Clustering, données mixtes et sélection de variables: le package-R vimpclust ¹

Marie Chavent¹, Jerome Lacaille², Alex Mourer^{1,2,3}, and Madalina Olteanu⁴

¹Inria bdx sud ouest équipe ASTRAL IMB, UMR CNRS 5251, Université de bordeaux - France

²Safran Aircraft Engines - Datalab - Villaroche - France
 ³SAMM - EA 4543 - Université Pantheon Sorbonne - France
 ⁴CEREMADE, UMR 7534 - Université Paris Dauphine PSL - France

Rencontres R 13 juillet 2021

1. Contexte

- 1.1 Souvent des données mixtes
- 1.2 Les clusters sous-jacents ne diffèrent que suivant certaines variables
- 1.3 Possiblement un grand nombre de variables

2. Objectifs

- 2.1 Production d'une structure de classification : groupes d'individus (clusters)
- 2.2 Faire de la sélection de variables sur des données mixtes

3. Motivations

- 3.1 Prendre en compte le pouvoir discriminatif de chaque variable
- 3.2 Améliorer l'interprétabilité

1. Clustering sur des données mixte	1.	Clustering	sur c	les d	lonnées	mixte
-------------------------------------	----	------------	-------	-------	---------	-------

- 2. Clustering avec sélection de variables sur des données mixtes
- 3. Clustering avec sélection de groupes de variables sur des données mixtes

Une partition en K classes des individus est un ensemble de classes non vides, deux à deux disjointes et dont la réunion est l'ensemble des individus.

On notera $P_K = (C_1, \ldots, C_k, \ldots, C_K)$.

L'homogénéité et la séparation des classes avec un seul critère.

$$\sum_{i=1}^{n} d^{2}(x_{i}, \bar{x}) = \sum_{k=1}^{K} \sum_{i \in C_{k}} d^{2}(x_{i}, \bar{x}_{k}) + \sum_{k=1}^{K} \mu_{k} d^{2}(\bar{x}_{k}, \bar{x})$$
Inertie totale

Inertie intra

Inertie inter

Minimiser l'inertie intra (rendre homogène les classes)

 \Leftrightarrow

Maximiser l'inertie inter (séparer des classes)

Le K-means minimise l'inertie intra et donc maximise l'inertie inter.

TABLE - Données mixtes

	Label	Soil	Bitterness	Smooth	
2EL	Saumur	Env1	1.926	2.731	
1CHA	Saumur	Env1	1.926	2.500	
1FON	Bourgueuil	Env1	2.000	2.679	
1VAU	Chinon	Env2	1.963	1.680	
1DAM	Saumur	Reference	2.071	3.036	

Table - Données numériques

	Saumur	Bourgueuil	Chinon	Reference	Env1	Env2	Env4	Bitterness	Smooth	
2EL	1	0	0	0	1	0	0	1.926	2.731	
1CHA	1	0	0	0	1	0	0	1.926	2.500	
1FON	0	1	0	0	1	0	0	2.000	2.679	
1VAU	0	0	1	0	0	1	0	1.963	1.680	
1DAM	1	0	0	1	0	0	0	2.071	3.036	

TABLE - Fréquences des modalités et variance des variables quantitatives

Saumur	Bourgueuil	Chinon	Reference	Env1	Env2	Env4	Bitterness	Smooth	
0.524	0.286	0.19	0.333	0.333	0.238	0.095	0.061	0.51	

TABLE - Données recodées

	Saumur	Bourgueuil	Chinon	Reference	Env1	Env2	Env4	Bitterness	Smooth	
2EL	$\frac{1}{\sqrt{0.524}}$	0	0	0	$\frac{1}{\sqrt{0.333}}$	0	0	$\frac{1.926}{\sqrt{0.061}}$	$\frac{2.731}{\sqrt{0.51}}$	
1CHA	$\frac{1}{\sqrt{0.524}}$	0	0	0	$\frac{1}{\sqrt{0.333}}$	0	0	1.926 √0.061 2.000	$\frac{2.500}{\sqrt{0.51}}$ $\frac{2.679}{2.679}$	
1FON	0	$\frac{1}{\sqrt{0.286}}$	0	0	1	0	0	$\sqrt{0.061}$	$\sqrt{0.51}$	
1VAU	0	0	$\frac{1}{\sqrt{0.19}}$	0	0	$\frac{1}{\sqrt{0.238}}$	0	1.963 √0.061	$\frac{1.680}{\sqrt{0.51}}$	
1DAM	$\frac{1}{\sqrt{0.524}}$	0	0	$\frac{1}{\sqrt{0.333}}$	0	0	0	$\frac{2.071}{\sqrt{0.061}}$	$\frac{3.036}{\sqrt{0.51}}$	

