Exercise 2.1 Page 42

Required: Given the definitions of the defined symbols \vee and \leftrightarrow , show that for any PL-interpretation, \mathcal{I} , and any wffs ϕ and χ ,

- 1. $V_{\mathcal{I}}(\phi \vee \chi) = 1$ iff either $V_{\mathcal{I}}(\phi) = 1$ or $V_{\mathcal{I}}(\chi) = 1$.
- 2. $V_{\mathcal{I}}(\phi \leftrightarrow \chi) = 1$ iff $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi)$.

Proof of 1

$$(\Rightarrow)$$
: Assume $V_{\mathcal{I}}(\phi \vee \chi) = 1$.

This is shorthand for saying $V_{\mathcal{I}}(\sim \phi \rightarrow \chi) = 1$.

By definition of valuation, this implies that $V_I(\sim \phi) = 0$ or $V_I(\chi) = 1$.

By definition of valuation, this implies $V_I(\phi) = 1$ or $V_I(\chi) = 1$.

$$(\Leftarrow)$$
: Assume $V_I(\phi) = 1$ or $V_I(\chi) = 1$.

By definition of valuation, this implies that $V_I(\sim \phi) = 0$ or $V_I(\chi) = 1$.

By definition of valuation, this implies that $V_{\mathcal{I}}(\sim \phi \rightarrow \chi) = 1$.

This is shorthand for saying $V_{\mathcal{I}}(\phi \vee \chi) = 1$.

Therefore, combining our above results, we have proven that $V_{\mathcal{I}}(\phi \vee \chi) = 1$ iff either $V_{\mathcal{I}}(\phi) = 1$ or $V_{\mathcal{I}}(\chi) = 1$.

Proof of 2

$$(\Rightarrow)$$
: Assume $V_{\mathcal{I}}(\phi \leftrightarrow \chi) = 1$.

This is shorthand for saying $V_{\mathcal{I}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$.

By definition of valuation, this implies $V_{\mathcal{I}}((\phi \to \chi) \to \sim (\chi \to \phi)) = 0$.

By definition of valuation, this implies $V_{\mathcal{I}}(\phi \to \chi) = 0$ or $V_{\mathcal{I}}(\sim (\chi \to \phi)) = 1$.

By definition of valuation, this implies $V_{\mathcal{I}}(\phi \to \chi) = 0$ or $V_{\mathcal{I}}(\chi \to \phi) = 0$.

By definition of valuation, this implies that $V_{\mathcal{I}}(\phi) = 0$ or $V_{\mathcal{I}}(\chi) = 1$, and that $V_{\mathcal{I}}(\chi) = 0$ or $V_{\mathcal{I}}(\phi) = 1$.

We have two cases to consider. Either $V_{\mathcal{I}}(\phi) = 1$ or $V_{\mathcal{I}}(\phi) \neq 1$.

Case 1: Consider $V_{\mathcal{I}}(\phi) = 1$. Since $V_{\mathcal{I}}(\phi) = 0$ or $V_{\mathcal{I}}(\chi) = 1$, it must be the case that $V_{\mathcal{I}}(\chi) = 1$. Hence, we have $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi) = 1$.

Case 2: Consider $V_{\mathcal{I}}(\phi) \neq 1$. Hence, $V_{\mathcal{I}}(\phi) = 0$. Since $V_{\mathcal{I}}(\chi) = 0$ or $V_{\mathcal{I}}(\phi) = 1$, it must be the case that $V_{\mathcal{I}}(\chi) = 0$. Hence, we have $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi) = 0$.

In either case we have $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi)$.

 (\Leftarrow) : Now, assume $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi)$.

Either $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi) = 1$ or $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi) = 0$. We'll consider both cases separately.

Case 1: Consider $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi) = 1$. Then, $V_{\mathcal{I}}(\phi \to \chi) = 1$ and $V_{\mathcal{I}}(\chi \to \phi) = 1$. This implies that $V_{\mathcal{I}}(\phi \to \chi) = 1$ and $V_{\mathcal{I}}(\sim (\chi \to \phi)) = 0$. This implies that $V_{\mathcal{I}}((\phi \to \chi) \to \sim (\chi \to \phi)) = 0$. This implies that $V_{\mathcal{I}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$. Finally, this is shorthand for saying $V_{\mathcal{I}}(\phi \leftrightarrow \chi) = 1$.

