UNIDAD 1: INTRODUCCIÓN A LA INFORMÁTICA

1. Introducción a la Programación.

- Definición de lenguaje de programación programa de computadora
- Lenguaje de máquina.

• Lenguajes ensambladores.

• Lenguajes de nivel bajo y alto.

Programa fuente o código fuente.

Lenguaje interpretado, lenguaje compilado.

- Orientaciones a procedimientos y a-objetos.
- Software de aplicación y de sistema. Boostrap, OS, DOS, UNIX, Windows, Linux
- Comandos comunes del SO:

DIR

ERASE, DELETE

TYPE

COPY

RENAME

CTRL enter, CTRL Z, CTRL C

CTRLS

rm nombre_archivos

cat nombre_archivo

lp o lpr

cp fuente destino

mv nombre_anterior nombre_nuevo

Supr, CTRL enter, \

CTRL S

CTRL S

• Lenguajes de programación

FORTRAN, COBOL, BASIC, Pascal, C, C++, Java, Matlab, Octave, Maxima

EJERCICIOS 1.1 página 8

2. Solución de problemas y desarrollo de software.

- Planificación para obtener resultados o alcanzar objetivos.
 Método científico. (microscópico, de las partes a explicar el todo)
 Enfoque de sistemas. (macroscópico, del todo como emergente de la interacción)
 - Procedimiento de desarrollo de software: (fases del ciclo de vida)

Desarrollo y diseño.

Documentación.

Mantenimiento

FASE I: Desarrollo y diseño

Paso 1: Análisis del problema. (10%)

Qué hace el programa. Que resultados produce. Que datos se necesitan

Paso 2: Generar una solución (20%)

Jerarquías de procedimientos, Arquitectura de módulo.

Paso 3: Codificar la solución. Tipos de control de ejecución (20%)

Secuencia

Selección

Iteración.

Invocación.

Paso 4: Comprobar y corregir el programa (50%)

- FASE II: Documentación
 - 1. Descripción del programa
 - 2. Desarrollo y cambios del algoritmo.
 - 3. Listado bien comentado del programa.
 - 4. Resultado de las pruebas efectuadas.
 - 5. Manual del usuario.
- FASE III: Mantenimiento

Corrección continua de programas.

Respaldo.

EJERCICIOS 1.2 página 16

3. Algoritmos. Errores en programación.

- Algoritmo: secuencia paso a paso de instrucciones que debe realizar y explica como se deben procesar los datos para producir los resultados.
- Ejemplo: a. Sumar 1+2+...+100 = 5050

b.
$$(1 + 100 = 101) (2 + 99 = 101) \dots (49 + 52 = 101) < > 50*101 = 5050$$

c. suma = (inicial + final) * (n/2)

- Símbolos de diagramas de flujo.
- Ejemplo sumar tres números enteros (digrama)

EJERCICIOS 1.3 página 22

• Errores comunes: apresuramiento en codificar; no hacer respaldos; no entender la exigencia de formalidad de los algoritmos.

4. Hardware y conceptos de almacenamiento.

- Funciones mínimas del hardware:
- 1. Aceptar datos
- 2. Desplegar o imprimir los resultados.
- 3. Almacenar información en un formato (binario).
- 4. efectuar operaciones aritméticas y lógicas con datos aceptados o almacenados.
- 5. Monitoear, controlar y dirigir la operación y secuencia general del sistema.
- Esquema Unidades básicas de procesamiento CPU

Unidad Aritmética lógica.

Unidad de memoria. Almacenamiento secundario.

Unidad de Entrada/Salida.

Unidad de control.

- Microprocesadores. Bus de comunicaciones.
- Almacenamiento de datos en memoria.

Bits {0, 1}

Byte 00000000 111111111

ASCII (128 combinaciones de 8 bits o 1 Byte (pagina 725), EBCDIC

Números complemento a dos: (caja de valores de 8 bits)

Eiemplo

-128	64	32	16	8	4	2	1
1	0	0	0	1	1	0	1

Resultado =
$$-128 + 8 + 4 + 1 = -115$$

• Palabras y direcciones de memoria enteras

N Bytes	N bits	min	max
1 Byte	8 bits	127	-128
2 Bytes	16 bits	32,767	-32,768
3 Bytes	32 bits	2,147,483,647	-2,147,483,648

• Números reales aproximados (pag. 733)

Números binarios fraccionarios:

Norma IEEE 754-1985 punto flotante

Formato de datos	Bits de signo	Bits en mantisa	Bits de exponente	Total
Precisión simple	1	23	8	32
Precisión doble	1	52	11	64
Precisión extend	1	64	15	80

Esquema de bits:

$$31$$
 $30 < ... > 23$ $22 < > 0$
Signo Exponente Mantisa