Canada's Capital University

Obstacle Detection Using Monocular Camera for Low Flying Unmanned Aerial Vehicle

Fan Zhang, B.Sc.

Systems and Computer Engineering
Carleton University
January 2015

Canada's Capital University

Bearing and Range Sensors

- Radar, Lidar, Sonar
 - Require Scanning
- 3D Flash Lidar

Bearing Only Sensor

- Camera
 - Binocular Configuration
 - Monocular Configuration

Computer Algorithm

- Machine Vision
- Simultaneous Localization and Mapping (SLAM)

Problem Statement

Problem Statement

Canada's Capital University

UAV Vertical Rise: 122 meters per minute

Clearance: 10 meters

303.64 meters or further @ 60 knots (30.87m/s) 505.97 meters or further @ 100 knots (51.44m/s)

Problem Statement

Canada's Capital University

SUAS Take Off

Canada's Capital University

Sensors and Data Acquisition Equipment

GS-111M

GPS Antenna

CDAC

Canada's Capital University

Aerial Video Footage

Canada's Capital University

Camera Calibration

Parameter	Result
f_x	887.6 pixels
f_y	805.7 pixels
c_x	381.8 pixels
c_y	293.7 pixels
k_1	-0.102
k_2	-0.535
p_1	1.15e-003
p_2	8.40e-003

Contribution 2: CC-EKF-SLAM

Contribution 2: CC-EKF-SLAM

Inverse Depth Parameterization

Camera Centric Coordinate System

* n = number of landmarks currently tracked by filter

Contribution 3: Aerial Data Processed by CC-EKF-SLAM

Canada's Capital University

Natural Scene

New features Kalman predicted points LK output points Feature ID LK input points Kalman updated points

Airport Landing Scene

Contribution 3: Flight Result Convergence Analysis

Landmark 13 at various frames

Contribution 3: Flight Result SUAS Localization

Canada's Capital University

Natural Scene

Airport Landing Scene

Contribution 3: Flight Result Landmark Mapping

Canada's Capital University

Natural Scene

Airport Landing Scene

Contribution 3: Flight Result

Canada's Capital University

This contribution is published in

The 2012 IEEE International Instrumentation and Measurement Technology Conference

[7] F. Zhang, R. Goubran, and P. Straznicky, "Obstacle detection for low flying UAS using monocular camera," in *Proceedings of the IEEE International Instrumentation and Measurement Technology Conference*, 2012, pp. 2133-2137.

Contribution 4: Error Analysis

Canada's Capital University

Oscillatory Motion of the UAV

Error from Camera Calibration

$$x = f_x\left(\frac{X}{Z}\right) + c_x$$

$$y = f_y\left(\frac{Y}{Z}\right) + c_y$$

Image Resolution

Contribution 4: Error Analysis Effect of Oscillatory Rotation

Contribution 4: Error Analysis Effect of Camera Calibration Error and

Canada's Capital University

Image Resolution

 f_r

 $(f_y \text{ affects})$

No Effect

Contribution 4: Error Analysis Effect of Camera Calibration Error and Image Resolution

Canada's Capital University

UAV Localization

Landmarks Mapping

Lens Distortion

Diverging Error

Image Resolution 1080 x 1440 or higher

1080 x 1440 or higher

Canada's Capital University

Contribution 1:

Aerial Video and Data Collected through Test Flight

Contribution 2:

CC-EKF-SLAM Implemented

Contribution 3:

Aerial Data Processed by CC-EKF-SLAM

Contribution 4:

Error Analysis

Recommendations for Future Work

- Add lens distortion model
- Increase sensor resolution
- Add landmark quality checking and filtering function
- Research on map joining algorithm
- Increase accuracy by syncing to GPS
- Investigate on the sensitivity problem to oscillatory rotation

Acknowledgement

- Rafik Goubran, Paul Straznicky
- Sander Geophysics Ltd.
- Ontario Centers of Excellence and NSERC
- My Family