MATH 2330: Multivariable Calculus

Section 5.6: Applications of Double Integrals

Key Concept:

Given a density function $\rho(x,y)$ that tells how much $\frac{\text{"stuff"}}{\text{unit area}}$ there is at a given point in a region D, then

$$\iint_D \rho(x,y) \ dA$$

calculates the "total amount of stuff" within region D.

Example: If u(x,y) represents the population density in region D, then $\iint_D u(x,y) \ dA$ gives the total population in region D.

Center of Mass of a Lamina:

mass density function: $\rho(x,y)$ has units $\frac{\text{mass}}{\text{area}}$

total mass of the lamina:
$$m = \iint_D \rho(x,y) \ dA$$

Center of mass: (\bar{x},\bar{y})

$$\bar{x} = \frac{1}{m} \iint_D \rho(x, y) x \ dA$$

$$\bar{y} = \frac{1}{m} \iint_D \rho(x, y) y \ dA$$

Example:

Find the center of mass of the lamina D that has density function $\rho(x,y)=x^2$, where D is the triangular region bounded by $x=0, \quad y=x, \quad 2x+y=6.$

