MIT 2.853/2.854

Introduction to Manufacturing Systems

Probability

Stanley B. Gershwin
Laboratory for Manufacturing and Productivity
Massachusetts Institute of Technology

gershwin@mit.edu

Trick Question

I flip a coin 100 times, and it shows heads every time.

Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What is the probability that it will show heads on the next flip?

Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: How much would you bet that it will show heads on the next flip?

Still Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Still Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What odds would you demand before you bet that it will show heads on the next flip?

 $Probability \neq Statistics$

 $Probability \neq Statistics$

Probability: mathematical theory that describes uncertainty.

 $Probability \neq Statistics$

Probability: mathematical theory that describes uncertainty.

Statistics: set of techniques for extracting useful information from data.

Frequency

The probability that the outcome of an experiment is A is P...

Frequency

The probability that the outcome of an experiment is A is P...

if the experiment is performed a large number of times and the fraction of times that the observed outcome is *A* is *P*.

State of belief

The probability that the outcome of an experiment is A is P...

State of belief

The probability that the outcome of an experiment is A is P...

if that is the opinion (ie, belief or state of mind) of an observer *before* the experiment is performed.

Example of State of Belief: Betting odds

The probability that the outcome of an experiment is A is P...

Example of State of Belief: Betting odds

The probability that the outcome of an experiment is A is P...

if before the experiment is performed a risk-neutral observer would be willing to bet \$1 against more than $\$\frac{1-P}{P}$.

Example of State of Belief: Betting odds

The probability that the outcome of an experiment is A is P...

if before the experiment is performed a risk-neutral observer would be willing to bet \$1 against more than $\$\frac{1-P}{P}$.

The expected value (slide 35) of the bet is greater than

$$(1-P) \times (-1) + (P) \times \left(\frac{1-P}{P}\right) = 0$$

Abstract measure

The probability that the outcome of an experiment is A is P(A)...

Abstract measure

The probability that the outcome of an experiment is A is P(A)...

if P() satisfies a certain set of conditions: the axioms of probability.

Axioms of probability

Let U be a set of *samples* . Let \mathcal{E}_1 , \mathcal{E}_2 , ... be subsets of U.

Axioms of probability

Let U be a set of *samples* . Let \mathcal{E}_1 , \mathcal{E}_2 , ... be subsets of U.

Axioms of probability

Let U be a set of *samples* . Let \mathcal{E}_1 , \mathcal{E}_2 , ... be subsets of U.

•
$$0 \leq P(\mathcal{E}_i) \leq 1$$

Axioms of probability

Let U be a set of *samples* . Let \mathcal{E}_1 , \mathcal{E}_2 , ... be subsets of U.

- $0 \leq P(\mathcal{E}_i) \leq 1$
- P(U) = 1

Axioms of probability

Let U be a set of *samples* . Let \mathcal{E}_1 , \mathcal{E}_2 , ... be subsets of U.

- $0 \leq P(\mathcal{E}_i) \leq 1$
- P(U) = 1
- $P(\emptyset) = 0$

Axioms of probability

Let U be a set of *samples* . Let \mathcal{E}_1 , \mathcal{E}_2 , ... be subsets of U.

- $0 \leq P(\mathcal{E}_i) \leq 1$
- P(U) = 1
- $P(\emptyset) = 0$
- If $\mathcal{E}_i \cap \mathcal{E}_j = \emptyset$, then $P(\mathcal{E}_i \cup \mathcal{E}_j) = P(\mathcal{E}_i) + P(\mathcal{E}_j)$

Discrete Sample Space

Notation, terminology:

ullet ω is often used as the symbol for a generic sample.

Discrete Sample Space

Notation, terminology:

ullet ω is often used as the symbol for a generic sample.

• Subsets of *U* are called *events*.

Discrete Sample Space

Notation, terminology:

ullet ω is often used as the symbol for a generic sample.

• Subsets of *U* are called *events*.

• $P(\mathcal{E})$ is the *probability* of \mathcal{E} .

Discrete Sample Space

• Example: Throw a single die. The possible outcomes are $\{1, 2, 3, 4, 5, 6\}$. ω can be any one of those values.

Discrete Sample Space

• Example: Throw a single die. The possible outcomes are $\{1, 2, 3, 4, 5, 6\}$. ω can be any one of those values.

• Example: Consider n(t), the number of parts in inventory at time t. Then

$$\omega = \{ n(1), n(2), ..., n(t), \}$$

is a sample path.

Discrete Sample Space

• An event can often be defined by a statement. For example,

$$\mathcal{E} = \{ \text{There are 6 parts in the buffer at time } t = 12 \}$$

Discrete Sample Space

• An event can often be defined by a statement. For example,

$$\mathcal{E} = \{ ext{There are 6 parts in the buffer at time } t = 12 \}$$

Formally, this can be written

$$\mathcal{E} = \text{the set of all } \omega \text{ such that } n(12) = 6$$

or,

$$\mathcal{E} = \{\omega | n(12) = 6\}$$

Discrete Sample Space

Set Theory

Venn diagrams

$$P(\bar{A}) = 1 - P(A)$$

Set Theory

Venn diagrams

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Independence

A and B are independent if

$$P(A \cap B) = P(A)P(B)$$
.

grid figure to illustrate independence

Independence

.071	
.48	
.179	
-10	
214	
.902	
.179	

.179		.0089		
		.05		

Conditional Probability

If
$$P(B) \neq 0$$
,
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
ANB
AUB

We can also write $P(A \cap B) = P(A|B)P(B)$.

Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

Example: Throw a die.Let

• A is the event of getting an odd number (1, 3, 5).

Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

- A is the event of getting an odd number (1, 3, 5).
- *B* is the event of getting a number less than or equal to 3 (1, 2, 3).

Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

- A is the event of getting an odd number (1, 3, 5).
- B is the event of getting a number less than or equal to 3 (1, 2, 3).

Then
$$P(A) = P(B) = 1/2$$
,

Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

- A is the event of getting an odd number (1, 3, 5).
- B is the event of getting a number less than or equal to 3 (1, 2, 3).

Then
$$P(A) = P(B) = 1/2, P(A \cap B) = P(1,3) = 1/3.$$

Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

- A is the event of getting an odd number (1, 3, 5).
- B is the event of getting a number less than or equal to 3(1, 2, 3).

Then
$$P(A) = P(B) = 1/2$$
, $P(A \cap B) = P(1,3) = 1/3$.

Also,
$$P(A|B) = P(A \cap B)/P(B) = 2/3$$
.

Law of Total Probability

• Let $B = C \cup D$ and assume $C \cap D = \emptyset$. Then

Law of Total Probability

• Let $B = C \cup D$ and assume $C \cap D = \emptyset$. Then $P(A|C) = \frac{P(A \cap C)}{P(C)}$

Law of Total Probability

• Let $B = C \cup D$ and assume $C \cap D = \emptyset$. Then $P(A|C) = \frac{P(A \cap C)}{P(C)}$ and $P(A|D) = \frac{P(A \cap D)}{P(D)}$.

•
$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(C)}{P(B)}$$
 because $C \cap B = C$.

•
$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(C)}{P(B)}$$
 because $C \cap B = C$.
Similarly, $P(D|B) = \frac{P(D)}{P(B)}$

•
$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(C)}{P(B)}$$
 because $C \cap B = C$.
Similarly, $P(D|B) = \frac{P(D)}{P(B)}$

•
$$A \cap B = A \cap (C \cup D) = (A \cap C) \cup (A \cap D)$$

Also,

•
$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(C)}{P(B)}$$
 because $C \cap B = C$.
Similarly, $P(D|B) = \frac{P(D)}{P(B)}$

•
$$A \cap B = A \cap (C \cup D) = (A \cap C) \cup (A \cap D)$$

• Therefore $P(A \cap B) = P(A \cap (C \cup D))$

•
$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(C)}{P(B)}$$
 because $C \cap B = C$.
Similarly, $P(D|B) = \frac{P(D)}{P(B)}$

- $A \cap B = A \cap (C \cup D) = (A \cap C) \cup (A \cap D)$
- Therefore

$$P(A \cap B) = P(A \cap (C \cup D))$$

= $P(A \cap C) + P(A \cap D)$

Also,

•
$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(C)}{P(B)}$$
 because $C \cap B = C$.
Similarly, $P(D|B) = \frac{P(D)}{P(B)}$

- $A \cap B = A \cap (C \cup D) = (A \cap C) \cup (A \cap D)$
- Therefore

$$P(A \cap B) = P(A \cap (C \cup D))$$

$$= P(A \cap C) + P(A \cap D) \text{ because } (A \cap C) \text{ and } (A \cap D) \text{ are } A \cap A \cap B$$

disjoint.

Law of Total Probability

• Or, from the definition of conditional probability, P(A|B)P(B) = P(A|C)P(C) + P(A|D)P(D)

Law of Total Probability

• Or, from the definition of conditional probability, P(A|B)P(B) = P(A|C)P(C) + P(A|D)P(D) or,

$$\frac{P(A|B)P(B)}{P(B)} = \frac{P(A|C)P(C)}{P(B)} + \frac{P(A|D)P(D)}{P(B)}$$

Law of Total Probability

• Or, from the definition of conditional probability, P(A|B)P(B) = P(A|C)P(C) + P(A|D)P(D) or,

$$\frac{P(A|B)P(B)}{P(B)} = \frac{P(A|C)P(C)}{P(B)} + \frac{P(A|D)P(D)}{P(B)}$$

or,

$$P(A|B) = P(A|C)P(C|B) + P(A|D)P(D|B)$$

Law of Total Probability

An important case is when $C \cup D = B = U$, so that $A \cap B = A$.

Law of Total Probability

An important case is when $C \cup D = B = U$, so that $A \cap B = A$. Then $P(A) = P(A \cap C) + P(A \cap D)$ or

Law of Total Probability

An important case is when $C \cup D = B = U$, so that $A \cap B = A$. Then $P(A) = P(A \cap C) + P(A \cap D)$ or

$$P(A) = P(A|C)P(C) + P(A|D)P(D)$$

Law of Total Probability

Law of Total Probability

More generally, if A and $\mathcal{E}_1, \dots \mathcal{E}_k$ are events and

Law of Total Probability

More generally, if A and $\mathcal{E}_1, \dots \mathcal{E}_k$ are events and

$$\mathcal{E}_i$$
 and $\mathcal{E}_j = \emptyset,$ for all $i \neq j$ and

Law of Total Probability

More generally, if A and $\mathcal{E}_1, \dots \mathcal{E}_k$ are events and

$$\mathcal{E}_i$$
 and $\mathcal{E}_j = \emptyset$, for all $i \neq j$ and

$$\bigcup_{i} \mathcal{E}_{j} = ext{ the universal set}$$

Law of Total Probability

More generally, if A and $\mathcal{E}_1, \dots \mathcal{E}_k$ are events and

$$\mathcal{E}_i$$
 and $\mathcal{E}_j = \emptyset$, for all $i \neq j$

and

 $\bigcup_i \mathcal{E}_j = ext{ the universal set}$

(ie, the set of \mathcal{E}_j sets is mutually exclusive and collectively exhaustive) then ...

