Honors Mathematics IV Midterm 2 Review

CHEN Xiwen

UM-SJTU Joint Institute

November 18, 2018

Table of contents

Singularities and Poles

Singularities Representation Near Poles Summary

Residue Calculus

Complex Logarithm Residue Calculus Contours

Singularities and Poles

Singularities

Representation Near Poles Summary

Residue Calculus

Complex Logarithm
Residue Calculus

Classification of Singularities

Definition. $\Omega \subset \mathbb{C}$ is open, $z_0 \in \Omega$ and $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ is holomorphic. (f has a **point singularity at** z_0 .) The singularity is

- ▶ *removable*: there exists an analytic continuation $\tilde{f}: \Omega \to \mathbb{C}$. (i.e., $\lim_{z \to z_0} f(z)$ exists.)
- **▶** a *pole*:
 - 1. g = 1/f is holomorphic on $\Omega \setminus \{z_0\}$.
 - 2. g has a removable singularity at z_0 .
 - 3. $\tilde{g}(z_0) = 0$.
- essential: it is neither removable nor a pole.

Zeros

2.3.5. Theorem. f is holomorphic in a connected open set Ω with a zero at $z_0 \in \Omega$ and does not vanish identically in Ω . In a neighborhood $U \subset \Omega$ of z_0 ,

$$f(z) = (z - z_0)^n g(z)$$
 for all $z \in U$,

where g is non-vanishing and holomorphic.

- ▶ n, g are both unique.
- ▶ *n* is the *multiplicity* or *order* of the zero.
- ▶ The zero is *simple* if n = 1.

Poles

2.3.8. Theorem. $f:\Omega\to\mathbb{C}$ has a pole at $z_0\in\Omega$, then in a neighborhood U of z_0 ,

$$f(z)=(z-z_0)^{-n}h(z)\qquad \text{for all }z\in U,$$

where h is non-vanishing and holomorphic.

- n, h are both unique.
- ▶ n is the multiplicity or order of the pole.
- ▶ The pole is *simple* if n = 1.

Singularities and Poles

Singularities

Representation Near Poles

Summary

Residue Calculus

Complex Logarithm
Residue Calculus

2.3.11. Theorem. If $f:\Omega\to\mathbb{C}$ has a pole of order n at $z_0\in\Omega$, then there exists a neighborhood $U\subset\Omega$ of z_0 , numbers $a_{-n},\ldots,a_{-1}\in\mathbb{C}$ and a holomorphic function $G:U\to\mathbb{C}$ such that

$$f(z) = \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-n+1}}{(z-z_0)^{n-1}} + \cdots + \frac{a_{-1}}{z-z_0} + G(z)$$

for all $z \in U$.

► Principal part:

$$P(z) := \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-n+1}}{(z-z_0)^{n-1}} + \cdots + \frac{a_{-1}}{z-z_0}.$$

► Residue:

$$\operatorname{res}_{z_0} f := a_{-1} = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z)).$$

Example 1. Does the complex logarithm have an essential singularity at z = 0?

- A. No, it has a pole because $\lim_{z\to 0} |\ln(z)| = \infty$.
- B. Yes.
- C. No, because it is not an isolated singularity.

Example 2. Let $a, b \in \mathbb{C}$ and $f(z) = \frac{z-a}{z-b}$. The residue of f at

- z = b is
 - A. b-a.
 - B. -(a+b).
 - C. a/b.

Example 3. Find the principal part for the Laurent series

$$f(z) = \frac{\pi^2}{(\sin \pi z)^2}$$

centered at $k \in \mathbb{Z}$.

Solution 3. We know from the power series for sine function and $\sin \pi z = (-1)^k \sin[\pi(z-k)],$

$$\sin^2 \pi z = \sin^2[\pi(z-k)]$$

$$= \left(\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}(z-k)^{2n+1}}{(2n+1)!}\right)^2$$

$$= \left(\pi(z-k) - \frac{\pi^3(z-k)^3}{3!} + \cdots\right)^2$$

$$= \pi^2(z-k)^2 - \frac{\pi^4}{3}(z-k)^4 + \mathcal{O}((z-k)^6).$$

Solution 1 (continued). Then

$$\frac{\pi^2}{\sin^2 \pi z} = \frac{\pi^2}{\pi^2 (z - k)^2 \left(1 - \frac{\pi^2}{3} (z - k)^2 + \mathcal{O}((z - k)^3)\right)}$$
$$= \frac{\pi^2}{\pi^2 (z - k)^2} \left(1 + \frac{\pi^2 (z - k^2)}{3} + \cdots\right),$$

and thus the principal part is $\frac{1}{(z-k)^2}$.

Singularities and Poles

Singularities Representation Near Poles Summary

Residue Calculus

Complex Logarithm
Residue Calculus
Contours

Summary

- ► Singularities.
 - 1. Removable singularity.
 - 2. Pole.
 - 3. Essential singularity.
- Zeros and Poles.
 - 1. Multiplicity or order.
 - 2. Simple zero/pole.
- Representation near poles.
 - 1. Principle part.
 - 2. Residue.

Singularities and Poles

Singularities Representation Near Poles Summary

Residue Calculus Complex Logarithm

Residue Calculus

Definition. Let

$$\mathbb{R}^0_- := \{ x \in \mathbb{R} : x \le 0 \}, \qquad \mathbb{R}^0_+ := \{ x \in \mathbb{R} : x \ge 0 \}.$$

▶ Principle branch: In : $\mathbb{C} \setminus \mathbb{R}^0_- \to \mathbb{C}$.

$$\ln(re^{i\varphi}) = \ln r + \varphi i, \qquad r > 0, -\pi < \varphi < \pi.$$

▶ $\operatorname{In}: C \setminus \mathbb{R}^0_+ \to \mathbb{C}$.

$$\ln(re^{i\varphi}) = \ln r + \varphi i, \qquad r > 0, 0 < \varphi < 2\pi.$$

Note. This branch is not the analytic expansion of the logarithm in \mathbb{R} .

