Computació Numèrica

Tema 3. Equacions no lineals

M. Àngela Grau Gotés

Departament de Matemàtiques Universitat Politècnica de Catalunya · BarcelonaTech.

18 de març de 2021

Drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

© 2021 by M. Àngela Grau Gotés.

Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.

Índex - Equacions no lineals

- Introducció
- Mètodes dels intervals encaixats
 - Mètode de la bisecció
 - Mètode de la Regula Falsi
- Mètodes iteratius
 - Mètode de la tangent
 - Mètode de la secant
 - Mètodes iteratius del punt fix
 - Ordre de convergència
- Sistemes d'equacions
 - El mètode de la iteració simple
 - El mètode de Newton
- Guia estudi

Introducció

Molts fenòmens es descriuen per models no lineals i freqüentment cal resoldre una equació del tipus f(x) = 0, que no pot ser resolta per mètodes algebraics coneguts.

La major part d'aquest capítol es refereix a la solució aproximada d'una equació no lineal. No obstant això, també s'estudiaran els sistemes d'equacions no lineals, més complexes per resoldre i obtenir solucions aproximades.

Introducció

$$F(z) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{rac{-t^2}{2}} dt$$

Sigui $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una funció real de variable real.

1 α és un **zero de** f si $f(\alpha) = 0$.

Sigui $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una funció real de variable real.

- α és un **zero de** f si $f(\alpha) = 0$.
- ② x^* és un **punt fix de** f si $f(x^*) = x^*$.

Sigui $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una funció real de variable real.

- **1** α és un **zero de** f si $f(\alpha) = 0$.
- ② x^* és un **punt fix de** f si $f(x^*) = x^*$.
- **1** α és una **solució** o **arrel** de l'equació f(x) = p si

$$f(\alpha) = p$$
.

Multiplicitat d'una arrel

Una solució α de f(x) = 0 es diu que té multiplicitat \mathbf{n} si

$$f(\alpha) = f'(\alpha) = \cdots = f^{n-1}(\alpha) = 0$$
, i $f^{n}(\alpha) \neq 0$.

Si la multiplicitat és 1, es diu que l'arrel és **simple**.

Multiplicitat d'una arrel

Una solució α de f(x) = 0 es diu que té <u>multiplicitat</u> **n** si

$$f(\alpha) = f'(\alpha) = \cdots = f^{n-1}(\alpha) = 0$$
, i $f^{n}(\alpha) \neq 0$.

Si la multiplicitat és 1, es diu que l'arrel és simple.

NB. Determinar iterativament arrels múltiples és un problema mal condicionat.

Exemples

- ① Dues arrels simples, $f(x) = x^2 + x 2 = (x + 2)(x 1)$.
- ② Una arrel doble, $f(x) = x^2 + 4x + 4 = (x + 2)^2$.
- Sense fórmula directa per calcular les arrels dels polinomis de grau superior al 4, $f(x) = x^5 + 5x^3 + 4x^2 + 1$.
- Per equacions amb funcions transcendents només la solució numèrica és factible, $f(x) = x^2 e^{-x}$.

El mètode

No totes les equacions tenen un únic zero simple en el seu domini, llavors per calcular solucions aproximades, per a la convergència dels mètodes en qualsevol procés de càlcul d'arrels d'una equació no lineal consta de tres pasos:

3 **Aproximació**. Determinar una successió $\{x_n\}_{n\in\mathbb{N}}$ convergent al valor α solució de l'equació plantejada:

$$x_n \to \alpha$$
, $f(\alpha) = 0$.

El mètode

No totes les equacions tenen un únic zero simple en el seu domini, llavors per calcular solucions aproximades, per a la convergència dels mètodes en qualsevol procés de càlcul d'arrels d'una equació no lineal consta de tres pasos:

1 **Localització**. Conèixer la zona on es troben les arrels. Un estudi analític o una representació gràfica.

3 **Aproximació**. Determinar una successió $\{x_n\}_{n\in\mathbb{N}}$ convergent al valor α solució de l'equació plantejada:

$$x_n \to \alpha$$
, $f(\alpha) = 0$.

El mètode

No totes les equacions tenen un únic zero simple en el seu domini, llavors per calcular solucions aproximades, per a la convergència dels mètodes en qualsevol procés de càlcul d'arrels d'una equació no lineal consta de tres pasos:

- 1 **Localització**. Conèixer la zona on es troben les arrels. Un estudi analític o una representació gràfica.
- 2 **Separació**. Determinar dominis amb una única arrel.
- 3 **Aproximació**. Determinar una successió $\{x_n\}_{n\in\mathbb{N}}$ convergent al valor α solució de l'equació plantejada:

$$x_n \to \alpha$$
, $f(\alpha) = 0$.

Localització i separació

TEOREMA DE BOLZANO

Per $f: \mathcal{I} \to \mathbb{R}$, $[a, b] \subset \mathcal{I}$ i a < c < b, llavors

Teorema

Si f és contínua en l'interval tancat [a,b] i f(a) i f(b) tenen signes diferents, aleshores existeix $c \in (a,b)$ tal que f(c) = 0.

Localització i separació

TEOREMA DE BOLZANO

Per $f: \mathcal{I} \to \mathbb{R}$, $[a, b] \subset \mathcal{I}$ i a < c < b, llavors

Teorema

Si f és contínua en l'interval tancat [a,b] i f(a) i f(b) tenen signes diferents, aleshores existeix $c \in (a,b)$ tal que f(c) = 0.

TEOREMA DE ROLLE

Per $f: \mathcal{I} \to \mathbb{R}$, $(a, b]) \subset \mathcal{I}$ i a < c < b, llavors

Teorema

Si f és derivable en l'interval obert (a, b) i f(a) = f(b), aleshores existeix $c \in (a, b)$ tal que f'(c) = 0.

Localització i separació

TEOREMA DE BOLZANO

Per $f: \mathcal{I} \to \mathbb{R}$, $[a, b] \subset \mathcal{I}$ i a < c < b, llavors

Teorema

Si f és contínua en l'interval tancat [a,b] i f(a) i f(b) tenen signes diferents, aleshores existeix $c \in (a,b)$ tal que f(c) = 0.

TEOREMA DE ROLLE

Per $f: \mathcal{I} \to \mathbb{R}$, $(a, b]) \subset \mathcal{I}$ i a < c < b, llavors

Teorema

Si f és derivable en l'interval obert (a, b) i f(a) = f(b), aleshores existeix $c \in (a, b)$ tal que f'(c) = 0.

Aproximació: Tipus de mètodes

La successió $\{x_n\}_{n\in\mathbb{N}}$ convergent al valor α solució de l'equació

$$x_n \to \alpha$$
, $f(\alpha) = 0$.

Mètode d'intervals encaixats.

$$[a_1, b_1] \supseteq [a_2, b_2] \supseteq \cdots \supseteq [a_n, b_n] \ldots$$

 $a_n \le x_n \le b_n, \quad \{b_n - a_n\}_n \to 0.$

Esquemes o algorismes iteratius:

$$x_n = g(x_{n-1}, x_{n-2}, \dots).$$

Intervals encaixats

Mètodes d'intervals encaixats

Aproximació: Tipus de mètodes

Objectiu

Obtenir $\{x_n\}_{n\in\mathbb{N}}$ successió convergent de nombres reals

$$x_n \xrightarrow[n \to +\infty]{} \alpha$$
 tal que $f(\alpha) = 0$.

Procediment

Obtenir successions $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ i $\{x_n\}_{n\in\mathbb{N}}$ tals que

$$\{b_n-a_n\}_{n\in\mathbb{N}}\to 0\,,\quad a_n\leq x_n\leq b_n\,,$$

$$[a_1, b_1] \supseteq [a_2, b_2] \supseteq \cdots \supseteq [a_n, b_n] \ldots$$

Mètodes dels intervals encaixats

Per $f: \mathcal{I} \to \mathbb{R}$, contínua, $[a,b] \subset \mathcal{I}$ tal que $f(a) \cdot f(b) < 0$, (teorema de Bolzano) calculem el punt mig de l'interval

$$m=\frac{a+b}{2}.$$

Aquest punt verifica un dels tres ítems

- f(m) = 0
- f(a)f(m) < 0, nou interval de Bolzano [a, m].
- f(a)f(m) < 0, nou interval de Bolzano [m, b].

Algorisme

Començant amb l'interval [a,b] tal que $f(a) \cdot f(b) < 0$, i procedint com a la pàgina anterior, construïm una successió d'intervals $[a_n,b_n]$ tal que $f(a_n) \cdot f(b_n) < 0$, els punts mitjos dels quals

$$x_{n+1} = \frac{a_n + b_n}{2}$$

són una aproximació de l'arrel α . Cada interval té la meitat de la longitud de l'interval anterior.

Solució aproximada:

$$\alpha = x_n \pm \ell_n$$
, $\ell_n = \frac{b-a}{2n}$, $n > 0$.

Algorisme

1
$$a_0 = a$$
, $b_0 = b$,
2 Per a $n = 0, 1, \ldots$, $fer : \alpha_{n+1} = \frac{a_n + b_n}{2}$ i
Si $f(a_n)f(\alpha_{n+1}) < 0$, pendre $a_{n+1} = a_n$, $b_{n+1} = \alpha_{n+1}$, altrament, pendre $a_{n+1} = \alpha_{n+1}$, $b_{n+1} = b_n$.

Anàlisi de l'error:

$$|\alpha_{n+1} - \alpha| \le |b_{n+1} - a_{n+1}| < \frac{|b - a|}{2^{n+1}}.$$

Criteri d'aturada: Donat $tol = \eta > 0$

$$|\alpha_{n+1} - \alpha| \le |b_{n+1} - a_{n+1}| < \frac{|b - a|}{2^{n+1}} < \eta$$

Càlcul previ nombre iteracions: Donat $tol = \eta > 0$

$$n > \frac{\log\left(\frac{|b-a|}{\eta}\right)}{\log 2} - 1$$

Mètode de la Regula Falsi

Començant amb $f(a_0) \cdot f(b_0) < 0$ i l'interval $I_0 = [a_0, b_0]$, es construeix una successió de punts definits per

$$x_{n+1} = a_n - f(a_n) \frac{(b_n - a_n)}{f(b_n) - f(a_n)}, \ n \ge 0$$

i una successió d'intervals encaixats $I_{n+1} = [a_{n+1}, b_{n+1}]$ tal que:

- Si $f(a_n)f(x_{n+1}) < 0$, pendre $a_{n+1} = a_n$, $b_{n+1} = x_{n+1}$,
- altrament, pendre $a_{n+1} = x_{n+1}, b_{n+1} = b_n$.

Criteri d'aturada: Donat $tol = \eta > 0$

$$|x_{n+1} - x_n| < \eta$$
 i $|f(x_{n+1})| < \eta$

Exercici

Determineu l'arrel real de

$$f(x) = x^3 - x + 1.$$

- Representeu gràficament la funció. Doneu un interval on es trobi un zero de la funció.
- Apliqueu el mètode de la bisecció ($\eta = 0.001$).
- Apliqueu el mètode de la regula falsi ($\eta = 0.00005$).

Mètodes iteratius

Mètodes iteratius

Introducció

Objectiu

Obtenir $\{x_n\}_{n\in\mathbb{N}}$ successió convergent de nombres reals

$$x_n \xrightarrow[n \to +\infty]{} \alpha$$
 tal que $f(\alpha) = 0$.

Procediment

Escriure f(x) = 0 com x = g(x) establir un esquema iteratiu del tipus

$$x_n = g(x_{n-1}, x_{n-2}, \dots), n > 0.$$

Mètode de Newton-Raphson o mètode de la tangent

Algorisme

Començant amb el valor x_0 es construeix una successió de punts definits per

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

La coordenada x_{n+1} és el punt de tall de la recta tangent per $P(x_n, f(x_n))$ amb l'eix d'absices.

Criteri d'aturada: Donat $tol = \eta > 0$

$$|x_{n+1} - x_n| < \eta$$
 i $|f(x_{n+1})| < \eta$

CONVERGÈNCIA?

Convergència

Regla de Fourier

Sigui $f: \mathcal{I} \to \mathbb{R}$, contínua i derivable, $[a, b] \subset \mathcal{I}$ tal que:

- $\mathbf{1} f(a) \cdot f(b) < 0,$
- **2** $f'(x) \cdot f''(x) \neq 0$, $\forall x \in [a, b]$,
- 3 començant amb el valor

$$x_0 = \begin{cases} a & si \quad f(a) \cdot f''(a) > 0, \\ b & si \quad f(b) \cdot f''(b) > 0, \end{cases}$$

llavors, la successió de punts definits per $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, convergeix a la única arrel de f(x) = 0 a l'interval [a, b].

Regla de Fourier

Convergència lenta mètode de Newton

Mètode de la secant

Algorisme

Començant amb dos valors x_0 i x_1 es construeix una successió de punts definits per

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

o equivalent

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}.$$

Criteri d'aturada: Donat $\eta > 0$

$$|x_{n+1} - x_n| < \eta$$
 i $|f(x_{n+1})| < \eta$

CONVERGÈNCIA?

Algorismes - Fita de l'error

Sigui $\alpha \in \mathbb{R}$ l'arrel de f(x) = 0, \mathcal{J}_{α} un entorn tancant de α i $\{x_n\}_{n \in \mathbb{N}}$ successió convergent $x_n \xrightarrow[n \to +\infty]{} \alpha$ tal que $f(\alpha) = 0$.

Fita "a posteriori"

Si f és derivable en \mathcal{J}_{α} i $x_n \in \mathcal{J}_{\alpha}$, es verifica que:

$$\epsilon_n = |x_n - \alpha| \le \frac{|f(x_n)|}{\min_{x \in \mathcal{J}_\alpha} |f'(x)|}.$$

TVM:
$$|f(x_n) - f(\alpha)| = |f'(c)| \cdot |(x_n - \alpha)|$$

Exercici (continuació)

Determineu l'arrel real de

$$f(x) = x^3 - x + 1.$$

- **1** Apliqueu el mètode de Newton ($\eta = 0.00005$).
- Apliqueu el mètode de la secant amb una precisió de quatre decimals correctes.
- Quin mètode necessita més iteracions? Quin menys? Quin mètode dona una millor aproximació? Quin pitjor? Comenta les diferències trobades.

Mètode de la iteració simple

Fent ús d'operacions elementals, la equació $\mathbf{f}(x) = 0$ es pot expressar com $x = \mathbf{g}(x)$, on \mathbf{g} és una funció contínua.

Iteració simple

Una aproximació inicial x_0 dóna lloc a la successió

$$x_{n+1}=\mathbf{g}(x_n).$$

Punt fix

Si la successió $x_{n+1} = \mathbf{g}(x_n), n > 0$ és convergent a un valor α , llavors α és un punt fix de \mathbf{g} o, també, un zero de \mathbf{f} .

Mètode de la iteració simple

Mètode de la iteració simple o mètode del punt fix

Exemple

L'equació $x - \cos x = 0$ es pot transformar en:

$$x = \cos x$$
, $x = \frac{x + \cos x}{2}$, $x = \frac{2x + \cos x}{3}$, $x = \sqrt{x \cos x}$

Successions convergents

$$x_{n+1} = \frac{x_n + \cos(x_n)}{2}$$
, $x_0 = 1 \dots x_7 = 0.73909$,
 $x_{n+1} = \frac{2x_n + \cos(x_n)}{3}$, $x_0 = 1 \dots x_{14} = 0.73909$

Observació

La successió $\{x_n\}$ pot no convergir malgrat s'esculli x_0 molt proper al punt fix.

Exercici

Determineu l'arrel real de

$$x = \cos x$$

- Representeu gràficament la funció. Doneu un interval on es trobi un zero de la funció.
- 2 Prenent $x_0 = 0$, calculeu 15 iterats dels mètodes iteratius

$$x_{n+1} = \frac{x_n + \cos(x_n)}{2}, \quad x_{n+1} = \frac{2x_n + \cos(x_n)}{3}.$$

1 Prenent $x_0 = 1$, calculeu 15 iterats dels mètodes iteratius

$$x_{n+1} = \cos(x_n), \quad x_{n+1} = \sqrt{x_n \cos(x_n)}.$$

Quin mètode és convergent? Quin és divergent?

Mètodes del punt fix

Teorema de convergència

Sigui $\alpha \in \mathbb{R}$ el punt fix de x = g(x) i \mathcal{J}_{α} un entorn de α .

Teorema de convergència

Si g és derivable i $|g'(x)| \le k < 1$ en \mathcal{J}_{α} . Llavors, $\forall x_0 \in \mathcal{J}_{\alpha}$, la successió $x_{n+1} = g(x_n), n > 0$ verifica que:

- a) $x_n \in \mathcal{J}_{\alpha}$ $n = 0, 1, 2, \dots$
- b) $\lim_{n\to\infty} x_n = \alpha$.
- c) α és la única arrel de x = g(x) dins de \mathcal{J}_{α} .

observació

$$|x_{n+1} - \alpha| \le k|x_n - \alpha| \le \cdots \le k^{n+1}|x_0 - \alpha|.$$

Mètodes del punt fix

Teorema de convergència-Gràfics

Estimació de l'error

Si comptem els errors d'arrodoniment, $\bar{x}_{n+1} = g(\bar{x}_n) + \delta$,

Fita superior error (I)

$$|\bar{x}_{n+1} - \alpha| < \frac{k}{1-k} |\bar{x}_{n+1} - \bar{x}_n| + \frac{1}{1-k} \delta.$$

Si l'aritmètica és exacte, $\bar{x}_{n+1} = g(\bar{x}_n)$,

Fita superior error (II)

$$|\bar{x}_{n+1} - \alpha| < \frac{k^{n+1}}{1-k} |\bar{x}_1 - \bar{x}_0|.$$

Caracterització

Definició

La successió de punts $(x_n)_{n\in\mathbb{N}}$, i el mètode que la genera, té **ordre de convergència** almenys $\mathbf{p}\geq 1$ si, per a qualsevol punt $x_0\in\mathcal{J}_\alpha$, existeix C>0 tal que

$$|x_{n+1} - \alpha| < C|x_n - \alpha|^p$$
, (si $p = 1, C < 1$).

En el cas que

$$\lim_{n\to\infty}\frac{|x_{n+1}-\alpha|}{|x_n-\alpha|^p}=L$$

direm que la successió té ordre de convergència almenys p; si p=1 cal |L|<1.

Exemples

Zero simple

- Convergència almenys lineal del mètode de la iteració simple si |g'(x)| < 1 per a $x \in \mathcal{J}_{\alpha}$.
- Onvergència almenys lineal del mètode de la Regula Falsi.
- Convergència almenys quadràtica del mètode de Newton.
- Convergència almenys superlineal del mètode de la Secant:

$$\frac{1+\sqrt{5}}{2}\approx 1.61803.$$

Decimals correctes en cada iteració

$$d_{n+1} = -\log_{10} |x_{n+1} - \alpha| \approx -p \log_{10} |x_n - \alpha| - \log_{10} L$$
$$d_{n+1} \approx p \cdot d_n$$

Aproximacions

PCLOC

$$\widehat{\lambda}_n = \frac{\ln |f(x_n)|}{\ln |f(x_{n-1})|}, \quad n > 1.$$

ACLOC

$$\widetilde{\lambda}_n = \frac{\ln|x_n - x_{n-1}|}{\ln|x_{n-1} - x_{n-2}|}, \quad n > 2.$$

Acceleració de la convergència

Sigui $\{x_n\}_{n\in\mathbb{N}}$ successió **linealment** convergent α tal que $f(\alpha)=0$.

Observació

$$\begin{vmatrix} |x_{n+2} - \alpha| = \kappa |x_{n+1} - \alpha| \\ |x_{n+1} - \alpha| = \kappa |x_n - \alpha| \end{vmatrix} \Rightarrow \alpha = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n}$$

Les diferències progressives endavant, es defineixen per

$$\Delta x_{n+1} = (x_{n+1} - x_n)$$

i per k > 1,

$$\Delta^{(k)} x_{n+1} = \Delta(\Delta^{(k-1)} x_{n+1}).$$

Acceleració de la convergència: mètode d'Aitken

Mètode Δ^2 d'Aitken

$$x'_{n+2} = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n} = x_{n+2} - \frac{(\Delta x_{n+1})^2}{\Delta^2 x_n}$$

Llavors $x'_n \xrightarrow[n \to +\infty]{} \alpha$ més ràpidament, en el sentit que

$$\lim_{n\to\infty}\frac{|x_n'-\alpha|}{|x_n-\alpha|}=0.$$

A partir d'un procés $x_{k+1} = g(x_k)$ de primer ordre, i unes iteracions, x_0 , x_1 i x_2 , calculem x_2' , a partir de les iteracions, x_1 , x_2 i x_3 calculem x_3' , i successivament.

Acceleració de la convergència: mètode de Steffensen

Donats
$$x_0$$
, $x_1 = g(x_0)$ i $x_2 = g(x_1)$ d'un procés $x_{k+1} = g(x_k)$ de primer ordre, calculem $x_0'' = x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0}$. Amb la terna $x_0 = x_0''$, $x_1 = g(x_0'')$ i $x_2 = g(g(x_0''))$, calculem un nou: $x_0'' = x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0}$.

Mètode de Steffensen

En general, per cada $n \ge 0$, definim $x_0^{(n+1)} = x_n''$, $x_1^{(n+1)} = g(x_0^{(n+1)})$, $x_2^{(n+1)} = g(x_1^{(n+1)})$, i finalment

$$x_{n+1}'' = x_0^{(n+1)} - \frac{\left(x_1^{(n+1)} - x_0^{(n+1)}\right)^2}{x_2^{(n+1)} - 2x_1^{(n+1)} + x_0^{(n+1)}}.$$

Llavors $x_n'' \xrightarrow[n \to +\infty]{} \alpha$ més ràpidament que el mètode del punt fix inicial i que el mètode d'Aitken.

Acceleració de la convergència: EXEMPLE

Observeu el cas següent: $x_{n+1}=e^{-x_n}$ i $x_0=0.5$

Normal	Aitken	Steffensen
0.5		
0.606530660		
0.545239212	0.567623876	0.567623876
0.579703095	0.567298989	
0.560064628	0.567193142	
0.571172149	0.567159364	0.567143314
0.564862947	0.567148453	
0.568438048	0.567144952	
0.566409453	0.567143825	0.567143290

Sistemes d'equacions (no lineals)

Sistemes d'equacions no lineals

La funció $F:D\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^n$, $F=(f_1,f_2,\ldots,f_m)$, de diverses variables dóna lloc al sistema d'equacions no lineals

$$F(\mathbf{z})=0\,,$$

que també es pot escriure com

$$\begin{cases}
f_1(z_1, \dots, z_n) = 0, \\
f_2(z_1, \dots, z_n) = 0, \\
\vdots \\
f_n(z_1, \dots, z_n) = 0.
\end{cases} (1)$$

El mètode de la iteració simple

O el mètode del punt fix

Transformen $F(\mathbf{z}) = 0$ com $\mathbf{z} = G(\mathbf{z})$, el mètode és

$$\mathbf{z}^{(k+1)} = G(\mathbf{z}^{(k)}) \tag{2}$$

per $\mathbf{z}^{(k)}$ indiquem el vector d'iteració k-èssim.

Algorisme computacional

Donats z^0 i $tol = \eta > 0$ l'algorisme és:

$$\mathbf{z}^{(k+1)} = G(\mathbf{z}^{(k)}) \ ||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}|| < \eta \quad \mathsf{i} \quad ||F(\mathbf{z}^{(k+1)})|| < \eta$$

La convergència condicionada a $||J_G(\alpha)|| < 1$.

Exercici

Apliqueu el mètode de la iteració simple per resoldre el sistema no lineal

$$x = \sin(x + y),$$

$$y = \cos(x - y),$$

prop de $(1,1)^t$ amb una precisió tal que

$$||\boldsymbol{z}^{(k+1)} - \boldsymbol{z}^{(k)}|| \leq 10^{-6} \quad \text{i} \quad ||F(\boldsymbol{z}^{(k+1)})|| < 10^{-6} \, .$$

si
$$\mathbf{z} = (x, y)^t$$
.

Mètode de la iteració simple

Teorema de convergència

Sigui $\alpha \in \mathbb{R}^n$ la solució de $F(\mathbf{z}) = 0$ i el punt fix de $\mathbf{z} = G(\mathbf{z})$ i \mathcal{D}_{α} un conjunt tancat i convex que conté la solució α .

Si G és de classe $C^1(\mathcal{D}_{\alpha})$ i $||J_G(\mathbf{z})|| \leq L < 1$ per tot $\mathbf{z} \in \mathcal{D}_{\alpha}$. Llavors, $\forall \mathbf{z}^0 \in \mathcal{D}_{\alpha}$, la successió $\mathbf{z}^{k+1} = g(\mathbf{z}^k), k > 0$ compleix:

- a) $\mathbf{z}^k \in \mathcal{D}_{\alpha}$ $k = 0, 1, 2, \dots$
- b) $\lim_{k\to\infty} \mathbf{z}^k = \alpha$.
- c) α és la única arrel de $\mathbf{z} = g(\mathbf{z})$ dins de \mathcal{D}_{α} .
- d) Es verifca que

$$||\mathbf{z}^{(k+1)} - \alpha|| \le \frac{L}{1-L} ||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}||$$

←□ ト ←□ ト ← □ ト ← □ ← ○○○

El mètode de Newton

Si F és diferenciable amb contiuïtat, el mètode és

$$\mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - (J_F(\mathbf{z}^{(k)}))^{-1} \cdot F(\mathbf{z}^{(k)})$$

per $\mathbf{z}^{(k)}$ indiquem el vector d'iteració k-èssim.

