Pokok Bahasan Bab 5 Distribusi Peluang Diskrit

Probabilitas & Statistika

Materi yang Dibahas:

- 1. Distribusi Uniform Diskrit
- 2. Distribusi Binomial dan Multinomial
- 3. Distribusi Hipergeometrik
- 4. Distribusi Negative Binomial
- 5. Distribusi Geometrik
- 6. Distribusi Poisson

Tim Penyusun

Judhi Santoso Harlili Dwi H. Widyantoro

Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Ciri/Sifat untuk Menyatakan Distribusi Variabel Random.

- 1. Aplikasi kejadian eksperimen random, X
- 2. Fungsi distribusi peluang (fdp):
 diskrit = fungsi mass,
 kontinu = fungsi distribusi peluang
- 3. Grafik histogram fdp
- 4. Mean/Rataan, $E(X) = \mu$
- 5. Variansi , $E(X_i μ)^2 = σ^2$
- 6. Parameter
- Mean dan variansi tergantung parameternya

Distribusi Seragam Diskrit

- Jika variabel random X mempunyai nilai i, ..., j dengan peluang yang sama, maka distribusi uniform diskrit didefinisikan:
- X berparameter (i, j)

$$f(x) = \frac{1}{j-i+1}$$

$$\mu = \frac{i+j}{2}$$

$$\mu = \frac{i+j}{2}$$

$$\sigma^2 = \frac{(j-i+1)^2 - 1}{12}$$

Contoh Distribusi Uniform Diskrit (2)

Fungsi distribusi peluang, pelemparan dadu

$$\mu = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\sigma^2 = \frac{(1-3.5)^2 + (2-3.5)^2 + \dots + (6-3.5)^2}{6} = \frac{35}{12}$$

Gambar 4.1.1 Histogram dari Pelemparan Dadu

Sifat-Sifat Proses Bernoulli

- Eksperimen terdiri dari n percobaan yang berulang
- Setiap hasil percobaan dapat diklasifikasikan menjadi sukses atau gagal
- Peluang dari sukses adalah p, yang bersifat tetap dalam setiap kali percobaan dan gagal dengan peluang q = 1-p.
- 4. Percobaan berulang tersebut bersifat independen

Definisi Distribusi Binomial

- Variabel random binomial X = banyak sukses dari n percobaan yang independen.
- Fungsi distribusi peluang = b(x;n,p)

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, ..., n$$

Rataan dan Variansi adalah

$$\mu = np \, \operatorname{dan} \, \sigma^2 = npq$$

Example 5.2Distribusi Binomial (1)

- Peluang seorang pasien sembuh dari suatu penyakit adalah 0,4. Jika 15 orang terjangkit penyakit ini, tentukan peluang:
 - a) sekurang-kurangnya 10 orang bisa sembuh,
 - b) dari 3 sampai 8 orang bisa sembuh, dan
 - c) tepat 5 orang bisa sembuh.
 - d) Hitung rata-rata dan variansi

Contoh Distribusi Binomial (2)

Jawab: Gunakan tabel A₁
 Misalkan X adalah jumlah orang yang sembuh,

$$(a).P(X \ge 10) = 1 - P(X < 10) = 1 - \sum_{x=0}^{9} b(x; 15, 0.4) = 1 - 0.9662 = 0.0338$$

(b).
$$P(3 \le X \le 8) = \sum_{x=3}^{8} b(x; 15, 0.4)$$

= $\sum_{x=0}^{8} b(x; 15, 0.4) - \sum_{x=0}^{2} b(x; 15, 0.4) = 0.9050 - 0.0271 = 0.8779$

(c).
$$P(X = 5) = b(5; 15, 0.4) = \sum_{x=0}^{5} b(x; 15, 0.4) - \sum_{x=0}^{4} b(x; 15, 0.4) = 0.4032 - 0.2173 = 0.1859$$

