Напоминание: истинность

Eсли α истинна при любой оценке переменных, то α общезначима:

$$\models \alpha$$

Р Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n\models\alpha$$

- Истинна при какой-нибудь оценке выполнима.
- Не истинна ни при какой оценке невыполнима.
- ▶ Не истинна при какой-нибудь оценке опровержима.

Выводимость из гипотез

Определение (доказательство формулы α)

— такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

Определение (вывод формулы lpha из гипотез γ_1,\ldots,γ_k)

- такая последовательность $\delta_1, \ldots, \delta_n$, причём каждое δ_i либо:
 - является аксиомой;
 - либо получается по правилу Modus Ponens из предыдущих;
 - lacktriangle либо является одной из гипотез: существует $t:\delta_i\equiv\gamma_t.$

Формула α выводима из гипотез γ_1,\ldots,γ_k , если существует её вывод. Обозначение:

$$\gamma_1, \ldots, \gamma_k \vdash \alpha$$

Корректность и полнота

Определение (корректность теории)

Теория корректна, если любое доказуемое в ней утверждение общезначимо. То есть, $\vdash \alpha$ влечёт $\models \alpha$.

Определение (полнота теории)

Теория семантически полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечёт $\vdash \alpha$.

Корректность исчисления высказываний

Теорема (корректность)

Если $\vdash \alpha$, то $\models \alpha$

Доказательство.

Индукция по длине вывода n.

- ightharpoonup База, n=1 частный случай перехода (без правила Modus Ponens)
- ▶ Переход. Пусть для любого доказательства длины n формула δ_n общезначима. Тогда рассмотрим обоснование δ_{n+1} и разберём случаи:
 - 1. Аксиома убедиться, что все аксиомы общезначимы.
 - 2. Modus Ponens j, k убедиться, что если $\models \delta_j$ и $\models \delta_j \rightarrow \delta_{n+1}$, то $\models \delta_{n+1}$.

Общезначимость схемы аксиом №9

Общезначимость схемы аксиом — истинность каждой аксиомы, задаваемой данной схемой, при любой оценке:

$$[\![(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha]\!] = \mathsf{M}$$

Построим таблицу истинности формулы в зависимости от оценки α и β :

$\llbracket \alpha rbracket$	$\llbracket \beta \rrbracket$	$[\neg \alpha]$	$[\![\alpha \to \beta]\!]$	$[\![\alpha \to \neg \beta]\!]$	$[\![(\alpha \to \neg \beta) \to \neg \alpha]\!]$	$\llbracket (\alpha \to \beta) \to (\alpha \to \beta)$
	Л			И	И	И
Л	И	И	И	И	И	И
И	Л	Л	Л	И	Л	И
И	И	Л	И	Л	И	И
		'				

Общезначимость заключения правила Modus Ponens

Пусть в выводе есть формулы $\delta_j,\ \delta_k \equiv \delta_j \to \delta_{n+1},\ \delta_{n+1}$ (причём j < n+1 и k < n+1).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_{n+1}$ общезначимы. Поэтому при данной оценке $[\![\delta_j]\!] \equiv \mathsf{I}\!\mathsf{I}$ и $[\![\delta_j \to \delta_{n+1}]\!] \equiv \mathsf{I}\!\mathsf{I}$.

Построим таблицу истинности для импликации:

$\llbracket \delta_j rbracket$	$\llbracket \delta_{n+1} \rrbracket$	$\llbracket \delta_j \to \delta_{n+1} \rrbracket$
Л	Л	И
Л	И	И
И	Л	Л
И	И	И

Из таблицы видно, что $[\![\delta_{n+1}]\!]=\Pi$ только если $[\![\delta_j\to\delta_{n+1}]\!]=\Pi$ или $[\![\delta_j]\!]=\Pi$. Значит, это невозможно, и $[\![\delta_{n+1}]\!]=\mathsf{N}$

