

AD-A156 305

THE USE OF AUSTENITIC STAINLESS STEEL VERSUS MONEL  
(NI-CU) ALLOY IN PRESS. (U) NAVAL POSTGRADUATE SCHOOL  
MONTEREY CA B MARSH MAR 85

1/2

UNCLASSIFIED

F/G 6/11

NL





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS 1961 A

AD-A156 305

NAVAL POSTGRADUATE SCHOOL  
Monterey, California



THESIS

DTIC ELECTED  
S JUL 8 1985  
A

THE USE OF AUSTENITIC STAINLESS STEEL  
VERSUS MONEL (Ni-Cu) ALLOY  
IN PRESSURIZED GASEOUS OXYGEN (GOX)  
LIFE SUPPORT SYSTEMS

by

Bert Marsh  
March 1985

Thesis Advisor:

T.R. McNelley

Approved for public release; distribution is unlimited.

85 06 25 . 096

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | READ INSTRUCTIONS BEFORE COMPLETING FORM |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|
| 1. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. GOVT ACCESSION NO.                                                | 3. RECIPIENT'S CATALOG NUMBER            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AH-A156 3CS                                                          |                                          |
| 4. TITLE (and Subtitle)<br>The Use of Austenitic Stainless Steel Versus Monel (Ni-Cu) Alloy in Pressurized Gaseous Oxygen (GOX) Life Support Systems                                                                                                                                                                                                                                                                                                                                                | 5. TYPE OF REPORT & PERIOD COVERED<br>Master's Thesis;<br>March 1985 |                                          |
| 7. AUTHOR(s)<br>Bert Marsh                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6. PERFORMING ORG. REPORT NUMBER                                     |                                          |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Naval Postgraduate School<br>Monterey, California 93943                                                                                                                                                                                                                                                                                                                                                                                              | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS          |                                          |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Naval Postgraduate School<br>Monterey, California 93943                                                                                                                                                                                                                                                                                                                                                                                                  | 12. REPORT DATE<br>March 1985                                        |                                          |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                         | 13. NUMBER OF PAGES<br>132                                           |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15. SECURITY CLASS. (of this report)<br>Unclassified                 |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                           |                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                          |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Gaseous Oxygen (GOX), Life Support Systems, Monel, Austenitic Stainless Steel, Carbon Steel, Flame Propagation Rates                                                                                                                                                                                                                                                                                          |                                                                      |                                          |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>Gaseous oxygen (GOX) must be stored at pressures up to 24 MPa (3500 psi) to provide the flow rates required to support the metabolic needs of a diver. A review of the literature concerned with materials compatibility in pressurized oxygen systems was conducted, with emphasis on metallic structural materials. Review of experimental and theoretical work on combustion of austenitic stainless steels |                                                                      |                                          |

and nickel-copper alloys revealed a consensus that Monel nominal 63% Ni - 34% Cu) is preferred in high pressure oxygen systems, when its strength and weight are acceptable. At the intermediate pressures, 0.7 to 10.3 MPa (100 to 1500 psi), the relative safety of stainless steel as a structural material is unclear. The testing methods reviewed were friction rubbing, particle impact, fresh metal exposure to heated flowing GOX, promoted ignition and resonance. An experimental apparatus was used to simulate the conditions of GOX flow found in an operational diving set and to compare the flame propagation rates for austenitic stainless steel (AISI 316), Monel (63% Ni - 34% Cu) and carbon steel (AMS 5050) tubing in this environment.



Approved for public release; distribution is unlimited.

The Use of Austenitic Stainless Steel Versus Monel (Ni-Cu)  
Alloy in Pressurized Gaseous Oxygen (GOX) Life Support  
Systems

by

Bert Marsh  
Lieutenant Commander, United States Navy  
B.S., Oregon State University, 1974  
M.S., Oregon State University, 1975

Submitted in partial fulfillment of the  
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 1985

Author:

*Bert Marsh*

Bert Marsh

Approved by:

*T.R. McNelley*

T.R. McNelley, Thesis Advisor

*Kenneth J. Graham*

K.J. Graham, Co-Advisor

*P.J. Marto*

P. J. Marto, Chairman,  
Department of Mechanical Engineering

*J.N. Dyer*

J. N. Dyer,  
Dean of Science and Engineering

## ABSTRACT

Gaseous oxygen (GOX) must be stored at pressures up to 24 MPa (3500 psi) to provide the flow rates required to support the metabolic needs of a diver. A review of the literature concerned with materials compatibility in pressurized oxygen systems was conducted, with emphasis on metallic structural materials. Review of experimental and theoretical work on combustion of austenitic stainless steels and nickel-copper alloys revealed a consensus that Monel nominal (63% Ni - 34% Cu) is preferred in high pressure oxygen systems, when its strength and weight are acceptable. At the intermediate pressures, 0.7 to 10.3 MPa (100 to 1500 psi), the relative safety of stainless steel as a structural material is unclear. The testing methods reviewed were friction rubbing, particle impact, fresh metal exposure to heated flowing GOX, promoted ignition and resonance. An experimental apparatus was used to simulate the conditions of GOX flow found in an operational diving set and to compare the flame propagation rates for austenitic stainless steel (AISI 316), Monel (63% Ni - 34% Cu) and carbon steel (AMS 5050) tubing in this environment.

## TABLE OF CONTENTS

|       |                                                                |    |
|-------|----------------------------------------------------------------|----|
| I.    | INTRODUCTION -----                                             | 11 |
| II.   | LITERATURE REVIEW -----                                        | 15 |
|       | A. RANKING OF METALS -----                                     | 16 |
|       | B. METHOD OF IGNITION -----                                    | 20 |
|       | C. RESEARCH RESULTS GROUPED BY THEIR<br>IGNITION SOURCES ----- | 21 |
|       | 1. Kinetic Energy of Gas or<br>Entrained Particles -----       | 21 |
|       | 2. Friction -----                                              | 38 |
|       | 3. Foreign Materials/Softgoods<br>Ignition -----               | 52 |
|       | 4. Resistance (Joule) Heating -----                            | 56 |
|       | 5. Resonance -----                                             | 56 |
|       | 6. Mechanical Impact -----                                     | 59 |
| III.  | THE THEORY OF BULK METAL IGNITION -----                        | 61 |
| IV.   | EXPERIMENTAL PROCEDURE -----                                   | 67 |
|       | A. TEST OBJECTIVES -----                                       | 67 |
|       | B. DIVING EQUIPMENT SIMULATED -----                            | 68 |
| V.    | EXPERIMENTAL APPARATUS -----                                   | 71 |
|       | A. TEST SYSTEM -----                                           | 71 |
|       | 1. Data Acquisition -----                                      | 71 |
|       | 2. Test Sequence -----                                         | 73 |
| VI.   | RESULTS -----                                                  | 77 |
| VII.  | CONCLUSION -----                                               | 79 |
| VIII. | RECOMMENDATIONS -----                                          | 81 |

|                                                                                  |     |
|----------------------------------------------------------------------------------|-----|
| APPENDIX A: Computer Printout of Experimental<br>Results -----                   | 82  |
| APPENDIX B: List of Special Equipment Used at<br>White Sands Test Facility ----- | 123 |
| Appendix C: Calculation of Volume Flow Rates -----                               | 124 |
| Appendix D: Cleaning Specification -----                                         | 125 |
| Appendix E: Test Article (Typical) Composition-----                              | 127 |
| LIST OF REFERENCES -----                                                         | 128 |
| INITIAL DISTRIBUTION LIST -----                                                  | 131 |

## LIST OF TABLES

|      |                                                                                                                                                                                         |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| I    | Relative Ranking of the Resistance of Metals<br>and Alloys to Ignition and Combustion<br>Based on Different Authors and Test Methods;<br>Reproduced from Nihart and Smith [Ref. 9]----- | 17 |
| II   | Results of Nihart and Smith [Ref. 9] Promoted<br>Ignition Tests Conducted in a Static 7500 psi<br>Oxygen Environment -----                                                              | 18 |
| III. | Sources of Ignition Energy -----                                                                                                                                                        | 20 |
| IV   | List of Materials Tested for Impact<br>Sensitivity -----                                                                                                                                | 30 |
| V    | Effects of Temperature and Fresh Metal<br>Exposure on Ignition and Burn Behavior<br>of 304 Stainless Steel Taken from<br>[Ref. 6]-----                                                  | 33 |
| VI   | Effects of Temperature and Fresh Metal<br>Exposure on Ignition and Burn Behavior<br>of Monel 400 Taken from [Ref. 6]-----                                                               | 34 |
| VII  | Survey Results Taken from [Ref. 15]-----                                                                                                                                                | 48 |
| VIII | Friction Rubbing Results WSTF<br>Taken from [Ref. 15]-----                                                                                                                              | 51 |
| IX   | Experimental Results -----                                                                                                                                                              | 78 |

## LIST OF FIGURES

|      |                                                                                                                                                           |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.1  | Drastic Results of a GOX Fire in a Space Suite -----                                                                                                      | 13 |
| 3.1  | Theoretical Temperature Attained by<br>Adiabatic Compression Taken from [Ref. 9]-----                                                                     | 22 |
| 3.2  | Wegeners Results for Straight-Line Trial<br>Sections Taken from [Ref. 3]-----                                                                             | 26 |
| 3.3  | Wegeners Results for Curved Line<br>Trial Sections Taken from [Ref. 3]-----                                                                               | 27 |
| 3.4  | Results of Heinicke and Harenz Taken from<br>[Ref. 11]-----                                                                                               | 29 |
| 3.5  | Schematic Sectional View of High Pressure<br>Oxygen Test Cell Taken from [Ref. 6]-----                                                                    | 32 |
| 3.6  | Effects of Pressure, Temperature, and<br>Fresh Mean Exposure on Burning of 304<br>Stainless Steel. Specimen size:<br>1.03/1.52 mm (0.080/0.060 in.) ----- | 36 |
| 3.7  | Simplified Schematic of Shuttle Main<br>Propulsion System Oxygen Flow Control<br>Valve (FCV) Taken from [Ref. 13]-----                                    | 37 |
| 3.8  | Pretest Configuration of FCV -----                                                                                                                        | 39 |
| 3.9  | Post Test Position of FCV -----                                                                                                                           | 40 |
| 3.10 | Impact Results on Alternate Metals<br>Taken from [Ref. 13]-----                                                                                           | 41 |
| 3.11 | Schematic of Jenny and Wyssmann's Test<br>Apparatus for Ignition Tests -----                                                                              | 43 |
| 3.12 | Temperature and Friction Power Records<br>from Oxygen Tests ( $O_2$ ) with GGG 40 ( $S_s$ ) and<br>X20Cr13( $S_R$ ) -----                                 | 45 |
| 3.13 | Ranking of Tested Materials with Respect<br>to Ignition in Oxygen Taken from [Ref. 14]-----                                                               | 46 |
| 3.14 | WSTF Test Method Rating Taken from [Ref. 15]-----                                                                                                         | 47 |

|      |                                                                                                                   |    |
|------|-------------------------------------------------------------------------------------------------------------------|----|
| 3.15 | Schematic of Friction Rubbing Test Apparatus<br>Taken from [Ref. 15]-----                                         | 49 |
| 3.16 | Chamber exploded view Taken from [Ref. 15]-----                                                                   | 50 |
| 3.17 | CGA Curve of Vel/Pressure Taken from<br>[Ref. 18]-----                                                            | 55 |
| 3.18 | Phillips resonance Tee Configuration<br>Taken from [Ref. 22]-----                                                 | 57 |
| 3.19 | Ignition of 13 mg of Aluminum Fiber for an<br>Inlet Stagnation Pressure of 1270 psia<br>Taken from [Ref. 22]----- | 58 |
| 4.1  | Factors Effecting Metals Ignition<br>Taken from [Ref. 26]-----                                                    | 62 |
| 4.2  | Curve of Ignition Mechanisms by<br>Glassman Taken from [Ref. 28]-----                                             | 63 |
| 4.3  | Summary Plot of $q$ versus $T_s$<br>Taken from [Ref. 28] -----                                                    | 64 |
| 5.1  | The USN Mk 15 UBA Full View Without<br>Back Cover -----                                                           | 68 |
| 5.2  | Close up view of the USN Mk 15 UBA Oxygen<br>Assembly -----                                                       | 69 |
| 6.1  | Test System Schematic -----                                                                                       | 72 |
| 6.2  | Control Room Panel During Test 243.06 -----                                                                       | 73 |
| 6.3  | Overview of Test Site Showing Relationship<br>of the High Speed Video to the Test Article-----                    | 74 |
| 6.4  | Close up of Test 243.14 Carbon Steel<br>T.A. in Vertical Orientation -----                                        | 75 |

#### ACKNOWLEDGEMENT

The author would like to express his appreciation to Mr. Kenneth Graham for the enthusiastic assistance and guidance he provided throughout the course of this research. His advice and efforts were instrumental in bringing this thesis to fruition.

The editorial assistance provided by Dr. Terry McNelley, Associate Professor of Mechanical Engineering, was greatly appreciated.

Special recognition is deserved for the contribution of Commander Raymond Swanson, USN, who provided the initial impetus and full financial support for this research.

Finally, to the staff at NASA White Sands Test Facility the author wishes to express deep appreciation for your unqualified support. Without your cooperation and technical assistance the experimental portion of this research would have been impossible. The enthusiasm and "can do" spirit of Messrs. Frank Benz, Barry Plante and Don Hall of NASA and Messrs. Craig Bishop and John Homa of Lemsco Lockheed, was truly exceptional.

## I. INTRODUCTION

A diving system must store and deliver in metered quantities varying breathing mixtures to support the metabolic GOX requirement that underwater search salvage and construction place on a diver. The exact percentage of oxygen in the breathing gas mixture is determined by the intended mission and environmental conditions of a specific diving task.

Mixtures range from 3% oxygen - 97% helium to 100% oxygen.

The respiratory minute volume (the product of the tidal volume of the human lung times the number of respirations per minute) gives a consumption rate for the oxygen. This rate may vary from 0.5 to 4.0 standard liters per minute (SLPM) depending on the exertion rate of the diver. When long distance swimming or deep ocean work is involved the high exertion levels combine with the restricted oxygen storage space availability to dictate that pressures in excess of 20.7 MPa (3000 psi) be used in the storage of oxygen. The higher pressure levels allow storage of the required volumes but result in material compatibility problems. Storage vessels, piping or tubing for delivery and pressure reduction and regulation equipment are required to be constructed of materials which are able to support large internal and external loads while providing corrosion resistance as well as resistance to ignition and combustion in an oxygen environment.

Catastrophic failures within an oxygen system often destroy the system (see Figure 2.1), thus limiting failure analysis. The impact of an oxygen system failure is at least the loss of oxygen supply to the diver with the possibility that a total conflagration will consume the diver, and/or the entire system. Such dire consequences and the difficulties experienced in determining the cause of an oxygen fire mandate careful design of all diving systems. Design criteria must include strict specification of the materials for the construction of the equipment. Only certain nonmetals and metals are recognized as being compatible with oxygen service.

This research was conducted as a review of the open literature. Information concerning the compatibility of metals with pressurized GOX was critically reviewed. Attempts to quantify the relative resistance of specific alloys to ignition and combustion were of special interest. The initial review revealed a lack of a uniform theory - one which can quantitatively cover all metals ignition and combustion processes and successfully rank metals for a variety of applications. The experimental evidence is confused and in many instances conflicting due in a large part to the myriad of testing procedures adopted. Markstein in 1963 [Ref. 1], found a lack of understanding of combustion in bulk metals due to a "relatively small research effort" and "certain distinct aspects of metal combustion." Presently, the lack of an integrated test procedure is responsible for the conflicting results found in the more recent research.



Figure 2.1. Drastic Results of a GOX Fire in a Space Suit.  
Photo Courtesy of NASA White Sands.

This confusion about and the variance in the ordering of metals and alloys with respect to their ignition and combustion susceptibility, has resulted in a tendency to conduct specific testing of design configurations. A worst case scenario is devised and a safety factor applied to the testing conditions. This approach does not offer a theoretical solution which will effectively describe bulk metal ignition and combustion; rather it supplies an engineering acceptance criterion for one application.

Currently, the National Aeronautics and Space Administration (NASA), the National Bureau of Standards (NBS), the Japanese government and industry in addition to many independent researchers are attempting to develop a coherent theory of bulk metal ignition and combustion. From the literature surveyed, the majority of experimental procedures attempted were conducted in static pressure environments. Reports of burn rates for flowing systems are sparse. In this work, an experimental apparatus was used to simulate the flow conditions found in an operational diving set when ignition from an unknown source opens the interior of tubing carrying GOX under pressure to atmospheric pressure. A comparison was conducted of the propagation rates for combustion of the tubing in such a system for AISI 316 austenitic stainless steel, Monel (63% Ni - 34% Cu), and AMS 5050 carbon steel.

## II. LITERATURE REVIEW

Early research into metal combustion was spurred by attempts to utilize the high level of energy released in the rapid oxidation of metals. The flashbulb, with its source of light being the combustion of a metal, was one of the first utilizations and was followed by research into the combustion of powdered metals as a source of high temperature flame. The advent of life support systems and the move to the use of propulsion oxidizers in the aerospace industry has continued the emphasis on research in the ignition and combustion processes of metals [Ref. 2].

Oxygen systems safety has been studied extensively by the U.S. Bureau of Mines since 1923. Abroad guidelines on the use of steel pipelines in compressed gas applications including oxygen systems were issued by the Reichminister of Industry and the Reichminister of Labor in Germany in 1942, which demonstrates the long standing concern with oxygen system safety [Ref. 3].

More recently, the Defence Metals Information Center [Ref. 4], the National Aeronautics and Space Administration, [Ref. 5], and the Department of Energy [Ref. 6], have commissioned extensive literature reviews and sponsored additional research into the ignition and combustion of metals in oxygen environments.

The U.S. Navy has commissioned two recent reviews - one by Purcell and Kreidt in 1969, and one by Hersh in 1974 - in addition to sponsoring investigations into several oxygen fires, all with a primary goal of defining the compatibility of metals with oxygen service.

#### A. RANKING OF METALS

All literature reviews conclude that there is confusion as to the ranking of metals with respect to their compatibility with oxygen. An example of the confusion is shown in Table I which compares the results of earlier (unpublished) work done at Linde with the work done by Dean and Thompson [Ref. 8]. Note the reversal of the respective position of Aluminum. Dean and Thompson rank Aluminum at the top of their list (most resistant), while in the promoted ignition tests at 13.8 MPa (2000 psi) Aluminum was ranked as the least resistant to ignition and combustion. Nihart and Smith, in reporting their experimental results (see Table II) have developed their own ranking of metals in order of resistance to ignition and combustion.

The difference in ranking of various metals between Dean and Thompson's<sup>1</sup> and Nihart and Smith's test results can be attributed to the differences in methods and objectives of their respective research. Nihart and Smith were concerned

---

<sup>1</sup>Dean and Thompson do not specifically rank their results in tabular form but instead present graphical data and draw conclusions from the graphs.

TABLE I

Relative Ranking of the Resistance of Metals and Alloys  
To Ignition and Combustion Based on Different Authors and  
Test Methods; Reproduced from Nihart and Smith [Ref. 9]

| <u>Dean and Thompson (3)</u> | <u>Velocity Impact</u> | <u>Promoted Ignition</u> |
|------------------------------|------------------------|--------------------------|
| <u>50-800 psi</u>            | <u>50-100 psi</u>      | <u>2000 ps'</u>          |
| Aluminum                     | **Monel                | **Monel                  |
| Nickel A                     | **K-Monel              | **Inconel 600            |
| *Hastelloy C                 | ***Tobin bronze        | **Monel S                |
| **Monel                      | Copper                 | ***Tobin bronze          |
| *Hastelloy X                 | Steel                  | **Duranickel             |
| **Inconel X                  | 18-8 stainless steel   | *****Ampco alloy No. 15  |
| *Hastelloy R                 | Aluminum               | **Permanickel            |
| Copper                       |                        | *K-monel                 |
| *Haynes 25                   |                        | *Hastelloy R-235         |
| *Multimet                    |                        | Maraging Steel           |
| 18-8 Stainless Steel         |                        | Beryllium                |
| Other Stainless Steel        |                        | Copper                   |
| Carbon Steel                 |                        | *****Elgiloy             |
| Titanium                     |                        | ****Rene' 41             |
|                              |                        | **Inconel X-750          |
|                              |                        | *Multimet                |
|                              |                        | *Hastelloy X             |
|                              |                        | *Haynes 25               |
|                              |                        | ***Everdur               |
|                              |                        | 18-8 Stainless Steel     |
|                              |                        | Aluminum                 |

TRADEMARKS

- \*Union Carbide Corporation, Stellite Division
- \*\*The International Nickel Company, Inc.
- \*\*\*Anaconda American Brass Company
- \*\*\*\*General Electric Company
- \*\*\*\*\*Ampco Metal, Inc.
- \*\*\*\*\*Elgin National Watch Company

TABLE II

Results of Nihart and Smith [Ref. 9] Promoted Ignition Tests Conducted in a Static 7500 psi Oxygen Environment

| Metal or Alloy                         | Weight of Neoprene to Completely Combust Standard Specimen<br>5 mm x 30 mm x 0.005" |
|----------------------------------------|-------------------------------------------------------------------------------------|
| Gold                                   | Only melts                                                                          |
| Silver                                 | Only melts                                                                          |
| Nickel                                 | 48 to 56 mg                                                                         |
| Monel alloy 400                        | 18 to 19 mg                                                                         |
| Yellow Brass (partial combustion only) | 11.8 to 15.2 mg                                                                     |
| Inconel alloy 600                      | 13.2 mg                                                                             |
| Aluminum                               | 11.0 to 16.4 mg                                                                     |
| Copper                                 | 10.5 mg                                                                             |
| Inconel alloy X-750                    | 9.0 mg                                                                              |
| Stainless Steels                       | 7.1 to 8.5 mg                                                                       |

Estimated from results of a number of tests which were either standard with only part of the specimen consumed or were not standard and either complete or partial combustion occurred.

with the possible ignition of a storage system that would maintain a 51.7 MPa (7500 psi) internal pressure of GCX. They considered several testing methods, finally deciding on a promoted ignition test within a combustion bomb charged to a static internal oxygen pressure of 51.7 MPa (7500 psi). Dean and Thompson were concerned with a rocket motor combustion chamber where structural metals would experience extended periods of exposure to high temperatures. Their method of testing involved resistance heating of different metal tubing types in a flowing system, which had various gas mixtures flowing over the exterior of the test specimens. A detailed analysis of the differences in these results can be found in Ref. 7.

The significance of the variation in the ranking of metals within these two research efforts is simply that the method of testing was decided upon with a specific configuration in mind. An inherent problem in much of the reported work is the tendency to conduct tests which will quantify compatibility of specific metals for an intended application, which often precludes comparison of results.

An additional contributing problem with research into metals compatibility with oxygen is the tendency for proprietary rights to discourage open publication of commercially-backed research.

## B. METHOD OF IGNITION

The chemical kinetics and the mode of heat transfer of the rapid oxidation products are dependent on the method by which energy is added to the system. The experimental procedures used in studying metal ignition reflect the variety, and individual investigators evaluation of the significance of a specific ignition source. It is useful to review results within the appropriate category of ignition sources. This associates research which shares the same basic assumptions. A listing of the major categories of ignition sources considered in this review is given in Table III.

TABLE III  
SOURCES OF IGNITION ENERGY

1. Kinetic Energy of Gas or Entrained Particles
2. Friction
3. Foreign Material/Softgoods Ignition
4. Resistance (Joule) Heating
5. Resonance
6. Mechanical Impact

Table III is not as comprehensive as that produced by Benz [Ref. 15] and Stolfzfus,<sup>2</sup> but it does encompass the methods chosen by a steering committee that is currently directing research into the ignitability of metals in oxygen.

---

<sup>2</sup>See Table VII.

## C. RESEARCH RESULTS GROUPED BY THEIR IGNITION SOURCES

### 1. Kinetic Energy of Gas or Entrained Particles

The early work of Nihart and Smith [Ref. 9] included testing of the possibility of heating the entrained GOX in a system via adiabatic compression of the gas. An example of adiabatic compression would be the result of the rapid opening of a valve with a large pressure differential between the upstream and downstream sections with the downstream section dead-ended. Theoretical calculation of the temperature rise that would accompany a very rapid compression is based on the assumption that GOX behaves like a perfect gas. Therefore, Equation 3.1 should predict the temperature rise of the gas in a piping system that experiences a rapid compression.

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{N-1}{N}} \quad (\text{eqn 3.1})$$

The temperatures which are theoretically obtainable are graphed in Figure 3.1. For a sudden rise in pressure from ambient to 48.2 MPa (7000 psi) the temperature predicted would be above 1400°C, which is at or above the predicted ignition temperatures of several metals when they are exposed to pure oxygen at high pressures. Nihart and Smith intended to test the ability of adiabatic compression to raise the temperature of metals to their ignition points. However, in preliminary testing which involved pressurizing a 1.3 m (51 inch) section of 0.8 cm (5/16 inch) diameter pipe from ambient pressure to 45.8 MPa (6650 psi) the maximum temperature



Figure 3.1. Theoretical Temperature Attained by Adiabatic Compression Taken from [Ref. 9]

attained was 378°C, approximately 1/3 of the theoretical prediction. The assumption of an adiabatic compression and the treatment of oxygen as a perfect gas, which does not change its specific heat in rapid compression, was an over

simplification. The mixing of the compressing gas with the gas in the pipe prior to compression and the changing value of the specific heat of oxygen with pressure invalidate the assumption of dieseling (rapid adiabatic compression) as a source of temperatures in the range that would ignite metals. The temperatures attainable are well within the range which would ignite nonmetal components as Nihart and Smith found in testing Kel-F81, Viton A and virgin Teflon (all commonly found softgoods in oxygen systems). Therefore, dieseling is not a direct ignition hazard to metals but may ignite components of an oxygen system and lead to the rupture of the structural metal and possible ignition. [Ref. 9]

Most researchers recommendation, that any valve installed in an oxygen system be "slow acting" is a conscious safety precaution that is accepted by all military and civilian designers and operators of pressurized oxygen systems. It is valid and necessary and should be incorporated into any design manual or operating procedure established by any diving authority.

deJassy [Ref. 10] addressed the affect of a change in the specific heat of oxygen and concluded that dieseling was a source of ignition of softgoods or contaminates only. His research effort then centered on the possible temperature rise in piping due to particle abrasion or impact. To test the possibility that particle abrasion could produce temperatures which could ignite metals deJessey developed an

initial trial section which included a large spiral followed by a plexiglass chamber. By injecting carbon steel balls individually (each one 0.3 mm in diameter) and accelerating them with the GOX flow their temperature rise could be measured by the color they exhibited while passing through the plexiglass chamber. At speeds of 300 m/s (1000 ft/s) the carbon steel balls were seen to glow red hot. This result encouraged the construction of a more elaborate test rig with multiple bends, tees, and small radius ( $2.5 \times$  diameter) curves. The testing was all done on carbon steel pipe as the research was aimed at determining the maximum flow velocity which would be acceptable in long distance GOX pipelines passing from one industrial center to another through the French countryside. deJassy was only able to ignite carbon steel pipe of diameter 3.0 cm (1.2 inches) with steel cuttings as the particles injected. He concluded that there was no direct danger from particle abrasion as the normal construction and maintenance of oxygen pipelines should eliminate all contaminates that would be capable of ignition themselves or of igniting the steel pipeline. Industrial experience suggested to deJassy that care in installation and an inert gas flush prior to the first use of the pipeline would render carbon steel pipelines safe for a velocity up to 60 m/s (180 ft/s), a conservative maximum. [Ref. 10]

In the middle 1960's German industrial pipelines were built and used under the earlier cited regulations, which

restricted the velocity of GOX in carbon steel pipelines to 8 m/s (26 ft/s). Wegener [Ref. 3] conducted numerous experiments simulating the introduction of contaminate particles into a flowing stream of GOX where restrictions and short radius bends would result in heating due to friction and impingement. The apparatus utilized by Wegener allowed the injection of particles of contaminates into long (40m) trial sections via a bypass section which could be isolated and loaded with 1-3 kg of the solid contaminate. This experiment was conducted using mass introduction of contaminate vice the single particle injection technique. Control of the inlet pressures and the velocity of the GOX at the inlet allowed repeated trials with a variety of contaminates that varied from nonorganic sand to coke and stone coal. The results of Wegener's work can be seen in Figures 3.2 and 3.3.

