AD-A124 098 EXPLORATION OF THE FEASIBILITY OF PRESENT GENERATION
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NEWTON MA P B HARRIS ET AL. NOV 82 C-480A
UNCLASSIFIED NO0014-77-C-0155

F/G 10/3 NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
F/G 10/3 NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
NL

END
NATION OF THE FEASIBILITY OF PRESENT GENERATION
1/
LITHIUM BATTERIES FOR ELECTRIC VEHICLES(U) ETC LABS INC
NOV 82 C-480A
NOV 82

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 196-4

OFFICE OF NAVAL RESEARCH

Contract No. N00014-77-C-0155

Task No. NR 359-638

TECHNICAL REPORT NO. 9

EXPLORATION OF THE FEASIBILITY OF PRESENT GENERATION LITHIUM BATTERIES FOR ELECTRIC VEHICLES

by

P. B. Harris, G. L. Holleck, J. Buzby, J. Avery, L. Pitts and K. M. Abraham

> EIC Laboratories, Inc. 67 Chapel Street Newton, Massachusetts 02158

November 1982

This project was supported in part by the Office of Naval Research and by the Department of Energy, Washington, D.C. The Department of Energy Work was carried out via a subcontract through Naval Ocean Systems Center, San Diego, CA. The subcontract monitor was Joseph McCartney.

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
T. REPORT NUMBER	1	3. RECIPIENT'S CATALOG NUMBER	
TECHNICAL REPORT NO. 9 4. TITLE (and Submite) EXPLORATION OF THE FEASIBILITY (GENERATION LITHIUM BATTERIES FOR VEHICLES 7. AUTHOR(e)		5. Type of REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER C480A 8. CONTRACT OR GRANT NUMBER(s)	
P. B. Harris, G. L. Holleck, J J. Avery, L. Pitts, and K. M.	N00014-77-C-0155		
 PERFORMING ORGANIZATION NAME AND ADDRESS EIC Laboratories, Inc. 67 Chapel Street Newton, Massachusetts 02158 	3	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 359-638	
Office of Naval Research/Chemi Arlington, Virginia 22217	stry Program	12. REPORT DATE NOVEMber 1982 13. NUMBER OF PAGES 41	
14. MONITORING AGENCY NAME & ADDRESS/II dillor	ent from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	

Approved for Public Release; Distribution Unlimited.

17 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Ambient temperature rechargeable lithium cells, Molybdenum trisulfide cathodes, 2Methyl-tetrahydrofuran/LiAsF6 electrolytes for cycling lithium, Use of ambient temperature lithium cells for electric vehicles.

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

The present technology of secondary Li batteries was investigated with regard to feasibility for use in automotive propulsion systems. A computer modeling effort examined series vs. parallel plate arrangement in battery modules and critical factors limiting energy density in each case. It was found that the most critical factor is the cathode energy density, and that to achieve the ultimate goal of 125 Wh/lb (275 Wh/kg) a cathode energy density of 290 Wh/lb (630 Wh/kg) is necessary. 20 Ah

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

Con k! SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSFIGATION OF THIS PAGE(Thes Date Shared

Li/LiAsF₆ in 2Me-THF/MoS₃ cells were built and tested. Cycle regimes and results are discussed. Although MoS₃ is theoretically capable of providing the necessary energy density to meet the ultimate goal, it requires more development to overcome chemical instability in the system. At present none of the cathode materials examined ~ TiS₂, V₆O₁₃ and MoS₃ - is capable of satisfying the energy density goal.

Accession Fer NTIS ORAMI DTIC TAB Unarmouseed Justification	
Distribution/ Availability Codes Availability and/or Dist Special	

TABLE OF CONTENTS

Section		<u> </u>	age
	ABST	PRACT	i
1.0	INTR	RODUCTION	1
2.0	PHAS	SE I: CONCEPTUAL BATTERY DESIGN AND EXPLORATORY	
	EXPE	CRIMENTS	3
	2.1		,
		Battery	3
	2.2		11
	2.3	Choice of Separator	11
		Results of Separator Experiments	12
	2.5	Conductive Polymers for Bipolar Electrodes	14
	2.6	Overcharge Mechanism	15
3.0	PHAS	SE II: CONSTRUCTION AND TESTING OF BREADBOARD	
•••	DEMO	ONSTRATION MODULES	16
	3.1	Design of Demonstration Module	16
	3.2	Construction of the Modules	17
		3.2.1 Preparation of the Cathode Material	17
		3.2.2 Effect of Carbon on Rate and Cathode	
		Utilization	21
		3.2.3 Rechargeability of MoS ₃	21
		3.2.4 Preparation of Cathodes	21
		3.2.5 Preparation of Anodes	24
		3.2.6 Preparation of Cell Cases	24
		3.2.7 Cell Assembly	24
		3.2.8 Cell Activation	24
	3.3	Testing of the Modules	26
		3.3.1 Test Plan	26
		3.3.2 Characterization of the Modules	26
		3.3.3 Cycle Testing of the Modules	26
	3.4	Tear Down Analyses	30
		3.4.1 Physical Measurements	30
		3.4.2 Electrolyte Addition	30

TABLE OF CONTENTS (continued)

Section			Page
	3.4.3	Opening the Cells - Preliminary Observations	24
	3.4.4	Electrochemical Capacity of Cathode	34
	3	Material	34
	3.4.5	Chemical Analyses of the Cathodes	34
	3.4.6	Chemical Analyses of the Anodes	37
	3.4.7	Cathode Decomposition Mechanism	37
4.0	CONCLUSIONS	· · · · · · · · · · · · · · · · · · ·	41

LIST OF ILLUSTRATIONS

Figure		Page
1	Plastic bipolar plate cell	4
2	Parallel plate cell configurations	5
3	Battery energy density as a function of cathode energy density	8
4	Energy density as a function of Li cycling efficiency	9
5	Parallel plate Li battery module	10
6	Design for 20 Ah secondary Li battery	18
7	Charge-discharge cycles of a MoS $_3$ electrode (65% MoS $_3$ Batch 7, 30% C, 5% PTFE) with design loading level at a current density of 1 mA/cm 2	20
8	Cathode utilization versus current density as a function of carbon in the cathode	22
9	Typical cycles of Li/MoS ₃ , 30 w/o, 2Me-THF/1.5M LiAsF ₆ cell	23
10	20 Ah prismatic Li/MoS ₃ cells	25
11	Li/MoS ₃ cell discharge-charge cycle at 2A	29
12	Li/MoS ₃ cell discharge capacity as a function of current	31
13	Positions of cell thickness measurements	32
14	Li dendrite growth in 20 Ah MoS3 Cell 3	35

LIST OF TABLES

<u> Fable</u>		Page
1	PARAMETERS FOR ENERGY DENSITY CALCULATIONS	7
2	RESULTS OF SEPARATOR TESTS	13
3	DESIGN PARAMETERS FOR Li/MoS3 BATTERY	19
4	Li/MoS3 CELL PARAMETERS	27
5	20 Ah Li/MoS ₃ CELL CYCLE TEST	28
6	CELL 3 THICKNESS MEASUREMENTS BEFORE AND AFTER CYCLING	33
7	RESULTS OF ELEMENTAL ANALYSES OF CATHODES FROM CELLS 3, 4 AND 5	36
8	DEBYE SCHERRER POWDER DIFFRACTION PATTERNS FOR CATHODE MATERIALS - CELLS 3, 4, AND 5	38
9	RESULTS OF ELEMENTAL ANALYSES OF ANODES FROM CELLS 3 AND 5	39
10	DEBYE SCHERRER POWDER DIFFRACTION PATTERNS FOR ANODE MATERIAL - CELLS 3 AND 5	39

1.0 INTRODUCTION

This project was concerned to make a preliminary exploration of the feasibility for using present generation, ambient temperature rechargeable Li battery technology to power electric vehicles. The program was originally intended to be carried out over two years but due to funding limitations at the Department of Energy it was not continued beyond the first year. The conclusions will then necessarily be tentative.

The original concept was concerned with a battery with an energy density of up to 125 Wh/lb. It was intended to explore use of this battery to provide 500 "average driving" cycles. An average driving cycle was taken to provide a 20% depth of discharge for a 100 kWh battery. To reach the desired energy density, it was originally planned to use a V_6O_{13} positive electrode. During the course of the program, it became apparent that V_6O_{13} could not provide the required energy density. Therefore the last part of the program, involving construction and test of 20 Ah cells, was carried out with a MoS $_3$ positive electrode. Preliminary data had shown that MoS $_3$ could in principle approach the required performance. In practice it has turned out that MoS $_3$ needs further development and it may be unstable under cell-operational conditions.

