0.1 相抵标准型及其应用

定理 0.1 (矩阵的相抵标准型)

对任意一个秩为r的 $m \times n$ 矩阵A, 总存在m 阶非异阵P和n 阶非异阵Q, 使得

$$PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

证明

命题 0.1 (矩阵的秩 1 分解)

求证: 秩等于r的矩阵可以表示为r个秩等于1的矩阵之和, 但不能表示为少于r个秩为1的矩阵之和.

证明 将A化为相抵标准型,即存在非异矩阵P及Q,使得

$$A = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q = P (E_{11} + E_{22} + \dots + E_{rr}) Q$$
$$= PE_{11}Q + PE_{22}Q + \dots + PE_{rr}Q.$$

于是记 $A_1 = PE_{11}Q$, $A_2 = PE_{22}Q$, \cdots , $A_r = PE_{rr}Q$, 则每个 A_i 的秩都等于 1. 故 A 可以化为 r 个秩等于 1 的矩阵之和.

若 $A = B_1 + B_2 + \dots + B_k$, k < r, 且每个 B_i 的秩都等于 1, 则由命题?????可知 $\mathbf{r}(A) \le \mathbf{r}(B_1) + \mathbf{r}(B_2) + \dots + \mathbf{r}(B_k) = k$, 这与 $\mathbf{r}(A) = r$ 矛盾, 故不可能.

例题 0.1 设 A, B, C 分别为 $m \times n$, $p \times q$ 和 $m \times q$ 矩阵, $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$. 证明: $\mathbf{r}(M) = \mathbf{r}(A) + \mathbf{r}(B)$ 成立的充要条件是矩阵方程 AX + YB = C 有解, 其中 X, Y 分别是 $n \times q$ 和 $m \times p$ 未知矩阵.

筆记 证明必要性时不妨设的原因: 假设当 $A = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, $B = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$ 时, 结论成立. 则当 $A \neq \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, $B \neq \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$ 时, 记 $A_1 = P_1 A Q_1 = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, $B_1 = P_2 B Q_2 = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$, $C_1 = P_1 C Q_2$, $M_1 = \begin{pmatrix} A_1 & C_1 \\ O & B_1 \end{pmatrix}$.

$$\mathbf{r}(\boldsymbol{A}) = \mathbf{r}(\boldsymbol{P}_1 \boldsymbol{A} \boldsymbol{Q}_1) = \mathbf{r} \begin{pmatrix} \boldsymbol{I}_r & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix} = \mathbf{r}(\boldsymbol{A}_1), \quad \mathbf{r}(\boldsymbol{B}) = \mathbf{r}(\boldsymbol{P}_2 \boldsymbol{B} \boldsymbol{Q}_2) = \mathbf{r} \begin{pmatrix} \boldsymbol{I}_s & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix} = \mathbf{r}(\boldsymbol{B}_1),$$

$$\mathbf{r}(\boldsymbol{M}) = \mathbf{r} \begin{pmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{pmatrix} = \mathbf{r} \begin{pmatrix} \begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{P}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{pmatrix} \begin{pmatrix} \boldsymbol{Q}_1 & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{Q}_2 \end{pmatrix} \end{pmatrix} = \mathbf{r} \begin{pmatrix} \boldsymbol{P}_1 \boldsymbol{A} \boldsymbol{Q}_1 & \boldsymbol{P}_1 \boldsymbol{C} \boldsymbol{Q}_2 \\ \boldsymbol{O} & \boldsymbol{P}_2 \boldsymbol{B} \boldsymbol{Q}_2 \end{pmatrix} = \mathbf{r}(\boldsymbol{M}_1).$$

从而

$$r(\mathbf{M}) = r(\mathbf{A}) + r(\mathbf{B}) \Leftrightarrow r(\mathbf{M}_1) = r\begin{pmatrix} \mathbf{A}_1 & \mathbf{C}_1 \\ \mathbf{O} & \mathbf{B}_1 \end{pmatrix} = r(\mathbf{A}_1) + r(\mathbf{B}_1).$$

于是由假设可知 $A_1X_1 + Y_1B_1 = C_1$ 有解 X_1, Y_1 . 记 $X = Q_1X_1Q_2^{-1}, Y = P_1^{-1}Y_1P_2$, 则

$$A_1X_1 + Y_1B_1 = C_1$$
有解 X_1, Y_1
 $\Leftrightarrow P_1AQ_1X_1 + Y_1P_2BQ_2 = P_1CQ_2$ 有解 X_1, Y_1
 $\Leftrightarrow AQ_1X_1Q_2^{-1} + P_1^{-1}Y_1P_2B = C$ 有解 X_1, Y_1
 $\Leftrightarrow AX + YB = C$ 有解 X, Y

