## Lista zadań przygotowujących do egzaminu z Podstaw Programowania

**Zadanie 1** Jakie wartości zostaną wyświetlone w wyniku wykonania poniższych fragmentów programów. Zachować kolejność i format wydruku.

```
int y = 2, x = 1;
   if(y) x *= -1;
a)
   if(y-->x) x += 4;
   printf("\nx = \%d y = \%d", x, y);
   int i=3,j=3, x=0;
   while(i=--j){
b)
        x -= j;
        printf("%d\n", x);
      }
   int i, x=15;
   for(i=0;i<3 && x>3;i++){
c)
      x/=2;
      printf("\nx = \%d", x);
   }
```

**Zadanie 2** Jakie będą wartości zmiennych po wykonaniu fragmentów programu. Każdy wiersz w tabeli traktuj jako osobny fragment! (Wartość dziesiętna kodu ASCII litery A wynosi 65).

```
int x;
                                      x = .....
 x = !, 0, ?, A, + 2.5; D, - 2.5;
 double y = 1.5, x = 0.0;
                                      x = \dots
 ++y;
                                      y = .....
 x += y++;
1 \text{ float } z = 2.5f;
                                      z = \dots
2z = 3 == 7 ? z : 2 * z;
 int a = 4;
                                      a = .....
2 a = (1 < 3) \&\& (a > 2);
1 unsigned int b = 2;
                                      b = \dots
 b += (7 \% 4)/2 + 3;
```

## Zadanie 3 Jaką wartość mają następujące wyrażenia?

| 1 | (int)5e-2 + 3.9       |                             |
|---|-----------------------|-----------------------------|
| 1 | 30 - 2 * (x = 11.0/2) | w zasięgu deklaracji int x; |
| 1 | 6 < 2 > -1            |                             |
| 1 | (13 + 5) > (4 * 3)    |                             |
| 1 | 13 + 6/2 * 3          |                             |

**Zadanie 4** Podać wartości, które zostaną wyświetlone na ekranie w wyniku wykonania poniższego programu. Zachować kolejność i podział na wiersze.

```
1 int main(void){
      int tab[3][4] = {{3, 8, 9, 0},{3, 7, 9, 1},{0, 1, 6, 2}};
3
      int i = 0, j;
      while (i < 3) {
4
           for(j = i; j < 4; j += 2)
5
           if(tab[i][j] > 4)
6
             printf("%d %d\n", i, j); ++i;
7
8
      }
    return 0;
10 }
```

**Zadanie** 5 Ile razy wykona się instrukcja w bloku wyróżnionym pogrubioną linią dla wczytanych danych wejściowych a = 45, b = 9 jeżeli wykonamy algorytm przedstawiony na rysunku 1.



Rys. 1: Schemat blokowy pewnego algorytmu.

**Zadanie 6** Którym instrukcjom zapisanym w pseudokodzie odpowiada algorytm przedstawiony na rysunku 1?

```
1 scan(a, b);
                                             1 scan(a, b);
    2 while (a != b)
                                             2 while (a != b)
                                        b)
a)
    3 if(a > b) a = a - b;
                                             3 if(a > b) b = b - a;
    4 else b = b - a;
                                             4 \text{ else } a = a - b;
    5 print(a);
                                             5 print(a);
    1 scan(a, b);
                                             1 scan(a, b);
    2 while (a != b){
                                             2 do{
    3 if(a > b) a = a - b;
                                             3 if(a > b) a = a - b;
                                        d)
    4 else b = b - a;
                                             4 \text{ else } b = b - a;
    5 print(a);
                                             5 }while (a != b);
    6 }
                                             6 print(a);
```

## Zadanie 7 Załóżmy, że mamy następujące deklaracje:

```
1 int liczby[3] = {1,2,3};
2 int tab[2][3] = {{4,5,6},{7,8,9}};
3 int x = 12, *wsk = &x;
```

