Topic:-Crop Yield Prediction using Machine Learning.
Domain:-Machine Learning.

By-

Name:- Sneha Chavan. Roll Number:-3220 Seminar Guide:- Prof. Y. A. Handge.

Index

- Introduction.
- Literature Survey.
- Motivation.
- Problem Definition.
- Software and Hardware Requirement.
- Implementation.
- Future Scope.
- Conclusion.
- * References.

Introduction

- Weather conditions have a direct effect on crop yield. Various researches have been done exploring the connections between weather conditions and crop yield.
- The relations between crop yield and the weather, non-weather factors are non-linear.
- Algorithms like linear regression, decision tree and K-Nearest Neighbor (KNN) can help us to predict the crop yield.

Literature Survey

	Index	Paper Name	Author Name	Conclusion
	1.	Soybean Productivity Modelling using Decision Tree Algorithms	I. S. Veenadhari II. Dr. Bharat Mishrai III.Dr.CD Singh	Demonstrated how decision tree algorithm can increase the efficiency of yield prediction.
	2.	Crop Prediction System using Machine Learning	I. Prof. D.S. Zingade II. Omkar Buchade III.Nilesh Mehta IV.Shubham Ghodekar V. Chandan Mehta	Demonstrated use of linear regression for yield prediction.
	3.	Machine learning approach for	I. S.Veenadhari II. Dr. Bharat Misra	Demonstrated the use of data mining techniques for crop

vield prediction

forecasting crop yield III Dr. CD Singh

Motivation

- Indian farmers may quit farming for the reasons for low productivity.
- To implement machine learning algorithms in agricultural field is important because it will help farmers to come up with better yield.
- It will help farmer to take decisions whether to take particular crop under certain conditions or not.

Problem Definition

Crop yield prediction based on the soil conditions and weather conditions using machine learning algorithms.

Keywords:-Machine Learning, prediciton.

Software and Hardware Requirement

Software Requirement:-

I. Anaconda Navigator 3.0.1

II.scikit-learn 0.20.3

III.Numpy 1.15.4

IV.Pandas 0.24.2

V.Matplotlib 3.0.3

- Hardware Requirements:-
 - I. Core i5 machine

Implementation

Dataset used

Data Pre-processing

- Transforming raw data into an understandable format.
- Real-world data is often incomplete, inconsistent, and/or lacking in certain behaviors or trends.
- The data consisted of null values, float as well as integer values.
- Pre-processing involved converting null values into 0 and integer values into float.
- Data was pre-processed using panda in-built libraries.

Algorithms Used

- Regression Algorithms -
 - Regression algorithms predict the output values based on input features from the data fed in the system.
 - For predicting the crop yield three regression algorithms were implemented
 - 1)Linear Regression
 - 2)Decision tree
 - 3)K-Nearest Neighbor (KNN)

Linear Regression

- Technique that is used to analyze response variable Y which changes with the value of the variable X.
- Y is known as dependent variable while X is independent variable.
- The least-square fit, which is capable of fitting both linear as well as polynomial relationships, is the most commonly used linear regression.

Basic Graph Of Linear Regression

Decision Tree

- The general motive of using Decision Tree is to create a training model which can use to predict class or value of target variables by learning decision rules inferred from prior data(training data).
- Steps in Decision Tree Algorithm
 - Place the best attribute of the dataset at the root of the tree.
 - Split the training set into subsets. Subsets should be made in such a way that each subset contains data with the same value for an attribute.
 - Repeat step 1 and step 2 on each subset until you find leaf nodes in all the branches of the tree.

Decision Tree For Yield Prediction

yield

KNN

- In pattern recognition, the k-nearest neighbors algorithm (k-NN) is used for classification and regression.
- In both cases, the input consists of the k closest training examples in the feature space.
- The algorithm uses 'feature similarity' to predict values of any new data points. This means that the new point is assigned a value based on how closely it resembles the points in the training set.

Working of KNN

Screen shots from Implementation

Mean squared Error of three algorithms.

Graphical Representation of Error

Future Scope

The system can be enhanced further to add following functionality:

- Crop diseases detection using Image Processing where users can upload picture of diseased crop and get pesticides recommendations
- To develop fully automated monitoring system, which provides a realtime system that monitors soil parameters and weather conditions and will provide a real-time data time to time for analysis.
- Implementation of Smart Irrigation System to monitor weather and soil conditions, plant water usage etc. to automatically alter watering schedule.

Conclusion

- The system uses Machine learning algorithms and gives best result based on accuracy.
- The results of the three algorithms will be compared and the one giving the best and accurate output will be selected.
- Here Linear Regression Algorithm proves to be best for the dataset.
- Thus the system will help reduce the difficulties faced by the farmers by predicting the yield of the crop before sowing.

References

- [1] Vaneesbeer Singh, Abid Sarwar, "Analysis of soil and prediction of crop yield (Rice) using Machine Learning approach" IJARCSE, vol. 5, Issue 8,2017.
- [2] Monali Paul, Santosh K. Vishwakarma, Ashok Verma, "Analysis of Soil Behavior and Prediction of Crop Yield using Data Mining approach", 2015 International Conference on Computational Intelligence and Communication Networks.
- [3] S. Veenadhari, Dr. Bharat Mishra, Dr.CD Singh,"Soybean Productivity Modelling using Decision Tree Algorithms",International Journal of Computer Applications (0975 –8887)Volume 27–No.7, August 2011
- [4] Prof.D.S. Zingade1, Omkar Buchade2, Nilesh Mehta3, Shubham Ghodekar4, Chandan Mehta, "Crop Prediction System using Machine Learning", Dec.-2017,International Journal of Advance Engineering and Research Development