(11) **EP 3 889 264 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 06.10.2021 Bulletin 2021/40

(21) Application number: 19890179.5

(22) Date of filing: 28.11.2019

(51) Int Cl.:

C12N 15/12 (2006.01) A61K 38/12 (2006.01) A61P 35/00 (2006.01) C07K 7/06 (2006.01) C07K 14/47 (2006.01) A61K 38/10 (2006.01) A61K 48/00 (2006.01) A61P 43/00 (2006.01) C07K 7/08 (2006.01)

(86) International application number:

PCT/JP2019/046505

(87) International publication number: WO 2020/111167 (04.06.2020 Gazette 2020/23)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

KH MA MD TN

(30) Priority: 30.11.2018 JP 2018225660

(71) Applicants:

 Tokushima University Tokushima-shi, Tokushima 770-8501 (JP)

 OncoTherapy Science, Inc. Kawasaki-shi Kanagawa 213-0012 (JP) (72) Inventors:

 KATAGIRI, Toyomasa Tokushima-shi, Tokushima 770-8501 (JP)

 YOSHIMARU, Tetsuro Tokushima-shi, Tokushima 770-8501 (JP)

 OTAKA, Akira Tokushima-shi, Tokushima 770-8501 (JP)

 MIYAMOTO, Takashi Kawasaki-shi, Kanagawa 213-0012 (JP)

 OKAMOTO, Yasuhide Kawasaki-shi, Kanagawa 213-0012 (JP)

(74) Representative: Zacco GmbH Bayerstrasse 83 80335 München (DE)

(54) THERAPEUTIC AGENT FOR BREAST CANER COMPRISING BIG3-PHB2 INTERACTION-INHIBITING PEPTIDE DERIVED FROM PHB2

(57) The present invention provides peptides containing the BIG3 polypeptide-binding site in a PHB2 polypeptide, which inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide, and pharmaceutical compositions containing the peptide. The peptides of the present invention have the ability to bind not to PHB2, whose expression is found in organs throughout the hu-

man body, but to BIG3, which is a protein highly expressed specifically in particularly estrogen receptor-positive cancer, and have excellent growth suppressive effects on BIG3-positive cancer cells. Accordingly, the peptides of the present invention are useful as therapeutic agents for breast cancer which can avoid expression of side effects.

Description

[Technical Field]

⁵ **[0001]** The present invention relates to PHB2-derived peptides that inhibit BIG3-PHB2 interaction and therapeutic agents for breast cancer comprising the peptide.

[Background Art]

- [0002] Estrogen-receptor α (ERα) plays a key role in the development and progression of breast cancer. The current endocrine therapies for breast cancer mainly target ERα signaling, and use selective ERα modulators (for example, tamoxifen and raloxifene), ERα down-regulators (for example, fulvestrant), and aromatase inhibitors (AI) (NPLs 1 to 3). Among these therapies, a method that uses tamoxifen, which inhibits breast cancer cell proliferation through competitive binding to ERα, is a standard therapy for patients with ERα-positive breast cancer. However, tamoxifen therapy is often ineffective, and the patient may die from recurrent endocrine therapy-resistant tumors (NPLs 4 and 5). Furthermore, compared with tamoxifen, AI, which blocks estrogen synthesis, provides substantial clinical effects such as good efficacy, significant increase in relapse-free survival period, and a prolonged time to disease recurrence in postmenopausal women; however, some patients who have undergone AI treatment still relapse (NPLs 6 and 7). The precise molecular events having effects on the efficacy of these endocrine therapies remain unknown.
- [0003] A complex formed between brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3), which is a cancer specific protein, and prohibitin 2 (PHB2), which is a tumor suppressor, plays a key role in estrogen signaling regulation in ERα-positive breast cancer (NPLs 8 and 9). BIG3 binds to PHB2 to inhibit the ability of PHB2, which suppresses the estrogen-dependent transcriptional activation, and thereby causes constitutive ERα activation.
 - [0004] Based on these findings, strategies of making PHB2 exhibit its tumor suppressive activity by dissociating PHB2 from its complex with BIG3 through inhibition of the BIG3-PHB2 interaction, may become a novel therapy for breast cancer. Based on this strategy, the present inventors have previously developed a dominant negative peptide of BIG3, which specifically inhibits the BIG3-PHB2 interaction (PTL 1). This peptide has been confirmed to suppress breast cancer growth by reactivating the tumor suppressive activity of PHB2 to inhibit $ER\alpha$ -signaling pathways that bring about the growth of breast cancer (PTL 1).

[Citation List]

[Patent Literature]

35 [0005] [PTL 1] WO 2013/018690

[Non-Patent Literature]

[0006]

40

45

50

55

30

```
[NPL 1] Johnston, S. R., Clin. Cancer Res. 16(7), 1979-87 (2010).[NPL 2] Fisher, B. et al., J. Natl. Cancer Inst. 97(22), 1652-62 (2005).
```

[NPL 3] Jordan, V. C., Nature Rev. Drug Discov. 2(3), 205-13 (2003).

[NPL 4] Clarke, R. et al., Pharmacol. Rev. 53(1), 25-71 (2001).

[NPL 5] Fisher, B. et al., J. Natl. Cancer Inst. 93(9), 684-90 (2001).

[NPL 6] Chlebowski, R. et al., Breast 2, S1-11 (2009).

[NPL 7] Chumsri, S. et al., J. Steroid Biochem. Mol. Biol. 125(1-2), 13-22 (2011).

[NPL 8] Kim, J. W. et al., Cancer Sci. 100(8), 1468-78 (2009).

[NPL 9] Yoshimaru, T. et al., Nat. Commun. 4, 2443 (2013).

[NPL 10] Yoshimaru, T. et al., Sci Rep. 7(1), 1821 (2017).

[Summary of Invention]

[Technical Problem]

[0007] As noted above, it has been elucidated that an estrogen receptor (ER) activation regulator, BIG3, interacts with a suppressor, PHB2, to cause constitutive activation of ER and that a BIG3-PHB2 interaction-targeting inhibitory peptide (ERAP; the amino acid sequence at positions 165 to 177 (QMLSDLTLQLRQR; SEQ ID NO: 33) of the BIG3 protein)

has the effect of suppressing estrogen (E2)-dependent breast cancer cell growth (PTL 1; WO2017/126461). However, although ERAP, derived from the BIG3 sequence, achieves the interaction inhibition by binding to PHB2, it cannot be denied that ERAP exerts non-selective effects in organs other than cancer tissue because PHB2 expression is found in organs throughout the human body.

⁵ **[0008]** Accordingly, an objective of the present invention is to provide a therapeutic strategy which targets the BIG3-PHB2 interaction and can be expected to be highly selective for breast cancer.

[Solution to Problem]

20

35

40

45

50

- [0009] The present inventors designed multiple PHB2-derived peptides (PHB2 peptides) based on the data of candidate protein interaction regions on the PHB2 amino acid sequence predicted through *in silico* analysis, and used these PHB2 peptides for screening to identify interaction regions using the effect of suppressing cell growth as an indicator. As a result, the present inventors succeeded in finding that PHB2 peptide No. 1 (11-RLPAGPRGMGTA-22 (SEQ ID NO: 1)) and PHB2 peptide No. 5 (76-QYPIIYDIRARPRKI-90 (SEQ ID NO: 5)) each have the effect of suppressing growth by about 50%, and in particular that the combination of PHB2 peptides Nos. 1 and 5 exhibits the effects of suppressing growth by 100% and inhibiting the BIG3-PHB2 interaction, as with ERAP. Furthermore, these effects were also observed for peptides consisting of sequences around PHB2 peptides Nos. 1 and 5 and for peptides in which amino acid residues at various positions in PHB2 peptides Nos. 1 and 5 have been substituted.
 - **[0010]** On the other hand, the cell growth suppressive effect of PHB2 peptides Nos. 1 and 5 was also observed on triple-negative breast cancer cells which do not express estrogen receptors and such but express BIG3. Moreover, the use of these peptides in combination showed enhancement of the effect. It is considered that in triple-negative breast cancer, which proliferates in a manner independent of proliferative signals such as hormones, its growth is activated by the binding between PHB2 and BIG3 without receipt of these signals in cells. It was suggested that the PHB2-derived peptides may suppress cell growth by inhibiting the binding between BIG3 and PHB2 in breast cancer expressing at least BIG3.
 - **[0011]** The present inventors thus found the PHB2-derived peptides which inhibit the BIG3-PHB2 interaction and exert an antitumor effect on E2-dependent breast cancer and triple-negative breast cancer, and completed the present invention. That is, the present invention provides the following peptides and uses thereof.
- [1] A peptide, comprising a site binding to a BIG3 polypeptide in a PHB2 polypeptide, wherein the peptide inhibits the binding between the PHB2 polypeptide and the BIG3 polypeptide.
 - [2] The peptide of [1], wherein the peptide comprises any one or a combination of all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21; all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88; and all or part of the amino acid sequence consisting of the amino acids at positions 44 to 57, in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide).
 - [3] A peptide, comprising an amino acid sequence selected from the group consisting of (a) to (f) below, wherein the peptide inhibits the binding between a PHB2 polypeptide and a BIG3 polypeptide:
 - (a) an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41 (PHB2 sequence-derived peptides Nos. 1 and 36 to 41);
 - (b) an amino acid sequence in which one, two, or several amino acids are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41 (PHB2 sequence-derived peptides Nos. 1 and 36 to 41);
 - (c) an amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53 (PHB2 sequence-derived peptides Nos. 5 and 47 to 53);
 - (d) an amino acid sequence in which one, two, or several amino acids are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53 (PHB2 sequence-derived peptides Nos. 5 and 47 to 53);
 - (e) an amino acid sequence selected from the group consisting of SEQ ID NOs: 82 and 83 (PHB2 sequence-derived peptides Nos. 82 and 83); and
 - (f) an amino acid sequence in which one, two, or several amino acids are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 82 and 83 (PHB2 sequence-derived peptides Nos. 82 and 83).
- [4] The peptide of [3], wherein the peptide comprises an amino acid sequence selected from the group consisting of (a') and (b') below:
 - (a') an amino acid sequence in which one, two, or several amino acid residues located at positions other than

those corresponding to glycine (Gly/G) at positions 15 and 18 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) are substituted with other amino acid residues in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41 (PHB2 sequence-derived peptides Nos. 1 and 36 to 41); and

- (b') an amino acid sequence in which one, two, or several amino acid residues located at positions other than that corresponding to aspartic acid (Asp/D) at position 82 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) are substituted with other amino acid residues in an amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53 (PHB2 sequence-derived peptides Nos. 5 and 47 to 53).
- [5] The peptide of any one of [1] to [4], wherein the peptide consists of 80 amino acid residues or less.
 - [6] The peptide of any one of [1] to [5], wherein the peptide consists of 25 amino acid residues or less.
 - [7] The peptide of any one of [1] to [6], wherein the peptide consists of an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83).
- [8] The peptide of any one of [1] to [7], wherein the peptide has been modified with a cell membrane-permeable substance.
 - [9] The peptide of any one of [1] to [8], wherein the peptide is cyclic.
 - [10] The peptide of any one of [1] to [9], wherein the peptide is cross-linked.
 - [11] The peptide of any one of [1] to [10], wherein the peptide has either or both of the following properties (i) and (ii):
 - (i) suppressing growth of BIG3-positive cells; and

5

20

25

30

35

40

45

50

- (ii) promoting phosphorylation of a serine residue in the PHB2 polypeptide in BIG3-positive cells.
- [12] A polynucleotide encoding the peptide of any one of [1] to [11].
- [13] A pharmaceutical composition comprising: at least one ingredient selected from the group consisting of one or more of the peptides of any one of [1] to [11], a polynucleotide(s) encoding the peptide(s), and a pharmaceutically acceptable salt(s) of the peptide(s); and a pharmaceutically acceptable carrier.
- [14] The pharmaceutical composition of [13], wherein the composition comprises any one or a combination of: a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide); a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 44 to 57 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide); and a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide).
- [15] The pharmaceutical composition of [13] or [14], which is for suppressing growth of cancer cells or for treatment and/or prophylaxis (prevention) of cancer.
- [16] The pharmaceutical composition of [15], wherein the cancer is BIG3-positive cancer.
- [17] The pharmaceutical composition of [15] or [16], wherein the cancer is breast cancer.
- [18] The pharmaceutical composition of any one of [15] to [17], wherein the cancer is estrogen receptor-positive cancer.
- [19] A method for either or both of treatment and prophylaxis (prevention) of cancer, wherein the method comprises administering to a subject at least one selected from the group consisting of one or more of the peptides of any one of [1] to [11]; a polynucleotide(s) encoding the peptide(s); and a pharmaceutically acceptable salt(s) of the peptide(s). [20] The method of [19], wherein the method comprises administering any one or a combination of: a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide); a peptide comprising all or part of the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide); and a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide).
 - [21] A method for either or both of treatment and prophylaxis (prevention) of pharmacotherapy-resistant breast cancer (for example, triple-negative breast cancer), wherein the method comprises: selecting a patient with pharmacotherapy-resistant breast cancer (for example, a patient with triple-negative breast cancer); and administering to a subject at least one selected from the group consisting of one or more of the peptides of any one of [1] to [11], a polynucleotide(s) encoding the peptide(s), and a pharmaceutically acceptable salt(s) of the peptide(s).
- [0012] Alternatively, the present invention provides use of at least one selected from the group consisting of one or more of the peptides of any one of [1] to [11] mentioned above, a polynucleotide(s) encoding the peptide(s), and a pharmaceutically acceptable salt(s) of the peptide(s), in the manufacture of a pharmaceutical composition for either or both of treatment and prophylaxis (prevention) of cancer. Furthermore, the present invention relates to at least one

selected from the group consisting of one or more of the peptides of any one of [1] to [11] mentioned above, a polynucleotide(s) encoding the peptide(s), and a pharmaceutically acceptable salt(s) of the peptide(s), for use in either or both of treatment and prophylaxis (prevention) of cancer. Moreover, the present invention relates to methods of manufacturing a pharmaceutical composition for either or both of treatment and prophylaxis (prevention) of cancer, the method comprising mixing or compounding with a carrier at least one selected from the group consisting of one or more of the peptides of any one of [1] to [11] mentioned above, a polynucleotide(s) encoding the peptide(s), and a pharmaceutically acceptable salt(s) of the peptide(s).

[Advantageous Effects of Invention]

[0013] The peptides of the present invention have the ability to bind to BIG3, a protein highly expressed specifically in, among others, estrogen receptor-positive cancer, and not to PHB2, of which expression is observed in organs throughout the human body, and can inhibit the BIG3-PHB2 interaction. Thus, the peptides of the present invention can be expected to have high selectivity for estrogen receptor-positive cancer.

[0014] Furthermore, the peptides of the present invention exhibit a growth suppressive effect not only on estrogen-dependent breast cancer cells but also on triple-negative breast cancer cells. For triple-negative breast cancer, there has so far been no effective molecular target drug, and treatment with existing anticancer agents having strong side effects has been the only option. On the other hand, the cell growth suppressive effect of the peptides of the present invention was not observed in normal mammary gland epithelial cells which did not express BIG3. These suggest that the peptides of the present invention are useful as therapeutic drugs for BIG3-positive cancer, regardless of whether the cancer is hormone-dependent or not.

[Brief Description of Drawings]

25 [0015]

10

15

20

30

35

40

45

50

55

Fig. 1-1: screening for PHB2 sequence-derived peptides which suppress estrogen-dependent cell growth is shown. (A): Human breast cancer cell line MCF-7 was treated with 10 μ M each of PHB2 sequence-derived peptides, and then immediately stimulated with 10 nM estrogen to evaluate the cell number for 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments. The full-length sequence of human PHB2 protein is shown below the graph, and synthetic peptides in which eight arginine residues were added to the C terminus of the underlined sequences were used in the assay. Moreover, the bold letters represent amino acids which are suggested to be involved in the interaction with BIG3 by *in silico* analysis, boxed "S" represents the phosphorylation site of PHB2, and the broken line represents a region whose binding to PHB2 has been demonstrated.

Fig. 1-2 (B, C): MCF-7 was treated with 10 μ M each of PHB2 sequence-derived peptides surrounding 11-22aa (B) and 76-90aa (C) (SEQ ID NOs: 1, 34 to 43, 5, and 44 to 55), and then immediately stimulated with 10 nM estrogen to evaluate the cell number for 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments. The positions of the PHB2-derived sequences contained in the synthetic peptides used in the assay are shown on the left side of the graph.

Fig. 1-3 (D): MCF-7 was treated with the combinations of 10 μ M PHB2 sequence-derived peptide 11-22aa with 10 μ M each of PHB2 sequence-derived peptides surrounding 76-90aa, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number for 24 hours by MTT assay. (E): MCF-7 was treated with the combinations of 10 μ M PHB2 sequence-derived peptide 76-90aa with 10 μ M each of PHB2 sequence-derived peptides surrounding 11-22aa, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number for 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments.

Fig. 2 shows the effect by combination of PHB2 peptides 11-22aa and 76-90aa on the suppression of estrogen-dependent growth. (A): Human breast cancer cell line MCF-7 was treated with 10 μ M each of ERAP (positive control), PHB2 peptides 11-22aa, 76-90aa, and 86-100aa (negative control), a combination of 11-22aa and 76-90aa, and a combination of 76-90aa and 86-100aa, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments. (B): The suppressive effects of PHB2 peptides 11-22aa and 76-90aa and their combination on the interaction between BIG3 and PHB2 in MCF-7 were evaluated by Western blotting. MCF-7 was treated with 1 μ M and 10 μ M each of PHB2 peptides for 24 hours, and the cells were then lysed and immunoprecipitated with an anti-BIG3 antibody to perform immunoblot analysis using the antibodies shown in the figure. The percent binding inhibition is represented as the ratio when taking the PHB2 band area in untreated cells as 100. (C): Human breast cancer cell line MCF-7 was treated with 10 μ M each of ERAP, PHB2 peptides 11-22aa, 76-90aa, and 86-100aa, a

combination of 11-22aa and 76-90aa, and a combination of 76-90aa and 86-100, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the phosphorylation of PHB2 (Ser39) after 24 hours by Western blotting. The strength of phosphorylation is represented as the ratio when taking the phosphorylated band area of ERAP treatment in the presence of estrogen as 1.0.

5

10

15

20

25

30

35

40

45

50

55

Fig. 3 shows the effect of PHB2 peptide 11-90aa on estrogen-dependent growth and on the interaction between BIG3 and PHB2. (A): Human breast cancer cell line MCF-7 was treated with PHB2 peptides 11-90aa (20, 50, and 100 μ M), 11-22aa (50 μ M), and 76-90aa (50 μ M), and a combination of 11-22aa and 76-90aa, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments. (B): The inhibition effects of PHB2 peptides 11-90aa and 10 μ M ERAP (positive control) on the interaction between BIG3 and PHB2 in MCF-7 were evaluated by Western blotting. (C): Human breast cancer cell line MCF-7 was treated with PHB2 peptide 11-90aa (20, 50, and 100 μ M) and 10 μ M ERAP, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the phosphorylation of PHB2 (Ser39) after 24 hours by Western blotting. The strength of phosphorylation is represented as the ratio when taking the phosphorylated band area of the untreated cells as 1.0.

Fig. 4 shows schemes of branched and cyclic PHB2 peptides. (A): Linear bound PHB2 peptide. (B): Branched PHB2 peptide. (C): Cyclic PHB2 peptides.

Fig. 5 shows the suppressive effects of branched and cyclic PHB2 peptides on estrogen-dependent growth. (A): Human breast cancer cell line MCF-7 was treated with 10 μ M each of linear peptides 11-22aa and 76-90aa, a combination of linear 11-22aa and 76-90aa, the linear bound peptide, the branched bound peptide, cyclic 11-21aa and cyclic 76-88aa, and a combination of the cyclic peptides, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments. (B) shows the results of MTT assay showing that linear 11-22aa and linear 76-90aa, the linear bound peptide, the branched bound peptide, and cyclic 11-21aa and cyclic 76-88aa peptides have no effect on growth of normal mammary gland epithelial cells, MCF-10A. (C): Human breast cancer cell line MCF-7 was treated with 10 μ M each of linear peptides 11-22aa and 76-90aa, a combination of linear 11-22aa and 76-90aa, the linear bound peptide, the branched bound peptide, cyclic 11-21aa and cyclic 76-88aa, and a combination of the cyclic peptides, and their suppressive effects on the interaction between BIG3 and PHB2 were evaluated by Western blotting.

Fig. 6 shows the effects of suppressing estrogen-dependent growth by a combination of cyclic PHB2 peptides. (A): Human breast cancer cell line MCF-7 was treated with linear 11-22aa and cyclic 11-21aa (left) or with linear 76-90aa and cyclic 76-88aa (right), and then the cells were immediately stimulated with 10 nM estrogen to evaluate the suppressive effect by MTT assay every 24 hours up to 96 hours. (B) represents the results of MTT assay showing that cyclic 11-21aa and cyclic 76-88aa peptides have no effect on the growth of normal mammary gland epithelial cells, MCF-10A. The data represents mean \pm standard deviation of three independent experiments.

Fig. 7 shows the concentration-dependent suppressive effects of cyclic PHB2 peptides on estrogen-dependent growth. (A): Human breast cancer cell line MCF-7 was treated with 0.1, 0.5, 1, 2.5, 5, 10, and 20 μ M each of cyclic 11-21aa and 76-88aa, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments. (B): Human breast cancer cell line MCF-7 was treated with cyclic 11-21aa (4 μ M), cyclic 76-88aa (2 μ M), and their combination, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the suppressive effect by MTT assay every 24 hours up to 96 hours. The data represents mean \pm standard deviation of three independent experiments. (C) represents the results of MTT assay showing that cyclic 11-21aa (4 μ M), cyclic 76-88aa (2 μ M), and their combination have no effect on growth of normal mammary gland epithelial cells, MCF-10A. Fig. 8-1: PHB2 amino acids important for suppressing estrogen-dependent growth are shown. (A) depicts alanine-mutated PHB2 peptides of No. 1 (11-22aa) and No. 5 (76-90aa). (B, C): Human breast cancer cell line MCF-7 was treated with 10 μ M each of the alanine-mutated peptides derived from PHB2 sequence, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number for 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments.

Fig. 8-2 (D) depicts PHB2 peptides in which 51-57 aa has been added to PHB2 peptides No. 2 (42-50aa) and No. 3 (38-50aa). (E): The PHB2 sequence-derived peptides of (D) were each added at 10 μ M, and the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number for 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments.

Fig. 9 shows the cell growth suppressive effects of PHB2 peptides 11-22aa (A) and 76-90aa (B) on triple-negative breast cancer cells. Each peptide was diluted in a 3-fold dilution series starting from 20 mM with total 11 concentrations and added to breast cancer cell line MDA-MB-231. The numbers of viable cells were measured 96 hours after the peptide addition, the relative values were calculated based on negative control cells to which no peptide was added, and the values were plotted on the graph. The data represents mean \pm standard deviation of three independent experiments. (C) shows the results of examining the combined effect of PHB2 peptides 11-22aa and 76-90aa on

cell growth of MDA-MB-231. The peptides were added to the cells alone or in combination at IC50 value, the numbers of viable cells were measured after 96 hours, the relative values were calculated based on negative control cells to which phosphate buffered saline (PBS) was added, and the values were plotted on the graph. The data represents mean \pm standard deviation of three independent experiments.

Fig. 10-1: the suppressive effects of cross-linked PHB2 peptides on estrogen-dependent growth are shown. (A) shows schemes of cross-linking forms. (B) shows PHB2 peptides prepared by adding cysteine to both ends of PHB2 peptides 11-21aa and 76-88aa and cross-linking them (SEQ ID NOs: 106 to 108, 110 to 112, 115 to 117, and 119 to 121). The PHB2 peptides of SEQ ID NOs: 109, 113, 114, 118, and 122 were prepared as non-cross-linked peptides by adding alanine to both ends. The PHB2 peptides of SEQ ID NOs: 106 to 114 were prepared by adding polyarginine to the C terminus. Furthermore, in the PHB2 peptides of 11-21aa, methionine at position 19 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) was substituted with norleucine (NIe) to avoid oxidation during synthesis.

Fig. 10-2 (C): Human breast cancer cell line MCF-7 was treated with cross-linked PHB2 peptides of 11-21aa (left panel) or with cross-linked PHB2 peptides of 76-88aa (right panel), and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments.

Fig. 11 shows the suppressive effects of cyclic PHB2 peptides on estrogen-dependent growth. (A) depicts cross-linking types of PHB2 peptides of cyclic 11-21aa (SEQ ID NO: 25) and cyclic 76-88aa (SEQ ID NO: 26). The cyclic PHB2 peptides of SEQ ID NOs: 125 and 128 were prepared as non-cross-linked cyclic peptides by adding alanine to both ends of PHB peptides 11-21aa and 76-88aa. All cyclic PHB2 peptides were prepared by adding an unnatural amino acid and consecutive multiple arginine residues to the C terminus. Furthermore, in the cyclic PHB2 peptides of 11-21aa, methionine at position 19 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) was substituted with norleucine (NIe) to avoid oxidation during synthesis. (B): Human breast cancer cell line MCF-7 was treated with cyclic PHB2 peptides, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments.

Fig. 12 shows the effects of modifications of PHB2 peptide 11-22aa on estrogen-dependent growth. (A) depicts PHB2 peptides prepared from the PHB2 peptide of SEQ ID NO: 1 (11-22aa) by substituting glycine at positions 15 and 18 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) with D-alanine and D-leucine. (B): Human breast cancer cell line MCF-7 was treated with the modified PHB2 peptides of 11-22aa, and then the cells were immediately stimulated with 10 nM estrogen to evaluate the cell number after 24 hours by MTT assay. The data represents mean \pm standard deviation of three independent experiments.

Fig. 13 shows the effects of cross-linked PHB2 peptides on normal mammary gland epithelial cells, MCF-10A. The figure represents the results of MTT assay showing that cross-linked PHB2 peptides and cyclic PHB2 peptides have no effect on growth of normal mammary gland epithelial cells, MCF-10A. The data represents mean \pm standard deviation of three independent experiments.

[Description of Embodiments]

40 [0016] Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. However, before the present materials and methods are described, it is to be understood that the present invention is not limited to the particular sizes, shapes, dimensions, materials, methodologies, protocols, etc. described herein, as these may vary in accordance with routine experimentation and optimization. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

Definitions

5

10

15

20

25

30

35

50 [0017] The words "a", "an", and "the" used herein mean "at least one" unless otherwise specifically indicated.

[0018] Herein, unless otherwise specifically indicated, amino acids represented by capital letters indicate L-amino acids. Amino acids represented by lower-case letters indicate D-amino acids. Furthermore, L-amino acids and D-amino acids represented herein may include amino acids in which any of amino group, carboxyl group, and side chains has been modified. Examples of preferred modifications include acetylation of the amino group, amidation of the carboxyl group, tag peptide addition such as FLAG-tagging and HA-tagging, and such.

[0019] Herein, numbers indicating the positions of amino acid residues in amino acid sequences have been given with the N-terminal amino acid residue as number 1 and in order toward the C terminus, unless otherwise specifically indicated.

[0020] The term "BIG3" used herein refers to brefeldin A-inhibited guanine nucleotide-exchange protein 3. BIG3 forms

a complex with PHB2 to inhibit the estrogen-dependent transcriptional activation-suppressing function of PHB2. BIG3 is also referred to as "ARFGEF family member 3 (ARFGEF3)" or "A7322". An example of a representative nucleotide sequence of the human BIG3 gene is shown in SEQ ID NO: 31 (GenBank Accession No. NM_020340.4), and the amino acid sequence encoded by the gene is shown in SEQ ID NO: 32. In the present invention, BIG3 is not limited to that encoded by the aforementioned nucleotide sequence and also encompasses their isoforms and mutants.

[0021] The term "PHB2" used herein refers to prohibitin 2. PHB2 binds to estrogen receptors to inhibit estrogen receptor signaling pathways and suppresses estrogen-dependent cell growth. PHB2 is also referred to as "Repressor of Estrogen Activity (REA)". Examples of representative nucleotide sequences of the human PHB2 gene are shown in SEQ ID NO: 27 (GenBank Accession No. NM_001144831.1) and SEQ ID NO: 29 (GenBank Accession No. NM_001267700.1), and the amino acid sequences encoded by the genes are shown in SEQ ID NO: 28 and SEQ ID NO: 30, respectively. In the present invention, PHB2s are not limited to those encoded by the aforementioned nucleotide sequences and also encompass their isoforms and mutants.

[0022] The term "estrogen receptor" used herein encompasses both estrogen receptor α (ER α) and estrogen receptor β (ER β). ER α and ER β are encoded by the ESR1 gene and ESR2 gene, respectively. The nucleotide sequence of a representative human ESR1 gene and the amino acid sequence of a representative human ER α are shown in SEQ ID NO: 86 (GenBank Accession No. NM_000125.3) and SEQ ID NO: 87 (GenBank Accession No. NP_000116.2), respectively. Furthermore, the nucleotide sequence of a representative human ER β are shown in SEQ ID NO: 88 (GenBank Accession No. NM_001437.2) and SEQ ID NO: 89 (GenBank Accession No. NP_001428.1), respectively. In the present invention, however, the nucleotide sequences and amino acid sequences of estrogen receptor are not limited thereto and also encompass their isoforms and mutants. In a preferred embodiment, the estrogen receptor is ER α . It has been reported that transcriptional activation of ER α and ER β is both regulated by a PHB2 polypeptide (Montano MM, et al., Proc Natl Acad Sci USA. 96(12): 6947-52 (1999)). [0023] Herein, the term "estrogen receptor-positive" used in the context of a cell or cancer means that a cell or a cancer cell constituting cancer expresses an estrogen receptor. Whether a cell or cancer is estrogen receptor-positive or not can be confirmed by a known method such as ELISA and immunohistochemical staining. Furthermore, herein, the term "estrogen receptor-negative" used in the context of a cell or a cancer cell constituting cancer does not express an estrogen receptor.

[0024] The term "ERAP" used herein refers to a peptide consisting of the amino acid sequence of SEQ ID NO: 33. The amino acid sequence of SEQ ID NO: 33 is a sequence consisting of the 165th to 177th amino acid residues in the amino acid sequence of BIG3 (SEQ ID NO: 32), and contains amino acid residues important for binding with PHB2 (glutamine (Q) at position 165, aspartic acid (D) at position 169, and glutamine (Q) at position 173 in the amino acid sequence of SEQ ID NO: 32). ERAP has an ability to bind to PHB2 and inhibits BIG3 from forming the complex with PHB2 by binding competitively to PHB2.

[0025] The term "treatment" used herein encompasses alleviation/improvement of at least one symptom caused by a target disease, suppression of progression of the disease, suppression of enlargement of the disease site, and such. For example, "cancer treatment (treatment of cancer)" includes cancer cell growth suppression, suppression of cancer progression, induction of regression/remission of cancer, alleviation/improvement of symptoms accompanying cancer, suppression of cancer metastasis, suppression of postoperative recurrence, and induction of prolonged survival time.

1. PHB2 peptides

10

20

30

35

40

45

50

55

[0026] The present invention provides peptides comprising a site binding to a BIG3 polypeptide (a BIG3 polypeptide-binding site) in a PHB2 polypeptide, which inhibit the binding between the PHB2 polypeptide and the BIG3 polypeptide. The peptides of the present invention are also herein referred to as "PHB2 peptides", "PHB2-derived peptides", or "PHB2 sequence-derived peptides".

[0027] The peptides of the present invention have the ability to bind to a BIG3 polypeptide by comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide. Consequently, the peptides competitively inhibit the binding of the PHB2 polypeptide to the BIG3 polypeptide. The PHB2 peptides of the present invention can be salts as long as they have the effect of inhibiting the binding between a PHB2 polypeptide and a BIG3 polypeptide. For example, the PHB2 peptides can be salts with acids (such as inorganic acids and organic acids) or with bases (such as alkaline metals, alkaline earth metals, and amines). The salts with acids include, for example, salts with inorganic acids (for example, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, and acetic acid) and those with organic acids (for example, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, and meglumine acid). The salts with bases include, for example, salts with sodium, potassium, calcium, and ammonium. Preferred examples of salts of the peptides of the present invention include acetates, hydrochlorides, meglumine salts, and ammonium salts.

[0028] The "site binding to a BIG3 polypeptide in a PHB2 polypeptide (BIG3 polypeptide-binding site in a PHB2 polypeptide)" means an amino acid residue(s) involved in binding to a BIG3 polypeptide in the amino acid sequence

constituting a PHB2 polypeptide. Such an amino acid residue(s) includes, for example, glycine at positions 15 and 18 and aspartic acid at position 82 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide). Thus, in a preferred embodiment, the peptides of the present invention are peptides which comprise glycine at positions 15 and 18 and aspartic acid at position 82 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) and inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide. Herein, the number of a particular amino acid residue in an amino acid sequence indicates the number of the amino acid residue counted from the N terminus.

[0029] Examples of amino acid sequences comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide include (a) all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21 (SEQ ID NO: 84), (b) all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88 (SEQ ID NO: 85), and (c) all or part of the amino acid sequence (SEQ ID NO: 82) consisting of the amino acids at positions 44 to 57, in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide). Accordingly, preferred examples of the peptides of the present invention include a peptide comprising an amino acid sequence selected from the group consisting of:

10

15

20

30

35

40

45

50

55

- (a) an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41 (PHB2 sequence-derived peptides Nos. 1 and 36 to 41);
- (b) an amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53 (PHB2 sequence-derived peptides Nos. 5 and 47 to 53); and
- (c) an amino acid sequence selected from the group consisting of SEQ ID NOs: 82 and 83 (PHB2 sequence-derived peptides Nos. 82 and 83).

[0030] However, the peptides of the present invention are not limited thereto, and the amino acid sequences constituting the peptides are not particularly limited as long as the peptides comprise the BIG3 polypeptide-binding site in a PHB2 polypeptide and have the activity to inhibit the binding between the PHB2 polypeptide and a BIG3 polypeptide.

