

$$y = \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

$$\log_{e} \frac{p}{1-p} = \beta_{o} + \beta_{i} \times \Rightarrow p = \frac{e}{1+e^{\beta_{o} + \beta_{i} \times e}}$$

Monotic function. Hence pincreases as x increases.

Try. log P = B + B,x + B222

 $\log \frac{P}{1-P} = \beta_0 + \beta_1 \sin(x) + \beta_2 \cos(x)$

Deep Learning does automated feature engineering. # For a car manufacturer, what is the probability that the system will break down?

Failute is extremely teare. Hence traditional classification models won't work.

Here the data is very skewed.

D	Cı	C2 C3	<u>S</u>
1 2	0 0	1 0	000
2	1		
•	1	: 0	
•	•	1 1	0
N	0	0 0	O

Separate components may fail. But the entire system never fails.

can cheate phobability distus for c_1, c_2, c_3 $P[c_1, c_2, c_3] = P[c_1]P[c_2]P[c_3]$ independent

But the probability should also be a function of time.

Prob of failure in Day 1 < Prob of failure in Day n

P[4,(t)] Not just a probability distr.
It's a process [stochastic]

$$P[c_1(t), c_2(t), c_3(t)]$$
= $P[c_1(t)] P[c_2(t)] P[c_3(t)]$

Most popular -> Non homogeneous Poisson Process.

Simulate many scenarios & check how many times failures occure.

Copula Distribution