Colles MPSI, Lycée Janson de Sailly

HUANG Yichao

2011-2012

Contents

I	Exercices par chapitre	3
1	Nombres complexes 1.1 Questions du cours	3 3
2	Fonctions usuelles 2.1 Questions du cours	5 5
3	Groupes, anneaux, corps	6
4	Équations différentielles linéaires	6
5	Géométrie élémentaire du plan et de l'espace	6
6	Courbes paramétrées	6
7	Coniques	7
8	Ensembles des nombres	7
9	Suites numériques	7
10	Fonctions d'une variable réelle à valeurs réelles	7
11	Arithmétique dans \mathbb{Z}	7
II	Exercices "Originaux"	7
12	Graphe de Cayley	8
13	Groupe de Rubik	8

14 Éllipse de Steiner	8
15 Polynôme de Hurwitz	8
16 Théorème de Ping-Pong	8
17 Polynôme de Laguerre	8
18 Déterminant de Hankel	8
19 Inégalité de Hadamard	8
20 Résultant	8
21 Théorème de Cayley	8
22 Problème de distance de Erdős	
23 Fractions continues et l'équation de Pell-Fermat	
24 Lemme de (s)tresses	
25 Infinitude du nombres premiers et topologie générale	9
III Mnémotechniques	9
26 Théorème de Cantor	9
20 Theorems de Camon	9
IV Bizutages	9
27 Travail équipe	9

Partie I

Exercices par chapitre

1 Nombres complexes

1.1 Questions du cours

Q: Racines n-ièmes (Racines)

Soit $a \in \mathbb{C}$. Montrer que a admet une racine n-ième, i.e. il existe $z \in \mathbb{C}$ tel que $z^n = a$. Combien y en a-t-il?

On pourra commencer par regarder les racines n-ièmes de l'unité.

Dessiner les racines n-ièmes de l'unité. Conjucturer la somme de toutes les racines n-ièmes de l'unité. Prouver ce résultat.

Attention: dans toutes les questions il faut discuter selon la valeur de n!

Q: Inégalité triangulaire (Modules)

Soient $z, z' \in \mathbb{C}$. Montrer que $|z+z'| \leq |z| + |z'|$. En déduire que $||z| - |z'|| \leq |z-z'|$. Quand est-ce qu'on a l'égalité?

Q: Formules trigonométriques

Développer $\sin(\alpha + \beta)$ et $\cos(\alpha + \beta)$ où α et β sont deux nombres réels.

1.2 Exercices

Ex: Somme de cos (Racines)

Calculer $\sum_{k=0}^n\cos(k\theta)$, où $\theta\in\mathbb{R}$. Indication: Utiliser la technique de l'angle moitié.

Ex: Droite réelle (Conjugaison)

Soient $a, b \in \mathbb{U}, \ z \in \mathbb{C}$. Notons $u = \frac{z + ab\overline{z} - a - b}{a - b}$. Montrer que $u^2 \in \mathbb{R}$.

Ex: Inégalité de Bell

Montrer qu'il existe des points a, a', b, b' sur la sphére unité de l'espace tels que (< a, b > + < $b, a' > + < a', b' > - < b', a > \ge 2$ (on confond ici les points avec leurs coordonées).

Ex: Demi-plan complexe (Modules)

On définit $\mathbb{H} = \{z \in \mathbb{C} \mid Im \ z > 0\}$ le demi-plan du plan complexe.

Montrer que $z \in \mathbb{H}$ ssi $-\frac{1}{z} \in \mathbb{H}$.

On se donne z, a deux nombres complexes.

Montrer que $|1 - z\overline{a}|^2 - |z - a|^2 = (1 - |z|^2)(1 - |a|^2)$. En déduire que si |a| < 1, alors |z| = 1 ssi $f(a, z) = |\frac{z - a}{\overline{a}z - 1}| = 1$.

Que se passe-t-il si |z| < 1?

Ex: Polynôme de Tchebychev

Ex: Formule de De Moivre (Racine)

Montrer qu'on a l'identité suivante:

$$(\cos \phi + i \sin \phi)^n = \cos n\phi + i \sin n\phi.$$

Ex: Théorème de Napoléon

Ex: Triangle équilatéral (Racines)

Montrer qu'il n'existe pas de triangle équilatéral à coordonées entières (non réduit à un point) dans \mathbb{R}^2 .

(Indication: $a^2 + b^2 + c^2 - (ab + bc + ca) = 0$)

Ex: Racine de l'unité (Racines)

Calculer:

1)
$$\left(\frac{1+i}{\sqrt{2}}\right)^n$$
, $n \in \mathbb{Z}$;
2) $\sum_{k=0}^{7} \left(\frac{1-i}{\sqrt{2}}\right)^k$.