The inorganic solids were safe at pressures up to 28 ATM (412 psi) and a velocity of 53 m/s (174 ft/s). With welding cinder and coke, ignition of the entrained particles occurred at a velocity as low as 13 m/s (42.9 ft/s). This result stresses the importance of flushing an installation of pipe with inert gas prior to placing it into service.

Wegener was unable to predict precisely the energy input into the system as turbulent flow and mass injection of the contaminate precluded the direct calculation of the kinetic energy of each particle. The measurement of the energy input which produces an ignition is critical in the

|                                                              |                       | Flow velocity $w$ and press. $p$ . of oxygen at start (index 1) and at end (index 2) |                       |                       |                 | No. of tests and Results <sup>1)</sup> |
|--------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------|----------------------------------------|
| Added Solids                                                 | $\omega_1$<br>In m/s  | $\rho_1$<br>In ata                                                                   | $\omega_1$<br>In m/s  | $\rho_1$<br>In ata    |                 |                                        |
| Test conditions and results with straightline trial section. | sand                  | 18<br>33<br>51                                                                       | 28<br>26<br>27        | 19<br>37<br>84        | 27<br>23<br>16  | 1-,<br>2-,<br>3-                       |
|                                                              | rust                  | 33<br>44<br>51                                                                       | 25<br>28<br>27        | 37<br>57<br>84        | 22<br>22<br>16  | 2-,<br>2-,<br>2-                       |
| fluedust accumul.                                            | 29 bis 33<br>44<br>51 | 25<br>28<br>27                                                                       | 33 bis 37<br>57<br>84 | 22<br>22<br>16        | 22<br>22<br>16  | 2-,<br>2-,<br>2-                       |
|                                                              | mill cinder           | 33<br>44<br>51                                                                       | 25<br>28<br>27        | 37<br>57<br>84        | 22<br>22<br>16  | 1-,<br>2-,<br>2-                       |
| welding cinder                                               | 33<br>41<br>51        | 25<br>29<br>27                                                                       | 37<br>57<br>84        | 22<br>22<br>16        | 22<br>22<br>16  | 1-,<br>1-,<br>2+                       |
|                                                              | coke                  | 29 bis 33<br>44<br>51                                                                | 25<br>29<br>27        | 33 bis 37<br>57<br>84 | 22<br>23<br>16  | 2-,<br>2+,<br>2+                       |
| stone coal                                                   | 11<br>13<br>18        | 29<br>22 bis 29<br>20 bis 20                                                         | 11<br>13<br>19        | 22 bis 29<br>13<br>19 | 29<br>19 bis 28 | 1-,<br>3-,<br>4+                       |

1) + = sparks observed, - = no sparks observed.

Figure 3.2. Wegeners Results for Straight-Line Trial Sections.  
Taken from [Ref. 3]

| Added<br>solids                       | Flow velocity $w$ and press. p. of<br>oxygen at start (index 1) and at<br>end (index 2)                               |                                                                                                                        |                                                                                                                                                |                                                                                                                |                                                                                                                                   | $\rho_1$<br>in ata                                                                                                                      | $\omega_1$<br>in m/s | No. of<br>tests<br>and<br>results |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|
|                                       | $\omega_1$<br>in m/s                                                                                                  | $\rho_1$<br>in ata                                                                                                     | $\omega_1$<br>in m/s                                                                                                                           | $\rho_1$<br>in ata                                                                                             |                                                                                                                                   |                                                                                                                                         |                      |                                   |
| sand                                  | 30 bis 32<br>43 bis 44                                                                                                | 28 bis 29<br>25 bis 28                                                                                                 | 3 bis 36<br>55 bis 57                                                                                                                          | 25 bis 26<br>21 bis 22                                                                                         | 4-                                                                                                                                | 4-                                                                                                                                      |                      |                                   |
| rust                                  | 52                                                                                                                    | 28 bis 29                                                                                                              | 82                                                                                                                                             | 18                                                                                                             | 3-                                                                                                                                | 3-                                                                                                                                      |                      |                                   |
| flue dust<br>accumulated              | 30 bis 32<br>43 bis 44                                                                                                | 28 bis 29<br>25 bis 28                                                                                                 | 33 bis 36<br>55 bis 57                                                                                                                         | 25 bis 26<br>21 bis 22                                                                                         | 5-                                                                                                                                | 5-                                                                                                                                      |                      |                                   |
| millcinder                            | 52 bis 53<br>29 bis 32<br>42 bis 44                                                                                   | 29 bis 29<br>28 bis 29<br>27 bis 29                                                                                    | 82 bis 85<br>30 bis 36<br>55 bis 57                                                                                                            | 17 bis 18<br>25 bis 26<br>21 bis 22                                                                            | 18-<br>4-                                                                                                                         | 18-<br>4-                                                                                                                               |                      |                                   |
| weldingcinder                         | 52<br>13<br>17<br>28<br>42 bis 44<br>50 bis 33<br>42 bis 44<br>50 bis 52<br>17<br>30 bis 32<br>42 bis 44<br>52 bis 53 | 29<br>29<br>29<br>28 bis 29<br>27 bis 29<br>27 bis 29<br>27 bis 29<br>27 bis 29<br>28 bis 29<br>27 bis 29<br>27 bis 28 | 82<br>13<br>18<br>31<br>55 bis 57<br>82 bis 85<br>53 bis 57<br>82 bis 83<br>18<br>33 bis 36<br>55 bis 57<br>82 bis 85<br>17 bis 18<br>26<br>18 | 18<br>18<br>28<br>26<br>21 bis 22<br>17 bis 18<br>21 bis 22<br>17 bis 18<br>28<br>25 bis 26<br>21 bis 22<br>18 | 16-<br>11-, 2+<br>5-, 9+<br>3-, 9+<br>fire after 1. elbow                                                                         | 16-<br>11-, 2+<br>5-, 9+<br>3-, 9+<br>fire after 1. elbow                                                                               |                      |                                   |
| submerged arc<br>welding slag<br>coke |                                                                                                                       |                                                                                                                        |                                                                                                                                                |                                                                                                                | 2-                                                                                                                                | 2+                                                                                                                                      |                      |                                   |
| stone coal                            | 13<br>13<br>32<br>mixture of 20%<br>iron powder and<br>80% sand                                                       | 29<br>29<br>29<br>13<br>29<br>42                                                                                       | 85<br>13<br>36<br>13<br>31<br>29                                                                                                               | 18<br>29<br>26<br>29<br>26<br>22                                                                               | fire after 4. elbow<br>fire on several spots<br>fire after 2. elbow<br>2+<br>1-, 2+<br>fire after 3. elbow<br>fire after 3. elbow | 2-<br>fire after 4. elbow<br>fire on several spots<br>fire after 2. elbow<br>2+<br>1-, 2+<br>fire after 3. elbow<br>fire after 3. elbow |                      |                                   |

1) + = sparks observed, - = no sparks observed

Figure 3.3. Wegeners Results for curved fine trial Section.  
Taken from [Ref. 3]

development of a theoretical solution. Thus, mass particle injection may simulate possible conditions in an operating systems but it does not lend itself to a theoretical treatment of bulk metal ignition.<sup>3</sup>

Heinicke recorded similar results to those of Wegener [Ref. 11], utilizing curved test sections. He observed no reaction from inorganic contaminates but spark and fire production in powdered iron and mill cinder test (see Figure 3.4).

Heinicke defines tribomechanical stress as producing a state of lattice distortion which allows rapid oxidation and an "ensemble effect", which in turn produces temperatures capable of igniting steel pipe. This result is based on earlier work by Heinicke [Ref. 12] where he reports a change in the activation energy of iron in oxidation by oxygen from 0.16 Kcal/mol when a tribochemical reaction was present versus the standard value of 13 Kcal/mol under normal nonfrictionally stressed conditions. [Ref. 11]

As a result of his investigations Heinicke recommended that an inert gas flush may not be complete enough when a GOX production facility is started up for the first time; rather the combination of an inert gas flush followed by a mixture of 10% oxygen and an inert gas should be used.

---

<sup>3</sup>Wegener experienced several blowouts/fires which always occurred after an elbow but he did not see combustion progressing in the opposite direction to the flow.

| Added solid<br>Material | speed<br>m/s | range   | No. of tests      |             |                |
|-------------------------|--------------|---------|-------------------|-------------|----------------|
|                         |              |         | pressure<br>range | +<br>sparks | -<br>no sparks |
| sand                    | 30 - 36      | 25 - 29 | 4                 | -           |                |
|                         | 43 - 57      | 21 - 28 | 3                 | -           |                |
|                         | 52 - 82      | 18 - 29 | 12                | -           |                |
| <hr/>                   |              |         |                   |             |                |
| Mixt. of                |              |         |                   |             |                |
| 80% sand                | 13           | 29      | 2                 | +           |                |
|                         | 28 - 34      | 26 - 29 | 1                 | - , 2+      |                |
| 20% powd. iron          | 28 - 34      | 26 - 29 | Fire              |             |                |
|                         | 42 - 56      | 22 - 29 | Fire              |             |                |
| <hr/>                   |              |         |                   |             |                |
| Mill Cinders            | 28 - 36      | 26 - 29 | 11                | - , 2 +     |                |
|                         | 42 - 57      | 22 - 27 | 5                 | - , 9 +     |                |
|                         | 52 - 82      | 18 - 29 | 3                 | - , 4 +     |                |
|                         | 52 - 82      | 18 - 29 | Fire              |             |                |

Figure 3.4. Results of Heinicke and Harenz Taken from [Ref. 11]

Bates and Monroe et. al. [Ref. 6] at the Southern Research Institute were commissioned by the Department of Energy to study the feasibility of and the material compatibility problems involved in producing compressors for high BTU gas production from coal. This process requires large volumes of GOX at 68 to 102 atm (1000 to 1500 psig). Large in this context can mean 28 to 57 standard cubic meters per second (SCMS) (60,000 to 120,000 SCFM). The internal conditions expected within such a compressor were estimated at the extreme to be 68 atm (1000 psig) with GOX at 149-260°C (300-500°F) and a gas velocity of MACH 0.7 to 0.8.

One test conducted was a single particle impact test using 0.016 cm (0.04 inch) diameter silicon beads as the projectiles. Individual particles travelling at 427 m/s (1400 fps) in GOX with an internal pressure of 68 atm (1000 psig) striking gauge/notched specimens with 0.03/0.024 cm (0.08/0.06 inch) diameters, which were preheated to temperatures up to 824°C (1550°F), were used to test the materials listed in Table IV. With one exception, a single sample of

TABLE IV  
List of Materials Tested for Impact Sensitivity

1. Carbon Steel AISI 1025
2. AISI 4140
3. Ductile Iron
4. 304 Stainless Steel
5. 17-4 PH Stainless Steel
6. 410 Stainless Steel
7. Lead Babbitt
8. Tin Babbitt
9. Inconel 718
10. Aluminum 1100

AISI 4140 steel, all the results were negative (no ignitions). The single exception was with a sample of 4140 steel which was preheated to  $638^{\circ}\text{C}$  ( $1180^{\circ}\text{F}$ ); however, Bates and Monroe were unable to duplicate this result [Ref. 6].

Testing of various geometries such as thin wire, tubing, or samples shaped in the form of a notched tensile test sample, has been conducted in varying pressures of heated gas in both static and flowing conditions. The results of these tests are inconclusive. The build-up of an oxide layer which (in most structural metals used in GOX compressor construction) is responsible for an increase in the ignition temperature of the metal means that flow of GOX over a metallic surface may increase its safety by raising its ignition temperature. However, should the protective oxide layer be disturbed by penetration, cracking or spalling its protective capability will vanish, in fact with the flow of oxygen rapid oxidation is promoted on such a fresh surface. This reversal of the nature of the oxide layer lead Bates and Monroe to test specimens of commonly used metals in a flowing GOX system under fresh exposure conditions. A schematic drawing of the test apparatus can be seen in Figure 3.5.

Bates' and Monroe's testing procedure was based on the assumption that within an oxygen compressor exposure of fresh surface to GOX at elevated temperatures and velocities up to Mach 0.85 presents a serious ignition hazard. From Figure 3.5 the design of the test cell shows that a torsional



Figure 3.5. Schematic Sectional View of High Pressure Oxygen Test Cell. Taken from [Ref. 6]

stress applied by rotating the grips would break and expose the specimen to the preset temperature, pressure and velocities of flowing GOX. In addition the power supply of electrical current through the test specimen allowed resistance heating of the specimen. Their test matrix was extensive including all the alloys of Table IV while varying the GOX temperature, the specimen temperature and the gauge size of the specimens. All of the specimens were freshly exposed by a break due to torsional stress. Results for AISI 304 Stainless Steel are comparable to those of Monel 400 as can be seen in Tables V and VI.

TABLE V

Effects of Temperature and Fresh Metal Exposure on  
Ignition and Burn Behavior of 304 Stainless Steel,  
AISI 304

Taken from [Ref. 6]

| <u>Specimen Number</u> | <u>Temperature, °F</u> | <u>Specimen Gauge</u> | <u>Specimen Diameter Gauge/Notch, In.</u> | <u>Ignition or Burn</u>                 |
|------------------------|------------------------|-----------------------|-------------------------------------------|-----------------------------------------|
| A92                    | 400                    | 519                   | .80/.060                                  | No ignition                             |
| B5                     | 300                    | 500                   | .80/.060                                  | No ignition                             |
| B61                    | 300                    | 500                   | .060/.045                                 | No ignition                             |
| B611                   | 300                    | 500                   | .060/.045                                 | No ignition                             |
| B71                    | 300                    | 500                   | .040/.030                                 | No ignition                             |
| B711                   | 300                    | 500                   | .040/.030                                 | No ignition                             |
| A90                    | 430                    | 1030                  | .080/.060                                 | Half gauge burned,<br>quenched at shank |
| A91                    | 400                    | 1095                  | .080/.060                                 | Half gauge burned,<br>quenched at shank |
| B81                    | 320                    | 1000                  | .060/.045                                 | Consumed part of gauge                  |
| B811                   | 310                    | 1000                  | .060/.045                                 | Consumed gauge                          |
| B91                    | 310                    | 1000                  | .040/.030                                 | Consumed part of gauge                  |
| B911                   | 330                    | 1000                  | .040/.030                                 | Consumed part of gauge                  |

TABLE VI

Effects of Temperature and Fresh Metal Exposure on Ignition and Burn Behavior of Monel 400  
Taken from [Ref. 6]

| <u>Specimen Number</u> | <u>Temperature, °F</u> | <u>Oxygen Specimen</u> | <u>Specimen Diameter Gauge/Notch, In.</u> | <u>Ignition or Burn</u>              |
|------------------------|------------------------|------------------------|-------------------------------------------|--------------------------------------|
| A85                    | 310                    | 500                    | .080/.060                                 | Localized ignition and quench        |
|                        | 380                    | 1500                   | .080/.060                                 | Ignition, local burn, self-quench    |
| A86                    | 310                    | 1000                   | .080/.060                                 | Ignition and quench                  |
|                        | 325                    | 1500                   | .080/.060                                 | Ignition, local burn, quench         |
| A153I                  | 325                    | 1500                   | .060/.045                                 | Local burn and quench                |
|                        | 300                    | 1500                   | .060/.045                                 | Local burn and quench                |
| A153II                 | 330                    | 1000                   | .060/.045                                 | Ignition and quench                  |
|                        | 325                    | 1000                   | .060/.045                                 | Ignition and quench                  |
| A154I                  | 330                    | 1000                   | .060/.045                                 | Ignition and quench                  |
|                        | 300                    | 1000                   | .040/.030                                 | Ignition and local burn, self-quench |
| B49II                  | 310                    | 500                    | .040/.030                                 | No ignition                          |
|                        | 300                    | 500                    | .040/.030                                 | No ignition                          |
| B49III                 | 320                    | 500                    | .040/.030                                 | No ignition                          |
|                        | 300                    | 500                    | .080/.060                                 | Ignition and quench                  |
| B49IV                  | 300                    | 500                    | .080/.060                                 | Ignition and quench                  |
|                        | 300                    | 500                    | .060/.045                                 | Ignition and quench                  |
| B109II                 | 300                    | 500                    | .060/.045                                 | No ignition                          |
|                        | 300                    | 500                    | .060/.045                                 | No ignition                          |

The Monel ignited in several tests with the specimen temperatures at or below 538°C (1000°F) for several gauge sizes, in fact, Table VI records ignitions of Monel 400 at specimen temperatures as low as 260°C (500°F), while Table V shows no ignition of AISI 304 with any specimen temperature below 538°C (1000°F)<sup>4</sup>.

To assume that AISI 304 is superior based on these results is inappropriate as the importance of the labels ignition and quench and ignition and burn is not clearly defined in the table legends but the difference is significant in Bates and Monroe's opinion. By extensive testing of AISI 304 as shown in their results (see Figure 3.6), Bates and Monroe develop an envelope of safe operations which would encompass a GOX compression process. Within the parameters that describe the compression of GOX from ambient pressure to 68 ATM (1500 psig) a margin of safety for AISI 304 can be found<sup>5</sup>. For AISI 304 the safety margin at 2.6 MPa (385 psi) was 260°C (500°F) at 5.2 MPa (750 psi) the safety margin was 149°C (300°F) and at 6.9 MPa (1000 psi) it was 121°C (250°F). In comparison

---

<sup>4</sup>The oxygen parameters, internal pressure and velocity of the GOX are identical in Tables V and VI.

<sup>5</sup>Bates defines the safety margin as "the difference between the nominal compressor operating temperature and the temperature above which a given material will burn after ignition in an oxygen atmosphere at the stage pressure".



Figure 3.6. Effects of Pressure, Temperature, and Fresh Mean Exposure on Burning of 304 Stainless Steel. Specimen size: 1.03/1.52 mm (0.080/0.060 in.)  
Taken from [Ref. 6]

Bates and Monroe were unable to ignite and burn Monel 400 which places its safety margin in excess of  $538^{\circ}\text{C}$  ( $1000^{\circ}\text{F}$ )<sup>6</sup>.

In more recent research NASA White Sands Test Facility (WSTF) tested a Flow Control Valve (FCV) for the Space Shuttle's main propulsion system. The FCV were identified as being at high risk due to several factors: repetitive exposures; the Aluminum construction of the external oxygen tank; poor filtration (large size 800 micron filters); and high flow rates of

---

<sup>6</sup> Bates and Monroe were concerned with the possible ignition by electrical spark acrossed the broken specimen, however, they were unable to quantify its effect on ignition.

GOX. The FCV shown schematically as Figure 3.7 has two flow paths, one through a bypass orifice for continuous flow and a second flow path controlled by a solenoid-operated poppet which provides a controlled flow. From this configuration it was determined that both subsonic and sonic velocities of GOX could entrain particles and impact valve body surfaces, thus testing was done in three configurations. A high velocity configuration simulating conditions at the bypass and control orifice, a low velocity configuration simulating subsonic conditions and an impact tube design which simulated the conditions found in a 30-degree angle outlet from the bypass in the FCV into the outlet tube, were all constructed.

[Ref. 13]



Figure 3.7. Simplified Schematic of Shuttle Main Propulsion System Oxygen Flow Control Valve (FCV) Taken from [Ref. 13]

Initial testing of the FCV shown in Figure 3.8 and Figure 3.9 resulted in ignition and combustion of the FCV. Single 800 micron particles were inserted while the test article temperature was maintained at 204-277°C (400-530°F) and the internal line pressure was maintained at 28-35 MPa (4000-5000 psi). Up to the 12th particle no reaction occurred but upon injection of the 13th particle the result was a total failure at the FCV. Porter et. al. [Ref. 13] then continued to test alternative metals utilizing the high and low velocity test configurations with 1 mg samples of 150 micron size particles of 2024 Aluminum and Inconel 718 in addition to individual 800 micron 2219 Aluminum particles as the projectiles. Monel proved superior as Porter was unable to ignite Monel, but was able to ignite AISI 304L CRES with 800 micron 2219 Aluminum particles in the high velocity test apparatus (see Figure 3.10).

## 2. Friction

Tribology has been studied as a method of ignition for centuries and has been the subject of numerous investigations into metals compatibility with GOX. In more recent work experimental results and theoretical prediction have been compared.

Jenny and Wyssmann [Ref. 14] conducted friction rubbing experiments with the intent of ranking materials for GOX compressor applications. They were specifically concerned with GGG 40 (ASTM A 536), nodular cast iron, x20Cr13 (AISI 403) stainless steel, CuSn10 Tin Bronze and Monel K500 (63% Ni-30% Cu).



Pretest View of the First FCV as  
Installed in the WSTF GOX High Flow  
Test System Taken from [Ref. 13]

Figure 3.8. Pretest Configuration of FCV.



Post Test View of First FCV  
After Reaction  
Taken from [Ref. 13]

Figure 3.9. Post Test Position of FCV.

SUMMARY OF PARTICLE IMPACT TEST RESULTS

| IMPACT PLATE<br>MATERIAL | PARTICLE<br>MATERIAL | PARTICLE<br>SIZE | QNTY   | NOMINAL INLET<br>CONDITIONS |                |              | WSTF IMPACT<br>Fixture | TEST RESULTS/<br>REACTIONS/TEST/<br>LOCATION |
|--------------------------|----------------------|------------------|--------|-----------------------------|----------------|--------------|------------------------|----------------------------------------------|
|                          |                      |                  |        | ORIFICE<br>MATERIAL         | PRESS<br>RANGE | TEMP<br>(°F) |                        |                                              |
|                          |                      |                  |        | (microns)                   | (psia)         | (°F)         |                        |                                              |
| Monel 400                | 2219 Alum            | 800              | 2 PTC  | Monel                       | 4570           | 530          | High Velocity          | 0 1                                          |
| Monel 400                | 2219 Alum            | 800              | 5 PTC  | Monel                       | 4390-4500      | 538          | High Velocity          | 0 2                                          |
| Monel 400                | 2219 Alum            | 800              | 10 PTC | Monel                       | 4050-4310      | 566-580      | High Velocity          | 0 5                                          |
| 104L CRES                | 2024 Alum            | 150              | 1 mg   | Monel                       | 3950-5000      | 476-534      | Low Velocity           | 0 20                                         |
| 104L CRES                | Inconel 718          | 150              | 1 mg   | Monel                       | 3800-4950      | 513-537      | Low Velocity           | 0 20                                         |
| 104L CRES                | 2219 Alum            | 800              | 1 PTC  | 304 CRES                    | 3200-3500      | 520          | High Velocity          | 2 2 Impact<br>Plate                          |

Figure 3.10. Impact Results on Alternate Metals.  
Taken from [Ref. 13]

Within their test arrangement (see Figure 3.11) axial thrust force could be varied from 300 to 2100 Newtons (N) and the flow of gas through and around the interface could be changed from Nitrogen to GOX at the a constant flow rate of  $0.01 \text{ m}^3/\text{s}$ . Jenny and Wyssmann reported no significant difference in their results at 6,000 RPM or 12,000 RPM which lead them to maintain a constant 8520 RPM or an average sliding velocity of 3.8 m/s.

Utilizing Equation 3.2 as a model for the energy input by oxidation per unit area and Equation 3.3 to represent the frictional energy input, while describing the temperature field in the specimen by Equation 3.4, Jenny and Wyssmann were able to determine the oxidation energy through performing "practically identical" tests with inert ( $\text{N}_2$ ) gas and GOX.

$$q_{\text{ox}} = H A \exp (-E/RT) \quad (\text{eqn 3.2})$$

$$Q_f = \mu(T) L u \quad (\text{eqn 3.3})$$

$$\frac{\partial T}{\partial t} = a \Delta T \quad (\text{eqn 3.4})$$

H = Heat of reaction of metal and oxide

E = Activation energy of metal

A = Rate factor dependent on rate controlling process

R = Universal gas constant

T = Temperature (Kelvin)

q = Energy rate per unit surface area

Q = Energy rate

$\mu(T)$  = Coefficient of friction, function of temperature

L = Axial force in Newtons



Figure 3.11. Schematic of Jenny and Wyssmann's Test Apparatus for Ignition Tests.

$L$  = Axial Load,  $S$  = Rotating Specimen,  
 $S_s$  = Stationary Specimen,  $T_B$  = Torque  
 Strain Gage Balance, and  $T$  = Temperature  
 Measurement with Pyrometer. Taken from  
 [Ref. 14]

$u$  = Average sliding velocity (m/s)

$a$  = Thermal diffusivity

$\Delta$  = Laplace operator

$T_e$  = Temperature of interface between  $S_r$  and  $S_s$   
 (Kelvin)

$T_a$  = Temperature ambient (Kelvin)

$\alpha$  = Heat transfer coefficient

$\epsilon$  = Emissivity

$\gamma$  = Stefan-Boltzmann constant

$T_E$  = Temperature at equilibrium (Kelvin)

Equation 3.5 determines the oxidation energy by subtracting the frictional energy input in GOX from the total energy developed in the inert ( $N_2$ ) gas configuration. The assumptions required to develop Equation 3.5 are broad, a one dimensional model is assumed using partly cylindrical and partly spherical coordinates, while the radiative and convective heat losses are assumed to be defined as Equations 3.6 and 3.7 with A,  $\sigma$ , and  $\varepsilon$  assumed as constants.

$$\dot{Q}_{ox}(T_E) = \dot{Q}_{dis}(T_E)|_{N_2} - \dot{Q}_f(T_E)|_{O_2} \quad (\text{eqn 3.5})$$

$$\dot{q}_{ra} = \sigma \varepsilon (T^4 - T_a^4) \quad (\text{eqn 3.6})$$

$$\dot{q}_c = \alpha (T - T_a) \quad (\text{eqn 3.7})$$

After a time interval of approximately 20 seconds the test results become quasi stationary (see Figure 3.12) at which point Jenny and Wyssmann assume a steady state condition inferring the functional dependence of  $\mu$  (coefficient of friction). They assume values for A and E beforehand and fit the value of  $\dot{Q}_{ox}(T_E)$  to the Arrhenius equation to obtain a curve of energy rate versus temperature of the interface.