- d) Rata2= np= 15(0,4)= 6
- Var = npq = 15(0,4)(0,6) = 3,6

Tabel Distribusi Binomial

Table A.1 (continued) Binomial Probability Sums $\sum_{x=0}^{r} b(x; n, p)$

			$oldsymbol{p}$								
\boldsymbol{n}	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
15	0	0.2059	0.0352	0.0134	0.0047	0.0005	0.0000				
	1	0.5490	0.1671	0.0802	0.0353	0.0052	0.0005	0.0000			
	2	0.8159	0.3980	0.2361	0.1268	0.0271	0.0037	0.0003	0.0000		
	3	0.9444	0.6482	0.4613	0.2969	0.0905	0.0176	0.0019	0.0001		
	4	0.9873	0.8358	0.6865	0.5155	0.2173	0.0592	0.0093	0.0007	0.0000	
	5	0.9978	0.9389	0.8516	0.7216	0.4032	0.1509	0.0338	0.0037	0.0001	
	6	0.9997	0.9819	0.9434	0.8689	0.6098	0.3036	0.0950	0.0152	0.0008	
	7	1.0000	0.9958	0.9827	0.9500	0.7869	0.5000	0.2131	0.0500	0.0042	0.0000
	8		0.9992	0.9958	0.9848	0.9050	0.6964	0.3902	0.1311	0.0181	0.0003
	9		0.9999	0.9992	0.9963	0.9662	0.8491	0.5968	0.2784	0.0611	0.0022
	10		1.0000	0.9999	0.9993	0.9907	0.9408	0.7827	0.4845	0.1642	0.0127
	11			1.0000	0.9999	0.9981	0.9824	0.9095	0.7031	0.3518	0.0556
	12				1.0000	0.9997	0.9963	0.9729	0.8732	0.6020	0.1841
	13					1.0000	0.9995	0.9948	0.9647	0.8329	0.4510
	14						1.0000	0.9995	0.9953	0.9648	0.7941
	15							1.0000	1.0000	1.0000	1.0000

Distribusi Multinomial

Jika suatu percobaan dapat menghasilkan k buah kejadian $E_1, E_2, ..., E_k$ dengan peluang $p_1, p_2, ..., p_k$ maka distribusi peluang dari variabel random $X_1, X_2, ..., X_k$ yang mewakili nilai dari kejadian $E_1, E_2, ..., E_k$ dalam n percobaan yang independen adalah:

$$f(x_1, x_2, ..., x_k; p_1, p_2, ..., p_k, n) = \binom{n}{x_1, x_2, ..., x_k} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}$$

di mana:

$$\sum_{i=1}^k x_i = n \quad \text{dan} \quad \sum_{i=1}^k p_i = 1$$

Contoh Distribusi Multinomial (1)

 Sepasang dadu dilempar sebanyak 6 kali, tentukan peluang memperoleh jumlah 7 atau 11 sebanyak dua kali, angka yang sama sekali, dan kombinasi sisanya sebanyak 3 kali.

Contoh Distribusi Multinomial (2)

Jawab:

E₁: terjadi jumlah 7 atau 11

 E_2 : terjadi angka yang sama

 E_3 : bukan dari dua tersebut (kombinasi sisanya)

Peluang dari E1, E2, E3 masing-masing adalah

$$p1 = 2/9$$
, $p2 = 1/6$, $p3 = 11/18$.

Dengan distribusi multinomial dengan $x_1 = 2$, $x_2 = 1$, $x_3 = 3$, diperoleh:

$$f\left(2,1,3;\frac{2}{9},\frac{1}{6},\frac{11}{18},6\right) = {6 \choose 2,1,3} \left(\frac{2}{9}\right)^2 \left(\frac{1}{6}\right) \left(\frac{11}{18}\right)^3 = \frac{6!}{2!1!3!} \cdot \frac{2^2}{9^2} \cdot \frac{1}{6} \cdot \frac{11^3}{18^3} = 0.1127$$

