MATH 210A

Name: Quin Darcy
Due Date: 9/4/19
Instructor: Dr. Shannon
Assignment: Homework 1

1. Assume that (a, b) = g and that $d \mid a$ and $d \mid b$. Prove that $d \mid g$.

Proof. Since d divides both a and b, then there exists $k_1, k_2 \in \mathbb{Z}$ such that $a = k_1 d$ and $b = k_2 d$. Additionally, since g is the greatest common factor of a and b, then there exists integers x and y such that g = ax + by, by result (b) on handout 1. Thus, substituting in our values from earlier we obtain

$$g = ax + by$$

$$= (k_1d)x + (k_2d)y$$

$$= (k_1x + k_2y)d.$$

Hence, there exists an integer $k = k_1x + k_2y$ such that g = kd. Therefore, $d \mid g$.

2.

(a) Prove that if (a, c) = 1 and (b, c) = 1, then (ab, c) = 1.

Proof. By result (b) on handout 1, our two assumptions imply the existence of $x, y, w, z \in \mathbb{Z}$ such that ax + cy = 1 and bw + cz = 1. Multiplying both of these together we obtain

$$(ax + cy)(bw + cz) = (ab)xw + (ac)xz + (bc)yw + (c^{2})yz$$
$$= (ab)xw + (c)((a)xz + (b)yw + (c)yz)$$
$$= 1$$
 (1)

Since the integers are closed under multiplication, we may write (1) as (ab)m + (c)n = 1, where $m, n \in \mathbb{Z}$. Thus, by (b) of handout 1, it follows that (ab, c) = 1.

(b) Assume that (a, n) = 1. Prove that there exists $x \in \mathbb{Z}$ such that $ax \equiv 1 \pmod{n}$ and (x, n) = 1.

Proof. Since (a, n) = 1, then there exists $x, y \in \mathbb{Z}$ such that ax + ny = 1. Subtracting ax from both sides, we obtain ny = 1 - ax. Thus, $n \mid (1 - ax)$. Hence, $ax \equiv 1 \pmod{n}$. Additionally, since $a, y \in \mathbb{Z}$, then the equation ax + ny = 1 also implies that (x, n) = 1.

(c) Let $\mathbb{Z}_{(n)} = \{[k] \in \mathbb{Z}_n : (k, n) = 1\}$. Prove that $(\mathbb{Z}_{(n)}, \odot)$ is a group, and find $|\mathbb{Z}_{(n)}|$.

Proof. Let $[a], [b] \in \mathbb{Z}_{(n)}$. Then it follows that (a, n) = 1 and (b, n) = 1. We want to show that $[a] \odot [b] \in \mathbb{Z}_{(n)}$. Thus, we need to show that $[ab] \in \mathbb{Z}_n$ such that (ab, n) = 1. Since the integers are closed under multiplication, we have that $[a] \odot [b] = [ab] \in \mathbb{Z}_n$. Next, we can use the result from part (a) of question 2 to confirm that (ab, n) = 1 since (a, n) = 1 and (b, n) = 1 by assumption. Thus, for all $[a], [b] \in \mathbb{Z}_{(n)}$, we have that $[a] \odot [b] \in \mathbb{Z}_{(n)}$. Thus, \odot is an operation, i.e., $\odot : \mathbb{Z}_{(n)} \times \mathbb{Z}_{(n)} \to \mathbb{Z}_{(n)}$.

Next, we need to show that \odot is an associative operation on $\mathbb{Z}_{(n)}$. This fact follows from multiplication being associative on \mathbb{Z} .

Now we need to show that there exists a unique identity with respect to \odot . Consider the element $[1] \in \mathbb{Z}_n$. We have that (1, n) = 1 which means that $[1] \in \mathbb{Z}_{(n)}$. Next, let $[a] \in \mathbb{Z}_{(n)}$. Then $[a] \odot [1] = [a \cdot 1] = [a]$. Similarly, since multiplication is commutative in \mathbb{Z} , it follows that $[a] \odot [1] = [1] \odot [a]$.

Finally, we must show that for each $[a] \in \mathbb{Z}_{(n)}$, there exists $[a]^{-1} \in \mathbb{Z}_{(n)}$ such that $[a] \odot [a]^{-1} = [1]$. By part (b) of question 2, since for each $[a] \in \mathbb{Z}_{(n)}$, we have that (a, n) = 1, then there exists some $x \in \mathbb{Z}$ such that $ax \equiv 1 \pmod{n}$. Thus, for all [a], there is some $x \in \mathbb{Z}$ such that $[a] \odot [x] = [1]$. Therefore, $(\mathbb{Z}_{(n)}, \odot)$ is a group.

To determine the $|\mathbb{Z}_{(n)}|$ note that for each $[a] \in \mathbb{Z}_{(n)}$, (a, n) = 1 which means a and n are relatively prime. Thus, the order of this group should be equal to the number of integers $k \leq n$ which are relatively prime to n. Hence, $|\mathbb{Z}_{(n)}| = \varphi(n)$. \square

3.

