Final Project of Machine Vision

Motion Prediction

Adviser: Prof. Chi Cheng Cheng

Student: Chia Sheng Kuo

Student ID: M063020037

Dept. of Mechanical and Electro-Mechanical Engineering National Sun Yat-Sen University

Outline

- Strategy
- Method
- Result

Strategy

Block diagram of the proposed procedure

Method

Get ready for image matching

Likewise

TAKE_1R

TAKE_1R

TAKE_1R

Epipolar Constraint

With the epipolar constraint, matching points should lie on the same row of the left image plane and right image plane.

$$\frac{Y}{Z} = \frac{Y'_l}{f} \qquad ----(1)$$

$$\frac{Y-b}{Z} = \frac{Y'_r}{f} - - - (2)$$

$$Z = \frac{bf}{(Y'_l - Y'_r)}$$
 ——(1) - (2)

 $Y'_l - Y'_r$ is the disparity

OTSU's thresholding is applied to each row for finding the accurate matching point.

$$Z = \frac{bf}{(Y'_l - Y'_r)} * (\frac{5.7}{640} \frac{mm}{pixel})$$
 (b=700mm,f=6.3mm)

The linear section is affirmed to be the ball position corresponding to the image sequence. This period should be 4/25 second.

TAKE_1

TAKE_2

TAKE_1 has 89 data, therefore, it would be $\frac{4}{25*89}$ s from nth data to (n+1)th data

TAKE_2 has 86 data, therefore, it would be $\frac{4}{25*86}$ s from nth data to (n+1)th data

TAKE_1

TAKE_2

Assumed that there is only gravitational force applied on the ball, X plot should be a quadratic curve. Y plot and Z plot should be a straight line.

- X (vertical)
- O Y (horizontal)
- O Z (depth)

Every two consecutive data can provide a Velocity.

Time period for TAKE_1 is
$$\frac{4}{25*89}$$
 s

TAKE_2 is
$$\frac{4}{25*86}$$
 s

V_X (vertical) velocity

Again, assumed that there is only gravitational force applied on the ball, V_Y (horizontal) and V_Z (depth) should be a constant value. But, V_X (vertical) is varying with time.

To predict the final position of the ball, the vertical velocity of the last position V_{XL} (vertical) is needed. However, there is only one V_{XL} in previous calculation.

 V_{XL} = V_{Xn} - 9810* T_n , T_n is the time from nth data to the last data (n=1 to # of data)

Last position's vertical velocity

↓

 V_{XL} (vertical) velocity

 V_Y (horizontal) velocity

Median(All the data) Mean(μ - σ < data < μ + σ) Mean of above two value

 V_Z (depth) velocity

Median(All the data)

Mean(μ - σ < data < μ + σ)

Mean of above two value

V_{XL} (vertical) velocity

V_Y (horizontal) velocity

V_Z (depth) velocity

Result

Last position in the image(1.23m, 0.05m, 3.11m)

T = 0.34s (to touch the ground)

$$V_X$$
= -1.89 m/s V_{XL} = -5.26 m/s

$$V_Y = -0.63 \text{ m/s}$$

$$V_Z$$
 = 10.77 m/s

Final position (0m, -0.16m, 6.8m)
Final velocity 12.01 m/s

X (vertical)
Y (horizontal)
Z (depth)

TAKE_2

Last position in the image(1.66m, -0.22m, 4.78m)

T=0.36s (to touch the ground)

$$V_X = -2.78 \text{ m/s}$$
 $V_{XL} = -6.35 \text{m/s}$

$$V_Y = -1.13 \text{ m/s}$$

$$V_Z = 18.09 \text{ m/s}$$

Final position (0m, -0.63m, 11.36m)

Final velocity 19.20 m/s

