

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
 КАФЕДРА	Прикладная математика	

Лабораторная работа №2

Итерационные методы решения СЛАУ

Студент	Φ Н2- $52Б$		Г.А. Швецов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподават	ель		А.О. Гусев
		(Подпись, дата)	(И.О. Фамилия)

Оглавление 2

Оглавление

1. Контрольные вопросы	3
2. Tect 1	7
3. Tect 2	8
Список использованных источников	g

1. Контрольные вопросы

1. Почему условие ||C|| < 1 гарантирует сходимость итерационных методов? Доказательство:

Для итерационного метода

$$x = Cx + y, (1.1)$$

где x — решение соответствующей СЛАУ. На k-ом шаге:

$$x^{k+1} = Cx^k + y \tag{1.2}$$

Вычитая (1.2) из (1.1), получаем:

$$x - x^{k+1} = C(x - x^k);$$

$$||x - x^{k+1}|| = ||C(x - x^k)|| \le ||C|| ||x - x^k|| \le ||C||^2 ||x - x^{k-1}|| \le \dots \le ||C||^{k+1} ||x - x^0||.$$

Последнее выражение при $\|C\|<1$ стремится к нулю при $k\to\infty$. Следовательно, $\|x-x^{k+1}\|\to 0$, т.е. итерационный метод сходится.

2. Каким следует выбирать итерационный параметр τ в методе простой итерации для увеличения скорости сходимости? Как выбрать начальное приближение x^0 ?

Каноническая форма одношагового итерационного процесса

$$B_{k+1} \frac{x^{k+1} - x^k}{\tau_{k+1}} + Ax^k = b, \quad k = 0, 1, 2, \dots$$
 (1.3)

Теорема Самарского. Пусть A — самосопряженная положительно опредделенная матрица, $B - \frac{\tau}{2} A$ — положительно определнная матрица, τ — положительное число. Тогда при любом выборе нулевого приближения x^0 итерационный процесс 1.3 сходится к решению системы Ax = b.

$$B - \frac{\tau}{2}A > 0 \Leftrightarrow (Bx, x) > \frac{\tau}{2}(Ax, x), \quad x \neq 0.$$

Отсюда следует

$$0 < \tau < \inf_{x \neq 0} \frac{2(Bx, x)}{(Ax, x)}.$$

Тогда для метода простых итераций $(B_{k+1} = E, \tau_{k+1} = \tau)$

$$0 < \tau < \inf_{x \neq 0} \frac{2(x, x)}{(Ax, x)} = \frac{2}{\sup_{x \neq 0} \frac{(Ax, x)}{(x, x)}}.$$
 (1.4)

$$\sup_{x\neq 0} \frac{(Ax,x)}{(x,x)} = \sup_{x\neq 0} \frac{\lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \dots + \lambda_n \xi_n^2}{\xi_1^2 + \xi_2^2 + \dots + \xi_n^2} = \lambda_1 = \lambda_{max}, \quad \lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_n.$$

В результате из 1.4 следует, что метод простых итераций сходится при τ , принадлежащем интервалу

 $0 < \tau < \frac{2}{\lambda_{max}}$.

Для улучшения скорости сходимости выбирают итерационный параметр au так, чтобы выполнялась оценка $\|C\| < 1$ и норма матрицы C была как можно меньше.

Начальное приближение x^0 стоит выбирать близким к точному решению. Так как точное решение неизвестно, то общего алгоритма подбора не существует. Только экспериментально можно повысить сходимость метода, перебирая различные начальные приближения x^0 .

- 3. На примере системы из двух уравнений с двумя неизвестными дайте геометрическую интерпретацию метода Якоби, метода Зейделя, метода релаксации.
- 4. При каких условиях сходятся метод простой итерации, метод Якоби, метод Зейделя и метод релаксации? Какую матрицу называют положительно определенной?

