Longitudinal Data Analysis: A Brief Overview on Practical Considerations

Yadira Peralta November, 2017

Outline

- Introduction
- Examples of longitudinal data
- Purpose of longitudinal data
- Capturing
 - Mean trajectory
 - Between-subject variability
 - Within-subject variability
- Modeling options & software

Introduction

- What is longitudinal data?
 - Repeated measures of the same individual (or unit of analysis) gathered over time
- What are the elements of longitudinal data analysis?
 - Overall trajectory
 - Between-subject variability
 - Within-subject variability

Examples of Longitudinal Data

- Academic achievement
 - Mathematics & reading
 - National and international settings
- Response time
 - Spatial attention experiment
 - Educational context
- Academic choices
- MRI data

Purpose of Longitudinal Data Analysis

- Focus depends on the research question
 - Mean trajectory description
 - Individual differences
 - Random-effects or betweensubject variability
 - Within-subject variability
- But we can think of general steps to follow

Capturing the Mean Trajectory

- Main tools
 - Spaghetti plots

Observed overall mean trajectory

Facet plots

Capturing the Mean Trajectory

Modeling alternatives

- Linear model
 - Describe linear or curvilinear trajectories
 - Linear or polynomial functions

Nonlinear model

- Describe unsteady trajectories, asymptotic behaviors
- Parameter estimates answer questions
- Examples: exponential or piecewise functions

Capturing Between-Subject Variability

- What does "betweensubject variability" mean?
 - Variation in the outcome variable between individuals
 - Individual trajectories are expected to vary across individuals

Capturing Between-Subject Variability

- How to capture it?
 - Introducing random-effects to the model
 - Through the covariance matrix associated to random-effects
- How to decide how many random-effects are needed?
 - Compare models with different number of randomeffects
 - Start with the simplest model

Capturing Within-Subject Variability

- What does "withinsubject variability" mean?
 - Inherent variability in an individual's responses over time
 - Random deviations from an individual's underlying trajectory

Capturing Within-Subject Variability

- How to capture it?
 - Through the covariance matrix associated to the errors within-subject
 - Different covariance structures
 - Examples: independent, unstructured, autoregressive, etc.
- How to decide on the covariance structure?
 - Previous research, research questions, data capabilities
 - Parsimony is key

Modeling Options for Longitudinal Data

		Distributional Assumption		
		Normal	Non-normal	
Functional Form	Linear	LMEM	GLMEM	
	Nonlinear	NLMEM	GNLMEM	

LMEM: Linear mixed-effects models

NLMEM: Nonlinear mixed-effects models

GLMEM: Geneneralized LMEM
GNLMEM: Geneneralized NLMEM

Software Options for Longitudinal Data

Software Routines	LMEM	NLMEM	GLMEM	GNLMEM
SAS-NLMIXED	✓	✓	✓	✓
SAS-GLIMMIX	\checkmark		✓	
R-Imer	✓			
R-nlmer		✓		
R-glmer			✓	
R-nlme		✓		
HLM7	✓		✓	

THANK YOU

Contact Information: Yadira Peralta peral026@umn.edu