

FEB 15 2002
PATENT & TRADEMARK OFFICE

SEQUENCE LISTING

<110> Hsu, Daniel K.
Liu, Fu-Tong
Dowling, Christopher

COPY OF PAPERS
ORIGINALLY FILED

4

<120> Galectin Expression is Induced in
Cirrhotic Liver and Hepatocellular Carcinoma

<130> DANHSU.001C1

<150> 60/129,111
<151> 1999-04-13

<150> PCT/US00/08561
<151> 2000-03-29

<160> 47

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 50
<212> PRT
<213> chicken

<400> 1
Met Gln Ala Met Lys Ala Arg Cys Trp Gln Pro His Trp Met Leu Pro
1 5 10 15
Leu Leu Pro Leu Ser Ser Pro Leu His Pro Gln Leu Ser Asp Ala Leu
20 25 30
Pro Ala His Asn Pro Gly Ala Pro Pro Pro Gln Gly Trp Asn Arg Pro
35 40 45
Pro Gly
50

<210> 2
<211> 50
<212> PRT
<213> chicken

<400> 2
Pro Gly Ala Phe Pro Ala Tyr Pro Gly Tyr Pro Gly Ala Tyr Pro Gly
1 5 10 15
Ala Pro Gly Pro Tyr Pro Gly Ala Pro Gly Pro His His Gly Pro Pro
20 25 30
Gly Pro Tyr Pro Gly Gly Pro Pro Gly Pro Tyr Pro Gly Gly Pro Pro
35 40 45
Gly Pro
50

<210> 3
<211> 27
<212> PRT
<213> nematode

<400> 3
Met Ser Ala Glu Glu Pro Lys Ser Tyr Pro Val Pro Tyr Arg Ser Val
1 5 10 15
Leu Gln Glu Lys Phe Glu Pro Gly Gln Thr Leu
20 25

<210> 4
<211> 17
<212> PRT
<213> eel

<400> 4
Ser Gly Gly Leu Gln Val Lys Asn Phe Asp Phe Thr Val Gly Lys Phe
1 5 10 15
Leu

<210> 5
<211> 43
<212> PRT
<213> chicken

<400> 5
Tyr Pro Gly Gly Pro Pro Gly Pro Tyr Pro Gly Gly Pro Thr Ala Pro
1 5 10 15
Tyr Ser Glu Ala Pro Ala Ala Pro Leu Lys Val Pro Tyr Asp Leu Pro
20 25 30
Leu Pro Ala Gly Leu Met Pro Arg Leu Leu Ile
35 40

<210> 6
<211> 33
<212> PRT
<213> rat

<400> 6
Met Ala Tyr Val Pro Ala Pro Gly Tyr Gln Pro Thr Tyr Asn Pro Thr
1 5 10 15
Leu Pro Tyr Lys Arg Pro Ile Pro Gly Gly Leu Ser Val Gly Met Ser
20 25 30
Ile

<210> 7
<211> 12
<212> PRT

<213> mouse

<400> 7

Pro Ile Pro Gly Gly Leu Ser Val Gly Met Ser Val
1 5 10

<210> 8

<211> 18

<212> PRT

<213> human

<400> 8

Met Ala Cys Gly Leu Val Ala Ser Asn Leu Asn Leu Lys Pro Gly Glu
1 5 10 15
Cys Leu

<210> 9

<211> 33

<212> PRT

<213> human

<400> 9

Met Ala Tyr Val Pro Ala Pro Gly Tyr Gln Pro Thr Tyr Asn Pro Thr
1 5 10 15
Leu Pro Tyr Tyr Gln Pro Ile Pro Gly Gly Leu Asn Val Gly Met Ser
20 25 30
Val

<210> 10

<211> 42

<212> PRT

<213> nematode

<400> 10

Ile Val Lys Gly Ser Thr Ile Asp Glu Ser Gln Arg Phe Thr Ile Asn
1 5 10 15
Leu His Ser Lys Thr Ala Asp Phe Ser Gly Asn Asp Val Pro Leu His
20 25 30
Val Ser Val Arg Phe Asp Glu Gly Lys Ile
35 40

