Independence and Bayesian Networks (Part 1)

Blake VanBerlo

Lecture 7

Readings: RN 12.4, 13.1, & 13.2. PM 8.2 & 8.3.

Outline

Learning Goals

Unconditional and Conditional Independence

Examples of Bayesian Networks

Why Bayesian Networks

Representing the Joint Distribution

Independence in Three Key Structures

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Given a probabilistic model, determine if two variables are unconditionally independent, or conditionally independent given a third variable.
- Give examples of deriving a compact representation of a joint distribution by using independence assumptions.

- Describe components of a Bayesian network.
- Compute a joint probability given a Bayesian network.
- Explain the independence relationships in the three key structures.

Learning Goals

Unconditional and Conditional Independence

Examples of Bayesian Networks

Why Bayesian Networks

Representing the Joint Distributior

Independence in Three Key Structures

Revisiting the Learning goals

(Unconditional) Independence

Definition ((unconditional) independence)

X and Y are (unconditionally) independent iff

$$P(X|Y) = P(X)$$

$$P(Y|X) = P(Y)$$

$$P(X \land Y) = P(X)P(Y)$$

Learning Y does NOT influence your belief about X.

 \rightarrow Convert between the two equations.

To specify joint probability, it is sufficient to specify the individual probabilities.

Conditional Independence

Definition (conditional independence)

 \boldsymbol{X} and \boldsymbol{Y} are conditionally independent given \boldsymbol{Z} if

$$P(X|Y \wedge Z) = P(X|Z).$$

$$P(Y|X \wedge Z) = P(Y|Z).$$

$$P(Y \wedge X|Z) = P(Y|Z)P(X|Z).$$

Learning Y does NOT influence your belief about X if you already know Z.

 $\rightarrow X$ is conditionally independent of Y given Z.

Independence does not imply conditional independence, and vice versa.

Q #1: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C. What is the minimum number of probabilities required to specify the joint distribution?

- (A) 3
- (B) 7
- (C) 8
- (D) 16

Q #1: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C. What is the minimum number of probabilities required to specify the joint distribution?

- (A) 3
- (B) 7
- (C) 8
- (D) 16
- \rightarrow (C) $P(A), P(B|A), P(C|A \land B)$. 1 + 2 + 4 = 7 probabilities

Draw a graph to prove it to yourself.

Q #2: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C. Assume that A, B, and C are independent. What is the minimum number of probabilities required to specify the joint distribution?

- (A) 3
- (B) 7
- (C) 8
- (D) 16

Q #2: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C. Assume that A, B, and C are independent. What is the minimum number of probabilities required to specify the joint distribution?

- (A) 3
- (B) 7
- (C) 8
- (D) 16
- → (A) P(A), P(B), P(C). 1 + 1 + 1 = 3 probabilities

Draw a graph to prove it to yourself.

Q #3: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C. Assume that A and B are conditionally independent given C. What is the minimum number of probabilities required to specify the joint distribution?

- (A) 4
- (B) 5
- (C) 7
- (D) 11

Q #3: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C. Assume that A and B are conditionally independent given C. What is the minimum number of probabilities required to specify the joint distribution?

- (A) 4
- (B) 5
- (C) 7
- (D) 11
- \rightarrow (B) P(C), P(A|C), P(B|C). 1 + 2 + 2 = 5 probabilities

Draw a graph to prove it to yourself.

Examples of Bayesian Networks

Inheritance of Handedness

Car Diagnostic Network

Example: Nuclear power plant operations

Example: Fire alarms

Report: "report of people leaving building because a fire alarm went off"

Example: Medical diagnosis of diabetes

Why Bayesian Networks

Why Bayesian Networks?

A probabilistic model of the Holmes scenario:

- The random variables: Earthquake, Radio, Burglary, Alarm, Watson, and Gibbon.
- # of probabilities in the joint distribution: $2^6 = 64$.
- For example.

$$\begin{split} &P(E \wedge R \wedge B \wedge A \wedge W \wedge G) = ? \\ &P(E \wedge R \wedge B \wedge A \wedge W \wedge \neg G) = ? \\ &\dots \text{ etc } \dots \end{split}$$

We can compute any probability using the joint distribution, but

- Quickly become intractable as the number of variables grows.
- Unnatural and tedious to specify all the probabilities.

Why Bayesian Networks?

A Bayesian Network

- is a compact version of the joint distribution
- takes advantage of the unconditional and conditional independence among the variables.

Reminder: Modelling the Holmes Scenario

- \rightarrow The random variables:
 - B: A Burglary is happening.
 - ► A: The alarm is going.
 - ▶ W: Dr. Watson is calling.
 - ► G: Mrs. Gibbon is calling.
 - E: Earthquake is happening.
 - R: A report of earthquake is on the radio news.

A Bayesian Network for the Holmes Scenario

 $\rightarrow 2^6 = 64 > 1 + 1 + 2 + 4 + 2 + 2 = 12$. Many possible networks.

Bayesian Network

A Bayesian Network is a directed acyclic graph (DAG).

- Each node corresponds to a random variable.
- X is a parent of Y if there is an arrow from node X to node Y.
 - \rightarrow Like a family tree, there are parents, children, ancestors, descendants.
- Each node X_i has a conditional probability distribution $P(X_i|Parents(X_i))$ that quantifies the effect of the parents on the node.

