CP322 Assignment 2

Part 1

Part 1 a. Ginen detset $x \mid t$ uly 1 0 3 1	tres isn't linely sepender	
b. Apply the featur map 1/(x) = (x t -1 1 1 0 3 1		
Constraints on W, and We The liner classific in the transformed space w. x + w2 x² = 0 The classification rule:	.:	
if $w_1x + w_2x^2 \ge 0$, classify as 1 if $w_1x + w_2x^2 < 0$, classify as 0 Point $(-1, -1)$, class 1. $w_1(-1) + w_2(1) \ge 0$	Point (1,1), class 0 W,(1) + Wz(1) < 0	Point (3,9), class 1. W1(3) + W2(9) > 0
- W ₁ + W ₂ > 0	w, + w ₂ < 0	3 w, + 9 wz > 0 W1+3wz 70

We Can now use systemy of	fequations to find the	valus of w, and we when	try must the Constraints.
ŋ ω ₂ ≥ ω,	Ø w, +w₂ < 0	3 W,+3wn ≥ C	5
W ₂ ≥ W ₁			
Subskitle Wz: W, into	W, + Wz <0		
ω, + ω, < ο 2ω, < ο			
	(W1 Must be a p		
the con also som			
W1 + 3 w2 ≥ 0	3		
Since W, = WE			
ω, +3ω, ≥0 4ω, >0			
Since we Kins from all	Dove Wi Must be negative	u We con't Suy W, = Wz	Sine we will get a sum < 0.
We need to find Some	e w, and we that	met the Conditions	
w, < 0	let w=-1	-1 ≥ -3 wz	ω, ≤ ω _ε < -ω,
$\omega_1 \ge -3 \omega_2$ $\omega_1 \le \omega_2 < -\omega_1$		1 > w ₁	$-1 \leq \frac{1}{3} \leq 1$
		1 = W ₂	. all 3 conditions are sufficed. So a possible Pair of (ω_1, ω_2) is $(-1, 1/3)$

Part 2

i, Weights, z-value, y-value, loss-value 0.

Weights: [-0.60630875 1.99369125 1.19760444 -2.81125415] Z-value:[-0.6 0.6 1.4 -0.2], Y-value[0.35434369 0.64565631 0.80218389 0.450166], Loss_value:[0.43748795 0.43748795 0.22041741 0.59813887]

1. Weights: [-0.61231903 1.98759507 1.19542105 -2.82234598] Z-value:[-0.60630875 0.59129569 1.38738251 -0.2262672], Y-value[0.35290168 0.64366238 0.80017405 0.44367331], Loss_value:[0.43525704 0.44058094 0.22292602 0.58639958]

2. Weights: [-0.61804304 1.98170385 1.19344109 -2.83328143] Z-value:[-0.61231903 0.58310202 1.37527604 -0.2516489], Y-value[0.35153038 0.64178087 0.79823124 0.43741769], Loss_value:[0.43314012 0.44350836 0.22535695 0.57521783]

- 3. Weights: [-0.62349252 1.97601023 1.19165612 -2.84406619] Z-value:[-0.61804304 0.57539805 1.36366081 -0.27617953], Y-value[0.35022666 0.64000781 0.79635403 0.43139066], Loss_value:[0.43113169 0.4462749 0.22771143 0.56456166]
- 4. Weights: [-0.62867881 1.97050711 1.19005805 -2.85470579] Z-value:[-0.62349252 0.56816361 1.35251771 -0.29989236], Y-value[0.34898755 0.63833933 0.79454094 0.4255838], Loss_value:[0.42922651 0.44888527 0.22999077 0.55440105]
- 5. Weights: [-0.63361283 1.96518763 1.18863904 -2.86520551] Z-value:[-0.62867881 0.56137924 1.3418283 -0.32281944], Y-value[0.34781017 0.63677161 0.79279044 0.41998878], Loss_value:[0.42741962 0.45134423 0.23219635 0.54470784]
- 6. Weights: [-0.63830511 1.96004517 1.18739158 -2.87557044] Z-value:[-0.63361283 0.5550262 1.3315748 -0.34499167], Y-value[0.34669179 0.63530092 0.79110101 0.41459745], Loss_value:[0.42570627 0.4536565 0.23432963 0.53545555]

Weights: [-0.64276577 1.95507335 1.18630844 -2.88580549] Z-value:[-0.63830511 0.54908647 1.32174006 -0.36643881], Y-value[0.34562977 0.63392362 0.78947106 0.40940181], Loss_value:[0.42408199 0.45582681 0.2363921 0.52661937]

8. Weights: [-0.64700454 1.95026602 1.18538269 -2.89591534] Z-value:[-0.64276577 0.54354267 1.31230758 -0.38718947], Y-value[0.3446216 0.63263615 0.78789904 0.40439406], Loss_value:[0.4225425 0.45785983 0.23838532 0.51817601]

9. Weights: [-0.65103079 1.94561727 1.18460764 -2.9059045] Z-value:[-0.64700454 0.53837815 1.30326148 -0.40727117], Y-value[0.34366487 0.63143505 0.78638337 0.39956662], Loss_value:[0.42108376 0.45976019 0.24031085 0.51010359]

Bolded is the answer after 10 iterations.

Part 3

Best Learning Rate: 0.1

Cross-Validation MSE: 1.413572106992406

Test MSE: 1.5318262703219885