Algorisme computacional

Donats x^0 i $\eta > 0$ l'algorisme és:

$$\begin{cases} (J_F(\mathbf{z}^{(k)})) \cdot \mathbf{w}^{(k)} = -F(\mathbf{z}^{(k)}) \\ \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} + \mathbf{w}^{(k)} \end{cases}$$

fins que

$$||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}|| < \eta$$
 i $||F(\mathbf{z}^{(k+1)})|| < \eta$

Variants del mètode de Newton

Es redueix el cost computacional de cada iteració contra l'ordre de convergència.

- **Newton modificat.** Es fixa la matriu $J_F(\mathbf{z}^{(k)})$ per un nombre constant d'iteracions.
- **Mètode de Jacobi.** La matriu $J_F(\mathbf{z}^{(k)})$ es substitueix per una matriu diagonal, amb la diagonal de $J_F(\mathbf{z}^{(k)})$. Matriu $D_F(\mathbf{z}^{(k)})$.
- Mètode de Gauss-Seidel. La matriu $J_F(\mathbf{z}^{(k)})$ es substitueix per la matriu triangular inferior de $J_F(\mathbf{z}^{(k)})$. Matriu $G_F(\mathbf{z}^{(k)})$.
- Mètode de sobrerelaxació o SOR. Per $\omega = 1/(1+\rho)$ $\mathbf{z}^{(i+1)} = \mathbf{z}^{(i)} (\rho \cdot D_F(\mathbf{z}^{(i)}) + G_F(\mathbf{z}^{(i)}))^{-1} \cdot F(\mathbf{z}^{(i)})$

Exercici

Apliqueu el mètode de Newton per resoldre el sistema no lineal

$$x = \sin(x + y),$$

$$y = \cos(x - y),$$

prop de $(1,1)^t$ amb una precisió tal que

$$||\boldsymbol{z}^{(k+1)} - \boldsymbol{z}^{(k)}|| \leq 10^{-6} \quad \text{i} \quad ||F(\boldsymbol{z}^{(k+1)})|| < 10^{-6} \, .$$

si
$$\mathbf{z} = (x, y)^t$$
.

Annex

Vector gradient $f:D\to\mathbb{R}$, $D\subseteq\mathbb{R}^n$

$$\nabla f(a) = \left(\frac{\partial f}{\partial z_1}(a), \frac{\partial f}{\partial z_2}(a), \dots, \frac{\partial f}{\partial z_n}(a)\right).$$

Matriu jacobiana $F:D\to\mathbb{R}^n$, $D\subseteq\mathbb{R}^n$

$$J_{F}(a) = \begin{pmatrix} \frac{\partial f_{1}}{\partial z_{1}}(a) & \frac{\partial f_{1}}{\partial z_{2}}(a) & \cdots & \frac{\partial f_{1}}{\partial z_{n}}(a) \\ \frac{\partial f_{2}}{\partial z_{1}}(a) & \frac{\partial f_{2}}{\partial z_{2}}(a) & \cdots & \frac{\partial f_{2}}{\partial z_{n}}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial z_{1}}(a) & \frac{\partial f_{n}}{\partial z_{2}}(a) & \cdots & \frac{\partial f_{n}}{\partial z_{n}}(a) \end{pmatrix}.$$

Guia estudi subtema

Llibre Càlcul numèric: teoria i pràctica

- Conceptes associats: Capítol 6, Zeros de funcions no lineals. Des de la pàgina 197 fins a la 209, i de 216 fins a la 221.
- Problemes proposats: 1, 2, 4, 9 i 10.
- Pràctiques resoltes: de la pàgina 238-243.
- Pràctiques proposades: pàgines 244-248.

Llibre Cálculo Científico con MATLAB y Octave

- Conceptes i exercicis resolts: capítol 2, pàgines 41-63, 68-69.
- Problemes i pràctiques proposades: del 2.1 al 2.17

Llibres de consulta online

- Llibre de consulta Accès UPCommons, Càlcul numèric: teoria i pràctica
- Llibre de consulta Accès UPCommons, Cálculo numérico
- Llibre de consulta Accès Biblioteca, Cálculo Científico con MATLAB y Octave by A. Quarteroni, F. Saleri
- Llibre de consulta -C. Moler, Cleve Moler - Llibre de text i codis - MathWorks