Określ dla każdej z poniższych instrukcji, czy jest poprawna (P), czy fałszywa (F). Przez instrukcję poprawną rozumiemy instrukcję, dla której nie zostanie zgłoszony błąd kompilacji lub jej wykonanie nie spowoduje niepoprawnego wykonania programu.

```
a)
     wsk = tab[2][0];
     x = tab[1][2];
b)
                                    . . . . . .
     scanf("%d", &liczby[0]); ......
c)
d)
     tab[1][1] = *wsk;
     scanf("%d", liczby);
e)
                                    . . . . . .
     printf("%d", tab[2][2]); ......
f)
     scanf("%d", liczby[0]);
g)
h)
     wsk = liczby;
i)
     *wsk = *liczby;
                                    . . . . . .
     tab = &tab[0][2]
j)
                                    . . . . . .
k)
     liczby = &wsk;
1)
     *wsk = tab[1][1];
                                    . . . . . .
     liczby[3] = *wsk;
m)
                                    . . . . . .
n)
     wsk = &tab[1][1];
     wsk = 0;
o)
                                    . . . . . .
```

**Zadanie** 8 Funkcja sort () sortuje tablicę metodą przez prostą zamianę (bąbelkową)- porównuje dwa sąsiednie elementy i większy przesuwa w kierunku końca tabeli. Zaznaczone kropkami miejsce funkcji należy uzupełnić brakującym kodem - zaznacz prawidłową odpowiedź.

```
1 void sort(int tab[], int n) //n liczba elementów tablicy
2 {
3
   int i, j, temp;
4
5
    . . . . . . . . . . . . . . . . . . .
6
    {
7
       for(i = 0; i < j; i++)
8
       if(tab[i] > tab[i+1])
9
       {
       temp = tab[i];
10
       tab[i] = tab[i+1];
11
       tab[i+1] = temp;
12
13
       }
14
     }
15 }
    a) for (j = 0; j < n - 1; j++)
    b) for(j = n - 1; j > 0; j--)
    c) for(j = n; j > 1; j--)
```

d) żadna z powyższych odpowiedzi nie jest poprawna

**Zadanie** 9 Jakie wartości zostaną wyświetlone w wyniku wykonania poniższego programu? Zachować kolejność i podział na wiersze.

```
1 void f(int n, int *k){
2 n++; --*k;
3 }
4 int main(void){
5 int a = 1, b = 7;
6 f(a++, &b);
7 printf ("a = %d b = %d\n", a, b);
8 f(++b, &a);
9 printf ("a = %d b = %d\n", a, b);
10 return 0;
11 }
```

Zadanie 10 Rozważ algorytm przedstawiony na rysunku 2.



Rys. 2: Schemat blokowy pewnego algorytmu.

Wynikiem działania tego algorytmu dla liczby całkowitej n>0 jest wypisanie wartości wyrażenia:

- a)  $1 + 2 + 3 + \ldots + n$
- b)  $1 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \ldots \cdot \frac{1}{n}$
- c)  $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$
- d)  $1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$
- e) żadna z powyższych odpowiedzi nie jest poprawna

**Zadanie 11** Jakie będą wartości zmiennych i, j, k w wyniku wykonania następujących instrukcji?

```
1 int i = 5, j = 50, k = 56;
2 int *p =&i; int *q = &k;
3 j = *q<0/*0>p;
4 *p = 3**p;
5 p = q;
6 *p %= *q;
```

**Zadanie 12** Jakie wartości zostaną wyświetlone w wyniku wykonania poniższego programu? Zachować kolejność i podział na wiersze.

```
1 int f(int *p){
2   return (*p)--;
3 }
4 int g(int n){
5   return n * 3;
6 }
7 int main(void){
8   int i = 1, j = 2;
9   printf("\n %d %d\n", 2 * f(&i) + 2, g(f(&j) + g(1)));
10   printf("\n %d %d\n", i, j);
11   return 0;
12 }
```

