Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №3 по курсу «Моделирование»

Тема Случайные числа	
Студент Золотухин А.В.	
Группа ИУ7-74Б	
Оценка (баллы)	
Преподаватель Рудаков И. В.	

Условие лабораторной работы

Требуется реализовать ПО, позволяющее генерировать алгоритмическим методом последовательность случайных чисел и проверять итоговую последовательность на случайность по любому критерию. Также нужно добавить пользователю возможность генерировать последовательность из однозначных чисел и реализовать генерацию табличным методом.

Теоретическая часть

В этом разделе будет приведено описание методов генерации последовательности случайных чисел и описан критерий проверки последовательности на случайность.

Виды генераторов случайных чисел

Всего можно выделить четыре типа генераторов случайных чисел:

1. **Аппаратные генераторы** используют результаты определённых физических процессов для создания требуемой последовательности. Аппаратный генератор случайных чисел состоит из источника энтропии и устройства, преобразующего значения, полученные с источника энтропии, в нужный формат.

К такому типу относятся генераторы, основанные на фотоэффекте или тепловом шуме при работе полупроводникового диода. На выходе получается последовательность, обладающая значительной степенью случайности, но у таких генераторов есть два недостатка: системы трудно реализовать в жизни, а процессов, позволяющие преобразовать энтропию в последовательность.

2. **Алгоритмические генераторы** основаны на фиксированных алгоритмах, которые, в зависимости от некоторых физических параметров (например,

содержимого ввода/вывода), выдают нужный результат. Подобные алгоритмы имеют программную реализацию и используются в коммерческом ПО.

3. **Табличные генераторы** принимают на вход уже готовую последовательность, обладающую свойством случайности, после чего проводит различные манипуляции с ней (комбинирование, перемешивание), и выдают результат. К недостаткам этого подхода можно отнести лишнее использование памяти, предопределённость значений и ограниченность последовательности.

Выбранный критерий определения случайности

В качестве критерия был выбран критерий серий.

Пусть l_n — медиана наблюдаемых случайных величин. Каждому элементу выборки поставлен в соответствие знак "+" или "-" в зависимости от того больше он медианы или меньше. Пусть n_1 — число плюсов, а n_2 — число минусов. Серией называется последовательность из одинаковых знаков, ограниченная противоположными. Статистикой критерия является число серий n. Критическая область определяется неравенствами $n \leq N_1$ и $n \geq N_2$, которые определяются из таблицы при малых значениях $n_1 + n_2$.

