Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits

MARC ABEILLE¹, LOUIS FAURY^{1,2}, CLÉMENT CALAUZÈNES¹ ¹Criteo AI Lab, ²LTCI Télécom Paris

MOTIVATION

Toward non-linear reward model

- Parametric bandit results mostly concern the linear setting,
- non-linearity often arises in real-world application,
- impact of non-linearity on the exploration-exploitation tradeoff is poorly understood.

The logistic bandit setting

- Non-linear reward signal,
- compact and minimal setting,
- widely used for practical applications.

We characterize the impact of non-linearity for Logistic Bandit:

- first problem-dependent lower-bound,
- minimax-optimal algorithm.

THE LOGISTIC BANDIT PROBLEM

The reward model

- ullet $\mathcal{X}\subset\mathbb{R}^d$ is the arm set,
- $r(x) \in \{0,1\}$ is the reward associated with arm $x \in \mathcal{X}$,
- $\theta_{\star} \in \mathbb{R}^d$ unknown parameter.

[Binary reward] $r(x) \sim \text{Bernoulli}(\mu(x^{\mathsf{T}}\theta_{\star}))$

[Non-linear link function] $\mu(z) = (1 + \exp(-z))^{-1}$

The learning problem

At each step $t \leq T$:

- choose a arm $x_t \in \mathcal{X}$,
- receive $r(x_t)$,

Objective: minimize Regret

$$R_{\theta_{\star}}(T) = \sum_{t=1}^{T} \left[\max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}} \theta_{\star}) - \mu(x_{t}^{\mathsf{T}} \theta_{\star}) \right] .$$

Quantifying non-linearity

We consider two important *problem-dependent* constants:

$$\kappa_{\star} := 1/\dot{\mu}(\max_{x \in \mathcal{X}} x^{\mathsf{T}} \theta_{\star})$$

$$\kappa_{\varkappa} := 1/\min_{x \in \mathcal{X}} \dot{\mu}(x^{\mathsf{T}} \theta_{\star})$$

- κ_{\star} : "distance to linearity" around the optimal action,
- κ_{χ} : worst-case "distance to linearity" over the decision set.

From LB to LogB

Impact on the learning

 $\mathbb{E}ig[m{r_t}ig|m{x_t}ig] = m{x_t}^\mathsf{T}m{ heta_\star}$

Different richness of information associated with sampling an arm: LogB high in the center, low in the LB same everywhere,

- Despite non-linearity \rightarrow available conf. set. C_t for LogB, [Faury et al, Improved Optimistic Algorithms for Logistic Bandits, ICML'20]
- Some regions are *harder* to learn that other \to the conf. set. \mathcal{C}_t is *not* an ellipsoid!

Impact on the predicted performance

LogB deviation in parameters \rightarrow little to no deviation in performance in the tails

$$\|\theta - \theta_{\star}\| = \delta \quad \Rightarrow \quad \mu(x^{\mathsf{T}}\theta) \approx \mu(x^{\mathsf{T}}\theta_{\star}).$$

Open question: does easy prediction cancel out hard learning?

Related Work and Contributions

Related work

[Filippi et al., NIPS'10]

$$R_{\theta_{\star}}(T) \lesssim \kappa_{\varkappa} d\sqrt{T}$$

[Faury et al., ICML'20]

$$R_{\theta_{\star}}(T) \lesssim d\sqrt{T} + \kappa_{\varkappa}$$

[Dong et al., COLT'19]

In the worst case, $R_{\theta_{\star}}(T)$ must increase with κ_{χ}

Contributions

Theorem 1. (Regret Upper Bound) The regret of OFU-Log satisfies with high-probability:

$$R_{\theta_{\star}}(T) \lesssim d\sqrt{\frac{T}{\kappa_{\star}}} + (\kappa_{\varkappa}).$$

Illustration: if $\mathcal{X} = \{\|x\| \leq 1\}$ then $\kappa_{\star} = \kappa_{\varkappa} \approx \exp(\|\theta_{\star}\|)$:

$$R_{\theta_{\star}}(T) \lesssim d\sqrt{T/\kappa_{\star}}$$
,
 $\lesssim d \exp(-\|\theta_{\star}\|/2)\sqrt{T}$

- the more non-linear the model, the smaller the regret!
- exponential improvement over existing bounds.

