

Elementary Protocols Introduction Unrestricted Stop-and-Wait Noisy Channel Assumptions & Declarations Unrestricted Simplex Protocol Simplex Stop and Wait protocol Simplex Protocol for a noisy channel

Data Link Layer, Topic 3.1, Elementary Protocols

Assumptions

Introduction

Unrestricted Stop-and-Wait Noisy Channel

- Physical, Data link & Network are all <u>independent processes</u>. <u>They execute on the main CPU or in a special purpose network</u> <u>I/O chip</u>,
- Service being provided is <u>a reliable connection oriented</u> service,
- Data is always available <u>from the Network Layer and flows</u> <u>from Machine A to Machine B</u>,
- Machines do not crash, <u>as our simple protocols can't handle</u> that,
- Treat all data as pure data although some of it is in reality network layer header,
- Assume the existence of the Physical layer including
 - to_physical_layer send frames to the physical layer,
 - from_physical_layer receives frames from the physical layer,
 - Computation of the checksum

Data Link Layer, Topic 3.1, Elementary Protocols

More assumptions

Introduction

Unrestricted Stop-and-Wait Noisy Channel

- wait_for_event: receiver waits for any event (e.g., receipt of a frame) by calling this function,
 - Normally this would be done with interrupt handling.
- Frame arrival will either cause
 - event = frame_arrival when frame is received and cksum is o.k.,
 - event = cksum_err when frame checksum does not match,
 - If everything is OK <u>frame is delivered to the network layer.</u>

Unrestricted Simplex Protocol

Introduction Unrestricted Stop-and-Wait Noisy Channel

- Data transmission <u>in one direction only, from</u> sender to receiver,
- Communication channel is assumed to be error free,
- Processing time can be ignored,
- Buffer Space is infinite.


```
Receiver

Receiver

Void receiver1(void){

frame r;

event_type event;

while (true) {

wait_for_event(&event);

from_physical_layer(&r);

to_network_layer(&r.info);

}

}
```

Stop-and-Wait Protocol

Introduction Unrestricted **Stop-and-Wait** Noisy Channel

- Data transmission is still one drectional, from sender to receiver,
- Communication channel is still assumed to be error free,
- Processing time is Finite,

Data Link Layer, Topic 3.1, Elementary Protocols

- Buffer Space is NOT Infinite,
- The receiver can be flooded by the sender. To prevent this we can...
 - Insert delays to the sender (through an analysis of max data rates),
 - Give feedback to sender to let him know when he can send more data,
 - Stop and What is such a protocol. Receiver sends a frame back to the sender for every frame it receives,
 - Half Duplex <u>communication is required</u>, (i.e. one direction at any time)

```
Sender

Sender

void sender2(void){

frame s;

packet buffer;

event_type event;

while (true) {

from_network_layer(&buffer);

s.info = buffer;

to_physical_layer(&s);

wait_for_event(&event);

}

}
```

```
Receiver
void receiver2(void){
frame r, s;
event_type event;
while (true) {
    wait_for_event(&event);
    from_physical_layer(&r);
    to_network_layer(&r);
    to_physical_layer(&s);
}
}
```

70						
slos		Results		_	Introduction	
ţŏ				_	Unrestricted	
				Stop-and-Wait		
$\frac{1}{2}$				N	loisy Channel	
ıtaı		Simulating Protocol 2				
ner		Events	100000			
len		Timoute	30			
H,		pkt_loss	0			
3.1		pkt_cksum	0			
Data Link Layer, Topic 3.1, Elementary Protocols			Process 0	Process 1		
Jop.		Total data frames sent	12580	0		
г, 1		Data frames lost	0	0		
ıyeı		Data frames not lost	12580	0		
La		Frames retransmitted	0	0		
K		Good ack frames rec'd	12579	0		
17		Bad ack frames rec'd	0	0		
ata						
Ω		Good data frames rec'd	0	12580		
		Bad data frames rec'd	0	0		
		Payloads accepted	0	12580		
		Total ack frames sent	0	12580		
		Ack frames lost	0	0		
		Ack frames not lost	0	12580		
		Timeouts	0	0		
		Ack timeouts	0	0		
13						

Data Link Layer, Topic 3.1, Elementary Protocols Introduction Protocol for a Noisy Channel Unrestricted Stop-and-Wait **Noisy Channel** Data transmission is still one drectional, from sender to receiver, ■ Communication channel <u>now allows errors</u>, - Corrupt Frames: checksum does not match, - Missing Frames: frames do not arrive at all Solution - Use a timer: That way the sender does not wait for the receiver to tell it that something is wrong, - Problem: <u>If the ack of a frame is lost then the sender would</u> resend the frame – causing the receiver to get the frame twice, - Use Sequence Numbers: <u>Identify each frame</u>. <u>If one frame</u> can be outstanding, then a single bit seq. no. is enough. - PAR/ARQ: Positive Acknowledgement with Retransmission / Automatic Repeat reQuest

```
Introduction
Data Link Layer, Topic 3.1, Elementary Protocols
                                                                             Unrestricted
          Sender
                                                                             Stop-and-Wait
                                                                             Noisy Channel
           void sender3(void){
                                          packet buffer;
            frame s;
            event_type event;
                                       seq_nr next_frame_to_send = 0;
            from_network_layer(&buffer);
            while (true) {
                s.info = buffer;
                                       s.seq = next_frame_to_send;
                to_physical_layer(&s);
                start_timer(s.seq);
                wait_for_event(&event);
                if (event == frame_arrival) {
                     from_physical_layer(&s);
                     if (s.ack == next_frame_to_send) {
                           from_network_layer(&buffer);
                           inc(next_frame_to_send);
                      }
```

```
Data Link Layer, Topic 3.1, Elementary Protocols
                                                                         Introduction
          Receiver
                                                                         Unrestricted
                                                                         Stop-and-Wait
                                                                         Noisy Channel
           void receiver3(void){
            frame r, s;
                                 event_type event;
            seq_nr frame_expected = 0;
            while (true) {
                wait_for_event(&event);
                if (event == frame_arrival) {
                      from_physical_layer(&r);
                      if (r.seq == frame_expected) {
                           to_network_layer(&r.info);
                           inc(frame_expected);
                      s.ack = 1 - frame_expected;
                      to_physical_layer(&s);
```

ls			Introductio	n		
Data Link Layer, Topic 3.1, Elementary Protocols	D 1.		Unrestricted			
otc	Results					
Pro	Tebuits		Stop-and-Wait			
>			Noisy Channel			
tan 💻	Simulating Protocol 3					
len	Events	100000				
iii —	Timeout	30				
菌	pct loss	20				
-,	pct cksum	15				
ω	F					
ji i		Process 0 Process 1				
Jo_	Total data frames sent	5994	0			
L,	Data frames lost	1231	0			
.e.	Data frames not lost	4763	0			
<u>a</u>	Frames retransmitted	2806	0			
	Good ack frames rec'd	2694	0			
<u> </u>	Bad ack frames rec'd	493	0			
1						
ate	Good data frames rec'd	0	4037			
	Bad data frames rec'd	0	726			
	Payloads accepted	0	2686			
	Total ack frames sent	0	4037			
	Ack frames lost	0	850			
	Ack frames not lost Timeouts	2806	3187			
	Ack timeouts	2806	0			
	Ack tilleouts	1 0	<u> </u>			
	Efficiency (payloads accepted/data pkts sent) = 44	1%				
	End of simulation. Time=100000	. ,~				
17						
1 /						