

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年7 月24 日 (24.07.2003)

PCT

(10) 国際公開番号 WO 03/059880 A1

(51) 国際特許分類?: C07D 207/335, 307/52, 333/20, A61K 31/341, 31/40, 31/381, A61P 1/04, 1/16, 3/10, 7/00, 7/06, 9/10, 9/12, 11/00, 11/06, 13/12, 17/00, 17/06, 19/02, 21/00, 25/00, 25/14, 25/16, 25/18, 25/28, 29/00, 31/04, 31/12, 35/02, 37/00, 37/06, 43/00

(21) 国際出願番号:

PCT/JP03/00136

(22) 国際出願日:

2003年1月9日(09.01.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-004456 2002 年1 月11 日 (11.01.2002) JP 特願2002-004484 2002 年1 月11 日 (11.01.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 三共株 式会社 (SANKYO COMPANY, LIMITED) [JP/JP]; 〒 103-8426 東京都 中央区 日本橋本町3丁目5番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出顧人 (米国についてのみ): 西 剛秀 (NISHI,Takahide) [JP/JP]; 〒140-8710 東京都 品川 区 広町 1 丁目 2番 5 8 号 三共株式会社内 Tokyo (JP). 下里 隆一 (SHIMOZATO,Takaichi) [JP/JP]; 〒 140-8710 東京都 品川区 広町 1 丁目 2番 5 8 号 三 共株式会社内 Tokyo (JP). 奈良 太 (NARA,Futoshi) [JP/JP]; 〒140-8710 東京都 品川区 広町 1 丁目 2番 58号 三共株式会社内 Tokyo (JP). 宮崎 正二郎 (MIYAZAKI,Shojiro) [JP/JP]; 〒140-8710 東京都 品川区 広町 1 丁目 2番58号 三共株式会社内 Tokyo (JP).

- (74) 代理人: 大野彰夫, 外(OHNO, Akio et al.); 〒140-8710 東京都 品川区 広町 1 丁目 2 番 5 8 号 三共株式会社 内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 /広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類: — 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: AMINO ALCOHOL DERIVATIVE OR PHOSPHONIC ACID DERIVATIVE AND MEDICINAL COMPOSITION CONTAINING THESE

(54) 発明の名称: アミノアルコール誘導体又はホスホン酸誘導体及びそれらを含有する医薬組成物

 $R^{3}O \xrightarrow{R^{4}} (CH_{2})_{n} \xrightarrow{R^{6}} R^{7} \times Y - Z - R^{5}$ (I)

(57) Abstract: An amino alcohol derivative or phosphonic acid derivative each having excellent immunosuppressive activity; a pharmacologically acceptable salt thereof or pharmacologically acceptable ester thereof; and a medicinal composition containing any of these. (I) (In the formula, R¹ and R² each represents hydrogen or an amino-protecting group; R³ represents hydrogen or a hydroxy-protecting group; R⁴ represents lower alkyl; n is an integer of 1 to 6; X represents

oxygen or nitrogen optionally substituted by lower alkyl, etc.; Y represents ethylene; Z represents C_{1-10} alkylene; R^5 represents aryl or substituted aryl; and R^6 and R^7 each represents hydrogen; provided that when R^5 is hydrogen, then Z is neither a single bond nor linear C_{1-10} alkylene.)

(57) 要約:

本発明は、優れた免疫抑制作用を有するアミノアルコール誘導体又はホスホン酸誘導体、その薬理上許容される塩又はその薬理上許容されるエステル並びにそれらを含有する医薬組成物に関する:

$$R^{3}O$$
 R^{4}
 $(CH_{2})_{n}$
 $(C$

[式中、 R^1 及び R^2 は、水素原子、アミノ基の保護基; R^3 は、水素原子、ヒドロキシ基の保護基; R^4 は、低級アルキル基;nは1乃至6の整数;Xは、酸素原子又は無置換若しくは低級アルキル基等により置換された窒素原子;Yは、エチレン基;Zは、 C_1-C_{10} アルキレン基; R^6 は、アリール基、置換されたアリール基; R^6 及び R^7 は、水素原子;但し、 R^6 が水素原子であるとき、Zは単結合及び直鎖の C_1-C_{10} アルキレン基以外の基を示す。]

1

明 細 書

アミノアルコール誘導体又はホスホン酸誘導体及びそれらを含有する医 薬組成物

[技術分野]

本発明は、優れた免疫抑制作用を有するアミノアルコール誘導体若しく はホスホン酸誘導体、アミノアルコール誘導体若しくはホスホン酸誘導体 の薬理上許容される塩、アミノアルコール誘導体若しくはホスホン酸誘導 体の薬理上許容されるエステル、又はそれらを有効成分として含有する医 薬組成物に関する。

さらに、本発明は、免疫抑制剤と、優れた免疫抑制作用を有するアミノアルコール化合物若しくはホスホン酸誘導体、その薬理上許容される塩及びそのエステルからなる群より選ばれる化合物とを有効成分として含有し、臓器及び細胞移植における拒絶反応、リウマチやその他の自己免疫疾患等の免疫作用に関連する疾患の予防又は治療薬として優れる医薬組成物に関する。

[背景技術]

従来、リウマチやその他の自己免疫疾患等の免疫関連病の治療においては、異常な免疫反応によって生じる炎症反応に対してステロイドなどの抗炎症薬が使用されてきた。しかしながらこれらは対症療法であり根本的治療法ではない。

また、糖尿病、腎炎の発症においても免疫系の異常が関与することは報告されているが、その異常を改善するような薬剤の開発には至っていない

一方、免疫応答を抑制する方法の開発は、臓器及び細胞移植における拒絶反応を防いだり、種々の自己免疫疾患を治療及び予防する上でも極めて

重要である。しかしながら、シクロスポリンA(CsA)やタクロリムス (TRL)等の従来知られている免疫抑制剤は、腎臓及び肝臓に対して毒性を示すことが知られており、そのような副作用を軽減するために、ステロイド類を併用するなどの治療が広く用いられてきたが、必ずしも副作用を示すことなく十分な免疫抑制効果を発揮するには至っていないのが現状である。

このような背景から、毒性が低く、優れた免疫抑制作用を有する化合物を見出すことが試みられている。

免疫抑制剤としては、例えば、以下の化合物が知られている。

(1) 一般式(a)

$$R_x^2 R_x^3 N \xrightarrow{CH_2OR_x^4} CH_2OR_x^5$$
 (a)

{上記化合物 (a) において、

 R_x は置換基を有してもよい直鎖または分岐鎖状の炭素鎖[当該鎖中に、二重結合、三重結合、酸素、硫黄、-N (R_x 6) - (式中、 R_x 6は水素を示す。)、置換基を有してもよいアリーレン、置換基を有してもよいヘテロアリーレンを有してもよく、当該鎖端に、置換基を有してもよいアリール、置換基を有してもよいヘテロアリールを有してもよいシクロアルキル、置換基を有してもよいヘテロアリールを有してよい。]であり、 R_x 2、 R_x 3、 R_x 4、 R_x 6は、同一または異なって、水素、アルキルである。}を有する化合物が、免疫抑制剤として知られている。

かかる先行技術の上記化合物(a)は、必須の置換基として、同一炭素原子に置換する2つのオキシメチル基 $(-CH_2OR_x^4$ 及び $-CH_2OR_x^5$)を有するが、本発明の化合物は対応する基として、同一炭素原子に置換する $-CH_2OR^3$ 基と低級アルキル基を有している点で上記化合物(a)と相違する。

3

(2) 一般式(b)

$$W \xrightarrow{NR_y^1 R_y^2} X_y$$

$$(CH_2)_m OR_y^3$$
(b)

[上記化合物(b)において、

 R_y^1 、 R_y^2 及び R_y^3 は、水素原子等であり、Wは、水素原子、アルキル基等であり、 Z_y は、単結合又はアルキレン基であり、 X_y は、水素原子又はアルコキシ基であり、 Y_y は、水素原子、アルキル、アルコキシ、アシル、アシルオキシ、アミノ、アシルアミノ基等を示す。」を有する化合物が、免疫抑制剤として知られている。

上記化合物(b)は、基本骨格中フェニル基を必須としているが、本発明の化合物(I)は、対応する基がヘテロ環であるフラン基またはピロール基もしくは窒素原子に置換基を有するピロール基である点で、上記化合物(b)と相違する。

更に本公報には、本発明の化合物(I)の構造と類似するような構造を 有する化合物は、具体的に全く開示されていない。

(3) 一般式(c)

[上記化合物(c)において、

 R_z^1 、 R_z^2 、 R_z^3 、 R_z^4 は同一又は異なって、水素又はアシル基である。] を有する化合物が、免疫抑制剤として知られている。

上記化合物(c)は、必須の置換基として、同一炭素原子に置換する 2 つのオキシメチル基($-CH_2OR_z^3$ 及び $-CH_2OR_z^4$)を有するが、本発明の化合物は対応する基として、同一炭素原子に置換する $-CH_2O$

 R^3 基と低級アルキル基を有している点で上記化合物(c)と相違する。また、上記化合物(c)は、基本骨格中 $-(CH_2)_2$ -基と $-CO-(CH_2)_4$ -基の間にフェニル基を必須の基としているが、本発明の化合物(I)は、対応する基がヘテロ環であるフラン基またはピロール基もしくは窒素原子に置換基を有するピロール基である点でも、上記化合物(c)と相違する。

一方、上記一般式 (II) を有する化合物で、Xが硫黄原子である本発明 の化合物は、WO02/06268号公報において、ヒドロキシ化合物の 保護基がリン酸エステル塩残基である化合物として開示されている。

さらに、免疫抑制剤の併用について、免疫抑制剤であるFTY-720 と、サイクロスポリンA又はタクロリムスとを併用する発明が、特開平1 1-80026号公報に開示されている。

このような背景から、毒性が低く、優れた免疫抑制作用を有する医薬組成物を見出すことが望まれている。

[発明の開示]

本発明者らは、毒性が低く優れた免疫抑制作用を有する新規化合物に関して、長年に亘り鋭意検討を重ね他結果、各種臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性筋炎、結合組織炎、骨格筋炎、骨関節炎、変形性関節症、皮膚筋炎、強皮症、ベーチェット病、Chron病、潰瘍性大腸炎、自己免疫性肝炎、再生不良性貧血、特発性血小板減少性紫斑病、自己免疫性溶血性貧血、多発性硬化症、自己免疫性水疱症、尋常性乾癬、血管炎症群、Wegener肉芽腫、ぶどう膜炎、シェーグレン症候群、特発性間質性肺炎、Goodpasture症候群、サルコイドーシス、アレルギー性肉芽腫性血管炎、気管支喘息、心筋炎、心筋症、大動脈炎症候群、心筋梗塞後症候群、原発性肺高血圧症、微小変化型ネフローゼ、膜性腎症、膜性増殖性腎炎、巣状糸球体硬化症、半月体形成性腎炎、重症筋無力症、炎症性ニューロパチー、アトピー性皮膚炎、慢性光線性皮

膚炎、日光過敏症、蓐瘡、Sydenham舞踏病、硬化症、成人発症糖尿病、インスリン依存性糖尿病、若年性糖尿病、アテローム性動脈硬化症、糸球体腎炎、IgA腎症、尿細管間質性腎炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、劇症肝炎、ウイルス性肝炎、GVID、接触皮膚炎、敗血症等の自己免疫疾患又はその他免疫関連疾患、さらに、真菌、マイコプラズマ、ウィルス、原虫等の感染症、心不全、心肥大、不整脈、狭心症、心虚血、動脈塞栓、動脈瘤、静脈瘤、血行障害等の循環器系疾患、アルツハイマー病、痴呆、パーキンソン病、脳卒中、脳梗塞、脳虚血、鬱病、躁鬱病、統合失調症、ハンチントン舞踏病、癲癇、痙攣、多動症、脳炎、髄膜炎、食欲不振および過食等の中枢系疾患、リンパ腫、白血病、多尿、頻尿、糖尿病性網膜症等の各種疾患(特に、各種臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性硬化症、アトピー性皮膚炎等の自己免疫疾患)に有用である新規化合物を見出して、本発明を完成した。

さらに、本発明者らは、免疫抑制作用を有する医薬組成物について鋭意研究を行った結果、本発明の医薬組成物が、毒性が低く優れた免疫抑制作用を有し、該組成物中に含有される免疫抑制剤のいずれの薬理効果をも増強して発揮し、かつ該免疫抑制剤単独では持ちうる副作用も低減させ、各種臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性筋炎、結合組織炎、骨格筋炎、骨関節炎、変形性関節症、皮膚筋炎、強皮症、ベーチェット病、Chron病、潰瘍性大腸炎、自己免疫性肝炎、再生不良性貧血、特発性血小板減少性紫斑病、自己免疫性溶血性貧血、多発性硬化症、自己免疫性水疱症、尋常性乾癬、血管炎症群、Wegener 肉芽腫、ぶどう膜炎、シェーグレン症候群、特発性間質性肺炎、Goodpasture 症候群、サルコイドーシス、アレルギー性肉芽腫性血管炎、気管支喘息、心筋炎、心筋症、大動脈炎症候群、心筋梗塞後症候群、原発性肺高血圧症、微小変化型ネフローゼ、膜性腎症、膜性増殖性腎炎、巣状糸球体硬化症、半月体形成性腎炎、重症筋無力症、炎症性ニューロパチー、

アトピー性皮膚炎、慢性光線性皮膚炎、日光過敏症、蓐瘡、Sydenham 舞踏病、硬化症、成人発症糖尿病、インスリン依存性糖尿病、若年性糖尿病、アテローム性動脈硬化症、糸球体腎炎、IgA 腎症、尿細管間質性腎炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、劇症肝炎、ウイルス性肝炎、GVHD、接触皮膚炎、敗血症等の自己免疫疾患又はその他免疫関連疾患、さらに、真菌、マイコプラズマ、ウィルス、原虫等の感染症、心不全、心肥大、不整脈、狭心症、心虚血、動脈塞栓、動脈瘤、静脈瘤、血行障害等の循環器系疾患、アルツハイマー病、痴呆、パーキンソン病、脳卒中、脳梗塞、脳虚血、鬱病、躁鬱病、統合失調症、ハンチントン舞踏病、癲癇、痙攣、多動症、脳炎、髄膜炎、食欲不振および過食等の中枢系疾患、リンパ腫、白血病、多尿、頻尿、糖尿病性網膜症等の各種疾患(特に、各種臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性硬化症、アトピー性皮膚炎等の自己免疫疾患)に有用であることを見出し、本発明を完成した。

本発明を具体的に説明する。

(1) 本発明のアミノアルコール誘導体は、下記一般式 (I)を有する

$$\begin{array}{c|c}
R^4 & (CH_2)_n & \nearrow \\
NR^1R^2 & X
\end{array}$$

$$\begin{array}{c}
R^6 & R^7 \\
\nearrow & X
\end{array}$$

$$\begin{array}{c}
X & Y - Z - R^5
\end{array}$$
(I)

上記式中、

R¹及びR²は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R³は、水素原子、低級アルキル基又はヒドロキシ基の保護基を示し、 R⁴は、低級アルキル基を示し、 nは、1乃至6の整数を示し、

Xは、酸素原子または式N-Dを有する基(式中、Dは水素原子、 C_6 - C_{10} アリール基、低級アルキルスルホニル基、 C_6 - C_{10} アリールスルホニル基又は置換基群 a から選択される基を示す。)を示し、

Yは、エチレン基、ピニレン基、エチニレン基、式 $-E-CH_1$ -を有する基(式中、Eは、カルボニル基又は式-CH(OH) -を有する基を示す。)、 C_6-C_{10} アリーレン基又は置換基群 a から選択される基で1 乃至 3 個置換された C_6-C_{10} アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示し、

 R^5 は、水素原子、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群 a 及びりから選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル基、置換基群 a 及びりから選択される基で1乃至3個置換された C_6-C_{10} アリール基、又は置換基群 a 及びりから選択される基で1乃至3個置換された硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシ基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 $C_3 - C_{10}$ シクロアルキル基、 $C_6 - C_{10}$ アリール基、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基、置換基群 a から選択される基で 1 乃至 3 個置換された $C_3 - C_{10}$ シクロアルキル基、置換基群 a から選択される基で 1 乃至 3 個置換された $C_6 - C_{10}$ アリール基、及び置換基群 a から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Zは、分岐した C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_1 $_0$ アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する 1 で 1 の

本発明は、式(I)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステルを提供する。

これらのうち、好適には、

(2) (1) において、式 (I) を有する化合物が、式 (Ia):

$$R^{3}O$$
 R^{4}
 $(CH_{2})_{n}$
 $(C$

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z及びnは、前記におけるものと同意義を示す。)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル、

(3) (1) において、式 (I) を有する化合物が、式 (Ib):

$$R^{6}$$
 $Y-Z-R^{5}$ (Ib)

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z及びnは、前記におけるものと同意義を示す。)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル、

(4) (1) において、式(I) を有する化合物の薬理上許容される エステルが、式(II):

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & NR^{10}O - P - O \\
 & OR^{11} & NR^{1}R^{2}
\end{array}$$

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & NR^{1}R^{2}
\end{array}$$
(II)

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z及びnは、前記におけるものと同意義を示し、 R^{10} 及び R^{11} は、同一又は異なって、水素原子又はリン酸基の保護基を示す。)を有する化合物又はその薬理上許容される塩、

(5) (4) において、式 (II) を有するエステルが、式 (IIa):

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z及びnは、前記におけるものと同意義を示し、 R^{10} 及び R^{11} は、同一又は異なって、水素原子又はリン酸基の保護基を示す。)を有する化合物又はその薬理上許容される塩及び

(6) (4) において、式(II) を有するエステルが、式(IIb):

(7) 本発明のホスホン酸誘導体は、下記一般式(III)を有する:

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & R^{10}O - P \\
 & OR^{11} & NR^{1}R^{2}
\end{array}$$

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & NR^{1}R^{2}
\end{array}$$

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & NR^{1}R^{2}
\end{array}$$
(III)

(式中、R¹、R²、R⁴、R⁵、R⁶、R⁷、R¹⁰、R¹¹、X、Y、Z及びnは、前記におけるものと同意義を示す。)。

本発明は、式(III)を有する化合物、その薬理上許容される塩又は その薬理上許容されるエステルを提供する。これらのうち、好適には、

(8) (7) において、式(I I I) を有する化合物が、式(I I I a)

$$R^{10}O - P - (CH_2)_n - X - Y - Z - R^5$$
 (IIIa)

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、 R^{10} 、 R^{11} 、X、Y、Z及びnは、前記におけるものと同意義を示す。)を有する化合物、その薬理上 許容される塩又はその薬理上許容されるエステル及び

('9) (7) において、式(III) を有する化合物が、式(III b)

(式中、 R^1 、 R^2 、 R^4 、 R^6 、 R^6 、 R^7 、 R^{10} 、 R^{11} 、X、Y、Z及びnは、前記におけるものと同意義を示す。)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステルである。

これらのうち、好適な化合物としては、

(10) (1) 乃至(9) から選択される1項において、R¹及びR²が、同一又は異なって、水素原子、低級脂肪族アシル基、低級アルコキシカルボニル基、アラルキルオキシカルボニル基又は置換基群 a から選択される基で1乃至3個置換されたアラルキルオキシカルボニル基である化合物又はその薬理上許容される塩、

(11) (1)乃至(9)から選択される1項において、R¹及びR²が、同一又は異なって、水素原子、低級脂肪族アシル基又は低級アルコキシカルボニル基である化合物又はその薬理上許容される塩、

(12) (1)乃至(9)から選択される1項において、 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1-C_4 脂肪族アシル基又は C_1-C_4 アルコキシカルポニル基である化合物又はその薬理上許容される塩、

(13) (1) 乃至(9) から選択される1項において、 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1-C_2 脂肪族アシル基又は C_1-C_2 アルコキシカルポニル基である化合物又はその薬理上許容される塩、

- (14) (1) 乃至(9) から選択される1項において、 R^1 及び R^2 が、同一又は異なって、水素原子、アセチル基又はメトキシカルボニル基である化合物又はその薬理上許容される塩、
- (15) (1) 乃至(9) から選択される1 項において、 R^1 及び R^2 が、水素原子である化合物又はその薬理上許容される塩、
- (16) (1) 乃至(3) 及び(10) 乃至(15) から選択される1項において、R³が、水素原子、低級アルキル基、低級脂肪族アシル基、 芳香族アシル基、置換基群 a から選択される基で1乃至3個置換された芳香族アシル基又はシリル基である化合物又はその薬理上許容される塩、
- (17) (1) 乃至(3) 及び(10) 乃至(15) から選択される1項において、 R^3 が、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩、
- (18) (1) 乃至(3) 及び(10) 乃至(15) から選択される1項において、 R^3 が、水素原子又は C_1-C_4 アルキル基である化合物又はその薬理上許容される塩、
- (19) (1) 乃至(3) 又は(10) 乃至(15) から選択される1項において、 R^{3} が、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩、
- (20) (1) 乃至(3) 及び(10) 乃至(15) から選択される1項において、 R^3 が、水素原子である化合物又はその薬理上許容される塩
- (21) (1) 乃至(20) から選択される1 項において、 R^4 が、 C_1 $-C_4$ アルキル基である化合物又はその薬理上許容される塩、
- (22) (1)乃至(20)から選択される1項において、 R^4 が、 C_1 $-C_2$ アルキル基である化合物又はその薬理上許容される塩、
- (23) (1) 乃至(20) から選択される1 項において、 R^4 が、メチル基である化合物又はその薬理上許容される塩、
- (24) (1) 乃至(23) から選択される1項において、nが、2又

は3である化合物又はその薬理上許容される塩、

- (25) (1) 乃至(23) から選択される1 項において、n が、2 である化合物又はその薬理上許容される塩、
- (26) (1)乃至(25)から選択される1項において、Xが、酸素原子である化合物又はその薬理上許容される塩、
- (28) (1) 乃至(25) から選択される1 項において、Xが、式-NCH $_3$ を有する基である化合物又はその薬理上許容される塩、
- (29) (1)乃至(28)から選択される1項において、Yが、エチレン基、エチニレン基、式 $-CO-CH_2$ -を有する基、式-CH(OH) $-CH_2$ -を有する基、フェニレン基、又はハロゲン原子及び低級アルキル基からなる群より選択される基で1乃至3個置換されたフェニレン基である化合物又はその薬理上許容される塩、
- (30) (1) 乃至(28) から選択される1項において、Yが、エチレン基、エチニレン基、式 $-CO-CH_2$ -を有する基又はフェニレン基である化合物又はその薬理上許容される塩、
- (3 1) (1)乃至(3 0)から選択される1項において、Zが、 C_1 $-C_{10}$ アルキレン基又は置換基群 a 及び b から選択される基で1乃至 3 個置換された C_1 $-C_{10}$ アルキレン基である化合物又はその薬理上許容される塩、
- (32) (1) 乃至(30) から選択される1項において、Zが C_1 - C_6 アルキレン基又はヒドロキシ基で1乃至3個置換された C_1 - C_6 アルキレン基である化合物又はその薬理上許容される塩、
- (33) (1)乃至(30)から選択される1項において、Zが C_1 - C_5 アルキレン基又はヒドロキシ基で1乃至3個置換された C_1 - C_5 アルキレン基である化合物又はその薬理上許容される塩、

- (34) (1)乃至(30)から選択される1項において、Zが、エチレン基、トリメチレン基、テトラメチレン基、又は1個のヒドロキシ基で置換されたエチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理上許容される塩、
- (35) (1)乃至(30)から選択される1項において、Zが、エチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理上許容される塩、
- (36) (1)乃至(30)から選択される1項において、Zが、エチレン若しくはトリメチレン基である化合物又はその薬理上許容される塩、
- (37) (1)乃至(30)から選択される1項において、Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は1個のヒドロキシ基で置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基(該置換基は、低級アルキル基及びヒドロキシ基からなる群から選択される基である。)である化合物又はその薬理上許容される塩、
- (38) (1) 乃至(30) から選択される1項において、Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基である化合物又はその薬理上許容される塩、
- (39) (1) 乃至(30)から選択される1項において、Zが、炭素鎖中若しくは鎖端に酸素原子を有する C_1-C_1 。アルキレン基である化合物又はその薬理上許容される塩、
- (40) (1) 乃至(30) から選択される1項において、Zが、炭素鎖中若しくは鎖端に酸素原子を有する C_1-C_6 アルキレン基である化合物又はその薬理上許容される塩、
- (41) (1) 乃至(30) から選択される1項において、Zが、-0 $-CH_2$ -、-O-(CH_2) $_2$ -、-O-(CH_2) $_3$ -、 $-CH_2$ -O-、-(CH_2) $_2$ -O-又は-(CH_2) $_3$ -O-を有する基である化合物又はその薬理上許容される塩、

- (42) (1) 乃至(30) から選択される1項において、Zが、-C H,-O-又は-(CH,),-O-を有する基である化合物又はその薬理上 許容される塩、
- (43)(1) 乃至(42) から選択される1項において、R⁵が、水素原子である化合物又はその薬理上許容される塩、
- (44) (1) 乃至(42) から選択される1項において、 R^5 が、 C_3 $-C_{10}$ シクロアルキル基、 C_6 $-C_{10}$ アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級アル キルチオ基から成る群から選択される基で1乃至3個置換された C_3 $-C_{10}$ シクロアルキル若しくは C_6 $-C_{10}$ アリール基である化合物又はその薬理上許容される塩、
 - (45) (1) 乃至(42) から選択される1項において、 R^5 が、 C_3 $-C_{10}$ シクロアルキル基、 C_6 - C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基及び低級アルコキシ基から成る群から選択される基で1乃至3個置換された C_3 - C_{10} シクロアルキル若しくは C_6 - C_{10} アリール基である化合物又はその薬理上許容される塩、(46) (1) 乃至(42) から選択される1項において、 R^5 が、 C_5 - C_6 シクロアルキル基、フェニル基又はナフチル基である化合物又はその薬理上許容される塩、
 - (47) (1) 乃至(42) から選択される1項において、R⁵が、シ クロヘキシル基又はフェニル基である化合物又はその薬理上許容される 塩、
 - (48) (1) 乃至(47) から選択される1項において、R⁶及びR⁷が、同一又は異なって、水素原子、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基又は低級アルキルチオ基である化合物又はその薬理上許容される塩、
 - (49) (1) 乃至(47) から選択される1項において、R6及びR7 が、水素原子である化合物又はその薬理上許容される塩、

- (50) (4) 乃至(15) 及び(21) 乃至(49) から選択される 1項において、 R^{10} 及び R^{11} が、同一又は異なって、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩、
- (51) (4) 乃至(15) 及び(21) 乃至(49) から選択される 1項において、 R^{10} 及び R^{11} が、同一又は異なって、水素原子又は C_1 C_4 アルキル基である化合物又はその薬理上許容される塩、
- (52) (4) 乃至(15) 及び(21) 乃至(49) から選択される 1項において、 R^{10} 及び R^{11} が、同一又は異なって、水素原子、メチル基 又はエチル基である化合物又はその薬理上許容される塩及び
- (53) (4) 乃至(15) 及び(21) 乃至(49) から選択される 1項において、 R^{10} 及び R^{11} が、水素原子である化合物又はその薬理上許容される塩である。

上記(1)の化合物において、(2)乃至(3);(10)乃至(15);(16)乃至(20);(21)乃至(23);(24)乃至(25);(26)乃至(28);(29)乃至(30);(31)乃至(42);(43)乃至(47);並びに(48)乃至(49)からなる群から選択されるいずれか1項を任意に組み合わせた化合物も好適である。

上記 (4) の化合物において、(5) 乃至 (6);(10) 乃至(15); (21) 乃至(23);(24) 乃至(25);(26) 乃至(28);(29) 乃至(30);(31) 乃至(42);(43) 乃至(47);(48) 乃至(49);並びに(50) 乃至(53) からなる群から選択されるいずれか1 項を任意に組み合わせた化合物も好適である。

上記 (7) の化合物において、(8) 乃至 (9);(10) 乃至(15); (21) 乃至(23);(24) 乃至(25);(26) 乃至(28);(29) 乃至(30);(31) 乃至(42);(43) 乃至(47);(48) 乃至(49);並びに(50) 乃至(53) からなる群から選択されるいずれか1項を任意に組み合わせた化合物も好適である。

これらのうち、特に好適な化合物としては、

- (54) 下記から選択されるいずれか1つの化合物、その薬理上許容される塩又はその薬理上許容されるエステル:
- 2-アミノー2-メチルー4-[5-(5-フェニルペンチル) フランー 2- イル] ブタンー1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-4-ル) フラン-2-イル] プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)フラン-2-イル] プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブト-1-イニル) フラン-2-イル] ブタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル)フラン-2-イル]プタン-1-オール及び
- $2-アミノ-2-メチル-4-{5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-$ イニル]フラン-2-イル $\}$ ブタン-1-オール、
- (55) 下記から選択されるいずれか1つの化合物、その薬理上許容される塩又はその薬理上許容されるエステル:
- 2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル] ブタン-1-オール、
- $2-アミノー2-メチルー4-{1-メチルー5-[3-(4-メチルフェノキシ)プロプー<math>1-イニル$]ピロールー2-イル} プタンー1-オール、
- 2-アミノー2-メチルー4-[1-メチルー5-(4-シクロヘキシルオキシプト-1-イニル) ピロールー2-イル] ブタンー1-オール、
- $2-y \le 1-2-y \le 1-4-[1-y \le 1-5-(5-y \le 1-y \le 1-y$

2-7ミノー2-メチルー4-[1-メチルー5-(5-シクロヘキシルペンタノイル) ピロールー2-イル]プタンー1-オール、

2-アミノ-2-メチル-4-[1-メチル-5-(4-フェニルプタノイル) ピロール-2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[1-エチル-5-(5-フェニルペンタノ イル) ピロールー2-イル] ブタン-1-オール、

2-7ミノー2-メチルー4-[1-エチルー5-(5-シクロヘキシルペンタノイル) ピロールー2-イル] プタンー1-オール、

2-アミノ-2-メチル-4-[1-エチル-5-(4-フェニルブタノイル) ピロール-2-イル] ブタン-1-オール及び

2-7ミノー2-メチルー4-[1-エチルー5-(4-シクロヘキシルブタノイル) ピロールー2-イル]プタンー1-オール。

(56) (4)において、下記から選択されるいずれか1つの化合物又はその薬理上許容される塩:

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)フラン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] -1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)フラン-2-イル]-1-ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシ ルオキシブト-1-イニル) フラン-2-イル] <math>-1-プチル エステル、リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシ ルペンタノイル) フラン-2-イル] <math>-1-プチル エステル及び

リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3,4-ジ)]$ メチルフェノキシ) プロプー1-イニル]フランー2-イル $\}-1-$ プチ

ル エステル、

(57) (4)において、下記から選択されるいずれか1つの化合物又はその薬理上許容される塩:

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル] -1-プチル エステル、

リン酸 モノ $2-アミノ-2-メチルー4-\{1-メチルー5-[3-(4-メチルフェノキシ)プロプー<math>1-$ イニル]ピロールー2-イル $\}-$ 1-プチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(4-シ) クロヘキシルオキシブトー1ーイニル) ピロールー<math>2-イル] -1-ブチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-$ イニル]ピロールー2-イル $\}-1-$ ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-1)]フェニルペンタノイル)ピロールー2-イル] -1-プチル エステルリン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(5-シクロヘキシルペンタノイル)ピロールー2-イル] -1-プチル エステル、リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(4-フェニルプタノイル)ピロールー2-イル] -1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-シクロヘキシルプタノイル) ピロールー2-イル]ー1-プチル エステル、リン酸 モノ 2-アミノー2-メチルー4-[1-エチルー5-(5-フェニルペンタノイル) ピロールー2-イル]ー1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(5-シクロヘキシルペンタノイル)ピロールー2-イル]-1-プチル エステル、リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(4-フ

ェニルプタノイル)ピロールー2ーイル]ー1ープチル エステル及び リン酸 モノ 2ーアミノー2ーメチルー4ー[1ーエチルー5ー(4ーシ クロヘキシルプタノイル)ピロールー2ーイル]ー1ープチル エステル、 (58) (7)において、下記より選択されるいずれか1つの化合物又 はその薬理上許容される塩:

- 3-アミノ-3-メチル-5-[5-(5-フェニルペンチル) フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペント-1-イニル) フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブト-1-イニル)フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル) フラン-2-イル]ペンチルホスホン酸及び
- $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イニル]フラン-2-イル}ペンチルホスホン酸、$
- (59) (7)において、下記より選択されるいずれか1つの化合物又はその薬理上許容される塩:
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{1-メチル-5-[3-(4-メチルフェノキシ)プロプ-1-イニル]ピロール-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシルオキシブト-1-イニル) ピロール-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-\{1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イニル]ピロール-2-イル ペンチルホ$

スホン酸、

- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタ ノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-シクロヘキシルペンタノイル) ピロール-2-イル] ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-フェニルプタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシルプタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-フェニルペンタノ イル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-シクロヘキシルペンタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(4-フェニルプタノイル) ピロール-2-イル]ペンチルホスホン酸及び
- 3-アミノ-3-メチル-5-[1-エチル-5-(4-シクロヘキシルブタノイル) ピロール-2-イル]ペンチルホスホン酸である。

さらに、本発明は、次に記載の医薬組成物も提供する。

(60) T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を 阻害する作用を有する薬剤、

免疫細胞中でのヌクレオシド合成を阻害する作用を有する薬剤、

免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する 薬剤、

DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤、

葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤、

TNF-α抑制作用を有する蛋白質製剤、

細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の反

応部位に結合することにより合成された蛋白質により免疫抑制作用を示すステロイドホルモン剤及び

プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤

からなる群より選択される少なくとも一つの免疫抑制剤と、下記一般式(I)で示される化合物:

[式中、

R¹及びR³は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R³は、水素原子、低級アルキル基又はヒドロキシ基の保護基を示し、

R⁴は、低級アルキル基を示し、

nは、1乃至6の整数を示し、

Xは、硫黄原子、酸素原子または式N-Dを有する基(式中、Dは水素原子、アリール基、低級アルキルスルホニル基、アリールスルホニル基又は置換基群aから選択される基を示す。)を示し、

Yは、エチレン基、ビニレン基、エチニレン基、式-E-CH, - を有する基(式中、Eは、カルボニル基、式-CH (OH) - を有する基を示す。)、 C_1-C_6 アリーレン基又は置換基群 a から選択される基で1乃至3個置換された C_1-C_6 アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン

基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 C_1-C_6 シクロアルキル基、 C_1-C_6 アリール基、硫 黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個合む 5 乃至 7 員複素環基、置換基群 a から選択される基で 1 乃至 3 個置換された C_1-C_6 シクロアルキル基、置換基群 a から選択される基で 1 乃至 3 個置換された C_1-C_6 アリール基、及び置換基群 a から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個合む 5 乃至 7 員複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Yは分岐した C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示す。]、

その薬理上許容される塩及びそのエステルからなる群より選ばれる少なくとも一つの化合物とからなる医薬組成物である。

これらのうち、好適には、

(61) (60) において、一般式(I) で表される化合物が、下記 一般式(Ia):

$$R^4$$
 $(CH_2)_n$ $(CH_2)_n$ (Ia)

(式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、X、Y、Z及びnは、 前記におけるものと同意義を示す。)を有する化合物である医薬組成物、

(62) (60) において、一般式(I) で表される化合物が、下記 一般式(Ib):

$$R^4$$
 $(CH_2)_n$ (Tb)

(式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、X、Y、Z及びnは、 前記におけるものと同意義を示す。)を有する化合物である医薬組成物、

(63) (60) において、式(I) を有する化合物の薬理上許容されるエステルが、式(II):

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & NR^{10}O - P - O \\
 & OR^{11} & NR^{1}R^{2}
\end{array}$$

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & NR^{1}R^{2}
\end{array}$$
(II)

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z及Unは、前記におけるものと同意義を示し、 R^{10} 及UR 11 は、同一又は異なって、水素原子又はリン酸基の保護基を示す。)を有する化合物又はその薬理上許容される塩である医薬組成物、

(64) (63) において、式(II) を有するエステルが、式(IIa):

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、 R^{10} 、 R^{11} 、X、Y、Z及び n は、前記におけるものと同意義を示す。)を有する化合物又はその薬理上許容される塩である医薬組成物及び

(65) (63) において、式(II) を有するエステルが、式(II b):

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、 R^{10} 、 R^{11} 、X、Y、Z及び n は、前記におけるものと同意義を示す。)を有する化合物又はその薬理 上許容される塩である医薬組成物である。

さらに、本発明は、次に示す医薬組成物を提供する。

(66) T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を 阻害する作用を有する薬剤、 免疫細胞中でのヌクレオシド合成を阻害する作用を有する薬剤、

免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する 薬剤、

DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤、

葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤、

TNFーα抑制作用を有する蛋白質製剤、

細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の反応部位に結合することにより合成された蛋白質により免疫抑制作用を示すステロイドホルモン剤及び

プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤

からなる群より選択される少なくとも一つの免疫抑制剤と、下記一般式(III)で示される化合物:

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

「式中、

R¹及びR²は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R⁴は、低級アルキル基を示し、

nは、1乃至6の整数を示し、

Xは、硫黄原子、酸素原子または式N-Dを有する基(式中、Dは水素原子、 C_6-C_{10} アリール基、低級アルキルスルホニル基、 C_6-C_{10} アリールスルホニル基又は置換基群 a から選択される基を示す。)を示し、

Yは、エチレン基、ビニレン基、エチニレン基、式ーEーCH, 一を有する基(式中、Eは、カルボニル基又は式ーCH(OH)ーを有する基を示

す。)、 C_6-C_{10} アリーレン基又は置換基群 a から選択される基で 1 乃至 3 個置換された C_6-C_{10} アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で1乃至3個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で1乃至3個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示し、

 R^5 は、水素原子、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群 a 及びりから選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル基、置換基群 a 及びりから選択される基で1乃至3個置換された C_6-C_{10} アリール基、又は置換基群 a 及びりから選択される基で1乃至3個置換された硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

R¹⁰及びR¹¹は、同一又は異なって、水素原子又はリン酸基の保護基を示し、

置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシ基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を1 乃至 3 個含む 5 乃至 7 員複素環基、置換基群 a から選択される基で1 乃至 3 個置換された C_3-C_{10} シクロアルキル基、置換基群 a から選択される基で1 乃至 3 個置換された C

6-C₁₀アリール基、及び置換基群 a から選択される基で1乃至3個置換された、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Zは、分岐した C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_1 $_0$ アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示す。]

を有する化合物又はその薬理上許容される塩及びそのエステルからなる 群より選ばれる少なくとも一つの化合物とからなる医薬組成物である。

これらのうち、好適には、

(67) (66) において、式 (III) を有する化合物が、式 (III) a):

(式中、 R^1 、 R^2 、 R^4 、 R^5 、 R^6 、 R^7 、 R^{10} 、 R^{11} 、X、Y、Z及び n は、前記におけるものと同意義を示す。)を有する化合物である医薬組成物及び

(68) (66) において、式(III) を有する化合物が、式(IIIb):

(式中、R¹、R²、R⁴、R⁵、R⁶、R⁷、R¹⁰、R¹¹、X、Y、Z及び

nは、前記におけるものと同意義を示す。)を有する化合物である医薬組成物である。

上記医薬組成物のうち、さらに好適には、

- (69) (60) 乃至(68) から選択される1項において、R¹及びR²が、同一又は異なって、水素原子、低級脂肪族アシル基、低級アルコキシカルボニル基、アラルキルオキシカルボニル基又は置換基群 a から選択される基で1乃至3個置換されたアラルキルオキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物、
- (70) (60) 乃至(68) から選択される1項において、R¹及びR²が、同一又は異なって、水素原子、低級脂肪族アシル基又は低級アルコキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物、
- (71) (60) 乃至(68) から選択される1項において、 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1 - C_4 脂肪族アシル基又は C_1 - C_4 アルコキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物、
- (72) (60)乃至(68)から選択される1項において、 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1 - C_2 脂肪族アシル基又は C_1 - C_2 アルコキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物、
- (73) (60) 乃至(68) から選択される1項において、 R^1 及び R^2 が、同一又は異なって、水素原子、アセチル基又はメトキシカルポニル基である化合物又はその薬理上許容される塩である医薬組成物、
- (74) (60) 乃至(68) から選択される1項において、 R^1 及び R^2 が、水素原子である化合物又はその薬理上許容される塩である医薬組成物、
- (75) (60) 乃至(62) 及び(69) 乃至(74) から選択される1項において、R³が、水素原子、低級アルキル基、低級脂肪族アシル

基、芳香族アシル基、置換基群 a から選択される基で1乃至3個置換された芳香族アシル基又はシリル基である化合物又はその薬理上許容される塩である医薬組成物、

- (76) (60) 乃至(62) 及び(69) 乃至(74) から選択される1項において、R⁸が、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩である医薬組成物、
- (77) (60) 乃至(62) 及び(69) 乃至(74) から選択される1項において、 R^3 が、水素原子又は C_1-C_4 アルキル基である化合物又はその薬理上許容される塩である医薬組成物、
- (78) (60) 乃至(62) 及び(69) 乃至(74) から選択される1項において、 R^3 が、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩である医薬組成物、
- (79) (60)乃至(62)及び(69)乃至(74)から選択される1項において、R³が、水素原子である化合物又はその薬理上許容される塩である医薬組成物、
- (80) (60) 乃至 (79) から選択されるいずれか1項において、 R^4 が、 C_1-C_4 アルキル基である化合物又はその薬理上許容される塩で ある医薬組成物、
- (81) (60)乃至(79)から選択されるいずれか1項において、 R^4 が、 C_1-C_2 アルキル基である化合物又はその薬理上許容される塩である医薬組成物、
- (82) (60)乃至(79)から選択されるいずれか1項において、 R⁴が、メチル基である化合物又はその薬理上許容される塩である医薬組 成物、
- (83) (60) 乃至 (82) から選択されるいずれか1項において、n が、2 又は3 である化合物又はその薬理上許容される塩である医薬組成物、
- (84) (60) 乃至(82) から選択されるいずれか1項において、

nが、2である化合物又はその薬理上許容される塩である医薬組成物、

- (85) (60) 乃至(84) から選択されるいずれか1項において、 Xが、硫黄原子である化合物又はその薬理上許容される塩である医薬組成物、
- (86) (60) 乃至(84) から選択されるいずれか1項において、 Xが、酸素原子である化合物又はその薬理上許容される塩である医薬組成物、
- (87) (60) 乃至(84) から選択されるいずれか1項において、Xが、式N-Dを有する基(式中、<math>Dは水素原子、 C_1-C_4 アルキル基又はフェニル基を示す。)である化合物又はその薬理上許容される塩である医薬組成物、
- (88) (60)乃至(84)から選択されるいずれか1項において、Xが、式 $N-CH_3$ を有する基である化合物又はその薬理上許容される塩である医薬組成物、
- (89) (60) 乃至(88) から選択されるいずれか1項において、 Yが、エチレン基、エチニレン基、式-CO-CH₂-を有する基、式-CH(OH)-CH₂-を有する基、フェニレン基、又はハロゲン原子及 び低級アルキル基からなる群より選択される基で1乃至3個置換された フェニレン基である化合物又はその薬理上許容される塩である医薬組成 物、
- (90) (60) 乃至(88) から選択されるいずれか1項において、 Yが、エチレン基、エチニレン基、式 $-CO-CH_2$ -を有する基又はフェニレン基である化合物又はその薬理上許容される塩である医薬組成物、 (91) (60) 乃至(90) から選択されるいずれか1項において、 Zが、 C_1-C_{10} アルキレン基又は置換基群 a 及びりから選択される基で 1 乃至3個置換された C_1-C_{10} アルキレン基である化合物又はその薬理上許容される塩である医薬組成物、
- (92) (60) 乃至(90) から選択されるいずれか1 項において、

- (93) (60) 乃至(90) から選択されるいずれか1項において、Zが C_1-C_5 アルキレン基又はヒドロキシ基で1乃至3個置換された C_1-C_5 アルキレン基である化合物又はその薬理上許容される塩である医薬組成物、
- (94) (60)乃至(90)から選択されるいずれか1項において、 Zが、エチレン基、トリメチレン基、テトラメチレン基、又は1個のヒド ロキシ基で置換されたエチレン基、トリメチレン基若しくはテトラメチレ ン基である化合物又はその薬理上許容される塩である医薬組成物、
- (95) (60) 乃至(90) から選択されるいずれか1項において、 Zが、エチレン基、トリメチレン基若しくはテトラメチレン基である化合 物又はその薬理上許容される塩である医薬組成物、
- (96) (60) 乃至(90) から選択されるいずれか1項において、 Zが、エチレン若しくはトリメチレン基である化合物又はその薬理上許容 される塩である医薬組成物、
- (98) (60) 乃至(90) から選択されるいずれか1項において、 Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_{10} アルキレン基である化合物又はその薬理上許容される塩である医薬 組成物、

(99) (60)乃至(90)から選択されるいずれか1項において、 乙が、炭素鎖中若しくは鎖端に酸素原子を有するC₁-C₁₀アルキレン基 である化合物又はその薬理上許容される塩である医薬組成物、

(100) (60) 乃至(90) から選択されるいずれか1項において、Z が、炭素鎖中若しくは鎖端に酸素原子を有する C_1-C_6 アルキレン基である化合物又はその薬理上許容される塩である医薬組成物、

(101) (60) 乃至(90) から選択されるいずれか1項において、 Zが、 $-O-CH_2-$ 、 $-O-(CH_2)_2-$ 、 $-O-(CH_2)_3-$ 、 $-CH_2 (CH_2)_3-$ 0-を有する基である化合物又はその薬理上許容される塩である医薬組成物、

(102) (60)乃至(90)から選択されるいずれか1項において、Zが、 $-CH_2-O-Z$ は $-(CH_2)_2-O-を$ 有する基である化合物又はその薬理上許容される塩である医薬組成物、

(103) (60)乃至(102)から選択されるいずれか1項において、R⁵が、水素原子である化合物又はその薬理上許容される塩である医薬組成物、

(104) (60) 乃至(102) から選択されるいずれか1項において、 R^5 が、 C_8-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級アルキルチオ基から成る群から選択される基で1乃至3個置換された C_8-C_{10} シクロアルキル若しくは C_6-C_{10} アリール基である化合物又はその薬理上許容される塩である医薬組成物、

(105) (60) 乃至(102) から選択されるいずれか1項において、 R^5 が、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基及び低級アルコキシ基から成る群から選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル若しくは C_6-C_{10} アリール基である化合物又はその薬理上許容される塩である医薬組成物、

- (106) (60) 乃至(102) から選択されるいずれか1項において、 R^5 が、 C_6 $-C_6$ シクロアルキル基、フェニル基又はナフチル基である化合物又はその薬理上許容される塩である医薬組成物、
- (107) (60)乃至(102)から選択されるいずれか1項において、R⁵が、シクロヘキシル基又はフェニル基である化合物又はその薬理上許容される塩である医薬組成物、
- (108) (60)乃至(107)から選択されるいずれか1項において、R⁶及びR⁷が、同一又は異なって、水素原子、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基又は低級アルキルチオ基である化合物又はその薬理上許容される塩である医薬組成物、
- (109) (60) 乃至(107) から選択されるいずれか1項において、 R^6 及び R^7 が、水素原子である化合物又はその薬理上許容される塩である医薬組成物、
- (110) (63) 乃至 (74) 及び (80) 乃至 (109) から選択 されるいずれか 1 項において、 R^{10} 及び R^{11} が、同一又は異なって、水素 原子又は低級アルキル基である化合物又はその薬理上許容される塩である医薬組成物、
- (111) (63) 乃至(74) 及び(80) 乃至(109) から選択されるいずれか1項において、 R^{10} 及び R^{11} が、同一又は異なって、水素原子又は C_1-C_4 アルキル基である化合物又はその薬理上許容される塩である医薬組成物、
- (112) (63)乃至(74)及び(80)乃至(109)から選択されるいずれか1項において、R¹⁰及びR¹¹が、同一又は異なって、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩である医薬組成物及び
- (113) (63) 乃至 (74) 及び (80) 乃至 (109) から選択 されるいずれか 1 項において、 R^{10} 及び R^{11} が、水素原子である化合物又はその薬理上許容される塩である医薬組成物である。

これらのうち、特に好適には、

(114) (60)において、一般式(I)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

- 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプチル)チオフェン-2-イル] プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)チオフェン <math>-2-4ル]プタン-1-オ-ル、
- 2-Pミノー2-メチルー4-[5-(4-シクロヘキシルオキシブチル) チオフェンー2-イル]プタンー1-オール、
- $2-アミノ-2-メチル-4-{5-[4-(4-フルオロフェノキシ)プチル]チオフェン-2-イル}プタン-1-オール、$
- (2-r)=(1-2-x)+(1-4-x)=(1-4-x)+(1-x)+(1-x)=(1-4-x)+(1-x)=(1-4
- 2-Pミノー2-メチルー4-[5-(4-ベンジルオキシブチル)チオフェン-2-イル]ブタン-1-オール、
- -2-アミノー2-メチルー4-[5-(4-シクロヘキシルプトー1-イニル)チオフェンー2-イル]プタンー<math>1-オール、
- 2-アミノー2-メチルー4-[5-(4-フェニルプトー1-イニル)チオフェン-2-イル]プタン-1-オール、
- 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペント-1-イニル)チオフェンー2-イル]プタンー1-オール、
- 2-アミノー2-メチルー4-[5-(5-フェニルペント-1-イニル)チオフェンー2-イル] ブタンー1-オール、
- $2-アミノ-2-メチル-4-{5-[5-(4-フルオロフェニル)ペント$

- -1-イニル]チオフェン-2-イル}プタン-1-オール、
- 2-アミノ-2-メチル-4-{5-[5-(4-メトキシフェニル)ペント
- -1-イニル]チオフェン-2-イル}プタン-1-オール、
- $2-アミノ-2-メチル-4-{5-[3-(4-メチルフェノキシ)プロプ$
- -1-イニル]チオフェン-2-イル}ブタン-1-オール、
- $2-アミノ-2-メチル-4-{5-[3-(4-エチルフェノキシ)プロ$
- プー1ーイニル]チオフェンー2ーイル}ブタンー1ーオール、
- 2-アミノ-2-メチル-4-{5-[3-(4-メチルチオフェノキシ)
- プロプー1ーイニル]チオフェンー2ーイル}プタンー1ーオール、
- 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブト-
- 1-イニル)チオフェン-2-イル]プタン-1-オール、
 - 2-アミノー2-メチルー4-{5-[4-(4-フルオロフエノキシ)プト
- -1-イニル]チオフェン-2-イル}プタン-1-オール、
 - 2-アミノ-2-メチル-4-{5-[4-(4-メチルフェノキシ)プト-
 - 1-イニル]チオフェン-2-イル}プタン-1-オール、
 - 2-アミノ-2-メチル-4-[5-(3-シクロヘキシルメトキシ)プロ
 - プー1ーイニル]チオフェンー2ーイル}ブタンー1ーオール、
 - 2-アミノー2-メチルー4-[5-(4-ベンジルオキシプトー1-イ
 - ニル)チオフェンー2ーイル]ブタンー1ーオール、
 - 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプタノイル)チ
 - オフェンー2ーイル]プタンー1ーオール、
 - 2-アミノー2-メチル-4-[5-(4-フェニルプタノイル)チオフェ
 - ン-2-イル]プタン-1-オール、
 - 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンタノイル)
 - チオフェンー2ーイル]プタンー1ーオール、
 - 2-アミノ-2-メチル-4-[5-(5-フェニルペンタノイル)チオフ
 - ェン-2-イル]プタン-1-オール、
 - 2-アミノ-2-メチル-4-{5-[5-(4-フルオロフェニル)ペンタ

ノイル]チオフェンー2ーイル}ブタンー1ーオール、

- 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]プタン-1-オール、
- 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペント-1- イニル)チオフェン-2-イル] プタン-1-オール、
- 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]プタン-1-オール、
- $2-アミノ-2-メチル-4-{5-[3-(4-クロロフェノキシ)プロプー1-イニル]チオフェン-2-イル}プタン-1-オール、$
- $2-アミノ-2-メチル-4-{5-[3-(3-メチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}プタン-1-オール、$
- $2-アミノー2-メチルー4-{5-[3-(3,4-ジメチルフェノキシ)}$ プロプー1-71ーイニル]チオフェンー2-71ーオール、
- $2-アミノ-2-メチル-4-{5-[3-(3-メトキシフェノキシ)プロプ-1-イニル]チオフェン-2-イル}プタン-1-オール、$
- $2-アミノ-2-メチル-4-{5-[3-(3,5-ジメトキシフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ブタン-1-オール、$
- $2-アミノ-2-メチル-4-{5-[3-(3-アセチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}プタン-1-オール及び$
- $2-アミノ-2-メチル-4-{5-[3-(4-アセチルフェノキシ) プロプ-1-イニル]チオフェン-2-イル}プタン-1-オール、$
- (115) (60)において、一般式(I)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)フラン-

- 2-イル]ブタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)フラン-2-イル]プタン-1-オール、
- 2-アミノ-2-メチルー4-[5-(4-シクロヘキシルオキシブトー1-イニル)フラン-2-イル]プタン-1-オール、
- 2-アミノ-2-メチルー4-[5-(5-シクロヘキシルペンタノイル)フラン-2-イル] プタン-1-オール及び
- $2-7 \le 1-2-3 \le 1-4-4-1 \le 1-1 \le 1-1$
- (116) (60)において、一般式(I)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル] プタン-1-オール、
- $2-アミノ-2-メチルー4-{1-メチルー5-[3-(4-メチルフェノキシ)プロプー<math>1-$ イニル]ピロールー2-イル $\}$ プタンー1-オール、
- 2-アミノー2-メチルー4-[1-メチルー5-(4-シクロヘキシル オキシプトー1ーイニル) ピロールー<math>2-イル] プタンー1-オール、
- 2-Pミノー2-メチルー4- $\{1-$ メチルー5-[3-(3, 4-ジメ チルフェノキシ) プロプー1-イニル]ピロールー2-イル $\}$ ブタンー1
- 2-アミノー2-メチルー4-[1-メチルー5-(5-フェニルペンタ ノイル) ピロールー<math>2-イル] ブタンー1-オール、
- 2-アミノ-2-メチル-4-[1-メチル-5-(5-シクロヘキシルペ

_ンタノイル) ピロールー2ーイル]プタンー1ーオール、

2-アミノ-2-メチル-4-[1-メチル-5-(4-フェニルプタノイル) ピロール-2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[1-メチル-5-(4-シクロヘキシルプタノイル) ピロールー2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[1-エチル-5-(5-フェニルペンタノ イル) ピロールー2-イル]プタン-1-オール、

2- アミノー2- メチルー4-[1- エチルー5-(5- シクロヘキシルペンタノイル) ピロールー2- イル] プタンー1- オール、

2-アミノ-2-メチル-4-[1-エチル-5-(4-フェニルプタノイル) ピロール-2-イル] プタン-1-オール及び

2-アミノー2-メチルー4-[1-エチルー5-(4-シクロヘキシルプタノイル) ピロールー2-イル] プタンー<math>1-オール、

(117) (63) において、一般式(II) を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンチル)チオフェンー2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブチル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ $2-アミノー2-メチルー4-\{5-[4-(4-フルオロフェノキシ)プチル]チオフェンー<math>2-イル\}-1-プチル$ エステル、

リン酸 モノ 2-アミノ-2-メチル-4-{5-[4-(4-メトキシ

フェノキシ)ブチル]チオフェン-2-イル}-1-プチル エステル、

- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-ベンジルオキシプチル)チオフェン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプト-1-イニル)チオフェン-2-イル] <math>-1-プチル エステル、
- リン酸 モノ 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノー2-メチルー4-[5-(5-フェニルペント-1-イニル)チオフェンー2-イル]-1-プチル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[5-(4-フルオロフェニル)ペントー1-イニル]チオフェンー<math>2-イル\}-1-プチル$ エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[5-(4-メトキシフェニル)ペントー1-イニル]チオフェンー<math>2-イル\}-1-プチル$ エステル、
- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(4-メチルフェノキシ)プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(4-エチルフェノキシ) プロプー1-イニル]チオフェンー<math>2-イル\}-1-プチル$ エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(4-メチルチオフェノキシ) プロプー<math>1-$ イニル]チオフェンー2-イル $\}-1-$ ブチルエステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプト-1-イニル)チオフェン-2-イル] -1-プチル エス

テル、

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[4-(4-フルオロフェノキシ)プト-1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[4-(4-メチルフェノキシ)プト-1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(3-シクロヘキシ ルメトキシ) プロプー<math>1-イニル]チオフェンー2-イル} -1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-ペンジルオキシプト-1-イニル)チオフェン-2-イル] -1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプタノイル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルブタ ノイル)チオフェン-2-イル] <math>-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンタノイル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[5-(4-フルオロフェニル)ペンタノイル]チオフェン-2-イル\}-1-プチル エステル、リン酸 モノ <math>2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]-1-プチル エステル、$

リン酸 モノ 2-Pミノー2-エチルー4-[5-(5-シクロヘキシ ルペントー1-イニル)チオフェンー2-イル] -1-ブチル エステル、リン酸 モノ 2-アミノー2-エチルー4-[5-(5-シクロヘキシ ルペンタノイル)チオフェンー2-イル] -1-ブチル エステル、

WO 03/059880

- リン酸 モノ $2-アミノー2-メチルー4-{5-[3-(4-クロロフェノキシ)プロプー<math>1-イニル]$ チオフェンー $2-イル}-1-ブチル エステル、$
- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(3-メチルフェノキシ)プロプー<math>1-1$ -イニル]チオフェンー2-1-インチル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3,4-ジメチルフェノキシ) プロプー<math>1-$ イニル]チオフェンー2-イル $\}-1-$ ブチルエステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3-メトキシフェノキシ)プロプー1-イニル]チオフェンー<math>2-イル\}-1-ブチルエステル、$
- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(3,4-ジメトキシフェノキシ) プロプー<math>1-$ イニル]チオフェンー2-イル $\}-1-$ プチル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3,5-ジメトキシフェノキシ) プロプー<math>1-イニル$]チオフェンー2-イル}-1-プチル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3-アセチルフェノキシ)プロプー1-イニル]チオフェンー<math>2-イル\}-1-プチルエステル及び$
- リン酸 モノ $2-アミノー2-メチルー4-{5-[3-(4-アセチルフェノキシ)プロプー1-イニル]チオフェンー<math>2-イル}-1-ブチルエステル、$
- (118) (63) において、一般式(II) を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)フラン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] <math>-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル) フラン-2-イル] -1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプト-1-イニル) フラン-2-イル] <math>-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシ ルペンタノイル)フラン-2-イル]-1-プチル エステル及び

リン酸 モノ $2-アミノー2-メチルー4-{5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-$ イニル]フランー2-イル $\}-1-$ ブチル エステル、

(119) (63) において、一般式(II) を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-7)]フェニルペント-1-イニル)ピロール-2-イル] -1-プチル エステル、

リン酸 モノ $2-アミノー2-メチルー4-\{1-メチルー5-[3-(4-メチルフェノキシ)プロプー<math>1-$ イニル]ピロールー2-イル $\}-$ 1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-シクロヘキシルオキシプト-1-イニル) ピロールー<math>2-イル] -1-プチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イニル]ピロール-2-イ$

ル} - 1 - プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンタノイル) ピロールー2ーイル] -1-プチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-シ クロヘキシルペンタノイル)ピロールー2-イル]-1-プチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-フ ェニルプタノイル) ピロールー2ーイル]-1-プチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-シ クロヘキシルブタノイル) ピロールー2-イル]-1-プチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(5-フ ェニルペンタノイル) ピロールー2ーイル]ー1ープチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(5-シ クロヘキシルペンタノイル)ピロールー2ーイル]-1-プチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(4-フ ェニルプタノイル) ピロールー2ーイル]-1-プチル エステル及び リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(4-シクロヘキシルプタノイル) ピロールー2ーイル]-1-プチル エステ ル、

(120) (66)において、一般式(III)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

3-アミノー3-メチルー5-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノー3-メチルー5-[5-(5-フェニルペンチル)チオフェン-2-イル]ペンチルホスホン酸、

- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブチル)チオフェン-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[4-(4-フルオロフェノキシ)ブチル]チオフェン-2-イル}ペンチルホスホン酸、$
- 3-アミノー3-メチルー5-{5-[4-(4-メトキシフェノキシ)プチル]チオフェンー2-イル}ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-ペンジルオキシブチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルプト-1-イ ニル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-フェニルプト-1-イニル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノー3-メチルー5-[5-(5-シクロヘキシルペント-1- イニル)チオフェンー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペント-1-イニル)チオフェン-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[5-(4-フルオロフェニル)ペント-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[5-(4-メトキシフェニル)ペント-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(4-メチルフェノキシ)プロプ$ $-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(4-エチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(4-メチルチオフェノキシ)}$ プロプー1-4ニル]チオフェンー2-4ル}ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシプト-1-イニル)チオフェン-2-イル]ペンチルホスホン酸、

- $3-アミノ-3-メチル-5-{5-[4-(4-7)ルオロフェノキシ)プト -1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-{5-[4-(4-メチルフェノキシ)プトー
- 1-イニル]チオフェン-2-イル}ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-[5-(3-シクロヘキシルメトキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-[5-(4-ベンジルオキシプト-1-イニル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルプタノイル) チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-フェニルプタノイル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[5-(4-フルオロフェニル)ペンタ$ $ノイル]チオフェン-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-エチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-エチル-5-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-(7)ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[3-(4-クロロフェノキシ)プロプー1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(3-メチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$

- $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメチルフェノキシ)}$ プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[3-(3-メトキシフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメトキシフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(3,5-ジメトキシフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(3-アセチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(4-アセチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- (121) (66)において、一般式(III)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 3-アミノー3-メチルー5-[5-(5-フェニルペンチル)フランー 2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペント-1-4-1ル) フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペント-1-イニル)フラン-2-イル]ペンチルホスホン酸、
 - 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブト-1-イニル)フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル) フラン-2-イル]ペンチルホスホン酸及び
- $3-アミノー3-メチルー5-{5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]フランー2-イル}ペンチルホスホン酸、$

- (122) (66)において、一般式(III)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペント-1-イニル) ピロールー2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{1-メチル-5-[3-(4-メチルフェノキシ)プロプ-1-イニル]ピロール-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシル オキシプト-1-イニル)ピロール-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]ピロールー2ーイル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタ ノイル) ピロール-2-イル] ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-シクロヘキシルペンタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-フェニルブタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノー3-メチルー5-[1-メチルー5-(4-シクロヘキシルブタノイル)ピロールー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-フェニルペンタノイル)ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-シクロヘキシルペンタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(4-フェニルブタノイル)ピロール-2-イル]ペンチルホスホン酸及び

3-アミノ-3-メチル-5-[1-エチル-5-(4-シクロヘキシル ブタノイル)ピロール-2-イル]ペンチルホスホン酸、

(123) (60) 乃至(122) から選択されるいずれか1項において、免疫抑制剤が、

T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を阻害する作用を有する薬剤(該薬剤は、サイクロスポリンA、タクロリムス、ラパマイシン、グスベリムス、エベロリムス、トレスペリムス、アニスペリムス、SDZ-281-240、ABT-281、チグデリムス、A-119435又は17-エチルー1,14-ジヒドロキシー12-[2-[4-(2-フェニルヒドラジノカルボニルオキシ)-3-メトキシシクロヘキシル]-1-メチルビニル]-23,25-ジメトキシー13,19,21,27-テトラメチルー11,28-ジオキサー4-アザトリシクロ[22.3.1.04.8]オクタコスー18-エンー2,3,10,16-テトロンである。)、

免疫細胞中でのヌクレオシド合成阻害する作用を有する薬剤(該薬剤は、ミゾリビン、アザチオプリン、ミコフェノール酸、レフルノマイド、メリメンポディブ、HMR-1279、TSK-204又はSP-100030である。)、

免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する薬剤(該薬剤は、T-614、アクタリット、サラゾスルファピリジン又はCDC-801である。)、

DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤(該アルキル化剤は、シクロフォスファミドである。)、

葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤(該代謝拮抗剤は、 メトトレキセートである。)、

TNF-α抑制作用を有する蛋白質製剤(該蛋白質製剤は、レミケード、エンブレル、ダクリズマブ、バシリキシマブ、アルムツズマブ、オマリズマブ、BMS-188667、CDP-571、イノリモマブ、ATM

-027又はBTI-322である。)、

細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の 反応部位に結合することにより合成された蛋白質により免疫抑制作用を 示すステロイドホルモン剤(該ステロイドホルモン剤は、プレドニゾロン である。)又は

プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤(該非ステロイド系抗炎症剤は、ロキソプロフェンナトリウム、ジクロフェナックナトリウム、メロキシカム、セレコキシブ、ロフェコキシブである。)

からなる群より選択される少なくとも一つの薬剤である医薬組成物及び (124) (60)乃至(122)から選択されるいずれか1項において、免疫抑制剤が、

サイクロスポリンA、タクロリムス、ラパマイシン、レフルノマイド、 メトトレキセート、レミケード及びエンプレルからなる群より選択される 少なくとも一つの薬剤である医薬組成物である。

また、本発明の他の目的は、

(125) (1)乃至(59)から選択されるいずれか1項に記載される化合物、その薬理上許容される塩又はその薬理上許容されるエステルを有効成分として含有する医薬組成物、

(126) 自己免疫疾患の予防又は治療のための、(125)に記載の 医薬組成物、

(127) 自己免疫疾患が慢性関節リウマチである、(126)に記載の医薬組成物及び

(128) 臓器移植での拒絶反応を抑制するための、(125) に記載の医薬組成物並びに

(129) (60)乃至(125)から選択されるいずれか1項に記載される医薬組成物の有効量を、哺乳動物に投与することを特徴とする自己

免疫疾患の予防又は治療方法、

(130) (60)乃至(125)から選択されるいずれか1項に記載される医薬組成物の有効量を、哺乳動物に投与することを特徴とする慢性 関節リウマチの予防又は治療方法及び

(131) クレーム60乃至125から選択されるいずれか1項に記載される医薬組成物の有効量を、哺乳動物に投与することを特徴とする臓器移植での拒絶反応の予防又は治療方法を提供することである。

上記式(I)、(II) 及び(III) において、D、 R^5 及び置換基群 b の定義における「 C_6-C_{10} アリール基」、「置換基群 a から選択される基で 1 乃至 3 個置換された C_6-C_{10} アリール基」及び「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_6-C_{10} アリール基」のアリール部分は、例えば、フェニル、インデニル、ナフチルであり得、好適にはフェニル又はナフチル基であり、最も好適にはフェニル基である。

Y及びEの定義における「 C_6-C_{10} アリーレン基」、「置換基群 a から選択される基で1乃至3個置換された C_6-C_{10} アリーレン基」及び「置換基群 a 及び b から選択される基で1乃至3個置換された C_6-C_{10} アリーレン基」のアリーレン部分は、例えば、フェニレン、インデニレン、ナフチレンであり得、好適には、フェニレン又はナフチレン基であり、最も好適には、フェニレン基である。

Zの定義における「 C_1-C_{10} アルキレン基」及び「置換基群 a 及び b から選択される基で1乃至3個置換された C_1-C_{10} アルキレン基」の C_1-C_{10} アルキレン部分は、メチレン、メチルメチレン、エチレン、プロピレン、トリメチレン、1-X チルエチレン、テトラメチレン、1-X ルトリメチレン、1-X チルプロピレン、1 ルトリメチレン、1 アルプロピレン、1 アルテレン、1 アルプロピレン、1 アルテレン、1 アルテレン、1 アルプロピレン、1 アルテレン、1 アルプロピレン、1 アルテレン、1 アルテレン、1 アルテレン、1 アルプロピレン、1 アルテレン、1 アルテレン 1 アルテレン 1

メチルテトラメチレン、2-メチルテトラメチレン、3-メチルテトラメ チレン、4-メチルテトラメチレン、1,1-ジメチルトリメチレン、2, 2-ジメチルトリメチレン、3,3-ジメチルトリメチレン、ヘキサメチ レン、1-メチルペンタメチレン、2-メチルペンタメチレン、3-メチ ルペンタメチレン、4-メチルペンタメチレン、5-メチルペンタメチレ ン、1,1-ジメチルテトラメチレン、2,2-ジメチルテトラメチレン、 3,3-ジメチルテトラメチレン、4,4-ジメチルテトラメチレン、ヘ プタメチレン、1-メチルヘキサメチレン、2-メチルヘキサメチレン、 5-メチルヘキサメチレン、3-エチルペンタメチレン、オクタメチレン、 2-メチルヘプタメチレン、5-メチルヘプタメチレン、2-エチルヘキ サメチレン、2-エチル-3-メチルペンタメチレン、3-エチル-2-メチルペンタメチレン、ノナメチレン、2-メチルオクタメチレン、7-メチルオクタメチレン、4-エチルヘプタメチレン、3-エチル-2-メ チルヘキサメチレン、2-エチル-1-メチルヘキサメチレン、デカメチ レン基のような炭素数1乃至10個の直鎖又は分枝鎖アルキレン基であ り得、好適には、C,-C,アルキレン基であり、更に好適には、C,-C 『アルキレン基であり、より好適には、エチレン、トリメチレン又はテト ラメチレン基であり、最も好適には、エチレン又はトリメチレン基である。

Zの定義における「炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基」及び「置換基群 a 及びりから選択される基で1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基」の、「炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン」部分は、上記「 C_1-C_{10} アルキレン基」の鎖端若しくは鎖中に酸素原子若しくは硫黄原子を有する基であり、例えば、 $-O-CH_2-$ 、 $-O-(CH_2)_2-$ 、 $-O-(CH_2)_3-$ 、 $-O-(CH_2)_4-$ 、 $-O-(CH_2)_5-$ 、 $-O-(CH_2)_6-$ 、 $-O-(CH_2)_8-$ 、 $-O-(CH_2)_8-$ 、 $-O-(CH_2)_8 -O-(CH_2)_8 -O-(CH_2)_8-$

-, -O- (CH,) $_{10}$ -, -CH,-O-CH,-, -CH,-O- (CH,),-,- $CH_{2}-O-(CH_{2})_{3}-$,- $CH_{2}-O-(CH_{2})_{4}-$,-(C H_2) $_2$ -O-C H_2 -, - (C H_2) $_2$ -O- (C H_2) $_2$ -, - (C H_2) $_2$ -O $-(CH_1)_3 - (CH_2)_2 - O - (CH_2)_4 - (CH_2)_3 - O CH_{1}-...-(CH_{2})_{3}-O-(CH_{2})_{2}-..-(CH_{2})_{3}-O-(CH_{2})_{3}$ $_{3}$ - $_{1}$ - $_{2}$ - $_{4}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{3}$ - $_$ $-(CH_2)_5-O-CH_2-,-CH_2-O-,-(CH_2)_2-O-,-(C$ H_2) $_3-O-$, $-(CH_2)$ $_4-O-$, $-(CH_2)$ $_5-O-$, $-(CH_2)$ $_6$ -O-, -(CH₂)₇-O-, -(CH₂)₈-O-, -(CH₂)₉-O-, $-(CH_2)_{10}-O-, -S-CH_2-, -S-(CH_2)_2-, -S-(CH_2)_3$ $_{2}$) $_{3}$ - $_{5}$ - $_{5}$ - $_{6}$ (CH $_{2}$) $_{4}$ - $_{5}$ - $_{5}$ - $_{5}$ - $_{6}$ - (CH $_{2}$) $_{6}$ - $, -S-(CH_2)_7-, -S-(CH_2)_8-, -S-(CH_2)_9-, -S (CH_2)_{10}$ - CH_2 - S - CH_2 - CH_2 - S - $(CH_2)_2$ - C $H_2-S-(CH_2)_3-,-CH_2-S-(CH_2)_4-,-(CH_2)_2-S (CH_2-, -(CH_2)_2-S-(CH_2)_2-, -(CH_2)_3-S-(CH_2)_3$ -, - (CH₂) $_{2}$ -S- (CH₂) $_{4}$ -, - (CH₂) $_{3}$ -S-CH₂-, - ($(CH_1)_3 - S - (CH_2)_2 - CH_3 - CH_4 - CH_5 - CH$ H_{1}) $_{4}-S-CH_{1}-...-(CH_{2})$ $_{4}-S-(CH_{2})$ $_{2}-...-(CH_{2})$ $_{5} S-CH_{2}-$, $-CH_{2}-S-$, $-(CH_{2})_{2}-S-$, $-(CH_{2})_{3}-S-$, $-(CH_2)_4 - S - \cdot -(CH_2)_5 - S - \cdot -(CH_2)_6 - S - -(CH_2)_6$ H_{2}) $_{1}-S-$, $-(CH_{2})_{8}-S-$, $-(CH_{2})_{9}-S-$, $-(CH_{2})_{10}$ - S - を有する基であり得、好適には、炭素鎖中若しくは鎖端に酸素原子 を有するC,-C,アルキレン基であり、更に好適には、-O-CH,-、- $O - (CH_1)_{1} - (CH_2)_{2} - (CH_2)_{3} - (CH_2)_{2} - (CH_2)_{3} -$ O-又は-(CH₂)₃-O-を有する基であり、最も好適には、-CH₂.-O-又は-(CH,),-O-を有する基である。

R⁶及び置換基群bの定義における「C₃-C₁₀シクロアルキル基」、「置

換基群 a から選択される基で 1 乃至 3 個置換された $C_3 - C_{10}$ シクロアルキル基」及び「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された $C_3 - C_{10}$ シクロアルキル基」の $C_3 - C_{10}$ シクロアルキル部分は、ベンゼン環のような他の環式基と縮環していてもよく、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロペキシル、シクロペプチル、ノルボルニル、アダマンチル又はインダニルであり得、好適には、 $C_5 - C_6$ シクロアルキル基であり、最も好適には、シクロペキシル基である。

R⁵及び置換基群bの定義における「硫黄原子、酸素原子又は/及び窒 素原子を1乃至3個含む5乃至7員複素環基」、「置換基群aから選択され る基で1乃至3個置換された、硫黄原子、酸素原子又は/及び窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基」及び「置換基群 a 及び b から選択さ れる基で1乃至3個置換された、硫黄原子、酸素原子又は/及び窒素原子 を1乃至3個含む5乃至7員複素環基」の硫黄原子、酸素原子又は/及び 窒素原子を1乃至3個含む5乃至7員複素環基部分は、例えば、硫黄原子、 酸素原子又は/及び窒素原子を1乃至3個含む5乃至7員芳香族、又は部 分若しくは完全還元型の飽和複素環基を示し、例えば、フリル、チエニル、 ピロリル、アゼピニル、ピラゾリル、イミダゾリル、オキサゾリル、イソ キサゾリル、チアゾリル、イソチアゾリル、1,2,3-オキサジアゾリ ル、トリアゾリル、テトラゾリル、チアジアゾリル、ピラニル、ピリジル、 ピリダジニル、ピリミジニル、ピラジニル、テトラヒドロピラニル、モル ホリニル、チオモルホリニル、ピロリジニル、ピロリニル、イミダゾリジ ニル、ピラゾリジニル、ピペリジニル、ピペラジニル、オキサゾリジニル、 イソキサゾリジニル、チアゾリジニル又はピラゾリジニルであり得、好適 には、5万至6員芳香族複素環基であり、更も好適には、フリル、チエニ ル又はピロリルであり、より更に好適には、フリル又はチエニルであり、 更に好適にはチエニルである。

尚、上記「芳香族複素環基」は、他の環式基と縮環していてもよく、例

えば、ベンゾチエニル、イソベンゾフラニル、クロメニル、キサンテニル、フェノキサチイニル、インドリジニル、イソインドリル、インドリル、インダゾリル、プリニル、キノリジニル、イソキノリル、キノリル、フタラジニル、ナフチリジニル、キノキサリニル、キナゾリニル、カルバゾリル、カルボリニル、アクリジニル又はイソインドリニルであり得、好適には、ベンゾチエニル基である。

置換基群 a の定義における「ハロゲン原子」は、フッ素、塩素、臭素又はヨウ素原子であり、好適には、フッ素原子又は塩素原子である。

 R^1 、 R^2 、 R^3 、 R^4 及び置換基群 a の定義における「低級アルキル基」は、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 s - ブチル、 t - ブチル、ペンチル、イソペンチル、 2 - メチルブチル、ネオペンチル、 1 - エチルプロピル、ヘキシル、イソヘキシル、 4 - メチルペンチル、 3 - メチルペンチル、 2 - メチルペンチル、 1 - メチルペンチル、 3 , $3 - \vec{\text{ y}}$ メチルブチル、 2 , $2 - \vec{\text{ y}}$ メチルブチル、 1 , 1 - $\vec{\text{ y}}$ メチルブチル、 1 , 1 - $\vec{\text{ y}}$ メチルブチル、 1 , 1 -

置換基群 a の定義における「ハロゲノ低級アルキル基」は、前記「低級アルキル基」にハロゲン原子が置換した基を示し、例えば、トリフルオロメチル、トリクロロメチル、ジフルオロメチル、ジクロロメチル、ジブロモメチル、フルオロメチル、2, 2, 2ートリクロロエチル、2ープロモエチル、2ークロロエチル、2ーフルオロエチル、2ーフルオロブチ

ル、6-3-ドヘキシル、2, 2-ジブロモエチル基のようなハロゲノC $_1-$ C $_6$ アルキル基であり得、好適には、ハロゲノC $_1-$ C $_4$ アルキル基であり、更に好適には、トリフルオロメチル、トリクロロメチル、2, 2, 2-トリフルオロエチル又は2, 2, 2-トリクロロエチルであり、最も好適にはトリフルオロメチル基である。

置換基群 a の定義における「低級アルコキシ基」は、前記「低級アルキル基」が酸素原子に結合した基を示し、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソプトキシ、s ープトキシ、t ープトキシ、ペントキシ、イソペントキシ、2 ーメチルプトキシ、1 ーエチルプロポキシ、2 ーエチルプロポキシ、ネオペントキシ、ヘキシルオキシ、4 ーメチルペントキシ、3 ーメチルペントキシ、2 ージメチルプトキシ、1 1 ージメチルプトキシ、1 1 ージメチルプトキシ、1 1 ージメチルプトキシ、1 2 ージメチルプトキシ、1 3 ージメチルプトキシ、2 3 ージメチルプトキシ基のような炭素数 1 乃至 6 個の直鎖又は分枝鎖アルコキシ基であり得、好適には、 C_1-C_4 アルコキシ基であり、更に好適には、 C_1-C_2 アルコキシ基であり、最も好適には、メトキシ基である。

置換基群 a の定義における「低級アルキルチオ基」は、前記「低級アルキル基」が硫黄原子に結合した基を示し、例えば、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、s ーブチルチオ、t ーブチルチオ、ペンチルチオ、イソペンチルチオ、2ーメチルプチルチオ、ネオペンチルチオ、ヘキシルチオ、4ーメチルペンチルチオ、3ーメチルペンチルチオ、2ーメチルプチルチオ、2,2ージメチルブチルチオ、1,1ージメチルブチルチオ、1,2ージメチルブチルチオ、1,3ージメチルブチルチオ、2、3ージメチルブチルチオよのような炭素数1乃至6個の直鎖又は分枝鎖

アルキルチオ基であり得、好適には、 $C_1 - C_4$ アルキルチオ基であり、更に好適には、 $C_1 - C_5$ アルキルチオ基であり、最も好適には、メチルチオ基である。

置換基群 a の定義における「低級アルコキシカルボニル基」は、前記「低級アルコキシ基」がカルボニル基に結合した基を示し、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソプトキシカルボニル、 s-プトキシカルボニル、 t-プトキシカルボニル、ペントキシカルボニル、イソペントキシカルボニル、 2-メチルペントキシカルボニル、ヘキシルオキシカルボニル、 4-メチルペントキシカルボニル、 3-メチルペントキシカルボニル、 2-メチルペントキシカルボニル、 3-メチルペントキシカルボニル、 2-メチルプトキシカルボニル、 3-ジメチルプトキシカルボニル、 2-ジメチルプトキシカルボニル、 1, 1-ジメチルプトキシカルボニル、 1, 1-ジメチルプトキシカルボニルをのような炭素数 1 1-0年 1

置換基群 a の定義における「低級脂肪族アシル基」は、水素原子又は飽和若しくは不飽和の鎖状炭化水素基がカルボニル基に結合した基を示し、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、アクリロイル、メタクリロイル、クロトノイル基のような炭素数 1 乃至 8 個の直鎖又は分枝鎖低級脂肪族アシル基であり得、好適には、 C_1-C_4 低級脂肪族アシル基であり、更に好適には、アセチル又はプロピオニル基であり、最も好適には、アセチル基である。

置換基群 a の定義における「ジー低級アルキルアミノ基」は、前記「低級アルキル基」が 2 個アミノ基に結合した基を示し、例えば、ジメチルアミノ、ジエチルアミノ、NーエチルーNーメチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチルアミノ、ジヘキシルアミノ基のようなジー C_1-C_6 アルキルアミノ基であり得、好適には、ジー C_1-C_4 アルキルアミノ基であり、更に好適には、ジー C_1-C_5 アルキルアミノ基であり、最も好適には、ジメチルアミノ基である。

置換基群 a の定義における「低級脂肪族アシルアミノ基」は、前記「低級脂肪族アシル基」がアミノ基に結合した基を示し、例えば、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、プチリルアミノ、イソプチ

リルアミノ、バレリルアミノ、イソバレリルアミノ、ピバロイルアミノ、ヘキサノイルアミノ、アクリロイルアミノ、メタクリロイルアミノ、クロトノイルアミノ基のような炭素数1乃至7個の直鎖又は分枝鎖低級脂肪族アシルアミノ基であり得、好適には、C₁-C₄脂肪族アシルアミノ基であり、更に好適には、アセチルアミノ又はプロピオニルアミノ基であり、最も好適には、アセチルアミノ基である。

Dの定義における「低級アルキルスルホニル基」とは、前記「低級アルキル基」がスルホニル基に結合した基を示し、例えば、メタンスルホニル、スタンスルホニル、プロパンスルホニル、イソプロパンスルホニル、ブタンスルホニル、イソブタンスルホニル、はーブタンスルホニル、ペンタンスルホニル、イソペンタンスルホニル、2ーメチルプタンスルホニル、ネオペンタンスルホニル、ヘキサンスルホニル、4ーメチルペンタンスルホニル、3ーメチルペンタンスルホニル、2ーメチルペンタンスルホニル、3、3ージメチルブタンスルホニル、1、2ージメチルプタンスルホニル、1、2ージメチルプタンスルホニル、1、2・ジメチルプタンスルホニル、1、2・ジメチルプタンスルホニル、2、3ージメチルプタンスルホニル、1、3ージメチルプタンスルホニル、2、3ージメチルプタンスルホニルと2、3ージメチルプタンスルホニルと3、5た銭素数1乃至6個の直鎖又は分枝鎖アルキルスルホニル基であり得、好適には、 C_1-C_4 アルキルスルホニル基であり、更に好適には、 C_1-C_2 アルキルスルホニル基であり、最も好適には、メタンスルホニル基である。

Dの定義における「アリールスルホニル基」とは、前記「アリール基」がスルホニル基に結合した基を示し、例えば、ベンゼンスルホニル、pートルエンスルホニル、oーキシレン-4ースルホニル、mーキシレン-4ースルホニル、pーキシレンスルホニル、ナフタレンスルホニル基のような炭素数6万至10個のアリールスルホニル基であり得、最も好適には、

ベンゼンスルホニル基である。

R¹及びR²の定義における「アミノ基の保護基」とは、有機合成化学の 分野で一般的に使用されるアミノ基の保護基を意味し、例えば、

前記「低級脂肪族アシル基」、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級脂肪族アシル基、メトキシアセチルのような低級アルコキシで置換された低級脂肪族アシル基などの「脂肪族アシル類」;

ベンゾイル、1ーインダンカルボニル、2ーインダンカルボニル、1ー若しくは2ーナフトイルのような芳香族アシル基、4ークロロベンゾイル、4ーフルオロベンゾイル、2, 4, 6ートリメチルベンゾイル、4ートルオイル、4ーアニソイル4ーニトロベンゾイル、2ーニトロベンゾイル、2ー(メトキシカルボニル)ベンゾイル、4ーフェニルベンゾイルのような前記置換基群 a から選択される基で1乃至3個置換された芳香族アシル基などの「芳香族アシル類」;

前記「低級アルコキシカルボニル基」、2,2,2ートリクロロエトキシカルボニル、2ートリメチルシリルエトキシカルボニルのようなハロゲンまたはトリ低級アルキルシリルで置換された低級アルコキシカルボニル基などの「アルコキシカルボニル類」;

ビニルオキシカルボニル、アリルオキシカルボニルのような「アルケニ ルオキシカルボニル類」;

ベンジルオキシカルボニルのようなアラルキルオキシカルボニル基、4 ーメトキシベンジルオキシカルボニル、3,4ージメトキシベンジルオキシカルボニル、2ーニトロベンジルオキシカルボニル、4ーニトロベンジルオキシカルボニル、4ーニトロベンジルオキシカルボニルのような前記置換基群 a から選択される基で1万至3個置換されたアラルキルオキシカルボニル基などの「アラルキルオキシカルボニル類」;

トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、

t ープチルジメチルシリル、メチルジイソプロピルシリル、メチルジー t ープチルシリル、トリイソプロピルシリルのようなトリ低級アルキルシリル基、ジフェニルメチルシリル、ジフェニルプチルシリル、ジフェニルイソプロピルシリル、フェニルジイソプロピルシリルのようなアリールまたはアリールと低級アルキルとでトリ置換されたシリル基などの「シリル類」;

ペンジル、フェネチル、3-フェニルプロピル、 $\alpha-$ ナフチルメチル、 $\beta-$ ナフチルメチル、ジフェニルメチル、トリフェニルメチル、 $\alpha-$ ナフチルジフェニルメチル、9-アンスリルメチルのような1 乃至3 個のアリール基で置換された低級アルキル基、4-メチルベンジル、2, 4, 6-トリメチルベンジル、3, 4, 5-トリメチルベンジル、4-メトキシベンジル、4-メトキシフェニルジフェニルメチル、2-ニトロベンジル、4-ノロロベンジル、4-ブロモベンジル、4-シアノベンジル、4-シアノベンジル、4-シアノベンジルジフェニルメチル、ビス(2-ニトロフェニル)メチル、ピペロニルのような低級アルキル、低級アルコキシ、ニトロ、ハロまたはシアノでアリール環が置換された $1\sim3$ 個のアリール基で置換された低級アルキル基などの「アラルキル類」; ならびに

N, N-ジメチルアミノメチレン、ベンジリデン、4-メトキシベンジリデン、4-ニトロベンジリデン、サリシリデン、5-クロロサリシリデン、ジフェニルメチレン、(5-クロロ-2-ヒドロキシフェニル)フェニルメチレンのような「シッフ塩基を形成する置換されたメチレン基」が包含され、好適には、低級脂肪族アシル基、低級アルコキシカルボニル基、アラルキルオキシカルボニル基又は置換基群 a から選択される基で1万至3個置換されたアラルキルオキシカルボニル基である。

上記「アミノ基の保護基」として、特に好適には、アセチル基又は t - ブトキシカルボニル基である。

R³の定義における「ヒドロキシ基の保護基」とは、加水素分解、加水

分解、電気分解、光分解のような化学的方法により開裂し得る「反応における一般的保護基」、及び、「生体内で加水分解のような生物学的方法により開裂し得る保護基」を示す。

そのような「反応における一般的保護基」としては、例えば、

前記「脂肪族アシル類」;

前記「芳香族アシル類」;

テトラヒドロピラン-2-イル、3-ブロモテトラヒドロピラン-2-イル、4-メトキシテトラヒドロピラン-4-イル、テトラヒドロチオピ ラン-2-イル、4-メトキシテトラヒドロチオピラン-4-イルのよう な「テトラヒドロピラニル又はテトラヒドロチオピラニル類」;

テトラヒドロフランー 2 ーイル、テトラヒドロチオフランー 2 ーイルのような「テトラヒドロフラニル又はテトラヒドロチオフラニル類」;

前記「シリル類」:

メトキシメチル、1,1-ジメチル-1-メトキシメチル、エトキシメ チル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、t-ブトキシメチルのような低級アルコキシメチル基、2-メトキシエトキシ メチルのような低級アルコキシ化低級アルコキシメチル基、2,2,2-トリクロロエトキシメチル、ピス(2-クロロエトキシ)メチルのような ハロゲノ低級アルコキシメチル等の「アルコキシメチル基」;

1-エトキシエチル、1-(イソプロポキシ)エチルのような低級アルコキシ化エチル基、2,2,2-トリクロロエチルのようなハロゲン化エチル基等の「置換エチル類」;

前記「アラルキル類」;

前記「アルコキシカルボニル類」;

前記「アルケニルオキシカルポニル類」;

前記「アラルキルオキシカルボニル基」を挙げることができる。

一方、「生体内で加水分解のような生物学的方法により開裂し得る保護 基」としては、例えば、エチルカルボニルオキシメチル、ピバロイルオキ シメチル、ジメチルアミノアセトキシメチル、1-アセトキシエチルのよ うなアシルオキシアルキル類;

1-(メトキシカルボニルオキシ)エチル、1-(エトキシカルボニルオキシ)エチル、エトキシカルボニルオキシメチル、1-(イソプロポキシカルボニルオキシ)エチル、1-(t-ブトキシカルボニルオキシ)エチル、1-(エトキシカルボニルオキシ)プロピル、1-(シクロヘキシルオキシカルボニルオキシ)エチルのような1-(アルコキシカルボニルオキシ)アルキル類;

フタリジル基;

4-メチルーオキソジオキソレニルメチル、4-フェニルーオキソジオ キソレニルメチル、オキソジオキソレニルメチルのようなオキソジオキソ レニルメチル基等の「カルボニルオキシアルキル類」;

前記「脂肪族アシル類」;

前記「芳香族アシル類」;

「コハク酸のハーフエステル塩残基」;

「リン酸エステル塩残基」;

「アミノ酸等のエステル形成残基」;

カルバモイル基;

ベンジリデンのようなアラルキリデン基;メトキシエチリデン、エトキ シエチリデンのようなアルコキシエチリデン基;オキソメチレン;チオキ ソメチレンのような「2つのヒドロキシ基の保護基」;

及び、ピバロイルオキシメチルオキシカルボニルのような「カルボニルオキシアルキルオキシカルボニル基」を挙げることができ、そのような誘導体か否かは、ラットやマウスのような実験動物に静脈注射により投与し、その後の動物の体液を調べ、元となる化合物又はその薬理学的に許容される塩を検出できることにより決定できる。このようなヒドロキシ基の保護基として、好適には、低級脂肪族アシル基、芳香族アシル基、置換基群 a から選択される基で1万至3個置換された芳香族アシル基又はシリル基

である。

上記「ヒドロキシ基の保護基」として、特に好適には、アセチル基又は tープチルジメチルシリル基である。

R¹⁰及びR¹¹の定義における「リン酸基の保護基」は、例えば、 メチル、エチル、イソプロピル、プチルのような低級アルキル基、

2-シアノエチル、2-シアノ-1,1-ジメチルエチルのようなシア ノ基で置換された低級アルキル基、

2-(メチルジフェニルシリル)エチル、2-トリメチルシリルエチルのような低級アルキル又は低級アルキルとアリールとでトリ置換されたシリル基で置換された低級アルキル基、

2-(2'-ピリジル)エチル、2-(4'-ピリジル)エチルのようなヘテロシクリルで置換された低級アルキル基、

2-フェニルチオエチル、2-(4'-ニトロフェニルチオ)エチル、2-(4'-トリフェニルメチルフェニルチオ)エチルのようなアリールチオで置換された低級アルキル基

2-(t-プチルスルホニル) エチル、2-(フェニルスルホニル) エチル、2-(ベンジルスルホニル) エチルのようなアルキルスルホニル、アリールスルホニル又はアリールアルキルスルホニルで置換された低級アルキル基、

2, 2, 2-トリクロロエチル、2, 2, 2-トリクロロエチル-1, 1-ジメチルエチル、2, 2, 2-トリプロモエチル、2, 3-ジプロモプロピル、2, 2, 2-トリフルオロエチルのようなハロゲノ低級アルキル基;

ベンジル、フェネチル、3-フェニルプロピル、 $\alpha-$ ナフチルメチル、 $\beta-$ ナフチルメチル、ジフェニルメチル、トリフェニルメチル、 $\alpha-$ ナフチルジフェニルメチル、9-アンスリルメチルのような $1\sim3$ 個のアリール基で置換された低級アルキル基、0-ニトロペンジル、4-ニトロペン

ジル、2,4ージニトロペンジル、4ークロロペンジル、4ークロロー2 ーニトロベンジル、4ーアシルオキシベンジルのようなニトロ、ハロまた は低級脂肪族アシルでアリール環が置換されたアリール基で置換された 低級アルキル基、2ーニトロフェニルエチルのような置換基を有するアリ ール基で置換された低級アルキル基、9ーフルオレニルメチルのようなフ ルオレニル基で置換された低級アルキル基などのアラルキル類:

アリル、プロペニルのような低級アルケニル基;

4-シアノ-2-プテニルのようなシアノで置換された低級アルケニ ル基:

フェニルのようなアリール基:

2-メチルフェニル、2,6-ジメチルフェニル、2-クロロフェニル、4-クロロフェニル、2,4-ジクロロフェニル、2,5-ジクロロフェニル、2,6-ジクロロフェニル、4-ニトロフェニル、3,5-ジニトロフェニル、4-クロロ-2-ニトロフェニル、2ーメトキシ-5-ニトロフェニルのような低級アルキル、アリール基でトリ置換された低級アルキル、低級アルコキシ、ニトロ又はハロで置換されたアリール基;

並びに

アニリデイト、4-トリフェニルメチルアニリデイト、[N-(2-)リチロキシ)エチル] アニリデイト、p-(N,N-)メチルアミノ)アニリデイト、3-(N,N-)エチルアミノメチル)アニリデイトのようなアミド類

である。

「リン酸基の保護基」は、好適には、低級アルキル基、低級アルケニル基または1乃至3個のフェニル若しくはナフチルで置換されたメチル基であり、更に好適には、メチル基、エチル基、アリル基またはベンジル基であり、最も好適には、メチル基又はエチル基である。

上記において、R⁵の定義における「置換基群a及びbから選択される 基で1乃至3個置換されたC。-C、。シクロアルキル基」の具体例は、例 えば、2-フルオロシクロプロピル、2-クロロシクロプロピル、2-若 しくは3-フルオロシクロペンチル、2-若しくは3-クロロシクロペン チル、2-, 3-若しくは4-ブルオロシクロヘキシル、2-, 3-若し くは4-クロロシクロヘキシル、2-,3-若しくは4-プロモシクロヘ キシル、2-,3-若しくは4-ヨードシクロヘキシル、2-メチルシク ロプロピル、2-エチルシクロプロピル、2-若しくは3-メチルシクロ ペンチル、2-若しくは3-エチルシクロペンチル、2-、3-若しくは 4-メチルシクロヘキシル、2-,3-若しくは4-エチルシクロヘキシ ル、2-トリフルオロメチルシクロプロピル、2-若しくは3-トリフル オロメチルシクロプチル、2 - 若しくは3 - トリフルオロメチルシクロペ ンチル、2-,3-若しくは4-トリフルオロメチルシクロヘキシル、2 -メトキシシクロプロピル、2-若しくは3-メトキシシクロプチル、2 - 若しくは3-メトキシシクロペンチル、2-,3-若しくは4-メトキ シシクロヘキシル、2-,3-若しくは4-エトキシシクロヘキシル、2 -, 3-若しくは4-プロポキシシクロヘキシル、2-, 3-若しくは4 -イソプロポキシシクロヘキシル、2-,3-若しくは4-(1-エチル プロポキシ)シクロヘキシル、2-,3-若しくは4-(2-エチルプロ ポキシ)シクロヘキシル、2-カルボキシシクロプロピル、2-若しくは 3-カルボキシシクロペンチル、2-, 3-若しくは4-カルボキシシク ロヘキシル、2-メトキシカルボニルシクロプロピル、2-若しくは3-メトキシカルボニルシクロペンチル、2-,3-若しくは4-メトキシカ ルボニルシクロヘキシル、2-ヒドロキシシクロプロピル、2-若しくは 3-ヒドロキシシクロペンチル、2-,3-若しくは4-ヒドロキシシク ロヘキシル、2-ホルミルシクロプロピル、2-若しくは3-ホルミルシ クロペンチル、2-、3-若しくは4-ホルミルシクロヘキシル、2-ア セチルシクロプロピル、2 - 若しくは3-アセチルシクロペンチル、2-,

3-若しくは4-アセチルシクロヘキシル、2-アミノシクロプロピル、 2-若しくは3-アミノシクロペンチル、2-,3-若しくは4-アミノ シクロヘキシル、2-メチルアミノシクロプロピル、2-若しくは3-メ チルアミノシクロプチル、2-若しくは3-メチルアミノシクロペンチル、 2-、3-若しくは4-メチルアミノシクロヘキシル、2-ジメチルアミ ノシクロプロピル、2-若しくは3-ジメチルアミノシクロプチル、2-若しくは3-ジメチルアミノシクロペンチル、2-,3-若しくは4-ジ メチルアミノシクロヘキシル、2-シアノシクロプロピル、2-若しくは 3-シアノシクロペンチル、2-, 3-若しくは4-シアノシクロヘキシ ル、2-若しくは3-シクロヘキシルシクロペンチル、2-,3-若しく は4-シクロヘキシルシクロヘキシル、2-フェニルシクロプロピル、2 -若しくは3-フェニルシクロペンチル、2-,3-若しくは4-フェニ ルシクロヘキシル、3,4-ジフルオロシクロヘキシル、3,4-ジクロ ロシクロヘキシル、2,3-ジメトキシシクロヘキシル、3,4-ジメト キシシクロヘキシル、3,5-ジメトキシシクロヘキシル、3,4,5-トリメトキシシクロヘキシル基であり得、好適には、1乃至3個置換され たС。一С、。シクロアルキル基(該置換基は、ハロゲン原子、低級アルキ ル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基 及び低級脂肪族アシル基から成る群から選択される基である。)であり、 更に好適には、1乃至3個置換されたC。一C、。シクロアルキル基(該置 換基は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級 アルコキシ基及び低級脂肪族アシル基から成る群から選択される基であ る。)であり、より更に好適には、1乃至3個置換された $C_3 - C_{10}$ シク ロヘキシル基(該置換基は、ハロゲン原子、低級アルキル基、ハロゲノ低 級アルキル基、低級アルコキシ基及び低級脂肪族アシル基から成る群から 選択される基である。)であり、最も好適には、1個置換されたシクロへ キシル基(該置換基は、フッ素原子、塩素原子、メチル、トリフルオロメ チル、メトキシ及びアセチル基から成る群から選択される基である。)で

ある。

R⁵の定義における「置換基群 a 及び b から選択される基で 1 乃至 3 個 置換されたC6-C10アリール基」の具体例は、例えば、2-,3-若し くは4-フルオロフェニル、2-、3-若しくは4-クロロフェニル、2 -,3-若しくは4-プロモフェニル、2-,3-若しくは4-ヨードフ ェニル、2-、3-若しくは4-メチルフェニル、2-、3-若しくは4 - エチルフェニル、2-,3-若しくは4-プロピルフェニル、2-,3 - 若しくは4-プチルフェニル、2-、3-若しくは4-ペンチルフェニ ル、2-、3-若しくは4-トリフルオロメチルフェニル、2-、3-若 しくは4-メトキシフェニル、2-、3-若しくは4-エトキシフェニル、 2-、3-若しくは4-プロポキシフェニル、2-、3-若しくは4-イ ソプロポキシフェニル、2-,3-若しくは4-プトキシフェニル、2-, 3-若しくは4-(1-エチルプロポキシ)フェニル、2-,3-若しく は4-(2-エチルプロポキシ)フェニル、2-,3-若しくは4-メチ ルチオフェニル、2-,3-若しくは4-エチルチオフェニル、2-,3 - 若しくは4-カルボキシフェニル、2-,3-若しくは4-メトキシカ ルボニルフェニル、2-,3-若しくは4-エトキシカルボニルフェニル、 2-. 3-若しくは4-ヒドロキシフェニル、2-, 3-若しくは4-ホ ルミルフェニル、2-,3-若しくは4-アセチルフェニル、2-,3-若しくは4-アミノフェニル、2-、3-若しくは4-メチルアミノフェ ニル、2-、3-若しくは4-ジメチルアミノフェニル、2-、3-若し くは4-シアノフェニル、2-、3-若しくは4-シクロペンチルフェニ ル、2-,3-若しくは4-シクロヘキシルフェニル、2-,3-若しく は4-ピフェニル、2,4-ジフルオロフェニル、3,4-ジフルオロフ ェニル、3,5-ジフルオロフェニル、2,4-ジクロロフェニル、3, 4-ジクロロフェニル、3,5-ジクロロフェニル、3,4-ジプロモフ ェニル、2、3-ジメチルフェニル、3、4-ジメチルフェニル、3、5

ージメチルフェニル、2,3ージメトキシフェニル、3,4ージメトキシ フェニル、3,5-ジメトキシフェニル、3,4,5-トリメトキシフェ ニル、3-フルオロ-4-メトキシフェニル、4-メチル-2-メトキシ フェニル、6-フルオロー4-メチルー2-メトキシフェニル、5-フル オロインデンー3ーイル、5ーフルオロインデンー3ーイル、5ーメチル インデンー3-イル、5-メトキシインデン-3-イル、5-フルオロイ ンデンー2ーイル、5ークロロインデンー2ーイル、5ーメチルインデン -2-イル、5-メトキシインデン-2-イル、5-ヒドロキシインデン -3-イル、5-ニトロインデン-3-イル、5-シクロヘキシルインデ ン-3-イル、5-フェニルインデン-3-イル、5-フェノキシインデ ンー3-イル、5-ベンジルオキシインデン-3-イル、5-フェニルチ オインデンー3ーイル、5ーヒドロキシインデンー2ーイル、5ーニトロ インデンー2-イル、5-シクロヘキシルインデン-2-イル、5-フェ ニルインデンー2ーイル、5ーフルオロナフタレンー2ーイル、5ーフル オロナフタレン-2-イル、5-メチルナフタレン-2-イル、5-メト キシナフタレン-2-イル、5-フルオロナフタレン-1-イル、5-フ ルオロナフタレン-1-イル、5-メチルナフタレン-1-イル、5-メ トキシナフタレン-1-イル、5-ヒドロキシナフタレン-2-イル、5 ーニトロナフタレンー2ーイル、5ーシクロヘキシルナフタレンー2ーイ ル、5-フェニルナフタレン-2-イル、5-フェノキシナフタレン-2 ーイル、5-ベンジルオキシナフタレン-2-イル、5-フェニルチオナ フタレンー2-イル、5-ヒドロキシナフタレン-1-イル、5-ニトロ ナフタレン-1-イル、5-シクロヘキシルナフタレン-1-イル、5-フェニルナフタレン-1-イル基であり得、好適には、1乃至3個置換さ れた C₆ - C₁₀ アリール基(該置換基は、ハロゲン原子、低級アルキル基、 ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基及び低 級脂肪族アシル基から成る群から選択される基である。) であり、更に好 適には、1乃至3個置換されたC。-C」。アリール基(該置換基は、ハロ

ゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基 及び低級脂肪族アシル基から成る群から選択される基である。)であり、 より更に好適には、1乃至3個置換されたフェニル基(該置換基は、ハロ ゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基 及び低級脂肪族アシル基から成る群から選択される基である。)であり、 更により好適には、1乃至2個置換されたフェニル基(該置換基は、フッ 素原子、塩素原子、メチル、トリフルオロメチル、メトキシ及びアセチル 基から成る群から選択される基である。但し、メトキシ基については、1 乃至3個置換されたフェニル基が好ましい。)であり、最も好適には、3 -フルオロフェニル、4-フルオロフェニル、3,4-ジフルオロフェニ ル、3、5-ジフルオロフェニル、3-クロロフェニル、4-クロロフェ ニル、3、4-ジクロロフェニル、3、5-ジクロロフェニル、3-メチ ルフェニル、4-メチルフェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、3-トリフルオロメチルフェニル、4-トリフルオロ メチルフェニル、3,4-ジトリフルオロメチルフェニル、3,5-ジト リフルオロメチルフェニル、3-メトキシフェニル、4-メトキシフェニ ル、3, 4 - ジメトキシフェニル、<math>3, 5 - ジメトキシフェニル、<math>3, 4, 5-トリメトキシフェニル、3-アセチルフェニル又は4-アセチルフェ ニル基である。

R⁵の定義における「置換基群 a 及び b から選択される基で1乃至3個置換された、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基」の具体例は、例えば、3-,4-若しくは5-メチルフラン-2-イル、2-,4-若しくは5-メチルフラン-3-イル、3-,4-若しくは5-プロモチオフェン-2-イル、2-,4-若しくは5-プロモチオフェン-2-イル、2-,4-若しくは5-プロモアオフェン-2-イル、2-,4-若しくは5-プロモフラン-3-イル、3-,4-若しくは5-メチルチオフェン-2-イル、2-,4-若しくは5-

メチルチオフェン-3-イル、3-,4-若しくは5-エチルチオフェン -2-7ル、2-14 - 若しくは5-エチルチオフェン-3-7ル、3-1 4-若しくは5-メトキシチオフェン-2-イル、2-, 4-若しくは5 ーメトキシチオフェン-3-イル、3-若しくは4-メチルチアゾール-5-イル、3-,4-若しくは5-フルオロベンゾチオフェン-2-イル、 3-, 4-若しくは5-プロモベンゾチオフェン-2-イル、3-, 4-若しくは5-メチルベンゾチオフェン-2-イル、3-,4-若しくは5 -メトキシペンプチオフェン-2-イル、2-,4-若しくは5-フルオ ロペンゾチオフェン-3-イル、2-,4-若しくは5-プロモベンゾチ オフェンー3-イル、2-, 4-若しくは5-メチルペンゾチオフェンー 3-イル、2-,4-若しくは5-メトキシベンゾチオフェン-3-イル、 4-,5-,6-若しくは7-メチルベンプチオフェン-2-イル、3-4-若しくは5-ヒドロキシフラン-2-イル、2-、4-若しくは5-ヒドロキシフラン-3-イル、3-,4-若しくは5-ヒドロキシチオフ エンー2-イル、3-,4-若しくは5-ニトロチオフェン-2-イル、 3-, 4-若しくは5-フェニルチオフェン-2-イル、2-, 4-若し くは5-ヒドロキシチオフェン-3-イル、2-,4-若しくは5-シア ノチオフェンー3-イル、1-,2-若しくは3-ヒドロキシピリジン-4-イル、1-,2-若しくは3-シアノピリジン-4-イル、1-,2 - 若しくは3-フェニルピリジン-4-イル基であり得、好適には、3-, 4-若しくは5-フルオロチオフェン-2-イル又は2-,4-若しくは 5-フルオロフラン-3-イル基である。

「その薬理上許容される塩」とは、本発明の一般式(I)、(II)又は(III)を有する化合物は、アミノ基のような塩基性の基を有する場合には酸と反応させることにより、又、カルボキシ基若しくはリン酸基のような酸性基を有する場合には塩基と反応させることにより、塩にすることができるので、その塩を示す。

塩基性の基に基づく塩は、例えば、フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、 pートルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマール酸塩、コハク酸塩、クエン酸塩、アスコルビン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;又はグリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩であり得、好適には、有機酸塩(特に、フマール酸塩、シュウ酸塩若しくはマレイン酸塩)又はハロゲン化水素酸塩(特に、塩酸塩)である。

一方、酸性の基に基づく塩は、例えば、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩等の金属塩;アンモニウム塩のような無機塩、tーオクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、Nーメチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、Nーベンジルフェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;又はグリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩であり得、好適には、アルカリ金属塩(特に、ナトリウム塩)である。

本発明の一般式(I)、(II) 又は(III)を有する化合物、その薬理上 許容される塩又はその薬理上許容されるエステルは、大気中に放置したり 、又は、再結晶をすることにより、水分を吸収し、吸着水が付いたり、水 和物となる場合があり、そのような水和物も本発明の塩に包含される。

本発明の一般式(I)、(II) 又は(III) を有する化合物、その薬理上 許容される塩又はその薬理上許容されるエステルは、その分子内に不斉炭 素原子を有するので、光学異性体が存在する。本発明の化合物においては 、光学異性体および光学異性体の混合物がすべて単一の式、即ち一般式(I)、(II) 又は(III) で示されている。従って、本発明は光学異性体お よび光学異性体の任意の割合の混合物をもすべて含むものである。

本発明の一般式(I)、(II)又は(III)を有する化合物は、好適には、式 $-NR^1R^2$ を有する基が結合している不斉炭素原子に関して、Rの絶対配位を有する化合物である。

上記における「エステル」とは、本発明の化合物(I)、(II) 又は(II I)は、エステルにすることができるので、そのエステルをいい、そのようなエステルは、「ヒドロキシ基のエステル」及び「カルボキシ基のエステル」であり、各々のエステル残基が「反応における一般的保護基」又は「生体内で加水分解のような生物学的方法により開裂し得る保護基」であるエステルをいう。

「反応における一般的保護基」とは、加水素分解、加水分解、電気分解 、光分解のような化学的方法により開裂し得る保護基をいう。

「ヒドロキシ基のエステル」に斯かる「反応における一般的保護基」及び「生体内で加水分解のような生物学的方法により開裂し得る保護基」としては、前記「ヒドロキシ基の保護基」と同意議を示す。

「カルボキシ基のエステル」に斯かる「反応における一般的保護基」は、好適には、前記「低級アルキル基」; エテニル、1ープロペニル、2ープロペニル、1ーメチルー1ープロペニル、2ーメチルー1ープロペニル、2ーメチルー2ープロペニル、2ーズテニル、1ーメチルー2ープロペニル、1ーブテニル、1ーメチルー2ープ

テニル、1-メチル-1-プテニル、3-メチル-2-プテニル、1-エ チルー2-プテニル、3-プテニル、1-メチル-3-プテニル、2-メ チルー3-プテニル、1-エチルー3-プテニル、1-ペンテニル、2-ペンテニル、1-メチル-2-ペンテニル、2-メチル-2-ペンテニル 、3-ペンテニル、1-メチル-3-ペンテニル、2-メチル-3-ペン テニル、4-ペンテニル、1-メチル-4-ペンテニル、2-メチル-4 ーペンテニル、1ーヘキセニル、2ーヘキセニル、3ーヘキセニル、4ー ヘキセニル、5-ヘキセニルのような低級アルケニル基;エチニル、2-プロピニル、1ーメチルー2ープロピニル、2ーメチルー2ープロピニル 、2-エチル-2-プロピニル、2-プチニル、1-メチル-2-プチニ ル、2-メチル-2-ブチニル、1-エチル-2-ブチニル、3-ブチニ ル、1-メチル-3-プチニル、2-メチル-3-プチニル、1-エチル -3-ブチニル、2-ペンチニル、1-メチル-2-ペンチニル、2-メ チルー2-ペンチニル、3-ペンチニル、1-メチルー3-ペンチニル、 2-メチル-3-ペンチニル、4-ペンチニル、1-メチル-4-ペンチ ニル、2-メチル-4-ペンチニル、2-ヘキシニル、3-ヘキシニル、 4-ヘキシニル、5-ヘキシニルのような低級アルキニル基;前記「ハロ ゲノ低級アルキル」;2-ヒドロキシエチル、2,3-ジヒドロキシプロ ピル、3-ヒドロキシプロピル、3、4-ジヒドロキシブチル、4-ヒド ロキシブチルのようなヒドロキシ「低級アルキル基」; アセチルメチルの ような「低級脂肪族アシル」-「低級アルキル基」: 前記「アラルキル基 」; 又は前記「シリル基」である。

「カルボキシ基のエステル」に斯かる「生体内で加水分解のような生物学的方法により開裂し得る保護基」は、好適には、メトキシエチル、1ーエトキシエチル、1ーメチルー1ーメトキシエチル、1ー(イソプロポキシ)エチル、2ーメトキシエチル、2ーエトキシエチル、1,1ージメチルー1ーメトキシエチル、エトキシメチル、nープロポキシメチル、イソプロポキシメチル、nープトキシメチル、tーブトキシメチルのような低

級アルコキシ低級アルキル基、2-メトキシエトキシメチルのような低級 アルコキシ化低級アルコキシ低級アルキル基、フェノキシメチルのような 「アリール」オキシ「低級アルキル基」、2,2,2ートリクロロエトキ シメチル、ビス(2-クロロエトキシ)メチルのようなハロゲン化低級ア ルコキシ低級アルキル基等の「アルコキシアルキル基」; メトキシカルボ ニルメチルのような「「低級アルコキシ」カルボニル「低級アルキル基」」 ;シアノメチル、2-シアノエチルのような「シアノ「低級アルキル基」 」; メチルチオメチル、エチルチオメチルのような「「低級アルキル」チオ メチル基」; フェニルチオメチル、ナフチルチオメチルのような「「アリー ル」チオメチル基」;2-メタンスルホニルエチル、2-トリフルオロメ タンスルホニルエチルのような「ハロゲンで置換されていてもよい「低級 アルキル」スルホニル「低級アルキル基」」;2-ベンゼンスルホニルエチ ル、2 - トルエンスルホニルエチルのような「「アリール」スルホニル「 低級アルキル基」」;前記「1-(アシルオキシ)「低級アルキル基」」;前 記「フタリジル基」;前記「アリール基」;前記「低級アルキル基」;カル ボキシメチルのような「カルボキシアルキル基」;又はフェニルアラニン のような「アミノ酸のアミド形成残基」である。

上記「カルボキシ基のエステル」に斯かる「反応における一般的保護基」及び「生体内で加水分解のような生物学的方法により開裂し得る保護基」において、更に好適には、低級アルキル又はアラルキル基である。

本発明の医薬組成物の有効成分である「免疫抑制剤」は、免疫反応の進行を防止あるいは阻害する薬剤であり、免疫抑制作用を有する化合物で、 作用機序に基づき、以下の群に分類される。

(1) T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を阻害する作用を有する薬剤であり、細胞内シグナルの伝達を阻害することにより、サイトカインの産生を阻害するようなもの、及びサイトカインシグナルが免疫細胞に作用するのを阻害するものが含まれる。そのような T細

胞のサイトカイン発現に関与する細胞内シグナルの伝達を阻害する作用 を有する薬剤としては、例えば、

US4,117,118号公報にS7481/F-1として記載される 化合物又はその薬理上許容される塩 [好適には、サイクロスポリン A (cyclosporin A) であり、その化学名は、シクロ [3-ヒドロキシー4-メチルー2-(メチルアミノ)ー6-オクテノイル]ー2-アミノブチリルーメチルグリシルーメチルーロイシルーバリルーメチルーロイシルーアラニルーアラニルーメチルーロイシルーメチルーロイシルーメチルーロイシルーメチルーロイシルーメチルーロイシルーメチルーバリルである。]、

EP184, 162号公報に記載された一般式(I)を有する化合物又はその薬理上許容される塩 [好適には、タクロリムス(tacrolimus)であり、その化学名は、17ーアリルー1, 14ージヒドロキシー12ー [2ー(4ーヒドロキシー3ーメトキシシクロヘキシル)ー1ーメチルビニル]ー23, 25ージメトキシー13, 19, 21, 27ーテトラメチルー11, 28ージオキサー4ーアザトリシクロ [22.3.1.0 $^{4.9}$]オクタコスー18ーエンー2, 3, 10, 16ーテトロンである。]、

US3,929,992号公報にラパマイシン(rapamycin)として記載される化合物 {その化学名は、9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34aーへキサデカヒドロー9,27ージヒドロキシー3ー[2ー(4ーヒドロキシー3ーメトキシシクロヘキシル)ー1ーメチルエチル]ー10,21ージメトキシー6,8,12,14,20,26ーヘキサメチルー23,27ーエポキシー3Hーピリド[2,1-c][1,4]オキサアザシクロヘントリアコンチンー1,5,11,28,29(4H,6H,31H)ーペントンである。]、

EP94、632号公報 (特開昭58-62152号公報) に記載された一般式 (II) を有する化合物又はその薬理上許容される塩 [好適には、グスペリムス (gusperimus) であり、その化学名は、N- [4-(3-72)] コープロピル)アミノブチル]カルバモイルヒドロキシメチルー 7-グ ア

ニジノヘプタンアミドであり、本発明のグスペリムスはその薬理上許容される塩(塩酸塩)も含有する。]、

US5,912,253号公報に記載された式(I)を有する化合物又はその薬理上許容される塩{好適には、エベロリムス (everolimus) であり、その化学名は、9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-ヘキサデカヒドロー9,27-ジヒドロキシー3-[2-[4-ヒドロキシエトキシー3-メトキシシクロヘキシル]-1-メチルエチル]-10,21-ジメトキシー6,8,12,14,20,26-ヘキサメチル-23,27-エポキシー3H-ピリド[2,1-c][1,4]アザシクロヘントリアコンチンー1,5,11,28,29(4H,6H,31H)-ペントンである。}、

EP600,762号公報に記載された式(I)を有する化合物又はその薬理上許容される塩 ${$ 好適には、トレスペリムス ${}$ (tresperimus)であり、その化学名は、2-[4-(3-アミノプロピルアミノ)プチル]アミノカルボニルオキシーN-[6-(アミノ イミノメチルアミノヘキシル)アセトアミドであり、本発明のトレスペリムスはその薬理上許容される塩も含有する。]、

Int. J. Immunopharmacol., vol. 21(5), 349-358(1999)に LF15-0195として記載される化合物{アニスペリムス (anisperimus) とも呼ばれ、その化学名は、[(6-グアニジノヘキシル)カルバモイル]メチル [4-(3-アミノブチル) アミノブチル]カルバメートである。}、

EP626,385号公報(特許3076724号公報又は米国特許第5,493,019号公報)に記載された一般式(I)を有する化合物又はその薬理上許容される塩 {好適には、SDZ-281-240であり、その化学名は、17-エチル-1,14-ジヒドロキシ-12-[2-(4-ヒドロキシ-3-メトキシシクロヘキシル)-1-メチルビニル]-23.25-ジメトキシ-13,19,21,27-テトラメチル-11,

 $28-ジオキサー4-アザトリシクロ [22.3.1.0 ⁴ ⁴ ⁴] オクタコス-18-エン-2,3,10,16-テトロンであり、本発明のSDZ-281-240はその薬理上許容される塩も含有する。}、$

WO93/04680号公報(EP642,516号公報)に記載された一般式(VII)を有する化合物又はその薬理上許容される塩{好適には、ABT-281であり、その化学名は、17-エチルー1,14-ジヒドロキシー12-[2-(4-テトラゾリルー3-メトキシシクロヘキシル)-1-メチルビニル]-23,25-ジメトキシー13,19,21,27-テトラメチルー11,28-ジオキサー4-アザトリシクロ[22.3.1.0 4 9 オクタコスー18-エン-2,3,10,16-テトロンである。}、

EP414,632号公報に記載された一般式(A)を有する化合物又はその薬理上許容される塩 {好適には、チグデリムスであり、その化学名は、シクロ [[3-ヒドロキシー4-メチルー2ー(メチルアミノ)ー6ーオクテノイル]ーLー2ーアミノブチリルーNーメチルグリシルーNーメチルーLーロイシルーLーパリルーNーメチルーLーロイシルーLーアラニルー [3-O-(2-ヒドロキシエチル)ーDーセリル]ーNーメチルーLーロイシルーNーメチルーLーロイシルーNーメチルーLープリル]である。}、

WO97/11080号公報に記載された一般式(I)を有する化合物 又はその薬理上許容される塩 {好適には、A-119435であり、その 化学名は、17-エチル-1, 14-ジヒドロキシ-12-[2-[4-(アセチルアミノアセチルチオ) -3-メトキシシクロヘキシル]-1-メチルピニル]-23, 25-ジメトキシ-13, 19, 21, 27-テトラメチル-11, 28-ジオキサ-4-アザトリシクロ[22, 3, 1, $0^{4\cdot 9}$]オクタコス-18-エン-2, 3, 10, 16-テトロンである。}、又は

Bioorg. Med. Chem. Lett., vol. 9(2), 227-232(1999)

を挙げることができる。

次に、代表的化合物の平面式を示す。

$$H_2N$$
 H_2N
 H_2N

A-119435

17- エチル- 1,14- ジヒドロキシ- 12- [2-[4- (2-フェニルヒドラジノカルボニルオキシ-3- メトキシシクロヘキシル]- 1-メチルピニル]- 23,25- ジメトキシ-13,19,21,27 - テトラメチル- 11,28-ジオキサ- 4- アザトリシクロ [22,3,1.0^{4,9}] オクタコス- 18- エン- 2,3,10,16- テトロン

(2)免疫細胞中でのヌクレオシド合成を阻害する作用を有する薬剤であり、免疫細胞中でヌクレオシド合成を阻害することにより、リンパ球の増殖を抑制し、非特異的な免疫抑制作用を示す。そのような免疫細胞中でのヌクレオシド合成を阻害する作用を有する薬剤としては、例えば、

US3,888,843号公報の請求項1に記載された化学構造式を有する化合物(ミゾリビンであり、その化学名は、5-ヒドロキシー $1-\beta$ -D-リポフラノシルー1 H-イミダゾールー4-カルボキサミドである。)、

US3,056,785号公報の請求項7に記載された一般式を有する 化合物又はその薬理上許容される塩 [好適には、アザチオプリンであり、 その化学名は、6-[(1-メチル-4-ニトロ-1H-イミダゾール-5-1) チオ] -1H-プリンであり、本発明のアザチオプリンには、その

薬理上許容される塩(塩酸塩)も含まれる。]、

EP281,713号公報(US4,753,935号公報)に記載された一般式(A)を有する化合物又はその薬理上許容される塩[好適には、ミコフェノール酸であり、その化学名は、6-(1,3-ジヒドロ-4-ヒドロキシー6-メトキシー7-メチルー3-オキソー5-イソベンゾフラニル)-4-メチルー(4E)-ヘキセン酸 2-(4-モルフォリニル)エチル エステルである。]、

EP13376号公報(特開昭62-72614号公報又はUS4,284,786号公報)に記載された式(I)を有する化合物又はその薬理上許容される塩[好適には、レフルノマイドであり、その化学名は、5-メチル-N-[4-(トリフルオロメチル)フェニル]-4-イソオキサゾールカルボキサミドである。]、

WO97/40028号公報に記載された一般式(I)を有する化合物 又はその薬理上許容される塩{好適には、メリメンポディブ (merimempodib)であり、その化学名は、[[3-[[[[3-メトキシー4-(5-オキサゾリル)フェニル]アミノ]カルボニル]アミノ]フェニル]メチル]カルバミン酸 (3 s) -テトラヒドロ-3-フラニル エステ $ルである。}、$

FR2,727,628号公報に記載された一般式(I)を有する化合物又はその薬理上許容される塩 [好適には、HMR-1279であり、その化学名は、 α -シアノ-N-(4-シアノフェニル)- β -オキソーシクロプロパンプロパンアミドである。]、

WO93/22286号公報(日本特許2928385号公報、EP601191号公報又はUS5,371,225号公報)に記載された一般式(I)を有する化合物又はその薬理上許容される塩(好適には、TSK-204であり、その化学名は、6,7-ジヒドロ-10-フルオロ-3-(2-フルオロフェニル)-5H-ベンゾ[6,7]シクロヘプタ[1.2-b]キノリン-8-カルボン酸である。}、又は

EP569,912号(公報特開平6-32784号公報)に記載された一般式(I)を有する化合物又はその薬理上許容される塩{好適には、SP-100030であり、その化学名は、2-クロローN-[3,5-ジ(トリフルオロメチル)フェニル]-4-(トリフルオロメチル)ピリミジン-5-カルポキシアミドである。}を挙げることができる。

次に、代表的な化合物の平面式を示す。

(3)免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する薬剤であり、サイトカインの産生抑制の他にリンパ球増殖抑制や免疫グロブリン産生抑制作用を併せ持ち、さらに、該薬剤には、T細胞増殖抑制作用、NK細胞活性抑制、TNF受容体拮抗作用等も有する化合物も含まれる。そのような免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する薬剤としては、例えば、

特開平2-49778号公報の特許請求の範囲第(1)項に記載された一般式を有する化合物又はその薬理上許容される塩(好適には、T-614であり、その化学名は、N-[3-ホルミルアミノー4-オキソー6-フェノキシー4H-1-ペンゾピラン-7-イル]メタンスルホンアミドである。)、

US4,720,506号公報に記載された一般式(I)を有する化合物又はその薬理上許容される塩[好適には、アクタリット(actarit)であり、その化学名は、4-(アセチルアミノ)ベンゼン酢酸である。]、

US2,396,145号公報の特許請求の範囲第1項に記載される一般式を有する化合物又はその薬理上許容される塩{好適には、サラゾスルファピリジン (salazosulfapyridine) であり、その化学名は、5-[[p-(2-ピリジルスルファモイル)-フェニル]アゾ]サルチル酸である。}、又は

WO97/23457号公報に記載された一般式(I)を有する化合物 [好適には、CDC-801であり、その化学名は、3-フタルイミド-3-(3-シクロペンチルオキシー4-メトキシフェニル)プロピオンアミドである。]

を挙げることができる。

次に、代表的化合物の平面式を示す。

T - 614

アクタリット

サラゾスルファピリジン

CDC-801

(4) DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤であり、このような薬剤としては、例えば、

US3,018,302号公報に記載された一般式(IIIa)を有する化合物又はその薬理上許容される塩 [好適には、シクロフォスファミドであり、その化学名は、N,N'ーピスー(2ークロロエチル)テトラヒドロー2H-1,3,2ーオキサザホスフォリンー2ーアミン 2ーオキサイドである。]

を挙げることができる。

シクロフォスファミド

(5) 葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤であり、ジヒドロ葉酸レダクターゼと結合し、核酸成分の合成に不可欠なテトラヒドロ葉酸産生を抑制することにより、核酸代謝を阻害する作用を有する。そのような葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤としては、例えば、

US 2, 5 1 2, 5 7 2 号公報の請求項1に記載された一般式を有する 化合物又はその薬理上許容される塩 ${$ 好適には、メトトレキセートであり、その化学名は、N-[4-[[2,4-ジアミノー6-プテリジニル)メチル]メチルアミノ] ベンゾイルーLーグルタミン酸である。 ${}$ を挙げることができる。

メトトレキセート

(6) $TNF-\alpha$ 抑制作用を有する蛋白質製剤であり、この蛋白質製剤の群には、血中 $TNF-\alpha$ の中和作用やそのレセプターを介した細胞内への $TNF-\alpha$ シグナルを阻害することにより、 $TNF-\alpha$ の作用を抑制する化合物並びにIL-1 レセプターアンタゴニスト、可溶性IL-1 レセプタ

一及び抗IL-6レセプター抗体が含まれる。そのようなTNF-α抑制作用を有する蛋白質製剤としては、例えば、

US5,656,272号公報及び Drugs, vol. 59(6),1341-1359 (2000)に記載されるレミケード (infliximab)、

WO94/06, 476号公報、US5, 605, 690号公報及び Expert. Opin. Pharmacother., July vol. 2(7), 1137-114 8(2001)に記載されるエンプレル (etanercept)、

WO92/11018号公報, US5, 530, 101号公報及び N. Engl. J. Med., vol. 338(3), 161-165(1997)に記載されるダクリズマブ (daclizumab)、

EP449,769号公報及び Clin. Pharmacol. Ther., Vol. 64(1),66-72(1998)に記載されるバシリキシマブ (basiliximab)、

WO89/07452号公報、US5,846,534号公報及びJ. Clin. Oncol., vol. 15(4),1567-1574(1997)に記載されるアルムツズマブ (alemtuzumab)、

US5, 965, 709号公報及び Drugs vol. 61(2), 253-60(2001)に記載されるオマリズマブ (omalizumab)、

EP613, 944号公報及び J. Pharm. Sci., vol. 84(12), 1488-1489 (1995)に記載される BMS-188667、

Arthritis-Rheum. Vol. 37(9), Suppl., S295, (1994)に記載されるCDP-571、

Transplant, June vol. 55, 1320-1327(1993)に記載されるイノリモマブ (inclimomab)、

ATM - 027及び

Blood, Dec 1, vol. 9 2 (1 1), 4 0 6 6 - 4 0 7 1 (1 9 9 8) に記載される BTI-3 2 2

を挙げることができる。

(7)細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の反応部位に結合することにより合成された蛋白質により免疫抑制作用を示すステロイドホルモン剤であり、そのような薬剤として、例えば、プレドニゾロン(その化学名は、1,4ープレグナジエン-3,20-ジオン-11 β ,17 α -21トリオールである。)を挙げることができる。

プレドニゾロン

(8) プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤であり、そのような薬剤として、例えば、

特公昭58-4699号公報の特許請求の範囲第1項に記載された一般式を有する化合物又はその薬理上許容される塩 {好適には、ロキソプロフェンナトリウムであり、その化学名は、2-[4-(2-オキソシクロペンタン-1-イルメチル)フェニル]プロピオン酸ナトリウムである。}、

US3,558,690号公報に記載された一般式I(A)を有する化合物又はその薬理上許容される塩 {好適には、ジクロフェナックナトリウムであり、その化学名は、[o-(2,6-ジクロロアニリノ)フェニル] 酢酸ナトリウムである。}、

US4, 233, 299号公報 (EP0, 002, 482号公報又は特別昭58-92976号公報) に記載された一般式 (I) を有する化合物

又はその薬理上許容される塩 [好適には、メロキシカムであり、その化学名は、4-ヒドロキシー2-メチル-N-(5-メチルー2-チアゾリル)-2H-1, 2-ベンゾチアジン-3-カルボキサミド-1, 1-ジオキサイドである。]、

WO95/15316号公報(US5,521,207号公報又は特開2000-109466号公報)に記載された一般式(II)を有する化合物又はその薬理上許容される塩 {好適には、セレコキシブであり、その化学名は、4-[5-(4-メチルフェニル)-3-(トリフルオロメチル)ピラゾール-1-イル] ペンゼンスルホンアミドである。}又は

WO95/00501号公報 (US5, 474, 995号公報) に記載された一般式 (I) を有する化合物又はその薬理上許容される塩 {好適には、ロフェコキシブであり、その化学名は、 $4-[4-(メチルスルホニル)フェニル]-3-フェニル-2(5H)-フラノンである。} を挙げることができる。$

COONa

CH3

CH3

$$CH_3$$
 CH_3
 $CH_$

上記免疫抑制剤において、さらに好適には、サイクロスポリンA、タクロリムス、ラパマイシン、レフルノマイド、メトトレキセート、レミケード及びエンプレルを挙げることができる。

ロフェコキシブ

上記における「薬理上許容される塩」は、上記免疫抑制剤が、アミノ基 のような塩基性の基を有する場合には酸と反応させることにより、又、カ ルボキシ基のような酸性基を有する場合には塩基と反応させることにより、得られる塩であり、以下の塩を包含する。

塩基性の基に基づく塩は、好適には、フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、pートルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマール酸塩、コハク酸塩、クエン酸塩、アスコルビン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩であり、更に好適には、塩酸塩、酢酸塩、フマール酸塩、コハク酸塩又はマレイン酸塩である

一方、酸性の基に基づく塩は、好適には、ナトリウム塩、カリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩等の金属塩;アンモニウム塩のような無機塩、tーオクチルアミン塩、ジペンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、Nーメチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、シシクロヘキシルアミン塩、N,N'ージペンジルエチレンジアミン塩、クロロプロガイン塩、プロカイン塩、ジエタノールアミン塩、Nーベンジルフェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩であり、更に好適には、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩又はアルミニウム塩である。

本発明の医薬組成物の有効成分である免疫抑制剤は、大気中に放置したり、又は、再結晶をすることにより、水分を吸収し、吸着水が付いたり、水和物となる場合があり、そのような水和物も本発明の塩に包含される。

本発明の医薬組成物の有効成分である免疫抑制剤は、その分子内に不斉 炭素原子が存在する場合、種々の異性体を有する。本発明の化合物におい ては、これらの異性体およびこれらの異性体の混合物がすべて単一の式で 示されている。従って、本発明はこれらの異性体およびこれらの異性体の 任意の割合の混合物をもすべて含むものである。

表中の略号は以下の通りである。

Bu: プチル基

i B u : イソブチル基

B z : ベンジル基

Et : エチル基

c H x : シクロヘキシル基

Me : メチル基

Np(1) : ナフタレン-1-イル基

Np(2) : ナフタレン-2-イル基

Ph : フェニル基

c P n : シクロペンチル基

Pr : プロピル基

i P r

イソプロピル基。

$$R^{3}O$$
 $NR^{1}R^{2}$
 R^{6}
 R^{7}
 $NR^{1}R^{2}$
 R^{6}
 R^{7}
 $NR^{1}R^{2}$
 $R^{8}O$
 $NR^{1}R^{2}$
 $R^{8}O$
 $NR^{1}R^{2}$
 $R^{8}O$
 $NR^{1}R^{2}$
 $R^{1}R^{2}$
 $R^{1}R^$

又は

$$R^{4}$$
 $(CH_{2})_{n}$
 R^{6}
 R^{7}
 $Y-Z-R^{5}$
 R^{3}

(Ia-3)

Compd.	R ¹	R ²	R ³	R ⁴	n	-Y-Z-R ⁵	R ⁶	R ⁷
1- 1	H	H	H	Me	2	-(CH ₂) ₃ -cHx	Н	Н
1- 2	H	H	H	Me	2	$-(CH_2)_3-(4-F-cHx)$	· H	H
1- 3	H	H	H	Me	2	-(CH2)3-(4-Me-cHx)	H	Н
1-4	H	H	H	Me	-2	$-(CH_2)_3 - (4-Et-cHx)$	H	H
1- 5	H	Н	H	Me	2	-(CH2)3-(4-CF3-cHx)	H	H
1- 6	Н	H	H	Me	2	$-(CH_2)_3 - (4-Me0-cHx)$	H	. Н
1- 7	H	H	H	Me	2	$-(CH_2)_3 - (4-Et0-cHx)$	H	H
1-8	Ħ	H	H	Me	2	-(CH2)3-(4-MeS-cHx)	H	H
1- 9	Н	H	H	Me	2	-(CH2)3-(4-cHx-cHx)	H	H
1-10	H	Н	H	Me	2	-(CH2)3-(4-Ph-cHx)	H	H
1-1.1	Н	H	Н	Me	2	$-(CH_2)_3-Ph$. Н	Ĥ
1-12	H	H	Н	Me	2	$-(CH_2)_3-(4-F-Ph)$	H	H

1-13	H	H	H	Me	2	-(CH2)3-(4-Me-Ph)	H	Н
1-14	H	H	H	Me	2	-(CH2)3-(4-Et-Ph)	. Н	H
1-15	H	H	H	Мe	2	$-(CH_{2})_{3}-(4-CF_{3}-Ph)$	H	H
1-16	H	H	H	Me	2	$-(CH_2)_3-(4-MeO-Ph)$	H	H
1-17	H	H	H	Me	2	$-(CH_2)_3-(4-Et0-Ph)$	H	H
1-18	H	H	H	Me	2	-(CH2)3-(4-MeS-Ph)	Н	H
1-19	H	Ħ	H	Me	2	-(CH2)3-(4-cHx-Ph)	H	H
1-20	H	H	H	Me	2	-(CH2)3-(4-Ph-Ph)	H	H
1-21	H	H	H	Me	2	-(CH2)4-cHx	H	H
1-22	H	H	H	Me	2	-(CH2)4-(4-F-cHx)	H	H
1-23	H	\mathbf{H}	H	Me	2	-(CH2)4-(4-Me-cHx)	H	H
1-24	H	H	H	Me	2	-(CH2)4-(4-Et-cHx)	H	H
1-25	H	H	H	Me	2	-(CH2)4-(4-CF3-cHx)	. Н	H
1-26	H	H	H	Me	2	-(CH2)4-(4-Me0-cHx)	H	H
_1-27	H	H	H	Ме	2	-(CH2)4-(4-Et0-cHx)	H	H
1-28	H	H	H	Me	2	-(CH2)4-(4-MeS-cHx)	H	H
1-29	H	H	H	Me	2	-(CH2)4-(4-cHx-cHx)	Н	. Н
1-30	H	H	H	Ме	2.	-(CH2)4-(4-Ph-cHx)	H	H
1-31	H	H	H	Me	2	$-(CH_2)_4-Ph$	H	H
1-32	H	H	H	Me	2	$-(CH_2)_4-(4-F-Ph)$	H	H
1-33	H	H	H	Me	2	-(CH2)4-(4-Me-Ph)	. Н	. Н
1-34	H	H	Ή	Ме	2	-(CH2)4-(4-Et-Ph)	H	H .
1-35	H	Н	H	Me	2	$-(CH_2)_4 - (4-CF_3-Ph)$	H	H
1-36	H	H	H	Me	2	-(CH2)4-(4-MeO-Ph)	H	H
1-37	H	H	H	Me	2	$-(CH_2)_4 - (4-Et0-Ph)$	H	H
1-38	H	H	H	Me	2	-(CH2)4-(4-MeS-Ph)	H.	H
1-39	H	H	H	Me	2	-(CH2)4-(4-cHx-Ph)	H	H
1-40	H	Н	H	Me	2	-(CH2)4-(4-Ph-Ph)	Ĥ	H
1-41	H	Н.	H	Me	2	$-(CH_2)_5-cPn$	H	H

