

Contents

01 Problem & Significance

Data & Descriptive Analytics

03 ML Approach & Result

04 Future Work

Problem with Taxies ⇒ Mission for us & Significance

Long Waiting Hour

Congestion

Proposed Approach

Order Prediction Congestion Prediction Deployment decision

Data & Attributes

Order Prediction

Historical Order Details

Order_id
Departure_time
Starting latitude & longitude

Sectional_TTI = avg(Polyline_TTI)

Congestion Prediction

Historical Traffic Details

Polyline Geo data Time

Polyline_TTI

Geo-Mapping & Aggregation

Sectional Order Statistics

Section_id
Day_of_Week
Hour of Day
Order Num

Weather Indicators

Temperature Precipitation Wind_speed

Sectional Congestion Statistics

Section_id Day_of_Week Hour of Day Sectional TTI

Merge

section_idx_large	day_of_week	order_in_section	hour	speed	precipitation	tempurature
874172120ffffff	4	28	20	6.0	0.5	34.0
874172120ffffff	4	37	21	7.0	0.1	32.0
874172120ffffff	4	13	22	7.0	0.1	32.0

Merge

small_section_idx	tti	day_of_week	hour	speed	precipitation	tempurature
88417281d1fffff	1.362	4.0	0	7	0.1	29
88417288bdfffff	1.283	4.0	0	7	0.1	29
8841728ee5fffff	1.125	4.0	0	7	0.1	29

Visualization Analysis

Order dataset

Congestion dataset

2017/6/15

2017/6/15

Preprocessing

ML Approach Structure

Base Model Training & Performance for Order Prediction

	Average	SVR	Decision Tree	NN
CV Best_Param	Base Line	Degree = 1 C =0.88603 ε = 0.054	max_depth=9	hidden_size=50 weight_decay=0.01
Training MSE	1.0063	0.41963	0.0919	0.0872
Validate MSE	0.9749	0.42098	0.1716	0.1097

Base Model Training & Performance for Congestion Prediction

Final Model Training & Performance

	Average	Order [Stacked]	Congestion			
Training MSE	1.0063/0.9385	0.0842	0.5475			
Validate MSE	0.9749/1.2450	0.1280	0.7770			
Test MSE	0.9664/0.8120	0.1230	0.7927			
		190.12%	1 36.33%			
	Both Models Beat Baseline					

Findings Visualization

Demo Case: On Thursday, 18:00, with temperature = 40 and wind_speed = 7 and precipitation = 0.0

Future Works

Add more data rows to further reduce variance

Use the dataset from other cities and add year-wise month variables to generate a model that can be applied to the whole country

Explore the best section size for models

Explore more base models

