Given: source x, source y (yield GT), target x (we assume target y is not provided), domain label (source vs. target)

Predict: Domain source; features are ranked using domain source as signal (this could be changed to rank features based on domain source + GT prediction)
Key points:

- (*) Model is trained to concurrently predict: 1. domain (source vs. target) + 2. yield GT (only for source data)
- (*) decorrelation loss (lines 521-526) is introduced to help decorrelate features during training
- (*) We backdrop on domain loss back to input features, and then average these gradients over holdout dataset to generate domain-shift feature importance

High-level Workflow: (1) Data load / pre-processing -> (2) run lightgbm to identify top-k features (e.g., k=300) -> (3) Using these top-k features, train NN to concurrently predict domain + yield GT, rank input features for data-shift importance

Lines 284-416:

- (*) data loading,
- (*)pre-processing: using simpleimputer for missing values (line 309), filled with -100; normalizing by max (line 312)
- (*) results: (1) POR_X (X source), (2) POR_Y (Y source), (3) POR_Y_domain (source vs. target) ->

POR_train_X, POR_test_X, POR_train_Y (2-D array, first entry is yield prediction, second is domain; 0=source, 1=target)

HDR_X (X target), (2) HDR_Y_domain ->

HDR_train_X (X target), HDR_test_X (X target), HDR_train_Y,
HDR_test_Y

Lines 423-452:

(*) Run lightbgm to identify top-k features wrt source yield GT (this could be changed to a different Y label, such as domain label)

Lines 490-535:

- (*) train simple NN with decorrelation regularization to predict domain and GT (for source)
- (*) domain_y_hp (line 518) is hp to balance domain prediction vs GT prediction in loss function

Lines 537-605:

(*) Model evaluation

Lines 613-623:

- (*) Gradient-based feature ranking, backpropagate wrt to domain prediction (line 621: could be amended to propagate wrt domain + yield prediction)
- (*) line 622: choice to accumulate gradients using absolute value (this is standard, but could remove absolute value to accumulate wrt raw gradients)

Lines 631-669:

(*) Write top features to txt file; generate pdf for visualization of top-ranked features