-2-

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

7346222928

(currently amended) A compound of formula (Ia): 1.

$$\mathbb{R}^{1}$$
 \mathbb{R}^{4}
 \mathbb{R}^{3}
 \mathbb{R}^{3}

or a pharmaceutically acceptable salt, hydrate, tautomer or solvate thereof, wherein:

X is O or S;

R¹ is selected from the group consisting of

PATENT PFIZER ANN ARBOR MI

where R^{2a} is independently selected from the group consisting of: (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_3-C_{10}) cycloalkyl, (C_5-C_{10}) aryl, (C_1-C_6) alkylaryl, amino, carbonyl, carboxyl, (C_5-C_{10}) heteroaryl,

(C₅-C₁₀)heterocyclyl, (C₁-C₆)alkoxy, nitro, halo, hydroxyl, and (C₁-C₆)alkoxy(C₁-C₆)ester, and where alkyl, alkenyl, alkynyl, cycloalkyl, aryl, amino, heteroaryl, heterocyclyl, and alkoxy of R^{2a} is optionally substituted by at least one moiety independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C₃-C₁₀)cycloalkyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, formyl, NC-, (C₁-C₆)alkyl-(C=O)-,

Feb-02-2007 11:09am

phenyl-(C=O)-, HO-(C=O)-, (C_1 - C_6)alkyl-O-(C=O)-, (C_1 - C_6)alkyl-NH-(C=O)-, ((C_1 - C_6)alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, Q_2N- , amino, $(C_1-C_6)alkyl)-N$ C_6)alkylamino, ((C_1 - C_6)alkyl)₂-amino, (C_1 - C_6)alkyl-(C=O)-NH-, (C_1 - C_6)alkyl-(C=O)-[((C_1 - C_6)alkyl-(C=O)-[((C-C)-[((C C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C_1 - C_6)alkyl)-N]-, H_2 N-(C=O)-NH-, (C_1 - C_6)alkyl)-N]-, $((C_1-C_6)$ alkyl)₂N-(C=O)-[(C_1-C_6) alkyl-N]-, phenyl-HN-(C=O)-NH-, (phenyl)₂N-(C=O)-NH-, phenyl-HN- $(C=O)-[((C_1-C_6)a!kyl)-N]$ -, $(phenyl-)_2N-(C=O)-[((C_1-C_6)alkyl)-N]-, (C_1-C_6)alkyl-O-(C=O)-NH-,$ $(C_1-C_6)alkyl-O-(C=O)-[((C_1-C_6)alkyl)-N]-, phenyl-O-(C=O)-NH-,$ phenyl-O-(C=O)-[(alkyl)-N]-, (C_1 - C_6)alkyl-SO₂NH-, phenyl-SO₂NH-, (C_1 - C_6)alkyl-SO₂-, phenyl- SO_2 -, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_6) alkyl-(C=O)-O-, (C_1-C_6) ester- (C_1-C_6) alkyl-O-, phenyl-(C=O)-O-, H_2N -(C=O)-O-, (C_1-C_6) alkyl-HN-(C=O)-O-, $((C_1-C_6)alkyl)_2N-(C=O)-O-$, phenyl-HN-(C=O)-O-, and (phenyl)_2N-(C=O)-O-; wherein R¹ can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C₁-C₆)alkyl, perhalo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkoxy, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, hydroxy, oxo, mercapto, (C_1-C_6) alkylthio, (C_1-C_6) alkoxy, (C_5-C_{10}) aryl, of (C_5-C_{10}) heteroaryl, (C_5-C_{10}) C_{10})aryloxy, Θ_T (C_5 - C_{10})heteroaryloxy, (C_5 - C_{10})ar(C_1 - C_6)alkyl, Θ_T (C_5 - C_{10})heteroar(C_1 - C_6)alkyl, (C_5-C_{10}) ar (C_1-C_6) alkoxy, ef (C_5-C_{10}) heteroar (C_1-C_6) alkoxy, HO-(C=O)-, ester, amido, ether, amino, amino (C_1-C_6) alkyl, (C_1-C_6) alkylamino (C_1-C_6) alkyl, di (C_1-C_6) alkylamino (C_1-C_6) alkyl, (C_5-C_{10}) heterocyclyl (C_1-C_6) alkyl, (C_1-C_6) alkyl-, and di (C_1-C_6) alkylamino, cyano, nitro, carbamoyl, (C_1-C_6) alkylcarbonyl, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkylcarbonyl, di(C₁-C₆)alkylaminocarbonyl, (C₅-C₁₀)arylcarbonyl, (C₅-C₁₀)aryloxycarbonyl, (C₁-C₆)alkylsulfonyl, and (C₅-C₁₀)arylsulfonyl;

