26th January 2017

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

Nonlinear Invariant Attack

Practical Attack on Full SCREAM, iSCREAM, and Midori64

Paper

- Todo, Leander, and Sasaki [TLS16] at AsiaCrypt'16
- Structural attack, brakes SCREAM, iSCREAM and Midori64 (surprise, surprise)¹ in the weak key setting

Organisation

- 1 Overview
- 2 The Context
- 3 The Attack
- 4 The Results

¹Useless LATEX Fact: Did you know that \time is an anagram of \item?

or: similar attacks?

Attacks in Symmetric Cryptanalysis

Linear Cryptanalysis

Taking the fun out of it

- invented by Matsui [Mat93]
- broke DES
- together with Differential
 Cryptanalysis best studied attack
 on block ciphers

Image: http://www.isce2009.ryukoku.ac.jp/eng/keynote_address.html

Linear Cryptanalysis

Taking the fun out of it

Core Idea

Given a block cipher $E_k: \mathbb{F}_2^n \to \mathbb{F}_2^n$, find an input mask $\alpha \in \mathbb{F}_2^n$ and an output mask $\beta \in \mathbb{F}_2^n$, s.t.

$$\langle \alpha, x \rangle \oplus \langle \beta, \mathsf{E}_{\mathsf{k}}(x) \rangle = \mathsf{c}$$

holds with high probability for a constant c.

- $\blacksquare \alpha \xrightarrow{E_k} \beta$ is called a *linear approximation* of E_k
- much more to deal with: we have to keep the distribution over k in mind and so on and so forth

Invariant Subspace Attack

Almost there

- invented by Leander et al. [Lea+11]
- broke PRINTCIPHER

Image: http://www.lightsec.org/2013/images/gregor_leander.jpg

Invariant Subspace Attack

Almost there

Core Idea

. . . .

or: Nonlinear Invariant Attack

Core Idea

Given a block cipher $E_k: \mathbb{F}_2^n \to \mathbb{F}_2^n$, s.t. $E_k(x) = E(x \oplus k)$, find an efficiently computable nonlinear Boolean function $g: \mathbb{F}_2^n \to \mathbb{F}_2$, s.t.

$$g(\mathsf{E}(\mathsf{x} \oplus \mathsf{k})) = g(\mathsf{x} \oplus \mathsf{k}) \oplus \mathsf{c} = g(\mathsf{x}) \oplus g(\mathsf{k}) \oplus \mathsf{c} \tag{1}$$

for a constant c and many k.

- q is called nonlinear invariant
- keys for which Eq (1) holds are called weak keys

Step-by-Step

Typical block cipher construction: key-alternating function

Let $F:\mathbb{F}_2^n \to \mathbb{F}_2^n$ and $E_{k_1,k_2,\dots,k_r}:\mathbb{F}_2^n \to \mathbb{F}_2^n$ be of the form

$$E_k(x) = F(\cdots F(x \oplus k_1) \cdots \oplus k_r).$$

Step-by-Step

Notation: we write $y_0 = x$, $y_i = F(y_{i-1} \oplus k_i)$, and thus $y_r = E_k(x)$.

Nonlinear invariant for the round function

Assume there exists a nonlinear invariant g for $\mathsf{F},$ s. t. all keys k_i are weak. Then:

Step-by-Step

Notation: we write $y_0 = x$, $y_i = F(y_{i-1} \oplus k_i)$, and thus $y_r = E_k(x)$.

Nonlinear invariant for the round function

Assume there exists a nonlinear invariant g for $\textbf{F},\,\textbf{s.\,t.}$ all keys k_i are weak. Then:

$$g(\mathsf{E}_k(x)) = g(y_r)$$

Step-by-Step

Notation: we write $y_0 = x$, $y_i = F(y_{i-1} \oplus k_i)$, and thus $y_r = E_k(x)$.

Nonlinear invariant for the round function

Assume there exists a nonlinear invariant g for F, s.t. all keys $k_{\rm i}$ are weak. Then:

$$\begin{split} g(E_k(x)) &= g(y_r) \\ &= g(F(y_{r-1} \oplus k_r)) \end{split}$$

Step-by-Step

Notation: we write $y_0 = x$, $y_i = F(y_{i-1} \oplus k_i)$, and thus $y_r = E_k(x)$.

Nonlinear invariant for the round function

Assume there exists a nonlinear invariant g for F, s.t. all keys $k_{\rm i}$ are weak. Then:

$$\begin{split} g(E_k(x)) &= g(y_r) \\ &= g(F(y_{r-1} \oplus k_r)) \\ &= g(y_{r-1}) \oplus g(k_r) \oplus c_r \end{split}$$

Step-by-Step

Notation: we write $y_0 = x$, $y_i = F(y_{i-1} \oplus k_i)$, and thus $y_r = E_k(x)$.

Nonlinear invariant for the round function

Assume there exists a nonlinear invariant g for F, s.t. all keys k_i are weak. Then:

$$\begin{split} g(\mathsf{E}_{k}(x)) &= g(y_r) \\ &= g(\mathsf{F}(y_{r-1} \oplus k_r)) \\ &= g(y_{r-1}) \oplus g(k_r) \oplus c_r \\ &\vdots \\ &= g(x) \oplus \bigoplus_{i=1}^r g(k_i) \oplus c_1 \end{split}$$

Weak Keys

It seems quite unlikely that Eq (1) holds for many k.

Example nonlinear invariant

$$g: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$(x_4, x_3, x_2, x_1) \mapsto x_4 x_3 \oplus x_3 \oplus x_2 \oplus x_1$$

Weak Keys

It seems quite unlikely that Eq (1) holds for many k.

Example nonlinear invariant

$$g: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$(x_4, x_3, x_2, x_1) \mapsto x_4 x_3 \oplus x_3 \oplus x_2 \oplus x_1$$

q is nonlinear invariant for key xor and has 4 weak keys:

Split q in a nonlinear part f and a linear part ℓ :

$$g(x_4, x_3, x_2, x_1) = f(x_4, x_3) \oplus \ell(x_2, x_1)$$

All k of the form $k = (0, 0, k_2, k_1)$ are weak – and these are exactly four possible keys.

iexilles	
	lexities

	# Weak k	max. # Recovered Bits
SCREAM	2 ⁹⁶	32 bits
iSCREAM	2 ⁹⁶	32 bits
Midori64	2 ⁶⁴	32h bits
	Data Comp	lexity Time Complexity
SCREAM	33 ciphert	exts 32 ³
iSCREAM	33 ciphert	exts 32 ³
Midori64	33h cipher	texts 32 ³ · h

RUB

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr

References I

- [Lea+11] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. "A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack". In: CRYPTO. Vol. 6841. LNCS. Springer, 2011, pp. 206–221.
- [Mat93] M. Matsui. "Linear Cryptanalysis Method for DES Cipher". In: EUROCRYPT. Vol. 765. LNCS. Springer, 1993, pp. 386–397.
- [TLS16] Y. Todo, G. Leander, and Y. Sasaki. "Nonlinear Invariant Attack Practical Attack on Full SCREAM, iSCREAM, and Midori64". In: ASIACRYPT (2). Vol. 10032. LNCS. 2016, pp. 3–33.