

Linear Programming Using Simplex Method

Logic & Problem Solving
Lecture Week 24
Linear Programming

Agenda:

■ Week 24 lecture coverage

- Introduction to LPP
- Mathematical Formulation of LPP
- Solving LPP using simplex method

Amazing Magic Tricks ...

LPP Using Graphical Method:

Steps for graphical method:

- 1. Formulate the mathematical model of the given LPP.
- 2. Change the inequalities involved in the constraints to equality.
- **3. Plot** each equation on the **graph** paper finding at least two points and also do the **origin test**.
- 4. Find the corners of **feasible region** or solution area and get the solution to the given LPP.

Graphical method can solve LPP problems involving only **two** decision variables .

We must use **Simplex method** to solve LPP problems involving **Three or more decision variables**.

For Example:

Suppose that **8, 12 and 9 units** of protein, carbohydrates and fats respectively are the minimum weekly requirements for a person. Food A contains **2, 6 and 1** units of protein, carbohydrate and fat respectively per kg., food B contains **1, 1** and **3** units respectively per kg. and food C contains **2,3 and 2** units respectively per kg. If A costs **\$ 85 per kg**, B costs **\$ 40 per kg** and C costs **\$ 30 per kg**; how many kg of each should he buy per week to minimize his cost and still meet his minimum requirements? Formulate the above problem as a linear programming problem.

Here there will be 3 decision variables x , y and z to represent quantity of Food A , Food B and Food C to minimize the cost and meet the protein requirements .This problem can't be solved graphically hence we have to use **Simplex method** .

Variables used for Simplex Method

- 1. <u>Slack Variables</u>: This variable is used to change the ≤ inequality constraints to equality.
- 2. <u>Surplus variables:</u> This variable is used to change the inequality constraints to equality. ≥
- 3. <u>Artificial variables:</u> This variable is used to change the ≥ and = inequality constraints to equality.

FOR CONSTRAINTS WITH ≤ SIGN:
Use Slack variable to change it into equality.

FOR CONSTRAINTS WITH ≥ SIGN:
Use surplus variable with negative sign and an artificial variable to change it into equality.

❖ FOR CONSTRAINTS WITH = SIGN:
Use an artificial variable to change it into equality .


```
For Example:
Maximize Z = 2x + 3y + 2z
Subjected to the constraints,
    x + y + z \le 60
   2x + 3y + 7z \le 150
   3x + 6y + 4z \ge 200
   x,y,z \ge 0
```

How many **slack** ,**surplus** and **artificial variables** are needed to solve the above LPP?


```
Maximize Z = 2x + 3y + 2z
Subjected to the constraints,
    x + y + z \le 60
```

 $2x + 3y + 7z \le 150$ $3x + 6y + 4z \ge 200$

 $x,y,z \ge 0$

How many slack, surplus and artificial variables are needed to solve the above LPP?

Answer:

We need **2 slack variables** S1 and S2 for two ≤ inequalities . We also need 1 surplus variable S3 and 1 artificial variable A1 for ≥ inequality.

Question:

```
Maximize Z = 2x + 3y + 2z

Subjected to the constraints,

x + y + z \le 60

2x + 3y + 7z \le 150

3x + 6y + 4z \ge 200

x, y, z \ge 0

Solution,
```

Let S_1 and S_2 be the slack variables, let S_3 be the surplus variable and let A_1 be the artificial variable.

```
x + y + z + S_1 = 60

2x + 3y + 7z + S_2 = 150

3x + 6y + 4z - S_3 + A_1 = 200

x, y, z, S_1, S_2, S_3, A_1 \ge 0
```


LPP Using Simplex Method:(Try it....)

```
Question:

Maximize Z = 4x + 7y + 2z

Subjected to the constraints,

x + y + z \le 60

2x + 3y + 7z \ge 150

3x + 6y + 4z = 200

x, y, z \ge 0
```

Write the equation with all the variables required for simplex method .


```
Question: 

Maximize Z = 4x + 7y + 2z

Subjected to the constraints,

x + y + z \le 60

2x + 3y + 7z \ge 150

3x + 6y + 4z = 200

x, y, z \ge 0

Write the equation with all the variables required for simplex method.
```

Solution,

Let S1 be the slack variable, S2 be the surplus variable and let A1 and A2 be the artificial variables.

```
x + y + z + S1 = 60

2x + 3y + 7z - S2 + A1 = 150

3x + 6y + 4z + A2 = 200

x, y, z, S1, S2, A1, A2 \ge 0
```


LPP Using Simplex Method: (Try it...)