[0031] In general, it is known that one or more amino acid modifications in a peptide have no effect on the function of the peptide. Indeed, it is known that a peptide having an amino acid sequence in which one or more amino acid residues are modified by substitution, deletion, insertion, and/or addition retains the biological activity of the original peptide (Mark et al., Proc Natl Acad Sci USA 81(18): 5662-6 (1984); Zoller and Smith, Nucleic Acids Res 10(20): 6487-500 (1982); and Dalbadie-McFarland et al., Proc Natl Acad Sci USA 79(21): 6409-13 (1982)). The peptides of the present invention may comprise a substitution or deletion of amino acid residues, for example, at positions other than the BIG3 polypeptide-binding site, in a PHB2-derived amino acid sequence and may have an insertion or addition of amino acid residues at positions which have no effect on the binding to a BIG3 polypeptide, as long as they comprise the BIG3 polypeptide-binding site in a PHB2 polypeptide and have the activity to inhibit the binding between the PHB2 polypeptide has/have been substituted. Actually, it is shown in Examples of the present specification that peptides having an amino acid sequence in which an amino acid residue(s) other than the BIG3 polypeptide-binding site in a PHB2 polypeptide has/have been substituted with other amino acid residue(s) also retain the biological activity equal to that of peptides which do not have such substitutions. Accordingly, the peptides of the present invention encompass peptides which comprise an amino acid sequence selected from the group consisting of (a') and (b') below and have an activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide:

(a') an amino acid sequence in which one, two, or several amino acid residues located at positions other than those corresponding to glycine at positions 15 and 18 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) are substituted with other amino acid residues, in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41 (PHB2 sequence-derived peptides Nos. 1 and 36 to 41); and (b') an amino acid sequence in which one, two, or several amino acid residues located at positions other than that

corresponding to aspartic acid at position 82 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) are substituted with other amino acid residues, in an amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53 (PHB2 sequence-derived peptides Nos. 5 and 47 to 53).

[0032] In the above (a') and (b'), amino acid residues substituted can be any amino acid residues as long as the resulting peptide maintains the ability to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide. Furthermore, which amino acid residue is substituted can be determined by predicting amino acid residues not involved in the binding to a BIG3 polypeptide by using, for example, a calculation method such as PSIVER. The number of amino acid residues substituted are also not particularly limited as long as the resulting peptide maintains the ability to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide, and one, two, or several amino acid residues can be substituted. "Several" preferably refers to six, five, four, or three.

[0033] In general, it is recognized that a substitution with another amino acid residue which conserves the amino acid side chain characteristics of the original amino acid residue tends to have no effect on the function of the original peptide. Such a substitution is often called a "conservative substitution" or "conservative modification". Accordingly, the substi-

tutions in the above (a') and (b') are preferably performed by conservative substitutions.

[0034] Tables of conservative substitutions presenting functionally similar amino acids are well known in the art. Examples of amino acid side chain characteristics that are desirable to conserve include, for example, hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), and side chains having the following functional groups or characteristics in common: an aliphatic side-chain (G, A, V, L, I, P); a hydroxyl group containing side-chain (S, T, Y); a sulfur atom containing side-chain (C, M); a carboxylic acid and amide containing side-chain (D, N, E, Q); a base containing side-chain (R, K, H); and an aromatic containing side-chain (H, F, Y, W). In addition, the following eight groups each contain amino acids that are accepted in the art as conservative substitutions for one another:

10

15

20

30

35

40

45

50

55

- 1) Alanine (A), Glycine (G);
- 2) Aspartic acid (D), Glutamic acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 4) Arginine (R), Lysine (K);
- 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V);
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W);
- 7) Serine (S), Threonine (T); and
- 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins 1984).

[0035] However, the substitutions in the above-mentioned (a') and (b') are not limited thereto, and they may be non-conservative substitutions as long as the peptides maintain the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide.

[0036] The peptides of the present invention can comprise amino acid residues other than the BIG3 polypeptide-binding site in a PHB2 polypeptide as long as they maintain the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide. For example, a fragment of PHB2 polypeptide comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide is preferred as a peptide of the present invention. Accordingly, preferred examples of the peptides of the present invention include PHB2 polypeptides (SEQ ID NOs: 1 and 36 to 41 (PHB2 sequence-derived peptides Nos. 1 and 36 to 41)) comprising glycine at positions 15 and 18 and their surrounding sequence in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) and PHB2 polypeptides (SEQ ID NOs: 5 and 47 to 53 (PHB2 sequence-derived peptides Nos. 5 and 47 to 53)) comprising aspartic acid at position 82 and its surrounding sequence in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide). Other preferred examples of the peptides of the present invention include PHB2 polypeptides (SEQ ID NOs: 82 and 83 (PHB2 sequence-derived peptides Nos. 82 and 83)) comprising amino acids at positions 44 to 57 and their surrounding sequence in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide).

[0037] The following peptides can be exemplified as the PHB2 peptides of the present invention: peptides comprising amino acid sequences of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83), which peptides are composed of, for example, 30 amino acid residues or 20 amino acid residues, typically 19 amino acid residues, preferably 18 amino acid residues, and more preferably 17 amino acid residues or less. The following peptides can be shown as such peptides: peptides comprising an amino acid sequence selected from the amino acid sequences (9 residues) of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83) and an amino acid sequence selected from the full-length amino acid sequence constituting a PHB2 polypeptide, which peptides are composed of 30 amino acid residues or 20 amino acid residues, typically 19 amino acid residues, preferably 18 amino acid residues, and more preferably 17 amino acid residues or less.

[0038] In a preferred embodiment of the present invention, an amino acid to be added to the amino acid sequences of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83) can be zero (that is, the amino acid sequences consisting of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83)) or can be one, two or more consecutive amino acid sequences selected from the full-length amino acid sequence constituting a PHB2 polypeptide (SEQ ID NO: 28 (full-length PHB2 polypeptide)). The amino acid sequences of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83) are those comprising glycine at position 15, glycine at position 18, aspartic acid at position 82, or the amino acid sequence consisting of the amino acids at positions 44 to 57 in the full-length amino acid sequence constituting a PHB2 polypeptide (SEQ ID NO: 28 (full-length PHB2 polypeptide)). Accordingly, in a preferred embodiment of the present invention, an amino acid residue or amino acid sequence to be added to SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83) can be selected from amino acid sequences neighboring glycine at position 15, glycine at position 18, aspartic acid at position 82, or the amino acid sequence consisting of the amino acids at positions 44 to 57 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide)).

[0039] It is desirable that the peptides of the present invention have either or both of the following properties (i) and (ii), in addition to the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide:

5

10

15

20

25

30

35

40

45

50

55

- (i) promoting the nuclear import of a PHB2 polypeptide in an estrogen receptor-positive cell which expresses a BIG3 polypeptide; and
- (ii) promoting the binding between an estrogen receptor present in the nucleus and/or on cell membrane to a PHB2 polypeptide in an estrogen receptor-positive cell which expresses an ERAP1 polypeptide.

[0040] By having either or both of the above properties (i) and (ii), the peptides of the present invention suppress activation of estrogen receptors in BIG3-expressing cells, thereby leading to suppression of growth of estrogen receptor-positive cells. Both the above properties (i) and (ii) of PHB2 peptides can be evaluated according to methods known to one skilled in the art.

[0041] APHB2 polypeptide is known as an estrogen receptor-selective coregulator and suppresses transcriptional activation of estrogen receptors by interaction with them (Kasashima K, J Biol Chem 281(47): 36401-10 (2006)). On the other hand, a BIG3 polypeptide binds to a PHB2 polypeptide to block the nuclear import of a PHB2 polypeptide, thereby inhibiting the interaction between the PHB2 polypeptide and an estrogen receptor in the nucleus. Furthermore, a BIG3 polypeptide blocks the binding between an estrogen receptor present on the cell membrane and a PHB2 polypeptide. As a result of these functions, in cells overexpressing a BIG3 polypeptide, suppression of estrogen receptor activation by the PHB2 polypeptide does not sufficiently work, and enhanced cell growth is induced.

[0042] The peptides of the present invention have the feature of restoring the PHB2 polypeptide's function of suppressing activation of estrogen receptors, the function having been inhibited by the binding to a BIG3 polypeptide, by competitively inhibiting the binding between the BIG3 polypeptide and the PHB2 polypeptide. On the other hand, a PHB2 polypeptide suppresses activation of estrogen receptors through the binding to them. Accordingly, it is desirable that the peptides of the present invention suppress the binding between a BIG3 polypeptide and a PHB2 polypeptide but do not block the binding between an estrogen receptor and the PHB2 polypeptide, and thus do not block the suppression of estrogen receptor activation by the PHB2 polypeptide. As described above, a fragment of PHB2 polypeptide comprising the BIG3 polypeptide-binding site is suitable as a peptide of the present invention; however, a peptide close to the fulllength of a PHB2 polypeptide is likely to block the binding between an endogenous PHB2 polypeptide and an estrogen receptor, thereby blocking the suppression of estrogen receptor activation by the endogenous PHB2 polypeptide. Thus, a partial amino acid sequence of PHB2 polypeptide comprised in the peptides of the present invention is preferably 100 residues or less, more preferably 80 residues or less, and even more preferably 70 residues or less. In a more preferred embodiment, a partial amino acid sequence of PHB2 polypeptide comprised in the peptides of the present invention is 50 residues or less, 40 residues or less, 30 residues or less, 25 residues or less, or 20 residues or less. Since the estrogen receptor-binding site in PHB2 is a site consisting of the amino acids at positions 175 to 198 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide), the peptides of the present invention preferably do not comprise this site and in this case, a partial amino acid sequence of PHB2 polypeptide comprised in the peptides of the present invention is desirably 100 residues or less, more preferably 80 residues or less, and even more preferably 70 residues or less, excluding the sequence of amino acids at positions 175 to 198. In a more preferred embodiment, a partial amino acid sequence of PHB2 polypeptide comprised in the peptides of the present invention is 50 residues or less, 40 residues or less, 30 residues or less, 25 residues or less, or 20 residues or less, excluding the sequence of amino acids at positions 175 to 198.

[0043] Furthermore, the peptides of the present invention may comprise additional amino acid sequences other than the amino acid sequence derived from a PHB2 polypeptide as long as they maintain the activity to inhibit the binding between a BIG3 polypeptide and a PHB2 polypeptide and do not block the suppression of estrogen receptor activation by the PHB2 polypeptide. Also in this case, it is desirable that the additional amino acid sequences do not block the binding between an endogenous PHB2 polypeptide and an estrogen receptor. Thus, the peptides of the present invention are preferably a peptide of 100 residues or less, 80 residues or less, or 70 residues or less. In a more preferred embodiment, the peptides of the present invention are peptides of 50 residues or less, 40 residues or less, or 30 residues or less. Preferred examples of amino acid sequences comprised in the peptides of the present invention include, but are not limited to, amino acid sequences constituting cell-permeable peptides described later and linker sequences for coupling other substances.

[0044] Moreover, the peptides of the present invention may be modified with other substances. Herein, the term "modified" used in the context of a peptide means that another substance(s) is/are directly or indirectly coupled to a peptide. Other substances that modify the peptides of the present invention include, but are not limited to, for example, peptides, lipids, saccharides, and natural or synthetic polymers. The peptides of the present invention can have any modifications as long as they maintain the activity to inhibit the binding between a BIG3 polypeptide and a PHB2 polypeptide. Furthermore, the peptides of the present invention may be conferred additional functions by modifications. Examples of the additional functions include, but are not limited to, targeting property, stability, and cell membrane

permeability.

[0045] Preferred examples of modifications in the present invention include introduction of a cell membrane permeable substance. Intracellular structure is usually cut off from the outside world by the cell membrane. Thus, it is difficult to efficiently introduce an extracellular substance into a cell. However, a certain type of substance has cell membrane permeability and can be introduced into a cell without being cut off by the cell membrane. It is possible to confer cell membrane permeability to a substance with no cell membrane permeability by modifying the substance with such a substance having cell membrane permeability (cell membrane permeable substance). Accordingly, the peptides of the present invention can be efficiently introduced into cells by modifying the peptide of the present invention with a cell membrane permeable substance(s). Furthermore, as used herein, "cell membrane permeability" refers to the property of being able to permeate the cell membrane of mammals and enter the cytoplasm. Moreover, a "cell membrane permeable substance" refers to a substance having "cell membrane permeability".

[0046] Examples of the cell membrane permeable substance include, but are not limited to, membrane fusogenic liposomes and cell membrane permeable peptides. For example, membrane fusogenic liposomes are fused to cell membrane to release their contents into a cell. Membrane fusogenic liposomes can be adjusted, for example, by modifying the surface of liposomes with a substance having membrane fusogenicity. Examples of membrane fusogenic liposomes include pH-sensitive liposomes (Yuba E, et al., J. Control. Release, 149, 72-80 (2011)), Sendai virus membrane fusogenic liposomes (WO 97/016171), and liposomes modified with cell membrane permeable peptides. The peptides of the present invention may be encapsulated into a membrane fusogenic liposome to efficiently introduce the peptides into a cell. In the present invention, encapsulation of a peptide into a membrane fusogenic liposome is also encompassed in "modification" of a peptide.

[0047] Various natural or artificially synthesized peptides have so far been reported as cell membrane permeable peptides (Joliot A. & Prochiantz A., Nat Cell Biol. 2004; 6: 189-96). Examples of cell membrane permeable peptides include the following peptides, but are not limited thereto.

25

30

35

40

10

15

20

Polyarginine (Matsushita et al., J. Neurosci.; 21(16), 6000-7 (2003));

Tat/RKKRRQRRR (SEQ ID NO: 90) (Frankel et al., Cell 55(6), 1189-93 (1988)., Green & Loewenstein Cell 55, 1179-88 (1988));

Penetratin/RQIKIWFQNRRMKWKK (SEQ ID NO: 103) (Derossi et al., J. Biol. Chem. 269(14), 10444-50 (1994)); Buforin II/TRSSRAGLQFPVGRVHRLLRK (SEQ ID NO: 91) (Park et al., Proc. Natl Acad. Sci. USA 97(15), 8245-50 (2000));

Transportan/GWTLNSAGYLLGKINLKALAALAKKIL (SEQ ID NO: 92) (Pooga et al., FASEB J. 12(1), 67-77 (1998)); MAP (Model Amphipathic Peptide)/KLALKALKALKALKALKALKIA (SEQ ID NO: 93) (Oehlke et al., Biochim. Biophys. Acta. 1414(1-2), 127-39 (1998));

K-FGF/AAVALLPAVLLALLAP (SEQ ID NO: 94) (Lin et al., J. Biol. Chem. 270(24), 14255-8 (1995));

Ku70/VPMLK (SEQ ID NO: 95) (Sawada et al., Nature Cell Biol. 5(4), 352-7 (2003));

Ku70/PMLKE (SEQ ID NO: 96) (Sawada et al., Nature Cell Biol. 5(4), 352-7 (2003));

Prion/MANLGYWLLALFVTMWTDVGLCKKRPKP (SEQ ID NO: 97) (Lundberg et al., Biochem. Biophys. Res. Commun. 299(1), 85-90 (2002));

pVEC/LLIILRRRIRKQAHAHSK (SEQ ID NO: 98) (Elmquist et al., Exp. Cell Res. 269(2), 237-44 (2001));

Pep-1/KETWWETWWTEWSQPKKKRKV (SEQ ID NO: 99) (Morris et al., Nature Biotechnol. 19(2), 1173-6 (2001)); SynB1/RGGRLSYSRRFSTSTGR (SEQ ID NO: 100) (Rousselle et al., Mol. Pharmacol. 57(4), 679-86 (2000)); Pep-7/SDLWEMMMVSLACQY (SEQ ID NO: 101) (Gao et al., Bioorg. Med. Chem. 10(12), 4057-65 (2002)); and

1 NA 4750 NI NI NOCAL (CEC D NO. 101) (Cao et al., biologi, inca. 1012), 4007-00 (2002)), and

HN-1/TSPLNIHNGQKL (SEQ ID NO: 102); (Hong & Clayman Cancer Res. 60(23), 6551-6 (2000)).

45

50

55

[0049] The above-mentioned polyarginine may be composed of any number of arginine residues. For example, polyarginine may be composed of 5 to 20 arginine residues. The number of arginine residues constituting polyarginine is not particularly limited as long as it does not block the activity of the peptide to inhibit the binding between a BIG3 polypeptide and a PHB2 polypeptide.

[0050] Furthermore, it is known in the art to introduce various particularly useful amino acid mimetics or unnatural amino acids (for example, by substitution, addition, or insertion) in order to increase *in vivo* stability of peptides. Examples of amino acid mimetics or unnatural amino acids to be introduced include, but are not limited to, β -amino acids, D-amino acids, and N-methyl amino acids. Accordingly, such amino acid mimetics or unnatural amino acids can be introduced into the peptides of the present invention to increase *in vivo* stability. Moreover, azapeptides in which α -carbons of amino acids have been substituted with an amino group and techniques for substituting amide bonds in peptides with their equivalents (such as esters, sulfonamides, and alkene isosteres) are also known in the art. Stability of peptides can be confirmed using, for example, peptidases and various biological media such as human plasma and serum (see, for example, Coos Verhoef et al. Eur. J. Drug Metab. Pharmacokin. 11(4): 291-302 (1986)).

[0051] Accordingly, the present invention provides peptides comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide, which inhibit the binding between the PHB2 polypeptide and a BIG3 polypeptide and comprise at least one amino acid mimetic or unnatural amino acid (for example, β -amino acid, D-amino acid, and N-methyl amino acid). In a particular embodiment, the peptides of the present invention comprise an amino acid sequence in which one, two, or several amino acids are substituted with corresponding amino acid mimetics or unnatural amino acids (for example, β -amino acids, D-amino acids, and N-methyl amino acids) in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83 (PHB2 sequence-derived peptides Nos. 1, 5, 36 to 41, 47 to 53, 82, and 83).

[0052] Moreover, the present invention also provides peptides comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide, which inhibit the binding between the PHB2 polypeptide and a BIG3 polypeptide and in which at least one amide bond has been replaced with its equivalent (for example, an ester, sulfonamide, and alkene isostere).

Cyclic and cross-linked peptides

10

30

35

40

45

50

55

15 [0053] In a particular embodiment, the peptides of the present invention may be cyclized and their stability can be improved by cyclization. Methods of introducing a cyclic structure into a peptide of the present invention are well known, and for example, a peptide can be cyclized by adding cysteine to the N- and C-termini of a linear peptide and allowing to form a disulfide bond between these cysteines. Herein, such a structure in which side chains of two (a pair of) amino acid residues in an amino acid sequence constituting a peptide are cross-linked (stapled) can be called a "stapling structure", and a cross-linked peptide into which one or more stapling structures have been introduced is also referred to as a "stapled peptide". Positions of amino acid residues forming such an intramolecular crosslink are not limited to the N- and C-termini of the original linear peptide, and amino acid residues present in the original linear peptide may form an intramolecular crosslink, or amino acid residues introduced into the original linear peptide (by, for example, substitution, addition, or insertion) may form an intramolecular crosslink. Amino acid residues forming an intramolecular crosslink are not limited to natural amino acids and may be amino acid mimetics or unnatural amino acids as described above. Moreover, methods of cross-linking a peptide are not limited to disulfide bond formation, and also include crosslinking of cysteine residues through fluorobenzene (for example, by using hexafluorobenzene or decafluorobiphenyl), thioether bond formation, ester bond formation, and a technique for stapling hydrocarbons such as ring-closing olefin metathesis (described in, for example, WO 2017/126461).

[0054] Furthermore, methods of cyclizing a peptide are not limited to methods of forming an intramolecular crosslink as mentioned above, and also include formation of an amide bond between the C-terminal and N-terminal amino acid residues of a peptide. The peptides thus cyclized by various methods are herein referred to as cyclic peptides, and include both cyclic peptides comprising an intramolecular crosslink (*i.e.*, cross-linked peptides; for example, SEQ ID NOs: 25, 26, 123, 124, 126, and 127 depicted in Figs. 4 and 11) and those not comprising an intramolecular crosslink (for example, SEQ ID NOs: 125 and 128 depicted in Fig. 11).

[0055] Accordingly, the present invention provides cyclic peptides comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide, which inhibit the binding between the PHB2 polypeptide and a BIG3 polypeptide and have been cyclized by at least one intramolecular bond. Examples of the intramolecular bond include, but are not limited to, a disulfide bond, crosslink between cysteine residues through fluorobenzene (for example, by using hexafluorobenzene or decafluorobiphenyl), thioether bond, ester bond, thioester bond, bond by a hydrocarbon chain (for example, olefin and aryl), bond by a heterocycle (for example, triazole, oxazole, and thiazole) and amido bond, and combinations thereof. [0056] Such an intramolecular bond may be formed by amino acid residues at both ends of the original linear peptide of a cyclic peptide, or may be formed by amino acid residues in the linear peptide. Moreover, the intramolecular bond may be formed by amino acid residues in an amino acid sequence derived from a PHB2 polypeptide, or may be formed by amino acid residues introduced into the amino acid sequence (by, for example, substitution, addition, or insertion). Preferred examples of such cyclic peptides of the present invention include cyclic PHB2 peptides of 11-21aa and 76-88aa (cyclic peptides respectively consisting of SEQ ID NO: 25, 106 to 108, 115 to 117, 123, or 124; and SEQ ID NO: 26, 110 to 112, 119 to 121, 126, or 127). These exemplary cyclic peptides are prepared by adding two cysteine residues that form an intramolecular bond (intramolecular crosslink) (SEQ ID NOs: 25, 26, 106 to 108, 110 to 112, 115 to 117, 119 to 121, 123, 124, 126, and 127); adding or substituting unnatural amino acids (SEQ ID NOs: 25, 26, 106 to 108, 115 to 117, 123, 124, 126, and 127); and adding consecutive multiple arginine residues (SEQ ID NOs: 25, 26, 106 to 108, 110 to 112, 123, 124, 126, and 127), in the linear peptides of PHB2 sequence-derived 11-21aa and 76-88aa with the objective of stabilization of the structure (and increase in the activity and improvement of protease resistance accompanied thereby) and improvement of membrane permeability. Such peptides have been cyclized by formation of an intramolecular crosslink between the two cysteine residues introduced (SEQ ID NOs: 25, 26, 106 to 108, 110 to 112, 115 to 117, 119 to 121, 123, 124, 126, and 127) and by formation of an amido bond between the C-terminal and Nterminal amino acid residues added (SEQ ID NOs: 25, 26, 123, 124, 126, and 127) (Figs. 4C, 10A, and 11A). These exemplary cyclic peptides (in particular, cyclic and cross-linked peptides) showed an enhanced growth suppressive

effect as compared to the original linear peptides (Figs. 5A, 10C, and 11B) and the suppressive effect was shown to last for a long time (Fig. 6A).

[0057] The present invention also relates to methods of producing a cyclic peptide, the method comprising:

5

10

15

20

30

35

40

45

50

- (a) providing a linear peptide comprising the BIG3 polypeptide-binding site in a PHB2 polypeptide, which inhibits the binding between the PHB2 polypeptide and a BIG3 polypeptide; and
- (b) allowing to form at least one intramolecular bond in the linear peptide, thereby cyclizing the linear peptide.

[0058] The intramolecular bond is optionally selected from the group consisting of a disulfide bond, crosslink between cysteine residues through fluorobenzene (for example, by using hexafluorobenzene or decafluorobiphenyl), thioether bond, ester bond, thioester bond, bond by a hydrocarbon chain (for example, olefin and aryl), bond by a heterocycle (for example, triazole, oxazole, and thiazole) and amido bond, and combinations thereof.

[0059] The above methods optionally comprise introducing at least one selected from the group consisting of cysteine residues, an amino acid mimetic(s) or unnatural amino acid(s), and consecutive multiple arginine residues into the linear peptide (by, for example, substitution, addition, or insertion).

[0060] The peptides of the present invention have the feature of having the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide. Whether a peptide produced has the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide or not can be confirmed by comparing the binding level between the PHB2 polypeptide and the BIG3 polypeptide in the presence and absence of the peptide. That is, when the binding level in the presence of a peptide is lower than that in the absence of the peptide, the peptide can be judged to have "the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide".

[0061] The binding level between a PHB2 polypeptide and a BIG3 polypeptide can be measured using various known methods. For example, immunoprecipitation using an anti-PHB2 antibody or an anti-BIG3 antibody, affinity chromatography, a biosensor using surface plasmon resonance phenomenon, and such can be used.

[0062] As a specific method, for example, a PHB2 polypeptide and a BIG3 polypeptide are incubated in the presence and absence of a test peptide. The reaction solution is then immunoprecipitated with an anti-PHB2 antibody or an anti-BIG3 antibody, and the immunoprecipitate is subjected to Western blot analysis. The binding level between the PHB2 polypeptide and the BIG3 polypeptide can be confirmed by detecting at least either one of the BIG3 polypeptide level immunoprecipitated with the anti-PHB2 antibody or the PHB2 polypeptide level immunoprecipitated with the anti-BIG3 antibody. The PHB2 polypeptide and BIG3 polypeptide used here can be adjusted by a known genetic engineering technique. Furthermore, lysates of cells producing these polypeptides can be used. The cell lines as described in Examples of the present specification can be utilized as cells producing these polypeptides.

[0063] Alternatively, the methods as described in Examples of the present specification can also be used. Specifically, estrogen receptor-positive cells are cultured in the presence and absence of a test peptide. The cells are then lysed with an appropriate lysis buffer, and the cell lysate may be used to perform immunoprecipitation and Western blot analysis in the same manner as above.

[0064] A peptide for which "the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide" has been confirmed by any of the above methods is judged to be a peptide having "the activity to inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide".

[0065] Moreover, the peptides of the present invention may have either or both of the following (i) and (ii) as preferred properties:

- (i) promoting the nuclear import of a PHB2 polypeptide in an estrogen receptor-positive cell which expresses a BIG3 polypeptide; and
- (ii) promoting the binding between an estrogen receptor present in the nucleus and/or on cell membrane and a PHB2 polypeptide in an estrogen receptor-positive cell which expresses a BIG3 polypeptide.

[0066] Whether a peptide of the present invention has the above properties or not can be confirmed by comparing (i) the nuclear import level of a PHB2 polypeptide; and/or (ii) the binding level between an estrogen receptor and a PHB2 polypeptide, in the presence and absence of the peptide of the present invention. That is, when the level in the presence of the peptide of the present invention is higher as compared to that in the absence of the peptide, the peptide can be judged to have the above-mentioned properties (i) and/or (ii).

[0067] Methods well known to one skilled in the art can be used as examples of specific methods for judging the presence or absence of the above-mentioned properties (i) and/or (ii). Specifically, when examining the above property (i), estrogen receptor-positive cells are stimulated with estradiol for 24 hours with or without the addition of a peptide of the present invention. The cells are then fractionated by specific gravity centrifugation, and PHB2 polypeptides present in the nuclear fraction are detected by Western blot analysis and such. When the level of PHB2 polypeptide detected in the nuclear fraction increases in the case where the peptide of the present invention is added as compared to the

case where the peptide is not added, the peptide of the present invention is judged to have the above-mentioned property (i). Moreover, the level of PHB2 polypeptide present in the nucleus can be detected by immunocytochemical staining. [0068] When examining the above-mentioned property (ii), estrogen receptor-positive cells are stimulated with estradiol for 24 hours with or without the addition of a peptide of the present invention. The cells are then fractionated by specific gravity centrifugation, the cytosolic fraction and the nuclear fraction are immunoprecipitated with an anti-estrogen receptor antibody or an anti-PHB2 antibody, and the immunoprecipitate is subjected to Western blot analysis. As a result, when the binding level between an estrogen receptor and a PHB2 polypeptide in the cytosolic fraction and/or the nuclear fraction increases in the case where the peptide of the present invention is added as compared to the case where the peptide is not added, the peptide of the present invention is judged to have the above-mentioned property (ii).

[0069] The peptides of the present invention can be produced using methods well known to one skilled in the art. For example, the peptides of the present invention can be obtained by chemical synthesis based on their amino acid sequences. Methods for chemical synthesis of a peptide are known and one skilled in the art can chemically synthesize the peptide of the present invention based on amino acid sequence selected as the peptide of the present invention. Chemical synthesis methods of peptide are described, for example, in the documents below:

15

20

30

35

40

45

50

55

10

- (i) Peptide Synthesis, Interscience, New York, 1966;
- (ii) The Proteins, Vol. 2, Academic Press, New York, 1976;
- (iii) "Peptide Synthesis" (in Japanese), Maruzen Co., 1975;
- (iv) "Basics and Experiment of Peptide Synthesis" (in Japanese), Maruzen Co., 1985;
- (v) "Development of Pharmaceuticals" (in Japanese), Continued Vol. 14 (peptide synthesis), Hirokawa, 1991;
- (vi) WO99/67288; and
- (vii) Barany G. & Merrifield R.B., Peptides Vol. 2, Solid Phase Peptide Synthesis, Academic Press, New York, 1980, 100-118.

[0070] Alternatively, the peptides of the present invention can be obtained by genetic engineering methods (e.g., Morrison J, J Bacteriology, 132(1): 349-51 (1977); Clark-Curtiss & Curtiss, Methods in Enzymology (eds. Wu et al.), 101: 347-62 (1983)). For example, a polynucleotide encoding a peptide of the present invention is inserted into an appropriate expression vector, and the vector is introduced into appropriate host cells to prepare transformed cells. The transformed cells are then cultured to produce the peptide of the present invention, and the cell extract is adjusted. Standard techniques for purifying proteins can be used to purify the peptide of the present invention from the cell extract. The peptide of the present invention can be purified by, for example, appropriately selecting and combining column chromatography, filter filtration, ultrafiltration, salting-out, solvent precipitation, solvent extraction, distillation, immuno-precipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, and recrystallization. Furthermore, the peptides of the present invention can be synthesized by *in vitro* translation system in which elements necessary to synthesize protein have been reconstructed *in vitro*.

[0071] When using genetic engineering techniques, the peptides of the present invention can also be expressed as a fusion protein with other peptide. A polynucleotide encoding a peptide of the present invention is ligated in frame with a polynucleotide encoding other peptide and inserted into an appropriate expression vector, and the vector is introduced into appropriate host cells to adjust transformed cells. The host cells are then cultured to allow production of a fusion protein of the peptide of the present invention and the other peptide, and its cell extract is adjusted. The purification of fusion protein from the cell extract can be performed by, for example, capturing the fusion protein by affinity chromatography using a column to which a substance having affinity to the fusion protein has been coupled. Moreover, if the peptide of the present invention has been coupled to another peptide through a linker sequence which can be cleaved by an enzyme such as peptidase, protease, and proteasome, the peptide of the present invention can be separated from the column by treating the fusion protein captured by the column with such an enzyme. Examples of other peptides which can be used to form fusion proteins include the following peptides, but are not limited thereto:

```
FLAG (Hopp et al., Bio/Technology 6, 1204-10 (1988));
6xHis or 10xHis consisting of histidine (His) residues;
Influenza Hemagglutinin (HA);
Human c-myc fragment, VSV-GP fragment; p18 HIV fragment;
T7 tag; HSV tag;
E tag; SV40T antigen fragment;
Ick tag;
α-Tubulin fragment;
B tag;
Protein C fragment;
GST (Glutathione-S-transferase);
```

HA (Influenza Hemagglutinin); Immunoglobulin constant region; β-Galactosidase; and MBP (Maltose-binding protein).

5

10

30

35

40

45

50

2. Polynucleotides encoding the peptides of the present invention, vectors, and host cells

[0072] The present invention also provides polynucleotides encoding the peptide of the present invention. Furthermore, the present invention provides vectors comprising the polynucleotide and host cells comprising the vector. Such polynucleotides, vectors, and host cells can be used to produce the peptides of the present invention.

[0073] The polynucleotides of the present invention can be produced by methods known to one skilled in the art. For example, the polynucleotides of the present invention can be synthesized using solid-phase techniques as described in Beaucage SL & Iyer RP, Tetrahedron, 48: 2223-311 (1992); Matthes et al., EMBO J, 3(4): 801-5 (1984). Moreover, the polynucleotides of the present invention can be adjusted using genetic engineering techniques. For example, primers are produced based on a partial nucleotide sequence of a PHB2 gene (SEQ ID NO: 27) encoding an amino acid sequence selected as a peptide of the present invention, and reverse transcription-PCR is performed by using mRNAs extracted from cells expressing a PHB2 polypeptide as a template. Thus, the polynucleotides of the present invention can be amplified.

[0074] The polynucleotides of the present invention can be inserted into an appropriate expression vector and the vector is introduced into appropriate host cells to produce the peptide of the present invention in the host cells.

[0075] For example, when *E. coli* is selected as a host cell and a vector is amplified in a large amount in *E. coli* (for example, JM109, DH5-alpha, HB101 or XL1 Blue), the vector needs to have an "ori" for amplification in *E. coli* and a marker gene for selection of transformed *E. coli* (for example, a drug resistance gene selected by a drug such as ampicillin, tetracycline, kanamycin, chloramphenicol). For example, the M13-series vectors, pUC-series vectors, pBR322, pBluescript, pCR-Script and such can be used. When a vector is used for producing a peptide of the present invention, an expression vector is particularly useful. For example, an expression vector for expression in *E. coli* needs to have the above features for amplification in *E. coli*. When *E. coli* such as JM109, DH5-alpha, HB 101 or XL1 Blue are used as a host cell, the vector needs to have a promoter, for example, lacZ promoter (Ward et al., Nature, 341(6242): 544-6 (1989); FASEB J, 6(7): 2422-7 (1992)), araB promoter (Better et al., Science, 240(4855): 1041-3 (1988)), T7 promoter or the like, that can efficiently express the desired gene in *E. coli*. Additionally, the vector may contain a signal sequence for polypeptide secretion. An exemplary signal sequence that directs the polypeptide to be secreted to the periplasm of the *E. coli* is the pelB signal sequence (Lei et al., J Bacteriol, 169(9): 4379-83 (1987)). Means for introducing the vectors into the target host cells include, for example, the calcium chloride method and the electroporation method.