Combining the results of all their testing Jenny and Wyssmann [Ref. 14] produce a graphical ranking of the materials tested (see Figure 3.13) which shows Monel K500 to be superior to 410 SS, Cast Iron and Tin Bronze.

As a result of fires associated with metal ignitions NASA began a program in the fall of 1981, which was designed



Figure 3.12. Temperature and Friction Power Records From Oxygen Tests ( $O_2$ ) with GGG 40 ( $S_x$ ) and X20Cr13 ( $S_e$ )

[Taken from Ref. 14]

to develop and test methods of ranking metals for service in COX systems. A steering committee comprised of representatives from NASA WSTF, NASA Kennedy Space Center (KSC), Air Products and Chemicals Inc., The Jet Propulsion Laboratory, Rockwell-Downey, BOC Technical Center, Union Carbide Linde Division, NASA Johnson Space Center (JSC), and Aerojet Liquid Rocket Company met to determine what alloys should be ranked and by what test method the ranking should be accomplished. [Ref. 15].

Fifteen alloys were chosen for evaluation based on their current use in GOX systems, they were:

|                         |                      |
|-------------------------|----------------------|
| 316 Stainless Steel     | Ti-6Al-4V            |
| 304 Stainless Steel     | Nickel 200           |
| Monel 400               | Copper 102           |
| Aluminum 6061-T6        | 1015 Carbon Steel    |
| Inconel 600             | Hastelloy X          |
| Inconel 718             | 440C Stainless Steel |
| 17-4 PH Stainless Steel | Invar 36             |
| Brass 360               |                      |



Figure 3.13. Ranking of Tested Materials with Respect to Ignition in Oxygen.  
Taken from [Ref. 14]

The test methods are listed in Figure 3.14.

| Criteria and Weighting Factors<br>Test Methods | Is the Test Method Capable of Ranking Metals? (4X) | Cost? (3X) | Is the Test Method Capable of Providing Analytical Data? (1X) | What is the Occurrence of the Ignition Source in Real Systems? (1X) | Is the Ignition Source a Known Cause of Oxygen Fires in Real Systems? (1X) |
|------------------------------------------------|----------------------------------------------------|------------|---------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|
| Ambient compression                            |                                                    |            |                                                               |                                                                     |                                                                            |
| Electrical arc spark                           |                                                    |            |                                                               |                                                                     |                                                                            |
| Electroarc                                     |                                                    |            |                                                               |                                                                     |                                                                            |
| Friction rubbing                               |                                                    |            |                                                               |                                                                     |                                                                            |
| Surface heating                                |                                                    |            |                                                               |                                                                     |                                                                            |
| High velocity gas                              |                                                    |            |                                                               |                                                                     |                                                                            |
| Low stress heating                             |                                                    |            |                                                               |                                                                     |                                                                            |
| Laser heating                                  |                                                    |            |                                                               |                                                                     |                                                                            |
| Mechanical shear                               |                                                    |            |                                                               |                                                                     |                                                                            |
| Metal fracture                                 |                                                    |            |                                                               |                                                                     |                                                                            |
| Electrolytic                                   |                                                    |            |                                                               |                                                                     |                                                                            |
| Microgap ionization                            |                                                    |            |                                                               |                                                                     |                                                                            |
| Pyrolysis                                      |                                                    |            |                                                               |                                                                     |                                                                            |
| Combustion heating                             |                                                    |            |                                                               |                                                                     |                                                                            |
| Resonance cavity                               |                                                    |            |                                                               |                                                                     |                                                                            |
| •                                              |                                                    |            |                                                               |                                                                     |                                                                            |
| •                                              |                                                    |            |                                                               |                                                                     |                                                                            |

\*Space allowed for adding identified test methods

Figure 3.14. WSTF Test Method Rating.  
Taken from [Ref. 15]

which is a copy of the balloting form used to survey the steering group. The results of the survey are included as Table VII. The survey rated testing methods based on the expected occurrence of a mode of ignition in a real system, the actual occurrence of GOX fires due to the ignition mode proposed, and the capability of producing a test configuration with repeatable and controllable parameters. As seen in Table VII the first choice was a friction rubbing test method. Therefore, NASA WSTF constructed a test mechanism (see Figure 3.15) which as seen in its exploded view Figure 3.16 has the capability to measure and control several parameters simultaneously. The surface temperature of the test specimens

TABLE VII  
Survey Results Taken from [Ref. 15]



Results of the test method selection survey. Does not include cost.

was measured by thermocouples and two-color pyrometers while the speed of rotation and the axial loading were varied independently.

The initial data obtained from the friction rubbing test method is presented in Table VIII, Monel 400 is superior to 316 SS in its resistance to ignition from frictional effects as demonstrated by the increased PV (Pressure X Velocity) product required to ignite Monel 400. Noted in [Ref. 15] was a result in the friction rubbing test where



Figure 3.15. Schematic of Friction Rubbing Test Apparatus Taken from [Ref. 15].



Figure 3.16. Chamber Exploded View Taken from [Ref. 15].

TABLE VIII

Friction Rubbing Results WSTF  
Taken from [Ref. 15]

| Material      | PV Product<br>( $\times 10^{-6}$ ) | 4009 ft/m  |                                    | 2123 ft/min   |                                    | 1178 ft/min  |                                    |
|---------------|------------------------------------|------------|------------------------------------|---------------|------------------------------------|--------------|------------------------------------|
|               |                                    | Material   | PV Product<br>( $\times 10^{-6}$ ) | Material      | PV Product<br>( $\times 10^{-6}$ ) | Material     | PV Product<br>( $\times 10^{-6}$ ) |
| Zi Cu         | *                                  | Nickel 200 | *                                  | Zi Cu         | *                                  | Nickel 200   | *                                  |
| Copper 102    | *                                  | Brass 360  | *                                  | Brass 360     | *                                  | Monel 400    | 3.0-3.6                            |
| Nickel 200    | 6.6-8.8                            | Copper 102 | *                                  | Inconel 600   | 3.9-4.8                            | Inconel 718  | 2.1-3.4                            |
| Inconel 600   | 5.7-8.3                            |            |                                    | Monel 400     | 3.0-3.6                            | 304 SS       | 1.8-2.2                            |
| Monel 400     | 4.2-4.6                            |            |                                    | Inconel 718   | 2.1-3.4                            | 316 SS       | 1.7-1.9                            |
| Monel K-500   | 4.1-4.7                            |            |                                    | 304 SS        | 1.9-2.0                            | Inconel 718  | 1.6-1.7                            |
| 17-4 PH (HT)  | 3.0-3.4                            |            |                                    | 17-4 PH (HT)  | 1.8-2.3                            | 1015 C Steel | .9-1.8                             |
| Invar 36      | 2.8-2.9                            |            |                                    | 17-4 PH (ANN) | 1.8-2.3                            |              |                                    |
| Hastellox X   | 2.6-3.2                            |            |                                    | 316 SS        | 1.3-1.4                            |              |                                    |
| Brass 360     | 2.1-3.6                            |            |                                    | 1015 C Steel  | 1.2-1.5                            |              |                                    |
| 17-4 PH (ANN) | 1.8-3.1                            |            |                                    | Alum 6061-T6  | .22                                |              |                                    |
| 316 SS        | 1.7-2.1                            |            |                                    |               |                                    |              |                                    |

\*Failed Mechanically, Did Not Burn

1015 carbon steel 316 SS and Monel 400 increases in the amount of PV product required to ignite the individual test articles with an increase in the internal pressure of the reaction chamber for pressures above 3.4 MPa (500 psi). This result is contradictory to the relationship established by Kirchfeld [Ref. 17] were the reaction rate of metals increased with increasing pressure of GOX. This should lead to a decrease in the required PV product in friction rubbing tests with increases in the chamber pressure. A full explanation of this result can only come with further testing.

### 3. Foreign Materials/Softgood Ignition

Nihart and Smith [Ref. 9] as noted in the Ranking of Metals section conducted promoted ignition tests with the results as listed in Table II. Their ranking placed Monel superior to austenitic stainless steel as the amount of neoprene ignitor was doubled for Monel 400. This method of ranking metals simulates the ignition of a foreign substance within a GOX system which may then produce enough heat to ignite the metals comprising the system. This has been the suspected source of ignition in many actual GOX fires but often specific accidents involve litigation and are not easily cited. Civilian diving contractors have circulated safety messages which describe the improper installation of a valve that is not cleaned for GOX service into a diving system. The resulting fire could not be attributed to the use of the wrong construction material but rather to a human

error in a maintenance procedure. Therefore, promoted ignition should be considered a viable testing and ranking method.

Kirchfeld [Ref. 16] worked throughout the 1960's using promoted ignition of test articles of wire of varying diameters, with sponge iron or aluminum powder pills and nickelline ignitors. His initially studies were in a 1 ATM chamber but he progressed to a chamber capable of maintaining a 200 ATM (2940 psi) internal GOX pressure. Testing individual light and heavy metals such as aluminum and iron respectively, he ascribed reaction types based on the velocities of propagation/reaction rates and observation of physical characteristics of the combustion. For iron Kirchfeld found what he termed a heterogenous reaction between the GOX and liquid oxide drops which formed on the surface of the reacting wire. The propagation velocity of iron was relatively slower than that for light metals such as aluminum, which combust in a homogeneous (vaporization) reaction. This relative reaction rate was consistent for both low 1 ATM pressures and higher 200 ATM pressures. Kirchfeld did find a transition from a heterogenous reaction to a homogenous reaction (combustion of evaporated gaseous iron in GOX) for 1mm diameter iron wire exposed to GOX pressures above 64 ATM. For pure metals Kirchfeld [Ref. 17] found the reaction rate of iron increased proportional to the square root of the GOX pressure and exhibited the transition just described. The transition was

assumed to be related to the presence of higher oxides, for example,  $\text{Fe}_3\text{O}_2$  in iron combustion. The absence of higher oxides in the case of Nickel is postulated to be the reason that Kirchfeld was unable to combust Nickel wires in GOX atmospheres up to 200 ATM. This result demonstrates when combined with the fact that high alloy chrome nickel steels combust rapidly in GOX that simple addition of the heats of oxidation of the alloying agents will not predict the combustibility of a metallic alloy.

In more recent research conducted at Air Products and Chemicals, Slusser and Miller [Ref. 18] specifically tested Monel 400, AISI 304 S.S., carbon steel and gray cast iron in flowing GOX. Slusser and Miller considered the extent of combustion as being represented by the area consumed as a percentage of the area exposed. Based on this criterion Monel 400 and AISI 304 S.S. performed well (less than 4% of the area consumed) as compared to carbon steel. They reported "Type 304 stainless steel was also considerably superior to carbon steel and only slightly poorer than Monel 400". This difference between carbon steel and stainless steel (AISI 304) lead them to question Figure 3.17, which is a copy of a figure presented in the Compressed Gas Association pamphlet G-4.4, titled "Industrial Practises for Gaseous Oxygen Transmission and Distribution Piping Systems". Slusser and Miller question the all inclusive nature of the velocity versus pressure curve as it is presented in the CGA pamphlet



Figure 3.17. CGA Curve of Vel/Pressure  
Taken from [Ref. 18]

because it lumps both carbon steel and stainless steel; their own results contradict this curve's premise. They are presently continuing this research and may present their finds at the ASTM symposium in April of 1985.<sup>7</sup>

NASA is also currently conducting promoted ignition tests of the 15 materials listed earlier. The review of this testing noted a tendency for the test to become a propagation rate study when additional promoter is added to a material to cause ignition. This addition of material not only increases the energy input from the combustion of the added ignitor but

---

<sup>7</sup> Source phone conversation between author and Joseph Slusser of Air Products and Chemicals Inc. on 9/28/84.

the area exposed to the heating prior to ignition/combustion of the metal is increased. The final results for this study are not presently published.

#### 4. Resistance (Joule) Heating

Resistive heating of a specimen of pure metal or alloy has been used by Reynolds et. al. [Ref. 19] and Dean and Thompson [Ref. 8] and other investigators in both static and dynamic GOX environments. This method is particularly suited to the measurement of ignition temperatures of alloys at different pressures of GOX. It is most often used with an optical pyrometer as the method of measuring the temperature at which the specimen ignites. However, in the case where dynamic (flow of GOX) conditions can be maintained, the results are of greater interest. Research conducted by Dean and Thompson and included as Figure 1 is a good example of this technique. This method is less relevant and correspondingly unlikely as a real source of metal ignition, compared to friction rubbing, particle impact or promoted ignition test methods.

#### 5. Resonance

The resonance-tube phenomenon originally described in research involving the production of high intensity sound waves has been proposed by Diehl [Ref. 20] Belles [Ref. 21] and Phillips [Ref. 22] as a possible ignition method in GOX fires. Research at NASA Lewis has demonstrated that the tee union, often used in gas piping systems, can in an appropriate

configuration (dead-ending one section of the tee) produce resonance. In laboratory simulation (see Figure 3.18) Phillips was able to measure temperatures in excess of 1000°C (1800°F) in the dead-end tee section when the inlet pressure of COX was 7.6 MPa (1000 psi). After initially testing empty chambers at various stagnation pressures, Phillips conducted experiments using inert asbestos fibers released into the resonance tube. He later tested for ignition by resonance using aluminum fibers (1.5 mil x 1 mil) in cross sectional area by (0.5-0.7 inches) long. The apparatus as shown in Figure 3.18 included both stainless steel and quartz resonance



Figure 3.18. Phillips Resonance Tee Configuration.  
Taken from [Ref. 22]

tubes, with instrumentation composed of pressure transducers and thermocouples. His results as shown in Figure 3.19 include observations made by high speed photography and demonstrate the ignition of aluminum fibers in a resonance tube. Phillips considers the failure of a component in a high pressure GOX system with a concurrent rapid decompression of the system to be adequate to establish resonance within the piping system. His results demonstrate the short time frame required to produce ignition by the resonance phenomenon (5-10 s) with aluminum fibers present. He therefore concluded that ignition by resonance is possible in real systems [Ref. 22].



Figure 3.19. Ignition of 13 mg of Aluminum Fiber for an Inlet Stagnation Pressure of 1270 psia.  
Taken from [Ref. 22]

An important consideration that is noted by Phillips is the effect of the insulative rather than conductive characteristic of a quartz tube. All of the ignitions recorded were in quartz resonance tubes. Elevated temperatures were recorded in the AISI 304 resonance tubes and in one case the quartz tube ignited and in turn ignited the stainless steel section of the test apparatus, but no ignition of a tube composed of AISI 304 was recorded.

This method of ignition could be used for further testing of propagation rates using an interior promoter with a low flame temperature within the range of temperatures produced in a resonance tube.

#### 6. Mechanical Impact

This test method consists of positioning a foil of a test material and impacting it with a known mass falling through a known distance which gives a reproducible energy of impact. An ignition is recorded based on the presence of a flash of light or the emission of a loud sound or evidence of burning in the holder or in the remains of the specimen. Batch testing using this method for nonmetals has become a principle selection criterion for GOX service and the method is also used to study and rank compatibility of metals with liquid oxygen (LOX). However, as a method for ranking it is not considered appropriate as it is difficult to ignite most metals with this method and attempts to increase the pressure of GOX in the holder have not been successful in providing

reproducible results. An extension of the impact method which places a contaminate material in the specimen cup was used by Ordin [Ref. 23] to compare AISI 304 stainless steel and 6061-T6 aluminum. The AISI 304 was nonreactive at the maximum range of pressure 34.6 MPa (5000 psi), temperature 811 K (1000°F) and impact energy levels 252 J/cm<sup>2</sup> (1200 ft-lb/in<sup>2</sup>) in any contaminate including motor oil, copper powder, tool makers dye and cutting oil. The aluminum was reactive without contaminates and increased in its reaction with contamination by the oil products.

### III. THE THEORY OF BULK METAL IGNITION

The early work in postulating a theory of bulk metal ignition is reviewed in [Ref. 27]

The difficulty in quantifying metals ignition parameters, such as  $T_{ign}$  (ignition temperature) and  $T_{crit}$  (critical temperature) lie in the extensive number of factors which can affect the ignition process. Bransford and Clark [Ref. 26] have produced a table included here as Figure 4.1 which lists three major categories and numerous dependent and independent variables in metal ignition processes.

Equation 4.1 is driven to the right by free energy considerations and is exothermic for all metals at ambient temperatures, with the single exception of gold. This point of commonality is the only one in ignition of metals, the various methods of ignition can be grouped according to proposed reaction mechanisms but the groupings are the subject of some controversy. Several factors combine to confuse the ignition and subsequent combustion of metals, major among these are a dependence of ignition upon the preignition surface conditions and the formation of solid phase products on the surface. [Ref. 28]



The oxidation of a metal with its subsequent production of heat is labelled by Glassman et. al. [Ref. 28] in Figure 4.2

| Material Properties*                      | Environmental        | Configuration                                         |
|-------------------------------------------|----------------------|-------------------------------------------------------|
| atomic weight (m)                         | temperature          | history of metal                                      |
| molecular weight (mo)                     | pressure             | state of surface                                      |
| thermal conductivity (mm/mo)              | oxygen concentration | oxide film thickness                                  |
| thermal diffusivity (m <sup>2</sup> /mo)  | presence of diluent  | specific surface area (cm <sup>2</sup> /g)            |
| heat capacity (J/mo)                      | nature of diluent    | total mass of metal                                   |
| heats of solid phase transitions (J/mo)   | gas velocity         | presence of other metals                              |
| heat of fusion (J/mo)                     | Reynolds number      | (eutectic formation or<br>thermite reaction possible) |
| heat of vaporization (J/mo)               |                      | presence of contaminants                              |
| heat of formation (J/mo)                  |                      | centrifugal forces                                    |
| melting point (K/mo)                      |                      | angle of attack                                       |
| boiling point (K/mo)                      |                      | heat and mass transfer                                |
| ignition temperature (m)                  |                      | coefficients                                          |
| vapor pressure (J/mo)                     |                      |                                                       |
| viscosity (mm/mo)                         |                      |                                                       |
| surface tension (mm/mo)                   |                      |                                                       |
| solubility of oxygen in metal (m)         |                      |                                                       |
| diffusivity of oxygen (mm/mo)             |                      |                                                       |
| diffusivity of metal (mm/mo)              |                      |                                                       |
| emissivity (J/mo)                         |                      |                                                       |
| composition of metal (m)                  |                      |                                                       |
| chemical reaction rates (J/mo)            |                      |                                                       |
| equilibrium constants (mo)                |                      |                                                       |
| solubility of oxygen in reaction products |                      |                                                       |
| solubility of metal in reaction products  |                      |                                                       |
| density (J/mo)                            |                      |                                                       |
| thermal expansion (J/mo)                  |                      |                                                       |
| convective heat transfer coefficients     |                      |                                                       |

\* m = metal  
mo = metal oxide

Figure 4.1. Factors Effecting Metals Ignition.  
Taken from [Ref. 26]

curve a) as  $q_{\text{chem}}$ . In this generalized S-shaped curve the output of heat from oxidation of a metal is seen to vary in its functional relationship with the surface temperature of the metal  $T_s$ .

The possible oxidation rates can include a linear, parabolic or logarithmic section or a combination of these or other modes. Curve b of Figure 4.2 represents the rate of heat loss  $q_{\text{loss}}$  of a bulk metal as a function of the surface temperature of the metal  $T_s$ , again the curve is generalized and may include losses due to conduction, radiation and convection of a combination of these loss mechanisms.

Combining the  $\dot{q}_{\text{chem}}$  and  $\dot{q}_{\text{loss}}$  curves (see Figure 4.2 curve c) a generalized pattern of  $T_{\text{surface}}$  can be developed.

Figure 4.3 again taken from Glassman et. al. [Ref. 28]

demonstrates a further point of confusion in the literature which is centered on the definition of  $T_{\text{ign}}$  and  $T_{\text{crit}}$ .

Glassman defines  $T_{\text{crit}}$  as the condition where at specific  $T_{\text{surface}}$  the  $\dot{q}_{\text{chem}}$  and  $\dot{q}_{\text{loss}}$  terms are equal while  $T_{\text{ign}}$  is defined by Equation 4.2.



Figure 4.2. Curve of Ignition Mechanisms by Glassman.  
Taken from [Ref. 28]



Figure 4.3. Summary Plot of  $q$  versus  $T_s$ .  
Taken from [Ref. 28]

$$\frac{q_{chem}/T_s}{T_s} = T_{sign} = \frac{q_{gloss}/T_s}{T_s}$$

This distinction in  $T_{crit}$  and  $T_{sign}$  is often not made by researchers in this field which confuses comparison of analytical treatments and experimental results.

The graph of Figure 4.3 suggests a smooth transition from different oxidation rates as well as a smooth curve of heat loss, both assumptions require modification for each individual metal. Grouping of metals exhibiting similar discontinuities in their  $i_{chem}$  terms is often done but it assumes that a

specific reaction such as melting of the oxide layer, or boiling of the metals surface is responsible for the breaks in  $\dot{q}_{\text{chem}}$ . Another added complication of Figure 4.3 is how external heat additions are treated, the various ignition methods discussed in the Literature Review chapter are examples of heat additions all of which differ in their time dependency and in the surface areas they effect.

A recent attempt at analytically modelling bulk ignition which correlates experimental results from several test methods employed at NASA White Sands was proposed by Yuen in [Ref. 13]. The  $\dot{q}_{\text{chem}}$  input of energy from the metal oxidation is assumed to result from a combination of a linear (see Equation 4.3) and a parabolic (see Equation 4.4) equation. The combined resultant is Equation 4.5 which expresses the total mass of metal reacted per unit surface area. This assumes that the value of  $E_1$  equal the

$$dM/dt = K_1 \quad (\text{eqn 4.3})$$

$$dM^2/dt = K_p \quad (\text{eqn 4.4})$$

$$dM^2/dt = A_1/1+2M(A_1/A_p)\exp(-E/RT) \quad (\text{eqn 4.5})$$

value of  $E_p$  which in turn equals  $E$ , and defines reaction constants  $A_1$  for the linear and  $A_p$  for the parabolic equations. Using the combined metal oxidation equation a general heat balance can be modelled as Equation 4.6 with the parameters defined as:

$\rho$  = density

$V/S$  = the ratio of the effective volume to reacting surface area

$C$  = the specific heat of the metal

$dT/dt$  = time rate of change of the temperature

$Q$  = the heat generated/gram of metal reacted

$h(T-T_{\infty})$  = heat loss by convection

$\epsilon\sigma(T^4-T_{\infty}^4)$  = heat loss by radiation

$H(t)$  = heat addition by the test method

$$\rho V C dT/dt = Q(A_1 \exp(-E/RT)) / (1 + 2MA_1 \sqrt{A_p} - h(T-T_{\infty}) - \epsilon\sigma(T^4-T_{\infty}^4) - \frac{1}{R_i}(T-T_i)) + H(t)$$

(eqn 4.6)

This treatment has the same difficulty that most of the theoretical explanations suffer from, that is, its inability to incorporate the changing surface area, as is noted in Yuen's discussion; removal of the metal surface and the oxide layer is not well explained by this model.

#### IV. EXPERIMENTAL PROCEDURE

##### A. TEST OBJECTIVES

From the results reported by Wegener [Ref. 3] propagation of a flame against the flowing stream of GOX was not observed once a breach in the steel pipeline occurred due to heating by entrained particle contaminates. However, testing of a model for flame propagation in steel cylinders has been attempted by Sato et. al. [Ref. 24]. Utilizing a chamber with a preset GOX pressure and high speed photography, Sato's analysis defined the controlling parameters in the rate of fire spread as the diameter of the test article, the GOX pressure and the orientation of the test article. The possible spread of a fire in diving equipment or in the GOX life support system assuming an ignition source is present, raises the question of the flame propagation characteristics of Monel and austenitic stainless steel in a flowing system. The most relevant testing of propagation of flame in a flowing GOX environment is the research of Ivanov and Ul'Yanova [Ref. 25]. Their methods provided data on the results of ignition of the GOX flow within a closed pipe with a preset internal pressure and flow rate. Additional testing by Ivanov and Ul'Yanova measured propagation rates in pipe opened to the atmosphere with a set inlet pressure. Their study focused on three materials, aluminum, stainless steel and carbon steel. Within

the translation a correlation of flow rates of GOX to the combustion of stainless steel is developed (see page 6 of [Ref. 25]). This is a mistranslation, the specimens which show a correlation between flow rate and combustion were listed in the results as carbon steel.

#### B. DIVING EQUIPMENT SIMULATED

To test the flame propagation characteristics of Monel 400 and austenitic stainless steel an operational diving set the USN Mk 15 Underwater Breathing Apparatus (UBA) was chosen as the equipment to simulate (see Figure 5.1 for an overview of the equipment).



Figure 5.1. The USN Nk 15 UBA Full View Without Back Cover.

Flame propagation in the GOX assembly on the Mk 15 would require the fire to spread upstream in the GOX tubing, which is shown in the close-up of the oxygen assembly Figure 5.2. The Mk 15 which is based on a commercial diving set utilizes AISI 316 stainless steel 3.2x0.9 mm (1/8x.035in) I.D. tubing. The pressure regulator on the oxygen supply bottle is set to



Figure 5.2. Close Up View of the USN Mk 15 UBA Oxygen Assembly.

maintain 0.8 MPa (110 psig) above ambient pressure in the oxygen assembly. The MK 16 UBA is similar in concept to the Mk 15 and utilizes the same type of tubing, but its oxygen regulator is set to maintain 2.0 MPa (295 psig). The testing of Monel 400 and AISI 316 was conducted at inlet pressures of both 0.8 MPa and 2.0 MPa respectively to simulate the breaching

of the oxygen assembly of either a Mk 15 or Mk 16 UBA and determine the extent to which a flame could propagate upstream against a GOX flow in these metals. In view of unpublished results obtained by NASA White Sands Test Facility an additional sample of AMS 5050, a carbon steel 3.2x0.9 mm I.D. tubing was included in the test matrix. An initial matrix was modified once the inability to ignite AISI 316 and Monel 400 was found. The modification consisted of attempting to find an inlet pressure at which flame propagation in AISI 316 and Monel 400 could be observed, this proved to be impossible. Another modification was devised to determine at what pressure the carbon steel tube flame propagation could be quenched by the GOX flow. A ramping of the test article inlet pressure was programmed into the test sequence.

