Data Science And Bussiness Analytics Intern At TheSparksFoundation

GRIPJAN21

Author- Rajat Kumar

Task 3:-Exploratory Data Analysis - Retail

Problem Statement:- From the given SampleSuperstore dataset my work is to find Business Problem and also find weak areas where I can work to make more profit.

Step 1: Importing Libraries

```
In [82]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Step 2: Reading The Dataset

In [83]:		<pre>sample=pd.read_csv("E:\TSF\Task3\samplesuperstore.csv") sample.head() # This command is used to load first five row of dataset</pre>													
Out[83]:		Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit	
	0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	2	0.00	41.9136	

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	3	0.00	219.5820
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	2	0.00	6.8714
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	5	0.45	-383.0310
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	2	0.20	2.5164

In [84]: sample.tail() # This command is used to load last five row of dataset.

Out[84]:

:	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnishings	25.248	3	0.2	4.1028
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings	91.960	2	0.0	15.6332
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Phones	258.576	2	0.2	19.3932
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	Paper	29.600	4	0.0	13.3200
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Appliances	243.160	2	0.0	72.9480

In [85]: sample.shape # This command will give total numbers of row and total number of columns in a array.

Out[85]: (9994, 13)

Step3: In this step I am checking type of data

In [86]: sample.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):
                  Non-Null Count Dtype
     Column
                   _____
     Ship Mode
                   9994 non-null
                                  obiect
 1
    Segment
                  9994 non-null
                                  object
                  9994 non-null
     Country
                                  object
                  9994 non-null
     City
                                  obiect
 4
     State
                  9994 non-null
                                  object
     Postal Code
                  9994 non-null
                                  int64
    Region
                  9994 non-null
                                  obiect
 7
     Category
                  9994 non-null
                                  object
    Sub-Category 9994 non-null
                                  object
 9
                  9994 non-null
                                  float64
     Sales
    Quantity
                  9994 non-null
 10
                                  int64
                  9994 non-null
 11 Discount
                                  float64
                  9994 non-null
 12 Profit
                                  float64
dtypes: float64(3), int64(2), object(8)
memory usage: 1015.1+ KB
```

In [87]: sample.describe() # This command will give some statistics Information such as mean, std, meadian etc.

Out[87]:		Postal Code	Sales	Quantity	Discount	Profit
	count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
	mean	55190.379428	229.858001	3.789574	0.156203	28.656896
	std	32063.693350	623.245101	2.225110	0.206452	234.260108
	min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
	25%	23223.000000	17.280000	2.000000	0.000000	1.728750
	50%	56430.500000	54.490000	3.000000	0.200000	8.666500
	75%	90008.000000	209.940000	5.000000	0.200000	29.364000
	max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

```
In [88]: sample.isnull().sum() # This command will give us any missiing value.
```

Out[88]: Ship Mode Segment 0

Country 0
City 0
State 0
Postal Code 0
Region 0
Category 0
Sub-Category 0
Sales 0
Quantity 0
Discount 0
Profit 0
dtype: int64

Step 4: Checking for the duplicate data, if yes then drop those dat.

In [89]: sample.duplicated().sum() # This command will give number of duplicate data.

Out[89]: 17

In [90]: sample.drop_duplicates() # Here I are trying to drop duplicate data.

Out[90]:

:		Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
	0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	2	0.00	41.9136
	1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	3	0.00	219.5820
	2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	2	0.00	6.8714
	3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	5	0.45	-383.0310
	4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	2	0.20	2.5164
9	989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnishings	25.2480	3	0.20	4.1028

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings	91.9600	2	0.00	15.6332
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Phones	258.5760	2	0.20	19.3932
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	Paper	29.6000	4	0.00	13.3200
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Appliances	243.1600	2	0.00	72.9480

9977 rows × 13 columns

```
In [91]: sample.nunique() # Here I am checking for unique data
```

```
Out[91]: Ship Mode
         Segment
                             3
         Country
                             1
         City
                           531
         State
                            49
         Postal Code
                           631
         Region
                             4
                             3
         Category
                            17
         Sub-Category
          Sales
                          5825
                            14
         Quantity
         Discount
                            12
         Profit
                          7287
         dtype: int64
```

Step 5:Dropping Unwanted Columns

```
In [92]: col=['Postal Code'] # Here we do not requried Postal code so we will drop this column.
    sample1=sample.drop(columns=col,axis=1)
```

Step 6: Finding the statical relation between various rows and columns.

In [93]:	<pre>sample1.corr()</pre>	# T+ will	give core	alation of	variahla	C							
111 [95]:	Sample1.com()	# IL WILL	give core	etation or	variable	5							
Out[93]:	Sales	Quantity	Discount	Profit									
	Sales 1.000000	0.200795 -	-0.028190	0.479064									
	Quantity 0.200795	1.000000	0.008623	0.066253									
	Discount -0.028190	0.008623	1.000000 -	0.219487									
	Profit 0.479064	0.066253 -	-0.219487	1.000000									
In [94]:	<pre>sample1.cov() a</pre>	# it will g	give covar	riance of v	ariable								
Out[94]:		Sales Qua	ntity Disc	count	Profit								
	Sales 388434.45	55308 278.45	9923 -3.62	27228 69944.0	096586								
	Quantity 278.45	59923 4.95	51113 0.00	34.5	534769								
	Discount -3.62	27228 0.00	3961 0.04	12622 -10.6	615173								
	Profit 69944.09	96586 34.53	4769 -10.61	15173 54877.7	798055								
In [95]:	sample1.head()	# It will	first fiv	ve row.									
Out[95]:	Ship Mode	Segment	Country	City	State	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit	
•	Second Class C	Consumer	United States	Henderson	Kentucky	South	Furniture	Bookcases	261.9600	2	0.00	41.9136	
	1 Second Class C	Consumer	United States	Henderson	Kentucky	South	Furniture	Chairs	731.9400	3	0.00	219.5820	
	2 Second Class C	Corporate	United States	Los Angeles	California	West	Office Supplies	Labels	14.6200	2	0.00	6.8714	
	3 Standard Class C	Consumer	United States	Fort Lauderdale	Florida	South	Furniture	Tables	957.5775	5	0.45	-383.0310	
	4 Standard Class	consumer	United States	Fort Lauderdale	Florida	South	Office Supplies	Storage	22.3680	2	0.20	2.5164	

