FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

2015 David Kolečkář

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice (1) nebo definice 1.1 na straně 1).

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce.

Matematický text 1

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu. Pro množinu V označuje card(V) kardinalitu V. Pro množinu V reprezentuje V^* volný monoid generovaný množinou V s operací konkatenace. Prvek identity ve volném monoidu V^* značíme symbolem ε . Necht' $V^+ = V^* - \{\varepsilon\}$. Algebraicky je tedy V^+ volná pologrupa generovaná množinou V s operací konkatenace. Konečnou neprázdnou množinu V nazvěme abeceda. Pro $w \in V^*$ označuje |w| délku řetězce w. Pro $W \subseteq V$ označuje occur(w, W) počet výskytů symbolů z W v řetězci w a sym(w, i) určuje i-tý symbol řetězce w; například sym(abcd, 3) = c.

Nyní zkusíme sazbu definic a vět s využitím balíku amsthm.

Definice 1.1. Bezkontextová gramatika je čtveřice G =(V, T, P, S), kde V je totální abeceda, $T \subseteq V$ je abeceda terminálů, $S \in (V-T)$ je startující symbol a P je konečná množina pravidel tvaru $q: A \to \alpha$, kde $A \in (V-T), \alpha \in$ V^* a q je návěští tohoto pravidla. Nechť N = V - T značí abecedu neterminálů. Pokud $q: A \to \alpha \in P, \gamma, \delta \in V^*$, G provádí derivační krok z $\gamma A\delta$ do $\gamma \alpha \delta$ podle pravidla $q: A \to \alpha$, symbolicky píšeme $\gamma A \delta \Rightarrow \gamma \alpha \delta \ [q: A \to \alpha]$ nebo zjednodušeně $\gamma A\delta \Rightarrow \gamma \alpha \delta$. Standardním způsobem definujeme \Rightarrow^m , kde $m \ge 0$. Dále definujeme tranzitivní uzávěr \Rightarrow^+ a tranzitivně-reflexivní uzávěr \Rightarrow^* .

Algoritmus můžeme uvádět podobně jako definice textově, nebo využít pseudokódu vysázeného ve vhodném prostředí (například algorithm2e).

Algoritmus 1.2. Algoritmus pro ověření bezkontextovosti gramatiky. Mějme gramatiku G = (N, T, P, S).

- 1. Pro každé pravidlo $p \in P$ proved' test, zda p na levé straně obsahuje právě jeden symbol z N.
- 2. Pokud všechna pravidla splňují podmínku z kroku 1, tak je gramatika G bezkontextová.

Definice 1.3. Jazyk definovaný gramatikou G definujeme jako $L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$

Podsekce obsahující větu

Definice 1.4. Nechť L je libovolný jazyk. L je bezkontex- $\mathit{tov\'y}\,\mathit{jazyk},$ když a jen když L=L(G),kde G je libovolná bezkontextová gramatika.

Definice 1.5. Množinu $\mathcal{L}_{CF} = \{L | L \text{ je bezkontextov} \}$ jazyk} nazýváme třídou bezkontextových jazyků.

Věta 1. Nechť $L_{abc} = \{a^n b^n c^n | n \ge 0\}$. Platí, že $L_{abc} \notin$ \mathcal{L}_{CF} .

Důkaz. Důkaz se provede pomocí Pumping lemma pro bezkontextové jazyky, kdy ukážeme, že není možné, aby platilo, což implikuje pravdivost věty 1.

Rovnice a odkazy

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$x^{2}\sqrt{y_{0}^{3}}$$
 $\mathbb{N} = \{0, 1, 2, \dots\}$ $x^{y^{y}} \neq x^{yy}$ $z_{i_{j}} \not\equiv z_{ij}$

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$\left\{ \left[\left(a+b \right)*c \right]^d + 1 \right\} = x \tag{1}$$

$$\lim_{x \to \infty} \frac{\sin^2 x + \cos^2 x}{4} = y$$

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n\to\infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako \sum_1^n či $\bigcup_{A\in B}$. V případě vzorce $\lim_{x\to 0}\frac{\sin x}{x}=1$ jsme si vynutili méně úspornou sazbu příkazem \limits.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad (2)$$

$$\left(\sqrt[5]{x^4}\right)' = \left(x^{\frac{4}{5}}\right)' = \frac{4}{5}x^{-\frac{1}{5}} = \frac{4}{5\sqrt[5]{x}}$$
(3)
$$\overline{\overline{A \vee B}} = \overline{\overline{A} \wedge \overline{B}}$$
(4)

$$\overline{\overline{A \vee B}} = \overline{\overline{A} \wedge \overline{B}} \tag{4}$$

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left, \right).

$$\mathbf{A} = \begin{pmatrix} a+b & b-a \\ \widehat{\xi+\omega} & \pi \\ \overrightarrow{a} & \overrightarrow{AC} \\ 0 & \beta \end{pmatrix}$$
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
$$\begin{vmatrix} t & u \\ v & w \end{vmatrix} = tw - uv$$

Prostředí array lze úspěšně využít i jinde.

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{pro } 0 \le k \le n \\ 0 & \text{pro } k < 0 \text{ nebo } k > n \end{cases}$$

4 Závěrem

V případě, že budete potřebovat vyjádřit matematickou konstrukci nebo symbol a nebude se Vám dařit jej nalézt v samotném LATEXu, doporučuji prostudovat možnosti balíku maker AMS-LATEX. Analogická poučka platí obecně pro jakoukoli matematickou konstrukci v TEXu.