NAIL062 V&P Logika: 8. cvičení

Témata: Struktury a podstruktury. Extenze teorií, extenze o definice. Definovatelné množiny.

Příklad 1. Uvažme $\underline{\mathbb{Z}}_4 = \langle \{0,1,2,3\},+,-,0 \rangle$ kde + je binární sčítání modulo 4 a – je unární funkce, která vrací *inverzní* prvek + vzhledem k *neutrálnímu* prvku 0.

- (a) Je $\underline{\mathbb{Z}}_4$ model teorie grup (tj. je to grupa)?
- (b) Určete všechny podstruktury $\underline{\mathbb{Z}}_4\langle a\rangle$ generované nějakým $a\in\mathbb{Z}_4$.
- (c) Obsahuje $\underline{\mathbb{Z}}_4$ ještě nějaké další podstruktury?
- (d) Je každá podstruktura $\underline{\mathbb{Z}}_4$ modelem teorie grup?
- (e) Je každá podstruktura $\underline{\mathbb{Z}}_4$ elementárně ekvivalentní $\underline{\mathbb{Z}}_4$?
- (f) Je každá podstruktura komutativní grupy (tj. grupy, která splňuje x+y=y+x) také komutativní grupa?

Příklad 2. Buď $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ těleso racionálních čísel se standardními operacemi.

- (a) Existuje redukt Q, který je modelem teorie grup?
- (b) Lze redukt $\langle \mathbb{Q}, \cdot, 1 \rangle$ rozšířit na model teorie grup?
- (c) Obsahuje $\mathbb Q$ podstrukturu, která není elementárně ekvivalentní $\mathbb Q$?
- (d) Označmě $Th(\mathbb{Q})$ množinu všech sentencí pravdivých v \mathbb{Q} . Je $Th(\mathbb{Q})$ úplná teorie?

Příklad 3. Mějme teorii $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ v jazyce $L = \langle c_1, c_2, c_3 \rangle$ s rovností.

- (a) Je T (sémanticky) konzistentní?
- (b) Jsou všechny modely T elementárně ekvivalentní? Tj. je T kompletní?
- (c) Najděte všechny jednoduché úplné extenze T.
- (d) Je teorie $T' = T \cup \{x = c_1 \lor x = c_4\}$ v jazyce $L = \langle c_1, c_2, c_3, c_4 \rangle$ extenzí T? Je T' jednoduchá extenze T? Je T' konzervativní extenze T?

Příklad 4. Buď $T = \{\neg E(x,x), E(x,y) \rightarrow E(y,x), (\exists x)(\exists y)(\exists z)(E(x,y) \land E(y,z) \land \neg (x = y \lor y = z \lor x = z)), \varphi\}$ teorie v jazyce $L = \langle E \rangle$ s rovností, kde E je binární relační symbol a φ vyjadřuje, že "existují právě čtyři prvky".

- (a) Uvažme rozšíření $L' = \langle E, c \rangle$ jazyka o nový konstantní symbol c. Určete počet (až na ekvivalenci) teorií T' v jazyce L', které jsou extenzemi teorie T.
- (b) Má T nějakou konzervativní extenzi v jazyce L'? Zdůvodněte.

Příklad 5. Nechť $T = \{x = f(f(x)), \varphi, c_1 \neq c_2\}$ je teorie jazyka $L = \langle f, c_1, c_2 \rangle$ s rovností, kde f je unární funkční, c_1, c_2 jsou konstantní symboly a axiom φ vyjadřuje, že "existují právě 3 prvky".

- (a) Určete, kolik má teorie T navzájem neekvivalentních jednoduchých kompletních extenzí. Napište dvě z nich. (3b)
- (b) Nechť $T' = \{x = f(f(x)), \varphi, f(c_1) \neq f(c_2)\}$ je teorie stejného jazyka, axiom φ je stejný jako výše. Je T' extenze T? Je T extenze T'? Pokud ano, jde o konzervativní extenzi? Uveďte zdůvodnění. (2b)

Příklad 6. Nechť $T_n = \{c_i \neq c_j | 1 \leq i < j \leq n\}$ označuje teorii jazyka $L_n = \langle c_1, \ldots, c_n \rangle$ s rovností, kde c_1, \ldots, c_n jsou konstantní symboly.