## V. EXPERIMENTAL APPARATUS

### A. TEST SYSTEM

The experiment was conducted at the NASA White Sands Testing Facility in New Mexico, utilizing the certified GOX testing apparatus which can be seen in schematic form in Figure 6.1. The system delivers GOX at a controlled inlet pressure up to 41.3 MPa (6000 psi) and gas temperature up to  $300^{\circ}\text{C}$  ( $700^{\circ}\text{F}$ ). The GOX High Flow test system was modified using low pressure transducers as described in Appendix B. This modification allowed regulation of the test article inlet pressure to within 5 psig during each constant pressure run and also allowed ramping of the inlet pressure when it was required. Control of the GOX flow was maintained by the microprocessor and control network which through feedback from the pressure transducers at the inlet and outlet of the pressure control valve and the inlet transducer at the entrance to the test article opened or closed the pressure control valve as required to maintain a constant inlet pressure.

#### 1. Data Acquisition

A digital data acquisition system both controlled the time sequencing of events for each test and recorded realtime data. The control room panel housed the microprocessor, strip chart recorder, monitors, floppy disc drives and associated circuitry which allowed totally remote control



Figure 6.1. Test System Schematic.

of each test run. A typical test event is shown in Figure 6.2, note the multiple disc drives allowing flexibility in data acquisition. Also shown in this photograph is the system of position indicators and status lights which allow operator analysis and manual over-ride of the test sequence.



Figure 6.2. Control Room Panel During Test 243.06.

## 2. Test Sequence

Figure 6.3 shows the relationship of the spin physics high speed video camera to the test article, while Figure 6.4 shows the relative position of the ignitor a Victor oxyacetelene torch just prior to the start of a test sequence. A typical sequence for the Monel and AISI 316 constant pressure test would proceed with the establishment of the preset inlet pressure of GOX to the test article. Normal speed video was utilized for both Monel 400 and AISI 316 testing once the inability to propagate a flame was established. Video coverage and ignitor extension, which placed the tip of the test article



Figure 6.3. Overview of Test Site Showing Relationship of the High Speed Video to the Test Article.

at the apex of the inner cone of the oxyacetelene flame, were synchronized by the microprocessor which additionally initiated data collection from the channels containing the readout of the pressure transducers (PT-19, PT-26 and PT-100A), the test article inlet thermocouple and the position of the PCV. The ignitor was extended and programmed to remain in position for 15 seconds unless ignition occurred prior to the end of the 15 seconds in which case manual over-ride was employed. The torch was quenched by securing the flow of oxygen to it though the barrel remained extended for the full 15 seconds. This capability was used often in the test involving AMS 5050



Figure 6.4. Close Up of Test 243.14 Carbon steel T.A. in Vertical Orientation.

carbon steel tubing for ignition occurred rapidly for all test of carbon steel at initial inlet pressures below 40 psig. Once propagation against the flow was established in the AMS 5050 tubing sections the high speed video was utilized to record the event. This video was then edited by the addition of cursor marks and the realtime record which would allow accurate propagation rate measurements. The flexibility of the carbon steel tubing allowed testing of the flame propagation rates in three different orientations; horizontal, vertical downward, and vertical upward. From the initial intention of defining the flame propagation

characteristics of Monel and stainless steel, the majority of the test articles were either Monel or stainless steel which meant that only a limited number of tests were conducted using AMS 5050 carbon steel.

Both the Monel 400 and AISI 316 test article were cleaned for oxygen service according to the NAVSEA Tech Manual specification included as Appendix C. Additionally all the test articles including the AMS 5050 were flushed with freon prior to installation in the test apparatus.

## VI. RESULTS

The results of the experiment are presented in Table IX; the computer printout of the data, as recorded in each test, is enclosed as Appendix A. Data recorded includes the inlet pressure of the GOX for each test, along with the propagation speed (if propagation occurred) and the volume flow rates as calculated in Appendix E.

The volume flow rate was calculated by recording the time required for a given pressure drop to occur in a known floodable volume. Correcting this flow rate to standard conditions and in the case of the 110 and 295 psig runs correcting for the difference in molecular weights between nitrogen and oxygen yielded the flow rates in standard cubic feet per minute or standard litres per minute. The propagation rates were calculated from the high speed video record. The horizontal and vertical downward orientations combined gave an average propagation rate of 1.85 mm/s (.07 in/s) as compared to the vertical upward orientations rate of 2.35 mm/s (.09 in/s). It appears there is a difference in the flame spread rate based on the orientation for AMS 5050 carbon steel tubing, also the propagation can be extinguished by increasing the pressure.

TABLE IX  
Experimental Results

| Material      | Test No. | Pt-100a<br>(psi) | Ignition<br>occurred | Propagation<br>(in/s)       | Flow rate <sub>e</sub><br>(SCFM/SLPM) |
|---------------|----------|------------------|----------------------|-----------------------------|---------------------------------------|
| Monel         | 243.03   | 110              | No                   | NA                          | 2.13/60.2                             |
| Monel         | 243.09   | 295              | No                   | NA                          | 5.43/153.9                            |
| AISI 316      | 243.06   | 110              | No                   | NA                          | 2.13/60.2                             |
| AISI 316      | 243.08   | 295              | No                   | NA                          | 5.43/153.9                            |
| AISI 316      | 243.07   | Ramp 20-80       | No                   | NA                          | 0.5/13.2                              |
| AMS 5050      | 243.04   | 110              | Yes                  | Extinguished                | 2.13/60.2                             |
| AMS 5050      | 243.05   | 20               | Yes                  | No High<br>Speed Video      | 0.5/13.2                              |
| AMS 5050      | 243.10   | Ramp 20-45       | Yes                  | .075                        | 0.5/13.2                              |
| Horizontal    |          |                  | Extincti             |                             |                                       |
| AMS 5050      | 243.11   | Ramp 30-45       | Yes                  | .068                        | 0.5/13.2                              |
| Horizontal    |          |                  | Extincti             |                             |                                       |
| AMS 5050      | 243.12   | Ramp 20-45       | Yes                  | High Speed<br>Video Lock up | 0.5/13.2                              |
| Vertical Down |          |                  | Extincti             |                             |                                       |
| AMS 5050      | 243.13   | Ramp 20-45       | Yes                  | .075                        | 0.5/13.2                              |
| Vertical Down |          |                  | Extincti             |                             |                                       |
| AMS 5050      | 243.14   | Ramp 20-60       | Yes                  | .086                        | 1.3/35                                |
| Vertical Up   |          |                  | Extincti             |                             |                                       |
| AMS 5050      | 243.15   | Ramp 20-60       | Yes                  | .99                         | 1.3/35                                |
| Vertical Up   |          |                  | Extincti             |                             |                                       |

## VII. CONCLUSIONS

The major conclusions that may be drawn from the literature review and experimental results are as follows:

1. The literature which attempts to rank metals compatibility for GOX service is confused due to two factors -
  - a. Individual research efforts consider limited (usually a single) ignition source based on a specific design configuration.
  - b. Proprietary information on testing of materials for GOX service is in some cases restricted from open publication.
2. There is no significant difference in flame propagation rates between Monel 400 and AISI 316 stainless steel when they are subjected to conditions which simulate the breach of a GOX system with internal pressures from .14-2.0 MPa (20-295 psig).
3. There appears to be a significant difference in flame propagation rates for AMS 5050 carbon steel tubing 3.2 x .89mm (1/8 x .035 inches) between the upward vertical and horizontal orientation. The upward vertical orientation yields the faster propagation rate 2.3 mm/s (.09 in/s).

4. Modelling of the ignition and combustion of metals is difficult due to the heterogenous nature of the combustion and the large number of variables which affect the process.

### RECOMMENDATIONS

1. The diving branch of NAVSEA should seek representation on the ASTM G-4 committee on Compatibility and Sensitivity of Materials in Oxygen Enriched Atmospheres.
2. NAVSEA should maintain a liaison with NASA White Sands Test Facility to remain abreast of their recent efforts to develop and evaluate testing methods for ranking of metals for GOX service.
3. The current trend to group carbon steel and stainless steel in developing design curves for GOX equipment construction is not appropriate. From the difference in propagation rates in flowing systems it is evident that these metals are not equal in their compatibility with GOX.

APPENDIX A  
Computer Printout of Experimental Results

| TEST DATE = |         | 02/21/85 |                    | TEST NUMBER |  | 244.01      |             | TEST DESCRIPTION |               | NAVY TUBE FLAME PROPAGATION FLOW TEST |         |
|-------------|---------|----------|--------------------|-------------|--|-------------|-------------|------------------|---------------|---------------------------------------|---------|
| CHL.        | NAME    | UNITS    | A0                 | A1          |  | LOWER RANGE | UPPER RANGE | WSTF ID          | CAL. DUE DATE | DISPLAY                               | STORAGE |
| 0           | TT-101  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | YES     |
| 1           | TT-103  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 2           | TT-115  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 3           | TT-118  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 4           | TT-120  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 5           | PT-06   | PSIG     | 29.1555            | 8.146850    |  | 0           | 10000       | 1758             | 06/13/85      | YES                                   | YES     |
| 6           | PT-19   | PSIA     | .9588              | .240390     |  | 0           | 300         | 1109             | 07/24/85      | YES                                   | YES     |
| 7           | PT-29   | PSIG     | 6.3054             | 8.15830     |  | 0           | 10000       | 2654             | 05/08/85      | YES                                   | NO      |
| 8           | PT-1004 | PSIA     | -1.1727            | .241900     |  | 0           | 300         | 1110             | 07/25/85      | YES                                   | YES     |
| 9           | PT-125  | PSIA     | -3.7401            | .233270     |  | 0           | 300         | 1303             | 07/25/85      | YES                                   | YES     |
| 10          | INT-3   | VOLTS    | 0.0000             | .002440     |  | 0           | 0           |                  | 12/12/85      | NO                                    | YES     |
| 11          | INT-5   | VOLTS    | 0.0000             | .002440     |  | 0           | 0           |                  | 12/12/85      | NO                                    | YES     |
| 12          | V.P.    | DEG.     | 0.0000             | .356300     |  | 0           | 90          | 0                | 12/12/90      | YES                                   | YES     |
| 13          | TT-001  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 14          | TT-003  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 15          | TT-004  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 16          | TT-008  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 17          | TT-110  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |
| 18          | TT-111  | Deg.F    | TYPE K (SEGMENTED) |             |  | 0           | 0           | 0                |               | YES                                   | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 244.01

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 3<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| -9.0         | 69              | 330           | 13            | 13              | 13             | 0               | 0               | 30           |
| -8.0         | 70              | 330           | 12            | 13              | 12             | 0               | 0               | 30           |
| -7.0         | 69              | 321           | 13            | 13              | 12             | 0               | 0               | 30           |
| -6.0         | 69              | 321           | 13            | 13              | 13             | 0               | 0               | 30           |
| -5.0         | 69              | 321           | 13            | 13              | 13             | 0               | 0               | 30           |
| -4.0         | 70              | 330           | 12            | 13              | 12             | 0               | 0               | 30           |
| -3.0         | 70              | 321           | 12            | 13              | 12             | 0               | 0               | 30           |
| -2.0         | 69              | 321           | 13            | 13              | 13             | 0               | 0               | 30           |
| -1.0         | 69              | 321           | 13            | 13              | 12             | 0               | 0               | 30           |
| 0.0          | 69              | 321           | 12            | 13              | 13             | 0               | 0               | 30           |
| 1.0          | 70              | 321           | 331           | 25              | 59             | 0               | 0               | 40           |
| 2.0          | 76              | 321           | 334           | 148             | 205            | 0               | 0               | 51           |
| 3.0          | 82              | 313           | 323           | 270             | 277            | 0               | 0               | 45           |
| 4.0          | 83              | 313           | 334           | 298             | 300            | 0               | 0               | 38           |
| 5.0          | 82              | 321           | 334           | 301             | 302            | 0               | 0               | 38           |
| 6.0          | 82              | 313           | 334           | 300             | 302            | 0               | 0               | 38           |
| 7.0          | 79              | 321           | 334           | 300             | 301            | 0               | 0               | 38           |
| 8.0          | 78              | 321           | 333           | 300             | 301            | 0               | 0               | 38           |
| 9.0          | 77              | 313           | 333           | 300             | 301            | 0               | 0               | 38           |
| 10.0         | 76              | 313           | 333           | 300             | 301            | 0               | 0               | 38           |
| 11.0         | 74              | 313           | 333           | 300             | 301            | 0               | 0               | 38           |
| 12.0         | 73              | 313           | 333           | 300             | 300            | 0               | 0               | 38           |
| 13.0         | 73              | 313           | 333           | 299             | 300            | 0               | 0               | 38           |
| 14.0         | 72              | 313           | 333           | 299             | 299            | 0               | 0               | 38           |
| 15.0         | 70              | 321           | 333           | 298             | 299            | 0               | 0               | 38           |
| 16.0         | 70              | 313           | 333           | 298             | 298            | 0               | 0               | 38           |
| 17.0         | 69              | 313           | 333           | 297             | 298            | 0               | 0               | 38           |
| 18.0         | 69              | 321           | 333           | 297             | 297            | 0               | 0               | 38           |
| 19.0         | 68              | 313           | 333           | 297             | 298            | 0               | 0               | 38           |
| 20.0         | 68              | 313           | 333           | 297             | 297            | 0               | 0               | 38           |
| 21.0         | 68              | 321           | 333           | 297             | 297            | 0               | 0               | 38           |
| 22.0         | 68              | 321           | 333           | 297             | 298            | 0               | 0               | 38           |
| 23.0         | 68              | 313           | 333           | 298             | 298            | 0               | 0               | 38           |
| 24.0         | 68              | 313           | 333           | 298             | 299            | 0               | 0               | 38           |
| 25.0         | 67              | 321           | 333           | 299             | 299            | 0               | 0               | 38           |
| 26.0         | 68              | 321           | 333           | 299             | 300            | 0               | 0               | 38           |
| 27.0         | 67              | 313           | 333           | 299             | 300            | 0               | 0               | 38           |
| 28.0         | 67              | 313           | 333           | 300             | 300            | 0               | 0               | 38           |
| 29.0         | 67              | 313           | 333           | 300             | 301            | 0               | 0               | 38           |
| 30.0         | 67              | 313           | 333           | 300             | 301            | 0               | 0               | 38           |
| 31.0         | 67              | 313           | 332           | 301             | 301            | 0               | 0               | 38           |
| 32.0         | 66              | 313           | 332           | 301             | 301            | 0               | 0               | 38           |
| 33.0         | 67              | 321           | 332           | 301             | 301            | 0               | 0               | 38           |
| 34.0         | 67              | 321           | 332           | 300             | 301            | 0               | 0               | 38           |
| 35.0         | 66              | 321           | 332           | 300             | 300            | 0               | 0               | 38           |
| 36.0         | 67              | 313           | 332           | 299             | 299            | 0               | 0               | 38           |
| 37.0         | 66              | 313           | 332           | 298             | 299            | 0               | 0               | 38           |
| 38.0         | 66              | 313           | 332           | 298             | 298            | 0               | 0               | 38           |
| 39.0         | 66              | 313           | 332           | 297             | 298            | 0               | 0               | 38           |
| 40.0         | 57              | 305           | 322           | 297             | 300            | 0               | 0               | 30           |
| 41.0         | 66              | 321           | 321           | 296             | 297            | 0               | 0               | 30           |
| 42.0         | 66              | 313           | 332           | 295             | 296            | 0               | 0               | 30           |
| 43.0         | 66              | 313           | 332           | 295             | 296            | 0               | 0               | 30           |
| 44.0         | 66              | 313           | 332           | 295             | 296            | 0               | 0               | 30           |
| 45.0         | 66              | 321           | 332           | 296             | 297            | 0               | 0               | 30           |
| 46.0         | 66              | 313           | 332           | 297             | 298            | 0               | 0               | 30           |
| 47.0         | 66              | 321           | 332           | 298             | 299            | 0               | 0               | 30           |
| 48.0         | 66              | 313           | 322           | 300             | 300            | 0               | 0               | 30           |
| 49.0         | 57              | 313           | 322           | 300             | 301            | 0               | 0               | 30           |
| 50.0         | 66              | 321           | 322           | 301             | 302            | 0               | 0               | 30           |
| 51.0         | 66              | 313           | 322           | 302             | 302            | 0               | 0               | 30           |
| 52.0         | 67              | 313           | 322           | 303             | 303            | 0               | 0               | 30           |
| 53.0         | 67              | 313           | 322           | 303             | 304            | 0               | 0               | 30           |
| 54.0         | 67              | 321           | 322           | 303             | 303            | 0               | 0               | 30           |
| 55.0         | 67              | 313           | 322           | 302             | 303            | 0               | 0               | 30           |
| 56.0         | 66              | 313           | 322           | 301             | 301            | 0               | 0               | 30           |
| 57.0         | 66              | 313           | 322           | 300             | 301            | 0               | 0               | 30           |
| 58.0         | 66              | 313           | 322           | 299             | 300            | 0               | 0               | 30           |
| 59.0         | 66              | 313           | 322           | 299             | 299            | 0               | 0               | 30           |
| 60.0         | 66              | 313           | 322           | 298             | 298            | 0               | 0               | 30           |
| 61.0         | 66              | 321           | 331           | 297             | 298            | 0               | 0               | 30           |
| 62.0         | 66              | 321           | 331           | 296             | 297            | 0               | 0               | 30           |

## TEST NUMBER 244.01

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 63.0         | 65              | 321           | 331           | 296             | 296            | 0              | 0              | 32           |
| 64.0         | 66              | 313           | 331           | 295             | 296            | 0              | 0              | 33           |
| 65.0         | 66              | 313           | 331           | 295             | 296            | 0              | 0              | 33           |
| 66.0         | 65              | 321           | 331           | 296             | 296            | 0              | 0              | 33           |
| 67.0         | 65              | 313           | 331           | 296             | 297            | 0              | 0              | 33           |
| 68.0         | 66              | 313           | 331           | 297             | 298            | 0              | 0              | 33           |
| 69.0         | 66              | 321           | 331           | 298             | 299            | 0              | 0              | 33           |
| 70.0         | 66              | 313           | 331           | 299             | 300            | 0              | 0              | 33           |
| 71.0         | 65              | 313           | 331           | 300             | 301            | 0              | 0              | 33           |
| 72.0         | 67              | 321           | 331           | 301             | 302            | 0              | 0              | 33           |
| 73.0         | 66              | 321           | 331           | 302             | 302            | 0              | 0              | 33           |
| 74.0         | 66              | 313           | 331           | 302             | 303            | 0              | 0              | 33           |
| 75.0         | 66              | 313           | 331           | 302             | 303            | 0              | 0              | 33           |
| 76.0         | 66              | 313           | 331           | 301             | 302            | 0              | 0              | 33           |
| 77.0         | 66              | 313           | 331           | 301             | 302            | 0              | 0              | 33           |
| 78.0         | 66              | 313           | 331           | 300             | 301            | 0              | 0              | 33           |
| 79.0         | 67              | 313           | 331           | 300             | 300            | 0              | 0              | 33           |
| 80.0         | 66              | 313           | 331           | 299             | 300            | 0              | 0              | 33           |
| 81.0         | 66              | 313           | 331           | 298             | 299            | 0              | 0              | 33           |
| 82.0         | 66              | 313           | 331           | 298             | 298            | 0              | 0              | 33           |
| 83.0         | 66              | 313           | 331           | 297             | 297            | 0              | 0              | 33           |
| 84.0         | 66              | 313           | 331           | 296             | 297            | 0              | 0              | 33           |
| 85.0         | 65              | 313           | 331           | 296             | 296            | 0              | 0              | 33           |
| 86.0         | 66              | 313           | 331           | 295             | 295            | 0              | 0              | 33           |
| 87.0         | 66              | 313           | 331           | 292             | 292            | 0              | 0              | 33           |
| 88.0         | 66              | 313           | 331           | 290             | 290            | 0              | 0              | 33           |
| 89.0         | 66              | 313           | 331           | 287             | 288            | 0              | 0              | 33           |
| 90.0         | 65              | 313           | 331           | 285             | 285            | 0              | 0              | 33           |
| 91.0         | 65              | 313           | 331           | 283             | 283            | 0              | 0              | 33           |
| 92.0         | 65              | 313           | 331           | 281             | 281            | 0              | 0              | 33           |
| 93.0         | 65              | 313           | 331           | 279             | 279            | 0              | 0              | 33           |
| 94.0         | 65              | 313           | 331           | 277             | 277            | 0              | 0              | 33           |
| 95.0         | 65              | 313           | 331           | 275             | 275            | 0              | 0              | 33           |
| 96.0         | 64              | 313           | 331           | 273             | 273            | 0              | 0              | 33           |
| 97.0         | 65              | 313           | 331           | 271             | 271            | 0              | 0              | 33           |
| 98.0         | 64              | 313           | 331           | 269             | 269            | 0              | 0              | 33           |
| 99.0         | 64              | 313           | 331           | 267             | 268            | 0              | 0              | 33           |
| 100.0        | 65              | 313           | 331           | 265             | 266            | 0              | 0              | 33           |
| 101.0        | 65              | 313           | 331           | 263             | 264            | 0              | 0              | 33           |
| 102.0        | 64              | 313           | 331           | 262             | 262            | 0              | 0              | 33           |
| 103.0        | 65              | 313           | 331           | 260             | 260            | 0              | 0              | 33           |
| 104.0        | 65              | 313           | 331           | 258             | 258            | 0              | 0              | 33           |
| 105.0        | 65              | 313           | 331           | 256             | 257            | 0              | 0              | 33           |
| 106.0        | 64              | 313           | 331           | 255             | 255            | 0              | 0              | 33           |
| 107.0        | 65              | 313           | 331           | 253             | 253            | 0              | 0              | 33           |
| 108.0        | 64              | 313           | 331           | 251             | 252            | 0              | 0              | 33           |
| 109.0        | 64              | 313           | 331           | 250             | 250            | 0              | 0              | 33           |
| 110.0        | 65              | 321           | 331           | 248             | 249            | 0              | 0              | 33           |
| 111.0        | 64              | 313           | 331           | 247             | 247            | 0              | 0              | 33           |
| 112.0        | 65              | 313           | 331           | 245             | 245            | 0              | 0              | 33           |
| 113.0        | 65              | 313           | 331           | 244             | 244            | 0              | 0              | 33           |
| 114.0        | 65              | 313           | 331           | 242             | 242            | 0              | 0              | 33           |
| 115.0        | 65              | 313           | 331           | 240             | 241            | 0              | 0              | 33           |
| 116.0        | 65              | 313           | 331           | 239             | 239            | 0              | 0              | 33           |
| 117.0        | 64              | 313           | 331           | 238             | 238            | 0              | 0              | 33           |
| 118.0        | 65              | 313           | 331           | 238             | 238            | 0              | 0              | 33           |
| 119.0        | 65              | 313           | 331           | 235             | 235            | 0              | 0              | 33           |
| 120.0        | 64              | 321           | 331           | 233             | 234            | 0              | 0              | 33           |
| 121.0        | 64              | 313           | 331           | 232             | 232            | 0              | 0              | 33           |
| 122.0        | 65              | 313           | 331           | 231             | 231            | 0              | 0              | 33           |
| 123.0        | 65              | 313           | 331           | 229             | 230            | 0              | 0              | 33           |
| 124.0        | 65              | 313           | 331           | 228             | 228            | 0              | 0              | 33           |
| 125.0        | 65              | 313           | 331           | 226             | 227            | 0              | 0              | 33           |
| 126.0        | 64              | 313           | 331           | 224             | 225            | 0              | 0              | 33           |
| 127.0        | 65              | 313           | 331           | 223             | 223            | 0              | 0              | 33           |
| 128.0        | 64              | 313           | 331           | 221             | 222            | 0              | 0              | 33           |
| 129.0        | 65              | 313           | 331           | 220             | 220            | 0              | 0              | 33           |
| 130.0        | 65              | 313           | 331           | 219             | 219            | 0              | 0              | 33           |
| 131.0        | 65              | 313           | 331           | 218             | 218            | 0              | 0              | 33           |
| 132.0        | 66              | 313           | 331           | 217             | 217            | 0              | 0              | 33           |
| 133.0        | 65              | 313           | 331           | 216             | 216            | 0              | 0              | 33           |
| 134.0        | 65              | 313           | 331           | 216             | 216            | 0              | 0              | 33           |

## TEST NUMBER 244.01

| TIME<br>SECS | TT-101<br>Des.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 135.0        | 65              | 313           | 331           | 214             | 214            | 0              | 0              | 0            |
| 136.0        | 65              | 313           | 331           | 213             | 213            | 0              | 0              | 0            |
| 137.0        | 65              | 313           | 331           | 212             | 212            | 0              | 0              | 0            |
| 138.0        | 65              | 313           | 331           | 211             | 211            | 0              | 0              | 0            |
| 139.0        | 65              | 313           | 331           | 210             | 210            | 0              | 0              | 0            |
| 140.0        | 65              | 313           | 331           | 209             | 209            | 0              | 0              | 0            |
| 141.0        | 65              | 313           | 331           | 208             | 208            | 0              | 0              | 0            |
| 142.0        | 65              | 313           | 331           | 206             | 207            | 0              | 0              | 0            |
| 143.0        | 65              | 313           | 331           | 205             | 206            | 0              | 0              | 0            |
| 144.0        | 65              | 313           | 331           | 204             | 204            | 0              | 0              | 0            |
| 145.0        | 65              | 313           | 331           | 203             | 204            | 0              | 0              | 0            |
| 146.0        | 66              | 313           | 331           | 202             | 202            | 0              | 0              | 0            |
| 147.0        | 65              | 313           | 331           | 201             | 202            | 0              | 0              | 0            |
| 148.0        | 65              | 313           | 331           | 200             | 201            | 0              | 0              | 0            |
| 149.0        | 65              | 313           | 331           | 199             | 199            | 0              | 0              | 0            |
| 150.0        | 65              | 313           | 331           | 198             | 199            | 0              | 0              | 0            |
| 151.0        | 65              | 313           | 331           | 197             | 198            | 0              | 0              | 0            |
| 152.0        | 66              | 313           | 318           | 196             | 197            | 0              | 0              | 0            |
| 153.0        | 65              | 313           | 295           | 195             | 196            | 0              | 0              | 0            |
| 154.0        | 65              | 313           | 277           | 194             | 194            | 0              | 0              | 0            |
| 155.0        | 65              | 313           | 262           | 193             | 193            | 0              | 0              | 0            |
| 156.0        | 64              | 313           | 249           | 192             | 192            | 0              | 0              | 0            |
| 157.0        | 65              | 313           | 238           | 190             | 190            | 0              | 0              | 0            |
| 158.0        | 65              | 313           | 229           | 189             | 189            | 0              | 0              | 0            |
| 159.0        | 65              | 313           | 220           | 188             | 188            | 0              | 0              | 0            |
| 160.0        | 65              | 313           | 213           | 186             | 187            | 0              | 0              | 0            |
| 161.0        | 66              | 313           | 206           | 185             | 185            | 0              | 0              | 0            |
| 162.0        | 65              | 313           | 201           | 184             | 183            | 0              | 0              | 0            |
| 163.0        | 65              | 321           | 196           | 182             | 182            | 0              | 0              | 0            |

