

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory

Rebiha Benterki^a, Jaume Llibre^{b,*}

- ^a Département de Mathématiques, Université Bachir El Ibrahimi, Bordj Bou Arréridj, Bordj Bou Arréridj 34265, El Anasser, Algeria
- ^b Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ARTICLE INFO

Article history: Received 27 January 2016 Received in revised form 1 July 2016

MSC: primary 34C15 34C25

Keywords: Center Limit cycle Averaging method Phase portrait Generalized Kukles system

ABSTRACT

In this paper we classify the phase portraits in the Poincaré disc of the centers of the generalized class of Kukles systems

$$\dot{x} = -y, \quad \dot{y} = x + ax^3y + bxy^3,$$

symmetric with respect to the *y*-axis, and we study, using the averaging theory up to sixth order, the limit cycles which bifurcate from the periodic solutions of these centers when we perturb them inside the class of all polynomial differential systems of degree 4.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and statement of the main results

Two of the classical and difficult problems in the qualitative theory of polynomial differential systems in \mathbb{R}^2 is the characterization of their centers, and the study of the limit cycles which can bifurcate from their periodic orbits when we perturb them inside some class of polynomial differential equations.

Our work is related with the class of polynomial differential systems of the form

$$\dot{\mathbf{x}} = -\mathbf{y}, \qquad \dot{\mathbf{y}} = \mathbf{x} + Q_n(\mathbf{x}, \mathbf{y}), \tag{1}$$

having a center at the origin, where $Q_n(x, y)$ is a homogeneous polynomial of degree n, and in the study of the number of limit cycles which bifurcate from the periodic orbits of these centers when they are perturbed inside the class of all polynomial differential systems of degree n.

Differential polynomial systems (1) were called *Kukles homogeneous systems* in [1], see also [2,3]. The centers of systems (1) started to be studied by Volokitin and Ivanov in [4].

For n=1 the differential systems (1) are linear, they can have centers, but the perturbation of these centers inside the class of linear differential systems cannot produce limit cycles, because it is well known that linear differential systems cannot have isolated periodic solutions in the set of all periodic solutions.

For n = 2 the phase portraits of system (1) symmetric with respect to the y-axis are a particular class of quadratic centers, and these are well studied, see [5].

E-mail addresses: r-benterki@yahoo.fr (R. Benterki), jllibre@mat.uab.cat (J. Llibre).

^{*} Corresponding author.

Fig. 1. Case a > 0 and b = 0. The separatrices of this phase portrait are the circle of the infinity; and an orbit A which connects the two separatrices inside the Poincaré disc of the two saddles at infinity, localized at the origins of the local charts U_1 and V_1 . Therefore this phase portrait has two canonical regions. The canonical region limited by the orbit A and the part of infinity containing the origin of U_2 is filled by the periodic orbits of the center; and the canonical region limited by the orbit A and the part of infinity containing the origin of V_2 is filled by an elliptic sector of the infinite singular point localized at the origin of V_2 .

In [6-10] are characterized the centers and the phase portraits of linear systems with homogeneous nonlinearities of degree 3, so in particular the phase portraits of systems (1) with n = 3. The limit cycles that bifurcate from the periodic orbits of the centers of systems (1) with n = 3 when they are perturbed inside the class of all cubic polynomial differential systems were studied inside the more general articles [11-13].

Giné in [1] proved that for n = 4 system (1) has a center at the origin if and only if its vector field is symmetric about one of the coordinate axes.

The first objective of this paper is to study the phase portraits of the centers of systems (1) with n = 4 which are symmetric with respect to the y-axis, i.e. the phase portraits of the systems

$$\dot{x} = -y, \qquad \dot{y} = x + ax^3y + bxy^3. \tag{2}$$

The second objective is to study the limit cycles that bifurcate from the periodic solutions of the centers of systems (2) when they are perturbed inside the class of all quartic polynomial differential systems.

For the definition of the global phase portrait of a polynomial differential system in the Poincaré disc see Section 2, where we provide the notations, definitions and basic results which we need for reaching our two objectives.

Our first main result is the following.

Theorem 1. A polynomial differential system (2) with $a^2 + b^2 \neq 0$ has a phase portrait in the Poincaré disc topologically equivalent to one of the three phase portraits of Figs. 1–3.

Theorem 1 is proved in Section 4.

We write the perturbed quartic polynomial differential system of system (2) as

$$\dot{x} = -y + \sum_{s=1}^{6} \varepsilon^{s} \sum_{0 \le i+j \le 4} a_{ij}^{(s)} x^{i} y^{j},
\dot{y} = x + ax^{3}y + bxy^{3} + \sum_{s=1}^{6} \varepsilon^{s} \sum_{0 \le i+j \le 4} b_{ij}^{(s)} x^{i} y^{j},$$
(3)

where i and j are non-negative integers. For the definition of the averaging theory of order k = 1, ..., 6 see Section 5, where we denote by f_k the kth average function. In what follows we state our second main result.

Theorem 2. For $|\varepsilon| \neq 0$ sufficiently small the maximum number of small amplitude limit cycles of the differential system (3) bifurcating from the periodic solutions of the center (2) is

- (a) 0 if the first order average function f_1 is non-zero,
- (b) 0 if $f_1 = 0$ and the second order average function f_2 is non-zero,
- (c) 1 if $f_1 = f_2 = 0$ and the third order average function f_3 is non-zero,
- (d) 1 if $f_1 = f_2 = f_3 = 0$ and the fourth order average function f_4 is non-zero,

Fig. 2. Case a = 0 and b > 0. The separatrices of this phase portrait are the circle of the infinity; an orbit A which connects the two separatrices of the hyperbolic sector of the infinite singular points localized at the origin of U_2 ; and an orbit B which connects the two separatrices which are inside the Poincaré disc of the two saddles at infinity, these saddles are the origins of the local charts U_1 and V_1 . So this phase portrait has three canonical regions. The canonical region limited by the orbit A is filled by the periodic orbits surrounding the center; the canonical region limited by the orbits A, B and the infinity is filled by orbits which start and end at the origin of the local chart U_2 ; and the canonical region limited by the orbit B and the infinity is filled by an elliptic sector of the infinite singular point localized at the origin of V_2 .

Fig. 3. Case a > 0 and b < 0. The separatrices of this phase portrait are the circle of the infinity; an orbit A which connects the two separatrices inside the Poincaré disc of the two saddle–nodes at infinity, these two saddle–nodes are the ones which are closed to the origin of U_2 ; an orbit B which connects the two separatrices which are inside the Poincaré disc of the two saddles at infinity, these saddles are the origins of the local charts U_1 and V_1 ; and the two separatrices C and D of the hyperbolic sector of the infinite singular point which is located at the origin of V_2 . This phase portrait has five canonical regions. The canonical region limited by the orbit A and the infinity is filled by an elliptic sector of the infinite singular point localized at the origin of U_2 ; the canonical region limited by the orbits A, B and the infinity is filled by the periodic orbits of the center; the canonical region limited by the orbits B, C, D and the infinity is filled with orbits which start at the saddle–node close to the left of the origin of V_2 ; the canonical region limited by the separatrix C and the infinity is filled with orbits which start in the saddle–node close to the left of the origin of V_2 and end at the origin of V_2 ; and the canonical region limited by the separatrix D and the infinity is filled with orbits which start at the origin of V_2 and end at the origin of V_2 ; and the canonical region limited by the separatrix D and the infinity is filled with orbits which start at the origin of V_2 and end at the origin of the origi

(e) 2 if $f_1 = f_2 = f_3 = f_4 = 0$ and the fifth order average function f_5 is non-zero, (f) 2 if $f_1 = f_2 = f_3 = f_4 = f_5 = 0$ and the sixth order average function f_6 is non-zero.

