

Общероссийский математический портал

А. Ю. Чеботарев, Конечномерная стабилизация с заданной скоростью систем типа Навье — Стокса, Дальневост. матем. эсурн., 2010, том 10, номер 2, 199–204

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 37.8.156.36

19 января 2015 г., 13:38:56

УДК 517.95 MSC2000 35B35, 35Q30

© А.Ю. Чеботарев*

Конечномерная стабилизация с заданной скоростью систем типа Навье – Стокса

Изучается стабилизация неустойчивого стационарного решения операторного уравнения с квадратичной нелинейностью. Строится ограниченное конечномерное управление с обратной связью экспоненциально стабилизирующее данное решение.

Ключевые слова: конечномерное управление, уравнения Навье – Стокса, стабилизация с обратной связью.

1. Постановка задачи стабилизации

В реальных физических процессах неизбежно возникают непредусмотренные флуктуации и поэтому возникает необходимость разработки методов построения управлений, способных реагировать на непредусмотренные возмущения и подавлять их. Проблемы стабилизации для систем Навье — Стокса привлекают внимание специалистов в силу прикладной значимости в задачах, связанных с турбулентностью. В работах [1]—[3] разработаны методы стабилизации с границы решений системы Навье — Стокса, основанные на решении смешанной краевой задачи со специально построенным начальным условием, принадлежащим инвариантному устойчивому многообразию. В последние годы появляется достаточно много результатов (например [4]—[8]), посвященных построению стабилизирующих операторов управления для уравнений гидродинамики. Указанные результаты связаны с развитием методов Ляпунова исследования устойчивости решений обыкновенных дифференциальных уравнений и для их получения используется алгебраическое уравнение Риккати для операторов стабилизации, которое возникает при решении вспомогательных задач оптимального управления с бесконечным горизонтом. Указанные конструкции стабилизации являются сложными для реализации и требуют высокой гладкости стационарного решения.

В данной работе рассмотрена задача стабилизации неустойчивого стационарного решения эволюционного операторного уравнения типа Навье – Стокса в гильбертовом пространстве. При построении стабилизирующего управления учитываются спектральные свойства оператора, моделирующего диссипативные или вязкие члены в моделях гидродинамики. Стабилизация с заданной скоростью достигается за счет ограниченного конечномерного управления. Предложенный метод применим для стабилизации слабых (турбулентных) решений систем Навье – Стокса.

Определим необходимые для постановки задачи пространства и операторы. Пусть V и H — вещественные гильбертовы пространства, V' — пространство, сопряженное с V; $V \subset H \subset V'$, при этом вложение $V \subset H$ плотно и компактно. Нормы в пространствах V, H и в V' обозначаем соответственно через $\|\cdot\|, |\cdot|$ и $\|\cdot\|_*$; (f, v) — значение функционала $f \in V'$

¹Институт прикладной математики ДВО РАН, 690041,Владивосток, ул. Радио, 7. Электронная почта: cheb@iam.dvo.ru

на элементе $v \in V$, совпадающее со скалярным произведением в H, если $f \in H$; $((\cdot, \cdot))$ – скалярное произведение в пространстве V.

Рассмотрим линейный непрерывный оператор $A:V\to V'$ и билинейный непрерывный оператор $B:V\times V\to V'$ такие, что

$$(Ay, y) \ge \alpha ||y||^2, \quad (Ay, z) \le \gamma ||y|| \cdot ||z||, \quad (Ay, z) = (Az, y);$$
 (1)

$$(B(y,z),z) = 0, \quad y,z \in V; \tag{2}$$

$$((B(y_1, y_2), y_3) \le C_0 \|y_1\| \cdot \|y_2\| \cdot \|y_3\|, \tag{3}$$

$$((B(y_1, y_2), y_3) \le C_1 \|y_1\| \cdot \|y_2\| \cdot |y_3|^{1/4} \cdot \|y_3\|^{3/4}, \quad y_1, y_2, y_3 \in V.$$

$$(4)$$

Здесь положительные постоянные α , γ , C_0 , C_1 не зависят от y, z, y_i . Неравенства (1) соответствуют оценкам вязких, а неравенства (3), (4) – конвективных членов в трехмерных моделях динамики несжимаемой жидкости. Заметим, что свойства оператора A позволяют в пространстве V в качестве скалярного произведения выбрать билинейную форму ((y,z)) = (Ay,z).

Пусть $f \in V'$ – заданный элемент. Рассмотрим эволюционное уравнение

$$y' + Ay + B[y] = f. (5)$$

Здесь и далее y' = dy/dt, B[y] = B(y,y). Уравнение (5) моделирует нестационарные течения вязкой несжимаемой жидкости. В виде (5) можно записать, например, краевые задачи для уравнений Навье – Стокса с условием прилипания на границе или с заданными граничными значениями полного напора, а также краевые задачи для уравнений магнитной гидродинамики [9]–[12].

