9 Prenons de la hauteur pour respirer... avant de replonger

- ▶ \exists des langages sans programme qui les accepte (7.2 : L_d)
- ▶ Des fonctions (même totales) ne sont pas calculables (4 et 7.2)
- ▶ \exists des langages *acceptés* mais pas *décidés* (8.2 : L_u)
 - \Rightarrow pour programmer certaines fonctions partielles calculables... il faut accepter que le programme ne s'arrête pas hors de leur domaine (4 et 8.2 : leur domaine est r.e. mais non récursif) donc les programmes qui bouclent sont inévitables...

```
Problème de décision (1.3) : fonction totale \{instances\} \rightarrow \{oui/non\}
```

- ⇔ propriété des instances
- ⇔ appartenance au langage des instances positives (~ «oui ») avec un codage des instances...

Exemple: «la MT m accepte (ou "s'arrête sur") l'entrée w» n'est pas décidable (L_u non récursif)... décidable = récursif

Donc le *problème de l'arrêt* est indécidable :

il n'existe pas de programme qui prend en entrée un programme m et une entrée w pour m (instance : (m, w)), et qui $d\acute{e}cide$ si, oui ou non, m s'arrête sur w

10 Théorème de Rice (1951, 1953) [Henry Gordon Rice 1920-2003]

Énoncé 1 : toute propriété non triviale (triviale : toujours vraie ou toujours fausse) des langages RE est indécidable

Énoncé 2 : toute propriété non triviale des MT (des programmes), qui ne dépend que du langage accepté par la MT (de la fonction calculée par le programme), est indécidable

Énoncé 3: toute propriété non triviale des grammaires générales G, qui ne dépend que de L(G), est indécidable

Exemples (énoncé 2 sur les MT et les langages acceptés) :

- «L(m) est vide»
- \triangleright «L(m) contient au moins un mot (donc est non vide)»
- \triangleright «L(m) contient ε »
- «L(m) contient exactement 42 mots»
- «L(m) est fini»
- «L(m) est infini»

Contre-exemples décidables (énoncé 2 sur les MT et les langages) :

- «m a 5 états»
- ► «∃w : l'exécution de m sur w fait au moins 5 pas»

Notation : $X \in \mathcal{P} \Leftrightarrow X$ satisfait la propriété \mathcal{P} (instance positive)

Preuve du théorème de Rice (énoncé 2 sur les MT et les langages)

Soit $\mathcal P$ une propriété en question... Supposons-la décidable

Note: si $L(m_1) = L(m_2)$ alors, soit m_1 et $m_2 \in \mathcal{P}$, soit m_1 et $m_2 \notin \mathcal{P}$ Note: $L(\varepsilon) = \emptyset$ (codage des MT dans ZOU*, 7.1)

- a. Supposons $\varepsilon \notin \mathcal{P}$ Alors $\exists m^+ \in \mathcal{P}$ et forcément $L(m^+) \neq \emptyset$
- \mathcal{P} décidable $\Rightarrow \exists m_{\mathcal{P}}$ qui décide $\mathcal{P} \Rightarrow$ on peut trouver une telle m^+ : énumérer les MT jusqu'à en trouver une acceptée par $m_{\mathcal{P}}$...
- Soit m (une MT) et w (un mot) quelconques

À partir de m et w, construire une MT m' (entrée : x) :

