

Deep Reinforcement Learning

Professor Mohammad Hossein Rohban

Homework 1:

Introduction to RL

Ву:

Parsa Ghezelbash 401110437

Contents

1	Task 1:	Solving Predefined Environments [45-points]	1
2	Task 2:	Creating Custom Environments [45-points]	4
3	Task 3:	Pygame for RL environment [20-points]	7

Grading

The grading will be based on the following criteria, with a total of 100 points:

Task	Points
Task 1: Solving Predefined Environments	45
Task 2: Creating Custom Environments	45
Clarity and Quality of Code	5
Clarity and Quality of Report	5
Bonus 1: Writing a wrapper for a known env	10
Bonus 2: Implementing pygame env	20
Bonus 3: Writing your report in Latex	10

Notes:

- Include well-commented code and relevant plots in your notebook.
- Clearly present all comparisons and analyses in your report.
- Ensure reproducibility by specifying all dependencies and configurations.

1 Task 1: Solving Predefined Environments [45-points]

Objective

Train reinforcement learning agents to solve predefined Gymnasium environments (CartPole-v1 and Taxi-v3) using PPO and DQN algorithms. Custom reward wrappers were implemented to address sparse rewards and improve learning efficiency.

Approach

- Environment Setup: Used built-in Gymnasium environments with custom reward wrappers.
- Reward Engineering:
 - Modified rewards to provide dense feedback during training.
 - Added penalties for undesirable behaviors (e.g., large pole angles in CartPole-v1, long paths in Taxi-v3).
- **Hyperparameter Tuning**: Explored different combinations of learning rates, discount factors, and exploration parameters.

Implementation

General Framework

The following components were implemented for both environments:

- EpisodeTracker: Tracks episode rewards and lengths.
- MetricsCollectorCallback: Collects training metrics for analysis.
- train_hyperparams: Trains models with different hyperparameter combinations.
- plot_hyperparam_results: Visualizes training progress.

Custom Reward Wrappers

CartPole-v1

```
class CustomRewardWrapper(RewardWrapper):
    def reward(self, reward):
        obs = self.env.unwrapped.state
        if obs is None:
            obs = self.env.unwrapped._get_obs()
        pole_angle = obs[2]
        return reward - 0.1 * abs(pole_angle)
```

Modifications:

Added a penalty proportional to the pole angle to discourage large deviations.

Taxi-v3

Modifications:

- Added a penalty for distance to the destination when carrying the passenger.
- Amplified the reward for successful dropoffs.

Results

CartPole-v1

- Standard Rewards:
 - PPO: Achieved a maximum reward of 500 (environment limit).
 - DQN: Achieved a maximum reward of 415.
- Modified Rewards:
 - PPO: Achieved a maximum reward of 500 (environment limit).
 - DQN: Achieved a maximum reward of 498.

Taxi-v3

- Standard Rewards:
 - PPO: Achieved a maximum reward of -12.
 - DQN: Achieved a maximum reward of -38.
- Modified Rewards:
 - PPO: Achieved a maximum reward of -10.3.
 - DQN: Achieved a maximum reward of -69.7.

Analysis

- Custom Rewards: Improved learning efficiency by providing intermediate feedback.
- Hyperparameter Tuning: Critical for achieving optimal performance.
- Algorithm Comparison: PPO outperformed DQN.

Visualization

- Training curves for rewards and episode lengths were plotted for each algorithm and reward configuration.
- Best-performing configurations were compared to identify optimal hyperparameters.

2 Task 2: Creating Custom Environments [45-points]

Objective

Design and train reinforcement learning agents on a custom grid-world environment with obstacles. The goal was to navigate from a start position to a goal while avoiding blocked cells.

Environment Design

- **State Space**: 2D grid positions (agent and goal) → 4D observation.
- Action Space: 4 discrete actions (up, down, left, right).
- Rewards:
 - Step penalty: -0.1 per step.
 - Progress bonus: $+0.5 \times (\text{previous distance} \text{current distance})$.
 - Goal reward: +10 for reaching the goal.
- **Obstacles**: Fixed blocked positions at (1,1) and (2,2).
- Termination:
 - Reaching the goal.
 - Exceeding the maximum steps (200).

Implementation

Custom Environment Class

```
class YourAwesomeEnvironment(gym.Env):
    def __init__(self) -> None:
        super().__init__()
        self.action_space = spaces.Discrete(4)
        self.observation_space = spaces.Box(
            low=np.array([0, 0]), high=np.array([3, 3]), dtype=int
        )
        self.grid_size = 4
        self.start_pos = (0, 0)
        self.goal_pos = (3, 3)
        self.blocked_positions = [(1, 1), (2, 2)]
        self.state = self.start pos
        self.max_steps = 200
        self.current_steps = 0
        self.prev dist = None
    def step(self, action):
        x, y = self.state
        if action == 0: x = max(x - 1, 0)
```

```
elif action == 1: x = min(x + 1, self.grid_size - 1)
elif action == 2: y = max(y - 1, 0)
elif action == 3: y = min(y + 1, self.grid size - 1)
if (x, y) in self.blocked positions:
   x, y = self.state
self.state = (x, y)
terminated = (x, y) == self.goal_pos
self.current steps += 1
truncated = self.current_steps >= self.max_steps
goal_dist = abs(x - self.goal_pos[0]) + abs(y - self.goal_pos[1])
reward = -0.1
if self.prev dist is not None:
   progress_bonus = 0.5 * (self.prev_dist - goal_dist)
   reward += progress_bonus
if terminated:
   reward += 10.0
self.prev_dist = goal_dist
return np.array(self.state, dtype=int), reward, terminated, truncated, {}
```

Training Setup

- Algorithms: PPO and DQN.
- Hyperparameters:
 - PPO: Default parameters with learning_rate=3e-4.
 - DQN: Default parameters with learning_rate=1e-3.
- Training Duration: 30,000 timesteps.
- **Evaluation**: 100 episodes with deterministic policy.

Results

- PPO:
 - Success Rate: 100%.
 - Average Episode Length: 6 steps.
- DQN:
 - Success Rate: 0%.
 - Average Episode Length: 200 steps (truncation limit).

Analysis

• PPO Performance:

- Learned optimal paths around obstacles.
- Achieved perfect success rate due to effective reward shaping.

• DQN Performance:

- Failed to learn meaningful policies.
- Likely due to insufficient exploration or hyperparameter tuning.

• Reward Shaping:

- Progress bonus encouraged efficient navigation.
- Step penalty prevented infinite loops.

Visualization

• Training Curves:

- PPO rewards increased steadily, reaching the maximum.
- DQN rewards remained flat, indicating no learning.

• Agent Paths:

- PPO consistently reached the goal while avoiding obstacles.
- DQN often got stuck or collided with obstacles.

3 Task 3: Pygame for RL environment [20-points]