Application 1 Pendule – Sujet

Mise en situation

On s'intéresse à un pendule guidé par une glissière. On fait l'hypothèse que le problème est plan.

- ▶ On note 1 la pièce de masse M₁ et de centre de gravité G₁. OA = λ(t)x₀ hy₀.
 ▶ On note 2 la pièce de masse M₂ et de centre de gravité G et de matrice d'inertie

$$I_1(G) = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{\mathcal{B}_2}$$
. On a $\overrightarrow{AG} = L\overrightarrow{x_2}$

Travail à réaliser

Question 1 Déterminer $\delta(A, 2/0)$ en utilisant deux méthodes différentes.

Question 2 En déduire le torseur dynamique $\{\mathfrak{D}(2/0)\}$.

Question 3 Isoler 2 et écrire le théorème du moment dynamique en *A* en projection $\operatorname{sur} \overrightarrow{z_0}$.

Question 4 Isoler {1+2} et écrire le théorème de la résultante dynamique en projection

TD 1

Stabilisateur passif d'image – Sujet

Mines Ponts 2018 - PSI.

C1-05

C2-09

Mise en situation

Les appareils photos modernes fonctionnent en rafales : 8 à 10 images par seconde et en mode vidéo. Le besoin de stabilisation de l'image dans de telles conditions est impératif. Le but de ce sujet est de s'intéresser au support de la caméra assurant la liaison entre le bras de l'utilisateur et la caméra elle-même.

Le stabilisateur se compose principalement de trois objets :

- ▶ une poignée orientable (1) manipulée directement par le photographe, liée au support (2) en *O* ;
- ▶ un support rigide (2) (supposé sans masse) sur lequel vient se fixer une caméra assimilée en première approximation à une masse ponctuelle m_c placée en G_c ;
- ▶ un contrepoids lié à (2) et assimilé à une masse ponctuelle m_{cp} placée en G_{cp} .

L'utilisateur tient fermement la poignée (1) dans une position angulaire quelconque, ce qui permet d'affirmer que le (porteur + (1)) ne forme qu'une seule classe d'équivalence. Afin de produire des images toujours fluides, sans à-coups, ce stabilisateur à main doit maintenir constamment la caméra dans une position verticale (parallèle au champ de gravité), que le porteur soit immobile (plan fixe) ou en mouvement (travelling).

Dans le cas général, le mouvement du bras par rapport au référentiel terrestre est quelconque (6 degrés de libertés). Ici, on se limite à un mouvement de translation. Dans le cas général, afin que la caméra soit en position verticale, le support doit permettre 3 rotations dans la liaison avec (**porteur + (1)**). Ici on se limite à la stabilisation d'une seule rotation.

Objectif

Suite à une sollicitation brève de $0.5\,\mathrm{m\,s^{-2}}$, l'amplitude des oscillations de la caméra ne doit pas dépasser les 0.5° .

Travail demandé

On se place à présent dans une phase dite « dynamique ». Le porteur (1) est en mouvement par rapport au sol. On suppose qu'à l'instant initial, l'ensemble (E)=Support(2) + Caméra(C) + Contrepoids(Cp) est en équilibre stable en position verticale. On note

$$\{\mathcal{V}(1/0)\} = \left\{ \overrightarrow{\frac{0}{V(P,1/0)}} = v(t)\overrightarrow{X_0} \right\}_{\forall P}. \text{ On note } a(t) = \frac{\mathrm{d}v(t)}{\mathrm{d}t}. \text{ De plus, } \overrightarrow{OG_C} = L_C\overrightarrow{Z_2}$$
 et $\overrightarrow{OG_{CP}} = -L_{CP}\overrightarrow{Z_2}.$

Question 1 Par une étude dynamique que vous mettrez en œuvre, montrer que l'équation de mouvement de (E) dans **(0)** galiléen s'exprime comme $Q_1 \frac{\mathrm{d}^2 \varphi(t)}{\mathrm{d}t^2} + Q_2(t) = Q_3(t)a(t)$.

