

# Machine Learning with Python

Wenbin Guo Bioinformatics IDP, UCLA

> wbguo@ucla.edu 2023 Spring



### Notation of the slides

Code or Pseudo-Code chunk starts with ">", e.g.
 ▶ print("Hello world!")

Link is underlined

Important terminology is in **bold** font

## Agenda

- Day 1: Introduction to machine learning
  - Some key concepts in machine learning
  - Jupyter notebook and some packages usage
- Day 2: Supervised learning
  - Classification
  - Regression
  - Regularization
- Day 3: Unsupervised learning
  - Dimension reduction
  - Clustering















# Day 3: Unsupervised learning

Wenbin Guo Bioinformatics IDP, UCLA

> wbguo@ucla.edu 2023 Spring

### Overview

### Time

• 3-hour workshop (45min + 45min + 30min + practice/Q&A)

### Topics

- ☐ Regression
- □ Regularization
- ☐ Dimension reduction
- ☐ Clustering



- □ 9 different classification algorithms
  - Logistic regression
  - KNN
  - Naïve bayes
  - Support vector machine
  - Decision tree
  - Random forest
  - Adaboost
  - Gradient boosting
  - Neural network



- ☐ 9 different classification algorithms
- ☐ Cross entropy loss function



- □ 9 different classification algorithms
- ☐ Cross entropy loss function
- ☐ Performance measure
  - Accuracy
  - Confusion matrix
  - Precision & Recall
  - ROC, AUC, PR-ROC



- 9 different classification algorithms
- ☐ Cross entropy loss function
- ☐ Performance measure
- □ Practice
  - Training-test-validation set construction
  - Performance measure calculation
  - ROC curve, decision boundary
  - Linearly non-separable example
  - Parameter tuning (overfitting/underfitting)



## Types of machine learning



# Supervised learning

- Training data with n samples of features x and labels y
- Learn a function class f(x) to describe y based on x



# Different choice of f() for regression tasks

- Linear regression
- Polynomial regression
- SVR
- Tree-based regression
- Boosting
- Neural Network

. . .



$$\hat{y} = f(x)$$

## Linear regression

Make prediction by computing the weighted sum of features

$$\hat{y} = heta_0 + heta_1 x_1 + heta_2 x_2 + \dots + heta_n x_n$$
 $\hat{y} = h_{m{ heta}}(\mathbf{x}) = m{ heta} \cdot \mathbf{x}$ 



### Linear regression

Make prediction by computing the weighted sum of features

$$\hat{y} = heta_0 + heta_1 x_1 + heta_2 x_2 + \dots + heta_n x_n$$
 $\hat{y} = h_{m{ heta}}(\mathbf{x}) = m{ heta} \cdot \mathbf{x}$ 

- Train the model: find a parameter set to best fit the data
- Loss function

Equation 4-3. MSE cost function for a Linear Regression model

$$ext{MSE}\left(\mathbf{X}, h_{oldsymbol{ heta}}
ight) = rac{1}{m} \sum_{i=1}^{m} \left(oldsymbol{ heta}^\intercal \mathbf{x}^{(i)} - y^{(i)}
ight)^2$$

Sometimes MAE is also used (less sensitive to outliers)

Equation 2-2. Mean absolute error (MAE)

$$ext{MAE}\left(\mathbf{X},h
ight) = rac{1}{m} \sum_{i=1}^{m} \! \left| h\left(\mathbf{x}^{(i)}
ight) - y^{(i)} 
ight|$$



## Linear regression

Make prediction by computing the weighted sum of features

$$\hat{y} = heta_0 + heta_1 x_1 + heta_2 x_2 + \dots + heta_n x_n$$
  $\hat{y} = h_{m{ heta}}(\mathbf{x}) = m{ heta} \cdot \mathbf{x}$ 

- Train the model: find a parameter set to best fit the data
- Normal equation

$$\widehat{\boldsymbol{ heta}} = \left( \mathbf{X}^{\intercal} \mathbf{X} \right)^{-1} \mathbf{X}^{\intercal} \mathbf{y}$$

$$\boldsymbol{\theta} = E(\widehat{\boldsymbol{\theta}})$$



## Polynomial regression

- When your data is more complex than a straight line
  - Add powers of a feature as new features

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$$

Be aware of the combinatory explosion of features!