- 1 début : comme m sur w
- 2.1 m boucle sur $w \Rightarrow m'$ bouclera (\forall son entrée x)
- 2.2 m s'arrête sans accepter $w \rightarrow \operatorname{arrêter} m'$ sans accepter x
- 2.3 m accepte $w \rightarrow 3$ comme m^+ sur $\times \sim$ oui / non ou boucle
- ► Si $w \notin L(m)$ (2.1 ou 2.2), $L(m') = \emptyset = L(\varepsilon)$ donc $m' \notin \mathcal{P}$ Si $w \in L(m)$ (2.3 puis 3), $L(m') = L(m^+)$ donc $m' \in \mathcal{P}$
- ▶ Donc $w \in L(m) \Leftrightarrow m' \in \mathcal{P}$
- ▶ Donc, \mathcal{P} décidable $\Rightarrow L_u \in \mathbb{R}$. Or $L_u \notin \mathbb{R}$... contradiction en a.
- b. Supposons $\varepsilon \in \mathcal{P}$ Alors $\varepsilon \notin \overline{\mathcal{P}} \Rightarrow \overline{\mathcal{P}}$ indécidable (a. sur $\overline{\mathcal{P}}$)

De m et w on construit m' (en utilisant m^+)

En pratique, m' a deux rubans

- le premier, initialisé avec l'entrée x, qui sert dans l'étape 3.
- le deuxième, initialisé par m' avec w, qui sert dans l'étape 1.

11 Techniques de preuve ; réduction

Pour prouver

- qu'un langage est récursif / récursivement énumérable
- qu'un problème est décidable / semi-décidable
- qu'une fonction est totale calculable / (partielle) calculable
- il «suffit» d'exhiber une MT qui décide ou calcule totalement / qui accepte, semi-décide ou calcule (partiellement)
- Ça implique souvent l'utilisation de MT déjà connues... mais pas toujours ($ex : L_u \in RE$)
- Pour prouver le contraire $(L \notin R / L \notin RE)...$ on raisonne en général par l'absurde

Exemples:

- $-L_d \notin RE$ $L_u \notin R$
- Rice pour bon nombre de langages/problèmes/fonctions...

Une technique utile à connaître est la réduction

Principe (exemple) : on suppose $L \in \mathbb{R}$, on en déduit $L' \in \mathbb{R}$ donc si on sait $L' \not \in \mathbb{R}$, on a forcément $L \not \in \mathbb{R}$

On dit qu'on a $r\acute{e}duit$ L' à L

Exemples de réductions déjà rencontrées

```
1. réduction de L_d à \overline{L_u} (cf. diapo 24)
L_d = \{ w \in \mathsf{ZOU}^* \mid w \not\in L(w) \} \quad \overline{L_u} = \{ (m, w) \in (\mathsf{ZOU}^*)^2 \mid w \not\in L(m) \}
Soit w \in 700^*
    (A) posons c = (w, w)
Alors c est une entrée pour l'hypothétique m_{T_{in}}
    et w \in L_d \Leftrightarrow c \in \overline{L_u} (E)
Donc \overline{L_u} \in \mathbb{R} \Rightarrow L_d \in \mathbb{R} et donc L_d \notin \mathbb{R} \Rightarrow \overline{L_u} \notin \mathbb{R}
On a même plus : L_d \notin RE \Rightarrow \overline{L_u} \notin RE
A : algorithme pour transformer w en c tel que E
\{w\} = ZOU^* = \{instances du problème d'appartenance à L_d\}
\{c\} = \{A(w)\} \subseteq \{instances \text{ du problème d'appartenance à } \overline{L_u}\}
L'algo «transforme» les instances positives (les w éléments de L_d)
    en instances positives (des c éléments de \overline{L_{\mu}})
et les instances négatives (les w non éléments de L_d)
   en instances négatives (des c non éléments de \overline{L_u})
```

Schéma général de réduction de ${\mathcal P}$ à ${\mathcal Q}$

Si on peut accepter/décider \mathcal{Q} , alors on peut accepter/décider \mathcal{P} : transformer par l'algorithme l'instance de \mathcal{P} en instance de \mathcal{Q} , puis accepter/décider...

