The following listing of the claims will replace all prior versions, and listings, of claims in the application:

LISTING OF THE CLAIMS

Claims 1-66 (Canceled)

67. (Previously presented) A fluorinated silsesquioxane polymer comprised of monomer units having the structure (I)

wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected from the group consisting of substituents having the structure of formula - $(Q)_n$ - $CR^7R^8R^9$;

n is zero or 1;

Q is selected from the group consisting of arylene, substituted arylene, alkarylene, substituted alkarylene, and C_1 - C_4 alkylene optionally substituted with at least one nonhydrogen substituent selected from alkyl and fluoroalkyl;

R⁷ is hydrogen;

R⁸ is fluoroalkyl; and

R⁹ is OH, COOH or an acid-cleavable moiety.

68-70. (Canceled)

- 71. (Previously presented) The polymer of claim 67, wherein n is 1 and Q is selected from the group consisting of arylene, fluorinated arylene, and C₁-C₄ alkylene optionally substituted with 1-8 nonhydrogen substituents selected from alkyl and fluoroalkyl.
 - 72. (Canceled)
- 73. (Previously presented) The polymer of claim 71, wherein Q is arylene or fluorinated arylene.
 - 74. (Canceled)
 - 75. (Previously presented) The polymer of claim 73, wherein Q is arylene.
 - 76. (Previously presented) The polymer of claim 73, wherein Q is fluorinated arylene.
 - 77-78. (Canceled)
- 79. (Previously presented) The polymer of claim 71, wherein Q is C₁-C₄ alkylene optionally substituted with 1-8 nonhydrogen substituents selected from alkyl and fluoroalkyl.
- 80. (Previously presented) The polymer of claim 79, wherein Q is C_1 - C_4 alkylene optionally substituted with 1-8 nonhydrogen substituents selected from C_1 - C_6 alkyl and C_1 - C_6 fluoroalkyl.
- 81. (Previously presented) The polymer of claim 79, wherein Q is C_1 - C_4 alkylene optionally substituted with 1-8 nonhydrogen substituents selected from C_1 - C_6 alkyl, trifluoromethyl, and trifluoromethyl-substituted C_1 - C_6 alkyl.
 - 82-83. (Canceled)
 - 84. (Previously presented) The polymer of claim 67, wherein \mathbb{R}^8 is \mathbb{C}_1 - \mathbb{C}_6 fluoroalkyl.

- 85. (Previously presented) The polymer of claim 84, wherein R^8 is trifluoromethyl-substituted C_1 - C_6 alkyl.
 - 86. (Previously presented) The polymer of claim 67, wherein R⁹ is OH.
 - 87. (Previously presented) The polymer of claim 67, wherein R⁹ is COOH.
 - 88. (Previously presented) The polymer of claim 67, wherein R⁹ is an acid-cleavable moiety.
- 89. (Previously presented) The polymer of claim 88, wherein the acid-cleavable moiety is an acid-cleavable ester, ether or carbonate.
 - 90. (Previously presented) The polymer of claim 89, wherein R⁹ is an acid-cleavable ester.
- 91. (Previously presented) The polymer of claim 90, wherein R^9 has the formula -(L)_v-(CO)-OR¹⁴ wherein v is zero or 1, L is a linking group, and R^{14} is selected from the group consisting of acyclic tertiary alkyl moieties, cyclic substituents with a tertiary attachment point, and 2-trialkylsilylethyl moieties.
- 92. (Previously presented) The polymer of claim 91, wherein v is zero and R¹⁴ is acyclic tertiary alkyl.
 - 93. (Previously presented) The polymer of claim 92, wherein R^{14} is *t*-butyl.
- 94. (Previously presented) The polymer of claim 91, wherein v is zero and R^{14} is a cyclic substituent with a tertiary attachment point.
- 95. (Previously presented) The polymer of claim 94, wherein R¹⁴ is selected from the group consisting of adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl, 1-methylcyclopentyl, and 1-methylcyclohexyl.

- 96. (Previously presented) The polymer of claim 91, wherein v is zero and R¹⁴ is 2-trialkylsilylethyl.
 - 97. (Previously presented) The polymer of claim 96, wherein R¹⁴ is 2-trimethylsilylethyl.
- 98. (Previously presented) The polymer of claim 67, further comprising additional monomer units having the structure of formula (IV)

wherein R^{10} , R^{11} , R^{12} and R^{13} are independently hydrogen, alkyl, fluoroalkyl, fluoroarbinol or an acid-cleavable moiety, with the proviso that at least one of R^{10} , R^{11} , R^{12} and R^{13} is an acid-cleavable moiety.