Контекст, метаязык

Будем обозначать большими греческими буквами середины алфавита, возможно с индексами, (Γ , Δ_1 , ...) списки формул. Будем использовать, где удобно:

$$\Gamma \vdash \alpha$$

Списки можно указывать через запятую:

$$\Gamma, \Delta, \zeta \vdash \alpha$$

это означает то же, что и

$$\gamma_1, \gamma_2, \ldots, \gamma_n, \delta_1, \delta_2, \ldots, \delta_m, \zeta \vdash \alpha$$

если

$$\Gamma := \{\gamma_1, \gamma_2, \dots, \gamma_n\}, \quad \Delta := \{\delta_1, \delta_2, \dots, \delta_m\}$$

Теорема о дедукции

Theorem (О дедукции, Жак Эрбран, 1930)

 $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

Доказательство «в две стороны», сперва «справа налево». Пусть $\Gamma \vdash \alpha \to \beta$, покажем $\Gamma, \alpha \vdash \beta$

То есть по условию существует вывод:

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \alpha \to \beta$$

Тогда следующая последовательность — тоже вывод:

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \alpha \to \beta, \alpha, \beta$$

Доказательство: $\Gamma \vdash \alpha \to \beta$ влечёт $\Gamma, \alpha \vdash \beta$

№ п/п	формула	пояснение
(1)	δ_1	в соответствии с исходным доказательством
(n - 1)	δ_{n-1}	в соответствии с исходным доказательством
(<i>n</i>)	$\alpha \to \beta$	в соответствии с исходным доказательством
(n + 1)	α	гипотеза
(n + 2)	β	Modus Ponens $n+1$, n

Вывод $\Gamma, \alpha \vdash \beta$ предоставлен, первая часть теоремы доказана.

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \rightarrow \beta$

Пусть даны формулы вывода

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \beta$$

Аналогично предыдущему пункту, перестроим вывод. Построим «черновик» вывода, приписав α слева к каждой формуле:

$$\alpha \to \delta_1, \alpha \to \delta_2, \ldots, \alpha \to \delta_{n-1}, \alpha \to \beta$$

Данная последовательность формул не обязательно вывод: $\Gamma := \varnothing, \ \alpha := A$

$$\delta_1 := A \to B \to A$$

припишем А слева — вывод не получим:

$$\alpha \to \delta_1 \equiv A \to (A \to B \to A)$$

Последовательности, странная нумерация

Определение (конечная последовательность)

Функция $\delta:1\dots n o \mathcal{F}$

Определение (конечная последовательность, индексированная дробными числами)

Функция $\zeta:I o\mathcal{F}$, где $I\subset\mathbb{Q}$ и $|I|\in\mathbb{N}$

Пример (странный мотивационный пример: язык Фокал)

	Программа		Вывод	
10.1	t n,!	=	0.0000	
10.15	s n = n+1	=	1.0000	
10.17	i (n-3) 10.1,11.0,11.0	=	2.0000	
11.0	t "That's all"	That	's all	

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \rightarrow \beta$

Доказательство.

(индукция по длине вывода). Если δ_1,\ldots,δ_n — вывод $\Gamma,\alpha\vdash\beta$, то найдётся вывод ζ_k для $\Gamma\vdash\alpha\to\beta$, причём $\zeta_1\equiv\alpha\to\delta_1,\ldots,\zeta_n\equiv\alpha\to\delta_n$.

- lacktriangle База (n=1): частный случай перехода (без М.Р.).
- ▶ Переход. Пусть $\delta_1, \dots, \delta_{n+1}$ исходный вывод. И пусть (по индукционному предположению) уже по начальному фрагменту $\delta_1, \dots, \delta_n$ построен вывод ζ_k утверждения $\Gamma \vdash \alpha \to \delta_n$.

Но δ_{n+1} как-то был обоснован — разберём случаи:

- 1. δ_{n+1} аксиома или $\delta_{n+1} \in \Gamma$
- 2. $\delta_{n+1} \equiv \alpha$
- 3. δ_{n+1} Modus Ponens из δ_j и $\delta_k \equiv \delta_j \to \delta_{n+1}$.

В каждом из случаев можно дополнить черновик до полноценного вывода.

