

Chapter1: Digital Systems and Binary Numbers

Lecture 2- Number Base Conversions, Binary Arithmetic and Determine Unknown Radix

Engr. Arshad Nazir, Asst Prof Dept of Electrical Engineering SEECS

Fall 2021

Objectives

- Study Number Base Conversions
- Perform Binary Arithmetic
- Determine Unknown Radix

Fall 2021

Fall 2021

3

5

Conversion between bases

To convert from one base to other:

Decimal-r Conversion

- Conversion of a number in base r to decimal is done by expanding the number in a power series and adding all the terms.
- For example, $(C34D)_{16}$ is converted to decimal:

$$12 \times 16^3 + 3 \times 16^2 + 4 \times 16^1 + 13 \times 16^0 = (49997)_{10}$$

• (11010.11)₂ is converted to decimal:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

• In general N=(Number)_r = $\left(\sum_{i=0}^{i=n-1} a_i \bullet r^i\right) + \left(\sum_{j=-m}^{j=-1} a_j \bullet r^j\right)$ (Integer Portion) + (Fraction Portion)

Decimal-r Conversion

- If a decimal number has a radix point, it is necessary to separate the number into an integer part and a fraction part.
- The conversion of a decimal integer into a number in base-r is done by dividing the number and all successive quotients by r and accumulating the remainders in reverse order of computation.
- For example, to convert decimal 13 to binary:

	Quotien	t	Remainder	Coefficient
13/2 =	6	+	1/2	$a_0 = 1$
6/2 =	3	+	0	$a_1 = 0$
3/2 =	1	+	1/2	$a_2 = 1$
1/2 =	0	+	1/2	$a_3^- = 1$

Answer $(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$

Decimal to Binary Conversion

Repeated Division

This flowchart
describes the
process and can
be used to convert
from decimal to
any other number
system.

Decimal to Binary Conversion Example

• Convert $(37)_{10}$ to binary

Division	Quotient	Remainder
37 / 2	18	1
18 / 2	9	0
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

$$(37)_{10} = 100101_2$$

Decimal-r Conversion (Converting Fractions)

- To convert the fraction portion repeatedly multiply the fraction by the radix and save the integer digits that result. The process continued until the fraction becomes 0 or the number of digits have sufficient accuracy. The new radix fraction digits are the integer digits in computed order.
- For example, convert fraction $(0.6875)_{10}$ to base 2

```
0.6875 * 2 = 1.3750 integer = 1

0.3750 * 2 = 0.7500 integer = 0

0.7500 * 2 = 1.5000 integer = 1

0.5000 * 2 = 1.0000 integer = 1

Answer = (0.1011)_2
```

Converting Fractions Cont...

 When converting fractions, we must use multiplication rather than division. The new radix fraction digits are the integer digits in computed order.

	Integer	•	Fraction	Coefficent
$0.8432 \times 2 =$	1	+	0.6864	$a_{-1} = 1$
$0.6864 \times 2 =$	1	+	0.3728	$a_{-2} = 1$
$0.3728 \times 2 =$	0	+	0.7456	$a_{-3} = 0$
$0.7456 \times 2 =$	1	+	0.4912	$a_{-4} = 1$
$0.4912 \times 2 =$	0	+	0.9824	$a_{-5} = 0$
$0.9824 \times 2 =$	1	+	0.9648	$a_{-6} = 1$
0.9648 X 2 =	1	+	0.9296	$a_{-7} = 1$

Continue until fraction becomes 0 or until sufficient accuracy.

$$(0.8432)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4}a_{-5}a_{-6}a_{-7})_2 = (0.1101011)_2$$

Another example:

- Convert 0.8125 decimal to binary.
 - To convert the decimal 0.8125 to binary, we multiply by the radix 2.
 - $> (0.1101)_2$

Decimal to Octal Conversion

• In converting decimal to octal we must divide integer part by 8 till quotient becomes lesser than divisor.

	Integer Quotient		Remainder	Coefficent
35 / 8 = 4 / 8 =	4 0	+	3/8 4/8	$a_0 = 3$ $a_1 = 4$
(35)10	= (a ₁ a ₀) ₈ =	= (4	13) ଃ	

Converting Fractions (Decimal to Octal)

• Decimal to Octal fraction conversion takes the same approach but it multiplies by the base 8.

		Integer	•	Fraction	Coefficent
0.8432 X 8	=	6	+	0.7456	$a_{-1} = 6$
0.7456 X 8	=	5	+	0.9648	$a_{-2} = 5$
0.9648 X 8	=	7	+	0.7184	$a_{-3} = 7$
0.7184 X 8	=	5	+	0.7472	a ₋₄ = 5
0.7472 X 8	=	5	+	0.9776	$a_{-5} = 5$
0.9776 X 8	=	7	+	0.8208	$a_{-6} = 7$
0.8208 X 8	=	6	+	0.5664	a ₋₇ = 6

Continue until fraction becomes 0 or until sufficient accuracy.

$$(0.8432)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4}a_{-5}a_{-6}a_{-7})_{8} = (0.6575576)_{8}$$

Converting Decimal to Hexadecimal

• The conversion of a decimal integer into hexadecimal is done by dividing the number and all successive quotients by 16 and accumulating the remainders in reverse order of computation.