(a) Assume that (c, n) = 1. Prove that if $ca \equiv cb \pmod{n}$, then $a \equiv b \pmod{n}$.

Proof. Since $ca \equiv cb \pmod{n}$, then $n \mid (cb-ca)$. Thus, $n \mid c(b-a)$. Additionally, we have that (c,n)=1 and so by Euclid's lemma, it follows that $n \mid (b-a)$. Therefore, $a \equiv b \pmod{n}$.

(b) Assume that $c_1, c_2, \ldots, c_{\varphi(n)}$ is a RRS mod n, and that (a, n) = 1. Prove that $ac_1, ac_2, \ldots, ac_{\varphi(n)}$ is a RRS mod n.

Proof. Let ac_i be in the collection $ac_1, \ldots, ac_{\varphi(n)}$. We know that $(c_i, n) = 1$ and (a, n) = 1 both by assumption. Then by part (c) of question 3., it follows that $(ac_i, n) = 1$ for all i. Now let ac_i and ac_j be in the collection $ac_1, \ldots, ac_{\varphi(n)}$. Assume for contradiction that $ac_i \equiv ac_j \pmod{n}$. Then $n \mid a(c_j - c_i)$. Since (a, n) = 1, then by Euclid's lemma, it follows that $n \mid (c_j - c_i)$. Thus, $c_i \equiv c_j \pmod{n}$ which is a contradiction. Thus, for all i and j where $i \neq j$, we have that $ac_i \not\equiv ac_j \pmod{n}$. Therefore, $ac_1, \ldots, ac_{\varphi(n)}$ is a RRS mod n.

0	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	μ_9	μ_{10}
μ_1	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	μ_9	μ_{10}
μ_2	μ_2	μ_3	μ_4	μ_5	μ_1	μ_9	μ_{10}	μ_6	μ_7	μ_8
μ_3	μ_3	μ_4	μ_5	μ_1	μ_2	μ_7	μ_8	μ_9	μ_{10}	μ_6
μ_4	μ_4	μ_5	μ_1	μ_2	μ_3	μ_{10}	μ_6	μ_7	μ_8	μ_9
μ_5	μ_5	μ_1	μ_2	μ_3	μ_4	μ_8	μ_9	μ_{10}	μ_6	μ_7
μ_6	μ_6	μ_8	μ_{10}	μ_7	μ_9	μ_1	μ_4	μ_2	μ_5	μ_3
μ_7	μ_7	μ_9	μ_6	μ_8	μ_{10}	μ_3	μ_1	μ_4	μ_2	μ_5
μ_8	μ_8	μ_{10}	μ_7	μ_9	μ_6	μ_5	μ_3	μ_1	μ_4	μ_2
μ_9	μ_9	μ_6	μ_8	μ_{10}	μ_7	μ_2	μ_5	μ_3	μ_1	μ_4
μ_{10}	μ_{10}	μ_7	μ_9	μ_6	μ_8	μ_4	μ_2	μ_5	μ_3	μ_1

4.

$$\mu_{1} = (a) \qquad \mu_{6} = (ac)(de) \qquad (\mu_{1})^{-1} = \mu_{1} \qquad (\mu_{6})^{-1} = \mu_{6}$$

$$\mu_{2} = (abcde) \qquad \mu_{7} = (ae)(bd) \qquad (\mu_{2})^{-1} = \mu_{5} \qquad (\mu_{7})^{-1} = \mu_{7}$$

$$\mu_{3} = (abcde)^{2} \qquad \mu_{8} = (ab)(ce) \qquad (\mu_{3})^{-1} = \mu_{4} \qquad (\mu_{8})^{-1} = \mu_{8}$$

$$\mu_{4} = (abcde)^{3} \qquad \mu_{9} = (ad)(bc) \qquad (\mu_{4})^{-1} = \mu_{3} \qquad (\mu_{9})^{-1} = \mu_{9}$$

$$\mu_{5} = (abcde)^{4} \qquad \mu_{10} = (be)(cd) \qquad (\mu_{5})^{-1} = \mu_{2} \qquad (\mu_{10})^{-1} = \mu_{10}$$

Consider the two rotations μ_2 and μ_3 and the two flips μ_6 and μ_8 . Composing μ_2 and μ_6 we obtain

$$\mu_2 \circ \mu_6 = \mu_9.$$

Composing μ_6 with $(\mu_2)^{-1}$ we obtain

$$\mu_6 \circ (\mu_2)^{-1} = \mu_6 \circ \mu_5 = \mu_9.$$

Thus, $\mu_2 \circ \mu_6 = \mu_6 \circ (\mu_2)^{-1}$. Similarly, for elements μ_3 and μ_8 , we find that

$$\mu_3 \circ \mu_8 = \mu_9 = \mu_8 \circ \mu_4 = \mu_8 \circ (\mu_3)^{-1}.$$

5. Assume that (G, \star) is a finite group, and that |G| = n. Prove that if $g \in G$, then o(g) is finite, and that if $g^t = e$, then $o(g) \mid t$.

