

比特币区块结构

■ 蚂蚁链《区块链系统开发与应用》A认证系列课程

课程 目标

- 了解比特币的总体架构
- 了解比特币的区块结构
- 了解比特币的基本运行原理

- 01 比特币分层
- 02 比特币区块结构
- 03 比特币基本运行原理
- 04 总结

区块链系统架构

区块链系统架构采用了分层结构。

应用层	封装区块链的各种应用场景和案例	
合约层	封装各类脚本、算法和智能合约	
通信层	节点间通信的通信协议	
共识层	对区块数据的有效性达成共识	
通道层	联盟链中确保隐私安全	
网络层	区块链网络中节点与节点之间的信息交流方式	
数据层	存储区块链基础数据	

比特币分层

比特币其整体架构由下至上可以分层 为存储层、数据层、网络层、共识层、 RPC层和应用层。

> RPC(Remote Procedure Call)远程过程调用,简单的 理解是一个节点请求另一个节 点提供的服务

网络层: 节点路由、寻址、节点的加入和离开等; 区块的广播; 发现节点(八卦协议);

存储层:区块数据存在块文件中;块索引(快速定位,简化验证过程)、UTXO等存在levelDB中;新块的修改

比特币结构

- 比特币是区块链的实现,区块链是比特币的底层技术
- 比特币的区块结构
 - 区块头+区块体<=1M
 - 区块头: 80字节
 - 区块体:包含2000个左右的交易,平均每笔交易至少250字节

字段名	大小	描述
区块大小	4字节	这个字段后的区块大小
区块头大小	80字节	包含组成区块头的几个字段
交易数	1~9字节	区块中交易的数量
交易	不固定	记录在区块中的交易信息

■ 区块头结构

■ 区块头主要由三组区块元数据组成

字段名	大小	描述
版本	4字节	版本信息,用于跟踪软件和协议的更新
父区块哈希值	32字节	链接前一个区块的散列值
Merkle树根	32字节	当前区块中所有交易的Merkle树根散列值
时间戳	4字节	记录在区块中的交易信息
目标难度值	4字节	当前区块工作量证明算法的难度值
随机数	4字节	用于工作量证明算法的计数器

第一组元数据

第二组元数据

第三组元数据

典型区块链(共识机制)交易TPS比较

- □比特币POW: 3-7tps
 - 10分钟出一个区块;每个区块2000个交易(0.5M每个区块/250字节每个交易),每个区块包含2000个交易,每秒3.3个交易(2000/600=3.3)
 - 如每个区块1M计算(1024kb),每10分钟出一个区块,每笔交易占250字节 (0.25KB);每个区块每秒平均打包: 1024/600/0.25=6.82,大概7笔交易
- □ RBFT: 300ms出一个区块; 1s 3.3个区块; 每个区块2000个交易; 每 秒 6600个交易, 即6600 tps
- □ Avalanche: 1秒内达成共识,每秒一个区块,理论TPS2000,实际tps能达到 4500

区块结构——存储结构

- 区块是比特币存储交易的结构,一个区块总是指向其父节点。
- 一个区块包含三个字段:区块头、区块交易数量、交易列表。交易数量受到区块大小限制,输入、输出数量和脚本都会占用区块空间,矿工往往喜欢获得最高费用的交易列表。

区块结构——块结构

原始区块数据被存储在块文件中,这些文件以 blk*.dat 的格式命名,文件大小为 128MB,并以 16MB 为块(chunks)。块索引包含块的基本信息和在原始区块数据中的位置,块索引简化了验证过程。块索引为包含 6 个键的键值集合:

- 6个键值对:
- -- 区块信息: 区块高度、交易数量、区块验证状态、原始数据块文件号
- --原始数据块文件信息:文件中的块数、文件大小、最低(高)块高度、最新时间戳
- 重建索引标志位: 1: 正在重建索引; 0: 不需
- --存储标志、可选值: tsnext=true时可用,用来存储原始数据块文件的编号

区块结构——区块头

比特币区块头包含了当前区块摘要信息和上一个区块的元信息,我们可以通过这些信息来验证区块体 的正确性。

```
class CBlockHeader
public:
   // header
   int32 t nVersion:
   uint256 hashPrevBlock:
   uint256
hashMerkleRoot:
   uint32 t nTime;
   uint32 t nBits;
   uint32 t nNon
比特币区块头定义中虽然只包含 6 个字段, 但每一个
字段对于当前区块链的运行都必不可少。
```

比特币区块数据结构代码描述可见比特币源码的

bitcoin/bitcoin/src/primitives/block.h 文件。

区块结构——区块体

- 比特币区块体用于存储真实的交易记录。
- 区块体包含有序的交易列表,这些交易列表通过默克尔树算法生成的根哈希存储到区块头中,这样可以通过区块头中的少量信息对区块体中的交易进行验证。

比特币基本运行原理

总结

■ 比特币的架构与存储结构

- 比特币的架构组成;
- 比特币的存储结构是由区块体加上区块头构成一个区块,以区块头指向上一个区块体的方式 形成链进行数据的存储。

■ 比特币的基本运行原理

- 保证交易的安全性;
- 比特币保证系统稳定运行。

谢谢

