

CS396: Selected CS2 (Deep Learning for visual recognition)

Spring 2022

Dr. Wessam EL-Behaidy

Associate Professor, Computer Science Department, Faculty of Computers and Artificial Intelligence, Helwan University.

Lecture 3: Convolution Neural Network

(CNN or ConvNets)

Convolutional Neural Networks

Convolutional neural networks (**ConvNets** or **CNNs**) is one of the main categories to do images recognition, images classifications. Objects detections, recognition faces etc., are some of the areas where CNNs are widely used.

A bit of history

Topographical mapping in the cortex: nearby cells in cortex represent nearby regions in the visual field

11

Hierarchical organization

Illustration of hierarchical organization in early visual pathways by Lane McIntosh, copyright CS231n 2017

Simple cells: Response to light orientation

Complex cells: Response to light orientation and movement

Hypercomplex cells: response to movement with an end point

Response (end point)

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

For more information, you can see: https://www.youtube.com/watch?v=Qil4kmvm2Sw

LeNet-5 – A Classic CNN Architecture

Yann LeCun et al., proposed a neural network architecture for handwritten and machine-printed character recognition in 1990's which they called **LeNet-5**. The architecture is straightforward and simple to understand that's why it is mostly used as a first step for teaching <u>Convolutional Neural Network</u>.

ImageNet & ILSVRC

- Images gathered from Internet
- Human labels via Amazon MTurk
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes

CS 396 Spring 2022 8

CNN architectures won in ILSVRC

Typical NN & Convolutional NN

TYPICAL NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK

The whole CNN

Can repeat many times for feature

extraction

Convolutional Layer

(Conv layer)

Convolution Layer: Terminology

Convolution Layer: Filter depth

Convolutional Operation

A convolutional layer has a number of filters that does **convolutional operation** of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Operation: Example 1

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	7
0	101	98	104	102	100	
0	99	101	106	104	99	1
0	104	104	104	100	98	
						9

Filter(Kernel)

0	-1	0
-1	5	-1
0	-1	0

Input Image

$$0*0+0*-1+0*0 +0*-1+105*5+102*-1 +0*0+103*-1+99*0 = 320$$

Activation map (Feature map)

Convolution with horizontal and vertical strides = 1

Convolution Operation: Example 2

Convolution Operation: Activation Map

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

Convolution Layer: Filters

activation map

Convolution Layer: Filters

consider a second, green filter

Convolution Layer: Filters

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution Layer Properties

Two Filters Example: Property 1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

Filter 1 Matrix

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2 Matrix

: :

Property 1

Each filter detects a small pattern (3 x 3)

Two Filters Example: Stride=1

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

Dot product 3

6 x 6 image

Two Filters Example: Stride=2

1	-1	-1		
-1	1	-1		
-1	-1	1		

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 - 3

6 x 6 image

Two Filters Example: Property 2

-1 -1 -1 -1 -1 -1 -1 \

Filter 1

stride=1

6 x 6 image

Two Filters Example: Feature map

Feature map=activation map

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Feature map= 4 x 4 x 2

Feature Map Output Size

Feature map output size: (N - F) / stride + 1

e.g.
$$N = 7$$
, $F = 3$:
stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$
stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$
stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33$:

doesn't fit!

cannot apply 3x3 filter on 7x7

input with stride 3.

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 ...). Shrinking too fast is not good, doesn't work well.

In practice: Common to zero padding the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1 F = 5 => zero pad with 2 F = 7 => zero pad with 3

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

=> 76*10 = **760**

Convolution Layer Summary

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - \circ the stride S.
 - \circ the amount of zero padding P.

Common settings:

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 1, S = 1, P = 0

- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Sequence of Convolution Layers

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Preview

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Pooling Layer

(Pool layer)

Pooling Layer Property

Property 1

Some patterns are much smaller than the whole image

Property 2

➤ The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Can repeat many times

CS 396 Spring 2022 43

Flatten

Why Pooling?

Subsampling pixels will not change the object

We can subsample the pixels to make image smaller fewer parameters to characterize the image

Max Pooling

- operates over each activation map independently
- max pool with 2x2 filters and stride 2

Ex: Feature map 4x4x2

Note:

Feature Map

Pooling Layer Summary

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires tvvo hyperparameters:
 - \circ their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

- Introduces zero parameters since it computes a fixed function of the input
- · Note that it is not common to use zero-padding for Pooling layers

Common settings:

$$F = 2, S = 2$$

 $F = 3, S = 2$

Flattening Layer

(FC)

Fully connected network

CNN: Extraction & Classification

CS 396 Spring 2022

Classification

Recall:) Volume Size (N + 2P – F) / stride + 1

How many parameters for each filter, if we use 32 3x3 filter, with stride 1, pad 0?

3x3x1 +1=10

How many parameters for each filter, if we use 64 3x3 filter, with stride 1, pad 0?

Example

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

This lecture references

[1] https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

- · CS231 Stanford:
 - https://www.youtube.com/watch?v=LxfUGhug-iQ
- Dr. Ghada's Slides of Pattern recognition course Spring 2018 http://www.fcih.net/ghada/pattern-recognition/
- https://www.mathworks.com/videos/introduction-to-deep-learningwhat-are-convolutional-neural-networks--1489512765771.html
- http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML 2016/Lecture/C NN (v2).pdf
- https://ai.stackexchange.com/questions/8701/what-is-the-differencebetween-a-receptive-field-and-a-feature-map