《线性代数》期末考试试题(三)

-、填空题

1. 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=1$, $|\vec{b}|=2$, 且 $\vec{a}\perp\vec{b}$, 则

$$\left| \vec{a} + \vec{b} \right| = \underline{\qquad}$$

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = \underline{\qquad}.$$
2. 呂知 $D = \begin{vmatrix} 1 & -1 & 3 & 0 \\ -2 & 0 & 4 & 1 \\ 3 & 4 & -1 & 7 \\ 4 & -3 & 5 & 9 \end{vmatrix}$, $A_{ij} (i, j = 1, 2, 3, 4) 为 D$ 的代数余子式。则 $3A_{ij} + 4A_{ij} - A_{ij} + 7A_{ij} = 1$

的代数余子式,则 $3A_{41} + 4A_{42} - A_{43} + 7A_{44} =$

3. 设
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
, $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, 矩阵 B 满足 $BA = B + 2E$, 则 $|B| = ___$.

- 4. 已知方阵 A 满足 $A^2 3A + 2E = 0$, E 为单位矩阵,则 $(A + E)^{-1} =$
- 5. 设 $A = \begin{bmatrix} 0 & 1 & 2 & 4 \\ 5 & 7 & 2 & 1 \\ 5 & 8 & 4 & 5 \end{bmatrix}$, B为4阶方阵, 且r(B) = 4, 则

$$r(AB) = \underline{\hspace{1cm}}$$
.

- 6. 已知三阶方阵 A 的特征值是 λ , 2, 3, 且有 |2A|=144, 则
- 7. 已知向量 $\alpha=\begin{vmatrix}1\\1\\1\end{vmatrix}$, $\beta=\begin{vmatrix}1\\0\\k\end{vmatrix}$, 若矩阵 $\alpha\beta^{\mathrm{T}}$ 相似于矩阵

$$\begin{vmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$
,则 $k =$ _____.

- 8. 设 $\alpha_1=(1,2,-1,0)^{\mathrm{T}},$ $\alpha_2=(1,1,0,2)^{\mathrm{T}},$ $\alpha_3=(2,1,1,a)^{\mathrm{T}},$ 若向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则a=_____.
- 9. 若二次型 $f(x_1,x_2,x_3)=x_1^2+4x_2^2+4x_3^2+2\lambda x_1x_2$ 正定,则 λ 满足的条件为 .
- 10. 设A为 4×5 矩阵,且r(A) = 4,又设向量 p_1, p_2 是齐次 线性方程组 AX = 0 的两个不同的解向量,则方程组 AX = 0 的通解为 X = 2

二、选择题

11. 设 A 为三阶方阵,将 A 的第 2 列加到第 1 列得到矩阵 B,再交换矩阵 B 的第 2 行与第 3 行得到矩阵 C,记

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \ \mathbb{M}\boldsymbol{C} = ().$$

- (A) P_2AP_1 (B) P_1AP_2 (C) AP_1P_2 (D) P_2P_1A
- 12. 设A为 $m \times n$ 型矩阵,B为 $n \times m$ 型矩阵,E为m阶单位阵,若AB=E,则有().
- (A) r(A) = m, r(B) = m (B) r(A) = m, r(B) = n
- (C) r(A) = n, r(B) = m (D) r(A) = n, r(B) = n
- 13. 设A为n阶方阵,且 $|A| \neq 0$,下列命题正确的是().
- (A) 对n 阶方阵B,若 |B| = |A|,则A, B 有相同的特征值
- (B) 对n 阶方阵B,若AB=0,则B=0
- (C) 对n 阶方阵B,若AB = BA,则 $B \neq 0$
- (D) 对任意非零向量 $X = (x_1, x_2, ..., x_n)^{\mathrm{T}}$ 都有 $X^{\mathrm{T}}AX > 0$

14. 已知三维向量
$$\alpha_1=\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix},$$
 $\alpha_2=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix},$ $\alpha_3=\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix},$ 则三条直

线
$$\begin{cases} l_1:a_1x+b_1y=c_1\\ l_2:a_2x+b_2y=c_2\\ l_3:a_3x+b_3y=c_3 \end{cases}$$
 (其中 $a_i^2+b_i^2\neq 0,\ i=1,2,3$)交于

一点的充要条件是().