1-42	H	H	H	Me	2	$-(CH_2)_5-cHx$	H	H
1-43	H	H	H	Me	2	$-(CH_2)_5-cHx$	Me	Н
1-44	Ħ	H	H	Me	2	$-(CH_2)_5-cHx$	H	Me
1-45	H	H	. H	Me	2	$-(CH_2)_5-CHx$	F	H
1-46	H	H	H	Me	2	$-(CH_2)_5-cHx$	H	F
1-47	H	H	H	Me	2	$-(CH_2)_5-(3-F-cHx)$	H	H
1-48	H	H	H	Me	2	-(CH2)5-(4-F-cHx)	H	H
1-49	H	H	H	Me	2	$-(CH_2)_5-(4-C1-cHx)$	H	H
1-50	H.	H	H	Me	2	-(CH2)5-(4-Br-cHx)	H	H
1-51	H	H	H	Me	2	-(CH2)5-(3-Me-cHx)	H	H
1-52	H	H	H	Me	2	-(CH2)5-(4-Me-cHx)	H	H
1-53	H	H	\mathbf{H}^{\cdot}	Me	2	-(CH2)5-(3-Et-cHx)	H	H
1-54	H	·H	H	Me	2	-(CH2)5-(4-Et-cHx)	H	·H
1-55	H	H	. H	Me	2	-(CH2)5-(3-Pr-cHx)	H	·H
.1-56	H	H	H	Me	2	-(CH2)5-(4-Pr-cHx)	H	H
1-57	H	H	. H	Me	2	-(CH2)5-(4-iPr-cHx)	H	. H
1-58	H	H	H	:Ме	2	-(CH2)5-(3-Bu-cHx)	H	Н
1-59	H	H	H	Mè	2	-(CH2)5-(4-Bu-cHx)	H	H
1-60	H	H	Н.	Ме	2	$-(CH_2)_5-(3-CF_3-cHx)$	H	H
1-61	Н	H	H	Me	2	$-(CH_2)_5-(4-CF_3-cHx)$	H	H
1-62	H	· H	H	Ме	2	$-(CH_2)_5-(3-Me0-cHx)$	H .	- H .
1-63	H	. Н	H	Me	2	-(CH2)5-(4-MeO-cHx)	H	H
1-64	H	H	Н.	Me	2	$-(CH_2)_5-(3-Et0-cHx)$	H	H
1-65	H	H ·	H	Me	2	$-(CH_2)_5-(4-Et0-cHx)$	H	H
1-66	H	H	H	Me	2	$-(CH_2)_5 - (3-Pr0-cHx)$	H	H
1-67	H	. Н	H	Me	2	$-(CH_2)_5-(4-Pr0-cHx)$	H	H
1-68	H	H	H	Me	2	-(CH2)5-(3-iPrO-cHx)	H	H
1-69	H	H	H	Me	2	-(CH2)5-(4-iPr0-cHx)	H	H
1-70	H	H	H	Me	2	-(CH2)5-[3-(2-Et-Pr0)-cHx]	H	H

1-71	H	H	H	Me	2	$-(CH_2)_5-[4-(2-Et-Pr0)-cHx]$	H	H
1-72	H	H	H	Ме	2	-(CH2)5-(3-iBu0-cHx)	H	H
1-73	H	H	H	Ме	2	-(CH2)5-(4-iBu0-cHx)	·. Н	H
1-74	H	H	H	Ме	2	-(CH2)5-(3-MeS-cHx)	. Н	H.
1-75	H	H	H	Me	2	-(CH2)5-(4-MeS-cHx)	H	H
1-76	H	H	H	Me	2	-(CH2)5-(3-EtS-cHx)	H	H
1-77	H	H	H	Me	2	-(CH2)5-(4-EtS-cHx)	H	H
1-78	H	H	H	Me	2	-(CH2)'5-(3-PrS-cHx)	H	H
1-79	H	H	H	Me	2	-(CH2)5-(4-PrS-cHx)	H	H
1-80	H	H	H	Me	2	-(CH2)5-(3-iPrS-cHx)	H	H
1-81	H	H	H	Me	2	-(CH2)5-(4-iPrS-cHx)	H	H
1-82	H	H	H	Me	2	$-(CH_2)_5-[3-(2-Et-PrS)-cHx]$	H	H
1-83	H	H	H	Me	2	$-(CH_2)_5-[4-(2-Et-PrS)-cHx]$	H	H
1-84	H	H	H	⁺Me	2	-(CH2)5-(3-iBuS-cHx)	H	·H
1-85	H	H	H	Me	2	-(CH2)5-(4-iBuS-cHx)	H	H
1-86	. Н	H	H	Me	2	-(CH2)5-(3-cHx-cHx)	H	H
1-87	H	H	H	Me	2	-(CH2)5-(4-cHx-cHx)	H	H
1-88	H ·	H	H	Me	2	$-(CH_2)_5-(3-Ph-cHx)$	H	H
1-89	H	Ĥ	H	Me	2	-(CH2)5-(4-Ph-cHx)	H	H
1-90	H	H	H	Me	2	$-(CH_2)_5-(2, 4-diMe-cHx)$	H	H
1-91	H	H	H	Me	2	$-(CH_2)_5-(3, 4-diMe-cHx)$	H	H
1-92	H	H	H	Me	2	-(CH2)5-(3, 5-diMe-cHx)	H	H
1-93	H	H	H	Me	2	$-(CH_2)_5-Ph$	H	H
1-94	H	H	H	Me	2	$-(CH_2)_5-Ph$	Me	H
1-95	H	H	H	Me	2	$-(CH_2)_5-Ph$	H	Me
1-96	H	H	H	Me	2	$-(CH_2)_5-Ph$	F.	H
1-97	H	H	H	Me	2	$-(CH_2)_5-Ph$	H	F
1-98	H	H	H	Me	2	$-(CH_2)_5 - (3-F-Ph)$	H	H
1-99	. Н	H	H .	Me	2	$-(CH_2)_5-(4-F-Ph)$	H	H

1-100	H	H	H	Ме	2	-(CH2)5-(4-Cl-Ph)	H	H
1-101	H	H	H	Me	2	-(CH2)5-(4-Br-Ph)	H	H
1-102	H	H	H	Me	2	-(CH2)5-(3-Me-Ph)	H	H
1-103	H	H	H	Me	2	-(CH2)5-(4-Me-Ph)	H	H
1-104	H	H	H	:Ме	2	$-(CH_2)_5-(3-Et-Ph)$	H	H
1-105	H	H	H	Me	2	$-\left(\mathrm{CH}_{2}\right)_{5}-\left(4-\mathrm{E}\mathrm{t}-\mathrm{Ph}\right)$	H	H
1-106	H	H	H	Me	. 2	-(CH2)5-(3-Pr-Ph)	H .	H
1-107	H	H	H	Me	2	-(CH2)5-(4-Pr-Ph)	H	H
1-108	H	H	H	Me	2	-(CH2)5-(3-iPr-Ph)	H	H
1-109	H	H	H	Me	2	-(CH2)5-(4-iPr-Ph)	H	H
1-110	H	H	H	Me	2	-(CH2)5-(3-Bu-Ph)	H	H
1-111	H	H	H	Me	2	-(CH2)5-(4-Bu-Ph)	H	H
1-112	H	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{5}-\left(3-\mathrm{CF_{3}}-\mathrm{Ph}\right)$	H	H
1-113	H	H	H.	Me	2	$-\left(\mathrm{CH}_{2}\right)_{5}-\left(4-\mathrm{CF}_{8}-\mathrm{Ph}\right)$	H	H
1-114	H	H	H.	Me	2	$-(CH_2)_5-(3-Me0-Ph)$	H	H
1-115	H	H	H	Me	2	-(CH2)5-(4-MeO-Ph)	H	H
1-116	H	H	H	Me	2	$-(CH_2)_5-(3-Et0-Ph)$	H	H
1-117	H	H	H	Me	2	$-(CH_2)_5-(4-Et0-Ph)$	H	H
1-118	H	H	H	Me	2	$-(CH_2)_5 - (3-Pr0-Ph)$	H	H
1-119	H	H	H	Me	2	$-(CH_2)_5-(4-Pr0-Ph)$	H	H
1-120	H	H	H	Me	2	-(CH2)5-(3-iPrO-Ph)	H	H
1-121	H	H	H	Me	2	-(CH2)5-(4-iPr0-Ph)	H	H
1-122	H	H	H	Me	2	$-(CH_2)_5-[3-(2-Et-Pr0)-Ph]$	H	H
1-123	H	H	H	Me	2	$-(CH_2)_5-[4-(2-Et-Pr0)-Ph]$	H	H
1-124	H	H	H	Me	2	$-(CH_2)_5-(3-i BuO-Ph)$	H	H
1-125	H	H	H	Me	2	$-(CH_2)_5-(4-iBu0-Ph)$	H	H
1-126	H	H	H	Me	2	-(CH2)5-(3-MeS-Ph)	H	H
1-127	H	H	H	Me	2	-(CH2)5-(4-MeS-Ph)	H	H
1-128	H	H	H	Me	2	-(CH2)5-(3-EtS-Ph)	H	H

1-129	H	H	H	Ме	2	$-(CH_2)_5-(4-EtS-Ph)$	H	H
1-130	H	H	H	Me	2	-(CH2)5-(3-PrS-Ph)	H	H
1-131	H	H	H	Ме	2	-(CH2)5-(4-PrS-Ph)	H.	Н
1-132	H	H	H	Me	2	-(CH2)5-(3-iPrS-Ph)	H	H
1-133	H	H	H	`Me	· 2	-(CH2)5-(4-iPrS-Ph)	H	H
1-134	H	H	H	Me	2	-(CH2)5-[3-(2-Et-PrS)-Ph]	H	H
1-135	H	H	H	Me	2	-(CH2)5-[4-(2-Et-PrS)-Ph]	H	H
1-136	H	H	H	Me	2	-(CH2)5-(3-iBuS-Ph)	H	H
1-137	H	H	H	Me	2	-(CH2)5-(4-iBuS-Ph)	H	H
1-138	H	H	H	Me	2	-(CH2)5-(3-cHx-Ph)	H	H
1-139	H	H	H	Me	2	-(CH2)5-(4-cHx-Ph)	H	H
1-140	H	Ĥ	H	Me	2	$-(CH_2)_5-(3-Ph-Ph)$	H	H
1-141	H	H	H	Me	2	-(CH2)5-(4-Ph-Ph)	H	H
1-142	H	H	H	Me	2	$-(CH_2)_5-(2, 4-diMe-Ph)$	H	H
1-143	H	H	H	Ме	2	$-(CH_2)_5-(3, 4-diMe-Ph)$	H	·H
1-144	H	H	H	Me	2	$-(CH_2)_5-(3, 5-diMe-Ph)$	Н	H
1-145	H	H	H	Ме	2 ·	-(CH2)5-Np(1)	. Н	H
1-146	H	Н	H	Me	2	$-(CH_2)_5-Np(2)$	H	H
1-147	H	H	H	Me	2	$-(CH_2)_6-cPn$	H	Ή
1-148	H	H	H	Me	2	-(CH2)6-cHx	H	H
1-149	H	H	H	Ме	2	-(CH2)6-cHx	Me	H
1-150	H	H	H	Me	2	-(CH2)6-cHx	H .	Me
1-151	H	H	H	Me	2	$-(CH_2)_6-cHx$	F	H
1-152	H	H	H	Me	2	$-(CH_2)_6-cHx$	H	$\cdot \mathbf{F}$
1-153	H	H	H	Me	2	$-(CH_2)_6 - (3-F-cHx)$	H	H
1-154	H	H	H	Me	2	-(CH2)6-(4¬F-cHx)	H	H
1-155	H	H	H	Me	2	-(CH2)6-(4-Cl-cHx)	H	H
1-156	H	H	H	Me	2	-(CH2)6-(4-Br-cHx)	H	H
1-157	H	H	H	Me	.2	$-(CH_2)_6 - (3-Me-cHx)$	H	H

1-158	H	H	H	Me	2	-(CH2)6-(4-Me-cHx)	H	H
1-159	H	H .	. H	Ме	2	$-(CH_2)_6 - (3-Et-cHx)$	H	H
1-160	H	H	H	Me	2	-(CH2)6-(4-Et-cHx)	H	H
1-161	H	H	H	Me	2	-(CH2)6-(3-Pr-cHx)	H	H
1-162	H	H	H	Me	2	-(CH2)6-(4-Pr-cHx)	H	H
1-163	H	H	H	Me	2	-(CH2)6-(4-iPr-cHx)	H	H
1-164	H	· H	H	Me	2	-(CH2)6-(3-Bu-cHx)	H	H
1-165	H	H	H	Me	2	-(CH2)6-(4-Bu-cHx)	H	H
1-166.	H	H	H	Мe	2	-(CH2)6-(3-CF3-cHx)	H	H
1-167	H	H	H	Me	2	$-(CH_2)_6 - (4-CF_3-cHx)$	H	H
1-168	H	H	H	Me	2	$-(CH_2)_6 - (3-Me0-cHx)$	H	H
1-169	H	H	H	Me	2	-(CH2)6-(4-MeO-cHx)	H	H
1-170	H	H	H	Me	2	$-(CH_2)_6 - (3-Et0-cHx)$	H	H
1-171	H	H	Ħ	Me	2	$-(CH_2)_6-(4-Et0-cHx)$	H	H
1-172	H	H	H	Me	2	$-(CH_2)_6 - (3-Pr0-cHx)$	H	H
1-173	H	H	H	Мe	2	-(CH2)6-(4-Pr0-cHx)	H	Ή.
1-174	H	H	H	Me	2	$-(CH_2)_6 - (3-iPr0-cHx)$	H	H
1-175	H	H	H	Ме	2	-(CH2)6-(4-iPr0-cHx)	H	H
1-176	H	H	H	Ме	2	$-(CH_2)_6-[3-(2-Et-Pr0)-cHx]$	H	H
1-177	Н	H	H	Me	2	$-(CH_2)_6-[4-(2-Et-Pr0)-cHx]$	H	H
1-178	H	H	H	Me	2	$-(CH_2)_6 - (3-iBu0-cHx)$	H	H
1-179	Н	H	H	Me	2	-(CH2)6-(4-iBu0-cHx)	H	H
1-180	H	H	H	Ме	2	-(CH2)6-(3-MeS-cHx)	H	H
1-181	H	H	H	Ме	2	-(CH2)6-(4-MeS-cHx)	H	H
1-182	H	H	H	Me	2	-(CH2)6-(3-EtS-cHx)	H	H
1-183	H	H	H	Me	2	-(CH2)6-(4-EtS-cHx)	H	H
1-184	H	H	H	Me	2	-(CH2)6-(3-PrS-cHx)	H	H
1-185	H	H	H	Me	2	-(CH2)6-(4-PrS-cHx)	H	H
1-186	H	H	H	Me	2	-(CH2)6-(3-iPrS-cHx)	H	H

1-187	H	H	H	Me	2	-(CH2)6-(4-iPrS-cHx)	H	H
1-188	H	H	H	Me	2	$-(CH_2)_6-[3-(2-Et-PrS)-cHx]$	H	H
1-189	H	H .	H	Ме	2	-(CH2)5-[4-(2-Et-PrS)-cHx]	·H	H
1-190	H	H	H	Мe	2	-(CH2)6-(3-iBuS-cHx)	H	H
.1-191	H	H	H	Me	2	$-(CH_2)_6-(4-iBuS-cHx)$	H,	H
1-192	H	H	H	Me	2	-(CH2)6-(3-cHx-cHx)	H	H
1-193	H	H	H	Me	2	-(CH2)6-(4-cHx-cHx)	H	H
1-194	H	H	H	Me	2	-(CH2)6-(3-Ph-cHx)	H	H
1-195	H	H	H	Me	2	-(CH2)6-(4-Ph-cHx)	H	H
1-196	H .	H	H	Me	2	$-(CH_2)_6-(2, 4-diMe-cHx)$	H	H
1-197	H	H	H	Me	2	$-(CH_2)_6-(3, 4-diMe-cHx)$	H	H
1-198	H	H	H	Me	2	-(CH2)6-(3, 5-diMe-cHx)	H	H
1-199	H	H	H	Me	2	$-(CH_2)_6-Ph$	H	H
1-200	H	H	H	Me	2	$-(CH_2)_6-Ph$	Me	H
1-201	H	- H	H :	Ме	2	$-(CH_2)_6-Ph$	H	Me
31-202	H	H	H	Me	2	$-(CH_2)_6-Ph$	F	H
1-203	H	H	, H	Me	2	-(CH2)6-Ph	H	F
1-204	H	H	H	Me	2	$-(CH_2)_6-(3-F-Ph)$	H	H
1-205	H	H	H	Me	2	-(CH2)6-(4-F-Ph)	H	H
1-206	H	H	H	Me	2	-(CH2)6-(4-Cl-Ph)	. Н	H
1-207	H	H	Н.	Me	2	-(CH2)6-(4-Br-Ph)	H	H
1-208	H	H	H	Me	2	-(CH2)6-(3-Me-Ph)	H	H
1-209	H	H	H.	Ме	2	-(CH2)6-(4-Me-Ph)	H	H
1-210	H	H	H	Me	2	-(CH2)6-(3-Et-Ph)	H	H
1-211	H	H	H	Me	2	$-(CH_2)_6 - (4-Et-Ph)$	H	H
1-212	H	H .	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{6}-\left(3-\mathrm{Pr}-\mathrm{Ph}\right)$	H	H
1-213	H	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{6}-\left(4-\mathrm{Pr}-\mathrm{Ph}\right)$	H	H
1-214	H	H	H	Мe	2	-(CH2)6-(3-iPr-Ph)	H	H
1-215	H	H	H	Me	2	-(CH2)6-(4-iPr-Ph)	H	. Н

1-216	H	H	H	Me	2	-(CH2)6-(3-Bu-Ph)	H	H
1-217	H	. Н.	H	Me	2	-(CH2)6-(4-Bu-Ph)	H	H
1-218	H	H	H	Me	. 2	$-(CH_2)_6-(3-CF_3-Ph)$	H	H
1-219	·H	. Н	H	Me	2	$-(CH_2)_6-(4-CF_3-Ph)$	H	H
1-220	H	H	H	Me	2	$-(CH_2)_6-(3-MeO-Ph)$	H	H
1-221	H	H	H	Me	2	-(CH2)6-(4-MeO-Ph)	· H	H
1-222	H	H	H	Me	2	$-(CH_2)_6-(3-Et0-Ph)$	H	H
1-223	H	H	H	Me	2	-(CH2)8-(4-EtO-Ph)	H	H
1-224	. H	H	H	Ме	2	$-(CH_2)_6-(3-Pr0-Ph)$	H	H
1-225	H	H	H	Me	2	-(CH2)6-(4-Pr0-Ph)	H	H
1-226	H	H	H	Мe	2	-(CH2)6-(3-iPrO-Ph)	H	H
1-227	H	Н	H	Me	2	-(CH2)6-(4-iPrO-Ph)	H	H
1-228	H	H -	H	Мe	2	-(CH2)6-[3-(2-Et-Pr0)-Ph]	H	H
1-229	H	H	H	Ме	2	-(CH2)6-[4-(2-Et-Pr0)-Ph]	H	H
1-230	H	· H	. Н	Мe	2	$-(CH_2)_6 - (3-iBu0-Ph)$	H	H
1-231	H	H	H	Me	2	-(CH2)6-(4-iBuO-Ph)	H	H
1-232	H	H	H	Me	2	-(CH2)6-(3-MeS-Ph)	H	·H
1-233	H	H	H	Me	2	-(CH2)6-(4-MeS-Ph)	H	H
1-234	H	H	H	·Ме	2	-(CH2)6-(3-EtS-Ph)	H	H
1-235	H	H	H	Me	2	-(CH2)6-(4-EtS-Ph)	Ħ	H
1-236	H	H	H	Me	2	-(CH2)6-(3-PrS-Ph)	H	H
1-237	H	H	H	Me	2	-(CH2)6-(4-PrS-Ph)	H	H
1-238	H	· H	H	Ме	2	-(CH2)6-(3-iPrS-Ph)	H	H
1-239	H	H	H	Me	2	-(CH2)6-(4-iPrS-Ph)	H	H
1-240	H	H	H	Me	2	-(CH2)6-[3-(2-Et-PrS)-Ph]	H	H
1-241	H	H	H	Me	2	$-(CH_2)_6-[4-(2-Et-PrS)-Ph]$	H	. Н
1-242	H	H	H	Me	. 2	-(CH2)6-(3-iBuS-Ph)	H	H
1-243	H	Н.	H	Me	2	-(CH2)6-(4-iBuS-Ph)	H	H
1-244	H	H	H	Me	2	$-(CH_2)_6-(3-cHx-Ph)$	H	H

1-245	H	H	H	Ме	2	-(CH2)6-(4-cHx-Ph)	H	H
1-246	H	H	H	Me	2	-(CH2)6-(3-Ph-Ph)	H	H
1-247	H	H	Ή	Ме	2	-(CH2)6-(4-Ph-Ph)	H .	H
1-248	H	H	H	Ме	2	$-(CH_2)_6-(2, 4-diMe-Ph)$	H	H
1-249	H	H	H	Me	2	$-(CH_2)_6-(3, 4-diMe-Ph)$	H	H
1-250	H	H	H	Me	2	$-(CH_2)_6-(3, 5-diMe-Ph)$	H	H
1-251	H	H	H	Me	2	-(CH2)6-Np(1)	H	. Н
1-252	·H	H	H	Me	2	-(CH2)6-Np(2)	H	H
1-253	H	Н.	H	Me	2	$-(CH_2)_7-cHx$	H	H
1-254	H	H	H	· Me	2	$-(CH_2)_7 - (4 - F - cHx)$	H	H
1-255	H	H	H	Me	2	-(CH2)7-(4-Me-cHx)	H	H
1-256	H	H	H	Me	2	-(CH2)7-(4-Et-cHx)	H	H
1-257	H	H	H	Me	2	-(CH2)7-(4-CF3-cHx)	·H	H
1-258	H	H	H	Me	2	-(CH2)7-(4-Me0-cHx)	H	H
1-259	H	H	H	Me	2	$-(CH_2)_7 - (4-Et0-cHx)$	H	H
1-260	H	H	H	Me	2	-(CH2)7-(4-MeS-cHx)	H	H
1-261	H	H	H	Me	2	-(CH2)7-(4-cHx-cHx)	H	H
1-262	. Н	H	H	Me	2	-(CH2)7-(4-Ph-cHx)	H	H
1-263	Н	H	H	Me	2	$-(CH_2)_7-Ph$	H	H
1-264	H	H	H	Me	2	$-(CH_2)_7 - (4-F-Ph)$	H .	H
1-265	H	H	H	Me	2	$-(CH_2)_7 - (4-Me-Ph)$	H	H
1-266	H	H	H	Me	2	$-(CH_2)_7 - (4-Et-Ph)$	H	H
1-267	H	H	H	Me	2	$-(CH_2)_7 - (4 - CF_3 - Ph)$	H	H
1-268	H	H	H	Me	2	-(CH2)7-(4-MeO-Ph)	H	H
1-269	H	H	H	Me	2	$-(CH_2)_7 - (4-Et0-Ph)$	H	H
1-270	H	H	H.	Me	2	-(CH2)7-(4-MeS-Ph)	H	H
1-271	H	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{7}-\left(4-\mathrm{cHx-Ph}\right)$	H	H
1-272	H	H	H	Me	2	-(CH2)7-(4-Ph-Ph)	Ĥ	H
1 - 273	H	H	H	Me	2	-(CH2)3-0-cHx	H	H

			•			•		
1-274	H	H	H	Ме	2	$-(CH_2)_3-0-(4-F-cHx)$	H	H
1-275	H	H	H	Ме	2	$-(CH_2)_8-0-(4-Me-cHx)$	H	H
1-276	H	H	H	Ме	2	$-(CH_2)_3-0-(4-Et-cHx)$	H	H
1-277	H	H	H	Ме	2	$-(CH_2)_3-0-(4-CF_3-cHx)$	H	H
1-278	H	H	H	Me	2	$-(CH_2)_8-0-(4-Me0-cHx)$	' H	H
1-279	H	H	H	Me	2	$-(CH_2)_3-0-(4-Et0-cHx)$	H	H
1-280	H	H	H.	Me	2	$-(CH_2)_3-0-(4-MeS-cHx)$	\mathbf{H}	H
1-281	H	H	H	Me	2	$-(CH_2)_3-0-(4-cHx-cHx)$	H -	H
1-282	H	H	H	. M e	2	$-(CH_2)_3-0-(4-Ph-cHx)$	H	H
1-283	H.	H	H	Me	2	$-(CH_2)_8-0-Ph$. H	H
1-284	H	H	H	Me	2	$-(CH_2)_3-0-(4-F-Ph)$	H	H
1-285	H	H	H	Me	2	$-(CH_2)_3-0-(4-Me-Ph)$	H	H
1-286	H	H	H	Me	2	$-(CH_2)_3-0-(4-Et-Ph)$	H	. H
1-287	H	H	H	Me	2	$-(CH_2)_3-0-(4-CF_3-Ph)$	H	H
1-288	H	H	H	Мe	2	$-(CH_2)_3-0-(4-Me0-Ph)$	H	H
1-289	Н.	H	H	Me	2	$-(CH_2)_8-0-(4-Et0-Ph)$	H	H
1-290	H	·. H	H	Me	2	$-(CH_2)_8-0-(4-MeS-Ph)$	H	H
1-291	H	H	H	Me	2	$-(CH_2)_3-0-(4-cHx-Ph)$	H	H
1-292	H	H	H	Me	2	$-(CH_2)_3-0-(4-Ph-Ph)$	H	H
1-293	H	H	H	Me	2	-(CH2)4-0-cPn	H	H
1-294	H	H	H	Me	2	-(CH2)4-0-cHx	Н	H
1-295	H	H	H	Me	2	$-(CH_2)_4-0-cHx$	Me	H
1-296	H	H	H	Me	2	-(CH2)4-0-cHx	H	Me
1-297	H	H	H	Ме	2	-(CH2)4-0-cHx	F	H
1-298	H	H	H	Me	2	-(CH2)4-0-cHx	H	F
1-299	H	H	H	Me	. 2	$-(CH_2)_4-0-(3-F-cHx)$	H	H
1-300	H	H	H	Me	2	-(CH2)4-0-(4-F-cHx)	H	H.
1-301	H	H	H	Me [.]	2	$-(CH_2)_4-0-(4-Cl-cHx)$	H	H
1-302	H	H	H	Me	2	$-(CH_2)_4-0-(4-Br-cHx)$	H	H

1-303	H	H	H	Me	2	$-(CH_2)_4-0-(3-Me-cHx)$	H	H
1-304	H	. Н	H	Me	2	$-(CH_2)_4-0-(4-Me-cHx)$	H	H
1-305	H	H	H	Me	2	-(CH2)4-0-(3-Et-cHx)	H	H
1-306	H	H	H	Мe	2	-(CH2)4-0-(4-Et-cHx)	H	H
1-307	H	H	H	Me	2	$-(CH_2)_4-0-(3-Pr-cHx)$	H	H
1-308	H	H	Ħ	Ме	2	$-(CH_2)_4-0-(4-Pr-cHx)$	H	H
1-309	H	H	H	Me	2	$-(CH_2)_4-0-(4-iPr-cHx)$	H	H
1-310	H	H	H	·Me	2	$-(CH_2)_4-0-(3-Bu-cHx)$	H	H
1-311	H	H	H	Me	2	$-(CH_2)_4-0-(4-Bu-cHx)$	H	H
1-312	H	H	H	Me	2	-(CH2)4-0-(3-CF3-cHx)	H	H
1-313	H .	H	Ή	Me	2	-(CH2)4-0-(4-CF3-cHx)	H	H
1-314	H	H	H	Me	2	$-(CH_2)_4-0-(3-Me0-cHx)$	H	H
1-315	H	. Н	H	Me	2	-(CH2)4-0-(4-Me0-cHx)	H	H
1-316	H	H	H	Me	2	$-(CH_2)_4-0-(3-Et0-cHx)$	H	Ή
1-317	H	H	H	Me	2	-(CH2)4-0-(4-Et0-cHx)	H	H
1-318	H	H	H	Me	2	$-(CH_2)_4-0-(3-Pr0-cHx)$	H	·H
1-319	H	H	H	Мe	2	-(CH2)4-0-(4-Pr0-cHx)	H	H
1-320	H	H	H	Me	2	-(CH2)4-0-(3-iPr0-cHx)	H	H
1-321	H	H	H	Me	2	-(CH2)4-0-(4-iPr0-cHx)	H	H
1-322	H	H	H	Me	2	-(CH2)4-0-[3-(2-Et-Pr0)-cHx]	H	H
1-323	H	H	H	Me	2	-(CH2)4-0-[4-(2-Et-Pr0)-cHx]	H	H
1-324	H	H	H	Me	2	-(CH2)4-0-(3-iBu0-cHx)	H	H
1-325	H	H	H	Me	2	$-(CH_2)_4-0-(4-iBu0-cHx)$	H	H
1-326	Н	H	H	Me	2	$-(CH_2)_4-0-(3-MeS-cHx)$	H	H
1-327	H	H	H	Me	2	-(CH2)4-0-(4-MeS-cHx)	H	H
1-328	H	H	H	Me	2	$-(CH_2)_4-0-(3-EtS-cHx)$	H	H
1-329	H	H	H	Me .	2	$-(CH_2)_4-0-(4-EtS-cHx)$	H	H
1-330	H	H	H	Me	2	$-(CH_2)_4-0-(3-PrS-cHx)$	H	H
1-331	H	H	H	Me	2	-(CH2)4-0-(4-PrS-cHx)	H	H

1-332	H	H	H	Me	2	-(CH2)4-0-(3-iPrS-cHx)	H	H
1-333	H	H	H	Me	2	-(CH2)4-0-(4-iPrS-cHx)	H	H
1-334	H	H	H	Me	2	-(CH2)4-0-[3-(2-Et-PrS)-cHx]	H	H
1-335	H	H	H	Me	2	-(CH2)4-0-[4-(2-Et-PrS)-cHx]	H	H
1-336	H	H	H	Me	2	-(CH2)4-0-(3-iBuS-cHx)	H	H
1-337	H	H	H	Me	2	-(CH2)4-0-(4-iBuS-cHx)	H	H
1-338	H	H	Ħ	Me	2	-(CH2)4-0-(3-cHx-cHx)	H	H
1-339	Ħ	H	H	Me	2	-(CH2)4-0-(4-cHx-cHx)	H	Н
1-340	H	H	H	Me	2	$-(CH_2)_4-0-(3-Ph-cHx)$	H	H
1-341	Ĥ	H	H	Me	2	$-(CH_2)_4-0-(4-Ph-cHx)$	Ħ	H
1-342	H	H	H	Me	2	-(CH2)4-0-(2, 4-diMe-cHx)	H	H
1-343	H	H	H	Me	2	-(CH2)4-0-(3, 4-diMe-cHx)	H	H
1-344	H	H	H	Me	2	-(CH2)4-0-(3, 5-diMe-cHx)	H	H
1-345	H	H	H	Me	2	$-\left(\mathrm{CH}_{2}\right)_{4}$ -0 $-\mathrm{Ph}$	H	H
1-346	H	H	H	Me	2	-(CH ₂) ₄ -0-Ph	Мe	H
1-347	H <	H	H	Me	2	-(CH2)4-0-Ph	H.	Me
1-348	H	H	H	Me	2	-(CH2)4-0-Ph	F	H
1-349	H	H	H	Me	2	-(CH2)4-0-Ph	H	F
1-350	H	H	H	Me	2	$-(CH_2)_4-0-(3-F-Ph)$	H	H
1-351	H	H	H	Me	2	$-(CH_2)_4-0-(4-F-Ph)$	H	H
1-352	H	H	H	Me	2	$-(CH_2)_4-0-(4-Cl-Ph)$	H	H
1-353	H	Н.	H	Me	2	$-(CH_2)_4-0-(4-Br-Ph)$	H	H
1-354	·H	H	H	Me	2	$-(CH_2)_4-0-(3-Me-Ph)$	H	H
1-355	H	H	H	Me	2	$-(CH_2)_4-0-(4-Me-Ph)$	H	H
1-356	H	H	H	Me	2	$-(CH_2)_4-0-(3-Et-Ph)$	H	H
1-357	H	H	H	Me	2	-(CH2)4-0-(4-Et-Ph)	H	H
1-358	H	H	H	Me	2	$-(CH_2)_4-0-(3-Pr-Ph)$	H	H
1-359	H	H	H	Me	2	$-(CH_2)_4-0-(4-Pr-Ph)$	H	H
1-360	H	H	H	Me	2	$-(CH_2)_4-0-(3-iPr-Ph)$	H	H

						•		
1-361	H	H	H	Me	2	$-(CH_2)_4-0-(4-iPr-Ph)$	H	H
1-362	H	H	H	Me	2	$-(CH_2)_4-0-(3-Bu-Ph)$	H	H
1-363	H	H	H	Me .	2	$-(CH_2)_4-0-(4-Bu-Ph)$	H	H
1-364	H	H	H	Me	2	$-(CH_2)_4-0-(3-CF_8-Ph)$	H	H
1-365	H	H	H	Me	2	-(CH2)4-0-(4-CF3-Ph)	H	H
1-366	H	H	Ή	Me	2	$-(CH_2)_4-0-(3-Me0-Ph)$	H	H
1-367	H	H	H	Me	2	-(CH2)4-0-(4-Me0-Ph)	H	H
1-368	H	H	H	Me	2	$-(CH_2)_4-0-(3-Et0-Ph)$	H	H
1-369	H	H .	H	Me	2	$-(CH_2)_4-0-(4-Et0-Ph)$	H	H
1-370	H	H	H	Me	2	$-(CH_2)_4-0-(3-Pr0-Ph)$	H	H
1-371	H	H	H	Me	2	$-(CH_2)_4-0-(4-Pr0-Ph)$	H	H
1-372	H	H	H	Me	2	$-(CH_2)_4-0-(3-iPr0-Ph)$	H	H
1-373	·H	H	Ħ	Me	2	$-(CH_2)_4-0-(4-iPr0-Ph)$	H	H
1-374	H	H ·	H	Me	2	-(CH2)4-0-[3-(2-Et-Pr0)-Ph]	H	Ħ
1-375	Н.	H	H	Me	2	-(CH2)4-0-[4-(2-Et-Pr0)-Ph]	Ħ	H
1-376	H	H	H	Me	2	$-(CH_2)_4-0-(3-iBu0-Ph)$	H	H
1-377	H	H	H	Me	2	$-(CH_2)_4-0-(4-iBu0-Ph)$	H -	Ή
1-378	H	H	H	Me	2	-(CH2)4-0-(3-MeS-Ph)	H	H
1-379	H	H	H	Me	2	$-(CH_2)_4-0-(4-MeS-Ph)$	H	H
1-380	H	H	H	Me	2	$-(CH_2)_4-0-(3-EtS-Ph)$	H	H
1-381	H	H	H	Me	.2	$-(CH_2)_4-0-(4-EtS-Ph)$	H	H
1-382	H	H	H	Me	2	-(CH2)4-0-(3-PrS-Ph)	Ĥ	H
1-383	H	\mathbf{H}	Ħ	Me	2	-(CH2)4-0-(4-PrS-Ph)	H	· • H
1-384	H	H	H	Me	2	$-(CH_2)_4-0-(3-iPrS-Ph)$	H	H
1-385	H	H	H	Me	2	$-(CH_2)_4-0-(4-iPrS-Ph)$	H	H
1-386	H	H	H	Me	2	-(CH2)4-0-[3-(2-Et-PrS)-Ph]	H	·H
1-387	H	H	H	Me	2	-(CH2)4-0-[4-(2-Et-PrS)-Ph]	H	H
1-388	H	H	H	Me	2	$-(CH_2)_4-0-(3-iBuS-Ph)$	H	H
1-389	H	H	H	Me	2	-(CH2)4-0-(4-iBuS-Ph)	H	H

1-390	H	Н	H	Me	2	$-(CH_2)_4-0-(3-cHx-Ph)$	H	H
1-391	H	H	H	Me	2	$-(CH_2)_4-0-(4-cHx-Ph)$	H	H
1-392	H	H	H	Me	2	$-(CH_2)_4-0-(3-Ph-Ph)$	H	H
1-393	H	H	H	Мe	2	$-(CH_2)_4-0-(4-Ph-Ph)$	H	H
1-394	H	H	H	Me	2	-(CH2)4-0-(2, 4-diMe-Ph)	H	H
1-395	H	H	H	Me	2	-(CH2)4-0-(3, 4-diMe-Ph)	H	H
1-396	H	H	H	Me	2	-(CH2)4-0-(3, 5-d i Me-Ph)	H	H
1-397	H	H	H	Me	2	-(CH2)5-0-cHx	H	H
1-398	H	H	H	Me	2	-(CH2)5-0-Ph	H	H
1-399	H	H	H	Me	. 2	-(CH2)6-0-cHx	H	H
1-400	H	H	H	Me	2.	$-(CH_2)_6-0-Ph$	H	H
1-401	H	H	H	Me	2	-(CH2)3-OCH2-cHx	H	H
1-402	H	H	H -	Ме	2	$-(CH_2)_8-OCH_2-(4-F-cHx)$	H	H
1-403	H	H	H	Me	2	-(CH2)3-OCH2-(4-Me-cHx)	H	H
1-404	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Et-cHx)$	H	H
1-405	H	H	H	Me	· 2	-(CH2)3-OCH2-(4-CF3-cHx)	H	H
1-406	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Me0-cHx)$	H	H
1-407	H	H	H	Me	2	$-(CH_2)_8-OCH_2-(4-EtO-cHx)$	H	H
1-408	H	H	H	Мe	2	-(CH2)3-OCH2-(4-MeS-cHx)	H	H
1-409	H	H	H	Me	2	$-(CH_2)_3-0CH_2-(4-cHx-cHx)$	H	H
1-410	H	H	H	Me	2	-(CH2)3-OCH2-(4-Ph-cHx)	H	H
1-411	H	H	H	Me	.2	-(CH2)3-OCH2-Ph	. Н	H
1-412	H	H	H	Me	2	$-(CH_2)_8-OCH_2-(4-F-Ph)$	H	H
1-413	H	H	H	Me	2	$-(CH_2)_3-0CH_2-(4-Me-Ph)$	H	H
1-414	H	H	H	Me	2	$-(CH_2)_8-OCH_2-(4-Et-Ph)$	H	Н
1-415	H	H	H	Me	2	-(CH2)3-0CH2-(4-CF3-Ph)	H	H
1-416	H	H	. H	Мe	2	-(CH2)3-OCH2-(4-MeO-Ph)	H	H
1-417	Ħ	Н.	H	Me	2	-(CH2)3-OCH2-(4-EtO-Ph)	H	H
1-418	H	H	H	Me	. 2	$-(CH_2)_3-OCH_2-(4-MeS-Ph)$	H	H

						•		
1-419	H	H	H	Ме	2	-(CH2)3-OCH2-(4-cHx-Ph)	H	H
1-420	H	·H	Ħ	Ме	2	-(CH2)3-OCH2-(4-Ph-Ph)	H	H
1-421	H	H	H	Ме	2	$-(CH_2)_4-OCH_2-cPn$	H	H
1-422	H	H	H	Me	2	-(CH2)4-OCH2-cHx	H	H
1-423	. Н	H :	H	Me	2	-(CH2)4-OCH2-cHx	.Me	H
1-424	H	. Н	H	Me	2	-(CH2)4-OCH2-cHx	H	Me
1-425	Ħ	H	H	Ме	2	-(CH2)4-OCH2-cHx	F	H
1-426	H	H	H	Me	2	-(CH2)4-OCH2-cHx	H	F
1-427	Ħ	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-F-cHx)$	H	H
1-428	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-F-cHx)$	H	H
1-429	H	. H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Cl-cHx)$	H	H
1-430	H	ΞĦ	H.	Me	2	$-(CH_2)_4-OCH_2-(4-Br-cHx)$	H.	H
1-431	Н	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Me-cHx)$	H	H
1-432	H	·H	H	Me	· 2	$-(CH_2)_4-OCH_2-(4-Me-cHx)$. H	H
1-433	н	H	H	Me	2	-(CH2)4-OCH2-(3-Et-cHx)	H	Ħ
1-434	H	·H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Et-cHx)$	H	H
1-435	H	H	H	Me	. 2	$-(CH_2)_4-OCH_2-(3-Pr-cHx)$	H	H
1-436	H	·H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Pr-cHx)$	H	H
1-437	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-iPr-cHx)$	·H	H
1-438	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Bu-cHx)$	H	H
1-439	H	·H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Bu-cHx)$	H	H
1-440	H	H	H	Me	2	-(CH2)4-OCH2-(3-CF3-cHx)	H	H
1-441	H	H	H	Me	2	-(CH2)4-OCH2-(4-CF3-cHx)	H	H
1-442	H	H	H	Me	2	$-(CH_2)_4$ $-OCH_2$ $-(3-MeO-cHx)$	H	H
1-443	H	H	H	Me	2	-(CH2)4-OCH2-(4-MeO-cHx)	H	H
1-444	H	H	H	Me	· 2	$-(CH_2)_4-OCH_2-(3-EtO-cHx)$	H	H
1-445	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-EtO-cHx)$	H	H
1-446	H	H	H	Me	2	-(CH2)4-OCH2-(3-PrO-cHx)	H	H
1-447	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-PrO-cHx)$	H	H

						-		
1-448	H ·	H	H	Me	2	-(CH2)4-0CH2-(3-iPr0-cHx)	H	H
1-449	H	H	H	Ме	2	$-(CH_2)_4-0CH_2-(4-iPr0-cHx)$	H	H
1-450	H	H	H	Me	2	-(CH2)4-0CH2-[3-(2-Et-Pr0)-cH2	H [x	H
1-451	H	H	H	Me	2	-(CH2)4-0CH2-[4-(2-Et-Pr0)-cH2]	H [x	H
1-452	H	H	H	Me	2	-(CH2)4-0CH2-(3-iBu0-cHx)	Ħ	H
1-453	H	H	H	Me	2 ·	$-(CH_2)_4$ $-0CH_2$ $-(4-iBu0-cHx)$	H	Н
1-454	H	H	H	Me	2	-(CH2)4-OCH2-(3-MeS-cHx)	H	H
1-455	H	H.	H	Me	2	$-(CH_2)_4 - 0CH_2 - (4 - MeS - cHx)$	H	H
1-456	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-BtS-cHx)$	H	H
1-457	H	H	H	Me	2	-(CH2)4-0CH2-(4-EtS-cHx)	H	H
1-458	H	Ħ	H	Ме	2	$-(CH_2)_4-OCH_2-(3-PrS-cHx)$	H	H
1-459	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-PrS-cHx)$	H	H
1-460	H	H	H	Ме	2	$-(CH_2)_4-0CH_2-(3-iPrS-cHx)$	H	H
1-461	H	H	H	Ме	2	-(CH2)4-OCH2-(4-iPrS-cHx)	H	H
1-462	H	H .	H	Me	2	-(CH2)4-0CH2-[3-(2-Et-PrS)-cH	x] H	H
1-463	H	H	H	Ме	2	-(CH2)4-0CH2-[4-(2-Et-PrS)-cH	x] H	H
1-464	H	H	·H	Me	2	$-(CH_2)_4-OCH_2-(3-iBuS-cHx)$	H	H
1-465	H	H	H	Me	2	$-(CH_2)_4$ $-0CH_2$ $-(4-iBuS-cHx)$	Ħ	H
1-466	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-cHx-cHx)$	H	H
1-467	H	H	H	Me	2	$-(CH_2)_4 - 0CH_2 - (4 - cHx - cHx)$	H	H
1-468	H	H	H	Me	2	$-(CH_2)_4 - OCH_2 - (3 - Ph - cHx)$	H	H
1-469	H	H	·H	Me	.2	$-(CH_2)_4$ $-0CH_2$ $-(4-Ph-cHx)$	H	H
1-470	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(2, 4-diMe-cHx)	H	H
1-471	H	H	H	Me	2	-(CH2)4-OCH2-(3, 4-diMe-cHx)	H	H
1-472	H	H	H	Me	2	-(CH2)4-OCH2-(3, 5-diMe-cHx)	H	H
1-473	H.	H	H	Me	2	-(CH2)4-0CH2-Ph	H	H
1-474	H	H	H	Me	2	-(CH2)4-OCH2-Ph	. Me	H
1-475	H	H	H	Me	2	-(CH2)4-0CH2-Ph	H	Me
1-476	H	H	H	Me	2 .	-(CH2)4-0CH2-Ph	F	H

1-477	H ·	H	H	Me	2	-(CH2)4-OCH2-Ph	H	F
1-478	H	Н	H	Me	2	-(CH2)4-OCH2-(3-F-Ph)	H	H
1-479	H	H	H	·Me	2	-(CH2)4-0CH2-(4-F-Ph)	H	H
1-480	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-C1-Ph)$	H	H
1-481	H	H	Ħ	Me	2	$-(CH_2)_4-OCH_2-(4-Br-Ph)$	H	H
1-482	H	H	H	Me	2	-(CH2)4-OCH2-(3-Me-Ph)	H	H
1-483	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Me-Ph)$	H	H
1-484	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Et-Ph)$	H	H
1-485	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Et-Ph)$	H	H
1-486	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Pr-Ph)$	H	H
1-487	Ħ	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-Pr-Ph)$	H	H
1-488	H	H	H	Me	2	-(CH2)4-0CH2-(3-iPr-Ph)	H	H
1-489	H	H	H	Me	2	$-(CH_2)_4$ $-0CH_2$ $-(4-iPr-Ph)$	H	Н
1-490	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-Bu-Ph)$	H	H
1-491	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-Bu-Ph)$	H	H
1-492	H	· H	H	Me	2	$-(CH_2)_4 - 0CH_2 - (3 - CF_3 - Ph)$	H	H
1-493	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-CF_3-Ph)$	H	Ή
1-494	H	H	H	Me	2	-(CH2)4-OCH2-(3-MeO-Ph)	H	H
1-495	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-MeO-Ph)$	H	H
1-496	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-Et0-Ph)$	H	H
1-497	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-Et0-Ph)$	H	H
1-498	H	H	H	Мe	2	$-(CH_2)_4-0CH_2-(3-Pr0-Ph)$	H	H
1-499	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Pr0-Ph)$	H	H
1-500	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-iPrO-Ph)$	H	H
1-501	H	H	H	Me	2	$-(CH_2)_4 - 0CH_2 - (4 - i Pr 0 - Ph)$	H	H
1-502	H	H	H	Me	2	-(CH2)4-OCH2-[3-(2-Et-PrO)-Ph]	H	H
1-503	H	H	H	Me	2	-(CH2)4-OCH2-[4-(2-Et-Pr0)-Ph]	H	H
1-504	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-iBuO-Ph)$	H	H
1-505	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-iBuO-Ph)$	H	H

1-506	Н	H ·	H	Me	2	-(CH2)4-OCH2-(3-MeS-Ph)	H	$\cdot_{\mathbf{H}}$
1-507	H	H.	H	Me	2	-(CH2)4-OCH2-(4-MeS-Ph)	H	H
1-508	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-EtS-Ph)$	H	H
1-509	H	H	H	Me	2	-(CH2)4-OCH2-(4-EtS-Ph)	H	H
1-510	H	H	H.	Me	2	$-(CH_2)_4-OCH_2-(3-PrS-Ph)$	H	H
1-511	H	H	H	Me	2	-(CH2)4-OCH2-(4-PrS-Ph)	H	H
1-512	H	H	H	Me	2	-(CH2)4-OCH2-(3-iPrS-Ph)	H	H
1-513	H	H	H	Мe	2	-(CH2)4-0CH2-(4-iPrS-Ph)	H	H
1-514	H	H	H	Me	2	-(CH2)4-0CH2-[3-(2-Et-PrS)-Ph]	H	H
1-515	H	H	H	Me	2	$-(CH_2)_4-OCH_2-[4-(2-Et-PrS)-Ph]$	H	Ħ
1-516	H	H	H	Me	2	-(CH2)4-OCH2-(3-iBuS-Ph)	H	H
1-517	H	H	H	Me	2	$-(CH_2)_4$ $-OCH_2$ $-(4-iBuS-Ph)$	H	Н
1-518	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-cHx-Ph)$	H	H
1-519	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-cHx-Ph)$	H	H
1-520	H	H	H	Me	2	-(CH2)4-OCH2-(3-Ph-Ph)	H	, H
1-521	H .	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Ph-Ph)$	H	H
1-522	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(2, 4-diMe-Ph)$	H	H
1-523	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3, 4-diMe-Ph)$	H	H
1-524	H	H	Η	Me	2	-(CH2)4-OCH2-(3, 5-diMe-Ph)	H	Ή
1-525	H	H	H	Me	2	$-(CH_2)_5-OCH_2-cHx$	H	H
1-526	H	H	H	Me	2	-(CH2)5-OCH2-Ph	H	·H
1-527	H	H	H	Me	2	-(CH2)6-OCH2-cHx	H	H
1-528	H	H	H	Me	2	$-(CH_2)_6-OCH_2-Ph$	H	H
1-529	H	H	H	Me	2	-C≡C-cHx	H	H
1-530	H	H	H	Me	2	$-C \equiv C - (4 - F - cHx)$	H	H
1-531	H	H	H	Me	2	$-C \equiv C - (4 - Me - cHx)$	H	H
1-532	H	H	H	Мe	2	$-C \equiv C - (4 - Et - cHx)$	H	H
1-533	H	H	H	Me	2	$-C \equiv C - (4 - CF_3 - cHx)$	H	H
1-534	H	H	H	Me	2	$-C \equiv C - (4 - MeO - cHx)$	H	H

1-535	H	H	Н	Ме	2	$-C \equiv C - (4 - Et0 - cHx)$	H	H
1-536	H	H	H	Мe	2	$-C \equiv C - (4 - MeS - cHx)$	H	H
1-537	H	H	: H	Me	2	$-C \equiv C - (4 - cHx - cHx)$	H	H
1-538	H	H	H	Ме	2	$-C \equiv C - (4 - Ph - cHx)$. · H	H
1-539	H	H	Ħ	Ме	· 2	-C≡C-Ph	H	H
1-540	H	H	H	Me	2	$-C \equiv C - (4 - F - Ph)$	H	·H
1-541	H	H	H	Me	2	$-C \equiv C - (4 - Me - Ph)$	H	H
1-542	H	H	Ħ	Me	2	$-C \equiv C - (4 - Pr - Ph)$	H	H
1-543	H	H	H	·Me	2	$-C \equiv C - (4 - Bu - Ph)$	H	H
1-544	H	H	H	Me	2	-C = C - (4 - MeO - Ph)	H	H
1-545	H	H	H	Me	2	$-C \equiv C - (4 - Bt0 - Ph)$	H	H
1-546	H	H	H	Me	2	$-C \equiv C - (4 - PrO - Ph)$	H	H
1-547	H	H	H	-Me	2	$-C \equiv C - (4 - cHx - Ph)$	H	H
1-548	H	H	H	Me	2	$-C \equiv C - (4 - Ph - Ph)$	H	H
1-549	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H
1-550	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - F - cHx)$	H	H
1-551	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Me - cHx)$	H	H
1-552	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - (4 - Et - cHx)$	H	H
1-553	H	H .	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - CF_3 - cHx)$	H	H
1-554	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - MeO - cHx)$	H	H
1-555	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et0 - cHx)$	H	H
1-556	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - MeS - cHx)$	H	H
1-557	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - cHx - cHx)$	H	· H ·
1-558	H	Н	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Ph - cHx)$	H	H
1-559	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H
1-560	H.	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - F - Ph)$	H	H
1-561	H	Ħ	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Me - Ph)$	H	· H
1-562	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et - Ph)$	H	H
1-563	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - (4 - CF_3 - Ph)$	H	H

1-564	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - MeO - Ph)$	H	H.
i-565	H	Н .	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et0 - Ph)$	H	H
1-566	H	H	Ħ	Мe	2	$-C \equiv C - (CH2)2 - (4-MeS-Ph)$	H	H
1-567	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - cHx - Ph)$	H	H
1-568	H	H	H	Me	.2	$-C \equiv C - (CH_2)_2 - (4 - Ph - Ph)$	H	H
1-569	H	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - cPn$	H	Н.
1-570	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H
1-571	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	H.
1-572	H	Н.	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Me
1-573	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H
1-574	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Н	. F
1-575	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - F - cHx)$	H	H
1-576	H	. Н	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	H
1-577	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - cHx)$	H	H
1-578	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H
. 1-579	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Me - cHx)$	H	H
1-580	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - cHx)$	· H	H
1-581	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Et - cHx)$	H	H
1-582	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - cHx)$	H	H
1-583	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Pr - cHx)$	H	.H
1-584	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - cHx)$	H	H
1-585	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr - cHx)$	H	H
1-586	H	H	H.	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Bu - cHx)$	H	H
1-587	H	H	. Н	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	H	H
1-588	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - CF_3 - cHx)$	H	H
1-589	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H
1-590	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeO - cHx)$	H	H
1-591	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - cHx)$	H	H
1-592	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3 - Et0 - cHx)$	H	H

1-593	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - E t 0 - cHx) $ H	H
1-594	H	Ħ	H .	Me	2	$-C \equiv C - (CH_2)_{a} - (3 - Pr0 - cHx) $ H	H
1-595	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - cHx) \qquad \qquad H$	H
1-596	H	· H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i PrO - cHx) $ H	H
1-597	H	H	H	Me	2	$-\dot{C} \equiv C - (CH_2)_3 - (4 - i Pr 0 - cHx) \qquad H$	H
1-598	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - Pr0) - cHx]$ H	H
1-599	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - Pr0) - cHx]$ H	H
1-600	H	H	H	Me	· 2	$-C \equiv C - (CH2)3 - (3 - iBu0 - cHx) $ H	H
1-601	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iBuO - cHx) $ H	H
1-602	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx) $ H	H
1-603	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - cHx) $ H	H
1-604	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3 - EtS - cHx) $ H	H
1-605	H	H	H	Me	2	$-C \equiv C - (CH2)-8 - (4 - EtS - cHx) $ H	H
1-606	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - PrS - cHx) $ H	H
∄1 −607	H	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (4 - PrS - cHx) $ H	H
1-608	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i PrS - cHx) $ H	H
1-609	Н	H	H	Ме	2	$-C \equiv C - (CH2)3 - (4 - i PrS - cHx) $ H	H
1-610	H	H	· H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - PrS) - cHx]$ H	H
1-611	H	Н	H	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - PrS) - cHx]$ H	H
1-612	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i BuS - cHx) $ H	H
1-613	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i BuS - cHx) $ H	H
1-614	H	н	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - cHx - cHx)$ H	H
1-615	H	н	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - cHx - cHx) $ H	H
1-616	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Ph - cHx) $ H	H
1-617	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Ph - cHx) $ H	H
1-618	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$ H	H
1-619	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - cHx)$ H	H
1-620	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$ H	H
1-621	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph $ H	H

1-622	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H
1-623	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Me
1-624	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	F	Н
1-625	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	F
1-626	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - F - Ph)$	H	H
1-627	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$	H	H
1-628	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - Ph)$	H	H
1-629	H	H	·H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - Ph)$	H	H
1-630	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3 - Me - Ph)$	H	H
1-631	H	H.	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H
1-632	H	H	, H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Et - Ph)$	H	Ħ
1-633	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	H
1-634	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Pr - Ph)$	H	H
1-635	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - Ph)$	H	H
1-636	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - iPr - Ph)$	H	H
1-637	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	H
1-638	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-Bu-Ph)$	H	»H
1-639	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - Ph)$	H	H
1-640	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - CF_3 - Ph)$	H	H
1-641	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H
1-642	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeO - Ph)$	H	H
1-643	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - Ph)$	H	H
1-644	H	. H	. Н	Me	2	$-C \equiv C - (CH_2)_3 - (3 - EtO - Ph)$	H	H
1-645	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - Ph)$	H	H
1-646	H	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (3 - Pr0 - Ph)$	H	H
1-647	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - Ph)$	H	H
1-648	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i Pr 0 - Ph)$	H	H
1-649	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr 0 - Ph)$	H	H
1-650	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - Pr0) - Ph]$] H	H

119 `

1-651	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - Pr0) - Ph]$	H	H
1-652	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3 - i Bu0 - Ph)$	H	H
1-653	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - i Bu0 - Ph)$	H	H
1-654	H	H	H	Me	2	$-C = C - (CH_2)_3 - (3 - MeS - Ph)$	H	H
1-655	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H
1-656	H	H	H	Me ·	; 2	$-C = C - (CH_2)_8 - (3 - E t S - Ph)$	H	H
1-657	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - E t S - Ph)$	H	H
1-658	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3-PrS-Ph)$	H	H
1-659	H	. Н	H	Ме	2	$-C \equiv C - (CH_2)_3 - (4 - PrS - Ph)$	H	H
1-660	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i Pr S - Ph)$	H	H
1-661	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i PrS - Ph)$	H	H
1-662	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - [3 - (2 - Et - PrS) - Ph]$	H	H
1-663	H	·H	H	Me	· 2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - PrS) - Ph]$	H	H
1-664	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3 - i BuS - Ph)$	H	H
1-665	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i BuS - Ph)$	H .	H
1-666	H	H	H.	Me	2	$-C \equiv C - (CH_2)_3 - (3 - cHx - Ph)$	H	H
1-667	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - cHx - Ph)$	H	H
1-668	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Ph - Ph)$	H	H
1-669	H	Ħ	H	Ме	2	$-C \equiv C - (CH_2)_3 - (4 - Ph - Ph)$	H	H
1-670	H	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - Ph)$	H	H
1-671	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - Ph)$	H	H
1-672	. H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe-Ph)$	H	H
1-673	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Np(1)$	H	·H
1-674	H ·	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Np(2)$	H	H
1-675	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cPn$	H	H
1-676	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H
1-677	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H
1-678	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Me
1-679	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H

1-680	H	H.	H	Ме	2	$-C \equiv C - (CH_2)_4 - cHx$	Ħ	F
1-681	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - F - cHx)$	H	H
1-682	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	H
1-683	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - cHx)$	H	- H
1-684	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	H
1-685	H	H	H	Me	·2	$-C \equiv C - (CH_2)_4 - (3 - Me - cHx)$	H	H
1-686	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - cHx)$	H	H
.1-687	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et - cHx)$	H	H
1-688	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	H	H
1-689	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Pr - cHx)$	H	H
1-690	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H .	H
1-691	H	H	Н	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr - cHx)$	H	H
1-692	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Bu - cHx)$	H	H
1-693	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx)$	H	H
1-694	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (3 - CF3 - cHx)$	H	H
1-695	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - cHx)$	H	H
1-696	H	• Н	H	Me	2	-C = C - (CH2)4 - (3 - Me0 - cHx)	H	-Н
1-697	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me0 - cHx)$	H	H
1-698	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et0 - cHx)$	H	H
1-699	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	H
1-700	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Pr0 - cHx)$	H	H
1-701	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - cHx)$	H	H
1-702	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Pr0 - cHx)$	H	H
1-703	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr0 - cHx)$	H	H
1-704	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - Pr0) - cHx]$] H	H
1-705	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - Pr0) - cHx]$	H [:	H
1-706	H	• Н	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iBuO - cHx)$	H	H
1-707	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iBuO - cHx)$	H	H
1-708	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - cHx)$	H	H

1-709	H	H	H	Ме	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - cHx)$	H	H
1-710	H	H ·	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - EtS - cHx)$	H	H
1-711	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - EtS - cHx)$	H	Ħ
1-712	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - PrS - cHx)$	H	H
1-713	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrS - cHx)$	H	H
1-714	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (3 - i PrS - cHx)$	H	H
1-715	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i PrS - cHx)$	H	H
1-716	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - PrS) - cHx]$] H	H
1-717	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - PrS) - cHx]$] H	H
1-718	H	H	H	Me	2	$-C = C - (CH_2)_4 - (3 - i BuS - cHx)$	H	H
1-719	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i BuS - cHx)$	H	H
1-720	H	H.	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - cHx - cHx)$	H	H
1-721	H	· H	H .	Me	2	$-C \equiv C - (CH_2)_4 - (4 - cHx - cHx)$	H	H
1-722	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Ph - cHx)$	H	H
1-723	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Ph - cHx)$	H	H
1-724	H	H	Ή	Me	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	Н
1-725	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	H
1-726	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	H	H
1-727	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H
1-728	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	Me	H
1-729	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Me
1-730	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H
1-731	H	H	Н.	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F
1-732	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - F - Ph)$	·H	H
1-733	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	H	H
1-734	Н	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - Ph)$	H	H
1-735	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	H
1-736	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Me - Ph)$	H	H
1-737	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H

						•		
1-738	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et - Ph)$	H	H
1-739	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	H	H
1-740	H	\mathbf{H}	H	Me.	2	$-C \equiv C - (CH_2)_4 - (3 - Pr - Ph)$	H	H
1-741	H	\mathbf{H} :	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	H	H
1-742	H	$\cdot \mathbf{H}$	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Pr - Ph)$	H	H
1-743	H	H	H	Me	2 ·	$-C \equiv C - (CH_2)_4 - (4 - i Pr - Ph)$	H	H
1-744	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Bu - Ph)$	H	H
1-745	Ħ	H	H	Мę	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H
1-746	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - CF_3 - Ph)$	H	H
1-747	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - CF_8 - Ph)$	H	H
1-748	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Me0 - Ph)$	H	H
1-749	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - Ph)$	H	H
1-750	H	H	H	Me	2 .	$-C \equiv C - (CH2)4 - (3 - Et 0 - Ph)$	H	H
1-751	H	. H	H	Ме	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - Ph)$	H	H
1-752	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Pr0 - Ph)$	H	H
1-753	H	H	·H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - Ph)$	H	H
1-754	H	H	H	Me	2	$-C \equiv C - (CH2)_{-4} - (3 - i Pr 0 - Ph)$	H	H
1-755	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr 0 - Ph)$	H	H
1-756	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - Pr0) - Ph]$	H	H
1-757	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - Pr0) - Ph]$	H	Ή
1-758	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i BuO - Ph)$	H	H
1-759	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i BuO - Ph)$	H	H
1-760	H	H	H	Me	2	-C = C - (CH2)4 - (3 - MeS - Ph)	H	H
1-761	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	H
1-762	H	H	Н	Me	2	$-C \equiv C - (CH_2)_4 - (3 - EtS - Ph)$	H	H
1-763	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - EtS - Ph)$	H	H
1-764	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - PrS - Ph)$	H	H
1-765	H	H	Н	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrS - Ph)$. H .	H
1-766	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i PrS - Ph)$	H	H

1-767	H	H	H	Ме	2	$-C \equiv C - (CH_2)_4 - (4 - i PrS - Ph)$	H	H
1-768	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - PrS) - Ph]$	H	H
1-769	H	H	·H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - PrS) - Ph]$	H	H
1-770	H	\mathbf{H}_{\cdot}	H	Ме	2	$-C \equiv C - (CH_2)_4 - (3 - i BuS - Ph)$	H	H
1-771	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i BuS - Ph)$	H	H
1-772	H	H .	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - cHx - Ph)$	H	H
1-773	·H	H	·H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - cHx - Ph)$	Ħ	. H
1-774	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3 - Ph - Ph)$	H	H
1-775	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Ph - Ph)$	H	H
1-776	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - Ph)$	H	H
1-777	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe-Ph)$	H	H
1-778	H	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - Ph)$	H	H
1-779	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Np(1)$	H	H
1-780	H	H	H	-Me	2	$-C \equiv C - (CH_2)_4 - Np(2)$	H	H
1-781	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H
1-782	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - F - cHx)$	H	H
1-783	H	Н	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Me - cHx)$	H	H
1-784	H	H	H	-Me	2	$-C \equiv C - (CH_2)_5 - (4 - Et - cHx)$	H	. Н
1-785	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - CF_3 - cHx)$	H	H
1-786	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Me0 - cHx)$	H	H
1-787	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - E t 0 - cHx)$	Ħ	H
1-788	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeS - cHx)$	H-	Н.,
1-789	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - cHx - cHx)$	H	H
1-790	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Ph - cHx)$	H	H
1-791	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H
1-792	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - F - Ph)$	Н	H
1-793	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Me - Ph)$	H	H
1-794	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Et - Ph)$	H	H
1-795	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - CF_3 - Ph)$	H	H

							•	
1-796	H	·H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeO - Ph)$	H	Ή
1-797	H	H	H	'Me	. 2	$-C \equiv C - (CH2)5 - (4 - Et 0 - Ph)$	H	H
1-798	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeS - Ph)$	H	H
1-799	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - cHx - Ph)$	H	H
1-800	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Ph - Ph)$	H	H
1-801	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H
1-802	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - F - cHx)$	H	H
1-803	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Me - cHx)$	• Н	H
1-804	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et - cHx)$	H	H
1-805	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - CF_3 - cHx)$	H	H
1-806	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeO - cHx)$	H	H
1-807	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et0 - cHx)$	·· H	H
1-808	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeS - cHx)$	H	H
1-809	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - cHx - cHx)$	H	H
1-810	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Ph - cHx)$	H	H
1-811	H	H	H	- Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H
1-812	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - F - Ph)$	H	H
1-813	H	H	H	Me	2 .	$-C \equiv C - (CH_2)_6 - (4 - Me - Ph)$	H	H
.1-814	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et - Ph)$	H	. Н
1-815	H	.H .	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - CF_3 - Ph)$	H	H
1-816	Ħ	: H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeO - Ph)$	H	H
1-817	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - EtO - Ph)$	H	H
1-818	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeS - Ph)$	H	H
1-819	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - cHx - Ph)$	H	H
1-820	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Ph - Ph)$	H	H
1-821	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - cHx$	H	H
.1-822	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - F - cHx)$	H	H
1-823	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Me - cHx)$	H	H
1-824	H	H	H	Мe	2	$-C \equiv C - CH_2 - 0 - (4 - Et - cHx)$	H	H

1-825	H	H	Ή	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CF_3 - cHx)$	\mathbf{H}_{\perp}	H
1-826	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Me0 - cHx)$	H	Ή
1-827	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et0 - cHx)$	H	H
1-828	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeS - cHx)$	H	H
1-829	H	H	H	Me .	2	$-C \equiv C - CH_2 - 0 - (4 - cHx - cHx)$	H	H
1-830	H	H	H	Мe	2	$-C \equiv C - CH_2 - 0 - (4 - Ph - cHx)$, Ħ	H
1-831	H	H	H	Me	2	$-C \equiv C - CH_2 - O - Ph$	H	H
1-832	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - F - Ph)$	H	H
1-833	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Me - Ph)$	H	H
1-834	H	H	H.	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et - Ph)$	H	H
1-835	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CF_3 - Ph)$	H	H
1-836	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Me0 - Ph)$	H	H
1-837	Ħ	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et0 - Ph)$	H	Ή
1-838	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeS - Ph)$	H	H
1-839	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - cHx - Ph)$	H	H
1-840	H	H	H	.¹ M e	2	$-C \equiv C - CH_2 - 0 - (4 - Ph - Ph)$	H	H
1-841	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cPn$	H	H
1-842	Ħ	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H
1-843	H	H	H	·Me	2	$-C \equiv C - (CH_2)_{\frac{1}{2}} 0 - cHx$	Me	H
1-844	H	H	Ή	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	·Me
1-845	H	H	H,	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	H
1-846	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F
1-847	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - F - cHx)$	H	H
1-848	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	H
1-849	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - C1 - cHx)$	H	H
1-850	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 0 - (4 - Br - cHx)$	H	H
1-851	H	\mathbf{H}	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Me - cHx)$	H	H
1-852	H	H	Н	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - cHx)$	H	H
1-853	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Et - cHx)$	Á	Ħ

1-854	Н	Н	Н	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - E t - cHx)$	H	H
1-855	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Pr - cHx)$	H	H
1-856	. Н	H	Н.	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - cHx)$	H	H
1-857	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - cHx)$	H	H
1-858	H	. H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (3 - Bu - cHx)$	H	H
1-859	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	H	H
1-860	Н.	H	H	⊪Me	2	$-C \equiv C - (CH_2)_2 O - (3 - CF_3 - cHx)$	H	H
1-861	H	· H	H	Ме	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - cHx)$	H	H
1-862	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Me0 - cHx)$	H	H
1-863	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - cHx)$	H	H
1-864	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - EtO - cHx)$	H	H
1-865	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - cHx)$	H	H
1-866	H	H	Н.	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrO - cHx)$	Н,	H
1-867	H	. Н	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrO - cHx)$	H	H
1-868	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i PrO - cHx)$	H	H
1-869	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrO - cHx)$	H	H
1-870	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [3 - (2 - Et - Pr0) - c]$	Hx] H	I H
1-871	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [4 - (2 - Et - Pr0) - c]$	Hx] H	H
1-872	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 O - (3 - i BuO - cHx)$	H	H
1-873	Н	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - iBu0 - cHx)$	H	H
1-874	. Н	H	H	Me	2	$-C \equiv C - (CH2)20 - (3 - MeS - cHx)$	H	H
1-875	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - MeS - cHx)$	H	H
1-876	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - EtS - cHx)$	H	H
1-877	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - EtS - cHx)$	H	H
1-878	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrS - cHx)$	H	H
1-879	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrS - cHx)$	H	H
1-880	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i Pr S - cHx)$	H	H
1-881	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr S - cHx)$	H	H
1-882	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - [3 - (2 - Et - PrS) - c]$	Hx] F	H H

1-883	H	Н	H	∙Me	2	$-C \equiv C - (CH_2)_2 O - [4 - (2 - Et - PrS) - cH_2]$	Ix] H	H
1-884	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i BuS - cHx)$	H ·	H
1-885	H	H	H	νМе	2	$-C \equiv C - (CH_2)_2 O - (4 - i BuS - cHx)$	H	H
1-886	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - cHx - cHx)$	H	H
1-887	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - cHx - cHx)$	H	H
1-888	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Ph - cHx)$	H	H
1-889	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Ph - cHx)$	H	H
1-890	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (2, 4 - diMe - cHx)$	H	H
1-891	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - cHx)$	H	H
1-892	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 5 - diMe - cHx)$	Ħ	H
1-893	. Н	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H
1-894	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	Me	H
1-895	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	Me
1-896	H	H	H	Me	2	$-C \equiv C - (CH_2) \sqrt{20 - Ph}$	F	H
1-897	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	F
1-898	. н	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (3 - F - Ph)$	H	H
1-899	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - F - Ph)$	H	H
1-900	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Cl - Ph)$	H	Н
1-901	H	·H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Br - Ph)$	H	H
1-902	H	H	H	Me	· 2	$-C \equiv C - (CH_2)_2 0 - (3 - Me - Ph)$	H	H
1-903	Н .	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me - Ph)$	H	H
1-904	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Et - Ph)$	H	H
1-905	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	H
1-906	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Pr - Ph)$	H	H
1-907	H	H	H	Me	· 2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - Ph)$	H	H
1-908	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i Pr - Ph)$	H	H
1-909	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - Ph)$	Н	H
1-910	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3-Bu-Ph)$	H	H
1-911	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Bu - Ph)$	H	H

1-912	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 O - (3 - CF_3 - Ph)$ H	H
1-913	- Н	H ·	H	Me [.]	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - Ph)$ H	H
1-914	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Me0 - Ph)$ H	H
1-915	H	·H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - MeO - Ph)$ H	H
1-916	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - EtO - Ph)$ H	H
1-917	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - EtO - Ph)$ H	H
1-918	H	·H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrO - Ph)$ H	H
1-919	H	Н.	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrO - Ph)$ H	H
1-920	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i Pr O - Ph) $ H	H
1-921	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrO - Ph) $ H	H
1-922	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 O - [3 - (2 - Et - PrO) - Ph]$ H	H
1-923	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [4 - (2 - Et - Pr0) - Ph]$ H	H
1-924	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i BuO - Ph) $ H	H
1-925	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - iBu0 - Ph) $ H	H
1-926	H	Ħ	H	Ме	2	$-C \equiv C - (CH_2)_2 O - (3 - MeS - Ph) $ H	H
1-927	H	H	H	Me	2	$-C = C - (CH_2)_2 0 - (4 - MeS - Ph) $ H	. Н
1-928	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - EtS - Ph) $ H	H
1-929	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - E t S - Ph) $ H	H
1-930	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrS - Ph) $ H	H
1-931	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - PrS - Ph) $ H	H
1-932	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i Pr S - Ph) $ H	H
1-933	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - i PrS - Ph) $ H	H
1-934	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [3 - (2 - Et - PrS) - Ph] H$	H
1-935	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [4 - (2 - Et - PrS) - Ph]$ H	H
1-936	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - i BuS - Ph) $ H	H
1-937	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - i BuS - Ph) $ H	H
1-938	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - cHx - Ph)$ H	H
1-939	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - cHx - Ph)$ H	H
1-940	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3-Ph-Ph) $ H	H

•								
1-941	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Ph - Ph)$	H	H
1-942	H	H	H	Me	2 ·	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - Ph)$	H	H
1-943	H	H	H	-Me	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - Ph)$	H	H
1-944	H	H	: H	Me	2	-C≡C-(CH ₂) ₂ O-(3, 5-diMe-Ph)	H	H
1-945	H	H	.H	Me	2	$-C \equiv C - (CH_2)_{8} O - cHx$	H	H
1-946	H	: H	·H	Me	2	$-C \equiv C - (CH_2)_3 O - Ph$	H	Н
1-947	H	H	H	Me	.2	$-C \equiv C - (CH_2)_4 O - cHx$	H	H
1-948	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 0 - Ph$	H	· H
1-949	H	H	H	Me	2	$-C = C - CH_2 - 0CH_2 - cHx$	H	H
1-950	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - F - cHx)$	H	H
1-951	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Me - cHx)$	H	H
1-952	H	Н	$\cdot \mathbf{H}$	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et - cHx)$	H	H
1-953	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - CF_3 - cHx)$	H	H
1-954	H	·H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeO - cHx)$	H	H
1-955	H	·H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et0 - cHx)$	H	H
1-956	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeS - cHx)$	H	H
1-957	H	H	H	∝ ∞Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - cHx - cHx)$	H	H
1-958	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Ph - cHx)$	Н	H
1-959	H	H	·H	Me	2	$-C \equiv C - CH_2 - OCH_2 - Ph$	H	H
1-960	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - F - Ph)$	H	H
1-961	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Me - Ph)$	H	H
1-962	H -	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Et - Ph)$	H	Н
1-963	H	· · · H ·	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - CF_3 - Ph)$	H	H
1-964	H.	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - MeO - Ph)$	H	H
1-965	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et0 - Ph)$	H	H
1-966	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - MeS - Ph)$	H	H
1-967	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - cHx - Ph)$. Н	H
1-968	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Ph - Ph)$	H	H
1-969	H	H	Ħ	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cPn$	H	H

	1-970	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	H
	1-971	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	Me	H
	1-972	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	Me
	1-973	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	F	·H
	1-974	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	Ĥ	F
	1-975	H	. Н	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - F - cHx)$	H	H
	1-976	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - F - cHx)$	H	H
•	1-977	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - C1 - cHx)$	H	H
	1-978	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Br - cHx)$	Ħ	H
	1-979	H	· H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Me - cHx)$	H	H
	1-980	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Me - cHx)$	H	H
	1-981	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et - cHx)$	H	H
	1-982	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et - cHx)$	H	H
	1-983	H	·H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr - cHx)$	H	H
	1-984	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr - cHx)$	H	H
	1-985	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPr - cHx)$	H	H
	1-986	H	: H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Bu - cHx)$	H	H
	1-987	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bu - cHx)$	H	H
	1-988	H	H	H	Me	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - CF_3 - cHx)$	H	H
	1-989	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - CF_3 - cHx)$	H	H.
	1-990	H	·H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Me0 - cHx)$	H	H
	1-991	H	H	H	Ме	2	$-C \equiv C - (CH_2)_{\cdot 2} - 0CH_2 - (4 - MeO - cHx)$	H	H
	1-992	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et0 - cHx)$	H	H
	1-993	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et0 - cHx)$	H	H
	1-994	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr0 - cHx)$	H	H
	1-995	Н	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr0 - cHx)$	H	Н
•	1-996	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iPr0 - cHx)$		Н
	1-997	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i Pr 0 - cHx)$		H
	1-998	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - [3 - (2 - Et - Pr0) c]$	Hx]	нн

1-999	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [4 - (2 - Et - Pr0) cH_2]$	Ix]	H	H
1-1000	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBu0 - cHx)$	H		H
1-1001	H	H	H	Me	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iBu0 - cHx)$	H		H
1-1002	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - MeS - cHx)$	H		H
1-1003	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeS - cHx)$	H		H
1-1004	Ή	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - EtS - cHx)$	H		H
1-1005	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - EtS - cHx)$	H		H
1-1006	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - PrS - cHx)$	H		H
1-1007	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - PrS - cHx)$	H		H
1-1008	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - i PrS - cHx)$	H		H
1-1009	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i PrS - cHx)$	H		H
1-1010	H	H.	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Et - PrS)] cH_2$	[x]	H	H
1-1011	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [4 - (2 - Et - PrS) cH_2]$	[x]	H	H
1-1012	H	H	H	`Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBuS - cHx)$	H		H
1-1013	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i BuS - cHx)$	H		H
1-1014	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - cHx - cHx)$	H		H
1-1015	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - cHx - cHx)$	H		H
1-1016	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Ph - cHx)$	H		H
1-1017	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Ph - cHx)$	H		H .
1-1018	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (2, 4 - diMe - cH_2)_2$	x) H		H
1-1019	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 4 - diMe - cH_2)$	x) E	Í	H
1-1020	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 5 - diMe - cH_2)$	x) H	Į	H
1-1021	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$	H		H
1-1022	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$	Me		H
1-1023	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$	H		Me
1-1024	H	H	H	Me ·	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	F		H
1-1025	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$	H		F
1-1026	H.	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - F - Ph)$	H		H
1-1027	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - F - Ph)$	H		H

1-1028	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Cl - Ph)$	H	H
1-1029	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Br - Ph)$	H	H
1-1030	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Me - Ph)$	H	H
1-1031	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Me - Ph)$	H	H
1-1032	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et - Ph)$	H	H
1-1033	H	··H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et - Ph)$	H	H
1-1034	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr - Ph)$	H	H
1-1035	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr - Ph)$	H	H
1-1036	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iPr - Ph)$	H	H
1-1037	H	H	H	Me .	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - iPr - Ph)$	H	H
1-1038	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Bu - Ph)$	H	H
1-1039	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bu - Ph)$	H	H
1-1040	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - CF_3 - Ph)$	H	H
1-1041	H	-: H	H	Me	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - CF_3 - Ph)$	H	H
1-1042	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - MeO - Ph)$	H	H
1-1043	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeO - Ph)$	H	H
1-1044	H	· H .	H	Me	2	$-C \equiv C - (CH_2)_{2} - 0CH_2 - (3 - Et0 - Ph)$	H	H
1-1045	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et 0 - Ph)$	H	H
1-1046	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr0 - Ph)$	H	Н
1-1047	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr0 - Ph)$	H	H
1-1048	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - i PrO - Ph)$	H	H
1-1049	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i Pr 0 - Ph)$	H	H
1-1050	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Et - Pr0)]$	h] H	H
1-1051	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [4 - (2 - Et - Pr0)]$	h] H	I H
1-1052	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBuO - Ph)$	H	H
1-1053	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iBuO - Ph)$	H	H
1-1054	H	H -	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - MeS - Ph)$	H	H
1-1055	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - MeS - Ph)$	H	H
1-1056	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - EtS - Ph)$	H	H

1-1057	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - EtS - Ph)$	H	H
1-1058	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - PrS - Ph)$	H	H
1-1059	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - PrS - Ph)$	H	H
1-1060	- Н	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - iPrS - Ph)$	H	H
1-1061	H	H	Ή	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - iPrS - Ph)$	H	H
1-1062	H	H	H	Me	. 2	$-C \cong C - (CH_2)_2 - OCH_2 - [3 - (2 - Et - PrS)]$ Ph	1] H	H
1-1063	H.	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - [4 - (2 - Et - PrS)]$ Ph) H	H
1-1064	H	H	H	Me	2	$-C = C - (CH_2)_2 - 0CH_2 - (3 - iBuS - Ph)$	H	H
1-1065	H	, Н	H	Me	2	$-C = C - (CH_2)_2 - 0CH_2 - (4 - iBuS - Ph)$	H	H
1-1066	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - cHx - Ph)$	H	H
1-1067	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - cHx - Ph)$	H	H
1-1068	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3-Ph-Ph)$	H	H
1-1069	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4-Ph-Ph)$	H	Ή
1-1070	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (2, 4 - diMe - Ph)$	H	H
1-1071	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 4 - diMe - Ph)$	H	H
1-1072	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 5 - diMe - Ph)$	H	H
1-1073	H	H	Ή	Me	2	$-C \equiv C - (CH_2)_3 - 0CH_2 - cHx$	H	H
1-1074	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - 0CH_2 - Ph$	H	Н
1-1075	H	H	H	М҉е	2	$-C \equiv C - (CH_2)_4 - 0CH_2 - cHx$	H	H
1-1076	H	H	Ή	Мe	2	$-C \equiv C - (CH_2)_4 - 0CH_2 - Ph$	H.	H
1-1077	H	H	Ή	Me	2	$-C0-CH_2-(4-cHx-Ph)$	H	H
1-1078	H	H	H	Ме	2	-C0-CH ₂ -(4-Ph-Ph)	H	H
1-1079	H	H	H	Me-	2	$-CO-(CH_2)_2-cHx$	H	H
1-1080	H	H	H	Me	2	$-CO-(CH_2)_2-Ph$	H	H
1-1081	H	H	H	Мe	2	$-CO-(CH_2)_3-cHx$	H	H
1-1082	H	H	H	Me	2	$-CO-(CH_2)_3-Ph$	H	H
1-1083	H	H	H	Me	2	$-CO-(CH_2)_4-cHx$	H	H
1-1084	H	H	H	Me	2	$-CO-(CH_2)_4-(4-F-cHx)$	H	H.
1-1085	H	H	H	Me	2	-CO-(CH2)4-(4-Me-cHx)	H	H

						·		
1-1086	H	H	H	Me	2	$-C0-(CH_2)_4-(4-Et-cHx)$	H	H
1-1087	H	H	H	Me	2	$-C0-(CH_2)_4-(4-CF_3-cHx)$	H	H
1-1088	H	Ħ	H	Ме	2	$-C0-(CH_2)_4-(4-Me0-cHx)$	H	H
1-1089	H	H	Ħ	Me	2	$-C0-(CH_2)_4-(4-Et0-cHx)$	H	H
1-1090	H	Ħ	H	Me	2	$-CO-(CH_2)_4-(4-MeS-cHx)$	H	H
1-1091	H	H	H	Me	2	-CO-(CH2)4-(4-cHx-cHx)	H	H
1-1092	H	H	Ħ	Me	2	-CO-(CH2)4-(4-Ph-cHx)	H	H
1-1093	H	H	H	Me	2	$-CO-(CH_2)_4-Ph$	H	H
1-1094	H	H	H	М́е	2	$-CO-(CH_2)_4-(4-F-Ph)$	H	H
1-1095	H	H	H	Me	2	-CO-(CH2)4-(4-Me-Ph)	H	H
1-1096	H	H	H	Me	2	$-CO-(CH_2)_4-(4-Et-Ph)$	H	H
1-1097	H	H	H	Me .	2	$-CO-(CH_2)_4-(4-CF_3-Ph)$	H	H
1-1098	H	H	H	Me	2	$-C0-(CH_2)_4-(4-Me0-Ph)$	H	H
1-1099	H	H	H	Me	2	$-C0-(CH_2)_4-(4-Et0-Ph)_4$	H	H
1-1100	H	H	H	Me	2	-CO-(CH2)4-(4-MeS-Ph)	H	H
1-1101	H	H	H	Me	2	$-C0-(CH_2)_4-(4-cHx-Ph)$	H	H
1-1102	H	H .	H	Ме	2	$-CO-(CH_2)_4-(4-Ph-Ph)$	H	H
1-1103	H	H	H	Me	2	$-CO-(CH_2)_5-cHx$	H	H
1-1104	H	H	·H	Ме	2	$-C0-(CH_2)_5-(4-F-cHx)$	H	H
1-1105	H	H	H	Me	2	$-CO-(CH_2)_5-(4-Me-cHx)$	H	H
1-1106	H	H	H	Me	2	$-CO-(CH_2)_5-(4-Et-cHx)$	H	H
1-1107	H	H	H	Me	2 .	$-CO-(CH_2)_5-(4-CF_3-cHx)$	H	H
1-1108	H	· H	·H	Me	2	$-C0-(CH_2)_5-(4-Me0-cHx)$	H	H
1-1109	H	H	H	Me	2	$-C0-(CH_2)_5-(4-Et0-cHx)$	H	H
1-1110	H	H	H	Me	2	$-CO-(CH_2)_5-(4-MeS-cHx)$	H	H
1-1111	H	H	H	Me	2	$-C0-(CH_2)_5-(4-cHx-cHx)$	H	H
1-1112	H	H	Ħ	Me	2	$-CO-(CH_2)_5-(4-Ph-cHx)$	H	H
1-1113	H	H	H	Me	2	$-CO-(CH_2)_5-Ph$	H	H
1-1114	H	H	H	Ме	2	$-C0-(CH_2)_5-(4-F-Ph)$	• Н	H

1=1115	H	H	H	Me	2	$-C0-(CH_2)_5-(4-Me-Ph)$	H	H
1-1116	H	H	H	Me	.2	$-C0-(CH_2)_5-(4-Et-Ph)$	H	H
:1-1117	H	H	H	Me	2	$-CO-(CH_2)_5-(4-CF_3-Ph)$	H	H
1-1118	H	H	H	Me	2 ·	$-C0-(CH_2)_5-(4-Me0-Ph)$	H	H
1-1119	H	H	H	Me	2	-C0-(CH2)5-(4-Et0-Ph)	H	Ħ.
1-1120	H	H	H	Me	2	$-C0-(CH_2)_5-(4-MeS-Ph)$	H	H
1-1121	H	H	H	Me	2	$-C0-(CH_2)_5-(4-cHx-Ph)$	H	H
1-1122	H	H	H	Me	2	$-C0-(CH_2)_5-(4-Ph-Ph)$	H	H
1-1123	H	H	H	Me	2	$-CO-(CH_2)_{\delta}-cHx$	H	H
1-1124	H	H	H	Me	2	$-CO-(CH_2)_6-Ph$	H	. Н
1-1125	H	H	·H	Me	2	$-CO-(CH_2)_7-cHx$	H	H
1-1126	H	H	H	Me	.2	$-CO-(CH_2)_7-Ph$	H	H
1-1127	Ħ	H	H	Me	2	$-C0-(CH_2)_2-0-cHx$	H	H
1-1128	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-F-cHx)$	H	H
1-1129	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-Me-cHx)$	H	H
1-1130	H	H	H	Me	.2	$-C0-(CH_2)_2-0-(4-Et-cHx)$	H	· H
1-1131	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-CF_3-cHx)$	H	H
1-1132	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-Me0-cHx)$	H	H
1-1133	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-Et0-cHx)$	H	H
1-1134	H	H	H	Me	. 2	$-C0-(CH_2)_2-0-(4-MeS-cHx)$	H	Н
1-1135	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-cHx-cHx)$	H	H
1-1136	Н	H	H	Me	2	$-C0-(CH_2)_2-0-(4-Ph-cHx)$	H	Н
1-1137	H	H	H	Me	2	$-C0-(CH_2)_2-0-Ph$	H	H
1-1138	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-F-Ph)$	H	H
1-1139	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Me-Ph)$	H	H
1-1140	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Et-Ph)$	H	H
1-11,41	H	H	H	Ме	2	$-CO-(CH_2)_2-O-(4-CF_3-Ph)$	H	H
1-1142	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-MeO-Ph)$	H	H
1-1143	H	H	H	Me	2	$-C0-(CH_2)_2-0-(4-Et0-Ph)$	Ħ	H

1-1144	H	H	H	Ме	2	$-CO-(CH_2)_2-O-(4-MeS-Ph)$	H	H
1-1145	H	. Н	H	Ме	2	$-CO-(CH_2)_2-O-(4-cHx-Ph)$	·H	H
1-1146	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Ph-Ph)$	Ħ	H
1-1147	H	H	H	Me	2	$-CO-(CH_2)_3-O-cPn$	H	H
1-1148	H	H	·H	Me	2	$-CO-(CH_2)_3-O-cHx$	H	H
1-1149	H	H	H	Me	2	$-CO-(CH_2)_3-O-cHx$	Me	H
1-1150	H	H	H	Me	2	-CO-(CH2)3-O-cHx	. H	Me
1-1151	H	H	H	Me	.2	$-CO-(CH_2)_3-O-cHx$	F	H
1-1152	H	H	H	Me	2	$-C0-(CH_2)_8-0-cHx$	H	F
1-1153	H	Н	H	Me	2	$-C0-(CH_{z})_{8}-0-(3-F-cHx)$	H	H
1-1154	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-F-cHx)$	H	H
1-1155	H	H	Η.	Me	2	$-CO-(CH_2)_8-O-(4-C1-cHx)$	H	H
1-1156	H	H	H	Me	2	$-C0-(CH_1)_8-0-(4-Br-cHx)$	H	H
1-1157	H	H	H	Me ·	2	$-CO-(CH_2)_3-O-(3-Me-cHx)$	H	H
1-1158	H	H	·H	Me	2	$-C0-(CH_2)_3-0-(4-Me-cHx)$	H	H
1-1159	H	H	H	Me	.2	-C0-(CH2)3-0-(3-Et-cHx)	H	H
1-1160	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Et-cHx)$	H	H
1-1161	H	H	·H	Me	2	$-C0-(CH_2)_3-0-(3-Pr-cHx)$	H	H
1-1162	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Pr-cHx)$	·H	H
1-1163	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iPr-cHx)$	H	H
1-1164	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Bu-cHx)$	H	H
1-1165	Ĥ	H	H	Ме	2	$-C0-(CH_2)_3-0-(4-Bu-cHx)$	H	H
1-1166	H	Ĥ.	H	Me	2	$-C0-(CH_2)_3-0-(3-CF_3-cHx)$	H	H
1-1167	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-CF_3-cHx)$	H	H
1-1168	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Me0-cHx)$	H	H
1-1169	H	H	H	Me	. 2	$-C0-(CH_2)_3-0-(4-Me0-cHx)$	H	H
1-1170	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Et0-cHx)$	H	H
1-1171	H	H .	H	Me	2	$-C0-(CH_2)_3-0-(4-Et0-cHx)$	H	H
1-1172	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Pr0-cHx)$	H	H

1-1173	H .	H .	H	Me	2	$-C0-(CH_2)_3-0-(4-Pr0-cHx)$	H	H
1-1174	H	H	H .	Me	2	-C0-(CH2)8-0-(3-iPr0-cHx)	·H	H
1-1175	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iPr0-cHx)$	H	H
1-1176	H	H	H	Me	2	-C0-(CH2)3-0-[3-(2-Et-Pr0)cHx]	H	H
1-1177	H	H	H	Me	2	-C0-(CH2)3-0-[4-(2-Et-Pr0)cHx]	H	H
1-1178	H ·	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iBu0-cHx)$	H	H
1-1179	H	H	H	Ме	2	$-C0-(CH_2)_8-0-(4-iBu0-cHx)$	H	H
1-1180	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-MeS-cHx)$	H	H
1-1181	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-MeS-cHx)$	H	H
1-1182	H	H	H .	Me	2	$-CO-(CH_2)_8-O-(3-EtS-cHx)$	H	H
1-1183	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-EtS-cHx)$	H	H
1-1184	H	H	·H	Me	2	$-CO-(CH_2)_3-O-(3-PrS-cHx)$	H	·H
1-1185	H	H	H	Me	.2	$-CO-(CH_2)_3-O-(4-PrS-cHx)$	H	H
1-1186	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-iPrS-cHx)$	H	H
.1-1187	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iPrS-cHx)$	H	H
1-1188	H	Ħ	H	Me	2	$-CO-(CH_2)_3-O-[3-(2-Et-PrS)cHx]$	H	H
1-1189	H	H	H	Me	2.	-C0-(CH2)3-0-[4-(2-Et-PrS)cHx]	H	H
1-1190	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iBuS-cHx)$	H	H
1-1191	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iBuS-cHx)$	H	H
1-1192	$\cdot \mathbf{H}_{\perp}$	H	H	Me	2	$-C0-(CH_2)_3-0-(3-cHx-cHx)$	H	H
1-1193	H .	H	H	Me	2	$-C0-(CH_2)_3-0-(4-cHx-cHx)$	H	H
1-1194	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Ph-cHx)$	H	H
1-1195	H	H	H	Me	2 .	$-C0-(CH_2)_8-0-(4-Ph-cHx)$	H	H
1-1196	H	H	H	Me	2	$-C0-(CH_2)_3-0-(2, 4-diMe-cHx)$	H	H
1-1197	H	H	H .	Me	2	$-C0-(CH_2)_8-0-(3, 4-diMe-cHx)$	H	H
1-1198	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3, 5-diMe-cHx)$	H	H
1-1199	H	H.	H	Me	2	$-C0-(CH_2)_3-0-Ph$	H	H
1-1200	H	H	H	Ме	2	$-C0-(CH_2)_8-0-Ph$	Me	H
1-1201	H	. H .	H	Me	2	$-C0-(CH_2)_3-0-Ph$	H	Me

						•		
1-1202	Ħ	H	H	Me	2	-CO-(CH ₂) ₃ -O-Ph	F	H
1-1203	H	H	H	Me	2	$-CO-(CH_2)_3-O-Ph$	H	F
1-1204	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-F-Ph)$	H	H
1-1205	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-F-Ph)$	H	H
1-1206	H.	H	H	Me	2	$-CO-(CH_2)_8-O-(4-C1-Ph)$	H	H
1-1207	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Br-Ph)$	H	. Н
1-1208	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Me-Ph)$	H	H
1-1209	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Me-Ph)$	H	H
1-1210	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Et-Ph)$	H	H.
1-1211	H ·	H	H	Me	2	$-CO-(CH_2)_8-O-(4-Et-Ph)$	H	H
1-1212	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Pr-Ph)$	H	H
1-1213	H	H	H	Me	2	$-CO-(CH_2)_8-O-(4-Pr-Ph)$	H	H
1-1214	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-iPr-Ph)$	H	H
1-1215	H	H	H	Me .	2	$-CO-(CH_2)_3-O-(4-iPr-Ph)$	H	H
1-1216	H	H	H	Me	2	$-CO-(CH_2)_8-O-(3-Bu-Ph)$	H	H
1-1217	H	H	H	Me	2	$-CO-(CH_2)_8-O-(4-Bu-Ph)$	H	H
1-1218	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-CF_3-Ph)$	H	H
1-1219	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-CF_3-Ph)$	H	H
1-1220	H	H .	H	Me	2 .	$-CO-(CH_2)_3-O-(3-MeO-Ph)$	H	H
1-1221	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-MeO-Ph)$	H	H
1-1222	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-EtO-Ph)$	H	. H
1-1223	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-EtO-Ph)$	H	H
1-1224	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-PrO-Ph)$	H	Н
1-1225	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-PrO-Ph)$	H	H
1-1226	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-iPrO-Ph)$	H	H
1-1227	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-iPrO-Ph)$	H	H
1-1228	H	H	H	Me	2	$-CO-(CH_2)_8-O-[3-(2-Et-PrO)-Ph]$	H	H
1-1229	H	H	H	Me	2	$-CO-(CH_2)_3-O-[4-(2-Et-PrO)-Ph]$	H	H
1-1230	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iBu0-Ph)$	H	H

1-1231	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iBu0-Ph)$	H	Ή
1-1232	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-MeS-Ph)$	H	H
1-1233	H	H	H	·Me	2	$-CO-(CH_2)_3-O-(4-MeS-Ph)$	H	H
1-1234	H	H	H	Me	2	$-C0-(CH_2)_8-0-(3-EtS-Ph)$	H	H
1-1235	H	H	H	Me	:2	$-C0-(CH_2)_3-0-(4-EtS-Ph)$	H	H
1-1236	H	H	H	Me	2	$-C0-(CH_2)_8-0-(3-PrS-Ph)$	H	Ή
1-1237	H	H	H	Me	·2	$-C0-(CH_2)_3-0-(4-PrS-Ph)$	H	H
1-1238	H	·H	H	Me	2	$-C0-(CH_2)_3-0-(3-iPrS-Ph)$	H	H
1-1239	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iPrS-Ph)$	H	$\cdot \mathtt{H}$
1-1240	Ħ	H	H	Me	2	$-CO-(CH_2)_3-O-[3-(2-Et-PrS)-Ph]$	H	H
1-1241	H	H	H	Me	.2	$-CO-(CH_2)_3-O-[4-(2-Et-PrS)-Ph]$	H	H
1-1242	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-iBuS-Ph)$	H.	·H
1-1243	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iBuS-Ph)$	H	H
1-1244	H	H	H	Me	'2	$-C0-(CH_2)_3-0-(3-cHx-Ph)$	H	H
1-1245	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-cHx-Ph)$	H	H
1-1246	H	H ·	H	Me	`2	$-C0-(CH_2)_3-0-(3-Ph-Ph)$	H	· H
1-1247	H	H	H	Me	· 2	$-C0-(CH_2)_3-0-(4-Ph-Ph)$	H	H
1-1248	H	H	H	Me	:2	$-C0-(CH_2)_3-0-(2, 4-diMe-Ph)$	H	H
1-1249	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3, 4-diMe-Ph)$	H	Ħ
1-1250	Н	H	·H	Me	2	$-C0-(CH_2)_3-0-(3, 5-diMe-Ph)$	H	H
1-1251	H	H	H	Me	2	-C0-(CH2)4-0-cHx	H	H
1-1252	H	H	H	Me	2	$-CO-(CH_2)_4-O-Ph$	H	H
1-1253	H	H	·H	Me	2	-C0-(CH2)5-0-cHx	H	H
1-1254	H	H	H	Me	2	$-CO-(CH_2)_5-O-Ph$	H	H
1-1255	H	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-cHx$	H	H
1-1256	H	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-F-cHx)$	H	H
1-1257	H	H	Ή	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Me-cHx)$	H.	H
1-1258	H	H	H	Me	. 2	$-CO-(CH_2)_2-OCH_2-(4-Et-cHx)$	H	H
1-1259	H	H	·H	Me	. 2	$-CO-(CH_2)_2-OCH_2-(4-CF_3-cHx)$	H	H

						· · · · · · · · · · · · · · · · · · ·		
1-1260	Ħ	H	H	Me	2.	$-CO-(CH_2)_2-OCH_2-(4-MeO-cHx)$	H	H
1-1261	H	· H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-Et0-cHx)$	H	H
1-1262	H	· H .	Ħ	Мe	2	$-CO-(CH_2)_2-OCH_2-(4-MeS-cHx)$	H	H
1-1263	H	Н.	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-cHx-cHx)$	H	H
1-1264	H	H	H	Ме	2	$-CO-(CH_2)_2-OCH_2-(4-Ph-cHx)$	H	Н
1-1265	H	·H	H	Me	2	$-CO-(CH_2)_2-OCH_2-Ph$	H	H
1-1266	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-F-Ph)$	H	H
1-1267	·Ħ	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Me-Ph)$	H	H
1-1268	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Bt-Ph)$	H	H
1-1269	H	H	H	Мe	2	$-CO-(CH_2)_3-OCH_2-(4-CF_3-Ph)$	H	H
1-1270	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-MeO-Ph)$	H	H
1-1271	H	Ĥ	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-EtO-Ph)$	H	H
1-1272	H	H	H	Мe	2	$-CO-(CH_2)_2-OCH_2-(4-MeS-Ph)$	H	H
1-1273	H	H	H	Me	2 .	$-CO-(CH_2)_2-OCH_2-(4-cHx-Ph)$	H.	H
1-1274	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Ph-Ph)$	H	H
1-1275	H	H	Ħ	Me	2	-CO-(CH2)3-OCH2-CH2-cPn	H	H
1-1276	H	H	H	Мe	2	-CO-(CH2)3-OCH2-cHx	H	H
1-1277	H	H	H	. Me	2	$-CO-(CH_2)_3-OCH_2-cHx$	Me	H
1-1278	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-cHx$	H	Me
1-1279	H	H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-cHx$	F	H
1-1280	H	H	H	Me·	2	$-C0-(CH_2)_3-OCH_2-cHx$	H	F
1-1281	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-F-cHx)$	H	H
1-1282	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-F-cHx)$	H	H
1-1283	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Cl-cHx)$	H	H
1-1284	H	H	H	Me	2	$-CO-(CH_2)_8-OCH_2-(4-Br-cHx)$	H	H
1-1285	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Me-cHx)$	H	H
1-1286	H	H	H	Me	.2	$-CO-(CH_2)_3-OCH_2-(4-Me-cHx)$	H	H
1-1287	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Et-cHx)$	H	H
1-1288	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Et-cHx)$	H	H

1-1289	H	H	H	Me	2	$-CO-(CH_2)_{3}-OCH_2-(3-Pr-cHx)$	H	H
1-1290	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Pr-cHx)$	H	H
1-1291	H	H	H	Мe	2	$-C0-(CH_2)_3-0CH_2-(4-iPr-cHx)$	H	H
1-1292	H	H	H	Ме	2	$-C0-(CH_2)_3-0CH_2-(3-Bu-cHx)$	H	. Н
1-1293	H	H	H	·Me	2	$-C0-(CH_2)_3-0CH_2-(4-Bu-cHx)$	H	H
1-1294	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-CF_3-cHx)$	H	H
1-1295	H	·H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-CF_3-cHx)$	H	H
1-1296	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Me0-cHx)$	H	H
1-1297	H	:H	H	Ме	2	$-C0-(CH_2)_8-0CH_2-(4-Me0-cHx)$	H	H
1-1298	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-Et0-cHx)$	· H .	H
1-1299	H	H	H	Ме	2	$-C0-(CH_2)_8-0CH_2-(4-Et0-cHx)$	H	H
1-1300	H	H	Ħ	∕Ме	2	$-C0-(CH_2)_3-0CH_2-(3-Pr0-cHx)$	H	H
1-1301	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Pr0-cHx)$. H	H
1-1302	H	H	H.	Ме	2	$-C0-(CH_2)_8-0CH_2-(3-iPr0-cHx)$	H	H
1-1303	H	·H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iPrO-cHx)$	H	H
1-1304	H	H	Ħ	Ме	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Et-PrO)cH_2]$	x] H	H
1-1305	H	H	H	Ме	2	$-C0-(CH_2)_3-0CH_2-[4-(2-Et-Pr0)cH_2]$	x] H	H
1-1306	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iBuO-cHx)$	H	H
1-1307	H	·H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iBuO-cHx)$	H	H
1-1308	H	Н	H .:	Me	2	-CO-(CH2)3-OCH2-(3-MeS-cHx)	H	H
1-1309	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-MeS-cHx)$	H	H
1-1310	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-EtS-cHx)$	H	H
1-1311	· H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-EtS-cHx)$	H	H
1-1312	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-PrS-cHx)$	H	H
1-1313	H	H	H	Me	2	$-CO-(CH_2)_8-OCH_2-(4-PrS-cHx)$	H	H
1-1314	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPrS-cHx)$	H	H
1-1315	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iPrS-cHx)$	H	H
1-1316	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Et-PrS)cH_2-[3-(2-Et-PrS)]$	H [x	H
1-1317	H	H	H	Me	· 2	$-C0-(CH_2)_3-0CH_2-[4-(2-Et-PrS)cH_2]$	x) H	H

1-1318	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-iBuS-cHx)$	·H	H
1-1319	H	H	H	Мe	2	$-C0-(CH_2)_3-0CH_2-(4-iBuS-cHx)$	H	H
1-1320	H	H	H	Ме	2	$-C0-(CH_2)_3-0CH_2-(3-cHx-cHx)$	H	H
1-1321	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-cHx-cHx)$	H	H
1-1322	H	H	H	Me	2	$-C0-(CH_2)_8-0CH_2-(3-Ph-cHx)$	H	H
1-1323	H	H	H	Me	2	$-C0-(CH_2)_{3}-0CH_2-(4-Ph-cHx)$	H	H
1-1324	H	H.	H	Me	2	-CO-(CH2)3-OCH2-(2, 4-diMe-cHx)	H	H
1-1325	H	H	H	Me	2	-CO-(CH2)8-OCH2-(3, 4-diMe-cHx)	·H	H
1-1326	H	H	H	Ме	2	$-C0-(CH_2)_8-OCH_2-(3, 5-diMe-cHx)$	H	H
1-1327	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-Ph$	H	H
1-1328	H ·	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-Ph$	Me	H
1-1329	H	H	H	Me	.2	$-CO-(CH_2)_8-OCH_2-Ph$	H	Me
1-1330	H	H	H.	-Me	2	$-C0-(CH_2)_3-0CH_2-Ph$	F	H
1-1331	H	H	H	Me	2	$-C0-(CH_2)_{3}-OCH_2-Ph$	H	F
1-1332	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-F-Ph)$	·H	H
1-1333	Ħ	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-F-Ph)$	H	H
1-1334	H	H	H	Me	2	-C0-(CH2)3-0CH2-(4-C1-Ph)	H	H
1-1335	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Br-Ph)$	H	. H
1-1336	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Me-Ph)$	H	H
1-1337	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Me-Ph)$	·H	H
1-1338	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Et-Ph)$	H	H
1-1339	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Et-Ph)$	H	H
1-1340	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Pr-Ph)$	H	H ·
1-1341	H	Н.	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Pr-Ph)$	H	H
1-1342	- Н	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-iPr-Ph)$	H	H
1-1343	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iPr-Ph)$	H	H
1-1344	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Bu-Ph)$	H	H
1-1345	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Bu-Ph)$	H	H
1-1346	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-CF_3-Ph)$	H	H

1-1347	H	\cdot H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-(4-CF_3-Ph)$	H	· H
1-1348	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-Me0-Ph)$	H	H
1-1349	H	FH	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-MeO-Ph)$	Ħ.	H
1-1350	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-EtO-Ph)$	Ħ	H
1-1351	H.	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-EtO-Ph)$	H	H
1-1352	Н	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-PrO-Ph)$	H	H
1-1353	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-Pr0-Ph)$	H	H
1-1354	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPrO-Ph)$	H	H
1-1355	H	H	H	Me	2	$-CO-(CH_2)_8-OCH_2-(4-iPrO-Ph)$	H	H
1-1356	H	. Н	H	Me	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Et-Pr0)Ph]$	H	H
1-1357	H ·	H	H	Me	2	$-CO-(CH_2)_8-OCH_2-[4-(2-Et-PrO)Ph]$	H	H
1-1358	H	H	H	"Me	2	$-CO-(CH_2)_3-OCH_2-(3-iBuO-Ph)$	H	H
1-1359	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-iBu0-Ph)$	H	H
1-1360	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-MeS-Ph)$	H	H
1-1361	H	H	H	Me	2	$-CO-(CH_2)_{3}-OCH_2-(4-MeS-Ph)$	H	H
1-1362	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-EtS-Ph)$	H	H
1-1363	H	\mathbf{H}	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-EtS-Ph)$	H	Ή
1-1364	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-PrS-Ph)$	H	H
1-1365	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-PrS-Ph)$	H	H
1-1366	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPrS-Ph)$	H	H
1-1367	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-iPrS-Ph)$	H	H
1-1368	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Et-PrS)Ph]$	Ħ	H
1-1369	H	H	Ή	Me	2	$-CO-(CH_2)_3-OCH_2-[4-(2-Et-PrS)Ph]$	H	H
1-1370	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-iBuS-Ph)$	Ħ	H
1-1371	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-iBuS-Ph)$	H	H
1-1372	H	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-cHx-Ph)$	H	H
1-1373	H	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-cHx-Ph)$	H	H
1-1374	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Ph-Ph)$	H	H
1-1375	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Ph-Ph)$	H	H

1-1376	H	.Н	H	Me	2	$-CO-(CH_2)_3-OCH_2-(2, 4-diMe-Ph)$	H	H
1-1377	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3, 4-diMe-Ph)$	H	H
1-1378	H	H	H	Мe	2	$-CO-(CH_2)_3-OCH_2-(3, 5-diMe-Ph)$	H.	H
1-1379	H	H	H	Ме	2	$-CO-(CH_2)_4-OCH_2-cHx$	H	·H
1-1380	H	H	H	Me	2	$-CO-(CH_2)_4-OCH_2-Ph$	H	H
1-1381	H	H	H	Me	2	$-CO-(CH_2)_5-OCH_2-cHx$	H	H
1-1382	H	H	H	Me	2	$-CO-(CH_2)_5-OCH_2-Ph$	Ħ	H
1-1383	H	H	H	Ме	2 -	-CH (OH) -CH ₂ -cHx	Н.	H
1-1384	H	H	. Н	Мe	2	$-CH(OH)-CH_2-Ph$	H	H
1-1385	H	H	H	Me	2	$-CH(OH)-(CH_2)_2-cHx$	H	H
1-1386	H	. Н	H	Мe	2	$-CH(OH) - (CH_2)_2 - Ph$	H	H
1-1387	H	H	H	Me	2	$-CH(OH)-(CH_2)_3-cHx$	H	H
1-1388	H	H	H	Me	2	$-CH(OH)-(CH_2)_8-Ph$	Ħ	·H
1-1389	H	H	·H	Me	2	-CH(OH)-(CH2)4-cHx	H	. Н
1-1390	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-F-cHx)$	H	·H
1-1391	H	H	H	Me	. 2	$-CH(OH) - (CH_2)_4 - (4-Me-cHx)$	H	H
1-1392	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Et-cHx)$	H	H
1-1393	H	H	H	Me	2	-CH(OH) - (CH2)4 - (4 - CF3 - cHx)	H	H
1-1394	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-MeO-cHx)$	H	H
1-1395	H	H	H	Me	2	-CH(OH) - (CH2)4 - (4-EtO-cHx)	H	H
1-1396	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-MeS-cHx)$	H	H
1-1397	H.	H	H	Me	2	-CH(OH)-(CH2)4-(4-cHx-cHx)	H	H
1-1398	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Ph-cHx)$	H	H
1-1399	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	H.	H
1-1400	H	H	H	Me	2	-CH(OH) - (CH2)4 - (4-F-Ph)	H	H
1-1401	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Me-Ph)$	H	H
1-1402	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-Et-Ph)$	H	H
1-1403	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H
1-1404	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-MeO-Ph)$	H	H

1-1405	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-EtO-Ph)$	H	H
1-1406	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-MeS-Ph)$	H	H
1-1407	Ħ	H	H	Me	'2	-CH(OH) - (CH2)4 - (4-cHx-Ph)	H	H
1-1408	H	H	H	¹Me	2	-CH(OH) - (CH2)4 - (4-Ph-Ph)	H	·H
1-1409	H	H	H	Мe	2	$-CH(OH) - (CH_2)_5 - cHx$	H	H
1-1410	H	·H	H	Me	2	$-CH(OH) - (CH_2)_5 - (4-F-cHx)$	H	H
1-1411	H	H	H	Me	2	-CH(OH) - (CH2)5 - (4-Me-cHx)	H	H
1-1412	Ħ	H	H	Me	2	$-CH(OH) - (CH_2)_5 - (4-Et-cHx)$	H	H
1-1413	H	H	H	Me	2	$-CH(OH) - (CH_2)_5 - (4 - CF_8 - cHx)$	H	H
1-1414	H	H	H	Мe	2	$-CH(OH) - (CH_2)_5 - (4-MeO-cHx)$	H	H
1-1415	H .	H	Ħ	Me	2	$-CH(OH)-(CH_2)_5-(4-Et0-cHx)$	H	H
1-1416	H	H	H	Me	2	$-CH(OH) - (CH_2)_5 - (4-MeS-cHx)$	H	H
1-1417	H	H	Ħ	Ме	2	$-CH(OH) - (CH_2)_5 - (4 - cHx - cHx)$	Ħ	H
1-1418	H	H	H	Me	2	$-CH(OH)-(CH_2)_5-(4-Ph-cHx)$	Ħ	H
1-1419	H	H	H	Me	2	$-CH(OH) - (CH_2)_5 - Ph$	H	H
1-1420	H	H	H	Me	2	$-CH(OH)-(CH_2)_5-(4-F-Ph)$	Ħ	H
1-1421	H	. Н	H	Me	2	$-CH(OH) - (CH_2)_5 - (4-Me-Ph)$	H	H
1-1422	H	H	H	Ме	2	-CH(OH) - (CH2)5 - (4-Et-Ph)	H	H
1-1423	H	H	H	Me	2	$-CH(OH) - (CH_2)_5 - (4-CF_3-Ph)$	H	H
1-1424	H	H	H	Me	2	-CH(OH) - (CH2)5 - (4-MeO-Ph)	H	H
1-1425	H	H	H	Me	2	-CH(OH) - (CH2)5 - (4-EtO-Ph)	H	H
1-1426	H	H	H	Me	2	-CH(OH) - (CH2)5 - (4-MeS-Ph)	· H	H
1-1427	H	H	H	Мe	2	$-CH(OH)-(CH_2)_5-(4-cHx-Ph)$	H	H
1-1428	H .	H	H	Me	2	-CH(OH) - (CH2)5 - (4-Ph-Ph)	H	H
1-1429	H	H	H	Me	2	$-CH(OH) - (CH_2)_6 - cHx$	H	H
1-1430	H	H	H	Me	2	$-CH(OH)-(CH_2)_6-Ph$	H	H
1-1431	H	H	H	Me	2	$-CH(OH)-(CH_2)_7-cHx$	H	H
1-1432	H	H	H	Me	2	$-CH(OH)-(CH_2)_7-Ph$	H	H
1-1433	H	H	H	Me	2	$-4-(cHx-CH_20)$ Ph	H	H

1-1434	H	H	H	Мe	2	$-4-(cHx-CH_2O)-2-F-Ph$	H	Н
1-1435	H	.Н	H	Me	2	$-4-(cHx-CH_20)-3-F-Ph$	H	H
1-1436	H	H	H	Me	2	$-4-(cHx-CH_2O)-2$, $3-diF-Ph$. Н	H
1-1437	H	H	H	Me	2	$-4-(cHx-CH_2O)-2-Cl-Ph$	H	H
.1-1438	H	H .	H	Me	2	$-4-(cHx-CH_20)-3-C1-Ph$.Н	H
1-1439	H	·H	H.	Me	. 2	$-4-(cHx-CH_20)-2$, $3-diCl-Ph$	H	H
1-1440	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-2-Me-Ph	H	H
1-1441	H	H	H	Ме	2	-4-(cHx-CH20)-3-Me-Ph	H	H
1-1442	H	H	H	Me	2	-4-(cHx-CH20)-2, $3-diMe-Ph$	H	H
1-1443	H	H	H	Me	2	-4-[cHx-(CH ₂) ₂ 0]Ph	H	Н
1-1444	H	Н.	Н	Me	2	-3-[cHx-(CH2)20]Ph	H	H
1-1445	H	H	H	Me	2	-(4-Bz0-Ph)	H.	H
1-1446	Ħ	H	H	Me	2	-(4-Bz0-2-F-Ph)	.Н	H
1-1447	H	H	H	Me	2	-(4-Bz0-3-F-Ph)	H	H
1-1448	H	H	H	Me	2	-(4-Bz0-2, 3-diF-Ph)	Н	H
1-1449	H	H	H	Ме	2	-(4-Bz0-2-Cl-Ph)	H	H
1-1450	H	·H	H	Me	. 2	-(4-Bz0-3-Cl-Ph)	H	H
1-1451	H	H	H	Me	2	-(4-Bz0-2, 3-diCl-Ph)	Н	H
1-1452	H	Н.	H	Me.	. 2	-(4-Bz0-2-Me-Ph)	H	H
1-1453	H	H	H	Me	2	-(4-Bz0-3-Me-Ph)	H	H
1-1454	H	H	H	Me	2	-(4-Bz0-2, 3-diMe-Ph)	H	H
1-1455	H	H	H	Me	2	-4-[Ph-(CH2)20]-Ph	H	H
1-1456	H	H	H	Me	2	-4-[Ph-(CH2)30]-Ph	H	H
1-1457	H	H	H	Et	2	$-(CH_2)_3-cHx$	H	H
1-1458	·H	• Н	H	Et	2	$-(CH_2)_3-Ph$	· H	H
1-1459	H	H	H	Et	· 2	$-(CH_2)_4$ -cHx	H	H
1-1460	H	H	H	Et	2	-(CH2)4-Ph	H .	Ħ
1-1461	H	H	H	Et	.2	-(CH2)5-cPn	H	H
1-1462	H	H	H	Et	2	$-(CH_2)_5-cHx$	H	. Н

1-1463	H	H	H	Et	2	$-(CH_2)_5-cHx$	Me .	H
1-1464	H	H	H	Et	2	$-(CH_2)_5-CHx$	Ħ	Ме
1-1465	H	H	H	Et	2	$-(CH_2)_5-cHx$	F	H
1-1466	H	H	H	Et	2	$-(CH_2)_5-cHx$	H	F
1-1467	H	. H	H	Et	2	$-(CH_2)_5-(4-F-cHx)$	H	H
1-1468	H	H	H	Et	2	$-(CH_2)_5-(4-Cl-cHx)$	H	H
1-1469	H	H	Ή	Et	2	-(CH2)5-(4-Br-cHx)	H.	H
1-1470	H	H	H	Et	.2	-(CH2)5-(4-Me-cHx)	H	H
1-1471	H	H	H	Et	2	$-(CH_2)_5-(4-Et-cHx)$. H	H
1-1472	H	H	H	Et	2 ·	-(CH2)5-(4-Pr-cHx)	H	H
1-1473	H	H	H	Et	2	-(CH2)5-(4-iPr-cHx)	H	H.
1-1474	H	H	H	Et	2.	$-(CH_2)_5 - (4-CF_3-cHx)$	H	H
1-1475	H	H	H	Et	2	$-(CH_2)_5-(4-Me0-cHx)$	H	H
1-1476	H	H	H	Et	2	$-(CH_2)_5 - (4-Et0-cHx)$	\mathbf{H}'	H
1-1477	H	H	H	Et	2	$-(CH_2)_5 - (4-Pr0-cHx)$	H	H
1-1478	H	H	H	Et.	2	-(CH2)5-(4-iPr0-cHx)	H	. Н
1-1479	H	H .	H	Et	2	-(CH2)5-(3-MeS-cHx)	H	H
1-1480	. Н	H	H	Et	2	-(CH2)5-(4-MeS-cHx)	H	H.
1-1481	H	.H	H	Et	2	$-(CH_2)_5-(2, 4-diMe-cHx)$	H	H
1-1482	H	H	H	Et	2	$-(CH_2)_5-(3, 4-diMe-cHx)$	H	H
1-1483	H	H	H	Et	2	$-(CH_2)_5-(3, 5-diMe-cHx)$	H	H
1-1484	H	H	H	Et	2	$-(CH_2)_6-Ph$	H	H
1-1485	. Н	H	H	Eţ	2	$-(CH_2)_5-Ph$	Me	·H
1-1486	H	H	Ħ	Et	2	$-(CH_2)_5-Ph$	H	Me
1-1487	H	H	H	Et	2	$-(CH_2)_5-Ph$	F	H
1-1488	H	H	H	Et	2	$-(CH_2)_5-Ph$	H	F
1-1489	H	H	H	Et	2	$-(CH_2)_5-(4-F-Ph)$	H	H
1-1490	H	H	H	Et	2	-(CH2)5-(4-Cl-Ph)	H	H
1-1491	H	H	H	Εt	2	$-(CH_2)_5-(4-Br-Ph)$	H	H

						_		
1-1492	H	H	H	Et	2	-(CH2)5-(4-Me-Ph)	H	H
1-1493	H	H	H	Et	2	$-(CH_2)_5-(4-Et-Ph)$	H	H
1-1494	H	H	H	Et	2	-(CH2)5-(4-Pr-Ph)	H	H
1-1495	H	H	H	Et	2	-(CH2)5-(4-iPr-Ph)	H	H .
1-1496	H	H	H	Et	2	-(CH2)5-(4-Bu-Ph)	H	H
1-1497	H	H	H	Et	2	$-\left(\mathrm{CH_{2}}\right)_{5}-\left(4-\mathrm{CF_{3}}-\mathrm{Ph}\right)$	H	H
1-1498	H	H	H	Et	2	$-(CH_2)_5-(4-MeO-Ph)$	H	H
1-1499	H	H	H	Et	2	$-(CH_2)_5-(4-Et0-Ph)$	H	H
1-1500	H	H	H	Et	2	-(CH2)6-(4-PrO-Ph)	H	H
1-1501	H	H	H	Et	2	-(CH2)5-(4-iPrO-Ph)	H	H
1-1502	H	H ·	H	Et	2	-(CH2)5-(3-MeS-Ph)	H	H
1-1503	H	. H	H	Et	2	$-(CH_2)_5-(4-MeS-Ph)$	·H	H
1-1504	H	H	H	Et	2	$-(CH_2)_5-(2, 4-diMe-Ph)$	Ħ	H
1-1505	H	H	H	Et	2	$-(CH_2)_5-(3, 4-diMe-Ph)$	H	Н
1-1506	H	H	H	Et	2	$-(CH_2)_5-(3,5-diMe-Ph)$	Ħ	H
1-1507	H	H	H	Et	2	$-(CH_2)_6$ -cPn	H	H
1-1508	H	H	H	Et	2	$-(CH_2)_6-CHx$	н .	H
1-1509	H	H	H	Et	2	$-(CH_2)_6-cHx$	Me	H
1-1510	H	·H	H	Et	2	$-(CH_2)_6-cHx$	H	Мe
1-1511	H	H	H	Et	2	$-(CH_2)_6-cHx$	F	H
1-1512	H	Н	H	Et	2	$-(CH_2)_6-cHx$	H	F
1-1513	H	H	H	Et	2	$-(CH_2)_6 - (4-F-cHx)$	H	H
1-1514	H	H	H	Et	2	$-(CH_2)_6 - (4-Cl-cHx)$	·H	. Н
1-1515	H	H	H	Et	2	-(CH2)6-(4-Br-cHx)	H	H
1-1516	H	H	H	Et	2	-(CH2)6-(4-Me-cHx)	H	H
1-1517	H	H	H	Et	2	$-(CH_2)_6 - (4-Et-cHx)$	·H	H
1-1518	H	H	H	Et	2	$-(CH_2)_6 - (4-Pr-cHx)$	H	H
1-1519	H	H	H	Et	2	$-(CH_2)_6-(4-iPr-cHx)$	H	H
1-1520	H	H	H	Et	2	$-(CH_2)_6 - (4-Bu-cHx)$	H	H

							_	
1-1521	H	H	H	Et	2	-(CH2)6-(4-CF3-cHx)	H	H
1-1522	H	H	H	Et	2	$-(CH_2)_6 - (4-Me0-cHx)$	H	H
1-1523	H	H	H	Et	2 .	$-(CH_2)_6 - (4-Et0-cHx)$	H	H
1-1524	H	H	·H	Et	2	$-(CH_2)_6 - (4-Pr0-cHx)$	H	H
1-1525	H	H	H	Et	2	$-(CH_2)_6-(4-iPr0-cHx)$	Ħ	H
1-1526	H	H	H	Et	2	$-(CH_2)_6-(3-MeS-cHx)$	H.	H
1-1527	H	H	H	Et	2	-(CH2)6-(4-MeS-cHx)	H	H
1-1528	H	H	H	Et	2	-(CH2)6-(2, 4-diMe-cHx)	H	H
1-1529	H	H	H	Et	2	$-(CH_2)_6-(3, 4-diMe-cHx)$	H	H
1-1530	H	H	H	Et	2	$-(CH_2)_6-(3,5-diMe-cHx)$	H	H
1-1531	H	H	H	Et	2	$-(CH_2)_6-Ph$	Ħ	H
1-1532	H	Ĥ	H	Et	2	$-(CH_2)_6-Ph$	Me	H
1-1533	H	H	H	Et	2	$-(CH_2)_6-Ph$	H	Me
1-1534	H	H	H	Et	2	$-(CH_2)_6-Ph$	F	Ή
1-1535	H	H	H	Et	2	-(CH2)6-Ph	H	Ŧ
1-1536	H	Ħ	H	Et	`2	-(CH2)6-(4-F-Ph)	H	H
1-1537	Н	H	H	Et	2	$-(CH_2)_6 - (4-Cl-Ph)$	H	Ħ
1-1538	H	\mathbf{H}_{-}	H	Et	2	-(CH2)6-(4-Br-Ph)	H	H
1-1539	H	H	H	Et	2	-(CH2)6-(4-Me-Ph)	H	H
1-1540	H.	H	Ή	Et	2	-(CH2)6-(4-Et-Ph)	H	H
1-1541	H	H	H	Et	2	-(CH2)6-(4-Pr-Ph)	H	H
1-1542	H	H	H	Et	2	$-(CH_2)_6-(4-iPr-Ph)$	H	H
1-1543	H	H	H	Et	2	-(CH2)6-(4-Bu-Ph)	H	·H
1-1544	H	H	H	Et	2	-(CH2)6-(4-CF8-Ph)	H	H
1-1545	H	H	H	Et	2	-(CH2)6-(4-Me0-Ph)	H	H
1-1546	H	H	H	Et	2	$-(CH_2)_6-(4-Et0-Ph)$	H	H
1-1547	H	.H	H	Et	2	$-(CH_2)_6-(4-Pr0-Ph)$	H	H
1-1548	H	H	H	Et	2	-(CH2)6-(4-iPrO-Ph)	H	H
1-1549	H	H	H	Et	2	-(CH2)6-(3-MeS-Ph)	H	H

4 4550	**	**		70.1		(OTT) (/ No.C. Dh)	77	77
1-1550	H	·H	H	£t	2	-(CH2)6-(4-MeS-Ph)	H	H
1-1551	H	H	H	Et	2	-(CH2)6-(2, 4-diMe-Ph)	H	H
1-1552	H	H	H	Et	2	-(CH2)6-(3, 4-diMe-Ph)	H	H
1-1553	H	H	H	Et	2	-(CH2)6-(3, 5-diMe-Ph)	H	H
1-1554	H	H	H	Et	2	-(CH2)7-cHx	H	H
1-1555	H	H	H	Et	2	-(CH2)7-Ph	H	H
1-1556	H	H	H	Et	2	$-C \equiv C - CH_2 - cHx$	H	H
1-1557	H	H	·H	Et	2	$-C \equiv C - CH_2 - Ph$	H	H
1-1558	H	H	H	Et	. 2	$-C \equiv C - (CH_2)_2 - cHx$	H	H
1-1559	H	• Н	H	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H
1-1560	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cPn$	· H	H
1-1561	H	H	H	Et	2	$-C \equiv C - (CH^5)^3 - cHx$	H	H
1-1562	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	H
1-1563	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Me
1-1564	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H
1-1565	Η -	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	F
1-1566	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	H
1-1567	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - cHx)$	H	H
1-1568	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H
1-1569	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Me - cHx)$	H	H
1-1570	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Et - cHx)$	H	H
1-1571	H	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Pr - cHx)$	H	H
1-1572	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr - cHx)$	H	H
1-1573	H	\mathbf{H}_{\cdot}	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	H	H
1-1574	Ή	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H
1-1575	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Me0 - cHx)$	H	Ħ
1-1576	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	H
1-1577	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - cHx)$	H	Н,
1-1578	H	H	H	Εt	2	$-C \equiv C - (CH_2)_3 - (4 - i PrO - cHx)$	H	H

1-1579	H	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (3 - MeS - cHx)$	H	H
1-1580	H	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - MeS - cHx)$	H	H
1-1581	H	H	H	Et	2	$-C \equiv C - (CH_2)_{8} - (2, 4 - diMe - cHx)$	H	H
1-1582	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (3, 4 - diMe - cHx)$.H	H
1-1583	Н	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$	H	H
1-1584	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H
1-1585	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H
1-1586	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H.	Me
1-1587	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	F	H
1-1588	H	H	Н	Et	2	$-C \equiv C - (CH_2)_8 - Ph$	H	F
1-1589	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$:H	H
1-1590	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - Ph)$	H	H
1-1591	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Br - Ph)$	Н	H
1-1592	H	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Me - Ph)$	H	H
1-1593	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - E t - Ph)$	H	H
1-1594	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - Ph)$	H	. Н
1-1595	H	·H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	H
1-1596	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - Ph)$	H	H
1-1597	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	Ή	H.
1-1598	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-MeO-Ph)$	- Н	ч
1-1599	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Et 0 - Ph)$	H	H
1-1600	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - Ph)$	H	H
1-1601	H	H	· H	- Et	2	$-C \equiv C - (CH_2)_3 - (4 - i PrO - Ph)$	\mathbf{H}_{+}	H
1-1602	H	Н	H	Et	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H
1-1603	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H
1-1604	H	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (2, 4 - diMe - Ph)$	H	H
1-1605	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - Ph)$	H.	H
1-1606	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - Ph)$	H	H
1-1607	H	H	Ħ	Et	2	$-C \equiv C - (CH_2)_4 - cPn$	H	H

1-1608	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H
1-1609	Н	H	H	Et	2	$-C \equiv C - (CH_2)_{a} - cHx$	Me	Ή
71-1610	H	Ħ	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Мe
1-1611	H	Н	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H
1-1612	H	·H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F
1-1613	H	H	H	. Et	2	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	H
1-1614	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - cHx)$	H	H
1-1615	H	Н	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	H.
1-1616	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Me - cHx)$	H	H
1-1617	H	Н	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	H	H
1-1618	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H	H
1-1619	H	H	H	. Et	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - cHx)$	H	H
1-1620	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx)$	H	H
1-1621	H	H	H	Et ·	2	$-C \equiv C - (CH_2)_4 - (4 - CF_8 - cHx)$	H	H
1-1622	H	H.	H	Eť	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - cHx)$	H	H
1-1623	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	H
1-1624	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - PrO - cHx)$	H .	\mathbf{H}_{\cdot}
1-1625	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - i PrO - cHx)$	H	H
1-1626	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - cHx)$	H	H
1-1627	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	H
1-1628	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	·H
1-1629	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	\mathbf{H}_{\cdot}	H
1-1630	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H
1-1631	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	Ме	H
1-1632	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Me
1-1633	H	Ħ	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H
1-1634	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F
1-1635	H.	\mathbf{H}	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$. Н	H
1-1636	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Cl - Ph)$	H	H

1-1637	H	H	H	Æt	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H :	H
1-1638	H	·H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H
1-1639	H	Н.	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	Н.	H
1-1640	H	H	.Н	Æt	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	\mathbf{H}	H
1-1641	H	·H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr - Ph)$.H	H
1-1642	H	H	H	. Æt	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H
1-1643	H	\mathbf{H}_{c}	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H
1-1644	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - Ph)$	H	H
1-1645	H	·H	H	Et	2 .	$-C \equiv C - (CH_2)_4 - (4 - EtO - Ph)$	H	H
1-1646	H	H	Ħ	Et	2	$-C \equiv C - (CH_2)_4 - (4 - PrO - Ph)$	H	H
1-1647	H	\mathbf{H} :	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - i PrO - Ph)$:H	Ħ
1-1648	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - Ph)$	H -	. H
1-1649	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	·H
1-1650	H	H	Œ	Et	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - Ph)$	Ħ	H
1-1651	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - Ph)$	H	H
1-1652	H	Ħ	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - Ph)$	H	H
1-1653	H	\mathbf{H}_{i}	·H	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H
1-1654	H	H	H	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H
1-1655	H	H	H	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H
1-1656	H	H	H	Έt	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H
1-1657	H	H	H	Et	2	$-C \equiv C - CH_2O - cHx$	H	H
1-1658	H	H	H	Et	2	$-C \equiv C - CH_2O - Ph$	H	H
1-1659	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cPn$	H.	H
1-1660	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H
1-1661	Н	H	Н	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	Me	H
1-1662	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Me
1-1663	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	H
1-1664	H	H	·H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F
1-1665	H	.Н	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	H

1-1666	H	H	Ħ	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - C1 - cHx)$	H	H
1-1667	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - cHx)$	H	H
1-1668	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - cHx)$	H	H
1-1669	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	H	H
1-1670	H	H	Ή	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - cHx)$	H	H
1-1671	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - cHx)$	H	H
1-1672	H	H	H	Et	2	$-C = C - (CH_2)_{\cdot 2} 0 - (4 - Bu - cHx)$	H	H
1-1673	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - cHx)$	H	H
1-1674	H	Н -	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - cHx)$	H	H
1-1675	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - E t O - cHx)$	H	H
1-1676	H	Ή	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - PrO - cHx)$	H	H
1-1677	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr O - cHx)$	Ħ	H
1-1678	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3 - MeS - cHx)$	H.	H.
1-1679	H	H	H	Et	. 2	$-C \equiv C - (CH_2)_2 O - (4 - MeS - cHx)$	H	H
1-1680	H	H	H	Et	.2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - cHx)$	H	H
1-1681	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (3, 4 - diMe - cHx)$	H	H
1-1682	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (3, 5 - diMe - cHx)$	H	H
1-1683	H	H	H	Et	2	-C≡C-(CH ₂) ₂ 0-Ph	H	H
1-1684	H	H	H	Et	· 2	$-C \equiv C - (CH_2)_2 O - Ph$	Me	H
1-1685	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	Me
1-1686	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	F	H
1-1687	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	F
1-1688	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - F - Ph)$	H	H
1-1689	H.	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Cl - Ph)$	H	H
1-1690	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - Ph)$	H	H
1-1691	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - Ph)$	H	H
1-1692	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Et - Ph)$	H	H
1-1693	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - Ph)$	H	H
1-1694	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - Ph)$	H	H

1-1695	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Bu - Ph)$	H	H
1-1696	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - Ph)$	H	H
∄ -1697	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - Ph)$	H	H
1-1698	H	. Н	Ή	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - EtO - Ph)$. Н	H
1-1699	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - Ph)$	H	H
1-1700	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - Ph)$	H	H
1-1701	H	• Н	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - MeS - Ph)$	H	H
1-1702	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - Ph)$	H	H
1-1703	H	Н	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - Ph)$	H	H
1-1704	H	H	H	Et.	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - Ph)$	H	Ή
1-1705	H	H	H	Et	2	$-CO-(CH_2)_3-cHx$	H	H
1-1706	H	H	H	Et	·2	$-CO-(CH_2)_3-Ph$	H	H
1-1707	H	H	H	Et	2	$-C0-(CH_2)_4-cHx$	H	H
1-1708	H	H	H	Et	2	$-CO-(CH_2)_4-Ph$	\mathbf{H}^{\perp}	· H
1-1709	H	H	H	¹Et	² 2	$-C0-(CH_2)_5-cHx$	H	H
1-1710	H	H	H	Et	2	$-CO-(CH_2)_5-Ph$	H	H
1-1711	H	H	H	Et	2	$-CH(OH)-(CH_2)_4-cHx$	H	H
1-1712	H	H	H	Et	2	$-CH(OH)-(CH_2)_4-Ph$	H	Ή
1-1713	H	H	H	Et	2	$-CH(OH) - (CH_2)_5 - cHx$	H	H
1-1714	H	Н .	H	Et	2	$-CH(OH) - (CH_2)_5 - Ph$	Н .	Н
1-1715	H	H	H	Έt	2	$-4-(cHx-CH_2O)$ Ph	H	H
1-1716	H	H	H	Et	2	$-4-[cHx-(CH_2)_20]$ Ph	H	H
1-1717	H	H	H	Et	2	-4-[cHx-(CH2)30]Ph	. Н	Ή
1-1718	H	H	H	Et	2	-(4-Bz0-Ph)	H	H
1-1719	Ĥ	H	H	Et	2	-(4-Bz0-2-F-Ph)	Ή	H
1-1720	H	H	H	Et	2	-(4-Bz0-3-F-Ph)	H	H
1-1721	H	H	H	Et	2	-(4-Bz0-2, 3-diF-Ph)	H	H
1-1722	H	H	H	Et .	·2	-(4-Bz0-2-C1-Ph)	H	H
1-1723	H	H	H	Et	2	-(4-Bz0-3-Cl-Ph)	H	H

