ALGORITHMIQUE

Les tableaux à plusieurs dimensions

Pr. N. EL FADDOULI

nfaddouli@gmail.com

Algorithmique\ N.EL FADDOULI

Sommaire

□ Introduction

■ Notion de Matrice.

☐ Notion de tableau à plusieurs dimensions

☐ Déclaration et initialisation d'une Matrice.

□ Lecture/Ecriture d'une Matrice.

□ Exercices.

Algorithmique\ N.EL FADDOULI

Algorithmique\ N.EL FADDOULI

Notion de Matrice

- Un tableau monodimensionnel (vecteur) est composé de données de type simple
- Un tableau multidimensionnel est un tableau dont chaque élément est aussi un tableau.
- Une matrice est un tableau dont chaque élément est un vecteur: c'est un tableau à deux dimensions.

Algorithmique\ N.EL FADDOULI

Exemple de matrice

Soit la matrice M_(3x4)

 Pour accéder à une celule de la matrice, on doit avoir l'indice de ligne et celui de colonne.

Algorithmique\ N.EL FADDOULI

Tableau de trois dimensions

C'est un tableau dont chaque élément est une matrice (cube)

Pour accéder à un élément, on doit avoir les indices de:

- Matrice cible
- Ligne dans la matrice cible
- Colonne dans la matrice cible

Algorithmique\ N.EL FADDOULI

Déclaration de Matrice

- On doit préciser pour une matrice:
- Le type des valeurs qui seront stockées dans la matrice
- Un nom qui identifiera la matrice parmi les autres variables.
- Deux dimensions correspondants aux lignes et colonnes:
 - 1) Le nombre maximum de lignes de la matrice
 - 2) Le nombre maximum de colonnes de la matrice.
- Le nombre de cases (cellules) de la matrice sera:

(Nombre de lignes X Nombre de colonne)

Algorithmique\ N.EL FADDOULI

Déclaration de Matrice

☐ On adoptera la syntaxe suivante pour déclarer une matrice:

Type_éléments Nom_matrice [nbre_lignes] [nbre_colonnes]

☐ Exemple:

Une matrice M_(3x5) de **15** éléments entiers, sera déclarée par:

0

Н

Entier **M**[3][5]

Entier $H[2][3] = \{ \{7,5,3\}, \{9,-1,10\} \}$

Début ... 0 1 2 0 7 5 3 1 9 -1 10

M

Algorithmique\ N.EL FADDOULI

Fin

L'accès direct

- On peut avoir le contenu d'une **cellule** à l'aide de deux *indices* qui précisent **sa position** dans la matrice: l'indice de la ligne et celui de la colonne.
- ☐ La syntaxe qu'on utilisera est la suivante:

☐ Exemple : Dans une matrice M_(2x3)

$$M[0][2] \leftarrow 8$$

 $M[1][0] \leftarrow 5$
....
 $A \leftarrow M[1][2]$
Ecrire $(M[0][1])$

	0	1	2
0	6	71	8
1	5	12	-4

Algorithmique\ N.EL FADDOULI

Lecture d'une matrice

- □ Pour lire une matrice M_(LxC), il faut **parcourir** toutes ses cases afin de remplir chacune par **une valeur** saisie au clavier.
- □ On doit parcourir chaque ligne d'indice i avec une boucle, par exemple avec une boucle Pour:

```
Pour j ← 0 à C-1 Pas=1

Ecrire ("Donner une valeur")

Lire (M [i][j])
```

i varie dans [0, L-1]

FinPour

Algorithmique\ N.EL FADDOULI

Lecture d'une matrice

Les deux indices i et j représentent respectivement la ligne et la colonne de la **cellule courante**.

```
Pour i ← 0 à L-1 Pas=1

Pour j ← 0 à C-1 Pas=1

Ecrire ("Donner une valeur")

Lire (M [i][j])

FinPour
```

Algorithmique\ N.EL FADDOULI

11

Lecture d'une matrice

☐ Exemple de lecture: L=3 et C=3.

Algorithmique\ N.EL FADDOULI

Affichage d'une matrice

□ Pour afficher une matrice M_(LxC), on adopte le mêm principe que la lecture en utilisant deux boucles imbriquées.

```
Pour i ← 0 à L-1 Pas=1

Pour j ← 0 à C-1 Pas=1

Ecrire (M [i][j])

FinPour

FinPour
```

Algorithmique\ N.EL FADDOULI

13

Exercices

Algorithmique\ N.EL FADDOULI

Exercices

Exercice 1

Variables
Entier M[3][4], i, j
Début

Pour i ← 0 à 2 Pas=1

Pour j← 0 à 3 Pas=1

M[i][j] ← i + j

FinPour

FinPour

Pour i ← 0 à 2 Pas=1

Pour j← 0 à 3 Pas=1

Ecrire (M[i][j])

FinPour

FinPour

FinPour

FinPour

FinPour

FinPour

FinPour

FinPour

Quelle est la matrice affichée ?

Algorithmique\ N.EL FADDOULI

15

Exercices

☐ Exercice 2:

Lire une matrice $M_{(LxC)}$ et calculer la somme de la colonne K

☐ Exercice 3:

Lire deux matrices $M1_{(LxC)}$ et $M2_{(LxC)}$ et calculer leur somme $M3_{(LxC)}$

□ Exercice 4:

Lire une matrice $M_{(LxC)}$ et calculer la somme de chaque ligne

□ Exercice 5:

Lire une matrice M_(LxC), calculer la somme de chaque ligne et stocker le résultat dans un tableau.

Algorithmique\ N.EL FADDOULI

Exercices

☐ Exercice 6: (devoir)

Lire deux matrice M1_(Lxn) et M2_(nxC), et calculer leur produit M3_(LxC)

$$M3_{i,j} = \sum_{k=0}^{n-1} M1_{i,k} * M2_{k,j}$$

□ Exercice 7:

Lire une matrice carrée $M_{(NxN)}$ et calculer la somme des éléments au-dessus de la diagonale principale

□ Exercice 8:

Lire une matrice carrée $M_{(NxN)}$ et déterminer si elle est symétrique par rapport à la diagonale principale ou non.

Algorithmique\ N.EL FADDOULI

17

Exercices

☐ Exercice 9:

Calculer le nombre le nombre d'éléments inférieurs à chaque élément d'un tableau **T** de **N** entiers.

☐ Exercice 10:

Calculer le nombre d'occurrences de chaque élément d'un tableau **T** de **N** entiers.

☐ Exercice 11:

Lire une matrice $M_{(LxC)}$ creuse dont la plupart des cellules sont nulles. On doit stocker les valeurs de cellules non nulles dans un tableau T où chaque valeur doit être précédée par ses indices de ligne et de colonne.

Exemple: la matrice M_(3x4)

MO 0 0 0 5 1 0 0 7 0 > TO35 1 2 1 7 2 0 0 0 0 0 MO(3) MA(2)

18

Algorithmique\ N.EL FADDOULI