Ideas from "Classical nilpotent orbits as hyperkähler quotients"

Shing Tak Lam

August 2, 2023

In this note, we provide a high level overview for the paper [1] by Kobak and Swann. We will use the same notation and numbering as in the paper, but we will omit technical details from the proofs.

1 Introduction

Here, we define the hyperKähler structure on \mathbb{H}^n , where the complex structures are given by right multiplication by -i, -j, -k respectively, and the Riemannian metric is the Euclidean metric from the isomorphism $\mathbb{H}^n \cong \mathbb{R}^{4n}$ of vector spaces. For a subgroup H of $\operatorname{Sp}(N)$, H acts (on the left) on \mathbb{H}^n , and the *hyperKähler moment map* for this action is an equivariant map

$$\mu: \mathbb{H}^n \to \mathfrak{h}^* \otimes \operatorname{Im}(\mathbb{H}) \cong \mathfrak{h} \otimes \operatorname{Im}(\mathbb{H})$$

where $d(\mu^X) = X \rfloor \eta$, $\eta = \omega_I i + \omega_J j + \omega_K k$ the quaternion values form given by the symplectic forms. What this means is that if we write

$$\mu = \mu_I i + \mu_I j + \mu_K k$$

then μ_I is a moment map for the action of H on \mathbb{H}^n with respect to the complex structure I, and so on. Throughout, we will have the moment map

$$\mu^{X}(q) = -\overline{q}^{\mathsf{T}} X q$$

for $X \in \mathfrak{h}$, which we consider to be an $N \times N$ quaternionic matrix.

2 The Constructions

First of all, we reduce to the case where \mathcal{O} is an adjoint orbit of a classical simple Lie algebra over \mathbb{C} , since in the general case we can take product/sums.

In each case, we first specify a hyperKähler vector space M and the group G, then we prove that the complex symplectic quotient by $G^{\mathbb{C}}$ is what we want, then we show that the complex quotient is the same as the hyperKähler quotient.

2.1 The Special Linear Group

In this case, let V_0, \ldots, V_k be Hermitian vector spaces, $\dim(V_i) = n_i$, $n_0 = 0$ and $n_k = n$. Then we can define the vector space

$$M = \bigoplus_{i=0}^{k-1} (\operatorname{Hom}(V_i, V_{i+1}) \oplus \operatorname{Hom}(V_{i+1}, V_i))$$

and we write each point $p = (\alpha_i, \beta_i)$ as the diagram

$$0 = V_0 \xleftarrow{\alpha_0} V_1 \xleftarrow{\alpha_1} V_2 \xleftarrow{\alpha_2} \cdots \xleftarrow{\alpha_{k-1}} V_k = \mathbb{C}^n$$

We have a left \mathbb{H} action on M, given by

$$i(\alpha_i, \beta_i) = (i\alpha_i, i\beta_i)$$
 $j(\alpha_i, \beta_i) = (-\beta_i^*, \alpha_i^*)$

which makes M into a quaternionic vector space. In this case, the Lie group action of $G = U(n_1) \times \cdots \times U(n_{k-1})$ on M is

$$\alpha_i \mapsto g_{i+1} \alpha_i g_i^{-1} \beta_i \mapsto g_i \beta_i g_{i+1}^{-1}$$

$$(1)$$

where $g_i \in U_{n_i}$, $g_0 = g_k = 1$. The moment map in this case is $\mu = i\mu_r + 2k\mu_c : M \to \mathfrak{g}^* \otimes \operatorname{Im}(\mathbb{H})$, where (up to identifying \mathfrak{g}^* with \mathfrak{g} via the Killing form),

$$\mu_{r} = (\alpha_{i-1}\alpha_{i-1}^{*} - \beta_{i-1}^{*}\beta_{i-1} + \beta_{i}\beta_{i}^{*} - \alpha_{i}^{*}\alpha_{i})_{i=1}^{k-1} \qquad \in \mathfrak{g} \otimes i\mathbb{R} = i\mathfrak{g} = i\mathfrak{u}(n_{1},\mathbb{C}) \oplus \cdots \oplus i\mathfrak{u}(n_{k-1},\mathbb{C})$$

$$\mu_{c} = (\alpha_{i-1}\beta_{i-1} - \beta_{i}\alpha_{i})_{i=1}^{k-1} \qquad \in \mathfrak{g} \otimes \mathbb{C} = \mathfrak{gl}(n_{1},\mathbb{C}) \oplus \cdots \oplus \mathfrak{gl}(n_{k-1},\mathbb{C})$$