Moreover, assume that $f_j = 0$ for j = 1, ..., k-1 and $f_k \neq 0$. Then if \bar{r} is a simple zero of f_k , the small amplitude limit cycle $(x(t, \varepsilon), y(t, \varepsilon))$ associated to this zero is of the form $(x(t, \varepsilon), y(t, \varepsilon)) = \varepsilon(\bar{r} \cos t, \bar{r} \sin t) + O(\varepsilon^2)$.

Clearly that the Liapunov constants are a good told for studying the number of small amplitude limit cycles which can bifurcate from a singular point, i.e. from a Hopf bifurcation. But note that using the expressions of the average functions, given in the proof of Theorem 2, we can estimate the size of the bifurcated small amplitude limit cycles in function of ε for $|\varepsilon| \neq 0$ sufficiently small.

Theorem 2 is proved in Section 6.

Our objective in Theorem 2 is double. First we provide necessary and sufficient conditions in terms of the different order average functions for knowing when the fourth degree polynomial systems (3) have at most 0, 1 or 2 limit cycles bifurcating from the origin. Computing average functions of more higher order we can increase the number of limit cycles bifurcating from the origin. But the problem of the cyclicity is not solved for the cubic degree systems, and of course also it is not solved for the fourth degree systems. Second, using the expressions of the average functions we can estimate the size of these small amplitude limit cycles, as it is shown in the statement of Theorem 2, this is the main difference with respect to study the cyclicity using the Liapunov constants, for more information about the Liapunov constants see for instance Chapter 4 of [14] and the references quoted in that book.

2. Preliminaries

In this section we introduce the basic definitions and notations that we will need for the analysis of the local phase portraits of the finite and infinite singular points of the polynomial differential systems (2), and also for doing their phase portraits in the Poincaré disc.

We denote by $\mathcal{P}_n(\mathbb{R}^2)$ the set of polynomial vector fields on \mathbb{R}^2 of the form $\mathcal{X}(x,y) = (P(x,y),Q(x,y))$ where P and Q are real polynomials in the variables x and y such that the maximal degree of P and Q is n.

2.1. Singular points

A point $q \in \mathbb{R}^2$ is said to be a singular point of the vector field \mathfrak{X} if $P(q) = \mathbb{Q}(q) = 0$.

If $\Delta = P_x(q)Q_y(q) - P_y(q)Q_x(q)$ and $T = P_x(q) + Q_y(q)$, then the singular point q is said to be *elementary* if either $\Delta \neq 0$, or $\Delta = 0$ and $T \neq 0$.

Let q be an elementary singular point with $\Delta \neq 0$. If the two eigenvalues of the matrix

$$\begin{pmatrix} P_x(q) & P_y(q) \\ Q_x(q) & Q_y(q) \end{pmatrix} \tag{4}$$

have real part non-zero then this singular point is called *hyperbolic*. In this case q is a saddle if $\Delta < 0$; a node if $T^2 \ge 4\Delta > 0$ (stable if T < 0, unstable if T > 0), a focus if $4\Delta > T^2 > 0$ (stable if T < 0, unstable if T > 0). If $\Delta \ne 0$ but q is not hyperbolic then $T = 0 < \Delta$ and q is either a weak focus or a center. For more details see, for instance, Theorem 2.15 of [14]. Let q be an elementary singular point with $\Delta = 0$ and $T \ne 0$. Then q is called a *semi-hyperbolic* singular point. The local

phase portraits of a semi-hyperbolic singular point can be studied using Theorem 2.19 of [14].

When $\Delta = T = 0$ but the Jacobian matrix (4) at the singular point q is not the zero matrix, we say that q is *nilpotent*. The local phase portraits at a nilpotent singular point can be studied using Theorem 3.5 of [14].

Finally, if the Jacobian matrix at the singular point q is identically zero, and q is isolated inside the set of all singular points, then we say that q is linearly zero. The study of the local phase portraits of such singular points needs special changes of variables called blow-ups, see for more details Chapter 3 of [14], or [15].

2.2. Poincaré compactification

Let $X \in P_n(\mathbb{R}^2)$ be any planar vector field of degree n. The Poincaré compactified vector field p(X) corresponding to X is an analytic vector on \mathbb{S}^2 defined as follows (see, for instance [12] or Chapter 5 of [14]). Let $\mathbb{S}^2 = \{y = (y_1, y_2, y_3) \in \mathbb{R}^3 : y_1^2 + y_2^2 + y_3^2 = 1\}$ (the Poincaré sphere) and $T_y\mathbb{S}^2$ be the tangent space to \mathbb{S}^2 at point y. We identify the plane $T_{(0,0,1)}\mathbb{S}^2$ with the \mathbb{R}^2 where we have our vector field X. Consider the central projection $f: T_{(0,0,1)}\mathbb{S}^2 \longrightarrow \mathbb{S}^2$, i.e. to each point q of the $T_{(0,0,1)}\mathbb{S}^2$ the map associates the two intersection points of the straight line, joining q with (0,0,0), with the sphere \mathbb{S}^2 . This map provides two copies of X, one in the northern hemisphere and the other in the southern hemisphere. Denote by X' the vector field $Df \circ X$ on \mathbb{S}^2 except on its equator $\mathbb{S}^1 = \{y \in \mathbb{S}^2 : y_3 = 0\}$. Clearly \mathbb{S}^1 is identified to the infinity of \mathbb{R}^2 . In order to extend X' to a vector field on \mathbb{S}^2 (including \mathbb{S}^1) it is necessary that X satisfies suitable conditions. In the case that $X \in P_n(\mathbb{R}^2)$; p(X) is the only analytic extension of $y_1^n X'$ to \mathbb{S}^2 . In short, on $\mathbb{S}^2 \setminus \mathbb{S}^1$ there are two symmetric copies of X, and knowing the behavior of p(X) around \mathbb{S}^1 , we know the behavior of X at infinity. The projection of the closed northern hemisphere of \mathbb{S}^2 on $y_3 = 0$ under $(y_1, y_2, y_3) \mapsto (y_1, y_2)$ is called the Poincaré disc, and it is denoted by \mathbb{D}^2 .

The Poincaré compactification has the property that \mathbb{S}^1 is invariant under the flow of $p(\mathfrak{X})$. We say that two polynomial vector fields \mathfrak{X} and \mathfrak{Y} on \mathbb{R}^2 are *topologically equivalent* if there exists a homeomorphism on \mathbb{S}^2 preserving the infinity \mathbb{S}^1 carrying orbits of the flow induced by $p(\mathfrak{X})$ into orbits of the flow induced by $p(\mathfrak{Y})$; preserving or reversing simultaneously the sense of all orbits.

