线性规划的对偶理论

- 一、对偶问题的提出
- 二、线性规划的对偶理论
- 三、对偶单纯形法

一、对偶问题的提出

- * 什么是对偶?
 - 对同一事物(或问题),从不同的角度(或立场)提出相对的两种不同的表述。
- ❖ 例如: 在平面内,矩形的面积与其周长之间的关系,有两种不同的表述方法。
 - 周长一定,面积最大的矩形是正方形。
 - 面积一定,周长最短的矩形是正方形。
- ❖ 这种表述有利于加深对事物的认识和理解。
- * 线性规划问题也有对偶关系。

• 例 某工厂在计划期内要安排生产 I 、II 两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如下表所示。

产品	I	II	拥有量
资源 设 备	1	2	8台时
原材料 A	4	0	16 kg
原材料 B	0	4	12 kg

每生产一件产品 I 可获利2元,每生产一件产品 I 可获利3元, 问应如何安排计划使该工厂获利最多?

简单的线性规划模型为:

- * 从对偶的角度来看:
 - ●假设该工厂的决策者决定不生产产品I、II,而将其所有资源出租或外售。这时工厂的决策者就要考虑给每种资源如何定价的问题。
 - 设用y₁, y₂, y₃分别表示出租单位设备台时的租金和出 让单位原材料A, B的附加额。

- 他在做定价决策时,做如下比较:若用1个单位设备台时和4个单位原材料A可以生产一件产品I,可获利2元,那么生产每件产品I的设备台时和原材料出租或出让的所有收入应不低于生产一件产品I的利润,这就有y₁+4y₂≥2.
- 。同理将生产每件产品Ⅱ的设备台时和原材料出租或出让的所有收入应不低于生产一件产品Ⅱ的利润,这就有

$$2y_1 + 4y_3 \ge 3$$

• 把工厂所有设备台时和资源都出租或出让,其收入为

$$w = 8y_1 + 16y_2 + 12y_3$$

从工厂的决策者来看当然w愈大愈好;但受到接受方的制约,从接受者来看他的支付愈少愈好,所以工厂的决策者只能在满足大于等于所有产品的利润条件下,提出一个尽可能低的出租或出让价格,才能实现其原意,为此需解如下的线性规划问题:

min
$$w=8y_1+16y_2+12y_3$$

$$y_1+4y_2 \ge 2$$

$$2y_1 +4y_3 \ge 3$$

$$y_i \ge 0, i=1,2,3$$
(1)

称这个线性规划问题为原线性规划问题(这里称为原问题)的对偶问题。这就是从另一角度提出的线性规划问题。

二、线性规划的对偶理论

- 1、原问题与对偶问题的关系
- 原线性规划问题: {max *z=CX* | *AX*≤*b*, *X*≥0}
- 对偶规划问题: { min w=Yb | YA≥C Y≥0 }

目标函数
$$\max z = 2x_1 + 3x_2$$
 $\min w = 8y_1 + 16y_2 + 12y_3$ $y_1 + 4y_2 \ge 2$ 约束条件:
$$\begin{cases} x_1 + 2x_2 \le 8 & y_1 + 4y_2 \ge 2 \\ 4x_1 & \le 16 \\ 4x_2 \le 12 & y_i \ge 0, i = 1, 2, 3 \\ x_1, x_2 \ge 0 \end{cases}$$

❖原问题(LP):

