Aleo Workshop

Compliant Private Tokens

- 1 Logistics
- 2 What is a Token?
- 3 Privacy & Compliance
- 4 What is Aleo?

- 5 Tokens on Aleo
- 6 Compliance In-Practice
- 7 Q&A
- 8 Hands-on Challenge

What You'll Need

Leo Playground: https://play.leo-lang.org/ OR

IDEs: VSCode / Sublime Text / IntelliJ

- Install Rust
- Install Leo
- Install Leo Extension for your IDE

Workshop: https://github.com/alex-aleo/private-token-workshop

Testnet Faucet: https://test-faucet.aleo.org/

Other Resources

Aleo Developer Docs: https://developer.aleo.org

Leo Docs: https://docs.leo-lang.org

Discord: https://discord.gg/aleo

Devs Telegram:

What is a Token?

- Digital assets representing value or utility onchain
- Fungible Tokens:
 - Units are interchangeable with each other
 - o **Stablecoins**, ERC-20 tokens, Bitcoin
- Non-Fungible Tokens (NFTs):
 - Units are unique and possess distinct characteristics or value
 - Digital art, collectibles, virtual real estate, event tickets

What is a Token?

• Tokenomics:

 The economics of a token, governing its creation, distribution, and usage

o Minting:

Process of creating new tokens

o Burning:

Removing tokens from circulation, often to reduce supply

Transferring:

Sending a token to another user or service

Privacy

- Major problem:
 - Blockchains are fully public ledgers
 - All holdings and transactions are publicly visible
 - Surveillance in perpetuity
- Example:
 - Etherscan

Privacy

- Why is privacy important?
 - Payments with stablecoins necessitate privacy
 - Users shouldn't have to share everything they pay for
 - Business shouldn't be able to see their competitors' expenditures

Caveat:

Any payments must also maintain regulatory compliance

Compliance

• KYC / AML

- KYC = Know Your Customer
- AML = Anti-Money Laundering
- Set of regulations designed to prevent illicit activities
 - Fraud, money laundering, terrorist financing, etc.
- Affected businesses must verify the identity of their clients
 - ex) Coinbase requires ID upload to open an account

Compliance

- Sanctioned Address List
 - Maintained by the Office of Foreign Assets Control (OFAC)
 - U.S. Treasury Department
 - List of cryptocurrency addresses associated with sanctioned entities

How can we maximize privacy while maintaining regulatory compliance?

Aleo

- Layer 1 blockchain with privacy as a first-class citizen
 - Powered by zero-knowledge proofs
- Privacy is **programmable**, so developers can choose what gets revealed
 - Bake-in compliance without sacrificing user privacy

Aleo

Aleo Model

record

• Offchain State

```
L1 record Token {
L2 owner: address,
L3 balance: u64,
L4 }
```

Application state is encoded in records

Users exclusively own their records

records enable concurrency and privacy

Using records

• Using records

• Onchain State

mapping

```
L1 program token.aleo {
L2 mapping balances: address => u64;
L3 ...
L4 }
```

- Modifying Onchain State
 - The async model

- Modifying Onchain State
 - async transition
 - Offchain computation with ZK proof of execution
 - async keyword signals additional onchain computation to follow
 - Otherwise acts same as regular transition
 - Must return at least a Future
 - Call to an async function

- Modifying Onchain State
 - async function
 - Onchain computation
 - All inputs are public
 - Can only be called by async transition, not standalone

Modifying Onchain State

```
L1 async transition foo() -> Future {
L2 return bar();
L3 }
```

L4 async function bar() { // On-chain code }

Alice

Validator

Ledger

Record N

- owner: <Alice>
- gates: 0u64
- •balance: 10u64
 - Alice

Key	Value
<alice></alice>	0u64
<bob></bob>	0u64

Validator

3. Alice produces a transaction and sends it to the network.

Validator

Ledger

Record N

- owner: <Alice>
- gates: 0u64
- •balance: 10u64

Alice

Key	Value
<alice></alice>	0u64
<bob></bob>	0u64

Validator

Validator

txn

Future

<Bob>

3u64

4. The network verifies the proof.

Validator

Ledger

Record N

- •owner: <Alice>
- gates: 0u64
- •balance: 10u64

A Alice

Key	Value
<alice></alice>	0u64
<bob></bob>	0u64

Validator

A Alice

Record N+1

• owner: <Alice>

• balance: 7u64

• gates: 0u64

 π Validator

5. The network executes the Future and stores the new record.

Programmable Compliance

- Maintain updated list of OFAC sanctioned addresses in a mapping onchain
- Add assertions in every function that querying this mapping with transaction sender/recipients
 - Prevent any transfers or swaps of tokens from or to sanctioned addresses

Questions?

Your Mission:

- 1. Build a token program in Leo using the provided template code. Your program must include:
 - i. mint_public & mint_private functions
 - ii. transfer_public & transfer_private functions
 - iii. Compliance checks against workshop_ofac.aleo for all of the above
- 2. Deploy your program to Testnet.
- 3. Interact with your deployed program onchain:
 - i. Publicly mint 100 tokens to your address
 - ii. Publicly transfer those tokens to
 <WORKSHOP_ADDRESS>
 - iii. Privately mint an additional 100 tokens to your address
 - iv. Privately transfer those tokens to
 <WORKSHOP_ADDRESS>

Thank You!