THE LNM INSTITUTE OF INFORMATION TECHNOLOGY JAIPUR. RAJASTHAN

	57111 010, 107157	, , , , , , , , , , , , , , , , , , ,	
End Semester Exam Part-A		MATH-le: minutes, Maxi	II, 26th April, 2016 Mum Marks:———
Name:	Roll	No.:	
Note: Encircle/Tick the for correct answer and carry a treated as a wrong answer. U Write down the final answer,	n negative marking of 2 se only the last page of ma	mark for wrong answe ain answer sheet for rough	r. Overwriting will be
1. Let V be a vector space V . If S_1 spans V and S_2	e and let $S_1 = \{u_1, u_2, \dots \}$ is linearly independent,	$\{u_n\}$ and $S_2 = \{v_1, v_2, \dots \}$ then	$,v_m\}$ be two subset of
(A) $n \le \dim V \le m$	(B) $m \le \dim V \le n$	(C) $n < m \le \dim V$	(D) $\dim V < n < m$
2. Let V be a seven-dimension of V . Then $\dim(U \cap W)$	-	K, W both are six-dimension	onal distinct subspaces
(A) 6	(B) 2	(C) 5	(D) 1
3. Which of the following product defined by $\langle u, v \rangle$		thogonal pair in \mathbb{R}^2 with $u = (u_1, u_2), v = (v_1, v_2).$	
(A) $u = (1, 1) v = (1, -1)$ (C) $u = (1, -1), v = (3, -1)$,	(B) [<i>u</i> (D) <i>u</i>	u = (1, -1), v = (2, 3) = $(1, 1), v = (-1, -1)$
4. An interval in which the Sol: $0 < t < \infty$	IVP $xy' + 2y = 4x^2, y(1) =$	= 2 has unique solution is _	
5. Third Picard's successive Sol: $2x^2 + 2x^4 + \frac{4x^6}{3}$	re approximation of the IVI	P y' = 4x(1+y), y(0) = 0 is	3
	e linear non-homogeneous o a solution for	s equation $y'' + p(x)y' + \cdots$	
7. A particular solution fo Sol: $-(1/2)x\cos 2x + (1/2)x\cos 2x$			

8. Inverse Laplace trasformation for $\ln(1+\frac{4a^2}{s^2})$ is _____. Sol: $\frac{2}{t}[1-\cos 2at]$