The outline of the program was as follows:

Phase I. Conceptual Battery Design and Exploratory Experiments

Task I.1. Modeling

Model Li - solid cathode cells and batteries to optimize energy density. Basically, we first compared parallel plate stacks with bipolar cell arrays. The purposes were to identify the most weight sensitive components and to point the direction for design of the breadboard battery module to demonstrate the concepts (Phase II).

Task I.2. Critical Path Experimentation

The purpose was to find solutions to problems previously identified. Specific projects in hand were:

- (a) Separators. A number of separators were evaluated for compatibility and efficacy in $\text{Li/V}_6\text{O}_{13}$ cells.
- (b) Overcharge mechanism. In particular for the bipolar plate array, we would need a chemical mechanism within each cell to accommodate overcharging. We looked at a number of promising redox couples such as I^{-}/I_{2} .

(c) Conductive polymers. It was thought that a bipolar plate array would be advantageous. A number of conductive polymers, notably carbon-filled polyolefins, were evaluated for use in a "bag-cell" bipolar array.

Phase II. Construction and Testing of Breadboard Battery Module

As the result of the work in Phase I, we designed and built breadboard cells to demonstrate the technology. The purposes of the demonstrations were:

- (a) Energy Density: To show either >125 Wh/1b or the key problems limiting the energy density. These limitations can be divided into two (overlapping) classes: intrinsic limitations and engineering limitations. Intrinsic limitations could arise, for example, from inadequate electrode utilization, from the need to use excessive amounts of fillers and expanders to attain the desired rate, and from inadequate conductivity etc. etc. Engineering limitations could arise from inability in the time and budget frame of the program to select optimal component materials, structures and configurations. These inadequacies were factored out of the observed performance, and areas of most promise for weight/volume reduction readily identified. When we consider the optimization of electrode structure, as we must, the "intrinsic" and "engineering" aspects very much overlap.
- (b) Cycle Life: To demonstrate 500 average driving cycles, or as many as possible, in view of the limited budget and time frame of the program. Every effort was made to identify life-limiting factors and project the ultimate cycle life.

2.0 PHASE I: CONCEPTUAL BATTERY DESIGN AND EXPLORATORY EXPERIMENTS

2.1 Task I. 1. Conceptual Design of the Automobile Battery

This was a modeling task for the critical examination of various automobile battery configurations. We were primarily concerned to compare a series cell arrangement employing bipolar electrodes and a parallel plate configuration.

Detailed diagrams of cell component configuration are presented in Figures 1 and 2. In the series arrangement individual cells are connected electrically across a conductive polymer between the cathode of one cell and the anode of the next. Current is conducted perpendicularly to the face of each electrode, insuring a relatively uniform current density and with very little weight added for bus-bars etc. Some 75 cells are connected in series in a battery unit having a total voltage between end collector plates of approximately 200V. Such units would then be connected in parallel, resulting in a battery assembly with increased current capacity at the same total voltage. In the case of a parallel plate configuration, individual plates are connected in parallel giving a unit cell of comparable size with voltage of approximately 2.5V. These units would be connected in series to achieve a battery assembly with the desired energy content.

A series-stack battery will necessarily be shaped somewhat like a book. The thinnest dimension, perpendicular to the electrode plates, will only be a few inches thick. For example, at 74 volts/inch, a 200 volt battery will only be ~3 inches thick. Higher voltages (and thicknesses) could be achieved, but are probably undesirable on safety grounds. As for the other two dimensions, they will probably be roughly equal, and on the order of a foot: In order to minimize the weight of the battery case, these two dimensions should be as large as manufacturability will permit. However, given the space available in an automobile, it is probably unrealistic for any dimension to exceed ~2 feet. Thus, the overall dimensions will likely be of the order of 12" x 12" x 3". This type of shape may also be required on thermal grounds: One relatively thin dimension is needed for effective heat dissipation.

In a parallel-plate battery, it is conceivable that a more nearly cubic geometry could be used, which would improve the energy density. However, thermal considerations may again require one of the dimensions to be relatively thin.

Combining these general considerations with energy and weight equations and energy loss equations, mathematical expressions for the energy density and volumetric energy density were derived in function of 40 cell

Fig. 1. Plastic bipolar plate cell.

Fig. 2. Parallel plate cell configuration.

variables and coded for computer analysis. The variables and their default values are given in Table 1. Unless different values are specified, the default values are incorporated into the computer calculations. Energy density calculations were then done for materials presently in use and for other materials tested during the program.

These energy density calculations show no fundamental difference between parallel plate and series configurations. As suspected, the two most important parameters for cell energy density proved to be effective cathode energy density,

$$E_C = \frac{n \cdot 26.8 \cdot V \cdot f}{W}$$

where n = equivalent of charge/equivalent of mass; 26.8 = Ah/equivalent; V = average discharge voltage of Li cathode cell, f = fraction of active material in the cathode; W = equivalent weight of cathode and Li cycling efficiency. The influence of each of these parameters on total cell energy density is shown in Figures 3 and 4. Other factors including current collector thickness proved to have a lesser but nonetheless important effect. Current collectors 0.001" thick in use now in the parallel plate configuration lower the total cell energy density by about 11% from that given by a cell containing optimal current collectors.

Considering all these factors, the model shows that energy densities of over 100 Wh/lb are possible in parallel plate cells with MoS $_3$ as cathode material (2.5e $^-$ /MoS $_3$), 0.001 inch Ni current collectors, which are presently in use, and 97.5% Li cycling efficiency (commonly obtained in actual laboratory cells). Achievement of the energy density goal of 125 Wh/lb may be possible at low discharge rates (3.0e $^-$ /MoS $_3$). For a battery consisting of bipolar modules, an energy density of 115 Wh/lb is possible for high rate cycles (2.5e $^-$ /MoS $_3$) and 135 Wh/lb is possible for low rate cycles.

A review of the modeling results shows that: (1) the most critical factor in attaining the energy density goal is the use of high energy density cathode material. The substitution of MoS₃ for TiS₂, which is the cathode we routinely use to exemplify rechargeable Li technology, increases battery energy density by 37% for 2.5e⁻/MoS₃ and by 65% for 3.0e⁻/MoS₃ when all other factors remain constant. (2) Li cycling efficiency is second in importance for battery energy density. An increase in cycling efficiency from 95% to 97.5% allows for a reduction in package size which translates into a decrease in container and excess electrolyte weight; if all other factors remain constant, this could result in a 30% increase in battery energy density. (3) To maximize energy density and attain the ultimate program goal, attention must be paid to engineering detail to minimize weight penalties from such cell components as current collectors. A diagram of such a battery is presented in Figure 5. In this bipolar configuration, a single current collector/substrate serves one

TABLE 1
PARAMETERS FOR ENERGY DENSITY CALCULATIONS

Cathode	Thickness	3.8×10^{-2} cm (15 mils)
-	Porosity	60%
	Density	3.75 g·cm ⁻³
	Weight fraction of active material	0.417
	Atomic weight of active material	50.942
	Electrons/gram-atom active material	0.8
	Resistivity	1000 ohm.cm
	Thermal conductivity	0.001 W·cm ⁻¹ °C ⁻¹
	incimal odilaccivity	0.002 0
Electrolyte	Density	0.92 g·cm ⁻³
	Resistivity	250 ohm cm
	Thermal conductivity	0.001 W·cm ⁻¹ °c ⁻¹
Separator	Thickness	7.6×10^{-3} cm (3 mils)
	Porosity	60%
	Density	1.0 g·cm ⁻³
	Resistivity	1000 ohm-cm
	Thermal conductivity	0.001 W·cm ⁻¹ °C ⁻¹
Lithium	Thickness	2.92×10^{-2} cm (11.5 mils)
	Current efficiency	95%
	Cycle life	500 at 20% DOD
	Density	0.534 g·cm ⁻³
	Resistivity	8.6 x 10 ⁻⁶ ohm·cm
	Thermal conductivity	0.75 W·cm ⁻¹ °C ⁻¹
Conductive	Thickness	7.6×10^{-3} cm (3 mils)
Polymer	Density	1.0 g·cm ⁻³
	Resistivity	1000 ohm-cm
	Thermal conductivity	0.001 W·cm-1 oc-1
Current	Thickness	3.4×10^{-4} cm (0.13 mils)
Collector	Density	8.9 g·cm ⁻³
	Resistivity	$a = x \cdot 10^{-6}$ Ohm: cm
	Thermal conductivity	0.6 W·cm ⁻¹ °C ⁻¹
	Current plates per cell	2
Cell/Battery	Average voltage	2.4V
	Voltage of series package	200V
	Discharge time	Six hours
	Cell entropy	-20 J·mol-1 oc-1
	Thickness of battery case	0.3 cm
	Density of battery case	1.0 g·cm ⁻³
	Battery length	30 cm
	Battery height	30 cm
	Overall battery thickness	Jo Cili
		10 0 cm
	(parallel plate battery)	10.0 cm

Fig. 3. Battery energy density as a function of cathode energy density.

