

HCC/HCF4093B

QUAD 2-INPUT NAND SCHMIDT TRIGGERS

- SCHMITT-TRIGGER ACTION ON EACH INPUT WITH NO EXTERNAL COMPONENTS
- HYSTERESIS VOLTAGE TYPICALLY 0.9V AT V_{DD} = 5V AND 2.3V AT V_{DD} = 10V
- NOISE IMMUNITY GREATER THAN 50% OF V_{DD} (typ.)
- NO LIMIT ON INPUT RISE AND FALL TIMES
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4093B (extended temperature range) and HCF4093B (intermediate temperature range) are available in 14-lead dual in-line plastic or ceramic package and plastic micropackage. The HCC/HCF4093B consists of four Schmitt-trigger circuits. Each circuit functions as a two-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals.

The difference between the positive voltage (V_P) and the negative voltage (V_N) is defined as hysteresis voltage (V_H) (see fig. 1).

June 1989 1/13

FUNCTIONAL DIAGRAM

1 of 4 Schmitt triggers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
VI	Input Voltage	-0.5 to $V_{DD} + 0.5$	V
I_{1}	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Тор	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	ပို
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings "may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃

^{*} All voltage values are referred to V_{SS} pin voltage.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s	Value							
Symbol	Parame	ter	٧ı	۷o	I ₀	V_{DD}	ΤL	o w*		25°C		T _{Hi}	gh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	HCC	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
		HCF	0/ 5			5		4		0.02	4		30	
		Types	0/10			10		8		0.02	8		60	
		Types	0/15			15		16		0.02	16		120	
V_P	Positive Tri		а			5	2.2	3.6	2.2	2.9	3.6	2.2	3.6	
	Threshold '	Voltage	а			10	4.6	7.1	4.6	5.9	7.1	4.6	7.1	
			а			15	6.8	10.8	6.8	8.8	10.8	6.8	10.8	V
			b			5	2.6	4	2.6	3.3	4	2.6	4	V
			b			10	5.6	8.2	5.6	7	8.2	5.6	8.2	
			b			15	6.3	12.7	6.3	9.4	12.7	6.3	12.7	
V_N	Negative T		а			5	0.9	2.8	0.9	1.9	2.8	0.9	2.8	
	Threshold '	Voltage	а			10	2.5	5.2	2.5	3.9	5.2	2.5	5.2	
			а			15	4	7.4	4	5.8	7.4	4	7.4	V
			b			5	1.4	3.2	1.4	2.3	3.2	1.4	3.2	V
			b			10	3.4	6.6	3.4	5.1	6.6	3.4	6.6	
			b			15	4.8	9.6	4.8	7.3	9.6	4.8	9.6	
V_{H}	Hysteresis	Voltage	а			5	0.3	1.6	0.3	0.9	1.6	0.3	1.6	
			а			10	1.2	3.4	1.2	2.3	3.4	1.2	3.4	
			а			15	1.6	5	1.6	3.5	5	1.6	5	V
			b			5	0.3	1.6	0.3	0.9	1.6	0.3	1.6	V
			b			10	1.2	3.4	1.2	2.3	3.4	1.2	3.4	
			b			15	1.6	5	1.6	3.5	5	1.6	5	
V _{OH}	Output High	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types		9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		m ^
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		mA
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	– 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		

a : input on terminals 1, 5, 8, 12 or 2, 6, 9, 13 ; other inputs to V_{DD} . b : input on terminals 1 and 2, 5 and 6, 8 and 9, or 12 and 13 ; other inputs to V_{DD} . * $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : +85°C for HCF device.

STATIC ELECTRICAL CHARACTERISTICS (continued)

			Test Conditions			Value								
Symbol	Parame	ter	٧ı	۷o	I ₀	V_{DD}	ΤL	o w*		25°C	25°C		igh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink		0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current		0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		ША
			0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18		•			± 0.1		± 10 ⁻⁵	± 0.1		± 1	μА
	Current	HCF Types	0/15	Any In	put	15		± 0.3		± 10 ⁻⁵	± 0.3		± 1	μπ
Cı	Input Capa	citance		Any In	put					5	7.5			pF

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%/^{\circ}C$ values , all input rise and fall time = 20ns)

Symbol	Parameter	Test Conditions	Test Conditions			Value			
Symbol	Farameter	\	V _{DD} (V)	Min.	Тур.	Max.	Unit		
t _{PLH} , t _{PHL}	Propagation Delay Time		5		190	380			
			10		90	180	ns		
			15		65	130			
t_{TLH},t_{THL}	Transition Time		5		100	200			
			10		50	100	ns		
			15		40	80			

Figure1: Hysteresis Definition, Characteristics and Test Setup.

(a) Definition of V_P , V_N and V_H

(b) Transfer characteristics of 1 of 4 gates

(c) Test setup

Figure 2: Input and Output Characteristics.

Figure 3: Typical Current and Voltage Transfer Characteristics.

Figure 4: Typical Voltage Transfer Characteristics as a Function of Temperature, and Test Circuit.

Figure 5: Typical Output Low (sink) Current Characteristics.

Figure 7: Typical Output High (source) Current Characteristic.

Figure 9: Typical Propagation Delay Time vs. Supply Voltage.

Figure 6: Minimum Output Low (sink) Current Characteristics.

Figure 8: Minimum Output High Current Characteristics.

Figure 10: Typical Transition Time vs. Load Capacitance.

Figure 13: Typical Dissipation Characteristics.

Figure 12: Typical per cent Hysteresis vs. Supply Voltage.

Figure 14 : Power Dissipation vs. Rise and Fall Times.

APPLICATIONS

Figure 15: Wave Shaper.

Figure 16: Monostable Multivibrator.

Figure 17: Astable Multivibrator.

TEST CIRCUITS

Figure 18: Quiescent Device Current.

Figure 19: Input Leakage Current.

Plastic DIP14 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7.0			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		15.24			0.600	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
H	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	1.52		2.54	0.060		0.100
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO14 MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	8.55		8.75	0.336		0.344		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.