Cursul 10

Cuplaje. Sisteme de reprezentanti distincți. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri

Decembrie 2015

Cuprinsul acestui curs

- Cuplaje
 - Cuplaj perfect, maxim, maximal
 - Cale M-alternantă, M-cale de creștere
 - Teorema lui Berge. Teorema lui Hall.
- Sisteme de reprezentanți distincți (SRD)
- Cuplaje bipartite ponderate
 - Algoritmul ungar
- Arbori de acoperire
 - Algoritmul lui Kruskal
- Enumerarea tuturor arborilor cu *n* noduri
 - Secvențe Prüfer

Cuplaje Definiții (1)

Se consideră dat un graf simplu neorientat G = (V, E).

• Un cuplaj în G este o mulțime de muchii M în care nici o pereche de muchii nu are un nod comun. Nodurile adiacente la muchiile din M se numesc noduri saturate de M (sau *M*-saturate). Celelalte noduri se numesc *M*-nesaturate.

- Un cuplaj perfect al lui G este un cuplaj care saturează toate nodurile lui G.
- Un cuplaj maxim al lui G este un cuplaj care are cel mai mare număr posibil de muchii.
- Un cuplaj maximal al lui G este un cuplaj care nu poate fi lărgit prin adăugarea unei muchii.

- Un cuplaj perfect al lui G este un cuplaj care saturează toate nodurile lui G.
- Un cuplaj maxim al lui G este un cuplaj care are cel mai mare număr posibil de muchii.
- Un cuplaj maximal al lui *G* este un cuplaj care nu poate fi lărgit prin adăugarea unei muchii.

- Un cuplaj perfect al lui G este un cuplaj care saturează toate nodurile lui G.
- Un cuplaj maxim al lui G este un cuplaj care are cel mai mare număr posibil de muchii.
- Un cuplaj maximal al lui G este un cuplaj care nu poate fi lărgit prin adăugarea unei muchii.

- Un cuplaj perfect al lui G este un cuplaj care saturează toate nodurile lui G.
- Un cuplaj maxim al lui G este un cuplaj care are cel mai mare număr posibil de muchii.
- Un cuplaj maximal al lui *G* este un cuplaj care nu poate fi lărgit prin adăugarea unei muchii.

Definiție (Cale M-alternantă, M-cale de creștere)

Dacă se dă un graf G și un cuplaj M, o cale M-alternantă este o cale în G în care toate muchiile alternează între M-muchii și non-M-muchii. O M-cale de creștere este o cale M-alternantă care are ambele capete M-nesaturate.

Definiție (Cale M-alternantă, M-cale de creștere)

Dacă se dă un graf G și un cuplaj M, o cale M-alternantă este o cale în G în care toate muchiile alternează între M-muchii și non-M-muchii. O M-cale de creștere este o cale M-alternantă care are ambele capete M-nesaturate.

Exemplu

M-cale alternantă: (c,a,d,e,i)

M-cale de creștere: (j,g,f,a,c,b)

Teorema lui Berge

Teoremă

Un cuplaj M al unui graf G este maxim dacă și numai dacă G nu conține M-căi de creștere.

DEMONSTRAȚIA LUI " \Rightarrow ". Presupunem că M este un cuplaj maxim. Demonstrăm prin contradicție că G nu are M-căi de creștere. Dacă $P: (v_1, v_2, \ldots, v_k)$ ar fi o M-cale de creștere atunci, conform definiției, k ar trebui să fie par astfel încât $(v_2, v_3), (v_4, v_5), \ldots, (v_{k-2}, v_{k-1})$ sunt muchii din M, iar $(v_1, v_2), (v_3, v_4), \ldots, (v_{k-1}, v_k)$ nu sunt muchii din M.

În acest caz putem defini următorul cuplaj M_1 al lui G:

$$M_1 = (M \setminus \{(v_2, v_3), \dots, (v_{k-2}, v_{k-1})\}) \cup \{(v_1, v_2), \dots, (v_{k-1}, v_k)\}.$$

Dar M_1 conține o muchie mai mult decât M, ceea ce contrazice ipoteza că M este maxim.

