

Summary so Far

- 1. We can determine <u>local</u> stability properties for hyperbolic fixed points of nonlinear systems by examining the eigenvalues of the linear approximation.
 - 1.1 The fixed point is asymptotically stable for the nonlinear system if it is asymptotically stable for the linear systems (all eigenvalues have negative real part)
 - 1.2 The fixed point is unstable for the nonlinear system if it is unstable for the linear system. (one or more eigenvalues with positive real part)
 - *1.3 If any eigenvalue of the linear approximation has zero real part (critical eigenvalues) then the fixed point of the nonlinear system may be stable or unstable, i.e. the linearization is inconclusive.
- 2. Lyapunov functions can be used to determine stability in the case of critical eigenvalues

The Invariance Principle

We next give an extension to Lyapunov's Theorem due to LaSalle that allows additional conclusions about the asymptotic behavior of the system. A weak form of LaSalle's theorem can be stated as

Theorem

Suppose $V: \mathbb{R}^n \to \mathbb{R}$ is a positive definite scalar function and suppose $\dot{V} \leq 0$ along trajectories of (1). If \dot{V} does not vanish identically along trajectories of (1) other than the equilibrium solution, then $\bar{x} = 0$ is asymptotically stable.

xdot = f(x) (1)

over time

Example

Back to the simple pendulum with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{\ell}\sin(x_1) - Bx_2$$

We know that with

$$V = \frac{g}{\ell}(1 - \cos(x_1)) + \frac{1}{2}x_2^2$$
 satisfies
$$\dot{V} = \frac{\partial V}{\partial x} \dot{x} = \nabla V \cdot f(x) \qquad \text{Not neg. def. because}$$

$$\dot{V} = -Bx_2^2 \leq 0 \qquad \qquad \uparrow$$
 Suppose $\dot{V} \equiv 0$. Then $x_2 \equiv 0 \implies \dot{x}_2 \equiv 0$

 $\implies \sin(x_1) \equiv 0 \implies x_1 = n\pi$. *we consider local stability with -pi < x1 < pi Therefore, \dot{V} vanishes identically only at the equilibrium point and so $\bar{x} = 0$ is asymptotically stable.

LaSalle's Theorem

We next present a stronger version of LaSalle's Theorem.

Theorem

Suppose V is a Lyapunov function satisfying $\dot{V} \leq 0$ along trajectories of $\dot{x} = f(x)$. Let E be the set of points where $\dot{V} = 0$ and let M be the largest invariant set contained in E. Then all trajectories of the system approach M as $t \to \infty$.

LaSalle's Theorem

We next present a stronger version of LaSalle's Theorem.

Theorem

Suppose V is a Lyapunov function satisfying $\dot{V} \leq 0$ along trajectories of $\dot{x} = f(x)$. Let E be the set of points where $\dot{V} = 0$ and let M be the largest invariant set contained in E. Then all trajectories of the system approach M as $t \to \infty$.

Example

Consider the nonlinear system

$$\dot{x}_1 = -x_1(1+x_2)$$

$$\dot{x}_2 = x_1^2$$

Example

Let

$$V = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

Then

$$\dot{V}=x_1\dot{x}_1+x_2\dot{x}_2$$
 not veg. def. since doesn't depend on $x_1\cdot\dot{x}_1+x_2\dot{x}_2=-x_1^2(1+x_2)+x_2x_1^2=-x_1^2\leq 0$

Therefore $E = \{x_1 = 0\}$, which is also an invariant set. Therefore, all trajectories approach E as $t \to \infty$.

We have been using functions of the form

000

000

$$\mathcal{V} = x_1^2 + x_2^2 + \dots + x_n^2$$

as potential Lyapunov functions in several examples. The 'sum of squares' or 'norm' function is called a **Quadratic Form**. A more general quadratic form can be written as

$$V=x^TPx$$
 where $x\in R^n$ and $P=\left[egin{array}{cccc} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{array}
ight]$

P is an $n \times n$ constant matrix. To qualify as a Lyapunov function, the matrix P should satisfy $x^T P x > 0$ for $x \neq 0$.

Positive Definite Matrices

Definition

An $n \times n$ matrix P is **Positive Definite** if and only if

$$x^T P x > 0$$
 for $x \neq 0$

The matrix P is

- Positive Semi-definite if $x^T P x \ge 0$
- Negative Definite if $x^T P x < 0$
- Negative Semi-Definite if $x^T P x \leq 0$
- P is **Indefinite** if it is otherwise not one of the above.

Positive Definite Matrices

Remark

- The matrix P is positive definite if and only if all eigenvalues of P are positive.
- P is positive semi-definite if all eigenvalues of P are greater than or possibly equal to zero.