each R3 is independently selected from the group consisting of: hydrogen, halo, halo(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C_5-C_{10}) heteroaryl, (C_5-C_{10}) heterocyclic, (C_3-C_{10}) cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃- C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl-S-, (C_1 - C_6)alkyl-SO₂-, (C_1 - C_6)alkyl-NH-SO₂-, O₂N-, NC-, amino. Ph(CH2)1-4HN-, (C1-C6)alkyl HN-, (C1-C6)alkylamino, [(C1-C6)alkyl]2-amino, (C1 $C_6)alkyl-SO_2-NH-, amino(C=O)-, aminoO_2S-, (C_1-C_6)alkyl-(C=O)-NH-, (C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C_1-C_6)alkyl)-N]-, (C_1-C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_5-C_{10})heteroaryl-(C=O)-, (C_5-C_{10})heteroaryl-(C=O)-, (C_3-C_{10})cycloalkyl-(C=O)-, HO-(C=O)-, (C_1-C_6)alkyl-O-(C=O)-, H_2N(C=O)-, (C_1-C_6)alkyl-NH-(C=O)-, [(C_1-C_6)alkyl]_2-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-, (C_3-C_{10})cycloalkyl-NH-(C=O)- and (C_1-C_6)alkyl-(C=O)-O-;$

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of \mathbb{R}^3 is optionally substituted by at least one substituent independently selected from $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy, halo $(C_1\text{-}C_6)$ alkyl, halo, H_2N -, $Ph(CH_2)_{1-6}HN$ -, and $(C_1\text{-}C_6)$ alkylHN-;

s is an integer from one to five;

R⁴ is independently selected from the group consisting of: hydrogen, halo, halo(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-, (C₁-C₆)alkyl-S-, (C₁-C₆)alkyl-SO₂-, (C₁-C₆)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C₁-C₆)alkylHN-, (C₁-C₆)alkylamino, [(C₁-C₆)alkyl]₂-amino, (C₁-C₆)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C₁-C₆)alkyl-(C=O)-NH-, (C₁-C₆)alkyl-(C=O)-((C₁-C₆)alkyl)-N-, phenyl-(C=O)-((C₁-C₆)alkyl)-N]-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-, HO-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, (C₁-C₆)alkyl)-NH-(C=O)-, (C₅-C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)- and (C₁-C₆)alkyl-(C=O)-O-; (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)- and (C₁-C₆)alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of \mathbb{R}^4 is optionally substituted by at least one substituent independently selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}HN_-$, (C_1-C_6) alkyl HN_- , (C_5-C_{10}) heteroaryl and (C_5-C_{10}) heterocyclyl;

with the proviso that when R⁴ is a substituted phenyl moiety, then (a) R¹ is not naphthyl, phenyl or anthracenyl and (b) if R¹ is a phenyl fused with an aromatic or non-aromatic cyclic

-6-

PATENT PFIZER ANN ARBOR MI

ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, then the fused cyclic ring of said R¹ moiety is substituted;

with the proviso that when R⁴ is NH₂ and X is S, then R¹ is not an amino-substituted pyridyl or pyrimidinyl moiety; and

with the proviso that when in formula (Ia) R4 is CH3 and X is S, R1 is not a 3,4dimethoxy substituted phenyl moiety.