<210> 11

<211> 41

<212> PRT

<213> eel

<400> 11

Thr Val Gly Gly Phe Ile Asn Asn Ser Pro Gln Arg Phe Ser Val Asn
1 5 10 15

Val Gly Glu Ser Met Asn Ser Leu Ser Leu His Leu Asp His Arg Phe

20 25 30

Asn Tyr Gly Ala Asp Gln Asn Thr Ile

35 40

<210> 12

<211> 39

<212> PRT

<213> chicken

<400> 12

Thr Ile Thr Gly Thr Val Asn Ser Asn Pro Asn Arg Phe Ser Leu Asp

1 5 10 15

Phe Lys Arg Gly Gln Asp Ile Ala Phe His Phe Asn Pro Arg Phe Lys

20 25 30

Glu Asp His Lys Arg Val Ile

35

<210> 13

<211> 41

<212> PRT

<213> rat

<400> 13

Tyr Ile Gln Gly Ile Ala Lys Asp Asn Met Arg Arg Phe His Val Asn

1 5 10 15

Phe Ala Val Gly Gln Asp Glu Gly Ala Asp Ile Ala Phe His Phe Asn

20 25 30

Pro Arg Phe Asp Gly Trp Asp Lys Val

35 40

<210> 14

<211> 41

<212> PRT

<213> mouse

<400> 14

Tyr Ile Gln Gly Met Ala Lys Glu Asn Met Arg Arg Phe His Val Asn

1 5 10 15

Phe Ala Val Gly Gln Asp Asp Gly Ala Asp Val Ala Phe His Phe Asn

20 25 30

Pro Arg Phe Asp Gly Trp Asp Lys Val

35 40

<210> 15

<211> 41

<212> PRT

<213> human

<400> 15

Arg Val Arg Gly Glu Val Ala Pro Asp Ala Lys Ser Phe Val Leu Asn

1 5 10 15
Leu Gly Lys Asp Ser Asn Asn Leu Cys Leu His Phe Asn Pro Arg Phe
20 25 30
Asn Ala His Gly Asp Ala Asn Thr Ile
35 40

<210> 16
<211> 41
<212> PRT
<213> human

<400> 16
Tyr Ile Gln Gly Val Ala Ser Glu His Met Lys Arg Phe Phe Val Asn
1 5 10 15
Phe Val Val Gly Gln Asp Pro Gly Ser Asp Val Ala Phe His Phe Asn
20 25 30
Pro Arg Phe Asp Gly Trp Asp Lys Val
35 40

<210> 17
<211> 44
<212> PRT
<213> nematode

<400> 17
Val Leu Asn Ser Phe Ser Asn Gly Glu Trp Gly Lys Glu Glu Arg Lys
1 5 10 15
Ser Asn Pro Ile Lys Lys Gly Asp Ser Phe Asp Ile Arg Ile Arg Ala
20 25 30
His Asp Asp Arg Phe Gln Ile Ile Val Asp His Lys
35 40

<210> 18
<211> 48
<212> PRT
<213> eel

<400> 18
Val Met Asn Ser Thr Leu Lys Gly Asp Asn Gly Trp Glu Thr Glu Gln
1 5 10 15
Arg Ser Thr Asn Phe Thr Leu Ser Ala Gly Gln Tyr Phe Glu Ile Thr
20 25 30
Leu Ser Tyr Asp Ile Asn Lys Phe Tyr Ile Asp Ile Leu Asp Gly Pro
35 40 45

<210> 19
<211> 46
<212> PRT
<213> chicken

<400> 19

Val Cys Asn Ser Met Phe Gln Asn Asn Trp Gly Glu Glu Arg Thr
1 5 10 15
Ala Pro Arg Phe Pro Phe Glu Pro Gly Thr Pro Phe Lys Leu Gln Val
20 25 30
Leu Cys Glu Gly Asp His Phe Lys Val Ala Val Asn Asp Ala
35 40 45

<210> 20
<211> 45
<212> PRT
<213> rat

<400> 20
Val Phe Asn Thr Met Gln Ser Gly Gln Trp Gly Lys Glu Glu Lys Lys
1 5 10 15
Lys Ser Met Pro Phe Gln Lys Gly His His Phe Glu Leu Val Phe Met
20 25 30
Val Met Ser Glu His Tyr Lys Val Val Val Asn Gly Thr
35 40 45

<210> 21
<211> 45
<212> PRT
<213> mouse

<400> 21
Val Phe Lys Thr Met Gln Ser Gly Gln Trp Gly Lys Glu Glu Lys Lys
1 5 10 15
Lys Ser Met Pro Phe Gln Lys Gly Lys His Phe Glu Leu Val Phe Met
20 25 30
Val Met Pro Glu His Tyr Lys Val Val Val Asn Gly Asn
35 40 45

