Universal Algebra Week 4

James Newman Winter 2019

Theorem. $\operatorname{Sg}(X) = X \cup E(X) \cup E^2(X) \cup \dots$

Proof. First by induction, $E^k(X) \subseteq \operatorname{Sg}(X)$ for all $k \in \mathbb{N}$.

- (i) The base case when k = 0 holds: $E^0(X) = X \subseteq \operatorname{Sg}(X)$ because $\operatorname{Sg}(X)$ is the intersection of supersets of X.
- (ii) Assume that $E^k(X) \subseteq \operatorname{Sg}(X)$. Then take any $a \in E^{k+1}(X) = E(E^k(X)) = E^k(X) \cup \{f(a_1, \ldots, a_n) \mid f \text{ is a fundamental } n\text{-ary operation on } A \text{ and } a_1, \ldots, a_n \in E^k(X)\}$. In the first case $a \in E^k(X)$, which case clearly $a \in \operatorname{Sg}(X)$ as $E^k(X) \subseteq \operatorname{Sg}(X)$. Otherwise $a \in \{f(a_1, \ldots, a_n)\}$ So $a = f(a_1, \ldots, a_n)$ for $a_1, \ldots, a_n \in E^k(X)$. Then $a_1, \ldots, a_n \in \operatorname{Sg}(X)$ because $E^k(X) \subseteq \operatorname{Sg}(X)$. Take any subuniverse B such that $X \subseteq B$. Then $a_1, \ldots, a_n \in B$ because $a_1, \ldots, a_n \in \operatorname{Sg}(X)$. Thus $f(a_1, \ldots, a_n) \in B$ because B is a subuniverse and is closed. Therefore $a = f(a_1, \ldots, a_n) \in \operatorname{Sg}(X)$ because it is in every subuniverse that contains X. In either case, $a \in \operatorname{Sg}(X)$, thus $E^{k+1}(X) \subseteq \operatorname{Sg}(X)$ since if $a \in E^{k+1}(X)$ then $a \in \operatorname{Sg}(X)$.

Thus by induction $E^k(X) \subseteq \operatorname{Sg}(X)$ for all $k \in \mathbb{N}$. Then it is clear that $X \cup E(X) \cup E^2(X) \cup \ldots \subseteq \operatorname{Sg}(X)$.

Next, $X \cup E(X) \cup E^2(X) \cup \ldots$ is a subuniverse. Take any n-ary operation f on A and $a_1, \ldots, a_n \in X \cup E(X) \cup E^2(X) \cup \ldots$ Since $\{a_1, \ldots, a_n\}$ is finite, each a_n is in some $E^k(X)$ and $X \subseteq E(X) \subseteq E^2(X) \subseteq \ldots$, there is some $E^k(X)$ such that $a_1, \ldots, a_n \in E^k(X)$. Then by definition $f(a_1, \ldots, a_n) \in E^{k+1}(X)$, and so $f(a_1, \ldots, a_n) \in X \cup E(X) \cup E^2(X) \cup \ldots$ because $E^{k+1} \subseteq X \cup \ldots \cup E^K(X) \cup E^{k+1}(X) \cup \ldots$ Therefore it is closed and contains X so is a subuniverse.

Assume $x \notin X \cup E(X) \cup E^2(X) \cup \ldots$. Then since it is a subuniverse containing X and Sg(X) is the intersection of all such subuniverses, $x \notin Sg(X)$. Then by contrapositive, if $x \in Sg(X)$ then $x \in X \cup E(X) \cup E^2(X) \cup \ldots$. That is $Sg(X) \subseteq X \cup E(X) \cup E^2(X) \cup \ldots$

With both directions of the inclusion demonstrated, they are equal. \Box

Theorem. If $\sim \in \text{Con } \mathbf{G}$ then $1/\sim$ is the universe of a normal subgroup of \mathbf{G} , and for $a,b\in G$ we have $a\sim b$ if and only if $a\cdot b^{-1}\in 1/\sim$.

Proof. Assume $\sim \in \text{Con } \mathbf{G}$. Let $N = 1/\sim$

For any $g \in G$, assume $g \cdot a \cdot g^{-1} \in gNg^{-1}$. Then $a \in N$ and thus $1 \sim a$. Then by compatibility,

$$g \cdot 1 \sim g \cdot a$$
$$g \sim g \cdot a$$
$$g \cdot g^{-1} \sim g \cdot a \cdot g^{-1}$$
$$1 \sim g \cdot a \cdot g^{-1}$$

Then $g \cdot a \cdot g^{-1} \in N$. So $gNg^{-1} \subseteq N$ for all $g \in G$ and thus $N = 1/\sim$ is the universe of normal subgroup of G.

