

Genetics and Epigenetics

Introduction to Biology

Chapter: 10

Have you ever wondered why children have similarities to both their parents?

 We acquire these similar characteristics (traits) through a process called inheritance (heredity).

• Inheritance occurs through transfer of genetic material from parents to their offspring.

Chromosomes

• They are present in the nucleus of the cell (eukaryotes) or present in the cytoplasm (prokaryotes).

 Different organisms have different numbers of chromosomes.

 Humans have 23 pairs of chromosomes (46 in total): 1 from each pair comes from father and one from mother.

Karyotyping

Chromosomes

- •Thread like structures that contain an organism's **DNA**.
- •The DNA are coiled in proteins called histones (nucleosomes).

Genes

- Units of information about specific traits
- A sequence of DNA
- Passed from parents to offspring
- The complete set of DNA of an organism is called its genome.
- The study of genes, genetic variation and heredity is called **Genetics**.

Alleles

• Different molecular forms of the same gene

- Arise by mutation
- Each allele is passed from each parent to the offspring

Locus

• Each gene has a specific location (locus) on a chromosome

Alleles are located in the same locus of a chromosome

Allele combinations

- Homozygous
 - having two identical alleles at
 - •AA or aa

- Heterozygous
 - having two different alleles at
 - •*Aa*

Dominant & Recessive Alleles

•A dominant allele is always expressed and hence masks a recessive allele that is paired with it.

•Recessive alleles are only expressed when both alleles are recessive.

•Dominant alleles are written in capital letters (B) and recessive alleles are written in small letters (b).

Examples

Allele

1 dominant + 1 dominant

1 recessive + 1 recessive

1 dominant + 1 recessive

Term

Homozygous dominant (BB)

Homozygous recessive (bb)

Heterozygous (Bb)

Result

Dominant trait is expressed

Recessive trait is expressed

Dominant trait is expressed

Genotype & Phenotype

•Genotype refers to particular genes an individual carries

Genotype is the genetic makeup of the organism

Genotype Phenotype

codes for

Phenotype refers to an individual's observable traits

 We cannot always determine genotype by observing phenotype: Homozygous dominant or Heterozygous? Phenotype is the physical apperance of the organism

GENOTYPE

VERSUS PHENOTYPE

Genotype is the genetic makeup of an organism

Phenotype is the morphology, properties and behavior of an organism

Can be determined by observing DNA by genotyping methods

Can be determined by observing outward characters

Completely depends on the gene sequences Depends on the genotype and environmental factors

Inherited by the offspring

Not inherited by the offspring

Consists of all hereditary information that is the expressed and suppressed genes

Consists of expressed genes

Visit www.pediaa.com

Gregor Mendel

 Strong background in plant breeding and mathematics.

 Using pea plants, found indirect but observable evidence of how parents transmit genes to offspring.

 Particulate theory: physical traits are inherited as 'particles'

Father of genetics!

The Garden Pea Plant

- Self-pollinating
- True breeding (different alleles not normally introduced)
- Can be experimentally cross-pollinated

Tracking Generations

Parental generation mates to produce:

• First-generation offspring mate to produce:

Second-generation offspring

Monohybrid cross

- A mix of genetics between two homozygous genotypes:
- Either completely dominant or completely recessive
- Mono: one
- Hybrid: combination of two organisms
- For garden pea plants, Mendel observed the colour of pea plants

Female gametes

Aa Aa Male gametes Aa Aa

Purple: AA

White: aa

F₁ Results of One Monohybrid Cross

Result

All offspring were heterozygous dominant (Aa)

F, Results of Monohybrid Cross

Result

- 2 offspring were heterozygous dominant (Aa)
- 1 offspring was homozygous dominant (AA)
- 1 offspring was homozygous recessive (aa)
- Phenotypic ratio 3 dominant :
 1 recessive

Mendel's Theory of Segregation

• An individual inherits a unit of information (allele) about a trait from each parent.

• During gamete formation, the alleles segregate from each other.

LAW OF SEGREGATION

3 pairs of chromosomes:

possible gametes:

The 2 copies of each gene separate and end up in different gametes

Dihybrid Cross

• Experimental cross between individuals that are homozygous for different versions of **two** traits.

