U.S. Risk and Treasury Convenience

Giancarlo Corsetti¹ Simon Lloyd² Emile Marin³ Daniel Ostry²

¹European University Institute and C.E.P.R.

²Bank of England and Centre for Macroeconomics

³U.C. Davis

June 2025

The views expressed here do not necessarily reflect the position of the Bank of England.

Is The U.S. Still 'Safe'?

- * U.S. equities have consistently outperformed the rest-of-world since GFC
 - * High excess equity returns consistent with compensation for risk
- * Returns on a carry-trade portfolios funded in USD largely unchanged over time
 - \star Suggests USD insulated from risk—i.e. no increase in risk

Is The U.S. Still 'Safe'?

- * U.S. equities have consistently outperformed the rest-of-world since GFC
 - * High excess equity returns consistent with compensation for risk
- * Returns on a carry-trade portfolios funded in USD largely unchanged over time
 - * Suggests USD insulated from risk—i.e. no increase in risk

Inconsistent with no-arbitrage in canonical two-country, complete-market models:

Carry-trade returns = Cross-country risk differential

How can theory be reconciled with the data?

Is The U.S. Still 'Safe'?

- * U.S. equities have consistently outperformed the rest-of-world since GFC
 - * High excess equity returns consistent with compensation for risk
- * Returns on a carry-trade portfolios funded in USD largely unchanged over time
 - * Suggests USD insulated from risk—i.e. no increase in risk

Inconsistent with no-arbitrage in canonical two-country, complete-market models:

Carry-trade returns = Cross-country risk differential + Complete-markets deviation

- \star Investors willing to forego returns on U.S. bonds due to non-pecuniary (convenience) yields
- ⇒ **Key Proposition:** Cross-country risk differentials reflected in convenience yields

This Paper

- #1. Two-country model with trade in bonds of various maturities with convenience yields
 - ⇒ -ve relationship relative permanent risk and flow convenience on long-maturity bonds
- #2. Document U.S. **permanent** risk has \uparrow by \sim **15p.p.** vs. G.7 since 2008
 - Transitory risk has not ⇒ U.S. 'safe' at business-cycle frequency
- #3. Find single cointegrating relationship b/w permanent risk and long-maturity convenience
 - \Rightarrow \uparrow rel. U.S. permanent risk explains \sim **20-33**% of \downarrow long-maturity U.S. convenience (2002-6, 2010-14)

Related Literature (Non Exhaustive)

Measuring SDF risk with equity returns [Hansen & Jagannathan, 1991; Bansal & Lehmann, 1997; Alvarez & Jermann, 2005]

 \rightarrow **Extend permanent-risk measure**, accounting for noise, 'good luck', expected vol. and conv.

Analyses of **convenience yields** have focused on:

- Measurement and drivers (limits to arbitrage, bond supply) [Du et al., 2018a,b; Jiang et al., 2024]
- Association with FX at short horizons [Engel & Wu, 2018; Krishnamurthy & Lustig, 2019]
- \rightarrow 'Macro' explanation for long-maturty long-maturity convenience yield determination

Asymmetries in International Monetary System

- U.S. 'exorbitant privilege' and seignorage from convenience
- [Gourinchas et al., 2010; Jiang et al., 2024]
- But faces USD appreciation in bad times (flights-to-safety)
- [Maggiori, 2017; Kekre & Lenel, 2021]
- U.S. risk has ↑ since 2000s, eroding external-asset returns
- [Farhi & Gourio, 2018; Atkeson et al., 2022]
- \rightarrow \uparrow relative U.S. **permanent** risk explains \downarrow long-maturity UST conv. and \leftrightarrow carry-trade returns

Stylized Facts

Fact 1. Rising Expected U.S. Equity Premia

Volatility of U.S. representative investor SDF (risk) bounds Sharpe ratio on equity

[Hansen & Jaganathan 1991; Alvarez & Jermann 2005]

In part, reflects ↑ profits from U.S. tech. adv. and/or structural changes

[Atkeson et al., 2023; Greenwald et al., 2023; Eckhout 2025]

U.S. net G.7. realized equity premium

Fact 1. Rising Expected U.S. Equity Premia

Volatility of U.S. representative investor SDF (risk) bounds Sharpe ratio on equity

[Hansen & Jaganathan 1991; Alvarez & Jermann 2005]

In part, reflects ↑ profits from U.S. tech. adv. and/or structural changes

[Atkeson et al., 2023; Greenwald et al., 2023; Eckhout 2025]

► But significant ↑ was expected:

$$\log \mathbb{E}_t \left[\frac{R_{t,t+1}^g}{R_t} \right] :\approx \frac{D_t}{P_t} + g_t^e - (r_t - \pi_t^e)$$

[Gordon 1962, Campbell & Thompson 2007, Farhi & Gourio 2018, Bordalo et al. 2020, De La'O & Myers 2021]

U.S. net G.7. average expected equity premium

⇒ Drives our model-implied measure of relative risk

Fact 2. Carry-Trade Returns Not Trending

$$\mathbb{E}_t[rx_{t+1}^{CT,(k)}] := \underbrace{\mathbb{E}_t[rx_{t+1}^{FX}]}_{\text{Currency Returns}} + \underbrace{\mathbb{E}_t[rx_{t+1}^{(k)*}] - \mathbb{E}_t[rx_{t+1}^{(k)}]}_{\text{Difference in Local Bond Returns}}$$

Carry-Trade Returns on 6M Bonds, USD vs. G.7

Carry-Trade Returns on 10Y Bonds, USD vs. G.7

- ➤ x Bond Convenience: investors accept lower yield vs. other (safe) investments
 - Collateral value
 - Ease of resale

- ► ∝ **Bond Convenience**: investors accept lower yield vs. other (safe) investments
 - Collateral value
 - Ease of resale
- 'U.S. Treasury Premium': deviation from covered interest parity
 [Du et al., 2018]

$$CIP_t^{(k)} = \underbrace{r_t^{(k)*}}_{\text{Foreign-Bond Ret.}} - \underbrace{r_t^{(k)} + f_t^{(k)} - e_t}_{\text{UST Ret. in For. Curr.}}$$

 $\Rightarrow CIP_t^{(k)} > 0$ if UST more convenient

- ➤ x Bond Convenience: investors accept lower yield vs. other (safe) investments
 - Collateral value
 - Ease of resale
- 'U.S. Treasury Premium': deviation from covered interest parity
 [Du et al., 2018]

$$CIP_t^{(k)} = \underbrace{r_t^{(k)*}}_{ ext{Foreign-Bond Ret.}} - \underbrace{r_t^{(k)} + f_t^{(k)} - e_t}_{ ext{UST Ret. in For. Curr.}}$$

 $\Rightarrow CIP_t^{(k)} > 0$ if UST more convenient

Short-Maturity (6M) U.S. Treasury Premium

- ➤ x Bond Convenience: investors accept lower yield vs. other (safe) investments
 - Collateral value
 - Ease of resale
- 'U.S. Treasury Premium': deviation from covered interest parity
 [Du et al., 2018]

$$CIP_t^{(k)} = \underbrace{r_t^{(k)*}}_{\text{Foreign-Bond Ret.}} - \underbrace{r_t^{(k)} + f_t^{(k)} - e_t}_{\text{UST Ret. in For. Curr.}}$$

 $\Rightarrow CIP_t^{(k)} > 0$ if UST more convenient

► Our Focus: Long-maturity convenience

Long-Maturity (10Y) U.S. Treasury Premium

▶ Measurement ▶ Co

► Country-by-Country

Model

Model of Risk, Returns and Convenience

- Two countries: H (U.S.) and F (*)
- Representative investor pricing kernels: Λ_t , Λ_t^* (SDF: $M_{t,t+k} = \Lambda_{t+k}/\Lambda_t$)
- $\Lambda_t = \Lambda_t^\mathbb{P} \Lambda_t^\mathbb{T}$ such that $\Lambda_t^\mathbb{P}$ is a martingale ($\Lambda_t^\mathbb{P} = \mathbb{E}_t[\Lambda_{t+1}^\mathbb{P}]$) [Alvarez & Jermann, 2005]
 - $M^{\mathbb{P}}_{t,t+1}=\Lambda^{\mathbb{P}}_{t+1}/\Lambda^{\mathbb{P}}_{t}$: **Permanent** component reflects long-run level of e.g. consumption growth
 - $M_{t,t+1}^{\mathbb{T}}=\Lambda_{t+1}^{\mathbb{T}}/\Lambda_t^{\mathbb{T}}$: **Transitory** component reflects 'smoothable' consumption growth
- Conditional entropy (volatility) of SDF to measure country risk:

$$\mathcal{L}_t\left(M_{t+1}\right) = \mathbb{E}_t \ln M_{t+1} - \ln(\mathbb{E}_t M_{t+1}) \approx \frac{1}{2} \mathsf{var}_t(M_{t+1})$$

Model of Risk, Returns and Convenience

- · Two countries: H (U.S.) and F (*)
- Representative investor pricing kernels: Λ_t , Λ_t^* (SDF: $M_{t,t+k} = \Lambda_{t+k}/\Lambda_t$)
- $\Lambda_t=\Lambda_t^\mathbb{P}\Lambda_t^\mathbb{T}$ such that $\Lambda_t^\mathbb{P}$ is a martingale ($\Lambda_t^\mathbb{P}=\mathbb{E}_t[\Lambda_{t+1}^\mathbb{P}]$)
 - $M^{\mathbb{P}}_{t,t+1}=\Lambda^{\mathbb{P}}_{t+1}/\Lambda^{\mathbb{P}}_{t}$: **Permanent** component reflects long-run level of e.g. consumption growth
 - $M_{t,t+1}^{\mathbb{T}}=\Lambda_{t+1}^{\mathbb{T}}/\Lambda_{t}^{\mathbb{T}}$: **Transitory** component reflects 'smoothable' consumption growth
- Conditional entropy (volatility) of SDF to measure country risk:

$$\mathcal{L}_t\left(M_{t+1}
ight) = \mathbb{E}_t \ln M_{t+1} - \ln(\mathbb{E}_t M_{t+1}) pprox rac{1}{2} \mathsf{var}_t(M_{t+1})$$

- · Trade in:
 - #1. **Bonds**: pecuniary returns + non-pecuniary convenience
 - #2. **Equities**: pecuniary returns
 - #3. Foreign Exchange

[Alvarez & Jermann, 2005]

Bond Markets

Agents invest in term structure of H and F zero-coupon bonds, with maturity $k=1,2,...,\infty$:

Home Investor (U.S.):

Foreign Investor:

$$e^{-\theta_t^{H,H(k)}} = \mathbb{E}_t \left[M_{t,t+k} R_t^{(k)} \right]$$

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* R_t^{(k)*} \right]$$

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_{t+k}}{\mathcal{E}_{t}} R_t^{(k)*} \right]$$

$$e^{-\theta_t^{F,H(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_t}{\mathcal{E}_{t+k}} R_t^{(k)} \right]$$

where \mathcal{E}_t exchange rate \uparrow is a Foreign currency appreciation

Bond Markets

Agents invest in term structure of H and F zero-coupon bonds, with maturity $k=1,2,...,\infty$:

Home Investor (U.S.):

Foreign Investor:

$$e^{-\theta_t^{H,H(k)}} = \mathbb{E}_t \left[M_{t,t+k} R_t^{(k)} \right]$$

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* R_t^{(k)*} \right]$$

$$e^{-\theta_t^{H,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_{t+k}}{\mathcal{E}_t} R_t^{(k)*} \right]$$

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_t}{\mathcal{E}_{t+k}} R_t^{(k)} \right]$$

where \mathcal{E}_t exchange rate \uparrow is a Foreign currency appreciation

Assumption 1 (Convenience-Yield Term Structure)

Term structure of convenience yields $\theta_t^{i,j(k)}$ (investor i, bond j, maturity k) is observable at time t.

Bond Markets

Agents invest in term structure of H and F zero-coupon bonds, with maturity $k=1,2,...,\infty$:

Home Investor (U.S.):

Foreign Investor:

$$e^{-\theta_t^{H,H(k)}} = \mathbb{E}_t \left[M_{t,t+k} R_t^{(k)} \right]$$

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* R_t^{(k)*} \right]$$

$$e^{-\theta_t^{H,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_{t+k}}{\mathcal{E}_t} R_t^{(k)*} \right]$$

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_t}{\mathcal{E}_{t+k}} R_t^{(k)} \right]$$

where \mathcal{E}_t exchange rate \uparrow is a Foreign currency appreciation

Assumption 1 (Convenience-Yield Term Structure)

Term structure of convenience yields $\theta_t^{i,j(k)}$ (investor i, bond j, maturity k) is observable at time t.

Assumption 2 (Complete Spanning)

In the limit of complete spanning $\Delta e_{t+1} = m^*_{t+1} - m_{t+1} + \theta^{F,H(1)}_t - \theta^{H,H(1)}_t$

Equity Markets

Agents also invest in at least one domestic risky asset:

$$1 = \mathbb{E}_{t} \left[M_{t,t+1} R_{t,t+1}^{g} \right]$$
$$1 = \mathbb{E}_{t} \left[M_{t,t+1}^{*} R_{t,t+1}^{g*} \right]$$

Assumption 3 (Equities and Convenience)

Investors trade in domestic risky asset (return $R_{t,t+1}^g$) whose convenience is normalized to zero.

Short-Maturity Equilibrium

Eulers and FX process imply tight link b/w relative *total* risk, one-period pecuniary currency returns ($rx_{t+1}^{FX} = r_t^* - r_t + \Delta e_{t+1}$) and non-pecuniary convenience yields

Proposition 1 (Short-Maturity Equilibrium)

$$\mathbb{E}_t[rx_{t+1}^{FX}] = \underbrace{\mathcal{L}_t(M_{t,t+1}) - \mathcal{L}_t(M_{t,t+1}^*)}_{\text{Rel. Total Risk}} + \underbrace{\theta_t^{F,H(1)} - \theta_t^{F,F(1)}}_{\text{Rel. Convenience}}$$

↑ relative U.S. total risk can generate adjustment through two channels:

- * **FX Risk Premia**: USD depreciates \to Foreign investors earn higher Foreign bond returns: $rx_{t+1}^{FX} \uparrow$
- * Convenience Yields: Foreign investors earn lower UST convenience: $(\theta_t^{F,H(1)} \theta_t^{F,F(1)}) \downarrow$

Long-Maturity Equilibrium

Proposition 2 (Long-Maturity Equilibrium)

$$\mathbb{E}_t[rx_{t+1}^{CT(\infty)}] = \underbrace{\mathcal{L}_t(M_{t,t+1}^{\mathbb{P}}) - \mathcal{L}_t(M_{t,t+1}^{\mathbb{P}*})}_{\text{Rel. Permanent Risk}} + \underbrace{\mathbb{E}_t[\theta_{t,t+1}^{F,H(\infty)}] - \mathbb{E}_t[\theta_{t,t+1}^{F,F(\infty)}]}_{\text{Rel. Long-Maturity Holding-Period Convenience}}$$

Absent convenience (with complete markets) long-horizon UIP holds $(\mathbb{E}_t[rx_{t+1}^{CT(\infty)}] \approx 0)$ \Rightarrow permanent risk equalized across countries $\mathcal{L}(M_{t,t+1}^{\mathbb{P}}) = \mathcal{L}(M_{t,t+1}^{\mathbb{P}^*})$ [Lustig et al., 2019]

With convenience Δ rel. permanent risk can generate adjustment through non-pecuniary yields:

$$\left(\mathcal{L}(M_{t,t+1}^{\mathbb{P}}) - \mathcal{L}(M_{t,t+1}^{\mathbb{P}^*})\right) \uparrow \longleftrightarrow \left(\mathbb{E}_t[\theta_{t,t+1}^{F,H(\infty)}] - \mathbb{E}_t[\theta_{t,t+1}^{F,F(\infty)}]\right) \downarrow$$

 \Rightarrow Rel. permanent risk + convenience yield term must be $\mathcal{I}(0) \implies$ cointegration

Measurement

Total, Permanent and Transitory Risk

Total Risk: Lower bound conditional SDF volatility (where $R_{t,t+1}^g$ is 'riskiest' return in economy):

$$\mathcal{L}_{t}(M_{t,t+1}) \geq \underbrace{\log \mathbb{E}_{t} \left[\frac{R_{t,t+1}^{g}}{R_{t}} \right]}_{\text{Growth Optimal Portfolio}} - \underbrace{\mathcal{L}_{t} \left[\frac{R_{t,t+1}^{g}}{R_{t}} \right]}_{\approx VIX^{2}/2 \text{ (Martin, 2017)}} - \underbrace{\theta_{t}^{H,H(1)}}_{\text{Convenience}}$$