TEST DATE = 02/21/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.02  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION FLOW TEST

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1555            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | NO      |
| 9    | PT-19   | PSIG  | .9588              | .240370  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.15530  | 0           | 10000       | 2454    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIG  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .232270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.02

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 70              | 313           | 12            | 12              | 12             | 0              | 0              | 30           |
| -8.0         | 70              | 313           | 12            | 12              | 12             | 0              | 0              | 30           |
| -7.0         | 70              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -6.0         | 70              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -5.0         | 70              | 313           | 12            | 12              | 12             | 0              | 0              | 30           |
| -4.0         | 70              | 313           | 12            | 12              | 12             | 0              | 0              | 30           |
| -3.0         | 70              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -2.0         | 69              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -1.0         | 70              | 313           | 12            | 12              | 12             | 0              | 0              | 30           |
| 0.0          | 70              | 313           | 12            | 12              | 12             | 0              | 0              | 30           |
| 1.0          | 70              | 313           | 329           | 32              | 45             | 0              | 0              | 39           |
| 2.0          | 74              | 313           | 326           | 74              | 90             | 0              | 0              | 39           |
| 3.0          | 77              | 313           | 330           | 106             | 109            | 0              | 0              | 36           |
| 4.0          | 77              | 313           | 331           | 113             | 113            | 0              | 0              | 31           |
| 5.0          | 78              | 313           | 330           | 114             | 114            | 0              | 0              | 30           |
| 6.0          | 77              | 321           | 330           | 114             | 114            | 0              | 0              | 29           |
| 7.0          | 76              | 313           | 330           | 115             | 115            | 0              | 0              | 29           |
| 8.0          | 75              | 313           | 330           | 115             | 115            | 0              | 0              | 28           |
| 9.0          | 75              | 313           | 330           | 115             | 115            | 0              | 0              | 28           |
| 10.0         | 74              | 313           | 330           | 115             | 115            | 0              | 0              | 27           |
| 11.0         | 74              | 313           | 330           | 115             | 115            | 0              | 0              | 27           |
| 12.0         | 73              | 313           | 330           | 114             | 114            | 0              | 0              | 27           |
| 13.0         | 73              | 313           | 330           | 114             | 114            | 0              | 0              | 26           |
| 14.0         | 73              | 313           | 330           | 114             | 114            | 0              | 0              | 26           |
| 15.0         | 72              | 313           | 330           | 114             | 114            | 0              | 0              | 25           |
| 16.0         | 72              | 313           | 330           | 113             | 113            | 0              | 0              | 25           |
| 17.0         | 70              | 313           | 330           | 113             | 113            | 0              | 0              | 24           |
| 18.0         | 72              | 313           | 330           | 113             | 113            | 0              | 0              | 24           |
| 19.0         | 70              | 313           | 330           | 113             | 113            | 0              | 0              | 24           |
| 20.0         | 70              | 313           | 330           | 113             | 113            | 0              | 0              | 23           |
| 21.0         | 70              | 313           | 330           | 113             | 112            | 0              | 0              | 23           |
| 22.0         | 70              | 313           | 330           | 113             | 112            | 0              | 0              | 22           |
| 23.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 22           |
| 24.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 25.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 26.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 27.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 28.0         | 69              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 29.0         | 68              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 30.0         | 69              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 31.0         | 68              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 22.0         | 70              | 313           | 330           | 113             | 112            | 0              | 0              | 21           |
| 23.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 24.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 25.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 26.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 27.0         | 69              | 313           | 330           | 112             | 112            | 0              | 0              | 21           |
| 28.0         | 69              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 29.0         | 68              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 30.0         | 69              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |
| 31.0         | 68              | 313           | 329           | 112             | 112            | 0              | 0              | 21           |

TEST DATE = 02/21/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.02  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION FLOW TEST

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1553            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155830 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.3   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .853300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.02

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 35.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 21           |
| 36.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 20           |
| 37.0         | 67              | 313           | 329           | 111             | 111            | 0              | 0              | 20           |
| 38.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 20           |
| 39.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 20           |
| 40.0         | 67              | 313           | 329           | 111             | 111            | 0              | 0              | 20           |
| 41.0         | 67              | 313           | 329           | 111             | 111            | 0              | 0              | 19           |
| 42.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 19           |
| 43.0         | 67              | 313           | 329           | 111             | 111            | 0              | 0              | 19           |
| 44.0         | 67              | 313           | 329           | 111             | 111            | 0              | 0              | 19           |
| 45.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 18           |
| 46.0         | 68              | 313           | 329           | 111             | 111            | 0              | 0              | 18           |
| 47.0         | 68              | 313           | 329           | 111             | 110            | 0              | 0              | 18           |
| 48.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 18           |
| 49.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 50.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 51.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 52.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 53.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 54.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 55.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 17           |
| 56.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 4            |
| 57.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 0            |
| 58.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 0            |
| 59.0         | 66              | 313           | 329           | 110             | 110            | 0              | 0              | 0            |
| 60.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 0            |
| 61.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 0            |
| 62.0         | 67              | 313           | 329           | 110             | 110            | 0              | 0              | 0            |
| 63.0         | 67              | 313           | 329           | 110             | 109            | 0              | 0              | 0            |
| 64.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 65.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 66.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 67.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 68.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 69.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 70.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 71.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 72.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 73.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 74.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 75.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 76.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 77.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 78.0         | 66              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 79.0         | 68              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 80.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 81.0         | 67              | 313           | 329           | 109             | 109            | 0              | 0              | 0            |
| 82.0         | 67              | 313           | 329           | 109             | 108            | 0              | 0              | 0            |
| 83.0         | 67              | 313           | 329           | 109             | 108            | 0              | 0              | 0            |
| 84.0         | 67              | 313           | 329           | 109             | 108            | 0              | 0              | 0            |
| 85.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 86.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 87.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 88.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 89.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 90.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 91.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 92.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 93.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 94.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 95.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 96.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 97.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 98.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 99.0         | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 100.0        | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 101.0        | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 102.0        | 68              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 103.0        | 67              | 313           | 329           | 108             | 108            | 0              | 0              | 0            |
| 104.0        | 67              | 313           | 322           | 108             | 108            | 0              | 0              | 0            |
| 105.0        | 67              | 313           | 296           | 108             | 108            | 0              | 0              | 0            |
| 106.0        | 67              | 313           | 275           | 107             | 107            | 0              | 0              | 0            |

## TEST NUMBER 243.02

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 107.0        | 68              | 313           | 256           | 107             | 107            | 0              | 0              | 0            |
| 108.0        | 67              | 313           | 240           | 107             | 107            | 0              | 0              | 0            |
| 109.0        | 67              | 313           | 226           | 107             | 107            | 0              | 0              | 0            |
| 110.0        | 67              | 313           | 212           | 106             | 106            | 0              | 0              | 0            |
| 111.0        | 67              | 313           | 200           | 106             | 106            | 0              | 0              | 0            |
| 112.0        | 67              | 313           | 188           | 106             | 105            | 0              | 0              | 0            |
| 113.0        | 67              | 313           | 178           | 105             | 105            | 0              | 0              | 0            |
| 114.0        | 68              | 313           | 168           | 105             | 104            | 0              | 0              | 0            |
| 115.0        | 66              | 313           | 159           | 104             | 104            | 0              | 0              | 0            |

TEST DATE =  
PROGRAM ENGINEER'S NAME  
TEST NUMBER  
TEST DESCRIPTION

02/21/85

HOMA

243.03

## NAVY TUBE FLAME PROPAGATION FLOW TEST

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-36   | PSIG  | 28.1555            | 3.144850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155820 | 0           | 10000       | 2454    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.3   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .356300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.03

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 8<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| -9.0         | 65              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -8.0         | 65              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -7.0         | 65              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -6.0         | 65              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -5.0         | 65              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -4.0         | 65              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -3.0         | 65              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -2.0         | 64              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -1.0         | 65              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| 0.0          | 65              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 1.0          | 65              | 313           | 328           | 19              | 38             | 0               | 0               | 39           |
| 2.0          | 69              | 305           | 324           | 71              | 88             | 0               | 0               | 40           |
| 3.0          | 73              | 313           | 329           | 107             | 106            | 0               | 0               | 31           |
| 4.0          | 73              | 313           | 329           | 109             | 110            | 0               | 0               | 31           |
| 5.0          | 73              | 313           | 329           | 111             | 110            | 0               | 0               | 31           |
| 6.0          | 73              | 313           | 329           | 112             | 112            | 0               | 0               | 30           |
| 7.0          | 73              | 313           | 328           | 112             | 112            | 0               | 0               | 30           |
| 8.0          | 72              | 313           | 328           | 113             | 113            | 0               | 0               | 29           |
| 9.0          | 72              | 313           | 328           | 113             | 113            | 0               | 0               | 29           |
| 10.0         | 72              | 313           | 328           | 113             | 113            | 0               | 0               | 29           |
| 11.0         | 72              | 313           | 328           | 113             | 113            | 0               | 0               | 28           |
| 12.0         | 69              | 313           | 328           | 113             | 114            | 0               | 0               | 28           |
| 13.0         | 70              | 313           | 328           | 113             | 113            | 0               | 0               | 28           |
| 14.0         | 69              | 313           | 328           | 113             | 113            | 0               | 0               | 27           |
| 15.0         | 69              | 313           | 328           | 113             | 113            | 0               | 0               | 27           |
| 16.0         | 69              | 313           | 328           | 113             | 112            | 0               | 0               | 27           |
| 17.0         | 69              | 313           | 328           | 113             | 112            | 0               | 0               | 27           |
| 18.0         | 69              | 313           | 328           | 112             | 112            | 0               | 0               | 26           |
| 19.0         | 68              | 313           | 328           | 112             | 112            | 0               | 0               | 26           |
| 20.0         | 69              | 313           | 328           | 112             | 112            | 0               | 0               | 26           |
| 21.0         | 58              | 313           | 328           | 112             | 112            | 0               | 0               | 26           |
| 22.0         | 68              | 313           | 328           | 112             | 111            | 0               | 0               | 25           |
| 23.0         | 57              | 313           | 328           | 111             | 111            | 0               | 0               | 25           |
| 24.0         | 67              | 313           | 328           | 111             | 111            | 0               | 0               | 25           |
| 25.0         | 58              | 313           | 328           | 111             | 111            | 0               | 0               | 24           |
| 26.0         | 68              | 313           | 328           | 111             | 111            | 0               | 0               | 24           |
| 27.0         | 67              | 313           | 328           | 111             | 111            | 0               | 0               | 24           |
| 28.0         | 67              | 313           | 328           | 111             | 110            | 0               | 0               | 24           |
| 29.0         | 67              | 313           | 328           | 110             | 110            | 0               | 0               | 24           |
| 30.0         | 68              | 313           | 328           | 110             | 110            | 0               | 0               | 24           |
| 31.0         | 67              | 313           | 328           | 110             | 110            | 0               | 0               | 24           |
| 32.0         | 67              | 313           | 328           | 110             | 110            | 0               | 0               | 24           |
| 33.0         | 66              | 313           | 328           | 110             | 110            | 0               | 0               | 24           |
| 34.0         | 67              | 313           | 328           | 110             | 110            | 0               | 0               | 24           |
| 35.0         | 67              | 313           | 328           | 109             | 109            | 0               | 0               | 24           |
| 36.0         | 66              | 313           | 328           | 109             | 109            | 0               | 0               | 24           |
| 37.0         | 67              | 313           | 328           | 109             | 109            | 0               | 0               | 24           |
| 38.0         | 65              | 313           | 328           | 109             | 109            | 0               | 0               | 24           |
| 39.0         | 67              | 313           | 328           | 109             | 109            | 0               | 0               | 24           |
| 40.0         | 66              | 313           | 328           | 109             | 109            | 0               | 0               | 24           |
| 41.0         | 67              | 313           | 328           | 109             | 108            | 0               | 0               | 24           |
| 42.0         | 67              | 313           | 328           | 109             | 108            | 0               | 0               | 24           |
| 43.0         | 66              | 313           | 328           | 108             | 108            | 0               | 0               | 24           |
| 44.0         | 66              | 313           | 328           | 108             | 108            | 0               | 0               | 24           |
| 45.0         | 66              | 313           | 328           | 108             | 108            | 0               | 0               | 24           |
| 46.0         | 66              | 313           | 328           | 108             | 108            | 0               | 0               | 24           |
| 47.0         | 66              | 313           | 328           | 108             | 108            | 0               | 0               | 24           |
| 48.0         | 66              | 313           | 328           | 108             | 108            | 0               | 0               | 24           |
| 49.0         | 67              | 313           | 328           | 107             | 108            | 0               | 0               | 24           |
| 50.0         | 67              | 313           | 328           | 107             | 107            | 0               | 0               | 24           |
| 51.0         | 66              | 313           | 328           | 107             | 107            | 0               | 0               | 24           |
| 52.0         | 66              | 313           | 328           | 107             | 107            | 0               | 0               | 24           |
| 53.0         | 66              | 313           | 328           | 107             | 107            | 0               | 0               | 24           |
| 54.0         | 66              | 313           | 328           | 107             | 107            | 0               | 0               | 24           |
| 55.0         | 67              | 313           | 328           | 107             | 107            | 0               | 0               | 24           |
| 56.0         | 67              | 313           | 328           | 106             | 107            | 0               | 0               | 24           |
| 57.0         | 67              | 313           | 327           | 106             | 106            | 0               | 0               | 24           |
| 58.0         | 66              | 313           | 328           | 106             | 106            | 0               | 0               | 24           |
| 59.0         | 57              | 313           | 328           | 106             | 106            | 0               | 0               | 24           |
| 60.0         | 57              | 313           | 328           | 106             | 106            | 0               | 0               | 24           |
| 61.0         | 56              | 313           | 327           | 106             | 107            | 0               | 0               | 24           |
| 62.0         | 57              | 313           | 327           | 107             | 107            | 0               | 0               | 24           |

## TEST NUMBER 243.03

| TIME<br>SECS | PT-101<br>Deg.F | PT-06<br>PSIG | PT-9<br>PSIA | PT-100A<br>PSIA | PT-125<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|--------------|-----------------|----------------|----------------|----------------|--------------|
| 53.0         | 66              | 313           | 328          | 107             | 107            | 0              | 0              | 29           |
| 54.0         | 67              | 313           | 327          | 107             | 107            | 0              | 0              | 29           |
| 55.0         | 67              | 313           | 316          | 108             | 108            | 0              | 0              | 29           |
| 56.0         | 67              | 313           | 276          | 108             | 108            | 0              | 0              | 29           |
| 57.0         | 66              | 313           | 244          | 108             | 108            | 0              | 0              | 29           |
| 58.0         | 67              | 313           | 217          | 109             | 108            | 0              | 0              | 29           |
| 59.0         | 67              | 313           | 192          | 109             | 109            | 0              | 0              | 29           |
| 60.0         | 67              | 313           | 170          | 109             | 108            | 0              | 0              | 30           |
| 61.0         | 66              | 313           | 150          | 108             | 108            | 0              | 0              | 30           |
| 62.0         | 67              | 313           | 133          | 108             | 108            | 0              | 0              | 30           |
| 63.0         | 67              | 313           | 120          | 108             | 108            | 0              | 0              | 30           |
| 64.0         | 66              | 313           | 112          | 107             | 107            | 0              | 0              | 31           |
| 65.0         | 66              | 313           | 108          | 106             | 107            | 0              | 0              | 31           |
| 66.0         | 67              | 313           | 106          | 106             | 106            | 0              | 0              | 32           |

TEST DATE = 02/21/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.04  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0      | AI                 | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY  | STORAGE |
|------|---------|-------|---------|--------------------|-------------|-------------|---------|---------------|----------|---------|
| 0    | TT-101  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | YES     |
| 1    | TT-103  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 5    | TT-115  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 6    | TT-118  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 7    | TT-120  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 8    | PT-06   | PSIG  | 28.1555 |                    | 8.146850    | 0           | 10000   | 1758          | 06/13/85 | YES     |
| 9    | PT-19   | PSIA  | .9568   |                    | .240390     | 0           | 300     | 1109          | 07/24/85 | YES     |
| 10   | PT-28   | PSIG  | 6.3054  |                    | 8.155830    | 0           | 10000   | 2654          | 05/08/85 | YES     |
| 12   | PT-100A | PSIA  | -1.1727 |                    | .241900     | 0           | 300     | 1110          | 07/25/85 | YES     |
| 15   | PT-126  | PSIA  | -3.9401 |                    | .233270     | 0           | 300     | 1303          | 07/25/85 | YES     |
| 17   | INT.3   | VOLTS | 0.0000  |                    | .002440     | 0           | 0       | 0             | 12/12/85 | NO      |
| 18   | INT.7   | VOLTS | 0.0000  |                    | .002440     | 0           | 0       | 0             | 12/12/85 | NO      |
| 26   | V.P.    | DEG.  | 0.0000  |                    | .356300     | 0           | 90      | 0             | 12/12/90 | YES     |
| 38   | TT-201  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 40   | TT-203  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 41   | TT-204  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 43   | TT-208  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 45   | TT-210  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |
| 46   | TT-211  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES      | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.04

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 9<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| -9.0         | 85              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -8.0         | 85              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -7.0         | 86              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -6.0         | 85              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -5.0         | 85              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -4.0         | 85              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -3.0         | 85              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -2.0         | 85              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| -1.0         | 86              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| 0.0          | 84              | 313           | 12            | 12              | 12             | 0               | 0               | 30           |
| 1.0          | 85              | 313           | 326           | 19              | 39             | 0               | 0               | 30           |
| 2.0          | 89              | 313           | 324           | 73              | 86             | 0               | 0               | 30           |
| 3.0          | 72              | 313           | 327           | 107             | 108            | 0               | 0               | 30           |
| 4.0          | 73              | 313           | 327           | 112             | 112            | 0               | 0               | 30           |
| 5.0          | 73              | 313           | 327           | 114             | 114            | 0               | 0               | 31           |
| 6.0          | 73              | 305           | 327           | 115             | 115            | 0               | 0               | 31           |
| 7.0          | 73              | 313           | 326           | 115             | 115            | 0               | 0               | 30           |
| 8.0          | 73              | 313           | 326           | 116             | 115            | 0               | 0               | 28           |
| 9.0          | 73              | 313           | 326           | 116             | 115            | 0               | 0               | 27           |
| 10.0         | 72              | 313           | 326           | 115             | 115            | 0               | 0               | 27           |
| 11.0         | 76              | 313           | 326           | 115             | 115            | 0               | 0               | 27           |
| 12.0         | 70              | 313           | 326           | 115             | 115            | 0               | 0               | 26           |
| 13.0         | 70              | 305           | 326           | 115             | 115            | 0               | 0               | 26           |
| 14.0         | 70              | 313           | 326           | 114             | 114            | 0               | 0               | 26           |
| 15.0         | 69              | 313           | 326           | 114             | 114            | 0               | 0               | 24           |
| 16.0         | 69              | 313           | 326           | 114             | 114            | 0               | 0               | 24           |
| 17.0         | 69              | 313           | 326           | 114             | 114            | 0               | 0               | 23           |
| 18.0         | 69              | 313           | 326           | 113             | 113            | 0               | 0               | 23           |
| 19.0         | 68              | 313           | 326           | 113             | 113            | 0               | 0               | 23           |
| 20.0         | 69              | 313           | 326           | 113             | 113            | 0               | 0               | 23           |
| 21.0         | 68              | 313           | 326           | 113             | 113            | 0               | 0               | 22           |
| 22.0         | 67              | 313           | 326           | 113             | 113            | 0               | 0               | 22           |
| 23.0         | 68              | 313           | 326           | 113             | 112            | 0               | 0               | 22           |
| 24.0         | 68              | 313           | 326           | 113             | 112            | 0               | 0               | 21           |
| 25.0         | 67              | 313           | 326           | 112             | 112            | 0               | 0               | 21           |
| 26.0         | 68              | 313           | 326           | 112             | 112            | 0               | 0               | 21           |
| 27.0         | 68              | 305           | 326           | 112             | 112            | 0               | 0               | 21           |
| 28.0         | 67              | 313           | 326           | 112             | 112            | 0               | 0               | 21           |
| 29.0         | 66              | 313           | 326           | 112             | 112            | 0               | 0               | 20           |
| 30.0         | 67              | 313           | 326           | 112             | 112            | 0               | 0               | 20           |
| 31.0         | 67              | 313           | 326           | 112             | 112            | 0               | 0               | 20           |
| 32.0         | 67              | 313           | 312           | 112             | 111            | 0               | 0               | 19           |
| 33.0         | 67              | 313           | 288           | 111             | 111            | 0               | 0               | 19           |
| 34.0         | 67              | 313           | 288           | 111             | 111            | 0               | 0               | 19           |
| 35.0         | 67              | 313           | 289           | 111             | 111            | 0               | 0               | 19           |
| 36.0         | 66              | 313           | 289           | 110             | 110            | 0               | 0               | 19           |
| 37.0         | 67              | 313           | 281           | 110             | 110            | 0               | 0               | 19           |
| 38.0         | 67              | 313           | 288           | 109             | 109            | 0               | 0               | 19           |
| 39.0         | 66              | 313           | 196           | 109             | 109            | 0               | 0               | 19           |
| 40.0         | 66              | 313           | 185           | 108             | 108            | 0               | 0               | 19           |
| 41.0         | 66              | 313           | 175           | 108             | 108            | 0               | 0               | 19           |
| 42.0         | 66              | 305           | 185           | 107             | 107            | 0               | 0               | 19           |
| 43.0         | 66              | 313           | 157           | 106             | 106            | 0               | 0               | 19           |

AD-A156 305 THE USE OF AUSTENITIC STAINLESS STEEL VERSUS MONEL  
(NI-CU) ALLOY IN PRESS. (U) NAVAL POSTGRADUATE SCHOOL  
MONTEREY CA 8 MARSH MAR 85

2/2

UNCLASSIFIED

F/G 6/11

NL





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963 A

TEST DATE =  
PROGRAM ENGINEER'S NAME  
TEST NUMBER  
TEST DESCRIPTION

02/21/85  
HOMA  
243.05  
NAVY TUBE FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1533            | 8.146850 |             | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .240390  |             | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.153830 |             | 10000       | 2634    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900  |             | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  |             | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  |             | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  |             | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  |             | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.05

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 64              | 305           | 12            | 12              | 12             | 0              | 0              | 30           |
| -8.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -7.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -6.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -5.0         | 64              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| -4.0         | 64              | 305           | 12            | 12              | 12             | 0              | 0              | 30           |
| -3.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -2.0         | 65              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -1.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| 0.0          | 64              | 297           | 317           | 13              | 14             | 0              | 0              | 30           |
| 1.0          | 64              | 297           | 317           | 15              | 15             | 0              | 0              | 30           |
| 2.0          | 64              | 297           | 317           | 18              | 19             | 0              | 0              | 30           |
| 3.0          | 65              | 297           | 316           | 20              | 20             | 0              | 0              | 30           |
| 4.0          | 65              | 297           | 316           | 22              | 24             | 0              | 0              | 30           |
| 5.0          | 65              | 297           | 316           | 24              | 25             | 0              | 0              | 30           |
| 6.0          | 65              | 297           | 316           | 26              | 26             | 0              | 0              | 30           |
| 7.0          | 65              | 297           | 315           | 27              | 27             | 0              | 0              | 29           |
| 8.0          | 66              | 297           | 315           | 28              | 28             | 0              | 0              | 29           |
| 9.0          | 66              | 297           | 315           | 29              | 29             | 0              | 0              | 29           |
| 10.0         | 66              | 297           | 315           | 30              | 30             | 0              | 0              | 29           |
| 11.0         | 66              | 297           | 315           | 31              | 31             | 0              | 0              | 29           |
| 12.0         | 66              | 297           | 315           | 32              | 32             | 0              | 0              | 29           |
| 13.0         | 66              | 297           | 315           | 33              | 33             | 0              | 0              | 29           |
| 14.0         | 67              | 305           | 315           | 34              | 34             | 0              | 0              | 29           |
| 15.0         | 67              | 297           | 315           | 35              | 35             | 0              | 0              | 29           |
| 16.0         | 67              | 297           | 315           | 36              | 36             | 0              | 0              | 29           |
| 17.0         | 66              | 297           | 315           | 37              | 37             | 0              | 0              | 29           |
| 18.0         | 66              | 305           | 315           | 38              | 38             | 0              | 0              | 29           |
| 19.0         | 68              | 297           | 315           | 39              | 39             | 0              | 0              | 29           |
| 20.0         | 67              | 305           | 315           | 40              | 40             | 0              | 0              | 29           |
| 21.0         | 66              | 297           | 315           | 41              | 41             | 0              | 0              | 29           |
| 22.0         | 67              | 305           | 315           | 42              | 42             | 0              | 0              | 29           |
| 23.0         | 66              | 297           | 315           | 43              | 43             | 0              | 0              | 29           |
| 24.0         | 67              | 297           | 315           | 44              | 44             | 0              | 0              | 29           |
| 25.0         | 67              | 297           | 315           | 45              | 45             | 0              | 0              | 29           |
| 26.0         | 67              | 297           | 315           | 46              | 46             | 0              | 0              | 29           |
| 27.0         | 67              | 297           | 315           | 47              | 47             | 0              | 0              | 29           |
| 28.0         | 67              | 297           | 315           | 48              | 48             | 0              | 0              | 29           |
| 29.0         | 67              | 305           | 315           | 49              | 49             | 0              | 0              | 29           |
| 30.0         | 67              | 297           | 315           | 50              | 50             | 0              | 0              | 29           |
| 31.0         | 67              | 297           | 315           | 51              | 51             | 0              | 0              | 29           |
| 32.0         | 68              | 305           | 315           | 52              | 52             | 0              | 0              | 29           |
| 33.0         | 67              | 297           | 315           | 53              | 53             | 0              | 0              | 29           |
| 34.0         | 67              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 35.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 36.0         | 68              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 37.0         | 67              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 38.0         | 68              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 39.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 40.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 41.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 42.0         | 67              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 43.0         | 68              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 44.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 45.0         | 68              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 46.0         | 68              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 47.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 48.0         | 67              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 49.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 50.0         | 67              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 51.0         | 66              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 52.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 53.0         | 69              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 54.0         | 68              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 55.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 56.0         | 67              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 57.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 58.0         | 69              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 59.0         | 68              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 60.0         | 67              | 297           | 315           | 54              | 54             | 0              | 0              | 29           |
| 61.0         | 68              | 305           | 315           | 54              | 54             | 0              | 0              | 29           |
| 62.0         | 67              | 297           | 314           | 54              | 54             | 0              | 0              | 29           |

