

"MITM ATTACK DETECTION SCHEME USING MONITORING INFORMATION IN V2X COMMUNICATION"

Wonjin Chung, Jungsub Ahn, Taeho Cho

Ana Fernanda Arthur Matos Gabriel Praes Guilherme Otávio Júlia Pinheiro Vitória Araújo

CONCEITOS BÁSICOS

• V2X (Vehicle-to-Everything): Comunicação entre veículos e diferentes elementos do ambiente

• Lógica Temporal: sintaxe para especificações que descrevem como o comportamento de um sistema evolui ao longo do tempo

- O (next) → próximo momento no tempo
- \Diamond (someday) \rightarrow algum momento no futuro
- \square (always) \rightarrow todos os momentos futuros
- U (until) → "até" um determinado ponto no tempo

CONCEITOS BÁSICOS

Ataques Man-in-the-Middle (MiTM): Ataque em que o invasor atrasa, modifica ou descarta uma conversa entre dois alvos. (veículos e infraestrutura)

- **BM-DEVS**: Modelo para monitorar comportamento de sistemas com regras formais
- Trust Model: Método para avaliar confiabilidade de veículos com base em interações
- **BSM (Basic Safety Message)**: Mensagens trocadas para coordenar manobras entre veículos.

PROBLEMA

- MiTM Attacks modificam ou bloqueiam mensagens em V2X e em certas situações, tornam-se difíceis de detectar pelos esquemas de segurança existentes.
- Ataques podem causar decisões erradas por veículos autônomos.
- Métodos existentes falham em detectar ataques em alguns cenários específicos.

MOTIVAÇÃO

- Garantir a integridade das mensagens trocadas entre veículos.
- Aumentar a segurança viária em ambientes com veículos autônomos.
- Reduzir danos (prejuízos materiais e perda de tempo) causados quando os veículos recebem mensagens incorretas.
- Melhorar a eficácia de detecção de ataques em situações diversas.

OBJETIVO

- Propor um esquema de segurança que detecta ataques MiTM com base no monitoramento do ambiente ao redor dos veículos que demonstram comportamento anormal
- BM-DEVS para analisar o trajeto e ações do veículo.
- Aumentar a taxa de detecção de ataques em comparação com modelos existentes.

MODELO

A. Ataque de Modificação de Mensagem

MODELO

B. Ataque de Descarte de Mensagem

MODELO

C. Mecanismo do Esquema Proposto

RESULTADOS

• Simulações realizadas com 5 veículos autônomos em ambiente ITS (sistemas de transporte inteligente)

Melhoria detecção ataques de modificação: +9,84%

Melhoria detecção de ataques de descarte: +10,45%

CONCLUSÕES

- Importância do ITS para Cidades Inteligentes: Sistemas de Transporte Inteligente (ITS) são essenciais para melhorar a mobilidade urbana e a qualidade de vida dos motoristas.
- Eficácia: Novo método demonstrou uma melhoria na detecção de ataques MiTM em comparação com esquemas baseados em modelos de confiança já existentes.
- Impacto: Reduz riscos de acidentes e congestionamentos causados por mensagens falsificadas ou perdidas, aumentando a segurança e eficiência de veículos autônomos

CONCLUSÕES (ALUNOS)

- Por mais que uma melhora média de 10% seja um número relativamente pequeno, é significante tratando-se de evitar acidentes de trânsito
- Observar comportamentos para detectá-los e previní-los é um passo grande nos sistemas de segurança de cidades inteligentes
- Contribui para que possamos ter mais veículos autônomos circulando de forma segura

TRABALHOS FUTUROS PROPOSTOS

- Desenvolver estratégias para detecção simultânea de múltiplos tipos de ataques e analisar situações em que essa detecção falha
- Adaptar e otimizar o esquema de segurança para diversos cenários de tráfego
- Aprimorar a robustez do modelo contra ataques combinados

TRABALHOS FUTUROS PROPOSTOS (ALUNOS)

- Desenvolver mecanismos de resposta automática quando ataques são detectados, não apenas identificando-os
- Avaliar o impacto do aumento do número de veículos na eficácia do sistema de detecção