故可以不妨设
$$A = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}, B = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}.$$

1

证明 先证充分性. 设 $X = X_0, Y = Y_0$ 是矩阵方程 AX + YB = C 的解, 则将 M 的第一分块列右乘 $-X_0$ 加到第二分块列上, 再将第二分块行左乘 $-Y_0$ 加到第一分块行上, 可得分块对角阵 $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 于是 $\mathbf{r}(M) = \mathbf{r}\begin{pmatrix} A & O \\ O & B \end{pmatrix} = \mathbf{r}(A) + \mathbf{r}(B)$.

再证必要性. 设 $P_1AQ_1=\begin{pmatrix} I_r & O\\ O & O \end{pmatrix}$, $P_2BQ_2=\begin{pmatrix} I_s & O\\ O & O \end{pmatrix}$, 其中 P_1,Q_1,P_2,Q_2 为非异阵,r=r(A), s=r(B). 注意到问题的条件和结论在相抵变换: $A\mapsto P_1AQ_1$, $B\mapsto P_2BQ_2$, $C\mapsto P_1CQ_2$, $X\mapsto Q_1^{-1}XQ_2$, $Y\mapsto P_1YP_2^{-1}$ 下保持不变, 故不妨从一开始就假设 $A=\begin{pmatrix} I_r & O\\ O & O \end{pmatrix}$, $B=\begin{pmatrix} I_s & O\\ O & O \end{pmatrix}$ 都是相抵标准型. 设 $C=\begin{pmatrix} C_1 & C_2\\ C_3 & C_4 \end{pmatrix}$, $X=\begin{pmatrix} X_1 & X_2\\ X_2 & X_4 \end{pmatrix}$, $Y=\begin{pmatrix} Y_1 & Y_2\\ Y_3 & Y_4 \end{pmatrix}$ 为对应的分块. 考虑 M 的如下分块初等变换:

$$M = \begin{pmatrix} I_r & O & C_1 & C_2 \\ O & O & C_3 & C_4 \\ O & O & I_s & O \\ O & O & O & O \end{pmatrix} \rightarrow \begin{pmatrix} I_r & O & O & O \\ O & O & O & C_4 \\ O & O & I_s & O \\ O & O & O & O \end{pmatrix},$$

由于 r(M) = r(A) + r(B) = r + s, 故 $C_4 = O$. 于是矩阵方程 AX + YB = C, 即

$$\begin{pmatrix} X_1 & X_2 \\ O & O \end{pmatrix} + \begin{pmatrix} Y_1 & O \\ Y_3 & O \end{pmatrix} = \begin{pmatrix} X_1 + Y_1 & X_2 \\ Y_3 & O \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ C_3 & O \end{pmatrix}$$

有解, 例如 $X_1 = C_1, X_2 = C_2, Y_1 = 0, Y_3 = C_3$, 其余分块取法任意

命题 0.2 (行/列满秩矩阵性质)

由矩阵的相抵标准型可设 $A \neq m \times n$ 矩阵,则

- (1) 若 r(A) = n, 即 A 是列满秩阵,则必存在秩等于 n 的 $n \times m$ 矩阵 B(行满秩), 使得 $BA = I_n$ (这样的矩阵 B 称为 A 的左逆);
- (2) 若 r(A) = m, 即 A 是行满秩阵, 则必存在秩等于 m 的 $n \times m$ 矩阵 C(列满秩), 使得 $AC = I_m$ (这样的矩阵 C 称为 A 的右逆).

证明

(1) 设P为m阶非异阵,Q为n阶非异阵,使得

$$PAQ = \begin{pmatrix} I_n \\ O \end{pmatrix},$$

因此 $(I_n, O)PAQ = I_n$, 即 $(I_n, O)PA = Q^{-1}$, 于是 $Q(I_n, O)PA = I_n$. 令 $B = Q(I_n, O)P$ 即可.

(2) 同理可证, 或者考虑 A' 并利用 (1) 的结论.

推论 0.1

列满秩矩阵适合左消去律,即若 A 列满秩且 AD=AE,则 D=E. 同理,行满秩矩阵适合右消去律,即若 A 行满秩且 DA=EA,则 D=E.

