N°:_____ Nome: ____

Justifique as suas respostas cotações indicadas Duração: 2h00	Justifique as suas respostas	cotações indicadas	Duração:	2h00	
---	------------------------------	--------------------	----------	------	--

Parte I

- 1. Enuncie o teorema de Thévenin na sua formulação para circuitos lineares com excitação sinusoidal. (1v)
- 2. Considere o sinal v(t) ilustrado no gráfico seguinte. (2,5v)

- a. Apresente a respectiva expressão analítica
- b. Quais coeficientes da série de Fourier serão não-nulos? Justifique.
- c. Determine a potência média e o valor eficaz.
- 3. Um sinal periódico $v_i(t)$, de período T_0 =0,5ms, é caracterizado pela seguinte série de coeficientes da série de Fourier (Reconhece-o? Consegue esboçá-lo?). O sinal v(t) é introduzido num filtro passa-baixo ideal com frequência de corte f_c igual a 3000Hz, cuja função transferência H(ω) é conforme ilustra a figura. (2,5 v)

- a) Apresente a expressão analítica de $v_0(t)$. Justifique.
- b) Esboce o sinal que deverá emergir à saída do filtro. Justifique.
- **4.** Um circuito possui duas fontes independentes de sinal sinusoidal. Em que condições se poderá utilizar a análise fasorial? Justifique. (2v)
 - Se tiverem a mesma frequência angular ω?
 - Devem ter a mesma frequência angular ω e devem estar em fase ?
 - Além do mesmo ω e mesma fase, devem ter a mesma amplitude?
 - As fontes terão de ser ambas de tensão ou ambas de corrente ?

Parte II

5. Determine o equivalente de Thévenin de um dos circuitos seguintes. Justifique. (3v.)

6. Analise (APENAS) um dos circuitos seguintes pelo método da sobreposição. (2v.)

- 7. Considere o circuito seguinte, alimentado por uma fonte de tensão alternada sinusoidal (4v)
- a) Determine o valor da capacidade C para que, à frequência angular $\omega = 1000 \text{rad/s}$, a impedância vista pela fonte U_1 tenha um valor real.

- Esboce o diagrama fasorial do circuito para a situação que acaba de projectar.
- c) Determine os valores dos fasores

 $\overline{U_c}$, $\overline{I_1}$, $\overline{I_c}$ e $\overline{I_R}$ do circuito sabendo que a fonte de tensão se caracteriza pelo fasor $\overline{U_1} = 20 \angle 60^\circ...(V)$.

8. Determine a resposta completa do seguinte circuito ao sinal da figura. A carga inicial do condensador é de $v_c(0)=-1V$. Considere $C=10\mu F$, $R=100k\Omega$ e $\omega=1$ rad/s. (3v.)

Sugestão:

considere a seguinte forma da resposta forçada: $v_{c_f}(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t) + K_3$