(A)
$$\alpha_1, \alpha_2, \alpha_3$$
 线性相关 (B) $\alpha_1, \alpha_2, \alpha_3$ 线性无关

(C)
$$r(\alpha_1, \alpha_2) = r(\alpha_1, \alpha_2, \alpha_3)$$

(D)
$$\alpha_1, \alpha_2$$
 线性无关, $\alpha_1, \alpha_2, \alpha_3$ 线性相关

15. 设 $\alpha_1, \alpha_2, \alpha_3$ 是三维向量空间 \mathbb{R}^3 的基,则由基 $\alpha_1, \alpha_2, \alpha_3$ 到 基 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 的过渡矩阵为().

(A)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

三、计算题

17. 设向量组:
$$\alpha_1 = \begin{vmatrix} -9 \\ 1 \\ 1 \end{vmatrix}, \alpha_2 = \begin{vmatrix} 2 \\ -8 \\ 2 \end{vmatrix}, \alpha_3 = \begin{vmatrix} 3 \\ 3 \\ -7 \end{vmatrix}, \alpha_4 = \begin{vmatrix} 4 \\ 4 \\ -6 \end{vmatrix}$$

求此向量组的秩和一个极大线性无关组,并将其余的向量用该极大线性无关组表示.

18. 求直线L: $\begin{cases} 2x - y + z - 1 = 0 \\ x + y - z + 1 = 0 \end{cases}$ 在平面 Π : x + 2y - z = 0上

的投影方程.

19. 设
$$A = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 1 & a & b & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, 已知 $\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$ 是线性方程组

AX = b 的一个解,求线性方程组AX = b 的通解.

20. 已知矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, 矩阵 X 满足如

下矩阵表达式: AXA + BXB = AXB + BXA + E,其中 E 为三阶单位矩阵,求矩阵 X .

四、综合题与证明题

 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

- **21.** 已知二次型 $f(x_1, x_2, x_3) = 3x_2^2 2x_1x_2 + 8x_1x_3 2x_2x_3$,
- (1) 用正交变换 X = PY 将二次型化为标准形(求出正交矩阵P);
 - (2) 说明方程 $f(x_1, x_2, x_3) = 1$ 在几何上表示什么图形.
- **22.** (1) 设 A 为 $m \times n$ 实矩阵, 求证: $r(A^{T}A) = r(A)$.
 - (2) 设A为三阶方阵,向量 α_1, α_2 为A的分别属于特征值
- -1,1 的特征向量,而 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$. 求证: 向量组

《线性代数》期末考试试题(三)参考答案

一、填空题

1.
$$\sqrt{5}$$
; 2. 0; 3. 2; 4. $-\frac{1}{6}(A-4E)$; 5. 2;

6. 3; 7. 2; 8. 6; 9.
$$-2 < \lambda < 2$$
;

10.
$$c(p_1 - p_2)$$
, c 为任意常数.

二、单项选择题

三、计算题

16. 解答:
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 10 & 10 & 10 & 10 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$$

$$= 10 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} = 10 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & -3 & -2 & -1 \end{vmatrix}$$

$$= 10 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{vmatrix} = 160.$$

17. 解答:由题意可知

$$A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix} = \begin{bmatrix} -9 & 2 & 3 & 4 \\ 1 & -8 & 3 & 4 \\ 1 & 2 & -7 & 4 \\ 1 & 2 & 3 & -6 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 2 & 3 & -6 \\
1 & -8 & 3 & 4 \\
1 & 2 & -7 & 4 \\
-9 & 2 & 3 & 4
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

所以
$$r(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=3$$
 , $\alpha_1,\alpha_2,\alpha_3$ 是一个极大无关组,其中
$$\alpha_4=-\alpha_1-\alpha_2-\alpha_3.$$

18. 解答: 设平面束方程:

$$2x - y + z - 1 + \lambda(x + y - z + 1) = 0,$$

其法向量 $\{2 + \lambda; -1 + \lambda; 1 - \lambda\}$; 由该平面与平面

$$\Pi: x + 2y - z = 0$$

垂直,可知
$$1(2 + \lambda) + 2(-1 + \lambda) - (1 - \lambda) = 0, \lambda = \frac{1}{4}$$
,因

此该垂直平面为3x - y + z - 1 = 0; 投影直线为

$$L': \begin{cases} 3x - y + z - 1 = 0 \\ x + 2y - z = 0 \end{cases}.$$

19. 解答: 将
$$\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$
 代入方程组
$$\begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 1 & a & c & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 得

a=c,其线性方程组增广矩阵

$$\overline{A} = \begin{bmatrix} 2 & 1 & 1 & 2 & 0 \\ 0 & 1 & 3 & 1 & 1 \\ 1 & a & a & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & a & a & 1 & 0 \\ 0 & 1 & 3 & 1 & 1 \\ 0 & 1 - 2a & 1 - 2a & 0 & 0 \end{bmatrix}$$

(1)
$$\stackrel{}{=} a = \frac{1}{2}$$
 $\stackrel{}{=}$ $\stackrel{=$

r(A) = r(A) = 2,方程组有无穷多解,

$$X = egin{bmatrix} -rac{1}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_1 egin{bmatrix} 1 \\ -3 \\ 1 \\ 0 \end{bmatrix} + c_2 egin{bmatrix} -rac{1}{2} \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
 (c_1, c_2 为任意常数).