Figure 4-12. Generated nonlinear and noisy dataset

## Support vector regression

### **SVM** classification

fit the largest possible street between two classes while limiting margin violations



#### Constraint becomes:

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i, \ \forall x_i$$
  
$$\xi_i \ge 0$$

#### Objective function penalizes for misclassified instances and those within the margin

$$\min \frac{1}{2} \left\| w \right\|^2 + C \sum_{i} \xi_i$$

C trades-off margin width and misclassifications

### **SVM** regression

fit as many instances as possible *on* the street while limiting margin violations



The kernel tricks can be used to solve nonlinear regression problem

## Tree-based regression

 The predicted value for each region is always the average target value of the instances in that region

#### Decision tree classification



#### Decision tree regression



Equation 6-4. CART cost function for regression

$$J(k,t_k) = rac{m_{ ext{left}}}{m} ext{MSE}_{ ext{left}} + rac{m_{ ext{right}}}{m} ext{MSE}_{ ext{right}} \quad ext{where} \; \left\{ egin{array}{l} ext{MSE}_{ ext{node}} = \sum_{i \in ext{node}} \left( \hat{y}_{ ext{node}} - y^{(i)} 
ight)^2 \ \hat{y}_{ ext{node}} = rac{1}{m_{ ext{node}}} \sum_{i \in ext{node}} y^{(i)} \end{array} 
ight.$$

# **Gradient Boosting Machines**

Use decision trees as base-learner, iteratively improves the weak learning model

- Fit a decision tree to the data  $\hat{y} = F_1(x)$
- Fit the next decision tree to the residuals from previous tree  $h_1(x) = y F_1(x)$
- $\triangleright$  Add the new tree to the algorithm  $F_2(x) = F_1(x) + h_1(x)$
- > Repeat this process until some mechanism tells us to stop (e.g. cross validation)



### **Neural Network**

- A universal function approximator
  - Loss function: MSE
  - No sigmoid activation function at the output node





# Overfitting: Von Neumann's elephant

"I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk." - Enrico Fermi



John von Neumann (1903-1957)



Table I. The five complex parameters  $p_1, \dots, p_5$  that encode the elephant including its wiggling trunk.

| Parameter         | Real part        | Imaginary part                         |
|-------------------|------------------|----------------------------------------|
| $p_1 = 50 - 30i$  | $B_1^x = 50$     | $B_1^y = -30$                          |
| $p_2 = 18 + 8i$   | $B_2^x = 18$     | $B_2^y = 8$                            |
| $p_3 = 12 - 10i$  | $A_3^x = 12$     | $B_3^y = -10$                          |
| $p_4 = -14 - 60i$ | $A_5^x = -14$    | $A_1^y = -60$                          |
| $p_5 = 40 + 20i$  | Wiggle coeff.=40 | $x_{\text{eye}} = y_{\text{eye}} = 20$ |

### Over/underfit and bias-variance tradeoff



### Over/underfit and bias-variance tradeoff





The bias-variance trade off

### **Underfit & Overfit**

### Symptom and solutions



### **Underfit & Overfit**

### Symptom and solutions



## Regularization techniques in regression



- Regularization: to put constrains on the model
  - The fewer degrees of freedom, the harder it overfits
  - In reality, it's common to have d >> n, regularization is usually needed

## 3 typical constrains in regression

Lasso (L1 penalty)

$$J(oldsymbol{ heta}) = ext{MSE}(oldsymbol{ heta}) + lpha \sum_{i=1}^n \lvert heta_i 
vert$$

Ridge (L2 penalty)

$$J(oldsymbol{ heta}) = ext{MSE}(oldsymbol{ heta}) + lpha rac{1}{2} \sum_{i=1}^n { heta_i}^2$$

Elastic-net

$$J(\boldsymbol{\theta}) = ext{MSE}(\boldsymbol{\theta}) + r \alpha \sum_{i=1}^{n} |\theta_i| + \frac{1-r}{2} \alpha \sum_{i=1}^{n} {\theta_i}^2$$

This forces the learning algorithm to not only fit the data but also keep the model weights as small as possible!

## 3 typical constrains in regression

Lasso (L1 penalty)

$$J(oldsymbol{ heta}) = ext{MSE}(oldsymbol{ heta}) + lpha \sum_{i=1}^n \lvert heta_i 
vert$$

Ridge (L2 penalty)

$$J(oldsymbol{ heta}) = ext{MSE}(oldsymbol{ heta}) + lpha rac{1}{2} \sum_{i=1}^n { heta_i}^2$$



• Elastic-net

$$J(oldsymbol{ heta}) = ext{MSE}(oldsymbol{ heta}) + r lpha \sum_{i=1}^n | heta_i| + rac{1-r}{2} lpha \sum_{i=1}^n { heta_i}^2$$

### Summary

- 6 regression algorithms
- MSE/MAE loss function
- Over/Underfit and Bias-variance tradeoff
- Regularization
  - LASSO
  - Ridge
  - Elastic net

# Unsupervised learning

- Dimension reduction
  - PCA
  - t-SNE
  - Autoencoder

. . .