Total, Permanent and Transitory Risk

Total Risk: Lower bound conditional SDF volatility (where $R_{t,t+1}^g$ is 'riskiest' return in economy):

$$\mathcal{L}_{t}(M_{t,t+1}) \geq \underbrace{\log \mathbb{E}_{t} \left[\frac{R_{t,t+1}^{g}}{R_{t}} \right]}_{\text{Growth Optimal Porftolio}} - \underbrace{\mathcal{L}_{t} \left[\frac{R_{t,t+1}^{g}}{R_{t}} \right]}_{\approx VIX^{2}/2 \text{ (Martin, 2017)}} - \underbrace{\theta_{t}^{H,H(1)}}_{\text{Convenience}}$$

Permanent Risk: Lower bound for permanent SDF volatility

$$\mathcal{L}_{t}\left(M_{t,t+1}^{\mathbb{P}}\right) \geq \underbrace{\log \mathbb{E}_{t}\left[\frac{R_{t,t+1}^{g}}{R_{t}}\right]}_{\text{Growth Optimal Porftolio}} - \underbrace{\mathcal{L}_{t}\left[\frac{R_{t,t+1}^{g}}{R_{t}}\right]}_{\approx VIX^{2}/2 \text{ (Martin, 2017)}} - \underbrace{\mathbb{E}_{t}\left[rx_{t+1}^{(\infty)}\right]}_{\propto \text{Trans. Risk}} - \underbrace{\mathbb{E}_{t}\left[\theta_{t+1}^{H,H(\infty)}\right]}_{\text{Holding-Period Convenience}}$$

Measuring Permanent and Transitory Risk

Relative U.S. net G.7. Permanent Risk

Relative U.S. net G.7. Transitory Risk

Measuring Convenience

· Conv. yield differentials (κ -maturity) $\theta_t^{F,H(\kappa)} - \theta_t^{F,F(\kappa)} \propto CIP_t^{(\kappa)}$ with coef. $\frac{1}{1-\beta_{\kappa}^*}$

▶ Euler

· Assume some flow of convenience per period:

$$\theta_t^{F,H(\kappa)} - \theta_t^{F,F(\kappa)} = \omega^{(\kappa)} \left(\theta_t^{F,H(\kappa)} - \theta_t^{F,F(\kappa)} \right) + \mathbb{E}_t \left[\theta_{t+1}^{F,H(\kappa-1)} - \theta_{t+1}^{F,F(\kappa-1)} \right]$$

- \Rightarrow holding-period convenience \propto level of CIP deviation with coef. $\frac{\omega^{(\kappa)}}{1-\beta_{\kappa}^{*}}$
 - · Cannot use off-the shelf methods to estimate ω,β due to non-stationarity and dependence on risk premia! [Jiang, Krishnamurthy and Lustig 2018]

Empirics

Dynamics of Long-Maturity Convenience and Permanent Risk

Derive FCM:

► ECM: Short-Run Adj.

► UR, Coint tests

$$\Delta CIP_t^{(10Y)} = \beta_0 + \beta_1 \Delta \mathcal{D}PermRisk_t + \beta_2 \Delta r x_{t+1}^{CT(10Y)} \cdots + \gamma \left[CIP_{t-1}^{(10Y)} - \alpha_1 \mathcal{D}PermRisk_{t-1} - \alpha_2 r x_t^{CT(10Y)} \right] + \varepsilon_t$$

Dynamics of Long-Maturity Convenience and Permanent Risk

Derive ECM:

► ECM: Short-Run Adj. ► UR, Coint

$$\Delta CIP_t^{(10Y)} = \beta_0 + \beta_1 \Delta \mathcal{D}PermRisk_t + \beta_2 \Delta r x_{t+1}^{CT(10Y)} \cdots + \gamma \left[CIP_{t-1}^{(10Y)} - \alpha_1 \mathcal{D}PermRisk_{t-1} - \alpha_2 r x_t^{CT(10Y)} \right] + \varepsilon_t$$

Panel A: Long-Run Adjustment	(1)	(2)	(3)	(4)
$\mathcal{D}PermRisk_t$	-0.496**	-1.037**		1
	(0.145)	(0.345)		
$\mathcal{D}TransRisk_t$				-0.014
				(0.400)
$rx_t^{CT(10Y)}$	0.123	0.181	0.136	0.140
	(0.112)	(0.224)	(0.106)	(0.130)
Deterministic Trend	Yes	No	Yes	Yes

Use estimated ECM to perform counterfactual:

"Given realized $rx_{t+1}^{CT(10Y)}$, how would $CIP_t^{(10Y)}$ have evolved if $\mathcal{D}PermRisk_t$ had evolved differently?"