2.1.1 The Complex Quotient

Fix a point $p=(\alpha_i,\beta_i)\in\mu_c^{-1}(0)$. In this case, we can define $X=\alpha_{k-1}\beta_{k-1}\in \operatorname{End}(\mathbb{C}^n)$. Then $X^k=0$, as $p\in\mu_c^{-1}(0)$. Moreover, the action of $G^\mathbb{C}=\operatorname{GL}(n_1,\mathbb{C})\times\cdots\times\operatorname{GL}(n_{k-1},\mathbb{C})$ preserves X, so we have a well defined map

$$\Phi^c: \mu_c^{-1}(0)/G^{\mathbb{C}} \to \mathcal{N}$$
$$(\alpha_i, \beta_i) \mapsto \alpha_{k-1}\beta_{k-1}$$

where \mathcal{N} is the nilpotent variety of $\mathfrak{sl}(n,\mathbb{C})^1$.

Theorem 2.1. The map Φ^c , restricted to the set of closed $G^{\mathbb{C}}$ orbits, is injective. Furthermore, its image consists of a union of closures of nilpotent orbits in $\mathfrak{sl}(n,\mathbb{C})$. If there exists $X \in \mathfrak{sl}(n,\mathbb{C})$ such that $\mathrm{rank}(X^i) = n_{k-i}$ for all i, then the image is precisely the closure of the nilpotent orbit containing X.

Proof sketch. First of all, notice that eq. (1) defines a $GL(n, \mathbb{C})$ action on M, by taking $g_k = g$, and $g_i = 1$ for i < k. This action preserves $\mu_c^{-1}(0)$, and Φ^c is equivariant with respect to this action². Therefore, the image of Φ^c is a union of nilpotent orbits.

To show the injectivity statement, we use the $\mathrm{GL}(n,\mathbb{C})$ action to assume without loss of generality that X is in Jordan normal form. In fact, we can assume that X is a Jordan block, each β_i is surjective and each α_i is injective using the $G^{\mathbb{C}}$ action and the fact that the orbits are closed. In this case, by an appropriate choice of basis, using the $G^{\mathbb{C}} \times \mathrm{GL}(n,\mathbb{C})$ -action, we can assume β has matrix

$$\begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \end{pmatrix}$$

With this, α_1 is upper triangular, and by induction all α_i are upper triangular, and we get uniqueness. The rest of the statement follows from the facts that

- 1. If X is nilpotent, the numbers $rank(X^i)$ determines the Jordan normal form of X, and so the nilpotent orbit of X,
- 2. If X, Y are nilpotent, then Y is in the closure of the nilpotent orbit containing X if and only if $\operatorname{rank}(Y^i) \leq \operatorname{rank}(X^i)$ for all i.

2.1.2 Equivalence of Kähler and Complex Quotients

We have the following result by Kirwan (paraphrased):

¹Any nilpotent endomorphism necessarily has all eigenvalues being zero, and so it is trace free.

²In fact, Φ^c is a complex symplectic moment map for a $GL(n,\mathbb{C})$ action on the quotient.

Theorem 2.2. Let X be a Kähler manifold, G a compact Lie group acting on X preserving the Kähler structure, such that $G^{\mathbb{C}}$ also acts holomorphically on X. Let μ be the Kähler moment map for the action of G, satisfying condition (\star). Let

$$X^{\min} = \left\{ y \mid \text{ limit under steepest decent of } \left\| \mu \right\|^2 \text{ lies in } \mu^{-1}(0) \right\}$$

Then $x \in G^{\mathbb{C}}\mu^{-1}(0)$ if and only if $x \in X^{\min}$ and the orbit $G^{\mathbb{C}}x$ is closed in X^{\min} . In this case, the map

$$u^{-1}(0)/G \to G^{\mathbb{C}}u^{-1}(0)/G^{\mathbb{C}}$$

is a homeomorphism, where $G^{\mathbb{C}}\mu^{-1}(0)/\!\!/G^{\mathbb{C}}$ is the set of closed $G^{\mathbb{C}}$ orbits in $G^{\mathbb{C}}\mu^{-1}(0)$.

