C.2. Recurrence Tree Method - Example 2

$$t_n = \begin{cases} 1 & for n = 1 \\ t_{n-1} + a & for n > 1 \end{cases}$$

Using the recurrence – tree method, determine the final asymptotic complexity of the tree for a=1 and a=n.

<u>Solution:</u>

When a = 1 the recurrence equation is as follows:

$$egin{aligned} t_n &= \left\{ egin{array}{ll} t_{n-1} + 1 & for \, n > 1 \end{array}
ight. \end{aligned}$$

Therefore, the recurrence tree for this recurrence equation would be shown below:

Level	No. of	Problem	Work	
	problems	Size	done =	
			Problem	
			Size ×	
			No. of	
			Problems	
0	1	1	$1 \times 1 = 1$	
1	1	1	$1 \times 1 = 1$	1
2	1	1	$1 \times 1 = 1$	
	•		•	Ī
n-1	1	1	$1 \times 1 = 1$	1
n – 1	1	1	1 × 1 = 1	1

One can observe that the work done at every level is 1 and the size of the problem is reduced by a factor of 1 at every level.

Therefore, at the level n-1, the problem size and work done would be 1. The total number of levels is n (as the level of the root is 0). Therefore, the final cost can be estimated as follows:

Total Cost =
$$\sum_{i=1}^{n} 1 = 1 + 1 + 1 + \cdots n \text{ times} = 1 \times n = n.$$

Therefore, the asymptotic complexity would be $\Theta(n)$. Problems such as `Towers of Hanoi` and `Handshake Problem` can be expressed using this type of a recurrence equation.

When a = n, the recurrence equation would be as follows:

$$egin{aligned} oldsymbol{t_n} &= \left\{ egin{aligned} & & & for \ n = 1 \ & & & \ & \$$

The recurrence tree is shown below:

Level	No. of problems	Problem Size	Work done = Problem Size ×	
			No. of	
			Problems	
0	1	n	$1 \times n = n$	
1	1	n-1	$1\times(n-1)=$	H
			n-1	(n-1)
2	1	n-2	$1 \times (n-2)$	
			= n - 2	n-2
n-1	1	1	$1 \times 1 = 1$	$\overline{1}$

We can observe that at entry level the work done is reduced by 1 from previous term from total `n` terms.

The work done is given as: $n + (n-1) + (n-2) + \cdots + 1$.

The total number of levels is $n(from\ 0\ to\ n-1)$.

As there are `n` levels, the total cost can be estimated as follows:

Total Cost =
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$