- 99. (Previously presented) The polymer of claim 98, wherein R¹⁰, R¹¹, R¹² and R¹³ are independently hydrogen, alkyl, or the acid-cleavable moiety, and the acid-cleavable moiety is selected from the group consisting of acid-cleavable esters, ethers, and carbonates.
- 100. (Previously presented) The polymer of claim 99, wherein at least one of R^{10} , R^{11} , R^{12} and R^{13} is an acid-cleavable ester.
- 101. (Previously presented) A lithographic photoresist composition comprising the fluorinated silsesquioxane polymer of claim 67 and a radiation-sensitive acid generator.

- 102. (Previously presented) A lithographic photoresist composition comprising the fluorinated silsesquioxane polymer of claim 98 and a radiation-sensitive acid generator.
- 103. (Previously presented) The lithographic photoresist composition of claim 101, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable dissolution inhibitor.
- 104. (Previously presented) The lithographic photoresist composition of claim 102, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable dissolution inhibitor.
- 105. (Previously presented) The lithographic photoresist composition of claim 101, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.
- 106. (Previously presented) The lithographic photoresist composition of claim 102, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.
- 107. (Previously presented) The lithographic photoresist composition of claim 105, wherein the crosslinking agent is a glycoluril compound.
- 108. (Previously presented) The lithographic photoresist composition of claim 107, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril, methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.
- 109. (Previously presented) The lithographic photoresist composition of claim 106, wherein the crosslinking agent is a glycoluril compound.
- 110. (Previously presented) The lithographic photoresist composition of claim 109, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril,

methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.

- 111. (Withdrawn) A process for generating a resist image on a substrate, comprising the steps of:
 - (a) coating a substrate with a film of the photoresist composition of claim 101;
- (b) exposing the film selectively to a predetermined pattern of deep ultraviolet radiation so as to form a latent, patterned image in the film; and
 - (c) developing the latent image with a developer.
- 112. (Withdrawn) The process of claim 111, wherein the deep ultraviolet radiation has a wavelength of less than 250 nm.
- 113. (Withdrawn) The process of claim 112, wherein the deep ultraviolet radiation has a wavelength of 157 nm.
- 114. (Withdrawn) The process of claim 111, wherein the substrate is a bilayer substrate comprising a base layer covered by an underlayer and the photoresist composition covers the underlayer.
- 115. (Withdrawn) A process for generating a resist image on a substrate, comprising the steps of:
 - (a) coating a substrate with a film of the photoresist composition of claim 102;
- (b) exposing the film selectively to a predetermined pattern of deep ultraviolet radiation so as to form a latent, patterned image in the film; and
 - (c) developing the latent image with a developer.
- 116. (Withdrawn) The process of claim 115, wherein the deep ultraviolet radiation has a wavelength of less than 250 nm.

- 117. (Withdrawn) The process of claim 116, wherein the deep ultraviolet radiation has a wavelength of 157 nm.
- 118. (Withdrawn) The process of claim 115, wherein the substrate is a bilayer substrate comprising a base layer covered by an underlayer and the photoresist composition covers the underlayer.
- 119. (Withdrawn) A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 103 to the substrate;
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the exposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a resist structure pattern; and
- (e) transferring the resist structure pattern to the substrate by etching into the substrate through spaces in the resist structure pattern.
- 120. (Withdrawn) The process of claim 119, wherein the radiation is deep ultraviolet radiation.
- 121. (Withdrawn) A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 104 to the substrate;
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer;
 - (d) contacting the substrate with an aqueous alkaline developer solution,

whereby the exposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a resist structure pattern; and

- (e) transferring the resist structure pattern to the substrate by etching into the substrate through spaces in the resist structure pattern.
- 122. (Withdrawn) The process of claim 119, wherein the radiation is deep ultraviolet radiation.
- 123. (Withdrawn) A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 105 to the substrate
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer thereby inducing crosslinking;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the unexposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a negative resist structure pattern; and
- (e) transferring the negative resist structure pattern to the substrate by etching into the substrate through spaces in the negative resist structure pattern.
- 124. (Withdrawn) A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 106 to the substrate
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer thereby inducing crosslinking;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the unexposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a negative resist structure pattern; and

- (e) transferring the negative resist structure pattern to the substrate by etching into the substrate through spaces in the negative resist structure pattern.
 - 125. (Previously presented) The polymer of claim 81, wherein Q is C₁-C₄ alkylene.
 - 126. (Previously presented) The polymer of claim 84, wherein R⁸ is trifluoromethyl.
- 127. (Previously presented) The polymer of claim 91, wherein v is 1 and L is selected from: linear, branched, and cyclic alkylene; linear, branched, and cyclic fluoroalkylene; and arylene.
- 128. (Previously presented) The polymer of claim 100, wherein the acid-cleavable ester has the formula $-(L)_v$ -(CO)-OR¹⁴ wherein v is zero or 1, L is a linking group, and R¹⁴ is selected from the group consisting of acyclic_tertiary alkyl moieties, cyclic substituents with a tertiary attachment point, and 2-trialkylsilylethyl moieties.
- 129. (Previously presented) The polymer of claim 128, wherein v is 1 and L is selected from: linear, branched, and cyclic alkylene; linear, branched, and cyclic fluoroalkylene; and arylene.
- 130. (Previously presented) The polymer of claim 129, wherein L is selected from linear, branched, and cyclic alkylene.
 - 131. (Previously presented) The polymer of 130, wherein L is cyclic alkylene.
- 132. (Previously presented) The polymer of claim 131, wherein L is a norbornyl or cyclohexyl group.
 - 133. (Previously presented) The polymer of claim 132, wherein L is norbornyl.
 - 134. (Previously presented) The polymer of claim 131, wherein R¹⁴ is acyclic tertiary alkyl.
 - 135. (Previously presented) The polymer of claim 132, wherein R¹⁴ is acyclic tertiary alkyl.