1-1724	H	H	H	Et	2	-(4-Bz0-2, 3-diCl-Ph)		H	H
i-1725	Ħ	H.	H	Et	2	-(4-Bz0-2-Me-Ph)		H	H
1-1726	H	H	H	Et	2	-(4-Bz0-3-Me-Ph)		H	Η.
1-1727	H	. H	H	Et	2	-(4-Bz0-2, 3-diMe-Ph)		H	Н.
1-1728	H	H	H	Et	2	-4-[Ph-(CH2)20]-Ph		H	H
1-1729	H	·H	H	Et	2	$-4-[Ph-(CH_2)_80]-Ph$		H	H
1-1730	H	H	H	Pr	2	$-(CH_2)_5-cHx$		H	H
1-1731	H	H	H	Pr	2	$-(CH_2)_5-Ph$	•	H	H
1-1732	H	H	H	Pr	2	$-(CH_2)_6-cHx$		H	H
1-1733	H	H	H	Pr	·2	$-(CH_2)_6-Ph$		H	H
1-1734	H	H	H	Pr	2	$-C \equiv C - CH_2 - cHx$		H	H
1-1735	H	H	H	Pr	2	$-C \equiv C - (CH_2)_3 - cHx$		H	H
1-1736	H	H	H	Pr	2	$-C \equiv C - (CH_2)_3 - Ph$		H	H
1-1737	H	H	H	Pr _	2	$-C \equiv C - (CH_2)_4 - cHx$		H	·H
1-1738	H	H	Н.	Pr	2	$-C \equiv C - (CH_2)_4 - Ph$		H	H
1-1739	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - cHx$		H	H
1-1740	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - Ph$		H	·H
1-1741	H	H	H	Pr	2	$-4-(cHx-CH_2O)Ph$. Н	H
1-1742	H	H	H	Pr	2	-(4-Bz0-Ph)		H	H
1-1743	H	H	H	Me	2	$-(CH_2)_4-(3-F-Ph)$		H	H
1-1744	H	H	H	Me	2	$-(CH_2)_4 - (3, 4-diF-Ph)$		H	H
1-1745	H	H	H	Me	2	$-(CH_2)_4-(3, 5-diF-Ph)$		H	H
1-1746	H	H	H	Me	2	$-(CH_2)_4 - (3-C1-Ph)$:	H	H
1-1747	H	H	H	Me	2 ·	$-(CH_2)_4-(4-Cl-Ph)$		H	H
1-1748	H	H	H	Me	2	$-(CH_2)_4-(3,4-diCl-Ph)$		H	H
1-1749	H	H	H	Me	2	$-(CH_2)_4-(3, 5-diCl-Ph)$	•	H	H
1-1750	H	H	H	Me	2	(CH2)4-(3-Me-Ph)		H	H
1-1751	H	H	H	Me	2	-(CH2)4-(3, 4-diMe-Ph)	1	H	H
1-1752	H	H	H	Me	2	$-(CH_2)_4-(3, 5-diMe-Ph)$		H	H

1-1753	H	H	H	Me	2	$-(CH_2)_4 - (3-CF_3-Ph)$	H	H
1-1754	H	H	H	Ме	2	$-(CH_2)_4-(3, 4-diCF_3-Ph)$	H	Н
1-1755	H	·- H	H	Me	2	-(CH2)4-(3, 5-diCF3-Ph)	H	H
1-1756	H	H	H	Ме	2	$-(CH_2)_4-(3-Me0-Ph)$	H	H
1-1757	H	H	H	Ме	2	$-(CH_2)_4-(3, 4-diMe0-Ph)$	H	H
1-1758	H	H	H	Me	2	$-(CH_2)_4-(3, 5-diMeO-Ph)$	H	H
1-1759	H	H	H	Me	2	-(CH2)4-(3, 4, 5-triMeO-Ph)	H	H
1-1760	H	H	Ή	Me	2	-(CH2)4-(3-Ac-Ph)	H	H
1-1761	H	H	Ħ	Me	2	-(CH2)4-(4-Ac-Ph)	H	H
1-1762	H	·H	H	Me	2	-(CH2)5-(3, 4-diF-Ph)	H	H
1-1763	H	H	H	Me	2	$-(CH_2)_5-(3,5-diF-Ph)$	H	H
1-1764	. Н	H	H	Me	2	-(CH2)5-(3-Cl-Ph)	H	H
1-1765	H	H	H	Me	2	-(CH2)5-(3, 4-diCl-Ph)	H	H
1-1766	H	H	H	Me	2	$-(CH_2)_5-(3,5-diCl-Ph)$	H	H
1-1767	H	H	H	Me	2	-(CH2)5-(3, 4-diCF3-Ph)	- H	H
1-1768	H	H	Ħ	Me	2	$-(CH_2)_5-(3,5-diCF_3-Ph)$	H	H
1-1769	H	·H	H	Me	2	-(CH2)5-(3, 4-diMeO-Ph)	H	. H .
1-1770	H	H	H	Me	2	$-(CH_2)_5-(3,5-diMe0-Ph)$	H	H.
1-1771	H	H	H	Me	2	-(CH2)5-(3, 4, 5-triMeO-Ph)	, H	H
1-1772	H	H	·H	Me	2	$-(CH_2)_5-(3-Ac-Ph)$	H	H
1-1773	Ħ	H	H	Me	2	-(CH2)5-(4-Ac-Ph)	H	H
1-1774	H	H.	H	Me	2	$-(CH_2)_3-0-(3-F-Ph)$	Ή	·Н
1-1775	H	H	H	Me	2	-(CH2)3-0-(3, 4-diF-Ph)	H	Ή
1-1776	H	H	H	Me	2	-(CH2)3-0-(3, 5-diF-Ph)	H	Ħ
1-1777	H	H.	H	Ме	2	$-(CH_2)_3-0-(3-Me-Ph)$	H	H
1-1778	H	H	H	Me	2	-(CH2)3-0-(3, 4-diMe-Ph)	H	H
1-1779	H	H	H	Ме	2	-(CH2)3-0-(3, 5-diMe-Ph)	H	H
1-1780	H	H	H	Me	2	$-(CH_2)_3-0-(3-CF_3-Ph)$	H	H
1-1781	H	H	H	Me	2	$-(CH_2)_3-0-(3, 4-diCF_3-Ph)$	H	H

1-1782	H	H	H	Me	2	-(CH2)3-0-(3,5-diCF3-Ph)	H	H
1-1783	H	H	H	Me	2	-(CH2)3-0-(3-Me0-Ph)	H	H
1-1784	H	H	H	Me	2	-(CH2)3-0-(3, 4-diMeO-Ph)	Ή	H
1-1785	H	H	H	Me	2	-(CH2)3-0-(3, 5-diMeO-Ph)	Ή	H
1-1786	H	H	H	Me	2	-(CH2)3-0-(3, 4, 5-triMeO-Ph)	H	H
1-1787	H	Н	H	Me	2	-(CH2)3-0-(3-Ac-Ph)	H	Η
1-1788	H	'H	H	Me	2	$-(CH_2)_3-0-(4-Ac-Ph)$	H	H
1-1789	H	· H	H	Me	2	-(CH2)4-0-(3, 4-diF-Ph)	H	H
1-1790	H	H	H	Me	2	-(CH2)4-0-(3, 5-diF-Ph)	H	H
1-1791	H	H	H	Me	2	-(CH2)4-0-(3, 4-d i MeO-Ph)	H	H
1-1792	H	H	H	Me	2	-(CH2)4-0-(3, 5-diMeO-Ph)	H	H
1-1793	H	H	H	Me	2	-(CH2)4-0-(3, 4, 5-triMeO-Ph)	H	H
1-1794	H	H	H	Me	2	-(CH2)4-0-(3-Ac-Ph)	H	· H
1-1795	H	·H	H	Мe	2	-(CH2)4-0-(4-Ac-Ph)	H	H
1-1796	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - F - Ph)$	H	H
1-1797	H	H	Н	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diF - Ph)$	H	H
1-1798	H	H ·	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diF - Ph)$	H	H
1-1799	H	H	Ή	Me	2	$-C \equiv C - (CH_2)_{-2} - (3 - C1 - Ph)$	H	H
1-1800	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Cl - Ph)$	H	H
1-1801	H	Н	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diCl - Ph)$	H	H
1-1802	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diCl - Ph)$	H	H
1-1803	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - Me - Ph)$	H	H
1-1804	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diMe - Ph)$	H	H
1-1805	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diMe - Ph)$	H	H
1-1806	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - CF_3 - Ph)$	H	H
1-1807	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - di CF_3 - Ph)$	H	H
1-1808	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - di CF_3 - Ph)$	H	H
1-1809	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - (3 - MeO - Ph)$	H	H
1-1810	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diMeO - Ph)$	H	H

1-1811	Ħ	H	·H	Ме	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diMeO - Ph)$	H	Ή
1-1812	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4, 5 - t r i MeO - Ph)$	H	H
1-1813	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - Ac - Ph)$	Ή	H
1-1814	H	H	H	Me	2	$-C = C - (CH_2)_2 - (4 - Ac - Ph)$	H	H
1-1815	H	H	Ή	⁴Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diF - Ph)$	H	H
1-1816	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diF - Ph)$	H	H
1-1817	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - C1 - Ph)$	H	H
1-1818	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diCl - Ph)$	H	. H
1-1819	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3, 5 - diCl - Ph)$	·H	H
1-1820	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - di CF_3 - Ph)$	H	H
1-1821	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - di CF_3 - Ph)$	H.	H
1-1822	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMeO - Ph)$	H	H
1-1823	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMeO - Ph)$	H	H
1-1824	H	; H	H	^a Me	2	$-C \equiv C - (CH_2)_3 - (3, 4, 5 - t r i MeO - Ph)$	H	H
1-1825	H	H	H	Me	· 2	$-C \equiv C - (CH_2)_3 - (3 - Ac - Ph)$	Ή	H
1-1826	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Ac - Ph)$	H	H
1-1827	H.	H	·H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - F - Ph)$	Ή	H
1-1828	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diF - Ph)$	H	Ή
1-1829	H	H	H	'Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diF - Ph)$	H	H
1-1830	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - C1 - Ph)$	H	·H
1-1831	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - C1 - Ph)$	H	H
1-1832	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diCl - Ph)$	H	H
1-1833	H	H	H	Me	. 2	$-C \equiv C - CH_2 - 0 - (3, 5 - diCl - Ph)$	H	H
1-1834	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (3 - Me - Ph)$	H	H
1-1835	H	Н	H	Me	2	$-C \equiv C - CH_2 - 0 - (2, 4 - diMe - Ph)$	H	H
1-1836	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diMe - Ph)$	H	H
1-1837	H	H	Ή	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diMe - Ph)$	H	H
1-1838	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (3 - CF_3 - Ph)$	Η	H
1-1839	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - di CF_3 - Ph)$	H	H

1-1840	H	H	H	Me	.2	$-C \equiv C - CH_2 - 0 - (3, 5 - di CF_3 - Ph)$	H	H
1-1841	٠Н	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - MeO - Ph)$	H	H
1-1842	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diMeO - Ph)$	H	H
1-1843	H	H	H	∴Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diMeO - Ph)$	H	H
1-1844	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4, 5 - triMe0 - Ph)$	H	H
1-1845	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - Ac - Ph)$	Ή	H.
1-1846	H	H	H	Me	·2	$-C \equiv C - CH_2 - 0 - (4 - Ac - Ph)$	H	H
1-1847	H	H _.	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CO_2H - Ph)$	H	H
1-1848	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - diF - Ph)$	H	H
1-1849	H	. Н	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - diF - Ph)$	H	H
1-1850	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3 - C1 - Ph)$	H	H
1-1851	H	.H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - diCl - Ph)$	H	H
1-1852	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - diCl - Ph)$	H,	H
1-1853	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - di CF_3 - Ph)$	H	H
1-1854	H	Н -	H	- Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - di CF_3 - Ph)$	H	H
1-1855	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - diMeO - Ph)$	H	H
1-1856	H	H	Ή	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - diMeO - Ph)$	H	·H
1-1857	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4, 5 - triMe0 - P)$	h)	H H
1-1858	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3 - Ac - Ph)$	H	·H
1-1859	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - 0 - (4 - Ac - Ph)$	H	H
1-1860	H	H	H	Me	2	$-C0-(CH_2)_3-(3-F-Ph)$	H	H
1-1861	H	·H	. H	Мe	2	$-CO-(CH_2)_3-(4-F-Ph)$	H	H
1-1862	H	H	H	Me	2	$-CO-(CH_2)_3-(3, 4-diF-Ph)$	H	H
1-1863	H	H	H	Me	2	$-CO-(CH_2)_3-(3, 5-diF-Ph)$	H	H
1-1864	H	H	H	Me	2	$-CO-(CH_2)_3-(3-CI-Ph)$	H	H
1-1865	H	·H	H	Me	2	$-C0-(CH_2)_3-(4-C1-Ph)$	H	H
1-1866	H	H	H	Me	2	$-CO-(CH_2)_3-(3, 4-diCl-Ph)$	H	H
1-1867	H	H	H	Me	2	$-CO-(CH_2)_3-(3, 5-diCl-Ph)$	H	H
1-1868	H	H	H	Me	2	$-CO-(CH_2)_3-(3-Me-Ph)$	H	H

161·

· *								
1-1869	H	H	H	Me	. 2	$-CO-(CH_2)_3-(4-Me-Ph)$	H	H
1-1870	H	·H	H	Me	2	$-CO-(CH_2)_3-(3, 4-diMe-Ph)$	H	H
1-1871	H	H	H	Ме	2	$-CO-(CH_2)_3-(3,5-diMe-Ph)$	H	H
1-1872	H	H:	H	Me	.2	$-C0-(CH_2)_3-(3-Et-Ph)$	H	H
1-1873	H	H	H	Me	2	$-C0-(CH_2)_3-(4-Et-Ph)$	H	. Н
1-1874	H	H	H	Me	2	$-CO-(CH_2)_3-(3-CF_3-Ph)$	H	H
1-1875	H	H	H	Me	2	$-CO-(CH_2)_3-(4-CF_3-Ph)$	H	H
1-1876	H	\mathbf{H}	H	Me	2	$-CO-(CH_2)_3-(3, 4-diCF_3-Ph)$	H	H
1-1877	H	H	H	Me	2	$-CO-(CH_2)_3-(3, 5-diCF_3-Ph)$	H	H
1-1878	H	$\cdot \mathbf{H}$	H	Me	2	$-CO-(CH_2)_3-(3-MeO-Ph)$	H	H
1-1879	H.	H	H	Me	2	$-C0-(CH_2)_3-(4-Me0-Ph)$	H	H
1-1880	H	·H	H	Мe	2	$-CO-(CH_2)_8-(3, 4-diMeO-Ph)$	H	H
1-1881	H	H	H	Me	2 .	$-CO-(CH_2)_3-(3, 5-diMeO-Ph)$	H	H
1-1882	H	H	H.	Me	2	$-CO-(CH_2)_8-(3, 4, 5-triMeO-Ph)$. H	H
1-1883	H	\mathbf{H}	H	Me	2	$-CO-(CH_2)_3-(4-MeS-Ph)$	H	H
:1-1884	H	H	H	Me	2	$-CO-(CH_2)_3-(3-Ac-Ph)$	H	H
1-1885	H	H	H	Мe	2	-CO-(CH2)3-(4-Ac-Ph)	H	·H
1-1886	H	H	H	·Ме	2	$-CO-(CH_2)_4-(3-F-Ph)$	H	H
1-1887	H	H	H	Мe	2	$-C0-(CH_2)_4-(3, 4-diF-Ph)$	H	H
1-1888	H	H	H	Me	2	$-CO-(CH_2)_4-(3, 5-diF-Ph)$	H	H
1-1889	H	H	H	Me	2	-CO-(CH ₂) ₄ -(3-Cl-Ph)	H	H
1-1890	H	H	H	Me	2	$-CO-(CH_2)_4-(4-C1-Ph)$	H	H
1-1891	H	Н	H	Me	2	$-CO-(CH_2)_4-(3, 4-diCl-Ph)$	H	H
1-1892	H	H	H	Me	2	$-CO-(CH_2)_4-(3, 5-diCl-Ph)$	H	H
1-1893	H	H	H	Me	2	$-CO-(CH_2)_4-(3-Me-Ph)$	H	H
1-1894	H	H	H	Me	2	$-CO-(CH_2)_4-(3, 4-diMe-Ph)$	H	H
1-1895	H	H	H	Me	· 2 .	$-C0-(CH_2)_4-(3, 5-diMe-Ph)$	H	H
1-1896	H	H	H	Me	2	$-C0-(CH_2)_4-(3-CF_3-Ph)$	H	H
1-1897	H	H	H	Me	2	$-C0-(CH_2)_4-(3, 4-diCF_3-Ph)$	H	H

1-1898	H	H	H	Me	2	$-CO-(CH_2)_4-(3, 5-diCF_3-Ph)$	H	H
1-1899	H	Н	H	Me	2	$-CO-(CH_2)_4-(3-MeO-Ph)$	H	H
1-1900	H	H	H	Me	2	$-CO-(CH_2)_4-(3,4-diMeO-Ph)$	H	. Н
1-1901	H	H	H	Me	2	-CO-(CH ₂) ₄ -(3, 5-diMeO-Ph)	H	·H
1-1902	H	H	H	Me	2	$-CO-(CH_2)_4-(3,4,5-triMeO-Ph)$	H	H
1-1903	H	H	.Н	Me	2	-CO-(CH2)4-(3-Ac-Ph)	H	H
1-1904	H	H	Ħ	Me	.2	-CO-(CH2)4-(4-Ac-Ph)	H	\mathbf{H}^{\cdot}
1-1905	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-F-Ph)$	H	H
1-1906	H	H	H.	Me	2	$-CH(OH) - (CH_2)_3 - (4-F-Ph)$	H	Н.
1-1907	H	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 4-diF-Ph)	Ή	Ή
1-1908	H	H	H	Me	2	$-CH(OH)-(CH_2)_3-(3,5-diF-Ph)$	H	H
1-1909	H	H	H	Me	2	$-CH(OH) - (CH_2)_{3} - (3-Cl-Ph)$	H	H
1-1910	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (4-Cl-Ph)$	H	. · · H
1-1911	H	H	H	Me.	2	-CH(OH) - (CH2)3 - (3, 4-diCl-Ph)	H	\mathbf{H}
1-1912	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3, 5-diCl-Ph)$	Ħ	H
1-1913	Н	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-Me-Ph)$	Ħ	: H
1-1914	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (4-Me-Ph)$	H	\mathbf{H}
1-1915	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3, 4-diMe-Ph)$	H	H
1-1916	H	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 5-diMe-Ph)	H	Ή
1-1917	H	H	H	Мe	2	$-CH(OH) - (CH_2)_3 - (3-Et-Ph)$	H	H
1-1918	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (4-Et-Ph)$	H	H
1-1919	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-CF_8-Ph)$	H	H
1-1920	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (4-CF_3-Ph)$	H	H
1-1921	H	H	H	Me	2	$-CH (OH) - (CH_2)_3 - (3, 4-d i CF_3-Ph)$	H	H
1-1922	H	H	H	⁻ Me	2	-CH(OH) - (CH2)3 - (3, 5-diCF3-Ph)	Ħ	H
1-1923	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-MeO-Ph)$	H	H
1-1924	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (4-MeO-Ph)$	· . H	H
1-1925	H	H	Η·	Me	2	$-CH(OH) - (CH_2)_3 - (3, 4-diMeO-Ph)$	H	H
1-1926	H	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 5-diMeO-Ph)	H	H

1-1927	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3, 4, 5 - triMeO - P)$	h)	H	H
1-1928	Ή	H	H	Me	2	-CH(OH)-(CH2)3-(4-MeS-Ph)	H		H
1-1929	H	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-Ac-Ph)$	H		H
1-1930	H	H	H	Ме	2	-CH(OH) - (CH2)3 - (4-Ac-Ph)	H		H
7-1931	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-F-Ph)$	H		H
1-1932	H	. Н	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diF-Ph)	H		H
1-1933	H	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 5-diF-Ph)	H		H
1-1934	H	H	H	Me	2	-CH (OH) - (CH2)4 - (3-C1-Ph)	H		H
1-1935	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Cl-Ph)$	H		H
1-1936	H .	H	H -	Me	2	-CH(OH) - (CH2)4 - (3, 4-diCl-Ph)	H		H
1-1937	H	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 5-diCl-Ph)	H		H
1-1938	H	, Н	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-Me-Ph)$	H		H
1-1939	H	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diMe-Ph)	H,		H
1-1940	H	H	H	Me	2	-CH (OH) - (CH2)4 - (3, 5-diMe-Ph)	H	•	H
1-1941	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-CF_3-Ph)$	H		H
1-1942	H	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diCF3-Ph)	H		H
1-1943	H	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 5 - diCF3 - Ph)	H		Ή
1-1944	H	H	H	Me	· 2	-CH(OH) - (CH2)4 - (3-MeO-Ph)	H		H
1-1945	H	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diMeO-Ph)	H		H
1-1946	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3, 5 - diMeO - Ph)$	H		Η
1-1947	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -(3, 4, 5-triMeO-F	'h)	H	H
1-1948	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-Ac-Ph)$	H		H
1-1949	H	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Ac-Ph)$	H		H

表 2

$$R^{3}O$$
 R^{4}
 $(CH_{2})_{n}$
 $(C$

又は

$$R^{4}$$
 $(CH_{2})_{n}$
 S
 R^{7}

(Ib-3)

Compd.	\mathbb{R}^1	· R ²	R³	R4	n	-Y-Z-R ⁵	R ⁶	.R ⁷
2- 1	H	H	Н	Me	2	-(CH ₂) ₃ -cHx	H	H
2 2	H	H	H	Me	2	$-(CH_2)_3-Ph$	H	, Н
2- 3	H	H	H	Me	2	$-(CH_2)_4-cHx$	Н	Ħ
2- 4	H	H	H	Me	2	$-(CH_2)_4-Ph$	H	H
2- 5	H	H	H	Me	2	$-(CH_2)_5-cPn$	H	H .
2- 6	H	H	H	Me	2	$-(CH_2)_5-cHx$	H	H
2- 7	H	H	H.	Me	2	$-(CH_2)_5-CHx$	Me	H
2- 8	H	H	H	Me	2	$-(CH_2)_6-cHx$	H	Me
2- 9	H	H.	H	Me	2	$-(CH_2)_5-cHx$	F	H
2-10	H	H	H	Me	2	$-(CH_2)_5-cHx$	H	F
2-11	H	H	H	Ме	2 .	$-(CH_2)_5 - (4-F-cHx)$	Ĥ	H

0 10	27	H	H	Me	2	-(CH2)5-(4-Cl-cHx)	H	H
2-12	H					• •	H	Н
2-13	H	H	H	Me	2	-(CH2)5-(4-Br-cHx)		
2-14	H	H .	H	Me	2	-(CH2)5-(4-Me-cHx)	H	H
2-15	H	H	H	Me	2	-(CH2)5-(4-Et-cHx)	H	H
2-16	H	H	H	Me	2	-(CH2)5-(4-Pr-cHx)	H	H
2-17	H	H	H	Me	2	$-(CH_2)_5-(4-iPr-cHx)$	H	H
2-18	H	H	H	Me	2	$-(CH_2)_5-(4-CF_3-cHx)$	H	H
2-19	H	H	H	Me	2	-(CH2)5-(4-Me0-cHx)	H	H
2-20	H	H	H	Me	2	$-(CH_2)_{5}-(4-Et0-cHx)$	·H	H
2-21	H	H	H	Me	2	$-(CH_2)_5-(4-Pr0-cHx)$	H	H
2-22	H	H	H	Me	2	-(CH2)5-(4-iPrO-cHx)	H .	H
2-23	H	H	H	Me	2	-(CH2)5-(3-MeS-cHx)	H	H
2-24	H	H	H	Me	2	-(CH2)5-(4-MeS-cHx)	H	H
2-25	H	H	H	Me	2	-(CH2)5-(2, 4-diMe-cHx)	H	H
2-26	H	H	H	Me	2	$-(CH_2)_5-(3,4-diMe-cHx)$	H	H
2-27	H	H	H	Me	2	$-(CH_2)_5-(3,5-diMe-cHx)$	H	H
2-28	H	H	H	Me	2	$-(CH_2)_5-Ph$	H	H
2-29	H	H	H	Me	2	$-(CH_2)_5-Ph$	Me	H
2-30	H	H	H	Me	2	$-(CH_2)_5-Ph$	H	Me
2-31	H	H	Н	Мe	2	$-(CH_2)_5-Ph$	F	H
2-32	H	H	H	Me	2	$-(CH_2)_5-Ph$	H	F
2-33	H	H	H	Me	2	$-(CH_2)_5-(4-F-Ph)$	H	H
2-34	H	H	H	Me	2	$-(CH_2)_5-(4-Cl-Ph)$	H	H
2-35	H	H.	H	Me	2	-(CH2)5-(4-Br-Ph)	H	H
2-36	H	H	H	Me	2	-(CH2)5-(4-Me-Ph)	Н	H
2-37	H	H	H	Me	2	$-(CH_2)_5-(4-Et-Ph)$	H	H
2-38	H	H	H	Me	2	$-(CH_2)_5-(4-Pr-Ph)$	H	H
2-39	H	Н	H	Me	2	-(CH2)5-(4-iPr-Ph)	H	H
2-40	H	H	Ħ	Me	2	-(CH2)5-(4-Bu-Ph)	H	H
						•		

2-41	H: .	H	H	Me	2.	$-\left(\mathrm{CH_{2}}\right)_{5}-\left(4-\mathrm{CF_{3}}-\mathrm{Ph}\right)$	H	H
2-42	H	H	H	Me	2	$-(CH_2)_5-(4-Me0-Ph)$	H	H
2-43	H.	H	H	Me	2	$-(CH_2)_5-(4-Et0-Ph)$	·H	H
2-44	H	H	H	Me	2	$-(CH_2)_5-(4-Pr0-Ph)$	H	H
2-45	H	H	H	Me	2	$-(CH_2)_5-(4-iPr0-Ph)$	H	H
2-46	H	H	H	Me	2	-(CH2)5-(3-MeS-Ph)	H	H
2-47	H	H	H	Ме	2	-(CH2)5-(4-MeS-Ph)	H	H
2-48	H	H	H	Me	2	$-(CH_2)_5-(2, 4-diMe-Ph)$	H	H
2-49	H	H	H	Me	2	-(CH ₂) ₅ -(3, 4-diMe-Ph)	H	\mathbf{H}^{\cdot}
2-50	H	H	H	Me	2	$-(CH_2)_5-(3, 5-diMe-Ph)$	H	H
2-51	H	H	Н	Me	2	$-(CH_2)_6-cPn$	H	H
2-52	H	H	H	Me	2	$-(CH_2)_6-cHx$	H	H
2-53	H	H	H	Me	2	-(CH2)6-cHx	Me	H
2-54	H	H	H	Me	2	$-(CH_2)_6-cHx$	H	Мe
2-55	• - Н	H	Н	Me	2	$-(CH_2)_6-cHx$	F ·	H
2-56	H	H	H	Me	2	$-(CH_2)_6-cHx$	H	F
2-57	H	H	H	Me	2	-(CH2)6-(4-F-cHx)	. H	H
2-58	H	H	H	Me	2	$-(CH_2)_6 - (4-C1-cHx)$	H	H
2-59	H	H	H	Me	.2	-(CH2)6-(4-Br-cHx)	H	Н
2-60	H	H	H	Me	2	-(CH2)6-(4-Me-cHx)	H	H
2-61	H	H	H	Me	2	$-(CH_2)_6-(4-Et-cHx)$	H .	H
2-62	H	H	H	Me	2	-(CH2)6-(4-Pr-cHx)	Н	H
2-63	Η	H	H	Me	2	-(CH2)6-(4-iPr-cHx)	H	H
2-64	H	H	H	Me	2	-(CH2)6-(4-Bu-cHx)	H	H
2-65	H	H	H	Me	2	-(CH2)6-(4-CF3-cHx)	H	H
2-66	H	H	H	Me	2	$-(CH_2)_6 - (4-Me0-cHx)$	H	H
2-67	H	H	H	Me	2	$-(CH_2)_6 - (4-Et0-cHx)$	H	H
2-68	H	H	H	Me	2	-(CH2)6-(4-Pr0-cHx)	H	H
2-69	H	H	H	Мe	2	-(CH2)6-(4-iPrO-cHx)	H	H

						•		
2-70	H	H	H	Me	2	-(CH2)6-(3-MeS-cHx)	H	H
2-71	H	H	·H	Me	2	-(CH2)6-(4-MeS-cHx)	H	H
2-72	H	H	H	Me	. 2	$-(CH_2)_6-(2,4-diMe-cHx)$	H	H
2-73	H	H	H	Me	. 2	$-(CH_2)_6-(3,4-diMe-cHx)$	H	H.
2-74	H	H	H	Me	2	$-(CH_2)_6-(3,5-diMe-cHx)$	H	H
2-75	H	H	H	Me	2	$-(CH_2)_6-Ph$	H	H
2-76	H	H	H	Me	2	$-(CH_2)_6-Ph$	Ме	H
2-77	Ή	H	H	Me	2	$-(CH_2)_6-Ph$. Н	Me
2-78	H	H	H	Me	2	$-(CH_2)_6-Ph$	F	H ·
2-79	H	H	H	Me	2	$-(CH_2)_6-Ph$	H	F
2-80	$\cdot \mathbf{H}$	H	H	Me	2	$-(CH_2)_5-(4-F-Ph)$	H	H
2-81	H.	H	H	Me	2	$-(CH_2)_6-(4-Cl-Ph)$	H	H
2-82	H	H	H	Me	2	-(CH2)6-(4-Br-Ph)	H	H
2-83	H	H	H	Me	2	-(CH2)6-(4-Me-Ph)	H	H
2-84	H	H	H	Me	2	$-(CH_2)_6-(4-Et-Ph)$	H	H
2-85	: H	H	H	Мe	2	$-(CH_2)_6-(4-Pr-Ph)$	H	H
2-86	H	H	·H	Me	2	-(CH2)6-(4-iPr-Ph)	H	H
2-87	H	H	H	Me	2	$-(CH_2)_6-(4-Bu-Ph)$	H	H
2-88	H	H	Н,	Me	2	$-(CH_2)_6 - (4-CF_3-Ph)$	H	H
2-89	H	H	H	Me	2	-(CH2)6-(4-MeO-Ph)	H	H
2-90	H	·H	H	Ме	. 2	$-(CH_2)_6-(4-Et0-Ph)$	H	Н.
2-91	H	·H	H	Me	2	$-(CH_2)_6-(4-Pr0-Ph)$	\mathbf{H}^{\perp}	H
2-92	H	H	H	Me	2	$-(CH_2)_6 - (4-iPr0-Ph)$	H	H
2-93	H	H	H	Me	2	-(CH2)6-(3-MeS-Ph)	H	H
2-94	H ·	H	H	Me	2	-(CH2)6-(4-MeS-Ph)	H	H
2-95	H	H	H	Me	2	$-(CH_2)_6-(2, 4-diMe-Ph)$	H	H
2-96	H	H	H	Me	2	2 0	H	H
2-97	H	H	H	Me	2	-(CH2)6-(3, 5-diMe-Ph)	H	. Н
2-98	H	H	H	Me	2	$-(CH_2)_7-cHx$	H	H

2-99	H	H	H	⊪Me	2	$-(CH_2)_7-Ph$	H	H
2-100	H	H	H	Ме	2	$-(CH_2)_8$ -cHx	H	H
2-101	H	H	H	Me	2	$-(CH_2)_8-Ph$	H	H
2-102	H	H	H	Me	2	-C≡C-CH ₂ -cHx	Ħ	Н
2-103	H	H	H	Me	2	$-C \equiv C - CH_2 - Ph$	H	H
2-104	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H
2-1.05	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H
2-106	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cPn$	H	H
2-107	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H
2-108	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	H
2-109	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Me
2-110	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H
2-111	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	F
2-112	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	H
2-113	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4 - Cl - cHx)$	Н.	H
2-114	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H.	H
2-115	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - cHx)$	H	H
2-116	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - cHx)$	H	H
2-117	H	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - cHx)$	H	H
2-118	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr - cHx)$	H	H
2-119	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	H	H
2-120	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H
2-121	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me0 - cHx)$	H	H
2-122	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	H
2-123	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - cHx)$	H	Ħ
2-124	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr0 - cHx)$	H	H
2-125	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx)$	H	H
2-126	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - cHx)$	H	H
2-127	H	H.	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$	H	H

2-128	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - cHx)$	H	H
2-129	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$	H	H
2-130	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H
2-131	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H
2-132	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Me
2-133	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	·F	H
2-134	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	F
2-135	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - F - Ph)$	H	H
2-136	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Cl - Ph)$	H	H
2-137	H	H	H	Me	2	$-C \equiv C - (CH_2)_s - (4 - Br - Ph)$	H	H
2-138	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H
2-139	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	H
2-140	H	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - Pr - Ph)$	H	H
2-141	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	H
2-142	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - Ph)$	H	H
2-143	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H.
2-144	H	H	·H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - Ph)$	H	H
2-145	H	·H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - Ph)$	H	H
2-146	\mathbf{H}	H	H	Me .	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - Ph)$	H	H
2-147	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i PrO - Ph)$	H	H
2-148	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H
2-149	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H
2-150	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - Ph)$	H	Ή
2-151	H	H	H	Me		$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - Ph)$	H	H
2-152	H	H	H	Me		$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - Ph)$	H	H
2-153	H	H	H	Me		$-C \equiv C - (CH_2)_4 - cPn$	H	H
2-1:54	H	H	H	Me		$-C \equiv C - (CH_2)_4 - cHx$	H	H
2-155	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H
2-156	H	H ,	H	Me	2	$-C \equiv C - (CH_2)_A - cHx$	H	Me

2-157	H	H.	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H
2-158	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F
2-159	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	·H
2-160	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - cHx)$	H.	H
2-161	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	Н
2-162	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - cHx)$	H	H.
2-163	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	Ĥ	H
2-164	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H	H
2-165	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr - cHx)$	H	H.
2-166	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx)$	H	H
2-167	H	H	H	Me	. 2	$-C \equiv C - (CH2)4 - (4 - CF3 - cHx)$	H	H
2-168	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - cHx)$	H .	H
2-169	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	H
2-170	H	H	Ħ	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - cHx)$	H	H
2-171	H	Н.	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - cHx)$	H	H
2-172	H	H	H	Me	. 2	$-C \equiv C - (CH_2)_4 - (4 - MeS - cHx)$	H	H.
2-173	H	H	H	Me	· 2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	H
2-174	H	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	·H
2-175	H	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	Н.	H
2-176	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H
2-177	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	Me	H
2-178	H	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Me
2-179	H	Н	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H
2-180	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H .	F
2-181	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	H	H
2-182	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Cl - Ph)$	H	H
2-183	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	H
2-184	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H
2-185	H	Н.	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	H	H

2-186	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	H	H
2-187	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - Ph)$	H	· .H .
2-188	H	H	H	Me	.2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H
2-189	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H
2-190	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - Ph)$	H	H
2-191	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - EtO - Ph)$	H	H
2-192	Ή	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrO - Ph)$	H	H
2-193	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - Ph)$	H	H
2-194	H	H	H	Ме	.2	$-C \equiv C - (CH_2)_4 - (3 - MeS - Ph)$	Ħ	·H
2-195	H	.Н	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	H
2-196	H	Н	H	Ме	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - Ph)$	H	H
2-197	H	H	·H	Ме	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - Ph)$	H	H
2-198	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - Ph)$	H	H
2-199	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H
2-200	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	Ή
2-201	H	H	H	Me -	.2	$-C \equiv C - (CH_2)_6 - cHx$	H	H
2-202	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H
2-203	Ħ	H	H	Me	2	$-C \equiv C - CH_2O - cHx$	H	H
2-204	H	H	H	Me	2	$-C \equiv C - CH_2O - Ph$	H	H
2-205	H	H	Η	Me	2	$-C \equiv C - (CH_2)_2 0 - cPn$	H	H
2-206	H	H	H	Me	'2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H
2-207	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	Me	Η
2-208	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Me
2-209	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	Ή
2-210	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F
2-211	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	H
2-212	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - C1 - cHx)$	Ή	H
2-213	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - B_1 - cH_X)$	H	H
2-214	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me - cHx)$	Ħ	H

2-215	H	H	H	Ме	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	·H	H
2-216	H	. Н	Ή	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - cHx)$	H	H
2-217	H	H	Н	Me	. 2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr - cHx)$	H	H
2-218	H	H	H	Me	· 2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	H	H.
2-219	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - cHx)$	H	H
2-220	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - cHx)$	H	H
2-221	H	·H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - cHx)$	H	H
2-222	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrO - cHx)$	H	H
2-223	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr O - cHx)$	H	H
2-224	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - MeS - cHx)$	H	Н.
2-225	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - MeS - cHx)$	H	H
2-226	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - cHx)$	H (:	H
2-227	H	H	H	Me	2	-C≡C-(CH ₂) ₂ 0-(3, 4-diMe-cHx	H (:	Н.
2-228	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - cHx)$	H (H
2-229	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H
2-230	H	. Н	H	-Me	·. 2	$-C \equiv C - (CH_2)_2 O - Ph$	Me	H
2-231	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$: H	Me
2-232	H.	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	F	H
2-233	H	H	H	Me	· · · 2	$-C \equiv C - (CH_2)_2 O - Ph$	Ή	F
2-234	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - F - Ph)$	H	H
2-235	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Cl - Ph)$	·H	H
2-236	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - Ph)$	H	H
2-237	H	H ·	Ħ.	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - Ph)$	H.	H
2-238	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	H
2-239	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - Ph)$	H	H
2-240	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - iPr - Ph)$. H	H
2-241	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - Ph)$	H	H
2-242	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - Ph)$	H	H
2-243	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - Ph)$	H	Ĥ

2-244	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et 0 - Ph)$	H	H
2-245	H-	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - Ph)$	H	H
2-246	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrO - Ph)$	H	Ħ
2-247	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - MeS - Ph)$	H	H
2-248	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (2, 4 - diMe - Ph)$	H	·H
2-249	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 4 - diMe - Ph)$	H	Ή
2-250	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 5 - diMe - Ph)$	H	H
2-251	H	H	H	Me	2	$-CO-(CH_2)_4-cHx$	H	H
2-252	H	H	H	Me	2	-C0-(CH2)4-Ph	H	H
2-253	H	H	H	Me	2	$-CO-(CH_2)_5-cHx$	H	H
2-254	H	H	H	Me	2	$-CO-(CH_2)_5-Ph$	H	H
2-255	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-cHx$	H	$\cdot_{\mathbf{H}}$
2-256	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	·Ħ	H
2-257	H	H	H	Me	2	$-CH(OH)-(CH_2)_5-cHx$	H	H
2-258	H	• Н	H	Me	2	-CH(OH)-(CH2)5-Ph	H	H
2-259	H	H	H	Me	2	-4-(cHx-CH ₂ 0)Ph	H	H
2-260	H	H	H	Me	2	-4-[cHx-(CH2)20]Ph	H	H
2-261	H	H	H	Me	2	-4-[cHx-(CH2)30]Ph	H	H
2-262	H.	H	H	Me	2	-(4-Bz0-Ph)	H	H
2-263	H	H	H	Me	2	-(4-Bz0-2-F-Ph)	H	H
2-264	H	H	H	Me	2	-(4-Bz0-3-F-Ph)	H	H
2-265	H	H	H	Me	2	-(4-Bz0-2, 3-diF-Ph)	H	H
2-266	H	H	H	Me	2	-(4-Bz0-2-Cl-Ph)	H	H
2-267	H	H	H	Me	2	-(4-Bz0-3-Cl-Ph)	H	H
2-268	H	· H	H	Me	2	-(4-Bz0-2, 3-diCl-Ph)	H	H
2-269	H	H	H	Me	2	-(4-Bz0-2-Me-Ph)	H	H
2-270	H	H	H	Me	2	-(4-Bz0-3-Me-Ph)	H	H
2-271	H	H	H	Me	2.	-(4-BzO-2, 3-diMe-Ph)	H	H
2-272	H	H	H	Me	2	$-4-[Ph-(CH_2)_20]-Ph$	H	H

WO 03/059880 PCT/JP03/00136

174

				•		•		
2-273	H	H	H	Me	2	$-3-[cHx-(CH_2)_20]-Ph$	H	H
2-274	H	H	H	Et	2	-(CH2)5-cHx	H	H
2-275	H	H	H	Et	2	$-(CH_2)_6-cHx$	\mathbf{H}	H
2-276	H -	H	H	Et	2	$-C \equiv C - (CH^{5})^{3} - cHx$	H	H
2-277	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H
2-278	H	H	· H	Et	2	$-4-(cHx-CH_2O)$ Ph	H	H
2-279	H.	H	H	Вt	2	-(4-Bz0-Ph)	H	H
2-280	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H
2-281	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H
2-282	H	H	H	Pr	· 2	$-(CH_2)_5-cHx$	H	H
2-283	H	H	H	Pr	. 2	-(CH2)6-cHx	H	H
2-284	H	Ħ	H	Pr	2	$-C \equiv C - (CH_2)_3 - cHx$	H	. Н
2-285	H	H	H	Pr	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H
2-286	H	H	H	Pr	2	$-4-(cHx-CH_2O)$ Ph	.Н	H
2÷287	H	H	H	Pr	2	-(4-Bz0-Ph)	H	H
2-288	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H
2-289	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	Н.

表 3

Compd. R^1 R^2 R^3 R^4 n $-Y-Z-R^5$ R^6 R^7

3-1	H	Н	H	Me	2	-(CH2)4-cHx	Н	H
.3-2	H	H	H	Me	2	$-(CH_2)_4$ -Ph	H	H
3-3	H	H	H	Me	2	$-(CH_2)_5-cHx$	H	H
3-4	H	H	H	Мe	· 2	$-(CH_2)_5-Ph$	H	·H
3-5	H	H	H	Me	·2	$-C \equiv C - (CH_2)_{-2} - cHx$	H	H
3-6	H	Н	H	Me	:2	$-C \equiv C - (CH_2)_2 - Ph$	H	H
3-7	H	H	Ħ	Me	`2	$-C \equiv C - (CH_2)_3 - cHx$	H	H
3-8	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H
3-9	H	H	H	Me	2	$-CO-(CH_2)_3-CHx$	H	H
3-10	Н.	H	H	Me	2	$-CO-(CH_2)_3-Ph$	H	H
3-11	H	H .	H	· Me	2	$-CO-(CH_2)_4-cHx$	H	H
3-12	H	H	H	Me	2	$-CO-(CH_2)_4-Ph$	H	H

表 4

Compd.	R ¹	R²	R ⁸	R ⁴	'n	-Y-Z-R ⁵	R⁵	R ⁷
4-1	H	H	Н	Me	2	$-(CH_2)_4-cHx$	Н	H
4-2	H	H	H	Me	2	$-(CH_2)_4$ -Ph	H	H
4-3	H	H	H	Me	2	-(CH2)5-cHx	H	H
4-4	H	H	H	Me	2	$-(CH5)$ ² - $-b\mu$	Н	H
4-5	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$. Н	H

1 C	TT	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H
4-6	H	Д	п	me	4	-C=C-(Cn ₂) 2-1 II	11	11
4-7	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H.
4-8	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H
4-9	H	H	H	Me	2	$-C0-(CH_2)_3-cHx$	H	H
4-10	H	H	H	Me	2	-CO-(CH2)3-Ph	H	Н.
4-11	H	H	H	Me	2	-CO-(CH2)4-cHx	H	H
4-12	H	H	H	Me	2	-CO-(CH2)4-Ph	H	Н

表 5

$$R^{10}O-P-O$$
 R^{4}
 $(CH_{2})_{n}$
 $(CH_{2$

 $R^{6} - R^{7} - R^{10} - R^{11}$ $-Y-Z-R^{5}$ $R^{1} \\$ \mathbb{R}^2 \mathbb{R}^4 Compd. n H H H H H $-(CH_2)_5-cHx$ 5-1 H Me 1

:5-2	H	H	Me	1	-(CH2)6-cHx	H	H	H	H
5-3	Ή	H	Me [.]	1	$-CH=CH-(CH_2)_3-cHx$	H	H	H	H
5-4	Н	H	Me	1	$-CH=CH-(CH_2)_4-cHx$	H	H	H	H
5-5	H	H	Me	1	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	Ή,
5-6	H	H	Me	1	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-7	H	H	Me	1	-CO-(CH2)4-cHx	H	H	H	·H
5-8	Ή	H	Me	1	$-CO-(CH_2)_5-cHx$	H	H	H	Ή
5-9	H	H	Me	1	-CH(OH)-(CH2)4-cHx	H	H	H	H
5-10	H ·	H	Me	1	$-CH(OH)-(CH_2)_5-cHx$. Н	. Н	H	Ħ
5-11	H	H	Me	1	-4-(cHx-CH ₂ 0)Ph	H	H	H	H
5-12	H	H	Me	1	-(4-Bz0-Ph)	 H	H	H	H
5-13	H	H	Me	1	$-C \equiv C - CH_2O - cPn$	H	H	H	H
5-14	H	H	Ме	1	$-C \equiv C - (CH_2)_2 0 - cPn$	H	H	H	H
5-15	H	Ħ	Me	1	$-C \equiv C - CH_2O - cHx$	H	H	H	H
5-16	H	H	Me	1	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-17	\mathbf{H}	H	Me	1	$-C \equiv C - CH_2O - Ph$	H	H	H	H
5-18	H	H	Ме	1	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	Ή
5-19	H	H	Me	2	$-(CH_2)_2-cHx$	H	H	H	H
5-20	H	Me	Me	2	$-(CH_2)_2-cHx$	H	H	H	H
5-21	CO ₂ M	е Н	Me	2	$-(CH_2)_2-cHx$	H	·H	H	H
5-22	CO ₂ E	t H	Me	2	-(CH2)2-cHx	H	H	H	H
5-23	H	H	Me	2	-(CH2)2-(4-F-cHx)	H	H	H	H
5-24	H	H	Me	2	$-(CH_2)_{i}-(4-Me-cHx)$	H	H	H	H
5-25	H	H	Me	2	$-(CH_2)_2-(4-Et-cHx)$	H	H	H	H
5-26	H	H	Me	2	$-(CH_2)_2-(4-CF_3-cHx)$	H	H	H	H
5-27	H	H	Me	2	-(CH2)2-(4-Me0-cHx)	H	H	H	H
5-28	·H	H	Me	2	$-(CH_2)_2-(4-Et0-cHx)$	H	H	H	H
5-29	- H	H	Me	2	$-(CH_2)_2-(4-MeS-cHx)$	·H	H	H	H
5-30	H	H	Me	2 ·	$-(CH_2)_2-(4-cHx-cHx)$	H	H	H	H

5-31	H	H	Me	2	-(CH2)2-(4-Ph-cHx)	H	H	H	H
5-32	H	H	Me	2	$-(CH_2)_2$ -Ph	H	H	H	H
5-33	H	Me	Me	2	$-(CH_1)_2$ -Ph	H	H	H	H
5-34	CO ₂ M	еН	Me	2	$-(CH_2)_2-Ph$	H	H	H	H
5-35	CO ₂ E	t H	Me	2	-(CH2)2-Ph	H	H	H	H
5-36	H	H	Me	2	$-\left(\text{CH}_{2}\right)_{2}-\left(4-\text{F-Ph}\right)$	H	H	H	H
5-37	H	H	Me	2	$-(CH_3)_2-(4-Me-Ph)$	H	H	H	H
5-38	H	H	Me	2	$-(CH_2)_2-(4-Et-Ph)$	H	H	H	H
5-39	H	H	Me	2	$-(CH_2)_2-(4-CF_8-Ph)$	H	H	H	H
5-40	H	H	Me	2 .	$-(CH_1)_2-(4-Me0-Ph)$	H	H	H	H
5-41	H	H	Me	2	$-(CH_2)_2-(4-Et0-Ph)$	H	H	H	H
5-42	H	H	Me	2	-(CH2)2-(4-MeS-Ph)	H	H.	H	H
5-43	H	H	Me	2	-(CH2)2-(4-cHx-Ph)	H	H	H	Η
5-44	. H	H	Me	2.	-(CH2)2-(4-Ph-Ph)	H	H	H	H
5-45	H	H	Me	2	-(CH2)3-cHx	H	H	H	· H
5-46	H	Me	Me	2	-(CH2)8-cHx	H	H	. Н	H
5-47	CO _z Me H		Me	2	$-(CH_2)_3-cHx$. · H	H	H	H
5-48	CO ₂ E	t H	Мe	2	$-(CH_2)_3-cHx$	H	H	H	H
5-49	H	H	Me	2	-(CH2)3-(4-F-cHx)	H	H	H	H
5-50	H	H	Мe	2	-(CH2)3-(4-Me-cHx)	H	H	H	Н
5-51	H	H	Мe	2	-(CH2)3-(4-Et-cHx)	. Н	H	H	H
5-52	H	H	Me	2	-(CH2)3-(4-CF3-cHx)	H	H	H	H
5-53	H	H	Me	2	-(CH2)8-(4-MeO-cHx)	H	H	H	H
5-54	H	H	Me	2	$-(CH_2)_3-(4-Et0-cHx)$	H	H	H	H
5-55	H	H	Me	2	-(CH2)8-(4-MeS-cHx)	H	H	H	H
5-56	H	H	Me	2	-(CH2)3-(4-cHx-cHx)	H	H	H	H
5-57	H	H	Me	2	-(CH2)3-(4-Ph-cHx)	H	H	H	H
5-58	H	H	Мe	2	$-(CH_2)_3-Ph$. Н	H	H	H
5-59	H	Me	Me	2	$-(CH_2)_3-Ph$	H	H	H	H

5-60	CO₂Me	H	Me	2	$-(CH_2)_{\hat{3}}-Ph$	H	H	\mathbf{H}_{\cdot}	H
5-61	CO ₂ E t	H	Me	2	$-(CH_2)_3-Ph$	H	H	H	H
5-62	H	Ĥ	Me	2	$-(CH_2)_3-(4-F-Ph)$	H	H	H	H
5-63	H	H	. Me	2	$-(CH_2)_3-(4-Me-Ph)$	H	H	H	Ή
5-64	H	Н	Me	2	$-(CH_2)_8-(4-Et-Ph)$	H	H	H	H
5-65	H	H	Me	2	-(CH2)3-(4-CF3-Ph)	H	H	H	H
5-66	H	H	Me	2	$-(CH_2)_3-(4-Me0-Ph)$	H	H	H	H
5-67	. Н	H	Me	2	$-(CH_2)_8-(4-Et0-Ph)$	H	H	H	H
5-68	H	H	Me	2	-(CH2)3-(4-MeS-Ph)	H	H	H	H
5-69	H	H	Me	2	$-(CH_2)_3-(4-cHx-Ph)$	H	H	H	H
5-70	H	H	Me	2	$-(CH_2)_3-(4-Ph-Ph)$	H	. H	H	Ή
5-71	·H	H	Me	2	-(CH2)4-cHx	H	H	H	H
5-72	H.	Me	Me	2	-(CH2)4-cHx	H	H	H	H
5-73	CO₂Me	H	Me	2	-(CH ₂) ₄ -cHx	H	H	H	H
5-74	CO ₂ E t	H	Me	2	-(CH2)4-cHx	H,	H	H	H
5-75	H	H	Me	2	$-(CH_2)_4-(4-F-cHx)$	H	H	H	H
5-76	H	H	Me	2	-(CH2)4-(4-Me-cHx)	H	H	H	\mathbf{H}^{\cdot}
5-77	H	H	Me	2	$-(CH_2)_4-(4-Et-cHx)$	H	H	H	H
:5-78	H	Ή	Me	2	$-(CH_2)_4-(4-CF_3-cHx)$	H	H	·H	H
5-79	H	H	Me	2	$-(CH_2)_4-(4-Me0-cHx)$	H	··H	H	H
5-80	H	H	Me	2	$-(CH_2)_4 - (4-Et0-cHx)$	Н	H	H	H
:5-81	H	H	Me	2	-(CH2)4-(4-MeS-cHx)	H	H	H	H
5-82	H	H	Me	2	-(CH2)4-(4-cHx-cHx)	H	H	H	H
5-83	H	H	Me	2	-(CH2)4-(4-Ph-cHx)	. Н	H	H	H
5-84	H	H	Me	2	$-(CH_2)_4-Ph$	H	H	H	H
5-85	H	Me	Me	2	-(CH2)4-Ph	H	H	H.	Æ
5-86	CO ₂ Me	H	Me	2	$-(CH_2)_4-Ph$	H	H	H	H
5-87	CO ₂ E t	H	Мe	2	$-(CH_2)_4-Ph$	H	H	H	H
5-88	H	H	Me	2	$-(CH_2)_4-(4-F-Ph)$	Н	H	H	H

5-89	H	ιΗ	Me /	2	-(CH2)4-(4-Me-Ph)		. Н	H	H	H
5-90	H .	H	Me.	2	-(CH2)4-(4-Et-Ph)		H	H	H	H
5-91	. Н	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{4}-\left(4-\mathrm{CF_{3}}-\mathrm{Ph}\right)$		H	H	H	H
5-92	H	H	Me	2	-(CH2)4-(4-Me0-Ph)		H	H	H	H
5-93	H	H	Me	2	$-(CH_2)_4-(4-Et0-Ph)$		H	H	H	H
5-94	H	H	Me	2	-(CH2)4-(4-MeS-Ph)		· H	H	H	H
5-95	H	H	Me	2	-(CH2)4-(4-cHx-Ph)		H	H	H	H
5-96	. H	H	Me	2	-(CH2)4-(4-Ph-Ph)		H	H	H	H
5-97	H	H	Me	2	$-(CH_2)_5-cPn$		H.	H	H	H
5-98	Н	H	Me	2	-(CH2)5-cHx	•	H	H	H	H
5-99	H	H	Me	2	$-(CH_2)_5-CHx$		Me	H	H	H
5-100	H	H	Me	2	$-(CH_2)_5-cHx$		H	Me	H	H
5-101	H	H	Me	2	$-(CH_2)_5-cHx$		F	H	H	H
5-102	H	H	Me	2	$-(CH_2)_5-cHx$		H	F	H	H
5-103	H	Me	Me	2	$-(CH_2)_5-cHx$		H	H	H	H
5-104	CO ₂ Me	Н	Me	2	$-(CH_2)_5-cHx$		H	H	H	H
5-105	CO ₂ E 1	H	Me	2	$-(CH_2)_5-cHx$		H	H	H	H
5-106	H	H	Me	2	$-(CH_2)_5-(3-F-cHx)$		H	H	H	H
5-107	. H	H	Me	2	$-(CH_2)_{5}-(4-F-cHx)$		H	H	H	H
5-108	H	H	Me	2	-(CH2)5-(4-Cl-cHx)		H	H	H	H
5-109	H	H	Me	2	-(CH2)5-(4-Br-cHx)		H	.Н	H	H
5-110	H	H	Me	2	-(CH2)5-(3-Me-cHx)		H	H	H	H
5-111	H	H	Me	2	-(CH2)5-(4-Me-cHx)	٠.	H	H	H	H
5-112	H	H	Me	2	$-(CH_2)_5 - (3-Et-cHx)$,	H	Ħ	H	H
5-113	H	\mathbf{H}	Me	2	-(CH2)5-(4-Et-cHx)		H	H	Ħ	H
5-114	H	H	Me	2	$-(CH_2)_5 - (3-Pr-cHx)$	·	H	H	H	H
5-115	H	H	Me	2	-(CH2)5-(4-Pr-cHx)		H.	H	H	H
5-116	H	H	Me	2	-(CH2)5-(4-iPr-cHx)		H	H	H	H
5-117	Ħ	H	Me	2	-(CH2)5-(3-Bu-cHx)		H	H	. H	H

								_	
5-118	H	H	Me	2	-(CH2)5-(4-Bu-cHx)	H	H	Η	H
5-119	H	H	Me	2	-(CH2)5-(3-CF3-cHx)	H	H	H	H
5-120	H	H	Me	2	-(CH2)5-(4-CF3-cHx)	H	H	H	H
5-121	H	H	Мe	. "2	$-(CH_2)_5-(3-Me0-cHx)$	H	H	H	H
5-122	H	, Н	Me	2	-(CH2)5-(4-MeO-cHx)	H	H	H	H
5-123	Ή	H	Me	2	-(CH2)5-(3-Et0-cHx)	H	- Н	H	H
5-124	H	H	Me	2	$-(CH_2)_5-(4-Et0-cHx)$	H	H	H	H
5-125	H	H	Me	2	$-(CH_2)_5 - (3-Pr0-cHx)$	H	H	H	H
5-126	H	H	Ме	2	-(CH2)5-(4-Pr0-cHx)	H	H	H	H
5-127	H	H	Me	2	-(CH2)5-(3-iPr0-cHx)	: H	H	H	H
5-128	H	H	Me	2	$-(CH_2)_5-(4-iPr0-cHx)$	H	H	H	H
5-129	Ħ	H	Me	2	-(CH2)5-[3-(2-Et-Pr0)-cHx]	H	H	H	H
5-130	H	H	Me	2	-(CH2)5-[4-(2-Et-Pr0)-cHx]	H	H	H	H
5-131	H	H	Me	2	-(CH2)5-(3-iBu0-cHx)	H	H	H	H
5-132	H	H	Me	2	-(CH2)5-(4-iBu0-cHx)	H	H	H	H
5-133	H	H	Me	2	-(CH2)5-(3-MeS-cHx)	H	H	·H	Н
5-134	H	H	Me	. 2	-(CH2)5-(4-MeS-cHx)	H	H	H	Н
5-135	H	H	Me	2	-(CH2)5-(3-EtS-cHx)	H	H	H	H
5-136	H	H	Me	2	-(CH2)5-(4-EtS-cHx)	H	H	H	H
5-137	H	H	Me	2	-(CH2)5-(3-PrS-cHx)	H	H	H	H
5-138	H	H	Me	2	-(CH2)5-(4-PrS-cHx)	H	H	H	H
5-139	H	H	Me	2	-(CH2)5-(3-iPrS-cHx)	H	H	H	H
5-140	H	H	Me	2	$-(CH_2)_5-(4-iPrS-cHx)$	H	H	H	H
5-141	H	H	Me	2	$-(CH_2)_5-[3-(2-Et-PrS)-cHx]$	H	H	H	H
5-142	H	H	Мe	2	$-(CH_2)_5-[4-(2-Et-PrS)-cHx]$	H	H	Ή	H
5-143	H	H	Me	2	-(CH2)5-(3-iBuS-cHx)	H	H	H	H
5-144	H .	H	Me	2	-(CH2)5-(4-iBuS-cHx)	H	·H	Ή	H
5-145	H	H	Мe	2	$-(CH_2)_5 - (3-cHx-cHx)$	H	H	H	H
5-146	H	Н	Me	2	$-(CH_2)_5-(4-cHx-cHx)$	H	H	H	H

5-147	H	H	Me	2	-(CH2)5-(3-Ph-cHx)	H	Н.	H	H
5-148	H	H	Me	2	-(CH2)5-(4-Ph-cHx)	H	H	H	H
5-149	H	H	Me	2	$-(CH_2)_5-(2, 4-diMe-cHx)$	H	H	H	H
5-150	H	H	Мe	2	$-(CH_2)_5-(3,4-diMe-cHx)$	H	H	H	H
5-151	H	H	Me	2	$-(CH_2)_5-(3,5-diMe-cHx)$	H	Ħ	H	H
5-1.52	H	H	Me	2	$-(CH_2)_5-Ph$	Н	. H	H	H
5-153	H	H	Me	2	-(CH ₂) ₅ -Ph	Мe	H	H	H
5-154	H	H	Me	2	$-(CH_2)_6-Ph$	H	Me	H	H
5-155	H	H	Me	2	$-(CH_2)_5-Ph$	F	H	H.	H
5-156	H	H	Me	2	$-(CH_2)_5-Ph$	H	F	H	H
5-157	H.	Мe	Me	2	-(CH ₂) ₅ -Ph	H.	H	: H	H
5-158	COzl	Me H	Me	.2	$-(CH_2)_{5}-Ph$	H	H	H	H
5-159	CO ₂ I	Et H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
5-160	H	H	Me	2	$-(CH_2)_5-(3-F-Ph)$	H	H	H	H
5-161	H	H	Me	2	$-(CH_2)_5-(4-F-Ph)$	H	H	H	H
5-162	H	H	Me	2	$-(CH_2)_5-(4-C1-Ph)$	H	H	H	H
5-163	H	H	Me	2	$-(CH_2)_5-(4-Br-Ph)$	H	H	H	H
5-164	H	H	Me	2	$-(CH_2)_5-(3-Me-Ph)$	H	H	H	H
5-165	H	H	Me	2	$-(CH_2)_5-(4-Me-Ph)$	H	H	H	H
5-166	H	. Н	Me	2	$-(CH_2)_5 - (3-Et-Ph)$	H	H	H	H
5-167	H	H	Me	2	-(CH2)5-(4-Et-Ph)	H	H	H	H
5-168	H	H	Me	2	$-(CH_2)_5 - (3-Pr-Ph)$	· H	H	H	H
5-169	H	H	Me	2	-(CH2)5-(4-Pr-Ph)	H	H	H	H
5-170	Ħ	H	Me	2	-(CH2)5-(3-iPr-Ph)	H	H	H	H
5-171	H	H	Me	2	-(CH2)5-(4-iPr-Ph)	H	H	H	H
5-172	H	H	Me	2	$-(CH_2)_5 - (3-Bu-Ph)$	H	H	H	H
5-173	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{5}-\left(4\mathrm{-Bu-Ph}\right)$	H	H	H	H
5-174	H	H	Мe	2	$-(CH_2)_5 - (3-CF_3-Ph)$	H	H	H	H
5-175	H	H	Me	2	$-(CH_2)_5 - (4-CF_3-Ph)$	H	H	H	H

5-176	H	H	Me	.2	$-(CH_2)_5-(3-Me0-Ph)$	H	H	H	H
5-177	H	H	Ме	2	-(CH2)5-(4-MeO-Ph)	H	H	H	H
5-178	H	H	Me	2	$-(CH_2)_5-(3-Et0-Ph)$	H	H	H	H
5-179	H	H	Me	2	$-(CH_2)_5 - (4-Et0-Ph)$	H	H	Ή	H
5-180	H	H	Me	2	$-(CH_2)_5-(3-Pr0-Ph)$	H	H	H	H
5-181	H	H	Me	2	$-(CH_2)_5-(4-Pr0-Ph)$	H	H	H	H
5-182	H	H	Me	2	-(CH2)5-(3-iPrO-Ph)	H	H	H	H
5-183	Ħ	H	Me	. 2	-(CH2)5-(4-iPr0-Ph)	H	H	H	H
5-184	H	H	Me	2	-(CH2)5-[3-(2-Et-Pr0)-Ph]	H	H	H	H
5-1.85	H	H	Me	2	-(CH2)5-[4-(2-Et-Pr0)-Ph]	H	H	H	H
5-186	H	H	Me	2	$-(CH_2)_5-(3-iBu0-Ph)$	H	H	H	· H
5-187	H	H	Me	2	-(CH2)5-(4-iBu0-Ph)	Ħ	H	H	H
5-188	H	H	Me	2	-(CH2)5-(3-MeS-Ph)	H	H	H	·H
5-189	H	H	Me	2	-(CH2)5-(4-MeS-Ph)	H	H	Н	H
5-190	H	H	Me	2	-(CH2)5-(3-EtS-Ph)	H	H	H	H
5-191	H	H	Me	2	-(CH2)5-(4-EtS-Ph)	H	Ή	H	H
5-192	H	H	Me	2	-(CH2)5-(3-PrS-Ph)	· H	H	H	·H
5-193	H	H	Me	2	-(CH2)5-(4-PrS-Ph)	H	H	H	H
5-194	H	H	Me	2	-(CH2)5-(3-iPrS-Ph)	H	H	H	H
5-195	H	H	Me	2	-(CH2)5-(4-iPrS-Ph)	H	H	·H	H
5-196	H	H	Me	2	$-(CH_2)_5-[3-(2-Et-PrS)-Ph]$	Н	H	H	H
5-197	H	H	Me	2	$-(CH_2)_5-[4-(2-Et-PrS)-Ph]$	H	H	H	H
5-198	H	H	Me	2	-(CH2)5-(3-iBuS-Ph)	H	H	H	H
5-199	H	H	Me	2	-(CH2)5-(4-iBuS-Ph)	H	H	H	H
5-200	H	H	Me	2	-(CH2)5-(3-cHx-Ph)	H	H	H	H
5-201	H	H	Me	2	$-\left(\mathrm{CH}_{2}\right)_{5}-\left(4-\mathrm{cHx-Ph}\right)$	H	H	H	H
5-202	H	H	Ме	2	$-(CH_2)_5-(3-Ph-Ph)$	H	H	H	H
5-203	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{5}-\left(4-\mathrm{Ph-Ph}\right)$	H	H	H	H
5-204	H	H	Me	2	$-(CH_2)_5-(2, 4-diMe-Ph)$	H	H	H	H

				-	•					
5-205	H	H	Me	2	$-(CH_2)_5-(3, 4-diMe-Ph)$		H	H	Ħ	H
5-206	H	H	Me	2	$-(CH_2)_5-(3, 5-diMe-Ph)$		H	H	H	H
5-207	H	Ħ	Me	2	-(CH2)5-Np(1)		H	H	H	H
5-208	H	H	Me	2	$-(CH_2)_5-Np(2)$		H	H	H	H
5-209	H	H	Me	2	$-(CH_2)_6-cPn$		H	H	H	H
5-210	H	H	Me	2	$-(CH_2)_6-cHx$		H	Н	H	H
5-211	H	H	Me	2	-(CH2)6-cHx		Me	H	H	H
5-212	H	H	Me	2	-(CH2)6-cHx		H	Me	H	H
5-213	H	H	Me	2	$-(CH_2)_6-cHx$		F	H	H	H
5-214	H	H	Me	2	$-(CH_2)_6-cHx$		H	F	H	H
5-215	. H	Me	Me	2	$-(CH_2)_6-cHx$		H	H	H	H
5-216	CO ₂ M	е Н	Me	2	$-(CH_2)_6-cHx$		H	H	H	H
5-217	CO ₂ E	t H	Me	2	$-(CH_2)_6-cHx$	•	H	H	H	H
5-218	H	H	Me	2	-(CH2)6-(3-F-cHx)		H	H	H	Ή
5-219	-: H	H	Me	2	$-(CH_2)_6 - (4-F-cHx)$		H	H	H	Ή
5-220	H	H	Me	2	$-(CH_2)_6-(4-C1-cHx)$		·H	H	H	H
5-221	H.	H	Мe	2	-(CH2)6-(4-Br-cHx)		H	H	H	Η
5-222	H	H	Мe	2	-(CH2)6-(3-Me-cHx)		H	H	H	H
5-223	H	H	Me	2	-(CH2)6-(4-Me-cHx)		H	H	H	Ή
.5-224	H:	H	Me	2	-(CH2)6-(3-Et-cHx)		H	H	H	H
5-225	H	H	Мe	2	-(CH2)6-(4-Et-cHx)		H	H	H	H
5-226	H	H	Me	2	-(CH2)6-(3-Pr-cHx)		H	H	H	H
5-227	H	H	Me	2	$-(CH_2)_6 - (4-Pr-cHx)$	•	H	H	H	H
5-228	H	H	Me	2	-(CH2)6-(4-iPr-cHx)		H	H	H	· H
5-229	H	H	Me	2	-(CH2)6-(3-Bu-cHx)		H	H	H	H
5-230	H	H	Me	2	-(CH2)6-(4-Bu-cHx)		H	. Н	H	H
5-231	H	H	Me	2	$-(CH_2)_6 - (3-CF_3-cHx)$		H	H	H	H
5-232	H	H	Me	2	-(CH2)6-(4-CF3-cHx)		H	H	H	H
5-233	H	H	Me	2	-(CH2)6-(3-Me0-cHx)	*	H	H	H	H

5-234	H	H	Me	. 2	-(CH2)6-(4-Me0-cHx)	H	H	Ή	H
5-235	H	H	Me	2	$-(CH_2)_6 - (3-Et0-cHx)$	H	H	H	H
5-236	H	H	Me	2	$-(CH_2)_6 - (4-Et0-cHx)$	H	H	H	H
5 5−237	H	H	Me	2	-(CH2)6-(3-Pr0-cHx)	H	H	·H	H
5-238	H	H	Me	2	-(CH2)6-(4-Pr0-cHx)	H	H	H	H
5-239	H	H	Me	2	-(CH2)6-(3-iPr0-cHx)	H	H	H	H
5-240	H	H	Me	2	-(CH2)6-(4-iPr0-cHx)	H	H	H	H
5-241	H	. H	Me	2	-(CH2)6-[3-(2-Et-Pr0)-cHx]	H	H	H	H
5-242	Н	H	Me	2	-(CH2)6-[4-(2-Et-Pr0)-cHx]	H	H	H	H
5-243	H	H	Me	2	-(CH2)6-(3-iBu0-cHx)	H	H	H	H
5-244	H	H	Me	2	-(CH2)6-(4-iBu0-cHx)	H	H	H	H
5-245	H	H	Me	2	-(CH2)6-(3-MeS-cHx)	H	H.	H	H
5-246	H	H	Me	2	-(CH2)6-(4-MeS-cHx)	H	H	H	H
5-247	H	H	Me	2	-(CH2)6-(3-EtS-cHx)	. Н	H	H	Ή
5-248	H	H	Me	2	-(CH2)6-(4-EtS-cHx)	H	Ħ	H	\mathbf{H}^{i}
5-249	H	H	Me	2	-(CH2)6-(3-PrS-cHx)	H	H.	Ħ	H.
5-250	H	H	Me	2	-(CH2)6-(4-PrS-cHx)	H	H	\mathbf{H}_{\cdot}	Ή
5-251	H	H	Me	2	-(CH2)6-(3-iPrS-cHx)	H	H	H	H
5-252	H	H	Me	2	-(CH2)6-(4-iPrS-cHx)	H	H	H	H
5-253	H	H	Me	2	$-(CH_2)_6-[3-(2-Et-PrS)-cHx]$	H	H	H	H
5-254	H	H	Me	2	$-(CH_2)_6-[4-(2-Et-PrS)-cHx]$	H	H	H	H
5-255	H	H	Me	2	-(CH2)6-(3-iBuS-cHx)	H	H	H	H
5-256	H	\mathbf{H}	Me	2	-(CH2)6-(4-iBuS-cHx)	H	H	H	H
5-257	H	H	Me	2	$-(CH_2)_6 - (3-cHx-cHx)$	H	H	H	H
5-258	H	H	Me	2	-(CH2)6-(4-cHx-cHx)	H	H	H	H
5-259	H	H	Me	2	$-(CH_2)_6 - (3-Ph-cHx)$	H	H	H	H
5-260	H	H	Me	2	-(CH2)6-(4-Ph-cHx)	·H	H	H	H
5-261	H	H	Me	2	$-(CH_2)_6-(2,4-diMe-cHx)$	H	H	H	H
5-262	H	H	Me	2	$-(CH_2)_6 - (3, 4-diMe-cHx)$	H	H	H	H

5-263	.H :	H	Me	2	$-(CH_2)_6-(3,5-diMe-cHx)$	H	H	Æ	H
5-264	H	H	Me	2	$-(CH_2)_6-Ph$	H	H	Н.	H
5-265	H	H	Me	2	$-(CH_2)_6-Ph$	Me	H	H	Н
5-266	H	H	Me	2	-(CH2)6-Ph	H	Me	H	H
5-267	H	H	Me	2	-(CH2)6-Ph	F	H	H	H
5-268	H	H	Me	2	-(CH ₂) ₆ -Ph	H	F	H	·H
5-269	H	Me	Me	2	$-(CH_2)_6-Ph$	H	H	H	H
5-270	CO ₂ Me	еН	Me	2	- (CH ₂) _{.6} -Ph	H	H	H	H
5-271	CO ₂ E	t H	Me	2	$-(CH_2)_6-Ph$	H	H	H	H
5-272	H	Н.	Me	2	$-(CH_2)_6-(3-F-Ph)$	H	H	·H	H
5-273	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{6}-\left(4\mathrm{-F-Ph}\right)$. Н	H	H.	H
5-274	H	H	Me	2	$-(CH_2)_6-(4-C1-Ph)$	H	H	H	H
5-275	,H	H	Me	2	$-\left(CH_{2}\right)_{5}-\left(4-Br-Ph\right)$	H	H	H	. H .
5-276	H	H	Me	2	$-(CH_2)_6-(3-Me-Ph)$	H	. Н	H	H
5-277	H	H	Me	2	-(CH2)6-(4-Me-Ph)	H	. Н	H	H
5-278	H	H	Me	2	$-(CH_2)_6 - (3-Et-Ph)$	H	H	H	H
5-279	H	H	Мe	2	$-(CH_2)_6 - (4-Et-Ph)$	H	H	H.	H
5-280	Н.	H	Me	2	$-(CH_2)_6 - (3-Pr-Ph)$	H	H	H	H
5-281	H	H	Me	2	$-(CH_2)_6-(4-Pr-Ph)$	H	H	H	H
5-282	H	H	Me	2	-(CH2)6-(3-iPr-Ph)	H	H	H	H
5-283	H	H	Me	2	-(CH2)6-(4-iPr-Ph)	H	H	H	H
5-284	H	H	Me	2	-(CH2)6-(3-Bu-Ph)	. Н	H	H	· H
5-285	H	H	Me	· 2	$-\left(\mathrm{CH_{2}}\right)_{6}-\left(4\mathrm{-Bu-Ph}\right)$	H	· H	H	H
5-286	H	H	Me	2	$-(CH_2)_6 - (3-CF_3-Ph)$	H	H	H	Ħ.
5-287	H	H	Me	2	$-(CH_2)_6 - (4-CF_3-Ph)$	H	H	H	H
5-288	H	H	Me	2 .	$-(CH_2)_6-(3-Me0-Ph)$	H	H	H	H
5-289	H	H	Me	2	-(CH2)6-(4-MeO-Ph)	H	H	H	H
5-290	H	H	Me	2	$-(CH_2)_6 - (3-Et0-Ph)$	H	H	H	H
5-291	H	H	Me	2	$-(CH_2)_6 - (4-Et0-Ph)$	H	H	H	H

5-292	H	H	Me	2	$-(CH_2)_6 - (3-PrO-Ph)$	H	H	H	H
5-293	H	H	Me	2	$-(CH_2)_6 - (4-PrO-Ph)$	H	H	H	H
5-294	H	H	Me	2	$-(CH_2)_6 - (3-iPrO-Ph)$	H	H	H	H
5-295	H	H	Me	2	-(CH2)6-(4-iPrO-Ph)	H	H	H	H
5-296	H	Н	.Me	2	-(CH2)6-[3-(2-Et-Pr0)-Ph]	H	H .	H	H
5-297	·H	H	Me	2	-(CH2)6-[4-(2-Et-Pr0)-Ph]	H	H	H .	H
5-298	H	Н	Me	2	$-(CH_2)_6-(3-i Bu 0-Ph)$	H	H	H	H
5-299	H	H	Me	2	-(CH2)6-(4-iBu0-Ph)	.H	H	H	H
5-300	·H	H	Me	2	$-(CH_2)_6-(3-MeS-Ph)$	Ħ	H	H	H
5-301	H	H	Me	2	-(CH2)6-(4-MeS-Ph)	H	H	H	H
5-302	H	H	Me	2	-(CH2)6-(3-EtS-Ph)	H	H	H	·H
5-303	H	H	· Me	2	-(CH2)6-(4-EtS-Ph)	H	H	H	H
5-304	H	H	. Me	2	-(CH2)6-(3-PrS-Ph)	\mathbf{H}_{\cdot}	H	Ή	H
5-305	H	. H	Me	2	-(CH2)6-(4-PrS-Ph)	. Н	H	\mathbf{H}^{r}	H
5-306	H	H	Me	2	-(CH2)6-(3-iPrS-Ph)	H	·H	H	H
5-307	Ħ	H	Me	2	-(CH2)6-(4-iPrS-Ph)	H	H	H	H
5-308	H	H	Me	2	$-(CH_2)_6-[3-(2-Et-PrS)-Ph]$, H	H	H.	H
5-309	H	H	Me	2	-(CH2)6-[4-(2-Et-PrS)-Ph]	H	H	H	H
5-310	: H	H	Me	2	-(CH2)6-(3-iBuS-Ph)	H	H	Ħ	H
5-311	H	· H	Me	2	-(CH2)6-(4-iBuS-Ph)	H	H	H	H
5-312	\mathbf{H}	H	Me	2	-(CH2)6-(3-cHx-Ph)	H	H	H	H
5-313	H	H	Me	2	-(CH2)6-(4-cHx-Ph)	H	H	H	H
5-314	H	H	Me	2	$-\left(\mathrm{CH}_{2}\right)_{6}-\left(3-\mathrm{Ph}-\mathrm{Ph}\right)$	H	H	H	H
5-315	H	H	Me	2	$-\left(\mathrm{CH}_{2}\right)_{6}-\left(4-\mathrm{Ph}-\mathrm{Ph}\right)$	H	H	H	H
5-316	H	H	Me	2	$-(CH_2)_6-(2, 4-diMe-Ph)$	H	H	H	H
5-317	H	H	Me	2	$-(CH_2)_6-(3, 4-diMe-Ph)$	H	H	H	H
5-318	H	H	Me	2	$-(CH_2)_6 - (3, 5 - diMe - Ph)$. Н	H	H	H
5-319	H	H	Me	2	-(CH2)6-Np(1)	H	H	H	Ή
5-320	H	H	Me	2	$-(CH_2)_6-Np(2)$	H	H	H	H

			_	(or) T	77	77	77	**
5-321	H H	Me	2	-(CH2)7-cHx	H	H	H	H
5-322	H H	Me	2	$-(CH_2)_7$ -cHx	H	H	Η.	H
5-323	CO ₂ Me H	Мe	2	$-(CH_2)_7$ -cHx	H	H	H	H
5-324	CO ₂ Et H	Me	2	$-(CH_2)_7$ -cHx	H _.	H	H	H
5-325	H H	Me	2	-(CH2)7-(4-F-cHx)	H	H	H	\mathbf{H}
5-326	H H	Me	2	-(CH2)7-(4-Me-cHx)	H	Ħ	H	·H
5-327	H H	Me	2	-(CH2)7-(4-Et-cHx)	H	H	H	H
5-328	H H	Me	2	$-(CH_2)_7 - (4 - CF_3 - cHx)$	H	H	H	H
5-329	H H	Мe	2	-(CH2)7-(4-Me0-cHx)	H	H . *	H	H
5-330	H H	Me	· 2	$-(CH_2)_7 - (4-Et0-cHx)$	H	H	H	H
5-331	н н	Me	2	-(CH2)7-(4-MeS-cHx)	H	H	H	H
5-332	н н	Me	2	-(CH2)7-(4-cHx-cHx)	H	H	Н.	H
5-333	н н	Me	2	$-(CH_2)_7-(4-Ph-cHx)$	Ħ	H	H	H
5-334	H H	Me	. 2	$-(CH_2)_7$ -Ph	H	H	H	H
5-335	H Me	Me	2	$-(CH_2)_7-Ph$. Н	H	H	H
5-336	CO₂Me H	Me	2	$-(CH_2)_7$ -Ph	H.	H	H	H
5-337	CO ₂ Et H	Me	.2	$-(CH_2)_7-Ph$	H	H	H	H
5-338	H H	Me	2	$-(CH_2)_{\gamma}-(4-F-Ph)$	H	H	H	H
5-339	н н	Me	2	-(CH2)7-(4-Me-Ph)	H	H	·H	H
5-340	н н	Me	2	-(CH2)7-(4-Et-Ph)	H	H	H	H
5-341	н н	Me	2	-(CH2)7-(4-CF3-Ph)	H	H	H	H
5-342	H H	Me	2	$-(CH_2)_7-(4-Me0-Ph)$	H	H	. H	H
5-343	н н	Me	2	$-(CH_2)_{\gamma}-(4-Et0-Ph)$	· H	H	H	H
5-344	н н	Me	2	-(CH2)7-(4-MeS-Ph)	H	H	H	H
5-345	н н	Me	2	-(CH2)7-(4-cHx-Ph)	H	H	H	H
5-346	H H	Me	2	-(CH2)7-(4-Ph-Ph)	H	H	H	H
5-347	н н	Мe	2	$-(CH_2)_8-cHx$	H	H	. H	H
5-348	H Me	Me	2	$-(CH_2)_8-cHx$	H	H	H	H
5-349	CO ₂ Me H	Me	2	-(CH2)8-cHx	H	H	H	H

:5-350	CO ₂ E	et H	Me	2	$-(CH_2)_8$ -cHx	H	· H	H	H
5-351	H	H	Me	2	$-(CH_2)_8-(4-F-cHx)$	H	H	H.	H
5-352	H	H	Ме	2	-(CH2)8-(4-Me-cHx)	H	: H	H	·H
5-353	H	H	Me	2	-(CH2)8-(4-Et-cHx)	H	H	Н	H
5-354	H	H	Me	2	$-(CH_2)_8 - (4 - CF_3 - cHx)$	H	H	H	H
5-355	H	H	Me	2	-(CH2)8-(4-Me0-cHx)	H	H	H	H
5-356	H	H	Me	2	$-(CH_2)_8 - (4 - Et0 - cHx)$	H	H	H	H
:5-35.7	H	H	Me	2	-(CH2)8-(4-MeS-cHx)	H	H	H	Ή
5-358	·H	H	Me	2	-(CH2)8-(4-cHx-cHx)	H	H	H	H
5-359	H	H	Me	2	-(CH2)8-(4-Ph-cHx)	H	H	H	H
5-360	H	H	Ме	2	$-(CH_2)_8-Ph$	H	H	H	H
5-361	H	Me	Me	2	$-(CH_2)_8-Ph$	H	H	H	H
5-362	CO ₂ M	e H	Me	2	$-(CH_2)_8-Ph$	Н	H	H	H
5-363	CO ₂ E	t H	Me	2	-(CH ₂) ₈ -Ph	H	H	H	H
5-364	Н	H	` Me	2	$-(CH_2)_8-(4-F-Ph)$	H	H	H	H
5-365	H	H	Me	2	-(CH2)8-(4-Me-Ph)	H	H	H	H
5-366	H	H	. Me	2	$-(CH_2)_8-(4-Et-Ph)$	H	H	H	·H
5-367	H	H	Me	2	$-(CH_2)_8-(4-CF_8-Ph)$	H	H	H	H
5-368	H	H	Me	2	$-(CH_2)_8-(4-Me0-Ph)$	H	H	H	\mathbf{H}
5-369	H	H	Me	2	$-(CH_2)_8 - (4 - Et0 - Ph)$	H	H	H	H
5-370	H	H	Me	2	-(CH2)8-(4-MeS-Ph)	H	. H	H	H
5-371	H	H	Me	2	-(CH2)8-(4-cHx-Ph)	. H	H	H	H
5-372	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{8}-\left(4\mathrm{-Ph-Ph}\right)$	H	H	H	H
5-373	H	H	Me	2	$-(CH_2)_3-0-cHx$	H	H	H	H
5-374	H	Me	Me	2	-(CH2)3-0-cHx	H	H	H	H
5-375	CO ₂ M	е Н	Me	2	-(CH2)3-0-cHx	H	H	H	H
5-376	CO ₂ E	t H	Me	2	-(CH2)3-0-cHx	H	H	H	H
5-377	H	H	Me	2	$-(CH_2)_3-0-(4-F-cHx)$. Н	H	H	H
5-378	H	H	Me	2	$-(CH_2)_3-0-(4-Me-cHx)$	H	H	H	H

5-379	H	H	Me	2	-(CH2)3-0-(4-Et-cHx)	H	H	H	H
5-380	H	H	Me	2	-(CH2)3-0-(4-CF3-cHx)	H	H	H	H
5-381	H	H	Me	2	$-(CH_2)_{s}-0-(4-Me0-cHx)$	H	H	H	H
5-382	H	H	Me	2	$-(CH_2)_3-0-(4-Et0-cHx)$	H	H	. H	H
5-383	H	H	Me	2	-(CH2)3-0-(4-MeS-cHx)	H	H	H	H
5-384	H	H	Me	2	$-(CH_2)_{3}-0-(4-cHx-cHx)$	H	H	H	H.
5-385	H	H	Me	2	$-(CH_2)_3-0-(4-Ph-cHx)$	H	H	H	H
5-386	H	• Н	Me	2	-(CH2)3-0-Ph	H	H	H	H
5-387	H	Me	Me	2	$-(CH_2)_3-0-Ph$	H	H	H	H
5-388	CO ₂ Me	еН	Me	2	-(CH2)3-0-Ph	H	H	H	H
5-389	CO ₂ E	t H	Me	2	-(CH2)3-0-Ph	H	H	H	Ħ
5-390	H	H	Me	2	$-(CH_2)_3-0-(4-F-Ph)$	H	Ή	H	H
5-391	H	H	Me	2	-(CH2)3-0-(4-Me-Ph)	H	H	H	H
5-392	H	H	Me	2	$-(CH_2)_8-0-(4-Et-Ph)$	H	H	H	H
5-393	H	H	Me	2	$-(CH_2)_3-0-(4-CF_3-Ph)$	H	H	H	H
5-394	H	H	Me	2	$-(CH_2)_8-0-(4-Me0-Ph)$	H	H	H	H
5-395	H	H	Me	2	$-(CH_2)_3-0-(4-Et0-Ph)$	H	H	H	H
5-396	H	H	Me	· 2	-(CH2)8-0-(4-MeS-Ph)	H	H	H	H
5-397	H	H	Me	2	$-(CH_2)_3-0-(4-cHx-Ph)$	H	H	H	H
5-398	H	H	Me	2	$-(CH_2)_3-0-(4-Ph-Ph)$	H	H	H	H
5-399	H	H	Me	2	$-(CH_2)_4-0-cPn$	H	H	H	H
5-400	H	H	Me	2	-(CH2)4-0-cHx	H	Ħ	H	H
5-401	H	H	Me	2	-(CH2)4-0-cHx	Me	H	H	H
5-402	H	H	Me	2	-(CH2)4-0-cHx	H	Ме	H	H
5-403	H	H	Me	2	-(CH2)4-0-cHx	\mathbf{F}	H	H	H
5-404	H	H	Me	2	-(CH2)4-0-cHx	H	F	H	H
5-405	H	Me	Me	2	-(CH2)4-0-cHx	H	H	H	H
5-406	CO ₂ Me	e H	Me	2	-(CH2)4-0-cHx	H	H	H	H
5-407	CO ₂ E	H	Me	2	-(CH2)4-0-cHx	H	H	H	H

5-408	H	H	Me	2	$-(CH_2)_4-0-(3-F-cHx)$	H	H	H	H
5-409	H	H	Me	2	$-(CH_2)_4-0-(4-F-cHx)$	H	H	H	H
5-410	H	H	Me	2	$-(CH_2)_4-0-(4-C1-cHx)$	H	H	H	H
5-411	H	. Н	Me	2	$-(CH_2)_4-0-(4-Br-cHx)$	H	Ħ	H	H
5-412	Ή	H	Me	2	$-(CH_2)_4-0-(3-Me-cHx)$	H	H	H	H
5-413	. H	H	Me	2	$-(CH_2)_4-0-(4-Me-cHx)$	H	Ħ	H	H
5-414	H	H	Me	.2	$-(CH_2)_4-0-(3-Et-cHx)$	H	H	H	H
5-415	H	H	Me	2	$-(CH_2)_4-0-(4-Et-cHx)$	H	. H	H	H
5-416	H	H	Me	2	$-(CH_2)_4-0-(3-Pr-cHx)$	H	H	H	H
5-417	H	H	Me	2	-(CH2)4-0-(4-Pr-cHx)	. H	H	H	H
5-418	H	H	Me	2	$-(CH_2)_4-0-(4-iPr-cHx)$	H	·H	H	H
5-419	H	H	Me	2	$-(CH_2)_4-0-(3-Bu-cHx)$	H	H	H	H
5-420	. Н	H	Ме	2	$-(CH_2)_4-0-(4-Bu-cHx)$	H	H	H	H
5-421	H	H	Me	2	-(CH2)4-0-(3-CF3-cHx)	H	H	H	H
5-422	H	H	Me	2	$-(CH_2)_4-0-(4-CF_3-cHx)$	H	H	H	H
5-423	H	H	Me	2	$-(CH_2)_4-0-(3-Me0-cHx)$	· H	H	H	Η
5-424	H	H	Me	2	$-(CH_2)_4-0-(4-Me0-cHx)$	H	H	H.	H
5-425	H	H	Me	2	-(CH2)4-0-(3-Et0-cHx)	H	H	H	H
5-426	H	H	Me	2	$-(CH_2)_4-0-(4-Et0-cHx)$	H	H	H	H
5-427	H	H	Me	2	$-(CH_2)_4-0-(3-Pr0-cHx)$	H	H	H	Ή
5-428	H	H	Me	2	$-(CH_2)_4-0-(4-Pr0-cHx)$	H	H	H	H
5-429	H	H	Me	2	$-(CH_2)_4-0-(3-iPr0-cHx)$	H	H	H	H
5-430	H	H .	Me	2	$-(CH_2)_4-0-(4-iPr0-cHx)$	H	H	H	H
5-431	H	H	Me	2	-(CH2)4-0-[3-(2-Et-Pr0)-cHx]	H	H	H	H
5-432	H	H	Me	2	-(CH2)4-0-[4-(2-Et-Pr0)-cHx]	Н	H	H	H
5-433	H	H	Me	2	$-(CH_2)_4-0-(3-iBu0-cHx)$	H	H	H	H
5-434	H	H	Me	2	$-(CH_2)_4-0-(4-iBu0-cHx)$	H	H	H	H
5-435	H	H	Me	2	-(CH2)4-0-(3-MeS-cHx)	H	H	H	H
5-436	H	H	Me	2	$-(CH_{\bullet})_{A}-0-(4-MeS-cHx)$	H	Ħ	H	H

5-437	H	H	Ме	2	$-(CH_2)_4-0-(3-EtS-cHx)$	H	H	Ħ	H
5-438	\mathbf{H}	H	Me	2	$-(CH_2)_4-0-(4-EtS-cHx)$	H	H	H	H
5-439	H	H	Me	2	$-(CH_2)_4-0-(3-PrS-cHx)$	H	H	H	H
5-440	H	H	Me	2	$-(CH_2)_4-0-(4-PrS-cHx)$	H	H	H	H
5-441	H	H	Me	2	$-(CH_2)_4-0-(3-iPrS-cHx)$	H	H	H	H
5-442	H.	H	Мe	2	-(CH2)4-0-(4-iPrS-cHx)	H	H	H	H
5-443	H	H	Me	2	-(CH2)4-0-[3-(2-Et-PrS)-cHx]	H	H	H	H
5-444	H	H	Me	2	-(CH2)4-0-[4-(2-Et-PrS)-cHx]	H	H	H	H
5-445	H	H	Me	2	-(CH2)4-0-(3-iBuS-cHx)	H	H	H	H
5-446	H	H	Me.	2	-(CH2)4-0-(4-iBuS-cHx)	H	H	H	H
5-447	H	H	Me	2	$-(CH_2)_4-0-(3-cHx-cHx)$	H	H	H	H
5-448	H	H	Me	2	$-(CH_2)_4-0-(4-cHx-cHx)$	H	H	H	H
5-449	H	H	Ме	2	$-(CH_2)_4-0-(3-Ph-cHx)$	H	H	H	H
5-450	H	H	Me	2	$-(CH_2)_4-0-(4-Ph-cHx)$	H	H	H	H
5-451	H	H	Me	2 -	$-(CH_2)_4-0-(2,4-diMe-cHx)$	H	H	H	H
5-452	H	H	Me	2	-(CH2)4-0-(3, 4-diMe-cHx)	H	H	H	H
5-453	H	H	Me	2	$-(CH_2)_4-0-(3,5-diMe-cHx)$	H	H	H	H
5-454	H	H	Me	2	$-(CH_2)_4-0-Ph$	H	H	H	H
5-455	H	Н.	Me	2	$-(CH_2)_4-0-Ph$	Me	H	H	H
5-456	H	H	Me	2	-(CH2)4-0-Ph	H	Me	H	H
5-457	H	Н -	Me	2	$-\left(CH_{2}\right)_{4}-0-Ph$	F	H	H	H
5-458	H	H	Me	2	$-(CH_2)_4-0-Ph$	H	F	H	H
5-459	H	Me	Me	2	$-(CH_2)_4-0-Ph$	H	H	H	·H
5-460	CO ₂ M	le H	Me	2	$-\left(CH_{2}\right)_{4}-0-Ph$	H	H	H	H
5-461	CO ₂ E	t H	Me	2	-(CH2)4-0-Ph	H	H	H	H
5-462	H	H	Me	2	$-(CH_2)_4-0-(3-F-Ph)$	H	H	H	H
5-463	H	H.	Me	2	$-(CH_2)_4-0-(4-F-Ph)$	H	H	H	H
5-464	H	H	Me	2	$-(CH_2)_4-0-(4-Cl-Ph)$	H	H	H	H
5-465	H	H	Me	2	$-(CH_2)_4-0-(4-Br-Ph)$	Ħ	H	H	H

5-466	H	H	Me	2	$-(CH_2)_4-0-(3-Me-Ph)$	H	Ħ	H	H
5-467	H	H	Мe	2	-(CH2)4-0-(4-Me-Ph)	H	H	. H	- - H
² 5-468	H	H	Me	2	-(CH2)4-0-(3-Et-Ph)	H	H	H	H
5-469	H	H	Ме	2	$-(CH_2)_4-0-(4-Et-Ph)$	H	H	H	H
² 5–470	H	H	Ме	2	$-(CH_2)_4-0-(3-Pr-Ph)$	H	·H	H	\mathbf{H}
5-471	Ħ	Ħ	Me	.2	$-(CH_2)_4-0-(4-Pr-Ph)$	H	H	H	H
5-472	H	H	Me	2	$-(CH_2)_4-0-(3-iPr-Ph)$	H	Ħ	H	H
5-473	H	H	Мe	2	$-\left(CH_{2}\right)_{4}-0-\left(4-iPr-Ph\right)$	H	H	H	H
5-474	H	H	Me	2	$-(CH_2)_4-0-(3-Bu-Ph)$	H	H	H	H
5-475	H	H	Me	2	-(CH2)4-0-(4-Bu-Ph)	H	Ħ	H	H
5-476	H	H	Me	2	-(CH2)4-0-(3-CF3-Ph)	H	H.	H	H
5-477	H	H	Me	2	-(CH2)4-0-(4-CF3-Ph)	H	H	H	H
5-478	H	H	Me	2	-(CH2)4-0-(3-Me0-Ph)	H	H	H	H
5-479	H	H	Me	· 2	-(CH2)4-0-(4-Me0-Ph)	H	H	H	H
5-480	H	H	Me	2	-(CH2)4-0-(3-Et0-Ph)	H	H	H	H
∕5–481 ··	H	H	Me	2	-(CH2)4-0-(4-Et0-Ph)	H	H	·H	H
5-482	H	H	Me	2	$-(CH_2)_4-0-(3-Pr0-Ph)$	H	H	H	H
5-483	H	H	Me	2	$-(CH_2)_4-0-(4-Pr0-Ph)$	H	·H	H	H
5-484	H	H	Me	2	$-(CH_2)_4-0-(3-iPr0-Ph)$	H	H	H	H
5-485	H	H	Me	2	$-(CH_2)_4-0-(4-iPr0-Ph)$	H	H	H	H
5-486	H	H	Me	2	-(CH2)4-0-[3-(2-Et-Pr0)-Ph]	H	Ħ	H	H
5-487	H	H	Me	2	-(CH2)4-0-[4-(2-Et-Pr0)-Ph]	H	H	H	H.
5-488	H	H	Me	2	$-(CH_2)_4-0-(3-iBu0-Ph)$	H	H -	- H	H
5-489	H	H	Me	2	$-(CH_2)_4-0-(4-iBu0-Ph)$	H	H	H	H
5-490	H	H	Me	2	$-(CH_2)_4-0-(3-MeS-Ph)$	H	H	H	H
5-491	H	H	Me	2	$-(CH_2)_4-0-(4-MeS-Ph)$	H	H	H	H
5-492	·H	H	Мe	2	-(CH2)4-0-(3-EtS-Ph)	H	H	H	H
5-493	H	H	Me	2	-(CH2)4-0-(4-EtS-Ph)	H	H	H	H
5-494	Ή	H	Me	2	$-(CH_2)_4-0-(3-PrS-Ph)$	H	H	H	H

			_	(am) a (1 m a m)	TT	TT	177	ŦΤ
H	H	Me	2					H
H	H	Me	2 -	-(CH2)4-0-(3-iPrS-Ph)	H	H	H	H
H	. H	Me	2	-(CH2)4-0-(4-iPrS-Ph)	H	H	H	H
H	H	Me	2	-(CH2)4-0-[3-(2-Et-PrS)-Ph]	: H	H	H	H
·H	H	Me	2	-(CH2)4-0-[4-(2-Et-PrS)-Ph]	H	H :.	H	H
: H	H	Me	2	-(CH2)4-0-(3-iBuS-Ph)	H	H	H	H
- H -	H	Me	2	$-(CH_2)_4-0-(4-iBuS-Ph)$	H	H.	H	H
·H	H	Me	2	-(CH2)4-0-(3-cHx-Ph)	H	H	H	H
H	H	Me	2	$-(CH_2)_4-0-(4-cHx-Ph)$	H	H	: H	H
H	H	Me	2	$-(CH_2)_4-0-(3-Ph-Ph)$	H	H	H	H
H	Н	Me	2	-(CH2)4-0-(4-Ph-Ph)	H	Н	H	H
H	H	Me	2	-(CH2)4-0-(2, 4-diMe-Ph)	H	H	H	H
H	H	Me	2	-(CH2)4-0-(3,4-diMe-Ph)	H	H	H	H
H	H	Me	2	-(CH2)4-0-(3, 5-diMe-Ph)	H	H	Н.	H
H	H	Me	2	-(CH2)5-0-cHx	H	H	H	H
Ħ	H	Ме	2	$-(CH_2)_5-0-Ph$	H	H	H	H
H	H	Me	2	$-(CH_{2})_{6}-0-cHx$	H	H	·H	H
H	H	Мe	2	-(CH2)6-0-Ph	H	H	H	H
Ή	H	Me	2	-(CH2)3-OCH2-cHx	H	H	H	H
Н -	Me	Me	2	-(CH2)3-OCH2-cHx	H	H	H	H
CO ₂ M	le H	Me	2	-(CH2)3-OCH2-cHx	H	H	H	H
CO ₂ E	t H	Me	2	-(CH2)3-OCH2-cHx	H	H	H	H
Н .	H	Me	2	-(CH2)3-OCH2-(4-F-cHx)	H	H	H	H
H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Me-cHx)$	H	H	H	H
- Н	H	Me	2	$-(CH_2)_3-OCH_2-(4-Et-cHx)$	H	H	H	H
H	H	Me	2	-(CH2)3-0CH2-(4-CF3-cHx)	H	H .	H	H
H	H	Me	2	$-(CH_2)_3-0CH_2-(4-Me0-cHx)$	H	H	H	H
H	H	Me			H	H	H	H
H	H	Me	2	$-(CH_2)_3-0CH_2-(4-MeS-cHx)$	H	H	H	H
	H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H H	Н Н Ме СО2 Н Ме Н Н Н Н Н	H H Me 2 CO2Me H Me 2 H H Me 2 <t< td=""><td>H H Me 2 - (CH₂)₄-0-(3-iPrS-Ph) H H Me 2 - (CH₂)₄-0-(4-iPrS-Ph) H H Me 2 - (CH₂)₄-0-[3-(2-Et-PrS)-Ph] H H Me 2 - (CH₂)₄-0-[4-(2-Et-PrS)-Ph] H H Me 2 - (CH₂)₄-0-(4-iBuS-Ph) H H Me 2 - (CH₂)₄-0-(4-iBuS-Ph) H H Me 2 - (CH₂)₄-0-(4-iBuS-Ph) H H Me 2 - (CH₂)₄-0-(3-cHx-Ph) H H Me 2 - (CH₂)₄-0-(3-Ph-Ph) H H Me 2 - (CH₂)₄-0-(3-Ph-Ph) H H Me 2 - (CH₂)₄-0-(4-Ph-Ph) H H Me 2 - (CH₂)₄-0-(3, 4-diMe-Ph) H H Me 2 - (CH₂)₄-0-(3, 5-diMe-Ph) H H Me 2 - (CH₂)₄-0-(3, 5-diMe-Ph) H H Me 2 - (CH₂)₄-0-CHx H H Me 2 - (CH₂)₅-0-Ph CO₂Me H Me 2 - (CH₂)₃-0CH₂-CHx CO₂Me H Me 2 - (CH₂)₃-0CH₂-CHx H M Me 2 - (CH₂)₃-0CH₂-(4-F-CHx) H M Me 2 - (CH₂)₃-0CH₂-(4-F-CHx) H M Me 2 - (CH₂)₃-0CH₂-(4-Et-CHx) H M Me 2 - (CH₂)₃-0CH₂-(4-Et-CHx) H M Me 2 - (CH₂)₃-0CH₂-(4-Me-CHx) H M Me 2 - (CH₂)₃-0CH₂-(4-Me-CHx)</td><td>H H Me 2 -(CH₂)₄-O-(3-iPrS-Ph) H H H Me 2 -(CH₂)₄-O-(4-iPrS-Ph) H H H Me 2 -(CH₂)₄-O-[4-iPrS-Ph) H H H Me 2 -(CH₂)₄-O-[4-(2-Et-PrS)-Ph] H H H Me 2 -(CH₂)₄-O-[4-(2-Et-PrS)-Ph] H H H Me 2 -(CH₂)₄-O-(3-iBuS-Ph) H H H Me 2 -(CH₂)₄-O-(4-iBuS-Ph) H H H Me 2 -(CH₂)₄-O-(4-cHx-Ph) H H H Me 2 -(CH₂)₄-O-(4-cHx-Ph) H H H Me 2 -(CH₂)₄-O-(4-Ph-Ph) H H H Me 2 -(CH₂)₄-O-(3-Ph-Ph) H H H Me 2 -(CH₂)₄-O-(3,4-diMe-Ph) H H H Me 2 -(CH₂)₄-O-(3,4-diMe-Ph) H H H Me 2 -(CH₂)₄-O-(3,5-diMe-Ph) H H H Me 2 -(CH₂)₅-O-CHx H H H Me 2 -(CH₂)₅-O-Ph H H H Me 2 -(CH₂)₅-O-Ph H H M Me 2 -(CH₂)₅-O-Ph H H M Me 2 -(CH₂)₅-O-Ph H H M Me 2 -(CH₂)₅-O-CHx H CO₂Me H Me 2 -(CH₂)₃-OCH₂-CHx H CO₂Me H Me 2 -(CH₂)₃-OCH₂-CHx H H H Me 2 -(CH₂)₃-OCH₂-(4-Et-CHx) H</td><td>H H Me 2 - (CH₂) 4-0-(3-iPrS-Ph) H H H Me 2 - (CH₂) 4-0-(4-iPrS-Ph) H H H Me 2 - (CH₂) 4-0-[3-(2-Et-PrS)-Ph] H H H Me 2 - (CH₂) 4-0-[4-(2-Et-PrS)-Ph] H H H Me 2 - (CH₂) 4-0-[4-(2-Et-PrS)-Ph] H H H Me 2 - (CH₂) 4-0-(3-iBuS-Ph) H H H Me 2 - (CH₂) 4-0-(3-iBuS-Ph) H H H Me 2 - (CH₂) 4-0-(3-cHx-Ph) H H H Me 2 - (CH₂) 4-0-(3-cHx-Ph) H H H Me 2 - (CH₂) 4-0-(3-Ph-Ph) H H H Me 2 - (CH₂) 4-0-(4-Ph-Ph) H H H Me 2 - (CH₂) 4-0-(3-Ph-Ph) H H H Me 2 - (CH₂) 4-0-(3, 4-diMe-Ph) H H H Me 2 - (CH₂) 4-0-(3, 4-diMe-Ph) H H H Me 2 - (CH₂) 4-0-(3, 5-diMe-Ph) H H H Me 2 - (CH₂) 4-0-cHx H H H Me 2 - (CH₂) 5-0-cHx H H H Me 2 - (CH₂) 6-0-cHx H H H H Me 2 - (CH₂) 6-0-CHx H H H H Me 2 - (CH₂) 6-0-CH₂ H H H H Me 2 - (CH</td><td>H H Me 2 - (CH₂)₄-0-(3-iPrS-Ph) H H H H H H H Me 2 - (CH₂)₄-0-(4-iPrS-Ph) H H H H H H H H H H H H H H H H H H H</td></t<>	H H Me 2 - (CH ₂) ₄ -0-(3-iPrS-Ph) H H Me 2 - (CH ₂) ₄ -0-(4-iPrS-Ph) H H Me 2 - (CH ₂) ₄ -0-[3-(2-Et-PrS)-Ph] H H Me 2 - (CH ₂) ₄ -0-[4-(2-Et-PrS)-Ph] H H Me 2 - (CH ₂) ₄ -0-(4-iBuS-Ph) H H Me 2 - (CH ₂) ₄ -0-(4-iBuS-Ph) H H Me 2 - (CH ₂) ₄ -0-(4-iBuS-Ph) H H Me 2 - (CH ₂) ₄ -0-(3-cHx-Ph) H H Me 2 - (CH ₂) ₄ -0-(3-Ph-Ph) H H Me 2 - (CH ₂) ₄ -0-(3-Ph-Ph) H H Me 2 - (CH ₂) ₄ -0-(4-Ph-Ph) H H Me 2 - (CH ₂) ₄ -0-(3, 4-diMe-Ph) H H Me 2 - (CH ₂) ₄ -0-(3, 5-diMe-Ph) H H Me 2 - (CH ₂) ₄ -0-(3, 5-diMe-Ph) H H Me 2 - (CH ₂) ₄ -0-CHx H H Me 2 - (CH ₂) ₅ -0-Ph H H Me 2 - (CH ₂) ₅ -0-Ph H H Me 2 - (CH ₂) ₅ -0-Ph H H Me 2 - (CH ₂) ₅ -0-Ph CO ₂ Me H Me 2 - (CH ₂) ₃ -0CH ₂ -CHx CO ₂ Me H Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -CHx H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-F-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-F-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Et-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Et-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Me-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Me-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Me-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Me-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Me-CHx) H M Me 2 - (CH ₂) ₃ -0CH ₂ -(4-Me-CHx)	H H Me 2 -(CH ₂) ₄ -O-(3-iPrS-Ph) H H H Me 2 -(CH ₂) ₄ -O-(4-iPrS-Ph) H H H Me 2 -(CH ₂) ₄ -O-[4-iPrS-Ph) H H H Me 2 -(CH ₂) ₄ -O-[4-(2-Et-PrS)-Ph] H H H Me 2 -(CH ₂) ₄ -O-[4-(2-Et-PrS)-Ph] H H H Me 2 -(CH ₂) ₄ -O-(3-iBuS-Ph) H H H Me 2 -(CH ₂) ₄ -O-(4-iBuS-Ph) H H H Me 2 -(CH ₂) ₄ -O-(4-cHx-Ph) H H H Me 2 -(CH ₂) ₄ -O-(4-cHx-Ph) H H H Me 2 -(CH ₂) ₄ -O-(4-Ph-Ph) H H H Me 2 -(CH ₂) ₄ -O-(3-Ph-Ph) H H H Me 2 -(CH ₂) ₄ -O-(3,4-diMe-Ph) H H H Me 2 -(CH ₂) ₄ -O-(3,4-diMe-Ph) H H H Me 2 -(CH ₂) ₄ -O-(3,5-diMe-Ph) H H H Me 2 -(CH ₂) ₅ -O-CHx H H H Me 2 -(CH ₂) ₅ -O-Ph H H H Me 2 -(CH ₂) ₅ -O-Ph H H M Me 2 -(CH ₂) ₅ -O-Ph H H M Me 2 -(CH ₂) ₅ -O-Ph H H M Me 2 -(CH ₂) ₅ -O-CHx H CO ₂ Me H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H CO ₂ Me H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -CHx H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H H H Me 2 -(CH ₂) ₃ -OCH ₂ -(4-Et-CHx) H	H H Me 2 - (CH ₂) 4-0-(3-iPrS-Ph) H H H Me 2 - (CH ₂) 4-0-(4-iPrS-Ph) H H H Me 2 - (CH ₂) 4-0-[3-(2-Et-PrS)-Ph] H H H Me 2 - (CH ₂) 4-0-[4-(2-Et-PrS)-Ph] H H H Me 2 - (CH ₂) 4-0-[4-(2-Et-PrS)-Ph] H H H Me 2 - (CH ₂) 4-0-(3-iBuS-Ph) H H H Me 2 - (CH ₂) 4-0-(3-iBuS-Ph) H H H Me 2 - (CH ₂) 4-0-(3-cHx-Ph) H H H Me 2 - (CH ₂) 4-0-(3-cHx-Ph) H H H Me 2 - (CH ₂) 4-0-(3-Ph-Ph) H H H Me 2 - (CH ₂) 4-0-(4-Ph-Ph) H H H Me 2 - (CH ₂) 4-0-(3-Ph-Ph) H H H Me 2 - (CH ₂) 4-0-(3, 4-diMe-Ph) H H H Me 2 - (CH ₂) 4-0-(3, 4-diMe-Ph) H H H Me 2 - (CH ₂) 4-0-(3, 5-diMe-Ph) H H H Me 2 - (CH ₂) 4-0-cHx H H H Me 2 - (CH ₂) 5-0-cHx H H H Me 2 - (CH ₂) 6-0-cHx H H H Me 2 - (CH ₂) 6-0-cHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H Me 2 - (CH ₂) 6-0-CHx H H H H Me 2 - (CH ₂) 6-0-CHx H H H H Me 2 - (CH ₂) 6-0-CH ₂ H H H H Me 2 - (CH	H H Me 2 - (CH ₂) ₄ -0-(3-iPrS-Ph) H H H H H H H Me 2 - (CH ₂) ₄ -0-(4-iPrS-Ph) H H H H H H H H H H H H H H H H H H H

5-524	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-cHx-cHx)$	H	H	:H	H
5-525	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Ph-cHx)$	H	·H	H	H
;5-526	: H	H	Me	2	-(CH2)3-OCH2-Ph	H	H	ΞĦ	ŀΉ
5-527	·H	Me	Me	2	-(CH2)3-OCH2-Ph	H	H	H	Ή
₹5 − 528	CO ₂ M	le H	Me	2	$-(CH_1)_3-OCH_2-Ph$	H	Ħ	H	H
5-529	CO ₂ E	t H	Me	2	-(CH2)3-OCH2-Ph	H	H	. H	H
··5 - 530	. H ·	H	Me	2	-(CH2)3-OCH2-(4-F-Ph)	H	H	·H	H
5-531	:H	H.	Me	2	$-(CH_2)_3-OCH_2-(4-Me-Ph)$	H	: H	H	H
5-532	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Et-Ph)$	H	H	. Н	H
5-533	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-CF_3-Ph)$	H	H	H	H
5-534	.Н.	H	Me	2	$-(CH_2)_3-OCH_2-(4-MeO-Ph)$	H	H	H.	- Н
:5 - 535	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-EtO-Ph)$	H	H	H	H
5-536	H	H	Me	2	-(CH2)3-OCH2-(4-MeS-Ph)	H	H	:H	H
5-537	\mathbf{H} :	H	Me	2	-(CH2)3-OCH2-(4-cHx-Ph)	H	H	H	H
5-538	H.	H	Me	2	$-(CH_2)_3-OCH_2-(4-Ph-Ph)$	H	H	H	H
:5-539	H	H	Me	.2	$-(CH_2)_4$ $-0CH_2$ $-cPn$	H	H	H	H
5-540	: 2 H - A -	Н	Me	2	-(CH2)4-OCH2-cHx	H	H	H	H
5-541	H	H	Me	2	-(CH2)4-OCH2-cHx	Me	H	H	H
5-542	H	·H	Ме	2	-(CH2)4-OCH2-cHx	H	Me	H	H
5-543	H	H	Me	2	-(CH2)4-OCH2-cHx	F	H	H	H
5-544	·H	H	Me	2	-(CH2)4-OCH2-cHx	H	F	H	H
5-545	H	Me	Me	2	$-(CH_2)_4$ $-0CH_2$ $-cHx$	H	H	H	H
5-546	CO ₂ M	le H	Me	2	-(CH2)4-0CH2-cHx	H	H	H	H
5-547	CO ₂ E	t H	Me	2	-(CH2)4-0CH2-cHx	H	H	H	H
5-548	H	H	Me	2	-(CH2)4-OCH2-(3-F-cHx)	H	H	H	H
5-549	H	H	Me	2	$-(CH_2)_4 - OCH_2 - (4 - F - cHx)$	H	H	H	H
.5-550	H	H	Me	.2	$-(CH_2)_4-OCH_2-(4-Cl-cHx)$	H	.Н	H	H
5-551	H	Н	Me	2	$-(CH_2)_4 - OCH_2 - (4 - Br - cHx)$	H	H	H	H
5-552	H	H	Me	2	$-(CH_2)_4 - OCH_2 - (3 - Me - cHx)$	H	H	H	H

5-553	H	H	Мe	2	-(CH2)4-OCH2-(4-Me-cHx)	Ħ	H	H	H
5-554	H	H	Me	2	-(CH2)4-OCH2-(3-Et-cHx)	H	H	H	Ή
5-555	:H	H	Me	2	-(CH2)4-OCH2-(4-Et-cHx)	H .	Ή	H	Ή
5-556	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Pr-cHx)$	H	H	H	H
5-557	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Pr-cHx)$	H	H	H	H
5-558	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-iPr-cHx)$	H .	Ή	Ή	Η
5-559	. Н	H	Me	2	$-(CH_2)_4-0CH_2-(3-Bu-cHx)$	H	H	H	H
5-560	H	H	Мe	2	$-(CH_2)_4-OCH_2-(4-Bu-cHx)$	H	Ή	H	H
5-561	H	H	Me	2	-(CH2)4-OCH2-(3-CF3-cHx)	H	H,	Ή	H
5-562	H	H	Me.	2	$-(CH_2)_4-0CH_2-(4-CF_3-cHx)$	H	H	H	H
5-563	H	H	Me	2	-(CH2)4-0CH2-(3-Me0-cHx)	H	H	H	H
5-564	H	H	Me	2	-(CH2)4-OCH2-(4-MeO-cHx)	H	H	H	H
5-565	H	H	Me	2	-(CH2)4-0CH2-(3-Et0-cHx)	H	Ή	H	H
5-566	Ή	H	Me	2	$-(CH_2)_4-0CH_2-(4-Et0-cHx)$	H	H	H	Ή
5-567	H	H	Me	2	-(CH2)4-0CH2-(3-Pr0-cHx)	H	H	H	Ή
5-568	H	H	Me	2	-(CH2)4-OCH2-(4-PrO-cHx)	H	H	H	Ή
5-569	: H	H	Me	2	$-(CH_2)_4-0CH_2-(3-iPr0-cHx)$	H	Ή	H	H
5-570	\mathbf{H}	H	Me	2	$-(CH_2)_4-0CH_2-(4-iPr0-cHx)$	H	H	· H .	H
5-571	H	H	Мe	2	-(CH2)4-0CH2-[3-(2-Et-Pr0)-cHx] H	. : H	H	H
5-572	H	H	Me	2	-(CH2)4-0CH2-[4-(2-Et-Pr0)-cHx] H	H	H	H
5-573	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-iBu0-cHx)$	H	H	H	. H
5-574	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-iBu0-cHx)$	H	H	H	H
5-575	H	H	Me	2	-(CH2)4-OCH2-(3-MeS-cHx)	·H	H	\mathbf{H}	H
5-576	. Н .	H	Ме	2	-(CH2)4-0CH2-(4-MeS-cHx)	H	H	H	H
5-577	H	H			$-(CH_2)_4-0CH_2-(3-EtS-cHx)$	H	H	H	H
5-578	H	H	Ме	2	-(CH2)4-OCH2-(4-EtS-cHx)	H	H	. Н	H
5-579	H	H	Me	2	-(CH2)4-OCH2-(3-PrS-cHx)	H	H	H	H
5-580	H	H	Me	2	-(CH2)4-OCH2-(4-PrS-cHx)	H	Ή	H	H
5-581	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-iPrS-cHx)$	H	H	H	Н

5-582	H	H	Me.	2	$-(CH_2)_4-OCH_2-(4-iPrS-cHx)$	H	H	H	H
5-583	н.	H	Мe	2	-(CH2)4-0CH2-[3-(2-Et-PrS)-c	Hx] H	H	H	H
5-584	H	H	Мe	2	-(CH2)4-0CH2-[4-(2-Et-PrS)-c	Hx] H	H	H	H
5-585	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-iBuS-cHx)$	H	H	H	H
5-586	H	H	Me	2	$-(CH_2)_4$ - $0CH_2$ - $(4-iBuS-cHx)$	H	H	H	H
5-587	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-cHx-cHx)$	H	H	H	H
5-588	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-cHx-cHx)$	H	H	H	H
5-589	H	H	Мe	2	$-(CH_2)_4-0CH_2-(3-Ph-cHx)$	H	H	H	H
5-590	H	H	Me	. 2	-(CH2)4-0CH2-(4-Ph-cHx)	H	H	H	H
5-591	H	H	Мe	2	$-(CH_2)_4-0CH_2-(2, 4-diMe-cHx)$	H	H	H	H
5-592	H	H	Me	2	-(CH2)4-0CH2-(3, 4-diMe-cHx)	H	H	H	H
5-593	H	H	Me	2	-(CH2)4-OCH2-(3, 5-diMe-cHx)	H	H	H	H
5-594	H	H	Me	2	-(CH2)4-0CH2-Ph	H	H	H	H
5-595	H	H	Мe	2	-(CH2)4-OCH2-Ph	Me	H	H	H
5-596	H	H	Me	. 2	-(CH2)4-0CH2-Ph	H	Me	H	H
5-597	H	H .	Me	2	-(CH2)4-OCH2-Ph	F	H	H	H
5-598	H	H	Me	2	-(CH2)4-OCH2-Ph	H	F	H	H
5_599	H	Me	Me	2	-(CH2)4-OCH2-Ph	H	H	H	H
5-600	CO ₂ M	e H	Me	2	-(CH2)4-OCH2-Ph	H	H	H	H
5-601	CO ₂ E	t H	Me	2	-(CH2)4-OCH2-Ph	H	H	H	H
5-602	H	H	Me	.2	$-(CH_2)_4$ - $0CH_2$ - $(3-F-Ph)$	H	H	H	H
5-603	H	H	Me	.2	$-(CH_2)_4-OCH_2-(4-F-Ph)$	H	H	H	H
5-604	H	H	Me	.2	-(CH2)4-0CH2-(4-Cl-Ph)	H	H	H	H
5-605	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Br-Ph)$	H	H	H	H
5-606	H	H	Me	2	-(CH2)4-OCH2-(3-Me-Ph)	H	H	. H	H
5-607	H	H	Me	2	$-(CH_2)_4$ -0CH ₂ -(4-Me-Ph)	H	·H	H	H
5-608	H	H	Me	2	-(CH2)4-OCH2-(3-Et-Ph)	H	H	H	H
5-609	H	H	Me	2		H	H	H	H
5-610	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Pr-Ph)$	H	H	H	H

5-611	H	H	Ме	2	$-(CH_2)_4-OCH_2-(4-Pr-Ph)$	H	H	H	H
5-612	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-iPr-Ph)$	H	H	H	H
5-613	H -	H	Me	2	$-(CH_2)_4-OCH_2-(4-iPr-Ph)$	H	H	H	H
5-614	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-Bu-Ph)$	H	H	H	H
5-615	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-Bu-Ph)$	H	H	H	H
5-616	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-CF_8-Ph)$	H	H	H .	H
5-617	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-CF_3-Ph)$	H	H	H	H
5-618	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-MeO-Ph)$	H	H	H	H
5-619	H	H	Мe	2	$-(CH_2)_4-OCH_2-(4-MeO-Ph)$	H	H	H	H
5-620	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-EtO-Ph)$	H	H	H	H
5-621	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-EtO-Ph)$	H	H	H	H
5-622	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-PrO-Ph)$	H	H	H	H
5-623	Н -	H	Me	2	$-(CH_2)_4-OCH_2-(4-PrO-Ph)$	H	H	H	H
5-624	H	H	Me	2	-(CH2)4-OCH2-(3-iPrO-Ph)	H	H	H	H
5-625	H	H	Мe	2	$-(CH_2)_4-OCH_2-(4-iPrO-Ph)$	Ή	H	H	H
5-626	H	H	Me	2	-(CH2)4-OCH2-[3-(2-Et-Pr0)-Ph]	H	H	H	H
5-627	H	H	Me	2	-(CH2)4-OCH2-[4-(2-Et-Pr0)-Ph]	H	H	H	H
5-628	H	. Н	Me	2 .	-(CH2)4-OCH2-(3-iBuO-Ph)	H	H	H	H
5-629	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-iBu0-Ph)$	H	H	H	H
5-630	H	H	Ме	2	-(CH2)4-OCH2-(3-MeS-Ph)	H	H	H	H
5-631	H	H	Me	2	-(CH2)4-OCH2-(4-MeS-Ph)	\mathbf{H}_{\cdot}	H	H	H
5-632	H	H	Me	2	-(CH2)4-OCH2-(3-EtS-Ph)	H	H	H	H
5-633	H	H	Me	2	$-(CH_2)_4 - OCH_2 - (4 - EtS - Ph)$	H	H	H	H
5-634	H	H	Me	2	-(CH2)4-OCH2-(3-PrS-Ph)	H	H	H	H
5-635	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-PrS-Ph)$	H	H	H	H
5-636	H	H	Me	2	-(CH2)4-0CH2-(3-iPrS-Ph)	H.	H	H	H
5-637	H	H	Me	2	-(CH2)4-OCH2-(4-iPrS-Ph)	H	H	H	H
5-638	H	H	Me	2	-(CH2)4-OCH2-[3-(2-Et-PrS)-Ph]] H	H	H	H
5-639	H	H	Me	2	-(CH2)4-OCH2-[4-(2-Et-PrS)-Ph]] H	H	H	H

5-640	Ħ	H	Me	·2	-(CH2)4-OCH2-(3-iBuS-Ph)	H	H	H	H
5-641	H	H	Me	2	-(CH2)4-OCH2-(4-iBuS-Ph)	H	H	H	H
5-642	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-cHx-Ph)$	H	H	H	H
5-643	H	Ħ	Me	2	$-(CH_2)_4-OCH_2-(4-cHx-Ph)$	H	H	·H	H
5-644	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Ph-Ph)$	H	H	H	H
5-645	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Ph-Ph)$	Ħ	H	H	Ή
5-646	H	H	Me	² 2	$-(CH_2)_4-OCH_2-(2, 4-diMe-Ph)$	H	H	H	Ή
5-647	Н	H	Me	2	-(CH2)4-OCH2-(3, 4-diMe-Ph)	Ħ	H	H	H
5-648	H .	H	Me	2	$-(CH_2)_4-OCH_2-(3, 5-diMe-Ph)$	H	H	H	H
5-649	H	H	Me	2	-(CH2)5-OCH2-cHx	H	H	H	H
5-650	H	H	Me	2	$-(CH_2)_5-OCH_2-Ph$	H	H	H	H
5-651	H	H	Me	2	-(CH2)6-OCH2-cHx	H	H	H	H
5-652	·H	H	Me	2	-(CH2)6-OCH2-Ph	H	H	H	H
5-653	Ή	H	Me	2	-СН=СН-сНх	H	H	H	H
5-654	H	H	Me	2	-CH=CH-Ph	H	H	. Н	H
5-655	H	H	Мe	2	$-CH=CH-(CH_2)_2-cHx$	H	H	H	Ħ
5-656	H	H	Me	2	-CH=CH-(CH2)2-Ph	H	H	Ή	H
5-657	H	H	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	Ħ	H	H
5-658	H	Me	Me	2	-CH=CH-(CH2)3-cHx	H	H	H	H
5-659	CO₂Me	Ħ	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	H	Ħ	H .
5-660	CO ₂ E t	H	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	H	H	H
5-661	H	H	Me	2	-CH=CH-(CH2)3-(4-F-cHx)	H	H	H	Ή
5-662	H	H	Me	2	-CH=CH-(CH2)3-(4-Me-cHx)	H	H	H	H
5-663	H	H	Me	2	-CH=CH-(CH2)3-(4-Et-cHx)	H	. H	H	H
5-664	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-CF_3-cHx)$	H	H	H	H
5-665	H	H	Me	2	-CH=CH-(CH2)3-(4-MeO-cHx)	H	H	H	H
5-666	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-Et0-cHx)$	H	H	H	H
5-667	H	H	Me	2	-CH=CH-(CH2)3-(4-MeS-cHx)	. Н	H	H .	H
5-668	H	H	Me	2	-CH=CH-(CH2)3-(4-cHx-cHx)	\mathbf{H}	H	H	H

5-669	H .	H	Me	2	-CH=CH-(CH2)3-(4-Ph-cHx)	H	.H .	H	H
5-670	H	H	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	H	H
5-671	H	Me	Ме	2	-CH=CH-(CH2)3-Ph	H	·H	H	H
5-672	CO ₂ N	Me H	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	H	H
5-673	CO ₂ H	et H	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	H	H
5-674	H	H	Me	2	-CH=CH-(CH2)3-(4-F-Ph)	Н	H	H	Н
5-675	H	H	Me	2	-CH=CH-(CH2)3-(4-Me-Ph)	H	H	H	H
5-676	H	H	Me	2	-CH=CH-(CH2)3-(4-Et-Ph)	H	H	H	H
5-677	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-CF_3-Ph)$	H	H	H	H
5-678	H	H	Me	2	-CH=CH-(CH2)3-(4-MeO-Ph)	H	H	H	H
5-679	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-Et0-Ph)$	H	·H	H	H
5-680	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-MeS-Ph)$	H	H	H	H
5-681	H	. Н	Me	2	-CH=CH-(CH2)3-(4-cHx-Ph)	H	H	H	H
5-682	H	H	Me	2	-CH=CH-(CH2)3-(4-Ph-Ph)	н -	H	H	H
5-683	H	H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	H	H	H
5-684	H	Me	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	H	H	Н
5-685	.CO ₂ M	le H	Me	2	-CH=CH-(CH2)4-cHx	H	H	H	H
5-686	∴CO ₂ E	t H	Me	2.	-CH=CH-(CH2)4-cHx	H	H	H	H
5-687	H	. H	Me	2	-CH=CH-(CH2)4-(4-F-cHx)	H	H	H	H
5-688	H	H	Me	2	-CH=CH-(CH2)4-(4-Me-cHx)	H	H	H	H
5-689	H	H	Me	2	-CH=CH-(CH2)4-(4-Et-cHx)	H	H	H	H
5-690	H	H	Me	2	$-CH=CH-(CH_2)_4-(4-CF_3-cHx)$	H	H	H	H
5-691	-H	H	Me	2	-CH=CH-(CH2)4-(4-Me0-cHx)	H	H	H	H
5-692	H	H	Me	2	$-CH=CH-(CH_2)_4-(4-Et0-cHx)$	H	H	H	H
5-693	H	H	Me	2	-CH=CH-(CH2)4-(4-MeS-cHx)	H	H	H	H
5-694	H	H	Me	2	-CH=CH-(CH2)4-(4-cHx-cHx)	H	H	H	H
5-695	H	H	Me	2	-CH=CH-(CH2)4-(4-Ph-cHx)	H	H	H	. Н
5-696	H	H	Me	2	-CH=CH-(CH2)4-Ph	H	Ħ	H	H
5-697	H	Me	Me	2	-CH=CH-(CH2)4-Ph	H	H	H	Ħ

5-698	CO ₂ M	le H	Me	2	$-CH=CH-(CH_2)_4-Ph$	\mathbf{H}	H	H	H
5-699	CO ₂ E	t H	Me	2	-CH=CH-(CH ₂) ₄ -Ph	H	H	H	H
5-700	H	H	Me	2	$-CH=CH-(CH_2)_4-(4-F-Ph)$	H	H	H	H
5-701	H	H	Me	2	-CH=CH-(CH2)4-(4-Me-Ph)	H	H	H	H
5-702	H	H	Me	·2	$-CH=CH-(CH_2)_4-(4-Et-Ph)$	H	H	H	H
5-703	H	H	Me	2	$-CH=CH-(CH_2)_4-(4-CF_3-Ph)$	H	H	H	H
5-704	H	H	Me	2	-CH=CH-(CH ₂) ₄ -(4-Me0-Ph)	H	H	H	H
5-705	H	H	Me	2	$-CH=CH-(CH_2)_4-(4-Et0-Ph)$	H	H	H	H
5-706	H	H	Me	2	-CH=CH-(CH $_2$) $_4$ -(4-MeS-Ph)	H	H	H	H .
5-707	·H	H	Me	2	-CH=CH-(CH2)4-(4-cHx-Ph)	H	H	H	H
5-708	H	H	Me	2	-CH=CH-(CH2)4-(4-Ph-Ph)	H	H	H	H
5-709	H	H .	Me	2	$-CH=CH-(CH_2)_5-cHx$	H	H ·	H	H
5-710	H	H	Me	2	-CH=CH-(CH ₂) ₅ -Ph	H	H	H	H
5-711	H	H	Me	2	-CH=CH-(CH2)6-cHx	H	H	H	H
5-712	H	H	Me	2	$-CH=CH-(CH_2)_6-Ph$. Н	_ H _,	H	H
5-713	H	H	Me	2	-C=C-CH ₂ O-cHx	H	H	H	H
5-714	H	H	Me	2	$-C=C-CH_2O-Ph$	H	H	H	H
5-715	H	H	Me	2	$-C=C-(CH_2)_2O-cHx$	H	H	H	H
5-716	H	·H	Me	2	$-C=C-(CH_2)_2O-Ph$	H	·H	H·	H
5-717	H	H	Me	2	-C≡C-cHx	H	H	H	H
5-718	H	Me	Me	2	-C≡C-cHx	H	H	H	H
5-719	CO ₂ M	е Н	Me	2	$-C \equiv C - cHx$	H	H	H	H
5-720	CO ₂ E	t H	Ме	.2	-C≡C-cHx	H	H	H	H
5-721	·H	H	Me [·]	2	$-C \equiv C - (4 - F - cHx)$	H	H	H	H
5-722	H	H	Me	2	$-C \equiv C - (4 - Me - cHx)$	H	H	Ħ	H
5-723	H	H	Me	2	$-C \equiv C - (4 - E t - cHx)$	H	H	H	H
5-724	H	H	Me	2	$-C \equiv C - (4 - CF_3 - cHx)$	H	H	H	H
5-725	H	H	Me	2	$-C \equiv C - (4 - MeO - cHx)$	H	Ħ	H	H
5-726	H	H	Me	2	$-C \equiv C - (4 - Et0 - cHx)$	H	·H	H	H

5-727	H	H	Ме	2	$-C \equiv C - (4 - MeS - cHx)$	H	·H	H	H
5-728	H	H	Мe	2 .	$-C \equiv C - (4 - cHx - cHx)$	H	H	H	H
5-729	Ĥ	H	Me	2	$-C \equiv C - (4 - Ph - cHx)$	H	H	H	H
5-730	H	H	Me	2	-C≡C-Ph	H	H	H	Н.
5-731	H	Me	Me	2	-C≡C-Ph	H	H	H	H
5-732	CO ₂ M	e H	Me	2	-C≡C-Ph	H	H	H	H
5-733	CO,E	t H	Me	2	-C≡C-Ph	Н	H	H	H
5-734	H	H	Me	2	$-C \equiv C - (4 - F - Ph)$	H	·H	H	Ή
5-735	H	H	Мe	2	$-C \equiv C - (4 - Me - Ph)$	H	H	H	H
5-736	H	H	Me	2	-C = C - (4-Pr-Ph)	H	H	H	H
5-737	H	H	Me	2	$-C \equiv C - (4 - Bu - Ph)$	H	H	H	H
5-738	H	H	Me	2	-C≡C-(4-MeO-Ph)	H	H	H	H
5-739	H	H	Me	2	$-C \equiv C - (4 - EtO - Ph)$	H	H	H	H
5-740	H .	H	Me	2	$-C \equiv C - (4 - PrO - Ph)$	H	H	H	H
5-741	H	H	Me.	2	$-C \equiv C - (4 - cHx - Ph)$	H	H	H	H
5-742	·H	H	Me	2	$-C \equiv C - (4-Ph-Ph)$	H	H	H	· 1H
5-743	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	\mathbf{H}_{\perp}	H	H	H
5-744	H	Me	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-745	CO ₂ M	е Н	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-746	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-747	Н	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - F - cHx)$	H	H	H	H
5-748	H .	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Me - cHx)$	H	H	H	H
5-749	H	Ή	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et - cHx)$	H	H	H	H
5-750	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - CF_3 - cHx)$	H	H	H	H
5-751	H	H.	Me	2	$-C \equiv C - (CH_2)_2 - (4 - MeO - cHx)$	H	H	H	H
5-752	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et0 - cHx)$	H	H	H	Η.
5-753	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - MeS - cHx)$	H	. H	·H	H
5-754	\mathbf{H} .	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - cHx - cHx)$	H	H	H	H
5-755	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Ph - cHx)$	H	H	H	H

5-756	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	Ή	H
5-757	H	Me	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
5-758	CO2	Me H	Ме	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
:5-759	CO ₂ I	Et H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	Н	H	H	H
5-760	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - F - Ph)$	H	H	H	Ή
5-761	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Me - Ph)$	H.	H	H	H
5-762	Ħ	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et - Ph)$	H	H	H	H
5-763	H	H	Me	2	$-C \equiv C - (CH2)2 - (4 - CF3 - Ph)$	H	H	H	H
5-764	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - (4 - MeO - Ph)$. Н	H	H	H
5-765	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et 0 - Ph)$	H	H.	H .	H
5-766	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - MeS - Ph)$	H	H	H	H
5-767	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - cHx - Ph)$	H	H	H	H
5-768	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4-Ph-Ph)$	- Н	H	H	H
5-769	H	H	Me	2	$-C \equiv C - (CH_2)_8 - cPn$	H	H	H	H
5-770	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-771	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	. H	H -	·H
5-772	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Мe	H	H
5-773	H	H	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	F	H	H	H
5-774	H	H	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	H	F	H	H
5-775	H	Me	Me	2 -	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-776	CO ₂ M	e H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-777	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-778	H	H	Ме	· 2	$-C \equiv C - (CH_2)_3 - (3 - F - cHx)$	H	H	H	H
5-779	H	·H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	H	H	H
5-780	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - cHx)$	H	H	H	H
5-781	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx).$	· H	H	H	H
5-782	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Me - cHx)$	H	H	H	H
5-783	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - cHx)$	H	H	H	H
5-784	Щ	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Et - cHx)$	H	H	H	H

					· ·				
5-785	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - cHx)$	H	H	H	H
5-786	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3 - Pr - cHx)$	H	H	H	H
5-787	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - cHx)$	H	H	H	H
5-788	H.	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - cHx)$	H	H	H	H
5-789	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Bu - cHx)$	H	H	H	. Н
5-790	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	H	Ħ	H	H
5-791	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - CF_3 - cHx)$	H	H	H	H
5-792	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - CHx)$	H	H	H	H
5-793	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeO - cHx)$	H	H	H	Ħ
5-794	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - cHx)$	H	H	. Н	H
5-795	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (3 - E t 0 - cHx)$	H .	H	H	H
5-796	H	Н -	Me	2	$-C \equiv C - (CH_2)_3 - (4 - E t O - cHx)$	H	H	H	H
5-797	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (3 - PrO - cHx)$	H	H	H	H
5-798	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - PrO - cHx)$	H	H	H	H
5-799	H	• Н	Me	2	$-C \equiv C - (CH_2)_8 - (3 - i PrO - cHx)$	H	H	H	H
5-800	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr0 - cHx)$	H	H	H	H
5-801	H	H	Me	2	$-C \equiv C - (CH_2)_8 - [3 - (2 - Et - Pr0) - cHx]$	H	H	H	H
5-802	H	Н	Me	2	$-C \equiv C - (CH_2)_{3} - [4 - (2 - Et - Pr0) - cHx]$) H	H	H	H
5-803	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - iBuO - cHx)$	H	H	H.	H
5-804	H	H	Me	2	$-C \equiv C - (CH_2)_{s} - (4 - iBuO - cHx)$	H	H	H	H
5-805	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx)$	H	H	H	H
5-806	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - cHx)$	H	H	H	H.
5-807	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - EtS - cHx)$	H	H	H	H
5-808	H	H	Me	2.	$-C \equiv C - (CH_2)_3 - (4 - EtS - cHx)$	H	H	H	H
5-809	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - PrS - cHx)$	H	H	H	H
5-810	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - PrS - cHx)$	H	H	Н.	$\mathbf{H}_{_{\mathbf{I}}}$
5-811	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i PrS - cHx)$	H	H	H	H
5-812	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - i PrS - cHx)$	H	H	H	H
5-813	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - PrS) - cHx]$] H	H	H	H

