Math. - CC 3 - Correction

PROBLÈME

On note $I = I_3$ la matrice identité de $\mathcal{M}_3(\mathbb{R})$, et M la matrice :

$$M = \begin{pmatrix} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{pmatrix}$$

On cherche à calculer les puissances entières M^n de M par trois méthodes différentes.

PARTIE 1: Première méthode

1. Soit la matrice $A = \frac{1}{4}(M - I)$. Calculer A^2 , et exprimer M en fonction de A et I.

$$A = \begin{pmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad A^2 = \begin{pmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix} = -A \quad \text{et} \quad M = 4A + I.$$

2. En déduire, à l'aide d'un raisonnement par récurrence, qu'il existe une suite réelle (u_n) telle que

$$\forall n \in \mathbb{N}, \quad M^n = I + u_n A$$

Pour $n \in \mathbb{N}$, on note $P(n) : \exists u_n \in \mathbb{R}$, $M^n = I + u_n A$.

- $u_0 = 0$ et $u_1 = 4$ donc P(0) et P(1) sont vraies.
- Soit $n \in \mathbb{N}$; on suppose P(n) vraie. Alors on a :

 $M^{n+1} = M^n M = (I + u_n A)(I + 4A) = I + (u_n + 4)A + 4u_n A^2$. Comme $A^2 = -A$, on en déduit que $M^{n+1} = I + (-3u_n + 4)A$.

En posant $u_{n+1} = -3u_n + 4 \in \mathbb{R}$ on a $M^{n+1} = I + u_{n+1}A$ donc P(n+1) est vraie.

On a montré par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}$.

3. Vérifier que (u_n) est une suite arithmético-géométrique, et exprimer son terme général u_n en fonction de $n \in \mathbb{N}$. Dans la question précédente, on a montré que pour $n \in \mathbb{N}$, $u_{n+1} = -3u_n + 4$, donc (u_n) est une suite arithmético-géométrique.

On cherche α tel que $\alpha = -3\alpha + 4$, c'est-à-dire $\alpha = 1$.

On a alors pour $n \in \mathbb{N}$, $u_n - \alpha = (-3)^n (u_0 - \alpha)$, soit enfin: $\forall n \in \mathbb{N}$, $u_n = 1 - (-3)^n$.

4. En déduire l'expression de M^n pour $n \in \mathbb{N}$.

De ce qui précède, on obtient : $\forall n \in \mathbb{N}, M^n = \begin{pmatrix} -1 + 2(-3)^n & 0 & -2 + 2(-3)^n \\ 1 - (-3)^n & 1 & 1 - (-3)^n \\ 1 - (-3)^n & 0 & 2 - (-3)^n \end{pmatrix}$

PARTIE 2 : Deuxième méthode

1. Soit la matrice $J = \frac{1}{4}(M+3I)$. Calculer J^2 puis J^n pour $n \ge 1$.

 $J^2 = J$; une récurrence immédiate donne $J^n = J$ pour tout $n \ge 1$.

2. Déterminer, à l'aide du binôme de Newton, une expression de M^n en fonction de n, I et J pour $n \ge 1$. On a M = 4J - 3I. Comme IJ = JI on applique la formule du binôme de Newton :

$$\forall n \ge 1, \quad M^n = \sum_{k=0}^n \binom{n}{k} 4^k (-3)^{n-k} J^k = (-3)^n I + \left(\sum_{\substack{k=1 \ (4-3)^n - (-3)^n}}^n \binom{n}{k} 4^k (-3)^{n-k}\right) J = (-3)^n I + (1 - (-3)^n) J$$

3. Vérifier la validité de ce résultat avec la première méthode.

Le résultat précédent est conforme à celui obtenu par la première méthode.