Пусть $y_s \in V$ – стационарное решение (5), то есть

$$Ay_s + B[y_s] = f, (6)$$

и y_s является неустойчивой особой точкой динамической системы, порождаемой эволюционным уравнением (5) в фазовом пространстве H.

Задача стабилизации заключается в следующем:

Для заданного $\sigma>0$ требуется найти оператор управления с обратной связью $S(\cdot,t):H\to H$ такой, что решение задачи Коши для замкнутой системы

$$y' + Ay + B[y] = f + S(y, t), \quad t > 0, \quad y(0) = y_0 \in H,$$
(7)

 $cxodumcs \ \kappa \ y_s \ c$ заданной скоростью σ :

$$|y(t) - y_s| \le Ce^{-\sigma t} \quad npu \ t \to +\infty,$$
 (8)

если величина $|y_0 - y_s|$ достаточно мала.

Основной результат работы состоит в построении стабилизирующего оператора $S(\cdot,t)$ такого, что y_s является устойчивой особой точкой динамической системы (7) в фазовом пространстве H, при этом оператор $S(\cdot,t)$ имеет конечномерный образ, лежащий в шаре заданного радиуса.

2. Разрешимость замкнутой системы

В силу теоремы Гильберта — Шмидта, собственные элементы $\{w_j\}$ оператора A, определяемые из условий:

$$Aw_j = \lambda_j w_j, \ j = 1, 2, ... \ (w_i, w_j) = \delta_{ij}, \ 0 < \lambda_1 \le \lambda_2 \le ...,$$

образуют базис пространств H и V, причем $\lambda_m \to +\infty$ при $m \to \infty$.

Пусть $H_m = span\{w_1,...,w_m\}$ – линейная оболочка первых m собственных элементов оператора A. Через $P_m: H \mapsto H_m$ обозначим оператор проектирования на H_m . Отметим сразу справедливость неравенств

$$|y|^2 \le \lambda_1^{-1} ||y||^2 \ \forall y \in V, \ |y|^2 \le \lambda_{m+1}^{-1} ||y||^2 \ \forall y \in V \cap (H \ominus H_m).$$
 (9)

Для положительных параметров σ, ε, r определим стабилизирующий оператор S:

$$S(y,t) = -r \cdot \begin{cases} \frac{1}{\varepsilon} P_m(y - y_s), & \text{если } |P_m(y - y_s)| \le \varepsilon e^{-\sigma t}, \\ \frac{e^{-\sigma t}}{|P_m(y - y_s)|} P_m(y - y_s), & \text{иначе.} \end{cases}$$
(10)

Покажем разрешимость задачи Коши (7) с определенным выше оператором S, на конечном интервале времени. Для банахова пространства X через $L^q(0,T;X)$ обозначим пространство L^q функций, определенных на (0,T) со значениями в $X, q \ge 1$.

Теорема 1. Пусть $f \in V'$, $y_s \in V$ – решение стационарного уравнения (6). Тогда для всех $y_0 \in H$, T > 0 существует решение $y \in L^{\infty}(0,T;H) \cap L^2(0,T;V)$, $y' \in L^1(0,T;V')$ замкнутой системы

$$y' + Ay + B[y] = f + S(y,t), t \in (0,T), y(0) = y_0.$$

Доказательство. Существование решения доказывается путем получения априорных оценок для галеркинских приближений y_k , определяемых из системы (k > m)

$$\forall w \in H_m \ (y_k' + Ay_k + B[y_k] - f - S(y_k, t), w) = 0, \ t \in (0, T), \quad y_k(0) = P_k y_0, \tag{11}$$

и последующего предельного перехода по $k \to +\infty$. Получим нужные априорные оценки y_k . Заметим, что $(f,y) \le (\|f\|_*^2 + \|y\|^2)/2$,

$$(S(y,t),y) \le r\mathrm{e}^{-\sigma t}|y_s| - r \cdot \left\{ egin{array}{ll} rac{1}{arepsilon}|P_m(y-y_s)|^2, & \mathrm{если} \; |P_m(y-y_s)| \le arepsilon \mathrm{e}^{-\sigma t}, \\ \mathrm{e}^{-\sigma t}|P_m(y-y_s)|, & \mathrm{иначе}. \end{array}
ight.$$

Тогда, полагая в (11) $w = y_k$ и интегрируя по t, получим оценку

$$|y_k(t)|^2 + \int_0^t ||y_k(\tau)||^2 d\tau \le |y_0|^2 + \frac{2r}{\sigma} (1 - e^{-\sigma t}) |y_s| + t ||f||_*^2.$$
(12)