Given an n-dimensional linear system

$$\dot{x} = Ax$$

let us try to find a quadratic Lyapunov function of the form

$$V = x^T P x$$

Computing the derivative of $V = x^T P x$ along trajectories of $\dot{x} = Ax$ yields

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x}
= x^T A^T P x + x^T P A x
= x^T (A^T P + P A) x$$

Let's define $-Q = A^T P + P A$. Then we have

$$V = x^T P x$$

$$\dot{V} = -x^T Q x$$

Computing the derivative of $V=x^TPx$ along trajectories of $\dot{x}=A$ yields

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x}
= x^T A^T P x + x^T P A x
= x^T (A^T P + P A) x$$

Let's define $-Q = A^T P + PA$. Then we have

000

000

$$V = x^T P x$$

$$\dot{V} = -x^T Q x$$

https://join.iclicker.com/MMAW

Suppose both P and Q are positive definite. What can you conclude?

Computing the derivative of $V=x^TPx$ along trajectories of $\dot{x}=A$ yields

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x}
= x^T A^T P x + x^T P A x
= x^T (A^T P + P A) x$$

Let's define $-Q = A^T P + PA$. Then we have

$$V = x^T P x$$

$$\dot{V} = -x^T Q x$$

Suppose both P and Q are positive definite. What can you conclude? The conclusion is that the linear system is (exponentially) stable.

The Lyapunov Equation

The problem is how to select an appropriate positive-definite matrix P.

The Lyapunov Equation

The problem is how to select an appropriate positive-definite matrix P. Suppose we turn the problem around. Choose Q to be any

positive-definite matrix and consider the equation

$$A^T P + PA + Q = 0$$

where P is the unknown and A and Q are given. Suppose that we solve Equation (1) for P and find that P is positive-definite. What conclusions can you draw?

The Lyapunov Equation

The problem is how to select an appropriate positive-definite matrix P. Suppose we turn the problem around. Choose Q to be any

positive-definite matrix and consider the equation

$$A^T P + PA + Q = 0$$

where P is the unknown and A and Q are given. Suppose that we solve Equation (1) for P and find that P is positive-definite. What conclusions can you draw?

The equation (1) is called a **Lyapunov Equation**.

$$\uparrow$$
 $x^T P x > 0$

The leads to the following result to determine stability of linear systems

Theorem (globally) asymptotically stable

The $n \times n$ matrix A is stable (i.e. all eigenvalues of A have negative real part) if and only if for any symmetric positive definite $n \times n$ matrix Q there is a unique symmetric positive definite matrix P satisfying the Lyapunov Equation

$$A^T P + PA + Q = 0$$

Remark

This gives a way to determine stability of linear systems by solving a system of linear algebraic equations; in other words, without computing matrix eigenvalues.

Example

Remark

The Matlab Control Systems Toolbox has the built-in function lyap, which solves the Lyapunov equation.

Matlab Script

$$>> A = [0\ 1;\ -2\ -3];$$
 $>> Q = [1\ 0;\ 0\ 1];$
 $>> P = lyap(A,Q)$
 $>> P =$
 $1.0000\ -0.5000$
 $-0.5000\ 0.5000$
 $>> eig(P)$
ans =
 0.1910
 1.3090

$$\vec{\nabla} = \vec{q}^{T} M(\vec{q}) \vec{g} + \frac{1}{2} \vec{g}^{T} M(\vec{q}) \vec{g} + \vec{g}^{T} K_{F} \vec{q}$$

$$= \vec{q}^{T} (u - C(\vec{q}, \vec{g}) \vec{q}) + \frac{1}{2} \vec{q}^{T} M(\vec{g}) \vec{g} + \vec{g}^{T} K_{F} \vec{q}$$

$$= \vec{q}^{T} (u + K_{F} \vec{q}) + \frac{1}{2} \vec{q}^{T} (M - 2C) \vec{g}$$

$$= \vec{q}^{T} (-K_{A} \vec{q}) = -\vec{q}^{T} K_{A} \vec{q} \leq 0 \qquad \forall \times.$$

$$doesn't depend$$

$$m \vec{q}$$

$$\Rightarrow This prove weak form of stability (in the sense of Lyapunau'')$$

$$Try La Salle's Thun (i.e., invariance principle)$$

$$Suppose \vec{V} \equiv 0 \Rightarrow \vec{q} \equiv 0$$

$$(1) \Rightarrow u = 0 \Rightarrow -K_{F} \vec{q} - K_{A} \vec{q} = 0 \Rightarrow \vec{q} = 0$$

$$I.e., \vec{V} vanishes only at eq. pt. (\vec{q}, \vec{q}) = 0 \Rightarrow Asymptotically stable (A.S)$$