Afin de quantifier la modification d'attitude de (E), l'équation de mouvement est linéarisée autour de la position d'équilibre (verticale) en supposant que les valeurs de l'angle restent faibles. On transpose cette équation différentielle dans le domaine de Laplace et on note $\mathcal{L}(\varphi(t)) = \Phi(p)$ et $\mathcal{L}(a(t)) = A(p)$. Afin de conserver la fluidité des images lors de travelling, les fluctuations indésirables des mouvements du porteur ne doivent pas être intégralement transmisses à (E).

On suppose que $a(t) = a_0 \sin(\omega_a t)$ avec $a_0 = 0.5 \,\text{m s}^{-2}$ et $g = 10 \,\text{m s}^{-2}$.

Question 2 Établir sous forme canonique la fonction de transfert $H(p) = \frac{\Phi(p)}{A(p)}$. Donner l'expression de la pulsation propre ω_0 en fonction de m_c , m_{cp} , L_c , L_{cp} et g.

Question 3 Tracer l'allure du diagramme asymptotique de gain $G_{dB} = f(\omega)$ de la fonction de transfert $H(j\omega)$. Placer les caractéristiques remarquables.

Question 4 Pour un fonctionnement filtrant satisfaisant, on impose que $\omega_0 = 0$, $1\omega_a$. Le stabilisateur est réglé en conséquence par l'intermédiaire du couple (m_{cp}, L_{cp}) . En utilisant le comportement asymptotique en gain de G_{dB} , estimer numériquement l'amplitude $\Delta \varphi$ (en degrés) des oscillations de **(E)** selon l'axe $(O, \overrightarrow{y_0})$.

Retour sur le cahier des charges

Question 5 Conclure vis-à-vis de l'objectif et sur les écarts obtenus.

Colle 1 Porte outil – Sujet

Le dispositif porte-outil d'une machine d'affûtage est composé de trois solides 1, 2 et 3.

Le repère $\Re_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$, avec $\left(O, \overrightarrow{z_0}\right)$ vertical ascendant, est lié au bâti $\mathbf{0}$ de la machine. Il est supposé galiléen. Toutes les liaisons sont supposées parfaites.

Le repère $\Re_1 = \left(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}\right)$ est lié au support tournant $\mathbf{1}$ en liaison pivot d'axe $\left(O, \overrightarrow{z_0}\right)$ avec le bâti $\mathbf{0}$. La position de $\mathbf{1}$ par rapport à l'axe $\left(O, \overrightarrow{z_0}\right)$ est repérée par $\alpha = \left(\overrightarrow{x_0}, \overrightarrow{x_1}\right) = \left(\overrightarrow{y_0}, \overrightarrow{y_1}\right)$.

On note I_1 le moment d'inertie de **1** par rapport à l'axe $(O, \overrightarrow{z_0})$ et H le point tel que $\overrightarrow{OH} = h\overrightarrow{x_1}$.

Le repère $\mathcal{R}_2 = (H; \overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2})$ est lié au bras pivotant **2** en liaison pivot d'axe $(H, \overrightarrow{y_1})$ avec **1**. La position de **2** est repérée par $\beta = (\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{z_0}, \overrightarrow{z_2})$.

On note m_2 la masse de **(2)**, de centre d'inertie H de matrice d'inertie I_H (2) = $\begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}.$

Le repère $\Re_3 = \left(G; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_2}\right)$ est lié au porte-outil (3) (avec l'outil à affûter tenu par le mandrin) en liaison pivot glissant d'axe $\left(H, \overrightarrow{z_2}\right)$ avec (2).

La position de (3) est repérée par $\gamma = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{y_2}, \overrightarrow{y_3})$ et par $\overrightarrow{HG} = \lambda \overrightarrow{z_2}$.

On note m_3 la masse de (3), de centre d'inertie G de matrice d'inertie I_G (3) = $\begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\Re_3}.$

Question 1 Justifier la forme de la matrice de la pièce (3).

Question 2 Calculer $\overrightarrow{V(G,3/0)}$.

