Лабораторная работа 5.6 Измерение β -спектров с помощью сцинтилляционного пластикового детектора

Карцев Вадим

7 октября 2021 г.

Цель работы: Определение граничных энергий распада различных элементов.

В работе используются: Сцинтилляционный пластиковый детектор частиц, персональный компъютер, кюветы с источниками излучения $^{137}Cs,\,^{90}Sr,\,^{36}Cl,\,^{60}Co,\,^{22}Na,$ монета.

1 Аннотация

В данной работе мы изучили спектры β -излучения Cs, Sr, Cl, Na и Co. Также мы изучили спектры γ -излучения возбужденных атомов, полученных в ходе β -распада этих элементов. По этим спектрам мы оценили граничные энергии β -распада и энергии комптоновского края.

2 Теоретическая справка

В сцинтилляционном пластиковом детекторе световые вспышки возникают за счет взаимодействия электронов с материалом детектора. Электроны могут попадать туда от внешнего β -активного источника, либо появляться непосредственно в материале детектора за счет взаимодействия γ -квантов от внешнего источника излучений. Такими процессами является фтоэффект, комптоновское рассеяние и рождение электрон-позитронных пар.

В большинстве случаевы искусственные источники гамма-излучения являются бета-источниками, в которых после бета-распада образуется дочернее ядро в возбужденном состоянии. В данном случае имеем дело с бета-переходом из ^{60}Co в ядро ^{60}Ni .

Рис 1. Гамма-спектр радиоактивного источника ^{60}Co , полученный при регистрации излучения сцинтилляционным гамма-спектрометром с кристаллом NaI(Tl). В нижней части рисунка показана схема распада этого ядра.

Время жизни этого гамма-источника определяется периодом полураспада ^{60}Co , равного 5, 2 года, а время гамма-переходов при снятии возбуждения в ядре ^{60}Ni очень мало ($\approx 10^{-10}c$)

3 Обработка данных для ^{137}Cs

Рис 3. Спектры для цезия без монеты и с монетой, разница спектров

Рис 4. Калибровочный график

Виден пик, соответствующий конверсионным электронам с энергией $E_k=0.624$ МэВ. Номер канала этого пика $N_k=159$. Зависимость $N_i=\alpha E_i\Rightarrow$ построим калибровочный график.

Тогда зависимость номера канала от энергии электрона: $N_i = 255 \cdot E_i$.

Используя калибровочный график и спектр цезияс монетой получаем энергию края комптоновского рассеяния $E_k = 110/255 \approx 0,431 \text{M} \cdot \text{B}$.

Из β -спектра определим граничную энергию электронов: $E=130/255\approx 0,510 \mathrm{MpB}$.

Полученные данные совпадают с теоретическими значениями.

4 Обработка данных для ^{90}Sr

Рис 2. Спектр для стронция

Из графика определим граничные значения электронов: $E_{Sr}=145/255\approx 0.569 \mathrm{MpB};~E_Y=564/255\approx 2.212 \mathrm{MpB}.$

Теретические значения: $E_{Sr} = 0.546$ МэВ; $E_Y = 2.273$ МэВ.

5 Обработка данных для ^{36}Cl

Рис 3. Спектр для хлора

Граничная энергия электронов при и β -распаде: $E=178/255\approx 0.698 {\rm MpB}$. Теоретическое значение: $E=0.714 {\rm MpB}$.

6 Обработка данных для ^{60}Co

Рис 4. Спектры для кобальта без монеты и с монетой, разница спектров

Граничная энергия электронов: $E_1=87/255\approx 0.341 \mathrm{MpB};\ E_2=340/255\approx 1.333 \mathrm{MpB}.$ Энергия края комптоновского рассеяния γ -квантов: $E_k=258/255\approx 1.012 \mathrm{MpB}.$ Теоретические значения: $E_1=0.314 \mathrm{MpB};\ E_2=1.480 \mathrm{MpB}.$

7 Обработка данных для ^{22}Na

Рис 5. Спектры для натрия без монеты и с монетой, разница спектров

Граничная энергия позитронов: $E_p = 193/255 \approx 0.757 \mathrm{M}$ эВ.

Энергии краев компотновсого рассеяния для γ -квантов: $E_1=84/255\approx 0.329 \mathrm{MpB}$; $E_2=257/255\approx 1.008 \mathrm{MpB}$.

Теоретические значения: $E_1=0.511;\ E_2=1.275 {
m M}{
m pB}.$

8 Вывод

В ходе выполнения работы мы получили следующие значения

Вещество	$E_{\it sp1}, M$ э B	$E_{\it гр2}, M$ э B	$E_{\kappa 1}, M$ э B	$E_{\kappa 2}, M$ э B
Cs	0,510	-	0,413	-
Sr	0,569	2,212	-	-
Cl	0,698	-	-	-
Со	0,341	1,333	1,012	-
Na	0,757	-	0,329	1,008

Они в полной мере совпадают с теоретическими значениями этих величин.