[2] 当
$$a \neq \frac{1}{2}$$
时, $\overline{A} = \begin{bmatrix} 1 & a & a & 1 & 0 \\ 0 & 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

r(A) = r(A) = 3,方程组有无穷多解,

$$X = egin{bmatrix} 0 \ -rac{1}{2} \ rac{1}{2} \ 0 \end{bmatrix} + c_1 egin{bmatrix} -1 \ rac{1}{2} \ -rac{1}{2} \ 1 \end{bmatrix}$$
, (c_1 为任意常数).

20. 解答: 由 AXA + BXB = AXB + BXA + E,则 (A - B)X(A - B) = E,

由于
$$(A-B) = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, |A-B| = 1, 则 A-B$$
可

逆, 所以 $X = [(A - B)^{-1}]^2$; 由于

$$[A - B \mid E] = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

可得:
$$(A-B)^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, 则

$$X = [(A - B)^{-1}]^2 = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

四、证明题与综合题

21. 解答: (1) 二次型
$$f$$
的矩阵为 $A = \begin{bmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{bmatrix}$,特

征多项式

$$\begin{vmatrix} \lambda E - A | = \begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = (\lambda + 4)(\lambda - 2)(\lambda - 5) = 0$$

其特征值为 $\lambda_1 = -4, \lambda_2 = 2, \lambda_3 = 5$;

$$f = -4y_1^2 + 2y_2^2 + 5y_3^2$$

当特征值 $\lambda_1=-4$,可得对应的特征向量 $p_1=(-1,0,1)^{\mathrm{T}}$;

当特征值 $\lambda_2=2$,可得对应的特征向量 $p_2=(1,2,1)^{\mathrm{T}}$;

当特征值 $\lambda_3 = 5$,可得对应的特征向量 $p_3 = (1, -1, 1)^{\mathrm{T}}$,

曲单位化,则正交阵
$$P = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

(2) 方程 $f = -4y_1^2 + 2y_2^2 + 5y_3^2 = 1$ 表示单叶双曲面.

22、证明: (1)要证明 $r(A^{T}A) = r(A)$,只需证明线性方程组 $A^{T}Ax = 0$ 与线性方程组 Ax = 0 同解即可; 若 Ax = 0,在 两边同时左乘以 A^{T} ,即满足 $A^{T}Ax = 0$.

若 $A^{\mathrm{T}}Ax = 0$,则两边同时左乘以 x^{T} .则 $x^{\mathrm{T}}A^{\mathrm{T}}Ax = 0$,即 $(Ax)^{\mathrm{T}}Ax = \|Ax\| = 0$.

由向量范数性质知 Ax=0,因此 $A^{\mathrm{T}}Ax=0$ 与 Ax=0同解,其基础解系个数一样 $n-r(A^{\mathrm{T}}A)=n-r(A)$,所以 $r(A^{\mathrm{T}}A)=r(A)$.

(2)证明: 由线性相关性定义

$$k_{1}\alpha_{1} + k_{2}\alpha_{2} + k_{3}\alpha_{3} = 0 \tag{*}$$

只需证明 k_1,k_2,k_3 全为零即可;在定义两边同时左乘矩阵 A ,则 $k_1A\alpha_1+k_2A\alpha_2+kA\alpha_3=0$,由特征值的定义及其题意 $-k_1\alpha_1+k_2\alpha_2+k(\alpha_2+\alpha_3)=0$,即

$$-k_1 \alpha_1 + (k_2 + k_3) \alpha_2 + k_3 \alpha_3 = 0 \tag{**}$$

由(*)式减去(**)式可得

$$2k_{1}\alpha_{1}-k_{3}\alpha_{2}=0$$
,

因为 α_1, α_2 为不同特征值对应的特征向量,则 α_1, α_2 线性无关,所以 $k_1 = k_3 = 0$,又由(1)式且 α_2 为特征向量, $k_2\alpha_2 = 0$,因此 $k_1 = k_2 = k_3 = 0$,综上向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.