Mathematical Finance

Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF12

Mathematical Finance: QF

Exercises (for discussion on Monday, 05.02.2024)

Exercise 1. (8 points)

Let W be a standard Brownian motion. Compute the It \bar{o} process representation of the following processes, i.e. write them in the form

$$X = X_0 + \dots \bullet I + \dots \bullet W$$
 or $X = X_0 + \int \dots ds + \int \dots dW_s$.

- 1. $X_t = \sin(W_t)$
- 2. $X_t = e^{W_t}$
- 3. $X_t = e^{-\frac{t}{2} + W_t}$
- 4. $X_t = tW_t$
- 5. $X_t = \sin(t)W_t$
- 6. $X_t = \sin(-t W_t)e^{-W_t}$

Hint: Use Itō's formula.

Exercise 2. Compute the quadratic variation [X] for

- $1. \quad X_t = W_t^2$
- $2. X_t = tW_t$

Exercise 3. Prove that a Brownian motion with drift

$$X_t = \mu t + \sigma W_t, \quad \mu \in \mathbb{R}, \sigma \ge 0$$

is a martingale with respect to the natural filtration $\mathcal{F}_t = \sigma(X_s : s \leq t)$ if and only if $\mu = 0$.

Remark: A stochastic process X_t , $t \geq 0$, is called a (continuous time) martingale with respect to the filtration \mathcal{F}_t , $t \geq 0$, if and only if

$$\mathbb{E}[X_t|\mathcal{F}_s] = X_s$$

for any $s, t \ge 0$ with $t \ge s$.

Submission of the homework until: Thursday, 01.02.2024, 10.00 a.m. via OLAT.