Question: Minimize Z = 10x + 7y - 6zSubjected to the constraints, $4x - y + 3z \ge 60$ 6x + 3y - 7z = 150 3x + 6y + 4z = 200 $x, y, z \ge 0$

Write the equation with all the variables required for simplex method .


```
Question:
Minimize Z = 10x + 7y - 6z
Subjected to the constraints,
     4x - y + 3z \ge 60
     6x + 3y - 7z = 150
     3x + 6y + 4z = 200
     x, y, z \ge 0
```

Write the equation with all the variables required for simplex method.

Solution,

Let S1 be the surplus variable and A1, A2 and A3 be the artificial variables.

```
4x - y + 3z - S1 + A1 = 60
6x + 3y - 7z + A2 = 150
3x + 6y + 4z + A3 = 200
x, y, z, S1, A1, A2, A3 \ge 0
```


Standard Equation for simplex table.

After defining all the variables and making the inequalities to equalities we need to write the **standard equations** required for the simplex table .

The standard equations consists of all the variables.

Write the standard equation for the simplex table to solve the following LPP.

```
Maximize Z' = 2x + 3y + 2z
```

Subjected to the constraints,

$$x + y + z \le 60$$

$$2x + 3y + 7z \le 150$$

$$3x + 6y + 4z \ge 200$$

$$x,y,z \ge 0$$

Solution,

Let S_1 and S_2 be the slack variables and let S_3 be surplus variable.

Let A₁ be the artificial variables.

Now,

$$x + y + z + S_1 = 60$$

$$2x + 3y + 7z + S_2 = 150$$

$$3x + 6y + 4z - S_3 + A_1 = 200$$

Standard equation for simplex table :

$$1Z' - 2x - 3y - 2z + 0S_1 + 0S_2 + 0S_3 + 10 A_1 = 0$$

$$0Z' + 1x + 1y + 1z + 1S_1 + 0S_2 + 0S_3 + 0A_1 = 60$$

$$0Z' + 2x + 3y + 7z + 0S_1 + 1S_2 + 0S_3 + 0A_1 = 150$$

$$0Z' + 3x + 6y + 4z + 0S_1 + 0S_2 - 1S_3 + 1A_1 = 200$$

$$x, y, z, S_1, S_2, S_3 & A_1 \ge 0$$

Maximize Z' = 2x + 3y + 2z $x + y + z + S_1 = 60$ $2x + 3y + 7z + S_2 = 150$ $3x + 6y + 4z - S_3 + A_1 = 200$

Note that all 4 equations contains all the variables.

Standard Equation:

$$12' - 2x - 3y - 2z + 0S_1 + 0S_2 + 0S_3 +$$
10 $A_1 = 0$ $02' + 1x + 1y + 1z + 1S_1 + 0S_2 + 0S_3 + 0A_1 = 60$ $02' + 2x + 3y + 7z + 0S_1 + 1S_2 + 0S_3 + 0A_1 = 150$ $02' + 3x + 6y + 4z + 0S_1 + 0S_2 - 1S_3 + 1A_1 = 200$ $x, y, z, S_1, S_2, S_3 & A_1 \ge 0$

The first equation is created from objective function by shifting all to left-hand side and making it equal to zero. Take note that in the first equation the coefficient of artificial variable is +10 because for maximization problem we will always take Positive sign for artificial variable and the value 10 is assigned by seeing the coefficient of x, y and z in objective which are all single figure digit. If any one of the coefficient was double digit, then we must have to take 100 for the coefficient of artificial variable.