As \mathbb{S}^2 is a differentiable manifold, for computing the expression of p(X), we consider the six local charts $U_i = \{y_2 \in \mathbb{S}^2 : y_i > 0\}$, and $V_i = \{y_2 \in \mathbb{S}^2 : y_i < 0\}$ where i = 1, 2, 3; and the diffeomorphisms $F_i : U_i \longrightarrow \mathbb{R}^2$ and $G_i : V_i \longrightarrow \mathbb{R}^2$ for i = 1, 2, 3 are the inverses of the central projections from the planes tangent at the points (1, 0, 0); (-1, 0, 0); (0, -1, 0); (0, 0, 1) and (0, 0, -1), respectively. If we denote by $z = (z_1, z_2)$ the value of $F_i(y)$ or $G_i(y)$ for any i = 1, 2, 3

(so z represents different coordinates according to the local charts under consideration), then some easy computations give for p(X) the following expressions:

$$z^{n} \Delta(z) \left(Q\left(\frac{1}{z_{2}}, \frac{z_{1}}{z_{2}}\right) - z_{1} P\left(\frac{1}{z_{2}}, \frac{z_{1}}{z_{2}}\right), -z_{2} P\left(\frac{1}{z_{2}}, \frac{z_{1}}{z_{2}}\right) \right) \quad \text{in } U_{1}, \tag{5}$$

$$z^{n} \Delta(z) \left(P\left(\frac{z_{1}}{z_{2}}, \frac{1}{z_{2}}\right) - z_{1} Q\left(\frac{z_{1}}{z_{2}}, \frac{1}{z_{2}}\right), -z_{2} Q\left(\frac{z_{1}}{z_{2}}, \frac{1}{z_{2}}\right) \right) \quad \text{in } U_{2},$$
 (6)

$$z^{n} \Delta(z) (P(z_{1}, z_{2}), Q(z_{1}, z_{2}))$$
 in U_{3} ,

where
$$\Delta(z) = (z_1^2 + z_2^2 + 1)^{-\frac{1}{2}(n-1)}$$
.

The expression for V_i is the same as that for U_i except for a multiplicative factor $(-1)^{n-1}$. In these coordinates for $i = 1, 2, z_2 = 0$ always denotes the points of \mathbb{S}^1 . In what follows we omit the factor $\Delta(z)$ doing a convenient scaling of the vector field $p(\mathfrak{X})$. Thus we obtain a polynomial vector field in each local chart.

The singular points of $p(\mathfrak{X})$ which are in the interior of the Poincaré disc are called the *finite* singular points, which correspond with the singular points of \mathfrak{X} , and the singular points of $p(\mathfrak{X})$ which are in \mathbb{S}^1 are called the *infinite* singular points of \mathfrak{X} . We note that studying the infinite singular points of the local chart U_1 , we obtain also the ones of the local chart V_1 , and only remains to see if the origin of the local chart U_2 , and consequently the origin of the local chart V_2 , are infinite singular points.

2.3. Local phase portraits on the Poincaré disc

The first step in order to characterize all phase portraits of the polynomial differential systems (2) is to classify the local phase portraits at all finite and infinite singular points in the Poincaré disc. This is made by using the techniques described in Section 2.1. In this way we shall provide all the local phase portraits at all the singular points of the Poincaré disc for all differential systems (2).

2.4. Phase portraits on the Poincaré disc

In this subsection we shall see how to characterize the global phase portraits in the Poincaré disc of the polynomial differential systems (2).

A separatrix of $p(\mathfrak{X})$ is an orbit which is either a singular point, or a limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector at a singular point. Neumann [16] proved that the set formed by all separatrices of $p(\mathfrak{X})$; denoted by $S(p(\mathfrak{X}))$ is closed.

The open connected components of $\mathbb{D}^2 \setminus S(p(\mathcal{X}))$ are called canonical regions of $p(\mathcal{X})$: We define a *separatrix configuration* as a union of $S(p(\mathcal{X}))$ plus one solution chosen from each canonical region. Two separatrix configurations $S(p(\mathcal{X}))$ and $S(p(\mathcal{Y}))$ are said to be *topologically equivalent* if there is an orientation preserving or reversing homeomorphism which maps the trajectories of $S(p(\mathcal{X}))$ into the trajectories of $S(p(\mathcal{Y}))$. The following result is due to Markus [17], Neumann [16] and Peixoto [18].

Theorem 3. The phase portraits in the Poincaré disc of the two compactified polynomial differential systems p(X) and p(Y) are topologically equivalent if and only if their separatrix configurations S(p(X)) and S(p(Y)) are topologically equivalent.

3. Local phase portraits at the finite and infinite singular points

It is clear that the phase portrait of the linear polynomial differential system (2) with a=b=0, is formed by all the invariant circles centered at the origin of coordinates.

In what follows we shall study the phase portraits of the quartic polynomial differential systems (2) with $(a, b) \neq (0, 0)$.

Remark 4. System (2) is reversible because it does not change under the transformation $(x, y, t) \rightarrow (-x, y, -t)$. Hence we know that the phase portrait of system (2) is symmetric with respect to the *y*-axis.

Remark 5. By doing the following symmetries $(x, y, t, a, b) \rightarrow (-x, y, -t, -a, -b)$, we conclude that we only need to study the phase portrait of systems (2) when either a > 0, or a = 0 and b > 0.

The way for studying the phase portraits of systems (2) is the following. First we shall characterize all the finite and infinite singular points of this system with their local phase portraits. After using the symmetry of the solutions with respect to the y-axis and the behavior of the vector field on the axes, we will determine their phase portraits in the Poincaré disc.

3.1. Finite singular points

For the planar quartic polynomial differential systems (2) the center at the origin is the unique finite singular point.

3.2. Infinite singular points

For studying the infinite singular points in the Poincaré disc, we use the definitions and notations given in Section 2.2. We perform the analysis of the vector field at infinity.

Proposition 6. System (2) in the local chart U_1

- (a) has a unique semi-hyperbolic singular point, the origin q, which is a saddle if a > 0 and b > 0;
- (b) has three semi-hyperbolic singular points: the origin q which is a saddle; and the two points $q_{\pm} = (\pm \sqrt{-a/b}, 0)$ which are saddle-nodes if a > 0 and b < 0, moreover q_{+} (resp. q_{-}) has the two hyperbolic sectors in $z_{2} > 0$ (resp. $z_{2} < 0$), and the parabolic one in $z_{2} < 0$ (resp. $z_{2} > 0$);
- (c) has a unique semi-hyperbolic singular point, the origin q, which is a saddle if a > 0 and b = 0:
- (d) has a unique singular point, the origin q, which is a saddle if a = 0 and b > 0 system (2).

