

US012385854B2

(12) United States Patent Dinca

(54) METHODS AND SYSTEMS FOR PERFORMING ON-THE-FLY AUTOMATIC CALIBRATION ADJUSTMENTS OF X-RAY INSPECTION SYSTEMS

(71) Applicant: Rapiscan Holdings, Inc., Hawthorne,

CA (US)

(72) Inventor: Dan-Cristian Dinca, Chelmsford, MA

(US)

(73) Assignee: Rapiscan Holdings, Inc., Hawthorne,

CA (US

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 199 days.

(21) Appl. No.: 18/149,401

(22) Filed: Jan. 3, 2023

(65) Prior Publication Data

US 2023/0147681 A1 May 11, 2023

Related U.S. Application Data

- (60) Provisional application No. 63/369,386, filed on Jul. 26, 2022.
- (51) Int. Cl. *G01N 23/04* (2018.01) *G01V 5/22* (2024.01)
- (52) U.S. Cl. CPC *G01N 23/04* (2013.01); *G01V 5/224* (2024.01)
- (58) Field of Classification Search

None

See application file for complete search history.

302 As a result of an initial calibration process, an X-ray inspection system is configured to generate a first plurality of calibration data. 304 The X-ray inspection system is operated to scen a cargo container thereby generating data indicative of deal-energy X-ray scan inages. 308 A computing device in data construction adoptifin for the X-ray inspection system, is configured to apply a cargo materials segmentation adoptifin for the X-ray inspection system, is configured to apply a cargo materials segmentation adoptifin for the X-ray scen knages in order to identify and segment first areas or regions of interest (ROI) with known materials consposition. 319 The computing device is configured to determine first data indicative of the Zeff of the segmented first ancion section regions of interest issing the first plurality of calibration data. The computing device is configured to compare the first data with second data indicative of reference Zeff corresponding to the known materials and/or HS codes of the segmented first ancion second regions of interest issing the first plurality of calibration data.

(10) Patent No.: US 12,385,854 B2

(45) **Date of Patent:** Aug. 12, 2025

(56) References Cited

U.S. PATENT DOCUMENTS

2,831,123 A	4/1958	Daly
2,971,433 A	2/1961	Akin
2,972,430 A	2/1961	Johnson
3,374,355 A	3/1968	Parratt
3,417,243 A	12/1968	Hill
3,676,783 A	7/1972	Kinbara
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

CA	1301371 C	5/1992
CA	2163884	12/1994
	(Cor	ntinued)

OTHER PUBLICATIONS

International Search Report for PCT/US23/60026, Jul. 3, 2023. (Continued)

Primary Examiner — Edwin C Gunberg (74) Attorney, Agent, or Firm — Novel IP

(57) ABSTRACT

The specification discloses methods of adjusting calibration data in an X-ray inspection system. Calibration data is initially generated. X-ray scan images of a cargo container are then acquired. Each of the X-ray scan images are segmented into regions of interest, where the regions of interest volumetrically encompass a known material or a material corresponding to a known HS code. Using the calibration data, first data indicative of Zeff of each of the regions of interest are determined. The first data is compared with second data indicative of known Zeff corresponding to the known materials and/or HS codes. The calibration data is then adjusted to generate a second calibration data if the first and second data differ significantly. The calibration data is replaced by the second calibration data in the memory.

20 Claims, 5 Drawing Sheets

(56)		I	Referen	ces Cited	5,391,878		2/1995	
	1	IIS P.	ATENT	DOCUMENTS	5,394,454 5,428,657			Harding Papanicolopoulos
	,	0.5.12	7112111	DOCUMENTS	5,430,787			Norton
	3,766,387	A 1	0/1973	Heffan	5,493,596		2/1996	Annis
	3,767,850			Mc Millian	5,524,133		6/1996	
	3,770,955	\mathbf{A}		Tomita	5,548,123			Perez-Mendez
	3,784,837			Holmstrom	5,548,630		8/1996	
	3,904,923			Schwartz	5,600,303 5,600,700		2/1997	Husseiny Krug
	3,961,186 3,988,586		6/19/6	Leunbach	5,602,894			Bardash
	4,020,346		4/1977		5,606,167		2/1997	
	4,031,401		6/1977		5,608,214		3/1997	
	4,047,035	A	9/1977	Dennhoven	5,638,420			Armistead
	4,064,440		12/1977		5,642,393 5,642,394		6/1997	Krug Rothschild
	4,139,771			Dennhoven	5,666,393		9/1997	
	4,210,811 4,216,499			Dennhoven Manfred	5,687,210			Maitrejean
	4,242,583		2/1980		5,692,028	A	11/1997	Geus
	4,254,599			Maistre	5,692,029			Husseiny
	4,260,898		4/1981		5,696,806			Grodzins
	4,315,146		2/1982		5,751,837 5,763,886			Watanabe Schulte
	4,342,914 4,366,382			Bjorkholm Kotowski	5,763,903			Mandai
	4,380,817			Harding	5,764,683		6/1998	
	4,420,182			Kaneshiro	5,768,334			Maitrejean
	4,430,568			Yoshida	5,783,829			Sealock
	4,472,822		9/1984		5,787,145		7/1998	
	4,503,332		3/1985		5,790,685 5,805,660		8/1998 9/1998	
	4,525,854 4,563,707			Molbert Kishida	5,838,758		11/1998	
	4,566,113			Gerhard	5,838,759			Armistead
	4,599,740		7/1986		5,903,623		5/1999	
	4,626,688		2/1986		5,910,973			Grodzins
	4,641,330			Herwig	5,930,326 5,940,468		7/1999 8/1999	Rothschild
	4,646,339		2/1987		5,949,842			Schafer
	4,709,382 4,719,153		1/1987	Akasawa	5,974,111		10/1999	
	4,736,401			Donges	6,018,562	A	1/2000	Willson
	4,788,704			Donges	6,031,890			Bermbach
	4,799,247		1/1989		6,058,158 6,067,344		5/2000	
	4,809,312		2/1989		6,069,936			Grodzins Bjorkholm
	4,817,123 4,825,454		3/1989 4/1989		6,078,052		6/2000	Difilippo
	4,853,595		8/1989		6,081,580			Grodzins
	4,864,142			Gomberg	6,094,472		7/2000	Smith
	4,870,670		9/1989		6,118,850		9/2000	Mayo Warburton
	4,872,188		0/1989		6,125,165 6,151,381			Grodzins
	4,884,289 4,906,973			Glockmann Karbowski	6,188,747		2/2001	
	4,975,917		12/1990		6,192,101			Grodzins
	4,979,202		2/1990		6,192,104		2/2001	
	4,991,189			Boomgaarden	6,195,413		2/2001	
	5,006,299		4/1991		6,198,795 6,212,251			Naumann Tomura
	5,014,293		5/1991 6/1991	Boyd	6,216,540		4/2001	
	5,022,062 5,046,846		9/1991		6,218,943			Ellenbogexn
	5,065,418			Bermbach	6,236,709		5/2001	
	5,076,993		2/1991		6,249,567			Rothschild
	5,091,924			Bermbach	6,252,929 6,256,369		6/2001 7/2001	
	5,098,640		3/1992		6,278,115		8/2001	
	5,103,099 5,114,662			Bourdinaud Gozani	6,282,260			Grodzins
	5,179,581		1/1993		6,292,533		9/2001	Swift
	5,181,234	A	1/1993		6,301,326			Bjorkholm
	5,182,764			Peschmann	6,304,629			Conway Grodzins
	5,185,778			Magram	6,320,933 6,324,243		11/2001	
	5,202,932 5,218,202		4/1993 6/1993	Cambier	6,347,132		2/2002	
	5,218,202			Alvarez	6,356,620			Rothschild
	5,224,144		6/1993		6,418,194	B1		McPherson
	5,237,598		8/1993		6,421,420			Grodzins
	5,247,561			Kotowski	6,424,695			Grodzins
	5,253,283		0/1993		6,434,219			Rothschild
	5,313,511		5/1994		6,435,715		8/2002	
	5,319,547 5,361,840		6/1994	Krug Matthews	6,442,233 6,445,765		8/2002 9/2002	Grodzins Frank
	5,367,552			Peschmann	6,448,564			Johnson
	5,379,334			Zimmer	6,453,003			Springer
	, -, 1				, ,			

(56)			Referen	ces Cited	7,261,466		8/2007	
	1	U.S. 1	PATENT	DOCUMENTS	7,277,526 7,286,638	B2	10/2007 10/2007	Ledoux
	6,453,007	Di	9/2002	Adama	7,308,076 7,319,737		12/2007 1/2008	
	6,456,684		9/2002		7,322,745	B2	1/2008	Agrawal
	6,459,761			Grodzins	7,333,587			De Man
	6,459,764			Chalmers	7,349,525 7,352,843		3/2008 4/2008	
	6,473,487 RE37,899		10/2002 11/2002		7,354,197		4/2008	
	6,483,894		11/2002		7,366,282	B2		Peschmann
	6,507,025	В1	1/2003	Verbinski	7,368,717			Verbinski
	6,532,276		3/2003	Hartick Grodzins	7,369,463 7,369,642		5/2008	Van Dullemen Eilbert
,	6,542,574 6,542,578	B2 B2	4/2003		7,372,040		5/2008	Polichar
	6,542,580		4/2003		7,376,218		5/2008	
	6,543,599			Jasinetzky	7,379,530 7,381,962		5/2008	Hoff Goldberg
	6,546,072 6,552,346			Chalmers Verbinski	7,381,302	B2		Johnson
	6,556,653			Hussein	7,400,701	B1	7/2008	
	6,563,903	B2	5/2003	Kang	7,406,192			Schmiegel
	6,567,496	B1	5/2003		7,420,174 7,440,543		9/2008 10/2008	
	6,580,778 6,584,170		6/2003 6/2003		7,440,544			Scheinman
	6,590,956		7/2003		7,453,987			Richardson
	6,597,760		7/2003		7,483,511			Bendahan
	6,605,473 6,606,516		8/2003		7,486,768 7,490,984			Allman Bhatt
	6,636,581		8/2003 10/2003	Sorenson	7,492,682			Osakabe
	6,637,266		10/2003	Froom	7,492,862			Bendahan
	6,653,588			Gillard-Hickman	7,492,934 7,505,556			Mundy Chalmers
	6,658,087 6,663,280		12/2003	Chalmers	7,505,557			Modica
	6,665,373			Kotowski	7,505,562			Dinca
	6,665,433		12/2003	Roder	7,505,563			Morton
	6,702,459		3/2004		7,508,910 7,510,324		3/2009 3/2009	Safai Bhatt
	6,727,506 6,735,279		4/2004 5/2004	Mallette Jacobs	7,512,215			Morton
	6,763,635			Lowman	7,517,149		4/2009	Agrawal
	6,777,684		8/2004		7,519,148 7,522,696		4/2009 4/2009	Kotowski
	6,785,357 6,812,426			Bernardi Kotowski	7,525,101			Grodzins
	6,816,571		11/2004		7,526,064	B2	4/2009	Akery
	6,837,422		1/2005	Meder	7,538,325		5/2009	Mishin
	6,839,134 6,839,403		1/2005	Saito Kotowski	7,547,888 7,551,714		6/2009 6/2009	Rothschild
	6,843,599		1/2005		7,551,715		6/2009	Rothschild
	6,856,344		2/2005		7,551,718			Rothschild
	6,876,719		4/2005		7,555,099 7,564,939		6/2009 7/2009	Rothschild Morton
	6,879,657 6,920,197		4/2005 7/2005	Hoffman Kang	7,593,506			Cason
	6,928,137		8/2005		7,593,510	B2		Rothschild
	6,928,141		8/2005		7,609,807 7,636,418		10/2009 12/2009	
	6,965,314 6,973,158			Bohine, Jr.	7,649,976			Georgeson
	6,987,833		12/2005 1/2006		7,653,545	В1	1/2010	Starkie
,	7,010,094	B2	3/2006	Grodzins	7,660,388		2/2010	
	7,039,159 7,045,788			Muenchau Iwatschenko-Borho	7,664,230 7,671,784		2/2010 3/2010	Steinway
	7,045,788 7,062,011			Tybinkowski	7,684,538		3/2010	Morton
,	7,099,434	B2	8/2006	Adams	7,693,261			Robinson
	7,103,137		9/2006	Seppi	7,720,195 7,724,868		5/2010 5/2010	Allman
	7,115,875 7,116,235		10/2006 10/2006		7,724,869		5/2010	
	7,110,233		10/2006		7,738,687	B2	6/2010	Tortora
	RE39,396		11/2006	Swift	7,741,612			Clothier
	7,151,447		12/2006		7,742,568 7,750,294		6/2010 7/2010	
	7,158,611 7,162,005			Heismann Bjorkholm	7,760,103	B2	7/2010	Frank
,	7,166,844	В1	1/2007	Gormley	7,783,003		8/2010	Clayton
	7,177,391		2/2007		7,783,004			Kotowski
	7,185,206 7,203,276			Goldstein Arsenault	7,800,073 7,809,103		9/2010	Clothier Du
	7,203,270			Lowman	7,809,103		10/2010	
,	7,215,737	B2	5/2007		7,809,109	B2		Mastronardi
	7,218,704		5/2007		7,817,776		10/2010	
	7,238,951		7/2007		7,831,012		11/2010	
	7,244,947 7,260,255			Polichar Polichar	7,844,027 7,844,028		11/2010	Harding Korsunsky
	.,200,233	112	G, 200 /	1 On Ontal	.,017,020	102	11/2010	LOISUISKY