Law of Total Probability

$$\sum_j P(\mathcal{E}_j) = 1$$

Law of Total Probability

$$\sum_j P(\mathcal{E}_j) = 1$$

and

$$P(A) = \sum_{j} P(A|\mathcal{E}_{j}) P(\mathcal{E}_{j}).$$

Law of Total Probability

$$\sum_j P(\mathcal{E}_j) = 1$$

and

$$P(A) = \sum_{j} P(A|\mathcal{E}_{j}) P(\mathcal{E}_{j}).$$

Law of Total Probability

Example

```
 A = \{ \text{I will have a cold tomorrow.} \} 
 \mathcal{E}_1 = \{ \text{It is raining today.} \} 
 \mathcal{E}_2 = \{ \text{It is snowing today.} \} 
 \mathcal{E}_3 = \{ \text{It is sunny today.} \}
```

Law of Total Probability

Example

```
\begin{split} &A = \{\text{I will have a cold tomorrow.}\}\\ &\mathcal{E}_1 = \{\text{It is raining today.}\}\\ &\mathcal{E}_2 = \{\text{It is snowing today.}\}\\ &\mathcal{E}_3 = \{\text{It is sunny today.}\}\\ &(Assume \ \mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3 = U \ \textit{and} \ \mathcal{E}_1 \cap \mathcal{E}_2 = \mathcal{E}_1 \cap \mathcal{E}_3 = \mathcal{E}_2 \cap \mathcal{E}_3 = \emptyset.) \end{split} Then A \cap \mathcal{E}_1 = \{\text{I will have a cold tomorrow} \ \textit{and} \ \text{it is raining today}\}.
```

Law of Total Probability

Example

```
\begin{split} & A = \{ \text{I will have a cold tomorrow.} \} \\ & \mathcal{E}_1 = \{ \text{It is raining today.} \} \\ & \mathcal{E}_2 = \{ \text{It is snowing today.} \} \\ & \mathcal{E}_3 = \{ \text{It is sunny today.} \} \\ & (\textit{Assume } \mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3 = \textit{U and } \mathcal{E}_1 \cap \mathcal{E}_2 = \mathcal{E}_1 \cap \mathcal{E}_3 = \mathcal{E}_2 \cap \mathcal{E}_3 = \emptyset.) \end{split}
```

Then $A \cap \mathcal{E}_1 = \{ \text{I will have a cold tomorrow } \textit{and } \text{ it is raining today} \}.$ And $P(A|\mathcal{E}_1)$ is the probability I will have a cold tomorrow given that it is raining today.

Law of Total Probability

Example

```
A = \{\text{I will have a cold tomorrow.}\}
\mathcal{E}_1 = \{\text{It is raining today.}\}
\mathcal{E}_2 = \{\text{It is snowing today.}\}
\mathcal{E}_3 = \{\text{It is sunny today.}\}
(Assume \ \mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3 = U \ \text{and} \ \mathcal{E}_1 \cap \mathcal{E}_2 = \mathcal{E}_1 \cap \mathcal{E}_3 = \mathcal{E}_2 \cap \mathcal{E}_3 = \emptyset.)
Then A \cap \mathcal{E}_1 = \{\text{I will have a cold tomorrow} \ \text{and} \ \text{it is raining today}\}
```

Then $A \cap \mathcal{E}_1 = \{I \text{ will have a cold tomorrow } and \text{ it is raining today}\}$. And $P(A|\mathcal{E}_1)$ is the probability I will have a cold tomorrow given that it is raining today.

etc.

Law of Total Probability

Then

```
\{I \text{ will have a cold tomorrow.}\}=
\{I \text{ will have a cold tomorrow } and \text{ it is raining today}\} \cup
\{I \text{ will have a cold tomorrow } and \text{ it is snowing today}\} \cup
\{I \text{ will have a cold tomorrow } and \text{ it is sunny today}\}
```

```
Then
```

```
{I will have a cold tomorrow.}=
{I will have a cold tomorrow and it is raining today} \cup
{I will have a cold tomorrow and it is snowing today} \cup
{I will have a cold tomorrow and it is sunny today}
SO
P(\{1 \text{ will have a cold tomorrow.}\})=
P(\{1 \text{ will have a cold tomorrow } and \text{ it is raining today}\}) +
P(\{1 \text{ will have a cold tomorrow } and \text{ it is snowing today}\}) +
P(\{1 \text{ will have a cold tomorrow } and \text{ it is sunny today}\})
```

Law of Total Probability

 $P(\{I \text{ will have a cold tomorrow.}\})=$

```
P(\{I \text{ will have a cold tomorrow.}\})=
```

```
P(\{\text{I will have a cold tomorrow} \mid \text{it is raining today}\})P(\{\text{it is raining today}\}) +\\
```

```
P(\{\text{I will have a cold tomorrow.}\}) = \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is raining today}\})P(\{\text{it is raining today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}
```

```
P(\{\text{I will have a cold tomorrow.}\}) = \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is raining today}\})P(\{\text{it is raining today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is sunny today}\})P(\{\text{it is sunny today}\}) \\ or
```

