Statistics 452: Statistical Learning and Prediction

Chapter 2: Statistical Learning

Brad McNeney

2018-09-01

Statistical Learning

Example 1: Advertising Data

 Sales (in thousands of units), and advertising budgets in thousands of dollars for TV, radio and newspaper for 200 markets.

```
uu <- url("http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv")
advert <- read.csv(uu,row.names=1)
head(advert)</pre>
```

```
## TV radio newspaper sales
## 1 230.1 37.8 69.2 22.1
## 2 44.5 39.3 45.1 10.4
## 3 17.2 45.9 69.3 9.3
## 4 151.5 41.3 58.5 18.5
## 5 180.8 10.8 58.4 12.9
## 6 8.7 48.9 75.0 7.2
```

Relationship Between Sales and TV

```
library(ggplot2)
ggplot(advert,aes(x=TV,y=sales)) +
  geom_point() + geom_smooth(se=FALSE)
```


- ▶ The smoother is not constrained to be linear, but is nearly so.
- ► What sort of return on investment do we get from increasing TV ads?

Exercise

- Do similar scatterplots of Sales vs Radio and Sales vs Newspaper.
 - ► Try smoothing with an unconstrained smoother (default) and a linear smoother (geom_smooth(method="lm"))
 - ▶ Which medium provides the best return on investment?

Terminology

- ▶ Advertising budgets X₁=TV, X₂=Radio and X₃=Newspaper are inputs or explanatory variables or predictors or features
 - ▶ Let $X = (X_1, X_2, X_3)$.
- ► Sales *Y* is the **output** or **response variable**

Model

A general model is

$$Y = f(X) + \epsilon$$

where

- f is a fixed but unknown function that is the systematic component of the model
- $ightharpoonup \epsilon$ is an error component, assumed to be independent of X and to have mean zero.

Example 2: Income data

```
uu <- url("http://www-bcf.usc.edu/~gareth/ISL/Income1.csv")
income <- read.csv(uu,row.names=1)
head(income)</pre>
```

```
## Education Income
## 1 10.0000 26.65884
## 2 10.40134 27.30644
## 3 10.84281 22.13241
## 4 11.24415 21.16984
## 5 11.64548 15.19263
```

Relationship Between Income and Education

```
ggplot(income,aes(x=Education,y=Income)) +
geom_point() + geom_smooth(se=FALSE)
```


- ▶ Here the relationship is non-linear.
- What is the effect of increasing education?
 - ▶ Depends; e.g., not much at low and high education

Statistical Learning

- Approaches for
 - ▶ estimating *f*
 - quantifying the accuracy of the estimate

Why estimate f(X)?

- ► Two main goals:
 - 1. prediction
 - 2. inference

Prediction

- Since the errors average to zero, f(X) is a reasonable prediction of a new Y.
- Notation: Let \hat{f} denote an estimate of f and \hat{Y} an estimate of Y.
- ▶ Based on \hat{f} the estimate of Y is

$$\hat{Y} = \hat{f}(X)$$

- For prediction, \hat{f} can be a "black box".
 - We do not really care about the details of \hat{f} , only that its predictions \hat{Y} are accurate.

Accuracy of \hat{Y}

- ► There are two components
 - ightharpoonup reducible error \hat{f} as an imperfect estimate of f
 - irreducible error the model includes the pure error component ϵ , which cannot be predicted using X (assumed independent)
- ▶ We will study methods for estimating *f* that try to minimize the reducible error.

Inference

- Or, should our goal be to "open the box" and see what's inside?
 - ▶ See first 4:30 of TED talk by Barbara Englehardt: https://www.youtube.com/watch?v=uC3SfnbCXmw
- ▶ We may want to understand the relationship between *X* and *Y*.
 - If there are many explanatory variables, can we find a few important variables that explain the most variation in the response?
 - What is the nature of relationships: positive/negative, linear/non-linear?

