HKUST

MATH2011 Introduction to Multivariable Calculus

Midterm Examination (One Hour)	Full Name:	
March 24, 2018	Student I.D.:	
	Lecture Section:	

Please note the following:

- Do NOT open the exam until instructed to do so.
- Have your student ID ready for checking.
- Do NOT use a calculator during the exam.
- You may write on both sides of the examination papers.
- You must show the steps in order to receive full mark.

Question No.	Points	Out of
1		20
2		15
3		15
4		15
5		15
6		20
Total		100

1. (20 pts)

Compute the area of the region outside $r=3+2\sin\theta$ and inside r=2 in polar coordinates. [Hint: $\sin(\pi/6)=1/2$. Have a sketch of the two curves before your computation.]

- (1) Write down the formula for the orthogonal projection of vector \boldsymbol{b} onto vector \boldsymbol{a} using dot products.
- (2) Denote the orthogonal projection of \boldsymbol{b} onto \boldsymbol{a} by $Proj_{\boldsymbol{a}}\boldsymbol{b}$. Prove that $\boldsymbol{b}-Proj_{\boldsymbol{a}}\boldsymbol{b}$ is perpendicular to \boldsymbol{a} .

Given $\boldsymbol{u}=\langle 1,2,3\rangle$ and $\boldsymbol{v}=\langle 4,5,6\rangle,$ find the constant c defined as follows:

- $(1) \ c = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{u}}.$
- $(2) \ \boldsymbol{u} \times \boldsymbol{v} = c\boldsymbol{v} \times \boldsymbol{u}.$
- (3) $c = (a\boldsymbol{u} + b\boldsymbol{v}) \cdot (\boldsymbol{u} \times \boldsymbol{v})$, where a and b are two arbitrary constants.

Find the vector-valued function for the line tangent to the curve

$$\boldsymbol{r}(t) = \sin t \,\, \boldsymbol{i} + \sqrt{3} \sin t \,\, \boldsymbol{j} + 2 \cos t$$

at
$$t = \pi/4$$
.

Compute the length of the curve $r(t) = \sin t \ \boldsymbol{i} + \sqrt{3} \sin t \ \boldsymbol{j} + 2 \cos t \ \boldsymbol{k}$ for the segment of $0 \le t \le \pi/2$.

 ${\bf Solution:}$

6. (20 pts)

Given four points A(2,1,0), B(1,1,1), C(3,0,1), D(1,0,2).

- (1) Find the equations of the plane ABC and plane BCD respectively.
- (2) Find the vector-valued function for the intersection line of the above two planes.