

https://www.bafg.de/GRDC/EN/04_spcldtbss/41_ARDB/ardb_node.html

Base de données 387 séries journalières

Sélection, 167 séries Débit pas trop influencé ≥ 30 années complètes

TP1 – Analyse descriptive

Pour la rivière qui vous est assignée, suivre les indications du document Word

- □ Localiser la rivière (carte)
- □ Tracer les hydrogrammes
- □ Identifier le régime hydrologique
- Calculer 3 indicateurs
 pour chacune des années complètes d'observations
 - Débit moyen
 - Débit minimum
 - Débit maximum
- □ Tracer les indicateurs

Hydrogrammes

Principaux régimes hydrologiques

Pluvial tropical

Pluvial océanique

Un maximum en hiver

Un minimum en été

Précipitation soutenue toute l'année

L'étiage et attribuable à l'évapotranspiration

Pluvial tropical

Un maximum en été, lors de la saison des pluies

Débit faible tout l'hiver, dû à la rareté de la précipitation

Coefficient de débits

Débit moyen mensuel divisé par le débit moyen annuel

J F M A M J J A S O N D

coefficient de débits

Principaux régimes hydrologiques

Nival de montagne

Un maximum, lors de la fonte Un minimum en hiver

La fonte est étendue dans le temps, du bas de la vallée vers le sommet

Nival glaciaire

La fonte est plus tardive et concentrée qu'en montagne, les glaciers étant limités aux hautes altitudes

La rivière peut geler

Nival de plaine

La fonte dans la plaine est plus hâtive et concentrée qu'en montagne

Principaux régimes hydrologiques

Nivo-pluvial

Ce régime est hybride, combinant pluvial océanique et nival de plaine

Un minimum en hiver

Un maximum, lors de la fonte

Un second minimum l'été sous l'action de l'évapotranspiration

Un second maximum l'automne quand l'influence de la végétation cesse

F Anctil, 2019-08

Données manquantes

F Anctil, 2019-08

Identification de 3 indicateurs hydrologiques

F Anctil, 2019-08

Algorithme, quelques pistes

```
1- Remplacer les -999 par NaN
         ind = find( q == -999 );
2- Enlever les 29 février
         ind = find( m == 2 \& d == 29 ) ;
3- Compléter les séries au deux extrémités par des NaN afin
qu'elle commence un 1er janvier et se termine par un 31 décembre
4- Redimensionner la matrice pour que chaque année forme une colonne différente
         x = (1:365)';
         Q = reshape(q, 365, size(q,1)/365);
5- Tracer l'hydrogramme de chaque année ainsi que l'hydrogramme interannuel
         line(x, Q, 'Color', [0.7 0.7 0.7])
         line(x, nanmean(Q,2), 'Color', 'k', 'LineWidth',2);
6- Identifier les colonnes sans NaN et calculer les indicateurs
         Qmiss = sum( isnan(Q) );
         ind = find( Qmiss == 0 );
         imoy = mean(Q(:,ind));
7- Tracer les indicateurs
         subplot(3,1,1)
         plot( iyear, imoy, 'ok' );
```

Références

Pardé M. 1955. Fleuves et rivières, 3^e édition, Armand Collin.