Math 55a, Fall 2004

Seventh Assignment, Solutions Adapted from Andrew Cotton and George Lee

Notation.

To prevent confusion between cosets as sets in G and as elements in G/H, elements of G/H will usually be written in the form $g\overline{H}$.

Given a topological group G, an element $g \in G$, and a set $U \subset G$, let gU denote the set $\{gu \mid u \in U\}$. Similarly define Ug.

Let $\Phi: G \to G/H$ be defined by $\Phi(g) = g\overline{H}$. Also, let $\mu: G \times G \to G$ denote multiplication $(a,b) \mapsto ab$; let $\nu: G - \{0\} \to G$ denote the multiplicative inverse $a \mapsto a^{-1}$; and let $\alpha: G \times G/H \to G/H$ denotes the natural action of G on G/H, with $\alpha(a,B) = (ab)\overline{H}$, where $B = b\overline{H}$. A quick check shows that α is well-defined and that $B_1 \neq B_2 \Rightarrow \alpha(a,B_1) \neq \alpha(a,B_2)$.

Preliminary Results.

Lemma 1 (Continuous Manifesto). *History is a series of continuous struggles between topological spaces:*

(i) On Oppressive Restrictions. Suppose that $f: X \to Y$ is a continuous function between spaces (X, \mathcal{T}_x) and (Y, \mathcal{T}_y) .

Give subsets $S_x \subset X$ and $S_y \subset Y$ (with $f(S_x) \subset S_y$) the restricted topologies. Then $f|_{S_x}$ is continuous.

- (ii) Functions of the World Unite! Given topological spaces X and Y_{α} ($\alpha \in A$), and continuous functions $f_{\alpha} : X \to Y_{\alpha}$, the function $f : X \to \prod_{\alpha \in A} Y_{\alpha}$ defined by $f(x) = (f_{\alpha}(x))_{\alpha \in A}$ is continuous.
- (iii) Bloody Coordinate-Killing. Given a collection of topological spaces $\{X_{\alpha} \mid \alpha \in A\}$ and a nonempty subset $B \subset A$, the function $f: \prod_{\alpha \in A} X_{\alpha} \to \prod_{\alpha \in B} X_{\alpha}$ defined by $(x_{\alpha})_{\alpha \in A} \mapsto (x_{\alpha})_{\alpha \in B}$ is continuous.

Proof:

(i) Given an open set $U \subset S_y$, there is an open set $U' \subset Y$ such that $U' \cap S_y = U$. Now for $v \in S_x$, we have $v \in f^{-1}(U) \iff v \in f^{-1}(U')$, so $f'^{-1}(U) = f^{-1}(U') \cap S_x$. Because $f^{-1}(U')$ is open in X, $f^{-1}(U') \cap S_x$ is open in S_x , as desired.

(ii) The sets $U_{\alpha_0} \times \prod_{\alpha \in A - \{\alpha_0\}} Y_{\alpha}$, where U_{α_0} is open, constitute a sub-base for $\prod_{\alpha \in A} Y_{\alpha}$. Thus, it suffices to prove that the preimage of such a set is open. Indeed,

$$f^{-1}\left(U_{\alpha_0} \times \prod_{\alpha \in A - \{\alpha_0\}} Y_{\alpha}\right) = f_{\alpha_0}^{-1}(U_{\alpha_0}),$$

is open because f_{α_0} is continuous.

(iii) Each projection function $p_{\alpha}: \prod_{\alpha \in A} X_{\alpha} \to X_{\alpha}$ is continuous, so (iii) follows from (ii) applied with $X = \prod_{\alpha \in A} X_{\alpha} \to X_{\alpha}$, $Y_{\alpha} = X_{\alpha}$, and $f_{\alpha} = p_{\alpha}$.

Lemma 2 ("S.P.", the shifting property). Suppose G is a topological group. If U is an open (resp. closed) subset, then g_0U and Ug_0 is open (resp. closed) for any $g_0 \in G$.

