Impact of imbalance costs on stochastic unit investments

Salvador Pineda (and Juan Miguel Morales)

Workshop on Modelling Investment in Power Systems (27/03/2014)

Work supported by 5s project (http://www.futureelmarket.dk/)

Assumptions

- Static investment model (one target year)
- Long-term uncertainties disregarded
- Energy-only markets (no capacity or CO2 payments)
- No support scheme for renewables
- No competition at investment level
- Perfect competitive market (offers = marginal cost)

Location of wind turbines?

Imbalance costs of wind

"The three study cases show that the error prediction costs can reach as much as 10% of the total WP incomes from selling energy." [1]

"The predictions were analysed together with the electricity market prices for Denmark, using actual data from year 2001 (...) Costs from the regulation market for the prediction errors for 12–36 h ahead market were 2.3 Eur/MWh total wind power production, resulting in net income of 20.1 Eur/Mwh" [2]

"Over 2002, the average spot price of APX is 29.99 euros/Mwh (...) Even if using perfect predictions, the average price per produced Mwh by a wind power producer equals 28.37 euros/Mwh (...) When considering regulation costs, the average price per produced MWh lowers to 24.68" [3]

- [1] Fabbri, A.; Román, T.G.S.; Abbad, J.R.; Quezada, V.H.M., "Assessment of the Cost Associated With Wind Generation Prediction Errors in a Liberalized Electricity Market," Power Systems, IEEE Transactions on , vol.20, no.3, pp.1440,1446, Aug. 2005
- [2] H. Holttinen, "Optimal electricity market for wind power", Energy Policy, Volume 33, Issue 16, November 2005, Pages 2052-2063
- [3] Pinson, P.; Chevallier, C.; Kariniotakis, G.N., "Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power," Power Systems, IEEE Transactions on , vol.22, no.3, pp.1148,1156, Aug. 2007

Location of wind turbines?

Expansion of thermal units

Expansion of thermal units

Power producer

Decide new units

Maximize profit

Capacities & location

Dispatch & prices

Day-ahead market

Decide dispatch
Minimize cost

Bilevel model

Maximize profit

Investment constraints

Day-ahead market

Decide dispatch

Minimize cost

Solve replacing lower-level problem by its KKT conditions

Day-ahead vs. balancing markets

Day-ahead market

- Power producers submit offers for the next 24 hours
- The demand and stochastic production are forecast
- The cheapest offers are accepted first

Balancing market

- Power producers submit offers to deviate from schedule
- The demand and wind realize at this stage
- The cheapest offers are accepted until deviations are balanced out

Coordination between day-ahead and balancing

Conventional MC

Day-ahead dispatch compute disregarding balancing operation

Stochastic MC

Day-ahead dispatch takes into account balancing operation

Forecast=100 MW Wind(30%)=130 MW

Conv MC

Stoc MC

Conv MC

Day-ahead Balancing

- DA dispatch: cheaper go first
- Balancing operation not included
- Minimizes day-ahead cost
- Higher imbalance cost
- All units obtain profits

Stoc MC

- DA dispatch: out of merit-order
- Balancing operation included
- Minimizes total cost
- Reduces imbalance cost
- Flexible units may incur losses

Investment under Conv MC

Investment under Stoc MC

Investment under Conv MC

Investment under Stoc MC

Illustrative example

Illustrative example

Stoc MC

Conclusions

Thanks! Questions??

Submitted to *Operations Research* manuscript (Please, provide the manuscript number!)

Modeling the Impact of Imbalance Costs on Generating Expansion of Stochastic Units

Salvador Pineda
University of Copenhagen, s.pineda@math.ku.dk

Juan M. Morales
Technical University of Denmark, jmmgo@imm.dtu.dk

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS

Impact of Forecast Errors on Expansion Planning of Power Systems with a Renewables Target

S. Pineda, *Member, IEEE*, J. M. Morales, *Member, IEEE*, and T. B. Boomsma