Question 3 Indiquer la méthode permettant de calculer le torseur dynamique en G de (3) en mouvement par rapport à \mathcal{R}_0 en projection sur $\overline{z_2}$.

Question 4 Calculer le moment dynamique en H appliqué à l'ensemble $\{2, 3\}$ en mouvement par rapport à \mathcal{R}_0 en projection sur $\overrightarrow{y_1}$.

Question 5 Calculer le moment dynamique en O appliqué à l'ensemble $\{1, 2, 3\}$ en mouvement par rapport à \mathcal{R}_0 en projection sur $\overrightarrow{z_0}$.

C1-05

Colle 2

Disque déséquilibré - Sujet

Soit le rotor **(1)** défini ci-contre. Il est constitué d'un arbre de masse négligeable en liaison pivot par rapport à un bâti **(0)**. Sur cet arbre est monté, en liaison complète, un disque de masse M, de rayon R et d'épaisseur H. Le repère $\mathcal{R}_1' = \left(G; \overrightarrow{x_1'}, \overrightarrow{y_1'}, \overrightarrow{z_1'}\right)$ est attaché à ce solide.

La base $\mathcal{B}'_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ se déduit de $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ par une rotation d'angle α autour de $\overrightarrow{z_1} = \overrightarrow{z_1}$.

La base $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ se déduit de $\mathcal{B}_0 = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ par une rotation d'angle θ autour de $\overrightarrow{x_1} = \overrightarrow{x_0}$.

Enfin, le rotor 1 est entrainé par un moteur (non représenté) fournissant un couple noté $C_m \overrightarrow{x_0}$. Le montage de ce disque présente deux défauts :

- ightharpoonup un défaut de perpendicularité caractérisé par l'angle α ;
- ▶ un défaut d'excentricité représenté par la cote *e*.

Question 1 Déterminer la forme de la matrice d'inertie du cylindre en C dans la base \mathcal{B}'_1 .

Question 2 Déterminer les éléments de réduction en A du torseur dynamique de **(1)** dans son mouvement par rapport à \mathcal{R}_0 .

Question 3 Appliquer le PFD pour déterminer les inconnues de liaison.

Équipe PT – PT★ La Martinière Monplaisir.

C1-05

Colle 3 Culbuto - Sujet

Le schéma de la figure ci-contre représente un jouet d'enfant constitué d'un premier solide (1), assemblage d'un demi disque de rayon R_1 et d'une tige, et d'un solide (2), guidé par une glissière de centre A sur la tige de (1). Un ressort (r), de raideur k et de longueur libre L_0 , est interposé entre les deux solides. Le disque (1) est en contact ponctuel en *H* avec le sol (0). On suppose qu'il y a roulement sans glissement en *H* entre (0) et (1).

Paramétrage et éléments d'inertie

- ▶ Le repère $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ lié au bâti est supposé galiléen. Le repère $(C; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$
- ► La liaison glissière entre (1) et (2) est supposée sans frottement.
- ► On note : $(\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \theta_1$, $\overrightarrow{CA} = \lambda_2 \overrightarrow{y_1}$, $\overrightarrow{HC} = R_1 \overrightarrow{y_0}$, $\overrightarrow{CG_1} = -a_1 \overrightarrow{y_1}$, $\overrightarrow{AG_2} = a_2 \overrightarrow{y_1}$.
- ► (1): masse m_1 , $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$; ► (2): masse m_2 , $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$

Question 1 Déterminer les équations différentielles du mouvement de (1) et de (2) par rapport au bâti (0).

Équipe PT - PT★ La Martinière Monplai-

C1-05

Colle 4

Mesure de moment d'inertie – Sujet

La figure ci-dessus représente un dispositif conçu pour déterminer le moment d'inertie I d'un solide de révolution (2) par rapport à son axe. Soit R_0 un repère galiléen lié au bâti (S_0) tel que l'axe $(O, \overrightarrow{x_0})$ soit vertical descendant. Les deux portées sur lesquelles roule le solide (2) sont des portions de la surface d'un cylindre de révolution d'axe $(O, \overrightarrow{z_0})$ et de rayon r. Le solide (2), de masse m, de centre d'inertie C, possède deux tourillons de même rayon a. Soit f le coefficient de frottement entre (2) et (S_0) . L'étude se ramène à celle d'un problème plan paramétré de la façon suivante :

- ▶ le tourillon de (2), de centre C, roule sans glisser en A sur la portée cylindrique de (S_0);
- ► R_1 est un repère tel que $\overrightarrow{OA} = r\overrightarrow{x_1}$ et on pose $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- ► R_2 est un repère lié à 2 avec $\varphi = (\overrightarrow{x_1}, \overrightarrow{x_2})$. On suppose que $\varphi = 0$ lorsque $\theta = 0$.

Question 1 Donner la relation entre φ et θ .

Question 2 Déterminer l'équation du mouvement de **(2)** par rapport à **(** S_0 **)** en fonction de θ .

Question 3 On suppose que l'angle θ reste petit au cours du mouvement. Montrer que le mouvement est périodique et déterminer la période T des oscillations de **(2)**.

Question 4 En déduire le moment d'inertie *I* de **(S)** sachant que : T = 5 s ; a = 12,5 mm; r = 141,1 mm; g = 9,81 m s⁻² ; m = 7217 g ; f = 0,15.

Question 5 Déterminer l'angle θ_0 maxi pour qu'il n'y ait pas glissement en A. Faire l'application numérique.

Équipe PT – PT★ La Martinière Monplaisir.

C1-05

Application 2 Chaîne ouverte – Banc d'essai vibrant– Sujet

Présentation

Les vibrations se retrouvent dans tous les systèmes et nuisent à leur durée de vie. On s'intéresse à un banc d'essai permettant d'étudier les conséquences de ces vibrations sur l'usure et la fatigue des pièces mécaniques. La figure ci-après représente un modèle cinématique du dispositif étudié. Une modélisation plane a été retenue. Le bâti vibrant est modélisé par un solide S_1 , de masse m_1 en liaison glissière parfaite avec un support S_0 , fixe par rapport à un repère \mathcal{R}_0 supposé galiléen.

Le solide S_1 est rappelé par un ressort de longueur libre l_0 et de raideur k. Une masse ponctuelle m_2 excentrée, placée en P, tourne sur un rayon r et est entraînée à vitesse constante Ω . Elle modélise le balourd du rotor d'un moteur S_2 .

Un pendule simple de longueur L, porte à son extrémité D une masse concentrée m_3 , l'ensemble constitue le solide S_3 , en liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$ avec S_1 .

Les masses autres que m_1 , m_2 et m_3 sont négligées.

Objectif

Déterminer les conditions géométriques permettant de supprimer les vibrations.

Question 1 Réaliser le graphe d'analyse du système.

Question 2 Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ et leurs dérivées et les paramètres cinétiques et cinématiques utiles.

Question 3 Déterminer ces deux équations. On souhaite supprimer les vibrations du bâti vibrant. On recherche alors une solution du système d'équations différentielles déterminé précédemment autour de la position d'équilibre $(x_0, \theta_0) = (0, 0)$ en supposant que x, θ , \dot{x} , $\dot{\theta}$ sont des petites variations de position ou de vitesse autour de cette position d'équilibre.

Question 4 Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

On s'intéresse uniquement au régime d'oscillations forcées. On cherche donc des solutions de la forme $x(t) = A \cos(\Omega t)$ et $\theta(t) = B \cos(\Omega t)$.

Question 5 Déterminer le système d'équations permettant de calculer *A* et *B*.

Question 6 Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

Pôle Chateaubriand - Joliot Curie

Application 3

Chaîne ouverte – Centrifugeuse géotechnique – Sujet

Pôle Chateaubriand - Joliot Curie.