" \Leftarrow :" Dacă M nu este maxim, există un cuplaj M' al lui G cu |M'|>|M|. Fie H subgraful lui G definit astfel:

- V(H) = V(G)
- E(H) =mulţimea muchiilor ce apar exact o dată în M și M'.

 $|M'|>|M|\Rightarrow H$ are mai multe muchii în M' decât în M. Orice nod v al lui H aparține la cel mult o muchie din M și la cel mult o muchie din $M'\Rightarrow \deg_H(v)\leq 2$ pentru toți $v\in V(H)$

⇒ componentele conexe ale lui H cu mai multe M'-muchii decât M-muchii sunt căi sau cicluri. Dacă este ciclu, trebuie să fie ciclu par fiindcă muchiile alternează între M-muchii şi M'-muchii
 ⇒ singurele componente conexe ale lui H care pot conține mai multe M'-muchii decât M-muchii sunt căile.

 $|M'| > |M| \Rightarrow$ există o cale P în H care începe și se termină cu o muchie din $M' \Rightarrow P$ este M-cale de creștere, contradicție cu ipoteza.

Dacă G este graf bipartit cu mulțimile partite X și Y, spunem că X poate fi cuplat în Y dacă există un cuplaj al lui G care saturează nodurile din X.

Exemplu

- (a) Primul este un graf bipartit unde X poate fi cuplat în Y.
- (b) Al doilea este un graf bipartit unde X nu poate fi cuplat în Y. De ce se întâmplă acest lucru?

Teorema lui Hall

Fie G un graf bipartit cu mulțimile partite X și Y. X poate fi cuplat în Y dacă și numai dacă $|N(S)| \ge |S|$ pentru toate submulțimile S ale lui X.

DEMONSTRAȚIE. " \Rightarrow :" fie $S \subseteq X$. X poate fi cuplat în $Y \Rightarrow S$ poate fi cuplat în Y, deci $|N(S)| \ge |S|$.

" \Leftarrow :" Presupunem că ar exista un cuplaj maxim M care nu acoperă un nod $u \in X$.

Fie A multimea nodurilor din G ce pot fi conectate la u cu o cale M-alternantă, $S=A\cap X$, și $T=A\cap Y$.

Teorema lui Hall

Fie G un graf bipartit cu mulțimile partite X și Y. X poate fi cuplat în Y dacă și numai dacă $|N(S)| \ge |S|$ pentru toate submulțimile S ale lui X.

Demonstrație. " \Rightarrow :" fie $S \subseteq X$. X poate fi cuplat în $Y \Rightarrow S$ poate fi cuplat în Y, deci $|N(S)| \ge |S|$.

" \Leftarrow :" Presupunem că ar exista un cuplaj maxim M care nu acoperă un nod $u \in X$.

Fie A mulţimea nodurilor din G ce pot fi conectate la u cu o cale M-alternantă, $S=A\cap X$, și $T=A\cap Y$.

Teorema lui Hall

Fie G un graf bipartit cu mulțimile partite X și Y. X poate fi cuplat în Y dacă și numai dacă $|N(S)| \ge |S|$ pentru toate submulțimile S ale lui X.

Demonstrație. " \Rightarrow :" fie $S \subseteq X$. X poate fi cuplat în $Y \Rightarrow S$ poate fi cuplat în Y, deci $|N(S)| \ge |S|$.

" \Leftarrow :" Presupunem că ar exista un cuplaj maxim M care nu acoperă un nod u ∈ X.

Fie A multimea nodurilor din G ce pot fi conectate la u cu o cale M-alternantă, $S=A\cap X$, și $T=A\cap Y$.

Conform Teoremei lui Berge, toate nodurile din T sunt saturate de M, iar u este singurul nod nesaturat al lui $S \Rightarrow |T| = |S| - 1$. Din Teorema lui Berge și definiția lui T rezultă că N(S) = T. Dar în acest caz avem |N(S)| = |S| - 1 < |S|, contradicție.