(56)		Referen	ces Cited	8,958,526	B2	2/2015	
	T.T.	C DATENIT	DOCUMENTS	8,971,484 8,971,487			Beckmann Mastronardi
	U.	S. PALENT	DOCUMENTS	8,993,970		3/2015	
	7,860,213 B2	2 12/2010	Akerv	9.001,973	B2	4/2015	Morton
	7,864,920 B2		Rothschild	9,014,339			Grodzins
	7,873,201 B2			9,020,095		4/2015	
	7,876,879 B2		Morton	9,020,103 9,046,465			Grodzins Thompson
	7,876,880 B2		Kotowski	9,048,061		6/2015	
	7,903,789 B2 7,924,979 B2		Morton Rothschild	9,052,271			Grodzins
	7,928,400 B		Diawara	9,057,679		6/2015	
	7,929,663 B2		Morton	9,086,497			Bendahan
	7,949,101 B2		Morton	9,093,187		7/2015	Johnson
	7,952,079 B2		Neustadter	9,093,245 9,099,279			Rommel
	7,957,506 B2 7,963,695 B2		Kotowski	9,111,331		8/2015	
	7,965,816 B2			9,113,839	B2	8/2015	Morton
	7,995,705 B2		Allman	9,117,564			Rommel
	7,995,707 B2		Rothschild	9,146,201			Schubert
	8,000,436 B2			9,158,030 9,183,647	B2 B2	10/2015 11/2015	
	8,031,903 B2 8,039,812 B1			9,189,846		11/2015	
	8,059,781 B2		Agrawal	9,208,988		12/2015	Morton
	8,073,099 B2			9,218,933			Langeveld
	8,085,897 B2	2 12/2011		9,223,050		12/2015	
	8,094,784 B2			9,257,208 9,263,225		2/2016	Rommel
	8,113,071 B2 8,116,428 B2		Sagi-Dolev Gudmundson	9,203,223		3/2016	
	8,135,110 B2		Morton	9,282,258			Kuznetsov
	8,173,970 B2			9,285,488			Arodzero
	8,179,597 B2			9,291,582			Grodzins
	8,194,822 B2		Rothschild	9,311,277 9,417,060		4/2016 8/2016	Schubert
	8,204,173 B2 8,223,919 B2		Morton	9,420,677		8/2016	
	8,233,586 B	7/2012		9,442,082	B2	9/2016	Morton
	8,243,876 B2		Morton	9,442,213			Bendahan
	8,263,938 B2		Bjorkholm	9,465,135 9,466,456		10/2016 10/2016	
	8,275,091 B2 8,275,092 B1		Morton	9,535,019			Rothschild
	8,311,313 B			9,541,510	B2		Arodzero
	8,320,523 B2			9,562,866		2/2017	
	8,325,871 B2		Grodzins	9,562,986 9,576,766		2/2017 2/2017	
	8,331,535 B2 8,345,819 B2		Morton Mastronardi	9,606,259	B2		Morton
	8,389,941 B2		Bendahan	9,618,648	B2	4/2017	
	8,389,942 B2	2 3/2013	Morton	9,632,205		4/2017	
	8,401,270 B2			9,632,206 9,638,646		4/2017 5/2017	
	8,439,565 B2 8,442,186 B2		Mastronardi	9,658,343			Arodzero
	8,442,186 B2 8,451,974 B2		Rothschild Morton	9,675,306		6/2017	
	8,457,274 B2		Arodzero	9,714,920			Lionheart
	8,502,699 B2		Zerwekh	9,726,619			Thompson
	8,503,605 B2		Morton	9,747,705 9,772,426		8/2017 9/2017	Armistead, Jr.
	8,503,606 B2 8,532,823 B2		Rothschild Mcelroy	9,823,201		11/2017	
	8,552,722 B2		Lionheart	9,823,383		11/2017	
	8,559,592 B2			9,864,076		1/2018	
	8,625,735 B2		Morton	9,867,271 9,891,314	B2 B2	2/2018	Saverskiy Morton
	8,633,823 B2 8,690,427 B2		Armistead, Jr. Mastronardi	9,989,508		6/2018	
	8,750,452 B2			9,996,890	В1		Cinnamon
	8,766,764 B2	2 7/2014		10,021,350		7/2018	
	8,774,362 B2		Hughes	10,048,393 10,061,041		8/2018 8/2018	Rowland
	8,804,899 B2 8,817,098 B2		Morton Miller	10,089,956		10/2018	
	8.824.632 B2		Mastronardi	10,107,783			Lionheart
	8,824,637 B2		Morton	10,175,381		1/2019	
	8,831,176 B2		Morton	10,210,631 10,228,487			Cinnamon
	8,837,669 B2		Morton Dathachild	10,228,487			Mastronardi Awad
	8,842,808 B2 8,861,684 B2		Rothschild Al-Kofahi	10,295,483		5/2019	
	8,884,236 B2		Rothschild	10,302,807		5/2019	
	8,885,794 B2			10,345,479			Langeveld
	8,903,045 B2		Schubert	10,353,109		7/2019	
	8,903,046 B2			10,366,293 10,368,428		7/2019 7/2019	Faviero Saverskiy
	8,908,831 B2 8,923,481 B2		Bendahan Schubert	10,386,532		8/2019	Morton
	8,929,509 B2		Morton	10,408,967		9/2019	
	,, ,- 35 252	1. 2010		,,,	_		