Выведем теперь оценку, гарантирующую компактность последовательности y_k в $L^2(0,T;H)$. Оператор (-S(y,t)) является производной по y выпуклого функционала

$$\Phi(y,t) = r \left\{ \begin{array}{ll} \frac{1}{2\varepsilon} |P_m(y-y_s)|^2, & \text{если } |P_m(y-y_s)| \leq \varepsilon \mathrm{e}^{-\sigma t}, \\ \mathrm{e}^{-\sigma t} (|P_m(y-y_s)| - \varepsilon \mathrm{e}^{-\sigma t}/2), & \text{иначе.} \end{array} \right.$$

В системе (11) выберем $w=y_k(t)-y_k(\tau)$, где $t,\tau\in(0,T)$. Тогда получаем

$$\frac{1}{2} \cdot \frac{d}{dt} |y_k(t) - y_k(\tau)|^2 + (Ay_k(t) + B[y_k(t)] - f, y_k(t) - y_k(\tau)) = (S(y_k(t), t), y_k(t) - y_k(\tau)) \le C(y_k(t), t) + C(y_$$

$$\leq \Phi(y_k(\tau), t) - \Phi(y_k(t), t) \leq \Phi(y_k(\tau), t).$$

Проинтегрируем последнее неравенство по t на отрезке $[\tau, \tau+h]$ и по τ на отрезке [0, T-h] и воспользуемся свойствами операторов (1)–(3) и оценкой (12). В результате нетрудно вывести оценку равностепенной непрерывности для последовательности $y_k(t)$:

$$\int_{0}^{T-h} |y_k(\tau+h) - y_k(\tau)|^2 d\tau \le Ch^{1/2}.$$
(13)

Здесь постоянная C > 0 не зависит от k, ε . Оценки (12), (13) позволяют совершить в (11) предельный переход и доказать разрешимость задачи (7).

3. Конечномерная стабилизация

Выясним условия, выполнение которых гарантирует, что стационарное состояние $y_s \in V$ является экспоненциально устойчивой особой точкой динамической системы (7). Пусть $\varphi(t) = \mathrm{e}^{\sigma t}(y(t) - y_s), \ t > 0.$ Функция φ является решением следующей задачи:

$$\varphi' - \sigma\varphi + A\varphi + B(y_s + \varphi e^{-\sigma t}, \varphi) + B(\varphi, y_s) + R_s(\varphi) = 0, \ t > 0, \ \varphi(0) = y_0 - y_s.$$
 (14)

Здесь

$$R_s(\varphi) = r \cdot \begin{cases} \frac{1}{\varepsilon} P_m \varphi, & \text{если } |P_m \varphi| \le \varepsilon, \\ \frac{1}{|P_m \varphi|} P_m \varphi, & \text{иначе.} \end{cases}$$
 (15)

Функция φ удовлетворяет следующему неравенству, которое получается путем предельного перехода в соответствующем равенстве, записанном для $\varphi_k(t) = e^{\sigma t}(y_k(t) - P_k y_s)$, где y_k – решение системы (11).

$$\frac{1}{2}\frac{d|\varphi|^2}{dt} + ||\varphi||^2 + (B(\varphi, y_s), \varphi) + (R_s(\varphi), \varphi) \le \sigma|\varphi|^2, \quad t > 0.$$

$$\tag{16}$$

Слагаемое $(B(\varphi, y_s), \varphi)$ в левой части (16), в силу справедливости условия (4), оценивается по модулю сверху величиной $C_1 \|y_s\| \cdot \|\varphi\|^{7/4} \cdot |\varphi|^{1/4}$. Применив неравенство Юнга, получаем из (16) неравенство

$$\frac{d|\varphi|^2}{dt} + ||\varphi||^2 + 2(R_s(\varphi), \varphi) \le C_2 |\varphi|^2 = C_2 (|P_m \varphi|^2 + |Q_m \varphi|^2), \quad t > 0.$$
(17)

Здесь $Q_m \varphi = \varphi - P_m \varphi$, $C_2 = (7/4)^7 C_1^8 \|y_s\|^8/4 + 2\sigma$. Учтем, что собственные значения оператора A обладают свойством $\lambda_m \to +\infty$ при $m \to +\infty$, и выберем m_* так, что

$$C_2/\lambda_{m_*+1} \le 1/2. (18)$$

Тогда, применив второе неравенство в (9), получим

$$C_2|Q_m\varphi|^2 \le \frac{1}{2}||\varphi||^2.$$

Из (17) при $m > m_*$ следует оценка

$$\frac{d}{dt}|\varphi|^2 + \frac{1}{2}||\varphi||^2 + \alpha(|P_m\varphi|)|P_m\varphi| \le 0, \tag{19}$$

где

$$\alpha(p) = \left\{ \begin{array}{ll} (r/\varepsilon - C_2)p, & \text{ если } 0 \leq p \leq \varepsilon, \\ 2r - C_2, & \text{ если } p > \varepsilon. \end{array} \right.$$

Пусть параметр $\varepsilon < r/C_2$. Тогда, при условии $|\varphi(0)| < 2r/C_2$, из неравенства (19) вытекает оценка

$$\frac{d}{dt}|\varphi|^2 + \frac{1}{2}||\varphi||^2 \le 0.$$

Проинтегрировав полученное дифференциальное неравенство, получаем глобальную на $(0, +\infty)$ ограниченность функции φ .

$$|\varphi(t)| \le |\varphi(0)|, \quad \int_0^{+\infty} ||\varphi(t)||^2 dt \le 2|\varphi(0)|^2.$$

Таким образом, справедлив следующий результат о стабилизации с заданной скоростью σ .