2. (original) A compound of claim 1, wherein R¹ is

3. (original) A compound of claim 1, wherein R1 is

(currently amended) A compound of claim 1, wherein R¹ is 4.

-7-

5. (original) A compound of claim 1, wherein R¹ is

6. (original) A compound of claim 1, wherein R¹ is

7. (original) A compound of claim 1, wherein R¹ is

-8-

(original) A compound of claim 1, wherein R1 is 8.

- 9. (canceled).
- (original) A compound of claim 1, wherein X is S; s is one to two; R3 is hydrogen or 10. (C_1-C_6) alkyl; and R^4 is H, (C_1-C_6) alkyl, or amino.
- 11. (previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

12-13. (cancelled)

14. (currently amended) A compound selected from the groups consisting of

2 (5 Benze[1,3]dioxol 5 yl exazel 4 yl) 6 methyl pyridine;

2-(5-Benzo[1,3]dioxol-5-yl-oxazol-4-yl)-pyridine;

2 (5 Benzo[1,3]dioxol 5 yl oxazol 4 yl) 6 methoxy pyridine;

2-(5-Benzo[1,3]dioxol-5-yl-oxazol-4-yl)-6-trifluoromothyl-pyridino;

2 Methyl 5 [4 (6 methyl pyridin 2 yl) exazel 5-yl]-2H-benzetriazele;

4-{4-(6-Methyl pyridin 2-yl) oxazol 5-yl] quinoline;

1-Methyl-6-[4-(6-methyl-pyridin 2-yl) exazel-5-yl] 1H benzotriazole;

6 (4 Pyridin 2 yl oxazol 5 yl) quinoxaline;

6-[4-(6-Mothyl-pyridin-2-yl) exazel 5-yl] quinoxaline;

6-[4-(6-Methyl pyridin 2 yl) exazel 5-yl] quinoline;

6 (4 pyridin 2 yl oxazol 5 yl) quinoline;

- 2-(5-Benzo[1,3]dioxol 5-yl-oxazol-4-yl) 6-ethyl-pyridine;
- 2 (5 Benzo[1,3]dioxol 5 yl oxazol 4 yl) 6 propyl pyridine;
- 6 [4 (6 Methyl pyridin-2-yl) exazel 5 yl] benzethiazele;
- 2-(4-Bonzo[1,3]dioxol-5-yl-oxazol-5-yl)-6-mothyl-pyridine;
- 4-[5-(6-Methyl-pyridin 2-yl) exazel 4-yl] quinoline;
- 1 Methyl 6 [5 (6 methyl pyridin 2 yl) exazel 4 yl] 1H benzetriazole;
- 2 Methyl 5 [5 (6 methyl-pyridin 2 yl) exezel 4-yl] 2H benzotriazole;
- 6-[5-(6-Mothyl-pyridin-2-yl)-oxazol-4-yl]-quinolino;
- 6 [5-(6 Methyl pyridin 2 yl) exazel 4-yl] quinexaline;
- 2 [5 (6 Methyl pyridin 2-yl) exazel 4 yl] [1,5]naphthyridine;
- {4 [5 (6 Methyl pyridin 2 yl) exazel 4 yl] pyridin 2 yl}-phenyl-amine;
- 2-(4-Benzo[1,3]dioxol-5-yl-2-methyl-oxazol-5-yl)-6-methyl pyridine;
- 1 Methyl 6 [2 methyl 5 (6 methyl pyridin 2 yl) exazel-4-yl]-III benzetriazele;
- 2-Methyl-5-[2-methyl-5-(6-methyl-pyridin-2-yl) exazel 4-yl] 2H-benzetriazele;
- 6-[2-Methyl-5-(6-methyl-pyridin-2-yl)-oxazol-4-yl]-quinoline;
- 6 [2 Methyl 5 (6 methyl pyridin 2 yl) oxazol-4-yl]-quinoxaline;
- 2 [2 Methyl 5 (6 methyl-pyridin-2-yl)-oxazol-4-yl] [1,5]naphthyridine;
- [4 [2 Methyl 5 (6 methyl pyridin 2-yl) exazol-4-yl] pyridin 2-yl} phenyl amine;
- 4-[2-Mothyl-5-(6-mothyl-pyridin 2-yl)-exazel-4-yl] quinoline:
- 4-Benzo[1,3]dioxol-5-yl-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(3-Methyl-3H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(2-Methyl-2H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinolin-6-yl-thiazol-2-ylamine:
- 5-(6-Methyl-pyridin-2-yl)-4-quinoxalin-6-yl-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-[1,5]naphthyridin-2-yl-thiazol-2-ylamine;
- {4 [2-Amino-5-(6-methyl-pyridin-2-yl) thiazel-4-yl] pyridin-2-yl}-phenyl-amine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinolin-4-yl-thiazol-2-ylamine;
- 4-(6-Methyl-pyridin-2-yl)-5-quinolin-6-yl-thiazol-2-ylamine;
- 5-(3-Methyl-3H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 5-(2-Methyl-2H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;

