Today's content.

- -> find pair [i,j] where a [i] = a [j] and (j-i) is minimum.
 - Longest sub-array with sum = 0
 - -> longest sequence of consecutive chements
 - -> { Implementation idea }

```
2-pointas.
       -> count the pair for given sum
(a) count of pairs such that sum = 10.
    a - 5 1 3 4 5 6 7 107 ans od.
   a - [ 1 3 4 4 5 6 7 10 ] ans -3.
    a- [ 1 3 4 4 5 6 6 6 7 10] ans -> 7
    a-[1344] 55556667 107
      1 + (2(1 + 3(1)) + 4(2) = 1+6+6 = 13
if (arr[i] + arr[j] = tor) $
              if (arr[i] = = arr[j]) {
                    count = j-i+1;

ans = (ount * count-1;
              lyt = aun[i], => lcount
night = aun[j]. => rcount
ans += lcount * rcount;
```

Hacking.

Enrollment in	105	7	nforma	lian
123	+	_ _ 9 ·	Jitende	יצי
412	+	>		-
416	+	→	_	
406	+	-		1
21979999	2			
	$\overline{}$	_		<u></u>

Array?

Index - room no

Loop-holes-?

memory. _ wastage

size = 10

ckey value Java	C++	Python C#
Hosh Map Hosh Map Truset Truset	unordered-map ordered.map mosp set	Dictionary. Set.

insert, delete, access, -> o(1)

Qi Given an array, find any pair (-i,j) such that

A[i] == A[j] and (j-i) is minimum.

We are looking closest duplicates.

Ali 2 3 6 1 2 3 2 1

Ans = T-5 = 2

B.f. -> Consider all paix -> O(N2)

A2: Fix one element.
You need to find the last occurrence
of that element.

> 7. (-> O(n) S. (-> O(n)

Qua Given an array. Find: largest subarray with sum=0. B.f. Consider all the sub-arrays = n(n+1). (1-3) T. (-> 0 (n2) ans = 8. 12K 11 K 6 9 - consider first occurence. ans - \$2 7 8. ans = max (ans, i- focacis);

THE food of sub-arrays with sum = 0

edge-conx.

					~	1
-3	2	8	6	-2	9	- 20
0	1	2	3	4	5	6

<u> </u>	
-3 → 0	
1 1	
7-91	
13 -> 1	
11 -9 1	
20 -1	
	L

$$\frac{|-3|-1|7|3|11|20|0}{0|1|2|3|4|5|6}$$

$$478 = 6 - (-1) = 7.$$

Qui liver an array. find the length of largest sequence which can be re-arranged to get consecutive elements. a - [3 8 29 4 28 12 10 2 11 9 5 8] ans-55 Al: Sort the array. [2345889 9 10 10 11 12 21 29] ans = 45

len = 1

len = 1

Curr = prev + 1 T.C., O(nlogn) 3 - [3,4,5] A2.:

- 1) Add all elements in the hashmap. o(n)
- 2 Consider only valid starting points. o(n)
- 3 8 28 2 9- 29- 3- - 0(n)
 10- 3- 1112- 2 4

$$T.(\rightarrow O(n)$$

$$S.C\rightarrow O(n)$$

Himplementation.

$$1 \% S = 1$$
 $6\% S = 1$
 $6\% S = 1$
 $6\% 10 = 6$
 $16\% S = 1$
 $16\% 10 = 6$
 $21\% 5 = 1$
 $21\% 10 = 1$
 $M = 5$
 $M = 10$

T.C.	Best.	Wirst
search	0(1)	0 (n)
ในระชา	0(1)	ป (ท)
update	Ø (1)	o(n)