Rosa M.ª Rodríguez Sánchez.

La recurrencia a seguir es:

$$f(i,P) = \begin{cases} L(i,1) & \text{si } P = \phi \\ \infty & \text{i } \in P \\ \min_{\forall t \in P} (L(i,t) + f(t,P - \{t\})) & \text{en otro caso} \end{cases}$$

siendo i un vértice del grafo y P una partición del conjunto de vértices. El vértice origen es 1.

Supón que el grafo tiene matriz de distancias :

L(i,j)	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

Debes crear una tabla ${\bf T}$. En esta tabla ${\bf T}$ las filas son los vértices del grafo y en las columnas tienes las particiones del conjunto de vértices de tu grafo original.

La tabla T con los valores óptimos para este ejemplo sería:

8

NOTA:Las casillas con inf es igual a infinito.

La matriz se va rellenado por columnas y para cada columna por filas. Así empezarías rellenado la columna 0 luego la 1, y así. Para que una casilla T(i,j) la consideres el vértice i no debe estar incluido en la partición j-ésima. Para el vértice origen solamente contemplas la casilla de la última columna. En el ejemplo T(0,8).

La solución la tienes en la casilla T(0,8). A partir de esta casilla reconstruyes la solución.

Esta matriz se ha obtenido como $T(i,P)=\min(L(i,t)+f(t,P-\{t\}))$ para todo t en P siendo P una partición del conjunto de vértices del grafo. Los casos base ocurren cuando $P=\Phi$ donde $f(t,\Phi)=L(t,1)$ siendo 1 el vértice origen (donde parte el comerciante).

Es interesante que esta tabla también almacene otros valores como en que vértice t obtuvo el mínimo. En el ejemplo esa tabla sería:

T	Col	0	1	2	3	4	5	6	7
filas	Particio nes/ Nodos	Φ	{2}	{3}	{4}	{2,3}	{2,4}	{3,4}	{2,3,4}
0	1	0/1	inf	inf	inf	inf	inf	inf	35/2
1	2	5/2	inf	15/3	18/4	inf	inf	25/4	inf
2	3	6/3	18/2	inf	2inf/4	inf	25/4	inf	inf
3	4	8/4	13/2	15/3	inf	23/2	inf	inf	inf

Asé he puesto en las casillas que interesa el valor del vértice donde se obtuvo el mínimo. Por ejemplo en la casilla (3,5) tenemos T(3,5)=25/4 esto quiere decir que $f(3,\{2,4\})=25$ y este se obtiene como $f(3,\{2,4\})=L(3,4)+f(4,\{2\})=12+13=25$ para obtener $f(4,\{2\})$ he mirado la casilla T(3,1). Recuerda que $f(3,\{2,4\})=\min(L(3,2)+f(2,\{4\}),L(3,4)+f(4,\{2\}))$

Por ejemplo como se obtiene nuestra solución que esta en la casilla T(0,7) que representa $f(1,\{2,3,4\})$. Tiene un valor óptimo de 35 pero ¿qué camino lo logra?. Para ello vemos que $f(1,\{2,3,4\})$ se obtiene como $f(1,\{2,3,4\})=L(1,2)+f(2,\{3,4\})$. Ahora como se obtiene $f(2,\{3,4\})$ que está T(1,6) pues $f(2,\{3,4\})=L(2,4)+f(4,\{3\})=L(2,4)+L(4,3)+f(3,\Phi)=10+9+6=25$

Luego $f(1,\{2,3,4\})=L(1,2)+f(2,\{3,4\})=10+25=35$.

Este proceso de ir hacia atrás

 $f(1,\{2,3,4\})=L(1,2)+L(2,4)+L(4,3)+f(3,\Phi)=35$ te esta indicando que el camino óptimo es 1-2-4-3.