<210> 22
<211> 46
<212> PRT
<213> human

<400> 22
Val Cys Asn Ser Lys Asp Gly Gly Ala Trp Gly Thr Glu Gln Arg Glu
1 5 10 15
Ala Val Phe Pro Phe Gln Pro Gly Ser Val Ala Glu Val Cys Ile Thr
20 25 30
Phe Asp Gln Ala Asn Leu Thr Val Lys Leu Pro Asp Gly Tyr
35 40 45

<210> 23
<211> 45
<212> PRT
<213> human

<400> 23

Val Phe Asn Thr Leu Gln Gly Gly Lys Trp Gly Ser Glu Glu Arg Lys
1 5 10 15
Arg Ser Met Pro Phe Lys Lys Gly Ala Ala Phe Glu Leu Val Phe Ile
20 25 30
Val Met Ala Glu His Tyr Lys Val Val Val Asn Gly Asn
35 40 45

<210> 24

<211> 34

<212> PRT

<213> nematode

<400> 24

Glu Phe Lys Asp Tyr Glu His Arg Leu Pro Leu Ser Ser Ile Ser His
1 5 10 15
Leu Ser Ile Asp Gly Asp Leu Tyr Leu Asn His Val His Trp Gly Gly
20 25 30
Lys Tyr

<210> 25

<211> 29

<212> PRT

<213> eel

<400> 25

Asn Leu Glu Phe Pro Asn Arg Tyr Ser Lys Glu Phe Leu Pro Phe Leu
1 5 10 15
Ser Leu Ala Gly Asp Ala Arg Leu Thr Leu Val Lys Glu
20 25

<210> 26

<211> 34

<212> PRT

<213> chicken

<400> 26

His Leu Leu Gln Phe Asn Phe Arg Glu Lys Leu Asn Gly Ile Thr
1 5 10 15
Lys Leu Cys Ile Ala Gly Asp Ile Thr Leu Thr Ser Val Leu Thr Ser
20 25 30
Met Ile

<210> 27

<211> 47

<212> PRT

<213> rat

<400> 27

Pro Phe Tyr Glu Tyr Gly His Arg Leu Pro Leu Gln Met Val Thr His
1 5 10 15
Leu Gln Val Asp Gly Asp Leu Glu Leu Gln Ser Ile Asn Phe Leu Gly
20 25 30
Gly Gln Pro Ala Ala Ser Gln Tyr Pro Gly Thr Met Thr Ile Pro
35 40 45

<210> 28
<211> 47
<212> PRT
<213> mouse

<400> 28
Ser Phe Tyr Glu Tyr Gly His Arg Leu Pro Val Gln Met Val Thr His
1 5 10 15
Leu Gln Val Asp Gly Asp Leu Glu Leu Gln Ser Ile Asn Phe Leu Gly
20 25 30
Gly Gln Pro Ala Ala Ala Pro Tyr Ala Gly Ala Met Thr Ile Pro
35 40 45

<210> 29
<211> 30
<212> PRT
<213> human

<400> 29
Glu Phe Lys Phe Pro Asn Arg Leu Asn Leu Glu Ala Ile Asn Tyr Met
1 5 10 15
Ala Ala Asp Gly Asp Phe Lys Ile Lys Cys Val Ala Phe Asp
20 25 30

<210> 30
<211> 45
<212> PRT
<213> human

<400> 30
Pro Phe Tyr Glu Tyr Gly His Arg Leu Pro Leu Gln Met Val Thr His
1 5 10 15
Leu Gln Val Asp Gly Asp Leu Gln Leu Gln Ser Ile Asn Phe Ile Gly
20 25 30
Gly Gln Pro Leu Arg Pro Gln Gly Pro Pro Met Met Pro
35 40 45

<210> 31
<211> 23
<212> PRT
<213> nematode

<400> 31
Tyr Pro Val Pro Tyr Glu Ser Gly Leu Ala Asn Gly Leu Pro Val Gly

1 5 10
Lys Ser Leu Leu Val Phe Gly
20

15

<210> 32
<211> 47
<212> PRT
<213> rat

<400> 32
Ala Tyr Pro Ser Ala Gly Tyr Asn Pro Gln Met Asn Ser Leu Pro Val
1 5 10 15
Met Ala Gly Pro Pro Ile Phe Asn Pro Pro Val Pro Tyr Val Gly Thr
20 25 30
Leu Gln Gly Gly Leu Thr Ala Arg Arg Thr Ile Ile Ile Lys Gly
35 40 45

