fórmula iterativa:

$$x_1^{(k+1)} = \frac{1}{a_{11}} \left[b_1 - \sum_{j=2}^{j=n} a_{1j} x_j^{(k)} \right]$$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_1 - \left(\sum_{j=1}^{j=i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{j=n} a_{ij} x_j^{(k)} \right) \right], \quad i = 2, 3, \dots, n-1$$

$$x_n^{(k+1)} = \frac{1}{a_{nn}} \left[b_n - \sum_{j=1}^{j=n-1} a_{nj} x_j^{(k+1)} \right]$$

- Note que os valores das incógnitas na iteração k+1, são calculados obtidos na iteração k+1 para $j \le i$ e usando os valores usando os valores para $j \le i$.
- O critério de interrupção das iterações é o mesmo utilizado no método de Jacobi.
- O método de Gauss-Seidel converge mais rápido do que o método de Jacobi e requer menos memória computacional quando programado

Resolva o sistema linear:

$$\begin{cases}
10x_1 + 2x_2 + x_3 = 7 \\
x_1 + 5x_2 + x_3 = -8 \\
2x_1 + 3x_2 + 10x_3 = 6
\end{cases}$$

(5) Método de Gauss-Seidal

- Descrição de equações x_i :
 - $x_1 = (7 (2x_2 + x_3))/10$
 - $x_2 = (-8 (x_1 + x_3))/5$
 - $x_3 = (6 (2x_1 + 3x_2))/10$
 - Ponto de partida: $x_1 = 0, x_2 = 0, x_3 = 0$
- Segunda iteração $x_i^{(k=2)}$:
 - $x_1^{(2)} = (7 (2.0 + 0))/10 = 0.7$
 - $x_2^{(2)} = (-8 (0.7 + 0))/5 = -1.74$
 - $x_3^{(2)} = (6 (2.0,7) + 3.0,-1,74))/10 = -0.982$
 - Após a segunda iteração: $x_1 = 0, 7, x_2 = -1, 74, x_3 = 0, 982$

- Terceira iteração $x_i^{(k=3)}$:
 - $x_1^{(3)} = (7 (2 \cdot (-1,74) + 0,982))/10 = 0,9498$
 - $x_2^{(3)} = (-8 (0.9498 + 0.982))/5 = -1.9863$
 - $x_3^{(3)} = (6 (2.0,7 + 3.-1,9863))/10 = -0,062$
 - Após a terceira iteração: $x_1 = 0,9498, x_2 = -1,9863, x_3 = 1,005$
- Quarta iteração $x_i^{(k=4)}$:
 - $x_1^{(4)} = (7 (2. -1,9863 + 1,005))/10 = 0,9966$
 - $x_2^{(4)} = (-8 (0.9966 + 1,005))/5 = -2,000$
 - $x_3^{(4)} = (6 (2.0,9966 + 3.-2,000))/10 = 1,000$
 - Após a quarta iteração: $x_1 = 0,9966, x_2 = -2,000, x_3 = 1,000$

→□ → ←□ → ← □ → ○ □ → ○ へ○

Resultados Jacobi e Gauss-Seidal

Figura: Comparativo de iterações para erro de 0,001

```
Método Iterativo de Jacobi *****
  0.700000
                   -1.600000
                                    0.600000
  0.960000
                   -1.860000
                                    0.940000
  0.978000
                   -1.980000
                                    0.966000
  0.999400
                  -1.988800
                                    0.998400
  0.997920
                                    0.996760
  1.000236
                  -1.998936
  0.999759
                  -2.000104
                                    0.999634
  1.000057
                   -1.999878
                                    1.000079
  0.999968
                   -2.000027
                                    0.999952
Método Iterativo de Gauss-Seidal
  0.700000
                   -1.740000
                                    0.982000
  0.949800
                                    1.005948
                   -1.986360
  0.996677
                   -2.000525
                   -2.000169
  1.000029
                   -2.000015
                                    0.999999
```

Fonte: AUTOR,(2020)

Script Jacobi e Gauss-Seidal

Figura: Script comparativo de iterações com Erro de 0,001

```
clc; clear all; format bank
  fprintf('\n***** Método Iterativo de Jacobi *****\n\n')
 x1=0:x2=0:x3=0:x4=0: n=20: err=0.0001
6 a=0; b=0; c=0;
 disp('k
                                 % Atualiza a e usa Xi anterior
                                  % Atualiza b e usa Xi anterior
                                  % Atualiza c e usa Xi anterior
   fprintf('%2.0f \t%-8.6f \t%-8.6f \t%-8.6f \t\n',k,x1,x2,x3)
  fprintf('\n***** Método Iterativo de Gauss-Seidal *****\n\n'
                                     % Guarda x1(k-1) em a:
  b=x2: x2=(-8-(x1+x3))/5:
                                      % Guarda x2(k-1) em b:
                                      % Guarda x3(k-1) em c:
                           (abs(x2-b))<err && (abs(x3-c))<err) break end;
```

Fonte: AUTOR,(2020)

36/39

Recursividade Octave / MatLab

Sejam as matrizes: $A_{(n \ x \ n)} \ e \ b_{(n \ x \ 1)}$, tal que Ax = b;

- $x = A \setminus b$ A divisão à esquerda equivalente a x = linsolve(A, b)
- $x = b^t/A^t$ A divisão à direita
- $\mathbf{x} = \mathbf{inv}(\mathbf{A}) * \mathbf{B} \text{ ou } x = A^{-1} * b$
- rref([A b]) Solução pelo método de Gauss-Jordan
- [L,U,P]=lu(A) Solução pela fatoração LU
 - L é uma matriz triangular inferior;
 - U é uma matriz triangular superior;
 - P é a matriz de permutação.

4 🗆 ト 4 😇 ト 4 😇 ト 4 😇 ト 7 🧸

Recursividade Python

Sejam as matrizes: $A_{(n \ x \ n)} \ e \ b_{(n \ x \ 1)}$, tal que Ax = b;

- Utilizando o comando solve : solve(A, b)s1 = np.linalg.solve(A, b)
- Utilizando o comando inv(A)' e '@' : inv(A)@b s2 = np.linalg.inv(A)@b
- Utilizando o comando 'inv(A)' e 'np.dot : dot(inv(A), b)s3 = np.dot(np.linalq.inv(A), b)
- Utilizando o comando lu(A) do scipy: P, L, U = lu(A)from scipy.linalg import lu P, L, U = lu(A)

4□ → 4回 → 4 重 → 4 重 → 9 Q ○ Costa, JR®

Exercícios

- Veja a lista de exercícios na web
- Veja a lista de códigos em: https://github.com/jonathacosta/NM

↓□▶ ←□▶ ← □▶ ← □▶ □ ♥ へ○

Costa, JR[©] Métodos Numéricos 39/39