We will return to the condition (\star) later, but for now, we will first assume that (\star) holds in the cases which we want, and then prove that it holds later on.

First, since $(M, \omega_I, \omega_I, \omega_K)$ is hyperKähler, (M, ω_I) is Kähler. Moreover, the group G acts on (M, ω_I) preserving the Kähler structure, with moment map μ_r . Therefore, applying theorem 2.2, we get that

$$\mu_r^{-1}(0)/G \cong G^{\mathbb{C}}\mu_r^{-1}(0)/\!\!/ G^{\mathbb{C}}$$

Next, we assume $M^{\min} = M$, so $G^{\mathbb{C}} \mu_r^{-1}(0)$ is just the set of points for which the orbit $G^{\mathbb{C}} x$ is closed. In this case, we have a natural inclusion

$$X = \mu_c^{-1}(0) \cap G^{\mathbb{C}} \mu_r^{-1}(0) \subset G^{\mathbb{C}} \mu_r^{-1}(0)$$

Since X is $G^{\mathbb{C}}$ invariant, we have an induced map

$$X/G^{\mathbb{C}} \hookrightarrow G^{\mathbb{C}}\mu_r^{-1}(0)/\!\!/G^{\mathbb{C}} \cong \mu_r^{-1}(0)/\!\!/G$$

Finally, we want to find the image of this map. But this is just $\mu^{-1}(0)/G$, which is the hyperKähler quotient. Therefore, all that remains is to show that $M^{\min} = M$, and that (\star) holds.

 $\underline{\mathcal{M}}^{\min} = \underline{\mathcal{M}}$: For this, it suffices to show that the critical points of $\|\mu_r\|^2$ are global minima. Since $\mu_r^* = \mu_r$, we have that grad $(\|\mu_r\|^2) = 2(d\mu_r)\mu_r$, which vanishes if and only if $\mu_r = 0$ and so $\|\mu_r\|^2 = 0$.

The condition (\star) is that the trajectories of the gradient flow of $\|\mu_r\|^2$ are bounded. In this case, we have that

$$\|\mu_r(x)\|^2 \le \|x\|^4$$

for all $x \in M$. The paper then claims that this implies each trajectory is bounded, but I don't see why this is true.

Theorem 2.7. The hyperKähler quotient of M by G is a union of nilpotent orbits in $\mathfrak{sl}(n,\mathbb{C})$. If there is a nilpotent element $X \in \mathfrak{sl}(n,\mathbb{C})$, with rank $(X^i) = n_{k-i}$ for all i, then the quotient is isomorphic to the closure of the nilpotent orbit containing X.

Orthogonal and Symplectic Lie Algebras

For $\mathfrak{o}(n,\mathbb{C})$ and $\mathfrak{sp}(n,\mathbb{C})$, we write

$$\mathfrak{o}(n,\mathbb{C}) = \mathfrak{c}_0^{\mathbb{C}}$$

 $\mathfrak{sp}(n,\mathbb{C}) = \mathfrak{c}_1^{\mathbb{C}}$

and the corresponding Lie groups $C^{\mathbb{C}}_{\delta}$ are Lie groups acting on $V=\mathbb{C}^{(1+\delta)n}$ preserving a non-degenerate bilinear form B such that $B(u,v)=(-1)^{\delta}B(v,u)$. If $X\in\mathfrak{c}^{\mathbb{C}}_{\delta}$ is nilpotent, with $X^k=0$, then $X^{k-i}V$ has a bilinear form B_i , with

$$B_i(u, v) = (-1)^{k-i+\delta} B_i(v, u)$$
 (2)

As a matrix, $B_{i-1} = XB_i$ restricted to $X^{k-i}V$. Therefore, we consider the same construction as in the previous subsection, except we require each V_i to have a bilinear form B_i satisfying eq. (2). Moreover, let A^{\dagger} be the adjoint of A with respect to B_i , then we require that

$$(A^*)^{\dagger} = (A^{\dagger})^*$$

Let M_{δ} be the vector subspace of M, given by

$$\beta_i = \alpha_i^{\dagger}$$

Note $(\alpha_i^{\dagger})^{\dagger} = -\alpha_i$. Then M_{δ} is also a flat hyperKähler manifold. Let $H = C_1 \times \cdots \times C_n$ be the subgroup of G, where C_i preserves B_i . In particular, C_i is $O(n_i)$ or $Sp(n_i/2)$. H acts on M_{δ} , and the moment map is the same as above, just with $\beta_i = \alpha_i^{\dagger}$.

