UFFS - Ciência da Computação - Matemática Discreta Lista 2 - Lógica dos Predicados - Quantificadores - Regras de Inferência Data: 30/08/2023 - Profa. Rosane R. Binotto

$1^{\underline{\mathbf{a}}}$	Questão	Considere	P(x) a sentença	" $x \le 4$ ".	Quais	são os	valores	verdade	das
	proposições abaixo?								

1) P(0) **2)** P(4) **3)** P(6)

2ª Questão Considere a sentença Q(x, y) : x é a capital de y. Quais são os valores verdade das proposições abaixo?

- 1) Q(Buenos Aires, Argentina).
- 2) Q(Medelin, Colômbia).
- **3)** Q(Brasil, Brasília).

 $3^{\underline{a}}$ Questão Constate o valor de x depois que a proposição "if P(x) then x := 1" for executada, em que P(x) é a proposição x > 1, se o valor de x, quando essa proposição for alcançada, for

a) x = 0. b) x = 1. c) x = 2.

 $4^{\underline{a}}$ Questão Considere P(x) a sentença "x passa mais do que cinco horas em aula todos os dias", em que o domínio de x são todos os estudantes. Expresse cada uma dessas quantificações em português.

- **1)** $\exists x, \ P(x)$ **2)** $\forall x, \ P(x)$
- 3) $\exists x, \ \sim P(x)$ 4) $\forall x, \ \sim P(x)$

 $\mathbf{5^a}$ Questão Transcreva as proposições solicitadas para o português, em que C(x): "x é comediante" e F(x): "x é divertido" e o domínio são todas as pessoas.

- 1) $\forall x, \ \left(C(x) \to F(x)\right)$ 2) $\forall x, \ \left(C(x) \land F(x)\right)$
- 3) $\exists x, \ (C(x) \to F(x))$ 4) $\exists x, \ (C(x) \land F(x))$

6ª Questão Considere P(x): "x fala inglês" e Q(x): "x sabe a linguagem computacional C++". Expresse cada uma dessas sentenças em termos de P(x), Q(x), quantificadores e conectivos lógicos. O domínio para quantificadores são

todos os estudantes de sua universidade.

- 1) Há um estudante em sua universidade que fala inglês e sabe C++.
- 2) Há um estudante em sua universidade que fala inglês, mas não sabe C++.
- 3) Todo estudante de sua universidade ou fala inglês ou sabe C++.
- 4) Nenhum estudante em sua universidade fala inglês ou sabe C++.
- **7ª** Questão Considere P(x): "x + 1 < 2x". Se o domínio for o conjunto números inteiros, quais são os valores verdade das proposições abaixo?

2)
$$P(-1)$$

4)
$$\exists x, P(x)$$

5)
$$\forall x, P(x)$$

6)
$$\exists x, \sim P(x)$$

8ª Questão Determine o valor verdade de cada uma das proposições, se o domínio for o conjunto dos números reais.

1)
$$\forall x, (x^2 + 2 \ge 1)$$

2)
$$\forall x, (x^2 \neq x)$$

3)
$$\exists x, (x^2 = -1)$$

4)
$$\exists x, (x^2 = 2)$$

5)
$$\exists ! \ x, \ (x > 1)$$

6)
$$\exists ! \ x, \ (x+3=2x)$$

 $\mathbf{9^{\underline{a}}}$ Questão Suponha que o domínio da função proposicional P(x) seja $\{0, 1, 2, 3, 4\}$. Desenvolva estas proposições usando disjunções, conjunções e negações.

1)
$$\exists x, P(x)$$

$$2) \ \forall x, P(x)$$

3)
$$\exists x, \sim P(x)$$

4)
$$\forall x, \sim P(x)$$

5)
$$\sim \exists x, P(x)$$

$$6) \sim \forall x, P(x)$$

- 10ª Questão Transcreva, de dois modos distintos, as proposições dadas na sequência em expressões lógicas usando predicados, quantificadores e conectivos lógicos. Primeiro o domínio são os estudantes em sua sala, e, segundo, considere-o como todas as pessoas.
 - 1) Alguém em sua sala fala inglês.
 - 2) Todos em sua sala são amigáveis.
 - 3) Há uma pessoa em sua sala que não nasceu em Chapecó.
 - 4) Todos os estudantes em sua sala sabem resolver equações quadráticas.
- 11ª Questão Transcreva cada uma das proposições em expressões lógicas usando predicados, quantificadores e conectivos lógicos.
 - 1) Ninguém é perfeito.