Présentation

La géotechnique correspond aux activités liées aux applications de la mécanique des sols, de la mécanique des roches et de la géologie. À partir d'essais en laboratoire et in situ, la géotechnique fournit aux constructeurs de bâtiments et d'ouvrages les données indispensables pour le génie civil en ce qui concerne leur stabilité en fonction des sols. Aujourd'hui la modélisation physique d'ouvrage géotechnique en centrifugeuse est une approche expérimentale répandue. La centrifugation des modèles réduits permet de reproduire des états de contraintes dans les matériaux semblables à ceux régnant dans l'ouvrage grandeur nature. Le laboratoire central des Ponts et Chaussées (LCPC) de Nantes possède une centrifugeuse géotechnique dont les principales caractéristiques sont données ci-après :

- ▶ distance de l'axe à la plate-forme nacelle : 5,5 m;
- ▶ longueur du bras : 6,8 m;
- ► accélération maximale : 200 g;
- ▶ temps de montée à 200 g : 360 s.

On propose le modèle cinématique ci-contre.

Soit $\Re = (O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ un repère galiléen lié au bâti 0 de la centrifugeuse. L'axe (O, \overrightarrow{z}) est dirigé suivant la verticale descendante. On désigne par $\overrightarrow{g} = g \overrightarrow{z}$ le vecteur accélération de la pesanteur.

Le bras 1 est en liaison pivot sans frottement d'axe (O, \overrightarrow{z}) avec le bâti 0. Soit $\Re_1 = (O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z})$ un repère lié au bras 1. On pose $\alpha = (\overrightarrow{x}, \overrightarrow{x_1})$, avec $\alpha = \omega t$, où ω est une constante positive.

La nacelle 2 est en liaison pivot sans frottement d'axe $(A, \overrightarrow{y_1})$ avec le bras 1, telle que $\overrightarrow{OA} = a\overrightarrow{x_1}$ (a est une constante positive). Soit $\Re_2 = (A; \overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2})$ un repère lié à la nacelle 2. On pose $\beta = (\overrightarrow{z}, \overrightarrow{z_2})$.

On note:

- ▶ bras 1 : moment d'inertie I par rapport à l'axe (O, \overrightarrow{z}) ;
- ► nacelle 2 : centre d'inertie G , tel que $\overrightarrow{AG} = \overrightarrow{bz_2}$ (b est une constante positive), masse m, matrice d'inertie I_A (2) = $\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{G_B}$.

Un moteur, fixé sur la bâti 0, exerce sur le bras 1 une action mécanique représentée par le couple $C_m \overrightarrow{z}$. Le bras 1 tourne à la vitesse constante ω par rapport au bâti 0.

Objectif

Déterminer les équations du mouvement de la centrifugeuse, ainsi que le couple moteur à fournir au cours du mouvement.

Question 1 Préciser le théorème à utiliser permettant de déterminer l'équation de mouvement de la nacelle 2 par rapport au bras 1. Déterminer cette équation.

Question 2 Préciser le théorème à utiliser permettant de déterminer le couple moteur. Déterminer son expression.

On suppose que la nacelle 2 est en équilibre relatif par rapport au bras 1, et que $mba >> A \simeq C$.

Question 3 Déterminer les expressions de l'angle β et du couple moteur C_m ?

Application 4

Chargement et déchargement des cargos porte-conteneurs – Sujet

Modélisation dynamique du comportement de la charge

Objectif

Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

En vue d'élaborer une commande automatisée du déchargement des conteneurs, une bonne compréhension de la dynamique du système est nécessaire. Cette partie vise à établir les équations du mouvement du conteneur. La charge peut alors balancer selon le modèle présenté ci-après. Dans cette étude, la vitesse de vent nulle. On fait l'hypothèse que le conteneur est suspendu à un seul câble indéformable, en liaison pivot à ses extrémités. Les liaisons entre les solides 0, 1, 2 et 3 sont supposées parfaites. Le portique support du chariot est noté 0, le chariot 1, le câble 2 et l'ensemble {spreader + conteneur} 3.