System (2) in the local chart U_2

(e) has the origin as a singular point, which is linearly zero with one elliptic, one hyperbolic and two parabolic sectors, moreover when $a \ge 0$ and b > 0 (resp. b < 0) the hyperbolic sector together with two parabolic sector is in $z_2 > 0$ (resp. $z_2 < 0$), and the elliptic sector together with two parabolic sectors is in $z_2 < 0$ (resp. $z_2 > 0$), and if a > 0 and b = 0 then only there is a hyperbolic sector in $z_2 > 0$, and the elliptic sector together with two parabolic sectors is in $z_2 < 0$.

Proof. From (5) the differential system (2) in the local chart U_1 is

$$\dot{u} = au + bu^3 + u^2v^3 + v^3,
\dot{v} = uv^4.$$
(7)

If a>0 and b>0 the origin is the only infinite singular point of the differential system (7), which is a semi-hyperbolic singular point with eigenvalues a and 0. If a>0 and b<0 then there are two additional infinite singular points, namely $q_{\pm}=(\pm\sqrt{-a/b},0)$, which are semi-hyperbolic with eigenvalues -2a and 0.

In order to obtain the local phase portraits at these semi-hyperbolic infinite singular points we use Theorem 2.19 of [14], and we obtain that the origin is a saddle. While for the singular points $q_{\pm} = (\pm \sqrt{-a/b}, 0)$ we obtain that they are saddle-nodes, located as it is described in the statement (b). Therefore the proofs of statements (a) and (b) are done.

If a > 0 and b = 0 system (2) becomes

$$\dot{u} = au + u^2v^3 + v^3,$$
 $\dot{v} = uv^4.$
(8)

The origin is the only infinite singular point of the differential system (8), which is a semi-hyperbolic singular point with eigenvalues *a* and 0. Applying Theorem 2.19 of [19] we conclude that the origin is a saddle. So statement (c) is proved.

If a = 0 and b > 0 system (2) becomes

$$\dot{u} = bu^3 + u^2v^3 + v^3,
\dot{v} = uv^4.$$
(9)

The origin of this differential system is a linearly zero singular point. Using polar blowing up $(x, y) \rightarrow (\rho, \theta)$ where $x = \rho \cos \theta$ and $y = \rho \sin \theta$, system (9) writes

$$\dot{\rho} = \rho^3 \cos \theta (b \cos^3 \theta + (1 + \rho^2) \sin^3 \theta),$$

$$\dot{\theta} = -\rho^2 \sin \theta (b \cos^3 \theta + \sin^3 \theta).$$
(10)

We eliminated the common factor ρ^2 between $\dot{\rho}$ and $\dot{\theta}$ by doing a rescaling of the independent variable, we get the system

$$\dot{\rho} = \rho \cos \theta (b \cos^3 \theta + (1 + \rho^2) \sin^3 \theta),$$

$$\dot{\theta} = -\sin \theta (b \cos^3 \theta + \sin^3 \theta).$$
(11)

The zeros on $\rho=0$ of the differential system (11) are located at $\theta_1=0$, $\theta_2=\pi$, $\theta_3=-\arctan\sqrt[3]{b}$, and $\theta_4=-\arctan\sqrt[3]{b}+\pi$. The corresponding linear part for system (11) at $(0,\theta_i)$ for j=1,2 is

$$\begin{pmatrix} -b & 0 \\ 0 & b \end{pmatrix}$$
.

Then we conclude that the point $(0, \theta_j)$ for j = 1, 2 is a saddle. For the singular point $(0, \theta_j)$ for j = 3, 4 the eigenvalues of its linear part are 0 and $3b/(1+\sqrt[3]{b^2})$, so they are semi-hyperbolic singular points. In the differential system (11) we perform the translation $\theta = \alpha + \theta_i$ for j = 3, 4, i.e. we put these singular points at the origin of coordinates.

By doing a Taylor expansion up to the third order in ρ and α for system (11), we get

$$\dot{\rho} = \rho^3 \left(-\frac{b}{1 + \sqrt[3]{b^2}} + O(\alpha) \right),$$

$$\dot{\alpha} = \alpha \left(\frac{3b}{1 + \sqrt[3]{b^2}} + O(\alpha) \right).$$
(12)

Applying Theorem 2.19 of [14] to the origin of the differential system (12) we obtain that it is a saddle. Hence the singular points $(0, \theta_j)$ for j = 3, 4 are saddles. Now going back to system (8) through the changes of variables it follows the result of statement (d).

From (6) the differential system (2) in the local chart U_2 is

$$\dot{u} = -bu^2 - v^3 - au^4 - u^2v^3,
\dot{v} = -buv - au^3v - uv^4.$$
(13)

In this chart we only need to study the singular point at the origin of system (13), and it is linearly zero singular point. We need to do blow-up's to describe the local behavior at this point. We perform the directional blow-up $(u, v) \to (u, w)$ with w = v/u and have

$$\dot{u} = -bu^2 - u^3 w^3 - au^4 - u^5 w^3,$$

$$\dot{w} = u^2 w^4.$$
(14)

We eliminate the common factor u^2 between \dot{u} and \dot{w} by doing a rescaling of the independent variable, and we get the system

$$\dot{u} = -b - uw^3 - au^2 - u^3w^3,
\dot{w} = w^4.$$
(15)

If b > 0 system (15) have no singular points. Going back through the change of variables to system (13), we see that the local phase portrait at the origin consists of one elliptic, one hyperbolic, and two parabolic sectors. The line at infinity separates the hyperbolic sector from the elliptic one, and this line is contained inside both parabolic sectors.

If b=0, the unique singular point of system (15) is the origin, whose linear part is again zero. Hence we do another blow-up $(u,w) \to (u,z)$ with z=w/u. Eliminating from the system (\dot{u},\dot{z}) the common factor u by doing a rescaling of the independent variable, we get the system

$$\dot{u} = -au - u^3 z^3 - u^5 z^3,
\dot{z} = az + 2u^2 z^4 + u^4 z^4.$$
(16)

The unique singular point of system (16) is the origin. The eigenvalues of the linear part of system (16) at the origin are $\pm a$, hence it is a saddle. Going back through the changes of variables up to system (13), we see that the local phase portrait at the origin of U_2 is the one described in statement (e) for b=0. So statement (e) is proved.

4. Phase portraits in the Poincaré disc

In this section we prove Theorem 1.

Let p be a center. The maximum region filled only with periodic orbits surrounding the center p is called the *period annulus* of p.

We denote by $\alpha(\gamma)$ the α -limit of the orbit γ , and by $\omega(\gamma)$ the ω -limit of the orbit γ .

A *graphic* is formed by a finite number of orbits $\gamma_1, \ldots, \gamma_n$ which are not singular points, and a finite number of singular points p_1, \ldots, p_n such that $\alpha(\gamma_i) = p_i$, $\omega(\gamma_i) = p_i + 1$ for $i = 1, \ldots, n-1$, $\alpha(\gamma_n) = p_n$ and $\omega(\gamma_n) = p_1$. Possibly, some of the singular points p_i are identified.