[0076] In addition to *E. coli*, for example, expression vectors derived from mammalian cells (for example, pcDNA3 (Invitrogen) and pEGF-BOS (Mizushima S., Nucleic Acids Res, 18(17): 5322 (1990)), pEF, pCDM8), expression vectors derived from insect cells (for example, "Bac-to-BAC baculovirus expression system" (GIBCO BRL), pBacPAK8), expression vectors derived from plants (e.g., pMH1, pMH2), expression vectors derived from animal viruses (e.g., pHSV, pMV, pAdexLcw), expression vectors derived from retroviruses (e.g., pZIpneo), expression vectors derived from yeast (e.g., "Pichia Expression Kit" (Invitrogen), pNV11, SP-Q01) and expression vectors derived from Bacillus subtilis (e.g., pPL608, pKTH50) can be used.

[0077] In order to express the vector in animal cells such as CHO cells, COS cells or NIH3T3 cells, the vector needs to carry a promoter necessary for expression in such cells, for example, the SV40 promoter (Mulligan et al., Nature, 277(5692): 108-14 (1979)), the MMLV-LTR promoter, the EF1-alpha promoter (Mizushima et al., Nucleic Acids Res, 18(17): 5322 (1990)), the CMV promoter and the like, and preferably a marker gene for selecting transformants (for example, a drug resistance gene selected by a drug (e.g., neomycin, G418)). Examples of known vectors with these characteristics include, for example, pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV and pOP13.

[0078] Furthermore, the polynucleotide of the present invention may be inserted into an appropriate vector and the vector is introduced into target cells to produce the peptide of the present invention within the target cells. A peptide of the present invention produced in a target cell inhibits the binding between a PHB2 polypeptide and a BIG3 polypeptide and induces suppression of growth of the target cell. In this case, the vector into which a polynucleotide of the present invention is inserted may be a vector for stably inserting the polynucleotide of the present invention into the genome of the target cell (for example, see Thomas KR & Capecchi MR, Cell, 51(3): 503-12 (1987) for description of cassette vectors for homologous recombination). For example, see Wolff et al., Science, 247: 1465-8 (1990); U.S. Patent No. 5,580,895; U.S. Patent No. 5,589,466; U.S. Patent No. 5,804,566; U.S. Patent No. 5,739,118; U.S. Patent No. 5,736,524; U.S. Patent No. 5,679,647; and WO 98/04720.

[0079] Moreover, the polynucleotide of the present invention can be inserted into, for example, an expression vector such as a viral vector and a bacterial vector. Examples of the expression vector include a host for an attenuated virus of cowpox, fowlpox, and the like (see, for example, U.S. Patent No. 4,722,858). Other examples of vectors that can be

used include Bacille Calmette Guerin (BCG) (Stover et al., Nature, 351(6326): 456-60 (1991)). Other examples include adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, *Salmonella typhi* vectors, and attenuated anthrax toxin vectors (Shata et al., Mol Med Today, 6(2): 66-71 (2000); Shedlock et al., J Leukoc Biol, 68(6): 793-806 (2000); and Hipp et al., In Vivo, 14(5): 571-85 (2000)).

[0080] Peptides of the present invention encompass peptides in which either or both of the N-terminal and C-terminal amino acid residues have been modified. The types of modifications are not particularly limited, but those that do not affect the affinity for BIG3 are preferred. Examples of preferred modifications include acetylation of the N-terminal amino acid residue, amidation of the C-terminal amino acid residue, addition of tag peptides such as HA-tag and FLAG-tag, and such.

10

15

30

35

40

50

55

[0081] The peptides of the present invention are not limited to those composed of L-amino acids and may be peptides including one or more D-amino acids. The composition ratio of L-amino acids to D-amino acids in the peptides is not particularly limited, and there may be any of the following cases: all amino acid residues may be in L-form (hereinafter referred to as "L-form peptide"); all amino acid residues may be in D-form (hereinafter referred to as "D-form peptide"); or only amino acid residues at a particular position(s) may be in D-form. One preferred embodiment of the peptides of the present invention includes a peptide in which all the amino acid residues have been substituted with D-form amino acid residues in any of the above-mentioned peptides of the present invention. Another preferred embodiment of the peptides of the present invention includes a peptide in which an amino acid residue(s) at a particular position(s) important for the binding to BIG3 has/have been substituted with the corresponding D-form amino acid residue(s). Examples of such a position include positions corresponding to glycine at position 15, glycine at position 18, and aspartic acid at position 82 in the amino acid sequence of SEQ ID NO: 28.

[0082] Furthermore, the peptides of the present invention may be retro-inverso forms of any of the above-mentioned peptides of the present invention. A retro-inverso form has an amino acid sequence that is reversed from that of the original peptide, and all amino acid residues are substituted with D-form amino acid residues. More specifically, a retro-inverso form is a D-form peptide having an amino acid sequence that is reversed from that of the original peptide. Therefore, peptides which are retro-inverso forms of any one of the above-mentioned peptides of the present invention are included as preferred embodiments of the peptides of the present invention.

[0083] Peptides of the present invention may also be in the form of salts. The form of salts is not particularly limited, but pharmaceutically acceptable salts are preferred. Herein, the "pharmaceutically acceptable salt" refers to a salt that retains the pharmacological and pharmaceutical efficacy and characteristics of a peptide. Preferred examples of salts include salts with alkali metals (lithium, potassium, sodium and such), salts with alkaline-earth metals (calcium, magnesium and such), salts with other metals (copper, iron, zinc, manganese and such), salts with organic bases, salts with amines, salts with organic acids (acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, and such), salts with inorganic acids (hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, nitric acid and such), and such. These salts can be prepared according to known methods.

3. Pharmaceutical compositions comprising the peptide or polynucleotide of the present invention and uses thereof

[0084] The present invention also provides pharmaceutical compositions comprising a peptide or a salt thereof of the present invention or a polynucleotide encoding a peptide of the present invention, along with a pharmaceutically acceptable carrier.

[0085] The peptides of the present invention inhibit the binding between a PHB2 polypeptide and a BIG3 polypeptide to induce the suppression of estrogen receptor activation by the PHB2 polypeptide, thereby leading to suppression of growth of estrogen receptor-positive cells. Accordingly, the pharmaceutical compositions of the present invention are useful in either or both of treatment and prophylaxis (prevention) of cell proliferative diseases caused by activation of estrogen receptors. Such cell proliferative diseases include, for example, cancer.

[0086] It is known that among cancers, particularly breast cancer is deeply related to activation of estrogen receptors. A BIG3 polypeptide is a novel estrogen receptor activation regulator and is frequently expressed in many breast cancer specimens and breast cancer cells; meanwhile, it has been confirmed that expression of a BIG3 polypeptide is hardly found in normal tissues (Kim JW, Akiyama M, Park JH, et al. Cancer Sci.; 100(8): 1468-78 (2009)). Thus, it is considered that in breast cancer, expression of a BIG3 polypeptide inhibits the function of a PHB2 polypeptide of suppressing activation of estrogen receptors, thereby growth of breast cancer cells is promoted. Accordingly, the pharmaceutical compositions of the present invention are particularly suitable for either or both of treatment and prophylaxis (prevention) of breast cancer. Furthermore, among breast cancers, the pharmaceutical compositions of the present invention are particularly useful in breast cancers that are estrogen receptor-positive and express BIG3 polypeptides. However, the pharmaceutical compositions of the present invention are not limited to use for breast cancer, and they can be used for any cancer as long as it is estrogen receptor-positive and expresses a BIG3 polypeptide. Examples of estrogen receptor-positive cancer besides breast cancer include endometrial cancer, ovarian cancer, prostate cancer (Nelles JL, et al.,

Expert Rev Endocrinol Metab., 6(3): 437-51 (2011)), and lung cancer (particularly non-small-cell lung cancer) (Stabile LP, et al., Cancer Res., 65(4): 1459-70 (2005); Marquez-Garban DC, et al., Steroids. 72(2): 135-43 (2007)), but are not limited thereto. Cancers to which pharmaceutical compositions of the present invention are applied preferably express BIG3 and PHB2, and estrogen receptor-positive cancers generally express BIG3 and PHB2. Whether a cancer is estrogen receptor-positive can be confirmed by known methods such as ELISA or immunohistochemical staining.

[0087] Furthermore, the peptides of the present invention showed excellent cell growth inhibitory effects in triple-negative breast cancer cells, which are estrogen receptor-negative breast cancer cells (Fig. 9). Generally, triple-negative refers to breast cancer cells lacking expression of HER2, estrogen receptors, and progesterone receptors, which are targeted factors in major drug treatments. Therefore, triple-negative breast cancers are normally resistant to drug treatment. Therefore, the pharmaceutical compositions of the present invention can be applied to either or both of treatment and prophylaxis (prevention) of estrogen receptor-negative breast cancer, and are also useful as pharmaceutical compositions for administration to patients with such treatment-resistant breast cancers.

10

15

20

30

35

40

45

50

55

[0088] More specifically, the present invention provides pharmaceutical compositions comprising a peptide of the present invention, which are for administration to drug therapy-resistant breast cancer patients. The present invention also relates to peptides of the present invention for use in either or both of treatment and prophylaxis (prevention) of drug therapy-resistant breast cancer patients. Furthermore, the present invention relates to use of the peptides of the present invention in the production of pharmaceutical compositions for either or both of treatment and prophylaxis (prevention) of drug therapy-resistant breast cancer patients. The present invention also provides methods for either or both of treatment and prophylaxis (prevention) of breast cancer which comprise the steps of selecting patients having drug therapy-resistant breast cancer, and administering a peptide of the present invention to the selected patients.

[0089] Patients with drug therapy-resistant breast cancer can be identified by observing the therapeutic outcome after common drug therapy. Specifically, when degeneration of the disease focus is not clearly observed by the treatment, one can know that this cancer is treatment-resistant. A condition where enlargement of the disease focus is prevented is included in the degeneration of the disease focus. The above-mentioned triple-negative breast cancer patients are said to have resistance to drug therapies. Triple-negative refers to breast cancers having the features of lacking expression of estrogen receptors and progesterone receptors in addition to HER2. These markers for drug therapy resistance can be evaluated quantitatively by immunostaining and gene expression profiling. For example, the marker status is determined to be negative when the expression level is approximately the same as that of a negative control. For the negative control, treatment-resistant cancer cell lines lacking expression of these markers can be used.

[0090] Pharmaceutical compositions of the present invention can be produced using known drug formulation techniques by mixing a peptide or a salt thereof of the present invention with a pharmaceutically acceptable carrier. Herein, "pharmaceutically acceptable carrier" refers to an inactive substance to be used as diluents or solvents for drugs. For the pharmaceutically acceptable carriers to be used in pharmaceutical compositions of the present invention, carriers generally used for pharmaceutical products can be appropriately selected according to the dosage form of the pharmaceutical compositions to be prepared.

[0091] The dosage forms of the pharmaceutical compositions of the present invention are not particularly limited, and dosage forms generally used for pharmaceutical products such as liquids, tablets, elixirs, capsules, granules, and powders can be selected appropriately. Furthermore, depending on the selected dosage form, additives such as excipients, stabilizers, suspensions, preservatives, surfactants, solubilizing agents, pH adjusters, and aggregation inhibitors can be added appropriately.

[0092] The pharmaceutical compositions of the present invention comprise as an active ingredient a pharmaceutically effective amount of a peptide or a salt thereof of the present invention or a polynucleotide encoding the peptide. A "pharmaceutically effective amount" is an amount sufficient for a pharmaceutical composition of the present invention to accomplish its objective. For example, when a pharmaceutical composition of the present invention is for a pharmaceutical composition for either or both of the treatment and prophylaxis (prevention) of cancer, an example of a pharmaceutically effective amount can be an amount that induces suppression of cancer growth rate, suppression of metastatic potential, prolonged survival time, suppression or delay of cancer development, or alleviation of various clinical symptoms associated with cancer, when administered to a patient. Suppression of cancer growth rate can be, for example, suppression of about 5% or more compared to when the pharmaceutical composition of the present invention is not administered. Preferably, suppression of cancer growth rate can be about 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 75 % or more, 80% or more, 90% or more, or 100% or more.

[0093] The pharmaceutically effective amount can be selected appropriately according to the dosage form of the pharmaceutical compositions, dosage interval, age, gender, body weight, and body surface area of subjects for administration, type of disease, and such. Examples of the content of peptides or salts thereof of the present invention in pharmaceutical compositions of the present invention include 0.001 mg to 1000 mg, 0.01 mg to 100 mg, 0.1 mg to 30 mg, or 0.1 mg to 10 mg, but are not limited thereto.

[0094] Pharmaceutical compositions of the present invention may optionally include other pharmaceutical agents. Examples of other pharmaceutical agents include anti-inflammatory agents, analgesic agents, antipyretics, other ther-

apeutic agents for cancer, and such. Other therapeutic agents for cancer that may be used for pharmaceutical compositions of the present invention are not particularly limited, but when the pharmaceutical compositions are used for estrogen-positive cancers, examples may include hormone therapy agents such as selective $\text{ER}\alpha$ modulators (e.g., tamoxifen and raloxifene), $\text{ER}\alpha$ down-regulators (e.g., fulvestrant), aromatase inhibitors, LH-RH agonist formulations, and progesterone formulations. These pharmaceutical agents may also be mixed in the form of prodrugs and pharmaceutically acceptable salts.

[0095] Pharmaceutical compositions of the present invention can be administered to a subject by appropriately selecting a suitable administration route depending on the dosage form. The administration route is not particularly limited, but examples include oral administration, intradermal, subcutaneous, intramuscular, intraosseous, peritoneal and intravenous injection, and such. Furthermore, while either systemic administration or local administration near the diseased site is possible, local administration is preferred. More specifically, pharmaceutical compositions of the present invention can be administered by means of injection and such to the cancer tissue or to its vicinity. Alternatively, pharmaceutical compositions of the present invention can be administered surgically into the cancer tissue or to its vicinity. Pharmaceutical compositions of the present invention can also be prepared as a controlled-release preparation by combining them with appropriate carriers.

10

15

20

30

35

40

50

55

[0096] Dosage interval of pharmaceutical compositions of the present invention may also be appropriately selected according to the age, gender, body weight, and body surface area of subjects for administration, the disease type and such, as well as the dosage form, administration route, and such of the pharmaceutical compositions of the present invention. Examples of the dosage interval include every day, every four days, and every seven days, but are not limited thereto.

[0097] Dosage of pharmaceutical compositions of the present invention may also be appropriately selected according to the age, gender, body weight, and body surface area of subjects for administration, the disease type and such, as well as the dosage form, administration route, and such of the pharmaceutical compositions of the present invention.

[0098] Examples of the dosage of peptides or salts thereof of the present invention include, for example, 0.001 mg/kg/day to 1000 mg/kg/day, 0.005 mg/kg/day to 500 mg/kg/day, 0.01 mg/kg/day to 250 mg/kg/day, but are not limited thereto.

[0099] Pharmaceutical compositions of the present invention may be used in combination with other pharmaceuticals depending on the condition of the administration subjects. The pharmaceuticals used in combination are not particularly limited, but when the pharmaceutical compositions are used for estrogen receptor-positive cancers, examples may include hormone therapy agents such as selective $ER\alpha$ modulators (e.g., tamoxifen and raloxifene), $ER\alpha$ down-regulators (e.g., fulvestrant), aromatase inhibitors, LH-RH agonist formulations, and progesterone formulations. Among these hormone therapy agents, particularly preferred examples include tamoxifen and fulvestrant.

[0100] When pharmaceutical compositions of the present invention are used for cancer treatment, one may examine whether the cancer to be treated is accompanied by expression of BIG3 and PHB2 before administering the pharmaceutical compositions. Whether BIG3 and PHB2 are expressed in the cancer to be treated can be confirmed by detecting transcription products or translation products of these genes in the samples collected from the subjects. Known methods can be used for detection methods, and for example, methods of detecting transcription products using probes or PCR methods (for example, cDNA microarray method, Northern blotting, and RT-PCR) and methods of detecting translation products using antibodies and such (for example, Western blotting and immunostaining) may be used.

[0101] The present invention also provides articles of manufacture or kits that comprise a pharmaceutical composition of the present invention. The articles of manufacture or kits of the present invention can include a container that houses the pharmaceutical composition of the present invention. An example of an appropriate container includes a bottle, a vial or a test tube, but is not limited thereto. The container may be formed of various materials such as glass or plastic. A label may be attached to the container, and the disease or disease state to which the pharmaceutical composition of the present invention should be used may be described in the label. The label may also indicate directions for administration and such.

[0102] The articles of manufacture or kits of the present invention may further comprise a second container that houses pharmaceutically acceptable diluents optionally, in addition to the container that houses the pharmaceutical composition of the present invention. The articles of manufacture or kits of the present invention may further comprise the other materials desirable from a commercial standpoint and the user's perspective, such as the other buffers, diluents, filters, injection needles, syringes, and package inserts with instructions for use.

[0103] As needed, the pharmaceutical composition of the present invention can be provided in a pack or dispenser device that can contain one or more units of dosage forms containing active ingredients. The pack can include, for example, a metallic foil or a plastic foil such as a blister pack. Instructions for administration can be attached to the pack or dispenser device.

[0104] In another embodiment, the present invention provides the following uses, methods, and such:

(a) uses of the peptide or salt thereof, or polynucleotide encoding the peptide of the present invention in the man-

ufacture of a pharmaceutical composition for either or both of treatment and prophylaxis (prevention) of cancer;

(b) the position or solte thereof or polynylatides encoding the position of the property invention for use in either

- (b) the peptides or salts thereof, or polynucleotides encoding the peptides of the present invention for use in either or both of treatment and prophylaxis (prevention) of cancer;
- (c) methods or processes for manufacturing a pharmaceutical composition for either or both of treatment and prophylaxis (prevention) of cancer, the method or process comprising formulating the peptide or salt thereof, or polynucleotide encoding the peptide of the present invention and a pharmaceutically acceptable carrier(s);
- (d) methods or processes for manufacturing a pharmaceutical composition for either or both of treatment and prophylaxis (prevention) of cancer, the method or process comprising mixing the peptide or salt thereof, or polynucleotide encoding the peptide of the present invention with a pharmaceutically acceptable carrier(s); and
- (e) methods for either or both of treatment and prophylaxis (prevention) of cancer, the method comprising administering the peptide or salt thereof, or polynucleotide encoding the peptide of the present invention to a subject.

[0105] In the above uses, methods and such, cancer is preferably BIG3-positive cancer and may be estrogen receptor-positive cancer or estrogen receptor-negative cancer (for example, triple-negative breast cancer). A preferred example of such cancer includes breast cancer.

[0106] Hereinbelow, the present invention is described in more detail with reference to the Examples. Nevertheless, while the following materials, method and Examples may serve to assist one of ordinary skill in making and using certain embodiments of the present invention, there are only intended to illustrate aspects of the present invention and thus in no way to limit the scope of the present invention. One of ordinary skill in the art can use methods and materials similar or equivalent to those described herein in the practice or testing of the present invention.

[0107] All prior art documents cited herein are incorporated by reference in the present specification.

[Example]

5

10

25

30

35

50

55

[Example 1] Effects on Estrogen-dependent Breast Cancer

1. Materials and Methods

Cell lines and Culturing Conditions

[0108] Human breast cancer cell line MCF-7 was purchased from JCRB Cell Bank (Osaka, Japan) and maintained in MEM (Thermo Fisher Scientific) supplemented with 10% FBS (Nichirei Biosciences Inc., Tokyo, Japan), 1% Antibiotic/Antimycotic solution (Thermo Fisher Scientific, Waltham, MA, USA), 0.1 mM NEAA (Thermo Fisher Scientific), 1 mM sodium pyruvate (Thermo Fisher Scientific), and 10 μ g/mL insulin (Sigma, St. Louis, MO, USA) under 5% CO₂ at 37°C. [0109] Normal mammary gland epithelial cell line MCF-10A was purchased from American Type Culture Collection (ATCC, Manassas, VA, USA), and maintained in MEBM (Lonza) supplemented with a Single Quots kit (BPE, hydrocortisone, hEGF, insulin, gentamycin/amphoterin-B) (Lonza, Walkersville, MD, USA) and 100 ng/mL cholera toxin under 5% CO₂ at 37°C.

40 Cell Growth Assay

[0110] Growth assay on MCF-7 was carried out by seeding cells into 48-well plates (2 x 10^4 cells/200 μ L). First, on the next day after seeding, the medium was changed to phenol red-free DMEM/F12 (Thermo Fisher Scientific) supplemented with 10% FBS, 1% Antibiotic/Antimycotic solution, 0.1 mM NEAA, 1 mM sodium pyruvate, and 10 μ g/mL insulin. 24 hours later, the cells were treated with 10 nM 17β -estradiol (estrogen, Sigma) alone or with 10 nM estrogen and a PHB2 sequence-derived peptide. Growth assay on MCF-10A was carried out by seeding cells into 48-well plates (2 x 10^4 cells/200 μ L). 24 hours after seeding, PHB2 sequence-derived peptide was added. Growth assays were carried out using the Cell Counting Kit-8 (CCK-8) (Dojindo, Kumamoto, Japan). The data are shown by mean \pm standard deviation of three independent experiments.

Antibodies and Immunoblot Analyses

[0111] For immunoblot analyses, after performing SDS-PAGE, the membranes blotted with proteins were blocked with 4% BlockAce solution (Dainippon Pharmaceutical, Osaka, Japan) for 3 hours and then incubated to react for 12 hours with antibodies against BIG3 (1:1,000), PHB2 (1:1,000) (Abcam, Cambridge, UK) and phosphorylated PHB2 (Ser39, Scrum, Tokyo, Japan). After allowing interaction with HRP-labeled secondary antibodies (anti-rat IgG-HRP for BIG3, 1:5,000; and anti-rabbit IgG-HRP for PHB2 and phosphorylated PHB2, 1:1,000) (Santa Cruz Biotechnology, Dallas, TX, USA) for 1 hour, the blots were developed with the Enhanced Chemiluminescence (ECL) system (GE

Healthcare, Buckinghamshire, UK) and scanned using the Image Reader LAS-3000 mini (Fujifilm, Tokyo, Japan).

Immunoprecipitation

Peptide Synthesis

10

15

30

35

40

45

50

55

[0113] All peptides were synthesized by the Fmoc solid-phase synthesis method. NovaSyn TGR resin (0.25 mmol amine/g) or Rink Amide AM resin (0.62 mmol amine/g) was used as resin and a manual Fmoc solid-phase synthesis method was utilized. The Fmoc group was removed by the following procedures: reacting with 20% (v/v) piperidine/DMF solution at room temperature for 10 minutes, the resin was washed five to ten times with DMF, and then three equivalents of an Fmoc amino acid was subjected to coupling in a DMF solvent at room temperature for 90 minutes using N,N-diisopropylcarbodiimide (DIPCDI; 3.0 equivalents) and 1-hydroxy benzotriazole hydrate (HOBt·H2O; 3.3 equivalents) or using N,N-diisopropylethylamine (DIPEA; 3.0 equivalents) and N,N,N,N-tetramethyl-O-(benzotriazole-1-yl)uronium hexafluorophosphate (HBTU; 2.9 equivalents). After washing with DMF, methanol, and ethanol and drying, the protected peptide resin was reacted with a cocktail of TFA:thioanisole:m-cresol:1,2-ethanedithiol:water (80:5:5:5:5) in the proportion of 100 mg of the protected peptide resin to 5 mL of the cocktail at room temperature for 90 minutes. After TFA was concentrated by nitrogen stream, the residual was precipitated by adding ether, and the precipitate was washed with ether and then dissolved in an appropriate aqueous solvent to perform preparative purification by HPLC.

2. Results

Screening of PHB2 sequence-derived peptides

[0114] The 20 types of PHB2 protein sequence-derived peptides depicted in Fig. 1A were used to examine the suppressive effects on estrogen (E2)-dependent growth of MCF-7 (treated with 10 μ M each peptide for 24 hours). As a result, growth of MCF-7 was significantly promoted by E2 stimulation, while treatments with PHB2-derived peptides No. 1 (11-22aa; SEQ ID NO: 1) and No. 5 (76-90aa; SEQ ID NO: 5) respectively showed the effect of significantly suppressing the E2-dependent growth by about 50% (No: 1: suppression ratio of 58%; No. 5: suppression ratio of 49%). Both peptides almost coincided with the BIG3-binding region predicted by *in silico* analysis (amino acids in bold letters). Furthermore, peptides No. 2 (42-50aa; SEQ ID NO: 2) and No. 3 (38-50aa; SEQ ID NO: 3) also showed the effect of suppressing the E2-dependent growth by 22% and 23%, respectively. However, each PHB2 sequence-derived peptide had a lower suppressive effect on the E2-dependent growth compared to that of ERAP, suggesting that PHB2 may have multiple BIG3-binding regions.

[0115] Next, additional PHB2 sequence-derived peptides surrounding No. 1 (11-22aa) and No. 5 (76-90aa) were synthesized (Figs. 1B and 1C), and the effect of treatment with 10 μ M each peptide for 24 hours on the E2-dependent growth was examined. As a result, among the peptides around No. 1 (11-22aa), the PHB2 (11-22aa) peptide showed the highest suppression ratio (63%), while the suppressive effect attenuated with distance from there (Fig. 1B). On the other hand, among the peptides around No. 5 (76-90aa), the PHB2 (76-90aa) peptide showed the highest suppression ratio (51%), and No. 50 (75-89aa) also had almost the same suppressive effect; however, similarly to the above, the suppression ratio decreased with distance from these peptides (Fig. 1C). What is common to these data is that they comprise each amino acid of 11-21aa and 76-88aa, which showed a high score among the BIG3-binding sites predicted by *in silico* analysis, and the data suggested that there are two BIG3-binding sites in PHB2.

[0116] Thus, the combinations of No. 1 (11-22aa) with peptides surrounding No. 5 (76-90aa) and the combinations of No. 5 (76-90aa) with peptides surrounding No. 1 (11-22aa) were examined for suppressive effect on the E2-depentent growth of MCF-7. As a result, treatment with peptide No. 1 (11-22aa) alone almost reproduced the result with a suppression ratio of 65% for the E2-dependent growth, and when this peptide was used in combination with PHB2 peptides surrounding No. 5 (76-90aa), the combinations with No. 5 (76-90aa) and with No. 5 (76-90aa) showed almost complete suppressive effects of 100% and 97%, respectively (Fig. ID). Similarly, treatment with No. 5 (76-90aa) alone showed a suppression ratio of 55%, and when this peptide was used in combination with PHB2 peptides surrounding No. 1 (11-22aa), the

combination with No. 1 (11-22aa) almost completely suppressed the growth, and the combinations with any of the peptides consisting of a region of 5 to 26 aa (Nos. 36, 37, 38, 39, and 40) showed a suppression ratio of 90% or higher (Fig. IE). This suggested the importance of the PHB2 regions of No. 1 (11-22aa) and No. 5 (76-90aa) for the binding to BIG3 and the necessity to develop dominant-negative peptides considering these regions.

Suppressive effects of PHB2 sequence-derived peptides on E2-dependent growth

5

10

20

25

30

35

40

45

50

55

[0117] Next, the suppressive effect on E2-depentent growth of MCF-7 was examined when the two types of PHB2 sequence-derived peptides (No. 1 and No. 5), which can suppress E2-depentent growth of MCF-7, were used in combination. As a result, compared to each treatment with No. 1 or No. 5 alone, the use of both peptides in combination enhanced the effect and showed the growth suppressive effect of 88% (Fig. 2A). Moreover, enhanced suppressive effects were not observed when No. 5 was treated in combination with No. 6 (86-100aa), which did not show suppressive effect (suppression ratio of about 10%) in treatment with No. 6 alone. This suggested that there may be a BIG3-binding region in each of 11-22 aa and 76-90 aa of PHB2.

[0118] Next, the inhibition of the binding between BIG3 and PHB2 by treatment with 20 μ M and 50 μ M of No. 1 or No. 5 was examined by immunoprecipitation with a BIG3 antibody. As a result, No. 1 and No. 5 both inhibited the binding between BIG3 and PHB2 in a concentration-dependent manner, and No. 1 and No. 5 showed inhibition ratios of 64% and 80%, respectively, at 50 μ M (Fig. 2B). Furthermore, the use of both peptides at 50 μ M in combination achieved the inhibition ratio of 87% (Fig. 2B). Next, the effect of each peptide (Nos. 1, 5, and 6) on Ser39 phosphorylation of PHB2 was examined. Compared to Ser39 phosphorylation of PHB2 by treatment with ERAP, a positive control, each treatment with No. 1 or No. 5 alone showed only 40% or 20% band intensity of phosphorylation (Fig. 2C), and even the use of both peptides in combination showed 70% intensity of phosphorylation (Fig. 2C). On the other hand, No. 6 showed 10% band intensity of PHB2 phosphorylation and could hardly induce the phosphorylation (Fig. 2C). Moreover, since even the use of No. 5 and No. 6 in combination showed 20% band intensity, it was suggested that the binding between PHB2 and BIG3 extends over multiple regions of No. 1 and No. 5.

Suppressive effect of a novel peptide (11-90aa) covering the BIG3-binding regions of PHB2 peptides No. 1 and No. 5 on E2-dependent growth

[0119] Since the PHB2 sequence-derived peptides (No. 1 and No. 5) can suppress E2-dependent growth and can induce Ser39 phosphorylation of PHB2 by only 50%, a PHB2 peptide of 11-90aa comprising these two regions was newly synthesized and its effect on E2-dependent growth of MCF-7 was examined. As a result, the PHB2 peptide 11-90aa suppressed MCF-7 which proliferated twofold by 24 hour-E2 stimulation in a concentration-dependent manner, but had a suppression ratio of only 57% even at 50 μM (Fig. 3A), which ratio was almost the same as that of No. 1 and No. 5 peptides.

[0120] It was then evaluated whether the peptide 11-90aa can inhibit the binding between BIG3 and PHB2 and can induce PHB2 phosphorylation. As a result, the PHB2 peptide 11-90aa inhibited the binding between BIG3 and PHB2 greater than an untreated sample, but did not provide a sufficient effect of inhibiting the binding (Fig. 3B). Furthermore, Ser39 phosphorylation of PHB2 was induced in a manner dependent on the concentration of PHB2 peptide 11-90aa, but it was 30% of the phosphorylation obtained by ERAP treatment, and PHB2 peptide 11-90aa could not induce sufficient phosphorylation (Fig. 3C). This may be because the number of amino acids was large, *i.e.* 80, and thus the binding to the α -helical structure of BIG3 was insufficient.

Suppressive effects of linear, branched, and cyclic PHB2 on E2-dependent growth

[0121] Since the combination of PHB2 sequence-derived peptides 11-22aa and 76-90aa enhanced suppression of estrogen-dependent growth to achieve a suppression ratio of 88% (Fig. 2A), a peptide in which both sequences were synthesized linearly (linear bound type; Fig. 4A), a peptide in which both sequences were synthesized with branching (branched bound type; Fig. 4B), and peptides in which each sequence was synthesized in a cyclic form for stabilizing structure and improving membrane permeability (cyclic type; Fig. 4C) were additionally prepared, and the enhancement of the growth suppressive effect of each peptide was examined (treated with 10 μ M each peptide for 24 hours). As a result, the linear bound and branched bound PHB2 peptides, in which both sequences were linked *via* a PEG (polyethylene glycol) sequence, showed suppression ratios of 71% and 57%, respectively. These suppression ratios were enhanced compared to that of administration of a single linear peptide, but were lower than that of the use of the peptides in combination (Fig. 5A). Furthermore, cyclic PHB2 peptides of 11-21aa and 76-88aa showed enhanced suppression ratios compared to non-cyclic peptides (Fig. 5A). Moreover, the use of the cyclic peptides in combination achieved an almost complete suppressive effect (suppression ratio of 96%; Fig. 5A), but an apoptosis-like phenomenon in which cells floated could not be confirmed.

[0122] Next, the effects of the cyclic peptides on growth of normal mammary gland epithelial cells, MCF-10A, which do not express ER α and BIG3, were examined (treated with 10 μ M each peptide for 24 hours). As a result, although little suppressive effects were observed in the linear bound and cyclic bound PHB2 peptides (Fig. 5B; linear bound type: inhibition ratio of 10%, cyclic 11-21aa: inhibition ratio of 14%, cyclic 76-88aa: inhibition ratio of 15%), it was suggested that most PHB2 peptides specifically suppress E2-dependent growth with little effect on MCF-10A growth.

[0123] Subsequently, it was examined whether these PHB2 peptides can inhibit the interaction between BIG3 and PHB2. As a result, BIG3 strongly bound to PHB2 when the cells were untreated or stimulated with E2 (Fig. 5C) and treatment with each PHB2 peptide alone could hardly inhibit the interaction between BIG3 and PHB2 (Fig. 5C); however, the respective combination of the linear PHB2 peptides and the cyclic PHB2 peptides could markedly inhibit the interaction (Fig. 5C; combination of linear type: inhibition ratio of 67%, combination of cyclic type: inhibition ratio of 81%), and these results suggested that there are two BIG3-binding regions on PHB2. On the other hand, it was judged that the linear bound and branched bound PHB2 peptides cannot cover two BIG3-binding regions on PHB2.

