CLASS 14, WEDNESDAY MARCH 14TH: FLAT MODULES

The motivation for studying flat modules is to give $M \otimes_R$ — the same treatment as $\operatorname{Hom}_R(M,-)$ and $\operatorname{Hom}_R(-,M)$. Basically, projectives and injectives transform the Hom_R functors from merely left exact to exact functors. A flat module will do the same thing for the tensor product.

Proposition 0.1. Let N be an R-module. If

$$0 \to M' \xrightarrow{\varphi} M \xrightarrow{\psi} M'' \to 0$$

is a SES of R-modules, then the following sequence is also exact:

$$M' \otimes_R N \stackrel{\varphi \otimes Id_N}{\longrightarrow} M \otimes_R N \stackrel{\psi \otimes Id_N}{\longrightarrow} M'' \otimes_R N \to 0$$

Proof. First, I will show surjectivity of $M \otimes_R N \stackrel{\psi \otimes Id_N}{\longrightarrow} M'' \otimes_R N$. Given $m'' \otimes n$, there is $m \in M$ such that $\psi(m) = m''$. Therefore, surjectivity is achieved:

$$(\psi \otimes Id_N)(m \otimes n) = \psi(m) \otimes n = m'' \otimes n$$

Now, it goes to show the sequence is exact in the middle.

$$(\psi \otimes Id_N) \circ (\varphi \otimes Id_N) = (\psi \circ \varphi) \otimes Id_N = 0 \otimes Id_N$$

So ker \supseteq im. This implies that there is a natural map

$$M \otimes_R N / \operatorname{im}(\varphi \otimes Id_N) \to M'' \otimes_R N$$

and it suffices to prove that this is an isomorphism by construction of an inverse. Given $m'' \otimes n$, we know $\exists m \in M$ such that $\psi(m) = m''$. Thus, we define

$$M'' \times N \to M \otimes_R N / \operatorname{im}(\varphi \otimes Id_N) : (m'', n) \mapsto m \otimes n$$

It goes to show this is well defined. If $m_1, m_2 \mapsto m''$, then $m_1 - m_2 \in \ker(\psi) = \operatorname{im}(\varphi)$. Therefore, $\exists m' \mapsto m_1 - m_2$. Therefore

$$m_1 \otimes n = (m_2 + \varphi(m')) \otimes n = m_2 \otimes n + \varphi(m') \otimes n = m_2 \otimes n$$

This is also seen to be the inverse of the map above, completing the proof.

As an alternative, one can use the adjointness of Hom and \otimes proven last class. Note that this is not exact on the left:

Example 0.2. Consider the injection $\mathbb{Z} \hookrightarrow \mathbb{Z} : 1 \mapsto n$ of \mathbb{Z} -modules. Tensoring by $\mathbb{Z}/n\mathbb{Z}$, we get the map

$$\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} : 1 \otimes 1 \mapsto n \otimes 1 = 1 \otimes n = 0$$

The zero map between $\mathbb{Z}/n\mathbb{Z}$ and itself clearly isn't injective.

This brings about the definition of a flat R-module:

Definition 0.3. A module F is said to be **flat** if and only if for every injection of R-modules $M \hookrightarrow N$, we get that $M \otimes_R F \hookrightarrow N \otimes_R F$ is injective. Equivalently, $- \otimes_R F$ is an exact functor (taking exact sequences to exact sequences).

Proposition 0.4. If P is a projective module, then P is also flat.

Proof. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence. Since P is a projective module, we know that $F = R^n \cong P \oplus P'$. Tensoring by F, we get

$$0 \to (M')^n \to M^n \to (M'')^n \to 0$$

Which is still exact, since the maps are direct sums of exact sequences. On the other hand, this induces

$$0 \to (M' \otimes_R P) \oplus (M' \otimes_R P') \to (M \otimes_R P) \oplus (M \otimes_R P') \to (M'' \otimes_R P) \oplus (M'' \otimes_R P') \to 0$$

Therefore, injectivity holds on the left, and thus $M' \otimes_R P \hookrightarrow M \otimes_R P$

Just to keep up the list of definitions we can associate to modules: Free implies Projective, and Projective implies Flat. The following two examples show that the notions are inequivalent.

