

Description of Course CSE 472

PART A: General Information

1 Course Title : MACHINE LEARNING SESSIONAL

2 Type of Course : SESSIONAL

3 Offered to : DEPARTMENT OF CSE

4 Pre-requisite Course(s) : NONE

PART B: Course Details

1. Course Content (As approved by the Academic Council)

Sessional based on CSE 471 (Machine learning)

2. Course Objectives

The students are expected to:

- i. Understand the basic concepts of machine learning
- ii. Apply different machine learning algorithms and models to different tasks
- iii. Develop machine learning models for different applications

3. Knowledge required

Technical

• Introductory knowledge of probability, statistics, and linear algebra is recommended. Knowledge of any high-level programming language, such as python, may be an added advantage for the learners

Analytical

None

4. Course Outcomes (COs)

CO No.	CO Statement After undergoing this course, students should be able to:	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)	
CO1	Understand the basic concepts of machine learning	-	C2	Lecture and Demonstration	Class Tests or Assignments or Projects, and Final Exam	
CO2	Apply different machine learning algorithms and models to different tasks	PO1, PO5	C3	Lecture, Demonstration, and hands-on	Class Tests or Assignments or Projects, and Final Exam	
CO3	Develop machine learning models for different applications	PO3, PO4, PO6, PO7, PO8	C6	Lecture and Demonstration	Class Tests or Assignments or Projects, and Final Exam	

*Program Outcomes (POs)

PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e): Modern tool usage; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): Life-long learning.

**Domains

C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

5. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	К3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO1		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	1			$\sqrt{}$										V	
CO2		$\sqrt{}$	1		1	V			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$	V		V	V
CO3		$\sqrt{}$	$\sqrt{}$	V	1	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$					$\sqrt{}$		V	V	V	
CO4		$\sqrt{}$	1	1	V	V		√	$\sqrt{}$	√	√	√	√				√	V		V

K-Knowledge Profile:

K1: A systematic, theory-based understanding of the natural sciences applicable to the discipline; K2: Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline; K3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline;

K4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline; **K5:** Knowledge that supports engineering design in a practice area; **K6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline; **K7:**Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability; **K8:** Engagement with selected knowledge in the research literature of the discipline

P-Range of Complex Engineering Problem Solving:

P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6, or K8, which allows a fundamentals-based, first principles analytical approach; P2: Involve wide-ranging or conflicting technical, engineering, and other issues; P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models; P4: Involve infrequently encountered issues; P5: Are outside problems encompassed by standards and codes of practice for professional engineering; P6: Involve diverse groups of stakeholders with widely varying needs; P7: Are high-level problems including many component parts or sub-problems

A-Range of Complex Engineering Activities:

A1: Involve the use of diverse resources (and for this purpose, resources include people, money, equipment, materials, information and technologies); A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues; A3: Involve creative use of engineering principles and research-based knowledge in novel ways; A4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation; A5: Can extend beyond previous experiences by applying principles-based approaches

6. Lecture/ Activity Plan

Week	Lecture Topics	Corresponding CO(s)				
Week 1	Assignment 1 on Linear Algebra Declaration	CO1				
Week 2	Assignment 1 Submission (Friday)	CO1				
Week 3	Evaluation of Assignment 1 Assignment 2 on Linear Regression and Boosting Declaration	CO2				
Week 4	Week 4 Evaluation of Assignment 1 Submission of Assignment 2 (Friday)					
Week 5	Week 5 Evaluation of Assignment 2 Declaration of Assignment 3 on HMM Project Group Formation					
Week 6	Evaluation of Assignment 2 Submission of Assignment 3 (Friday)	CO2				
Week 7	Evaluation of Assignment 3 Assignment 4 on CNN Declaration	CO2				
Week 8	Evaluation of Assignment 3	CO2				
Week 9	Project Proposal Presentation Submission of Assignment 4 (Friday)	CO2, CO3				
Week 10	Evaluation of Assignment 4	CO2				
Week 11	Evaluation of Assignment 4	CO2				

Week	Lecture Topics	Corresponding CO(s)
Week 12	Project Checkpoint (with respective supervisors)	CO3
Week 13	Final Project Presentation	CO3

7. Assessment Strategy

- Class Attendance: Class attendance will be recorded in every class.
- Assignments and Projects: There will be assignments and a project.
- Quiz Exam: A comprehensive Quiz exam will be held at the end of the semester.

8. Distribution of Marks

Attendance: 10 %
Assignments: 60%
Projects: 30%
Total: 100%

9. Textbook/ Reference

- a. Artificial Intelligence: A Modern Approach (4th Edition) by Stuart Russel and Peter Norvig
- b. Deep Learning, Aaron Courville, Ian Goodfellow, and Yoshua Bengio