

DISCRETE LCLS FEL TAPERING

MARKOV CHAIN MONTE CARLO & SIMULATED ANNEALING

HAN SETIAWAN

SLAC, 10 AUGUST 2016

MONTE CARLO METHOD

- Random, probabilistic way to solve an optimization problem
 - For complicated problems
- No relationship between current and next step

MARKOV CHAIN MONTE CARLO OPTIMIZATION

- Improved!
- Find local/global maximum/minimum

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio $P=(T_new/T_old)$; generate random number from 0 to 1
- If P>random number, move there

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio $P=(T_new/T_old)$; generate random number from 0 to 1
- If P>random number, move there

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio $P=(T_new/T_old)$; generate random number from 0 to 1
- If P>random number, move there

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio $P=(T_new/T_old)$; generate random number from 0 to 1
- If P>random number, move there

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio $P=(T_new/T_old)$; generate random number from 0 to 1
- If P>random number, move there

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio P=(T_new/T_old); generate random number from 0 to 1
- If P>random number, move there

- Start somewhere
- Evaluate the local temperature
- Take the next step, based on a normal distribution
- Take temperature reading
- If the new T is greater, move there
- If not, find the ratio $P=(T_new/T_old)$; generate random number from 0 to 1
- If P>random number, move there

Repeat and Restart

MARKOV CHAIN MONTE CARLO + SIMULATED ANNEALING

- Mimics cooling down process of metal
- As T goes down =>

less likely to accept worse solution

- Start somewhere; Set initial SA temperature
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

- Start somewhere; <u>Set initial SA temperature</u>
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

- Start somewhere; <u>Set initial SA temperature</u>
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

- Start somewhere; Set initial SA temperature
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

- Start somewhere; Set initial SA temperature
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

- Start somewhere; Set initial SA temperature
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

- Start somewhere; Set initial SA temperature
- Find out current altitude
- Take the next step, based on a normal distribution
- Find out new altitude
- If the new altitude is greater, move there
- If not, find the ratio $P=\exp((A \text{ new-A old})/A \text{ old*}1/T)$; generate random number from 0 to 1
- If P>random number, move there; reduce the SA temperature by a factor of alpha

Repeat and Restart

GENESIS 1.3 SIMULATION

- Simulates LCLS
- Why not use LCLS directly?

LCLS (LINAC COHERENT LIGHT SOURCE)

PROBLEM

• As electron emits photons, it loses energy

Slightly gets out of phase; not good

• Destructive interference

Solution? Taper the Undulator magnetic field

LCLS NOW: CONTINUOUS TAPERING

LCLS NOW: CONTINUOUS TAPERING

- Can we increase power of x-ray?
- Instead of continuous, maybe discrete?
 - Allows flexibility

IMPORTANCE OF BRACKET IN DISCRETIZATION

- Define scan range at every undulator
- To ensure that K-values are inside the allowed (practical) range

CHALLENGES

- 16 Undulators => 16 dimensional problem, some maybe coupled
- Runtime of Genesis (~65 seconds)
- Enough iterations needed. But how to define enough?

PRELIMINARY RESULT

- Highest power, first try (\sim 1 hour run): starting from continuous taper profile
- 97 GW Peak Power
 - Improved from 78 GW; 20% increase
- 19 and 20, 22 and 23, 25 and 26 look somewhat related together

FUTURE WORK

- Run more
- Produce set of data for Anna's Neural Network
- Possible implementation

FIN.

- Email: <u>setiawan@nscl.msu.edu</u>
- Advisor: Dr. Juhao Wu
- J-Crew/LCLS Style Group:
 - Tanner Worden and Anna Leskova
- Dr. Enrique Cuellar and Ms. Nancy Qatsha

Thank you for paying taxes!

Office of Science