Exemple : réduction de L_d à $\overline{L_u}$

Exemples de réductions déjà rencontrées

- 2. preuve du théorème de Rice (cf. diapo 27)
- a. : réduction (compliquée) de L_u à $\mathcal P$ Dans l'algorithme A :

 - \blacktriangleright (m, w) est le paramètre (instance de $\ll \in L_u$?»)
 - ightharpoonup m' est le résultat (instance de \mathcal{P})

Et on a montré $\mathsf{E}:(m,w)\in \mathsf{L}_u\Leftrightarrow \mathsf{m}'\in\mathcal{P}$

b. : a. sur \overline{P} (réduction de L_u à \overline{P}) puis propriété des complémentaires

12 Problème de Correspondance de Post (PCP, 1946) [E. Post 1897–1954]

Problème de décision sans rapport avec les lang. RE ou les MT... *Instance* : couple de listes L et M de même longueur k > 0chaque liste : k mots non vides sur un vocabulaire V $L = w_1, ... w_k$ $M = x_1, ... x_k$ instance : (V, L, M)Instance positive: $\exists m \in \mathbb{N}, \exists i_0, ... i_m \in [1, k]^{m+1} : w_{i_0} ... w_{i_m} = x_{i_0} ... x_{i_m}$ $i_0, ... i_m$: solution de l'instance Exemples: (1) L = a, abaaa, ab M = aaa, ab, b une solution : 2, 1, 1, $3 \rightarrow abaaa a a a b = ab aaa aaa b$ (2) L = ab, baa, aba M = aba, aa, baa ... pas de solution (exercice : le démontrer...) Théorème: PCP est indécidable Preuve : passe par le Problème de Post Modifié (PPM) PPM : idem PCP, mais impose $i_0 = 1$ Instance positive : $\exists m \in \mathbb{N}, \exists i_1, ... i_m \in [1, k]^m : w_1 w_{i_1} ... w_{i_m} = x_1 x_{i_1} ... x_{i_m}$ $i_1, ... i_m$: solution de l'instance Exemples: (2) n'a toujours pas de solution, mais (1) non plus Double réduction : L_u à PPM et PPM à PCP

Schéma:

instances de «
$$\in L_u$$
?»
$$(m, w)$$

$$m = (Q, \Gamma, \Sigma, B, q_0, F, \delta)$$

$$w \in \Sigma^*$$

instances de PPM
$$(V, L, M)$$

$$L \in (V^+)^+$$

$$M \in (V^+)^+$$

$$|L| = |M|$$

a. Réduction de PPM à PCP

À partir d'une instance $(V, L = w_1, ... w_k, M = x_1, ... x_k)$ de PPM on construit une instance $\mathcal{T}(V, L, M) = (V', C, D)$ de PCP t.q. (V, L, M) positive dans PPM $\Leftrightarrow (V', C, D)$ positive dans PCP

$$V'=V\cup\{\diamondsuit,\heartsuit\}$$
: vocabulaire de C et D $(\diamondsuit,\heartsuit\not\in V)$ $C=y_1,...,y_{k+2}$ $D=z_1,...z_{k+2}$ $\forall i\in[1,k],$ si $w_i=a_1...a_p$ alors $y_i=a_1\diamondsuit...a_p\diamondsuit$ si $x_i=b_1...b_q$ alors $z_i=\diamondsuit b_1...\diamondsuit b_q$ $y_{k+1}=\diamondsuit y_1=\diamondsuit a_1\diamondsuit...a_p\diamondsuit$ $z_{k+1}=z_1=\diamondsuit b_1...\diamondsuit b_q$ $y_{k+2}=\heartsuit$ $z_{k+2}=\diamondsuit\heartsuit$

Exemple: 1 comme instance de PPM donne

	i	1	2	3		
Wi	(L)	а	abaaa	ab		
x _i	(M)	aaa	ab	Ь		
	i	1	2	3	4	5
Уi	(C)	a♦	a◊b◊a◊a◊a◊	a♦b♦	<i> </i>	\Diamond
Zį	(D)	<i>\$a\$a\$a</i>		$\Diamond b$	<i>\$a\$a\$a</i>	$\Diamond \heartsuit$