Law of Total Probability

```
P(\{\text{I will have a cold tomorrow.}\}) = \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is raining today}\})P(\{\text{it is raining today}\}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is snowing today}\})P(\{\text{it is snowing today}}) + \\ P(\{\text{I will have a cold tomorrow} \mid \text{it is sunny today}\})P(\{\text{it is sunny today}\})
```

$$P(A) = P(A|\mathcal{E}_1)P(\mathcal{E}_1) + P(A|\mathcal{E}_2)P(\mathcal{E}_2) + P(A|\mathcal{E}_3)P(\mathcal{E}_3)$$

or

Random Variables

Let V be a vector space. Then a $random\ variable\ X$ is a mapping (a function) from U to V.

Random Variables

Let V be a vector space. Then a $random\ variable\ X$ is a mapping (a function) from U to V.

If $\omega \in U$ and $x = X(\omega) \in V$, then X is a random variable.

Random Variables

Let V be a vector space. Then a random variable X is a mapping (a function) from U to V.

If $\omega \in U$ and $x = X(\omega) \in V$, then X is a random variable.

Example: V could be the real number line.

Random Variables

Let V be a vector space. Then a random variable X is a mapping (a function) from U to V.

If $\omega \in U$ and $x = X(\omega) \in V$, then X is a random variable.

Example: V could be the real number line.

Typical notation:

 Upper case letters (X) are usually used for random variables and corresponding lower case letters (x) are usually used for possible values of random variables.

Random Variables

Let V be a vector space. Then a random variable X is a mapping (a function) from U to V.

If $\omega \in U$ and $x = X(\omega) \in V$, then X is a random variable.

Example: V could be the real number line.

Typical notation:

- Upper case letters (X) are usually used for random variables and corresponding lower case letters (x) are usually used for possible values of random variables.
- Random variables $(X(\omega))$ are usually not written as functions; the argument (ω) of the random variable is usually not written. This sometimes causes confusion.

Random Variables

Flip of a Coin

Random Variables

Flip of a Coin

Let $U=\{H,T\}$. Let $\omega=H$ if we flip a coin and get heads; $\omega=T$ if we flip a coin and get tails.

Random Variables

Flip of a Coin

Let $U=\{H,T\}$. Let $\omega=H$ if we flip a coin and get heads; $\omega=T$ if we flip a coin and get tails.

Let V be the real number line.

Random Variables

Flip of a Coin

Let $U=\{H,T\}$. Let $\omega=H$ if we flip a coin and get heads; $\omega=T$ if we flip a coin and get tails.

Let V be the real number line. Let $X(\omega)$ be the number of times we get heads. Then

$$X(T)=0$$

Random Variables

Flip of a Coin

Let $U=\{H,T\}$. Let $\omega=H$ if we flip a coin and get heads; $\omega=T$ if we flip a coin and get tails.

Let V be the real number line. Let $X(\omega)$ be the number of times we get heads. Then

$$X(T) = 0$$
$$X(H) = 1$$

Random Variables

Flip of a Coin

Let $U=\{H,T\}$. Let $\omega=H$ if we flip a coin and get heads; $\omega=T$ if we flip a coin and get tails.

Let V be the real number line. Let $X(\omega)$ be the number of times we get heads. Then

$$X(T) = 0$$
$$X(H) = 1$$

Assume the coin is fair. (No tricks this time!) Then $P(\omega = T) = P(X = 0) = 1/2$

$$P(\omega = H) = P(X = 1) = 1/2$$

Random Variables

Flip of Three Coins

Let $U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$.

Random Variables

```
Flip of Three Coins
```

```
Let U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.
```

Let $\omega = HHH$ if we flip 3 coins and get 3 heads;

Random Variables

Flip of Three Coins

```
Let U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.
```

Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\omega=$ HHT if we flip 3 coins and get 2 heads and *then* one tail, etc.

Random Variables

Flip of Three Coins

```
Let U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.
```

Let $\omega =$ HHH if we flip 3 coins and get 3 heads; $\omega =$ HHT if we flip 3 coins and get 2 heads and *then* one tail, etc. *The order matters!* There are 8 samples.

Random Variables

Flip of Three Coins

Let $U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$.

Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\omega=$ HHT if we flip 3 coins and get 2 heads and *then* one tail, etc. *The order matters!* There are 8 samples.

• $P(\omega) = 1/8$ for all ω .

Random Variables

Flip of Three Coins

Let $U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$.

Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\omega=$ HHT if we flip 3 coins and get 2 heads and *then* one tail, etc. *The order matters!* There are 8 samples.

• $P(\omega) = 1/8$ for all ω .

Let X be the *number* of heads. Then X = 0, 1, 2, or 3.

Random Variables

Flip of Three Coins

Let $U = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$.

Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\omega=$ HHT if we flip 3 coins and get 2 heads and *then* one tail, etc. *The order matters!* There are 8 samples.

• $P(\omega) = 1/8$ for all ω .

Let X be the *number* of heads. Then X = 0, 1, 2, or 3.

•
$$P(X = 0)=1/8$$
; $P(X = 1)=3/8$; $P(X = 2)=3/8$; $P(X = 3)=1/8$.

There are 4 distinct values of X.