PARTIE 3: Troisième méthode

- 1. On considère le système linéaire homogène S_{λ} de matrice associée $M \lambda I$.
 - a. Résoudre S_{-3} et montrer que les solutions $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ s'écrivent sous la forme zC_1 où $C_1 = \begin{pmatrix} \bullet \\ \bullet \\ 1 \end{pmatrix}$, et où les \bullet sont des entiers relatifs à déterminer.

La matrice augmentée de
$$S_{-3}$$
 est :
$$\begin{pmatrix} -4 & 0 & -8 & 0 \\ 4 & 4 & 4 & 0 \\ 4 & 0 & 8 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 donc les solutions de S_{-3} sont les
$$\begin{pmatrix} -2z \\ z \\ z \end{pmatrix} = zC_1 \text{ avec } z \in \mathbb{R} \text{ et } C_1 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

b. Résoudre S_1 et montrer que les solutions $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ s'écrivent sous la forme $yC_2 + zC_3$ où $C_2 = \begin{pmatrix} \bullet \\ 1 \\ \bullet \end{pmatrix}$ et $C_3 = \begin{pmatrix} \bullet \\ 1 \\ 1 \end{pmatrix}$, et où les \bullet sont des entiers relatifs à déterminer.

La matrice augmentée de
$$S_1$$
 est : $\begin{pmatrix} -8 & 0 & -8 & 0 \\ 4 & 0 & 4 & 0 \\ 4 & 0 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ donc les solutions de S_1 sont les $\begin{pmatrix} -z \\ y \\ z \end{pmatrix} = yC_2 + zC_3$ avec $y, z \in \mathbb{R}, C_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} etC_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

- **2.** Soit P la matrice de $\mathcal{M}_3(\mathbb{R})$ dont les colonnes dans l'ordre sont C_1, C_2 et C_3 .
 - a. Montrer que P est inversible. On ne demande pas de calculer P^{-1} .

P
$$\sim \begin{pmatrix} -2 & 0 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 donc P est de rang 3; elle est donc inversible.

b. Rappeler la valeur de $P^{-1}P$. Sans calculer P^{-1} , en déduire $P^{-1}C_1$, $P^{-1}C_2$ et $P^{-1}C_3$.

$$\begin{split} P^{-1}P &= I \text{ donc } P^{-1}\left(C_1|C_2|C_3\right) = I \Leftrightarrow \left(P^{-1}C_1|P^{-1}C_2|P^{-1}C_3\right) = I \,; \text{ on en d\'eduit } : \\ P^{-1}C_1 &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, P^{-1}C_2 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; P^{-1}C_3 &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \end{split}$$

c. Que valent MC_1 , MC_2 et MC_3 ? En déduire MP puis $D = P^{-1}MP$, sans calculer P^{-1} .

$$C_1$$
 est solution de S_{-3} donc on a : $(M+3I)C_1=0$ donc $MC_1=-3C_1$; C_2 et C_3 sont solutions de S_1 donc on a : $(M-I)C_2=(M-I)C_3=0$ donc $MC_2=C_2$ et $MC_3=C_3$.

On en déduit :
$$MP = M(C_1|C_2|C_3) = (MC_1|MC_2|MC_3) = (-3C_1|C_2|C_3)$$
 puis $D = P^{-1}MP = P^{-1}(-3C_1|C_2|C_3)(-3P^{-1}C_1|P^{-1}C_2|P^{-1}C_3) = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$D = P^{-1}MP = P^{-1} \left(-3C_1|C_2|C_3 \right) \left(-3P^{-1}C_1|P^{-1}C_2|P^{-1}C_3 \right) = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

d. Calculer D^n , puis en déduire une expression de M^n en fonction de D^n pour $n \in \mathbb{N}$.

On a immédiatement
$$D^n = \begin{pmatrix} (-3)^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, puis par récurrence,

$$\forall n \in \mathbb{N}, \quad M^n = PD^nP^{-1}$$

EXERCICE 1

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

et la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1, \quad \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$$

1. a. Justifier que f est du classe C^1 sur $]-\infty,0[$ et sur $]0,+\infty[$ et déterminer f'(x) pour $x\in\mathbb{R}^*$.