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} \leq \begin{pmatrix}
b_1 \\
\vdots \\
b_m
\end{pmatrix}$$

$$x_1, x_2, \cdots, x_n \ge 0$$

* 对偶问题(DP)

$$\min \omega = y_1 b_1 + y_2 b_2 + \dots + y_m b_m$$

$$(y_1, y_2, \dots, y_m) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \ge (c_1, c_2, \dots, c_n)$$

$$y_1, y_2, \dots, y_n \ge 0$$

❖原问题与对偶问题的标准形式(对称形式)

x_j	x_1	X_2	•••	\mathcal{X}_n	原关系	$\min \omega$
$\overline{y_1}$	a_{11}	a_{12}	• • •	a_{1n}	<u> </u>	b_1
${\cal Y}_2$	a_{21}	a_{22}	• • •	a_{2n}	<u>≤</u>	b_2
•	•	•	• • •	•	•	•
${\mathcal Y}_m$	a_{m1}	a_{m2}	• • •	a_{mn}	<u> </u>	$b_{\scriptscriptstyle m}$
对偶关系	<u>></u>	>	• • •	>		
maxz	c_1	c_2	• • •	C_n	maxz =	$\min \omega$

- * 非对称形式的变换关系
 - 原问题的约束条件中含有等式约束条件时,按以下 步骤处理。
 - 设等式约束条件的线性规划问题为

$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, & i = 1, 2, \dots m \\ x_{j} \ge 0, j = 1, 2, \dots, n \end{cases}$$

第一步: 先将等式约束条件分解为两个不等 式约束条件

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & i = 1, 2, \dots, m \\ \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & i = 1, 2, \dots, m \\ x_{j} \geq 0, j = 1, 2, \dots, n \end{cases} \Rightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & i = 1, 2, \dots, m \\ & \downarrow \\ -\sum_{j=1}^{n} a_{ij} x_{j} \leq -b_{i} & i = 1, 2, \dots, m \end{cases}$$

- 第二步: 按对称形式变换关系可写出它的对偶问题
 - 口设 y_i '是对应(2)式的对偶变量, y_i "是对应(3)式的对偶变量,i=1,2,...,m

$$\min \omega = \sum_{i=1}^{m} b_{i} y_{i}^{'} + \sum_{i=1}^{m} (-b_{i} y_{i}^{"})$$

$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_{i}^{'} + \sum_{i=1}^{m} (-a_{ij} y_{i}^{"}) \ge c_{j}, j = 1, 2, \dots n \\ y_{i}^{'}, y_{i}^{"} \ge 0, \quad i = 1, 2, \dots m \end{cases}$$

将上述规划问题的各式整理后得到

$$\min \omega = \sum_{i=1}^{m} b_{i} (y'_{i} - y''_{i})$$

$$\sum_{i=1}^{m} a_{ij} (y'_{i} - y''_{i}) \ge c_{j}, \quad j = 1, 2, \dots, n$$

$$y'_{i}, y''_{i} \ge 0$$

综合上述,线性规划的原问题与对偶问题的关系可表示为:

原问题(或对偶问题)	对偶问题(或原问题)		
目标函数maxz	目标函数min ω		
「 n↑	n个)约		
变 ≥ 0	≥		
量 ≤ 0	≤ {条		
无约束	=		
约〔m个	$m \uparrow$		
東∫≤	≥0		
条	≤0		
件 (=	无约束		
约束条件右端项	目标函数变量的系数		
目标函数变量的系数	约束条件右端项		

例 试求下述线性规划原问题的对偶问题

min
$$z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 \ge 5 \\ 2x_1 + 2x_3 - x_4 \le 4 \end{cases}$$

$$\begin{cases} x_2 + x_3 + x_4 = 6 \\ x_1 \le 0, x_2, x_3 \ge 0, \quad x_4$$
 无约束

由原问题和对偶问题的对应关系,可以直接写出上述问题的对偶问题,

$$max \ z' = 5y_1 + 4y_2 + 6y_3$$

$$\begin{cases} y_1 + 2y_2 & \geq 2 \\ y_1 & + y_3 \leq 3 \\ -3y_1 + 2y_2 + y_3 \leq -5 \\ y_1 & -y_2 + y_3 = 1 \\ y_1 \geq 0, y_2 \leq 0, y_3$$
无约束

