1.2 Functions and Graphs

A. Relations, Functions, Domain and Range

Relation: any set of ordered pairs (x, y) is called a relation in x and y.

- ✓ Some relations are functions and some are not
- ✓ The <u>domain</u> is all the x values
- ✓ The <u>range</u> is all the y values
 - Hint: "d" comes before "r" in the alphabet just like x comes before y so "domain" goes with x and "range" goes with y.
 - Sometimes we can make a list of all the x and y values and use this notation to identify the domain and range:

```
D = \{ , , , \}  and R = \{ , , , \}
```

o Sometimes we can't make a list of all the x and y values and we use

Assignment domain both numbers in the interpal are from the x-axis.

https://powcoder.com interval are from the

- We use parenthesis (,) for the interval when the small or Addar when been parenthesis (an open circle.
 - We use brackets [,] for the interval when the small or large numbers are included in the domain and range. On a graph we see this as a closed circle.
 - If the small number for the interval is $-\infty$ or the large number for the interval is ∞ we always use (or) for the interval.

Function: a rule that assigns to each element, x, in a set A, exactly one element, f(x), in a set B.

- ✓ This means a function CANNOT repeat any x-coordinates but CAN repeat
 y-coordinates.
- ✓ The Vertical Line Test can be used to determine if a graphed relation is a function. If a vertical line passes through the graph two or more times, the graph fails the vertical line test which means the relation is NOT a function.

Determine if the relation is a function. Then find the domain and range.

Add WeChat powcoder

5.

6.

7.

8.

Assignment Project Exam Help

Use the Vertical Line Test to determine if the relation is a function.

9.

s://powcoder

11.

12.

Write the domain and range using interval notation.

13.

14.

17.

18.

B. Evaluating Functions

19. If
$$f(x) = -x^2 + 5$$
 find $f(-4)$ 20. If $g(x) = -3x - 4$ find $g(2)$

20. If
$$g(x) = -3x - 4$$
 find $g(2)$

21. If
$$h(x) = 2x^3 - 1$$
 find $h(-3)$

21. If
$$h(x) = 2x^3 - 1$$
 find $h(-3)$ 22. If $k(x) = \frac{x-4}{x^2 - 5x - 36}$ find $k(-2)$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder
23. If $f(x) = 3x^2 - 5$ find f(4n)24. If $h(x) = \frac{x+3}{2x+1}$ find h(x+1)

23. If
$$f(x) = 3x^2 - 5$$
 find $f(4n)$

24. If
$$h(x) = \frac{x+3}{2x+1}$$
 find $h(x+1)$

25. If
$$f(x) = 3x^2 - 2x$$
 find $f(-x)$ 26. If $g(x) = x - 3$ find $g(z + 5)$

26. If
$$g(x) = x - 3$$
 find $g(z + 5)$

C. Finding the domain of an equation

- 1) Is it a fraction?
 - a. Find the excluded values. (Set the denominator equal to zero and solve for *x*.)
 - b. Make a list of all the excluded values.
- 2) Is it an even index radical?
 - a. Set the inside expression ≥ 0 and solve for x.
 - b. Domain: $[__,\infty)$ or it could be $(-\infty,__]$

Find all the values of x that are NOT in the domain. If there is more than one value, separate them with commas.

27.
$$f(x) = \frac{2x+1}{x^2-9}$$
 28. $g(x) = \frac{x-5}{(x-9)(x+7)}$ Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Find the domain of the function. Write your answer using interval notation.

29.
$$f(x) = \sqrt{x+4}$$

30.
$$g(x) = \sqrt{x} - 3$$

31.
$$f(x) = \sqrt{3 - 4x}$$

32.
$$g(x) = \sqrt{-x} - 8$$

D. Finding inputs and outputs of a function from its graph.

33. The graph of a function, f(x) is given. Find all information.

- a. Find f(-1)
- b. Find f(2)
- c. Find f(6)
- d. For what value of x is f(x) = 3?

Assignment Project Example $p_{x \text{ is } f(x) = 0}$?

https://powcoder.com

34. The graph of a function, h(x) is given. Find all information.

- a. Find h(0)
- b. Find h(-2)
- c. Find h(5)
- d. For what value(s) of x is h(x) = 0?
- e. For what value of x is h(x) = -4?