Write the standard equation for the simplex table to solve the following LPP.

```
Minimize Z' = 5x + 12y + 2z

Subjected to the constraints,

7x + 3y - z \le 220

12x - 6y + 8z \ge 1500

8x + 16y - 4z = 2000

x, y, z \ge 0
```


Solution,

Let S₁ and S₂ be the slack variable and surplus variable respectively and let A₁ and A₂ be the artificial variables. Minimize Z' = 5x + 12y + 2z

$$7x + 3y - z + S_1 = 220$$

$$12x - 6y + 8z - S_2 + A_1 = 1500$$

$$8x + 16y - 4z + A_2 = 2000$$

$$x , y , z, S_1 , S_2 , A_1 & A_2 \ge 0$$
Standard equation for simplex table:

$$1Z' - 5x - 12y - 2z + 0S_1 + 0S_2 - 100 A_1 - 100 A_2 = 0$$

$$0Z' + 7x + 3y - 1z + 1S_1 + 0S_2 + 0A_1 + 0A_2 = 220$$

 $0Z' + 12x - 6y + 8z + 0S_1 - 1S_2 + 1A_1 + 0A_2 = 1500$
 $0Z' + 8x + 16y - 4z + 0S_1 + 0S_2 + 0A_1 + 1A_2 = 2000$
 $x, y, z, S_1, S_2, A_1 & A_2 \ge 0$

Note that all 4 equations contains all the variables.

Standard equation for simplex table:

```
12' - 5x - 12y - 2z + 0S_1 + 0S_2 - 100 A_1 - 100 A_2 = 0

02' + 7x + 3y - 1z + 1S_1 + 0S_2 + 0A_1 + 0A_2 = 220

02' + 12x - 6y + 8z + 0S_1 - 1S_2 + 1A_1 + 0A_2 = 1500

02' + 8x + 16y - 4z + 0S_1 + 0S_2 + 0A_1 + 1A_2 = 2000

x, y, z, S_1, S_2, A_1 & A_2 \ge 0
```

The first equation is created from objective function by shifting all to left-hand side and making it equal to zero . Take note that in the first equation the coefficient of artificial variables A_1 & A_2 are -100 because for minimization problem we will always take negative sign for artificial variable and the value 100 is assigned by seeing the coefficient of x , y and z in objective function in which y has double digit coefficient. If any one of the coefficient was triple digit, then we must have to take 1000 for the coefficient of artificial variable.

Write the standard equation for each of the following LPP defining all the necessary variables .

```
a. Maximize Z = 3x_1 + 4x_2
     Subjected to,
     x_1 + x_2 \le 20
     2x_1 + 3x_2 \le 50
     x_1, x_2 \ge 0
b. Maximize Z = 2x_1 + 3x_2
     Subjected to,
     x_1 + 2x_2 \ge 50
     10x_1 + 20x_2 \le 175
     x_1, x_2 \ge 0
c. Minimize Z = 3x_1 + 4x_2 + 5x_3
     Subjected to,
     x_1 + x_2 + x_3 \ge 30
```

 $10x_1 + 15x_2 + 20x_3 \le 600$

Question d:

Suppose that 8, 12 and 9 units of protein, carbohydrates and fats respectively are the minimum weekly requirements for a person. Food A contains 2, 6 and 1 units of protein, carbohydrate and fat respectively per kg., food B contains 1, 1 and 3 units respectively per kg. and food C contains 2, 3 and 2 units respectively per kg. If A costs \$ 85 per kg, B costs \$ 40 per kg and C costs \$30 per kg; how many kg of each should he buy per week to minimize his cost and still meet his minimum requirements? Write down the standard equations needed to solve the given LPP.

LPP Using Simplex Method (Complete Solution):

```
Question:
Solve the following LPP using simplex method.
Maximize Z = 90 x + 70 y
Subjected to,
   125 x + 100 y \le 25000
   20 x + 30 y \le 6000
    x, y \ge 0
```



```
Question:
Solve the following LPP using simplex method.
Maximize Z = 90 x + 70 y
Subjected to,
     125 x + 100 y \le 25000
     20 x + 30 y \le 6000
     x, y \ge 0
Solution,
Let S<sub>1</sub> and S<sub>2</sub> be the slack variables.
Now,
     125 x + 100 y + S_1 = 25000
     20 x + 30 y + S_2 = 6000
     x, y, S_1, S_2 \ge 0
```


Standard equation for simplex table:

$$1 Z - 90 x - 70 y + 0 S_1 + 0 S_2 = 0$$

 $0 Z + 125 x + 100 y + 1 S_1 + 0 S_2 = 25000$
 $0 Z + 20 x + 30 y + 0 S_1 + 1 S_2 = 6000$

x , y , S_1 , $S_2 \ge 0$

Highest Negative (Key column)

Simplex table 1:

Row	Z	X	Y	S ₁	S ₂	Constant	Ratio
R_0	1	-90	-70	0	0	0	_
R_1	0	125	100	1	0	25000	25000/125 = 200
R_2	0	20	30	0	1	6000	6000/20 =300

Minimum positive ratio (Key Row)

Row	Z	X	Υ	S ₁	S ₂	Constant
R_0	1	-90	-70	0	0	0
R_1	0	125	100	1	0	25000
R ₂	0	20	30	0	1	6000

Here X is the **key column**, R_1 is the **key row** and 125 is the **key element**.