-10-

- 5-Benzo[1,3]dioxol-5-yl-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(6-Methyl-pyridin-2-yl)-5-quinoxalin-6-yl-thiazol-2-ylamine;
- 4-(6-Methyl-pyridin-2-yl)-5-[1,5]naphthyridin-2-yl-thiazol-2-ylamine;
- {4 [2 Amino 4 (6 methyl pyridin 2 yl) thiazol 5 yl] pyridin 2 yl} phenyl amine;
- 4-(6-Methyl-pyridin-2-yl)-5-quinolin-4-yl-thiazol-2-ylamine;
- 6-[2-Methyl-4 (6 methyl pyridin 2 yl) oxazol 5 yl] quinoline;
- 1 Methyl 6 [2 methyl 4 (6 methyl pyridin 2 yl) oxazol 5 yl] 1H-benzetriazole;
- 2 Methyl 5 [2 methyl 4 (6 methyl pyndin 2 yl) exazel 5 yl] 2H-benzetriazele;
- 2 (5 Benzo[1,3]dioxol 5 yl 2 methyl exazel 4 yl) 6 methyl pyridine;
- 6-[2-Methyl-4-(6-methyl-pyridin-2-yl)-exazol-5-yl]-quinexaline;
- 2 [2 Methyl 4 (6 methyl pyridin 2 yl) exazel 5 yl] [1,5]naphthyridine;
- [4-[2-Methyl-4-(6-methyl-pyridin-2-yl) exazel 5-yl] pyridin 2-yl] phenyl-amine;
- 4 [2 Methyl 4 (6 methyl pyridin 2 yl) exazel 5 yl] quinoline;
- 1-Methyl-6-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;
- 2-Methyl-5-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
- 2-(5-Benzo[1,3]dioxol-5-yl-thiazol-4-yl)-6-methyl-pyridine;
- 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
- 2-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
- [4-[4-(6-Methyl-pyridin-2-yl) thiazel-5-yl] pyridin 2-yl] phenyl amine;
- 4-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 1-Methyl-6-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxaline;
- 2-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-[1,5]naphthyridine;
- {4 [5 (6 Methyl pyridin 2 yl)-thiazol-4-yl]-pyridin 2 yl} phonyl amine;
- 4-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 1-Methyl-6-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-bonzotriazole;

- 2-Methyl-5-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
- 2-(5-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-4-yl)-6-methyl-pyridine;
- 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
- 2-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
- 44 [2 methyl 4 (6 Methyl pyridin 2 yl) thiazol 5 yl]-pyridin 2 yl) phenyl amine;
- 4-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 1-Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxaline;
- 2-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-[1,5]naphthyridine;
- {4-[2 methyl 5 (6 Mothyl pyridin 2 yl) thiazol 4 yl] pyridin 2 yl) phonyl amine;
- 4-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thia2ol-4-yl]-quinoline; and
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; or a pharmaceutically acceptable salt thereof.
- 15. (previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 14 and a pharmaceutically acceptable carrier.
- 16. (canceled)
- 17. (canceled)
- 18. (currently amended) A compound of formula (Ib):

or a pharmaceutically acceptable salt, hydrate, tautomer or solvate thereof, wherein:

