# EDLD 653 Final Project

Anisha Babu, Ian Shryock, Dillon Welindt, Futing Zou, Diana DeWald<sup>1</sup>

1

3

4

<sup>1</sup> University of Oregon

Author Note

Website for project can be found at: https://github.com/ian-shryock/fxnl-prog-s22

2

Abstract 6

One or two sentences providing a basic introduction to the field, comprehensible to a

scientist in any discipline.

Two to three sentences of more detailed background, comprehensible to scientists

in related disciplines.

One sentence clearly stating the **general problem** being addressed by this particular 11

study. 12

One sentence summarizing the main result (with the words "here we show" or their 13

equivalent).

Two or three sentences explaining what the main result reveals in direct comparison

to what was thought to be the case previously, or how the main result adds to previous

knowledge.

One or two sentences to put the results into a more **general context**. 18

Two or three sentences to provide a **broader perspective**, readily comprehensible to 19

a scientist in any discipline.

Keywords: keywords 21

Word count: X 22

#### EDLD 653 Final Project

#### Introduction

## 25 Big Five

23

One of the most widely replicated findings within the field of personality psychology is the Big Five structure of personality. With roots in the 1800's, personality psychology sought to determine the best way to represent the large number of personality traits in a concise structure. This research initially involved researchers providing participants with large numbers of trait descriptive adjectives and asking them to rate the extent to which those adjectives characterize themselves or someone they knew. Dimension reduction analyses were then used to create a simpler structure from those responses.

Multiple research groups began converging on the five factor structure as early as the 1960's, with an increasing consensus by the late 1980's. Most of the recent work on the big five has been conducted through a combination of confirmatory factor analysis and theory driven selection of survey items based on previous findings about the structure.

## 37 Geographical Personality

In recent years, there has been increasing focus on regional variation of personality traits within the United States. Work has examined the extent to which regions of the US differ on the Big Five domains and can be said to have distinct and characteristic combinations of trait levels. For example, Rentfrow and colleagues (2013) show that the south and midwest are best characterized as friendly and conventional, whereas the west is relaxed and creative, and the northeast is temperamental and uninhibited.

A limitation of this work is that it examines the extent to which the five factor structure captures each region and what differences in the levels of each factor are due to

- regional variation. This research utilizes confirmatory factor analyses that assume that the
- 47 five factor structure is the ideal level of dimensionality to characterize all regions.

#### 48 Cross-Cultural Studies

- Much of the cross-cultural work on personality structure has found some support for the notion that the five factor structure has applicability in a number of cultures. However, these studies typically are conducted from an etic perspective that translate the items used in western samples.
- However, when studies are conducted from an emic perspective that is, using trait
  descriptive adjectives from the language of the culture, rather than translations of items
  used in the big five framework different structures emerge. A varying number of factors
  have been found to best fit different cultures, ranging from one to seven in many cases.

#### 57 Geographical Factor Structure within US

- Within the US, the regional variation in factor structures has not been an extensively studied topic. Because most research operates within a framework that utilizes confirmatory factor analysis, there is little information on the extent to which regions differ in their factor structure.
- In the current study, we use exploratory factor analyses to provide estimates of the optimal factor structures for each of the fifty states.

#### Methods

#### 65 Measures

The International Personality Item Pool is an open-source repository of personality trait items that have been researched extensively in the big five tradition. The current

- 68 study uses ninety nine of one hundred items from the IPIP-100. Participants rated
- $_{69}$  themselves on a number of personality traits from 1- not at all like me to 6- very much like

70 me.

### Data Collection and Participants

Data were obtained from the Harvard Dataverse (D. Condon, Zabelina, and Revelle (2021)). Data were initially collected using the Synthetic Aperture for Personality

Assessment (D. M. Condon & Revelle, 2014; see Revelle et al., 2016; Wilt, Funkhouser, & Revelle, 2011) which utilizes a massively missing completely at random design, wherein each participant only provides responses to a fraction of items.

## 77 Data analysis

We used R [Version 4.1.1; R Core Team (2021)] and the R-package *papaja* [Version 0.1.0.9997; Aust and Barth (2020)] for all our analyses.

First, we provide descriptive norms for the entire US sample, and then by state.