Probability Distributions

Let $X(\omega)$ be a random variable. Then $P(X(\omega) = x)$ is the *probability distribution* of X (usually written P(x)). For three coin flips:

Probability Distributions

Shorthand:

• Instead of writing $P(X(\omega) = x)$, people often write P(x) if the meaning is unambiguous.

Mean and Variance:

• Mean (average): $\bar{x} = \mu_x = E(X) = \sum_x xP(x)$

Probability Distributions

Shorthand:

• Instead of writing $P(X(\omega) = x)$, people often write P(x) if the meaning is unambiguous.

Mean and Variance:

- Mean (average): $\bar{x} = \mu_x = E(X) = \sum_x xP(x)$
- Variance: $V_x = \sigma_x^2 = E(X \mu_x)^2 = \sum_x (x \mu_x)^2 P(x)$

Probability Distributions

Shorthand:

• Instead of writing $P(X(\omega) = x)$, people often write P(x) if the meaning is unambiguous.

Mean and Variance:

- Mean (average): $\bar{x} = \mu_x = E(X) = \sum_x xP(x)$
- Variance: $V_x = \sigma_x^2 = E(X \mu_x)^2 = \sum_x (x \mu_x)^2 P(x)$
- Standard deviation (sd): $\sigma_x = \sqrt{V_x}$

Probability Distributions

Shorthand:

• Instead of writing $P(X(\omega) = x)$, people often write P(x) if the meaning is unambiguous.

Mean and Variance:

- Mean (average): $\bar{x} = \mu_x = E(X) = \sum_x xP(x)$
- Variance: $V_x = \sigma_x^2 = E(X \mu_x)^2 = \sum_x (x \mu_x)^2 P(x)$
- Standard deviation (sd): $\sigma_x = \sqrt{V_x}$
- Coefficient of variation (cv): σ_x/μ_x

Probability Distributions

For three coin flips:

$$ar{x} = 1.5$$
 $V_x = 0.75$
 $\sigma_x = 0.866$
 $cv = 0.577$

Functions of a Random Variable

 A function of a random variable is a random variable.

Functions of a Random Variable

- A function of a random variable is a random variable.
- Special case: linear function

For every
$$\omega$$
, let $Y(\omega) = aX(\omega) + b$. Then

$$\star \bar{Y} = a\bar{X} + b.$$

Functions of a Random Variable

- A function of a random variable is a random variable.
- Special case: linear function

For every
$$\omega$$
, let $Y(\omega) = aX(\omega) + b$. Then

$$\star \bar{Y} = a\bar{X} + b.$$

$$\star V_Y = a^2 V_X; \qquad \sigma_Y = |a| \sigma_X.$$

Discrete Random Variables

1. Bernoulli

Flip a biased coin.

Discrete Random Variables

1. Bernoulli

Flip a biased coin.

 X^B is 1 if outcome is heads; 0 if tails.

1. Bernoulli

Flip a biased coin.

 X^B is 1 if outcome is heads; 0 if tails.

Let p be a real number, $0 \le p \le 1$.

1. Bernoulli

Flip a biased coin.

 X^B is 1 if outcome is heads; 0 if tails.

Let p be a real number, $0 \le p \le 1$.

$$P(X^B = 1) = p.$$

1. Bernoulli

Flip a biased coin.

 X^B is 1 if outcome is heads; 0 if tails.

Let p be a real number, $0 \le p \le 1$.

$$P(X^B=1)=p.$$

$$P(X^B = 0) = 1 - p.$$

1. Bernoulli

Flip a biased coin.

 X^B is 1 if outcome is heads; 0 if tails.

Let p be a real number, $0 \le p \le 1$.

$$P(X^B = 1) = p.$$

$$P(X^B=0)=1-p.$$

 X^B is a Bernoulli random variable.

2. Binomial

The sum of N independent Bernoulli random variables X_i^B with the same parameter p is a binomial random variable X^b .

2. Binomial

The sum of N independent Bernoulli random variables X_i^B with the same parameter p is a binomial random variable X^b .

$$X^b = \sum_{i=0}^N X_i^B$$

2. Binomial

The sum of N independent Bernoulli random variables X_i^B with the same parameter p is a binomial random variable X^b .

$$X^b = \sum_{i=0}^N X_i^B$$

$$P(X^b = x) = \frac{N!}{x!(N-x)!}p^x(1-p)^{(N-x)}$$

2. Binomial probability distribution

3. Geometric

The number of independent Bernoulli random variables X_i^B with the same parameter p tested until the first 1 appears is a geometrically distributed random variable X^g .

3. Geometric

The number of independent Bernoulli random variables X_i^B with the same parameter p tested until the first 1 appears is a geometrically distributed random variable X^g .

3. Geometric

The number of independent Bernoulli random variables X_i^B with the same parameter p tested until the first 1 appears is a geometrically distributed random variable X^g .

$$X^g = k \text{ if } X_1^B = 0, \ X_2^B = 0, \ ..., \ X_{k-1}^B = 0, \ X_k^B = 1$$

3. Geometric

To calculate $P(X^g = k)$,

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$,

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$.