Now, we must update key row (R₁) first using the formula,

New $R_1 = Old R_1 / Key elements = Old R_1 / 125$

0,1,4/5,1/125,0,200

New $R_0 = Old R0 - (-90) x New R_1$

New $R_2 = Old R_2 - 20 \times New R_1$

We need to update rows until all the elements of R_0 are ≥ 0 for Maximization problems.

Updating R₀ and R₂ using the formula:

New $R_0 = Old R_0 - (-90) \times New R_1$

New $R_2 = Old R2 - 20 \times New R_1$

Old R ₀ -	(-90) x New R ₁	New R ₀	Old R ₂ -	20 x New R ₁	New R ₂
1	0	1	0	0	0
-90	-90	0	20	20	0
-70	-72	2	30	16	14
0	-18/25	18/25	0	4/25	-4/25
0	0	0	1	0	1
0	-18000	18000	6000	4000	2000

Simplex Table 2:

Row	Z	х	Υ	S ₁	S ₂	Constant	Ratio
R_0	1	0	2	18/25	0	18000	
R ₁	0	1	4/5	1/125	0	200	
R ₂	0	0	14	-4/25	1	2000	

Here all the coefficient of variables in R_0 row are ≥ 0 , so we reached the optimum solution .

Hence,

Maximum Z= 18000

X= 200

Y = 0

LPP Using Simplex Method (Another Problem):

```
Question:
```

```
Solve the following LPP using simplex method.
Minimize Z = 4 x + 6 y
Subjected to,
     x + 2 y \ge 80
    3 x + y \ge 75
     x, y \ge 0
Solution,
```

Let S_1 and S_2 be the surplus variables and let A_1 and A_2 be the artificial variables.

Now,

```
x + 2 y - S_1 + A_1 = 80
3 x + y - S_2 + A_2 = 75
S_1 S_2 A_1 \& A_2 \ge 0
```


Standard equation for simplex table:

 $1Z - 4x - 6y + 0S_1 + 0S_2 - 10A_1 - 10A_2 = 0$ $0Z + 1x + 2y - 1S_1 + 0S_2 + 1A_1 + 0A_2 = 80$ $0Z + 3x + 1y + 0S_1 - 1S_2 + 0A_1 + 1A_2 = 75$ $S_1, S_2, A_1 \& A_2 \ge 0$

Simplex Table 1:

Row	Z	X	У	S ₁	S ₂	A ₁	A ₂	Constant
R_0	1	-4	-6	0	0	-10	-10	0
R_1	0	1	2	-1	0	1	0	80
R ₂	0	3	1	0	-1	0	1	75

Row	Z	х	У	S ₁	S ₂	A ₃	A ₂	Constant
R_0	1	-4	-6	0	0	-10	-10	0
R ₁	0	1	2	-1	0	1	0	80
R ₂	0	3	1	0	-1	0	1	75

For Identity Matrix,

New $R_0 = Old R_0 + 10 (R_1 + R_2)$

Row	Z	X	у	S ₁	S ₂	A ₃	A ₂	Constant
R_0	1	-4	-6	0	0	-10	-10	0
R_1	0	1	2	-1	0	1	0	80
R_2	0	3	1	0	-1	0	1	75

New $R_0 = Old R_0 + 10 (R_1 + R_2)$

Old R ₀ +	10 (R ₁ + R ₂)	New R ₀
1	0	1
-4	40	36
-6	30	24
0	-10	-10
0	-10	-10
-10	10	0
-10	10	0
0	1550	1550

Here X is the key column, R₂ is the key row and 3 is the key element.

New $R_2 = Old R_2 / Key element = Old R_2 / 3$

New $R_0 = Old R_0 - 36 \times New R_2$

New $R_1 = Old R_1 - 1 \times New R_2$

We Need to update Rows until all the elements of $R_0 \le 0$.