4	~			
Ι.	Clustering	sur d	es donne	es mixtes

- 2. Clustering avec sélection de variables sur des données mixtes
- 3. Clustering avec sélection de groupes de variables sur des données mixtes

Clustering avec pondération et sélection de variables

Inertie inter-classe d'une partition :

$$\mathcal{B}(\mathbf{X}, C_1, \dots, C_K) = \sum_{k=1}^K \mu_k d^2(\bar{x}_k, \bar{x})$$

$$= \sum_{j=1}^p \sum_{k=1}^K \mu_k (\bar{x}_k^j - \bar{x}^j)^2$$

$$\mathcal{B}(\mathbf{X}, C_1, \dots, C_K)$$

On note:

$$b_j = \mathcal{B}(\mathbf{x}^j, C_1, \ldots, C_K).$$

Inertie inter-classe pondérée :

$$\mathcal{B}(\mathbf{X}, C_1, \dots, C_K, \mathbf{w}) = \sum_{j=1}^{p} w_j b_j$$
$$= \mathbf{w}^T \mathbf{b}$$

où $\mathbf{w}^T = (w_1, \dots, w_j, \dots, w_p)$ avec w_j le poids de la variable \mathbf{x}^j et $\mathbf{b}^T = (b_1, \dots, b_p)$ vecteur de variance inter-classe

Sparse K-means (Witten & Tibshirani, 2010)

$$\max_{\mathbf{w}, C_1, \dots, C_K} \mathbf{w}^T \mathbf{b} - \lambda \|\mathbf{w}\|_1 \tag{1}$$

Algorithme itératif pour K et λ fixé :

$$\mathbf{w}^T \mathbf{b} = \sum_{j=1}^p \sum_{k=1}^K \mu_k (\sqrt{w_j} \times \bar{\mathbf{x}}_k^j - \sqrt{w_j} \times \bar{\mathbf{x}}^j)^2$$

Group-sparse K-means (Chavent, Lacaille, Mourer, & Olteanu, 2020)

Les variables sont divisées en L groupes connus à priori :

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}^1 | \dots | \mathbf{X}^L \end{bmatrix}$$
$$\mathbf{b}^T = (\mathbf{b}_1, \dots, \mathbf{b}_L)$$
$$\mathbf{w}^T = (\mathbf{w}_1, \dots, \mathbf{w}_L)$$

$$\max_{\mathbf{w}, C_1, \dots, C_K} \mathbf{w}^T \mathbf{b} - \lambda \sum_{\ell=1}^L \sqrt{p_\ell} \|\mathbf{w}_\ell\|_2$$
 (2)

Pour $C_1, ..., C_K$ fixé:

$$\mathbf{w}^{\star} = \begin{cases} \frac{\tilde{S}(\mathbf{b}, \lambda)}{\|\tilde{S}(\mathbf{b}, \lambda)\|_{2}} & \text{si } \tilde{S}(\mathbf{b}, \lambda) \neq 0\\ 0 & \text{si } \tilde{S}(\mathbf{b}, \lambda) = 0 \end{cases}$$
(3)

οù

$$\tilde{S}(\mathbf{b},\lambda) = (\tilde{s}(\mathbf{b}_1,\lambda),\ldots,\tilde{s}(\mathbf{b}_L,\lambda))^T$$

et

$$ilde{\mathbf{s}}(\mathbf{b}_\ell,\lambda) = \mathbf{b}_\ell imes \mathsf{max}(1-rac{\lambda\sqrt{p_\ell}}{\|\mathbf{b}_\ell\|_2},0)$$

