2022-06-12

주간보고

Man Machine Interface Lab.

- Person Re-identification using ViT
 - 1. Patch Triplet loss for ViT (Market 1501 mAP 93.51%(0.31%↑), Rank1 97.1%(0.4% ↑) w/o RK)

CTL Model

1 (ResNet50, 256x128)

On the Unreasonable

★ Effectiveness of Centroids in ♠ 2021 ResNet

| Image Retrieval

TEST_SIZE: [256, 256], METRIC: Euclidean, ATTENTION_VISUALIZE: mean

- > 2022/01/14 랩미팅 자료 中
 - Transformer 기반의 model을 ReID에 사용할때 CNN에 비해 얻을 수 있는 장점은 무엇인가?
 - 보행자의 모습만을 다루는 ReID에서 적용될 수 있는 Inductive bias가 있을까?

- Person Re-identification using ViT
 - 2. Relation between position encoding & person re-identification

[1]A. Vaswani et al., "Attention is all you need," in Advances in neural information processing systems, 2017, pp. 5998-6008.

- Positional encoding
 - [1]의 attention mechanism에서 각 단어의 문장내에서의 위치를 학습 하기 위해 도입

[1]A. Vaswani et al., "Attention is all you need," in Advances in neural information processing systems, 2017, pp. 5998-6008.

- Positional encoding
 - [1]의 attention mechanism에서 각 단어의 문장내에서의 위치를 학습 하기 위해 도입

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Positional Encoding Matrix for the sequence 'I am a robot'

- Positional encoding in ViT
 - Input projection layer 를 거친 patch token 들에 summation 되는 learnable parameters
 - Model 전체 parameter의 극히 일부를 차지하나, 없을 경우 정상적인 학습이 이루어지지 않음
 - ViT # params : 89782312
 - Positional encoding # params : 768 * (192 + 1) = 148224 (0.165%) of model parameters)

[2]A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.

This week

[3] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy, "Do vision transformers see like convolutional neural networks?," *Advances in Neural Information Processing Systems*, vol. 34, 2021.

- Positional encoding in ViT
 - Input projection layer*를 거친* patch token*들에* summation 되는 <mark>learnable parameters</mark>

Similarity between position embeddings[2]

Similarity between Input tokens and output tokens[3]

- Two kinds of positional encoding
 - Absolute positional encoding(APE) : 각token의 절대적인 위치에만 의존하는 positional encoding
 - "문장의 의미는 단어들의 상대적인 위치에 의해 결정되지 않는가?"
 - Ex) With APE:

- 두 문장은 길이와 각 단어의 APE가 다르지만, 의미는 동일
 - 철수(주어)가 영희(목적어)보다 앞선 위치에 있음
 - 즉, 철수,영희,좋아해 세 단어의 상대적인 위치가 동일
 - · → 단어간 상대적인 위치를 학습시키는 Relative positional encoding(RPE)이 등장

[4]P. Shaw, J. Uszkoreit, and A. Vaswani, "Self-attention with relative position representations," *arXiv preprint arXiv:1803.02155, 2018.*

- Relative positional encoding(RPE)
 - Token들간의 상대적인 관계를 parameterize 할 수 있는 곳이 어디 인가?
 - APE: Patch가 encoder에 들어가기 직전

• RPE[4]: Self-attention mechanism 내부

A 0,0 0,1 B
C 1,0 1,1 D

0,0 1,0 1,0 0,0 0,-1 0,1 1,-1 1,1 0,0 0,-1 0,1 0,0 -1,0 -1,-1 -1,1 -1,0 В

Absolute position

Relative position

0,0	0,-1	-1,0	-1,-1
0,1	0,0	-1,1	-1,0
1,0	1,-1	0,0	0,-1
1,1	1,0	0,1	0,0

Added

Example

0,0

1,0

Absolute position

2x2 patch

0,1

1,1

В

D

Relative position bias table

Relative position index

A		В	B C	
A	0.07	0.5	0.03	0.1
В	0.2	0.07	0.8	0.03
C	0.01	0.4	0.07	0.5
D	0.06	0.01	0.2	0.07

Relative position bias

> Example

▶ Patch의 개수가NxM이라 할때, relative position parameter는 (2N-1)x(2M-1)개

[4]P. Shaw, J. Uszkoreit, and A. Vaswani, "Self-attention with relative position representations," *arXiv preprint arXiv:1803.02155, 2018.*

- Relative positional encoding(RPE)
 - Token들간의 상대적인 관계를 parameterize 할 수 있는 곳이 어디 인가?
 - APE : Patch가 encoder에 들어가기 직전

• RPE[4]: Self-attention mechanism 내부

- Relative positional encoding(RPE)
 - "Image에서 relative position embedding은 어떤 의미를 갖는가?"
 - Ex) ViT로 ImageNet을 학습