Proof. Let G be a finite group with order n. Take $g \in G$ and assume o(g) is not finite. Then there does not exist $k \in \mathbb{Z}$ with k > 0 such that $g^k = e$. Now let $k_1, k_2 \in \mathbb{Z}$ where $k_1, k_2 > 0$ and $k_1 \neq k_2$. Assume $g^{k_1} = g^{k_2}$. Then $g^{k_2-k_1} = e$. Since $k_2 - k_1 \in \mathbb{Z}$, and $o(g) \leq k_2 - k_1$, then o(g) is finite. Since this is a contradiction, then it is the case that for all $k_1, k_2 \in \mathbb{Z}$ where $k_1, k_2 > 0$ and $k_1 \neq k_2$, then $g^{k_1} \neq g^{k_2}$. Thus, there exists a one-to-one and onto correspondence between $\langle g \rangle$ and \mathbb{Z} . However, since $\langle g \rangle \subseteq G$ and |G| = n, then we a contradiction and o(g) must be finite.

Let $t \in \mathbb{Z}$ such that $g^t = e$. Then $g^t = g^{o(g)}$ which implies $g^{t-o(g)} = e$. We now have that either t = o(g), in which case $o(g) \mid t$, or $t \neq o(g)$. If $t \neq o(g)$, then either $o(g) \nmid t$ or $o(g) \mid t$. If $o(g) \nmid t$, then by the division algorithm, there exists $q, r \in \mathbb{Z}$ with 0 < o(g), such that t = q(o(g)) + r. Thus,

$$g^{t} = g^{q(o(g))+r}$$

$$= g^{q(o(g))} \star g^{r}$$

$$= (g^{o(g)})^{q} \star g^{r}$$

$$= e^{q} \star g^{r}$$

$$= g^{r}.$$

However, since $g^t = e$ and $g^r = g^t$, then $g^r = e$. This is a contradiction since r < o(g). Therefore, $o(g) \mid t$.

6. Assume (G, \star) is a group, |G| = 2n. Prove that there exists $a \in G$, $a \neq e$, such that $a^2 = e$.

Proof. Let (G,\star) be a group with |G|=2n. Assume for contradiction that for all $a\in G$, if $a\neq e$, then $a^2\neq e$. Denote $G=\{e,a_1,a_2,\ldots,a_{2n-1}\}$. Now take the subset H of G containing all the elements not equal to the identity. Since G is a group, each element of G must have a unique inverse. Thus, for every $a\in H$, it must be the case that $a^{-1}\in H$. Consider the element $a_1\in H$. By assumption, it follows that $a_1^{-1}\neq a_1$. Without loss of generality, let $a_1^{-1}=a_2$. Similarly, let $a_2^{-1}=a_3$. Continuing in this fashion, we let $a_i^{-1}=a_{i+1}$, for all $1\leq i<2n-1$. Thus, for the element a_{2n-1} it follows that $a_{2n-1}^{-1}=a_1$ is the only choice left. However, since $a_1^{-1}=a_2$ and $a_1=a_{2n-1}^{-1}$, then $a_{2n-1}=a_1^{-1}$ and $a_1=a_2^{-1}$, but $a_2^{-1}=a_3$. Thus, $a_1=a_3$ which implies |G|<2n which is a contradiction. Therefore, there must exist some $a\in G$ such that $a\neq e$ and $a^2=e$.

7. Assume that (G, \star) is a group. Prove in each of the three cases: o(G) = 3, o(G) = 4, and o(G) = 5.

Proof. Let $G = \{e, a_1, a_2\}$. Suppose we let $a_1^2 = e$. Then if $a_2 \star a_1 = e$ this would mean a_2 is the inverse of a_1 which cannot be the case since $a_1^2 = e$. Thus, if we let $a_2 \star a_1$ equal to either a_1 or a_2 , then that would imply the other is equal to the identity which cannot be the case. Thus, $a_1^2 \neq e$. Moreover, we see that $a_1^2 \neq a_1$ since this would also imply that $a_1 = e$. Thus, $a_1^2 = a_2$. This forces $a_2^2 = a_1$. Lastly, using the fact that each row and column of a Cayley table must contain one of each element means that $a_1 \star a_2 = e = a_2 \star a_1$. Therefore, if o(G) = 3, G is abelian.

Considering the case where o(G)=4, and letting $G=\{e,a_1,a_2,a_3\}$ then we can ask what $a_1\star a_2$ must equal. It cannot equal either a_1 or a_2 since this would imply the other is the identity. Thus, we have that $a_1\star a_2=e$ or $a_1\star a_2=a_3$. If $a_1\star a_2=e$, then considering what $a_2\star a_1$ must equal, we can choose either e or a_3 . If we choose a_3 , then using the fact that each column of the Cayley table must contain one of each element, this means that $a_3\star a_1=e$ and $a_1^2=a_2$. On the other hand, if we had let $a_2\star a_1=e$. Did not have enough time to finish this problem. My apologies!