2. 对偶问题的基本性质

- 原线性规划问题: $\{\max z=CX \mid AX \leq b, X \geq 0\}$
- 对偶规划问题: $\{ \min w = Yb \mid YA \geq C \quad Y \geq 0 \}$

1. 对称性:对偶问题的对偶是原问题

证明: 设原问题是

 $\max z = CX$; $AX \le b$; $X \ge 0$

根据对偶问题的对称变换关系,可以找到它的对偶问题是

min w=Yb; $YA \ge C$; $Y \ge 0$

若将上式两边取负号,又因-min $w=\max(-\omega)$ 可得到

$$\max(-w)=-Yb; -YA \le -C; Y \ge 0$$

根据对称变换关系,得到上式的对偶问题是

$$\min(-w') = -CX; -AX \ge -b; X \ge 0$$

又因 min(-w')=-max w', 可得

 $\max w' = \max z = CX; \quad AX \le b; X \ge 0$

这就是原问题。

2. 弱对偶性:

若 \overline{X} 是 max 问题的可行解, \overline{Y} 是 min 问题的可行解则存在 $C\overline{X} \leq \overline{Y}b$

证明:设原问题是 $\max z = CX$; $AX \le b$; $X \ge 0$ 因 \overline{X} 是原问题的可行解,所以满足约束条件,即 $A\overline{X} \le b$

若 \overline{Y} 是对偶问题的可行解,将 \overline{Y} 左乘上式,得到 $\overline{Y}A\overline{X} \leq \overline{Y}b$

原问题的对偶问题是: min $\omega = Yb$; $YA \ge C$; $Y \ge 0$ 因 \overline{Y} 是对偶问题的可行解,所以满足 $\overline{Y}A \ge C$ 将 \overline{X} 右乘上式,得到 $\overline{Y}A\overline{X} \ge C\overline{X}$ 于是得到 $C\overline{X} \le \overline{Y}A\overline{X} \le \overline{Y}b$

• 3. 无界性: 若max问题为无界解,则min问题无可行解

• 注意:这个性质不存在逆。即min问题无可行解时,max问题可能无界解或无可行解

$$DP: \qquad LP: \\ \max z = x_1 + x_2 \qquad \min \omega = -y_1 - y_2 \\ \begin{cases} x_1 - x_2 \le -1 \\ -x_1 + x_2 \le -1 \end{cases} \Leftarrow \begin{cases} y_1 - y_2 \ge 1 \\ -y_1 + y_2 \ge 1 \\ y_1, y_2 \ge 0 \end{cases}$$

皆无可行解

• 4. 可行解是最优解时的性质

设 \hat{X} 是max问题的可行解, \hat{Y} 是min问题的可行解, 当 $\hat{CX} = \hat{Y}b$ 时, \hat{X},\hat{Y} 是最优解。

证: 若 $C\hat{X} = \hat{Y}b$,根据性质2可知,min问题的所有可行解 \overline{Y} 都存在 $\overline{Y}b \geq C\hat{X}$;因 $C\hat{X} = \hat{Y}b$, 所以 $\overline{Y}b \geq \hat{Y}b$.可见是使目标函数取值最小的可行解,因而是最优解.

同理可证明,对原问题的所有可行解 \overline{X} ,存在 $C\hat{X} = \hat{Y}b \ge C\overline{X}$,所以是最优解.

5. 对偶定理: 若原问题有最优解,那么 对偶问题也有最优解;且目标函数值相等。

证:设 \hat{X} 是原问题的最优解,它对应的基矩阵B, 必存在 $C-C_BB^{-1}A\leq 0$,即得到 $\hat{Y}A\geq C$,其中 $\hat{Y}=C_BB^{-1}$.

