1 | Dot product:

- · Name: dot product
- · Result: Scalar
- · Interpretation (what it measures): parallelity
 - the more parallel the larger the dot product
- Magnitude (with sign): $|\vec{a}||\vec{b}|cos(\theta)$
- Geometric magnitude: $|\vec{a}||\vec{b}_{\parallel\vec{a}}|$
- · Direction: no direction
- Algebraic form: $a_x b_x + a_y b_y + a_z b_z$
- · Algebraic properties:
 - commutative
 - associative
 - distributive across addition

2 | Cross product:

- Name: Cross product
- · Result: Vector
- · Interpretation (what it measures): Orthgonality
 - the more orthogonal the longer the cross product
- Magnitude (with sign): $|\vec{a}| |\vec{b}| \sin(\theta)$
- Geometric Magnitude: $|\vec{a}| |\vec{b}_{\perp \vec{a}}|$
- Direction: perpendicular to the two vectors
 - by the right hand rule by rotating the first vector into the second vector
- Albraic form: $\langle a_y b_z a_z b_y, a_x b_z a_z b_x, a_x b_y a_y b_x \rangle$
- · Algebraic properties:
 - Anticommutative
 - $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$
 - $(\vec{A} \times \vec{B}) \perp \vec{A}$
 - $(\vec{A} \times \vec{B}) \perp \vec{B}$
 - Antiassociative

3 | Application of cross product:

- In physics there is something called torque, notated $\boldsymbol{\tau}$
 - Torge is the net force of things that rotate, so:
 - * $F_{net} = ma$
 - * $\tau_{net} = I\omega$
- Somethings to note about τ :
 - It increases with a longer lever
 - It increases with a greater force
 - * that is perpendicular to the lever
- Given these requirements we can make a formula:
 - $-|\tau|=|\vec{r}||\vec{F}_{\perp\vec{r}}|$, where \vec{F} is the force applied to the door, and \vec{r} is the radius of the lever.
 - this, the right side of the equation, can be described using the dot product: $|\tau| = \vec{r} \times \vec{F}$

4 | Derivation of cross product algebraic form:

To start, we can define:

$$\vec{A} = (A_x, A_y, A_z) = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{B} = (B_x, B_y, B_z) = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

Next we have to assume that the dot product is distributive across addition:

$$\begin{split} \vec{A} \times \vec{B} &= (A_x \hat{i} + A_y \hat{j} + A_Z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k}) \\ &= A_x B_x \hat{i} \times \hat{i} + A_x B_y \hat{i} \times \hat{j} + A_x B_z \hat{i} \times \hat{k} \\ &+ A_y B_x \hat{j} \times \hat{i} + A_y B_y \hat{j} \times \hat{j} + A_y B_z \hat{j} \times \hat{k} \\ &+ A_z B_x \hat{k} \times \hat{i} + A_z B_y \hat{k} \times \hat{j} + A_z B_z \hat{k} \times \hat{k} \end{split}$$

From the definition of a cross product, we know that the cross product between any two vectors that are parallel is zero, thus:

$$= A_x B_y \hat{i} \times \hat{j} + A_x B_z \hat{i} \times \hat{k} + A_y B_x \hat{j} \times \hat{i} + A_y B_z \hat{j} \times \hat{k} + A_z B_x \hat{k} \times \hat{i} + A_z B_y \hat{k} \times \hat{j}$$

 $\hat{i} \times \hat{j}$ would yield a vector length one in the direction of a vector that is perpendicular to both \hat{i} and \hat{j} , which would be \hat{k} . Conversly, $\hat{i} \times \hat{j} = -\hat{k}$. Therefore:

$$\begin{split} &= A_x B_y \hat{k} + A_x B_z \hat{j} \\ &- A_y B_x \hat{k} + A_y B_z \hat{i} \\ &- A_z B_x \hat{j} - A_z B_y \hat{i} \\ &= A_x B_y \hat{k} - A_y B_x \hat{k} \\ &+ A_y B_z \hat{i} - A_z B_y \hat{i} \\ &+ A_x B_z \hat{j} - A_z B_x \hat{j} \\ &= (A_x B_y - A_y B_x) \hat{k} + (A_y B_z - A_z B_y) \hat{i} + (A_x B_z - A_z B_x) \hat{j} \\ &= (A_y B_z - A_z B_y, A_x B_z - A_z B_x, A_x B_y - A_y B_x) \end{split}$$

Now we need to show that the cross product is distributive across addition:

Peter Choi • 2021-2022