Zadanie 13 Tablica t zawiera dwadzieścia elementów typu double. Po wykonaniu instrukcji

```
1 int j = 3, k;
2 for(k = 4; k < 10; ++k) if (t[k] < t[j]) j = k;</pre>
```

wartością zmiennej j będzie:

- a) liczba różnych od zera wartości wśród elementów t[4], t[5], ..., t[9]
- b) liczba różnych od zera wartości wśród elementów t[3], t[4], ..., t[9]
- c) indeks elementu o najmniejszej wartości wśród elementów t[4], t[5], ..., t[9]
- d) indeks elementu o najmniejszej wartości wśród elementów t[3], t[4], ..., t[9]
- e) indeks elementu o największej wartości wśród elementów t[4], t[5], ..., t[9]
- f) indeks elementu o największej wartości wśród elementów t[3], t[4], ..., t[9]
- g) żadna z powyższych odpowiedzi nie jest poprawna

**Zadanie 14** Wskazać "rysunek" utworzony przez znaki x wyświetlone na ekranie w wyniku wykonania podanych instrukcji.

```
1 int m=5, n=1;
2 while(m>0){
    int k=1;
    while(k<=m){
4
      printf(" ");
5
      ++k;
6
7
    }
    for(k=1; k<=n; ++k) printf("x");</pre>
    --m;
9
10
    ++n;
    printf("\n");
11
12 }
```

|    | 1 x         | 1 x        | 1 x                   |
|----|-------------|------------|-----------------------|
|    | 2 xx        | 2 xx       | 2 x                   |
| a) | 3 xxx       | b) 3 xxx   | c) 3 x                |
|    | 4  xxxx     | 4 xxxx     | 4 x                   |
|    | 5 xxxxx     | 5 xxxxx    | 5 х                   |
|    | 1 xxxxx     | 1 xxxxx    | 1 xxxxx               |
|    | 2 xxxx      | 2 xxxxx    | 2 xxxxx               |
| d) | 3 xxx       | e) 3 xxxxx | f) 3 <sub>xxxx</sub>  |
|    | 4 xx        | 4 xxxxx    | 4 xxxxx               |
|    | 5 x         | 5 xxxxx    | 5 xxxxx               |
|    | 1 x         | 1 xxxxx    | żaden z podanych "ry- |
|    | 2 xxx       | 2 x        | sunków" nie zostanie  |
| g) | 3 xxxxx     | h) 3 x     | i) wydrukowany w wy-  |
|    | 4 xxxxxxx   | 4 x        | niku powyższych in-   |
|    | 5 xxxxxxxxx | 5 x        | strukcji              |

**Zadanie 15** Dana jest tablica A[0...n-1] (tj. n oznacza liczbę elementów w tablicy A, a elementy numerowane są od 0). Niech n będzie wartością nieparzystą. Co robi fragment algorytmu przedstawiony na rysunku 3? Zaznacz prawidłową odpowiedź.



Rys. 3: Schemat blokowy fragmentu pewnego algorytmu.

- a) zamieni miejscami tylko element ostatni z pierwszym
- b) odwróci kolejność elementów tablicy (zamieni pierwszy z ostatnim, drugi z przedostatnim, itd.)
- c) zamieni co drugi element z początku tablicy z odpowiednio co drugim elementem z końca tablicy
- d) zamieni ze sobą każde dwa sąsiednie elementy w tablicy (pierwszy z drugim, trzeci z czwartym, itd.)
- e) żadna z powyższych odpowiedzi nie jest poprawna

**Zadanie 16** Jakie będą wartości zmiennych a i b w wyniku wykonania programu? Wybierz prawidłową odpowiedź.

```
1 int main(void){
2   int a = 1, b = 25;
3   while(a < 10 || b > 16){
4     a = a + 2;
5     b = b - 3;
6   }
7   printf("a = %d, b = %d", a ,b);
8   return 0;
9 }
```

```
a) a = 7, b = 16
b) a = 11, b = 10
c) a = 9, b = 13
d) a = 13, b = 7
```