(56)	Referen	ces Cited	2005/0023479 A 2005/0031075 A		Grodzins Hopkins
U.S.	PATENT	DOCUMENTS	2005/0051075 A 2005/0105680 A 2005/0111610 A	.1 5/2005	Nabors De Man
10,422,919 B2	9/2019	Parikh	2005/0117700 A	.1 6/2005	Peschmann
10,452,959 B1	10/2019		2005/0135668 A 2005/0156734 A		Polichar Zerwekh
10,453,223 B2 10,504,261 B2		Cinnamon Cinnamon	2005/0157842 A		Agrawal
10,504,201 B2 10,509,142 B2	12/2019		2005/0161611 A	.1 7/2005	Disdier
10,510,319 B2	12/2019	Awad	2005/0169421 A		Muenchau
10,520,612 B2	1/2019		2005/0208290 A 2005/0226383 A		Patel Rifkin
10,527,742 B2 10,572,963 B1	1/2020 2/2020	Cinnamon	2005/0258371 A	.1 11/2005	Stein
10,585,206 B2		Bendahan	2005/0275545 A		Alioto
10,593,099 B2		Sudarsky	2006/0011848 A	.1 * 1/200¢	Rushbrooke G01N 23/083 257/E27.14
10,598,812 B2 10,650,783 B2	3/2020 5/2020		2006/0027751 A	.1 2/2006	Kurita 257/127.14
10,698,128 B2	6/2020	Morton	2006/0176998 A		Korsunsky
10,706,335 B2		Gautam	2006/0249685 A 2006/0257005 A		Tanaka Bergeron
10,768,338 B2 10,770,195 B2	9/2020 9/2020	Rothschild	2006/0262902 A		Wattenburg
10,782,440 B2	9/2020	Hanley	2006/0284094 A		Inbar
10,795,047 B2		St-Aubin	2007/0007455 A 2007/0009088 A		Juni Edic
10,795,048 B2 10,795,049 B2		St-Aubin St-Aubin	2007/0009088 A 2007/0061150 A		' Sawano
10,809,414 B2		St-Aubin	2007/0085010 A		Letant
10,830,920 B2	11/2020		2007/0098142 A 2007/0110215 A		Rothschild
10,901,114 B2 10,942,291 B2		St-Aubin Morton	2007/0110213 A 2007/0140423 A		Tu Foland
10,976,271 B2		Morton	2007/0147585 A	.1 6/2007	Eilbert
11,010,605 B2	5/2021		2007/0159400 A		DeJean
11,099,294 B2 11,119,245 B2	8/2021	Parikh Morton	2007/0170375 A 2007/0172129 A		Tang Tortora
11,119,243 B2 11,163,076 B2	11/2021		2007/0183568 A	.1 8/2007	Kang
11,193,898 B1		Schubert	2007/0189454 A		Georgeson
11,263,499 B2 11,276,213 B2		Gautam Cinnamon	2007/0210255 A 2007/0228284 A		' Bjorkholm ' Polichar
11,280,898 B2		Morton	2007/0235655 A	.1 10/2007	Rhiger
11,287,391 B2	3/2022	Yu	2007/0237294 A		
11,307,325 B2 11,423,592 B2		Morton Cinnamon	2007/0269005 A 2007/0272874 A		Chalmers Grodzins
11,423,392 B2 11,448,777 B2	9/2022		2007/0280416 A		Bendahan
11,561,321 B2	1/2023	Morton	2007/0280502 A		Paresi
11,594,001 B2 11,790,575 B2		Sivakumar Cinnamon	2007/0286337 A 2008/0037707 A		Wang Rothschild
11,822,041 B2	11/2023		2008/0043913 A	.1 2/2008	Annis
11,852,775 B2	12/2023		2008/0044801 A		Modica
11,885,752 B2 11,914,085 B2	1/2024 2/2024	St-Aubin Ritter	2008/0048872 A 2008/0054893 A		Frank Humphreys
11,977,037 B2		Desjeans-Gauthier	2008/0084963 A	.1 4/2008	Clayton
12,019,035 B2	6/2024	Archambault	2008/0128624 A		Cooke
12,056,840 B2 12,169,264 B2	8/2024 12/2024	Sivakumar Morton	2008/0152081 A 2008/0170655 A		Cason Bendahan
12,174,334 B2	12/2024		2008/0170670 A	.1 7/2008	Bhatt
12,181,422 B2	12/2024	Manalad	2008/0198970 A		Kirshner Bjorkholm
12,181,619 B2 12,235,226 B2	12/2024	Stein Morton	2008/0205594 A 2008/0212742 A		Hughes
2001/0016028 A1		Adams	2008/0230709 A	.1 9/2008	Tkaczyk
2001/0022830 A1		Sommer	2008/0260097 A		Anwar Robinson
2001/0053202 A1 2002/0063783 A1	12/2001	Mazess Kurase	2008/0283761 A 2008/0298546 A		Bueno
2003/0004792 A1		Townzen	2008/0304622 A		Morton
2003/0068557 A1		Kumashiro	2009/0003514 A 2009/0010386 A		Edic Peschmann
2003/0085348 A1 2003/0095626 A1		Megerle Anderton	2009/0010380 A 2009/0034790 A		Song
2003/0033020 A1		August	2009/0067575 A	.1 3/2009	Seppi
2003/0204361 A1		Townsend	2009/0086314 A 2009/0086907 A		Namba Smith
2004/0016867 A1 2004/0017313 A1		Milshtein Menache	2009/0080907 A 2009/0103686 A		Rothschild
2004/0017313 A1 2004/0017888 A1	1/2004		2009/0116617 A	.1 5/2009	Mastronardi
2004/0086078 A1		Adams	2009/0127459 A		Neustadter
2004/0088584 A1 2004/0120454 A1		Shachar Ellenbogen	2009/0140158 A 2009/0175411 A		Clothier Gudmundson
2004/0125914 A1	7/2004	e	2009/0200373 A		Landwirth
2004/0141584 A1	7/2004	Bernardi	2009/0200480 A	.1 8/2009	Clothier
2004/0178339 A1		Gentile Poderson	2009/0213989 A		Harding
2004/0199785 A1 2004/0258198 A1	10/2004	Pederson Carver	2009/0221881 A 2009/0238336 A		Qian Akery
2004/0267114 A1	12/2004		2009/0257555 A		Chalmers

US 12,385,854 B2

Page 6

(56)	Reference	ces Cited	2017/0227		8/2017		
U.S	. PATENT	DOCUMENTS	2017/0358 2018/0038	8988 A1		Rothschild Morton	
			2018/0078 2018/0128	3233 A1	3/2018	Jin Thompson	
2009/0274277 A1 2009/0278683 A1	11/2009 11/2009		2018/0294	1066 A1 1	0/2018	Rothschild	
2009/0285353 A1	11/2009	Ellenbogen	2018/0333 2018/0368			Zamenhof Saverskiy	
2009/0316855 A1 2010/0002834 A1	12/2009	Morton Gudmundson	2019/0308			Morton	
2010/0002834 A1 2010/0020937 A1		Hautmann	2019/0212	279 A1	7/2019	St-Aubin	
2010/0034353 A1	2/2010		2019/0323 2019/0346			Myers Rothschild	
2010/0061509 A1 2010/0065746 A1		Raymond Grazioso	2019/0346			Scoullar	
2010/0086185 A1	4/2010	Weiss	2019/0369		2/2019		
2010/0098218 A1 2010/0161504 A1	4/2010 6/2010	Vermilyea	2020/0042 2020/0337		2/2020 0/2020		
2010/0166142 A1	7/2010			918 A1* 1		3	G01N 21/314
2010/0172476 A1	7/2010						
2010/0177868 A1 2010/0223016 A1	7/2010 9/2010			FOREIGN	PATE	NT DOCU	MENTS
2010/0284509 A1	11/2010	Oreper	CA	274469	90	6/2009	
2010/0295689 A1 2011/0019797 A1	11/2010 1/2011	Armistead, Jr.	CA	26246:	58 A1	9/2009	
2011/0019797 A1 2011/0019799 A1		Shedlock	CA CA	262466 263636		9/2009 9/2009	
2011/0031405 A1	2/2011		CA	269752		3/2010	
2011/0038453 A1 2011/0064192 A1	2/2011 3/2011		CA	269010		8/2011	
2011/0075808 A1	3/2011	Rothschild	CN CN	174529 10217569		3/2006 9/2011	
2011/0096906 A1		Langeveld	CN	10332790		9/2013	
2011/0102235 A1 2011/0127426 A1	6/2011	Abdillah Akery	CN CN	10416589 1072092		3/2017 9/2017	
2011/0135060 A1	6/2011	Morton	EP	00770		4/1983	
2011/0172972 A1 2011/0204243 A1		Gudmundson Bendahan	EP	01763	14	4/1986	
2011/0204243 A1 2011/0206179 A1		Bendahan	EP EP	026193 028770		3/1988 10/1988	
2011/0206240 A1	8/2011		EP	08648		9/1998	
2011/0222733 A1 2011/0235777 A1	9/2011 9/2011		EP	09191		6/1999	
2011/0273320 A1	11/2011	Nogueira-Nine	EP EP	067233 113570		2/2000 9/2001	
2011/0305318 A1 2012/0069963 A1	12/2011		EP	12543	84	11/2002	
2012/0009903 A1 2012/0081386 A1	3/2012 4/2012	Wiemker	EP EP	141389 152639		4/2004 4/2005	
2012/0093367 A1		Gudmundson	EP	17332		12/2006	
2012/0104276 A1 2012/0134473 A1	5/2012 5/2012		EP	173940		1/2007	
2012/0201354 A1	8/2012	Kimura	EP EP	19078: 20498:		4/2008 4/2009	
2012/0219116 A1	8/2012 11/2012	Thompson	EP	20547	41	5/2009	
2012/0294423 A1 2012/0313555 A1	12/2012		EP FR	214729 303740		1/2010 12/2016	
2013/0156151 A1	6/2013		GB	5165		1/1940	
2013/0170611 A1 2013/0202089 A1		Beckmann Schubert	GB	20238		1/1980	
2013/0208857 A1		Arodzero	GB GB	208482 215052		4/1982 7/1985	
2013/0230139 A1	9/2013		GB	22556	34 A	11/1992	
2013/0251098 A1 2013/0256520 A1	9/2013 10/2013		GB GB	225832 22770		2/1993 10/1994	
2013/0264483 A1	10/2013		GB	242400		9/2006	
2013/0278631 A1 2013/0336447 A1	10/2013 12/2013		GB	24383		11/2007	
2014/0023181 A1	1/2014	Noshi	GB JP	100173 200235769		2/2010 12/2002	
2014/0028457 A1 2014/0029725 A1	1/2014 1/2014	Reinpoldt	JР	2013511:	56 A	3/2013	
2014/0063239 A1	3/2014		RU WO	22763: 90024		5/2006 3/1990	
2014/0211916 A1	7/2014		WO	199001150		10/1990	
2014/0270086 A1 2014/0294147 A1	9/2014 10/2014	Krasnykh Chen	WO	971840	52 A	5/1997	
2014/0342631 A1	11/2014	Morton	WO WO	980270 199800270		1/1998 1/1998	
2015/0104089 A1	4/2015		WO	19980038		1/1998	
2015/0186732 A1 2015/0325010 A1	7/2015 11/2015		WO	199802030		5/1998	
2015/0357148 A1	12/2015	Morton	WO WO	19980558: 99391:		12/1998 8/1999	
2016/0025888 A1 2016/0048984 A1	1/2016 2/2016	Peschmann	WO	200401012	27 A1	1/2004	
2016/0048984 A1 2016/0055650 A1	2/2016		WO WO	20040978 20041093		11/2004 12/2004	
2016/0259412 A1	9/2016	Flint	WO	200505040		6/2005	
2016/0343533 A1	11/2016		WO	200507943	37 A2	9/2005	
2017/0071559 A1 2017/0161922 A1	3/2017 6/2017		WO WO	200509840 20051217:		10/2005 12/2005	
2017/0215814 A1	8/2017		WO	20060360		4/2006	

(56)	References Cited						
	FOREIGN PATEN	IT DOCUMENTS					
WO	2006045019	4/2006					
WO	2006078691 A2	7/2006					
WO	2006095188	9/2006					
WO	2006137919 A2	12/2006					
WO	2007035359 A2	3/2007					
WO	2007051092 A2	5/2007					
WO	2007068933 A1	6/2007					
WO	2008024825 A2	2/2008					
WO	2008133765 A2	11/2008					
WO	2009027667 A2	3/2009					
WO	2009106803 A2	9/2009					
WO	2009114928	9/2009					
WO	2009141613	11/2009					
WO	2009141615	11/2009					
WO	2009143169 A1	11/2009					
WO	2009150416 A2	12/2009					
WO	2011008718 A1	1/2011					
WO	2011053972 A2	5/2011					
WO	2011069024 A1	6/2011					
WO	2011087861 A2	7/2011					
WO	2011095810 A2	8/2011					
WO	2011095942 A2	8/2011					
WO	2011106463 A1	9/2011					
WO	2011142768 A2	11/2011					
WO	2012058207 A2	5/2012					
WO	2012080443	6/2012					
WO	2012174265 A1	12/2012					
WO	2013011282	1/2013					
WO WO	2013116549 A1	8/2013					
	2013119423 A1	8/2013					
WO	2014058495 A2	4/2014					
WO WO	2014107675 2015134802	7/2014 9/2015					
WO WO							
WO WO		5/2016 5/2017					
WO WO	2017084898 A1 2017202793 A1	5/2017 11/2017					
WO WO	2017202793 A1 2018121444 A1	7/2018					
WO	2018121444 A1 2019217596 A1	11/2019					
WO	2019217596 A1 2020023603 A1	1/2019					
WU	2020023003 AT	1/2020					

OTHER PUBLICATIONS

Saverskiy et al. "Cargo and Container X-Ray Inspection with Intra-Pulse Multi-Energy Method for Material Discrimination" Physics Procedia, vol. 66, pp. 232-241, ISSN 1875-3892, Jun. 18, 2015 [retrieved on May 9, 2023]. Retrieved from: <URL: https://www.sciencedirect.com/science/article/pii/S1875389215001832>.

