Assignment # 2

Abhilash I

January 9, 2009

1. (source: DSEndSem-2008)For a given problem with inputs of size n, algorithms A, B, C are executed. In terms of running time, one of the algorithms is O(n), one O(nlog(n)) and one $O(n^2)$. Some measured running times of these algorithms are given below:

input Size	512	1024	2048
A	70	350	450
В	50	300	2053
С	135	150	182

Identify which algorithm is which and explain the observed running times. Which algorithm would you select for different values of n?

- 2. (source:adapted DSEndSem-2008) Write whether the following statements are true/false with justification.
 - (a) $log_2(n!) = \Omega(nlog(n))$
 - (b) O(f(n)) O(f(n)) = 0
 - (c) O(f(n) + g(n)) = f(n) + O(g(n)) if f(n) and g(n) are positive for all n
 - (d) All functions of the form $f(n) = An^k$ (with A and k being constants) are in the class $O(2^n)$.
 - (e) All sorting methods for an array of n elements take time $O(n^5)$
 - (f) All comparison based sorting algorithms take $\Omega(nlog(n))$
- 3. Show that $e^{O(z^m)} = 1 + O(z^m)$ for all fixed $m \ge 0$
- 4. (source: DSEndSem-2008)Compute the time complexity of the code snippet given below in terms of input size n. Note that j is an integer.