# Lecture 6: Nonnegative Matrix Factorization



School of Mathematical Sciences, Xiamen University

#### 1. Setting

- For data sets where all attributes are nonnegative numbers, it is very convenient to approximate the data by a linear combination of a few nonnegative feature vectors with nonnegative coefficients.
- Lee D.D. and Seung H.S. (1999) Learning the parts of objects by nonnegative matrix factorization, Nature 401:788–791
- Denote by  $\mathbb{R}_+$  the set of nonnegative real numbers. Given a nonnegative data matrix  $\mathbf{X} \in \mathbb{R}_+^{n \times p}$ , the nonnegative matrix factorization (NMF) problem can be formulated as the search for an approximation

#### $X \approx WH$

- where  $\mathbf{W} \in \mathbb{R}_{+}^{n \times k}$  and  $\mathbf{H} \in \mathbb{R}_{+}^{k \times p}$  are two nonnegative matrices of rank  $k \leq \min\{n, p\}$ .
- Obviously, the solution is not unique. Example: Let  $\mathbf{L} \in \mathbb{R}_+^{k \times k}$  be diagonal and invertible. Consider  $\mathbf{WLL}^{-1}\mathbf{H}$ , which is a new NMF.

• Let  $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$  be SVD of  $\mathbf{X}$ . Then  $\mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\top}$  is the best rank k (assume  $k < \text{rank}(\mathbf{X})$ ) approximation of  $\mathbf{X}$  in the Frobenius norm (rank k PCA), that is,

$$\|\mathbf{X} - \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\top}\|_{\mathrm{F}} \leq \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}$$

for every  $\mathbf{W} \in \mathbb{R}^{n \times k}$ ,  $\mathbf{H} \in \mathbb{R}^{k \times p}$ .

• The nonnegative matrix factorization becomes the method of choice when the nonnegativity of the feature vectors is more important than the accuracy of the approximation.

#### 2. The alternating nonnegative least squares algorithm

• NMF problem 1:

Given a matrix  $\mathbf{X} \in \mathbb{R}_+^{n \times p}$ , find matrices  $\mathbf{W} \in \mathbb{R}_+^{n \times k}$  and  $\mathbf{H} \in \mathbb{R}_+^{k \times p}$  that minimize the cost function

$$f(\mathbf{W}, \mathbf{H}) = \frac{1}{2} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}^2.$$

DAMC Lecture 6 Spring 2022 3 / 15

#### Alternating nonnegative least squares (ANLS) algorithm

- 1. Given.  $\mathbf{X} \in \mathbb{R}_+^{n \times p}$ ,  $k < \min\{n, p\}$ ,  $\tau > 0$ , and maxit
- 2. **Initialize**. Generate  $\mathbf{W}^0 \in \mathbb{R}^{n \times k}_+$  and scale its columns to have unit  $\infty$ -norm. Set t = 0 and  $\delta = \infty$ .
- 3. Iteration. While  $\delta > \tau$  and t < maxit, update

$$\mathbf{H}^{t+1} = \operatorname{argmin} \|\mathbf{X} - \mathbf{W}^{t} \mathbf{H}\|_{F} \quad \text{s.t., } \mathbf{H} \in \mathbb{R}_{+}^{k \times p}$$
$$\mathbf{W}^{t+1} = \operatorname{argmin} \|\mathbf{X} - \mathbf{W} \mathbf{H}^{t+1}\|_{F} \quad \text{s.t., } \mathbf{W} \in \mathbb{R}_{+}^{n \times k}$$

Scale the columns of  $\mathbf{W}^{t+1}$ : Define

$$\lambda_j = \max_{1 \le i \le n} \mathbf{W}_{ij}^{t+1} \text{ and } \mathbf{L} = \operatorname{diag}\{\lambda_1, \cdots, \lambda_k\}$$

and set  $\mathbf{W}^{t+1} = \mathbf{W}^{t+1} \mathbf{L}^{-1}$ . If t > 0, compute

$$\delta = \frac{\|\mathbf{W}^{t+1} - \mathbf{W}^t\|_{\mathrm{F}}}{\|\mathbf{W}^t\|_{\mathrm{F}}} + \frac{\|\mathbf{H}^{t+1} - \mathbf{H}^t\|_{\mathrm{F}}}{\|\mathbf{H}^t\|_{\mathrm{F}}}.$$

Set t = t + 1.