Long-term stability of the suppressive effects of cyclic PHB2 peptides on E2-dependent growth

10

15

30

35

40

45

50

[0124] Since it was suggested that cyclic PHB2 peptides may acquire low concentration and long-term stability due to enhanced membrane permeability and fixation of structure, the long-term stability for up to 96 hours was examined when cells were treated with 10 μ M each cyclic PHB2 peptide alone. As a result, the linear PHB2 peptides 11-22aa and 76-90aa showed suppression ratios of 40% and 61%, respectively, in a 24-hour treatment, but exhibited significantly decreased suppression ratios of 31% and 24%, respectively, after 96 hours (Fig. 6A). Meanwhile, the cyclic peptide 11-21aa and cyclic peptide 76-88aa showed suppression ratios of 67% (53% in a 24-hour treatment) and 72% (58% in a 24-hour treatment), respectively, even after 96 hours (Fig. 6A), and their suppressive effects stably lasted for up to 96 hours. It was considered from these data that the suppressive effects of the cyclic peptides could last for a long time due to stable fixation of their tertiary structure similar to the cross-linked peptides.

[0125] Next, since the cyclic PHB2 peptides could sustain their suppressive effects for up to 96 hours, the effect on growth of MCF-10A, which does not express ER α and BIG3, was examined by treating with 1 μ M or 10 μ M each cyclic PHB2 peptide for up to 96 hours. As a result, the cyclic peptides of PHB2 sequences 11-21 aa and 76-88 aa each had little effect at 1 μ M (both of them had suppression ratios of 5% to 7%), but showed suppression ratios of 10% to 15% at 10 μ M (Fig. 6B), suggesting that they have a small non-specific suppressive effect. However, it was considered that the suppression of E2-dependent growth of MCF-7 by the cyclic PHB2 peptides was mainly due to the inhibition of the binding between BIG3 and PHB2.

Concentration-dependent suppressive effect of cyclic PHB2 peptides on E2-dependent growth

[0126] The 50% inhibition concentrations (IC_{50}) of the cyclic PHB2 peptides for E2-dependent growth of MCF-7 were calculated and a synergistic suppressive effect of the peptides at the IC_{50} was examined. As a result, each cyclic PHB2 peptide suppressed E2-dependent growth in a concentration-dependent manner, and the cyclic 11-21aa and cyclic 76-88aa showed IC_{50} values of 4.06 μ M and 2.11 μ M, respectively (Fig. 7A). Then, 4 μ M cyclic 11-21aa and 2 μ M cyclic 76-88aa were used to examine the effect of long-term combination, and the use of peptides in combination for 24 hours showed a synergistic suppressive effect of 82%, which effect lasted for up to 96 hours (Fig. 7B; combination: suppression ratio of 88%, cyclic 11-21aa: suppression ratio of 41%, cyclic 76-88aa: suppression ratio of 59%). Furthermore, the peptides at these concentrations had little effect on growth of MCF-10A (Fig. 7C).

Identification of amino acids in PHB2 peptide sequences that are important for the binding to BIG3

[0127] Since PHB2-derived peptides No. 1 (11-22aa: SEQ ID NO: 1) and No. 5 (76-90aa: SEQ ID NO: 5) had a suppressive effect by about 50% on E2-dependent growth, peptides were made in which each amino acid in the peptide sequences of No. 1 and No. 5 was mutated to alanine (Fig. 8A) to identify amino acids important for growth suppression. In the experiment, MCF-7 was seeded, 10 μ M each PHB2 peptide and 10 nM estrogen were added 48 hours after seeding, and the cell number was monitored after another 24 hours. First, the amino acids of PHB2 sequence 11-22 aa were evaluated and No. 1 (11-22aa) suppressed estrogen-dependent cell growth by up to 65%, while only alanine-mutated peptides No. 59 and No. 62 (SEQ ID NOs: 59 and 62) attenuated suppression ratios of 19% and 8%, respectively (Fig. 8B). On the other hand, since other alanine-mutated peptides showed almost the same suppression ratio as No. 1 (Fig. 8B), glycines at positions 15 and 18 were considered to be important for the binding to BIG3, suggesting that the suppressive activity may be improved by converting these positions into an isomeric form, a D-amino acid.

[0128] Next, the amino acids of PHB2 sequence 76-90 as were evaluated. Although the suppression ratio of No. 5 (76-90aa) on estrogen-dependent growth was 54% and nearly reproduced (Fig. 8C), the suppression ratios of alanine-mutated peptides Nos. 71 to 73 (SEQ ID NOs: 71 to 73) attenuated below No. 5 (76-90aa) and were 38%, 37%, and

13%, respectively (Fig. 8C), and particularly aspartic acid at position 82 was considered to be necessary for the binding between BIG3 and PHB2.

[0129] Furthermore, peptides (Fig. 8D; Nos. 82 and 83 (SEQ ID NOs: 82 and 83)) were prepared by adding 51-57aa comprising 53-57 aa, which was predicted to be involved in the interaction between BIG3 and PHB2 by in silico analysis (Fig. 1A), to No. 2 (42-50aa: SEQ ID NO: 2) and to No. 3 (38-50aa: SEQ ID NO: 3), which showed a suppressive effect other than peptides No. 1 (11-22aa) and No. 5 (76-90aa), and these peptides were used to examine the effects on estrogen-dependent cell growth. As a result, while the suppression ratios of No. 2 and No. 3 were 20% and 17%, respectively, peptides No. 82 and No. 83, to which the amino acids at positions up to 57 were added, showed improved suppression ratios of 59% and 61%, respectively (Fig. 8E). Thus, it was suggested that by having the amino acids from glutamic acid at position 44 to glycine at position 57, the PHB2 peptides can be comparable in suppression ratio to No. 1 and No. 5.

[Example 2] Effects on Triple-negative Breast Cancer

1. Materials and Methods

10

15

20

25

30

35

40

Cell lines and Culture Conditions

[0130] Human breast cancer cell line MDA-MB-231 was purchased from American Type Culture Collection (ATCC, Manassas, VA, USA), and cultured using Leibovitz's L-15 medium (Thermo Fisher Scientific) supplemented with 10% FBS (Thermo Fisher Scientific, Waltham, MA, USA) and a 1% antibiotic/antimycotic solution (Wako Pure Chemical, Osaka, Japan) at 37°C without CO₂ concentration control.

Cell Growth Assay

[0131] MDA-MB-231 cells were seeded into 48-well plates at a cell density of 1 x 10⁴ cells/200 mL in well. 48 hours later, the medium in each well was exchanged to a medium supplemented with PHB2 peptides 11-22aa or 76-90aa (three-fold serial dilution from 20 mM), and after culturing for another 96 hours, the level of cell growth was measured using the Cell Counting Kit-8 (Dojindo, Kumamoto, Japan). Data were obtained from three independent experiments, a graph (mean ± standard deviation) was produced using a graphing and data analyzing software SigmaPlot (Systat Software, San Jose, CA, USA), and the 50% inhibition concentration (IC_{50}) of the peptide against cell growth was calculated.

Combination assay

[0132] MDA-MB-231 cells were seeded into 48-well plates at a cell density of 1 x 10⁴ cells/200 mL in well. 48 hours later, the medium in each well was exchanged to media supplemented with PHB2 peptide 11-22aa (added concentration: IC_{50} value), PHB2 peptide 76-90aa (added concentration: IC_{50} value) and a mixed solution of both peptides (added concentration: respective IC₅₀ value), respectively, or to a medium supplemented with phosphate buffered saline (PBS) as a negative control. After culture for another 96 hours, the cell growth level was measured using the Cell Counting Kit-8 (Dojindo, Kumamoto, Japan). The data obtained was used to calculate relative values based on the growth level when PBS was added, and the graph was produced.

2. Results

Growth suppressive effects of PHB2 peptides on a breast cancer cell line

[0133] To examine the cell growth suppressive effects of PHB2 peptides 11-22aa and 76-90aa on the breast cancer cell line MDA-MB-231, serial dilution series of the peptides were prepared and the growth level was measured 96 hours after addition to the cells. As a result, as shown in Figs. 9A and 9B, concentration-dependent suppressive effects on cell growth were observed in both peptides. The 50% inhibition concentrations (IC₅₀) were 0.462 μ M in the peptide 11-22aa and 0.273 μM in the peptide 76-90aa, and the peptide 76-90aa showed a more potent growth suppressive effect.

Effect of use of PHB2 peptides 11-22aa and 76-90aa in combination

[0134] To examine the effect of use of PHB2 peptides 11-22aa and 76-90aa in combination on suppression of cell growth, the breast cancer cell line MDA-MB-231 was used to compare the cell growth levels when both peptides were mixed and added at respective IC_{50} and when each peptide was added alone at respective IC_{50} . As a result, as shown

24

45

50

55

in Fig. 9C, the addition of each peptide alone showed the suppression of growth by about 50% compared to when phosphate buffered saline (PBS), a negative control, was added; however, the combination enhanced the suppressive effect by about 62%.

5 [Example 3] Effects of Cross-linking PHB2 Peptide on Estrogen-dependent Breast Cancer

1. Materials and Methods

Cell lines and Culturing Conditions

[0135] Human breast cancer cell line MCF-7 was purchased from JCRB Cell Bank (Osaka, Japan) and maintained in MEM (Thermo Fisher Scientific) supplemented with 10% FBS (Nichirei Biosciences Inc., Tokyo, Japan), a 1% Antibiotic/Antimycotic solution (Thermo Fisher Scientific, Waltham, MA, USA), 0.1 mM NEAA (Thermo Fisher Scientific), 1 mM sodium pyruvate (Thermo Fisher Scientific), and 10 μg/mL insulin (Sigma, St. Louis, MO, USA) under 5% CO₂ at 37°C. [0136] Normal mammary gland epithelial cell line MCF-10A was purchased from American Type Culture Collection (ATCC, Manassas, VA, USA), and maintained in MEBM (Lonza) supplemented with a Single Quots kit (BPE, hydrocortisone, hEGF, insulin, gentamycin/amphoterin-B) (Lonza, Walkersville, MD, USA) and 100 ng/mL cholera toxin under 5% CO₂ at 37°C.

20 Cell Growth Assay

10

[0137] Growth assay on MCF-7 was carried out by seeding cells into 48-well plates (2 x 10^4 cells/ $200~\mu L$). First, on the next day after seeding, the medium was changed to phenol red-free DMEM/F12 (Thermo Fisher Scientific) supplemented with 10% FBS, 1% Antibiotic/Antimycotic solution, 0.1 mM NEAA, 1 mM sodium pyruvate, and 10 μ g/mL insulin. 24 hours later, the cells were treated with 10 nM 17β -estradiol (estrogen, Sigma) alone or with 10 nM estrogen and a PHB2 sequence-derived peptide. Growth assay on MCF-10A was carried out by seeding cells into 48-well plates (2 x 10^4 cells/200 μ L). 24 hours after seeding, PHB2 sequence-derived peptide was added. Growth assays were carried out using the Cell Counting Kit-8 (CCK-8) (Dojindo, Kumamoto, Japan). The data are shown by mean \pm standard deviation of three independent experiments.

2. Results

30

45

50

55

Suppressive effects of cross-linked PHB2 peptides on estrogen-dependent growth

[0138] PHB2 peptides 11-21aa and 76-88aa were cross-linked by three types of cross-linking methods (Fig. 10A: hexafluorobenzene cross-linking, decafluorobiphenyl cross-linking, and disulfide cross-linking) to prepare cross-linked PHB2 peptides (stapled PHB2 peptides) (Fig. 10B), and the suppressive effects of these peptides on estrogen-dependent growth were examined. In the experiment, breast cancer cells MCF-7 were seeded, 10 μM each PHB2 peptide and 10 nM estrogen were added after 48 hours, and the cell number was evaluated after another 24 hours by MTT assay.

[0139] Each cross-linked PHB2 peptide of 11-21aa and 76-88aa improved the suppressive effect on estrogen-dependent growth about 1.5-fold compared to non-cross-linked PHB2 peptides (SEQ ID NOs: 109, 113, 114, 118, and 122) (polyarginine addition: Fig. 10C (left); without polyarginine: Fig. 10C (right)). The improved effects did not vary depending on the cross-linking method (stapling method). Moreover, cross-linked PHB2 peptides which do not have polyarginine at the C terminus (SEQ ID NOs: 115, 116, 117, 119, 120, and 121) showed a slightly higher suppression ratios than peptides to which polyarginine was added (with polyarginine: suppression ratio of about 60%; without polyarginine: suppression ratio of about 70%), suggesting that polyarginine may block the function of cross-linked structure.

Suppressive effects of cyclic PHB2 peptides on estrogen-dependent growth

[0140] For improving the cell membrane permeability and the structural stability of cyclic PHB2 peptides (Fig. 4C, SEQ ID NOs: 25 and 26), their cross-linking forms were changed and the suppressive effects on estrogen-dependent growth were examined. In addition to disulfide cross-linking (SEQ ID NOs: 25 and 26) so far examined, hexafluorobenzene cross-linking (Fig. 11A; SEQ ID NOs: 123 and 126) and decafluorobiphenyl cross-linking (Fig. 11A; SEQ ID NOs: 124 and 127) were evaluated. As a result, cyclic PHB2 peptides cross-linked using fluorobenzene (Fig. 11A; SEQ ID NOs: 123, 124, 126, and 127) slightly improved the growth suppressive effect compared to disulfide cross-linking (Fig. 11B), and cyclic PHB2 peptide 11-21aa and cyclic PHB2 peptide 76-88aa enhanced the suppression ratios to about 70% and about 80%. Furthermore, no difference has been observed for fluorobenzene cross-linking between a single cross-linking (hexafluorobenzene cross-linking) and a double cross-linking (decafluorobiphenyl cross-linking).

Effects of modifications of PHB2 peptide 11-22aa on estrogen-dependent growth

[0141] In the PHB2 peptide 11-22aa, glycines at positions 15 and 18 in the amino acid sequence of SEQ ID NO: 28 (full-length PHB2 polypeptide) were considered to be important for the binding to BIG3 (Fig. 8). Then, it was examined whether substitutions of these positions with D-alanine and D-leucine (Fig. 12A) enhance the suppressive activity or not. As a result, while the PHB2 peptide in which glycines at positions 15 and 18 were substituted with D-leucines (SEQ ID NO: 134) showed a suppression ratio of about 65% (Fig. 12B), the substitutions with D-alanines (SEQ ID NO: 133) had no suppressive effect (Fig. 12B). However, since the suppression ratio of PHB2 peptide 11-22aa (SEQ ID NO: 1; Fig. 8B) was about 65%, the substitutions with D-leucine showed little improvement in suppressive effect.

Effects of cross-linked PHB2 peptides on growth of mammary gland epithelial cells

[0142] The effects of cross-linked and cyclic PHB2 peptides on growth of normal mammary gland epithelial cells MCF-10A, which do not express ER α and BIG3, were examined (treated with 10 μ M each PHB2 peptide for 24 hours). As a result, all the PHB2 peptides evaluated had no effect on growth of MCF-10A (Fig. 13).

[Industrial Applicability]

[0143] The present invention provides PHB2 amino acid sequence-derived peptides which exert an inhibitory effect on the BIG3-PHB2 interaction and are useful as therapeutic agents for breast cancer. The peptides provided by the present invention are useful in treating cancer such as breast cancer. More specifically, the peptides of the present invention are useful in treating BIG3-positive and/or estrogen receptor-positive cancer. The peptides of the present invention target not PHB2, whose expression is observed in organs throughout the human body, but BIG3, which is a protein highly expressed specifically in particularly estrogen receptor-positive cancer, and thus these peptides can be expected to have high selectivity for estrogen receptor-positive cancer. Moreover, the peptides of the present invention also exert an antitumor effect against triple-negative breast cancer.

SEQUENCE LISTING

	<110>	TOKUSHIMA UNIVERSITY ONCOTHERAPY SCIENCE, INC.
5	<120>	THERAPEUTIC AGENTS FOR BREAST CANCER COMPRISING PHB2-DERIVED PEPTIDE INHIBITING BIG3-PHB2 INTERACTION
	<130>	ONC-A1802P
10		JP 2018-225660 2018-11-30
	<160>	136
15	<170>	PatentIn version 3.5
	<210>	1
	<211>	12
	<212>	PRT
		Artificial Sequence
20		•
20	<220>	
		PHB2 peptide No. 1
	12237	Inda peptide No. 1
	<400>	1
25	Arg Le	u Pro Ala Gly Pro Arg Gly Met Gly Thr Ala
	1	5 10
	<210>	2
30	<211>	9
30	<212>	PRT
	<213>	Artificial Sequence
	<220>	
	<223>	PHB2 peptide No. 2
35		• •
	<400>	2
	Thr Va	l Glu Gly Gly His Arg Ala Ile
	1	5
40		
	<210>	3
	<211>	
	<212>	
		Artificial Sequence
45	1210	nicitional podecino
45	<220>	
	<223>	PHB2 peptide No. 3
	1220	Tibe population of
	<400>	3
50	Glu Se	r Val Phe Thr Val Glu Gly Gly His Arg Ala Ile
	1	5 10
		· · · · · · · · · · · · · · · · · · ·
	<210>	4
	<211>	
55	<212>	
	<213>	

```
<220>
             <223> PHB2 peptide No. 4
             <400> 4
5
             Tyr Gly Val Arg Glu Ser Val Phe Thr Val Glu Gly Gly His Arg Ala
                              5
             Ile
10
             <210> 5
<211> 15
<212> PRT
<213> Artificial Sequence
15
             <220>
             <223> PHB2 peptide No. 5
20
             <400> 5
             Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Lys Ile
             <210> 6
             <211> 15
             <212> PRT
             <213> Artificial Sequence
30
             <220>
             <223> PHB2 peptide No. 6
             <400> 6
             Arg Pro Arg Lys Ile Ser Ser Pro Thr Gly Ser Lys Asp Leu Gln
35
                             5
                                                   10
             <210> 7
             <211> 15
<212> PRT
<213> Artificial Sequence
40
             <220>
             <223> PHB2 peptide No. 7
45
             Ser Lys Asp Leu Gln Met Val Asn Ile Ser Leu Arg Val Leu Ser
                               5
                                                    10
50
             <210> 8
             <211> 15
             <212> PRT
             <213> Artificial Sequence
55
             <220>
             <223> PHB2 peptide No. 8
```

	<400>	8												
	Leu Ar	y Val	Leu	Ser	Arg	Pro	Asn	Ala	Gln	Glu	Leu	Pro	Ser	Met
E	1			5	_				10					15
5														
	<210>	9												
		15												
		PRT												
10	<213>	Artif	ficia	ıl Se	equer	ıce								
	<220>													
	<223>	PHB2	pept	ide	No.	9								
15	<400>	9												
15														
	Glu Let	ı Pro	Ser	Met	Tyr	Gln	Arg	Leu	Gly	Leu	Asp	Tyr	Glu	Glu
	1			5					10					15
20	<210>	10												
		15												
	<212>													
	<213>		ficia	1 Se	eguer	ıce								
					1									
25	<220>													
	<223>	PHB2	pept	ide	No.	10								
	<400>	10												
	Leu Ası	Tur	G111	G111	Ara	Va1	T.011	Pro	Ser	Tla	₩ 1	Δen	G111	Va 1
30	1	y LyL	GIU	5	nrg	Val	цец	110	10	116	Val	AŞII	GIU	15
	_			•										
	<210>	11												
	<211>	15												
35	<212>	PRT												
	<213>	Artif	ficia	ıl Se	equer	ıce								
	-000-													
	<220> <223>	DHDO			NT	11								
40	~2237	PHB2	pepu	.rae	NO.	11								
70	<400>	11												
	Ile Va	l Asn	Glu	Val	Leu	Lys	Ser	Val	Val	Ala	Lys	Phe	Asn	Ala
	1			5					10					15
45														
	04.0	4.0												
	<210>	12												
	<211> <212>	15 PRT												
	<213>	Artif	ficia	1 94	- -	200								
50	-217				-daei									
	<220>													
	<223>	PHB2	pept	ide	No.	12								
	<400>	12												
55			_		_	~-	_			~-	_		~-	
	Ala Lys	s Phe	Asn	Ala 5	Ser	Gln	Leu	Ile	Thr	Gln	Arg	Ala	Gln	Val

```
<210> 13
               <211> 15
               <212> PRT
               <213> Artificial Sequence
5
               <220>
               <223> PHB2 peptide No. 13
               <400> 13
10
               Gln Arg Ala Gln Val Ser Leu Leu Ile Arg Arg Glu Leu Thr Glu
               <210> 14
               <211> 15
15
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> PHB2 peptide No. 14
20
               <400> 14
               Arg Glu Leu Thr Glu Arg Ala Lys Asp Phe Ser Leu Ile Leu Asp
                               5
                                                   10
25
               <210> 15
               <211> 15
               <212> PRT
               <213> Artificial Sequence
30
               <220>
               <223> PHB2 peptide No. 15
               <400> 15
35
               Ser Leu Ile Leu Asp Asp Val Ala Ile Thr Glu Leu Ser Phe Ser
                               5
                                                   10
               <210> 16
               <211> 15
40
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> PHB2 peptide No. 16
45
               <400> 16
               Glu Leu Ser Phe Ser Arg Glu Tyr Thr Ala Ala Val Glu Ala Lys
                               5
50
               <210> 17
               <211>
                      15
               <212> PRT
               <213> Artificial Sequence
55
               <220>
               <223> PHB2 peptide No. 17
```

	<400>	1/													
	Ala Val	l Glu	Ala	Lvs	Gln	Val	Ala	Gln	Gln	Glu	Ala	Gln	Ara	Ala	
_	1			5					10				_	15	
5															
	<210>	18													
	<211>	15													
	<212>														
10	<213>		icia	ıl Se	equer	nce									
	<220>														
	<223>	PHB2	nent	-i de	No	1 2									
	1225	I IIDE	рсрс	····	110.	-0									
15	<400>	18													
	Glu Ala	a Gln	Arg	Ala	Gln	Phe	Leu	Val	Glu	Lys	Ala	Lys	Gln	Glu	
	1		_	5					10	_		_		15	
20	<210>	19													
	<211>	15													
	<212>	PRT													
	<213>	Artif	icia	ıl Se	equer	nce									
25	<220>														
		PHB2	pept	ide	No.	19									
			II												
	<400>	19													
20	Gln Phe	e Leu	Val	Glu	Lvs	Ala	Lvs	Gln	Glu	Gln	Ara	Gln	Lvs	Ile	
30	1			5	-1-		-1-		10		9		-1-	15	
	-04.0-	00													
	<210>	20													
35	<211>	14													
		PRT	4 ~ 4 ~	.1 0											
	<213>	Artif	тста	IT Se	equer	ice									
	<220>														
	<223>	PHB2	pept	ide	No.	20									
40	44005	00													
	<400>	20													
	Phe Let	ı Val	Glu	Lys	Ala	Lys	Gln	Glu	Gln	Arg	Gln	Lys	Ile		
	1			5					10						
45															
	<210>	21													
	<211>	80													
	<212>	PRT													
	<213>	Artif	icia	al Se	eguer	nce									
50					-1-01										
	<220>														
	<223>	PHB2	deri	ved	pept	ide	11-9	90aa							
	<400>	21													
55	~~00/	4 1													
	Arg Let	ı Pro	Ala	Gly	Pro	Arg	Gly	Met	Gly	Thr	Ala	Leu	Lys	Leu	Let
	1 -			E _		_	_		10				_	16	

	Leu Gly	/ Ala	Gly :	Ala	Val	Ala	Tyr	Gly 25	Val	Arg	Glu	Ser	Val 30	Phe	Thr
5	Val Glu	1 Gly 35	Gly :	His	Arg	Ala	Ile 40	Phe	Phe	Asn	Arg	Ile 45	Gly	Gly	Val
10	Gln Glr 50	n Asp	Thr	Ile	Leu	Ala 55	Glu	Gly	Leu	His	Phe 60	Arg	Ile	Pro	Trp
	Phe Glr 65	n Tyr	Pro	Ile	Ile 70	Tyr	Asp	Ile	Arg	Ala 75	Arg	Pro	Arg	Lys	Ile 80
15	<210> <211> <212> <213>		icia	1 Se	equer	nce									
20	<220> <223>	PHB2	deri	ved	pept	ide	11-2	22aa							
25	<220> <221> <222> <223>	MOD_F (1) ACETY	(1)	on											
22	<400> Arg Let	22	Ala	G1 v	Pro	Ara	G1 v	Met.	Glv	Thr	Ala				
30	1			5		9	,		10						
35	<210> <211> <212> <213>	23 23 PRT Artif	ficia	l Se	equer	nce									
	<220> <223>	PHB2	deri	ved	pept	ide	76-9	90aa	+ 8	Arg	resi	idues	5		
40	<222>		. (23												
45	<223> <400>		TION												
	Gln Tyı 1	r Pro		Ile 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ile 15	Arg
50	Arg Arg	g Arg	Arg 2	Arg	Arg	Arg									
55	<210> <211> <212>														

```
<213> Artificial Sequence
              <220>
              <223> PHB2 derived peptide 76-89aa + 8 Arg residues
5
             <220>
              <221> MOD_RES
              <222>
                    (1)..(1)
              <223> ACETYLATION
10
              <220>
              <221> MOD_RES
              <222>
                    (22) . . (22)
              <223> AMIDATION
15
              <400> 24
              Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Lys Arg Arg
                              5
20
              Arg Arg Arg Arg Arg
                          20
              <210> 25
25
              <211>
                     19
              <212> PRT
              <213> Artificial Sequence
              <220>
              <223> cyclic peptide containing PHB2 derived peptide 11-21aa
30
              <220>
              <221> DISULFID
              <222> (1)..(13)
35
              <220>
              <221> MISC_FEATURE
              <222> (10)..(10)
<223> Xaa = Nle
40
              <220>
              <221> MISC_FEATURE
              <222>
                    (15) . . (15)
              <223> Xaa = Nal
              <400> 25
45
              Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys Phe Xaa Arg
                                                   10
50
             Arg Arg Arg
              <210> 26
              <211> 21
55
              <212> PRT
              <213> Artificial Sequence
```

	<220>	
	<223> cyclic peptide containing PHB2 derived peptide 76-88aa	
5	<220> <221> DISULFID	
	<222> (1)(15)	
	<220>	
10	<221> MISC_FEATURE <222> (17)(17)	
	<223> Xaa = Nal	
	<400> 26	
15	Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys Phe 1 5 10 15	
	Xaa Arg Arg Arg	
	20	
20		
	<210> 27	
	<211> 1457	
	<212> DNA	
25	<213> Homo sapiens	
	<220>	
	<221> CDS	
30	<222> (211)(1110)	
00	<400> 27	
	tccgtatgcg cgattcctgt gcgcgaagtt cgggtccgta gtgggctaag ggggagggtt	60
		100
	tcaaagggag cgcacttccg ctgccctttc tttcgccagc cttacgggcc cgaaccctcg	120
35	tgtgaagggt gcagtaccta agccggagcg gggtagaggc gggccggcac ccccttctga	180
	cetecagtge egeeggeete aagateagae atg gee eag aac ttg aag gae ttg	234
	Met Ala Gln Asn Leu Lys Asp Leu 1 5	
40		
	gcg gga cgg ctg ccc gcc ggg ccc cgg ggc atg ggc acg gcc ctg aag	282
	Ala Gly Arg Leu Pro Ala Gly Pro Arg Gly Met Gly Thr Ala Leu Lys 10 15 20	
	10 13 20	
45	ctg ttg ctg ggg gcc ggc gcc gtg gcc tac ggt gtg cgc gaa tct gtg	330
10	Leu Leu Gly Ala Gly Ala Val Ala Tyr Gly Val Arg Glu Ser Val	
	25 30 35 40	
	ttc acc gtg gaa ggc ggg cac aga gcc atc ttc ttc aat cgg atc ggt	378
	Phe Thr Val Glu Gly Gly His Arg Ala Ile Phe Phe Asn Arg Ile Gly	
50	45 50 55	
	gga gtg cag cag gac act atc ctg gcc gag ggc ctt cac ttc agg atc	426
	Gly Val Gln Gln Asp Thr Ile Leu Ala Glu Gly Leu His Phe Arg Ile	
	60 65 70	
55	cct tgg ttc cag tac ccc att atc tat gac att cgg gcc aga cct cga	474
	Pro Tro Phe Gln Tur Pro Ile Ile Tur Asp Ile Arg Ala Arg Pro Arg	

aaa atc tcc tcc cct aca ggc tcc aaa gac cta cag atg gtg aat atc Lys Ile Ser Ser Pro Thr Gly Ser Lys Asp Leu Gln Met Val Asn Ile tcc ctg cga gtg ttg tct cga ccc aat gct cag gag ctt cct agc atg Ser Leu Arq Val Leu Ser Arq Pro Asn Ala Gln Glu Leu Pro Ser Met tac cag cgc cta ggg ctg gac tac gag gaa cga gtg ttg ccg tcc att Tyr Gln Arg Leu Gly Leu Asp Tyr Glu Glu Arg Val Leu Pro Ser Ile gtc aac gag gtg ctc aag agt gtg gtc gcc aag ttc aat gcc tca cag Val Asn Glu Val Leu Lys Ser Val Val Ala Lys Phe Asn Ala Ser Gln ctg atc acc cag cgg gcc cag gta tcc ctg ttg atc cgc cgg gag ctg Leu Ile Thr Gln Arq Ala Gln Val Ser Leu Leu Ile Arq Arq Glu Leu aca gag agg gcc aag gac ttc agc ctc atc ctg gat gat gtg gcc atc Thr Glu Arg Ala Lys Asp Phe Ser Leu Ile Leu Asp Asp Val Ala Ile aca gag ctg agc ttt agc cga gag tac aca gct gct gta gaa gcc aaa Thr Glu Leu Ser Phe Ser Arq Glu Tyr Thr Ala Ala Val Glu Ala Lys caa gtg gcc cag cag gag gcc cag cgg gcc caa ttc ttg gta gaa aaa Gln Val Ala Gln Gln Glu Ala Gln Arg Ala Gln Phe Leu Val Glu Lys gca aag cag gaa cag cgg cag aaa att gtg cag gcc gag ggt gag gcc Ala Lys Gln Glu Gln Arg Gln Lys Ile Val Gln Ala Glu Gly Glu Ala gag get gee aag atg ett gga gaa gea etg age aag aac eet gge tae Glu Ala Ala Lys Met Leu Gly Glu Ala Leu Ser Lys Asn Pro Gly Tyr atc aaa ctt cgc aag att cga gcc gcc cag aat atc tcc aag acg atc Ile Lys Leu Arg Lys Ile Arg Ala Ala Gln Asn Ile Ser Lys Thr Ile gcc aca tca cag aat cgt atc tat ctc aca gct gac aac ctt gtg ctg Ala Thr Ser Gln Asn Arg Ile Tyr Leu Thr Ala Asp Asn Leu Val Leu aac cta cag gat gaa agt ttc acc agg gga agt gac agc ctc atc aag Asn Leu Gln Asp Glu Ser Phe Thr Arg Gly Ser Asp Ser Leu Ile Lys ggt aag aaa tga gcctagtcac caagaactcc acccccagag gaagtggatc Gly Lys Lys tgcttctcca gtttttgagg agccagccag gggtccagca cagccctacc ccgccccagt atcatgcgat ggtcccccac accggttccc tgaacccctc ttggattaag gaagactgaa gactagecce ttttctgggg aattactttc etecteettg tgttaactgg ggetgttggg

	gaca	agtg	cgt (gatti	ctca	ag to	gattt	ccta	a caq	gtgtt	gtt	ccct	ccct	ca a	aggct	ggga	ıg	1390
	gaga	ataa	aca (ccaa	ccaq	gg aa	attct	caat	aaa	atttt	tat	tact	taac	cct (gaaa	aaaa	ıa	1450
5	aaaa	aaaa																1457
10	<210 <211 <211 <211	L> : 2> :	28 299 PRT Homo	sapi	iens													
	<400)> :	28															
15	Met 1	Ala	Gln	Asn	Leu 5	Lys	Asp	Leu	Ala	Gly 10	Arg	Leu	Pro	Ala	Gly 15	Pro		
20	Arg	Gly	Met	Gly 20	Thr	Ala	Leu	Lys	Leu 25	Leu	Leu	Gly	Ala	Gly 30	Ala	Val		
	Ala	Tyr	Gly 35	Val	Arg	Glu	Ser	Val 40	Phe	Thr	Val	Glu	Gly 45	Gly	His	Arg		
25	Ala	Ile 50	Phe	Phe	Asn	Arg	Ile 55	Gly	Gly	Val	Gln	Gln 60	Asp	Thr	Ile	Leu		
30	Ala 65	Glu	Gly	Leu	His	Phe 70	Arg	Ile	Pro	Trp	Phe 75	Gln	Tyr	Pro	Ile	Ile 80		
35	Tyr	Asp	Ile	Arg	Ala 85	Arg	Pro	Arg	Lys	Ile 90	Ser	Ser	Pro	Thr	Gly 95	Ser		
	Lys	Asp	Leu	Gln 100	Met	Val	Asn	Ile	Ser 105	Leu	Arg	Val	Leu	Ser 110	Arg	Pro		
40	Asn	Ala	Gln 115	Glu	Leu	Pro	Ser	Met 120	Tyr	Gln	Arg	Leu	Gly 125	Leu	Asp	Tyr		
45	Glu	Glu 130	Arg	Val	Leu	Pro	Ser 135	Ile	Val	Asn	Glu	Val 140	Leu	Lys	Ser	Val		
50	Val 145	Ala	Lys	Phe	Asn	Ala 150	Ser	Gln	Leu	Ile	Thr 155	Gln	Arg	Ala	Gln	Val 160		
	Ser	Leu	Leu	Ile	Arg 165	Arg	Glu	Leu	Thr	Glu 170	Arg	Ala	Lys	Asp	Phe 175	Ser		
55	Leu	Ile	Leu	Asp 180	Asp	Val	Ala	Ile	Thr 185	Glu	Leu	Ser	Phe	Ser 190	Arg	Glu		