Example 5.7

The complexity of arrivals and departures of planes at an airport is such that computer simulation is often used to model the "ideal" conditions. For a certain airport with three runways, it is known that in the ideal setting the following are the probabilities that the individual runways are accessed by a randomly arriving commercial jet:

```
Runway 1: p_1 = 2/9,
Runway 2: p_2 = 1/6,
Runway 3: p_3 = 11/18.
```

What is the probability that 6 randomly arriving airplanes are distributed in the following fashion?

```
Runway 1: 2 airplanes,
Runway 2: 1 airplane,
Runway 3: 3 airplanes
```


Jawab 5.7

Using the multinomial distribution, we have

$$f\left(2,1,3;\frac{2}{9},\frac{1}{6},\frac{11}{18},6\right) = \binom{6}{2,1,3} \left(\frac{2}{9}\right)^2 \left(\frac{1}{6}\right)^1 \left(\frac{11}{18}\right)^3$$
$$= \frac{6!}{2! \, 1! \, 3!} \cdot \frac{2^2}{9^2} \cdot \frac{1}{6} \cdot \frac{11^3}{18^3} = 0.1127.$$

Distribusi Hipergeometrik (1)

- Distribusi hipergeometrik mempunyai sifat-sifat sebagai berikut:
 - Secara acak diambil sebanyak n tanpa dikembalikan dari N item.
 - 2. *k* dari *N item* diklasifikasikan baik (sukses) dan *N-k* diklasifikasikan rusak.

Distribusi peluang dari variabel random hipergeometrik X, yaitu jumlah sukses dari sampel random berukuran n dari N item, di mana terdapat k jumlah sukses dan N-k jumlah gagal / rusak adalah:

$$h(x; N, n, k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}, \qquad x = 0, 1, 2, ..., n$$

Distribusi Hipergeometrik (2)

Teorema:

Rataan dan variansi dari distribusi hipergeometrik h(x; N, n, k) adalah

$$\mu = \frac{nk}{N}$$
 dan $\sigma^2 = \frac{N-n}{N-1} \cdot n \cdot \frac{k}{N} \left(1 - \frac{k}{N}\right)$

Contoh Distribusi Hipergeometrik (Exampel 5.9)

- Sebanyak 40 komponen, 3 di antaranya rusak. Jika diambil sampel berukuran 5, tentukan peluang sampel tersebut berisi 1 komponen rusak. Tentukan rata dan variansi.
- Jawab :

Dengan distribusi hipergeometrik dengan n = 5, N = 40, k = 3, dan x = 1, diperoleh

$$h(1;40,5,3) = \frac{\binom{3}{1}\binom{37}{4}}{\binom{40}{5}} = 0.3011$$

Example 5.9

$$\mu = \frac{nk}{N}$$
 dan $\sigma^2 = \frac{N-n}{N-1} \cdot n \cdot \frac{k}{N} \left(1 - \frac{k}{N}\right)$

Rata=
$$\mu = (5)(3)/40 = 3/8 = 0,375$$

Variansi = $\sigma = \frac{40-5}{39}(5)(\left(\frac{3}{40}\right)\left(1-\frac{3}{40}\right) = 0,3113$

Hubungan Hipergeometrik dan Binomial

- Distribusi binomial dapat digunakan untuk approksimasi distribusi hypergeometrik jika n sangat kecil dibandingkan N, n/N≤ 0.05.
- Besaran k/N pada distribusi Hipergeometrik
 =p pada distribusi Binomial.

$$\mu = \frac{nk}{N} \text{ dan } \sigma^2 = \frac{N-n}{N-1} \cdot n \cdot \frac{k}{N} \left(1 - \frac{k}{N} \right)$$

$$\mu = np \text{ dan } \sigma^2 = npq$$

Example 5. 12

- A manufacturer of automobile tires reports that among a shipment of 5000 sent to a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at random from the distributor, what is the probability that exactly 3 are blemished?
- Jawab:N= 5000, n=10 Jadi distribusi
 hipergeometrik didekati distribusi binomial dan peluang cacat p = 0,2
- h(3:5000,10,1000) = b(3;10;0,2) = 0,8791-0,6778=0,2013