Теорема 2. Пусть $f \in V', y_s \in V$ – решение стационарного уравнения

$$Ay_s + B[y_s] = f.$$

Тогда для всех $y_0 \in H$, $m > m_*$, r > 0, $\varepsilon > 0$, удовлетворяющих условиям

$$|y_0 - y_s| < 2r/C_2$$
, $C_2/\lambda_{m_*+1} \le 1/2$, $\varepsilon < r/C_2$,

существует решение $y \in L^{\infty}(0,+\infty;H) \cap L^2_{loc}(0,+\infty;V)$ динамической системы

$$y' + Ay + B[y] = f + S(y,t), t > 0, y(0) = y_0,$$

такое, что

$$|y(t) - y_s| \le |y_0 - y_s| e^{-\sigma t}, \quad \int_0^{+\infty} e^{2\sigma t} ||y(t) - y_s||^2 dt \le 2|y_0 - y_s|^2.$$

Список литературы

- [1] A. V. Fursikov, "Stabilizability of two-dimensional Navier Stokes equations with help of a boundary feedback control", *J. Math. Fluid Mech*, **3**:3, (2001), 259–301.
- [2] А.В. Фурсиков, "Стабилизация с границы решений системы Навье Стокса: разрешимость и обоснование возможности численного моделирования", Дальневост. матем. эсурн., 4:1, (2003), 86–100.
- [3] A. V. Fursikov, "Stabilization for the 3D Navier Stokes system by feedback boundary control", Discrete and Cont. Dyn. Syst., 10:1–2, (2004), 289–314.
- [4] V. Barbu, "Feedback stabilization of Navier Stokes equations", ESAIM: Control, Optimisation and Calculus of Variations, 9, (2003), 197–205.
- [5] V. Barbu, R. Triggiani, "Internal stabilization of Navier Stokes equations with finite-dimensional controllers", *Indiana Univ. Math. J.*, **53**:5, (2004), 1443–1494.
- [6] V. Barbu, I. Lasiecka, R. Triggiani, "Abstract settings for tangential boundary stabilization of Navier – Stokes equations by high- and low-gain feedback controllers", Nonlinear Analysis, 64:12, (2006), 2704–2746.
- [7] J.-P. Raymond, "Feedback boundary stabilization of the three-dimensional incompressible Navier Stokes equations", J. Math. Pures Appl, 87:6, (2007), 627–669.
- [8] S. S. Ravindran, "Stabilization of Navier Stokes equations by boundary feedback", *Intern. J. of Num. Analysis and Modeling*, 4:3–4, (2007), 608–624.
- [9] Р. Темам, Уравнения Навье Стокса. Теория и численный анализ, Мир, М., 1981.
- [10] А. Ю. Чеботарев, "Обратные задачи для нелинейных эволюционных уравнений типа Навье Стокса", Дифференциальные уравнения, **31**:3, (1995), 517–524.
- [11] M. Sermange, R. Temam, "Some mathematical questions related to the MHD equations", Comm. on Pure and Applied Math., 36, (1983), 635–664.

[12] А. Ю. Чеботарев, "Вариационные неравенства для оператора типа Навье — Стокса и односторонние задачи для уравнений вязкой теплопроводной жидкости", *Математические заметки*, **70**:2, (2001), 296–307.

Представлено в Дальневосточный математический журнал 25 мая 2010 г.

Работа выполнена при поддержке гранта ДВО РАН (проект 09-I-ОМН-08) и гранта АВЦП "Развитие научного потенциала высшей школы" (проект 2.1.1/1502. 2009-11).

Chebotarev A. Yu. Finite-dimensional stabilization with given rate for the Navier − Stokes systems. Far Eastern Mathematical Journal. 2010. V. 10. № 2. P. 199–204.

ABSTRACT

The stabilization for unstable stationary solution of operator equation with quadratic nonlinearity is studied. The bounded finite-dimensional feedback control exponentially stabilizing this solution is presented.

 $\begin{tabular}{ll} Key words: finite-dimensional \ control, \ Navier-Stokes \ equations, \ feedback \ stabilization. \end{tabular}$