Теорема. Пусть A — симметричная положительно определенная матрица, $\tau > 0$ и выполнено неравенство

$$B - 0.5\tau A > 0.$$

Тогда стационарный итерационный метод

$$B\frac{x^{k+1} - x^k}{\tau} + Ax^k = f$$

сходится.

Следствие 1. Пусть A — симметричная положительно определенная матрица с диагональным преобладанием, т.е.

$$a_{ii} > \sum_{j \neq i} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

Тогда метод Якоби сходится.

Следствие 2. Пусть A — симметричная положительно определенная матрица. Тогда метод верхней релаксации сходится при $0 < \omega < 2$. В частности, метод Зейделя ($\omega = 1$) сходится. Рассматривается действительный случай.

Следствие 3. Метод простой итерации сходится при $\tau < \frac{2}{\lambda_{max}}$, где λ_{max} — максимальное собственное значение симметричной положительно определенной матрицы A.

Матрица A является положительно определенной, если она удовлетворяет любому из следующих равнозначных критериев:

- (a) Все собственные значения матрицы A положительны;
- (b) Определители всех угловых миноров положительны (Критерий Сильвестра);
- (c) (Ax, x) > 0, $\forall x \neq 0$.
- 5. Выпишите матрицу С для методов Зейделя и релаксации.

$$(D+\omega L)\frac{x^{k+1}-x^k}{\omega} + Ax^k = b;$$

$$(D+\omega L)x^{k+1} - (D+\omega L)x^k + \omega Ax^k = \omega b;$$

$$(D+\omega L)x^{k+1} - (D+\omega L-\omega A)x^k = \omega b;$$

$$(D+\omega L)x^{k+1} - (D-\omega (A-L))x^k = \omega b.$$

Т.к. A = L + D + U, то A - L = D + U.

$$(D + \omega L)x^{k+1} - (D - \omega D - \omega U))x^{k} = \omega b;$$

$$(D + \omega L)x^{k+1} = ((1 - \omega)D - \omega U))x^{k} + \omega b;$$

$$x^{k+1} = (D + \omega L)^{-1}((1 - \omega)D - \omega U))x^{k} + \omega (D + \omega L)^{-1}b.$$

Итого для метода релаксации $C=(D+\omega L)^{-1}((1-\omega)D-\omega U))$. Для метода Зейделя $(\omega=1)$ $C=-(D+L)^{-1}U$.

6. Почему в общем случае для остановки итерационного процесса нельзя использовать критерий $||x^k - x^{k-1}|| < \varepsilon$?

В общем случае данный критерий останова неприемлем. Метод может медленно сходится и, достигнув заданной точности, найденное приближенное решение будет находится далеко от точного.

7. Какие еще критерии окончания итерационного процесса Вы можете предложить?

Ниже приведены следующие критерии останова

$$||x^{k+1} - x^k|| \le \varepsilon$$
, $||x^{k+1} - x^k|| \le \varepsilon ||x^k|| + \varepsilon_0$, $\left\| \frac{x^{k+1} - x^k}{|x^k| + \varepsilon_0} \right\| \le \varepsilon$.

Указанные условия прерывания итерационного процесса оперируют нормой изменения численного решения за одну итерацию. Иногда это приводит к неверному заключению о сходимости метода, если, например, метод очень медленно сходится.

В этом случае может оказаться успешным применение другого критерия останова, связанного с нормой невязки (критерий по невязке)

$$||Ax^{k+1} - f|| \leqslant \varepsilon.$$

В случае малости нормы оператора A данный критерий также может оказаться неприемлемым.

Также существуют следующие критерии останова для итерационных процессов

$$||x^{k+1} - x^k|| \le \frac{1 - ||C||}{||C||} \varepsilon, \qquad ||x^{k+1} - x^k|| \le \frac{1 - ||C||}{||C_U||} \varepsilon$$

2. Tect 1 7

2. Tect 1

Начальная точка — (5.0, 5.0, 5.0, 5.0).