## TEST NUMBER 243.05

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 63.0         | 67              | 305           | 314           | 54              | 54             | 0              | 0              | 0            |
| 64.0         | 68              | 297           | 314           | 55              | 55             | 0              | 0              | 0            |
| 65.0         | 67              | 297           | 314           | 55              | 56             | 0              | 0              | 0            |
| 66.0         | 67              | 297           | 314           | 55              | 56             | 0              | 0              | 0            |
| 67.0         | 67              | 305           | 314           | 56              | 56             | 0              | 0              | 0            |
| 68.0         | 68              | 297           | 314           | 56              | 56             | 0              | 0              | 0            |
| 69.0         | 67              | 297           | 314           | 56              | 56             | 0              | 0              | 0            |
| 70.0         | 68              | 297           | 314           | 57              | 57             | 0              | 0              | 0            |
| 71.0         | 67              | 297           | 314           | 57              | 57             | 0              | 0              | 0            |
| 72.0         | 68              | 297           | 314           | 57              | 57             | 0              | 0              | 0            |
| 73.0         | 67              | 297           | 314           | 58              | 58             | 0              | 0              | 0            |
| 74.0         | 68              | 305           | 314           | 58              | 58             | 0              | 0              | 0            |
| 75.0         | 68              | 297           | 314           | 58              | 58             | 0              | 0              | 0            |
| 76.0         | 67              | 297           | 314           | 59              | 59             | 0              | 0              | 0            |
| 77.0         | 67              | 297           | 314           | 59              | 59             | 0              | 0              | 0            |
| 78.0         | 67              | 297           | 314           | 59              | 59             | 0              | 0              | 0            |
| 79.0         | 67              | 297           | 314           | 60              | 60             | 0              | 0              | 0            |
| 80.0         | 67              | 297           | 314           | 60              | 60             | 0              | 0              | 0            |
| 81.0         | 67              | 297           | 314           | 60              | 60             | 0              | 0              | 0            |
| 82.0         | 67              | 297           | 314           | 61              | 61             | 0              | 0              | 0            |
| 83.0         | 67              | 297           | 314           | 61              | 61             | 0              | 0              | 0            |
| 84.0         | 67              | 305           | 314           | 61              | 61             | 0              | 0              | 0            |
| 85.0         | 67              | 297           | 314           | 61              | 61             | 0              | 0              | 0            |
| 86.0         | 67              | 297           | 314           | 61              | 61             | 0              | 0              | 0            |
| 87.0         | 67              | 297           | 314           | 62              | 62             | 0              | 0              | 0            |
| 88.0         | 66              | 305           | 314           | 62              | 62             | 0              | 0              | 0            |
| 89.0         | 67              | 297           | 314           | 62              | 62             | 0              | 0              | 0            |
| 90.0         | 67              | 297           | 314           | 63              | 63             | 0              | 0              | 0            |
| 91.0         | 67              | 297           | 314           | 63              | 63             | 0              | 0              | 0            |
| 92.0         | 67              | 297           | 314           | 63              | 63             | 0              | 0              | 0            |
| 93.0         | 67              | 297           | 314           | 63              | 63             | 0              | 0              | 0            |
| 94.0         | 67              | 297           | 314           | 64              | 64             | 0              | 0              | 0            |
| 95.0         | 67              | 297           | 314           | 64              | 64             | 0              | 0              | 0            |
| 96.0         | 66              | 297           | 314           | 64              | 64             | 0              | 0              | 0            |
| 97.0         | 67              | 305           | 314           | 64              | 64             | 0              | 0              | 0            |
| 98.0         | 67              | 297           | 314           | 64              | 64             | 0              | 0              | 0            |
| 99.0         | 67              | 297           | 314           | 65              | 65             | 0              | 0              | 0            |
| 100.0        | 66              | 297           | 301           | 65              | 65             | 0              | 0              | 0            |
| 101.0        | 67              | 297           | 277           | 65              | 65             | 0              | 0              | 0            |
| 102.0        | 67              | 297           | 268           | 65              | 65             | 0              | 0              | 0            |
| 103.0        | 67              | 297           | 241           | 65              | 65             | 0              | 0              | 0            |
| 104.0        | 67              | 305           | 226           | 65              | 65             | 0              | 0              | 0            |
| 105.0        | 67              | 305           | 212           | 65              | 65             | 0              | 0              | 0            |
| 106.0        | 67              | 297           | 199           | 65              | 65             | 0              | 0              | 0            |
| 107.0        | 67              | 297           | 187           | 65              | 65             | 0              | 0              | 0            |
| 108.0        | 67              | 297           | 176           | 64              | 64             | 0              | 0              | 0            |
| 109.0        | 67              | 297           | 165           | 64              | 64             | 0              | 0              | 0            |
| 110.0        | 66              | 305           | 155           | 64              | 64             | 0              | 0              | 0            |
| 111.0        | 67              | 297           | 146           | 64              | 64             | 0              | 0              | 0            |

TEST DATE = 02/21/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.06  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION TEST, SS TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | MSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1533            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.153630 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-1006 | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .356300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.06

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 9<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| -9.0         | 64              | 297           | 12            | 12              | 12             | 0               | 0               | 30           |
| -8.0         | 63              | 297           | 12            | 12              | 13             | 0               | 0               | 30           |
| -7.0         | 64              | 297           | 12            | 12              | 13             | 0               | 0               | 30           |
| -6.0         | 63              | 297           | 12            | 12              | 13             | 0               | 0               | 30           |
| -5.0         | 64              | 297           | 12            | 12              | 13             | 0               | 0               | 30           |
| -4.0         | 63              | 297           | 12            | 12              | 13             | 0               | 0               | 30           |
| -3.0         | 63              | 297           | 12            | 12              | 12             | 0               | 0               | 30           |
| -2.0         | 63              | 297           | 12            | 12              | 12             | 0               | 0               | 30           |
| -1.0         | 63              | 297           | 12            | 12              | 12             | 0               | 0               | 30           |
| 0.0          | 64              | 297           | 312           | 23              | 43             | 0               | 0               | 39           |
| 1.0          | 64              | 297           | 310           | 76              | 86             | 0               | 0               | 39           |
| 2.0          | 68              | 297           | 313           | 106             | 107            | 0               | 0               | 34           |
| 3.0          | 70              | 297           | 313           | 111             | 112            | 0               | 0               | 32           |
| 4.0          | 72              | 297           | 313           | 113             | 113            | 0               | 0               | 32           |
| 5.0          | 72              | 297           | 313           | 114             | 114            | 0               | 0               | 31           |
| 6.0          | 73              | 297           | 313           | 115             | 115            | 0               | 0               | 30           |
| 7.0          | 72              | 297           | 312           | 115             | 115            | 0               | 0               | 29           |
| 8.0          | 72              | 297           | 312           | 115             | 115            | 0               | 0               | 28           |
| 9.0          | 70              | 297           | 312           | 115             | 115            | 0               | 0               | 27           |
| 10.0         | 69              | 297           | 312           | 115             | 115            | 0               | 0               | 27           |
| 11.0         | 69              | 297           | 312           | 115             | 115            | 0               | 0               | 27           |
| 12.0         | 69              | 297           | 312           | 114             | 114            | 0               | 0               | 27           |
| 13.0         | 69              | 297           | 312           | 114             | 114            | 0               | 0               | 27           |
| 14.0         | 68              | 297           | 312           | 113             | 113            | 0               | 0               | 26           |
| 15.0         | 68              | 297           | 312           | 113             | 113            | 0               | 0               | 26           |
| 16.0         | 67              | 297           | 312           | 113             | 113            | 0               | 0               | 25           |
| 17.0         | 67              | 297           | 312           | 112             | 112            | 0               | 0               | 25           |
| 18.0         | 68              | 297           | 312           | 112             | 112            | 0               | 0               | 25           |
| 19.0         | 67              | 297           | 312           | 112             | 112            | 0               | 0               | 24           |
| 20.0         | 67              | 297           | 312           | 111             | 111            | 0               | 0               | 24           |
| 21.0         | 67              | 297           | 312           | 111             | 111            | 0               | 0               | 24           |
| 22.0         | 66              | 297           | 312           | 111             | 111            | 0               | 0               | 24           |
| 23.0         | 67              | 297           | 312           | 111             | 111            | 0               | 0               | 24           |
| 24.0         | 66              | 297           | 312           | 110             | 110            | 0               | 0               | 24           |
| 25.0         | 67              | 297           | 312           | 110             | 110            | 0               | 0               | 24           |
| 26.0         | 66              | 297           | 312           | 110             | 110            | 0               | 0               | 24           |
| 27.0         | 66              | 297           | 312           | 109             | 109            | 0               | 0               | 24           |
| 28.0         | 66              | 299           | 312           | 109             | 109            | 0               | 0               | 24           |
| 29.0         | 66              | 297           | 312           | 108             | 109            | 0               | 0               | 24           |
| 30.0         | 66              | 297           | 312           | 108             | 108            | 0               | 0               | 24           |
| 31.0         | 66              | 299           | 312           | 108             | 108            | 0               | 0               | 24           |
| 32.0         | 66              | 297           | 312           | 108             | 108            | 0               | 0               | 24           |
| 33.0         | 65              | 297           | 312           | 108             | 108            | 0               | 0               | 24           |
| 34.0         | 66              | 297           | 312           | 107             | 108            | 0               | 0               | 24           |
| 35.0         | 66              | 297           | 312           | 107             | 107            | 0               | 0               | 24           |
| 36.0         | 66              | 297           | 312           | 107             | 107            | 0               | 0               | 24           |
| 37.0         | 66              | 297           | 307           | 106             | 106            | 0               | 0               | 24           |
| 38.0         | 66              | 297           | 284           | 106             | 106            | 0               | 0               | 23           |
| 39.0         | 66              | 297           | 263           | 106             | 106            | 0               | 0               | 23           |
| 40.0         | 65              | 297           | 249           | 106             | 105            | 0               | 0               | 23           |
| 41.0         | 66              | 297           | 234           | 105             | 105            | 0               | 0               | 23           |
| 42.0         | 65              | 297           | 221           | 104             | 104            | 0               | 0               | 23           |
| 43.0         | 66              | 297           | 209           | 104             | 104            | 0               | 0               | 23           |
| 44.0         | 66              | 297           | 195           | 103             | 103            | 0               | 0               | 23           |
| 45.0         | 65              | 297           | 176           | 103             | 103            | 0               | 0               | 23           |
| 46.0         | 65              | 297           | 153           | 103             | 103            | 0               | 0               | 23           |
| 47.0         | 65              | 297           | 123           | 103             | 103            | 0               | 0               | 23           |
| 48.0         | 65              | 297           | 104           | 103             | 103            | 0               | 0               | 23           |

TEST DATE = 02/21/85  
PROGRAM ENGINEER'S NAME HOMA  
TEST NUMBER 243.07  
TEST DESCRIPTION

NAVY TUBE FLAME PROPAGATION TEST, SS TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1335            | 8.146850 |             | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIG  | .9568              | .240390  |             | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | -6.3054            | 8.155830 |             | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIG  | -1.1727            | .241900  |             | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIG  | -3.9401            | .233270  |             | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  |             | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  |             | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  |             | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-206  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.07

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -8.0         | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -7.0         | 65              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| -6.0         | 64              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| -5.0         | 64              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| -4.0         | 64              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| -3.0         | 65              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| -2.0         | 64              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| -1.0         | 66              | 297           | 12            | 12              | 13             | 0              | 0              | 30           |
| 0.0          | 64              | 297           | 12            | 12              | 12             | 0              | 0              | 30           |
| 1.0          | 64              | 297           | 314           | 14              | 14             | 0              | 0              | 30           |
| 2.0          | 65              | 297           | 314           | 15              | 16             | 0              | 0              | 30           |
| 3.0          | 65              | 297           | 313           | 17              | 17             | 0              | 0              | 30           |
| 4.0          | 66              | 289           | 313           | 19              | 20             | 0              | 0              | 30           |
| 5.0          | 66              | 297           | 313           | 21              | 22             | 0              | 0              | 30           |
| 6.0          | 65              | 297           | 313           | 23              | 24             | 0              | 0              | 30           |
| 7.0          | 66              | 297           | 313           | 25              | 26             | 0              | 0              | 30           |
| 8.0          | 66              | 289           | 313           | 27              | 27             | 0              | 0              | 27           |
| 9.0          | 65              | 289           | 312           | 28              | 28             | 0              | 0              | 27           |
| 10.0         | 66              | 297           | 312           | 27              | 28             | 0              | 0              | 27           |
| 11.0         | 67              | 297           | 312           | 28              | 29             | 0              | 0              | 27           |
| 12.0         | 67              | 297           | 312           | 29              | 29             | 0              | 0              | 27           |
| 13.0         | 67              | 297           | 312           | 30              | 30             | 0              | 0              | 27           |
| 14.0         | 67              | 297           | 312           | 31              | 31             | 0              | 0              | 27           |
| 15.0         | 66              | 297           | 312           | 32              | 32             | 0              | 0              | 27           |
| 16.0         | 67              | 297           | 312           | 31              | 32             | 0              | 0              | 27           |
| 17.0         | 66              | 297           | 312           | 31              | 32             | 0              | 0              | 27           |
| 18.0         | 66              | 297           | 312           | 32              | 33             | 0              | 0              | 27           |
| 19.0         | 67              | 297           | 312           | 33              | 34             | 0              | 0              | 27           |
| 20.0         | 66              | 297           | 312           | 33              | 34             | 0              | 0              | 27           |
| 21.0         | 66              | 297           | 312           | 34              | 34             | 0              | 0              | 27           |
| 22.0         | 66              | 297           | 312           | 35              | 35             | 0              | 0              | 27           |
| 23.0         | 67              | 297           | 312           | 36              | 36             | 0              | 0              | 27           |
| 24.0         | 67              | 297           | 312           | 36              | 36             | 0              | 0              | 27           |
| 25.0         | 66              | 289           | 312           | 36              | 36             | 0              | 0              | 27           |
| 26.0         | 66              | 289           | 312           | 37              | 37             | 0              | 0              | 27           |
| 27.0         | 68              | 289           | 312           | 37              | 37             | 0              | 0              | 27           |
| 28.0         | 67              | 297           | 312           | 38              | 38             | 0              | 0              | 27           |
| 29.0         | 67              | 297           | 312           | 38              | 39             | 0              | 0              | 27           |
| 30.0         | 66              | 297           | 312           | 39              | 39             | 0              | 0              | 27           |
| 31.0         | 67              | 297           | 312           | 39              | 40             | 0              | 0              | 27           |
| 32.0         | 66              | 297           | 312           | 40              | 40             | 0              | 0              | 27           |
| 33.0         | 67              | 297           | 312           | 40              | 41             | 0              | 0              | 27           |
| 34.0         | 67              | 289           | 312           | 41              | 41             | 0              | 0              | 27           |
| 35.0         | 66              | 297           | 312           | 41              | 42             | 0              | 0              | 27           |
| 36.0         | 67              | 297           | 312           | 42              | 42             | 0              | 0              | 27           |
| 37.0         | 67              | 297           | 312           | 42              | 42             | 0              | 0              | 27           |
| 38.0         | 68              | 297           | 292           | 43              | 43             | 0              | 0              | 27           |
| 39.0         | 67              | 297           | 269           | 43              | 43             | 0              | 0              | 27           |
| 40.0         | 67              | 297           | 251           | 43              | 43             | 0              | 0              | 27           |
| 41.0         | 67              | 297           | 234           | 44              | 44             | 0              | 0              | 27           |
| 42.0         | 66              | 297           | 220           | 44              | 44             | 0              | 0              | 27           |
| 43.0         | 67              | 297           | 206           | 44              | 44             | 0              | 0              | 27           |
| 44.0         | 66              | 297           | 194           | 44              | 44             | 0              | 0              | 27           |
| 45.0         | 67              | 289           | 182           | 44              | 44             | 0              | 0              | 27           |
| 46.0         | 66              | 289           | 171           | 44              | 45             | 0              | 0              | 27           |
| 47.0         | 67              | 297           | 161           | 44              | 44             | 0              | 0              | 27           |
| 48.0         | 66              | 297           | 151           | 44              | 44             | 0              | 0              | 27           |
| 49.0         | 66              | 297           | 142           | 44              | 44             | 0              | 0              | 27           |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.08  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION TEST, SS TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1555            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155830 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 13   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.3   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-206  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.08

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 56              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -8.0         | 57              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -7.0         | 57              | 330           | 12            | 12              | 13             | 0              | 0              | 30           |
| -6.0         | 56              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -5.0         | 57              | 330           | 12            | 12              | 13             | 0              | 0              | 30           |
| -4.0         | 57              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -3.0         | 56              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -2.0         | 56              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -1.0         | 56              | 330           | 13            | 12              | 13             | 0              | 0              | 30           |
| 0.0          | 56              | 330           | 12            | 21              | 49             | 0              | 0              | 30           |
| 1.0          | 56              | 321           | 340           | 133             | 193            | 0              | 0              | 51           |
| 2.0          | 52              | 321           | 295           | 282             | 272            | 0              | 0              | 46           |
| 3.0          | 56              | 321           | 327           | 292             | 295            | 0              | 0              | 36           |
| 4.0          | 58              | 321           | 339           | 294             | 295            | 0              | 0              | 34           |
| 5.0          | 57              | 321           | 339           | 294             | 295            | 0              | 0              | 33           |
| 6.0          | 55              | 321           | 338           | 296             | 298            | 0              | 0              | 33           |
| 7.0          | 54              | 321           | 338           | 297             | 298            | 0              | 0              | 33           |
| 8.0          | 52              | 321           | 338           | 297             | 298            | 0              | 0              | 33           |
| 9.0          | 50              | 321           | 338           | 297             | 298            | 0              | 0              | 33           |
| 10.0         | 59              | 321           | 338           | 296             | 297            | 0              | 0              | 33           |
| 11.0         | 57              | 321           | 338           | 296             | 297            | 0              | 0              | 33           |
| 12.0         | 57              | 321           | 338           | 295             | 296            | 0              | 0              | 33           |
| 13.0         | 55              | 321           | 338           | 295             | 295            | 0              | 0              | 33           |
| 14.0         | 54              | 321           | 338           | 294             | 295            | 0              | 0              | 33           |
| 15.0         | 53              | 321           | 338           | 294             | 295            | 0              | 0              | 33           |
| 16.0         | 53              | 321           | 338           | 293             | 294            | 0              | 0              | 33           |
| 17.0         | 52              | 321           | 338           | 293             | 293            | 0              | 0              | 33           |
| 18.0         | 52              | 321           | 338           | 293             | 293            | 0              | 0              | 33           |
| 19.0         | 51              | 321           | 338           | 293             | 292            | 0              | 0              | 33           |
| 20.0         | 51              | 321           | 338           | 292             | 293            | 0              | 0              | 33           |
| 21.0         | 51              | 321           | 338           | 292             | 293            | 0              | 0              | 33           |
| 22.0         | 51              | 321           | 338           | 292             | 292            | 0              | 0              | 33           |
| 23.0         | 51              | 321           | 338           | 291             | 292            | 0              | 0              | 33           |
| 24.0         | 51              | 321           | 338           | 292             | 292            | 0              | 0              | 33           |
| 25.0         | 51              | 321           | 338           | 292             | 293            | 0              | 0              | 33           |
| 26.0         | 50              | 321           | 338           | 293             | 294            | 0              | 0              | 33           |
| 27.0         | 50              | 321           | 338           | 293             | 295            | 0              | 0              | 33           |
| 28.0         | 50              | 321           | 338           | 295             | 296            | 0              | 0              | 33           |
| 29.0         | 51              | 321           | 338           | 296             | 297            | 0              | 0              | 33           |
| 30.0         | 50              | 321           | 339           | 297             | 297            | 0              | 0              | 33           |
| 31.0         | 51              | 321           | 338           | 297             | 298            | 0              | 0              | 33           |
| 32.0         | 50              | 321           | 338           | 297             | 297            | 0              | 0              | 33           |
| 33.0         | 51              | 313           | 338           | 296             | 297            | 0              | 0              | 33           |
| 34.0         | 49              | 321           | 339           | 295             | 296            | 0              | 0              | 33           |
| 35.0         | 51              | 321           | 338           | 295             | 296            | 0              | 0              | 33           |
| 36.0         | 50              | 313           | 338           | 295             | 296            | 0              | 0              | 33           |
| 37.0         | 49              | 321           | 338           | 294             | 295            | 0              | 0              | 33           |
| 38.0         | 49              | 321           | 338           | 293             | 294            | 0              | 0              | 33           |
| 39.0         | 48              | 313           | 338           | 293             | 294            | 0              | 0              | 33           |
| 40.0         | 50              | 321           | 338           | 292             | 293            | 0              | 0              | 33           |
| 41.0         | 50              | 321           | 338           | 292             | 293            | 0              | 0              | 33           |
| 42.0         | 49              | 313           | 338           | 292             | 293            | 0              | 0              | 33           |
| 43.0         | 49              | 321           | 337           | 292             | 292            | 0              | 0              | 33           |
| 44.0         | 50              | 313           | 337           | 292             | 293            | 0              | 0              | 33           |
| 45.0         | 50              | 321           | 337           | 292             | 293            | 0              | 0              | 33           |
| 46.0         | 49              | 321           | 337           | 294             | 295            | 0              | 0              | 33           |
| 47.0         | 50              | 313           | 337           | 295             | 296            | 0              | 0              | 33           |
| 48.0         | 50              | 321           | 337           | 296             | 297            | 0              | 0              | 33           |
| 49.0         | 50              | 313           | 337           | 297             | 297            | 0              | 0              | 33           |
| 50.0         | 50              | 321           | 337           | 296             | 297            | 0              | 0              | 33           |
| 51.0         | 49              | 321           | 337           | 295             | 296            | 0              | 0              | 33           |
| 52.0         | 49              | 321           | 337           | 295             | 296            | 0              | 0              | 33           |
| 53.0         | 49              | 321           | 337           | 294             | 295            | 0              | 0              | 33           |
| 54.0         | 50              | 321           | 337           | 293             | 294            | 0              | 0              | 33           |
| 55.0         | 49              | 321           | 337           | 293             | 294            | 0              | 0              | 33           |
| 56.0         | 49              | 313           | 337           | 292             | 293            | 0              | 0              | 33           |
| 57.0         | 50              | 321           | 337           | 292             | 293            | 0              | 0              | 33           |
| 58.0         | 50              | 321           | 337           | 292             | 292            | 0              | 0              | 33           |
| 59.0         | 50              | 321           | 337           | 291             | 292            | 0              | 0              | 33           |
| 60.0         | 49              | 321           | 337           | 292             | 292            | 0              | 0              | 33           |
| 61.0         | 50              | 313           | 337           | 293             | 293            | 0              | 0              | 33           |
| 62.0         | 49              | 321           | 337           | 294             | 294            | 0              | 0              | 33           |

## TEST NUMBER 243.08

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 3<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| 63.0         | 50              | 321           | 337           | 294             | 295            | 0               | 0               | 33           |
| 64.0         | 50              | 321           | 337           | 295             | 296            | 0               | 0               | 33           |
| 65.0         | 50              | 321           | 337           | 296             | 297            | 0               | 0               | 33           |
| 66.0         | 51              | 321           | 337           | 297             | 297            | 0               | 0               | 33           |
| 67.0         | 49              | 321           | 337           | 297             | 298            | 0               | 0               | 33           |
| 68.0         | 50              | 321           | 337           | 296             | 297            | 0               | 0               | 33           |
| 69.0         | 50              | 321           | 337           | 295             | 296            | 0               | 0               | 33           |
| 70.0         | 49              | 321           | 337           | 294             | 294            | 0               | 0               | 32           |
| 71.0         | 50              | 321           | 337           | 292             | 292            | 0               | 0               | 21           |
| 72.0         | 49              | 321           | 337           | 288             | 289            | 0               | 0               | 5            |
| 73.0         | 49              | 321           | 337           | 286             | 286            | 0               | 0               | 0            |
| 74.0         | 49              | 321           | 337           | 283             | 284            | 0               | 0               | 0            |
| 75.0         | 49              | 321           | 337           | 281             | 282            | 0               | 0               | 0            |
| 76.0         | 48              | 321           | 321           | 278             | 279            | 0               | 0               | 0            |
| 77.0         | 49              | 321           | 307           | 276             | 276            | 0               | 0               | 0            |
| 78.0         | 48              | 321           | 297           | 273             | 273            | 0               | 0               | 0            |
| 79.0         | 49              | 321           | 289           | 270             | 271            | 0               | 0               | 0            |
| 80.0         | 48              | 321           | 292           | 267             | 268            | 0               | 0               | 0            |
| 81.0         | 47              | 321           | 277           | 265             | 265            | 0               | 0               | 0            |
| 82.0         | 48              | 321           | 273           | 262             | 263            | 0               | 0               | 0            |
| 83.0         | 48              | 321           | 268           | 259             | 260            | 0               | 0               | 0            |
| 84.0         | 47              | 321           | 265           | 257             | 257            | 0               | 0               | 0            |
| 85.0         | 47              | 321           | 261           | 254             | 255            | 0               | 0               | 0            |
| 86.0         | 48              | 321           | 258           | 251             | 252            | 0               | 0               | 0            |

TEST DATE = 02/22/85  
PROGRAM ENGINEER'S NAME HOMA  
TEST NUMBER 243.09  
TEST DESCRIPTION

NAVY TUBE FLAME PROPAGATION TEST, MONEL TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1555            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9598              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155830 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 19   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.09