Case 2: Consider $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi) = 0$. Then, $V_{\mathcal{I}}(\phi \to \chi) = 1$ and $V_{\mathcal{I}}(\chi \to \phi) = 1$. This implies that $V_{\mathcal{I}}(\phi \to \chi) = 1$ and $V_{\mathcal{I}}(\sim (\chi \to \phi)) = 0$. This implies that $V_{\mathcal{I}}((\phi \to \chi) \to \sim (\chi \to \phi)) = 0$. This implies that $V_{\mathcal{I}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$. Finally, this is shorthand for saying $V_{\mathcal{I}}(\phi \leftrightarrow \chi) = 1$.

In either case we have $V_{\mathcal{I}}(\phi \leftrightarrow \chi) = 1$.

Therefore, combining our above results, we've proven that $V_{\mathcal{I}}(\phi \leftrightarrow \chi) = 1$ iff $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}}(\chi)$.

Section 2.3 Page 57

(a) Prove $P \to (Q \to R) \Rightarrow (Q \land \sim R) \to \sim P$

1.	$P \Rightarrow P$	RA
2.	$P \to (Q \to R) \Rightarrow P \to (Q \to R)$	RA
3.	$Q \land \sim R \Rightarrow Q \land \sim R$	RA
4.	$Q \land \sim R \Rightarrow Q$	$3, \wedge E$
5.	$P, P \to (Q \to R) \Rightarrow Q \to R$	$1,2, \rightarrow E$
6.	$P, P \to (Q \to R), Q \land \sim R \Rightarrow R$	$4,5, \rightarrow E$
7.	$Q \land \sim R \Rightarrow \sim R$	$3, \wedge E$
8.	$P, P \to (Q \to R), Q \land \sim R \Rightarrow R \land \sim R$	$6,7, \wedge I$
9.	$P \to (Q \to R), Q \land \sim R \Rightarrow \sim P$	8, RAA
10.	$P \to (Q \to R) \Rightarrow (Q \land \sim R) \to \sim P$	$9, \rightarrow I$

(b) Prove $P, Q, R \Rightarrow P$

1.	$P \Rightarrow P$	RA
2.	$Q \Rightarrow Q$	RA
3.	$R \Rightarrow R$	RA
4.	$P, Q \Rightarrow P \wedge Q$	$1,2, \wedge I$
5.	$P, Q \Rightarrow P$	$4, \wedge E$
6.	$P, Q, R \Rightarrow P \wedge R$	$3,5, \land I$
7.	$P, Q, R \Rightarrow P$	$6, \land E$

(c) Prove $P \to Q, R \to Q \Rightarrow (P \lor R) \to Q$

1. $P \to Q \Rightarrow P \to Q$	RA
$2. R \to Q \Rightarrow R \to Q$	RA
3. $P \Rightarrow P$	RA
4. $R \Rightarrow R$	RA
5. $P \to Q, P \Rightarrow Q$	$1,3, \rightarrow E$
6. $R \to Q, R \Rightarrow Q$	$2,4, \rightarrow E$
7. $P \lor R \Rightarrow P \lor R$	RA
8. $P \lor R, P \to Q, R \to Q \Rightarrow Q$	$5,6,7, \vee E$
9. $P \to Q, R \to Q \Rightarrow (P \lor R) \to Q$	$8, \rightarrow I$

Exercise 2.4 Page 62

(a)

Prove $\vdash P \to P$

$$\begin{array}{ll} 1. & P \rightarrow ((P \rightarrow P) \rightarrow P) & \text{PL1} \\ 2. & (P \rightarrow ((P \rightarrow P) \rightarrow P)) \rightarrow ((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P)) & \text{PL2} \\ 3. & P \rightarrow (P \rightarrow P) & \text{PL1} \\ 4. & (P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P) & 1,2 \text{ MP} \\ 5. & P \rightarrow P & 3,4 \text{ MP} \end{array}$$

(b)

Prove $\vdash (\sim P \rightarrow P) \rightarrow P$

(c)

Prove $\sim \sim P \vdash P$

1.	$\sim \sim P \to (\sim P \to \sim \sim P)$	PL1
2.	$\sim \sim P$	premise
3.	$\sim P \rightarrow \sim \sim P$	$1,2~\mathrm{MP}$
4.	$(\sim P \to \sim \sim P) \to ((\sim P \to \sim P) \to P)$	PL3
5.	$(\sim P \to \sim P) \to P$	$3,4~\mathrm{MP}$
6.	$\sim P \to ((\sim P \to \sim P) \to \sim P)$	PL1
7.	$(\sim P \to ((\sim P \to \sim P) \to \sim P)) \to ((\sim P \to (\sim P \to \sim P)) \to (\sim P \to \sim P))$	PL2
8.	$\sim P \to (\sim P \to \sim P)$	PL1
9.	$(\sim P \to (\sim P \to \sim P)) \to (\sim P \to \sim P)$	$6,7~\mathrm{MP}$
10.	$\sim P \rightarrow \sim P$	8,9 MP
11.	P	5,10 MP