Paramétrage

- ► Le repère $\Re_0 = \left(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$ est lié au portique fixe; il est supposé galiléen avec $\overrightarrow{z_0}$ l'axe vertical ascendant.
- La position du chariot telle que $\overrightarrow{OE} = y_{ch}(t)\overrightarrow{y_0}$ est notée $y_{ch}(t)$; l'angle $(\overrightarrow{z_0}, \overrightarrow{z_2})$ d'inclinaison du câble $\theta(t)$ et l'angle $(\overrightarrow{z_2}, \overrightarrow{z_3})$ d'inclinaison du conteneur par rapport au câble $\beta(t)$.

Données

- $\Re_1 = \left(E; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$ repère lié au chariot de levage 1.
- ▶ $\Re_2 = (E; \overrightarrow{x_0}, \overrightarrow{y_2}, \overrightarrow{z_2})$ repère lié au câble 2; $\ell_2 = 50$ m la longueur EF du câble; la masse est négligée.
- ▶ $\Re_3 = \left(F; \overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3}\right)$ repère lié à l'ensemble {spreader + conteneur}; $m_3 = 50$ tonnes la masse du solide 3; G_3 le centre de gravité du solide 3, tel que $\overrightarrow{G_3F} = h_3\overrightarrow{z_3}$ où $h_3 = 2,5$ m; la matrice d'inertie du solide 3 s'écrit $I_3(G_3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\overrightarrow{(x_0,y_3,z_3)}}$ où $\begin{vmatrix} A_3 = 52 \times 10^3 \text{ kg m}^2 \\ B_3 = 600 \times 10^3 \text{ kg m}^2 \\ C_3 = 600 \times 10^3 \text{ kg m}^2 \end{vmatrix}$.
- ▶ la motorisation M_D du mouvement de direction exerce, par l'intermédiaire de câbles, des actions mécaniques sur (1) qui se réduisent à un glisseur de la forme $\overrightarrow{R(M_D \to 1)} = F\overrightarrow{v_0}$;
- ▶ l'action mécanique du câble sur le spreader est notée $\overline{R(2 \to 3)} = F_{23}\overrightarrow{z_2}$.

Question 1 Après avoir réalisé le graphe de structure, déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure précédente. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Centrale Supelec PSI 2013.

Question 2 Déterminer littéralement, au point G_3 , la vitesse $\overline{V(G_3, 3/0)}$ puis le torseur dynamique $\{\mathfrak{D}(3/0)\}$ de l'ensemble {conteneur + spreader} (3) dans son mouvement par rapport au repère galiléen \mathfrak{R}_0 .

Question 3 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer l'équation différentielle de résultante reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{Ch}(t)$, sans inconnue de liaison et sans l'action du moteur.

Question 4 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer les équations différentielles reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$ et sans inconnue de liaison. La méthode sera clairement séparée des calculs.

Question 5 En supposant que θ , β , $\dot{\theta}$ et $\dot{\beta}$ sont petits, linéariser les équations précédentes.

Les courbes temporelles ont été obtenues par simulation, à partir des équations précédentes, pour un échelon en $y_{ch}(t)$ de $10 \, \text{m}$.

Question 6 Proposer une simplification de la modélisation précédente.

Application 5

Dynamique du véhicule – Segway de première génération – Sujet

Présentation

Le support de l'étude est le véhicule auto balancé Segway®. Il s'agit d'un moyen de transport motorisé qui permet de se déplacer en ville. En termes de prestations, il est moins rapide qu'une voiture ou qu'un scooter, mais plus maniable, plus écologique, moins encombrant et nettement plus moderne.

La première génération de Segway avait un guidon fixe et une poignée de direction). Cette technologie provoquait un effet de roulis qui pouvait conduire à un renversement. Dans cet exercice, nous nous proposons d'étudier le dérapage et le renversement d'un Segway de première génération.

La seconde génération de Segway a vu apparaître une technologie appelée LeanSteer avec guidon inclinable qui permet de faire tourner le Segway lorsque l'utilisateur penche son corps sur le côté (non étudié dans cet exercice).

