

YEAR 12 MATHEMATICS EXTENSION 1 TRIAL EXAMINATION 2011

TIME ALLOWED:

2 Hours plus 5 minutes'

READING TIME

INSTRUCTIONS

ALL QUESTIONS MAY BE ATTEMPTED.
ALL QUESTIONS ARE OF EQUAL VALUE (12 MARKS).
ALL NECESSARY WORKING MUST BE SHOWN.
MARKS MAY NOT BE AWARDED FOR CARELESS WORK.
APPROVED CALCULATORS AND TEMPLATES MAY BE USED.

COLLECTION

START EACH QUESTION IN A NEW BOOKLET.

IF YOU USE A SECOND BOOKLET FOR A QUESTION, PLACE IT INSIDE THE FIRST.

WRITE YOUR NAME/NUMBER, TEACHER'S NAME AND QUESTION NUMBER ON EACH BOOKLET.

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

Ascham School Mathematics Extension 1 Trial 2011

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad \alpha \neq 0$$

$$\int \cos ax \ dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \ dx = -\frac{1}{a}\cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right) \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

$$\int \frac{1}{\sqrt{1-\chi^2}} = \sin^{-1}\chi + c$$

Question 1

- a) Find the value of $\tan^{-1} \sqrt{3}$ in radians (1)
- b) If α , β and γ are the roots of the equations $x^3 2x + 5 = 0$, find the value of $\alpha\beta\gamma$

(1)

- c) Find $\frac{d}{dx}(\sin^{-1}2x)$ (2)
- d) Find the remainder when $P(x) = x^3 2x^2 2x + 1$ is divided by x 2 (2)
- e) Find $\int \cos^2 4x \, dx$ (2)
- f) Find the co-ordinates of the point P which divides the interval joining A(-3,4) and B(2,-8) externally in the ratio 2:5.
- g) Find the acute angle between the lines y = -x and $\sqrt{3}y = x$ (2)

Question 2 Begin a new booklet

a) Find
$$\int \frac{dx}{4x^2 + 1}$$
 (2)

- b) Differentiate $4\sec^2 x$ (2)
- c) Find the general solution to $\cos x = -\frac{\sqrt{3}}{2}$ (2)
- d) Use the substitution $x = \cos \theta$ to evaluate (4)

$$\int_{\frac{1}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx$$

e) Find the Cartesian equation of the curve with parametric equations $x = \sin t$ and $y = 2 + \cos t$ (2)

Question 3 Begin a new booklet

a) Find the exact value of
$$\sin\left(2\sin^{-1}\frac{3}{4}\right)$$
 (2)

b) Solve
$$\ln(2x+3) + \ln(x-2) = 2\ln(x+4)$$
 (3)

Solve the inequation
$$\frac{2x+1}{x-2} \ge 1$$
 (3)

- d) A particle is moving in a straight line so that its displacement x from the origin at time t, in seconds, is given by $x = \sqrt{3} \cos 2t \sin 2t$, $t \ge 0$
 - i) Show that the particle moves in simple harmonic motion (2)
 - ii) Find the velocity the first time the particle is at the origin. (2)

Ouestion 4 Begin a new booklet

~a)

A hemispherical bowl of radius r cm is initially empty. Water is poured into it at a constant rate of k cm³ per minute. When the depth of the water in the bowl is x cm, the volume, V cm³, of the water in the bowl is given by

$$V = \frac{\pi}{3}x^2(3r - x)$$
 (do not prove this)

i) Show that
$$\frac{dx}{dt} = \frac{k}{\pi x(2r - x)}$$
 (2)

ii) Find an expression for
$$t$$
 as a function of x (2)

- b) A function is defined as $f(x) = 1 \cos \frac{x}{2}$ where $0 \le x \le a$
 - i) Find the largest value of a for which the inverse function $f^{-1}(x)$ exists.

