Maximum Likelihood (ML) and Maximum A Posteriori (MAP) estimation

Announcements

- A2 posted, sign up and create your teams
- Midterm exam 10/26 6:30pm-7:45pm
 - Practice materials posted on Canvas (+tophat)
- Don't forget the quiz (deadline on Friday)
- A0 grades, submit your regrade requests following instructions in the syllabus
- Next class (Monday) will be via zoom (we will do another coding exercise)

Candy Example

- Candy comes in 2 flavors, cherry and lime
- Manufacturer makes 5 types of bags:

- h1 and h5 are equally common. h2 is twice as common as h1, h4 is twice as common as h5, and h3 is twice as common as h2.
- Suppose we draw
 O
- Which bag are drawing from?

Bayesian Learning

- Main idea: Compute the probability of each hypothesis, given the data
- Data **d**:
- Hypotheses: h₁,...,h₅

Using Bayes' Rule

- $P(h_i|d) = \alpha P(d|h_i) P(h_i)$ is the **posterior**
 - (Recall, $1/\alpha = P(\mathbf{d}) = \sum_i P(\mathbf{d} | h_i) P(h_i)$)
- P(d|h_i) is the likelihood
- P(h_i) is the hypothesis prior

Computing the Posterior

- Assume draws are independent
- Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$
- d = {• d = {

$$\begin{array}{lll} P(d \,|\, h_1) = 0 & P(\textbf{d} \,|\, h_1) P(h_1) \approx 0 & P(h_1 \,|\, \textbf{d}) = 0 \\ P(d \,|\, h_2) = 0.25^5 & P(\textbf{d} \,|\, h_2) P(h_2) \approx 1.9 \text{e-4} & P(h_2 \,|\, \textbf{d}) \approx 1.2 \text{e-3} \\ P(d \,|\, h_3) = 0.5^5 & P(\textbf{d} \,|\, h_3) P(h_3) \approx 1.2 \text{e-2} & P(h_3 \,|\, \textbf{d}) \approx 0.078 \\ P(d \,|\, h_4) = 0.75^5 & P(\textbf{d} \,|\, h_4) P(h_4) \approx 4.7 \text{e-2} & P(h_4 \,|\, \textbf{d}) \approx 0.29 \\ P(\textbf{d} \,|\, h_5) P(h_5) \approx 0.1 & P(h_5 \,|\, \textbf{d}) \approx 0.62 \\ & P(\textbf{d}) \approx 0.16 \end{array}$$

Posterior Hypotheses

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Data: All our samples are limes.

Parameter estimation

- Assume that data is believed to follow some distribution or model (e.g. Gaussian, Poisson, etc.), represented as M
 - Maybe by looking at the histogram of the data we suspect that data is Gaussian or Uniform
 - Maybe we know something about the process that generated the data
- Unfortunately
 - The model has unknown parameter(s) Θ (e.g. model parameters -> μ or σ)
 - Observe a random sample from distribution (independent, identically distributed): $X_1,...,X_n$ (i.i.d) $\sim P(X \mid \Theta)$
 - Want to estimate parameter (Θ) from the data, $D = \{X_i : \widehat{\Theta}\}$, i = 1... N
- How do we compute the "best" or "optimal" parameter estimates from the data?

Parameter estimation

 Generally, there are two types of parameter estimation approaches:

Maximum Likelihood Estimation (MLE)

$$M_{ML} = \underset{M \in \mathcal{M}}{\operatorname{arg max}} \{ p(\mathcal{D}|M) \}.$$

Maximum a posteriori (MAP) Estimation

$$M_{MAP} = \underset{M \in \mathcal{M}}{\operatorname{arg max}} \{ p(M|\mathcal{D}) \}$$

Probability components

From Bayes Rule

$$p(M|\mathcal{D}) = \frac{p(\mathcal{D}|M) \cdot p(M)}{p(\mathcal{D})},$$

- P(M/D) is the posterior distribution of the model given the data (or observation)
- P(D|M) is the likelihood of the data given the model
- *P(M)* is the **prior** distribution of the model
- *P(D)* is the marginal distribution of the data

$$p(\mathcal{D}) = \begin{cases} \sum_{f \in \mathcal{F}} p(\mathcal{D}|f) p(f) & f : \text{discrete} \\ \\ \int_{\mathcal{F}} p(\mathcal{D}|f) p(f) df & f : \text{continuous} \end{cases}$$

Calculus Review: Function Max or Min

- To find max or min of a function h(x):
 - 1. Take the first and second derivatives of h(x) with respect to x
 - 2. Set the first derivative to zero and solve for x (i.e. "value")
 - 3. Evaluate the second derivative of h(x) using the solution(s) from step 2
 - 1. If h''("value") > 0, then minimum at x = "value"
 - 2. If h''("value") < 0, then maximum at x = "value"