<210> 33
<211> 50
<212> PRT
<213> mouse

<400> 33
Ala Tyr Pro Ala Gly Ser Pro Gly Tyr Asn Pro Pro Gln Met Asn Thr
1 5 10 15
Leu Pro Val Met Thr Gly Pro Pro Val Phe Asn Pro Arg Val Pro Tyr
20 25 30
Val Gly Ala Leu Gln Gly Gly Leu Thr Leu Pro Arg Thr Ile Ile Ile
35 40 45
Lys Gly
50

<210> 34
<211> 47
<212> PRT
<213> human

<400> 34
Pro Tyr Pro Gly Pro Gly His Cys His Gln Gln Leu Asn Ser Leu Pro
1 5 10 15
Thr Met Glu Gly Pro Pro Thr Phe Asn Pro Val Pro Tyr Phe Gly Arg
20 25 30
Leu Gln Gly Gly Leu Thr Ala Arg Arg Thr Ile Ile Ile Lys Gly
35 40 45

<210> 35
<211> 49
<212> PRT
<213> nematode

<400> 35

Thr Val Glu Lys Lys Ala Lys Arg Phe His Val Asn Leu Leu Arg Lys
1 5 10 15
Asn Gly Asp Ile Ser Phe His Phe Asn Pro Arg Phe Asp Glu Lys His
20 25 30
Val Ile Arg Asn Ser Leu Ala Ala Asn Glu Trp Gly Asn Glu Glu Arg
35 40 45
Glu

<210> 36
<211> 49
<212> PRT
<213> rat

<400> 36
Tyr Val Leu Pro Thr Ala Lys Asn Leu Ile Ile Asn Phe Lys Val Gly
1 5 10 15
Ser Thr Gly Asp Ile Ala Phe His Met Asn Pro Arg Ile Gly Asp Cys
20 25 30
Val Val Arg Asn Ser Tyr Met Asn Gly Ser Trp Gly Ser Glu Glu Arg
35 40 45
Lys

<210> 37
<211> 49
<212> PRT
<213> mouse

<400> 37
Tyr Val Leu Pro Thr Ala Arg Asn Phe Val Ile Asn Phe Lys Val Gly
1 5 10 15
Ser Ser Gly Asp Ile Ala Leu His Leu Asn Pro Arg Ile Gly Asp Ser
20 25 30
Val Val Arg Asn Ser Phe Met Asn Gly Ser Trp Gly Ala Glu Glu Arg
35 40 45
Lys

<210> 38
<211> 49
<212> PRT
<213> human

<400> 38
Tyr Val Pro Pro Thr Gly Lys Ser Phe Ala Ile Asn Phe Lys Val Gly
1 5 10 15
Ser Ser Gly Asp Ile Ala Leu His Ile Asn Pro His Gly Asn Gly Thr
20 25 30
Val Val Arg Asn Ser Leu Leu Asn Gly Ser Trp Gly Ser Glu Glu Lys
35 40 45
Lys

<210> 39
<211> 48
<212> PRT
<213> nematode

<400> 39
Ile Pro Tyr Asn Pro Phe Gly Ala Gly Gln Phe Phe Asp Leu Ser Ile
1 5 10 15
Arg Cys Gly Thr Asp Arg Phe Lys Val Phe Ala Asn Gly Gln His Leu
20 25 30
Phe Asp Phe Ser His Arg Phe Gln Ala Phe Gln Arg Val Asp Met Leu
35 40 45

<210> 40
<211> 48
<212> PRT
<213> rat

<400> 40
Val Ala Tyr Asn Pro Phe Gly Pro Gly Gln Phe Phe Asp Leu Ser Ile
1 5 10 15
Arg Cys Gly Met Asp Arg Phe Lys Val Phe Ala Asn Gly Gln His Leu
20 25 30
Phe Asp Phe Ser His Arg Phe Gln Ala Phe Gln Met Val Asp Thr Leu
35 40 45

<210> 41
<211> 48
<212> PRT
<213> mouse

<400> 41
Thr Thr His Asn Pro Phe Gly Pro Gly Gln Phe Phe Asp Leu Ser Ile
1 5 10 15
Arg Cys Gly Leu Asp Arg Phe Lys Val Tyr Ala Asn Gly Gln His Leu
20 25 30
Phe Asp Phe Ala His Pro Ser Arg Ala Phe Gln Arg Val Asp Thr Leu
35 40 45