— ii) Show that
$$f^{-1}(x) = 2\cos^{-1}(1-x)$$
 (2)

iii) Sketch the graph of
$$y = f^{-1}(x)$$
 (2)

iv) Find the area enclosed between the curve $y = f^{-1}(x)$, the x axis and x = 2. (2)

Question 5

A ball is projected from a point 6m above the ground at an angle of 30° from the horizontal with velocity of V metres per second. The equations for acceleration in the horizontal and vertical direction are given by $\ddot{x} = 0$ and $\ddot{y} = -g$ respectively.

i) Using Calculus show that
$$x = \frac{Vt\sqrt{3}}{2}$$
 and $y = \frac{-gt^2}{2} + \frac{vt}{2} + 6$ (3)

- ii) Hence find the Cartesian equation of the path of the ball (2)
- Assuming that $g = 9.8 \text{ m/s}^2$, will the ball clear a 50 m tall building which is 355m away if the ball is projected with a velocity of 65 m/s? Justify your answer. (3)
- b) Use mathematical induction to prove that for all integers $n \ge 3$ (4)

$$\left(1-\frac{2}{3}\right)\left(1-\frac{2}{4}\right)\left(1-\frac{2}{5}\right)\dots\left(1-\frac{2}{n}\right) = \frac{2}{n(n-1)}$$

Question 6

- a) $P(8p,4p^2)$ and $Q(8q,4q^2)$ are variable points on the parabola $x^2 = 16y$ The tangent at P and Q meet at R.
 - i) Show that the equation of the chord PQ has equation $y = \frac{1}{2}(p+q)x 4pq \tag{2}$
 - ii) The chord PQ produced passes through the fixed point (4,0). Show that p + q = 2pq (2)
 - iii) Find the coordinates of R (2)
 - iv) Find the Cartesian equation for the locus of R (2)
- b) The function $f(x) = e^{2x} x 3$ has a zero near x = 0.8. Use one application of Newton's method to find a second approximation to the zero. Write your answer correct to 3 significant figures. (2)
- by finding any asymptotes and intercepts draw the graph of $y = \frac{x}{(x-1)^2}$, showing significant features. (do not use calculus)

ASCHAM SCHOOL

MATHEMATICS WRITING BOOKLET

Name.		Question Number
Form Class:	Teacher's Initials	1

- Enter the information requested in each of the boxes above
- Take a new writing booklet for each question
- You may ask for an extra writing booklet if you need one. Label it as above and put it inside the first booklet for the question.
- If you do not attempt a question still hand in the booklet with "NOT ATTEMPTED" written on the front.
- Write the question part in the margin
- Write on the ruled lines in black or blue ink

Do not write in this box

$u) \tan^{-1}\sqrt{3} = \frac{\pi}{3}$	1
b) $x^3 - 2x + 5 = 0$ $ABX = -5 = \frac{1}{a}$	(
	7
c) $\frac{d}{dx} (Jin^{-1}2x) = \frac{2}{\sqrt{1-4x^2}}$	2

d) $P(2) = 2^3 - 2(2)^2 - 2(2) + 1$.		a
= -3		
e) 1 cos24x dx = 1/2 1 1+ co	C8v dv	
		2
= = = (x+8)	singx) + C	
$f) \cdot A(-3,4) \beta(2,-8)$		
2:5 = k:l'		
-2:5 = k: l grat	extemal	
x= 1x1+KX2		
Ltk	y= ly1+ky2 l+k	
= 5(-3)+ (-2)(2)	= 5(4)+(2)(-8)	
3	3	
	20+16	
= <u>-15-4</u>	= 20+16	_
<u> </u>		-2
3	= (2.	
		-
: @ Point is (-63,12	<u>) </u>	
a) y=-x 3y=x -	$\rightarrow $ $y = \frac{x}{\sqrt{3}}$. "
tane = mr=m2	, † A	
1 + mime in	7,	
	$\frac{\tan \theta = \left m_1 - m_2 \right }{\left 1 + m_1 m_2 \right } \frac{2}{2}$	\ \frac{1}{2}
13	70 71 61	d V
-13-1	= 1-1-13 radu	ens
1 13-1 1	[1-13]	
=	0 = 75°	
	1	

ASCHAM SCHOOL

MATHEMATICS WRITING BOOKLET

Name:		Question Number
Form Class:	Teacher's Initials	2

- Enter the information requested in each of the boxes above
- Take a new writing booklet for each question
- You may ask for an extra writing booklet if you need one. Label it as above and put it inside the first booklet for the question.
- If you do not attempt a question still hand in the booklet with "NOT ATTEMPTED" written on the front.
- Write the question part in the margin
- Write on the ruled lines in black or blue ink