In [96]:	samp	ole1.tail() #	t it will	give last	five row.								
Out[96]:		Ship Mode	Segment	Country	City	State	Region	Category	Sub-Category	Sales	Quantity	Discount	Profit
	9989	Second Class	Consumer	United States	Miami	Florida	South	Furniture	Furnishings	25.248	3	0.2	4.1028
	9990	Standard Class	Consumer	United States	Costa Mesa	California	West	Furniture	Furnishings	91.960	2	0.0	15.6332
	9991	Standard Class	Consumer	United States	Costa Mesa	California	West	Technology	Phones	258.576	2	0.2	19.3932
	9992	Standard Class	Consumer	United States	Costa Mesa	California	West	Office Supplies	Paper	29.600	4	0.0	13.3200
	9993	Second Class	Consumer	United States	Westminster	California	West	Office Supplies	Appliances	243.160	2	0.0	72.9480

Step 7: Data Visualization

```
In [97]: plt.figure(figsize=(16,8))
   plt.bar("Sub-Category", "Category", data=sample)
   plt.title("Category vs Sub Category")
   plt.xlabel("Sub-Catagory")
   plt.ylabel("category")
   plt.xticks(rotation=45)
   plt.show()
```


In [98]:	sample1	sample1.corr()								
Out[98]:		Sales	Quantity	Discount	Profit					
	Sales	1.000000	0.200795	-0.028190	0.479064					
	Quantity	0.200795	1.000000	0.008623	0.066253					
	Discount	-0.028190	0.008623	1.000000	-0.219487					
	Profit	0.479064	0.066253	-0.219487	1.000000					

Step 8: With the help of histogram I have represented four variables.

In [100... # In this step we want to count total repaeatable state in our dataset.
 sample1["State"].value_counts()

Out[100	California New York Texas Pennsylvania Washington Illinois Ohio Florida Michigan North Carolina Virginia Arizona Georgia Tennessee Colorado Indiana Kentucky Massachusetts New Jersey Oregon Wisconsin Maryland Delaware Minnesota Connecticut Oklahoma Missouri Alabama Arkansas Rhode Island	2001 1128 985 587 506 492 469 383 255 249 224 184 183 182 149 139 135 130 124 110 105 96 89 82 66 61 60 56
	Mississippi South Carolina	53 42

Louisiana Nevada	42 39
Nebraska	38
New Mexico	37
Iowa	30
New Hampshire	27
Kansas	24
Idaho	21
Montana	15
South Dakota	12
Vermont	11
District of Columbia	10
Maine	-8
North Dakota	7
West Virginia	4
Wyoming	i
Name: State, dtype: int64	-

Step 9: In this step we will plot above state in the form graphical representation.

```
In [101... plt.figure(figsize=(10,10))
    sns.countplot(x=sample1["State"])
    plt.xticks(rotation=90)
    plt.title("STATE")
    plt.show()
```


Step 10: Profit and Discount Relation

```
In [102... sns.lineplot(x='Discount',y='Profit',label='Profit',data=sample)
    plt.legend()
    plt.show()
```


Step 11: Profit and Quantity Relation

Quantity

Step 12:Segment Wise Sales in each Region

```
plt.figure(figsize=(12,8))
   plt.title(" Segment Wise Sales in Each Region ")
   sns.barplot(x='Region',y='Sales',data=sample,hue='Segment',order=sample['Region'].value_counts().index,palette='rocket
   plt.xlabel('Region',fontsize=25)
   plt.ylabel('Sales',fontsize=25)
   plt.show()
```


Step 13:Profit/Loss and Sales by States

```
In [105... ps=sample.groupby('State')[['Sales','Profit']].sum().sort_values(by='Sales',ascending=False)
    ps[:].plot.bar(color=['red','green'],figsize=(25,12))
    plt.title('Profit/Loss and Sales across States')
    plt.xlabel('States',fontsize=25)
    plt.ylabel('Profit/Loss and Sales ',fontsize=25)
    plt.show()
```


Step 14: Profit/Loss and Sales by Sub Category

```
In [106... ps=sample.groupby('Sub-Category')[['Sales','Profit']].sum().sort_values(by='Sub-Category',ascending=False)
    ps[:].plot.bar(color=['red','green'],figsize=(25,12))
    plt.title('Profit/Loss and Sales across Sub-Category')
    plt.xlabel('Sab-Category',fontsize=15)
    plt.ylabel('Profit/Loss and Sales ',fontsize=15)
    plt.show()
```


Conclusion Based on above plots:

- 1: Based on Category:- From Plot we can say that technology products are having higher sales and higher profit compare to other category. for furniture products improvement is needed also try towards margin for the profit should increase.
- 2: Based upon segment:- sales and profit both are high in consumer segment so major focus sould be there to maintain it. and in home and office segment sales are low and due to that profit is also low so it should be improvewise with good streteg.

3: Based upon product:- Tables are facing loss as product so discount and offer shouls be optimised copies are good profit with excellent number of sales so it should be continue where sales is very low that produts are of office category so there is need of good stretegy.

Thnak You