Refined Problem Definition: Loan Approval Prediction via KNN and Decision Tree

1. Objective

Automate loan approval decisions by building and comparing two classification models—**K-Nearest Neighbors (KNN)** and **Decision Tree**—to predict a target **loan_status**.

2. Dataset Overview

Column	Type	Description
loan_id	Integer	Unique application ID (to be dropped)
no_of_dependents	Integer	Number of dependents
education	Categorical	'Graduate' / 'Not Graduate'
self_employed	Categorical	'Yes' / 'No'
income_annum	Numeric	Annual income
loan_amount	Numeric	Requested loan amount
loan_term	Numeric	Repayment period (months)
cibil_score	Numeric	Credit score (higher = better)
residential_assets_value	Numeric	Value of residential assets
commercial_assets_value	Numeric	Value of commercial assets
luxury_assets_value	Numeric	Value of luxury assets
bank_asset_value	Numeric	Bank account balances
loan_status	Categorical	Target: Approved/ Rejected

3. Data Cleaning & Preprocessing

1. **Drop Identifier**

 $\verb|o Drop loan_id column from dataset.| \\$

2. Handle Missing and Duplicate Values

- o Drop rows with any missing values.
- o Drop duplicate rows if any.
- o Drop rows where value of 'loan_status' is **NA**

3. Outlier Removal from 'bank_asset_value' column

o Detect and remove outliers using the IQR method.

4. Feature Transformation (without get_dummies)

- o Convert education column from categoric to numeric: 1 for 'Graduate', 0 otherwise.
- o Convert self_employed column from categoric to numeric: 1 for 'Yes', 0 otherwise.

5. Feature-Target Split & Data Partition

- o Features (X): all columns except loan status
- o Target (y): the binary loan_status
- o **Train/Test Split:** 80% train, 20% test with random state=42

4. Modeling Approaches

4.1 K-Nearest Neighbors (KNN)

- **Algorithm:** Classifies a sample based on the majority label among its **k** nearest neighbors in feature space.
- **Hyperparameter:** n neighbors=47

4.2 Decision Tree

- **Algorithm:** Splits feature space on conditions that maximize information gain (using entropy).
- **Hyperparameter:** max depth=12

5. Model Training & Evaluation

- 1. **Train** both models using the same train-test split on training set.
- 2. **Predict** outcomes on the test set.
- 3. **Evaluate and Print** the following for both models:
 - o Accuracy
 - o Confusion Matrix (TP, TN, FP, FN)
 - Sensitivity
 - Specificity
- 4. **Bar Graph Visualization** for both models:
 - A bar chart comparing accuracy, sensitivity, and specificity for KNN and Decision Tree classifiers.