1.

1) solution:

$$\pi_{movieID}(AppearsIn \bowtie_{actorID=actorID} (\sigma_{name="Leonardo DiCaprio"}(Actors)))$$

2) solution:

$$\pi_{name}(Actors \bowtie_{(actorID),(actorID)} (AppearsIn \\ \div \pi_{movieID}(AppearsIn \bowtie_{actorID=actorID} (\sigma_{name="Leonardo DiCaprio"}(Actors)))))$$

3) solution:

$$S \leftarrow (\pi_{movieID}(AppearsIn \bowtie_{actorID=actorID} (\sigma_{name="Leonardo \, DiCaprio"}(Actors))))$$

$$T1 \leftarrow \pi_{actorID}(AppearsIn)$$

$$T2 \leftarrow \pi_{actorID}((S \times T1) - AppearsIn)$$

$$T \leftarrow T1 - T2$$

$$\pi_{name}(Actors \bowtie_{(actorID),(actorID)} T)$$

2.

1) solution:

$$F_m = \{A \rightarrow H, G \rightarrow A, E \rightarrow D, D \rightarrow G, E \rightarrow I, AB \rightarrow C, AB \rightarrow E, CD \rightarrow K\}$$
 or

$$F_m = \{A \to H, G \to A, E \to D, D \to G, E \to I, AB \to C, AB \to E, AB \to K\}$$

2) solution:

3) solution:

No.

Decomposition	A	В	С	D	Е	K	G	Н	I	J
$R_1(A,B,C)$	a	a	a	b	b	b	b	b	b	b
$R_2(D, E, K, G)$	b	b	b	a	a	a	a	b	b	b
$R_3(H,I,J)$	b	b	b	b	b	b	b	a	a	a

4) solution:

1NF.

Partial dependency: $A \stackrel{P}{\rightarrow} H$

5) solution:

$$F_m = \{A \rightarrow H, G \rightarrow A, E \rightarrow D, D \rightarrow G, E \rightarrow I, AB \rightarrow C, AB \rightarrow E, CD \rightarrow K\}$$

From $A \to H$, derive $R_1(A, H)$

From $G \to A$, derive $R_2(A, G)$

From $E \to D$, $E \to I$, derive $R_3(E, D, I)$

From $D \to G$, derive $R_4(D, G)$

From $AB \to C$, $AB \to E$, derive $R_5(A, B, C, E)$

From $CD \to K$, derive $R_6(C, D, K)$

None of the relation schemas contains a key of R, add one relation schema $R_7(A, B, J)$

6) solution:

$$F_m = \{A \rightarrow H, G \rightarrow A, E \rightarrow D, D \rightarrow G, E \rightarrow I, AB \rightarrow C, AB \rightarrow E, CD \rightarrow K\}$$

Consider $A \to H$ for $F_m: R_1(A, H), R_2(A, B, C, D, E, K, G, I, J)$

Consider $G \rightarrow A$ for R_2 : $R_2(A,G)$, $R_3(B,C,D,E,K,G,I,J)$

Consider $E \to D$ for R_3 : $R_3(E,D), R_4(B,C,E,K,G,I,J)$

Consider $E \rightarrow I$ for R_4 : $R_4(E,I), R_5(B,C,E,K,G,J)$

One of the possible lossless-join decompositions is: $R_1 \sim R_5$

3.

(1) solution:

Consider the capacity of the buffer pool is 4 and the request frame sequence is 1,2,3,4,5,4,5,4...

(2) solution:

Consider the capacity of the buffer pool is 4 and the request frame sequence is 1,2,3,4,1,5,1