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 59              | 321           | 13            | 12              | 13             | 0              | 0              | 30           |
| -8.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -7.0         | 59              | 321           | 12            | 12              | 12             | 0              | 0              | 30           |
| -6.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -5.0         | 60              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -4.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -3.0         | 59              | 321           | 13            | 12              | 13             | 0              | 0              | 30           |
| -2.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -1.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| 0.0          | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| 1.0          | 59              | 321           | 338           | 113             | 17             | 34             | 0              | 38           |
| 2.0          | 63              | 321           | 292           | 180             | 251            | 265            | 0              | 51           |
| 3.0          | 68              | 321           | 318           | 293             | 291            | 291            | 0              | 48           |
| 4.0          | 69              | 313           | 334           | 293             | 295            | 0              | 0              | 38           |
| 5.0          | 69              | 321           | 334           | 293             | 295            | 0              | 0              | 38           |
| 6.0          | 68              | 313           | 333           | 295             | 296            | 0              | 0              | 38           |
| 7.0          | 68              | 313           | 333           | 296             | 297            | 0              | 0              | 38           |
| 8.0          | 64              | 321           | 333           | 297             | 298            | 0              | 0              | 38           |
| 9.0          | 63              | 313           | 333           | 297             | 297            | 0              | 0              | 38           |
| 10.0         | 62              | 321           | 333           | 296             | 297            | 0              | 0              | 38           |
| 11.0         | 60              | 313           | 333           | 295             | 296            | 0              | 0              | 38           |
| 12.0         | 59              | 313           | 333           | 295             | 295            | 0              | 0              | 38           |
| 13.0         | 59              | 313           | 333           | 294             | 295            | 0              | 0              | 38           |
| 14.0         | 57              | 313           | 333           | 293             | 293            | 0              | 0              | 38           |
| 15.0         | 57              | 321           | 333           | 292             | 293            | 0              | 0              | 38           |
| 16.0         | 56              | 313           | 333           | 292             | 293            | 0              | 0              | 38           |
| 17.0         | 54              | 313           | 333           | 291             | 292            | 0              | 0              | 38           |
| 18.0         | 55              | 313           | 333           | 291             | 291            | 0              | 0              | 38           |
| 19.0         | 53              | 321           | 333           | 291             | 292            | 0              | 0              | 38           |
| 20.0         | 54              | 313           | 332           | 291             | 292            | 0              | 0              | 38           |
| 21.0         | 53              | 313           | 333           | 292             | 293            | 0              | 0              | 38           |
| 22.0         | 53              | 313           | 332           | 293             | 294            | 0              | 0              | 38           |
| 23.0         | 53              | 313           | 332           | 294             | 295            | 0              | 0              | 38           |
| 24.0         | 53              | 313           | 332           | 294             | 295            | 0              | 0              | 38           |
| 25.0         | 53              | 313           | 332           | 295             | 296            | 0              | 0              | 38           |
| 26.0         | 52              | 313           | 332           | 296             | 297            | 0              | 0              | 38           |
| 27.0         | 53              | 313           | 332           | 297             | 297            | 0              | 0              | 38           |
| 28.0         | 53              | 321           | 332           | 297             | 297            | 0              | 0              | 38           |
| 29.0         | 53              | 313           | 332           | 296             | 297            | 0              | 0              | 38           |
| 30.0         | 53              | 313           | 332           | 296             | 296            | 0              | 0              | 38           |
| 31.0         | 53              | 313           | 332           | 295             | 295            | 0              | 0              | 38           |
| 32.0         | 52              | 321           | 332           | 295             | 295            | 0              | 0              | 38           |
| 33.0         | 52              | 313           | 332           | 294             | 295            | 0              | 0              | 38           |
| 34.0         | 52              | 313           | 332           | 293             | 294            | 0              | 0              | 38           |
| 35.0         | 52              | 313           | 332           | 293             | 294            | 0              | 0              | 38           |
| 36.0         | 51              | 313           | 332           | 292             | 293            | 0              | 0              | 38           |
| 37.0         | 52              | 313           | 332           | 292             | 293            | 0              | 0              | 38           |
| 38.0         | 51              | 313           | 332           | 291             | 292            | 0              | 0              | 38           |
| 39.0         | 51              | 313           | 332           | 291             | 292            | 0              | 0              | 38           |
| 40.0         | 51              | 313           | 332           | 292             | 292            | 0              | 0              | 38           |
| 41.0         | 51              | 313           | 332           | 292             | 293            | 0              | 0              | 38           |
| 42.0         | 51              | 313           | 291           | 291             | 291            | 0              | 0              | 38           |
| 43.0         | 50              | 313           | 288           | 288             | 288            | 0              | 0              | 40           |
| 44.0         | 51              | 313           | 286           | 285             | 286            | 0              | 0              | 40           |
| 45.0         | 51              | 313           | 283           | 282             | 283            | 0              | 0              | 40           |
| 46.0         | 50              | 313           | 281           | 280             | 281            | 0              | 0              | 40           |
| 47.0         | 51              | 313           | 279           | 277             | 278            | 0              | 0              | 40           |
| 48.0         | 50              | 313           | 276           | 275             | 276            | 0              | 0              | 40           |
| 49.0         | 50              | 313           | 273           | 273             | 273            | 0              | 0              | 40           |
| 50.0         | 50              | 313           | 271           | 270             | 271            | 0              | 0              | 40           |
| 51.0         | 50              | 321           | 269           | 268             | 269            | 0              | 0              | 40           |
| 52.0         | 50              | 313           | 266           | 266             | 266            | 0              | 0              | 40           |
| 53.0         | 49              | 313           | 264           | 263             | 265            | 0              | 0              | 40           |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.1  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1555            | 8.144650 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIG  | .7588              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155830 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Des.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.1

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 59              | 321           | 13            | 12              | 13             | 0              | 0              | 30           |
| -8.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -7.0         | 59              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -6.0         | 59              | 313           | 13            | 12              | 13             | 0              | 0              | 30           |
| -5.0         | 59              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| -4.0         | 60              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -3.0         | 59              | 321           | 13            | 12              | 13             | 0              | 0              | 30           |
| -2.0         | 59              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -1.0         | 60              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| 0.0          | 59              | 321           | 14            | 15              | 15             | 0              | 0              | 30           |
| 1.0          | 57              | 313           | 336           | 15              | 15             | 0              | 0              | 30           |
| 2.0          | 59              | 313           | 335           | 16              | 16             | 0              | 0              | 30           |
| 3.0          | 60              | 313           | 334           | 17              | 19             | 0              | 0              | 30           |
| 4.0          | 59              | 313           | 334           | 19              | 21             | 0              | 0              | 30           |
| 5.0          | 60              | 313           | 334           | 22              | 22             | 0              | 0              | 30           |
| 6.0          | 59              | 321           | 334           | 24              | 24             | 0              | 0              | 30           |
| 7.0          | 60              | 313           | 334           | 25              | 25             | 0              | 0              | 29           |
| 8.0          | 59              | 313           | 334           | 26              | 26             | 0              | 0              | 27           |
| 9.0          | 59              | 313           | 334           | 26              | 26             | 0              | 0              | 26           |
| 10.0         | 59              | 321           | 334           | 27              | 27             | 0              | 0              | 26           |
| 11.0         | 59              | 321           | 333           | 27              | 28             | 0              | 0              | 25           |
| 12.0         | 60              | 313           | 334           | 28              | 28             | 0              | 0              | 25           |
| 13.0         | 60              | 313           | 333           | 29              | 29             | 0              | 0              | 25           |
| 14.0         | 60              | 313           | 333           | 30              | 30             | 0              | 0              | 25           |
| 15.0         | 57              | 321           | 333           | 31              | 31             | 0              | 0              | 25           |
| 16.0         | 60              | 313           | 333           | 31              | 31             | 0              | 0              | 25           |
| 17.0         | 60              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 18.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 19.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 20.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 21.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 22.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 23.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 24.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 25.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 26.0         | 56              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 27.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 28.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 29.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 30.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 31.0         | 56              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 32.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 33.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 34.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 35.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 36.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 37.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 38.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 39.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 40.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 41.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 42.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 43.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 44.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 45.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 46.0         | 57              | 321           | 332           | 31              | 31             | 0              | 0              | 25           |
| 47.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 48.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 49.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 50.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 51.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 52.0         | 53              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 53.0         | 54              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 54.0         | 55              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 55.0         | 56              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 56.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 57.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 58.0         | 59              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 59.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 60.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |
| 61.0         | 57              | 313           | 332           | 31              | 31             | 0              | 0              | 25           |

## TEST NUMBER 243.1

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 63.0         | 55              | 313           | 332           | 78              | 78             | 0              | 0              | 25           |
| 64.0         | 53              | 313           | 332           | 78              | 78             | 0              | 0              | 24           |
| 65.0         | 54              | 313           | 332           | 78              | 78             | 0              | 0              | 29           |
| 66.0         | 53              | 313           | 332           | 82              | 82             | 0              | 0              | 33           |
| 67.0         | 53              | 313           | 332           | 89              | 90             | 0              | 0              | 33           |
| 68.0         | 53              | 313           | 275           | 96              | 96             | 0              | 0              | 33           |
| 69.0         | 56              | 313           | 199           | 97              | 97             | 0              | 0              | 31           |
| 70.0         | 53              | 321           | 186           | 97              | 98             | 0              | 0              | 31           |
| 71.0         | 53              | 313           | 150           | 97              | 97             | 0              | 0              | 30           |
| 72.0         | 54              | 313           | 141           | 96              | 97             | 0              | 0              | 28           |
| 73.0         | 54              | 313           | 135           | 95              | 95             | 0              | 0              | 27           |
| 74.0         | 53              | 313           | 130           | 94              | 94             | 0              | 0              | 27           |
| 75.0         | 54              | 313           | 125           | 93              | 94             | 0              | 0              | 27           |
| 76.0         | 53              | 313           | 121           | 92              | 93             | 0              | 0              | 27           |
| 77.0         | 53              | 313           | 117           | 91              | 91             | 0              | 0              | 27           |
| 78.0         | 53              | 313           | 114           | 91              | 91             | 0              | 0              | 27           |
| 79.0         | 52              | 313           | 110           | 90              | 90             | 0              | 0              | 27           |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.11  
 TEST DESCRIPTION NAVY TUBE FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-08   | PSIG  | 28.1535            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIG  | .9568              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155830 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIG  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIG  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.3   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.11

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 8<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| -9.0         | 60              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| -8.0         | 59              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -7.0         | 59              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -6.0         | 59              | 313           | 13            | 12              | 13             | 0               | 0               | 30           |
| -5.0         | 59              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -4.0         | 59              | 321           | 13            | 12              | 13             | 0               | 0               | 30           |
| -3.0         | 59              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -2.0         | 60              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| -1.0         | 59              | 313           | 13            | 12              | 13             | 0               | 0               | 30           |
| 0.0          | 60              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 1.0          | 59              | 313           | 334           | 16              | 19             | 0               | 0               | 30           |
| 2.0          | 59              | 313           | 334           | 24              | 27             | 0               | 0               | 30           |
| 3.0          | 60              | 313           | 333           | 32              | 33             | 0               | 0               | 30           |
| 4.0          | 61              | 313           | 333           | 33              | 36             | 0               | 0               | 31           |
| 5.0          | 61              | 313           | 332           | 36              | 36             | 0               | 0               | 28           |
| 6.0          | 61              | 313           | 332           | 36              | 36             | 0               | 0               | 27           |
| 7.0          | 61              | 313           | 332           | 37              | 37             | 0               | 0               | 24           |
| 8.0          | 61              | 313           | 332           | 37              | 37             | 0               | 0               | 22           |
| 9.0          | 60              | 313           | 332           | 38              | 38             | 0               | 0               | 20           |
| 10.0         | 60              | 313           | 332           | 38              | 39             | 0               | 0               | 16           |
| 11.0         | 60              | 313           | 332           | 39              | 40             | 0               | 0               | 12           |
| 12.0         | 60              | 313           | 332           | 40              | 40             | 0               | 0               | 7            |
| 13.0         | 60              | 313           | 332           | 40              | 40             | 0               | 0               | 0            |
| 14.0         | 60              | 313           | 332           | 41              | 41             | 0               | 0               | 0            |
| 15.0         | 59              | 313           | 332           | 41              | 42             | 0               | 0               | 0            |
| 16.0         | 60              | 313           | 332           | 41              | 42             | 0               | 0               | 0            |
| 17.0         | 59              | 313           | 332           | 42              | 42             | 0               | 0               | 0            |
| 18.0         | 57              | 313           | 332           | 42              | 42             | 0               | 0               | 0            |
| 19.0         | 59              | 313           | 332           | 43              | 43             | 0               | 0               | 0            |
| 20.0         | 59              | 313           | 332           | 43              | 44             | 0               | 0               | 0            |
| 21.0         | 57              | 313           | 332           | 43              | 44             | 0               | 0               | 0            |
| 22.0         | 57              | 313           | 332           | 44              | 44             | 0               | 0               | 0            |
| 23.0         | 57              | 313           | 332           | 44              | 45             | 0               | 0               | 0            |
| 24.0         | 57              | 313           | 332           | 45              | 45             | 0               | 0               | 0            |
| 25.0         | 56              | 313           | 332           | 46              | 46             | 0               | 0               | 0            |
| 26.0         | 56              | 313           | 332           | 46              | 46             | 0               | 0               | 0            |
| 27.0         | 56              | 313           | 332           | 46              | 47             | 0               | 0               | 0            |
| 28.0         | 56              | 313           | 332           | 47              | 47             | 0               | 0               | 0            |
| 29.0         | 56              | 313           | 332           | 47              | 47             | 0               | 0               | 0            |
| 30.0         | 56              | 313           | 332           | 47              | 47             | 0               | 0               | 0            |
| 31.0         | 56              | 313           | 332           | 47              | 47             | 0               | 0               | 0            |
| 32.0         | 56              | 313           | 332           | 48              | 48             | 0               | 0               | 0            |
| 33.0         | 56              | 313           | 332           | 49              | 49             | 0               | 0               | 0            |
| 34.0         | 56              | 313           | 331           | 54              | 55             | 0               | 0               | 0            |
| 35.0         | 57              | 313           | 331           | 61              | 62             | 0               | 0               | 0            |
| 36.0         | 57              | 313           | 331           | 66              | 67             | 0               | 0               | 0            |
| 37.0         | 57              | 313           | 331           | 68              | 69             | 0               | 0               | 0            |
| 38.0         | 57              | 313           | 331           | 69              | 69             | 0               | 0               | 0            |
| 39.0         | 57              | 313           | 331           | 70              | 70             | 0               | 0               | 0            |
| 40.0         | 56              | 313           | 331           | 70              | 70             | 0               | 0               | 0            |
| 41.0         | 56              | 313           | 331           | 71              | 72             | 0               | 0               | 0            |
| 42.0         | 56              | 313           | 331           | 72              | 72             | 0               | 0               | 0            |
| 43.0         | 55              | 313           | 331           | 73              | 74             | 0               | 0               | 0            |
| 44.0         | 55              | 313           | 331           | 73              | 74             | 0               | 0               | 0            |
| 45.0         | 54              | 313           | 331           | 73              | 74             | 0               | 0               | 0            |
| 46.0         | 54              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 47.0         | 54              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 48.0         | 54              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 49.0         | 54              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 50.0         | 54              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 51.0         | 54              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 52.0         | 53              | 313           | 331           | 74              | 74             | 0               | 0               | 0            |
| 53.0         | 54              | 313           | 331           | 73              | 73             | 0               | 0               | 0            |
| 54.0         | 54              | 313           | 331           | 72              | 72             | 0               | 0               | 0            |
| 55.0         | 54              | 313           | 331           | 72              | 71             | 0               | 0               | 0            |
| 56.0         | 54              | 313           | 331           | 72              | 71             | 0               | 0               | 0            |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.12  
 TEST DESCRIPTION NAVY TUBE DOWNWARD FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0                 | AI       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1535            | 8.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .240390  | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-29   | PSIG  | 6.3054             | 8.155830 | 0           | 10000       | 2454    | 05/08/85      | YES     | NO      |
| 12   | PT-1004 | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.12

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 57              | 321           | 13            | 12              | 13             | 0              | 0              | 39           |
| -8.0         | 59              | 313           | 12            | 12              | 13             | 0              | 0              | 39           |
| -7.0         | 59              | 313           | 13            | 12              | 13             | 0              | 0              | 39           |
| -6.0         | 57              | 321           | 13            | 12              | 12             | 0              | 0              | 39           |
| -5.0         | 57              | 321           | 13            | 12              | 12             | 0              | 0              | 39           |
| -4.0         | 59              | 313           | 13            | 12              | 12             | 0              | 0              | 39           |
| -3.0         | 57              | 313           | 12            | 12              | 13             | 0              | 0              | 39           |
| -2.0         | 57              | 313           | 13            | 13              | 13             | 0              | 0              | 39           |
| -1.0         | 57              | 313           | 13            | 15              | 15             | 0              | 0              | 39           |
| 0.0          | 57              | 313           | 16            | 18              | 18             | 0              | 0              | 39           |
| 1.0          | 57              | 313           | 19            | 21              | 21             | 0              | 0              | 39           |
| 2.0          | 57              | 313           | 22            | 24              | 24             | 0              | 0              | 39           |
| 3.0          | 57              | 313           | 24            | 26              | 26             | 0              | 0              | 39           |
| 4.0          | 59              | 313           | 26            | 28              | 28             | 0              | 0              | 39           |
| 5.0          | 59              | 313           | 28            | 30              | 30             | 0              | 0              | 39           |
| 6.0          | 59              | 313           | 30            | 31              | 31             | 0              | 0              | 39           |
| 7.0          | 59              | 313           | 32            | 31              | 31             | 0              | 0              | 39           |
| 8.0          | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 9.0          | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 10.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 11.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 12.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 13.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 14.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 15.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 16.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 17.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 18.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 19.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 20.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 21.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 22.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 23.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 24.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 25.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 26.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 27.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 28.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 29.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 30.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 31.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 32.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 33.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 34.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 35.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 36.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 37.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 38.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 39.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 40.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 41.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 42.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 43.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 44.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 45.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 46.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 47.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 48.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 49.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 50.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 51.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 52.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 53.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 54.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 55.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 56.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 57.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 58.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 59.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 60.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 61.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |
| 62.0         | 59              | 313           | 33            | 32              | 32             | 0              | 0              | 39           |

## TEST NUMBER 243.12

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 63.0         | 55              | 313           | 330           | 75              | 76             | 0              | 0              | 34           |
| 64.0         | 56              | 313           | 330           | 81              | 82             | 0              | 0              | 33           |
| 65.0         | 56              | 313           | 330           | 84              | 84             | 0              | 0              | 32           |
| 66.0         | 56              | 313           | 330           | 85              | 85             | 0              | 0              | 30           |
| 67.0         | 56              | 313           | 330           | 85              | 85             | 0              | 0              | 28           |
| 68.0         | 57              | 313           | 330           | 88              | 88             | 0              | 0              | 27           |
| 69.0         | 56              | 313           | 330           | 88              | 88             | 0              | 0              | 26           |
| 70.0         | 56              | 313           | 330           | 84              | 84             | 0              | 0              | 25           |
| 71.0         | 56              | 313           | 330           | 84              | 84             | 0              | 0              | 23           |
| 72.0         | 56              | 313           | 306           | 84              | 84             | 0              | 0              | 0            |
| 73.0         | 55              | 313           | 283           | 84              | 84             | 0              | 0              | 0            |
| 74.0         | 55              | 313           | 263           | 84              | 83             | 0              | 0              | 0            |
| 75.0         | 55              | 313           | 246           | 83              | 84             | 0              | 0              | 0            |
| 76.0         | 55              | 313           | 231           | 83              | 83             | 0              | 0              | 0            |
| 77.0         | 54              | 313           | 217           | 83              | 83             | 0              | 0              | 0            |
| 78.0         | 55              | 313           | 204           | 83              | 83             | 0              | 0              | 0            |
| 79.0         | 54              | 313           | 192           | 81              | 81             | 0              | 0              | 0            |
| 80.0         | 55              | 313           | 181           | 81              | 81             | 0              | 0              | 0            |
| 81.0         | 54              | 313           | 170           | 81              | 81             | 0              | 0              | 0            |
| 82.0         | 55              | 313           | 160           | 80              | 80             | 0              | 0              | 0            |
| 83.0         | 54              | 313           | 151           | 80              | 80             | 0              | 0              | 0            |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.13  
 TEST DESCRIPTION NAVY TUBE DOWNWARD FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | AO                 | A1        | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|-----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1535            | 8.1446850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9388              | .240390   | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.155830  | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-100A | PSIA  | -1.1727            | .241900   | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270   | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT-8   | VOLTS | 0.0000             | .002440   | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT-7   | VOLTS | 0.0000             | .002440   | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 28   | V.P.    | DEG.  | 0.0000             | .856300   | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |           | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.13

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 61              | 321           | 12            | 12              | 13             | 0              | 0              | 29           |
| -8.0         | 60              | 321           | 13            | 12              | 13             | 0              | 0              | 29           |
| -7.0         | 60              | 313           | 12            | 12              | 13             | 0              | 0              | 29           |
| -6.0         | 60              | 321           | 12            | 12              | 12             | 0              | 0              | 30           |
| -5.0         | 60              | 321           | 13            | 12              | 12             | 0              | 0              | 30           |
| -4.0         | 60              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -3.0         | 60              | 313           | 13            | 12              | 12             | 0              | 0              | 30           |
| -2.0         | 60              | 321           | 13            | 12              | 13             | 0              | 0              | 29           |
| -1.0         | 60              | 313           | 13            | 12              | 12             | 0              | 0              | 30           |
| 0.0          | 60              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| 1.0          | 60              | 321           | 337           | 14              | 14             | 0              | 0              | 31           |
| 2.0          | 60              | 313           | 336           | 16              | 16             | 0              | 0              | 31           |
| 3.0          | 61              | 313           | 336           | 19              | 19             | 0              | 0              | 31           |
| 4.0          | 60              | 313           | 335           | 21              | 22             | 0              | 0              | 31           |
| 5.0          | 62              | 313           | 335           | 24              | 24             | 0              | 0              | 31           |
| 6.0          | 61              | 313           | 335           | 26              | 26             | 0              | 0              | 30           |
| 7.0          | 61              | 313           | 334           | 26              | 26             | 0              | 0              | 29           |
| 8.0          | 61              | 313           | 334           | 27              | 27             | 0              | 0              | 29           |
| 9.0          | 61              | 313           | 334           | 28              | 28             | 0              | 0              | 29           |
| 10.0         | 61              | 313           | 334           | 28              | 29             | 0              | 0              | 29           |
| 11.0         | 61              | 313           | 334           | 29              | 29             | 0              | 0              | 29           |
| 12.0         | 60              | 313           | 334           | 29              | 29             | 0              | 0              | 29           |
| 13.0         | 60              | 313           | 334           | 30              | 31             | 0              | 0              | 29           |
| 14.0         | 60              | 313           | 334           | 31              | 31             | 0              | 0              | 29           |
| 15.0         | 61              | 313           | 334           | 31              | 31             | 0              | 0              | 29           |
| 16.0         | 61              | 321           | 334           | 32              | 32             | 0              | 0              | 29           |
| 17.0         | 60              | 313           | 334           | 33              | 33             | 0              | 0              | 29           |
| 18.0         | 60              | 313           | 334           | 33              | 33             | 0              | 0              | 29           |
| 19.0         | 59              | 313           | 334           | 34              | 34             | 0              | 0              | 29           |
| 20.0         | 60              | 313           | 334           | 34              | 34             | 0              | 0              | 29           |
| 21.0         | 59              | 321           | 334           | 34              | 34             | 0              | 0              | 29           |
| 22.0         | 60              | 313           | 334           | 35              | 35             | 0              | 0              | 29           |
| 23.0         | 59              | 321           | 334           | 35              | 35             | 0              | 0              | 29           |
| 24.0         | 60              | 321           | 334           | 36              | 36             | 0              | 0              | 29           |
| 25.0         | 60              | 313           | 334           | 36              | 37             | 0              | 0              | 29           |
| 26.0         | 59              | 313           | 334           | 37              | 38             | 0              | 0              | 29           |
| 27.0         | 59              | 321           | 334           | 38              | 38             | 0              | 0              | 29           |
| 28.0         | 59              | 313           | 334           | 38              | 38             | 0              | 0              | 29           |
| 29.0         | 59              | 313           | 334           | 39              | 39             | 0              | 0              | 29           |
| 30.0         | 59              | 313           | 334           | 39              | 40             | 0              | 0              | 29           |
| 31.0         | 59              | 313           | 334           | 39              | 40             | 0              | 0              | 29           |
| 32.0         | 59              | 313           | 334           | 40              | 40             | 0              | 0              | 29           |
| 33.0         | 60              | 313           | 334           | 40              | 41             | 0              | 0              | 29           |
| 34.0         | 59              | 313           | 334           | 41              | 41             | 0              | 0              | 29           |
| 35.0         | 59              | 313           | 334           | 41              | 42             | 0              | 0              | 29           |
| 36.0         | 57              | 313           | 334           | 42              | 42             | 0              | 0              | 29           |
| 37.0         | 59              | 313           | 334           | 42              | 42             | 0              | 0              | 29           |
| 38.0         | 57              | 313           | 334           | 42              | 42             | 0              | 0              | 29           |
| 39.0         | 57              | 313           | 334           | 43              | 43             | 0              | 0              | 29           |
| 40.0         | 57              | 321           | 334           | 43              | 43             | 0              | 0              | 29           |
| 41.0         | 57              | 313           | 334           | 44              | 44             | 0              | 0              | 29           |
| 42.0         | 56              | 313           | 334           | 44              | 44             | 0              | 0              | 29           |
| 43.0         | 57              | 313           | 334           | 46              | 46             | 0              | 0              | 29           |
| 44.0         | 57              | 313           | 334           | 50              | 54             | 0              | 0              | 29           |
| 45.0         | 57              | 321           | 334           | 54              | 58             | 0              | 0              | 29           |
| 46.0         | 59              | 313           | 334           | 61              | 62             | 0              | 0              | 29           |
| 47.0         | 59              | 313           | 334           | 62              | 63             | 0              | 0              | 29           |
| 48.0         | 59              | 313           | 334           | 64              | 64             | 0              | 0              | 29           |
| 49.0         | 59              | 313           | 334           | 65              | 66             | 0              | 0              | 29           |
| 50.0         | 57              | 313           | 334           | 66              | 67             | 0              | 0              | 29           |
| 51.0         | 59              | 313           | 334           | 67              | 68             | 0              | 0              | 29           |
| 52.0         | 59              | 313           | 334           | 68              | 68             | 0              | 0              | 29           |
| 53.0         | 59              | 321           | 334           | 69              | 69             | 0              | 0              | 29           |
| 54.0         | 57              | 313           | 334           | 69              | 69             | 0              | 0              | 29           |
| 55.0         | 56              | 313           | 334           | 69              | 69             | 0              | 0              | 29           |
| 56.0         | 57              | 313           | 334           | 69              | 69             | 0              | 0              | 29           |
| 57.0         | 57              | 313           | 334           | 69              | 69             | 0              | 0              | 29           |
| 58.0         | 57              | 313           | 334           | 69              | 69             | 0              | 0              | 29           |
| 59.0         | 57              | 313           | 280           | 68              | 68             | 0              | 0              | 29           |
| 60.0         | 57              | 313           | 241           | 69              | 69             | 0              | 0              | 29           |
| 61.0         | 57              | 313           | 211           | 69              | 69             | 0              | 0              | 29           |
| 62.0         | 57              | 313           | 186           | 69              | 69             | 0              | 0              | 29           |

