Arquitetura e Organização de Computadores

> Abstrações e Tecnologia Computacionais

Prof. Me Rodrigo Vilela da Rocha

- Avanços verificados na tecnologia de Hardware têm permitido que especialistas criem programas extremamente úteis
 - ... quase onipresença dos computadores nas atividades desenvolvidas pelas pessoas.
- Ficção cientifica nos dias de hoje:
 - Andar sem dinheiro em espécie;
 - Fazer compras sem sair de casa;

- Bons programadores:
 - Sempre preocupados com a performance
 - Em 60 e 70 → restrição era tamanho de memória
 - Atualmente com os avanços ...
 - → nas técnicas de projeto dos processadores
 - → na tecnologia de fabricação das memórias
 - Programadores agora devem se preocupar com a natureza hierárquica dos sistemas de memórias associada ao paralelismo dos processadores
 - Devem ampliar bastante os seus conhecimentos sobre organização dos computadores

- Não se trata de um campo do conhecimento que prime pela monotonia
- Essa corrida em direção à inovação tem levado a um progresso sem precedentes desde o aparecimento do primeiro computador
- Comparação:
 - Industria de transportes: Atravessar a America do Sul em 5 segundos pagando R\$ 0,50

- A revolução dos computadores não para
 - Custo decresce → oportunidades do uso dos computadores se multiplicam

Arquitetura vs. Organização

Estrutura e Função

- Um computador é um sistema de grande complexidade
 - computadores modernos contém milhões de componentes eletrônicos elementares
- Como é possível decrevê-los?
 - Reconhecimento da natureza hierárquica
 - Em cada nível, o sistema consiste em um conjunto de componentes e de relacionamentos entre estes
- Em cada nível deve ser considerado a estrutura e o funcionamento

Estrutura e Função

 Estrutura é o modo que os componentes estão interrelacionados

 Função é a operação de cada componente individualmente como parte da estrutura

Função

- Em geral existem quatro:
 - Processamento de dados
 - Armazenamento de dados
 - Transferência de dados
 - Controle

Visão Funcional

Visão funcional do computador

• Transferência de dados

Armazenamento

Operações

• Processamento de dados armazenados na memória

Operações

• Processamento de dados para o Ambiente Externo

Estrutura — Top Level (nível superior)

Estrutura - CPU

Estrutura – Unidade de Controle

- Para se fazer realmente entender por uma máquina eletrônica, é necessário falar com ela através de sinais elétricos
 - Sim / Não
- Alfabeto do computador possui apenas duas letras
 - Símbolos escolhidos para representar foram os algarismos 0 e
 - Visualizada como um conjunto de números na base 2, ou números binários
 - Dígito binário ou bit é cada uma das duas letras

- Os computadores são escravos de nossos comandos, razão pela qual chamamos cada comando individual de instrução
- As instruções nada mais são que um conjunto de bits inteligíveis pelo computador e que podem ser associadas a números
 - Por exemplo:
 os bits 10001100100000
 informam a determinado computador que ele deve somar dois números

- Assim faziam os primeiros programadores ...
- Logo inventaram uma notação mais próxima da maneira como as pessoas pensam.
 - → Inicialmente traduzida a mão para linguagem binária
 - → Uso da máquina para programar a própria máquina foi a forma de otimizar isso

"O primeiro destes programas foi chamado de montador que traduz programas escritos em linguagem simbólica para linguagem de máquina"

Por exemplo: o programador poderia escrever

add A, B

deixando para o montador a tarefa de traduzir esta instrução para

1000110010100000

O nome escolhido para essa linguagem simbólica, ainda em uso nos dias de hoje, foi linguagem de montagem

- Linguagem de montagem:
 - Sofreu muitas mudanças e melhorias
 - Ainda está longe de representar a notação desejada
 - Obriga o programador a escrever uma linha para cada instrução a ser executada pela máquina
 - Deve raciocinar como a máquina

"Se podemos escrever um programa para traduzir a linguagem de montagem para instruções binárias, o que nos impede de escrever um programa que traduz uma notação de mais alto nível para a notação binária?"

Resposta: NADA!

- Os programadores de hoje devem sua alta produtividade – e até mesmo sua sanidade – ao sucesso do projeto desse tradutor de alto nível, denominado Compilador
- Compiladores são programa que aceitam uma notação mais natural, muito próxima da nossa linguagem
 - A linguagem que eles compilam é denominada linguagem de programação de alto nível

• Seu uso permite que um programador escreva a seguinte expressão:

A + B

o compilador deve compilar es la expressão para a declaração seguinte, em lingue sem de montagem

add A, B

... O montador deve traduzir e comando para a instrução binária ...

1000110010100000

- Linguagem de Programação de Alto Nível Vantagens:
 - Permitem raciocinar de uma forma mais natural, usando palavras em inglês e notações algébricas
 - Projetadas de acordo com o tipo de programa a ser escrito
 - Aumento de produtividade
 - Independentes do computador no qual foram desenvolvidos

- A medida que a disciplina de programação atingia sua maturidade, observou-se a vantagem da reutilização de código
 - Começaram a compartilhar as rotinas mais utilizadas em bibliotecas chamadas de bibliotecas de sub-rotinas
- A experiência mostrou que um conjunto de programas poderia rodar mais eficientemente se houvesse um programa separado encarregado de supervisionar a execução dos demais

 Tão logo um programa terminasse, o programa supervisor já poderia executar procedimentos necessários e iniciar o processamento do próximo programa na fila, evitando perda de tempo com intervenção humana

 Esses programas ditos supervisores foram a base do que hoje chamamos sistemas operacionais

"Sistemas Operacionais são programas que gerenciam os recursos de um computador"

- Os softwares tendem a ser classificados por seu uso
 - Softwares de Sistema: Sistema Operacional, Compiladores e montadores
 - Software Aplicativo: planilhas eletrônicas, editores de texto

Introdução: Debaixo das tampas

 Depois de ter dado uma olhada no que vai por baixo do seu programa, vamos abrir o gabinete e aprender um pouco sobre o hardware

Introdução: Debaixo das tampas

Típico computador é formado por:

Dispositivos de entrada e saída

- Teclado
- Mouse
- Video

Introdução: Abrindo o gabinete

Removendo a tampa do gabinete temos o conjunto de placas:

Placa-mãe

Introdução: Abrindo o gabinete

- Memória é o local onde os programas ficam armazenados enquanto estão sendo processados
- Na memória ficam também os dados necessários à execução dos programas

- O processador é justamente e parte ativa da placamãe, responsável direto pela execução das instruções de um programa.
 - Soma, subtrai, compara valores ...
 - Chamado de CPU ou central processing unit

Introdução: Abrindo o gabinete

- Descendo ainda mais baixo na hierarquia do hardware temos detalhes do processador
- Ele é constituído por dois componentes básicos:
 - Caminho de dados (músculo)
 - Unidade de controle (cérebro)
- É no caminho de dados que as instruções são processadas
- A unidade de controle informa ao caminho de dados, à memória e aos dispositivos de entrada/saída o que cada um deve fazer

Componentes clássicos

