Optimization in Machine Learning

Multi-Start Optimization

Learning goals

- Multimodal functions
- Basins of Attractions
- Simple multi-start procedure

MOTIVATION

- So far: optimization method for unimodal objective function (exception: simulated annealing)
- If the objective function is actually multimodal, our procedures converge to local minima.
- ullet Found optima may be different for different starting values $oldsymbol{x}^{[0]}$

⇒ "attraction areas"

Let f_1^*, \ldots, f_k^* be local minimum values of $f(\cdot)$ with $f_i^* \neq f_j^* \quad \forall i \neq j$. Then the set \mathcal{A} is called basin of attraction of f_i^* for algorithm A.

$$\mathcal{A}(f_i^*, A) = \{ \boldsymbol{x} \in S \subseteq \mathbb{R} : f(A(\boldsymbol{x})) \to f_i^* \}$$

ATTRACTION AREAS

MULTI-STARTS

$$f(\mathbf{x}) = \sin^2(3\pi x_1) + (x_1 - 1)^2[1 + \sin^2(3\pi x_2)] + (x_2 - 1)^2[1 + \sin^2(2\pi x_2)]$$

- Global minimum: $f(\mathbf{x}^*) = 0$ at $\mathbf{x}^* = (1, 1)$
- We optimize the Levy function using the BFGS method with a random starting value of
 -2 ≤ x₁ ≤ 2, -2 ≤ x₂ ≤ 2 and note the objective function value of the result after optimization
- We repeat this 100 times

Distribution of the 100 optimization results (y values):

## Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
## 0 0000	0 1099	0.5356	2 4351	1 9809	18 3663

MULTI-STARTS

Idea: use multiple starting points $\mathbf{x}^{[1]}, \dots, \mathbf{x}^{[k]}$ for algorithm A

Algorithm Multistart optimization

- 1: Given: optimization algorithm $A(\cdot)$, $f: \mathcal{S} \mapsto \mathbb{R}, x \mapsto f(x)$
- 2: k = 0
- 3: repeat
- 4: Draw starting point $x^{[k]}$ from S (e.g. uniform if S is of finite volume)
- 5: **if** k = 0 **then** $\hat{x} = x_0$
- 6: end if
- 7: Initialize algorithm with start value $x^{[k]} \Rightarrow \tilde{x} = A(x^{[k]})$
- 8: if $f(\tilde{x}) < f(\hat{x})$ then $\hat{x} = \tilde{x}$
- 9: end if
- 10: k = k + 1
- 11: until Stop criterion fulfilled
- 12: return \hat{x}

MULTI-STARTS

BFGS with Multistart gives us the true minimum of the Levy function:

```
iters = 20 # number of starts
xbest = c(runif(1, -2, 2), runif(1, -2, 2))
for (i in 1:iters) {
x1 = runif(1, -2, 2)
x2 = runif(1, -2, 2)
res = optim(par = c(x1, x2), fn = f, method = "BFGS")
if (res$value < f(xbest)) {
xbest = res$par
xbest.
## [1] 1 1
```