SISTEMAS DIGITALES (2^a PARTE)

TRANSPARENCIAS EN FORMATO PDF

- Transparencias PDF
- Si hay algún error de forma en el documento PDF que dificulte su interpretación, por favor, enviar un mensaje para su correción. Gracias.

INDICE

Parte 1^a : Sistemas Digitales: Primera Parte

Tema 7: <u>Circuitos Secuenciales.</u>

Tema 8: Circuitos Digitales Integrados. Familias Lógicas.

Tema 9: **Memorias.**

Tema 10: Dispositivos de Lógica Programable (PLD).

Tema 11: Convertidores Analógico/Digitales DAC/ADC.

TEMA 7: CIRCUITOS SECUENCIALES

Introducción a los Sistemas Secuenciales:

- - Ejemplo
- - Celdas de Memoria: R S, J K, T y D Análisis y diseño de circuitos secuenciales síncronos:
- - Análisis de circuitos secuenciales síncronos.
- - Tablas de transiciones y diagramas de estados: Máquina de Mealy y Máquina de Moore.
- - Síntesis de sistemas secuenciales síncronos.

Circuitos biestables:

- - Definición de sistema secuencial.
- - Tipos y características: Asíncronos y síncronos.
- -- Biestables: R S, J K, T v D
- - Tiempos característicos en biestables.

Registros de desplazamiento:

- - Concepto de registro.
- - Registros de desplazamiento. Entrada serie, salida serie. Entrada serie, salida paralelo. Entrada paralelo, salida serie. Entrada paralelo, salida paralelo. Bidireccional.
- - Aplicaciones de los registros. Generador de secuencia. Contadores:
- - Contadores digitales y sus aplicaciones.
- - Contadores asíncronos. Contador de décadas.
- - Contadores síncronos. Acarreo en serie y paralelo.
- - Contador reversible.
- - Contadores basados en registros de desplazamiento: en anillo, Johnson, con protección.

INTRODUCCIÓN A LOS SISTEMAS DIGITALES SECUENCIALES

- Diseñar el controlador digital de un ascensor para un edificio de 2 plantas
 - Motor del ascensor: El eje del motor eléctrico tiene un engranaje sobre el que se acopla una cadena unida al ascensor.
 - Si el motor gira a la izda el ascensor sube y si gira a la derecha el ascensor baja.
 - En cada planta hay botón para solicitar el servicio del ascensor.
 - Dentro del ascensor hay un botón por planta para solicitar el destino del ascensor.
 - En cada planta hay un sensor para detectar la llegada del ascensor.

CONTROLADOR DIGITAL DE UN ASCENSOR

- Dibujar un esquema con los componentes del sistema: plantas del edificio, motor, cadena, ascensor, botones.
- Definir y codificar las entradas lógicas del controlador digital.
- Definir y codificar las salidas lógicas del controlador digital.
- Definir y codificar los estados del sistema.
- Dibujar el diagrama de estados del sistema (estados, transiciones, entradas, salidas).
- Desarrollar las 3 tablas:
 - transición de estados, excitación de biestables (pej JK) y funciones de salida.

UNIDADES DE MEMORIA: BIESTABLES

- Una celda de memoria es un dispositivo capaz de almacenar un bit (estados lógicos o y 1) y sobre el que se pueden realizar distintas operaciones como:
 - escribir el estado cero, escribir el estado uno, invertir su estado, no cambiar el estado, etc
 ..
 - leer el estado
- Las celdas de memoria tienen 2 terminales de entrada para las operaciones de escritura y 2 terminales de salida para las operaciones de lectura. Además si son síncronas tienen 1 terminal para la señal de reloj.
- Las celdas de memoria que admiten dos estados estables reciben el nombre de Biestables.
- Sincronismo:
 - Los biestables que realizan la operación de escritura de forma síncrona, respondiendo a la entrada en el instante de pendiente positiva o negativa de una señal reloj, reciben el nombre de **Flip-Flop**.
- Los biestables que realizan la operación de escritura inmediatamente después de un cambio en la entrada reciben el nombre de **Latch**.