Next, we use parallel analysis to determine the optimal number of factors in the whole sample. Our hypothesis is that five factors will provide an optimal fit.

The main analyses are fifty parallel analyses, one for every state, that estimates the optimal number of personality dimensions for each state. We hypothesize that there will be variation in the number of ideal dimensions across states.

```
## $gender
##
##
## Female Male
## 56901 24465
##
```

##

##

Montana

Nebraska

New Hampshire

Nevada

New Jersey

| 118 | ## | New Mexico        | New York      | North  | Carolina   | North    | Dakota          |          | Ohio    |
|-----|----|-------------------|---------------|--------|------------|----------|-----------------|----------|---------|
| 119 | ## | 1199              | 4942          |        | 1454       |          | 190             |          | 3600    |
| 120 | ## | Oklahoma          | Oregon        | Pen    | nsylvania  | Rhode    | Island          | South Ca | arolina |
| 121 | ## | 771               | 1203          |        | 4758       |          | 422             |          | 1010    |
| 122 | ## | South Dakota      | Tennessee     |        | Texas      |          | Utah            | 1        | Vermont |
| 123 | ## | 172               | 1133          |        | 4662       |          | 487             |          | 161     |
| 124 | ## | Virginia          | Washington    | West   | Virginia   | Wi       | sconsin         | Ţ        | Wyoming |
| 125 | ## | 2787              | 1742          |        | 384        |          | 2377            |          | 126     |
| 126 | ## |                   |               |        |            |          |                 |          |         |
| 127 | ## | \$race            |               |        |            |          |                 |          |         |
| 128 | ## |                   |               |        |            |          |                 |          |         |
| 129 | ## | African American  | Chin          | ese I  | ndian/Paki | istani   |                 | Japanese |         |
| 130 | ## | 6108              | 1             | 129    |            | 469      |                 | 257      |         |
| 131 | ## | Korean            | Lat           | ino    | Me         | exican   | Native <i>I</i> | American |         |
| 132 | ## | 500               | 2             | 079    |            | 2166     |                 | 728      |         |
| 133 | ## | Other             | Other As      | ian Pa | acific Isl | lander   | Pł              | nilipino |         |
| 134 | ## | 3067              |               | 566    |            | 305      |                 | 615      |         |
| 135 | ## | Puerto Rican      | White/Caucas  | ian    |            |          |                 |          |         |
| 136 | ## | 512               | 62            | 859    |            |          |                 |          |         |
| 137 | ## |                   |               |        |            |          |                 |          |         |
| 138 | ## | \$education       |               |        |            |          |                 |          |         |
| 139 | ## |                   |               |        |            |          |                 |          |         |
| 140 | ## | Co                | llege graduat | е      | Currently  | y attend | ing col         | Lege     |         |
| 141 | ## |                   | 1238          | 1      |            |          | 32              | 2469     |         |
| 142 | ## | Graduate or profe | ssional degre | е      | Hi         | igh scho | ol gradı        | ıate     |         |
| 143 | ## |                   | 1033          | 8      |            |          | (               | 6145     |         |
| 144 | ## | Less              | than 12 year  | s S    | ome colleg | ge did n | ot gradı        | ıate     |         |

145 ## 11759 8274

A tibble:  $15 \times 3$ group group\_sample percent\_sample 1 African American 6108 0.0751 147 2 Chinese 1129 0.0139 148 3 Indian/Pakistani 469 0.00576 4 Japanese 257 0.00316 150 5 Korean 500 0.00615 151 6 Latino 2079 0.0256 152 7 Mexican 2166 0.0266 153 8 Native American 728 0.00895 154 9 Other 3067 0.0377 155 10 Other Asian 566 0.00696 156 11 Pacific Islander 305 0.00375 157 12 Philipino 615 0.00756 158 13 Puerto Rican 512 0.00629 159 14 White/Caucasian 62859 0.773 160 15 6 0.0000737 # A tibble: 6 x 3 group group\_sample percent\_sample 1 College 161 graduate 12381 0.152 2 Currently attending college 32469 0.399 3 Graduate or professional 162 degree 10338 0.127 4 High school graduate 6145 0.0755 5 Less than 12 years 11759 0.145 6 163 Some college did not graduate 8274 0.102 IPIP100agreeableness IPIP100conscientiousness IPIP100agreeableness 1.00 0.21 IPIP100conscientiousness 0.21 1.00 IPIP100extraversion 0.38 0.13 IPIP100intellect 0.16 0.08 IPIP100extraversion IPIP100intellect IPIP100agreeableness 0.38 0.16 IPIP100conscientiousness 0.13 0.08 IPIP100extraversion 1.00 0.22 IPIP100intellect 0.22 1.00 The ability to suppress reporting of reporting 168 confidence intervals has been deprecated in this version. The function argument 169 show.conf.interval will be removed in a later version.

