Propuesto por Philippe Fondanaiche

Problema 806.

Sean un triángulo ABC con AB> AC, la recta (Δ) tangente en A a su círculo circunscrito, I el centro del círculo inscrito y J el centro del excirculo en el sector BAC.

Sea el punto D dentro del lado AB tal que AD = AC.

Las rectas DI y DJ encuentran la recta (Δ) a los puntos P y Q.

Demostrar que A es el medio de PQ.

Fondanaiche, P. (2017) Comunicación personal.

Solución del director

Comencemos estudiando el punto D.

Al ser AD=AC, el triángulo ADC es isósceles con lo que la bisectriz en A es mediatriz de DC, lo que conlleva que DI=CI, y que CJ=DJ, por lo que \angle IDJ= \angle ICJ=90 $^{\circ}$. D pertenece a la circunferencia IBC cuyo centro es el punto medio del arco menor de BC. Por ello, \angle IDC= \angle IBC= β /2.

Tenemos ∠ADC=90 $^{\circ}$ - α /2 por ser ADC isósceles.

Por lo que
$$\angle ADI = \angle ADC - \angle IDC = 90^{\circ} - \frac{\alpha}{2} - \frac{\beta}{2} = \gamma/2$$

Y así,
$$\angle QDA = 90^{\circ} - \angle ADI = 90^{\circ} - \gamma/2$$

Dado que
$$\angle QAD = \gamma$$
, es $\angle DQA = 90^{\circ} - \gamma/2$.

Así el triángulo AQD es isósceles y AQ=AD=AC.

Además si consideramos el triángulo ADP, es $\angle ADP = \angle ADI = 90^{\circ} - \gamma/2$

$$\angle DAP = \alpha + \beta$$
, por lo que $\angle APD = 90^{\circ} - \gamma/2$.

Así, cqd, AQ=AD=AC=AP, y A es el punto medio de QP.

Ricardo Barroso Campos.

Jubilado.

Sevilla

Comencemos por el punto P.