International Search Report for PCT/US10/35048; Rapiscan Security Products, Inc.; Feb. 8, 2012.

Singh S et al., "Explosives detection systems (EDS) for aviation security", Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 83, No. 1, Jan. 1, 2003, pp. 31-55, XP027139545, ISSN: 0165-1684.

International Search Report PCT/US2011/025969, mailed on Aug. 1, 2011, Rapiscan Systems Inc.

International Search Report and Written Opinion for PCT/US2010/041757, Oct. 12, 2010.

International Search Report for PCT/US10/58809; Rapiscan Systems Inc.; Apr. 19, 2011.

International Search Report for PCT/GB2009/001250, Mar. 2, 2010, Rapiscan Security Products Inc.

"Mobile X-Ray Inspection Systems" Internet citation Feb. 12, 2007, pp. 1-2, XP007911046 Retrieved from the Internet: URL:http://web.archive.org/web/20070212000928/http://www.bombdetection.co-m/cat.sub.-- details.php?catid=20 [retrieved on Jan. 6, 2010].

Molchanov P A et al: 'Nanosecond gated optical sensors for ocean optic applications' Sensors Applications Symposium, 2006. Proceedings of The 2006 IEEE Houston, Texas, USA Feb. 7-9, 2006, Piscataway, NJ, USA, IEEE, Feb. 7, 2006 (Feb. 7, 2006), pp. 147-150, XP010917671 ISBN: 978-0-7803-9580-0.

International Search Report PCT/US2012/024184, mailed on Jul. 27, 2012, Rapiscan Systems Inc.

International preliminary report on patentability PCT/US2012/024184, issued on Aug. 13, 2013, Rapiscan Systems Inc.

International Search Report for PCT/US2010/061908, mailed on Apr. 2, 2012, Rapiscan Systems, Inc.

International Search Report for PCT/GB2006/000859, mailed on May 19, 2006, Corus UK Ltd.

Chou, C, "Fourier coded-aperture imaging in nuclear medicine", IEEE Proc. Sci. Meas. Technol., vol. 141. No. 3, May 1994, pp. 179-184.

International Search Report and Written Opinion of the International Searching Authority, PCT/US2005/011382, Oct. 21, 2005.

European Patent Office, International Search Report, International Application No. PCT/US99/28266, dated Sep. 6, 2000, 3 pages.

International Preliminary Report on Patentability, PCT/US2005/011382, dated Oct. 19, 2006, 7 pages.

International Preliminary Examining Authority-US, International Preliminary Examination Report, PCT/US1998/018642, dated Aug. 30, 1999, 4 pages.

Mertz, L.N., et al., "Rotational aperture synthesis for x rays", Journal. Optical Society of America, vol. 3, Dec. 1986, pp. 2167-2170

International Search Report for PCT/GB2009/001277, Jul. 20, 2010, Rapiscan Systems Inc.

International Search Report PCT/GB2009/000515, Feb. 23, 2010, Rapiscan Security Products, Inc.

International Search Report PCT/GB2009/001444, Apr. 6, 2010, Rapiscan Security Products.

International Search Report for PCT/GB2009/000556, Feb. 19, 2010, Rapiscan Security Products, Inc.

International Search Report, PCT/US2007/066936; dated: Sep. 30, 2008, 5 pages.

International Search Report, PCT/US1998/18642, dated Jul. 7, 1999, 4 pages.

International Search Report, PCT/US1999/028035, dated Sep. 15, 2000, 6 pages.

Written Opinion of the International Searching Authority, PCT/US2007/066936, dated Sep. 30, 2008, 7 pages.

International Search Report for PCT/GB2009/000497, Jan. 22, 2010

Misso et al., "New developments in radiation detectors and electron multipliers", 1964, IEEE Transactions on Nuclear Science pp. 72-75.

International Search Report for PCT/GB2009/001275, Jul. 24, 2009, Rapiscan Security Products Inc.

Keevil, S.V., Lawinski, C.P. and Morton, E.J., 1987, "Measurement of the performance characteristics of anti-scatter grids.", Phys. Med. Biol., 32(3), 397-403.

Morton, E.J., Webb, S., Bateman, J.E., Clarke, L.J. and Shelton, C.G., 1990, "Three-dimensional x- ray micro-tomography for medical and biological applications.", Phys. Med. Biol., 35(7), 805-820. Morton, E.J., Swindell, W., Lewis, D.G. and Evans, P.M., 1991, "A linear array scintillation-crystal photodiode detector for megavoltage imaging.", Med. Phys., 18(4), 681-691.

Morton, E.J., Lewis, D.G. and Swindell, W., 1988, "A method for the assessment of radiotherapy treatment precision", Brit. J. Radiol., Supplement 22, 25.

Swindell, W., Morton, E.J., Evans, P.M. and Lewis, D.G., 1991, "The design of megavoltage projection imaging systems: some theoretical aspects.", Med. Phys., 18(5), 855-866.

Morton, E.J., Evans, P.M., Ferraro, M., Young, E.F. and Swindell, W., 1991, "A video frame store facility for an external beam radiotherapy treatment simulator.", Brit. J. Radiol., 64, 747-750.

Antonuk, L.E., Yorkston, J., Kim, C.W., Huang, W., Morton, E.J., Longo, M.J. and Street, R.A., 1991, "Light response characteristics of amorphous silicon arrays for megavoltage and diagnostic imaging.", Mat. Res. Soc. Sym. Proc., 219, 531-536.

Yorkston, J., Antonuk, L.E., Morton, E.J., Boudry, J., Huang, W., Kim, C.W., Longo, M.J. and Street, R.A., 1991, "The dynamic response of hydrogenated amorphous silicon imaging pixels.", Mat. Res. Soc. Sym. Proc., 219, 173-178.

(56) References Cited

OTHER PUBLICATIONS

Evans, P.M., Gildersleve, J.Q., Morton, E.J., Swindell, W., Coles, R., Ferraro, M., Rawlings, C., Xiao, Z.R. and Dyer, J., 1992, "Image comparison techniques for use with megavoltage imaging systems.", Brit. J. Radiol., 65, 701-709.

Morton, E.J., Webb, S., Bateman, J.E., Clarke, L.J. and Shelton, C.G., 1989, "The development of 3D x-ray micro-tomography at sub 100A? Aum resolution with medical, industrial and biological applications.", Presentation at IEE colloquium "Medical scanning and imaging techniques of value in non-destructive testing", London, Nov. 3, 1989.

Antonuk, L.E., Boudry, J., Huang, W., McShan, D.L., Morton, E.J., Yorkston, J, Longo, M.J. and Street, R.A., 1992, "Demonstration of megavoltage and diagnostic x-ray imaging with hydrogenated amorphous silicon arrays.", Med. Phys., 19(6), 1455-1466.

Gildersleve, J.Q., Swindell, W., Evans, P.M., Morton, E.J., Rawlings, C. and Dearnaley, D.P., 1991, "Verification of patient positioning during radiotherapy using an integrated megavoltage imaging system.", in "Tumour Response Monitoring and Treatment Planning", Proceedings of the International Symposium of the W. Vaillant Foundation on Advanced Radiation Therapy, Munich, Germany, Ed A. Breit (Berlin: Springer), 693-695.

Lewis, D.G., Evans, P.M., Morton, E.J., Swindell, W. and Xiao, X.R., 1992, "A megavoltage CT scanner for radiotherapy verification.", Phys. Med. Biol., 37, 1985-1999.

Antonuk, L.E., Boudry, J., Kim, C.W., Longo, M.J., Morton, E.J., Yorkston, J. and Street, R.A., 1991, "Signal, noise and readout considerations in the development of amorphous silicon photodiode arrays for radiotherapy and diagnostic x-ray imaging.", SPIE vol. 1443 Medical Imaging V: Image Physics, 108-119.

Antonuk, L.E., Yorkston, J., Huang, W., Boudry, J., Morton, E.J., Longo, M.J. and Street, R.A., 1992, "Radiation response characteristics of amorphous silicon arrays for megavoltage radiotherapy imaging.", IEEE Trans. Nucl. Sci., 39,1069-1073.

Antonuk, L.E., Yorkston, J., Huang, W., Boudry, J., Morton, E.J., Longo, M.J. and Street, R.A., 1992, "Factors affecting image quality for megavoltage and diagnostic x-ray a-Si:H imaging arrays.", Mat. Res. Soc. Sym. Proc., 258, 1069-1074.

Antonuk, L.E., Boudry, J., Yorkston, J., Morton, E.J., Huang, W. and Street, R.A., 1992, "Development of thin-film, flat-panel arrays for diagnostic and radiotherapy imaging.", SPIE vol. 1651, Medical Imaging VI: Instrumentation, 94-105.

Yorkston, J., Antonuk, L.E., Seraji, N., Boudry, J., Huang, W., Morton, E.J., and Street, R.A., 1992, "Comparison of computer simulations with measurements from a-Si:H imaging arrays.", Mat. Res. Soc. Sym. Proc., 258, 1163-1168.

Morton, E.J., Antonuk, L.E., Berry, J.E., Boudry, J., Huang, W., Mody, P., Yorkston, J. and Longo, M.J., 1992, "A Camac based data acquisition system for flat-panel image array readout", Presentation at IEEE Nuclear Science Symposium, Orlando, Oct. 25-31, 1992. Antonuk, L.E., Yorkston, J., Huang, W., Boudry, J., Morton, E.J. and Street, R.A., 1993, "Large area, flat-panel a-Si:H arrays for x-ray imaging.", SPIE vol. 1896, Medical Imaging 1993: Physics of Medical Imaging, 18-29.

Morton, E.J., Antonuk, L.E., Berry, J.E., Huang, W., Mody, P. and Yorkston, J., 1994, "A data acquisition system for flat-panel imaging arrays", IEEE Trans. Nucl. Sci., 41(4), 1150-1154.

Antonuk, L.E., Boudry, J., Huang, W., Lam, K.L., Morton, E.J., TenHaken, R.K., Yorkston, J. and Clinthorne, N.H., 1994, "Thinfilm, flat-panel, composite imagers for projection and tomographic imaging", IEEE Trans. Med. Im., 13(3), 482-490.

Gildersleve, J., Dearnaley, D., Evans, P., Morton, E.J. and Swindell, W., 1994, "Preliminary clinical performance of a scanning detector for rapid portal imaging", Clin. Oncol., 6, 245-250.

Hess, R., De Antonis, P., Morton, E.J. and Gilboy, W.B., 1994, "Analysis of the pulse shapes obtained from single crystal CdZnTe radiation detectors", Nucl. Inst. Meth., A353, 76-79.

