```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

## **Line Plot**

```
In [2]: d=pd.read_csv("2015.csv") d
```

Out[2]:

|     | Country     | Region                                   | Happiness<br>Rank | Happiness<br>Score | Standard<br>Error | Economy<br>(GDP per<br>Capita) | Family  | Health (Life<br>Expectancy) | Freedo |
|-----|-------------|------------------------------------------|-------------------|--------------------|-------------------|--------------------------------|---------|-----------------------------|--------|
| 0   | Switzerland | Western<br>Europe                        | 1                 | 7.587              | 0.03411           | 1.39651                        | 1.34951 | 0.94143                     | 0.665! |
| 1   | Iceland     | Western<br>Europe                        | 2                 | 7.561              | 0.04884           | 1.30232                        | 1.40223 | 0.94784                     | 0.6287 |
| 2   | Denmark     | Western<br>Europe                        | 3                 | 7.527              | 0.03328           | 1.32548                        | 1.36058 | 0.87464                     | 0.6493 |
| 3   | Norway      | Western<br>Europe                        | 4                 | 7.522              | 0.03880           | 1.45900                        | 1.33095 | 0.88521                     | 0.6697 |
| 4   | Canada      | North<br>America                         | 5                 | 7.427              | 0.03553           | 1.32629                        | 1.32261 | 0.90563                     | 0.6329 |
| ••• |             |                                          |                   |                    |                   |                                |         |                             |        |
| 153 | Rwanda      | Sub-<br>Saharan<br>Africa                | 154               | 3.465              | 0.03464           | 0.22208                        | 0.77370 | 0.42864                     | 0.592( |
| 154 | Benin       | Sub-<br>Saharan<br>Africa                | 155               | 3.340              | 0.03656           | 0.28665                        | 0.35386 | 0.31910                     | 0.484! |
| 155 | Syria       | Middle<br>East and<br>Northern<br>Africa | 156               | 3.006              | 0.05015           | 0.66320                        | 0.47489 | 0.72193                     | 0.1568 |
| 156 | Burundi     | Sub-<br>Saharan<br>Africa                | 157               | 2.905              | 0.08658           | 0.01530                        | 0.41587 | 0.22396                     | 0.118! |
| 157 | Togo        | Sub-<br>Saharan<br>Africa                | 158               | 2.839              | 0.06727           | 0.20868                        | 0.13995 | 0.28443                     | 0.364! |

158 rows × 12 columns

```
In [3]: d.plot()
```

Out[3]: <AxesSubplot:>



### **Scatter Plot**

```
In [9]:
d.plot.scatter(x="Country",y="Happiness Rank",color='green')
```

Out[9]: <AxesSubplot:xlabel='Country', ylabel='Happiness Rank'>



# Histogram

```
In [4]:
d.plot.hist()
```

Out[4]: <AxesSubplot:ylabel='Frequency'>



#### **Bar Plot**

```
In [5]:
d.plot.bar()
```

#### Out[5]: <AxesSubplot:>



### **Area Plot**

In [6]: d.plot.area()

Out[6]: <AxesSubplot:>



# **Pie Chart**

```
In [10]: d.plot.pie(y="Happiness Rank")
```

Out[10]: <AxesSubplot:ylabel='Happiness Rank'>