				•					
5-814	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - PrS) - cH$	H [x]	H	H	H
5-815	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3 - i BuS - cHx)$	H	H	H	H
5-816	H	H	Мe	2	$-C \equiv C - (CH2)3 - (4 - i BuS - cHx)$	H	H	H _.	H
5-817	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - cHx - cHx)$	H	H	H	H
5-818	H	Н	Me	2	$-C \equiv C - (CH_2)_3 - (4 - cHx - cHx)$	H	H	H	H
5-819	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Ph - cHx)$	H	H	H	:H
5-820	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Ph - cHx)$	H	H	H	H
5-821	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$	H	H	·H	. H
5-822	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - cHx)$	H	H	H	H
5-823	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$	H	H	H	H
5-824	H	H	Me	2	$-C \equiv C - (CH_2)_8 - Ph$	H	Н.	H	H
5-825	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H	H	H
5-826	H	H	Me	2	$-C \equiv C - (CH_2)_8 - Ph$	H	Me	H	H
5-827	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	F	H	H	·H
5-828	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	F	H	H
5-829	H	Me	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	: H
5-830	CO ₂ M	le H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-831	CO ₂ E	t H	Me	· 2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-832	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3-P-Ph)$	H	H	H	H
5-833	H .	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$	H	H	H	. Н
5-834	H	н	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Cl - Ph)$	H	H	H	. H
5-835	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - Ph)$	H	H	H	H
5-836	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3 - Me - Ph)$	H	Ĥ	H	H
5-837	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H	H	. Н
5-838	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Et - Ph)$	H	H	H	H
5-839	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	H	H.	H
5-840	Ħ	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Pr - Ph)$	H	H	H	H
5-841	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - Ph)$	H	H	\mathbf{H} :	H
5-842	Ħ	H	Me	. 2	$-C \equiv C - (CH_2)_3 - (3 - iPr - Ph)$	H	H	H	H

5-843	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	·H	H	Η
5-844	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Bu - Ph)$	H	H	H .	H
5-845	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - Ph)$	H	H	H	H
5-846	H	H	Мe	·· 2	$-C \equiv C - (CH_2)_3 - (3 - CF_3 - Ph)$	H	H.	H	H
5-847	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - CF_8 - Ph)$	H	H	H _.	H
5-848	H	H	Me	2	$-C = C - (CH_2)_8 - (3 - MeO - Ph)$	H	Ħ	H	H
5-849	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - Ph)$	H	H	· H	H
5-850	·H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - E t O - Ph)$	H	H	·H	H
5-851	·H	H,	Me	2	$-C \equiv C - (CH_2)_3 - (4 - E t 0 - Ph)$	H	H	H	H
5-852	H	H	Me	2	$-C = C - (CH_2)_8 - (3 - Pr0 - Ph)$	H	H	H	H
5-853	·H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - Ph)$	H.	H	H	H
5-854	: H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i Pr O - Ph)$	H	·H	H	:H
5-855	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - i Pr O - Ph)$	H	H	H	:H
5-856	H	H	Me	2	$-C \equiv C - (CH_2)_8 - [3 - (2 - Et - Pr0) - Ph]$	H	H	H	H
5-857	H	H·	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - Pr0) - Ph]$	H	H	H	H
5-858	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - iBuO - Ph)$	H	H	:H	:: H
5-859	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iBu0 - Ph)$	H	H	H	H
5-860	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H	H	H
5-861	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H	·H	Н
5-862	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - EtS - Ph)$	H	·H	H	H
5-863	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - EtS - Ph)$	H	H	H	$i\mathbf{H}$
5-864	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - PrS - Ph)$	H	H	H	·. H
5-865	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - PrS - Ph)$	H	H	H	H
5-866	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i Pr S - Ph)$	H	H	H	Н
5-867	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr S - Ph)$. H .	H	H	H
5-868	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - PrS) - Ph]$	H	H	H	H
5-869	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - PrS) - Ph]$	H	H	H	H
5-870	. H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i BuS - Ph)$	H	H	H	H
5-871	H	H	Me	2	$-C \cong C - (CH_2)_3 - (4 - i BuS - Ph)$	H	H	H	H

5-872	H	H	Me	. 2	$-C \equiv C - (CH_2)_3 - (3 - cHx - Ph)$	H	H	H	H
5-873	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - cHx - Ph)$	H	H	H	H
5-874	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Ph - Ph)$	H	H	H	H
5-875	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - Ph - Ph)$	H	H	H	H
5-876	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - Ph)$	H	H	H	H
5-877	H	. Н	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe-Ph)$	H	H	H	H
5-878	H .	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe-Ph)$. Н	H	H	H
5-879	H	. H	Me	2	$-C \equiv C - (CH_2)_3 - Np(1)$	H	H	H	H
5-880	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Np(2)$	H	H	H	H
5-881	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cPn$	H	H	H	H
5-882	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx_1$	Н	H	H	H
5-883	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	. Н	H	H
5-884	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Me	H	H
5-885	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H	H.	H
5-886	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F	H	H
5-887	H	Me	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-888	CO ₂ Me	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-889	CO₂E t	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-890	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - F - cHx)$	H	H	H	H
5-891	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	H	\mathbf{H}	H
5-892	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - cHx)$	H	. Н	H	H
5-893	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	. Н	H	H
5-894	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Me - cHx)$	H	H	H	H
5-895	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - cHx)$	H	H	H	H
5-896	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et - cHx)$	H	H	H	H
5-897	H	H	Me	2	$-C \equiv C - (CH2)4 - (4 - Et - cHx)$	Ħ	H	H	H
5-898	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Pr - cHx)$	H	H	H	H
5-899	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H	H	H	H
5-900	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - cHx)$	H	H	H	H

5-901	H	H.	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Bu - cHx) $ H	Ħ	H	H
5-902	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx) $ H	H	H	H
5-903	H	H	Me	2	$-C \equiv C - (CH2)4 - (3 - CF3 - cHx) $ H	H	H	H
5-904	Н	H	Мe	2	$-C \equiv C - (CH2)4 - (4 - CF3 - cHx) $ H	H	H	H
5-905	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - MeO - cHx) $ H	H	H	H
5-906	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - cHx) $ H	Ħ	H	H
5-907	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et0 - cHx)$ H	H	H	H
5-908	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx) $ H	H	H	Н
5-909	H .	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - PrO - cHx) $ H	H	H	H
5-910	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrO - cHx) \qquad \qquad H$	H	H	H
5-911	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Pr \theta - cHx) $ H	H	H	H
5-912	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - cHx) $ H	H	H	H
5-913	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - Pr0) - cHx]$ H	H	H	H
5-914	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - Pr0) - cHx]$ F	Н	H	Н
5-915	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iBuO - cHx)$ H	H	H	H
5-91:6	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iBuO - cHx) $ H	H	H	H
5-917	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - cHx) $ H	H	H	·H
5-918	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - cHx) $ H	H	H	H
5-919	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - EtS - cHx) $ H	H	H	H
5-920	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - EtS - cHx) $ H	H	H	H
5-921	Ĥ	H	Ме	2	$-C \equiv C - (CH_2)_4 - (3 - PrS - cHx) $ H	H	H	H
5-922	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrS - cHx) $ H	H	H	H
5-923	H	H	Me	2 .	$-C \equiv C - (CH_2)_4 - (3 - i Pr S - cHx) $ H		H	Ή
5-924	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i PrS - cHx) $ H	H	H	H
5-925	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - PrS) - cHx]$ H	H	Н.	H
5-926	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - PrS) - cHx]$ H	H	H	H
5-927	H .	·H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iBuS - cHx) \qquad H$	H	H	H
5-928	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iBuS - cHx) $ H	H	H	H
5-929	H	H	Me	2 -	$-C \equiv C - (CH_2)_4 - (3 - cHx - cHx) $ H	H	. Н	H

5-930	H	H.	Me	2	$-C \equiv C - (CH_2)_4 - (4 - cHx - cHx)$	H	H	H	H
5-931	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Ph - cHx)$	H _.	H	H	H
5-932	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - Ph - cHx)$	H	H	H	H
5-933	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	H	H	H
5-934	• Н	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	H	H	H
5-935	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	H	H	H	. Н
5-936	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-937	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - Ph$	Me	. Н	H	H
5-938	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Me	H	H
5-939	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H	H	H
5-940	H	Ħ	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F	H	H
5-941	H	Me	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-942	CO ₂ Me	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-943	CO ₂ E t	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-944	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - F - Ph)$	H	H	. H	H
5-945	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	H	H	H	H
5-946	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - Ph)$	H	H	H	H
5-947	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	H	H	H
5-948	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Me - Ph)$	H	H	H	H
5-949	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H	H	H
5-950	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et - Ph)$	H	H	H	H
5-951	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	H	H	H	H
5-952	. Н	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Pr - Ph)$	H	H	H	H
5-953	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	H	H	H	H
5-954	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Pr - Ph)$	H	H	H	H
5-955	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - Ph)$	H	H	H	H.
5-956	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Bu - Ph)$	H	H	H	H
5-957	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H	H	H
5-958	\mathbf{H}	H	Ме	2	$-C \equiv C - (CH2)4 - (3 - CF3 - Ph)$	H	H	H	H

	5-959	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H	H	H
	5-960	H	H	Me	2,	$-C \equiv C - (CH_2)_4 - (3 - Me0 - Ph)$	H	H	H	H
	5-961	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - Ph)$	H	H	H	H
	5-962	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - Et0 - Ph)$	H	H	H	H
	5-963	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bt 0 - Ph)$	H	H	H	H
	5-964	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - PrO - Ph)$	H	H	H	H
	5-965	H	H .	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - Ph)$	H	H	H	H
	5-966	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Pr 0 - Ph)$	H	H	H	H
	5-967	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr 0 - Ph)$	H	H	H	H
	5-968	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - Pro) - Ph]$	H	H	H	H
	5-969	H	H	Me	2	$-C \equiv C - (CH2)4 - [4 - (2 - Et - Pr0) - Ph]$	H	H	\mathbf{H}_{\cdot}	·H
٠	5-970	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Bu0 - Ph)$	H	H	H	H
	5-971	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iBu0 - Ph)$	·H	H	Ħ	H
	5-972	Ħ	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - Ph)$	H	H	H	H
	5-973	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	H	H	H
	5-974	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - EtS - Ph)$	H	H	H	Η.
	5-975	·H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - EtS - Ph)$	H	H	H	·H
	5-976	H	H	Me _.	2	$-C \equiv C - (CH_2)_4 - (3-PrS-Ph)$	H	H	H	H
	5-977	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrS - Ph)$	H	H	H	H
	5-978	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i Pr S - Ph)$	H	H	H	H
	5-979	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iPrS - Ph)$	H	H	H	H
	5-980	Ħ.	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - PrS) - Ph]$	H	H	H	Н.
	5-981	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - PrS) - Ph]$	H	H.	H	H
	5-982	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - i BuS - Ph)$	H	H	H	, H
	5-983	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i BuS - Ph)$	H	H	H	·H
	5-984	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - cHx - Ph)$	H	H	H	H
	5-985	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - cHx - Ph)$	H	H	H	H
	5-986	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3-Ph-Ph)$	H	H	H	H
	5-987	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - Ph - Ph)$	H	H	H	H

5-988	H	Н	Me	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - Ph)$	H	H	H	H
5-989	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - Ph)$	H	H	. Н	H
5-990	H	H	Me	2	$-C \equiv C - (CH_2)_{4} - (3, 5 - diMe - Ph)$	H	H	H	H
5-991	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Np(1)$	H	H	H	H
5-992	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Np(2)$	H	H	H	H
5-993	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	. Н	H
5-994	H	Me	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	H	H
5-995	CO _z M	e H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	H	H
5-996	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	H	H
5-997	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - F - cHx)$	H	H	H	H
5-998	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Me - cHx)$	H	H	H	H
5-999	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Et - cHx)$	H	H	.H	H
:5-1000	H	H	Me	2	$-C \equiv C - (CH2)5 - (4 - CF3 - cHx)$	H	H	H	H,
5-1001	H	H	Мe	2	$-C \equiv C - (CH_2)_5 - (4 - MeO - cHx)$	H	H	H	H
5-1002	H	H	Me	2	$-C \equiv C - (CH2)5 - (4 - Et 0 - cHx)$	H	H	H	H
5-1003	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeS - cHx)$	H.	H	H	H
:5-1004	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - cHx - cHx)$	Н.	H	H	Ħ
5-1005	H	• Н	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Ph - cHx)$	H	H	H	H
5-1006	H	H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	Ħ
5-1007	H	Me	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-1008	CO ₂ M	е Н	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-1009	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-1010	H	\mathbf{H}_{\perp}	Me	2	$-C \equiv C - (CH_2)_5 - (4 - F - Ph)$	H	H	Ή.	H.
5-1011	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Me - Ph)$	H	H	H	H
5-1012	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Et - Ph)$	H	H	H	H
5-1013	H	. Н	Me	2	$-C \equiv C - (CH_2)_5 - (4 - CF_3 - Ph)$	H	H	H	H
5-1014	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeO - Ph)$	H	H	Ή	H
5-1015	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Et0 - Ph)$	H	H	·H	H.
5-1016	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeS - Ph)$	H	H	H	H

5-1017	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - cHx - Ph)$	H	H	H.	H
5-1018	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Ph - Ph)$	H	H	H	H
5-1019	H	H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	H
5-1020	- Н	Me	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	Н.	H	H
5-1021	CO ₂ M	le H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	Ή
5-1022	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	·H
5-1023	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - F - cHx)$	H	H	H	H
5-1024	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Me - cHx)$	H	H	H	H
5-1025	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et - cHx)$	H	H	H	H
5-1026	·H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - CF_8 - cHx)$	H	H	H	· H .
5-1027	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeO - cHx)$	· H	H	H	H
5-1028	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et0 - cHx)$	H	H	H	·H
5-1029	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeS - cHx)$	H	H	- H	H
5-1030	H	H	Me	. 2	$-C \equiv C - (CH_2)_6 - (4 - cHx - cHx)$	H	H	H	Ή
5-1031	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Ph - cHx)$	H	H	H	H
5-1032	H	H	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	ч	·H	H	H
5-1033	H	Me	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	H	H
5-1034	CO ₂ M	еН	Me	. 2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	·H	H
5-1035	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_6 - Ph$. Н	H	H	H
5-1036	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - F - Ph)$	H	H	H	H
5-1037	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Me - Ph)$	H	H	H	·H
5-1038	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et - Ph)$	H	. H	H	H.
5-1039	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - CF_3 - Ph)$	H	H .	H	H
5-1040	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - MeO - Ph)$. Н	H	. Н	H
5-1041	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et0 - Ph)$	H	H	H	H
5-1042	H	H	Me ·	2	$-C \equiv C - (CH_2)_6 - (4 - MeS - Ph)$	H	H	H	H
5-1043	Ħ	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - cHx - Ph)$	H	·H	H	H
5-1044	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Ph - Ph)$	H	H	H	H
5-1045	Η	H	Me	2	$-C \equiv C - CH_2 - 0 - cHx$	• Н	H	H	H

5-1046	H Me	Me	2	$-C \equiv C - CH_2 - 0 - cHx$	H	H	H.	H
5-1047	CO ₂ Me H	Мe	2	$-C \equiv C - CH_2 - 0 - cHx$	H	H	H	H
5-1048	CO ₂ Et H	Me	2	$-C = C - CH_2 - 0 - cHx$	H .	H	H	H
5-1049	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - F - cHx)$	H	H	H	H
5-1050	н н	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Me - cHx)$	H	H	H	H
5-1051	H H	Me	.2	$-C \equiv C - CH_2 - 0 - (4 - Et - cHx)$	H	H	H	H
5-1052	н н	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CF_3 - cHx)$	H	H	H	H
5-1053	н н	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeO - cHx)$	H	H	H	H
5-1054	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et0 - cHx)$	H	H	H	Н
5-1055	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeS - cHx)$	H	H	H	H
5-1056	H H	Мe	2	$-C \equiv C - CH_2 - 0 - (4 - cHx - cHx)$	H	H	H	H
5-1057	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Ph - cHx)$	H	H	H	H
5-1058	H H	Me	2	$-C = C - CH_2 - 0 - Ph$	H	Ή	Ħ	H
5-1059	H Me	Me	2	$-C \equiv C - CH_2 - 0 - Ph$	H	H	H	H
5-1060	CO ₂ Me H	Me	2	$-C \equiv C - CH_2 - O - Ph$	H	H	H	H
5-1061	CO ₂ Et H	Me	'2	$-C \equiv C - CH_2 - O - Ph$	H	H	H	H
5-1062	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - F - Ph)$	H	H	H	Н
5-1063	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Me - Ph)$	H	H	Ή	" H
5-1064	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et - Ph)$	H	H	H	H
5-1065	H ··H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CF_3 - Ph)$	H	H	H	H
5-1066	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeO - Ph)$	H	H	H	H
5-1067	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - E t 0 - Ph)$	H	H	H	H
5-1068	н н	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeS - Ph)$	H	H	H	H
5-1069	H H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - cHx - Ph)$. Н	H	H	H
5-1070	H H	Me	. 2	$-C \equiv C - CH_2 - 0 - (4 - Ph - Ph)$	H	H	H	H
5-1071	H H	Me	2	$-C \equiv C - (CH_2)_2 0 - cPn$. Н	H	H	H
5-1072	H H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-1073	н н	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	Me	H	H	H
5-1074	H H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Me	H	H

5-1075	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	H	H	·H
5-1076	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F	H	H
5-1077	H	Me	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-1078	CO ₂ M	еН	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-1079	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
:5-1080	H	H	Me	2	$-C \equiv C - (CH_2)_3 O - (3 - F - cHx)$	H	H	H	H
5-1081	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	H	H	H
5-1082	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - C1 - cHx)$	H	H	H	H
5-1083	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - cHx)$	H.	H	H	H
5-1084	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Me - cHx)$	H	H	H	H
5-1085	Щ	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - cHx)$	H	H	H	H
5-1086	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Et - cHx)$	H	H	H	H
5-1087	H	·Η	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	H	H	H	H
5-1088	. H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Pr - cHx)$	H	H	H	H
5-1089	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - cHx)$	H	H	H	H
5-1090	H	H	Me.	· 2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - cHx)$	H	H	H	H
5-1091	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Bu - cHx)$	H	H _.	H	H
5-1092	·H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	H	H	H	H
5-1093	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - CF_3 - cHx)$	H	H	H	Ή
5-1094	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - cHx)$	H	H	H	H
5-1095	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - MeO - cHx)$	H	H	Ή	H
5-1096	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - MeO - cHx)$	H	H	H	H
5-1097	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - EtO - cHx)$	H	H	·H	H
5-1098	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - EtO - cHx)$	H	H	H	H
5-1099	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Pr0 - cHx)$	H	H	H	H
5-1100	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - cHx)$	H	H	H	·H
5-1101	H ·	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i PrO - cHx)$	H	H.	H	H
5-1102	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrO - cHx)$	H	H	H	H
5-1103	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [3 - (2 - Et - Pr0) - C]$	-cHx]	нн	H	H

5-1104	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [4 - (2 - Et - Pr0) - C]$	Hx]	нн	H	H
5-1105	H	H	Me	2	$-C \equiv C - (CH_1)_2 0 - (3 - i Bu 0 - cHx)$	H	H	H	H
.5-1106	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Bu O - cHx)$	H	H	H	H
5-1107	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - MeS - cHx)$	H	H	H	Н
5-1108	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - MeS - cHx)$	H	H	H	H
5-1109	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - EtS - cHx)$	H	H	H	H
5-1110	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - EtS - cHx)$	H	H	H	H
5-1111	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrS - cHx)$	H	H	H	H
5-1112	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrS - cHx)$	H	H	H	· H
5-1113	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i PrS - cHx)$	H	H	H	H
5-1114	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrS - cHx)$	H	H	H	H
5-1115	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [3 - (2 - Et - PrS) - C]$	Hx]	нн	H	H
5-1116	Ħ	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [4 - (2 - Et - PrS) - C]$	Hx]	нн	H	H
5-1117	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i BuS - cHx)$	H	H	H	H
5-1118	H	H .	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i BuS - cHx)$	H	H -	H	H
5-1119	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - cHx - cHx)$	H	H	H	Ή
5-1120	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - cHx - cHx)$	H	H	·H	H
5-1121	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 O - (3 - Ph - cHx)$	H	H	H	H
5-1122	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Ph - cHx)$	H	H	H	H.
5-1123	H -	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (2, 4 - diMe - cHx)$	H	H	H	H
5-1124	H	H	Me	· 2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - cHx)$	H	H	H	H
5-1125	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - cHx)$	H	H	H	H
5-1126	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-1127	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	Me	H	H	H
5-1128	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	Me	H	H
5-1129	H	H	Me	2 .	$-C \equiv C - (CH_2)_2 O - Ph$	F	H	H	H
5-1130	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$. H	, F	H	H
5-1131	H	Me	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-1132	CO ₂ M	еН	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H

					•			
5-1133	CO ₂ E t	H	Ме	2	$-C \equiv C - (CH_2)_2 O - Ph $ H	H	H	H
5-1134	·H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - F - Ph)$ H	H	Ħ	H
5-1135	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - F - Ph)$ H	H	H	H
5-1136	Ĥ	H	Me.	.2	$-C \equiv C - (CH_2)_2 O - (4 - C1 - Ph)$ H	H	H	H
5-1137	Щ.	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - Ph) $ H	H	H	·H
5-1138	H	H	Me	2	$-C \equiv C - (CH2)20 - (3 - Me - Ph) $ H	H	H	Н
5-1139	H	H	Me	2 ·	$-C \equiv C - (CH_2)_2 O - (4 - Me - Ph) $ H	H	H	H
5-1140	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Et - Ph)$ H	Н	H	H
5-1141	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (4 - Et - Ph)$ H	H	H	Н
5-1142	н .	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Pr - Ph)$ H	H	H	H
5-1143	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - Ph) $ H	H	H	H
5-1144	H	H	Me	2	-C = C - (CH2)20 - (3 - i Pr - Ph) H	H	H	H
5-1145	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - Ph) $ H	H	H	H
5-1146	H ·	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Bu - Ph) $ H	H	H	H
5-1147	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - Ph) $ H	H	H	H
5-1148	H .	H	Me	.2	$-C \equiv C - (CH2)2O - (3 - CF3 - Ph) $ H	H	H	·H
5-1149	H	Ħ	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - Ph)$ H	H	H	H
5-1150	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - MeO - Ph)$ H	H	Ή	H
5-1151	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - Ph)$ H	H	H	H
5-1152	H	H	Ме	.2	$-C \equiv C - (CH_2)_2 O - (3 - E t O - Ph)$ H	H	H	H
5-1153	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - Ph)$ H	H	H	H
5-1154	H .	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrO - Ph)$ H	Н -	H	H
5-1155	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrO - Ph)$ H	H	H	H
5-1156	Н	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i PrO - Ph) $ H	H	Ħ	H
5-1157	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr O - Ph)$ H	H	H	H
5-1158	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [3 - (2 - Et - Pr0) - Ph]$ H	H	H	H
5-1159	H	Н	Me	2	$-C \equiv C - (CH_2)_{\cdot 2}0 - [4 - (2 - Et - Pr0) - Ph]$ H	H	H	H
5-1160	H .	H.	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - iBuO - Ph)$ H	H	H	H
5-1161	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - iBuO - Ph) $ H	H.	H	H

5-1162	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - MeS - Ph)$	H	H	H	H
5-1163	H	H	Ме	2	$-C \equiv C - (CH_2)_2 O - (4 - MeS - Ph)$	H	H	H	Ή
5-1164	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - EtS - Ph)$	H	H	H	H
5-1165	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - EtS - Ph)$	H	H	H	H
5-1166	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - PrS - Ph)$	H	H	H	H
5-1167	Η.	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - PrS - Ph)$	H	H	H	H
5-1168	H	H	Me	.2	$-C \equiv C - (CH_2)_2 O - (3 - i Pr S - Ph)$	H	Ĥ	·H	H
5-1169	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrS - Ph)$	H	H	H	H
5-1170	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - [3 - (2 - Et - PrS) - P$	h] H	H	·H	H
5-1171	Ħ	H	Me	2	$-C \equiv C - (CH_2)_2 O - [4 - (2 - Et - PrS) - P$	h] H	H	H	H '
5-1172	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - i BuS - Ph)$	H	H	H	H
5-1173	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i BuS - Ph)$	H	H	H	H
5-1174	H	H	Me	2	$-C \equiv C - (CH_2)_2O - (3 - cHx - Ph)$	H	H	H	H
5-1175	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - cHx - Ph)$	H	H	H	H
5-1176	H	· H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Ph - Ph)$	H	H	H	H
5-1177	H	H	Me.	2	$-C \equiv C - (CH_2)_2 O - (4 - Ph - Ph)$	H	Η	H	H
5-1178	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - Ph)$	H	H	; H	H
5-1179	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - Ph)$	H	H	Н	H
5-1180	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - Ph)$	H	H	H	H
5-1181	H	H	Me	2	$-C \equiv C - (CH_2)_3 O - cHx$	H	H	H	H
5-1182	H	H	Me	2	$-C \equiv C - (CH_2)_3 O - Ph$	H	H	H	H
5-1183	H	H	Me	2	$-C \equiv C - (CH_2)_4 O - cHx$	H	H	Ħ	H
5-1184	H	H	Me	2	$-C \equiv C - (CH_2)_4 O - Ph$	Н	H	H	H
5-1185	H	H	Me	2	$-C \equiv C - CH_2 - CCH_2 - CHx$	H	H	H	H
5-1186	H	Me	Me	. 2	$-C \equiv C - CH_2 - CH_2 - CHx$	H	H	H	H
5-1187	CO₂M€	e H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - cHx$	H	H	H	H
5-1188	CO ₂ E	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - cHx$	H	H	H	H
5-1189	H	H	Ме	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - F - cHx)$	H	H	H	H
5-1190	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Me - cHx)$	H	H	H	H

5-1191	Н.	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Et - cHx)$	H	Н	H	H
5-1192	H	H	Мe	· 2	$-C \equiv C - CH_2 - 0CH_2 - (4 - CF_3 - cHx)$	H	H	H	H
5-1193	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeO - cHx)$	H	Н	. Н	H
5-1194	H	H	Me	· 2	$-C \equiv C - CH_2 - 0CH_2 - (4 - EtO - cHx)$	H	H	H	H
5-1195	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - MeS - cHx)$	H	H	H	H
5-1196	H	. Н	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - cHx - cHx)$	H	H	·H	H
5-1197	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Ph - cHx)$	H	H	H	H
5-1198	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - Ph$	H	H	H	H
5-1199	H	Me	Me	2	$-C \equiv C - CH_2 - OCH_2 - Ph$	H	H	H	H
5-1200	CO₂Me	H	Me	2	$-C = C - CH_2 - 0CH_2 - Ph$	H	H	H	H
5-1201	CO ₂ E t	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - Ph$	H	H	H	H
5-1202	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - F - Ph)$	H	H	H	H
5-1203	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Me - Ph)$	H	H	. Н	H
5-1204	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et - Ph)$	H	. Н	H	H
5-1205	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - CF_3 - Ph)$	H	H	H	H
5-1206	H	H	Me	. 2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeO - Ph)$	H	H	H	H
5-1207	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et0 - Ph)$	H	H	H	H
5-1208	, H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeS - Ph)$	H	H	H	H
5-1209	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - cHx - Ph)$	H	H	Ή	H
5-1210	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Ph - Ph)$	H	H	H	H
5-1211	H ·	Н,	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cPn$	H	H	H	H
5-1212	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - cHx$	H	H	H	H
5-1213	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - cHx$	Me	H	H	H
5-1214	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	Me	H	H
5-1215	H	H	Me	2	$-C \equiv C - (CH_2)_2 - CH_2 - CHx$	F	H	H	H
5-1216	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	F	H	H
5-1217	H	Me	Мe	2	$-C \equiv C - (CH_2)_2 - OCH_2 - CH_2 - CHx$	H	H	H	H
5-1218	CO₂Me	H	Мe	2	$-C \equiv C - (CH_2)_2 - CH_2 - cHx$	H	H	H	H
5-1219	CO ₂ Et	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - cHx$. Н	H	H	H

5-1220	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - F - cHx)$	H	H	H	Н
5-1221	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - F - cHx)$	H	H	H	Н
5-1222	. H	H	Мe	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - C1 - cHx)$	H	H	H	H
5-1223	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Br - cHx)$	H	H	Ή	H
5-1224	H	H	Me	2	$-C = C - (CH_2)_2 - 0CH_2 - (3 - Me - cHx)$	H	H	H	. Н
5-1225	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Me - cHx)$	H	H	H	H
5-1226	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Bt - cHx)$	H	H	H	H
5-1227	Ή	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et - cHx)$	H	H	. H	H
5-1228	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr - cHx)$	H	H	H	H
5-1229	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr - cHx)$	H	H	H	H
5-1230	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i Pr - cHx)$	H	H	H	H
5-1231	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Bu - cHx)$	H	H	H	H
5-1232	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bu - cHx)$	H	H	H	H
5-1233	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - CF_3 - cHx)$	H	H	H	Ή
5-1234	H	·	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - CF_3 - cHx)$	H	H	H	Ή
5-1235	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - MeO - cHx)$	H	H	H	H
5-1236	H	Ή	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeO - cHx)$	H	H	H	H
5-1237	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et0 - cHx)$	H	H	H	H
5-1238	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et0 - cHx)$	H	H	H	H
5-1239	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - PrO - cHx)$	H	H	H	H
5-1240	H	Н .	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr0 - cHx)$	H	H	Ή	H
5-1241	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - i PrO - cHx)$	H	H	H	Ή
5-1242	H	H			$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i PrO - cHx)$			H	H
5-1243	H	H			$-C \equiv C - (CH_2)_2 - OCH_2 - [3 - (2 - Et - Pr0) c]$			H	H
5-1244	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - [4 - (2 - Et - Pr0) c]$		нн	H	Ή
	H	Н	Me		$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBu0 - cHx)$		H	H	H
5-1246	H	H			$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i BuO - cHx)$		H	H	H
5-1247	H	Н		2			H	H	H
5-1248	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - MeS - cHx)$	H	H	H	H

5-1249	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - EtS - cHx)$	H	H	H	H
5-1250	Н .	H	Me	. 2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - EtS - cHx)$	H	H	H	H
5-1251	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - PrS - cHx)$	H	H	Ħ	H
5-1252	H .	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - PrS - cHx)$	H	. H	H	H
5-1253	H	H	Me	2	$-C \equiv C - (CH2)2 - 0CH2 - (3 - i Pr S - cHx)$	H	H	H	H
5-1254	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPrS - cHx)$	H	H	·H	H
5-1255	H	H	Me	2	$-C = C - (CH_2)_2 - OCH_2 - [3 - (2 - Et - PrS)]$	Hx]	HH	H	H
5-1256	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [4 - (2 - Et - PrS)]$	Hx]	нн	H.	H
5-1257	H	·H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - i BuS - cHx)$	H	H	H	H
5-1258	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i BuS - cHx)$	H	H	H	H
5-1259	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - cHx - cHx)$	H	H	H	H
5-1260	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - cHx - cHx)$	H	· H ·	H	H
5-1261	H	H	Me	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Ph - cHx)$	H	H	H	H
5-1262	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Ph - cHx)$	H	H	·H	H
5-1263	H	H	Me	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (2, 4 - diMe - cH_2)_2$	(x)	нн	H	H
5-1264	H	H	Me	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 4 - diMe - cH_2)_2$	(x	нн	H	H
5-1265	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 5 - diMe - cH_2)$	(x)	нн	H	H
5-1266	·H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	H	Ħ	H	H
5-1267	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	Me	H	H	H
5-1268.	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	H	Me	H	H
5-1269	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$. F	H	H	H
5-1270	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$	H	F	H	H
5-1271	H	Me	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - CH_2 - Ph$	H	H	H	H
5-1272	CO ₂ Me	H	Me	2 .	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	H	H	H	H
5-1273	CO ₂ E t	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	H	H	H	H
5-1274	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - F - Ph)$	H	H	H	H
5-1275	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - F - Ph)$	H	H	H	H
5-1276	H	H	Ме	.2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Cl - Ph)$	H	H	H	H
5-1277	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Br - Ph)$	H	H	H	H

5-1278	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - Me - Ph)$ H	H	H	H
5-1279	H	Н	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - Me - Ph)$ H	H	H	H
5-1280	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et - Ph)$ H	H	H	H
5-1281	H	·H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et - Ph)$ H	H	H	H
5-1282	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr - Ph)$ H	H	Ħ	H
5-1283	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr - Ph)$ H	H	H	H
5-1284	H	H	Me !	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - i Pr - Ph)$ H	H	H	H
5-1285	H	H	Ме	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - i Pr - Ph)$ H	H	H	H
5-1286	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - Bu - Ph)$ H	H	.H	H
5-1287	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bu - Ph)$ H	H	H	H
5-1288	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - CF_8 - Ph)$ H	H	H	H
5-1289	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - CF_3 - Ph)$ H	H	H	H
5-1290	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Me0 - Ph)$ H	H	H	H
5-1291	H	H	Me .	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - MeO - Ph)$ H	Ħ	· H	H
5-1292	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - E t 0 - Ph)$ H	H	H	H
5-1293	H	H	Me	2	$-C = C - (CH_2)_2 - OCH_2 - (4 - EtO - Ph)$ H	H	H	H
5-1294	·H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr0 - Ph)$ H	H	H	H
5-1295	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr0 - Ph)$ H	H	H	Ή
5-1296	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - iPrO - Ph)$ H	H	H	H
5-1297	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i Pr 0 - Ph)$ H	H	H	H
5-1298	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Et - Pr0)Ph]$ H	H	H	H
5-1299	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [4 - (2 - Et - Pr0)Ph] H$	H	H	H
5-1300	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - i BuO - Ph)$ H	H	H	H
5-1301	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - i BuO - Ph)$ H	H	H	H
5-1302	H	· H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - MeS - Ph) \qquad H$	H	H	H
5-1303	H	H	Me	2	$-C = C - (CH_2)_2 - 0CH_2 - (4 - MeS - Ph) \qquad H$	H	H	H
5-1304	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3 - EtS - Ph)$ H	H	H	H
5-1305	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - EtS - Ph)$ H	H	H	H
5-1306	H	Н	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - PrS - Ph)$ H	H	H	H

					•				
5-1307	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (4 - PrS - Ph),$	H	H	H	H
5-1308	H	H	Me	2	$-C \equiv C - (CH2)2 - OCH2 - (3 - i Pr S - Ph)$	H	H	H	H
5-1309	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - i Pr S - Ph)$	H	H	H	H
5-1310	H	H	ιМе	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Et - PrS)]P$	h] H	H	H	Н
5-1311	H	H	·Ме	2	$-C \equiv C - (CH_2)_2 - OCH_2 - [4 - (2 - Et - PrS)]P$	h] H	H	H	H
5-1312	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - i BuS - Ph)$	H	H	H	H
:5-1313	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - i BuS - Ph)$	H	H	H	H
5-1314	H	H	Ме	2	$-C = C - (CH_2)_2 - OCH_2 - (3 - cHx - Ph)$	H	H.	H	Ή
5-1315	H	H	Me	. 2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - cHx - Ph)$	H	H	H	Н
5-1316	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (3 - Ph - Ph)$	H	H	H	H
5-1317	Н	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - (4 - Ph - Ph)$	H	H	H	H
5-1318	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (2, 4 - diMe - Ph$) H	H	·H	H
5-1319	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - (3, 4 - diMe - Ph$) H	H	H	H
5-1320	H	H	Me		$-C \equiv C - (CH_2)_2 - OCH_2 - (3, 5 - diMe - Ph$	H (H	H	H
5-1321	H	H	Me	2	$-C \equiv C - (CH_2)_3 - 0CH_2 - cHx$	H	H	H	H
5-1322	H	. H	Me	2	$-C \equiv C - (CH_2)_3 - 0CH_2 - Ph$	H	H	H	H
5-1323	Н	H	Me	2	$-C \equiv C - (CH_2)_4 - 0CH_2 - cHx$	H	H	Н	H
5-1324	H	H	Ме	2	$-C \equiv C - (CH_2)_4 - OCH_2 - Ph$	H	H	H	: . H
5-1325	H	Н	Me	2	$-C0-CH_2-(4-cHx-Ph)$	H	H	H	H
5-1326	H	Ħ	Me	2	-C0-CH ₂ (4-Ph-Ph)	H	H	H	Ħ
5-1327	H	H	Me	2	$-CO-(CH_2)_2-cHx$	H	Ή	H	H
5-1328	H	H,	Me	2	$-CO-(CH_2)_2-Ph$	H	H	H	Η
5-1329	H	H	Me	2	$-CO-(CH_2)_8-cHx$	H	: H	H	H
5-1330	H	H	Me	2	$-CO-(CH_2)_3-Ph$	H	H	H	Ή
5-1331	H	H	Ме	2	$-CO-(CH_2)_4-cHx$	H	H	H	Н
5-1332	H	Me	Me	2	$-CO-(CH_2)_4-cHx$	H	Н.	H	H
5-1333	CO₂Me	H	Me	2	$-C0-(CH_2)_4-cHx$	H	H	H	Ή
5-1334	- CO ₂ E t	H	Me	2	$-C0-(CH_2)_4-cHx$	H	H	H	H
5-1335	H	H	Me	2	$-C0-(CH_2)_4-(4-F-cHx)$	H	H	H	H

5-1336	H	Ħ	Me	2	-CO-(CH2)4-(4-Me-cHx)	H	H	H	H
5-1337	H	H	Me	2	$-C0-(CH_2)_4-(4-Et-cHx)$	H	H	H	H
5-1338	H	H	Me	2	$-C0-(CH_2)_4-(4-CF_3-cHx)$	H	H	H	H
5-1339	H	H	Me	2	$-CO-(CH_2)_4-(4-MeO-cHx)$	H	H	H	H
5-1340	H	H	Me.	2	$-C0-(CH_2)_4-(4-Et0-cHx)$	H	H	H	H
5-1341	Ħ	H	Me	2	-CO-(CH2)4-(4-MeS-cHx)	H	H	H	H
5-1342	H	H	Me	2	-CO-(CH2)4-(4-cHx-cHx)	H	H	H	H
5-1343	H	H	Me	2	$-CO-(CH_2)_4-(4-Ph-cHx)$	H	H	H	H
5-1344	H	H	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
5-1345	H.	Me	Me	2	-CO-(CH2)4-Ph	H	H	H	H
5-1346	CO₂Me	H	Me	2	-CO-(CH ₂) ₄ -Ph	H	H	H	Н.
5-1347	CO ₂ Et	H	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
5-1348	H	H	Me	2	$-CO-(CH_2)_4-(4-F-Ph)$	H	H	H	Н
5-1349	H	H	Me	2	-CO-(CH2)4-(4-Me-Ph)	H	H	H	H
5-1350	H	H	Me	2	$-CO-(CH_2)_4-(4-Et-Ph)$	H	H	H	H
5-1351	H	H	Me	2	$-CO-(CH_2)_4-(4-CF_3-Ph)$	H	H	H	H
5-1352	H	H	Me	2	$-CO-(CH_2)_4-(4-MeO-Ph)$	H	H	H	H
5-1353	H	H	Me	2	$-CO-(CH_2)_4-(4-EtO-Ph)$	H	H	H	H
5-1354	H	H	Me	2	-CO-(CH2)4-(4-MeS-Ph)	H	H	H	H
5-1355	H	H	Me	2	$-C0-(CH_2)_4-(4-cHx-Ph)$	H	H	H	H
5-1356	H	H	Me	2	$-CO-(CH_2)_4-(4-Ph-Ph)$	H	H	H	H
5-1357	H	H	Мe	2	$-CO-(CH_2)_5-cHx$	H	H	H	Ή
5-1358	H	Me	Me	2	$-C0-(CH_2)_5-cHx$	H	H	H	H
5-1359	CO₂Me	H	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
5-1360	CO₂E t	H	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
5-1361	H	H	Me	2	$-C0-(CH_2)_5-(4-F-cHx)$	H	H	H	H
5-1362	H	H	Me	2	$-C0-(CH_2)_5-(4-Me-cHx)$	H	H	H	·H
5-1363	H	H	Me	2	$-C0-(CH_2)_5-(4-Et-cHx)$	H	H	H	H
5-1364	H	H	Me	2	$-CO-(CH_2)_5-(4-CF_3-cHx)$	H	H	H	H

5-1365	ŀΗ	H	Мe	2	$-CO-(CH_2)_5-(4-MeO-cHx)$		H	H	H	H
5-1366	H	H	Me	2	$-C0-(CH_2)_5-(4-Et0-cHx)$		H	H	H	H
5-1367	H	H	Me	2	$-CO-(CH_2)_5-(4-MeS-cHx)$		H	·H	H	·H
5-1368	H	H	Me	2	$-CO-(CH_2)_5-(4-cHx-cHx)$		H	·H	H	H
5-1369	H	H	Me	2	$-C0-(CH_2)_5-(4-Ph-cHx)$		H	H	H	H
5-1370	H	H	Me	2	-CO-(CH2)5-Ph		H	H	H	H
5-1371	H	Me	Мe	2	$-CO-(CH_2)_5-Ph$		H	. Н	H	H
5-1372	CO ₂ M	e H	Me	2	$-CO-(CH_2)_5-Ph$		H	H	H	H
5-1373	CO ₂ E	t H	Me	2	$-CO-(CH_2)_5-Ph$		H	H	H	H
5-1374	H	H	Me	2	$-CO-(CH_2)_5-(4-F-Ph)$		H	H	H	H
5-1375	H	H	Me	2	$-CO-(CH_2)_5-(4-Me-Ph)$		H	H	H	H
5-1376	H .	H	Me	2	$-CO-(CH_2)_5-(4-Et-Ph)$		H	H	H	H
5-1377	H	H	Me	2	$-CO-(CH_2)_5-(4-CF_3-Ph)$		H	H	H	H
5-1378	H	H	Me	2	$-CO-(CH_2)_5-(4-MeO-Ph)$	٠.	H	H	H	H
5-1379	.H	H	Me	2	$-C0-(CH_2)_5-(4-Et0-Ph)$		H	H	·H	H
5-1380	H	·H	Me	2	-CO-(CH2)5-(4-MeS-Ph)		H	H	H	H
5-1381	H	H	Me	2	$-C0-(CH_2)_5-(4-cHx-Ph)$		H	H	H	H
5-1382	H	H	Me	2	$-C0-(CH_2)_5-(4-Ph-Ph)$	÷	H	H	H	H
5-1383	.H	H	Me	2 .	$-CO-(CH_2)_6-cHx$		H	H	H	H
5-1384	H	H	Me	2	$-CO-(CH_2)_6-Ph$		H	H	H	H
5-1385	H	H	Me	2	$-CO-(CH_2)_7-cHx$		H	H	H	H
5-1386	H	H	Me	2	$-CO-(CH_2)_7-Ph$		H	H	H	H
5-1387	H	H	Me	2	$-C0-(CH_2)_2-0-cHx$		H	H	H	H
5-1388	H	Me	Me	2	$-C0-(CH_2)_2-0-cHx$		· H	H	H	H
5-1389	CO ₂ Me	e H	Me	2	$-C0-(CH_2)_2-0-cHx$		H	H	H	H
5-1390	CO ₂ E	H	Me	2	$-C0-(CH_2)_2-0-cHx$		H	H	H	H
5-1391	H	H	Me	2	$-C0-(CH_2)_2-0-(4-F-cHx)$		H	H	H	H
5-1392	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Me-cHx)$		H	H	H	H
5-1393	H	H	Me	2	$-C0-(CH_2)_2-0-(4-Et-cHx)$		H	H	H	H

5-1394	-H - H	Me	2	$-CO-(CH_2)_2-O-(4-CF_3-cHx)$	H	H	H	·Ħ
5-1395	H H	Мe	2	$-CO-(CH_2)_2-O-(4-MeO-cHx)$	H	H	H	H
5-1396	н н	Me	2	$-C0-(CH_2)_2-0-(4-Et0-cHx)$	H	H	H	H
5-1397	н н	Ме	2	$-CO-(CH_2)_2-O-(4-MeS-cHx)$	H	H	H	H
5-1398	H H	Me	2	$-CO-(CH_2)_2-O-(4-cHx-cHx)$	Н'	H	H	H
5-1399	·H H	Me	2	$-CO-(CH_2)_2-O-(4-Ph-cHx)$	H	H	H	H
5-1400	н н	Мe	2	$-CO-(CH_2)_2-O-Ph$	H	H	H	H
5-1401	H Me	Me	2	$-CO-(CH_2)_2-O-Ph$	H	H	H	H
5-1402	CO ₂ Me H	Me	2	$-CO-(CH_2)_2-O-Ph$	H	H	H	H
5-1403	CO ₂ Et H	Me	2	$-CO-(CH_2)_2-O-Ph$	H	H	H	H
5-1404	н н	Me	2	$-CO-(CH_2)_2-O-(4-F-Ph)$	H	·H	H	H
5-1405	н н	Me	2	$-CO-(CH_2)_2-O-(4-Me-Ph)$	H	Ή	H	H
5-1406	н н	Me	2	$-CO-(CH_2)_2-O-(4-Et-Ph)$	H	H	H	H
5-1407	H H	Me	2	$-C0-(CH_2)_2-0-(4-CF_3-Ph)$	H	H	H	H
5-1408	H H	Me	2	$-CO-(CH_2)_2-O-(4-MeO-Ph)$	H	H	H	H
5-1409	н . н	Me	2	$-C0-(CH_2)_2-0-(4-Et0-Ph)$	H	H	H	H
5-1410	H H	Me	2	$-CO-(CH_2)_2-O-(4-MeS-Ph)$	H	H	H	H _.
5-1411	H H	'Me	2	$-CO-(CH_2)_2-O-(4-cHx-Ph)$	H	H	· H	. Н
5-1412	н н	Me	2	$-CO-(CH_2)_2-O-(4-Ph-Ph)$	H	H	H	H
5-1413	н н	Me	2	$-CO-(CH_2)_3-O-cPn$	H	H	H	H
5-1414	н н	Me	2	$-C0-(CH_2)_3-0-cHx$	H	H	H	Ħ
5-1415	н н	Me	2	$-C0-(CH_2)_3-0-cHx$	Me	H	Ή	H
5-1416	н н	Me	2	$-CO-(CH_2)_3-O-cHx$	H	Me	H	H
5-1417	н н	Me	2	$-CO-(CH_2)_8-O-cHx$	F	H	H	H
5-1418	н н	Me	2	$-CO-(CH_2)_3-O-cHx$	H	F	H	H
5-1419	Н Ме	Ме	2	$-CO-(CH_2)_3-O-cHx$	H	H	H	H
5-1420	CO₂Me H	Me	2	$-CO-(CH_2)_3-O-cHx$	H	H	H	H
5-1421	CO ₂ Et H	Me	2	$-CO-(CH_2)_3-O-cHx$	H	H	H	H
5-1422	H H	Me	2	$-CO-(CH_2)_3-O-(3-F-cHx)$	H	H	H	H

5-1423	H	H	Me	2	$-CO-(CH_2)_3-O-(4-F-cHx)$	H	H	H	H
5-1424	H	H	Me	2	$-C0-(CH_2)_3-0-(4-C1-cHx)$	H	H	H	H
5-1425	H	H	Me	.2	$-C0-(CH_2)_{-2}-0-(4-Br-cHx)$	H	H	H	H
5-1426	H	H	Me	.2	$-CO-(CH_2)_3-O-(3-Me-cHx)$	H	H	H	H
5-1427	H	· Н	Me	. 2	$-C0-(CH_2)_8-0-(4-Me-cHx)$	H	·H	H	H
5-1428	H	. Н	Me	2	$-C0-(CH_2)_3-0-(3-Et-cHx)$	H	H .	H	H
5-1429	H	H	Me	2	$-C0-(CH_2)_8-0-(4-Et-cHx)$	H	H	H	H
5-1430	H.	H	Me	2	$-C0-(CH_2)_3-0-(3-Pr-cHx)$	H	H	H	·H
5-1431	. H	H	Me	2	$-C0-(CH_2)_3-0-(4-Pr-cHx)$	H	H	H	H
5-1432	H	H	Me	2	$-C0-(CH_2)_8-0-(4-iPr-cHx)$	H	Ħ	H	H
5-1433	H	. Н	Me	2	$-C0-(CH_2)_3-0-(3-Bu-cHx)$	·H	H	Ħ	H
5-1434	H	H	Мe	2	$-CO-(CH_2)_3-O-(4-Bu-cHx)$	H	H	H	H
5-1435	H	H	Me	2	$-C0-(CH_2)_3-0-(3-CF_3-cHx)$	H	H.	H	H
5-1436	H	H	Me	. 2	$-C0-(CH_2)_8-0-(4-CF_3-cHx)$	H	H	H	H
5-1437	H	H	Me	.2	$-C0-(CH_2)_3-0-(3-Me0-cHx)$	H	H	·H	H
5-1438	H	H	Me	.2	$-C0-(CH_2)_8-0-(4-Me0-cHx)$	H	H	H	H
5-1439	H	H	Me	.2	$-C0-(CH_2)_8-0-(3-Et0-cHx)$	H	H	H	Н
5-1440	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Et0-cHx)$	H	H	H	H
5-1441	H	H	Me	2	$-C0-(CH_2)_8-0-(3-Pr0-cHx)$	H	H	H	H
5-1442	H	H	Me	2.	$-C0-(CH_2)_3-0-(4-Pr0-cHx)$	H	H	H	H
5-1443	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iPr0-cHx)$	H	H	H	H
5-1444	H	:H	Me	2	$-C0-(CH_2)_8-0-(4-iPr0-cHx)$	H	H	H	H
5-1445	H	H	Me	2	$-C0-(CH_2)_{.8}-0-[3-(2-Et-Pr0)cHx]$	H	H	H	H
5-1446	H	H	Me	2	$-CO-(CH_2)_8-O-[4-(2-Et-PrO)cHx]$	H	H	H	H
5-1447	Ħ	H	Me	2	$-CO-(CH_2)_{.8}-O-(3-iBuO-cHx)$	H	H	H	H
5-1448	Ħ	H	Me	2	$-C0-(CH_2)_3-0-(4-iBu0-cHx)$	H	H	H	H .
5-1449	Н	Щ	Me	2	$-CO-(CH_2)_3-O-(3-MeS-cHx)$	H	H	Н	H
5-1450	H	H	Me	2	$-CO-(CH_2)_3-O-(4-MeS-cHx)$	H	H	H	H
5-1451	H	H	Me	2	$-CO-(CH_2)_3-O-(3-EtS-cHx)$	H	H	H	H

5-1452	H	• н	Ме	. 2	$-C0-(CH_2)_3-0-(4-EtS-cHx)$	H	H	H	H
5-1453	H	H	Me	2	$-C0-(CH_2)_3-0-(3-PrS-cHx)$	H	H	H	·H
5-1.454	Ħ	H	Мe	2	$-CO-(CH_2)_3-O-(4-PrS-cHx)$	H	H	H	Ή
5-1455	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iPrS-cHx)$	H	H	H	Ħ
5-1456	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iPrS-cHx)$	H	H	H	H
5-1457	H	H	Me	2	$-C0-(CH_2)_3-0-[3-(2-Et-PrS)cHx]$	H	H	H	H
5-1458	H	H	Me	2	$-C0-(CH_2)_3-0-[4-(2-Et-PrS)cHx]$	H	H	H	H
5-1459	H	H	Me	2	$-CO-(CH_2)_3-O-(3-iBuS-cHx)$	H	H	H	H
5-1460	H	H	Me	2	$-CO-(CH_2)_3-O-(4-iBuS-cHx)$	H	H	· H	H
5-1461	H	H	Me	2	$-C\theta-(CH_2)_8-0-(3-cHx-cHx)$	H	H	H	H
5-1462	H	. Н	Me	2	$-C0-(CH_2)_3-0-(4-cHx-cHx)$	H	H	H	H
5-1463	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Ph-cHx)$	H.	. Н	H	H
5-1464	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Ph-cHx)$	H	H	H	H
5-1465	H	H	Me	2	$-C0-(CH_2)_8-0-(2,4-diMe-cHx)$	H	H	H	Н
5-1466	H	H	Me	2	$-CO-(CH_2)_3-O-(3,4-diMe-cHx)$	H	H	H	H
5-1467	H	H	Me	. 2	$-CO-(CH_2)_3-O-(3, 5-diMe-cHx)$	H	H	H	H
5-1468	H	H	Me	2	$-CO-(CH_2)_3-O-Ph$	H	H	H	H
5-1469	Н .	. Н	Me	2	$-C0-(CH_2)_3-0-Ph$	Me	Н	H	H
5-1470	H	H	Me	2	$-CO-(CH_2)_8-O-Ph$	H	Me	H	H
5-1471	H	H	Me	2	$-CO-(CH_2)_3-O-Ph$	F	H	H	H
5-1472	H	H	Me	2	$-CO-(CH_2)_3-O-Ph$	H	F	H	H
5-1473	H	Me	Me	2	$-C0-(CH_2)_8-0-Ph$	H	H	H	H
5-1474	CO ₂ Me	е Н	Me	2	$-C0-(CH_2)_3-0-Ph$	H	H .	. Н	H
5-1475	CO ₂ E	H	Me	2	$-CO-(CH_2)_3-O-Ph$	H	H	Ħ	H
5-1476	H	H	Me	2	$-CO-(CH_2)_3-O-(3-F-Ph)$	H	H	Ħ	H
5-1477	H	H	Me	2	$-CO-(CH_2)_3-O-(4-F-Ph)$	H	H	H	H
5-1478	H	H	Me	2	$-CO-(CH_2)_8-O-(4-C1-Ph)$	H	H	H	H
5-1479	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Br-Ph)$	H	H	H	H
5-1480	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Me-Ph)$	H	H	H	H

5-1481	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Me-Ph)$	H	Ħ	. H	H
5-1482	H	H	Me	. 2	$-CO-(CH_2)_3-O-(3-Et-Ph)$	H	H	H	H
5-1483	H	H	Me	2	-CO-(CH2)3-O-(4-Et-Ph)	H	H	H	H
5-1484	H	H	Me	2	$-CO-(CH_2)_8-O-(3-Pr-Ph)$	H	H	H	H
5-1485	H	H	Me	2	$-CO-(CH_2)_8-O-(4-Pr-Ph)$	H	H	H	H
5-1486	H	H	Me	2	-CO-(CH2)3-O-(3-iPr-Ph)	H	·H	H	H
5-1487	H	H	Me	2	$-CO-(CH_2)_8-O-(4-iPr-Ph)$	H	H	H	H
5-1488	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Bu-Ph)$	H	H	H	H
5-1489	H	H	Me	2	$-CO-(CH_2)_8-O-(4-Bu-Ph)$	H	H	H	H
5-1490	H	H	Me	2	$-CO-(CH_2)_8-O-(3-CF_3-Ph)$	H	H	H	H
5-1491	H	H	Me	2	$-CO-(CH_2)_8-O-(4-CF_3-Ph)$	H	H	H	H
5-1492	H	H	Me	2	$-CO-(CH_2)_8-O-(3-MeO-Ph)$	H	H	H	H
5-1493	H	H	Me	2	$-CO-(CH_2)_8-O-(4-MeO-Ph)$	H.	H	·H	H
5-1494	H	H	Me	2	$-CO-(CH_2)_8-O-(3-EtO-Ph)$	H	H	H	H
5-1495	H	H	Me	2	$-CO-(CH_2)_8-O-(4-EtO-Ph)$	H	H	H	H
5-1496	H	H	Me	2	$-CO-(CH_2)_3-O-(3-PrO-Ph)$	H	H	H	H
5-1497	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Pr0-Ph)$	H	H	H	H
5-1498	H	H	Me	2	$-CO-(CH_2)_3-O-(3-iPrO-Ph)$	H	H	H	H
5-1499	H	Н	Me	2	$-CO-(CH_2)_3-O-(4-iPrO-Ph)$	H	H	H	H
5-1500	H	H	Me	2	$-C0-(CH_2)_3-0-[3-(2-Et-Pr0)-Ph]$	H	H	H	H
5-1501	H	H	Me	2	-C0-(CH2)3-0-[4-(2-Et-Pr0)-Ph]	H	H	H	H
5-1502	H	H	Me	2	$-CO-(CH_2)_8-O-(3-iBuO-Ph)$	H	H	H	H
5-1503	H	H	Me	2	$-C0-(CH_2)_3-0-(4-iBu0-Ph)$	Н	H	H	H
5-1504	H	H	Me	2	$-CO-(CH_2)_3-O-(3-MeS-Ph)$	H	H	H	H
5-1505	H	H	Me	2	$-CO-(CH_2)_3-O-(4-MeS-Ph)$	H	H	H	H
5-1506	H	H	Me	2	$-CO-(CH_2)_3-O-(3-EtS-Ph)$	H	H	H	H
5-1507	H	H	Me	2	$-CO-(CH_2)_3-O-(4-EtS-Ph)$	H	H	H	H
5-1508	H	H	Me	2	$-CO-(CH_2)_3-O-(3-PrS-Ph)$	H	H	H	H
5-1509	H	H	Me	2	$-CO-(CH_2)_8-O-(4-PrS-Ph)$	H	H	H	H

5-1510	Η .	H	Мe	2	$-CO-(CH_2)_3-O-(3-iPrS-Ph)$	H	H	H	H
5-1511	H	H	Me	2	$-C0-(CH_2)_8-0-(4-iPrS-Ph)$	H	Ή	H	H
5-1512	H	H	Me	2	$-C0-(CH_2)_3-0-[3-(2-Et-PrS)-Ph]$	H	Ħ	H	H
5-1513	H	H	Me	2	$-C0-(CH_2)_3-0-[4-(2-Et-PrS)-Ph]$	H	H	H	H
5-1514	H	H	Мe	2	-C0-(CH ₂) ₃ -0-(3-iBuS-Ph)	H	H	H	H
5-1515	H	H	Me	2	-C0-(CH ₂) ₃ -0-(4-iBuS-Ph)	H	H	Ή	H
5-1516	H	H	Мe	2	$-C0-(CH_2)_{3}-0-(3-cHx-Ph)$	H	H	H	H
5-1517	H	H	Ме	2	$-C0-(CH_2)_8-0-(4-cHx-Ph)$	H	H	H	H
5-1518	H	H	Мe	2	$-C0-(CH_2)_3-0-(3-Ph-Ph)$	H	H	H	H
5-1519	H	H	Me	2	$-C0-(CH_2)_8-0-(4-Ph-Ph)$	H	H	Ή	H
5-1520	H	H	Мe	2	$-C0-(CH_2)_3-0-(2, 4-diMe-Ph)$	H	Ħ	H	H
5-1521	H .	H	Me	2	-C0-(CH2)3-0-(3, 4-diMe-Ph)	H	H	H	H
5-1522	H	H	Me	2	-C0-(CH2)8-0-(3, 5-diMe-Ph)	H	H	H	H
5-1523	H	H	Me	2	$-C0-(CH2)_4-0-cHx$	H	H	H	Ή
5-1524	H	H	Мe	2	-CO-(CH ₂) ₄ -O-Ph	H	H	H	H
5-1525	H	H	Me	2	$-C0-(CH_2)_5-0-cHx$	H	H	H	H
5-1526	H	² H	Me	2	$-C0-(CH_2)_5-0-Ph$	H	H	H	Ή
5-1527	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-cHx$	H	H	H	H
5-1528	H	Me	Me	2	$-CO-(CH_2)_2-OCH_2-cHx$	H	H	Ή	H
5-1529	CO ₂ Me	H	Me	2	$-C0-(CH_2)_2-0CH_2-cHx$	H	Н -	H	H
5-1530	CO ₂ E t	H	Me	2	$-CO-(CH_2)_2-OCH_2-cHx$	H	H	H	H
5-1531	H .	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-F-cHx)$	H	H	H	H
5-1532	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-Me-cHx)$	H	H	H	H
5-1533	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-Et-cHx)$	H	H	H	H
5-1534	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-CF_3-cHx)$	H	H	H	H
5-1535	H	H	Me	2 .	$-C0-(CH_2)_2-0CH_2-(4-Me0-cHx)$	H	H	H	H
5-1536	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-Et0-cHx)$	H	H	H	H
5-1537	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-MeS-cHx)$	H	H	H	H
5-1538	H.	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-cHx-cHx)$	H	H	H	H

5-1539	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Ph-cHx)$	H	H	H	H
5-1540	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-Ph$	H	H	H	H
5-1541	H	Me	Ме	2	$-CO-(CH_2)_2-OCH_2-Ph$	H	H	. H	H
5-1542	CO ₂ Me	H	Me	2	-CO-(CH2)2-OCH2-Ph	H	H	H	H
5-1543	CO ₂ E i	H	Me	2	$-CO-(CH_2)_2-OCH_2-Ph$	H	H	H	H
5-1544	H	H	Мe	2	$-CO-(CH_2)_2-OCH_2-(4-F-Ph)$	H	H	H	H
5-1545	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Me-Ph)$	H	H	H	H
.5-1546	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Et-Ph)$	Н	H	H	H
5-1547	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-CF_3-Ph)$	H	H	H	H
5-1548	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-Me0-Ph)$	H	H	Ħ	H
5-1549	H	H	Me	2	$-C0-(CH_2)_2-0CH_2-(4-Et0-Ph)$	Н	. H	H	H
5-1550	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-MeS-Ph)$	H	H	H	H
5-1551	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-cHx-Ph)$	H	H	H	H
5-1552	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Ph-Ph)$	H	H	H	H
5-1553	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-CH_2-cPn$	H	H	H	H
5-1554	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-cHx$	H	H	H	H
5-1555	·H	H	Me	2	$-C0-(CH_2)_3-0CH_2-cHx$	Me	Ħ	H	H
5-1556	H .	H	Мe	2	$-C0-(CH_2)_3-0CH_2-cHx$	H	Me	H	H
5-1557	H	H	Мę	2	$-C0-(CH_2)_3-0CH_2-cHx$	F	H	H	·H
5-1558	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-cHx$	H	F	H	H
5-1559	H	Me	Me	2	$-CO-(CH_2)_3-OCH_2-cHx$	H	·H	H	H
5-1560	COMe	H	Me	2	$-CO-(CH_2)_3-OCH_2-CHx$	H	H	H	H
5-1561	CO ₂ E t	\mathbf{H}	Me	2	$-C0-(CH_2)_3-0CH_2-cHx$	H	H	H	H
5-1562	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-F-cHx)$	H	H	H	H
5-1563	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-F-cHx)$	H	H	H	H
5-1564	H	Н	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Cl-cHx)$	H	H	H	H
5-1565	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Br-cHx)$	H	H	H	H
5-1566	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Me-cHx)$	H	H	Н	H
5-1567	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Me-cH_X)$	H	H	H	H

•									
5-1568	H	. Н	Me	2	-C0-(CH2)3-0CH2-(3-Et-cHx)	H	H	H	H
5-1569	H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-(4-Et-cHx)$	H	H	H	H
5-1570	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Pr-cHx)$	H	H	H	H
5-1571	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Pr-cHx)$	H	H	H	H
5-1572	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iPr-cHx)$	H	H	H	H
5-1573	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Bu-cHx)$	H	H	H	H
5-1574	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Bu-cHx)$	H	H	H	H
5-1575	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-CF_3-cHx)$	H .	H	H	Н
5-1576	H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-(4-CF_3-cHx)$	H	H	H	H
5-1577	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Me0-cHx)$	H	H	H	H
5-1578	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Me0-cHx)$	H	H	H	H
5-1579	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-Et0-cHx)$	H	H	H	H
5-1580	H	H	Me	2	$-C0-(CH_2)_8-0CH_2-(4-Et0-cHx)$	H	H	H .	H
5-1581	H	. H .	Me	2	$-CO-(CH_2)_3-OCH_2-(3-PrO-cHx)$	H	H	H	Ħ
5-1582	H	H	Мe	2	$-C0-(CH_2)_3-0CH_2-(4-Pr0-cHx)$	H	H	Ĥ	H
5-1583	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPrO-cHx)$	H	H	H	H
5-1584	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-iPr0-cHx)$	H	H	H	H
5-1585	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Et-PrO)cH_2]$	H [s	H	H	H
5-1586	H	·H	Me	2	$-CO-(CH_2)_3-OCH_2-[4-(2-Et-PrO)cH_2]$	H [H	H	H
5-1587	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iBuO-cHx)$	H	H	H	H
5-1588	H	H	Me	'2	$-CO-(CH_2)_3-OCH_2-(4-iBuO-cHx)$	H	H	H	H
5-1589	H	H	Me	2	$-C0-(CH_2)_8-OCH_2-(3-MeS-cHx)$	H	H	H	H
5-1590	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-MeS-cHx)$	H	H	H	H
5-1591	H	Ħ	Me	2	$-C0-(CH_2)_3-OCH_2-(3-EtS-cHx)$	H	H	H	H
5-1592	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-EtS-cHx)$	H	H	H	. Н
5-1593	H	H.	Me	2	$-CO-(CH_2)_3-OCH_2-(3-PrS-cHx)$	H	H	H	H
5-1594	H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-(4-PrS-cHx)$	H	H	H	H
5-1595	H	·H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPrS-cHx)$	H	H	H	H
5-1596	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iPrS-cHx)$	H	H	H	Н

5-1597	H	H	Ме	2	-CO-(CH2)3-OCH2-[3-(2-Et-PrS)cH2	:] H	H		
5-1598	H	H	Me	2	-CO-(CH2)3-OCH2-[4-(2-Et-PrS)cH2	:] H	H		
5-1599	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iBuS-cHx)$	H	H	H	H
5-1600	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-iBuS-cHx)$	H	H	H	H
5-1601	H.	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-cHx-cHx)$	H	H	· H	H
5-1602	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-cHx-cHx)$	H	H	H	H
5-1603	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Ph-cHx)$	H	H	H	H
5-1604	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Ph-cHx)$	H	H	H	H
5-1605	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(2,4-diMe-cHx)$	H .	H	H	H
5-1606	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3, 4-diMe-cHx)$	H	H	H	H
5-1607	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3, 5-diMe-cHx)$	Н	H	H	H
5-1608	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-Ph$	H	H	Ħ	H
5-1609	H	H -	Ме	2	$-CO-(CH_2)_3-OCH_2-Ph$	Me	H	H	H
5-1610	H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-Ph$	H	Me	·H	H
5-1611	H	H	Me	2	-C0-(CH2)3-0CH2-Ph	F	H	H	H
5-1612	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-Ph$	H	F	H	H
5-1613	H	Me	Ме	2	$-CO-(CH_2)_3-OCH_2-Ph$	H.	H	H	H
5-1614	CO₂Me	H	Me	2	$-CO-(CH_2)_3-OCH_2-Ph$	H	H _.	H	H
5-1615	CO₂Me	H	Me	2	-CO-(CH2)3-OCH2-Ph	H	H	H	H
5-1616	H	· H ·	Me	2	$-C0-(CH_2)_3-0CH_2-(3-F-Ph)$	H	H	H	H
5-1617	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-F-Ph)$	H	H	H	H
5-1618	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-C1-Ph)$	Н	H	H	H
5-1619	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-Br-Ph)$	H	H	H.	H
5-1620	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Me-Ph)$	H	H	H	H
5-1621	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Me-Ph)$	H	H	H	H
5-1622	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-Et-Ph)$	H	H	H	H
5-1623	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Et-Ph)$	H	H	H	H
5-1624	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-Pr-Ph)$	H	H	H	H
5-1625	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(4-Pr-Ph)$	H	H	H	H

5-1626	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPr-Ph)$	H	H	H	H
5-1627	H	H	Ме	2	$-C0-(CH_2)_{\dot{8}}-0CH_2-(4-iPr-Ph)$	H	H	·H	H
5-1628	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Bu-Ph)$	H	H	H	H
5-1629	H	H	Me	2	$-C0-(CH_2)_8-0CH_2-(4-Bu-Ph)$	H	H	H	Ĥ
5-1630	H	H	Мe	·2	$-C0-(CH_2)_3-0CH_2-(3-CF_3-Ph)$	H	H	H	H
5-1631	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-CF_3-Ph)$	H	H	H	H
5-1632	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Me0-Ph)$	H	H	H	H
5-1633	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Me0-Ph)$	H	H	H	H
5-1634	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Et0-Ph)$	H	H	H	H
5-1635	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Et0-Ph)$	H	H	H	H
5-1636	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-Pr0-Ph)$	H	H	H	H
5-1637	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-Pr0-Ph)$	H	H	H	Ή
5-1638	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-iPr0-Ph)$	H	H	H.	Ή
5-1639	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-iPr0-Ph)$	H	H	H	H
5-1640	H	H	Me	2	$-C0-(CH_2)_8-OCH_2-[3-(2-Et-Pr0)Ph]$	H	H	H	H
5-1641	H	. Н	Me	2	$-C0-(CH_2)_3-OCH_2-[4-(2-Et-Pr0)Ph]$	H	H	H	H
5-1642	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-iBu0-Ph)$	H	H	H	H
5-1643	H	H	Me	2	$-C0-(CH_2)_8-0CH_2-(4-iBu0-Ph)$	H	H	H	H
5-1644	H	H	Me	2	$-C0-(CH_2)_{3}-0CH_2-(3-MeS-Ph)$	H.	H	H	Ή
5-1645	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-MeS-Ph)$	H	H	H	H
5-1646	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-EtS-Ph)$	H	H	H	H
5-1647	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-EtS-Ph)$	H	H	H	H
5-1648	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(3-PrS-Ph)$	H	H	H	H
5-1649	H	H	Me	2	$-C0-(CH_2)_3-0CH_2-(4-PrS-Ph)$	H	H	H	Ή
5-1650	H	H	Me	2	$-C0-(CH_2)_{3}-OCH_2-(3-iPrS-Ph)$	H	H	H	H
5-1651	H	Н	Me	2	$-C0-(CH_2)_3-0CH_2-(4-iPrS-Ph)$	H	H	H	, H
5-1652	H	Н	Me	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Et-PrS)Ph]$	H	H	H	H
5-1653	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-[4-(2-Et-PrS)Ph]$	H	H	H	H
5-1654	H	H	Me	2	$-C0-(CH_2)_3-OCH_2-(3-iBuS-Ph)$	H	H	H	H

5-1655	H	H	Мe	2	$-C0-(CH_2)_3-0CH_2-(4-iBuS-Ph)$	H	H	H	H
5-1656	H	H	Ме	2	$-CO-(CH_2)_3-OCH_2-(3-cHx-Ph)$	H	H	H	H
5-1657	H	H	Ме	2	$-C0-(CH_2)_3-0CH_2-(4-cHx-Ph)$. H	H	H	H
5-1658	H	H	Ме	2	$-C0-(CH_2)_3-0CH_2-(3-Ph-Ph)$	H	H	H	H
5-1659	H ·	H	Мe	2	$-C0-(CH_2)_3-OCH_2-(4-Ph-Ph)$	H	H	H	H
5-1660	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(2,4-diMe-Ph)$	H .	H	H	·H
5-1661	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3,4-diMe-Ph)$	H	H	H	H
5-1662	H	H	Me	2	-CO-(CH2)3-OCH2-(3, 5-diMe-Ph)	H	H	H	H
5-1663	H	H	Me	2	$-CO-(CH_2)_4-OCH_2-cHx$	H .	H.	H	H
5-1664	H	H	Me	2	$-CO-(CH_2)_4-OCH_2-Ph ,$	H	H	H	. H
5-1665	H	H	Me	2	$-CO-(CH_2)_5-OCH_2-cHx$	H.	H	H	H
5-1666	H	Ħ	Me	2	$-CO-(CH_2)_5-OCH_2-Ph$	H	Ħ	H	H
5-1667	H	H	Me	2	-СН (ОН) -СН ₂ -сНх	H.	H	H	H
5-1668	H	H	Me	2	-CH (OH) -CH ₂ -Ph	H	H	H	H
5-1669	H	H	:Ме	2	$-CH(OH)-(CH_2)_2-cHx$	H	H	H	H
5-167.0	H	H	Me	2	$-CH(OH) - (CH_2)_2 - Ph$	H	H	H	-H
5-1671	H	H	Me	2	$-CH(OH) - (CH_2)_8 - cHx$	H	H	H	H
5-1672	H	H	ме	2	$-CH(OH) - (CH_2)_3 - Ph$	H	H	H	H
5-1673	H	H	Me	2	$-CH(OH) - (CH_2)_4 - cHx$	H	H	H	·H
5-1674	H	Me	Me	2	$-CH(OH) - (CH_2)_4 - cHx$	H	H	H	H
5-1675	CO₂Me	H	Me	2	-CH(OH)-(CH2)4-cHx	H	H	H	H .
5-1676	CO ₂ E t	H	Me	2	$-CH(OH) - (CH_2)_4 - cHx$	H	H	. H	H
5-1677	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-F-cHx)$	H	H	H	·H
5-1678	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Me-cHx)$	H	H	H	H
5-1679	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-Et-cHx)$	H	H	H	H
5-1680	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4 - CF_3 - cHx)$	H	H	H	H
5-1681	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-MeO-cHx)$	H	H	H	H
5-1682	H	H	Me	2	-CH(OH) - (CH2)4 - (4-Et0-cHx)	H	H	H	H
5-1683	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-MeS-cHx)$	H	H	H	H

5-1684	H .	H	Me	2	$-CH(OH) - (CH_2)_4 - (4 - cHx - cHx)$	H	H	H	H
5-1685	H	H	Мe	2	-CH(OH) - (CH2)4 - (4-Ph-cHx)	H	H	H	· H
5-1686	H	H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	H	H	H	H
5-1687	H	Me	Me	2	$-CH(OH) - (CH_2)_4 - Ph$	H	Н	H	H
5-1688	CO ₂ Me	H	Мe	2	$-CH(OH)-(CH_2)_4-Ph$	H	H	H	H
5-1689	CO ₂ E t	H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	H	H	H	H
5-1690	H ·	H	Me	2	-CH(OH) - (CH2)4 - (4-F-Ph)	H	H	H	H
5-1691	H	H	Me	· 2	-CH(OH) - (CH2)4 - (4-Me-Ph)	H	H	Ή.	H
5-1692	H	H	Me	2.	-CH(OH) - (CH2)4 - (4-Et-Ph)	H	H	H	Ή
5-1693	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (4-CF_3-Ph)$	H	H	H	H
5-1694	H	H	Me	2	-CH(OH) - (CH2)4 - (4-MeO-Ph)	H	H	H	H
5-1695	H	H	Me	2	-CH(OH) - (CH2)4 - (4-EtO-Ph)	· H	H	H	Ή
5-1696	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-MeS-Ph)$	H	H	H	H
5-1697	H	H	Me	2	-CH(OH) - (CH2)4 - (4-cHx-Ph)	H	H	H	H
5-1698	H	H	Me	2	-CH(OH) - (CH2)4 - (4-Ph-Ph)	H	H	H	Ή
5-1699	H	H	Me	2	$-CH(OH)-(CH_2)_5-cHx$	H	H	H	H
5-1700	·H	Me	Me	2	$-CH(OH) - (CH_2)_5 - cHx$	H	H	H	H
5-1701	CO ₂ Me	H	Me	2	$-CH(OH) - (CH_2)_5 - cHx$	H	Н	H	H
5-1702	CO ₂ E t	H	Me	2	$-CH(OH) - (CH_2)_5 - cHx$	H	H	H	H
5-1703	H	H	Me	2	-CH(OH) - (CH2)5 - (4-F-cHx)	H	H	H	H
5-1704	H	H	Me	2 ·	-CH(OH) - (CH2)5 - (4-Me-cHx)	H	H	H	H
5-1705	H .	H	Me	2	-CH(OH) - (CH2)5 - (4-Et-cHx)	. Н	H	H	H
5-1706	H	H	Me	2	-CH(OH) - (CH2)5 - (4-CF3-cHx)	H	H	H	H
5-1707	H	H	Me	2	$-CH(OH)-(CH_2)_5-(4-MeO-cHx)$	· H	H	H	H
5-1708	H	H	Me	2	-CH(OH) - (CH2)5 - (4-EtO-cHx)	H	H.	H	H
5-1709	H	H	Me	2	$-CH(OH) - (CH_2)_5 - (4-MeS-cHx)$	H	H	H	H
5-1710	H .	H	Me	2	$-CH(OH) - (CH_2)_5 - (4 - cHx - cHx)$	H	H	H	H
5-1711	H	H	Me	2	-CH(OH) - (CH2)5 - (4-Ph-cHx)	H	H	H	H
5-1712	H	H	Ме	2	$-CH(OH)-(CH_2)_5-Ph$	H	H	H	H

5-1713	H M	le Me	2	$-CH(OH) - (CH_2)_5 - Ph$	H	H	H	H
5-1714	CO ₂ Me	H Me	2	$-CH(OH)-(CH_2)_5-Ph$	H	H	H	H
5-1715	CO ₂ Et	H Me	2	$-CH_{(OH)}-(CH_2)_5-Ph$	H	H	H	H
5-1716	H	H Me	2	$-CH(OH) - (CH_2)_5 - (4-F-Ph)$	H	H	H	H
5-1717	H	H Me	2	$-CH(OH) - (CH_2)_5 - (4-Me-Ph)$	H	H	H	H
5-1718	Н.	H Me	2	-CH(OH) - (CH2)5 - (4-Et-Ph)	H	H	H	H
-5-1719	H	H Me	2	-CH(OH) - (CH2)5 - (4-CF8-Ph)	H	H	·H	H
5-1720	H	H Me	2	$-CH(OH) - (CH_2)_5 - (4-MeO-Ph)$	H	H	H	H
5-1721	.H	H Me	. 2	-CH(OH) - (CH2)6 - (4-EtO-Ph)	Н	H	H	·H
5-1722	H	H Me	2	$-CH(OH) - (CH_2)_5 - (4-MeS-Ph)$	H	H	H	H
5-1723	H	Н Ме	2	-CH(OH) - (CH2)5 - (4-cHx-Ph)	H	H	H	H
5-1724	H	Н Ме	2	$-CH(OH) - (CH_2)_5 - (4-Ph-Ph)$	H	H	H	H
5-1725.	H	Н Ме	2	$-CH(OH) - (CH_2)_6 - cHx$	H	H	H	H
5-1726	H	H Me	2	$-CH(OH) - (CH_2)_6 - Ph$	H	H	H	H
5-1727	H	H Me	2	$-CH(OH) - (CH_2)_7 - cHx$	H	H	H	H
5-1728	H	H Me	2	-CH (OH) - (CH ₂) 7-Ph	H	H	H	H
5-1729	H	H Me	2	-4-(cHx-CH ₂ 0)Ph	H	H	Ή.	H
5-1730	H M	le Me	2	-4-(cHx-CH ₂ 0)Ph	H	H	H	H
5-1731	CO ₂ Me	H Me	2	$-4-(cHx-CH_2O)$ Ph	H	H	H	H
5-1732	CO ₂ Et	H Me	2	-4-(cHx-CH20) Ph	H	H	H	H
5-1733	H	H Me	2	$-4-(cHx-CH_20)-2-F-Ph$	H	H	H	Ή
5-1734	H	H Me	2	$-4-(cHx-CH_20)-3-F-Ph$	H	H	H	H
5-1735	H ·	H Me	2	$-4-(cHx-CH_2O)-2$, $3-diF-Ph$	H	H	H	H
5-1736	H	H Me	2	$-4-(cHx-CH_2O)-2-Cl-Ph$	H	H	H	H
5-1737	H	Н Ме	2	$-4-(cHx-CH_2O)-3-C1-Ph$	H	H	. H	H
5-1738	H	Н Ме	2	$-4-(cHx-CH_20)-2$, $3-diCl-Ph$	H	H	H	H
5-1739	H	Н Ме	2	$-4-(cHx-CH_2O)-2-Me-Ph$	H	H	H	H
5-1740	H	H Me	2	-4-(cHx-CH20)-3-Me-Ph	H	H	H	H
5-1741	H	H Me	2	-4-(cHx-CH20)-2,3-diMe-Ph	H	H	H	H.

5-1742	H	H	Me	2	$-4-[cHx-(CH_2)_20]Ph$		H	H	H	H
5-1743	·H	H	Me	2	-4-[cHx-(CH2)30]Ph		H	H	. Н	H
5-1744	H	H	Me	2	-(4-Bz0-Ph)		H	H	H	H
5-1745	H	Ме	Me	2	-(4-Bz0-Ph)		H	H	H	H
5-1746	CO ₂ M	еН	Me	2.	-(4-BzO-Ph)		H	H	H	H
5-1747	CO ₂ E	t H	Me	2	-(4-Bz0-Ph)		H	H	H	H
5-1748	H	H	Me	2	-(4-Bz0-2-F-Ph)	•	H	H	H	·H
5-1749	Ή	H	Me	2	- (4-Bz0-3-F-Ph)		H	H	H	H
5-1750	H	H	Me	2	-(4-Bz0-2, 3-diF-Ph)		H	H	H	H
5-1751	H	H	Me	2	- (4-Bz0-2-C1-Ph)		. Н	H	·H	H
5-1752	H	H	Me	2	-(4-Bz0-3-C1-Ph)	•	H	H	H	H
5-1753	Ή	H	Me	2	-(4-Bz0-2, 3-diCl-Ph)		· H	• Н	H	H
5-1754	H	H	Me	2	-(4-Bz0-2-Me-Ph)		H	H	H	H
5-1755	Ħ	H	Me	2	-(4-Bz0-3-Me-Ph)		H	H	H	H
5-1756	H	H	Me	2	-(4-Bz0-2, 3-diMe-Ph)		H	H	H	H
5-1757	H	H	Me	2	$-4-[Ph-(CH_2)_20]-Ph$		H	H	$\tilde{\imath}H$	H
5-1758	H	H	Me	2	$-4-[Ph-(CH_2)_30]-Ph$		H	H	H	H
5-1759	H	H	Et	2	-(CH2)3-cHx		H	·H	: H	: H
5-1760	H	H	Εt	2	$-(CH_2)_3-Ph$		H	H	·H	H
5-1761	H	H	Εt	2	$-(CH_2)_4-cHx$		H	H	·H	H
5-1762	H -	H	Et	2	$-(CH_2)_4-Ph$		H	H	H	: H
5-1763	H	H	Εt	2	$-(CH_2)_5-cPn$		H	H	Ή	H
5-1764	H	H	Εt	2	$-(CH_2)_5-cHx$		H	H	Ή	H
5-1765	H	H	Εt	2	$-(CH_2)_5-cHx$		Me	H	H	·H
5-1766	H	H	Εt	2	$-(CH_2)_5-cHx$		H	Ме	H	H
5-1767	H	H	Εt	2	$-(CH_2)_5-cHx$		F.	H	H	H
5-1768	H	H	Εt	2	-(CH2)5-cHx		Ħ	F	H	H
5-1769	H	Me	Εt	2	$-(CH_2)_5-cHx$		H	H	H	H
5-1770	CO ₂ M	еН	Εt	2	$-(CH_2)_5-cHx$,	H	H	H	H

5-1771	CO ₂ E t	H	Εt	2	-(CH2)5-cHx	H	H	H	H
5-1772	H	H	Εt	2	$-(CH_2)_5-(4-F-cHx)$	H	H	H	H
5-1773	H	H	Εt	2	$-(CH_2)_5-(4-C1-cHx)$	H	H	H	H
5-1774	H	H	Et	2	$-(CH_2)_5-(4-Br-cHx)$	H	Н	H	H
5-1775	H	H	Et	2	-(CH2)5-(4-Me-cHx)	H	H	·H	\mathbf{H}^{\cdot}
5-1776	H	H	Εt	2	-(CH2)5-(4-Et-cHx)	H	H	Н	H
5-1777	H	H	Εt	2	-(CH2)5-(4-Pr-cHx)	H	H	Н	H
5-1778	H	H	Et	2	-(CH2)5-(4-iPr-cHx)	H	H	H	H
5-1779	H	H	Et	2	-(CH2)5-(4-CF8-cHx)	H	H	H	H
5-1780	H	H	Et	2	$-(CH_2)_5-(4-Me0-cHx)$	Н.	H	H	H
5-1781	H	H	Εt	2	-(CH2)5-(4-Et0-cHx)	· H	H	H·	H
5-1782	H .	H	Et	2	$-(CH_2)_5-(4-Pr0-cHx)$	H,	H	H	H
5-1783	H	H	Et	2	-(CH2)5-(4-iPr0-cHx)	H	H	H	Ή
5-1784	H	H	Et	2	$-(CH_2)_5$ - (3-MeS-cHx)	H	H	:- H	H
5-1785	H	H	Et	2	-(CH2)5-(4-MeS-cHx)	H	H.	H	H
5-1786	H :	H	Et	2	$-(CH_2)_5-(2, 4-diMe-cHx)$	H	H	H	μΗ
5-1787	H	H	Et	2	$-(CH_2)_5-(3, 4-diMe-cHx)$	H	H	H	H
5-1788	H	H	Et	2	$-(CH_2)_5-(3,5-diMe-cHx)$	H	H	H	H
5-1789	.H .	H	Εt	2 -	$-(CH_2)_5-Ph$	H	H	H	H
5-1790	: H	H	Et	2	$-(CH_2)_5-Ph$	Me	H	H	H
5-1791	H	H	Et	2	$-(CH_2)_5-Ph$	H	Me	H	H
5-1792	H	H	Et	2	-(CH2)5-Ph	F	H	H	H
5-1793	H	H	Et	2	$-(CH_2)_5-Ph$	H	F	H	H
5-1794	H	Me	Et	2	$-(CH_2)_5-Ph$	H	H	H	H
5-1795	CO₂Me	H	Et	2	$-(CH_2)_5-Ph$	Н	H	H	H
5-1796	CO ₂ E t	H	Et	2	$-(CH_2)_5-Ph$	H	H	H	H
5-1797	H	H	Et	2	$-(CH_2)_5-(4-F-Ph)$	H	H	H	H
5-1798	H	H	Et	2	$-(CH_2)_5-(4-Cl-Ph)$	H	H	H	H
5-1799	H .	H	Et	2	-(CH2)5-(4-Br-Ph)	H	H	H	H

5-1800	H	H	Et	2	$-(CH_2)_5-(4-Me-Ph)$	H	H	H	H
5-1801	H	H	Et	2	$-(CH_2)_5-(4-Et-Ph)$	H	H	H	H
5-1802	H	H	Et	2	-(CH2)5-(4-Pr-Ph)	. Н	H	H	H
5-1803	H	H	Et	. 2	-(CH2)5-(4-iPr-Ph)	H	H	Ή	H
5-1804	·H	Ħ	Et	2	-(CH2)5-(4-Bu-Ph)	H.	H	H	H
5-1805	Ή	H	Et	2	$-(CH_2)_{5}-(4-CF_3-Ph)$	H	H	·H	H
5-1806	H	H	Et	2	-(CH2)5-(4-MeO-Ph)	H	H	Ή	H
5-1807	H	H	Et	2	-(CH2)5-(4-Et0-Ph)	H	H	H	H
5-1808	H	H	Et	2	$-(CH_2)_5-(4-Pr0-Ph)$	H.	H	H	H
5-1809	H	H	Et	2	-(CH2)5-(4-iPr0-Ph)	H	H	H	H
5-1810	H	H	Et	2	-(CH2)5-(3-MeS-Ph)	. Н	H	H	H
5-1811	H	H	Et	2	-(CH2)5-(4-MeS-Ph)	H	H	Н	H
5-1812	H	H	Et	2	$-(CH_2)_5-(2, 4-diMe-Ph)$	- Н	H	H	H
5-1813	H	H	·Et	2	$-(CH_2)_5-(3,4-diMe-Ph)$. Н	H	H	H
5-1814	H	H	Et	2	-(CH2)5-(3, 5-diMe-Ph)	H	H	H	H
5-1815	H	H	Et	2	$-(CH_2)_6-cPn$	Н	H	H	H
5-1816	·H	H	Et	2.	$-(CH_2)_6-cHx$	H	H	H	H
5-1817	H	H	Et	2	$-(CH_2)_6-cHx$	Me	H	H	H
5-1818	H	H	Et	2	$-(CH_2)_6-cHx$. Н	Me	H	H
5-1819	H	H	Et	2	$-(CH_2)_5-cHx$	F	H	H	H
5-1820	H	H	Et	2	$-(CH_2)_6-cHx$	H	F	H	H
5-1821	H	Me	Et	2	$-(CH_2)_6-cHx$	H	H	H	H
5-1822	CO ₂ M	e H	Et	2	$-(CH_2)_6-cHx$	H	H	H	H
5-1823	CO ₂ E	t H	Et	2	$-(CH_2)_6-cHx$	H	H	H	H
5-1824	H	H	Et	2	-(CH2)6-(4-F-cHx)	Н	H	H	H
5-1825	H	H	Et	2	$-(CH_2)_{6}-(4-C1-cHx)$	H	H	H	H
5-1826	H	H	Et	2	-(CH2)6-(4-Br-cHx)	H	H	H	H
5-1827	H	H	Et	2	-(CH2)6-(4-Me-cHx)	. Н	H	H	H
5-1828	H	H	Et	2	$-(CH_2)_6 - (4-Et-cHx)$	H	H	·H	H

5-1829	H	H	Εt	2	$-(CH_2)_6-(4-Pr-cHx)$		H	·H	H	H
5-1830	H	H	Εt	2	-(CH2)6-(4-iPr-cHx)		H	H	H	H
5-1831	H	H	Et	2	$-(CH_2)_6 - (4-Bu-cHx)$	٠	H	H	H	H
5-1832	H	H	Et	2	-(CH2)6-(4-CF3-cHx)		H	H	.H	H
5-1833	H	H	Et	2	$-(CH_2)_6 - (4-Me0-cHx)$		H	H	H	H
5-1834	H	H	Et	2	$-(CH_2)_6 - (4-Et0-cHx)$		H	H	H	H
5-1835	H	H	Et	2	$-(CH_2)_6 - (4-Pr0-cHx)$		H	H	H	H
5-1836	H	H	Et	2	$-(CH_2)_6 - (4 - i Pr 0 - cHx)$		H	Н	H	H
5-1837	H	H .	Et	2	-(CH2)5-(3-MeS-cHx)	•	H	H	$\cdot \mathbf{H}$	H
5-1838	H	H	Et	2	-(CH2)6-(4-MeS-cHx)		Ħ	H	H	H
5-1839	H	H	Et	2	$-(CH_2)_6-(2, 4-diMe-cHx)$		H	H.	H	H
5-1840	H	H	Et	2	$-(CH_2)_6-(3,4-diMe-cHx)$	•	H	·H	H	H
5-1841	H	H	Εt	2	$-(CH_2)_6-(3, 5-diMe-cHx)$		H	H	H	· H
5-1842	H	H	Et	2	-(CH ₂) ₆ -Ph		H	H	H	H
5-1843	·H	H	Et	2	$-(CH_2)_6-Ph$		Me	H	H.	H
5-1844	H .	H	Et	2	$-(CH_2)_6-Ph$		H	Me	H	H
5-1845	Ħ	H	Εt	· 2	$-(CH_2)_6-Ph$		F	H	H	H
5-1846	H .	H	Εt	2	$-(CH_2)_6-Ph$		H	F.	H	H
5-1847	H	Me	Et	2	$-(CH_2)_6-Ph$		H	H	H	H
5-1848	CO ₂ Me	H	Et	2	$-(CH_2)_6-Ph$		H	H	:H	H
5-1849	CO ₂ Et	H	Et	2	-(CH2)6-Ph		H	H	H	H
5-1850	H	H	Et	2	$-(CH_2)_6-(4-F-Ph)$		H	H	H	·H
5-1851	H	·H	Et	2	-(CH2)6-(4-Cl-Ph)		H	H	H	H
5-1852	H	H	Et	2	-(CH2)6-(4-Br-Ph)		H	H	H	H
5-1853	H · ·	H	Et	. 2	-(CH2)6-(4-Me-Ph)		H	H	H	H
5-1854	H	H	Εt	2	$-(CH_2)_6-(4-Et-Ph)$		H	H	H	H
5-1855	H	H	Et	2	$-(CH_2)_6 - (4-Pr-Ph)$		H	H	H	H
5-1856	H	H	Et	2	$-(CH_2)_6-(4-iPr-Ph)$	٠	H	H	H	H
5-1857	H	H	Et	2	-(CH2)6-(4-Bu-Ph)		H	H	H	H

5-1858	H F	I Et	2	$-(CH_2)_6 - (4 - CF_3 - Ph)$		H	H	H	H
5-1859	H F	E t	2	-(CH2)6-(4-MeO-Ph)		H	H	H	H
5-1860	H · F	E t	2	-(CH2)6-(4-Et0-Ph)		H	H	H	H
5-1861	H F	E t	2	$-(CH_2)_6-(4-Pr0-Ph)$		H	·H	· H	H
5-1862	.H H	E t	2	-(CH2)6-(4-iPrO-Ph)		H	H	H	H
5-1863.	·H . E	E t	2	-(CH2)6-(3-MeS-Ph)		H	H	.Н.	H
5-1864	H E	E t	2	-(CH2)6-(4-MeS-Ph)		H	H	H	·H
5-1865	H E	Et.	2	-(CH2)6-(2, 4-diMe-Ph)		H	H	H	H
5-1866	H H	Et	2	$-(CH_2)_6-(3, 4-diMe-Ph)$		H	H.	H	H
5-1867	H H	E t	2	$-(CH_2)_6-(3, 5-diMe-Ph)$		H	H	H	H
5-1868	н н	E t	2	-(CH2)7-cHx		H	H	H	· H
5-1869	H.	Et	2	$-(CH_2)_7-Ph$	•	H	H	H	·H
5-1870	·H H	E t	2	-CH=CH-cHx		H	H	H	H
5-1871	H H	.Et	2	-CH=CH-Ph		H	H	H	H
5-1872	·H B	Et	2	$-CH=CH-(CH_2)_8-cHx$		H	H	H	H
5-1873	H Me	Et	2	$-CH=CH-(CH_2)_3-CHx$		H	H	H	·H
5-1874	CO₂Me H	Εt	2	$-CH=CH-(CH_2)_3-cHx$		H	H	H	H
5-1875	CO ₂ Et H	Et	2	$-CH=CH-(CH_2)_3-cHx$:	H	H.	H	H
5-1876	H H	Et	2	$-CH=CH-(CH_2)_3-Ph$		H	H	H	H
5-1877	H ∘Me	Et	2	$-CH=CH-(CH_2)_3-Ph$		H	H	H	Ή
5-1878	CO ₂ Me H	Et	2	$-CH=CH-(CH_2)_3-Ph$		H	H	H	H
5-1879	CO ₂ Et H	Et	2	-CH=CH-(CH2)8-Ph		H	H	H	H
5-1880	H H	Et	2	$-CH=CH-(CH_2)_4-cHx$		H	H.	:H	Ή
5-1881	H Me	Et	2	$-CH=CH-(CH_2)_4-cHx$		H	H	H	H
5-1882	CO₂Me H	Et.	2	$-CH=CH-(CH_2)_4-cHx$		H	H	H	H
5-1883	CO ₂ Et H	Et	2	$-CH=CH-(CH_2)_4-cHx$		H	H	H	H
5-1884	н н	Et	2	$-CH=CH-(CH_2)_4-Ph$		H	H	H	H
5-1885	H Me	Et	2	$-CH=CH-(CH_2)_4-Ph$		H	H	H	H
5-1886	CO ₂ Me H	Et	2	$-CH=CH-(CH_2)_4-Ph$		H	H	H	H

				•				
5-1887	CO ₂ Et H	Εt	2	$-CH=CH-(CH_2)_4-Ph$	H	H	·H	H
5-1888	H H	Et	2	-CH=CH-CH ₂ 0-cHx	. H	H	H	H
5-1889	H H	Εt	2	-CH=CH-CH ₂ 0-Ph	H	H	H	H
5-1890	н н	Et	2	$-CH=CH-(CH_2)_2O-cHx$	H	H	H	H
5-1891	•н н	Et	2	$-CH=CH-(CH_2)_2O-Ph$	H	H	H	H
5-1892	H H	Et	2	$-C = C - CH_2 - cHx$	H	H	H	H
5-1893	H Me	Εt	2	$-C = C - CH_2 - cHx$	H	Ή	H	H
5-1894	CO₂Me H	Εt	2	$-C \equiv C - CH_2 - cHx$	H	H	·H	H
5-1895	CO ₂ Et H	Et	2	$-C \equiv C - CH_2 - cHx$	H	H	Ή	H
5-1896	н н	Et	2	$-C \equiv C - CH_2 - Ph$.H	Ή	H	H
5-1897	H Me	Et	2	$-C \equiv C - CH_2 - Ph$	H	H	H	H
5-1898	CO ₂ Me H	Et	2 .	$-C \equiv C - CH_2 - Ph$	H	ſΉ	H	H
5-1899	CO ₂ Et H	Et	2	$-C \equiv C - CH_2 - Ph$	H	H	H	H
5-1900	H H	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	Ή
5-1901	н Ме	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-1902	CO ₂ Me H	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H .
5-1903	CO ₂ Et H	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	• H	H	H
5-1904	H H	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	- H .
5-1905	Н Ме	Et.	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	·H	H
5-1906	CO ₂ Me H	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
5-1907	CO ₂ Et H	Et	2 .	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
5-1908	н н	Et	2	$-C \equiv C - (CH_2)_3 - cPn$	H	H	H	H
5-1909	H H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-1910	H H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	H	H	H
5-1911	H H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Me	H	H
5-1912	H H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H	H	Ή
5-1913	H H	Εt	2	$-C \equiv C - (CH_2)_3 - cHx$	H	F	H	H
5-1914	H Me	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	·H	H
5-1915	CO₂Me H	Εt	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H

5-1916	CO ₂ E	et H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	Н
5-1917	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - F - cHx)$	H	H	· H	H
5-1918	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Cl - cHx)$	H	H	H	H
5-1919	Н	H	Εt	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H	H	H
5-1920	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Me - cHx)$. Н	H	H	H
·5 -192 1	H	H	Et	2	$-C \equiv C - (CH2)8 - (4 - Et - cHx)$	H	H	H	H
5-1922	H	H	Et	· 2	$-C \equiv C - (CH_2)_3 - (4 - Pr - cHx)$	H	H	H	H
5-1923	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - iPr - cHx)$	H	H	H	H
5-1924	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	Н.	H	H	H
-5-1925	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H	Ħ	H.
5-1926	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - cHx)$	H	H	H	H
5-1927	.Н	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	H	H'	H
5-1928	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - PrO - cHx)$	H	H	H	H
5−1929	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - i PrO - cHx)$	H	H	H	H
5-1930	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx)$	H	H	H	H
5-1931	H	H	Et	2 .	$-C \equiv C - (CH_2)_3 - (4 - MeS - cHx)$	H	H	H	H
5-1932	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$	H	H	H	H
5-1933	H -	H	Et	2	$-C \equiv C - (CH2)3 - (3, 4 - diMe - cHx)$	H	H	H	H
5-1934	H	H	Et.	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$	H	H	H	H
5-1935	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-1936	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	-Me	H	H	H
5-1937	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Me	Н	H
5-1938	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	F	H	H	H
5-1939	H	H	Εt	2	$-C \equiv C - (CH_2)_3 - Ph$	H	F	H	H
5-1940	H	Me	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-1941	CO ₂ Me	Н	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	Ħ
5-1942	CO ₂ E t	Н	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-1943	H	H	Εt	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$	H	H	H	H
5-1944	H	H	Εt	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - Ph)$	H	H	H	H

5-1945	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Br - Ph)$	H	H	Ħ	H
5-1946	H	H	. Et	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H	H	H
5-1947	. H	H	Et	.2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	Ή	H	H
5-1948	H	H	Et-	2	$-C \equiv C - (CH_2)_8 - (4 - Pr - Ph)$	H	H	H	H
5-1949	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	H	H	:H
5-1950	H	Ħ	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Bu - Ph)$	H	H	H	Η
5-1951	H	H	Вŧ	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H	H	H
5-1952	Н.	. Н	Et	.2	$-C \equiv C - (CH_2)_3 - (4 - MeO - Ph)_1$	H	H	H	H
5-1953	·H	H	Et	2	$-C \equiv C - (CH_2)_8 - (4 - Et0 - Ph)$	H	H .	H	H
5-1954	H	H	Et	.2	$-C \equiv C - (CH_2)_8 - (4 - PrO - Ph)$	H	H	H ·	H
5-1955	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr 0 - Ph)$	H	H	H	H
5-1956	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H	H	H
5-1957	H	H	Et	.2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H	H	H
5-1958	H	H	Et	2	$-C \equiv C - (CH_2)_8 - (2, 4 - diMe - Ph)$	H	H	H	H
5-1959	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - Ph)$	H	H	H	H
5-1960	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - Ph)$	H	H	H	H
5-1961	H	H	Et	.2	$-C \equiv C - (CH_2)_4 - cPn$	H	H	H	H
5-1962	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$. Н	H	H	H
5-1963	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H	H	H
5-1964	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Me	H	H
5-1965	H	·H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H	H	H
5-1966	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F	H	H
5-1967	H	Me	Et	2.	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-1968	CO ₂ Me	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-1969	CO₂E t	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	·H
5-1970	H	H	Et	2 .	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	H	H	H
5-1971	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - cHx)$	H	H	H	H
5-1972	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	H	H	H
5-1973	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Me - cHx)$	H	H	H	H

5-1974	H	H	Et	.2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	H	H	H	H
5-1975	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	Ĥ	H	H	H
5-1976	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - cHx)$	H	H	H	H
5-1977	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx)$	H	H	Ή	H
5-1978	H.	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - cHx)$	· H	H	H	H
5-1979	H	H	Et	.2	$-C \equiv C - (CH_2)_4 - (4 - MeO - cHx)$	H	H	H	·H
5-1980	H.	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	Н	Ή	H
5-1981	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - cHx)$	H	H	H	H
5-1982	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - i PrO - cHx)$	H	H	H	H
5-1983	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - cHx)$	H	H	H	H
5-1984	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	H	H	H
5-1985	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (3, 4 - d i Me - cHx)$	H	H	H	H
5-1986	. H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	H	H	Ħ	H
5-1987	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	· Н	H	H :	H
5-1988	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - Ph$	Me	H	H	. H
5-1989	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	Ħ	Me	H	H
5-1990	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H	H	H
5-1991	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F	H	H
5-1992	H	Me	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-1993	CO ₂ M	е Н	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	Ή
5-1994	CO ₂ E	t H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-1995	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	Н	H	H	H
5-1996	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Cl - Ph)$	H	H	H	·H
5-1997	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	H	H	H
5-1998	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H	. H	H
5-1999	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	H	H	H	Н
5-2000	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)_1$	H	H	H	H
5-2001	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - Ph)$	\mathbf{H}_{\cdot}	H	H	H
5-2002	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H	H	H

5-2003	H H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H	H	H
5-2004	H H	Et	.2	$-C \equiv C - (CH_2)_4 - (4 - MeO - Ph)$	H	H	H	H
5-2005	H. H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - EtO - Ph)$	H	H	H	H
5-2006	H H	Et	.2	$-C \equiv C - (CH_2)_4 - (4 - PrO - Ph)$	H	H	H	H
5-2007	н н	Et	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - Ph)$	H	H	H	H
5-2008	H H	Et	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - Ph)$	H	H	H	H
5-2009	H H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	H	H	H
5-2010	н н	Et	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - Ph)$	H	Щ	H	H
5-2011	н н	Et	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - Ph)$	Н	H	H	H
5-2012	н н	Et	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - Ph)$	H	H	H	H
5-2013	H H	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	Ħ.	H	H
5-2014	H :Me	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	H	H
5-2015	CO ₂ Me H	Et	2	$-C \equiv C - (CH_2)_{5} - cHx$	H	H	H	-Ή
5-2016	CO ₂ Et H	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H ·	H	-H
5-2017	H H	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-2018	H ⊪Me	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-2019	CO₂Me H	Εt	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-2020	CO ₂ Et H	Εt	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
5-2021	H H	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	H
5-2022	H Me	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	H
5-2023	CO ₂ Me H	Εt	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	H
5-2024	CO ₂ Et H	Εt	2	$-C \equiv C - (CH_2)_6 - cHx$	Н	H	H	·H
5-2025	H H	Εt	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	H	·H
5-2026	н Ме	Et	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	H	H
5-2027	CO ₂ Me H	Et _.	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	H	H
5-2028	CO ₂ Et H	Et	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	H	• Н
5-2029	H H	Et	2	$-C \equiv C - CH_2O - cHx$	H	H	H	H
5-2030	н Ме	Et	2	$-C \equiv C - CH_2O - cHx$	H	H	H	·H
5-2031	CO ₂ Me H	Et	2	$-C \equiv C - CH_2O - cHx$	H	H	H	H

5-2032	CO ₂ E t	H	Et	2	$-C \equiv C - CH_2O - cHx$	H	H	H	H
5-2033	H	H	Et	2	-C≡C-CH ₂ O-Ph	H	H	H	H
5-2034	Ħ	Me	Et	2	-C≡C-CH ₂ O-Ph	H	H	H	Ή
5-2035	CO ₂ Me	H	Et	2	$-C \equiv C - CH_2O - Ph$	H	H	H	H
5-2036	CO ₂ E t	·H:	Et	2	$-C \equiv C - CH_2O - Ph$	H	H	H	H
5-2037	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cPn$	H	H	Ħ	H
5-2038	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	Ħ	H	H	H
5-2039	H .	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	Me	H	H	·H
5-2040	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Me	H	H
5-2041	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	H	H	H
5-2042	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F	H	H
5-2043	H · -	Me	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-2044	CO₂Me	H ·	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-2045	CO ₂ E t	H	Et	2	$-C = C - (CH_2)_2 O - cHx$	H	H	H	H
5-2046	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	H	H	H
5-2047	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Cl - cHx)$	H	H	H	H
5-2048	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - cHx)$	H	H	H	H
5-2049	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - cHx)$	H	H	H	H
5-2050	H	H	Ét	2	$-C \equiv C - (CH_2)_2 O - (4 - Et - cHx)$	H	H	H	H
5-2051	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - cHx)$	H	• Н	H	H
5-2052	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr - cHx)$	H	H	H	H
5-2053	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	·H	H	H	H
5-2054	H	·H	Et	2	$-C \equiv C - (CH_2)_{i}0 - (4 - CF_3 - cHx)$	H	H	H	H
5-2055	H	H	Et	2	$-C \equiv C - (CH2)20 - (4 - MeO - cHx)$	H	H	H	·H
5-2056	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - EtO - cHx)$	H	H	H	H
5-2057	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - PrO - cHx)$	H	H	H	H
5-2058	Ħ	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - i PrO - cHx)$	H	H	H	H
5-2059	H .	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3 - MeS - cHx)$	H	H	H	H
5-2060	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - MeS - cHx)$	H	H	H	H

5-2061	H	. Н	Et	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - cHx)$	H	H	H	H
5-2062	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - cHx)$	H	H	H	Н
5-2063	H	H	.Et	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - cHx)$	H	H	H	H
5-2064	H	• Н	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	·H	H .	H	H
5-2065	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	Me	H	H	H
5-2066	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	Me	H	H
5-2067	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	F	H	H	H
5-2068	·H	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	F.	H	H
5-2069	H	Me	Et	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	H	H	H	H
5-2070	CO ₂ Me	e H	Et	2	$-C \equiv C - (CH_2)_{i0} - Ph$	H	H	H	H
5-2071	CO ₂ E	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-2072	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - F - Ph)$	H	H	H	H
5-2073	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Cl - Ph)$	H	H	Н	H
5-2074	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - Ph)$	H	H	H	H
5-2075	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Me - Ph)$	H	H	H	H
5-2076	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	H	H	H
5-2077	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - Ph)$	H	H	H	H
5-2078	H	H	Et	. 2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr - Ph)$	H	H	H	H
5-2079	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Bu - Ph)$	H	H	H	H
5-2080	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - Ph)$	H	H	H	H
5-2081	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - Ph)$	<u>,</u> H	H	H	H
5-2082	H	. Н	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - Ph)$	H	H	H	H
5-2083	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - Ph)$	H	H	H	H
5-2084	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - Ph)$	H	H	H	H
5-2085	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - MeS - Ph)$	H	H	H	H
5-2086	H	H	Et	.2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - Ph)$	H	H	H	H
5-2087	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (3, 4 - diMe - Ph)$	H	H	H	H
5-2088	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - Ph)$	H	H	H	H
5-2089	H	H	Et	2	$-C0-(CH_2)_3-cHx$	H	H	H	H

						_				
5-2090	Н -М	ie E	t 2	2	$-CO-(CH_2)_3-cHx$	•	H	H	H	H
5-2091	CO _z Me	H E	t 2	,	$-CO-(CH_2)_3-cHx$	•	H	H	H	H
5-2092	CO ₂ Et	H E	t 2		$-CO-(CH_2)_3-cHx$		H	H	H	H
5-2093	H	H E	t 2	2	$-CO-(CH_2)_3-Ph$		H	H	H	H
5-2094	H N	le E	t 2	2	$-CO-(CH_2)_3-Ph$		H	H	H	H
5-2095	CO ₂ Me	H E	t 2		$-CO-(CH_2)_3-Ph$		H	H	H	H
5-2096	CO ₂ Et	H E	t 2		$-CO-(CH_2)_3-Ph$		H	H	H	H
5-2097	H	H E	t 2	2	$-CO-(CH_2)_4-cHx$		H	H	Ħ	H
5-2098	H W	le E	t 2	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
5-2099	CO ₂ Me	H E	t 2		$-CO-(CH_2)_4-cHx$		H	H	H	Ħ.
5-2100	CO ₂ Et	H E	t 2		$-CO-(CH_2)_4-cHx$		H	H	H	H
5-2101	H	н Е	t 2	2	$-CO-(CH_2)_4-Ph$		H	H	H	H
5-2102	H M	le E	t 2	2	-CO-(CH2)4-Ph	•	Ħ	H	H	H
5-2103	CO ₂ Me	H E	2		-CO- (CH ₂) ₄ -Ph		H	H	H	H
5-2104	CO ₂ Et	H E	t 2		$-CO-(CH_2)_4-Ph$		H	H	H	H
5-2105	H	н е	t 2	2	$-CO-(CH_2)_5-cHx$		H	H	Ħ	H
5-21:06	H M	le E	t 2	2	$-CO-(CH_2)_5-cHx$		H	H	H	H
5-2107	CO ₂ Me	H E	2		$-CO-(CH_2)_5-cHx$		H	H	H	H
5-2108	CO ₂ Et	H E	2		$-CO-(CH_2)_5-cHx$		H	H	·H	H
5-2109	H	н е	t 2	2	$-CO-(CH_2)_5-Ph$		H	H	H	. Н
5-2110	H M	le E	t 2	2	$-CO-(CH_2)_5-Ph$		H	H	H	H
5-2111	CO ₂ Me	H .E	2		-CO-(CH ₂) ₅ -Ph		H	H	H	H
5-2112	CO ₂ Et	H E	2		$-CO-(CH_2)_5-Ph$		H	H	H	H
5-2113	H	н Е	t 2	2	$-CH(OH)-(CH_2)_4-cHx$		H	H	H	H
5-2114	H M	ie E	t 2	2	-CH(OH)-(CH2)4-cHx		H	H	H	H
5-2115	CO ₂ Me	H E1	2		-CH(OH)-(CH2)4-cHx		H	H	H	H
5-2116	CO ₂ Et	H E	2		$-CH(OH)-(CH_2)_4-cHx$		H	H	H	H
5-2117	H	H E	t 2	2	$-CH(OH) - (CH_2)_4 - Ph$		H	H	H	H
5-2118	H M	ie E	t 2	2	$-CH(OH) - (CH_2)_4 - Ph$		H	H	H	H

5-2119	CO ₂ Me H	Et	2	$-CH(OH)-(CH_2)_4-Ph$		H	H	H	Ħ
5-2120	CO ₂ Et H	Et	2	-CH(OH)-(CH2)4-Ph		H	H	H	H
5-2121	H H	Et	2	$-CH(OH) - (CH_2)_5 - cHx$		Ή	H	·H	H
5-2122	н Ме	Et	2	$-CH(OH) - (CH_2)_5 - cHx$		H	H	H	H
5-2123	CO,Me H	Et	2	$-CH(OH) - (CH_2)_5 - cHx$		H	H	H	H
5-2124	CO ₂ Et H	Et	2	$-CH(OH) - (CH_2)_5 - cHx$		H	H	H	H
5-2125	H H	Et	2	$-CH(OH) - (CH_2)_{5} - Ph$		H	H	H	H
5-2126	H Me	Et	2	$-CH(OH) - (CH_2)_5 - Ph$		H	·H	H	H
5-2127	CO ₂ Me H	Et	2	-CH (OH) - (CH ₂) 5-Ph	•	H	H	H	H
5-2128	CO ₂ Et H	Et	2	$-CH(OH) - (CH_2)_5 - Ph$		H	H	H	H
5-2129	H H	Et	2	$-4-(cHx-CH_2O)$ Ph		H	H	H	H
5-2130	Н Ме	Et	2	$-4-(cHx-CH_2O)$ Ph		H	H	H	H
5-2131	CO₂Me H	Et .	2	$-4-(cHx-CH_2O)$ Ph		H	H	H	H
5-2132	CO ₂ Et H	Et	2	$-4-(cHx-CH_2O)$ Ph		H	H	H	H
5-2133	н н	Et	2	$-4-[cHx-(CH_2)_20]$ Ph	•	H	H	H	H
5-2134	н н	Et	2	$-4-[cHx-(CH_2)_30]$ Ph		H	H	H	H
5-2135	H H	Et	2	-(4-Bz0-Ph)		H	H	- H	H
5-2136	Н Ме	Et	2	-(4-Bz0-Ph)		H	H	H	··H
5-2137	CO ₂ Me H	Εt	2	-(4-Bz0-Ph)		H	H	H	H
5-2138	CO ₂ Et H	Et	2	- (4-Bz0-Ph)		H	H	H	H
5-2139	H H	Et	2	-(4-Bz0-2-F-Ph)		·H	H	H	H
5-2140	H H	Et	2	-(4-Bz0-3-F-Ph)		H	H	H	H
5-2141	H H	Et	2	-(4-Bz0-2, 3-diF-Ph)	•.	, H	H	H	H
5-2142	H H	Εt	2	-(4-Bz0-2-C1-Ph)		H	H	H	H
5-2143	H H	Et	2	-(4-Bz0-3-C1-Ph)		H	H	H	H
5-2144	H H	Εt	2	-(4-Bz0-2, 3-diCl-Ph)		H	H	H	. H
5-2145	н н	Et	2	-(4-Bz0-2-Me-Ph)		H	H	H	H
5-2146	H H	Et	2	-(4-Bz0-3-Me-Ph)		H	H	Ή	H
5-2147	H H	Et	2	-(4-Bz0-2, 3-diMe-Ph)		H	H	Н	H

5-2148	H	H	Et	2	$-4-[Ph-(CH_2)_20]-Ph$		H	H	H	H
5-2149	H	H	Et	2	-4-[Ph-(CH2)30]-Ph	•	H	H .	H	H
5-2150	H	H	Pr	2	-(CH2)5-cHx		H	H	H	H
5-2151	H	H	Pr	2	-(CH2)5-Ph		H	H	H	H
5-2152	H	H	Pr	2	-(CH2)6-cHx		H	H	H	H
5-2153	H	H	Pr	2	$-(CH_2)_6-Ph$		H	H	H	H
5-2154	H	H	Pr	2	$-C = C - CH_2 - cHx$		H	H	H	Н
5-2155	H	H -	Pr	2	$-C \equiv C - (CH_2)_3 - cHx$		H	H	H	H
5-2156	H	H	Pr	2	$-C \equiv C - (CH_2)_3 - Ph$	-	H	H	H	H
5-2157	H	H	Pr	2	$-C \equiv C - (CH_2)_4 - cHx$		H	H	H	H
5-2158	H	H	Pr	2	$-C \equiv C - (CH_2)_4 - Ph$	٠	H	H	H	H
5-2159	CO ₂ Me	H	Pr	2	$-C \equiv C - CH_2O - Ph$		H	H	H	H
5-2160	CO ₂ E t	H	Pr	2	$-C \equiv C - CH_2O - Ph$		H	H	H	H
5-2161	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - cHx$		H	H	. H	H
5-2162	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - Ph$		H	H	H	H
5-2163	H	H	Pr	2	$-4-(cHx-CH_20)$ Ph		H	H	H	H.
5-2164	H	H	Pr	2	- (4-Bz0-Ph)	•	H	H	Į.H	H
5-2165	H	H	Me	3	-(CH2)5-cHx		H	H	H	H
5-2166	. Н	H	Me	.3	$-(CH_2)_6-cHx$		H	.H	·H	H
5-2167	H	H	Me	3	$-CH=CH-(CH_2)_3-cHx$		H	H	H	H
5-2168	H	H	Me	.3	$-CH=CH-(CH_2)_4-cHx$		H	H	H	H
5-2169	H	H	Me	3	$-C \equiv C - (CH_2)_3 - cHx$		H	H	H	Ή
5-2170	H	H	Мe	3	$-C \equiv C - (CH_2)_4 - cHx$		H	H	H	H
5-2171	H	H	Me	3	$-CO-(CH_2)_4-cHx$		H	H	H	H
5-2172	H w	H	Ме	3	$-C0-(CH_2)_5-cHx$		H	H	H	·H
5-2173	H	H	Me	3	$-C0-(CH_2)_4-Ph$		H	H	H	H
5-2174	H	H	Me	3	$-CO-(CH_2)_5-Ph$		H	H	H	H
5-2175	H	H	Me	3	$-CH(OH) - (CH_2)_4 - cHx$		H	H	H	·H
5-2176	H	Н	Me	3	$-CH(OH) - (CH_2)_5 - cHx$		H	H	H	H

5-2177	H	H	Me	3	$-4-(cHx-CH_20)$ Ph	H	H	Н.	H
5-2178	H	H	Me	3	-(4-Bz0-Ph)	H	H	H	H
5-2179	H	H	Me	3	$-C \equiv C - CH_2O - cPn$	H	H	H	H
5-2180	H	H	Me	3	$-C \equiv C - (CH_2)_2 O - cPn$	H	H .	H	H
5-2181	H	H	Me	3 .	$-C = C - CH_2O - cHx$	H	H	H.	H
5-2182	H	H	Me	3	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-2183	H	• Н	Me	3	$-C \equiv C - CH_2O - Ph$	H	H	H	H
5-2184	H	H	Me	3	$-C \equiv C - (CH_2)_2 O - Ph$	Н	H	H	H
5-2185	H	H	Me	2	-(CH2)4-(3-F-Ph)	H	H	H	H
5-2186	H	H	Me	. 2	$-(CH_2)_4-(3, 4-diF-Ph)$	H	H	H	H
5-2187	H	Ħ	Me	2	$-(CH_2)_4-(3, 5-diF-Ph)$	H ·	H	H	H
5-2188	H	H	Me	2	-(CH2)4-(3-C1-Ph)	H	H	H	H
5-2189	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{4}-\left(4-\mathrm{Cl-Ph}\right)$	H .	·H	H	H
5-2190	H	н	Me	2	-(CH2)4-(3, 4-diCl-Ph)	H	H	H	H
5-2191	H	H	Me	2	-(CH2)4-(3, 5-diCl-Ph)	H	H	H	H
5-2192	H	· H	Мe	2	$-(CH_2)_4 - (3-Me-Ph)$	H	H	H	H
5-2193	·H	H	Me	2	-(CH2)4-(3, 4-diMe-Ph)	H	H	H	H
5-2194	H	H	Me	2	$-(CH_2)_4-(3,5-diMe-Ph)$	H	H	H	H
5-2195	H	H	Me	2	$-(CH_2)_4 - (3-CF_3-Ph)$	H	H	Η	H
5-2196	H	Ħ	Me	2	-(CH2)4-(3, 4-diCF3-Ph)	H	H	H	H
5-2197	H	H	Me	2	$-(CH_2)_4-(3, 5-diCF_3-Ph)$	H	Ή	H	H
5-2198	H	H	Me	2	$-(CH_2)_4-(3-Me0-Ph)$	H	Ή	H	Н
5-2199	H	H	Me	2	$-(CH_2)_4-(3,4-diMe0-Ph)$	H	H	H	Ή
5-2200	H	H	Me	2		H	H	H	H
5-2201	·H	H	Me	2	-(CH2)4-(3, 4, 5-triMeO-Ph)	H	H	·H	H
5-2202	H	H	Me	2	-(CH2)4-(3-Ac-Ph)	H	H	H	H
5-2203	Ή	H	Me	2	- 1	H	H	H	H
5-2204	H	H	Me	2	• •	H	H	H	H
5-2205	H	H	Me	2	$-(CH_2)_5-(3,5-diF-Ph)$	H	H	H	H

5-2206	H	H	Me	2	$-(CH_2)_5-(3-C1-Ph)$	H	H	·H	H
5-2207	H	H	Мe	2	-(CH2)5-(3, 4-diCl-Ph)	H	H	H	H
5-2208	H	H	Me	.2	$-(CH_2)_5-(3,5-diCl-Ph)$	H	H	H	H
5-2209	H	H	Me	2	-(CH2)5-(3, 4-diCF3-Ph)	H	H	H	H
5-2210	H	H	Me	2	-(CH2)5-(3, 5-diCF3-Ph)	H	H	H	H
5-2211	H	H	Me	2	-(CH2)5-(3, 4-diMeO-Ph)	H	H	H	H
5-2212	H	H	Me	2	-(CH2)5-(3, 5-diMeO-Ph)	H	H	H	H
5-2213	H	H	Me	2	-(CH2)5-(3, 4, 5-triMeO-Ph)	H	H	H	H
5-2214	H	H	Me	2	$-(CH_2)_5-(3-Ac-Ph)$	H	H	H	H
5-2215	H	H	Me	2	-(CH2)5-(4-Ac-Ph)	H	H	·H	·H
5-2216	H	H	Me	2	-(CH2)3-0-(3-F-Ph)	H	Ή	H	H
5-2217	H	Н	Me	2	-(CH2)3-0-(3, 4-diF-Ph)	H	H	H	H
5-2218	H	H	Me	2	-(CH2)3-0-(3, 5-diF-Ph)	H	H	H	H
5-2219	H	H	Me	2	$-(CH_2)_3-0-(3-Me-Ph)$	H	H	∂ H	:.H
5-2220	H	H	Me	2	-(CH2)3-0-(3, 4-diMe-Ph)	H	H	H	H
5-2221	H	H	Me	2	-(CH2)3-0-(3, 5-diMe-Ph)	H	H	H	H
5-2222	Ή	H	Me	2	-(CH2)3-0-(3-CF3-Ph)	H	H	·H	H
5-2223	Н	H	Me	2	-(CH2)3-0-(3, 4-diCF3-Ph)	H	H	H	H
5-2224	H	H	Me	2	-(CH2)3-0-(3, 5-diCF3-Ph)	H .	H	H	H
5-2225	H	H	Me	2	$-(CH_2)_3-0-(3-Me0-Ph)$	H	H	H	Н -
5-2226	H	H	Me	2	-(CH2)3-0-(3, 4-diMeO-Ph)	H	H	H	H
5-2227	Η	H	Me	2	$-(CH_2)_3-0-(3,5-diMeO-Ph)$	H	H	H	·H
5-2228	H	H	Ме	· 2	$-(CH_2)_3-0-(3,4,5-triMe0-Ph)$	H	Ή	H	Н
5-2229	H	H	Me	2	$-(CH_2)_3-0-(3-Ac-Ph)$	H	H	H	H
5-2230	Ή	H	Мe	2	$-(CH_2)_3-0-(4-Ac-Ph)$	H	H	H	H
5-2231	H	H	Me	2	$-(CH_2)_4 \div 0 - (3, 4 - diF - Ph)$. Н	H	H	H
5-2232	H	H	Me	2	$-(CH_2)_4-0-(3,5-diF-Ph)$	H	H	H	H
5-2233	H	Н.	Me	2	$-(CH_2)_4-0-(3,4-diMe0-Ph)$	Ή	H	H	H
5-2234	H	H	Me	2	$-(CH_2)_4-0-(3,5-diMe0-Ph)$	H	H	Ή	H

					•••				
5-2235	H	H	Me	2	-(CH ₂) ₄ -0-(3, 4, 5-triMe0-Ph)	H	H	H	.Н
5-2236	H	H	Me	2	$-(CH_2)_4-0-(3-Ac-Ph)$	H	H	H	H
5-2237	H	H	Me	2	$-(CH_2)_4-0-(4-Ac-Ph)$	H	H	Н.	H
5-2238	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - F - Ph)$	H	H	H	H
5-2239	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diF - Ph)$	H	H	H	Ή
5-2240	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diF - Ph)$	H	H	H	H
5-2241	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - C1 - Ph)$	H	H	H,	H
5-2242	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Cl - Ph)$	H	H	H	H
5-2243	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diCl - Ph)$	H	H	H	H
5-2244	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diCl - Ph)$	H	H	Η.	H
5-2245	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3-Me-Ph)$	H	H	H	Н
5-2246	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diMe - Ph)$	H	H	H	H
5-2247	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diMe - Ph)$	H	H	H	H
5-2248	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - CF_3 - Ph)$	H	H.	H	H
5-2249	H	H	Me	· 2	$-C \equiv C - (CH_2)_2 - (3, 4 - di CF_3 - Ph)$	H	H	. H	H
· :5-2250	H	${\bf H}\cdot$	Me	:2	$-C \equiv C - (CH_2)_2 - (3, 5 - di CF_3 - Ph)$	H	H	H	H
5-2251	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - MeO - Ph)$	H	Н	H	H .
5-2252	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diMeO - Ph)$	H	H	H	H
5-2253	H	Ħ	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diMeO - Ph)$	H	H	H	Η
5-2254	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4, 5 - triMeO - Ph$	ı) H	H	H	H
5-2255	H	H	Me	2.	$-C \equiv C - (CH_2)_2 - (3 - Ac - Ph)$	H	H	H	H
5-2256	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Ac - Ph)$	H	H	H	H
5-2257	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diF - Ph)$	·H	H	·H	H
5-2258	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3, 5 - diF - Ph)$	H	·H	H	H
5-2259	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Cl - Ph)$	H	H	H	H
5-2260	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diCl - Ph)$	H	H	· H	H
5-2261	H	H	Ме	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diCl - Ph)$	H	H	H	H
5-2262	H :	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diCF_3 - Ph)$	H	Ή	H	H
5-2263	H	H	Me	. 2	$-C \equiv C - (CH_2)_3 - (3, 5 - diCF_3 - Ph)$	H	H	H	H

5-2264	H	H	Me	'2	$-C \equiv C - (CH_1)_3 - (3, 4 - diMeO - Ph)$	H	H	H	H
5-2265	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMeO - Ph)$	H	H	H	H
5-2266	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4, 5 - triMeO - Ph)$	H	H	. H	H
5-2267	Ħ	H	Me	2	$-C \equiv C - (CH_2)_8 - (3 - Ac - Ph)$	H	H	H	H
5-2268	H	H	'Me	2	$-C \equiv C - (CH_2)_3 - (4 - Ac - Ph)$	H	H	H	H
5-2269	H	H	Me	'2	$-C \equiv C - CH_2 - 0 - (3 - F - Ph)$	H	H	\mathbf{H}	Щ
5-2270	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diF - Ph)$	H	H	H	H
5-2271	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diF - Ph)$	H	H	H	H
5-2272	H	H	Me	2	$-C = C - CH_2 - 0 - (3 - C1 - Ph)$	H	H	H	H
5-2273	H	H	Me	2 .	$-C \equiv C - CH_2 - 0 - (4 - C1 - Ph)$	H	H	H	H
5-2274	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diCl - Ph)$	H	H	H	H
5-2275	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diCl - Ph)$	H	H	H	H
5-2276	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - Me - Ph)$	H	H	H	H
5-2277	H	H	Ме	2	$-C = C - CH_2 - 0 - (2, 4 - d i Me - Ph)$	H	H	H	H
5-2278	H	H	Мe	2	-C = C - CH2 - O - (3, 4 - diMe - Ph)	H	H	H	H
5-2279	H	. Н	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diMe - Ph)$	H	H	H	H
5-2280	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - CF_3 - Ph)$	H	H	H	H
5-2281	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - di CF_3 - Ph)$	H	H	H	H
5-2282	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - di CF_3 - Ph)$	H	Ĥ	H	H
5-2283	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - MeO - Ph)$	H	H	H	H
5-2284	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - d i Me 0 - Ph)$	H	H	Ή	H
5-2285	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diMeO - Ph)$	H	H	- Н	Ή
5-2286	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4, 5 - t r i Me0 - Ph)$	H	H	H	H
5-2287	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - Ac - Ph)$	H	H	H	H
5-2288	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Ac - Ph)$	H	H	H	H
5-2289	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CO_2H - Ph)$	H	• Н	H	H
5-2290	H	H	Me	2	• •	H	H	H	Ή
5-2291	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - diF - Ph)$	H	H	H	Ή
5-2292	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3 - C1 - Ph)$	H	H	H	H

5-2293	H	H	Me	:2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - diCl - Ph)$	H	H	H	H
5-2294	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - diCl - Ph)$	H	H	H	Н
5-2295	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - di CF_3 - Ph)$	H	H	H	H
5-2296	H	• Н	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - di CF_3 - Ph)$	Ħ	H	H	H
5-2297	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 4 - diMe0 - Ph)$	H	H	H	. Н
5-2298	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3, 5 - diMeO - Ph)$	H	H	H	.Н
5-2299	H	H	Me	2	-C≡C-(CH ₂) ₂ -0-(3, 4, 5-triMe0-	Ph)	H H	H	H
5-2300	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (3 - Ac - Ph)$	H	H	H	H
5-2301	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0 - (4 - Ac - Ph)$	H	H.	H	H
5-2302	H.	H	Me	2	$-C0-(CH_2)_3-(3-F-Ph)$	H	H	H	H.
5-2303	Н	H	Me	2	$-C0-(CH_2)_8-(4-F-Ph)$	H	H	. H	Η.
5-2304	H	H	Me	2	-CO-(CH2)3-(3, 4-diF-Ph)	H	H	: H	H.
5-2305	H	· H	Me	2	-CO-(CH2)8-(3, 5-diF-Ph)	H	H	H	H
5-2306	H	H	Me	2	$-C0-(CH_2)_3-(3-C1-Ph)$	H	. Н	H	Н
5-2307	H	H	Me	2	-CO-(CH2)3-(4-Cl-Ph)	H	H	H	H
5-2308	H.	H.	Me	2	$-CO-(CH_2)_3-(3, 4-diCl-Ph)$	H	H	: H	Ħ.
5-2309	H	H	Me	2	$-CO-(CH_2)_3-(3, 5-diCl-Ph)$	H	H	H	H
5-2310	H	H	Ме	2	$-CO-(CH_2)_3-(3-Me-Ph)$	H	H	H	H
5-2311	H	H	Ме	2	$-CO-(CH_2)_3-(4-Me-Ph)$	H	H	H	H
5-2312	H	H	Me	2	$-CO-(CH_2)_3-(3, 4-diMe-Ph)$	H	H	H	H
5-2313	H	H	Me	2	$-CO-(CH_2)_3-(3, 5-diMe-Ph)$	H	H	H	H
5-2314	H	H	Me	2	$-CO-(CH_2)_3-(3-Et-Ph)$	H	H	H	H
5-2315	H	H	Me	2	$-CO-(CH_2)_3-(4-Et-Ph)$	H	H	H	H
5-2316	H	H	Me	2	$-CO-(CH_2)_3-(3-CF_3-Ph)$	H	H	H	H
5-2317	H	H	Me	2	$-CO-(CH_2)_3-(4-CF_3-Ph)$	H	H	H	H
5-2318	H	H	Me	2	-CO-(CH2)3-(3, 4-diCF3-Ph)	H	H	H	H
5-2319	H	. Н	.Ме	2	$-\text{CO-(CH}_2)_3$ -(3, 5-diCF ₃ -Ph)	H	H	H	H
5-2320	H	H	Me	2	$-C0-(CH_2)_3-(3-Me0-Ph)$	H	H	H	H
5-2321	H	H	Me	2	$-C0-(CH_2)_3-(4-Me0-Ph)$	H	H	H	Н

5-2322	H	H	Me	2	$-CO-(CH_2)_3-(3,4-diMeO-Ph)$	H	H	H	H
5-2323	H	H	Me	2	$-CO-(CH_2)_3-(3, 5-diMeO-Ph)$	H	H	H	·H
5-2324	H	H	Me	2	$-CO-(CH_2)_3-(3, 4, 5-triMeO-Ph)$	H	H	H	H
5-2325	H	H	Me	2	$-CO-(CH_2)_3-(4-MeS-Ph)$	H	H	H	H
5-2326	H	H	Me	2	$-CO-(CH_2)_3-(3-Ac-Ph)$	H	H	H	· H
5-2327	H	H	Мe	2	$-CO-(CH_2)_8-(4-Ac-Ph)$	H	H	H	H
5-2328	H	H	Me	2	$-CO-(CH_2)_4-(3-F-Ph)$	H	H	Ή	H
5-2329	H	Ħ	Me	2	$-CO-(CH_2)_4-(3, 4-diF-Ph)$	H	H	H	H
5-2330	H	H	Me	2	$-CO-(CH_2)_4-(3, 5-diF-Ph)$	H	H	H	H
5-2331	H	H	Me	2	$-CO-(CH_2)_4-(3-C1-Ph)$	H	H	H	H
5-2332	H	H	Me	2	$-C0-(CH_2)_4-(4-C1-Ph)$	H	H	Œ	H
5-2333	H	H	Me	2	$-CO-(CH_2)_4-(3, 4-diCl-Ph)$	H	H	H	H
5-2334	H	H	Me	· 2	$-C0-(CH_2)_4-(3, 5-diCl-Ph)$	H	H	\mathbf{H}_{\cdot}	H
5-2335	H	H	Me	2	$-CO-(CH_2)_4-(3-Me-Ph)$	H	H	H	· H
5-2336	H	H	Me	2	$-CO-(CH_2)_4-(3,4-diMe-Ph)$	H	H	H	H
5-2337	H	H	Me	2	$-CO-(CH_2)_4-(3, 5-diMe-Ph)$	H	H	H	H
5-2338	H	H	Me	2	$-CO-(CH_2)_4-(3-CF_3-Ph)$	H	H	\mathbf{H}	H
5-2339	H	H	Me	÷ Ż	$-CO-(CH_2)_4-(3,4-diCF_3-Ph)$	H	H	H	·H
5-2340	H	: H	Me	2	$-CO-(CH_2)_4-(3, 5-diCF_3-Ph)$	H	H	Н	H
5-2341	H	· H	Me	2	$-CO-(CH_2)_4-(3-MeO-Ph)$	H	H	Ή	H
5-2342	H	H	Me	2 ·	$-CO-(CH_2)_4-(3,4-diMeO-Ph)$	H	H	H	H
5-2343	H	H	Me	2	$-CO-(CH_2)_4-(3,5-diMeO-Ph)$	H	H	H	H
5-2344	H	H	Me	2	$-CO-(CH_2)_4-(3, 4, 5-triMeO-Ph)$	H	H	Ħ	H
5-2345	H	H.	Me	2	$-CO-(CH_2)_4-(3-Ac-Ph)$	H	H	H	Ή
5-2346	H	H	Me.	2	$-CO-(CH_2)_4-(4-Ac-Ph)$	H	H	H	H
5-2347	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-F-Ph)$. Н	H	H	Ή
5-2348	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (4-F-Ph)$	H	H	Ή	H
5-2349	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 4-diF-Ph)	H	H	Ή	. ·H
5-2350	Н	H	Me	2	$-CH(OH) - (CH_2)_3 - (3, 5 - diF - Ph)$	H	H	H	H

5-2351	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-C1-Ph)$	H	H	H	H
5-2352	H	H	Me	·2	-CH (OH) - (CH2)3 - (4-Cl-Ph)	H	. Н	H	H.
5-2353	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 4-diCl-Ph)	H	H	H	H
5-2354	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 5 - diCl-Ph)	H	H	H	H
5-2355	H	H	Me	2	-CH (OH) - (CH2)3 - (3-Me-Ph)	H	H	H	H
5-2356	H	H	Me	2	-CH(OH) - (CH2)3 - (4-Me-Ph)	H	H	H	H
5-2357	H	H	Me	2	-CH(OH) - (CH2)8 - (3, 4-diMe-Ph)	H	H	H	H
5-2358	H	H	Me	2	-CH(OH) - (CH2)8 - (3, 5 - diMe-Ph)	H	H	H	H
5-2359	H	H	Me	2	-CH (OH) - (CH2)3 - (3-Et-Ph)	H	• • Н	H	H
5-2360	H	H	Me	2	-CH (OH) - (CH2)3 - (4-Et-Ph)	H	H	H	H
5-2361	H	. H	Мe	2	$-CH(OH) - (CH_2)_3 - (3-CF_3-Ph)$	H	H	H	H
5-2362	H	H	Me	2	-CH (OH) - (CH2)3 - (4-CF3-Ph)	H	H	H .	H
5-2363	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 4-diCF3-Ph)	H	H	H _.	H
5-2364	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 5-diCF3-Ph)	H	H	H	H
5-2365	H	H	Me	2	$-CH(OH) - (CH_2)_3 - (3-MeO-Ph)$	H	. H	H	H
5-2366	H	H	Me	2	-CH(OH) - (CH2)3 - (4-MeO-Ph)	H	H	H	Н
5-2367	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 4-diMeO-Ph)	H	H	H	Н
5-2368	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 5-diMeO-Ph)	H	H	H	H
5-2369	H	H	Me	2	-CH(OH) - (CH2)3 - (3, 4, 5-triMeO-	Ph)	HH	H	H
5-2370	H	Н	Me	2	$-CH(OH) - (CH_2)_3 - (4-MeS-Ph)$	H	H	H	H
5-2371	H	H	Me	2	-CH(OH) - (CH2)3 - (3-Ac-Ph)	H	H	Ħ	H e
5-2372	Ή	. Н	Me	2	-CH(OH) - (CH2)3 - (4-Ac-Ph)	H	H	H	H
5-2373	H	H	Me	.2	$-CH(OH) - (CH_2)_4 - (3-F-Ph)_1$	H	H	H	. H
5-2374	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diF-Ph)	H	H	H	H
5-2375	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 5 - diF-Ph)	Н	H	H	H
5-2376	H	H	·Me	2	-CH(OH) - (CH2)4 - (3-C1-Ph)	H	H	H	H
5-2377	H	Н	Me	2	-CH(OH) - (CH2)4 - (4-Cl-Ph)	H	H	H	H
5-2378	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diCl-Ph)	H	H	H	H
5-2379	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 5-diCl-Ph)	H	H	H	H

