

Introduction to RNA-Seq Data Analysis

Curs de Bioinformàtica per a la Recerca Biomèdica 21/11/2018

Ricardo Gonzalo Sanz ricardo.gonzalo@vhir.org

- 1. What is RNA-seq?
- 2. Why RNA-seq instead of DNA-seq?
- 3. Basic key concepts
- 4. Challenges
- 5. RNA-seq vs Microarrays
- 6. Resources, Tools, Guidelines
- 7. RNA-seq analysis pipelines

TABLE OF CONTENTS

1. What is RNA-seq?

- RNA-seq is the high throughput sequencing of cDNA using NGS technologies
- RNA-seq works by sequencing every RNA molecule and profiling the expression of a particular gene by counting the number of time its transcripts have been sequenced.
- The summarized RNA-seq data is widely known as count table

	Condition A			Condition B			
Gene1	4	0	2	12	14	13	
Gene2	0	23	50	47	22	0	
Gene3	0	2	6	13	11	15	
GeneG	156	238	37	129	51	118	
001100	100	200	01	120	01	110	

1. What is RNA-seq?

Briefly, long RNAs are first converted into a library of cDNA fragments through either RNA fragmentation or DNA fragmentation (see main text).

Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput sequencing technology.

The resulting sequence reads are aligned with the reference genome or transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads. These three types are used to generate a base-resolution expression profile for each gene, as illustrated at the bottom; a yeast ORF with one intron is shown.

Nature Reviews Genetics 10, 57-63 (January 2009)

2. Why RNA-seq instead of DNA-seq?

- Functional studies
 - Genome may be constant but an experimental condition has a pronounced effect on gene expression
 - e.g. Drug treated vs. untreated cell line
 - e.g. Wild type versus knock out mice
- Some molecular features can only be observed at the RNA level
 - Alternative isoforms, fusion transcripts, RNA editing
- Predicting transcript sequence from genome sequence is difficult
 - Alternative splicing, RNA editing, etc.

- 1. What is RNA-seq?
- 2. Why RNA-seq instead of DNA-seq?
- 3. Basic key concepts
- 4. Challenges
- 5. RNA-seq vs Microarrays
- 6. Resources, Tools, Guidelines
- 7. RNA-seq analysis pipelines

TABLE OF CONTENTS

3. Basic key concepts

- Sequencing depth: Total number of reads mapped to the genome. (Library size) Could also be applied to samples.
- Coverage: Number of reads mapped to a specific region (average of them if we are talking about the whole genome...)
- Gene length: Number of bases that a gene has.
- Gene counts: Number of reads mapping to that gene (expression measurement).

4. Main challenges in RNA-seq

- Sample
 - Purity? Quantity? Quality?
- RNAs consist of small exons that may be separated by large introns
 - Mapping reads to genome is challenging
 - Non-uniformity coverage of the genome
- The relative abundance of RNAs vary wildly
 - 10⁵ 10⁷ orders of magnitude
 - Since RNA sequencing works by random sampling, a small fraction of highly expressed genes may consume the majority of reads
- RNAs come in a wide range of sizes
 - Small RNAs must be captured separately
 - PolyA selection of large RNAs may result in 3' end bias
- RNA is fragile compared to DNA (easily degraded)

Ribosomal RNA – rRNA

- ~80% of total RNA
- 28 S
- 18 S
- 5S and 5.8 S

Noncoding RNA - ncRNA

- tRNA
- snoRNA
- IncRNA
- miRNA
- Many, many others...

Mitochondrial RNA - mtRNA

Messenger RNA – mRNA 1-3% of Total RNA

- Highly expressed transcripts (>10,000 copies per cell)
- Rarely expressed transcripts (~1 copy per cell)

4. Main challenges in RNA-seq (and other NGS cases)

 Independently of the software used, one needs to think about

DATA STORAGE & MANAGEMENT!!