--- Series

---- Parallel

Fig. 4. Energy density as a function of Li cycling efficiency.

- ---- Stacked series arrangement
- ---- Parallel plate arrangement

Fig. 5. Parallel plate Li battery module.

anode and one cathode of adjacent cells. This substrate would be electronically conductive but impervious to ionic species. For such a battery configuration an energy density of 135 Wh/lb could theoretically be attained with MoS_3 cathode material.

2.2 Task I.2. Critical Path Experimentation

The critical path investigations were aimed at providing solutions to specific problems related to high energy density Li rechargeable batteries. The three major points of interest were: (1) choice of separator, (2) possible use of conductive polymers for bipolar electrodes and (3) to find an overcharge mechanism. Each of these phases of experimentation is discussed in turn.

2.3 Choice of Separator

Cell separators are necessary to avoid electronic shorting between the anode and cathode. The most important properties desired in separators are: (1) light weight for high energy density batteries, (2) flexibility and mechanical strength, (3) low ohmic resistance, (4) compatibility with the Li/2MeTHF-LiAsF6/V6O13 system with regard to solubility and chemical stability, (5) high lithium ion conductivity, (6) low electronic conductivity and (7) avoidance of lithium dendrite formation and subsequent shorting. Celgard microporous polypropylene membranes have been used successfully as separators in EIC lithium secondary cells but significant improvements in ohmic resistance and retention of Li dendrites were desired. A number of commercial and experimental separator samples were obtained and screened. The following separator materials from RAI were tested:

- R1010, a sulfonated styrene graft on a one mil poly (tetrafluoroethylene) film (TFE).
- R4010, a sulfonated styrene graft on a two mil TFE film.
- R5010, a sulfonated styrene graft on a polyethylene membrane.
- 4. Polypropylene felt/SO₃H, a sulfonated styrene graft on a woven polypropylene membrane.
- SP 126/SO₃H, a sulfonated styrene graft on a polypropylene mat.
- 6. 1128-71-1 and
- 7. 1131-21-1 porous experimental membranes containing sulfonic acid groups.

Other separator materials were obtained from Kimberly Clark and tested:

- 8. S49102, densified polypropylene.
- 9. S49680, barrier polypropylene.
- 10. S49696, polypropylene absorber.
- 11. S49796, cellulosic barrier, absorber.

Tests performed on these separators included:

- (a) Continuous soxhlet extraction during 24 hours with pure 2Me-THF to evaluate membrane stability in the solvent. Each separator was evaluated for weight, dimension and texture changes; the solvent was analyzed by UV-IR spectrophotometry.
- (b) Separator samples were stored in lM LiAsF₆ in 2Me-THF while in contact with lithium metal and V_6O_{13} graphite pressed electrodes for 10 days at 70° C. The separators, solvent and electrodes were evaluated for compatibility.
- (c) Measurements were made of resistance through separator samples using a high frequency (10 kHz) constant current AC pulse and an oscilloscope to monitor the voltage drop across the experimental cell. This cell was constructed of two 2 cm² Li electrodes separated by one thickness of separator and close-packed with polypropylene spacers. The cell was then flooded with electrolyte and the measurements made.
- (d) SEM micrographs of each of these separator materials were made and examined for porosity and microstructure.

2.4 Results of Separator Experiments

Results from the separator tests are presented in Table 2. No separator candidates more attractive than Celgard 2400 were found. Elimination from further consideration was possible for separators SP126, PP felt, Typar, S49680, S49696 and S49796 because of basic chemical incompatibility with the secondary Li cell environment; for separators R1010, R4010, R5010 and Tyvec because of low Li⁺ conductivity in the electrolyte. Separator S49102, although chemically compatible, does not show any advantage over Celgard 2400 and, in fact, is thicker and has much larger pores which would facilitate dendrite penetration.

TABLE 2

RESULTS OF SEPARATOR TESTS

	Dry Thickness	Results of Extraction		Resistance	
Separator	(mils)	Experiment	Results of Storage Test	Ω·cm²	Porosity (SEM)
SP126 (RAI)	16.0	No significant change	Physical degradation		
PP Felt (RAI)	2.0	No significant change	Reaction with Li apparent		
R1010 (RAI)	2.0	No significant change	No significant change	> 1000	Pores smaller than l µm
R4010 (RAI)	3.0	No significant change	No significant change	> 800	
R5010 (RAI)	7.5	No significant change	No significant change	> 1000	Pores smaller than 1 µm
Tyvec (RAI)	16.5	No significant change	No significant change	260	>10 µm
Typar (RAI)	10.0	16% weight loss, physical degradation			
S49102 (KC)	3.0	No significant change	No significant change	19	~50 µm
S49680 (KC)	0.9	17% weight loss	Slight discoloration		
S49696 (KC)	7.0	14% weight loss	No significant change	21	~20 µm
S49796 (KC)	11.5	31% weight loss	Reaction with Li apparent		
Celgard 2400	1.0	No significant change	No significant change	21	Regular pores 0.02 x 0.2 µm

2.5 Conductive Polymers for Bipolar Electrodes

Significant improvements in energy density can be expected in batteries containing conductive polymers between cells. Plastic polymers are light in weight and in a bipolar electrode arrangement they eliminate the need for heavy bipolar metal grids and collectors. In this battery arrangement the current can be collected at the extreme poles of the alternating electrode stack. As the passage of current is perpendicular to the plane of the conductive polymer/bipolar electrode, the current density across the relatively large surface should be low and polymers with only fair conductivity may be of interest. These polymers should have good mechanical strength and flexibility even when thin films are used. They must have chemical stability in the system and they must conduct electronically and not ionically.

A preliminary test of the solvent compatibility of seven conducting and semiconducting polymers was done simply by immersing samples of each in freshly distilled 2Me-THF and allowing them to sit at room temperature over three days. The polymers tested include:

1.	Velostat	(3M)
2.	Dev 9436	(Carbon filled thermoplastic, Pervel Ind.)
3.	Dev 9437	(Carbon filled thermoplastic, Pervel Ind.)
4.	2 mil	(Carbon filled thermoplastic, Pervel Ind.)
5.	3 mil	(Carbon filled thermoplastic, Pervel Ind.)
6.	Antistatic film	(Semiconducting vinyl copolymer, Pervel, Ind.)
7.	Polyphenylene sulfide	(PPS, Phillips Petroleum).

The 2 mil carbon-filled plastic from Pervel Industries is presently used in Polaroid camera alkaline batteries. Among these seven polymeric films only the Velostat and PPS showed any stability in 2Me-THF. All five of the Pervel plastics disintegrated or dissolved in the solvent.

The Velostat film was shown to be permeable to Li⁺ ions making it unsuitable as a substrate for bipolar electrodes.

The PPS film was the only plastic tested which was physically compatible with the electrolyte solution. However, its high resistivity indicated that doping was not accomplished either electrochemically or by reacting with either n-butyllithium or I₂ over the period of a week. If a

suitable doping procedure is discovered, this may become a usable conductive polymer in the future. Another candidate for the conductive polymer was polyacetylene. However, because of its open pore structure it was unsuitable for our purposes. To date we have not been able to identify a conductive polymer which would be suitable as a bipolar electrode substrate in rechargeable ambient temperature Li battery.