命题 0.3 (满秩分解)

设 $m \times n$ 矩阵 A 的秩为 r. 证明:

- (1) A = BC, 其中 $B \not\in m \times r$ (列满秩) 矩阵且 r(B) = r, $C \not\in r \times n$ (行满秩) 矩阵且 r(C) = r, 这种分解称为 A 的满秩分解;
- (2) 若 A 有两个满秩分解 $A = B_1C_1 = B_2C_2$, 则存在r 阶非异阵P, 使得 $B_2 = B_1P$, $C_2 = P^{-1}C_1$.

证明

(1) 设P为m阶非异阵,Q为n阶非异阵,使得

$$A = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q = P \begin{pmatrix} I_r \\ O \end{pmatrix} (I_r, O) Q.$$

$$\Leftrightarrow B = P \begin{pmatrix} I_r \\ O \end{pmatrix}, C = (I_r, O)Q$$
, 即得结论.

(2) 由行/列满秩矩阵性质可知, 存在 $r \times m$ 行满秩阵 $S_2, n \times r$ 列满秩阵 T_2 , 使得 $S_2B_2 = I_r, C_2T_2 = I_r$, 于是

$$B_2 = B_2(C_2T_2) = (B_2C_2)T_2 = (B_1C_1)T_2 = B_1(C_1T_2),$$

$$C_2 = (S_2B_2)C_2 = S_2(B_2C_2) = S_2(B_1C_1) = (S_2B_1)C_1,$$

$$(S_2B_1)(C_1T_2) = S_2(B_1C_1)T_2 = S_2(B_2C_2)T_2 = (S_2B_2)(C_2T_2) = I_r.$$

命题 0.4

A = BC 是满秩分解当且仅当 B 的 r 个列向量是 A 的 n 个列向量张成线性空间的一组基, 也当且仅当 C 的 r 个行向量是 A 的 m 个行向量张成线性空间的一组基.

证明

例题 0.2 设 A 为 $m \times n$ 矩阵, 证明: 存在 $n \times m$ 矩阵 B, 使得 ABA = A.

掌记 证法一的不妨设原因与例题 0.1类似.

证明 证法一: 设 $PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, 其中 $P \neq m$ 阶非异阵, $Q \neq n$ 阶非异阵. 注意到问题的条件和结论在相抵

变换: $A\mapsto PAQ$, $B\mapsto Q^{-1}BP^{-1}$ 下保持不变, 故不妨从一开始就假设 $A=\begin{pmatrix}I_r&O\\O&O\end{pmatrix}$ 是相抵标准型. 设 $B=\begin{pmatrix}I_r&O\\O&O\end{pmatrix}$

 $\begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$ 为对应的分块, 由 ABA = A 可得 $B_1 = I_r$, 其余分块取法任意.

证法二:设A = CD为A的满秩分解,E为列满秩阵C的左逆,F是行满秩阵D的右逆.令B = FE,则

$$ABA = (CD)(FE)(CD) = C(DF)(EC)D = CD = A.$$

例题 0.3 设 A, B 分别是 $3 \times 2, 2 \times 3$ 矩阵且满足

$$\mathbf{AB} = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix},$$

试求 BA.

证明 解法一: 通过简单的计算可得 r(AB) = 2, 从而 $r(A) \ge 2$, $r(B) \ge 2$. 又因为矩阵的秩不超过行数和列数的最小值, 故 r(A) = r(B) = 2, 即 A 是列满秩阵, B 是行满秩阵. 又注意到 $(AB)^2 = 9AB$, 经整理可得 $A(BA - 9I_2)B = O$. 根据推论 0.1, 可以在上式的左边消去 A, 右边消去 B, 从而可得 $BA = 9I_2$.

解法二:由解法一中矩阵秩的计算可知,AB 是题中 3 阶矩阵 C 的满秩分解. 注意到 C 的后两列线性无关,因此可取另一种满秩分解为

$$C = \begin{pmatrix} 2 & -2 \\ 5 & 4 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} = A_1 B_1.$$

由矩阵的满秩分解 (2)可知, 存在可逆矩阵 P, 使得 $A_1 = AP$, $B_1 = P^{-1}B$. 于是 $B_1A_1 = P^{-1}BAP$, 故 BA 相似于

解法三: 经简单的计算可得 $|\lambda I_3 - AB| = \lambda(\lambda - 9)^2$, 且特征值 9 的几何重数也等于 2, 因此 AB 可对角化. 由特征值的降价公式可得 $|\lambda I_2 - BA| = (\lambda - 9)^2$, 从而 BA 的两个特征值都是 9, 于是 BA 是可逆矩阵 (特征值都非零). 因此由命题??可知 BA 也可对角化, 于是 BA 相似于 $9I_2$, 即存在可逆矩阵 P, 使得 $BA = P^{-1}(9I_2)P = 9I_2$.

