Relational Database Design by ER- and EERto-Relational Mapping

Outline

- Schema Mapping (Logical Database Design) step of Database Design
- ER-to-Relational Mapping Algorithm
 - Step 1: Mapping of Regular Entity Types
 - Step 2: Mapping of Weak Entity Types
 - Step 3: Mapping of Binary 1:1 Relation Types
 - Step 4: Mapping of Binary 1:N Relationship Types.
 - Step 5: Mapping of Binary M:N Relationship Types.
 - Step 6: Mapping of Multivalued attributes.
 - Step 7: Mapping of N-ary Relationship Types.

Data Model Mapping Phase of Relational DB Design

- DB designers use ER/EER or other conceptual data model to produce a conceptual schema design (independent from any specific DBMS) during the Conceptual Database Design phase
- In Logical Database Design Phase (see Figure 7.1, next slide) conceptual schema design is converted (Mapped) to the data model of the DBMS
 - Typically relational model (see Chapters 3-6), or object/objectrelational models (see Chapter 11)
 - Data model mapping is usually automated or semi-automated in many database design tools
- In this chapter, we study the various options for mapping ER/EER model constructs to relational model constructs
 - Object and object-relational mapping discussed in Chapter 11

Overview of ER-to-Relational Mapping Algorithm

- We present the concepts of a general mapping algorithm
- Algorithm has 7 steps:
 - Step 1: Mapping of regular (strong) entity types
 - Step 2: Mapping of weak (dependent) entity types
 - Steps 3, 4, 5: Mapping of binary relationship types of different cardinality ratios (1:1, 1:N, M:N)
 - Step 6: Mapping of multi-valued attributes
 - Step 7: Mapping of n-ary relationship types, n > 2
- Example: We use the COMPANY ER schema diagram (Figure 9.1, next slide) to illustrate the mapping steps
- Additional steps (Steps 8, 9) for mapping EER model constructs (specialization/generalization, UNION types) presented later

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types

- For each regular (strong) entity type E in the ER schema, create a relation R that includes all the *simple* attributes (or simple components of composite attributes) of E.
- Choose one of the key attributes of E as primary key for R.
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.
- Example: We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entity types in Figure 9.1
 - SSN, DNUMBER, and PNUMBER are chosen as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT (Figure 9.3(a), next slide).
 - Note: Additional attributes will be added to these tables in later mapping steps

Figure 9.3

Illustration of some mapping steps.

- a. Entity relations after step 1.
- b. Additional weak entity relation after step 2.
- c. Relationship relation after step 5.
- Relation representing multivalued attribute after step 6.

(a) EMPLOYEE

	Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary
1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				,

DEPARTMENT

Dname	Dnumber

PROJECT

Pname	Pnumber	Plocation
1/1/(#11)	The state of the s	

(b) DEPENDENT

Essit Dependent_name Oca Baate Notationship	Essn	Dependent_name	Sex	Bdate	Relationship
---	------	----------------	-----	-------	--------------

(c) WORKS_ON

Essn	<u>Pno</u>	Hours
------	------------	-------

(d) DEPT_LOCATIONS

Dnumber	Dlocation

Step 2: Mapping of Weak Entity Types

- For each weak entity type W with owner entity type E, create a relation R that includes all simple attributes (or simple components of composite attributes) of W as attributes of R.
- Include as foreign key attribute(s) in R the primary key attribute(s) of the relation(s) that corresponds to the owner entity type(s).
- The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.
- Example: Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 - see Figure 9.3(b)
 - Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN in Fig.).
 - The primary key of DEPENDENT is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

- Step 3: Mapping of Binary 1:1 Relationship Types
 - For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- Three possible approaches:
 - Foreign Key approach: Choose one of the relations (say S) and include as foreign key in S the primary key of T (it is better to choose an entity type with total participation in R in the role of S).
 - Example (see Figure 9.2): 1:1 relationship MANAGES (Fig. 9.1) is mapped by choosing DEPARTMENT to serve in the role of S (because its participation in the MANAGES relationship type is total)
 - Mgr SSN of DEPARTMENT is foreign key referencing EMPLOYEE
 - Attributes of MANAGES become attributes of DEPARTMENT
 - Merged relation option: Merge the two entity types and the relationship into a single relation (possible when both participations are total).
 - Cross-reference or relationship relation option: Set up a third relation R for cross-referencing the primary keys of the two relations S and T representing the entity types.