TIPOS DE BIESTABLES

Table 1. Flip-Flop S-R

11		1.
Table	\	Clin
Table	- 2.	FIII
- 401	•	L

Clk	S	R	Q_{n+1}	\overline{Q}_{n+1}	Operación
1	0	О	Q_n	\overline{Q}_n	No cambia
↑	0	1	0	1	RESET
↑	1	О	1	O	SET
↑	1	1	X	X	Indeterminado
Resto	X	X	Q_n	\overline{Q}_n	No cambia

Clk	J	K	Q_{n+}
1	0	0	Q_n
1	O	1	O
1	1	O	1
1	1	1	\overline{Q}_n
Resto	X	X	Q_n

TIPOS DE BIESTABLES

Table 3. Flip-Flop D (Data)

Clk	D	Q_{n+1}	\overline{Q}_{n+1}	Operación
↑	0	0	1	RESET
↑	1	1	0	SET
Resto	X	Q_n	\overline{Q}_n	No cambia

Table 4. Flip-Flop T (Toogle)

Clk	Т	Q_{n+1}	\overline{Q}_{n+1}
↑	0	Q_n	\overline{Q}_n
1	1	\overline{Q}_n	Q_n
Resto	X	Q_n	\overline{Q}_n

SÍMBOLOS DE LOS BIESTABLES

- S-R, J-K, D, T.
 - Sincronismo con la pendiente + ó del reloj.

CRONOGRAMAS: SEÑALES BINARIAS DE ESCRITURA Y LECTURA DE BIESTABLES

CONTROLADOR DEL ASCENSOR PARA 2 PLANTAS

- 1. Definir estados
 - Estados: Ascensor en planta baja PB, en planta alta PA, subiendo SUB, bajando BAJ
- 2. Definir entradas
 - botón destino planta baja (BDB), botón destino planta alta (BDA)
 - botón llamada desde planta baja (BLB), botón llamada desde planta baja (BLB)
 - sensores: planta baja SB y planta alta SA
- 3. Definir salidas
 - motor subiendo: MS
 - motor bajando: MB
 - motor parador: MP

C. ASCENSOR: DIAGRAMA DE ESTADOS

- El diagrama es una representación gráfica de las transiciones entre estados y las entradas y salidas del sistema.
- Máquina tipo MOORE: las salidas únicamente dependen del estado de la máquina digital

 → salidas síncronas
 - Representar los estados con círculos: dentro del círculo el estado y la salida del sistema correspondiente.
 - Representar las transiciones entre estados mediante: Flecha entre dos estados y sobre la flecha el valor de las entradas.
- Máquina tipo **MEALY**: las salidas en un instante dependen del estado de la máquina digital y de la entrada en ese mismo instánte
 - Representar los estados con círculos: dentro del círculo el estado.
 - Representar las transiciones entre estados mediante: Flecha entre dos estados y sobre la flecha el valor de las entradas y su salida correspondiente

C. ASCENSOR: DIAGRAMA DE ESTADOS

Cuando el motor se para en una planta:

--el sensor de dicha planta se resetea.

Transición PB-PB:.

--si se pulsa un botón para bajar: bdb ó blb.

--las entradas sa y sb no afectan.

Transición SUB-ŠUB:.

--mientras sa esté desactivado.

--no afectan ni los botones ni sb.

Transición PA-PA:

--si se pulsa un botón para subir: bda ó bla.

--las entradas sa y sb no afectan.

Transición BAJ-BAJ:.

--mientras sb esté desactivado.

--no afectan ni los botones ni sa

C. ASCENSOR: CODIFICACIÓN

Entradas del sistema:

--Cada entrada 1 bit : sa,sb,bdb,blb,bda y bla

Salidas del sistema:

--Para codificar las 3 salidas (MS,MB y MP) hacen falta 2 bits \rightarrow Z1,Z0

--Código de salida $\overline{Z1Z0} \rightarrow 00$ (MP), 01 (MS), 10 (MB) Estados del Sistema:

--Memoria \rightarrow celdas biestables flip-flop JK

--Para 4 estados son necesarias 2 celdas Q1 y Qo → señales de excitación J1,K1,Jo,Ko

--Códigos de los estados \rightarrow **Q1Q0** \rightarrow 00(PB), 01(SUB), 10(BAJ), 11(PA)

Excitación de los biestables:

--Para 2 biestables JK \rightarrow Para el biestable Q1 \rightarrow J1K1 y para el biestable Q0 \rightarrow J0K0

Table 5. Tabla transición JK

$Q_n->Q_{n+1}$	J	K
$0 \rightarrow 0$	O	X
$0 \rightarrow 1$	1	X
$1 \rightarrow 0$	X	1
$1 \rightarrow 1$	X	0