命题 0.5 (幂等矩阵关于满秩分解的刻画)

设 A 是 n 阶方阵且 r(A) = r, 求证: $A^2 = A$ 的充要条件是存在秩等于 r 的 $n \times r$ 矩阵 S 和秩等于 r 的 $r \times n$ 矩阵 T, 使得 A = ST, $TS = I_r$.

证明 充分性显然, 现证必要性. 设 P,Q 为 n 阶非异阵, 使得

$$A = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q.$$

代入 $A^2 = A$ 消去两侧的非异阵 P 和 Q, 可得

$$\begin{pmatrix} I_r & O \\ O & O \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} QP \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

只需令

$$S = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \begin{pmatrix} I_r \\ O \end{pmatrix}, T = (I_r, O) \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q,$$

则S列满秩,I行满秩,经简单计算即得结论.

推论 0.2 (幂等矩阵的迹和秩相等)

设A为n阶幂等矩阵,则tr(A) = r(A).

证明 证法一:由命题 0.5可知, $\operatorname{tr}(A) = \operatorname{tr}(ST) = \operatorname{tr}(TS) = \operatorname{tr}(I_r) = r = \operatorname{r}(A)$.

证法二 (相似标准型):事实上, 由 $A^2 = A$ 可知, 存在可逆矩阵 P, 使得

$$A = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} P^{-1} = P \begin{pmatrix} I_r \\ O \end{pmatrix} (I_r, O) P^{-1},$$

令
$$S = P\begin{pmatrix} I_r \\ O \end{pmatrix}$$
, $T = (I_r, O)P^{-1}$, 可得 $\operatorname{tr}(A) = \operatorname{tr}(ST) = \operatorname{tr}(TS) = \operatorname{tr}(I_r) = r = \operatorname{r}(A)$.

命题 0.6

1. 设 A, B 均为 $m \times n$ 矩阵, 满足 r(A + B) = r(A) + r(B), 证明: 存在 m 阶非异阵 P, n 阶非异阵 Q, 使得

$$PAQ = \begin{pmatrix} I_r & O & O \\ O & O & O \\ O & O & O \end{pmatrix}, \quad PBQ = \begin{pmatrix} O & O & O \\ O & I_s & O \\ O & O & O \end{pmatrix}.$$

2. 设 A, B 均为 n 阶实对称矩阵, 满足 r(A+B)=r(A)+r(B), 证明: 存在 n 阶非异阵 P, 使得

$$PAP^{-1} = \begin{pmatrix} I_r & O & O \\ O & O & O \\ O & O & O \end{pmatrix}, \quad PBP^{-1} = \begin{pmatrix} O & O & O \\ O & I_s & O \\ O & O & O \end{pmatrix}.$$

笔记 这个命题中的 I_r 和 I_s 都可以替换为主对角元都为相应矩阵特征值的对角阵 (两边同乘主对角元为对应特征值根式的对角阵和其逆矩阵即可).

证明

1. 证法一 (代数方法):设 r(A) = r, r(B) = s, 则 r(A + B) = r + s, 且存在 m 阶非异阵 S, n 阶非异阵 T, 使得

$$SAT = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}, \quad SBT = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad S(A+B)T = \begin{pmatrix} I_r + B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

因为 $\mathbf{r}(A+B)=r+s$, 故删去 $\mathbf{S}(A+B)T$ 的前 r 行,可得后 m-r 行的秩必大于等于 s, 即 $\mathbf{r}(B_{21},B_{22})\geq s$. 另一方面,我们还有 $\mathbf{r}(B_{21},B_{22})\leq \mathbf{r}(B)=s$, 故 $\mathbf{r}(B_{21},B_{22})=\mathbf{r}(B)=s$, 从而 (B_{21},B_{22}) 的行向量的极大无关组也是 $\mathbf{S}\mathbf{B}\mathbf{T}$ 的行向量组的极大无关组。因此利用 $\mathbf{S}\mathbf{B}\mathbf{T}$ 的后 m-r 行的初等行变换可以消去 $\mathbf{S}\mathbf{B}\mathbf{T}$ 的前 r 行。同理可证利用 $\mathbf{S}\mathbf{B}\mathbf{T}$ 的后 n-r 列的初等列变换可以消去 $\mathbf{S}\mathbf{B}\mathbf{T}$ 的前 r 列,即存在 m 阶非异阵 \mathbf{V} ,使得

$$USATV = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}, \quad USBTV = \begin{pmatrix} O & O \\ O & B_{22} \end{pmatrix}.$$

此时存在 m-r 阶非异阵 C, n-r 阶非异阵 D, 使得 $CB_{22}D = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$. $\Leftrightarrow P = \begin{pmatrix} I_r & O \\ O & C \end{pmatrix}US$, $Q = \begin{pmatrix} I_s & O \\ O & C \end{pmatrix}$

 $TV\begin{pmatrix} I_r & O \\ O & D \end{pmatrix}$,则 $P \to m$ 阶非异阵, $Q \to n$ 阶非异阵, 且满足结论.

