Pushdown Automata PDA

Initial Stack Symbol

bottom Simboli speciali
Che appaiono al tempo O

Pushdown Automaton -- PDA

Input String

Gli stati

$$\begin{array}{ccc}
 & a, & b \to c \\
\hline
 & q_1
\end{array}$$

stack

stack

stack

Pop da uno stack vuoto

Se l'automata tenta di fare un pop da uno stack vuoto allora si ferma la computazione e rigetta l'input

Non-Determinismo

PDAs sono non-deterministici

Permettono transizioni non deterministiche

 λ – transition

Esempio di PDA

PDA
$$M$$
:

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Idea di base:

Esempio di esecuzione: Time 0

Input

Input

Input

Stack

Input

Stack

Input

Stack

Input

Stack

Input

Stack

Input

Stack

Input

Una stringa è accettata se vi è una computazione tale che:

tutti gli input sono "consumati" E

lo stato raggiunto è uno stato di accettazione

Non teniamo conto di quello che c'è nello Stack alla fine dello stato di accettazione

Esempio di Time 0 non acettazione:

Input

Input

Stato corrente

 $a, \lambda \rightarrow a$

Input

Stack

Input

Stack

Time 4 non acettazione:

Input

Stack

reject

 λ , \$ \rightarrow \$

Non esiste una computazione accettante aab.

La stringa aab è rigettata dal PDA.

Un altro esempio di PDA

PDA
$$M: L(M) = \{vv^R : v \in \{a,b\}^*\}$$

aby aa y a y aba=xyz abcy cba

Basic Idea:

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

esecuzione:

Time 0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

Stack

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

03/04/2021

Stack

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Congettura sei Metà input

Stack

Input

Input

 $\lambda, \lambda \rightarrow \lambda$

Stack

 $b, \lambda \rightarrow b$

 $b, b \rightarrow \lambda$

 q_0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

 $\lambda, \lambda \to \lambda$

 $(\lambda,\$ \to \$)$

accept

esecuzione:

Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

Altro esempio:

Time 0

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \to b$$
 $b, b \to \lambda$

03/04/2021

 $a, \lambda \rightarrow a$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Input

Congettura sei A metà dell'input

Stack

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$

$$\lambda, \lambda \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

 $b, b \rightarrow \lambda$

Input

Input

Non ci sono possibili transizioni.

$$a, \lambda \rightarrow a$$

$$\Rightarrow a$$
 $a, a \rightarrow \lambda$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

Un altra computazione sulla stessa stringa:

Input

Stack

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 λ , \$ \rightarrow \$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

03/04/2021

$$\lambda, \lambda \rightarrow \lambda$$

 (q_1) $(\lambda, \$ \rightarrow \$)$

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$Q_1$$

$$\lambda, \$ \rightarrow \$$$

Input

No stato di accettazione

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Non esiste nessuna computazione che accetta abbb

 $abbb \notin L(M)$

Basic Idea:

03/04/2021

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

55

Pushing & Popping Strings

Esempio:

altro PDA esempio

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

PDAM

esecuzione:

Time 0

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$
 $a, 0 \to 00$ $b, 1 \to 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

current state

Input

Stack

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$

 $\lambda, \$ \rightarrow \$$ q_2

Input

Input

 $a, 1 \rightarrow \lambda$

 $b, 0 \rightarrow \lambda$

Input

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

Stack

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Stack

Input

$$a, \$ \rightarrow 0\$$$

$$\$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Formalismo per I PDA

$$\underbrace{q_1} \xrightarrow{a, w_1 \to w_2} \underbrace{q_2}$$

Funzione di transizione:

$$\delta(q_1,a,w_1) = \{(q_2,w_2)\}$$

Funzione di transizione:

$$\delta(q_1,a,w_1) = \{(q_2,w_2), (q_3,w_3)\}$$

Formal Definition

Pushdown Automaton (PDA)

Delta

: Stato x Inputx Stack -> P {(Stato, Stack)}

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 \boldsymbol{a}

Oraci

Example:

Instantaneous Description

$$(q_2,bb,aa\$)$$

Time 5:

Stack

scriviamo:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4

Time 5

Una computazione:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

Per convenienza scriviamo:

$$(q_0, aaabbb,\$)$$
 $\succ (q_3, \lambda,\$)$

Language of PDA

LinguaggioL(M) accettato da PDAM:

$$L(M) = \{w: (q_0, w, z) \succeq^* (q_f, \lambda, s)\}$$

Initial state

Accept state

Stack può essere anche non vuoto, quindi s qualsiasi.

Esempio:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

PDA M:

$$(q_0, a^n b^n, \$) \succ (q_3, \lambda, \$)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$a^n b^n \in L(M)$$

PDA M:

quindi:

$$L(M) = \{a^n b^n : n \ge 0\}$$

PDA M:

Normal Forms per grammatiche Context-free

Context free

Ogni produzioni ha la forma:

Chomsky Normal Form

Ogni produzioni ha la forma:

esempi:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Conversione nella Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Convertiamo questa grammatica nella Chomsky Normal Form

Introduciamo nuove variabili per i terminali:

$$T_a, T_b, T_c$$

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduciamo una nuova variabile intermedia

Per rompere la prima produzione: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduciamo la variabile intermedia : V_2

$$S oup AV_1$$
 $V_1 oup BT_a$
 $A oup T_a T_a T_b$
 $B oup AT_c$
 $T_a oup a$
 $T_b oup b$
 $T_c oup c$
 $T_c oup c$
 $T_c oup c$
 $T_c oup c$

grammatica in Chomsky Normal Form:

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_aV_2$$

$$V_2 \to T_aT_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

Iniziale grammatica

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

 $T_c \to c$

In generale:

Per ogni grammatica context-free (che non produce χ) non in Chomsky Normal Form

Possiamo ottenere:
una grammatica equivalente
in Chomsky Normal Form

La procedura

First remove:

variabili che si possono annulare

(variabili inutili, optional)

Poi, per ogni simbolo : a

Nuova variabile: T_a

Nuova produzione $T_a \rightarrow a$

Nelle produzioni con lunghezza maggiore o uguale a due

 \boldsymbol{a}

poadazionitoledia formianon terminale Non necessitano di cambio!

