Revised: 2/25/2021

Digital Logic II

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

Lecture Topics

- Combinational Circuits
 - Sign Extend
 - Encoders
 - Decoders
 - Multiplexers
 - Demultiplexers

Combinational Circuits

• We've seen the use of logic gates to implement a Boolean function

- With logic gates, we can build **combinational logic circuits** that can perform complex operations
 - They perform Boolean algebra on the circuit's input

 Combinational logic circuits are used in the construction of practical, digital computer circuits (including a computer's CPU)

• A sign extend is a combinational logic circuit that preserves the sign bit of a number on a bus when the bus's width is increased.

• For example, we'll say two 8-bit (two's complement) binary numbers 11001100 (negative) and 01010101 (positive) are sent on an 8-bit bus

- The bus's width is extended to 16-bits
 - A sign extend preserves the sign bit when this happens

Input Bus (8-bits)	Output Bus (16-bits)
11001100	1111111 11001100
01010101	00000000 01010101

Input Bus (8-bits)	Output Bus (16-bits)
11001100	1111111 11001100
01010101	00000000 01010101

Input Bus (8-bits)	Output Bus (16-bits)
11001100	1111111 11001100
01010101	00000000 01010101

- An encoder is a combinational logic circuit with 2ⁿ input pins and n output pins.
 - Only a single input pin is set to 1

- Below is the truth table for a 2x1 encoder
 - *I* represents the input pins
 - *E* represents the (encoded) output pins

I_1	I_0	E_0
0	1	0
1	0	1

• SOP Expression: $I_1\overline{I_0}$

- Below is the truth table for a 4x2 encoder
 - *I* represents the input pins
 - E represents the (encoded) output pins

I_3	I_2	I_1	I_0	$\boldsymbol{E_1}$	$\boldsymbol{E_0}$
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

• SOP Expression:
$$E_1 = \overline{I_3}I_2\overline{I_1}\overline{I_0} + I_3\overline{I_2}\overline{I_1}\overline{I_0}$$

• SOP Expression:
$$E_1=\overline{I_3}I_2\overline{I_1}\overline{I_0}+I_3\overline{I_2}\overline{I_1}\overline{I_0}$$

• SOP Expression: $E_0=\overline{I_3}\overline{I_2}I_1\overline{I_0}+I_3\overline{I_2}\overline{I_1}\overline{I_0}$ \longrightarrow Same term

I_3	I_2	I_1	I_0	E_1	E_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

I_3	I_2	I_1	I_0	E_1	E_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

• Below is the truth table for an 8x3 encoder

I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	$\boldsymbol{E_2}$	E_1	E_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

• SOP Expressions:

$$E_{2} = \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} I_{4} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} I_{5} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} I_{6} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} \overline{I_{2}} \overline{I_{1}} \overline{I_{0}} + \overline{I_{7}}$$

(Boxed terms indicate duplicates)

I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	$\boldsymbol{E_2}$	$\boldsymbol{E_1}$	E_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	E_2	$\boldsymbol{E_1}$	E_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	$\boldsymbol{E_2}$	$\boldsymbol{E_1}$	E_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

- A decoder is a combinational logic circuit with n input pins and 2ⁿ output pins.
 - For each output, only a single bit is set to 1
- Below is the truth table for a 1x2 decoder
 - *I* represents the input pins
 - **D** represents the (decoded) output pins
- SOP Expressions:

$$D_0 = I_0$$

$$D_1 = \overline{I_0}$$

I_0	D_1	D_0
0	1	0
1	0	1

• Logic circuit for a 1x2 decoder:

- Below is the truth table for a 2x4 decoder
 - *I* represents the input pins
 - **D** represents the (decoded) output pins

• SOP Expressions:

$$D_0 = \overline{I_1}\overline{I_0}$$

$$D_1 = \overline{I_1}I_0$$

$$D_2 = I_1 \overline{I_0}$$

$$D_3 = I_1 I_0$$

I_1	I_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

• Logic circuit for a 2x4 decoder:

• Logic circuit for a 2x4 decoder:

I_1	I_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

• Logic circuit for a 2x4 decoder:

I_1	I_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

• Below is the truth table for a 3x8 decoder

I_2	I_1	I_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

• SOP Expressions:

$$D_0 = \overline{I_2} \overline{I_1} \overline{I_0}$$

$$D_1 = \overline{I_2}\overline{I_1}I_0$$

$$D_2 = \overline{I_2} I_1 \overline{I_0}$$

$$D_3 = \overline{I_2} I_1 I_0$$

$$D_4 = I_2 \overline{I_1} \overline{I_0}$$

$$D_5 = I_2 \overline{I_1} I_0$$

$$D_6 = I_2 I_1 \overline{I_0}$$

$$D_7 = I_2 I_1 I_0$$

• Logic circuit for a 3x8 decoder:

• Logic circuit for a 3x8 decoder:

I_2	I_1	I_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

• Logic circuit for a 3x8 decoder:

I_2	I_1	I_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

- A multiplexer (MUX) is a combinational logic circuit used to select one of multiple input lines
- A multiplexer has 2ⁿ input pins, n select pins, and 1 output pin.
 - The output is one of the input pins
- The truth table for a 4x1 multiplexer:
 - I represents the input pins (4 = 2²)
 - S represents the select pins (2)
 - *M* represents the output pin

S_1	S_0	M
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

SOP Expression:
$$M = \overline{S_1} \overline{S_0} I_0 + \overline{S_1} S_0 I_1 + S_1 \overline{S_0} I_2 + S_1 S_0 I_3$$

• Logic circuit for a 4x1 multiplexer:

• Abstracted 4x1 multiplexer:

- The truth table for an 8x1 multiplexer:
 - I represents the input pins $(8 = 2^3)$
 - S represents the select pins (3)
 - *M* represents the output pin

S_1	S_0	M
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3
0	0	I_4
0	1	I_5
1	0	I_6
1	1	I_7
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

SOP Expression:

$$M = \overline{S_2} \, \overline{S_1} \, \overline{S_0} \, I_0 + \overline{S_2} \, \overline{S_1} S_0 I_1 + \overline{S_2} S_1 \overline{S_0} I_2 + \overline{S_2} S_1 S_0 I_3 + S_2 \overline{S_1} \, \overline{S_0} \, I_4 + S_2 \overline{S_1} S_0 I_5 + S_2 S_1 \overline{S_0} I_6 + S_2 S_1 S_0 I_7$$

• Logic circuit for an 8x1 multiplexer:

• Abstracted 8x1 multiplexer:

- Buses can be inputs and outputs of a multiplexer.
 - A multiplexer with s select lines and n-bit buses is a 2^s x n multiplexer
- For example, a multiplexer with 2 select lines (implying 4 inputs) where each input is a 4-bit bus
 - $2^{s} \times n = 2^{2} \times 4 = 4 \times 4$ multiplexer

S_1	S_0	M
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

S_1	S_0	M
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

S_1	S_0	M
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

S_1	S_0	M
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

• 8x16 Multiplexer:

S_2	S_1	S_0	M
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

• 8x16 Multiplexer:

S_2	S_1	S_0	M
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

Hackett - Community College of Philadelphia - CSCI 213

- A demultiplexer (*DMX*) is a combinational logic circuit used to select the output from one input line
- A demultiplexer has 1 input pin, n select pins, and 2ⁿ output pins.

- The truth table for a 1x4 demultiplexer:
 - I represents the input pin
 - S represents the select pins (2)
 - D represents the output pins $(4 = 2^2)$

S_1	S_0	D_3	D_2	D_1	D_0
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

SOP Expressions:

$$D_0 = \overline{S_1} \, \overline{S_0} \, I$$

$$D_1 = \overline{S_1} S_0 I$$

$$D_2 = S_1 \overline{S_0} I$$

$$D_3 = S_1 S_0 I$$

S_1	S_0	D_3	D_2	D_1	D_0
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

• 1x4 Demultiplexer:

• 1x4 Demultiplexer:

S_1	S_0	D_3	D_2	D_1	D_0
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	Ι	0	0
1	1	I	0	0	0

• 1x4 Demultiplexer:

S_1	S_0	D_3	D_2	D_1	D_0
0	0	0	0	0	Ι
0	1	0	0	Ι	0
1	0	0	I	0	0
1	1	I	0	0	0

• Abstracted 1x4 demultiplexer:

- The truth table for a 1x8 multiplexer:
 - I represents the input pin
 - S represents the select pins (3)
 - **D** represents the output pins $(8 = 2^3)$

S_2	S_1	S_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

SOP Expressions:

$$D_0 = \overline{S_2} \overline{S_1} \, \overline{S_0} \, I$$

$$D_1 = \overline{S_2} \overline{S_1} S_0 I$$

$$D_2 = \overline{S_2} S_1 \overline{S_0} I$$

$$D_3 = \overline{S_2} S_1 S_0 I$$

$$D_4 = S_2 \overline{S_1} \ \overline{S_0} \ I$$

$$D_5 = S_2 \overline{S_1} S_0 I$$

$$D_6 = S_2 S_1 \overline{S_0} I$$

$$D_7 = S_2 S_1 S_0 I$$

S_2	S_1	S_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

• 1x8 Demultiplexer:

• 1x8 Demultiplexer:

S_2	S_1	S_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	Ι
0	0	1	0	0	0	0	0	0	Ι	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	Ι	0	0	0
1	0	0	0	0	0	Ι	0	0	0	0
1	0	1	0	0	Ι	0	0	0	0	0
1	1	0	0	Ι	0	0	0	0	0	0
1	1	1	Ι	0	0	0	0	0	0	0

• 1x8 Demultiplexer:

S_2	S_1	S_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	Ι
0	0	1	0	0	0	0	0	0	Ι	0
0	1	0	0	0	0	0	0	Ι	0	0
0	1	1	0	0	0	0	Ι	0	0	0
1	0	0	0	0	0	Ι	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	Ι	0	0	0	0	0	0
1	1	1	Ι	0	0	0	0	0	0	0

• Abstracted 1x8 demultiplexer:

