CSC 148: Introduction to Computer Science Week 10

Efficiency considerations (revisited)

Comparison: search efficiency of

lists / LinkedLists / Trees / BSTs, etc..

Efficiency of BST operations... (we assume you did lab9!)

University of Toronto Mississauga,

Department of Mathematical and Computational Sciences

contains in a list

 Suppose v refers to a number: How efficient is the following statement in its use of time?

```
v in [97, 36, 48, 73, 156, 947, 56, 236]
```

- Roughly how much longer would the statement take if the list were
 - 10 times longer?
 - 1,000 times longer?
 - 1,000,000,000 times longer?
- Does it matter whether we used a built-in Python list or our implementation of LinkedList?

Speed of Search

- With either a Python list or a linked list of n elements
 - We must look at elements one by one
 - Each time we eliminate only one element from consideration
 - In the worst case, we look at all n elements
- Either way, it takes time proportional to n

Can we make search in a Python list faster?

Ordering

- Suppose we know the list is sorted in ascending (or nondescending ...) order
 - What strategy would you use to get to the value (if it exists) in a lot less steps than linear search?

How does the running time scale up as we make the list 2, 4, 8, 16,
 32, times longer?

log n

- Key insight: the number of times I repeatedly divide n in half, before
 we are down to 1 element, is the same as the number of times I
 double 1 before I reach (or exceed) n.
 - log₂ n, often known in CS as log n
- For an *n*-element list, it takes time proportional to *n* steps to decide
 whether the list contains a value, but only time proportional to log(n)
 to do the same thing on an ordered list
- What does that mean if n is 1,000,000? What about 1,000,000,000?

Aside: logarithms

Recall:

- $log_a x = y <=> a^y = x$
- Example: $2^5 = 32 <=> \log_2 32 = 5$

- log₂ n, is often known in CS as log n
 - After all, base 2 is our favorite base in CS .. :)

The Multiset ADT (search, insert, delete)

- Conclusion: For a sorted list with n items...
 - search is fast: O(log n) worst case, because of binary search
 - insert and delete can be slow, if inserting/removing from the front of the list – O(n) in the worst case

Tree Search?

- How efficient is _contains_ on each of the following:
 - our general Tree class?
 - our BinarySearchTree class?
- As you'll see, for the latter the answer is: "it depends..."

The Multiset ADT (search, insert, delete)

For a general Tree with n items...

```
for subtree in self._subtrees:
   if item in subtree: # if subtree.__contains__(item):
      return True
return False
```


Search Speed in Tree or BinaryTree

- Strategy similar to lists:
 - We must look at elements one by one
 - Each time we eliminate only one element from consideration
 - In the worst case, we look at all n elements
- Either way, it takes time proportional to n

The Multiset ADT (search, insert, delete)

- Bottom line: For a general tree with n items...
 - insert can be fast, if you insert as a child of the root O(1)
 - search and delete can be slow, since you might need to check every item in the tree O(n) in the worst case

Worst case running times so far...

Better?

operation	Sorted List	Tree	Binary Search Tree
search	O(log n)	O(<i>n</i>)	
insert	O(<i>n</i>)	O(1)	
delete	O(<i>n</i>)	O(<i>n</i>)	

Investigating BST efficiency

Worksheet ...

Search efficiency in a BST?

- Recall the BST property
 - Exploit the ordering property to go either left or right when searching, but not both
 - => Search is narrowed down to only half of the yet-to-beconsidered parts of the tree
 - If value is not in the tree, search all the way to leaf
 - => Worst case, maximum number of steps is equal to the max height of the tree
 - How big is the height in relation to the number of nodes?

Max number of values for height h

- What is the maximum number of values in a BST of height h:
 - 0?
 - 1?
 - 2?
 - 3?
 - 4?
 - 148?
 - h?

Height h based on number of nodes n

- Let's figure out the height h for a given number of nodes n
- We know that n ≤ 2^h 1

=>
$$n + 1 \le 2^h$$

=> $\log_2 (n + 1) \le h$
=> $h \ge \log_2 (n + 1)$

- So, time to go down a path in the BST will be proportional to log n
 - Or will it?

Search speed in BST

- Time will be proportional to log n, only if the tree is balanced!
- Example (imbalanced tree):
 - Time takes proportional to n in this case

- We say that a BST is balanced if its left and right subtrees have roughly equal heights, and these subtrees are also balanced.
- Balanced BSTs have height $\approx \log n$.

Conclusion: Search efficiency in a BST

- Searches that are directed along a single path are efficient:
 - a BST with 1 node has height 1
 - a BST with 3 nodes may have height 2
 - a BST with 7 nodes may have height 3
 - a BST with 15 nodes may have height 4
 - a BST with n nodes may have height $\lceil \log n \rceil$.

1,000,000 nodes => height < 20!

 If the BST is "balanced", then search takes log n node accesses.

Efficiency of BST operations

In a binary search tree, each Multiset operation's worst-case running time is proportional to the height h of the tree (where $\log n \le h \le n$).

operation	Sorted List	Tree	Binary Search Tree
search	O(log n)	O(<i>n</i>)	O(<i>h</i>)
insert	O(<i>n</i>)	O(1)	O(<i>h</i>)
delete	O(<i>n</i>)	O(n)	O(h)

Efficiency: to be continued in later courses...

 In later courses, you will learn about balanced trees (AVL trees, red-black trees, etc.)

AVL trees ...

operation	Sorted List	Tree	BST	Balanced BST
search	O(log n)	O(<i>n</i>)	O(h): $O(n)$	O(<i>h</i>): O(log <i>n</i>)
insert	O(<i>n</i>)	O(1)	O(h): O(n)	O(<i>h</i>): O(log <i>n</i>)
delete	O(<i>n</i>)	O(<i>n</i>)	O(h): O(n)	O(h): O(log n)

Other Trees

- If you have enormous amounts of data, binary trees won't cut it (getting to a leaf is still expensive)
- Databases are such examples (large volumes of data, must fit in memory)
 - Increase the arity/branching factor!
 - Make heavy use of B-trees...
 - You will see this in later courses (CSC343, CSC443)

