Bayesian data analysis: Theory & practice

Part 4c: Multi-level models

Michael Franke

Main learning goals

for this part

- 1. multi-level models (MLMs)
 - a. varying intercepts & slopes
 - b. Bayesian priors for random-effect structure
 - c. BRMS syntax for specifying MLMs
- 2. multi-membership models
- 3. two views on MLMs
 - a. breaking stochastic independence
 - b. adaptive regularizing priors

Roadmap "beyond vanilla"

common extensions of linear regression modeling

Prediction, please!

participant	condition	response
Alex	A	1
Alex	В	3
Alex	C	0
Во	A	2
Во	В	5
Во	C	???

Group-level effects

motivation

Two ways to motivate group-level effects:

- 1. breaking incorrect independence assumptions
- 2. "adaptive, regularizing priors"

These are not in competition, just two ways of looking at the same thing.

Case study: MLMs

Case study: processing relative clauses

motivation

Subject relative clause

The senator who interrogated the journalist ...

Object relative clause

The senator who the journalist interrogated ...

English: SRCs ≪ ORCs ✓

Chinese: ORCs ≪ SRCs ?

Self-paced reading times

37 subjects read 15 sentences either with an SRC or an ORC

	suhi	item	SO.	rt
			<chr></chr>	
_				
1	1	13	1	1561
2	1	6	-1	959
3	1	5	1	582
4	1	9	1	294
5	1	14	-1	438
6	1	4	-1	286
7	1	8	-1	438
8	1	10	-1	278
9	1	2	-1	542
10	1	11		494
11	1	7	1	270
12	1	3	1	406
13	1	16	-1	374
14	1	15	1	286
15	1	1	1	246

NB: deviation coding

Fixed-effects model

model specs

- predict log nt in terms of factor so
- improper prior on all parameters

$$\log(\mathrm{rt}_i) \sim \mathcal{N}(\eta_i, \sigma_{err})$$
$$\eta_i = \beta_0 + \beta_1 \mathrm{so}_i$$

$$\sigma_{err} \sim \mathcal{U}(0, \infty)$$

$$\beta_0, \beta_1 \sim \mathcal{U}(-\infty, \infty)$$

Fixed-effects model

results

```
Family: gaussian
 Links: mu = identity; sigma = identity
Formula: log(rt) \sim so
  Data: rt_data (Number of observations: 547)
 Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup draws = 4000
Population-Level Effects:
         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 6.10 0.04 6.03 6.17 1.00
                                                             2692
                                                     4030
            -0.08 0.05 -0.17 0.02 1.00 4150
                                                             2620
so1
Family Specific Parameters:
     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
         0.60
                   0.02
                           0.57
                                    0.64 1.00
                                                 3898
                                                          2821
sigma
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

Varying-intercepts model

model specs

- predict log nt in terms of factor so
- improper prior on all parameters
- different subjects / items could be faster or slower tout court

$$\log(\mathrm{rt}_i) \sim \mathcal{N}(\eta_i, \sigma_{err})$$

$$\eta_i = \beta_0 + \underbrace{u_{0,\mathrm{subj}_i} + w_{0,\mathrm{item}_i}}_{\mathrm{varying\ intercepts}} + \beta_1 \mathrm{so}_i$$

$$u_{0,\mathrm{subj}_i} \sim \mathcal{N}(0,\sigma_{u_0})$$
 $w_{0,\mathrm{subj}_i} \sim \mathcal{N}(0,\sigma_{w_0})$

Varying-intercepts model

results