• Express the Frobenius norm from a columnwise perspective

$$\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}^2 = \sum\nolimits_{j=1}^p \|\mathbf{X}_{:,j} - \mathbf{W}\mathbf{H}_{:,j}\|_2^2$$

Updating  $\mathbf{H}$  need to solve p constrained least squares propblmes:

minimize 
$$\|\mathbf{W}^t \mathbf{H}_{:,j} - \mathbf{X}_{:,j}\|_2$$
 s.t.  $\mathbf{H}_{:,j} \in \mathbb{R}_+^k$ 

• Express the Frobenius norm from a rowwise perspective

$$\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}^2 = \sum_{i=1}^n \|\mathbf{X}_{i,:} - \mathbf{W}_{i,:}\mathbf{H}\|_2^2$$

Updating  $\mathbf{W}$  need to solve n constrained least squares propblmes:

minimize 
$$\|(\mathbf{H}^{t+1})^{\top}(\mathbf{W}_{i,:})^{\top} - (\mathbf{X}_{i,:})^{\top}\|_{2}$$
 s.t.  $(\mathbf{W}_{i,:})^{\top} \in \mathbb{R}_{+}^{k}$ 

• MATLAB: 1sqnonneg

#### 3. Multiplicative updating formula

• To guarantee the nonnegativity, we use a change of variables:

$$\mathbf{W}_{ij} = e^{\xi_{ij}}$$
 and  $\mathbf{H}_{ij} = e^{\zeta_{ij}}$ .

We have

$$\frac{\partial f(\mathbf{W}, \mathbf{H})}{\partial \xi_{\mu\nu}} = \frac{1}{2} \frac{\partial}{\partial \xi_{\mu\nu}} \left( \sum_{i,j} (\mathbf{X}_{ij} - (\mathbf{W}\mathbf{H})_{ij})^2 \right) 
= -\sum_{i,j} (\mathbf{X}_{ij} - (\mathbf{W}\mathbf{H})_{ij}) \frac{\partial (\mathbf{W}\mathbf{H})_{ij}}{\partial \xi_{\mu\nu}},$$

where

$$\frac{\partial (\mathbf{W}\mathbf{H})_{ij}}{\partial \xi_{\mu\nu}} = \frac{\partial}{\partial \xi_{\mu\nu}} \left( \sum_{\ell} \mathbf{W}_{i\ell} \mathbf{H}_{\ell j} \right) = \sum_{\ell} \frac{\partial \mathbf{W}_{i\ell}}{\partial \xi_{\mu\nu}} \mathbf{H}_{\ell j}.$$

Observe that

$$\frac{\partial \mathbf{W}_{i\ell}}{\partial \xi_{\mu\nu}} = 0 \quad \text{if} \quad i \neq \mu \quad \text{or} \quad \ell \neq \nu,$$

and for  $i = \mu$  and  $\ell = \nu$ ,

$$\frac{\partial \mathbf{W}_{\mu\nu}}{\partial \xi_{\mu\nu}} = e^{\xi_{\mu\nu}} = \mathbf{W}_{\mu\nu}.$$

Using the Kronecker symbols  $\delta_{ij}$  yields

$$\frac{\partial (\mathbf{W}\mathbf{H})_{ij}}{\partial \xi_{\mu\nu}} = \sum_{\ell} \frac{\partial \mathbf{W}_{i\ell}}{\partial \xi_{\mu\nu}} \mathbf{H}_{\ell j} = \sum_{\ell} \mathbf{W}_{i\ell} \delta_{\mu i} \delta_{\nu\ell} \mathbf{H}_{\ell j} 
= \delta_{\mu i} \sum_{\ell} \mathbf{W}_{i\ell} \delta_{\nu\ell} \mathbf{H}_{\ell j} 
= \delta_{\mu i} \mathbf{W}_{i\nu} \mathbf{H}_{\nu j}.$$