(a) Pro dané konečné $n \ge 1$ určete počet modelů konečné velikosti k teorie T_n až na izomorfismus. Určete počet spočetných modelů teorie T_n .

(b) Pro jaké dvojice hodnot n a m je T_n extenzí T_m ? Pro jaké je konzervativní extenzí? Zdůvodněte.

Příklad 7. Buď T' extenze teorie $T = \{(\exists y)(x+y=0), (x+y=0) \land (x+z=0) \rightarrow y=z\}$ v jazyce $L = \langle +, 0, \leq \rangle$ s rovností o definice < a unárního - s axiomy

$$\begin{aligned} -x &= y &\leftrightarrow & x+y &= 0 \\ x &< y &\leftrightarrow & x \leq y \ \land \ \neg (x = y) \end{aligned}$$

Najděte formule v jazyce L, které jsou ekvivalentní v T^\prime s následujícími formulemi.

- (a) x + (-x) = 0
- (b) x + (-y) < x
- (c) -(x+y) < -x

Příklad 8. Mějme jazyk $L = \langle F \rangle$ s rovností, kde F je binární funkční symbol. Najděte formule definující následující množiny (bez parametrů):

- (a) interval $(0, \infty)$ v $\mathcal{A} = \langle \mathbb{R}, \cdot \rangle$ kde · je násobení reálných čísel,
- (b) množina $\{(x, 1/x) \mid x \neq 0\}$ ve stejné struktuře \mathcal{A} ,
- (c) množina všech nejvýše jednoprvkových podmnožin \mathbb{N} v $\mathcal{B} = \langle \mathcal{P}(\mathbb{N}), \cup \rangle$,
- (d) množina všech prvočísel v $\mathcal{C} = \langle \mathbb{N} \cup \{0\}, \cdot \rangle$.

Příklad 9. Nechť $\mathcal{A} = \langle \mathbb{Z}, abs^A \rangle$ je struktura jazyka $L = \langle abs \rangle$ s rovností, kde abs je unární funkční symbol a abs^A je funkce absolutní hodnoty v \mathbb{Z} .

- (a) Nalezněte příklady (i) netriviální (t.j. jiné než \emptyset a \mathbb{Z}) množiny definovatelné v \mathcal{A} bez parametrů a (ii) množiny nedefinovatelné v \mathcal{A} bez parametrů.
- (b) Mějme L-strukturu $\mathcal{B} = \langle \mathbb{N}, \mathrm{id} \rangle$, kde id je identita. Je $Th(\mathcal{A})$ extenzí $Th(\mathcal{B})$?

Domácí úkol (2 body). Nechť T je teorie jazyka $L = \langle T \rangle$ s rovností, kde T je ternární relační symbol, s axiomy:

$$T(x,y,z) \to x \neq y \land y \neq z \land x \neq z$$

$$T(x,y,z) \to T(y,x,z) \land T(y,z,x) \land T(z,y,x) \land T(z,x,y) \land T(x,z,y)$$

$$x \neq y \to (\exists z) (T(x,y,z) \land (\forall u) (T(x,y,u) \to u = z))$$

Modely teorie T jsou tzv. Steinerovy systémy trojic, v našem případě uspořádaných. Uvažme model $\mathcal{F} = \langle \{1, 2, \dots, 7\}, T^F \rangle$ teorie T na obrázku (tzv. Fanova rovina), kde každá "přímka" reprezentuje trojici prvků, jež jsou v relaci T^F v libovolném pořadí, tedy $T^F = \{(2, 4, 6), (6, 2, 4), \dots\}$.

- (a) Nalezněte co nejmenší množinu parametrů A, která v modelu \mathcal{F} umožňuje definovat libovolný jeho prvek (formulí jazyka L). Pro každý prvek napište příslušnou definující formuli (s dosazenými parametry). Zdůvodněte, proč je A nejmenší možná.
- (b) Jsou teorie $T' = T \cup \{f(x,y) = z \leftrightarrow T(x,y,z)\}$ a $T'' = T \cup \{f(x,y) = z \leftrightarrow T(x,y,z) \lor (x = y \land y = z)\}$, kde f je nový binární funkční symbol, (korektními) extenzemi teorie T o definici? Uveďte zdůvodnění.