2.6 Overcharge Mechanism

In a multiple-cell battery employing bipolar electrodes, a mechanism is necessary for insuring nearly equal charge and/or discharge in each of the separate cells to avoid electrolysis of the solvent after repeated cycles. One method of avoiding this problem is to employ an overcharge mechanism which will shunt current through a fully charged cell above a certain potential. This would allow for overcharging the battery as a whole. Chemical redox pairs with formal potentials above the cathode potential and below the potential corresponding to solvent electrolysis should be suitable for this if (1) both oxidized and reduced species are soluble in the solvent, (2) the reduced species is chemically compatible with all cell components, (3) the oxidized species is compatible with all cell components except the anode and (4) both oxidized and reduced species are able to diffuse through the separator. I-/I2, ferrocene/ferricinium, chloranil/chloranilate and fluoranil/fluoranilate couples were investigated. Each of these couples were shown to have a redox potential in the correct range by cyclic voltammetry.

Chloranil/chloranilate and fluoranil/fluoranilate proved unacceptable as overcharge redox couples because of insolubility and irreversible film deposition on Li electrodes. The i^-/I_2 couple was shown to be capable of carrying the desired current density of 1 mA/cm $^-2$ but seems to have caused the failure of cycled cells containing it, possibly by means of film formation on the Li electrode or reaction with the solvent/electrolyte. The ferrocene/ferricinium couple was shown to be incapable of carrying current densities of 1 mA/cm $^-2$ but may prove interesting for low rate charge. More work on these two redox couples is needed to evaluate their long term cycling effects in complete Li/cathode cells. Although an acceptable chemical shuttle for overcharging a secondary Li cell was not found, we found no fundamental flaw in the concept of chemical overcharge.

3.0 PHASE II: CONSTRUCTION AND TESTING OF BREADBOARD DEMONSTRATION MODULES

3.1 Design of Demonstration Module

Calculations for the design of the demonstration module were based on a MoS_3 cathode which has been shown by K. M. Abraham¹ to be able to deliver a current density in excess of 1.5 $mA \cdot cm^{-2}$ with a 30% carbon loading in the cathode to guarantee good conductivity.

Several can sizes and shapes were considered for the design of the battery. A can with the largest face open (that is the face parallel to the electrode faces) was chosen for the following reasons: (1) placement of the battery package in the can is facilitated since compression of the package is accomplished after rather than during placement in the can; (2) compression of the package is easily controlled by using more or fewer electrodes; (3) the battery capacity can easily be changed without changing electrode size by cutting the can to the proper depth; (4) welding the cathode or anode leads together can be achieved after placement of the battery package into the can.

A commercially available can with outer dimensions 10 cm x 11.75 cm x 4.125 cm (Hudson Tool and Die Co., Inc., Newark, NJ, can #7640) was chosen. Allowing for 36 mil can walls (0.091 cm) and 0.2 cm excess space on all edges, 1.5 cm on the end for leads, and 0.025 cm (10 mils) for a protective Teflon sheet on the top face nearest to the cover weld; the battery package dimensions are 9.51 cm x 10.16 cm x 3.37 cm. The can depth, of course, could be cut to smaller dimensions. A 20 Ah battery discharged at a 6 h rate must be able to deliver 3.33A. At 1.5 mA·cm⁻², this corresponds to a cathode area of 2222 cm² or 23 electrode faces with the dimensions given above (96.62 cm²). Thus, we have a total of 11 two-faced cathodes. Assuming we obtained 2.5e⁻/MoS₃ for a mixture of MoS₃ (70%) and C + PTFE (30%) with a 50% porosity, we need 63.0 cm³ of cathole material. This corresponds to 0.029 cm (11.5 mils) of this material pressed onto each cathode face for a capacity of 9.41 mAh/cm².

The Li anodes must have a 5-fold excess capacity for 100 full discharges at 95% plating efficiency. Thus they had at least 10 mils Li pressed onto each active face.

The total battery package including anodes, cathodes, current collectors, separators and a 10 mil protective PTFE sheet were approximately 1.49 cm thick.

¹K. M. Abraham and S. B. Brummer in "Lithium Batteries", J. P. Gabano Ed., Academic Press, London, book in print.

Because of the expense involved in ordering custom tooling and manufacture of optimized cans, the commercially available product with specifications closest to our needs was chosen. It is important to note; however, that by using cans of 0.036" thick walls, the overall sacrifice in cell energy density is quite significant. A diagram of the cell is given in Figure 6 and parameters in Table 3.

3.2 Construction of the Modules

3.2.1 Preparation of the Cathode Material

The cathode material was synthesized via a two step procedure:

$$(NH_4)_2MOO_4 + 4H_2S \xrightarrow{NH_4OH} (NH_4)_2MOS_4 + 4H_2O,$$
 (1)

$$(NH_4)_2Mos_4 \xrightarrow{\Delta} Mos_3 + (NH_4)_2S.$$
 (2)

Reagents: Ammonium paramolybdate from Alfa Inorganics, [(NH₄) $_2$ Mo $_7$ O $_2$ 4 - $_4$ H $_2$ O, Stock #87346]; con·NH₄OH reagent; tank of H $_2$ S.

In a typical synthesis, 120 gms of the ammonium molbydate is dissolved in 600 ml of con·NH $_4$ OH with stirring. H $_2$ S is bubbled through the stirred solution for five hours. The solution initially turns red upon reaction with H $_2$ S. Within one hour, yellow-white crystals, presumbly (NH $_4$) $_2$ MoO $_4$ - $_x$ S $_x$, precipitate. The crystals dissolve during the second hour of the reaction leaving a clear, deep red solution. By the third hour red crystals of (NH $_4$) $_2$ MoS $_4$ begin to precipitate. The reaction should be complete in five hours.

The red crystals are vacuum filtered and washed with $\sim \! 100$ ml of NH₄OH. Excessive washing will dissolve the product. The product is then dried under mild heating in vacuum. The yield typically is $> \! 95\%$. The product is stable in air. However for extended storage it should be kept in an argon atmosphere.

A weighed amount of the $(\mathrm{NH_4})_2\mathrm{MoS}_4$, contained in a graphite boat inside a glass tube, is heated in a tube furnace under a flowing argon atmosphere at $300^{\circ}\mathrm{C}$ for three hours. After the heating, the system is cooled to room temperature. The black MoS_3 product is transferred to the glove box with minimal exposure to air. The yield is 100%.

All batches of MoS_3 produced were chemically analyzed for composition and sample electrodes from each batch were tested. Batches 2, 5, 6, 7 and 8 with analyses from $MoS_{2.95}$ to $MoS_{3.12}$ gave also acceptable electrochemical performance. Characteristic cycle performance of a pressed cathode from MoS_3 Batch No. 7 with practical loading is shown in Figure 7.

- 1. Hudson can #7640
- 2. Negative electrode
- Glass to metal seal
- 4. Negative terminal
- 5. Lead to negative terminal
- 6. Positive terminal

- 7. Can-cover weld
- 8. PTFE sheet
- 9. Leads to positive terminal
- 10. Alternating electrodes with 2 layers Celgard 2400 between each pair
- 11. Celgard 2400

Fig. 6. Design for 20 Ah secondary Li battery.

TABLE 3

DESIGN PARAMETERS FOR L1//MOS3 BATTERY

Hudson Can No. 7640 Outer dimensions 10.0 cm x 11.75 cm x 4.125 cm Inner dimensions 9.91 cm x 11.66 cm x \leq 3.40 cm

<u>Capacity</u>	20 Ah	<u>25 Ah</u>
Can depth	1.58 cm	2.54 cm
Electrode size	96.6 cm ²	96.6 cm ²
Number of cathodes	11	14
Number of anodes	12	15
Package thickness	1.49 cm	1.79 cm
Package weight	234 g	296 g
Projected package energy density	162 Wh·kg ⁻¹	176 Wh·kg ⁻¹
Projected package volumetric energy density	220 Wh·l-1	230 Wh-L-1
Can weight	245 g	270 g
Projected battery energy density	79 Wh kg^{-1}	85 Wh·kg ⁻¹
Projected battery volumetric energy density	193 Wh·l ⁻¹	215 Wh·l ⁻¹

Fig. 7. Charge-discharge cycles of a MoS₃ electrode (65% MoS₃ Batch 7, 30% C, 5% PTFE) with design loading level at a current density of 1 mA/cm². Shown are cycles 1, 3 and 25.

3.2.2 Effect of Carbon on Rate and Cathode Utilization

These studies were carried out with low capacity cathodes, typically 2-3 mAh/cm^2 based on le^-/MoS_3 .