Критерии останова:

$$1. \|x^{k+1} - x^k\| \leqslant \varepsilon;$$

2.
$$||x^{k+1} - x^k|| \le \frac{1 - ||C||}{||C||} \varepsilon;$$

3.
$$||Ax^{k+1} - f|| \le \varepsilon$$
.

Таблица 1. Результаты исследования итерационных методов при $\varepsilon=10^{-4}$

Метод	$\ C\ $	Оценка для	Норма ошибки по-	Число итераций,
		числа ите-	сле k_{est} итераций	необходимых для
		раций k_{est}	получения ре	
				с точностью ε
Простой итерации $ au=0.05$	0.95000000	273	0.00000000	23
Простой итерации $ au=0.02$	0.98000000	691	0.00000000	67
Якоби	0.90909091	147	0.00000000	17
Зейделя	0.80000000	60	0.00000000	11
Релаксации $\omega=1.1$	0.98000000	779	0.00000000	12
Релаксации $\omega=0.5$	0.90000000	126	0.00000000	32

Таблица 2. Критерии останова при $\varepsilon=10^{-4}$

Може	Критерий останова 1		Критерий останова 2		Критерий останова 3	
Метод	Число	Норма	Число	Норма	Число	Норма
	итераций	ошибки	итераций	ошибки	итераций	ошибки
Простой итерации $\tau=0.05$	23	0.00007840	28	0.00000331	27	0.00000650
Простой итерации $\tau = 0.02$	58	0.00050880	80	0.00000840	79	0.00001020
Якоби	18	0.00002823	21	0.00000314	21	0.00000314
Зейделя	12	0.00002569	13	0.00000888	13	0.00000888
Релаксации $\omega=1.1$	13	0.00001613	17	0.00000024	14	0.00000566
Релаксации $\omega=0.5$	29	0.00024752	36	0.00002396	39	0.00000881

3. Tect 2

3. Tect 2

Начальная точка — (5.0, 5.0, 5.0, 5.0).

Критерии останова:

$$1. \|x^{k+1} - x^k\| \leqslant \varepsilon;$$

2.
$$||x^{k+1} - x^k|| \le \frac{1 - ||C||}{||C||} \varepsilon;$$

3.
$$||Ax^{k+1} - f|| \le \varepsilon$$
.

Таблица 3. Результаты исследования итерационных методов при $\varepsilon=10^{-4}$

Метод	C	Оценка для	Норма ошибки по-	Число итераций,	
		числа ите-	сле k_{est} итераций	необходимых для	
		раций k_{est}		получения решения	
				с точностью ε	
Простой итерации $ au =$	0.5453609	21	0.00000096	15	
0.0071518					
Простой итерации $\tau=0.01$	0.93643000	188	0.00000333	144	
Якоби	0.26081395	10	0.00000000	5	
Зейделя	0.26081395	10	0.00000000	4	
Релаксации $\omega=1.1$	0.38689535	14	0.00000000	6	
Релаксации $\omega=0.5$	0.63040698	27	0.00000000	18	

Таблица 4. Критерии останова при $\varepsilon=10^{-4}$

N. C.	Критерий останова 1		Критерий останова 2		Критерий останова 3	
Метод	Число	Норма	Число	Норма	Число	Норма
	итераций	ошибки	итераций	ошибки	итераций	ошибки
Простой итерации $ au =$	15	0.0000797	16	0.0000380	21	0.00000096
0.0071518						
Простой итерации $ au=0.01$	110	0.00124755	146	0.00008051	200	0.00000134
Якоби	6	0.00000209	5	0.00001976	7	0.00000012
Зейделя	5	0.00000053	5	0.00000053	5	0.00000053
Релаксации $\omega=1.1$	7	0.00000443	6	0.00002565	8	0.00000065
Релаксации $\omega=0.5$	18	0.00009734	19	0.00005252	26	0.00000079

Список использованных источников

1. *Галанин М.П., Савенков Е.Б.* Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.