Complex Power and Roots

Complex power.

$$z^{\alpha} := e^{\alpha \ln z}, \qquad \alpha \in \mathbb{C}.$$

► Complex root.

$$\sqrt[n]{z} := z^{1/n}$$
.

Note. For $n \in \mathbb{N}$,

$$(z^{1/n})^n = \prod_{k=1}^n e^{\frac{1}{n} \ln z} = e^{\sum_{k=1}^n \frac{1}{n \ln z}} = e^{\frac{n}{n} \ln z} = e^{\ln z} = z.$$

Branches. We have many options regarding the choice of branch.

- ▶ The evaluated integral should be continuous.
- ▶ The branch should exhibits a measurable integral.

The choice of branch can be visualized as below.

Evaluation using a branch.

- ▶ Whatever the branch chosen, it should cover the whole complex plane without overlapping and excluding half of an axis.
- ▶ The decision of ϕ should rely on geometric considerations.
- ▶ When evaluating complex logarithms, complex numbers represented in x + yi can be transformed to

$$x + yi = Re^{i\theta}, \qquad R = \sqrt{x^2 + y^2},$$

where θ is in the branch.

Example. Using different branches and $t \in (0,1)$,

1.
$$(0, 2\pi)$$
. $\lim_{\varepsilon \to 0} \frac{1}{\sqrt{(\varepsilon - it)^2 + 1}} = -\frac{1}{\sqrt{1 - t^2}}$,

2.
$$(-2\pi, 0)$$
. $\lim_{\varepsilon \to 0} \frac{1}{\sqrt{(\varepsilon - it)^2 + 1}} = \frac{1}{\sqrt{1 - t^2}}$.

Note.

- ▶ The sign of the imaginary part and the real part determines the position of the complex number in the complex plane, and should be considered in complex logarithm.
- Branch appears in integrals involving square root, logarithm, etc.

Singularities and Poles

Singularities Representation Near Poles Summary

Residue Calculus

Complex Logarithm Residue Calculus

Contours

Evaluating Real Integrals Using Residue Calculus

- 1. Extend the real domain to complex domain.
 - ▶ Change $x \in \mathbb{R}$ to $z \in \mathbb{C}$.
 - ► Consider e^{iz} for $\sin x$, $\cos x$.
- 2. Find a suitable contour and the branch (if needed).
- 3. Find poles for f(z).
- 4. Calculate residues for poles. (If the contour cannot be decided yet, find residue for all poles.)
 - Write out expression near poles.
 - Use

$$\operatorname{res}_{z_0} f = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z)).$$

- Write out residue theorem.
- 6. Save the desired integral and solve other parts.

Singularities and Poles

Singularities Representation Near Poles Summary

Residue Calculus

Complex Logarithm Residue Calculus

Contours

Contours — Semi-circle

Semi-circle.

Integrals. We have used this contour to find

- $1. \int_0^\infty \frac{\sin x}{x} dx,$
- $2. \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx,$
- 3. $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx,$

Contours — Semi-circle

Semi-circle.

Integrals. We have used this contour to find

$$4. \int_{-\infty}^{\infty} \frac{dx}{1+x^4},$$

$$5. \int_0^\infty \frac{x \sin x}{(x^2+4)^2} dx,$$

$$6. \int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}},$$

7.
$$\int_{-\infty}^{\infty} \frac{1 - \cos x}{x^2} dx.$$

Contours — Sector

Sector.

Integrals.

- ▶ Integral containing $sin(x^n)$, $cos(x^n)$. (choose central angle $\pi/(2n)$.)
- We have used this contour to find

 - 1. $\int_0^\infty \sin x^2 dx,$
2. $\int_0^\infty \cos x^2 dx.$

Contours — Rectangle

Rectangle.

Integrals.

1.
$$\int_0^\infty \frac{e^{ax}}{1 + e^x} dx, 0 < a < 1.$$

Contours — (Semi-)Circle without a Half-axis

Contours — (Semi-)Circle without a Half-axis.

Integrals. Integrals containing $x^{1/n}$, $\ln x$ (with branch $\mathbb{C} \setminus \mathbb{R}^0_+$).

$$1. \int_0^\infty \frac{\sqrt{x}}{x^2 + a^2} dx,$$

$$2. \int_0^\infty \frac{\ln x}{x^2 + a^2} dx.$$

Contours — (Semi-)Circle without a Half-axis

Contours — (Semi-)Circle without a Half-axis.

Integrals. When approaching from downside to positive real axis (with branch $\mathbb{C}\setminus\mathbb{R}^0_+$),

1.
$$\sqrt{z} = \sqrt{Re^{i\theta}} = R^{1/2}e^{i\theta/2} \to -R^{1/2}, \theta \in (0, 2\pi).$$

2. $\ln z = \ln Re^{i\theta} \rightarrow \ln R + i\theta, \theta \in (0, 2\pi).$

- 1. Describe the contour along which you are integrating.
- 2. Clearly choose the branch if complex logarithm is required.
- A brief proof is required when you want to conclude that a part of the integral vanishes. (Sometimes you can apply Jordan's lemma.)
- 4. Describe necessary details.

Good luck for your Midterm 2!