EE2000 Logic Circuit Design

Recap Lecture 1 – Logic Function and Boolean Algebra

Outline

- 1.1 Basic Logic Gates
- 1.2 Logic Circuit and Boolean Expression
- 1.3 Sum of Products vs Product of Sums and Canonical Form
- 1.4 Simplification using Boolean Algebra

Logic Gate

Logic Name	Circuit Diagram	Truth Table	Boolean Function
Buffer : Output (F) follows the same logic state as the Input (x)	$x \longrightarrow F$	x F 0 0 1 1	F(x) = x $F = x$

$$F(x,y) = x \cdot y + \overline{x \cdot y}$$

- \triangleright Function (F): Operation
- \triangleright Variable: Inputs (x, y)
- \triangleright Complement: Inversion (\bar{x}, \bar{y})
- ➤ Literal: Each appearance of a variable or its complement (4)
- ➤ Product term: One or more literals connected by · operator (2)

NOT Gate

Logic Name	Circuit Diagram	Truth Table	Boolean Function
NOT gate (Inverter): Output (F) has opposite logic state of the Input (x)	$x \longrightarrow F$	x F 0 1 1 0	$F = \bar{x}$ $F = x'$
Logic Name	Circuit Diagram	Twith Toblo	
	Circuit Diagram	Truth Table	Boolean Function

AND & NAND Gates

Logic Name	Circuit Diagram	Truth Table	Boolean Function
AND gate: Output (F) is 1 only when all inputs are 1	x y F	x y F 0 0 0 0 1 0 1 0 0 1 1 1	$F = x \cdot y$ $F = xy$
NAND gate: Output (F) is 0 only when all inputs are 1	$x \longrightarrow F$	x y F 0 0 1 0 1 1 1 0 1 1 1 0	$F = \overline{x \cdot y}$ $F = \overline{xy}$

OR & NOR Gates

Logic Name	Circuit Diagram	Truth Table	Boolean Function
OR gate: Output (F) is 1 when either or all inputs are 1	x y F	x y F 0 0 0 0 1 1 1 0 1 1 1 1	F = x + y
NOR gate : Output (<i>F</i>) is 1 only when all inputs are 0	x y F	x y F 0 0 1 0 1 0 1 0 0 1 1 0	$F = \overline{x + y}$

XOR & XNOR Gates

Logic Name	Circuit Diagram	Truth Table	Boolean Function
XOR gate: Output (F) is 1 only when one of the input is 1	$x \longrightarrow F$	x y F 0 0 0 0 1 1 1 0 1 1 1 0	$F = x \oplus y$
XNOR gate: Output (F) is 1 only when all inputs are 0 or 1	$x \longrightarrow F$	x y F 0 0 1 0 1 0 1 0 0 1 1 1	$F = \overline{x \oplus y}$ $F = x \otimes y$

1.3 Sum of Products vs Product of Sums, Canonical Form

> Product terms: One or more literals connected by AND operator.

> Standard product terms: A product term that includes each variable of the problem, either uncomplemented or complemented.

$$f_1(a, b, c) = ab + ac + bc$$

➤ Sum of Products (SOP): A group of AND gates followed by a single OR gate.

$$xy + yz + x'z + z'$$
 4 product terms

$$xy + yz + x'z$$
 3 product terms

$$xy + yz$$
 2 product terms

Canonical (Standard) Form in SOP

]	nput	S	Minterms		Minterms Output	
x	У	Z	Term	Designation	f(x, y, z)	
0	0	0	x'y'z'	m_0	1	
0	0	1	x'y'z	m_1	0	
0	1	0	x'yz'	m_2	1	
0	1	1	x'yz	m_3	0	
1	0	0	xy'z'	m_4	1	
1	0	1	xy'z	<i>m</i> ₅	1	
1	1	0	xyz'	m_6	0	
1	1	1	xyz	<i>m</i> ₇	0	