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

= (1 - p)P(X^g > k - 1),

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

= (1 - p)P(X^g > k - 1),

because

$$P(X^g > k | X^g > k - 1) = P(X_1^B = 0, ..., X_k^B = 0 | X_1^B = 0, ..., X_{k-1}^B = 0)$$

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

= (1 - p)P(X^g > k - 1),

because

$$P(X^g > k | X^g > k - 1) = P(X_1^B = 0, ..., X_k^B = 0 | X_1^B = 0, ..., X_{k-1}^B = 0)$$

= 1 - p

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^{g} > k) = P(X^{g} > k | X^{g} > k - 1)P(X^{g} > k - 1)$$

= $(1 - p)P(X^{g} > k - 1)$,

because

$$P(X^g > k | X^g > k - 1) = P(X_1^B = 0, ..., X_k^B = 0 | X_1^B = 0, ..., X_{k-1}^B = 0)$$

= 1 - p

SO

$$P(X^g > 1) = 1 - p.$$

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

= (1 - p)P(X^g > k - 1),

because

$$P(X^g > k | X^g > k - 1) = P(X_1^B = 0, ..., X_k^B = 0 | X_1^B = 0, ..., X_{k-1}^B = 0)$$

= 1 - p

SO

$$P(X^g > 1) = 1 - p$$
, $P(X^g > 2) = (1 - p)^2$,

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

= (1 - p)P(X^g > k - 1),

because

$$P(X^g > k | X^g > k - 1) = P(X_1^B = 0, ..., X_k^B = 0 | X_1^B = 0, ..., X_{k-1}^B = 0)$$

= 1 - p

SO

$$P(X^g > 1) = 1 - p$$
, $P(X^g > 2) = (1 - p)^2$, ... $P(X^g > k - 1) = (1 - p)^{k-1}$

3. Geometric

To calculate $P(X^g = k)$, observe that $P(X^g = 1) = p$, so $P(X^g > 1) = 1 - p$. Also, observe that $\{X^g > k\}$ is a subset of $\{X^g > k - 1\}$.

Then

$$P(X^g > k) = P(X^g > k | X^g > k - 1)P(X^g > k - 1)$$

= (1 - p)P(X^g > k - 1),

because

$$P(X^g > k | X^g > k - 1) = P(X_1^B = 0, ..., X_k^B = 0 | X_1^B = 0, ..., X_{k-1}^B = 0)$$

= 1 - p

and $P(X^g = k) = P(\{X^g > k - 1\} \text{ and } \{X_k^B = 1\}) = (1 - p)^{k-1}p$.

SO

$$P(X^g > 1) = 1 - p$$
, $P(X^g > 2) = (1 - p)^2$, ... $P(X^g > k - 1) = (1 - p)^{k-1}$

Probability

3. Geometric probability distribution

43

4. Poisson Distribution

$$P(X^P = n) = e^{-\lambda} \frac{\lambda^n}{n!}$$

Discussion later.

Philosophical Issues

1. *Mathematically*, continuous and discrete random variables are very different.

Philosophical Issues

- 1. *Mathematically*, continuous and discrete random variables are very different.
- 2. *Quantitatively*, however, some continuous models are very close to some discrete models.

Philosophical Issues

- 1. *Mathematically*, continuous and discrete random variables are very different.
- 2. *Quantitatively*, however, some continuous models are very close to some discrete models.
- 3. Therefore, which kind of model to use for a given system is a matter of *convenience* .

Philosophical Issues

Example: The production process for small metal parts (nuts, bolts, washers, etc.) might better be modeled as a continuous flow than as a large number of discrete parts.

Philosophical Issues

The probability of a two-dimensional random variable being in a small square is the *probability density* times the area of the square. (The definition is similar in higher-dimensional spaces.)

Compare with slide 14.

Philosophical Issues

Continuous Random Variables Spaces

Dimensionality

- Continuous random variables can be defined
 - * in one, two, three, ..., infinite dimensional spaces;
 - * in finite or infinite regions of the spaces.

Spaces

Dimensionality

- Continuous random variables can be defined
 - * in one, two, three, ..., infinite dimensional spaces;
 - * in finite or infinite regions of the spaces.
- Continuous random variables can have
 - * probability measures with the same dimensionality as the space;
 - * lower dimensionality than the space;
 - * a mix of dimensions.

Spaces

Dimensionality

- Continuous random variables can be defined
 - * in one, two, three, ..., infinite dimensional spaces;
 - * in finite or infinite regions of the spaces.
- Continuous random variables can have
 - * probability measures with the same dimensionality as the space;
 - * lower dimensionality than the space;
 - * a mix of dimensions.

No change in water levels

One kind of change in water levels

Trajectories

Trajectories of buffer levels in the three-machine line if the machine states stay constant for a long enough time period.

Notation: 110 means M_1 and M_2 are operational and M_3 is down, 100 means M_1 is operational, M_2 and M_3 are down, etc.

Two-dimensional probability distribution

Probability distribution of the amount of material in each of the two buffers.

Discrete approximation of the probability distribution

Probability distribution of the amount of material in each of the two buffers.

Densities and Distributions

In one dimension, F() is the *cumulative probability distribution of* X if

$$F(x) = P(X \le x)$$

Densities and Distributions

In one dimension, F() is the *cumulative probability distribution of* X if

$$F(x) = P(X \le x)$$

f() is the density function of X if

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Densities and Distributions

In one dimension, F() is the *cumulative probability distribution of* X if

$$F(x) = P(X \le x)$$

f() is the density function of X if

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Therefore,

$$f(x) = \frac{dF}{dx}$$

wherever F is differentiable.

Densities and Distributions

Fact:
$$f(x)\delta x \approx P(x \le X \le x + \delta x)$$
 for sufficiently small δx .