	ıyı	1111	195	AIA	Val	GIU	AIA	200	GIII	Vai	AIG	GIII	205	GIU	AIG	GIII	
5	Arg	Ala 210	Gln	Phe	Leu	Val	Glu 215	Lys	Ala	Lys	Gln	Glu 220	Gln	Arg	Gln	Lys	
10	Ile 225	Val	Gln	Ala	Glu	Gly 230	Glu	Ala	Glu	Ala	Ala 235	Lys	Met	Leu	Gly	Glu 240	
	Ala	Leu	Ser	Lys	Asn 245	Pro	Gly	Tyr	Ile	Lys 250	Leu	Arg	Lys	Ile	Arg 255	Ala	
15	Ala	Gln	Asn	Ile 260	Ser	Lys	Thr	Ile	Ala 265	Thr	Ser	Gln	Asn	Arg 270	Ile	Tyr	
20	Leu	Thr	Ala 275	Asp	Asn	Leu	Val	Leu 280	Asn	Leu	Gln	Asp	Glu 285	Ser	Phe	Thr	
	Arg	Gly 290	Ser	Asp	Ser	Leu	Ile 295	Lys	Gly	Lys	Lys						
25	<210 <211 <212 <211	L> : 2> I	29 1343 DNA Homo	sapi	iens												
30	<220 <220 <220	1> (CDS (211)	(996)												
35	<400		29 geg (cgatt	cct	gt go	egega	aagti	t cg	ggte	cgta	gtg	ggcta	aag (gggga	agggtt	60
	tcaa	aagg	gag d	cgcad	ette	eg et	gcc	cttt	c tti	cgc	cagc	ctta	acgg	gee (cgaad	cctcg	120
40	tgt	gaag	ggt q	gcagt	acct	ta aç	gccg	gage	a aad	gtaga	aggc	ggg	ccgg	cac (ccct	tctga	180
	cct	ccagt	tge (cgcc	ggcct	c aa	agato	caga				_				ttg Leu	234
45				_		_					_		_	_	ctg Leu	_	282
50	_	_	_		_		_		_				_	_	tct Ser		330
				_				_	_						atc Ile 55		378
55			_	_	_			_	_						agg Arg		426

				60					65					70			
5				_						_			_	_	cct Pro	_	474
															aat Asn		522
10		_	_	_	_		_			_	_				agc Ser	_	570
15		_	_			_	_			_	_		_	_	tcc Ser 135		618
20	_					_	_			_	_			-	tca Ser	_	666
	_			_		_	_	_		_	_		_		gag Glu	_	714
25				_	_	-		_			_	_	_		gcc Ala		762
30			_	_		_	_				_	-	_	_	gcc Ala		810
35			_	_	_	_								_	aag Lys 215		858
	_	_	_	_				_	_		_			_	aat Asn	_	906
40					_	_				_			_	_	gaa Glu	_	954
45					_	_	_			aag Lys		_		tga			996
	gcct	agto	cac o	caaga	acto	cc ac	cccc	cagaç	g gaa	agtgo	gatc	tgct	tcto	cca q	gttt	tgag	g 1056
50	agco	cagco	cag q	gggto	ccago	ca ca	agcco	ctaco	e eeg	geeed	cagt	atca	atgc	gat o	ggtco	ccca	c 1116
~ *	acco	ggtto	ccc t	gaad	ccct	c tt	ggat	taaq	g gaa	agact	gaa	gact	agco	ccc t	tttt	ctggg	g 1176
	aatt	actt	tc o	etect	ccct	g to	gttaa	actg	g ggd	etgtt	ggg	gaca	agtgo	egt (gattt	ctca	g 1236
55	tgat	tte	cta d	cagto	gttgt	t co	ecte	ectea	a agg	getge	ggag	gaga	ataaa	aca (ccaa	ccag	g 1296
	aatt	ctca	aat a	aaatt	ttta	at ta	actta	aacct	gaa	aaaaa	aaaa	aaaa	aaaa				1343

	<210 <211 <212 <213	L> 2>	30 261 PRT Homo	sapi	iens											
5	<400)>	30													
	Met 1	Ala	Gln	Asn	Leu 5	Lys	Asp	Leu	Ala	Gly 10	Arg	Leu	Pro	Ala	Gly 15	Pro
10	Arg	Gly	Met	Gly 20	Thr	Ala	Leu	Lys	Leu 25	Leu	Leu	Gly	Ala	Gly 30	Ala	Val
15	Ala	Tyr	Gly 35	Val	Arg	Glu	Ser	Val 40	Phe	Thr	Val	Glu	Gly 4 5	Gly	His	Arg
20	Ala	Ile 50	Phe	Phe	Asn	Arg	Ile 55	Gly	Gly	Val	Gln	Gln 60	Asp	Thr	Ile	Leu
25	Ala 65	Glu	Gly	Leu	His	Phe 70	Arg	Ile	Pro	Trp	Phe 75	Gln	Tyr	Pro	Ile	Ile 80
20	Tyr	Asp	Ile	Arg	Ala 85	Arg	Pro	Arg	Lys	Ile 90	Ser	Ser	Pro	Thr	Gly 95	Ser
30	Lys	Asp	Leu	Gln 100	Met	Val	Asn	Ile	Ser 105	Leu	Arg	Val	Leu	Ser 110	Arg	Pro
35	Asn	Ala	Gln 115	Glu	Leu	Pro	Ser	Met 120	Tyr	Gln	Arg	Leu	Gly 125	Leu	Asp	Tyr
40	Glu	Glu 130	Arg	Val	Leu	Pro	Ser 135	Ile	Val	Asn	Glu	Val 140	Leu	Lys	Ser	Val
40	Val 145	Ala	Lys	Phe	Asn	Ala 150	Ser	Gln	Leu	Ile	Thr 155	Gln	Arg	Ala	Gln	Val 160
45	Ser	Leu	Leu	Ile	Arg 165	Arg	Glu	Leu	Thr	Glu 170	Arg	Ala	Lys	Asp	Phe 175	Ser
50	Leu	Ile	Leu	Asp 180	Asp	Val	Ala	Ile	Thr 185	Glu	Leu	Ser	Phe	Ser 190	Arg	Glu
	Tyr	Thr	Ala 195	Ala	Val	Glu	Ala	Lys 200	Gln	Val	Ala	Leu	Ser 205	Lys	Asn	Pro
55	Gly	Tyr 210	Ile	Lys	Leu	Arg	Lys 215	Ile	Arg	Ala	Ala	Gln 220	Asn	Ile	Ser	Lys

	Thr Ile 225	Ala Ti	ır Ser	Gln As: 230	n Arg	Ile	Tyr	Leu 235	Thr	Ala	Asp	Asn	Leu 240	
5	Val Leu	Asn Le	eu Gln 245	Asp Gl	u Ser	Phe	Thr 250	Arg	Gly	Ser	Asp	Ser 255	Leu	
10	Ile Lys		s Lys 50											
15	<211>	31 14895 DNA Homo sa	npiens											
20	<220> <221> <222> <400>		(6705)										
	gtggccc	gcg gca	tggag	cg ggcg	tgatt	c at	cagca	atcc	gcgc	cggg	ggc (ggcat	ggggg	60
25	cgcgcgc	ggc ggd	ecgcct	ag gcgc	ccagg	g cca	aggca	agcg	gcgg	ctto	ecc o	egge	eegget	120
	cgcccgc	get tet	ctccc	tg tggg	cggcg	g cc	egge	geet	ggaa	ıggto	caa (-	g gaa : Glu	177
30	gaa ato Glu Ile		-	_						_	_			225
35	gcc atc Ala Ile 20													273
	gat acc Asp Thr 35	_	_				-	_				_	-	321
40	ctg cct Leu Pro			_			_			_	_	_		369
45	cat gct His Ala		a Gly											417
50	tcc atg Ser Met	_	_	_		_	_	_			_		_	465
50	aat gcc Asn Ala 100	. Val Ly		_	o Ser				-	_	_		_	513
55	gtg atg Val Met 115			_				_				_	_	561

			_	-		_	_			gag Glu 140		_			_		609
5		_	_	_		_	_	_		aac Asn		-			_		657
10		_		_	_	_	_	_		tta Leu	_		_	_		_	705
			_			_			_	gtc Val		_	-				753
15										gat Asp							801
20		_	_	_		_	_		_	gcc Ala 220			_	_	_	_	849
25	_	_				_		_		ctg Leu				_	_		897
				_		_			_	ttc Phe	_	_	_				945
30			_		_					ttg Leu						_	993
35						_			_	agc Ser		_		_	_		1041
				Ālā		Pro		Val	Ser	gac Asp 300	His						1089
40	_		_			_	_	_	_	gga Gly			-				1137
45										ctg Leu							1185
50	_	_				_				cac His	_		_				1233
										aaa Lys							1281
55		_		_	_		_	_	_	gca Ala 380			_			_	1329

				aga Arg 390		_					_	_			_	_	1377
5				ctc Leu		_	_		_		_	_	_		_		1425
10			_	gct Ala	_		-	-			_	-	_		_	_	1473
15		_	_	gat Asp			_	_		_		_	_	_		_	1521
73			_	ctg Leu		_	_				_	_	_		_		1569
20		_	_	gat Asp 470		_					-	-		_		_	1617
25		_		ctg Leu			-		_	_							1665
		_		gac Asp		_		_	_			_			_		1713
30				gga Gly													1761
35			_	aac Asn	_		_	_		-					_		1809
40	_	_	_	aaa Lys 550	-	_	-				_	-	_		_	-	1857
		_	_	agc Ser		_	_				_					_	1905
45		_	_	tgc Cys										_		_	1953
50			_	gtt Val	_	_		-							_		2001
	_	-	_	tac Tyr		_	-	-	_	_	_	_				_	2049
55			_	att Ile		_	_		_			-	_	_		_	2097

				630					635					640			
5		ccc Pro		_	_						_	_		_	_	-	2145
		cta Leu 660															2193
10		ttc Phe															2241
15		aat Asn															2289
20		tgc Cys			_	_						-			_	-	2337
		agc Ser		_	_	_	_		_	-	_				_	-	2385
25		tgc Cys 740	-	_				_	_					_			2433
30		aag Lys		_		_					_	_	_		_	_	2481
	_	gtg Val	_		_			_	_	_			_	_			2529
35		gag Glu				_			-			_				_	2577
40		tat Tyr															2625
45		acc Thr 820															2673
45	_	gcc Ala	_	-	-						_	_	_		_		2721
50	_	gac Asp				-			_		-	_			_		2769
55		tgc Cys		_		_		-						_			2817
	cga	atg	gcg	ggg	agc	tcc	aaa	ggg	ctg	gcc	ttc	att	ctg	gga	gct	gaa	2865

	Arg	Met	Ala 885	Gly	Ser	Ser	Lys	Gly 890	Leu	Ala	Phe	e Ile	Leu 895	_	Ala	Glu		
5		atc Ile 900											Ile				2	2913
10		gac Asp		_			_	_		_		Cys	_			_	2	2961
		gct Ala														Cys	3	3009
15	-	caa Gln	_	_		_				_		_		_	Asp	_	3	3057
20		aca Thr								_		_		Gln			3	3105
	_	gtg Val 980	_							_		_	Leu	_	-		3	3153
25	-	atc Ile		_	-		Let		-		y Se						3	3198
30	tgc Cys 1010	_					. Ai		_		lu I			ggc Gly		_	3	3243
35	gag Glu 1025	His				_	Ās		-		er G	_		cct Pro	_		3	3288
	atc Ile 1040	_	Gl	Pro	_	Lys	Ā	la Tl	ar G	ly S	er A		Gly	ctc Leu			3	3333
40	-	ccc Pro		_			s Se	_		_	lu H		_	_		_	3	3378
45		cgc Arg		-	_	_	Ā		_	_	al G	_		_			3	3423
50		gac Asp					ı G]				ly A						3	3468
50	_	ggc Gly		_		_	. Se			_	er A	_	_	_			3	3513
55	ctc Leu 1115				_		ı Ā]	_	_		eu P		_	gat Asp	_	_	3	3558

	gat Asp 1130	Lys									ttt Phe 1140					:	3603
5	-		-	_	_		Gln				tct Ser 1155	-		_		:	3648
10	gtt Val 1160	_			_	_	_			-	gtt Val 1170					:	3693
	_	_		_	_			_		_	ctg Leu 1185			_	_	:	3738
15											ctg Leu 1200					:	3783
20											gtg Val 1215					:	3828
25		_	_	_				_	_	_	gtt Val 1230					:	3873
	gac Asp 1235		_		_	_			-		aat Asn 1245					:	3918
30					_	_			_		ttc Phe 1260		_		_	:	3963
35	cag Gln 1265										gac Asp 1275					•	4008
	tcc Ser 1280				_	-	_		_		acg Thr 1290	_		_	_	•	4053
40			_		_		_	-	_	_	aca Thr 1305					•	4098
45	aac Asn 1310	_			_	_			_	-	ggt Gly 1320	-			_	•	4143
50											ttt Phe 1335					•	4188
	aat Asn 1340		_			_	-		_		gca Ala 1350	_		_		•	4233
55		_	_		_	_		_			ctg Leu 1365				_	•	4278

	_	Lys			 gac Asp 1375	Cys	_		_			_	_		4323
5	aca Thr 1385	Asp	_	_	ccg Pro 1390	_	_	_				_	_		4368
10	cag Gln 1400				atc Ile 1405	Tyr									4413
15					gcc Ala 1420										4458
13		_	_	_	 gat Asp 1435			_		_	_		_		4503
20	gat Asp 1445	Asp			ctg Leu 1450										4548
25					gtg Val 1465										4593
	cca Pro 1475				ctc Leu 1480										4638
30	aca Thr 1490				 ttt Phe 1495				_		-				4683
35	ctt Leu 1505			_	gtt Val 1510	Trp		_		_			_		4728
40	tcc Ser 1520				gcc Ala 1525										4773
,0					gtg Val 1540										4818
45		-			gag Glu 1555	Ser	_				_	_	_	-	4863
50					gtc Val 1570										4908
	atc Ile 1580		_		 tgc Cys 1585		_		_		_				4953
55	gcg Ala				act Thr										4998

	1595					1600					1605					
5						ttc Phe 1615										5043
	_	_		_		cac His 1630	Ser		_		_		_		_	5088
10		Cys	_		_	gtg Val 1645		-	_					_	_	5133
15		_				cgc Arg 1660	Ile	_	_	_	-	_	_			5178
20	atg Met 1670	_	_		_	tgc Cys 1675			_						-	5223
20		-	_		_	cag Gln 1690	Leu				_			_	-	5268
25						acc Thr 1705	Lys		_					_		5313
30			_	_	_	tct Ser 1720		_				_				5358
	gac Asp 1730	Ile	_		_	gag Glu 1735		_								5403
35	_	_	_			gtg Val 1750		_	_	_	_	_				5448
40	aga Arg 1760	Tyr				cag Gln 1765	Asn									5493
45	_	_				act Thr 1780	_				-		_			5538
45	_	Lys	_	_	_	aag Lys 1795	Lys							_	_	5583
50	aac Asn 1805			_	_	tct Ser 1810		_	_							5628
55						gtt Val 1825							atc Ile	-	_	5673
	gag	caa	gtg	aag	aag	gtc	ctt	ttt	gag	gac	gac	gag	aga	agc	acg	5718

	Glu 1835	Gln	Val	Lys	Lys	Val 1840		Phe	Glu	Asp	Asp 1845	Glu	Arg	Ser	Thr	
5	-	Ser		_	_	tgt Cys 1855				_	_	_				5763
10	gaa Glu 1865		-	_	_	agc Ser 1870		_	_		_		_	_	_	5808
		Arg	_		_	ccc Pro 1885	_		_	_	_		_	_		5853
15	-	Asp				ctg Leu 1900	_	_		_		_	_	_	_	5898
20	_	Leu	_			tac Tyr 1915		_	_		_	_	_			5943
	tgt Cys 1925	Met				ccc Pro 1930			_		_	_				5988
25	_	Pro			_	tcc Ser 1945							acc Thr			6033
30	ttc Phe 1955				_	acc Thr 1960				_	_	_	_	_		6078
35		Glu		_		gag Glu 1975		_	_	_	_	_				6123
		Leu	Leu	Leu	${\tt Pro}$	ccc Pro 1990	Ser	${\tt Pro}$	Lys	Val		Lys	Lys			6168
40	agc Ser 2000					tgg Trp 2005										6213
45		_	_	_	_	aag Lys 2020	Thr			_	_	_		_		6258
50	aaa Lys 2030	Lys			_	cag Gln 2035			_							6303
	gtc Val 2045	Lys				aaa Lys 2050										6348
55	gac Asp 2060					cag Gln 2065	Arg									6393

	caa Gln 2075	_					_	_			gag Glu 2085	_	_	_	_	6438
5	gac Asp 2090	_			_						agc Ser 2100			_	_	6483
10	tcg Ser 2105		_	_	_	_	_	_		_	gca Ala 2115				_	6528
											ctc Leu 2130					6573
15	ttc Phe 2135										tgc Cys 2145					6618
20		_				_		_	_	_	cag Gln 2160	_				6663
25		_					_	_		_	atc Ile 2175			tag		6705
20	ccga	ctcct	tg ti	tctad	etete	ccad	ccaaa	ata a	acagt	agto	ga ggg	gttag	gagt	ccto	gccaata	6765
	caget	tgtt	gc at	tttt	ccca	a ccad	ctago	ecc (cactt	aaac	ct act	acta	actg	tctc	agagaa	6825
30	cagt	gttt	ec ta	aatgt	caaaa	a agco	ettte	cca a	accad	ctgat	c ago	catto	gggg	ccat	actaag	6885
	gttt	gtato	ct a	gatga	acaca	a aac	gatat	tc 1	tgatt	ttg	ca cat	tatt	tata	gaag	gaatcta	6945
	taato	cctt	ga ta	atgtt	tcta	a acto	ettga	aag 1	tatat	ttc	cc agt	gctt	ttg	ctta	cagtgt	7005
35	tgtc	cccaa	aa t	gggto	cattt	tcaa	aggat	ta (ctcat	ttga	aa aad	cacta	atat	tgat	ccattt	7065
	gatco	catca	at ti	taaaa	aaata	a aata	acaat	tc (ctaaq	ggcaa	at ato	etget	ggt	aagt	caagct	7125
40	gata	aacao	et c	agaca	atcta	gtac	ccago	gga 1	ttatt	aatt	g gag	ggaaq	gatt	tato	gttatg	7185
40				_	_							_			agaaag	7245
															ttaaga 	7305
45										_					ctgtat	7365
															cctgtg	7425 7485
															aaggaa	7545
50															acaatt	7605
															caactca	7665
55															ggggtg	7725
-	gggat	tggat	tt a	tgato	gaaat	catt	ttca	aat o	cttaa	aata	at aat	acaa	acaa	tctt	gcaaaa	7785

	ttatggtgtc	agttacacaa	gctctagtct	caaaatgaaa	gtaatggaga	aagacactga	7845
	aatttagaaa	attttgtcga	tttaaaatat	ttctcctatc	taccaagtaa	agttacccta	7905
5	tgtttgatgt	ctttgcattc	agaccaatat	ttcaggtgga	tatttctaag	tattactaga	7965
	aaatacgttt	gaaagcttta	tcttattatt	tacagtattt	ttatatttct	tacattatcc	8025
	taatgattga	aaactcctca	atcaagctta	cttacacaca	ttctacagag	ttatttaagg	8085
10	catacattat	aatctcccag	ccccattcat	aatgaataag	tcacccttta	aatataagac	8145
	acaaattcta	cagtattgaa	ataaggattt	aaaggggtat	ttgtaaactt	tgccctcctt	8205
15	gagaaatatg	gaactacctt	agaggttaag	aggaaggcag	tgttctgact	tctttaggtg	8265
	atctgaaaaa	aacaccctta	tcatccagtg	taccatctag	agatcaccac	agaatccatt	8325
	tttttcccag	ttccacaaaa	cactctgttt	gccttcagtt	tttactcact	agacaataat	8385
20	tcaagtttag	aaacaggtaa	tcagctattt	gatcttaaaa	ggcaatgaat	tgttgggata	8445
	tcagtgaact	atgttgtata	cttttgaatt	tttacatttt	ataaatggaa	ttgaaagttg	8505
	gataactgct	ttttttaaat	tttccaacag	aagtaacacc	acagttgctt	tgtttctttt	8565
25	tatagcttac	ctgaggttca	gttcttcttt	gtgaacctgt	gagtactcca	cagtttactg	8625
	ggggaaaagg	cttcagtaaa	gcagaggcta	gaattacagt	atttatacat	agcaactttt	8685
	cataaagtag	aaaaattcaa	aggaagctgt	ctcaatttga	gaataccagc	tgggcacggt	8745
30	ggctcacgcc	tgtaatccca	gcacttactt	tgggaggcca	aggtgggcag	ataacctgcg	8805
	gtcaggagtt	tgagaccagg	ctggacaaca	tggtgaaacc	tcgtctctac	taaaaataca	8865
35	aaaattagcc	aggtgtggta	ggatgcacct	gtaatcccag	ctacttagga	ggccgagaca	8925
	ggagaatcgc	tcgaacccag	gaggcggacg	ttgcagtgag	ccaagattgc	accattgcac	8985
	tccagactgg	gtgacaagag	tgaaactcca	tctaaaaaaa	aaaaaaaaa	aaagtgaata	9045
40	ctgtatccca	aagtatgtta	gttgtttgtt	tggaaatcag	cattctcccc	gatgctctat	9105
	tatgggatcc	aaaattcttg	aacataagtt	taccctgtac	tgtgtccaaa	cactgttcta	9165
	gttctagcct	gattatgggt	cccaagaata	aaaggatgag	taggtgtaca	gagctcttga	9225
45	cctacaattt	tttaagagtg	ttttggtacc	ttcccattgt	cttctctata	actcagtcct	9285
	aacatactct	gcactcgagt	taccagccat	ccacactgac	atcagatttc	aaccagaacc	9345
50	atcactgagt	gacagcagta	cttctcagag	gtatttgcag	cttgatgcaa	agtagtctct	9405
50	aatgagtagg	cattcaggtg	gttcttccca	gcaggtggag	aagaaaggga	ggagatgaag	9465
	aacactgaga	ggggagtggc	accttcccag	gctgcccagc	tcagtctctt	gccctgttcc	9525
55	tgtgactcag	ctgcccactc	ccccaacttt	gtttccctcc	ctcccagtct	ctgaaagtgt	9585
	caggtgtttc	tctcctcaca	gtctcttttg	cagcaacagt	aagacaaaat	tcaaggcagc	9645

	cttttaaagt	tacgaacagt	tattagcatg	tatttacaga	cctaagcaga	atgagagttt	9705
	atacattgtt	tttagttgcc	tgtatttata	gccaaaagta	tattacctta	aagttgagat	9765
5	ctttctcttc	ttttcctaaa	ttttggtaaa	gtgtgcttca	tgaaacaaac	atctggaaaa	9825
	ctccaagtat	aagagaccct	ggactgatga	tggcccagcc	aagtatatgg	agggacagag	9885
	ttctctctgt	cattaatgag	gacatcggtt	ttcacaattg	aacctcatgc	actgtccaca	9945
10	gcatctcacc	tagctcctgt	atctcctgat	ctgcttttaa	aaatagttag	ttaggctgcc	10005
	tttttacacc	accttctctc	tctccccttg	tggtaatttt	ccagccttcc	ccatagatat	10065
	aaaactagaa	cacctttatg	atttggggtc	tatgtaatga	ctgaccgata	agaacccagg	10125
15	cagatgctaa	catacttaac	agctcgcatt	aaaatacttt	aaatcaggcg	tgatggctca	10185
	ttcctgtaat	ctcaagcact	ttgggaggct	aaggtgggtg	gatctcttga	ggtcaggagt	10245
	tcgagaccaa	cctggccaac	gtggtgaaac	cccgtctcta	ctaaaaatac	aaaattagcc	10305
20	gggcatggtg	gcagctgcct	gtaatcccag	ctactcggga	agctgaggca	ggagaattgc	10365
	ttgaacctgg	gaggtgggga	ttgcagtcag	ccaagattgt	tctgcagcat	gggtgacaaa	10425
25	gtgagacttc	gtctcaagta	aataaaacta	aaattttaa	atcaaacatg	acaaaaatgt	10485
	taatataatt	cagaagtacc	ttgaaattga	aacatatttg	tgcaatgatc	attaggcttt	10545
	ttgtccttgt	tgttttaaaa	tgaggcttat	acagagtgag	ttgagagtca	agtagccttc	10605
30	gctgtgagac	ggtaatgcag	ttatataata	gatacccttg	actttgccag	attcatcaca	10665
	atactgctta	tacaggaaag	ttttctcaga	aaggaaaatc	cattagtatc	agtcccatca	10725
	agccaaacag	aatgaagacc	tttgatagta	atagcaagag	gttacaaata	gcagggagga	10785
35	ggcgagtagt	gaatgtcact	gtgattgcaa	acccttacct	gtattatcac	acgtagtcct	10845
	cacaacaacc	ttgtgagaca	agtgttgtgt	tcctcatttt	ttcagagggg	aacacagacc	10905
	cagagaggtt	aagaaatttg	cccaagataa	caagtaaaag	gcaaagttgg	ttgcaaaaga	10965
40	ggtgtttctg	aattcaaggg	ccatactctc	tctctgacaa	catgctctaa	gtccatagag	11025
	taagcactct	agtatgaaaa	aaagtttcaa	ggaacgaggc	catgaaaatg	agactatttg	11085
	acatctcaga	tctgtctggg	atgttatgga	ggtttttaaa	aataaagttg	aaaaaagaaa	11145
45	atgaatcatg	tttatacata	aaaaaatcac	atgtaacaca	tttcaagtgt	ttgaaaataa	11205
	aaccaaaatc	taaactttag	tcttcaagca	gacattcagt	gttactttag	aaaactcact	11265
50	gaattaggtg	gaaatgatgg	aataatacta	ttcatggcca	gctattaaca	cagaagaaca	11325
50	tggcagtgtg	tgtctggaac	ggcatgcaca	atttgtaaac	ctttttcaaa	tatcatttaa	11385
	tcaactcaga	ataaagtgcc	ctgtagccaa	cagtgcctct	ttacttgctt	ctctgggaaa	11445
55	tacatggtac	taaattagta	gcacaaagtt	tgggaatatg	caaaataatg	gataaccatt	11505
	tttcaaaatg	tacattctct	gaagaggaag	cagctggttg	gacaggattt	cttgaagagc	11565

	caggtgctaa	gggcatcagg	tcgacatcca	tagtaaccat	gtgccataac	atctacacat	11625
	ttccacttgt	tttacagaca	aggtaacagg	cagaaggaaa	atccagagtc	ttgcagtaag	11685
5	cagatgacaa	aacttcaata	tgcttgggca	ccacttaggt	gaccccaggg	agatttagtg	11745
	tggccttagg	aaagcaaaag	agcactttt	attggaaata	tgagcttgtc	actgggaaag	11805
	atttgtaaaa	ttgatcaaga	acttgattta	taattatgcc	tcaaaaaaa	aagttctcat	11865
10	ttagtagtgg	agcaatctag	aaaacatacc	ttttttgttt	gtttggaaga	tcctctttcc	11925
	ctggctgtat	tgtagtgttt	gctatttgat	gtggaaataa	ctaataactt	aagattttgg	11985
15	aacagaacac	cctttagatt	tccaaaacac	aattcttatt	tcagggaaga	cagaccaaaa	12045
13	atatctcctg	agatcattgg	tttctttata	aattgtggta	ccactccatc	attgaagaga	12105
	aaccactacc	acaccactag	caccatacag	aaccttttct	ctgtatcttt	gtacaatact	12165
20	acaaaggggt	accagggagg	agagagtggc	tgaccacttt	agtgacaaaa	cagcactcca	12225
	ctgctggtga	atcccatcta	attatggtcc	ttccaccctt	ttcaaccacc	aacaactgtt	12285
	cgtactgtta	attcctatcc	tgaaggttta	accagtggtt	gtctagtatc	ttctgtcttt	12345
25	agaacagtgg	ttctcaaact	ttagtacaca	tcagcatcac	ctggagggcc	ttttttaaa	12405
	ataagacaca	gattgctggg	ctcatggtca	gagttcccag	ttaagtaaat	caggaaattt	12465
	gtatttctaa	caagtttata	ggtgaggcca	atactgctgt	tttgggaact	atgctttgag	12525
30	aaccactgcc	ttgaaaaaat	ttccaacttc	tacctttaag	atcagcctga	cttatcaaac	12585
	gctagagaaa	aactgaatct	acccttgggc	agatgacttg	ggattggatt	ctatacagca	12645
35	gtcttgctca	atcttcccag	tttccagttt	tattatacca	acaattggtt	tttacaagct	12705
	agaagacaat	gaatgtataa	gttctatgga	acagtgagat	aaatctaagc	ttcttgtctt	12765
	tgtatttaga	aacattgatt	ctatggatga	tcatttgtat	catgttgacc	ctttgacttg	12825
40	tactgaaggt	gattttaaat	ttaagtatgt	agtgtttgaa	tttcttccat	ccatgtcgtt	12885
	ttaatgagat	gtttccatgt	cagctccttt	acagccttgg	ctcctggctt	acagattttt	12945
	gaatagttgt	ttgcttgcca	gttgttttac	atctttcatt	ggccaccaaa	atattagcca	13005
45	tttgagatga	gatgagacta	cttgttgtac	cttcatcttt	catttaattt	tctggcgtaa	13065
	attaacattt	taatttcata	tatatctgta	aagagtctac	ccaaaggctt	cacggaaatt	13125
50	tgcaaaatga	actaattccc	ttttaagcag	caggtgtgcc	tgtttttgac	ttttcagtaa	13185
50	atatgttgtt	tgtgcacata	tctacatggt	ggagaccata	ttcattattt	catcttccaa	13245
	ataatgggaa	aaatataaaa	gtgaatcagt	gtgctttggg	aattcagtga	aatcatgtta	13305
55	actcatatag	agggggcctt	agtttatctc	ttctttactg	aattaattag	ttttggaaat	13365
	tcttttacca	ttaaaaaaaa	ttaaggacca	tacagagaat	gatttaagaa	aaaacaagtc	13425

	acttaaaaat	catcacctat	ttataaactg	tattaattac	acataatgct	tattgattca	13485
	atgaggtttc	tctaaagact	tctgcttaat	aaatatgctg	acttcattta	aattagttta	13545
5	gactattgta	ggaatggaag	gaaatgatta	tatttactag	aattagtgag	atcagaaagc	13605
	atatcagaat	gttgatgata	tcaaggagac	aatctacaga	gtttttgcct	ctgtggatgg	13665
	aaataagggt	gtttttttt	ggttttttt	ttactttagt	ttcccataat	ttttggaaat	13725
10	tatgtgtgca	tttagttctt	ttagtaacac	tgattttaaa	attaaatttc	aaaagtcaat	13785
	ctctaagagt	aatttattt	tgttttacca	accagtgcca	aaaaggagag	gagggaatcc	13845
	aaaagccaat	cttttgaacc	aatgtgtaaa	agattatgtt	ttttcttaaa	gttagggagg	13905
15	ctcgggccct	gacactgcca	gccccagtga	gcatccctgg	ctacctcggg	attatgtgca	13965
	agctgctttg	tcctacattt	ctttcatctg	gttcttattg	ggagtgcttc	tctctaataa	14025
20	aaattgattt	cccacaaaat	aggcaaagct	gaacaaagat	gaatgctttt	gataagttgg	14085
20	gtttcacttc	agttgaaaca	atgtgataga	atatccaggt	gtggcatgat	ggggcaggag	14145
	gaggtgccta	gagggaaaag	ttatttttgt	ttcttagtgt	tgtgttgtgg	ggatgggaca	14205
25	gataagaata	agatgtttat	tgccctaatc	atgctaagag	actattattc	aatatgcttt	14265
	tcccgctttt	ctaagaggaa	taaacttaga	caaattacat	tataaacagt	tcccctacta	14325
	ctatctccca	ctctagataa	agccagtggg	tggtatgggt	ccttttattc	cttatagtat	14385
30	tatgccaaag	aatcaactta	ttttcattga	agattataaa	taaatgaagc	ttgttatagc	14445
	cataatgatt	tgagtcagta	taccatttta	cctataaaat	gcaaaattca	tccttgcaac	14505
	cccattcacc	aggagccttg	aagcattttg	tttactccaa	aggccttgtc	aaggaagcat	14565
35	aattttttgt	tttgccttct	tatttagtca	gtttggtcat	atttacttaa	aaaaacaaac	14625
	tgaaaatcac	actcctttat	atgttgatat	aactgatttt	atagaatctg	tctgttcttt	14685
	gtttaacagg	tctctgtaag	caagcttgca	agtgtatttt	gtgtacattt	tatctgaggt	14745
40	ggaaatgaaa	attctaaaga	gaaaatattt	taaaagatat	tgtatttatg	ttgcttgtgt	14805
	tgtagaataa	agattcaaat	gcattaaaaa	tctggtacat	gaaacaattg	tgtttactga	14865
45	ataaatatat	ataaataaaa	aaaaaaaaa				14895
	<210> 32						

