Enabling Layer-2 Path Tracing in SDN through Context Encoding

Hui Zhang

Cristian Lumezanu

Junghwan Rhee

Nipun Arora

<u>Qiang</u> <u>Xu</u>

Geoff Jiang

NEC Labs America

Path Tracing in SDN

I. Correctness:Passively monitorthe real packets2. Scalability:Minimal operational,configuration cost

I. Correctness:
Trackdown the real path in the data plane

Challenges from Accuracy and Scalability

Correctness vs. Complexity

Scalability vs. Flexibility

Reducing Tracing Space

- # of paths is small
 - Monitoring pathlets
- Tagging packets to differentiate paths
 - Precise calling context encoding (PCCE) is utilized
 - Using K bits to differentiate $>2^{K}$ paths

I. for s in switches:

2. for s in switches:

if I is the first:

continue

else:

$$PN[I] = PP[s]$$

1. for s in switches:

2. for s in switches:

if I is the first:

continue

else:

$$PN[I] = PP[s]$$

3. for p in DepthFirstSearchPaths(G): ID[p] = sum(PN[I] for I in p)

1. for s in switches:

2. for s in switches:

for
$$I = \langle p, s \rangle$$
 in getIncomingEdges(s):

if I is the first:

continue

else:

$$PN[I] = PP[s]$$

3. for p in DepthFirstSearchPaths(G): ID[p] = sum(PN[I] for I in p)

I. for s in switches:

2. for s in switches:

if I is the first:

continue

else:

$$PN[I] = PP[s]$$

3. for p in DepthFirstSearchPaths(G):

$$ID[p] = sum(PN[I] \text{ for } I \text{ in } p)$$

I. for s in switches:

2. for s in switches:

if I is the first:

continue

else:

$$PN[I] = PP[s]$$

3. for p in DepthFirstSearchPaths(G): ID[p] = sum(PN[I] for I in p)

Codebook of Path IDs

Codebook of Path IDs

ID	dst	path
0	G	ABDEG
2	G	ABDFG
1	G	ACDEG
3	G	ACDFG
•••		
•••		
•••		

Codebook of Path IDs

ID	dst	path
0	G	ABDEG
2	G	ABDFG
1	G	ACDEG
3	G	ACDFG
0	В	GEDB
•••		
•••		

- `ID` + `dst` can uniquely identify a path
 - As long as `ID`s can be imprinted into packets, the paths can be determined

Where to Store Encoded Path IDs

Fayazbakhsh, Seyed Kaveh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. "FlowTags: enforcing network-wide policies in the presence of dynamic middlebox actions." *HotSDN* 2013.

Enabling Actions of "ID=ID+X"

Directly assign values instead of increment

Enabling Actions of "ID=ID+X"

Branch enumerating ingress ports and paths

- Port 'a': port with no path
- Port 'b': port with one path
- Port 'c': port with multiple paths

PathletTracer: Path Tracing System

Conclusions

- A scalable data-plane path tracing application for SDN networks
 - Accuracy: data plane tracing
 - Tagging flows with path identifiers
 - Scalability: calling context encoding
 - Tracing more than 2^K paths by re-using K bits in packet headers

Thank You! Questions?