- Clustering
  - K-means
  - Hierarchical
  - DBSCAN

. . .



### Dimension reduction

High dimensional: a blessing and a curse



Figure 8-1. Point, segment, square, cube, and tesseract (0D to 4D hypercubes)<sup>2</sup>

- Curse of dimensionality:
  - Many machine learning algorithm have hard time to find good solutions in high dimensional setting
  - The training can be extremely slow when dimension (number of features) is high

### Preserving the maximum variance

- Data compression
- Noise removal
- Data visualization



### Preserving the maximum variance

- Data compression
- Noise removal
- Data visualization



Figure 8-7. Selecting the subspace to project on

### Preserving the maximum variance

- Data compression
- Noise removal
- Data visualization

### Goal:

• find an orthogonal set of r linear basis vectors  $w_j \in R^d$  and the corresponding score  $z_i \in R^r$ , such that we minimize the average **reconstruction error** 

$$J(\mathbf{W}, \mathbf{Z}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_i - \hat{\mathbf{x}}_i||^2$$

where 
$$\hat{\mathbf{x}}_i = \mathbf{W}\mathbf{z}_i$$



Figure 8-7. Selecting the subspace to project on



PCA achieved by Singular value decomposition (SVD)



 $\widehat{U}$   $\widehat{\Sigma}$ : Principal component scores

 $\hat{V}$ : Principal directions

PCA achieved by Singular value decomposition (SVD)



Project data on to the reduced dimension space

$$X_{d-proj} = X\widehat{V}$$

## t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Nonlinear dimensionality reduction
  - PCA uses the global covariance matrix
  - t-SNE focus more on the local structure
- Core algorithm
  - In high dimensional space

$$p_{ij} = rac{\exp(-\left\|x_{i} - x_{j}
ight\|^{2}/2\sigma_{i}^{2})}{\sum_{k 
eq l} \exp(-\left\|x_{k} - x_{l}
ight\|^{2}/2\sigma_{i}^{2})}$$

In lower dimensional space

$$q_{ij} = rac{(1 + \left\| y_i - y_j 
ight\|^2)^{-1}}{\sum_{k 
eq l} (1 + \left\| y_k - y_l 
ight\|^2)^{-1}}$$

• Try to minimize the difference of 2 distributions

$$C = D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left( \frac{P(x)}{Q(x)} \right)$$



## t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Nonlinear dimensionality reduction
  - PCA uses the global covariance matrix
  - t-SNE focus more on the local structure
- Core algorithm
  - In high dimensional space

$$p_{ij} = rac{\exp(-\left\|x_{i} - x_{j}
ight\|^{2}/2\sigma_{i}^{2})}{\sum_{k 
eq l} \exp(-\left\|x_{k} - x_{l}
ight\|^{2}/2\sigma_{i}^{2})}$$

• In lower dimensional space

$$q_{ij} = rac{(1 + \left\| y_i - y_j 
ight\|^2)^{-1}}{\sum_{k 
eq l} (1 + \left\| y_k - y_l 
ight\|^2)^{-1}}$$





Try to minimize the difference of 2 distributions

$$C = D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left( \frac{P(x)}{Q(x)} \right)$$

## Autoencoder

Nonlinear dimension reduction with NN



### Autoencoder

Nonlinear dimension reduction with NN

- Key idea:
  - An encoder function z = f(x)
  - A Decoder function x = g(z)
  - Learn to set  $g(f(x)) \cong x$





## Autoencoder

- Nonlinear dimension reduction with NN
- Key idea:
  - An encoder function z = f(x)
  - A Decoder function x = g(z)
  - Learn to set  $g(f(x)) \cong x$
- Loss function: reconstruction error
  - Minimize  $||X g \circ f(X)||^2$





## Clustering

The vast majority of data is unlabeled. The clustering algorithm tries to identify similar instances and assigning them to *clusters* 

- K-means
- Hierarchical clustering
- DBSCAN



Look for instances centered around a particular point (centroid)

### Core algorithm

#### Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: until The centroid positions do not change.



Look for instances centered around a particular point (centroid)

### Core algorithm

#### **Algorithm 1** k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: until The centroid positions do not change.

The algorithm is guaranteed to converge in a finite number of steps (usually quite small).



Look for instances centered around a particular point (centroid)

### Core algorithm

#### Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: until The centroid positions do not change.