Row	Z	x	у	S ₁	S ₂	A ₃	A ₂	Constant
R_0	1	36	24	-10	-10	0	0	1550
R_1	0	1	2	-1	0	1	0	80
R_2	0	3	1	0	-1	0	1	75

New $R_0 = Old R_0 - 36 \times New R_2$, New $R_1 = Old R_1 - 1 \times New R_2$

Old R ₀ -	36 x New R ₂	New R ₀	Old R ₁ -	1 x New R ₂	New R ₁
1	0	1	0	0	0
36	36	0	1	1	0
24	12	12	2	1/3	5/3
-10	0	-10	-1	0	-1
-10	-12	2	0	-1/3	1/3
0	0	0	1	0	1
0	12	-12	0	1/3	-1/3
1550	900	650	80	25	55

Key Column Simplex Table 3: Row Constant Ratio 2 1 0 12 -10 0 -12 650 R_0 5/3 1/3 1/3 55/5*3 =33 0 55 0 1/3 -1/3 1 0 1/3 25 25/1*3 =75 **Key Row Key Element**

Here Y is the key column, R₁ is the key row and 5/3 is the key element

Updating Key row using the formula,

NewR₁ = Old R₁ / Key elements = Old R₁/(5/3)

0,0,1,-3/5,1/5,3/5,1/5,33

New $R_0 = Old R0 - 12 \times New R_1$ New $R_2 = Old R_2 - 1/3 \times New R_1$

Row	Z	x	у	S ₁	S ₂	A ₃	A ₂	Constant	Ratio
R_0	1	0	12	-10	2	0	-12	650	-
R_1	0	0	5/3	-1	1/3	1	1/3	55	55/5*3 =33
R ₂	0	1	1/3	0	-1/3	0	1/3	25	25/1*3 =75

New $R_0 = Old R_0 - 12 \times New R_1$ New $R_2 = Old R_2 - 1/3 \times New R_1$

			-, -, -, -, -, -, -, -, -, -, -, -, -, -	1	
Old R0 -	12 x NewR1	New R0	Old R2 -	1/3 x New R1	New R2
1	0	1	0	0	0
0	0	0	1	0	1
12	12	0	1/3	1/3	0
-10	-36/5	-14/5	0	-1/5	1/5
2	12/5	-2/5	-1/3	1/15	-2/5
0	36/5	-36/5	0	1/5	-1/5
-12	12/5	-72/5	1/3	1/15	4/15
650	396	254	25	11	14

Simplex Table 4:

Row	Z	X	У	S ₁	S ₂	A ₃	A ₂	Constant	Ratio
R_0	1	0	0	-14/5	-2/5	-36/5	-72/5	254	
R_1	0	0	1	-3/5	1/5	3/5	1/5	33	
R_2	0	1	0	1/5	-2/5	-1/5	4/15	14	

Here all the coefficient of variables in $R_0 \le 0$, so we reached the optimum solution.

Hence, Minimum Z = 254x = 14y = 33

Question: (Past Year Course Work Question)

Martin and Son's company wants to manufacture a mixture containing three contents X, Y and Z. The cost of X, Y and Z are \$5, \$4 and \$3 respectively. The company prepares the mixture to meet out the demand of the costumers in the following manner.

The quantity of X cannot be more than 200 kgs in the mixtures.

The quantity of Y used should be at least 300 kgs.

The content of Z cannot be more than 400 kgs.

Find the optimal combination of the three contents for a mixture of 1000 kgs, so that the total cost is minimum.

Question:

Martin and Son's company wants to manufacture a mixture containing three contents X, Y and Z. The cost of X, Y and Z are \$5, \$4 and \$3 respectively. The company prepares the mixture to meet out the demand of the costumers in the following manner.

The quantity of X cannot be more than 200 kgs in the mixtures.

The quantity of Y used should be at least 300 kgs.

The content of Z cannot be more than 400 kgs.

Find the optimal combination of the three contents for a mixture of 1000 kgs, so that the total cost is minimum.

Problem Analysis:

X cannot be more than 200 kg ($X \le 200$)

Y should be at least 300 kg ($Y \ge 300$)

Z cannot be more that 400 kg ($Z \le 400$)

Total mixture must be 1000 kg (X + Y + Z = 1000)

Mathematical Formulation:

For Decision Variables

Let x kg ,y kg and z kg of mixture X,Y and Z should be purchased and mix together to form 1000 kg of mixture in order to minimize the cost.

