

Lab Seminar: 2022, 07, 05.

ImageNet Classification with Deep Convolutional Neural Networks (AlexNet)

Krizhevsky et.al. [NIPS 2012]

JongHyeon Kim

School of Computer Science/Department of AI Convergence Engineering Gyeongsang National University (GNU)

Contents

- Introduction
- Related Work
- Dataset
- Architecture
- Reducing Overfitting
- Details of Learning
- Appendix
- Conclusion
- Discussion
- Code Implementation

ImageNet

- 15+ million labeled high-resolution images with 22000 categories
- Metric: top-1, top-5 error rates
 - top-1 error rate: same as accuracy (number of prediction == label)
 - top-5 error rate: if label in 5 highest probability model outputs > True

ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)

- Roughly 1000 images in each 1000 categories
- 1.2 million training images | 50k validation images | 150k testing images

Introduction 4

Trends of ILSVRC

우승 알고리즘의 분류 에러율(%)

CNN Architecture

- CNN can control model capacity with Depth(how many convolution layers) and Breadth(how many filters)
 - 5 convolutional Layers
 - 3 fully-connected layers
- Achieved Best Results on ILSVCR-2010 and ILSVCR-2012
- 5~6 days to train network with two GTX 580 3GB GPUs
 - Distributed Training

- Gradient-Based Learning Applied to Document Recognition (Lecun et.al. IEEE, 1998.); LeNet-5
 - To recognize handwritten numbers (0~9)
 - Adapted CNN Architecture (due to limitations of FFNN)
 - 3 Convolutional Layers, 2 Pooling(avg) Layers, 2 Fully-Connected Layers

- Gradient-Based Learning Applied to Document Recognition (Lecun et.al. IEEE, 1998.); LeNet-5
 - 3rd convolution layer

 Gradient-Based Learning Applied to Document Recognition (Lecun et.al. IEEE, 1998.); LeNet-5

于可人 5년 전

1993...that's the year I was born, and now I am trying to learn it, shocking

💪 77 ም 답글

 Large-scale Image Classification: Fast Feature Extraction and SVM Training (Lin et al. CVPR, 2011.)

- Winner on ILSVRC 2010
 - Achieved top-5 error rate 28.19%

Dataset 10

Preprocessing

For squared image: down-sampled to resolution of 256 x 256

- For rectangular image
 - First, rescale shorter side to 256
 - Second, center cropped to 256 x 256
- Subtracted mean value over the training set from each pixel
 - First, calculate mean value for each pixel from all training data (RGB 3 channels)
 - Second, subtract it from corresponding pixel value of each image
 - zero-centering

5 convolutional layers + 3 fully-connected layers

ReLU Nonlinearity

- Standard way: saturating nonlinearities
 - Hyperbolic Tangent(Tanh): $\frac{e^x e^{-x}}{e^x + e^{-x}}$
 - Sigmoid: $\frac{1}{1+e^{-x}}$
 - Vanishing gradient problem
 - Slow convergence
 - Computationally expensive
- New way: non-saturating nonlinearity
 - Rectified Linear Unit(ReLU): max(0, x)
 - Does not saturate (in the + region)
 - Computationally efficient

ReLU is x6 faster than Tanh on CIFAR-10 Dataset

- Training on Multiple GPUs
 - Not for training speed, due to model capacity and lots of training data
 - Spread network across two GPUs: puts half of the kernels(neurons) on each GPU
 - One Additional Trick: the GPUs communicate only in certain layers
 - 2nd, 4th, 5th convolutional layers are trained on each distributed GPU
 - 3rd convolutional layer, fully-connected layers are trained by gathering previous layer outputs (GPU-0 output + GPU-1 output)
 - Reduced top-1 error rate by 1.7%, top-5 error rate by 1.2%
 - Two-GPU net slightly less time to train than one-GPU net

- Local Response Normalization
 - Motivated from lateral inhibition
 - the capacity of an excited neuron to reduce the activity of its neighbors

Local Response Normalization

- ReLU does not require input normalization, but Adapted for generalization
 - excited neuron == large positive value; to refrain strong stimulus to near pixels

$$b_{x,y}^i = a_{x,y}^i / \left(k + lpha \sum_{j=\max(0,\,i-n/2)}^{\min(N-1,\,i+n/2)} (a_{x,y}^j)^2
ight)^eta \ j = \max(0,i-n/2)$$