Distribusi Negative Binomial

- Hasil eksperimen diklasifikasikan 2 yaitu sukses dan gagal.
- Var X menyatakan banyak uji coba untuk mendapatkan k sukses = dist Negative Binomial.
- Fungsi distribusi peluang

$$b^*(x; k, p) = {x-1 \choose k-1} p^k q^{x-k}, \quad x = k, k+1, k+2, \dots$$

Contoh

In an NBA (National Basketball Association) championship series, the team that wins four games out of seven is the winner. Suppose that teams A and B face each other in the championship games and that team A has probability 0.55 of winning a game over team B.

- (a) What is the probability that team A will win the series in 6 games?
- (b) What is the probability that team A will win the series?
- (c) If teams A and B were facing each other in a regional playoff series, which is decided by winning three out of five games, what is the probability that team A would win the series?

Jawab:

- (a) $b^*(6; 4, 0.55) = {5 \choose 3} 0.55^4 (1 0.55)^{6-4} = 0.1853$
- (b) P(team A wins the championship series) is

$$b^*(4;4,0.55) + b^*(5;4,0.55) + b^*(6;4,0.55) + b^*(7;4,0.55)$$

= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(c) P(team A wins the playoff) is

$$b^*(3;3,0.55) + b^*(4;3,0.55) + b^*(5;3,0.55)$$

= $0.1664 + 0.2246 + 0.2021 = 0.5931$.

Distribusi Geometrik

- Hasil eksperimen diklasifikasikan 2 yaitu sukses dan gagal.
- Var X menyatakan banyak uji coba saat sukses pertama terjadi = dist. Geometrik.
- Fungsi distribusi peluang
- $g(x;p) = pq^{x-1}, x=1,2,...$
- Mean = 1/p
- Variansi = (1-p)/p²

Contoh:

For a certain manufacturing process, it is known that, on the average, 1 in every 100 items is defective. What is the probability that the fifth item inspected is the first defective item found?

Using the geometric distribution with x = 5 and p = 0.01, we have

$$g(5; 0.01) = (0.01)(0.99)^4 = 0.0096.$$

Distribusi Poisson (1)

- Eksperimen Poisson: eksperimen untuk variable random X, yaitu banyaknya kejadian selama suatu interval waktu atau area tertentu.
- Contoh:
- Banyaknya panggilan telepon yang diterima per jam
- Lama hari suatu sekolah ditutup karena salju selama musim dingin

Distribusi Poisson (2)

- Sifat-sifat proses Poisson:
 - Jumlah kejadian dalam satu selang waktu atau daerah adalah independen terhadap kejadian di selang atau daerah lain
 - Peluang kejadian dalam selang yang sangat pendek atau daerah yang sangat kecil tidak bergantung pada kejadian di luar selang atau daerah tersebut
 - 3. Peluang kejadian yang terjadi lebih dari satu dalam selang waktu yang pendek dapat diabaikan

Distribusi Poisson (3)

Definisi:

Distribusi peluang variabel random Poisson X, menyatakan jumlah hasil yang terjadi dalam selang waktu atau daerah yang dinotasikan dengan t adalah:

$$p(x;\lambda t) = \frac{e^{\lambda t}(\lambda t)^x}{x!}, x = 0,1,2,...$$
 di mana λ adalah rata-rata jumlah hasil yang terjadi per

satuan waktu atau daerah, dan

Rata-rata = Variansi= λt

Distribusi Poisson (4)

Contoh:

Dalam eksperimen, rata-rata jumlah partikel radioaktif yang lewat *counter* adalah 4 tiap milidetik.

Tentukan peluang 6 partikel akan lewat dalam selang waktu 1 milidetik.