Figure 8 shows the effect of carbon content on rate capability and cathode utilization. The data were obtained from three different cells. Each cathode was discharged at current densities of 0.5, 1, 2, 3, 4, 5 and 6 mA/cm 2 . After each discharge the cathode was recharged to 3V at 0.5 mA/cm 2 to obtain the capacity at the next rate. The cathode containing 30 w/o carbon showed the best performance, yielding capacities between 2 and 3e $^-$ /MoS $_3$ at current densities between 4 and 0.5 mA/cm 2 .

3.2.3 Rechargeability of MoS₃

The material intrinsically has good rechargeability. However, the rechargeability is dependent on the amount of carbon in the cathode. Thus the cathode with 30 w/o carbon exhibited the highest retention of capacity with cycling. This is shown in Figure 9. Thus at a current density of 1 mA/cm², the capacities were $3e^{-}/MoS_3$ at the third discharge, $2.7e^{-}/MoS_3$ at the 20th discharge and $2e^{-}/MoS_3$ at the 46th discharge. The capacity faded to $1.6e^{-}/MoS_3$ by the 57th cycle. However, when the current was reduced to 0.5 mA/cm^2 at the 58th discharge, the cathode utilization increased to $2.65e^{-}/MoS_3$.

3.2.4 Preparation of Cathodes

Various methods were investigated for the fabrication of uniform electrodes of sufficient mechanical strength for handling and cell assembly. The procedures of cathode preparation are further restricted by the fact that the electrodes must be free of contaminants which could interfere with the rechargeability of the Li electrode. Smaller test electrodes were generally prepared by pressing of powder mixtures in a suitable die. Scale-up of this process is made difficult by the poor flow characteristics of the Teflon containing powders. This causes uneven material distribution and poor adhesion after compaction. We pursued an alternative procedure involving the preparation of a paste which could be spread evenly onto a substrate. Decame was identified as an inert solvent for this purpose. Complications arose from the coagulation of graphite containing slurries and the poor adhesion in the absence of graphite. The mode of grinding and mixing of the MoS3, C, TFE powders also substantially affects the consistency and workability of the pastes. As a result of this experimentation, we identified a procedure to prepare electrode structures of appropriate size with 10 mAh/cm² per side and a composition of 65% MoS3, 30% C and 5% TFE. The process involves grinding-mixing of the powders, pasting a layer of controlled thickness onto both sides of a substrate and pressing.

Fig. 8. Cathode utilization versus current density as a function of carbon in the cathode. The cell utilizes 2Me-THF/1.5M LiAsF6.

Typical cycles of Li/MoS3, 30 w/o, 2Me-THF/l.5M LiAsF6 cell. Current = 20 mA (1.0 mA/cm²) for cycles 3, 20 and 46; 10 mA (0.5 mA/cm² for cycle 58. Cycling limits $1.6 \leftrightarrow 3$ volts. Fig. 9.

The positive electrode substrate consists of a 1 mil nickel foil which is pierced from both sides, resulting in holes of 14 mil diameter and burrs of ~7 mil. The substrate has solid borders to reduce the danger of damage of the separator which might result in dendrite shorting of the cell. The finished cathodes were 35-40 mils thick. In the described manner we obtained good electrode structures. However, their electrochemical performance was not optimized with respect to composition, active material loading or process variables.

3.2.5 Preparation of Anodes

The anodes were prepared by pressing 10 mil Li foil for Cell 1 and 15 mil Li foil for the other four cells onto each side of an expanded nickel screen. The tab consisted of two 5 mil thick, 0.2 in. wide Ni strips.

3.2.6 Preparation of Cell Cases

The stainless steel cases obtained from Hudson Tool and Die Company were sent out to be fitted with two glass to metal terminal feedthroughs. The terminal pins consist of hollow tubes to allow filling with electrolyte. A comb was manufactured and welded to the inside terminals to accept the individual electrode tabs. Despite rework, the can-cover fit was insufficient, especially in the corners, to allow hermetic cell closure by TIG welding. A tool was fabricated which allowed appropriate stretching of the covers.

3.2.7 Cell Assembly

Anodes and cathodes were heat sealed into bags of Celgard 2400 separators and alternatively stacked into the cell case. Cell 5 had an extra layer of Celgard 2400 Z-folded around the electrodes to afford extra protection against dendrite shorting. The latter contained a liner of a FEP membrane. The electrode tabs were joined to the bus bar comb by TIG welding. The completed electrode assembly was compressed, the cover secured by spot welds and subsequently hermetically sealed by a TIG weld.

3.2.8 Cell Activation

The completed cell was activated by vacuum filling with 91.5 cm³ of 1.3M LiAsF₆ in 2Me-THF prepared by EIC established procedures. This amount of electrolyte covers the plates by approximately 0.5 cm. Subsequently the fill holes were hermetically sealed by TIG welding.

Photographs of some completed 20 Ah cells are presented in Figure 10.

Fig. 10. 20 Ah prismatic Li/MoS3 cells.

3.3 Testing of the Modules

3.3.1 Test Plan

The primary objective was to determine and demonstrate cycle life and collect data to project the performance capability of the system. The following is a summary of the test plan followed for the five cells.

- 1. Inspect and weigh cell, measure open circuit voltage.
- 2. Three or four full discharge-charge cycles at 2A. Discharge to 1.6V, charge to 2.8V.
- 3. Continuous cycle test to capacity limit. Discharge to between 60 and 70% depth based on 2nd-4th discharges. Charge to 2.8V or discharge capacity + 10%, whichever comes first. Every 20 cycles perform a full discharge to 1.6V. Continuously record voltage vs. time.
- 4. Reduce current as necessary when capacity falls off.
- 5. Continue cycling to failure defined either by loss of capacity or short-circuting.
- 6. Evaluate effect of charge and discharge rates on capacity while maintaining constant the discharge and charge rates respectively.

All five cells were carried through Steps 1 and 2. One cell was reserved for Step 5 and the others continued through Steps 3-5.

3.3.2 Characterization of the Modules

Weights, capacities (based on $2.5e^-/MoS_3$) open circuit voltages and energy densities are presented in Table 4. These energy densities are based on $2.5e^-/MoS_3$, actually obtained at rates approaching C/40.

3.3.3 Cycle Testing of the Modules

All five cells were discharged to 100% DOD and charged for four cycles in order to evaluate cell capacities at C/10 rate. As cell 1 failed by dendritic short circuit on the third cycle, Cells 2, 3 and 5 were reserved for cycle life testing and only one, Cell 4, was reserved for rate studies.

Results of the cycle life demonstration are given in Table 5. After the initial deep discharge cycles, the cells were discharged to between 60 and 70% depth of discharge until failure. A typical 100% cycle is represented in Figure 11.

TABLE 4 Li/MoS3 CELL PARAMETERS

Package Energy Density (Wh/kg)	ושי	161	149	138	143	143
Capacity Based on 2.5e ⁻ /MoS ₃ (Ah)		24.2	25.1	25.0	24.9	24.7
Open Circuit Voltage (V)		3.28	3.15	3.32	3.40	3.30
Package & Electrolyte		304	320	345	331	328
on trac	Cell No.	-	7	, ,,,	, 4	្រ

TABLE 5 20 Ah Li/MoS₃ CELL CYCLE TEST

	Cell 2	1 2	Cell 3	1 3	Ce11 5	1 5	
Cycle Number	C, Ah	MDV, V	C, Ah	WDV, V	C, Ah	WDV, V	Comments
~	20.3	1.86	18.1	1.90	18.2	1.90	
3	19.8	1.90	18.8	1.90	16.3	1.93	
S	12.0	2.05	12.0	1.98	12.0	2.00	
10	14.0	2.05	12.0	1.99	12.0	1.95	
15	14.0	2.04	12.0	1.93	12.0	1.93	
20	14.0	1.88	12.0	1.97	12.0	1.93	Cell 2 soft short
30			12.0	1.90	12.0	1.92	
35			9.6	1.83	11.5	1.90	Cell 3 soft short
45			12.0	1.90	7.7	1.91	Cell 3 recovered
20			8.6	1.85	0.9	1.92	Cell 3 soft short
52					18.7	1.97	I reduced, 0.25A

Fig. 11. Li/MoS3 cell discharge-charge cycle at 2A.