Proof: Fix $g_0 \in G$. Then from the Continuous Manifesto, $g \mapsto (g_0^{-1}, g)$ is continuous as is $\mu_{\{g_0^{-1}\} \times G}$. Hence f, their composition $g \mapsto g_0^{-1}g$, is continuous. Thus, if U is open (resp. closed) then $f^{-1}(U) = g_0U$ is open (resp. closed). Similarly, if U is open (resp. closed) then so is Ug_0 .

Lemma 3. Φ is an open map (a map that sends open sets to open sets).

Proof: Let $U \subset G$ be open. We show that $\Phi^{-1}(\Phi(U))$ is open, which implies $\Phi(U)$ is open since Φ is a quotient map.

$$\Phi^{-1}(\Phi(U)) = \Phi^{-1}\{u\overline{H} \mid u \in U\} = \{uh \mid u \in U, h \in H\} = \bigcup_{h \in H} Uh.$$

And this set is open since each Uh is open, by the shifting property.

Lemma 4 (Amazing Lemma). Suppose we have functions $f_1: P \to Q$, $f_2: Q \to R$, and $f_3 = f_2 \circ f_1$. If f_3 is continuous and f_1 is open (mapping open sets to open sets), then f_2 is continuous.

Proof: Given an open set $U \subset R$, $V = f_3^{-1}(U)$ is open so $f_1(V) = f_2^{-1}(U)$ is open.

Problem 1.

- (a) Suppose that $x, y \in G$ with $x \neq y$. Without loss of generality, there exists an open set U containing x but not y. By S.P., $x^{-1}U$ is open, and hence there exists a set $A \times B$ (A, B) open subsets of G in the standard base of $G \times G$ containing (e, e) such that $\mu(A \times B) \subset x^{-1}U$. Let $\mathcal{O} = A \cap \nu^{-1}(B)$. Because \mathcal{O} contains $e, x\mathcal{O}$ and $y\mathcal{O}$ are open neighborhoods of x and y, respectively. Suppose, for sake of contradiction, that $xg_1 = yg_2$ for $g_1, g_2 \in \mathcal{O}$. Then $g_1 \in A$ and $g_2^{-1} \in B$, so $x^{-1}y = g_1g_2^{-1} \in x^{-1}U$. This is impossible, because $y \notin U$. Therefore, we have separated x and y with open sets, as desired.
- (b) If $\{U_{\alpha}\}$ are sets in \mathcal{T}_{Z} , then their preimages $F^{-1}(U_{\alpha})$ are open in Y so their union $\bigcup F^{-1}(U_{\alpha}) = F^{-1}(\bigcup U_{\alpha})$ is open in Y. Thus $\bigcup U_{\alpha}$ is open as well.

And because $\bigcap F^{-1}(U_i) = F^{-1}(\bigcap U_i)$, a similar argument shows that the intersection of a finite, nonempty collection of sets in \mathcal{T}_Z is still in \mathcal{T}_Z .

Also, $F^{-1}(\emptyset) = \emptyset$ and $F^{-1}(Z) = Y$ are open in Y, so \emptyset and Z are in \mathcal{T}_Z . Thus, \mathcal{T}_Z is a topology.

Next, if a set in Z is open then its preimage under F is open by the definition of \mathcal{T}_Z . Thus, F is continuous.

Finally, the following conditions are equivalent: Z is T_1 ; $Z - \{z\} \in \mathcal{T}_Z$ for each $z \in Z$; $Y - F^{-1}(\{z\}) - F^{-1}(Z - \{z\}) \in \mathcal{T}_Y$ for each $z \in Z$; $F^{-1}(\{z\})$ is closed. We proved that the first two conditions are equivalent in class, and the second and third conditions are equivalent by the definition of \mathcal{T}_Z .

- (c) The (left) cosets of the subgroup H partition the topological group G,
 - so $G \setminus H$ is the union of the other cosets. But by S.P., all these cosets are open; so $G \setminus H$ is the union of open sets, and thus open itself. Therefore H is closed.
- (d) Because $H \subset G$ is closed, any coset of H is closed by S.P. Thus,

$$x = g\overline{H} \in G/H \Longrightarrow \Phi^{-1}(\{x\}) = gH$$
 is closed for all $x \in G/H$.

Hence, from part (a), G/H is T_1 .

We now prove that $\alpha: G \times G/H \to G/H$ is continuous. Consider the functions $f_1: G \times G \to G \times G/H$ defined by $f_1(a,b) = (a,a\overline{h}); f_2 = \alpha;$ and $f_3 = \Phi \circ \mu$. Given $(a,b) \in G \times G$, both $f_3(a,b)$ and $(f_2 \circ f_1)(a,b)$ equal $(ab)\overline{H}$; so, $f_3 = f_2 \circ f_1$.

Furthermore, suppose we have an open set $U_1 \times U_2$ in the base of $G \times G$. Then $\Phi(U_2)$ is open since Φ is an open map, so $f_1(U_1 \times U_2) = U_1 \times \Phi(U_2)$ is open as well. Thus, f_1 is an open map.

Also, $f_3 = \Phi \circ \mu$ is a composition of two continuous maps, so it is continuous itself. Then applying the Amazing Lemma, f_2 must be continuous — as desired.

(e) First we show we can separate \overline{H} and $g_0\overline{H}$ with open sets whenever they are distinct.

We first find an open set $V \subset G$ containing e where $v_1^{-1}v_2 \not\in g_0H$ for all $v_1, v_2 \in V$. Since H is closed, by S.P. g_0H is closed and thus $U = G \setminus g_0H$ is open. Because multiplication is continuous, $\mu^{-1}(U)$ is open and contains (e, e). Then there must be open sets $A, B \subset G$ containing e such that $A \times B \subset \mu^{-1}(U)$. Then $V = \nu^{-1}(A) \cap B$ is an open set containing e; and by construction, $v_1^{-1}v_2 \in \mu(A \times B) \subset U$ for all $v_1, v_2 \in V$. (Alternatively, we could let $W = A \cap B$ and then take $V = W \cap \nu^{-1}(W)$.)

Consider the sets $\Phi(V)$ and $\phi(Vg_0)$ in G/H. Remembering that $e \in V$ we know that $\overline{H} \in \Phi(V)$ and $g_0\overline{H} \in \phi(Vg_0)$. Furthermore, these sets are open because Φ is open and V and Vg_0 are open (by S.P.); and they are disjoint because if $\Phi(v_1g_0) = \Phi(v_2)$ for $v_1, v_2 \in V$, then $v_1^{-1}v_2 \in g_0H$, a contradiction. Thus we have found two disjoint open sets in G/H containing \overline{H} and

 g_0H , as desired.

Now if we have two different elements $g_1\overline{H}$ and $g_2\overline{H}$ in G/H, then we can separate \overline{H} and $(g_1^{-1}g_2)\overline{H}$

with two open sets V and W. From the Continuous Manifesto, the map $g\overline{H} \mapsto (g_1^{-1}, g\overline{H})$ is continuous as is the restriction $\alpha|_{\{g_1^{-1}\}\times G/H}$ of the natural action. Hence f, these two functions' composition $g\overline{H} \mapsto (g_1^{-1}g)\overline{H}$, is continuous. Thus, $f^{-1}(V)$ and $f^{-1}(W)$ are open disjoint sets containing $g_1\overline{H}$ and $g_2\overline{H}$, respectively. Therefore we can

separate any two different elements of G/H with disjoint open sets; this

completes the proof.

(f) Because H is normal, G/H is a group. Now we prove that

multiplication is continuous.

Define $\mu': G/H \times G/H \to G/H$ by $\mu'(a\overline{H}, b\overline{H}) = (ab)\overline{H}$. Now look at the functions $f_1: G \times G \to G/H \times G/H$ defined by $f_1(a,b) = (\Phi(a), \Phi(b))$; $f_2 = \mu'$; and $f_3 = \Phi \circ \mu$. Given $(a,b) \in G \times G$, both $f_3(a,b)$ and $(f_2 \circ f_1(a,b))$ equal $(ab)\overline{H}$; so, $f_3 = f_2 \circ f_1$.

Given an open set $U_1 \times U_2$ in the base of $G \times G$, $\Phi(U_1)$ and $\Phi(U_2)$ are open since Φ is an open map. Thus $f_1(U_1 \times U_2) = \Phi(U_1) \times \Phi(U_2)$ is open, so f_1 is an open map. And as in part (c), f_3 is continuous since it is the composition of two continuous maps.

