

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

A 1				
	3	m		
1 1	a	m	C	

KARRAR ALJANAHI

UB Person Number:

5	0	2	6	4	8	1	O
	① ① ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	(a) (b) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	0 1 2 3 4 5 6 7 8 9	0 1 2 3 6 6 7 8 9	○ ①② ③ ④⑤ ⑥ ⑦◎ ⑨	0 2 3 4 5 6 7 8 9	● ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
3							-	

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ \boxed{b} \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

10

Linearly Depudent

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute
$$A^{-1}$$
.

 $A \cdot A^{-1} = I_3$

$$\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & | & 0 & 1 & 0 \\ 0 & 2 & | & 0 & 0 & 1 \end{bmatrix} R_2 \rightarrow R_2 - R_1 \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & | & 0 & | \\ 0 & 1 & -1 & | & 0 & | & 0 & | \\ 0 & 2 & 1 & | & 0 & 0 & | \end{bmatrix} R_3 \rightarrow R_3 - 2R_1 \begin{bmatrix} 1 & 0 & 1 & | & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 & | & 0 & | \\ 0 & 0 & 1 & | & 0 & | & 0 & | & 0 \\ 0 & 1 & -1 & | & 1 & 0 & | & 0 & | & 0 \\ 0 & 1 & -1 & | & 1 & 0 & | & 0 & | & 0 \\ 0 & 1 & -1 & | & 1 & 0 & | & 0 & | & 0 \\ 0 & 0 & 1 & | & 2_3 - 2_3 & | & 3 \end{bmatrix} R_3 \rightarrow R_3 - R_3$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2/3 & -2/3 & 1/3
\end{bmatrix}
R_2 \rightarrow R_2 + R_3
\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 1 & \frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{bmatrix}
R_1 \rightarrow R_1 - R_3$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

me matrix as in Problem 2, and let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 &$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors **u** satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$A) \top \left(\begin{bmatrix} \chi_1 \\ \chi_\nu \end{bmatrix} \right) = \begin{bmatrix} \chi_1 - 2\chi_2 \\ \chi_1 + \chi_2 \\ \chi_1 - 3\chi_2 \end{bmatrix} = \chi_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \chi_2 \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

Standard Matrix =
$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

B)
$$x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 10 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & -3 & -2 \end{bmatrix} R_1 \rightarrow R_1 - R_2 \begin{bmatrix} 1 & -2 & 1 \\ 0 & -3 & -1 \\ 1 & -3 & -2 \end{bmatrix} R_2 \rightarrow R_2 + R_2 \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix} R_1 \rightarrow 2R_3 + R_1$$

$$\begin{bmatrix} 1 & 0 & 7 \\ 0 & 0 & 3 \\ 0 & 1 & 3 \end{bmatrix} R_3 \leftrightarrow R_2 \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} X_1 = 7 \quad W = \begin{bmatrix} 7 \\ 3 \\ 0 & 0 \end{bmatrix}$$

$$\begin{cases} x_1 & y_2 \\ y_3 & y_2 \\ y_4 & y_4 & y_4 \\ y_5 & y_6 & y_6 \end{bmatrix} X_2 = 3$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not.) If T_A is not one-to-one, find two vectors $\underline{\mathbf{v}}_1$ and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$. $A \cdot V = b$ $T_A(V_1) = T_A(V_2)$

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{b)} \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A \cdot V = b$
 $A \cdot V =$

one-to-one Pivot Posita meter) column

A)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix} R_3 \rightarrow R_3 - 3R_1 \begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix} R_2 \Rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix} R_3 \rightarrow R_3 - R_2$$

$$R_1 \longrightarrow \frac{1}{2} R_1 \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 1 & 4 \end{array} \right] R_1 \rightarrow R_1 - R_2$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix} \xrightarrow{R_3} \xrightarrow{R_2 - R_3} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & -2 \end{bmatrix} \xrightarrow{R_3} \xrightarrow{-1} \xrightarrow{R_3} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \rightarrow 2R_3 + R_2} \xrightarrow{R_3} \xrightarrow{R_$$

$$R_3 \rightarrow -\frac{1}{2}R_3 \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} R_2 \rightarrow 2R_3 + R_2$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_1 \rightarrow 2R_3 + R_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$V, con be \begin{bmatrix} 1\\0 \end{bmatrix}$$
 $V_2 conbe \begin{bmatrix} -1\\0 \end{bmatrix}$

$$R_1 \rightarrow R_1 - R_3 \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix} R_2 \rightarrow \frac{1}{2} R_2$$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

$$M = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{All } M = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \text{Mean } M = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

True 1

W+WGSpm(U,V) [] + [] ESpm [[]] True [i] ESpa ([i] [i]) The

Since W+ U is milac Spon of U, U their combination of [] combe made from C, u +CzV = W+U If youlet 4=1 ad Czsl 44 V = W+M Sme VEW Wis a spart V Which Makes WESPALLIND Fre

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the

N=[0] V=[0] W=[0] In malforder mens one trivial Solution

TO AX=b

TRUE

Since U, V, and W are knearly indifferent tout means all columns on A are proct columns. So if you were to renove a vector w for example and solve for malfabrer with u and V you are left with a 3 x 2 matrix with proof positions in every column so tack are In Eferda.

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

A = [0] [0] [0] [0] [1] [A = [1] of and
$$U = [0]$$
 and $U = [0]$ and $U = [0]$

Au = [0] [0] [0] = [0] then $AV = [0]$ and $Au = [0]$

Av = [0] [0] = [0] Since these two bectors are NOT scalar multiples of executive this statement is

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(V, v).

false.