- Sum over n adjacent kernel maps at the same spatial position (x, y)
- k, n, α , β (hyper-parameter): k=2, n=5, $\alpha=10^{-4}$, $\beta=0.75$
- Apply after 1st, 2nd ReLU layers
- Reduced top-1 error rate by 1.4%, top-5 error rate by 1.2%

Local Response Normalization

Overlapping Pooling

- At max pooling, adjust kernel size and stride
 - kernel size == stride: traditional local pooling
 - kernel size > stride: overlapping pooling
 - used kernel size = 3, stride = 2
 - Reduced top-1 error rate by 0.4%, top-5 error rate by 0.3%
- Overlapping pooling prevents overfit

Non-overlapping pooling

Overlapping pooling

Overall Architecture

Data Augmentation

- Image translation and horizontal reflection
 - Train Data: Random 224 x 224 patches (RandomCrop) + horizontal reflections from the preprocessed images (256 x 256)
 - increased training set by a factor of 2048
 - Test Data: averaging the ten Softmax probabilities (five 224 x 224 patches (4 corner + center patches) + horizontal reflections)

Data Augmentation

- Change the intensity of RGB channels (Color Jitter)
 - PCA on the set of RGB pixel values throughout training set
 - to obtain eigenvector, eigenvalue of training set
 - $I_{xy} = [I_{xy}^R, I_{xy}^G, I_{xy}^B]$: RGB image pixel
 - expr: $[p_1, p_2, p_3][\alpha_1\lambda_1, \alpha_2\lambda_2, \alpha_3\lambda_3]^T$; p_i : ith eigenvector, λ_i : ith eigenvalue, α_i : random variable (Gaussian Distribution, mean=0.0, std=0.1)
 - Add expr to each training image
- Reduces the top-1 error rate by over 1%

- Data Augmentation
 - Change the intensity of RGB channels (ColorJitter)

Dropout

- Train model with partly dropped input
 - Ensemble effect: Dropout is based on Bernoulli distribution
 - randomly zeroes some of elements of the input(activation outputs) on every mini-batch
 - Prevents Co-adaptation: Reduce dependencies to some neurons
 - e.g.) if neurons receive "bad" inputs, then the dependent neurons can be affected as well
 - affects to model performance > overfitting
- Dropout should only work during training time

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Input for Present Layer = Previous Layer Output

CLASS torch.nn.Dropout(p=0.5, inplace=False) [SOURCE]

During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call.

This has proven to be an effective technique for regularization and preventing the co-adaptation of neurons as described in the paper Improving neural networks by preventing co-adaptation of feature detectors.

Furthermore, the outputs are scaled by a factor of $\frac{1}{1-p}$ during training. This means that during evaluation the module simply computes an identity function.

Details of Learning

 Optimizer: SGD (momentum=0.9, weight decay=5e-4) with batch Size 128

Parameter initialization

- All weights: zero-mean Gaussian distribution with standard deviation
 0.01
- 2nd, 4th, 5th convolutional layers and fully-connected layers biases: 1
 - Accelerate activation function(ReLU): positive examples
- Remaining layers biases: 0

Learning Rate

- Initial Ir: 1e-2
- Divided by 10 when validation error stopped improving
- Trained 90 cycles(epochs) for 5~6 days

ILSVRC-2010 (Test Error)

•	Model	Top-1	Top-5
	Sparse coding [2]	47.1%	28.2%
	SIFT + FVs [24]	45.7%	25.7%
	CNN	37.5%	17.0%

ILSVRC-2012

•	Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
	SIFT + FVs [7]			26.2%
	1 CNN	40.7%	18.2%	
	5 CNNs	38.1%	16.4%	16.4%
	1 CNN*	39.0%	16.6%	
	7 CNNs*	36.7%	15.4%	15.3%

- 1 CNN: proposed model
- 5 CNNs: ensemble 5 similar CNNs
- 1 CNN*: finetuned 1 model (proposed model + extra 6th convolutional layer + pretrain with ILSVRC-2011 dataset)
- 7 CNNs*: finetuned 2 models(proposed model + pretrained with ILSVRC-2011 dataset) + 5CNNs