Next, for $a, b \in G$,

$$a \sim b \qquad \qquad \text{iff}$$

$$a \cdot b^{-1} \sim b \cdot b^{-1} \qquad \qquad \text{iff}$$

$$a \cdot b^{-1} \sim 1 \qquad \qquad \text{iff}$$

$$a \cdot b^{-1} \in N$$

by compatibility and properties of groups.

Theorem. If N is a normal subgroup of a group G, then the relationship \sim defined as

$$a \sim b \text{ iff } a \cdot b^{-1} \in N$$

is a congruence on **G** with $1/\sim = N$.

Proof. Assume **N** is a normal subgroup of a group **G** and define \sim as above. First we confirm \sim is an equivalence relation:

- 1. For any $a \in G$ we have that $a \sim a$ because $a \cdot a^{-1} = 1 \in N$.
- 2. For any $a,b\in G$ assume $a\sim b$. Then $a\cdot b^{-1}\in N$ so its inverse $b\cdot a^{-1}\in N$, and thus $b\sim a$.
- 3. For any $a,b,c\in G$ assume $a\sim b$ and $b\sim c$. That is, $a\cdot b^{-1}\in N$ and $b\cdot c^{-1}\in N$. Then since **N** is closed, $a\cdot b^{-1}\cdot b\cdot c^{-1}=a\cdot c^{-1}\in N$. Thus $a\sim c$.

Therefore \sim is an equivalence relation.

Next we check the compatibility property.

- 1. Take any $a,b \in G$ such that $a \sim b$. Then $b \sim a$, i.e. $b \cdot a^{-1} \in N$. Then because N is normal, $a^{-1}ba^{-1}a = a^{-1}b = a^{-1}(b^{-1})^{-1} \in N$. Therefore $a^{-1} \sim b^{-1}$.
- 2. Next take any $a_1, a_2, b_1, b_2 \in G$ such that $a_1 \sim b_1$ and $a_2 \sim b_2$. Then $a_1b_1^{-1} \in N$ and $a_2b_2^{-1} \in N$. Because N is normal and $a_1b_1^{-1} \in N$ we have that $b_1^{-1}a_1b_1^{-1}b_1 = b_1^{-1}a_1 \in N$. Next since $b_1^{-1}a_1 \in N$ and $a_2b_2^{-1} \in N$ their product $b_1^{-1}a_1a_2b_2^{-1} \in N$. Again since N is normal, $b_1 \cdot b_1^{-1} \cdot a_1 \cdot a_2 \cdot b_2^{-1} \cdot b_1^{-1} = a_1 \cdot a_2 \cdot b_2^{-1} \cdot b_1^{-1} = (a_1 \cdot a_2) \cdot (b_1 \cdot b_2)^{-1} \in N$. Therefore $a_1 \cdot a_2 \sim b_1 \cdot b_2$.

Finally, since \sim is an equivalence relationship that satisfies the compatibility property it is a congruence on G.

Theorem. The normal subgroups of a group form an algebraic lattice which is modular.

Proof. Take any group G. By Exercise 1 the lattice of normal subgroups of G is isomorphic to the lattice of congruences on G. By theorem 5.5, the lattice of congruences on G is algebraic. By theorem 5.10, if G is congruence permutable, then G is congruence modular. Then it is sufficient to show that G is congruence permutable to show that the lattice of normal subgroups of G is algebraic and modular.

Take any $\sim_1, \sim_2 \in \text{Con } \mathbf{G}$. Take any $a, b \in G$ such that $a \sim_1 \circ \sim_2 b$. Then there is a $c \in G$ such that $a \sim_1 c$ and $c \sim_2 b$. Then by compatibility

$$c \sim_2 b$$
 $a \sim_1 c$
 $1 \sim_2 c^{-1}b$ $ac^{-1} \sim_1 1$
 $a \sim_2 ac^{-1}b$ $ac^{-1}b \sim_1 b$

Then $a \sim_2 \circ \sim_1 b$. Thus $\sim_1 \circ \sim_2 \subseteq \sim_2 \circ \sim_1$, and by theorem 5.9, $\sim_1 \circ \sim_2 = \sim_2 \circ \sim_1$. That is, **G** is congruence permutable and thus also congruence modular.