And as in part (c), $f_3 = \Phi \circ \mu$ is a composition of two continuous maps, so it is continuous itself. Then applying the Amazing Lemma, f_2 must be continuous — as desired.

We prove similarly that the multiplicative inverse $\nu': G/H \to G/H$ defined by $\nu'(a\overline{H}) = a^{-1}\overline{H}$ is continuous. This time, we let $f_1 = \Phi$, $f_2 = \nu'$, and $f_3 = \Phi \circ \nu$. Given $a \in G$, both $f_3(a)$ and $(f_2 \circ f_1)(a)$ equal $a^{-1}\overline{H}$; so, $f_3 = f_2 \circ f_1$. Then since f_1 is open and f_3 (the composition of two continuous maps) is continuous, f_2 is continuous as well.

(g) Write $H = \operatorname{clos}(\{e\})$; then any closed set containing e also contains H.

Since the multiplicative inverse ν is continuous, $\nu^{-1}(H)$ is a closed set containing e. So $a \in H \Rightarrow a \in \nu^{-1}(H) \Rightarrow a^{-1} \in H$.

Next, suppose that $a, b \in H$. Then by S.P., $a^{-1}H$ is a closed set containing e. Thus $b \in a^{-1}H \Rightarrow ab \in H$.

Thus, H is closed under multiplication and inverses, so it is a subgroup of G. Furthermore, given $a \in H$ and $g \in G$, by S.P. gHg^{-1} is a closed set containing e. Thus $a \in gHg^{-1} \Rightarrow g^{-1}ag \in H$, so H is normal.

Then because $H = \operatorname{clos}(\{e\})$ is a closed subgroup, from part (c) G/H is T_1 and hence T_0 . And because it is closed and normal, from part (e) it is a topological group. But since G/H is a T_0 topological group, from (a) it follows that G/H it a T_2 topological group, as desired.

Note: if a topological group is not Hausdorff, this result allows us to identify inseparable elements to form a Hausdorff topological group.

(h) We assume that matrix multiplication is associative in the set \mathbb{R}^4 of all 2×2 matrices; we also assume that if a matrix is invertible, its determinant is nonzero (this follows from $\det(A) \det(B) = \det(AB)$,

which is easy to show for 2×2 matrices). Furthermore, any matrix $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with nonzero determinant has inverse

$$\triangleleft(x) = \left[\begin{array}{cc} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{array} \right],$$

which can be verified with simple arithmetic. Hence $\mathbb{G} = GL(2,\mathbb{R})$ consists of precisely those matrices with nonzero determinant.

 $\mathbb G$ has identity element $I=\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$. Also, multiplication of matrices in $\mathbb G$ can be interpreted as the composition of corresponding linear transformations; because composition of functions is associative, so is matrix multiplication. If $A,B\in\mathbb G$ then let A^{-1},B^{-1} be their inverses; then $(AB)(B^{-1}A^{-1})=(B^{-1}A^{-1})(AB)=I,$ so $\mathbb G$ is closed under matrix multiplication. Finally, every $A\in\mathbb G$ is invertible by the definition of $\mathbb G$ — that is, there exists $A^{-1}\in\mathbb G$ such that $AA^{-1}=A^{-1}A=I$ — and $\mathbb G$ is closed under the multiplicative inverse. It follows that $\mathbb G$ is a group.

We now show that multiplication \cdot and the matrix inverse \triangleleft are continuous in \mathbb{G} . To show this, we recruit a hefty collection of continuous functions using the Continuous Manifesto, then show that \cdot and \triangleleft are just compositions of these functions.

First consider $f: \mathbb{R}^8 \to \mathbb{R}^4$ defined by $f(x) = (a_1a_2 + b_1c_2, a_1b_2 + b_1d_2, c_1a_2 + d_1c_2, c_1b_2 + d_1d_2)$, where $x = (a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2)$. The function $f_1: \mathbb{R}^8 \to \mathbb{R}^2$ defined by $f_1(x) = (a_1, a_2)$ is continuous; and since multiplication \times in the reals is continuous, $f_2: \mathbb{R}^8 \to \mathbb{R}$ defined by $f_2(x) = (\times \circ f_1)(x) = a_1a_2$ is continuous.