- Means, standard deviations, and correlations with confidence intervals
- Variable M SD 1 2 3
- 1. IPIP100agreeableness 4.67 0.77
- 2. IPIP100conscientiousness 4.14 0.92 .21\*\*
- [.21, .22]
- 3. IPIP100extraversion 3.92 1.02 .38\*\* .13\*\*
- [.37, .38] [.13, .14]
- 4. IPIP100intellect 4.59 0.73 .16\*\* .08\*\* .22\*\*
- [.15, .16] [.07, .08] [.21, .23]
- Note. M and SD are used to represent mean and standard deviation, respectively.
- Values in square brackets indicate the 95% confidence interval. The confidence interval is a
- plausible range of population correlations that could have caused the sample correlation
- (Cumming, 2014). \* indicates p < .05. \*\* indicates p < .01.
- The ability to suppress reporting of reporting confidence intervals has been
- deprecated in this version. The function argument show.conf.interval will be removed in a
- later version.
- Means, standard deviations, and correlations with confidence intervals
- Variable M SD 1 2 3
- 1. IPIP100agreeableness 4.67 0.77
- 2. IPIP100conscientiousness 4.14 0.92 .21\*\*
- [.21, .22]
- 3. IPIP100extraversion 3.92 1.02 .38\*\* .13\*\*
- [.37, .38] [.13, .14]

```
4. IPIP100intellect 4.59 0.73 .16** .08** .22**

[.15, .16] [.07, .08] [.21, .23]
```

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% confidence interval. The confidence interval is a plausible range of population correlations that could have caused the sample correlation (Cumming, 2014). \* indicates p < .05. \*\* indicates p < .01.

200 A tibble: 15 x 3

Some college did not graduate 8274 0.102

217

```
group group_sample percent_sample 1 African American 6108 0.0751
201
         2 Chinese 1129 0.0139
202
         3 Indian/Pakistani 469 0.00576
203
         4 Japanese 257 0.00316
204
         5 Korean 500 0.00615
205
         6 Latino 2079 0.0256
206
         7 Mexican 2166 0.0266
207
         8 Native American 728 0.00895
208
         9 Other 3067 0.0377
209
         10 Other Asian 566 0.00696
210
         11 Pacific Islander 305 0.00375
211
         12 Philipino 615 0.00756
212
         13 Puerto Rican 512 0.00629
213
         14 White/Caucasian 62859 0.773
214
         15 6 0.0000737 # A tibble: 6 x 3 group group_sample percent_sample 1 College
215
```

graduate 12381 0.152 2 Currently attending college 32469 0.399 3 Graduate or professional

degree  $10338\ 0.127\ 4$  High school graduate  $6145\ 0.0755\ 5$  Less than  $12\ {\rm years}\ 11759\ 0.145\ 6$ 