Do not write	in	this	box	

) to 4000 n = 4/2/ (Jecx) secritary to 4 (1+tan2n)	<u> </u>	= 1/2x + C
= &sec2x+arrx ax 4+4+an2x) di 4000°	1 = 482 (Secx) secx rain of 4 (1+tan2n)

c) $CO(X = \frac{3}{\sqrt{3}}$
c) $(0)X = \frac{-\sqrt{2}}{2}$ $x = \frac{+5\pi}{6} + 2k\pi$
W - B I PRIC V
$d) \int_{1}^{1} \sqrt{1-\chi_{2}} d\chi$
9 10
X = CO10.
$\frac{\partial S}{\partial S} = -SIN\Theta$
dn = -sin0d0.
when x = 1 c6s 1 = cos 6
Θ= O
$= \frac{1}{2} \frac{1}{2} = \cos \theta$
$\Theta = \frac{TC}{3}$
10 11-0020 100 10 10 10 10 10 10 10 10 10 10 10 1
$\frac{1d^{3}}{\log 11 - \cos_{5}\theta} \times -2\log_{4}\theta = \int_{2d/3}^{0} \frac{\cos_{5}\theta}{2\sin_{5}\theta} = \sin_{6}\theta\theta.$
9,7-8
$= \int_{0}^{\frac{1}{4}} \frac{3n^{2}\theta}{\cos^{2}\theta} d\theta$
20 CO(30
= 1 ^{r43} \$qn²0 d0
= 193 H=8 866-1 do.
10 1 3 33 7 30
- Ctano - 0703
= 1.10ND - 0.10
T.
= 13-17
e) x-sint (1) y=2+cost (2)
From O t=sin-1x -sub->0
$y = 2 + \cos(\sin^{-1}x)$
X A.
J1-N2
· U = 2++ 1-x2 -= x

(83)	.\ \
a) $\sin(2\sin(\frac{1}{4}) = 2\sin(\sin(\frac{1}{4}))$, $\cos(\sin(\frac{1}{4})$	1 42=3+x2
$= 2.\frac{3}{4}.\frac{17}{4}$	3, 0
= .6√₹	77.
4	
= 347.	
2	

Do not write in this box

b) $\ln(2n+3) + \ln(x-2) = 2\ln(x+4)$ $\ln(2n+3) + \ln(2n+3)(x-2) = \ln(n+4)^2$ $(2n+3)(x-2) = 2n+4)^2$ $2n^2 - 4n+3n - 6 = n^2+8n+16$ $n^2 - 9n - 22 = 0$ (n+2)(n-1) = 0 $n = 11 \quad \text{Since } n \neq 2 \quad \text{Logazin}$ $n = 11 \quad \text{Logazin}$ $n = 11 \quad \text{Since } n \neq 2 \quad \text{Logazin}$ $n = 11 \quad$

2

1) is = 120 cinst = = = = = = = = = = = = = = = = = = =
d) i) · x = 70 sin2t - 5 cos2t
n= 4 caset + 4sin2t x wethough
= 74(33(052t-sin2t) X
= - 14 x . ouch : x = -4x
$\ddot{\chi} = -\dot{\eta}^2 \chi$
in sh M.
ii) \(\frac{3}{3}\cos2t-sin2t=0\) when at origin
Auxiliary L method.
R= \3+1
= 2.
cost sin (3t-d) supprisin2tcal
cos(2tta) = cos2tcosa - sin2tsina.
companing coefficients
cosd=13 sind=1.
CO10, N3
(014) 13.
tand = 12
d= F
:.20s(2t+16)=0
$2t+\frac{\pi}{6}=\frac{\pi}{2}$
2t = 3 / , C
t= t unwrect from above!
v when first at origin $\dot{x} = -\frac{3}{2} \sin \frac{\pi}{3} + \frac{1}{2} \cos \frac{\pi}{3}$
= - \frac{13}{2} \times \frac{13}{2} - \frac{1}{4}
= -3 1
= -1mg X CV

; 27

d) i) x = \(\frac{3}{2} \cos 2t - Sm2t \cdot \)
2 Sm2t 4 3 COS2t
$x = \sqrt{3}\cos 2t - \sin 2t$
$\frac{\dot{y}}{100} = -2\sqrt{3} \cos^2 2t - 2\cos 2t$
$\ddot{\kappa} = -4\sqrt{3} \frac{\cos x}{\sin x} + 4\sqrt{m}x = -4\sqrt{3} \frac{\cos x}{\sin x} + 4\sqrt{3} \frac{\cos x}{\sin x$
$= -4 \left(\sqrt{3} \cos 2t - \sin 2t \right)$
= - 4x
u) v is first at the origin when t = t
$\frac{1}{2} = -2\sqrt{3} \sin \frac{\pi}{3} + -2\cos \frac{\pi}{3}$
= -23x2 - 2x3 -2x3 -2x3
= 13-13
= -213 -4 mo

(04)
(04) (0) 1) $V = \frac{12}{3} x^{2} (3V - x) = \frac{72}{3} (3V) x^{2} - \frac{72}{3} x^{3} = \frac{74}{12} x^{2} - \frac{72}{3} x^{3}$ $\frac{dx}{dt} = \frac{dV}{dt} x \frac{dx}{dv}$
<u>dν 274 2πγχ - πν²</u>
dx
$\frac{dy - k x}{dt} = \frac{1}{2\pi v^2}$
Lid is to is
- k ged
TLH(ZV-N)
ii) dt _ TCN(2V-N) dn K
The second of th
$t = \int \frac{\pi \ln(2v - n)}{k} dx$
= 77 (V-V) (V
= 72 (x(2x-x) dx
= TC (21x-n2 dx
(6 3
$=\frac{\pi}{4}\left(r\chi^{2}-\frac{3}{3}\right)+C$
when t=0 +x=0
$0 = \frac{T}{K}(0-0)tC$
C = 0 $\frac{1}{k} (kx^2 - \frac{x^3}{3})$
1 + = \(\frac{1}{2}\)

b) $f(x) = 1 - \cos \frac{x}{2}$ Let $y = 1 - \cos \frac{x}{2}$
il) Swap x and y
$\chi = 1 - \cos 2$
COS = 1-X
$\frac{U}{2} = (OS^{-1}(1-\chi))$
: y = 2005-(1-x) ged
O SACK SACK MARCHET .
WE-3
X,
Langest value of a is 2 since 151-x51
iiltuteto-
\(\frac{1}{2}\)
1) FOV IN VEYSE TO CXIST. 0 \(\times n \leq q \) 0 \(\times \frac{2}{2} \leq \tau \) 0 \(\times n \leq 2 \tau \)
0 ≤ x ≤ q. I don't or correct 0 ≤ x ≤ \tau. ogic but correct.
0 \le \frac{1}{2} \le \tau. ogic to answer.
max a 132 t.
ΛΨ '
[(() 2T) ,
2 <u>a</u> :
4

zn y	2	^y	и)		
	•			,	
Who		1			-
0 2	. (27L > 1		
By symmetry - they are	Same	4			-
Areq = $4\pi - \frac{2\pi}{1 - \cos 2}$ dx.					
. 00			. 1		
=41c-[x - 4 2JIn 2]	210			₹	
=4TC-2TC - 251nTC-(٥			
:4TC2TC U2.		,	· . –		
- 27th 4		1			
= 12 91				٠	
	V		_		U
	1	J.	•	L	
	١-		7 -		, .
				·.	
	A				
The Franchiston					
	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
					1
	,			*	
y na vide nyvinte vide in den vide de des vides de des vides de de vides de de vides de de vides de de vides de					
And the last of th					-
		,			
		 			