Deantonis, P., Morton, E.J., T. Menezes, 1996, "Measuring the bulk resistivity of CdZnTe single crystal detectors using a contactless alternating electric field method", Nucl. Inst. Meth., A380, 157-159.

Deantonis, P., Morton, E.J., Podd, F., 1996, "Infra-red microscopy of CdZnTe radiation detectors revealing their internal electric field structure under bias", IEEE Trans. Nucl. Sci., 43(3), 1487-1490. Tavora, L.M.N., Morgado, R.E., Estep, R.J., Rawool-Sullivan, M., Gilboy, W.B. and Morton, E.J., 1998, "One-sided imaging of large, dense, objects using the 511 keV photons from induced pair

Morton, E.J., 1995, "Archaeological potential of computerised tomography", Presentation at IEE Colloquium on "NDT in archaeology and art", London, May 25, 1995.

production", IEEE Trans. Nucl. Sci., 45(3), 970-975.

Tavora, L.M.N. and Morton, E.J., 1998, "Photon production using a low energy electron expansion of the EGS4 code system", Nucl. Inst. Meth., B143, 253-271.

Patel, D.C. and Morton, E.J., 1998, "Analysis of improved adiabatic pseudo- domino logic family", Electron. Lett., 34(19), 1829-1830. Kundu, A and Morton, E.J., 1999, "Numerical simulation of argonmethane gas filled proportional counters", Nucl. Inst. Meth., A422, 286-290.

Luggar, R.D., Key, M.J., Morton, E.J. and Gilboy, W.B., 1999, "Energy dispersive X-ray scatter for measurement of oil/water ratios", Nucl. Inst. Meth., A422, 938-941.

Morton, E.J., Crockett, G.M., Sellin, P. J. and DeAntonis, P., 1999, "The charged particle response of CdZnTe radiation detectors", Nucl. Inst. Meth., A422, 169-172.

Morton, E.J., Clark, R.J. and Crowley, C., 1999, "Factors affecting the spectral resolution of scintillation detectors", Nucl. Inst. Meth., A422, 155-158.

Morton, E.J., Caunt, J.C., Schoop, K., Swinhoe, M., 1996, "A new handheld nuclear material analyser for safeguards purposes", Presentation at INMM annual meeting, Naples, Florida, Jul. 1996.

Hepworth, S., McJury, M., Oldham, M., Morton, E.J. and Doran, S.J., 1999, "Dose mapping of inhomogeneities positioned in radiosensitive polymer gels", Nucl. Inst. Meth., A422, 756-760.

Morton, E.J., Luggar, R.D., Key, M.J., Kundu, A., Tavora, L.M.N. and Gilboy, W.B., 1999, "Development of a high speed X-ray tomography system for multiphase flow imaging", IEEE Trans. Nucl. Sci., 46 III(1), 380-384.

Tavora, L.M.N., Morton, E.J., Santos, F.P. and Dias, T.H.V.T., 2000, "Simulation of X-ray tubes for imaging applications", IEEE Trans. Nucl. Sci., 47, 1493-1497.

Tavora, L.M.N., Morton, E.J. and Gilboy, W.B., 2000, "Design considerations for transmission X-ray tubes operated at diagnostic energies", J. Phys. D: Applied Physics, 33(19), 2497-2507.

Morton, E.J., Hossain, M.A., DeAntonis, P. and Ede, A.M.D., 2001, "Investigation of Au-CdZn Te contacts using photovoltaic measurements", Nucl. Inst. Meth., A458, 558-562.

Ede, A.M.D., Morton, E.J. and DeAntonis, P., 2001, "Thin-film CdTe for imaging detector applications", Nucl. Inst. Meth., A458, 7-11

Tavora, L.M.N., Morton, E.J. and Gilboy, W.B., 2001, "Enhancing the ratio of fluorescence to bremsstrahlung radiation in X-ray tube spectra", App. Rad. and Isotopes, 54(1), 59-72.

Menezes, T. and Morton, E.J., 2001, "A preamplifier with digital output for semiconductor detectors", Nucl. Inst. Meth. A., A459, 202, 218

Johnson, D.R., Kyriou, J., Morton, E.J., Clifton, A.C. Fitzgerald, M. and MacSweeney, J.E., 2001, "Radiation protection in interventional radiology", Clin. Rad., 56(2), 99-106.

Tavora, L.M.N., Gilboy, W.B. and Morton, E.J., 2001, "Monte Carlo studies of a novel X-ray tube anode design", Rad. Phys. and Chem., 61, 527-529.

"Morton, E.J., 1998, "Is film dead: the flat plate revolution", Keynote Talk, IPEM Annual Conference, Brighton, 14-17 Sept, 1998"}.

Luggar, R.D., Morton, E.J., Jenneson, P.M. and Key, M.J., 2001, "X-ray tomographic imaging in industrial process control", Rad. Phys. Chem., 61, 785-787.

Luggar, R.D., Morton, E.J., Key, M.J., Jenneson, P.M. and Gilboy, W.B., 1999, "An electronically gated multi-emitter X-ray source for high speed tomography", Presentation at SPIE Annual Meeting, Denver, Jul. 19-23, 1999.

(56) References Cited

OTHER PUBLICATIONS

Gregory, P.J., Hutchinson, D.J., Read, D.B., Jenneson, P.M., Gilboy, W.B. and Morton, E.J., 2001, "Non-invasive imaging of roots with high resolution X-ray microtomography", Plant and Soil, 255(1), 351-359.

Kundu, A., Morton, E.J., Key, M.J. and Luggar, R.D., 1999, "Monte Carlo simulations of microgap gas-filled proportional counters", Presentation at SPIE Annual Meeting, Denver, Jul. 19-23, 1999. Hossain, M.A., Morton, E.J., and Ozsan, M.E., 2002, "Photoelectronic investigation of CdZn Te spectral detectors", IEEE Trans. Nucl. Sci, 49(4), 1960-1964.

Panman, A., Morton, E.J., Kundu, A and Sellin, P.J., 1999, "Optical Monte Carlo transport in scintillators", Presentation at SPIE Annual Meeting, Denver, Jul. 19-23, 1999.

Jenneson, P.M., Gilboy, W.B., Morton, E.J., and Gregory, P.J., 2003, "An X-ray micro-tomography system optimised for low dose study of living organisms", App. Rad. Isotopes, 58, 177-181.

Key, M.J., Morton, E.J., Luggar, R.D. and Kundu, A., 2003, "Gas microstrip detectors for X-ray tomographic flow imaging", Nucl. Inst. Meth., A496, 504-508.

Jenneson, P.M., Luggar, R.D., Morton, E.J., Gundogdu, O, and Tuzun, U, 2004, "Examining nanoparticle assemblies using high spatial resolution X-ray microtomography", J. App. Phys, 96(5), 2880-2804

Tavora, L.M., Gilboy, W.B. and Morton, E.J., 2000, "Influence of backscattered electrons on X-ray tube output", Presentation at SPIE Annual Meeting, San Diego, 30 July - Aug. 3, 2000.

Wadeson, N., Morton, E.J., and Lionheart, W.B., 2010, "Scatter in an uncollimated x-ray CT machine based on a Geant4 Monte Carlo

simulation", SPIE Medical Imaging 2010: Physics of Medical Imaging, Feb. 15-18, 2010, San Diego, USA.

Morton, E.J., 2010, "Position sensitive detectors in security: Users perspective", Invited talk, STFC meeting on position sensitive detectors, RAL, May 2010.

Third Party Submission Under 37 CFR 1.290 for U.S. Appl. No. 15/954,853, filed Apr. 19, 2019.

Domingo Mery, "Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms", Springer International Publishing Switzerland 2015 (Year: 2015).

Chen C et al., "Front-end electronics for the CDF-II time-of-flight system", IEEE Transactions On Nuclear Science, IEEE Service Center, New York, Ny, US, (20031201), vol. 50, No. 6, doi:10. 1109/TNS.2003.820632, ISSN 0018-9499, pp. 2486-2490, XP011106678.

[XAI] - Wen Xianfei et al., "Measuring the scintillation decay time for different energy deposited by [gamma]-rays and neutrons in a Cs2LiYCl6:Cc3+detector", Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, Elsevier Bv * North-Holland, Nl, (20170209), vol. 853, doi:10.1016/J.NIMA.2017.02.019, ISSN 0168-9002, pp. 9-15, XP029936730.

Kyle Polack et al. "Dual-Particle Imager for Standoff Detection of Special Nuclear Material", IEEE Nuclear Science Symposium Conference Record, Oct. 23, 2011, pp. 1494-1500, IEEE.

Soundara-Pandian L et al., "Lithium Alkaline Halides-Next Generation of Dual Mode Scintillators", IEEE Transactions On Nuclear Science, IEEE Service Center, New York, Ny, US, vol. 63, No. 2, doi:10.1109/TNS.2016.2535355, ISSN 0018-9499, (20160401), pp. 490-496, (20160418), XP011606934.

* cited by examiner

FIG. 3

FIG. 3 (cont.)

METHODS AND SYSTEMS FOR PERFORMING ON-THE-FLY AUTOMATIC CALIBRATION ADJUSTMENTS OF X-RAY INSPECTION SYSTEMS

CROSS-REFERENCE

The present application relies on U.S. Patent Provisional Application No. 63/369,386, titled "Methods and Systems for Performing On-The-Fly Automatic Calibration Adjustments of X-Ray Inspection Systems", and filed on Jul. 26, 2022, for priority, which is herein incorporated by reference in its entirety.

FIELD

The present specification is related generally to the field of X-ray inspection. More specifically, the present specification is related to a method of enabling automatic adjustment of calibration data of X-ray inspection systems while scanning an object under examination or inspection.

BACKGROUND

Most modern high energy (2.5-9 MeV) transmission X-ray non-intrusive inspection systems offer some degree of cargo composition estimation by using interlaced dual energy pulses. By comparing the radiographic images of the low energy (3-5 MeV) and high energy (6-9 MeV) of the 30 same container, different regions inside it can be characterized into four broad categories of materials: organic, inorganic (such as soil, fertilizer, salts, aluminum), metallic (such as steel, scrap metal), and High-Z materials (such as materials having an atomic number at or above tungsten). 35

Unlike the low energy inspection systems used for parcel and luggage screening where the prevailing process is the photoelectric effect, at high energies, the Compton effect dominates the interaction of X-rays with matter. The Compton process is weakly dependent on the effective atomic 40 number of the material, making an accurate assessment difficult.

In addition to the challenges brought by physics, there are other challenges specific to the cargo screening such as, but not limited to: a) cargo clutter, where multiple optically 45 dense objects overlap in the image; b) X-ray source stability (in terms of maintaining a consistent and/or predictable value for dose and energy) and detector stability, both of which may lead to calibration drift; c) energy-dependent X-ray scatter, where low and high energy beams produce 50 different blur in the image and d) obscured objects of interest (such as high-Z shielding, weapons, or smuggled drug packages), which are often small compared to the rest of the imaged cargo.