X is S;

 \mathbb{R}^1 is selected from the group consisting of

PATENT PFIZER ANN ARBOR MI

where R^{2a} is independently selected from the group consisting of: $(C_1-C_6)alkyl$, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₅-C₁₀)aryl, (C₁-C₆)alkylaryl, amino, carbonyl, carboxyl, (C5-C10)heteroaryl, (C5-C10)heterocyclyl, (C1-C6)alkoxy, nitro, halo, hydroxyl, and (C1-C6)alkoxy(C1-C6)ester, and where alkyl, alkenyl, alkynyl, cycloalkyl, aryl, amino, heteroaryl, heterocyclyl, and alkoxy of R^{2a} is optionally substituted by at least one moiety independently selected from the group consisting of halo, (C1-C6)alkyl, (C2-C6)alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_3-C_{10}) cycloalkyl, (C_5-C_{10}) heteroaryl, (C_5-C_{10}) C₁₀)heterocyclic, formyl, NC-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, HO-(C=O)-, (C₁- C_6)alkyl-O-(C=O)-, (C_1 - C_6)alkyl-NH-(C=O)-, ((C_1 - C_6)alkyl)2-N-(C=O)-, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, O_2N- , amino, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2$ -amino, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl- $(C=O)-[((C_1-C_6)$ alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C₁-C₆)alkyl)-N]-, H_2N -(C=O)-NH-, (C₁-C₆)alkyl-HN-(C=O)-NH-, ((C₁-C₆)alkyl-HN-(C=O)-NH-, ((C₁-C₆)alkyl-HN-(C₁-C₆)alkyl-(($C_6) alkyl)_2 N - (C = O) - NH -, (C_1 - C_6) alkyl - HN - (C = O) - [((C_1 - C_6) alkyl) - N] -, ((C_1 - C_6) alkyl) -, ((C_1 - C_6)$ C_6)alkyl)₂N-(C=O)-[(C₁-C₆)alkyl-N]-, phenyl-HN-(C=O)-NH-, (phenyl)₂N-(C=O)-NH-, phenyl-HN-(C=O)-[((C_1 - C_6)alkyl)-N]-, (phenyl-)₂N-(C=O)-[((C_1 - C_6)alkyl)-N]-, (C_1 - C_6)alkyl-O-(C=O)-NH-, (C_1 - C_6)alkyl-O-(C=O)-[((C_1 - C_6)alkyl)-N]-, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)-[(alkyl)-N]-. (C1-C6)alkyl-SO2NH-, phenyl-SO2NH-, (C1-C6)alkyl-SO2-,

US Response to OA.doc

-14-

phenyl-SO₂-, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₁-C₆)alkyl-(C=O)-O-, (C₁-C₆)alkyl-O-, phenyl-(C=O)-O-, H₂N-(C=O)-O-, (C₁-C₆)alkyl-HN-(C=O)-O-, ((C₁-C₆)alkyl)₂N-(C=O)-O-, phenyl-HN-(C=O)-O-, and (phenyl)₂N-(C=O)-O-; wherein R¹ can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkoxy, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy, oxo, moreoapte, (C₁-C₆)alkylthio, (C₁-C₆)alkoxy, (C₅-C₁₀)aryl₂ er (C₅-C₁₀)heteroaryloxy, (C₅-C₁₀)aryloxy₂ er (C₅-C₁₀)heteroaryloxy, (C₅-C₁₀)aryloxy₃ er (C₅-C₁₀)heteroar(C₁-C₆)alkyl₃, er (C₅-C₁₀)heteroar(C₁-C₆)alkyl₃, (C₅-C₁₀)aryloxy₃ er (C₅-C₁₀)heteroar(C₁-C₆)alkyl₃, di(C₁-C₆)alkyl₃ mino (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, di(C₁-C₆)alkyl₃mino (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃, (C₁-C₆)alkyl₃minocarbonyl₃, (C₁-C₆)alkyl₃min

