2

3

1

2

3

1

2

3

4

5

7

Q

We claim:

	1.	A machine-readable medium that provides instructions, which when executed by a set
:	of pro	cessors, cause said set of processors to perform operations comprising:

- 3 provisioning a non-BLSR protected layer 2/3 channel over a BLSR;
- 4 provisioning a tunnel over the BLSR; and
- 5 protecting the non-BLSR protected layer 2/3 channel between a first and second node
 6 of the BLSR with the tunnel.
- 1 2. The machine-readable medium of claim 1 wherein the tunnel is a multi-protocol label 2 switching (MPLS) tunnel.
 - The machine-readable medium of claim 1 further comprising provisioning a second tunnel on the BLSR, the second tunnel to protect the non-BLSR protected layer 2/3 channel between the first node and a second node of the BLSR.
 - The machine-readable medium of claim 1 further comprising provisioning a second tunnel on the BLSR, the second tunnel to protect the non-BLSR protected layer 2/3 channel between a third node and a fourth node of the BLSR.
 - 5. A machine-readable medium that provides instructions, which when executed by a set of processors, cause said set of processors to perform operations comprising:
 - inhibiting automatic protection switching on a set of physical channels, the set of physical channels corresponding to a first fiber;
 - creating a logical working interface and associating the logical working interface to a first physical port, the physical port connecting to the first fiber;
 - creating a logical protecting interface and associating the logical protecting interface
 to a second physical port, the second physical port connecting to a second
 fiber:

7

10	associating the logical working and logical protecting interfaces to a forwarding
11	interface, the forwarding interface corresponding to a node;
12	setting the forwarding interface to refer to the logical working interface while the
13	fiber is not failing; and
14	modifying the forwarding interface to refer to the logical protecting interface while
15	the fiber is failing.
1	6. The machine-readable medium of claim 5 wherein the logical protecting interface
2 corresponds to a pre-provisioned tunnel.	
1	7. The machine-readable medium of claim 5 wherein the logical protecting interface
2	corresponds to an MPLS tunnel.
1	8. The machine-readable medium of claim 5 further comprising establishing a tunnel
2	over a second fiber, the logical protecting interface being associated to the tunnel.
1	The machine-readable medium of claim 5 further comprising:
2	detecting failure of the first fiber; and
3	transmitting a message on the second fiber to a set of intermediate nodes, the message
4	indicating failure of the first fiber.
1	10. The machine-readable medium of claim 5 further comprising:
2	transmitting a first set of layer 2/3 traffic in the second physical port while the first
3	fiber is not failing; and
4	multiplexing the first set of layer 2/3 traffic with a second set of layer 2/3 traffic for
5	transmission in the second physical port while the first fiber is failing, the
6	second set of layer 2/3 traffic being transmitted in the first physical port while

A machine-readable medium that provides instructions, which when executed by a set of processors, cause said set of processors to perform operations comprising:

the first fiber is not failing.

6 7

3		inhibiting automatic protection switching on a set of physical channels, the set of
4		physical channels corresponding to a first fiber;
5		creating a logical working interface and associating the logical working interface to a
6		first physical port, the physical port corresponding to the first fiber;
7		creating a logical protecting interface and associating the logical protecting interface
8		to a tunnel, the tunnel corresponding to a second fiber;
9		associating the logical working and logical protecting interfaces to a forwarding
10		interface, the forwarding interface corresponding to a node;
11		setting the forwarding interface to refer to the logical working interface while the
12		fiber is not failing; and
13		modifying the forwarding interface to refer to the logical protecting interface while
14		the fiber is failing.
1	12.	The machine-readable medium of claim 11 wherein the tunnel is pre-provisioned over
2	the se	cond fiber.
1	13.	The machine-readable medium of claim 11 wherein the tunnel is an MPLS tunnel
2		he second fiber.
1	14.	The machine-readable medium of claim 11 further comprising:
2	1	detecting failure of the first fiber; and
3		transmitting a message on the second fiber to a set of intermediate nodes, the message
4		indicating failure of the first fiber.
•		
ı	15.	The machine-readable medium of claim 11 further comprising:
,	15.	transmitting a first set of layer 2/3 traffic in the tunnel while the first fiber is not

- transmitting a first set of layer 2/3 traffic in the tunnel while the first fiber is not failing; and
 - multiplexing the first set of layer 2/3 traffic with a second set of layer 2/3 traffic for transmission in the tunnel while the first fiber is failing, the second set of layer 2/3 traffic being transmitted in the first physical port while the first fiber is not failing.

