

Ecological fitness of *Lactobacillus reuteri* in food and intestinal ecosystems provides insights to probiotic applications

Xin Zhao

Supervisor: Michael Gänzle

Ph.D. in Food Science and Technology
Thesis Defense

March 13, 2018

Food microbiota are partly derived from guts

Lactobacillus reuteri a model organism to study the association of fermented foods, (food) animals and human

Isolation of cereal *L. reuteri* strains

Hypothesis and objectives

Sourdough and intestinal strains of *L. reuteri* are indistinguishable with respect to genotypic and phenotypic characters.

- To access <u>carbohydrate transport and metabolism</u> in sourdough and intestinal strains of *L. reuteri*
- ➤ To identify <u>drivers of species adaptation</u> of *L. reuteri* by comparing genomes of sourdough and intestinal strains of *L. reuteri*
- To characterize the <u>competitiveness</u> of sourdough strains of *L. reuteri* in the <u>pig gut</u>
- To determine the correlation of acid resistance of probiotics with probiotic efficacy

Theme 1

Carbohydrate utilization of sourdough strains and intestinal strains of *L. reuteri* in relation to niches and genotypes

Homofermentative and heterofermentative lactobacilli co-exist in food and gut habitats

Homofermentative lactobacilli

- PTS transporters for sugar uptake
- Carbon catabolite repression mediated by PTS transporters
- Sugar utilization is <u>repressed</u>by glucose

Heterofermentative lactobacilli

- Much fewer PTS transporters for sugar uptake
- Absence of carbon catabolite repression
- 3. Preferably use different sugars over glucose

To provide a molecular basis for resource partitioning between homo- and hetero- fermenters using *L. reuteri* as a model.

Experimental design

Substrate spectrum for L. reuteri strains

	Cereal isolates				Rodent isolates		
	LTH2584	LTH5448	TMW1.656	TMW1.112	100-23	lpuph	mlc3
L-arabinose	-	+	-	+	+	+	+
D-ribose	+	+	+	+	+	+	+
D-xylose	+	-	-	_	+	-	+
D-galactose	+	+	+	+	+	+	+
D-glucose	+	+	+	+	+	+	+
D-maltose	+	+	+	+	+	+	+
D-lactose	+	+	+	+	+	+	+
D-melibiose	+	+	+	+	+	+	+
D-sucrose	+	+	+	+	+	+	+
D-raffinose	+	+	+	+	+	+	+

- ➤ Of 50 carbon sources tested, 10 sugars are fermentable to *L. reuteri* strains.
- Pentose utilization is strain specific.

Transporter genes and substrates predicted from the primary sequence

Protein symbols	transmembrane sequence #		Transporter superfamily	Homologous proteins	Similarity (%)	Substrates
RbsD2	11		MFS	Q8XEV7	51.5	D-ribose
AraE1	12		MFS	P31122	29.8	L-arabinose
AraE	12		MFS	C4B4V9	72.7	L-arabinose
AraE2	12		MFS	P96710	30.6	L-arabinose
XylT	12		MFS	O52733	67.2	D-xylose
XynC	11		MFS	P96792	35.3	D-xylose
GlcU	10	No PTS sugar	DMT	P40420	38.0	D-glucose
GlcU1	10	transporter!	DMT	A0A0E0ZTM0	38.6	D-glucose
GlcU2	12		DMT	Q04DP6	26.8	D-glucose
GalP	13		MFS	Q9X761	41.8	D-galactose
MalT	12		MFS	Q9A612	44.9	D-maltose
MalT1	12		MFS	Q9A612	27.2	MOS
MalT2	12		MFS	Q8EEC4	27.6	MOS
ScrT	12		DMT	Q04DP6	26.8	D-sucrose
LacS	12		MFS	P23936	38.2	D-lactose/ D-raffinose
SotB1	12	* MFS : Major	MFS	Q9S3J9	29.6	D-melibiose
SotB2	12	Facilitator Superfamily	MFS	Q9S3J9	26.2	D-melibiose

Gene expression of predicted sugar transporters in the chemically defined medium

in maltose, sucrose (or raffinose), and lactose, respectively.

Establishment of strain-specific primers

L. casei K9-1 vs 33 genomes

L. fermentum K9-2 vs 19 genomes

Interim Summary

- L. reuteri preferentially uses maltose, sucrose and raffinose. Pentose utilization in L. reuteri is strain-specific.
- Carbohydrate transport is mediated exclusively by major facilitator superfamily whereas the PTS sugar transporter is absent.
- L. reuteri as a heterofermentative model provides a molecular explanation to the resource partitioning between homo- and hetero- fermenters.

Theme 2

Comparative genomics and competition experiments reveal adaptation of intestinal *L. reuteri* to sourdough fermentations

Phylogenetic tree based on MLST

Distribution of shared and unique genes in the selected strains

Comparative genomics: core- and pan- genome

Sourdough isolates are derived from the animal gut

Mouse isolates
Human isolates
Chicken isolates
Pig isolates

Competition in mice

"Epithelial selection of L. reuteri strains is highly specific in mice."

Mouse isolates win.

Sourdough isolates maintain the ability to colonize mouse gut.

Core-genome tree

Competition in sourdough: sourdough isolates win

Time for each fermentation cycle (d)

Accessory-genome analysis: genes exclusive to the sourdough isolates

Gene or gene cluster	Putative function	Ecological role	
Reutericyclin genomic island	Reutericyclin biosynthesis and resistance ¹	Profit equals to cost	
Components of an ABC transporter	Unknown	Undetermined	
Aspartate racemase		Undetermined	
LytTr DNA-binding domain	Unknown	Undetermined	
GntR		Undetermined	
Membrane transport protein	Unknown	Undetermined	
Hydroxyglutarate dehydrogenase	Use of ketoglutarate as electron acceptor ²	Undetermined	
GT8_A4GalT_like proteins	Protein glycosylation	Undetermined	
YkuD	Peptidoglycan crosslinking	Undetermined	

¹ Lin, X. B., et al. 2015. Appl. Environ. Microbiol. 81, 2032-2041. ² Zhang, C., et al. 2010. *J. Appl. Microbiol*. 109, 1301-1310.

Core-genome analysis: Positive selection shapes the evolution of *L. reuteri*

Interim Summary

- ➤ Positive selection, in addition to horizontal gene transfer, contributes to the adaptive evolution of *L. reuteri* strains.
- Sourdough and intestine exert different selective pressure.
- ➤ This study improves our understanding of the adaptation of bacteria from intestine to food ecosystems.

Acknowledgement

Dr. Michael Gänzle

Dr. Lynn McMullen

Dr. Jens Walter

Dr. Ben Willing

Dr. Jinshui Zheng

Dr. Xiaoxi B. Lin

Weilan Wang

Food microbiology Lab