Rimpiazza

ogni produzione
$$A \rightarrow C_1 C_2 \cdots C_n$$

$$con \qquad A \to C_1 V_1$$

$$V_1 \to C_2 V_2$$

$$V_{n-2} \rightarrow C_{n-1}C_n$$

Nuove variabili intermedie: $V_1, V_2, ..., V_{n-2}$

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is easy to find the Chomsky normal form for any context-free grammatica

The Pumping Lemma for CFL's

Statement

Intuition

- Recall the pumping lemma for regular languages.
- It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.

Intuition -(2)

- For CFL's the situation is a little more complicated.
- We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Statement of the CFL Pumping Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length $\geq n$ There exists z = uvwxy such that:

- 1. |vwx| <u><</u> n.
- 2. |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

Proof of the Pumping Lemma

- ♦ Start with a CNF grammar for L $\{\epsilon\}$.
- Let the grammar have m variables.
- \bullet Pick n = 2^m .
- ◆Let |z| ≥ n.
- ◆We claim ("Lemma 1") that a parse tree with yield z must have a path of length m+2 or more.

Proof of Lemma 1

◆If all paths in the parse tree of a CNF grammar are of length < m+1, then the longest yield has length 2^{m-1}, as in:

6

Back to the Proof of the Pumping Lemma

- ◆Now we know that the parse tree for z has a path with at least m+1 variables.
- Consider some longest path.
- ◆There are only m different variables, so among the lowest m+1 we can find two nodes with the same label, say A.
- The parse tree thus looks like:

Pump Thrice Etc., Etc. u Χ u W Χ W

applicazioni

del Pumping Lemma

Gli stati dell'automa, Variabili della grammatica e vale l'opposto.

Le variabili context free sono gli stati del PDA?

WyZxK, WyyZxxK, WyyyZxxxK

Qualcosa di più complicato dobbiamo considerare sia la variabile che genera la y (Y) e sia la variabile che genera la x (X)

Stato YX ?

Quando ho un linguaggio se «provo» che le parole possono essere scritte

X y_i Y

A* a, aa, aaa,

A*B* due pezzi le A e le B indipendenti

Wy_i Z x_i K

A_n B_n no regolare

AA BB non indipendenti

- \cdot dato un linguaggio regolare infinito $\,L\,$
- \cdot esiste un intero m (lunghezza critica)
- ·Per ogni stringa $w \in L$ con lunghezza $|w| \ge m$
- possiamo scrivere w = x y z
- $\cdot \operatorname{con} |xy| \le m \quad e \quad |y| \ge 1$
- tale che: $x y^{l} z \in L$ i = 0, 1, 2, ...

Teorema: Il linguaggio

$$L = \{ vv^R : v \in \Sigma^* \} \qquad \Sigma = \{a,b\}$$
 non è regolare

Proof: Usiamo il Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

assumiamo per contradizione che L sia un linguaggio regolare

poichè L è infinito Possiamo applicare il Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

sia m la lunghezza critica per L

Prendiamo una stringa w tale che: $w \in L$

con lunghezza
$$|w| \ge m$$

prendiamo
$$w = a^m b^m b^m a^m$$

Possiamo scrivere:
$$w = a^m b^m b^m a^m = x y z$$

con lunghezza: $|x y| \le m$, $|y| \ge 1$

$$\mathbf{w} = xyz = \underbrace{a...aa...a}_{m} \underbrace{m}_{m} \underbrace{m}_{m}$$

$$x$$

$$y$$

$$z$$

allora:
$$y = a^k$$
, $1 \le k \le m$

03/04/2021

8

$$x y z = a^m b^m b^m a^m$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

allora:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^2 z \in L$$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m+k} \square L$$

allora:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L$$

 $k \ge 1$

ma:

$$L = \{vv^R : v \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADIZIONE!!!

Considerare i casi con y tra le b, tra le a e tra ab.

quindi:

L'assunzione che L è un linguaggio regolare non è vera

Conclusione: L Non è un linguaggio regolare

END OF PROOF

Teorema: il linguaggio

$$L = \{a^n b^l c^{n+l}: \ n, l \ge 0\}$$
 non è regolare

Proof: Usiamo il Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

assumiamo per contradzione che L sia un linguaggio regolare

poichè L è infinito allora possiamo applicare il Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

sia m la lunghezza critica di L

Prendiamo una stringa w tale che: $w \in L$ e lunghezza $|w| \ge m$

prendiamo
$$w = a^m b^m c^{2m}$$

possiamo scrivere
$$w = a^m b^m c^{2m} = x y z$$

con lunghezzas

$$|x y| \le m, |y| \ge 1$$

$$\mathbf{w} = xyz = \overbrace{a...aa...aa...ab...bc...cc...c}^{m}$$

allora:
$$y = a^k$$
, $1 \le k \le m$

17

$$x y z = a^m b^m c^{2m}$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

allora:
$$x y^0 z = xz \square L$$

$$x y z = a^m b^m c^{2m}$$

$$y = a^k$$
, $1 \le k \le m$

$$xz \in L$$

allora:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

 $k \ge 1$

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{m-k}b^mc^{2m} \notin L$$

Contradizione.

Vedere gli altri casi. La y tra le b, tra le c, tra ab, tra bc.