**Zadanie 17** Podać wartości, które zostaną wyświetlone na ekranie w wyniku wykonania poniższego programu. Zachować kolejność i podział na wiersze.

```
1 void f(int u, int *v){
    printf("%d %d\n", u, *v);
2
    u += 2;
3
    *v += 3;
    printf("%d %d\n", u, *v);
5
6 }
7 int main(void){
    int x = 30, y = 10;
9
    f(x, &y);
10
   printf("%d %d\n", x, y);
11
    f(y, &x);
12
    printf("%d %d\n", x, y);
13
    return 0;
14 }
```

Zadanie 18 Jakie wartości zostaną wydrukowane w wyniku działania programu.

```
1 int v(int *y, int x)
2 {
3
      int k;
      for(k = 1; y[k] > x; k += 2)
           printf("%d, ", y[k]);
5
6 }
7 int main(void)
8 {
    int a[8]={5, 9, 6, 7, 1, 4, 2, 0};
10
    v(a, 2);
11
    return 0;
12 }
```

```
a) 9, 7, 4, 0,
```

- b) 5, 9, 6, 7, 4,
- c) 9, 7, 4,
- d) żadna z powyższych odpowiedzi nie jest prawdziwa.

**Zadanie 19** Wypisz wartości, które zostaną wyświetlone na ekranie po wykonaniu poniższego programu. Zachowaj kolejność i podział na wiersze.

```
1 int k = 3;
2 int f(int *p){
3
      k = ++*p;
      int k = 2;
4
      return (*p)++ * k;
6 }
7 \text{ int } g(\text{int } x)
       return ++k * ++x;
9 }
10 int main(void)
11 {
12
       int m = 3, n = 2;
13
14
       printf("%d ", f(&m)); printf("%d %d\n", m, k);
       printf("%d ", g(n--)); printf("%d %d", n, k);
15
16
17
    return 0;
18 }
```

**Zadanie 20** Jakie będą wartości zmiennych a i b w wyniku wykonania programu? Wybierz prawidłową odpowiedź.

```
1 int main(void){
    int a = 1, b = 25;
2
    while(a < 10 && b > 16)
3
4
    {
5
      a = a + 2;
    b = b - 3;
6
7
    printf("a = %d, b = %d", a, b);
8
    return 0;
9
10 }
```

```
a) a = 7, b = 16
b) a = 11, b = 10
c) a = 9, b = 13
d) a = 13, b = 7
```

Zadanie 21 Przeanalizuj poniższy kod programu.

```
1 #define N 5
2 int main(void)
3 {
4
    int tab[N];
5
    for(int i = N - 1; i >= 0; i--)
6
       tab[i] = N * (i + 1);
7
8
    for(int *p = tab; p < &tab[N]; p++)</pre>
9
       if (*p \% 2 == 0)
10
         *p -= 2;
11
12
       else
         *p += *tab;
13
14
15
    return 0;
16 }
```

Jakie będą wartości tablicy tab po wykonaniu tego programu. Odpowiedź zaznacz na podanym rysunku reprezentującym tablicę tab.



**Zadanie 22** Wypisz wartości, które zostaną wyświetlone na ekranie po wykonaniu poniższego programu. Zachowaj kolejność i podział na wiersze.

```
1 int main (void){
    double tab[6], *q1 = tab, *q2 = &tab[2], *q3 = &tab[5];
2
3
    for (int i = 5; i >= 0; i--)
4
      if ((i+1) % 2)
5
        tab[i] = 2 + i + 0.1;
6
7
      else
8
        tab[i] = 3 * i + 0.2;
9
    *q1 = 2.5;
10
    *q2 = *q3 - 2.0;
11
    tab[4] += 1.2; tab[5] = *q3;
12
    *(tab + 5) -= 1.2;
13
14
    for (int i = 0; i < 6; i++)</pre>
15
16
      printf("%.1f ", tab[i]);
17
18
    return 0;
19 }
```

