Verlex Cover: G=(V,E), SCV: Y (4,V)EE,

ues, ves (or both)

	Fractional	Solution	Rounding		
L_1 : min $\geq x_v$			J		
ve V	(x, · · ·	×~)	×, ··	$X_i X_{i+1} \cdots X_k$	XK+1 ··· Xn
- •	•		1		
۲ ۰۴۰				\$ - 2	1>
•				_	_
Xu + πy ≥ 1 ∀ { u, ν } ∈ Ε			v		
			Y . · ·	7: 7:+1 - · Y	γ γ.
c _			/\	1 7 7 7 7	, K+1 1A
×u E LOIJ Y uE V.				1	0
5 ,					

Correct ness.

- . Look at the constraints & observe that xu+ xv≥1, either xu, or xv ≥ 1/2.
- · Therefore, if all $z_u \ge 1/2$ are sounded up to 1, then y is a feasible solution

Note Title

Theorem: The rounding algorithm yields a 2-approximation for VE.

$$cost(s) = \sum_{v \in V} y_v \leq 2 \cdot \sum_{v \in V} x_v = 2 \cdot OPT_{LP} \leq 2 \cdot OPT_{D}$$

Questions. Is the analysis tight?

The LP has an integrality gap of 2.

Note Title

Integrality Gap Example for VC:

Graph is Kn.

X4 + Xv ≥1 4 {4, v} € E

 $\sum_{u \in V} x_u = \frac{n}{2}.$

OPT = n-1 for Kn.

For each pair {u,u3, there is an edge => at least one end-point must be chosen in 5-

 $\frac{OPT}{OPT_{LP}} \ge \frac{2(n-1)}{n} \implies 2 \quad \text{as} \quad n \to \infty.$

12-06-201

Olher Algorithms?

· A matching MCE in a graph G=(V,E)

is a set of edges that do not

Share a vertex.

A matching is maximal if it cannot be extended.

Lemma. OPT ≥ k, where k = size of a maximal matching.

each edge requires a different vertex to cover it.

or S = 9 Alg: 1. Pick a maxl. matching M. 2. Add both end-points of all edges in M into S. Claim. S is a vertex Coven

Thm. Alg is a 2-approx.

3. Return S.

Μ

151 = 2 M1 & 2 OPT.

Qn: Is the analysis tight?

an: Better algorithms?

The algorithms presented are from the 1970's

· The best approx. alg. for VC quarantee an approximation factor of 2.

Dinur & Safra '04: Unless P=NP, A a belter than ~1-36-approx for V.C.

Subhash Khot, Reger '08: There is no (2-E)-approx for

VC unless Unique Games Conjecture

is Jalse.

Note Title

Set Cover:

Given a set system (hypergraph, range spaces)

[X]=N

Given $\mathcal{H} = (X, \S)$, find $\mathcal{P} \subseteq \S$; $|\mathcal{T}|$ as small as possible such that:

ILP -> LP -> Rounding.

ILP formulation:

min $\sum x_S$.

5: x & > 1 4 x & X

 $X_{5} \geqslant 0$

Let x = (xs, ... xsm) be an optimal LP solution.

- · Rounding is randomized.
- · Each 1cs is in [0,1].
- · If Xs is high, then the LP suggests that S is a good set to pick into our solution.
- · Interpret xs as the probability of picking S.

Rounding: Attempt 1.

- . Pick each set S with probability xs.
- · we get a collection to of sets.

· The expected cost of To is OPTLP.

· But, To may not be a feasible solm.

Rounding:

. For i = 8... t

· Lat Ti = sets chosen w/ prob xs.

· Return U P:

- [BUA] = [BUA] -