- 136. (Previously presented) The polymer of claim 133, wherein R¹⁴ is acyclic tertiary alkyl.
- 137. (Previously presented) The polymer of claim 134, wherein \mathbb{R}^{14} is *t*-butyl.
- 138. (Previously presented) The polymer of claim 135, wherein R^{14} is *t*-butyl.
- 139. (Previously presented) The polymer of claim 136, wherein \mathbb{R}^{14} is *t*-butyl.
- 140. (Previously presented) The polymer of claim 131 wherein R^{14} is a cyclic substituent with a tertiary attachment point.
- 141. (Previously presented) The polymer of claim 132, wherein R^{14} is a cyclic substituent with a tertiary attachment point.
- 142. (Previously presented) The polymer of claim 133, wherein R^{14} is a cyclic substituent with a tertiary attachment point.
- 143. (Previously presented) The polymer of claim 140, wherein R¹⁴ is selected from the group consisting of adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl, 1-methylcyclopentyl, and 1-methylcyclohexyl.
- 144. (Previously presented) The polymer of claim 141, wherein R¹⁴ is selected from the group consisting of adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl, 1-methylcyclopentyl, and 1-methylcyclohexyl.
- 145. (Previously presented) The polymer of claim 144, wherein R¹⁴ is selected from the group consisting of adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-

butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl, 1-methylcyclopentyl, and 1-methylcyclohexyl.

- 146. (Previously presented) The polymer of claim 131, wherein \mathbb{R}^{14} is 2-trialkylsilylethyl.
- 147. (Previously presented) The polymer of claim 132, wherein R¹⁴ is 2-trialkylsilylethyl.
- 148. (Previously presented) The polymer of claim 133, wherein R¹⁴ is 2-trialkylsilylethyl.
- 149. (Previously presented) The polymer of claim 131, wherein R¹⁴ is 2-trialkylsilylethyl.
- 150. (Previously presented) The polymer of claim 147, wherein R¹⁴ is 2-trimethylsilylethyl.
- 151. (Previously presented) The polymer of claim 148, wherein R¹⁴ is 2-trimethylsilylethyl.
- 152. (Previously presented) The polymer of claim 151, wherein R¹⁴ is 2-trimethylsilylethyl.
- 153. (Previously presented) A copolymer comprised of fluorinated silsesquioxane monomer units having the structure (I)

and silsesquioxane comonomer units having the structure (IV)

wherein:

R¹, R², R³ and R⁴ are independently selected from substituents of the formula -Q-CHR⁸R⁹;

Q is C₁-C₄ alkylene;

R⁸ is C₁-C₆ fluoroalkyl;

R⁹ is OH or COOH;

 R^{10} , R^{11} , R^{12} and R^{13} are independently selected from the group consisting of hydrogen, alkyl, and acid-cleavable esters of the formula -L-(CO)-OR¹⁴, with the proviso that at least one of R^{10} , R^{11} , R^{12} and R^{13} is an acid-cleavable ester of the formula -L-(CO)-OR¹⁴;

L is a cycloalkylene linking group; and

R¹⁴ is selected from the group consisting of acyclic tertiary alkyl moieties, cyclic substituents with a tertiary attachment point, and 2-trialkylsilylethyl moieties.

154. (Previously presented) The copolymer of claim 153, wherein:

 R^8 is selected from trifluoromethyl and trifluoromethyl-substituted C_1 - C_6 alkyl; and R^9 is OH.

155. (Previously presented) The copolymer of claim 154, wherein:

R⁸ is trifluoromethyl;

R¹⁴ is selected from the group consisting of *t*-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl, 1-methylcyclopentyl, 1-methylcyclopentyl, 2-trimethylsilylethyl, and 2-triethylsilylethyl.

156. (Previously presented) The copolymer of claim 155, wherein: L is norbornyl; and R^{14} is *t*-butyl.

- 157. (Previously presented) A lithographic photoresist composition comprising the copolymer of claim 153 and a radiation-sensitive acid generator.
- 158. (Previously presented) The lithographic photoresist composition of claim 157, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable dissolution inhibitor.
- 159. (Previously presented) The lithographic photoresist composition of claim 157, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.