即 \hat{Y} 是对偶问题的可行解,使得 $\omega = \hat{Y}b = C_B B^{-1}b$,因原问题的 \hat{X} 是最优解,使目标函数取值 $z = C\hat{X} = C_B B^{-1}b$,由此,得到 $\hat{Y}b = C_B B^{-1}b = C\hat{X}$,可见 \hat{Y} 是对偶问题的最优解。

• 例. 已知线性规划问题

max
$$z=x_1+x_2$$

 $-x_1+x_2+x_3 \le 2$
 $-2x_1+x_2-x_3 \le 1$
 $x_1,x_2,x_3 \ge 0$

试用对偶理论证明上述线性规划问题无最优解。

证: 首先容易验证该问题存在可行解,例如(0,0,0)

• 上述问题的对偶问题为

由约束条件可知对偶问题无可行解;原问题虽然有可行解,但无最优解。

• 6. 互补松弛性

若 \hat{X} , \hat{Y} 分别为原问题和对偶问题的可行解, 那么 $\hat{Y}X_S = 0$ 和 $Y_S\hat{X} = 0$;当且仅当, \hat{X} , \hat{Y} 为最优解。

证: 设原问题和对偶问题的标准关系是

原问题 对偶问题

 $max \ z = CX$ $min \ \omega = Yb$

 $AX + X_S = b$ $YA - Y_S = C$

 $X, X_S \ge 0$ $Y, Y_S \ge 0$

将原问题目标函数中的系数向量C用 $C=YA-Y_S$ 代替后,得到 $z=(YA-Y_S)X=YAX-Y_SX$ (4)

将对偶问题的目标函数中系数列向量b,用 $b=AX+X_S$ 代替后,得到 $w=Y(AX+X_S)=YAX+YX_S$ (5)

- 若 $Y_S \hat{X} = 0$, $\hat{Y}X_S = 0$; 则 $\hat{Y}b = \hat{Y}A\hat{X} = C\hat{X}$, 由性质4,可知 \hat{X} , \hat{Y} 是最优解。
- 又若 \hat{X} , \hat{Y} 分别是原问题和对偶问题的最优解,根据性质5,则有 $\hat{C}\hat{X} = \hat{Y}\hat{A}\hat{X} = \hat{Y}\hat{b}$ 由(4),(5)式可知,必有 $\hat{Y}X_s = 0, Y_s\hat{X} = 0$

• 例. 已知线性规划问题

min
$$w=2x_1+3x_2+5x_3+2x_4+3x_5$$

 $x_1+x_2+2x_3+x_4+3x_5 \ge 4$
 $2x_1-x_2+3x_3+x_4+x_5 \ge 3$
 $x_j \ge 0$, $j=1$, 2, ..., 5

已知其对偶问题的最优解为 $y_1^*=4/5$, $y_2^*=3/5$; z=5。试用对偶理论找出原问题的最优解。

$$y_1 * x_6 = y_2 * x_7 = 0$$

• 解: 先写出它的对偶问题

$$\max z = 4y_1 + 3y_2$$

$$y_1 + 2y_2 \le 2$$

1

$$y_1 - y_2 \le 3$$

2

$$2y_1 + 3y_2 \le 5$$

3

$$y_1 + y_2 \leq 2$$

4

$$3y_1 + y_2 \le 3$$

(5)

$$y_1, y_2 \ge 0$$

 $y_3 * x_1 = y_4 * x_2 = y_5 * x_3 = y_6 * x_4 = y_7 * x_5 = 0$

将y₁* =4/5,y₂* =3/5的值代入约束条件,

得②=1/5<3, ③=17/5<5, ④=7/5<2-----它们为严格不等式;