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай аксиомы

№ п/п	новый вывод	пояснение
(1)	$\alpha \to \delta_1$	
(2)	$\alpha \to \delta_2$	
(n)	$ \begin{array}{c} \alpha \to \delta_n \\ \alpha \to \delta_{n+1} \end{array} $	δ_{n+1} — аксиома, либо $\delta_{n+1} \in \Gamma$
	11-1	**************************************

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай аксиомы

№ п/п	новый вывод	пояснение
(1)	$\begin{array}{c} \dots \\ \alpha \to \delta_1 \end{array}$	
(2)	$\alpha \to \delta_2$	
(n + 0.6)	$ \begin{array}{c} \vdots \\ \delta_{n+1} \to \alpha \to \delta_{n+1} \\ \delta_{n+1} \\ \alpha \to \delta_{n+1} \end{array} $	схема аксиом 1 аксиома, либо $\delta_{n+1} \in \Gamma$ М.Р. $n+0.6,\ n+0.3$

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \rightarrow \beta$, случай

δ_i =	$\equiv \alpha$	
	№ п/п	новый вывод
	(1)	$\alpha \to \delta_1$

(2)
$$\alpha \to \delta_2$$
 ...

(n+1) $\alpha \to \alpha$

$$(n+0.2)$$
 $\alpha \to (\alpha \to \alpha)$

$$(n+0.2) \quad \alpha \to (\alpha \to \alpha)$$

$$(n+0.4) \quad (\alpha \to (\alpha \to \alpha)) \to (\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha)$$

$$(n+0.6) \quad (\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha)$$

$$\begin{array}{cccc} (n+0.4) & (\alpha \wedge (\alpha \wedge \alpha)) \wedge (\alpha \wedge (\alpha \wedge \alpha) \wedge \alpha) & (\alpha \wedge \alpha) &$$

$$(n+0.2)$$
 $\alpha \to (\alpha \to \alpha)$ $\alpha \to (\alpha \to \alpha)$ $\alpha \to (\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha)$ $\alpha \to (\alpha \to \alpha) \to (\alpha \to \alpha)$ $\alpha \to (\alpha \to \alpha)$

пояс

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай Modus Ponens

новый вывод

№ п/п

(1)	$lpha ightarrow \delta_1$	
(2)	$\alpha o \delta_2$	
(<i>j</i>)	$\alpha o \delta_j$	
(k)	$\alpha \to \delta_i \to \delta_{n+1}$	
(n+0.3)	$(\alpha \to \delta_i) \to (\alpha \to \delta_i \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$	Сх. акс. 2
(n + 0.6)	$(\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\alpha \to \delta_{n+1}$	M.P. <i>j</i> , <i>n</i> + M.P. <i>k</i> , <i>n</i> +

пояснение

Некоторые полезные правила

Лемма (Правило контрапозиции)

Каковы бы ни были формулы α и β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha).$

Лемма (правило исключённого третьего)

Какова бы ни была формула α , $\vdash \alpha \lor \neg \alpha$.

Лемма (об исключении допущения)

Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$. Тогда также справедливо $\Gamma \vdash \alpha$.

Доказательство.

Доказывается с использованием лемм, указанных выше.

Теорема о полноте исчисления высказываний

Теорема Eсли $\models \alpha$, то $\vdash \alpha$.

Специальное обозначение

Определение (условное отрицание)

Зададим некоторую оценку переменных, такую, что $[\![\alpha]\!]=x$. Тогда условным отрицанием формулы α назовём следующую формулу $(\![\alpha]\!]$:

$$(\![\alpha]\!] = \left\{ \begin{array}{ll} \alpha, & x = \mathsf{M} \\ \neg \alpha, & x = \mathsf{J} \end{array} \right.$$

Аналогично записи для оценок, будем указывать оценку переменных, если это потребуется / будет неочевидно из контекста:

$$(\neg X)^{X:=\Pi} = \neg X \qquad (\neg X)^{X:=M} = \neg \neg X$$

Также, если $\Gamma:=\gamma_1,\gamma_2,\ldots,\gamma_n$, то за (Γ) обозначим $(\gamma_1),(\gamma_2),\ldots(\gamma_n)$.

