TD 12 Structures algébriques

Exercice 1: *

Soient les quatre fonctions de \mathbb{R}^* dans \mathbb{R}^* définies par

$$f_1(x) = x$$
, $\frac{1}{x}$, $f_3(x) = -x$, $f_4(x) = -\frac{1}{x}$.

Montrer que $(\{f_1, f_2, f_3, f_4\}, \circ)$ est un groupe.

Exercice 2: ★★★

Soit (G, .) un groupe.

- (1) Montrer que les propositions suivantes sont équivalentes.
 - i. G est abélien;
 - ii. Pour tout $a, b \in G$, $(ab)^2 = a^2b^2$;
 - iii. Pour tout $a, b \in G$, $(ab)^{-1} = a^{-1}b^{-1}$
- (2) En déduire que si pour tout $x \in G$, $x^2 = e$, alors G est abélien.

Exercice 3: ★★★

Montrer que les groupes multiplicatifs \mathbb{R}^* et \mathbb{C}^* ne sont pas isomorphes.

Exercice 4: ★

Les couples (E, \times) suivants sont-ils des groupes?

- (1) $E = \{z \in \mathbb{C} \mid |z| = 2\}, \times \text{ la multiplication usuelle};$
- (2) $E = \mathbb{R}^+, \times \text{ la multiplication usuelle};$
- (3) $E = \{x \in \mathbb{R} \mapsto ax + b \mid a, b \in \mathbb{R}\}, \times \text{ la composition des applications.}$

Exercice 5: $\star\star\star$

Soit H un sous-groupe de $(\mathbb{Z}, +)$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

Exercice 6: ★★

Quel est le plus petit sous-groupe de $(\mathbb{R}, +)$ contenant 1? contenant 2?

Exercice 7: ★★★

Les groupes $(\mathbb{Q}, +)$ et (\mathbb{Q}^*, \times) sont-ils isomorphes?

Exercice 8: ★★

Soit (G, +) un groupe commutatif. On note End(G) l'ensemble des endomorphismes de G sur lequel on définit la loi + par $f + g : x \in G \mapsto f(x) + g(x)$.

Montrer que $(End(G), +, \circ)$ est un anneau.

Exercice 9: ★★★

Soit $(A, +, \times)$ un anneau. On dit que $x \in A$ est nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0$.

- (1) Soit $x \in A$ nilpotent. Montrer que 1 x est inversible.
- (2) Soient x et y deux éléments nilpotents de A tels que $x \times y = y \times x$. Montrer que x + y et $x \times y$ sont nilpotents.
- (3) Un corps admet-il des éléments nilpotents?

Exercice 10: ★★

On note $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} tet déterminer ses éléments inversibles.

Exercice 11: ★★★

Soit A un sous-anneau de \mathbb{R} . Montrer que A est dense dans \mathbb{R} si et seulement si $A \cap]0,1[\neq \emptyset$.

Exercice 12: ★★★

Soit G un sous-groupe additif non nul de \mathbb{R} et $a = \inf(G \cap \mathbb{R}^+_*)$.

- (1) Montrer que si $a \in G \in \mathbb{R}_+^*$, alors $G = a\mathbb{Z}$.
- (2) Montrer que si $a \notin (G \cap \mathbb{R}_+^*)$ alors a = 0 et G est dense dans \mathbb{R} .

Exercice 13: ★★

Soit $(A, +, \times)$ un anneau. On appelle centre de A l'ensemble $C = \{x \in A \mid \forall y \in A, \ x \times y = y \times x\}$. Montrer que C est un sous-anneau de A.

Exercice 14: ★

Soit $A = \left\{ \frac{p}{2^q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \right\}.$

- (1) Montrer que A est un sous-anneau de $(\mathbb{Q}, +, \times)$.
- (2) Déterminer les éléments inversibles de A.

Exercice 15: ★★★

Soit $f: \mathbb{C} \to \mathbb{C}$ un morphisme d'anneaux tel que pour tout $x \in \mathbb{R}$, f(x) = x. Montrer que f est l'identité ou la conjugaison complexe.

Exercice 16: ★★★ théorème de Wilson

Soit p un nombre premier. On considère l'ensemble $\mathcal{F}_p = [0, p-1]$ muni des deux lois \oplus et \otimes définies de la façon suivante. Pour $a, b \in \mathcal{F}_p$, on note $a \oplus b$ le reste de la division de a+b par p, et $a \otimes b$ le reste de la division de ab par p.