Sparse K-means pour données mixtes

TABLE - Données recodées

	Saumur	Bourgueuil	Chinon	Reference	Env1	Env2	Env4	Bitterness	Smooth	
2EL	$\frac{1}{\sqrt{0.524}}$	0	0	0	$\frac{1}{\sqrt{0.333}}$	0	0	$\frac{1.926}{\sqrt{0.061}}$	$\frac{2.731}{\sqrt{0.51}}$	
1CHA	$\frac{1}{\sqrt{0.524}}$	0	0	0	$\frac{1}{\sqrt{0.333}}$	0	0	$\frac{1.926}{\sqrt{0.061}}$	$\frac{2.500}{\sqrt{0.51}}$	
1FON	0	$\frac{1}{\sqrt{0.286}}$	0	0	1	0	0	2.000 √0.061	$\frac{2.679}{\sqrt{0.51}}$	
1VAU	0	0	$\frac{1}{\sqrt{0.19}}$	0	0	$\frac{1}{\sqrt{0.238}}$	0	$\frac{1.963}{\sqrt{0.061}}$	$\frac{1.680}{\sqrt{0.51}}$	
1DAM	$\frac{1}{\sqrt{0.524}}$	0	0	$\frac{1}{\sqrt{0.333}}$	0	0	0	$\frac{2.071}{\sqrt{0.061}}$	$\frac{3.036}{\sqrt{0.51}}$	

- ► Structuration naturelle des colonnes en 31 groupes (de taille 3, 4, 1, ..., 1).
- Sparse K-means pour sélectionner les groupes i.e. les variables qualitatives ou quantitatives.

Package R vimpclust (vignette)

```
res <- sparsewkm(X = wine, centers = 4)
plot(res, what="weights.features")
plot(res, what="expl.var")</pre>
```


TABLE - 10 variables sélectionnées

Aroma.quality.before.shaking	Quality.of.odour	Balance	Intensity	Overall.quality
Surface.feeling	Aroma.quality	Smooth	Harmony	Typical

1	Clustering	CIIP	dos	donnáce	mivtos
Ι.	Clustering	sur	aes	aonnees	mixtes

- 2. Clustering avec sélection de variables sur des données mixtes
- 3. Clustering avec sélection de groupes de variables sur des données mixtes

Clustering de variables mixtes (Chavent, Kuentz, Liquet & Sarraco, 2012)

```
tree <- hclustvar(X.quanti = wine.quanti, X.quali = wine.quali)
plot(tree)</pre>
```



```
P7 <- cutreevar(obj = tree, k = 7)
```

 \Rightarrow 7 groupes de variables.

Group-sparse K-means (vignette)

```
res <- groupsparsewkm(X, centers = 4, index = groupes)
plot(res, what = "weights.features")
plot(res, what="expl.var")</pre>
```


Table – 3 groupes sélectionnés

Group 4	Group 5
Visual.intensity	Plante
Nuance	Aroma.quality
Surface.feeling	Balance
Aroma.intensity	Smooth
Aroma.persistency	Harmony
Attack.intensity	Overall.quality
Astringency	Typical
Alcohol	
Intensity	
	Visual.intensity Nuance Surface.feeling Aroma.intensity Aroma.persistency Attack.intensity Astringency Alcohol

References

code implémentant les exemples présentés aujourd'hui : https://github.com/MourerAlex/RencontresR2021

Le lien vers notre package R disponible sur le CRAN : https://cran.r-project.org/web/packages/vimpclust/index.html

Bibliographie

Chavent, M., Lacaille, J., Mourer, A., Olteanu, M. (2020). Sparse k-means for mixed data via group-sparse clustering. In ESANN 2020 proceedings, i6doc.com publ., ISBN 978-2-87587-074-2.

Chavent, M., Kuentz, V., Liquet B., Saracco, J. (2012), ClustOfVar: An R Package for the Clustering of Variables. *Journal of Statistical Software* 50, 1-16.

Witten, D.M., Tibshirani, R., (2010), A framework for feature selection in clustering. *Journal of the American Statistical Association*, 105(490):713-726.

Le, S., Josse, J. Husson, F. (2008). FactoMineR : An R Package for Multivariate Analysis. Journal of Statistical Software. 25(1). pp. 1-18.