History of Mobile Application Frameworks Selected + str(modifier)

```
Arror_mod.mirror_object
 eration == "MIRROR_X":
Lrror_mod.use_x = True
lrror_mod.use_y = False
lrror_mod.use_z = False
operation == "MIRROR_Y"
Irror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 operation == "MIRROR_Z"
 rror_mod.use_x = False
 rror_mod.use_y = False
 rror_mod.use_z = True
  election at the end -add
  ob.select= 1
   elected" + str(modific
  rror ob.select = 0
  bpy.context.selected_obj
  ta.objects[one.name].sel
 Int("please select exact
    OPERATOR CLASSES ----
   pes.Operator):
   X mirror to the selected
 ject.mirror_mirror_x"
 ontext):
oxt.active_object is not
```

Introduction to Mobile Application Frameworks

• A mobile application framework is a platform that provides tools and libraries to create apps for mobile devices.

Types of Mobile Frameworks

Native Frameworks

Designed for specific platforms (iOS or Android), providing full access to device hardware and system features.

Example: iOS SDK for Apple devices, Android SDK for Android devices.

Cross-Platform Frameworks

Allow developers to write code once and deploy on multiple platforms, reducing development time.

Example: React Native, Flutter, Xamarin.

Hybrid Frameworks

Combine web technologies (HTML, CSS, JavaScript) with native app packaging, enabling apps to run on multiple platforms.

Example: Ionic, PhoneGap

Why Use Mobile Application Frameworks?

- Simplified Development
- Efficiency and Speed
- Enhanced Performance
- Access to Device Features
- Consistency

Early Mobile Development (Pre-2007)

• **Feature Phones:** Mention Java ME (Java Micro Edition) as one of the earliest frameworks used for developing simple apps like games and messaging apps on feature phones.

• Limitations: Limited functionality, basic UI, and lack of an app marketplace.

Introduction of iOS and Android (2007-2008)

• iPhone (2007): Apple introduced the iPhone, and with it came iOS SDK (Software Development Kit), allowing developers to create apps for iOS.

• Android (2008): Google launched Android and released its SDK, focusing on open-source and cross-device compatibility.

Emergence of Cross-Platform Frameworks (2010-2015)

- PhoneGap (2011): Introduced as a way to build mobile apps using web technologies (HTML, CSS, JavaScript) and deploy them on multiple platforms.
- Appcelerator Titanium: Another early cross-platform solution allowing native apps using web technologies.

Hybrid and Web-Based Frameworks (2012-2015)

• Ionic Framework (2013): Built on top of AngularJS, allowing for hybrid mobile development using web technologies.

• Apache Cordova: Basis for many hybrid frameworks like Ionic, enabling web apps to be packaged as native apps.

Shift Towards Modern Frameworks (2015-Present)

- React Native (2015): Launched by Facebook, allowing developers to build mobile apps using React and JavaScript.
- Flutter (2017): Google's framework for building cross-platform apps using a single codebase in the Dart language, delivering near-native performance.
- **Xamarin:** A Microsoft framework enabling C# developers to build cross-platform apps with a shared codebase.

Conclusion

• **Summary:** Recap the evolution from simple frameworks for feature phones to complex, high-performance cross-platform frameworks today.

• Future Directions: Acknowledge how frameworks continue to evolve, enabling faster, more efficient mobile app development.

Question 01

A small startup company wants to develop a cross-platform mobile application that works on both iOS and Android. The app will need to display real-time data, have a responsive user interface, and access device features like the camera and GPS.

Task: You are part of the development team, and your task is to recommend a mobile application framework for this project.

- 1. Why would a cross-platform framework be beneficial for this startup compared to native development for each platform?
- 2. Given that the app needs to access hardware features like the camera and GPS, how important is performance, and which frameworks can provide near-native performance?
- 3. Choose between React Native and Flutter. Compare them in terms of:
 - Ease of development.
 - Performance.
 - Community support and available resources.

Thank you