Use estimated ECM to perform counterfactual:

"Given realized $rx_{t+1}^{CT(10Y)}$, how would $CIP_t^{(10Y)}$ have evolved if $\mathcal{D}PermRisk_t$ had evolved differently?"

Focus on post-crisis periods:

#1. **Dot-Com Bubble**: from 2000 to 2007

Use estimated ECM to perform counterfactual:

"Given realized $rx_{t+1}^{CT(10Y)}$, how would $CIP_t^{(10Y)}$ have evolved if $\mathcal{D}PermRisk_t$ had evolved differently?"

Focus on post-crisis periods:

#1. **Dot-Com Bubble**: from 2000 to 2007

Post Dot-Com Bubble

Counterfactual Paths for Long-Maturity CIP Deviation 2002:01-2006:12

 \Rightarrow Full model explains $\sim 90\% \downarrow$ 10Y CIP dev., of which $\sim 25\%$ due to \uparrow rel. permanent risk

Use estimated ECM to perform counterfactual:

Given realized path for $rx_{t+1}^{CT(10Y)}$, how would $CIP_t^{(10Y)}$ have evolved if $\mathcal{D}PermRisk_t$ had followed different path?

Focus on post-crisis periods:

#1. Dot-Com Bubble: from 2000 to 2007

#2. Global Financial Crisis: from 2008 to 2014

Contribution of Permanent Risk to Long-Maturity Convenience

Post Global Financial Crisis

Counterfactual Paths for Long-Maturity CIP Deviation 2002:01-2006:12

 \Rightarrow Full model explains $\sim 100\%$ \downarrow 10Y CIP dev., of which $\sim 33\%$ due to \uparrow rel. permanent risk

► Short-Run

lune 2025

Conclusion

- * Framework to jointly assess dimensions of U.S. 'specialness' in FX, bond and equity markets
- * Document rise in relative U.S. permanent risk vs G.7, reflected in rising equity risk premia
- \star \downarrow long-maturity UST convenience and \uparrow rel. U.S. permanent risk are two sides of same coin
 - * In Draft: investigate potential mechanism of dollar scarcity / fiscal sustainability

Appendix

Rising Equity Premia

Rel. U.S. vs. G.7 Ex Ante Eq. Premia

Rel. U.S. vs. G.7 Ex Post Eq. Premia

June 2025

Country-by-Country Equity Premia

U.S. vs. G.7 Ex Ante Eq. Premia

U.S. vs. G.7 Ex Post Eq. Premia

Country-by-Country Carry Trade Returns

Measuring CIP Deviations

Du, Im & Schreger (2018)

- · Bloomberg BFV govt. bond yield curves, interest-rate swaps and cross-currency basis swaps
- Short Maturities (<1Y): market-implied forward premium from forward and spot FX:

$$CIP_t^{(k)} := \frac{1}{k} \left[f_t^{(k)} - e_t \right]$$

Longer Maturities (≥1Y): poor liquidity of outright forwards, so quote CIP deviation through collection of interest-rate and cross-currency basis swaps:

$$CIP_t^{(k)} = r_{irs,t}^{(k)*} - bs_t^{(k)} - r_{irs,t}^{(k)}$$

- $\cdot r_{irs,t}^{(k)*}$: k-year swap exchanging fixed Foreign currency cash flows into floating interbank bmk. (i.e., LIBOR swap)
- + $bs_t^{(k)}$: k-year cross-currency basis swap exchanging floating Foreign currency rate for U.S. LIBOR
- $\cdot \; r_{irs,t}^{(k)} \cdot k$ -year U.S. LIBOR swap exchanging fixed USD cash flows into U.S. LIBOR

Country-by-Country CIP Deviations

10Y CIP Deviation

6M CIP Deviation

Mapping CIP to Cross-Country Convenience Yields

Measure relative U.S. Treasury convenience $\theta_t^{F,H(k)} - \theta_t^{F,F(k)}$ from CIP deviations

$$\mathbb{E}_t[M^*_{t,t+k}\frac{\mathcal{E}_t}{\mathcal{E}_{t+k}}\underbrace{\left(\frac{F_t^{(k)}}{\mathcal{E}_t}R_t^{(k)*}\right)}_{\text{Synthetic Treasury}}] = e^{-\theta_t^{F,F(k)}-\beta_k^*(\theta_t^{F,H(k)}-\theta_t^{F,F(k)})}$$

