https://srhumir.github.io/pool/#1

ARIMA?!

When a forecasting project is not one

Reza Hosseini

ARIMA?!

https://srhumir.github.io/pool/#1

Outline

ARIMA?!

- \cdot The problem
- · Is it a forecast problem?
- · Weekly seasonality
- · Multiseasonal time series
- · Machine learning approach

The problem

Forecasting the number of visitors to Nettebad Osnabrück. Using

- · Visitors to the pool from 2005-03-20
- · Some variables about the pool such as events, classes, availability of certain facilities etc.
- · Weather data

https://inclass.kaggle.com/c/swimming-pool-visitor-forecasting

Visitors to the Nettebad Osnabrück (2010-2013)

Is it a forecast problem?

 $\cdot\,\,$ It seems so, but looking at the lag plots ...

Is it a forecast problem?

 $\cdot\,\,$ It seems so, but looking at the lag plots ...

Is it a forecast problem?

 $\cdot\,\,$ It seems so, but looking at the lag plots ...

Is it a forecast problem?

 $\cdot\,\,$ It seems so, but looking at the lag plots ...

Is it a forecast problem

· And the autocorrelation plot

Weekly seasonality

- $\cdot\;$ Autocorrelation plot suggested weekly seasonality in the data
- $\boldsymbol{\cdot}$ The missing days is imputed and the time series is decomposed

Accuracy of the seasonality

Forecasting via decomposition

Last three years

Last three years

- · One could remove seasonality and do the prediction on the remainder, then add seasonality
- The best RMSE I could get with this approach was 330.15

Multiseasonality approach

 \cdot As there are two kinds of sesonality, one can use multiseasonal time series and TBATS

Forecast by TBATS

· Reached RMSE of 376

15 of 21 10/17/2017, 10:58 AM

,

Machine learning approach

- School and bank holidays
- $\cdot\;$ Weekday and month name to consider seasonality
- · Weather data (temprature, wind, preception,...)
- · New features
 - Monthly average temprature
 - Warmer than monthly average
 - Warmer than the previous day
 - Heat index
- · Adjust prices by consumer price index (CPI)

Machine learning approach

- $\cdot\,\,$ Train a random forest to get feature importance
- \cdot Use the most important feature (99% cumulative importance)
- $\cdot\;$ Use gradient boosting (XGboost) for the final prediction
- $\cdot\;$ Adjust christmas and new years manually to the previous year value
- The final rmse is 247.33 (269.89 without manuall adjusment)

Machine learning approach

Machine learning approach

https://srhumir.github.io/pool/#1

Thank you for your patience

10/17/2017, 10:58 AM

With confidence interval

Forecast by Machine learning approach vs. TBATS approach