Sistem de reprezentanți distincți (SRD)

Definiție

Dacă se dă o familie de mulțimi $X = \{S_1, \ldots, S_n\}$, un sistem de reprezentanți distincți (sau SRD) pentru mulțimile din X este o mulțime de elemente distincte $\{x_1, \ldots, x_n\}$ cu $x_i \in S_i$ pentru $1 \le i \le n$.

Exemplu

Fie $S_1 = \{2, 8\}, S_2 = \{8\}, S_3 = \{5, 7\}, S_4 = \{2, 4, 8\}, S_5 = \{2, 4\}.$

- $X_1 = \{S_1, S_2, S_3, S_4\}$ are SRD $\{2, 8, 7, 4\}$ $S_1 = \{2, 8\}, S_2 = \{8\}, S_3 = \{5, 7\}, S_4 = \{2, 4, 8\}$
- $X_2 = \{S_1, S_2, S_4, S_5\}$ nu are un SRD.

Întrebare. În ce condiții are o familie finită de mulțimi un SRD?

SRD-uri pentru familii finite de mulțimi

Teoremă (Teorema lui Hall)

Fie S_1, S_2, \ldots, S_k o colecție de mulțimi nevide finite. Colecția are un SRD dacă și numai dacă pentru orice $t \in \{1, \ldots, k\}$, reuniunea a t astfel de mulțimi conține cel puțin t elemente.

DEMONSTRAȚIE. Fie $Y = S_1 \cup S_2 \cup \ldots \cup S_k$. Presupunem că $Y = \{a_1, \ldots, a_n\}$ si considerăm graful bipartit cu mulțimile partite $X = \{S_1, \ldots, S_k\}$ și Y în care există o muchie de la S_i la a_j dacă și numai dacă $a_j \in S_i$.

Conform teoremei lui Hall, X poate fi cuplat în Y dacă și numai dacă $t = |A| \le |N(A)|$ pentru toate submulțimile $A = \{S_{i_1}, \dots, S_{i_t}\}$ ale lui X.

O problemă motivantă de optimizare combinatorială

Trei muncitori: Ion, Dan și Doru sunt disponibili pentru a efectua trei lucrări: să spele baia, să măture, și să spele ferestrele. Fiecare cere un anumit preț pentru fiecare lucrare, de exemplu:

	spălat baie (SB)	măturat (M)	spălat ferestre (SF)
Ion	w(Ion, SB) = 20	w(Ion, M) = 30	w(Ion, SF) = 30
Dan	w(Dan, SB) = 30	$w(\mathrm{Dan,M}) = 20$	w(Dan, SB) = 20
Doru	w(Doru, SB) = 30	w(Doru, SB) = 30	w(Doru, SB) = 20

Vrem să alocăm câte o lucrare la fiecare muncitor, a.î. să plătim cel mai puțin posibil

 \Leftrightarrow dacă G este graful ponderat bipartit complet dintre $S = \{ \mathrm{Ion}, \mathrm{Dan}, \mathrm{Doru} \}$ și $T = \{ \mathrm{SB}, \mathrm{M}, \mathrm{SF} \}$, cu ponderile muchiilor ca în tabelul anterior, vrem să găsim un cuplaj perfect minim M în G:

$$\sum_{(s,t)\in M} w(s,t) \text{ este minimă}.$$

PRESUPUNEM CĂ $G = K_{n,n}$ este graf bipartit complet între $S = \{x_1, \ldots, x_n\}$ și $T = \{y_1, \ldots, y_n\}$, a.î. fiecae $(x, y) \in E$ are greutatea $w(x, y) \ge 0$.

Observație (König & Egerváry)

Găsirea unui cuplaj minim perfect în G se poate reduce la problema găsirii unei acoperiri maxime în G.

- ▶ O acoperire a lui G este o funcție $c: S \cup T \rightarrow \mathbb{R}$, a.î. $c(x) + c(y) \le w(x, y)$ pentru toți $(x, y) \in E$.
- ▶ O acoperire maximă a lui G este o acoperire c astfel încât

$$\sum_{x \in S} c(x) + \sum_{y \in T} c(y)$$

are valoarea maximă posibilă.

