Solution

- 1. Discounting is used to make one-time investment costs and salvage values commensurate with per-period operating costs.
- 2. For example, frequent short machine failures are less disruptive than long, infrequent failures. See page 251 of Factory Physics for other examples.
- 3. Difference due to the relative cost differences of Time vs. Inventory buffers, where Make-to-Stock has High and Low costs, respectively, and Make-to-Order has Low and High costs, respectively, for each type of buffer.

Capacity	Time	Inventory	Production System
Low	Low	Low	Home production (a.k.a. putting-out system)
Low	High	Low	Dedicated make-to-stock (mass production)
Low	Low	High	Dedicated make-to-order, Home cooking
Low	High	High	Restaurant
High	Low	Low	Craft production, Process plant (continuous mfg)
High	High	Low	Shared make-to-stock (discrete part mfg)
High	Low	High	Shared make-to-order (job shop), Doctor's office
High	High	High	Trauma unit at hospital, Additive manufacturing

4.

$$F = 15,000 \text{ q/yr}, \quad H = 365.25 \times 16 = 5,844 \text{ hr/yr}, \quad c = \frac{OC}{F} = \frac{2,500,000}{F} = \$166.67/\text{q}, \quad p = \$325/\text{q}$$

$$K = \$500,000, \quad u = 0.35, \quad r_d = \frac{F}{H} = 2.5667 \text{ q/hr}, \quad r_e = \frac{r_d}{u} = 7.3335 \text{ q/hr}, \quad k = \frac{\left(K/H\right)}{r_e} = \$11.67/\text{q}$$

$$F_{\text{new}} = 20,000 \text{ q/yr}, \quad r_{d,\text{new}} = \frac{F_{\text{new}}}{H} = 3.4223 \text{ q/hr}, \quad t_g = 0.5 \text{ hr}, \quad x_g = 0.25, \quad g = \frac{px_g}{\left(p - c\right)t_g} = 1.0263$$

$$r_{e,\text{new}}^* = r_{d,\text{new}} + \sqrt{\frac{\left(p - c\right)g\,r_{d,\text{new}}}{k}} = 10.3265 \text{ q/hr}$$

5.

		Base			
W/S		1	2	3	Total
Arrival Rate	$(r_a, q/hr)$	47.0588	40	32	
Natural Process Time	$(t_0, hr/q)$	0.33333	0.5	0.25	
Availability	(A)	1	1	1	
Effective Process Time	$(t_e, hr/q)$	0.33333	0.5	0.25	
Yield	(y)	0.85	0.8	0.75	
Yield Occurance Factor	(γ)	0.5	0	1	
Throughput $(r_d + \gamma(r_a - r_d))$	(<i>r</i> , q/hr)	43.5294	32	32	
Number of M/C	(<i>m</i>)	15	17	9	
Utilization	(u)	0.96732	0.94118	0.88889	
Departure Rate $(r_a * y)$	$(r_d, q/hr)$	40	32	24	
M/C Cost	(\$000)	50	100	75	
W/S Cost	(\$000)	750	1700	675	3,125

6.

Interarrival Time	(t _a , hr/q)	0.166667
Arrival Rate	(<i>r_a</i> , q/hr)	6
Interarrival STD		0.083333
Arrival SCV	(c ² _a)	0.25
Natural Process Time	(t ₀ , hr/q)	0.333333
Natural Process SCV	(c ² ₀)	0
MTTF	(hr)	6
MTTR	(hr)	4
Repair Time SCV	(c^2_r)	0.625
Availability	(A)	0.6
Effective Process Time	$(t_e, hr/q)$	0.55556
Eff Process Time SCV	(c ² _e)	4.68
Number of M/C	(m)	4
Utilization	(u)	0.833333
Cycle Time in Queue	(CT_q, hr)	1.384917
Cycle Time at W/S	(<i>CT</i> , hr)	1.940473
WIP in Queue (r_a*CT_q)	(q)	8.309504
WIP at W/S	(q)	11.64284