5-2380	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-Me-Ph)$	щ	H	H	H
5-2381	H	H .	Me	2	$-CH(OH)-(CH_2)_4-(3,4-diMe-Ph)$	H	H	H	H
5-2382	H	H	Me	2	$-CH(OH)-(CH_2)_4-(3,5-diMe-Ph)$	H	H	H	H
5-2383	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-CF_3-Ph)$	H	H	Ή	H
5-2384	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4-diCF3-Ph)	H	H	H	H
5-2385	H	H	Me	2	$-CH(OH)-(CH_2)_4-(3,5-diCF_8-Ph)$	H	H ·	H	H
5-2386	H	H	Me	2	$-CH(OH) - (CH_2)_4 - (3-MeO-Ph)$	H	H	H	H
5-2387	H	H	Me	2	$-CH(OH)-(CH_2)_4-(3,4-diMeO-Ph)$	H	H	H	H
5-2388	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 5-diMeO-Ph)	H	H.	H	H
5-2389	H	H	Me	2	-CH(OH) - (CH2)4 - (3, 4, 5-triMeO-H)	Ph)	нн	H	·H
5-2390	H	H	Me	2	-CH(OH) - (CH2)4 - (3-Ac-Ph)	H	H	H	H
5-2391	H	H	Me	2	-CH(OH) - (CH2)4 - (4-Ac-Ph)	H	H	H	H
5-2392	H	H	Me	2 .	$-0-(CH_2)_3-cHx$	H	H	H	H
5-2393	H .	H	Me	2	-0-(CH2)4-cHx	H	H	Ħ	H
5-2394	H	H	Me	2	-0-(CH2)5-cHx	H	H	H	H
5-2395	H	H	Me	2	$-0-(CH_2)_3-Ph$	H	H	H	H
5-2396	H	H	Me	2 .	-0-(CH ₂) ₄ -Ph	H	H	H	H
5-2397	H	H.	Me .	2	-0-(CH ₂) ₅ -Ph	H	H	H	Н
5-2398	COCH ₃	H	Me	2	$-(CH_2)_4-cHx$	H	H	H	H
5-2399	COC ₂ H ₅	H	Me	2	-(CH2)4-cHx	H	H	H	H
5-2400	COC ₃ H ₇	H	Me	2	-(CH2)4-cHx	H	H	H	H
5-2401	COC₄H ₉	H	Me	2	-(CH2)4-cHx	H	H	H	H
5-2402	COC ₅ H ₁	₁ H	Mē	2 .	-(CH2)4-cHx	H	H	H	H
5-2403	COC ₆ H ₁	₃ H	Me	2	$-(CH_2)_4-cHx$	H	H	H	H
5-2404	COC ₇ H ₁	₅ H	Me	2	-(CH2)4-cHx	H	Ħ	H	H
5-2405	COC ₈ H ₁	7 H	Me	2	-(CH2)4-cHx	H	H	H	H
5-2406	COCH3	H	Me	2	-(CH2)4-Ph	H	H	H	H
5-2407	COC ₂ H ₅	H	Мe	2	$-(CH_2)_4-Ph$	H	H	H	H
5-2408	COC ₃ H ₇	H	Me	2 .	$-\left(\mathrm{CH_{2}}\right)_{4}-\mathrm{Ph}$	H	H ·	H	H

5-2409	COC ₄ H ₉ H	Me	2	- (CH ₂) ₄ -Ph	H	H	H	Ή
5-2410	COC ₅ H ₁₁ H	Me	2	$-(CH_2)_4-Ph$	H	H.	H	H
5-2411	COC ₆ H ₁₃ H	Me	2	$-(CH_2)_4-Ph$	H	H	H	H
5-2412	COC ₇ H ₁₅ H	Me	2	$-(CH_2)_4$ -Ph	. Н	H	H	H
5-2413	COC ₈ H ₁₇ H	Me	2	$-(CH_2)_4$ -Ph	H	H	H	H
5-2414	COCH ₃ H	Me	2	$-(CH_2)_5-cHx$	н	H	H	H
5-2415	COC ₂ H ₅ H	Me	2	$-(CH_2)_5-cHx$	H	H.	H	H
5-2416	COC ₃ H ₇ H	`Me	2	$-(CH_2)_5-cHx$. H	H	·H	H
5-2417	COC ₄ H ₉ H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
5-2418	COC ₅ H ₁₁ H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
5-2419	COC ₆ H ₁₃ H	Me	2	$-(CH_2)_5-cHx$	H	H	H	· H
5-2420	COC ₇ H ₁₅ H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
5-2421	COC ₈ H ₁₇ H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
5-2422	COCH ₃ H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
5-2423	COC ₂ H ₅ H	Me	2	-(CH ₂) ₅ -Ph	H	H	H	H
5-2424	COC ₃ H ₇ H	Me	2	-(CH2)5-Ph	H	H	: H	H
5-2425	COC ₄ H ₉ H	Me	2	-(CH2)5-Ph	H	H	·H	H
5-2426	COC_5H_{11} H	Me	2	$-(CH_2)_5-Ph$	H	H	H.	H
5-2427	COC ₆ H ₁₃ H	Me	2	-(CH2)5-Ph	H	H	H	Н
5-2428	COC7H15 H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
5-2429	COC ₈ H ₁₇ H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
5-2430	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-2431	COC_2H_5 H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	· . H ·	H	H
5-2432	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-2433	COC ₄ H ₉ H	Ме	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-2434	COC_5H_{11} H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-2435	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-2436	COC_7H_{15} H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
5-2437	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	Н	: H	H	H

5-2438	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	Ħ	:H	H	H
5-2439	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H .	H	H
5-2440	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
5-2441	COC4H9 H	Мe	2	$-C \equiv C - (CH_2), -Ph$	H	H	H	H
5-2442	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	Ħ	H	H
5-2443	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	Ή	H	H
5-2444	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	Ħ	H	H	H
5-2445	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
5-2446	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-2447	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-2448	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-2449	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
5-2450	COC_5H_{11} H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$.Н	H	H	H
5-2451	COC ₆ H ₁₈ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$.Н	H	H	Ħ
5-2452	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Н	· H	H	H
5-2453	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	\mathbf{H}_{\cdot}	H	H	H
5-2454	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	Η	H
5-2455	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-2456	COC ₈ H ₇ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-2457	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-2458	COC_5H_{11} H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-2459	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-2460	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$. H	H	H	H
5-2461	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
5-2462	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Ĥ	H	H	H
5-2463	COC ₂ H ₅ H	- Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-2464	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-2465	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-2466	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H

5-2467	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-2468	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-2469	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
5-2470	COCH ₈ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	.Н	H
5-2471	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Ħ	H	H
5-2472	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Ħ	H	H
5-2473	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	. Н
5-2474	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	Н	H	H .	Н
5-2475	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-2476	COC,H15 H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-2477	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
5-2478	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_{\frac{1}{2}} 0 - cHx$: H	H	H	H
5-2479	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	H	H
5-2480	COC ₈ H ₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-2481	COC ₄ H ₉ H	Me	. 2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
5-2482	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	Н	H
5-2483	COC ₆ H ₁₃ H	Мe	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H.	H	Н
5-2484	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	Н	H
5-2485	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	:H	H
5-2486	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-2487	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	·H	H
5-2488	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-2489	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	.Н	•Н -
5-2490	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-2491	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_{i0} - Ph$. H	H	H	H
5-2492	COC ₇ H ₁₅ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-2493	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
5-2494	COCH3 H	Me	2	$-C0-(CH_2)_3-cHx$	H	H	H	H
5-2495	COC ₂ H ₅ H	Мe	2	$-CO-(CH_2)_3-cHx$	H	H	H	H

COC ₃ H ₇ H	Me	2	$-CO-(CH_2)_3-cHx$		H	H	H	H
COC ₄ H ₉ H	Me	2	$-CO-(CH_2)_3-cHx$		H	H	H	H
COC ₅ H ₁₁ H	Me	2	$-CO-(CH_2)_3-cHx$		H	H	· H	H
COC ₆ H ₁₈ H	Me	2	$-CO-(CH_2)_3-cHx$		H	H	H	H
·COC ₇ H ₁₅ H	Me	.2	$-CO-(CH_2)_8-cHx$		·H	H	H	H
COC ₈ H ₁₇ H	Me	2	$-CO-(CH_2)_8-cHx$		H	H	H	H
COCH ³ H	Me	2	-CO-(CH ₂) ₃ -Ph		H	H	·H	H
COC ₂ H ₅ H	Me	2	$-CO-(CH_2)_8-Ph$		H	H	\mathbf{H}^{\cdot}	H
COC ₃ H ₇ H	Me	2	-CO-(CH ₂) ₈ -Ph		H	H	·H	H
COC ₄ H ₉ H	Me	2	$-CO-(CH_2)_3-Ph$	·	H	H	H	Ή
COC ₆ H ₁₁ H	Me	2	-CO-(CH ₂) ₃ -Ph		H	H	H	H
COC ⁶ H ¹⁸ H	Me	2	-CO-(CH ₂) ₃ -Ph		H	H	H	H
COC ₇ H ₁₅ H	Me	2	-CO-(CH ₂) ₃ -Ph		H	H	H	H
COC8H17 H	Me	2	-CO-(CH ₂) ₃ -Ph		H	H	H	· H
COCH ₃ H	Me	2	$-CO-(CH_2)_4-cHx$		H	Ή	·H	·H
:COC ₂ H ₅ H	Me	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
COC ₃ H ₇ H	Me	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
COC ₄ H ₉ H	Me	2	$-CO-(CH_2)_4-cHx$	•	H	H	H	H
COC ₅ H ₁₁ H	Me	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
COC ₆ H ₁₃ H	Me	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
COC7H15 H	Me	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
COC ₈ H ₁₇ H	Me	2	$-CO-(CH_2)_4-cHx$		H	H	H	H
COCH3 H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	H	H
COC ₂ H ₅ H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	$^{1}\mathbf{H}_{\perp}$	H
COC ₈ H ₇ H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	; H	H
COC4H9 H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	H	H
COC_5H_{11} H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	H	Ħ
COC ₆ H ₁₃ H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	H	H
COC ₇ H ₁₅ H	Me	2	$-CO-(CH_2)_4-Ph$		H	H	H	H
	COC4H9 H COC5H11 H COC6H13 H COC7H15 H COC4H9 H COC2H5 H COC4H9 H COC6H13 H COC4H9 H COC5H11 H COC6H13 H COC6H13 H COC6H13 H COC6H13 H COC6H14 H	COC4H9 H Me COC5H11 H Me COC6H18 H Me COC7H15 H Me COC4H9 H Me COC4H9 H Me COC6H18 H Me COC6H18 H Me COC6H18 H Me COC6H18 H Me COC6H17 H Me COC6H18 H Me COC4H9 H Me COC4H9 H Me COC6H11 H Me	COC4H9 H Me 2 COC5H11 H Me 2 COC6H18 H Me 2 COC7H15 H Me 2 COC3H17 H Me 2 COC3H7 H Me 2 COC4H9 H Me 2 COC6H18 H Me 2 COC6H18 H Me 2 COC6H18 H Me 2 COC6H18 H Me 2 COC7H15 H Me 2 COC7H15 H Me 2 COC7H15 H Me 2 COC6H17 H Me 2 COC8H17 H Me 2 COC4H9 H Me 2 COC6H18 H Me 2 COC7H15 H Me 2 COC6H18 H Me 2	COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₃ -cHx COC ₆ H ₁₂ H Me 2 -CO-(CH ₂) ₃ -cHx COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -cHx COC ₇ H ₁₅ H Me 2 -CO-(CH ₂) ₈ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -cHx COC ₁ H ₁ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₂ H ₅ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₂ H ₅ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₄ H ₉ H Me 2 -CO-(CH ₂) ₃ -Ph COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₃ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₁ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph	COC ₂ H ₃ H Me 2 -CO-(CH ₂) ₃ -cHx COC ₅ H ₁₁ H Me 2 -CO-(CH ₂) ₃ -cHx COC ₆ H ₁₈ H Me 2 -CO-(CH ₂) ₃ -cHx COC ₇ H ₁₅ H Me 2 -CO-(CH ₂) ₈ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₂ H ₅ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₄ H ₅ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₄ H ₅ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₈ -Ph COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₆ H ₁₈ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₆ H ₁₈ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₆ H ₁₈ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -cHx COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	COC ₂ H ₃ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₂ H ₁₁ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₄ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₄ H ₁₅ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₄ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₄ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₄ H ₅ H Me 2 -CO-(CH ₂) ₃ -cHx H H COC ₄ H ₅ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₄ H ₅ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₄ H ₅ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₄ H ₁₁ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₆ H ₁₂ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -Ph H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₄ -CH H H COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₄ -CH H H COC ₆ H ₁₁ H Me 1	COC ₄ H ₃ H Me 2 -CO-(CH ₂) ₃ -cHx H H H H COC ₆ H ₁₁ H Me 2 -CO-(CH ₂) ₃ -cHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -cHx H H H H COC ₆ H ₁₅ H Me 2 -CO-(CH ₂) ₃ -cHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -cHx H H H H COC ₈ H ₁₇ H Me 2 -CO-(CH ₂) ₃ -cHx H H H H COC ₁ H ₂ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₂ H ₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₄ H ₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₄ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₃ -Ph H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -CHx H H H H COC ₆ H ₁₇ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄ -Ph COC ₆ H ₁₃ H Me 2 -CO-(CH ₂) ₄

5-2525	COC ₈ H ₁₇ H	Me	2	-CO-(CH ₂) ₄ -Ph	. Н	H	H	H
5-2526	COCH ₃ H	Me	2	$-C0-(CH_2)_5-cHx$	H	Ħ	H	Н
5-2527	COC ₂ H ₅ H	Ме	2	$-C0-(CH_2)_5-cHx$	H	H	H	H
5-2528	COC ₃ H ₇ H	Me	2	-C0-(CH2)5-cHx	H	H	H	H
5-2529	COC ₄ H ₉ H	Me	2 ·	$-CO-(CH_2)_5-cHx$	H	H	·H	·H
5-2530	COC ₆ H ₁₁ H	Me	2	$-C0-(CH_2)_5-cHx$.H.	H	H	H
5-2531	COC ⁸ H ¹³ H	Мe	2	$-C0-(CH_2)_5-cHx$	H	H	H	H
5-2532	COC7H15 H	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
5-2533	COC ₈ H ₁₇ H	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
5-2534	COCH ₃ H	Me	2	$-CO-(CH_2)_5-Ph$.	H	Ħ	H	H
5-2535	COC ₂ H ₅ H	Me	2	$-CO-(CH_2)_5-Ph$	H	H	H	H
5-2536	COC ₈ H ₇ H	Me	2	-CO-(CH ₂) ₅ -Ph	H	H	H	H
5-2537	COC ₄ H ₉ H	Me	2	$-CO-(CH_2)_5-Ph$	H	H	Ή	H
5-2538	COC ₅ H ₁₁ H	Me	2	-CO-(CH ₂) ₅ -Ph	H	H	H	H
5-2539	COC ₆ H ₁₃ H	Me	2	$-CO-(CH_2)_5-Ph$	H	Ħ	H	H
5-2540	COC ₇ H ₁₅ H	Me	2	-CO-(CH2)5-Ph	H	H	H	H
5-2541	COC ₈ H ₁₇ H	Me	2	-CO-(CH ₂) ₅ -Ph	H	H	H	H
5-2542	COCH ₃ H	Me	2	-CH(OH)-(CH2)4-cHx	Н	H	Ή	Η
5-2543	COC ₂ H ₅ H	Me	2	-CH(OH)-(CH2)4-cHx	H	H	H	H
5-2544	COC ₃ H ₇ H	Me	2	$-CH(OH)-(CH_2)_4-cHx$	H	H	H	H
5-2545	COC ₄ H ₉ H	Me	2	-CH(OH)-(CH2)4-cHx	H	H	Ή	Ή
5-2546	COC ₅ H ₁₁ H	Me	2	-CH(OH)-(CH2)4-cHx	H	H	H	H
5-2547	COC ₆ H ₁₃ H	Ме	2	$-CH(OH)-(CH_2)_4-cHx$	H	H	H	H
5-2548	COC7H15 H	Me	2	$-CH(OH) - (CH_2)_4 - cHx$	H	H	H	H
5-2549	COC ₈ H ₁₇ H	Me	2	-CH(OH)-(CH2)4-cHx	H	H	H	H
5-2550	COCH3 H	Me	2	$-CH(OH) - (CH_2)_4 - Ph$	H	H	H	H
5-2551	COC ₂ H ₅ H	Me	2	$-CH(OH) - (CH_2)_4 - Ph$.Н	H	H	H
5-2552	COC ₈ H ₇ H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	H .	H	H	H
5-2553	COC ₄ H ₉ H	Me	2	-CH(OH)-(CH2)4-Ph	H	H	H	H

COC ₅ H ₁₁ H	Me	2	$-CH(OH) - (CH_2)_4 - Ph$	H	H	H	H
COC ₆ H ₁₃ H	Me	2	-CH(OH)-(CH2)4-Ph	H	H	H	H
COC ₇ H ₁₅ H	Me	2	-CH(OH)-(CH2)4-Ph	H	H	H	H
COC ₈ H ₁₇ H	Me	2	-CH(OH) - (CH2)4 - Ph	H	H	H	H
	COC ₆ H ₁₃ H COC ₇ H ₁₅ H	COC_6H_{13} H Me COC_7H_{15} H Me	COC_6H_{13} H Me 2 COC_7H_{15} H Me 2	$COC_{5}H_{11}$ H Me 2 $-CH(OH) - (CH_{2})_{4}-Ph^{2}$ $COC_{6}H_{13}$ H Me 2 $-CH(OH) - (CH_{2})_{4}-Ph$ $COC_{7}H_{15}$ H Me 2 $-CH(OH) - (CH_{2})_{4}-Ph$ $COC_{8}H_{17}$ H Me 2 $-CH(OH) - (CH_{2})_{4}-Ph$	$COC_{6}H_{13}$ H Me 2 $-CH(OH) - (CH_{2})_{4}-Ph$ H $COC_{7}H_{15}$ H Me 2 $-CH(OH) - (CH_{2})_{4}-Ph$ H	$COC_{6}H_{13}$ H Me 2 $-CH(OH) - (CH_{2})_{4} - Ph$ H H $COC_{7}H_{15}$ H Me 2 $-CH(OH) - (CH_{2})_{4} - Ph$ H H	COC_6H_{13} H Me 2 $-CH(OH) - (CH_2)_4 - Ph$ H H H H COC_7H_{15} H Me 2 $-CH(OH) - (CH_2)_4 - Ph$ H H H H H H

Compd.	R ^t	R ²	R ⁴	n	-Y-Z-R ⁵	R ⁶	R ⁷	R ¹⁰	RII	
6-1	H	H	Ме	1	-(CH ₂) ₅ -cHx	Н	H	H	H	

	6-2	·H	H	Me	1	$-(CH_2)_6-cHx$. Н	.Н	Ħ	H
	6-3	H	H	Me	1	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
	6-4	H	H	Me	1	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
	:6-5	H	H	Me	1	-4-(cHx-CH ₂ 0)Ph	H	H	H	·H
	6-6	H	H	Me	1	-(4-Bz0-Ph)	H	H,	H	H
	6-7	H	H	Me	1	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
	6-8	H	H	Me	1	$-C \equiv C - (CH_2)_{2}O - Ph$	H	H	H	H
	6-9	H	H	Me	2	-(CH2)3-cHx	H	H	H	H
	6-10	H	H	Me	2	$-(CH_2)_8$ -Ph	H	Ĥ	H	H
	6-11	H	H	Me	2	-(CH2)4-cHx	H	H	H	H
	6-12	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	H	H
	6-13	Н	H	Mę	2	$-(CH_2)_5-cPn$	H	H	H	H
	6-14	H	H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
	6-15	H	H	Me	2	$-(CH_2)_5-cHx$	Me	H	H	H
	6-16	H	H	Мe	2	$-(CH_2)_5-cHx$	H	Me	H	H
	6-17	H	H	Me	2	$-(CH_2)_5-cHx$	F	H	H	Ή
•	6-18	H	H	Me	2	$-(CH_2)_5-cHx$. Н	· F	H	H
	6-19	H	Me	Me	2	$-(CH_2)_5-cHx$	- H	H	H	H
	6-20	CO ₂ Me	H	Me	2	$-(CH_2)_5-cHx$	H	H	H -	H
	6-21	CO ₂ Et	H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
	6-22	H	H	Me	2	$-(CH_2)_5-(4-F-cHx)$	H	H	H	H
	6-23	H	H	Me	2	$-(CH_2)_5-(4-C1-cHx)$	H	H	H	H
	6-24	H	H	Me	2	$-(CH_2)_5-(4-Br-cHx)$	H	H.	H	H
	6-25	H	H	Me	2	-(CH2)5-(4-Me-cHx)	H	H	H	H
	6-26	H	H	Me	2	$-(CH_2)_5-(4-Et-cHx)$	H	H	H	H
	6-27	H	H	Me	2.	-(CH2)5-(4-Pr-cHx)	H	H	H	H
	6-28	H	H ·	Me	2	-(CH2)5-(4-iPr-cHx)	Н	H	H	H
	6-29	H	H	Me	2	$-(CH_2)_5-(4-CF_3-cHx)$	H	H	H	H
	6-30	H	H	Me	2	$-(CH_2)_5-(4-Me0-cHx)$	Н	H	H	H

					•				
6-31	H	H	Me	2	$-(CH_2)_5-(4-Et0-cHx)$	H	H	H	H
6-32	H.	H	Me	2	$-(CH_2)_5-(4-Pr0-cHx)$	H	H	Ή	H
6-33	Н	H	Me	2	-(CH2)5-(4-iPrO-cHx)	H	H	H	Ħ
6-34	H	H	Me	2	-(CH2)5-(3-MeS-cHx)	H	H	H	H
6-35	H	H	Me	2	-(CH2)5-(4-MeS-cHx)	H	H	H	H
6-36	H	H	Me	2	$-(CH_2)_5-(6-4-diMe-cHx)$	H	H	H	H
6-37	H .	H	Me	2	-(CH ₂) ₅ -(3, 4-diMe-cHx)	H	H	H	H
6-38	H	H	Me	2	$-(CH_2)_5-(3, 5-diMe-cHx)$	H	H	H	H
6-39	H	H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
6-40	H	H	Me	2	$-(CH_2)_5-Ph$	Me	H	H	H
6-41	H	H	Me	2 ·	$-(CH_2)_5-Ph$	H	Me	H	H
6-42	H	H	Me	2	$-(CH_2)_5-Ph$	F	H	H	H
6-43	H	. Н	Me	2	$-(CH_2)_5-Ph$	H	F	H	H
6-44	. Н	Мe	Me	. 2	$-(CH_2)_5-Ph$	H	H	H	H
6-45	CO ₂ M	еН	Me	2	$-(CH_2)_5-Ph$	· H	H	H	H
6-46	CO ₂ E	t H	Ме	·· 2	$-(CH_2)_5-Ph$	H	H	H	H
6-47	H	H	Me	2	$-(CH_2)_{5}-(4-F-Ph)$	H	H	H	H
6-48	H	H	Me	2	$-(CH_2)_5-(4-Cl-Ph)$	H	H	H	H
6-49	H.	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{5}-\left(4\mathrm{-Br-Ph}\right)$	H	H	H	H
6-50	H .	H	Me	2	-(CH2)5-(4-Me-Ph)	H	H	H .	H
6-51	H	H	Me	2	$-(CH_2)_5-(4-Et-Ph)$	H	H	H	H
6-52	H	H	Me	2	$-(CH_2)_5-(4-Pr-Ph)$	H	H	H	H
6-53	H	H	Me	2	-(CH2)5-(4-iPr-Ph)	. H	H	H	H
6-54	H	H	Me	2	$-(CH_2)_5-(4-Bu-Ph)$	H	H	H	H
6-55	H	Н	Me	2	$-(CH_2)_5-(4-CF_3-Ph)$	· H	H	H	H
6-56	H	H	Me	2	$-(CH_2)_5-(4-Me0-Ph)$	H	H	H	H
6-57	·H	H	Me	2	$-(CH_2)_5-(4-Et0-Ph)$	H	H	H	H
6-58	H	H	Me	2	• •	H	H	H	H
6-59	H	H	Me	2	-(CH2)5-(4-iPrO-Ph)	H	H	H	^H

					•				
03-6	H	H	Me	2	-(CH2)5-(3-MeS-Ph)	H	H	H	H
6-61	H	H	Me	2	-(CH2)5-(4-MeS-Ph)	H	H	H	H
6-62	H	H	Me	2	$-(CH_2)_5-(6-4-diMe-Ph)$	H	H	H	· H
6-63	H	H	Мe	2	-(CH ₂) ₅ -(3, 4-diMe-Ph)	H	H	H	H
6-64	H	H	Me	2	-(CH ₂) ₅ -(3, 5-diMe-Ph)	H	H	H	H
6-65	H	H	Me	2	$-(CH_2)_6-cPn$	· H	H	H	H
6-66	H	H	Me	2	$-(CH_2)_6-cHx$	H	H	H	H
6-67	H	H	Me	2	$-(CH_2)_6-cHx$	Me	H	H	H
6-68	H	H	Me	2	$-(CH_2)_6-cHx$	H	Me	H	H
6-69	H	H	Me	2	$-(CH_2)_6-cHx$	F	H	H,	Н
6-70	H	H	Me	2	$-(CH_2)_6-cHx$	H	F	H	\mathbf{H}
6-71	H	Me	Me	2	$-(CH_2)_6-cHx$	H	H .	H	H
6-72	CO ₂ Me	Н	Me	2	-(CH2)6-cHx	H	H	Ħ	H
6-73	CO ₂ E t	H	Me	2	$-(CH_2)_6-CHx$	H	H	H	Н
6-74	H	H	Me	2	-(CH2)6-(4-F-cHx)	H	H	H	H
6-75	H	H	Me	. 2	-(CH2)6-(4-C1-cHx)	H	H	H	H
6-76	H	H	Me	2	-(CH2)6-(4-Br-cHx)	H	H	H	H
6-77	H	H	Me	2	-(CH2)6-(4-Me-cHx)	H	H	H	Η
6-78	H	H	Me	2	-(CH2)6-(4-Et-cHx)	H	H _.	H	H
6-79	H	H	Me	2	-(CH2)6-(4-Pr-cHx)	in H	H	H	H
6-80	H	H	Me	2	-(CH2)6-(4-iPr-cHx)	H	H	H	.Н
6-81	H	H	Me	2	$-(CH_2)_6 - (4-Bu-cHx)_1$	H	H	H	H
6-82	H	Ħ	Me	2	$-(CH_2)_6 - (4-CF_3-cHx)$	H	H	H	H
6-83	H	H	Me	2	$-(CH_2)_6 - (4-Me0-cHx)$	H	H -	. Н	H
6-84	H	H	Me	2	$-(CH_2)_6 - (4-Et0-cHx)$	H	H	H	H
6-85	H	H .	Me	2	$-(CH_2)_6 - (4-Pr0-cHx)$	H	H	H	H
6-86	H	H	Me	2	-(CH2)6-(4-iPr0-cHx)	H	H	H	H
6-87	H	H	Me	2	-(CH2)6-(3-MeS-cHx)	H	H	H	H
6-88	H	H	Me	2	$-(CH_2)_6-(4-MeS-cHx)$	H	H	H	H

					,				
6-89	H	H	Me	2	-(CH2)6-(6-4-diMe-cHx)	H	H	H	H
6-90	H	H	Me	2	$-(CH_2)_6-(3,4-diMe-cHx)$	H	H	H	H
6-91	H	H	Me	2	-(CH2)6-(3, 5-diMe-cHx)	H	H	H	H
6-92	H	H	Me	2	$-(CH_2)_6-Ph$	H	H	H	H
6-93	H	H	Me	2	$-(CH_2)_6-Ph$	Me	Н	H	H
6-94	H	H	Me	2	$-(CH_2)_6-Ph$	H	Me	H	H
6∹95	H	Ħ	Me	2	$-(CH_2)_6-Ph$	F	H	H	H
6-96	H	H	Me	2	$-(CH_2)_6-Ph$	H	F	H	H
6-97	H	Me	Me	2	$-(CH_2)_6-Ph$	H	H	H	H
6-98	CO ₂ M	еН	Me	2	-(CH ₂) ₆ -Ph	H	H	H	H
6-99	CO ₂ E	t H	Me	2	$-(CH_2)_6-Ph$	H =	H	H	H
6-100	H	H	Me	2	$-(CH_2)_6-(4-F-Ph)$	H	H	H	H
6-101	H	H	Me	2	-(CH2)6-(4-Cl-Ph)	H	H	H	H
6-102	H	H	Me	2	-(CH2)6-(4-Br-Ph)	H	H	H	H
6-103	H	H	Me	2	$-(CH_2)_6-(4-Me-Ph)$	H	H	H	H
6-104	Н	H	Me	2	-(CH2)6-(4-Et-Ph)	H	H	H	H
6-105	H	H	Me	2	$-\left(\mathrm{CH}_{2}\right)_{6}-\left(4-\mathrm{Pr}-\mathrm{Ph}\right)$	H	H	H	·H
6-106	H	H	Me	2	-(CH2)6-(4-iPr-Ph)	H	H	H	H
6-107	H	H	Me	2	-(CH2)6-(4-Bu-Ph)	H	H	. Н	H
6-108	H	H	Me	2	$-\left(\mathrm{CH_{2}}\right)_{6}-\left(4-\mathrm{CF_{3}}-\mathrm{Ph}\right)$	H	H	H	H
6-109	H	H	Me	2	-(CH2)6-(4-MeO-Ph)	. Н	H	H	H
6-110	H	H	Me	2	$-(CH_2)_6 - (4-Et0-Ph)$	H	H	H	H
6-111	H	H	Me	2	-(CH2)6-(4-Pr0-Ph)	·H	H	H	H
6-112	H	H	Me	2	-(CH2)6-(4-iPrO-Ph)	H	H	H	H
6-113	H	H	Me	2	-(CH2)6-(3-MeS-Ph)	H	H	H	H
6-114	H	H	Me	2	-(CH2)6-(4-MeS-Ph)	H	H	H	H
6-115	H	H	Me	2	-(CH2)6-(6-4-diMe-Ph)	H	H	H	H
6-116	H _.	H	Me	2	$-(CH_2)_6-(3,4-diMe-Ph)$	H	H	H	H
6-117	H	H	Me	2	$-(CH_2)_6-(3,5-diMe-Ph)$	H	H	H	H

6-118	H H	Me	2	$-(CH_2)_7-cHx$	H	H	H	H
6-119	H H	Me	· 2	$-(CH_2)_7-Ph$	H	H	Н.	·H
6-120	H H	Me	2	-(CH2)8-cHx	H	H	H	H
6-121	H H	Me	2	-(CH2)8-Ph	H	H	H	H
6-122	H H	Me	2	$-CH=CH-(CH_2)_8-cHx$	H	H	H	H
6-123	н Ме	Me	2	-CH=CH-(CH2)3-cHx	H	H	H	·H
6-124	CO ₂ Me H	Me	2	$-CH=CH-(CH_2)_8-cHx$	H	H	H	Ή
6-125	CO ₂ Et H	Me	2	$-CH=CH-(CH_2)_8-cHx$	H	H	H	H
6-126	н н	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	H	H
6-127	н Ме	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	H	H
6-128	CO ₂ Me H	Me	2	$-CH=CH-(CH_2)_8-Ph$	H	H	H	H
6-129	CO ₂ Et H	Me	2	$-CH=CH-(CH_2)_3-Ph$. Н	H	H	H
6-130	H H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	H	H	H
6-131	H Me	Me	2	$-CH=CH-(CH_2)_4-cHx$. Н	H	H	H
6-132	CO ₂ Me H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	H	H	H
6-133	CO ₂ Et H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	H	H	H
6-134	H H	Me	2	$-CH=CH-(CH_2)_4-Ph$	H	H	H	H
6-135	H Me	Me	2	$-CH=CH-(CH_2)_4-Ph$	• Н	H	H	H
6-136	CO₂Me H	Me	. 2	$-CH=CH-(CH_2)_4-Ph$	H	Ħ	H	H
6-137	CO ₂ Et H	Me	2	$-CH=CH-(CH_2)_4-Ph$	H	H	H	H
6-138	H H	Me	. 2	$-C=C-CH_2O-cHx$	H	H	H	H
6-139	H H	Me	2	$-C=C-CH_2O-Ph$	H	H	H	H
6-140	H H	Me	2	$-C=C-(CH_2)_2O-cHx$	H	H	H	H
6-141	H H	Me	2	$-C=C-(CH_2)_2O-Ph$. Н	H	H	H
6-142	H H	Me	2	$-C \equiv C - CH_2 - cHx$	H	H	H	H
6-143	н Ме	Me	2	$-C \equiv C - CH_2 - cHx$	H	H	H	H
6-144	CO₂Me H	Me	2	$-C \equiv C - CH_2 - cHx$	H	H	H	H
6-145	CO ₂ Et H	Me	2	$-C \equiv C - CH_2 - cHx$	H	H	H	H
6-146	H H	Me	2	$-C \equiv C - CH_2 - Ph$	H	H	H	H

6-147	H	Me	Мe	2	$-C \equiv C - CH_2 - Ph$	H	H	H	Ħ
6-148	CO ₂ M	еН	Me	2	-C≡C-CH ₂ -Ph	H	H	H.	H
6-149	CO ₂ E	t H	Me	2	$-C \equiv C - CH_2 - Ph$	H	H	H	H
6-150	H	H	Me	-2	$-C \equiv C - (CH_2)_2 - cHx$	·H	Ħ	H	H
6-151	H	Me	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
6-152	CO ₂ M	e H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
6-153	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
6-154	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
6-155	H	Me	Me	. 2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
6-156	CO ₂ Me	e H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	· H	H
6-157	CO ₂ E	t H	Me	2.	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
6-158	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cPn$	H	H	H	H
6-159	H	Ħ	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	H	H	H	H
6-160	, H	H	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	Me	H	H	H
6-161	H	H	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	H	Me	H	H
6-162	H	H	Me	. 2	$-C \equiv C - (CH_2)_3 - cHx$	F	H	H	H
6-163	H	H	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	H	. F	H	H
6-164	H	Мe	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
6-165	CO ₂ Me	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$, H	H	H	H
6-166	CO ₂ E1	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Н	·H	H
6-167	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	H	H	H
6-168	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - cHx)$	H	H	H	H
6-169	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H	H	H
6-170	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - cHx)$	H	H	H	H
6-171	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - cHx)$	H	H	H _.	H
6-172	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - cHx)$	H	H	H	H
6-173	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr - cHx)$	H	H	H	H
6-174	× H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	H	H	H	H
6-175	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cH_X)$	H	H	H	H

6-176	H	H	Me [·]	2	$-C \equiv C - (CH_2)_3 - (4 - Me0 - cHx)$	H	H	H	H
6-177	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	Н.	H	H
6-178	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - PrO - cHx)$	H	H	H	H
6-179	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr O - cHx)$. Н	H	H	H
6-180	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3 - MeS - cHx)$	H	H	H	H
6-181	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - MeS - cHx)$	H	H	H	H
6-182	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (6-4-diMe-cHx)$	H	H	H	H
6-183	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3, 4 - diMe - cHx)$	H	H	H	H
6-184	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (3, 5 - diMe - cHx)$	H	H	H	H
6-185	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Н.	H	H
6-186	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H	H	H
6-187	H	H	Me ·	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Мe	H	H
6-188	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	F	H	H	H
6-189	H	H	Me	2	$-C \equiv C - (CH_2)_8 - Ph$	H	F	H	H
6-190	H	Me	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H .
6-191	CO ₂ Me	H	Me	2	$-C \equiv C - (CH_2)_8 - Ph$	H	H	H	H.
6-192	CO ₂ E t	H	Me	2	$-C \equiv C - (CH_2)_8 - Ph$	H	H	H	H
6-193	H	H	Me	2	$-C \equiv C - (CH_2)_8 - (4 - F - Ph)$	H	H	H	H
6-194	H	H	Me	2.	$-C \equiv C - (CH_2)_3 - (4 - C1 - Ph)$	H	Н	H	H
6-195	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - Ph)$	H	H	H	H
6-196	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H	H	H
6-197	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	H	H	H
6-198	Ħ	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - Ph)$	H	H	H	H
6-199	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	H	H	H
6-2.00	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - Ph)$	H	H	H	H
6-201	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H	H	H
6-202	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - Ph)$	H	H	H	H
6-203	. Н	H	Мe		$-C \equiv C - (CH_2)_3 - (4 - Et0 - Ph)$	H	H	H	H
6-204	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - PrO - Ph)$	H	H	H	H

6-205	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr O - Ph)$	H	H	H	Ή
6-206	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H	H	H
6-207	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H	H	H
6-208	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (6-4-diMe-Ph)$	H	H	H	H
6-209	H	H	Me	2	-C≡C-(CH ₂) ₃ -(3, 4-diMe-Ph)	H	H	H	H
6-210	H	H	Me	2	-C≡C-(CH ₂) ₃ -(3, 5-diMe-Ph)	H	H	H	H
6-211	H	H	Me	Ż	$-C \equiv C - (CH_2)_4 - cPn$	H	H	H	·H
6-212	H .	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-213	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H	H	H
6-214	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$. H	Me	H	H
6-215	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H	H	H
6-216 ·	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H .	F	H	H
6-217	H	Me	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-218	CO ₂ M	е Н	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H.	H	H
6-219	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-220	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	H	H	H
6-221	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Cl - cHx)$	H	H	H	H
6-222	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	H	H	H
6-223	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - cHx)$	H	H	. H	H
6-224	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	H	H	H	H
6-225	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H	H	H.	H
6-226	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr - cHx)$	H	H	H	H
6-227	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx)$	H	H	H	H
6-228	$\cdot \mathbf{H}$	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - cHx)$. Н	H	H	H
6-229	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - cHx)$	H	H	H	H
6-230	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	H	H	H
6-231	H	H	Ме	2	$-C \equiv C - (CH_2)_4 - (4 - PrO - cHx)$	H	· H	H	H
6-232	H	H	Ме	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - cHx)$	H	H	H	H
6-233	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - cHx)$	H	H	H	H

6-234	H	H	Me	.2	$-C \equiv C - (CH_2)_4 - (6-4-d i Me - cHx)$	H	H	H	Н
6-235	H	H	Me	2 .	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	H	H	H
6-236	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - d i Me - cHx)$	H	- H	H	H
6-237	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Щ	H	Η
6-238	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	Мe	H	H	H
6-239	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Me	H	H
6-240	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H	H	H
6-241	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F	H	·H
6-242	H.	Me	Мe	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-243	CO ₂ Me	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-244	CO ₂ E t	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	ьH
6-245	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	H	H	H	·H
6-246	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Cl - Ph)$	H	H	H	·H
6-247	H	H	. Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	H .	H	H
6-248	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H	H	·H
6-249	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	H	Н	H	Η
6-250	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	H	H	H	H
6-251	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - Ph)$	H	H	H _.	·Ή
6-252	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H	H	H
6-253	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H	H	H
6-254	H .	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me0 - Ph)$	H	H	H	H
6-255	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - Ph)$	H	H	H	·H
6-256	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - Ph)$	H	: H	H	H
6-257	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - Ph)$	H	H	H	H
6-258	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - Ph)$	H	H	. Н	H
6-259	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4-MeS-Ph)$	Η	H	H	H
6-260	H	H	Me		$-C \equiv C - (CH2)_4 - (6-4-diMe-Ph)$	H	H	H	Н
6-261	H	H	Ме		$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - Ph)$	H	H	H	H
6-262	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - Ph)$	H	H	H	H

6-263	н н	Me	2	$-C \equiv C - (CH^5)^2 - cHx$	H	H	H	H
6-264	Н Ме	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	· H	H	H	H
6-265	CO₂Me H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	Ħ	H .	H
6-266	CO ₂ Et H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	H	H
6-267	н н	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	Н
6-268	н Ме	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
6-269	CO ₂ Me H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
6-270	CO ₂ Et H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	H	H
6-271	н н	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	H
6-272	H Me	Me	2	$-C \equiv C - (CH_2)_6 - cHx$. Й	H	H	H
6-273	CO₂Me H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	H
6-274	CO ₂ Et H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	H	Η
6-275	н н	Ме	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	Ĥ	H
6-276	H Me	Me	2	$-C \equiv C - (CH_2)_6 - Ph$. Н	H	H	·H
6-277	CO ₂ Me H	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	Ħ	H	H
6-278	CO ₂ Et H	Me	· 2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	H	H
6-279	н н	Me	2	$-C \equiv C - CH_2O - cHx$	H	H	H	H
6-280	н Ме	Me	2	$-C = C - CH_2O - cHx$	H	H	H	H
6-281	CO ₂ Me H	Me	2	$-C \equiv C - CH_2O - cHx$	H	H	H	H
6-282	CO ₂ Et H	Мe	2	$-C \equiv C - CH_2O - cHx$	H	H	H	H
6-283	H H	Me Me	2	$-C \equiv C - CH_2O - Ph$	H	H	H	H
6-284	н Ме	Me	2	-C≡C-CH ₂ O-Ph	H	H	H	Ή
6-285	CO ₂ Me H	Me	2	$-C \equiv C - CH_2O - Ph$	H	H	H	Ή
6-286	CO ₂ Et H	Me	2	$-C \equiv C - CH_2O - Ph$	H	H	H	H
6-287	H E	Me	2	$-C \equiv C - (CH_2)_2 O - cPn$	H	H	H	Ή
6-288	H E	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
6-289	H F	[Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	Ме	H .	H	H
6-290	H F	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Me	H	· H
6-291	H H	I · Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	H	H	H

6-292	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F	H	Н.
6-293	H	Me .	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	H	H	H
6-294	CO ₂ M	ie H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H .	H	Н -
6-295	CO ₂ E	t H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
6-296	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - F - cHx)$	H	H	H	H
6-297	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - C1 - cHx)$	H	H	H	·H
6-298	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Br - cHx)$	H	H	H.	H
6-299	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - Me - cHx)$	H	H	H	H
6-300	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	H	H	H	H
6-301	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - cHx)$	H	H	H	H
6-302	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr - cHx)$	H	H	H	H
6-303	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	H	H	H	H
6-304	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - cHx)$	H	H	H	H
6-305	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - MeO - cHx)$	H	H	H	H
6-306	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - cHx)$	H	\mathbf{H}_{\cdot}	H	H
6-307	H	H	Me	2 .	$-C \equiv C - (CH_2)_2 0 - (4 - Pr 0 - cHx)$	H	H	H	H
6-308	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - i Pr O - cHx)$	H	H	H	H
6-309	H	H	Me	2.	$-C \equiv C - (CH_2)_2 O - (3 - MeS - cHx)$	H	H	H	H
6-310	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - MeS - cHx)$	H	. H .	H	H
6-311	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (6-4-diMe-cH)$	H (x	H	H	H
6-312	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - cH)$	H (x	H	H	H
6-313	H	H	Me	2	-C≡C-(CH ₂) ₂ 0-(3,5-diMe-cH	x) H	H	H	H
6-314	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-315	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	Me	H	H	H
6-316	H	H	Me	2	$-C = C - (CH_2)_2 0 - Ph$	H	Me	H	H
6-317	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	F	H	H	H
6-318	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	. F	H	H
6-319	H	Me	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	ŀΗ	H	H	H
6-320	CO ₂ N	le H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	Ħ	H	.Н

6-321	CO ₂ Et H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-322	H . H	Мe	2	$-C \equiv C - (CH_2)_2 O - (4 - F - Ph)$	H	H	H	H
6-323	H H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Cl - Ph)$	H	H	H	Н
6-324	H H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Br - Ph)$	H	H	H	H
6-325	н н	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me - Ph)$	H	H	H	H
6-326	H H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	H	H	H
6-327	H H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Pr - Ph)$	H	H	H	H
6-328	H ·H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr - Ph)$	H	H	H	H
6-329	H H	Мe	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - Ph)$	H	H	H	H
6-330	H H	Me	2	$-C \equiv C - (CH2)20 - (4 - CF3 - Ph)$	H	H	H	H
6-331	H H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - MeO - Ph)$	H	Н .	H	H
6-332	н н	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - Ph)$	H	H	H	H
6-333	H . H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - Ph)$	H	H	H	H
6-334	H H	Me	2	$-C \equiv C - (CH_7)_2 O - (4 - i Pr O - Ph)$	H	H	H	H
6-335	HH	. Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - MeS - Ph)$	H	H	H	H.
6-336	H H	Me	2	$-C \equiv C - (CH_2)_2 0 - (6-4-d i Me-Ph)$	H	: H	H	H
6-337	н н	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 4 - diMe - Ph)$	H	: H	H	H
6-338	н н	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - Ph)$	H	H	H	H
6-339	H H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-340	H Me	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-341	CO ₂ Me H	Me	2	$-C0-(CH_2)_4-cHx$	H	H	H	H
6-342	CO ₂ Et H	Me	2	$-C0-(CH_2)_4-cHx$	H	H	H	H
6-343	H H	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
6-344	H Me	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
6-345	CO₂Me H	Me	2	$-C0-(CH_2)_4-Ph$	H	H	H	H
6-346	CO ₂ Et H	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
6-347	н н	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
6-348	н Ме	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
6-349	CO ₂ Me H	Me	2	$-CO-(CH_2)_5-cHx$	H	H	H	H

6-350	CO ₂ Et H	Мe	2	$-CO-(CH_2)_5-cHx$	H	H	H	H
6-351	H H	Me	2	-C0-(CH2)5-Ph	H	H	H	H
6-352	H Me	Мe	2	-CO-(CH ₂) ₅ -Ph	. Н	H	H	H
6-353	CO ₂ Me H	Мe	2	$-CO-(CH_2)_5-Ph$	H	H	H	Η
6-354	CO ₂ Et H	Me	. 2	$-CO-(CH_2)_5-Ph$	H .	H	H	H
6-355	.H H	Me	.2	$-CH(OH) - (CH_2)_4 - cHx$	H	H	H	H
6-356	H Me	Me	2	$-CH(OH) - (CH_2)_4 - cHx$	H	H	H	H
6-357	CO₂Me H	Me	. 2	$-CH(OH)-(CH2)_4-cHx$	H	H	H	·H
6-358	CO ₂ Et H	Me	2 ·	$-CH(OH) - (CH_2)_4 - cHx$	H	H	H	H
6-359	н н	Me	2	$-CH(OH) - (CH_2)_4 - Ph$	H	H	H	H
6-360	н Ме	Me	2	$-CH(OH) - (CH_2)_4 - Ph$	H	H	H	·H
6-361	CO ₂ Me H	Me	2	-CH(OH)-(CH2)4-Ph	H	H	H	H
6-362	CO ₂ Et H	Me	2	$-CH(OH) - (CH_2)_4 - Ph$	H	·H	H	H .
6-363	н н	Me	2	$-CH(OH) - (CH_2)_5 - cHx$	H	H	H	H
6-364	H Me	Me	2	$-CH(OH) - (CH_2)_5 - cHx$	H	H	H	H
6-365	CO₂Me H	Me	2	$-CH(OH) - (CH_2)_5 - cHx$. Н	H	H	H
6 -366	CO ₂ Et H	Me	.2	$-CH(OH) - (CH_2)_5 - cHx$. Н	H	H	H
6-367	н н	Me	2	$-CH(OH) - (CH_2)_5 - Ph$. Н	H	H	H
6-368	H Me	Me	2	$-CH(OH)-(CH_2)_5-Ph$	H	H	H	H
6-369	CO ₂ Me H	Me	2	$-CH(OH) - (CH_2)_5 - Ph$	H	H	H	H
6-370	CO ₂ Et H	Me	2	$-CH(OH) - (CH_2)_5 - Ph$	H	H	H	Н
6-371	н н	Me	2	$-4-(cHx-CH_20)$ Ph	H	H	H	H
6-372	H Me	Me	2	$-4-(cHx-CH_20)$ Ph	H	H	H	Η
6-373	CO ₂ Me H	Me	2	$-4-(cHx-CH_20)Ph$	H	H	H	H
6-374	CO ₂ Et H	Me	2	$-4-(cHx-CH_20)$ Ph	H	H	H	H
6-375	H H	Me	2	-4-[cHx-(CH2)20]Ph	H	H	H	H
6-376	н н	Me	. 2	-4-[cHx-(CH2)30]Ph	. Н	H	H	H
6-377	H. H	Me	2	- (4-BzO-Ph)	H	H	H	H
6-378	H Me	Me	2	-(4-Bz0-Ph)	• Н	H	H	H

6-379	CO ₂ Me	H	Me	2	- (4-Bz0-Ph)	H	H	H	H
6-380	CO _z E t	H	Me	2	- (4-Bz0-Ph)	H	H	H	H
6-381	H	H	Me	2	-(4-Bz0-2-F-Ph)	. H	H	H	H
6-382	H	H	Me	2	-(4-Bz0-3-F-Ph)	H .	H	H	H
6-383	·H	H	Me	2	-(4-Bz0-6-3-diF-Ph)	H	H	H	H
6-384	Н ,	H	Me	2	-(4-Bz0-2-Cl-Ph)	H	H	H	H
6-385	H	H	Me	2	-(4-Bz0-3-Cl-Ph)	H	H	H	H
6-386	H	H	Me	2	-(4-Bz0-6-3-diCl-Ph)	H	Н.	H	H
6-387	H	·H	Me	2	-(4-Bz0-2-Me-Ph)	H	H	H	H
6-388	H	H	Me	2.	-(4-Bz0-3-Me-Ph)	H	H	H	H
6-389	H	H	Me	2	-(4-Bz0-6-3-diMe-Ph)	H	H	H	H
6-390	H	H	Me	2	-4-[Ph-(CH2)20]-Ph	H	H	H	Н.
6-391	H	H	Me	2	$-4-[Ph-(CH_2)_30]-Ph$	H	H	Ĥ	H
6-392	H	H	Εt	2	-(CH2)5-cHx	H	H	H	H
6-393	H	H	Et	2	$-(CH_2)_6-CHx$	H	H	H	H
6-394	H	H	Et	2	$-C \equiv C - (CH_2)_8 - cHx$	H	H	. Н	H
6-395	H	H	Εt	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H.	H	H
6-396	H	H	Εt	2	$-4-(cHx-CH_2O)$ Ph	, H	H	H '	H
6-397	H.	Ĥ	Et	2	-(4-Bz0-Ph)	H	H	H	H
6-398	H	H	Εt	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
6-399	H ,	H	Et	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-400	H	H	Pr	2	$-(CH_2)_5-cHx$	Η.	H	H	H
6-401	H	H	Pr	2	$-(CH_2)_6-cHx$	H	H	H	·H
6-402	H	H	Pr	2	$-C \equiv C - (CH_2)_3 - cHx$	H	. Н	H	H
6-403	H	H	Pr	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-404	H	H	Pr	2	$-4-(cHx-CH_20)$ Ph	H	H	H	H
6-405	H	H	Pr	2	-(4-Bz0-Ph)	H	H	· H	H
6-406	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
6-407	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H

6-408	H	H	Me	3	$-(CH_2)_5-cHx$	H	H	H	H
6-409	H	H	Ме	3	$-(CH_2)_6-cHx$	H	H	H	H
6-410	H	H	Me	3	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
6-411	H	H	Me	3	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	Н
6-412	H	H	Me	3	$-4-(cHx-CH_20)$ Ph	H	H .	H	H
6-413	H	Ħ	Me	3	-(4-Bz0-Ph)	H	H	H	H
6-414	H	H	Me	3	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H.
6-415	H	H	Me	3	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-416	COCH ₃	H	Me	2	$-(CH_2)_4$ - cHx	H	H	H	H
6-417	COC ₂ H ₅	H	Me	2	-(CH2)4-cHx	H	H	H	H
6-418	COC ₃ H ₇	H	Me	2	-(CH2)4-cHx	H	H	. H	H
6-419	COC ₄ H ₉	H	Me	2	-(CH2)4-cHx	H	H	H	H
6-420	COC ₅ H ₁₁	H	Ме	2	-(CH2)4-cHx	H	H.	H	:H
6-421	COC ₆ H ₁₃	в Н	Me	2 -	-(CH2)4-cHx	H	H	H	2 H -
6-422	COC ₇ H ₁₁	5 H	Me	2	$-(CH_2)_4-cHx$	H	H	H	2 H
6-423	COC ₈ H ₁	, H	Me	2	$-(CH_2)_4-cHx$	H	H	Ħ	H
6-424	COCH ₃	H	Me	2	- (CH ₂) ₄ -Ph	Н.	H	H	H
6-425	COC ₂ H ₅	H	Me	2	-(CH ₂) ₄ -Ph	H	H	H	H
6-426	COC ₃ H ₇	H	Me	2	-(CH2)4-Ph	H	H	H	H
6-427	COC ₄ H ₉	H	Me	2	-(CH2)4-Ph	H	H	H	H
6-428	COC ₅ H ₁	H	Me	2	$-(CH_2)_4-Ph$	\mathbf{H}_{\cdot}	H	H	H
6-429	COC ₆ H ₁	з Н	Me	2	$-(CH_2)_4-Ph$	H	H	H	H
6-430	COC ₇ H ₁	₅ H	Me	2	$-(CH_2)_4-Ph$. H	H	H	H
6-431	COC ₈ H ₁	7 H	Me	2	$-(CH_2)_4$ -Ph	H	H	H	H
6-432	COCH3	H	Me	2	$-(CH_2)_5-cHx$	H	H	Ħ	H
6-433	COC ₂ H ₅	· H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
6-434	COC ₃ H ₇	H	Me	2	-(CH2)5-cHx	H	H	H	H
6-435	COC ₄ H ₉	Н	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
6-436	COC ₅ H ₁	, H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H

6-437	COC ₆ H ₁₈ H	Me	2	-(CH2)5-cHx	H	H	H	H
6-438	COC,H15 H	Me	2	$-(CH_2)_5-cHx$	H	. H	H	H
6-439	COC ₈ H ₁₇ H	- Me	2	-(CH2)5-cHx	H	H	H	H
6-440	COCH ₃ H	Me	2	-(CH ₂) _{.5} -Ph	H	H	À	·H
6-441	COC ₂ H ₅ H	Me	2	$-(CH_2)_5-Ph$	H	Ħ	H	H
6-442	COC ₃ H ₇ H	Me	2	$-(CH_2)_5-Ph$	H	H	. Н	H
6-443	COC₄H ₉ H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
6-444	COC ₅ H ₁₁ H	Me	2	$-(CH_2)_5-Ph$	H	H	H	·H
6-445	COC ₅ H ₁₃ H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
6-446	COC ₇ H ₁₅ H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
6-447	COC ₈ H ₁₇ H	Me	· 2	$-(CH_2)_5-Ph$	H	H	H	H
6-448	COCH ₃ H	Me.	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
6-449	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_{3} - cHx$	H	H	H	H
6-450	COC ₈ H ₇ H	Me	2	$-C \equiv C - (CH_2)_8 - cHx$	ΞĦ	H	H	Ή
6-451	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	⁴ H	·H	H	H
6-452	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
6-453	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	·H
6-454	COC ₇ H ₁₅ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Ή	H	H
6-455	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
6-456	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	Η
6-457	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	·H	Ħ	Ή	H
6-458	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_8 - Ph$	H	H	H	H
6-459	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	·H	H	H	H
6-460	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
6-461	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
6-462	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
6-463	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	H	H
6-464	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-465	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H

6-466	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H.	H	H
6-467	COC ₄ H ₉ H	Ме	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-468	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Н.	H	H	H
6-469	COC _e H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$.Н.	H	H	H
6-470	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	H	H
6-471	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	·H	H	H	H
6-472	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-473	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-474	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-475	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
.6-476	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-477	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Н	H	H
6-478	COC ₇ H ₁₅ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-479	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	H	H
6-480	COCH ₃ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	. H	H	H
6-481	COC ₂ H ₅ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	Ή	H	H	·H
6-482	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$:H	H	H	H
6-483	COC ₄ H ₉ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	ΞĦ	H	H	H
6-484	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	H
6-485	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	Ή
6-486	COC7H15 H	Me	2	$-C \equiv C - (CH_2)_z O - cHx$	H	H	H	H
6-487	COC ₈ H ₁₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	H	Н
6-488	COCH ₈ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	. Н
6-489	COC ₂ H ₅ H	Ме	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-490	COC ₃ H ₇ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-491	COC_4H_9 H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H.	H	H	H
6-492	COC ₅ H ₁₁ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	Н.	H
6-493	COC ₆ H ₁₃ H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	H	H
6-494	COC7H15 H	Ме	2	$-C = C - (CH_2)_2 O - Ph$	H	H	H	H

6-495	COC ₈ H ₁₇ H	Me	. 2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	Η.	\mathbf{H}
6-496	· COCH3 H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	Ή
6-497	COC ₂ H ₅ H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-498	COC ₃ H ₇ H	Ме	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-499	COC ₄ H ₉ H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-500	COC ₅ H ₁₁ H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-501	COC ₆ H ₁₃ H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-502	COC7H15 H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	H	H
6-503	COC ₈ H ₁₇ H	Me	2	$-C0-(CH_2)_4-cHx$	H.	. Н	H	H
6-504	COCH ₃ H	Me	2	-CO-(CH ₂) ₄ -Ph	H	H	H	H
6-505	COC ₂ H ₅ H	Me	2	$-CO-(CH_2)_4-Ph$	H .	H	H	H
6-506	COC ₃ H ₇ H	Мe	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
6-507	COC4H9 H	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H
6-508	COC ₅ H ₁₁ H	Me	2	-CO-(CH2)4-Ph	H	H	H ·	H
6-509	COC ₆ H ₁₃ H	Me	2	$-C0-(CH_2)_4-Ph$	H	H	H.	H
6-510	COC7H15 H	Me	2	$-CO-(CH_2)_4-Ph$	H _.	H	H	H
6-511	COC ₈ H ₁₇ H	Me	2	$-CO-(CH_2)_4-Ph$	H	H	H	H

表 7

$$R^{10}O - P - O R^4$$
 $R^{10}O - P - O R^4$
 $R^{10}O - R^4$
 $R^{10}O - R^4$
 $R^{10}O - R^4$
 $R^{10}O - R^4$
 R^6
 R^7
 R^7

(IIa-4)

7-1	H	Н	Me	2	-(CH ₂) ₄ -cHx	Н	.Н	Н	Н
7-2	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	H	H
7-3	H	H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
7-4	H	H	Me	2	$-(CH_2)_5-Ph$	H	H	H	H
7-5	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	H	H
7-6	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	H	H
7-7	' H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	H
7-8	H	. H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Н	H	H	H
7-9	H	H	Me	2	$-CO-(CH_2)_8-cHx$	H	H	H	H
7-10	H	H	Me	2	$-CO-(CH_2)_3-Ph$	H	H	H	н Н ,
7-11	H	H	Me	2	$-CO-(CH_2)_4-cHx$: H ;	H	H	H
7-12	H	H	Me	2	-CO-(CH2)4-Ph	H	· H	H	H
					•				

Compd.	R¹	R ²	R ⁴	n	-Y-Z-R ⁵	R ⁶	R ⁷	R ¹⁰	R11
8-1	Н	Н	Me	2	-(CH ₂) ₄ -cHx	. Н	H	Н	H
8-2	H	H	Me	2	$-(CH_2)_4-Ph$	H	H	Н	H
8-3	H	H	Me	2	$-(CH_2)_5-cHx$	H	H	H	H
8-4	H	H	Me	2	$-(CH_2)_5-Ph$	Н	H	H	H

8-5	H	. Н	Me	.2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	·H	H
8-6	· H ·	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	·H	H	H
8-7	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	H	·H
8-8	H	H	Me	2	$-C \equiv C - (CH_2)_{:3} - Ph$	H	H	H	H
8-9	Ħ	·H	Мe	2	$-CO-(CH_2)_3-cHx$	H ·	H	H	Н
8-10	Ħ	H	Me	2	$-CO-(CH_2)_3-Ph$. Н	H	H	Н
8-11	H	H	Me	. 2	$-CO-(CH_2)_4-cHx$	H	H	H	. Н
8-12	H	H	Мe	2	$-CO-(CH_2)_4-Ph$	Ĥ	.Н	H	.Н

上記表 1 [式 (I a-1)、(I a-2) 及び (1 a-3)]、表 2 [(I b-1)、(I b-2) 及び (1 b-3)]、表 3 [(1 a-4)] 並びに表 4 [(1 a-5)] において、

本発明の化合物(I)として好適には、

例示化合物番号: 1-21, $1-30\sim1-46$, $1-93\sim1-152$, $1-199\sim1-253$, $1-263\sim1-272$, $1-283\sim1-298$, $1-345\sim1-401$, $1-411\sim1-426$, $1-473\sim1-528$, $1-548\sim1-549$, $1-559\sim1-574$, $1-621\sim1-680$, $1-727\sim1-781$, $1-791\sim1-801$, $1-831\sim1-836$, $1-896\sim1-949$, $1-959\sim1-974$, $1-1021\sim1-1078$, $1-1081\sim1-1083$, $1-1093\sim1-1103$, $1-1113\sim1-1127$, $1-1137\sim1-1152$, $1-1199\sim1-1255$, $1-1265\sim1-1280$, $1-1327\sim1-1389$, $1-1399\sim1-1409$, $1-1419\sim1-1430$, 1-1433, $1-1433\sim1-1445$, $1-1457\sim1-1466$, $1-1484\sim1-1512$, $1-1531\sim1-1555$, $1-1558\sim1-1565$, $1-1584\sim1-1612$, $1-1630\sim1-1654$, $1-1657\sim1-1664$, $1-1683\sim1-1729$, $1-1743\sim1-1949$,

 $2-1 \sim 2-10$, $2-28 \sim 2-56$, $2-75 \sim 2-99$, $2-104 \sim 2-111$, $2-130 \sim 2-158$, $2-176 \sim 2-200$, $2-203 \sim 2-210$, $2-229 \sim 2-281$,

$4-9 \sim 4-12$

を挙げることができ、より好適には、

 $1-1484 \sim 1-1499$, $1-1504 \sim 1-1512$, $1-1558 \sim 1-1565$, $1-1584 \sim 1-1599$, $1-1604 \sim 1-1612$, $1-1630 \sim 1-1639$, $1-1657 \sim 1-1658$, $1-1660 \sim 1-1664$, $1-1683 \sim 1-1692$, $1-1702 \sim 1-1710$, $1-1743 \sim 1-1773$, $1-1796 \sim 1-1846$, $1-1848 \sim 1-1876$, $1-1886 \sim 1-1904$,

 $2-3\sim2-10$, $2-28\sim2-37$, $2-52\sim2-56$, $2-75\sim2-84$, $2-88\sim2-90$, $2-95\sim2-99$, $2-104\sim2-111$, $2-130\sim2-139$, $2-143\sim2-146$, $2-150\sim2-158$, $2-176\sim2-185$, $2-189\sim2-191$, $2-196\sim2-200$, $2-203\sim2-210$, $2-229\sim2-238$, $2-242\sim2-244$, $2-248\sim2-252$.

4-9~4-12

を挙げることができ、更に好適には、

1-21, 1-42, 1-93 \sim 1-105, 1-112 \sim 1-117, 1-142 \sim 1-144, 1-147 \sim 1-152, 1-199 \sim 1-211, 1-248 \sim 1-250, 1-294 \sim 1-298, 1-351, 1-367, 1-411, 1-549, 1-559 \sim 1-565, 1-569 \sim 1-574, 1-621 \sim 1-633, 1-643, 1-670 \sim 1-672, 1-676 \sim 1-680, 1-831 \sim 1-838, 1-842 \sim 1-846, 1-893 \sim 1-905, 1-912 \sim 1-917, 1-942 \sim 1-944, 1-949, 1-1021, 1-1081 \sim 1-1083, 1-1093 \sim 1-1099, 1-1462, 1-1558 \sim 1-1565, 1-1584 \sim 1-1599, 1-1604 \sim 1-1612, 1-1660 \sim 1-1664, 1-1707 \sim 1-1710, 1-1762 \sim 1-1773, 1-1816 \sim 1-1846, 1-1848 \sim 1-1859, 1-1886 \sim 1-1904,

$4-9 \sim 4-12$

を挙げることができ、更により好適には、

例示化合物番号 式 Ia-1 における 1-93:2-Pミノー2-メチルー4-[5-(5-7)] フランー2-イル] ブタンー1-オール、 例示化合物番号 式 Ia-1 における 1-570:2-アミノー2-メチルー4-[5-(5-)シクロヘキシルペントー1-イニル)フランー2-イル] ブタンー1-オール、

例示化合物番号 式 Ia-1 における 1-621: 2- ミノー 2- メチルー 4-[5- (5- フェニルペントー 1- イニル) フランー 2- イル] プタンー 1- オール、

例示化合物番号 式 Ia-1 における 1-833: 2-Pミノー 2-メチルー 4-{5 -[3 - (4 - メチルフェノキシ) プロプー 1-イニル] フランー 2-イル} ブタン - 1-オール、

例示化合物番号 式 Ia-1 における 1-842: 2-アミノー2-メチルー4-[5-4] -(4-シクロヘキシルオキシプト-1-イニル) フランー2-イル] プタンー1-オール、

例示化合物番号 式 Ia-1 における 1-1083:2-Pミノー2-メチルー4-[5-(5-シクロヘキシルペンタノイル)フランー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-1 における I-1836: 2-Pミノー2-メチルー4- {5-[3-(3,4-)メチルフェノキシ) プロプー1-イニル] フランー 2-イル} プタン-1-オール、

例示化合物番号 式 Ia-1 における 1-628: 2-Pミノー 2-メチルー 4-{5 -[5 - (4-クロロフェニル) ペントー1-イニル] フランー 2-イル} ブタンー1-オール、

例示化合物番号 式 Ia-1 における 1-640: 2-Pミノー 2-メチルー 4-{5 -[5 - (3 -トリフルオロメチルフェニル) ペントー 1-イニル] フランー 2-イル} プタンー 1-オール、

例示化合物番号 式 Ia-1 における 1-835: 2-Pミノー 2-X チルー $4-\{5-13-(4-1)$ フルオロメチルフェノキシ)プロプー 1-1 ーイニル] フラン 1-1 ー 1

例示化合物番号 式 Ia-1 における 1-1831: 2-Pミノー2-メチルー4- {5-[3-(4-クロロフェノキシ) プロプー1-イニル] フランー2-イル} ブタンー1-オール、

例示化合物番号 式 Ia-1 における 1-1838: 2-Pミノー2-メチルー4- {5-[3-(3-トリフルオロメチルフェノキシ)プロプー1-イニル]フラン-2-イル}ブタン-1-オール、

例示化合物番号 式 Ia-1 における 1-1842: 2-アミノー2-メチルー4-

 $\{5-[3-(3,4-3)] + 2-1+2 \}$

例示化合物番号 式 Ia-2 における 1-621: 2-Pミノー2-メチルー4-[1-メチルー5-(5-フェニルペントー1-イニル) ピロールー2-イル] プタンー1-オール、

例示化合物番号 式 Ia-2 における 1-833: 2-Pミノー 2-メチルー 4-(1 -メチルー 5-[3-(4-メチル) フェノキシプロプー 1-イニル] ピロールー 2-イル} ブタンー 1-オール、

例示化合物番号 式 Ia-2 における 1-842: 2-Pミノー2-メチルー4-[1-メチルー5-(4-シクロヘキシルオキシプトー1-イニル)ピロールー 2-イル]プタンー1-オール、

例示化合物番号 式 Ia-2 における $1-1836: 2-アミノ-2-メチル-4- {1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル] ピロール-2-イル} ブタン-1-オール、$

例示化合物番号 式 Ia-2 における 1-93:2- アミノー 2- メチルー 4-[1 - メチルー 5-(5- フェニルペンチル) ピロールー 2- イル] プタンー 1- オール、

例示化合物番号 式 Ia-2 における 1-1093:2-アミノー2-メチルー4- [1-メチルー5-(5-フェニルペンタノイル) ピロールー2-イル] ブタンー1-オール、

例示化合物番号 式 Ia-2 における I-1890: 2-Pミノー 2-メチルー 4- $\{1-$ メチルー 5-[5-(4-クロロフェニル) ペンタノイル] ピロールー 2- 2-イル} プタンー 1-オール、

例示化合物番号 式 Ia-2 における $1-1896: 2-アミノー2-メチルー4- {1-メチルー5-[5-(3-トリフルオロメチルフェニル)ペンタノイル] ピロールー2-イル} ブタン-1-オール、$

例示化合物番号 式Ia-2におけるI-1083:2-アミノー2-メチルー4-[1-メチルー5-(5-シクロヘキシルペンタノイル) ピロールー2-イル] ブ

タンー1ーオール、

例示化合物番号 式Ia-2におけるI-1082:2-アミノー2-メチルー4-[1-メチルー5-(4-フェニルプタノイル) ピロールー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-2における I-1081: 2-Pミノー 2-X チルー 4-[1-メチルー 5-(4-) クロヘキシルプタノイル)ピロールー 2-1 ル] プタンー 1-3 ール・

例示化合物番号 式 Ia-5における4-12:2-アミノー2-メチルー4-[1-エチルー5-(5-フェニルペンタノイル)ピロールー2-イル]プタンー1-オール、

例示化合物番号 式Ia-5における4-11:2-アミノー2-メチルー4-[1-エチルー5-(5-シクロヘキシルペンタノイル)ピロールー2-イル]プタン-1-オール、

例示化合物番号 式Ia-5における4-10:2-アミノー2-メチルー4-[1-エチルー5-(4-フェニルプタノイル)ピロールー2-イル]プタンー1-オール、

例示化合物番号 式Ia-5における4-9:2-7ミノー2-メチルー4-[1-エチルー5-(4-シクロヘキシルプタノイル)ピロールー2-イル]プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-21:2-rミノー2-xチルー4-[5-(4-v)クロヘキシルプチル)チオフェンー2-(4)プタンー1-(4-v)の示化合物番号 式 Ia-3 における 1-42:2-rミノー2-xチルー4-[5-(5-v)クロヘキシルペンチル)チオフェンー2-(4)プタンー1-(4-v)ル、

例示化合物番号 式 Ia-3 における 1-93:2-7ミノー2-メチルー4-[5-(5-7)x-2)デオフェンー2-イル]プタンー1-オール、 例示化合物番号 式 Ia-3 における 1-294:2-アミノー2-メチルー4-[5-2]

-(4-シクロヘキシルオキシブチル)チオフェン-2-イル]ブタン-1-

オール、

例示化合物番号 式 [a-3] における [a-3]1 : [a-3]2 - [a-3]3 - [a-3]3 における [a-3]3 - [a-3]4 - [a-3]5 - [a-3]6 - [a-3]6 における [a-3]7 - [a-3]7 - [a-3]8 における [a-3]7 - [a-3]8 における [a-3]9 によう [a-3]

例示化合物番号 式 Ia-3 における 1-367: 2-7ミノー 2-メチルー 4-{5 -[4-(4-メトキシフェノキシ)プチル]チオフェンー 2-イル}プタンー 1-オール、

例示化合物番号 式 Ia-3 における 1-473: 2-Pミノー2-メチルー4-[5-(4-ベンジルオキシプチル) チオフェンー2-イル] プタンー1-オール、例示化合物番号 式 Ia-3 における 1-549: 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプトー1-イニル) チオフェンー2-イル] ブタンー1-オール、

例示化合物番号 式 Ia-3 における 1-559: 2-アミノー2-メチルー4-[5-(4-フェニルプトー1-イニル)チオフェンー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-3 における 1-570: 2-アミノー2-メチルー4-[5-10] -(5-シクロヘキシルペント-1-イニル) チオフェンー2-イル] ブタンー1-オール、

例示化合物番号 式 Ia-3 における 1-621:2- アミノー 2- メチルー 4-[5- -(5- フェニルペントー 1- イニル)チオフェンー 2- イル] ブタンー 1- オール、

例示化合物番号 式 Ia-3 における 1-627: $2-アミノー2-メチルー4-{5}$ $-[5-(4-フルオロフェニル)ペントー1-イニル]チオフェンー2-イル} プタン-1-オール、$

例示化合物番号 式 Ia-3 における 1-643: $2-アミノー2-メチルー4-{5}$ $-[5-(4-メトキシフェニル)ペント-1-イニル]チオフェンー2-イル} ブタン-1-オール、$

例示化合物番号 式 Ia-3 における 1-833: 2-アミノー2-メチルー4-{5

-[3-(4-)+)プロプー1-(4-)+プタンー1-(4-)+プタンー1-(4-)+

例示化合物番号 式 Ia-3 における 1-834: $2-アミノー2-メチルー4-{5}$ $-[3-(4-エチルフェノキシ)プロプー1-イニル]チオフェンー2-イル} ブタンー1-オール、$

例示化合物番号 式 Ia-3 における 1-838: $2-アミノー2-メチルー4-{5}$ $-[3-(4-メチルチオフェノキシ)プロプー1-イニル]チオフェンー2- イル}プタンー1-オール、$

例示化合物番号 式 Ia-3 における 1-842:2-Pミノー2-メチルー4-[5-(4-)20-1-3) における 1-842:2-Pミノー2-メチルー4-[5-(4-)20-1-3) アンー1-オール、

例示化合物番号 式 Ia-3 における 1-899: $2-アミノー2-メチルー4-{5}$ $-[4-(4-フルオロフェノキシ)プト-1-イニル]チオフェンー2-イル} プタン-1-オール、$

例示化合物番号 式 1a-3 における 1-903: $2-アミノ-2-メチルー4-{5}$ $-[4-(4-メチルフェノキシ)プト-1-イニル] チオフェン-2-イル}ブ タン-1-オール、$

例示化合物番号 式 Ia-3 における 1-949: 2-アミノー2-メチルー4-[5-(3-シクロヘキシルメトキシプロプー1-イニル)チオフェンー2-イル]プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1021:2-アミノー2-メチルー4- [5-(4-ペンジルオキシプト-1-イニル)チオフェンー<math>2-イル]プタン -1-オール、

例示化合物番号 式 Ia-3 における 1-1081: 2-Pミノー 2-メチルー 4- [5-(4-シクロヘキシルプタノイル)チオフェンー 2-イル]プタンー 1- オール、

例示化合物番号 式 [a-3] における [a-1082:2-7] ([a-1082:2-7]) で [a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-1082:2-7] ([a-10

例示化合物番号 式 1a-3 における 1-1083:2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンタノイル)チオフェンー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-3 における I-1093: 2-Pミノー2-メチルー4-[5-(5-フェニルペンタノイル)チオフェンー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-3 における 1-1094: $2-アミノー2-メチルー4-{5-[5-(4-フルオロフェニル)ペンタノイル] チオフェンー<math>2-イル$ }ブタン-1-オール、

例示化合物番号 式 1a-3 における 1-1462:2-アミノー2-エチルー4- [5-(5-シクロヘキシルペンチル)チオフェンー2-イル]プタンー<math>1-オール、

例示化合物番号 式 Ia-3 における 1-1561: 2-Pミノー2-Xチルー4-[5-(5-シクロヘキシルペント-1-イニル)チオフェンー2-イル] ブタン-1-オール、

例示化合物番号 式 Ia-3 における $1-1831: 2-アミノー2-メチルー4- {5-[3-(4-クロロフェノキシ)プロプー<math>1-$ イニル]チオフェンー2-イル}プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1834:2-Pミノー2-メチルー4- {5-[3-(3-メチルフェノキシ)プロプー1-イニル]チオフェンー2-イル}プタンー1-オール、

例示化合物番号 式 Ia-3 における 1-1836: 2-Pミノー2-メチルー4- $\{5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-$ イニル]チオフェンー 2-イル $\}$ ブタンー1-オール、

例示化合物番号 式 Ia-3 における 1-1841:2-アミノー2-メチルー4-

 $\{5-[3-(3-x)++y) | プロプー1-イニル \} チオフェンー2-4ル \} プタン-1-オール、$

例示化合物番号 式 Ia-3 における $1-1842: 2-アミノー 2-メチルー 4- {5-[3-(3,4-ジメトキシフェノキシ)プロプー <math>1-1$ ニル] チオフェン -2-1 アプタン -1 ーオール、

例示化合物番号 式 Ia-3 における $1-1843: 2-アミノー2-メチルー4- {5-[3-(3,5-ジメトキシフェノキシ)プロプー<math>1-$ イニル]チオフェン -2-イル}プタン-1-オール、

例示化合物番号 式 Ia-3 における $1-1845: 2-アミノー2-メチルー4- {5-[3-(3-アセチルフェノキシ)プロプー<math>1-$ イニル]チオフェンー2-イル]プタンー1-オール及び

例示化合物番号 式 Ia-3 における $1-1846: 2-アミノー2-メチルー4- {5-[3-(4-アセチルフェノキシ)プロプー1-イニル]チオフェン-2- イル}プタン-1-オール$

を挙げることができ、特に好適には、

例示化合物番号 式 Ia-1 における 1-93:2- アミノー2- メチルー4- [5- (5- フェニルペンチル) フランー2- イル] ブタンー1- オール、

例示化合物番号 式 Ia-1 における 1-570: 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] プタン-1-オール、

例示化合物番号 式 Ia-1 における 1-621:2- アミノー 2- メチルー 4-[5- - (5- フェニルペントー 1- イニル)フランー 2- イル] ブタンー 1- オール、

例示化合物番号 式 Ia-1 における 1-842: 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプト-1-イニル) フラン-2-イル] ブタン-1-オール、

例示化合物番号 式 Ia-1 における 1-1083: 2-アミノー2-メチルー4- [5-(5-シクロヘキシルペンタノイル) フランー2-イル] ブタンー<math>1-

オール、

例示化合物番号 式 Ia-1 における $1-1836: 2-アミノー2-メチルー4- {5-{3-(3,4-ジメチルフェノキシ) プロプー<math>1-$ イニル] フランー 2-イル} プタン-1-オール、

例示化合物番号 式 Ia-2 における 1-621:2-Pミノー2-Xチルー4-[1-Xチルー5-(5-7ェニルペントー1-7 ニル)ピロールー2-7ル プタン-1-7

例示化合物番号 式 Ia-2 における 1-833: $2-アミノー2-メチルー4-{1}$ -メチルー $5-[3-(4-メチル) フェノキシプロプー1-イニル] ピロール-2-イル} ブタンー<math>1-オール$ 、

例示化合物番号 式 Ia-2 における 1-842: 2-アミノー2-メチルー4-[1-メチルー5- (4-シクロヘキシルオキシブトー1-イニル) ピロールー2-イル] ブタンー1-オール

例示化合物番号 式 1a-2 における 1-1093: 2-7ミノー2-3チルー4-1000 に 1-1000 に 1-1000 に 1-100 に 1-1000 に 1-1000

例示化合物番号 式 Ia-2 における 1-1836: 2-アミノ-2-メチル-4- $\{1-メチル-5-[3-(3,4-ジメチル) フェノキシプロプー1-イニル] ピロール-2-イル \} プタン-1-オール、$

例示化合物番号 式Ia-2におけるI-1083:2-アミノー2-メチルー4-[1-メチルー5-(5-シクロヘキシルペンタノイル) ピロールー2-イル] ブタン-1-オール、

例示化合物番号 式Ia-2におけるI-1082:2-アミノー2-メチルー4-[1-メチルー5-(4-フェニルプタノイル) ピロールー2-イル]プタンー1-オール、

例示化合物番号 式Ia-2におけるI-1081:2-アミノー2-メチルー4-[1-メチルー5-(4-シクロヘキシルブタノイル)ピロールー2-イル]プタン-1-オール、

例示化合物番号 式 Ia-5 における4-12:2-7 ミノー2- メチルー4-[1- エチルー5-(5- フェニルペンタノイル)ピロールー2- イル] プタンー1- オール、

例示化合物番号 式 Ia-5 における4-11:2- アミノー2- メチルー4-[1- エチルー5-(5- シクロヘキシルペンタノイル)ピロールー2- イル] ブタンー1- オール、

例示化合物番号 式 Ia-5 における4-10:2- アミノー2- メチルー4-[1- エチルー5-(4- フェニルプタノイル) ピロールー2- イル] プタンー1- オール、

例示化合物番号 式Ia-5における4-9:2-アミノ-2-メチル-4-[1-エチル-5-(4-シクロヘキシルプタノイル)ピロール-2-イル]プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-21:2-Pミノー2-メチルー4-[5-(4-シクロヘキシルプチル)チオフェンー2-イル]プタンー1-オール、例示化合物番号 式 Ia-3 における 1-42:2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンチル)チオフェンー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-3 における 1-294:2- アミノー 2- メチルー 4- [5- - (4- シクロヘキシルオキシプチル)チオフェンー 2- イル] ブタンー 1- オール、

例示化合物番号 式 Ia-3 における 1-351: $2-アミノー2-メチルー4-{5}$ $-[4-(4-フルオロフェノキシ)プチル]チオフェンー2-イル}プタンー1-オール、$

例示化合物番号 式 Ia-3 における I-367: 2-Pミノー 2-メチルー 4-{5 - [4-(4-メトキシフェノキシ) ブチル] チオフェンー 2-イル} ブタンー 1-オール、

例示化合物番号 式 Ia-3 における 1-473: 2-Pミノー2-メチルー4-[5 -(4-ペンジルオキシプチル)チオフェンー2-イル]プタンー1-オール、例示化合物番号 式 Ia-3 における 1-549: 2-アミノー2-メチルー4-[5 -(4-シクロヘキシルプトー1-イニル)チオフェンー2-イル]プタンー1-オール、

例示化合物番号 式 Ia-3 における 1-559: 2-アミノ-2-メチルー4-[5-(4-フェニルプト-1-イニル)チオフェン-2-イル] プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-570: 2-アミノー2-メチルー4-[5-0] -(5-0)

例示化合物番号 式 Ia-3 における 1-621: 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)チオフェン-2-イル] ブタン-1-オール、

例示化合物番号 式 Ia-3 における 1-627: $2-アミノー2-メチルー4-{5}$ $-[5-(4-フルオロフェニル)ペントー1-イニル]チオフェンー2-イル} プタンー1-オール、$

例示化合物番号 式 [a-3] における [a-643:2-7] ([a-3] における [a-3] における [a-643:2-7] ([a-3] における [a-643:2-7] によって [a-643

例示化合物番号 式 Ia-3 における 1-833: 2-Pミノー 2-メチルー 4-{5 -[3 -(4 - メチルフェノキシ)プロプー 1-イニル]チオフェンー 2-イル}プタンー 1-オール、

例示化合物番号 式 Ia-3 における 1-834: $2-アミノー 2-メチルー 4-{5}$ $-[3-(4-エチルフェノキシ)プロプー 1-イニル]チオフェンー 2-イル} ブタン-1-オール、$

例示化合物番号 式 [a-3] における [a-3] によう [a

イル}プタンー1ーオール、

例示化合物番号 式 Ia-3 における 1-842: 2-Pミノー2-メチルー 4-[5-(4-シクロヘキシルオキシプトー1-イニル)チオフェンー 2-イル] ブタンー1-オール、

例示化合物番号 式 Ia-3 における 1-899: $2-アミノ-2-メチルー <math>4-\{5-(4-(4-7))$ オロフェノキシ) プトー 1-(4-(4-7)) プタンー 1-(4-1)

例示化合物番号 式 Ia-3 における 1-903: 2-Pミノー2-メチルー4-{5 -[4-(4-メチルフェノキシ)プトー1-イニル]チオフェンー2-イル}プタンー1-オール、

例示化合物番号 式 ia-3 における 1-949: 2-アミノー2-メチルー 4-[5 -(3-シクロヘキシルメトキシプロプー1-イニル)チオフェンー2-イル]プタン-1-オール、

例示化合物番号 式 1a-3 における 1-1021: 2-アミノー2-メチルー4- [5-(4-ベンジルオキシプト-1-イニル)チオフェンー2-イル]プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1081:2-アミノー2-メチルー4- [5-(4-シクロヘキシルプタノイル)チオフェンー2-イル]プタンー<math>1- オール、

例示化合物番号 式 Ia-3 における 1-1082: 2-アミノ-2-メチル-4-[5-(4-フェニルプタノイル)チオフェン-2-イル]プタン-1-オール、例示化合物番号 式 <math>Ia-3 における 1-1083: 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1094: 2-アミノー2-メチルー4-

:5.

 ${5 - [5 - (4 - 7) + 7 - 7) + (4 -$

例示化合物番号 式 Ia-3 における 1-1462:2-アミノー2-エチルー4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]プタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1561: 2-Pミノー2-xチルー4-[5-(5-シクロヘキシルペント-1-イニル)チオフェンー2-イル] ブタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1707: 2-P > 2-12-13 [5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル] ブタン-1-オール、

例示化合物番号 式 Ia-3 における 1-1831:2-アミノー2-メチルー4- $\{5-[3-(4-$ クロロフェノキシ)プロプー1-イニル]チオフェンー2-イ (3-0(4-

例示化合物番号 式 Ia-3 における 1-1834:2-アミノー2-メチルー4-4 $\{5-[3-(3-メチルフェノキシ)プロプー1-イニル]チオフェンー2-イル}プタン-1-オール、$

例示化合物番号 式 Ia-3 における $I-1836:2-アミノー2-メチルー4-4- {5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]チオフェンー2-イル}プタン-1-オール、$

例示化合物番号 式 Ia-3 における $I-1841: 2-アミノー2-メチルー4- {5-[3-(3-メトキシフェノキシ)プロプー1-イニル]チオフェンー2- イル}プタンー1-オール、$

例示化合物番号 式 Ia-3 における 1-1842:2-アミノー2-メチルー4- $\{5-[3-(3,4-ジメトキシフェノキシ)プロプー1-イニル]チオフェン-2-イル}ブタン-1-オール、$

例示化合物番号 式 Ia-3 における $1-1843:2-アミノー2-メチルー4- {5-[3-(3,5-ジメトキシフェノキシ)プロプー1-イニル]チオフェン$

300

-2-イル}ブタン-1ーオール、

例示化合物番号 式 [a-3] における $[a-1845:2-アミノー2-メチルー4-{5-[3-(3-アセチルフェノキシ)プロプー<math>[a-1-1]$ チオフェンー[a-1] イル[a-1] プタンー[a-1] ーオール及び

例示化合物番号 式 Ia-3 における $1-1846:2-アミノー2-メチルー4- {5-[3-(4-アセチルフェノキシ)プロプー<math>1-1-1$ - イル}ブタンー1-1 - イル

を挙げることができる。

上記表5[式(IIa-1)、(IIa-2)及び(IIa-3)]、表6[(IIb-1)、(IIb-2)及び(IIb-3)]並びに表7[(IIa-4)]において、

本発明の化合物(II)として好適には、

例示化合物番号:5-19,5-23~5-32,5-36~5-45,5-49~5-58,5-62~5-71, $5-75 \sim 5-84$, $5-88 \sim 5-102$, $5-106 \sim 5-156$, $5-160 \sim 5-214$, $5-218 \sim 5-268$, $5-272 \sim 5-321$, $5-325 \sim 5-334$, $5-338 \sim 5-347$, $5-351 \sim 5-360$, $5-364 \sim 5-373$, $5-377 \sim 5-386$, $5-390 \sim 5-404$, $5-408 \sim 5-458$, $5-462 \sim 5-513$, $5-517 \sim 5-526$, $5-530\sim5-544$, $5-548\sim5-598$, $5-602\sim5-657$, 5-670, $5-674\sim5-683$, 5-696, $5-700\sim5-717$, $5-721\sim5-730$, $5-734\sim5-743$, $5-747\sim5-756$, $5-760\sim5-774$, $5-778 \sim 5-828$, $5-832 \sim 5-886$, $5-890 \sim 5-940$, $5-944 \sim 5-993$, $5-997 \sim 5-1006$, $5-1010\sim5-1019$, 5-1045, $5-1049\sim5-1058$, $5-1062\sim5-1076$, $5-1080\sim5-1130$, $5-1134 \sim 5-1185$, $5-1189 \sim 5-1198$, $5-1202 \sim 5-1208$, $5-1212 \sim 5-1216$, $5-1220 \sim 5-1270$, $5-1274 \sim 5-1331$, $5-1335 \sim 5-1344$, $5-1348 \sim 5-1357$, $5-1361 \sim 5-1370$, $5-1374 \sim 5-1387$, $5-1391 \sim 5-1400$, $5-1404 \sim 5-1418$, $5-1422 \sim 5-1472$, $5-1476 \sim 5-1527$, $5-1531 \sim 5-1540$, $5-1544 \sim 5-1558$, $5-1562 \sim 5-1612$, $5-1616 \sim 5-1673$, $5-1677 \sim 5-1686$, $5-1690 \sim 5-1699$, $5-1703 \sim 5-1712$, $5-1716 \sim 5-1729$, $5-1733 \sim 5-1744$, $5-1748 \sim 5-1768$, $5-1772 \sim 5-1793$, $5-1797 \sim 5-1820$, $5-1824 \sim 5-1846$, $5-1850 \sim 5-1869$, 5-1872, 5-1876, 5-1880, 5-1884, $5-1888 \sim 5-1892$, 5-1896, 5-1900, $5-1908 \sim 5-1913$,

 $5-1917 \sim 5-1939$, $5-1943 \sim 5-1966$, $5-1970 \sim 5-1991$, $5-1995 \sim 5-2013$, 5-2017, 5-2021, 5-2025, 5-2029, 5-2033, $5-2037 \sim 5-2042$, $5-2046 \sim 5-2068$, $5-2072 \sim 5-2089$, 5-2093, 5-2097, 5-2101, 5-2105, 5-2109, 5-2113, 5-2117, 5-2121, 5-2125, 5-2129, 5-2133, 5-2135, $5-2139 \sim 5-2158$, $5-2161 \sim 5-2164$, $5-2185 \sim 5-2346$, $5-2398 \sim 5-2557$,

 $6-9 \sim 6-18$, $6-22 \sim 6-43$, $6-47 \sim 6-70$, $6-74 \sim 6-96$, $6-100 \sim 6-119$, 6-142, 6-146, 6-150, 6-154, $6-158 \sim 6-163$, $6-167 \sim 6-183$, $6-185 \sim 6-189$, $6-193 \sim 6-216$, $6-220 \sim 6-241$, $6-245 \sim 6-263$, 6-267, 6-271, 6-275, 6-279, 6-283, $6-287 \sim 6-292$, $6-296 \sim 6-318$, $6-322 \sim 6-338$, 6-343, 6-347, 6-351, 6-371, $6-375 \sim 6-377$, $6-381 \sim 6-407$, $6-416 \sim 6-511$,

 $7-9 \sim 7-12$

であり、更に好適には、

5-19, 5-32, $5-36\sim5-45$, 5-57, $5-62\sim5-71$, 5-84, 5-88, $5-97\sim5-100$, $5-152\sim5-154$, $5-160\sim5-214$, $5-218\sim5-227$, $5-264\sim5-268$, $5-272\sim5-321$, 5-334, 5-347, 5-360, 5-373, 5-386, $6-390\sim5-402$, $5-454\sim5-458$, $5-462\sim5-513$, 5-526, $5-530\sim5-542$, $5-594\sim5-598$, $5-602\sim5-653$, 5-743, 5-756, $5-760\sim5-768$, $5-770\sim5-774$, $5-778\sim5-828$, $5-832\sim5-886$, $5-890\sim5-940$, $5-944\sim5-993$, 5-1045, 5-1058, $5-1062\sim5-1074$, $5-1126\sim5-1130$, $5-1134\sim5-1185$, 5-1198, $5-1202\sim5-1208$, $5-1212\sim5-1214$, $5-1266\sim5-1270$, $5-1274\sim5-1331$, 5-1344, $5-1348\sim5-1357$, 5-1370, $5-1374\sim5-1387$, 5-1400, $5-1404\sim5-1416$, $5-1468\sim5-1472$, $5-1476\sim5-1527$, 5-1540, $5-1544\sim5-1556$, $5-1608\sim5-1612$, $5-1616\sim5-1666$, 5-1729, 5-1742, 5-1744, $5-1759\sim5-1767$, $5-1789\sim5-1793$, $5-1797\sim5-1818$, $5-1842\sim5-1846$, 5-1900, $5-1908\sim5-1913$, $5-1935\sim5-1939$, $5-1943\sim5-1966$, $5-1987\sim5-1991$, 5-2013, 5-2017, 5-2029, 5-2033, $5-2037\sim5-2042$, $5-2064\sim5-2068$, $5-2072\sim5-2089$, 5-2093, 5-2097, 5-2101, 5-2105, 5-2109, 5-2129, 5-2135, $5-2185\sim5-2346$, $5-2398\sim5-2557$.

 $6-11\sim6-18$, $6-39\sim6-43$, $6-47\sim6-70$, $6-185\sim6-189$, $6-193\sim6-216$, 6-287

 \sim 6-292, 6-338, 6-343, 6-347, 6-351, 6-416 \sim 6-511, 7-9 \sim 7-12

であり、より好適には、

5-45, 5-71, 5-84, 5-88, $5-97\sim5-100$, $5-152\sim5-154$, $5-160\sim5-206$, $5-209\sim5-212$, $5-264\sim5-266$, 5-334, 5-373, 5-386, $5-390\sim5-402$, $5-454\sim5-458$, $5-462\sim5-485$, 5-509, 5-510, 5-513, 5-526, $5-530\sim5-542$, $5-594\sim5-598$, $5-602\sim5-613$, 5-649, 5-650, 5-743, 5-756, $5-760\sim5-768$, $5-770\sim5-772$, $5-824\sim5-828$, $5-832\sim5-884$, 5-936, 5-1045, 5-1058, $5-1062\sim5-1074$, $5-1126\sim5-1130$, $5-1134\sim5-1145$, $5-1148\sim5-1151$, 5-1162, 5-1163, $5-1179\sim5-1182$, 5-1185, 5-1198, $5-1202\sim5-1208$, 5-1212, 5-1213, 5-1214, $5-1266\sim5-1270$, $5-1274\sim5-1285$, $5-1288\sim5-1291$, $5-1319\sim5-1322$, $5-1329\sim5-1331$, 5-1344, $5-1348\sim5-1476\sim5-1487$, $5-1490\sim5-1493$, 5-1504, $5-1616\sim5-1627$, 5-1663, 5-164, 5-1540, $5-1544\sim5-1556$, $5-1608\sim5-1612$, $5-1616\sim5-1627$, 5-1663, 5-1664, 5-1729, 5-1742, 5-1744, $5-1761\sim5-1766$, $5-1789\sim5-1791$, $5-1815\sim5-1818$, 5-1900, 5-1909, 5-1962, $5-2064\sim5-2066$, 5-2089, 5-2093, 5-2097, 5-2101, 5-2105, 5-2133, $5-2216\sim5-2288$, $5-2290\sim5-2346$, $5-2398\sim5-2557$,

 $7-9 \sim 7-12$

であり、更により好適な化合物は、

例示化合物番号 式 IIa-1 における 5-770: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2 <math>-イル]-1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-824: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-フェニルペント-1-イニル) フラン-2-イル]

-1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-1063: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-メチルフェノキシ) プロプー1-イニル] フラン-<math>2-4$ ル $\}$ - 1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-1331: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-シクロヘキシルペンタノイル)フラン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-2278: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イ ニル]フラン-2-イル\} -1-ブチル エステル、$

例示化合物番号 式 IIa-1 における 5-834: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-クロロフェニル) ペント-1-イニル] フラン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-1 における 5-846: リン酸 モノ 2-アミノ-2 $-メチル-4-\{5-[5-(3-トリフルオロメチルフェニル) ペント-1 -イニル] フラン-2-イル <math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-1065: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-トリフルオロメチルフェノキシ)プロプー <math>1-(1-1)$ 1-(1-1) 1-(1-1) 1-(1-1) 1-(1-1) 1-(1-1) 1-(1-1) 1-(1-1) 1-(1-1)

例示化合物番号 式 IIa-1 における 5-2273: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-クロロフェノキシ)プロプー1-イニル] フラン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-1 における 5-2280: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(3-トリフルオロメチルフェノキシ)プロプー <math>1-7$

例示化合物番号 式 IIa-1 における 5-2284: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(3,4-ジメトキシフェノキシ)プロプー1- イニル]フラン-2-イル} -1-ブチル エステル、$

例示化合物番号 式 IIa-2 における 5-824: リン酸 モノ 2-アミノ-2 -メチル-4-[1-メチル-5-(5-フェニルペント-1-イニル) ピロ <math>-ル-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-2 における 5-1063: リン酸 モノ 2-アミノ-2 $-メチル-4-{1-メチル-5-[3-(4-メチル) フェノキシプロプー1-イニル] ピロール-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-2 における 5-1072: リン酸 モノ 2-アミノ-2 -メチル-4-[1-メチル-5-(4-シクロヘキシルオキシプト-1-イニル) ピロール-2-イル] -1-プチル エステル、

例示化合物番号 式 11a-2 における 5-2278: リン酸 モノ 2-7ミノー 2 -メチルー4ー $\{1-$ メチルー5ー[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]ピロールー2-イル $\}-1-$ プチル エステル、

例示化合物番号 式 IIa-2 における 5-84: リン酸 モノ 2-アミノ-2- メチルー4-[1-メチル-5-(5-フェニルペンチル) ピロールー2ーイル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-2 における 5-1344: リン酸 モノ 2-アミノ-2 -メチル-4-[1-メチル-5-(5-フェニルペンタノイル) ピロールー <math>2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-2 における 5-2332: リン酸 モノ 2-アミノ-2 $-メチル-4-\{1-メチル-5-[5-(4-クロロフェニル) ペンタノイル] ピロール-2-イル <math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-2 における 5-2338: リン酸 モノ 2-アミノ-2 $-メチル-4-{1-メチル-5-[5-(3-トリフルオロメチルフェニル) ペンタノイル] ピロールー <math>2-イル$ -1-プチル エステル、

例示化合物番号 式IIa-2における5-1331:リン酸 モノ 2-アミノー2-

メチルー4-[1-メチルー5-(5-シクロヘキシルペンタノイル)ピロールー2-イル] -1-プチル エステル、

例示化合物番号 式I1a-2における5-1330: リン酸 モノ 2-7ミノー2-メチルー4-[1-メチルー5-(4-フェニルプタノイル) ピロールー2-イル] -1-プチル エステル、

例示化合物番号 式IIa-2における5-1329:リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-シクロヘキシルプタノイル) ピロール <math>-2-7 エステル、

例示化合物番号 式IIa-4における7-12:リン酸 モノ 2-7ミノー2-メ チルー4-[1-xチルー5-(5-7x)エステル、 2-7・カー 2-

例示化合物番号 式IIa-4における7-11:リン酸 モノ 2-7ミノー2-メ チルー4-[1-エチルー5-(5-シクロヘキシルペンタノイル) ピロール -2-イル] -1-プチル エステル、

例示化合物番号 式IIa-4における7-10:リン酸 モノ 2-アミノー2-メ チルー4-[1-エチルー5-(4-フェニルブタノイル) ピロールー2-イル] -1-ブチル エステル、

例示化合物番号 式I1a-4における7-9:リン酸 モノ 2-7ミノー2-3 チルー4-[1-xチルー5-(4-5)クロヘキシルブタノイル)ピロールー2-4 エステル、エステル、

例示化合物番号 式 IIa-3 における 5-71: リン酸 モノ 2-アミノー2- メチルー4-[5-(4-シクロヘキシルプチル)チオフェンー2-イル] ー 1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-84: リン酸 モノ 2-アミノ-2- メチルー4-[5-(4-フェニルプチル)チオフェンー2-イル] -1-プ チル エステル、

例示化合物番号 式 IIa-3 における 5-98: リン酸 モノ 2-アミノ-2- メチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]

-1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-152:リン酸 モノ 2-アミノー2 ーメチルー4ー[5ー(5ーフェニルペンチル)チオフェンー2ーイル] ー1 -プチル エステル、

例示化合物番号 式 IIa-3 における 5-210:リン酸 モノ 2-アミノー2 -1-プチル エステル、

·例示化合物番号 式 IIa-3 における 5-264:リン酸 モノ 2-アミノー2 -メチル-4-[5-(6-フェニルヘキシル)チオフェン-2-イル]-1ープチル エステル、

例示化合物番号 式 IIa-3 における 5-373:リン酸 モノ 2-アミノー2 ーメチルー4-[5-(3-シクロヘキシルオキシプロピル)チオフェン-2 ーイル] ー 1 ー プチル エステル、

例示化合物番号 式 IIa-3 における 5-386:リン酸 モノ 2-アミノー2 ーメチルー4ー[5ー(3ーフェノキシプロピル)チオフェンー2ーイル] ー 1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-400: リン酸 モノ 2-アミノー2 ーメチルー4ー[5ー(4ーシクロヘキシルオキシブチル)チオフェンー2ー イル] -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-454:リン酸 モノ 2-アミノー2 ーメチルー4ー[5ー(4ーフェノキシブチル)チオフェンー2ーイル] -1 ープチル エステル、

例示化合物番号 式 lfa-3 における 5-509:リン酸 モノ 2-アミノー2 ーメチルー4-[5-(5-シクロヘキシルオキシペンチル)チオフェンー2 ーイル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-510:リン酸 モノ 2-アミノー2 ーメチルー4-[5ー(5ーフェノキシペンチル)チオフェンー2ーイル] ー 1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-513: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(3-シクロヘキシルメトキシプロピル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-743: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルプト-1-イニル) チオフェン-2 -イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-756: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-フェニルプト-1-イニル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-770: リン酸 モノ 2-Pミノー 2-X - X -

例示化合物番号 式 IIa-3 における 5-824: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-フェニルペント-1-イニル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-882: リン酸 モノ 2-Pミノー 2 -メチルー $4-[5-(6-\nu)$ クロヘキシルヘキシー1-(1-1) チオフェンー 2-(1-1) - 1

例示化合物番号 式 IIa-3 における 5-936: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(6-フェニルヘキシー1-イニル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1045: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(3-シクロヘキシルオキシプロプー1-イニル) チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-1058: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(3-フェノキシプロプー1-イニル)チオフェン-2 <math>-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1072: リン酸 モノ 2-アミノー2

ーメチルー4-[5-(4-シクロヘキシルオキシプト-1-イニル)チオフ エンー2ーイル] ー1ープチル エステル、

例示化合物番号 式 IIa-3 における 5-1126:リン酸 モノ 2-アミノー2 ーメチルー4ー[5-(4-フェノキシプトー1-イニル)チオフェンー2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1181:リン酸 モノ 2-アミノー2 ーメチルー4-[5-(5-シクロヘキシルオキシペント-1-イニル)チオ フェンー2ーイル] ー1ープチル エステル、

例示化合物番号 式 IIa-3 における 5-1182:リン酸 モノ 2-アミノー2 ーメチルー4ー[5ー(5ーフェノキシペントー1ーイニル)チオフェンー2 ーイル] -1-プチル エステル、

例示化合物番号 式 Hla-3 における 5-1185:リン酸 モノ 2ーアミノー2 ーメチルー4-[5-(3-シクロヘキシルメトキシプロプー1-イニル)チ オフェンー2ーイル]ー1ープチル エステル、

例示化合物番号 式 IIa-3 における 5-1329:リン酸 モノ 2-アミノー2 ーメチルー4ー[5-(4-シクロヘキシルプタノイル)チオフェンー2ーイ ル] -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-1330:リン酸 モノ 2-アミノー2 ーメチルー4ー[5ー(4ーフェニルブタノイル)チオフェンー2ーイル]ー 1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1331:リン酸 モノ 2-アミノー2 ーメチルー4ー[5-(5-シクロヘキシルペンタノイル)チオフェンー2-イル] -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-1344: リン酸 モノ 2ーアミノー 2 ーメチルー4ー[5-(5-フェニルペンタノイル)チオフェンー2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1357: リン酸 モノ 2ーアミノー2 ーメチルー4-[5-(6-シクロヘキシルヘキサノイル)チオフェン-2イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1370: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(6-フェニルヘキサノイル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1387: リン酸 モノ 2-アミノ-2 -メチルー4-[5-(3-シクロヘキシルオキシプロパノイル)チオフェン <math>-2-イル] -1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-1400: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(3-フェノキシプロパノイル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1414: リン酸 モノ 2-Pミノー 2 -メチルー 4-[5-(4-)20 - ステルオキシブタノイル) チオフェンー 2-7 - 1-7

例示化合物番号 式 IIa-3 における 5-1468: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-フェノキシプタノイル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1523: リン酸 モノ 2-アミノ-2 -メチルー4-[5-(5-シクロヘキシルオキシペンタノイル)チオフェン -2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1524: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-フェノキシペンタノイル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1527: リン酸 モノ 2-アミノ-2 -メチルー 4-[5-(3-シクロヘキシルメトキシプロパノイル) チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1729: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルメトキシフェニル) チオフェン-2-イル] -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-1742: リン酸 モノ 2-Pミノー 2-4 ・ 2

例示化合物番号 式 IIa-3 における 5-1744: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-ペンジルオキシフェニル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1761: リン酸 モノ 2-アミノ-2 - エチル-4-[5-(4-シクロヘキシルプチル) チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1764: リン酸 モノ 2-アミノ-2 -エチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1816: リン酸 モノ 2-アミノ-2 -エチル-4-[5-(6-シクロヘキシルヘキシル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1900: リン酸 モノ 2-アミノ-2 -エチル-4-[5-(4-シクロヘキシルプト-1-イニル)チオフェン-2 <math>-イル]-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1909: リン酸 モノ 2-アミノ-2 - エチル-4-[5-(5-シクロヘキシルペント-1-イニル) チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2089: リン酸 モノ 2-アミノ-2 - エチル-4-[5-(4-シクロヘキシルブタノイル) チオフェン-2-イル] -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-2097:リン酸 モノ 2-アミノ-2

-エチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]-1-ブチル エステル、及び

例示化合物番号 式 IIa-3 における 5-2105: リン酸 モノ 2-アミノ-2 - エチル-4-[5-(6-シクロヘキシルヘキサノイル)チオフェン-2- イル] <math>-1-プチル エステル、

並びに

例示化合物番号 式 IIa-3 における 5-463: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-フルオロフェノキシ)プチル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-479: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-メトキシフェノキシ)プチル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-594: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-ベンジルオキシブチル)チオフェン-2-イル] <math>-1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-760: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(4-フルオロフェニル)プト-1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-761: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(4-メチルフェニル)プト-1-イニル]$ チオフェン- $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-762: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-エチルフェニル)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-763: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-トリフルオロメチルフェニル)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-764:リン酸 モノ 2ーアミノー2

例示化合物番号 式 IIa-3 における 5-765: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-エトキシフェニル)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-766: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-メチルチオフェニル)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-832: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-フルオロフェニル)ペント-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-833: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-フルオロフェニル)ペント-1-イニル]チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-834: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-クロロフェニル)ペント-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-836: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[5-(3-メチルフェニル)ペントー1-イニル]チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-837: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-メチルフェニル)ペント-1-イニル]チオ フェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-846: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-トリフルオロメチルフェニル)ペント-1- イニル]チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-847: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[5-(4-トリフルオロフェニル) ペント-1-イニ$

ル] チオフェンー2ーイル}ー1ーブチル エステル、

例示化合物番号 式 IIa-3 における 5-848: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-メトキシフェニル) ペント-1-イニル] チオフェン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-849: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-メトキシフェニル)ペント-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-860: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-メチルチオフェニル)ペント-1-イニル] チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-861: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-メチルチオフェニル)ペント-1-イニル] チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-877: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(3,4-ジメチルフェニル)ペント-1-イニル]$ チオフェン- $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-878: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,5-ジメチルフェニル)ペント-1-イニル] チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-1050: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-メチルシクロヘキシルオキシ)プロプ-1- イニル] チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1062: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-フルオロフェノキシ)プロプ-1-イニル]$ チオフェン- $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1063: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-メチルフェノキシ)プロプ-1-イニル]チオフェン-<math>2-4$ ル $\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1064: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-エチルフェノキシ)プロプー1-イニル]チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-1065: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-トリフルオロメチルフェノキシ)プロプ-1$ -イニル] チオフェン- $2-イル\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1066: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(4-メトキシフェノキシ)プロプー1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1067: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(4-エトキシフェノキシ)プロプー1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1068: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(4-メチルチオフェノキシ)プロプー1-イニ ル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1134: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3-フルオロフェノキシ)プト-1-イニル]$ チオフェン- $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1135: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-フルオロフェノキシ)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1136: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(4-クロロフェノキシ)プト-1-イニル]$ チオフェン- $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1138: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(3-メチルフェノキシ)プト-1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1139: リン酸 モノ 2-アミノー2

-メチル-4-{5-[4-(4-メチルフェノキシ)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1148: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-トリフルオロメチルフェノキシ)プト-1- イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1149: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(4-トリフルオロメチルフェノキシ)プト-1- イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1150: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3-メトキシフェノキシ)プト-1-イニル]チオフェン-<math>2-(1)$ -1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-1151: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(4-メトキシフェノキシ)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1162: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3-メチルチオフェノキシ)プト-1-イニル]$ チオフェン- $2-イル\}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-I163: リン酸 モノ 2-Pミノー 2 ーメチルー $4-\{5-[4-(4-メチルチオフェノキシ)プトー1-イニル]$ チオフェンー 2-4ル $\}$ ー 1-7チル エステル、

例示化合物番号 式 IIa-3 における 5-1179: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3,4-ジメチルフェノキシ)プト-1-イニル]$ チオフェン-2-(7)-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1180: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3,5-ジメチルフェノキシ)プト-1-イニル]$ チオフェン- $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1198: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(3-ペンジルオキシプロプ-1-イニル)チオフェン

-2-イル] -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-1202: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-フルオロフェニル)メトキシプロプー1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1203: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(4-メチルフェニル)メトキシプロプー1-イニ ル] チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1204: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-エチルフェニル)メトキシプロプ-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1205: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[3-(4-トリフルオロメチルフェニル)メトキシプロプー1-イニル]チオフェンー<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 I1a-3 における 5-1206: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-メトキシフェニル)メトキシプロプー1-イニル] チオフェン-<math>2-4$ ル $\}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1207: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-エトキシフェニル)メトキシプロプー1ーイニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1208: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-メチルチオフェニル)メトキシプロプ-1- イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1212: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルメトキシプト-1-イニル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1266: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-ベンジルオキシプト-1-イニル)チオフェン-2-イル]-1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-1274: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-フルオロフェニル)メトキシブト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1276: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(4-クロロフェニル)メトキシプト-1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1278: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-メチルフェニル)メトキシプト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1279: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(4-メチルフェニル)メトキシプト-1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1288: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3-トリフルオロメチルフェニル)メトキシプト <math>-1-7$ - エステル、

例示化合物番号 式 IIa-3 における 5-1289: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(4-トリフルオロメチルフェニル)メトキシプト -1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1290: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-メトキシフェニル)メトキシプト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1291: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(4-メトキシフェニル)メトキシプト-1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1319: リン酸 モノ 2-アミノー2

-メチル-4-{5-[4-(3,4-ジメチルフェニル)メトキシプト-1-イニル]チオフェン-2-イル}-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1320: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3,5-ジメチルフェニル)メトキシプト-1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1348: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-フルオロフェニル) ペンタノイル] チオフェン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1349: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(4-メチルフェニル)ペンタノイル]チオフェン <math>-2-4$ ル -1-7 チル エステル、

例示化合物番号 式 IIa-3 における 5-1350: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[5-(4-エチルフェニル)ペンタノイル]チオフェン <math>-2-(4-1)$ エステル、

例示化合物番号 式 IIa-3 における 5-1351: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[5-(4-トリフルオロメチルフェニル) ペンタノイル] チオフェンー<math>2-(4-1)$ エステル、

例示化合物番号 式 IIa-3 における 5-1352: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(4-メトキシフェニル)ペンタノイル]$ チオフェン- $2-イル\}$ -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-1353: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-エトキシフェニル) ペンタノイル] チオフェン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1354: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[5-(4-メチルチオフェニル)ペンタノイル]$ チオフェンー2-4 ループチル エステル、

例示化合物番号 式 IIa-3 における 5-1476: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3-7)]$ - フルオロフェノキシ) プタノイル] チオフェ

ン-2-イル}-1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-1478: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-クロロフェノキシ)プタノイル]チオフェン <math>-2-イル}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1480: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-メチルフェノキシ)プタノイル]チオフェン <math>-2-イル}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1481: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-メチルフェノキシ)プタノイル]チオフェン <math>-2-イル}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1490: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3-トリフルオロメチルフェノキシ)プタノイル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1491: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-トリフルオロメチルフェノキシ)プタノイル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1492: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-メトキシフェノキシ)ブタノイル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1493: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-メトキシフェノキシ)プタノイル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1504: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(3-メチルチオフェノキシ)ブタノイル]チオフェン-<math>2-7$ ル $\}-1-7$ チル エステル、

例示化合物番号 式 IIa-3 における 5-1505: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(4-メチルチオフェノキシ)プタノイル] チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1521: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3,4-ジメチルフェノキシ)プタノイル]チオフェン-2-イル\}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1522: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3,5-ジメチルフェノキシ)プタノイル]チオフェン-2-イル<math>\}-1-プチル$ エステル、

例示化合物番号 式 I1a-3 における 5-2093: リン酸 モノ 2-アミノーエ チルー4-[5-(4-フェニルプタノイル)チオフェンー<math>2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2101: リン酸 モノ 2-アミノーエ チルー4-[5-(5-フェニルペンタノイル)チオフェンー2-イル] -1 ープチル エステル、

例示化合物番号 式 IIa-3 における 5-2109: リン酸 モノ 2-7ミノーエチルー4-[5-(6-7)] エステル、エステル、

例示化合物番号 式 IIa-3 における 5-2257: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,4-ジフルオロフェニル)ペント-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2258: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(3,5-ジフルオロフェニル)ペント-1-イニル] チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2259: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-クロロフェニル)ペント-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2260: リン酸 モノ 2-アミノー 2

-メチル-4-{5-[5-(3, 4-ジクロロフェニル)ペント-1-イニル] チオフェン-2-イル}-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2261: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,5-ジクロロフェニル)ペント-1-イニル] チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2262: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,4-ジトリフルオロメチルフェニル) ペント <math>-1-(7-1)$ チオフェン-2-(7ル) -1-(7-1) エステル、

例示化合物番号 式 IIa-3 における 5-2263: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,5-ジトリフルオロメチルフェニル) ペント <math>-1-(3,5)$ チオフェン-2-イル} -1-(3,5) エステル、

例示化合物番号 式 IIa-3 における 5-2264: リン酸 モノ 2-7ミノー 2-3 ・ 2

例示化合物番号 式 IIa-3 における 5-2265: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(3,5-ジメトキシフェニル)ペント-1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2266: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,4,5-トリメトキシフェニル)ペント-1- イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2267: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-アセチルフェニル) ペント-1-イニル] チオフェン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2268: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-アセチルフェニル)ペント-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2269: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(3-フルオロフェノキシ)プロプー1-イニル]}$

チオフェンー2ーイル]-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2270: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,4-ジフルオロフェノキシ)プロプ-1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2271: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,5-ジフルオロフェノキシ)プロプ-1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2272: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3-クロロフェノキシ)プロプ-1-イニル]$ チオフェン- $2-イル\}$ -1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-2273: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-クロロフェノキシ)プロプー1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2274: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,4-ジクロロフェノキシ)プロプー1-イニル]チオフェン-<math>2-(1)$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2275: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,5-ジクロロフェノキシ)プロプ-1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2276: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3-メチルフェノキシ)プロプー1-イニル]チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-2278: リン酸 モノ 2-アミノ-2 -メチル-4-(5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]チオフェン-<math>2-イル}-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2279: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,5-ジメチルフェノキシ)プロプー1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 I1a-3 における 5-2280: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3-h)]$ フルオロメチルフェノキシ)プロプー1 -イニル]チオフェン-2-4ル3-1 エステル、

例示化合物番号 式 IIa-3 における 5-2281: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3,4-ジトリフルオロメチルフェノキシ)プロプー<math>1-4$ - 1 - プチル エステル、

例示化合物番号 式 IIa-3 における 5-2282: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(3,5-ジトリフルオロメチルフェノキシ)プロプー1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2283: リン酸 モノ 2-7ミノー 2-3 - メチルー $4-\{5-[3-(3-3)]$ - メトキシフェノキシ) プロプー 1-4 ニル] チオフェンー 2-4 ル3-4 - プチル エステル、

例示化合物番号 式 IIa-3 における 5-2284: リン酸 モノ 2-7ミノー 2-3 ーメチルー $4-\{5-[3-(3,4-3)]$ チャンフェノキシ) プロプー 1-7 ニル] チャフェンー 2-7 ル エステル、

例示化合物番号 式 IIa-3 における 5-2285: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,5-ジメトキシフェノキシ)プロプー1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2286: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,4,5-h)]$ - トリメトキシフェノキシ) プロプー 1-(3,4,5-h) - イニル] チオフェン- 2-(4,5-h) - 1 - プチル エステル、

例示化合物番号 式 I1a-3 における 5-2287: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(3-アセチルフェノキシ)プロプ-1-イニル] チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-2288: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-アセチルフェノキシ)プロプー1-イニル] チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2290: リン酸 モノ 2-アミノー2

ーメチルー $4-\{5-[4-(3,4-ジフルオロフェノキシ)プト-1-イニル]$ チオフェンー2-(1)-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2291: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(3,5-ジフルオロフェノキシ)プト-1-イニル] チオフェンー <math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2292: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3-クロロフェノキシ)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2293: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3,4-ジクロロフェノキシ)プトー1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2294: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3,5-ジクロロフェノキシ)プト-1-イニル]$ チオフェン-2-イル}-1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-2295: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3,4-ジトリフルオロメチルフェノキシ)プト -1-イニル]チオフェンー <math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2296: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(3,5-ジトリフルオロメチルフェノキシ)ブト <math>-1-(3,5-3)$ エステル、エステル、

例示化合物番号 式 IIa-3 における 5-229,7: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(3,4-ジメトキシフェノキシ)プト-1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2298: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(3,5-ジメトキシフェノキシ)プト-1-イニル] チオフェンー <math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2299: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3,4,5-1) メトキシフェノキシ) プトー1-$

イニル]チオフェン-2-イル}-1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-2300: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(3-アセチルフェノキシ)プト-1-イニル]チオフェン-2-イル\}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2301: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[4-(4-アセチルフェノキシ)プト-1-イニル]チ オフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2328: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-7) オロフェニル) ペンタノイル] チオフェン-2-イル} -1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2329: リン酸 モノ 2-アミノ-2 $-メチル-4-\{5-[5-(3,4-ジフルオロフェニル)ペンタノイル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2330: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[5-(3,5-ジフルオロフェニル)ペンタノイル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2331: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-クロロフェニル)ペンタノイル]チオフェン <math>-2-イル}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-2332: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-クロロフェニル)ペンタノイル]チオフェン <math>-2-イル}-1-プチル$ エステル、

例示化合物番号 式 I1a-3 における 5-2333: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3,4-ジクロロフェニル) ペンタノイル] チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 I1a-3 における 5-2334: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[5-(3,5-ジクロロフェニル)ペンタノイル]$ チオフェンー $2-イル\}-1-$ ブチル エステル、

例示化合物番号 式 IIa-3 における 5-2335: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-メチルフェニル) ペンタノイル] チオフェン <math>-2-4$ ル $}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2336: リン酸 モノ 2-Pミノー2 -メチルー $4-\{5-[5-(3,4-ジメチルフェニル)ペンタノイル]チオフェンー<math>2-(3)$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2337: リン酸 モノ 2-Pミノ-2 -メチル-4- $\{5-[5-(3,5-3)$ メチルフェニル) ペンタノイル] チオフェン-2-イル $\}$ -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-2338: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(3-1)]$ - トリフルオロメチルフェニル) ペンタノイル] チオフェン-2-4ル] - 1 - プチル エステル、

例示化合物番号 式 IIa-3 における 5-2339: リン酸 モノ 2-アミノ-2 $-メチル-4-\{5-[5-(3,4-ジトリフルオロメチルフェニル)ペンタ ノイル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2340: リン酸 モノ 2-Pミノー 2 -メチルー $4-\{5-[5-(3,5-ジ$ トリフルオロメチルフェニル) ペンタノイル] チオフェンー 2-4 ル 1-3 チル エステル、

例示化合物番号 式 IIa-3 における 5-2341: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(3-メトキシフェニル) ペンタノイル] チオフェン-2-イル} -1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-2342: リン酸 モノ 2-Pミノー 2-P 2

例示化合物番号 式 IIa-3 における 5-2343: リン酸 モノ 2-Pミノー 2-Pミノー 2-Pミノー 2-P・メチルー $4-\{5-[5-(3,5-2)]$ メトキシフェニル) ペンタノイル] チオフェンー 2-7 アン・カー 1-7 チル エステル、

例示化合物番号 式 IIa-3 における 5-2344: リン酸 モノ 2-アミノー2

-メチルー $4-\{5-[5-(3, 4, 5-)]$ ナオフェニル)ペンタノイル]チオフェンー2-イル $\}-1-$ プチル エステル、

例示化合物番号 式 IIa-3 における 5-2345: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[5-(3-アセチルフェニル)ペンタノイル]$ チオフェン- $2-イル\}-1-プチル$ エステル及び

例示化合物番号 式 IIa-3 における 5-2346: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-アセチルフェニル) ペンタノイル] チオフェン-2-イル} -1-プチル エステル、$

であり、最も好適には、

例示化合物番号 式 IIa-1 における 5-84: リン酸 モノ 2-アミノ-2-メチルー4-[5-(5-フェニルペンチル) フランー <math>2-イル]-1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-770: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2 <math>-イル] -1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-824: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-フェニルペント-1-イニル)フラン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-1072: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルオキシプト-1-イニル) フラン <math>-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-1 における 5-1331: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-シクロヘキシルペンタノイル) フラン-2-イル] -1-ブチル エステル、

例示化合物番号 式 IIa-1 における 5-2278: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3,4-ジメチルフェノキシ) プロプー<math>1-4$ ニル]フラン-2-4ル $\}$ - 1-ブチル エステル、

例示化合物番号 式 IIa-2 における 5-824:リン酸 モノ 2-アミノ-2

ーメチルー4ー[1ーメチルー5ー(5ーフェニルペントー1ーイニル)ピロ ールー2-イル]-1-ブチル エステル、

例示化合物番号 式 IIa-2 における 5-1063: リン酸 モノ 2-アミノー 2 ーメチルー4ー{1-メチルー5-[3-(4-メチル)フェノキシプロプ-1-イニル]ピロールー2-イル}-1-ブチル エステル、

例示化合物番号 式 IIa-2 における 5-1072:リン酸 モノ 2-アミノ-2 ーメチルー4-[1-メチルー5-(4-シクロヘキシルオキシプトー1-イ ニル) ピロールー2ーイル] ー1ープチル エステル、

例示化合物番号 式 IIa-2 における 5-2278: リン酸 モノ 2-アミノ-2 ーメチルー4ー{1-メチルー5-[3-(3,4-ジメチルフェノキシ)プ ロプー1-イニル] ピロールー2-イル}-1-プチル エステル、

例示化合物番号 式 IIa-2 における 5-1344:リン酸 モノ 2-アミノ-2 ーメチルー4ー[1ーメチルー5ー(5ーフェニルペンタノイル)ピロールー 2-イル] -1-ブチル エステル、

例示化合物番号 式IIa-2における5-1331:リン酸 モノ 2-アミノ-2-メチルー4ー[1ーメチルー5ー(5ーシクロヘキシルペンタノイル) ピロー ルー2ーイル] ー1ープチル エステル、

例示化合物番号 式IIa-2における5-1330:リン酸 モノ 2-アミノ-2-メチルー4-[1-メチルー5-(4-フェニルプタノイル)ピロール-2-イル] -1-ブチル エステル、

例示化合物番号 式IIa-2における5-1329:リン酸 モノ 2ーアミノー2-メチルー4ー[1ーメチルー5ー(4ーシクロヘキシルプタノイル) ピロール -2-イル] -1-ブチル エステル、

例示化合物番号 式IIa-4における7-12:リン酸 モノ 2-アミノー2-メ **チルー4-[1-エチルー5-(5-フェニルペンタノイル) ピロールー2-**イル] -1-ブチル エステル、

例示化合物番号 式IIa-4における7-11:リン酸 モノ 2-アミノー2-メ チルー4-[1-エチルー5-(5-シクロヘキシルペンタノイル)ピロール -2-イル] -1-ブチル エステル、

例示化合物番号 式IIa-4における7-10: リン酸 モノ 2-アミノ-2-メ チル-4-[1-エチル-5-(4-フェニルプタノイル) ピロール-2-イル] -1-プチル エステル、

例示化合物番号 式IIa-4における7-9: リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(4-シクロヘキシルプタノイル) ピロール-2-イル]-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-71: リン酸 モノ 2-7ミノー 2- メチルー 4-[5-(4-)20ロヘキシルプチル)チオフェンー 2-イル] ー 1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-98: リン酸 モノ 2-アミノ-2-メチルー4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-152: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-フェニルペンチル)チオフェン-2-イル] -1 <math>-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-400: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルオキシブチル)チオフェン-2- イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-463: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-フルオロフェノキシ)プチル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-479: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[4-(4-メトキシフェノキシ)ブチル]チオフェン-2-イル}-1-ブチル エステル、$

例示化合物番号 式 IIa-3 における 5-594: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-ベンジルオキシブチル)チオフェン-2-イル] <math>-1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-743: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルプト-1-イニル)チオフェン-2 <math>-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-756: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-フェニルプト-1-イニル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-770: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン <math>-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-824: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-フェニルペント-1-イニル)チオフェン-2- イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-833: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[5-(4-フルオロフェニル)ペント-1-イニル]チ オフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-849: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[5-(4-メトキシフェニル)ペント-1-イニル]チオフェン-<math>2-4$ ル $\}-1-プチル$ エステル、

例示化合物番号 式 I1a-3 における 5-1050: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-メチルシクロヘキシルオキシ)プロプ-1-イニル] チオフェン-2-イル<math>\}$ -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1063: リン酸 モノ 2-アミノ-2 $-メチル-4-{5-[3-(4-メチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-1064: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(4-エチルフェノキシ)プロプ-1-イニル]チオフェン-<math>2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1068:リン酸 モノ 2-アミノ-2

-メチル-4-{5-[3-(4-メチルチオフェノキシ)プロプー1-イニル]チオフェン-2-イル}-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1072: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルオキシプト-1-イニル) チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1135: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[4-(4-7)ルオロフェノキシ)プト-1-イニル]チオフェン-2-イル<math>\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1139: リン酸 モノ 2-アミノ-2 ーメチルー $4-\{5-[4-(4-メチルフェノキシ)プト-1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 IIa-3 における 5-1185: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(3-シクロヘキシルメトキシプロプー1-イニル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1266: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-ベンジルオキシプト-1-イニル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1329: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-シクロヘキシルプタノイル)チオフェン-2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1330: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(4-フェニルプタノイル)チオフェン-2-イル] - 1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1331: リン酸 モノ 2-アミノ-2 -メチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2- イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1344: リン酸 モノ 2-アミノー 2 -メチルー4-[5-(5-フェニルペンタノイル) チオフェンー 2-イル] -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1348: リン酸 モノ 2-アミノ-2 -メチル-4-[5-[5-(4-フルオロフェニル) ペンタノイル] チオフェン-<math>2-イル -1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1764: リン酸 モノ 2-アミノ-2 -エチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-1909: リン酸 モノ 2-アミノ-2 -エチル-4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン <math>-2-イル] -1-プチル エステル、

例示化合物番号 式 I1a-3 における 5-2097: リン酸 モノ 2-アミノ-2 - エチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2- イル] <math>-1-プチル エステル、

例示化合物番号 式 IIa-3 における 5-2273: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(4-クロロフェノキシ)プロプー1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 IIa-3 における 5-2276: リン酸 モノ 2-Pミノー 2 -メチルー $4-\{5-[3-(3-x)]$ -メチルフェノキシ) プロプー 1-(3-x) - オフェンー 2-(3-x) - ブチル エステル、

例示化合物番号 式 IIa-3 における 5-2278: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}-1-プチル エステル、$

例示化合物番号 式 I1a-3 における 5-2283: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3-メトキシフェノキシ)プロプー1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル、

例示化合物番号 式 I1a-3 における 5-2284: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3,4-ジメトキシフェノキシ)プロプー1-イニル] チオフェン-2-イル<math>\}$ -1-ブチル エステル、

例示化合物番号 式 IIa-3 における 5-2285: リン酸 モノ 2-アミノ-2 -メチル- $4-\{5-[3-(3,5-ジメトキシフェノキシ)プロプ-1-イル]$ エステル、エステル、

例示化合物番号 式 IIa-3 における 5-2287: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(3-rv+1)]$ エステル及び

例示化合物番号 式 IIa-3 における 5-2288: リン酸 モノ 2-アミノ-2 -メチルー $4-\{5-[3-(4-アセチルフェノキシ)プロプー1-イニル]$ チオフェンー $2-イル\}-1-プチル$ エステル である。

上記表5[式(II,Ia-1)、(IIIa-2)及び(IIIa-3)]、表6[(IIIb-1)、(IIIb-2)及び(IIIb-3)]並びに表8[(IIIa-4)] において、

本発明の化合物(III)として好適には、

例示化合物番号: 5-19, $5-23\sim5-32$, $5-36\sim5-45$, $5-49\sim5-58$, $5-62\sim5-71$, $5-75\sim5-84$, $5-88\sim5-102$, $5-106\sim5-156$, $5-160\sim5-214$, $5-218\sim5-268$, $5-272\sim5-321$, $5-325\sim5-334$, $5-338\sim5-347$, $5-351\sim5-360$, $5-364\sim5-373$, $5-377\sim5-386$, $5-390\sim5-404$, $5-408\sim5-458$, $5-462\sim5-513$, $5-517\sim5-526$, $5-530\sim5-544$, $5-548\sim5-598$, $5-602\sim5-657$, 5-670, $5-674\sim5-683$, 5-696, $5-700\sim5-717$, $5-721\sim5-730$, $5-734\sim5-743$, $5-747\sim5-756$, $5-760\sim5-774$, $5-778\sim5-828$, $5-832\sim5-886$, $5-890\sim5-940$, $5-944\sim5-993$, $5-997\sim5-1006$, $5-1010\sim5-1019$, 5-1045, $5-1049\sim5-1058$, $5-1062\sim5-1076$, $5-1080\sim5-1130$, $5-1134\sim5-1185$, $5-1189\sim5-1198$, $5-1202\sim5-1208$, $5-1212\sim5-1216$, $5-120\sim5-1270$, $5-1274\sim5-1331$, $5-1335\sim5-1344$, $5-1348\sim5-1357$, $5-1361\sim5-1370$, $5-1374\sim5-1387$, $5-1391\sim5-1400$, $5-1404\sim5-1418$, $5-1422\sim5-1472$, $5-1476\sim5-1527$, $5-1531\sim5-1540$, $5-1544\sim5-1558$, $5-1562\sim5-1612$, $5-1616\sim5-1673$, $5-1677\sim5-1686$, $5-1690\sim5-1768$, $5-1703\sim5-1712$, $5-1716\sim5-1729$, $5-1733\sim5-1744$, $5-1748\sim5-1768$,

 $5-1772 \sim 5-1793$, $5-1797 \sim 5-1820$, $5-1824 \sim 5-1846$, $5-1850 \sim 5-1869$, 5-1872, 5-1876, 5-1880, 5-1884, $5-1888 \sim 5-1892$, 5-1896, 5-1900, $5-1908 \sim 5-1913$, $5-1917 \sim 5-1939$, $5-1943 \sim 5-1966$, $5-1970 \sim 5-1991$, $5-1995 \sim 5-2013$, 5-2017, 5-2021, 5-2025, 5-2029, 5-2033, $5-2037 \sim 5-2042$, $5-2046 \sim 5-2068$, $5-2072 \sim 5-2089$, 5-2093, 5-2097, 5-2101, 5-2105, 5-2109, 5-2113, 5-2117, 5-2121, 5-2125, 5-2129, 5-2133, 5-2135, $5-2139 \sim 5-2158$, $5-2161 \sim 5-2164$, $5-2185 \sim 5-2346$, $5-2398 \sim 5-2557$,

 $6-9 \sim 6-18$, $6-22 \sim 6-43$, $6-47 \sim 6-70$, $6-74 \sim 6-96$, $6-100 \sim 6-119$, 6-142, 6-146, 6-150, 6-154, $6-158 \sim 6-163$, $6-167 \sim 6-183$, $6-185 \sim 6-189$, $6-193 \sim 6-216$, $6-220 \sim 6-241$, $6-245 \sim 6-263$, 6-267, 6-271, 6-275, 6-279, 6-283, $6-287 \sim 6-292$, $6-296 \sim 6-318$, $6-322 \sim 6-338$, 6-343, 6-347, 6-351, 6-371, $6-375 \sim 6-377$, $6-381 \sim 6-407$, $6-416 \sim 6-511$,

8-9~8-12

であり、更に好適には、

5-19, 5-32, $5-36\sim 5-45$, 5-57, $5-62\sim 5-71$, 5-84, 5-88, $5-97\sim 5-100$, $5-152\sim 5-154$, $5-160\sim 5-214$, $5-218\sim 5-227$, $5-264\sim 5-268$, $5-272\sim 5-321$, 5-334, 5-347, 5-360, 5-373, 5-386, $5-390\sim 5-402$, $5-454\sim 5-458$, $5-462\sim 5-513$, 5-526, $5-530\sim 5-542$, $5-594\sim 5-598$, $5-602\sim 5-653$, 5-743, 5-756, $5-760\sim 5-768$, $5-770\sim 5-774$, $5-778\sim 5-828$, $5-832\sim 5-886$, $5-890\sim 5-940$, $5-944\sim 5-993$, 5-1045, 5-1058, $5-1062\sim 5-1074$, $5-1126\sim 5-1130$, $5-1134\sim 5-1185$, 5-1198, $5-1202\sim 5-1208$, $5-1212\sim 5-1214$, $5-1266\sim 5-1270$, $5-1274\sim 5-1331$, 5-1344, $5-1348\sim 5-1357$, 5-1370, $5-1374\sim 5-1387$, 5-1400, $5-1404\sim 5-1416$, $5-1468\sim 5-1472$, $5-1476\sim 5-1527$, 5-1540, $5-1544\sim 5-156$, $5-1608\sim 5-1612$, $5-1616\sim 5-1666$, 5-1729, 5-1742, 5-1744, $5-1759\sim 5-1767$, $5-1789\sim 5-1793$, $5-1797\sim 5-1818$, $5-1842\sim 5-1846$, 5-1900, $5-1908\sim 5-1913$, $5-1935\sim 5-1939$, $5-1943\sim 5-1966$, $5-1987\sim 5-1991$, 5-2013, 5-2017, 5-2029, 5-2033, $5-2037\sim 5-2042$, $5-2064\sim 5-2068$, $5-2072\sim 5-2089$, 5-2093, 5-2097, 5-2101, 5-2105, 5-2109, 5-2129, 5-2133, 5-2135, $5-2185\sim 5-2346$, 5-2398

335

 $\sim 5-2557$.

