Parametric Inversions using Radial Basis Functions

Parth Pokar*, Lindsey Heagy

University of British Columbia – Geophysical Inversion Facility

IMAGE '25

Modeling and Drilling for Mineral Exploration

Outline

Motivation

Implementation

Results

• Future work

2025-09-11

Motivation

- Geological targets present large physical property contrasts
- But are rarely simple shapes curvy, irregular, non-smooth
- Traditional inversions produced smoothing effect.

Motivation

- Large contrasts can be recovered using parametric models
- Parametric ellipses/prisms reduce parameters, but cannot capture complex shapes

McMillian 2017

Goal

- What if target geology cannot be represented by prism or ellipses?
 - Or number of shapes required to represent target is unknown?
- Use RBFs to invert for arbitrary shapes without needing to predefine geometry or number of bodies

Radial Basis Functions

Use a set of Radial Basis Functions to parameterize instead

• Motivated from Kadu et al (2017) work in Seismic FWI, and Aghasi et al (2011).

RBF mesh

2025-09-11 7

- Define RBFs (Ψ) on a sub-grid
- Choose possible parameters for each RBF:

Level-set

Heaviside

RBF Grid

Target

shape

• Any smooth level-set function (φ) can be recreated by a linear combination of a set of Radial Basis functions (ψ) .

RBFs define Level-set function :

$$\varphi(x,\alpha) = \sum_{j=1}^{n_rbf} \alpha_j \psi(\|\beta(x - x_j)\|)$$
$$\psi(r) = e^{-\frac{r^2}{2\sigma^2}}$$

- Use level-set to define edge of target ($\varphi = 0$)
 - If $\varphi > 0$: Inside | $\varphi < 0$: Outside

Level Set Function (ϕ) with Zero Level Contour

RBF Grid Level-set Heaviside Target shape

 Binarize Level set function with a sigmoid or Heaviside function:

$$H_{\epsilon}(\varphi) = \frac{1}{2} \left(1 + \frac{2}{\pi} \arctan\left(\frac{\pi \varphi}{\epsilon}\right) \right)$$

RBF Grid Level-set Heaviside Target shape

For a problem of form

$$F(\boldsymbol{m}) + \eta = d$$

$$m(x,p) = m_0(x) + H(\phi(x,p)) m_p(x)$$

m = model space; d = data; η = noise p = Inversion parameters

 $\mathbf{m_0}$ = Background physical ($\mathbf{10}^{-4}$)

 m_p = Physical property contrast (10)

• Target - background

Results – DC-Resistivity Problem

- 2D test set up as a DC-Resistivity Dipole-Dipole Array
- Simulating high conductivity targets
- Line length: 4km (-2000m to 2000m)
- Source electrode (A-B) separation: 50m
- Receiver electrode (M-N) separation: 50m moving outwards from source.
- Inverted using SimPEG without explicit regularization.

Results – Two bodies (DC-R)

Results – Depth to basement (DC-R)

800

Results – Muon Tomography

- Testing in synthetic 3D
 Muon Tomography
 survey
- Simulating a low-density body (cave)
- 49 Sensors below target
- Data: Predicted muon counts
- Exposure time : 90 days
- Simulation implemented in SimPEG — courtesy of Ideon

Results – Muon Tomography

Recovered param

Geoscience ANALYST

Results – Muon Tomography

Insights

- Any shape recovery possible without need to specify number of shapes in initial model.
- Less sensitive to starting model vs parametric shapes.
- Method-agnostic: applicable to EM, gravity, magnetics, seismic, etc.
- Flexibility by adding various parameters.
- Can be combined with cooperative inversion to determine background.
- Challenges
 - Requires more total iterations.
 - Multiple bodies with differing physical properties.

2025-09-11 18

Current Focus

• Inverting for bodies with different physical property contrasts.

Approaches:

- Add additional level set for each body
- Add contrasts as parameters

Current Focus – Multicontrast

- Implementing multiple contrasts from two level-set functions.
- Doubles # of unknowns and requires knowing # of bodies.

Current Focus – Multicontrast

• Implementing multiple contrasts from one level-set function.

Acknowledgements

• IMAGE '25

 Nigel Phillips and Patrick Belliveau (Ideon)

SimPEG community

UBC-GIF Sponsors

UBC GIF research consortium:

References

- Aghasi, Alireza, Misha Kilmer, and Eric L. Miller. "Parametric Level Set Methods for Inverse Problems." SIAM Journal on Imaging Sciences 4, no. 2 (January 2011): 618–50. https://doi.org/10.1137/100800208.
- Belliveau, Patrick, and Eldad Haber. 2023. 'Parametric Level-Set Inverse Problems with Stochastic Background Estimation'. *Inverse Problems* 39 (7). https://doi.org/10.1088/1361-6420/acd413.
- Malo-Lalande, Circé, Maxim Boisvert, Erick Adam, and Christopher Grondin. "Exploring for Magmatic Ni-Cu-PGE Ore Bodies with Magnetics, Electromagnetics and Reflection Seismic in a Challenging Geological Setting in Nunavik, QC." CSEG Recorder 45, no. 1 (February 2020).
- McMillan, Michael S. G. 2017. 'Cooperative and Parametric Strategies for 3D Electromagnetic Inversion'. University of British Columbia. https://doi.org/10.14288/1.0343483.
- Ozsar, Ege, Misha Kilmer, Eric Miller, Eric de Sturler, and Arvind Saibaba. 2022. 'Parametric Level-Sets Enhanced To Improve Reconstruction (PaLEnTIR)'. arXiv. http://arxiv.org/abs/2204.09815.
- Kadu, Ajinkya, Tristan van Leeuwen, and Wim A. Mulder. 2017. 'Salt Reconstruction in Full Waveform Inversion with a Parametric Level-Set Method'. *IEEE Transactions on Computational Imaging* 3 (2): 305–15. https://doi.org/10.1109/TCI.2016.2640761.

2025-09-11 23