Theorem 2. (Local Lower Bound) Let $\mathcal{X} = \mathcal{S}_d(0,1)$, for any θ_{\star} and T large enough, it exists $\epsilon > 0$ such that:

$$\min_{\pi} \max_{\|\theta - \theta_{\star}\| \le \epsilon} \mathbb{E} [R_{\theta}^{\pi}(T)] = \Omega \left(d\sqrt{\frac{T}{\kappa_{\star}}} \right).$$

where ϵ is small enough that $\forall \theta \in \{\|\theta - \theta_{\star}\| \leq \epsilon\}$ we have $\kappa_{\star}(\theta) = \Theta(\kappa_{\star}).$

- \rightsquigarrow the upper-bound is *optimal* for large T.
- \rightsquigarrow the lower-bound holds for all instances θ_{\star} .

IDEAS BEHIND THE LOWER BOUND

Objective and approach

- We shoot for a *problem-dependent* lower-bound,
- usual approaches consider worst-case over all possible instances, • inspired by [Simchowitz et al., ICML'20] → local lower-bound,
- worst-case over nearby alternatives around a given problem instance.

High-level idea

- We consider a given instance parametrized by θ_{\star} ,
- let π denote a policy that outputs a sequence of arms, and $R^{\pi}_{\theta_+}(T)$ the induced expected regret.

Small regret ↔ low exploration

$$R_{\theta_{\star}}^{\pi}(T) \propto 1/\kappa_{\star} \sum_{t=1}^{T} \|x_t - x_{\star}(\theta_{\star})\|^2, \quad x_{\star}(\theta_{\star}) = \arg\max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}}\theta_{\star})$$

- $R_{\theta_{+}}^{\pi}(T)$ small $\leftrightarrow x_{t} \simeq x_{\star}(\theta_{\star})$,
- directions orthogonal to $x_{\star}(\theta_{\star})$ are poorly explored!
- Larger $\kappa_{\star} \to smaller$ impact when deviating from $x_{*}(\theta_{\star})!$

Low exploration ↔ large set of plausible alternative

• We quantify the *similarity* between instances θ , θ_{\star} under policy π by the *discrepancy*

$$D_{\mathsf{KL}}\left(\mathbb{P}^\pi_{ heta}, \mathbb{P}^\pi_{ heta_\star}
ight)$$

large $D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_{\star}}\right) \to \mathit{easy}$ to distinguish θ and θ_{\star} under π , small $D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_{\star}}\right) \to \mathsf{hard}$ to distinguish θ and θ_{\star} under π . $\{D_{\mathsf{KL}}\left(\mathbb{P}^\pi_{ heta}, \mathbb{P}^\pi_{ heta_*}
ight) \leq 1\}$

- large κ_{\star} degrades the richness of acquired information,
- $\mapsto D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta}, \mathbb{P}^{\pi}_{\theta}\right)$ decreases with κ_{\star} .

Tension and trade-off

- Policy π cannot perform well on two *distinct* instances,
- but may not yield *similar* information.

Trade-off

- Let π perform well for θ_{\star} ,
- consider an alternative instance θ such that $\|\theta \theta_{\star}\|^2 \approx \sqrt{\frac{\kappa_{\star}}{T}}$,
- the regret of π for the instance θ must be large:

$$R_{\theta}^{\pi}(T) \approx 1/\kappa_{\star} \sum_{t=1}^{T} \|x_{t} - x_{\star}(\theta)\|^{2} \approx 1/\kappa_{\star} \sum_{t=1}^{T} \|x_{\star}(\theta_{\star}) - x_{\star}(\theta)\|^{2}$$
$$\approx T\|\theta_{\star} - \theta\|^{2}/\kappa_{\star} \approx \sqrt{T/\kappa_{\star}}.$$