- ➤ Minterms: Standard product terms. Uncomplement = 1; Complement = 0.
- ➤ Canonical Sum (Sum of standard product terms): Sum of products expression with minterms only when output is 1

$$f(x, y, z) = x'y'z' + x'yz' + xy'z' + xy'z' + xy'z' + xy'z$$

$$= m_0 + m_2 + m_4 + m_5$$

$$= \sum m(0, 2, 4, 5)$$

DeMorgan's Theorem

$$(x+y)' = x'y'$$

Complement of Sum = Product of Complement

х	у	$\overline{x+y}$	$\bar{x} \cdot \bar{y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

$$(xy)' = x' + y'$$

Complement of Product = Sum of Complement

x	у	\overline{xy}	$\bar{x} + \bar{y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Product of Sums

> Sum terms: One or more literals connected by OR operator.

$$x, x + y', y + z', x + y + z'$$

> Standard sum terms: A sum term that includes each variable of the problem, either uncomplemented or complemented.

$$x + y + z$$
, $x + y' + z'$, $x' + y + z'$, $x' + y' + z'$

$$f_2(a, b, c) = (a + b)(a + c)(b + c)$$

➤ Product of Sums (POS): A group of OR gates followed by a single AND gate.

$$(w+z)(w'+y')xy$$
 4 sum terms
 $(w+z)(w'+y')x$ 3 sum terms
 $(w+z)(w'+y')$ 2 sum terms

$$(w+z)$$
 1 sum term

Canonical (Standard) Form in POS

]	nput	S	Maxterms		Output
x	У	Z	Term	Designation	f(x, y, z)
0	0	0	x + y + z	M_0	1
0	0	1	x + y + z'	M_1	1
0	1	0	x + y' + z	M_2	0
0	1	1	x + y' + z'	M_3	1
1	0	0	x' + y + z	M_4	0
1	0	1	x' + y + z'	M_5	1
1	1	0	x' + y' + z	M_6	1
1	1	1	x' + y' + z'	M ₇	0

- Maxterms: Standard sum terms.Uncomplement = 0;Complement = 1.
- ➤ Canonical Product (Product of standard sum terms): Product of sums expression with maxterms only when output is 0

$$f(x,y,z)$$
= $(x + y' + z)(x' + y + z)$
 $(x' + y' + z')$
= $M_2M_4M_7 = \prod M(2,4,7)$

Summary

$$ightarrow \overline{m_i} = M_i$$
 and $\overline{M_i} = m_i$
$$\overline{m_0} = (x'y'z')' = x + y + z = M_0$$

 \triangleright If a f is in SOP form, its complement is in POS form (vice versa).

$$f = xyz + xy'z$$
$$f' = (x' + y' + z')(x' + y + z')$$

Canonical SOP (all minterms with output 1)

$$f = xyz + xy'z = \sum m(5,7)$$
 and $f' = \sum m(0,1,2,3,4,6)$

Canonical POS (all maxterm with output 0)

$$f = \prod M(0, 1, 2, 3, 4, 6)$$
 and $f' = \prod M(5, 7)$

Summary (Given in Test and Exam)

Commutative	a + b = b + a	ab = ba		
Associative	a + (b+c) = (a+b) + c	a(bc) = (ab)c		
Identity	a + 0 = a	a(1) = a		
Null	a + 1 = 1	a(0) = 0		
Complement	a + a' = 1	a(a')=0		
Idempotency	a + a = a	a(a) = a		
Involution	(a')' = a			
Distributive	a(b+c) = ab + ac	a + bc = (a + b)(a + c)		
Adjacency	ab + ab' = a	(a+b)(a+b')=a		
Simplification	a + a'b = a + b	a(a'+b)=ab		
DeMorgan	(a+b)'=a'b'	(ab)' = a' + b'		
Absorption	a + ab = a	a(a+b)=a		
Consensus	ab + a'c + bc = ab + a'c			

Exercise

- Express the Canonical Sum and Product based on the Truth Table provided.
- 2. Simplify the Function in SOP form.
- Design the logic circuit using NAND and NOT gates.

Inputs			Output
x	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1