Therefore the lattice of normal subgroups of a group form an algebraic and modular lattice. $\hfill\Box$

Theorem. If **A** is a unary algebra and *B* is a subuniverse then the relation \sim defined by $a \sim b$ if and only if a = b or $a, b \in B$ is a congruence on **A**.

Proof. Assume **A** is a unary algebra and B is a subuniverse. Defined the realtion \sim by $a \sim b$ if and only if a = b or $a, b \in B$. Then

- 1. For all $a \in A$, $a \sim a$ because a = a.
- 2. For all $a, b \in A$, if $a \sim b$ then $b \sim a$ because if a = b or $a, b \in B$ then b = a or $b, a \in B$.
- 3. Take any $a, b, c \in A$ such that $a \sim b$ and $b \sim c$. Then by cases
 - (a) $a, b \in B$ and $b, c \in B$ in which case $a, c \in B$ and $a \sim c$.
 - (b) $a, b \in B$ and b = c in which case $a, c \in B$ and $a \sim c$.
 - (c) a = b and b = c in which case a = c and $a \sim c$.

Thus \sim is an equivalence relation. To show it is compatible, take any operation f of \mathbf{A} and any $a,b\in A$ such that $a\sim b$. Since \mathbf{A} is a unary algebra, f is unary. Then either

- 1. a = b so f(a) = f(b) and thus $f(a) \sim f(b)$.
- 2. $a, b \in B$ then because B is a subuniverse and is closed under $f, f(a), f(b) \in B$, so $f(a) \sim f(b)$.

Therefore \sim is a compatible equivalence relation on A and thus a congruence of \mathbf{A} .

Theorem. If **L** is a distributive lattice and $a,b,c,d \in L$, then $\langle a,b \rangle \in \Theta(c,d)$ iff $c \wedge d \wedge a = c \wedge d \wedge b$ and $c \vee d \vee a = c \vee d \vee b$.

Proof. Assume **L** is a distributive lattice. Let $X = \{\langle c, d \rangle\} \subseteq L \times L$. Then by the construction in theorem 5.5, $\Theta(c,d) = \operatorname{Sg}(X) = X \cup E(X) \cup E^2(X) \cup \ldots$ where for all $X \subseteq L \times L$.

$$\begin{split} E(X) &= X \\ & \cup \left\{ 1_a = \langle a, a \rangle \text{ for all } a \in L \right\} \\ & \cup \left\{ s(\langle b, a \rangle) = \langle a, b \rangle \text{ for all } \langle b, a \rangle \in X \right\} \\ & \cup \left\{ \text{if } b = c \text{ then } \langle a, d \rangle \text{ else } \langle a, b \rangle \text{ for } \langle a, b \rangle, \langle c, d \rangle \in X \right\} \\ & \cup \left\{ \langle a_1 \wedge a_2, b_1 \wedge b_2 \rangle \text{ for all } \langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle \in X \right\} \\ & \cup \left\{ \langle a_1 \vee a_2, b_1 \vee b_2 \rangle \text{ for all } \langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle \in X \right\} \end{split}$$

We will show by induction that for all $k \in \mathbb{N}$ and $a, b \in L$ if $\langle a, b \rangle \in E^k(c, d)$ then $c \wedge d \wedge a = c \wedge d \wedge b$ and $c \vee d \vee a = c \vee d \vee b$.

1. In the base case k=0. Assume $\langle a,b\rangle\in E^0(X)=\{\langle c,d\rangle\}$. Then a=c, b=d and

$$c \wedge d \wedge a = c \wedge d \wedge c$$

$$= c \wedge c \wedge d$$

$$= c \wedge d$$

$$= c \wedge d \wedge d$$

$$= c \wedge d \wedge b.$$

Dually, $c \lor d \lor a = c \lor d \lor b$.