How to estimate f(X)

- Methods can be classified as either
 - parametric, or
 - non-parametric
- ▶ In either case, we will use **training data** to train our method how to estimate *f*.
- Notation: Let $x_i = (x_{i1}, \dots, x_{ip})$ denote the observed predictors and y_i the response for the ith of n independent observations.
 - ▶ Then the training data are $\{(x_1, y_1), \dots, (x_n, y_n)\}$

Parametric Methods

► Two steps:

- 1. Specify a form for *f* that depends on a finite number of parameters
- 2. Use the training data to estimate the parameters.

Example:

- 1. A linear model $f(X) = \beta_0 + \beta_1 X_1 + \dots, + \beta_p X_p$.
- 2. Use the method of least squares to estimate $\beta_0, \beta_1, \dots, \beta_p$.

Drawbacks of Parametric Methods

- ► The true *f* may not be well-approximated by the functional form we choose for our parametric model.
- ▶ We can choose a very flexible parametric family, but if too flexible we may **overfit**; i.e., the fitted model may follow the error terms.

Example: Income data

Try using powers of Education to predict Income

```
ifit<- lm(Income ~ Education, data=income)
# grid of Education values
nGrid <- 100
rEd <- with(income,range(Education))
newEd = seq(from=rEd[1],to=rEd[2],length=nGrid)
# Predict income from ifit
newdat <- data.frame(Education = newEd)
pIncome <- predict(ifit,newdata=newdat)
incomePred <- data.frame(Income = pIncome, Education = newEd)</pre>
```

Graph the fitted model

```
ggplot(income,aes(x=Education,y=Income)) + geom_point() +
  geom_line(data=incomePred,color="blue")
```


Higher powers

▶ Repeat for powers of Education using I(); e.g., for a cubic fit

- ▶ At some point, do you get the feeling you are just fitting noise?
 - ► Fact: If you fit a polynomial of degree 30 you would interpolate the data points.

Non-parametric Methods

- ▶ An model-free specification of the functional form of *f* .
- Avoid over-fitting by limiting the roughness, or wigglyness of the fitted curve.

Example: Smoothing spline

```
# install.packages("gam")
library(gam)
sfit <- gam(Income ~ s(Education),data=income)
# Predict income from sfit
pIncome <- predict(sfit,newdata=newdat)
incomePred <- data.frame(Income = pIncome, Education = newEd)</pre>
```

Graph the fitted model

```
ggplot(income,aes(x=Education,y=Income)) + geom_point() +
  geom_line(data=incomePred,color="blue")
```


Non-parametric Methods: Drawbacks

- ► The degree of smoothness was left at its default value how do we choose this in general?
- ▶ Non-parametric methods require more data that a parametric method to train the model to obtain accurate estimates.

Prediction Accuracy versus Interpretability

► Figure 2.7 of the text schematically represents the trade-off between prediction accuracy and model interpretability.

Flexibility

- ► The more flexible the model, the more accurate the predictions, but the less interpretable the model.
 - We will see this by comparing methods as we go.

Supervised versus Unsupervised Learning

- ▶ When we have measured a response variable the problem is said to be supervised (Chapters 3-9).
- ▶ When there is no response, the problem is unsupervised (Chapter 10).
 - ▶ We observe x_i ; i = 1, ..., n and are looking to understand the relationship between the variables, or between the observations (cluster analysis)
 - Cluster analysis is sometimes phrases in terms of looking for a latent (not observed) categorical variable underlying groups in the data.

Regression versus Classification

- Regression methods specify models for the conditional mean of the outcome given values of the explanatory variables.
 - Generally, the aim of supervised learning with a quantitative response is regression.
- ▶ In classification problems we aim to predict which class an observation belongs to, rather than its mean outcome.
- ► Some approaches are both; e.g., logistic regression.
 - ▶ The outcome may be binary (diseased, not diseased) and we can use a fitted model to classify future observations.
 - ▶ But the model fits the mean response given values of the explanatory variables and so is a regression.