Densities and Distributions

Fact: $f(x)\delta x \approx P(x \le X \le x + \delta x)$ for sufficiently small δx .

$$f(x)\delta x \approx P(x \le X \le x + \delta x)$$

$$\longrightarrow \qquad \longleftarrow \qquad \bullet \times$$

Fact:
$$F(b) - F(a) = \int_a^b f(t) dt$$

Densities and Distributions

Fact: $f(x)\delta x \approx P(x \le X \le x + \delta x)$ for sufficiently small δx .

Fact:
$$F(b) - F(a) = \int_a^b f(t) dt$$

Definition: Expected value of
$$x = \bar{x} = \int_{-\infty}^{\infty} tf(t)dt$$

Standard Normal Distribution

The density function of the *normal* (or *gaussian*) distribution with mean 0 and variance 1 (the *standard normal*) is given by

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

Standard Normal Distribution

The density function of the normal (or gaussian) distribution with mean 0 and variance 1 (the $standard\ normal$) is given by

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

The normal distribution function is

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Standard Normal Distribution

The density function of the normal (or gaussian) distribution with mean 0 and variance 1 (the $standard\ normal$) is given by

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

The normal distribution function is

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

(There is no closed form expression for F(x).)

Standard Normal Distribution

Normal Distribution

Notation: $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2 .

Normal Distribution

Notation: $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2 .

Note: Some people write $N(\mu, \sigma)$ for the normal distribution with mean μ and variance σ^2 .

Normal Distribution

Notation: $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2 .

Note: Some people write $N(\mu, \sigma)$ for the normal distribution with mean μ and variance σ^2 .

Fact: If X and Y are normal, then aX + bY + c is normal.

Normal Distribution

Notation: $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2 .

Note: Some people write $N(\mu, \sigma)$ for the normal distribution with mean μ and variance σ^2 .

Fact: If X and Y are normal, then aX + bY + c is normal.

Fact: If X is $N(\mu, \sigma)$, then $\frac{X-\mu}{\sigma}$ is N(0,1), the standard normal.

Normal Distribution

Notation: $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2 .

Note: Some people write $N(\mu, \sigma)$ for the normal distribution with mean μ and variance σ^2 .

Fact: If X and Y are normal, then aX + bY + c is normal.

Fact: If X is $N(\mu, \sigma)$, then $\frac{X-\mu}{\sigma}$ is N(0, 1), the standard normal.

Consequently, $N(\mu, \sigma)$ easy to compute from N(0, 1). This is why N(0, 1) is tabulated in books.

Truncated Normal Density (1)

 $f_T(x)\delta x = P(x \le X \le x + \delta x) = \frac{f(x)}{1 - F(0)}\delta x$ where F() and f() are the normal distribution and density functions with parameters μ and σ .

Truncated Normal Density (1)

$$f_T(x)\delta x = P(x \le X \le x + \delta x) = \frac{f(x)}{1 - F(0)}\delta x$$
 where $F()$ and $f()$ are the normal distribution and density functions with parameters μ and σ .

Note: μ and σ are the parameters of f(x), not $f_T(x)$.

Truncated Normal Density (2)

 $f_{T'}(x)\delta x = P(x \le X \le x + \delta x) = f(x)\delta x$ for x > 0 and P(X = 0) = F(0) where F() and f() are the normal distribution and density functions with parameters μ and σ .

Truncated Normal Density (2)

 $f_{T'}(x)\delta x = P(x \le X \le x + \delta x) = f(x)\delta x$ for x > 0 and P(X = 0) = F(0) where F() and f() are the normal distribution and density functions with parameters μ and σ .

Here again, μ and σ are the parameters of f(x), not $f_{T'}(x)$.

Truncated Normal Density (2)

 $f_{T'}(x)\delta x = P(x \le X \le x + \delta x) = f(x)\delta x$ for x > 0 and P(X = 0) = F(0) where F() and f() are the normal distribution and density functions with parameters μ and σ .

Here again, μ and σ are the parameters of f(x), not $f_{T'}(x)$.

For both kinds of truncation, $f_T(x)$ and $f_{T'}(x)$ are close to f(x) when $\mu\gg\sigma$, and not otherwise.

Law of Large Numbers

Let $\{X_k\}$ be a sequence of independent identically distributed (i.i.d.) random variables that have finite mean μ . Let S_n be the sum of the first n X_k s, so

$$S_n = X_1 + ... + X_n$$

Law of Large Numbers

Let $\{X_k\}$ be a sequence of independent identically distributed (i.i.d.) random variables that have finite mean μ . Let S_n be the sum of the first n X_k s, so

$$S_n = X_1 + ... + X_n$$

Then for every $\epsilon > 0$,

$$\lim_{n\to\infty} P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) = 0$$

Law of Large Numbers

Let $\{X_k\}$ be a sequence of independent identically distributed (i.i.d.) random variables that have finite mean μ . Let S_n be the sum of the first n X_k s, so

$$S_n = X_1 + ... + X_n$$

Then for every $\epsilon > 0$,

$$\lim_{n\to\infty} P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) = 0$$

That is, the average approaches the mean.

Central Limit Theorem

Let $\{X_k\}$ be a sequence of i.i.d. random variables with finite mean μ and finite variance σ^2 .

Central Limit Theorem

Let $\{X_k\}$ be a sequence of i.i.d. random variables with finite mean μ and finite variance σ^2 .

Then as $n \to \infty$, $P(\frac{S_n - n\mu}{\sqrt{n}\sigma}) \to N(0, 1)$.