由互补松弛性得

$$x_2^* = x_3^* = x_4^* = 0$$

因y*1, y*2>0; 原问题的两个约束条件应取等式,

故有
$$x_1^* + 3x_5^* = 4$$
,

$$2x_1^* + x_5^* = 3$$

求解后得到x₁*=1,x₅*=1; 故原问题的最优解为

$$X^*=(1, 0, 0, 0, 1)^T; w^*=5$$

• 7. 原问题检验数与对偶问题解的关系

设原问题是 $\max z=CX$; $AX+X_S=b$; $X,X_S\geq 0$

它的对偶问题是 min w=Yb; $YA-Y_S=C$; $Y,Y_S\ge 0$

则原问题单纯形表的检验数行对应其对偶问题的一个基 解,其对应关系见下表

原问题	$X_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle N}$	$X_{\scriptscriptstyle S}$
检验数	0	$C_N - C_B B^{-1} N$	$-C_BB^{-1}$
对偶问题	Y_{S1}	$-Y_{S2}$	-Y

 Y_{S1} 是对应原问题中基变量 X_B 的剩余变量, Y_{S2} 是对应原问题中非基变量 X_N 的剩余变量。

证:设B是原问题的一个可行基,于是A=(B,N);原问题可改写为

$$\max z = C_B X_B + C_N X_N$$

$$BX_B + NX_N + X_S = b$$

$$X_B, X_N, X_S \ge 0$$

相应地对偶问题可表示为

 $\min w = Yb$

$$YB - Y_{S1} = C_B \tag{6}$$

$$YN - Y_{S2} = C_N \tag{7}$$

$$Y, Y_{S1}, Y_{S2} \ge 0$$

这里 $Y_S = (Y_{S1}, Y_{S2})$ 。

当求得原问题的一个解:

$$X_B = B^{-1}b$$

其相应的检验数为

$$C_N - C_B B^{-1} N = -C_B B^{-1}$$

现分析这些检验数与对偶问题的解之间的关系:令 $Y=C_BB^{-1}$,

将它代入(6)式, (7)式得

$$Y_{S1}=0, -Y_{S2}=C_N-C_BB^{-1}N$$

六、对偶单纯形法

- ❖ 原问题与对偶问题的解之间的对应关系: 在单纯形表中进行迭代时,在b列中得到的是原问题的基可行解, 而在检验数行得到的是对偶问题的基解。
- ❖ 通过逐步迭代,当在检验数行得到对偶问题的解也是基可行解时,根据性质4、5可知,已得到最优解,即原问题与对偶问题都是最优解。

• 根据对偶问题的对称性,可以这样考虑:若保持对偶问题的解是基可行解,即 c_j - C_B B- 1 P $_j$ <0,而原问题在非可行解的基础上,通过逐步迭代达到基可行解,这样也得到了最优解。其优点是原问题的初始解不一定是基可行解,可从非基可行解开始迭代。

• 设原问题为

$$\max z = CX$$

$$AX = b$$

$$X \ge 0$$

又设B是一个基。不失一般性,令 $B=(P_1, P_2, ..., P_m)$,它对应的变量为 $X_B=(x_1, x_2, ..., x_m)$ 。

当非基变量都为零时,可以得到 $X_B=B^{-1}b$ 。若在 $B^{-1}b$ 中至少有一个负分量,设 $(B^{-1}b)_i$ <0,并且在单纯形表的检验数行中的检验数都为非正,即对偶问题保持可行解,它的各分量是

(1) 对应基变量 x_1 , x_2 , ..., x_m 的检验数是

$$\sigma_i = c_i - z_i = c_i - C_B B^{-1} P_j = 0, \quad i = 1, 2, ..., m$$

(2) 对应非基变量 x_{m+1} , ..., x_n 的检验数是

$$\sigma_{j} = c_{j} - z_{j} = c_{j} - C_{B}B^{-1}P_{j} \le 0, \quad j = m+1,...,n$$

每次迭代是将基变量中的负分量x_l取出,去替换非基变量中的x_k,经基变换,所有检验数仍保持非正。从原问题来看,经过每次迭代,原问题由非可行解往可行解靠近。当原问题得到可行解时,便得到了最优解。