each R³ is independently selected from the group consisting of: hydrogen, halo, halo(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-, (C₁-C₆)alkyl-S-, (C₁-C₆)alkyl-SO₂-, (C₁-C₆)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁-₆HN-, (C₁-C₆)alkyl HN-, (C₁-C₆)alkylamino, [(C₁-C₆)alkyl]₂-amino, (C₁-C₆)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C₁-C₆)alkyl-(C=O)-NH-, (C₁-C₆)alkyl-(C=O)-[((C₁-C₆)alkyl)-N]-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-, HO-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, H2N(C=O)-, (C₁-C₆)alkyl-NH-(C=O)-, [(C₁-C₆)alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-NH-(C=O)-, (C₃-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)heteroaryl-NH-(C=O)-, (C₃-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, (C₃-C₁₀)heteroaryl-NH-(C=O)-, (C₃-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-and (C₁-C₆)alkyl-NH-(C=O)-, (C₃-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-and (C₁-C₆)alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R³ is optionally substituted by at least one substituent independently selected

T-214 P.016/023 F-871

from (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, and (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, And (C_1-C_6) alkyl, halo, H_2N -, Ph $(CH_2)_1$ -HN-, PhC₆)alkylHN-;

s is an integer from one to five;

R⁴ is independently selected from the group consisting of: hydrogen, halo, halo(C₁- C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_5 -C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-, (C₁-C₆)alkyl-S-, (C₁-C₆)alkyl-SO₂-, (C₁-C₆)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C_1-C_6) alkylHN-, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl-SO₂-NH-, amino(C=O)-, $aminoO_2S$ -, $(C_1-C_6)alkyl-(C=O)-NH$ -, $(C_1-C_6)alkyl-(C=O)-((C_1-C_6)alkyl)-N$ -. phenyl-(C=O)-NH-, phenyl-(C=O)-((C_1 - C_6)alkyl)-N]-, (C_1 - C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_5-C_{10}) heteroaryl-(C=O)-, (C_5-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, (C_5-C_{10}) heteroaryl-(C=O)-, (C_5-C_{10}) heteroaryl- (C_5-C_{10}) heteroaryl-(C=O)-, (C_5-C_{10}) heteroaryl- (C_5-C_{10}) heteroary (C=O)-, $(C_1-C_6)alkyl-O-(C=O)$ -, $(C_1-C_6)alkyl-NH-(C=O)$ -, $((C_1-C_6)alkyl)_2-N-(C=O)$ -(C=O)-, phenyl-NH-(C=O)-, phenyl- $((C_1-C_6)aikyl)-N]-(C=O)$ -, $(C_5-C_{10})heteroaryl-NH-(C=O)$ -, (C_5-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)- and (C_1-C_6) alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R⁴ is optionally substituted by at least one substituent independently selected from the group consisting of (C1-C6)alkyl, (C1-C6)alkoxy, halo(C1-C6)alkyl, halo, H2N-, $Ph(CH_2)_{1-6}HN-$, $(C_1-C_6)alkylHN-$, $(C_5-C_{10})heteroaryl$ and $(C_5-C_{10})heterocyclyl$;

with the proviso that when R4 is a substituted phenyl moiety, then (a) R1 is not naphthyl, phenyl or anthracenyl and (b) if R1 is a phenyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, then the fused cyclic ring of said R¹ moiety is substituted.