 $6-11\sim6-18$, $6-39\sim6-43$, $6-47\sim6-70$, $6-185\sim6-189$, $6-193\sim6-216$, $6-287\sim6-292$, 6-338, 6-343, 6-347, 6-351, $6-416\sim6-511$,

8-9~8-12

であり、より好適には、

5-45, 5-71, 5-84, 5-88, $5-97\sim5-100$, $5-152\sim5-154$, $5-160\sim5-206$, $5-209\sim5-212$, $5-264\sim5-266$, 5-334, 5-373, 5-386, $5-390\sim5-402$, $5-454\sim5-458$, $5-462\sim5-485$, 5-509, 5-510, 5-513, 5-526, $5-530\sim5-542$, $5-594\sim5-598$, $5-602\sim5-613$, 5-649, 5-650, 5-743, 5-756, $5-760\sim5-768$, $5-770\sim5-772$, $5-824\sim5-828$, $5-832\sim5-884$, 5-936, 5-1045, 5-1058, $5-1062\sim5-1074$, $5-1126\sim5-1130$, $5-1134\sim5-1145$, $5-1148\sim5-1151$, 5-1162, 5-1163, $5-1179\sim5-1182$, 5-1185, 5-1198, $5-1202\sim5-1208$, 5-1212, 5-1213, 5-1214, $5-1266\sim5-1270$, $5-1274\sim5-1285$, $5-1288\sim5-1291$, $5-1319\sim5-1322$, $5-1329\sim5-1331$, 5-1344, $5-1348\sim5-1357$, 5-1370, 5-1387, 5-1400, $5-1404\sim5-1468\sim5-1472$, $5-1476\sim5-1487$, $5-1490\sim5-1493$, 5-1504, 5-1505, $5-1521\sim5-1524$, 5-1527, 5-1540, 5-1540, $5-1544\sim5-1556$, $5-1608\sim5-1612$, $5-1616\sim5-1627$, 5-1663, 5-1664, 5-1729, 5-1742, 5-1744, $5-1761\sim5-1766$, $5-1789\sim5-1791$, $5-1815\sim5-1818$, 5-1900, 5-1909, 5-1962, $5-2064\sim5-2066$, 5-2089, 5-2093, 5-2097, 5-2105, 5-2133, $5-2216\sim5-2288$, $5-2290\sim5-2346$, $5-2398\sim5-2557$,

8-9~8-12

であり、更により好適な化合物は、

例示化合物番号 式 IIIa-1 における 5-84:3-Pミノー3-メチルー5-[5-(5-フェニルペンチル) フランー2-イル]ペンチルホスホン酸、 例示化合物番号 式 IIIa-1 における 5-770:3-アミノー3-メチルー5-[5-(5-シクロヘキシルペントー1-イニル) フランー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-824:3 - アミノ-3 - メチル-5 -

[5-(5-フェニルペント-1-イニル)フラン-2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-1063:3-7ミノー3-メチルー5-(5-[3-(4-メチルフェノキシ)プロプー1-イニル]フランー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-1072:3-アミノー3-メチル-5 -[5-(4-シクロヘキシルオキシプト-1-イニル) フラン-2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-1331:3-アミノー3-メチルー5-[5-(5-シクロヘキシルペンタノイル)フランー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-2278:3-7ミノー3-メチルー $5-\{5-\{3-(3,4-)3+10,2+10\}\}$ プロプー1-イニル]フランー2-イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-834:3-Pミノー3-メチルー5- {5-[5-(4-クロロフェニル) ペントー1-イニル] フランー2-イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-846:3- アミノー3- メチルー5- $\{5-[5-(3-$ トリフルオロメチルフェニル) ペントー1- イニル] フランー2- イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-1065:3-Pミノー3-メチルー5-1065:3-Pミノー3-メチルー5-1065:3-Pミノー3-メチルー5-1065:3-Pミノー3-メチルー5-1065:3-Pミノー3-メチルー5-207 プロプー1-71 フランー2-7ル ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-2273:3-Pミノー3-メチルー $5-{5-[3-(4-)DDDTL/+>}$ プロプー1-イニル]フランー2-イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-2280:3-Pミノー3-メチルー $5-\{5-[3-(3-)]$ フルオロメチルフェノキシ)プロプー1-イニル]

フランー2ーイル】ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-824:3-7ミノー3-メチルー5-[1-メチルー5-(5-フェニルペントー1-イニル) ピロールー2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-1063:3-Pミノー3-メチルー5-[3-(4-メチル) フェノキシプロプー1-イニル] ピロールー2-イル ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-10.72:3-アミノ-3-メチル-5 -[1-メチル-5-(4-シクロヘキシルオキシプト-1-イニル) ピロール-2-イル] ペンチルホスホン酸、

例示化合物番号 式 111a-2 における 5-2278:3-7ミノー3-メチルー 5-(1-メチルー 5-(3-(3,4-)ジメチルフェノキシ)プロプー1-イニル] ピロールー2-イル 1ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-84:3-アミノー3-メチルー5- [1-メチルー5- (5-フェニルペンチル) ピロールー2-イル] ペンチル ホスホン酸、

例示化合物番号 式 IIIa-2 における 5-1344:3-7ミノー3-メチルー5-[1-メチルー5-(5-フェニルペンタノイル) ピロールー2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-2332:3-Pミノー3-メチルー $5-\{1-$ メチルー $5-\{5-(4-$ クロロフェニル)ペンタノイル]ピロールー2-イル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-2338:3-Pミノー3-メチルー5-[5-(3-トリフルオロメチルフェニル) ペンタノイル] ピロールー2-イル} ペンチルホスホン酸、

例示化合物番号 式IIIa-2における5-1331:3-7ミノー3-メチルー5-[1-メチルー5-(5-シクロヘキシルペンタノイル)ピロールー2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-2における5-1330:3-7ミノー3-メチルー5-[1-メチルー5-(4-フェニルプタノイル)ピロールー2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-2における5-1329:3-7ミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシルプタノイル)ピロール-2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-12:3-アミノー3-メチルー5-[1-エチルー5-(5-フェニルペンタノイル)ピロールー2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-11:3-アミノー3-メチルー5-[1-エチルー5-(5-シクロヘキシルペンタノイル)ピロールー2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-10:3-7ミノー3-メチルー5-[1-エチルー5-(4-フェニルプタノイル) ピロールー2-イル] ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-9:3-アミノ-3-メチル-5-[1-エチル-5-(4-シクロヘキシルブタノイル)ピロール-2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-71:3-アミノー3-メチルー5-[5-(4-シクロヘキシルブチル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 II1a-3 における 5-84:3-7ミノー3-メチルー5-[5-(4-)フェニルプチル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-98:3-アミノ-3-メチル-5- [5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホ

ン酸、

例示化合物番号 式 IIIa-3 における 5-152:3-Pミノー3-メチルー5-[5-(5-フェニルペンチル)チオフェンー2-イル]ペンチルホスホン酸、例示化合物番号 式 IIIa-3 における 5-210:3-アミノー3-メチルー5-[5-(6-シクロヘキシルヘキシル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-264:3-Pミノー3-メチルー5-[5-(6-フェニルヘキシル)チオフェンー2-イル]ペンチルホスホン酸、例示化合物番号 式 IIIa-3 における 5-373:3-アミノー3-メチルー5-[5-(3-シクロヘキシルオキシプロピル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-386:3-Pミノー3-Xチルー5-[5-(3-Dx)]キシプロピル)チオフェンー2-(3-Dx) ではいった。 ではいる 5-400:3-Pミノー3-Xチルー5-[5-(4-D)] ではいった。 「5-(4-D) ではいった

例示化合物番号 式 IIIa-3 における 5-454:3-Pミノー3-メチルー5-[5-(4-)フェノキシブチル)チオフェンー2-イル]ペンチルホスホン酸、例示化合物番号 式 IIIa-3 における 5-509:3-Pミノー3-メチルー5-[5-(5-)シクロヘキシルオキシペンチル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-510:3-7ミノー3-メチルー5-[5-(5-7ェノキシペンチル)チオフェンー2-イル]ペンチルホスホン酸、例示化合物番号 式 IIIa-3 における 5-513:3-7ミノー3-メチルー5-[5-(3-シクロヘキシルメトキシプロピル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1329:3-アミノー3-メチル-5 -[5-(4-シクロヘキシルプタノイル)チオフェン-2-イル]ペンチルホ

スホン酸、

例示化合物番号 式 IIIa-3 における 5-1330:3-Pミノー3-メチルー5-[5-(4-)フェニルプタノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1331:3-7ミノー3-メチルー5-15-(5-)シウロヘキシルペンタノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1344:3-Pミノー3-メチルー5-15-(5-)フェニルペンタノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1357:3-Pミノー3-メチルー5-[5-(6-)20101+2)ルヘキサノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1370:3-yミノー3-yチルー5-15-(6-y)エニルヘキサノイル)チオフェンー2-4ル ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1387:3-Pミノー3-メチルー5-15-(3-)シクロヘキシルオキシプロパノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1400:3-7ミノー3-メチルー5-15-(3-7)フェノキシプロパノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1414:3- アミノー3- メチルー5-15-(4- シクロヘキシルオキシプタノイル)チオフェンー2- イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1468:3-Pミノー3-メチルー5-1468:3-Pミノー3-メチルー5-1468:3-Pミノー3-メチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1523:3-Pミノー3-メチル-5-1523:3-アミノー3-メチル-5-1523:3-アミノー3-メチル-5-1523:3-アミノー3-メチル-5-2 - (5-5 - (5-

例示化合物番号 式 IIIa-3 における 5-1524:3-Pミノー3-メチル-5-1524:3-アミノー3-メチル-5-1524:3-アミノー3-メチル-5-1524:3-アミノー3-メチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1527:3-アミノー3-メチル-5 -[5-(3-シクロヘキシルメトキシプロパノイル)チオフェン-2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1729:3-Pミノー3-Xチルー5-1729:3-Pミノー3-Xチルー5-1729:3-Pミノー3-Xチルー5-1729:3-Pミノー3-Xチルー5-1729:3-Pミノー3-Xチルー5-1729:3-Pミノー3-Xチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1742:3- アミノー3- メチルー5-15-(4- シクロヘキシルエトキシフェニル)チオフェンー2- イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1744:3- アミノー3- メチルー5-1744:3- アミノー3- メチルー5-1744:3- アミノー3- メチルー5-1744:3- アミノー3- メチルー5- ルテンプルオキシフェニル) チオフェンー2- イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1761:3-Pミノー3-Tチルー5-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1764:3-アミノー3-エチル-5 -[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1816:3-7ミノー3-エチルー5-15-(6-シクロヘキシルヘキシル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2089: 3-アミノー3-エチル-5

-[5-(4-シクロヘキシルプタノイル)チオフェン-2-イル]ペンチルポスホン酸、

例示化合物番号 式 IIIa-3 における 5-2097: 3-アミノ-3-エチル-5 -[5-(5-シクロヘキシルペンタノイル) チオフェン-2-イル] ペンチル ホスホン酸、及び

例示化合物番号 式 IIIa-3 における 5-2105:3- アミノー3- エチルー5-(5-(6-)200 マンテルヘキサノイル) チオフェンー2- イル] ペンチルホスホン酸、

並びに

例示化合物番号 式 IIIa-3 における 5-463:3- アミノー3- メチルー5- $\{5-[4-(4-7) + 10]$ プチル] チオフェンー2- イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-479:3- アミノー3- メチルー5- {5-[4-(4- メトキシフェノキシ)ブチル]チオフェンー2- イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-594:3-アミノー3-メチルー5-[5-(4-ベンジルオキシブチル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1349:3-Pミノー3-Xチル5-(5-[5-(4-Xチルフェニル)ペンタノイル]チオフェンー2-イル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1350: 3-アミノー 3-メチルー 5 $-\{5-[5-(4-エチルフェニル)ペンタノイル] チオフェンー <math>2-イル\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1351:3-アミノー3-メチルー5

 $-{5-[5-(4-トリフルオロメチルフェニル)ペンタノイル]チオフェン$ $-2-イル}ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-1352:3-アミノ-3-メチル-5 $-\{5-[5-(4-メトキシフェニル) ペンタノイル] チオフェン-2-イル\} ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-1353:3-アミノー3-メチルー5 $-\{5-[5-(4-エトキシフェニル) ペンタノイル] チオフェンー2-イル\} ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-1354:3-7ミノー3-メチルー5-(5-(5-(4-メチルチオフェニル)ペンタノイル]チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1476:3- アミノー3- メチルー5- $-{5-[4-(3-) ルオロフェノキシ)プタノイル]チオフェン-<math>2-$ イルトペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1477:3- アミノー3- メチルー5- - $\{5-[4-(4-) ルオロフェノキシ) プタノイル] チオフェン-<math>2-$ イル ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1480: 3-アミノー3-メチルー5 $-\{5-[4-(3-メチルフェノキシ)ブタノイル]チオフェン-2-イル\}ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-1481:3-7ミノー3-メチルー5-[4-(4-メチルフェノキシ)プタノイル]チオフェンー2-イル ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1490:3-pミノー3-xチルー5-[4-(3-h)]フルオロメチルフェノキシ)プタノイル]チオフェン

- 2 - イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1491:3-アミノー3-メチルー5-[4-(4-トリフルオロメチルフェノキシ)ブタノイル]チオフェン-2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1492:3-アミノー3-メチル-5 $-\{5-[4-(3-メトキシフェノキシ)プタノイル]チオフェン-2-イル\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1493:3- アミノー3-メチルー5-[4-(4-メトキシフェノキシ)プタノイル]チオフェンー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1504:3-アミノー3-メチル-5-[5-[4-(3-メチルチオフェノキシ)ブタノイル]チオフェン-2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1505:3-Pミノー3-メチルー5-(5-[4-(4-メチルチオフェノキシ)プタノイル]チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1521:3-y = 1521-3-y = 1521 (3) 「5-[4-(3,4-3)] (3) 「カノイル」 「カフェン -2-1 ル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1522:3-7ミノー3-メチルー $5-\{5-\{4-(3,5-3)$ メチルフェノキシ) ブタノイル] チオフェンー2-イル パンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2093:3-Pミノー3-エチルー5-[5-(4-)フェニルプタノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2101:3-7ミノー3-xチルー 5-2101:3-x こここの -(5-(5-x) における 5-2101:3-x こここの -(5-(5-x) における (5-2101:3-x) における (5-210

例示化合物番号 式 IIIa-3 における 5-2109:3-Pミノー3-IIIa-5 -[5-(6-フェニルヘキサノイル)チオフェン-2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2328:3-Pミノー3-メチルー $5-\{5-\{5-\{5-(3-7)\}\}\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2329:3-Pミノー3-メチルー $5-\{5-\{5-(3,4-ジフルオロフェニル)ペンタノイル}$ チオフェンー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2330: 3-アミノー3-メチルー5 $-\{5-[5-(3,5-ジフルオロフェニル)ペンタノイル] チオフェンー2- イル}ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-2332:3-Pミノー3-メチルー $5-\{5-\{5-\{4-$ クロロフェニル $\}$ ペンタノイル $\}$ チオフェンー2-イル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2335:3-アミノー3-メチルー $5-\{5-\{5-\{5-(3-$ メチルフェニル $\}$ ペンタノイル $\}$ チオフェンー2-イル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2336: 3-アミノー3-メチルー5

- {5-{5-(5-(3,4-ジメチルフェニル)ペンタノイル]チオフェン-2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2337:3-アミノ-3-メチル-5 $-\{5-[5-(3,5-ジメチルフェニル)ペンタノイル]チオフェン-2-イル}ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-2338:3-アミノー3-メチルー5 $-\{5-[5-(3-h)]$ -(3-h) -

例示化合物番号 式 IIIa-3 における 5-2339: 3-アミノ-3-メチル-5 $-\{5-[5-(3,4-ジトリフルオロメチルフェニル)ペンタノイル]チオフェン-2-イル\}ペンチルホスホン酸、$

例示化合物番号 式 IIIa-3 における 5-2340:3-Pミノー3-Xチルー $5-\{5-\{5-\{5-\{3,5-2\}\}\}\}$ ルフェニル) ペンタノイル] チオフェンー 2-4 ルプテルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2341:3-7ミノー3-メチルー $5-\{5-\{5-\{5-(3-$ メトキシフェニル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2342:3-Pミノー3-メチルー $5-\{5-\{5-(3,4-ジメトキシフェニル)ペンタノイル]$ チオフェンー2-イル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2343:3-Pミノー3-メチルー $5-\{5-[5-(3,5-ジメトキシフェニル)ペンタノイル]$ チオフェンー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2344:3-Pミノー3-メチルー $5-\{5-\{5-(3,4,5-$ トリメトキシフェニル)ペンタノイル]チオフェシー2-イル $\}$ ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-2345:3-Pミノー3-メチルー $5-\{5-\{5-\{5-(3-P)2+10\}\}\}$ ペンタノイル] チオフェンー2-イル

ペンチルホスホン酸及び

例示化合物番号 式 IIIa-3 における 5-2346:3-7ミノー3-メチルー $5-\{5-\{5-(4-$ アセチルフェニル)ペンタノイル]チオフェンー2-イル $\}$ ペンチルホスホン酸

であり、最も好適には、

例示化合物番号 式 IIIa-1 における 5-84:3-アミノ-3-メチル-5- [5-(5-7x-1) [5-(5-7x-1)] パンチルホスホン酸、 例示化合物番号 式 IIIa-1 における 5-770:3-7 [3-7] 3-7] 3-7] 3-7] 3-7] 3-7

[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-824:3-アミノ-3-メチル-5- [5-(5-フェニルペント-1-イニル) フランー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-1072:3-アミノー3-メチルー5 -[5-(4-シクロヘキシルオキシブト-1-イニル) フラン-2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-1331:3-Pミノー3-メチルー5-[5-(5-2)クロヘキシルペンタノイル)フランー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-1 における 5-2278:3-7ミノー3-メチルー $5-\{5-\{3-(3,4-)$ ジメチルフェノキシ)プロプー1-イニル]フラン -2-イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-824:3- アミノー3- メチルー5- [1- メチルー5- (5- フェニルペントー1- イニル) ピロールー2- イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-1063:3-7ミノー3-メチルー $5-\{1-$ メチルー5-[3-(4-メチル) フェノキシプロプー1-イニル] ピロールー2-イル} ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-1072:3-アミノ-3-メチル-5 -[1-メチル-5-(4-シクロヘキシルオキシプト-1-イニル) ピロール-2-イル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-2278:3-Pミノー3-Xチルー $5-\{1-X$ チルー 5-[3-(3,4-Y) メチルフェノキシ)プロプー 1-A ニル] ピロールー 2-A パンチルホスホン酸、

例示化合物番号 式 IIIa-2 における 5-1344:3-Pミノー3-メチルー5-(5-フェニルペンタノイル) ピロールー2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-2における5-1331:3-Pミノー3-Xチルー5-[1-Xチルー5-(5-)シクロヘキシルペンタノイル) ピロールー2-イル] ペンチルホスホン酸、

例示化合物番号 式IIIa-2における5-1330:3-アミノ-3-メチル-5-[1-メチル-5-(4-フェニルブタノイル)ピロール-2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-2における5-1329:3-7ミノー3-メチルー5-[1-メチルー5-(4-シクロヘキシルブタノイル)ピロールー2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-12:3-アミノ-3-メチル-5-[1-エチル-5-(5-フェニルペンタノイル) ピロール-2-イル] ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-11:3-アミノ-3-メチル-5-[1-エチル-5-(5-シクロヘキシルペンタノイル)ピロール-2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-10:3-アミノ-3-メチル-5-[1-エチル-5-(4-フェニルブタノイル)ピロール-2-イル]ペンチルホスホン酸、

例示化合物番号 式IIIa-4における8-9:3-アミノ-3-メチル-5-[1

ーエチルー5 - (4 - シクロヘキシルプタノイル) ピロールー2 ーイル] ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-71:3-アミノー3-メチルー5-[5-(4-シクロヘキシルプチル)チオフェン-<math>2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-98:3-アミノー3-メチル-5- [5-(5-シクロヘキシルペンチル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-152:3-7ミノー3-メチルー5-[5-(5-フェニルペンチル)チオフェンー2-イル]ペンチルホスホン酸、例示化合物番号 式 IIIa-3 における 5-400:3-アミノー3-メチルー5-[5-(4-シクロヘキシルオキシブチル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-463:3-Pミノー3-メチルー5-{5-[4-(4-7)ルオロフェノキシ)プチル]チオフェンー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-479:3-アミノー3-メチルー5-{5-[4-(4-メトキシフェノキシ)ブチル]チオフェンー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-594:3-7ミノー 3-メチルー 5- [5-(4-ベンジルオキシブチル)チオフェンー 2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1329:3-Pミノー3-メチルー5-15-(4-)シウロヘキシルブタノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1330:3- アミノー3- メチルー5- -[5-(4- フェニルブタノイル)チオフェンー2- イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1331:3-7ミノー3-メチルー5-15-(5-)シクロヘキシルペンタノイル)チオフェンー2-イル]ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1348:3-Pミノー3-メチル-5-15-(5-(4-7))ペンタノイル] チオフェンー2-イル}ペンチルホスホン酸、

例示化合物番号 式 IIIa-3 における 5-1764:3- アミノー3- エチルー5- -[5-(5-シクロヘキシルペンチル)チオフェン-<math>2- イル]ペンチルホスホン酸

及び

例示化合物番号 式 IIIa-3 における 5-2097: 3-アミノー 3-エチルー 5 -[5-(5-シクロヘキシルペンタノイル)チオフェンー <math>2-イル]ペンチルホスホン酸

である。

[発明の実施の形態]

本発明の化合物 (I)、(II) 及び (III) は、以下に記載する方法に従って製造することができる。

(A法)

A法は、化合物(I)において、Yがエチニレン基である化合物(I c)、Yがビニレン基である化合物(I d)、Yがエチレン基である化合物(I e)、Yが $-CO-CH_2-$ を有する基である化合物(I f)、Yが-CH(OH) ーを有する基である化合物(I g)及びYがアリール基又は置換基群 a から選択される基で1乃至3個置換されたアリール基である化合物(I h)を製造する方法である。

上記式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、X、Z及びnは、前述したものと同意義を示し、R⁸は、臭素原子又はヨウ素原子を示し、R⁵aは、R⁵において置換基として含まれるアミノ、ヒドロキシ及び/又はカルボキシル基が、保護されてもよいアミノ、ヒドロキシ及び/又はカルボキシル基である他R⁵の基の定義における基と同様の基を示し、環Y^aはアリール基又は置換基群 a から選択される基で1乃至3個置換されたアリール基を示す。

R⁵aの定義における「保護されてもよいアミノ基」の「保護基」は、有機合成化学の分野で使用されるアミノ基の保護基であれば特に限定はされないが、前述したものと同意義を示し、好適には、低級アルコキシカルボニル基であり、最も好適には t - プトキシカルボニル基である。

R⁵aの定義における「保護されてもよいヒドロキシ基」の「保護基」は、有機合成化学の分野で使用されるヒドロキシ基の保護基であれば特に限定はされないが、例えば、前記「ヒドロキシ基のエステルに斯かる反応における一般的保護基」と同意義を示し、好適には、低級脂肪族アシル基、芳香族アシル基、低級アルコキシカルボニル基又は(低級アルコキシ)メチル基であり、更に好適には、低級脂肪族アシル基又は(低級アルコキシ)メチル基であり、最も好適にはアセチル基又はメトキシメチル基である。

R⁵aの定義における「保護されてもよいカルボキシル基」の「保護基」は、有機合成化学の分野で使用されるカルボキシル基の保護基であれば特に限定はされないが、例えば、前記「カルボキシル基のエステルに斯かる反応における一般的保護基」と同意義を示し、好適には低級アルキル基であり、最も好適には、メチル基である。

第A1工程

第A1工程は、一般式(V)を有する化合物を製造する工程であり、一般式(IV)を有する化合物を、不活性溶媒中、塩基の存在下又は非存在下、 臭素化剤又はヨウ素化剤と反応させることにより行われる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれ

ば特に限定されず、例えば、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;又はホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類であり、好適には、臭素化の場合にはアミド類(最も好適にはN,Nージメチルホルムアミド)であり、ヨウ素化の場合にはハロゲン化炭化水素類(最も好適にはジクロロメタン又はクロロホルム)である。

上記反応に使用される臭素化剤としては、特に限定はないが、例えば、"Comprehensive Organic Transformation" (Larlock、VCH、p316-317) に記載されているような臭素化剤を挙げることができ、好適には、Nープロムコハク酸イミドである。

上記反応に使用されるヨウ素化剤としては、特に限定はないが、例えば、
"Comprehensive Organic Transformation" (Larlock、VCH、p317-318)
に記載されているようなヨウ素化剤を挙げることができ、好適には、ヨウ素
である。

上記反応に使用される塩基としては、化合物(IV)におけるハロゲン原子の置換位置以外の部分に影響を与えないものであれば特に限定されず、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属重炭酸塩類;リチウムメトキシド、ナトリウムメトキシド、カリウムーtーブトキシドのような金属アルコキシド類;トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジン、2,6ールチジン、4ー(N,Nージメチルアミノ)ピリジン、N,Nージメチルアニリン、N,Nージエチルアニリン、1,5ージアザビシクロ[4.3.0]ノナー5ーエン、1,4ージアザビシクロ[2.2.2]オクタン(DABCO)、1,8ージアザビシクロ

[5.4.0]-7-ウンデセン(DBU)のような有機アミン類;ブチルリチウム、リチウム ジイソプロピルアミド(LDA)、リチウム ピス(トリメチルシリル)アミドのような有機金属塩基類;又は上記塩基の組み合わせを挙げることができる。好適には、有機アミン類(最も好適にはピリジン)である。

反応温度は、原料化合物、臭素化剤又はヨウ素化剤、溶媒の種類等によって異なるが、通常、-78℃乃至150℃で行われるが、好適には-20℃乃至100℃(最も好適には0℃乃至60℃)である。

反応時間は、反応温度、原料化合物、反応試薬又は使用される溶媒の種類によって異なるが、通常、5分間乃至60時間であり、好適には15分乃至24時間(最も好適には30分間乃至4時間)である。

反応終了後、本反応及び後述する第A2工程乃至第A7工程の目的化合物 は、常法に従って、反応混合物から採取される。例えば、反応混合物を適宜 中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エ チルのような混和しない有機溶媒を加え、水等で洗浄後、目的化合物を含む 一有機層を分離し、無水硫酸マグネシウム、無水硫酸ナトリウム等で乾燥後、 溶剤を留去することによって得られる。得られた目的化合物は必要ならば、 常法、例えば再結晶、再沈殿又は通常、有機化合物の分離精製に慣用されて いる方法、例えば、シリカゲル、アルミナ、マグネシウムーシリカゲル系の フロリジルのような担体を用いた吸着カラムクロマトグラフィー法;セファ デックスLH-20(ファルマシア社製)、アンバーライトXAD-11(ロ ーム・アンド・ハース社製)、ダイヤイオンHP-20 (三菱化学社製) のよ うな担体を用いた分配カラムクロマトグラフィー等の合成吸着剤を使用する 方法、イオン交換クロマトを使用する方法、又は、シリカゲル若しくはアル キル化シリカゲルによる順相・逆相カラムクロマトグラフィー法(好適には 、高速液体クロマトグラフィーである。)を適宜組合せ、適切な溶離剤で溶出 することによって分離、精製することができる。

356

第A2工程

第A2工程は、一般式(Ic)を有する化合物を製造する工程であり、化合物(V)を、不活性溶媒中、窒素雰囲気下、塩基及びパラジウム触媒の存在下、化合物(VI)とSonogashira coupling反応させ、所望によりヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基を除去することにより行なわれる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれ ば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エー テルのような脂肪族炭化水素類;ペンゼン、トルエン、キシレンのような芳 香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエ タン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類; ギ酸エチル、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸ジエチルのよう なエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロ フラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエ ーテルのようなエーテル類;アセトン、メチルエチルケトン、メチルイソブ チルケトン、イソホロン、シクロヘキサノンのようなケトン類:アセトニト リル、イソプチロニトリルのようなニトリル類;ホルムアミド、N,N-ジ メチルホルムアミド、N、Nージメチルアセトアミド、ヘキサメチルリン酸 トリアミドのようなアミド類;ジメチルスルホキシドようなスルホキシド類 ;又はスルホランのようなスルホン類;であり、好適には、エーテル類、ア ミド類又はスルホキシド類(最も好適には、エーテル類又はアミド類)であ る。また、反応溶媒中に少量の水を添加することで、反応の進行が促進され ・ることがある。

上記反応に使用される塩基としては、通常Sonogashira coupling反応に使用される塩基であれば特に限定はないが、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属重炭酸塩類;水素化リチウム、水素化ナトリウム、水素化カリウムのようなアルカリ金

属水素化物類;水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;リチウムメトキシド、ナトリウムメトキシド、カリウム t ープトキシドのようなアルカリ金属アルコキシド類;又はトリエチルアミン、トリプチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジン、4ー(N, Nージメチルアミノ)ピリジン、N, Nージメチルアニリン、N, Nージエチルアニリン、1, 5ージアザビシクロ[4.3.0]ノナー5ーエン、1, 4ージアザビシクロ[5.4.0]ー7ーウンデセン(DBU)のような有機アミン類;であり、好適には有機アミン類(最も好適にはトリエチルアミン)である。

上記反応に使用されるパラジウム触媒としては、通常Sonogashira coupling反応に使用されるものであれば特に限定はないが、例えば、酢酸パラジウム、塩化パラジウム、炭酸パラジウムのようなパラジウム塩類、配位子と錯体を形成しているジクロロビス(トリフェニルホスフィン)パラジウム錯体のようなパラジウム塩錯体類、パラジウムー炭素等を挙げることができる。

また、添加剤として、ヨウ化銅(I)、塩化ベンジルトリエチルアンモニウムを使用することにより、収率を向上させることができる。

反応温度は、原料化合物、塩基、溶媒の種類等によって異なるが、通常、 -20℃乃至200℃(好適には0℃乃至120℃)である。

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常 、5分乃至48時間(好適には15分乃至24時間)である。

 R^1 、 R^2 及び R^3 におけるヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基の除去は、後述する第A7工程における保護基の除去と同様に行われる。

本工程の目的化合物(Ic)は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有機化合物の分離精製に慣用されている各種クロマトグラフィー法を適宜組合せ、適切な溶離剤で溶出することによって分離、精製する

358

ことができる。

第A3工程

第A3工程は、一般式(Id)を有する化合物を製造する工程であり、不活性溶媒中、化合物(Ic)を還元(好適には、水素雰囲気下、接触還元)して、所望によりヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基を除去することにより行われる。該保護基の除去は、後述する第A7工程における保護基の除去と同様に行われる。

上記反応における接触還元に使用される不活性溶媒としては、本反応に不 活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ペンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸プチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソプタノール、 セーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;酢酸、塩酸のような有機酸類;水;又は上記溶媒と水との混合溶媒;であり、好適には、エーテル類又はアルコール類(最も好適には、メタノール)である。

接触還元に使用される触媒としては、通常、三重結合を二重結合に還元する反応に使用されるものであれば、特に限定はないが、好適には、パラジウムー炭酸カルシウム、パラジウムー酸化アルミニウム、パラジウムー炭素、パラジウムー硫酸パリウムのようなパラジウム類又はロジウムー酸化アルミニウムのようなロジウム類であり、より好適にはパラジウムー炭酸カルシウ

ムである。

なお、本工程で、化合物 (I c) の側鎖に含まれるエチニレン基を、ビニレン基に選元し、エチレン基にまで還元しないために、反応溶媒中に、ピリジン、キノリンのような塩基性芳香族化合物、アンモニア、トリエチルアミンのようなアミン類 (好適には、キノリン) を添加して、触媒を不活性化してもよい。

水素圧は特に限定はないが、通常1乃至10気圧で行われ、好適には1気 圧である。

反応温度は、原料化合物、触媒、溶媒の種類等によって異なるが、通常、 -20℃乃至200℃(好適には0℃乃至100℃)である。

反応時間は、原料化合物、触媒、溶媒、反応温度等により異なるが、通常 、5分乃至96時間(好適には15分乃至72時間)である。

本工程の目的化合物(Id)は、必要ならば、常法、例えば、再結晶、再 沈殿又は通常、有機化合物の分離精製に慣用されている各種クロマトグラフィー法を適宜組合せ、適切な溶離剤で溶出することによって分離、精製する ことができる。

第A4工程

第A4工程は、一般式(Ie)を有する化合物を製造する工程であり、不活性溶媒中、化合物(Id)を還元(好適には、水素雰囲気下、接触還元)して、所望によりヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基を除去することにより行われる。該保護基の除去は、後述する第A7工程における保護基の除去と同様に行われる。

上記反応における接触還元に使用される不活性溶媒としては、本反応に不 活性なものであれば特に限定はないが、例えば、上記第A3工程において使 用されるものと同様のものを挙げることができ、好適には、エステル類、エ ーテル類又はアルコール類(最も好適には、酢酸エチル又はメタノール)で ある。 上記反応における接触還元に使用される触媒としては、通常、接触還元反応に使用されるものであれば、特に限定はなく、例えば、パラジウムー炭素、パラジウム黒、水酸化パラジウム、パラジウムー硫酸バリウムのようなパラジウム類、酸化白金、白金黒のような白金類、ロジウムー酸化アルミニウム、トリフェニルホスフィンー塩化ロジウムのようなロジウム類、ラネーニッケルのようなニッケル類を挙げることができる。

水素圧は特に限定はないが、通常1乃至10気圧で行われ、好適には1気 圧である。

反応温度は、原料化合物、触媒、溶媒の種類等によって異なるが、通常、 - 20℃乃至200℃(好適には0℃乃至100℃)である。

反応時間は、原料化合物、触媒、溶媒、反応温度等により異なるが、通常 、5分乃至96時間(好適には15分乃至72時間)である。

本工程の目的化合物(Ie)は、必要ならば、常法、例えば、再結晶、再 沈殿又は通常、有機化合物の分離精製に慣用されている各種クロマトグラフィー法を適宜組合せ、適切な溶離剤で溶出することによって分離、精製する ことができる。

第A3a工程

なお、一般式(Ie)を有する化合物を、不活性溶媒中、化合物(Ic)を還元(好適には、水素雰囲気下、接触還元)して、所望によりヒドロキシ基、アミノ基及び/またはカルボキシル基の保護基を除去することにより、2工程を経ずに一段で製造することもでき、この場合は、接触還元に使用される不活性溶媒及び接触還元に使用される触媒は、通常、接触還元反応に使用されるものであれば、特に限定はなく、上記第A4工程において使用されるものと同様のものを挙げることができる。

水素圧は特に限定はないが、通常1乃至10気圧で行われ、好適には1気 圧である。

反応温度は、原料化合物、触媒、溶媒の種類等によって異なるが、通常、

-20℃乃至200℃ (好適には0℃乃至100℃) である。 反応時間は、原料化合物、触媒、溶媒、反応温度等により異なるが、通常 、5分乃至96時間 (好適には15分乃至72時間) である。

第A5工程

第A5工程は、一般式(If)を有する化合物を製造する工程であり、化合物(Ic)を、不活性溶媒中、酸触媒を用いた水の付加反応を行い、所望により、ヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基を除去することにより行われる。該保護基の除去は、後述する第A7工程における保護基の除去と同様に行われる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロボルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;蟻酸エチル、酢酸プロピル、酢酸プチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソプタノール、ナーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルプのようなアルコール類;アセトン、メチルエチルケトン、メチルイソプチルケトン、イソホロン、シクロヘキサノンのようなケトン類;水;又は上記溶媒の混合溶媒;であり、好適には、アルコール類である。

上記反応に使用される酸触媒としては、通常の反応において酸触媒として 使用されるものであれば特に限定はないが、例えば、塩酸、臭化水素酸、硫 酸、過塩素酸、リン酸のような無機酸又は酢酸、ギ酸、シュウ酸、メタンス ルホン酸、pートルエンスルホン酸、カンファースルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸のような有機酸等のプレンステッド酸或いは塩化亜鉛、四塩化スズ、ポロントリクロリド、ボロントリフルオリド、ボロントリプロミドのようなルイス酸又は、酸性イオン交換樹脂を挙げることができ、好適には無機酸である。

反応温度は、原料化合物、触媒、溶媒の種類等によって異なるが、通常、 -20℃乃至200℃(好適には0℃乃至100℃)である。

反応時間は、原料化合物、触媒、溶媒、反応温度等により異なるが、通常 、5分乃至96時間(好適には15分乃至72時間)である。

第A6工程

第A6工程は、一般式(Ig)を有する化合物を製造する工程であり、不活性溶媒中、化合物(If)のCO基を-CH(OH)-基に還元して、所望により、ヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基を除去することにより行われる。該保護基の除去は、後述する第A7工程における保護基の除去と同様に行われる。

上記反応に使用される不活性溶媒は、本反応に不活性なものであれば特に限定はされないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;クロロホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;又はメタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール、イソプタノール、オクタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類或は上記溶媒の混合溶媒であり、好適には、エーテル類又はアルコール類(最も好適には、メタノール又はエタノール)である。

上記反応に使用される還元剤としては、CO基を-CH(OH)-基に還元できる還元剤であれば特に限定はされないが、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化シアノホウ素ナトリウムのような水素化ホウ素アルカリ金属類;又は水素化ジイソプチルアルミニウム、水素化アルミニウムリチウム、水素化トリエトキシアルミニウムリチウムのような水素化アルミニウム化合物;であり、好適には水素化ホウ素アルカリ金属類(特に、水素化ホウ素ナトリウム)である。

反応温度は、原料化合物、還元剤、溶媒の種類等によって異なるが、通常 、-10℃乃至100℃(好適には-20℃乃至20℃)である。

反応時間は、原料化合物、還元剤、溶媒、反応温度等により異なるが、通常、10分間乃至48時間(好適には30分間乃至12時間)である。

第A7工程

第A7工程は、一般式(Ih)を有する化合物を製造する工程であり、化合物(V)を化合物(VIIa)又は(VIIb)とSuzuki coupling反応させた後、所望によりヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基を除去することにより行われる。該保護基の除去は、後述する第A7工程における保護基の除去と同様に行われる。

反応温度は、原料化合物、溶媒の種類等によって異なるが、通常、0℃乃至150℃(好適には10℃乃至100℃)である。

反応時間は、原料化合物、溶媒、反応温度等により異なるが、通常、15 分乃至24時間(好適には30分乃至12時間)である。

上記反応に使用される溶媒、塩基及びパラジウム触媒としては、前述の第A2工程のSonogashira Coupling反応で用いられるものと同様なものを挙げることができる。

本工程の目的化合物(Ih)は必要ならば、常法、例えば、再結晶、再沈 殿又は通常、有機化合物の分離精製に慣用されている各種クロマトグラフィ 一法を適宜組合せ、適切な溶離剤で溶出することによって分離、精製するこ とができる。

所望の工程である、ヒドロキシ基、アミノ基及び/又はカルボキシル基の保護基の除去はその種類によって異なるが、一般に有機合成化学の技術において周知の方法、例えば、T.W.Green, (Protective Groups in Organic Synthesis), John Wiley & Sons: J.F.W.McOmis, (Protective Groups in OrganicChemistry), Plenum Press に記載の方法により行うことができ、例えば、以下のように行うことができる。

アミノ基の保護基が、シリル類である場合には、通常、フッ化テトラプチ ルアンモニウム、フッ化水素酸、フッ化水素酸ーピリジン、フッ化カリウム のようなフッ素アニオンを生成する化合物で処理することにより除去される。

上記反応に使用される不活性溶媒は、反応を阻害しないものであれば特に限定はないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類が好適である。

反応温度及び反応時間は、特に限定はないが、通常、0℃乃至50℃で1 0分間乃至18時間実施される。

アミノ基の保護基が、脂肪族アシル類、芳香族アシル類、アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合には、水性溶媒の存在下に、酸又は塩基で処理することにより除去することができる。

上記反応に使用される酸としては、通常酸として使用されるもので反応を 阻害しないものであれば特に限定はないが、例えば、臭化水素酸、塩酸、硫 酸、過塩素酸、リン酸、硝酸のような無機酸であり、好適には塩酸である。

上記反応に使用される塩基としては、通常塩基として使用されるもので反応を阻害しないものであれば特に限定はないが、好適には、炭酸リチウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;

リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムーtープトキシドのような金属アルコキシド類;アンモニア水、濃アンモニアーメタノールのようなアンモニア類であり、より好適には、アルカリ金属水酸化物である。

上記反応に使用される不活性溶媒としては、通常の加水分解反応に使用されるものであれば特に限定はないが、例えば、メタノール、エタノール、ロープロパノール、イソプロパノール、ロープタノール、イソプタノール、tープタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;水;水と上記有機溶媒との混合溶媒;であり、好適にはエーテル類又はアルコール類と水との混合溶媒(最も好適にはテトラヒドロフラン、ジオキサン、エタノール、メタノールと水との混合溶媒)である。

反応温度及び反応時間は、原料化合物、溶媒及び使用される酸若しくは塩基等により異なり、特に限定はないが、副反応を抑制するために、通常、0℃乃至150℃で、1時間乃至10時間反応させる。

アミノ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合には、通常、不活性溶媒中、還元剤と接触させること(好適には、触媒下、常温にて接触還元)により除去する方法又は酸化剤を用いて除去する方法が好適である。

接触還元による除去に使用される不活性溶媒としては、反応を阻害しないものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノ

ール、nープロパノール、イソプロパノール、nーブタノール、イソブタノール、tーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;酢酸のような有機酸類;水;上記溶媒と水との混合溶媒;であり、好適には、アルコール類、エーテル類、有機酸類又は水(最も好適には、アルコール類又は有機酸類)である。

接触還元による除去に使用される触媒としては、通常、接触還元反応に使用されるものであれば、特に限定はないが、好適には、パラジウムー炭素、ラネーニッケル、酸化白金、白金黒、ロジウムー酸化アルミニウム、トリフェニルホスフィンー塩化ロジウム、パラジウムー硫酸パリウムが用いられる。水素の圧力は、特に限定はないが、通常1乃至10気圧で行なわれる。

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、0℃乃至100℃で、5分間乃至24時間実施される。

酸化剤を用いる除去において使用される不活性溶媒としては、反応を阻害しないものであれば特に限定はないが、例えば、クロロホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトンのようなケトン類;ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;及びジメチルスルホキシドのようなスルホキシド類;スルホラン;であり、好適には、ハロゲン化炭化水素類、エーテル類又はスルホキシド類(最も好適には、ハロゲン化炭化水素類又はスルホキシド類)である。

使用される酸化剤としては、通常酸化剤として使用されるもので反応を阻害しないものであれば特に限定はないが、好適には、過硫酸カリウム、過硫酸ナトリウム、アンモニウムセリウムナイトレイト(CAN)、2,3-ジクロロ-5,6-ジシアノ-p-ペンゾキノン(DDQ)が用いられる。

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、0℃乃至150℃で、10分間乃至24時間実施される。

また、アミノ基の保護基が、アラルキル類である場合には、不活性溶媒中、 酸を用いて保護基を除去することもできる。

上記反応に使用される酸は、通常の反応において酸触媒として使用されるものであれば特に限定はないが、例えば、塩酸、臭化水素酸、硫酸、過塩素酸、リン酸のような無機酸;酢酸、ギ酸、シュウ酸、メタンスルホン酸、pートルエンスルホン酸、カンファースルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸のような有機酸等のブレンステッド酸;塩化亜鉛、四塩化スズ、ボロントリクロリド、ボロントリフルオリド、ボロントリブロミドのようなルイス酸;酸性イオン交換樹脂;であり、好適には、無機酸又は有機酸(最も好適には、塩酸、酢酸又はトリフルオロ酢酸)である。

上記反応に使用される不活性溶媒は、反応を阻害しないものであれば特に 限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルの ような脂肪族炭化水素類;ペンゼン、トルエン、キシレンのような芳香族炭 ※化水素類;クロロホルム、ジクロロメタン、1、2-ジクロロエタン、四塩 化炭素のようなハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸プロ ピル、酢酸プチル、炭酸ジエチルのようなエステル類:ジエチルエーテル、 ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエ タン、ジエチレングリコールジメチルエーテルのようなエーテル類:メタノ ール、エタノール、nープロパノール、イソプロパノール、nーブタノール、 イソプタノール、t-プタノール、イソアミルアルコール、ジエチレングリ コール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソル プのようなアルコール類:ホルムアミド、ジメチルホルムアミド、ジメチル アセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;水;或は 水又は上記溶媒の混合溶媒;であり、好適には、エーテル類、アルコール類 又は水(最も好適には、ジオキサン、テトラヒドロフラン、エタノール又は 水)である。

反応温度は、原料化合物、使用される酸、溶媒等により異なるが、通常、 -20℃乃至沸点温度(好適には、0℃乃至100℃)である。

反応時間は、原料化合物、使用される酸、溶媒、反応温度等により異なるが、通常、15分間乃至48時間(好適には、30分間乃至20時間)である。

アミノ基の保護基がアルケニルオキシカルボニル類である場合は、通常、アミノの保護基が前記の脂肪族アシル類、芳香族アシル類、アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合の除去反応の条件と同様にして、塩基と処理することにより行われる。

尚、アミノ基の保護基がアリルオキシカルボニル基の場合は、特に、パラジウム、及びトリフェニルホスフィン若しくはニッケルテトラカルボニルを 使用して保護基を除去する方法が簡便で、副反応が少なく実施することができる。

ヒドロキシ基の保護基として、シリル類を使用した場合には、通常、フッ化テトラブチルアンモニウム、フッ化水素酸、フッ化水素酸ーピリジン、フッ化カリウムのようなフッ素アニオンを生成する化合物で処理するか、又は、塩酸、臭化水素酸、硫酸、過塩素酸、リン酸のような無機酸又は酢酸、ギ酸、シュウ酸、メタンスルホン酸、 p - トルエンスルホン酸、カンファースルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸のような有機酸(好適には、塩酸)で処理することにより除去できる。

フッ素アニオンにより保護基を除去する場合に使用される不活性溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、イソブチロニトリルのようなニトリル類;酢酸のような有機酸;水;上記溶媒の混合溶媒であり、より好適には、テトラヒドロフランである。

尚、フッ素アニオンにより保護基を除去する場合に、ギ酸、酢酸、プロピ

オン酸のような有機酸を加えることによって、反応を促進させたり、反応生成物の分解を防いで、収率を向上させることができる。

フッ素アニオンにより保護基を除去する場合の反応温度及び反応時間は、 原料化合物、触媒、溶媒等により異なるが、通常、0℃乃至100℃(好適には、10℃乃至50℃)で、1時間乃至24時間実施される。

無機酸又は有機酸により保護基を除去する場合、アミノ基又はイミノ基の保護基がアラルキル類である場合の除去反応の条件と同様にして、無機酸又は有機酸と処理することにより達成される。

ヒドロキシ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合には、通常、不活性溶媒中、還元剤と接触させることにより(好適には、触媒下、常温にて接触還元)除去する方法又は酸化剤を用いて除去する方法が好適である。

接触還元による除去に使用される不活性溶媒としては、反応を阻害しないものであれば特に限定はないが、例えば、アミノ基又はイミノ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合、還元剤と接触させることにより除去する際に使用される不活性溶媒と同様なものを挙げることができ、好適にはアルコール類(最も好適にはメタノール)である。

接触還元による除去に使用される触媒としては、通常、接触還元反応に使用されるものであれば、特に限定はないが、例えば、アミノ基又はイミノ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合、還元剤と接触させることにより除去する際に使用される不活性触媒と同様なものを挙げることができ、好適にはパラジウムー炭素である。

圧力は、特に限定はないが、通常1乃至10気圧で行なわれる。

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、0℃乃至100℃(好適には、20℃乃至70℃)、5分間乃至48時間(好適には、1時間乃至24時間)である。

酸化剤を用いる除去において使用される溶媒としては、反応を阻害しない ものであれば特に限定はないが、例えば、アミノ基の保護基が、アラルキル 類又はアラルキルオキシカルボニル類である場合、酸化剤と接触させること により除去する際に使用される不活性溶媒と同様なものを挙げることができ る。

使用される酸化剤としては、酸化に使用される化合物であれば特に限定はないが、例えば、アミノ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合、酸化剤と接触させることにより除去する際に使用される酸化剤と同様なものを挙げることができる。

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、0℃乃至150℃で、10分間乃至24時間実施される。

また、液体アンモニア中若しくはメタノール、エタノール、nープロパノール、イソプロパノール、nープタノール、イソプタノール、tープタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類中において、-78℃乃至0℃で、金属リチウム、金属ナトリウムのようなアルカリ金属類を作用させることによっても除去できる。

更に、ヒドロキシ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合には、溶媒中、塩化アルミニウムーヨウ化ナトリウム又は、ヨウ化トリメチルシランのようなアルキルシリルハライド類を用いることにより、保護基を除去することができる。

塩化アルミニウムーヨウ化ナトリウム又はアルキルシリルハライド類を用いて保護基を除去する場合使用される不活性溶媒としては、本反応に関与しないものであれば特に限定はないが、好適には、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類;上記溶媒の混合溶媒;が挙げられる。

塩化アルミニウムーヨウ化ナトリウム又はアルキルシリルハライド類を用いて保護基を除去する場合の反応温度及び反応時間は、原料化合物、溶媒等により異なるが、通常は0℃乃至50℃で、5分間乃至72時間実施される。

尚、反応基質が硫黄原子を有する場合は、好適には、塩化アルミニウムー

ヨウ化ナトリウムが用いられる。

ヒドロキシ基の保護基が、脂肪族アシル類、芳香族アシル類又はアルコキシカルボニル基類である場合には、溶媒中、塩基で処理することにより除去される。

上記反応において使用される塩基としては、通常塩基として使用されるもので化合物の他の部分に影響を与えないものであれば特に限定はないが、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属重炭酸塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;リチウムメトキシド、ナトリウムエトキシド、カリウムー t ープトキシドのような金属アルコキシド類;アンモニア水、濃アンモニアーメタノールのようなアンモニア類;であり、好適には、アルカリ金属水酸化物類、金属アルコキシド類又はアンモニア類(最も好適には、アルカリ金属水酸化物類又は金属アルコキシド類)である。

上記反応において使用される溶媒としては、通常の加水分解反応に使用されるものであれば特に限定はないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール、イソブタノール、tーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;水;上記溶媒の混合溶媒が好適である。

反応温度及び反応時間は、原料化合物、使用される塩基、溶媒等により異なり特に限定はないが、副反応を抑制するために、通常、-20℃乃至150℃で、1時間乃至10時間実施される。

ヒドロキシ基の保護基が、アルコキシメチル類、テトラヒドロピラニル類、 テトラヒドロチオピラニル類、テトラヒドロフラニル類、テトラヒドロチオ フラニル類又は置換されたエチル類である場合には、通常、不活性溶媒中、 酸で処理することにより除去される。

上記反応に使用される酸としては、通常、プレンステッド酸又はルイス酸として使用されるものであれば特に限定はなく、好適には、塩化水素;塩酸、硫酸、硝酸のような無機酸;又は酢酸、トリフルオロ酢酸、メタンスルホン酸、pートルエンスルホン酸のような有機酸等のプレンステッド酸:三フッ化ホウ素のようなルイス酸であり、より好適には、塩酸又は酢酸であり、また、ダウエックス50Wのような強酸性の陽イオン交換樹脂も使用することができる。

上記反応に使用される不活性溶媒としては、反応を阻害しないものであれ ば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エー テルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳 香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエ タン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類; ギ酸エチル、酢酸エチル、酢酸プロピル、酢酸プチル、炭酸ジエチルのよう なエステル類:ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロ フラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエ ーテルのようなエーテル類;メタノール、エタノール、n-プロパノール、 イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、イ ソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、 シクロヘキサノール、メチルセロソルプのようなアルコール類;アセトン、 メチルエチルケトン、メチルイソプチルケトン、イソホロン、シクロヘキサ ノンのようなケトン類:水:上記溶媒の混合溶媒:であり、好適には、エー テル類(最も好適には、テトラヒドロフラン)又はアルコール類(最も好適 には、メタノール)である。

反応温度及び反応時間は、原料化合物、使用される酸、溶媒等により異なるが、通常、-10℃乃至200℃(好適には、0℃乃至150℃)で、5分間乃至48時間(好適には、30分間乃至10時間)である。

ヒドロキシ基の保護基が、アルケニルオキシカルボニル類である場合は、 通常、ヒドロキシ基の保護基が前記の脂肪族アシル類、芳香族アシル類又は アルコキシカルボニル類である場合の除去反応の条件と同様にして、塩基と 処理することにより達成される。

尚、アリルオキシカルボニル基の場合は、特にパラジウム、及びトリフェニルホスフィン、又はピス(メチルジフェニルホスフィン)(1,5ーシクロオクタジエン)イリジウム(I)・ヘキサフルオロホスフェートを使用して除去する方法が簡便で、副反応が少なく実施することができる。

カルポキシル基の保護基が、低級アルキル基又は低級アルキル、低級アルコキシ、ニトロ、ハロゲン若しくはシアノで置換されてもよい1乃至3個のアリールで置換された低級アルキル基である場合は、通常、ヒドロキシ基の保護基が前記の脂肪族アシル類、芳香族アシル類又はアルコキシカルボニル類である場合の除去反応の条件と同様にして、塩基と処理することにより達成される。

また、アミノ、ヒドロキシ及び/又はカルポキシル基の保護基の除去は、 順不同で希望する除去反応を順時実施することができる。

尚、異性体を分離する必要がある場合には、上記各工程の反応終了後、又は、所望工程の終了後の適切な時期に、上記分離精製手段によって行なうことができる。

原料化合物 (VI) 及び (VII) は、公知か、公知の方法又はそれに類似した方法に従って容易に製造される。

(B法)

B法は、本発明の化合物(I)の中間体である化合物(IV)を製造する方法である。

上記式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^6 、 R^7 及びXは、前述したものと同意義を示し、式 $-NR^1$ 。 R^2 。を有する基は、カルボニル基を有する保護基で保護されたアミノ基を示し、 R^9 は、 C_1-C_{20} アルキル基、ヘテロ原子が介

在する C_2-C_{20} アルキル基、アリール基又は芳香族複素環基で置換された $C_{1}-C_{20}$ アルキル基、 $C_{2}-C_{20}$ アルキニル基、ヘテロ原子が介在する $C_{8}-C_{20}$ アルキニル基、アリール基又は芳香族複素環基で置換された $C_{2}-C_{20}$ アルキニル基、 $C_{2}-C_{20}$ アルケニル基、ヘテロ原子が介在する $C_{8}-C_{20}$ アルケニル基、アリール基又は芳香族複素環基で置換された $C_{2}-C_{20}$ アルケニル基、アリール基又は芳香族複素環基で置換されたヘテロ原子が介在する $C_{2}-C_{20}$ アルキル基、或は $C_{8}-C_{10}$ シクロアルキル基を示し、mは0乃至4の整数を示し、P h はフェニル基を示シ、Qはハロゲン原子(好適には、塩素原子、臭素原子又はヨウ素原子)を示す。

上記において、R®の定義における「C1-C20アルキル基」は、例えば、 前記「低級アルキル基」、ヘプチル、1-メチルヘキシル、2-メチルヘキシ ル、3-メチルヘキシル、4-メチルヘキシル、5-メチルヘキシル、1-プロピルプチル、4,4-ジメチルペンチル、オクチル、1-メチルヘプチ ル、2-メチルヘプチル、3-メチルヘプチル、4-メチルヘプチル、5-メチルヘプチル、6-メチルヘプチル、1-プロピルペンチル、2-エチル ヘキシル、5、5-ジメチルヘキシル、ノニル、3-メチルオクチル、4-メチルオクチル、5-メチルオクチル、6-メチルオクチル、1-プロピル ヘキシル、2-エチルヘプチル、6,6-ジメチルヘプチル、デシル、1-メチルノニル、3-メチルノニル、8-メチルノニル、3-エチルオクチル 、3、7 - ジメチルオクチル、<math>7、7 - ジメチルオクチル、ウンデシル、<math>4. 8 - ジメチルノニル、ドデシル、トリデシル、テトラデシル、ペンタデシ ル、3、7、11-トリメチルドデシル、ヘキサデシル、4、8、12-ト リメチルトリデシル、1-メチルペンタデシル、14-メチルペンタデシル 、13,13-ジメチルテトラデシル、ヘプタデシル、15-メチルヘキサ デシル、オクタデシル、1-メチルヘプタデシル、ノナデシル、アイコシル 、及び、3、7、11、15ーテトラメチルヘキサデシル基のような炭素数 175至 20 個の直鎖又は分枝鎖アルキル基であり、好適には $C_1 - C_{10}$ アルキ ル基である。

上記において、Rºの定義における「ヘテロ原子が介在するC2-C20アル キル基」は、前記「C1-C20アルキル基」の内の「炭素数2乃至20個のア ルキル基1が、同一又は異なって、1又は2個の、硫黄原子、酸素原子、又 は、窒素原子で介在されている基を示し、例えば、メチルチオメチル、1-メチルチオエチル、2-メチルチオエチル、エチルチオメチル、1-メチル チオプロピル、2-メチルチオプロピル、3-メチルチオプロピル、2-エ チルチオエチル、2-メチルー2-メチルチオエチル、1-メチルチオブチ ル、2-メチルチオブチル、3-メチルチオブチル、2-エチルチオプロピ ル、3-メチル-3-メチルチオプロピル、4-メチルチオペンチル、3-メチルチオペンチル、2-メチルチオペンチル、1-メチルチオペンチル、 3.3-ジメチルチオプチル、2,2-ジメチルチオプチル、1,1-ジメ チルチオプチル、1-メチル-2-メチルチオプチル、1.3-ジメチルチ オプチル、2,3-ジメチルチオプチル、2-エチルチオプチル、1-メチ ルチオヘキシル、2-メチルチオヘキシル、3-メチルチオヘキシル、4-メチルチオヘキシル、5-メチルチオヘキシル、1-プロピルチオブチル、 4-メチル-4-メチルチオペンチル、1-メチルチオヘプチル、2-メチ ルチオヘプチル、3-メチルチオヘプチル、4-メチルチオヘプチル、5-メチルチオヘプチル、6-メチルチオヘプチル、1-プロピルチオペンチル 、2-エチルチオヘキシル、5-メチル-5-メチルチオヘキシル、3-メ チルチオオクチル、4-メチルチオオクチル、5-メチルチオオクチル、6 - メチルチオオクチル、1 - プロピルチオヘキシル、2 - エチルチオヘプチ ル、6-メチル-6-メチルチオヘプチル、1-メチルチオノニル、3-メ チルチオノニル、8-メチルチオノニル、3-エチルチオオクチル、3-メ チルー?-メチルチオオクチル、?,?-ジメチルチオオクチル、4-メチ ル-8-メチルチオノニル、3,7-ジメチル-11-メチルチオドデシル 、4、8-ジメチル-12-メチルチオトリデシル、1-メチルチオペンタ デシル、14-メチルチオペンタデシル、13-メチル-13-メチルチオ テトラデシル、15-メチルチオヘキサデシル、1-メチルチオヘプタデシ

ル、及び、3,7,11-トリメチル-15-メチルチオへキサデシルのよ うな1又は2個の硫黄原子で介在されている炭素数2乃至20個のアルキル 基;メチルオキシメチル、1-メチルオキシエチル、2-メチルオキシエチ ル、エチルオキシメチル、1-メチルオキシプロピル、2-メチルオキシプ ロピル、3-メチルオキシプロピル、2-エチルオキシエチル、2-メチル ー2-メチルオキシエチル、1-メチルオキシブチル、2-メチルオキシブ チル、3-メチルオキシプチル、2-エチルオキシプロピル、3-メチルー 3-メチルオキシプロピル、4-メチルオキシペンチル、3-メチルオキシ ペンチル、2-メチルオキシペンチル、1-メチルオキシペンチル、3,3 ージメチルオキシブチル、2,2ージメチルオキシブチル、1,1ージメチ ルオキシブチル、1-メチル-2-メチルオキシブチル、1,3-ジメチル オキシブチル、2,3-ジメチルオキシブチル、2-エチルオキシブチル、 1-メチルオキシヘキシル、2-メチルオキシヘキシル、3-メチルオキシ ヘキシル、4-メチルオキシヘキシル、5-メチルオキシヘキシル、1-プ コロピルオキシブチル、4-メチル-4-メチルオキシペンチル、1-メチル **オキシヘプチル、2-メチルオキシベプチル、3-メチルオキシヘプチル、** 4-メチルオキシヘプチル、5-メチルオキシヘプチル、6-メチルオキシ ヘプチル、1ープロピルオキシペンチル、2ーエチルオキシヘキシル、5-メチル-5-メチルオキシヘキシル、3-メチルオキシオクチル、4-メチ ルオキシオクチル、5-メチルオキシオクチル、6-メチルオキシオクチル 、1-プロピルオキシヘキシル、2-エチルオキシヘプチル、6-メチルー 6-メチルオキシヘプチル、1-メチルオキシノニル、3-メチルオキシノ ニル、8-メチルオキシノニル、3-エチルオキシオクチル、3-メチルー 7-メチルオキシオクチル、7、7-ジメチルオキシオクチル、4-メチル -8-メチルオキシノニル、3,7-ジメチル-11-メチルオキシドデシ ル、4、8-ジメチル-12-メチルオキシトリデシル、1-メチルオキシ ペンタデシル、14-メチルオキシペンタデシル、13-メチル-13-メ チルオキシテトラデシル、15-メチルオキシヘキサデシル、1-メチルオ

キシヘプタデシル、及び、3,7,11-トリメチルー15-メチルオキシ ヘキサデシルのような1又は2個の酸素原子で介在されている炭素数2乃至 20個のアルキル基: N-メチルアミノメチル、1-(N-メチルアミノ) エチル、2-(N-メチルアミノ) エチル、N-エチルアミノメチル、1-(N-メチルアミノ) プロピル、2-(N-メチルアミノ) プロピル、3-(N-メチルアミノ) プロピル、2-(N-エチルアミノ) エチル、2-(N, N-ジメチルアミノ) エチル、1-(N-メチルアミノ) プチル、2-(N-メチルアミノ) プチル、3-(N-メチルアミノ) プチル、2-(N -エチルアミノ)プロピル、3-(N, N-ジメチルアミノ)プロピル、4 - (N-メチルアミノ)ペンチル、3-(N-メチルアミノ)ペンチル、2 - (N-メチルアミノ)ペンチル、1-(N-メチルアミノ)ペンチル、3 - (N, N-ジメチルアミノ) プチル、2-(N, N-ジメチルアミノ) ブ チル、1-(N, N-ジメチルアミノ)プチル、1-メチル-2-(N-メ チルアミノ) プチル、1、3-ジ(N-メチルアミノ) プチル、2、3-ジ (N-メチルアミノ) ブチル、2- (N-エチルアミノ) ブチル、1- (N -メチルアミノ) ヘキシル、2-(N-メチルアミノ) ヘキシル、3-(N --メチルアミノ) ヘキシル、4--(N-メチルアミノ)ヘキシル、5--(N ーメチルアミノ) ヘキシル、1-(N-プロピルアミノ) プチル、4-メチ ル-4-(N-メチルアミノ)ペンチル、1-(N-メチルアミノ)ヘプチ ル、2-(N-メチルアミノ) ヘプチル、3-(N-メチルアミノ) ヘプチ ル、4-(N-メチルアミノ) ヘプチル、5-(N-メチルアミノ) ヘプチ ル、6-(N-メチルアミノ) ヘプチル、1-(N-プロピルアミノ) ペン チル、2-(N-エチルアミノ) ヘキシル、5-メチル-5-(N-メチル アミノ) ヘキシル、3- (N-メチルアミノ) オクチル、4- (N-メチル アミノ)オクチル、5-(N-メチルアミノ)オクチル、<math>6-(N-メチルアミノ) オクチル、1- (N-プロピルアミノ) ヘキシル、2- (N-エチ ルアミノ) ヘプチル、6-メチル-6-(N-メチルアミノ)ヘプチル、1- (N-メチルアミノ)ノニル、3-(N-メチルアミノ)ノニル、8-(N-メチルアミノ)ノニル、3-(N-エチルアミノ)オクチル、3-メチル-2-0(N-メチルアミノ)オクチル、2-0(N-メチルアミノ)オクチル、2-0(N-メチルアミノ)オクチル、2-0(N-メチルアミノ)ノニル、2-0(N-メチルアミノ)ドデシル、2-0(N-メチルアミノ)トリデシル、2-1(N-メチルアミノ)ペンタデシル、2-0(N-メチルアミノ)ペンタデシル、2-0(N-メチルアミノ)ペンタデシル、2-0(N-メチルアミノ)テトラデシル、2-0(N-メチルアミノ)ヘキサデシル、2-0(N-メチルアミノ)ヘプタデシル、2-0のような2-0の空素原子で介在されている炭素数2-7万至2-100のアルキル基を挙げることができ、好適には、ヘテロ原子が介在する2-100のアルキル基である。

上記において、 R^9 の定義における「アリール基又は芳香族複素環基で置換された C_1-C_{20} アルキル基」は、前記「炭素数 C_1-C_{20} アルキル基」が、同一又は異なって、1又は3個のアリール基又は芳香族複素環基で置換された基を示し、斯かる「アリール基」及び「芳香族複素環基」は、前述したものと同意義を示す。

上記において、R9の定義における「 C_2 - C_{20} アルキニル基」は、何えば、エチニル、2-プロピニル、1-メチル-2-プロピニル、2-メチル-2-プロピニル、2-メチル-2-プロピニル、2-ブチニル、1-メチル-2-プチニル、1-メチル-2-ブチニル、1-メチル-2-ブチニル、1-エチル-2-ブチニル、1-メチル-3-ブチニル、1-メチル-3-ブチニル、1-メチル-3-ブチニル、1-メチル-3-ブチニル、1-メチル-2-ペンチニル、1-メチル-2-ペンチニル、2-メチル-2-ペンチニル、3-ペンチニル、1-メチル-3-ペンチニル、4-ペンチニル、1-メチル-4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチニル、4-ペンチンニル、4-ペンチンニル、4-メチルへキシニル、4-ジメチルペンチニル、4-

クチニル、1ーメチルヘプチニル、2-メチルヘプチニル、3-メチルヘプ チニル、4-メチルヘプチニル、5-メチルヘプチニル、6-メチルヘプチ ニル、1 - プロピルペンチニル、2 - エチルヘキシニル、5,5 - ジメチル ヘキシニル、ノニニル、3-メチルオクチニル、4-メチルオクチニル、5 ーメチルオクチニル、6ーメチルオクチニル、1ープロピルヘキシニル、2 ーエチルヘプチニル、6,6-ジメチルヘプチニル、デシニル、1-メチル ノニニル、3-メチルノニニル、8-メチルノニニル、3-エチルオクチニ ル、3, 7-ジメチルオクチニル、7, 7-ジメチルオクチニル、ウンデシ **ニル、4,8ージメチルノニニル、ドデシニル、トリデシニル、テトラデシ** ニル、ペンタデシニル、3,7,11-トリメチルドデシニル、ヘキサデシ ニル、4,8,12-トリメチルトリデシニル、1-メチルペンタデシニル 、14-メチルペンタデシニル、13,13-ジメチルテトラデシニル、ヘ プタデシニル、15-メチルヘキサデシニル、オクタデシニル、1-メチル ヘプタデシニル、ノナデシニル、アイコシニル、及び、3,7,11,15 ーテトラメチルヘキサデシニル基のような炭素数2乃至20個の直鎖又は分 枝鎖アルキニル基であり、好適にはCュ-Cュ₀アルキニル基である。

上記において、 R^9 の定義における「ヘテロ原子が介在する C_8-C_{20} アルキニル基」は、前述の「 C_1-C_{20} アルキニル基」の内の「 C_3-C_{20} アルキニル基」が、同一又は異なって、1又は2個の、硫黄原子、酸素原子、又は、窒素原子で介在されている基を示し、例えば、1-メチルチオエチニル、2-メチルチオエチニル、1-メチルチオプロピニル、2-メチルチオプロピニル、3-メチルチオプロピニル、2-メチルチオプロピニル、3-メチルチオプロピニル、1-メチルチオプチニル、2-メチルチオブチニル、1-メチルチオブチニル、3-メチルチオブチニル、1-メチルチオブチニル、3-メチルチオブチニル、1-メチルチオプロピニル、3-メチルチオブチニル、1-メチルチオプロピニル、1-メチルチオペンチニル、1-メチルチオペンチニル、1-メチルチオペンチニル、1-メチルチオペンチニル、1-ジメチルチオブチニル、1-ジメチルチオブチニル、1-ジメチルチオブチニル、1-

オプチニル、2,3-ジメチルチオプチニル、2-エチルチオプチニル、1 ーメチルチオヘキシニル、2-メチルチオヘキシニル、3-メチルチオヘキ シニル、4-メチルチオヘキシニル、5-メチルチオヘキシニル、1-プロ - ピルチオプチニル、4-メチル-4-メチルチオペンチニル、1-メチルチ オヘプチニル、2-メチルチオヘプチニル、3-メチルチオヘプチニル、4 ーメチルチオヘプチニル、5-メチルチオヘプチニル、6-メチルチオヘプ チニル、1 - プロピルチオペンチニル、2 - エチルチオヘキシニル、5 - メ チルー5-メチルチオヘキシニル、3-メチルチオオクチニル、4-メチル チオオクチニル、5-メチルチオオクチニル、6-メチルチオオクチニル、 1-プロピルチオヘキシニル、2-エチルチオヘプチニル、6-メチル-6 ーメチルチオへプチニル、1-メチルチオノニニル、3-メチルチオノニニ ル、8-メチルチオノニニル、3-エチルチオオクチニル、3-メチル-7 ーメチルチオオクチニル、7,7-ジメチルチオオクチニル、4-メチルー 8-メチルチオノニニル、3,7-ジメチル-11-メチルチオドデシニル 🐝 4,8-ジメチル-12-メチルチオトリデシニル、1-メチルチオペン **タデシニル、14-メチルチオペンタデシニル、13-メチル-13-メチ** ルチオテトラデシニル、15-メチルチオヘキサデシニル、1-メチルチオ ヘプタデシニル、及び、3,7,11-トリメチル-15-メチルチオヘキ サデシニルのような1又は2個の硫黄原子で介在されている炭素数3乃至2 0個のアルキニル基;1-メチルオキシエチニル、2-メチルオキシエチニ ル、1-メチルオキシプロピニル、2-メチルオキシプロピニル、3-メチ ルオキシプロピニル、2-エチルオキシエチニル、2-メチルー2-メチル オキシエチニル、1-メチルオキシブチニル、2-メチルオキシブチニル、 3-メチルオキシプチニル、2-エチルオキシプロピニル、3-メチル-3 -メチルオキシプロピニル、4-メチルオキシペンチニル、3-メチルオキ シペンチニル、2-メチルオキシペンチニル、1-メチルオキシペンチニル 、3,3-ジメチルオキシブチニル、2,2-ジメチルオキシブチニル、1 ,1-ジメチルオキシブチニル、1-メチル-2-メチルオキシブチニル、

1,3-ジメチルオキシブチニル、2,3-ジメチルオキシブチニル、2-エチルオキシブチニル、1-メチルオキシヘキシニル、2-メチルオキシヘ キシニル、3-メチルオキシヘキシニル、4-メチルオキシヘキシニル、5 - メチルオキシヘキシニル、1 - プロピルオキシブチニル、4 - メチルー4 -メチルオキシペンチニル、1-メチルオキシヘプチニル、2-メチルオキ シヘプチニル、3-メチルオキシヘプチニル、4-メチルオキシヘプチニル 、5-メチルオキシヘプチニル、6-メチルオキシヘプチニル、1-プロピ ルオキシペンチニル、2-エチルオキシヘキシニル、5-メチル-5-メチ ルオキシヘキシニル、3-メチルオキシオクチニル、4-メチルオキシオク チニル、5-メチルオキシオクチニル、6-メチルオキシオクチニル、1-プロピルオキシヘキシニル、2-エチルオキシヘプチニル、6-メチル-6 -メチルオキシヘプチニル、1-メチルオキシノニニル、3-メチルオキシ ノニニル、8-メチルオキシノニニル、3-エチルオキシオクチニル、3-メチル-7-メチルオキシオクチニル、7,7-ジメチルオキシオクチニル 、4-メチル-8-メチルオキシノニニル、3,7-ジメチル-11-メチ ルオキシドデシニル、4,8-ジメチル-12-メチルオキシトリデシニル 、1-メチルオキシペンタデシニル、14-メチルオキシペンタデシニル、 13-メチル-13-メチルオキシテトラデシニル、15-メチルオキシへ キサデシニル、1-メチルオキシヘプタデシニル、及び、3,7,11-ト リメチル-15-メチルオキシヘキサデシニルのような1又は2個の酸素原 子で介在されている炭素数3乃至20個のアルキニル基;1-(N-メチル アミノ) エチニル、2- (N-メチルアミノ) エチニル、1- (N-メチル アミノ) プロピニル、2- (N-メチルアミノ) プロピニル、3- (N-メ チルアミノ) プロピニル、2-(N-エチルアミノ) エチニル、2-(N, N-ジメチルアミノ) エチニル、1-(N-メチルアミノ) プチニル、2-(N-メチルアミノ) プチニル、3-(N-メチルアミノ) プチニル、2-(N-エチルアミノ)プロピニル、3-(N, N-ジメチルアミノ)プロピ ニル、4- (N-メチルアミノ) ペンチニル、3- (N-メチルアミノ) ペ

ンチニル、2 - (N - メチルアミノ)ペンチニル、1 - (N - メチルアミノ) ペンチニル、3-(N, N-ジメチルアミノ) ブチニル、2-(N, N-ジメチルアミノ) プチニル、1-(N, N-ジメチルアミノ) プチニル、1 ーメチルー2 - (N-メチルアミノ) プチニル、1,3-ジ(N-メチルア ミノ) プチニル、2,3-ジ(N-メチルアミノ) プチニル、2-(N-エ **チルアミノ)プチニル、1-(N-メチルアミノ)ヘキシニル、2-(N-**メチルアミノ) ヘキシニル、3-(N-メチルアミノ) ヘキシニル、4-(N-メチルアミノ) ヘキシニル、5-(N-メチルアミノ) ヘキシニル、1 - (N-プロピルアミノ) プチニル、4-メチル-4- (N-メチルアミノ) ペンチニル、1- (N-メチルアミノ) ヘプチニル、2- (N-メチルア ミノ)ヘプチニル、3-(N-メチルアミノ)ヘプチニル、4-(N-メチ ルアミノ) ヘプチニル、5 - (N-メチルアミノ) ヘプチニル、6 - (N-メチルアミノ) ヘプチニル、1-(N-プロピルアミノ) ペンチニル、2-(N-エチルアミノ) ヘキシニル、5-メチル-5-(N-メチルアミノ) ヘキシニル、3-(N-メチルアミノ)オクチニル、4-(N-メチルアミ - ノ)オクチニル、5-(N-メチルアミノ)オクチニル、6-(N-メチル アミノ) オクチニル、1-(N-プロピルアミノ) ヘキシニル、2-(N-エチルアミノ) ヘプチニル、6-メチル-6-(N-メチルアミノ) ヘプチ ニル、1-(N-メチルアミノ)ノニニル、3-(N-メチルアミノ)ノニ ニル、8-(N-メチルアミノ)ノニニル、3-(N-エチルアミノ)オク **チニル、3ーメチルー7ー(Nーメチルアミノ)オクチニル、7,7ージ(** N-メチルアミノ) オクチニル、4-メチル-8-(N-メチルアミノ) ノ ニニル、3, 7-ジメチル-11-(N-メチルアミノ)ドデシニル、4. 8-ジメチル-12-(N-メチルアミノ)トリデシニル、1-(N-メチ ルアミノ) ペンタデシニル、14-(N-メチルアミノ) ペンタデシニル、 13-メチル-13-(N-メチルアミノ)テトラデシニル、15-(N-メチルアミノ) ヘキサデシニル、1-(N-メチルアミノ) ヘプタデシニル 、及び、3,7,11-トリメチル-15-(N-メチルアミノ)へキサデ シニルのような 1 又は 2 個の窒素原子で介在されている炭素数 3 乃至 2 0 個のアルキニル基であり、好適には、ヘテロ原子が介在する C_8 - C_{10} アルキニル基である。

上記において、 R^9 の定義における「アリール基又は芳香族複素環基で置換された C_2 - C_{20} アルキニル基」は、前述の「 C_2 - C_{20} アルキニル基」が、同一又は異なって、1又は3個の、前述の「アリール基」又は前述の「芳香族複素環基」で置換された基を示す。

上記において、R°の定義における「C2-C20アルケニル基」は、例えば 、エテニル、2-プロペニル、1-メチル-2-プロペニル、2-メチル-2ープロペニル、2ーエチルー2ープロペニル、2ープテニル、1ーメチル -2-プテニル、2-メチル-2-プテニル、1-エチル-2-プテニル、 3 - プテニル、1 - メチルー3 - プテニル、2 - メチルー3 - プテニル、1 - エチル-3-プテニル、2-ペンテニル、1-メチル-2-ペンテニル、 2-メチルー2-ペンテニル、3-ペンテニル、1-メチルー3-ペンテニ ル、2-メチル-3-ペンテニル、4-ペンテニル、1-メチル-4-ペン テニル、2-メチル-4-ペンテニル、2-ヘキセニル、3-ヘキセニル、 4-ヘキセニル、5-ヘキセニル、ヘプテニル、1-メチルヘキセニル、2 ーメチルヘキセニル、3ーメチルヘキセニル、4ーメチルヘキセニル、5ー メチルヘキセニル、1ープロピルブテニル、4,4-ジメチルペンテニル、 オクテニル、1-メチルヘプテニル、2-メチルヘプテニル、3-メチルヘ プテニル、4-メチルヘプテニル、5-メチルヘプテニル、6-メチルヘプ テニル、1-プロピルペンテニル、2-エチルヘキセニル、5,5-ジメチ ルヘキセニル、ノネニル、3-メチルオクテニル、4-メチルオクテニル、 5-メチルオクテニル、6-メチルオクテニル、1-プロピルヘキセニル、 2-エチルヘプテニル、6,6-ジメチルヘプテニル、デセニル、1-メチ ルノネニル、3-メチルノネニル、8-メチルノネニル、3-エチルオクテ ニル、3,7-ジメチルオクテニル、7,7-ジメチルオクテニル、ウンデ セニル、4,8-ジメチルノネニル、ドデセニル、トリデセニル、テトラデ

セニル、ペンタデセニル、3,7,11ートリメチルドデセニル、ヘキサデセニル、4,8,12ートリメチルトリデセニル、1-メチルペンタデセニル、14-メチルペンタデセニル、13,13-ジメチルテトラデセニル、ヘプタデセニル、15-メチルヘキサデセニル、オクタデセニル、1-メチルヘプタデセニル、ノナデセニル、アイコセニル、及び、3,7,11,15-テトラメチルヘキサデセニル基のような炭素数2乃至20の直鎖又は分枝鎖アルケニル基を挙げることができ、好適には C_2-C_{10} アルケニル基である。

上記において、R®の定義における「ヘテロ原子が介在するC®-C20アル ケニル基」は、前記「C2-C20アルケニル基」の内の「C3-C20アルケニル 基」が、同一又は異なって、1又は2個の、硫黄原子、酸素原子、又は、窒 素原子で介在されている基を示し、例えば、1-メチルチオエテニル、2-メチルチオエテニル、1-メチルチオプロペニル、2-メチルチオプロペニ ル、3 - メチルチオプロペニル、2 - エチルチオエテニル、2 - メチルー2 ーメチルチオエテニル、1-メチルチオプテニル、2-メチルチオプテニル 、3-メチルチオプテニル、2-エチルチオプロペニル、3-メチル-3-メチルチオプロペニル、4-メチルチオペンテニル、3-メチルチオペンテ ニル、2-メチルチオペンテニル、1-メチルチオペンテニル、3,3-ジ メチルチオプテニル、2,2ージメチルチオプテニル、1,1ージメチルチ オプテニル、1-メチル-2-メチルチオプテニル、1,3-ジメチルチオ プテニル、2、3-ジメチルチオプテニル、2-エチルチオプテニル、1-メチルチオヘキセニル、2-メデルチオヘキセニル、3-メチルチオヘキセ ニル、4-メチルチオヘキセニル、5-メチルチオヘキセニル、1-プロピ ルチオプテニル、4-メチル-4-メチルチオペンテニル、1-メチルチオ ヘプテニル、2-メチルチオヘプテニル、3-メチルチオヘプテニル、4-メチルチオヘプテニル、5-メチルチオヘプテニル、6-メチルチオヘプテ ニル、1-プロピルチオペンテニル、2-エチルチオヘキセニル、5-メチ ルー5-メチルチオヘキセニル、3-メチルチオオクテニル、4-メチルチ

オオクテニル、5-メチルチオオクテニル、6-メチルチオオクテニル、1 ープロピルチオヘキセニル、2-エチルチオヘプテニル、6-メチル-6-メチルチオヘプテニル、1-メチルチオノネニル、3-メチルチオノネニル 、8-メチルチオノネニル、3-エチルチオオクテニル、3-メチル-7-メチルチオオクテニル、7,7ージメチルチオオクテニル、4ーメチル-8 ーメチルチオノネニル、3, 7ージメチルー11ーメチルチオドデセニル、 4,8-ジメチル-12-メチルチオトリデセニル、1-メチルチオペンタ デセニル、14-メチルチオペンタデセニル、13-メチル-13-メチル チオテトラデセニル、15-メチルチオヘキサデセニル、1-メチルチオヘ プタデセニル、及び、3,7,11-トリメチル-15-メチルチオヘキサ デセニルのような1又は2個の硫黄原子で介在されている炭素数3乃至20 個のアルケニル基;1-メチルオキシエテニル、2-メチルオキシエテニル 、1-メチルオキシプロペニル、2-メチルオキシプロペニル、3-メチル オキシプロペニル、2-エチルオキシエテニル、2-メチルー2-メチルオ キシエテニル、1-メチルオキシブテニル、2-メチルオキシブテニル、3 ーメチルオキシブテニル、2-エチルオキシプロペニル、3-メチル-3-メチルオキシプロペニル、4-メチルオキシペンテニル、3-メチルオキシ ペンテニル、2-メチルオキシペンテニル、1-メチルオキシペンテニル、 3, 3-ジメチルオキシプテニル、2, 2-ジメチルオキシプテニル、1, 1-ジメチルオキシブテニル、1-メチル-2-メチルオキシブテニル、1 , 3-ジメチルオキシブテニル、2, 3-ジメチルオキシブテニル、2-エ チルオキシプテニル、1-メチルオキシヘキセニル、2-メチルオキシヘキ セニル、3-メチルオキシヘキセニル、4-メチルオキシヘキセニル、5-メチルオキシヘキセニル、1ープロピルオキシブテニル、4ーメチルー4ー メチルオキシペンテニル、1-メチルオキシヘプテニル、2-メチルオキシ ヘプテニル、3-メチルオキシヘプテニル、4-メチルオキシヘプテニル、 5-メチルオキシヘプテニル、6-メチルオキシヘプテニル、1-プロピル オキシペンテニル、2-エチルオキシヘキセニル、5-メチル-5-メチル

オキシヘキセニル、3-メチルオキシオクテニル、4-メチルオキシオクテ ニル、5-メチルオキシオクテニル、6-メチルオキシオクテニル、1-プ ロピルオキシヘキセニル、2-エチルオキシヘプテニル、6-メチル-6-メチルオキシヘプテニル、1-メチルオキシノネニル、3-メチルオキシノ ネニル、8-メチルオキシノネニル、3-エチルオキシオクテニル、3-メ チルー7-メチルオキシオクテニル、7,7-ジメチルオキシオクテニル、 4-メチル-8-メチルオキシノネニル、3,7-ジメチル-11-メチル オキシドデセニル、4,8-ジメチル-12-メチルオキシトリデセニル、 1-メチルオキシペンタデセニル、14-メチルオキシペンタデセニル、1 3-メチル-13-メチルオキシテトラデセニル、15-メチルオキシヘキ サデセニル、1-メチルオキシヘプタデセニル、及び、3,7,11-トリ メチルー15-メチルオキシヘキサデセニルのような1又は2個の酸素原子 で介在されている炭素数3乃至20個のアルケニル基;1-(N-メチルア ミノ) エテニル、2- (N-メチルアミノ) エテニル、1- (N-メチルア ミノ)プロペニル、2-(N-メチルアミノ)プロペニル、3-(N-メチ ルアミノ)プロペニル、2-(N-エチルアミノ)エテニル、2-(N, N - ランメチルアミノ)エテニル、1- (N - メチルアミノ)プテニル、2- (N-メチルアミノ) プテニル、3-(N-メチルアミノ) プテニル、2-(N-エチルアミノ) プロペニル、3-(N, N-ジメチルアミノ) プロペニ ル、4-(N-メチルアミノ)ペンテニル、3-(N-メチルアミノ)ペン テニル、2-(N-メチルアミノ)ペンテニル、1-(N-メチルアミノ) ペンテニル、3-(N, N-ジメチルアミノ) プテニル、2-(N, N-ジ メチルアミノ) プテニル、1-(N,N-ジメチルアミノ) プテニル、1-メチル-2-(N-メチルアミノ) プテニル、1,3-ジ(N-メチルアミ ルアミノ) プテニル、1- (N-メチルアミノ) ヘキセニル、2- (N-メ チルアミノ) ヘキセニル、3-(N-メチルアミノ) ヘキセニル、4-(N - メチルアミノ)ヘキセニル、 5 - (N - メチルアミノ)ヘキセニル、 1 -

388

(N-プロピルアミノ)ブテニル、4-メチル-4-(N-メチルアミノ) ペンテニル、1 - (N-メチルアミノ) ヘプテニル、2 - (N-メチルアミ ノ)ヘプテニル、3-(N-メチルアミノ)ヘプテニル、4-(N-メチル アミノ) ヘプテニル、5-(N-メチルアミノ) ヘプテニル、6-(N-メ チルアミノ) ヘプテニル、1-(N-プロピルアミノ) ペンテニル、2-(N-エチルアミノ) ヘキセニル、5-メチル-5-(N-メチルアミノ) ヘ キセニル、3-(N-メチルアミノ)オクテニル、4-(N-メチルアミノ **)オクテニル、5-(N-メチルアミノ)オクテニル、6-(N-メチルア** ミノ)オクテニル、1-(N-プロピルアミノ) ヘキセニル、2-(N-エ **チルアミノ)ヘプテニル、6-メチル-6-(N-メチルアミノ)ヘプテニ** ル、1 - (N-メチルアミノ)ノネニル、3 - (N-メチルアミノ)ノネニ ル、8-(N-メチルアミノ)ノネニル、3-(N-エチルアミノ)オクテ ニル、3-メチル-7-(N-メチルアミノ)オクテニル、7,7-ジ(N ーメチルアミノ)オクテニル、4-メチル-8-(N-メチルアミノ)ノネ ニル、3,7-ジメチル-11-(N-メチルアミノ)ドデセニル、4.8 ージメチルー12- (N-メチルアミノ) トリデセニル、1- (N-メチル アミノ) ペンタデセニル、14- (N-メチルアミノ) ペンタデセニル、1 3-メチル-13-(N-メチルアミノ)テトラデセニル、15-(N-メ **チルアミノ)ヘキサデセニル、1-(N-メチルアミノ)ヘプタデセニル、** 及び、3,7,11-トリメチル-15-(N-メチルアミノ) ヘキサデセ ニルのような1又は2個の窒素原子で介在されている炭素数3乃至20個の アルケニル基を挙げることができ、好適には、ヘテロ原子が介在するC。- С 10アルケニル基である。

上記において、R の定義における「アリール基又は芳香族複素環基で置換された C_2-C_{20} アルケニル基」は、前記「 C_2-C_{20} アルケニル基」が、同一又は異なって、1又は3個の、前記「アリール基」又は前記「芳香族複素環基」で置換された基を示す。

上記において、R®の定義における「アリール基又は芳香族複素環基で置換

されたヘテロ原子が介在する C_2-C_{20} アルキル基」は、前記「ヘテロ原子が介在する C_2-C_{20} アルキル基」が、同一又は異なって、1又は3個の、前記「アリール基」又は前記「芳香族複素環基」で置換された基を示す。

上記において、 R^9 の定義における「 C_8-C_{10} シクロアルキル基」は、前記「シクロアルキル基」と同意議を示す。

第B1工程

第B1工程は、一般式 (X) を有する化合物を製造する工程であり、化合物 (VIII) の一方のヒドロキシ基のみを、不活性溶媒の存在又は非存在下 (好適には存在下)、リパーゼの存在下に、化合物 (IX) を用いて選択的にアシル化することにより行なわれる。

上記反応において使用される「リパーゼ」は、特に限定はなく、原料化合物の種類により最適なものが異なるが、好ましくは、Pseudomonas sp.、Pseudomonas fluorescens、Pseudomonas cepacia、Chromobacterium viscosum、Aspergillus niger、Aspergillus oryzae、Candida antarctica、Candida cylindracea、Candida lipolytica、Candida rugosa、Candida utilis、Penicillium roqueforti、Rhizopus arrhizus、Rhizopus delemar、Rhizopus javanicus、Rhizomucor miehei、Rhizopus niveus、Humicola lanuginosa、Mucor javanicus、Mucor miehei、Thermus aquaticus、Thermus flavus、Thermus thermophilus等やhuman pancreas、hog pancreas、porcine pancreas、wheat germ由来のリパーゼであり、酵素は部分的に又は完全に精製して用いることができるばかりではなく、固定化した形態で使用することができる。

最も好適には、Pseudomonas sp.を固定化したもの(例えば、immobilized lipase from Pseudomonas sp. (TOYOBO社))である。

上記反応において使用される化合物 (IX) において好適な化合物としては、原料化合物の種類により最適なものが異なるが、n-ヘキサン酸 ビニルエステル、n-ペンタン酸 ビニルエ

ステル、酢酸 ビニルエステル等の直鎖状脂肪族カルボン酸 ビニルエステルであり、最も好適には、n-ヘキサン酸 ビニルエステルである。

上記反応において使用される不活性溶媒は特に限定はなく、化合物(IX)のみでも良いし、また原料化合物の種類により最適なものが異なるが、各種有機溶媒、含水有機溶媒を使用することができ、好適には、ジイソプロピルエーテル、tープチルメチルエーテル、ジエチルエーテル、テトラヒドロフランのようなエーテル類; nーヘキサン、nーペンタンのような脂肪族炭化水素類; ペンゼン、トルエンのような芳香族炭化水素類; 及びジクロロメタン、1, 2ージクロロエタンのようなハロゲン化炭化水素類を挙げることができ、更に好適には、エーテル類であり、最も好適には、ジイソプロピルエーテル又はtープチルメチルエーテルである。

反応温度は、原料化合物、使用される溶媒、使用されるリパーゼの種類等によって異なるが、通常、-50℃乃至50℃であり、好適には、0℃乃至40℃である。

反応時間は、原料化合物、使用される溶媒、使用されるリパーゼ、及び、 反応温度等によって異なるが、通常、15分乃至150時間であり、好適に は30分乃至24時間である。

第B2工程

第B2工程は、一般式(XI)を有する化合物を製造する工程であり、不 活性溶媒中、酸化剤の存在下、化合物(X)のアルコール部分をアルデヒド に酸化することにより行なわれる。

上記反応における酸化反応としては、一級アルコールからアルデヒドを生成する酸化反応であれば、特に限定はないが、例えば、ジクロロメタン中、ピリジン及びクロム酸を用いて行われるCollins酸化;ジクロロメタン中、塩化クロム酸ピリジニウム(PCC)を用いて行われるPCC酸化;ジクロロメタン中、二クロム酸ピリジニウム(PDC)を用いて行われるPDC酸化;ジクロロメタン中、親電子剤(例えば無水酢酸、無水トリフルオロ酢酸、塩化チオニル

、塩化スルフリル、塩化オキザリル、ジシクロヘキシルカルボジイミド、ジフェニルケテンーpートリルイミン、N, Nージエチルアミノアセチレン、三酸化硫黄・ピリジン錯体など)及びジメチルスルホキシド(DMSO)を用いて行われる、Swern酸化のような、DMSO酸化;及びジクロロメタン若しくはベンゼン中、二酸化マンガンを用いて行われる二酸化マンガン酸化などをあげることができ、好適には、ジクロロメタン中で行われる、PCC酸化、PDC酸化又はSwern酸化である。

反応温度は、原料化合物、溶媒、酸化剤の種類等によって異なるが、通常 、-78℃乃至80℃で行われ、好適には、-78℃乃至30℃である。

反応時間は、原料化合物、溶媒、酸化剤の種類、反応温度等によって異なるが、通常10分間乃至48時間であり、好適には、30分間乃至24時間である。

第B3工程

第B3工程は、一般式(XIII)を有する化合物を製造する工程であり、不活性溶媒中、塩基の存在下、化合物(XI)に、化合物(XII)を反応させることにより行われる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;アセトニトリル、プロピオニトリルのような低級アルキルニトリル類;ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;メタノール、エタノール、プロパノール、ブタノールのような低級アルキルアルコール類;又は水を挙げることができ、好適にはエーテル類(最も好適にはテト

ラヒドロフラン) である。

上記反応に使用される塩基としては、化合物(XI)のアルデヒド部分以外の部分を変化させないものであれば、特に限定されず、例えば、前述のA 法第A2工程において使用されるものと同様のものを挙げることができ、好 適にはアルカリ金属アルコキシド類(最も好適には、カリウム t ープトキシ ド)である。

反応時間は、原料化合物、溶媒、塩基、反応温度等により異なるが、通常 、15分乃至48時間(好適には、30分間乃至8時間)である。

第84工程

第B4工程は、一般式(XIV)を有する化合物を製造する工程であり、 不活性溶媒中、塩基の存在下、化合物(XIII)を加水分解することによ り行われる。

上記反応に使用される不活性溶媒としては、反応を阻害せず、出発原料をある程度溶解するものであれば、特に限定はされず、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノール、nープタノール、イソプタノール、tープタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;水;又は上記溶媒の混合溶媒;あるいは上記溶媒と水との混合溶媒を挙げることができ、好適には、アルコール類とエーテル類と水との混合溶媒まも好適にはメタノール

とテトラヒドロフランと水との混合溶媒又はメタノールと水との混合溶媒)である。

上記反応に使用される塩基としては、化合物(XIII)のアシル部分以外の部分を変化させないものであれば、特に限定されず、例えば、前述のA 法第A2工程において使用されるものと同様のものを挙げることができ、好適には、アルカリ金属水酸化物類(最も好適には水酸化ナトリウム)である。

反応温度は、原料化合物、溶媒、塩基の種類等によって異なるが、通常、

- 78℃乃至150℃であり、好適には-50℃乃至100℃(最も好適には
- 、室温付近)である。

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常 、15分乃至48時間(最も好適には、30分間乃至6時間)である。

第B5工程

第B5工程は、一般式(XV)を有する化合物を製造する工程であり、不 活性溶媒中、化合物(XV)を塩基と反応させることにより行われる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定はないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソブタノール、tーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;水;又は上記溶媒の混合溶媒;あるいは上記溶媒と水との混合溶媒を挙げることができ、好適には、エーテル類又はアミド類(最も好適にはテトラヒドロフラン)である。

上記反応に使用される塩基としては、通常の反応において塩基として使用

されるものであれば、特に限定はないが、例えば、前述のA法第A2工程に おいて使用されるものと同様のものを挙げることができ、好適には、金属ア ルコキシド類(最も好適には、カリウム-t-ブトキシド)である。

反応温度は、原料化合物、溶媒、塩基の種類等によって異なるが、通常、 - 78℃乃至150℃で行われ、好適には-50℃乃至100℃(最も好適に は、0℃乃至室温)である。

反応時間は、原料化合物、溶媒、塩基、反応温度等により異なるが、通常、 15分乃至48時間(好適には、30分間乃至8時間)である。

この第B5工程は、一般式(XIV)を有する化合物のアミノ基の保護基を脱保護した後、N,N-カルボニルジイミダゾールや炭酸ジメチル、炭酸ジエチルのようなアシル化剤と反応させることによっても行うことができる。

第86工程

第B6工程は、一般式 (XVI) を有する化合物を製造する工程であり、 不活性溶媒中、還元剤の存在下、化合物 (XV) を還元 (好適には、水素雰囲気下、接触還元) することにより行われる。

接触還元反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定はされないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;ホルムアミド、N、Nージメチルホルムアミド、N、Nージメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソブタノール、ナーブタノール、イソアミルアルコール、ジエチレング

リコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルプのようなアルコール類;酢酸、塩酸のような有機酸類;水;上記溶媒と水との混合溶媒を挙げることができる。好適には、アルコール類又はエーテル類(最も好適にはメタノール)である。

接触還元反応に使用される還元剤としては、通常の接触還元反応において 使用されるものであれば特に限定されないが、例えば、前述のA法第A3工 程又は第A4工程において使用されるものと同様のものを挙げることができ 、好適には、パラジウムー炭素(最も好適には10%パラジウムー炭素)で ある。

水素圧は、特に限定はないが、通常1乃至10気圧で行われ、好適には1 気圧である。

反応温度は、原料化合物、溶媒、還元剤の種類等によって異なるが、通常 、-20℃乃至200℃で行われるが、好適には0℃乃至100℃(最も好適 には20℃乃至30℃)である。

反応時間は、主に反応温度、原料化合物、反応試薬又は使用される溶媒の 種類によって異なるが、通常、5分間乃至96時間であり、好適には15分 間乃至24時間(最も好適には30分間乃至2時間)である。

第B7工程

第B7工程は、一般式(XVII)を有する化合物を製造する工程であり、不活性溶媒中、塩基の存在下、化合物(XVI)を加水分解することにより行われる。

上記反応に使用される不活性溶媒としては、特に限定はされず、例えば、 前述の第B4工程において使用されるものと同様のものを挙げることができ 、好適には、アルコール類とエーテル類との混合溶媒またはアルコール類と 水との混合溶媒(最も好適にはメタノールとテトラヒドロフランと水との混 合溶媒又はメタノールと水との混合溶媒)である。

上記反応に使用される塩基としては、化合物(XVI)の加水分解反応に

不活性なものであれば、特に限定されず、例えば、前述の第B4工程において使用されるものと同様のものを挙げることができ、好適には、アルカリ金 属水酸化物類(最も好適には水酸化カリウム又は水酸化ナトリウム)である。

反応温度は、原料化合物、溶媒、塩基の種類等によって異なるが、通常、 -78℃乃至200℃であり、好適には0℃乃至180℃(最も好適には、2 0℃乃至120℃)である。

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常 、15分乃至10日間(最も好適には、2時間乃至5日間)である。

第B8工程

第B8工程は、所望の工程で一般式(IV)を有する化合物を製造する工程であり、不活性溶媒中、化合物(XVII)のヒドロキシ基とアミノ基を、アルキル化又は保護することにより行われる。

ヒドロキシ基及びアミノ基をアルキル化又は保護する方法は、一般に有機合成化学の技術において周知の方法、例えば、Protective Groups in Organic Synthesis(Third Edition, 1999, John Wiley & Sons, Inc.社発行)に記載された方法により行うことができ、以下のようにして行うことができる。

アミノ基をアルキル化又は保護する方法としては、例えば、化合物(XVII)を、不活性溶媒中(好適には、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;又はメタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソプタノール、はーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;)、塩基(好適には、トリエチルアミン、トリプチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジンのような有機アミン類)の存在下又は非存在下、下記化合物

 $R^{1}a - Q$ (X I X)

[上記式中、R¹a は低級アルキル基又はアミノ基の保護基(前述したものと同意義を示す。)を示し、Qは前述したものと同意義を示す。]

と、-78℃乃至150℃(好適には、-50℃乃至100℃、最も好適には、室温付近)で、10分間乃至48時間(好適には、20分間乃至8時間) 反応させることにより行なわれる。

ヒドロキシ基をアルキル化又は保護する方法としては、例えば、化合物(X VII)を、不活性溶媒中(好適には、クロロホルム、ジクロロメタン、1, 2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;ジメチルスルホキシドのようなスルホキシド類)、塩基の存在下(好適には、水素化リチウム、水素化ナトリウム、水素化カリウムのようなアルカリ金属水素化物類;トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジンのような有機アミン類)、下記化合物

 $R^{8}a - Q \qquad (XX)$

[上記式中、 R_{a} は、低級アルキル基又はヒドロキシ基の保護基(前述したものと同意義を示す。)を示し、Qは前述したものと同意義を示す。]と、-78 ℃乃至150 ℃(好適には、-50 ℃乃至100 ℃、最も好適には、室温付近)で、10 分間乃至48 時間(好適には、20 分間乃至8 時間)反応させることにより行なわれる。

アミノ基のアルキル化又は保護化とヒドロキシ基のアルキル化又は保護化 は、順不同で希望する反応を順次実施することができる。

B法の各工程の目的化合物は、常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、水等で洗浄後、目的化合物を含む有機層を分離し、無水硫酸マグネシウム、無水硫酸ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有

機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ、マグネシウム・シリカゲル系のフロリジルのような担体を用いた吸着カラムクロマトグラフィー法;セファデックスLH-20(ファルマシア社製)、アンパーライトXAD-11(ローム・アンド・ハース社製)、ダイヤイオンHP-20(三菱化学社製)のような担体を用いた分配カラムクロマトグラフィー等の合成吸着剤を使用する方法、イオン交換クロマトを使用する方法、又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラムクロマトグラフィー法(好適には高速液体カラムクロマトグラフィー)を適宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することができる。

尚、異性体を分離する必要がある場合には、上記各工程の反応終了後、又は、所望工程の終了後の適切な時期に、上記分離精製手段によって行なうことができる。

原料化合物 (VIII) 及び (IX) は、公知か、公知の方法又はそれに類似した方法[原料化合物 (VIII): J. Org. Chem., 64, 8220 (1999)] に従って容易に製造される。

(C法)

C法は、一般式(XII)を有する化合物を製造する工程である。

C法

上記式中、R⁶、R⁷、X、m、Q及びPhは、前述したものと同意義を示す。

第C1工程

第C1工程は、化合物(XII)を製造する工程であり、不活性溶媒中、一般式(XVIII)を有する化合物をトリフェニルホスフィンと反応させることにより行われる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ペンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、プロピオニトリルのような低級アルキルニトリル類;メタノール、エタノール、プロパノール、ブタノールのような低級アルキルアルコール類;又はアセトン、メチルエチルケトンのような低級アルキルケトン類が挙げられ、好適には、エーテル類又はニトリル類である。

反応温度は、原料化合物、溶媒の種類等によって異なるが、通常、-10 $^{\circ}$ $^{\circ}$

反応時間は、主に反応温度、原料化合物、使用される溶媒の種類によって 異なるが、通常、5分間乃至96時間であり、好適には15分乃至48時間(最も好適には、1時間乃至8時間)である。

本工程の目的化合物(XII)は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ、マグネシウム・シリカゲル系のフロリジルのような担体を用いた吸着カラムクロマトグラフィー法;セファデックスLH-20(ファルマシア社製)、アンバーライトXAD-11(ローム・アンド・ハース社製)、ダイヤイオンHP-20(三菱化学社製)のような担体を用いた分配カラムクロマトグラフィー等の合成吸着剤を使用する方法、イオン交換クロ

マトを使用する方法、又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラムクロマトグラフィー法(好適には高速液体カラムクロマトグラフィー)を適宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することができる。

尚、異性体を分離する必要がある場合には、上記工程の反応終了後、 上記分離精製手段によって行なうことができる。

原料化合物(XVIII)は、公知か、公知の方法又はそれに類似した方法[X = Oの場合: J. Am. Chem. Soc., 49, 1066 (1927)、X = N-Meの場合: J. Org. Chem., 52, 19 (1987)]に従って容易に製造される。

(D法)

D法は、一般式(XVII)を有する化合物の光学純度を上げるための工程である。

D法

$$HO$$
 $(CH_2)_m$
 $(CH_$

上記式中、R⁴、R⁶、R⁷、X及びmは、前述したものと同意義を示す。

第D1工程

第D1工程は、化合物(XVII)の光学純度を上げる工程であり、不活性溶媒中、化合物(XVII)を光学活性な有機酸と処理し、塩とし、必要に応じて再結晶をすることにより、光学純度を上げた後、塩基で処理することにより、一般式(XVII)を有するフリー体に戻す工程である。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれ

ば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;酢酸メチル、酢酸プロピル、酢酸プチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソプタノール、ナーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;アセトニトリル、プロピオニトリルのようなニトリル類;水;又は上記溶媒と水との混合溶媒;であり、好適には、アルコール類(最も好適には、メタノール、エタノール)又はアルコール類と水との混合溶媒である。

上記反応に使用される光学活性な有機酸としては、特に限定はされないが、例えば、酒石酸、マンデル酸、カンファー-10-スルホン酸であり、好適には酒石酸である。

得られた塩をフリー体(XVII)に戻すのは、有機溶媒と塩基を用いた 通常の抽出操作により簡便に行うことができる。

D法の各工程の目的化合物は、常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、水等で洗浄後、目的化合物を含む有機層を分離し、無水硫酸マグネシウム、無水硫酸ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ、マグネシウム・シリカゲル系のフロリジルのような担体を用いた吸着カラムクロマトグラフィー法;セファデックスLH-20(ファルマシア社製)

、アンパーライトXAD-11(ローム・アンド・ハース社製)、ダイヤイオンHP-20(三菱化学社製)のような担体を用いた分配カラムクロマトグラフィー等の合成吸着剤を使用する方法、イオン交換クロマトを使用する方法、又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラムクロマトグラフィー法(好適には高速液体カラムクロマトグラフィー)を適宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することができる。

(E法)

E法は、一般式(XXIV)を有する化合物を製造する工程であり、C法のX=N-D、m=0の化合物を合成する際に特に有用な方法であり、文献記載の方法(J.Org.Chem.,52,19 (1987))に準じて行うことができる。

E法

上記式中、D、R⁶、R⁷及びQは、前述したものと同意義を示す。

第E1工程

第E1工程は、一般式 (XXII) を有する化合物を製造する工程であり、公知の方法 (例えば、J. Am. Chem. Soc, 73, 4921 (1951)に記載の方法等

)に準じて、化合物 (XXI) をホルマリンおよびジメチルアミン塩酸塩と 反応させることにより行われる。

第E2工程

第E2工程は、一般式(XXIII)を有する化合物を製造する工程であり、化合物(XXII)をヨウ化メチル等のハロゲン化メチルと反応させ、四級塩とする工程である。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、プロピオニトリルのような低級アルキルニトリル類;メタソール、エタノール、プロパノール、ブタノールのような低級アルキルアルコール類;又はアセトン、メチルエチルケトンのような低級アルキルケトン類が挙げられ、好適には、アルコール類である。

反応温度は、原料化合物、溶媒の種類等によって異なるが、通常、-10 ℃乃至200℃で行われ、好適には0℃乃至50℃である。

反応時間は、主に反応温度、原料化合物、使用される溶媒の種類によって 異なるが、通常、5分間乃至96時間であり、好適には15分乃至48時間(最も好適には、1時間乃至8時間)である。

第E3工程

第E3工程は、化合物(XXIV)を製造する工程であり、不活性溶媒中、一般式(XXIII)を有する化合物をトリフェニルホスフィンと反応させることにより行われる。

上記反応に使用される不活性溶媒としては、本反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、プロピオニトリルのような低級アルキルニトリル類;メタノール、エタノール、プロパノール、ブタノールのような低級アルキルアルコール類;又はアセトン、メチルエチルケトンのような低級アルキルケトン類が挙げられ、好適には、エーテル類又はニトリル類(最も好適には、アセトニトリル)である。

反応温度は、原料化合物、溶媒の種類等によって異なるが、通常、室温乃至200℃で行われ、好適には0℃乃至150℃(最も好適には、20℃乃至100℃)である。

反応時間は、主に反応温度、原料化合物、使用される溶媒の種類によって 異なるが、通常、5分間乃至96時間であり、好適には15分乃至48時間(最も好適には、1時間乃至8時間)である。

E法の各工程の目的化合物は、常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、水等で洗浄後、目的化合物を含む有機層を分離し、無水硫酸マグネシウム、無水硫酸ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ、マグネシウム・シリカゲル系のフロリジルのような担体を用いた吸着カラムクロマトグラフィー法;セファデックスレー20(ファルマシア社製)、アンバーライトXAD-11(ローム・アンド・ハース社製)、ダイヤイオ

ンHP-20 (三菱化学社製) のような担体を用いた分配カラムクロマトグラフィー等の合成吸着剤を使用する方法、イオン交換クロマトを使用する方法、又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラムクロマトグラフィー法 (好適には高速液体カラムクロマトグラフィー) を適宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することができる。

尚、異性体を分離する必要がある場合には、上記各工程の反応終了後、又は、所望工程の終了後の適切な時期に、上記分離精製手段によって行なうことができる。

原料化合物(XXI)は、公知か、公知の方法又はそれに類似した方法に 従って容易に製造される。

(F法)

F法は、一般式(XVI) 又は(IV)より、一般式(XXVIII)を有する化合物を製造する工程であり、A法の別法の一つである。

上記式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、D、Q、Z及びmは、 前述したものと同意義を示す。

第F1工程

第F1工程は、一般式(XXVI)又は(XXVII)を有する化合物を製造する工程であり、一般式(XVI)又は(IV)を有する化合物を、不活性溶媒中、塩基の存在下、一般式(XXV)を有する酸ハライドと反応させることにより行われる。

上記反応に使用される不活性溶媒としては、特に限定はされず、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、プロピオニトリルのような低級アルキルニトリル類;メタノール、エタノール、プロパノール、ブタノールのような低級アルキルアルコール類;又はアセトン、メチルエチルケトンのような低級アルキルケトン類が挙げられ、好適には、芳香族炭化水素類(特に好適には、ベンゼン、トルエン又はキシレン)である。

上記反応に使用される塩基としては、化合物 (XXV) を活性化するものであれば、特に限定されず、例えば、4-(N, N-ジメチルアミノピリジン) 又は4-ピロリジノピリジンである。

反応温度は、原料化合物、溶媒、塩基の種類等によって異なるが、通常、 0℃乃至200℃であり、好適には室温乃至150℃である。

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常 、15分乃至7日間であり、好適には6時間乃至3日間である。 407

第F2工程

第F2工程は、一般式(XXVIII)を有する化合物を製造する工程であり、不活性溶媒中、塩基の存在下、化合物(XXVI)又は化合物(XXVI)又以化合物(XXVI)を加水分解することにより行われる。加水分解反応は、前述した第B7工程と同様にして行われる。

F法の各工程の目的化合物は、常法に従って、反応混合物から採取される 。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過に より除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、水等 で洗浄後、目的化合物を含む有機層を分離し、無水硫酸マグネシウム、無水 硫酸ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られ た目的化合物は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有 機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ 、マグネシウム - シリカゲル系のフロリジルのような担体を用いた吸着カラ ムクロマトグラフィー法:セファデックスLH-20(ファルマシア社製) 、アンバーライトXAD-11 (ローム・アンド・ハース社製)、ダイヤイオ ンHP-20 (三菱化学社製)のような担体を用いた分配カラムクロマトグ ラフィー等の合成吸着剤を使用する方法、イオン交換クロマトを使用する方 法、又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラム クロマトグラフィー法(好適には高速液体カラムクロマトグラフィー)を適 宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することが できる。

尚、異性体を分離する必要がある場合には、上記各工程の反応終了後、又は、所望工程の終了後の適切な時期に、上記分離精製手段によって行なうことができる。

(G法)

G法は、一般式(XVI)又は(IV)より、一般式(XXVIII)を

有する化合物を製造する工程であり、F法の別法の一つである。

G法
$$R^6$$
 R^7 $C(CH_2)_m$ R^6 R^7 $Z-R^5$ R^6 R^7 R^7 R^8 R^7 R^8 R^7 R^8 R^7 R^8 R^8 R^7 R^8 R^8

上記式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、D、Z及びmは、前述したものと同意義を示す。

第G1工程

第G1工程は、一般式(XXX)又は(XXXI)を有する化合物を製造する工程であり、一般式(XVI)又は(IV)を有する化合物を、不活性溶媒中、オキシ塩化リン又は塩化オキザリルの存在下、化合物(XXIX)ようなアミド誘導体と反応させることにより行われる。この反応は公知の方法(例えば、J. Med. Chem., 40, 3381 (1997)に記載の方法等)に準じて行われる。

上記反応に使用される不活性溶媒としては、特に限定はされず、ヘキサン 、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエ ン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロ ロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、プロピオニトリルのような低級アルキルニトリル類;メタノール、エタノール、プロパノール、ブタノールのような低級アルキルアルコール類;又はアセトン、メチルエチルケトンのような低級アルキルケトン類が挙げられ、好適には、芳香族炭化水素類(特に好適には、ベンゼン又はトルエン)である。

反応温度は、原料化合物、溶媒、塩基の種類等によって異なるが、通常、 0℃乃至200℃であり、好適には室温乃至150℃である。

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常 、15分乃至7日間であり、好適には6時間乃至3日間である。

第G2工程

第G2工程は、一般式(XXVIII)を有する化合物を製造する工程であり、不活性溶媒中、塩基の存在下、化合物(XXX)又は化合物(XXXI)と加水分解することにより行われる。加水分解反応は、前述した第B7工程と同様にして行われる。

G法の各工程の目的化合物は、常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、水等で洗浄後、目的化合物を含む有機層を分離し、無水硫酸マグネシウム、無水硫酸ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ、マグネシウム・シリカゲル系のフロリジルのような担体を用いた吸着カラムクロマトグラフィー法;セファデックスLH-20(ファルマシア社製)、アンバーライトXAD-11 (ローム・アンド・ハース社製)、ダイヤイオンH

P-20 (三菱化学社製)のような担体を用いた分配カラムクロマトグラフィー等の合成吸着剤を使用する方法、イオン交換クロマトを使用する方法、 又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラムクロマトグラフィー法 (好適には高速液体カラムクロマトグラフィー)を適宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することができる。

尚、異性体を分離する必要がある場合には、上記各工程の反応終了後、又は、所望工程の終了後の適切な時期に、上記分離精製手段によって行なうことができる。

(H法)

H法は、一般式 (XVI) 又は (IV) より、一般式 (XXVIII) を 有する化合物を製造する工程であり、F法の別法の一つである。

上記式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、D、Q、Z及びmは、

前述したものと同意義を示す。

第11工程

第H1工程は、一般式(XXX)又は(XXXI)を有する化合物を製造する工程であり、一般式(XVI)又は(IV)を有する化合物を、不活性溶媒中、公知の方法(例えば、Synth. Commun., 19, 2721 (1989)に記載の方法等)に準じて、塩化アルミニウムのようなルイス酸の存在下、化合物(XXV)のような酸ハライドと Friedel-Crafts 反応させることにより行うか、若しくは、一般式(XVI)又は(IV)を有する化合物を、不活性溶媒中、公知の方法(例えば、Bioorg. Med. Chem., 9, 621 (2001)に記載の方法等)に準じて、Grignard 試薬と処理した後、化合物(XXV)のような酸ハライドと反応させることにより行うことができる。

上記反応に使用される不活性溶媒としては、特に限定はされず、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;又はアセトン、メチルエチルケトンのような低級アルキルケトン類が挙げられ、好適には、前者の場合には、ハロゲン化炭化水素類(特に、ジクロロメタン、ジクロロエタン)であり、後者の場合には、エーテル類(特に、ジエチルエーテル、テトラヒドロフラン)である。

反応温度は、原料化合物、溶媒、試薬の種類等によって異なるが、通常、 0℃乃至100℃であり、好適には0℃乃至50℃である。

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常 、15分乃至24時間であり、好適には1時間乃至12時間である。 412 .

第H2工程

第H2工程は、一般式(XXVIII)を有する化合物を製造する工程であり、不活性溶媒中、塩基の存在下、化合物(XXX)又は化合物(XXX I)を加水分解することにより行われる。加水分解反応は、前述した第G2工程と同様にして行われる。

H法の各工程の目的化合物は、常法に従って、反応混合物から採取される 。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過に より除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、水等 で洗浄後、目的化合物を含む有機層を分離し、無水硫酸マグネシウム、無水 硫酸ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られ た目的化合物は必要ならば、常法、例えば再結晶、再沈殿、又は、通常、有 機化合物の分離精製に慣用されている方法、例えば、シリカゲル、アルミナ 、マグネシウム・シリカゲル系のフロリジルのような担体を用いた吸着カラ ムクロマトグラフィー法;セファデックスLH-20(ファルマシア社製) 、アンバーライトXAD-11(ローム・アンド・ハース社製)、ダイヤイオ ンHP-20(三菱化学社製)のような担体を用いた分配カラムクロマトグ ラフィー等の合成吸着剤を使用する方法、イオン交換クロマトを使用する方 法、又はシリカゲル若しくはアルキル化シリカゲルによる順相・逆相カラム クロマトグラフィー法(好適には高速液体カラムクロマトグラフィー)を適 宜組み合わせ、適切な溶離剤で溶出することによって分離、精製することが できる。

尚、異性体を分離する必要がある場合には、上記各工程の反応終了後、又は、所望工程の終了後の適切な時期に、上記分離精製手段によって行なうことができる。

(I 法)

化合物(II)は、前述したA法乃至H法を適宜選択して製造されるが、 以下に示すI法によっても製造することができる。 413

I法

上記式中、R¹、R²、R⁴、R⁵、R⁶、R⁷、R¹⁰、R¹¹、X、Y、Z及 びnは、前述したものと同意義を示す。R¹a、R²a、R⁴a、R⁵a、R6a、R7a、 Ya及びZaは、各々、R1a、R2a、R4a、R5a、R6a、R7a、Ya及びZaに 含まれるアミノ、ヒドロキシ及び/又はカルボキシル基が、保護されてもよ いアミノ、ヒドロキシ及び/又はカルボキシル基である他、それぞれ、R1、 R²、R⁴、R⁵、R⁶、R⁷、Y及びZの基の定義におけるものと同意義を示し、 R^{12} 及び R^{13} は、同一又は異なって、低級アルキル基(特に、エチル基また はイソプロピル基)を示す。

第I1工程

第I1工程は、一般式 (II) を有する化合物を製造する工程であり、一 般式(I)のR®が水素原子であるアルコール体(I')と化合物(XXXII) とを反応させて亜リン酸エステル体とし、次いで、酸化剤と反応させ、所望 により、アミノ基の保護基を除去し、ヒドロキシ基の保護基を除去し、カル ボキシル基の保護基を除去し、リン酸基の保護基を除去することにより行わ れる。

R¹、R²、R⁴、R⁵、R⁶、R⁷、Y及びZにおけるヒドロキシ基、アミ ノ基及び/又はカルボキシル基の保護基の除去は、前述の第A7工程におけ る保護基の除去と同様に行われる。

所望の反応は、適宜順序を変えて行うことでき、保護基の除去は、適宜反 応条件を選択して、選択的に除去することができる。

一級水酸基を有する化合物をリン酸エステル体に導くには、有機合成化学

の分野で一般的に使用される方法に準じて行うことができる。例えば、実験化学講座22 (第4版: 丸善)「有機合成 IV」第3章「リン酸エステル」に記載の方法により、容易に導くことが可能である。実際には以下のような方法が好適である。

すなわち、アルコール体(I')と化合物(XXXII)とを、不活性溶媒中、活性化剤存在下、反応させ亜リン酸エステル体を製造し、次いで、不活性溶媒中、酸化剤と反応させる方法である。

化合物(I') と化合物(XXXII) との反応において使用される不活性 溶媒は、例えば、ヘキサン、ヘプタンのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフランのようなエーテル類或は上記溶媒の混合溶媒であり、好適には、ハロゲン化炭化水素類又はエーテル類(最も好適には、ジクロロメタン又はテトラヒドロフラン)である。

使用される活性化剤は、例えば、1H-テトラゾール、5-メチル-1H -テトラゾール、5-フェニル-1H-テトラゾールのようなテトラゾール 類 (好適には、1H-テトラゾール) である。

使用される化合物(XXXII)は、好適には、ジアリル N, N-ジイソプロピルホスホロアミダイト、ジメチル N, N-ジイソプロピルホスホロアミダイト、ジエチル N, N-ジイソプロピルホスホロアミダイト、ジーセーブチル N, N-ジイソプロピルホスホロアミダイト、ジベンジル N, N-ジイソプロピルホスホロアミダイト、ジベンジル N, N-ジエチルホスホロアミダイト、ジーセーブチル N, N-エチルホスホロアミダイト、ジベンジル N, N-ジエチルホスホロアミダイト、N, N-ジエチルー1, 5-ジヒドロー2, 4, 3-ベンゾジオキサホスフェピンー3-アミン、ビス(2-シアノエチル) N, N-ジイソプロピルホルホロアミダイト又はビス(9-フルオレニルメチル) N, N-ジイソプロピルホルホロアミダ

イトのようなホスホロアミダイト類であり、特に好適には、ジアリルN-ジイソプロピルホスホロアミダイトである。

反応温度は、原料化合物、溶媒の種類等によって異なるが、通常、-10℃ 乃至60℃(好適には0℃乃至30℃)である。

反応時間は、原料化合物、溶媒、反応温度等により異なるが、通常、10 分間乃至24時間(好適に30分間乃至2時間)である。

上記反応で得られる亜リン酸エステル体は、反応の後処理及び単離をせず に、酸化剤と反応することができる。

酸化剤との反応において使用される不活性溶媒は、アルコール体(I')と 化合物(XXXII)との反応に使用されるものと同様のものである。

使用される酸化剤は、例えば、tープチルヒドロペルオキシド、クメンヒドロペルオキシド、mークロロ過安息香酸、3,5ージニトロ過安息香酸、0ーカルボキシ過安息香酸、ジメチルオキソラン、過酢酸、過トリフルオロ酢酸、過フタル酸、過酸化水素水のような過酸化物であり、好適には、tープチルヒドロペルオキシド又はmークロロ過安息香酸である。

反応温度は、得られた亜リン酸エステル体、酸化剤、溶媒の種類等によって異なるが、通常、-78℃乃至室温(好適には、-78℃乃至0℃)である。

反応時間は、得られた亜リン酸エステル体、酸化剤、溶媒、反応温度等により異なるが、通常、5分間乃至2時間(好適には、5分間乃至30分間)である。

リン酸基の保護基が、シアノ基、置換されてもよいシリル基、アリール基、 ヘテロシクリル基、アリールチオ基、スルホニル基又はハロゲン原子により 置換されても良い低級アルキル基である場合には、不活性溶媒中、水の存在 下、酸で加水分解するか、あるいは、不活性溶媒中、ハロゲン化トリメチル シリル(例えば、プロモトリメチルシリル又はヨードトリメチルシリル)と 反応させることにより該保護基が除去される。

上記加水分解に使用させる不活性溶媒は、例えば、メタノール、エタノー

ルのようなアルコール類;又はジエチルエーテル、ジイソプロピルエーテル、 テトラヒドロフラン、ジオキサンのようなエーテル類であり、好適にはエー テル類であり、最も好適にはジオキサンである。

上記反応で使用される酸は、例えば、塩酸、硫酸、リン酸、硝酸のような 無機酸であり、好適には塩酸である。

反応温度は、0℃乃至150℃(好適には20℃乃至100℃)であり、 反応温度は、1時間乃至60時間(好適には1時間乃至48時間)である。

上記のハロゲン化トリメチルシリルとの反応に使用される不活性溶媒は、 例えば、ヘキサン、ヘプタンのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類;或いは上記溶媒の混合溶媒であり、好適には、ハロゲン化炭化水素類又はニトリル類(より好適には、クロロホルム、ジクロロメタン又はアセトニトリル)である。

反応温度は、原料化合物、使用される溶媒の種類等によって異なるが、通常、-78℃乃至100℃(好適には0℃乃至80℃)である。

反応時間は、原料化合物、使用される溶媒、反応温度等により異なるが、 通常、10分乃至24時間(好適には1時間乃至6時間)である。

リン酸基の保護基が低級アルケニル基である場合には、不活性溶媒中、アミン、蟻酸、蟻酸塩類、トリアルキルスズ化合物又は活性メチレン化合物の存在下、パラジウム化合物と反応させることにより、該保護基を除去することができる。

上記反応に使用される不活性溶媒は、例えば、ヘキサン、ヘプタンのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;クロロホルム、ジクロロメタンのようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類;酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類;メタノール、エタノール、ロ

ープロパノール、イソプロパノールのようなアルコール類;酢酸のような有機酸類;水;又は上記溶媒と水との混合溶媒であり、好適には、ニトリル類又はエーテル類(特に好適には、アセトニトリル又はテトラヒドロフラン)である。

上記反応で使用されるアミンは、例えば、トリエチルアミン、トリプチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、1, 4-ジアザビシクロ [2. 2. 2] オクタン(DABCO)のような第三級アミン類;ジエチルアミン、ジメチルアミン、ジイソプロピルアミン、ピロリジンのような第二級アミン類;又はエチルアミン、プロピルアミン、プチルアミン、N, N-ジメチルアニリン、N, N-ジエチルアニリンのような第一級アミン類であり、好適には、ピロリジンである。

上記反応で使用される蟻酸塩類は、好適には、蟻酸アンモニウム、蟻酸ト リエチルアミン塩又は蟻酸 n ープチルアミン塩である。

上記反応に使用されるトリアルキルスズ化合物は、好適には、トリメチルスズ、トリエチルスズ又はトリプチルスズであり、特に好適には、トリブチルスズである。

上記反応で使用される活性メチレン化合物は、例えば、マロン酸メチル、マロン酸エチルのようなマロン酸エステル類;シアノ酢酸メチルのようなシアノ酢酸エステル類;アセト酢酸メチル、アセト酢酸エチル、ベンゾイル酢酸エチルのような β -ケト酢酸エステル類;アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタン、1、3ーシクロペンタジオン、1、3ーシクロペキサジオン、ジメドンのような1、3ージケトン類;又は上記活性メチレン化合物のアルカリ金属塩であり、好適には、1、3ージケトン類又はマロン酸エステル類のナトリウム塩である。

上記反応で使用されるパラジウム化合物は、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジアセトキシパラジウム、ジクロロジ(トリフェニルホスフィン)パラジウム、ビス(ジベンジリデンアセトン)パラジウムのようなパラジウム化合物であり、好適には、テトラキス(トリフェ

ニルホスフィン)パラジウムである。

反応温度は、原料化合物、使用される溶媒の種類等によって異なるが、通常、0℃乃至100℃(好適には20℃乃至80℃)である。

反応時間は、原料化合物、使用される溶媒、反応温度等により異なるが、 通常、10分乃至48時間(好適に30分乃至24時間)である。

リン酸基の保護基が、アリールメチル基である場合は、前述の第A7工程における、前記アミノ基の保護基がアラルキル類又はアラルキルオキシカルボニル基である場合と同様に処理して除去される。

リン酸基の保護基が、アリール基である場合は、前述の第A7工程における、前記アミノ基の保護基が、低級脂肪族アシル類、芳香族アシル類、低級アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合と同様に処理して除去される。

リン酸基の保護基が、アミド類である場合、前述の第A7工程における、 前記アミノ基の保護基が脂肪族アシル類、芳香族アシル類、アルコキシカル ボニル類又はシッフ塩基を形成する置換されたメチレン基である場合の除去 反応における酸処理と同様に行われる。

反応終了後、各反応の目的化合物は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、酸化剤が存在する場合は、適宜、 還元剤で分解し、又は、不溶物が存在する場合には、適宜濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィー等の通常、有機化合物の分離精製に慣用されている方法を適宜組合せ、分離、精製することができる。

(] 法)

化合物(III)は、前述のA法乃至H法を適宜選択して製造されるが、

以下に示す」法によっても、製造することができる。

J法

上記式中、R¹、R^{1a}、R²、R²、R²、R⁴、R⁴、R⁵、R⁵、R^{5a}、R⁶、R^{6a}、R⁷、R^{7a}、R¹⁰、R¹¹、Y、Y^a、Z、Z^a及びnは、前述したものと同意義を示す。

第 J 1 工程

第 J 1 工程は、一般式 (I ') を有する化合物を酸化して、一般式 (X X X I I I) を有するアルデヒド体を製造する工程である。

酸化反応は、一級アルコールからアルデヒドを生成する酸化反応であれば、特に限定はないが、例えば、ジクロロメタン中、ピリジン及びクロム酸を用いて行われる Collins 酸化;ジクロロメタン中、塩化クロム酸ピリジニウム (PCC)を用いて行われる PCC 酸化;ジクロロメタン中、二クロム酸ピリジニウム(PDC)を用いて行われる PDC 酸化;ジクロロメタン中、親電子剤(例えば無水酢酸、無水トリフルオロ酢酸、塩化チオニル、塩化スルフリル、塩化

オキザリル、ジシクロヘキシルカルボジイミド、ジフェニルケテン・p・トリルイミン、N, Nージエチルアミノアセチレン、三酸化硫黄・ピリジン錯体など)及びジメチルスルホキシド(DMSO)を用いて行われる、Swern 酸化のような、DMSO酸化;ジクロロメタン若しくはペンゼン中、二酸化マンガンを用いて行われる二酸化マンガン酸化;又はジクロロメタン中、Dess-Martinペルヨージナンを用いて行われる Dess-Martin 酸化であり、好適には、ジクロロメタン中で行われる、Dess-Martin 酸化、PDC 酸化又は Swern 酸化である。

反応温度は、原料化合物、溶剤、酸化剤の種類等によって異なるが、通常、 - 78℃乃至100℃であり、好適には、- 78℃乃至30℃である。

反応時間は、原料化合物、溶媒、酸化剤の種類、反応温度等によって異なるが、通常10分間乃至2日間であり、好適には、30分間乃至24時間である。

第 J 2 工程

第J2工程は、不活性溶媒中、塩基の存在下、アルデヒド体(XXXII I I) を一般式 (XXXIV) を有する化合物と反応させ、 α , β - 不飽和リン酸エステル体 (XXXV) に導く工程である。

上記反応に使用される不活性溶媒は、出発物質をある程度溶解するものであれば、特に限定はないが、好適には、ペンゼン、トルエン、キシレンのような芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、セーブチルメチルエーテル、テトラヒドロフランのようなエーテル類;アセトニトリル、イソプチロニトリルのようなニトリル類;ホルムアミドのようなアミド類;又はジメチルスルホキシドのようなスルホキシド類であり、さらに好適には、芳香族炭化水素類又はエーテル類(特に好適には、ペンゼン又はテトラヒドロフラン)である。

使用される塩基は、化合物(XXXIV)と反応させて、相当するカルバ

ニオンを生成させるものであれば、特に限定はないが、好適には、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸水素塩類;水素化ナトリウム、水素化カリウムのようなアルカリ金属水素化物類;水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドのようなアルカリ金属アルコキシド類; Nーメチルモルホリン、トリエチルアミンのような有機アミン類;又はプチルリチウム、リチウムジイソプロピルアミドのような有機の属塩基類であり、さらに好適には、アルカリ金属アルコキシド類、アルカリ金属水素化物類及び有機金属塩基類であり、特に好適には、水素化ナトリウムである。

反応温度は、原料化合物、溶剤、ホスホニウム塩の種類、塩基の種類等によって異なるが、通常、-80℃乃至100℃であり、好適には、-20℃乃至50℃である。

反応時間は、原料化合物、溶剤、ホスホニウム塩の種類、塩基の種類等によって異なるが、通常10分間乃至2日間であり、好適には、10分間乃至12時間である。

第 J 3 工程

第J3工程は、一般式(III)を有する化合物を製造する工程であり、不飽和リン酸エステル化合物(XXXV)を不活性溶媒中、接触還元触媒の存在下、水素と反応させ、還元を行い、所望により、アミノ基の保護基を除去し、ヒドロキシの保護基を除去し、カルボキシル基の保護基を除去し、リン酸基の保護基を除去することにより行われる。

不飽和リン酸エステル化合物(XXXV)を水素と反応させる反応で使用される不活性溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば、特に限定はないが、好適には、メタノール、エタノール、イソプロパノールのようなアルコール類;ジエチルエーテル、ジイソプロピルエーテ

ル、tープチルメチルエーテル、テトラヒドロフラン、ジオキサンのような エーテル類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ヘ キサン、シクロヘキサンのような脂肪族炭化水素類;又は酢酸エチル、酢酸 プロピルのようなエステル類であり、さらに好適には、アルコール類(特に 好適には、メタノール又はエタノール)である。

使用される接触還元触媒は、好適には、パラジウムー炭素、水酸化パラジウムー炭素、パラジウム黒、酸化白金、白金黒、ロジウムー酸化アルミニウム、トリフェニルホスフィンー塩化ロジウム(Wilkinson 錯体)、パラジウムー硫酸パリウム、ラネーニッケルであり、さらに好適には、パラジウムー炭素又はトリフェニルホスフィンー塩化ロジウム(Wilkinson 錯体)である。

水素の圧力は、特に限定はないが、通常1乃至10気圧で行われる。

反応温度は、原料化合物、溶剤、塩基の種類等によって異なるが、通常、 0℃乃至100℃(好適には、0℃乃至50℃)である。

反応時間は、原料化合物、反応温度、溶剤、塩基の種類によって異なるが、 通常、5分間乃至48時間(好適には、30分間乃至24時間)である。

反応終了後、各反応の目的化合物は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、酸化剤が存在する場合は、適宜、還元剤で分解し、又は、不溶物が存在する場合には、適宜濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィー等の通常、有機化合物の分離精製に慣用されている方法を適宜組合せ、分離、精製することができる。

所望により行われる、アミノ基の保護基を除去する反応、ヒドロキシ基の保護基を除去する反応、カルボキシル基の保護基を除去する反応は、前述の第A7工程と同様にして行うことができ、リン酸基の保護基を除去する反応は、前述の第I1工程と同様に行うことができる。

本発明の一般式(I)を有するアミノアルコール誘導体、一般式(II) を有するリン酸エステル又は一般式(III)を有するホスホン酸誘導体、 その薬理上許容される塩又はその薬理上許容されるエステルは、毒性が低く 優れた免疫抑制作用を有し、本発明の一般式(I)、(II)及び(III) を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステ ルを有効成分として含有する医薬組成物は、特に、各種臓器移植又は皮膚移 植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性筋炎、 結合組織炎、骨格筋炎、骨関節炎、変形性関節症、皮膚筋炎、強皮症、ベー チェット病、Chron 病、潰瘍性大腸炎、自己免疫性肝炎、再生不良性貧血、 特発性血小板減少性紫斑病、自己免疫性溶血性貧血、多発性硬化症、自己免 疫性水疱症、尋常性乾癬、血管炎症群、Wegener 肉芽腫、ぶどう膜炎、シェ ーグレン症候群、特発性間質性肺炎、Goodpasture 症候群、サルコイドーシ ス、アレルギー性肉芽腫性血管炎、気管支喘息、心筋炎、心筋症、大動脈炎 症候群、心筋梗塞後症候群、原発性肺高血圧症、微小変化型ネフローゼ、膜 性腎症、膜性増殖性腎炎、巣状糸球体硬化症、半月体形成性腎炎、重症筋無 力症、炎症性ニューロパチー、アトピー性皮膚炎、慢性光線性皮膚炎、日光 過敏症、蓐瘡、Sydenham 舞踏病、硬化症、成人発症糖尿病、インスリン依 存性糖尿病、若年性糖尿病、アテローム性動脈硬化症、糸球体腎炎、IgA 腎 症、尿細管間質性腎炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、劇症肝 炎、ウイルス性肝炎、GVHD、接触皮膚炎、敗血症等の自己免疫疾患又はそ の他免疫関連疾患、さらに、真菌、マイコプラズマ、ウィルス、原虫等の感 染症、心不全、心肥大、不整脈、狭心症、心虚血、動脈塞栓、動脈瘤、静脈 瘤、血行障害等の循環器系疾患、アルツハイマー病、痴呆、パーキンソン病、 脳卒中、脳梗塞、脳虚血、鬱病、躁鬱病、統合失調症、ハンチントン舞踏病、 癲癇、痙攣、多動症、脳炎、髄膜炎、食欲不振および過食等の中枢系疾患、 リンパ腫、白血病、多尿、頻尿、糖尿病性網膜症等の各種疾患(特に、各種 臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リ ウマチ、多発性硬化症、アトピー性皮膚炎等の自己免疫疾患)の温血動物用 (特に、ヒト用)の予防剤若しくは治療剤(好適には、治療薬)として有用 である。

本発明の一般式(I)、(II)及び(III)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステルを、上記治療剤又は予防剤として使用する場合には、それ自体或は適宜の薬理学的に許容される、賦形剤、希釈剤等と混合し、例えば、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤等による経口的又は注射剤若しくは坐剤等による非経口的に投与することができる。

これらの製剤は、賦形剤(例えば、乳糖、白糖、葡萄糖、マンニトール、 ソルビトールのような糖誘導体;トウモロコシデンプン、バレイショデンプ ン、α澱粉、デキストリンのような澱粉誘導体;結晶セルロースのようなセ ルロース誘導体;アラピアゴム;デキストラン;プルランのような有機系賦 形剤:及び、軽質無水珪酸、合成珪酸アルミニウム、珪酸カルシウム、メタ 珪酸アルミン酸マグネシウムのような珪酸塩誘導体;燐酸水素カルシウムの ような燐酸塩:炭酸カルシウムのような炭酸塩;硫酸カルシウムのような硫 酸塩等の無機系賦形剤を挙げることができる。)、滑沢剤(例えば、ステアリ ン酸、ステアリン酸カルシウム、ステアリン酸マグネシウムのようなステア リン酸金属塩:タルク:コロイドシリカ;ビーガム、ゲイ蝋のようなワック ス類:硼酸:アジピン酸:硫酸ナトリウムのような硫酸塩;グリコール;フ マル酸;安息香酸ナトリウム;DLロイシン;脂肪酸ナトリウム塩;ラウリ ル硫酸ナトリウム、ラウリル硫酸マグネシウムのようなラウリル硫酸塩:無 水珪酸、珪酸水和物のような珪酸類;及び、上記澱粉誘導体を挙げることが できる。)、結合剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプ ロピルメチルセルロース、ポリビニルピロリドン、マクロゴール、及び、前 記賦形剤と同様の化合物を挙げることができる。)、崩壊剤(例えば、低置換 度ヒドロキシプロピルセルロース、カルボキシルメチルセルロース、カルボ

キシルメチルセルロースカルシウム、内部架橋カルボキシルメチルセルロースナトリウムのようなセルロース誘導体;カルボキシルメチルスターチ、カルボキシルメチルスターチナトリウム、架橋ポリビニルピロリドンのような化学修飾されたデンプン・セルロース類を挙げることができる。)、安定剤(メチルパラベン、プロピルパラベンのようなパラオキシ安息香酸エステル類;クロロブタノール、ベンジルアルコール、フェニルエチルアルコールのようなアルコール類;塩化ベンザルコニウム;フェノール、クレゾールのようなフェノール類;チメロサール;デヒドロ酢酸;及び、ソルビン酸を挙げることができる。)、矯味矯臭剤(例えば、通常使用される、甘味料、酸味料、香料等を挙げることができる。)、希釈剤等の添加剤を用いて周知の方法で製造される。

その使用量は症状、年齢等により異なるが、経口投与の場合には、1回当り1日下限0.05mg(好適には、5mg)、上限200mg(好適には、40mg)を、静脈内投与の場合には、1回当り1日下限0.01mg(好適には、1mg)、上限100mg(好適には、10mg)を成人に対して、1日当り1乃至6回症状に応じて投与することが望ましい。

[発明を実施するための最良の形態]

以下に実施例、参考例、製剤例及び試験例を挙げて、本発明について更に 具体的に詳述するが、本発明はこれらに限定されるものではない。

[実施例]

(実施例1)

(2R) -2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル) フラン-2-イル] ブタン-1-オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-621)

参考例6で得られた(2 R) - 1 - アセトキシー2 - アセチルアミノー2 - メチルー4 - (5 - プロモフランー2 - イル) プタン0.3016g(0.91mmo1)、5 - フェニルペントー1 - イン0.3974g(2.76mmo1)、ジクロロビス(トリフェニルホスフィン) パラジウム(II)63.0mg(0.090mmo1) およびヨウ化銅(I)35.4mg(0.19mmo1)をN,Nージメチルホルムアミド(9.0ml)に懸濁し、トリエチルアミン1.25ml(9.0mmol)を加え、窒素雰囲気下、室温で10時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、水および酢酸エチルを加え、室温で30分間撹拌し、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=1/1)により精製して、標記化合物 0.2841g(収率79%)を得た。

¹H NMR \angle \angle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle (CDCl₃, 400MHz), δ : 7.31-7.27 (m, 2H), 7.22-7.18 (m, 3H), 6.38 (d, 1H, J = 3.2 Hz), 5.98 (d, 1H, J = 3.2 Hz), 5.36 (br s, 1H), 4.29 (d, J = 11.2 Hz), 4.18 (d, 1H, J = 11.2 Hz), 2.77 (t, 2H, J = 7.8 Hz), 2.64 (dt, 2H, J = 8.5 Hz, 17.0 Hz), 2.44 (t, 2H, J = 7.1 Hz), 2.30-2.22

(m, 1H), 2.09 (s, 3H), 2.01-1.88 (m, 6H), 1.35 (s, 3H)IR スペクトル, v_{max} cm⁻¹ (CHCl₃): 3691, 3444, 2947, 1737, 1681, 1601, 1511, 1453, 1374, 1251, 1042, 812, 803.