Exercise 2.7 Page 70

Required: Show by induction that the truth value of a wff depends only on the truth values of its sentence letters. That is, show that for any wff ϕ and any PL-interpretations \mathcal{I} and \mathcal{I}' , if $\mathcal{I}(\alpha) = \mathcal{I}'(\alpha)$ for each sentence letter α in ϕ , then $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi)$.

Assume $\mathcal{I}(\alpha) = \mathcal{I}'(\alpha)$ for each sentence letter α in any wff ϕ .

Claim: $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi)$.

Proof. Proof by induction on the complexity of wffs.

Base Case: Consider the wff P for some sentence letter P. We know that $\mathcal{I}(P) = \mathcal{I}'(P)$ by assumption. Hence,

$$V_{\mathcal{I}}(P) = \mathcal{I}(P) = \mathcal{I}'(P) = V_{\mathcal{I}'}(P)$$

Inductive Hypothesis: For wffs ϕ and ψ , assume $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi)$ and $V_{\mathcal{I}}(\psi) = V_{\mathcal{I}'}(\psi)$.

Show: $V_{\mathcal{I}}(\sim \phi) = V_{\mathcal{I}'}(\sim \phi)$.

By inductive hypothesis, either $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 1$ or $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 0$.

Case 1: If $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 1$, then clearly $V_{\mathcal{I}}(\sim \phi) = V_{\mathcal{I}'}(\sim \phi) = 0$.

Case 2: If $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 0$, then clearly $V_{\mathcal{I}}(\sim \phi) = V_{\mathcal{I}'}(\sim \phi) = 1$.

In either case, we have $V_{\mathcal{I}}(\sim \phi) = V_{\mathcal{I}'}(\sim \phi)$.

Show: $V_{\mathcal{I}}(\phi \to \psi) = V_{\mathcal{I}'}(\phi \to \psi).$

By inductive hypothesis, we know $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi)$ and $V_{\mathcal{I}}(\psi) = V_{\mathcal{I}'}(\psi)$.

Either $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 0$ or $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 1$.

Case 1: If $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 0$, then we have $V_{\mathcal{I}}(\phi \to \psi) = V_{\mathcal{I}'}(\phi \to \psi) = 1$.

Case 2: If $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 1$, then we must consider two subcases. If $V_{\mathcal{I}}(\psi) = V_{\mathcal{I}'}(\psi) = 1$, then since $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 1$, clearly we have $V_{\mathcal{I}}(\phi \to \psi) = V_{\mathcal{I}'}(\phi \to \psi) = 1$. If $V_{\mathcal{I}}(\psi) = V_{\mathcal{I}'}(\psi) = 0$, then since $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}'}(\phi) = 1$, clearly we have $V_{\mathcal{I}}(\phi \to \psi) = V_{\mathcal{I}'}(\phi \to \psi) = 0$. Regardless, we have $V_{\mathcal{I}}(\phi \to \psi) = V_{\mathcal{I}'}(\phi \to \psi)$.

In either case, we have $V_{\mathcal{I}}(\phi \to \psi) = V_{\mathcal{I}'}(\phi \to \psi)$.

And Sider only officially includes $\{\sim, \rightarrow\}$ as logical connectives. The other connectives are interdefined using these two logical connectives. Therefore, by induction on the complexity of wffs, we have proven the **Claim**.

Exercise 2.8 Page 70

Required: Suppose that a wff ϕ has no repetitions of sentence letters (i.e., each sentence letter occurs at most once in ϕ .). Show that ϕ is not PL-valid.

We will prove a stronger claim first. Consider the following definition.

Definition: A wff ϕ is considered **contingent** if there is an interpretation \mathcal{I} such that $V_{\mathcal{I}}(\phi) = 1$ and there is an interpretation \mathcal{I}' such that $V_{\mathcal{I}'}(\phi) = 0$.

Now we will prove the following claim.

Claim: For each wff ϕ , if ϕ has no repetitions of sentence letters, then ϕ is contingent.