```
Family: gaussian
  Links: mu = identity; sigma = identity
Formula: log(rt) ~ (1 | subj + item) + so
  Data: rt_data (Number of observations: 547)
 Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup draws = 4000
Group-Level Effects:
~item (Number of levels: 15)
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)
                 0.20
                          0.05
                                   0.12 0.32 1.00
                                                         1475
                                                                  2392
~subj (Number of levels: 37)
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)
                 0.25
                          0.04
                                           0.34 1.00
                                                         1593
                                   0.18
                                                                  2503
Population-Level Effects:
         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
           6.10
                               5.95
                                                     1145
Intercept
                      0.08
                                        6.24 1.00
                                                              1379
            -0.07 0.04
                              -0.16
                                        0.01\ 1.00
                                                     7191
                                                              2986
so1
Family Specific Parameters:
     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
         0.52
                   0.02
                           0.49
                                    0.55 1.00
                                                  5466
                                                          3115
sigma
```

Varying-intercepts & varying slopes model

model specs

- predict log nt in terms of factor so
- improper prior on all parameters
- different subjects / items could be faster or slower tout court
- different subjects / items could be more or less sensitive to factor so

$$\log(\mathrm{rt}_i) \sim \mathcal{N}(\eta_i, \sigma_{err})$$

$$\eta_i = \beta_0 + u_{0,\mathrm{subj}_i} + w_{0,\mathrm{item}_i} + (\beta_1 + \underbrace{u_{1,\mathrm{subj}_i} + w_{1,\mathrm{item}_i}}) \mathrm{so}_i$$

$$varying \, \mathrm{intercepts}$$

$$\mathrm{varying \, slopes}$$

$$u_{0,\text{subj}_i} \sim \mathcal{N}(0,\sigma_{u_0})$$
 $w_{0,\text{subj}_i} \sim \mathcal{N}(0,\sigma_{w_0})$
 $u_{1,\text{subj}_i} \sim \mathcal{N}(0,\sigma_{u_1})$ $w_{1,\text{subj}_i} \sim \mathcal{N}(0,\sigma_{w_1})$

Varying-intercepts & varying slopes model

results

Group-Level Effects:

~item (Number of levels: 15)

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	0.20	0.05	0.12	0.31	1.00	1514	2007
sd(so1)	0.07	0.05	0.00	0.20	1.00	1653	2508

~subj (Number of levels: 37)

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	0.26	0.04	0.19	0.35	1.00	1743	2015
sd(so1)	0.07	0.05	0.00	0.17	1.00	1288	1966

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS Intercept 6.10 0.07 5.95 6.24 1.00 1565 2375 so1 -0.07 0.05 -0.17 0.03 1.00 4754 2930

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 0.52 0.02 0.49 0.55 1.00 5597 2604

Varying-intercepts & varying slopes model w/ correlation model specs

- predict log nt in terms of factor so
- improper prior on all parameters
- different subjects / items could be faster or slower tout court
- different subjects / items could be more or less sensitive to factor so

$$\begin{split} \eta_i &= \beta_0 + u_{0, \mathtt{subj}_i} + w_{0, \mathtt{item}_i} + \left(\beta_1 + u_{1, \mathtt{subj}_i} + w_{1, \mathtt{item}_i}\right) \mathtt{so}_i \\ \left(\begin{matrix} u_{0, \mathtt{subj}_i} \\ u_{1, \mathtt{subj}_i} \end{matrix} \right) &\sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_u \right) \\ \Sigma_u &= \begin{pmatrix} \sigma_{u_0}^2 & \rho_u \sigma_{u0} \sigma_{u1} \\ \rho_u \sigma_{u0} \sigma_{u1} & \sigma_{u_1}^2 \end{pmatrix} \quad \text{same for item} \end{split}$$

Varying-intercepts & varying slopes model w/ correlation

results

Group-Level Effect	s:						
~item (Number of l	evels: 15)						
	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	${\tt Bulk_ESS}$	$Tail_{ESS}$
sd(Intercept)	0.21	0.06	0.12	0.35	1.00	1683	2489
sd(so1)	0.07	0.05	0.00	0.20	1.00	1344	2006
<pre>cor(Intercept, so1)</pre>	-0.06	0.53	-0.94	0.92	1.00	4241	2651
~subj (Number of l	evels: 37)						
	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	0.30	0.05	0.21	0.41	1.00	1435	2261
sd(so1)	0.13	0.07	0.01	0.26	1.00	1066	1030
<pre>cor(Intercept,so1)</pre>	-0.67	0.33	-0.99	0.28	1.00	2084	1626
Population-Level E	ffects:						
Estimate	Est.Error	l-95% CI	u-95% CI	Rhat Bul	k_ESS	Tail_ESS	
Intercept 6.10	0.08	5.94	6.25	1.00	1484	2214	
so1 -0.07	0.06	-0.18	0.04	1.00	4210	2934	
Family Specific Pa Estimate Est	Error l-9			_		_	
sigma 0.51	0.02	0.48	0.55 1.00	9 400	3	3093	

How to choose RE-structure?

How to choose multi-level architecture?

two approaches

(1) keep it maximal

- include maximum RE structure that makes sense
 - what "makes sense" may depend on a priori considerations
 - data might not be sufficient to estimate otherwise conceivable MLMs

(2) let the data decide

compare different MLMs and choose the best

- (1) is more careful / prudent in a science context (learning about the world from the model and the data)
- (2) may be more adequate for an engineering context (predicting well enough with efficient models)

LOO-based model comparison

results

priors for MLMs

Priors in MLMs

