Vector Spaces

4.1 Coordinate systems and mapping

Consider a vector x living in a vector space V. The vector x is an abstract concept, living in some abstract space V. It may have some physical or gemoetric meaning or whatnot.

We now enforce a basis onto V, called $\mathcal{B} = \{b_1, \ldots, b_n\}$. This makes V behave like \mathbb{R}^n , in the sense that each vector x in V is mapped onto a vector $[x]_{\mathcal{B}}$ in \mathbb{R}^n . This is called a coordinate mapping $x \mapsto [x]_{\mathcal{B}}$ "onto" the basis \mathcal{B} . The vector space V might be foreign to us, and it can be important to create a mapping onto a more familiar vector space \mathbb{R}^n , which we know how behaves. This transformation is "one-to-one", mapping each point in V onto a point in \mathbb{R}^n , and vice versa. This relation is called an **isomorphism**, and makes any vector space V with a basis of n vectors indistinguishable from \mathbb{R}^n .

Usually, when a vector is written plainly as x, we consider it to be written in a *standard basis* $\mathcal{E} = \{e_1, e_2\} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, meaning that $x = [x]_{\mathcal{E}}$.

The relation between x and $[x]_{\mathcal{B}}$ is given by a **change-of-basis matrix** $P_{\mathcal{B}}$, which consists of the basis-vectors of \mathcal{B} , written in the basis of \mathcal{E} :

$$x = P_{\mathcal{B}}[x]_{\mathcal{B}}$$
 $P_{\mathcal{B}} = [\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \dots \ \boldsymbol{b}_n]$

4.2 Change of basis

This change of basis is just a special case of a more general change of basis between two basises $\mathcal{B} = \{b_1, \dots b_n\}$ and $\mathcal{C} = \{c_1, \dots c_n\}$, both spanning the same vector space V. The general change of basis is then

$$[\boldsymbol{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\boldsymbol{x}]_{\mathcal{B}} \qquad P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\boldsymbol{b}_1]_{\mathcal{C}} [\boldsymbol{b}_2]_{\mathcal{C}} \dots [\boldsymbol{b}_1]_{\mathcal{C}}]$$

The change-of-basis matrix from \mathcal{C} to \mathcal{B} is simply the inverse: $P_{\mathcal{B} \leftarrow \mathcal{C}} = \begin{pmatrix} P_{\mathcal{C} \leftarrow \mathcal{B}} \end{pmatrix}^{-1}$

4.3 Linear transformations (mappings) between vector spaces

Consider two vector spaces V and W, with basises $\mathcal{B} = \{ \boldsymbol{b}_1, \dots \boldsymbol{b}_n \}$ and $\mathcal{C} = \{ \boldsymbol{c}_1, \dots, \boldsymbol{c}_m \}$ in \mathbb{R}^n and \mathbb{R}^m , respectively. We introduce a linear transformation $T: V \mapsto W$ such that T(x) = Ax. This is all well and good, but we might only have the vector \boldsymbol{x} represented in the basis \mathcal{B} , and usually want it written in the basis \mathcal{C} after the transformation, as $[T(\boldsymbol{x})]_{\mathcal{C}}$.

What we want is some matrix M that carries us straight from $[x]_{\mathcal{B}}$ to $|T(x)|_{\mathcal{L}}$. If we combine the change of basis with T, we get

$$[T(\boldsymbol{x})]_{\mathcal{C}} = M[\boldsymbol{x}]_{\mathcal{B}}$$

FIGURE 1 A linear transformation from V to W.

where

$$M = [[T(\boldsymbol{b}_1)]_{\mathcal{C}} \dots [T(\boldsymbol{b}_n)]_{\mathcal{C}}] = [[A\boldsymbol{b}_1]_{\mathcal{C}} \dots [A\boldsymbol{b}_n]_{\mathcal{C}}]$$

This matrix is called the matrix for T relative to the bases \mathcal{B} and \mathcal{C} .

5 Eigenvalues and Eigenvectors

If A has n independent eigenvalues, the eigenvectors of A are linearly independent. If not, we don't know if they are linearly independent or not.

5.1 Diagonalization

If A is a $n \times n$ matrix with with n linearly independent eigenvectors v_1, \ldots, v_n , with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$.

CHAPTER $6 \frac{}{\text{asdf}}$

Orthogonality and least squares

7.1 Projections

7.1.1 Projection of vector onto vector

The projection of a vector \boldsymbol{y} onto another vector \boldsymbol{x} is

$$\hat{m{y}} = rac{m{y} \cdot m{x}}{m{x} \cdot m{x}} m{x}$$

7.1.2 Projection of vector onto subspace

Let W be subspace of \mathbb{R}^n with an orthogonal basis $\{u_1, \ldots, u_p\}$ and y be any vector in \mathbb{R}^n . Then the projection of y onto W is simply the projection onto each basis-vector:

$$\hat{oldsymbol{y}} = rac{oldsymbol{y} \cdot oldsymbol{u}_1}{oldsymbol{u}_1 \cdot oldsymbol{u}_1} oldsymbol{u}_1 + \dots + rac{oldsymbol{y} \cdot oldsymbol{u}_p}{oldsymbol{u}_p \cdot oldsymbol{u}_p} oldsymbol{u}_p$$

7.1.3 The Gram-Schmidt process of orthogonal factorization

The Gram-Schmidt process takes any basis of vectors $\{x_1, \ldots, x_p\}$ spanning a subspace in \mathbb{R}^n , and creates a new *orthogonal* basis of the same space, $\{v_1, \ldots, v_p\}$.

The idea is to create one and one new vector v_i from the corresponding x_i , but subtract the projection of x_i onto each of the former vectors v_1, \ldots, v_{i-1} , such that the new vector is orthogonal to all formerly created vectors.

- $v_1 = x_1$
- $ullet egin{aligned} ullet oldsymbol{v}_2 = oldsymbol{x}_2 rac{oldsymbol{x}_2 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 \end{aligned}$
- $\bullet \ \ \boldsymbol{v}_3 = \boldsymbol{x}_3 \frac{\boldsymbol{x}_3 \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \boldsymbol{v}_1 \frac{\boldsymbol{x}_3 \cdot \boldsymbol{v}_2}{\boldsymbol{v}_2 \cdot \boldsymbol{v}_2} \boldsymbol{v}_2$
- ...