La nostra assunzione che L sia un linguaggio regolare non è vera

Conclusione: L non è un linguaggio regolare

END OF PROOF

Teorema: il linguaggio $L = \{a^{n!}: n \ge 0\}$

Non è regolare

$$n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$$

dimostrazione: Usiamo il Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

assumiamo che $\,L\,$ sia un linguaggio regolare

poichè L è infinito Possiamo applicare il Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

sia m la lunghezza critica of

prendiamo una stringa w tale che: $w \in L$

lunghezza $|w| \ge m$

prendiamo $w = a^{m!}$

Possiamo scrivere

$$w = a^{m!} = x y z$$

con lunghezza

$$|x y| \le m, |y| \ge 1$$

25

allora:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

allora:
$$x y^2 z \in L$$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^2 z \in L$$

$$xy^{2}z = \overbrace{a...aa...aa...aa...aa...aa...aa...aa}^{m+k} \underbrace{m!-m}_{z} \in L$$

allora:
$$a^{m!+k}$$

$$a^{m!+k}$$

$$\in L$$

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

poichè:
$$L = \{a^{n!}: n \ge 0\}$$

Deve esistere p tale che:

$$m!+k=p!$$

$$m!+k \le m!+m!$$
 $\le m!+m!$
 $< m!m+m!$
 $= m!(m+1)$
 $= (m+1)!$
 $m!+k < (m+1)!$

 $m!+k \neq p!$ Per ogni p

per m > 1

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

$$L = \{a^{n!}: n \ge 0\}$$

$$a^{m!+k} \notin L$$

contradizione

quindi:

La nostra assunzione che L È un linguaggio regolare Non è vera

Conclusione: L Non è un linguaggio regolare

END OF PROOF

Applicazioni del Pumping Lemma context free

The Pumping Lemma:

Per un linguaggio infinito context-free $\,L\,$

Esiste un intero m tale che

per ogni stringa
$$w \in L$$
, $|w| \ge m$

possiamo scrivere
$$w = uvxyz$$

Con lunghezze
$$|vxy| \le m$$
 and $|vy| \ge 1$

E deve essere:

$$uv^i x y^i z \in L$$
, for all $i \ge 0$

m>= (2_numero delle variabili della grammatica)-1

Perché?

linguaggi Non-context free

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{vv : v \in \{a, b\}\}$

linguaggi Context-free

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Perché?

Teorema: il linguaggio

$$L = \{vv : v \in \{a, b\}^*\}$$

non è context free

Dim.: Usiamo il Pumping Lemma
Per i linguaggi context-free

$$L = \{vv : v \in \{a, b\}^*\}$$

Assumiamo per assurdo che $\ L$ è context-free

poichè L è context-free e infinito Possiamo applicare il pumping lemma

$$L = \{vv : v \in \{a, b\}^*\}$$

Pumping Lemma ci dà un magico numero *m* tale che da li in poi due pezzi della stringa si ripetono.

Prendiamo una stringa di $\,L\,$ con lunghezza almeno $\,m\,$

sia:
$$a^m b^m a^m b^m \in L$$

$$L = \{vv : v \in \{a, b\}^*\}$$

possiamo scrivere:
$$a^m b^m a^m b^m = uvxyz$$

con lunghezze
$$|vxy| \le m \ e \ |vy| \ge 1$$

Pumping Lemma dice:

$$uv^i x y^i z \in L$$
 per tutti $i \ge 0$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Esaminiamo tutti i possibili "posti" Dove la stringa vxy può essere in $a^mb^ma^mb^m$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Case 1: vxy

E nel primo

$$v = a^{k_1} \qquad y = a^{k_2}$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 è nel primo a^m

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 è nel primo a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

Case 1:
$$vxy$$
 è nel primo a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

Ma dal pumping lemma abbiamo: $uv^2xy^2z\in L$

Contradizione!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 È nel primo a^m y È nel primo b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m$$

$$\leq m \qquad |vy| \geq 1$$

Case 2:
$$v$$
 è nel primo a^m y è nel primo b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 è nel primo a^m y è nel primo b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 È nel primo a^m y È nel primo b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

Dal Pumping Lemma:

$$uv^2xy^2z \in L$$

Contradizione!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 Sovrappone sul primo $a^m b^m$ y È nel primo b^m

$$v = a^{k_1} b^{k_2}$$
 $y = b^{k_3}$ $k_1, k_2 \ge 1$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 Sovrappone sul primo $a^m b^m$ y è nel primo b^m

$$v = a^{k_1} b^{k_2} \qquad y = b^{k_3} \qquad k_1, k_2 \ge 1$$

50

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 Sovrappone sul primo $a^m b^m$ y È nel primo b^m

$$a^{m}b^{k_{2}}a^{k_{1}}b^{m+k_{3}}a^{m}b^{m} = uv^{2}xy^{2}z \notin L$$

$$k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 Sovrappone sul primo $a^m b^m$ y È nel primo b^m

$$a^{m}b^{k_{2}}a^{k_{1}}b^{k_{3}}a^{m}b^{m} = uv^{2}xy^{2}z \notin L$$

dal Pumping Lemma:
$$uv^2xy^2z \in L$$

assurdo!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$v$$
 È nel primo a^m
 y Sovrappone a^mb^m

Analisi simile al caso 3

vxy È dentro $a^mb^ma^mb^m$

or

$$a^m b^m a^m b^m$$

or

$$a^m b^m a^m b^m$$

Analisi simile al caso 1:

$$a^m b^m a^m b^m$$

$$vxy$$
 sovrappone $a^mb^ma^mb^m$

or

$$a^m b^m a^m b^m$$

Analisi simile ai casi 2,3,4:

$$a^m b^m a^m b^m$$

Vi sono altri casi da considerare

Poichè $|vxy| \le m$, è impossibile vxySovrapporre a $m_1 m_2 m$

 $a^m b^m a^m b^m$

O, esclusivo

 $a^m b^m a^m b^m$

O, esclusivo

 $a^m b^m a^m b^m$

In tutti i casi raggiungiamo un assurdo

quindi:

Il punto di partenza che

$$L = \{vv : v \in \{a, b\}^*\}$$

è context-free è sbagliato

Conclusione: L Non è context-free

Linguaggi Non-context free

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{ww : w \in \{a, b\}\}$
 $\{a^{n!} : n \ge 0\}$

linguaggi Context-free

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

linguaggi Non-context free

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{ww : w \in \{a, b\}\}$

$$\{a^{n^2}b^n: n \ge 0\}$$
 $\{a^{n!}: n \ge 0\}$

linguaggi Context-free

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

non è context free

Dim:

Usiamo il Pumping Lemma per linguaggi context-free

$$L = \{a^{n^2}b^n : n \ge 0\}$$

assumiamo per assurdo che $\ L$ è context-free

poichè L è context-free ed è infinito possiamo applicare il pumping lemma

$$L = \{a^{n^2}b^n : n \ge 0\}$$

Pumping Lemma ci da m

Prendiamo una stringa di LCon lunghezza almeno m

sia:
$$a^{m^2}b^m \in L$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz$$

con lunghezze

$$|vxy| \le m$$
 e $|vy| \ge 1$

Pumping Lemma dice:

$$uv^ixv^iz \in L$$
 Per tutte le $i \ge 0$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Esaminiamo tutte le possibili posizioni

Della stringa
$$vxy$$
 in $a^{m^2}b^m$

64

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz$$

$$|vxy| \le m \quad |vy| \ge 1$$

Caso interessante:
$$v \in \text{in } a^m$$

 $y \in \text{in } b^m$

sia
$$v = a^{k_1}$$
 $y = b^{k_2}$ con $1 \le k_1 + k_2 \le m$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Sotto caso in cui:
$$v=a^{k_1}$$
 $y=b^{k_2}$
$$con 1 \le k_1+k_2 \le m$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Sia i=0:

$$v = a^{k_1}$$

$$y = b^{k_2}$$

$$1 \le k_1 + k_2 \le m$$

$$a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z$$

Vediamo il rapporto tra il numero di a e di b quando i=0

$$(m-k_2)^2 \le (m-1)^2$$

= $m^2 - 2m + 1$
< $m^2 - k_1$

$$m^2 - k_1 \neq (m - k_2)^2$$

$$m^{2} - k_{1} \neq (m - k_{2})^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$a^{m^{2} - k_{1}} b^{m - k_{2}} = uv^{0} xy^{0} z \notin L$$

Ma via PL:

$$uv^0xy^0z \in L$$

assurdo!!!

Casi

Caso 1. v e y sono una serie di a, quindi pumping v e y aumentano le a ma non le b

Caso 2. v e y sono una serie di b, quindi pumping v e y aumentano le b ma non le a.

Caso 3 (interessante) visto prima v è una serie di a e y è una serie di b. Si potrebbe pensare che crescono secondo le regole del linguaggio. Ma le a dovrebbero crescere rispetto alle brispettando il fatto che le tutte le a sono di lunghezza quadratic rispetto al numero delle b. Questo non è possibile Perche le v, quindi le a, crescono linearmente (allo stesso modo) delle y , ovvero delle b.

dal Pumping Lemma:
$$uv^0xy^0z \in L$$

$$uv^0xy^0z \in L$$

$$a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z \notin L$$

In tutti i casi otteniamo un assurdo

quindi:

L'assunzione che

$$L = \{a^{n^2}b^n : n \ge 0\}$$

è context-free è sbagliata

Conclusion: L Non è context-free

PDA sono equivalenti ai linguaggi Context-Free

Teorema:

Context-Free linguaggi accettati da (grammatiche) — linguaggi accettati da PDA

dimostrazione - Step 1:

Traduci ogni grammatica context-free $\,G\,$ In un PDA $\,M\,$ con: $\,L(G)=L(M)\,$

dimostrazione - step 1

trasforma le

grammatiche Context-Free in PDAs

Prendiamo una grammatica context-free G

Tradurremo G in un PDA M tale che:

$$L(G) = L(M)$$

Def.: Una derivazione $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_{n-1} \Rightarrow \alpha_n$ si dice leftmost (sinistra) se: $\forall i = 1,...,n-1$ si ha $\alpha_i = uX\beta_i$ e $\alpha_{i+1} = u\gamma\beta_i$, con $u \in \Sigma^*, X \in N, (X \to \gamma)$ in P

Nel primo caso si scrive : $\alpha_i \longrightarrow \alpha_j$ (i < j).

Useremo solo leftmost

Grammatica consideriamo le Derivazioni Leftmost

Procedura di conversione:

per ogni per ogni produzione in Gterminale in G $A \rightarrow w$ Addiziona le transizioni $\lambda, A \rightarrow w$ $a, a \rightarrow \lambda$ $\lambda, \lambda \to S$

grammatica

esempio

$S \rightarrow aSTh$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

PDA

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \to Ta$$
 $a, a \to \lambda$

$$\lambda, T \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Esempio:

Input
$$\begin{bmatrix} a & b & a & b \\ & & \lambda, S \rightarrow a \end{bmatrix}$$

Time 0

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

 $\lambda, \lambda \to S$

Stack

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

derivazione: S

$derivazione:S \Rightarrow aSTb$ Input \boldsymbol{a} $\lambda, S \rightarrow aSTb$ Time 3 $\lambda, S \rightarrow b$ Stack $\lambda, T \rightarrow Ta$ $[a, a \rightarrow \lambda]$ $\lambda, T \rightarrow \lambda$ $b, b \rightarrow \lambda$ λ , \$ \rightarrow \$ $\lambda, \lambda \to S$ 03/04/2021

derivazione: $S \Rightarrow aSTb \Rightarrow abTb$

Time 4

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 λ , \$ \rightarrow \$

 $\frac{b}{T}$

 $\frac{b}{\P}$

Stack

 $\rightarrow q_2$

derivazione: $S \Rightarrow aSTb \Rightarrow abTb$

derivazione; $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$

Time 6

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$(\lambda, T \to Ta)$$

$$\lambda, T \rightarrow \lambda$$

$$\lambda, \lambda \to S$$

a

Stack

 $a, a \rightarrow \lambda$

 $b, b \rightarrow \lambda$

$derivazione:S \Rightarrow aS\underline{Tb} \Rightarrow ab\underline{Tb} \Rightarrow ab\underline{Tab} \Rightarrow abab$

$derivazione:S \Rightarrow aSTb \Rightarrow abTb \Rightarrow \underline{abTab} \Rightarrow abab$

$derivazione:S \Rightarrow aSTb \Rightarrow abTb \Rightarrow \underline{abTab} \Rightarrow abab$

$derivazione:S \Rightarrow aSTb \Rightarrow abTb \Rightarrow \underline{abTab} \Rightarrow abab$

Time 10

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda \qquad b, b \rightarrow \lambda$$

$$\lambda, T \to \lambda$$
 $b, b \to \lambda$

accettaz

 $a, a \rightarrow \lambda$

Stack

Procedura di conversione:

per ogni per ogni produzione in Gterminale in G $A \rightarrow w$ Addiziona le transizioni $\lambda, A \rightarrow w$ $a, a \rightarrow \lambda$ $\lambda, \lambda \to S$

grammatica

esempio

$S \rightarrow aSTb$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

PDA

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Proviamo a dimostrare il teorema

Ricordiamo la notazione di configurazione istantanea e di passo di computazione.

configurazione istantanea definizione:

configurazione istantanea

$$(q_2,bb,aa\$)$$

passo di computazione.

