Formale Grundlagen der Informatik II 2. Hausübung

Fachbereich Mathematik
Prof. Dr. Martin Otto

SoSe 2015 24. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe H1 (Normalformen)

(12 Punkte)

In der folgenden Aufgabe sind f, g Funktionssymbole und R, S Relationssymbole mit jeweils der passenden Stelligkeit. Geben Sie zu den folgenden Formeln jeweils eine äquivalente Formel in

- (i) pränexer Normalform,
- (ii) Skolemnormalform der in (i) gewählten Pränexnormalform und
- (iii) Herbrandnormalform der in (i) gewählten Pränexnormalform

an:

- (a) $(\forall x Rx) \lor (\exists x \neg Rx)$
- (b) $(\neg \forall x Rx gz) \rightarrow \forall y (Sfy \lor y = z)$

Aufgabe H2 (Grundinstanzenresolution)

(12 Punkte)

Seien

$$\varphi_1 := \forall x \forall y \forall z ((Rxy \land Ryz) \to Rxz)$$

$$\varphi_2 := \forall x \forall y (Rxy \to (Px \longleftrightarrow \neg Py))$$

$$\varphi_3 := \forall x \exists y (Rxy \land (Py \longleftrightarrow Ryx))$$

- (a) Zeigen Sie durch Grundinstanzenresolution, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3\}$ nicht erfüllbar ist.
- (b) Je zwei der drei Formeln $\varphi_1, \varphi_2, \varphi_3$ sind gemeinsam erfüllbar. Weisen Sie dies für alle drei Kombinationen durch Angabe von Herbrand-Modellen nach.

Aufgabe H3 (Monoide)

(12 Punkte)

Betrachten Sie die Signatur $S = \{*, e\}$, wobei * eine 2-stellige Funktion und e eine Konstante ist.

- (a) Ein *S*-Struktur \mathcal{A} heißt *Monoid*, wenn * assoziativ und e ein neutrales Element für * ist, siehe Skript FGdI1 1.1.19. Geben Sie einen Satz φ an, so dass \mathcal{A} ein Monoid ist genau dann wenn $\mathcal{A} \models \varphi$.
- (b) Wenn es zu jedem Element von \mathcal{A} ein Inverses gibt, dann ist \mathcal{A} eine Gruppe. Geben Sie einen Satz φ an, so dass $\mathcal{A} \models \varphi$ genau dann wenn \mathcal{A} eine Gruppe ist.
- (c) Betrachten Sie die folgenden Monoide:

i.
$$A_1 = (\mathbb{Z}, +, 0)$$

ii.
$$A_2 = (\mathbb{N}, +, 0)$$

iii. $A_3 = (\mathbb{N}, \max, 0)$, wobei $\max(x, y)$ das Maximum von x und y bezeichnet.

iv. $A_4 = (\Sigma, \cdot, \epsilon)$, wobei $\Sigma = \{a, b\}$. (A_4 is das Wortmonoid, siehe Skript FGdI1 1.1.21.)

Geben Sie Sätze $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ an, so dass für $i, j \in \{1, 2, 3, 4\}$ gilt:

$$A_i \vDash \varphi_i$$
 genau dann, wenn $i = j$

D.h. mit den Sätzen φ_i können diese vier Strukturen unterschieden werden.

(d) Geben Sie eine S-Struktur A an, die kein Monoid ist.

1

Aufgabe H4 (Sequenzenkalkül)

(12 Punkte)

- (a) Leiten Sie die Sequenz $\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx \text{ her.}$
- (b) Beweisen Sie die Korrektheit der folgenden Regel:

$$\frac{\Gamma \vdash \Delta, \forall x R x f x}{\Gamma \vdash \Delta, \forall x \exists y R x y}$$

Beachten Sie, dass sich diese Regel nicht in \mathcal{SK}^{\neq} (auch nicht in \mathcal{SK}) herleiten lässt (warum?).

(c) Seien T_1 und T_2 zwei Theorien sind, für die $T_1 \cup T_2$ keine Modelle hat. Zeigen Sie, dass es dann einen Satz σ gibt, so dass $T_1 \models \sigma$ und $T_2 \models \neg \sigma$.

Aufgabe H5 (Graphen und FO)

(10 Punkte)

Wir betrachten ungerichtete Graphen $\mathcal{G} = (V, E)$. Welche der folgenden Bedingungen lassen sich durch eine Menge von FO-Formeln spezifizieren? Geben Sie eine entsprechende Formelmenge an, oder begründen Sie, warum eine solche nicht existiert.

- (a) Der Abstand zwischen den Knoten x und y ist gerade (oder unendlich).
- (b) \mathcal{G} enthält keinen Kreis.
- (c) \mathcal{G} enthält einen Kreis.
- (d) Jeder Knoten von \mathcal{G} hat unendlich viele Nachbarn.
- (e) Kein Knoten von \mathcal{G} hat unendlich viele Nachbarn.

Aufgabe H6 (Rekursive Aufzählbarkeit)

(12 Punkte)

Ein Satz φ impliziert in endlichen Strukturen einen Satz ψ (geschrieben $\varphi \models_{\text{fin}} \psi$), falls $\mathcal{A} \models \psi$ für alle endlichen Strukturen \mathcal{A} gilt, für die $\mathcal{A} \models \varphi$ gilt.

Welche der folgenden Mengen sind für beliebige endliche Signaturen rekursiv aufzählbar? Begründen Sie Ihre Antworten.

- $M_1 := \{(\varphi, \psi) : \varphi \models \psi\}$
- $M_2 := \{(\varphi, \psi) : \varphi \not\models \psi\}$
- $M_3 := \{(\varphi, \psi) : \varphi \models_{fin} \psi\}$
- $M_4 := \{(\varphi, \psi) : \varphi \not\models_{fin} \psi\}$