Calculus Review: Function Max or Min

- Examples: $h_1(x) = x^2$ and $h_2(x) = -x^2$
 - $-h_1'(x) = 2x$, $h_1''(x) = 2$; $h_2'(x) = -2x$, $h_2''(x) = -2$
 - $-h_1'(x) = 0 \Rightarrow x = 0... h_2'(x) = 0 \Rightarrow x = 0$
 - For h_1 : minimum at x = 0; For h_2 : maximum at x = 0
- **Note**: maximizing f(x) is equivalent to minimizing -f(x)

ML Estimation

$$M_{ML} = \underset{M \in \mathcal{M}}{\operatorname{arg max}} \{ p(\mathcal{D}|M) \}.$$

- MLE chooses Θ to best explain the data (assuming i.i.d)
 - Assumes no knowledge of prior distribution of the model or data

Example: ML Estimation for Poisson distribution

Example 8: Suppose data set $\mathcal{D} = \{2, 5, 9, 5, 4, 8\}$ is an i.i.d. sample from a Poisson distribution with an unknown parameter λ_t . Find the maximum likelihood estimate of λ_t .

The probability density function of a Poisson distribution is expressed as $p(x|\lambda) = \lambda^x e^{-\lambda}/x!$, with some parameter $\lambda \in \mathbb{R}^+$. We will estimate this parameter as

$$\lambda_{ML} = \underset{\lambda \in (0,\infty)}{\operatorname{arg max}} \left\{ p(\mathcal{D}|\lambda) \right\}. \tag{2.2}$$

Example: ML Estimation for Poisson distribution

- Poisson Distribution $p(x|\lambda) = \lambda^x e^{-\lambda}/x!$
- We can write the likelihood function as

$$p(\mathcal{D}|\lambda) = p(\lbrace x_i \rbrace_{i=1}^n | \lambda)$$

$$= \prod_{i=1}^n p(x_i | \lambda)$$

$$= \frac{\lambda^{\sum_{i=1}^n x_i} \cdot e^{-n\lambda}}{\prod_{i=1}^n x_i!}.$$

- To make it easier to find λ that maximizes the likelihood we take a log (since log is a monotonic function it won't affect the result)
- We express the log-likelihood as $ll(D, \lambda) = \ln p(\mathcal{D}|\lambda)$

$$ll(\mathcal{D}, \lambda) = \ln \lambda \sum_{i=1}^{n} x_i - n\lambda - \sum_{i=1}^{n} \ln (x_i!)$$

Example: ML Estimation for Poisson distribution

• Next we take the first derivative with respect to λ

$$\frac{\partial ll(\mathcal{D}, \lambda)}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n$$

$$= 0.$$

$$ll(\mathcal{D}, \lambda) = \ln \lambda \sum_{i=1}^{n} x_i - n\lambda - \sum_{i=1}^{n} \ln (x_i!)$$

• And we find that λ_{ML} is equal to the sample mean

$$\lambda_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• When a distribution is parametrized by its mean (as with Poisson, remember $E(p(x)) = \lambda$) it often happens that

$$\hat{\Theta}_{MLE} = \bar{x}$$

MAP Estimation

$$M_{MAP} = rg \max_{M \in \mathcal{M}} \left\{ p(M|\mathcal{D}) \right\} \qquad_{p(M|\mathcal{D}) = \frac{p(\mathcal{D}|M) \cdot p(M)}{p(\mathcal{D})}}$$

- As before have $X_1,...X_n$ (i.i.d) $^{\sim}P(X|\Theta)$, and want to estimate Θ
- Suppose now we have a prior belief on Θ , expressed as a prob. distribution: $\Theta \sim P(\Theta)$
- Using Bayes Rule, can compute the posterior distribution

$$P(\Theta|x_1, ..., x_n) = \frac{P(x_1, ..., x_n|\Theta)P(\Theta)}{P(x_1, ..., x_n)}$$

This reflects everything that we know about Θ after observation

Most likely ⊕ given knowledge

• Then, MAP estimate is: $\hat{\Theta}_{MAP} = \arg \max_{\Theta} P(\Theta|x_1,...,x_n)$

MAP Estimation

$$P(\Theta|x_1, ..., x_n) = \frac{P(x_1, ..., x_n|\Theta)P(\Theta)}{P(x_1, ..., x_n)}$$

$$\hat{\Theta}_{MAP} = \underset{\Theta}{\arg\max} P(\Theta|x_1, ..., x_n)$$

• Since $P(X_1,...,X_n)$ is constant once observed,

$$\hat{\Theta}_{MAP} = \underset{\Theta}{\operatorname{arg\,max}} P(\Theta|x_1, ..., x_n) = \underset{\Theta}{\operatorname{arg\,max}} P(\Theta)P(x_1, ..., x_n|\Theta)$$