Example 0.5 (Projective but not free). Let $R = \mathbb{Z}/6\mathbb{Z}$, and $M = \mathbb{Z}/2\mathbb{Z}$ with the quotient module action. Then $R \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ by the Chinese remainder theorem. Therefore,

$$\operatorname{Hom}_R(R,-) \cong \operatorname{Hom}_R(\mathbb{Z}/3\mathbb{Z},-) \oplus \operatorname{Hom}_R(M,-)$$

Thus we can conclude that M is projective, since the left hand side is clearly exact. However, M cannot be free, since a free R-module has either 6^n elements, or ∞ -many elements.

Example 0.6 (Flat but not projective). Consider $\mathbb Q$ as a $\mathbb Z$ -module. $\mathbb Q$ is flat, since if $\varphi: M \to N$ is injective, and $\frac{1}{d} \otimes m \mapsto \frac{1}{d} \otimes \varphi(m) = 0$, then $c\varphi(m) = 0$. But this implies cm = 0, since φ was injective to begin with. Therefore, $\frac{1}{d} \otimes m = \frac{1}{cd} \otimes cm = 0$. However, $\mathbb Q$ is not projective: Suppose $F = \mathbb Z^{\Lambda} = \mathbb Q \oplus P$. However, $\operatorname{Hom}_{\mathbb Z}(\mathbb Q, \mathbb Z) = 0$ (since if $\alpha \mapsto n$, $\frac{\alpha}{2n} \mapsto \frac{1}{2} \notin \mathbb Z$). Therefore, $\mathbb Q$ is not a projective $\mathbb Z$ -module.

I conclude by showing that every module injects into a injective module:

Lemma 0.7. Let A be an R-algebra, F a flat A-module, and I an injective R-module. Then $\operatorname{Hom}_R(F,I)$ is also injective as an A-module.

Proof. Note that $\operatorname{Hom}_A(-, \operatorname{Hom}_R(F, I)) \cong \operatorname{Hom}_R(-\otimes_A F, I)$ is a composition of two exact functors $-\otimes_R F$ and $\operatorname{Hom}_R(-, I)$. Therefore, it is exact itself.

Theorem 0.8. Every R-module M injects into an injective module.

Proof. Any commutative unital ring R can be viewed as a \mathbb{Z} -algebra via the canonical map $\mathbb{Z} \to R: 1 \mapsto 1$. Let $I = \mathbb{Q}/\mathbb{Z}$ be the injective \mathbb{Z} -module discussed last class, and consider the R-module $\operatorname{Hom}_{\mathbb{Z}}(M,I)$. We can take a free module $F = R^{\Lambda}$ surjecting onto it. Applying $\operatorname{Hom}_{R}(-,\mathbb{Q}/\mathbb{Z})$ to this surjection, we have

$$\operatorname{Hom}_R(\operatorname{Hom}_R(M,\mathbb{Q}/\mathbb{Z}),\mathbb{Q}/\mathbb{Z}) = M^{\vee\vee} \hookrightarrow \operatorname{Hom}_R(F,\mathbb{Q}/\mathbb{Z})$$

Lastly, $M \hookrightarrow M^{\vee\vee} : m \mapsto (\psi \mapsto \psi(m))$. This completes the proof.

Definition 0.9. The smallest such injective module (ordered by inclusions) containing a given module M is called the injective hull of M. It is usually denoted by $E_R(M)$.

There is a very nice summary of many of these results on page 402 of Dummit-Foote.

After spring break, we will talk about Nakayama's Lemma and regular rings, and then move on to positive characteristic commutative algebra.