Quiz02 Review

Stat061-F23

Prof Amanda Luby

- 1. Suppose that $X_1, ..., X_n \sim Poisson(\theta)$.
 - (a) Find *two* method of moments estimators
 - (b) Find the MLE of θ
 - (c) Find $I(\theta)$
 - (d) Is \overline{X} the MVUE of θ ? How can you tell?
- 2. Suppose $X_1,...,X_n \sim Gamma(\alpha,\frac{1}{2})$.
 - (a) Find a sufficient statistic for α .
 - (b) Show that a method of moments estimator for α is $\hat{\alpha}_{MoM}=2\bar{X}$
 - (c) The sum of Gamma random variables with the same rate parameter is also a Gamma Random variable. That is, $\sum X_i \sim Gamma(n\alpha, \frac{1}{2})$. Compute the exact mean and variance of $\hat{\alpha}_{MoM}$.
 - (d) Now, find the asymptotic variance of $\hat{\alpha}_{MoM}$
 - (e) Find the MSE of $\hat{\alpha}_{MoM}$
 - (f) Let $\hat{\alpha}_{MVUE}$ be the minimum-variance unbiased estimator of α . Is $\text{MSE}(\hat{\alpha}_{MoM}) <, \leq, =, \geq, > \text{MSE}(\hat{\alpha}_{MVUE})$. Explain how you can tell.
- 3. Suppose $X_1,...,X_n$ are iid from $f_x(x)=\lambda^2 x^{-3}e^{-\lambda/x}$ for $x>0,\lambda>0.$
 - (a) Write out the likelihood function
 - (b) Show that $T(X) = \sum X_i^{-1}$ is a sufficient statistic for λ .
 - (c) Find the MLE $\hat{\lambda}_{MLE}$
 - (d) What is the asymptotic distribution of $\hat{\lambda}_{MLE}$
 - (e) Now, let $\theta = \log \lambda$. Find the MLE for θ .
- 4. **True or False:** If the statement is true, provide a brief explanation why. If the statement is false, cite a counterexample or explain how the statement could be corrected to make it true.
 - (a) The MLE is always unbiased
 - (b) It follows from the law of large numbers that if the sample size n is large enough, the sample mean \bar{X} is equal to the population mean μ .
 - (c) Let $X_1,...,X_n \sim f_x(\theta)$. By the law of large numbers, the sample mean \bar{X} is consistent for θ .
 - (d) Let $X_1, ..., X_n$ be a random sample from a population with mean θ and variance σ^2 . Suppose that $I(\theta) = \frac{1}{\sigma^2}$. \bar{X} is the MVUE.
 - (e) If $\hat{\theta}$ meets the Cramer-Rao Lower Bound, it is an efficient estimator.