The algorithm is guaranteed to converge in a finite number of steps (usually quite small). But it might not converge to a right solution (local optimum)





Look for instances centered around a particular point (centroid)

### Core algorithm

#### **Algorithm 1** k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

The algorithm is guaranteed to converge in a finite number of steps (usually quite small). But it might not converge to a right solution (local optimum)





#### Solution:

- If you know the approximate position of centroids, manually set them during initialization
- Run the algorithm multiple times with different random initialization, keep the best solution

Look for instances centered around a particular point (centroid)

### Core algorithm

#### **Algorithm 1** k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

The algorithm is guaranteed to converge in a finite number of steps (usually quite small). But it might not converge to a right solution (local optimum)





#### Note:

- K-means favor cluster with similar size, it doesn't perform well with varying sizes
- Need to specify the number of clusters

# Hierarchical (Agglomerative) clustering

A bottom-Up approach to connect the nearest pair of clusters

```
\begin{split} t &= 0 \\ Choose \ R_0 &= [C_i = x_i, i = 1,...,N] \ as \ initial \ clustering \\ Repeat \\ t &= t+1 \\ Find \ the \ closest \ clusters \ C_i, C_j \ in \ the \ existing \ clustering \ R_{t-1} \ such \ that \\ g(C_i, C_j) &= \max_{r,s} (C_r, C_s) \ if \ g \ is \ similarity \ function \\ g(C_i, C_j) &= \min_{r,s} (C_r, C_s) \ if \ g \ is \ dissimilarity \ function \\ Define \ C_q &= C_i \cup C_j \ and \ produce \ the \ new \ clustering \ R_t &= [R_{t-1} - C_i - C_j] \cup C_q \\ Until \ only \ one \ cluster \ is \ left \end{split}
```



# Hierarchical (Agglomerative) clustering

A bottom-Up approach to connect the nearest pair of clusters



Scale up well to large number of instance or clusters

## **DBSCAN**

Defines clusters as continuous regions of high density

#### Core algorithm

#### Algorithm 3: DBSCAN Clustering

**Input:**  $2D\_Data$  obtained by Algorithm1 as the input data, |Data| objects to be clustered, the neighborhood radius ( $\epsilon$ ) and minimum points ( $\mu$ )

- 1: Randomly select a point P
- 2: Retrieve all points density-reachable from P based on  $\varepsilon$  and  $\mu$  and Similarity Metric (*Algorithm2*)
- 3: If *P* is a core point, a cluster is formed.
- 4: If *P* is a border point, no points are density-reachable from P and DBSCAN selects the next no-visited point randomly.
- 5: Continue the procedure until all points have been processed.



- Works pretty well if clusters are dense enough and separated well by low-density regions
- Robust to outliers
- Computation complexity is  $O(m \log m)$

## Let's do some practice!





Machine learning be like

<sup>▶</sup> git clone https://github.com/wbvguo/qcbio-ML\_w\_Python.git

## Summary

We have knowledge about ☐ Machine learning's definition and categories ☐ The workflow for train a machine learning model ☐ Rationale of several major machine learning algorithms! ☐ Performance measure for evaluating models ☐ Challenges in machine learning and potential solutions And we have experience in ☐ Jupyter notebook ☐ NumPy, matplotlib, scikit-learn, keras ☐ Build, train, evaluate a classifier or regressor ☐ Tune hyperparameters ☐ Unsupervised learning (PCA, K-Means)

# Summary of algorithms

| Supervised learning |                       | Unsupervised learning |              |
|---------------------|-----------------------|-----------------------|--------------|
| Classification      | Regression            | Dimension reduction   | Clustering   |
| Logistic regression | Linear regression     | PCA                   | K-means      |
| KNN                 | Polynomial regression | t-SNE                 | Hierarchical |
| Naïve bayes         | SVR                   | Autoencoder           | DBSCAN       |
| SVM                 | Tree-based            |                       |              |
| Decision tree       | GBM                   |                       |              |
| Random forest       | Neural Network        |                       |              |
| Adaboost            |                       |                       |              |
| Gradient boosting   |                       |                       |              |
| Neural network      |                       |                       |              |

# Beyond machine learning algorithms

- Problem formulation
- Data cleansing
- Feature engineering
  - Feature encoding
  - Imputation: Missing data handling
  - Transformation/Normalization/Standardization

. . .



# Where to get help?

- https://www.google.com
- https://stackoverflow.com
- https://stats.stackexchange.com/
- https://towardsdatascience.com/
- https://www.3blue1brown.com
- https://statquest.org/
- https://openai.com/blog/chatgpt/





# towards data science







# Lastly, GLHF!



"good luck, have fun with machine learning"



Q&A

Google docs