- $\beta_k^* = 1$: Foreign investor values a synthetic Treasury same as a U.S.-issued Treasury $\beta_k^* = 1$: U.S. Treasuries only convenient due to their currency
- $\beta_k^* < 1$: Intrinsic convenience from U.S. Treasury, beyond its currency denomination

$$\theta_t^{F,H(k)} - \theta_t^{F,F(k)} := \frac{1}{1 - \hat{\beta}_k^*} CIP_t^{(k)}$$

[Jiang, Krishnamurthy & Lustig 2021]

Maturity	6-month	1-year	10-year
\hat{eta}_k^*	0.77	0.88	0.84

Consider equilibrium FX processes with **incomplete-market wedge** η_{t+1} :

$$\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} = \frac{M_{t,t+1}^*}{M_{t,t+1}} e^{\eta_{t+1}}$$

Consider equilibrium FX processes with incomplete-market wedge η_{t+1} :

$$\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} = \frac{M_{t,t+1}^*}{M_{t,t+1}} e^{\eta_{t+1}}$$

Assumption 3 (Complete Spanning)

Consider
$$\lim \mathcal{L}_t(e^{\eta_{t+1}}) \to 0$$
, then: $\mathbb{E}_t[\eta_{t+1}] = \theta_t^{F,H(1)} - \theta_t^{H,H(1)} = \theta_t^{F,F(1)} - \theta_t^{H,F(1)}$

Consider equilibrium FX processes with **incomplete-market wedge** η_{t+1} :

$$\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} = \frac{M_{t,t+1}^*}{M_{t,t+1}} e^{\eta_{t+1}}$$

Assumption 3 (Complete Spanning)

Consider
$$\lim \mathcal{L}_t(e^{\eta_{t+1}}) \to 0$$
, then: $\mathbb{E}_t[\eta_{t+1}] = \theta_t^{F,H(1)} - \theta_t^{H,H(1)} = \theta_t^{F,F(1)} - \theta_t^{H,F(1)}$

* Exmpl. Mkt. Structure: trade in additional risky assets (with lower convenience yield than bonds) spanning both convenience yields and SDF risk

Consider equilibrium FX processes with **incomplete-market wedge** η_{t+1} :

$$\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} = \frac{M_{t,t+1}^*}{M_{t,t+1}} e^{\eta_{t+1}}$$

Assumption 3 (Complete Spanning)

Consider
$$\lim \mathcal{L}_t(e^{\eta_{t+1}}) \to 0$$
, then: $\mathbb{E}_t[\eta_{t+1}] = \theta_t^{F,H(1)} - \theta_t^{H,H(1)} = \theta_t^{F,F(1)} - \theta_t^{H,F(1)}$

* Exmpl. Mkt. Structure: trade in additional risky assets (with lower convenience yield than bonds) spanning both convenience yields and SDF risk

Delivers unique FX process: $\Delta e_{t+1} = m^*_{t,t+1} - m_{t,t+1} + \theta^{F,H(1)}_t - \theta^{H,H(1)}_t$

Consider equilibrium FX processes with **incomplete-market wedge** η_{t+1} :

$$\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} = \frac{M_{t,t+1}^*}{M_{t,t+1}} e^{\eta_{t+1}}$$

Assumption 3 (Complete Spanning)

Consider
$$\lim \mathcal{L}_t(e^{\eta_{t+1}}) \to 0$$
, then: $\mathbb{E}_t[\eta_{t+1}] = \theta_t^{F,H(1)} - \theta_t^{H,H(1)} = \theta_t^{F,F(1)} - \theta_t^{H,F(1)}$

* Exmpl. Mkt. Structure: trade in additional risky assets (with lower convenience yield than bonds) spanning both convenience yields and SDF risk

Delivers unique FX process: $\Delta e_{t+1} = m^*_{t,t+1} - m_{t,t+1} + \theta^{F,H(1)}_t - \theta^{H,H(1)}_t$

U.S. Bond Premia $rx_{t+1}^{(\infty)}$

U.S. Bond Premium

U.S. Relative Bond Premium

Note. Absolute and relative (avg. vs. other G.7) U.S. transitory risk, 2000:M2 to 2020:M12.