Assume that a>0 **and** b<0. The singular point q_- is a saddle–node, q is a saddle, and q_+ is a saddle–node, and from statement (b) of Proposition 6 we obtain that the behavior of q_- in $U_1 \cap \mathbb{D}^2$ is a stable node (recall that \mathbb{D}^2 denotes the Poincaré disc), the behavior of q in $U_1 \cap \mathbb{D}^2$ is given by two hyperbolic sectors (the common separatrix of these two sectors is stable), and the behavior of q_+ in $U_1 \cap \mathbb{D}^2$ is again given by two hyperbolic sectors (the common separatrix of these two sectors is unstable). By the symmetry of the phase portrait of system (2) with respect to the y-axis, we obtain the local phase portraits at the singular points in the chart V_1 . From statement (e) of Proposition 6 in $U_2 \cap \mathbb{D}^2$ the origin is a linearly zero singular point with one elliptic and two parabolic sectors, each one of these parabolic sector have one boundary at infinity

and the other in the elliptic sector. In the origin of $V_2 \cap \mathbb{D}^2$ there are one hyperbolic and two parabolic sectors, each one of the parabolic sectors have one boundary at infinity and the other in the hyperbolic sector. This completes the study of the local phase portraits at all the singular points at infinity.

Now taking into account that we know the behavior of the vector field associated to system (2) on the axes (because $\dot{x}_{|x=0} = -y$ and $\dot{y}_{|y=0} = x$), and the symmetry with respect to the *y*-axis, the unstable separatrix at q_+ connects with the stable separatrix of the symmetric point of q_+ . Using these argument the stable separatrix of q connects with the unstable one of its symmetric point. So we get the phase portrait described in Fig. 3.

Assume now that $a \ge 0$ **and** b > 0. From statements (a) and (d) of Proposition 6 the singular point q is a saddle, and the behavior of q in $U_1 \cap \mathbb{D}^2$ is given by two hyperbolic sectors (the common separatrix of these two sectors is stable). In $U_2 \cap \mathbb{D}^2$ the origin is a linearly zero singular point with one hyperbolic and two parabolic sectors, each one of these parabolic sector have one boundary at infinity and the other in the hyperbolic sector. In the origin of $V_2 \cap \mathbb{D}^2$ there are one elliptic and two parabolic sectors, each one of the parabolic sectors have one boundary at infinity and the other in the elliptic sector. This completes the study of the local phase portraits at all the singular points at infinity.

Now taking into account that we know the behavior of the vector field associated to system (2) on the axes, and by the symmetry with respect to the y-axis, the stable separatrix of q connects with the unstable one of its symmetric point, and by the same argument the two separatrices of the hyperbolic sector of the origin of the local chart U_2 connect, and they form the exterior boundary of the period annulus of the center. So we get the phase portrait described in Fig. 2.

Assume now that a > 0 **and** b = 0. The local phase portrait at the singular point q is the same as in the case $a \ge 0$ and b > 0. In $U_2 \cap \mathbb{D}^2$ the origin is a linearly zero singular point with one hyperbolic having its two separatrices on the infinity line. In the origin of $V_2 \cap \mathbb{D}^2$ there are one elliptic and two parabolic sectors, each one of the parabolic sectors have one boundary at infinity and the other in the elliptic sector. This completes the study of the local phase portraits at all the singular points at infinity. Now the same arguments than in the case $a \ge 0$ and b > 0 complete the phase portrait described in the Fig. 1. Hence Theorem 1 is proved.

5. The averaging theory up to order 6

In this section we recall some results on the averaging theory that we shall use for studying the limit cycles which bifurcate from the periodic orbits of the centers of systems (2) when they are perturbed inside the class of all polynomial differential systems of degree 4.

We consider a nonlinear differential system of the form

$$\dot{x}(t) = \sum_{i=0}^{k} \varepsilon^{i} F_{i}(t, x) + \varepsilon^{k+1} R(t, x, \varepsilon), \tag{17}$$

where $F_i : \mathbb{R} \times D \to \mathbb{R}$ for i = 0, 1, ..., k, and $R : \mathbb{R} \times D \times (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$, are continuous functions, and T-periodic in the first variable, being D an open interval of \mathbb{R} , and ε a small parameter. From [20] we define the following functions $y_i(t, z)$ for k = 1, 2, 3, 4, 5, 6 associated to system (17):

$$\begin{aligned} y_1(t,z) &= \int_0^t F_1(s,z) ds, \\ y_2(t,z) &= \int_0^t \left(2F_2(s,z) + 2\partial F_1(s,z) y_1(s,z) \right) ds, \\ y_3(t,z) &= \int_0^t \left(6F_3(s,z) + 6\partial F_2(s,z) y_1(t,z) + 3\partial^2 F_1(s,z) y_1(s,z)^2 + 3\partial F_1(s,z) y_2(s,z) \right) ds, \\ y_4(t,z) &= \int_0^t \left(24F_4(s,z) + 24\partial F_3(s,z) y_1(s,z) + 12\partial^2 F_2(s,z) y_1(s,z)^2 + 12\partial F_2(s,z) y_2(s,z) \right. \\ &\quad + 12\partial^2 F_1(s,z) y_1(s,z) y_2(s,z) + 4\partial^3 F_1(s,z) y_1(s,z)^3 + 4\partial F_1(s,z) y_3(s,z) \right) ds, \\ y_5(t,z) &= \int_0^t \left(120F_5(s,z) + 120\partial F_4(s,z) y_1(s,z) + 60\partial^2 F_3(s,z) y_1(s,z)^2 + 60\partial F_3(s,z) y_2(s,z) \right. \\ &\quad + 60\partial^2 F_2(s,z) y_1(s,z) y_2(s,z) + 20\partial^3 F_2(s,z) y_1(s,z)^3 + 20\partial F_2(s,z) y_3(s,z) \right. \\ &\quad + 20\partial^2 F_1(s,z) y_1(s,z) y_3(s,z) + 15\partial^2 F_1(s,z) y_2(s,z)^2 + 30\partial^3 F_1(s,z) y_1(s,z)^2 y_2(s,z) \right. \\ &\quad + 5\partial^4 F_1(s,z) y_1(s,z)^4 + 5\partial F_1(s,z) y_4(s,z) \right) ds, \\ y_6(t,z) &= \int_0^t \left(720F_6(s,z) + 720\partial F_5(s,z) y_1(s,z) + 360\partial F_4(s,z) y_2(s,z) + 360\partial^2 F_4(s,z) y_1(s,z)^2 + 120\partial F_3(s,z) y_3(s,z) + 360\partial^2 F_3(s,z) y_1(s,z) y_2(s,z) \right. \end{aligned}$$

$$+ 120\partial^{3}F_{3}(s,z)y_{1}(s,z)^{3} + 30\partial F_{2}(s,z)y_{4}(s,z)$$

$$+ 120\partial^{2}F_{2}(s,z)y_{1}(s,z)y_{3}(s,z) + 30\partial^{4}F_{2}(s,z)y_{1}(s,z)^{4}$$

$$+ 90\partial^{2}F_{2}(s,z)y_{2}(s,z)^{2} + 180\partial^{3}F_{2}(s,z)y_{1}(s,z)^{2}y_{2}(s,z)$$

$$+ 6\partial F_{1}(s,z)y_{5}(s,z) + 30\partial^{2}F_{1}(s,z)y_{1}(s,z)y_{4}(s,z)$$

$$+ 60\partial^{2}F_{1}(s,z)y_{2}(s,z)y_{3}(s,z) + 60\partial^{3}F_{1}(s,z)y_{1}(s,z)^{2}y_{3}(s,z)$$

$$+ 60\partial^{4}F_{1}(s,z)y_{1}(s,z)^{3}y_{2}(s,z) + 90\partial^{3}F_{1}(s,z)y_{1}(s,z)y_{2}(s,z)^{2} + 6\partial^{5}F_{1}(s,z)y_{1}(s,z)^{5} \Big) ds.$$