- 2) Todos os seus amigos são perfeitos.
- 3) Todos são seus amigos e são perfeitos.
- 12ª Questão Encontre um contra-exemplo, se possível, para estas proposições quantificadas universalmente, em que o domínio para as variáveis são todos os números inteiros.
 - 1) $\forall x, (x^2 \ge x)$
 - 2) $\forall x, (x > 0 \lor x < 0)$ 3) $\forall x, (x = 1).$
- 13ª Questão Suponha que o domínio de Q(x,y,z) sejam as três variáveis x, y e z, em que x = 0,1 ou 2, y = 0 ou 1 e z = 0 ou 1. Desenvolva as proposições abaixo usando disjunções e conjunções.
 - **1)** $\forall y, \ Q(0, y, 0)$

2) $\exists x, \ Q(x,1,1)$

3) $\exists z, \sim Q(0,0,z)$

- **4)** $\exists x, \sim Q(x, 0, 1)$
- 14ª Questão Transcreva as proposições abaixo para o português, em que o domínio para cada variável consista nos números reais.
 - 1) $\forall x \; \exists y, \; (x < y)$
 - 2) $\forall x \ \forall y, \ \left(\left((x \ge 0) \land (y \ge 0)\right) \to (xy \ge 0)\right)$ 3) $\forall x \ \forall y \ \forall z, \ (xy = z)$
- ${\bf 15^{\underline{a}}}$ Questão Considere a sentença Q(x,y): "x enviou um email para y", em que o domínio para $x \in y$ são todos os estudantes de sua sala. Expresse cada uma das quantificações abaixo em português:
 - 1) $\exists x \exists y, Q(x,y)$

2) $\exists x \forall y, Q(x,y)$

3) $\forall x \exists y, Q(x,y)$

- 4) $\forall x \forall y, Q(x,y)$
- 16ª Questão Considere L(x,y): "x ama y", em que o domínio para x e y são todas as pessoas do mundo. Use quantificadores para expressar cada proposição abaixo.
 - 1) Todas as pessoas amam alguém.
 - 2) Há alguém que é amado por todos.
 - 3) Ninguém ama a todos.
 - 4) Todos amam a si próprios.
 - 5) Há alguém que não ama ninguém além de si próprio.

- 17ª Questão Determine o valor verdade (V ou F) de cada uma das seguintes proposições no conjunto dos números reais:
 - 1) $(\forall x) (|x| = x)$.

4) $(\forall x) (x+1>x).$

2) $(\exists x) (x^2 = x).$

5) $(\forall x) (x^2 = x).$

3) $(\exists x) (|x| = 0)$

- **6)** $(\exists x) (x^2 + 3x = 2).$
- 18^a Questão Suponha o conjunto universo $\{2, 3, 4, 5, 6, 7, 8, 9\}$.
 - a) Determine o valor-verdade de cada uma das proposições:
 - 1) $(\forall x) (\forall y) (x + 5 < y + 12).$

4) $(\forall x) (\forall y) (\forall z) (x + y > z).$

2) $(\forall x)$ $(\exists y)$ (xy não 'e primo).

5) $(\exists x) (\forall y) (\forall z) (x + y > z)$.

3) $(\exists x) (\forall y) (xy \text{ não é primo})$

- **6)** $(\forall x) (\exists y) (\exists z) (x + y > z).$
- b) Negue cada uma das proposições do item a).
- 19ª Questão Encontre um contra-exemplo, se possível, para estas proposições quantificadas universalmente, em que o domínio para as variáveis são todos os números inteiros.
 - 1) $\forall x \ \forall y, \ (x^2 = y^2 \rightarrow x = y)$
 - $2) \ \forall x \ \exists y, \ (y^2 = x)$
 - $3) \ \forall x \ \forall y, \ (xy \ge x)$
- 20ª Questão Prove a validade dos argumentos usando a lógica proposicional (regras de inferência ou regras de equivalência).
 - 1) $\left\{ \left[(a \lor \sim b) \longrightarrow c \right] \land (c \longrightarrow d) \land a \right\} \longrightarrow d$, sendo $a, b, c \in d$ proposições.
 - **2)** $[(a \longrightarrow b) \land (\sim c \lor a) \land c] \longrightarrow b$, sendo $a, b \in c$ proposições.
 - 3) "Se as taxas de juros caírem, o mercado imobiliário vai melhorar. Ou a taxa federal de descontos vai cair ou o mercado imobiliário não vai melhorar. As taxas de juros vão cair. Portanto, a taxa federal de descontos vai cair."
 - 4) "Meu cliente é canhoto mas, se o diário não tiver sumido, então meu cliente não é canhoto; portanto o diário sumiu."
- 21ª Questão Determine se cada um dos argumentos abaixo é válido. Se um argumento estiver correto qual regra de inferência foi utilizada? Se não, quais

erros lógicos foram cometidos?

- 1) Se n é um número real, tal que n>1, então $n^2>1$. Suponha que $n^2>1$. então n>1.
- 2) Se n é um número real com n>3, então $n^2>9$. Suponha que $n^2\leq 9$. então $n\leq 3$.
- 3) Se n é um número real com n>2, então $n^2>4$. Suponha que $n\leq 2$. então $n^2\leq 4$.