Q5) Jeffort a 2
a) i) $\dot{x} = 0$ $\dot{x} = V_{COS30}^{\circ}$ $\dot{y} = 0$
x= V cos30° y = -gt +t,
= 432, when t=0 y= van30°
when $t=0 x=0$. $C_1= v_1 in_30^{\circ}$ $0 = \frac{v_1 i}{2}(0) + C_2$ $\dot{y} = -9t + v_1 in_30^{\circ}$
$0 = \frac{\sqrt{3}}{2}(0) + C_2 \qquad \dot{y} = -9t + \sqrt{1300}$ $C_2 = 0 \qquad = -9t + \frac{\sqrt{2}}{2}$ $\dot{x} = \frac{\sqrt{33}t}{2} \text{ qed } 0 \qquad \dot{y} = -\frac{9t^2}{2} + \frac{\sqrt{2}t}{2} + C_3$
when y=6 t=0
6 = 0+0+C3 22
C3 = 6
C3:6 : y = -9t + \frac{1}{2}tt6 qed@
li) cartesian
From 0 t= VV3 3
SUB(3) > 0;
$y = -\frac{9}{2}(\frac{478}{VB}) + \frac{1}{2}(\frac{273}{VV3}) + 6V$
$\frac{-20x^{2}}{3v^{2}} + 4x + 6$
37 43 /
NI) 86 LHS = 50
$RHS = -\frac{29(50 - 29(355)^2}{3(65)^2} + \frac{355}{\sqrt{3}} + \frac{6}{\sqrt{3}}$
= 16.08 450
-: the ball will not clear
J**

b) $(1-\frac{2}{3})(1-\frac{2}{4})(1-\frac{2}{5})\cdots(1-\frac{2}{n})=\frac{2}{n(n-1)}$ n>3
step1: Provettue for n=3.
$LHS = 1 - \frac{2}{3}$ $RHS = \frac{2}{3(3-1)}$
= 3
- LHS
. True for n=3
dep 2: Assume true for n=k 1.e.(1-3)(1-2)(1-2)(1-2)=2
RTP truptcy n=kq1 i.e. (1- =)(1- =)(1-==)(1-==)(1-==)(1-==)(1-===)=(上前)=(上前)=(上前)=(上前)=(上前)=(上前)=(上前)=
いい= (1-23)(1-2)(1-2)(1-日)
- E(K-1) (1- K+11)
$= 2 \frac{k+2}{k(k-1)(k+1)}$
½ 2 (K-1)
K(K-1) (KH)
= 2k/k22k-2
k(kH)(k-1)
2(++)
k (kt)(k+t)
= F(K+1) = RHJ
: True for n-kfl 5
step 3: by the principle of mathematical)
induction the result holdstrue for all.
17,3 true for n=k+1 Summay
induction the result holdstrue for all. N7.3 true for n=k+1 summay true for n=3 startement? me for all n7.3
frue fer all n7/3

a) $(8p, 4p^2)$ $(8q, 4q^2)$
X ² = 164
i) $mp0 = 4q^2 - 4p^2$
1) 111pg = 79/-74 8q-8p
- 84(g-p)(ptq)
28(AP)
= Pt9 /
$y - 4p^2 = \frac{p+q}{2}(\chi - 8p)$
$y - 4p' = \frac{1}{2} (\chi - 8p)$
$y = \frac{1}{2}(p+q)n - 4p(p+q) + 4p^2$ = $\frac{1}{2}(p+q)n - 4pq$ qed D
= \frac{1}{2} (ptq)n - 4pq, oped (1)
II) Sub $(4,0) \rightarrow 0$
$0 = \frac{1}{2}(p+q_1)4 - 4pq$
4pq = 1ptq)
ptq = 2pq qed
III) Tangant P
$M = \frac{8p}{8}$
- P
$y-4p^2 = p(n-8p)$
y = px-8p2+4p2
$u = \rho x - 4\rho^2$
Similarly Tangent Q: y=qx-4q2
Find R solve amultaneously.
pn-4p2 = qx-4q2
$\chi(p-q) = 4p^2 - 4q^2$
x (pg) = 4(ptq)(pg)
x = 4cp(q) M
π τογτν)

y=4p(p+q)-4p2	
$=4p^2+4pq-4p^2$	
= 4pay	
' R (Mara) Maa	
: R(40ptq), 4pq)	
(V) x=4(p+9) 0 y=4pq @	
= 4(2pq)	
z 8pq.	
pq= + 3 3 → 2	
in the locus of R.	
- Burplish	
Shaper	
	_
·	
·	