Dual energy material separation methods involve a calibration process in which a set of materials with known atomic numbers and densities such as plastic, aluminum, steel, lead, tungsten, with different thicknesses are placed between the source and detectors, a scan is performed and responses of detectors for the high and low energy beam 60 components are recorded. In normal operation mode, the inverse process takes place. Detectors record the high and low energy response to objects in the beam, and then algorithms determine the closest candidate, based on an effective atomic number (Zeff), in terms of material type and 65 thickness. An uncertainty is associated with the determination of the material type, depending on the system geometry,

2

X-ray flux and energies, and the number of samples (pulse pairs) used to make the determination.

Unfortunately, materials separation calibration does not remain stable over the lifetime of an X-ray inspection system. Changes often appear that make the Zeff calculation unreliable. In some conditions, the drift may even happen between two scans taken minutes apart.

Therefore, there is a need for a method that enables automatic modulation of calibration data for an X-ray system during scanning of an object under examination or inspection.

SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.

In some embodiments, the present specification discloses a method of performing an on-the-fly adjustment of calibration data corresponding to an X-ray inspection system that comprises an X-ray source in data communication with a computing device, the method being implemented in the computing device having one or more physical processors programmed with a plurality of program instructions that, when executed by the one or more physical processors, cause the computing device to perform the method, the method comprising: generating, by the X-ray inspection system, a first plurality of calibration data, wherein the first plurality of calibration data is stored in a memory associated with the computing device; generating, using the X-ray inspection system, data representative of X-ray scan images of a cargo container; segmenting data representative of X-ray scan images into a plurality of regions of interest, wherein at least some of the plurality of regions of interest contain only one type of material having at least one of a known effective atomic number (Zeff) or a known HS code; determining, using the first plurality of calibration data, first data indicative of Zeff of the at least some of the plurality of regions of interest; comparing the first data with second data indicative of Zeff corresponding to the known Zeff or known HS code; adjusting the first plurality of calibration data to generate a second plurality of calibration data if the first and second data differ more than a predefined threshold; and using the second plurality of calibration data to process the data representative of X-ray scan images to generate and display X-ray scan images.

Optionally, the method further comprises calculating a Zeff value for each pixel in the X-ray scan images; applying a smoothing algorithm to the Zeff values of multiple pixels, associated with each of the plurality of regions of interest, in order to generate smoothed Zeff-based regions of interest; applying a predefined color map to the smoothed Zeff-based regions of interest; and displaying the color-coded X-ray scan images.

Optionally, the Zeff value for each pixel is calculated using the second plurality of calibration data if the first and second data differ more than the predefined threshold, and wherein the Zeff value for each pixel is calculated using the first plurality of calibration data if the first and second data do not differ more than the predefined threshold.

Optionally, the smoothing algorithm includes any one of simple running averages, shape preserving smoothing filters, image-guided segmentation or K-means clustering.

Optionally, the at least some of the plurality of regions of interest correspond to empty or unobstructed regions of the cargo container.

Optionally, the at least some of the plurality of regions of interest correspond to at least one of a volume encompassing only a top surface of the cargo container, a volume encompassing only a front end of the cargo container, or a volume encompassing only a rear end of the cargo container.

Optionally, the first plurality of calibration data is generated by: placing, between a radiation source and detectors of the X-ray inspection system, a set of materials with known atomic numbers and densities, wherein the set of materials have different thicknesses; and recording responses of the detectors for each of the set of materials.

Optionally, the X-ray scan images correspond to low and high energies of the radiation source.

In some embodiments, the present specification is directed towards an X-ray inspection system comprising: a radiation source; an array of detectors; a computing device 20 in data communication with the radiation source and the array of detectors, wherein the computing device has one or more physical processors programmed with a plurality of program instructions that, when executed by the one or more physical processors, cause the computing device to generate, 25 using the X-ray inspection system, a first plurality of calibration data, wherein the first plurality of calibration data are stored in a memory associated with the computing device; generate, using the X-ray inspection system, X-ray scan images of a cargo container; segment the X-ray scan images into a plurality of regions of interest, wherein each of the plurality of regions of interest contain a single type of a material associated with a known atomic number or a single type of a material associated with a known HS code; 35 determine, using the first plurality of calibration data, first data indicative of a first effective atomic number of the single type of the material associated with the known atomic number or a second effective atomic number of the single type of the material associated with the known HS code for 40 each of the plurality of regions of interest; compare the first data with second data indicative of a known effective atomic number corresponding to the material associated with the known atomic number or a known effective atomic number corresponding to the material associated with the known HS 45 code; adjust the first plurality of calibration data to generate a second plurality of calibration data if the first and second data differ significantly; and replace the first plurality of calibration data by the second plurality of calibration data in the memory.

Optionally, the plurality of program instructions, when executed by the one or more physical processors, further cause the computing device to: calculate an effective atomic number value for each pixel in the X-ray scan images; apply a smoothing algorithm to the effective atomic number values of multiple pixels, associated with each of the plurality of regions of interest, in order to generate smoothed effective atomic number-based regions of interest; apply a predefined color map to the smoothed effective atomic number-based regions of interest; and display the color coded X-ray scan 60 images.

Optionally, the effective atomic number value for each pixel is calculated using the second plurality of calibration data if the first and second data differ significantly, and wherein the effective atomic number value for each pixel is 65 calculated using the first plurality of calibration data if the first and second data do not differ significantly.

4

Optionally, the smoothing algorithm includes any one of simple running averages, shape preserving smoothing filters, image-guided segmentation or K-means clustering.

Optionally, at least some of the plurality of regions of interest are empty or unobstructed.

Optionally, at least some of the plurality of regions of interest contain correspond to at least one of a volume encompassing only a top surface of the cargo container, a volume encompassing only a front end of the cargo container, or a volume encompassing only a rear end of the cargo container.

Optionally, the first plurality of calibration data is generated by: placing, between a radiation source and detectors of the X-ray inspection system, a set of materials with known atomic numbers and densities, wherein the set of materials have different thicknesses; and recording response of the detectors for each of the set of materials.

Optionally, the X-ray scan images correspond to low and high energies of the radiation source.

The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate various embodiments of systems, methods, and embodiments of various other aspects of the disclosure. Any person with ordinary skills in the art will appreciate that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. It may be that in some examples one element may be designed as multiple elements or that multiple elements may be designed as one element. In some examples, an element shown as an internal component of one element may be implemented as an external component in another and vice versa. Furthermore, elements may not be drawn to scale. Non-limiting and non-exhaustive descriptions are described with reference to the following drawings. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating principles.

FIG. 1 is a schematic drawing of an exemplary LINACbased high-energy X-ray cargo inspection system that may implement a method described in the present specification in an embodiment;

FIG. 2A shows segmented regions of a radiographic scan image of a cargo container, in accordance with some embodiments of the present specification;

FIG. 2B shows a radiographic scan image of a container housing bananas, in accordance with some embodiments of the present specification; and

FIG. 3 is a flowchart of a plurality of exemplary steps of a method of processing X-ray scan images of an object under inspection for materials classification and on-the-fly automatic adaptive calibration, in accordance with some embodiments of the present specification.

DETAILED DESCRIPTION

The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applica-

tions without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing 5 numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily 10 obscure the present invention.

In various embodiments, a computing device includes an input/output controller, at least one communications interface and system memory. The system memory includes at least one random access memory (RAM) and at least one 15 read-only memory (ROM). These elements are in communication with a central processing unit (CPU) to enable operation of the computing device. In various embodiments, the computing device may be a conventional standalone computer or alternatively, the functions of the computing 20 device may be distributed across multiple computer systems and architectures.

In some embodiments, execution of a plurality of sequences of programmatic instructions or code enable or cause the CPU of the computing device to perform various ²⁵ functions and processes. In alternate embodiments, hardwired circuitry may be used in place of, or in combination with, software instructions for implementation of the processes of systems and methods described in this application. Thus, the systems and methods described are not limited to ³⁰ any specific combination of hardware and software.

In the description and claims of the application, each of the words "comprise", "include", "have", "contain", and forms thereof, are not necessarily limited to members in a list with which the words may be associated. Thus, they are intended to be equivalent in meaning and be open-ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.

It must also be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" 45 include plural references unless the context dictates otherwise. Although any systems and methods similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present disclosure, the preferred, systems and methods are now described.

"On-the-fly adjustment" refers to performing an adjustment to calibration data 1) immediately after a scan has occurred (first scan) and before an immediately subsequent scan is performed, 2) based on the scan data that was just acquired from the first scan, and 3) without manual or 55 human intervention.

Overview

FIG. 1 illustrates an exemplary LINAC-based high-energy X-ray cargo inspection system that may be configured and used, in an embodiment, to implement the method(s) described in the present specification. As shown, the cargo inspection system 130 comprises a high-energy radiation source 105 for irradiating an object under inspection 110 65 with a vertically divergent fan beam of radiation 115. The high-energy radiation source 105 may be, but is not limited

6

to, a linear accelerator (LINAC) or Betatron. In embodiments, the LINAC or any other source provides a radiation dose sufficient for imaging containers and cargo. In an embodiment, the energy and dose output of the LINAC or any other source ranges from 750 keV to 10 MeV and 0.07 Gy/min to 15 Gy/min, respectively.

The choice of source type, source intensity, and energy output depends upon the sensitivity of the detectors, the radiographic density of the cargo positioned in the space between the source and detectors, radiation safety considerations, and operational requirements, such as the inspection speed. One of ordinary skill in the art would appreciate the factors that need to be considered when selecting a radiation source type depend upon inspection requirements. In one embodiment, where the object under inspection 110 is a large-sized container or car that highly attenuates the X-ray beam, the radiation may be from an X-ray source operating at an energy ranging from approximately 750 keV and even up to 10 MeV or more. In various embodiments, the object under inspection 110 may be a vehicle, truck, rail car or other containers for carrying cargo, passenger luggage or general belongings.

The cargo inspection system 130 further comprises a detector array 120, which is preferably positioned behind the object under inspection 110 and is configured to and used to detect radiation transmitted through the object under inspection 110. The detectors 120, in an embodiment, are formed by a stack of crystals that generate analog signals when X-rays impinge upon them, with the signal strength proportional to the amount of beam attenuation in the object under inspection 110. In one embodiment, the X-ray beam detector arrangement consists of a linear array of solid-state detectors of the crystal-diode type. A typical arrangement uses cadmium tungstate scintillating crystals to absorb the X-rays transmitted through the object under inspection 110 and to convert the absorbed X-rays into photons of visible light. Crystals such as bismuth germinate, sodium iodide or other suitable crystals may be alternatively used as known to a person of ordinary skill in the art. The crystals can be directly coupled to a suitable detector, such as a photodiode or photo-multiplier. The detector photodiodes may be linearly arranged, which through unity-gain devices, provide advantages over photo-multipliers in terms of operating range, linearity and detector-to-detector matching. In another embodiment, an area detector is used as an alternative to linear array detectors. Such an area detector may be a scintillating strip, such as cesium iodide or other materials known in the art, viewed by a suitable camera or optically coupled to a charge-coupled device (CCD).