For Objective Function

Total cost = 5 x + 4 y + 3 z

Let C = 5 x + 4 y + 3 z

Minimize C = 5 x + 4 y + 3 z

For Constraints

 $x \le 200$ (Mixture X constraint)

 $y \ge 300$ (Mixture Y constraint)

 $z \le 400$ (Mixture Z constraint)

x + y + z = 1000 (Total Mixture constraint)

 $x, y, z \ge 0$

Simplex Method Solution:

Let S_1 and S_2 be slack variables ,let S_3 be surplus variable and let A_1 and A_2 be artificial variables.

```
Now,
    x + S_1 = 200
    y - S_3 + A_1 = 300
    z + S_2 = 400
    x + y + z + A_2 = 1000
```

Standard Equation for Simplex Table

```
1 C - 5 x - 4 y - 3 z + 0S_1 + 0S_2 + 0S_3 - 10A_1 - 10A_2 = 0
0 C + 1 x + 0 y + 0 z + 1S_1 + 0S_2 + 0S_3 + 0A_1 + 0A_2 = 200
0 C + 0 x + 1 y + 0 z + 0S_1 + 0S_2 - 1S_3 + 1A_1 + 0A_2 = 300
0 C + 0 x + 0 y + 1 z + 0S_1 + 1S_2 + 0S_3 + 0A_1 + 0A_2 = 400
0 C + 1 x + 1 y + 1 z + 0S_1 + 0S_2 + 0S_3 + 0A_1 + 1A_2 = 1000
```


Simplex Table 1:

Row	С	х	у	z	S ₁	S ₂	S ₃	A ₁	A ₂	Constant
R_0	1	-5	-4	-3	0	0	0	-10	-10	0
R_1	0	1	0	0	1	0	0	0	0	200
R_2	0	0	1	0	0	0	-1	1	0	300
R ₃	0	0	0	1	0	1	0	0	0	400
R ₄	0	1	1	1	0	0	0	0	1	1000

For identity Matrix

New
$$R_0 = Old R_0 + 10 (R_2 + R_4)$$

For identity Matrix : New $R_0 = Old R_0 + 10 (R_2 + R_4)$

Old R0 +	10(R2 +R4)	New R0
1	0	0
-5	10	5
-4	20	16
-3	10	7
0	0	0
0	0	0
0	-10	-10
-10	10	0
-10	10	0
0	13000	13000

Simplex Table 2:

					7 Key	Joiumn					
Row	С	x	у	2	S ₁	S ₂	S ₃	A ₁	A ₂	Constant	Ratio
R_0	0	5	16	7	0	0	-10	0	0	13000	-
R_1	0	1	0	0	1	0	0	0	0	200	∞
R ₂	0	0	1	0	0	0	-1	1	0	300	300
R_3	0	0	0	1	0	1	0	0	0	400	∞
R_4	0	1	1	1	0	0	0	0	1	1000	1000
Key Row Key Element											

Vov Column

Key Row Key Element Here we need to update R_2 first using : New R_2 = Old R_2 / 1

0,0,1,0,0,0,-1,1,0,300

New $R_0 = Old R_0 - 16 \times New R_2$

New $R_1 = Old R_1 - 0 \times New R_2$

New $R_3 = Old R_3 - 0 \times New R_2$

New $R_4 = Old R_4 - 1 \times New R_2$

We need to update rows until all the coefficient of variables in R_0 are ≤ 0 .

Differences between Maximization and Minimization Problem

Maximization Problem	Minimization Problem
Artificial variable is written with +ve sign in standard equation . 1Z -2x - 3y - 4z +0S ₁ + 0S ₂ + $\frac{10A_1}{10A_2}$ = 0	Artificial variable is written with -ve sign in standard equation . 1Z -2x - 3y - 4z +0S ₁ + 0S ₂ - $\frac{10A_1}{10A_2}$ = 0
For Key Column we need to see highest Negative value in \mathbf{R}_0 row .	For $\mbox{Key Column}$ we need to see $\mbox{highest positive}$ value in \mbox{R}_0 row .
For $\textbf{Optimal Solution}$ all the coefficient of Variables in R_0 row should be $\geq \textbf{0}$.	For Optimal Solution all the coefficient of Variables in R_0 row should be ≤ 0 .

Thank you

