13. GBI-Tutorium von Tutorium Nr.31

Richard Feistenauer

6.Februar 2015

Inhaltsverzeichnis

- Äquivalenzrelationen
 - Kongruenz
 - Äquivalenzklassen
- 2 Halbordnung
 - Einführung
 - Besondere Elemente
 - Totale Ordnungen

Eigenschaften

Eigenschaften

- Reflexivität (∀x : xRx)
- Symmetrie $(\forall x, y : xRy \Rightarrow yRx)$
- Transitivität $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$

Beispiel:Kongruenz modulo n

$$xRy \Leftrightarrow (x - y) \mod n = 0$$

Beispiel:Kongruenz modulo n

$$xRy \Leftrightarrow (x - y) \mod n = 0$$

x und y sind genau dann äquivalent, wenn beide bei Division durch n den gleichen Rest liefern.

Zeige, dass R Äquivalenzrelation ist.

Beispiel:Kongruenz modulo n

$$xRy \Leftrightarrow (x - y) \mod n = 0$$

x und y sind genau dann äquivalent, wenn beide bei Division durch n den gleichen Rest liefern.

Zeige, dass R Äquivalenzrelation ist.

Reflexivität: x - x = 0

Symmetrie: wenn x - y vielfaches von n dann auch y - x = -(x - y)

Transitivität: x - y = k_1 * n und y - z = k_2 * n dann

$$x - z = (x - y) - (y - z) = (k_1 + k_2) * n$$

Aquivalentsklassen

- Die Äquivalenzklasse von $x \in M$ ist $\{y \in M : xRy\}$
- Schreibweise $[x]_R$ oder idR einfach [x]
- Die sog. Faktormenge von M nach R ist die Menge aller Äquivalenzklassen.

Beispiel: Kongruenz modulo 3

- Wie viele Äquivalenzklassen gibt es?
- Was sind diese Äquivalenzklassen, bzw wie schreibt man sie am besten auf?

Antisymmetrie

 \bullet R heißt antisymmetrisch, wenn für alle $x,y\in M$ gilt:

$$xRy \land yRx \Rightarrow x = y$$

Antisymmetrie

- R heißt antisymmetrisch, wenn für alle $x, y \in M$ gilt: $xRy \land yRx \Rightarrow x = y$
- In Worten: R ist nur bei Gleichheit symmetrisch.
- Beispiel: Teilmengen-Relation:
- $A \subset B \land B \subset A \Rightarrow A = B$

Einführung

- R heißt Halbordnung, wenn sie:
 - reflexiv
 - antisymmetrisch und
 - transitiv ist.
- Wenn R Halbordnung auf Menge M ist, nennt man M auch eine halbgeordnete Menge.
- Darstellung häufig Hassediagramm (siehe Tafel).

Beispiel

Betrachte man die Realtion \subset auf der Potenzmenge 2^M

Besondere Elemente

- $x \in T$ heißt *minimales Element von T*, wenn es kein $y \in T$ gibt, mit $y \sqsubseteq x$ und $y \neq x$
- $x \in T$ heißt *kleinstes Element von T*, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt, mit $x \sqsubseteq y$ und $x \neq y$
- $x \in T$ heißt *größtes Element von T*, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$

Besondere Elemente

- $x \in T$ heißt *minimales Element von T*, wenn es kein $y \in T$ gibt, mit $y \sqsubseteq x$ und $y \neq x$
- $x \in T$ heißt *kleinstes Element von T*, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt, mit $x \sqsubseteq y$ und $x \neq y$
- $x \in T$ heißt *größtes Element von T*, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$
- Was sind die Unterschiede?

Obere und Untere Schranke

- $x \in M$ heißt obere Schranke von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.
- $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.

Obere und Untere Schranke

- $x \in M$ heißt obere Schranke von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.
- $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- Beachte: untere und obere Schranken von T dürfen außerhalb von T liegen.
- Schranken müssen nicht existieren.

Supremum / Infimum

- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das Infimum von T.
- Müssen natürlich auch nicht existieren.

Definition

- R ist Ordnung oder genauer totale Ordnung, wenn gilt:
 - R ist Halbordnung
 - $\forall x, y \in M : xRy \lor yRx$

Definition

- R ist Ordnung oder genauer totale Ordnung, wenn gilt:
 - R ist Halbordnung
 - $\forall x, y \in M : xRy \lor yRx$
- Es gibt keine unvergleichbaren Elemente.
- Beispiele?

Zusatz

- Es gibt noch einige andere Sachen zu Halbordnungen (vollständig, monotone und stetige Abbildungen, Fixpunktsatz).
- Wären noch mehr Definitionen gewesen, und ist normalerweise nicht Klausurrelevant.
- Schaut aber am besten zumindest mal über die Folien dazu drüber.

Ende

Noch Fragen?

Unnützes Wissen

Jedes mal wenn Beethoven komponierte, schüttete er sich etwas Eiswasser über den Kopf.