3

4

5

6

7

10

11

12

14

21

22

23

24

25

26

27

1

2

16.	A network element comprising:
	a first fiber connecting the netw

- a first fiber connecting the network element to a second network element;
- a second fiber connecting the network element to a third network element;
 - a first optical processing circuitry coupled to the first fiber, the optical processing circuitry to transmit a first set of optical traffic in a first set of physical channels over the first fiber.
 - a first egress layer 2/3 processing circuitry coupled to the first optical processing circuitry, the first egress layer 2/3 processing circuitry to transmit a set of layer 2/3 traffic to the first optical processing circuitry while the first fiber is not failing, the set of layer 2/3 traffic to be inserted into the first set of optical traffic:
 - a second optical processing circuitry coupled to the second fiber, the second optical processing circuitry to transmit a second set of optical traffic in a second set of physical channels over the second fiber;
 - a second egress layer 2/3 processing circuitry coupled to the second optical processing circuitry, the second egress layer 2/3 processing circuitry to transmit the set of layer 2/3 traffic to the second optical processing circuitry while the first fiber is failing, the set of layer 2/3 traffic to be inserted in to the second set of optical traffic:
 - an ingress layer 2/3 processing circuitry coupled to the first and second egress layer 2/3 processing circuitry, the ingress layer 2/3 processing circuitry to receive and transmit the set of layer 2/3 traffic; and
 - a control card coupled to the first and second optical processing circuitry and the ingress layer 2/3 processing circuitry, the control card to detect failure of the first fiber, to indicate failure of the first fiber to the ingress layer 2/3 processing circuitry, and to mask the first and second set of physical channels from automatic protection switching.
- 17. The network element of claim 16 wherein the set of layer 2/3 traffic is multiplexed with a second set of layer 2/3 traffic on the second egress layer 2/3 processing circuitry.

18.

2/3 traffic in the second set of physical channels while the first fiber is failing. 2 The network element of claim 16 further comprising an MPLS tunnel to carry the set 19. 1 of layer 2/3 traffic in the second set of physical channels while the first fiber is failing. 2 The network element of claim 16 wherein the ingress layer 2/3 processing circuitry 20. 1 includes: 2 a forwarding interface to forward traffic to the first network element; 3 a working interface coupled to the forwarding interface, the working interface to refer 5 to the first physical port; and a protecting interface coupled to the forwarding interface, the protecting interface to refer to the second physical port. An apparatus comprising: 21. a first fiber connecting the network element to a second network element; 2 a second fiber connecting the network element to a third network element; a first optical processing circuitry coupled to the first fiber, the optical processing circuitry to transmit a first set of optical traffic in a first set of physical channels over the first fiber: a first egress layer 2/3 processing circuitry coupled to the first optical processing 7 circuitry, the first egress layer 2/3 processing circuitry to transmit a set of layer 8 2/3 traffic to the first optical processing circuitry while the first fiber is not 9 failing, the set of layer 2/3 traffic to be inserted into the first set of optical traffic: a second optical processing circuitry coupled to the second fiber, the second optical 12 processing circuitry to transmit a second set of optical traffic in a second set of 14 physical channels over the second fiber; a second egress layer 2/3 processing circuitry coupled to the second optical processing 15 circuitry, the second egress layer 2/3 processing circuitry to tunnel the set of 16

The network element of claim 16 further comprising a tunnel to carry the set of layer

layer 2/3 traffic and to pass the set of layer 2/3 traffic to the second optical

18	processing circuitry while the first fiber is failing, the set of layer 2/3 traffic to	
19	be inserted in to the second set of optical traffic;	
20	an ingress layer 2/3 processing circuitry coupled to the first and second egress layer	
21	2/3 processing circuitry, the ingress layer 2/3 processing circuitry to receive	
22	and transmit the set of layer 2/3 traffic; and	
23	a control card coupled to the first and second optical processing circuitry and the	
24	ingress layer 2/3 processing circuitry, the control card to detect failure of the	
25	first fiber, to indicate failure of the first fiber to the ingress layer 2/3	
26	processing circuitry, and to mask the first and second set of physical channels	
27	from automatic protection switching.	
1	22. The network element of claim 21 wherein the set of layer 2/3 traffic is multiplexed	
2	with a second set of layer 2/3 traffic on the second egress layer 2/3 processing circuitry.	
1	23. The network element of claim 21 wherein the tunnel of the set of layer 2/3 traffic is	
2	with MPLS.	
1	24. The network element of claim 21 wherein the ingress layer 2/3 processing circuitry	
2	includes:	
3	a forwarding interface to forward traffic to the first network element;	
4	a working interface coupled to the forwarding interface, the working interface to refer	
5	to the first physical port; and	
6	a protecting interface coupled to the forwarding interface, the protecting interface to	
7	refer to the second physical port.	
1	25. A computer implemented method comprising:	
2	provisioning a non-BLSR protected layer 2/3 channel over a BLSR;	
3	provisioning a tunnel over the BLSR; and	
4	protecting the non-BLSR protected layer 2/3 channel between a first and second node	