β) $\alpha_0 = 0.8$	
f(x)=e21-x-3	
$f'(n) = 2e^{2x} - 1$	
$\chi_1 = 0.8 - f(\chi_0)$	
f'(No)	
$= 0.8 - e^{0.8x^2} - 0.8 - 3$	
$= 0.8 - e^{0.8x^2} - 0.8 - 3$ $= 2e^{2x0.8} - 1$	
÷ 0.6705	
= 0.671 cto 3 ct)	
7	
C) y = (N-1)2	
M vert. Asymptote n=1.	
y = x n²-2~t1	
nt-2nt1	
1-2t-2	
For horizontal asymp. as x->10 y -> 10	
1- 1/2 th	
= 0	
y=0 is a horizontal asymptote.	
	· · · · · · · · · · · · · · · · · · ·
(0,0	

(07)		
9)1) df =	Ot KAEKT STATION	
(=	k(P-4000) lince Aekt = P-4000) graft	_ `
	saturies egn Assan	
(i) +=0	P=5000	
5000	0 = 4000+ Ae0	
A	= 1000	
+=1(0 P=15000	
50	00 = 4000+1000e lok	•
lic	00 = 1000e10 k	

11 = e10k	
In II = IOK	·
$K = \frac{\ln 1}{10}$	
III) 4000 + 1000 e hylio + > 125000	
1000 = Introt > 121000	
) $4000 \pm 1000e^{\ln \frac{1}{100}} > 125000$ $ 000e^{\ln \frac{1}{100}} > 121000$ $e^{\ln \frac{1}{100}} > 121$	
Inil (t) > In 2	2.6.7
21st t > 20	
: in the 20th year it win exceed	
\$ 125 000	لح