D'après les théorèmes généraux f est le quotient de fonctions de classe C^1 sur \mathbb{R}^* , le dénominateur ne s'annulant pas. On en déduit, par quotient, que f est de classe C^1 sur $]-\infty;0[$ et sur $]0,+\infty[$ et

$$\forall x \in \mathbb{R}^*, \quad f'(x) = \frac{e^x(1-x)-1}{(e^x-1)^2}$$

b. Montrer que f est continue et dérivable en 0, et que $f'(0) = -\frac{1}{2}$

$$\mathrm{e}^x - 1 = \mathop{=}_{x \to 0} x + \frac{1}{2} x^2 + o(x^2) \text{ donc } \frac{x}{\mathrm{e}^x - 1} = \frac{1}{x \to 0} \frac{1}{1 + \frac{1}{2} x + o(x)} = 1 - \frac{1}{2} x + o(x).$$

f admet donc un $DL_1(0)$. On en déduit que f est continue et dérivable en 0, avec $f'(0) = -\frac{1}{2}$.

c. f est-elle de classe C^1 sur \mathbb{R} ? Justifier la réponse.

On a : $(e^x - 1)^2 \underset{x \to 0}{\sim} x^2$ et $e^x(1 - x) - 1 \underset{x \to 0}{\sim} -\frac{1}{2}x^2$ donc $f'(x) \underset{x \to 0}{\sim} -\frac{1}{2}x^2$. Ainsi, $\lim_{x \to 0} f'(x) = -\frac{1}{2} = f'(0)$. Comme on avait déjà f de classe C^1 sur $]-\infty$, 0[et sur]0, $+\infty[$ on en déduit que f est de classe C^1 sur \mathbb{R} .

2. On admet que

$$\forall x \in \mathbb{R}^+, \quad -\frac{1}{2} \le f'(x) < 0$$

a. Montrer que f admet un unique point fixe α et le déterminer.

 $f(0) \neq 0$ donc 0 n'est pas un point fixe de f et pour $x \neq 0$ on a : $f(x) = x \Leftrightarrow x(2 - e^x) = 0 \Leftrightarrow x = \ln(2) \text{ car } x \neq 0.$ Ainsi, f admet ln(2) pour unique point fixe.

- **b.** Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$, puis que $\forall n \in \mathbb{N}, |u_n \alpha| \leq \frac{1}{2^n}(1 \alpha)$.
 - D'après ce qui précède, la fonction f est dérivable sur \mathbb{R}^+ , et pour $x \in \mathbb{R}^+$, $|f'(x)| \leq \frac{1}{2}$

L'inégalité des accroissements finis donne pour tout $x \in \mathbb{R}^+$, $|f(x) - f(\alpha)| \le \frac{1}{2}|x - \alpha|$. Pour $x \ge 0$, $e^x - 1 \ge 0$; on en déduit que $f(x) \ge 0$ donc que l'intervalle $[0, +\infty[$ est stable par f. $u_0 \in \mathbb{R}^+$ donc pour tout $n \in \mathbb{N}, u_n \geq 0$.

On en déduit que $\forall n \in \mathbb{N}, |f(u_n) - f(\alpha)| \leq \frac{1}{2}|u_n - \alpha|$ c'est-à-dire $|u_{n+1} - \alpha| \leq \frac{1}{2}|u_n - \alpha|$.

• Pour $n \in \mathbb{N}$, on note $H_n : |u_n - \alpha| \le \frac{1}{2n}(1 - \alpha)$. H_0 est clairement vraie car $u_0 = 1$.

