D	B3D057	Total pages:2
	DSDUS/	I Utai pages.2

Reg. No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017

Course Code: EC205

Course Name: ELECTRONIC CIRCUITS (AE, EC)

Max. Marks: 100 Duration: 3 Hours

PART A

Question is 1 <u>COMPULSORY</u> and Answer EITHER Question 2 OR Question 3 Each Full Question Carries 15 marks.

- a) Define the THREE stability factors of Common Emitter amplifier and derive expression for the Current stability factor of a potential divider bias CE amplifier circuit.
 - b) A Common Base amplifier is driven by a voltage source of internal resistance 60Ω . The load resistance is $20K\Omega$. The transistor has $\mathbf{h_{ib}} = 22\Omega$, $\mathbf{h_{rb}} = 0.0003$, $\mathbf{h_{fb}} = -0.98$ and $\mathbf{h_{ob}} = 0.5\mu\text{A/V}$. Compute the current gain $\mathbf{A_{I}}$, input resistance $\mathbf{R_{i}}$, voltage gain $\mathbf{A_{V}}$, overall voltage gain $\mathbf{A_{Vs}}$, overall current gain $\mathbf{A_{Is}}$ (considering the source resistance also), and operating power gain $\mathbf{A_{P}}$
- a) An ideal 1μS pulse from a pulse generator is fed to an amplifier. Calculate and plot the output waveform with a rise time of the capacitor 2.2 RC. The upper 3dB frequency is 0.1 MHz.
 - b) How amplifiers are classified based on their Q-points? Explain showing the positions of the Q-points on the respective load lines and current transfer characteristic curves for at least THREE types of classes. Also compare their merits and demerits.

 (8)
- 3. a) Define the small signal hybrid parameters of a Common Emitter configuration.

 Show how to determine their values from the characteristics. (8)
 - b) Draw the circuit of a two-stage RC coupled amplifier. Derive expressions for its effective lower cut-off frequency and effective upper cut-off frequency. If the individual stages are having $\mathbf{f_L} = 20$ Hz and $\mathbf{f_H} = 200$ kHz, calculate the respective values for the cascaded two-stage. (7)

PART B

Question 4 is <u>COMPULSORY</u> and Answer EITHER Question 5 OR Question 6 Each Full Question Carries 15 marks.

4. a) What are the physical origins of resistances in the high frequency hybrid π model of a CE transistor amplifier? Explain the different parameters in the hybrid π circuit.

(7)

D B3D057 Total pages:2

b) Make a distinction between "voltage" feedback and "current" feedback in amplifier circuits. Discuss the merits in each case and derive expressions for the net output resistance in each case.

(8)

- 5. a) Sketch the topology for the generalized resonant circuit oscillator, using impedances z_1 , z_2 and z_3 . Derive the expression for the frequency of oscillation. Under what conditions does the configuration reduce to Colpitts oscillator? (10)
 - b) Derive the equation which shows that the sensitivity of an amplifier reduces by applying negative feedback to the circuit. (5)
- 6. a) Deduce the high frequency equivalent circuit of a potential divider bias CE amplifier circuit. Derive the expression for the CE short circuit current gain as a function of frequency. Explain with frequency response characteristics diagram, the relationship between f_{β} and f_{T} . (12)
 - b) Draw the circuit of a cascode amplifier and explain its properties. (3)

PART C

Question is 7 <u>COMPULSORY</u> and Answer EITHER Question 8 OR Question 9 Each Full Question Carries 20 marks.

- 7. a) With neat circuit diagram and necessary waveforms, explain how a transistorized astable multivibrator is working as a free running oscillator. Derive the expression for the frequency. Show in the circuit diagram, how you can eliminate the rounding of the collector waveform and make the edges sharp? (12)
 - b) An N-channel E-MOSFET used in a potential divider bias CS amplifier has $I_{D(ON)}$ = 4mA at $V_{GS(ON)}$ = 8V, V_{GST} = 4V, g_m = 2 mS. Calculate values of (i) V_{GS} , (ii) V_{DS} , (iii) I_D and (iv) output Voltage, if R_1 =60k Ω , R_2 = 40k Ω , R_D = 6k Ω , V_{DD} = 15V and the ac input signal = 80mV. (8)
- 8. a) Using fictitious generator block diagram, show how a Bootstrap generator can produce linear sweep voltage by constant current charging. Draw a transistorized circuit and waveforms to explain the Bootstrap action to generate linear sweep. (12) b) A Class B push-pull power amplifier is supplied with $V_{CC} = 50V$. The signal swings the collector voltage down to $V_{min} = 5V$. The total dissipation in both transistors is 40W. Calculate the total output power and conversion efficiency. (8)
- a) Draw the circuit of a series pass voltage regulator which uses a feedback. Explain its working when the input voltage as well as load current varies. Design your circuit to deliver 6V, 100mA maximum load current.
 - b) Draw the circuit of a Drain feedback bias circuit for E-MOSFET. Explain its working and properties. (8)