Dengan distribusi Poisson dengan x = 6 dan $\lambda t = 4$, dan menggunakan tabel distribusi Poisson:

$$p(6;4) = \frac{e^{-4}4^6}{6!} = \sum_{x=0}^{6} p(x;4) - \sum_{x=0}^{5} p(x;4)$$
$$= 0.8893 - 0.7851 = 0.1042$$

Distribusi Poisson dan Binomial (1)

Teorema:

Misalkan X adalah variabel random binomial dengan distribusi peluang b(x;n;p).

Bila $n \to \infty, p \to 0, \mu = np$ tetap konstan, maka:

$$b(x; n; p) \rightarrow p(x; \mu)$$

Distribusi Poisson dan Binomial (2)

Contoh 5.22:

Di suatu industri, jarang terjadi kecelakaan. Diketahui bahwa probabilitas terjadi kecelakaan untuk suatu hari adalah 0.005 dan tiap kecelakaan tidak bergantung satu sama lain.

- a) Berapa peluang dalam periode 400 hari terdapat satu kecelakaan dalam satu hari?
- b) Berapa peluang bahwa ada paling banyak tiga hari dengan satu kecelakaan?

Distribusi Poisson sbg Bentuk Limit Binomial (3)

Contoh (2):

Misalkan variabel random binomial dengan $n=400\,$ dan $p=0.005\,$ Dengan demikian $np=2\,$

Dengan aproksimasi Poisson:

a)
$$P(X = 1) = e^{-2}2^1 = 0.271$$

a)
$$P = (X \le 3) = \sum_{x=0}^{3} \frac{e^{-2} 2^x}{x!} = 0.857$$

Soal UTS 2017 Soal No.3

Pada ujian kuliah IF2122 Kelas A, rata-rata 1 dari 5 mahasiswa melakukan kesalahan perhitungan jawaban ujian. Misalkan diambil sampel pemeriksaan 10 mahasiswa Kelas A secara acak:

- a. Berapa peluang lebih dari 5 mahasiswa Kelas A yang diperiksa melakukan kesalahan perhitungan
- b. Berapa peluang mahasiswa Kelas A yang diperiksa ke-5 merupakan mahasiswa pertama yang ditemukan melakukan kesalahan perhitungan tersebut.

Soal UTS 2017 Soal No.3

- c. Berapa peluang mahasiswa Kelas A yang diperiksa ke-5 merupakan mahasiswa ke-3 yang ditemukan melakukan kesalahan tersebut.
- d. Jika ternyata terdapat 10 kelas IF2122 dengan 1000 mahasiswa, rata-rata kesalahan perhitungan terjadi pada 1 dari 100 mahasiswa saja. Berdasarkan data semua kelas ini, berapa peluang lebih dari 5 mahasiswa yang diperiksa melakukan kesalahan perhitungan.

Soal 3a-c: Solusi

- (a) Distribusi Binomial
 - p=1/5=0.2; n=10
 - P(X>5)=1-P(X<=5)=1-binomialsum5(x;10,0.2)=1-0.9936=0.0064
- (b) Distribusi Geometrik: $g(x;p)=pq^{x-1}$
 - $g(5;0.2)=0.2*(0.8)^4=0.2*0.4096=0.08192$
- (c) Distribusi Negative Binomial: $b*(x;k,p)=_{x-1}C_{k-1}p^kq^{x-k}$
 - b*(5;3,0.2)= $_{4}C_{2}p^{3}q^{2}$ =(4!/2!2!) (0.2)³ (0.8)²=6*0.008*0.64=0.03072

Soal 3d: Solusi

- Distribusi binomial
- p=1/100=0.01
- n=1000 \rightarrow μ =np=1000*0.01=10
- Aproksimasi binomial dengan poisson (n→∞;
 p→o, μ=np konstan): b(x;n,p)≈p(x;μ)
- P(X>5)=1-P(X<=5)=1binomialsum5(x;1000,0.01)
- \sim 1-poissonsum5(x;10)=1-0.0671=0.9329

