TANGENT SPACE OF A SUBMANIFOLD

Proposition. Let $S \subseteq M$ be an embedded submanifold and let $p \in S$. Then

$$d\iota_p(T_pS) = \Big\{ v \in T_pM \ \Big| \ \forall f \in C^\infty(M), \ f|_S \equiv 0 \text{ implies } vf = 0 \Big\}.$$

Proof. Suppose $v = d\iota_p(w)$ belongs to $d\iota_p(T_pS)$. If $f \in C^{\infty}(M)$ satisfies $f|_S \equiv 0$, then $vf = w(f|_S) = 0$.

Conversely, suppose $v \in T_pM$, and vf = 0 whenever $f \in C^{\infty}(M)$ and $f|_S \equiv 0$. Let (U, φ) be a slice chart around p, and let $(\widetilde{U}, \widetilde{\varphi})$ be the induced chart for S. Let $\widetilde{\partial}_1|_p, \ldots, \widetilde{\partial}_k|_p \in T_pS$ and $\partial_1|_p, \ldots, \partial_n|_p \in T_pM$ denote the coordinate vectors induced by $(\widetilde{U}, \widetilde{\varphi})$ and (U, φ) , respectively. The coordinate representation $\widehat{\iota}$ is given by $(x^1, \ldots, x^k) \mapsto (x^1, \ldots, x^k, 0, \ldots, 0)$, where $\widehat{\iota}$ is defined by the following diagram:

$$\begin{array}{ccc} \widetilde{U} & \stackrel{\iota}{\longrightarrow} U \\ \widetilde{\varphi} \Big| & & \Big| \varphi \\ \widetilde{\varphi}(\widetilde{U}) & \stackrel{\widehat{\iota}}{\longrightarrow} \varphi(U) \end{array}$$

Now, write $v = \sum_{i=1}^n v^i \partial_i|_p$, and define $w := \sum_{i=1}^k v^i \widetilde{\partial}_i|_p$, which belongs to $T_p S$. By direct computation, we find $d\iota_p(w) = \sum_{i=1}^k \partial_i|_p$, so it remains to show that $v^{k+1} = \cdots = v^n = 0$.

Fix $j=k+1,\ldots,n$, and let $\psi\in C^{\infty}(M)$ be a smooth bump function such that $\psi(p)=1$ and supp $\psi\subseteq U$. Define $f^i:M\to\mathbb{R}$ by $p\mapsto \psi(p)\pi^j(\varphi(p))$, where $\pi^j:\mathbb{R}^n\to\mathbb{R}$ is the jth coordinate projection. Then $f^j\in C^{\infty}(M)$ and $f^i|_S\equiv 0$. A direct computation shows $0=vf^j=v^j$.