

Matemáticas para las Ciencias II Semestre 2020-2

Prof. Pedro Porras Flores Avud. Irving Hernández Rosas

Proyecto III

Kevin Ariel Merino Peña¹

Realice los siguientes ejercicios, escribiendo el procedimiento claramente. Y recuerden que estos proyectos se entregan de manera individual en la plataforma de google classroom.

1. Calcule la matriz de la derivadas parciales de:

Para ello necesitaremos definir

Definición 1. Ses U un conjunto abierto en \mathbb{R}^n y sea $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$. Se dice que f es diferenciable en $\vec{x_0}\in U$ si todas las derivadas parciales existen y además si el siguiente límite existe:

$$\lim_{\vec{x} \to \vec{x_0}} \frac{||f(\vec{x}) - f(\vec{x_0}) - T(\vec{x} - \vec{x_0})||}{||\vec{x} - \vec{x_0}||} = 0$$

Donde $T=Df(\vec{x_0})\in M_{mxn}$ cuyos elementos son $\frac{\partial f_i}{\partial x_j}$ con $1\leq i\leq m$ y $1\leq j\leq n$. Esto es

$$Df(\vec{x_0}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & \ddots & \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Es llamada matriz de las derivadas parciales o Matriz Jacobiana

a)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, tal que $f(x,y) = (e^x, \sin(xy))$

$$Df(\vec{x_0}) = \begin{pmatrix} \frac{\partial e^x}{\partial x} & \frac{\partial e^x}{\partial y} \\ \frac{\partial \sin(xy)}{\partial x} & \frac{\partial \sin(xy)}{\partial y} \end{pmatrix}$$
$$Df(\vec{x_0}) = \begin{pmatrix} e^x & 0 \\ y \cos(xy) & x \cos(xy) \end{pmatrix}$$

Por definición de la matriz Jacobiana

Efectuando las derivadas parciales

b)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, tal que $f(x,y) = (xe^y + \cos(y), x, x + e^y)$

c)
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, tal que $f(x, y, z) = (x + e^z + y, xy^2)$

d)
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, tal que $f(x, y, z) = (xye^{xy}, x\sin(y), 5xy^2)$

2. Sea
$$f(x, y) = xe^{y^2} - ye^{x^2}$$

- a) Encuentre el plano tangente a la gráfica de f en (1,2)
- b) ¿Qué punto sobre la superficie $z = x^2 y^2$, tiene un plano tangente paralelo al plano tangente encontrado en la primer parte?

 $^{^1\}mathrm{Número}$ de cuenta 317031326

3. Calcule el gradiente de las siguientes funciones:

a)
$$f(x, y, z) = xe^{-(x^2+y^2+z^2)}$$

b)
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

c)
$$f(x, y, z) = z^2 e^x \cos(y)$$

4. Haga un bosquejo de las curvas que son las imágenes de las siguientes trayectorias:

a)
$$\vec{\gamma}(t) = (\sin(t), 4\cos(t))$$
, donde $0 \le t \le 2\pi$

b)
$$\vec{\gamma}(t) = (2\sin(t), 4\cos(t))$$
, donde $0 \le t \le 2\pi$

c)
$$\vec{\gamma}(t) = (t \sin(t), t \cos(t), t),$$
 donde $-4\pi \leq t \leq 4\pi$

- 5. El vector de posición para una partícula que se mueve sobre una hélice es $\vec{\gamma}(t) = (\sin(t), \cos(t), t^2)$:
- a) Encuentre la rapidez de la partícula en el tiempo
 $t_0=4\pi$
- b) ¿Es $\vec{\gamma}$ es ortogonal a $\vec{\gamma}'$
- c) Encuentre la recta tangente a $\vec{\gamma}\ t_0 = 4\pi$
- d) ¿Dónde se intersecará esta línea con el plano xy?