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time n

Time n+1

PDA simula le derivazioni leftmost

grammatica Leftmost derivazione

$$\Rightarrow \cdots$$

$$\Rightarrow \sigma_1 \cdots \sigma_k X_1 \cdots X_m$$

$$\Rightarrow \cdots$$

$$\Rightarrow \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n$$

simboli esaminati

PDA calcolo

$$(q_0, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, \$)$$

$$\succ (q_1, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, S\$)$$

$$\succ \cdots$$

$$\succ (q_1, \sigma_{k+1} \cdots \sigma_n, X_1 \cdots X_m \$)$$

$$\succ (q_2, \lambda, \$)$$

Contenuti Dello Stack

Procedura di conversione:

per ogni per ogni produzione in Gterminale in G $A \rightarrow w$ Addiziona le transizioni $\lambda, A \rightarrow w$ $a, a \rightarrow \lambda$ $\lambda, \lambda \to S$ 03/04/2021

grammatica

esempio

$S \rightarrow aSTh$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

PDA

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$T \to Ta$$
 $a, a \to \lambda$

$$\lambda, T \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

grammatica Derivazione Leftmost

Calcolo PDA

```
(q_0, abab, \$)
                                                   \succ (q_1, abab, S\$)
                                               \succ (q_1, bab, STb\$)
\Rightarrow aSTb
                                                  \succ (q_1, bab, bTb\$)
\Rightarrow abTb
                                                   \succ (q_1, ab, Tb\$)
\Rightarrow ahTah
                                                   \succ (q_1, ab, Tab\$)
\Rightarrow ahah
                                                   \succ (q_1, ab, ab\$)
                                                   \succ (q_1, b, b\$)
                                                   \succ (q_1, \lambda, \$)
```

grammatica Leftmost derivazione

calcolo del PDA

Produzione Applicata

$$A \rightarrow \sigma_i \cdots \sigma_j Bz$$

Transizione applicata

grammatica Leftmost derivazione

calcolo del PDA

$$\Rightarrow \cdots \qquad \qquad \succ \cdots$$

$$\Rightarrow xAy \qquad \qquad \succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\Rightarrow \sigma_i \cdots \sigma_j Bzy \qquad \qquad \succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\qquad \succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\qquad \qquad \succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$$

leggi σ_i dall'input E rimuovilo dallo stack

grammatica

Leftmost derivazione

$$\Rightarrow \cdots$$

$$\Rightarrow xAy$$

$$\Rightarrow \sigma_i \cdots \sigma_j Bzy$$

PDA calcolo

$$\succ \cdots$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$$

$$\succ (q_1, \sigma_{j+1} \cdots \sigma_n, Bzy\$)$$

ultima Transizione applicato

tutti simboli $\sigma_i \cdots \sigma_j$ Sono stati rimossi

Dal top dello stack

Il processo viene ripetuto con successiva variabile leftmost

$$\Rightarrow \cdots$$

$$\Rightarrow xAy \qquad \succ \cdots$$

$$\Rightarrow \sigma_{i} \cdots \sigma_{j}Bzy \qquad \qquad \succ (q_{1}, \sigma_{j+1} \cdots \sigma_{n}, Bzy\$)$$

$$\Rightarrow \sigma_{i} \cdots \sigma_{j}\sigma_{j+1} \cdots \sigma_{k}Cpzy \qquad \qquad \succ (q_{1}, \sigma_{j+1} \cdots \sigma_{n}, \sigma_{j+1} \cdots \sigma_{k}Cpzy\$)$$

$$\qquad \qquad \succ \cdots$$

$$\qquad \qquad \succ (q_{1}, \sigma_{k+1} \cdots \sigma_{n}, Cpzy\$)$$

Produzione applicata

$$B \to \sigma_{j+1} \cdots \sigma_k Cp$$

E cosi via

dimostrato che:

grammatica Genera la stringaw

 $S \Longrightarrow w$

PDAM accetta u

$$(q_0, w,\$) \succ (q_2, \lambda,\$)$$

$$L(G) = L(M)$$

Proof - step 2

Tradurre
i PDA
in
grammatiche Context-Free

Prendi un qualsiasi PDA M

Traduremmo MIn una grammatica G context-free

tale che: L(M) = L(G)

Prima di tutto modifica PDA M tale che:

- 1. PDA ha un solo stato di accettazione
- 2. Svuota tutta la pila prima di accettare

3. Per ogni transizione o push un simbolo

oppure

pop un simbolo ma non entrambe le cose

Inoltre abbiamo:

· - nuovo simbolo iniziale @

· - stato di accettazione nello stack solo @

1. il PDA deve avere un solo stato di accettazione

40

2. Nuovo simbolo iniziale dello stack Top of stack

Z ← Vecchio simbolo iniziale
 ② Simbolo ausiliario stack

 M_1 pensa ancora che Zè il simbolo iniziale

3. Nello stato di accetazione lo stack contiene solo il simbolo @

03/04/2021

42

4. Ogni transizione ha un push oppure un pop Mai le due cose insieme.

PDA M₃

dove δ è un qualsiasi simbolo dell'alfabeto di input

PDA M_4 è il PDA completamente modificato secondo le regole precedenti

Notiamo che il nuovo simbolo iniziale @ non è mai usato in nessuna transizione

Esempio:

Costruzione della grammatica

PDA

caso 1: per ogni stato

grammatica

$$A_{qq} \rightarrow \lambda$$

PDA

caso 2: per ogni tre stati

grammatica

$$A_{pq} \rightarrow A_{pr} A_{rq}$$

PDA

caso 3: per ogni coppia di transizioni

grammatica

$$A_{pq} \rightarrow aA_{rs}b$$

Stato Iniziale

Stato accettazione

grammatica

Esempio:

PDA

grammatica

caso 1: da stati singoli

$$A_{q_0q_0} \rightarrow \lambda$$
 $A_{q_1q_1} \rightarrow \lambda$
 $A_{q_2q_2} \rightarrow \lambda$
 $A_{q_3q_3} \rightarrow \lambda$
 $A_{q_4q_4} \rightarrow \lambda$
 $A_{q_5q_5} \rightarrow \lambda$

caso 2: da triple di stati

$$\begin{array}{l} A_{q_{0}q_{0}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{0}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{0}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{0}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{0}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{0}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{0}} \\ A_{q_{0}q_{1}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{1}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{1}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{1}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{1}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{1}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{1}} \\ \vdots \\ A_{q_{0}q_{5}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{5}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{5}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{5}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{5}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{5}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}} A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}} A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}} A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}} A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}} A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}} A_{q_{5}q_{5}} \end{array}$$

Variabile Start $A_{q_0q_5}$

caso 3: per ogni coppia di transizioni

grammatica

$$A_{pq} \rightarrow aA_{rs}b$$

55

caso 3: da coppie di transizioni

$$A_{q_0q_5} o A_{q_1q_4} ext{ } A_{q_2q_4} o aA_{q_2q_4} ext{ } A_{q_2q_2} o A_{q_3q_2} b$$
 $A_{q_1q_4} o A_{q_2q_4} o A_{q_2q_2} o aA_{q_2q_2} b ext{ } A_{q_2q_4} o A_{q_3q_3}$
 $A_{q_2q_4} o aA_{q_2q_3} o aA_{q_2q_4} o A_{q_3q_4}$

Supponiamo che il PDA M è stato tradotto In una grammatica context-free G

Dobbiamo provare

$$L(G) = L(M)$$

O in modo equivalente

$$L(G) \subseteq L(M)$$

$$L(G) \supseteq L(M)$$

$$L(G) \subseteq L(M)$$

Dobbiamo mostrare che se G ha una derivazione:

$$A_{q_0q_f} \stackrel{*}{\Rightarrow} W$$
 (stringa di terminali)

Allora vi è un calcolo in M che accetta W:

$$(q_0, w, @) \stackrel{*}{\succ} (q_f, \lambda, @)$$

partiamo con una p e una q qualsiasi.

Se in G vi è una derivazione:

$$A_{pq} \stackrel{*}{\Longrightarrow} W$$

Allora vi è un calcolo in M:

$$(p,w,\lambda)^* + (q,\lambda,\lambda)$$

Dopo aver provato il passo precedente abbiamo:

$$A_{q_0q_f} \Rightarrow W$$

$$(q_0, W, \lambda) \stackrel{*}{\succ} (q_f, \lambda, \lambda)$$

Poichè non c'è nessuna transizione Con il simbolo @

$$(q_0, w, @) + (q_f, \lambda, @)$$

Lemma:

se
$$A_{pq} \stackrel{*}{\Rightarrow} W$$
 (stringa di terminali)

Allora vi è un calcolo
dallo stato p allo stato q
sulla stringa W
Che lascia lo stack vuoto:

$$(p,w,\lambda)^* + (q,\lambda,\lambda)$$

Dim intuitiva:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$

Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow w$$

Type 2

Case 1: $A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$

Type 3

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow w$$

Formale:

Proviamo l'asserto per induzione Sul numero di step della derivazione:

Numero di step

$$A_{pq} \Rightarrow W$$

(Uno step di derivazione)

caso 1 produzione che deve essere usata è:

$$A_{pp} \rightarrow \lambda$$

$$p = q$$

$$p = q$$
 e $w = \lambda$

Questo calcolo nel PDA esiste (banale):

$$(p,\lambda,\lambda)^*(p,\lambda,\lambda)$$

Ipotesi induttiva:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
con k Step di derivazione

Quindi abbiamo, per ipotesi induttiva:

$$(p,w,\lambda)^* + (q,\lambda,\lambda)$$

Step induttivo Data:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
con $k+1$ step
di derivazione

Dobbiamo provare:

$$(p,w,\lambda)^* + (q,\lambda,\lambda)$$

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$ derivazione steps

Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow w$$

Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$ steps

Sia:
$$W = YZ$$

$$A_{pr} \Rightarrow \cdots \Rightarrow Y$$

$$A_{rq} \Rightarrow \cdots \Rightarrow Z$$
Massimo K steps
$$A_{rq} \Rightarrow \cdots \Rightarrow Z$$

$$A_{pr} \Rightarrow \cdots \Rightarrow y$$
massimo k steps

Per ipotesi induttiva in PDA:

$$(p,y,\lambda)^*(r,\lambda,\lambda)$$

Per ipotesi induttiva, in PDA:

$$(r,z,\lambda)^* - (q,\lambda,\lambda)$$

$$(p,y,\lambda)^*(r,\lambda,\lambda)$$
 $(r,z,\lambda)^*(q,\lambda,\lambda)$

 $(p,yz,\lambda)^*(r,z,\lambda)^*(q,\lambda,\lambda)$

poichè
$$W = yz$$

 $(p,w,\lambda)^* \rightarrow (q,\lambda,\lambda)$

Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$$
 $k+1$ steps

Possiamo scrivere

$$W = ayb$$
 $A_{rs} \Rightarrow \cdots \Rightarrow y$
Massimo k steps

Per ipotesi induttiva, il PDA calcola:

$$(r,y,\lambda)^*$$
 (s,λ,λ)