- Di = two
- Hybrid = combination of two organisms

F₁ Results of Mendel's Dihybrid Crosses

AABB x aabb

	ab	ab	ab	ab
AB	AaBb	AaBb	AaBb	AaBb
AB	AaBb	AaBb	AaBb	AaBb
AB	AaBb	AaBb	AaBb	AaBb
AB	AaBb	AaBb	AaBb	AaBb

- All plants displays the dominant form of both traits (Purple and tall)
- We now know:
 - All plants inherited one allele for each trait from each parent
 - All plants were heterozygous (AaBb)

Phenotypic Ratios in F₂

If the two traits are coded for by genes on separate chromosomes, sixteen allele combinations are possible:

Four Phenotypes:

- Tall, purple-flowered (9/16)
- Tall, white-flowered (3/16)
- Dwarf, purple-flowered (3/16)
- Dwarf, white-flowered (1/16)

Phenotypic ratio: 9:3:3:1

414	1/4 (AB)	1/4 (Ab)	1/4 (aB)	1/4 (ab)
1/4	1/16	1/16	1/16	1/16
(AB)	AABB	ΔΔRh	AaBB	AaBt

(AB)	1/16	1/16	1/16	1/16
	AABB	AABb	AaBB	AaBb
1/4 (Ab)	1/16	1/16	1/16	1/16
	AAB b	AA bb	A a B b	A abb
1/4 (aB)	1/16	1/16	1/16	1/16
	AaBB	A a B b	аа В В	aa B b
1/4 (ab)	1/16	1/16	1/16	1/16
ab	A a B b	A abb	aa B b	aabb

Mendel's Law of Independent Assortment

• Mendel concluded that the two "units" for the first trait were to be assorted into gametes independently of the two "units" for the other trait.

 Members of each pair of homologous chromosomes are sorted into gametes at random during meiosis.

MENDEL'S FIRST LAW VERSUS

MENDEL'S SECOND LAW

MENDEL'S FIRST LAW

MENDEL'S SECOND LAW

A principle that describes the separation of the two copies of each hereditary factor during the production of gametes A principle that describes the independent assortment of alleles of different genes during the formation of gametes

Also called the law of segregation

Also called the law of independent assortment

Uses a monohybrid cross

Uses a dihybrid cross

Ratio of offspring is 3:1

Ratio of offspring is 9:3:3:1

Visit www.PEDIAA.com

Dominance Relations

Complete dominance

• Dominance in heterozygous condition where the dominant allele completely masks the effects of the recessive allele.

Incomplete dominance

 Dominant allele does not completely mask the effect of the recessive allele.

 Heterozygous phenotype is somewhere between that of two homozygotes.

Blend of both traits

Flower colour in Snapdragons

F₂ shows three phenotypes in 1:2:1 ratio

Codominance

• Both alleles of a particular trait are fully expressed.

• Non-identical alleles specify two phenotypes that are both expressed in heterozygotes.

 Offspring has a phenotype that shows combination of both traits.

Epigenetics

 Epigenetics is the genetic control of a living organism through factors <u>other than the DNA</u> <u>sequence</u>

 During development, DNA accumulates chemical marks that affect how much of a gene is expressed. These chemical marks are called epigenomes

 Epigenetic changes can also switch certain genes 'on' or 'off'!

How Epigenetics Works?

• All our cells have the same DNA, so why do we even have different cells?

 Why are genotypically identical twins not phenotypically identical?

 What are the factors that cause people to develop differently? **Factors Affecting Epigenomes**

Four key factors:

- 1. Genetics
- 2. Environment
- 3. Biological Networks
- 4. Development

Genetics and Environment

• The protein structure and arrangement of genes themselves can sometimes influence how the chemical marks are distributed across the DNA

- Environmental factors consist of 'outside' factors that can have an impact on genes. These can be:
 - Pollutants
 - Allergens
 - Heavy metals
 - Chemical toxins
 - Electromagnetic radiation

Developmental Factors

 Development can include all stages of life, starting from embryonic, to early childhood, all the way through to adulthood

- Examples of developmental factors are:
 - Nutrient intake (balance of diet)
 - Stress and psychology
 - Smoking and alcohol
 - Social behavior patterns

Case study – Identical Twins, Different behaviour?

• Suppose there is a pair of identical twins — they share the same genome, and thus have the same genotype

• However, one twin likes to read books and spend time on the computer growing up, while the other likes to play musical instruments and prefers

to spend more time outdoors.

 How is this difference explained through epigenetics?

