Київський національний університет ім. Тараса Шевченка Навч. предмет: Математичний аналіз	1-2 семестр Спец.: інженерія програмного забезпечення
ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ №1 1. Частинні похідні ,похідна за напрямом, градієнт функції. 2. Знайти значення α , при якому збігається ряд $\sum (1-(\cos(1/n))^{1/n})^{\alpha}$.	
3. Обчислити $\int_{-1/4}^{\pi/3} \frac{x dx}{\sin^2 x}$	
4. Знайти перший та другий диференціал та всі частинні похідні $F = tg(xy)$.	
Затверджено на засіданні кафедри обчислю Протокол №11 від 15 травня 2020р. Зав.кафедроюС.І.Ляшко	овальної математики. ЕкзаменаторЛ.Т.Аджубей
Київський національний університет ім. Тараса Шевченка Навч. предмет: Математичний аналіз ЕКЗАМЕН 1. Степеневі ряди. Теорема Абеля. Рад	1-2 семестр Спец.: інженерія програмного забезпечення НАЦІЙНИЙ БІЛЕТ № 2
2. Обчислити інтеграл Рімана $\int_{0}^{\pi/4} ctg^4 x$	
3. Дослідити на збіжність ряд $\sum \frac{n^{10}}{2^n + 5^n}$.	
4. Дослідити функцію $f(x,y) = \frac{x}{y} + \frac{1}{x} + y$ на локальний екстремум.	
Затверджено на засіданні кафедри обчислю Протокол №11 від 15 травня 2020р. Зав.кафедроюС.І.Ляшко	овальної математики. ЕкзаменаторЛ.Т.Аджубей
Київський національний університет ім. Тараса Шевченка Навч. предмет: Математичний аналіз	1-2 семестр Спец.: інженерія програмного забезпечення
ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 3 1. Функціональні ряди. Область збіжності. Рівномірна збіжність.	
2. Обчислити інтеграл Рімана $\int_{\pi/4}^{\pi/3} \frac{x dx}{\sin^2 x}$	
3. Знайти значення α ,при якому збігається ряд $\sum (1 - n \sin(1/n))^{\alpha}$. 4. Розкласти в степеневий ряд $f(x) = \cos^2 x$	
Затверджено на засіданні кафедри обчислю Протокол №11 від 15 травня 2020р. Зав.кафедроюС.І.Ляшко	овальної математики. ЕкзаменаторЛ.Т.Аджубей
Київський національний університет ім. Тараса Шевченка Навч. предмет: Математичний аналіз	Спец.: інженерія програмного забезпечення
ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ №4 1. Поняття числового ряду. Збіжність і сума ряду. Необхідна умова збіжності.	
2. Дослідити на абсолютну і умовн	лу збіжність ряд $\sum \frac{(-1)^n (2n)!!}{(n+1)^n}$
3. Знайти перший та другий диференціали та частинні похідні функції $F = \ln(x + y^3 - xz)$	
4. Дослідити на абсолютну та умовну збіжність інтеграл $\int_{0}^{+\infty} \frac{\sin(t^6 + t^2)}{t^{7/3}} dt$.	
Затверджено на засіданні кафедри обчислю Протокол №11 від 15 травня 2020р. Зав.кафедроюС.І.Ляшко	овальної математики. ЕкзаменаторЛ.Т.Аджубей

Київський національний університет 1-2 семестр ім. Тараса Шевченка Спец.: інженерія програмного забезпечення

Навч. предмет: Математичний аналіз

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 5

- Екстремум функції $R^n -> R$ (означення, необхідні й достатні умови). 1.
- Дослідити на збіжність ряд $\sum 7^n \frac{(n!)^2}{n^{2n}}$. 2.
- Знайти за допомогою інтеграла Рімана та інтегральних сум Дарбу 3. $\lim_{n\to\infty} S_n \text{ , де } S_n = \sum_{k=1}^n \sin\frac{k}{n^2} \ln\biggl(1+\frac{k}{n^2}\biggr).$
- Знайти d^2u , $\frac{\partial^2 u}{\partial x \partial y}$, якщо $u = 2^x 3^y$. 4.

Затверджено на засіданні кафедри обчислювальної математики.

Протокол №11 від 15 травня 2020р.

Зав.кафедрою_____С.І.Ляшко

Екзаменатор______Л.Т.Аджубей

Київський національний університет

ім. Тараса Шевченка

1-2 семестр

Спец.: інженерія програмного забезпечення

Навч. предмет: Математичний аналіз

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 6

- Ряди з довільними членами. Ознака Діріхле. 1.
- 2. Знайти значення α , при якому збігається ряд $\sum (\exp(tg(1/n)) - 1)^{\alpha}$.
- Обчислити $\int [x] dx$. 3.
- Дослідити функцію $f(x, y) = xy + \frac{1}{2(x+y)}$ на локальний екстремум. 4.

Затверджено на засіданні кафедри обчислювальної математики.

Протокол №11 від 15 травня 2020р.

Зав.кафедрою_____С.І.Ляшко

Екзаменатор Л.Т.Аджубей

Київський національний університет

ім. Тараса Шевченка

1-2 семестр

Спец.: інженерія програмного забезпечення

Навч. предмет: Математичний аналіз

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 7

- 1. Ряди з довільними членами. Ознака Лейбніца
- Оцінити інтеграл $\int_{0}^{1} \frac{\cos \pi x}{x^2 2x + 2} dx$. 2.
- Дослідити на абсолютну та умовну збіжність ряд $\sum \left[\left(e^{\frac{1}{n}}-\sin\frac{1}{n}\right)^{n^{\alpha}}-1\right]$. 3.
- Знайти частинну похідну $\frac{\partial^3 u}{\partial x^2 \partial y}$, якщо $u = (x+1)\sin(1/y^2)$. 4.

Затверджено на засіданні кафедри обчислювальної математики.

Протокол №11 від 15 травня 2020р.

Зав.кафедрою С.І.Ляшко

Екзаменатор Л.Т.Аджубей

Київський національний університет

1-2 семестр

ім. Тараса Шевченка

Спец.: інженерія програмного забезпечення

Навч.предмет: Математичний аналіз

ЕКЗАМЕНАШЙНИЙ БІЛЕТ № 8

- Метод множників Лагранжа. Достатні умови існування умовного екстремуму. 1.
- $\lim_{n\to\infty} n \cdot \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right) arctg \frac{k^2}{n^4}.$ 2.
- Знайти похідну функції f(x,y,z) = xyz в напрямку орта $e = (\cos a, \cos b, \cos c)$ в точці 3. M(1,1,1).
- Дослідити на абсолютну та умовну збіжність ряд $\sum \left[\left(e^{\frac{1}{n}}-\sin\frac{1}{n}\right)^{n^{\alpha}}-1\right]$. 4.

Затверджено на засіданні кафедри обчислювальної математики.

Протокол №11 від 15 травня 2020р.

Зав.кафедрою_____ С.І.Ляшко

Екзаменатор______Л.Т.Аджубей