La grammatica contiene la produzione

$$A_{pq} \rightarrow aA_{rs}b$$

e il PDA contiene la transizione

$$(p)^{a,\lambda \to t}$$

$$(s) \xrightarrow{b,t \to \lambda} q$$

$$\begin{array}{c}
 & a, \lambda \to t \\
 & & r
\end{array}$$

 $(p,ayb,\lambda) \succ (r,yb,t)$

sappiamo

$$(r,y,\lambda)^*(s,\lambda,\lambda)$$
 $(r,yb,t)^*(s,b,t)$

$$(p,ayb,\lambda) \succ (r,yb,t)$$

Inoltre sappiamo

$$(s,b,t) \succ (q,\lambda,\lambda)$$

quindi:

$$(p,ayb,\lambda) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\lambda,\lambda)$$

$$(p,ayb,\lambda) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\lambda,\lambda)$$

poichè
$$w = ayb$$

$$(p, w, \lambda) \stackrel{*}{\succ} (q, \lambda, \lambda)$$

Fine

Determinismo vs non Determinismo nei push down.

deterministico PDA: DPDA

Transizioni permesse:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\overbrace{q_1} \xrightarrow{\lambda, b \to w} \overbrace{q_2}$$

(scelte deterministiche)

Transizioni permesse:

scelte deterministiche

Non permesse:

(scelte non deterministiche)

Deterministico PDA esempio

$$L(M) = \{a^n b^n : n \ge 0\}$$

Definition:

Un linguaggio L è deterministico context-free

Se esiste un DPDA che lo accetta

Esempio:

Il linguaggio
$$L(M) = \{a^n b^n : n \ge 0\}$$

è deterministico context-free

Esempio di Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Non è permeso in DPDA

IPDA

hanno più potere dei

DPDA

Vale la relazione:

deterministico
Context-Free
linguaggi
(DPDA)

Context-Free
linguaggi
PDA

Poichè ogni DPDA è anche un PDA

Dimostriamo che:

Definiremo un linguaggio context-free L che non è Accettato da un DPDA

Il linguaggio è:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

Dobbiamo dimostrare che:

· L è context free

· L non è deterministico context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Il linguaggio $\,L\,$ è context-free

Grammatica Context-free per :
$$L$$

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda$$

$$\{a^nb^{2n}\}$$

Teorema:

Il linguaggio
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

non è deterministico context-free

(nessun DPDA accetta L)

Dim: Assumiamo per assurdo che

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

è deterministico context free

quindi:

Esiste un DPDA M che accetta L

DPDA M con $L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

accetta $a^n b^n$

DPDA
$$M$$
 con $L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

Un tale cammino deve esistere a causa del determinismo

Fatto 1: Il linguaggio $\{a^nb^nc^n\}$ not è context-free

(si prova per pumping lemma "per i" context free)

Fatto 2: Il linguggio $L \cup \{a^nb^nc^n\}$ non è context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(usando pumping lemma per linguaggi context-free)

Ora costruiamo un PDA che accetta:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

Che è una contradizione!

$$L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

un PDA che accetta $L \cup \{a^nb^nc^n\}$

Connettiamo lo stato finale MCon lo stato finale di M'

poichè $L \cup \{a^nb^nc^n\}$ è accettato da PDA

È context-free

Contradizione!

(poichè
$$L \cup \{a^n b^n c^n\}$$
 non è context-free)

quindi:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Non è deterministico context free

non esiste DPDA che lo accetta

Fine context free

The CYK Algorithm

- J. Cocke
- D. Younger,
- T. Kasami

The CYK Algorithm

- Il problema dell'appartenenza:
 - Problema:
 - Data una grammatica grammar G e una stringa w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ dove
 - » V insieme finito di variabili
 - » ∑ (alfabeto) insieme finito di simboli terminali-
 - » P insieme finito di produzioni
 - » S simbolo iniziale (elemento distintivo di V)
 - » V e ∑ sono insiemi disgiunti
 - G genera un linguaggio, L(G),
 - Domanda :
 - w appartiene al L(G)?

The CYK Algorithm

- La grammatica è scritta in Chomsky Normal Form
- Viene usata una tecnica chiamata "dynamic programming" o "table-filling algorithm"

Chomsky Normal Form

- Normal Form è descritta da un insieme di condizioni che ogni regola della grammatica deve soddisfare.
- Context-free grammar è in CNF, ogni regola ha la seguente forma:

```
-A \rightarrow BC al massimo due simboli sul lato destro
```

$$-A \rightarrow a$$
 a simbolo terminale

$$-S \rightarrow \lambda$$
 stringa vuota

Dove B, C \in V – {S}

Costruire una Triangular Table

X _{5, 1}				
X _{4, 1}	X _{4, 2}			
X _{3,1}	X _{3, 2}	X _{3,3}		_
X _{2, 1}	X _{2, 2}	X _{2, 3}	X _{2,4}	
X _{1, 1}	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5}
w_1	w ₂	w ₃	w ₄	w ₅

Tavola per una stringa 'w' che ha lunghezza 5

Esempio CYK Algorithm

- Prendiamo la seguente grammatica:
 - CNF grammatica G
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - B \rightarrow CC | b
 - C → AB | a
 - w sia baaba
 - E' baaba in L(G)?

Constructing The Triangular Table

Calcolare la riga più bassa

Costruire la Triangular Table

- $X_{2,1} = (X_{1,1}, X_{1,2})$
- \rightarrow {B}{A,C} = {BA, BC}
- Step:
 - Trovare, se esistono, le regole che producono BA or BC
 - Sono due : S e A
 - $-X_{2,1} = \{S, A\}$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

		_		
			I	
				Í
{S, A}				
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

Constructing The Triangular Table

- $X_{2,2} = (X_{1,2}, X_{1,3})$
- → {A, C}{A,C} = {AA, AC, CA, CC} = Y
- Step:
 - Trovare, se esistono, le regole che producono Y
 - Esiste una: B

$$-X_{2,2} = \{B\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

		_		
			1	
{S, A}	{B}			
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

•
$$X_{2,3} = (X_{1,3}, X_{1,4})$$

•
$$\rightarrow$$
 {A, C}{B} = {AB, CB} = Y

• Steps:

- Trovare, se esistono, le regole che producono Y
- sono: S e C

$$-X_{2,3} = \{S, C\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

{S, A}	{B}	{S, C}		
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	a	b	а

- $X_{2,4} = (X_{1,4}, X_{1,5})$
- \rightarrow {B}{A, C} = {BA, BC} = Y
- Steps:
 - Trovare, se esistono, le regole che producono Y
 - Cono: S and A

$$-X_{2,4} = \{S, A\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

Constructing The Triangular Table

		_		
				1
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{3,1} = (X_{1,1}, X_{2,2}), (X_{2,1}, X_{1,3})$$

- → {B}{B} U {S, A}{A, C}= {BB, SA, SC, AA, AC} = Y
- Steps:
 - Trovare, se esistono, le regole che producono Y
 - Nessuna

$$-X_{3,1} = \emptyset$$
- Nessun elemento in questo insieme
$$\begin{array}{c}
S \to AB \mid BC \\
A \to BA \mid a \\
B \to CC \mid b \\
C \to AB \mid a
\end{array}$$

		_		
Ø				
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

- $X_{3,2} = (X_{1,2}, X_{2,3}), (X_{2,2}, X_{1,3})$
- → {A, C}{S, C} **U** {B}{B}= {AS, AC, CS, CC, BB} = Y
- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{2,4} = \{B\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

Ø	{B}			
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	a	b	a

•
$$X_{3,3} = (X_{1,3}, X_{2,4}), (X_{2,3}, X_{1,5})$$

- → {A,C}{S,A} U {S,C}{A,C}
 = {AS, AA, CS, CA, SA, SC, CA, CC} = Y
- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{3.5} = \{B\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{4,1} = (X_{1,1}, X_{3,2}), (X_{2,1}, X_{2,3})$$

• $(X_{3,1}, X_{1,4})$

- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{4,1} = \{?\}$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

 $C \rightarrow AB \mid a$

•
$$X_{4,2} = (X_{1,2}, X_{3,3}), (X_{2,2}, X_{2,4})$$

• $(X_{3,2}, X_{1,5})$

- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{4,1} = \{?\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

Finale Triangular Table

{S, A, C}	$\leftarrow X_{5,1}$			
Ø	{S, A, C}			
Ø	{B}	{B}		_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	a	b	а

- Tavola per la stringa 'w' ha lunghezza 5
- The algorithm popola la triangular table

domanda

- sia G la grammatical CNF
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - B \rightarrow CC | b
 - C → AB | a
- w is ababa
- Domanda: ababa è in L(G)?

E' baaba in L(G)?

Si

Possiamo vedere che S è nell'insieme X_{1n} dove 'n'= 5

la cella $X_{51} = (S, A, C)$ allora

 $S \in X_{15}$ allora baaba $\in L(G)$

Construire una Triangular Table

- Ogni riga corrisponde a una lunghezza delle sottostringhe.
 - La riga più in basso Stringhe di Ing 1
 - Seconda riga Stringhe di Ing 2

•

Riga più in alto – la stringa 'w'

Costruire una Triangular Table

- X_{i,i} è l'insieme delle variabili tale che A è
 A → w_i una produzione di G
- Comparare al massimo n coppie di insieme calcolati in precedenza

$$(X_{i,i}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}) ... (X_{i,j-1}, X_{j,j})$$

teorema

- The CYK Algorithm calcola correttamente X_{ij} per tutti i e j; allora w è in L(G) iff S è in X_{1n} .
- Perchè? Spiegazione, esercizio scrivere la dimostrazione.
- Complessità O(n³).

- **let** the input be a string L consisting of n characters: $a_1 \dots a_n$.
- **let** the grammar contain r nonterminal symbols $R_1 \dots R_r$, with start symbol R_1 .
- **let** P[n,n,r] be an array of booleans. Initialize all elements of P to false.
- **for each** *s* = 1 to *n*
- **for each** unit production $R_v \rightarrow a_s$
- set P[1,s,v] = true; Generata la prima riga-
- **for each** *L* = 2 to *n*
- **for each** *s* = 1 to *n-L*+1
- **for each** p = 1 to L-1
- **for each** production $R_a \rightarrow R_b R_c$
- if P[p,s,b] and P[L-p,s+p,c] then set P[L,s,a] = true
- **if** P[n,1,1] is true **then** L is member of language
- **else** *L* is not member of language

{S, A, C}	$\leftarrow X_{5,1}$			
Ø	{S, A, C}			
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

а

b

a

b

а

X _{5, 1}	(5)n- L+1=s	_		
X _{4, 1}	X _{4, 2}	(4)n- L+1=s		
X _{3, 1}	X _{3, 2}	X _{3, 3}	(3)n-L+1 =s	
X _{2, 1}	X _{2, 2}	X _{2, 3}	X _{2, 4}	(2)n- L+1=s
X _{1, 1}	X _{1, 2}	X _{1, 3}	X _{1, 4}	X _{1,5}

4/3/2021 **W1**

w₂

w₃

w₄

w₅

```
for each L = 2 to n

for each s = 1 to n-L+1

for each p = 1 to L-1

for each production R_a \rightarrow R_b R_c

if P[p,s,b] and P[L-p,s+p,c] then set P[L,s,a] = true
```

X _{5, 1}				
X _{4, 1}	X _{4, 2}			
X _{3,1}	X _{3, 2}	X _{3,3}	L=3, s=1	
X _{2,1}	X _{2,2}	X _{2, 3}	X _{2,4}	
X _{1, 1}	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5}
w_1	w ₂	w ₃	w ₄	w ₅

Tavola per una stringa 'w' che ha lunghezza 5

```
for each L = 2 to n

for each s = 1 to n-L+1

for each p = 1 to L-1

for each production R_a \rightarrow R_b R_c

if P[p,s,b] and P[L-p,s+p,c] then set P[L,s,a] = true
```

X _{5, 1}				
X _{4, 1}	X _{4, 2} *	L=4, s=2		
X _{3,1}	X _{3, 2} •	X _{3,3}		
X _{2, 1}	X _{2,2}	X _{2, 3}	X _{2,4} •	
X _{1, 1}	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5} 🔺
w_1	w ₂	w ₃	w_4	w ₅

Tavola per una stringa 'w' che ha lunghezza 5

Tavola per una stringa 'w' che ha lunghezza 5

4/3/2021 35