Písomná skúška z predmetu "Algebra a diskrétna matematika" konaná dňa 13. 6. 2008

1. príklad. Dokážte, že kvadráty celých čísel sú reprezentované dekadickými číslicami, ktoré končia 0, 1, 4, 5, 6, alebo 9.

2. príklad. Nájdite formulu pre

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)}$$

3. príklad. Nech *A* a *B* sú množiny, dokážte

(a)
$$(A \cap B) \subseteq A$$
, (b) $A \subseteq (A \cup B)$.

4. príklad. $P = \{(1,2),(2,3),(3,4)\} \subseteq X \times X$ a $Q = \{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4)\} \subseteq X \times X$ sú relácie nad $X = \{1,2,3,4\}$. Zostrojte $P \circ Q$, $Q \circ P$

5. príklad. Koľko existuje permutácií nad reťazcom ABCDEFG, ktoré obsahujú podreťazec CFGA?

6. príklad. Rozhodnite, či symbol * definovaný ako x * y = x + y, pre $A = \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ špecifikuje binárnu operáciu na množine A. Ak nie, tak vysvetlite prečo.

7. príklad. Aká je hodnota Boolovej premennej, ktorá je určená podmienkou (a) $x + \overline{x} = 1$, (b) $x \cdot \overline{x} = 0$, (c) x + x = 1

8. príklad. Riešte systémy lineárnych rovníc

$$2x + 2y + z = 4$$

$$x - y - z = 2$$

$$3x + y = 6$$

9. príklad. Vypočítajte determinant matice pomocou metódy jej transformácie na trojuholníkový tvar

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

- **10. príklad.** Pre ktoré hodnoty n je kompletný graf K_n bipartitný? Pre ktoré hodnoty n je cyklus C_n bipartitný? (Graf, ktorý má vlastnosť, že jeho vrcholová množina môže byť rozdelená na dve disjunktné podmnožiny V_1 a V_2 tak, že každá hrana spája vrchol z jednej z týchto podmnožín s vrcholom z druhej z týchto podmnožín, sa volá *bipartitný graf*.)
- **11. príklad.** Keď je G obyčajný graf o 15 hranách a jeho doplnkový graf \overline{G} má 13 hrán, koľko vrcholov má graf G? (Doplnkový (complementary) graf \overline{G} ku grafu G má rovnakú vrcholovú množinu ako G. Dva vrcholy sú spojené hranou v \overline{G} vtedy, keď nie sú spojené v G. Slučky neuvažujeme.)

Každý príklad sa hodnotí maximálnym počtom bodov 5, písomka môže byť hodnotená max. 55 bodmi.

Riešenie

1. príklad.

(1) číslo n = (...0), potom $n^2 = (...0)$,

(2) číslo n = (...1), potom $n^2 = (...1)$,

(3) číslo n = (...2), potom $n^2 = (...4)$,

(4) číslo n = (...3), potom $n^2 = (...9)$,

(5) číslo n = (...4), potom $n^2 = (...6)$,

(6) číslo n = (...5), potom $n^2 = (...5)$,

(7) číslo n = (...6), potom $n^2 = (...6)$,

(8) číslo n = (...7), potom $n^2 = (...9)$,

(9) číslo n = (...8), potom $n^2 = (...4)$,

(10) číslo n = (...9), potom $n^2 = (...1)$.

2. príklad

$$1-\frac{1}{n+1}$$

3. príklad. Nech A a B sú množiny, dokážte

(a)
$$(A \cap B) \subseteq A$$
,

1.
$$x \in A \cap B$$
predpoklad2. $(x \in A) \land (x \in B)$ dôsledok predpokladu3. $(x \in A)$ dôsledok 24. $(x \in A \cap B) \Rightarrow (x \in A)$ deaktivácia predpokladu

(b)
$$A \subseteq (A \cup B)$$
,

1.
$$(x \in A)$$
 predpoklad
2. $(x \in A) \lor (x \in B)$ dôsledok 1
3. $(x \in A) \Rightarrow ((x \in A) \lor (x \in B))$ deaktivácia predpokladu

4. príklad

$$P \circ Q = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(2,4)\}$$

$$Q \circ P = \{(1,2),(1,3),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$$

5. príklad

$$4! = 24$$

6. príklad

Je binárna operácia . Takto definovaná binárna operácia vyhovuje podmienke, že výsledok musí patriť do A.

7. príklad

$$x = 0 \lor x = 1$$
.

$$x = 0 \lor x = 1$$
.

$$x = 1$$
.

8. príklad

$$A' = \begin{pmatrix} 2 & 2 & 1 & | & 4 \\ 1 & -1 & -1 & | & 2 \\ 3 & 1 & 0 & | & 6 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 1 & | & 4 \\ 0 & 4 & 3 & | & 0 \\ 0 & \boxed{4} & 3 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 1 & | & 4 \\ 0 & 4 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 1 & | & 4 \\ 0 & 4 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$z = 4t, y = -3t, x = 2+t, x = \begin{pmatrix} 2+t \\ -3t \\ 4t \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}.$$

9. príklad

$$(|A| = \begin{vmatrix} 1 & 0 & 1 \\ \hline{1} & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & \overline{1} & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{vmatrix} = 2)$$

10. príklad

Pre ktoré hodnoty *n* sú nasledujúce grafy bipartitné?

a) K_n

Riešenie: Iba pre n=2, pre viac ako 2 sú vždy aspoň dva vrcholy v jednej partícii, a ľubovoľné 2 vrcholy musia byť spojené hranou.

b) C_n

Riešenie: pre kružnice párneho stupňa, keď si oindexujeme postupne vrcholy idúc po hranách kružnice, do jednej partície dame vrcholy indexované párnym číslom, do druhej nepárnym číslom.

11. príklad

Keď je G obyčajný graf o 15 hranách a \overline{G} má 13 hrán, koľko vrcholov má graf G? Riešenie: Graf zjednotený s komplementom dáva kompletný graf

$$2|E| = |V| \deg(v)$$

$$2 \times 28 = |V| \times (|V| - 1)$$

$$|V| = 8$$