Cell 2 developed dendritic shorting by the 20th cycle and was terminated when it was overdischarged to 0.2V. Cells 3 and 5, however, each completed more than 50 discharge/charge cycles before being terminated. After 35 cycles, Cell 3 developed a "soft short" or a short circuit by dendritic bridging which forms during charge (usually towards the end of the half-cycle) and disconnects during discharge. This cell recovered by the 42nd cycle and continued to cycle well until the recurrence of more stable dendrites, "hard shorts", forced the cell to lose capacity and overdischarge after 52 cycles. Cell 5 completed 50 cycles until loss of capacity became extreme. This cell was then cycled at a low rate (0.25A or $0.1 \text{ mA} \cdot \text{cm}^{-2}$) to determine whether the decline in capacity was due to a change in the cathode material or to an increase in cell resistance. The large capacity, 18.7 Ah (actually greater than that of the first cycle), indicates that the cathode material was still intact and functional. An increased cell resistance must therefore be responsible for the performance loss. This cell was removed from the cycling regime after completing 56 cycles.

Results from the rate study done with Cell 4 are shown in Figure 12. At the C/10 and C/20 rates this cell demonstrated little difference in discharge capacity, corresponding to approximately $2e^-/MoS_3$. At lower rates (C/40) the cell capacity reached 24.3 Ah, which corresponds to $2.44e^-/MoS_3$.

3.4 Tear Down Analyses

Several of the cycled cells were opened for analysis. This included physical measurements of the cathodes, anodes and cells as a whole; X-ray diffraction and elemental analyses of the cathodes and anodes; conductivity measurements of the electrolyte solution; microscopic examination of anodes, cathodes and separators; and cycling tests of refilled cells. Results of these analyses are given in the following paragraphs.

3.4.1 Physical Measurements

Measurements were performed on Cell 3 which had failed by shorting and overdischarge after 53 cycles. A figurative diagram of the cell and measurement positions is shown in Figure 13; the measurements before and after cycling are given in Table 6. A fill tube of this cell was opened and after removal of electrolyte solution, propylene carbonate was added to passivate the highly reactive Li deposits present. The cathodes from this cell were then removed and found to have expanded an average of about 30% from approximately 0.040° to 0.053° each. Some package expansion is also due to conversion of the solid Li anodes to a porous mud-like form.

3.4.2 Electrolyte Addition

The internal resistance of Cells 2-5 after cycling was 10Ω , 20Ω , 4Ω and 12Ω , respectively. All cells but Cell 5 had been overdischarged. Electrolyte solution was removed from Cell 3 and its specific resistivity

Fig. 12. Li/MoS3 cell discharge capacity as a function of current.

Fig. 13. Positions of cell thickness measurements.

TABLE 6

CELL 3 THICKNESS MEASUREMENTS BEFORE AND AFTER CYCLING

Position	Thickness before Cycling (inches)	Thickness after Cycling (inches)	% Increase
1	0.984	1.074	9.1
2	0.987	1.110	12.5
3	0.987	1.080	9.4
4	0.985	1.124	14.1
5	0.988	1.127	14.1
6	0.985	1.108	12.5
7	0.984	1.078	9.6
8	0.982	1.119	14.0
9	0.945	1.053	11.4
10	0.972	1.076	10.7

was $>10^5~\Omega$ cm. Addition of solvent (2Me-THF, distilled) to Cells 2 and 5 did not result in a recovery of electrochemical capacity. However, upon addition of fresh electrolyte solution to these cells, the internal impedance was reduced to less than 1Ω in each case suggesting that failure had occurred by loss of electrolyte salt. Electrochemical capacity was recovered in each cell; however, Cell 2 continued showing evidence of shorting. Cell 5 regained much of its original capacity (16.2 Ah on first cycle after refilling at 250 mA). Cell capacity remained, however, strongly dependent on discharge rate, e.g., at 500 mA, 10.9 Ah were obtained. This cell was subjected to 20 additional cycles before being voluntarily terminated.

3.4.3 Opening the Cells - Preliminary Observations

Cells 3, 4 and 5 were opened and the components removed for analysis after passivation of the high surface area Li with propylene carbonate. In both cells cycled over 50 cycles, large amounts of Li dendrites were found inside the anode separator bags. Some of these dendrites were seen to have grown through the Celgard bags, especially but not exclusively around the electrodes edges. Photographs of the dendrites are shown in Figure 14.

3.4.4 Electrochemical Capacity of Cathode Material

A small 20 cm² piece of cathode was cut from one of the cathodes removed from Cell 3. This cathode was washed several times in THF to remove propylene carbonate and placed in a small prismatic cell with fresh Li anodes and electrolyte solution. This cell was cycled briefly at 1 mA/cm² to determine whether the cathodes from Cell 3 retained their electrochemical capacity. The maximum capacity obtained from this electrode was approximately 0.6e $^-$ /MoS3. The cell impedance was very high ($\sim 4\Omega$) and can explain the poor performance of this small cell. This experiment suggests that loss of capacity in the 20 Ah cells was accompanied by resistive film build up in the cathodes.

3.4.5 Chemical Analyses of the Cathodes

X-ray diffraction and elemental analyses were performed on cathode material from Cells 3, 4 and 5 after several washings with THF to remove any remaining LiAsF₆. Results of the elemental analyses are shown in Table 7. Elements not originally present in the cathode composition include Li, As, O and H. If we consider the total weight of Mo as constant in the cathode, it is apparent that the cathodes 3, 4 and 5, respectively, have gained 37.9%, 30.4% and 53.8% over their original weights. It is also apparent that cathodes from Cells 3 and 5 have lost S from their original composition.

Fig. 14. Li dendrite growth in 20 Ah MoS_3 Cell 3.

Top, 2x, showing massive dendrites around edge of cell package; bottom, 20x, showing dendrite penetration through separator - rounded modules are below separator (Celgard 2400 separator is transparent).

TABLE 7

RESULTS OF ELEMENTAL ANALYSES OF CATHODES FROM CELLS 3, 4 AND 5

	Uncy Cathode	Uncycled hode Material	Ö	Ce11 3	30	Cell 4) 	Ce11 5
Element	Wt 8	Mol Ratio	Wt &	Mol Ratio	Wt 8	Mol Ratio	Wt &	Mol Ratio
Mo	32.46	0.34	23.54	0.25	24.90	0.26	21.11	0.22
S	32.54	1.01	20.19	0.63	25.11	0.78	20.79	0.65
ပ	31.20	2.60	29.28	2.50	26.50	2.18	26.47	2.21
بت	3.80	0.20	6.77	0.36	7.73	0.41	9.50	0.50
Li	ı	ı	5.44	0.79	4.17	09.0	4.02	0.58
æ	1	1	0.97	96.0	0.59	0.59	1.41	1.40
As	١	1	2.76	0.04	2.96	0.40	5.07	0.07
0	1	l	11.00	0.69	7.43	0.46	10.61	0.66
S/Mo	1	3.00	1	2.52	•	3.01	١	2.95

Results of X-ray diffraction analyses are shown in Table 8. MoS_3 itself is amorphous and shows no diffraction pattern. Both LiF and Li₂S appear to be present in the cathode from Cell 3. The major diffraction lines of Li₂S also appear in the patterns of cathodes from Cells 4 and 5. The line at 4.90 Å is attributed to Shawinigan carbon. The line at 2.67 Å in the cathode from Cell 3 has not as yet been identified.

From these analyses it is clear that chemical reactions have occurred with both the active cathode material, MoS₃, which has lost sulfur resulting in a sulfur/molybdenum stoichiometry <3, and the electrolyte salt which has lost As and Li to reaction products in the cathode. The products of these reactions are particularly evident in the cells subjected to a long cycle life. Cell 4, which was overdischarged after 20 cycles, does not show the same extent of reaction as either Cell 3 overdischarged after 50 cycles or Cell 5, cycled over 50 times without overdischarge. The amount of Li found in the cathodes is more than can be accounted for by the normal discharge reactions of the cells:

$$xLi + MoS_3 \rightarrow Li_xMoS_3$$
, $0 < x < 3$

The state of discharge was verified by reacting the lithiated MoS_3 with I_2 and titrating the excess I_2 with $Na_2S_2O_3$. It has not been established whether the presence of C, H and O in the cycled cathodes reflects a reaction of the solvent with the cathode material or whether their presence results from the treatment of the cycled cell with propylene carbonate to passivate the Li.