マススペクトル (FAB+), m/z:396((M+H)+)。

(2R)-2-アミノ-2-メチル-4-[5-(5-フェニ ルペント-1-イニル)フラン-2-イル]プタン-1-オール シュウ酸

実施例(1 a) で得られた(2 R) -1-アセトキシ-2-アセチルアミ ノー2-メチルー[5-(5-フェニルペント-1-イニル)フラン-2-イル] プタン0.2710g(0.69mmol)をテトラヒドロフラン(1.4ml) -メタノール(1.4ml) の混合液に溶解し、水(1.4ml) および水酸化リチウム1水和物 0.2854g(6.80mm o 1)を加え、 50℃で4時間攪拌した。冷却後、反応液に水を加え、塩化メチレンで抽出 し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。 ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロ マトグラフィー(溶出溶媒:塩化メチレン/メタノール=100/1)により 精製して、粗製の(2尺)-2-アミノ-2-メチル-4-[5-(5-フ エニルペント-1-イニル)フラン-2-イル]プタン-1-オール0.20 72gを得た。得られた粗生成物をメタノールに溶解し、98%無水シュウ 酸59.2mg(0.64mmol)を加えて、室温で30分間撹拌した。 減圧下濃縮し、酢酸エチルを加えて析出した結晶をろ取し、酢酸エチルで洗 浄し、減圧下乾燥して、標記化合物 0.2344g(収率 91%)を得た。 ¹H NMR スペクトル (CD₃OD, 400MHz), δ: 7.29-7.25 (m, 2H), 7.21-7.14 (m. 3H), 6.40 (d, 1H, J = 3.0 Hz), 6.09 (d, 1H, J = 3.0 Hz), 3.59 (d, 1H, J = 11.6 Hz), 3.50 (d, 1H, J = 11.6 Hz), 2.77-2.65 (m, 4H), 2.41 (t, 2H, J = 7.0 Hz), 2.07-1.83 (m, 4H), 1.29 (s, 3H).

IR スペクトル, $\nu_{\rm max}$ cm $^{-1}$ (KBr) : 3353, 3128, 2940, 1720, 1645, 1614, 1598, 1542, 1403, 1220, 1078, 789, 713, 700.

マススペクトル (FAB+), m/z:312((M+H)+; free 体)。

(実施例2)

(2R) -2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] プタン-1-オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-570)

参考例6で得られた(2R) -1-アセトキシ-2-アセチルアミノ-2 -メチル-4-(5-プロモフラン-2-イル) プタンおよび5-シクロヘ キシルペント-1-インを出発原料とし、実施例(1a) および(1b) に 記載の方法に準じて、標記化合物を得た(収率68%)。

¹H NMR スペクトル (CD₈OD, 400MHz), δ : 6.36 (d, 1H, J = 3.1 Hz), 6.08 (d, 1H, J = 3.1 Hz), 3.59 (d, 1H, J = 11.5 Hz), 3.49 (d, 1H, J = 11.5 Hz), 2.77-2.64 (m, 2H), 2.39 (t, 2H, J = 7.2 Hz), 2.07-1.90 (m, 2H), 1.76-1.54 (m, 7H), 1.35-1.12 (m, 9H), 0.96-0.86 (m, 2H)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3362, 3124, 2923, 2850, 1720, 1611, 1597, 1542, 1467, 1403, 1279, 1220, 1067, 967, 791, 721, 700。 マススペクトル (FAB⁺), m/z: 318((M+H)⁺; free 体)。

(実施例3)

(2R) -アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブト-1-イニル) フラン-2-イル] プタン-1-オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-842)

参考例 7 で得られた(2 R) -1-アセトキシー 2-アセチルアミノー 2-メチルー 4-(5-ヨードフランー 2-イル) ブタンおよび 4-シクロヘキシルオキシブトー 1-インを出発原料として、実施例(1 a)および(1 b) に記載の方法に準じて、標記化合物を得た(収率 6 6 %)。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 6.40 (d, 1H, J = 3.3 Hz), 6.09 (d, 1H, J = 3.3 Hz), 3.63 (t, 2H, J = 6.6 Hz), 3.58 (d, 1H, J = 11.7 Hz),

3.50 (d, 1H, J = 11.7 Hz), 3.39-3.32 (m, 1H), 2.77-2.62 (m, 4H), 2.07-1.89 (m, 4H), 1.77-1.73 (m, 2H), 1.56-1.53 (m, 1H), 1.36-1.23 (m, 8H)。 IR スペクトル, ν_{max} cm⁻¹ (KBr): 3360, 3099, 2932, 2857, 1719, 1614, 1597, 1542, 1403, 1219, 1106, 967, 785, 720, 711。 マススペクトル (FAB+), m/z: 320((M+H)+; free 体)。

(実施例4)

(2R) $-2-アミノー2-メチルー4-{5-{3-(3,4-ジメチル フェニルオキシ)プロプー<math>1-$ 7ーパ フランー2-7ル プタンー1-7ール シュウ酸塩(例示化合物番号:式 1a-1 における 1-1836)

IR \mathcal{A} \mathcal{O} \mathcal{N} \mathcal{N}

マススペクトル (FAB+), m/z:328((M+H)+;free 体)。

(実施例5)

(2R) -2-アミノ-2-メチル-4-[5-(5-フェニルペンタノイル) フラン-2-イル] プタン-1-オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-1093)

実施例(1 b)で得られた(2 R) - 2 - アミノ-2 - メチルー4 - [5 - (5 - フェニルペント-1 - イニル)フラン-2 - イル] ブタン-1 - オール0.3440g(1.11mmo1)をメタノール(3.5 m1)に溶解し、6 規定硫酸水溶液(3.5 m1)を加えて4時間加熱還流した。冷却後、飽和炭酸水素ナトリウム水溶液を加えて中和し、さらに水および塩化メチレンを加えて30分撹拌後、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=100/1)により精製した後、メタノールに溶解し、無水シュウ酸(98%)91.8 mg(1.00 mmo1)を加えて、室温で30分間撹拌した。減圧下濃縮し、酢酸エチルを加えて、析出した結晶をろ取し、酢酸エチルで洗浄した後、減圧下乾燥して、標記化合物0.3687g(収率90%)を得た。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.31 (d, 1H, J = 3.6 Hz), 7.25-7.22 (m, 2H), 7.17-7.12 (m, 3H), 6.36 (d, 1H, J = 3.6 Hz), 3.61 (d, 1H, J = 11.6 Hz), 3.52 (d, 1H, J = 11.6 Hz), 2.89-2.76 (m, 4H), 2.64 (t, 2H, J = 7.2 Hz), 2.13-1.95 (m, 2H), 1.75-1.63 (m, 4H), 1.30 (s, 3H)。 IR スペクトル, ν_{max} cm⁻¹ (KBr): 3108, 3027, 2981, 2935, 1718, 1698, 1661, 1604, 1542, 1516, 1202, 1093, 1082, 1047, 797, 700。 マススペクトル (FAB+), m/z: 330((M+H)+; free 体)。

(実施例6)

(2R) - 2 - アミノー 2 - メチルー 4 - [5 - (5 - フェニルペンチル)フランー 2 - イル] ブタンー 1 - オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-93)

(6a) (2R) -1-アセトキシー2-アセチルアミノー2-メチルー 4-[5-(5-フェニルペンチル)フランー2-イル]ブタン

10%パラジウムー炭素 (50%含水) 25mgをメタノール (1m1)

に懸濁し、実施例(1 a)で得られた(2 R) - 1 - アセトキシー2 - アセチルアミノー2 - メチルー4 - [5 - (5 - フェニルペントー1 - イニル)フランー2 - イル] ブタン 0.1 2 4 5 g(0.3 2 mm o 1)をメタノール(1.5 m 1)に溶解した溶液を加え、水素雰囲気下、室温で8 時間撹拌した。窒素置換後、反応液中のパラジウムー炭素をセライトろ過し、セライトを酢酸エチルで洗浄した。ろ液、洗液を合わせて減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)により精製して、標配化合物 0.1 0 2 9 g(収率 8 2 %)を得た。

1 H NMR スペクトル(CDC1₈、400MHz)、δ:7.29-7.26 (m, 2H), 7.19-7.16 (m, 3H), 5.87 (d, 1H, J = 3.0 Hz), 5.83 (d, 1H, J = 3.0 Hz), 5.36 (br s, 1H), 4.31 (d, 1H, J = 11.2 Hz), 4.17 (d, 1H, J = 11.2 Hz), 2.64-2.54 (m, 4H), 2.25-2.17 (m, 1H), 2.08 (s, 3H), 2.05-1.91 (m, 1H), 1.92 (s, 3H), 1.69-1.60 (m, 4H), 1.43-1.37 (m, 2H), 1.35 (s, 3H)。マススペクトル(FAB+)、m/z:400 ((M+H)+; free 体)。

(6b) (2R) -2-アミノ-2-メチルー4-[5-(5-フェニルペンチル) フラン-2-イル] ブタン-1-オール シュウ酸塩実施例(6a) で得られた(2R) -1-アセトキシ-2-アセチルアミノ-2-メチルー4-[5-(5-フェニルペンチル) フラン-2-イル] ブタン99.7mg(0.25mmo1)をテトラヒドロフラン(0.5m1) およびメタノール(0.5m1)の混合液に溶解し、水(0.5m1) および水酸化リチウム1水和物0.1037g(2.47mmo1)を加え、50℃で4時間攪拌した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。 ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=100/1)により精製して、(2R) -2-アミノ-2-メチルー4-[5-(5-フェニルペンチル)フラン-2-イル] ブタン-1-オール74.6mg(収率95%)を得た。これをメタノール(2.3m1)に溶解し、無水シュウ酸(98%)

21. 1 mg (0. 2 3 mmo 1) を加えて、室温で1時間撹拌した。減圧下濃縮し、酢酸エチルを加えて析出した結晶をろ取し、酢酸エチルで洗浄し、減圧下乾燥して、標記化合物 7 8. 1 mg (収率 8 5 %)を得た。 $^{1}\text{H NMR}$ スペクトル (CD_{3}OD , 400MHz), δ : 7.25-7.21 (m, 2H), 7.15-7.11 (m, 3H), 5.94 (d, 1H, J = 3.2 Hz), 5.87 (d, 1H, J = 3.2 Hz), 3.58 (d, 1H, J = 11.6 Hz), 3.49 (d, 1H, J = 11.6 Hz), 2.69-2.53 (m, 6H), 2.04-1.88 (m, 2H), 1.67-1.59 (m, 4H), 1.40-1.32 (m, 2H), 1.28 (s, 3H)。
IR スペクトル, ν_{max} cm⁻¹ (KBr): 3119, 3025, 2979, 2928, 2855, 1719, 1610, 1543, 1466, 1402, 1197, 1094, 1078, 1012, 786, 746, 721, 699。
マススペクトル (FAB+), m/z: 316 ((M+H)+; free 体)。

(実施例7)

(2R) - 2 - 7ミノー 2 - 3 チルー 4 - [5 - (4 - 2) - 2 - 2] トキシフェニル) フランー 2 - 4 ル] ブタンー 1 - 3 ル シュウ酸塩(例示化合物番号:式 1a-1 における 1-1433)

参考例 7 で得られた (2 R) -1-アセトキシー2-アセチルアミノー2 -メチルー4-(5-ヨードフラン-2-イル) ブタン0.2047g(0.51mmo1)、2-(4-シクロヘキシルメトキシフェニル)-4,4,5,5-テトラメチルー1,3,2-ジオキサボロラン0.2400g(0.76mmo1)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)36.1mg(0.051mmo1)および炭酸セシウム0.6738g(2.03mmo1)をジメトキシエタン(4.0ml)および水(1ml)の混合液に懸濁し、80℃で4時間撹拌した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩化メチレン(5.

0m1)に溶解し、トリエチルアミン 0.72m1 (5.2mmo1)、無水酢酸 0.24m1 (2.6mmo1)および 4ージメチルアミノピリジン 6.4mg (0.052mmo1)を加え、室温で 2時間撹拌した。メタノール 0.10m1 (2.5mmo1)を加えて反応を止め、酢酸エチルおよび水を加えて、酢酸エチルで抽出し、酢酸エチル層を水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。 ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)により精製して、標配化合物 45.3mg (収率 20%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.55-7.51 (m, 2H), 7.00-6.87 (m, 2H), 6.39 (d, 1H, J = 3.1 Hz), 6.06 (d, 1H, J = 3.1 Hz), 5.36 (br s, 1H), 4.34 (d, J = 11.2 Hz), 4.20 (d, 1H, J = 11.2 Hz), 3.76 (d, 2H, J = 2.5 Hz), 2.73-2.69 (m, 2H), 2.35-2.27 (m, 1H), 2.09 (s, 3H), 2.08-1.99 (m, 1H), 1.91 (s, 3H), 1.93-1.69 (m, 6H), 1.38 (s, 3H), 1.37-1.18 (m, 3H), 1.10-1.00 (m, 2H)。

マススペクトル (FAB+), m/z:442((M+H)+), 441(M+・)。

(7 b) (2 R) -2-アミノ-2-メチル-4-[5-(4-シクロ ヘキシルメトキシフェニル)フラン-2-イル] プタン-1-オール シュウ酸塩

実施例(7 a)で得られた(2 R) -1-アセトキシー 2-アセチルアミノー2 -メチルー4 - [5-(4-シクロヘキシルメトキシフェニル)フランー2 -イル] ブタン4 4. 0 m g(0. 1 0 m m o 1) をテトラヒドロフラン(0. 4 m 1) およびメタノール(0. 4 m 1) の混合液に溶解し、水(0. 4 m 1) および水酸化リチウム 1 水和物 4 3. 6 m g(1. 0 4 m m o 1) を加え、5 0 \mathbb{C} で4時間攪拌した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(N Hタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=5 0

/1)により精製して、生成物 3 5. 2 mg(収率 9 9 %)を得た。生成物をメタノール(2.0 m 1)に溶解し、無水シュウ酸(9 8 %) 8. 9 mg(0.10 mm o 1)を加えて、室温で 3 0 分間撹拌した。減圧下濃縮し、これにアセトンを加えて結晶析出をろ取し、アセトンで洗浄したのち減圧下乾燥して、標記化合物 2 8. 2 mg(収率 6 6 %)を得た。

¹H NMR スペクトル (CD₃OD-DMSO-d₆, 400MHz), δ : 7.55 (d, 2H, J = 8.7Hz), 6.93 (d, 2H, J = 8.7Hz), 7.16 (t, 1H, J = 2.0Hz), 6.53 (d, 1H, J = 3.2 Hz), 6.17 (d, 1H, J = 3.2 Hz), 3.79 (d, 2H, J = 6.4 Hz), 3.58 (d, 1H, J = 11.7 Hz), 3.50 (d, 1H, J = 11.7 Hz), 3.28-3.27 (m, 2H), 2.09-1.69 (m, 8H), 1.38-1.04 (m, 8H)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3387, 3235, 2924, 2852, 2578, 1618, 1568, 1499, 1466, 1448, 1390, 1288, 1245, 1174, 1024, 828, 783, 765。 マススペクトル (FAB⁺), m/z: 358((M+H)⁺)。

(実施例8)

(2R) - 2 - 7ミノー 2 - 3 チルー $4 - \{5 - [3 - (2 - 2))$ ロヘキシルエトキシ)フェニル] フランー 2 - 4 ルプタンー 1 - 4 ール シュウ酸塩(例示化合物番号:式 1a-1 における 1-1444)

参考例 7 で得られた (2R) - 1 - 7 セトキシ-2 - 7 セチルアミノ-2 - メチルー4 - (5-3-k7) - (5-3-k7)

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.27 (t, 1H, J = 8.0Hz), 7.21 (dd, 1H, J = 8.0Hz, 2.0Hz), 7.16 (t, 1H, J = 2.0Hz), 6.80 (dd, 1H, J = 8.0Hz, 2.0Hz), 6.69 (d, 1H, J = 3.5 Hz), 6.21 (d, 1H, J = 3.5 Hz), 4.04 (t, 2H, J = 6.6 Hz), 3.61 (d, 1H, J = 11.6 Hz), 3.52 (d, 1H, J = 11.6 Hz), 2.83-2.78 (m, 2H), 2.62-2.60 (m, 1H), 2.13-1.97 (m, 2H), 1.81-1.65

(m, 6H), 1.59-1.49 (m, 1H), 1.31-1.02 (m, 6H), 1.00-0.96 (m, 2H). IR \nearrow (\nearrow) \nearrow), ν_{max} cm⁻¹ (KBr) : 3213, 2925, 2850, 2571, 1720, 1701, 1614, 1600, 1578, 1563, 1548, 1449, 1300, 1216, 1205, 1052, 1033, 1017, 863, 772, 721, 689.

マススペクトル (FAB+), m/z:372((M+H)+;free 体)。

(実施例9)

(2R) -2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル] ブタン-1-オール シュウ酸塩(例示化合物番号:式 <math>1a-2 における 1-621)

"H NMR スペクトル (CD₃OD, 400MHz), δ : 7.28-7.14 (m, 5H), 6.16 (d, 1H, J = 3.7 Hz), 5.80 (d, 1H, J = 3.7 Hz), 3.63 (d, 1H, J = 11.6 Hz), 3.57 (s, 3H), 3.54 (d, 1H, J = 11.6 Hz), 2.77 (t, 2H, J = 7.6 Hz), 2.66-2.61 (m, 2H), 2.43 (t, 2H, J = 7.0 Hz), 2.04-1.96 (m, 1H), 1.92-1.84 (m, 3H), 1.33 (s, 3H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3212, 3026, 2935, 2897, 2571, 1719, 1700, 1611, 1521, 1496, 1454, 1405, 1279, 1218, 1053, 767, 721, 700。 マススペクトル (FAB⁺)、m/z: 325 ((M+H)⁺; free 体)。

(実施例10)

(2R) -2-アミノー2-メチルー4-[1-メチルー5-(4-シクロ ヘキシルオキシブト-1-イニル) ピロールー2-イル] ブタンー1-オール <math>1/2シュウ酸塩(例示化合物番号:式 1a-2 における 1-842)

参考例13で得られた(2R)-1-アセトキシ-2-アセチルアミノー

2-メチルー4-(1-メチルー5-ヨードピロールー2-イル)ブタンおよび4-シクロヘキシルオキシブトー1-インを出発原料として、実施例(1a) および(1b) に記載の方法に準じて、標記化合物を得た(収率32%)。 ¹H NMR スペクトル (CD₃OD, 400MHz), δ : 6.13 (d, 1H, J=3.7 Hz), 5.79 (d, 1H, J=3.7 Hz), 3.65 (t, 2H, J=6.8 Hz), 3.61 (d, 1H, J=11.5 Hz), 3.56 (s, 3H), 3.53 (d, 1H, J=11.5 Hz), 3.39-3.34 (m, 1H), 2.68-2.61 (m, 4H), 2.01-1.83 (m, 4H), 1.78-1.74 (m, 2H), 1.56-1.54 (m, 1H), 1.35-1.21 (m, 8H)。

IR スペクトル, $\nu_{\rm max}$ cm⁻¹ (KBr) : 3348, 2931, 2856, 1590, 1452, 1364, 1309, 1106, 762。

マススペクトル (FAB+), m/z:333((M+H)+;free 体)。

(実施例11)

(2R) $-2-アミノ-2-メチル-4-\{1-メチル-5-[3-(4-メチルフェニルオキシ) プロプー1-イニル] ピロールー2ーイル<math>\}$ ブタンー1ーオール 1/2シュウ酸塩(例示化合物番号:式 Ia-2 における 1-833) 参考例 1 3 で得られた (2R)-1-アセトキシ-2-アセチルアミノー2-メチルー4-(1-メチルー5-ヨードピロールー2ーイル) ブタンおよび <math>3-(4-メチルフェニルオキシ)-1-プロピンを出発原料として、実施例(1a) および(1b) に記載の方法に準じて、標記化合物を得た(収率 <math>29%)。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.09 (d, 1H, J = 8.5 Hz), 6.90 (d, 1H, J = 8.5 Hz), 6.26 (d, 1H, J = 3.7 Hz), 5.83 (d, 1H, J = 3.7 Hz), 4.93 (s, 2H), 3.60 (d, 1H, J = 11.6 Hz), 3.53 (d, 1H, J = 11.6 Hz), 3.51 (s, 3H), 2.65-2.60 (m, 2H), 2.26 (s, 3H), 2.01-1.93 (m, 1H), 1.89-1.82 (m, 1H), 1.30 (s, 3H)。

IR \mathcal{N} \mathcal{N}

マススペクトル (FAB+), m/z:327((M+H)+; free 体)。

(実施例12)

(2R) - 2 - 7ミノー 2 - 3 チルー 4 - 3 チルー 5 - [3 - (3, 4 - 3)] サステルフェニルオキシ)プロプー 1 - 4 ニルー 1 - 4 ピロールー 2 - 4 における 1 - 1836)

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.02 (d, 1H, J = 8.2 Hz), 6.81 (d, 1H, J = 2.5 Hz), 6.73 (dd, 1H, J = 8.2 Hz, 2.5 Hz), 6.26 (d, 1H, J = 3.9 Hz), 5.83 (d, 1H, J = 3.9 Hz), 4.91 (s, 2H), 3.61 (d, 1H, J = 11.4 Hz), 3.53 (d, 1H, J = 11.4 Hz), 3.52 (s, 3H), 2.65-2.61 (m, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 1.99-1.93 (m, 1H), 1.90-1.82 (m, 1H), 1.31 (s, 3H)。 IR スペクトル, ν_{max} cm⁻¹ (KBr): 3420, 2943, 2631, 2213, 1584, 1503, 1455, 1365, 1301, 1251, 1207, 1163, 1025, 806, 762。

マススペクトル (FAB+), m/z:341((M+H)+;free 体)。

(実施例13)

(2R) -2-アミノ-2-メチル-4-[5-(4-フェニルプト-1-イニル) フラン-2-イル] プタン-1-オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-559)

法に準じて、標配化合物を得た(収率61%)。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.29-7.17 (m, 5H), 6.35 (d, 1H, J = 3.4 Hz), 6.07 (d, 1H, J = 3.4 Hz), 3.59 (d, 1H, J = 11.7 Hz), 3.50 (d, 1H, J = 11.7 Hz), 2.87 (t, 2H, J = 7.3 Hz), 2.77-2.64 (m, 4H), 2.06-1.89 (m, 2H), 1.29 (s, 3H)。

IR スペクトル、 $\nu_{\rm max}$ cm⁻¹ (KBr) : 3353, 3140, 2924, 2896, 1724, 1651, 1617, 1598, 1542, 1403, 1221, 1075, 1054, 1010, 784, 713, 501。 マススペクトル (ESI⁺), m/z : 298((M+H)⁺; free 体)。

(実施例14)

 $(2R) - 2 - アミノー2 - メチルー4 - \{5 - [5 - (4 - クロロフェニル) ペントー1 - イニル] フランー2 - イル<math>\}$ ブタンー1 - オール シュウ酸塩(例示化合物番号:式 [a-1] における [a-1] における [a-1] における [a-1]

1 H NMR $\angle \sim D$ $\angle > D$ (CD₃OD, 400MHz), δ : 7.28-7.25 (m, 2H), 7.20 (d, 1H, J = 8.3 Hz), 6.40 (d, 1H, J = 3.4 Hz), 6.09 (d, 1H, J = 3.4 Hz), 3.59 (d, 1H, J = 11.7 Hz), 3.51 (d, 1H, J = 11.7 Hz), 2.78-2.65 (m, 4H), 2.42 (t, 2H, J = 6.8 Hz), 2.08-1.83 (m, 4H), 1.29 (s, 3H).

IR スペクトル、 $\nu_{\rm max}$ cm⁻¹ (KBr) : 3257, 3105, 2936, 1718, 1598, 1540, 1493, 1405, 1280, 1202, 1093, 1015, 828, 792, 721, 701, 502。 マススペクトル (FAB⁺)、m/z: 346((M+H)⁺; free 体)。

(実施例15)

 $(2R) - 2 - アミノ - 2 - メチル - 4 - \{5 - [5 - (3 - トリフルオロメチルフェニル) ペント - 1 - イニル] フラン - 2 - イル} プタン - 1 - オ$

ール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-640)

参考例 7 で得られた(2 R) -1 ーアセトキシー 2 ーアセチルアミノー 2 ーメチルー4ー(5 ーヨードフランー2ーイル)プタンおよび 5 ー(3 ートリフルオロメチルフェニル)ペントー1ーインを出発原料とし、実施例(1 a)および(1 b)に記載の方法に準じて、標記化合物を得た(収率 5 8 %)。 ¹H NMR スペクトル(CD₈OD, 400MHz), δ : 7.51-7.48 (m, 4H), 6.41 (d, 1H, J = 3.3 Hz), 6.10 (d, 1H, J = 3.3 Hz), 3.59 (d, 1H, J = 11.6 Hz), 3.51 (d, 1H, J = 11.6 Hz), 2.85 (t, 2H, J = 7.4 Hz), 2.78-2.66 (m, 2H), 2.44 (t, 2H, J = 7.0 Hz), 2.08-1.87 (m, 4H), 1.29 (s, 3H)。 IR スペクトル, ν_{max} cm⁻¹ (KBr): 3358, 3139, 2935, 1722, 1651, 1615, 1597, 1542, 1403, 1326, 1222, 1168, 1119, 1073, 797, 721, 713, 703, 503。 マススペクトル(FAB+),m/z: 380 ((M+H)) +; free 体)。

(実施例16)

(実施例17)

(2R) -2-アミノ-2-メチル-4-{5-[3-(4-メチルチオフェニルオキシ)プロプー1-イニル]フラン-2-イル}ブタン-1-オール シュウ酸塩(例示化合物番号:式 Ia-1 における1-838)

参考例 6 で得られた(2 R) -1-アセトキシー2-アセチルアミノー2-メチルー4-(5 -プロモフランー2-イル)プタンおよび3-(4-メチルチオフェニルオキシ)-1-プロピンを出発原料として、実施例(1 a)および(1 b)に記載の方法に準じて、標記化合物を得た(収率15%)。 1 H NMR スペクトル(CD $_{3}$ OD, 400MHz), δ : 7.30-7.25 (m, 2H),6.99-6.94 (m, 2H),6.57 (d, 1H, J = 3.5 Hz),6.14 (d, 1H, J = 3.5 Hz),4.94 (s, 2H),3.59 (d, 1H, J = 11.6 Hz),3.50 (d, 1H, J = 11.6 Hz),2.80-2.65 (m, 2H),2.42 (s, 3H),2.08-1.88 (m, 2H),1.28 (s, 3H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3359, 3136, 3089, 2920, 2230, 1722, 1646, 1618, 1594, 1542, 1493, 1373, 1279, 1230, 1073, 1039, 1015, 820, 797, 712。

マススペクトル (FAB+), m/z:346((M+H)+: free 体)。

(実施例18)

(2R) -2-アミノー2-メチルー4-[5-(4-フェニルオキシブトー1-イニル) フランー2-イル] ブタンー1ーオール シュウ酸塩(例示化合物番号:式 <math>Ia-1 における 1-893)

参考例7で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2-メチル-4-(5-ヨードフラン-2-イル)プタンおよび4-フェニルオキシプト-1-インを出発原料として、実施例(1a)および(1b)に記載の方法に準じて、標記化合物を得た(収率42%)。

「マススペクトル (FAB+), m/z:314((M+H)+; free 体)。

元素分析値 (C, H, NO, · C, H, O, として%),

計算値:C: 62.52, H: 6.25, N: 3.47。

実測値:C: 62.47, H: 6.14, N: 3.42。

(実施例19)

(2R) - 2 - アミノ-2 - メチル-4 - [5 - (5 - シクロヘキシルペント-1 - イニル) フラン-2 - イル] プタン-1 - オール 塩酸塩(例示化合物番号:式 <math>Ia-1 における 1-570)

(19a) (2R) -1-アセトキシー 2-アセチルアミノー 2-メチール -4- [5- (5-シクロヘキシルペント-1-イニル) フランー 2-イル] プタン

参考例7で得られた (2R) -1-アセトキシ-2-アセチルアミノ-2
-メチルー4- (5-ヨードフラン-2-イル) ブタン4. 1685g (1
0.99mmol)、5-シクロヘキシルペント-1-イン4.48g (29.8mmol)、ジクロロビス (トリフェニルホスフィン) パラジウム (II)
0.7730g (1.10mmol) およびヨウ化銅 (I) 0.4205g (2.21mmol)をN, N-ジメチルホルムアミド (110ml) に懸濁し、トリエチルアミン15.3ml (110.1mmol)を加え、窒素雰囲気下、60℃で2時間撹拌した。冷後、反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、水および酢酸エチルを加え、室温で30分間撹拌し、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)によ

り精製して、標記化合物 2.6576g(収率60%)を得た。

*H NMR スペクトル (CDCl₈, 400MHz), δ : 6.36 (d, 1H, J = 2.9 Hz), 5.97 (d, 1H, J = 2.9 Hz), 5.36 (br s, 1H), 4.29 (d, J = 11.0 Hz), 4.17 (d, 1H, J = 11.0 Hz), 2.63 (t, 2H, J = 8.1 Hz), 2.40 (t, 2H, J = 7.3 Hz), 2.29-2.21 (m, 1H), 2.09 (s, 3H), 2.00-1.93 (m, 1H), 1.92 (s, 3H), 1.72-1.51 (m, 7H), 1.35 (s, 3H), 1.33-1.08 (m, 6H), 0.93-0.84 (m, 2H)。 マススペクトル (FAB+), m/z: 402 ((M+H)+)。

(19b) (2R) -2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]ブタン-1-オール 塩酸塩

実施例(19a)で得られた(2R)-1-アセトキシー2-アセチルア ミノー2-メチルー4ー[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] プタン1. 2996g (3. 24mmol) をテトラヒ ドロフラン (6.4m1) ーメタノール (6.4m1) の混合液に溶解し、 水 (6.4m1) および水酸化リチウム1水和物1.3590g (32.3 9 mm o 1)を加え、50℃で4時間攪拌した。冷却後、反応液に水を加え、 塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナ トリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲ ル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール =100/1)により精製して、粗製の(2R)-2-7ミノー2ーメチルー $_{\parallel}$ 4- [5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル] ブタン-1-オール1.0048gを得た。得られた粗生成物をメタノール (16ml) に溶解し、4規定塩酸ージオキサン溶液0.79ml(3.1 6mmol)を加えて、室温で10分間撹拌した。減圧下濃縮し、エーテル を加えて析出した結晶をろ取し、エーテルで洗浄し、減圧下乾燥して、標記 化合物1.0392g(収率91%)を得た。

融点: 117-118℃。

旋光度, $[\alpha]_p = +2.43$ (c = 1.00, MeOH)。

¹H NMR スペクトル(CD₃OD, 400MHz), δ : 6.36 (d, 1H, J = 3.3 Hz), 6.08 (d, 1H, J = 3.3 Hz), 3.59 (d, 1H, J = 11.6 Hz), 3.49 (d, 1H, J = 11.6 Hz), 2.77-2.64 (m, 2H), 2.39 (t, 2H, J = 7.1 Hz), 2.07-1.89 (m, 2H), 1.76-1.54 (m, 7H), 1.35-1.12 (m, 9H), 0.96-0.86 (m, 2H)。 IR スペクトル, ν_{max} cm⁻¹ (KBr): 3138, 2921, 2850, 2693, 2571, 1615, 1595, 1534, 1448, 1402, 1369, 1298, 1197, 1058, 788。 マススペクトル (FAB⁺), m/z: 318((M+H)⁺; free 体)。

(実施例20)

(2R) -2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブト-1-イニル) フラン-2-イル] ブタン-1-オール 塩酸塩(例示化合物番号:式 Ia-1 における 1-842)

参考例 7 で得られた (2 R) - 1 - アセトキシ-2 - アセチルアミノ-2 - メチル-4 - (5 - ヨードフラン-2 - イル) ブタンおよび 4 - シクロヘキシルオキシブト-1 - インを出発原料として、実施例 (1 9 a) および (1 9 b) に記載の方法に準じて、標記化合物を得た (収率 5 7 %)。

融点 : 115-118℃。

旋光度, $[\alpha]_n = +2.63$ (c = 1.00, MeOH)。

¹H NMR スペクトル(CD₃OD, 400MHz)、 δ : 6.40(d, 1H, J = 3.4 Hz)、6.09(d, 1H, J = 3.4 Hz)、3.63(t, 2H, J = 6.6 Hz)、3.58(d, 1H, J = 11.6 Hz)、3.50(d, 1H, J = 11.6 Hz)、3.39-3.32(m, 1H)、2.76-2.62(m, 4H)、2.07-1.87(m, 4H)、1.78-1.73(m, 2H)、1.56-1.53(m, 1H)、1.35-1.19(m, 8H)。IR スペクトル、 ν_{max} cm⁻¹(KBr):3204、2931、2858、2667、2570、1611、1597、1537、1450、1390、1364、1199、1107、1067、1032、1002、967、952、786。マススペクトル(FAB⁺)、m/z:320((M+H) +; free 体)。

(実施例21)

(2R) -2-アミノ-2-メチル-4-[5-(4-フェニルオキシブタ

ノイル) フランー 2 ーイル] ブタンー 1 ーオール フマル酸塩(例示化合物番号:式 Ta-1 における 1-1199)

(21a) (2R) -1-yセトキシー2-yセチルアミノー2-yチルー4-[5-(4-y)]ブタン

参考例(5b)で得られた(2R) -1-アセトキシー2-アセチルアミノー2-メチルー4-(フランー2-イル)ブタン0.2589g(1.02mmol)、4-フェニルオキシブタン酸クロリド0.2446g(1.23mmol)を塩化メチレン(9.0ml)に溶解し、窒素雰囲気下、-78℃にて塩化スズ(IV)のn-ヘプタン(1.0mmol/1)溶液2.05ml(2.05mmol)を5分間要して加え、同温度で2時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えて反応を止め、液温を室温に戻したのち酢酸エチルを加えて希釈し、不溶物をろ別した。ろ液を酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2/1~1/0)により精製して、標記化合物 0.1483g(収率35%)を得た。

マススペクトル (FAB^{+}), $m/z:416((M+H)^{+})$.

(21b) (2R) - 2 - アミノ-2-メチル-4-[5-(4-フェニルオキシブタノイル) フラン-2-イル] ブタン-1-オール フマル酸塩

実施例(21a)で得られた(2R)-1-アセトキシー2-アセチルア

ミノー2ーメチルー4ー [5ー(4ーフェニルオキシブタノイル) フランー2ーイル] ブタン0.2031g(0.49mmol)をテトラヒドロフラン(1.0ml)ーメタノール(1.0ml)の混合液に溶解し、水(1.0ml)および水酸化リチウム1水和物0.2065g(4.92mmol)を加え、50℃で4時間攪拌した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=100/1)により精製して、粗製の(2R)ー2ーアミノー2ーメチルー4ー[5ー(4ーフェニルオキシブタノイル)フランー2ーイル]ブタンー1ーオール58.4mgを得た。得られた粗生成物をメタノール(1.7ml)に溶解し、フマル酸20.1mg(0.17mmol)を加えて、室温で30分間撹拌した。減圧下濃縮し、酢酸エチルを加えて析出した結晶をろ取し、酢酸エチルで洗浄し、減圧下乾燥して、標記化合物61.5mg(収率29%)を得た。

 1 H NMR スペクトル (CD₃OD, 400MHz), δ : 7.33 (d, 1H, J = 3.4 Hz), 7.26-7.21 (m, 2H), 6.91-6.84 (m, 3H), 6.35 (d, 1H, J = 3.4 Hz), 6.25 (s, 2H), 4.03 (t, 2H, J = 6.0 Hz), 3.60 (d, J = 11.7 Hz), 3.51 (d, 1H, J = 11.7 Hz), 3.01 (t, 2H, J = 7.2 Hz), 2.88-2.75 (m, 2H), 2.18-1.95 (m, 4H), 1.30 (s, 3H)。

IR スペクトル、 $\nu_{\rm max}$ cm⁻¹ (KBr) :3112, 3038, 2961, 1671, 1583, 1517, 1498, 1386, 1357, 1245, 1081, 1039, 869, 757, 719, 693。

マススペクトル (FAB+), m/z:332((M+H)+; free 体)。

元素分析値(C₁₉H₂₅NO₄・C₄H₄O₄として%),

計算値:C: 61.73, H: 6.53, N: 3.13。

実測値:C: 61.57, H: 6.40, N: 2.93。

(実施例22)

(2R) - 2 - アミノ - 2 - メチル - 4 - {5 - [3 - (4 - クロロフェニルオキシ)プロプ - 1 - イニル]フラン - 2 - イル}ブタン - 1 - オール シュウ酸塩(例示化合物番号:式 Ia-1 における 1-1831)

(22a) (2R) -1-yセトキシー2-yセチルアミノー2-yチルー4-[5-(3-b) (3-b) -1-f (3-b) フランー2-f (3) フランー2-f (3)

参考例7で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2 -メチル-4-(5-ヨードフラン-2-イル) プタン1.5900g(4.19mmol)、3-プロピン-1-オール0.73ml(12.54mmo 1)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)0.29 40g(0.42mmol) およびヨウ化銅(I) 0.161g(0.85 mmol)をN, Nージメチルホルムアミド(42ml)に懸濁し、トリエ チルアミン 5.85 m 1 (42.9 mm o 1) を加え、窒素雰囲気下、60℃ で2時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止 め、水および酢酸エチルを加え、室温で30分間撹拌し、酢酸エチルで抽出 し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を シリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2/1~ 1/0)により精製して、標記化合物 1.0748g(収率83%)を得た。 ¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.50 (d, 1H, J = 3.2 Hz), 6.01 (d, 1H, J = 3.2 Hz), 5.39 (br s, 1H), 4.50 (s, 2H), 4.29 (d, 1H, J = 11.3)Hz), 4.16 (d, 1H, J = 11.3 Hz), 2.70-2.60 (m, 2H), 2.32-2.24 (m, 1H), 2.10 (s, 3H), 2.03-1.95 (m, 1H), 1.94 (s, 3H), 1.77 (br s, 1H), 1.34 (s, 3H).

マススペクトル (FAB+), m/z:308((M+H)+)。

(22b) (2R) -1-yセトキシー2-yセチルアミノー2-yチルー4-[5-(3-y)ロモプロプー1-イニル)フランー2-イル] ブタン

実施例(22a) で得られた(2R) -1 - アセトキシー 2 - アセチルア

ミノー2ーメチルー4ー [5ー(3ーヒドロキシプロプー1ーニイル) フランー2ーイル] ブタン0.9515g(3.10mmol)、トリフェニルホスフィン1.2375g(3.73mmol)を塩化メチレン(15ml)に溶解し、氷冷下、四臭化炭素1.0545g(4.02mmol)を加え、同温度で30分間撹拌した。反応液にメタノール0.2mlを加えて反応を止め、液温を室温に戻したのち減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:塩化メチレン/アセトン=9/1)により精製して、標記化合物 0.9278g(収率82%)を得た。

1H NMR $\angle P$ > $\angle D$ (CDC1₃, 400MHz), δ : 6.54 (d, 1H, J = 3.0 Hz), 6.02 (d, 1H, J = 3.0 Hz), 5.37 (br s, 1H), 4.29 (d, 1H, J = 11.0 Hz), 4.18 (s, 2H), 4.16 (d, 1H, J = 11.0 Hz), 2.69-2.60 (m, 2H), 2.32-2.24 (m, 1H), 2.10 (s, 3H), 2.02-1.95 (m, 1H), 1.94 (s, 3H), 1.34 (s, 3H).

(22c) (2R) -1-yセトキシー2ーアセチルアミノー2ーメチルー4ー $\{5-[3-(4-0)]$ フロフェニルオキシ)プロプー1ーイニル]フランー2ーイル}ブタン

水素化ナトリウム(60%含量)40.0mg(1.00mmo1)をN、N-ジメチルホルムアミド(4ml)に懸濁し、氷冷下、4ークロルフェノール0.1302g(1.01mmo1)を加え、その後室温で30分間撹拌した。この反応液に、氷冷下、実施例(22b)で得られた(2R)-1ーアセトキシー2ーアセチルアミノー2ーメチルー4ー[5ー(3ープロモプロプー1ーイニル)フランー2ーイル]プタン0.3050g(0.82mmo1)をN、Nージメチルホルムアミド(4ml)に溶解した溶液を加え、その後室温で30分間撹拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、水および酢酸エチルを加えて希釈し、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:塩化メチレン/アセトン=10/1)により精製して、標記化合物 0.3188g(収率93%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.28-7.25 (m, 2H), 6.96-6.92 (m, 2H), 6.52 (d, 1H, J = 3.4 Hz), 6.01 (d, 1H, J = 3.4 Hz), 5.36 (br s, 1H), 4.90 (s, 2H), 4.29 (d, 1H, J = 11.3 Hz), 4.15 (d, 1H, J = 11.3 Hz), 2.67-2.59 (m, 2H), 2.31-2.24 (m, 1H), 2.09 (s, 3H), 2.02-1.94 (m, 1H), 1.93 (s, 3H), 1.34 (s, 3H)。

IR スペクトル、 $\nu_{\rm max}$ cm⁻¹ (CHCl₃): 3444, 2225, 1738, 1681, 1511, 1491, 1450, 1373, 1286, 1249, 1173, 1093, 1039, 1014, 824。

マススペクトル (FAB^{+}), $m/z:418((M+H)^{+})$.

(22d) (2R) -2-アミノ-2-メチル-4-{5-[3-(4]-クロロフェニルオキシ)プロプー1-イニル]フラン-2-イル}ブタン-1-オール シュウ酸塩

実施例(22c)で得られた(2R)-1-アセトキシー2-アセチルア ミノー2-メチルー4-{5-[3-(4-クロロフェニルオキシ)プロプー 1-イニル] フラン-2-イル}プタン0.3083g(0.74mmol) をテトラヒドロフラン (1.5ml) -メタノール (1.5ml) の混合液 に溶解し、水(1. 5 m l)および水酸化リチウム 1 水和物 0. 3 0 9 6 g (7.38mmol)を加え、50℃で4時間攪拌した。冷却後、反応液に 水を加え、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩基 性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/ メタノール=50/1)により精製して、粗製の(2R)-2-7ミノー2-メチルー4ー {5-[3-(4-クロロフェニルオキシ)プロプー1-イニ ル] フラン-2-イル} プタン-1-オール0. 2156gを得た。得られ た粗生成物をメタノール(6.4ml)に溶解し、98%無水シュウ酸59. 1mg(0.64mmo1)を加えて、室温で30分間撹拌した。減圧下濃 縮し、アセトンを加えて析出した結晶をろ取し、アセトンで洗浄後、減圧下 乾燥して、標記化合物 0.2307g(収率 75%)を得た。

1H NMR スペクトル (CD₃OD, 400MHz), δ: 7.30-7.26 (m, 2H), 7.01-6.97 (m,

2H), 6.57 (d, 1H, J = 3.2 Hz), 6.14 (d, 1H, J = 3.2 Hz), 4.96 (s, 2H), 3.58 (d, 1H, J = 11.7 Hz), 3.50 (d, 1H, J = 11.7 Hz), 2.79-2.66 (m, 2H), 2.07-1.89 (m, 2H), 1.28 (s, 3H).

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3401, 3120, 2979, 2925, 2228, 1725, 1615, 1547, 1492, 1373, 1234, 1217, 1200, 1086, 1044, 1016, 830, 795, 698, 506。 マススペクトル (FAB⁺), m/z: 334((M+H)⁺; free 体)。

(実施例23)

 $(2R) - 2 - アミノ - 2 - メチル - 4 - \{5 - [3 - (3 - トリフルオロメチルフェニルオキシ) プロプ - 1 - イニル] フラン - 2 - イル \} ブタン - 1 - オール シュウ酸塩(例示化合物番号:式 <math>[a-1]$ における [a-1] により [a-1] により

実施例(22b)で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2-メチル-[5-(3-プロモプロプー1-イニル)フラン-2-イル] プタンおよび(3-トリフルオロメチル)フェノールを出発原料として、実施例(22c)および(22d)に記載の方法に準じて、標記化合物を得た(収率76%)。

¹H NMR $\angle \sim \nearrow \vdash J \lor (DMSO-d_6, 400MHz)$, δ : 7.60-7.55 (m, 1H), 7.36-7.53 (m, 3H), 6.77 (d, 1H, J = 3.3 Hz), 6.21 (d, 1H, J = 3.3 Hz), 5.21 (s, 2H), 3.43 (d, 1H, J = 11.3 Hz), 3.37 (d, 1H, J = 11.3 Hz), 2.67 (t, 2H, J = 8.6 Hz), 1.91-1.76 (m, 2H), 1.15 (s, 3H).

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3126, 2980, 2220, 1719, 1614, 1593, 1546, 1455, 1328, 1207, 1167, 1130。

マススペクトル(FAB+), m/z: 368((M+H)+; free 体), 336。

(実施例24)

(2R) $-2-アミノ-2-メチル-4-{5-[3-(3,4-ジメトキシフェニルオキシ)プロプ-1-イニル]フラン-2-イル}プタン-1-オール シュウ酸塩(例示化合物番号:式 <math>Ia-1$ における 1-1842)

実施例(22b)で得られた(2R) -1-アセトキシー2-アセチルアミノー2-メチルー4-[5-(3-プロモプロプー1-イニル)フランー2-イル] ブタンおよび3,4-ジメトキシフェノールを出発原料として、実施例(22c)および(22d)に記載の方法に準じて、標記化合物を得た(収率68%)。

¹H NMR スペクトル (CD₈OD, 400MHz), δ : 6.87 (d, 1H, J = 8.8 Hz), 6.66 (d, 1H, J = 2.9 Hz), 6.57-6.52 (m, 2H), 6.14 (d. 1H, J = 3.6 Hz), 4.90 (s, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 3.59 (d, 1H, J = 11.5 Hz), 3.50 (d, 1H, J = 11.5 Hz), 2.79-2.66 (m, 2H), 2.08-1.88 (m, 2H), 1.29 (s, 3H). IR スペクトル, ν_{max} cm⁻¹ (KBr): 3393, 3093, 2969, 2224, 1722, 1598, 1537, 1513, 1467, 1452, 1278, 1260, 1228, 1194, 1157, 1135, 1021, 796, 721, 698。

マススペクトル (FAB+), m/z:360((M+H)+; free 体)。

(実施例25)

(2R) - 2 - アミノー 2 - エチルー4 - [5 - (4 - シクロヘキシルオキシプト-1 - イニル) フランー2 - イル] プタンー1 - オール シュウ酸塩(例示化合物番号:式 Ia-1 における1-1660)

参考例18で得られた(2R) -1-アセトキシ-2-アセチルアミノー2-エチルー4-(5-ヨードフラン-2-イル)プタン79.1mg(0.357mmol)、4-シクロヘキシルオキシブト-1-イン168.2mg(1.10mmol)、ジクロロピス(トリフェニルホスフィン)パラジウム(II) 25.1mg(0.036mmol)およびヨウ化銅(I) 13.8mg(0.072mmol)をN,Nージメチルホルムアミド(3.6ml)に懸濁し、トリエチルアミン0.5ml(0.36mmol)を加え、

窒素雰囲気下80℃で4時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、水および酢酸エチルを加え室温で30分間撹拌し、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1~1/2)により精製して、粗生成物68.4mgを得、分取用逆層HPLCカラム[TSK-GEL ODS-80Ts(2.0cm×25cm)、東ソー社製、溶出溶媒:アセトニトリル/水=70/30]で精製して、標記化合物46.5mg(収率31%)を得た。

IR スペクトル, ν_{max} cm⁻¹ (CDCl₃): 3307, 3078, 2934, 2858, 2220, 1744, 1658, 1540, 1452, 1369, 1237, 1103, 1042, 788, 756.

マススペクトル(FAB+), m/z : 418 ((M+H)+)。

(25b) (2R) - 2-アミノ-2-エチル-4-[5-(4-シクロヘキシルオキシブト-1-イニル) フラン-2-イル] ブタン-1-オール シュウ酸塩

実施例(25a)で得られた(2R) -1-アセトキシー2-アセチルア = 2-

留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=1/0~50/1)により精製して、粗製の(2R)-2-アミノー2-エチルー4-[5-(4-シクロヘキシルオキシプト-1-イニル)フラン-2-イル]ブタン-1-オール35.3mg(収率99%)を得た。得られた粗生成物をメタノールに溶解し、98%無水シュウ酸9.5mg(0.106mmol)を加えて、室温で30分間撹拌した。減圧下濃縮し、イソプロピルエーテルを加えて析出した結晶をろ取し、イソプロピルエーテルで洗浄し、減圧下乾燥して、標記化合物39.9mg(収率89%)を得た。

¹H NMR スペクトル (DMSO-d₆, 400MHz), δ : 6.56 (d, 1H, J = 3.3 Hz), 6.16 (d, 1H, J = 3.3 Hz), 4.19 (br s, 3H), 3.55 (t, 2H, J = 6.7 Hz), 3.44 (s, 2H), 3.33-3.28 (m, 1H), 2.67-2.60 (m, 4H), 1.83-1.79 (m, 4H), 1.66-1.55 (m, 4H), 1.53-1.46 (m, 1H), 1.25-1.20 (m, 5H), 0.86 (t, 3H, J = 7.5 Hz)。 IR スペクトル, ν_{max} cm⁻¹ (KBr) : 3402, 2931, 1918, 1611, 1542, 1198, 1106, 1089, 721, 700。

マススペクトル(FAB+), m/z : 356 ((M+Na)+), 334 ((M+H)+; free 体)。

(実施例26)

リン酸 モノ (2R) -2-アミノ-2-メチル-4-[5-(4-シクロへキシルオキシブト-1-イニル) フラン-2-イル] -1-ブチル エステル(例示化合物番号:式 IIa-1 における <math>5-1072)

実施例20で得られた(2R)-2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプチト-1-イニル)フラン-2-イル]プタン-1-オール 0.5305g(1.66mmol)を酢酸エチル(16ml)と水(16ml)に懸濁し、炭酸水素カリウム0.1995g(1.99m

mol)を加え、ついでクロロギ酸アリル0.21ml(1.98mmol)を加え、室温で30分間攪拌した。反応液に酢酸エチルを加えて希釈し、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去して、標記化合物0.6202g(収率93%)を得た。

(26b) リン酸 (2R) -2- アリルオキシカルボニルアミノ-2 -メチル-4- [5- (4-シクロヘキシルオキシブト-1- イニル) フラン-2- イル] -1- ブチル ジアリル エステル

実施例(26a)で得られた(2R) -2-アリルオキシカルボニルアミノ-2-メチルー4-[5-(4-シクロヘキシルオキシプト-1-イニル)フラン-2-イル]ブタン-1-オール0.6202g(1.54mmo1)を塩化メチレン(15ml)に溶解し、氷冷下、1H-テトラゾール0.7220g(10.31mmol)およびジアリル・ジイソプロピルホスホロアミダイト0.81ml(3.06mmol)を加え、その後室温で2時間攪拌した。反応液に、氷冷下、m-クロロ過安息香酸(70%含量)0.7556g(3.07mmol)を加え、同温度で10分間攪拌した。反応液に10%チオ硫酸ナトリウム水溶液を加えて反応を止め、塩化メチレンで抽出し、塩化メチレン層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/2)により精製して、標記化合物0.7049g(収率81%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.37 (d, 1H, J = 3.0 Hz), 5.99-5.85 (m, 3H), 5.40-5.19 (m, 6H), 4.87 (br s, 1H), 4.16 (dd, 1H, J = 10.3 Hz, 5.9 Hz), 4.03 (dd, 1H, J = 10.3 Hz, 5.9 Hz), 3.65 (d, 2H, J = 7.3 Hz), 3.33-3.26 (m, 1H), 2.70-2.59 (m, 4H), 2.22-2.14 (m, 1H), 1.96-1.88 (m, 3H), 1.75-1.72 (m, 2H), 1.56-1.53 (m, 1H), 1.34-1.22 (m, 8H)。 マススペクトル (FAB+), m/z:563 (M+*)。

(26c) リン酸 モノ (2R) -2-7ミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプト-1-イニル)フラン-2-イル] -1

実施例(26b)で得られたリン酸 (2R) -2-アリルオキシカルボニルアミノ-2-メチルー4-[5-(4-シクロヘキシルオキシプト-1-イニル)フラン-2-イル]-1-プチル ジアリル エステル0.7037g(1.25mmo1)、トリフェニルホスフィン69.0mg(0.26mmo1)およびテトラキス(トリフェニルホスフィン)パラジウム(0)75.8mg(0.066mmo1)をアセトニトリル(13m1)に懸濁し、窒素雰囲気下、ピロリジン0.66m1(7.91mmo1)を加え、室温で15時間攪拌した。反応液を減圧下濃縮し、残渣に50%含水エタノール(40m1)を加えて希釈したのち、酢酸を加えてpH4として結晶を析出させた。析出結晶をろ取し、水およびエタノールで洗浄して粗結晶を得た。粗結晶をメタノール(300m1)と水(60m1)の混合液に加熱溶解し、活性炭を加えてろ過し、減圧下濃縮したのちエタノールを加えて析出結晶をろ取し、エタノールで洗浄後乾燥して、標記化合物0.2672g(収率54%)を得た。

¹H NMR スペクトル (CD₃CO₂D, 400MHz), δ : 6.42 (d, 1H, J = 3.7 Hz), 6.09 (d, 1H, J = 3.7 Hz), 4.10 (d, 2H, J = 10.3 Hz), 3.70 (t, 2H, J = 7.3 Hz), 3.43-3.37 (m, 1H), 2.83-2.72 (m, 2H), 2.69 (t, 2H, J = 7.3 Hz), 2.18-2.06 (m, 2H), 1.94 (br d, 2H, J = 10.3 Hz), 1.76-1.73 (m, 2H), 1.56-1.52 (m, 1H), 1.40 (s, 3H), 1.38-1.18 (m, 5H)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3413, 2931, 2857, 1645, 1566, 1540, 1469, 1449, 1212, 1184, 1102, 1067, 1043, 949, 796, 511。 マススペクトル (ESI⁻), m/z: 398((M-H)⁻)。

(実施例27)

リン酸 モノ (2R) -2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル) フラン-2-イル] <math>-1-プチル エステル (例示化合物番号:式 IIa-1 における 5-824)

実施例2で得られた(2R)-2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]プタン-1-オール シュウ酸塩を出発原料とし、実施例(26a)、(26b)および(26c)に記載の方法に準じて、標記化合物を得た(収率24%)。

1 H NMR $\angle P$ > $\angle D$ (CD₃CO₂D, 400MHz), δ : 6.39 (d, 1H, J = 3.7 Hz), 6.07 (d, 1H, J = 3.7 Hz), 4.10 (d, 2H, J = 10.3 Hz), 2.79-2.75 (m, 2H), 2.40 (t, 2H, J = 7.3 Hz), 2.17-2.05 (m, 2H), 1.75-1.44 (m, 7H), 1.41 (s, 3H), 1.35-1.12 (m, 6H), 0.95-0.90 (m, 2H).

IR スペクトル、 $\nu_{\rm max}$ cm⁻¹ (KBr) : 3233, 2922, 2850, 2559, 1642, 1594, 1537, 1448, 1256, 1184, 1078, 1029, 942, 825, 794, 572, 514。 マススペクトル (FAB⁻), m/z : 396((M-H)⁻)。

(実施例28)

 率21%)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3411, 2922, 2227, 1616, 1536, 1501, 1451, 1371, 1286, 1250, 1202, 1185, 1166, 1045, 1028, 931, 799, 573, 514。 マススペクトル (FAB⁻), m/z: 406((M-H)⁻)。

(実施例29)

(3R) -3-アミノ-3-メチル-5-[5-(5-フェニルペンタノイル) フラン-2-イル] ペンチルホスホン酸(例示化合物番号:式 IIIa-1 における <math>5-1344)

(29a) (2R) -2-t-プトキシカルボニルアミノ-2-メチル-4-[5-(5-フェニルペンタノイル) フラン-2-イル] プタン-1-オール

4.03 (br s, 1H), 3.66 (d, 2H, J = 5.9 Hz), 2.84-2.68 (m, 4H), 2.65 (t, 2H, J = 8.1 Hz), 2.18 (ddd, 1H, J = 16.6 Hz, 11.0 Hz, 5.1 Hz), 1.98 (ddd, 1H, J = 16.6 Hz, 11.7 Hz, 5.1 Hz), 1.81-1.65 (m, 4H), 1.43 (s, 9H), 1.19 (s, 3H).

マススペクトル (FAB+), m/z:430((M+H)+)。

(29b) (2R) -2-t-プトキシカルポニルアミノ-2-メチル-4-[5-(5-フェニルペンタノイル) フラン-2-イル] -1-プタナール

実施例(29a)で得られた(2R)-2-t-ブトキシカルボニルアミノ-2-メチルー4- [5-(5-フェニルペンタノイル)フラン-2-イル] ブタン-1-オール110.2mg(0.26mmo1)を塩化メチレン(2.6ml)に溶解し、Dess-Martin 試薬165.0mg(2.28mmo1)を加え、窒素雰囲気下、室温で1時間攪拌した。減圧下濃縮し、反応液に10%チオ硫酸ナトリウム水溶液を加えて過剰の試薬を分解したのち、塩化メチレンで抽出し、塩化メチレン層を飽和重曹水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/1)により精製して、標記化合物105.9mg(収率97%)を得た。
1HNMRスペクトル(CDC13,400MHz)、6:9.34(s,1H),7.29-7.25(m,2H)、7.19-7.15(m,3H),7.06(d,1H,J=3.6Hz)、6.16(d,1H,J=3.6Hz)、5.16(brs,1H)、2.77(t,2H,J=7.3Hz)、2.74-2.56(m,4H)、2.40-2.36(m,1H)、2.22-2.14(m,1H)、1.80-1.65(m,4H)、1.44(s,9H)、1.37(s,3H)。

マススペクトル (FAB+), m/z:428((M+H)+)。

(29c) ジエチル (3R) -3-t-プトキシカルポニルアミノ-3-メチル-5-[5-(5-フェニルペンタノイル) フラン-2-イル] ペント-1-エニルホスホン酸 エステル

水素化ナトリウム (60%含量) 16.0mg (0.40mmol) をテ

トラヒドロフラン (1m1) に懸濁し、氷冷下、テトラエチル メチレンジホスホナート 0.100m1 (0.40mmo1) を 5 分間要して加え、その後室温にて1時間攪拌した。反応液に実施例 (29b) で得られたジエチル (2R)-2-t-プトキシカルボニルアミノ-2-メチルー4-[5-(5-フェニルペンタノイル) フラン-2-イル] -1-ブタナール <math>104.5mg (0.24mmo1) をテトラヒドロフラン (4m1) に溶解した溶液を氷冷下、 5 分間要して加え、同温度にて 15 分間攪拌した。反応液に酢酸 $22\mu1$ (0.38mmo1) を加えて中和したのち減圧下濃縮し、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。 5 過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー (溶出溶媒:酢酸エチル) により精製して、標記化合物 129.0mg (収率 94%) を得た。

¹H NMR \angle \angle \triangle \triangle \triangle \triangle \triangle (CDCl₃, 400MHz), δ : 7.29-7.24 (m, 2H), 7.19-7.15 (m, 3H), 7.07 (d, 1H, J = 3.7 Hz), 6.75 (dd, 1H, J = 22.7 Hz, 17.6 Hz), 6.16 (d, 1H, J = 3.7 Hz), 5.71 (t, 1H, J = 17.6 Hz), 4.60 (br s, 1H), 4.15-4.04 (m, 4H), 2.77 (t, 2H, J = 8.1 Hz), 2.74-2.63 (m, 4H), 2.30-2.22 (m, 1H), 2.09-2.01 (m, 1H), 1.81-1.65 (m, 4H), 1.42 (s, 9H), 1.40 (s, 3H), 1.33 (t, 6H, J = 7.3 Hz).

マススペクトル (FAB+), m/z:562((M+H)+).

(29d) ジエチル (3R) -3-t-プトキシカルボニルアミノー3-メチル-5-[5-(5-フェニルペンタノイル)フラン-2-イル] ペンチルホスホン酸 エステル

実施例(29c)で得られたジエチル (3R) -3-t-プトキシカル ボニルアミノ-3-メチル-5-[5-(5-フェニルペンタノイル)フラン-2-イル]ペント-1-エニルホスホン酸 エステル127.8 mg(0.23 mm o1)をエタノール(2.3 m 1)に溶解し、塩化トリス(トリフェニルホスフィン)ロジウム(I) 22.0 mg(0.024 mm o1)を加え、水素雰囲気下、50 C で 8 時間攪拌した。冷後、反応液に塩化トリス

(トリフェニルホスフィン) ロジウム(I) 21.5 mg (0.023 mm o I) を追加し、水素雰囲気下、50℃で8時間攪拌した。反応液を減圧下留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル)により精製して、粗生成物142.1 mgを得、分取用逆層HPLCカラム[Inertsil ODS-3(2.0cm×25cm)、GLサイエンス社製、溶出溶媒:アセトニトリル/水=75/25、流速:10ml/min]で精製して、標記化合物109.5 mg(収率85%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.29-7.25 (m, 2H), 7.19-7.15 (m, 3H), 7.07 (d, 1H, J = 3.7 Hz), 6.15 (d, 1H, J = 3.7 Hz), 4.36 (br s, 1H), 4.15-4.10 (m, 4H), 2.77 (t, 2H, J = 7.3 Hz), 2.72-2.63 (m, 4H), 2.22-2.17 (m, 2H), 1.92-1.85 (m, 1H), 1.80-1.63 (m, 7H), 1.42 (s, 9H), 1.33 (t, 6H, J = 7.3 Hz), 1.19 (s, 3H)。

マススペクトル (FAB⁺). $m/z:564((M+H)^+)$.

(29e) (3R) - 3-アミノ-3-メチル-5-[5-(5-フェ ニルペンタノイル) フラン-2-イル] ペンチルホスホン酸

実施例(29d)で得られたジエチル (3R) -3-t-プトキシカルボニルアミノ-3-メチル-5-[5-(5-フェニルペンタノイル)フラン-2-イル]ペンチルホスホン酸 エステル108.2 mg(0.19 m mo1)を塩化メチレン(1.9 m1)に溶解し、臭化トリメチルシラン0.255 m1(1.93 mmo1)を加え、窒素雰囲気下、室温で4時間撹拌した。減圧下溶媒を留去したのち、残渣に含水エタノールを加えて希釈し、これにアンモニア水溶液および酢酸を加えて<math>pH4として結晶を析出させた。析出結晶をろ取し、水およびエタノールで洗浄後乾燥して、標記化合物51.4 mg(収率66%)を得た。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3160, 2934, 2860, 2560, 2529, 1670, 1552, 1516, 1453, 1391, 1314, 1140, 1068, 1046, 913, 882, 804, 723, 700, 568, 525, 490, 468。

マススペクトル (FAB-), m/z:406((M-H)-)。

(実施例30)

(2R) - 2 - アミノー 2 - メチルー 4 - [1 - メチルー 5 - (5 - フェニルプトー1 - イニル) ピロールー 2 - イル] プタンー <math>1 - オール 1 / 2シュウ酸塩(例示化合物番号:式 1a-2 における 1-559)

参考例13で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2-メチル-4-(1-メチル-5-ヨードピロール-2-イル)ブタンおよび4-フェニルプト-1-インを出発原料として、実施例(1a)および(1b)に記載の方法に準じて、標記化合物を得た(収率58%)。

¹H NMR スペクトル (CD₈OD, 400MHz), δ : 7.30-7.26 (m, 4H), 7.21-7.16 (m, 1H), 6.09 (d, 1H, J = 3.7 Hz), 5.76 (d, 1H, J = 3.7 Hz), 3.59 (d, 1H, J = 11.7 Hz), 3.52 (d, 1H, J = 11.7 Hz), 3.41 (s, 3H), 2.88 (t, 2H, J = 7.3 Hz), 2.73 (t, 2H, J = 7.3 Hz), 2.62-2.58 (m, 2H), 1.98-1.80 (m, 2H), 1.29 (s, 3H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3362, 3026, 2943, 2224, 2080, 1591, 1496, 1454, 1300, 1073。

マススペクトル(FAB+), m/z: 311((M+H)+; free 体)。

(実施例31)

(2R) -2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンチル) ピロール-2-イル] プタン-1-オール <math>1/2シュウ酸塩(例示化合物番号:式 1a-2 における 1-93)

(31a) (2R) -1-yセトキシー2-yセチルアミノー2-メチル-4-y-1-メチルー5-(5-y-2-y-1-パントー1-イニル) ピロール

-2-イル] ブタン

参考例13で得られた(2R)-1-アセトキシー2-アセチルアミノー2ーメチルー4ー(1ーメチルー5-ヨードピロールー2ーイル)ブタン0.2918g(0.74mmo1)、5-フェニルペントー1ーイン0.3225g(2.24mmo1)、ジクロロピス(トリフェニルホスフィン)パラジウム(II)52.3mg(0.075mmo1)およびヨウ化鍋(I)29.0mg(0.15mmo1)をN,Nージメチルホルムアミド(7.4m1)に懸濁し、トリエチルアミン1.04m1(7.5mmo1)を加え、窒素雰囲気下、室温で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、水および酢酸エチルを加え、室温で30分間撹拌し、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)により精製して、標記化合物0.2205g(収率73%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.31-7.27 (m, 2H), 7.22-7.18 (m, 3H), 6.26 (d, 1H, J = 3.7 Hz), 5.81 (d, 1H, J = 3.7 Hz), 5.35 (br s, 1H), 4.32 (d, 1H, J = 11.3 Hz), 4.18 (d, 1H, J = 11.3 Hz), 3.55 (s, 3H), 2.78 (t, 2H, J = 7.7 Hz), 2.55 (t, 2H, J = 8.2 Hz), 2.46 (t, 2H, J = 7.0 Hz), 2.27-2.19 (m, 1H), 2.09 (s, 3H), 1.97-1.84 (m, 6H), 1.37 (s, 3H)。 IR スペクトル, ν_{max} cm⁻¹ (CHCl₃): 3443, 2944, 2861, 1736, 1679, 1603, 1512, 1454, 1374, 1251, 1042。

マススペクトル (FAB+), m/z: 409((M+H)+), 408(M+·)。

実施例(31a)で得られた(2R) -1-アセトキシー2-アセチルアミノー2-メチルー4- [1-メチル-5-(5-フェニルペント-1-イニル) ピロールー2-イル] ブタン77mg(0.19mmol)をメタノ

ール (2 m1) に溶解し、10%パラジウムー炭素 (50%含水) 4.3 m gを加え、水素雰囲気下、室温で1時間撹拌した。窒素置換後、反応液中のパラジウムー炭素をセライトろ過し、セライトを酢酸エチルで洗浄した。ろ液、洗液を合わせて減圧下濃縮乾固して、標記化合物75.5 mg (収率97%)を得た。

マススペクトル(FAB^{+}), m/z: 412((M+H)+)。

(31c) (2R) -2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンチル) ピロール-2-イル] プタン-1-オール 1 <math>/2シュウ酸塩

 タン-1-オール53.6mgをメタノール(1.6ml)に溶解し、無水シュウ酸(98%)7.4mg(0.082mmol)を加えて、室温で1時間撹拌した。減圧下濃縮し、酢酸エチルを加えて析出した結晶をろ取し、酢酸エチルで洗浄し、減圧下乾燥して、標記化合物49.2mg(収率81%)を得た。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.25-7.21 (m, 2H), 7.16-7.11 (m, 3H), 5.71 (d, 1H, J = 3.7 Hz), 5.66 (d, 1H, J = 3.7 Hz), 3.60 (d, 1H, J = 11.7 Hz), 3.52 (d, 1H, J = 11.7 Hz), 3.41 (s, 3H), 2.65-2.56 (m, 4H), 2.53-2.49 (m, 2H), 1.99-1.81 (m, 2H), 1.68-1.56 (m, 4H), 1.44-1.37 (m, 2H), 1.30 (s, 3H)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3315, 2930, 2092, 1632, 1591, 1549, 1455, 1304, 1073。

マススペクトル(FAB+), m/z : 329((M+H)+; free 体)。.

(実施例32)

(2R) -2-アミノ-2-メチル-4- [1-メチル-5-(4-フェニルプチル) ピロール-2-イル] ブタン-1-オール 1/2シュウ酸塩(例示化合物番号:式 Ia-2 における 1-31)

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.25-7.21 (m, 2H), 7.16-7.11 (m, 3H), 5.71 (d, 1H, J = 2.9 Hz), 5.66 (d, 1H, J = 2.9 Hz), 3.60 (d, 1H, J = 11.7 Hz), 3.53 (d, 1H, J = 11.7 Hz), 3.39 (s, 3H), 2.66-2.53 (m, 6H), 1.98-1.81 (m, 2H), 1.72-1.55 (m, 4H), 1.30 (s, 3H)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3347, 3024, 2933, 2858, 1589, 1454, 1299,

1072, 763, 745, 698。 マススペクトル (FAB+)、m/z: 315((M+H)+; free 体)。

(実施例33)

(2R) - 2 - アミノー 2 - メチルー 4 - [1-メチルー 5 - (5 - フェニル ペンタノイル) ピロールー 2 - イル] プタンー 1 - オール 塩酸塩(例示化合物番号:式 Ia-2 における 1-1093)

(33a) $(2R)-1-アセトキシー2-アセチルアミノー2-メチル-4-{1-メチルー <math>[5-フェニル-1-(5-フェニルペンタノイルオキシ)ペントー1-エニル] ピロールー2-イル}プタン$

参考例(19b)で得られた(2R) -1-アセトキシ-2-アセチルアミノ-2-メチル-4-(1-メチルピロール-2-イル)ブタン4.23g(15.4mmol)をトルエン(100ml)に溶解し、4-ジメチルアミノピリジン9.41g(77.0mmol)および5-フェニル吉草酸クロリド(98%)7.92g(39.5mmol)をトルエン(50ml)に溶解した溶液を加え、110で48時間撹拌した。室温に戻し、反応液に酢酸エチルおよび水を加えて酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2~2/1)により精製して、標記化合物4.03g(収率45%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.26-7.23 (m, 4H), 7.17-7.11 (m, 6H), 6.96 (d, 1H, J = 4.2 Hz), 5.97 (d, 1H, J = 4.2 Hz), 5.41 (br s, 1H), 4.31 (d, 1H, J = 11.0 Hz), 4.15 (d, 1H, J = 11.0 Hz), 4.11 (t, 1H, J = 8.1 Hz), 3.83 (s, 3H), 2.67-2.39 (m, 8H), 2.34-2.26 (m, 1H), 2.10 (s, 3H), 2.04-1.86 (m, 6H), 1.61-1.48 (m, 6H), 1.36 (s, 3H). IR スペクトル, ν_{max} cm⁻¹ (CHCl₃) : 3443, 2938, 2861, 1733, 1681, 1634, 1487, 1454, 1374, 1249, 1044, 。

マススペクトル (FAB+), m/z: 587((M+H)+)。

(33b) (2R) -2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル] プタン-1-オール 塩酸塩

実施例 (33a) で得られた (2R) -1-アセトキシ-2-アセチルア ミノー2ーメチルー4ー {1-メチルー[5-フェニルー1-(5-フェニ ルペンタノイルオキシ)ペント-1-エニル]ピロール-2-イル}プタン 4. 0270g(6.86mmol)をテトラヒドロフラン(14ml)と メタノール(14m1)との混合液に溶解し、水(14m1)および水酸化 リチウム1水和物2. 8820g (68. 68mmol) を加え、50℃で 4時間攪拌した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化 メチレン層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、 減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラ フィー(溶出溶媒:塩化メチレン/メタノール=100/1)により精製して、 粗製の(2R)-2-アミノ-2-メチル-4-[1-メチル-5-(5-フ ェニルペンタノイル) ピロールー2ーイル] ブタンー1ーオール2. 115 2gを得た。得られた粗生成物をメタノール(31m1)に溶解し、4規定 塩酸-ジオキサン溶液1.54ml(6.16mmol)を加えて、室温で 10分間撹拌した。減圧下濃縮し、酢酸エチルを加えて析出した結晶をろ取 し、酢酸エチルで洗浄し、減圧下乾燥して、標記化合物2.0685g(収率 79%)を得た。

融点: 130-131℃。

旋光度, $[\alpha]_D = -4.81$ (c = 1.00, MeOH)。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.25-7.21 (m, 2H), 7.17-7.11 (m, 3H), 7.05 (d, 1H, J = 4.2 Hz), 6.03 (d, 1H, J = 4.2 Hz), 3.86 (s, 3H), 3.65 (d, 1H, J = 11.4 Hz), 3.55 (d, 1H, J = 11.4 Hz), 2.78-2.67 (m, 4H), 2.63 (t, 2H, J = 7.2 Hz), 2.02 (ddd, 1H, J = 13.8 Hz, 9.4 Hz, 7.6 Hz), 1.90 (ddd, 1H, J = 13.8 Hz, 11.5 Hz, 6.3 Hz), 1.70-1.64 (m, 4H), 1.34

466

(s, 3H).

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3215, 2937, 2883, 2691, 2571, 1646, 1525, 1482, 1457, 1380, 1294, 1228, 1182, 1055, 998, 913, 770, 751, 700。 マススペクトル (FAB⁺), m/z: 343((M+H)⁺; free 体)。

元素分析値 (C,,H,,N,O,・HCl として%),

計算値:C: 66.56, H: 8.25, N: 7.39, Cl: 9.36。

実測値:C: 66.51, H: 8.20, N: 7.47, Cl: 9.08。

(実施例34)

(2R) - 2-アミノ-2-メチル-4- {1-メチル-5- [5-(4-フルオロフェニル) ペンタノイル] ピロール-2-イル} ブタン-1-オール 塩酸塩(例示化合物番号:式 Ia-2 における 1-1094)

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.20-7.13 (m, 2H), 7.05 (d, 1H, J = 4.0 Hz), 6.99-6.92 (m, 2H), 6.03 (d, 1H, J = 4.0 Hz), 3.86 (s, 3H), 3.65 (d, 1H, J = 11.4 Hz), 3.55 (d, 1H, J = 11.4 Hz), 2.76 (t, 2H, J = 7.3 Hz), 2.74-2.66 (m, 2H), 2.62 (t, 2H, J = 7.3 Hz), 2.08-1.86 (m, 2H), 1.73-1.60 (m, 4H), 1.35 (s, 3H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3352, 3210, 3153, 3035, 2930, 2863, 1634, 1601, 1509, 1480, 1464, 1371, 1349, 1222, 1175, 1067, 823, 766。 マススペクトル(FAB⁺)、m/z: 361((M+H)⁺; free 体)。

(実施例35)

(2R) -2-アミノ-2-メチル-4-[1-メチル-5-(4-フェニ

ルプタノイル) ピロールー2ーイル] プタンー1ーオール 塩酸塩(例示化合物番号:式 la-2 における 1-1082)

参考例(19b)で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2-メチル-4-(1-メチルピロール-2-イル)プタンおよび4-フェニル酪酸クロリドを出発原料として、実施例(33a)および(33b)に記載の方法に準じて、標記化合物を得た(収率48%)。

¹H NMR $\nearrow \sim \nearrow \uparrow \nearrow \downarrow \rangle$ (CD₃OD, 400MHz), δ : 7.28-7.12 (m, 5H), 6.97 (d, 1H, J = 4.0 Hz), 6.02 (d, 1H, J = 4.0 Hz), 3.86 (s, 3H), 3.65 (d, 1H, J = 11.7 Hz), 3.55 (d, 1H, J = 11.7 Hz), 2.78-2.62 (m, 6H), 2.08-1.85 (m, 4H), 1.35 (s, 3H).

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3203, 3025, 2941, 2572, 2029, 1649, 1518, 1482, 1457, 1382, 1297, 1179, 1140, 1057, 989, 915, 752, 699。 マススペクトル (FAB⁺), m/z: 329((M+H)⁺; free 体)。

(実施例36)

(2R) -2-アミノ-2-メチル-4-[1-メチル-5-(3-フェニルプロパノイル) ピロール-2-イル] プタン-1-オール 塩酸塩(例示化合物番号:式 <math>Ia-2 における 1-1080)

468

マススペクトル (FAB+), m/z:315((M+H)+; free 体)。

(実施例37)

(2R) -2-アミノ-2-メチル-4-[1-メチル-5-(5-シクロ ヘキシルペンタノイル) ピロール-2-イル] プタン-1-オール 塩酸塩 (例示化合物番号:式 Ia-2 における 1-1083)

参考例 (19b) で得られた (2R) -1-アセトキシー2-アセチルアミノ-2-メチル-4- (1-メチルピロール-2-イル) プタンおよび5-シクロヘキシル吉草酸クロリドを出発原料として、実施例 (33a) および (33b) に記載の方法に準じて、標記化合物を得た (収率29%)。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.05 (d, 1H, J = 4.0 Hz), 6.04 (d, 1H, J = 4.0 Hz), 3.87 (s, 3H), 3.65 (d, 1H, J = 11.7 Hz), 3.55 (d, 1H, J = 11.7 Hz), 2.78-2.64 (m, 4H), 2.09-1.86 (m, 2H), 1.76-1.58 (m, 7H), 1.40-1.10 (m, 11H), 0.95-0.80 (m, 2H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr) : 3354, 3212, 3156, 3034, 2921, 2850, 1637, 1498, 1480, 1464, 1379, 1370, 1292, 1224, 1175, 1066, 1054, 914, 762。 マススペクトル (FAB⁺), m/z : 349((M+H)⁺; free 体)。

(実施例38)

(2R) - 2 - 7ミノー 2 - 3 チルー 4 - [1 - 3] チルー 4 - (5 - 7] エニルペンタノイル) ピロールー 2 - 4 ルペンタノイル) プタンー 1 - 3 ー 1 - 2 シュウ酸塩 (例示化合物番号:式 1b-2 における 2-252)

(38a) (4R) -4-メチル-4- {2-[1-メチル-4-(5-フェニルペンタノイル) ピロール-2-イル] エチル} -1, 3-オキサゾリジン-2-オン

参考例11で得られた(4R)-4-メチル-4-[2-(1-メチルピロール-2-イル)エチル]-1, 3-オキサゾリジン-2-オン100mg(0. 48mmo1)をベンゼン(4m1)に溶解し、N, N-ジメチル

 $-5-フェニルペンタナミド99mg(0.48mmol)およびオキシ三塩化リン43<math>\mu$ l(0.46mmol)を加え、6時間加熱還流した。反応液に20%酢酸ナトリウム水溶液2mlを加えて80 $\mathbb C$ で15分間攪拌した。室温に戻し、水を加えて酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=1/1~3/2~4/1)により精製して、標配化合物11mg(収率6%)を得た。

¹H NMR スペクトル (CDCl₃, 500MHz), δ : 7.30-7.24 (m, 2H), 7.20-7.15 (m, 4H), 6.31 (s, 1H), 5.72 (br s, 1H), 4.17 (d, 1H, J = 8.6 Hz), 4.10 (d, 1H, J = 8.6 Hz), 3.57 (s, 3H), 2.70-2.55 (m, 6H), 1.94 (t, 2H, J = 8.2 Hz), 1.78-1.60 (m, 4H), 1.43 (s, 3H)。

マススペクトル (FAB+), m/z:369((M+H)+).

(38b) (2R) - 2-アミノ-2-メチル-4-[1-メチル-4-(5-フェニルペンタノイル) ピロール-2-イル] ブタン-1-オール1/2シュウ酸塩

実施例(38a)で得られた(4R) -4-メチルー4-{2-[1-メチルー4-(5-フェニルペンタノイル)ピロールー2ーイル]エチル}ー1,3-オキサゾリジンー2ーオン11mg(0.03mmol)をテトラヒドロフラン(1m1)ーメタノール(1m1)の混合液に溶解し、5規定水酸化カリウム水溶液(1m1)を加え、2日間加熱還流した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去して、(2R)ー2ーアミノー2ーメチルー4ー[1ーメチルー4ー(5ーフェニルペンタノイル)ピロールー2ーイル]プタンー1ーオール9mgを得た。得られた粗生成物6.5mgをメタノール(0.5m1)に溶解し、無水シュウ酸(98%含量)0.85mg(0.0095mmol)を加えて、室温で10分間撹拌した。減圧下濃縮乾固して、標記化合物7.0mg(収率84%)を得た。

¹H NMR スペクトル (CD₃OD, 500MHz), δ : 7.42 (s, 1H), 7.26-7.20 (m, 2H), 7.17-7.11 (m, 3H), 6.32 (s, 1H), 3.65-3.60 (m, 4H), 3.57 (d, 1H, J = 11.7 Hz), 2.74-2.60 (m, 6H), 2.04-1.86 (m, 2H), 1.73-1.62 (m, 4H), 1.33 (s, 3H)。

IR スペクトル, $\nu_{\rm max}$ cm⁻¹ (KBr) : 3339, 3025, 2929, 2859, 2565, 1611, 1525, 1497, 1453, 1438, 1355, 1310, 1176, 1069, 928, 818, 774, 749, 700。 マススペクトル (FAB+), m/z : 343((M+H)+; free 体)。

(実施例39).

実施例(33b)で得られた(2R)-2-アミノ-2-メチル-4-[1 -メチル-5-(5-フェニルペンタノイル)ピロール-2-イル]プタン -1-オール 塩酸塩185mg (0.49mmol) を塩化メチレン (1 0m1) に懸濁し、1規定水酸化ナトリウム水溶液を加えて5分間攪拌した 後、塩化メチレンで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾 燥した。ろ過後、減圧下溶媒を留去して(2R)-2-アミノ-2-メチル - 4 - [1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル] ブタン-1-オールを得た。得られた(2R)-2-アミノー2-メチルー 4- [1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル] ブタン-1-オールをメタノール5mlに溶解し、氷冷下、水素化ホウ素ナ トリウム28mg (0.74mmol) を加え、室温で1時間攪拌した。反 応液に水素化ホウ素ナトリウム28mg(0.74mmol)を追加して、 室温で20時間攪拌した。さらに反応液に水素化ホウ素ナトリウム28mg (0. 74mmol)を追加して、室温で7時間攪拌し、反応液に水を加え て酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水にて洗浄し、無 水硫酸ナトリウムで乾燥した。ろ過後、減圧下濃縮乾固し、残渣を分取用逆 層HPLCカラム[Inertsil ODS-3(2.0cm×25cm)、GLサイエンス社製、溶出溶媒:アセトニトリル/0.1%酢酸アンモニウム水溶液=70/30 流速10ml/min]により精製して、(2R)-2-アミノ-2-メチルー4-[1-メチル-5-(5-フェニルー1-ヒドロキシペンチル) ピロールー2ーイル] プタン-1ーオール79mgを得た。得られた(2R)-2-アミノ-2-メチルー4-[1-メチル-5-(5-フェニルー1-ヒドロキシペンチル) ピロールー2ーイル] ブタン-1-オール79mg(0.23mmol)をメタノール(2ml)に溶解し、98%無水シュウ酸9.3mg(0.11mmol)を加えて、室温で30分間撹拌した。減圧下濃縮乾固して、標記化合物57mg(収率30%)を得た。

 1 H NMR スペクトル (CD₃OD, 400MHz), δ : 7.25-7.20 (m, 2H), 7.17-7.09 (m, 3H), 5.91 (d, 1H, J = 3.4 Hz), 5.76 (d, 1H, J = 3.4 Hz), 4.57 (t, 1H, J = 6.6 Hz), 3.59 (d, 1H, J = 12.0 Hz), 3.54 (s, 3H), 3.53 (d, 1H, J = 12.0 Hz), 2.65-2.55 (m, 4H), 2.00-1.80 (m, 4H), 1.70-1.58 (m, 2H), 1.54-1.44 (m, 1H), 1.43-1.32 (m, 1H), 1.30 (s, 3H)。 IR スペクトル, ν_{max} cm⁻¹ (KBr): 3212, 3026, 2935, 2897, 2571, 1719, 1700, 1611, 1521, 1496, 1454, 1405, 1279, 1218, 1053, 767, 721, 700。 マススペクトル (FAB+), m/z: 325 ((M+H)+; free 体)。

(実施例40)

(2R) $-2-アミノ-2-メチル-4-{5-[3-(2-シクロヘキシルエチルオキシ)フェニル]-1-メチルピロールー2ーイル}プタン-1ーオール <math>1/2$ シュウ酸塩(例示化合物番号:式 Ia-2 における 1-1444) (40a) (4R)-4-メチル-4-[2-(5-ヨードー1-メチルピロールー2ーイル)エチル]-1,3-オキサゾリジン-2ーオン参考例 <math>11で得られた (4R)-4-メチル-4-[2-(1-メチルピロール-2-イル)エチル]-1,3-オキサゾリジン-2-オン0.61

87g(2.97mmol)をテトラヒドロフラン(30ml)に溶解し、 氷冷下、ピリジン1.2ml(14.9mmol)およびヨウ素1.506 0g(5.93mmol)を加え、同温度にて10分間撹拌した。反応液に 10%チオ硫酸ナトリウム水溶液を加えて反応を止め、減圧下約1/2に濃縮し、酢酸エチルで抽出し、酢酸エチル層を飽和炭酸水素ナトリウム水溶液 および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧 下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル /ヘキサン=3/2)により精製して、標記化合物0.6660g(収率67%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 6.30 (d, 1H, J = 3.7 Hz), 5.93 (d, 1H, J = 3.7 Hz), 5.17 (br s, 1H), 4.15 (d, 1H, J = 8.8 Hz), 4.09 (d, 1H, J = 8.8 Hz), 3.50 (s, 3H), 2.76-2.63 (m, 2H), 1.96-1.85 (m, 2H), 1.42 (s, 3H)。

(40b) (4R) -4-メチル-4-[2-{2-[3-(2-シクロヘキシルエチルオキシ)フェニル]-1-メチルピロール-2-イル}エチル]-1、3-オキサゾリジン-2-オン

実施例(40a)で得られた(4R) -4-メチル-4-[2-(5-ヨード-1-メチルピロール-2-イル)エチル]-1,3-オキサゾリジン-2-オン0.3101g(0.92mmo1)、2-[3-(2-シクロヘキシルエチルオキシ)フェニル]-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン0.4646g(1.41mmo1)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)63.1mg(0.09mmo1)および炭酸セシウム0.6006g(1.81mmo1)をジメトキシエタン(8ml)および水(2ml)の混合液に懸濁し、80℃で6時間撹拌した。冷却後、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)により精製して粗生成物を得、分取用逆層HPL

Cカラム[Inertsil ODS-3 (2.0cm×25cm)、GLサイエンス社製、溶出溶媒:アセトニトリル/水=75/25 流速 10ml/min]により精製して、標記化合物 41.1mg(収率11%)を得た。 ^{1}H NMR スペクトル (CDCl₃, 400MHz)、 $\delta:7.30-7.26$ (m, 1H), 6.93-6.89 (m, 2H), 6.85-6.83 (m, 1H), 6.14 (d, 1H, J=3.7Hz), 5.95 (d, 1H, J=3.7Hz), 5.27 (br s, 1H), 4.18 (d, J=8.8Hz), 4.10 (d, 1H, J=8.8Hz), 4.01 (t, 2H, J=6.6Hz), 3.52 (s, 3H), 2.77-2.64 (m, 2H), 2.06-1.94 (m, 2H), 1.78-1.64 (m, 6H), 1.55-1.46 (m, 1H), 1.45 (s, 3H), 1.31-1.11 (m, 4H), 1.02-0.92 (m, 2H)。

マススペクトル (FAB+), m/z:411((M+H)+)。

実施例(40b)で得られた(4R) -4 - 4 - 4 - 4 - 1 -

温で30分間撹拌した。減圧下濃縮し、2-プロパノールを加え、析出した 結晶をろ取し、2-プロパノールで洗浄し、減圧下乾燥して、標記化合物3 5.6mg(収率86%)を得た。

¹H NMR \angle \angle \triangle \triangle \triangle \triangle \triangle (CD₃OD, 400MHz), δ : 7.27 (t, 1H, J = 8.1 Hz), 6.89 (d, 1H, J = 8.1 Hz), 6.85-6.81 (m, 2H), 6.03 (d, 1H, J = 3.7 Hz), 5.91 (d, 1H, J = 3.7 Hz), 4.02 (t, 1H, J = 6.6 Hz), 3.63 (d, J = 11.7 Hz), 3.56 (d, 1H, J = 11.7 Hz), 3.54 (s, 3H), 2.77-2.65 (m, 2H), 2.07-1.90 (m, 2H), 1.81-1.64 (m, 7H), 1.59-1.47 (m, 1H), 1.34 (s, 3H), 1.32-1.15 (m, 3H), 1.05-0.95 (m, 2H).

IR \mathcal{A} \mathcal{O} \mathcal{N} \mathcal{N}

マススペクトル (FAB+), m/z: 385 ((M+H)+; free 体)。

(実施例41)

(2R) -2-アミノ-2-メチル-4-[1-エチル-5-(5-フェニルペンタノイル) ピロール-2-イル] ブタン-1-オール 塩酸塩(例示化合物番号:式 <math>1a-5 における 4-12)

参考例24で得られた(2R)-1-アセトキシー2-アセチルアミノー2-メチルー4ー(1-エチルピロールー2ーイル)ブタン2.1g(7.49mmo1)をトルエン(100m1)に溶解し、ジメチルアミノピリジン4.58g(37.5mmo1)を加え、5-フェニル吉草酸クロリド4.4g(22.5mmo1)をトルエン(20m1)に溶解した溶液を加え、5日間加熱還流した。室温に戻し、反応液に水を加えて酢酸エチルで抽出し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/

酢酸エチル=4/6)により精製して粗生成物を得、分取用逆層HPLCカラム [Inertsil ODS-3(2.0cm×25cm)、GLサイエンス社製、溶出溶媒:アセトニトリル/0.1%酢酸アンモニウム水溶液=70/30 流速10ml/min]により精製して、標配化合物2.8g(収率66%)を得た。

¹H NMR \angle \angle \triangle \triangle \triangle \triangle (CDCl₃, 400MHz), δ : 7.26-7.21 (m, 4H), 7.18-7.09 (m, 6H), 6.98 (d, 1H, J = 4.4 Hz), 5.97 (d, 1H, J = 4.4 Hz), 5.43 (br s, 1H), 4.35-4.28 (m, 1H), 4.33 (d, 1H, J = 11.0 Hz), 4.17 (d, 1H, J = 11.0 Hz), 4.12 (q, 2H, J = 7.3 Hz), 2.65-2.25 (m, 9H), 2.10 (s, 3H), 2.07-1.86 (m, 3H), 1.96 (s, 3H), 1.62-1.47 (m, 6H), 1.37 (s, 3H), 1.25 (t, 3H, J = 7.3 Hz).

(41b) (2R) -2-アミノ-2-メチル-4-[1-エチル-5-(5-フェニルペンタノイル) ピロール-2-イル] プタン-1-オール 塩 酸塩

実施例(41a)で得られた(2R)-1-アセトキシー2-アセチルアミノー2-メチルー4ー{1-エチルー[5-フェニルー1-(5-フェニルペンタノイルオキシ)ペント-1-エニル]ピロールー2ーイル}ブタン2.8g(4.66mmo1)をメタノール(12m1)、テトラヒドロフラン(12m1)および水(12m1)に溶解し、水酸化リチウム1水和物1.96g(46.6mmo1)を加え50℃にて5時間撹拌した。室温に戻し、水を加えて塩化メチレンで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=100/1)により精製して、粗製の(2R)-2-アミノー2-メチルー4ー[1-エチルー5-(5-フェニルペンタノイル)ピロールー2-イル]ブタンー1ーオール1.53gを得た。得られた粗生成物1.53gをエタノール(15m1)に溶解し、氷冷下、4規定塩酸ージオキサン溶液1.07m1(4.26mmo1)を加えた。氷冷下30分撹拌後、減圧下濃縮乾固し、

得られた残渣を酢酸エチルから再結晶して、標記化合物1.46g(収率80%)を得た。

¹H NMR スペクトル (DMSO-d₆, 400MHz), δ : 7.90 (br s, 2H), 7.29-7.24 (m, 2H), 7.20-7.13 (m, 3H), 7.06 (d, 1H, J = 4.0 Hz), 5.94 (d, 1H, J = 4.0 Hz), 5.53 (t, 1H, J = 4.8 Hz), 4.29 (q, 2H, J = 7.3 Hz), 3.49 (dd, 1H, J = 11.0 Hz, 4.8 Hz), 3.43 (dd, 1H, J = 11.0 Hz, 4.8 Hz), 2.79-2.70 (m, 2H), 2.69-2.55 (m, 4H), 1.94-1.88 (m, 2H), 1.64-1.53 (m, 4H), 1.22 (s, 3H), 1.17 (t, 3H, J = 7.3Hz)。

IR スペクトル, ν_{max} cm⁻¹ (KBr) : 3377, 2936, 1639, 1479, 1393, 1068。 マススペクトル (FAB⁺), m/z : 357((M+H)⁺; free 体)。

(実施例42)

(2R) - 2 - アミノ - 2 - メチル - 4 - [5 - (5 - フェニルペンタノイル) ピロール - 2 - イル] プタン - 1 - オール (例示化合物番号:式 Ia-4 における 3-12)

(42a) $(4R)-4-メチルー4-{2-[5-(5-フェニルペンタノイル) ピロールー2-イル] エチル}-1,3-オキサゾリジンー2ーオン$

参考例28で得られた(4R) - 4 - メチルー4 - [2 - (ピロールー2 - イル) エチル] - 1,3 - オキサゾリジン-2 - オン138mg(0.71 mmol)をテトラヒドロフラン(5 ml)に溶解し、メチルマグネシウムブロミドのエーテル(3.0 M)溶液0.50ml(1.49 mmol)を加え、30分間加熱還流した。冷後、室温攪拌下、5 - フェニル吉草酸クロリド0.169g(22.5 mmol)をテトラヒドロフラン(1 ml)に溶解した溶液を加え、1時間加熱還流した。室温に戻し、反応液に水を加えて酢酸エチルで抽出し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2/1)により精製して粗生成物を得、

分取用逆層HPLCカラム [Inertsil ODS-3 (2.0cm×25cm)、GLサイエンス社製、溶出溶媒:アセトニトリル/水=70/3 の 流速20ml/min]により精製して、標記化合物41mg(収率16%)を得た。

¹H NMR スペクトル (CDC1₈, 400MHz), δ : 9.67 (br s, 1H), 7.31-7.22 (m, 3H), 7.20-7.13 (m, 2H), 6.85-6.78 (m, 1H), 6.03-5.96 (m, 1H), 5.70 (br s, 1H), 4.16 (d, 1H, J = 8.8 Hz), 4.07 (d, 1H, J = 8.8 Hz), 2.80-2.67 (m, 4H), 2.67-2.58 (m, 2H), 2.01-1.88 (m, 2H), 1.81-1.61 (m, 4H), 1.37 (s. 3H)。

IR スペクトル, ν_{max} cm⁻¹ (CHCl_s):3442, 3271, 2935, 2861, 1758, 1632, 1492, 1454, 1410, 1382, 1046, 940.

マススペクトル (FAB+), m/z:355((M+H)+).

(42b) (2R) -2-アミノ-2-メチル-4-[5-(5-フェ ニルペンタノイル) ピロール-2-イル] ブタン-1-オール

実施例(42a)で得られた(4R)-4-メチルー4ー{2-[5-(5-(5-(5-(2-1)) 2-1) 2-(2-1)

IR スペクトル, ν_{max} cm⁻¹ (CHCl₃):3272, 2927, 2857, 1624, 1494, 1454, 1410, 1363, 1293, 1263, 1210, 1048, 915, 801, 749, 700. マススペクトル (FAB+)、m/z:329((M+H)+)。

(実施例43)

リン酸 モノ (2R)-2-アミノ-2-メチル-4-[1-メチル-5 - (5-フェニルペンタノイル) ピロール-2-イル] -1-プチル エス テル(例示化合物番号:式 IIa-2 における 5-1344)

(43a) (2R) - 2 - t - プトキシカルボニルアミノー2 - メチル-4-[1-メチル-5-(5-フェニルペンタノイル)ピロール-2-イ ル] ブタンー1ーオール

実施例(33b)で得られた(2R)-2-アミノ-2-メチル-4-[1 ーメチルー5ー(5ーフェニルペンタノイル)ピロールー2ーイル]ブタン -1-オール 塩酸塩1.4647g(3.87mmo1)を塩化メチレン (38ml) に溶解し、ジーtープチルジカルボナート1.0126g(4. 64mmol) およびトリエチルアミン1.62ml(11.65mmol) を加え、室温で18時間攪拌した。減圧下濃縮し、反応液に水を加え、酢酸 エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウ ムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグ ラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/2)により精製して、標記 化合物 1. 6928 g(収率 99%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.28-7.24 (m, 2H), 7.18-7.14 (m, 3H), 6.90 (d, 1H, J = 3.7 Hz), 5.95 (d, 1H, J = 3.7 Hz), 4.63 (br s, 1H), 3.98 (br s, 1H), 3.87 (s, 3H), 3.68 (d, 2H, J = 6.6 Hz), 2.75 (t, 2H, J = 7.3 Hz), 2.70-2.62 (m, 3H), 2.55 (ddd, 1H, J = 15.4 Hz, 12.4 Hz, 5.1 Hz), 2.13-2.04 (m, 1H), 1.96-1.89 (m, 1H), 1.79-1.64 (m, 4H), 1.43 (s, 9H), 1.21 (s, 3H).

マススペクトル (FAB+), m/z:443((M+H)+)。

(43b) リン酸 (2R)-2-t-プトキシカルボニルアミノー2-メチルー4-[1-メチルー5-(5-フェニルペンタノイル) ピロール<math>-2-イル]-1-プチル ジアリル エステル

実施例(43a)で得られた(2R) - 2-t-ブトキシカルボニルアミノ-2-メチルー4-[1-メチルー5-(5-フェニルペンタノイル)ピロールー2-イル]プタン-1-オール1.6928g(3.83mmo1)を塩化メチレン(19m1)に溶解し、氷冷下、1H-テトラゾール1.7933g(25.60mmo1)およびジアリル・ジイソプロピルホスホロアミダイト2.02ml(7.64mmol)を加え、その後室温で2時間攪拌した。反応液に、氷冷下、tープチルヒドロパーオキシドのnーデカン(5-6mol/1)溶液2.3ml(11.5mmol)を加え、同温度で15分間攪拌した。反応液に亜硫酸ナトリウム水溶液を加えて反応を止め、塩化メチレンで抽出し、塩化メチレン層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/2)により精製して、標記化合物 1.5690g(収率68%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.28-7.24 (m, 2H), 7.18-7.14 (m, 3H), 6.89 (d, 1H, J = 3.7 Hz), 5.99-5.89 (m, 3H), 5.39-5.29 (m, 4H), 4.62 (br s, 1H), 4.60-4.52 (m, 4H), 4.21 (dd, 1H, J = 9.5 Hz, 5.1 Hz), 4.01 (dd, 1H, J = 9.5 Hz, 5.9 Hz), 3.86 (s, 3H), 2.74 (t, 2H, J = 7.3 Hz), 2.64 (t, 2H, J = 8.1 Hz), 2.58 (t, 2H, J = 8.1 Hz), 2.22-2.12 (m, 1H), 1.90-1.81 (m, 1H), 1.79-1.64 (m, 4H), 1.43 (s, 9H), 1.26 (s, 3H)。 マススペクトル (FAB+), m/z: 603((M+H)+)。

(43c) リン酸 モノ (2R)-2-7ミノー2-メチルー4-[1-メチルー5-(5-フェニルペンタノイル) ピロールー2-イル] -1-プチル エステル

実施例(43b)で得られたリン酸 (2R)-2-t~プトキシカルボ

ニルアミノー2ーメチルー4ー [1ーメチルー5ー(5ーフェニルペンタノ イル) ピロールー2ーイル] ー1ーブチル ジアリル エステル1.566 5g(2.60mmo1)、トリフェニルホスフィン0.1402g(0.5 4 mm o 1) およびテトラキス (トリフェニルホスフィン) パラジウム (0) 0. 1503g (0. 13mmo1) をアセトニトリル (26m1) に懸濁 し、窒素雰囲気下、ピロリジン1. 1ml (13mmol) を加え、室温で 24時間攪拌した。反応液を減圧下濃縮し、残渣に1規定塩酸水溶液を加え て塩化メチレンで抽出し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下 溶媒を留去して粗生成物 1.4625gを得た。得られた粗生成物1.4 625gを塩化メチレン(26m1)に溶解し、氷冷下でトリフルオロ酢酸 (8.6m1)を加え、室温に戻して2時間攪拌した。反応液を減圧下濃縮 し、残渣にエタノールを加え、析出結晶をろ取して粗結晶を得た。得られた 粗結晶をメタノール (200ml) と水 (67ml) の混合溶媒に溶解し、 活性炭で処理した後セライトろ過した。減圧下濃縮し、残渣にエタノールを 加え、析出結晶をろ取し、エタノールで洗浄後乾燥して、標記化合物 0. 5554g(収率51%)を得た。

IR スペクトル, ν_{max} cm⁻¹ (KBr) : 3429, 2934, 2857, 2717, 2603, 1639, 1557, 1480, 1455, 1378, 1182, 1056, 1041, 946, 915, 821, 748, 699, 580, 511。 マススペクトル (FAB-), m/z: 421((M-H)-)。

(実施例44)

(3R) -3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル) ピロールー2-イル] ペンチルホスホン酸 (例示化合物番号:式 IIIa-2 における <math>5-1344)

(44a) (2R) -2-t-プトキシカルボニルアミノ-2-メチル -4-[1-メチル-5-(5-フェニルペンタノイル) ピロールー2-イ -ル] プタナール

実施例(43a)で得られた(2R)-2-tープトキシカルボニルアミソー2-メチルー4ー[1-メチルー5-(5-フェニルペンタノイル)ピロールー2-イル]プタンー1-オール0.3520g(0.80mmol)を塩化メチレン(8ml)に溶解し、モレキュラーシープ4Å(0.2234g)および重クロム酸ピリジニウム0.4594g(1.22mmol)を加え、室温で20時間攪拌した。反応液にエーテルを加え、ろ過し、ろ液を減圧下留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/2)により精製して、標記化合物0.2195g(収率63%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 9.36 (s, 1H), 7.28-7.25 (m, 2H), 7.18-7.15 (m, 3H), 6.89 (d, 1H, J = 3.7 Hz), 5.92 (d, 1H, J = 3.7 Hz), 5.20 (br s, 1H), 3.83 (s, 3H), 2.74 (t, 2H, J = 7.3 Hz), 2.64 (t, 2H, J = 7.3 Hz), 2.59-2.52 (m, 1H), 2.45-2.28 (m, 2H), 2.09-2.03 (m, 1H), 1.78-1.64 (m, 4H), 1.44 (s, 9H), 1.40 (s, 3H)。

(44b) ジエチル (3R)-3-t-プトキシカルポニルアミノー <math>3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル] ペント-1-エニルホスホン酸 エステル

水素化ナトリウム (60%含量) 31.0mg (0.78mmol)をテトラヒドロフラン (1ml) に懸濁し、氷冷下、テトラエチル メチレンジホスホナート0.185ml (0.75mmol)を5分間要して加え、その後室温にて30分間攪拌した。ついで、実施例 (44a)で得られたジエチル (2R)-2-t-プトキシカルボニルアミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンタノイル)ピロール-2-イル]-1-ブタナール0.2155g (0.49mmol)をテトラヒドロフラン (4ml) に溶解した溶液を氷冷下、5分間要して加え、同温度にて30分間攪

拌した。反応液に酢酸 $42\mu1$ (0.73 mm o 1) を加えて中和したのち減圧下濃縮し、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン= $2/1\sim1/0$)により精製して、標配化合物 0.2348 g (収率 85%)を得た。

¹H NMR スペクトル (CDC1₃ , 400MHz) , δ : 7.28-7.25 (m, 2H), 7.18-7.15 (m, 3H), 6.90 (d, 1H, J = 4.4 Hz), 6.77 (dd, 1H, J = 22.7 Hz, 17.6 Hz), 5.92 (d, 1H, J = 4.4 Hz), 5.72 (t, 1H, J = 17.6 Hz), 4.59 (br s, 1H), 4.12-4.05 (m, 4H), 3.84 (s, 3H), 2.74 (t, 2H, J = 7.3 Hz), 2.64 (t, 2H, J = 7.3 Hz), 2.59-2.50 (m, 2H), 2.26-2.18 (m, 1H), 2.01-1.93 (m, 1H), 1.78-1.64 (m, 4H), 1.42 (s, 12H), 1.32 (t, 6H, J = 7.3 Hz)。 マススペクトル (FAB+), m/z:575 ((M+H)+)。

(44c) ジエチル (3R) -3-t-プトキシカルボニルアミノー3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル] ペンチルホスホン酸 エステル

実施例(44b)で得られたジエチル (3R) -3-t-ブトキシカルボニルアミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル)ピロール-2-イル]ペント-1-エニルホスホン酸 エステル145.4mg(0.25mmol)をエタノール(2.5ml)に溶解し、塩化トリス(トリフェニルホスフィン)ロジウム(I)23.7mg(0.026mmol)を加え、水素雰囲気下、50℃で5時間攪拌した。冷後、反応液に塩化トリス(トリフェニルホスフィン)ロジウム(I)24.3mg(0.026mmol)を加え、水素雰囲気下、50℃で5時間攪拌した。減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル)により精製して、粗生成物154.0mgを得、分取用逆層HPLCカラム[Inertsil ODS-3(2.0cm×25cm)、GLサイエンス社製、溶出溶媒:アセトニトリル/水=80/20、流速:10ml

マススペクトル (FAB^{+}), $m/z:577((M+H)^{+})$.

(44d) (3R) - 3 - アミノ - 3 - メチル - 5 - [5 - (5 - フェニルペンタノイル) フラン - 2 - イル] ペンチルホスホン酸

実施例(44c)で得られたジエチル (3R) -3-t-プトキシカルポニルアミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル)ピロール-2-イル]ペンチルホスホン酸 エステル<math>114.0mg(0.20mmo1)を塩化メチレン(2.0m1)に溶解し、臭化トリメチルシラン0.26m1(1.97mmo1)を加え、窒素雰囲気下、室温で5時間撹拌した。減圧下溶媒を留去したのち、残渣に含水エタノールを加えて希釈し、これにアンモア水溶液および酢酸を加えてpH4として結晶を析出させた。析出結晶をろ取し、水およびエタノールで洗浄後乾燥して、標記化合物 52.0mg(収率63%)を得た。

 1 H NMR スペクトル (CD₃CO₂D, 400MHz), δ : 7.26-7.22 (m, 2H), 7.18-7.12 (m, 3H), 7.07 (d, 1H, J = 4.1 Hz), 6.05 (d, 1H, J = 4.1 Hz), 3.88 (s, 3H), 2.80 (t, 2H, J = 7.3 Hz), 2.73 (t, 2H, J = 8.8 Hz), 2.63 (t, 2H, J = 7.3 Hz), 2.23-1.94 (m, 6H), 1.76-1.64 (m, 4H), 1.48 (s, 3H)。

IR スペクトル, ν_{mex} cm⁻¹ (KBr): 3171, 3025, 2936, 2859, 2549, 1640, 1552, 1484, 1461, 1380, 1136, 1064, 1051, 914, 881, 772, 741, 699。 マススペクトル (FAB⁻), m/z: 419((M-H)⁻)。

(参考例1)

臭化 (フラン-2-イル) メチルトリフェニルホスホニウム塩

フルフリルアルコール29.43g(300mmol)をテトラヒドロフラン(300ml)に溶解し、三臭化リン10ml(105mmol)をテトラヒドロフラン(30ml)に溶解した溶液を、水冷攪拌下、30分かけて加え、反応混合物を室温にて1時間撹拌した。反応混合物に、水酸化ナトリウム水溶液(30.23gを水75mlに溶解)を加えて中和した後、有機層を分取し、さらに水酸化ナトリウム10gを加えて有機層を乾燥した。有機層を傾斜法により分取し、無水硫酸ナトリウムと活性炭を加え、ろ過し、テトラヒドロフラン(150ml)を加え、トリフェニルホスフィン78.64g(300mmol)を加え、70℃にて2時間攪拌した。冷却後、析出した結晶をろ取し、酢酸エチルにて洗浄した後、減圧下乾燥して、標記化合物98.84g(収率78%)を得た。

(参考例2)

(2R) -2-t-プトキシカルボニルアミノ-1-n-ヘキサノイルオキシ-2-メチル-4-(フラン-2-イル) -3-プテン

(2 a) (2 R) -2-t-プトキシカルボニルアミノー3-n-ヘキサノイルオキシー2-メチルー1-プロパノール

2-t-プトキシカルボニルアミノ-2-メチルプロパン-1, 3-ジオール20.0g(97.4mmol)をイソプロピルエーテル(200ml)に懸濁し、ヘキサン酸ピニルエステル16.3ml(0.10mol)及びリパーゼ[Immobilized lipase from Pseudomonas sp., TOYOBO社製、0.67U/mg]0.8 gを加え、室温で2時間攪拌した。反応液をろ過後、ろ液を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=10/1~2/1)により精製して、標記化合物25.0g(収率85%)を得た。

得られた(2R)-2-t-プトキシカルボニルアミノ-3-n-ヘキサノイルオキシ-2-メチル-1-プロパノールは、分析用光学活性HPLC

カラム [ChiralCel OF(0.46 cm×25 cm)、ダイセル社製、溶出溶媒: ヘキサン/2-プロパノール=70/30、流速:0.5m1/min)] で光学純度を決定した。

先に溶出されるもの(8.2分)が2S体であり、後から溶出されるもの(10.5分)が2R体であり、光学純度は85%eeであることを確認した。

旋光度, [α],= -8.5(c=1.86, CHCl₃)。

¹H NMR $\angle P$ > $\angle D$ (CDC1₃, 400MHz), δ : 4.86 (s, 1H), 4.25 (d, 1H, J = 11.2 Hz), 4.19 (d, 1H, J = 11.2 Hz), 3.86 (br s, 1H), 3.70-3.55 (m, 2H), 2.36 (t, 2H, J = 7.4 Hz), 1.44 (s, 9H), 1.40-1.30 (m, 4H), 1.25 (s, 3H), 0.90 (t, 3H, J = 7.0 Hz).

IRスペクトル、レ_{max} cm⁻¹ (Liquid Film): 3415, 3380, 2961, 2935, 2874, 1721, 1505, 1458, 1392, 1368, 1293, 1248, 1168, 1076。マススペクトル (FAB⁺)、m/z: 304((M+H)⁺)。

(2b) (2S) -2-t-プトキシカルボニルアミノ-3-n-ヘキサンイルオキシー2-メチル-1-プロパナール

参考例(2a)で得られた(2R)-2-t-ブトキシカルボニルアミノ-3-n-ヘキサノイルオキシ-2-メチル-1-プロパノール30.70g(0.101mo1)を塩化メチレン(600m1)に溶解し、モレキュラーシーブ4Å(220g)およびクロロクロム酸ピリジニウム43.6g(0.202mo1)を氷冷下加え、室温で2時間攪拌した。反応液にエーテルを加え、ろ過し、ろ液を減圧下留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=10/1~5/1)により精製して、標記化合物28.81g(収率95%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 9.45 (s, 1H), 5.26 (br s, 1H), 4.44 (d, 1H, J = 11.2 Hz), 4.32 (d, 1H, J = 11.2 Hz), 2.32 (t, 2H, J = 7.46 Hz), 1.70-1.55 (m, 2H), 1.45 (s, 9H), 1.38 (s, 3H), 1.40-1.25 (m, 4H), 0.90 (t, 3H, J = 7.0 Hz)。

IR スペクトル, ν_{max} cm⁻¹ (Liquid Film): 3367, 2961, 2935, 2874, 1742, 1707, 1509, 1458, 1392, 1369, 1290, 1274, 1254, 1166, 1100, 1078。 マススペクトル (FAB⁺), m/z: 302((M+H)⁺)。

(2 c) (2 R) -2-t-7トキシカルボニルアミノー1-n-ヘキサノイルオキシー2-メチルー4-(フランー2-イル)-3-プテン

参考例1で得られた臭化 (フラン-2-イル)メチルトリフェニルホスホニウム塩33.65g(79.5mmo1)をテトラヒドロフラン(90m1)に懸濁し、氷冷撹拌下、tープトキシカリウム8.94g(79.7mmo1)をテトラヒドロフラン(90m1)に溶解した溶液を10分間かけて加え、さらに氷冷下15分間攪拌した。ついで、参考例(2b)で得られた(2S)-2-tープトキシカルボニルアミノ-3-n-ヘキサノイルオキシ-2-メチル-1-プロパナール16.18g(53.7mmo1)をテトラヒドロフラン(60m1)に溶解した溶液を15分間かけて加え、氷冷下30分間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、液温を室温に戻し、減圧下濃縮し、水および酢酸エチルを加え、酢酸エチルで抽出した。酢酸エチル層を水および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=10/1)により精製して、標記化合物19.32g(収率98%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz) , δ : 7.45 (d, 1H, J = 1.6 Hz), 7.33 (d, 1H, J = 1.5 Hz), 6.41 (dd, 1H, J = 2.9Hz, 1.6 Hz), 6.36-6.35 (m, 計 2H), 6.33 (d, 1H, J = 15.9 Hz), 6.26-6.22 (m, 計 2H), 6.20 (d, 1H, J = 15.9 Hz), 5.59 (d, 1H, J = 12.7 Hz), 5.22 (br s, 1H), 4.82 (br s, 1H), 4.43 (d, 1H, J = 11.0 Hz), 4.32 (d, 1H, J = 11.0 Hz), 4.25 (d, 1H, J = 11.0 Hz), 4.18 (d, 1H, J = 11.0 Hz), 2.36-2.32 (m, 計 4H), 1.67-1.22 (m, 計 40H), 0.92-0.87 (s, 計 6H)。

IRスペクトル, ν_{max} cm⁻¹ (Liquid Film): 3445, 2962, 2933, 2873, 2250, 1720, 1497, 1457, 1391, 1368, 1249, 1165, 1075, 1015。

マススペクトル (FAB+), m/z:388((M+Na)+), 366((M+H)+)。

(参考例3)

(4R) - 4 - メチルー4 - [2 - (フラン-2 - イル) エテニル] - 1, 3 - オキサゾリジン-2 - オン

参考例 (2c) で得られた (2R) - 2 - t - プトキシカルボニルアミノ**-1-n-ヘキサノイルオキシ-2-メチル-4-(フラン-2-イル)**-3-プテン19. 32g (52. 9mmol) をテトラヒドロフラン (53 m1) およびメタノール (53m1) の混合液に溶解し、2規定水酸化ナト リウム水溶液53m1を加え、室温で1時間攪拌した。反応液に水および塩 化メチレンを加えて、塩化メチレンで抽出し、塩化メチレン層を飽和食塩水 で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去して、 粗生成物14.84g(収率100%)を得た。粗生成物をテトラヒドロフラ ン (150m1) に溶解し、tープトキシカリウム7.20g(64.2m mo1)をテトラヒドロフラン(50m1)に溶解した溶液を氷冷下10分 間かけて加え、同温度下で1時間攪拌した。反応液に酢酸3.65m1(6 3.8mmol) を加えて中和し、減圧下濃縮して、水および酢酸エチルを 加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫 酸ナトリウムで乾燥し、ろ過後、減圧下溶媒を留去し、残渣をシリカゲルク ロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1)により精製し て、標記化合物10.04g(収率98%)を得た。

1H NMR スペクトル (CDC1₃, 400MHz), δ : 7.49 (d, 1H, J = 1.6 Hz), 7.36 (d, 1H, J = 1.6 Hz), 6.46 (d, 1H, J = 2.1 Hz), 6.43 (d, 1H, J = 16.1 Hz), 6.04-6.37 (m, 計 2H), 6.30 (br s, 1H), 6.30 (d, 1H, J = 3.3 Hz), 6.21 (d, 1H, J = 12.7 Hz), 6.18 (d, 1H, J = 16.1 Hz), 5.88 (br s, 1H), 5.62 (d, 1H, J = 12.7 Hz), 4.41 (d, 1H, J = 8.5 Hz), 4.37 (d, 1H, J = 8.5 Hz), 4.23 (d, 1H, J = 8.3 Hz), 4.17 (d, 1H, J = 8.3 Hz), 1.65 (s, 3H), 1.54 (s, 3H)。

IR スペクトル, $\nu_{\rm max}$ cm⁻¹ (CDCl₃): 3451, 2252, 1757, 1396, 1374, 1281, 1165, 1044, 1016。

マススペクトル (EI⁺), m/z: 193(M⁺), 178(base), 163, 148, 135, 120, 107, 91, 81, 65。

(参考例4)

(4R) - 4 -メチルー4 - [2 - (フランー2 - 1)] - 1, 3 - オキサゾリジンー2 -オン

10%パラジウムー炭素(50%含水)1.00gをメタノール(20m1)に懸濁し、参考例3で得られた(4R)-4-メチル-4-[2-(フラン-2-イル)エテニル]-1,3-オキサゾリジン-2-オン10.04g(52.0mmo1)をメタノール(180ml)に溶解した溶液を加え、水素雰囲気下、室温で40分間攪拌した。反応液中のパラジウムー炭素をセライトろ過した後、ろ液を減圧下留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/2~1/1)により精製して、標記化合物7.95g(収率78%)を得た。

得られた(4R) -4-メチル-4-[2-(フラン-2-イル)エチル] -1, 3-オキサゾリジン-2-オンは、分析用光学活性HPLCカラム [ChiralPak AD ($0.46cm \times 25cm$)、ダイセル社製、溶出溶媒:n-ヘキサン/2-プロパノール=85/15、流速:1.0m1/min]により光学純度を決定した。

先に溶出されるもの(13.09分)が4 S体であり、後から溶出されるもの(15.43分)が4 R体であり、光学純度は84% e e であることを確認した。

1H NMR \angle \wedge β \wedge \rangle \rangle (CDC1₃, 400MHz), δ : 7.31 (br s, 1H,), 6.29 (br d, 1H, J = 2.6 Hz), 6.03 (d, 1H, J = 2.6 Hz), 5.92 (br s, 1H), 4.11 (d, 1H, J = 8.4 Hz), 4.04 (d, 1H, J = 8.4 Hz), 2.72 (t, 2H, J = 8.0 Hz), 1.98-1.94 (m, 2H), 1.68-1.61 (m, 2H), 1.38 (s, 3H).

489

IRスペクトル、ν_{max} cm⁻¹ (CDCl₃): 3450, 2975, 2928, 2250, 1755, 1599, 1508, 1400, 1381, 1147, 1045, 1010。

マススペクトル (EI⁺), m/z:195(M⁺), 178, 164, 134, 121, 100(base), 96, 94, 81, 56。

(参考例5)

(2R) -1-アセトキシ-2-アセチルアミノ-2-メチル-4-(フラン-2-イル) プタン

(5 a) (2 R) -2-アミノ-2-メチル-4-(フラン-2-イル)プタン-1-オール 1/2D-(-) 一酒石酸塩

参考例4で得られた(4R) -4-メチル-4-[2-(フラン-2-イル) エチル] -1, 3-オキサゾリジン-2-オン29.9g(153.2 mmol)をテトラヒドロフラン(150ml)およびメタノール(150 ml)の混合液に溶解し、5規定水酸化カリウム水溶液(150ml)を加え、3日間加熱還流した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をエタノール250mlに溶解し、D-(-)-酒石酸塩11.5g(76.6mmol)をエタノール(100ml)に溶解した溶液を加えて10分撹拌した後、析出した粗結晶をエタノール(300ml)と水(75ml)の混合溶媒から再結晶し、無色板状晶として標記化合物24.4g(収率65%)を得た。

得られた (2R) -2-アミノ-2-メチル-4-(フラン-2-イル) ブタン-1-オール 1/2D-(-) -酒石酸塩51.2mg(0.16 mmol)を塩化メチレン(1.6ml)に懸濁し、ジーt-ブチルジカルボナート0.17g(0.78mmol)、トリエチルアミン0.22ml(1.58mmol)および4-ジメチルアミノピリジン3.0mg(0.025 mmol)を加え、室温で20分間撹拌した。水を加え、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル

=1/1)により精製して、(4R)-4-メチルー4-[2-(フラン-2-イル) エチル] -1, 3-オキサゾリジン-2-オン18.0mg(収率 58%)を得た。

得られた(4R) -4-メチル-4-[2-(フラン-2-イル)エチル] -1。3-オキサゾリジン-2-オンは、参考例4に準じて、分析用光学活性HPLCカラム[ChiralPak AD(0.46 cm $\times 25$ cm)、ダイセル社製、溶出溶媒: n-ヘキサン/2-プロパノール=85/15、流速: 1.0 ml / min]により光学純度を決定した。

先に溶出されるもの(13.09分)が4S体であり、後から溶出される もの(15.43分)が4R体であり、光学純度は99.3%eeであるこ とを確認した。

融点: 225℃。

旋光度, $[\alpha]_n = -13.43$ (c = 1.00, MeOH)。

¹H NMR スペクトル (CD₃OD, 400MHz), δ : 7.36 (d, 1H, J = 2.0 Hz), 6.30 (dd, 1H, J = 2.8 Hz, 2.0 Hz), 6.09 (d, 1H, J = 2.8 Hz), 3.58 (d, 1H, J = 11.6 Hz), 3.51 (d, 1H, J = 11.6 Hz), 2.77-2.68 (m, 2H), 2.07-1.88 (m, 2H), 1.28 (s, 3H)。

IR スペクトル, ν_{max} cm⁻¹ (KBr): 3405, 3226, 3135, 2943, 2597, 1598, 1528, 1401, 1299, 1228, 1124, 1079, 1003, 740。

マススペクトル (FAB+), m/z:170((M+H)+;free 体)。

元素分析値(C₉H₁₅NO₂・1/2C₄H₆O₆として%),

計算値:C: 54.09, H: 7.43, N: 5.73。

実測値: C : 53.93, H : 7.30 , N : 5.79。

(5 b) (2 R) -1-アセトキシー2-アセチルアミノー2-メチル -4-(フランー2-イル) プタン 参考例(5 a)で得られた(2 R) - 2 - アミノー2 - メチルー4 - (フランー2 - イル)ブタンー1 - オール 1 / 2 D - (一) - 酒石酸塩2 4 . 2 1 g(9 9 . 1 mm o 1)を塩化メチレン(4 0 0 m 1)および水(1 0 0 m 1)の混合液に懸濁し、水酸化ナトリウム水溶液(9 7 %水酸化ナトリウム2 2 . 3 4 gを水1 0 0 m 1 に溶解)を加え、室温で2 0 分間撹拌した。反応液を塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩化メチレン(5 0 0 m 1)に溶解し、トリエチルアミン1 3 8 m 1 (9 9 3 mm o 1)、無水酢酸 4 6 . 5 m 1 (4 9 3 mm o 1)および4 - ジメチルアミノピリジン1 . 2 1 g(9 . 9 mm o 1)を加え、室温で1時間撹拌した後、メタノールを加えて反応を止め、減圧下溶媒を留去した。残渣に酢酸エチルおよび水を加えて、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2 / 1)により精製して、標記化合物 2 5 . 1 1 g (収率 1 0 0 %)を得た。

"H NMR スペクトル (CDC1₃, 400MHz) , δ : 7.30(d, 1H, J = 1.8 Hz), δ .28 (dd, 1H, J = 3.0 Hz, 1.8 Hz), δ .01 (d, 1H, J = 3.0 Hz), δ .36 (br s, 1H), 4.30 (d, 1H, J = 11.1 Hz), 4.17 (d, 1H, J = 11.1 Hz), 2.66 (t, 2H, J = 8.3 Hz), 2.30-2.22 (m, 1H), 2.09 (s, 3H), 2.02-1.94 (m, 1H), 1.92 (s, 3H), 1.35 (s, 3H)。

マススペクトル (EI⁺), m/z: 253(M⁺), 211, 194, 180, 138, 134(base), 121, 99, 94, 81, 74, 57, 43.

(参考例6)

参考例(5b)で得られた(2R) -1-アセトキシー2-アセチルアミノー2-メチルー4-(フランー2-イル)プタン5.85g(23.1m

mo1)をN, Nージメチルホルムアミド(100m1)に溶解し、Nーブロモコハク酸イミド4.32g(24.3mmo1)を氷冷下少量ずつ加え、同温度下30分間撹拌した。反応液に10%チオ硫酸ナトリウム水溶液および飽和炭酸水素ナトリウム水溶液を加え、エーテルで抽出し、エーテル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2/1)により精製して、粗生成物を得、分取用逆層HPLCカラム[TSK-GEL 0DS-80Ts(5.0cm×30cm)、東ソー社製、溶出溶媒:アセトニトリル/水=50/50、流速:40m1/min]で精製して、標記化合物 2.95g(収率 38%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.18 (d, 1H, J = 3.3 Hz), 5.99 (d, 1H, J = 3.3 Hz), 5.37 (br s, 1H), 4.29 (d, 1H, J = 11.3 Hz), 4.16 (d, 1H, J = 11.3 Hz), 2.70-2.57 (m, 2H), 2.30-2.22 (m, 1H), 2.10 (s, 3H), 2.01-1.93 (m, 1H), 1.94 (s, 3H), 1.34 (s, 3H).

IR スペクトル, $\nu_{\rm max}$ cm⁻¹ (Liquid film) : 3300, 3074, 2978, 2938, 1742, 1658, 1549, 1510, 1450, 1373, 1241, 1128, 1012, 945, 922, 784, 733, 605。 マススペクトル (FAB⁺), m/z : 332((M+H)⁺)。

(参考例7)

(2R) - 1 - アセトキシー2 - アセチルアミノー2 - メチルー4 - (5 - ヨードフランー2 - イル) プタン

参考例(5b)で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2-メチル-4-(フラン-2-イル)プタン5.11g(19.8mmo1)をクロロホルム(100m1)に溶解し、ピリジン8.0ml(99.1mmo1)およびヨウ素10.07g(39.7mmo1)を加え、60℃で3時間撹拌した。冷却後、反応液に10%チオ硫酸ナトリウム水溶液を加えて反応を止め、塩化メチレンで抽出し、塩化メチレン層を水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウム

で乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)により精製して、粗生成物5.57gを得、分取用逆層HPLCカラム[TSK-GEL 0DS-80Ts (5.0 cm×30cm)、東ソー社製、溶出溶媒:アセトニトリル/水=50/50、流速:40mi/min]で精製して、標記化合物2.9467g(収率3.9%)を得た。

¹H NMR \nearrow \nearrow \nearrow \nearrow \nearrow \nearrow \nearrow (CDC1₈, 400MHz), δ : 6.42 (d, 1H, J = 3.1 Hz), 5.95 (d, 1H, J = 3.1 Hz), 5.37 (br s, 1H), 4.29 (d, 1H, J = 11.1 Hz), 4.16 (d, 1H, J = 11.1 Hz), 2.72-2.63 (m, 2H), 2.29-2.21 (m, 1H), 2.10 (s, 3H), 2.05-1.93 (m, 1H), 1.94 (s, 3H), 1.34 (s, 3H).

IR \mathcal{A} \mathcal{O} \mathcal{N} \mathcal{N}

マススペクトル (FAB+), m/z:380((M+H)+)。

(参考例8)

ヨウ化 (1-メチルピロールー2-イル)メチルトリフェニルホスホニウ ム塩

1ーメチルピロール21. 42g(264.1mmo1)に、35%ホルムアルデヒド水溶液20.8ml(264.3mmo1)とジメチルアミン塩酸塩22.70g(278.4mmo1)の混合物を、水冷撹拌下、1時間30分間かけて加え、室温で6時間撹拌した。反応液に10%水酸化ナトリウム水溶液(150ml)を加え、エーテルで抽出し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=10/1)により精製して、2ー(N,Nージメチルアミノメチル)ー1ーメチルピロール31.47g(収率86%)を得た。2ー(N,Nージメチルアミノメチル)ー1ーメチルピロール30.00g(217.5mmo1)をエタノール(220ml)に溶解し、氷冷下、ヨウ化メチル16.2ml(2

60.2mmo1)を加え、室温で2時間撹拌した。反応液に酢酸エチル(220ml)を加え、析出した結晶をろ取し、酢酸エチルで洗浄後、乾燥して、ヨウ化 (1-メチルピロール-2-イル)メチルトリメチルアンモニウム塩55.34g(収率91%)を得た。

ヨウ化 (1-メチルピロール-2-イル) メチルトリメチルアンモニウム塩55.34g(197.5mmol)をアセトニトリル(400ml)に懸濁し、トリフェニルホスフィン62.20g(237.1mmol)を加え、80℃で10時間攪拌した。冷却後、減圧下、約1/2に濃縮し、酢酸エチル(200ml)を加え、析出した結晶をろ取し、酢酸エチルで洗浄し、減圧下乾燥して、標記化合物77.14g(収率81%)を得た。

(参考例9)

 $(2R) - 2 - t - \overline{J} + \overline{\lambda} + \overline{\lambda}$

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.60 (t, 1H, J = 2.3 Hz), 6.57 (t, 1H, J = 2.3 Hz), 6.38 (d, 1H, J = 16.1 Hz), 6.30-6.26 (m, 計 2H), 6.27 (d, 1H, J = 12.5 Hz), 6.11 (t, 1H, J = 3.2Hz), 6.08 (t, 1H, J = 3.2Hz), 5.99 (d, 1H, J = 16.1 Hz), 5.58 (d, 1H, J = 12.5 Hz) 5.04 (br s, 1H), 4.81 (br s, 1H), 4.34-4.16 (m, 計 4H), 3.60 (s, 3H), 3.54 (s, 3H), 2.36-2.30 (m, 計 4H), 1.67-1.22 (m, 計 4H), 0.92-0.87 (s, 計 6H)。

マススペクトル (EI⁺), m/z:280(M⁺), 249, 224, 193(base), 164, 149, 132, 108, 94, 57。

(参考例10)

(4R) -4-メチル-4- [2-(1-メチルピロール-2-イル) エテ ニル] -1, 3-オキサゾリジン-2-オン

参考例 9 で得られた(2R) -2-t-プトキシカルボニルアミノ-1-n-n-n+サノイルオキシー2-メチルー4-(<math>1-メチルピロールー2-イル) -3-プテンを出発原料として、参考例 <math>3 に記載の方法に準じて、標記化合物 (収率 7.6%) を得た。

1 H NMR スペクトル (CDCI₈, 400MHz), δ : 6.67 (t, 1H, J = 2.1 Hz), 6.62 (t, 1H, J = 1.5 Hz), 6.48 (d, 1H, J = 15.7 Hz), 6.36 (dd, 1H, J = 3.7 Hz, 1.5 Hz), 6.31 (d, 1H, J = 12.2 Hz), 6.14-6.10 (m, 計 2H), 6.07 (br d, 1H, J = 3.6 Hz), 5.99 (d, 1H, J = 15.7 Hz), 5.65 (d, 1H, J = 12.2 Hz) 5.46 (br s, 1H), 5.11 (br s, 1H), 4.31 (d, 1H, J = 8.2 Hz), 4.22 (d, 1H, J = 8.2 Hz), 4.17 (d, 1H, J = 8.2 Hz), 4.16 (d, 1H, J = 8.2 Hz), 3.62 (s, 3H), 3.55 (s, 3H), 1.59 (s, 3H), 1.57 (s, 3H)。

マススペクトル (EI+), m/z: 206(M+, base), 191, 176, 161, 147, 132, 120, 106, 94, 81, 77。

(参考例11)

(4R) -4-メチル-4-[2-(1-メチルピロールー2-イル)工チル]-1,3-オキサゾリジン-2-オン

得られた(4R) -4-メチル-4-[2-(1-メチルピロール-2-7 ル)エチル] -1, 3-オキサゾリジン-2-オンは、分析用光学活性HP L Cカラム[ChiralCel 0J(0. 46 c $m \times 25$ c m)、ダイセル社製、溶出溶媒: n-ヘキサン/2-プロパノー $\nu=$ 70/30、流速: 1.0 m1/ m

in]により光学純度を決定した。

先に溶出されるもの(12.29分)が4S体であり、後から溶出される もの(15.39分)が4R体であり、光学純度は75%eeであることを 確認した。

² H NMR スペクトル (CDC1₈, 400MHz), δ : 6.58 (t, 1H, J = 2.4 Hz), 6.05 (dd, 1H, J = 3.2 Hz, 2.4 Hz), 5.88 (br d, 1H, J = 3.2 Hz), 5.15 (br s, 1H), 4.14 (d, 1H, J = 8.3 Hz), 4.07 (d, 1H, J = 8.3 Hz), 2.70-2.58 (m, 2H), 2.00-1.87 (m, 2H), 1.42 (s, 3H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3289, 3103, 2977, 2938, 1759, 1713, 1495, 1397, 1381, 1309, 1281, 1231, 1032, 945, 928, 776, 718, 706, 656。 マススペクトル (EI⁺), m/z: 208(M⁺), 108(base), 94, 81, 56, 42。

(参考例12)

(2R) -1-アセトキシー2-アセチルアミノー2-メチルー4-(1-メチルピロール-2-イル) ブタン

参考例11で得られた(4R)-4-メチル-4-[2-(1-メチルピロール-2-イル)エチル]-1,3-オキサゾリジン-2-オン1.53g(7.36mmo1)をテトラヒドロフラン(30m1)およびメタノール(15m1)の混合液に溶解し、5規定水酸化カリウム水溶液15m1(75mmo1)を加え、5日間加熱還流した。冷却後、反応液に水を加えて、塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。 ろ過後、減圧下溶媒を留去し、残渣を塩基性シリカゲル(NHタイプ)クロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=100/1)により精製して、生成物1.32g(収率98%)を得た。生成物1.32g(7.24mmo1)を塩化メチレン(36m1)に溶解し、トリエチルアミン10.0m1(71.9mmo1)、無水酢酸3.4m1(36.1mmo1)および4-ジメチルアミノピリジン88mg(0.72mmo1)を加え、室温で40分間撹拌した。メタノール1.46m1(36.0mmo1)を

加えて反応を止め、減圧下濃縮した。残渣に酢酸エチルおよび水を加え、酢酸エチルで抽出し、酢酸エチル層を水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/へキサン=3/2~1/0)により精製して、標記化合物1.89g(収率98%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.54(t, 1H, J = 2.4 Hz), 6.04 (t, 1H, J = 2.4 Hz), 5.88 (d, 1H, J = 2.4 Hz), 5.39 (br s, 1H), 4.33 (d, 1H, J = 11.2 Hz), 4.20 (d, 1H, J = 11.2 Hz), 2.60-2.51 (m, 2H), 2.26-2.19 (m, 1H), 2.09 (s, 3H), 1.97-1.89 (m, 4H), 1.38 (s, 3H)。 マススペクトル (FAB⁺), m/z: 267((M+H)⁺), 266(M^{+ ·})。

(参考例13)

(2R) -1-アセトキシー2-アセチルアミノー2-メチルー4-(1-メチルー5-ヨードピロールー2-イル) ブタン

参考例12で得られた(2R)-1-アセトキシー2-アセチルアミノー2-メチルー4-(1-メチルピロール-2-イル)ブタン1.89g(7.10mmo1)をクロロホルム(35ml)に溶解し、氷冷下、ピリジン2.9ml(35.9mmol)およびヨウ素3.60g(14.17mmol)を加え、同温度にて10分間撹拌した。反応液に10%チオ硫酸ナトリウム水溶液を加えて反応を止め、室温で減圧下約1/2に濃縮し、酢酸エチルで抽出し、酢酸エチル層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=3/2)により精製して、標記化合物1.40g(収率50%)を得た。

¹H NMR スペクトル (CDCl₈, 400MHz), δ : 6.28 (d, 1H, J = 3.6 Hz), 5.94 (d, 1H, J = 3.6 Hz), 5.36 (br s, 1H), 4.32 (d, 1H, J = 11.0 Hz), 4.17 (d, 1H, J = 11.0 Hz), 3.49 (s, 3H), 2.67-2.59 (m, 2H), 2.27-2.19 (m, 1H),

2.09 (s, 3H), 1.96-1.87 (m, 4H), 1.36 (s, 3H)。 マススペクトル (FAB⁺), m/z:393((M+H)⁺), 392(M⁺)。

(参考例14)

(2R) - 2 - t - プトキシカルボニルアミノー2 - エチルー1 - n - へキサノイルオキシー4 - (フランー2 - イル) - 3 - プテン

(14a) (2R) -2-t-プトキシカルボニルアミノ-2-エチルー3-n-ヘキサノイルオキシ-1-プロパノール

2-t-プトキシカルボニルアミノー2-エチルプロパン-1, 3-ジオール52.9g(241mmo1)をイソプロピルエーテル(1.01)に懸濁し、ヘキサン酸ピニルエステル41m1(254mmo1)及びリパーゼ[Immobilized lipase from Pseudomonas sp., TOYOBO社製、0.67U/mg] 2.1gを加え、室温で4時間攪拌した。反応液をろ過後、ろ液を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=7/1~4/1~2/1)により精製して、標記化合物。66.8g(収率87%)を得た。

得られた(2 R) -2-t-プトキシカルボニルアミノ-2-エチル-3 $-n-\Lambdaキサノイルオキシ-1-プロパノールは、分析用光学活性HPLC カラム [ChiralCel OF(0.46 cm×25 cm)、ダイセル社製、溶出溶媒: <math>\Lambdaキサン/2-プロパノール=80/20$ 、流速: 0.5m1/min]で光学純度を決定した。

先に溶出されるもの (7.35分) が 2 S体であり、後から溶出されるもの (7.86分) が 2 R体であり、光学純度は 93% e e であることを確認した。

¹H NMR $\nearrow \sim \nearrow \nearrow \nearrow \searrow \rangle$ (CDCl₃, 400MHz), δ : 4.76 (br s, 1H), 4.24 (d, 1H, J = 11.0 Hz), 4.10 (d, 1H, J = 11.0 Hz), 3.65-3.62 (m, 2H), 2.35 (t, 2H, J = 7.7 Hz), 1.78-1.69 (m, 1H), 1.63-1.53 (m, 4H), 1.44 (s, 9H), 1.30-1.25 (m, 4H), 0.87-0.83 (m, 6H).

