Chapitre 18

Dérivabilité

18 Dérivabilité	1	-
18.43 Théorème de prolongement de classe \mathcal{C}^n - HP	2)

18.43 Théorème de prolongement de classe \mathcal{C}^n - HP

Théorème 18.43 - HP

Soit I un intervalle et $x_0 \in I$. Soit f une fonction définie de classe C^n sur $I \setminus \{x_0\}$. Si $f^{(n)}$ admet une limite finie en x_0 , alors f est prolongeable en une fonction de classe C^n sur I.

— On prouve le théorème pour n=1. On suppose $f \in \mathcal{C}^1(I \setminus \{x_0\}, \mathbb{R})$ et que f' admet une limite finie en x_0 .

On prolonge f' en une fonction g par continuité en x_0 . Ainsi, $g \in \mathcal{C}^0(I, \mathbb{R})$.

On remarque que pour tout $x \neq x_0$:

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

où $a \in I \setminus \{x_0\}$ quelconque.

$$f(x) = \underbrace{f(a) + \int_a^x g(t) \, dt}_{\text{Admet une limite finie quand } x \to x_0}$$

Donc f(x) admet également une limite finie quand $x \to x_0$. On prolonge alors f par continuité en \tilde{f} , de classe \mathcal{C}^1 sur I.

— On raisonne par récurrence. Pour $n \in \mathbb{N}$, on pose :

P(n): "Pour tout $f \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$, si $f^{(n)}$ admet une limite finie en x_0 , alors f se prolonge en $\tilde{f} \in \mathcal{C}^n(I, \mathbb{R})$ ".

Pour n=0, c'est le prolongement par continuité.

Pour n = 1, c'est fait.

On suppose P(n) vraie pour $n \geq 1$.

Soit $f \in \mathcal{C}^{n+1}(I \setminus \{x_0\}, \mathbb{R})$, etc...

Donc $f' \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$ et $f^{(n)}$ admet une limite finie en x_0 .

D'après P(n), on prolonge f' en $g \in \mathcal{C}^n(I,\mathbb{R})$.

En particulier, g est continue sur I.

Donc f' admet une limite finie en x_0 .

On applique P(1). On prolonge f en $\tilde{f} \in \mathcal{C}^{n+1}(I,\mathbb{R})$.

Or $\tilde{f}' = g \in \mathcal{C}^n(I, \mathbb{R})$.

Donc $\tilde{f} \in \mathcal{C}^{n+1}(I, \mathbb{R})$.