On donne les caractéristiques géométriques et cinématiques suivantes :

- ▶ la route (0) est munie du repère $\Re_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$. Ce référentiel associé est supposé galiléen.
- ▶ la plate-forme (1) a pour centre de gravité C. Le conducteur (2) a pour centre de gravité G. Les roues 3 et 4,de masse et inertie négligeable, sont liées à 1 par des liaisons pivots d'axe $(C, \overrightarrow{y_1})$. L'ensemble E = 1 + 2 forme le système matériel indéformable E de centre de gravité G_E et de masse m_E . Il est animée d'un mouvement de rotation par rapport au sol dont le centre instantané de rotation est O. Le rayon de courbure de la trajectoire du point G_E dans \mathcal{R}_0 est \mathcal{R}_C . Le repère lié à 1 est \mathcal{R}_1 tel que $\overrightarrow{z_1} = \overrightarrow{z_0} = \overrightarrow{z_{01}} =$ et on note $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$.

On donne $\overrightarrow{OG_E} = R_C \overrightarrow{y_1} + h \overrightarrow{z}_{01}$. L'opérateur d'inertie de E en G_E dans $\mathcal{B}_1 = \left(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$

$$\operatorname{est}:I_{G_{E}}\left(E\right)=\begin{pmatrix}A&-F&-E\\-F&B&-D\\-E&-D&C\end{pmatrix}_{\mathfrak{B}_{1}}.$$

Hypothèse

- Les contacts entre les roues 3 et 4 et la route 0 ont lieu en A et B définis par $\overrightarrow{G_EA} = -l\overrightarrow{y_1} h\overrightarrow{z_0}$ et $\overrightarrow{G_EB} = l\overrightarrow{y_1} h\overrightarrow{z_0}$, l désignant la demi voie du véhicule. Les contacts sont modélisés par des liaisons sphère-plan de centres A et B et de normale $\overrightarrow{z_{01}}$. Le contact dans ces liaisons se fait avec un coefficient de frottement noté f (on supposera pour simplifier que les coefficients de frottement et d'adhérence sont identiques). Les actions mécaniques de la route 0 sur les roues 3 et 4 sont modélisées par des glisseurs en A et B de résultantes \overrightarrow{R} (0 \rightarrow 3) = $-T_A\overrightarrow{y_1} + N_A\overrightarrow{z_1}$ et \overrightarrow{R} (0 \rightarrow 4) = $-T_B\overrightarrow{y_1} + N_B\overrightarrow{z_1}$.
- ▶ On se place dans un cas où le rayon de courbure R_C de la trajectoire du point C, ainsi que la vitesse de rotation $\dot{\theta}$ par rapport au référentiel \Re_0 sont constants.
- L'accélération de la pesanteur est $\overrightarrow{g} = -g\overrightarrow{z_0}$. Accélération de la pesanteur, $g = 10 \, \text{ms}^{-2}$.

Frédéric SOLLNER – Lycée Mermoz – Montpellier.

▶ On néglige la masse et les l'inertie des roues.

On donne:

- ► coefficient d'adhérence pneu-route : f = 1;
- ► masse de $E = 1 + 2 : m_E = 134 \text{ kg};$
- ▶ demi largeur des voies : l = 35 cm, h = 86 cm.

Objectif

L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Étude du dérapage en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.1» Glissement du véhicule pour une vitesse de	Interdit
$20\mathrm{km}\mathrm{h}^{-1}$ dans un virage de rayon de courbure $10\mathrm{m}$	

Question 1 Exprimer la vitesse, notée $\overline{V(G_E/\Re_0)}$, du point G_E dans son mouvement par rapport à \Re_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire $V_L = ||\overline{V(G_E/\Re_0)}||$ du véhicule en fonction de R_C et $\dot{\theta}$.

Étude du renversement en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.2» Renversement du véhicule pour une vitesse de	Interdit
20 km h ⁻¹ dans un virage de rayon de courbure 10 m.	

Hypothèse

On suppose qu'il y a adhérence des roues en *A* et *B*.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 2 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