IDEAS BEHIND THE UPPER BOUND

Permanent and transitory regimes

Regret decomposition

$$R_{\theta_{\star}}(T) = R^{\text{perm}}(T) + R^{\text{trans}}(T)$$

$$\tilde{\mathcal{O}}(\sqrt{T})$$

$$\tilde{\mathcal{O}}(1)$$

Permanent regime: intuition

- Sublinear regret \Rightarrow play mostly around the best arm x_{\star} . \longrightarrow Almost a linear bandit with slope $1/\kappa_{\star}$.
- A finer analysis is coherent with this conceptual argument:

$$R^{\text{perm}}(T) \le d\sqrt{\sum_{t=1}^{T} \dot{\mu}(x_t^{\mathsf{T}} \theta_{\star})} \approx d\sqrt{T/\kappa_{\star}}$$

• Formal proof: thanks to self-concordance property.

Transitory regime and detrimental arms

• Detrimental arm \mathcal{X}_{-} : low-information and large gap: far left tail of the reward signal:

• Transitory regime: how long before discarding detrimental arms:

$$R^{\operatorname{trans}}_{\theta_{\star}}(T) \leq \min \left(\kappa_{\varkappa}, \sum_{t=1}^{T} \mathbb{1}(x_{t} \in \varkappa_{-}) \right).$$

• Fast if the proportion of detrimental arms is small:

Proposition 1. (Transitory regret) With h.p.:

 $R^{\mathrm{trans}}(T) \lesssim_T d^2 + dK$ $R^{\mathrm{trans}}(T) \lesssim_T d^3$

if $|\mathcal{X}_{-}| \leq K$, if $\mathcal{X} = \mathcal{B}_d(0,1)$.

 \longrightarrow independent of κ_{χ} for reasonable configurations!

ALGORITHM AND EXPERIMENTS

for $t = \{0, ..., T\}$ do

(*Learning*) Solve $\theta_t = \arg\min_{\theta} \mathcal{L}_t(\theta)$.

(*Planning*) Solve $(x_t, \theta_t) \in \arg \max_{\mathcal{X}, \mathcal{C}_t(\delta)} \mu(x^\intercal \theta)$.

Play x_t and observe reward r_{t+1} .

end for

where $\mathcal{L}_t(\theta)$ and $\mathcal{C}_t(\delta)$ are the log-likelihood function and confidence set associated with the learning problem.

Parameter-based optimism

- Enforce optimism through parameter-search (OFUL-like), and not
- bonus-based approach. • This yields an *adaptive* algorithm: no tuning needed to adapt to the structure of the decision set.

Tractable algorithm

- We also introduce a *convex relaxation* of the confidence set $C_t(\delta)$ Of [Faury et al., ICML'20].
- No non-convex optimization routine (\neq previous work).

Practical improvements

• Toy experiment: dramatic improvement over GLM-UCB [Filand Log-UCB1 ippi et al., NIPS'10] [Faury et al., ICML'20] $\kappa = 50$ $200 \operatorname{Regret}(T)$

CONCLUSION

• Our conclusion contrasts with previous work:

Logistic Bandit: non-linearity makes the problem easier!

- Regret-upper bound with exponential improvement.
- First problem-dependent lower-bound for Logistic Bandit.
- Fully tractable, adaptive algorithm thanks to convex relaxation.

REFERENCES

- S. Filippi, O. Cappé, A. Garivier and C. Szepesvári. Parametric Bandits: The
- Generalized Linear Case. Proceedings of NIPS, 2010. F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 2010. S. Dong, T. Ma and B. Van Roy. On the Performance of Thompson Sampling
- on Logistic Bandits. Proceedings of COLT, 2019. L. Faury, M. Abeille, C. Calauzène and O. Fercoq. Improved Optimistic Algo-
- rithms for Logistic Bandits. Proceedings of ICML, 2020. M. Simchovitz and D. Foster. Naive Exploration is Optimal for Online LQR. Proceedings of ICML, 2020.