Then we have

$$\begin{split} \frac{\partial f(\mathbf{W}, \mathbf{H})}{\partial \xi_{\mu\nu}} &= -\sum_{i,j} (\mathbf{X}_{ij} - (\mathbf{W}\mathbf{H})_{ij}) \delta_{\mu i} \mathbf{W}_{i\nu} \mathbf{H}_{\nu j} \\ &= -\sum_{j} (\mathbf{X}_{\mu j} - (\mathbf{W}\mathbf{H})_{\mu j}) \mathbf{W}_{\mu\nu} \mathbf{H}_{\nu j} \\ &= -\mathbf{W}_{\mu\nu} (\mathbf{X}\mathbf{H}^{\top})_{\mu\nu} + \mathbf{W}_{\mu\nu} (\mathbf{W}\mathbf{H}\mathbf{H}^{\top})_{\mu\nu}. \end{split}$$

To find a critical point, we set

$$\frac{\partial f(\mathbf{W}, \mathbf{H})}{\partial \xi_{\mu\nu}} = -\mathbf{W}_{\mu\nu} (\mathbf{X} \mathbf{H}^{\top})_{\mu\nu} + \mathbf{W}_{\mu\nu} (\mathbf{W} \mathbf{H} \mathbf{H}^{\top})_{\mu\nu} = 0.$$

Similarly, we have

$$\frac{\partial f(\mathbf{W}, \mathbf{H})}{\partial \zeta_{\mu\nu}} = -\mathbf{H}_{\mu\nu} (\mathbf{W}^{\top} \mathbf{X})_{\mu\nu} + \mathbf{H}_{\mu\nu} (\mathbf{W}^{\top} \mathbf{W} \mathbf{H})_{\mu\nu} = 0.$$

• Let  $\mathbf{W}^c$  and  $\mathbf{H}^c$  denote the current values of  $\mathbf{W}$  and  $\mathbf{H}$ , and write the current approximation of the data matrix as

$$\mathbf{X}^c = \mathbf{W}^c \mathbf{H}^c.$$

Let  $\mathbf{W}^+$  and  $\mathbf{H}^+$  denote the updated matrices. Set

$$-\mathbf{W}_{\mu\nu}^{c}(\mathbf{X}(\mathbf{H}^{c})^{\top})_{\mu\nu} + \mathbf{W}_{\mu\nu}^{+}(\mathbf{X}^{c}(\mathbf{H}^{c})^{\top})_{\mu\nu} = 0$$

and solve for the next iterate, yielding

$$\mathbf{W}_{\mu\nu}^{+} = \frac{(\mathbf{X}(\mathbf{H}^c)^{\top})_{\mu\nu}}{(\mathbf{X}^c(\mathbf{H}^c)^{\top})_{\mu\nu}} \mathbf{W}_{\mu\nu}^c.$$

Similarly, we have

$$\mathbf{H}_{\mu\nu}^{+} = \frac{((\mathbf{W}^c)^{\top} \mathbf{X})_{\mu\nu}}{((\mathbf{W}^c)^{\top} \mathbf{X}^c)_{\mu\nu}} \mathbf{H}_{\mu\nu}^c.$$

# NMF multiplicative updating algorithm I

- 1. Given.  $\mathbf{X} \in \mathbb{R}_+^{n \times p}$ ,  $k < \min\{n, p\}$ ,  $\tau > 0$ , and maxit
- 2. **Initialize**. Generate  $\mathbf{W}^0 \in \mathbb{R}^{n \times k}_{++}$  and scale its columns to have unit  $\infty$ -norm. Generate  $\mathbf{H}^0 \in \mathbb{R}^{k \times p}_{++}$ . Set t = 0 and  $\delta = \infty$ .
- 3. Iteration. While  $\delta > \tau$  and t < maxit,

Compute 
$$\mathbf{X}^c = \mathbf{W}^t \mathbf{H}^t$$
 and update  $\mathbf{H}$ ,

$$\mathbf{H}^{t+1} = ((\mathbf{W}^t)^\top \mathbf{X})./((\mathbf{W}^t)^\top \mathbf{X}^c). * \mathbf{H}^t.$$

Recompute  $\mathbf{X}^c = \mathbf{W}^t \mathbf{H}^{t+1}$  and update  $\mathbf{W}$ ,

$$\mathbf{W}^{t+1} = (\mathbf{X}(\mathbf{H}^{t+1})^{\top})./(\mathbf{X}^{c}(\mathbf{H}^{t+1})^{\top}).*\mathbf{W}^{t}.$$

