

Locality Sensitive Hashing

Focus on pairs of signatures likely to be from similar documents

The key idea

Generate a **sketch** for every object that:

- 1) is *much shorter* than its # features (i.e. d)
- 2) transforms *similarity* between two feature vectors into *equality* of their shorter sketches.
 - ✓ It is *randomized*, correct *with high probability* (good if this is the only way to approach the problem !!)
 - ✓ It guarantees *local access* to data, which is good for speed in disk/distributed setting

The hamming case

- Consider vectors **p**,**q** of **d** binary features
- Hamming distance

D(p,q)= #bits where p and q differ

 Define hash function h by choosing a set l of r random coordinates

h(p) = projection of vector p on l's coordinates

Example: If r=2, assume $I=\{1,4\}$ then it is h(p=0.10.11)=0.11

A key property

$$Pr[picking x:p[x]=q[x]] = \#/d = (d - D(p,q))/d$$

$$\Pr[h(p) = h(q)] = (1 - \frac{D(p, q)}{d})^r$$

We can vary the probability by changing r

Reiterate b times (calle band)

Larger b Fewer False Negatives

- Repeat b times the r-projections h_i(p)
- 2) We set $g(p) = \langle h_1(p), h_2(p), ..., h_b(p) \rangle$

Sketch(p)

Declare «p matches q» if at least one h_i(p)=h_i(q)

Example:

Let us set r=2, b=3, assume p = 01001 and q = 01101

- $11 = \{3,4\}$, we have $h_1(p) = 00$ and $h_1(q)=10$
- $12 = \{1,3\}$, we have $h_2(p) = 00$ and $h_2(q)=01$
- $13 = \{1,5\}$, we have $h_3(p) = 01$ and $h_3(q)=01$

p and q declared to match!!

Measuring the error probability

$$\Pr[h_i(p) = h_i(q)] = (1 - \frac{D(p, q)}{d})^r = s^r$$

The g() consists of b independent hashes hi

Pr[p not-similar q] = Pr[
$$h_i(p) \neq h_i(q), \forall i=1, ..., b$$
]

=
$$(Pr[h_i(p) \neq h_i(q)])^b$$

=
$$(1 - Pr[h_i(p) = h_i(q)])^b$$

The S-curve $1 - (1 - s^r)^b$

Picking r and B: The S-curve

Picking r and b to get the best S-curve

• 50 hash-functions (r=5, b=10)

Red area: False Negative rate
Pairs with sim>t that will be never
considered

Green area: False Positive rate Pairs with sim<t, we can Discard these pairs once we Compute the exact distance

Demo

• https://www.desmos.com/calculator/lzzvfjiujn

Example

- Assume the following case:
 - Suppose 100,000 columns of M (100k docs)
 - Signatures of length 100, stored as integers (rows)
 - Therefore, signatures take 40MB
 - Goal: Find pairs of documents that are at least
 s = 0.8 similar
 - Choose b = 20 bands of r = 5 integers/band

Two columns highly similar

- Find pairs of \geq s=0.8 similarity, let's set b=20, r=5
- Assume: sim(C1, C2) = 0.8
- Since $sim(C1, C2) \ge s$, we want C1, C2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical):
- Prob. C1, C2 identical in one particular band: $(0.8)(0.8)^5 = 0.328$
- So, prob. C1, C2 are not similar in all 20 bands: $(1 0.328)^{20} = 0.00035$
- That is, about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

Two column far away

- Find pairs of \geq s=0.8 similarity, let's set b=20, r=5
- Assume: sim(C1, C2) = 0.3
- Since sim(C1, C2) < s, we want C1, C2 to be a candidate pair: We want them to be not a candidate pair (all bands are differt):
- Prob. C1, C2 identical in one particular band: $(0.3)^5 = 0.00243$
- So, prob. C1, C2 are identical in at least one band is: $(1 0.00243)^{20} = 0.0474$
- We have that 4.75% pair of documents with similarity 0.3 will appear as candidate pairs.
- These are false positive.

Example: b = 20; r = 5

Similarity threshold s

Prob. that at least 1 of r proj of the sketch is

identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

The (off-line) algorithm

■For every feature vector p, compute

$$g(p) = \langle h_1(p), h_2(p), ..., h_b(p) \rangle$$
 Sketch(p)

For every i=1, 2, .., b, create the clustering C_i by putting in the same group vectors p and q iff $h_i(p) = h_i(q)$

- ■Create an undirected graph such that nodes p and q are linked iff their sketches are in the same cluster of C_i for some iteration i
- ■Compute the connected components because they provide groups of similar vectors

Notebook

<u>Tutorial su MinHashing e LSH</u>

https://colab.research.google.com/drive/1hjklFJM-1PMLNSl2MOqe7ZnLxkOLLc-A?usp=sharing

Next step: LSH Tuning

•Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures