Exercícios - Folha 2

5. Considere, no conjunto dos números inteiros, a operação binária definida por

$$m*n = \left\{ egin{array}{ll} m+n & \qquad & \mbox{se } m \mbox{ \'e par} \\ m-n & \qquad & \mbox{se } m \mbox{ \'e impar}. \end{array}
ight.$$

Mostre que $(\mathbb{Z},*)$ é um grupo não abeliano.

6. Considere o conjunto $G=\mathbb{Q}\setminus\{\frac{1}{2}\}$, munido da operação * definida por

$$a * b = a + b - 2ab, \forall a, b \in G.$$

Prove que (G,*) é um grupo comutativo.

- 7. Considere o conjunto $\mathbb{Z}[\sqrt{2}]=\{a+b\sqrt{2}:a,b\in\mathbb{Z}\}$. Mostre que:
 - (a) $\mathbb{Z}[\sqrt{2}]$ é um grupo para a adição usual dos números reais induzida em $\mathbb{Z}[\sqrt{2}]$;
 - (b) $\mathbb{Z}[\sqrt{2}]$ não é um grupo para a multiplicação usual dos números reais induzida em $\mathbb{Z}[\sqrt{2}]$.
- 8. Sejam (G,*) e (K,\circ) grupos. No produto cartesiano $G\times K$ considere definida a seguinte operação

$$(g,k)\otimes(g',k')=(g*g',k\circ k'), \qquad g,g'\in G, \quad k,k'\in K.$$

(a) Mostre que $(G \times K, \otimes)$ é um grupo.

Este grupo designa-se por produto direto do grupo (G,*) pelo grupo (K,\circ) e representa-se por $G\otimes K$.

- (b) Prove que o grupo $(G \times K, \otimes)$ é abeliano se e só se os grupos (G, *) e (K, \circ) forem abelianos.
- 9. Sejam G um grupo e $a, b \in G$.
 - (a) Mostre que:

i.
$$ab=ba\Leftrightarrow (ab)^2=a^2b^2;$$
 ii. $ab=ba\Leftrightarrow (\forall n\in\mathbb{Z})\,(ab)^n=a^nb^n.$

- (b) Mostre que $(aba^{-1})^n = ab^na^{-1}$, para todo $n \in \mathbb{Z}$.
- 10. Prove que se G é um grupo abeliano, então

$$A = \{ x \in G : (\exists n \in \mathbb{Z}) \ x^n = 1_G \}$$

 \acute{e} um subgrupo de G.

- 11. Sejam G um grupo e $A = \{n \in \mathbb{Z} : (\forall a \in G) \ a^n = 1_G\}$. Mostre que (A, +) é subgrupo de $(\mathbb{Z}, +)$, onde + é a adição usual de números inteiros.
- 12. Sejam G um grupo, H_1 e H_2 subgrupos de G. Mostre que:
 - (a) $H_1 \cap H_2$ é um subgrupo de G;
 - (b) $H_1 \cup H_2$ é um subgrupo de G se e só se $H_1 \subseteq H_2$ ou $H_2 \subseteq H_1$;
 - (c) H_1H_2 é subgrupo de G se e só se $H_1H_2=H_2H_1$.

Observação: Dados um grupóide S e $A, B \subseteq S$, representa-se por AB o conjunto $AB = \{ab \in S : a \in A \land b \in B\}$.

- 13. Seja G um grupo e $X, Y \subseteq G$. Mostre que:
 - (a) $X \subseteq Y \Rightarrow \langle X \rangle \subseteq \langle Y \rangle$;
 - (b) $X \subseteq Y \in Y \subseteq \langle X \rangle \Rightarrow \langle X \rangle = \langle Y \rangle$;
 - (c) o recíproco de (a) nem sempre é verdadeiro;
 - (d) $\langle \langle X \rangle \rangle = \langle X \rangle$.