| 219 | ## |   | Alabama | Alask   | a Ar  | izona  | Arkan  | sas C | alifo | ornia | Col  | orado | Conne   | ectic | ut Del | aware  | )     |
|-----|----|---|---------|---------|-------|--------|--------|-------|-------|-------|------|-------|---------|-------|--------|--------|-------|
| 220 | ## | 1 | 5       | 5       | 6     | 5      |        | 5     |       | 5     |      | 5     | 5       |       | 5      | 6      | 3     |
| 221 | ## |   | Florida | Georg   | ia Ha | awaii  | Idaho  | Illi  | nois  | Indi  | ana  | Iowa  | Kansas  | s Ken | tucky  | Louis  | siana |
| 222 | ## | 1 | 5       | 5       | 5     | 6      | 6      |       | 5     |       | 5    | 5     | Ę       | 5     | 5      |        | 5     |
| 223 | ## |   | Maine M | [arylan | d Mas | ssachı | ısetts | Mich  | igan  | Minn  | esot | a Mis | ssissip | pi M  | issour | ri Mon | itana |
| 224 | ## | 1 | 5       |         | 5     |        | 5      |       | 5     |       |      | 5     |         | 6     |        | 5      | 7     |
| 225 | ## |   | Nebrask | a Neva  | da Ne | ew.Har | npshir | e New | .Jers | sey N | ew.M | exico | New.    | ork   | North. | Carol  | ina   |
| 226 | ## | 1 |         | 5       | 7     |        | (      | 6     |       | 5     |      | 5     | 5       | 5     |        |        | 5     |
| 227 | ## |   | North.D | )akota  | Ohio  | Oklah  | noma O | regon | Penr  | nsylv | ania | Rhod  | le.Isla | and S | outh.C | Caroli | .na   |
| 228 | ## | 1 |         | 7       | 5     |        | 5      | 5     |       |       | 5    |       |         | 7     |        |        | 5     |
| 229 | ## |   | South.D | akota ' | Tenne | essee  | Texas  | Utah  | Vern  | nont  | Virg | inia  | Washir  | ngton | West.  | Virgi  | nia   |
| 230 | ## | 1 |         | 7       |       | 5      | 5      | 5     | ,     | 8     |      | 5     |         | 5     |        |        | 6     |
| 231 | ## |   | Wiscons | sin Wyo | ming  |        |        |       |       |       |      |       |         |       |        |        |       |
| 232 | ## | 1 |         | 5       | 8     |        |        |       |       |       |      |       |         |       |        |        |       |

233 Results

The parallel factor analyses indicate that the modal number of factors is 5, as is found in 36 of the 50 states, with 7, 6, and 1 states respectively being better represented by 6, 7, and 8 factors.









240

241

242

245

246

247

248

249

#### EK Peer Review:

# Areas of strength:

- 1. Awesome use of branches/git features in general! Made it clear to see who was working on what sections, and how the project was arranged.
  - 2. Code is arranged easily to read, nice use of sections and not doing more than 1~2 things per line of code.
  - 3. Great reproducibility with having data loading working on first try for me, and doesn't require any extra files/folders outside of the "scripts" folder- might be beneficial to cache the data however?

What I learned: Familiarity with the IPIP dataset! I'd really like tos ee some visualizations on how these factors vary across the different states, maybe using a

252 geographic visualization?

254

255

# EK Suggestions:

• Code cleanup: moved library declarations to teh beginning of the script, and added the "needs" package" to simplify package loading

256 Discussion

| 257 | References                                                                         |
|-----|------------------------------------------------------------------------------------|
| 258 | Aust, F., & Barth, M. (2020). papaja: Create APA manuscripts with R Markdown.      |
| 259 | Retrieved from https://github.com/crsh/papaja                                      |
| 260 | Condon, D. M., & Revelle, W. (2014). The international cognitive ability resource: |
| 261 | Development and initial validation of a public-domain measure. Intelligence, 43,   |
| 262 | 52–64.                                                                             |
| 263 | Condon, D., Zabelina, D., & Revelle, W. (2021). Reproducibility Data for: Creative |
| 264 | Achievement and Individual Differences (Version V3) [Data set]. Harvard            |
| 265 | Dataverse. https://doi.org/10.7910/DVN/2IBBMG                                      |
| 266 | R Core Team. (2021). R: A language and environment for statistical computing.      |
| 267 | Vienna, Austria: R Foundation for Statistical Computing. Retrieved from            |
| 268 | https://www.R-project.org/                                                         |
| 269 | Revelle, W., Condon, D. M., Wilt, J., French, J. A., Brown, A., & Elleman, L. G.   |
| 270 | (2016). Web and phone based data collection using planned missing designs.         |
| 271 | Sage Handbook of Online Research Methods (2nd Ed., P. 578-595). Sage               |
| 272 | Publications, Inc.                                                                 |
| 273 | Wilt, J., Funkhouser, K., & Revelle, W. (2011). The dynamic relationships of       |
| 274 | affective synchrony to perceptions of situations. Journal of Research in           |
| 275 | Personality, 45(3), 309–321.                                                       |