Here $\partial^k F_\ell(s,z)$ means the kth partial derivative of the function $F_\ell(s,z)$ with respect to the variable z. Also from [20] we have the functions

$$\begin{split} f_1(z) &= \int_0^T F_1(t,z) dt, \\ f_2(z) &= \int_0^T \left(F_2(t,z) + \partial F_1(t,z) y_1(t,z) \right) dt, \\ f_3(z) &= \int_0^T \left(F_3(t,z) + \partial F_2(t,z) y_1(t,z) + \frac{1}{2} \partial^2 F_1(t,z) y_1(t,z)^2 + \frac{1}{2} \partial F_1(t,z) y_2(t,z) \right) dt, \\ f_4(z) &= \int_0^T \left(F_4(t,z) + \partial F_3(t,z) y_1(t,z) + \frac{1}{2} \partial^2 F_2(t,z) y_1(t,z)^2 + \frac{1}{2} \partial F_2(t,z) y_2(t,z) \right) dt, \\ f_5(z) &= \int_0^T \left(F_5(t,z) y_1(t,z) y_2(t,z) dt + \frac{1}{6} \partial^3 F_1(t,z) y_1(t,z)^3 + \frac{1}{6} \partial F_1(t,z) y_3(t,z) \right) dt, \\ f_5(z) &= \int_0^T \left(F_5(t,z) + \partial F_4(t,z) y_1(t,z) + \frac{1}{2} \partial^2 F_3(t,z) y_1(t,z)^2 \right) \\ &+ \frac{1}{2} \partial^3 F_2(t,z) y_2(t,z) + \frac{1}{2} \partial^2 F_2(t,z) y_1(t,z) y_2(t,z) \\ &+ \frac{1}{6} \partial^3 F_2(t,z) y_1(t,z)^3 + \frac{1}{6} \partial^2 F_2(t,z) y_3(t,z) + \frac{1}{6} \partial^2 F_1(t,z) y_3(t,z) + \frac{1}{8} \partial^2 F_1(t,z) y_2(t,z)^2 \\ &+ \frac{1}{4} \partial^3 F_1(t,z) y_1(t,z)^2 y_2(t,z) + \frac{1}{24} \partial^4 F_1(t,z) y_1(t,z)^4 + \frac{1}{24} \partial^4 F_1(t,z) y_4(t,z) \right) dt, \\ f_6(z) &= \int_0^T \left(F_6(t,z) + \partial F_5(t,z) y_1(t,z) + \frac{1}{2} \partial^2 F_4(t,z) y_1(t,z)^2 + \frac{1}{6} \partial^2 F_2(t,z) y_3(t,z) \right) \\ &+ \frac{1}{2} \partial^2 F_3(t,z) y_1(t,z) y_2(t,z) + \frac{1}{8} \partial^3 F_3(t,z) y_1(t,z)^3 + \frac{1}{24} \partial^4 F_2(t,z) y_4(t,z) + \frac{1}{6} \partial^2 F_2(t,z) y_1(t,z) y_3(t,z) \\ &+ \frac{1}{4} \partial^3 F_2(t,z) y_1(t,z)^2 y_2(t,z) + \frac{1}{8} \partial^2 F_2(t,z) y_2(t,z)^2 + \frac{1}{24} \partial^4 F_2(t,z) y_1(t,z)^4 + \frac{1}{120} \partial^2 F_1(t,z) y_5(t,z) \\ &+ \frac{1}{24} \partial^2 F_1(t,z) y_1(t,z)^2 y_2(t,z) + \frac{1}{8} \partial^2 F_2(t,z) y_2(t,z)^2 + \frac{1}{24} \partial^4 F_2(t,z) y_1(t,z)^4 + \frac{1}{120} \partial^4 F_1(t,z) y_5(t,z) \\ &+ \frac{1}{12} \partial^4 F_2(t,z) y_1(t,z)^3 y_2(t,z) + \frac{1}{8} \partial^3 F_1(t,z) y_2(t,z)^2 + \frac{1}{120} \partial^5 F_1(t,z) y_1(t,z)^5 \right) dt. \end{split}$$

The averaging theory for a differential system (17) works as follows, see [20] for more details. If the average function $f_1(z)$ is not the zero function, every simple zero of $f_1(z)$ provides a limit cycle of the differential system (17). If $f_1(z) \equiv 0$ but $f_2(z) \not\equiv 0$, then every simple zero of $f_2(z)$ provides a limit cycle of the differential system (17). If $f_1(z) \equiv 0$, $f_2(z) \equiv 0$ but $f_3(z) \not\equiv 0$, then every simple zero of $f_3(z)$ provides a limit cycle of the differential system (17), and so on.

Assume that the average functions $f_j = 0$ for j = 1, ..., k-1 and $f_k \neq 0$. From [20] we know that if \overline{z} is a simple zero of f_k , then there is a periodic solution $r(\theta, \varepsilon)$ of the differential system (17) such that $r(0, \varepsilon) = \overline{z} + O(\varepsilon)$, or equivalently $r(0, \varepsilon) \to \overline{z}$ when $\varepsilon \to 0$.

In fact, if $x(t, z, \varepsilon)$ denotes the solution of the differential system (17) such that $x(0, z, \varepsilon) = z$, then the average functions satisfy that

$$x(T, z, \varepsilon) - z = \varepsilon f_1(z) + \varepsilon^2 f_2(z) + \cdots$$

see for more details [19,21,20]. Then, by the Implicit Function Theorem it follows that if $f_1(z) = \cdots = f_{k-1}(z) = 0$ and $f_k(z) \neq 0$, then the simple zeros of the function $f_k(z)$ provide limit cycles of the differential system (17).

6. Proof of Theorem 2

Consider system (2), we shall study which periodic solutions of its center become limit cycles when we perturb the center inside the class of polynomial differential systems of degree 4. This study will be done by applying the averaging theory described in Section 5, we introduce a small parameter ε doing the scaling $x = \varepsilon X$, $y = \varepsilon Y$. Thus we get a differential system (\dot{X}, \dot{Y}) . After that we perform the polar change of coordinates $X = r \cos \theta$, $Y = r \sin \theta$, and we pass system (\dot{X}, \dot{Y}) to a system $(\dot{r},\dot{\theta})$. Now we take as independent variable the angle θ , and the system $(\dot{r},\dot{\theta})$, becomes the differential equation $dr/d\theta$, and by doing a Taylor expansion truncated at 6th order in ε we obtain an expression for $dr/d\theta$ similar to the one of the differential system (17). In short we have written our differential system (3) in the normal form (17) for applying the averaging theory.

