Formular / Kochrezept Master-Methode

(vereinfachte Version)

Gegebene Rekurrenzrelation: T(n) =

1 Anschauen, interpretieren

2	Mustererkennung: $T(n) = a \cdot T(n/b) + f(n)$
_	

a = _____, b = _____, f(n) = _____

Mustererkennung erfolgreich? \Box ja \Box nein \longrightarrow Abbruch / andere Methode

3 Parameter kontrollieren

Parameter	Kriterium	Evaluation	
а	konstant, a ≥ 1	□ ok	☐ nicht ok
b	konstant, b > 1	□ ok	☐ nicht ok
f(n)	asymptotisch positiv	□ ok	☐ nicht ok

Master-Methode anwendbar? \Box ja \Box nein \longrightarrow Abbruch / andere Methode

4 Fall bestimmen

Berechne $x = log_b(a) =$ (Blätter im Rekursionsbaum: n^x)

Vergleiche asymptotisch f(n) = _____ mit n^x = _____:

Vergleich	Beschreibung	Fall	Resultat	Arbeit
f(n) wächst polynomiell langsamer als n ^x .	$f(n) " \preceq " \Theta(n^{x})$ $\exists \varepsilon > 0:$ $f(n) \in O(n^{x-\varepsilon})$	①	T(n) ∈ Θ(n ^x)	vor allem in den Blättern
f(n) wächst (ungefähr) gleich schnell wie n ^x .	$f(n)$ "\approx" $\Theta(n^{x})$ $\exists \varepsilon > 0:$ $f(n) \in \Theta(n^{x-\varepsilon} \cdot \log(n))$	2	$T(n) \in \Theta(n^x \cdot \log(n))$	gleichmässig verteilt
f(n) wächst polynomiell schneller als n ^x .	$f(n) " \ge " \Theta(n^x)$ $\exists \varepsilon > 0:$ $f(n) \in \Omega(n^{x-\varepsilon})$	3	T(n) ∈ Θ(f(n))	vor allem im Wurzelknoten

4a Regularität für Fall ③ prüfen

Für eine geeignete Konstante c < 1 und eine genügend grosses $n > n_0$ gilt:

$$a \cdot f(n/b) \leq c \cdot f(n)$$

 $\leq ...$

Regularität erfüllt? □ ja □ nein → Abbruch / andere Methode

5 Lösung aufschreiben

$$T(n) \in \Theta(\underline{\underline{\hspace{1cm}}})$$

Formular / Kochrezept Master-Methode

(vereinfachte Version)

 $T(n) = 7 \cdot T(n/2) + n^2$ Gegebene Rekurrenzrelation:

1 Anschauen, interpretieren

Das Problem wird zerlegt in 7 Teilprobleme, die jeweils halb so gross sind wie das Ausgangsproblem. Dabei fällt ausserhalb der Rekursion ein Aufwand an, der quadratisch von n abhängt.

2 Mustererkennung: $T(n) = a \cdot T(n/b) + f(n)$

3 Parameter kontrollieren

Parameter	Kriterium	Evaluation	
а	konstant, a ≥ 1	⊠ ok □ nicht ok	
b	konstant, b > 1	⊠ ok □ nicht ok	
f(n)	asymptotisch positiv	⊠ ok □ nicht ok	

Master-Methode anwendbar?

☑ ja □ nein → Abbruch / andere Methode

4 Fall bestimmen

Berechne x = $log_b(a) = log_2(7) \approx 2.807$ (Blätter im Rekursionsbaum: n^x)

Vergleiche asymptotisch $f(n) = n^2$ mit $n^x = n^{\log_2(7)} \approx n^{2.807}$:

Vergleich	Beschreibung	Fall	Resultat	Arbeit
f(n) wächst polynomiell langsamer als n ^x .	$f(n) \le \Theta(n^x)$ $\exists \epsilon > 0:$ $f(n) \in O(n^{x-\epsilon})$	① 🛮	T(n) ∈ Θ(n ^x)	vor allem in den Blättern
f(n) wächst (ungefähr) gleich schnell wie n ^x .	$f(n)$ "\approx" $\Theta(n^x)$ $\exists \varepsilon > 0:$ $f(n) \in \Theta(n^{x-\varepsilon} \cdot \log(n))$	2	$T(n) \in \Theta(n^x \cdot \log(n))$	gleichmässig verteilt
f(n) wächst polynomiell schneller als n ^x .	$f(n) " \ge " \Theta(n^x)$ $\exists \varepsilon > 0:$ $f(n) \in \Omega(n^{x-\varepsilon})$	3	T(n) ∈ Θ(f(n))	vor allem im Wurzelknoten

Regularität für Fall 3 prüfen 4a

Für eine geeignete Kenstante c < 1 und eine genügend grosses n > n₀ gilt:

$$a \cdot f(n/b) \leq c \cdot f(n)$$

≤

Regularität erfüllt?

5 Lösung aufschreiben

$$T(n) \in \Theta(\underline{n^{\log_2(7)}})$$

Formular / Kochrezept Master-Methode

(vereinfachte Version)

Gegebene Rekurrenzrelation: $T(n) = 32 \cdot T(n/4) + n^3$

1 Anschauen, interpretieren

Das Problem wird zerlegt in 32 Teilprobleme, die jeweils einen Viertel so gross sind wie das Ausgangsproblem. Dabei fällt ausserhalb der Rekursion ein Aufwand an, der kubisch von n abhängt.

2 Mustererkennung: $T(n) = a \cdot T(n/b) + f(n)$

3 Parameter kontrollieren

Parameter	Kriterium	Evaluation	
а	konstant, a ≥ 1	⊠ ok	☐ nicht ok
b	konstant, b > 1	⊠ ok	☐ nicht ok
f(n)	asymptotisch positiv	Ճok	☐ nicht ok

Master-Methode anwendbar?

☑ ja □ nein → Abbruch / andere Methode

4 Fall bestimmen

Berechne $x = log_b(a) = log_4(32) = 2.5$ (Blätter im Rekursionsbaum: n^x)

Vergleiche asymptotisch $f(n) = \underline{n^3}$ mit $n^x = \underline{n^{\log_4(32)} = n^{2.5}}$:

Vergleich	Beschreibung Fall Resulta		Resultat	Arbeit
f(n) wächst polynomiell langsamer als n ^x .	$f(n) " \preceq " \Theta(n^{x})$ $\exists \varepsilon > 0:$ $f(n) \in O(n^{x-\varepsilon})$	①	T(n) ∈ Θ(n ^x)	vor allem in den Blättern
f(n) wächst (ungefähr) gleich schnell wie n ^x .	$f(n)$ "\approx" $\Theta(n^x)$ $\exists \varepsilon > 0:$ $f(n) \in \Theta(n^{x-\varepsilon} \cdot \log(n))$	2	$T(n) \in \Theta(n^x \cdot \log(n))$	gleichmässig verteilt
f(n) wächst polynomiell schneller als n ^x .	$f(n) " \ge " \Theta(n^x)$ $\exists \varepsilon > 0:$ $f(n) \in \Omega(n^{x-\varepsilon})$	③ ⊠	T(n) ∈ Θ(f(n))	vor allem im Wurzelknoten

4a Regularität für Fall 3 prüfen

Für eine geeignete Konstante c < 1 und eine genügend grosses $n > n_0$ gilt:

$$a \cdot f(n/b) \leq c \cdot f(n) \xrightarrow{\text{Die Gleichung ist}} \text{erfüllt für } c = 0.5$$

$$32 \cdot (n/4)^3 = 0.5 \cdot n^3 \leq 0.5 \cdot n^3 \text{und beliebige n.}$$

Regularität erfüllt?

☑ ja □ nein → Abbruch / andere Methode

5 Lösung aufschreiben

$$T(n) \in \Theta(\underline{n^3})$$