Exercice 5.

- 1. (a) $\lim_{x\to 0} x = 0$ et $\lim_{x\to 0} \ln x = -\infty$ Par somme des limites $\lim_{x\to 0} f(x) = -\infty$. De même $\lim_{x\to +\infty} x = +\infty$ et $\lim_{x\to +\infty} \ln x = -+\infty$ donc: par somme des limites $\lim_{x\to +\infty} f(x) = +\infty$.
 - (b) Pour tout réel x > 0, $f'(x) = 1 + \frac{1}{x} > 0$. La fonction f est donc strictement croissante sur]0; $+\infty[$. on peur dresser le tableau de variations de f sur]0; $+\infty[$:

x	0	α_n $+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	-	$+\infty$ $-\infty$

- 2. (a) La fonction f est continue car dérivable sur $]0; +\infty[$. f est strictement croissante sur $]0; +\infty[$ et $n \in]-\infty; +\infty[=f](0; +\infty[)$ donc d'après le corollaire du théorème des valeurs intermédiaires dans le cas des fonctions strictement croissante, l'équation f(x) = n admet une solution unique solution α_n dans l'intervalle $]0; +\infty[$.
 - (b) voici la **Figure**:

(c) On a $\alpha_1 + \ln \alpha_1 = 1$. Le graphe fait apparaître la solution évidente $\alpha_1 = 1$ car $1 + \ln(1) = 1$.