FPGA Design – Spring 2022 Homework 5

Date: 2022/05/09

Outline

- Problem1 Simple Computing System
- Problem

Problem1 – Simple Computing System (80%)

Description

Block RAM

- 考量到Instruction長度, Block RAM 0, Block RAM 1只會使用到前32x32b的位置。
- 兩個 Block RAM都有規定的初始值
- Read/Write
 - BRAMO:由CPU經Port A寫入;由Controller經Port B讀出送至DSP的Input A。
 - BRAM1:由CPU經Port A讀寫;由Controller經Port B讀出送至DSP的Input B,並寫入DSP的運算結果。

DSP

- Data Input只有 A, B · Data Output 只有 P ·
- Port C 固定為常數 0x0000_0009_5514。
- 控制訊號有INMODE, OPMODE, ALUMODE, CARRYINSEL設為000並將CARRYIN設 為0即可。
- Pipeline Register數量自訂,但AREG, BREG, PREG需至少為1。

Controller Instruction

- Instruction 可透過 AXI GPIO 送入,也可將Controller 實作成一個 AXI IP。
- Definition

[31]	[30:27]	[26:20]	[19:15]	[14:10]	[9:5]	[4:0]
Execute	DSP ALUMODE	DSP OPMODE	DSP INMODE	BRAM1 Write Addr	BRAM1 Read Addr	BRAM0 Read Addr

Spec

Data width	32-bit	
Each Block Memory Size	32Kb (32x32b Accessible)	
RAM Mode	True Dual Port	
DSP Use D Port	False	
Number System	2's complement	
Unequal Data Width Transfer (Consider overflow when you testing)	LSB (Ex. 32-bit data ->30 take [29:0])	

Block RAM Initial Data

Both BRAMs share same initial data

Number	Data		
0	0x0000_0023		
1	0x0000_0001		
2	0x0000_1201		
6	0x0000_0531		
11	0xFFFF_FF23		
31	0x0000_2236		
Others	0x0000_0000		

Test

• 這次作業有規定的執行流程,

請依照右方 Pseudo Code撰寫C Code。

```
Initially Configure FPGA
# Program Start
BRAM1[3] <= BRAM0[0] * BRAM1[2];
BRAM1[7] <= BRAM0[11] * BRAM1[3];
BRAM1[10] <= BRAM0[31] * BRAM1[7] + C;
BRAM1[13] <= C - BRAM0[1] * BRAM1[6];
BRAM1[15] <= BRAM0[0] * BRAM1[31] - C - 1;
for(i = 0; i < 32; i++)
   print(BRAM1[i]); //Show "BRAM1[i] = 0x___
for(i = 0; i < 32; i++)
   BRAM0[i] <= (i + 1) ^ 2;
BRAM1[16] <= BRAM0[0] * BRAM1[2];
BRAM1[17] <= BRAM0[11] * BRAM1[3];
BRAM1[18] <= BRAM0[31] * BRAM1[7] + C;
BRAM1[19] <= C - BRAM0[1] * BRAM1[6];
BRAM1[20] <= BRAM0[0] * BRAM1[31] - C - 1;
for(i = 0; i < 32; i++)
   print(BRAM1[i]); //Show "BRAM1[i] = 0x___
```

Problem (20%)

• 1. PYNQ-Z2 上共有多少個 DSP48E1 Slice?

Hint

• Control Signal Pipeline

繳交說明

- 繳交期限: 5/23 (一) 19:00 逾時拒收以0分計算
- 請壓縮成 .rar 或是 .zip
- 說明文件(10%)內容至少要有組員學號、電路設計說明、Block Design 截圖
 - 使用Word、PPT撰寫請轉成pdf檔,違者斟酌扣分
 - 使用Markdown撰寫可直接上傳
- 不用上傳整個Vivado Project,只需提供source file、xdc、xsa、vitis project即可

檔案格式

- ► FPGA_HW5_GroupX
 - ► Problem1
 - **►** Src
 - ► xdc (若無使用到則不用)
 - xsa
 - vitis project
 - **document**