Această sumă se numește costul acoperirii c.

 Pentru orice cuplaj perfect M dintre S şi T şi acoperire c, are loc inegalitatea

$$\sum_{x \in S} c(x) + \sum_{y \in T} c(y) \le \sum_{(x,y) \in M} w(x,y).$$

Mai mult:

$$\sum_{x \in S} c(x) + \sum_{y \in T} c(y) = \sum_{(x,y) \in M} w(x,y)$$

dacă și numai dacă c(x) + c(y) = w(x, y) pentru toate muchiile $(x, y) \in M$. În acest caz, M este un cuplaj perfect minim iar c este o acoperire maximă a lui G.

Cuplaje bipartite ponderate Algoritmul ungar (1)

Calculează o acoperire a unui graf ponderat $K_{n,n}$ în timp polinomial $O(n^4)$:

- ▶ Inițial, c(x) = 0 și $c(y) = \max\{w(x,y) \mid x \in S\}$ pentru toți $x \in S$ și $y \in T$.
 - (OBSERVAŢIE: c este acoperire a nodurilor lui G.)
- Algoritmul efectuează un număr finit de pași de modificare a lui c, până când c devine acoperire maximă. La fiecare pas, se consideră:
 - **1** graful $G_c := \{(x,y) \mid c(x) + c(y) = w(x,y)\}$ și un cuplaj M al lui G_c . Inițial, $M = \emptyset$.
 - ► Algoritmul se opreşte când M este cuplaj perfect (are n muchii).
 - ② $R_S \subseteq S$ sunt nodurile nesaturate de M din S, iar $R_T \subseteq T$ sunt nodurile nesaturate de M din T.
 - 3 Z := mulțimea de noduri unde se poate ajunge din R_S cu o cale M-alternantă:
 - ▶ Se disting 2 cazuri: dacă $R_T \cap Z = \emptyset$ sau $R_T \cap Z \neq \emptyset$

Algoritmul ungar (2)

Dacă $R_T \cap Z \neq \emptyset$, fie $(x_{i_1}, y_{j_1}, x_{i_2}, \dots, x_{i_p}, y_{j_p})$ o cale M-alternantă de la $x_{i_1} \in R_S$ la $y_{j_p} \in R_T$. Înseamnă că $(x_{i_{k+1}}, y_{j_k}) \in M$ pentru $1 \leq k < p$ și $(x_{i_k}, y_{j_k}) \notin M$ pentru $1 \leq k \leq p$. În acest caz, modificăm M să fie $M := (M - \{(y_{i_k}, x_{i_{k+1}}) \mid 1 \leq k < p\}) \cup \{(x_{i_k}, y_{i_k}) \mid 1 \leq k \leq p\}$.

Graful G_c :

Observație: |M| crește cu 1

Algoritmul ungar (2)

Dacă $R_T \cap Z \neq \emptyset$, fie $(x_{i_1}, y_{j_1}, x_{i_2}, \dots, x_{i_p}, y_{j_p})$ o cale M-alternantă de la $x_{i_1} \in R_S$ la $y_{j_p} \in R_T$. Înseamnă că $(x_{i_{k+1}}, y_{j_k}) \in M$ pentru $1 \leq k < p$ și $(x_{i_k}, y_{j_k}) \notin M$ pentru $1 \leq k \leq p$. În acest caz, modificăm M să fie $M := (M - \{(y_{i_k}, x_{i_{k+1}}) \mid 1 \leq k < p\}) \cup \{(x_{i_k}, y_{i_k}) \mid 1 \leq k \leq p\}$.

$$R_S\left\{\begin{array}{c} \vdots \\ \vdots \\ x_{i_1} \\ \vdots \\ x_{i_p} \end{array}\right\} R_T$$

Graful G_c:

Observație: |M| creste cu 1

Algoritmul ungar (3)

Dacă
$$R_T \cap Z = \emptyset$$
, fie $\delta = \min\{w(x,y) - c(x) - c(y) \mid x \in Z \cap S, y \in T \setminus Z\}$

Graful G_c:

Se observă că $\delta > 0$. Modificăm c astfel:

- $ightharpoonup c(x) := c(x) + \delta$ pentru $x \in Z \cap S$, și
- ▶ $c(y) = c(y) \delta$ pentru toți $y \in Z \cap T$
- \Rightarrow G_c se modifică: $|R_T \cap Z|$ crește, iar $M \subseteq G_c$ continuă să aibe loc

Algoritmul ungar (3)

Dacă
$$R_T \cap Z = \emptyset$$
, fie $\delta = \min\{w(x,y) - c(x) - c(y) \mid x \in Z \cap S, y \in T \setminus Z\}$

Noul graf G_c :

Se observă că $\delta > 0$. Modificăm c astfel:

- $ightharpoonup c(x) := c(x) + \delta$ pentru $x \in Z \cap S$, și
- ▶ $c(y) = c(y) \delta$ pentru toți $y \in Z \cap T$
- \Rightarrow G_c se modifică: $|R_T \cap Z|$ crește, iar $M \subseteq G_c$ continuă să aibe loc

Remarcă

Problema motivațională poate fi rezolvată cu algoritmul ungar:

- ▶ Considerăm graful ponderat complet $K_{3,3}$ dintre $S = \{\text{Ion, Dan,Doru}\}\$ și $T = \{\text{SB,M,SF}\}\$ unde SB: spălat baie, M: mătural, SF: spălat ferestre.
- ▶ Pentru acest graf, algoritmul ungar calculează un cuplaj perfect *M*, care indică lucrarea alocată fiecărui muncitor.

Problemă motivantă

Departamentul de Transporturi din Carolina de Nord (NCDOT) a decis să realizeze o rețea feroviar rapidă între 8 orașe din vestul statului. Unele orașe sunt deja conectate cu drumuri, și se dorește plasarea de linii ferate de-a lungul drumurilor existente. Formele diferite de teren impun costuri diferite de amplasare a căii ferate. NCDOT a angajat un consultant să calculeze costurile de construire a unei căi ferate de-a lungul fiecărui drum de legătură între 2 orașe. Consultantul a produs graful ilustrat mai jos, în care sunt marcate costurile de realizare a fiecărei conexiuni. Se dorește ca rețeaua feroviară să fie realizată cu cost minim și să asigure legătură între orice 2 orașe.

Problemă motivantă

 \triangleright Un arbore de acoperire al unui graf G este un arbore care conține toate nodurile lui G.

- ▶ Un arbore de acoperire al unui graf *G* este un arbore care conţine toate nodurile lui *G*.
- ▶ Vrem să găsim un arbore de acoperire T al cărui cost total să fie minim, adică un arbore minim de acoperire:
 - Suma costurilor muchiilor lui $T \leq$ suma costurilor muchiilor oricărui alt arbore de acoperire al lui G.

FIGURE 1.42. Several spanning trees.

Găsirea unui arbore minim de acoperire Algoritmul lui Kruskal

Se dă un graf ponderat și conectat G

- (1) Se găsește o muchie cu pondere minimă și se marchează.
- (2) Se iau în considerate muchiile nemarcate care nu formează un ciclu cu cele marcate:
 - > se alege o muchie nemarcată care are pondere minimă, și
 - > se marchează.
- (3) Pasul (2) se repetă până când muchiile marcate formează un arbore de acoperire al lui *G*.

Enumerarea arborilor

Vrem să enumerăm toți arborii cu *n* noduri.

 Considerăm că pozițiile nodurilor sunt fixate și considerăm toate variantele de trasat un arbore între nodurile respective.
 De exemplu, pentru n = 4 avem 16 arbori etichetați diferiți:

Enumerarea arborilor

Vrem să enumerăm toți arborii cu *n* noduri.

 Considerăm că pozițiile nodurilor sunt fixate și considerăm toate variantele de trasat un arbore între nodurile respective.
 De exemplu, pentru n = 4 avem 16 arbori etichetați diferiți:

Teoremă (Teorema lui Cayley)

Există n^{n-2} arbori distincți cu n noduri.