Dynamics of Long-Maturity Convenience and Permanent Risk

$$\Delta CIP_{t}^{(10Y)} = \beta_{0} + \beta_{1}\Delta\mathcal{D}PermRisk_{t} + \beta_{2}\Delta rx_{t+1}^{CT(10Y)} + \gamma \left[CIP_{t-1}^{(10Y)} - \alpha_{1}\mathcal{D}PermRisk_{t-1} - \alpha_{2}rx_{t}^{CT(10Y)}\right] + \varepsilon_{t}$$

Panel B: Short-Run Adjustment	(1)	(2)	(3)	(4)
$\Delta \mathcal{D} PermRisk_t$	-0.410**	-0.435**		<u> </u>
	(0.204)	(0.211)		
$\Delta PermRisk_t$			0.075	l
			(0.321)	l I
$\Delta PermRisk_t^*$			-0.375*	i
			(0.206)	1
$\Delta \mathcal{D} TransRisk_t$				-0.045
				(0.572)
$\Delta r x_{t+1}^{CT(10Y)}$	0.107*	0.104*	0.096	0.106*
0 1	(0.059)	(0.061)	(0.060)	(0.060)
Diseq. Adjustment $\hat{\gamma}$	-0.191***	-0.065***	-0.190***	-0.178***
	(0.038)	(0.022)	(0.037)	(0.037)
Engel-Granger Test Statistic	-4.335***	-2.707***	-4.331***	
Deterministic Trend	Yes	No	Yes	Yes

Panel Unit-Root Tests

Table: Panel Unit Root Test Results for Long-Maturity Variables

	$CIP_t^{(10Y)}$	$\mathcal{D}PermRisk_t$	$rx_{i,t+1}^{CT(10Y)}$
Pesaran's CADF	-1.24	-1.44*	-13.69***

Note. Pesaran (2007) CADF tests. H_0 : all panels include unit root. H_1 : at least one panel does not include a unit root.

Table: Panel Unit Root Test Results for Short-Maturity Variables

	$CIP_t^{(6M)}$	$\mathcal{D}TotRisk_t$	rx_{t+1}^{FX}
Pesaran's CADF	-6.87***	-5.68***	-12.83***

Note. Pesaran (2007) CADF tests. H_0 : all panels include unit root. H_1 : at least one panel does not include a unit root.

Long-Run Cointegration

Proposition 2 + Corollary imply equilibrium relationship of the form:

$$CIP_t^{(10Y)} = \alpha_0 + \alpha_1 \mathcal{D}PermRisk_t + \alpha_2 rx_{t+1}^{CT(10Y)} + \varepsilon_t$$

Cointegration tests confirm prediction of corollary:

Table: Inference on Cointegration

Null Hypothesis	trace	5% Crit. Val.	λ_{max}	5% Crit. Val.
r = 0	47.73	29.68	34.24	20.97
$r \le 1$	13.49	15.41	7.71	14.07
$r \leq 2$	5.78	3.76	5.78	3.76

Johansen (1991) trace-test trace and max.-eigenvalue-test λ_{max} statistics for # cointegrating vectors r. Sample:

2000m1-2021m3. H_1 : r+1 cointegrating vectors.

Panel Cointegration Tests

Table: Panel Cointegration Tests for Long-Run Variables

Test	$CIP_t^{(10Y)}$ and $\mathcal{D}PermRisk_t$
Mod. Phillips-Perron	-3.58***
Phillips-Perron	-3.19^{***}
ADF	-4.21^{***}
Westerlund Gt	-5.84***
Westerlund Ga	-7.32^{***}
Westerlund Pt	-4.51^{***}
Westerlund Pa	-6.19***

Note. Panel cointegration tests. H_0 : no cointegration. H_1 : all panels cointegrated.

Short-Maturity Association

Proposition 1 implies following equilibrium association:

$$CIP_t^{(6M)} = \delta_0 + \delta_1 \mathcal{D}TotRisk_t + \delta_2 rx_{t+1}^{FX} + \varepsilon_t$$

	(1)	(2)	(3)
$\Delta r x_{t+1}^{FX}$	0.392*	0.371^{*}	0.392*
	(0.232)	(0.215)	(0.228)
$\Delta \mathcal{D} TotRisk_t$		1.285	
		(1.757)	
$\Delta TotRisk_t$			0.980
			(1.247)
$\Delta TotRisk_t^*$			-0.166
			(0.591)