Proof. Proof by induction on the complexity of wffs.

Base Case: For a wff P where P is a sentence letter, then let \mathcal{I} be an interpretation such that $\mathcal{I}(P) = 1$, and let \mathcal{I}' be an interpretation such that $\mathcal{I}'(P) = 0$.

Hence,
$$V_{\mathcal{I}}(P) = \mathcal{I}(P) = 1$$
.

Hence,
$$V_{\mathcal{I}'}(P) = \mathcal{I}'(P) = 0$$
.

Therefore, P is contingent.

Inductive Hypothesis: Assume ϕ is a wff with no repetitions of sentence letters and ϕ is contingent. Assume ψ is a wff with no repetitions of sentence letters and ψ is contingent.

Show: $\sim \phi$ is contingent where $\sim \phi$ has no repeated sentence letters.

Since $\sim \phi$ has no repeated sentence letters, we know that ϕ has no repeated sentence letters.

By inductive hypothesis, we know that there exists interpretations \mathcal{I}_1 and \mathcal{I}_2 such that $V_{\mathcal{I}_1}(\phi) = 1$ and $V_{\mathcal{I}_2}(\phi) = 0$.

Hence,
$$V_{\mathcal{I}_1}(\sim \phi) = 0$$
 and $V_{\mathcal{I}_2}(\sim \phi) = 1$.

Hence, $\sim \phi$ is contingent.

Show: $\phi \to \psi$ is contingent where $\phi \to \psi$ has no repeated sentence letters.

Since $\phi \to \psi$ has no repeated sentence letters, we have that ϕ and ψ each have no repeated sentence letters within themselves.

By inductive hypothesis, there exists interpretations \mathcal{I}_1 and \mathcal{I}_2 such that $V_{\mathcal{I}_1}(\phi) = 1$ and $V_{\mathcal{I}_2}(\phi) = 0$. And, there exists interpretations \mathcal{I}_3 and \mathcal{I}_4 such that $V_{\mathcal{I}_3}(\psi) = 1$ and $V_{\mathcal{I}_4}(\psi) = 0$.

Let SL_{ϕ} be the set of sentence letters in ϕ . Let SL_{ψ} be the set of sentence letters in ψ . Since we know that $\phi \to \psi$ has no repetitions of sentence letters, we know that $SL_{\phi} \cap SL_{\psi} = \emptyset$.

Consider the following interpretation \mathcal{J} .

$$\mathcal{J}(P) = \begin{cases} \mathcal{I}_1(P) & \text{if } P \in SL_{\phi} \\ \mathcal{I}_3(P) & \text{if } P \in SL_{\psi} \end{cases}$$

Hence, $V_{\mathcal{I}}(\phi) = V_{\mathcal{I}_1}(\phi) = 1$.

Hence, $V_{\mathcal{J}}(\psi) = V_{\mathcal{I}_3}(\psi) = 1$.

Therefore, $V_{\mathcal{J}}(\phi \to \psi) = 1$.

Consider the following interpretation \mathcal{J}' .

$$\mathcal{J}'(P) = \begin{cases} \mathcal{I}_1(P) & \text{if } P \in SL_{\phi} \\ \mathcal{I}_4(P) & \text{if } P \in SL_{\psi} \end{cases}$$

Hence, $V_{\mathcal{J}'}(\phi) = V_{\mathcal{I}_1}(\phi) = 1$.

Hence, $V_{\mathcal{J}'}(\psi) = V_{\mathcal{I}_4}(\psi) = 0$.

Therefore, $V_{\mathcal{J}'}(\phi \to \psi) = 0$.

Notice, the interpretation J is such that $V_{\mathcal{J}}(\phi \to \psi) = 1$ and the interpretation J' is such that $V_{\mathcal{J}'}(\phi \to \psi) = 0$. Hence, $\phi \to \psi$ is contingent.

Therefore, by induction on the complexity of formulas, we have shown that every wff without repetitions of sentence letters is contingent.

The Claim we just proved says that every wff ϕ without repetitions of sentence letters is contingent. So let ϕ be a wff without repetitions of sentence letters. Hence, there is an interpretation \mathcal{I} such that $V_{\mathcal{I}}(\phi) = 1$ and an interpretation \mathcal{I}' such that $V_{\mathcal{I}'}(\phi) = 0$. In particular, since $V_{\mathcal{I}'}(\phi) = 0$, we have that ϕ is not PL-valid.