It would be apparent to persons of skill in the art that the cargo inspection system 130 shown in FIG. 1 is just one example of an inspection system employing high-energy X-ray sources such as, but not limited to LINAC or Betatron. In some embodiments, the radiation source 105 uses interlaced dual energy pulses in order to generate X-ray scan images of low energy (3-5 MeV) and high energy (6-9 MeV) of the object under inspection 110.

Calibration Drift

The present specification recognizes that calibration data for materials separation does not remain stable over the lifetime of an X-ray inspection system. Changes in calibration, also referred to as "calibration drift" often appear and render the Zeff (effective atomic number) calculation unreliable for effective materials separation data. In some conditions, the drift may happen even between two scans taken

minutes apart. The following sources, factors, causes or variables may all contribute to calibration drift. The X-ray source itself may be a contributing cause of calibration drift. Dose drift may be induced by beam current or beam energy changes. These include magnet changes (Betatron), auto- 5 matic frequency control (AFC) shift, and wave guide temperature variation. Beam formation mechanics, which may include collimator alignment casting shadows, detector stack boom oscillations, detector collimator fins shift may also contribute to calibration drift. In addition, X-ray detectors may have problems with photodiode dark current and scintillator light yield, which contribute to calibration drift.

More than one cause of calibration shift may occur at the same time. However, only a few of the sources, factors, causes or variables of calibration drift have built-in mecha- 15 nisms for compensation such as, for example, reference detectors and dark current measurement at the beginning of a scan or in-between pulses. These sources, factors, causes or variables of calibration drift are generally non-linear and are often linked with each other in complicated ways. Also, 20 full recalibration is time consuming and is only a temporary solution for causes such as temperature excursions or slight magnetic drift (in a Betatron) or AFC drift (in a LINAC).

Automatic Adaptive Calibration

In accordance with aspects of the present specification, instead of parametrizing the contribution of each source, factor, cause or variable to the calibration drift, a phenomenological model is developed in which the system is 30 configured to check an accuracy of the Zeff calculation in almost every scan and in which the system is configured to automatically adjust the calibration data in order to improve scan data, and in particular, materials separation accuracy.

FIG. 2A shows segmented regions of a radiographic scan 35 image 200 of a cargo container 202, in accordance with some embodiments of the present specification. In a nonlimiting exemplary scenario, the image 200 has at least five regions or sections (also referred to as regions or sections of interest), that is, first region 205, second region 207, third 40 region 209, fourth region 211, and fifth region 213 for which the material is conventionally known to be steel (for ISO containers, for example). Also, for the at least five regions 205, 207, 209, 211, 213 the attenuation and angular range (relative to a central axis of an X-ray beam used to scan the 45 cargo container 202) vary enough. In embodiments, the regions are selected for different purposes. For example, referring to FIG. 2A, and by way of example only, regions 207, 209, and 211 are selected for stability since the variation is relatively small compared to regions 205 and 213, 50 which are selected to have large angular coverage and varying attenuations.

In embodiments, a radiographic scan image, such as the image 200 of the cargo container 202, is segmented into one of attenuation and an angular range relative to the central axis of the X-ray beam. In some embodiments, the one or more regions or sections of interest are selected such that the expected attenuation (of the regions or sections of interest) varies more than 10% and the angular range or span is 60 greater than 2 degrees relative to the central axis of the X-ray

Containers, such as the cargo container 202, typically have one or more regions such as, for example, a front end (comprising first region 205) and a rear end (comprising fifth 65 region 213) and a top portion (comprising second region 207, third region 209, and fourth region 211) that remain

unobstructed. It should be noted that the fifth region 213 and at least the second top region 207 are almost always unobstructed for most cargo containers. The first region or front end 205 is also unobstructed in most cases. The second region 207, third region 209, and fourth region 211 are illustrative non-limiting examples of areas or portions in the image 200 that are found to be unobstructed and that can be used for calibration adjustment. These regions will, however, differ on a case-by-case basis depending on how a container is loaded. In some embodiments, a bottom surface or portion 227 of the cargo container 202 may also be at least partially unobstructed (with known container material). Therefore, in various embodiments, an X-ray scan image of a container is analyzed and segmented to identify regions or areas for which material composition is known, wherein such regions or areas of known material composition include portions inside or within the container such as, but not limited to, unobstructed regions (that is, regions not loaded with cargo) of the container, and portions outside the container such as, but not limited to, tires, windshield, vehicle frame around axles and fuel or gas tank.

For example, in one embodiment, the region of interest comprising the top portion (comprising at least one of the second region 207, third region 209, and fourth region 211) of the cargo container 202 is made of only the material that separates the internal volume of the cargo container 202 from the outside environment. In another embodiment, the material that separates the internal volume of the cargo container 202 from the outside environment makes up at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or any numerical increment between 20% and 90% of the region of interest comprising the top portion of the cargo container 202.

In another example, in one embodiment, the region of interest comprising the front end (comprising first region 205) of the cargo container 202 is made of only the material that separates the internal volume of the cargo container 202 from the outside environment. In another embodiment, the material that separates the internal volume of the cargo container 202 from the outside environment makes up at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or any numerical increment between 20% and 90% of the region of interest comprising the front end of the cargo container 202.

In yet another example, in one embodiment, the region of interest comprising the rear end (comprising fifth region 213) of the cargo container 202 is made of only the material that separates the internal volume of the cargo container 202 from the outside environment. In another embodiment, the material that separates the internal volume of the cargo container 202 from the outside environment makes up at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or any numerical increment between 20% and 90% of the region of interest comprising the rear end of the cargo container 202.

In still another example, in one embodiment, the region of or more regions or sections of interest based on a variability 55 interest comprising the bottom surface or portion 227 of the cargo container 202 is made of only the material that separates the internal volume of the cargo container 202 from the outside environment. In another embodiment, the material that separates the internal volume of the cargo container 202 from the outside environment makes up at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or any numerical increment between 20% and 90% of the region of interest comprising the bottom surface or portion of the cargo container 202.

> Also, the first region 205 and fifth region 213 are of interest because of the angular coverage or span of more than 15 degrees off the central axis of the X-ray beam. As

known to persons of ordinary skill in the art, due to the physics of X-ray production, the shape of an attenuation curve is expected to change if the energy of the electrons producing the X-rays changes. High energy beams have flux and energy composition roll-off as a function of angle relative to the central axis of the X-ray beam. The roll-off function is different at 4 MeV versus 6 MeV. In some embodiments, the change, drift or modification of the calibration curves is determined by calculating the variation of the roll-off curves.

In accordance with some embodiments, the unobstructed regions, such as second region 207, third region 209, and fourth region 211, are identified and used as data points. In some embodiments, machine learning techniques such as, but not limited to, mask R-CNNs (Region-based Convolutional Neural Networks) or U-Nets are configured to segment the image 200 for more features inside and outside the cargo container 202 suitable for use in automatic calibration adjustments.

In some embodiments, for scans that have the HS code associated with the X-ray image, the cargo inside the container is used to check and adjust, if required, the calibration data. For example, FIG. 2B shows a radiographic scan image 220 of a container 230 housing bananas, in accordance with 25 some embodiments of the present specification. The dotted box 225 shows that the cargo segmentation algorithm successfully identified the cargo region 222 inside the refrigerated ISO container 230.

In accordance with various embodiments, there are multiple other sections or regions inside the container 230 that can be used to check and, if required, adjust the calibration data. The top edge region 235 of the container 230 is metallic and uncluttered, the back edge 240 of the container 230 is also metallic and spans a large angular range relative 35 to a central axis of an X-ray beam used to scan the container 230. Inside, the bananas 222 are organic with a large angular and attenuation coverage.

Thus, in embodiments, the present specification is directed towards a radiographic or X-ray image processing 40 method of identifying or segmenting one or more regions or sections of interest of a cargo container for which the materials are known and that have associated large angular and attenuation coverage. In various embodiments, the one or more regions or sections of interest have an associated 45 angular span of more than 2 degrees and an attenuation variation of more than 10% relative to the mean inside each of the one or more regions or sections of interest. Thus, in embodiments, this refers to particular values relative to the values within the region itself. As an non-limiting example, 50 this may represent regions 205 and 213. Thereafter, the method computationally links the variation of Zeff values of the identified or segmented regions of interest relative to the current calibration and adjusts the parameters of the calibration curves to match with known materials.

In embodiments, the regions of interest may become obstructed by known features and materials, such as, for example, the skin of the cargo container. In order to be a region of interest, a condition is being able to determine (or having a way of knowing) what material is contained by the 60 region of interest. This information is obtained either through the identification of known features (for example, cargo container parts, vehicle tires, windshield, etc.), HS codes, or other ways of identifying an object. For example, a machine learning algorithm may be configured to identify 65 tires, ceramic tiles or engine blocks inside the cargo container as these are made of known materials.

10

FIG. 3 is a flowchart of a plurality of exemplary steps of a method 300 of processing X-ray scan images of an object under inspection for materials classification and on-the-fly automatic adaptive adjustment of calibration data, in accordance with some embodiments of the present specification. In embodiments, the method 300 comprises a plurality of programmatic instructions or code stored in a non-transient memory associated with a computing device that is in data communication with an X-ray inspection system configured to generate the X-ray scan images. The computing device includes a processor and random access memory, wherein the processor executes the method 300.

In some embodiments, the X-ray inspection system is configured to use interlaced dual energy pulses in order to generate the X-ray scan images of low energy (3-5 MeV) and high energy (6-9 MeV) of the cargo container. In various embodiments, the object under inspection may be a vehicle, truck, rail car or other containers for carrying cargo, passenger luggage or general belongings. In a non-limiting exemplary scenario, the steps of the method 300 are being described with reference to a cargo container scanned using a dual-energy X-ray inspection system. Alternate embodiments may use a single-energy X-ray inspection system. Further, embodiments may use a multi-view X-ray inspection system having single or dual-energy capabilities.

At step 302, as a result of an initial calibration process, the X-ray inspection system is configured to generate a first plurality of calibration data. The first plurality of calibration data is stored in the non-transient memory associated with the computing device. In the initial calibration process, a set of materials with known atomic numbers and densities such as plastic, aluminum, steel, lead, tungsten, with different thicknesses is put between the X-ray source and detectors (of the X-ray inspection system) and the response of the detectors, for the high and low energy beam components, is recorded corresponding to the first plurality of calibration data.

