Nonparametric Causal Inference on Stochastic Policy Effects accommodating Clustered Interference and Right Censoring

¹Department of Biostatistics, University of North Carolina at Chapel Hill, ²Department of Biostatistics, University of Michigan, Ann Arbor

Clustered Interference

No interference

Right Censoring [2] Nonparametric (Data-adaptive) [3]

Interference

BACKGROUND

Observed data

- Cluster $i \in \{1, ..., m\}$, Unit $j \in \{1, ..., N_i\}$
- $T_{ij} \in \mathbb{R}^+$: event time, $A_{ij} \in \{0,1\}$: treatment, $X_{ij} \in \mathbb{R}^p$: confounders
- $C_{ij} \in \mathbb{R}^+$: censoring time, $Y_{ij} = \min(T_{ij}, C_{ij}), \Delta_{ij} = 1(T_{ij} \leq C_{ij})$

Potential outcome

- $T_{ij}(a_i)$: Potential event time for unit j in cluster i when the cluster i receives a_i
- $T_{ij}(a_i) = T_{ij}(a_{ij}, a_{i(-i)}), a_{i(-i)} = (a_{i1}, ..., a_{i(j-1)}, a_{i(j+1)}, ... a_{iN_i})$
- No interference: $T_{ij}(a_{ij}, \boldsymbol{a}_{i(-j)}) = T_{ij}(a_{ij}, \boldsymbol{a}'_{i(-j)})$

STOCHASTIC POLICY

Definition $Q(\cdot | X_i, N_i)$: probability distribution on $\{0,1\}^{N_i}$ such that cluster of size N_i with cluster-level covariate X_i receives treatment a_i with probability $Q(a_i|X_i,N_i)$

Type B [4]: $Q_B(a_i|X_i, N_i; \alpha) = \prod_{j=1}^{N_i} \alpha^{a_{ij}} (1-\alpha)^{1-a_{ij}}$

CIPS [5]:
$$Q_{CIPS}(a_i|X_i, N_i; \delta) = \prod_{j=1}^{N_i} \pi_{ij,\delta}^{a_{ij}} (1 - \pi_{ij,\delta})^{1 - a_{ij}}$$

- Propensity score of unit j in cluster i: $\pi_{ij} = P(A_{ij} = 1 | X_i, N_i)$
- Shifted (counterfactual) propensity score: $\pi_{ij,\delta}$ from $\frac{\pi_{ij,\delta}}{1-\pi_{ii,\delta}} = \delta \times \frac{\pi_{ij}}{1-\pi_{ij}}$

ESTIMANDS

• Expected Overall Risk by time au under policy Q

$$\mu(\tau; Q) = \mathbb{E}\left\{\frac{1}{N_i} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathbb{1}(T_{ij}(\mathbf{a}_i) \leqslant \tau) Q(\mathbf{a}_i | \mathbf{X}_i, N_i)\right\}$$

• Expected Risk by time au when treated under policy Q

$$\mu_1(\tau; Q) = \mathbb{E}\left\{\frac{1}{N_i} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_{i(-j)} \in \mathcal{A}(N_i - 1)} \mathbb{1}(T_{ij}(1, \mathbf{a}_{i(-j)}) \leqslant \tau) Q(\mathbf{a}_{i(-j)} | \mathbf{X}_i, N_i)\right\}$$

- $OE(\tau; Q, Q') = \mu(\tau; Q) \mu(\tau; Q')$: compares two policies overall g. Difference in overall COVID19 risks when 50% vs. 30% of neighbors vaccinated
- $DE(\tau; Q) = \mu_1(\tau; Q) \mu_0(\tau; Q)$: effect of treatment under policy Q .g. Vaccine effect on COVID19 when 50% of neighbors vaccinated
- $SE_0(\tau; Q, Q') = \mu_0(\tau; Q) \mu_0(\tau; Q')$: compares risk when untreated g. Unvaccinated unit's COVID19 risks when 50% vs. 30% of neighbors vaccinated

METHOD

Medical Research 21, 55-75

1. Full data estimation equation from nonparametric EIF

$$\varphi_{ij}^{F,*}(\tau; \mathbf{Z}_i) := \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \left\{ w_j(\mathbf{a}_i, \mathbf{X}_i, N_i) + \phi_j(\mathbf{A}_i, \mathbf{X}_i, N_i; \mathbf{a}_i) \right\} \mathbb{P} \left(T_{ij} \leqslant \tau | \mathbf{A}_i = \mathbf{a}_i, \mathbf{X}_i, N_i \right)$$

$$+ \mathbb{P} (\mathbf{A}_i | \mathbf{X}_i, N_i)^{-1} w_j(\mathbf{A}_i, \mathbf{X}_i, N_i) \left\{ \mathbb{1} \left(T_{ij} \leqslant \tau \right) - \mathbb{P} \left(T_{ij} \leqslant \tau | \mathbf{A}_i, \mathbf{X}_i, N_i \right) \right\} - \Psi(\tau; \mathbf{w})$$