DI) PD = DQ = CD (tangents from a common point) > ladii of a circle LPCQ = 90° (Lina tanicircle) LRCQ = 90° (Lina tanicircle) LRCQ + LPCQ = 90 + QO (adjacent Ls) - (80° - 60 RC P are collinear M) BO II RCP & BD byects/CDQ (commontangents have the BD to CQ (to them tadi) BD to CQ (to them tadi) ROVEACDA = ADAQ I. LOA = LADQ (proven above) IV DROD=90° 2. CD = CQ (common tangents from a common point) 3. AD IS common - ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent As) BD to CQ (ra line from contrebuenting chord ca is to the chord) LPCA + DAC = 90+90 = (80° LPCA + DAC = 90+90 = (80°
PO 13 the reditatot a circle LPCQ = 90° (L in a semicircle) LRCQ + LPCQ = 90° (L in a semicircle) LRCQ + LPCQ = 90° (L in a semicircle) LRCQ + LPCQ = 90 + 90 (adjacent 23) - (80° - (80
LPCQ = 90° (L in a semicircle) LRCQ = 90° (L in a semicircle) LRCQ + LPCQ = 90 + 90 (adjacent Ls) - (80° -
LRCQ +LPCQ - 90 + 90 (adjacent Ls) - (80° -
LRCQ +LPCQ - 90 + 90 (adjacent Ls) - (80° -
- (80° - (80°
IN) BO II RCP &BD byects/CDQ (commontangents have the BD to G (temm radi same L of elevation) BD to G (temm radi same L of elevation) BD to ROVEACDA = ADAQ I. LOA = LADQ (proven above) IVD CBQD=90° 2. CD = CQ (comman tangents from a common point) 3. AD is common .'ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent AJ). BD to G (radine from contrebutering chord consider to the chord) Let to the chord) Let to the condition of the congruent and th
IN) BO II RCP & BD byects/CDQ (commontangents have the BD \(\text{LG} \) (Lettern tadi \) same L of elevation). BD \(\text{BD} \text{SQ} \) ROVEACDA \(\text{EADA} \text{Q} \) IND \(\text{CBQD} \text{PQ} \) 2. \(\text{CD} = CQ \) (reminentangents from a common point). 3. \(\text{AD} \) is common \(\text{CAPA} = \text{ADAQ} \) (SAJ) \(\text{CA} = AQ \) (matching sides of congruent AJ). \(\text{BD} \text{LCQ} \) (ref line from centre byecting chord CQ is \) \(\text{LT} \) to the (rord) \(\text{LT} \) to the (rord).
BD In CQ (L-from tact) BD Langects CQ. ROVEACD A = AD A Q 1. LO A = CADQ (proven above) 1VD CBQD=90° 2. CD = CQ (commentangents from a common point). 3. AD is common .'ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent As). BD In CQ (radine from contrebuenting chord CQ is In to the chord) CPCB 11 BD (comprounterior angles are supplementary) Let Decay Decay = 180°.
BD bruects CQ. PROVEDED A EADAQ 1. LOA = CADQ (proven above) 1VD CBOD 90° 2. CD = CQ' (common tangents from a common point) 3. AD is common : ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent As) BD L CQ (ra line from contrebuenting chord ca is In to the chord) CPCB II BD (comp cointerior angles are supplementary) L PCA + DAC = 90+90 = 180°
ProveACDA = ADA Q 1. LOA = CAPQ (proven above) 1 V D CBQD=90° 2. CD = CQ (common tangents from a common point) 3. AD is common : ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent As) BD \(\perp \) CQ (Ha line from contrebscenting chord CQ is \(\perp \) to the chord) CPCB II BD (comp cointerior angles are supplementary) \(\text{LPCA + DAC = 90+90 = 180°} \)
1. LOH = LADQ (proven above) 11 DEBOD=90° 2. (D = CQ' (Common tangents from a common point) 3. AD is common : ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent AJ). BD \(\text{CQ} \) (ratine from contrebsecting chord CQ is \text{L to the chord}) CPCB 11 BD (comp contrevior angles are supplementary) LPCA + DAC = 90+90 = 180°
1/1/280D=90° 2. (D = CQ' (Common trangents from a common point) 3. AD is common : ACDA = ADAQ (SAS) CA = AQ (matching sides of congruent As) BD L CQ (ra line from contrebuecting chord ca is In to the chord) 2. PCB 11 BD (comp conterior angles are supplementary) L pcA + DAC = 90+90 = 180°
POINT) 3. AD IJ COMMON ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent AJ) BD L CQ (ratine from centre basecting chord CQ is Leto the chord) PCB II BD (comp counterior angles are supplementary) Apply to the content of the congruent AJ)
: ACDA = ADAQ (SAJ) CA = AQ (matching sides of congruent AJ) BD L CQ (ra line from centre bisecting chord CQ is Leto the chord) : PCB II BD (cerrif counterior angles are supplementary) LPCA + DAC = 90+90 = 180°
CA = AQ (matching sides of congruent As) BD L CQ (radine from contrebscerting chord CQ is Lix to the chord) CPCB II BD (comp conterior angles are supplementary) LPCA + DAC = 90+90 = 180°
CA = AQ (matching sides of congruent As) BD L CQ (radine from contrebscerting chord CQ is Lix to the chord) CPCB II BD (comp conterior angles are supplementary) LPCA + DAC = 90+90 = 180°
BD L CO (ra line from centre buecting chord co is Li to the (nord) PCB II BD (cernf minterior angle are supplementary) LPCA + DAC = 90+90 = 180°
Le to the (nord) 1. PCB 11 BD (comp counterior angles are supplementary) 1. Le to the (nord) 2. Le to the (nord) 3. Le to the (nord)
LPCA + DAC = 90+90 = 180°
LPCA + DAC = 90+90 = 180°
and a second of the second of
IV) LCPD=90-ZCOP (L SUM OF ACPO).
LICRB = LCOP (Kout between tangent and chord is
equal to 1 malternate segment).
L-SRC
IV) L SRB = 90° (Indius 14 to tongent)
LERC = 90-LERB (adjacent LS)
need to prove that LASK is supplementary to LBQ D
(18 Interior LI of cyclic quadrilaterals are supplementary)

LRQD=90° (L between radius and tangent).
LPRO-Let LPRO-X
Let 40P=x
LPRO= x (dat Lin alternate segment = L+n-between
chord and tangent)
LRPQ=90-X LLSUM APRO).
X - 117,