Division	Quotient	Remainder
422 / 16	26	6
26 / 16	1	A
1 / 16	0	1

$$(422)_{10} = (1A6)_{16}$$

Binary, Octal and Hexadecimal

- Conversions between binary, octal and hexadecimal have an easier conversion method.
 - > Each octal digit represents 3 binary digits.
 - Each hexadecimal digit represents 4 binary digits.

```
(11\ 010\ 101\ 111\ 111\ .\ 101\ 110\ 01)_2 = (32577.561)_8

3\ 2\ 5\ 7\ 7\ 5\ 6\ 1

(11\ 0101\ 0111\ 1111\ .\ 1011\ 1001)_2 = (357F.B9)_{16}

3\ 5\ 7\ F\ B\ 9
```

Binary to Octal and back

Binary to Octal:

- ➤ Group the binary digits into three-bit groups starting at the radix point and going both ways, padding with zeros as needed (at the ends).
- > Convert each group of three bits to an equivalent octal digit.

Octal to Binary:

- > It is done by reversing the preceding procedure
- > Restate the octal as three binary digits
- > Start at the radix point and go both ways, padding with zeros as needed.

Examples

• Convert (10110001101011.11110000011), to Octal

```
= 010 110 001 101 011 . 111 100 000 110
```

```
= 2 \quad 6 \quad 1 \quad 5 \quad 3 \quad . \quad 7 \quad 4 \quad 0 \quad 6
```

- $= (26153.7406)_{8}$
- Convert (673.124)₈ to binary
 - = 110 111 011 . 001 010 100
 - $= (110111011.001010100)_2$
- Convert (11010100011011) ₂
 to Octal

Binary to Hexadecimal and back

Binary to Hexadecimal:

- ➤ Group the binary digits into four-bit groups starting at the radix point and going both ways, padding with zeros as needed (at the ends)
- Convert each group of four bits to an equivalent hexadecimal digit

Hexadecimal to Binary:

- > It is done by reversing the preceding procedure
- > Restate the hexadecimal as four binary digits
- > Start at the radix point and go both ways, padding with zeros as needed

Examples

• Convert (10110001101011.11110010)₂ to hexadecimal

```
= 0010 1100 0110 1011 . 1111 0010
```

- $= (2C6B.F2)_{16}$
- Convert (306.D)₁₆ to binary
 - = 0011 0000 0110. 1101
 - $=(001100000110.1101)_2$
- Convert (11010100011011) ₂ to hexadecimal

Your Turn

- Convert (757.25)₁₀ to Binary, Octal, Hexadecimal, and Base6.
- Find Decimal Equivalent of the following:-
- \rightarrow (1011.11)₂
- > (147.3)₈
- \rightarrow (A2F)₁₆
- > (3301.13)₆
- Convert (231.3)₄ to Base7
- Convert (175.6)₈ to Hexadecimal

Solution

```
• Convert (757.25)_{10} = (10111110101.01)_2
= (1365.2)_8
= (2F5.4)_{16}
= (3301.13)_6
```

- Decimal Equivalent is:-
- \rightarrow (1011.11)₂ = (11.75)₁₀
- $(147.3)_8 = (103.375)_{10}$
- \rightarrow (A2F)₁₆ =(2607)₁₀
- > (3301.13)₆ = (757.25)₁₀
- Convert $(231.3)_4 = (63.5151...)_7$
- Convert $(175.6)_8 = (7D.C)_8$

Base-r Arithmetic

- Arithmetic operations with numbers in base r follow the same rules as for decimal numbers.
- When a base other than 10 is used, one must remember to use only the r-allowable digits.
- The following are some examples:

augend:	110011	minuend:	110101	multiplicand:	1011
addend:	<u>+100011</u>	subtrahend: <u>-</u>	·100111	multiplier:	<u>X 101</u>
	1010110		001110		1011
					0000
					<u>1011</u>
					$\overline{1101}11$

Arithmetic Rules

- The sum of two digits are calculated as expected but the digits of the sum can only be from the r-allowable coefficients.
- Any carry in a sum is passed to the next significant digits to be summed.
- In subtraction the rules are the same but a borrow adds r (where r is the base) to the minuend digit.
- The examples of addition and subtraction of binary numbers are presented in the next slides.

Binary Addition Rules

Given two binary digits (X,Y), a carry in (Z) we get the following sum (S) and carry (C):

Carry in (Z) of 1:

Binary Multiplication

Multiplication table

 $0 \times 0 = 0$ $0 \times 1 = 0$ $1 \times 0 = 0$ $1 \times 1 = 1$

Binary Division

• Binary division is similar to decimal division

```
\begin{array}{r}
1101 \\
1011 \\
\hline
1011 \\
1110 \\
1110 \\
\underline{1011} \\
1101 \\
1101 \\
\underline{1011} \\
1011 \\
10
\end{array}

The quotient is 1101 with a remainder of 10.
```

Determine Unknown Radix

Example: Determine the base of the number for the following operation to be correct

Solution: Both sides of the given expression carry unknown radices that we must determine. Convert both sides into decimal as we have learned previously

$$5xr^{1}+4xr^{0}/4xr^{0}=1xr^{1}+3xr^{0}$$

$$=5r+4/4=r+3$$

$$=5r+4=4r+12$$

Simplification gives

After you substitute r=8 in the given expression LHS=RHS. So the required radix is 8.

Your Turn

Example: Determine the unknown radix for the following operation to be correct

$$(365)_{r} = (194)_{10}$$

Solution

LHS of the given expression carries unknown radix that we must determine whereas RHS is known here. Convert LHS into decimal as we have learned previously

$$3xr^2+6xr^1+5xr^0=194$$

$$=3r^2+6r^1-189=0$$

Simplification gives

r=7 & r=-9; Discard r=-9 since radix can't be -ve.

After you substitute r=7 in the given expression LHS=RHS. So the required radix is 7.

The End