

The Horizon Project Database

dapnia

saclay

<u>Jean-Paul Le Fèvre¹</u>, Hervé Wozniak², Julien Devriendt², Romain Teyssier³

¹CEA DAPNIA/SEDI/LILAS Saclay, France

²Centre de Recherche en Astronomie de Lyon, France

³CEA DAPNIA/SAp Saclay, France

The Horizon project

The HORIZON Project federates numerical simulation activities with a program focused on Galaxy and Large Scale Structure Formation. This project was built by several French research teams from different institutes. The

- > Carry out numerical study of galaxy formation in a cosmological framework.
- > Develop advanced techniques in parallel computing and in applied mathematics to model galaxy formation and predict their observational signatures, as a function of physical parameters.
- ➤ Gather experts in computational astrophysics, share their software products and expertise, and optimize their access to national and international supercomputing facilities
- > Provide the scientific community, and in particular the AstroParticle, Cosmological and Extragalactic communities (both observers and theoreticians), with a friendly access to state-of-the-art numerical sin rical simulations.

The Horizon context

Box sizes: 500, 100 and 20 Mpc/h. Unique set of initial conditions: 4096³, 2048³, 1024³, 512³ particles.

Types of simulation : periodic box, zoom on identified halos, idealized on

Types of simulation: periodic box, 20011 on identified malos, recalled on identified halos.

Types of models: pure N-body + semi-analytics post-processing, N-body and

gas dynamics, isolated halos with boundary conditions.

Types of code: PM-AMR (Ramses, Enzo, Pmcoll) TREE-SPH (Gadget, Multizoom)

- Outputs which will be available on line:

 > Halos, sub-halos and galaxy catalogs, merging trees.

 > All-sky or patch virtual images (y, X, visible, IR, mm, radio).

 > Mock spectra and spectro-images.

 > Raw data with images and movies.

N-body simulation (red temperature)

Merging of a small group of 5 disc galaxies

Located in HPC1 at Bruyère le Chatel. 3 quadri AMD64, 64 GB RAM + more on demand. Post-Processing, heavy-weight storage.

Horizon MiniGrid

6 nodes located in each main lab : Paris, IAP, Meudon, Saclay, Lyon, Marseille. Visualization, post-processing, light-weight

Personal Computer

Software clients.

Other computing centers : IDRIS (Centre national de la recherche scientifique), CINES (Ministère de la recherche), CCRT (Commissariat à l'énergie atomique).

The challenge

For the MareNostrum simulation : 1 million hours CPU

Firefox

The Horizon project plans to carry

The database has been designed to Enable data sharing as much as possible.

The database architecture

The mapping between tables and java objects in the web application is managed by the *Cayenne* library.

The web interface

The Horizon project main site: http://www.projet-horizon.fr/
The Gavo http://www.g-vo.org/portal/ Exploring Simulation Catalogues Onlin-The Virgo consortium http://www.virgo.dur.ac.uk/
The GallCS project: http://gallics.cosmologie.fr/
The Apache Cayenne framework: http://incubator.apache.org/cayenne/

The html pages display input forms and results from the queries. They are dynamically generated using JSP technology