Solution: Energy Based RNA Secondary Structure Prediction

1 Nearest Neighbor Energy Parameters

Solution for 1.b:

Stacked base pair energy: $\Delta G_{base-stack} = -25.6 \text{ kcal/mol}$

Loop energy: $\Delta G_{loop} = 7.3 \text{ kcal/mol}$

Gibbs free energy: $\Delta G = \Delta G_{base-stack} + \Delta G_{loop} = -18.3 \text{ kcal/mol}$

2 MFE folding recurrences

Solution:

table	term	explanation
C_{ij}	$\min_{i < u < j} M_{i+1,u} + M_{u+1,j-1}^1 + a$	Adds multi-loop free energy contributions to closed struc-
	i < u < j	ture free energy where the multi-loop is closed by (i, j) and
		defined by $M_{i+1,u} + M_{u+1,i-1}^1$; u defines the size of the first
		part of the multi-loop; a is a penalty for adding a multi-loop.
M_{ij}	$ \min_{i < u < j} (u - i + 1)c + C_{u+1,j} + b $	The first part of the multi-loop is defined by unpaired region
	i < u < j	x[iu] and a component enclosed by $(u+1,j)$; $(u-i+1)$
		is the length of the unpaired region, for each unpaired base
		a penalty energy c is added; b is an energy contribution for
		adding a component to a multi-loop
M_{ij}	$\min_{i < u < j} M_{i,u} + C_{u+1,j} + b$	Adds a component, i.e. enclosed structure to the multi-loop
		which is subsequence $x[u + 1j]$; u determines where the
		component starts, thus the size of the component; b is a
		energy contribution for adding a component to a multi-loop
M_{ij}	$M_{i,j-1}+c$	Extends mutli-loop by an unpaired base; c is a penalty en-
		ergy for unpaired bases.
M_{ij}^1	$M_{i,j-1}^1 + c$	The final part of the multi-loop is extended by an unpaired
2.51		base; c is a penalty energy for adding an unpaired base
M_{ij}^1	$C_{ij} + b$	The final part of the multi-loop is defined by the closed
		structure C_{ij} , i.e. component closed by (i, j) ; b is an energy
		contribution for adding a component to a multi-loop

Table 1: Multi-loop energy model - explanation.