At step 304, the X-ray inspection system is operated to scan a cargo container, thereby generating data indicative of dual-energy X-ray scan images. At step 306, the computing device is configured to apply a cargo materials segmentation algorithm, known to persons of ordinary skill in the art, to the X-ray scan images in order to identify and segment first areas or regions of interest (ROI) with known materials composition (in some embodiments, the first areas or regions of interest contain only one type of material having a known effective atomic number (Zeff)). For example, for an ISO container, the first areas or regions of interest include top and ends (front and rear) that may be unobstructed and known to be of steel. The unobstructed areas or regions may also include those portions of the container that are empty or devoid of the presence of any cargo or goods. In further examples, the first areas or regions of interest may additionally include tires, the windshield, vehicle frame around axles and fuel tank.

It should be appreciated that calibration curves are nonlinear. Although a single region or section of interest can be used for materials classification and on-the-fly automatic adaptive adjustment of calibration data, the greater the number of regions or sections of interest are processed, the more accurate the recalibration or adjustment of calibration data becomes.

At step 308, the computing device is configured to determine if one or more HS (Harmonized Commodity Description and Coding System) codes, associated with the cargo or goods of the cargo container and therefore the X-ray scan images, are known. HS codes are identification codes given

to goods for use in international trade. The HS codes are administered by the World Customs Organization (WCO) and are internationally accepted for use by customs authorities and companies to identify goods/cargo.

If the one or more HS codes are known, then at step 310, the computing device is configured to further segment the cargo or goods regions of the X-ray scan images into one or more second areas or regions of interest corresponding to the one or more HS codes and subsequently the flow moves to step 312. At step 312, the computing device is configured to determine first data indicative of the Zeff of the segmented first and/or second regions of interest using the first plurality of calibration data.

If the one or more HS codes are not known, then the computing device is configured to determine first data indicative of the Zeff of the segmented first regions of interest using the first plurality of calibration data. The second regions of interest, which include known HS codes, are used to provide additional data points to the recalibration model. As described earlier, the segmented first regions of interest are those corresponding to known materials while the segmented second regions of interest are those corresponding to one or more HS codes. Thus, if the one or more HS codes are known, then the computing device is configured to determine first data indicative of the Zeff of the segmented first region of interest and segmented second region of interest using the first plurality of calibration data.

At step 314, the computing device is configured to compare the first data with second data indicative of reference 30 Zeff corresponding to the known materials and/or HS codes of the segmented first and/or second regions of interest. At step 316, the computing device is configured to determine if the first data is significantly different or deviated from the second data. In some embodiments, the first data is considered to be significantly different or deviated from the second data if the first and second data differ or deviate by at least 2 atomic number units. In some embodiments, the first data is considered to be significantly different or deviated from the second data if the first and second data differ or deviate 40 by at least 3 atomic number units.

If a significant difference or deviation is determined, as defined above, then at step 318, the first plurality of calibration data is adjusted or modulated based on the second data in order to generate a second plurality of calibration data is replaced by the second plurality of calibration data for storing in the memory, at step 320, and subsequently the flow moves to step 322.

It should be appreciated that the adjustment or modulation of the first plurality of calibration data is non-linear. The adjustment or modulation is dependent on the number of regions or sections of interest identified or available. In some embodiments, if the identified regions or sections of interest correspond only to container components then a shift in the 55 calibration curves (of the first plurality of calibration data) is performed to recalibrate. However, if the regions or sections of interest with HS codes are also available then each calibration curve (in the first plurality of calibration data) corresponding to the specific type of material is modified or 60 modulated.

At step 322, the computing device is configured to calculate a Zeff value for each individual pixel in the whole X-ray scan images. In embodiments, the Zeff value for each pixel is calculated using the second plurality of calibration 65 data if the first and second data differ significantly, as defined above. However, the Zeff value for each pixel is calculated

12

using the first plurality of calibration data if the first and second data do not differ significantly.

At step 324, the computing device is configured to apply materials segmentation algorithm to the X-ray images in order to generate a plurality of segments and thereafter apply a smoothing or averaging filter or algorithm to the Zeff values (of step 322) of multiple pixels, associated with each of the plurality of segments, in order to generate one or more smoothed Zeff-based segments, regions or clusters in the X-ray images. In various embodiments, the smoothing or averaging involves techniques such as, but not limited to, simple running averages to shape preserving smoothing filters, image-guided segmentation and K-means clustering.

Thereafter, at step 326, the computing device is configured to apply a predefined color map or code to the one or more smoothed Zeff-based regions of interest, segments or clusters. For example, a smoothed Zeff-based segment corresponding to organic materials are colored orange, metallic materials are colored in blue, inorganic materials are colored in green and high-Z materials are colored in red. Segments or regions with unreliable Zeff due to too little attenuation or too much noise remain uncolored (grayscale).

Finally, at step 328, the computing device is configured to render or display color-coded X-ray images on a display.

The above examples are merely illustrative of the many applications of the systems and methods of the present specification. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

What is claimed is:

1. A method of performing an on-the-fly adjustment of calibration data corresponding to an X-ray inspection system that comprises an X-ray source in data communication with a computing device, the method being implemented in the computing device having one or more physical processors programmed with a plurality of program instructions that, when executed by the one or more physical processors, cause the computing device to perform the method, the method comprising:

generating, by the X-ray inspection system, a first plurality of calibration data, wherein the first plurality of calibration data is stored in a memory in data communication with the computing device;

generating, using the X-ray inspection system, data representative of X-ray scan image of a cargo container; segmenting data representative of the X-ray scan image into a plurality of regions of interest, wherein at least some of the plurality of regions of interest contain only one type of material having at least one of a known effective atomic number (Zeff) or a known identification gode:

determining, using the first plurality of calibration data, first data indicative of Zeff of the at least some of the plurality of regions of interest;

comparing the first data with second data indicative of Zeff corresponding to the known Zeff or known identification code;

adjusting the first plurality of calibration data to generate a second plurality of calibration data if the first data and the second data differ more than a predefined threshold; and

- using the second plurality of calibration data to process the data representative of the X-ray scan image to generate and display the processed X-ray scan image.
- 2. The method of claim 1, further comprising:
- calculating a Zeff value for each pixel in the X-ray scan 5 image:
- applying a smoothing function to the Zeff values of multiple pixels, associated with each of the plurality of regions of interest, in order to generate smoothed Zeff-based regions of interest;
- applying a predefined color map to the smoothed Zeffbased regions of interest to generate a color-cded X-ray scan image; and
- displaying the color-coded X-ray scan image.
- 3. The method of claim 2, wherein the Zeff value for each 15 pixel is calculated using the second plurality of calibration data if the first data and the second data differ more than the predefined threshold, and wherein the Zeff value for each pixel is calculated using the first plurality of calibration data if the first data and the second data do not differ more than 20 the predefined threshold.
- 4. The method of claim 2, wherein the smoothing function comprises at least one a simple running average function, a shape preserving smoothing filter function, an image-guided segmentation function or K-means clustering function.
- 5. The method of claim 1, wherein the at least some of the plurality of regions of interest correspond to one or more empty regions of the cargo container or one or more unobstructed regions of the cargo container.
- 6. The method of claim 1, wherein at least one of the 30 plurality of regions of interest corresponds to of a volume encompassing only a top surface of the cargo container, a volume encompassing only a front end of the cargo con-
- 7. The method of claim 1, wherein the first plurality of 35 calibration data is generated by:
 - placing, between a radiation source and detectors of the X-ray inspection system, a set of materials with known atomic numbers and densities, wherein the set of materials have different thicknesses; and
 - recording responses of the detectors for each material of the set of materials.
- 8. The method of claim 7, wherein the X-ray scan image represents recorded data corresponding to both low and high energies of the radiation source.
- 9. The method of claim 1, wherein at least one of the plurality of regions of interest corresponds to a volume encompassing only a front end of the cargo container.
- 10. The method of claim 1, wherein at least one of the plurality of regions of interest corresponds to a volume 50 encompassing only a rear end of the cargo container.
 - 11. An X-ray inspection system comprising:
 - a radiation source;
 - an array of detectors;
 - a computing device in data communication with the 55 radiation source and the array of detectors, wherein the computing device has one or more physical processors programmed with a plurality of program instructions that, when executed by the one or more physical processors, cause the computing device to:
 - generate a first plurality of calibration data, wherein the first plurality of calibration data are stored in a memory associated with the computing device;
 - generate, using data detected by the array of detectors, an X-ray scan image of a cargo container;
 - segment the X-ray scan image into a plurality of regions of interest, wherein at least some of the

14

- plurality of regions of interest contain a single type of a material associated with a known atomic number or a single type of a material associated with a known identification code:
- determine, using the first plurality of calibration data, first data indicative of a first effective atomic number of the single type of the material associated with the known atomic number or a second effective atomic number of the single type of the material associated with the known identification code for at least some of the plurality of regions of interest;
- compare the first data with second data indicative of a known effective atomic number corresponding to the material associated with the known atomic number or a known effective atomic number corresponding to the material associated with the known identification code;
- adjust the first plurality of calibration data to generate a second plurality of calibration data if the first data and the second data differ more than a predefined amount: and
- replace the first plurality of calibration data by the second plurality of calibration data in the memory.
- 12. The X-ray inspection system of claim 9, wherein the plurality of program instructions, when executed by the one or more physical processors, further cause the computing device to:
 - calculate an effective atomic number value for each pixel in the X-ray scan image;
 - apply a smoothing functionalgorithm to the effective atomic number values of multiple pixels, associated with each the at least some of the plurality of regions of interest, in order to generate smoothed effective atomic number-based regions of interest;
 - apply a predefined color map to the smoothed effective atomic number-based regions of interest to generate a color-coded X-ray scan image; and
 - display the color-coded X-ray scan image.
- 13. The X-ray inspection system of claim 12, wherein the effective atomic number value for each pixel is calculated using the second plurality of calibration data if the first data and the second data differ more than the predefined amount, and wherein the effective atomic number value for each pixel is calculated using the first plurality of calibration data if the first data and the second data do not differ more than the predefined amount.
- 14. The X-ray inspection system of claim 12, wherein the smoothing function includes at least one of a simple running averages, shape preserving smoothing filter function, an image-guided segmentation function or a K-means clustering function.
- 15. The X-ray inspection system of claim 11, wherein at least some of the plurality of regions of interest are empty or
- 16. The X-ray inspection system of claim 9, wherein at least one of the plurality of regions of interest corresponds to a volume encompassing only a top surface of the cargo
- 17. The X-ray inspection system of claim 9, wherein the first plurality of calibration data is generated by:
 - placing, between the radiation source and the array of detectors, set of materials with known atomic numbers and densities, wherein the set of materials have different thicknesses; and
 - recording a response of the array of detectors for each material in the set of materials.

18. The X-ray inspection system of claim 15, wherein the X-ray scan image comprises data representative low and high energies of the radiation source.

- 19. The X-ray inspection system of claim 11, wherein at least one of the plurality of regions of interest corresponds 5 to a volume encompassing only a front end of the cargo container.
- **20**. The X-ray inspection system of claim **11**, wherein at least one of the plurality of regions of interest corresponds to a volume encompassing only a rear end of the cargo 10 container.

* * * * *