Table 1  $(\#tab: \#3\ descriptives\ statistics) Full\ Sample\ Demographics$ 

education

|                  | Overall (N=81366)  |
|------------------|--------------------|
| age              |                    |
| Mean (SD)        | 27.177 (11.343)    |
| Range            | 14.000 - 90.000    |
| gender           |                    |
| Female           | 56901 (69.9%)      |
| Male             | $24465 \ (30.1\%)$ |
| race             |                    |
| N-Miss           | 6                  |
| African American | $6108 \ (7.5\%)$   |
| Chinese          | 1129 (1.4%)        |
| Indian/Pakistani | 469~(0.6%)         |
| Japanese         | $257 \ (0.3\%)$    |
| Korean           | 500 (0.6%)         |
| Latino           | 2079~(2.6%)        |
| Mexican          | 2166 (2.7%)        |
| Native American  | 728 (0.9%)         |
| Other            | 3067 (3.8%)        |
| Other Asian      | 566 (0.7%)         |
| Pacific Islander | 305~(0.4%)         |
| Philipino        | 615 (0.8%)         |
| Puerto Rican     | 512 (0.6%)         |
| White/Caucasian  | 62859 (77.3%)      |

|                                 | Overall (N=81366)  |
|---------------------------------|--------------------|
| College graduate                | 12381 (15.2%)      |
| Currently attending college     | $32469 \ (39.9\%)$ |
| Graduate or professional degree | $10338\ (12.7\%)$  |
| High school graduate            | $6145 \ (7.6\%)$   |
| Less than 12 years              | $11759\ (14.5\%)$  |
| Some college did not graduate   | 8274 (10.2%)       |

 $\begin{tabular}{ll} Table 2 \\ Agreeableness \ Descriptives \\ \end{tabular}$ 

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Alabama       | 4.610537 | 0.7744197 | 643  |
| Alaska        | 4.629332 | 0.7841253 | 555  |
| Arizona       | 4.596157 | 0.7729134 | 866  |
| Arkansas      | 4.689144 | 0.7750065 | 577  |
| California    | 4.663943 | 0.7623445 | 9709 |
| Colorado      | 4.631178 | 0.7809921 | 1097 |
| Connecticut   | 4.634948 | 0.7713774 | 986  |
| Delaware      | 4.575882 | 0.7144243 | 592  |
| Florida       | 4.659417 | 0.8070510 | 2936 |
| Georgia       | 4.688953 | 0.7696673 | 2414 |
| Hawaii        | 4.637072 | 0.8284047 | 292  |
| Idaho         | 4.672925 | 0.7444675 | 340  |
| Illinois      | 4.729347 | 0.7352130 | 5520 |
| Indiana       | 4.689507 | 0.7638457 | 1707 |
| Iowa          | 4.667843 | 0.7655999 | 982  |
| Kansas        | 4.678785 | 0.7617303 | 808  |
| Kentucky      | 4.693537 | 0.7580447 | 820  |
| Louisiana     | 4.703087 | 0.7277572 | 2030 |
| Maine         | 4.667634 | 0.7913389 | 356  |
| Maryland      | 4.707332 | 0.7694775 | 1772 |
| Massachusetts | 4.654854 | 0.7788784 | 1935 |
| Michigan      | 4.653881 | 0.7815882 | 2549 |

 $\begin{tabular}{ll} Table 2 \\ Agreeableness \ Descriptives \ (continued) \end{tabular}$ 