We give only the expression of functions $F_1(r, \theta)$ and $F_2(r, \theta)$.

The explicit expressions of $F_i(r, \theta)$ for i = 3, ..., 6 are quite large so we omit them.

The functions $F_i(\theta, r)$ $i = 1, \dots, 6$ and $R(\theta, x, \varepsilon)$ of system (17) are analytic, and since the independent variable θ appears through sinus and cosinus of θ , they are 2π -periodic. Hence the assumptions for applying the averaging theory described in Section 5 are satisfied.

The expressions of $F_1(r, \theta)$ and $F_2(r, \theta)$ are

$$\begin{split} F_1(r,\theta) &= a_{00}^{(2)}\cos\theta + b_{00}^{(2)}\sin\theta + r(a_{10}^{(1)}\cos^2\theta + (a_{01}^{(1)} + b_{10}^{(1)})\cos\theta\sin\theta + b_{10}^{(1)}\sin^2\theta), \\ F_2(r,\theta) &= -(b_{00}^{(2)}a_{10}^{(1)} + b_{10}^{(1)}a_{00}^{(2)})\cos^3\theta - (2b_{10}^{(1)}b_{00}^{(2)} + b_{00}^{(2)}a_{01}^{(1)} + b_{01}^{(1)}a_{00}^{(2)} - 2a_{10}^{(1)}a_{00}^{(2)})\cos^2\theta\sin\theta \\ &+ \cos\theta(a_{00}^{(3)} + (-2b_{01}^{(1)}b_{00}^{(2)} + b_{00}^{(2)}a_{10}^{(1)} + b_{10}^{(1)}a_{00}^{(2)})\sin^2\theta) + r^2((b_{20}^{(1)} + a_{11}^{(1)})\cos^2\theta\sin\theta \\ &+ (b_{11}^{(1)} + a_{02}^{(1)})\cos\theta\sin^2\theta + a_{20}^{(1)}\cos^3\theta + b_{02}^{(1)}\sin^3\theta) + r(-b_{10}^{(1)}a_{10}^{(1)}\cos^4\theta - ((b_{10}^{(1)})^2 \\ &+ (b_{01}^{(1)} - a_{10}^{(1)})a_{10}^{(1)} + b_{10}^{(1)}a_{01}^{(1)})\cos^3\theta\sin\theta) + \sin^2\theta(b_{10}^{(2)} + b_{01}^{(1)}a_{01}^{(1)}\sin^2\theta) \\ &+ \cos^2\theta(a_{10}^{(2)} + (-2b_{10}^{(1)}b_{01}^{(1)} + b_{10}^{(1)}a_{10}^{(1)} - b_{01}^{(1)}a_{01}^{(1)} + 2a_{10}^{(1)}a_{01}^{(1)})\sin^2\theta) \\ &+ \cos\theta\sin\theta(b_{10}^{(2)} + a_{01}^{(2)}) + \cos\theta\sin\theta(b_{10}^{(2)} + a_{01}^{(2)}) + (-(b_{01}^{(1)})^2 + b_{01}^{(1)}a_{10}^{(1)} + a_{01}^{(1)}(b_{10}^{(1)} + a_{01}^{(1)})\sin^2\theta) \\ &+ a_{01}^{(1)}\sin^2\theta) + \sin\theta(b_{00}^{(3)} + (b_{00}^{(2)}a_{00}^{(1)} + b_{01}^{(1)}a_{00}^{(2)})\sin\theta \\ &+ a_{01}^{(1)}a_{00}^{(2)}\sin\theta) + \frac{-2b_{00}^{(2)}a_{00}^{(2)}\cos\theta + ((a_{00}^{(2)})^2 - b_{00}^{(2)})\sin\theta}{2r}. \end{split}$$

Using the formulas given in Section 2 we obtain the average function of first order

$$f_1(r) = (a_{10}^{(1)} + b_{01}^{(1)})r.$$

Clearly equation $f_1(r) = 0$ has no positive zeros. Thus the first average function does not provide any information about the

limit cycles that bifurcate from the periodic solutions of the center when we perturb it. This proves statement (a). Setting $a_{10}^{(1)} = -b_{01}^{(1)}$ we obtain $f_1(r) = 0$. So we can apply the averaging theory of second order, obtaining the average function of second order.

$$f_2(r) = (a_{10}^{(2)} + b_{01}^{(2)})r.$$

As for the first average function, the second one also does not provide information on the bifurcating limit cycles. Therefore the proof of statement (b) is done.

Doing $a_{10}^{(2)}=-b_{01}^{(2)}$ we get $f_2(r)=0$, and then we can apply the averaging theory of third order, and its corresponding average function is

$$f_3(r) = \frac{1}{2} \left(-b_{11}^{(1)}b_{00}^{(2)} + b_{01}^{(3)} - 2b_{00}^{(1)}a_{20}^{(1)} + 2b_{02}^{(1)}a_{00}^{(2)} + a_{11}^{(1)}a_{00}^{(2)} + a_{10}^{(3)}\right)r + \frac{1}{8}(b_{21}^{(1)} + 3b_{03}^{(1)} + 3a_{30}^{(1)} + a_{12}^{(1)})r^3.$$

Therefore $f_3(r)$ can have at most one positive real root. Hence statement (c) of the theorem is proved.

In order to apply the averaging theory of fourth order, we need to have $f_3(r)=0$ so we set $a_{10}^{(3)}=b_{11}^{(1)}b_{00}^{(2)}-b_{01}^{(3)}+2b_{00}^{(1)}a_{20}^{(1)}-2b_{02}^{(1)}a_{00}^{(2)}-a_{11}^{(1)}a_{00}^{(2)}$ and $a_{12}^{(1)}=-b_{21}^{(1)}-3b_{03}^{(1)}-3a_{30}^{(1)}$. The resulting average function of fourth order is

$$f_4(r) = r(A_1 + A_2r^2),$$

where

$$\begin{split} A_1 &= \frac{1}{2} \bigg(b_{10}^{(1)} b_{11}^{(1)} b_{00}^{(2)} + b_{01}^{(4)} - b_{11}^{(2)} b_{00}^{(3)} - 2 b_{02}^{(1)} b_{00}^{(2)} a_{10}^{(1)} + 2 b_{10}^{(1)} a_{20}^{(1)} b_{00}^{(2)} \\ &- 2 b_{00}^{(3)} a_{20}^{(1)} - b_{00}^{(2)} a_{10}^{(1)} a_{11}^{(1)} + a_{10}^{(4)} + b_{11}^{(1)} a_{10}^{(0)} a_{00}^{(2)} - b_{00}^{(2)} b_{11}^{(2)} \\ &+ a_{11}^{(1)} a_{00}^{(3)} + 2 b_{02}^{(2)} a_{00}^{(2)} - 2 b_{00}^{(2)} a_{20}^{(2)} + a_{00}^{(2)} a_{11}^{(1)} + 2 b_{02}^{(1)} a_{00}^{(3)} + a_{01}^{(1)} a_{11}^{(1)} a_{00}^{(2)} + 2 a_{10}^{(1)} a_{20}^{(1)} a_{00}^{(2)} + 2 b_{02}^{(1)} a_{01}^{(1)} a_{00}^{(2)} \bigg), \end{split}$$

