Introuduction: Lydian-Groups

Ali Taqi

Groups

Group G is a set of elements g_i satisfying the four conditions below, relative to some binary operation. We often use multiplicative notation (g_1g_2) or additive notation (g_1+g_2) to represent the binary operation. For definiteness, we use multiplicative notation below; however, one could replace xy with b(x,y) below.

If the elements of G satisfy the following four properties, then G is a group.

- 1. $\exists e \in G \mid \forall g \in G : eg = ge = g$. (Identity.) We often write e = 1 for multiplicative groups, and e = 0 for additive groups.
- 2. $\forall x, y, z \in G : (xy)z = x(yz)$. (Associativity.)
- 3. $\forall x \in G, \exists y \in G \mid xy = yx = e$. (Inverse.) We write $y = x^{-1}$ for multiplication, y = -x for addition.
- 4. $\forall x, y \in G : xy \in G$. (Closure.)

Paper outline

- Prelude: The audience is both mathematicians and musicians.
- Introduction: Mathematical notation and Tonality
- $\mathbb{Z}/12\mathbb{Z}$ and the Chromatic Scale