| State          | Mean     | SD        | N    |
|----------------|----------|-----------|------|
| Minnesota      | 4.667296 | 0.7423893 | 2104 |
| Mississippi    | 4.722192 | 0.7991229 | 604  |
| Missouri       | 4.665174 | 0.7644602 | 1611 |
| Montana        | 4.765261 | 0.6641912 | 243  |
| Nebraska       | 4.641667 | 0.7724856 | 580  |
| Nevada         | 4.633536 | 0.7698699 | 274  |
| New Hampshire  | 4.629999 | 0.7428263 | 389  |
| New Jersey     | 4.669726 | 0.7642500 | 2495 |
| New Mexico     | 4.727511 | 0.7475549 | 1199 |
| New York       | 4.663282 | 0.8054766 | 4942 |
| North Carolina | 4.647067 | 0.7780090 | 1454 |
| North Dakota   | 4.615877 | 0.8189782 | 190  |
| Ohio           | 4.700273 | 0.7612682 | 3600 |
| Oklahoma       | 4.652295 | 0.7867416 | 771  |
| Oregon         | 4.633837 | 0.7672260 | 1203 |
| Pennsylvania   | 4.656941 | 0.7579218 | 4758 |
| Rhode Island   | 4.732280 | 0.7377559 | 422  |
| South Carolina | 4.727500 | 0.7352295 | 1010 |
| South Dakota   | 4.657946 | 0.8397148 | 172  |
| Tennessee      | 4.663913 | 0.8098826 | 1133 |
| Texas          | 4.652647 | 0.7789094 | 4662 |
| Utah           | 4.665389 | 0.7546368 | 487  |

Table 2
Agreeableness Descriptives (continued)

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Vermont       | 4.776898 | 0.6847462 | 161  |
| Virginia      | 4.722891 | 0.7433986 | 2787 |
| Washington    | 4.653790 | 0.7633607 | 1742 |
| West Virginia | 4.618171 | 0.8055191 | 384  |
| Wisconsin     | 4.641089 | 0.7689811 | 2377 |
| Wyoming       | 4.662522 | 0.7447127 | 126  |

 $\label{thm:conscientiousness} Table \ 3$   $Conscientiousness\ Descriptives$ 

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Alabama       | 4.117571 | 0.9667964 | 643  |
| Alaska        | 4.026173 | 0.8683283 | 555  |
| Arizona       | 4.098011 | 0.8929967 | 866  |
| Arkansas      | 4.147743 | 0.9248194 | 577  |
| California    | 4.095768 | 0.9086644 | 9709 |
| Colorado      | 4.124273 | 0.9210228 | 1097 |
| Connecticut   | 4.120340 | 0.9307941 | 986  |
| Delaware      | 3.997203 | 0.8632940 | 592  |
| Florida       | 4.179669 | 0.9343133 | 2936 |
| Georgia       | 4.129606 | 0.9180854 | 2414 |
| Hawaii        | 4.170548 | 0.8806935 | 292  |
| Idaho         | 4.150588 | 0.8735417 | 340  |
| Illinois      | 4.162300 | 0.9112091 | 5520 |
| Indiana       | 4.218357 | 0.9211999 | 1707 |
| Iowa          | 4.102082 | 0.9230007 | 982  |
| Kansas        | 4.108794 | 0.9105627 | 808  |
| Kentucky      | 4.122991 | 0.9537198 | 820  |
| Louisiana     | 4.209949 | 0.8955529 | 2030 |
| Maine         | 4.205641 | 0.9188266 | 356  |
| Maryland      | 4.128232 | 0.9095782 | 1772 |
| Massachusetts | 4.118530 | 0.9365527 | 1935 |
| Michigan      | 4.162636 | 0.9299835 | 2549 |

Table 3

Conscientiousness Descriptives (continued)

| State          | Mean     | SD        | N    |
|----------------|----------|-----------|------|
| Minnesota      | 4.096184 | 0.8982866 | 2104 |
| Mississippi    | 4.198448 | 0.9059218 | 604  |
| Missouri       | 4.141600 | 0.9351437 | 1611 |
| Montana        | 4.160722 | 0.9577293 | 243  |
| Nebraska       | 4.156379 | 0.8777856 | 580  |
| Nevada         | 4.082401 | 0.9495511 | 274  |
| New Hampshire  | 4.148700 | 0.8946446 | 389  |
| New Jersey     | 4.148890 | 0.9280449 | 2495 |
| New Mexico     | 4.262791 | 0.8985910 | 1199 |
| New York       | 4.148340 | 0.9339365 | 4942 |
| North Carolina | 4.171695 | 0.9481568 | 1454 |
| North Dakota   | 4.287222 | 0.8787829 | 190  |
| Ohio           | 4.188897 | 0.9247682 | 3600 |
| Oklahoma       | 4.140532 | 0.9454096 | 771  |
| Oregon         | 4.070511 | 0.9039862 | 1203 |
| Pennsylvania   | 4.117532 | 0.9191805 | 4758 |
| Rhode Island   | 4.099572 | 0.9192980 | 422  |
| South Carolina | 4.136447 | 0.8851777 | 1010 |
| South Dakota   | 4.266537 | 0.8999202 | 172  |
| Tennessee      | 4.208465 | 0.9470666 | 1133 |
| Texas          | 4.131076 | 0.9285345 | 4662 |
| Utah           | 4.102647 | 0.8660975 | 487  |