Таблицы истинности и высказывания

Рассмотрим связку «импликация» и её таблицу истинности:

$[\![A]\!]$	$\llbracket B rbracket$	$\llbracket A \to B rbracket$	формула
Л	Л	И	$\neg A, \neg B \vdash A \rightarrow B$
Л	И	И	$\neg A, B \vdash A \rightarrow B$
И	Л	Л	$A, \neg B \vdash \neg (A \rightarrow B)$
И	И	И	$A, B \vdash A \rightarrow B$

Заметим, что с помощью условного отрицания данную таблицу можно записать в одну строку:

$$(A), (B) \vdash (A \to B)$$

Полнота исчисления высказываний

Теорема (О полноте исчисления высказываний)

Если $\models \alpha$, то $\vdash \alpha$

1. Построим таблицы истинности для каждой связки (\star) и докажем в них каждую строку:

$$(\varphi), (\psi) \vdash (\varphi \star \psi)$$

2. Построим таблицу истинности для α и докажем в ней каждую строку:

$$(\Xi) \vdash (\alpha)$$

3. Если формула общезначима, то в ней все строки будут иметь вид (\exists) $\vdash \alpha$, потому от гипотез мы сможем избавиться и получить требуемое $\vdash \alpha$.

Шаг 1. Лемма о связках

Запись

$$(\!(\varphi)\!), (\!(\psi)\!) \vdash (\!(\varphi \star \psi)\!)$$

сводится к 14 утверждениям:

Шаг 2. Обобщение на любую формулу

Лемма (Условное отрицание формул)

Пусть пропозициональные переменные $\Xi := \{X_1, \dots, X_n\}$ — все переменные, которые используются в формуле α . И пусть задана некоторая оценка переменных.

Тогда, ((Ξ))
$$\vdash$$
 ((α))

Доказательство.

Индукция по длине формулы α .

- ▶ База: формула α атомарная, т.е. $\alpha \equiv X_i$. Тогда при любом Ξ выполнено $(\Xi)^{X_i := N} \vdash X_i$ и $(\Xi)^{X_i := J} \vdash \neg X_i$.
- ightharpoonup Переход: $\alpha \equiv \varphi \star \psi$, причём (Ξ) \vdash (φ) и (Ξ) \vdash (ψ) Тогда построим вывод:

$$\begin{array}{ll} (1) \dots (n) & (\varphi) \\ (n+1) \dots (k) & (\psi) \\ (k+1) \dots (l) & (\varphi \star \psi) \end{array}$$

индукционное предположение $(n+1)\dots(k)$ (ψ) индукционное предположение $(k+1)\dots(l)$ $(\varphi\star\psi)$ лемма о связках: (φ) и (ψ) доказаны в значит, их можно использовать как гиі

Шаг 3. Избавляемся от гипотез

Лемма

Пусть при всех оценках переменных (Ξ) $\vdash \alpha$, тогда $\vdash \alpha$.

Доказательство.

Индукция по количеству переменных n.

- ► База: n = 0. Тогда $\vdash \alpha$ есть из условия.
- ▶ Переход: пусть $(X_1, X_2, ... X_{n+1}) \vdash \alpha$. Рассмотрим 2^n пар выводов:

$$\frac{(\!(X_1,X_2,\ldots X_n\!)),\neg X_{n+1}\vdash\alpha\qquad (\!(X_1,X_2,\ldots X_n\!)),X_{n+1}\vdash\alpha}{(\!(X_1,X_2,\ldots X_n\!))\vdash\alpha}$$

При этом, $(X_1, X_2, \dots X_n) \vdash \alpha$ при всех оценках переменных $X_1, \dots X_n$. Значит, $\vdash \alpha$ по индукционному предположению.

Заключительные замечания

Теорема о полноте — конструктивна. Получающийся вывод — экспоненциальный по длине.

Несложно по изложенному доказательству разработать программу, строящую вывод.

Вывод для формулы с 3 переменными — порядка 3 тысяч строк.