МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студент гр. 0382	Азаров М.С.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается нестраничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Задание.

Шаг 1. Для выполнения лабораторной работы необходимо написать и отладить программный модуль типа .COM, который выбирает и распечатывает следующую информацию:

- 1) Количество доступной памяти.
- 2) Размер расширенной памяти.
- 3) Выводит цепочку блоков управления памятью.

Адреса при выводе представляются шестнадцатеричными числами. Объем памяти функциями управления памятью выводится в параграфах. Необходимо преобразовать его в байты и выводить в виде десятичных чисел. Последние восемь байт МСВ выводятся как символы, не следует преобразовывать их в шестнадцатеричные числа.

Запустите программу и внимательно оцените результаты. Сохраните результаты, полученные программой, и включите их в отчет в виде скриншота.

Шаг 2. Измените программу таким образом, чтобы она освобождала память, которую она не занимает. Для этого используйте функцию 4Ah прерывания 21h (пример в разделе «Использование функции 4AH»). Повторите эксперимент, запустив модифицированную программу. Сравните выходные

данные с результатами, полученными на предыдущем шаге. Сохраните результаты, полученные программой, и включите их в отчет в виде скриншота.

Шаг 3. Измените программу еще раз таким образом, чтобы после освобождения памяти, программа запрашивала 64Кб памяти функцией 48Н прерывания 21Н. Повторите эксперимент, запустив модифицированную программу. Сравните выходные данные с результатами, полученными на предыдущих шагах. Сохраните результаты, полученные программой, и включите их в отчет в виде скриншота.

Шаг 4. Измените первоначальный вариант программы, запросив 64Кб памяти функцией 48Н прерывания 21Н до освобождения памяти. Обязательно обрабатывайте завершение функций ядра, проверяя флаг CF. Сохраните результаты, полученные программой, и включите их в отчет в виде скриншота.

Шаг 5. Оцените результаты, полученные на предыдущих шагах. Ответьте на контрольные вопросы и оформите отчет.

Ход работы

1. Для выполнения первого шага понадобилось разработать модуль типа .COM , который содержит следующие процедуры:

Название процедуры	Что делает	
print_avail_mem	Получает кол-во доступной памяти и выводит его на экран.	
print_extended_mem	Получает размер расширенной памяти и выводит его на экран.	
print_all_MCB	Выводит цепочку блоков управления памятью	
parag_to_dec	Переводит размер памяти в параграфах в байты , а затем в строчное представление в 10-ной с.с.	
print_MCB	Выводит текущий блок управления памяти, адрес которого находится в ES.	
print_number_MCB	Выводит номер текущего блока управления	

	памяти
print_MCB_address	Выводит адрес текущего блока управления
	памяти
<pre>print_addr_psp_owner</pre>	Выводит сегментный адрес PSP владельца
	участка памяти
print_size_MCB	Выводит размер участка в параграфах
print_scsd	Выводит последние восемь байт МСВ как символы

Также были использованы некоторые из данных в методичке процедур. В совокупности все эти процедуры выполняют поставленную задачу в **Шаг 1.**

Результат работы программы:

Size available memory: 648912 bytes Size extended memory: 245760 bytes

MCB #01

Address MCB: 016F

Address PSP owner: 0008

Size: 16 bytes

SC/SD:

MCB #02

Address MCB: 0171

Address PSP owner: 0000

Size: 64 bytes

SC/SD:

MCB #03

Address MCB: 0176

Address PSP owner: 0040

Size: 256 bytes

SC/SD:

MCB #04

Address MCB: 0187

Address PSP owner: 0192

Size: 144 bytes

SC/SD:

MCB #05

Address MCB: 0191

Address PSP owner: 0192

Size: 648912 bytes

SC/SD: LAB3 1

2. Для модификации программного модуля понадобилось разработать дополнительную функцию:

Название процедуры		Что дел	тает	
free_mem	Освобождает	память,	которую	текущая
	программа не занимает			

Результат работы программы:

Size available memory: 648912 bytes Size extended memory: 245760 bytes

MCB #01

Address MCB: 016F

Address PSP owner: 0008

Size: 16 bytes

SC/SD:

MCB #02

Address MCB: 0171

Address PSP owner: 0000

Size: 64 bytes

SC/SD:

MCB #03

Address MCB: 0176

Address PSP owner: 0040

Size: 256 bytes

SC/SD:

MCB #04

Address MCB: 0187

Address PSP owner: 0192

Size: 144 bytes

SC/SD:

MCB #05

Address MCB: 0191

Address PSP owner: 0192

Size: 864 bytes

SC/SD: LAB3 2

MCB #06

Address MCB: 01C8

Address PSP owner: 0000

Size: 648032 bytes

SC/SD: #яt#&ŕ

Как мы видим, теперь наша программа занимает только необходимую ей память.

3. Также для требуемой модификации в **Шаг 3**, понадобилось разработать еще одну процедуру:

Название процедуры	Что делает
malloc	Запрашивает выделение памяти для программы
	в размере ВХ байт

Результат работы программы:

Size available memory: 648912 bytes Size extended memory: 245760 bytes

MCB #01

Address MCB: 016F

Address PSP owner: 0008

Size: 16 bytes

SC/SD:

MCB #02

Address MCB: 0171

Address PSP owner: 0000

Size: 64 bytes

SC/SD:

MCB #03

Address MCB: 0176

Address PSP owner: 0040

Size: 256 bytes

SC/SD:

MCB #04

Address MCB: 0187

Address PSP owner: 0192

Size: 144 bytes

SC/SD:

MCB #05

Address MCB: 0191

Address PSP owner: 0192

Size: 976 bytes

SC/SD: LAB3 3

MCB #06

Address MCB: 01CF

Address PSP owner: 0192

Size: 65536 bytes

SC/SD: LAB3 3

MCB #07

Address MCB: 11D0

Address PSP owner: 0000

Size: 582368 bytes

SC/SD: .#tgt s

Так как мы сначала освободили память, то появился блок памяти №5 принадлежащий программе. После запроса на 64 Кб образовался еще один блок памяти №6 принадлежащий программе в размере 64 Кб.

4. Теперь сначала запросим 64 Кб, а потом освободим память.

Результат работы программы:

Size available memory: 648912 bytes

Size extended memory: 245760 bytes

Error: requested memory more then available free memory.

MCB #01

Address MCB: 016F

Address PSP owner: 0008

Size: 16 bytes

SC/SD:

MCB #02

Address MCB: 0171

Address PSP owner: 0000

Size: 64 bytes

SC/SD:

MCB #03

Address MCB: 0176

Address PSP owner: 0040

Size: 256 bytes

SC/SD:

MCB #04

Address MCB: 0187

Address PSP owner: 0192

Size: 144 bytes

SC/SD:

MCB #05

Address MCB: 0191

Address PSP owner: 0192

Size: 976 bytes

SC/SD: LAB3 4

MCB #06

Address MCB: 01CF

Address PSP owner: 0000

Size: 647920 bytes

SC/SD:

, u#я

Как и ожидалось операция запроса памяти завершилась с ошибкой, так как свободной памяти отсутствует (вся память принадлежит текущей программе), поэтому мы и не можем запросить еще память.

Ответы на контрольные вопросы.

1) Что означает "доступный объем памяти"?

Ответ: Доступная память – это память, занимаемая программой

2) Где МСВ блок Вашей программы в списке?

Ответ: МСВ блоку запускаемой программы соответствует тот МСВ блок который в поле SD/SC имеет название запускаемой программы , в нашем случае это LAB3_? , где вместо ? может стоять «1», «2», «3» , «4».

3) Какой размер памяти занимает программа в каждом случае?

Ответ: На первом шаге программа занимает - 648912 байт, на втором - 864 байт, на третьем — 976 + 65536 = 66512 байт, и на четвертом - 976 байт.

Вывод.

В ходе работы были изучены структуры данных и работа функций управления памятью ядра операционной системы. Разработана программа которая выводит сведения о текущем состоянии памяти ОС и умеет освобождать и запрашивать требуемое нами количество памяти.