マススペクトル(FAB+), m/z: 340((M+Na)+), 318((M+H)+)。

(14b) (2S) - 2 - t - プトキシカルボニルアミノー2 - エチルー3 - n - ヘキサノイルオキシー1 - プロパナール

参考例(14a)で得られた(2R)-2-t-プトキシカルボニルアミノ-3-n-ヘキサノイルオキシ-2-エチル-1-プロパノール66.7g(210mmo1)を塩化メチレン(700m1)に溶解し、モレキュラーシーブ4A(117g)および重クロム酸ピリジニウム117g(311mmo1)を氷冷下加え、室温で2時間攪拌した。反応液にエーテルを加え、ろ過し、ろ液を減圧下留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=10/1~5/1)により精製して、標記化合物45.9g(収率69%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 9.34, (s, 1H), 5.30 (br s, 1H), 4.60 (d, 1H, J = 11.4 Hz), 4.40 (d, 1H, J = 11.4 Hz), 2.28 (t, 2H, J = 7.3 Hz), 2.18-2.06 (m, 1H), 1.79-1.69 (m, 1H), 1.62-1.55 (m, 2H), 1.44 (s, 9H), 1.34-1.22 (m, 4H), 0.90 (t, 3H, J = 7.3 Hz), 0.81 (t, 3H, J = 7.3 Hz)。

マススペクトル(FAB+), m/z : 338((M+Na)+), 316((M+H)+)。

(14c) $(2R) - 2 - t - プトキシカルボニルアミノー2 - エチルー <math>1-n- \wedge$ キサノイルオキシー4 - (フランー2 - イル) - 3 - プテン

参考例1で得られた臭化 (フランー 2 ーイル)メチルトリフェニルホスホニウム塩4.04g(9.54mmol)をテトラヒドロフラン(32.4ml)に懸濁し、氷冷撹拌下tーブトキシカリウム1.06g(9.45mmol)を加え、さらに氷冷下15分間攪拌した。ついで、参考例(14b)で得られた(2S)-2-tーブトキシカルボニルアミノー2ーエチル-3-nーヘキサノイルオキシー1ープロパナール2.01g(6.37mmol)をテトラヒドロフラン(10ml)に溶解した溶液を5分間かけて加え、氷冷下30分間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、液温を室温に戻し減圧下濃縮し、水および酢酸エチルを加

えて酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄した後、無水 硫酸ナトリウムで乾燥し、ろ過後、減圧下溶媒を留去し、残渣をシリカゲル クロマトグラフィー(溶出溶媒: ヘキサン/酢酸エチル=5/1)により精製して、標記化合物2.385g(収率99%)を得た。

1日 NMR スペクトル (CDC1₈, 400MHz), る: 7.44 (br d, 1H, J = 1.5 Hz), 7.33 (br d, 1H, J = 1.5 Hz), 6.41 (dd, 1H, J = 2.9 Hz, 1.5 Hz), 6.38 (d, 1H, J = 2.9 Hz), 6.36 (dd, 1H, J = 2.9 Hz, 1.5 Hz), 6.29 (d, 1H, J = 16.8 Hz), 6.28 (d, 1H, J = 12.5 Hz), 6.22 (d, 1H, J = 2.9 Hz), 6.09 (d, 1H, J = 16.8 Hz), 5.47 (d, 1H, J = 12.5 Hz), 5.21 (br s, 1H), 4.66 (br s, 1H), 4.50 (d, 1H, J = 11.7 Hz), 4.41 (d, 1H, J = 11.7 Hz), 4.33 (br s, 2H), 2.31 (q, 計 4H, J = 7.7 Hz), 2.08-1.88 (m, 計 4H), 1.47-1.42 (m, 計 10H), 1.32-1.26 (m, 計 18H), 0.93-0.86 (m, 計 12H)。

IR スペクトル, ν_{max} cm⁻¹ (CHCl₃): 3446, 2970, 2933, 2873, 1722, 1494, 1459, 1391, 1380, 1368, 1249, 1163。

マススペクトJレ(FAB+), m/z : 402((M+Na)+), 379(M+)。

(参考例15)

(4R) - 4 - エチルー4 - [2 - (フラン-2 - イル) エテニル] - 1, 3 - オキサゾリジン-2 - オン

参考例14で得られた(2R)-2-t-ブトキシカルボニルアミノ-2-エチル-1-n-ヘキサノイルオキシー4-(フラン-2-イル)-3-ブテン2.33g(6.14mmo1)をテトラヒドロフラン(7m1)およびメタノール(7m1)の混合液に溶解し、1.8規定水酸化ナトリウム水溶液7m1を加え、室温で3時間攪拌した。反応液に水および酢酸エチルを加えて、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去して、粗生成物1.68g(収率97%)を得た。粗生成物をテトラヒドロフラン(30m1)に溶解し、t-ブトキシカリウム1.21g(10.8mmo1)を加え、同

温度下で3時間攪拌した。反応液に水および酢酸エチルを加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、3過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/1~1/1)により精製して、標記化合物1.24g(収率定量的)を得た。

1H NMR スペクトル (CDC1₃, 400MHz), る:7.43 (d, 1H, J = 1.5 Hz), 7.32 (d, 1H, J = 1.5 Hz), 6.45 (dd, 1H, J = 3.7 Hz, 1.5 Hz), 6.44 (d, 1H, J = 16.1 Hz), 6.39 (dd, 1H, J = 3.7 Hz, 1.5 Hz), 6.37 (d, 1H, J = 3.7 Hz), 6.29 (d, 1H, J = 3.7 Hz), 6.25 (d, 1H, J = 12.5 Hz), 6.13 (d, 1H, J = 16.1 Hz), 5.62 (br s, 計 2H), 5.53 (d, 1H, J = 12.5 Hz), 4.44 (d, 1H, J = 8.8 Hz), 4.36 (d, 1H, J = 8.8 Hz), 4.24 (d, 1H, J = 8.8 Hz), 4.22 (d, 1H, J = 8.8 Hz), 1.93 (q, 2H, J = 7.3 Hz), 1.85-1.76 (m, 2H), 0.99 (t, 3H, J = 7.3 Hz), 0.98 (t, 1H, J = 7.3 Hz)。

IR スペクトル, ν_{max} cm⁻¹ (CDCl₃): 3453, 2975, 1757, 1396, 1373, 1053, 1015。 マススペクトル(EI⁺), m/z : 207(M⁺), 178(base), 135, 107。

(参考例16)

(4R) - 4 - xチルー4 - [2 - (フラン-2 - 1 - 1)] - 1, 3

参考例15で得られた(4R) -4-エチルー4-[2-(フラン-2-イル) エテニル] -1, 3-オキサゾリジン-2-オン1. 24g(5.99mmol)のメタノール溶液(40ml)に、10%パラジウムー炭素(50%含水)124mgを加え、水素雰囲気下室温で2時間撹拌した。窒素置換後、反応液中のパラジウムー炭素をセライトろ過し、セライトを酢酸エチルで洗浄した。ろ液、洗液を合わせて減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1~1/2)により精製して、標記化合物144.4mg(収率12%)を得た。

¹H NMR スペクトル(CDCl₃, 400MHz), δ : 7.32 (br d, 1H, J = 2.2 Hz), 6.29

1052.

502 ·

(t, 1H, J = 2.2 Hz), 6.03 (br d, 1H, J = 2.2 Hz), 5.40 (m, 1H), 4.11 (d, 1H, J = 8.8 Hz), 4.07 (d, 1H, J = 8.8 Hz), 2.74-2.67 (m, 2H), 1.97-1.93 (m, 2H), 1.72-1.64 (m, 2H), 0.96 (t, 3H, J = 7.3 Hz)。 IR スペクトル、 $\nu_{\rm max}$ cm⁻¹ (CDCl₃): 3453, 2973, 229, 1757, 1601, 1397, 1380,

マススペクトル(EI+), m/z : 209(M+), 178, 114, 81(base)。

(参考例17)

(2R) - 1 - アセトキシー 2 - アセチルアミノー 2 - エチルー 4 - (フランー 2 - イル)プタン

参考例16で得られた(4R)-4-エチルー4-[2-(フラン-2-イル)エチル]-1,3-オキサゾリジン-2-オンをテトラヒドロフラン(2m1)、メタノール(2m1) および水(2m1)の混合液に溶解し、水酸化カリウム(310mg)を加え、3日間加熱還流した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=1/0~50/1)により精製して、(2R)-2-アミノ-2-エチル-4-(フラン-2-イル)ブタン-1-オールを104.9mg(収率83%)を得た。

得られた(2R)-2-アミノ-2-エチル-4-(フラン-2-イル)ブタン-1-オールを塩化メチレン(2.0ml)に溶解し、トリエチルアミン0.64ml(4.59mmol)、無水酢酸0.32ml(3.39mmol)および4-ジメチルアミノピリジン28mg(0.23mmol)を加え、室温で2.5時間撹拌した後、メタノールを加えて反応を止め、減圧下溶媒を留去した。残渣に酢酸エチルおよび水を加えて、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/4)により精製して、標記化合

物146.5mg(収率96%)を得た。

¹H NMR $\angle P$ $\angle P$ $\angle P$ (CDCl₃, 400MHz), δ : 7.29 (d, 1H, J = 2.2 Hz), 6.28 (dd, 1H, J = 2.9 Hz, 2.2 Hz), 6.00 (d, 1H, J = 2.9 Hz), 5.24 (br s, 1H), 4.30 (d, 1H, J = 11.7 Hz), 4.28 (d, 1H, J = 11.7 Hz), 2.62 (t, 2H, J = 8.1 Hz), 2.21-2.13 (m, 1H), 2.08 (s, 3H), 2.08-1.99 (m, 1H), 1.94 (s, 3H), 1.86-1.72 (m, 2H), 0.87 (t, 3H, J = 7.3 Hz).

IR \mathcal{A} \mathcal{O} \mathcal{N} \mathcal{N}

マススペクトル(FAB+), m/z : 290((M+Na)+), 268((M+H)+)。

(参考例18)

(2R) - 1 - アセトキシー 2 - アセチルアミノー 2 - エチルー 4 - (5 - ヨードフラン - 2 - イル) プタン

参考例17で得られた(2R)-1-アセトキシ-2-アセチルアミノ-2-エチル-4-(フラン-2-イル)ブタンをクロロホルム(5.4ml)に溶解し、ピリジン0.22ml(2.73mmol)およびヨウ素278mg(1.10mmol)を加え、60℃で8時間撹拌した。冷却後、反応液に10%チオ硫酸ナトリウム水溶液を加えて反応を止め、酢酸エチルで抽出し、酢酸エチル層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/4~1/6)により精製して、粗生成物151mgを得、分取用逆層HPLCカラム[TSK-GEL ODS-80Ts(2.0cm×25cm)、東ソー社製、溶出溶媒:アセトニトリル/水=60/40]で精製して、標記化合物74.0mg(収率35%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 6.42 (d, 1H, J = 3.7 Hz), 5.95 (d, 1H, J = 3.7 Hz), 5.23 (m, 1H), 4.27 (s, 2H), 2.64 (t, 2H, J = 8.4 Hz), 2.18-2.12 (m, 1H), 2.09 (s, 3H), 2.05-1.97 (m, 1H), 1.95 (s, 3H),

1.81-1.76 (m, 2H), 0.87 (t, 3H, J = 7.3 Hz)。 $IR \, \mathcal{A} \, \mathcal{O} \, h \, \mathcal{V}_{\text{max}} \, \text{cm}^{-1} \, \text{(CDCl}_3\text{)} : 3442, 2976, 1740, 1681, 1598, 1511, 1462,}$

マススペクトル(FAB+), m/z : 416((M+Na)+), 394((M+H)+)。

(参考例19)

1383, 1368, 1246, 1105, 1043.

(2R) -1-アセトキシ-2-アセチルアミノ-2-メチル-4-(1-メチルピロール-2-イル) プタン

(19a) (2R) - 2 - アミノ - 2 - メチル - 4 - (1 - メチルピロール - 2 - イル) プタン - 1 - オール <math>1/2D - (-) - 酒石酸塩

参考例11で得られた(4R) - 4 - メチルー4 - [2 - (1 - メチルピロールー2 - イル)エチル] - 1,3 - オキサゾリジンー2 - オン17.9 2g(86.0mmo1)をテトラヒドロフラン(250m1)およびメタノール(125m1)の混合液に溶解し、5規定水酸化カリウム水溶液(125m1)を加え、4日間加熱還流した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をエタノール(260m1)に溶解し、D-(-) - 酒石酸塩6.45g(43.0mmo1)を加えて2時間撹拌した後、析出した結晶をろ取して粗結晶20.67gを得た。粗結晶18.65gをエタノール(370m1)と水(37m1)の混合溶媒から再結晶し、得られた結晶を再度エタノール(300m1)と水(30m1)の混合溶媒から再結晶し、さらに得られた結晶を再度エタノール(240m1)と水(24m1)の混合溶媒から再結晶して、無色鱗片状晶として標記化合物10.50g(収率53%)を得た。

得られた(2R) -2-アミノ-2-メチル-4-(1-メチルピロール <math>-2-7) ブタン-1-3ール 1/2D-(-) -酒石酸塩41.4mg (0.16mmo1) を塩化メチレン(1.6m1)に懸濁し、ジーt-プチルジカルボナート0.1758g (0.81mmo1)、トリエチルアミン

0.225m1(1.62mmo1) および4-ジメチルアミノピリジン2.0mg(0.016mmo1) を加え、室温で30分間撹拌した。水を加え、 減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒: ヘキサン/酢酸エチル= $3/2\sim2/1$)により精製して、(4R)-4-メチルー4-[2-(1-メチルピロールー2-イル) エチル] ー1、3-オキサゾリジン-2-オン17.7mg(収率<math>53%)を得た。

得られた (4R) -4-メチル-4-[2-(1-メチルピロール-2-イル) エチル] -1, 3-オキサゾリジン-2-オンは、参考例11に準じて、分析用光学活性HPLCカラム[ChiralCel 0J(0.46cm×25cm)、ダイセル社製、溶出溶媒:n-ヘキサン/2-プロパノール=70/30、流速:1.0m1/min]により光学純度を決定した。

先に溶出されるもの (12.49分) が4S体であり、後から溶出される もの (15.48分) が4R体であり、光学純度は99.7% e e であるこ とを確認した。

これにより、先に得られた(2R)-2-アミノ-2-メチル-4-(1-メチルピロール-2-イル)ブタン-1-オール 1/2D-(-)-酒 石酸塩の光学純度は99.7%以上であることを確認した。

融点 : 198-199℃。

旋光度, $[\alpha]_n = + (c = 1.00, H_20)$.

 1 H NMR スペクトル (CD₃OD, 400MHz), δ : 6.54 (t, 1H, J = 2.3 Hz), 5.91 (dd, 1H, J = 3.7 Hz, 2.3 Hz), 5.82 (br d, 1H, J = 3.7 Hz), 4.32 (s, 1H), 3.61 (d, 1H, J = 11.3 Hz), 3.55 (s, 3H), 3.54 (d, 1H, J = 11.3 Hz), 2.69-2.57 (m, 2H), 1.97 (ddd, 1H, J = 13.8 Hz, 9.4 Hz, 7.6 Hz), 1.88 (ddd, 1H, J = 13.8 Hz, 11.0 Hz, 6.3 Hz), 1.28 (s, 3H)。

IR スペクトル、 ν_{max} cm⁻¹ (KBr): 3480, 3430, 2926, 2634, 2545, 1586, 1516, 1389, 1359, 1309, 1291, 1105, 1039, 710, 690.

マススペクトル (FAB+), m/z:183((M+H)+; free 体)。

元素分析値(C₁₀H₁₈N₂0・1/2C₄H₆0₆として%),

506

計算値:C: 56.01, H: 8.23, N: 10.89。

実測値:C: 55.81, H: 8.22, N: 10.89。

-4-(1-メチルピロール-2-イル)ブタン

参考例(19a)で得られた(2R)-2-アミノー2-メチルー4-(1 -メチルピロール-2-イル) ブタン-1-オール 1/2D-(-)-酒 石酸塩3.98g(15.5mmol)を塩化メチレン(50ml)および 水(12.5m1)の混合液に懸濁し、水酸化ナトリウム水溶液(97%水 酸化ナトリウム3.20gを水12.5m1に溶解)を加え、室温で20分 間撹拌した。反応液を塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナ トリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣を塩化メチレン(7 8m1) に溶解し、トリエチルアミン21.5ml(154.7mmol)、 無水酢酸 7. 3 m 1 (77. 4 m m o 1) および 4 ー ジメチルアミノピリジ ン0.1893g(1.55mmol)を加え、室温で1時間撹拌した後、 メタノールを加えて反応を止め、減圧下溶媒を留去した。残渣に酢酸エチル および水を加えて、酢酸エチルで抽出し、酢酸エチル層を水、飽和炭酸水素 ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し た。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶 出溶媒:酢酸エチル)により精製して、標記化合物 4.23g(収率定量的) を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 6.54(t, 1H, J = 2.4 Hz), 6.04 (t, 1H, J = 2.4 Hz), 5.88 (d, 1H, J = 2.4 Hz), 5.39 (br s, 1H), 4.33 (d, 1H, J = 11.2 Hz), 4.20 (d, 1H, J = 11.2 Hz), 2.60-2.51 (m, 2H), 2.26-2.19 (m, 1H), 2.09 (s, 3H), 1.97-1.89 (m, 4H), 1.38 (s, 3H)。 マススペクトル (FAB+), m/z: 267((M+H)+), 266(M+··)。

(参考例20)

ヨウ化 (1-エチルピロール-2-イル)メチルトリフェニルホスホニウ

ム塩

1ーエチルピロール10.0g(105mmo1)に、35%ホルムアルデヒド水溶液9m1(105mmo1)とジメチルアミン塩酸塩9.0g(110mmo1)の混合物を、水冷撹拌下、1時間30分間かけて加え、室温で6時間撹拌した。反応液に10%水酸化ナトリウム水溶液(150ml)を加え、エーテルで抽出し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=9/1)により精製して、2つ(N,N-ジメチルアミノメチル)-1-エチルピロール15.6g(収率97%)を得た。

2-(N, N-ジメチルアミノメチル)-1-エチルピロール15.6g (102mmo1)をエタノール(150ml)に溶解し、氷冷下、ヨウ化メチル7.7ml(124mmol)を加え、室温で3時間撹拌した。反応液に酢酸エチル(150ml)を加え、析出した結晶をろ取し、酢酸エチルで洗浄後、乾燥して、ヨウ化 (1-エチルピロール-2-イル)メチルトリメチルアンモニウム塩20g(収率6.6%)を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.94-7.89 (m, 3H), 7.78-7.71 (m, 6H), 7.64-7.57 (m, 6H), 6.82-6.79 (m, 1H), 5.96-5.92 (m, 1H), 5.51-5.47 (m, 1H), 5.10 (d, 2H, J = 13.9Hz), 3.35 (q, 2H, J = 7.3 Hz), 0.96 (t, 3H, J = 7.3 Hz)。

(参考例21)

(2R) - 2 - t - プトキシカルボニルアミノー2 - メチルー4 - (1-エチルピロールー2 - イル) - 1 - n - ヘキサノイルオキシー3 - プテン

参考例20で得られたよう化 (1-エチルピロール-2-イル)メチルト リフェニルホスホニウム塩19.8g(39.8mmo1)をテトラヒドロ フラン (100ml) に懸濁し、氷冷撹拌下、 t-プトキシカリウム4. 4 7g(39.8mmol)をテトラヒドロフラン(70ml)に溶解した溶 液を30分間かけて加え、さらに氷冷下1時間30分攪拌した。ついで、参 考例(2b)で得られた(2S)-2-t-ブトキシカルボニルアミノー3 -n-ヘキサノイルオキシー2ーメチルー1ープロパナール10g(33. 2mmo1)をテトラヒドロフラン(50m1)に溶解した溶液を30分間 かけて加え、氷冷下1時間30分間攪拌した。反応液に飽和塩化アンモニウ ム水溶液を加えて反応を止め、液温を室温に戻し、減圧下濃縮し、水および 酢酸エチルを加え、酢酸エチルで抽出した。酢酸エチル層を水および飽和食 塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、ろ過後、減圧下溶媒を留 去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒: ヘキサン/酢酸エチ $\mathcal{W}=4/1$)により精製して、標記化合物 1 1. 7 g (収率 9 0 %)を得た。 ¹H NMR スペクトル (CDC1, 400MHz), δ : 6.67-6.62 (m, 2H), 6.42-6.36 (m, 1H.), 6.31-6.26 (m. 3H), 6.13-6.08 (m. 2H), 6.02-5.96 (m. 1H), 5.63-5.58(m, 1H), 4.35-4.08 (m, 4H), 3.96-3.86 (m, 4H), 2.85-2.81 (m, 4H),1.67-1.58 (m, 4H), 1.48-1.24 (m, 38H), 0.93-0.86 (m, 6H).

(参考例 2 2)

(4R) - 4 -メチル- 4 - [2 - (1 -エチルピロール- 2 -イル) エテニル] - 1, 3 -オキサゾリジン- 2 -オン

 トリウム水溶液 40 m 1 を加え、室温で 1 時間 30 分間攪拌した。反応液に酢酸 1.5 m 1 を加えて反応を止め、反応液を水中に注ぎ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去して、粗生成物 8.7 g を得た。粗生成物をテトラヒドロフラン (100 m 1) に溶解し、t ープトキシカリウム 4.0 g (35.6 mm o 1) をテトラヒドロフラン (30 m 1) に溶解した溶液を氷冷下 10 分間かけて加え、同温度下で 1 時間攪拌した。反応液に酢酸 2 m 1 を加えて中和し、減圧下濃縮して、水および酢酸エチルを加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒: ヘキサン/酢酸エチル= 3/2)により精製して、標記化合物 5.7 g (収率 86%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.73-6.65 (m, 2H), 6.52-6.46 (m, 1H,), 6.36-6.29 (m, 2H), 6.15-6.10 (m, 2H), 6.05-5.97 (m, 2H), 5.69-5.65 (m, 2H), 4.31-4.09 (m, 4H), 3.97-3.83 (m, 4H), 1.60-1.53 (m, 6H), 1.39-1.31 (m, 6H)。

(参考例23)

10%パラジウムー炭素(50%含水)500mgをエタノール(10m1)に懸濁し、参考例22で得られた(4R)-4-メチルー4-[2-(1-エチルピロールー2-イル)エテニル]-1,3-オキサゾリジン-2-オン5.7g(25.9mmo1)をエタノール(50m1)に溶解した溶液を加え、水素雰囲気下、室温で1時間攪拌した。反応液中のパラジウムー炭素をセライトろ過した後、ろ液を減圧下留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/7)により精製して、標記化合物5.0g(収率87%)を得た。

得られた(4 \Re) -4 - $\sqrt{3}$ -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - -4 - - -4 -

先に溶出されるもの (7.5分) が4S体であり、後から溶出されるもの (8.3分) が4R体であり、光学純度は83.7%eeであることを確認 した。

¹H NMR \angle \angle \triangle \triangle \triangle \triangle (CDCl₃, 400MHz), δ : 6. 66-6. 63 (m, 1H), 6. 10-6. 07 (m, 1H), 5. 89-5. 86 (m, 1H), 5. 00 (br s, 1H), 4. 15 (d, 1H, J = 8.1 Hz), 4. 08 (d, 1H, J = 8.1 Hz), 3. 84 (q, 2H, J = 7.3 Hz), 2. 67-2. 61 (m, 2H), 1. 99-1. 92 (m, 2H), 1. 43 (s, 3H), 1. 87 (t, 3H, J = 7.3 Hz).

(参考例24)

(2R) - 1 - P セトキシー2 - P セチルアミノー2 - メチルー4 - (1 - エチルピロールー2 - イル) プタン

(24a) (2R) -2-アミノ-2-メチル-4-(1-エチルピロ -ル-2-イル) ブタン-1-オール 1/2D-(-)-酒石酸塩

参考例23で得られた(4R) -4-メチル-4-[2-(1-エチルピロール-2-イル) エチル] -1,3-オキサゾリジン-2-オン4.9g(22.0mmo1)をテトラヒドロフラン(80m1)およびメタノール(40m1)の混合液に溶解し、5.5規定水酸化カリウム水溶液(40m1)を加え、4日間加熱還流した。冷却後、反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をエタノール200m1に溶解し、D-(-)-酒石酸塩1.59g(10.5mmo1)をエタノール(20m1)に溶解した溶液を加えて4時間放置した後、析出した粗結晶をエタノール(100m1)と水(10m1)の混合溶媒から再結晶した。得られた結晶を再度エタ

ノール (50 m l) と水 (5 m l) の混合溶媒から再結晶し、無色板状晶として標記化合物 2.8 g (収率 37%)を得た。

得られた(2R) -2-アミノ-2-メチル-4-(1-エチルピロール <math>-2-Tル)プタン-1-Tル 1/2D-1/2

得られた(4R) -4-メチル-4-[2-(1-エチルピロール-2-イル)エチル] -1, 3-オキサゾリジン-2-オンは、分析用光学活性HPLCカラム[ChiralPak 0J(0.46cm×25cm)、ダイセル社製、溶出溶媒: n-ヘキサン/2-プロパノール=70/30、流速: 1.0ml/min]により光学純度を決定し、99.9%eeであることを確認した。

これにより、先に得られた(2R) -2-メチル-2-アミノ-4-(1-エチルピロール-2-イル)ブタン-1-オール 1/2D-(-) -酒 石酸塩の光学純度は9.9.9%以上であることを確認した。

¹H NMR $\angle ?$? ? ? ? ? (DMSO-d₆, 400MHz), δ : 6.58-6.54 (m, 1H), 5.93-5.89 (m, 1H), 5.79-5.76 (m, 1H), 4.27 (s, 1H), 3.85 (q, 2H, J = 7.3 Hz), 3.68 (d, 1H, J = 11.7 Hz), 3.51 (d, 1H, J = 11.7 Hz), 2.62-2.56 (m, 2H), 1.99-1.82 (m, 2H), 1.29 (t, 3H, J = 7.3 Hz), 1.27 (s, 3H).

(24b) (2R) -1-アセトキシ-2-アセチルアミノ-2-メチル-4-(1-エチルピロール-2-イル) プタン

参考例 (24a) で得られた (2R) - 2 - 7 ミノー 2 - 3 チルー 4 - (1 - 3) エチルピロールー 2 - 4 アミノー 1 / 2 D - (-) 一酒

石酸塩2.7g(7.80mmo1)を塩化メチレン(30m1)に溶解し、トリエチルアミン17.0ml(122mmo1)、無水酢酸7.6ml(80.4mmo1)および4ージメチルアミノピリジン20mg(0.16mmo1)を加え、室温で3時間30分間撹拌した。反応液に水を加え、塩化メチレンで抽出し、塩化メチレン層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下濃縮乾固し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル)により精製して、標記化合物2.2g(収率96%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 6.62-6.59 (m, 1H), 6.09-6.06 (m, 1H), 5.89-5.87 (m, 1H), 5.41 (br s, 1H), 4.34 (d, 1H, J = 11.0 Hz), 4.21 (d, 1H, J = 11.0 Hz), 3.85 (q, 2H, J = 7.3 Hz), 2.60-2.51 (m, 2H), 2.26-2.18 (m, 1H), 2.08 (s, 3H), 1.98-1.93 (m, 1H), 1.92(s, 3H), 1.38 (s, 3H), 1.37 (t, 3H, J = 7.3 Hz)。

(参考例 2 5)

ヨウ化 (1-t-プトキシカルボニルピロール-2-イル)メチルトリフェニルホスホニウム塩

ピロール2.72g(40.47mmo1)に、35%ホルムアルデヒド水溶液3.2m1(40.7mmo1)とジメチルアミン塩酸塩3.44g(42.2mmo1)の混合物を、室温撹拌下、20分間かけて加え、室温で2時間撹拌した。反応液に10%水酸化ナトリウム水溶液(18m1)を加え、塩化メチレンで抽出し、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=10/1)により精製して、2-(N,N-ジメチルアミノメチル)ピロール4.55g(収率定量的)を得た。

2-(N, N-ジメチルアミノメチル)ピロール4. 54g(40.41)mmo1)をエタノール(40m1)に溶解し、氷冷下、ヨウ化メチル3.

05m1 (49.0mmol) を加え、室温で7時間撹拌した。反応液に酢酸エチルを加え、析出した結晶をろ取し、酢酸エチルで洗浄後、乾燥して、ヨウ化 (ピロール-2-イル) メチルトリメチルアンモニウム塩7.59g(収率71%)を得た。

ヨウ化 (ピロールー2ーイル) メチルトリメチルアンモニウム塩7.5 9g(28.52mmo1)をアセトニトリル(60ml)に懸濁し、トリフェニルホスフィン8.98g(34.2mmo1)を加え、80℃で6時間攪拌した。冷却後、減圧下、約1/2に濃縮し、酢酸エチル(100ml)を加え、析出した結晶をろ取し、酢酸エチルで洗浄し、減圧下乾燥して、ヨウ化 (ピロールー2ーイル)メチルトリメチルホスホニウム塩12.33g(収率92%)を得た。

ヨウ化 (ピロールー2ーイル)メチルトリメチルホスホニウム塩12.30g(26.21mmol)をアセトニトリル(115ml)に懸濁し、ジーtーブチルジカルボナート7.61g(34.87mmol)および4ージメチルアミノピリジン0.16g(1.31mmol)を加え、室温で24時間撹拌した。減圧下濃縮し、酢酸エチル(50ml)および塩化メチレン(4ml)を加え、析出した結晶をろ取し、酢酸エチルで洗浄し、減圧下乾燥して、標記化合物14.02g(収率94%)を得た。

 1 H NMR スペクトル (CDCl₃, 400MHz), δ : 7.82-7.78 (m, 3H), 7.68-7.58 (m, 12H), 7.09-7.07 (m, 1H), 6.42-6.39 (m, 1H), 6.11 (t, 1H, J = 3.7Hz), 5.68 (d, 2H, J = 13.2 Hz), 1.29 (s, 3H)。

(参考例26)

(2R)−2−t−プトキシカルボニルアミノ−2−メチル−4−(1−t −プトキシカルボニルピロール−2−イル)−1−n−ヘキサノイルオキシ −3−プテン

参考例25で得られたヨウ化 (1-t-プトキシカルボニルピロールー2-イル)メチルトリフェニルホスホニウム塩3.30g(5.80mmo

1)をテトラヒドロフラン(60m1)に懸濁し、氷冷撹拌下、tーブトキシカリウム0.65g(5.8mmo1)をテトラヒドロフラン(5.8m1)に溶解した溶液を加え、氷冷下15分攪拌した。ついで、参考例(2b)で得られた(2S)-2-tーブトキシカルボニルアミノ-3-n-ヘキサノイルオキシ-2-メチル-1-プロパナール1.46g(4.83mmo1)をテトラヒドロフラン(3m1)に溶解した溶液を加え、氷冷下1時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて反応を止め、液温を室温に戻し、水および酢酸エチルを加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=5/1)により精製して、標配化合物2.12g(収率94%)を得た。

¹H NMR スペクトル (CDCl₈, 400MHz), δ : 7.25-7.20 (m, 計 2H), 7.11 (d, 1H, J=16.1 Hz), 6.61 (d, 1H, J=12.5 Hz), 6.39-6.24 (m, 計 2H), 6.18-6.08 (m, 計 2H), 6.08 (d, 1H, J=16.1 Hz), 5.64 (d, 1H, J=12.5 Hz), 4.92-4.75 (m, 計 2H), 4.34-4.23 (m, 計 2H), 4.22-4.16 (m, 計 2H), 2.38-2.29 (m, 計 4H), 1.69-1.20 (m, 計 54H), 0.94-0.82 (m, 計 6H)。

IR \mathcal{N} \mathcal{O} \mathcal{N} \mathcal{N}

マススペクトル (FAB+), m/z:465((M+H)+)。

(参考例 2 7)

(4R) - 4 - メチル - 4 - [2 - (ピロール - 2 - イル) エテニル] - 1, 3 - オキサゾリジン - 2 - オン

参考例26で得られた(2R) -2-t-プトキシカルボニルアミノ-2 -メチル-4-(1-t-プトキシカルボニルピロール-2-イル)-1- $n-\Lambda+サノイルオキシ-3-プテン1.78g(3.82mmol)$ をテトラヒドロフラン(20ml) およびメタノール(20ml) の混合液に溶

解し、1規定水酸化ナトリウム水溶液20m1を加え、室温で1時間攪拌した。反応液に水を加えて酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去して、粗生成物を得た。得られた粗生成物をテトラヒドロフラン(60m1)に溶解し、tープトキシカリウム0.557g(4.96mmo1)を加え、室温で1時間攪拌した。反応液に水を加えて酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2/1)により精製して、標配化合物0.259g(収率35%)を得た。

1H NMR スペクトル (CDC1₃, 400MHz), δ : 8.69-8.22 (m, 計 2H), 6.88-6.76 (m, 計 2H), 6.48 (d, 1H, J = 16.1 Hz), 6.34 (d, 1H, J = 12.5 Hz), 6.39-6.18 (m, 計 4H), 5.82 (d, 1H, J = 16.1 Hz), 5.47 (br s, 1H), 5.37 (d, 1H, J = 12.5 Hz), 5.16 (br s, 1H), 4.40 (d, 計 2H, J = 8.8 Hz), 4.19 (d, 計 2H, J = 8.8 Hz), 1.59 (s, 3H), 1.55 (s, 3H).

可Rスペクトル、シ_{max} cm⁻¹ (CHCl₃):3467, 2976, 2929, 1759, 1637, 1477, 1455, 1373, 1280, 4165, 1041, 954, 909。

マススペクトル (FAB+), m/z:192(M+)。

(参考例28)

(4R) - 4 - メチル - 4 - [2 - (ピロール - 2 - イル) エチル] - 1, 3 - オキサゾリジン - 2 - オン

参考例27で得られた(4R)-4-メチルー4-[2-(ピロールー2-イル)エテニル]-1,3-オキサゾリジン-2-オン0.259g(1.35mmo1)をメタノール(6m1)に溶解し、10%パラジウムー炭素(50%含水)26mgを加え、水素雰囲気下、室温で30分間攪拌した。反応液中のパラジウムー炭素をセライトろ過した後、ろ液を減圧下留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2

/ 1)により精製して、標記化合物 0. 238g(収率 91%)を得た。 1 H NMR スペクトル (CDCl₃, 400MHz), δ : 8.41-8.15 (m, 1H), 6.73-6.68 (m, 1H), 6.17-6.10 (m, 1H), 5.96-5.90 (m, 1H), 5.75 (br s, 1H), 4.12 (d, 1H, J = 8.8 Hz), 4.05 (d, 1H, J = 8.8 Hz), 2.76-2.61 (m 2H), 2.00-1.83 (m, 2H), 1.37 (s, 3H)。

IR スペクトル, $\nu_{\rm max}$ cm⁻¹ (CHCl₃):3472, 2980, 2933, 1754, 1571, 1479, 1457, 1400, 1382, 1250, 1162, 1093, 1044, 942。 マススペクトル (FAB⁺), m/z:194(M⁺)。

(参考例 2 9)

5-(4-フルオロフェニル)ペント-1-イン

水素化ナトリウム 2. 11g(48.4mmo1)を無水テトラヒドロフラン60m1中に懸濁させ、氷冷下、ジエチルホスホノ酢酸 エチルエステル10.84g(48.4mmo1)を滴下し、10分間撹拌した。次いで4ーフルオロベンズアルデヒド5.00g(40.3mmo1)を無水テトラヒドロフラン60m1に溶解した溶液を同温にて滴下した。反応液を3時間撹拌した後、氷水中150m1に注ぎ、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=10/1~3/1)にて精製を行い、4ーフルオロ桂皮酸 エチルエステルを無色油状物として、6.69g(86%)得た。

このエステル6.52g(33.6mmol)を酢酸エチル100ml中に溶解し、5%ロジウム/アルミナ1.30gを加え、水素雰囲気下、室温にて8時間撹拌した。反応混合物をセライトろ過し、濾液を減圧濃縮し、残渣を無水テトラヒドロフラン30ml中に溶解した。この溶液を氷冷下、水素化アルミニウムリチウム1.26g(33.2mmol)を無水テトラヒドロフラン60mlに懸濁させたものに滴下した。反応混合物を同温にて30分間撹拌後、飽和硫酸ナトリウム水溶液を加え、さらに室温で10分間撹

拌した。混合物をセライトろ過し、ろ液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=5/1~1/1)にて精製を行い、3-(4-フルオロフェニル)プロパン-1-オールを無色油状物として、4.86g(95%)得た。

得られた3-(4-フルオロフェニル)プロパン-1-オール4.83g(31.3mmol)を塩化メチレン50ml中に溶解し、氷冷下、トリエチルアミン6.55ml(47.0mmol)及びメタンスルホニルクロリド2.91ml(37.6mmol)を加え、窒素雰囲気下、30分間撹拌した。反応混合物を塩化メチレン50mlで希釈し、氷冷した10%塩酸、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をアセトン100ml中に溶解した。次いでヨウ化ナトリウム9.39g(62.6mmol)を加え、窒素雰囲気下、50℃にて2時間撹拌した。反応混合物を酢酸エチル250mlで希釈後、10%チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=5/1~2/1)にて精製を行い、3-(4-フルオロフェニル)-1-ヨードプロパンを淡黄色油状物として、7.12g(86%)得た。

へキサメチルホスホラミド20ml中にナトリウムアセチリド(18%キシレン懸濁液)50mlを加え、氷冷下、先に得られた4ーフルオロフェニルー1ーヨードプロパン7.00g(26.5mmol)を無水ジメチルホルムアミド20mlに溶解した溶液を加えた。反応混合物を室温にて、2時間撹拌した。氷冷下に氷水を注意深く注ぎ、混合物を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン)にて精製を行い、標記化合物を無色油状物として、2.67g(6

2%) 得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.14 (m, 2H), 6.97 (m, 2H), 2.71 (t, 2H, J = 7.5 Hz), 2.19 (m, 2H), 1.99 (t, 1H, J=2.6 Hz), 1.82 (m, 2H)。 マススペクトル (EI), m/z: 162 (M⁺)。

(参考例30)

5-フェニルペント-1-イン

参考例29と同様に、3-フェニル-1-ヨードプロパン及びナトリウム アセチリドを用いて、標記化合物を得た。

¹H NMR $\angle ?$ $\triangle > D$ (CDC1₃, 400MHz), δ : 7.32-7.26 (m, 2H), 7.23-7.16 (m, 3H), 2.74 (t, 2H, J = 7.6 Hz), 2.21 (dt, 2H, J = 7.6 Hz, 2.8 Hz), 1.99 (t, 1H, J=2.8 Hz), 1.89-1.81 (m, 2H).

マススペクトル (EI), m/z: 144(M+)。

(参考例31)

5-(4-クロロフェニル)ペント-1-イン

参考例29と同様に、3-(4-クロロフェニル)-1-ヨードプロパン 及びナトリウムアセチリドを用いて、標記化合物を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.26-7.23 (m, 2H), 7.13-7.11 (m, 2H), 2.71 (t, 2H, J = 7.3 Hz), 2.19 (dt, 2H, J = 7.3 Hz, 2.9 Hz), 1.99 (t, 1H, J = 2.9 Hz), 1.85-1.78 (m, 2H)。

(参考例32)

5-(3-トリフルオロメチルフェニル)ペント-1-イン

参考例29と同様に、3-(3-トリフルオロメチルフェニル)-1-ヨ ードプロパン及びナトリウムアセチリドを用いて、標記化合物を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.46-7.37 (m, 4H), 2.81 (t, 2H, J = 7.3 Hz), 2.22 (dt, 2H, J = 7.3 Hz, 2.9 Hz), 2.01 (t, 1H, J = 2.9 Hz),

519

1.90-1.83 (m, 2H).

(参考例33)

5-シクロヘキシルペント-1-イン

参考例29と同様に、3-シクロヘキシル-1-ヨードプロパン及びナトリウムアセチリドを用いて、標記化合物を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 2.16 (dt, 2H, J = 7.2 Hz, 2.8, Hz), 1.94 (t, 1H, J = 2.8 Hz), 1.59-1.48 (m, 2H), 1.38-0.75 (m, 13H)。 マススペクトル (EI), m/z: 150 (M⁺)。

(参考例34)

4-シクロヘキシルオキシプト-1-イン

シクロヘキサノン32m1(0.31mo1)を無水塩化メチレン950mlに溶解し、1,3ープロパンジオール33.5ml(0.46mol)、オルトぎ酸トリエチル51.5ml(0.31mol)、塩化ジルコニウム1.44g(6.18mmol)を加え、窒素雰囲気下、室温で1時間攪拌した。水冷した1規定水酸化ナトリウム水溶液1.51を加え、塩化メチレンで抽出し、塩化メチレン層を水で洗浄した。塩化メチレン層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣を減圧蒸留で精製し、シクロヘキサノントリメチレンケタール26.8g(55%)を得た。

塩化ジルコニウム24.9g(0.11mol)をテトラヒドロフラン500mlに懸濁し、水素化ホウ素ナトリウム20.5g(0.54mol)を、窒素雰囲気下、ゆっくりと加え、室温で20分攪拌した。この反応液に、先に得られたシクロヘキサノントリメチレンケタール16.9g(0.11mol)を含むテトラヒドロフラン170ml溶液を窒素雰囲気下、水冷下滴下し、滴下終了後、室温で一昼夜攪拌した。氷冷下、氷冷した2規定塩酸600mlを加えて、反応を終了させ、テトラヒドロフランを減圧下濃縮した。残った水相を、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で

洗浄した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル= $10/1\sim5/2$)により精製し、3-200つへキシルオキシプロパン-1-31、4g4 (78%)を得た。

得られた 3 ーシクロヘキシルオキシプロパンー1ーオール11.5g(72.9 mm o 1)を塩化メチレン240 m1に溶解し、氷冷下、モレキュラーシーブ4A58gおよび重クロム酸ピリジニウム23.8g(0.11 m o 1)を加え、窒素雰囲気下、1時間40分間攪拌した。反応液にエーテルを加え、セライトろ過した。ろ物をエーテルで洗浄後、ろ液を合わせ、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=20/1~10/1)により精製し、粗製の3-シクロヘキシルオキシプロピオンアルデヒド8.60gを得た。

四臭化炭素36.5g(0.11mol)を塩化メチレン120mlに溶解し、トリフェニルホスフィン57.7g(0.22mol)を塩化メチレン120mlに溶解した溶液を窒素雰囲気下、水冷下加え、5分間攪拌した。この反応液に、先に得られた粗製の3-シクロヘキシルオキシプロピオンアルデヒド8.60gを塩化メチレン90mlに溶解した溶液を窒素雰囲気下、水冷下加え、同温度で25分間攪拌した。反応液を塩化メチレンで希釈し、反応液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。塩化メチレン層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=100/1~33/1)により精製し、4-シクロヘキシルオキシー1,1-ジブロモブト-1-エン12.6g(55%、2工程)を得た。

得られた 4-シクロヘキシルオキシー1、1-ジプロモブトー1-エン1 2. 6 g(4 0. 4 mm o 1)をテトラヒドロフラン1 3 0 m l に溶解し、窒素雰囲気下、-78 $\mathbb C$ で、n-ブチルリチウムのヘキサン(1.5 m o l /1)溶液 5 4 m l(8 1. 0 mm o l)を加え、-78 $\mathbb C$ で 1 時間攪拌し、その後ゆっくりと室温まで昇温した。室温で 5 0 分間攪拌した後、氷冷下、

水を加えて反応を終了させた。エーテルで抽出し、エーテル層を飽和食塩水で洗浄した。ジエチルエーテル層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン / 酢酸エチル=100/1~50/1)により精製し、標記化合物4.35 g (71%) を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 3.59 (t, 2H, J = 7.2 Hz), 3.32-3.23 (m, 1H), 2.45 (dt, 2H, J = 7.2 Hz, 2.8 Hz), 1.97 (t, 1H, J = 2.8 Hz), 1.95-1.85 (m, 2H), 1.81-1.67 (m, 2H), 1.58-1.48 (m, 1H), 1.36-1.13 (m, 5H)。 マススペクトル (EI), m/z: 153 ((M+H)+)。

(参考例35)

4-(4-フルオロフェニルオキシ)プト-1-イン

4-フルオロフェノール5.00g(44.6mmol)、3-プチン-1-オール3.38ml(44.6mmol)、トリフェニルホスフィン17.5g(66.9mmol)をテトラヒドロフラン100mlに溶解し、氷冷下、アゾジカルボン酸 ジエチルエステル11.7g(66.9mmol)を加え、室温で18時間撹拌した。溶媒を減圧濃縮し、ヘキサン200ml及び酢酸エチル20mlを加え、析出した沈殿を適取して取り除き、濾液を減圧濃縮した。得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン)にて精製し、標記化合物を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.02-6.94 (m, 2H), 6.90-6.82 (m, 2H), 4.07 (t, 2H, J = 7.0 Hz), 2.70-2.63 (m, 2H), 2.05 (t, 1H, J = 2.7 Hz)。

マススペクトル (EI), m/z: 164(M+)。

(参考例36)

4-フェニルオキシプト-1-イン

参考例35と同様に、フェノールと3ープチンー1ーオールを用いて、標

522

記化合物を得た。

¹H NMR \angle \angle \triangle \triangle \triangle \triangle (CDC1₃, 400MHz), δ : 7.29 (dd, 2H, J = 8.8 Hz, 7.3 Hz), 6.96 (t, 1H, J = 7.3 Hz), 6.92 (d, 2H, J = 8.8 Hz), 4.11 (t, 2H, J = 6.6 Hz), 2.68 (dt, 2H, J = 6.6 Hz, 2.2 Hz), 2.04 (t, 1H, J = 2.2 Hz).

(参考例37)

3-(3、4-ジメチルフェニルオキシ)-1-プロピン

参考例35と同様に、3,4-ジメチルフェノールとプロパルギルアルコールを用いて、標記化合物を得た。

¹H NMR スペクトル (CDC1₈, 400MHz), δ : 7.04 (d, 1H, J = 8.0 Hz), 6.78 (d, 1H, J = 2.4 Hz), 6.72 (dd, 1H, J = 8.0 Hz, 2.4 Hz), 4.65 (d, 2H, J = 2.4 Hz), 2.49 (t, 1H, J = 2.4 Hz), 2.24 (s, 3H), 2.20 (s, 3H)。 マススペクトル (EI), m/z: $160(M^+)$ 。

(参考例38)

3-(4-メチルフェニルオキシ)-1-プロピン

参考例35と同様に、4-メチルフェノールとプロパルギルアルコールを 用いて、標記化合物を得た。

¹H NMR スペクトル (CDC1₈, 400MHz), δ : 7.10 (d, 2H, J = 8.4 Hz), 6.8 8 (d, 2H, J = 8.4 Hz), 4.67 (d, 2H, J = 2.4 Hz), 2.50 (t, 1H, J = 2.4 Hz), 2.29 (s, 3H)。

マススペクトル (EI), m/z: 146(M+)。

(参考例39)

3-(4-メチルチオフェニルオキシ)-1-プロピン

参考例35と同様に、4-メチルチオフェノールとプロパルギルアルコールを用いて、標記化合物を得た。

¹H NMR スペクトル (CDC1₃, 400MHz), δ : 7.27 (d, 2H, J = 8.9 Hz), 6.9

3 (d, 2H, J = 8.9 Hz), 4.68 (d, 2H, J = 2.4 Hz), 2.52 (t, 1H, J = 2.4 Hz), 2.45 (s, 3H).

マススペクトル (EI)、m/z: 178(M^+)。

(参考例40)

2-[4-(シクロヘキシルメトキシ) フェニル] -4, 4, 5, 5-テトラメチル-[1, 3, 2] -ジオキサポロラン

4-プロモフェノール 6.0g(34.7mmo1)、シクロヘキシルメチ ルフェノール 4. 3 ml (34. 7 mm o 1)、およびトリフェニルホスフ ィン 9.1g(34.7mmol)のテトラヒドロフラン(100ml)溶 液に、0℃でアゾジカルボン酸 ジエチルエステル 40%トルエン溶液 15. 1m1 (34. 7mmol) をゆっくり加えたのち、反応液を室温で 3時間撹拌した。反応終了後、減圧下溶媒を留去して、得られた残渣にヘキ サンを加えた。ろ過後、再び減圧下溶媒を留去した。残渣をシリカゲルクロ マトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=1/20)により精製 して1-プロモー4-(シクロヘキシルメトキシ)ペンゼン5.1g(収率 54%)を得た。1-プロモー4-(シクロヘキシルメトキシ)ベンゼン3. 0g(11.1mmol)、ピス(ピナコラート)ジポラン 3.4g(13. 3 mm o 1)、塩化パラジウムージフェニルホスフィノフェロセン錯体 4 5 0 mg(0.551mmol)、および酢酸カリウム2.2g(22.2mmo 1)のジメチルスルホキシド(50m1)溶液を80℃で30分間撹拌した 後、反応液を酢酸エチルで希釈した。これに活性炭を加え、室温で30分間 撹拌した後、ろ過し、減圧下溶媒を留去した。残渣をシリカゲルクロマトグ ラフィー(溶出溶媒:酢酸エチル/ヘキサン=1/100)により精製して、 標記化合物1. 72g(収率49%)を得た。

¹H NMR スペクトル (CDCl₃, 400MHz), δ : 7.73 (d, 2H, J = 8.5 Hz), 6.88 (d, 2H, J = 8.5 Hz), 3.77 (d, 2H, J = 5.9 Hz), 1.93-1.64 (m, 5H), 1.33 (s, 12H), 1.33-1.14 (m, 4H), 1.12-0.97 (m, 2H)。

524

(参考例 4 1)

2-[3-(2-シクロヘキシルエトキシ)フェニル]-4,4,5,5-テトラメチルー[1,3,2]ージオキサボロラン 3-プロモフェノール 15.0g(86.7mmol)、2-シクロヘキシ ルエチルフェノール 12.0ml(86.7mmo1)、およびトリフェニ ルホスフィン 23.0g(86.7mmo1)のテトラヒドロフラン(20 0 m 1) 溶液に、0℃でアゾジカルボン酸 ジエチルエステル 40%トル エン溶液 38.0ml(86.7mmol)をゆっくり加えたのち、反応 液を室温で7時間撹拌した。反応終了後、減圧下溶媒を留去し、得られた残 渣にヘキサンを加えた。ろ過後、再び減圧下溶媒を留去した。残渣をシリカ ゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=1/100) により精製して1-プロモ-3-(2-シクロヘキシルエトキシ)ペンゼン 23.0g(収率94%)を得た。1-プロモ-3-(2-シクロヘキシル エトキシ) ペンゼン5.0g(17.7mmol)、ビス(ピナコラート)ジ ボラン 5.4g(21.2mmo1)、塩化パラジウムージフェニルホスフ ィノフェロセン錯体1.40g(1.77mmol)、および酢酸カリウム3. 5 g (35.4mmo1)のジメチルスルホキシド (80m1)溶液を80℃ で30分間撹拌した後、反応液を酢酸エチルで希釈した。これに活性炭を加 え、室温で30分間撹拌した後、ろ過し、減圧下溶媒を留去した。残渣をシ リカゲルクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=1/10 0)により精製して、標記化合物4.70g(収率80%)を得た。 1H NMR スペクトル (CDCl₃, 400MHz), δ: 7.38-7.24 (m, 3H), 7.00 (dd, 1H, J = 8.1, 2.9 Hz), 4.02 (t, 2H, J = 6.6 Hz), 1.81-1.63 (m, 8H), 1.34 (s,

(参考例 4 2)

4-フェニルオキシブタン酸クロリド

12H), 1.31-1.12 (m, 3H), 1.06-0.88 (m, 2H).

(42a) 4-フェニルオキシブタン酸

水素化ナトリウム(60%含量)2.41g(60.3mmol)をN、Nージメチルホルムアミド(60ml)に懸濁し、窒素雰囲気下、氷冷下でフェノール5.70g(60.6mmol)をN、Nージメチルホルムアミボ(30ml)に溶解した溶液を20分間要して加え、室温で1.5時間撹拌した。この反応液にγーブチロラクトン5.01g(58.2mmol)をN、Nージメチルホルムアミド(30ml)に溶解した溶液を加え、130℃で6時間攪拌した。冷却後、減圧下濃縮し、水を加えて塩化メチレンで抽出し、塩化メチレン層を水洗した。水層に1規定塩酸水溶液(72ml)を加えて酸性として、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=5/1~2/1)により精製して、標記化合物 3.58g(収率34%)を得た。

『HNMR スペクトル (CDC1₃, 400MHz), δ : 7.30-7.27 (m, 2H), 6.96-6.87 (m, 3H), 4.03 (t, 2H, J = 5.9 Hz), 2.60 (t, 2H, J = 7.3 Hz), 2.16-2.09 (m, 2H)。

(42b) 4-フェニルオキシブタン酸クロリド

参考例(42a)で得られた4-フェニルオキシブタン酸0.5066g (2.81mmol)をベンゼン(5ml)に溶解し、塩化チオニル0.4 2ml(5.76mmol)およびN, N-ジメチルホルムアミド2μlを加え、80℃で1時間攪拌した。冷却後、減圧下濃縮して、標記化合物0.5556g(収率99%)を得た。

(試験例1)

ラットHvGR (Host versus Graft Reaction) に対する抑制活性の測定

(1) 2系統のラット [Lewis (雄、6週齢、日本チャールス・リバー株式会社) とWKAH/Hkm (雄、7週齢、日本エスエルシー株式会社)] を使用した。

1群5匹のラット(宿主)を用いた。

(2) HvGRの誘導

WKAH/HkmラットまたはLewisラットの脾臓から脾臓細胞を単離し、RPMI164 0培地 (ライフ テクノロジー社製) で $1x10^8$ 個/m 1 濃度に浮遊した。Le wisラットの両後肢足蹠皮内に、WKAH/HkmラットまたはLewisラットの脾臓細胞浮遊液 0.1m1 (脾臓細胞数として $1x10^7$ 個)を注射した。

(3) 化合物の投与

化合物は 0. 5%トラガカント液に懸濁した。懸濁した化合物は、化合物投与群 (WKAH/Hkmラット脾臓細胞を注射され、検体を投与されるLewisラット) に、ラットの体重1kg当たり5mlの割合で、1日1回、脾臓細胞注射日から4日間連日でラットに経口投与した。なお、同系群 (Lewisラット脾臓細胞を注射されたLewisラット群)と対照群 (WKAH/Hkmラット脾臓細胞を注射され、検体を投与されないLewisラット) には、検体の代わりに 0. 5%トラガカント液を経口投与した。

(4) HvGRに対する抑制活性の測定方法

各個体の膝窩(popliteal)リンパ節重量から同系群の平均膝窩リンパ節重量を引き(「HvGRによる膝窩リンパ節重量」)、対照群の平均「HvGRによる膝窩リンパ節重量」に対する化合物投与群の各個体の「HvGRによる膝窩リンパ節重量」から抑制率を算出した。化合物の抑制活性は、化合物の投与量と抑制率から最小二乗法を用いて算出したID₅₀値(mg/kg)で表示した。

本試験の結果、本発明の化合物は優れた抑制活性を示した。

表 9

化合物	HvGR ID ₅₀ 値(mg/kg)
生施例 2	0.714
実施例3	0.116

PCT/JP03/00136

527

実施例:9	0.120
実施例10	0.276
実施例15	0.304
実施例19	0.097
実施例 2 0	0.082
実施例33	0.013

(試験例2)

アジュバント関節炎発症に対する抑制活性の測定

(1) アジュパントの調製

Mycobacterium butyricumの死菌を流動パラフィンに2mg/mlの割合になるように懸濁し、超音波処理を行い調製した。

(2)被験化合物の調製

被験化合物は0.5%トラガカント液に懸濁または溶解した。

(3)アジュパント関節炎の誘導

(1)で調製したアジュバント 0.05 m l をラット (通常Lewis系)の右後肢足蹠皮内に注射した。なお、通常 1 群の匹数は 5 とした。また、アジュバントを注射しない群 (正常群)を 1 群設けた。

(4) 化合物の投与

(2)で調製した化合物をラットの体重1kg当り5m1の割合でアジュバント注射日から1日1回、21日間連日経口投与した。なお、アジュバントを投与した1群(対照群)およびアジュバントを注射しない群には0.5%トラガカント液を投与した。

(5) 化合物の発症抑制活性の算出法

最終投与1日後に右後肢の体積を足体積測定装置で測定し、各個体の値から 正常群の平均値を引き、その値を腫脹体積とした。対照群の平均腫脹体積に 対する化合物を投与された各個体の腫脹体積の割合から抑制率を算出した。 化合物の抑制活性は、化合物の投与量と抑制率から最小二乗法を用いて算出したID₅₀値(mg/kg)で表示した。

本試験の結果、本発明の化合物は優れた抑制活性を示した。

表 10

ID ₅₀ 値(mg/kg)	٠
0.0899	<u></u>
0.0774	
0.108	. ,
0.102	
0.0941	
	0. 0899 0. 0774 0. 108 0. 102

(試験例3)

ラットHvGR (Host versus Graft Reaction) に対する抑制活性の測定

(1) 2 系統のラット [Lewis (雄、6週齢、日本チャールス・リバー株式 会社) とWKAH/Hkm (雄、7週齢、日本エスエルシー株式会社)] を使用した。1 群 5 匹のラット (宿主) を用いた。

(2) HvGRの誘導

WKAH/HkmラットまたはLewisラットの脾臓から脾臓細胞を単離し、RP MI1640培地(ライフテクノロジー社製)で濃度1 x 1 0 ⁸個/mlの脾臓細胞浮遊液を作製した。WKAH/Hkmラット脾臓細胞浮遊液 0. 1 m l をLewisラットの両後肢足蹠皮内(HvGR誘発群)、またはLewisラットの脾臓細胞浮遊液 0. 1 m l をLewisラットの両後肢足蹠皮内(同系群)に注射した。

(3) 化合物の投与

サイクロスポリン A、タクロリムス、および例示化合物番号:式Ia-3にお

ける1-1093の化合物 $\{2-P > 2-2+N-4-[5-(5-7)]$ ンタノイル)チオフェン $\{2-4\}$ プタン $\{2-4\}$ プタン $\{3-4\}$ である。 $\{3-4\}$ のでレイン酸塩(以下、化合物Aと記す)を、 $\{3-4\}$ が、 $\{3-4\}$ が、それぞれ 0.08 mg/5 ml 、0.08 mg/5 ml および0.008 mg / 5 ml の濃度に懸濁した。

サイクロスポリン A及び化合物A投与群には、サイクロスポリン A懸濁液と化合物A懸濁液を、タクロリムス及び化合物A投与群には、タクロリムス 懸濁液と化合物A懸濁液を、それぞれ、体重1kg当たり5mlの割合で、 1日1回、脾臓細胞注射日から4日間連日でラットに経口投与した。

なお、サイクロスポリン A投与群には、サイクロスポリン A懸濁液と0. 5%トラガカント液を、タクロリムス投与群には、タクロリムス懸濁液と0. 5%トラガカント液を、化合物A投与群には、化合物A懸濁液と0. 5%トラガカント液を、それぞれ、体重1kg当たり5m1の割合で、1日1回、脾臓細胞注射日から4日間連日でラットに経口投与した。

また、同系群(Lewisラット脾臓細胞を注射され、化合物を投与されないLewisラット)と対照群(WKAH/Hkmラット脾臓細胞を注射され、化合物を投与されないLewisラット)には、0.5%トラガカント液を経口投与した

(4) HvGRに対する抑制活性の測定方法

各個体の膝窩リンパ節重量から同系群の平均膝窩リンパ節重量を引き(「HvGRによる膝窩リンパ節重量」)、対照群の平均「HvGRによる膝窩リンパ節重量」に対する化合物投与群の各個体の「HvGRによる膝窩リンパ節重量」から抑制率を算出した。

表 11

HvGR 抑制率 (%)

投与群

530

サイクロスポリンA投与群	18.	7
タクロリムス投与群	25.	8
化合物A投与群	16.	0
サイクロスポリンA+化合物A投与群	3.6.	1
タクロリムス+化合物A投与群	44.	8

(試験例4)

マウス GvHD (Graft versus Host Disease) に対する抑制活性の測定

(1) 2系統のマウス [BDF1(雄、6週齢、日本チャールス・リバー株式会社)と C57BL/6(雄、7週齢、日本チャールス・リバー株式会社)]を使用した。1群5匹のマウス(宿主)を用いた。

(2) GvHDの誘導

C57BL/6 マウスまたはBDF1 マウスの脾臓から脾臓細胞を単離し、RPMI 1640培地(ライフテクノロジー社製)で濃度 2×1 0 7 個/ml の脾臓細胞浮遊液を作製した。C57BL/6 マウス脾臓細胞浮遊液 0.5 ml を BDF1 マウスの尾静脈内(GvHD 誘発群)、または BDF1 マウスの脾臓細胞浮遊液 0.5 mlをBDF1 マウスの尾静脈内(同系群)に注射した。

(3) 化合物の投与

サイクロスポリン A、タクロリムス、および例示化合物番号:式Ia-2における1-1093の化合物 $\{2-P > 2-X \neq V-4-[1-X \neq V-5-(5-V-2) + V-4-[1-X \neq V-5-(5-V-2) + V-4-[1-X \neq V-5-(5-V-2) + V-4-V-4 + V-4-V-$

サイクロスポリン A及び化合物B投与群には、サイクロスポリン A懸濁液と化合物B懸濁液を、タクロリムス及び化合物B投与群には、タクロリムス 懸濁液と化合物B懸濁液を、それぞれ、体重1kg当たり10mlの割合で

、1日1回、脾臓細胞注射日から10日間連日でマウスに経口投与した。 なお、サイクロスポリン A投与群には、サイクロスポリン A懸濁液と0. 5% MC 液を、タクロリムス投与群には、タクロリムス懸濁液と0.5% MC 液を、化合物B投与群には、化合物B懸濁液と0.5% MC 液を、それぞれ、体重1kg当たり10mlの割合で、1日1回、脾臓細胞注射日から10日間連日でマウスに経口投与した。

また、同系群 (BDF1 マウス脾臓細胞を注射され、化合物を投与されない BDF1 マウス) と対照群 (C57BL/6 マウス脾臓細胞を注射され、化合物を投与されないBDF1 マウス) には、0.5% MC 液を経口投与した。

(4) GvHDに対する抑制活性の測定方法

体重ならびに脾臓重量を測定し、脾臓重量を体重で除法し「GvHDによる体重(g)で補正した脾臓重量(mg)」を算出した。各個体の「GvHDによる体重で補正した脾臓重量」から同系群の平均「GvHDによる体重で補正した脾臓重量」を引き、対照群の平均「GvHDによる体重で補正した脾臓重量」に対する化合物投与群の各個体の「GvHDによる体重で補正した脾臓重量」から抑制率を算出した。

表 12

投与群 (GvHD 抑制率(%)
サイクロスポリンA投与群	12.5
タクロリムス投与群	7. 6
化合物B投与群	-2.9
サイクロスポリンA+化合物B投与翻	£ 28.4
タクロリムス+化合物B投与群	13.4
ダグロリム人+化合物 B 校子群	10. 4

532

(試験例5)

マウ皮膚移植に対する抑制活性の測定

(1) 2系統のマウス [C57BL/6N(雌、5 週齢、日本チャールス・リバー株式会社) と BALB/cAnN(雌、5 週齢、日本チャールス・リバー株式会社)] を使用した。1 群 1 0 匹のマウス(被移植個体)を用いた。

(2) 皮膚移植手順

C57BL/6N マウスを頸椎脱臼で安楽死させ、皮膚を剥離した。その皮膚を、生検トレパン(MK706、8mm、カイ インダストリー株式会社)を用いて、直径 8mmの大きさに切り取った。次に、アパチンで麻酔した BALB/cAnN マウスの背部に、生検トレパンを用いて、直径 8mmの大きさの傷を付けた。その傷に沿って眼科ハサミを用いて皮膚を除去した。先の C57BL/6N マウスの切り取った皮膚を、BALB/cAnN マウスの除去した部分に移植した。移植した部分は、外科用アロンアルファ(三共株式会社)で固定した。移植した部分には、ソフラチュール(1 枚(10 cm×10 cm)中にフラジオマイシン10.8 mg含有、アベンティス ファーマ株式会社)および滅菌ガーゼをあて、くっつく包帯(S サイズ、スリーエム株式会社)を巻き、その包帯の両端をシルキーテックス(1号、アルケア株式会社)で固定した。

(3) 化合物の投与

サイクロスポリン A、タクロリムス、および例示化合物番号:式Ia-2における1-1093の化合物 $\{2-アミノ-2-メチル-4-[1-メチル-5-(5-7)]$ プタンー1ーオールである。 $\{2-7+1\}$ の塩酸塩(以下、化合物Bと記す)を、0.5%メチルセルロース(MC)液で、それぞれ30mg/10ml、3mg/10mlおよび0.1mg/10mlの濃度に懸濁した。

サイクロスポリン A 及び化合物B投与群には、サイクロスポリン A と化合物Bを、タクロリムス及び化合物B投与群には、タクロリムスと化合物Bをそれぞれの濃度で 0.5%MC 液に懸濁した。それぞれ、体重1kg当たり10mlの割合で、移植当日より1日1回、14日間経口投与した。

(4)移植皮膚片拒絶に対する抑制活性の測定方法

移植後(移植日を0日)6日に、ハサミを用いて皮膚を傷つけないようにくっつく包帯、シルキーテックス、滅菌ガーゼおよびソフラチュールを除去した。翌日より1日1回、移植後20日目まで、移植した皮膚の拒絶の有無を判定した。判定は全てプラインドにより行い、移植皮膚片拒絶日数の中央値を算出した。

表 13

投与群	多植皮膚片拒絕日数中	央値(日)
	1:0:0	
サイクロスポリンA投与群	12.0	
タクロリムス投与群	11.0	
化合物B投与群	15.0	•
サイクロスポリンA+化合物B投与	群 17.5	
タクロリムス+化合物B投与群	16.5	
(製剤例1)	•	
錠剤		
サイクロスポリンA		50.0mg
化合物A		10.0mg
乳糖	1	13.0mg

トウモロコシデンプン

ステアリン酸マグネシウム

200 mg

25...0mg.

2.0mg

上記処方の粉末を混合し、打錠機により打錠して、1錠200mgの錠剤とする。

また、上記処方中、化合物Aは、

2-アミノー2-メチルー4-[5-(5-フェニルペンタノイル)チオフェンー2-イル]プタンー1-オール マレイン酸塩である。

[産業上の利用の可能性]

本発明の化合物及び本発明の医薬組成物は、優れた免疫抑制作用を有し、 且つ、毒性が低く、さらに本発明の医薬組成物は、該組成物中に含有される 免疫抑制剤のいずれの薬理効果をも増強して発揮し、かつ該免疫抑制剤単独 では持ちうる副作用も低減させるので、医薬として有用であり、例えば、温 血動物(特にヒト)の各種臓器移植又は皮膚移植での拒絶反応、全身性エリ トマトーデス、慢性関節リウマチ、多発性筋炎、結合組織炎、骨格筋炎、骨 関節炎、変形性関節症、皮膚筋炎、強皮症、ベーチェット病、Chron 病、潰 瘍性大腸炎、自己免疫性肝炎、再生不良性貧血、特発性血小板減少性紫斑病、 自己免疫性溶血性貧血、多発性硬化症、自己免疫性水疱症、尋常性乾癬、血 管炎症群、Wegener 肉芽腫、ぶどう膜炎、シェーグレン症候群、特発性間質 性肺炎、Goodpasture 症候群、サルコイドーシス、アレルギー性肉芽腫性血 管炎、気管支喘息、心筋炎、心筋症、大動脈炎症候群、心筋梗塞後症候群、 原発性肺高血圧症、微小変化型ネフローゼ、膜性腎症、膜性増殖性腎炎、巣 状糸球体硬化症、半月体形成性腎炎、重症筋無力症、炎症性ニューロパチー、 アトピー性皮膚炎、慢性光線性皮膚炎、日光過敏症、蓐瘡、Sydenham 舞踏 病、硬化症、成人発症糖尿病、インスリン依存性糖尿病、若年性糖尿病、ア テローム性動脈硬化症、糸球体腎炎、IgA 腎症、尿細管間質性腎炎、原発性 胆汁性肝硬変、原発性硬化性胆管炎、劇症肝炎、ウイルス性肝炎、GVHD、 接触皮膚炎、敗血症等の自己免疫疾患又はその他免疫関連疾患、さらに、真 菌、マイコプラズマ、ウィルス、原虫等の感染症、心不全、心肥大、不整脈、 狭心症、心虚血、動脈塞栓、動脈瘤、静脈瘤、血行障害等の循環器系疾患、

アルツハイマー病、痴呆、パーキンソン病、脳卒中、脳梗塞、脳虚血、鬱病、 躁鬱病、統合失調症、ハンチントン舞踏病、癲癇、痙攣、多動症、脳炎、髄 膜炎、食欲不振および過食等の中枢系疾患、リンパ腫、白血病、多尿、頻尿、 糖尿病性網膜症等の各種疾患の予防薬又は治療薬として有用であり、特に、 各種臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関 節リウマチ、多発性硬化症、アトピー性皮膚炎等の自己免疫疾患の予防剤若 しくは治療剤として有用である。 536

請求の範囲

1. 一般式(I):

$$R^{3}O$$
 R^{4}
 $(CH_{2})_{n}$
 $(C$

[式中、

R¹及びR²は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R³は、水素原子、低級アルキル基又はヒドロキシ基の保護基を示し、 R⁴は、低級アルキル基を示し、

nは、1乃至6の整数を示し、

Xは、酸素原子または式N-Dを有する基(式中、Dは水素原子、 C_6 - C_{10} アリール基、低級アルキルスルホニル基、 C_6 - C_{10} アリールスルホニル基又は置換基群 a から選択される基を示す。)を示し、

Yは、エチレン基、ピニレン基、エチニレン基、式 $-E-CH_2-$ を有する基(式中、Eは、カルボニル基又は式-CH(OH)-を有する基を示す。)、 C_6-C_{10} アリーレン基又は置換基群 a から選択される基で1 乃至 3 個置換された C_6-C_{10} アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示し、

 R^5 は、水素原子、 $C_3 - C_{10}$ シクロアルキル基、 $C_6 - C_{10}$ アリール基、 硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複

素環基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_3 $-C_{10}$ シクロアルキル基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_6 $-C_{10}$ アリール基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシ基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 $C_3 - C_{10}$ シクロアルキル基、 $C_6 - C_{10}$ アリール基、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個合む 5 乃至 7 員複素環基、置換基群 a から選択される基で 1 乃至 3 個置換された $C_3 - C_{10}$ シクロアルキル基、置換基群 a から選択される基で 1 乃至 3 個置換された $C_6 - C_{10}$ アリール基、及び置換基群 a から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Zは、分岐した C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_1 $_0$ アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示す。]

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル。

2. 請求の範囲第1項において、式(I)を有する化合物が、式(Ia

):

$$R^{3}O$$
 R^{4}
 $(CH_{2})_{n}$
 X
 $Y-Z-R^{5}$
 (Ia)
 $NR^{1}R^{2}$

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル。

3. 請求の範囲第1項において、式(I)を有する化合物が、式(Ib):

$$R^{3}O$$
 R^{4}
 $(CH_{2})_{n}$
 $(CH_{2})_{n}$
 (Ib)

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエス テル。

4. 請求の範囲第1項において、式(I)を有する化合物の薬理上許容 されるエステルが、式(II):

(式中、R¹⁰及びR¹¹は、同一又は異なって、水素原子又はリン酸基の保 護基を示す。)を有する化合物又はその薬理上許容される塩。

5. 請求の範囲第4項において、式(II)を有するエステルが、式(IIa):

を有する化合物又はその薬理上許容される塩。

6. 請求の範囲第4項において、式(II)を有するエステルが、式(IIb):

(式中、R¹⁰及びR¹¹は、同一又は異なって、水素原子又はリン酸基の保 題基を示す。) を有する化合物又はその薬理上許容される塩。

7. 一般式(III):

$$\begin{array}{c|c}
 & R^{6} R^{7} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

[式中、

R¹及びR²は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R⁴は、低級アルキル基を示し、

nは、1乃至6の整数を示し、

Xは、酸素原子または式N-Dを有する基(式中、Dは水素原子、 C_6 $-C_{10}$ アリール基、低級アルキルスルホニル基、 C_6-C_{10} アリールスルホニル基又は置換基群 a から選択される基を示す。)を示し、

Yは、エチレン基、ピニレン基、エチニレン基、式-E-CH, -を有する基(式中、Eは、カルボニル基又は式-CH(OH)-を有する基を示

す。)、 C_6-C_{10} アリーレン基又は置換基群 a から選択される基で 1 乃至 3 個置換された C_6-C_{10} アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示し、

 R^5 は、水素原子、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群 a 及びりから選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル基、置換基群 a 及びりから選択される基で1乃至3個置換された C_6-C_{10} アリール基、又は置換基群 a 及びりから選択される基で1乃至3個置換された硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

R¹ 及びR¹ は、同一又は異なって、水素原子又はリン酸基の保護基を示し、

置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシ基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

6-C₁₀アリール基、及び置換基群 a から選択される基で1乃至3個置換された、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Zは、分岐した C_1-C_{10} アルキレン基、置換基群。 R^5 2000 なりから選択される基で R^5 30 個置換された R^5 200 なりから選択される基で R^5 30 のでは鎖端に酸素原子若しくは硫黄原子を有する R^5 20 のでは鎖端に酸素原子若しくは硫黄原子を有すの R^5 30 のでは一般素質中若しくは鎖端に酸素原子若しくは硫黄原子を有する R^5 30 のでは一般素質中若しくは鎖端に酸素原子若しくは硫黄原子を有する R^5 30 のでは、

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエス テル。

8. 請求の範囲第7項において、式(III)を有する化合物が、式(IIIa):

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエス テル。

9. 請求の範囲第7項において、式(III)を有する化合物が、式(IIIb):

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエス

テル。

10. 請求の範囲第1項乃至第9項から選択されるいずれか1項において、

R¹及びR²が、同一又は異なって、水素原子、低級脂肪族アシル基、低級アルコキシカルボニル基、アラルキルオキシカルボニル基又は置換基群 a から選択される基で1乃至3個置換されたアラルキルオキシカルボニル基である化合物又はその薬理上許容される塩。

11. 請求の範囲第1項乃至第9項から選択されるいずれか1項において、

 R^{1} 及び R^{2} が、同一又は異なって、水素原子、低級脂肪族アシル基又は低級アルコキシカルボニル基である化合物又はその薬理上許容される塩。

12. 請求の範囲第1項乃至第9項から選択されるいずれか1項において、

 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1 - C_4 脂肪族アシル基又は C_1 - C_4 アルコキシカルボニル基である化合物又はその薬理上許容される塩。

13. 請求の範囲第1項乃至第9項から選択されるいずれか1項において、

 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1-C_2 脂肪族アシル基又は C_1-C_2 アルコキシカルボニル基である化合物又はその薬理上許容される塩。

14. 請求の範囲第1項乃至第9項から選択されるいずれか1項において、

R¹及びR²が、同一又は異なって、水素原子、アセチル基又はメトキシカルボニル基である化合物又はその薬理上許容される塩。

15. 請求の範囲第1項乃至第9項から選択されるいずれか1項において、

R¹及びR²が、水素原子である化合物又はその薬理上許容される塩。

16. 請求の範囲第1項乃至第3項及び第10項乃至第15項から選択されるいずれか1項において、

R³が、水素原子、低級アルキル基、低級脂肪族アシル基、芳香族アシル基、置換基群 a から選択される基で1乃至3個置換された芳香族アシル基又はシリル基である化合物又はその薬理上許容される塩。

17. 請求の範囲第1項乃至第3項及び第10項乃至第15項から選択されるいずれか1項において、

R³が、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩。

18. 請求の範囲第1項乃至第3項及び第10項乃至第15項から選択されるいずれか1項において、

 R^3 が、水素原子又は C_1-C_4 アルキル基である化合物又はその薬理上 許容される塩。

19. 請求の範囲第1項乃至第3項及び第10項乃至第15項から選択されるいずれか1項において、

R³が、水素原子、メチル基又はエチル基である化合物又はその薬理上 許容される塩。

20. 請求の範囲第1項乃至第3項及び第10項乃至第15項から選択されるいずれか1項において、

R³が、水素原子である化合物又はその薬理上許容される塩。

21. 請求の範囲第1項乃至第20項から選択されるいずれか1項において、

R⁴が、C₁-C₄アルキル基である化合物又はその薬理上許容される塩。

22. 請求の範囲第1項乃至第20項から選択されるいずれか1項において、

R⁴が、C₁-C₂アルキル基である化合物又はその薬理上許容される塩。

23. 請求の範囲第1項乃至第20項から選択されるいずれか1項において、

R4が、メチル基である化合物又はその薬理上許容される塩。

24. 請求の範囲第1項乃至第23項から選択されるいずれか1項において、

nが、2又は3である化合物又はその薬理上許容される塩。

25. 請求の範囲第1項乃至第23項から選択されるいずれか1項において、

nが、2である化合物又はその薬理上許容される塩。

26. 請求の範囲第1項乃至第25項から選択されるいずれか1項において、

Xが、酸素原子である化合物又はその薬理上許容される塩。

27. 請求の範囲第1項乃至第25項から選択されるいずれか1項において、

Xが、式N-Dを有する基(式中、Dは水素原子、 C_1-C_4 アルキル基 又はフェニル基を示す。)である化合物又はその薬理上許容される塩。

28. 請求の範囲第1項乃至第25項から選択されるいずれか1項において、

Xが、式NCH3を有する基である化合物又はその薬理上許容される塩。

29. 請求の範囲第1項乃至第28項から選択されるいずれか1項において、

Yが、エチレン基、エチニレン基、式 $-CO-CH_2-$ を有する基、式 $-CH(OH)-CH_2-$ を有する基、フェニレン基、又はハロゲン原子及び低級アルキル基からなる群より選択される基で1乃至3個置換されたフェニレン基である化合物又はその薬理上許容される塩。

30. 請求の範囲第1項乃至第28項から選択されるいずれか1項において、

Yが、エチレン基、エチニレン基、式-CO-CH₂-を有する基又はフェニレン基である化合物又はその薬理上許容される塩。

31. 請求の範囲第1項乃至第30項から選択されるいずれか1項にお

いて、

Zが、 C_1-C_{10} アルキレン基又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基である化合物又はその薬理上許容される塩。

32. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが C_1 - C_6 アルキレン基又はヒドロキシ基で1乃至3個置換された C_1 - C_6 アルキレン基である化合物又はその薬理上許容される塩。

33. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが C_1-C_5 アルキレン基又はヒドロキシ基で1乃至3個置換された C_1-C_5 アルキレン基である化合物又はその薬理上許容される塩。

34. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、エチレン基、トリメチレン基、テトラメチレン基、又は1個のヒドロキシ基で置換されたエチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理上許容される塩。

35. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、エチレン基、トリメチレン基若しくはテトラメチレン基である化 合物又はその薬理上許容される塩。

36. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、エチレン若しくはトリメチレン基である化合物又はその薬理上許容される塩。

37. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有するC₁

- $-C_{10}$ アルキレン基、又は1個のヒドロキシ基で置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基(該置換基は、低級アルキル基及びヒドロキシ基からなる群から選択される基である。)である化合物又はその薬理上許容される塩。
- 38. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 - C_1 のアルキレン基である化合物又はその薬理上許容される塩。

39. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、炭素鎖中若しくは鎖端に酸素原子を有する $C_1 - C_{10}$ アルキレン基である化合物又はその薬理上許容される塩。

40. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、炭素鎖中若しくは鎖端に酸素原子を有する $C_1 - C_6$ アルキレン基である化合物又はその薬理上許容される塩。

41. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、 $-O-CH_2-$ 、 $-O-(CH_2)_2-$ 、 $-O-(CH_2)_3-$ 、-C H_2-O- 、 $-(CH_2)_2-O-$ 又は $-(CH_2)_3-O-$ を有する基である 化合物又はその薬理上許容される塩。

42. 請求の範囲第1項乃至第30項から選択されるいずれか1項において、

Zが、-CH₂-O-又は-(CH₂)₂-O-を有する基である化合物又はその薬理上許容される塩。

43. 請求の範囲第1項乃至第42項から選択されるいずれか1項において、

R⁵が、水素原子である化合物又はその薬理上許容される塩。

44. 請求の範囲第1項乃至第42項から選択されるいずれか1項において、

 R^5 が、 C_8 - C_{10} シクロアルキル基、 C_6 - C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級アルキルチオ基から成る群から選択される基で1乃至3個置換された C_8 - C_{10} シクロアルキル若しくは C_6 - C_{10} アリール基である化合物又はその薬理上許容される塩。

45. 請求の範囲第1項乃至第42項から選択されるいずれか1項において、

 R^5 が、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基及び低級アルコキシ基から成る群から選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル若しくは C_6-C_{10} アリール基である化合物又はその薬理上許容される塩。

46. 請求の範囲第1項乃至第42項から選択されるいずれか1項において、

 R^5 が、 C_5 $-C_6$ シクロアルキル基、フェニル基又はナフチル基である 化合物又はその薬理上許容される塩。

47. 請求の範囲第1項乃至第42項から選択されるいずれか1項において、

R⁵が、シクロヘキシル基又はフェニル基である化合物又はその薬理上 許容される塩。

48. 請求の範囲第1項乃至第47項から選択されるいずれか1項において、

R⁶及びR⁷が、同一又は異なって、水素原子、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基又は低級アルキルチオ基である化合物又はその薬理上許容される塩。

49. 請求の範囲第1項乃至第47項から選択されるいずれか1項にお

いて、

R⁶及びR⁷が、水素原子である化合物又はその薬理上許容される塩。

50. 請求の範囲第4項乃至第15項及び第21項乃至第49項から選択されるいずれか1項において、

R¹⁰及びR¹¹が、同一又は異なって、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩。

51. 請求の範囲第4項乃至第15項及び第21項乃至第49項から選択されるいずれか1項において、

 R^{10} 及び R^{11} が、同一又は異なって、水素原子又は C_1-C_4 アルキル基である化合物又はその薬理上許容される塩。

52. 請求の範囲第4項乃至第15項及び第21項乃至第49項から選択されるいずれか1項において、

R ¹⁰及びR ¹¹が、同一又は異なって、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩。

53. 請求の範囲第4項乃至第15項及び第21項乃至第49項から選択されるいずれか1項において、

R¹⁰及びR¹¹が、水素原子である化合物又はその薬理上許容される塩。

54. 請求の範囲第1項において、

下記より選択されるいずれか1つの化合物又はその薬理上許容される 塩:

- 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)フラン-
- 2-イル]プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)フラン-2-イル]プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプトー1-イニル) フラン-2-イル] ブタン-1-オール、

- 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンタノイル)フランー2-イル]プタンー1-オール及び
- $2-アミノー2-メチルー4-{5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-4$ ニル]フランー2-4ル} プタンー1-4ール。
- 5.5. 請求の範囲第1項において、下記より選択されるいずれか1つの 化合物又はその薬理上許容される塩:
- 2-アミノー2-メチルー4-[1-メチルー5-(5-フェニルペント -1-イニル) ピロールー2-イル] プタン-1-オール、
- 2-Pミノー2-メチルー4- $\{1-$ メチルー5-[3-(4-メチルフェノキシ)プロプー1-イニル]ピロールー2-イル $\}$ ブタンー1-オール、
- 2-7ミノー2-メチルー4-[1-メチルー5-(4-シクロヘキシルオキシプトー1-イニル)ピロールー2-イル]プタンー1-オール、
- $2-アミノー2-メチルー4-{1-メチルー5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]ピロールー2-イル}プタン-1-オール、$
- 2-アミノー2-メチルー4-[1-メチルー5-(5-フェニルペンタノイル) ピロールー<math>2-イル]プタンー1-オール、
- 2-アミノー2-メチルー4-[1-メチルー5-(5-シクロヘキシルペンタノイル) ピロールー2-イル]プタンー<math>1-オール、
- 2-アミノー2-メチルー4-[1-メチルー5-(4-フェニルプタノイル) ピロールー2-イル] プタンー<math>1-オール、
- 2-アミノー2-メチルー4-[1-メチルー5-(4-シクロヘキシルブタノイル) ピロールー2-イル]プタンー1-オール、
- 2-アミノ-2-メチル-4-[1-エチル-5-(5-フェニルペンタノイル) ピロール-2-イル]プタン-1-オール、
- 2-アミノー2-メチルー4-[1-エチルー5-(5-シクロヘキシルペンタノイル) ピロールー2-イル] プタン-1-オール、

- 2-アミノ-2-メチル-4-[1-エチル-5-(4-フェニルプタノイ ル) ピロールー2ーイル] ブタンー1ーオール及び
- 2-アミノ-2-メチル-4-[1-エチル-5-(4-シクロヘキシルブ タノイル) ピロールー2ーイル]プタンー1ーオール。
- 56. 請求の範囲第4項において、下記より選択されるいずれか1つの 化合物又はその薬理上許容される塩:
- リン酸 モノ 2-アミノー2-メチルー4-[5-(5-フェニルペン チル)フラン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシ ルペント-1-イニル)フラン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペン トー1ーイニル) フランー2ーイル]ー1ープチル エステル、
- リン酸 モノ 2-アミノー2-メチル-4-[5-(4-シクロヘキシ ルオキシプト-1-イニル)フラン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシ ルペンタノイル) フランー2ーイル]-1-プチル エステル及び
- リン酸 モノ 2-7ミノー2-メチルー4- $\{5-[3-(3,4-ジ)]$ メチルフェノキシ)プロプー1ーイニル]フランー2ーイル}ー1ープチ ル エステル。
- 57. 請求の範囲第4項において、下記より選択されるいずれか1つの 化合物又はその薬理上許容される塩:
- リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(5-フェニルペント-1-イニル) ピロール-2-イル]-1-プチル エス テル、
- リン酸 モノ 2-アミノ-2-メチル-4-{1-メチル-5-[3-(4-メチルフェノキシ)プロプー1-イニル]ピロールー2-イル}-1-プチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-

シクロヘキシルオキシプトー1ーイニル)ピロールー2ーイル]ー1ープ チル エステル、

リン酸 モノ 2ーアミノー2ーメチルー4ー {1ーメチルー5ー[3ー (3,4-ジメチルフェノキシ)プロプー1-イニル]ピロールー2-イ 」ル】-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンタノイル) ピロールー2ーイル]-1-ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(5-シ クロヘキシルペンタノイル)ピロールー2ーイル]-1ープチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-フ エニルブタノイル) ピロールー2ーイル]-1-ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-シ クロヘキシルブタノイル) ピロールー2ーイル]ー1ープチル エステル、 リン酸 モノ 2-アミノー2-メチルー4-[1-エチルー5-(5-フ

- エニルペンタノイル)ピロールー2ーイル] -1-ブチル エステル、

*リン酸 モノ 2ーアミノー2ーメチルー4ー[1ーエチルー5ー(5ーシ クロヘキシルペンタノイル) ピロールー2ーイル]ー1 ープチル エステル リン酸 モノ 2ーアミノー2ーメチルー4ー[1ーエチルー5ー(4ーフ

ェニルブタノイル) ピロールー2ーイル]-1-ブチル エステル及び

リン酸 モノ 2ーアミノー2ーメチルー4ー[1ーエチルー5ー(4ーシ クロヘキシルプタノイル) ピロールー2ーイル]ー1ープチル エステル。

58. 請求の範囲第7項において、下記より選択されるいずれか1つの 化合物又はその薬理上許容される塩:

3-アミノ-3-メチル-5-[5-(5-フェニルペンチル)フラン-2-イル]ペンチルホスホン酸、

3-アミノー3-メチルー5-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]ペンチルホスホン酸、

3-アミノー3-メチルー5-[5-(5-フェニルペントー1-イニル)

フラン-2-イル]ペンチルホスホン酸、

- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシプトー1-イニル)フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル) フラン-2-イル]ペンチルホスホン酸及び
- $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-4$ ニル]フラン-2-4ル}ペンチルホスホン酸。
- 59. 請求の範囲第7項において、下記より選択されるいずれか1つの 化合物又はその薬理上許容される塩:
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{1-メチル-5-[3-(4-メチルフェノキシ)プロプー<math>1-イニル]$ ピロールー2-イル ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシル オキシプト-1-イニル) ピロール-2-イル] ペンチルホスホン酸、
- 3-アミノー3-メチルー5- $\{1-$ メチルー5-[3-(3, 4-ジメチルフェノキシ)プロプー1-イニル]ピロールー2-イル $\}$ ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-シクロヘキシルペンタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-フェニルブタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノー3-メチルー5-[1-メチルー5-(4-シクロヘキシルブタノイル)ピロールー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-フェニルペンタノ

553

イル) ピロールー2ーイル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[1-エチル-5-(5-シクロヘキシルペンタノイル) ピロールー2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[1-エチル-5-(4-フェニルプタノイル) ピロール-2-イル ペンチルホスホン酸及び

3-アミノ-3-メチル-5-[1-エチル-5-(4-シクロヘキシルプ タノイル) ピロール-2-イル]ペンチルホスホン酸。

60. T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を阻害する作用を有する薬剤、

免疫細胞中でのヌクレオシド合成を阻害する作用を有する薬剤、

免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する 薬剤、

DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤、

葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤、

TNF-α抑制作用を有する蛋白質製剤、

細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の反応部位に結合することにより合成された蛋白質により免疫抑制作用を示すステロイドホルモン剤及び

プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤

からなる群より選択される少なくとも一つの免疫抑制剤と、下記一般式(I)を有する化合物:

「式中、

R¹及びR²は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R³は、水素原子、低級アルキル基又はヒドロキシ基の保護基を示し、 R⁴は、低級アルキル基を示し、

nは、1乃至6の整数を示し、

Xは、硫黄原子、酸素原子または式N-Dを有する基(式中、Dは水素原子、アリール基、低級アルキルスルホニル基、アリールスルホニル基又は置換基群aから選択される基を示す。)を示し、

Yは、エチレン基、ピニレン基、エチニレン基、式 $-E-CH_1$ -を有する基(式中、Eは、カルボニル基、式-CH(OH) ーを有する基を示す。)、 C_6-C_{10} アリーレン基又は置換基群 a から選択される基で1乃至3個置換された C_6-C_{10} アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で1乃至3個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で1乃至3個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示し、

 R^6 は、水素原子、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群 a 及びりから選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル基、置換基群 a 及びりから選択される基で1乃至3個置換された C_6-C_{10} アリール基、又は置換基群 a 及びりから選択される基で1乃至3個置換された、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

置換基群aは、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル

基、低級アルコキシ基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 $C_3 - C_{10}$ シクロアルキル基、 $C_6 - C_{10}$ アリール基、硫 黄原子、酸素原子及び/又は窒素原子を1 乃至 3 個含む5 乃至 7 員複素環 基、置換基群 a から選択される基で1 乃至 3 個置換された $C_3 - C_{10}$ シクロアルキル基、置換基群 a から選択される基で1 乃至 3 個置換された $C_6 - C_{10}$ アリール基、及び置換基群 a から選択される基で1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を1 乃至 3 個含む5 乃至 7 員 複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Zは、分岐した C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で1乃至3個置換された C_1-C_1 0アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で1乃至3個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示す。]、

その薬理上許容される塩及びそのエステルからなる群より選ばれる少なくとも一つの化合物とからなる医薬組成物。

61. 請求の範囲第60項において、一般式(I)を有する化合物が、 下記一般式(Ia):

$$R^{3}O$$
 $(CH_{2})_{n}$
 X
 $Y-Z-R^{5}$
(Ia)

を有する化合物である医薬組成物。

62. 請求の範囲第60項において、一般式(I)を有する化合物が、 下記一般式(Ib):

$$R^{4}$$
 $R^{3}O$
 R^{4}
 $R^{1}R^{2}$
 R^{7}
(Ib)

を有する化合物である医薬組成物。

63. 請求の範囲第60項において、式(I)を有する化合物の薬理上 許容されるエステルが、式(II):

$$R^{10}O - P - O \longrightarrow R^{4} (CH_{2})_{n} - NR^{1}R^{2}$$

$$(II)$$

(式中、

R¹®及びR¹1は、同一又は異なって、水素原子又はリン酸基の保護基を示す。)を有する化合物又はその薬理上許容される塩である医薬組成物。 64. 請求の範囲第63項において、式(II)を有するエステルが、式(IIa):

を有する化合物又はその薬理上許容される塩である医薬組成物。

65. 請求の範囲第63項において、式(II)を有するエステルが、 式(IIb):

$$R^{10}O - P - O \longrightarrow R^4 (CH_2)_n \times R^7$$
 (IIb)

を有する化合物又はその薬理上許容される塩である医薬組成物。

66. T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を阻害する作用を有する薬剤、

免疫細胞中でのヌクレオシド合成を阻害する作用を有する薬剤、

免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する 薬剤、

DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤、 葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤、

TNF-α抑制作用を有する蛋白質製剤、

細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の反応部位に結合することにより合成された蛋白質により免疫抑制作用を示すステロイドホルモン剤及び

プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤

からなる群より選択される少なくとも一つの免疫抑制剤と、下記一般式(III)を有する化合物:

[式中、

 R^{1} 及び R^{2} は、同一又は異なって、水素原子、低級アルキル基又はアミノ基の保護基を示し、

R⁴は、低級アルキル基を示し、

nは、1乃至6の整数を示し、

Xは、硫黄原子、酸素原子または式N-Dを有する基(式中、Dは水素原子、 C_6-C_{10} アリール基、低級アルキルスルホニル基、 C_6-C_{10} アリールスルホニル基又は置換基群 a から選択される基を示す。)を示し、

Yは、エチレン基、ピニレン基、エチニレン基、式 $-E-CH_2-e$ 有する基(式中、Eは、カルボニル基又は式-CH(OH) -e有する基を示す。)、 C_6-C_{10} アリーレン基又は置換基群 a から選択される基で1万至3個置換された C_6-C_{10} アリーレン基を示し、

Zは、単結合、 C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_{10} アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示し、

 R^5 は、水素原子、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群 a 及びbから選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル基、置換基群 a 及びbから選択される基で1乃至3個置換された C_6-C_{10} アリール基、又は置換基群 a 及びbから選択される基で1乃至3個置換された硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基を示し、

R⁶及びR⁷は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、

R¹⁰及びR¹¹は、同一又は異なって、水素原子又はリン酸基の保護基を示し、

置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシ基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

 環基、置換基群 a から選択される基で 1 乃至 3 個置換された C_3 $-C_{10}$ シ クロアルキル基、置換基群 a から選択される基で 1 乃至 3 個置換された C_{6} $-C_{10}$ アリール基、及び置換基群 a から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個合む 5 乃至 3 侵複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Zは、分岐した C_1-C_{10} アルキレン基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_1 0 アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_{10} アルキレン基を示す。]

を有する化合物又はその薬理上許容される塩及びそのエステルからなる 群より選ばれる少なくとも一つの化合物とからなる医薬組成物。

67. 請求の範囲第66項において、式(III)を有する化合物が、 式(IIIa):

$$R^{10}O = P \longrightarrow NR^{1}R^{2}$$
 $R^{6} = R^{7}$
 $Y - Z - R^{5}$ (IIIa)

を有する化合物である医薬組成物。

68. 請求の範囲第66項において、式(III)を有する化合物が、 式(IIIb):

$$\begin{array}{c|c}
R^{6} & Y-Z-R^{5} \\
0 & R^{4} & (CH_{2})_{n} & X & R^{7} \\
\hline
0 & R^{10}O-P & X & R^{7}
\end{array}$$
(IIIb)

を有する化合物である医薬組成物。

69. 請求の範囲第60項乃至第68項から選択されるいずれか1項において、

R¹及びR²が、同一又は異なって、水素原子、低級脂肪族アシル基、低級アルコキシカルボニル基、アラルキルオキシカルボニル基又は置換基群 a から選択される基で1乃至3個置換されたアラルキルオキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物。

70. 請求の範囲第60項乃至第68項から選択されるいずれか1項に おいて、

R¹及びR¹が、同一又は異なって、水素原子、低級脂肪族アシル基又は低級アルコキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物。

71. 請求の範囲第60項乃至第68項から選択されるいずれか1項において、

 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1 - C_4 脂肪族アシル基又は C_1 - C_4 アルコキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物。

72. 請求の範囲第60項乃至第68項から選択されるいずれか1項に おいて、

 R^1 及び R^2 が、同一又は異なって、水素原子、 C_1 - C_2 脂肪族アシル基又は C_1 - C_2 アルコキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物。

73. 請求の範囲第60項乃至第68項から選択されるいずれか1項において、

R¹及びR²が、同一又は異なって、水素原子、アセチル基又はメトキシカルボニル基である化合物又はその薬理上許容される塩である医薬組成物。

74. 請求の範囲第60項乃至第68項から選択されるいずれか1項に

おいて、

R¹及びR²が、水素原子である化合物又はその薬理上許容される塩である医薬組成物。

7.5. 請求の範囲第60項乃至第62項及び第69項乃至第74項から 選択されるいずれか1項において、

R⁸が、水素原子、低級アルキル基、低級脂肪族アシル基、芳香族アシル基、置換基群 a から選択される基で1乃至3個置換された芳香族アシル基又はシリル基である化合物又はその薬理上許容される塩である医薬組成物。

76. 請求の範囲第60項乃至第62項及び第69項乃至第74項から 選択されるいずれか1項において、

R³が、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩である医薬組成物。

77. 請求の範囲第60項乃至第62項及び第69項乃至第74項から 選択されるいずれか1項において、

 R^3 が、水素原子又は $C_1 - C_4$ アルキル基である化合物又はその薬理上 許容される塩である医薬組成物。

78. 請求の範囲第60項乃至第62項及び第69項乃至第74項から 選択されるいずれか1項において、

R³が、水素原子、メチル基又はエチル基である化合物又はその薬理上 許容される塩である医薬組成物。

79. 請求の範囲第60項乃至第62項及び第69項乃至第74項から 選択されるいずれか1項において、

R³が、水素原子である化合物又はその薬理上許容される塩である医薬 組成物。

80. 請求の範囲第60項乃至第79項から選択されるいずれか1項において、

R⁴が、C₁-C₄アルキル基である化合物又はその薬理上許容される塩

である医薬組成物。

81. 請求の範囲第60項乃至第79項から選択されるいずれか1項において、

 R^4 が、 C_1-C_2 アルキル基である化合物又はその薬理上許容される塩である医薬組成物。

82. 請求の範囲第60項乃至第79項から選択されるいずれか1項に おいて、

R⁴が、メチル基である化合物又はその薬理上許容される塩である医薬 組成物。

83. 請求の範囲第60項乃至第82項から選択されるいずれか1項において、

nが、2又は3である化合物又はその薬理上許容される塩である医薬組成物。

84. 請求の範囲第60項乃至第82項から選択されるいずれか1項において、

nが、2である化合物又はその薬理上許容される塩である医薬組成物。

85. 請求の範囲第60項乃至第84項から選択されるいずれか1項において、

Xが、硫黄原子である化合物又はその薬理上許容される塩である医薬組成物。

86. 請求の範囲第60項乃至第84項から選択されるいずれか1項において、

Xが、酸素原子である化合物又はその薬理上許容される塩である医薬組成物。

87. 請求の範囲第60項乃至第84項から選択されるいずれか1項において、

Xが、式N-Dを有する基(式中、Dは水素原子、 C_1-C_4 アルキル基 又はフェニル基を示す。)である化合物又はその薬理上許容される塩であ る医薬組成物。

88. 請求の範囲第60項乃至第84項から選択されるいずれか1項において、

Xが、式N-CH₃を有する基である化合物又はその薬理上許容される 塩である医薬組成物。

89. 請求の範囲第60項乃至第88項から選択されるいずれか1項において、

Yが、エチレン基、エチニレン基、式 $-CO-CH_2$ -を有する基、式-CH(OH) $-CH_2$ -を有する基、フェニレン基、又はハロゲン原子及び低級アルキル基からなる群より選択される基で1万至3個置換されたフェニレン基である化合物又はその薬理上許容される塩である医薬組成物。

90. 請求の範囲第60項乃至第88項から選択されるいずれか1項において、

Yが、エチレン基、エチニレン基、式一CO一CH₂ーを有する基又はフェニレン基である化合物又はその薬理上許容される塩である医薬組成物。

91. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、 C_1 - C_{10} アルキレン基又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1 - C_{10} アルキレン基である化合物又はその薬理上許容される塩である医薬組成物。

92. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが C_1 - C_6 Fルキレン基又はヒドロキシ基で1乃至3個置換された C_1 - C_6 Fルキレン基である化合物又はその薬理上許容される塩である 医薬組成物。

93. 請求の範囲第60項乃至第90項から選択されるいずれか1項に

おいて、

Zが C_1 - C_5 アルキレン基又はヒドロキシ基で1乃至3個置換された C_1 - C_5 アルキレン基である化合物又はその薬理上許容される塩である医薬組成物。

94. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、エチレン基、トリメチレン基、テトラメチレン基、又は1個のヒドロキシ基で置換されたエチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理上許容される塩である医薬組成物。

95. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、エチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理上許容される塩である医薬組成物。

96. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

2が、エチレン若しくはトリメチレン基である化合物又はその薬理上許容される塩である医薬組成物。

97. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_{10}$ アルキレン基、又は1 個のヒドロキシ基で置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_{10}$ アルキレン基(該置換基は、低級アルキル基及びヒドロキシ基からなる群から選択される基である。)である化合物又はその薬理上許容される塩である医薬組成物。

98. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有するCi

- C₁₀ アルキレン基である化合物又はその薬理上許容される塩である医薬組成物。

99. 請求の範囲第60項乃至第90項から選択されるいずれか1項に おいて、

Zが、炭素鎖中若しくは鎖端に酸素原子を有するC₁-C₁₀アルキレン 基である化合物又はその薬理上許容される塩である医薬組成物。

100. 請求の範囲第60項乃至第90項から選択されるいずれか1項 において、

Zが、炭素鎖中若しくは鎖端に酸素原子を有するC₁-C₆アルキレン基である化合物又はその薬理上許容される塩である医薬組成物。

101. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、 $-O-CH_2-$ 、 $-O-(CH_2)$ $_2-$ 、 $-O-(CH_2)$ $_3-$ 、-C H_2-O- 、 $-(CH_2)$ $_2-$ O-又は $-(CH_2)$ $_3-$ O-を有する基である 化合物又はその薬理上許容される塩である医薬組成物。

102. 請求の範囲第60項乃至第90項から選択されるいずれか1項において、

Zが、 $-CH_1-O-X$ は $-(CH_1)_2-O-を有する基である化合物又はその薬理上許容される塩である医薬組成物。$

103. 請求の範囲第60項乃至第102項から選択されるいずれか1 項において、

R⁵が、水素原子である化合物又はその薬理上許容される塩である医薬 組成物。

104. 請求の範囲第60項乃至第102項から選択されるいずれか1項において、

 R^5 が、 C_3 - C_{10} シクロアルキル基、 C_6 - C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級アルキルチオ基から成る群から選択される基で1万至3個置

換された $C_3 - C_{10}$ シクロアルキル若しくは $C_6 - C_{10}$ アリール基である化合物又はその薬理上許容される塩である医薬組成物。

105. 請求の範囲第60項乃至第102項から選択されるいずれか1 項において、

 R^5 が、 C_3 - C_{10} シクロアルキル基、 C_6 - C_{10} アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基及び低級アルコキシ基から成る群から選択される基で1乃至3個置換された C_3 - C_{10} シクロアルキル若しくは C_6 - C_{10} アリール基である化合物又はその薬理上許容される塩である医薬組成物。

106. 請求の範囲第60項乃至第102項から選択されるいずれか1 項において、

 R^5 が、 C_5-C_6 シクロアルキル基、フェニル基又はナフチル基である化合物又はその薬理上許容される塩である医薬組成物。

107. 請求の範囲第60項乃至第102項から選択されるいずれか1 項において、

R⁵が、シクロヘキシル基又はフェニル基である化合物又はその薬理上 許容される塩である医薬組成物。

108. 請求の範囲第60項乃至第107項から選択されるいずれか1 項において、

R⁶及びR⁷が、同一又は異なって、水素原子、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基又は低級アルキルチオ基である化合物又はその薬理上許容される塩である医薬組成物。

109. 請求の範囲第60項乃至第107項から選択されるいずれか1項において、

R⁶及びR⁷が、水素原子である化合物又はその薬理上許容される塩である医薬組成物。

110. 請求の範囲第63項乃至第74項及び第80項乃至第109項から選択されるいずれか1項において、R¹⁰及びR¹¹が、同一又は異なっ

て、水素原子又は低級アルキル基である化合物又はその薬理上許容される 塩である医薬組成物。

- 111. 請求の範囲第63項乃至第74項及び第80項乃至第109項から選択されるいずれか1項において、 R^{10} 及び R^{11} が、同一又は異なって、水素原子又は C_1-C_4 アルキル基である化合物又はその薬理上許容される塩である医薬組成物。
- 112. 請求の範囲第63項乃至第74項及び第80項乃至第109項から選択されるいずれか1項において、R¹⁰及びR¹¹が、同一又は異なって、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩である医薬組成物。
- 113. 請求の範囲第63項乃至第74項及び第80項乃至第109項から選択されるいずれか1項において、R¹⁰及びR¹¹が、水素原子である化合物又はその薬理上許容される塩である医薬組成物。
- 114. 請求の範囲第60項において、一般式(I)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]プタン-1-オール、
- 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]プタン-1-オール、
- 2-アミノー2-メチルー4-[5-(5-フェニルペンチル)チオフェン <math>-2-1
- 2-アミノー2-メチルー4-[5-(4-シクロヘキシルオキシブチル)チオフェンー2-イル]ブタン-1-オール、
- $2-アミノー 2-メチルー 4- \{5-[4-(4-フルオロフェノキシ)ブチル] チオフェンー 2-イル} ブタンー 1-オール、$
- $2 P \ge J 2 J \ne J 4 (5 [4 (4 J) + 2 + 2)]$

チル]チオフェンー2ーイル]プタンー1ーオール、

2-アミノー2-メチルー4-[5-(4-ペンジルオキシブチル)チオフェン-2-イル] ブタン-1-オール、

2-アミノー2-メチルー4-[5-(4-シクロヘキシルプトー1-イニル)チオフェンー2-イル] プタンー1-オール、

2-アミノー2-メチルー4-[5-(4-フェニルプトー1-イニル)チオフェンー2-イル]プタンー1-オール、

2-アミノー2-メチルー4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン-2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル) チオフェン-2-イル]プタン-1-オール、

 $2-アミノ-2-メチル-4-\{5-[5-(4-フルオロフェニル)ペント-1-イニル]チオフェン-2-イル}プタン-1-オール、$

 $2-アミノ-2-メチル-4-{5-[5-(4-メトキシフェニル)ペント-1-イニル]チオフェン-2-イル}プタン-1-オール、$

 $2-アミノ-2-メチル-4-{5-[3-(4-メチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}プタン-1-オール、$

 $2-アミノー2-メチルー4-{5-[3-(4-エチルフェノキシ) プロプー1-イニル]チオフェンー<math>2-イル$ }プタンー1-オール、

 $2-アミノー2-メチルー4-{5-[3-(4-メチルチオフェノキシ)$ プロプー1-4-ル]チオフェンー2-4ル}プタンー1-4-ル、

2-アミノー2-メチルー4-[5-(4-シクロヘキシルオキシブトー1-イニル)チオフェンー2-イル] ブタン-1-オール、

 $2-アミノー2-メチルー4-{5-[4-(4-フルオロフェノキシ)プト-1-イニル]チオフェンー2-イル}プタン-1-オール、$

 $2-アミノー2-メチルー4-{5-[4-(4-メチルフェノキシ)プト$ -1-イニル]チオフェンー<math>2-イルプタンー1-オール、

2-アミノー2-メチルー4-[5-(3-シクロヘキシルメトキシ)プロ

プー1ーイニル]チオフェンー2ーイル}ブタンー1ーオール、

2-アミノー2-メチルー4-[5-(4-ペンジルオキシプトー1-イニル)チオフェン-2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプタノイル)チオフェン-2-イル]プタン-1-オール、

2-7ミノー2-メチルー4-[5-(4-)エニルプタノイル)チオフェン-2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル) チオフェン-2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[5-(5-フェニルペンタノイル)チオフェン-2-イル]プタン-1-オール、

 $2-アミノー2-メチルー4-{5-[5-(4-フルオロフェニル)ペンタノイル]チオフェンー<math>2-イル$ プタンー1-オール、

2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]プタン-1-オール、

2-アミノー2-エチルー4-[5-(5-シクロヘキシルペント-1- イニル)チオフェン-2-イル] ブタン-1-オール、

2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンタノイル) チオフェン-2-イル]ブタン-1-オール、

 $2-アミノー2-メチルー4-{5-[3-(4-クロロフェノキシ)プロプー1-イニル]チオフェンー2-イル}プタンー1-オール、$

2-アミノー2-メチルー4ー $\{5-[3-(3-)3-)3-(3-)$

 $2-アミノ-2-メチル-4-{5-[3-(3,4-ジメチルフェノキシ)$ プロプー1-4ニル]チオフェンー2-4ル}ブタンー1-4ール、

 $2-アミノー2-メチルー4-{5-[3-(3-メトキシフェノキシ)プロプー<math>1-4$ ニル]チオフェンー2-4ル}プタンー1-4ール、

2-アミノ-2-メチル-4-{5-[3-(3,4-ジメトキシフェノキ

- シ) プロプー1-イニル]チオフェン-2-イル}プタン-1-オール、
- 2-アミノ-2-メチル-4-{5-[3-(3,5-ジメトキシフェノキ
- シ) プロプー1-イニル]チオフェン-2-イル}ブタン-1-オール、
- 2-アミノ-2-メチル-4-{5-[3-(3-アセチルフェノキシ)プ
- ロプー1-イニル]チオフェン-2-イル}ブタン-1-オール及び
- 2-アミノ-2-メチル-4-{5-[3-(4-アセチルフェノキシプロ
- プー1ーイニル]チオフェンー2ーイル}プタンー1ーオール。
- 115. 請求の範囲第60項において、一般式(I)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)フラン-
- 2-イル]プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]プタン-1-オール、
- 2 ーアミノー2ーメチルー4ー[5 ー (5 ーフェニルペントー1ーイニル) フランー2ーイル]プタンー1ーオール、
- 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブト-
- 1-イニル) フラン-2-イル] プタン-1-オール、
- 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル)
- フラン-2-イル]ブタン-1-オール及び
- 2-アミノ-2-メチル-4-{5-[3-(3,4-ジメチルフェノキ
- シ) プロプー1ーイニル]フランー2ーイル} ブタンー1ーオール。
- 116. 請求の範囲第60項において、一般式(I)を有する化合物、

その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペント

571

-1-イニル) ピロールー2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-{1-メチル-5-[3-(4-メチルフ ェノキシ)プロプー1-イニル]ピロール-2-イル}プタン-1-オー **ル**、

2-アミノ-2-メチル-4-[1-メチル-5-(4-シクロヘキシル オキシブトー1ーイニル) ピロールー2ーイル]プタンー1ーオール、

2-アミノ-2-メチル-4-{1-メチル-5-[3-(3,4-ジメ チルフェノキシ)プロプー1-イニル]ピロールー2-イル}プタン-1 ーオール、

2-アミノ-2-メチル-4-[1-メチル-5-(5-フェニルペンタ ノイル) ピロールー2ーイル]プタンー1ーオール、

2-アミノ-2-メチル-4-[1-メチル-5-(5-シクロヘキシルペ ンタノイル) ピロールー2-イル]プタン-1-オール、

2-アミノ-2-メチル-4-[1-メチル-5-(4-フェニルブタノイ ル) ピロールー2ーイル]ブタンー1ーオール、

2-アミノ-2-メチル-4-[1-メチル-5-(4-シクロヘキシルブ タノイル) ピロールー2ーイル]ブタンー1ーオール、

2-アミノ-2-メチル-4-[1-エチル-5-(5-フェニルペンタノ イル) ピロールー2ーイル]プタン-1ーオール、

2-アミノ-2-メチル-4-[1-エチル-5-(5-シクロヘキシルペ ンタフイル) ピロールー2ーイル]ブタンー1ーオール、

2-アミノ-2-メチル-4-[1-エチル-5-(4-フェニルブタノイ ル) ピロールー2ーイル]プタン-1-オール及び

2-アミノ-2-メチル-4-[1-エチル-5-(4-シクロヘキシル ブタノイル) ピロールー2-イル]ブタン-1-オール。

請求の範囲第63項において、一般式(II)を有する化合物 、その薬理上許容される塩及びその薬理上許容されるエステルからなる群 が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエス テルからなる群である医薬組成物:

- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)チオフェン-2-イル]-1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシ ルオキシプチル)チオフェン-2-イル]-1-プチル エステル、
 - リン酸 モノ $2-アミノー2-メチルー4-\{5-[4-(4-フルオロフェノキシ)プチル]チオフェンー<math>2-イル\}-1-プチル$ エステル、

 - リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-ベンジルオキシブチル)チオフェン-2-イル]-1-プチル エステル、
 - リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプトー1-イニル)チオフェンー<math>2-イル]-1-プチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルプト-1-イニル)チオフェン-2-イル]-1-プチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン-2-イル]-1-プチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)チオフェン-2-イル] -1-ブチル エステル、
 - リン酸 モノ $2-アミノ-2-メチル-4-\{5-[5-(4-フルオロフェニル)ペント-1-イニル]チオフェン-2-イル<math>\}$ -1-ブチル エステル、
 - リン酸 モノ $2-アミノー2-メチルー4-\{5-[5-(4-メトキシフェニル)ペントー<math>1-$ イニル]チオフェンー2-イル $\}-1-$ ブチル エ

ステル、

- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(4-メチルフェノキシ)プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-ブチル エステル、
- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(4-エチルフェノキシ)プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、
- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(4-メチルチオフェノキシ) プロプ-1-イニル]チオフェン-2-イル<math>\}$ -1-プチルエステル、
- リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルオキシプトー1-イニル)チオフェンー<math>2-イル] -1-プチル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-{5-[4-(4-フルオロフェノキシ)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$
- リン酸 モノ $2-アミノー2-メチルー4-{5-[4-(4-メチルフェノキシ)プト-1-イニル]チオフェン-2-イル}-1-プチル エステル、$
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(3-シクロヘキシルメトキシ)プロプー<math>1-4ニル]チオフェンー2-4ル1-7チルエステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-ベンジルオキシプト-1-イニル)チオフェン-2-イル] -1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプタノイル) チオフェン-2-イル] -1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルブタ ノイル)チオフェン-2-イル] -1-ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル] <math>-1-プチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンタノイル)チオフェン-2-イル] -1-プチル エステル、

リン酸 モノ $2-アミノー2-メチルー4-\{5-[5-(4-フルオロフェニル)ペンタノイル]チオフェンー<math>2-イル\}-1-プチル$ エステル、

リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシ ルペンチル)チオフェン-2-イル] -1-プチル エステル、

リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシ ルペント-1-イニル)チオフェン-2-イル]-1-プチル エステル、

リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル] -1-プチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(4-クロロフェノキシ) プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-ブチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(3-メチルフェノキシ) プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-プチル エステル、

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(3,4-ジメチルフェノキシ)プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-ブチル エステル、

リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3-メトキシフェノキシ) プロプー1-イニル]チオフェンー<math>2-イル\}-1-ブチルエステル、$

リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(3,4-ジメトキシフェノキシ)プロプー<math>1-$ イニル]チオフェン-2-イル $\}-1-$ ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-{5-[3-(3,5-ジメ

トキシフェノキシ)プロプー1ーイニル]チオフェンー2ーイル}ー1ーブ チル エステル、

- リン酸 モノ 2-アミノ-2-メチル-4-{5-[3-(3-アセチルフェノキシ) プロプー1-イニル]チオフェン-2-イル}-1-ブチルエステル及び
- リン酸 モノ $2-アミノ-2-メチル-4-\{5-[3-(4-アセチルフェノキシ) プロプー1-イニル]チオフェン-2-イル<math>\}$ -1-ブチルエステル。
- 118. 請求の範囲第63項において、一般式(II)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- リン酸 モノ 2-アミノー2-メチルー4-[5-(5-フェニルペンチル)フランー<math>2-イル] -1-プチル エステル、
- リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシールペント-1-イニル)フラン-2-イル]-1-ブチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル) フラン-2-イル] -1-ブチル エステル、
 - リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルオキシプトー1-イニル)フランー<math>2-イル] -1-プチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシ ルペンタノイル)フラン-2-イル]-1-プチル エステル及び
 - リン酸 モノ $2-アミノー2-メチルー4-\{5-[3-(3,4-ジ$ メチルフェノキシ) プロプー<math>1-イニル]フランー2-イル $\}-1-$ ブチ ル エステル。
 - 119. 請求の範囲第63項において、一般式(II)を有する化合物 、その薬理上許容される塩及びその薬理上許容されるエステルからなる群 が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエス

テルからなる群である医薬組成物:

- リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(5-7)]フェニルペントー1-7ニル ピロールー2-7ル エステル、
- リン酸 モノ $2-アミノー2-メチルー4-\{1-メチルー5-[3-(4-メチルフェノキシ) プロプー<math>1-$ イニル] ピロールー2-イル $\}-$ 1-ブチル エステル、
- リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(4-シ) クロヘキシルオキシプトー1ーイニル) ピロールー<math>2-イル] -1-プチル エステル、
- リン酸 モノ $2-アミノ-2-メチル-4-\{1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプー<math>1-$ イニル]ピロールー2-イル $\}-1-$ ブチル エステル、
 - リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(5-7)]フェニルペンタノイル) ピロールー2-イル] -1-プチル エステル、
- - リン酸 モノ 2-アミノー2-メチルー4-[1-メチルー5-(4-フェニルプタノイル) ピロールー<math>2-イル] -1-プチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[1-メチル-5-(4-シ
 - クロヘキシルブタノイル) ピロールー2-イル]-1-ブチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(5-フ
 - ェニルペンタノイル) ピロールー 2 ーイル] 1 ープチル エステル、 リン酸 モノ 2 ーアミノー 2 ーメチルー 4 - [1 ーエチルー 5 - (5 - >
 - クロヘキシルペンタノイル) ピロールー2ーイル]ー1ープチル エステル、
 - リン酸 モノ 2-アミノ-2-メチル-4-[1-エチル-5-(4-フ
 - ェニルプタノイル) ピロールー2ーイル]ー1ープチル エステル及び リン酸 モノ 2ーアミノー2ーメチルー4ー[1ーエチルー5ー(4ーシ

クロヘキシルプタノイル)ピロールー2ーイル]ー1ープチル エステル。 120. 請求の範囲第66項において、一般式(III)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:

- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペンチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシプチル) チオフェン-2-イル]ペンチルホスホン酸、
- 3-Pミノー3-メチルー5-{5-[4-(4-フルオロフェノキシ)ブチル]チオフェンー2-イル}ペンチルホスホン酸、
- 3-アミノー3-メチルー5-{5-[4-(4-メトキシフェノキシ)ブ チル]チオフェンー2-イル}ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-ベンジルオキシプチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノー3-メチルー5ー[5-(4-シクロヘキシルプトー1-イ ニル)チオフェンー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-フェニルプト-1-イニル)チ オフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペント-1-イニル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-[5-(4-フルオロフェニル)ペン

578

- ト-1-イニル] チオフェン-2-イル} ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-{5-[5-(4-メトキシフェニル)ペン
- ト-1-イニル]チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノー3-メチルー5-{5-[3-(4-メチルフェノキシ)プロ
- プー1-イニル]チオフェン-2-イル}ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[3-(4-エチルフェノキシ) プロ$
- プー1-イニル]チオフェン-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[3-(4-メチルチオフェノキシ)}$
- プロプー1ーイニル]チオフェンー2ーイル}ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブトー
- 1-イニル)チオフェン-2-イル]ペンチルホスホン酸、
- $3-7 \le 1-3-4 \le 1-5-1 \le 1-1 \le$
- トー1ーイニル]チオフェンー2ーイル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-{5-[4-(4-メチルフェノキシ)プト
- -1-イニル]チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノー3-メチルー5-[5-(3-シクロヘキシルメトキシ)プロ
- プー1-イニル]チオフェンー2-イルトペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-ベンジルオキシブト-1-イ
- ニル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルプタノイル)
- チオフェンー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-フェニルプタノイル)チオフェ
- ン-2-イル]ペンチルホスホン酸、
- 3-7ミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル)
- チオフェンー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペンタノイル)チオフ
- ェンー2-イル]ペンチルホスホン酸、
- 3-アミノー3-メデルー5-{5-[5-(4-フルオロフェニル)ペン

タノイル]チオフェン-2-イル}ペンチルホスホン酸、

- 3-アミノ-3-エチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-エチル-5-[5-(5-シクロペキシルペンタノイル) チオフェン-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{5-[3-(4-クロロフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(3-メチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$
- $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメチルフェノキシ)}$ プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、
- $3-アミノー3-ヌチルー5-{5-{3-(3-メトキシフェノキシ)} プロプー<math>1-4$ ニル]チオフェンー2-4ル}ペンチルホスホン酸、
 - $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメトキシフェノキシ) プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸、$

 - シ) プロプー1-イニル]チオフェン-2-イル}ペンチルホスホン酸、
 - $3-アミノ-3-メチル-5-{5-[3-(3-アセチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸及び$
 - $3-アミノ-3-メチル-5-{5-[3-(4-アセチルフェノキシ)プロプ-1-イニル]チオフェン-2-イル}ペンチルホスホン酸。$
 - 121. 請求の範囲第66項において、一般式(III)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
 - 3-アミノ-3-メチル-5-[5-(5-フェニルペンチル)フラン-

- 2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペント-1-イニル)フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-フェニルペント-1-イニル)フラン-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブトー
- 1-イニル) フランー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル) フラン-2-イル]ペンチルホスホン酸及び
- $3-アミノ-3-メチル-5-{5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イニル]フラン-2-イル}ペンチルホスホン酸。$
- 122. 請求の範囲第66項において、一般式(III)を有する化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群が、下記化合物、その薬理上許容される塩及びその薬理上許容されるエステルからなる群である医薬組成物:
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペント-1-イニル) ピロール-2-イル] ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{1-メチル-5-[3-(4-メチルフェノキシ)プロプ-1-イニル]ピロール-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシルオキシプト-1-イニル) ピロール-2-イル]ペンチルホスホン酸、
- $3-アミノ-3-メチル-5-{1-メチル-5-[3-(3,4-ジメチルフェノキシ)プロプ-1-イニル]ピロール-2-イル}ペンチルホスホン酸、$
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-フェニルペンタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(5-シクロヘキシルペ

ンタノイル) ピロールー2-イル]ペンチルホスホン酸、

- 3-アミノ-3-メチル-5-[1-メチル-5-(4-フェニルブタノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-メチル-5-(4-シクロヘキシルブ タノイル) ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-フェニルペンタノ イル)ピロール-2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(5-シクロヘキシルペンタノイル) ピロールー2-イル]ペンチルホスホン酸、
- 3-アミノ-3-メチル-5-[1-エチル-5-(4-フェニルプタノイル) ピロール-2-イル]ペンチルホスホン酸及び
- 3-アミノ-3-メチル-5-[1-エチル-5-(4-シクロヘキシルブ タノイル) ピロール-2-イル]ペンチルホスホン酸。
- 123. 請求の範囲第60項乃至第122項から選択されるいずれか1項において、免疫抑制剤が、

T細胞のサイトカイン発現に関与する細胞内シグナルの伝達を阻害する作用を有する薬剤(該薬剤は、サイクロスポリンA、タクロリムス、ラパマイシン、グスベリムス、エベロリムス、トレスペリムス、アニスペリムス、SDZ-281-240、ABT-281、チグデリムス、A-119435又は17-エチルー1,14-ジヒドロキシー12-[2-[4-(2-フェニルヒドラジノカルボニルオキシ)-3-メトキシシクロヘキシル]-1-メチルピニル]-23,25-ジメトキシー13,19,21,27-テトラメチルー11,28-ジオキサー4-アザトリシクロ[22.3.1.04. 9]オクタコス-18-エン-2,3,10,16-テトロンである。)、

免疫細胞中でのヌクレオシド合成阻害する作用を有する薬剤(該薬剤は、ミゾリビン、アザチオプリン、ミコフェノール酸、レフルノマイド、メリメンポディブ、HMR-1279、TSK-204又はSP-1000

30である。)、

免疫細胞に対するサイトカインの作用を阻害し抗リウマチ作用を有する薬剤(該薬剤は、T-614、アクタリット、サラゾスルファピリジン 又はCDC-801である。)、

DNA鎖の破壊又はDNAの合成障害により細胞死を引き起こすアルキル化剤(該アルキル化剤は、シクロフォスファミドである。)、

葉酸産生を抑制して核酸代謝を阻害する代謝拮抗剤(核代謝拮抗剤は、 メトトレキセートである。)、

 $TNF-\alpha$ 抑制作用を有する蛋白質製剤(該蛋白質製剤は、レミケード、エンブレル、ダクリズマブ、バシリキシマブ、アルムツズマブ、オマリズマブ、BMS-188667、CDP-571、イノリモマブ、ATM-027又はBTI-322である。)、

細胞内のステロイドレセプターに結合して複合体を形成し、染色体上の 反応部位に結合することにより合成された蛋白質により免疫抑制作用を 示すステロイドホルモン剤(該ステロイドホルモン剤は、プレドニゾロン である。)又は

プロスタグランジンの産生を抑制する物質及び/又はプロスタグランジンの作用に拮抗する非ステロイド系抗炎症剤(該非ステロイド系抗炎症剤は、ロキソプロフェンナトリウム、ジクロフェナックナトリウム、メロキシカム、セレコキシブ、ロフェコキシブである。)

からなる群より選択される少なくとも一つの薬剤である医薬組成物。

124. 請求項60項乃至第122項から選択されるいずれか1項において、免疫抑制剤が、サイクロスポリンA、タクロリムス、ラパマイシン、レフルノマイド、メトトレキセート、レミケード及びエンブレルからなる群より選択される少なくとも一つの薬剤である医薬組成物。

125. 請求の範囲第1項乃至第59項から選択されるいずれか1項に記載される化合物、その薬理上許容される塩又はその薬理上許容されるエステルを有効成分として含有する医薬組成物。

- 126. 自己免疫疾患の予防又は治療のための、請求の範囲第125項 に記載の医薬組成物。
- 127. 自己免疫疾患が慢性関節リウマチである、請求の範囲第126項に記載の医薬組成物。
- 128. 臓器移植での拒絶反応を抑制するための、請求の範囲第125 項に記載の医薬組成物。
- 129. 請求の範囲第60項乃至第125項から選択されるいずれか1項に記載される医薬組成物の有効量を、哺乳動物に投与することを特徴とする自己免疫疾患の予防又は治療方法。
- 130. 請求の範囲第60項乃至第125項から選択されるいずれか1項に記載される医薬組成物の有効量を、哺乳動物に投与することを特徴とする慢性関節リウマチの予防又は治療方法。
- 131. 請求の範囲第60項乃至第125項から選択されるいずれか1項に記載される医薬組成物の有効量を、哺乳動物に投与することを特徴とする臓器移植での拒絶反応の予防又は治療方法。

International application No. PCT/JP03/00136

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D207/335, 307/52, 333/20, A61K31/341, 31/40, 31/381, A61P1/04, 1/16, 3/10, 7/00, 7/06, 9/10, 9/12, 11/00, 11/06, 13/12, 17/00, 17/06, 19/02, 21/00, 25/00, 25/14, 25/16, 25/18, 25/28, According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D207/335, 307/52, 333/20, A61K31/341, 31/40, 31/381					
Documental	ion searched other than minimum documentation to the	extent that such documents are included i	n the fields searched		
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, sear	ch terms used)		
CA (S	TN), REGISTRY (STN), WPIDS (STN)				
.C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
A	WO 96/06068 A (Yoshitomi Phar		1-128		
. A.	Ltd.), 29 February, 1996 (29.02.96), Full text				
; ;•	& EP 778263 A				
P,A	WO 02/06268 A (Sankyo Co., L 24 January, 2002 (24.01.02), Full text & JP 2002-167382 A	td.),	1-128		
P,A	WO 02/18395 A (Merck & Co., 07 March, 2002 (07.03.02), Full text & US 2002/0091105 A	Inc.),	1-128		
		·	•		
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" carlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed					
Date of the actual completion of the international search 07 February, 2003 (07.02.03) Date of mailing of the international search report 25 February, 2003 (25.02.03)					
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

国際調査報告

国際出願番号 PCT/JP03/00136

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 成しなか	第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作った。
1. 🗵	請求の範囲 <u>129-131</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲129-131の発明は、治療による人体の処置方法に関するものであ る。
2.	請求の範囲 <u>は、有意義な国際調査をすることができる程度まで所定の要件を満</u> たしていない国際出願の部分に係るものである。つまり、
	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
•	
	·
	-
•	·
	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際開査報告は、手数料の納付のあった 次 の請求の範囲のみについて作成した。
4. [出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査	手数料の異識の申立てに関する注意 追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT/ISA/210 (第1ページの続葉(1)) (1998年7月)

国際調査報告

国際出願番号 PCT/JP03/00136

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, A	WO 02/76995 A (NOVARTIS AG) 2002. 10. 0	1-128
	3、文献全体(ファミリーなし)	
1		·
		·
,		
	·	
	·	
		,
	·	
	•	

国際調査報告

国際出願番号 PCT/JP03/00136

A. 発明の異する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C07D207/335, 307/52, 333/20, A61K31/341, 31/40, 31/381, A61P1/04, 1/16, 3/10, 7/00, 7/06, 9/10, 9/12, 11/00, 11/06, 13/12, 17/00, 17/06, 19/02, 21/00, 25/00, 25/14, 25/16, 25/18, 25/28, 29/00, 31/04, 31/12, 35/02, 37/00, 37/06, 43/00					
B. 調査を行った分野 調査を行った最小限資料 (国際特許分類 (IPC)) Int. Cl ⁷ C07D207/335, 307/52, 333/20, A61K31/341, 31/40, 31/381					
最小限資料以外	外の資料で調査を行った分野に含まれるもの				
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN), WPIDS (STN)					
C. 関連する	ると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	され、その関連する箇所の表示	関連する 請求の範囲の番号		
A	WO 96/06068 A (吉富 2.29, 文献全体 & EP 77		1-128		
P, A	WO 02/06268 A (三共社 4, 文献全体 & JP 2002-		1-128		
P, A	WO 02/18395 A (MERCK 3.07, 文献全体 & US 20		1-128		
			,		
区 C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の1以上の文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日可に、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献					
国際調査を完了	7した日 07.02.03	国際調査報告の発送日 25.	02.03		
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		特許庁審査官(権限のある職員) 内藤 伸一 電話番号 03-3581-1101	4P 8615 内線 3492		

International application No.

PCT/JP03/00136

Continuation	of	A.	CLAS	SIFICATIO	ON	OF	SUBJECT	MATTER
(Internatio	nal	Pa	tent	Classifi	ca	tio	n (IPC))	

Int.Cl⁷ 29/00, 31/04, 31/12, 35/02, 37/00, 37/06, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

International application No.
PCT/JP03/00136

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,A	WO 02/76995 A (NOVARTIS AG), 03 October, 2002 (03.10.02), Full text (Family: none)	1-128

International application No. PCT/JP03/00136

	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This in	ternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🗀	Claims Nos.: 129-131
<u></u>	because they relate to subject matter not required to be searched by this Authority, namely: invention as set forth in claims 129 to 131 is relevant to methods for
	atment of the human body by therapy.
2 —	7 Claims Nos.:
<u>"</u> L	because they relate to parts of the international application that do not comply with the prescribed requirements to such an
	extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
	ternational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
L	claims.
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
2.	of any additional fee.
	of any additional fee.
3	As only some of the required additional search fees were timely paid by the applicant, this international search report covers
	only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remari	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.