Machine Learning

Constance Morel

Introduction

Types d'apprentissage

- Apprentissage supervisé
- Apprentissage non supervisé
- Apprentissage par renforcement
- Système de recommandations

Apprentissage supervisé

Applications:

- Imagerie : reconnaissance d'écriture manuscrite, d'objets
- Voix : reconnaissance de la parole
- Texte : traduction, filtrage du courrier

Algorithmes : SVM, réseaux de neurones, algorithmes génétiques, arbres de décision, ...

Apprentissage non supervisé

Partitionnement de données :

- Analyse de l'ADN
- Analyse marketing (des clients)
- Analyse des réseaux sociaux

Algorithmes : k-means, algorithme EM, regroupement hiérarchique, ...

Réduction de dimension :

- Compression de données
- Extraction de caractéristiques

Algorithmes: PCA, LDA, GDA, ...

Apprentissage par renforcement

Applications:

- Apprentissage des robots
- Jeux : backgammon, dames, go

Algorithmes: Q-learning, Hidden Markov Model, ...

Système de recommandations

Applications:

- Recommandation de films et livres
- Marketing personnalisé
- Publicité

Algorithmes : collaborative filtering, content-based filtering, hybrid recommender system

Arbre de décision ID3

Données

Deadline	Soirée	Flemmard	Activité
Urgent	Oui	Oui	Soirée
Urgent	Non	Oui	Etude
Proche	Oui	Oui	Soirée
Non	Oui	Non	Soirée
Non	Non	Oui	Pub
Non	Oui	Non	Soirée
Proche	Non	Non	Etude
Proche	Non	Oui	TV
Proche	Oui	Oui	Soirée
Urgent	Non	Non	Etude

Entropie

Entropie : quantité d'impureté : $H(p) = \sum_i -p_i \log p_i$

Act1	Act2	Act3	-
Soirée	Soirée	Soirée	5, 5, 3, 3, 1, 1
Etude	Soirée	Soirée	$H(Act1) = -\frac{5}{10}\log\frac{5}{10} - \frac{3}{10}\log\frac{3}{10} - 2 \times \frac{1}{10}\log\frac{1}{10}$
Soirée	Soirée	Soirée	= 1.68
Soirée	Soirée	Etude	$H(Act2) = -1\log(1) - 0\log(0) - 0\log(0) - 0\log(0)$
Pub	Soirée	Etude	= 0
Soirée	Soirée	Pub	3 . 3 . 2 . 2
Etude	Soirée	Pub	$H(Act3) = -2 \times \frac{3}{10} \log \frac{3}{10} - 2 \times \frac{2}{10} \log \frac{2}{10}$
TV	Soirée	Pub	= 1.97
Soirée	Soirée	TV	
Etude	Soirée	TV	
			-

Gain d'information

Gain d'information : évaluer la chute d'entropie si nous sélectionnons une caractéristique $F: G(S,F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$

				_
Deadline	Soirée	Flemmard	Act1	
Urgent	Oui	Oui	Soirée	_ 1 1 2 2
Urgent	Non	Oui	Etude	$H(Urgent) = -\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3}$
Proche	Oui	Oui	Soirée	= 0.92
Non	Oui	Non	Soirée	***=
Non	Non	Oui	Pub	$H(Non) = -\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3}$
Non	Oui	Non	Soirée	3 3 3 3
Proche	Non	Non	Etude	= 0.92
Proche	Non	Oui	TV	$H(Proche) = -\frac{2}{4}\log\frac{2}{4} - 2 \times \frac{1}{4}\log\frac{1}{4}$
Proche	Oui	Oui	Soirée	7 7 7
Urgent	Non	Non	Etude	=1.5
-				_

$$Gain(S, Deadline) = 1.68 - \frac{3}{10} \times 0.92 - \frac{3}{10} \times 0.92 - \frac{4}{10} \times 1.5 = 0.53$$

 $Gain(S, Soiree) = 1.0$ $Gain(S, Flemmard) = 0.21$

Début de l'arbre

Deadline	Flemmard	Activité
Urgent	Oui	Soirée
Proche	Oui	Soirée
Non	Non	Soirée
Non	Non	Soirée
Proche	Oui	Soirée

Deadline	Flemmard	Activité
Urgent	Oui	Etude
Non	Oui	Pub
Proche	Non	Etude
Proche	Oui	TV
Urgent	Non	Etude

G(S, Deadline) = 0.97

G(S, Flemmard) = 0.17

Arbre ID3

Deadline	Flemmard	Activité
Urgent	Oui	Etude
Urgent	Non	Etude
Non	Oui	Pub
Proche	Non	Etude
Proche	Oui	TV

Réseau de neurones

Problème à résoudre

Perceptron (1957)

Evaluation de l'erreur

$$sigmoid\left(h_{W,b}\begin{pmatrix}x_1\\x_2\end{pmatrix}\right) = sigmoid(0.2) = 0.55$$

Résultat de la fonction :
$$f(X) = \begin{pmatrix} 0.55 \\ 0.45 \end{pmatrix}$$

Résultat souhaité :
$$y = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Erreur sur une donnée : $ED(f(X), y)^2$

Erreur sur la base d'apprentissage : $\frac{1}{m}\sum_{i}ED(f(X_{i}),y_{i})^{2}$

Descente de gradient

Problèmes non linéaires

Multi-Layer Perceptron MLP

