CLAIMS:

What is claimed is:

1	1	Δn	annaratus	comprising
1	1.	Δ 11	apparatus	COMPLISING

- a combination digital signal and radio frequency connector for directly coupling a motherboard to a radio frequency module board.
- The apparatus of Claim 1, further comprising a pin and receptacle
 connection for a signal line in the radio frequency connector.
- 1 3. The apparatus of Claim 2, wherein the receptacle comprises a sheet of metal stamped and rolled into a tulip shape.
- 1 4. The apparatus of Claim 1, further comprising a spring cage and barrel connection surrounding the ground line.
- The apparatus of Claim 4, wherein the spring cage and barrel
 comprise a sheet metal stamped and rolled into a substantially cylindrical
- 3 form.
- 1 6. The apparatus of Claim 4, wherein the spring cage comprises finger springs having flexural compliance that retains a close contact against an
- 3 inner surface of the barrel upon mating.
- 1 7. An apparatus comprising:
- a radio frequency board having a combination digital signal and radio
- 3 frequency connector adapted for directly coupling to a motherboard for a
- 4 computer.
- 1 8. The apparatus of Claim 7, further comprising a pin and receptacle
- 2 connection for a signal line in the radio frequency connector.
- 1 9. The apparatus of Claim 8, wherein the receptacle comprises a sheet of
- 2 metal stamped and rolled into a tulip shape.

1

2

3

4

5

6

7

1

1	10.	The apparatus of Claim 7, further comprising a spring cage and barrel
2	conne	ction surrounding the ground line.

- The apparatus of Claim 10, wherein the spring cage and barrel 1 11. comprise a sheet of metal stamped and rolled into a substantially cylindrical 2 3 form.
- The apparatus of Claim 10, wherein the spring cage comprises finger 1 12. springs having flexural compliance that retains a close contact against an 2 3 inner surface of the barrel upon mating.

13. An apparatus comprising:

a pin and receptacle connection for transferring a signal coupled between a radio frequency module compatible with a mobile computer motherboard and a motherboard in a mobile computer; and

a spring cage and barrel connection coupled around the pin and receptacle connection for transferring ground, wherein the apparatus comprises a radio frequency coaxial direct board to board connection.

- The apparatus of Claim 13, wherein the receptacle comprises a sheet 14. metal stamped and rolled into a tulip shape. 2
- The apparatus of Claim 13, wherein the receptacle and the spring cage 1 15. are made from at least one of phosphor bronze, beryllium copper and brass. 2
- The apparatus of Claim 13, wherein the pin and barrel comprise a 16. 1 2 copper alloy.
- The apparatus of Claim 16, wherein copper alloy is plated to avoid 1 17. 2 corroding.
- The apparatus of Claim 13, wherein the spring cage and barrel 1 18. comprise a sheet metal stamped and rolled into a substantially cylindrical 2 3 form.

3

4

5 6

1	19. The apparatus of Claim 13, wherein the spring cage comprises finger					
2	springs having flexural compliance that retains a close contact against an					
3	inner surface of the barrel upon mating.					
1	20. The apparatus of Claim 13, wherein the ground connection from the					
2	spring cage and barrel are each coupled to a surface co-planar waveguide					
3	ground on their respective boards.					
1	21. The apparatus of Claim 20, wherein the co-planar waveguide					
2	grounds are coupled to their respective printed circuit board ground planes					
3	by vias in the boards.					
1	22. An apparatus comprising:					
2	a direct board to board coaxial connection having a male portion and					
3	a female portion, wherein one of the male portion or female portion is					
4	coupled to a computer motherboard and the other of the male portion or					
5	female portion is coupled to a radio frequency module card such that the					
6	radio frequency module card is removeably coupled to the computer					
7	motherboard by the direct board to board coaxial connection.					
1	23. The apparatus of Claim 22, wherein the coaxial connection comprises					
2	a pin and receptacle connection for transferring the signal, and a spring cage					
3	and barrel connection for transferring the ground.					
1	24. The apparatus of Claim 23, wherein the spring cage and barrel					
2	transfer the ground to a surface co-planar waveguide ground and then to					
3	the ground planes of the boards through vias.					
1	25. A method comprising:					
2	forming a signal pin;					

stamping a ground barrel from a sheet of metal;

springs for gripping the inside of a ground barrel;

stamping a ground shield spring cage from a sheet of metal;

rolling the ground shield spring cage to form a cage with finger

7	rolling the ground barrel into a cylinder;
8	stamping a signal pin receptacle from a sheet of metal;
9	rolling the signal pin receptacle to form a cylinder with a spring end
10	that resembles a tulip;
11	plating the pin and the barrel;
12	assembling the signal pin, ground spring cage, and a housing to form
13	a male coaxial connector by press interference fitting; and
14	assembling the signal pin receptacle, ground barrel and a housing to
15	form a female coaxial connector by press interference fitting.
1	26. The method of Claim 25, further comprising:
2	fabricating the ground shield spring cage and signal pin receptacle
3	from one of the group comprising phosphor bronze, beryllium copper, or
4	brass.
1	27. The method of Claim 26, further comprising:
2	fabricating the signal pin and outer ground shield from a copper
3	alloy.
1	28. A method comprising:
2	aligning a radio frequency module board compatible with a computer
3	motherboard with a computer motherboard; and
4	connecting the radio frequency module board to the motherboard of a
5	computer using direct board to board radio frequency coaxial connectors
6	wherein the connectors comprise a signal pin, a signal pin receptacle, a
7	ground shield spring cage and a ground shield barrel; and the signal pin
8	receptacle, ground shield spring cage and ground shield barrel are fabricated
9	from stamped sheets of metal.
1	29. The method of Claim 28, further comprising:
2	coupling the signal pin to the signal pin receptacle to form a signal
3	line connection between the radio frequency module board and the
4	computer motherboard.

- 1 30. The method of Claim 28, further comprising:
- 2 coupling the ground shield spring cage to the ground shield barrel to
- form a ground shield connection for the signal line connection between the
- 4 radio frequency module board and the computer motherboard.