1. (V, L, M) a une sol. dans PPM $\Rightarrow \mathcal{T}(V, L, M)$ a une sol. dans PCP

Soit $i_1,...i_m$ solution de (V,L,M): $w_1w_{i_1}...w_{i_m} = x_1x_{i_1}...x_{i_m}$

Alors $k + 1, i_1, ... i_m, k + 2$ est une solution de $\mathcal{T}(V, L, M)$:

$$y_{k+1}y_{i_1}...y_{i_m}y_{k+2} = z_{k+1}z_{i_1}...z_{i_m}z_{k+2}$$

Ex. :
$$L = a$$
, ab , bb $M = abb$, a , b Une sol. : 3,3 ($\rightarrow abbbb$)

$$C = a \diamondsuit, a \diamondsuit b \diamondsuit, b \diamondsuit b \diamondsuit, \diamondsuit a \diamondsuit, \heartsuit \qquad D = \diamondsuit a \diamondsuit b \diamondsuit b, \diamondsuit a, \diamondsuit b, \diamondsuit a \diamondsuit b \diamondsuit b, \diamondsuit \heartsuit$$
Solution correspondante: 4, 3, 3, 5 ($\rightarrow \diamondsuit a \diamondsuit b \diamondsuit b \diamondsuit b \diamondsuit b \diamondsuit \heartsuit$)

2. $\mathcal{T}(V, L, M)$ a une sol. S dans PCP \Rightarrow (V, L, M) a une sol. dans PPM

S ne peut commencer que par k+1 et terminer par k+2 donc $S=k+1, i_1, ..., i_m, k+2$ $(m \in \mathbb{N} \text{ et les } i_i \in [1, k])$

Si on enlève les
$$\diamondsuit$$
 et le \heartsuit de $y_{k+1}y_{i_1}...y_{i_m}y_{k+2}$

on obtient exactement $w_1 w_{i_1} \dots w_{i_m}$

De même en ôtant les \diamondsuit et le \heartsuit de $z_{k+1}z_{i_1}...z_{i_m}z_{k+2}$ on obtient exactement $x_1x_{i_1}...x_{i_m}$

Donc
$$y_{k+1}y_{i_1}...y_{i_m}y_{k+2} = z_{k+1}z_{i_1}...z_{i_m}z_{k+2}$$

 $\Rightarrow w_1w_{i_1}...w_{i_m} = x_1x_{i_1}...x_{i_m}$

et donc $i_1, ... i_m$ est une solution de (V, L, M)

```
b. Réduction de L,, à PPM
Objectif: de (m, w) produire \mathcal{R}(m, w) = (V, L, M) tel que
   m accepte w \Leftrightarrow (V, L, M) a une solution (dans PPM)
Rappel: on peut supposer m avec un seul état final f, sans transition
Rappel: on peut supposer que m n'écrit jamais B
Note: on peut supposer que m ne reste jamais Stationnaire (exo...)
Note: on peut supposer que m ne va jamais à gauche
        de sa position initiale (exo...)
m accepte w \Leftrightarrow q_0 w = c_1 \vdash c_2 ... \vdash c_n = \alpha f \beta \not\vdash
Préliminaire : solution partielle pour (V, L, M) : séquence telle que
   w_1 w_{i_1} \dots w_{i_r} «partie L» est un préfixe strict de x_1 x_{i_1} \dots x_{i_r} «partie M»
Idée :
  Faire en sorte que les solutions partielles soient les préfixes
     de la «séquence de configurations» \sharp c_1 \sharp c_2 \sharp c_3 \sharp ... (\sharp \not\in Q \cup \Gamma)
  Construire L et M de sorte que dans la solution partielle,
     la «partie M» ait toujours «un pas d'avance» sur la «partie L»
  Permettre à la «partie L» de «rattraper» la «partie M»
     une fois l'état final atteint
```