Scale the columns of  $\mathbf{W}^{t+1}$ : Define

$$\lambda_j = \max_{1 \le i \le n} \mathbf{W}_{ij}^{t+1} \text{ and } \mathbf{L} = \operatorname{diag}\{\lambda_1, \cdots, \lambda_k\}$$

and set  $\mathbf{W}^{t+1} = \mathbf{W}^{t+1} \mathbf{L}^{-1}$ . Compute

$$\delta = \frac{\|\mathbf{W}^{t+1} - \mathbf{W}^t\|_{\mathrm{F}}}{\|\mathbf{W}^t\|_{\mathrm{F}}} + \frac{\|\mathbf{H}^{t+1} - \mathbf{H}^t\|_{\mathrm{F}}}{\|\mathbf{H}^t\|_{\mathrm{F}}}.$$

Set t = t + 1.

#### 4. Alternative cost functions

• It is natural to quantify how close two nonnegative matrices are by resorting to tools developed in the context of information theory, statistical physics, and probability theory, for example, *entropy divergence*, defined as

$$D(\mathbf{A}||\mathbf{B}) = \sum_{i=1}^{n} \sum_{j=1}^{p} \left( \mathbf{A}_{ij} \log \frac{\mathbf{A}_{ij}}{\mathbf{B}_{ij}} - \mathbf{A}_{ij} + \mathbf{B}_{ij} \right).$$

- Theorem: For any two matrices  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}_{++}$ , the entropy divergence  $D(\mathbf{A}||\mathbf{B})$  is nonnegative, and is equal to zero if and only if  $\mathbf{A} = \mathbf{B}$ .
- The entropy divergence  $D(\mathbf{A}||\mathbf{B})$  is a dissimilarity measure rather than a proper distance, since in general,

$$D(\mathbf{A}||\mathbf{B}) \neq D(\mathbf{B}||\mathbf{A}).$$

DAMC Lecture 6 Spring 2022 11 / 15

• NMF problem 2:

Given a matrix  $\mathbf{X} \in \mathbb{R}_{+}^{n \times p}$ , find matrices  $\mathbf{W} \in \mathbb{R}_{++}^{n \times k}$  and  $\mathbf{H} \in \mathbb{R}_{++}^{k \times p}$  that minimize the cost function  $q(\mathbf{W}, \mathbf{H}) = D(\mathbf{X} | \mathbf{W} \mathbf{H})$ .

• We have

$$\frac{\partial g(\mathbf{W}, \mathbf{H})}{\partial \xi_{\mu\nu}} = \sum_{i,j} \left( \mathbf{X}_{ij} \frac{\partial}{\partial \xi_{\mu\nu}} (\log \mathbf{X}_{ij} - \log(\mathbf{W}\mathbf{H})_{ij}) - \frac{\partial}{\partial \xi_{\mu\nu}} (\mathbf{X}_{ij} - (\mathbf{W}\mathbf{H})_{ij}) \right) \\
= \sum_{i,j} \left( -\frac{\mathbf{X}_{ij}}{(\mathbf{W}\mathbf{H})_{ij}} + 1 \right) \frac{\partial (\mathbf{W}\mathbf{H})_{ij}}{\partial \xi_{\mu\nu}} \\
= \sum_{i,j} \left( -\frac{\mathbf{X}_{ij}}{(\mathbf{W}\mathbf{H})_{ij}} + 1 \right) \mathbf{W}_{i\nu} \mathbf{H}_{\nu j} \delta_{\mu i} \\
= \sum_{i} \left( -\frac{\mathbf{X}_{\mu j}}{(\mathbf{W}\mathbf{H})_{\mu j}} + 1 \right) \mathbf{W}_{\mu\nu} \mathbf{H}_{\nu j}.$$

DAMC Lecture 6 Spring 2022 12 / 15

Similarly, we have

$$\frac{\partial g(\mathbf{W}, \mathbf{H})}{\partial \zeta_{\mu\nu}} = \sum_{i} \left( -\frac{\mathbf{X}_{i\nu}}{(\mathbf{W}\mathbf{H})_{i\nu}} + 1 \right) \mathbf{W}_{i\mu} \mathbf{H}_{\mu\nu}.$$

