O trabalho pode ser realizado em TRIOS

- Todos os exercícios devem ser resolvidos através da construção de um algoritmo utilizando a linguagem de programação de sua preferência.
- Em conjunto com o projeto do programa deve ser anexado um pdf seguindo as especificações de cada exercício.
- O nome do arquivo deve conter os nomes dos integrantes do grupo e o nome da IDE utilizada na construção do projeto.

AVALIAÇÃO 2

1 – Obtenha a solução do sistema a seguir utilizando o método da eliminação de Gauss com pivoteamento parcial.

2	1	7	4	-3	-1	4	4	7	0]	$\begin{bmatrix} x_1 \end{bmatrix}$		86
4	2	2	3	-2	0	3	3	4	1	x ₂		45
3	4	4	2	1	-2	2	1	9	-3	x ₃		52.5
9	3	5	1	0	5	6	-5	-3	4	x ₄		108
2	0	7	0	-5	7	1	0	1	6	x ₅		66.5
1	9	8	0	3	9	9	0	0	5	x ₆	-	90.5
4	1	9	0	4	3	7	-4	1	3	x ₇		139
6	3	1	1	6	8	3	3	0	2	x ₈		61
6	5	0	-7	7	-7	6	2	-6	1	x ₉		-43.5
1	6	3	4	8	3	-5	0	-6	0	x ₁₀		31

Obs: Mostre a matriz escalonada além do vetor com os resultados.

2 – Resolva o sistema linear utilizando o método de Gauss-Jacobi e Gauss-Seidel com precisão $\epsilon < 10^{-5}$.

[4	-1	0	-1	0	0	0	0	0	0]	$\begin{bmatrix} x_1 \end{bmatrix}$		[-110]	
-1	4	-1	0	-1	0	0	0	0	0	x ₂		-30	
0	-1	4	0	0	-1	0	0	0	0	x ₃		-40	
-1	0	0	4	-1	0	0	0	0	0	x ₄		-110	
0	-1	0	-1	4	-1	-1	0	0	0	x ₅		0	
0	0	-1	0	-1	4	0	-1	0	0	x ₆	=	-15	
0	0	0	0	-1	0	4	-1	0	0	x ₇		-90	
0	0	0	0	0	-1	-1	4	-1	0	x ₈		-25	
0	0	0	0	0	0	0	-1	4	-1	x ₉		-55	
0	0	0	0	0	0	0	0	-1	4	x ₁₀		-65	
L									1	[]		L J	

Obs: Apresente os resultados em uma tabela da seguinte forma (apenas os 3 primeiros e os 3 últimos

k	0	1	2	3
x_1	0			
x_2	0	•••		
x_3	0	•••		
x_4	0	•••		
x_5	0	•••		
x_6	0	•••		
x_7	0	•••		
x_8	0	•••		
x_9	0	***		
x_{10}	0	•••		
ϵ	-			

3 – Um paraquedista realizou seis saltos, saltando de alturas distintas em cada salto. Foi testada a precisão de seus saltos em relação a um alvo de raio de 5 metros de acordo com a altura. A distância apresentada na tabela a seguir é relativa à circunferência.

	1º salto	2° salto	3° salto	4° salto	5° salto
Altura (m)	1500	1250	1000	750	500
Dist. do alvo (m)	35	25	15	10	7

Levando em consideração os dados acima, a que provável distância do alvo cairia o paraquedista se ele saltasse de uma altura de 850 metros? Obtenha o polinômio interpolador sobre todos os pontos através da solução do sistema linear

Obs: Apresente o polinômio interpolador e a provável distância do alvo para um salto de 850 m.

4 – Conhecendo-se o diâmetro e a resistividade de um fio cilíndrico verificou-se a resistência do fio de acordo com o comprimento. Os dados obtidos estão indicados a seguir:

Comp. (m)	500	1000	1500	2000	2500	3000	3500	4000
Res. (Ohms)	2,74	5,48	7,90	11,00	13,93	16,43	20,24	23,52

Determine:

Qual será a provável resistência deste fio para um comprimento de 1730 m, utilizando o polinômio interpolador na forma de Lagrange sobre todos os pontos.

Obs: Apresente a tabela do dispositivo prático e a provável resistência para um fio de 1730 m.

5 – Na tabela a seguir está assinalado o posicionamento de um ônibus, partindo do marco zero de uma rodoviária federal,

Tempo (min)	60	80	100	120	140	160	180
Posição (km)	76	95	112	138	151	170	192

Obtenha o possível posicionamentos do ônibus para o tempo de 130 min, utilizando o polinômio interpolador na forma de Newton sobre todos os pontos.

Obs: Apresente a tabela de diferenças divididas e o possível posicionamento do ônibus para o tempo de 130 min.

6 – Dada a tabela abaixo calcule $e^{3.1}$

buda a tabela abamb calcule c											
X	2.4	2.6	2.8	3.0	3.2	3.4	3.6				
e ^x	11.02	13.46	16.44	20.08	24.53	29.96	36.59				

Utilizando uma spline cúbica interpolante.

Obs: Em cada caso apresente o polinômio utilizando para obter o valor aproximado de f(3.1) e o seu resultado.