Ex: Polynôme et racines n-ièmes de l'unité

Soit $n \in \mathbb{N}^*$. Soit p un entier.

1) Calculer $\sum_{\omega \in \mathbb{U}_n} \omega^p$.

2) Soit P un polynôme de degré inférieur ou égal à n-1. Montrer que $a_k = \sum_{\omega \in \mathbb{U}_n} \frac{P(x)}{nx^k}$.

Ex: Arithmétique? (Modules)

Montrer que si a, b peuvent s'écrire comme la somme de deux carrés dans \mathbb{N} , alors leur produit abl'est aussi.

Soient $a, b, c, d \in \mathbb{Z}$ tels que (a + bi)(c + di) = 1. Exhiber tous les cas possibles.

Ex: Noyau du Féjer

On introduit le noyau de Dirichlet d'ordre n la fonction sur \mathbb{R} défini par: $D_n(x) = \sum_{k=-\infty}^n e^{ikx}$.

- 1) Montrer que $D_n(x) \in \mathbb{R}$.
- 2) Montrer que $D_n(x) = 1 + 2 \sum_{k=1}^{n} \cos(kx)$.
- 3) Montrer que D_n est 2π -périodique, i.e. $D_n(x) = D_n(x+2\pi)$.
- 4) Simplifier cette somme. (En discutant selon la divisibilité de x par 2π .)

On introduit le noyan de Féjer d'ordre n la fonction sur \mathbb{R} défini par: $F(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$.

5) Montrer que $F(x) = \frac{1}{2n\pi} (\frac{\sin nx/2}{\sin x/2})^2$.

On donne ensuite sans démonstration quelques propriétés sympas de ce noyau, en particulier c'est une approximation de Dirac sur $[-\pi, \pi]$.

Ex: Extrait de "Un lemme de confinement" (X-ENS) (Modules)

Soient $\epsilon_i \in \{-1, 1\}$ et a_i des nombres complexes de module 1.

- 1) On peut choisir ϵ_1 et ϵ_2 de sorte que $|\epsilon_1 a_1 + \epsilon_2 a_2| \leq \sqrt{3}$. Exhiber un cas où l'égalité est atteinte.
- 2) Montrer la même assertion pour trois nombres.

$\mathbf{2}$ Fonctions usuelles

2.1 Questions du cours

Q: arccos et arcsin

Domaines de définitions, dérivations (attention aux domaines de dérivabilité), graphes.

Démontrer l'identité suivante: Pour tout $x \in [-1, 1]$, $\cos \arcsin x = \sin \arccos x = \sqrt{1 - x^2}$.

2.2Exercices

Ex: Dérivation Calculer $\sum_{k=0}^{n} k \cos(k\theta)$ où $\theta \in \mathbb{R}$.

Ex: arctan

Résoudre l'équation: $\arctan 2x + \arctan 3x = \frac{\pi}{4}$ d'inconnue $x \in \mathbb{R}$.

(Réponse: $x = \frac{1}{6}$. Penser à bien préciser l'injectivité de arctan sur un intervalle approprié.)

Ex: Ruse de substitution

Soient $a, b \in \mathbb{R}$. Il existe alors $u, v \in \mathbb{R}$ tels que pour tout $\theta \in \mathbb{R}$, $a\cos\theta + b\sin\theta = \sqrt{a^2 + b^2}\cos(\theta + u) = \sqrt{a^2 + b^2}\sin(\theta + v).$

Ex: Approximeation de $\frac{\pi}{4}$ Montrer que $4\arctan\frac{1}{5} - \arctan\frac{1}{239} = \frac{\pi}{4}$.

Ex: Une somme téléscopique déguisée

Soit $x \in \mathbb{R}^*$.

Montrer que $\tanh x = 2 \coth x - \coth x$. Conjecturer la somme de la série de terme $\frac{1}{2^n} \tanh \frac{x}{2^n}$.

Calculer la somme de $\frac{1}{\sinh(2^n x)}$.

(Ind: $\frac{1}{\sinh x} = \coth \frac{x}{2} - \coth x$.)

Ex: Somme de arctan

Montrer que $\arctan \frac{1}{3} + \arctan \frac{1}{2} + \arctan 1 = \frac{\pi}{2}$.

Ex: La fonction sin n'est pas rationnelle (X-ENS)

Montrer que la fonction sin n'est pas rationnelle sur aucun intervalle réel [a, b].

On admettra le résultat suivant: une fonction rationnelle n'a qu'un nombre fini de zéro sur un intervalle non vide]a,b[.

On rappelle que le degré d'une fonction rationnelle $\frac{P}{Q}$ est défini par deg(P) - deg(Q) si $P \neq 0$ et $-\infty$ sinon. Cette définition ne dépend pas de la représentation choisie.

3 Groupes, anneaux, corps

Ex: Graphe de Cayley (cf. partie II).