Similarly, $f_3: \mathbb{R}^8 \to \mathbb{R}$ defined by $f_3(x) = b_1c_2$ is continuous, so $f_4(x) = (f_2(x), f_3(x)) = (a_1a_2, b_1c_2)$ is continuous. And since addition + in the reals is continuous, $f_a(x) = (+ \circ f_4)(x) = a_1a_2 + b_1c_2$ is continuous.

Likewise, $f_b(x) = a_1b_2 + b_1d_2$, $f_c(x) = c_1a_2 + d_1c_2$, and $f_d(x) = c_1b_2 + d_1d_2$ from $\mathbb{R}^8 \to R$ are continuous. But then $f(x) = (f_a(x), f_b(x), f_c(x), f_d(x))$, so matrix multiplication from \mathbb{R}^8 to \mathbb{R}^4 is continuous. Restricting multiplication to the domain $S_x = \mathbb{G} \times \mathbb{G}$ and the range $S_y = \mathbb{G}$ preserves continuity, so multiplication in \mathbb{G} is indeed continuous.

Very similar arguments show that \triangleleft is continuous; although I won't give too many details, here's a sketch. which can be verified with simple arithmetic. It's easy to show that the function $g: \mathbb{G} \to \mathbb{R}^4$ is continuous, where $g(x) = (\frac{d}{ad-bc}, \frac{-b}{ad-bc}, \frac{-c}{ad-bc}, \frac{a}{ad-bc})$ when x = (a, b, c, d).

Specifically, the proof would use that multiplication, addition, and subtraction (or alternatively, negation) in \mathbb{R} are continuous, and that reciprocation in $\mathbb{R} - \{0\}$ is continuous. Also, at times the continuous functions in the proof need to be restricted to domains and ranges where $ad - bc \neq 0$.

Finally, we prove that $\mathbb{S} = SL(\mathbb{R},2)$ is a topological group. Because each matrix in \mathbb{S} has nonzero determinant, $\mathbb{S} \subset \mathbb{G}$. Also, \mathbb{S} is closed under matrix multiplication because if $\det(A) = \det(B) = 1$, then $\det(AB) = \det(A)\det(B) = 1$. Furthermore, it is closed under the multiplicative inverse of \mathbb{G} because if $\det(A) = 1$ then from $\det(I) = \det(A \triangleleft (A)) = \det(A) \det(A) \det(A)$ we have that $\det(A) = 1$ as well. Hence, \mathbb{S} is a subgroup of \mathbb{G} and is thus a group in its own right. From the Continuous Manifesto, because the multiplicative inverse on \mathbb{G} is continuous its restriction on \mathbb{S} is continuous; because the product topology on $\mathbb{S} \times \mathbb{S}$ is the same as the subspace topology on $\mathbb{S} \times \mathbb{S} \subset \mathbb{G} \times \mathbb{G}$, it follows that matrix multiplication on $\mathbb{S} \times \mathbb{S}$ is continuous as well.

Problem 2.

First note that $SL(2, \mathbb{Z}/2\mathbb{Z})$ is isomorphic to $GL(2, \mathbb{Z}/2\mathbb{Z})$ since the determinant of a matrix over $\mathbb{Z}/2\mathbb{Z}$ must be 0 or 1.

Consider the three non-zero elements of $(\mathbb{Z}/2\mathbb{Z})^2$, (1,0), (0,1), and (1,1). Any invertible linear transformation must permute these (since it must be bijective and map (0,0) to itself).

Thus we have an action of $SL(2, \mathbb{Z}/2\mathbb{Z})$ on these three non-zero elements. It is faithful because the linear transformation is determined by where it sends these three elements.

Also, note that the sum of any two of these three non-zero elements equals the third. Thus any mapping fixing (0,0) and permuting the three non-zero elements is an invertible linear transformation (linearity under scalar multiplication is trivial).

Thus the faithful action of $SL(2, \mathbb{Z}/2\mathbb{Z})$ on the three non-zero elements gives an injective homomorphism into S_3 , and we see from the discussion above it is also surjective, so it is a group isomorphism.