of the BLSR with the tunnel.

2

3

4

10

- 1 26. The computer implemented method of claim 1 wherein the tunnel is a multi-protocol
 2 label switching (MPLS) tunnel.
- 1 27. The computer implemented method of claim 25 further comprising provisioning a
- 2 second tunnel on the BLSR, the second tunnel to protect the non-BLSR protected layer 2/3
- 3 channel between the first node and a second node of the BLSR.
 - 28. The computer implemented method of claim 25 further comprising provisioning a
- 2 second tunnel on the BLSR, the second tunnel to protect the non-BLSR protected layer 2/3
- 3 channel between a third node and a fourth node of the BLSR.
 - A computer implemented method comprising:
 - inhibiting automatic protection switching on a set of physical channels, the set of physical channels corresponding to a first fiber;
 - creating a logical working interface and associating the logical working interface to a first physical port, the physical port connecting to the first fiber;
 - creating a logical protecting interface and associating the logical protecting interface to a second physical port, the second physical port connecting to a second fiber;
 - associating the logical working and logical protecting interfaces to a forwarding interface, the forwarding interface corresponding to a node;
 - setting the forwarding interface to refer to the logical working interface while the fiber is not failing; and
- modifying the forwarding interface to refer to the logical protecting interface while the fiber is failing.
 - 1 30. The computer implemented method of claim 29 wherein the logical protecting interface corresponds to a pre-provisioned tunnel.
- The computer implemented method of claim 29 wherein the logical protecting
 interface corresponds to an MPLS tunnel.

13

1	32.	The computer implemented method of claim 29 further comprising establishing a
2	tunne	l over a second fiber, the logical protecting interface being associated to the tunnel.
1	33.	The computer implemented method of claim 29 further comprising:
2		detecting failure of the first fiber; and
3		transmitting a message on the second fiber to a set of intermediate nodes, the message
4		indicating failure of the first fiber.
1	34.	The computer implemented method of claim 29 further comprising:
2		transmitting a first set of layer 2/3 traffic in the second physical port while the first
3		fiber is not failing; and
4		multiplexing the first set of layer 2/3 traffic with a second set of layer 2/3 traffic for
5		transmission in the second physical port while the first fiber is failing, the
6		second set of layer 2/3 traffic being transmitted in the first physical port while
7		the first fiber is not failing.
I	35.	A computer implemented method comprising:
2		inhibiting automatic protection switching on a set of physical channels, the set of
3		physical channels corresponding to a first fiber;
4		creating a logical working interface and associating the logical working interface to a
5		first physical port, the physical port corresponding to the first fiber;
6		creating a logical protecting interface and associating the logical protecting interface
7		to a tunnel, the tunnel corresponding to a second fiber;
8		associating the logical working and logical protecting interfaces to a forwarding
9		interface, the forwarding interface corresponding to a node;
0		setting the forwarding interface to refer to the logical working interface while the
1		fiber is not failing; and
2		modifying the forwarding interface to refer to the logical protecting interface while

the fiber is failing.

1 36.

over the second fiber. 2 The computer implemented method of claim 35 wherein the tunnel is an MPLS tunnel 37. ١ over the second fiber. 38. The computer implemented method of claim 35 further comprising: I detecting failure of the first fiber; and 2 3 transmitting a message on the second fiber to a set of intermediate nodes, the message 4 indicating failure of the first fiber. 39. The computer implemented method of claim 35 further comprising: transmitting a first set of layer 2/3 traffic in the tunnel while the first fiber is not 2 failing; and 3 multiplexing the first set of layer 2/3 traffic with a second set of layer 2/3 traffic for transmission in the tunnel while the first fiber is failing, the second set of layer 2/3 traffic being transmitted in the first physical port while the first fiber is not failing.

The computer implemented method of claim 35 wherein the tunnel is pre-provisioned