对偶单纯形法的计算步骤

- (1) 对线性规划问题进行变换,使列出的初始单纯形表中所有检验数都小于等于0(非正),即得到对偶问题的基可行解。
- (2) 检查*b*列的数字,若都为非负,检验数都为非正,则已得到最优解。停止计算。若检查*b*列的数字时,至少还有一个负分量,检验数保持非正,那么进行以下计算。
- (3) 确定换出变量。按min $\{(B^{-1}b)_i \mid (B^{-1}b)_i < 0 = (B^{-1}b)_l$ 对应的基变量 x_i 为换出变量。

(4) 确定换入变量。在单纯形表中检查 x_l 所在行的各系数 $\alpha_{lj}(j=1,2,...,n)$ 。若所有 $\alpha_{lj}\geq 0$,则无可行解,停止 计算。若存在 $\alpha_{li}<0$ (j=1,2,...,n),计算

$$\theta = \min_{j} \left(\frac{c_j - z_j}{a_{lj}} \middle| a_{lj} < 0 \right) = \frac{c_k - z_k}{a_{lk}}$$

按 θ 规则所对应的列的非基变量 x_k 为换入变量,这样才能保持得到的对偶问题解仍为可行解。

(5) 以 α_{lk} 为主元素,按原单纯形法在表中进行迭代运算,得到新的计算表。

重复步骤(2)~(5)。

• 例 用对偶单纯形法求解

min
$$w=2x_1+3x_2+4x_3$$

 $x_1+2x_2+x_3 \ge 3$
 $2x_1-x_2+3x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

解: 先将此问题化成下列形式,以便得到对偶问题的初始可行基

$$\max z = -2x_1 - 3x_2 - 4x_3$$

$$-x_1 - 2x_2 - x_3 + x_4 = -3$$

$$-2x_1 + x_2 - 3x_3 + x_5 = -4$$

$$x_j \ge 0, \quad j = 1, 2, ..., 5$$

• 建立此问题的初始单纯形表:

Cj→			-2	-3	-4	0	0
$C_{\rm B}$	X_{B}	b	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	X_4	X_5
0	X_4	-3	-1	-2	-1	1	0
0	X_5	-4	[-2]	1	-3	0	1
С ј- Z ј			-2	-3	-4	0	0

从表中看到,检验数行对应的对偶问题的解是可行解。 因b列数字为负,故需进行迭代运算。

• 换出变量的确定:

按上述对偶单纯形法计算步骤(3), 计算

$$min(-3, -4) = -4$$

故 x_5 为换出变量。

• 换入变量的确定:

按上述对偶单纯形法计算步骤(4), 计算

$$\theta = \min\left(\frac{-2}{-2}, -, \frac{-4}{-3}\right) = \frac{-2}{-2} = 1$$

故x₁为换入变量。

换入、换出变量的所在列、行的交叉处"-2"为主元素。按单纯形法计算步骤进行迭代,得

	cj→		-2	-3	-4	0	0
C_{B}	X_{B}	b	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	X_4	X_5
0	X 4	-1	0	[-5/2]	1/2	1	-1/2
-2	X_1	2	1	-1/2	3/2	0	-1/2
	C_{j} – Z_{j}		0	-4	-1	0	-1

由上表看出,对偶问题仍是可行解,而 b 列中仍有负分量。 故重复上述迭代步骤,得

Cj→			-2	-3	-4	0	0
C_{B}	X_{B}	b	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	X_4	X_5
-3	\mathbf{X}_2	2/5	0	1	-1/5	-2/5	1/5
-2	\mathbf{X}_1	11/5	1	0	7/2	-1/5	-2/5
С ј-Z ј			0	0	-9/5	-8/5	-1/5

上表中,b列数字全为非负,检验数全为非正,故问题的最优解为

$$X^* = (11/5, 2/5, 0, 0, 0)^T$$

若对应两个约束条件的对偶变量分别为y₁和y₂,则对偶问题的最优解为

$$Y^* = (y_1^*, y_2^*) = (8/5, 1/5)$$