证法二 (几何方法):将问题转换成几何的语言: 设 $V = \mathbb{K}^n$ 为 n 维列向量空间, $U = \mathbb{K}^m$ 为 m 维列向量空间, $\varphi_A, \varphi_B: V \to U$ 分别是矩阵 A, B 左乘诱导的线性映射, 满足 $\mathbf{r}(\varphi_A + \varphi_B) = \mathbf{r}(\varphi_A) + \mathbf{r}(\varphi_B)$, 证明: 存在 V 的一组基, U 的一组基, 使得 φ_A, φ_B 在这两组基下的表示矩阵分别是题中的两个矩阵.

设 r(A) = r, r(B) = s, 则 r(A + B) = r + s. 由命题??(5) 知

$$r(A + B) \le r {A \choose B} \le r(A) + r(B),$$

因此 $r \begin{pmatrix} A \\ B \end{pmatrix} = r + s$, 从而 $\dim(\operatorname{Ker}\varphi_A \cap \operatorname{Ker}\varphi_B) = n - (r + s)$. 由交和空间的维数公式可得

$$\dim(\operatorname{Ker}\varphi_A + \operatorname{Ker}\varphi_B) = (n-r) + (n-s) - (n-r-s) = n,$$

又显然有 $V \supset \text{Ker}\varphi_A + \text{Ker}\varphi_B$, 故有 $V = \text{Ker}\varphi_A + \text{Ker}\varphi_B$. 另一方面, 注意到

$$r(A + B) = \dim \operatorname{Im}(\varphi_A + \varphi_B) \le \dim(\operatorname{Im}\varphi_A + \operatorname{Im}\varphi_B) \le \dim \operatorname{Im}\varphi_A + \dim \operatorname{Im}\varphi_B = r(A) + r(B),$$

因此 $\operatorname{Im}(\varphi_A + \varphi_B) = \operatorname{Im}\varphi_A \oplus \operatorname{Im}\varphi_B$.

设 $\operatorname{Ker}\varphi_A \cap \operatorname{Ker}\varphi_B$ 的一组基为 $\{e_{r+s+1}, \cdots, e_n\}$, 将其扩张为 $\operatorname{Ker}\varphi_A$ 的一组基 $\{e_{r+1}, \cdots, e_n\}$, 再将其扩张 为 $\operatorname{Ker}\varphi_B$ 的一组基 $\{e_1, \cdots, e_r, e_{r+s+1}, \cdots, e_n\}$. 根据推论??可知, $\{e_1, \cdots, e_n\}$ 恰好是 $V = \operatorname{Ker}\varphi_A + \operatorname{Ker}\varphi_B$ 的一组基. 又由推论??可知, Ae_1, \cdots, Ae_r 是 $\operatorname{Im}\varphi_A$ 的一组基, $Be_{r+1}, \cdots, Be_{r+s}$ 是 $\operatorname{Im}\varphi_B$ 的一组基. 因为 $\operatorname{Im}(\varphi_A + \varphi_B) = \operatorname{Im}\varphi_A \oplus \operatorname{Im}\varphi_B$, 所以 Ae_1, \cdots, Ae_r , $Be_{r+1}, \cdots, Be_{r+s}$ 线性无关, 从而可扩张为 U 的一组基

$$\{\boldsymbol{A}\boldsymbol{e}_1,\cdots,\boldsymbol{A}\boldsymbol{e}_r,\boldsymbol{B}\boldsymbol{e}_{r+1},\cdots,\boldsymbol{B}\boldsymbol{e}_{r+s},f_{r+s+1},\cdots,f_m\}.$$

最后容易验证 φ_A , φ_B 在 V 的一组基 $\{e_1, \dots, e_n\}$, U 的一组基 $\{Ae_1, \dots, Ae_r, Be_{r+1}, \dots, Be_{r+s}, f_{r+s+1}, \dots, f_m\}$ 下的表示矩阵即为所要求的矩阵.

2. 类似第1问的证明可得.