## TEST NUMBER 243.13

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.8<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| 63.0         | 57              | 313           | 164           | 69              | 69             | 0              | 0              | 29           |
| 64.0         | 57              | 313           | 146           | 69              | 69             | 0              | 0              | 30           |
| 65.0         | 56              | 313           | 129           | 68              | 69             | 0              | 0              | 30           |
| 66.0         | 56              | 313           | 115           | 68              | 68             | 0              | 0              | 30           |
| 67.0         | 56              | 313           | 103           | 68              | 68             | 0              | 0              | 30           |
| 68.0         | 56              | 313           | 93            | 67              | 67             | 0              | 0              | 30           |
| 69.0         | 56              | 313           | 83            | 67              | 67             | 0              | 0              | 30           |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.14  
 TEST DESCRIPTION NAVY TUBE UPWARD FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0                 | A1       | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|--------------------|----------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1535            | 3.146850 | 0           | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588              | .40390   | 0           | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-28   | PSIG  | 6.3054             | 8.153830 | 0           | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-1004 | PSIA  | -1.1727            | .241900  | 0           | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401            | .233270  | 0           | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000             | .002440  | 0           | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000             | .856300  | 0           | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F | TYPE K (SEGMENTED) |          | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.14

| TIME<br>SECS | IT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT. 9<br>VOLTS | INT. 7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|-----------------|-----------------|--------------|
| -9.0         | 56              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -8.0         | 55              | 313           | 12            | 12              | 13             | 0               | 0               | 31           |
| -7.0         | 54              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -6.0         | 53              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -5.0         | 52              | 313           | 12            | 12              | 13             | 0               | 0               | 31           |
| -4.0         | 51              | 313           | 12            | 12              | 13             | 0               | 0               | 31           |
| -3.0         | 50              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -2.0         | 49              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| -1.0         | 48              | 321           | 12            | 12              | 13             | 0               | 0               | 31           |
| 0.0          | 47              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 1.0          | 46              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 2.0          | 45              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 3.0          | 44              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 4.0          | 43              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 5.0          | 42              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 6.0          | 41              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 7.0          | 40              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 8.0          | 39              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 9.0          | 38              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 10.0         | 37              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 11.0         | 36              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 12.0         | 35              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 13.0         | 34              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 14.0         | 33              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 15.0         | 32              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 16.0         | 31              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 17.0         | 30              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 18.0         | 29              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 19.0         | 28              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 20.0         | 27              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 21.0         | 26              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 22.0         | 25              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 23.0         | 24              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 24.0         | 23              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 25.0         | 22              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 26.0         | 21              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 27.0         | 20              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 28.0         | 19              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 29.0         | 18              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 30.0         | 17              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 31.0         | 16              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 32.0         | 15              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 33.0         | 14              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 34.0         | 13              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 35.0         | 12              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 36.0         | 11              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 37.0         | 10              | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 38.0         | 9               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 39.0         | 8               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 40.0         | 7               | 321           | 12            | 12              | 13             | 0               | 0               | 30           |
| 41.0         | 6               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 42.0         | 5               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 43.0         | 4               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 44.0         | 3               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 45.0         | 2               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 46.0         | 1               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 47.0         | 0               | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 48.0         | 54              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 49.0         | 53              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 50.0         | 52              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 51.0         | 51              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 52.0         | 50              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 53.0         | 49              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 54.0         | 48              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 55.0         | 47              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 56.0         | 46              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 57.0         | 45              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 58.0         | 44              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 59.0         | 43              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 60.0         | 42              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 61.0         | 41              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |
| 62.0         | 40              | 313           | 12            | 12              | 13             | 0               | 0               | 30           |

TEST DATE = 02/22/85  
 PROGRAM ENGINEER'S NAME HOMA  
 TEST NUMBER 243.15  
 TEST DESCRIPTION NAVY TUBE UPWARD FLAME PROPAGATION TEST, CARBON STEEL TUBE

| CHL. | NAME    | UNITS | A0      | AI                 | LOWER RANGE | UPPER RANGE | WSTF ID | CAL. DUE DATE | DISPLAY | STORAGE |
|------|---------|-------|---------|--------------------|-------------|-------------|---------|---------------|---------|---------|
| 0    | TT-101  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | YES     |
| 1    | TT-103  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 5    | TT-115  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 6    | TT-118  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 7    | TT-120  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 8    | PT-06   | PSIG  | 28.1555 |                    | 8.146850    | 10000       | 1758    | 06/13/85      | YES     | YES     |
| 9    | PT-19   | PSIA  | .9588   |                    | .240390     | 300         | 1109    | 07/24/85      | YES     | YES     |
| 10   | PT-29   | PSIG  | 6.3054  |                    | 8.155830    | 10000       | 2654    | 05/08/85      | YES     | NO      |
| 12   | PT-1004 | PSIA  | -1.1727 |                    | .241900     | 300         | 1110    | 07/25/85      | YES     | YES     |
| 15   | PT-126  | PSIA  | -3.9401 |                    | .233270     | 300         | 1303    | 07/25/85      | YES     | YES     |
| 17   | INT.8   | VOLTS | 0.0000  |                    | .002440     | 0           | 0       | 12/12/85      | NO      | YES     |
| 18   | INT.7   | VOLTS | 0.0000  |                    | .002440     | 0           | 0       | 12/12/85      | NO      | YES     |
| 26   | V.P.    | DEG.  | 0.0000  |                    | .856300     | 90          | 0       | 12/12/90      | YES     | YES     |
| 38   | TT-201  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 40   | TT-203  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 41   | TT-204  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 43   | TT-208  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 45   | TT-210  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |
| 46   | TT-211  | Deg.F |         | TYPE K (SEGMENTED) | 0           | 0           | 0       | 0             | YES     | NO      |

PROGRAM VARIABLES STORED ON DISKETTE

## TEST NUMBER 243.15

| TIME<br>SECS | TT-101<br>Deg.F | PT-06<br>PSIG | PT-19<br>PSIA | PT-100A<br>PSIA | PT-126<br>PSIA | INT.3<br>VOLTS | INT.7<br>VOLTS | V.P.<br>DEG. |
|--------------|-----------------|---------------|---------------|-----------------|----------------|----------------|----------------|--------------|
| -9.0         | 54              | 313           | 12            | 12              | 13             | 0              | 0              | 29           |
| -8.0         | 54              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -7.0         | 54              | 313           | 13            | 12              | 13             | 0              | 0              | 30           |
| -6.0         | 54              | 313           | 13            | 12              | 13             | 0              | 0              | 30           |
| -5.0         | 54              | 313           | 12            | 12              | 13             | 0              | 0              | 29           |
| -4.0         | 54              | 313           | 13            | 12              | 13             | 0              | 0              | 29           |
| -3.0         | 54              | 313           | 12            | 12              | 13             | 0              | 0              | 30           |
| -2.0         | 54              | 313           | 12            | 12              | 13             | 0              | 0              | 29           |
| -1.0         | 54              | 321           | 12            | 12              | 13             | 0              | 0              | 30           |
| 0.0          | 54              | 313           | 335           | 14              | 14             | 0              | 0              | 31           |
| 1.0          | 54              | 321           | 334           | 16              | 17             | 0              | 0              | 31           |
| 2.0          | 54              | 313           | 334           | 18              | 19             | 0              | 0              | 31           |
| 3.0          | 54              | 321           | 333           | 21              | 21             | 0              | 0              | 30           |
| 4.0          | 54              | 313           | 333           | 23              | 23             | 0              | 0              | 28           |
| 5.0          | 54              | 313           | 333           | 26              | 26             | 0              | 0              | 27           |
| 6.0          | 54              | 313           | 332           | 26              | 27             | 0              | 0              | 24           |
| 7.0          | 54              | 313           | 332           | 28              | 28             | 0              | 0              | 20           |
| 8.0          | 54              | 313           | 332           | 28              | 29             | 0              | 0              | 15           |
| 9.0          | 54              | 313           | 332           | 30              | 30             | 0              | 0              | 10           |
| 10.0         | 54              | 313           | 332           | 31              | 31             | 0              | 0              | 6            |
| 11.0         | 54              | 313           | 332           | 32              | 32             | 0              | 0              | 0            |
| 12.0         | 54              | 313           | 332           | 33              | 33             | 0              | 0              | 0            |
| 13.0         | 54              | 313           | 332           | 34              | 34             | 0              | 0              | 0            |
| 14.0         | 54              | 313           | 332           | 35              | 35             | 0              | 0              | 0            |
| 15.0         | 54              | 313           | 332           | 35              | 35             | 0              | 0              | 0            |
| 16.0         | 54              | 313           | 332           | 36              | 36             | 0              | 0              | 0            |
| 17.0         | 54              | 313           | 332           | 36              | 37             | 0              | 0              | 0            |
| 18.0         | 54              | 313           | 332           | 38              | 38             | 0              | 0              | 0            |
| 19.0         | 54              | 313           | 332           | 39              | 39             | 0              | 0              | 0            |
| 20.0         | 54              | 313           | 332           | 39              | 39             | 0              | 0              | 0            |
| 21.0         | 54              | 313           | 332           | 40              | 40             | 0              | 0              | 0            |
| 22.0         | 54              | 313           | 332           | 40              | 40             | 0              | 0              | 0            |
| 23.0         | 54              | 313           | 332           | 41              | 41             | 0              | 0              | 0            |
| 24.0         | 54              | 313           | 332           | 42              | 42             | 0              | 0              | 0            |
| 25.0         | 54              | 313           | 332           | 43              | 43             | 0              | 0              | 0            |
| 26.0         | 54              | 313           | 332           | 43              | 44             | 0              | 0              | 0            |
| 27.0         | 54              | 313           | 332           | 44              | 44             | 0              | 0              | 0            |
| 28.0         | 54              | 313           | 332           | 44              | 45             | 0              | 0              | 0            |
| 29.0         | 54              | 313           | 332           | 44              | 44             | 0              | 0              | 0            |
| 30.0         | 54              | 313           | 332           | 45              | 45             | 0              | 0              | 0            |
| 31.0         | 54              | 313           | 332           | 45              | 46             | 0              | 0              | 0            |
| 32.0         | 54              | 313           | 332           | 46              | 46             | 0              | 0              | 0            |
| 33.0         | 54              | 313           | 332           | 46              | 47             | 0              | 0              | 0            |
| 34.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 35.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 36.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 37.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 38.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 39.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 40.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 41.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 42.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 43.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 44.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 45.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 46.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 47.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 48.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 49.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 50.0         | 54              | 313           | 332           | 47              | 47             | 0              | 0              | 0            |
| 51.0         | 54              | 313           | 315           | 47              | 47             | 0              | 0              | 0            |
| 52.0         | 54              | 313           | 290           | 47              | 47             | 0              | 0              | 0            |
| 53.0         | 54              | 313           | 269           | 47              | 47             | 0              | 0              | 0            |
| 54.0         | 54              | 313           | 251           | 48              | 48             | 0              | 0              | 0            |
| 55.0         | 54              | 313           | 236           | 48              | 48             | 0              | 0              | 0            |
| 56.0         | 54              | 313           | 221           | 48              | 48             | 0              | 0              | 0            |
| 57.0         | 54              | 313           | 207           | 48              | 48             | 0              | 0              | 0            |
| 58.0         | 54              | 313           | 194           | 47              | 47             | 0              | 0              | 0            |
| 59.0         | 54              | 313           | 183           | 47              | 47             | 0              | 0              | 0            |
| 60.0         | 54              | 313           | 172           | 47              | 47             | 0              | 0              | 0            |
| 61.0         | 55              | 313           | 162           | 47              | 47             | 0              | 0              | 0            |
| 62.0         | 54              | 313           | 152           | 47              | 47             | 0              | 0              | 0            |

## APPENDIX B

## List of Special Equipment Used at White Sands Test Facility

| <u>Parameter Measured</u>   | <u>WSTF Part No.</u> | <u>Manufacturer</u> | <u>Model</u> | <u>Range</u>       | <u>Accuracy</u> | <u>Last Calibration</u> |
|-----------------------------|----------------------|---------------------|--------------|--------------------|-----------------|-------------------------|
| Inlet Press To Test Article | PT-100A              | Alcino Transducers  | 152-BAO-89   | 0-300 psi          | <u>+3</u> psi   | 02/28/84                |
| Inlet Press to PCV          | PT 19                | Alcino Transducers  | 152-BAO-89   | 0-300 psi          | <u>+3</u> psi   | 10/18/84                |
| Outlet Press from PCV       | PT 26                | Alcino Transducers  | 152-BAO-89   | 0-300 psi          | <u>+3</u> psi   | 8/7/84                  |
| Ignitor                     |                      | Victor              |              | Oxyacetelene Torch |                 |                         |
| Propagation Rate            | High Speed Video     | Spin Physics        | 2000         | 60-2000            | frame/sec       | Set at 500 frame/sec    |

APPENDIX C  
Calculation of Volume Flow Rates

Formula

$$\dot{Q} = \frac{(FV (\Delta P) T_{STP})}{P_{STP} T \Delta t}$$

standard litres per minute

$\dot{Q}$  = Volume flow rate in (standard cubic feet per minute)  
standard litres per minute

FV = Floodable volume of cylinder

$\Delta P$  = Change in pressure of cylinder

$T_{STP}$  = Standard temperature  $70^{\circ}\text{F}$  (529.69 R)

$P_{STP}$  = 14.7 psi

$\Delta t$  = time in minutes for specific  $\Delta P$

$$\dot{Q}_{295\text{psi}} = 5.43 \text{ SCFM (153.9 SLPM)}$$

$$\dot{Q}_{110\text{psi}} = 2.13 \text{ SCFM (60.2 SLPM)}$$

$$\dot{Q}_{60\text{psi}} = 1.23 \text{ SCFM (34.9 SLPM)}$$

$$\dot{Q}_{20\text{psi}} = 0.46 \text{ SCFM (13.2 SLPM)}$$

## APPENDIX D

## Cleaning Specification

NAVSEA 0994-LP-016-1010

Table 4-19. Clean for Oxygen Service

| SYSTEM<br>MK 15 MOD 0 Underwater<br>Breathing Apparatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUBSYSTEM<br>Pneumatics Assembly | MRC CODE<br>R-14                  |     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----|--|--|
| COMPONENT<br>Oxygen Pneumatics Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RELATED MR<br>R-16               | RATES<br>UDT/SEAL<br>5321<br>5326 | M/H |  |  |
| <b>MAINTENANCE REQUIREMENT DESCRIPTION</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | <b>TOTAL M/H</b>                  |     |  |  |
| 1. Clean tubing and associated components for oxygen service.<br>2. Clean valves, regulators for oxygen service<br>3. Clean O-rings for oxygen service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | <b>ELAPSED TIME</b>               |     |  |  |
| <b>SAFETY PRECAUTIONS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                   |     |  |  |
| 1. Comply with safety precautions of the MK 15 Technical Manual. Forces afloat comply with Navy Safety Precautions for Forces Afloat, OPNAVINST 5100 series. Shore activities comply with Safety Precautions for Shore Activities, NAVMAT P-5100 series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                   |     |  |  |
| <b>TOOLS, PARTS, MATERIALS, TEST EQUIPMENT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                                   |     |  |  |
| 1. MK 15 Technical Manual, Opn and Maint Instr, NAVSEA 0994-LP-016-1010<br>2. Nitrogen type II, Class I, Grade A<br>3. Anhydrous trisodium phosphate (TSP) Na <sub>3</sub> PO <sub>4</sub> Technical grade.<br>4. Tube cleaning brush<br>5. Masking tape<br>6. Containment bags of nylon C or Aclar 33C<br>7. Filter cloth for clean rags to be disposed of after each use.                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                   |     |  |  |
| 8. Fluorolube<br>9. Isopropyl alcohol, laboratory grade.<br>10. Ultrasonic cleaner<br>11. Cleaning solvent (Freon PCA)<br>12. Hot plate<br>13. 3 Gallon stainless steel container<br>14. Forceps<br>15. Tags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                   |     |  |  |
| <b>PROCEDURE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                   |     |  |  |
| NOTE 1: If performance of this procedure involves entry into the pneumatics assembly, perform reentry control procedure as described on MRC R-16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                   |     |  |  |
| 1. <u>Clean Tubing and Associated Components for Oxygen Service.</u><br>a. Remove all visible contaminants from each component, scrubbing with small brush and FREON (PCA). Remove rust, paint, tape glue, and grease.<br>b. Prepare a solution of 1 lb. Anhydrous Trisodium Phosphate to 2.5 gallons clean freshwater. Heat to 160°F, place in ultrasonic cleaner.<br>c. Place tubing in ultrasonic cleaner, operate cleaner for 30 minutes.<br>d. After 30 minutes, circulate solution through tubing dipping into solution with forceps for 5 minutes.<br>e. Submerge tubing into clean freshwater at 140°F for 30 minutes.<br>f. After 30 minutes, circulate water through tubing dipping into water with forceps for 5 minutes.<br>g. Dry tubing by purging with nitrogen. |                                  |                                   |     |  |  |
| LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DATE                             | PAGE 1 OF 2                       |     |  |  |

Change 1 4-43

Table 4-19. Clean for Oxygen Service--Continued

## PROCEDURE--Continued

MRC R-14

- h. Upon completion of drying, cap or seal ends with plugs or blanks.
  - i. Hold plugs in place with tape.
  - j. Tag tubing "oxygen clean." Sign and date tag.
2. Clean Valves, Regulators for Oxygen Service.
- a. Disassemble valve or regulator to smallest component.
  - b. Remove all visible contaminants from each component, scrubbing with small brush and Freon (PCA). Remove rust, paint, tape glue, and grease.
  - c. Prepare a solution, 1 lb. anhydrous trisodium phosphate to 2.5 gallons of clean freshwater. Heat to 160°F, place in ultrasonic cleaner.
  - d. Place parts in ultrasonic cleaner, operate cleaner for 30 minutes.
  - e. Rinse parts in clean freshwater at 140°F for 10 minutes.
  - f. Blow parts dry using nitrogen.
  - g. Reassemble valve or regulator using clean tools and gloves.
  - h. Seal parts in (2) aclar 33C or nylon (C) bags, marked oxygen clean. Sign and date label.
3. Clean O-rings for Oxygen Service.
- a. Remove dirt and foreign matter from Kel-F O-rings using lint free cloth soaked in Freon (PCA).
  - b. Viton and Ethylene (propylene base) compound O-rings are submerged in clean isopropyl alcohol for 10 minutes.
  - c. Wipe with lint free cloth soaked in isopropyl alcohol.
  - d. Blow dry with nitrogen.
  - e. Seal O-ring into bags of aclar 33C or nylon (C).
  - f. Mark oxygen clean. Sign and date label.

PAGE 2 OF 2

1-44 Change 1

## APPENDIX E

## Test Article (Typical) Composition

|    | Austenitic Stainless Steel<br>AISI 316 | Nickel-Copper<br>Monel 400<br>% Composition | Carbon Steel<br>(Annealed)<br>AMS 5050<br>Similar to<br>AISI 1010 |
|----|----------------------------------------|---------------------------------------------|-------------------------------------------------------------------|
| C  | 0.08 max                               | 0.3 max                                     | 0.15 max                                                          |
| Ni | 10.0/14.0                              | 63.0 min<br>Nickel plus<br>Cobalt           | 0.07                                                              |
| Cu |                                        | 28.0-34.0                                   |                                                                   |
| Mn | 2.0 max                                | 2.0 max                                     | 0.31                                                              |
| Fe | Balance                                | 2.5 max                                     | Balance                                                           |
| S  | 0.03                                   | 0.024 max                                   | 0.05                                                              |
| Cr | 16.0/18.0                              |                                             | 0.04                                                              |
| Mo | 2.0/3.0                                |                                             | 0.02                                                              |
| P  | 0.045 max                              |                                             | 0.029                                                             |
| Si | 1.0 max                                | 0.5 max                                     | 0.08                                                              |

## LIST OF REFERENCES

1. Markstein, G.H., "Combustion of Metals", AIAA Journal, Vol. 1, No. 3, pp. 550-562, March 1963.
2. Hust, J.G. and Clark, A.F., "A Survey of Compatibility of Materials with High Pressure Oxygen Service", Cryogenics, Vol. 13, No. 6, pp. 325-336, June 1973.
3. Wegener, W., "Investigations on the Safe Flow Velocity To Be Admitted For Oxygen in Steel Pipelines", Stahl und Eisen, Vol. 84 No. 8, pp. 469-475, 1964.
4. Defense Metals Information Center Report 224, Ignition of Metals in Oxygen, by E.L. White and J.J. Ward, Feb 1966.
5. NASA Report CH-120221, A Survey of Compatibility of Materials with High Pressure Oxygen Service, by J.G. Hust and A.F. Clark, Oct 1972.
6. DOE Report XXXVI, Structural Materials Evaluation for Centrifugal Compressors, by C.E. Bates and R. Monroe, Sept 1978.
7. Purcell J. and Kreidt F., Oxygen Systems Monel vs. Stainless Steel, Sixth Annual Technical Symposium of the Association of Senior Engineers Naval Ship Systems Command, Washington DC, 1969.
8. Dean, L.E., and Thompson, W.R., "Ignition Characteristics of Metals and Alloys", ARS Journal, Vol. 31, No. 7, pp. 663-672, July 1961.
9. Nihart, G.T., Smith, C.P., Compatibility of Materials with 7500 psi Oxygen, Union Carbide Corporation, Linde Division, Biomedical Laboratory, Aerospace Medical Division, Air Force, Oct 1964.
10. deJassy, A.B., Safety in Oxygen Pipeline Systems, CGA Air Plant Safety Symposium, 1969.
11. Heinicke, G., and Harenz, H., "Tribocochemical Effects in Technology", Die Technik, Vol. 24, No. 5, pp. 313-319, May 1969.
12. Heinicke, G., "Physikalisch-chemische Untersuchungen Tribocochemischer Vorgänge", Abh. dtsch Akad. Wiss. Berlin, Kl. Chem. Geol. Biol., Berlin S. 103, 1966.

13. Laboratories Test Office, White Sands Test Facility, JSC, Report TR-277-001, Metals Ignition Study In Gaseous Oxygen (Particle Impact Technique Relating to the Shuttle Main Propulsion System Oxygen Flow Control Valve Tests), by W.S. Porter, 15 Oct 1982.
14. Jenny, R. and Wyssmann, H., "Friction-Induced Ignition In Oxygen", Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, ASTM STP 812, Werley, B. Ed., ASTM, pp 150-166, 1983.
15. Laboratories Test Office, WSTF, JSC, Report TR-281-001 Int-1, Interim Report Development of Methods and Procedures for Determining the Ignitability of Metals in Oxygen, by J. Stoltzfus and F. Benz, 13 Nov 1984.
16. Kirchfeld, L., "Combustion Rate of Light Metal Wires in High Pressure Oxygen", Metallwissenschaft Und Technik, Vol 15 pp. 873-878, 1961, translated by F. Csencitz.
17. Kirchfeld, L., "Combustibility of Metals in Oxygen up to 200 ATM Pressure", Metallwissenschaft Und Technik, Vol 21 (Feb 1967), pp. 98-102, Feb 1967, translated by F. Csencitz.
18. Slusser, J.W. and Miller, K.A., "Selection of Metals for Gaseous Oxygen Service" Flammability and Sensitivity of Materials in Oxygen Enriched Atmospheres, ASTM STP 812, B.L. Werley Ed., ASTM, pp. 167-191, 1983.
19. Reynolds. W.C. and Williams, J.J., "An Investigation of the Ignition Temperatures of Solid Metals" Summary Report, Stanford University, Stanford, CA, NACA Contract NAW-6459, June 15, 1957.
20. Diehl, L.A., "An Experimental Investigation of the Role of Resonance Heating in the Auto Ignition of Flowing Combustible Gas Mixtures", Ph.D. Thesis, Department of Mechanical Engineering, Ohio State Univ., Columbus, 1970.
21. Aerospace Safety Research and Data Institute, Technical Memorandum NASA-TMX-68203, Lewis Research Center, NASA, High Pressure Oxygen Utilization by NASA, March 1973.
22. Phillips, B.R. and Dewitt, K.J., "Resonance-Tube Ignition of Aluminum", Combustion and Flame, Vol 35, pp. 249-258, 1979.
23. Scientific and Technical Information Office, NASA Lewis Research Center, Technical Paper 1571, Impact Tests of Materials-in Oxygen-Effects of Contamination, by P. Ordin, April 1980.

24. Sato, J., "Fire Spread Mechanisms Along Steel Cylinders in High Pressure Oxygen", Combustion and Flame, Vol. 51, pp. 279-287, 1983.
25. Ivanov, B.A. and Ul'Yanova, "Study of the Causes of Ignition of Oxygen Pipes", Khim, Neft. Mashinostroyeniye (8), 12-13, 1981 translated by ICA Translations.
26. Thermophysical Properties Division, National Bureau of Standards, Report NBSTR 81-1647, Laser-Initiated Combustion of Selected Aluminum, Copper, Iron, and Nickel Alloys, by J.W. Bransford and A.F. Clark, April 1981.
27. Aerospace and Mechanical Sciences Department at Princeton University, Report No. 816, Heterogenous Ignition of Metals: Model and Experiment by A.M. Mellor, 1967.
28. Glassman, I., and others, A Review of Metal Ignition and Flame Models, North Atlantic Treaty Organization Advisory Group for Aeronautical Research and Development, Meeting No. 52, Feb 1970.

INITIAL DISTRIBUTION LIST

|                                                                                                                                                                                            | No. Copies |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. Mr. Kenneth R. Graham<br>Naval Weapons Center<br>Code 3891<br>China Lake, CA 93555                                                                                                      | 2          |
| 2. Defense Technical Information Center<br>Cameron Station<br>Alexandria, VA 22314                                                                                                         | 2          |
| 3. Library, Code 0142<br>Naval Postgraduate School<br>Monterey, CA 93943                                                                                                                   | 2          |
| 4. CDR Raymond Swanson<br>Supervisor of Diving<br>NAVSEA 00C3<br>Washington, D.C. 20362-5101                                                                                               | 2          |
| 5. Mr. James Middleton<br>Navy Experimental Diving Unit<br>Panama City, Florida 32401                                                                                                      | 1          |
| 6. Mr. Barry Plante<br>JSC, White Sands Test Facility<br>P.O. Drawer MM<br>Las Cruces, New Mexico 88004                                                                                    | 2          |
| 7. Mr. Pete Rudin<br>Westinghouse Electric Corporation<br>Oceanic Division<br>Ocean Research and Engineering Center<br>West Coast Operation<br>920-A Tennessee Street<br>Vallejo, CA 94590 | 1          |
| 8. LCDR B. Marsh<br>Code 331<br>Puget Sound NSYD<br>Bremerton, WA 98314-5000                                                                                                               | 3          |
| 9. LCDR M. O'Hare<br>SMC 1528<br>Naval Postgraduate School<br>Monterey, CA 93943                                                                                                           | 1          |

- |     |                                                                                                                              |   |
|-----|------------------------------------------------------------------------------------------------------------------------------|---|
| 10. | Department Chairman, Code 69<br>Department of Mechanical Engineering<br>Naval Postgraduate School<br>Monterey, CA 93943      | 2 |
| 11. | Professor T. R. McNelley, Code 69<br>Department of Mechanical Engineering<br>Naval Postgraduate School<br>Monterey, CA 93943 | 2 |
| 12. | Professor D. Netzer, Code 67<br>Department of<br>Naval Postgraduate School<br>Monterey, CA 93943                             | 1 |

**END**

**FILMED**

**8-85**

**DTIC**