50

<211> 2177 <212> PRT <213> Homo sapiens

<400> 32

Met Glu Glu Ile Leu Arg Lys Leu Gln Lys Glu Ala Ser Gly Ser Lys 5 15 10

55

Tyr Lys Ala Ile Lys Glu Ser Cys Thr Trp Ala Leu Glu Thr Leu Gly

5	Gly	Leu	Asp 35	Thr	Ile	Val	Lys	Ile 40	Pro	Pro	His	Val	Leu 45	Arg	Glu	Lys
10	Cys	Leu 50	Leu	Pro	Leu	Gln	Le u 55	Ala	Leu	Glu	Ser	Lys 60	Asn	Val	Lys	Leu
70	Ala 65	Gln	His	Ala	Leu	Ala 70	Gly	Met	Gln	Lys	Leu 75	Leu	Ser	Glu	Glu	Arg 80
15	Phe	Val	Ser	Met	Glu 85	Thr	Asp	Ser	Asp	Glu 90	Lys	Gln	Leu	Leu	Asn 95	Gln
20	Ile	Leu	Asn	Ala 100	Val	Lys	Val	Thr	Pro 105	Ser	Leu	Asn	Glu	Asp 110	Leu	Gln
25	Val	Glu	Val 115	Met	Lys	Val	Leu	Leu 120	Cys	Ile	Thr	Tyr	Thr 125	Pro	Thr	Phe
	Asp	Leu 130	Asn	Gly	Ser	Ala	Val 135	Leu	Lys	Ile	Ala	Glu 140	Val	Cys	Ile	Glu
30	Thr 145	Tyr	Ile	Ser	Ser	Cys 150	His	Gln	Arg	Ser	Ile 155	Asn	Thr	Ala	Val	Arg 160
35	Ala	Thr	Leu	Ser	Gln 165	Met	Leu	Ser	Asp	Leu 170	Thr	Leu	Gln	Leu	Arg 175	Gln
40	Arg	Gln	Glu	Asn 180	Thr	Ile	Ile	Glu	Asn 185	Pro	Asp	Val	Pro	Gln 190	Asp	Phe
	Gly	Asn	Gln 195	Gly	Ser	Thr	Val	Glu 200	Ser	Leu	Cys	Asp	Asp 205	Val	Val	Ser
45	Val	Leu 210	Thr	Val	Leu	Cys	Glu 215	Lys	Leu	Gln	Ala	Ala 220	Ile	Asn	Asp	Ser
50	Gln 225	Gln	Leu	Gln	Leu	Leu 230	Tyr	Leu	Glu	Cys	Ile 235	Leu	Ser	Val	Leu	Ser 240
55	Ser	Ser	Ser	Ser	Ser 245	Met	His	Leu	His	Arg 250	Arg	Phe	Thr	Asp	Leu 255	Ile
	Trp	Lys	Asn	Leu 260	Cys	Pro	Ala	Leu	11e 265	Val	Ile	Leu	Gly	As n 270	Pro	Ile

	His	Asp	Lys 275	Thr	ITe	Thr	Ser	A1a 280	H1s	Thr	Ser	Ser	285	Ser	Thr	Ser
5	Leu	Glu 290	Ser	Asp	Ser	Ala	Ser 295	Pro	Gly	Val	Ser	Asp 300	His	Gly	Arg	Gly
10	Ser 305	Gly	Cys	Ser	Cys	Thr 310	Ala	Pro	Ala	Leu	Ser 315	Gly	Pro	Val	Ala	Arg 320
	Thr	Ile	Tyr	Tyr	Ile 325	Ala	Ala	Glu	Leu	Val 330	Arg	Leu	Val	Gly	Ser 335	Val
15	Asp	Ser	Met	Lys 340	Pro	Val	Leu	Gln	Ser 345	Leu	Tyr	His	Arg	Val 350	Leu	Leu
20	Tyr	Pro	Pro 355	Pro	Gln	His	Arg	Val 360	Glu	Ala	Ile	Lys	Ile 365	Met	Lys	Glu
25	Ile	Leu 370	Gly	Ser	Pro	Gln	Arg 375	Leu	Cys	Asp	Leu	Ala 380	Gly	Pro	Ser	Ser
	Thr 385	Glu	Ser	Glu	Ser	Arg 390	Lys	Arg	Ser	Ile	Ser 395	Lys	Arg	Lys	Ser	His 400
30	Leu	Asp	Leu	Leu	Lys 405	Leu	Ile	Met	Asp	Gly 410	Met	Thr	Glu	Ala	Cys 415	Ile
35	Lys	Gly	Gly	Ile 420	Glu	Ala	Cys	Tyr	Ala 425	Ala	Val	Ser	Cys	Val 430	Cys	Thr
40	Leu	Leu	Gly 435	Ala	Leu	Asp	Glu	Leu 440	Ser	Gln	Gly	Lys	Gly 445	Leu	Ser	Glu
70	Gly	Gln 450	Val	Gln	Leu	Leu	Leu 455	Leu	Arg	Leu	Glu	Glu 460	Leu	Lys	Asp	Gly
45	Ala 465	Glu	Trp	Ser	Arg	Asp 470	Ser	Met	Glu	Ile	A sn 4 75	Glu	Ala	Asp	Phe	Arg 480
50	Trp	Gln	Arg	Arg	Val 485	Leu	Ser	Ser	Glu	His 490	Thr	Pro	Trp	Glu	Ser 495	Gly
	Asn	Glu	Arg	Ser 500	Leu	Asp	Ile	Ser	Ile 505	Ser	Val	Thr	Thr	Asp 510	Thr	Gly
55	Gln	Thr	Thr 515	Leu	Glu	Gly	Glu	Leu 520	Gly	Gln	Thr	Thr	Pro 525	Glu	Asp	His

	Ser	Gly 530	Asn	His	Lys	Asn	Ser 535	Leu	Lys	Ser	Pro	Ala 540	Ile	Pro	Glu	Gly
5	Lys 5 4 5	Glu	Thr	Leu	Ser	Lys 550	Val	Leu	Glu	Thr	Glu 555	Ala	Val	Asp	Gln	Pro 560
10	Asp	Val	Val	Gln	Arg 565	Ser	His	Thr	Val	Pro 570	Tyr	Pro	Asp	Ile	Thr 575	Asn
45	Phe	Leu	Ser	Val 580	Asp	Cys	Arg	Thr	Arg 585	Ser	Tyr	Gly	Ser	Arg 590	Tyr	Ser
15	Glu	Ser	A sn 595	Phe	Ser	Val	Asp	Asp 600	Gln	Asp	Leu	Ser	Arg 605	Thr	Glu	Phe
20	Asp	Ser 610	Cys	Asp	Gln	Tyr	Ser 615	Met	Ala	Ala	Glu	Lys 620	Asp	Ser	Gly	Arg
25	Ser 625	Asp	Val	Ser	Asp	Ile 630	Gly	Ser	Asp	Asn	Cys 635	Ser	Leu	Ala	Asp	Glu 640
	Glu	Gln	Thr	Pro	Arg 645	Asp	Cys	Leu	Gly	His 650	Arg	Ser	Leu	Arg	Thr 655	Ala
30	Ala	Leu	Ser	Leu 660	Lys	Leu	Leu	Lys	Asn 665	Gln	Glu	Ala	Asp	Gln 670	His	Ser
35	Ala	Arg	Leu 675	Phe	Ile	Gln	Ser	Leu 680	Glu	Gly	Leu	Leu	Pro 685	Arg	Leu	Leu
40	Ser	Leu 690	Ser	Asn	Val	Glu	Glu 695	Val	Asp	Thr	Ala	Leu 700	Gln	Asn	Phe	Ala
	Ser 705	Thr	Phe	Cys	Ser	Gly 710	Met	Met	His	Ser	Pro 715	Gly	Phe	Asp	Gly	Asn 720
45	Ser	Ser	Leu	Ser	Phe 725	Gln	Met	Leu	Met	Asn 730	Ala	Asp	Ser	Leu	Tyr 735	Thr
50	Ala	Ala	His	Cys 740	Ala	Leu	Leu	Leu	Asn 7 4 5	Leu	Lys	Leu	Ser	His 750	Gly	Asp
55	Tyr	Tyr	Ar g 755	Lys	Arg	Pro	Thr	Le u 760	Ala	Pro	Gly	Val	Met 765	Lys	Asp	Phe
55	Met	Lys 770	Gln	Val	Gln	Thr	Ser 775	Gly	Val	Leu	Met	Val 780	Phe	Ser	Gln	Ala

	785	Ile	Glu	Glu	Leu	Tyr 790	His	Gln	Val	Leu	Asp 795	Arg	Asn	Met	Leu	800 GlÀ
5	Glu	Ala	Gly	Tyr	Trp 805	Gly	Ser	Pro	Glu	Asp 810	Asn	Ser	Leu	Pro	Leu 815	Ile
10	Thr	Met	Leu	Thr 820	Asp	Ile	Asp	Gly	Leu 825	Glu	Ser	Ser	Ala	Ile 830	Gly	Gly
	Gln	Leu	Met 835	Ala	Ser	Ala	Ala	Thr 840	Glu	Ser	Pro	Phe	Ala 845	Gln	Ser	Arg
15	Arg	Ile 850	Asp	Asp	Ser	Thr	Val 855	Ala	Gly	Val	Ala	Phe 860	Ala	Arg	Tyr	Ile
20	Leu 865	Val	Gly	Cys	Trp	Lys 870	Asn	Leu	Ile	Asp	Thr 875	Leu	Ser	Thr	Pro	Leu 880
25	Thr	Gly	Arg	Met	Ala 885	Gly	Ser	Ser	Lys	Gly 890	Leu	Ala	Phe	Ile	Leu 895	Gly
	Ala	Glu	Gly	Ile 900	Lys	Glu	Gln	Asn	Gln 905	Lys	Glu	Arg	Asp	Ala 910	Ile	Cys
30	Met	Ser	Leu 915	Asp	Gly	Leu	Arg	Lys 920	Ala	Ala	Arg	Leu	Ser 925	Cys	Ala	Leu
35	Gly	Val 930	Ala	Ala	Asn	Cys	Ala 935	Ser	Ala	Leu	Ala	Gln 940	Met	Ala	Ala	Ala
40	Ser 945	Cys	Val	Gln	Glu	Glu 950	Lys	Glu	Glu	Arg	Glu 955	Ala	Gln	Glu	Pro	Ser 960
	Asp	Ala	Ile	Thr	Gln 965	Val	Lys	Leu	Lys	Val 970	Glu	Gln	Lys	Leu	Glu 975	Gln
45	Ile	Gly	Lys	Val 980	Gln	Gly	Val	Trp	Leu 985	His	Thr	Ala	His	Val 990	Leu	Cys
50	Met	Glu	Ala 995	Ile	Leu	Ser	Val	Gly 1000		ı Glı	ı Met	E Gly	7 Sei 100		is As	sn Pro
55	Asp	Cys 1010		Pro	o His	s Val	l Phe 101		rg Va	al Cy	ys G		yr \ 020	/al (Gly :	Thr
	Leu	Glu	His	s Ası	n His	s Phe	e Sei	r As	sp G	Ly A	la Se	er G	Ln I	Pro E	Pro 1	Leu

		1025					1030					1033			
5	Thr	Ile 1040	Ser	Gln	Pro	Gln	Lys 1045		Thr	Gly	Ser	Ala 1050	Gly	Leu	Leu
10	Gly	Asp 1055	Pro	Glu	Cys	Glu	Gly 1060	Ser	Pro	Pro	Glu	His 1065	Ser	Pro	Glu
70	Gln	Gly 1070	_	Ser	Leu	Ser	Thr 1075	Ala	Pro	Val	Val	Gln 1080	Pro	Leu	Ser
15	Ile	Gln 1085	Asp	Leu	Val	Arg	Glu 1090	_	Ser	Arg	Gly	Arg 1095	Ala	Ser	Asp
20	Phe	Arg 1100	Gly	Gly	Ser	Leu	Met 1105	Ser	Gly	Ser	Ser	A la 1110	Ala	Lys	Val
	Val	Leu 1115	Thr	Leu	Ser	Thr	Gln 1120	Ala	Asp	Arg	Leu	Phe 1125	Glu	Asp	Ala
25	Thr	Asp 1130	Lys	Leu	Asn	Leu	Met 1135	Ala	Leu	Gly	Gly	Phe 1140	Leu	Tyr	Gln
30	Leu	Lys 1145	_	Ala	Ser	Gln	Ser 1150	Gln	Leu	Phe	His	Ser 1155	Val	Thr	Asp
35	Thr	Val 1160	_	Tyr	Ser	Leu	Ala 1165	Met	Pro	Gly	Glu	Val 1170	Lys	Ser	Thr
	Gln	Asp 1175	Arg	Lys	Ser	Ala	Leu 1180	His	Leu	Phe	Arg	Leu 1185	Gly	Asn	Ala
40	Met	Leu 1190	Arg	Ile	Val	Arg	Ser 1195	Lys	Ala	Arg	Pro	Leu 1200	Leu	His	Val
45	Met	Arg 1205	Cys	Trp	Ser	Leu	Val 1210	Ala	Pro	His	Leu	Val 1215	Glu	Ala	Ala
50	Cys	His 1220	Lys	Glu	Arg	His	Val 1225	Ser	Gln	Lys	Ala	Val 1230	Ser	Phe	Ile
	His	Asp 1235	Ile	Leu	Thr	Glu	Val 12 4 0	Leu	Thr	Asp	Trp	Asn 1245	Glu	Pro	Pro
55	His	Phe 1250	His	Phe	Asn	Glu	Ala 1255	Leu	Phe	Arg	Pro	Phe 1260	Glu	Arg	Ile

	Met	Gln 1265	Leu	Glu	Leu	Cys	Asp 1270		Asp	Val	Gln	Asp 1275	Gln	Val	Val
5	Thr	Ser 1280	Ile	Gly	Glu	Leu	Val 1285	Glu	Val	Cys	Ser	Thr 1290	Gln	Ile	Gln
10	Ser	Gly 1295	Trp	Arg	Pro	Leu	Phe 1300	Ser	Ala	Leu	Glu	Thr 1305	Val	His	Gly
	Gly	Asn 1310	Lys	Ser	Glu	Met	Lys 1315	Glu	Tyr	Leu	Val	Gly 1320	Asp	Tyr	Ser
15	Met	Gly 1325	Lys	Gly	Gln	Ala	Pro 1330	Val	Phe	Asp	Val	Phe 1335	Glu	Ala	Phe
20	Leu	Asn 1340	Thr	Asp	Asn	Ile	Gln 13 4 5	Val	Phe	Ala	Asn	Ala 1350	Ala	Thr	Ser
25	Tyr	Ile 1355	Met	Cys	Leu	Met	Lys 1360	Phe	Val	Lys	Gly	Leu 1365	Gly	Glu	Val
	Asp	Cys 1370	Lys	Glu	Ile	Gly	Asp 1375	Cys	Ala	Pro	Ala	Pro 1380	Gly	Ala	Pro
30	Ser	Thr 1385	Asp	Leu	Cys	Leu	Pro 1390	Ala	Leu	Asp	Tyr	Leu 1395	Arg	Arg	Cys
35	Ser	Gln 1400	Leu	Leu	Ala	Lys	Ile 1405	_	Lys	Met	Pro	Leu 1410	Lys	Pro	Ile
40	Phe	Leu 1415	Ser	Gly	Arg	Leu	Ala 1420	Gly	Leu	Pro	Arg	Arg 1425	Leu	Gln	Glu
40	Gln	Ser 1430	Ala	Ser	Ser	Glu	Asp 1435	Gly	Ile	Glu	Ser	Val 1440	Leu	Ser	Asp
45	Phe	Asp 1445	Asp	Asp	Thr	Gly	Leu 1450	Ile	Glu	Val	Trp	Ile 1455	Ile	Leu	Leu
50	Glu	Gln 1460	Leu	Thr	Ala	Ala	Val 1465	Ser	Asn	Cys	Pro	Arg 1470	Gln	His	Gln
	Pro	Pro 1475	Thr	Leu	Asp	Leu	Leu 1480	Phe	Glu	Leu	Leu	Arg 1485	Asp	Val	Thr
55	Lys	Thr 1490	Pro	Gly	Pro	Gly	Phe 1495	Gly	Ile	Tyr	Ala	Val 1500	Val	His	Leu

	Leu	Leu 1505	Pro	Val	Met	Ser	Val 1510	_	Leu	Arg	Arg	Ser 1515	His	Lys	Asp
5	His	Ser 1520	Tyr	Trp	Asp	Met	Ala 1525	Ser	Ala	Asn	Phe	Lys 1530	His	Ala	Ile
10	Gly	Leu 1535	Ser	Cys	Glu	Leu	Val 15 4 0	Val	Glu	His	Ile	Gln 15 4 5	Ser	Phe	Leu
	His	Ser 1550	Asp	Ile	Arg	Tyr	Glu 1555	Ser	Met	Ile	Asn	Thr 1560	Met	Leu	Lys
15	Asp	Leu 1565	Phe	Glu	Leu	Leu	Val 1570	Ala	Cys	Val	Ala	Lys 1575	Pro	Thr	Glu
20	Thr	Ile 1580	Ser	Arg	Val	Gly	Cys 1585	Ser	Cys	Ile	Arg	Туг 1590	Val	Leu	Val
25	Thr	Ala 1595	Gly	Pro	Val	Phe	Thr 1600	Glu	Glu	Met	Trp	Arg 1605	Leu	Ala	Cys
	Cys	Ala 1610	Leu	Gln	Asp	Ala	Phe 1615	Ser	Ala	Thr	Leu	Lys 1620	Pro	Val	Lys
30	Asp	Leu 1625	Leu	Gly	Cys	Phe	His 1630	Ser	Gly	Thr	Glu	Ser 1635	Phe	Ser	Gly
35	Glu	Gly 1640	Cys	Gln	Val	Arg	Val 1645	Ala	Ala	Pro	Ser	Ser 1650	Ser	Pro	Ser
	Ala	Glu 1655	Ala	Glu	Tyr	Trp	Arg 1660	Ile	Arg	Ala	Met	Ala 1665	Gln	Gln	Val
40	Phe	Met 1670	Leu	Asp	Thr	Gln	Cys 1675	Ser	Pro	Lys	Thr	Pro 1680	Asn	Asn	Phe
45	Asp	His 1685	Ala	Gln	Ser	Cys	Gln 1690	Leu	Ile	Ile	Glu	Leu 1695	Pro	Pro	Asp
50	Glu	Lys 1700	Pro	Asn	Gly	His	Thr 1705	Lys	Lys	Ser	Val	Ser 1710	Phe	Arg	Glu
	Ile	Val 1715	Val	Ser	Leu	Leu	Ser 1720	His	Gln	Val	Leu	Leu 1725	Gln	Asn	Leu
55	Tyr	Asp 1730	Ile	Leu	Leu	Glu	Glu 1735	Phe	Val	Lys	Gly	Pro 1740	Ser	Pro	Gly

	Glu	Glu 17 4 5	_	Thr	Ile	Gln	Val 1750		Glu	Ala	Lys	Leu 1755	Ala	Gly	Phe
5	Leu	Arg 1760	Tyr	Ile	Ser	Met	Gln 1765	Asn	Leu	Ala	Val	Ile 1770	Phe	Asp	Leu
10	Leu	Leu 1775	Asp	Ser	Tyr	Arg	Thr 1780	Ala	Arg	Glu	Phe	Asp 1785	Thr	Ser	Pro
	Gly	Leu 1790	Lys	Cys	Leu	Leu	Lys 1795	_	Val	Ser	Gly	Ile 1800	Gly	Gly	Ala
15	Ala	Asn 1805	Leu	Tyr	Arg	Gln	Ser 1810	Ala	Met	Ser	Phe	Asn 1815	Ile	Tyr	Phe
20	His	Ala 1820	Leu	Val	Cys	Ala	Val 1825		Thr	Asn	Gln	Glu 1830	Thr	Ile	Thr
25	Ala	Glu 1835	Gln	Val	Lys	Lys	Val 1840	Leu	Phe	Glu	Asp	Asp 1845	Glu	Arg	Ser
	Thr	Asp 1850	Ser	Ser	Gln	Gln	Cys 1855		Ser	Glu	Asp	Glu 1860	Asp	Ile	Phe
30	Glu	Glu 1865	Thr	Ala	Gln	Val	Ser 1870	Pro	Pro	Arg	Gly	Lys 1875	Glu	Lys	Arg
35	Gln	Trp 1880	Arg	Ala	Arg	Met	Pro 1885	Leu	Leu	Ser	Val	Gln 1890	Pro	Val	Ser
40	Asn	Ala 1895	Asp	Trp	Val	Trp	Leu 1900	Val	Lys	Arg	Leu	His 1905	Lys	Leu	Cys
	Met	Glu 1910	Leu	Cys	Asn	Asn	Tyr 1915	Ile	Gln	Met	His	Leu 1920	Asp	Leu	Glu
45	Asn	Cys 1925	Met	Glu	Glu	Pro	Pro 1930	Ile	Phe	Lys	Gly	Asp 1935	Pro	Phe	Phe
50	Ile	Leu 1940	Pro	Ser	Phe	Gln	Ser 1945	Glu	Ser	Ser	Thr	Pro 1950	Ser	Thr	Gly
	Gly	Phe 1955	Ser	Gly	Lys	Glu	Thr 1960	Pro	Ser	Glu	Asp	Asp 1965	Arg	Ser	Gln
55	Ser	Arg	Glu	His	Met	Gly	Glu	Ser	Leu	Ser	Leu	Lys	Ala	Gly	Gly

	1970)		1975		1980
5	Gly Asp 198		ı Leu Pro	Pro Sei 1990	Pro Lys Va	l Glu Lys Lys Asp 1995
40	Pro Ser 2000		s Lys Glu	Trp Trp	o Glu Asn Al	a Gly Asn Lys Ile 2010
10	Tyr Thr 201		a Ala Asp	Lys Thi	: Ile Ser Ly	s Leu Met Thr Glu 2025
15	Tyr Lys 2030	_	, Lys Gln	Gln His 2035	s Asn Leu Se	er Ala Phe Pro Lys 2040
20	Glu Val 204!	-	. Glu Lys	Lys Gly 2050	, Glu Pro Le	eu Gly Pro Arg Gly 2055
	Gln Asp 2060		Leu Leu	Gln Arg 2065	g Pro Gln Hi	s Leu Met Asp Gln 2070
25	Gly Gln 207	-	η His Ser	Phe Sei 2080	Ala Gly Pi	o Glu Leu Leu Arg 2085
30	Gln Asp 2090		p Pro Arg	Ser Gly 2095	Ser Thr Gl	y Ser Ser Leu Ser 2100
35	Val Ser 210		g Asp Ala	Glu Ala 2110	a Gln Ile Gl	n Ala Trp Thr Asn 2115
	Met Val 2120		Val Leu	Asn Glr 2125	n Ile Gln Il	e Leu Pro Asp Gln 2130
40	Thr Phe 213		ı Leu Gln	Pro Ala 2140	a Val Phe Pr	o Cys Ile Ser Gln 2145
45	Leu Thr 2150	_	Val Thr	Asp Ile 2155	e Arg Val Ar	rg Gln Ala Val Arg 2160
	Glu Trp 216		Arg Val	Gly Arc 2170	, Val Tyr As	p Ile Ile Val 2175
50	<210> 3 <211> 3 <212> 1 <213> 2	l3 PRT	ıl Sequen	ce		
55	<220>		-		ed from BIG	3

	<400>	33										
	Gln Met	Leu	Ser	Asp	Leu	Thr	Leu	Gln	Leu	Arg	Gln	Arg
	1			5					10			
5												
	-010-	2.4										
	<210> <211>	34										
	<212>											
	<213>		icia	al Se	eauer	ıce						
10					1							
	<220>											
	<223>	PHB2	pept	ide	No.	34						
	44005	2.4										
	<400>	34										
15	Met Ala	a Gln	Asn	Leu	Lvs	Asp	Leu	Ala	Glv	Ara	Leu	
	1			5	-1-	1-			10	9		
	<210>											
20	<211>	12										
	<212> <213>		idia	.1 Ce	~~1101	200						
	\213/	ALCII	TCTO	IT Se	:quei	ice						
	<220>											
	<223>	PHB2	pept	ide	No.	35						
25												
	<400>	35										
	Clm 3	. T	T	7	T	71-	C1	7	T	D	71-	
	Gln Asr	ı Leu	гуз	A sp 5	теп	АТА	GTA	Arg	10	PIO	АТА	
20	-			J					10			
30												
	<210>	36										
	<211>	12										
	<212>											
35	<213>	Artli	1018	IT SE	equer	ıce						
	<220>											
		PHB2	pept	ide	No.	36						
	<400>	36										
40					~1					a 1		
	Leu Lys	s Asp	Leu	А 1а	GTĀ	Arg	Leu	Pro	A1a 10	GTĀ	Pro	
	-			,					10			
	<210>	37										
45	<211>	12										
	<212>	PRT										
	<213>	Artif	icia	ıl Se	equer	nce						
	<220>											
		PHB2	pept	ide	No.	37						
50												
	<400>	37										
	Asp Let	ı Ala	Gly	_	Leu	Pro	Ala	Gly		Arg	Gly	
	1			5					10			
55												
	<210>	38										

	<211> <212>	
	<213>	Artificial Sequence
5	<220> <223>	PHB2 peptide No. 38
	<400>	38
	Ala Gl	y Arg Leu Pro Ala Gly Pro Arg Gly Met Gly
10	1	5 10
	<210>	39
	<211>	
15	<212>	
	\213 >	Artificial Sequence
	<220>	
	<223>	PHB2 peptide No. 39
20	-400-	20
	<400>	39
	Pro Ala	a Gly Pro Arg Gly Met Gly Thr Ala Leu Lys
	1	5 10
25	<210>	40
	<211>	
	<212>	PRT
	<213>	Artificial Sequence
30	<220>	
		PHB2 peptide No. 40
		• •
	<400>	40
	Glv Pr	o Arg Gly Met Gly Thr Ala Leu Lys Leu Leu
35	1	5 10
	<210>	41
	<211>	12
40	<212>	
	<213>	Artificial Sequence
	-220 >	
	<220>	
	5/./.32	PHB2 peptide No. 41
45	~223 >	PHB2 peptide No. 41
45	<400>	
45	<400>	41
45	<400> Arg Gl	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly
45	<400>	41
45	<400> Arg Gl	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly 5 10
	<400> Arg Gl: 1 <210>	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly 5 10
	<400> Arg Gl; 1 <210> <211>	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly 5 10 42 12
	<400> Arg Gl; 1 <210> <211> <212>	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly 5 10 42 12 PRT
50	<400> Arg Gly 1 <210> <211> <212> <213>	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly 5 10 42 12
	<400> Arg G1 1 <210> <211> <212> <213> <220>	41 y Met Gly Thr Ala Leu Lys Leu Leu Gly 5 10 42 12 PRT

	<400>	42												
	Met Gl	y Thr	Ala	Leu 5	Lys	Leu	Leu	Leu	Gly 10	Ala	Gly			
5														
10	<210> <211> <212> <213>		ficia	al Se	equei	nce								
	<220> <223>	2 מעם	nont	- 1 40	No	13								
	<400>	PHB2	pep	Jue	NO.	40								
15	Thr Al	a Leu	Lys	Leu 5	Leu	Leu	Gly	Ala	Gly 10	Ala	Val			
20			ficia	al Se	equei	nce								
25	<220> <223>	PHB2	pept	ide	No.	44								
	Ile Le	44 u Ala	Glu	Gly 5	Leu	His	Phe	Arg	Ile 10	Pro	Trp	Phe	Gln	Tyr 15
30														
	<210> <211> <212> <213>	15	ficia	al Se	equei	nce								
35	<220> <223> <400>	PHB2	pept	cide	No.	45								
40	Ala Gl		Leu	His 5	Phe	Arg	Ile	Pro	Trp 10	Phe	Gln	туг	Pro	Ile 15
45	<210> <211> <212> <213>	46 15 PRT Arti	ficia	al Se	equei	nce								
50	<220> <223> <400>	PHB2	pept	ide	No.	46								
55	Gly Le	u His	Phe	Arg 5	Ile	Pro	Trp	Phe	Gln 10	Tyr	Pro	Ile	Ile	Tyr 15
	<210>	47												
	~~ I U/	47												

```
<211> 14
               <212> PRT
               <213> Artificial Sequence
               <220>
5
               <223> PHB2 peptide No. 47
               <400> 47
               His Phe Arg Ile Pro Trp Phe Gln Tyr Pro Ile Ile Tyr Asp
10
                                5
               <210> 48
<211> 15
<212> PRT
<213> Artificial Sequence
15
               <220>
               <223> PHB2 peptide No. 48
20
               <400> 48
               Arg Ile Pro Trp Phe Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala
25
               <210> 49
               <211> 15
               <212> PRT
               <213> Artificial Sequence
30
               <220>
               <223> PHB2 peptide No. 49
               <400> 49
               Pro Trp Phe Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro
35
                                                     10
               <210> 50
               <211> 15
<212> PRT
40
               <213> Artificial Sequence
               <220>
               <223> PHB2 peptide No. 50
45
               <400> 50
               Phe Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Lys
                               5
                                                     10
50
               <210> 51
               <211> 15
               <212> PRT
               <213> Artificial Sequence
55
               <220>
               <223> PHB2 peptide No. 51
```

	<400>	51												
	Tyr Pro) Ile	Ile	Tyr 5	Asp	Ile	Arg	Ala	Arg 10	Pro	Arg	Lys	Ile	Ser 15
5														
10		52 15 PRT Artii	ficia	al Se	equei	nce								
	<220> <223>	PHB2	pept	ide	No.	52								
	<400>	52												
15	Ile Ile 1	e Tyr	Asp	Ile 5	Arg	Ala	Arg	Pro	Arg 10	Lys	Ile	Ser	Ser	Pro 15
20	<210> <211> <212>	53 15 PRT	Ei ai.	.1 C										
	<213>	Artii	LICI	3T 26	equer	ice								
25	<220> <223>	PHB2	pept	ide	No.	53								
	<400>	53												
	Tyr Asg	lle	Arg	Ala 5	Arg	Pro	Arg	Lys	Ile 10	Ser	Ser	Pro	Thr	Gly 15
30														
		54 15 PRT Artii	ficia	al Se	eguei	nce								
35	<220> <223>	PHB2												
	<400>	54												
40	Ile Aro		Arg	Pro 5	Arg	Lys	Ile	Ser	Ser 10	Pro	Thr	Gly	Ser	Lys 15
45	<210> <211> <212> <213>	55 15 PRT Artii	ficia	al Se	equei	nce								
50	<220> <223> <400>	РНВ2 55	pept	ide	No.	55								
55	Ala Arq 1		Arg	Lys 5	Ile	Ser	Ser	Pro	Thr 10	Gly	Ser	Lys	Asp	Leu 15
	4010-	E.C.												
	<210>	56												

	<211> <212> <213>		
5	<220> <223>	PHB2 peptide No. 56	
	<400>	56	
10	Ala Le	eu Pro Ala Gly Pro Arg Gly Met Gly Thr Ala	
10	1	5 10	
	<210>	57	
	<211>		
15	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	PHB2 peptide No. 57	
20	<400>	57	
	Arg Al	a Pro Ala Gly Pro Arg Gly Met Gly Thr Ala	
	1	5 10	
25	<210>	58	
	<211>		
	<212>		
	<213>	Artificial Sequence	
30			
30	<220> <223>	PHB2 peptide No. 58	
	<400>	58	
	Ara Le	eu Ala Ala Gly Pro Arg Gly Met Gly Thr Ala	
35	1	5 10	
	<210>	59	
	<211>	12	
40	<212>	PRT	
	<213>	Artificial Sequence	
	<220>	PHB2 peptide No. 59	
	\223 /	PHB2 peptide NO. 39	
.=			
45	<400>	59	
45			
45	Arg Le	eu Pro Ala Ala Pro Arg Gly Met Gly Thr Ala	
45			
45 50	Arg Le 1	eu Pro Ala Ala Pro Arg Gly Met Gly Thr Ala 5 10	
	Arg Le 1 <210>	ou Pro Ala Ala Pro Arg Gly Met Gly Thr Ala 5 10	
	Arg Le 1 <210> <211>	eu Pro Ala Ala Pro Arg Gly Met Gly Thr Ala 5 10 60 12	
	Arg Le 1 <210> <211> <212>	eu Pro Ala Ala Pro Arg Gly Met Gly Thr Ala 5 10 60 12 PRT	
50	Arg Le 1 <210> <211> <212>	eu Pro Ala Ala Pro Arg Gly Met Gly Thr Ala 5 10 60 12	
	Arg Le 1 <210> <211> <212>	eu Pro Ala Ala Pro Arg Gly Met Gly Thr Ala 5 10 60 12 PRT	

	<400)>	60									
	Arg 1	Leu	Pro	Ala	Gly 5	Ala	Arg	Gly	Met	Gly 10	Thr	Ala
5												
	<210 <211 <212	.> : !> :	12 PRT									
10	<213	3> 3	Artii	ficia	al Se	equer	ice					
	<220 <223		РНВ2	pept	ide	No.	61					
	<400)>	61									
15	Arg 1	Leu	Pro	Ala	Gly 5	Pro	Ala	Gly	Met	Gly 10	Thr	Ala
20	<210 <211 <212	.> :	12									
	<213	3> 3	Arti	ficia	al Se	equer	ıce					
25	<220 <223		PHB2	pept	ide	No.	62					
	<400)>	62									
	Arg 1	Leu	Pro	Ala	Gly 5	Pro	Arg	Ala	Met	Gly 10	Thr	Ala
30												
	<210 <211 <212	.> : !>]	12 PRT									
35			Arti	ticia	al Se	equer	ıce					
	<220 <223		РНВ2	pept	ide	No.	63					
	<400)>	63									
40	Arg 1	Leu	Pro	Ala	Gly 5	Pro	Arg	Gly	Ala	Gly 10	Thr	Ala
45	<210 <211		6 4 12									
	<212 <213		PRT Artii	ficia	al Se	equer	ıce					
	<220											
50			РНВ2	pept	:1de	No.	64					
	<400		64									
	Arg 1	Leu	Pro	Ala	Gly 5	Pro	Arg	Gly	Met	Ala 10	Thr	Ala
55												
	<210)>	65									

```
<211> 12
               <212> PRT
               <213> Artificial Sequence
               <220>
5
               <223> PHB2 peptide No. 65
               <400> 65
               Arg Leu Pro Ala Gly Pro Arg Gly Met Gly Ala Ala
10
                                5
               <210> 66
<211> 12
<212> PRT
<213> Artificial Sequence
15
               <220>
               <223> PHB2 peptide No. 66
20
               <400> 66
               Ala Leu Pro Ala Gly Pro Ala Gly Met Gly Thr Ala
25
               <210> 67
               <211> 15
               <212> PRT
               <213> Artificial Sequence
30
               <220>
               <223> PHB2 peptide No. 67
               <400> 67
               Ala Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Lys Ile
35
                            5
                                                     10
               <210> 68
               <211> 15
<212> PRT
40
               <213> Artificial Sequence
               <220>
               <223> PHB2 peptide No. 68
45
               Gln Ala Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Lys Ile
                               5
                                                     10
50
               <210> 69
               <211> 15
               <212> PRT
               <213> Artificial Sequence
55
               <220>
               <223> PHB2 peptide No. 69
```