**Zadanie 23** Aby w tablicy kwadratowej t o wymiarach  $5 \times 5$  wyzerować elementy pod przekątną należy w wykropkowany obszar wstawić fragment:

```
1 int i, j;
2 short t[5][5] = \{\{3,5,8,1,2\}, \{4,6,3,3,2\}, \{8,1,-9,3,5\},
           {4,6,3,3,2}, {8,1,-9,3,5}};
3
   for (i = 0; i < 5; i++)
4
5
     for (j = 0; j < 5; j++)
6
        7
         t[i][j]=0;
   a) if((i < 5/2) \&\& (j < 5/2))
   b) if ((i < 5/2) || (j < 5/2))
   c) if (a[i][j] < a[j][i])</pre>
   d) if (i > j)
```

**Zadanie 24** Zakładając, że łańcuchem wejściowym (podanym przez użytkownika po uruchomieniu programu) jest tekst: KOMPUTER. Napisz co wyświetli się na ekranie, zachowaj podział na wiersze. <u>Uwaga:</u> Alfabet angielski składa się z następujących liter wymienionych w kolejności alfabetycznej: ABCDEFGHI JKLMNOPQRSTUVWXYZ.

```
1 int main(void)
2 {
3
    char znak;
    scanf("%c", &znak);
4
    while (znak != 'F'){
5
      znak += 2;
6
7
      printf("%c", znak);
      scanf("%c", &znak);
8
      znak++;
9
    }
10
    return 0;
11
12 }
```

**Zadanie 25** Podać wartości, które zostaną wyświetlone na ekranie po wykonaniu poniższego programu. Zachować kolejność.

```
1 #include <stdio.h>
2 void f(long *p1, long *p2, long x){
     while(p1!=p2){
        if( *p1>x)printf("%ld\n", *p1);
4
        ++p1;
5
6
     }
7 }
8 int main(void){
  long a[15]={5, 9, 6, 1, 7, 4, 8, 2, 1, 3, 7, 6, 5, 1, 9};
  f(a+2, a+11, 5);
  return 0;
11
12 }
```

**Zadanie 26** Jakie wartości zostaną wyświetlone po wykonaniu poniższego fragmentu programu:

```
1 int t[4]={2,5,-4,-3}, *p;
2 p=t+2; p++;
3 printf("%d\t %d\t %d\t %d\t %d\t", 2**p, 2**t+4, 2**(t+1), 4*(* p+2), p-t);
```

**Zadanie 27** Jakie wartości i w jakiej kolejności zostaną wyświetlone na ekranie po wykonaniu poniższego programu. Zachować podział na wiersze.

```
1 #include <stdio.h>
2 int f(int *y, int x){
3 int i, *z=y+2;
4 for(i=1; *(y+i)>x; i+=2)
5    if(*z++>2)
6    printf("%d %d \n", i, y[i]);
7 }
8 int main(void){
9    int tab[8]={5,4,6,10,9,11,2,1};
10    f(tab,2);
11 return 0;
12 }
```

**Zadanie 28** Podać wartości, które zostaną wyświetlone na ekranie po wykonaniu poniższego programu. Zachować kolejność.

```
1 #include <stdio.h>
2 void f(int x) {
3     if(x<3) f(x+1);
4     printf("%d\n", x);
5     if(x<5) f(x+2);
6 }
7
8 int main(void) {
9     f(2);
10     return 0;
11 }</pre>
```

**Zadanie 29** Podać wartości, które zostaną wyświetlone na ekranie w wyniku wykonania poniższego programu. Zachować kolejność wydruku.

```
1 #include <stdio.h>
2 void g(int x);
3 void f(int x){
      i f(x>2) g(x-4);
      printf("%d\t", x);
6 }
7 void g(int x){
      printf("%d\t", x);
      f(x+2);
9
10 }
11 int main(void){
12
      f(6);
      return 0;
13
14 }
```