- 모델이 학습하는 것
 - APE: n번째 patch와 m번째 patch 사이의 관계 (ex: n 번째와 n+row 번째 patch간의 관계)
 - RPE : 거리 (방향이 고려된) 가 k인 두 patch 간의 관계
- Image간 correlation이 낮은 dataset은 patch 간 relative distance가 약함

- Relative positional encoding(RPE)
 - "Image에서 relative position embedding은 어떤 의미를 갖는가?"
 - Ex) ViT로 ReID dataset을 학습

- ReID dataset : 모든 data의 대상이 사람이기 때문에 Sample간 correlation이 높음
- ▶ 모델이 학습하는 것
 - APE : n번째 patch와 m번째 patch 사이의 관계 (ex: n 번째와 n+row ,n + 2*row, n + 3*row..patch간의 관계)
 - RPE: k만큼 떨어진 두 신체부위를 나타내는 patch사이의 관계

- Relative position triplet loss
 - ▶ Idea : "같은ID의image끼리는 주요 patch들간relative position bias가 비슷할것이다."

- Relative position triplet loss
 - Idea : "같은ID의image끼리는 주요 patch들간relative position bias가 비슷할 것이다."

A	0,0	0,1	В
C	1,0	1,1	D

Ü	<u>l</u>	2		4	5	6		8
0.1	0.03	0.8	0.5	0.07	0.2	0.4	0.01	0.06

Relative position bias table

Absolute position

	Λ			
A	4	3	1	0
В	5	4	2	1
C	7	6	4	3
D	8	7	5	4

Relative position index

5	\mathbf{Y}

	A	В	C	D	
A	0.07	0.5	0.03	0.1	
В	0.2	0.07	0.8	0.03	
C	0.01	0.4	0.07	0.5	
D	0.06	0.01	0.2	0.07	

Relative position bias

- Relative position triplet loss
 - 같은 relative position을 갖는 patch 들이 영향을 최소화 하도록 absolute position 을 함께 사용

- Relative position triplet loss
 - *같은* relative position 을 갖는 patch 들이 영향을 최소화 하도록 absolute position 을 함께 사용

Attention score =
$$(Q_1 + P_{abs1})(K_2 + P_{abs2})^T + P_{rel12}$$

$$e_{ij} = rac{x_i W^Q (x_j W^K + a_{ij}^K)^T}{\sqrt{d_z}}$$

Learnable Bias term

12 x 197 x 197 x 12

Positional relationship between patch 1 and 2

$$\rightarrow P_{abs1} \cdot P_{abs2}^T + P_{rel12}$$

- Relative position triplet loss
 - 같은 relative position 을 갖는 patch 들이 영향을 최소화 하도록 absolute position 을 함께 사용

- Algorithm
- 1. Anchor, Positive, Negative sample 각각에 대해 CLS token과 similarity가 높은 N개의 patch 선별(sorted)
- 2. N개의 patch 에 대해 가능한 combination ${}_{\scriptscriptstyle N}C_2$ 개의 쌍 (a,b) 에 대해 positional relation: $P_{abs_a}\cdot P_{abs_b}{}^T + P_{rel_ab}$ 를 계산하여 원소의 개수가 ${}_{\scriptscriptstyle N}C_2$ 개인 patch distance vector (ex: [relation(1,2), relation(1,3), relation(2,3)]) 생성
- 3. Anchor, Positive, Negative의 positional relation vector에 대해 triplet loss를 적용

Ex)

Anchor : 3,4,5 번 patch Positive : 7,10,11 번 patch

→ Anchor의 (3,4) 번 patch 간 position 관계는 positive의 (7,10) 번 patch 간 position 관계와 유사해야 한다!

- Relative position triplet loss
 - Algorithm
 - 1. Anchor, Positive, Negative sample 각각에 대해 CLS token과 similarity가 높은 N개의 patch 선별(sorted)
 - 2. N개의 patch 에 대해 가능한 combination ${}_{N}C_{2}$ 개의 쌍 (a,b) 에 대해 positional relation: $P_{abs_a} \cdot P_{abs_b}^{T} + P_{rel_ab}$ 를 계산하여 원소의 개수가 ${}_{N}C_{2}$ 개인 patch distance vector (ex: [relation(1,2), relation(1,3), relation(2,3)]) 생성
 - 3. Anchor, Positive, Negative의 positional relation vector에 대해 triplet loss를 적용
- Experimental result
 - <u>초반 학습이 기존 방식보다 꽤 앞서지만, 후반부loss가 수렴하지 못하는 현상이 매번 발생 (</u>Learning rate 문제 X)
 - Negative 와 Anchor의 positional relation vector간 거리를 크게 만드는 것에서 loss가 발산

