USBメモリに搭載したポータブルRTM環境 を用いたロボット教育ツール

埼玉大学 設計工学研究室

- □ 既存のOpenRTM Tutorial[1]に追加する形で製作
 - デバイスドライバインストール不要
 - プログラム実行に必要なファイルを全て同梱
 - CSV形式の記述でオリジナルプログラム作成可能
 - 日本語 / Englishの2バージョンを用意

USBメモリ1本で簡単に試せる!!

□ 使用手順(4ステップ)

1.

Download zip

Download from GitHub^[1]

2. Unzipped & Change the file name to "openrtm_tutorial"

- □ 対応OS: Windows 7/8
- ※ USBメモリのドライブ名「F:¥」の必要有 Special Thanks to (INPO):

ヴイストン株式会社様、東京オープンソースロボティクス協会様、国立研究開発法人産業技術総合研究所 原様 [1] https://github.com/tork-a/openrtm tutorial

Fig. 1 Academic SCARA Robot

3. ウムーパブルディスク(E:)
空き領域 12.1 GB/14.9 GB

Copy to the USB
flash memory

2.2 Run programs in the tutorial

 Run ./demo/OpencvRtmDemo/0_StartDemo.bat by clicking on the link below. If it doesn't work, run it manually from Explorer.

./demo/ScaraRobotDemo/1_StartDemo.bat

The coordinate system of the SCARA robot is shown in Fig. 1.

Fig. 2 SCARA Robot Tutorial

Fig. 3 Demo (Sample.csv)

USBメモリに搭載したポータブルRTM環境 を用いたロボット教育ツール

埼玉大学 設計工学研究室

- 実装RTコンポーネント
 - VS_ASR_RTC : ハードウエアRTC
 ロボットアーム共通I/F(SI単位系準拠 第1.0版)に
 準拠したサービスポートを実装
 - ScaraRobotControlRTC : アプリケーションRTC CSVファイルを読み込み指令値を送信

ManipulatorCommonInterface_Common ManipulatorCommonInterface_Middle VS_ASR_RTC0 ManipulatorCommonInterface_Common ManipulatorCommonInterface_Middle ScaraRobotControlRTC0

Fig. 4 Connect VS_ASR_RTC and ScaraRobotControlRTC on RT System Editor

□ 実装コマンド

コマンド	書式	説明	
SERVO_OFF		全軸サーボを OFF にする.	
SERVO_ON		全軸サーボを ON にする.	
HAND_CLOSE		ハンドを完全に閉じる.	
HAND_OPEN		ハンドを完全に開く.	
HAND_MOV	Rate	ハンドを指定した開閉角度とする.	
	単位:[%]		
CMVS	X, Y, Z, Rz	ロボット座標系の絶対値で指定され	
	単位:X,Y,Z[m],	た目標位置に対し、直交空間における	
	Rz [rad]	直線補間で動作させる.	
CMOV	X, Y, Z, Rz	ロボット座標系の絶対値で指定され	
	単位:X,Y,Z[m],	た目標位置に対し、関節空間における	
	Rz [rad]	直線補間で動作させる.	
JMOV	J1, J2, J3, J4	関節座標系の絶対値で指定された目	
	単位:J1, J2, J4 [rad],	標位置に対し、関節空間における直線	
	J3 [m]	補間で動作させる.	

ロ オリジナルプログラム作成

- 任意のテキストエディタ およびExcelで編集可
- 1行に1コマンド

	А	В	С	D	Е
1	SERVO_ON				
2	JMOV	0	0	0.05	0
3	CMVS	0.14	0.07	0.05	0
4	HAND_OPEN				
5	CMVS	0.14	0.07	0.005	0
6	HAND_MO\	4			
- 7	CMVS	0.09	-0.07	0.05	
8	CMVS	0.09	-0.07	0.005	0
9	HAND_OPEN				
10	CMVS	0.14	-0.07	0.05	0

Fig. 5 Sample.csv