<210> 42
<211> 48
<212> PRT
<213> human

<400> 42
Thr Thr His Asn Pro Phe Gly Pro Gly Gln Phe Phe Asp Leu Ser Ile
1 5 10 15
Arg Cys Gly Leu Asp Arg Phe Lys Val Tyr Ala Asn Gly Gln His Leu
20 25 30

Phe Asp Phe Ala His Pro Ser Arg Ala Phe Gln Arg Val Asp Thr Leu
35 40 45

<210> 43
<211> 14
<212> PRT
<213> nematode

<400> 43
Gln Ile Ser Gly Asp Ile Glu Leu Ser Gly Ile Gln Ile Gln
1 5 10

<210> 44
<211> 13
<212> PRT
<213> rat

<400> 44
Glu Ile Lys Gly Asp Ile Thr Leu Ser Tyr Val Gln Ile
1 5 10

<210> 45
<211> 8
<212> PRT
<213> mouse

<400> 45
Glu Ile Asn Gly Asp Ile Thr Leu
1 5

<210> 46
<211> 13
<212> PRT
<213> human

<400> 46
Glu Ile Gln Gly Asp Val Thr Leu Ser Tyr Val Gln Ile
1 5 10

<210> 47
<211> 914
<212> PRT
<213> human

<400> 47
Cys Cys Ala Gly Cys Cys Ala Ala Cys Gly Ala Gly Cys Gly Ala
1 5 10 15
Ala Ala Ala Thr Gly Gly Cys Ala Gly Ala Cys Ala Ala Thr Thr Thr
20 25 30
Thr Thr Cys Gly Cys Thr Cys Cys Ala Thr Gly Ala Thr Gly Cys Gly

35 40 45
 Thr Thr Ala Thr Cys Thr Gly Gly Gly Thr Cys Thr Gly Gly Ala Ala
 50 55 60
 Ala Cys Cys Cys Ala Ala Ala Cys Cys Cys Thr Cys Ala Ala Gly Gly
 65 70 75 80
 Ala Thr Gly Gly Cys Cys Thr Gly Gly Cys Gly Cys Ala Thr Gly Gly
 85 90 95
 Gly Gly Gly Ala Ala Cys Cys Ala Gly Cys Cys Thr Gly Cys Thr Gly
 100 105 110
 Gly Gly Gly Cys Ala Gly Gly Gly Gly Cys Thr Ala Cys Cys Cys
 115 120 125
 Ala Gly Gly Gly Cys Cys Thr Thr Cys Cys Thr Ala Thr Cys Cys Thr
 130 135 140
 Gly Gly Gly Gly Cys Cys Thr Ala Cys Cys Cys Cys Gly Gly Gly Cys
 145 150 155 160
 Ala Gly Gly Cys Ala Cys Cys Cys Cys Ala Gly Gly Gly Cys
 165 170 175
 Thr Thr Ala Thr Cys Cys Thr Gly Gly Ala Cys Ala Gly Gly Cys Ala
 180 185 190
 Cys Cys Thr Cys Cys Ala Gly Gly Cys Cys Cys Thr Ala Cys Cys
 195 200 205
 Ala Thr Gly Gly Ala Gly Cys Ala Cys Cys Thr Gly Gly Ala Gly Cys
 210 215 220
 Thr Thr Ala Thr Cys Cys Gly Gly Ala Gly Cys Ala Cys Cys Thr
 225 230 235 240
 Gly Cys Ala Cys Cys Thr Gly Gly Ala Gly Thr Cys Thr Ala Cys Cys
 245 250 255
 Cys Ala Gly Gly Cys Cys Ala Cys Cys Cys Ala Gly Cys Gly Gly
 260 265 270
 Cys Cys Cys Thr Gly Gly Gly Cys Cys Thr Ala Cys Cys Cys Ala
 275 280 285
 Thr Cys Thr Thr Cys Thr Gly Gly Ala Cys Ala Gly Cys Cys Ala Ala
 290 295 300
 Gly Thr Gly Cys Cys Cys Cys Gly Gly Ala Gly Cys Cys Thr Ala
 305 310 315 320
 Cys Cys Cys Thr Gly Cys Cys Ala Cys Thr Gly Gly Cys Cys Cys
 325 330 335
 Thr Ala Thr Gly Gly Cys Cys Cys Cys Thr Gly Cys Thr Gly
 340 345 350
 Gly Gly Cys Cys Ala Cys Thr Gly Ala Thr Thr Gly Thr Gly Cys Cys
 355 360 365
 Thr Thr Ala Thr Ala Ala Cys Cys Thr Gly Cys Cys Thr Thr Gly
 370 375 380
 Cys Cys Thr Gly Gly Gly Gly Ala Gly Thr Gly Gly Thr Gly Cys
 385 390 395 400
 Cys Thr Cys Gly Cys Ala Thr Gly Cys Thr Gly Ala Thr Ala Ala Cys
 405 410 415
 Ala Ala Thr Thr Cys Thr Gly Gly Cys Ala Cys Gly Gly Thr Gly
 420 425 430
 Ala Ala Gly Cys Cys Cys Ala Ala Thr Gly Cys Ala Ala Ala Cys Ala
 435 440 445
 Gly Ala Ala Thr Thr Gly Cys Thr Thr Ala Gly Ala Thr Thr Thr
 450 455 460
 Cys Cys Ala Ala Ala Gly Ala Gly Gly Ala Ala Ala Thr Gly Ala Thr
 465 470 475 480

