MECÁNICA COMPUTACIONAL – INGENIERÍA EN INFORMÁTICA

PRIMER PARCIAL - MÉTODO DE ELEMENTOS FINITOS

17 de octubre de 2014

Dr. Norberto Marcelo Nigro – Msc. Gerardo Franck – Ing. Diego Sklar

Ejercicio 1

Resolver la ecuación del calor: $k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + Q = 0$ bajo las condiciones de contorno mostradas a continuación:

Lado 1-5 y 3-4:
$$q = 0 [W/m^2]$$

Lado 4-5:
$$q = 20 [W/m^2]$$

Lado 2-3:
$$q = -20 [W/m^2]$$

Coordenadas

Nodo	Χ	Υ
1	0.0	0.0
2	1.0	0.0
3	1.0	1.0
4	0.5	1.3
5	0.0	1.0

- a) Dada la malla mostrada en la Figura 1, calcular y dejar expresado:
 - Matrices y vectores elementales
 - Matriz y vector global del sistema
 - Temperatura y flujo de calor en el punto (0.5; 0.5)
- b) Dada la malla mostrada en la Figura 2, calcular y dejar expresado:
 - Matrices y vectores elementales
 - Matriz y vector global del sistema
 - Temperatura y flujo de calor en el punto (0.5; 0.5)

Figura 1

Figura 2

Ejercicio 2

Se ha resuelto por elementos finitos un problema de tensión plana utilizando funciones de forma lineales, donde se obtuvieron los siguientes resultados:

Nodo	х	У	u (mm)	v (mm)
1	0.0	0.0	0.0	0.0
2	1.0	0.0	0.7189	0.66431
3	2.0	0.0	-0.05839	0.0
4	2.0	0.5	0.55891	1.7722
5	1.25	0.5	0.40925	0.89222
6	0.0	0.5	0.0	0.0
7	0.0	1.0	0.0	0.0
8	1.0	1.0	-0.13365	0.45779
9	2.0	1.0	0.17009	3.9252

Figura 3

Dada la malla mostrada en la Figura 3, calcular en los puntos (0.75; 0.75) y (1.5; 0.75) los desplazamientos, las deformaciones y las tensiones. ¿Cuál será la magnitud de la tensión y la deformación en cualquier punto cercano al (0.75; 0.75)? Justifique.

Ejercicio 3

Resolver por el Método de Residuos Ponderados la siguiente ecuación diferencial:

$$\frac{d}{dx}\left(\kappa \frac{d\varphi}{dx}\right) + Q = 0 \qquad \forall x \in [0,1]$$

$$\varphi(x=0)=1;$$
 $\frac{d\varphi}{dx}(x=1)=1$

usando como aproximante $\varphi \approx \hat{\varphi} = \psi(x) + \sum_m a_m \, N_m(x)$, con N_m funciones trigonométricas. Considerar $\kappa = 1$ y Q = -10. Use una ponderación por colocación puntual utilizando 3 funciones base y grafique la solución. Defina una función $\psi(x)$ de forma tal que satisfaga ambas condiciones de contorno.