Непрерывное время при построении нейроинтерфейса

Змушко Филипп Александрович

Московский физико-технический институт

Курс: Моя первая научная статья Эксперт: В.В. Стрижов Консультант: А.М. Самохина

2022

Цель исследования

Проблема

В задачах декодирования сигнала данные представляются в виде многомерных временных рядов. При решении задач используется дискретное представление времени, несмотря на то, что исходный процесс зачастую является непрерывным.

Решение

Недавно появившиеся модели, основывающиеся на нейронных обыкновенных дифференциальных уравнений дают возможность рассматривать временные ряды как непрерывные во времени.

Цель

Решение задач декодирования сигнала с помощью моделей на основе нейронных дифференциальных уравнений на примере временных рядов с пропущенными значениями.

Непрерывное время при построении нейроинтерфейса

Цель: решение задачи декодирования сигнала с использованием непрерывного по времени представления сигнала.

Neural ODE

$$\mathbf{h_{t+1}} = \mathbf{h_t} + f(\mathbf{h_t}, \theta)$$

$$\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h_t}, t, \theta)$$

$$\mathbf{h}_{t_1} = \mathbf{h}_{t_0} + \int_{t_0}^{t_1} f(\mathbf{h}, t, \theta) dt$$

Литература

- Patrick Kidger, James Morrill, James Foster, Terry J. Lyons. Neural Controlled Differential Equations for Irregular Time Series. 2020
- Lechner Mathias, Hasani Ramin. Learning Long-Term Dependencies in Irregularly-Sampled Time Series. 2020
- Voelker Aaron, Kajić Ivana, Eliasmith, Chris. Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks. 2019

Постановка задачи

Дано: Выборка $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^M$ множество сигналов с известными целевыми переменными. Каждый сигнал $\mathbf{x}_i \in \mathbf{X}$ представляется как нерегулярный во времени временной ряд. \mathbf{X} — множество временных рядов фиксированной длины n. Метки классов — $\mathbf{y}_i \in \{0,1\}$.

Задача: Решается задача бинарной классификации отрезков ЭЭГ. Необходимо определить наличие в отрезке ЭЭГ потенциала Р300. Для этого требуется получить функцию: $g_{\theta}: \mathbf{x} \to \{0,1\}, \quad \forall \mathbf{x} \in \mathbf{X}.$

Метрики: Критерием качества является бинарная кросс-энтропия. В качестве дополнительных критериев используются ассuracy и F1-score.

Вычислительный эксперимент

Заключение