3.4.6 Chemical Analyses of the Anodes

Dendritic anode material was removed from Cells 3 and 5, washed with THF to remove LiAsF6 and analyzed for elemental composition and X-ray diffraction pattern. Results of the elemental analyses are shown in Table 9, and the X-ray diffraction analyses in Table 10. Again, as in the case of the cathodes, the anodes contain reaction products from decomposition of the electrolyte salt and the cathode active material. A standard spot test utilizing KI and starch indicator in a strong HCl solution failed to detect As(V) suggesting the As is present in the As(III) state. Apparently both the As and F present in the anode are products of the reduction of LiAsF6 by Li to form LiF and some As(III) compound. As in the case of the cathode material, the presence of C, H and O may result from solvent decomposition or from passivation of the highly reactive Li with propylene carbonate.

3.4.7 Cathode Decomposition Mechanism

The principal findings of the analyses of cathode and anode material are: (1) LiF and Li_2S are found in both cathode and anode, (2) MoS₃ gradually loses S during long term cycling, (3) cycling of the cells

TABLE 8

DEBYE SCHERRER POWDER DIFFRACTION PATTERNS FOR CATHODE MATERIALS
- CELLS 3, 4, AND 5 -

	Li2S	1	LiF	Cathod	Cathode Cell 3	Cathode	Cathode Cell 4	Cathod	Cathode Cell 5
d (A)	I/I ₀ (8)	(<u>A)</u>	I/I ₀ (8)	0 d (A)	I/I _O (8)	0 d (A)	1/10 (8)	d (A)	I/I _O (8)
				4.87	30	4.92	10	4.92	20
3.30	100			3.32	100	3.34	700	3.34	100
2.86	33			2.67	30				
		2.32	95	2.31	20				
2.02	72	2.01	100	1.99	20	2.03	10	2.02	20
1.72	99								
1.65	12			1.67	10				
1.43	16	1.42	48	1.42	10				
1.31	34								
1.28	20								
		1.22	10	1.22	10				
1.17	40	1.16	11	1.15	10				
1.10	33								
1.01	18								

TABLE 9

RESULTS OF ELEMENTAL ANALYSES OF ANODES FROM CELLS 3 AND 5

	Anod	le, Cell 3	Anode	e, Cell 5
Element	Wt %	Mol Ratio	Wt &	Mol Ratio
Li	16.81	2.42	22.43	3.23
F	22.95	1.21	9.07	0.48
s	6.08	0.19	6.36	0.20
As	16.27	0.22	17.70	0.24
0	19.95	1.25	16.34	1.02
С	14.97	1.25	5.78	0.48

TABLE 10

DEBYE SCHERRER POWDER DIFFRACTION PATTERNS FOR ANODE MATERIAL - CELLS 3 AND 5

Anod	le, Cell 3	Ano	de, Cell 5
d (A)	I/I _O (%)	d (A)	I/I _O (%)
3.28	50		
		2.46	20
2.32	90	2.31	90
2.01	100	2.01	100
1.42	30	1.42	40
1.21	10		,
1.16	10		· ·

was accompanied by an increase in internal resistance caused by loss of salt in the electrolyte solution and by formation of resistive products in the cathodes. Loss of electrolyte salt can lead to formation of concentration gradients during charge and exacerbation of dendrite formation.

A possible mechanism explaining the results of the analyses described above involves the following steps: (1) MoS₃ is reduced to MoS_{3-x} + S^{π}, 0<x<1, (2) S^{π} is oxidized to polysulfide S_n^{π}, (3) Li₂S_n migrates to the anode, (4) Li₂S_n is reduced to Li₂S which precipitates, (5) LiAsF₆ is reduced on the surface of both anode and cathode during at least one of the previous steps. It should be emphasized that the reaction of LiAsF₆ is either catalyzed by the MoS₃ or coupled with a chemical reaction such as one described above. Extreme loss of electrolyte during cycling has not been observed in other secondary Li systems (e.g., Li/LiAsF₆ in 2Me-THF/TiS₂).

4.0 CONCLUSIONS

The following conclusions are drawn from the foregoing work:

- (1) To achieve the ultimate energy density goal of 125 Wh/lb (275 Wh/kg) in a secondary Li system a cathode energy density of 290 Wh/lb (630/kg) is necessary.
- (2) None of the cathode materials examined in this program, ${\rm TiS}_2$, ${\rm V}_6{\rm O}_{13}$ and ${\rm MoS}_3$, are capable of furnishing this energy density at present. Although ${\rm MoS}_3$ is theoretically able to provide the necessary energy, it needs more development to overcome chemical instability in the system.
- (3) Life of the test cells was limited to about 50 cycles. The direct cause of failure was Li dendrite shorting which in turn was aggravated by cathode-electrolyte reactions.

	No.		No.
	Copies		Copies
Office of Naval Research		Naval Ocean Systems Center	
Attn: Code 413		Attn: Mr. Joe McCartney	
800 North Quincy Street		San Diego, California 92152	1
Arlington, Virginia 22217	2		
		Naval Weapons Center	
ONR Pasadena Detachment		Attn: Dr. A. B. Amster,	
Attn: Dr. R. J. Marcus		Chemistry Division	
1030 East Green Street		China Lake, California 93555	•
Pasadena, California 91106	1		
		Naval Civil Engineering Laboratory	
Commander, Naval Air Systems Command		Attn: Dr. R. W. Drisko	
Attn: Code 310C (H. Rosenwasser)		Port Hueneme, California 93401	
Department of the Navy			
Washington, D.C. 20360	1	Dean William Tolles	
-		Naval Postgraduate School	
Defense Technical Information Center		Monterey, California 93940	1
Building 5, Cameron Station		•	
Alexandria, Virginia 22314	12	Scientific Advisor	
•		Commandant of the Marine Corps	
Dr. Fred Saalfeld		(Code RD-1)	
Chemistry Division, Code 6100		Washington, D.C. 20380	1
Naval Research Laborator			-
Washington, D.C. 20375	1	Naval Ship Research and Development	
		Center	
U.S. Army Research Office		Attn: Dr. G. Bosmajian, Applied	
Attn: CRD-AA-IP		Chemistry Division	
P. O. Box 12211		Annapolis, Maryland 21401	1
Research Triangle Park, N.C. 27709	1		_
		Mr. John Boyle	
Mr. Vincent Schaper		Materials Branch	
DTNSRDC Code 2803		Naval Ship Engineering Center	
Annapolis, Maryland 21402	1	Philadelphia, Pennsylvania 19112	•
• • • • • • • • • • • • • • • • • • • •	-		•
Naval Ocean Systems Center		Mr. A. M. Anzalone	
Attn: Dr. S. Yamamoto		Administrative Librarian	
Marine Sciences Division		PLASTEC/ARRADCOM	
San Diego, California 91232	ı	Bldg 3401	
, , , , , , , , , , , , , , , , , , ,	-	Dover, New Jersey 07301	1
			-

	No.		No.
	Copies		Copies
Dr. Paul Delahay		Dr. P. J. Hendra	
Department of Chemistry		Department of Chemistry	
New York University		University of Southampton	
New York, New York 10003	1	Southampton SOO 5NH	
•		United Kingdom	1
Dr. E. Yeager		_	
Department of Chemistry		Dr. Sam Perone	
Case Western Reserve University		Chemistry & Materials	
Cleveland, Ohio 41106	1	Science Department	
,		Laurence Livermore National Lab.	
Dr. D. N. Bennion		Livermore, California 94550	1
Department of Chemical Engineering			
Brigham Young University		Dr. Royce W. Murray	
Provo, Utah 84602	1	Department of Chemistry	
		University of North Carolina	
Dr. R. A. Marcus		Chapel Hill, North Carolina 27514	1
Department of Chemistry			
California Institute of Technology	_	Naval Ocean Systems Center	
Pasadena, California 91125	1	Attn: Technical Library	
		San Diego, California 92152	1
Dr. J. J. Auborn		- A B V 11	
Bell Laboratories	•	Dr. C. E. Mueller	
Murray Hill, New Jersey 07974	1	The Electrochemistry Branch	
De Adem Heller		Materials Division, Research and	
Dr. Adam Heller		Technology Department	
Bell Laboratories	1	Naval Surface Weapons Center White Oak Laboratory	
Murray Hill, New Jersey 07974	ı	Silver Spring, Maryland 20910	1
Dr. T. Katan		Silver opring, haryland 20010	•
Lockheed Missiles and		Dr. G. Goodman	
Space Co., Inc.		Johnson Controls	
P. O. Box 504		5757 North Green Bay Avenue	
Sunnyvale, California 94088	1	Milwaukee, Wisconsin 53201	1
,	_		_
Dr. Joseph Singer, Code 302-1		Dr. J. Boechler	
NASA-Lewis		Electrochimica Corporation	
21000 Brookpark Road		Attn: Technical Library	
Cleveland, Ohio 44135	1	2485 Charleston Road	
		Mountain View, California 94040	1
Dr. B. Brummer			
EIC Incorporated		Dr. P. P. Schmidt	
55 Chapel Street		Department of Chemistry	
Newton, Massachusetts 02158	1	Oakland University	•
1.4hmanna		Rochester, Michigan 48063	1
Library			
P. R. Mallory and Company, Inc.			
Northwest Industrial Park Burlington, Massachusetts 01803	1		
pertuacon, massacunsetts 0100)	1		

