■问题描述

- □某工业生产部门根据国家计划的安排,拟将某种高效率的5台机器,分别分配给A,B,C三个工厂,各工厂在获得不同数量的这种机器后,可以为国家盈利如下表所示。请找出一种5台机器的分配方式,使得这5台机器盈利最大。(15分)
- □2018年本课程的考试试题

台数工厂	0	1	2	3	4	5
A	0万	3万	7万	9万	12万	13万
В	0万	5万	8万	10万	11万	12万
C	0万	4万	6万	11万	12万	12万

$$max = \sum_{i=1}^{n} g_i(\pi_i)$$
 $n=3$. $\{A, B, C\}$

 $\sum_{x} x_i \leq 5$ 记 $f_{x}(x)$ 为前 2个工厂分分个机器所取的校值

则有
$$f_i(\eta) = g_i(y) + f_{i-1}(x-y)$$

$$P$$
 $f_{1}(5) = max \{g_{2}(y) + f_{2}(5-y)\}$

$$f_1(x) = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$
 $f_2(x) = 0 \quad 3 \quad 7 \quad 9 \quad 12 \quad 13$

$$f_2(x) = g_2(y) + f_1(x-y) = 0$$
 1 2 3 4 5 17

$$(0.0)$$
 (0.1) (1.1) (2.1) (2.2) (2.3) (3.2) (4.1)

$$f_{1}(x) = g_{1}(y) + f_{2}(x-y) = |9(2.3)(4.1), then (1.1.3) (2.2.1) (0.2.3)$$