Soit $n \in \mathbb{N}$, on suppose H_n vraie. On a donc $|u_{n+1} - \alpha| \le \frac{1}{2}|u_n - \alpha| \le \frac{1}{2}\left(\frac{1}{2}\right)^n(1-\alpha)$ donc H_{n+1} est

Par principe de récurrence, H_n est vraie pour tout $n \in \mathbb{N}$.

c. Que peut-on en déduire?

 $\lim_{n\to+\infty}\frac{1}{2^n}=0 \text{ donc le théorème d'encadrement donne } (u_n) \text{ convergente vers } \alpha=\ln(2).$

EXERCICE 2

Soit q la fonction définie sur \mathbb{R} par

$$g(x) = \begin{cases} \frac{\operatorname{ch}(x) - 1}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

1. Montrer que g est continue et dérivable en 0.

$$\operatorname{ch}(x) \underset{x \to 0}{=} 1 + \frac{1}{2}x^2 + o(x^2) \operatorname{donc} g(x) \underset{x \to 0}{=} \frac{1}{2}x + o(x).$$
g admet un $DL_1(0)$. On en déduit que g est continue, et dérivable en 0 (avec $g'(0) = \frac{1}{2}$.)

2. Montrer que g est de classe C^1 sur \mathbb{R} .

D'après les théorèmes généraux et la question précédente, g est de classe C^1 sur $]-\infty,0[$ et sur $]0,+\infty[$ et elle est dérivable en 0

Pour
$$x \neq 0$$
, $g'(x) = \frac{x\operatorname{sh}(x) - \operatorname{ch}(x) + 1}{x^2}$.

$$x \operatorname{sh}(x) - \operatorname{ch}(x) + 1 = \frac{1}{x \to 0} \frac{1}{2} x^2 + o(x^2) \operatorname{donc} g'(x) = \frac{1}{x \to 0} \frac{1}{2} + o(1).$$

On en déduit que $\lim_{x\to 0} g'(x) = g'(0)$ donc que g' est continue en 0, et par suite que g est de classe C^1 sur \mathbb{R} .

3. On note \mathscr{C} la courbe représentative de la fonction g dans un repère du plan.

Déterminer une équation de la tangente à $\mathscr C$ en 0, ainsi que leur position relative.

$$\operatorname{ch}(x) \underset{x \to 0}{=} 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4) \text{ donc } g(x) \underset{x \to 0}{=} \frac{1}{2}x + \frac{1}{24}x^3 + o(x^3).$$

On en déduit que la courbe de g admet pour tangente au point d'abscisse 0, la droite d'équation $y=\frac{1}{2}x$ et qu'au voisinage de ce point la courbe est située en-dessous de la tangente pour x<0 (car alors $\frac{x^3}{24}<0$), et au-dessus pour x>0 (car alors $\frac{x^3}{24}>0$.)

EXERCICE 3

f désigne une fonction de classe C^{n+1} sur $\mathbb{R},$ avec $n\in\mathbb{N}.$

On suppose que $f^{(k)}(0) = 0$ pour $k \in [0, n+1]$, et on pose pour $x \in \mathbb{R}$:

$$g(x) = \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

1. Montrer que g est de classe C^0 sur \mathbb{R} .

f étant continue sur \mathbb{R} , g est continue sur \mathbb{R}^* comme quotient de fonctions continues, le dénominateur ne s'annulant pas. f est de classe C^{n+1} sur \mathbb{R} donc elle est au moins dérivable en 0. On en déduit que le taux d'accroissement de f en 0 admet une limite égale au nombre dérivé, c'est-à-dire $\lim_{x\to 0} \frac{f(x)}{x} = f'(0) = 0$, et donc que g est continue en 0.

2. Soient $x \in \mathbb{R}^*$, et $p \in [0, n]$. Démontrer l'égalité

$$g^{(p)}(x) = \sum_{k=0}^{p} {p \choose k} (-1)^k k! \frac{f^{(p-k)}(x)}{x^{k+1}}$$

Pour $x \neq 0$, on note $h(x) = \frac{1}{x}$. Les théorèmes généraux donnent h de classe C^{∞} sur $]-\infty,0[$ et sur $]0,+\infty[$. $\forall x \neq 0, h'(x) = \frac{-1}{x^2}$.