2. Augmented-IPCW estimating equation

$$0 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_i} \sum_{i=1}^{N_i} \left[\frac{\Delta_{ij}}{S_{ij}^C(Y_{ij}|\mathbf{A}_i, \mathbf{X}_i, N_i)} \varphi_{ij}^{F,*}(\tau; \mathbf{Z}_i) + \int_0^{\infty} \frac{\mathbb{E}\left\{\varphi_{ij}^{F,*}(\tau; \mathbf{Z}_i)|T_{ij} \geqslant r, \mathbf{A}_i, \mathbf{X}_i, N_i\right\}}{S_{ij}^C(r|\mathbf{A}_i, \mathbf{X}_i, N_i)} dM_{ij}^C(r) \right]$$

$$\varphi_{ij}(\tau; \mathbf{O}_i) = \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathrm{OR}_{ij}(\tau; \mathbf{O}_i, \mathbf{a}_i) + \mathrm{IPCW-BC}_{ij}(\tau; \mathbf{O}_i) + \mathrm{AUG}_{ij}(\tau; \mathbf{O}_i)$$

$$OR_{ij}(\tau; \mathbf{O}_i, \mathbf{a}_i) = \{w_j(\mathbf{a}_i, \mathbf{X}_i, N_i) + \phi_j(\mathbf{A}_i, \mathbf{X}_i, N_i; \mathbf{a}_i)\}F_{ij}^T(\tau | \mathbf{A}_i = \mathbf{a}_i, \mathbf{X}_i, N_i),$$

IPCW-BC_{ij}
$$(\tau; \mathbf{O}_i) = \frac{w_j(\mathbf{A}_i, \mathbf{X}_i, N_i)}{\mathbb{P}(\mathbf{A}_i | \mathbf{X}_i, N_i)} \left\{ \frac{\Delta_{ij}}{S_{ij}^C(Y_{ij} | \mathbf{A}_i, \mathbf{X}_i, N_i)} \mathbb{1}(Y_{ij} \leqslant \tau) - F_{ij}^T(\tau | \mathbf{A}_i, \mathbf{X}_i, N_i) \right\},$$

$$AUG_{ij}(\tau; \mathbf{O}_i) = \frac{w_j(\mathbf{A}_i, \mathbf{X}_i, N_i)}{\mathbb{P}(\mathbf{A}_i | \mathbf{X}_i, N_i)} \int_0^{\tau} \frac{S_{ij}^T(r | \mathbf{A}_i, \mathbf{X}_i, N_i) - S_{ij}^T(\tau | \mathbf{A}_i, \mathbf{X}_i, N_i)}{S_{ij}^C(r | \mathbf{A}_i, \mathbf{X}_i, N_i)} dM_{ij}^C(r),$$

3. Sample Splitting [6] & Nonparametric Nuisance Function Estimation

RESULTS

Theory

Consistent & Asymptotically Normal & Weak Convergence to Gaussian Process

Simulation

Flexible data-adaptive nuisance function estimation

]	Nonparametric (SL, RSF)						RMSE				
Estimand	Truth	Bias	RMSE	ASE	ESE	Cov %		Bias	RMSE	ASE	ESE	Cov %	Ratio
$\mu_{\text{\tiny CIPS}}(0.3;0.5)$	0.345	-0.003	0.001	0.036	0.038	94.1%	-	0.024	0.002	0.038	0.041	87.4%	0.642
$\mu_{ ext{cips},1}(0.3;0.5)$	0.151	-0.001	0.001	0.025	0.027	93.9%	-	0.016	0.001	0.027	0.028	88.3%	0.674
$\mu_{\text{\tiny CIPS},0}(0.3;0.5)$	0.524	-0.004	0.004	0.058	0.063	94.3%	_	0.032	0.005	0.063	0.066	90.4%	0.744
$DE_{\text{CIPS}}(0.3; 0.5)$	-0.373	0.002	0.004	0.058	0.064	94.1%	(0.015	0.005	0.063	0.067	93.9%	0.853
$SE_{\text{CIPS},1}(0.3;0.5,1)$	0.021	0.001	0.001	0.021	0.024	94.9%	_	0.003	0.001	0.023	0.025	95.1%	0.943
$SE_{\text{CIPS},0}(0.3;0.5,1)$	0.030	0.006	0.003	0.051	0.059	95.5%	_	0.004	0.004	0.054	0.059	95.5%	0.986
$OE_{\text{CIPS}}(0.3; 0.5, 1)$	0.086	0.003	0.001	0.031	0.034	94.8%	-	0.005	0.001	0.033	0.038	94.5%	0.800

Application (Cholera Vaccine Study)

- Beneficial direct effect of vaccination at lower vaccine coverage
- Beneficial indirect effect from vaccinated → unvaccinated at high coverage

Unvaccinated individuals can benefit from spillover effects from vaccinated individuals, and the magnitude of such benefit increases over vaccine coverage

Discussion

- Inference about treatment effects under clustered interference and censoring
- Can be applied to any stochastic treatment allocation policy
- Data-adaptive estimation with robust correction to yield CAN estimator

Further information

Please address questions or comments to Chanhwa Lee at chanhwa@email.unc.edu.

Funding

This work was supported by a grant from the National Institutes of Health, USA (NIH grant NIH R01 Al085073).

Literature cited

- 1. Hudgens, M. G. and Halloran, M. E. (2008). Toward causal inference with interference. Journal of the American Statistical Association 103, 832–842.
- 2. Chakladar, S., Rosin, S., Hudgens, M. G., Halloran, M. E., Clemens, J. D., Ali, M., and Emch, M. E. (2022). Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring. Biometrics 78, 777–788. 3. Park, C. and Kang, H. (2022). Efficient semiparametric estimation of network treatment effects under partial interference. Biometrika 109, 1015–1031.
- interference. arXiv:2212.10959v2 6. Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal 21, C1–C68.

5. Lee, C., Zeng, D., and Hudgens, M. G. (2023). Efficient nonparametric estimation of stochastic policy effects with clustered

4. Tchetgen Tchetgen, E. J. and VanderWeele, T. J. (2012). On causal inference in the presence of interference. Statistical Methods in