- 2. In the inductive case, assume the inductive hypothesis that if $\langle a,b\rangle \in E^k(X)$ then $c \wedge d \wedge a = c \wedge d \wedge b$ and $c \vee d \vee a = c \vee d \vee b$. Next, assume $\langle a,b\rangle \in E^{k+1}(X) = E(E^k(X))$. By cases, either
 - (a) $\langle a,b\rangle\in E^k(X)$, in which case the goal holds immediately from the inductive hypothesis.
 - (b) $\langle a,b\rangle=1_c=\langle c,c\rangle$ for some $c\in L$, in which case the goal is trivially true.
 - (c) $\langle a,b\rangle = s(\langle b,a\rangle)$ with $\langle b,a\rangle \in E^k(X)$, in which case again the goal holds from the inductive hypothesis.
 - (d) $\langle a,b\rangle=t(\langle e,f\rangle,\langle g,h\rangle)$ for some $\langle e,f\rangle,\langle g,h\rangle\in E^k(X)$. There are two cases:
 - i. When $f=g,\,\langle a,b\rangle=\langle e,f\rangle$. By the inductive hypothesis, $c\wedge d\wedge e=c\wedge d\wedge f$ and $c\wedge d\wedge g=c\wedge d\wedge h$. But then by substitution since $f=g,\,a=e,$ and b=f,

$$c \wedge d \wedge a = c \wedge d \wedge f = c \wedge d \wedge b.$$

Dually, $c \lor d \lor a = c \lor d \lor b$.

- ii. Otherwise $\langle a,b\rangle=\langle e,f\rangle$, and thus $\langle a,b\rangle\in E^k(X)$ and by the inductive hypothesis the goal holds.
- (e) In another case, $\langle a,b\rangle=\langle a_1\wedge a_2,b_1\wedge b_2\rangle=\langle a_1,b_1\rangle\wedge\langle a_2,b_2\rangle$ for some $\langle a_1,b_1\rangle,\langle a_2,b_2\rangle\in E^K(X)$. Then by the inductive hypothesis

$$c \lor d \lor a_1 = c \lor d \lor b_1$$
 and $c \lor d \lor a_2 = c \lor d \lor b_2$.

Thus

$$(c \lor d \lor a_1) \land (c \lor d \lor a_2) = (c \lor d \lor b_1) \land (c \lor d \lor b_2)$$

Then because **L** is distributive,

$$c \vee d \vee (a_1 \wedge a_2) = c \vee d \vee (b_1 \wedge b_2)$$

Therefore by substitution

$$c \lor d \lor a = c \lor d \lor b$$
.

Additionally, by the inductive hypothesis

$$c \wedge d \wedge a_1 = c \wedge d \wedge b_1$$
 and $c \wedge d \wedge a_2 = c \wedge d \wedge b_2$.

Thus

$$c \wedge d \wedge a_1 \wedge c \wedge d \wedge a_2 = c \wedge d \wedge b_1 \wedge c \wedge d \wedge b_2$$
.

Then by associativity and commutativity of the lattice \mathbf{L} ,

$$(c \wedge c) \wedge (d \wedge d) \wedge (a_1 \wedge a_2) = (c \wedge c) \wedge (d \wedge d) \wedge (b_1 \wedge b_2).$$

Therefore, by substitution and lattice idempotency,

$$c \wedge d \wedge a = c \wedge d \wedge b$$
.

(f) In the final case, $\langle a, b \rangle = \langle a_1 \vee a_2, b_1 \vee b_2 \rangle = \langle a_1, b_1 \rangle \vee \langle a_2, b_2 \rangle$ for some $\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle \in E^K(X)$. The proof in this case is dual to the proof in (e).

Therefore if $c \lor d \lor a = c \lor d \lor b$ and $c \land d \land a = c \land d \land b$ for all $\langle a, b \rangle \in E^k(X)$ then $c \lor d \lor a = c \lor d \lor b$ and $c \land d \land a = c \land d \land b$ for all $\langle a, b \rangle \in E^{k+1}(X)$.

Having proven the base case and inductive case, for all $k \in \mathbb{N}$ and $a, b \in L$, $c \land d \land a = c \land d \land b$ and $c \lor d \lor a = c \lor d \lor b$ when $\langle a, b \rangle \in E^k(X)$. Furthermore when $\langle a, b \rangle \in \Theta(c, d)$, $\langle a, b \rangle \in E^k(\{\langle c, d \rangle\})$ for some $k \in \mathbb{N}$. Therefore $c \land d \land a = c \land d \land b$ and $c \lor d \lor a = c \lor d \lor b$ when $\langle a, b \rangle \in \Theta(c, d)$.