Soit
$$n \in \mathbb{N}^*$$
; $\left(\forall x \neq 0, h^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \right) \Rightarrow \left(\forall x \neq 0, h^{(n+1)}(x) = -\frac{(-1)^n n! (n+1)}{x^{n+2}} = \frac{(-1)^{n+1} (n+1)!}{x^{n+2}} \right)$.

Par principe de récurrence, on a $\forall x \neq 0, h^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$.

La formule de Leibniz donne, pour $p \in [\![1,n[\!]\!]$ et $x \neq 0$:

$$g^{(p)}(x) = (hf)^{(p)}(x) = \sum_{k=0}^{p} \binom{p}{k} h^{(k)}(x) f^{(p-k)}(x) = \sum_{k=0}^{p} \binom{p}{k} (-1)^k k! \frac{f^{(p-k)}(x)}{x^{k+1}}$$

3. Justifier que pour $0 \le k \le p \le n$ il existe une fonction $\varepsilon_{p,k}$ telle que $\lim_{x \to 0} \varepsilon_{p,k}(x) = 0$ et

$$\forall x \in \mathbb{R}, f^{(p-k)}(x) = x^{k+1} \varepsilon_{p,k}(x)$$

Soient $p \in [0, n]$ et $k \in [0, p]$.

f est de classe C^{n+1} sur \mathbb{R} donc $f^{(p-k)}$ est de classe $C^{n+1-(p-k)}$ donc au moins de classe C^{k+1} sur \mathbb{R} . D'après le théorème de Taylor Young, elle admet donc un développement limité en 0 à l'ordre k+1 et on a :

$$f^{(p-k)}(x) \underset{x \to 0}{=} \sum_{j=0}^{k+1} \frac{f^{(p-k+j)}(0)}{j!} x^j + o(x^{k+1}).$$

Comme $f^{(k)}(0) = 0$ pour $k \in [0, n+1]$ on a donc $f^{(p-k)}(x) = o(x^{k+1})$, ce qui est équivalent au résultat attendu.

4. Montrer que $\lim_{x\to 0} g^{(p)}(x) = 0$ pour $p \in [0, n]$.

Soit $p \in [0, n]$. D'après ce qui précède, pour $x \in \mathbb{R}^*$, on a :

$$g^{(p)}(x) = \sum_{k=0}^{p} {p \choose k} (-1)^k k! \varepsilon_{p,k}(x)$$
 ainsi, par somme, $\lim_{x \to 0} g^{(p)}(x) = 0$.

5. En déduire que la fonction g est de classe C^n sur \mathbb{R} et donner toutes ses dérivées en 0 jusqu'à l'ordre n.

D'après les théorèmes généraux, g est de classe C^n sur $]-\infty,0[$ et sur $]0,+\infty[$.

On a déjà montré que g est continue en 0 et g(0) = 0.

Soit $p \in [0, n-1]$. On suppose g de classe C^p sur \mathbb{R} , et pour $k \in [0, p]$, $g^{(k)}(0) = 0$. Les théorèmes généraux donnent $g^{(p)}$ de classe C^1 sur $]-\infty, 0[$ et sur $]0, +\infty[$, et le résultat précédent donne $\lim_{x\to 0} g^{(p+1)}(x) = 0$. Le théorème de prolongement de la dérivée donne donc $g^{(p)}$ de classe C^1 sur $\mathbb R$ avec

 $g^{(p+1)}(0) = 0$. Ainsi g est de classe C^{p+1} et toutes les dérivées de g jusqu'à l'ordre p+1 sont nulles en 0.

Par récurrence finie, on a donc q de classe C^n et toutes les dérivées successives de q sont nulles en 0.