 \triangleright Prüfer a găsit o metodă de enumerare a tuturor arborilor etichetați cu 1,2,..., n prin intermediul unei corespondențe bijective între acești arbori și mulțimea secvențelor de numere de n-2 numere între 1 și n:

$$\underbrace{v_1, v_2, \dots, v_{n-2}}_{n-2 \text{ numere}}$$
 unde $1 \le v_i \le n$

OBSERVAŢIE: Există n^{n-2} astfel de secvențe.

Se dă un arbore T cu nodurile $1, \ldots, n$

- (1) Inițial, secvența este vidă. Fie i = 0 și $T_0 = T$.
- (2) Se caută frunza lui T_i cu cea mai mică etichetă; fie aceasta v.
- (3) Se adaugă la secvență eticheta vecinului lui v.
- (4) Se sterge nodul v din $T_i \Rightarrow$ un arbore mai mic T_{i+1} .
- (5) Dacă T_{i+1} este K_2 , ne oprim. Altfel, incrementăm i cu 1 și revenim la pasul (2).

Metoda lui Prüfer Calculul secvenței Prüfer

Arbore curent	secvență curentă
$T = T_0 4 \begin{array}{c} 2 \\ 3 \\ 6 \end{array} \begin{array}{c} 5 \\ 7 \end{array}$	
T_1 $4 \stackrel{3}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$	4
T_2 $\begin{bmatrix} 3 & 1 \\ 6 & 7 \end{bmatrix}$	4,3
T ₃ 6 7	4,3,1
T ₄ 3 1 7	4,3,1,3
T ₅ 1 7	4,3,1,3,1

Calculul arborelui T corespunzător unei secvențe a_1, \ldots, a_k

Se dă o secvență $\sigma=a_1,a_2,\ldots,a_k$ de numere din mulțimea $\{1,\ldots,k+2\}$

- (1) Se desenează k+2 noduri care se etichetează cu numerele $1,2,\ldots,k+2$. Fie $S=\{1,2,\ldots,k+2\}$.
- (2) Fie i = 0, $\sigma_0 = \sigma$ și $S_0 = S$.
- (3) Fie j cel mai mic număr din S_i care nu apare în secvența σ_i .
- (4) Se trasează o muchie între nodul j și primul nod din σ_i .
- (5) Se elimină primul nod din secvența $\sigma_i \Rightarrow$ secvența σ_{i+1} . Se șterge j din S_i și rezultă mulțimea S_{i+1} .
- (6) Dacă secvența σ_{i+1} este vidă, se trasează o muchie între nodurile rămase în S_{i+1} iar algoritmul se termină. Altfel, se incrementează i cu 1 și se revine la pasul (3).

Metoda lui Prüfer

Construirea unui arbore etichetat (1)

Metoda lui Prüfer

Construirea unui arbore etichetat (2)

$$\sigma_4 = \mathbf{1}$$
 $S_4 = \{1, \mathbf{3}, 7\}$

 σ_5 este secvența vidă $S_5 = \{1,7\}$

Exerciții (1)

- 1. Pentru toate grafurile de mai jos, cu cuplajele M marcate îngroșat, găsiți
 - (a) o cale M-alternantă care nu este M-cale de creștere;
 - (b) o *M*-cale de creștere, dacă există, și în acest caz folosiți-o pentru a obține un cuplaj mai mare.

Exerciții (2)

- (2) Pentru fiecare din familiile următoare de mulțimi să se determine dacă are un sistem de reprezentanți distincți (SRD). Dacă nu, să se indice care condiție a teoremei de existență a unui SRD este violată.
 - **1** {1,2,3}, {2,3,4}, {3,4,5}, {4,5}, {1,2,5}
 - **2** {1,2,4}, {2,4}, {2,3}, {1,2,3}

 - **4** {1,2,5}, {1,5}, {1,2}, {2,5}

Exerciții (3)

1. Să se folosească algoritmul lui Kruskal pentru a găsi arbori minimi de acoperire ai următoarelor grafuri

2. Să se determine secvența Prüfer a arborilor următori:

3. Să se deseneze un arbore a cărui secvență Prüfer este 3,4,5,5,4,8.