MAP Estimation

The same thing written in a different way

$$p(M|\mathcal{D}) = \frac{p(\mathcal{D}|M) \cdot p(M)}{p(\mathcal{D})}$$
$$\propto p(\mathcal{D}|M) \cdot p(M)$$

$$M_{MAP} = \underset{M \in \mathcal{M}}{\operatorname{arg max}} \{ p(M|\mathcal{D}) \}$$

$$p(\mathcal{D}) = \begin{cases} \sum_{M \in \mathcal{M}} p(\mathcal{D}|M) p(M) & M : \text{discrete} \end{cases} & M_{MAP} = \underset{M \in \mathcal{M}}{\operatorname{arg max}} \left\{ p(\mathcal{D}|M) p(M) \right\} \\ \int_{\mathcal{M}} p(\mathcal{D}|M) p(M) dM & M : \text{continuous} \end{cases} & M_{ML} = \underset{M \in \mathcal{M}}{\operatorname{arg max}} \left\{ p(\mathcal{D}|M) \right\} \end{cases}$$

Where

is the proportionality symbol

Example: MAP Estimation for Poisson distribution (with Gamma prior on parameters)

Example 9: Let $\mathcal{D} = \{2, 5, 9, 5, 4, 8\}$ again be an i.i.d. sample from Poisson (λ_t) , but now we are also given additional information. Suppose the prior knowledge about λ_t can be expressed using a gamma distribution $\Gamma(x|k,\theta)$ with parameters k=3 and $\theta=1$. Find the maximum a posteriori estimate of λ_t .

First, we write the probability density function of the gamma family as

$$\Gamma(x|k,\theta) = \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k\Gamma(k)},$$

x > 0, k > 0, and $\theta > 0$

$$\Gamma(k) = (k-1)!$$

Example: MAP Estimation for Poisson distribution (with Gamma prior on parameters)

As before, we can write the likelihood function as

$$p(\mathcal{D}|\lambda) = \frac{\lambda^{\sum_{i=1}^{n} x_i} \cdot e^{-n\lambda}}{\prod_{i=1}^{n} x_i!}$$

and the prior distribution as

$$\lambda_{MAP} = \underset{\lambda \in (0,\infty)}{\operatorname{arg\,max}} \left\{ p(\mathcal{D}|\lambda)p(\lambda) \right\}$$

$$p(\lambda) = \frac{\lambda^{k-1}e^{-\frac{\lambda}{\theta}}}{\theta^k \Gamma(k)}.$$

Now, we can maximize the logarithm of the posterior distribution $p(\lambda|\mathcal{D})$ using

$$\ln p(\lambda|\mathcal{D}) \propto \ln p(\mathcal{D}|\lambda) + \ln p(\lambda)$$

$$= \ln \lambda(k - 1 + \sum_{i=1}^{n} x_i) - \lambda(n + \frac{1}{\theta}) - \sum_{i=1}^{n} \ln x_i! - k \ln \theta - \ln \Gamma(k)$$

Example: MAP Estimation for Poisson distribution (with Gamma prior on parameters)

$$\ln p(\lambda|\mathcal{D}) \propto \ln p(\mathcal{D}|\lambda) + \ln p(\lambda)$$

$$= \ln \lambda(k - 1 + \sum_{i=1}^{n} x_i) - \lambda(n + \frac{1}{\theta}) - \sum_{i=1}^{n} \ln x_i! - k \ln \theta - \ln \Gamma(k)$$

After taking partial derivative with respect to λ and equaling to 0, we can solve for λ

$$\lambda_{MAP} = \frac{k - 1 + \sum_{i=1}^{n} x_i}{n + \frac{1}{\theta}} \qquad D = \{2, 5, 9, 5, 4, 8\}$$
$$= 5 \qquad \theta = 1$$

ML converges to MAP when we have many samples

- Notice that with ML estimation we had λ_{ML} =5.5 and with MAP estimation we got λ_{MAP} =5.
- In the limit of infinite samples, both the MAP and ML converge to the same model, M (as long as the prior does not have zero probability on M).
- In other words, large data diminishes the importance of prior knowledge.
- To get some intuition for this result, we will show that the MAP and ML estimates converge to the same solution for the above example with a Poisson distribution.

Back to candy

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Data: All our samples are limes.

$$h_{MAP} = argmax_i P(h_i | d)$$
 $h_{ML} = argmax_i P(d | h_i)$

# samples:	0	1	2	3	4	5	6	7	8	9	10
h _{MAP}	h3	h3	h4	h5							
h _{ML}		h5									

What is probability next candy is lime?

Next class

Zoom coding exercise on Viterbi algorithm