Table 3

Conscientiousness Descriptives (continued)

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Vermont       | 4.090649 | 0.9496127 | 161  |
| Virginia      | 4.141444 | 0.9057514 | 2787 |
| Washington    | 4.127309 | 0.9222153 | 1742 |
| West Virginia | 4.163824 | 0.9387757 | 384  |
| Wisconsin     | 4.112204 | 0.9268177 | 2377 |
| Wyoming       | 4.188095 | 0.9480086 | 126  |

 $\begin{tabular}{ll} Table 4 \\ Extraversion \ Descriptives \end{tabular}$ 

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Alabama       | 3.744427 | 1.0737088 | 643  |
| Alaska        | 3.802078 | 1.0298194 | 555  |
| Arizona       | 3.826485 | 1.0391321 | 866  |
| Arkansas      | 3.826526 | 1.1045412 | 577  |
| California    | 3.916162 | 1.0182084 | 9709 |
| Colorado      | 3.811444 | 1.0267798 | 1097 |
| Connecticut   | 3.924073 | 1.0262157 | 986  |
| Delaware      | 4.029242 | 0.9524545 | 592  |
| Florida       | 3.888615 | 1.0586144 | 2936 |
| Georgia       | 3.998944 | 1.0429965 | 2414 |
| Hawaii        | 3.835455 | 1.0309916 | 292  |
| Idaho         | 3.752173 | 1.0263106 | 340  |
| Illinois      | 4.012087 | 0.9837590 | 5520 |
| Indiana       | 3.894970 | 1.0577104 | 1707 |
| Iowa          | 3.907930 | 1.0020006 | 982  |
| Kansas        | 3.939745 | 1.0499232 | 808  |
| Kentucky      | 3.938068 | 1.0360986 | 820  |
| Louisiana     | 4.010502 | 0.9748960 | 2030 |
| Maine         | 3.846177 | 1.0208230 | 356  |
| Maryland      | 3.919828 | 1.0085951 | 1772 |
| Massachusetts | 3.894588 | 1.0272060 | 1935 |
| Michigan      | 3.896950 | 1.0384003 | 2549 |

Table 4

Extraversion Descriptives (continued)

| State          | Mean     | SD        | N    |
|----------------|----------|-----------|------|
| Minnesota      | 3.941308 | 1.0015734 | 2104 |
| Mississippi    | 3.920760 | 1.0388218 | 604  |
| Missouri       | 3.912232 | 0.9806955 | 1611 |
| Montana        | 3.847828 | 1.0609354 | 243  |
| Nebraska       | 3.918702 | 0.9855573 | 580  |
| Nevada         | 3.816920 | 1.0112589 | 274  |
| New Hampshire  | 3.862380 | 0.9731819 | 389  |
| New Jersey     | 3.996112 | 0.9864916 | 2495 |
| New Mexico     | 3.898791 | 1.0508917 | 1199 |
| New York       | 3.933406 | 1.0287508 | 4942 |
| North Carolina | 3.802822 | 1.0565457 | 1454 |
| North Dakota   | 3.803845 | 1.0412612 | 190  |
| Ohio           | 3.920517 | 1.0329506 | 3600 |
| Oklahoma       | 3.804182 | 1.0792374 | 771  |
| Oregon         | 3.886437 | 1.0061902 | 1203 |
| Pennsylvania   | 3.958699 | 1.0067223 | 4758 |
| Rhode Island   | 4.057464 | 0.9397830 | 422  |
| South Carolina | 4.043584 | 0.9876283 | 1010 |
| South Dakota   | 3.979409 | 1.0081303 | 172  |
| Tennessee      | 3.847732 | 1.0370815 | 1133 |
| Texas          | 3.888641 | 1.0537326 | 4662 |
| Utah           | 3.884845 | 1.0514536 | 487  |

Table 4

Extraversion Descriptives (continued)