	No.		No.
	Copies	•	Copies
Dr. H. Richtol		Dr. R. P. Van Duyne	
Chemistry Department		Department of Chemistry	
Rensselaer Polytechnic Institute		Northwestern University	
Troy, New York 12181	1	Evanston, Illinois 60201	1
1109, 1101 1012 12101	•	2,000	-
Dr. A. B. Ellis		Dr. B. Stanley Pons	
Chemistry Department		Department of Chemistry	
University of Wisconsin		University of Alberta	
Madison, Wisconsin 53706	1	Edmonton, Alberta	
		CANADA T6G 2G2	1
Dr. M. Wrighton			
Chemistry Department		Dr. Michael J. Weaver	
Massachusetts Institute		Department of Chemistry	
of Technology		Michigan State University	
Cambridge, Massachusetts 02139		East Lansing, Michigan 48824	1
Larry E. Plew		Dr. R. David Rauh	
Naval Weapons Support Center		EIC Corporation	
Code 30736, Building 2906		55 Chapel Street	
Crane, Indiana 47522	1	Newton, Massachusetts 02158	1
S. Ruby		Dr. J. David Margerum	
DOE (STOR)		Research Laboratories Division	
600 E Street		Hughes Aircraft Company	
Providence, Rhode Island 02192	1	3011 Malibu Canyon Road	
110vidence, midde 1312md 02172		Malibu, California 90265	1
Dr. Aaron Wold	•		-
Brown University		Dr. Martin Fleischmann	
Department of Chemistry		Department of Chemistry	
Providence, Rhode Island 02192	1	University of Southampton	
		Southampton 509 5NH England	1 .
Dr. R. C. Chudacek			
McGraw-Edison Company		Dr. Janet Osteryoung	
Edison Battery Division		Department of Chemistry	
Post Office Box 28		State University of	
Bloomfield, New Jersey 07003	1	New York at Buffalo	
		Buffalo, New York 14214	1
Dr. A. J. Bard			
University of Texas		Dr. R. A. Osteryoung	
Department of Chemistry		Department of Chemistry	
Austin, Texas 78712	1	State University of	
		New York at Buffalo	_
Dr. M. M. Nicholson		Buffalo, New York 14214	1
Electronics Research Center			
Rockwell International			
3370 Miraloma Avenue	•		
Anaheim, California	1		

	No.		No.
	Copies		Copies
Dr. Donald W. Ernst		Mr. James R. Moden	
Naval Surface Weapons Center		Naval Underwater Systems	
Code R-33		Center	
White Oak Laboratory		Code 3632	
Silver Spring, Maryland 20910	1	Newport, Rhode Island 02840	1
ozziac opiane, imaj nama dovico	_		
Dr. R. Nowak		Dr. Bernard Spielvogel	
Naval Research Laboratory		U. S. Army Research Office	
Code 6130		P. O. Box 12211	
Washington, D.C. 20375	1	Research Triangle Park, NC 27709	1
Dr. John F. Houlihan		Dr. Denton Elliott	
Shenango Valley Campus		Air Force Office of	
Pennsylvania State University		Scientific Research	
Sharon, Pennsylvania 16146	1	Bolling AFB	
		Washington, D.C. 20332	1
Dr. D. F. Shriver			
Department of Chemistry		Dr. David Aikens	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	Rensselaer Polytechnic Institute Troy, New York 12181	1
Dr. D. H. Whitmore		220), 10111	_
Department of Materials Science		Dr. A. P. B. Lever	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	York University	
		Downsview, Ontario M3J1P3	
Dr. Alan Bewick		Canada	1
Department of Chemistry			
The University		Dr. Stanislaw Szpak	
Southampton, SO9 5NH England	1	Naval Ocean Systems Center	
		Code 6343	•
Dr. A. Himy		San Diego, California 95152	1
NAVSEA-5433		Dec. Common Proportion to the con-	
NC #4		Dr. Gregory Farrington	
2541 Jefferson Davis Highway	1	Department of Materials Science	
Arlington, Virginia 20362	•	and Engineering University of Pennsylvania	
De John Pinseid		Philadelphia, Pennsylvania 19104	1
Dr. John Kincaid Department of the Navy		rurradethura, temmaaradura 1. (04	•
Strategic Systems Project Office		Dr. Bruce Dunn	
Room 901		Department of Engineering &	
Washington, D.C. 20376	1	Applied Science	
	-	University of California	
		Los Angeles, California 90024	1
		•	

No. Copies Copies	No. Dies
M. L. Robertson Dr. T. Marks	
Manager, Electrochemical Department of Chemistry	
and Power Sonices Division Northwestern University	
Naval Weapons Support Center Evanston, Illinois 60201	1
Crane, Indiana 47522	
Dr. D. Cipris	•
Dr. Elton Cairns Allied Corporation	
Energy & Environment Division P. O. Box 3000R	
Lawrence Berkeley Laboratory Morristown, New Jersey 07960	1
University of California	
Berkeley, California 94720 l Dr. M. Philpot	
IBM Corporation	
Dr. Micha Tomkiewicz 5600 Cottle Road	
Department of Physics San Jose, California 95193	1
Brooklyn College	
Brooklyn, New York 11210 1 Dr. Donald Sandstrom	
Washington State University	
Dr. Lesser Blum Department of Physics	
Department of Physics Pullman, Washington 99164	Ļ
University of Puerto Rico	
Rio Piedras, Puerto Rico 00931 l Dr. Carl Kannewurf Northwestern University	
Dr. Joseph Gordon, II Department of Electrical Engineering	
IBM Corporation and Computer Science	
K33/281 Evanston, Illinois 60201	ì
5600 Cottle Road	
San Jose, California 95193 l Dr. Edward Fletcher	
University of Minnesota	
Dr. Robert Somoano Department of Mechanical Engineering	
Jet Propulsion Laboratory Minneapolis, Minnesota 55455	1
California Institute of Technology	
Pasadena, California 91103 l Dr. John Fontanella	
U.S. Naval Academy	
Dr. Johann A. Joebstl Department of Physics	
USA Mobility Equipment R&D Command Annapolis, Maryland 21402	1
DRDME-EC	
Fort Belvior, Virginia 22060 1 Dr. Martha Greenblatt	
Rutgers University	
Dr. Judith H. Ambrus Department of Chemistry	
NASA Headquarters New Brunswick, New Jersey 08903	I
M.S. RTS-6	
Washington, D.C. 20546 l Dr. John Wassib	
Kings Mountain Specialties	
Dr. Albert R. Landgrebe P. O. Box 1173	
U.S. Department of Energy Kings Mountain, North Carolina 28086	1
M.S. 6B025 Forrestal Building	
Washington, D.C. 20595	

	No. Copies		No. Copies
Dr. J. J. Brophy University of Utah Department of Physics Salt Lake City, Utah 84112	1		
Dr. Walter Roth Department of Physics State University of New York Albany, New York 12222	1		
Dr. Thomas Davis National Bureau of Standards Polymer Science and Standards Division Washington, D.C. 20234	1		
Dr. Charles Martin Department of Chemistry Texas A&M University 77840	1		
Dr. Anthony Sammells Institute of Gas Technology 3424 South State Street Chicago, Illinois 60616	1		
Dr. H. Tachikawa Department of Chemistry Jackson State University Jackson, Mississippi 39217	1		
Dr. W. M. Risen Department of Chemistry Brown University Providence, Rhode Island 02192	1		