	<400>	69												
	Gln Ty	yr Ala	Ile	Ile 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ile 15
5														
10	<210> <211> <212> <213>	70 15 PRT Arti:	ficia	al Se	equei	nce								
	<223>	PHB2	pept	ide	No.	70								
	<400>	70												
15	Gln Ty 1	yr Pro	Ala	Ile 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ile 15
20	<210> <211> <212> <213>		ficia	al Se	equei	nce								
25	<220> <223> <400>	PHB2 71	pept	ide	No.	71								
20		yr Pro	Ile	Ala 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ile 15
30														
35	<210> <211> <212> <213>	72 15 PRT Arti:	ficia	al Se	equei	nce								
	<220> <223> <400>	PHB2 72	pept	ide	No.	72								
40	Gln Ty 1	yr Pro	Ile	Ile 5	Ala	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ile 15
45	<210> <211> <212> <213>	73 15 PRT Arti:	ficia	al Se	ednei	nce								
50	<220> <223> <400>	РНВ2 73	pept	ide	No.	73								
55	Gln Ty 1	yr Pro	Ile	Ile 5	Tyr	Ala	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ile 15
	<210>	74												

```
<211> 15
               <212> PRT
               <213> Artificial Sequence
               <220>
5
               <223> PHB2 peptide No. 74
               <400> 74
               Gln Tyr Pro Ile Ile Tyr Asp Ala Arg Ala Arg Pro Arg Lys Ile
10
                               5
               <210> 75
               <211> 15
<212> PRT
<213> Artificial Sequence
15
               <220>
               <223> PHB2 peptide No. 75
20
               <400> 75
               Gln Tyr Pro Ile Ile Tyr Asp Ile Ala Ala Arg Pro Arg Lys Ile
25
               <210> 76
               <211> 15
               <212> PRT
               <213> Artificial Sequence
30
               <220>
               <223> PHB2 peptide No. 76
               <400> 76
               Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Ala Pro Arg Lys Ile
35
                           5
                                                    10
               <210> 77
               <211> 15
<212> PRT
40
               <213> Artificial Sequence
               <220>
               <223> PHB2 peptide No. 77
45
               Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Ala Arg Lys Ile
                              5
                                                    10
50
               <210> 78
               <211> 15
               <212> PRT
               <213> Artificial Sequence
55
               <220>
               <223> PHB2 peptide No. 78
```

	<400>	78												
	Gln Ty:	r Pro	Ile	Ile 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Ala	Lys	Ile 15
5														
10			ficia	al Se	eque	nce								
, 0	<220>													
		PHB2	pept	ide	No.	79								
	<400>	79												
15	Gln Tyr 1	r Pro	Ile	Ile 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Ala	Ile 15
	<210>	80												
20	<211> <212>	15 PRT												
		Arti	ficia	al Se	eque	nce								
	<220>	_												
25	<223> <400>	PHB2 80	pept	ide	No.	80								
	\400 >	80												
	Gln Ty:	r Pro	Ile	Ile 5	Tyr	Asp	Ile	Arg	Ala 10	Arg	Pro	Arg	Lys	Ala 15
30														
	<210>	81												
		15												
	<212>													
35	<213>	Arti	ficia	al Se	eque	nce								
	<220>													
	<223>	PHB2	pept	ide	No.	81								
	<400>	81												
40	14002	01												
40	Gln Ala	a Pro	Ile	Ile 5	Tyr	Asp	Ile	Ala	Ala 10	Arg	Pro	Arg	Lys	Ile 15
	<210>	82												
45	<211>	14												
	<212> <213>	PRT Arti	ficia	al Se	eque	nce								
	<220>													
50	<223>	PHB2	pept	ide	No.	82								
	<400>	82												
	Glu Gly	y Gly	His	Arg 5	Ala	Ile	Phe	Phe	Asn 10	Arg	Ile	Gly	Gly	
55	_ -			-										
	~21.0 >	0.3												
	27111	× <												

	<211>	20												
	<212>	PRT												
	<213>	Artii	ficial Seq	uence										
F	<220>													
5	<223>	DHR2	peptide N	~ 83										
	12237	FIIDZ	peptide N	0. 05										
	<400>	83												
	Glu Sei	r Val	Phe Thr V	al Glu	Gly G	aly H	is Arg	Ala	Ile I	Phe	Phe	Asn		
10	1		5			1	0				15			
	Arg Ile	e Gly	Gly											
	,	-	20											
15														
	<210>	84												
	<211>	11												
	<212>	PRT												
	<213>	Arti	ficial Seq	uence										
20			_											
	<220>													
	<223>	PHB2	derived p	eptide	11-21	laa								
			-	•										
	<400>	84												
25	Arg Let	ı Pro	Ala Gly P	ro Arg	Gly N	Met G	ly Thr							
	1		5	_	-		o							
	<210>	85												
	<211>													
30	<212>													
			ficial Coc											
	\213 /	MICTI	ficial Seq	uence										
	<220>													
	<223>	2 מעם	derived n	ontido	76_00	2								
25	~223/	PHDZ	derived p	ebride	70-00	oaa								
35	44005	0.5												
	<400>	85												
	G1	- B	T1. T1. M	3	T1 - T		1 - 3	. D	3					
	_	Pro	Ile Ile T	yr Asp	TIG 1	_	_	PIO	Arg					
	1		5				0							
40														
	-010-	0.0												
	<210>													
		6330												
	<212>	DNA												
	<213>	Homo	sapiens											
45														
	<220>													
		CDS												
	<222>	(235)) (2022)											
50	<400>	86												
	aggagct	ggc g	ggagggcgtt	cgtcc	tggga	ctgc	acttgc	tcc	cgtcg	gg t	cgc	cggct	;	60
	tcaccgg	gacc d	cgcaggctcc	cgggg	caggg	ccgg	ggccag	agct	tcgcgt	tg t	cggc	egggae	:	120
55	atgcgct	gcg t	cgcctctaa	cctcg	gctg	tgct	ctttt	cca	ggtgg	cc d	egec	gtttc	:	180
55		_			_						_			
	tgagcct	tct o	geeetgeggg	gacac	ggtct	gcac	cctgcc	cgc	ggcca	cg q	gacc	atg		237

																Met 1	
5		atg Met						_			_	_		_		_	285
10		caa Gln															333
		ctg Leu 35				_					_	_	_	_	_		381
15	_	gtg Val							_	_					_		429
20	_	gcc Ala	_			_	_			_							477
		Gly ggg			_								_				525
25		cca Pro			_			_	_	_	_	_		_		_	573
30		ccg Pro 115															621
35		tac Tyr	_					_			_		_		-		669
	_	ccg Pro	_							_		_	_	_			717
40	_	gaa Glu	_	_	-	_			_	_		_	_	-	_	-	765
45		gcc Ala															813
50		tac Tyr 195				_			_			_	_	_			861
	_	aga Arg	_						_		_	_		_			909
55		tgc Cys															957

			aaa Lys														1005
5	-	_	aga Arg 260			_	_	_			_	_	_	_	_	_	1053
10			ggc Gly														1101
			tgg Trp		_	_		_			_		_	_		-	1149
15	_	_	ttg Leu		_	_	_	_	_	_	_	_	_	_	_	_	1197
20			ccc Pro														1245
25	_	_	gct Ala 340	_	_	_			_			_	_	-			1293
	_	_	cac His	_					_							_	1341
30	_		ctc Leu		-	_	_				_	_	-				1389
35		_	atg Met				_		_		_					-	1437
		_	ttt Phe	_	Pro		Leu	Leu	_	Asp			Gln		Lys	_	1485
40	-		ggc Gly 420	_					_	_	_	_	_				1533
45			cgc Arg	_	_		_	_						_			1581
50			att Ile	_									_		_		1629
	_	_	tct Ser	_	-		_	-				_	-	_	_	_	1677
55			gac Asp		_			_	_	-	_	-		_		_	1725

	cag cag cag cac cag cgg ctg gcc cag ctc ctc ctc atc ctc tcc cac Gln Gln Gln His Gln Arg Leu Ala Gln Leu Leu Leu Ile Leu Ser His 500 505 510	1773
5	atc agg cac atg agt aac aaa ggc atg gag cat ctg tac agc atg aag Ile Arg His Met Ser Asn Lys Gly Met Glu His Leu Tyr Ser Met Lys 515 520 525	1821
10	tgc aag aac gtg gtg ccc ctc tat gac ctg ctg ctg gag atg ctg gac Cys Lys Asn Val Val Pro Leu Tyr Asp Leu Leu Leu Glu Met Leu Asp 530 545	1869
15	gcc cac cgc cta cat gcg ccc act agc cgt gga ggg gca tcc gtg gag Ala His Arg Leu His Ala Pro Thr Ser Arg Gly Gly Ala Ser Val Glu 550 555 560	1917
	gag acg gac caa agc cac ttg gcc act gcg ggc tct act tca tcg cat Glu Thr Asp Gln Ser His Leu Ala Thr Ala Gly Ser Thr Ser Ser His 565 570 575	1965
20	tcc ttg caa aag tat tac atc acg ggg gag gca gag ggt ttc cct gcc Ser Leu Gln Lys Tyr Tyr Ile Thr Gly Glu Ala Glu Gly Phe Pro Ala 580 585 590	2013
25	acg gtc tga gagctccctg gctcccacac ggttcagata atccctgctg Thr Val 595	2062
	cattttaccc tcatcatgca ccactttagc caaattctgt ctcctgcata cactccggca	2122
20	tgcatccaac accaatggct ttctagatga gtggccattc atttgcttgc tcagttctta	2182
30	gtggcacatc ttctgtcttc tgttgggaac agccaaaggg attccaaggc taaatctttg	2242
	taacagctct ctttccccct tgctatgtta ctaagcgtga ggattcccgt agctcttcac	2302
35	agctgaactc agtctatggg ttggggctca gataactctg tgcatttaag ctacttgtag	2362
	agacccaggc ctggagagta gacattttgc ctctgataag cactttttaa atggctctaa	2422
	gaataagcca cagcaaagaa tttaaagtgg ctcctttaat tggtgacttg gagaaagcta	2482
40	ggtcaagggt ttattatagc accetettgt attectatgg caatgeatee ttttatgaaa	2542
	gtggtacacc ttaaagcttt tatatgactg tagcagagta tctggtgatt gtcaattcat	2602
45	tccccctata ggaatacaag gggcacacag ggaaggcaga tcccctagtt ggcaagacta	2662
40	ttttaacttg atacactgca gattcagatg tgctgaaagc tctgcctctg gctttccggt	2722
	catgggttcc agttaattca tgcctcccat ggacctatgg agagcagcaa gttgatctta	2782
50	gttaagtctc cctatatgag ggataagttc ctgatttttg tttttatttt tgtgttacaa	2842
	aagaaagccc tccctccctg aacttgcagt aaggtcagct tcaggacctg ttccagtggg	2902
	cactgtactt ggatcttccc ggcgtgtgtg tgccttacac aggggtgaac tgttcactgt	2962 3022
55	ggtgatgcat gatgagggta aatggtagtt gaaaggagca ggggccctgg tgttgcattt agccctgggg catggagctg aacagtactt gtgcaggatt gttgtggcta ctagagaaca	3022
	agooosgaga casagaagaaca gagaaggaas gaagagaaca caagagaaca	3002

	agagggaaag	Lagggcagaa	actggataca	griergagge	acagecagae	Ligercaggg	2142
	tggccctgcc	acaggctgca	gctacctagg	aacattcctt	gcagaccccg	cattgccctt	3202
5	tgggggtgcc	ctgggatccc	tggggtagtc	cagctcttct	tcatttccca	gcgtggccct	3262
	ggttggaaga	agcagctgtc	acagctgctg	tagacagctg	tgttcctaca	attggcccag	3322
	caccctgggg	cacgggagaa	gggtggggac	cgttgctgtc	actactcagg	ctgactgggg	3382
10	cctggtcaga	ttacgtatgc	ccttggtggt	ttagagataa	tccaaaatca	gggtttggtt	3442
	tggggaagaa	aatcctcccc	cttcctccc	cgccccgttc	cctaccgcct	ccactcctgc	3502
	cagctcattt	ccttcaattt	cctttgacct	ataggctaaa	aaagaaaggc	tcattccagc	3562
15	cacagggcag	ccttccctgg	gcctttgctt	ctctagcaca	attatgggtt	acttcctttt	3622
	tcttaacaaa	aaagaatgtt	tgatttcctc	tgggtgacct	tattgtctgt	aattgaaacc	3682
20	ctattgagag	gtgatgtctg	tgttagccaa	tgacccaggt	gagctgctcg	ggcttctctt	3742
20	ggtatgtctt	gtttggaaaa	gtggatttca	ttcatttctg	attgtccagt	taagtgatca	3802
	ccaaaggact	gagaatctgg	gagggcaaaa	aaaaaaaaa	agtttttatg	tgcacttaaa	3862
25	tttggggaca	attttatgta	tctgtgttaa	ggatatgttt	aagaacataa	ttcttttgtt	3922
	gctgtttgtt	taagaagcac	cttagtttgt	ttaagaagca	ccttatatag	tataatatat	3982
	attttttga	aattacattg	cttgtttatc	agacaattga	atgtagtaat	tctgttctgg	4042
30	atttaatttg	actgggttaa	catgcaaaaa	ccaaggaaaa	atatttagtt	tttttttt	4102
	tttttgtata	cttttcaagc	taccttgtca	tgtatacagt	catttatgcc	taaagcctgg	4162
	tgattattca	tttaaatgaa	gatcacattt	catatcaact	tttgtatcca	cagtagacaa	4222
35	aatagcacta	atccagatgc	ctattgttgg	atactgaatg	acagacaatc	ttatgtagca	4282
	aagattatgc	ctgaaaagga	aaattattca	gggcagctaa	ttttgctttt	accaaaatat	4342
	cagtagtaat	atttttggac	agtagctaat	gggtcagtgg	gttcttttta	atgtttatac	4402
10	ttagattttc	ttttaaaaaa	attaaaataa	aacaaaaaa	aatttctagg	actagacgat	4462
	gtaataccag	ctaaagccaa	acaattatac	agtggaaggt	tttacattat	tcatccaatg	4522
45	tgtttctatt	catgttaaga	tactactaca	tttgaagtgg	gcagagaaca	tcagatgatt	4582
1 5	gaaatgttcg	cccaggggtc	tccagcaact	ttggaaatct	ctttgtattt	ttacttgaag	4642
	tgccactaat	ggacagcaga	tattttctgg	ctgatgttgg	tattgggtgt	aggaacatga	4702
50	tttaaaaaaa	aactcttgcc	tetgetttee	cccactctga	ggcaagttaa	aatgtaaaag	4762
	atgtgattta	tctggggggc	tcaggtatgg	tggggaagtg	gattcaggaa	tctggggaat	4822
	ggcaaatata	ttaagaagag	tattgaaagt	atttggagga	aaatggttaa	ttctgggtgt	4882
55	gcaccagggt	tcagtagagt	ccacttctgc	cctggagacc	acaaatcaac	tagctccatt	4942
	tacagccatt	tctaaaatgg	cagcttcagt	tctagagaag	aaagaacaac	atcagcagta	5002

	aagtccatgg	aatagctagt	ggtctgtgtt	tcttttcgcc	attgcctagc	ttgccgtaat	5062
	gattctataa	tgccatcatg	cagcaattat	gagaggctag	gtcatccaaa	gagaagaccc	5122
5	tatcaatgta	ggttgcaaaa	tctaacccct	aaggaagtgc	agtctttgat	ttgatttccc	5182
	tagtaacctt	gcagatatgt	ttaaccaagc	catagcccat	gccttttgag	ggctgaacaa	5242
0	ataagggact	tactgataat	ttacttttga	tcacattaag	gtgttctcac	cttgaaatct	5302
	tatacactga	aatggccatt	gatttaggcc	actggcttag	agtactcctt	ccctgcatg	5362
	acactgatta	caaatacttt	cctattcata	ctttccaatt	atgagatgga	ctgtgggtac	5422
5	tgggagtgat	cactaacacc	atagtaatgt	ctaatattca	caggcagatc	tgcttgggga	5482
	agctagttat	gtgaaaggca	aatagagtca	tacagtagct	caaaaggcaa	ccataattct	5542
	ctttggtgca	ggtcttggga	gcgtgatcta	gattacactg	caccattccc	aagttaatcc	5602
0	cctgaaaact	tactctcaac	tggagcaaat	gaactttggt	cccaaatatc	catcttttca	5662
	gtagcgttaa	ttatgctctg	tttccaactg	catttccttt	ccaattgaat	taaagtgtgg	5722
25	cctcgttttt	agtcatttaa	aattgttttc	taagtaattg	ctgcctctat	tatggcactt	5782
.5	caattttgca	ctgtcttttg	agattcaaga	aaaatttcta	ttctttttt	tgcatccaat	5842
	tgtgcctgaa	cttttaaaat	atgtaaatgc	tgccatgttc	caaacccatc	gtcagtgtgt	5902
10	gtgtttagag	ctgtgcaccc	tagaaacaac	atattgtccc	atgagcaggt	gcctgagaca	5962
	cagacccctt	tgcattcaca	gagaggtcat	tggttataga	gacttgaatt	aataagtgac	6022
	attatgccag	tttctgttct	ctcacaggtg	ataaacaatg	ctttttgtgc	actacatact	6082
5	cttcagtgta	gagctcttgt	tttatgggaa	aaggctcaaa	tgccaaattg	tgtttgatgg	6142
	attaatatgc	ccttttgccg	atgcatacta	ttactgatgt	gactcggttt	tgtcgcagct	6202
10	ttgctttgtt	taatgaaaca	cacttgtaaa	cctcttttgc	actttgaaaa	agaatccagc	6262
:0	gggatgctcg	agcacctgta	aacaattttc	tcaacctatt	tgatgttcaa	ataaagaatt	6322
	aaactaaa						6330

45

<210> 87 <211> 595 <212> PRT

<213> Homo sapiens

50 <400> 87

> Met Thr Met Thr Leu His Thr Lys Ala Ser Gly Met Ala Leu Leu His 5

55 Gln Ile Gln Gly Asn Glu Leu Glu Pro Leu Asn Arg Pro Gln Leu Lys 20 25

	Ile	Pro	Leu 35	GIu	Arg	Pro	Leu	G1y 40	GLu	Val	Tyr	Leu	Asp 45	Ser	Ser	Lys
5	Pro	Ala 50	Val	Tyr	Asn	Tyr	Pro 55	Glu	Gly	Ala	Ala	Tyr 60	Glu	Phe	Asn	Ala
10	Ala 65	Ala	Ala	Ala	Asn	Ala 70	Gln	Val	Tyr	Gly	Gln 75	Thr	Gly	Leu	Pro	Tyr 80
	Gly	Pro	Gly	Ser	Glu 85	Ala	Ala	Ala	Phe	Gly 90	Ser	Asn	Gly	Leu	Gly 95	Gly
15	Phe	Pro	Pro	Leu 100	Asn	Ser	Val	Ser	Pro 105	Ser	Pro	Leu	Met	Leu 110	Leu	His
20	Pro	Pro	Pro 115	Gln	Leu	Ser	Pro	Phe 120	Leu	Gln	Pro	His	Gly 125	Gln	Gln	Val
25	Pro	Tyr 130	Tyr	Leu	Glu	Asn	Glu 135	Pro	Ser	Gly	Tyr	Thr 140	Val	Arg	Glu	Ala
	Gly 145	Pro	Pro	Ala	Phe	Tyr 150	Arg	Pro	Asn	Ser	Asp 155	Asn	Arg	Arg	Gln	Gly 160
30	Gly	Arg	Glu	Arg	Leu 165	Ala	Ser	Thr	Asn	Asp 170	Lys	Gly	Ser	Met	Ala 175	Met
35	Glu	Ser	Ala	Lys 180	Glu	Thr	Arg	Tyr	Cys 185	Ala	Val	Cys	Asn	Asp 190	Tyr	Ala
40	Ser	Gly	Туг 195	His	Tyr	Gly	Val	Trp 200	Ser	Cys	Glu	Gly	Cys 205	Lys	Ala	Phe
40	Phe	Lys 210	Arg	Ser	Ile	Gln	Gly 215	His	Asn	Asp	Tyr	Met 220	Cys	Pro	Ala	Thr
45	Asn 225	Gln	Cys	Thr	Ile	Asp 230	Lys	Asn	Arg	Arg	Lys 235	Ser	Cys	Gln	Ala	Cys 240
50	Arg	Leu	Arg	Lys	Cys 245	Tyr	Glu	Val	Gly	Met 250	Met	Lys	Gly	Gly	Ile 255	Arg
	Lys	Asp	Arg	Arg 260	Gly	Gly	Arg	Met	Leu 265	Lys	His	Lys	Arg	Gln 270	Arg	Asp
55	Asp	Gly	Glu 275	Gly	Arg	Gly	Glu	Val 280	Gly	Ser	Ala	Gly	Asp 285	Met	Arg	Ala

	AIG	290	rea	IIP	PIO	ser	295	reu	Mec	116	гуѕ	300	ser	гу	гуз	ASII
5	Ser 305	Leu	Ala	Leu	Ser	Leu 310	Thr	Ala	Asp	Gln	Met 315	Val	Ser	Ala	Leu	Leu 320
10	Asp	Ala	Glu	Pro	Pro 325	Ile	Leu	Tyr	Ser	Glu 330	Tyr	Asp	Pro	Thr	Arg 335	Pro
	Phe	Ser	Glu	Ala 340	Ser	Met	Met	Gly	Leu 345	Leu	Thr	Asn	Leu	Ala 350	Asp	Arg
15	Glu	Leu	Val 355	His	Met	Ile	Asn	Trp 360	Ala	Lys	Arg	Val	Pro 365	Gly	Phe	Val
20	Asp	Leu 370	Thr	Leu	His	Asp	Gln 375	Val	His	Leu	Leu	Glu 380	Cys	Ala	Trp	Leu
25	Glu 385	Ile	Leu	Met	Ile	Gly 390	Leu	Val	Trp	Arg	Ser 395	Met	Glu	His	Pro	Gly 400
	Lys	Leu	Leu	Phe	Ala 405	Pro	Asn	Leu	Leu	Leu 410	Asp	Arg	Asn	Gln	Gly 415	Lys
30	Cys	Val	Glu	Gly 420	Met	Val	Glu	Ile	Phe 425	Asp	Met	Leu	Leu	Ala 430	Thr	Ser
35	Ser	Arg	Phe 435	Arg	Met	Met	Asn	Leu 440	Gln	Gly	Glu	Glu	Phe 445	Val	Cys	Leu
40	Lys	Ser 450	Ile	Ile	Leu	Leu	Asn 455	Ser	Gly	Val	Tyr	Thr 460	Phe	Leu	Ser	Ser
40	Thr 465	Leu	Lys	Ser	Leu	Glu 470	Glu	Lys	Asp	His	Ile 475	His	Arg	Val	Leu	Asp 480
45	Lys	Ile	Thr	Asp	Thr 485	Leu	Ile	His	Leu	Met 490	Ala	Lys	Ala	Gly	Leu 495	Thr
50	Leu	Gln	Gln	Gln 500	His	Gln	Arg	Leu	Ala 505	Gln	Leu	Leu	Leu	Ile 510	Leu	Ser
	His	Ile	Arg 515	His	Met	Ser	Asn	Lys 520	Gly	Met	Glu	His	Leu 525	Tyr	Ser	Met
55	Lys	Cys 530	Lys	Asn	Val	Val	Pro 535	Leu	Tyr	Asp	Leu	Leu 540	Leu	Glu	Met	Leu

	Asp Ala His Arg Leu His Ala Pro Thr Ser Arg Gly Gly Ala Ser Val 545 550 560	
5	Glu Glu Thr Asp Gln Ser His Leu Ala Thr Ala Gly Ser Thr Ser Ser 565 570 575	
10	His Ser Leu Gln Lys Tyr Tyr Ile Thr Gly Glu Ala Glu Gly Phe Pro 580 585 590	
15	Ala Thr Val 595	
20	<210> 88 <211> 2169 <212> DNA <213> Homo sapiens	
25	<220> <221> CDS <222> (469)(2061)	
25	<400> 88 ctcggtcttt aaaaggaaga aggggcttat cgttaagtcg cttgtgatct tttcagtttc	60
	tccagctgct ggctttttgg acacccactc ccccgccagg aggcagttgc aagcgcggag	120
30	gctgcgagaa ataactgcct cttgaaactt gcagggcgaa gagcaggcgg cgagcgctgg	180
	gccggggagg gaccacccga gctgcgacgg gctctggggc tgcggggcag ggctggcgcc	240
35	cggagcctga gctgcaggag gtgcgctcgc tttcctcaac aggtggcggc ggggcgcgcg	300
33	ccgggagacc ccccctaatg cgggaaaagc acgtgtccgc attttagaga aggcaaggcc	360
	ggtgtgttta tctgcaagcc attatacttg cccacgaatc tttgagaaca ttataatgac	420
40	ctttgtgcct cttcttgcaa ggtgttttct cagctgttat ctcaagac atg gat ata Met Asp Ile 1	477
45	aaa aac tca cca tct agc ctt aat tct cct tcc tcc tac aac tgc agt Lys Asn Ser Pro Ser Ser Leu Asn Ser Pro Ser Ser Tyr Asn Cys Ser 5 10 15	525
50	caa tcc atc tta ccc ctg gag cac ggc tcc ata tac ata cct tcc tcc Gln Ser Ile Leu Pro Leu Glu His Gly Ser Ile Tyr Ile Pro Ser Ser 20 25 30 35	573
	tat gta gac agc cac cat gaa tat cca gcc atg aca ttc tat agc cct Tyr Val Asp Ser His His Glu Tyr Pro Ala Met Thr Phe Tyr Ser Pro 40 45 50	621
55	gct gtg atg aat tac agc att ccc agc aat gtc act aac ttg gaa ggt Ala Val Met Asn Tyr Ser Ile Pro Ser Asn Val Thr Asn Leu Glu Gly 55 60 65	669

		cct Pro			_			_				_					717
5		cac His 85						-		_	_				_		765
10		gaa Glu			_	_			_	-	_	_	_		_		813
		tta Leu		-		_			_			_	-	_			861
15	_	tgc Cys	_	_		_						_		_	_		909
20		tgc Cys	_	_	_	_	_		-	_						_	957
25		tcg Ser 165	_	_		_	_	_				_	_				1005
		aat Asn	_			_		_			_	_			_		1053
30		cgg Arg															1101
35		gga Gly	_		_	_				_		_	_			-	1149
		gtg Val		_	_	_	_	_	_		_	_		_	_	ggc Gly	1197
40		gcc Ala 245															1245
45	_	gac Asp	-	_	_			_						_		_	1293
50		ccg Pro				_		_	_		_						1341
	_	tcc Ser	_	_	_		_		_	_	_	_	_		_	_	1389
55		atg Met		_		_	_	_								_	1437

	_		gac Asp					_		_	_		_				1485
5	_	_	ggg Gly	_	_		_			_				_			1533
10			cca Pro														1581
15			ctg Leu														1629
	_		tta Leu 390						_			_	_	_	_	_	1677
20		_	ctc Leu			_	_			_	-				_	-	1725
25	_	_	agc Ser	_		_	_	_		_	_		_			-	1773
30			gtt Val														1821
		_	cgc Arg	_	_			_	_		_			_			1869
35		_	aac Asn 470	_		_	_		_			_	_	_			1917
40			cca Pro														1965
			GJÀ āāā														2013
45			agt Ser													tga	2061
50	_		ecc t		-		_			-		_			aacto	ccagtg	2121 2169
55	<210 <211 <212 <211	L> ! 2> I	39 530 PRT Homo	sapi	iens												

<400> 89

5	Met 1	Asp	Ile	Lys	Asn 5	Ser	Pro	Ser	Ser	Leu 10	Asn	Ser	Pro	Ser	Ser 15	Tyr
	Asn	Cys	Ser	Gln 20	Ser	Ile	Leu	Pro	Leu 25	Glu	His	Gly	Ser	Ile 30	Tyr	Ile
10	Pro	Ser	Ser 35	Tyr	Val	Asp	Ser	His 40	His	Glu	Tyr	Pro	Ala 45	Met	Thr	Phe
15	Tyr	Ser 50	Pro	Ala	Val	Met	Asn 55	Tyr	Ser	Ile	Pro	Ser 60	Asn	Val	Thr	Asn
	Leu 65	Glu	Gly	Gly	Pro	Gly 70	Arg	Gln	Thr	Thr	Ser 75	Pro	Asn	Val	Leu	Trp 80
20	Pro	Thr	Pro	Gly	His 85	Leu	Ser	Pro	Leu	Val 90	Val	His	Arg	Gln	Leu 95	Ser
25	His	Leu	Tyr	Ala 100	Glu	Pro	Gln	Lys	Ser 105	Pro	Trp	Cys	Glu	Ala 110	Arg	Ser
30	Leu	Glu	His 115	Thr	Leu	Pro	Val	Asn 120	Arg	Glu	Thr	Leu	Lys 125	Arg	Lys	Val
	Ser	Gly 130	Asn	Arg	Cys	Ala	Ser 135	Pro	Val	Thr	Gly	Pro 140	Gly	Ser	Lys	Arg
35	Asp 145	Ala	His	Phe	Cys	Ala 150	Val	Cys	Ser	Asp	Tyr 155	Ala	Ser	Gly	Tyr	His 160
40	Tyr	Gly	Val	Trp	Ser 165	Cys	Glu	Gly	Cys	Lys 170	Ala	Phe	Phe	Lys	Arg 175	Ser
	Ile	Gln	Gly	His 180	Asn	Asp	Tyr	Ile	Cys 185	Pro	Ala	Thr	Asn	Gln 190	Cys	Thr
45	Ile	Asp	Lys 195	Asn	Arg	Arg	Lys	Ser 200	Cys	Gln	Ala	Cys	Arg 205	Leu	Arg	Lys
50	Cys	Tyr 210	Glu	Val	Gly	Met	Val 215	Lys	Cys	Gly	Ser	Arg 220	Arg	Glu	Arg	Cys
55	Gly 225	Tyr	Arg	Leu	Val	Arg 230	Arg	Gln	Arg	Ser	A la 235	Asp	Glu	Gln	Leu	His 240
55	Cys	Ala	Gly	Lys	Ala	Lys	Arg	Ser	Gly	Gly	His	Ala	Pro	Arg	Val	Arg

5	Glu	Leu	Leu	Leu 260	Asp	Ala	Leu	Ser	Pro 265	Glu	Gln	Leu	Val	Leu 270	Thr	Leu
10	Leu	Glu	Ala 275	Glu	Pro	Pro	His	Val 280	Leu	Ile	Ser	Arg	Pro 285	Ser	Ala	Pro
10	Phe	Thr 290	Glu	Ala	Ser	Met	Met 295	Met	Ser	Leu	Thr	Lys 300	Leu	Ala	Asp	Lys
15	Glu 305	Leu	Val	His	Met	Ile 310	Ser	Trp	Ala	Lys	Lys 315	Ile	Pro	Gly	Phe	Val 320
20	Glu	Leu	Ser	Leu	Phe 325	Asp	Gln	Val	Arg	Leu 330	Leu	Glu	Ser	Cys	Trp 335	Met
	Glu	Val	Leu	Met 340	Met	Gly	Leu	Met	Trp 345	Arg	Ser	Ile	Asp	His 350	Pro	Gly
25	Lys	Leu	Ile 355	Phe	Ala	Pro	Asp	Leu 360	Val	Leu	Asp	Arg	Asp 365	Glu	Gly	Lys
30	Cys	Val 370	Glu	Gly	Ile	Leu	Glu 375	Ile	Phe	Asp	Met	Le u 380	Leu	Ala	Thr	Thr
35	Ser 385	Arg	Phe	Arg	Glu	Leu 390	Lys	Leu	Gln	His	Lys 395	Glu	Tyr	Leu	Cys	Val 400
	Lys	Ala	Met	Ile	Leu 405	Leu	Asn	Ser	Ser	Met 410	Tyr	Pro	Leu	Val	Thr 415	Ala
40	Thr	Gln	Asp	Ala 420	Asp	Ser	Ser	Arg	Lys 425	Leu	Ala	His	Leu	Leu 430	Asn	Ala
45	Val	Thr	Asp 435	Ala	Leu	Val	Trp	Val 440	Ile	Ala	Lys	Ser	Gly 445	Ile	Ser	Ser
50	Gln	Gln 450	Gln	Ser	Met	Arg	Leu 455	Ala	Asn	Leu	Leu	Met 460	Leu	Leu	Ser	His
	Val 465	Arg	His	Ala	Ser	As n 4 70	Lys	Gly	Met	Glu	His 475	Leu	Leu	Asn	Met	Lys 480
55	Cys	Lys	Asn	Val	Val 485	Pro	Val	Tyr	Asp	Leu 490	Leu	Leu	Glu	Met	Leu 495	Asn