Gly Thr Thr Gly Cys Cys Thr Thr Cys Cys Ala Cys Thr Thr Ala
485 490 495
Ala Cys Cys Cys Ala Cys Gly Cys Thr Thr Cys Ala Ala Thr Gly Ala
500 505 510
Gly Ala Ala Cys Ala Ala Cys Ala Gly Gly Ala Gly Ala Gly Thr Cys
515 520 525
Ala Thr Thr Gly Thr Thr Gly Cys Ala Ala Thr Ala Cys Ala Ala
530 535 540
Ala Gly Cys Thr Gly Gly Ala Thr Ala Ala Thr Ala Ala Cys Thr Gly
545 550 555 560
Gly Gly Gly Ala Ala Gly Gly Ala Ala Gly Ala Ala Ala Gly Ala
565 570 575
Cys Ala Gly Thr Cys Gly Gly Thr Thr Thr Cys Cys Ala Thr
580 585 590
Thr Thr Gly Ala Ala Ala Gly Thr Gly Gly Ala Ala Ala Cys Cys
595 600 605
Ala Thr Thr Cys Ala Ala Ala Ala Thr Ala Cys Ala Ala Gly Thr Ala
610 615 620
Cys Thr Gly Gly Thr Thr Gly Ala Ala Cys Cys Thr Gly Ala Cys Cys
625 630 635 640
Ala Cys Thr Thr Cys Ala Ala Gly Gly Thr Thr Gly Cys Ala Gly Thr
645 650 655
Gly Ala Ala Thr Gly Ala Thr Gly Cys Thr Cys Ala Cys Thr Thr Gly
660 665 670
Thr Thr Gly Cys Ala Gly Thr Ala Cys Ala Ala Thr Cys Ala Thr Cys
675 680 685
Gly Gly Gly Thr Thr Ala Ala Ala Ala Ala Cys Thr Cys Ala Ala
690 695 700
Thr Gly Ala Ala Ala Thr Cys Ala Gly Cys Ala Ala Cys Thr Gly
705 710 715 720
Gly Gly Ala Ala Thr Thr Thr Cys Thr Gly Gly Thr Gly Ala Cys Ala
725 730 735
Thr Ala Gly Ala Cys Cys Thr Cys Ala Cys Cys Ala Gly Thr Gly Cys
740 745 750
Thr Thr Cys Ala Thr Ala Thr Ala Cys Cys Ala Thr Gly Ala Thr Ala
755 760 765
Thr Ala Ala Thr Cys Thr Gly Ala Ala Ala Gly Gly Gly Cys Ala
770 775 780
Gly Ala Thr Thr Ala
785 790 795 800
Ala Ala Ala Gly Ala Ala Ala Thr Cys Thr Ala Ala Ala Cys Cys Thr Thr
805 810 815
Ala Cys Ala Thr Gly Thr Gly Thr Ala Ala Ala Gly Gly Thr Thr Thr
820 825 830
Cys Ala Thr Gly Thr Thr Cys Ala Cys Thr Gly Thr Gly Ala Gly Thr
835 840 845
Gly Ala Ala Ala Ala Thr Thr Thr Cys Ala Thr Cys Ala Thr Thr Cys
850 855 860
Ala Thr Cys Ala Ala Ala Thr Ala Thr Cys Cys Cys Thr Cys Thr Gly
865 870 875 880
Thr Ala Ala Gly Thr Cys Ala Thr Cys Thr Ala Cys Thr Thr Ala Ala
885 890 895
Thr Ala Ala Ala Thr Ala Thr Thr Ala Cys Ala Gly Thr Gly Ala Ala
900 905 910
Ala Gly