Central Limit Theorem

Let $\{X_k\}$ be a sequence of i.i.d. random variables with finite mean μ and finite variance σ^2 .

Then as
$$n \to \infty$$
, $P(\frac{S_n - n\mu}{\sqrt{n}\sigma}) \to N(0, 1)$.

If we define A_n as S_n/n , the average of the first n X_k s, then this is equivalent to:

As
$$n \to \infty$$
, $P(A_n) \to N(\mu, \sigma/\sqrt{n})$.

Coin flip examples

Probability of x heads in n flips of a fair coin

Binomial probability distribution approaches normal for large N.

Binomial distributions

Note the resemblance to a *truncated* normal in these examples.

Normal Density Function

... in Two Dimensions

More Continuous Distributions

Uniform

$$f(x) = \frac{1}{b-a}$$
 for $a \le x \le b$

$$f(x) = 0$$
 otherwise

More Continuous Distributions

Uniform

More Continuous Distributions

Triangular

Probability density function

Triangular

Cumulative distribution function

Exponential

• Very often used for the time until a specified event occurs.

- Very often used for the time until a specified event occurs.
- Density: $f(t) = \lambda e^{-\lambda t}$ for $t \ge 0$; f(t) = 0 otherwise;

- Very often used for the time until a specified event occurs.
- Density: $f(t) = \lambda e^{-\lambda t}$ for $t \ge 0$; f(t) = 0 otherwise;
- Distribution: $F(t) = P(T \le t) = 1 e^{-\lambda t}$ for $t \ge 0$; F(t) = 0 otherwise.

- Very often used for the time until a specified event occurs.
- Density: $f(t) = \lambda e^{-\lambda t}$ for $t \ge 0$; f(t) = 0 otherwise;
- Distribution: $F(t) = P(T \le t) = 1 e^{-\lambda t}$ for $t \ge 0$; F(t) = 0 otherwise.

Exponential

• Close to the geometric distribution but for continuous time.

- Close to the geometric distribution but for continuous time.
- Very mathematically convenient.

- Close to the geometric distribution but for continuous time.
- Very mathematically convenient.
- Memorylessness:

$$P(T > t + x | T > x) = P(T > t)$$

Exponential

- Close to the geometric distribution but for continuous time.
- Very mathematically convenient.
- Memorylessness:

$$P(T > t + x | T > x) = P(T > t)$$

Suppose an exponentially distributed process is started at time 0 and the event of interest has not occurred yet at time x. Then the probability distribution of the time after x at which it occurs is the same as the original exponential distribution. The process has no "memory" of when it was actually started.

Another Discrete Random Variable

Poisson Distribution

$$P(X^P = x) = e^{-\lambda t} \frac{(\lambda t)^x}{x!}$$

is the probability that x events happen in [0, t] if the events are independent and the times between them are exponentially distributed with parameter λ .

Typical examples: arrivals and services at queues. (Next lecture!)

...but almost

• A pseudo-random number generator is a set of numbers $X_0, X_1, ...$ where there is a function F such that

$$X_{n+1} = F(X_n)$$

...but almost

• A pseudo-random number generator is a set of numbers $X_0, X_1, ...$ where there is a function F such that

$$X_{n+1} = F(X_n)$$

- For example,
 - * there is a known finite maximum X^{max} ,

...but almost

• A pseudo-random number generator is a set of numbers $X_0, X_1, ...$ where there is a function F such that

$$X_{n+1} = F(X_n)$$

- For example,
 - * there is a known finite maximum X^{max} ,
 - $\star 0 \leq X_n \leq X^{\max}$

...but almost

• A pseudo-random number generator is a set of numbers $X_0, X_1, ...$ where there is a function F such that

$$X_{n+1} = F(X_n)$$

- For example,
 - * there is a known finite maximum X^{max} ,
 - $\star 0 < X_n < X^{\max}$
 - * and the sequence $U_0, U_1, ...$ (where $U_i = X_i/X^{\text{max}}$) looks like a set of uniformly distributed, independent random variables.

...but almost

• A pseudo-random number generator is a set of numbers $X_0, X_1, ...$ where there is a function F such that

$$X_{n+1} = F(X_n)$$

- For example,
 - * there is a known finite maximum X^{max} ,
 - * $0 \le X_n \le X^{\max}$,
 - * and the sequence $U_0, U_1, ...$ (where $U_i = X_i/X^{\text{max}}$) looks like a set of uniformly distributed, independent random variables.
 - That is, statistical tests say that the probability of the sequence not being independent uniform random variables is very small.

...but almost

• The sequence is deterministic: it is determined by X_0 , the *seed* of the random number generator.

...but almost

- The sequence is deterministic: it is determined by X_0 , the *seed* of the random number generator.
- If you use the same seed twice, you get the same sequence both times. This can be convenient, especially in development of software.

...but almost

- The sequence is deterministic: it is determined by X_0 , the *seed* of the random number generator.
- If you use the same seed twice, you get the same sequence both times. This can be convenient, especially in development of software.
- If you use different seeds, you get completely different sequences, even if the seeds are close to one another.

...but almost

- The sequence is deterministic: it is determined by X_0 , the *seed* of the random number generator.
- If you use the same seed twice, you get the same sequence both times. This can be convenient, especially in development of software.
- If you use different seeds, you get completely different sequences, even if the seeds are close to one another.
- Pseudo-random number generators are used extensively in simulation.