

Regole di calcolo per i numeri reali estesi e limiti

$$\overline{\overline{\mathbb{R}}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

indichiamo con $\overline{\overline{\mathbb{R}}}$ i numeri reali estesi.

In che modo si posizionano $\pm\infty$ nella gerarchia dei numeri reali:

$$\forall x \in \overline{\overline{\mathbb{R}}} : -\infty < x < +\infty$$

Come si comportano $\pm \infty$ nei calcoli:

•
$$x \pm \infty = \pm \infty$$

•
$$x \pm \infty = \pm \infty$$

• $x*\pm\infty=\pm\infty$

•
$$\pm \infty * \pm \infty = \pm \infty$$

•
$$\pm \infty \pm \infty = \pm \infty$$

•
$$-x*\pm\infty=\mp\infty$$

•
$$\pm \infty * \mp \infty = -\infty$$

•
$$\frac{x}{\pm \infty} = 0$$

Estensione delle operazioni sui limiti

Date le successioni: $\{an\},\{b_n\}$ $\operatorname{con}\ a_n o l,b_n o l',l,l'\in\overline{\overline{\mathbb{R}}}$

•
$$a_n + b_n \rightarrow l + l'$$

•
$$a_n * b_n \rightarrow l * l'$$

$$\bullet$$
 $\frac{a_n}{b_n} \to \frac{l}{l'}$

Purchè $l+l',l*l',rac{l}{l'}$ siano definiti

es.

$$\lim_{n
ightarrow+\infty}(2^n+\sqrt{n})
ightarrow\sqrt{n}=n^{rac{1}{2}}
ightarrow+\infty,\ 2^n
ightarrow+\infty=+\infty$$

$$\lim_{n \to +\infty} (n^3 + (-1)^n) \to n^3 \to +\infty, \ -1^n \to ext{non ha limiti quindi:} \ \lim_{n \to +\infty} n^3 (1 + \frac{(-1)^n}{n^3}) \to \frac{(-1)^n}{n^3} \to 0 \ n^3 \to +\infty, \frac{(-1)^n}{n^3} \to 0$$

$$n^3 o +\infty, rac{(-1)^n}{n^3} o 0$$

quindi
$$\rightarrow +\infty$$

Se
$$a_n o 0$$
 e b_n è limitata allora: $a_n * b_n o +\infty$

Alcune forme di indecisione

•
$$\pm \infty \mp \infty$$

•
$$0*\pm\infty$$

•
$$\frac{\pm \infty}{\pm \infty}$$
, $\frac{\pm \infty}{\mp \infty}$

Svolgendo questi limiti si arriva a dei risultati che sono sempre differenti, non è quindi possibile stabilire una regola generale.

Teorema di esistenza del limite di successioni monotone

Definiamo in primis la monotonia crescente.

Si dice che $\{a_n\}$ è monotona crescente se: $a_n \leq a_{n+1} orall n \in \mathbb{N}$

Si dice che $\{a_n\}$ è monotona **strettamente** crescente se: $a_n < a_{n+1} orall n \in$ \mathbb{N}

Definita la monotonia possiamo dire che:

Sia $\{a_n\}$ monotona crescente e sia $l=sup\{a_n\}$ ALLORA $a_n o l$ quindi $\{a_n\}$ è regolare (ammette limiti)

Il teorema vale anche con la monotonia decrescnte, basta cambiare i maggiorni con i minori e il sup. con l'inf. della successione.