19. (currently amended) A compound selected from the groups consisting of 2-(4-Benze[1,3]dioxol 5-yl-oxazol 5-yl)-6-methyl pyridine: 4 [5 (6 Methyl-pyridin-2-yl) exazel 4 yl] quinoline: 1 Methyl-6-[5-(6-methyl-pyridin 2 yl) exazel-4-yl]-1H-benzetriazele: 2 Methyl 5 [5 (6 methyl pyridin 2 yl) exazel 4-yl] 2H benzetriazele;

7346222928

```
6 [5 (6 Methyl pyridin 2 yl) exazel 4-yl] quineline;
```

6-[5 (6 Mothyl-pyridin 2 yl) exazol 4 yl] quinexaline;

PATENT PFIZER ANN ARBOR MI

- 2 [5-(6-Methyl-pyridin-2-yl)-oxazol-4-yl]-[1,5]naphthyridine;
- 4 f5 (6 Methyl-pyridin 2 yl) exazel 4 yl] pyridin 2 yl}-phenyl-amine;
- 2-(4-Benze[1,3]dioxel 5-yl 2 methyl-exazel 5-yl) 6 methyl pyridine;
- 1-Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-yl) exazel 4 yl] 1H benzotriazole;
- 2 Methyl 5-[2 methyl-5-(6-methyl-pyridin-2-yl)-oxazol 4-yl] 2H benzotriazole;
- 6 [2 Methyl 5 (6 methyl pyridin 2 yl) exazel 4-yl]-quinoline;
- 6 [2 Methyl 5 (6 methyl pyridin 2 yl) exazel 4 yl] quinoxaline;
- 2-[2-Mothyl-5-(6-mothyl-pyridin-2-yl)-oxazol-4-yl]-[1,5]naphthyridine;
- [4 [2 Methyl-5 (6-methyl-pyridin-2-yl) oxazol 4-yl] pyridin 2-yl} phonyl-amine;
- 4 [2 Methyl 5 (6 methyl pyridin 2 yl) exazol-4-yl]-quinoline;
- 4-Benzo[1,3]dioxol-5-yl-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(3-Methyl-3H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(2-Methyl-2H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinolin-6-yl-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinoxalin-6-yl-thiazol-2-ylamine;
- {4-[2-Amino-5-(6-mothyl-pyridin-2-yl)-thiazol-4-yl]-pyridin-2-yl}-phonyl-amino;
- 1-Methyl-6-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxaline;
- 2-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-[1,5]naphthyridine;
- {4 [5 (6 Methyl pyridin 2 yl)-thiazol-4-yl}-pyridin 2 yl}-phenyl-amine;
- 4-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 1-Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxalino;

- 2-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thia2ol-4-yl]-[1,5]naphthyridine;
- {4-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazel-4-yl]-pyridin-2-yl}-phonyl-amine;
- 4-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; and
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; or a pharmaceutically acceptable salt thereof.

20. (canceled)

- 21. (currently amended) A compound selected from the groups consisting of
 - 1-Methyl-6-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;
 - 2-Methyl-5-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
 - 2-(5-Benzo[1,3]dioxol-5-yl-thiazol-4-yl)-6-methyl-pyridine;
 - 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
 - 2-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
 - {4 [4 (6 Methyl pyridin 2 yl)-thiazol-5-yl]-pyridin 2 yl} phenyl amine;
 - 4-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
 - 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
 - 1-Methyl-6-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;
 - 2-Methyl-5-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
 - 2-(5-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-4-yl)-6-methyl-pyridine:
 - 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
 - 2-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
 - [4 [2 methyl-4 (6-Methyl-pyridin-2-yl) thiazol 5 yl] pyridin-2-yl} phonyl amine:
 - 4-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline; and
- 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline; or a pharmaceutically acceptable salt thereof.
- 22. (currently amended) A compound selected from the groups consisting of
 - 5-(3-Methyl-3H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
 - 5-(2-Methyl-2H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamino;

-18-

- 5-Benzo[1,3]dioxol-5-yl-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine; and
- 4-(6-Methyl-pyridin-2-yl)-5-quinoxalin-6-yl-thiazol-2-ylamine; or a pharmaceutically acceptable salt thereof.