A COMPARISON OF AUTOREGRESSIVE & NON-AUTOREGRESSIVE APPROACHES USING TRANSFORMER MODEL FOR MACHINE TRANSLATION TASK

Javed Roshan & Gabriel Ohaike

W266: Natural Language Processing with Deep Learning

Professor: Sid J Reddy

Abstract

- Autoregressive (AR) models are dependent on tokens from previous time-step
- Non-Autoregressive (NAR) models tokens are independent
- AR have high accuracy
- NAR have low latency
- To narrow accuracy gap
 - Using CRF and modifying decoder architecture
- IWSLT dataset for Machine Translation Task
- BLEU: AR (16.07) & NAR (8.79)
- Inference Latency: NAR is 2x faster than AR
- Related Work: <u>Fast Structured Decoding for Sequence Models</u>

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin and Zhi-Hong Deng

Introduction: Autoregressive Model

- $x = (x_1, x_2, ..., x_n)$ $y = (y_1, y_2, ..., y_m)$
- Output tokens are based on chain of conditional probabilities

$$p(y|x) = \prod_{i=1}^{m} p(y_i|y_{< i}, x)$$

- $y_{< i}$ represents the tokens before the ith token
- Inference
 - Starts with <bos>
 - Ends when <eos> encountered

Introduction: Non-Autoregressive Model

- $x = (x_1, x_2, ..., x_n)$ $y = (y_1, y_2, ..., y_m)$
- Output tokens are based on chain of conditional probabilities

$$p(y|x) = p(m|x) p(z|x) \prod_{i=1}^{m} p(y_i|z,x)$$

- 'm' represents length of output, y
- 'z' is the deterministic input to the decoder
- Decoder uses
 - $\supset \mathbf{Z}$
 - encoder contextual embedding

Introduction: Non-Autoregressive Model

- Multi-modality problem in output
 - Eg: Thank you (EN)
 - Danke (DE)
 - Danke Schon (DE)
 - Vielen Schon (DE)
 - Can generate Danke Dank, Danke Schon etc.
- CRF solution

$$p(y|x) = p(m|x) \ p(z|x) \cdot softmax \left(\sum_{i=2}^{m} \theta_{i-1,i}(y_{i-1}, y_i) | z, x \right)$$

 $\theta_{i-1,i}$ is the pairwise potential for (y_{i-1}, y_i)

Figure 2. Non-autoregressive Transformer Model with Conditional Random Fields

$$Attention(Q, K, V) = softmax\left(\frac{Q.K^{T}}{\sqrt{d_{model}}}\right).V$$

 d_{model} represents the dimensions of the hidden representations

- Self Attention
 - \circ Q = K = V = x
- Encoder-Decoder Attention
 - Q = hidden representation of previous layer
 - K = V = encoder context
- Positional Attention
 - Q = K = positional embedding
 - V = hidden representation of previous layer

Architecture: Conditional Random Fields

•
$$x = (x_1, x_2, ..., x_n)$$

$$p(y|x) = \frac{1}{Z(x)} \exp[\Sigma_{i=1}^n s(y_i, x, i) + \Sigma_{i=2}^n t(y_{i-1}, y_i, x, i)]$$

- Z(x) is the normalizing factor
- $s(y_i, x, i)$ is the label score of y_i at position i
- $t(y_{i-1}, y_i, x, i)$ is the transition score from y_{i-1} to y_i
- Optimizing techniques in CRF:
 - Low-rank approximation for transition matrix
 - Beam approximation to estimate normalizing factor
- Negative log-likelihood loss, $L_{CRF} = -\log P(y|x)$

Training & Inference - AR Model

- AR model built using pytorch's transformer implementation
 - TransformerEncoder, TransformerEncoderLayer
 - TransformerDecoder, TransformerDecoderLayer
 - PositionalEncoding, Transformer
- Tokenizer: spaCy
- IWSLT dataset
- Custom code
 - AR model wrapper for word and positional embeddings
 - Inference

Training Environment for AR Model

- https://gpu.land
- Tesla v100 single GPU with 16GB memory & 200GB disk space
- Hyper parameters

number of epochs: **1024**; learning rate: 3e-4; batch size: 32; embedding size: 512; number of heads in the attention layer: 8; number of encoder layers: 6; number of decoder layers: 6; activation function: reLu; dropout: 10% (0.1); optimizer: Adam; optimizer betas: (0.9, 0.98)

- BLEU score of 15.67
- ~20 hours of training

Training & Inference - NAR Model

- NAR model with baseline code from Facebook's fairseq library
- IWSLT & WMT dataset (DE to EN)
- Custom code
 - Modified decoder architecture
 - Positional Attention
- Pre-processed dataset; combined source & target dictionaries
- Leveraged checkpoints

Training Environment for NAR Model

- https://gpu.land
- Tesla v100 single GPU with 16GB memory & 200GB disk space
- Hyper parameters

number of epochs: **155**; learning rate: 0.0005; optimizer: Adam; optimizer betas: (0.9, 0.98); number of heads in the attention layer: 8; number of encoder layers: 6; number of decoder layers: 6; dropout: 0.3; CRF low rank: 32; CRF beam-approx.: 64

- BLEU score of 9.26
- ~10 hours

Analysis

TABLE I MODEL PERFORMANCE

Epochs	Transformer Models	BLEU Score	Inference BLEU	Latency
		training/validation	Score	(tokens/second)
1024	AR Transformer (pytorch based)	15.67	16.07	55
155	NAR Transformer (fairseq based)	9.26	8.79	117
50	AR Transformer (fairseq based)	35.23	34.71	210
30	AR Transformer (fairseq based)	33.23	34./1	210

- NAR is 2x faster than AR (pytorch impl.)
- Fairseq's AR impl. is almost 80% faster than NAR

Analysis - 2

TABLE II TRANSLATIONS

Transformer Models	Text
AR Transformer (pytorch based)	Source: ein mann rührt in einem topf in seiner küche. Predicted: a man is stirring a pot in the kitchen. Actual: a man stirs a pot in his kitchen.
	Source: ein mann in einem roten hemd betritt ein etablissement. Predicted: a man in a red inside a small glass. Actual: a man in a red shirt enters an establishment.
NAR Transformer (fairseq based)	Source: und weil uns nichts wichtiger ist als unser überleben, ist die erste haltestelle für all die informationen ein teil unseres temporallappens, die amygdala Predicted: and because nothing is more important to us than survival, the first stop of all of that data is an ancient sliver of the temporal lobe called the amygdala. Actual: and because nothing is more important to us than our survival, the first stop for all the information is a part of our temporal lobe, the amygdala

Challenges

- Baseline Transformer multiple implementations
- Fairseq debugging was non-trivial
 - pyx files & cythonize
 - debugging cpp
 - environment setup
 - model architecture changes
- Model training from scratch
 - explored all cloud providers before gpu.land

Conclusion

- Autoregressive are still accurate
- Fairseq has highly performant code
- Multiple other NAR models are available to research
- Fun to get into the nitty-gritty of transformers
- Did not replicate the BLEU scores from the papers. But, we successfully ran both models & became transformer savvy:-)
- https://github.com/jroshanucb/deep_learning

Figure 2: The architecture of the NAT, where the black solid arrows represent differentiable connections and the purple dashed arrows are non-differentiable operations. Each sublayer inside the encoder and decoder stacks also includes layer normalization and a residual connection.

Non-Autoregressive Neural

Machine Translation

Jiatao Gu, et al.

Figure 3: Hint-based training from ART model to NART model.

Hint Based Training For Non-Autoregressive Translation
Zhuohan Li et al.