

Liveness Detection Using An Intensity Based Approach in Fingerprint Scanners

Bozhao Tan Dr. Stephanie Schuckers

Clarkson University Sept. 20 2005

Outline

- Background for liveness detection
- Intensity-based approach
- Results of three different scanners
- Conclusion and future work

Background

- Fingerprint scanners are susceptible to spoof attack by "fake" fingerprints
 - Lifted latent fingerprints
 - Artificial fingers: gummy fingers, casts made from gelatin, play-doh etc
 - Worst case: dismembered fingers
- Liveness detection
 - An anti-spoofing method
 - Improves reliability and security of biometric system
- Detection of perspiration pattern
 - Time series images
 - Developed by our lab
- Previous algorithms
 - Ridge signal algorithm
 - Wavelet based algorithm
- Motivation: improve accuracy and speed

Human Visual Difference for Live and Non-Live Fingerprint Images

Features Extraction Based on Perspiration Pattern

- The basis of *static* features: live fingerprints looks "patchy" due to the perspiration pattern
- ◆ The basis of *dynamic* features: live fingers demonstrate a distinctive changing moisture pattern between 0 second and 5th second images

Ridge Signal Algorithm

- Capture time-series images over 5 seconds
- Map a 2-D fingerprint image to a 1-D signal representing the grey levels along the ridges
- 7 static and dynamic features are extracted
- Perform classification between live and nonlive using BPNN

Wavelet Based Algorithm

- Perform wavelet transform on 0 and 5th second images
- Extract low frequency content using multiresolution analysis
- Extract high frequency content using wavelet packet analysis
- Perform classification using energy content of changing coefficients

Intensity Based Approach

- Motivation: improve speed with reasonable accuracy
- Approach: quantify grey level differences between live and non-live fingerprint images using histogram distribution statistics
- Advantages: simple, efficient and saving time

Intensity Based Approach -Examples

Intensity based Approach -Examples (Cont.)

Intensity Based Approach -Steps

- Pre-process to remove noise and normalize
- Adaptively select interesting area
- Perform histogram distribution analysis for timeseries images
- Extract static and dynamic features
- Generate and determine classification tree using training and validation dataset
- Test with final test dataset

Classification Tree

- Derives a sequence of if-then-else rules in order to assign a class label to the input data
- A data mining technique
- Commercial tools: CART, See 5, SPSS etc
- Free tool: Classification Tree in Excel

http://www.geocities.com/adotsaha/CTree/CtreeinExcel.html

Some Hints

- Different scanners have different histogram distributions
- Select appropriate features to different scanners
- Adaptively select area to avoid scars
- Some live fingerprints are very wet and change very little
- Some cadaver fingerprints change like a live finger, but their grey levels are different than live fingers
- Classification tree takes these situations into consideration

Fingerprint Sensors and Dataset

Fingerprint Sensors

- Capacitive DC: Precise Biometrics 100SC
- Optical: Secugen FDU01
- Electro-optical: Ethentica USB2500

Dataset

- Live: 58
- Spoof: 50(Play-doh and gelatin)
- Cadaver: 28
- ◆ Training (4/9), validation(2/9) and test(1/3) set

Precise: Features Extraction

Precise: Features Extraction

Ratio

H1_before

Dif_256

Precise: Classification Tree and Results

Secugen: Features Extraction

O second

Live

Spoof

5th second

Ratio =
$$\frac{B}{A} = \frac{\sum_{i=150}^{254} h1(i)}{(\sum_{i=1}^{149} h1(i) + 0.1)}$$

H1_behind = B =
$$\sum_{i=150}^{254} h1(i)$$

H1_behind = B =
$$\sum_{i=150}^{254} h1(i)$$
 Dif_256=C= $\sum_{i=255}^{256} |h1(i) - h2(i)|$

Secugen: Features Comparison

Secugen: Classification Tree and Results

Ethentica: Features Extraction

Spoof

Dev =
$$std(h2(i))$$
 P_before = $\frac{A1}{A2} = \frac{\sum_{i=1}^{80} h1(i)}{\sum_{i=1}^{80} h2(i)}$ Dif_0 = B = $\sum_{i=1}^{10} |h1(i) - h2(i)|$ Dif_256 = C = $\sum_{i=200}^{250} |h1(i) - h2(i)|$

Ethentica: Features Comparison

Ethentica: Classification Tree and Results

Outcome Summary

- Success ratio: 84%~100%
- Grey level differences are specific to the type of spoof images we collected

Conclusion and Future Work

- Intensity based approach
 - Static and dynamic features are extracted to quantify gray level differences
- Classification tree
- Simple, efficient and saving time
- Purely software based
- Anti-spoofing protection for fingerprint scanners
- Future work
 - Consider other methods to defeat liveness algorithm
 - Study existence of perspiration pattern over larger number of subjects