	Ala His Val Leu Arg Gly Cys Lys Ser Ser Ile Thr Gly Ser Glu Cys 500 505 510
5	Ser Pro Ala Glu Asp Ser Lys Ser Lys Glu Gly Ser Gln Asn Pro Gln 515 520 525
10	Ser Gln 530
15	<210> 90 <211> 9 <212> PRT <213> Artificial Sequence <220>
	<223> A cell membrane permeable peptide <400> 90
20	Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5
25	<210> 91 <211> 21 <212> PRT <213> Artificial Sequence
30	<220> <223> A cell membrane permeable peptide
35	<pre><400> 91 Thr Arg Ser Ser Arg Ala Gly Leu Gln Phe Pro Val Gly Arg Val His 1</pre>
	Arg Leu Leu Arg Lys 20
40	<210> 92 <211> 27 <212> PRT <213> Artificial Sequence
45	<220> <223> A cell membrane permeable peptide
	< 4 00> 92
50	Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Lys Ile Asn Leu 1 10 15
55	Lys Ala Leu Ala Leu Ala Lys Lys Ile Leu 20 25
55	<210> 93

```
<211> 18
             <212> PRT
             <213> Artificial Sequence
             <220>
5
             <223> A cell membrane permeable peptide
             <400> 93
             Lys Leu Ala Leu Lys Leu Ala Leu Lys Ala Leu Lys Ala Ala Leu Lys
10
             Leu Ala
15
             <210> 94
                   16
             <211>
             <212> PRT
<213> Artificial Sequence
20
             <220>
             <223> A cell membrane permeable peptide
             <400> 94
25
             Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Leu Ala Pro
                                                  10
             <210> 95
             <211> 5
30
             <212> PRT
             <213> Artificial Sequence
             <220>
             <223> A cell membrane permeable peptide
35
             <400> 95
             Val Pro Met Leu Lys
40
             <210> 96
             <211>
                   5
             <212> PRT
             <213> Artificial Sequence
45
             <220>
             <223> A cell membrane permeable peptide
             <400> 96
50
             Pro Met Leu Lys Glu
             <210> 97
             <211> 28
55
             <212> PRT
             <213> Artificial Sequence
```

	<220> <223>	A cel	Ll m∈	embra	ane p	perme	eable	e pe	ptide	>					
	<400>	97													
5	Met Ala 1	a As n	Leu	Gly 5	Tyr	Trp	Leu	Leu	Ala 10	Leu	Phe	Val	Thr	Met 15	Trp
10	Thr Asp	p Val	Gly 20	Leu	Cys	Lys	Lys	Arg 25	Pro	Lys	Pro				
15			ficia	al Se	equei	nce									
	<220> <223>	A cel	Ll me	embra	ane p	perme	eable	e pe	ptide	€					
20	<400>	98													
	Leu Leu 1	u Ile	Ile	Leu 5	Arg	Arg	Arg	Ile	Arg 10	Lys	Gln	Ala	His	Ala 15	His
25	Ser Ly	s													
30	<210> <211> <212> <213>		ficia	al Se	equei	nce									
35	<220> <223>	A cel	Ll me	embra	ane p	permo	eable	e pe	ptide	e					
	<400>	99													
40	Lys Gl	u Thr	Trp	Trp 5	Glu	Thr	Trp	Trp	Thr 10	Glu	Trp	Ser	Gln	Pro 15	Lys
	Lys Lys	s Arg	Lys 20	Val											
45															
	<210>	100													
	<211>	18													
	<212>	PRT													
	<213>	Artií	ficia	al Se	eque	nce									
50	-220 >														
	<220> <223>	A cel	Ll me	embra	ane p	perme	eable	e pe	ptide	=					
	<400>	100													
55	Arg Gly	y Gly	Arg	Leu 5	Ser	Tyr	Ser	Arg	Arg 10	Arg	Phe	Ser	Thr	Ser 15	Thr

Gly Arg

```
<210> 101
<211> 15
<212> PRT
5
             <213> Artificial Sequence
             <220>
10
             <223> A cell membrane permeable peptide
             <400> 101
             Ser Asp Leu Trp Glu Met Met Wal Ser Leu Ala Cys Gln Tyr
15
             <210> 102
             <211> 12
             <212> PRT
20
             <213> Artificial Sequence
             <220>
             <223> A cell membrane permeable peptide
             <400> 102
25
             Thr Ser Pro Leu Asn Ile His Asn Gly Gln Lys Leu
                          5
                                                  10
30
             <210> 103
             <211> 16
             <212> PRT
             <213> Artificial Sequence
             <220>
35
             <223> A cell membrane permeable peptide
             <400> 103
             Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys
40
                              5
                                                  10
             <210> 104
<211> 32
<212> PRT
45
             <213> Artificial Sequence
             <220>
             <223> PHB2 derived peptide 1-32aa
50
             <400> 104
             Met Ala Gln Asn Leu Lys Asp Leu Ala Gly Arg Leu Pro Ala Gly Pro
55
             Arg Gly Met Gly Thr Ala Leu Lys Leu Leu Leu Gly Ala Gly Ala Val
                                              25
```

```
<210> 105
          <211> 37
          <212> PRT
          <213> Artificial Sequence
5
          <220>
          <223> PHB2 derived peptide 63-99aa
          <400> 105
10
          Ile Leu Ala Glu Gly Leu His Phe Arg Ile Pro Trp Phe Gln Tyr Pro
                                              10
          Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Lys Ile Ser Ser Pro Thr
15
                                          25
          Gly Ser Lys Asp Leu
                  35
20
          <210> 106
          <211>
                21
          <212>
                PRT
          <213> Artificial Sequence
25
          <220>
          <223> cross-linked peptide containing PHB2 derived peptide 11-21aa
          <220>
30
          <221> MISC_FEATURE
          <222> (1)..(13)
          <223> linked by using hexafluorobenzene
          <220>
35
          <221> MISC_FEATURE
          <222>
                (10) . . (10)
          <223> Xaa = Nle
          <400> 106
40
          Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys Arg Arg Arg
                                              10
          Arg Arg Arg Arg
45
                      20
          <210> 107
          <211>
                21
          <212>
50
                PRT
          <213> Artificial Sequence
          <220>
          <223> cross-linked peptide containing PHB2 derived peptide 11-21aa
55
          <220>
```

```
<221> MISC_FEATURE
         <222> (1)..(13)
          <223> linked by using decafluorobiphenyl
         <220>
5
          <221> MISC_FEATURE
          <222>
                (10) . . (10)
          <223> Xaa = Nle
         <400> 107
10
         Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys Arg Arg Arg
                                              10
                                                                  15
         Arg Arg Arg Arg
15
         <210> 108
         <211> 21
20
          <212> PRT
          <213> Artificial Sequence
         <220>
          <223> cross-linked peptide containing PHB2 derived peptide 11-21aa
25
         <220>
          <221> DISULFID
         <222>
                (1) . . (13)
30
         <220>
         <221> MISC_FEATURE
         <222>
                (10) . . (10)
         <223> Xaa = Nle
          <400> 108
35
         Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys Arg Arg Arg
                                              10
40
         Arg Arg Arg Arg
                     20
          <210> 109
          <211> 21
45
          <212> PRT
         <213> Artificial Sequence
         <220>
         <223>
                uncross-linked peptide containing PHB2 derived peptide 11-21aa
50
          <220>
          <221> MISC_FEATURE
          <222>
                (10) . . (10)
          <223> Xaa = Nle
55
         <400> 109
```

	Ala 1	Arg	Leu	Pro	Ala 5	Gly	Pro	Arg	Gly	Xaa 10	Gly	Thr	Ala	Arg	Arg 15	Arg
5	Arg	Arg	Arg	Arg 20	Arg											
10	<210 <211 <212 <213	> >	110 23 PRT Artii	ficia	al Se	equer	nce									
15	<220 <223		cross	s-lir	nked	pept	ide	cont	aini	ing I	РНВ2	deri	.ved	pept	ide	76-88aa
15		> : >	MISC_ (1). linke	(15))	ing l	nexai	fluor	cober	nzene	>					
20	<400		110	_	•	,										
	Cys 1	Gln	Tyr	Pro	Ile 5	Ile	Tyr	Asp	Ile	Arg 10	Ala	Arg	Pro	Arg	Cys 15	Arg
25	Arg	Arg	Arg	Arg 20	Arg	Arg	Arg									
30	<210 <211 <212 <213	> >	111 23 PRT Arti	ficia	al Se	equer	nce									
35	<220 <223		cross	s-lir	nked	pept	ide	cont	:aini	ing I	PHB2	deri	.ved	pept	ide	76-88aa
40		> : >	MISC_ (1). linke	(15))	ing o	de ca t	Fluor	-obir	hens	•1					
	<400		111	5 0 D ₃	, 43.	Ling (.eca.	-1401	CDI	J.1.E.1.	Y -					
45	Cys 1	Gln	Tyr	Pro	Ile 5	Ile	Tyr	Asp	Ile	Arg 10	Ala	Arg	Pro	Arg	Cys 15	Arg
	Arg	Arg	Arg	Arg 20	Arg	Arg	Arg									
50	<210 <211 <212 <213	> >	112 23 PRT Arti	ficia	al Se	equer	nce									
55	<220 <223		cross	s-lir	nked	pept	ide	cont	aini	ing I	РНВ2	deri	.ved	pept	ide	76-88aa

```
<220>
         <221> DISULFID
         <222> (1)..(15)
         <400> 112
5
         Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys Arg
10
         Arg Arg Arg Arg Arg Arg
                     20
         <210> 113
15
         <211> 23
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> uncross-linked peptide containing PHB2 derived peptide 76-88aa
20
         <400> 113
         Ala Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Ala Arg
                                             10
25
         Arg Arg Arg Arg Arg Arg
                    20
30
         <210> 114
         <211> 21
<212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> uncross-linked peptide containing PHB2 derived peptide 11-21aa
         <400> 114
         Ala Arg Leu Pro Ala Gly Pro Arg Gly Met Gly Thr Ala Arg Arg Arg
40
                                              10
         Arg Arg Arg Arg
                     20
45
         <210> 115
<211> 13
<212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> cross-linked peptide containing PHB2 derived peptide 11-21aa
55
         <220>
         <221> MISC_FEATURE
```

```
<222> (1)..(13)
          <223> linked by using hexafluorobenzene
          <220>
          <221> MISC_FEATURE
5
          <222> (10)..(10)
<223> Xaa = Nle
          <400> 115
10
          Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys
          <210> 116
15
          <211> 13
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> cross-linked peptide containing PHB2 derived peptide 11-21aa
20
          <220>
          <221> MISC_FEATURE
          <222>
                 (1) . . (13)
25
          <223> linked by using decafluorobiphenyl
          <220>
          <221> MISC_FEATURE
          <222>
                 (10) . . (10)
          <223> Xaa = Nle
30
          <400> 116
          Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys
35
          <210> 117
          <211>
                 13
          <212> PRT
          <213> Artificial Sequence
40
          <220>
          <223> cross-linked peptide containing PHB2 derived peptide 11-21aa
45
          <220>
          <221> DISULFID
          <222> (1)..(13)
          <220>
          <221> MISC_FEATURE
50
          <222>
                 (10) . . (10)
          <223> Xaa = Nle
          <400> 117
55
          Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys
```

```
<210> 118
          <211> 13
          <212> PRT
          <213> Artificial Sequence
5
          <220>
          <223> uncross-linked peptide containing PHB2 derived peptide 11-21aa
          <220>
10
          <221> MISC_FEATURE
          <222>
                 (10) . . (10)
          <223> Xaa = Nle
          <400> 118
15
          Ala Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Ala
                           5
          <210> 119
20
          <211>
                 15
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> cross-linked peptide containing PHB2 derived peptide 76-88aa
25
          <220>
          <221> MISC_FEATURE
          <222>
                 (1) . . (15)
          <223> linked by using hexafluorobenzene
30
          <400> 119
          Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys
                           5
                                               10
35
          <210> 120
          <211> 15
          <212> PRT
          <213> Artificial Sequence
40
          <220>
          <223> cross-linked peptide containing PHB2 derived peptide 76-88aa
          <220>
45
          <221> MISC_FEATURE
                 (1) . . (15)
          <222>
          <223>
                 linked by using decafluorobiphenyl
          <400> 120
50
          Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys
                                               10
                           5
                                                                   15
          <210>
                 121
55
          <211> 15
          <212> PRT
```

```
<213> Artificial Sequence
          <220>
          <223>
                cross-linked peptide containing PHB2 derived peptide 76-88aa
5
          <220>
          <221>
                 DISULFID
          <222>
                (1) . . (15)
10
          <400> 121
          Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys
                                              10
15
          <210> 122
          <211> 15
          <212> PRT
          <213> Artificial Sequence
20
          <220>
          <223> uncross-linked peptide containing PHB2 derived peptide 76-88aa
          <400> 122
          Ala Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Ala
25
                          5
                                                                   15
                                               10
          <210> 123
          <211> 19
30
          <212> PRT
          <213> Artificial Sequence
          <220>
                 cross-linked cyclic peptide containing PHB2 derived peptide
          <223>
                 11-21aa
35
          <220>
          <221> MISC_FEATURE
          <222>
                (1) . . (13)
40
          <223> linked by using hexafluorobenzene
          <220>
          <221> MISC_FEATURE
          <222>
                (10) . . (10)
          <223> Xaa = Nle
45
          <220>
          <221> MISC_FEATURE
          <222>
                (15) . . (15)
          <223> Xaa = Nal
50
          <400> 123
          Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys Phe Xaa Arg
                          5
                                              10
55
```

Arg Arg Arg

```
<210> 124
         <211> 19
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223>
                cross-linked cyclic peptide containing PHB2 derived peptide
                11-21aa
10
         <220>
         <221> MISC_FEATURE
         <222>
                (1) . . (13)
         <223> linked by using decafluorobiphenyl
15
         <220>
         <221> MISC_FEATURE
         <222>
                (10) . . (10)
         <223> Xaa = Nle
20
         <220>
         <221> MISC_FEATURE
         <222> (15) . . (15)
         <223> Xaa = Nal
25
         <400> 124
         Cys Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Cys Phe Xaa Arg
30
         Arg Arg Arg
         <210> 125
35
         <211> 19 <212> PRT
         <213> Artificial Sequence
         <220>
         <223> uncross-linked cyclic peptide containing PHB2 derived peptide
40
                11-21aa
         <220>
         <221> MISC_FEATURE
45
         <222> (10)..(10)
         <223> Xaa = Nle
         <220>
         <221> MISC_FEATURE
50
         <222> (15) . . (15)
         <223> Xaa = Nal
         <400> 125
         Ala Arg Leu Pro Ala Gly Pro Arg Gly Xaa Gly Thr Ala Phe Xaa Arg
55
                         5
                                              10
                                                                   15
```

Arg Arg Arg

```
<210> 126
5
           <211> 21
           <212> PRT
           <213> Artificial Sequence
           <220>
10
           <223> cross-linked cyclic peptide containing PHB2 derived peptide
           <220>
           <221> MISC_FEATURE
15
           <222>
                  (1) . . (15)
           <223> linked by using hexafluorobenzene
           <220>
           <221> MISC_FEATURE
20
           <222> (17)..(17)
           <223> Xaa = Nal
           <400> 126
           Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys Phe
25
                            5
                                                                      15
                                                 10
           Xaa Arg Arg Arg Arg
                        20
30
           <210> 127
           <211> 21
<212> PRT
<213> Artificial Sequence
35
           <220>
           <223> cross-linked cyclic peptide containing PHB2 derived peptide
                   76-88aa
40
           <220>
           <221> MISC_FEATURE
           <222>
                  (1) . . (15)
           <223> linked by using decafluorobiphenyl
45
           <220>
           <221> MISC_FEATURE
           <222> (17) . . (17)
           <223> Xaa = Nal
50
           <400> 127
           Cys Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Cys Phe
55
           Xaa Arg Arg Arg Arg
                        20
```

```
<210> 128
          <211> 21
          <212> PRT
          <213> Artificial Sequence
5
          <220>
          <223> uncross-linked cyclic peptide containing PHB2 derived peptide
                 76-88aa
10
          <220>
          <221> MISC_FEATURE
          <222> (17)..(17)
          <223> Xaa = Nal
          <400> 128
15
          Ala Gln Tyr Pro Ile Ile Tyr Asp Ile Arg Ala Arg Pro Arg Ala Phe
                                              10
20
          Xaa Arg Arg Arg Arg
                      20
          <210> 129
          <211>
                20
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> modified PHB2 peptide
30
          <220>
          <221> MISC_FEATURE
          <222> (8)..(8)
<223> D-Ala
35
          <400> 129
          Arg Leu Pro Ala Gly Pro Arg Ala Met Gly Thr Ala Arg Arg Arg
40
          Arg Arg Arg Arg
45
          <210> 130
          <211> 20
          <212> PRT
          <213> Artificial Sequence
50
          <220>
          <223> modified PHB2 peptide
          <220>
          <221> MISC_FEATURE
55
          <222> (5)..(5)
          <223> D-Ala
```

	<400>	130												
	Arg Let	u Pro A	la Ala 5	a Pro	Arg	Gly	Met	Gly 10	Thr	Ala	Arg	Arg	Arg 15	Arg
5														
	Arg Arg	g Arg A 2	rg 0											
10	<210>	131												
	<211>													
	<212>			~										
	<213>	Artifi	Clai :	seque	nce									
15	<220>		_	_										
	<223>	modifi	ed PHI	B2 pe	ptid	е								
	<220>													
		MISC_F	EATURI	E										
20	<222>	(8)(
	<223>	D-Leu												
	<400>	131												
25	Arg Let	u Pro A	la Gl	y Pro	Arq	Leu	Met	Gly	Thr	Ala	Arq	Arg	Arq	Arg
23	1		5	-	_			10			_	_	15	-
	Arg Arg	g Arg A	_											
30		2	0											
	<210> <211>													
	<212>													
35	<213>	Artifi	cial :	Seque	nce									
	<220>													
	<223>	modifi	ed PH	B2 pe	ptid	e								
40	<220>	MISC_F	e a miioi											
		(5)(<u>.</u>										
	<223>		•											
45	<400>	132												
40	Amm To	u Desa A	1 a T a	ı. Doo	7	C1	Wat	C1	mb so	71-	7	7	7	7
	arg Let	u Pro A	та ње ¹ 5	u Pro	Arg	GTĀ	Met	10	THE	АТА	Arg	Arg	15	Arg
50	Arg Arg	g Arg A	rg											
		2	0											
		4.0.5												
	<210> <211>													
55	<212>	PRT												
	<213>	Artifi	cial :	Seque	nce									

```
<220>
           <223> modified PHB2 peptide
5
           <220>
           <221> MISC_FEATURE
           <222> (5)..(5)
           <223> D-Ala
10
           <220>
           <221> MISC_FEATURE
           <222>
                  (8) . . (8)
           <223> D-Ala
           <400> 133
15
           Arg Leu Pro Ala Ala Pro Arg Ala Met Gly Thr Ala Arg Arg Arg
                                                 10
20
           Arg Arg Arg Arg
           <210> 134
            <211> 20
            <212> PRT
            <213> Artificial Sequence
           <220>
           <223> modified PHB2 peptide
30
           <220>
            <221> MISC_FEATURE
           <222> (5)..(5)
<223> D-Leu
35
            <220>
            <221> MISC_FEATURE
            <222> (8)..(8)
<223> D-Leu
40
            <400> 134
            Arg Leu Pro Ala Leu Pro Arg Leu Met Gly Thr Ala Arg Arg Arg
                                                 10
                                                                      15
                            5
            1
45
            Arg Arg Arg Arg
                        20
50
            <210> 135
            <211> 20
            <212> PRT
            <213> Artificial Sequence
55
            <220>
            <223> modified PHB2 peptide
```

```
<220>
            <221>
                    MISC FEATURE
            <222>
                    (5)..(5)
            <223>
                    D-Ala
5
            <220>
            <221>
                    MISC_FEATURE
            <222>
                    (8) . . (8)
            <223>
                    D-Leu
10
            <400>
                    135
            Arg Leu Pro Ala Ala Pro Arg Leu Met Gly Thr Ala Arg Arg Arg Arg
                                                    10
15
            Arg Arg Arg Arg
                         20
            <210>
                    136
20
            <211>
                    20
                    PRT
            <212>
            <213>
                    Artificial Sequence
            <220>
25
            <223>
                   modified PHB2 peptide
            <220>
            <221>
                   MISC_FEATURE
30
            <222>
                    (5) . . (5)
            <223>
                    D-Leu
            <220>
            <221>
                   MISC_FEATURE
            <222>
                    (8) . . (8)
35
            <223>
                    D-Ala
            <400>
                    136
            Arg Leu Pro Ala Leu Pro Arg Ala Met Gly Thr Ala Arg Arg Arg
40
                                                    10
            Arg Arg Arg Arg
                         20
45
```

Claims

50

- 1. A peptide, comprising a site binding to a BIG3 polypeptide in a PHB2 polypeptide, wherein the peptide inhibits the binding between the PHB2 polypeptide and the BIG3 polypeptide.
- 2. The peptide of claim 1, wherein the peptide comprises any one or a combination of all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21; all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88; and all or part of the amino acid sequence consisting of the amino acids at positions 44 to 57, in the amino acid sequence of SEQ ID NO: 28.
- **3.** A peptide, comprising an amino acid sequence selected from the group consisting of (a) to (f) below, wherein the peptide inhibits the binding between a PHB2 polypeptide and a BIG3 polypeptide:

- (a) an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41;
- (b) an amino acid sequence in which one, two, or several amino acids are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41;
- (c) an amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53;
- (d) an amino acid sequence in which one, two, or several amino acids are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53;
- (e) an amino acid sequence selected from the group consisting of SEQ ID NOs: 82 and 83; and
- (f) an amino acid sequence in which one, two, or several amino acids are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 82 and 83.
- **4.** The peptide of claim 3, wherein the peptide comprises an amino acid sequence selected from the group consisting of (a') and (b') below:
 - (a') an amino acid sequence in which one, two, or several amino acid residues located at positions other than those corresponding to glycine at positions 15 and 18 in the amino acid sequence of SEQ ID NO: 28 are substituted with other amino acid residues in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 and 36 to 41; and
 - (b') an amino acid sequence in which one, two, or several amino acid residues located at positions other than that corresponding to aspartic acid at position 82 in the amino acid sequence of SEQ ID NO: 28 are substituted with other amino acid residues in an amino acid sequence selected from the group consisting of SEQ ID NOs: 5 and 47 to 53.
- 5. The peptide of any one of claims 1 to 4, wherein the peptide consists of 80 amino acid residues or less.
- 25 **6.** The peptide of any one of claims 1 to 5, wherein the peptide consists of 25 amino acid residues or less.
 - 7. The peptide of any one of claims 1 to 6, wherein the peptide consists of an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 36 to 41, 47 to 53, 82, and 83.
- 30 8. The peptide of any one of claims 1 to 7, wherein the peptide has been modified with a cell membrane-permeable substance.
 - 9. The peptide of any one of claims 1 to 8, wherein the peptide is cyclic.

5

10

15

20

40

45

- 10. The peptide of any one of claims 1 to 9, wherein the peptide is cross-linked.
 - 11. The peptide of any one of claims 1 to 10, wherein the peptide has either or both of the following properties (i) and (ii):
 - (i) suppressing growth of BIG3-positive cells; and
 - (ii) promoting phosphorylation of a serine residue in the PHB2 polypeptide in BIG3-positive cells.
 - 12. A polynucleotide encoding the peptide of any one of claims 1 to 11.
 - **13.** A pharmaceutical composition comprising: at least one ingredient selected from the group consisting of one or more of the peptides of any one of claims 1 to 11, a polynucleotide(s) encoding the peptide(s), and a pharmaceutically acceptable salt(s) of the peptide(s); and a pharmaceutically acceptable carrier.
 - 14. The pharmaceutical composition of claim 13, wherein the composition comprises any one or a combination of: a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21 in the amino acid sequence of SEQ ID NO: 28; a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 44 to 57 in the amino acid sequence of SEQ ID NO: 28; and a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88 in the amino acid sequence of SEQ ID NO: 28.
- 15. The pharmaceutical composition of claim 13 or 14, which is for suppressing growth of cancer cells or for treatment and/or prophylaxis (prevention) of cancer.
 - **16.** The pharmaceutical composition of claim 15, wherein the cancer is BIG3-positive cancer.

- 17. The pharmaceutical composition of claim 15 or 16, wherein the cancer is breast cancer.
- **18.** The pharmaceutical composition of any one of claims 15 to 17, wherein the cancer is estrogen receptor-positive cancer.
- **19.** A method for either or both of treatment and prophylaxis (prevention) of cancer, wherein the method comprises administering to a subject at least one selected from the group consisting of one or more of the peptides of any one of claims 1 to 11; a polynucleotide(s) encoding the peptide(s); and a pharmaceutically acceptable salt(s) of the peptide(s).
- 20. The method of claim 19, wherein the method comprises administering any one or a combination of: a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 11 to 21 in the amino acid sequence of SEQ ID NO: 28; a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 44 to 57 in the amino acid sequence of SEQ ID NO: 28; and a peptide comprising all or part of the amino acid sequence consisting of the amino acids at positions 76 to 88 in the amino acid sequence of SEQ ID NO: 28.

106

110

Cell Growth (Absorbance: 450 nm)

Ш

FIG. 8-2

FIG. 10-1

FIG. 10-2

Cell Growth (Absorbance: 450 nm)

FIG. 12

FG. 13

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2019/046505 A. CLASSIFICATION OF SUBJECT MATTER 5 Int.Cl. C12N15/12(2006.01)i, A61K38/10(2006.01)i, A61K38/12(2006.01)i, A61K48/00(2006.01)i, A61P35/00(2006.01)i, A61P43/00(2006.01)i, C07K7/06(2006.01)i, C07K7/08(2006.01)i, C07K14/47(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) Int.Cl. C12N15/12, A61K38/10, A61K38/12, A61K48/00, A61P35/00, A61P43/00, C07K7/06, C07K7/08, C07K14/47 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2019 Registered utility model specifications of Japan 1996-2019 Published registered utility model applications of Japan 1994-2019 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTPlus/JMEDPlus/JST7580 (JDreamIII), 20 CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS/REGISTRY(STN) DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ CHEN, Y. A. et al., Brefeldin A-inhibited guanine 1-6, 11-12 25 nucleotide-exchange protein 3 (BIG3) is predicted to 1-20 Υ interact with its partner through an ARM-type α -helical structure, BMC Research Notes, 2014, vol. 7, no. 435, pp. 1-8, particularly, abstract, background, fig. 3, 30 WO 2013/018690 A1 (TOKUSHIMA UNIVERSITY) 07 February 1 - 20Υ 2013, claims, paragraphs [0008], [0022] & US 2014/0162952 Al, claims, paragraphs [0011], [0143] & EP 2738255 A1 35 40 \boxtimes Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority "A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other 45 document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means "O" document published prior to the international filing date but later than document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 50 12.12.2019 24.12.2019 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Telephone No. 55 Tokyo 100-8915, Japan

123

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2019/046505 5 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-20 Α 吉丸哲郎 ほか, 新規 A キナーゼアンカータンパク質 BIG3 による抑制因子 PHB2 の制御は HER2 乳がん細胞増殖に必須である, 第 41 回日本分子生 10 物学会年会 要旨集,09 November 2018, 2P-0632, (YOSHIMARU, Tetsuro et al., A-kinase anchoring protein BIG3-PHB2 axis is required for progression of HER2-rich breast cancer cells), non-official translation (Abstracts of the 41st Annual Meeting of the Molecular Biology Society 15 of Japan) 20 25 30 35 40 45 50

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2013018690 A [0005]
- WO 2017126461 A [0007] [0053]
- WO 97016171 A [0046]
- WO 9967288 A [0069]
- US 5580895 A [0078]
- US 5589466 A [0078]

- US 5804566 A [0078]
- US 5739118 A [0078]
- US 5736524 A [0078]
- US 5679647 A [0078]
- WO 9804720 A [0078]
- US 4722858 A [0079]

Non-patent literature cited in the description

- JOHNSTON, S. R. Clin. Cancer Res., 2010, vol. 16 (7), 1979-87 [0006]
- FISHER, B. et al. J. Natl. Cancer Inst., 2005, vol. 97 (22), 1652-62 [0006]
- JORDAN, V. C. Nature Rev. Drug Discov., 2003, vol. 2 (3), 205-13 [0006]
- CLARKE, R. et al. Pharmacol. Rev., 2001, vol. 53

 (1), 25-71 [0006]
- FISHER, B. et al. J. Natl. Cancer Inst., 2001, vol. 93 (9), 684-90 [0006]
- CHLEBOWSKI, R. et al. Breast, 2009, vol. 2, 1-11
 [0006]
- CHUMSRI, S. et al. J. Steroid Biochem. Mol. Biol., 2011, vol. 125 (1-2), 13-22 [0006]
- KIM, J. W. et al. Cancer Sci., 2009, vol. 100 (8), 1468-78 [0006]
- YOSHIMARU, T. et al. Nat. Commun., 2013, vol. 4, 2443 [0006]
- YOSHIMARU, T. et al. Sci Rep., 2017, vol. 7 (1), 1821 [0006]
- MONTANO MM et al. Proc Natl Acad Sci USA., 1999, vol. 96 (12), 6947-52 [0022]
- MARK et al. Proc Natl Acad Sci USA, 1984, vol. 81 (18), 5662-6 [0031]
- **ZOLLER**; **SMITH.** *Nucleic Acids Res,* 1982, vol. 10 (20), 6487-500 [0031]
- DALBADIE-MCFARLAND et al. Proc Natl Acad Sci USA, 1982, vol. 79 (21), 6409-13 [0031]
- CREIGHTON. Proteins, 1984 [0034]
- KASASHIMA K. J Biol Chem, 2006, vol. 281 (47), 36401-10 [0041]
- YUBA E et al. J. Control. Release, 2011, vol. 149, 72-80 [0046]
- JOLIOT A.; PROCHIANTZ A. Nat Cell Biol., 2004, vol. 6, 189-96 [0047]
- MATSUSHITA et al. J. Neurosci., 2003, vol. 21 (16), 6000-7 [0048]
- FRANKEL et al. Cell, 1988, vol. 55 (6), 1189-93 [0048]

- GREEN; LOEWENSTEIN. Cell, 1988, vol. 55, 1179-88 [0048]
- **DEROSSI et al.** *J. Biol. Chem.*, 1994, vol. 269 (14), 10444-50 **[0048]**
- PARK et al. Proc. Natl Acad. Sci. USA, 2000, vol. 97 (15), 8245-50 [0048]
- POOGA et al. FASEB J., 1998, vol. 12 (1), 67-77 [0048]
- **OEHLKE et al.** *Biochim. Biophys. Acta,* 1998, vol. 1414 (1-2), 127-39 **[0048]**
- LIN et al. J. Biol. Chem., 1995, vol. 270 (24), 14255-8 [0048]
- SAWADA et al. Nature Cell Biol., 2003, vol. 5 (4), 352-7 [0048]
- LUNDBERG et al. Biochem. Biophys. Res. Commun., 2002, vol. 299 (1), 85-90 [0048]
- ELMQUIST et al. Exp. Cell Res., 2001, vol. 269 (2), 237-44 [0048]
- MORRIS et al. Nature Biotechnol., 2001, vol. 19 (2), 1173-6 [0048]
- ROUSSELLE et al. Mol. Pharmacol., 2000, vol. 57
 (4), 679-86 [0048]
- GAO et al. *Bioorg. Med. Chem.*, 2002, vol. 10 (12), 4057-65 [0048]
- HONG; CLAYMAN. Cancer Res., 2000, vol. 60 (23), 6551-6 [0048]
- COOS VERHOEF et al. Eur. J. Drug Metab. Pharmacokin., 1986, vol. 11 (4), 291-302 [0050]
- Peptide Synthesis. Interscience, 1966 [0069]
- The Proteins. Academic Press, 1976, vol. 2 [0069]
- Peptide Synthesis. Maruzen Co, 1975 [0069]
- Basics and Experiment of Peptide Synthesis.
 Maruzen Co, 1985 [0069]
- peptide synthesis. Development of Pharmaceuticals. Hirokawa, 1991, vol. 14 [0069]
- BARANY G.; MERRIFIELD R.B. Peptides Vol. 2, Solid Phase Peptide Synthesis. Academic Press, 1980, vol. 2, 100-118 [0069]

- MORRISON J. J Bacteriology, 1977, vol. 132 (1), 349-51 [0070]
- CLARK-CURTISS; CURTISS et al. Methods in Enzymology. 1983, vol. 101, 347-62 [0070]
- **HOPP et al.** *Bio/Technology,* 1988, vol. 6, 1204-10 **[0071]**
- BEAUCAGE SL; IYER RP. Tetrahedron, 1992, vol. 48, 2223-311 [0073]
- MATTHES et al. EMBO J, 1984, vol. 3 (4), 801-5 [0073]
- WARD et al. Nature, 1989, vol. 341 (6242), 544-6
 [0075]
- FASEB J, 1992, vol. 6 (7), 2422-7 [0075]
- **BETTER et al.** *Science*, 1988, vol. 240 (4855), 1041-3 [0075]
- **LEI et al.** *J Bacteriol*, 1987, vol. 169 (9), 4379-83 **[0075]**
- MIZUSHIMA S. Nucleic Acids Res, 1990, vol. 18 (17), 5322 [0076]
- MULLIGAN et al. Nature, 1979, vol. 277 (5692), 108-14 [0077]

- MIZUSHIMA et al. Nucleic Acids Res, 1990, vol. 18 (17), 5322 [0077]
- THOMAS KR; CAPECCHI MR. Cell, 1987, vol. 51
 (3), 503-12 [0078]
- WOLFF et al. Science, 1990, vol. 247, 1465-8 [0078]
- STOVER et al. *Nature*, 1991, vol. 351 (6326), 456-60 [0079]
- SHATA et al. Mol Med Today, 2000, vol. 6 (2), 66-71 [0079]
- SHEDLOCK et al. J Leukoc Biol, 2000, vol. 68 (6), 793-806 [0079]
- HIPP et al. In Vivo, 2000, vol. 14 (5), 571-85 [0079]
- KIM JW; AKIYAMA M; PARK JH et al. Cancer Sci., 2009, vol. 100 (8), 1468-78 [0086]
- **NELLES JL et al.** Expert Rev Endocrinol Metab., 2011, vol. 6 (3), 437-51 [0086]
- **STABILE LP et al.** *Cancer Res.,* 2005, vol. 65 (4), 1459-70 [0086]
- MARQUEZ-GARBAN DC et al. Steroids, 2007, vol. 72 (2), 135-43 [0086]