Stochastyczne modele systemów oddziuałujących 2024

zadanie domowe 2

termin: 12.12.2024

Niech $(N_t)_{t\in\mathbb{R}_+}$ będzie jednorodnym procesem Poissona z parametrem $\lambda>0$. Dla $x\in\mathbb{R}$ definiujemy proces $U^{(x)}=(U^{(x)}_t)_{t\in\mathbb{R}_+}$ jako rozwiązanie

$$U_t^{(x)} = x + \int_0^t \left(U_{s-}^{(x)} \right)^2 dN_s.$$

Tutaj $U_{s-}^{(x)}$ oznacza granicę lewostronną $U^{(x)}$ w punkcie $s\colon$

$$U_{s-}^{(x)} = \lim_{t \uparrow s} U_t^{(x)}.$$

Całkę interpretujemy w sensie Lebesgue'a-Stieltjesa. Możemy zapisać ją jawnie jako

$$\int_0^t \left(U_{s-}^{(x)} \right)^2 dN_s = \sum_{j=1}^{N_t} \left(U_{S_j-}^{(x)} \right)^2,$$

gdzie $S_j=\inf\{t\geq 0\ :\ N_t=j\}.$ Pokaż, że $\mathbf{P}_x[\ \cdot\]=\mathbb{P}[U^{(x)}\in\cdot\]$ jest procesem Fellera.