Regularization and trade-off between bias and variance

Farnoosh Khodakarami

This material is prepared with Farnoosh khodakarami and Ali Madani

Overfitting

Overfitting: Good performance on the training data, poor generalization to other data.

Underfitting: Poor performance on the training data and poor generalization to other data

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Training, validation and test set

Data	Use	Size
Training	Model training (parameter optimization)	Big
Validation	Assessing variance and hyperparameter optimization	Big or small Smaller than training
Test	Assessing variance	Smaller than validation

Training, validation and test set

Data	Use	Size
Training	Model training (parameter optimization)	Big
Validation	Assessing variance and hyperparameter optimization	Big or small Smaller than training
Test	Assessing variance	Smaller than validation
New data	I am the goal	Very small

K-Folds Cross Validation to assess variance

Image source wikipedia

Training, validation and test splits (one dataset)

All data

Training, validation and test splits (one dataset)

All data

Holding out part of the data for assessing the model

Training

Test

Training, validation and test splits (one dataset)

All data

Holding out part of the data for assessing the model

Training

Test

Full:

- Model training
- Variance assessment and hyperparameter optimization
- Testing the model

Cross-validation

Test

Accuracy in validation

10-fold cross-validation

Accuracy in validation

Final Accuracy = Average(Round 1, Round 2, ...)

Regularization to overcome overfitting

Ridge regression

Objective function:

minimize
$$\left\{ \frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\}$$

Constraint for regularization:

subject to
$$\sum_{j=1}^{P} \beta_j^2 \le t^2$$
.

Optimization space in regularization

Optimization space in regularization

the lasso and generalizations. Chapman and Hall/CRC

Linear Regression/Ridge Regression/ Lasso/Elastic Net

An image visualising how ordinary regression compares to the Lasso, the Ridge and the Elastic Net Regressors. Image Citation: Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.