On aura donc
$$V = Q \cup \Gamma \cup \{\sharp\}$$

On démarre avec la config. initiale (un pas d'avance dans M):

$$\begin{array}{c|c} w_1 (L) & x_1 (M) \\ \hline & \sharp q_0 w \sharp \end{array}$$

(début obligatoire de solution dans PPM)

Simulation des transitions : autres couples (w_i, x_i)

transition	$w_i(L)$	$x_i(M)$	commentaire
$\overline{\delta(q,X)=(p,Y,D)}$	qΧ	Υp	
$\overline{\delta(q,X)=(p,Y,G)}$	ZqX	pΖY	$\forall Z \in \Gamma$
$\overline{\delta(q,B)=(p,Y,D)}$	q#	Yp♯	
$\overline{\delta(q,B)=(p,Y,G)}$	$Zq\sharp$	pZY♯	$\forall Z \in \Gamma$

Exemple:
$$\delta(q_0, a) = (q_1, b, D)$$

on a donc un couple $w_i = q_0 a$ $x_i = bq_1$
donc si $w = aba$ on peut prolonger le début (w_1, x_1) par : dans $L: \sharp q_0 a$ dans $M: \sharp q_0 aba \sharp bq_1$

$$w = aba$$
 dans $L: \sharp q_0 a$ dans $M: \sharp q_0 aba \sharp b q_1$

On ajoute des couples pour «compléter» les configurations :

$w_i(L)$	$x_i(M)$	commentaire
X	X	$\forall X \in \Gamma$
#	#	

On peut ainsi prolonger jusqu'à $\sharp c_1\sharp$ (L) et $\sharp c_1\sharp c_2\sharp$ (M) : dans $L:\sharp q_0aba\sharp$ dans $M:\sharp q_0aba\sharp bq_1ba\sharp$

Supposons $\delta(q_1, b) = (f, a, D)$ on a donc un couple $w_i = q_1 b$ $x_i = af$

On peut alors prolonger jusqu'à $\sharp c_1 \sharp c_2 \sharp (L)$ et $\sharp c_1 \sharp c_2 \sharp c_3 \sharp (M)$: dans $L: \sharp q_0 aba \sharp bq_1 ba \sharp$ dans $M: \sharp q_0 aba \sharp bq_1 ba \sharp bafa \sharp$

lci on a «atteint» l'état final (en c_3), donc $w \in L(m)$!

dans $L: \sharp q_0 aba\sharp bq_1 ba\sharp$ dans $M: \sharp q_0 aba\sharp bq_1 ba\sharp bafa\sharp$

Reste à permettre à L de «rattraper» M quand f est atteint :

$w_i(L)$	$x_i(M)$	commentaire
Xf	f	$\forall X \in \Gamma$
fX	f	$\forall X \in \Gamma$

On peut alors prolonger (plusieurs façons de faire) :

dans $L: \sharp q_0 aba \sharp b q_1 ba \sharp ba fa \sharp b fa \sharp fa \sharp$

dans $M: \sharp q_0 aba\sharp bq_1 ba\sharp bafa\sharp bfa\sharp fa\sharp f\sharp$

Pour finir : ajouter le couple $(f\sharp\sharp,\sharp)$ qui nous amène à :

dans $L: \sharp q_0 aba\sharp bq_1 ba\sharp bafa\sharp bfa\sharp fa\sharp f\sharp\sharp$

dans $M:\sharp q_0aba\sharp bq_1ba\sharp bafa\sharp bfa\sharp fa\sharp f\sharp\sharp$

Donc m accepte $w \Rightarrow \mathcal{R}(m, w) = (V, L, M)$ a une solution

 $\mathcal{R}(m, w) = (V, L, M)$ a une solution $\Rightarrow m$ accepte w:

Une solution démarre forcément avec $(w_1, x_1) = (\sharp, \sharp q_0 w \sharp)$...PPM...

Informellement : les couples (w_i, x_i) «simulent» les transitions seul le dernier groupe (avec f) permet d'avoir une solution donc solution \Rightarrow état f atteint