1 Illumina Flow Cell equals up to

- 1.5 Bn individual Clusters
- = 3 Bn Reads
- = 300 Gbases raw sequence
- = 2.5 TByte of disk space (raw data)
- > 100 GByte of disk space (fastq data)

- 1. What is RNA-seq?
- 2. Why RNA-seq instead of DNA-seq?
- 3. Basic key concepts
- 4. Challenges
- 5. RNA-seq vs Microarrays
- 6. Resources, Tools, Guidelines
- 7. RNA-seq analysis pipelines

TABLE OF CONTENTS

5. RNA-seq VS Microarrays

RNA-seq can be seen as the NGS-counterpart of microarrays

- Analog Signal
- Easy to convey the signal's information
- Continuous strength
- Signal loss and distortion

- Digital Signal
- Harder to achieve & interpret
- Reads counts: discrete values
- Weak background or no noise

5. RNA-seq VS Microarrays

5. RNA-seq VS Microarrays

Pros and cons of both technologies

Microarrays

RNA-seq

- Costs,
- well established methods, small data
- Hybridization bias,
- sequence must be known

- High reproducibility,
- unot limited to expression
- Costs,
- complexity of analysis

"High correlation between gene expression profiles generated by the two platforms."

"RNA-Seq sequencing technology is new to most researchers, more expensive than microarray, data storage is more challenging and analysis is more complex."

6. Resources, Tools, Guidelines

Alignment

- BWA (PMID: 20080505)
 - Align to genome + junction database
- Tophat (PMID: 19289445), MapSplice (PMID: 20802226), hmmSplicer (PMID: 21079731)
 - Spliced alignment to genome

Expression, differential expression alternative expression

 Cufflinks/Cuffdiff (PMID: 20436464), ALEXA-seq (PMID: 20835245), RUM (PMID: 21775302)

Fusion detection

 ChimeraScan (PMID: 21840877), Defuse (PMID: 21625565), Comrad (PMID: 21478487)

Transcript assembly

Trinity (PMID: 21572440), Oases (PMID: 22368243), Trans-ABySS (PMID: 20935650)

Mutation calling

SNVMix (PMID: 20130035)

Visit the 'SeqAnswers', "RNA-Seq Blog" or 'BioStar' forums for more recommendations and discussion

- http://seganswers.com/
- http://www.rna-segblog.com/
- http://www.biostars.org/

RNA-Seg Guidelines (ENCODE Consortium)

http://www.rna-seqblog.com/

₹ Galaxy			Shared Data ▼			
Published Pages jeremy Galaxy RN/	-seq Analysis Exercise					
DNA com Amelysis I	-varaina					
RNA-seq Analysis I	exercise					
using some example datasets. Familiarit	reating and executing a complete RNA-seq an y with Galaxy and the general concepts of RNA e history and visualization at the bottom of this	-seq analysis are	useful for unders	tanding this exer	cise. This e	
nput Datasets						
	n <u>the Illumina BodyMap 2.0 project;</u> specifically some 19, positions 3-3.5 million (chr19:30000)		paired-end 50bp	reads from adrer	al and bra	in tissues. The sampled rea
RNA-seq data from adrenal tissue:						
+ Fo	<u>Galaxy Datase</u> rward RNA-seq reads from BodyMap 2.0 pro			hr19:3000000:3	500000	
and						
+ Re	<u>Galaxy Datase</u> verse RNA-seq reads from BodyMap 2.0 pro			:hr19:3000000:3	500000	□ □

https://usegalaxy.org/u/jeremy/p/galaxy-rna-seq-analysis-exercise

- 1. What is RNA-seq?
- 2. Why RNA-seq instead of DNA-seq?
- 3. Basic key concepts
- 4. Challenges
- 5. RNA-seq vs Microarrays
- 6. Resources, Tools, Guidelines
- 7. RNA-seq analysis pipelines

TABLE OF CONTENTS

- Reads are mapped to the reference genome or transcriptome
- Mapped reads are assembled into expression summaries (tables of counts, showing how many reads are in coding region, exon, gene or junction)
- Data is normalized
- Statistical testing of differential expression (DE) is performed, producing a list of genes with p-values and fold changes
- Similar downstream analysis than microarray results (Functional Annotations, Gene Enrichment Analysis; Integration with other data...)

Griffith, 2015 DOI: 10.1371/journal.pcbi.1004393

MAPPING

Sequencing Reads

Individual A

Reference Genome

Main Issues:

- Number of allowed mismatches
- Number of multi-hits
- Mates expected distance
- Considering exon junctions

End up with a list of # of reads (counts) per transcript

These will be our discrete) response variable

SUMMARISATION

 Summarise & aggregate reads over some biologically meaningful unit, such as exons, transcripts, genes, regions...

- Many methods available
 - Counts # of reads overlapping the exons in a gene,
 - Include reads along the whole length of the gene and thereby incorporate reads from 'introns'.
 - Include only reads that map to coding sequence...