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Vermont       | 3.917118 | 0.9878257 | 161  |
| Virginia      | 3.943700 | 1.0111944 | 2787 |
| Washington    | 3.809801 | 1.0334914 | 1742 |
| West Virginia | 3.779065 | 1.0798027 | 384  |
| Wisconsin     | 3.920540 | 1.0092239 | 2377 |
| Wyoming       | 3.821847 | 1.0187586 | 126  |

Table 5  $Intellect\ Descriptives$ 

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Alabama       | 4.637855 | 0.7449558 | 643  |
| Alaska        | 4.664919 | 0.7668085 | 555  |
| Arizona       | 4.665397 | 0.7510410 | 866  |
| Arkansas      | 4.601727 | 0.7666522 | 577  |
| California    | 4.607159 | 0.7273981 | 9709 |
| Colorado      | 4.670469 | 0.7275069 | 1097 |
| Connecticut   | 4.655686 | 0.7412064 | 986  |
| Delaware      | 4.386655 | 0.7205952 | 592  |
| Florida       | 4.657286 | 0.7032552 | 2936 |
| Georgia       | 4.597719 | 0.7234032 | 2414 |
| Hawaii        | 4.533509 | 0.7517126 | 292  |
| Idaho         | 4.676192 | 0.7004048 | 340  |
| Illinois      | 4.568339 | 0.7243646 | 5520 |
| Indiana       | 4.578118 | 0.7459488 | 1707 |
| Iowa          | 4.533963 | 0.7319487 | 982  |
| Kansas        | 4.600704 | 0.7605258 | 808  |
| Kentucky      | 4.601366 | 0.7377464 | 820  |
| Louisiana     | 4.421264 | 0.7414032 | 2030 |
| Maine         | 4.643924 | 0.7361798 | 356  |
| Maryland      | 4.577738 | 0.7187010 | 1772 |
| Massachusetts | 4.574818 | 0.7139949 | 1935 |
| Michigan      | 4.656310 | 0.7285229 | 2549 |

Table 5
Intellect Descriptives (continued)

| State          | Mean     | SD        | N    |
|----------------|----------|-----------|------|
| Minnesota      | 4.531498 | 0.7231444 | 2104 |
| Mississippi    | 4.559547 | 0.7368477 | 604  |
| Missouri       | 4.588972 | 0.7330890 | 1611 |
| Montana        | 4.708861 | 0.7378293 | 243  |
| Nebraska       | 4.495270 | 0.7481413 | 580  |
| Nevada         | 4.651490 | 0.7185546 | 274  |
| New Hampshire  | 4.630421 | 0.7565377 | 389  |
| New Jersey     | 4.612689 | 0.7390479 | 2495 |
| New Mexico     | 4.579827 | 0.6900077 | 1199 |
| New York       | 4.649041 | 0.7256438 | 4942 |
| North Carolina | 4.569312 | 0.7502207 | 1454 |
| North Dakota   | 4.570237 | 0.7177782 | 190  |
| Ohio           | 4.556529 | 0.7364082 | 3600 |
| Oklahoma       | 4.605553 | 0.7834762 | 771  |
| Oregon         | 4.619854 | 0.7436931 | 1203 |
| Pennsylvania   | 4.512731 | 0.7411906 | 4758 |
| Rhode Island   | 4.622255 | 0.6808287 | 422  |
| South Carolina | 4.485802 | 0.7222830 | 1010 |
| South Dakota   | 4.653013 | 0.6828377 | 172  |
| Tennessee      | 4.590234 | 0.7736854 | 1133 |
| Texas          | 4.613907 | 0.7484548 | 4662 |
| Utah           | 4.607547 | 0.7199137 | 487  |

Table 5
Intellect Descriptives (continued)

| State         | Mean     | SD        | N    |
|---------------|----------|-----------|------|
| Vermont       | 4.735498 | 0.7363306 | 161  |
| Virginia      | 4.547663 | 0.7079233 | 2787 |
| Washington    | 4.684024 | 0.6893191 | 1742 |
| West Virginia | 4.582448 | 0.7334187 | 384  |
| Wisconsin     | 4.504417 | 0.7397412 | 2377 |
| Wyoming       | 4.631488 | 0.6969593 | 126  |