Ex: Théorème de Cayley.

Ex: Lemme du serpent.

Ex: Anneau intègre fini.

Ex: Factorisation à travers le noyau.

4 Équations différentielles linéaires

Ex: Problème de raccordement.

5 Géométrie élémentaire du plan et de l'espace

Ex:

6 Courbes paramétrées

Ex:

7 Coniques

Ex:

8 Ensembles des nombres

Ex: $\sqrt{2}$ (ainsi que $2^{1/n}$ pour n entier naturel ≥ 2) n'est pas un nombre rationnel.

Ex: Récurrence (exemples de fausses récurrences).

Ex: Plongement de \mathbb{N} dans \mathbb{Q} .

9 Suites numériques

Ex:

10 Fonctions d'une variable réelle à valeurs réelles

Ex:

11 Arithmétique dans \mathbb{Z}

Ex: Étude sur la fonction de Möbius. Formule d'inversion de Möbius.

On rappelle que chaque entier naturel n admet une unique décomposition en produit de nombres premiers positifs, i.e. $n = p_1^{v_1} \dots p_r^{v_r}$, où les v_i sont appelés valuations en p_i .

La fonction de Möbius μ est définie de la façon suivante:

i) Si r=0, ou si les $v_i=1$ pour tout i (ou en anglaise, n est square-free), alors $\mu(n)=(-1)^r$.

ii) Sinon, $\mu(n) = 0$.

Le but de cet exercice est de démontrer la formule suivante, dite formule d'inversion de Möbius: Soient f et g deux fonctions définies sur \mathbb{N} à valeurs dans \mathbb{R} (ou plus généralement, dans un groupe abélien quelconque).

Si
$$\forall n \in \mathbb{N}, \sum_{d|n} f(d) = g(n)$$
, alors $\forall n \in \mathbb{N}, \sum_{d|n} \mu(n/d)g(d) = f(n)$.

Ex: Applications du petit théorème de Fermat.

Soient a, b deux entiers naturels et p un nombre premier positif. Montrer que:

Si $a^p \equiv b^p \pmod{p}$, alors $a^p \equiv b^p \pmod{p^2}$.

Ex: Écriture en base 2.

(1995 nansilafu) Notons λ la fonction qui à un entier naturel n associe le nombre de 1 qui apparaît dans son écriture en base 2. Alors $2^{n-\lambda(n)}|n!$.

Partie II

Exercices "Originaux"

12 Graphe de Cayley

Montrer à l'aide de deux figures qu'un groupe à quatre éléments est soit isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, soit à $\mathbb{Z}/4\mathbb{Z}$.

Intérêt: Une représentation graphique du groupe. Classification.

13 Groupe de Rubik

On se donne un Rubik de taille deux. Étudions les actions, reconnaître un groupe familier. Intérêt: Initiation à la notion de l'action.

- 14 Éllipse de Steiner
- 15 Polynôme de Hurwitz
- 16 Théorème de Ping-Pong
- 17 Polynôme de Laguerre
- 18 Déterminant de Hankel

Suite de Fibonacci.

Intérêt: Rien à part le plaisir d'une amuse-gueule...

Nombre de Catalan¹.

Intérêt: À voir.

19 Inégalité de Hadamard

Intérêt: Interprétation géométrique du déterminant.

20 Résultant

21 Théorème de Cayley

Plongement d'un groupe dans un groupe symétrique.

¹http://www.emis.de/journals/JIS/VOL4/LAYMAN/hankel.pdf

22 Problème de distance de Erdős

Ceci est une question ouverte.

Soit N un entier naturel. Estimer inf $\#\{d(x_i,x_j),i,j\in\{1,2,\ldots N\}\}\$, où x_i est un point dans le plan euclidien.

On demande d'établir quelques résultats préliminaires:

Notons $G_m(n)$ cette borne inf pour n dans un espace euclidien de dimension m.

Montrer que G est une fonction croissante en m et en n.

Calculer G_1n pour tout n entier naturel.

On s'intéresse au cas m = 2. Donner $G_2(n)$ pour n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Montrer que $G_2(n) \geq n^{1/2}$.

- 23 Fractions continues et l'équation de Pell-Fermat
- 24 Lemme de (s)tresses
- 25 Infinitude du nombres premiers et topologie générale

Partie III

Mnémotechniques...

26 Théorème de Cantor

On a un plongement naturel de E dans $\mathcal{P}(E)$. Maintenant on considére un ensemble quelconque autre que les images, sa préimage n'est pas dans cet ensemble car l'image de cette préimage est déjà définie. D'où la considération: $A = \{a/a \notin f(a)\}$.

Partie IV

Bizutages

27 Travail équipe

Je peux leur faire travailler en équipe: la résolution de l'un nécessite le résultat de l'autre.