Appendix

Each GPU learns different features

Top-5 predictions (8 samples)

Appendix

Compute similarity by Euclidean distance

- Calculate L2 distance between last fully-connected layer (before classifier, 4096-dim) and train data
- Can reduce computational complexity by training autoencoder with fullyconnected layer (4096-dim)

Conclusion 28

- Depth is important for achieving results
 - removing any of the middle layer results in a loss of about 2% for the top-1 performance of the network
- Unsupervised pre-training expected to helpful, but did not use
 - Limitation of computational power
- Much deeper network, more training time improved the results

Discussion

Each GPU learns different features

How does it work? > is it reliable?

Convolution Layers

```
self.conv = nn.Sequential(
     nn.Conv2d(in_channels=3, out_channels=96, kernel_size=11, stride=4),
     # (bs, 3, 227, 227) > (bs, 96, 55, 55)
     nn.ReLU(),
     nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=2),
     nn.MaxPool2d(kernel_size=3, stride=2), # (bs, 96, 55, 55) > (bs, 96, 27, 27)
     nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=1,
                 padding=2), # (bs, 96, 27, 27) > (bs, 256, 27, 27)
     nn.ReLU().
     nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=2),
     nn.MaxPool2d(kernel_size=3, stride=2), # (bs, 256, 27, 27) > (bs, 256, 13, 13)
     nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1,
                 padding=1), # (bs, 256, 13, 13) > (bs, 384, 13, 13)
     nn.ReLU().
     nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1,
                 padding=1), # (bs, 384, 13, 13) > (bs, 384, 13, 13)
     nn.ReLU(),
     nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, stride=1,
                 padding=1), # (bs, 384, 13, 13), (bs, 256, 13, 13)
     nn.MaxPool2d(kernel_size=3, stride=2), # (bs, 256, 13, 13) > (bs, 256, 6, 6)
```

Fully-Connected Layers

Weight Initialization

```
def init weights(self):
    for layer_num, layer in enumerate(self.conv):
        if isinstance(layer, nn.Conv2d):
            nn.init.normal_(layer.weight, mean=0.0, std=0.01),
            nn.init.zeros (layer.bias)
            if (
                layer num == 4 or layer num == 10 or
                layer num == 12
            ): # second, fourth, fifth conv layers
                nn.init.ones (layer.bias)
    for layer in self.fc:
        if isinstance(layer, nn.Linear):
            nn.init.normal (layer.weight, mean=0.0, std=0.01),
            nn.init.ones_(layer.bias)
```

Model Summary

Layer (type)	Output Shape	Param #			
Conv2d-1	[-1, 96, 55, 55]	34,944			
ReLU-2	[-1, 96, 55, 55]	0			
LocalResponseNorm-3	[-1, 96, 55, 55]	0			
MaxPool2d-4	[-1, 96, 27, 27]	0			
Conv2d-5	[-1, 256, 27, 27]	614,656			
ReLU-6	[-1, 256, 27, 27]	0			
LocalResponseNorm-7	[-1, 256, 27, 27]	0			
MaxPool2d-8	[-1, 256, 13, 13]	0			
Conv2d-9	[-1, 384, 13, 13]	885,120			
ReLU-10	[-1, 384, 13, 13]	0			
Conv2d-11	[-1, 384, 13, 13]	1,327,488			
ReLU-12	[-1, 384, 13, 13]	0			
Conv2d-13	[-1, 256, 13, 13]	884,992			
MaxPool2d-14	[-1, 256, 6, 6]	0			
Flatten-15	[-1, 9216]	0			
Dropout-16	[-1, 9216]	0			
Linear-17	[-1, 4096]	37,752,832			
ReLU-18	[-1, 4096]	0			
Dropout-19	[-1, 4096]	0			
Linear-20	[-1, 4096]	16,781,312			
ReLU-21	[-1, 4096]	0			
Linear-22	[-1, 1000]	4,097,000			
Total params: 62,378,344 Trainable params: 62,378,344 Non-trainable params: 0					
Input size (MB): 0.59 Forward/backward pass size (MB): 14.47 Params size (MB): 237.95 Estimated Total Size (MB): 253.01					

IDEALAB 경상국립대학교 Gyeongsang National University

Improving lives through learning

IDEALAB