

Satellite Navigation Real-time kinematic (RTK) positioning

"Standard positioning" (SPP, DGNSS) vs. "precise positioning" (RTK)

	Standard Positioning (code-based)	Precise Positioning (carrier-based)
Observables	pseudorange (code)	carrier phase (+ pseudorange)
Recv. noise	\sim 30 cm	\sim 3 mm
Multipath	30 cm - 30 m	1 - 3 cm
Discontinuities	none	cycle slips
Ambiguities	none	estimated / resolved
Accuracy	3 m / 5 m (H/V) SPP, 1 m / 2 m (H/V) DGNSS	1 cm / 2 cm (H/V) RTK
Applications	Basic navigation, timing,	surveying, prec. navigation,

Remember:

Measured carrier phase is denoted as

$$\phi_k^p = \phi_k - \phi^p + N_p^k \quad \text{[cycles]} \tag{10.1} \label{eq:power_power}$$

where N_p^k is the number of (integer cycles), which we will refer to from now as carrier phase ambiguity.

Carrier phase

$$\begin{split} \Phi_k^p &= \varphi_k(t_k) - \varphi^p(t^p) + N_p^k + \varepsilon_\Phi \qquad (\varphi_{k,0} = \varphi_k(t_0), \, \varphi_0^p = \varphi^p(t_0)) \\ &= (f(t_k + dt_k - t_0) + \varphi_{k,0}) - (f(t^p + dT^p - t_0) + \varphi_0^p) + N_p^k + \varepsilon_\Phi \\ &= \frac{c}{\lambda}(t_k - t^p) + \frac{c}{\lambda}(dt_k - dT^p) + (\varphi_{k,0} - \varphi_0^p + N_p^k) + \varepsilon_\Phi \quad \text{[cycles]} \end{split}$$

$$L_{k}^{p} \equiv \lambda \Phi_{k}^{p} = c(t_{k} - t^{p}) + c(dt_{k} - dT^{p}) + \lambda(\varphi_{k,0} - \varphi_{0}^{p} + N_{p}^{k}) + \lambda \varepsilon_{\Phi}$$

$$= \rho_{k}^{p} + c(dt_{k} - dT^{p}) - I_{k}^{p} + T_{k}^{p} + \lambda B_{k}^{p} + d_{k}^{p} + \varepsilon_{L} \quad [m]$$
(10.3)

where B_{k}^{p} is referred to as carrier-phase bias and d_{r}^{p} summarizes all other correction terms.

Compare to pseudorange

$$P_k^p = \rho_k^p + c(dt_k - dT^p) + I_k^p + T_k^p + \varepsilon_P[\mathsf{m}]$$
 (10.4)

Carrier phase bias

$$B_k^p = \varphi_{k,0} - \varphi_0^p + N_p^k \tag{10.5}$$

N_p^k : integer ambiguity

 $\varphi_{k,0}$: receiver initial phase φ_0^p : satellite initial phase

Other correction terms (in simplified notation!)

$$d_{k}^{p} = \delta_{PCO,k} + \delta_{PCO}^{p} + \delta_{PCV,k} + \delta_{PCV}^{p} + \delta_{PWU} + \delta_{rel}$$
 (10.6)

 $\delta_{PCO,k}$: receiver antenna phase center offset effect

 δ^p_{PCO} : satellite antenna phase center offset effect

 $\delta_{PCV,k}:$ receiver antenna phase center variation effect

 δ^p_{PCV} : satellite antenna phase center variation effect

 $\delta_{PWU}:$ phase wind-up effect

 $\delta_{rel}:$ relativistic effects

Double differencing

$$\begin{split} L_{rb}^{ij} &= \lambda((\Phi_r^i - \Phi_b^i) - (\Phi_r^j - \Phi_b^j)) \\ &= \rho_{rb}^{ij} + c(dt_{rb}^{ij} - dT_{rb}^{ij}) - I_{rb}^{ij} + T_{rb}^{ij} + \lambda B_{rb}^{ij} + d_{rb}^{ij} + \varepsilon_L \end{split} \tag{10.7}$$

Double differencing

Clock effects:

$$dt_{rb}^{ij} = dt_r^{ij} - dt_b^{ij} = 0$$

$$dT_{rb}^{ij} = dt_{rb}^i - dt_{rb}^j \approx 0$$

(Differenced) phase bias:

$$\begin{array}{ll} B_{rb}^{ij} &= (\varphi_{r,0} - \varphi_0^i + N_r^i) - (\varphi_{b,0} - \varphi_0^i + N_b^i) - (\varphi_{r,0} - \varphi_0^j + N_r^j) + (\varphi_{b,0} - \varphi_0^j + N_b^j) \\ &= N_{rb}^{ij} \end{array}$$

Thus Eq. (10.7) becomes

$$L_{rb}^{ij} = \rho_{rb}^{ij} - I_{rb}^{ij} + T_{rb}^{ij} + \lambda N_{rb}^{ij} + d_{rb}^{ij} + \varepsilon_L$$
 (10.8)

In case of **short baselines** differential troposphere (T^{ij}_{rb}) and ionosphere (I^{ij}_{rb}) contributions are negligible. If rover r and base station b are equipped with the same antennas also $d^{ij}_{rb}\approx 0$ which leaves the very simple double-difference equation

$$L_{rb}^{ij} \approx \rho_{rb}^{ij} + \lambda N_{rb}^{ij} + \varepsilon_L \tag{10.9}$$

Integer ambiguity resolution

• Eq. (10.9) contains the position of the rover w.r.t. the base, i.e.

$$\rho_{rb}^{ij} = f(\Delta x, \Delta y, \Delta z)$$

as well as the unknown number of ambiguities N_{rb}^{ij} .

- N_{rh}^{ij} is constant as long as no cycle slip happens
- We have usually an overdetermined problem if we track enough satellites and form double differences. Thus we could solve the problem by means of simple weighted least-squares
- However, we know that solutions for ${\cal N}_{rb}^{ij}$ should belong to the space of integer numbers

Mathematically we face the minimization problem

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{a} \in \mathbb{Z}^n, \ \boldsymbol{b} \in \mathbb{R}^m} \left\{ (\boldsymbol{y} - \boldsymbol{H} \boldsymbol{x})^T \boldsymbol{Q}_y^{-1} (\boldsymbol{y} - \boldsymbol{H} \boldsymbol{x}) \right\} \tag{10.10}$$

where the state vector x has length n+m and contains n unknowns a which should lie in the space of integer numbers \mathbb{Z}^n while the other m parameters b can take arbitrary (float) values und thus lie in the space of real numbers \mathbb{R}^m .

Integer least squares (ILS) estimation

- different approaches (e.g. simple rounding)
- most common is the so-called LAMBDA method (Teunissen, 1995, https://link.springer.com/content/pdf/10.1007%2FBF00863419.pdf).
- ILS provides us also with a statistical criteria that tells us if we could successfully find ("fix") to an integer ambiguity.
 - Numbers close to 100% indicate good RTK solutions
 - fix ratios get worse with baseline length!

RTK summary

- Real-time positioning of the rover
- requires a data-link so that carrier phase observations are available in real-time at the rover
- On-the-fly (OTF) integer ambiguity resolution
- ullet Typical (horizontal) accuracies: 1 cm + 1 ppm imes baseline length
- Extension of (network-) RTK: virtual reference station, FKP, ... (not discussed in this lecture series!, contact us if you need more information on such concepts)