Assessing Model Accuracy

Quality of Fit in Regression: MSE

► In regression problems, a popular measure of the quality of a fitted model is the mean squared error (MSE), defined as

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$
 (1)

The Training MSE

- ► However, we are not especially interested in the MSE from the training data (the training MSE in equation 1).
 - ► Recall the fact that a high enough polynomial regression can interpolate
 - If all we cared about was training MSE, we'd fit high-degree polynomials.
 - But these would overfit and would give poor predictions of new responses.

The Test MSE

Instead we are interested in the accuracy of the prediction of new data, called test data. If the training observations $\{(x_1, y_1), \dots, (x_n, y_n)\}$ are used to produce \hat{f} , and we had a large number of test observations (x_0, y_0) , the test MSE

$$Ave((y_0 - \hat{f}(x_0))^2)$$

reflects how well \hat{f} predicts new observations.

- ▶ We would like to develop methods that minimize the test MSE.
- ▶ Cross validation (CV) is a tool to estimate the test MSE.

Training versus Test MSE

▶ Text, simulated data example, Figure 2.9.

- ► The black line is the curve used to simulate data (circles) and the other lines are fitted curves of different flexibility (smoothing splines, Chapter 7).
- ▶ In the right panel, the grey line is the training MSE and the red is the test MSE.
 - ► The "U" shape of the test MSE is typical and reflects the bias-variance trade-off

Bias-Variance Trade-Off

▶ For fixed x_0 and y_0 , the expected test MSE $E(y_0 - \hat{f}(x_0))^2$, obtained by averaging over repeated estimations of f, can be decomposed as

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

where

- $Var(\hat{f}(x_0))$ is the variance (spread) of the predictions,
- ▶ $Bias(\hat{f}(x_0))$ is the bias (systematic departure from truth) of the predictions, and
- $ightharpoonup Var(\epsilon)$ is the irreducible error term that is beyond our control
- ▶ Generally, the more flexible the method for estimating *f* the higher the variance and the lower the bias.
 - ▶ Initially as we increase flexibility, the variance increase is offset by a decrease in bias, and the test MSE decreases.
 - At some point though the variance increase exceeds the decrease in bias and the expected test MSE increases.

Quality of Fit in Classification

► For categorical *Y*, the error rate is the proportion of mistaken classifications

$$\frac{1}{n}\sum_{i=1}^{n}I(y_i\neq\hat{y}_i)\tag{2}$$

where

- \triangleright \hat{y}_i is the predicted class label for the *i*th observation, and
- ▶ $I(y_i \neq \hat{y}_i)$ is an indicator variable that is one if $y_i \neq \hat{y}_i$ and zero if $y_i = \hat{y}_i$.
- ► Equation (2) is the training error rate. We are more interested in the test error rate:

$$Ave(I(y_0 \neq \hat{y}_0)) \tag{3}$$

where the average is over new (x_0, y_0) .

The Bayes Classifier

- ▶ It can be shown that the test error (3) is minimized by the Bayes classifier.
- ▶ To a new x_0 the Bayes classifier assigns class label j if $P(Y = j | X = x_0)$ is the largest over all categories j.
- ► The resulting error rate is called the Bayes error rate this is a lower bound on the test error rate.
 - ▶ This is analogous to the irreducible error from regression.
- We don't know the conditional probabilities $P(Y = j | X = x_0)$ so the Bayes classifier is not practically useful.
 - Suggests we try to estimate the required conditional probabilities. This is the idea behind the K-nearest neighbors classifier (Chapter 4).

Loss Functions

- Reference: Elements of Statistical Learning, Chapter 7.
- We measure the errors between Y and fit $\hat{f}(X)$ by a loss function $L(Y, \hat{f}(X))$.
 - For quantitative Y we mentioned squared error loss

$$L(Y,\hat{f}(X)) = (Y - \hat{f}(X))^2$$

which gave us the test MSE.

► For categorical response, *G*, we mentioned zero-one loss (misclassification error)

$$L(Y, \hat{f}(X)) = I(Y \neq \hat{f}(X))$$

which gave us the test error.

▶ In general, the test error is the average loss over a test set.