Критические значения для критерия серий

$n_1 \mid n_2$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2θ
2	1;6	1;6	1;6	1;6	1;6	1;6	1;6	1;6	1;6	1;6	2;6	2;6	2;6	2;6	2;6	2;6	2;6	2;6	2;6
3	1;6	1;8	1;8	1;8	2;8	2; 8	2;8	2;8	2;8	2;8	2;8	2;8	2;8	3;8	3;8	3;8	3;8	3;8	3;8
4	1;6	1;8	1;9	2;9	2;9	2;10	3;10	3;10	3;10	3;10	3;10	3;10	3;10	3;10	4;10	4;10	4;10	4;10	4;10
5	1;6	1;8	2;9	2;10	3;10	3;11	3;11	3;12	3;12	4;12	4;12	4;12	4;12	4;12	4;12	4;12	5;12	5;12	5:12
6	1;6	2;8	2;9	3;10	3;11	3;12	3;12	4;13	4;13	4;13	4;13	5;14	5;14	5;14	5;14	5;14	5;14	6;14	6;14
7	1;6	2;8	2;10	3;11	3;13	4;13	4;14	4;14	5;14	5;14	5;14	5;15	5;15	6;15	6;16	6;16	6;16	6;16	6;16
8	1;6	2;8	3;10	3;11	3;12	4;13	4;14	5;14	5;15	5;15	6;16	6;16	6;16	6;16	6;17	7;17	7;17	7;17	7;17
9	1;6	2;8	3;10	3;12	4;13	4;14	5;14	5;15	5;16	6;16	6;16	6;17	7;17	7;18	7;18	7;18	8;18	8;18	8;18
10	1;6	2;8	3;10	3;12	4;13	5;14	5;15	5;16	6;16	6;17	7;17	7;18	7;18	7;18	8;19	8;19	8;19	8;20	9;20
11	1;6	2;8	3;10	4;12	4;13	5;14	5;15	6;16	6;17	7;17	7;18	7;19	8;19	8;19	8;20	9;20	9;20	9;21	9;21
12	2;6	2;8	3;10	4;12	4;13	5;14	6;16	6;16	7;17	7;18	7;19	8;19	8;20	8;20	9;21	9;21	9;21	10;22	10;22
13	2;6	2;8	3;10	4;12	5;14	5;15	6;16	6;17	7;18	7;19	8;19	8;20	9;20	9;21	9;21	10;22	10;22	10;23	10;23
14	2;6	2;8	3;10	4;12	5;14	5;15	6;16	7;17	7;18	8;19	8;20	9;20	9;21	9;22	10;22	10;23	10;23	11;23	11;24
15	2;6	3;8	3;10	4;12	5;14	6;15	6;16	7;18	7;18	8;19	8;20	9;21	9;22	10;22	10;23	11;23	11;24	11;24	12;25
16	2;6	3;8	4;10	4;12	5;14	6;16	6;17	7;18	8;19	8;20	9;21	9;21	10;22	10;23	11;23	11;24	11;25	12;25	12;25
17	2;6	3;8	4;10	4;12	5;14	6;16	7;17	7;18	8;19	9;20	9;21	10;22	10;23	11;23	11;24	11;25	12;25	12;26	13;26
18	2;6	3;8	4;10	5;12	5;14	6;16	7;17	8;18	8;19	9;20	9;21	10;22	10;23	11;24	11;25	12;25	12;26	13;26	13;27
19	2;6	3;8	4;10	5;12	6;14	6;16	7;17	8;18	8;20	9;21	10;22	10;23	11;23	11;24	12;25	12;26	13;26	13;27	13;27
20	2;6	3;8	4;10	5;12	6;14	6;16	7;17	8;18	9;20	9;21	10;22	10;23	11;24	12;25	12;25	13;26	13;27	13;27	13;28

Если $\max(n_1, n_2) \ge 20$, то

$$z_B = \frac{\left|n - \frac{2n_1n_2}{n_1 + n_2} - 1\right| - \frac{1}{2}}{\sqrt{\frac{2n_1n_2(2n_1n_2 - (n_1 + n_2))}{(n_1 + n_2)^2(n_1 + n_2 + 1)}}} \sim N(0, 1)$$

критическая область определяется неравенством

$$z_B \leq U_{rac{lpha}{2}}$$
 или $z_B \geq U_{1-rac{lpha}{2}}$

Демонстрация работы программы

В ходе выполнения программы пользователю доступно меню, в котором он может выбрать размер последовательности, который нужно сгенерировать, уровень значимости, а также файл, если он хочет также проверить собственную последовательность.

На рисунке представлена демонстрация работы программы:

Nº	1 разряд	2 разряда	3 разряда				
		+					
0	7	27	297				
1	3	53	233				
2	0	30	120				
3	6	96	186				
4	3	33	573				
5	6	76	976				
6	9	59	959				
7	7	37	217				
8	2	62	692				
9	5	75	345				
10	2	22	742				
11	5	45	405				
12	4	14	194				
13	6	56	596				
14	5	65	605				
Іера случайности	max(n1, n2) > 20 z = 1.0837643846399077	$\max(n1, n2) > 20 z = 0.5631536547271501$	max(n1, n2) > 20 z = 0.5922173610768111				
Итог	Числа случайные	Числа случайные	Числа случайные				
	Алгоритмический метод	-					
Nō	1 разряд	2 разряда	3 разряда				
0	2	45	751				
1	7	41	747				
2	3	96	742				
3	0	96	608				
4	4	61	561				
5	7	61	800				
6	2	18	404				
7	0	72	907				
8	1	92	559				
9	4	63	716				
10	6	76	227				
11	6	18	849				
12	1	77	674				
	3	46	586				
13							
13 14	7	1 3/	1 /38				
13 14 Пера случайности	7 max(n1, n2) > 20 7 = 0.45328759919537537	37 max(n1, n2) > 20 z = 1.9734248431821106	238 max(n1, n2) > 20 z = 0.468664055347947				

Рисунок 1: Демонстрация работы программы