

HEXFET® Power MOSFET

V _{DS}	30	٧
V _{GS Max}	± 20	٧
R _{DS(on) max} (@V _{GS} = 10V)	27	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	40	$\mathbf{m}\Omega$

Application(s)

• Load/ System Switch

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 27m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Industrial qualification

Benefits

results in

Lower switching losses
Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	30	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.3	A	
I _{DM}	Pulsed Drain Current	21		
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	\ \\	
P _D @T _A = 70°C	Maximum Power Dissipation	0.8	W	
Linear Derating Factor		0.01	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ⁽⁴⁾		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25° C, $I_D = 1$ mA
D	Static Drain-to-Source On-Resistance	_	33	40	m 0	$V_{GS} = 4.5V, I_D = 4.2A$ ②
R _{DS(on)}	Static Diam-to-Source On-nesistance		22	27	mΩ	$V_{GS} = 10V, I_D = 5.2A$ ②
V _{GS(th)}	Gate Threshold Voltage	1.3	1.7	2.3	V	$V_{DS} = V_{GS}, \ I_D = 25 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1	μA	$V_{DS} = 24V, V_{GS} = 0V$
	Diam-to-Source Leakage Current			150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
R _G	Internal Gate Resistance		2.3		Ω	
gfs	Forward Transconductance	9.5			S	$V_{DS} = 10V, I_D = 5.2A$
Q_g	Total Gate Charge		2.6			$I_{D} = 5.2A$
Q_{gs}	Gate-to-Source Charge		0.8		nC	V _{DS} =15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.1	_		V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		5.2			V _{DD} =15V ^②
t _r	Rise Time		4.4		no	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		7.4	_	ns	$R_G = 6.8\Omega$
t _f	Fall Time		4.4			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		382			V _{GS} = 0V
Coss	Output Capacitance		84		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		39			f = 1.0MHz

Source - Drain Ratings and Characteristics

Journal Planning and Characterione						
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			1.6		MOSFET symbol showing the
1					Α	G(: /
I _{SM}	Pulsed Source Current			21		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 1.6A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		11	17	ns	$T_J = 25^{\circ}C$, $V_R = 15V$, $I_F = 1.6A$
Q _{rr}	Reverse Recovery Charge		4.0	6.0	nC	di/dt = 100A/µs ②

International TOR Rectifier

IRLML0030TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML0030TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

50 $R_{\mbox{\footnotesize{DS}}}(\mbox{\scriptsize{on}}), \mbox{\footnotesize{Drain-to}}$ -Source On Resistance ($m\Omega)$ 45 40 Vgs = 4.5V 35 30 Vgs = 10V 25 20 0 10 30 20 40 50 I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14b. Gate Charge Test Circuit

International TOR Rectifier

IRLML0030TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INCHES			
STIVIBOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS AFE SHOWN IN MILLIMETERS (INCHES).
 3. CONTROLLING DIMENSION MILLIMETER

 ADATUM PANSION BY THE MILLIMETER OF A SHORT OF THE MILLIMENT OF THE MILLIMENT OF THE MILLIMENT OF THE MILLIMENT OF THE MILLIMENSIONS DOES

 NOT INCLIDE MOLD PHOTHLUSIONS OR INTERLEAD FLASH MILLID PROTRUSIONS
 OR INTERLEAD RLASH SHALL NOT EXCEED 0.25 MM (0010 INCH) PER SIDE.

 ADMINISTROIL IS THE LEAD LENSTH FOR SOLDERING TO A SUBSTRATE.
 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO -296 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

YE	AR	Υ	WORK WEEK	W
2011	2001	1	01	Α
2012	2002	2	02	В
2013	2003	3	03	С
2014	2004	4	04	D
2015	2005	5		
2016	2006	6		
2017	2007	7		
2018	2008	8	1	
2019	2009	9	7	
2020	2010	0	24	Χ
			25	Υ
			26	7

DATE CODE MARKING INSTRUCTIONS

WW = (27-52) IF PRECEDED BY A LETTER

YE	AR	Υ	WORK WEEK	W
2011	2001	Α	27	Α
2012	2002	В	28	В
2013	2003	С	29	С
2014	2004	D	30	D
2015	2005	Е		
2016	2006	F		
2017	2007	G		
2018	2008	Н		
2019	2009	J	7	1
2020	2010	K	50	X
			51	Υ
			52	Z

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

9

Micro3™ (SOT-23)Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Orderable part number	Package Type	Standard Pack		Note
Orderable part lidiliber	Package Type	Form	Quantity	
IRLML0030TRPbF	Micro3 (SOT-23)	Tape and Reel	3000	

Qualification information[†]

Ouglification local	Cans umer ^{††}		
Qualification level	(per JEDECJESD47F ††† guidelines)		
Moisture Sensitivity Level	Micro3 (SOT-23)	MSL1	
Information Sensitivity Level	IVIIC103 (301-23)	(per IPC/JEDECJ-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- Higher qualification ratings may be available should the user have such requirements. †† Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to application note #AN-994.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/2012

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.