```
# define the model as a "brmsformula" object
myFormula <- brms::bf(RT ~ 1 + condition + (1 + condition | submission_id))

# get prior information
brms::get_prior(
   formula = myFormula,
   data = data_MC,
   family = gaussian()
)</pre>
```

	prior	class	coef	group	resp	dpar	nlpar	lb ub	source
	(flat)	b			-	-	•		default
	(flat)	b	conditiondiscrimination						(vectorized)
	(flat)	b	conditionreaction						(vectorized)
	lkj(1)	cor							default
	lkj(1)	cor		submission_id					(vectorized)
student_t(3, 385,	133.4)	Intercept							default
student_t(3, 0,	133.4)	sd						0	default
student_t(3, 0,	133.4)	sd		${\it submission_id}$				0	(vectorized)
student_t(3, 0,	133.4)	sd	$\verb"condition discrimination"$	submission_id				0	(vectorized)
student_t(3, 0,	133.4)	sd	conditionreaction	$\verb"submission_id"$				0	(vectorized)
student_t(3, 0,	133.4)	sd	Intercept	$\verb"submission_id"$				0	(vectorized)
student_t(3, 0,	133.4)	sigma						0	default

MLM notation & formula syntax

Multi-level models

notation

Cumbersome: $\eta_i = eta_0 + u_{0, \mathtt{subj}_i} + w_{0, \mathtt{item}_i} + \left(eta_1 + u_{1, \mathtt{subj}_i} + w_{1, \mathtt{item}_i}\right)$ so

Compact:
$$\eta = X\beta + Z\gamma$$

$$X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \\ \vdots & \vdots \end{pmatrix} \qquad Z = \begin{pmatrix} 0 & \dots & 0 & 0 & \dots & 1 & \dots \\ 0 & \dots & 0 & 1 & \dots & 0 & \dots \\ 0 & \dots & 1 & 0 & \dots & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

random effects matrix

	subj	item	SO	rt
	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
1	1	13	1	1561
2	1	6	-1	959
3	1	5	1	582
4	1	9	1	294
5	1	14	-1	438
6	1	4	-1	286
7	1	8	-1	438
8	1	10	-1	278
9	1	2	-1	542
10	1	11	1	494

BRMS formula syntax for MLMs

in a nutshel

basic form:

```
response ~ pterms + (gterms | group)
```

variations:

- (gterms | group) : suppress correlation between gterms
- (gterms | g1 + g2) : syntactic sugar for (gterms | g1) + (gterms | g2)
- (gterms | g1 : g2) : all combinations of g1 and g2 (Cartesian product)
- (gterms | g1 / g2) : nesting g2 within g1; equals (gterms | g1) + (gterms | g1 : g2)
- (gterms | IDx | group) : correlation for all group-level categories with IDx
 - useful for multi-formula models (e.g., non-linear models)

multi-membership & an alternative motivation for MLMs

recap & preparation

Recap & preparation

▶ recap

- multi-level models
- model comparison
- model criticism

preparation

- hypothesis testing
- causal inference (web-book)
- causal inference primer (draft)