CS F364 Design & Analysis of Algorithms

PROBLEM DOMAIN - NUMBER THEORY

Testing for Primes:

- Motivation
- Cost of Deterministic algorithm(s)
- Expected Cost of Finding a Prime Number

CHOICE OF MODULUS IN RSA

- RSA performs operations "modulo n" for some n = p * q, where
 p and q are large primes
 - and its security is contingent on the condition that
 ofactoring cannot be done in time polynomial in length of n
 i.e. time polynomial in log(n)
- For the security condition to be meaningful in practice,
 - n should be large enough
 i.e. p and q should be large enough.
 - Today 1024-bit modulus is not strong enough:
 - o i.e. a 1024-bit **n** can be factored in "reasonable" time

LENGTH OF MODULUS IN RSA

- For factoring to be computationally expensive:
 - current recommendations for n are
 - o at least 1392 bits
 - estimated using a theoretical calculation by Lenstra
 - oat least 2048 bits
 - recommended by NIST (circa 2013)
 - oat least 3072 bits
 - orecommended by NSA (circa 2015)
- Thus we need two prime numbers

in the range of ~700 bits to ~1500 bits

for each pair of communicators!

GENERATION OF PRIMES FOR RSA

- For large scale use of RSA, a <u>large number of large pairs of</u> <u>primes</u> have to be found:
 - There are <u>no algebraic</u> (or other) techniques to generate all <u>primes!</u>
 - oi.e. primes have to be found by
 - sampling numbers and testing them for primality.

PRIMALITY TESTING - COST

```
• (Naive) Primality Testing – Algorithm 1:
testPrime(N) { // large N
for all odd numbers m from 3 to L√N | {
if (m | N) return false;
}
return true;
}
```

- What is the time complexity of this algorithm,
 - assuming uniform cost model?
 - assuming logarithmic cost model?
- o Is it a polynomial time algorithm?

PRIMALITY TESTING - COST - (NAIVE) SIEVING

```
(Naive) Primality Testing – Algorithm 2
sieveEratosthenes(N):
                                                                      Exercise
     create a list L[1..N] of Boolean
1.
                                               What is the time complexity?
      for j = 1 to N { L[j] = true; }
                                          Does it depend on the cost model?
                                     b)
                                              What is the space complexity?
      L[1] = false; nxtPrm = 2;
                                              What is the amortized cost per
     while (nxtPrm < sqrt(N)) {
                                                              prime number?
         mult = nxtPrm;
         while (mult < N) { mult += nxtPrm; L[mult] = false; }
        while (!L[nxtPrm]) nxtPrim += 1;
    3.
5.
     create a set Primes and initialize it to the empty set;
6.
     for j = 2 to N { if (L[j]) { add L[j] to Primes; } }
7.
     return Primes;
8.
```

PRIMALITY TESTING

- Primality Testing:
 - Proven to be a problem that can be computed in polynomial time by:
 - Agarwal, Kayal, and Saxena. PRIMES is in P, 2002.
 - AKS is the best known deterministic algorithm without assumptions – for testing whether an integer n is prime :
 - Running time: $O((logn)^k)$ for $k \approx 7.5$

PRIMALITY TESTING: PRAGMATICS

- Consider typical high security recommendation for RSA (circa 2015): 1024 bit keys
 - i.e. 1024 bit prime numbers have to be generated and $1024^{7.5} = 2^{75} > 10^{22}$ operations (for AKS)
 - oThis will require a 10^{22} / 10^{12} = 10^{10} seconds on a system that can deliver 1 Tera operations per second
 - oi.e. 10^{10} / (3600*24*365) = about 300+ years!
- To put this in perspective:
 - Circa 2015, typical multi-core systems with Intel i7 octacore can deliver:
 - ~350 Giga operations per second

FINDING LARGE PRIMES

- O How do you find large primes?
 - This would be the outline:

```
for (next = oddLow; next < oddHigh; next += 2) {
  if prime(next) return next;
```

- What is the expected running time of this algorithm?
 - What should be oddLow and oddHigh?

DISTRIBUTION OF PRIMES

- Basic guarantees:
 - Elementary Prime Distribution Theorem:
 - There exists a prime number between n and 2*n for any n>1
 - Exercise: Prove this.
- Definition $\pi(x)$
 - Let x be a positive real number > 1. Then π(x) is defined as the number of primes less than or equal to x.
- Prime Number Theorem:
 - $\pi(x)$ is asymptotic to $x / \ln(x)$ • i.e. $\lim_{x \to \infty} \pi(x) / (x / \ln(x)) = 1$

COST OF FINDING PRIMES

• Then given this outline:

```
for (next = lo; next < hi; next +=2 )
    { if prime(next) return next;}</pre>
```

the expected running time would be

P(log₂(hi)) * T(hi,lo) where

- P(M) is the time taken for testing a number sized M and
- **T(hi, lo)** is the expected number of trials to find a prime in the interval (**lo,hi**).
 - oT(x,y) = 1/D(x,y) where D(x,y) is the probability of finding a prime between x and y.
 - oi.e. $T(x,y) = |x-y| / |\pi(x) \pi(y)|$ = |x-y| / |(x/ln(x)) - (y/ln(y))|