G12: Correction rapide du CC 2.

Exercice 1. 1. (a) Puisque les variables aléatoires $(X_n)_{n\geq 1}$ sont réelles, on a, pour tout $p\geq 1$, $A=\{\sup_{n\geq p}X_n\}$ et donc $A\in\sigma(X_n:n\geq p)$. A est un événement asymptotique de la suite $(X_n)_{n\geq 1}$.

- (b) Comme les variables sont indépendantes, $\mathbb{P}(A) = 0$ ou $\mathbb{P}(A) = 1$ d'après la loi du 0-1..
- 2. (a) Notons F la fonction de répartition de X₁. Un calcul élémentaire donne

$$F(t) = \frac{1}{2|t|}$$
 si $t < -1$, $F(t) = \frac{1}{2}$ si $-1 \le t < 1$, $F(t) = 1 - \frac{1}{2t}$ si $t \ge 1$.

Puisque les $(X_n)_{n\geq 1}$ sont i.i.d., on a, pour tous $n\geq 1$ et $t\in \mathbb{R}$,

$$\mathbb{P}(M_n \le t) = \mathbb{P}(X_1 \le t, \dots, X_n \le t) = \mathbb{P}(X_1 \le t)^n.$$

(b) La suite $(M_n)_{n\geq 1}$ étant croissante, les événements $\{M_n < r\}$ sont décroissants. Par suite, pour tout $n\geq 1,\ \cup_{k\geq n}\{M_k < r\} = \{M_n < r\}$ et $\limsup\{M_n < r\} = \cap_{n\geq 1}\{M_n < r\}$. Toujours par décroissance, comme F est continue,

$$\mathbb{P}\left(\limsup\{\mathsf{M}_n < r\}\right) = \mathbb{P}\left(\cap_{n \geq 1}\{\mathsf{M}_n < r\}\right) = \lim_{n \to +\infty} \mathbb{P}(\mathsf{M}_n < r) = \lim_{n \to +\infty} \mathsf{F}(r)^n.$$

Comme, pour tout $r \ge 1$, F(r) < 1, $F(r)^n \longrightarrow 0$.

(c) Soit $r \ge 1$. On a $\mathbb{P}(\liminf\{M_n \ge r\}) = 1$; si $\omega \in \liminf\{M_n \ge r\}$, il existe un entier n_ω tel que, pour tout $k \ge n_\omega$, $M_k(\omega) \ge r$ et donc $\liminf_{n \to +\infty} M_n(\omega) \ge r$. D'où $\liminf_{n \to +\infty} M_n \ge r$ p.s.

De plus $(\mathbb{N}^*$ est dénombrable), $\mathbb{P}(\cap_{r\in\mathbb{N}^*} \liminf\{M_n\geq r\})=1$ et si $\omega\in\cap_{r\in\mathbb{N}^*} \liminf\{M_n\geq r\}$, pour tout $r\geq 1$, $\liminf_{n\to+\infty}M_n(\omega)\geq r$ soit $\liminf_{n\to+\infty}M_n(\omega)=+\infty$. D'où p.s. $\lim_{n\to+\infty}M_n=+\infty$.

- (d) On a $\sup_{n\geq 1} X_n = \lim_{n\to +\infty} M_n$ et donc $\mathbb{P}(A) = 1$.
- 3. On a, notant F_n la fonction de répartition de M_n/n , $F_n(t) = F(nt)^n$. Si $t \le 0$, $F_n(t) \le F_n(0) = 2^{-n} \longrightarrow 0$. Si t > 0, il existe un entier t = 1 et pour tout $t \ge 1$, $F_n(t) = \left(1 \frac{1}{2nt}\right)^n \longrightarrow \exp\left(-\frac{1}{2t}\right)$.

Soit Z de fonction de répartition $G(t) = \exp\left(-\frac{1}{2t}\right) \mathbf{1}_{t>0}$; $(M_n/n)_{n\geq 1}$ converge en loi vers Z puisque $(F_n)_{n\geq 1}$ converge simplement vers G.

Exercice 2. 1. Puisque $\mathbb{E}[X_n] \longrightarrow +\infty$, $\mathbb{E}[X_n] > 0$ pour n assez grand. On a

$$\mathbb{E}\left[\left|\frac{\mathbf{X}_n}{\mathbb{E}[\mathbf{X}_n]} - 1\right|^2\right] = \frac{\mathbb{V}(\mathbf{X}_n)}{\mathbb{E}[\mathbf{X}_n]^2}$$

qui tend vers 0 puisque $\mathbb{V}(X_n)/\mathbb{E}[X_n]$ est bornée et $\mathbb{E}[X_n] \longrightarrow +\infty$.

- 2. (a) On a $\mathbb{E}[X_n] = \mathbb{V}(X_n) = \lambda_n$. La suite $\mathbb{E}[X_n]/\mathbb{V}(X_n)$ est constante. De plus, $\lambda_n \longrightarrow +\infty$ car $1/\lambda_n \longrightarrow 0$ comme $\sum 1/\lambda_n$ converge. La question précédente donne le résultat.
 - (b) Soit $\varepsilon > 0$. On a

$$\mathbb{P}\left(\left|\frac{\mathbf{X}_n}{\lambda_n} - 1\right| > \varepsilon\right) \le \varepsilon^{-2} \,\mathbb{E}\left[\left|\frac{\mathbf{X}_n}{\lambda_n} - 1\right|^2\right] = \varepsilon^{-2} \,\frac{\mathbb{V}(\mathbf{X}_n)}{\lambda_n^2} = \frac{1}{\varepsilon^2 \lambda_n}.$$

Comme $\sum 1/\lambda_n < +\infty$, le lemme de Borel-Cantelli donne $\mathbb{P}\left(\limsup\left\{\left|\frac{X_n}{\lambda_n} - 1\right| > \epsilon\right\}\right) = 0$; la suite $(X_n/\lambda_n)_{n \geq 1}$ converge presque sûrement vers 1.