

Рис. 1. Зависимость энергий молекулярных орбиталей $NH_2N_2^+$ от межъядерного расстояния NH_2 — N_2^+ .

Рис. 2. Трассировка молекулярных орбиталей $NH_2N_2^+$.

При сканировании энергии, с учетом пространственного подобия MO, можно определить что заполненные орбитали молекулярного азота трансформируются в орбитали № 1, 3, 4, 6, 9, 10, 11 катиона NH_2N_2 ⁺.

Рис. 3. Энергетическая диаграмма молекулярных орбиталей при взаимодействии N_2 и NH_2^+ с образованием $NH_2N_2^+$.

MO11 Step25 d=1.3806 E=-165.101446 E(MO)=-0.610969

MO11 Step551 d=11.9138 E=-164.979265 E(MO)=-0.546031

MO14 Step25 d=1.3806 E=-165.101446 E(MO)=-0.321141

MO14 Step551 d=11.9138 E=-164.979265 E(MO)=-0.537542

Рис. 4. Особый случай, трансформация MO11 и MO14 $\mathrm{NH_2N_2}^+$, в молекулярные орбитали $\mathrm{N_2}$ и $\mathrm{NH_2}^+$ соответственно, с очень медленным разделением, вплоть до $\mathrm{d}(\mathrm{NH_2}^+\mathrm{---}\mathrm{N_2}) > 50\mathrm{\mathring{A}}$

Энергия молекулярных орбиталей

Occupied molecular orbitals

Nº MO	E MO(N2)	E MO(NH2+)	E MO(NH-N2+)	dE MO(N2)	dE MO(NH2+)	dE MO	%
1	-14,450116		-14,813807	-0,363691		-0,363691	28,97
2		-14,889393	-14,747831		0,141562	0,141562	-11,28
3	-14,44860		-14,719726	-0,271126		-0,271126	21,60
4	-1,134986		-1,458669	-0,323683		-0,323683	25,78
5		-1,265568	-1,298670		-0,033102	-0,033102	2,64
6	-0,565855		-0,965855	-0,400000		-0,400000	31,86
7		-0,891819	-0,886050		0,005769	0,005769	-0,46
8		-0,744735	-0,809290		-0,064555	-0,064555	5,14
9	-0,471908		-0,747709	-0,275801		-0,275801	21,97
10	-0,471925		-0,738254	-0,266329		-0,266329	21,21
11*	-0,438559		-0,600942	-0,162383		-0,162383	12,93
Sum	-31,981949	-17,791515	-51,786803	-2,063013	0,049674	-2,013339	160,367639
%	61,76	34,36		102,47	-2,47		

Unoccupied molecular orbitals

	E MO(N2)	E MO(NH2+)	E MO(NH-N2+)	dE MO(N2)	dE MO(NH2+)	dE MO	%
12	-0,039746		-0,338540	-0,298794		-0,298794	23,80
13		-0,265744	-0,299308		-0,033564	-0,033564	2,67
14*		-0,610093	-0,235372		0,374721	0,374721	-29,85

^{* -} особый случай, MO11 и MO14 NH2N2+ медленно трансформируются в две молекулярных орбитали MO7 N2 и MO5 NH2+

Занятые орбитали молекулярного азота понижают свою энергию на 2,063 Eh(102,5%), а орбитали NH_2^+ катиона повышают энергию на 0,0588 Eh(-2,5%).