Theorem 2.8. The hyperKähler quotient of M_{δ} by H is a union of closures of nilpotent orbits of $C_{\delta}^{\mathbb{C}}$, where $C_{0}^{\mathbb{C}} = \mathrm{O}(n,\mathbb{C})$ and $C_{1}^{\mathbb{C}} = \mathrm{Sp}(n/2,\mathbb{C})$. Moreover, this quotient agrees with the algebraic quotient $\mu_{c}^{-1}(0)/\!\!/H^{\mathbb{C}}$. If there is an $X \in \mathfrak{c}_{\delta}^{\mathbb{C}}$ with $\mathrm{rank}(X^{i}) = n_{k-i}$ for all i, then the hyperKähler quotient is the closure of the nilpotent orbit containing X.

Proof sketch. First, we note that nilpotent orbits in $\mathfrak{o}(n,\mathbb{C})$ and $\mathfrak{sp}(n/2,\mathbb{C})$ are the intersections of the $\mathfrak{sl}(n,\mathbb{C})$ orbits with $\mathfrak{c}_{\delta}^{\mathbb{C}}$. Therefore, suffices to show that for any $X \in \mathfrak{c}_{\delta}^{\mathbb{C}}$, there exists $(\alpha_1, \ldots, \alpha_{k-1})$ in a closed $H^{\mathbb{C}}$ -orbit of $\mu_c^{-1}(0) \cap M_{\delta}$, with $\alpha_{k-1}\alpha_{k-1}^{\dagger} = X$. This is because we have natural maps

$$\frac{\mu_c^{-1}(0)\cap M_\delta}{H^{\mathbb{C}}}\to \frac{\mu_c^{-1}(0)}{G^{\mathbb{C}}}\stackrel{\Phi^c}{\to} \mathcal{N}$$

for which the composition is $[(\alpha_i)] \mapsto \alpha_{k-1} \alpha_{k-1}^{\dagger}$.

To prove the claim, we again consider Jordan blocks, and define the B_i s and α_i s appropriately.

3 Consequences and Examples

Lemma 3.1. Let H be a Lie group acting on \mathbb{H}^N preserving the complex structures. Let a non-zero quaternion $a \in \mathbb{H}^*$ act on $q \in \mathbb{H}^N$ on the right, that is, $q \mapsto qa^{-1}$, and on $p \in \text{Im}(\mathbb{H})$ by conjugation. That is, $p \mapsto apa^{-1}$. Then the map $\mu : \mathbb{H}^N \to \mathfrak{h}^* \otimes \text{Im}(\mathbb{H})$ defined as above is the unique moment map for the action of H on \mathbb{H}^N which is equivariant with respect to the action of \mathbb{H}^* .

Using this, we get that the set $\mu^{-1}(0)$ is \mathbb{H}^* -invariant, and if K is another Lie group so that $H \times K$ also acts on \mathbb{H}^N preserving the complex structures, then the moment map for the action of $H \times K$ is the direct sum of the moment maps for H and for K, and the hyperKähler quotient by $H \times K$ is the hyperKähler quotient by H followed by the hyperKähler quotient by K.

3.1 Quaternionic Kähler metrics

Omitted.

3.2 Finite Quotients

3.3 HyperKähler Quotients

References

[1] Piotr Z. Kobak and Andrew Swann. "Classical nilpotent orbits as hyperkähler quotients". In: Int. J. Math. 07.02 (Apr. 1996). Publisher: World Scientific Publishing Co., pp. 193–210. ISSN: 0129-167X. DOI: 10.1142/S0129167X96000116. URL: https://www.worldscientific.com/doi/10.1142/S0129167X96000116 (visited on 07/27/2023).