

CBIC 2017

XIII CONGRESSO BRASILEIRO DE INTELIGÊNCIA COMPUTACIONAL

NITERÓI, RIO DE JANEIRO - 30/10/2017 16:00

Evolução Diferencial Multiobjetivo Híbrido com *K-Means* e NSGA II: Uma Análise Comparativa frente ao NSGA III

Ciniro Ap. Leite Nametala – Departamento de Engenharia e Computação (IFMG) Gisele Lobo Pappa – Departamento de Ciências da Computação (UFMG) Eduardo Gontijo Carrano – Departamento de Engenharia Elétrica (UFMG)

Cronograma da Apresentação

- Visão geral do algoritmo híbrido
- NSGA III
- Set de problemas de teste
- Resultados e análise comparativa
- Conclusões

Indivíduos selecionados...

TARGET

Se não.. target é o escolhido..

Taxa de Cruzamento: 90%

Se sim, sorteia quem será escolhido...

Taxa de Cruzamento: 90%

TRIAL 50%

Trial = 10%

Aplicando competição...

NOVO INDIVIDUO

PRIMEIRO INDIVIDUO

DA POPULAÇÃO ANTERIOR

Aplicando competição...

Convergindo geração a geração...

Convergindo geração a geração...

Convergindo geração a geração...

Quantidade de Gerações

Cronograma da Apresentação

- Visão geral do algoritmo híbrido
- NSGA III
- Set de problemas de teste
- Resultados e análise comparativa
- Conclusões

An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints

Kalyanmoy Deb, Fellow, IEEE, and Himanshu Jain

Scalable Test Problems for Evolutionary Multi-Objective Optimization

Kalyanmoy Deb

Kanpur Genetic Algorithms Laboratory Indian Institute of Technology Kanpur PIN 208 016, India deb@iitk.ac.in

Lothar Thiele, Marco Laumanns and Eckart Zitzler

Computer Engineering and Networks Laboratory ETH Zürich CH-8092, Switzerland {thiele,laumanns,zitzler}@tik.ee.ethz.ch

TIK-Technical Report No. 112 Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich Gloriastrasse 35., ETH-Zentrum, CH-8092, Zürich, Switzerland An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based
Nondominated Sorting Approach,
Part I. Solving Problems With Box Constraints

Kalyanmoy Deb, Fe

Dealarde Test Problems

Kalyanmoy Deb

Lothar Thiele, Marco Laumanns and Eckart Zitzler

Computer Engineering and Networks Laboratory ETH Zürich CH-8092, Switzerland {thiele,laumanns,zitzler}@tik.ee.ethz.ch

TIK-Technical Report No. 112 Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich Gloriastrasse 35., ETH-Zentrum, CH-8092, Zürich, Switzerland

Cronograma da Apresentação

- Visão geral do algoritmo híbrido
- NSGA III
- Set de problemas de teste
- Resultados e análise comparativa
- Conclusões

Set de Problemas

Figura 1. Fronteiras Pareto-ótimas para 2 objetivos e 20 soluções

Cronograma da Apresentação

- Visão geral do algoritmo híbrido
- NSGA III
- Set de problemas de teste
- Resultados e análise comparativa
- Conclusões

Tabela: IGDs e IGD-m comparativo

Objetivos	Max Gerações	NSGA III	Híbrido
3	400	Melhor: 4.888 x 10 ⁻⁴ Médio: 1.308 x 10 ⁻³ Pior: 4.880 x 10 ⁻³	Melhor: 2.490×10^{-2} Médio: 6.855×10^{-2} Pior: 2.936×10^{-1}
5	600	Melhor: 5.116×10^{-4} Médio: 9.799×10^{-4} Pior: 1.979×10^{-3}	Melhor: 6.287 x 10 ⁻² Médio: 6.6477 x 10 ⁻² Pior: 6.762 x 10 ⁻²

Plot 1: 3 objetivos

Plot 2: 5 objetivos

DTLZ2 Pareto Front

Tabela: IGDs e IGD-m comparativo

Objetivos	Max Gerações	NSGA III	Híbrido
3	250	Melhor: 1.262×10^{-3} Médio: 1.357×10^{-3} Pior: 2.114×10^{-3}	Melhor: 6.769×10^{-2} Médio: 7.265×10^{-2} Pior: 7.806×10^{-2}
5	350	Melhor: 4.254×10^{-3} Médio: 4.982×10^{-3} Pior: 5.862×10^{-3}	Melhor: 2.026×10^{-1} Médio: 2.107×10^{-1} Pior: 2.248×10^{-1}

Plot 1: 3 objetivos

Plot 2: 5 objetivos

Cronograma da Apresentação

- Visão geral do algoritmo híbrido
- NSGA III
- Set de problemas de teste
- Resultados e análise comparativa
- Conclusões

Conclusões

- Velocidade de convergência equivalente para 3 objetivos e, para aproximação da pareto, em tolerâncias da ordem de 10^{-2} .
- Custo do K-Means.
- Acoplamento do K-Means com o DE dispensa estudos sobre tamanho ideial de K.
- A variação do fator F de acordo com a função logística de decaimento balanceou a exploração-explotação.
- A mistura de dominância e distância de multidão no momento de gerar um novo indivíduo na população com Evolução Diferencial dispensou a análise de fronteiras como ocorre no NSGA II e, mesmo assim, convergiu para as soluções na fronteira pareto.
- O tipo de distância no K means ainda não foi avaliada sendo este um ponto a se considerar para trabalhos futuros.
- Outros algoritmos de clusterização também podem ser testados.
- Pretende-se aumentar o set de problemas.

Obrigado.

Contatos:

ciniro.nametala@ifmg.edu.br ciniro@gmail.com

Link para download desta apresentação, do algoritmo (Matlab) e dos datasets: http://github.com/ciniro