2019 年第 20 屆亞洲物理奧林匹亞競賽 及第 50 屆國際物理奧林匹亞競賽 國家代表隊初選考試試題參考解答

壹、填充題(每格4分,共30格,合計120分)

- $\cdot (1) \underline{1.29} s$
 - $(2) 54.4 \text{ m/s}^2$

$$=$$
 \(\sigma\) $\sqrt{3}:2:\sqrt{3}$

$$(4) \quad T_3 > T_2 > T_1$$

- 三、(5)<u>57.19</u>
 - (6) 60.18

(10) 260km/h

$$(14) \quad -\frac{2mM}{(m+M)(\Delta t)}(v_1+v_2)$$

$$(16)$$
 -3.9×10^{-2}

+ \
$$(20) d_{RL} = R (2\rho_p/\rho_m)^{1/3}$$

$$(21)$$
 $d_{RL} = 66300 \text{ km}$

(23)
$$s < 0.235$$
 或 $s > 0.765$

$$(25) - 3pA - 5\rho v^2 A/4$$

$$+ = (26) 1/3$$

十四、 (27)
$$T/2+Mv^2/(10R)$$

(28)
$$T/2 + Mv^2/(20R)$$

$$+$$
 £ \(\frac{c}{(29)} \frac{c}{c-v}

計算題 (每題 15 分,共二題,合計 30 分)

第1題評分標準:

小題	内容	得分	備註
(a) 3分	列出動量守恆: $m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$	1	
	列出能量守恆: $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2v_2^2$	1	
	算出 $\frac{u_2-u_1}{v_2-v_1}=-1.$	1	
(b) 4分	算出 m1 與地面彈性碰撞後的速度為 v	1	
	算出 m2與 m1彈性碰撞後的速度為 3v	2	
	算出 m_2 向上的最高距離 $S=9h$	1	
(c) 5分	列出方程式: $u_{i+1} - u_i = -(v_{i+1} - v_i)$	1	
	化簡方程式得到: $u_{i+1} = 2u_i + v$	2	
	算出 <i>u_n</i> =(2 ⁿ -1) <i>v</i>	2	
(d) 3 分	算出數值 $v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 10} = 14 \text{ m/s}$	1	
	得出 n =10	2	

第2題評分標準:

小題	内容	得分	備註
(a) 2 分	氣體壓力 $p = (p_0 A + W)$ 或 $U_i = \frac{3}{2} NkT$ 。	1	
	得到 $U_{\rm i} = \frac{3}{2}(p_0 A + W)H$	1	
(b) 4 分	算出外力所作之功: $(F + p_0 A)H/2$	1	
	算出活塞力學能的變化量-WH/2_	1	
	列出熱力學第一定律:	4	
	$\Delta U - WH/2 = (F + p_0 A)H/2.$	1	
	求出 $\Delta U = (F + p_0 A + W)H/2$	1	
(c) 4 分	由熱力學第一定律得出: $\frac{3}{2}pA\left(\frac{H}{2}\right) = U_i + \Delta U$	2	
	算出 $p = \frac{4}{3} \left(\frac{U_1 + \Delta U}{AH} \right)$	2	
(d) 5 分	得出系統最後再度達到熱力學平衡時的內能: $U_{\rm f} = \frac{3}{2} \left(p_0 + \frac{W}{A} \right) \alpha H A.$	1	
	得出活塞重力位能的變化量: $W(\alpha H - \frac{H}{2})$	1	
	由熱力學第一定律得出:		
	$W\left(\alpha H - \frac{H}{2}\right) + \frac{3}{2}\left(p_0 + \frac{W}{A}\right)\alpha HA - \frac{3}{2}\left(p_0 + \frac{W}{A}\right)HA -$	2	
	$(F + p_0 A + W) \frac{H}{2} = -(p_0 A) \left(\alpha H - \frac{H}{2}\right).$		
	得出 $\alpha = 1 + \frac{F}{5(p_0 A + W)}$.	1	