Trees & Forests

Andreas Müller

Why trees?

- Very powerful modeling method non-linear!
- Doesn't care about scaling of distribution of data!
- "Interpretable"
- Basis of very powerful models!

Decision Trees for Classification

Idea: series of binary questions

Building trees

Continuous features: "questions" are thresholds on single features.

[Other methods are possible but not as common]

For each split: exhaustive search over all features and thresholds!

Minimize "impurity"

Criteria (for classification)

Gini index:

$$H_{\text{gini}}(X_m) = \sum_{k \in \mathcal{Y}} p_{mk} (1 - p_{mk})$$

• Cross-entropy:

$$H_{CE}(X_m) = -\sum_{k \in \mathcal{Y}} p_{mk} \log(p_{mk})$$

 X_m observations in node m

 ${\cal Y}$ classes

 $p_m.$ distribution over classes in node m

Prediction

Traverse tree based on feature tests Predict most common class in leaf

Regression trees

• Impurity Criteria:

Mean Squared Error

Mean Absolute Error

• Prediction:

Predict mean.

• Without regularization / pruning:

Each leaf often contains a single point to be "pure"

Parameter tuning

- Pre-pruning and post-pruning (not in sklearn yet)
- Limit tree size (pick one):

```
max_depth
max_leaf_nodes
min_samples_split
(and more)
```

No pruning

max_depth=4

max_leaf_nodes=8

min_samples_split=50


```
from sklearn.model_selection import GridSearchCV
param_grid = {'max_depth':range(1, 7)}
grid = GridSearchCV(DecisionTreeClassifier(random_state=0), param_grid=param_grid, cv=10)
grid.fit(X_train, y_train)
```



```
from sklearn.model_selection import GridSearchCV
param_grid = {'max_leaf_nodes':range(2, 20)}
grid = GridSearchCV(DecisionTreeClassifier(random_state=0), param_grid=param_grid, cv=10)
grid.fit(X_train, y_train)
```


Extrapolation

Would be the same for nearest neighbor regression!

Instability

```
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, stratify=iris.target, random_state=0)
tree = DecisionTreeClassifier(max_leaf_nodes=6).fit(X_train, y_train)
tree_dot = export_graphviz(tree, out_file=None, feature_names=iris.feature_names)
graphviz.Source(tree_dot)
```


X_train, X_test, y_train, y_test = train_test_split(
 iris.data, iris.target,| stratify=iris.target, random_state=1)
tree = DecisionTreeClassifier(max_leaf_nodes=6).fit(X_train, y_train)
tree_dot = export_graphviz(tree, out_file=None, feature_names=iris.feature_names)
graphviz.Source(tree_dot)

Feature importance

```
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target,|stratify=iris.target, random_state=1)
tree = DecisionTreeClassifier(max_leaf_nodes=6).fit(X_train, y_train)
tree_dot = export_graphviz(tree, out_file=None, feature_names=iris.feature_names)
graphviz.Source(tree_dot)
```


tree.feature_importances_

array([0. , 0. , 0.414, 0.586])

Unstable tree → unstable feature importances.

Might take one or multiple from a group of correlated features.

Categorical Data

- Can split on categorical data directly
- Intuitive way to split: split in two subsets
- 2 ^ n_values many possibilities
- Possible to do in linear time exactly for gini index and binary classification.
- Heuristics done in practice for multi-class.
- Not in sklearn release version :(

Predicting probabilities

- Fraction of class in leaf.
- Without pruning: Always 100% certain!
- Even with pruning might be too certain.

Random Forests

• Smarter bagging for trees!

Randomize in two ways

• For each tree:

Pick bootstrap sample of data

For each split:
 Pick random sample of features

• More tree are always better

Tuning Random Forests

- Main parameter: max_features
 - around sqrt(n_features) for classification
 - Around n_features for regression
- n_estimators > 100
- Prepruning might help, definitely helps with model size!
- max_depth, max_leaf_nodes, min_samples_split again

Variable Importance

```
X_train, X_test, y_train, y_test = train_test_split(
   iris.data, iris.target, stratify=iris.target, random_state=1)
rf = RandomForestClassifier(n estimators=100).fit(X train, y train)
rf.feature_importances_
array([ 0.101, 0.034, 0.437, 0.428])
plt.barh(range(4), rf.feature_importances_)
plt.yticks(range(4), iris.feature names);
  petal width (cm) -
 petal length (cm) -
  sepal width (cm) -
 sepal length (cm) -
                                                        0.2
                                       0.1
                                                                          0.3
                                                                                           0.4
                      0.0
```