C. ASCENSOR: DIAGRAMA DE BLOQUES

Maquina de Estados Finitos (FSM)

MOORE

C. ASCENSOR: TABLAS DE ESTADOS, EXCITACIÓN DE BIESTABLES Y SALIDAS

- Convertir el diagrama de estados en 3 tablas
- MEMORIA: Es necesario escribir el estado SIGUIENTE q1q0 en los 2 biestables JK en función de:
 - El estado actual : q1q0
 - Las entradas del sistema: sa,sb,bdb,blb,bda y bla
- Las señales de escritura de los biestables son J1 y K1 para el biestable Q1 y J0 y K0 para el biestable Q0. Por lo tanto es necesario diseñar un CIRCUITO COMBINACIONAL para cada señal de escritura de la memoria:
 - J1(q1,q0,sa,sb,bdb,blb,bda,bla); K1(q1,q0,sa,sb,bdb,blb,bda,bla)
 - Jo(q1,qo,sa,sb,bdb,blb,bda,bla); Ko(q1,qo,sa,sb,bdb,blb,bda,bla)

C. ASCENSOR: TABLAS DE ESTADOS, EXCITACIÓN DE BIESTABLES Y SALIDAS

		ESTADOS ENTRADAS									DAS	EXCITACION BIESTABLES				
	ACTUAL SIGUIENTE					ENTRADAS							LACITACION DIESTABLES			
CLK	q1	q0	q1	q0	sa	sa sb bdb blb bda bla				z1	z0	J1	K1	JO	K0	
1	0	0	0	0							0	0	0	Х	0	Х

C. ASCENSOR: TABLAS DE ESTADOS, EXCITACIÓN DE BIESTABLES Y SALIDAS

		ESTA	oos		FNTPADAS								EXCITACION BIESTABLES -				
	ACT	UAL	SIGU	JIENTE		ENTRADAS S					SALI	SALIDAS		EVOLIACION DIESTABLES			
CLK	q1	q0	q1	q0	sa	sb	bdb	blb	bda	bla	z1	z0	J1	K1	J0	КО	
1	0	0	0	0	х	х	х	х	0	0	0	0	0	х	0	х	
1	0	0	0	1	х	х	х	х	1	0	0	1	0	х	1	х	
1	0	0	0	1	х	х	х	х	0	1	0	1	0	х	1	х	
1	0	0	0	1	х	х	х	х	1	1	0	1	0	х	1	х	
↑	0	1	0	1	0	х	х	х	х	х	0	1	0	х	х	0	
↑	0	1	1	1	1	х	х	х	х	х	0	0	1	х	х	0	
1	1	1	1	1	х	х	0	0	х	х	0	0	х	0	х	0	
†	1	1	1	0	х	х	1	0	х	х	1	0	х	0	х	1	
1	1	1	1	0	х	х	0	1	х	х	1	0	х	0	х	1	
1	1	1	1	0	х	х	1	1	х	х	1	0	х	0	х	1	
†	1	0	1	0	х	0	х	х	х	х	1	0	х	0	0	х	
↑	1	0	0	0	х	1	х	х	х	х	0	0	х	1	0	х	

C. ASCENSOR: ECUACIONES LÓGICAS

$$ullet J_1 = sa \cdot \overline{q}_1 \cdot q_0$$

$$ullet K_1 = sb \cdot q_1 \cdot \overline{q}_0$$

$$ullet J_0 = \overline{q}_1 \cdot \overline{q}_0 \cdot (bda \cdot \overline{bla} + \overline{bda} \cdot bla + bda \cdot bla)$$

$$oldsymbol{G} oldsymbol{K}_0 = q_1 \cdot q_0 \cdot (\overline{bdb} \cdot blb + bdb \cdot \overline{blb} + bdb \cdot blb)$$

$$ullet Z_1 = q_1 \cdot \overline{q}_0$$

$$ullet Z_0 = \overline{q}_1 \cdot q_0$$

TEMA 8: CIRCUITOS DIGITALES INTEGRADOS. FAMILIAS LÓGICAS.

TEMA 9: MEMORIAS.

TEMA 10: DISPOSITIVOS DE LÓGICA PROGRAMABLE (PLD).

TEMA 11: CONVERTIDORES ANALÓGICO/DIGIALES DAC/ADC.