$$\begin{split} A_2 &= \frac{1}{8} \bigg(b_{20}^{(1)} b_{11}^{(1)} - b_{02}^{(1)} b_{11}^{(1)} + 3 b_{10}^{(1)} b_{03}^{(1)} - 3 a b_{00}^{(2)} - 3 b b_{00}^{(2)} + b_{21}^{(2)} + 3 b_{12}^{(2)} + 2 b_{12}^{(2)} a_{10}^{(1)} + 3 b_{03}^{(1)} a_{01}^{(1)} - 2 b_{20}^{(1)} a_{20}^{(1)} \\ &+ a_{20}^{(1)} a_{11}^{(1)} + 2 a_{30}^{(2)} + a_{12}^{(2)} + 2 b_{02}^{(1)} a_{02}^{(1)} + a_{11}^{(1)} a_{02}^{(1)} + 2 a_{10}^{(1)} a_{21}^{(1)} + b_{10}^{(1)} a_{12}^{(1)} + a_{01}^{(1)} a_{12}^{(1)} \bigg). \end{split}$$

In view of the expression of the polynomial $f_4(r)$ it follows immediately that $f_4(r)$ can have at most one positive real root. So statement (d) of the theorem is proved.

Solving $A_1 = 0$ and $A_2 = 0$ we obtain $f_4(r) = 0$, so we can apply the averaging theory of order 5, and its corresponding average function is of the form

$$f_5(r) = r(B_1 + B_2r^2 + B_3r^4).$$

We do not give the big expressions of the independent coefficients B_i for i = 1, 2, 3. It follows immediately that $f_5(r)$ can have at most two positive real roots. Thus, statement (e) of the theorem holds.

Solving $B_1 = 0$, $B_2 = 0$ and $B_3 = 0$ we obtain $f_5(r) = 0$, and we assume that a denominator $7a + 9b \neq 0$ which appears is not zero. Then applying the averaging theory of order six we obtain an average function of the form

$$f_6(r) = r(C_1 + C_2r^2 + C_3r^4)$$

where the coefficients C_i 's for i = 1, 2, 3 are independent polynomials in $a_{ij}^{(s)}$ and $b_{ij}^{(s)}$. Hence $f_6(r)$ has at most 2 simple positive zero. Hence statement (f) of the theorem is proved.

From the summary on the averaging theory, that we are using here, done in Section 5, we know that if the average functions $f_j = 0$ for j = 1, ..., k-1 and $f_k \neq 0$, and \bar{r} is a simple zero of f_k , then there is a limit cycle $r(\theta, \varepsilon)$ of the differential system (17) such that $r(0, \varepsilon) = \bar{r} + O(\varepsilon)$. Then, going back through the changes of variables we have for the differential system (\dot{X}, \dot{Y}) the limit cycle $(X(t, \varepsilon), Y(t, \varepsilon)) = (\bar{r}\cos\theta, \bar{r}\sin t) + O(\varepsilon)$. Now due to the scaling $x = \varepsilon X$, $y = \varepsilon Y$ the limit cycles that we find for the differential system (17) coming from our system (3), are in fact limit cycles of the form $(x(t, \varepsilon), y(t, \varepsilon)) = \varepsilon(\bar{r}\cos t, \bar{r}\sin t) + O(\varepsilon^2)$ for system (3), which tends to the origin of system (3) when the parameter $\varepsilon \to 0$. In other words these limit cycles are small amplitude limit cycles bifurcating from the origin, i.e. are limit cycles coming by a Hopf bifurcation, for more details on these kind of bifurcations see for instance [22].

Acknowledgments

We thank the reviewers for their good comments which help us to improve the presentation of this paper.

The second author is partially supported by a MINECO grant MTM 2013-40998-P, an AGAUR grant number 2014SGR-568, and the grants FP7-PEOPLE-2012-IRSES 318999 and 316338.

References

- [1] J. Giné, Conditions for the existence of a center for the Kukles homogenenous systems, Comput. Math. Appl. 43 (2002) 1261–1269.
- [2] J. Giné, J. LLibre, C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. Lond. Math. Soc. 47 (2015) 315–324.
- [3] J. Giné, J. LLibre, C. Valls, Centers for the Kukles homogeneous systems with even degree, preprint, 2015.
- [4] E.P. Volokitin, V.V. Ivanov, Isochronicity and Commutation of polynomial vector fields, Sib. Math. J. 40 (1999) 22–37.
- [5] N.N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, Math. USSR-Sb. 100 (1954) 397–413.
- [6] C.A. Buzzi, J. Llibre, J.C. Medrado, Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non–degenerate center at the origin, Qual. Theory Dyn. Syst. 7 (2009) 369–403.
- [7] K.E. Malkin, Criteria for the center for a certain differential equation, Volz. Mat. Sb. Vyp. 2 (1964) 87-91. (in Russian).
- [8] N.I. Vulpe, K.S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk SSSR 301 (1988) 1297–1301. (in Russian) translation in Soviet Math. Dokl. 38 (1989),198–201.
- [9] H. Żołądek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal. 4 (1994) 79–136.
- [10] H. Żołądek, Remarks on: "The classification of reversible cubic systems with center" [Topol. Methods Nonlinear Anal. 4 (1994), 79–136], Topol. Methods Nonlinear Anal. 8 (1996) 335–342.
- [11] I. Colak, J. Llibre, C. Valls, Hamiltonian non-degenerate centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations 257 (2014) 1623–1661.
- [12] J. Itikawa, J. Llibre, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math. 277 (2015) 171–191.
- [13] J. Llibre, B.D. Lopes, J.R. Moraes, Limit cycles of cubic polynomial differential systems with rational first integrals of degree 2, Appl. Math. Comput. 250 (2015) 887–907.
- [14] F. Dumortier, J. Llibre, J.C. Artés, Qualitative Theory of Planar Differential Systems, in: Universitext, Spring-Verlag, 2006.
- [15] V.I. Arnold, Y.S. Ilyashenko, Dynamical systems I, ordinary differential equations, in: Encyclopaedia of Mathematical Sciences, vol. 1–2, Springer-Verlag, Heidelberg, 1988.
- [16] D.A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc. 48 (1975) 73-81.
- [17] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76 (1954) 127-148.
- [18] M.M. Peixoto, Dynamical Systems. Proceedings of a Symposium held at the University of Bahia, Acad. Press, New York, 1973, pp. 389-420.
- [19] A. Buică, J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128 (2004) 7–22.
- [20] J. Llibre, D.D. Novaes, M.A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity 27 (2014) 563–583.
- [21] M. Han, V.G. Romanovski, X. Zhang, Equivalence of the Melnikov function and the averaging method, Qual. Theory Dyn. Syst. (2016) (in press).
- [22] Y. Kuznetsov, Elements of applied bifurcation theory, in: Applied Mathematical Sciences, vol. 112, Springer-Verlag, New York, 2004.