```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import kagglehub

path = kagglehub.dataset_download("mohansacharya/graduate-admissions")
df = pd.read_csv(f"{path}/Admission_Predict.csv")
```

```
print(df.head())
print(df.info())
print(df.isnull().sum())
```

\rightarrow		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	L0R	CGPA
	0	1	337	118	4	4.5	4.5	9.65
	1	2	324	107	4	4.0	4.5	8.87
	2	3	316	104	3	3.0	3.5	8.00
	3	4	322	110	3	3.5	2.5	8.67
	4	5	314	103	2	2.0	3.0	8.21

```
Research Chance of Admit
0 1 0.92
1 1 0.76
2 1 0.72
3 1 0.80
4 0 0.65
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	Serial No.	400 non-null	int64	
1	GRE Score	400 non-null	int64	
2	TOEFL Score	400 non-null	int64	
3	University Rating	400 non-null	int64	
4	S0P	400 non-null	float64	
5	LOR	400 non-null	float64	
6	CGPA	400 non-null	float64	
7	Research	400 non-null	int64	
8	Chance of Admit	400 non-null	float64	

dtypes: float64(4), int64(5)

memory usage: 28.3 KB

None

Serial No. 0
GRE Score 0
TOEFL Score 0
University Rating 0
SOP 0
LOR 0
CGPA 0
Research 0
Chance of Admit 0
dtype: int64

```
# Добавим 5 случайных пропусков в Research (категориальный)
df.loc[df.sample(5, random_state=13).index, 'Research'] = np.nan

# Добавим 5 случайных пропусков в CGPA (количественный)
df.loc[df.sample(5, random_state=31).index, 'CGPA'] = np.nan

# Проверим пропуски
print(df[['Research', 'CGPA']].isnull().sum())

→ Research 5
CGPA 5
dtype: int64
```

Категориальный признак: Research

Метод: заполнение модой (наиболее частым значением)

```
df['Research'].fillna(df['Research'].mode()[0], inplace=True)
```

<ipython-input-12-12634f5a11b5>:1: FutureWarning: A value is trying to be s
The behavior will change in pandas 3.0. This inplace method will never work
For example, when doing 'df[col].method(value, inplace=True)', try using 'd

df['Research'].fillna(df['Research'].mode()[0], inplace=True)

Количественный признак: CGPA

Метод: заполнение медианой Почему не средним? — Медиана менее чувствительна к выбросам.

```
df['CGPA'].fillna(df['CGPA'].median(), inplace=True)
```

<ipython-input-13-38e5e9234d63>:1: FutureWarning: A value is trying to be s
The behavior will change in pandas 3.0. This inplace method will never work

For example, when doing 'df[col].method(value, inplace=True)', try using 'd

df['CGPA'].fillna(df['CGPA'].median(), inplace=True)

```
features = df.drop(columns=["Serial No.", "Chance of Admit "]) # убираем идент target = df["Chance of Admit "]
print("Признаки для модели:", list(features.columns))
```

Признаки для модели: ['GRE Score', 'TOEFL Score', 'University Rating', 'SOP

Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали?

- Для категориального признака Research пропуски были заполнены наиболее частым значением (модой). Такой метод помогает сохранить распределение категорий и не вводит искажений, которые могут возникнуть при заполнении случайными или средними значениями.
- Для **количественного признака** СGPA пропуски заполнил **медианой** признака, так как медиана менее чувствительна к выбросам и лучше отражает центральную тенденцию, чем среднее значение.

Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

- Для построения моделей были выбраны все признаки, кроме идентификатора Serial No., так как идентификатор не несёт полезной информации для предсказания и может ввести модель в заблуждение.
- Использование всех остальных признаков обосновано тем, что они содержат важную информацию, влияющую на целевую переменную Chance of Admit.