• Set the updating formulas

$$\mathbf{W}_{\mu\nu}^{+} = \left(\frac{1}{\sum_{j} \mathbf{H}_{\nu j}^{c}} \sum_{j} \frac{\mathbf{X}_{\mu j}}{(\mathbf{W}^{c} \mathbf{H}^{c})_{\mu j}} \mathbf{H}_{\nu j}^{c}\right) \mathbf{W}_{\mu\nu}^{c},$$

$$\mathbf{H}_{\mu\nu}^{+} = \left(\frac{1}{\sum_{i} \mathbf{W}_{i\mu}^{c}} \sum_{i} \frac{\mathbf{X}_{i\nu}}{(\mathbf{W}^{c} \mathbf{H}^{c})_{i\nu}} \mathbf{W}_{i\mu}^{c}\right) \mathbf{H}_{\mu\nu}^{c}.$$

• The columns of **W** can be scaled to have a unit 1-norm.

# NMF multiplicative updating algorithm II

- 1. Given.  $\mathbf{X} \in \mathbb{R}_{+}^{n \times p}$ ,  $k < \min\{n, p\}, \tau > 0$ , and maxit
- 2. **Initialize**. Generate  $\mathbf{W}^0 \in \mathbb{R}_{++}^{n \times k}$  and scale its columns to have unit 1-norm. Generate  $\mathbf{H}^0 \in \mathbb{R}_{++}^{k \times p}$ . Set t = 0 and  $\delta = \infty$ .
- 3. Iteration. While  $\delta > \tau$  and t < maxit,

Compute  $\mathbf{X}^c = \mathbf{W}^t \mathbf{H}^t$  and update  $\mathbf{H}$ ,

$$\mathbf{H}^{t+1}_{\mu\nu} = (\sum_i (\mathbf{X}_{i\nu}/\mathbf{X}^c_{i\nu})\mathbf{W}^t_{i\mu})\mathbf{H}^t_{\mu\nu}.$$

Recompute  $\mathbf{X}^c = \mathbf{W}^t \mathbf{H}^{t+1}$  and update  $\mathbf{W}$ ,

$$\mathbf{W}_{\mu\nu}^{t+1} = (1/\sum_{j} \mathbf{H}_{\nu j}^{t+1}) (\sum_{j} (\mathbf{X}_{\mu j}/\mathbf{X}_{\mu j}^{c}) \mathbf{H}_{\nu j}^{t+1}) \mathbf{W}_{\mu\nu}^{t}.$$

Scale the columns of  $\mathbf{W}^{t+1}$ : Define

$$\lambda_j = \sum_i \mathbf{W}_{ij}^{t+1}$$
 and  $\mathbf{L} = \text{diag}\{\lambda_1, \dots, \lambda_k\}$ 

and set  $\mathbf{W}^{t+1} = \mathbf{W}^{t+1} \mathbf{L}^{-1}$ . Compute

$$\delta = \frac{\|\mathbf{W}^{t+1} - \mathbf{W}^t\|_{\mathrm{F}}}{\|\mathbf{W}^t\|_{\mathrm{F}}} + \frac{\|\mathbf{H}^{t+1} - \mathbf{H}^t\|_{\mathrm{F}}}{\|\mathbf{H}^t\|_{\mathrm{F}}}.$$

Set t = t + 1.

# 5. Computed example: images as sums of their parts

- Data set: the well-known MNIST data set. The test sample contains p = 10000 images, and hence  $\mathbf{X} \in \mathbb{R}^{784 \times 10000}$ .
- Test the NMF multiplicative updating algorithm I for

$$k = 9$$
,  $k = 81$ ,  $\tau = 0.01$ .

- Plot the history of the relative change, i.e.,  $\delta$
- Plot the k = 9 and k = 81 columns of the feature vector matrix **W**, visualized as  $28 \times 28$  images.
- ullet Observations: when k is small, NMF produces a summary of the data, compressing in few feature vectors the contents of the data; when k is relatively large, NMF decomposes the data into elementary features, or building blocks, allowing us to look for local similarities among the data vectors.