Therefore, we've proven that every wff ϕ without repetitions of sentence letters is not PL-valid. This completes the proof, as required.

Extra Problem

Required: Prove that $\{\to, \lor\}$ is not an adequate set of sentential connectives, that is to say prove that there exists a truth-function of two variables $f: \{0,1\}^2 \to \{0,1\}$ that cannot be expressed as the truth-function of any wff constructed with just the conditional and the disjunction.

Note: For a truth function $f: \{0,1\}^2 \to \{0,1\}$, we let the first entry represent the truth value of P, and the second entry represent the truth value of Q.

First we will prove the following claim.

Claim: Any wff of two sentence letters P and Q using connectives in the set $\{\rightarrow, \lor\}$ expresses a truth function $f: \{0,1\}^2 \to \{0,1\}$ such that $f(\langle 1,1 \rangle) = 1$.

Proof. Proof by induction on the complexity of wffs of sentences containing sentence letters P and Q and using connectives in the set $\{\rightarrow, \lor\}$.

Base Case: Consider the case of atomic sentences. Either our wff is P or it is Q.

If our wff is P, then its truth function f satisfies $f(\langle 1,1\rangle) = 1$ since P has truth value 1.

If our wff is Q, then its truth function f satisfies $f(\langle 1,1\rangle)=1$ since Q has truth value 1.

Inductive Hypothesis: Assume ϕ and ψ are wffs of the sentence letters P and Q such that the truth function f_{ϕ} that represents ϕ is such that $f_{\phi}(\langle 1, 1 \rangle) = 1$ and the truth function f_{ψ} that represents ψ is such that $f_{\psi}(\langle 1, 1 \rangle) = 1$.

Show: The truth function g_1 that expresses $\phi \to \psi$ is such that $g_1(\langle 1, 1 \rangle) = 1$.

Consider $g_1(\langle 1, 1 \rangle)$ which expresses $\phi \to \psi$. This implies that P is assigned the truth value 1 and Q is assigned the truth value 1.

Hence, by inductive hypothesis, we have that $f_{\phi}(\langle 1, 1 \rangle) = 1$ and $f_{\psi}(\langle 1, 1 \rangle) = 1$.

Hence, when P and Q each have truth value 1, we have that ϕ has truth value 1 and ψ has truth value 1. Hence, when P and Q each have truth value 1, we have that $\phi \to \psi$ has truth value 1.

Therefore, $g_1(\langle 1, 1 \rangle) = 1$.

Show: The truth function g_2 that expresses $\phi \vee \psi$ is such that $g_2(\langle 1, 1 \rangle) = 1$.

Consider $g_2(\langle 1, 1 \rangle)$ which expresses $\phi \vee \psi$. This implies that P is assigned the truth value 1 and Q is assigned the truth value 1.

Hence, by inductive hypothesis, we have that $f_{\phi}(\langle 1, 1 \rangle) = 1$ and $f_{\psi}(\langle 1, 1 \rangle) = 1$.

Hence, when P and Q each have truth value 1, we have that ϕ has truth value 1 and ψ has truth value 1. Hence, when P and Q each have truth value 1, we have that $\phi \vee \psi$ has truth value 1.

Therefore, $g_2(\langle 1, 1 \rangle) = 1$.

By induction on the complexity of wff using sentence letters P and Q and connectives in $\{\rightarrow, \lor\}$, we have proven our **Claim**.

Show $\{\rightarrow, \lor\}$ not adequate

Now, consider the following truth function $f': \{0,1\}^2 \to \{0,1\}$ defined by $f'(\langle x,y\rangle) = 0$ for all $\langle x,y\rangle \in \{0,1\}^2$. i.e. f' is the truth function that always maps elements of its domain to 0.

In particular, $f'(\langle 1, 1 \rangle) = 0$.

And by our **Claim** we know that any wff ϕ made up of sentence letters P and Q and the connectives $\{\rightarrow, \lor\}$ is such that the truth function f that represents ϕ satisfies $f(\langle 1, 1 \rangle) = 1$.

Therefore, there is no wff ϕ using P, Q and the connectives $\{\to, \lor\}$ that could possibly represent the truth function $f': \{0,1\}^2 \to \{0,1\}$ defined by $f'(\langle x,y \rangle) = 0$ for all $\langle x,y \rangle \in \{0,1\}^2$ since we have $f'(\langle 1,1 \rangle) = 0 \neq 1$.

This shows that $\{\to,\vee\}$ is not an adequate set of connectives, as required.