Soal 3d: Solusi

Aproksimasi binomial dengan normal
 (μ=np=10 ≥ 5 dan n(1-p)=990 ≥ 5):

$$P(X \le x) = \sum_{k=0}^{x} b(k; n, p)$$

$$\approx P(Z \le \frac{x + 0.5 - np}{\sqrt{npq}})$$

- $X=5 \rightarrow z=(5+0.5-10)/sqrt(9.9)=-4.5/3.1464=-1.4302$
- P(X>5)=1-P(X<=5)=1-P(Z<=-1.43)=1-0.0764=0.9236

UTS 2017 Soal 4

 Suatu layanan percetakan poster hanya mampu menangani paling banyak 15 pesanan poster dalam satu hari, sehingga pesanan akan ditolak setelahnya. Jika rata-rata terdapat 10 pesanan poster yang diterima percetakan tersebut dalam satu hari, berapa peluang percetakan tersebut akan menolak pesanan poster.

Soal 4: Solusi

- Distribusi Poisson
- μ=λt=10
- P(X>15)=1-P(X<=15)=1poissonsum15(x;10)=1-0.9513=0.0487

Rangkuman

Dis	trib	US
Bin	om	ial

2 kejadian: sukses atau gagal; p: peluang sukses; q: peluang gagal; n: banyak percobaan; x: banyak sukses dari n percobaan independen

Fungsi distribusi peluang = b(x;n,p)

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, ..., n$$

Rataan dan Variansi:

$$\mu = np \, \operatorname{dan} \, \sigma^2 = npq$$

Tabel A.1 Binomial

Distribusi Multinomial

k buah kejadian dengan peluang p1, p2, .. pk; ; n: banyak percobaan; x1: peluang kejadian ke-1

Fungsi distribusi peluang = $f(x_1, x_2, ..., x_k; p_1, p_2, ..., p_k, n)$

$$f(x_1, x_2, \dots, x_k; p_1, p_2, \dots, p_k, n) = \binom{n}{x_1, x_2, \dots, x_k} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}.$$

Rangkuman (2)

Distribusi Hipergeometrik N: banyak barang total; n: banyak barang yang diambil; k: jumlah sukses total; N-k: jumlah gagal; x: banyak sukses dari yang diambil.

Fungsi distribusi peluang:

$$h(x; N, n, k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}, \qquad x = 0, 1, 2, ..., n$$

Rataan dan Variansi:

$$\mu = \frac{nk}{N}$$
 dan $\sigma^2 = \frac{N-n}{N-1} \cdot n \cdot \frac{k}{N} \left(1 - \frac{k}{N}\right)$

Aproksimasi Dist. Hipergeometrik dengan Dist. Binomial:

jika n sangat kecil dibandingkan N, n/N≤ 0.05 p (Dist. Binomial) = k/N (Dist. Hipergeometrik)

Distribusi Negative Binomial x: banyak uji coba untuk mendapatkan k sukses

Fungsi distribusi peluang:

$$b^*(x;k,p) = {x-1 \choose k-1} p^k q^{x-k}, \quad x = k, k+1, k+2, \dots$$

Distribusi	x: banyak uji coba saat sukses pertama terjadi				
Geometrik	Fungsi distribusi peluang:				
	$g(x;p) = pq^{x-1}, x=1,2,$				
	Mean = 1/p				
	Variansi = (1-p)/p²				
Distribusi	x: banyaknya kejadian selama suatu interval waktu/area t tertentu; λ: rata-				
Poisson	rata jumlah hasil yang terjadi per satuan waktu/daerah				
	Fungsi distribusi peluang: $e^{\lambda t}(\lambda t)^x$				
	Fungsi distribusi peluang: $p(x;\lambda t) = \frac{e^{\lambda t}(\lambda t)^x}{x!}, x = 0,1,2,$				
	Rata-rata = Variansi= λt				
	Hubungan Dist. Poisson dan Binomial: $b(x; n; p) \rightarrow p(x; \mu)$				
	; untuk $n ightarrow \infty$, $p ightarrow 0$, $\mu = np$ tetap konstan				

PR

Bab5: # 23, 47, 73

