Laboratorium Podstaw Fizyki

Nr ćwiczenia29
Temat ćwiczenia Wyznaczanie współczynnika rozszerzalności termicznej oraz badanie procesów przekazywania ciepła
Nazwisko i Imię prowadzącego kurs <u>Trzmiel Justyna</u>

Wykonawca:				
Imię i Nazwisko nr indeksu, wydział	Kacper Karkosz, 275495, W12N Aleksander Łyskawa, 275462, W12N			
Termin zajęć: dzień tygodnia, godzina	Wtorek, 15:15			
Numer grupy ćwiczeniowej	Grupa nr. 6			
Data oddania sprawozdania:	14.11.2023r.			
Ocena końcowa				

Zatwierdzam	wyniki pomiarów.
Data i podpis	prowadzącego zajęcia

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

1 Cele ćwiczenia:

• Wyznaczenie współczynnika rozszerzalności liniowej metalu.

2 Metoda pomiarowa

- 1. Zmontowanie układu pomiarowego
- 2. Kalibracja czujnika mikrometrycznego
- 3. Wykonanie pomiaru w temperaturze pokojowej i zanotowanie wyniku
- 4. Włączenie zasilacza
- 5. Ustawienie natężenia 0, 1A, odczekanie 5 minut na stabilizację temperatury, oraz następne odczytanie wydłużenia drutu
- 6. Zapisywanie wyników
- 7. Powtórzenie dla kolejnych wartości natężenia co 0, 1A, aż do wartości 0, 8A

3 Spis przyrządów

- Zasilacz prądu stałego
 - 1. wydajność prądowa = 5A
 - 2. $U_{wy} = min. \ 10V$
 - 3. Pomiar natężenia $\Delta I = 1\% \cdot rdq + 1 \cdot dqt$
 - 4. Pomiar napięcia $\Delta U = 2\% \cdot rdg + 1 \cdot dgt$
- Czujnik mikrometryczny
 - 1. Pomiar wydłużenia drutu $\Delta(\Delta L) = 0,01mm$
- Cyfrowy miernik temperatury
 - 1. Pomiar temperatury $\Delta t = 1^{\circ} C$

4 Oznaczenia

 L_0 - długość drutu w temperaturze początkowej

 t_0 - temperatura początkowa

t - temperatura (zmierzona)

 ΔT - różnica $t-t_0$

 ΔL - wydłużenie drutu

 $\frac{\Delta L}{L_0}$ - stosunek wydłużenia drutu do jego początkowej długości

 α - współczynnik rozszerzalności termicznej

5 Wyniki pomiarów

5.1 Tabele pomiarowe

Tabela 1: Tabela wartości wielkości fizycznych związanych z wyznaczaniem współczynnika rozszerzalności termicznej drutu α

<u> </u>										
L _o [mm]	Δ(L ₀) [mm]	t ₀ [°C]	t [°C]	u(t) [°C]	ΔT [°C]	u _c (ΔT) [°C]	ΔL[mm]	Δ(Δl) [mm]	ΔL/L ₀	u _c (ΔL/L0)
905 4			24,60		1,30		0,02		0,0000221	
		27,60		4,30		0,04		0,0000442		
		32,10		8,80		0,08		0,0000884		
		22.2	37,60	0.50	14,30	0.03	0,17	0.01	0,0001878	0,0000064
	23,3	44,40	0,58	21,10	0,82	0,25	0,01	0,0002762	0,000004	
			53,00		29,70		0,39		0,0004309	
			61,30		38,00		0,53		0,0005856	
			72,80		49,50		0,65		0,0007182	

Tabela 2: Tabela zmierzonych wartości prądu oraz napięcia, wraz z niepewnościami

Lp.	I [A]	u(I) [A]	U [V]	u(U) [V]
1	0,1000	0,0064	0,700	0,062
2	0,2000	0,0069	1,300	0,065
3	0,3000	0,0075	2,000	0,069
4	0,4000	0,0081	2,600	0,073
5	0,5000	0,0087	3,300	0,077
6	0,6000	0,0092	3,900	0,080
7	0,7000	0,0098	4,700	0,085
8	0,800	0,011	5,400	0,089

Tabela 3: Tabela wielkości wyznaczonych z regresji liniowej

a	u(a)	b	u(b)	α	u(α)
0,00001521	0,00000048	-0,000023	0,000013	0,00001521	0,00000048

5.2 Wykorzystane wzory oraz przykładowe obliczenia

5.2.1 Niepewność pomiaru temperatury

$$u(T) = \frac{1}{\sqrt{3}} = 0,5773... \approx 0,58 \,[^{\circ}C]$$
 (1)

5.2.2 Niepewność pomiaru natężenia prądu

$$u(I) = \frac{1\% \cdot \text{rdg} + 1 \cdot \text{dgt}}{\sqrt{3}} = \frac{1\% \cdot 0, 1 + 1 \cdot 0, 01}{\sqrt{3}} = 0,00635 \approx 0,0064 [A]$$
 (2)

5.2.3 Niepewność pomiaru napięcia

$$u(U) = \frac{1\% \cdot \text{rdg} + 1 \cdot \text{dgt}}{\sqrt{3}} = \frac{1\% \cdot 0,70 + 1 \cdot 0,1}{\sqrt{3}} = 0,0618 \approx 0,062 [V]$$
 (3)

5.2.4 Niepewność całkowita $\frac{\Delta L}{L_0}$

$$u_c\left(\frac{\Delta L}{L_0}\right) = \frac{\Delta L}{L_0 \cdot \sqrt{3}} \cdot \sqrt{1 + \left(\frac{\Delta L_0}{L_0}\right)^2} = \frac{0.01}{905 \cdot \sqrt{3}} \cdot \sqrt{1 + \left(\frac{4}{905}\right)^2} = 0,00000638 \approx 0,0000064$$
(4)

5.2.5 Niepewność całkowita ΔT_i

$$u_c(\Delta T_i) = \frac{1}{\sqrt{3}} \cdot \sqrt{(\Delta T_i)^2 + (\Delta t_0)^2} = \frac{1}{\sqrt{3}} \cdot \sqrt{()^2 + ()^2} = \approx$$
 (5)

6 Wnioski

• Wyznaczona wartość współczynnika rozszerzalności termicznej to $\alpha = 1,521 \cdot 10^{-5} (4,8 \cdot 10^{-7})$. Jest to wynik zbliżony do tablicowej wartości tego współczynnika dla miedzi, która wynosi $16,5 \cdot 10^{-6}$.

7 Źródła

 $1.\ Wikipedia - https://pl.wikipedia.org/wiki/Wsp\%C3\%B3\%C5\%82czynnik_rozszerzalno\%C5\%9Bci$