EMPLOYEE

Step 4: Mapping of Binary 1:N Relationship Types

- For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the Nside of the relationship type.
- Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
- Include any simple attributes of the 1:N relation type as attributes of S.
- Examples (Figures 9.1, 9.2): 1:N relationship types are WORKS_FOR, CONTROLS, and SUPERVISION.
 - For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO
 - (cont. on next slide)

- Examples (cont.):
 - For CONTROLS, we include the primary key DNUMBER of DEPARTMENT as foreign key in PROJECT and call it DNUM.
 - For SUPERVISION, we include the primary key SSN of EMPLOYEE as foreign key in EMPLOYEE itself and call it SuperSSN (this is a recursive relationship)
- All three 1:N relationship examples (Figures 9.1, WORKS_FOR, CONTROLS, and SUPERVISION) are mapped using the **foreign key** option in Figure 9.2
 - Can also use the cross-reference option (create a separate relation that has the primary keys of both relations as foreign keys).

Step 5: Mapping of Binary M:N Relationship Types

- For each regular binary M:N relationship type R, create a new relation S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
- Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.
- Example: The M:N relationship type WORKS_ON (Figure 9.1) is mapped by creating a relation WORKS_ON in the relational database schema (Figure 9.3(c), Figure 9.2).
 - The primary keys of PROJECT and EMPLOYEE are foreign keys in WORKS ON and renamed PNO and ESSN, respectively.
 - Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type.
 - The primary key of WORKS_ON is the combination {ESSN, PNO}.

- Discussion of Mapping of Binary Relationship Types (steps 3, 4, and 5):
 - Foreign key option is preferred for 1:1 and 1:N relationships, but cannot be used for M:N relationships.
 - Relationship relation option can be used for any cardinality ratio, but the primary key will be different:
 - Combination of both foreign keys for M:N
 - Either foreign key for 1:1
 - Foreign key in the N-side relation for 1:N
 - Attributes of relationship type are included in the relationship relation (for cross-referencing option), or in the relation that includes the foreign key (for foreign key option).

- Step 6: Mapping of Multivalued attributes.
 - For each multivalued attribute A, create a new relation R.
 - This relation R will include an attribute corresponding to A, plus the primary key attribute K (as a foreign key in R) of the relation that represents the entity type that has A as an attribute.
 - The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.
- Example (Figure 9.3(d)): The relation DEPT_LOCATIONS is created.
 - The attribute DLOCATION represents the multivalued attribute Locations of DEPARTMENT (Figure 9.1), while DNUMBER is foreign key to the DEPARTMENT relation (Figure 9.2).
 - The primary key of DEPT_LOCATIONS is the combination of {DNUMBER, DLOCATION}.

- Step 7: Mapping of N-ary Relationship Types.
 - For each n-ary relationship type R, where n>2, create a new relationship relation S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
 - Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.
- Example: The relationship type SUPPLY (Figure 7.17(a), next slide)
 - This can be mapped to the relation SUPPLY (Figure 9.4, following slide), whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}

Figure 9.4

Mapping the *n*-ary relationship type SUPPLY from Figure 7.17(a).

 Table 9.1
 Correspondence between ER and Relational Models

ER MODEL	RELATIONAL MODEL
Entity type	Entity relation
1:1 or 1:N relationship type	Foreign key (or relationship relation)
M:N relationship type	Relationship relation and two foreign keys
n-ary relationship type	Relationship relation and n foreign keys
Simple attribute	Attribute
Composite attribute	Set of simple component attributes
Multivalued attribute	Relation and foreign key
Value set	Domain
Key attribute	Primary (or secondary) key

Chapter Summary

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

Possible In-Class Exercises

 Apply the ER-to-Relational Mapping Algorithm to the SHIP_TRACKING ER Schema in Figure 9.8 (next slide)

Figure 9.8
An ER schema for a SHIP_TRACKING database.