Learning Goals

Unconditional and Conditional Independence

Examples of Bayesian Networks

Why Bayesian Networks

Representing the Joint Distribution

Independence in Three Key Structures

Revisiting the Learning goals

The Semantics of Bayesian Networks

Two ways to understand Bayesian Networks:

- ▶ A representation of the joint probability distribution
- An encoding of the conditional independence assumptions

Representing the joint distribution

We can compute each joint probability using the following formula.

$$P(X_n \wedge \dots \wedge X_1) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

Representing the joint distribution

Example: What is the probability that all of the following occur?

- The alarm has sounded
- Neither a burglary nor an earthquake has occurred
- ▶ Both Watson and Gibbon call and say they hear the alarm

Lecturer: Blake VanBerlo

There is no radio report of an earthquake

Representing the joint distribution

Example: What is the probability that all of the following occur?

- The alarm has sounded
- Neither a burglary nor an earthquake has occurred
- ▶ Both Watson and Gibbon call and say they hear the alarm
- There is no radio report of an earthquake
- → Formulate as a joint probability:

$$P(\neg B \land \neg E \land A \land \neg R \land G \land W)$$
= $P(\neg B)P(\neg E)P(A|\neg B \land \neg E)P(\neg R|\neg E)P(G|A)P(W|A)$
= $(1 - 0.0001)(1 - 0.0003)(0.01)(1 - 0.0002)(0.4)(0.8)$
= 3.2×10^{-3}

Q #4: Calculating the joint probability

Q: What is the probability that all of the following occur?

- NEITHER a burglary NOR an earthquake has occurred,
- ► The alarm has NOT sounded.
- NEITHER of Watson and Gibbon is calling, and
- ► There is NO radio report of an earthquake?
- (A) 0.5699
- (B) 0.6699
- (C) 0.7699
- (D) 0.8699
- (E) 0.9699

Q #4: Calculating the joint probability

Q: What is the probability that all of the following occur?

- NEITHER a burglary NOR an earthquake has occurred,
- The alarm has NOT sounded.
- NEITHER of Watson and Gibbon is calling, and
- There is NO radio report of an earthquake?
- 0.5699
- 0.6699
- 0.7699
- 0.8699
- (E) 0.9699

$$\rightarrow$$
 (A) $(1 - 0.0001)(1 - 0.0003)(1 - 0.01)(1 - 0.4)(1 - 0.04)(1 - 0.0002) = 0.5699$

CS 486/686: Intro to Artificial Intelligence

Lecturer: Blake VanBerlo

Slides by: Alice Gao 26 / 37

Learning Goals

Unconditional and Conditional Independence

Examples of Bayesian Networks

Why Bayesian Networks

Representing the Joint Distributior

Independence in Three Key Structures

Revisiting the Learning goals

Burglary, Alarm and Watson

Q #5: Unconditional Independence

Q: Are Burglary and Watson independent?

- (A) Yes
- (B) No
- (C) Can't tell.

Q #5: Unconditional Independence

Q: Are Burglary and Watson independent?

- (A) Yes
- (B) No
- (C) Can't tell.

 \rightarrow Correct answer is *No*.

If you learned the value of B, would your belief of W change? If B is true, then Alarm is more likely to be true, and W is more likely to be true.

Q #6: Conditional Independence

Q: Are Burglary and Watson conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell

Q #6: Conditional Independence

Q: Are Burglary and Watson conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell
- \rightarrow Correct answer is Yes.

Assume that W does not observe B directly. W only observes A.

B and W could only influence each other through A.

If A is known, then B and W do not affect each other.

Alarm, Watson and Gibbon

Q #7: Unconditional Independence

Q: Are Watson and Gibbon independent?

- (A) Yes
- (B) No
- (C) Can't tell

Q #7: Unconditional Independence

Q: Are Watson and Gibbon independent?

- (A) Yes
- (B) No
- (C) Can't tell
- → Correct answer is No. If Watson is more likely to call, then Alarm is more likely to go off, which means that Gibbon is more likely to call.

Q #8 Conditional Independence

Q: Are Watson and Gibbon conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell

Q #8 Conditional Independence

Q: Are Watson and Gibbon conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell
- → Correct answer is Yes. Watson and Gibbon are both unreliable sensors for Alarm. If Alarm is known, then Watson and Gibbon do not affect each other.

Earthquake, Burglary, and Alarm

Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

- (A) Yes
- (B) No
- (C) Can't tell

Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

- (A) Yes
- (B) No
- (C) Can't tell

→ Correct answer is Yes. Assume that looting is not more frequent during an earthquake.

Q #10: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell

Q #10: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell

 \rightarrow Correct answer is No. Suppose that the Alarm is going. If there is an Earthquake, then it is less likely that the Alarm is caused by Burglary. If there is a Burglary, it is less likely that the Alarm is caused by Earthquake.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Given a probabilistic model, determine if two variables are unconditionally independent, or conditionally independent given a third variable.
- Give examples of deriving a compact representation of a joint distribution by using independence assumptions.
- Describe components of a Bayesian network.
- Compute a joint probability given a Bayesian network.
- Explain the independence relationships in the three key structures.