- (1) Montrer que $(\mathcal{F}_p, \oplus, \otimes)$ est un corps.
- (2) Montrer que 1 et p-1 sont les seuls éléments de \mathcal{F}_p égaux à leur propre inverse.
- (3) En déduire le théorème de Wilson : p divise (p-1)! + 1.

Exercice 17: ★★★★

Soit $f: \mathbb{R} \to \mathbb{R}$ un morphisme de corps.

- (1) Montrer que pour tout $x \in \mathbb{Q}$, f(x) = x.
- (2) Montrer que f est croissante.
- (3) En déduire que pour tout $x \in \mathbb{R}$, f(x) = x.

Exercice 18: ★★

On définit sur \mathbb{R} les deux lois \oplus et \otimes par $x \oplus y = x + y - 1$ et $x \otimes y = x + y - xy$. Montrer que $(\mathbb{R}, \oplus, \otimes)$ est un corps.

Exercice 19: ★★★

Soit A un anneau fini commutatif non nul intègre. Montrer que A est un corps.

Exercice 20: ★★★★

Déterminer à isomorhisme près tous les corps à 4 éléments.

Exercice 21: ★★★

Ce problème présente quelques propriétés des corps finis.

1. Préliminaires

Soient (G, \times) et (H, \times) deux groupes finis et $f: G \to H$ un morphisme de groupes.

(1) On définit une relation R sur G de la façon suivante :

$$xRy \iff f(x) = f(y)$$

Montrer que R est une relation d'équivalence.

- (2) Montrer que toutes les classes d'équivalence sont de cardinal Card(Ker f).
- (3) En déduire que $\operatorname{Card} G = \operatorname{Card}(\operatorname{Ker} f) \times \operatorname{Card}(\operatorname{Im} f)$.

2. Un exemple de corps fini.

Dans cette partie, $(K, +, \times)$ désigne un corps de cardinal $4: K = \{0_K, 1_K, a, b\}$ où 0_K désigne le neutre pour + et 1_K le neutre pour \times .

- (4) Montrer que l'équation $x^2 = 1_K$ a au plus deux racines.
- (5) En déduire que $a \times b = 1_K$ et donner la table de Pythagore de \times .
- (6) Donner la table de Pythagore de +. Que vaut $1_K + 1_K$?

3. Caractéristique d'un corps fini.

Soit $(K, +, \times)$ un corps fini de cardinal n. On considère l'application

$$\begin{array}{cccc} f: & \mathbb{N} & \to & K \\ & n & \mapsto & n1_K = \sum_{k=1}^n 1_K \end{array}$$

- (7) Montrer que f n'est pas injective.
- (8) En déduire l'existence de $p = \min\{k \in \mathbb{N}^* \mid k1_K = 0_K\}$. Cet entier p est appelé **caractéristique** de K.
- (9) On suppose que p = ab avec $(a, b) \in \mathbb{N}^2$. Montrer que $a1_K = 0_K$ ou $b1_K = 0_K$. En déduire que p est premier.

(10) Montrer que $F = \{n1_K \mid n \in \mathbb{N}\}$ est un sous-corps de K de cardinal p. On dit que F est le sous-corps premier de K.

4. Cardinal d'un corps fini.

Soit $(K, +, \times)$ un corps fini de cardinal n et de caractéristique p. Soit F le sous-corps premier de K. On note $\{x_1, \ldots, x_n\}$ les éléments distincts de K. On considère l'application

$$f: \begin{array}{ccc} F^n & \to & K \\ (\lambda_1, ..., \lambda_n) & \mapsto & \sum_{k=1}^n \lambda_k x_k \end{array}$$

(11) On munit F^n d'une loi de composition \oplus de la façon suivante :

$$(\lambda_1,\ldots,\lambda_n)\oplus(\mu_1,\ldots,\mu_n)=(\lambda_1+\mu_1,\ldots,\lambda_n+\mu_n).$$

Montrer que (F^n, \oplus) est un groupe.

- (12) Montrer que f est un morphisme de groupes.
- (13) Montrer que f est surjective.
- (14) En utilisant le résultat 3, montrer que $n = p^k$ avec $k \in \mathbb{N}^*$.

5. Automorphisme de Frobenius

Soit $(K, +, \times)$ un corps fini de caractéristique p et

$$f: K \rightarrow K$$
 $x \mapsto x^{p}$

- (1) En utilisant la formule du binôme, montrer que pour tout $(x,y) \in K^2$, $(x+y)^p = x^p + y^p$.
- (2) En déduire que f est un automorphisme de corps.