INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Weekly Progress Report

Project: TinyML-Based Project on FPGA Board with RISC-V Core

Name: Aman Chauhan

Branch: Btech. Computer Science and Engineering (CSE Core)

Roll Number: 22BCE0476

College: Vellore Institute of Technology, Vellore

Mentor: Dr. Sudip Roy

Week: 2nd report

Date: 30th May 2025

Agenda

- RVfpga SoC Simulation and Development
- TinyML Basics and Model Training
- Applied Al Lab: Deep Learning for Computer Vision.
- Progress Summary Tracker
- References

RVfpga Overview

- RVfpga: RISC-V FPGA platform with SweRVolf SoC on Nexys A7 virtual board.
- Simulators: ViDBo (main), Pipeline, Trace,
 Whisper using Verilator.
- Virtual board mimics real hardware I/O (LEDs, switches, UART, displays)
- Course taken on HarvardX edX platform

RVfpga Simulation Steps (Platform IO)

- Setup RVfpga simulation environment on PlatformIO.
- Built and ran Verilator-based simulators targeting SweRVolf SoC
- Used rvfpgasim.v top module and tb_ViDBo.cpp for I/O bridging
- Interacted with virtual Nexys A7 board to test
 SoC outputs and inputs.
- Explored C programming on simulated SoC and started assembly and I/O chapters


```
File Edit Selection View Go Run Terminal Help
 D
                                                       C LedsSwitches C-Lang.c X
        EXPLORER
                                       PIO Home
      V LEDSSWITCHES_C-LANG ☐ ☐ 🔁 🖒 🗇
                                        src > C LedsSwitches_C-Lang.c > □ GPIO_SWs
                                               #define GPIO SWs
                                                                    0x80001400
 Q
        > .pio
                                               #define GPIO LEDs
                                                                    0x80001404
        > .vscode
                                               #define GPIO INOUT 0x80001408
        > include
 مع
        > lib
                                               #define READ GPIO(dir) (*(volatile unsigned *)dir)
        ∨ src
                                               #define WRITE GPIO(dir, value) { (*(volatile unsigned *)dir) = (value); }
 ₽
        C LedsSwitches_C-Lang.c
        > test
                                               int main ( void )
 .gitignore
                                                   int En_Value=0xFFFF, switches_value;
       🍑 platformio.ini
                                         11
 0
        ■ README.rst
                                                   WRITE GPIO(GPIO INOUT, En Value);
                                         13
                                                   while (1) {
                                                       switches value = READ GPIO(GPIO SWs);
                                                       switches value = switches value >> 16;
                                                       WRITE GPIO(GPIO LEDs, switches value);
                                                   return(0);
                                         21
```

1.LedsSwitches_C-Lang.c Program

Simulation

Progress Tracker

Completed:

- RVfpga Setup and ViDBo Simulation
- C Programming Basics on RVfpga SoC
- RISC-V Assembly Programming
- RISC-V Function Calls

Partial Progress on:

- Mixing C and Assembly Functions
- Introduction to Peripherals and Input/Output
- More I/O: 7-Segment Displays
- More I/O: Timers
- Interrupts

TinyML Basics

- •TinyML: Running machine learning on low-power edge devices and microcontrollers
- •Covered fundamentals: ML workflow, deep learning blocks, ML scenarios on mobile/loT
- •Explored keyword spotting, visual wake words, anomaly detection, responsible Al
- Course content from TinyML community and TensorFlow Lite Micro(Edx Harvard)

TinyML Projects and Training

- Worked on Arduino-based TinyML projects integrating sensor data and ML models.
- Trained TinyML models for real-time keyword spotting and anomaly detection.
- Learned data preparation and model optimization for resource-constrained devices.

WorldQuant University Lab Overview

- Applied Al Lab: Deep Learning for Computer Vision
- •Hands-on practice with CNN architectures, data augmentation, and classification tasks.
- Bridging theory with practical Al implementation skills.
- •Focus on enhancing model accuracy and robustness.

Map of Course

Summary

Task	Status	Comments	Next Steps
RVfpga Course (HarvardX edX)	Partially Completed	Setup, simulation, basic C programming done	Complete assembly and peripherals chapters
TinyML Course	Partially Completed	Covered basics and Arduino projects	Expand to complex TinyML models
WorldQuant Applied AI Lab	Ongoing	CNNs and image classification in progress	Complete lab and project submissions

Challenges Faced

- No physical Nexys A7 FPGA board available for real-time hardware deployment and testing
- •Complex Verilator simulation environment requires careful setup and debugging
- •TinyML model constraints due to limited memory and compute on microcontrollers
- •Vivado toolchain requirements (high RAM, storage, and compute) exceed current PC capabilities.

References

- RVfpga HarvardX edX course materials and RVfpga source code
- •TinyML foundational courses and TensorFlow Lite Micro documentation
- WorldQuant University Applied AI Lab content
- RVfpga simulators documentation and virtual board resources
- Report 1 and internal study materials

