Modeling Intervention Strategies for United States TB Control

Jessica Ginepro, Emma Hartman, Ryo Kimura, Matthew McDermott, Colin Pawlowski, & Dylan Shepardson Mathematical Modeling Group, Mount Holyoke College, South Hadley, MA, USA

Introduction

Epidemiological models offer insight into the structure of disease outbreaks and the merits of various interventions. Compartmental differential equation models are a common model in which populations move between various health states, or compartments, according to predetermined rates. This work is an extension of the Hill Model, a complex compartmental model of tuberculosis (TB) in the United States.

The Basic Hill Model

Populations:

- ► US Born (USB)
- ► Foreign Born (FB)
 Individuals also leave the model due to natural

Figure: A flow chart representing death. the compartments of the Hill Model.

Figure: The source population of US TB incidence

Analyzing US TB Reduction Strategies

- ► Implemented in R, with various numerical DE solvers
- ► Tracks US Health Care System (HCS) cost
- ► Tracks statistics about various health states

Intervention Analysis

Figure: Incidence/million in USB, FB, and total populations, given 0%, 50%, 75%, or 100% treatment of incoming LTBI.

Figure: Incidence/million in USB, FB, and total populations, given 0%, 100%, or 300% LTBI treatment increase.

Economic Modeling

- ► Tracks treatment costs for various disease states
- ► Estimates implementation cost of intervention

Figure: Cumulative implementation costs, US HCS savings, and net US costs of LTBI arrival cure rates. Cost/case cured was \$600, \$800, and \$1000 for 50%, 75%, and 100% cured.

An Agent-Based Implementation

Agent-based models capture disease dynamics on the individual level, and reflect stochasticity and granularity lost in compartmental models.

Agent-based counterparts to the Hill model were implemented in Netlogo and C++.

Figure : Incidence/million for R and NetLogo models (12 runs, $\Delta t = 0.1$, popConst = 100)

Figure : Incidence/million for R and C++ models (2100 runs, $\Delta t = 0.01$, popConst = 1)

Stochastic Models as a Measure of Variability

Figure : Distribution of USB Incidence (C++) with fitted Normal curve

Figure : Distribution of FB Incidence (C++) with fitted Normal curve

References

Hill, A. N., Becerra, J. E., & Castro, K. G. (2012). Modelling tuberculosis trends in the USA. Epidemiology and infection, 140(10), 1862.