# Diagramy maszyny stanowej (state machines)

Dr hab. inż. Ilona Bluemke

#### Diagram maszyny stanowej

- Opisuje zmiany stanów obiektu na skutek zdarzeń. Do notacji używa się diagramów Davida Harel'a (1987).
- Węzły stany abstrakcja zbioru wartości atrybutów i połączeń obiektu
- Skierowane krawędzie zmiany stanów etykietowane nazwami zdarzeń
- diagram deterministyczny

#### stany

- Stan określa reakcję obiektu na zdarzenie. Reakcja może być różna dla różnych stanów. Odpowiedzią na zdarzenie może być akcja lub zmiana stanu obiektu.
- zdarzenia reprezentują chwile czasu, stany interwały czasu.
- Stan obiektu zależy od sekwencji zdarzeń jakie obiekt otrzymał w przeszłości. Definiując stany ignorujemy atrybuty, które nie wpływają na zachowanie obiektu. Łączymy w jednym stanie wartości atrybutów, połączeń, które dają taką samą odpowiedź na zdarzenie.

#### Stany charakteryzują

- nazwa stanu PRZYMIOTNIK
- sekwencja zdarzeń powodujących wejście do tego stanu
- warunki charakteryzujące stan
- oczekiwane zdarzenia
- akcje reakcje na zdarzenia
- stany następne
- stan początkowy
- stan końcowy



## Przykład diagramu maszyny stanowej

Np. kurs na uczelni



## Sekcje symbolu graficznego stanu

nazwa

czynności wewnętrzne

przejścia wewnętrzne

Sekcja dekompozycji

#### Diagram maszyny stanowej

- Opisuje zachowanie obiektów jednej klasy.
  Wszystkie instancje klasy mają takie same zachowanie - "dzielą" diagram stanów. Każdy obiekt jest w swoim stanie ale jest niezależny od innych obiektów.
- Ze zdarzeniami mogą być związane akcje, zapisywane na krawędziach diagramu stanu po /, mogą także reprezentować wewnętrzne operacje sterujące np. ustawienie atrybutów, generowanie zdarzeń.

zdarzenie/ akcja

#### Słowa kluczowe opisujące zdarzenia

- entry identyfikuje czynność wykonywaną przy wejściu obiektu do stanu (jedną)
- do identyfikuje czynność wykonywana w sposób ciągły na obiekcie znajdującym się w danym stanie, można określić kilka takich czynności (niezależnie wykonywanych), czynności te są wykonywane po czynności entry
- exit identyfikuje czynność wykonywaną przy wyjściu ze stanu (jedną)

#### przejścia wewnętrzne

zdarzenie/operacja określają czynności wykonywane przez obiekt będący w stanie pod wpływem zdarzenia

Ustaw\_godz

do/ wyswielt\_godz

inc/inkrementuj\_godz

## Zachowanie klasy Seminarium podczas rejestracji



#### Klasyfikacja stanów

- proste
- złożone
  - stan złożony zawiera maszynę stanową
  - lub jest podzielony na obszary współbieżne (zawiera podstany)

#### Generalizacja stanów (relacja or )

#### Stan zawiera maszynę stanową



#### Przykład zmian stanów

- Luz -> F Pierw -> wyżej Drugi -> Luz
- Luz -> F Pierw -> wyżej Drugi -> wyzej Trzeci -> Luz

#### Generalizacja stanów

- Pozwala na opis na wysokim poziomie a następnie na uszczegóławianie na coraz niższych poziomach.
- Tworzona jest struktura hierarchiczna z dziedziczeniem wspólnego zachowania i struktury.
- Stan może mieć diagram maszyny stanowej, który dziedziczy przejścia superstanu. Przejście, akcja superstanu dotyczy wszystkich jego podstanów (chyba, że zostanie przysłonięte przez przejście w podstanie).
- Wybór "L" w dowolnym podstanie "do przodu" powoduje przejście do stanu "luz". Wybór "F" powoduje przejście do stanu "pierwszy". Zdarzenie "stop" w dowolnym podstanie "do przodu" powoduje przejście do stanu "pierwszy".

## Notacja graficzna

W złożonych diagramach stanów diagramy przejść podstanów można rysować na oddzielnych diagramach.



#### Pełny diagram stanów dla klasy Seminarium



#### Kompozycja – agregacja stanów

Pozwala na podział na części składowe z ograniczoną interakcją między nimi.

- Jest równoważne współbieżności stanów.
- Każdy komponent wykonuje przejścia równolegle z pozostałymi (równolegle działają "testowanie" i "wykonywanie zleceń" na slajdzie następnym).

## Przykład agregacji stanów



#### Zadanie -1



"płaski" model - bez agregacji stanów

#### Mechanizm historii

Pozwala na pamiętanie stanu ostatnio odwiedzonego w podstanie i wejście do niego przy kolejnym "wejściu" do stanu złożonego.



Bez mechanizmu historii

$$\Box A \rightarrow_{(In)} C \rightarrow_{(Y)} B \rightarrow_{(Out)} A \rightarrow_{(In)} C$$

Z mechanizmem historii

$$\Box A \rightarrow_{(In)} C \rightarrow_{(Y)} B \rightarrow_{(Out)} A \rightarrow_{(In)} B$$



#### Przykład maszyny stanowej z historią



### Zmiany stanów

- Bez mechanizmu historii
  - □ Pranie -> Płukanie -> otwarcie drzwi -> Pranie

- Z mechanizmem historii
  - □ Pranie -> Płukanie -> otwarcie drzwi -> Płukanie

#### Zadanie -2

Poniżej podano diagram zmian stanów dla pewnej klasy. Podaj jakie czynności będą kolejno wykonane przez obiekt tej klasy dla następującej sekwencji zdarzeń:

- utworzenie obiektu,
- E1,
- **E**3,
- **E2**,
- E1.

Uzasadnij swoje rozwiązanie.



## Zadanie -1- rozwiązanie początek

| zdarzenie             | Stan osiągnięty | Czynności                                       |
|-----------------------|-----------------|-------------------------------------------------|
| Utworzenie<br>obiektu | stan1           | akcja1/entry; akcja3/do                         |
| E1                    | stan2           | akcja2/exit; akcja4/E1; akcja7/entry; akcja9/do |
| E3                    | stan2           | akcja10/E3; akcja9/do                           |
| E2                    | stan2           | akcja9/do                                       |

#### zadanie



## rozwiązanie

