SGD and Hogwild! Convergence Without the Bounded Gradients Assumption

Lam M. Nguyen^{1,2} · Phuong Ha Nguyen³ · Marten van Dijk³

Peter Richtárik
⁴ · Katya Scheinberg ¹ · Martin Takáč ¹ Lehigh University · ²IBM · ³University of Connecticut · ⁴KAUST

The Problem and Assumptions

The Problem:

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \mathbb{E}[f(w; \xi)] \right\}$$

 $-\xi$ is a random variable obeying some distribution

Assumptions:

- $F: \mathbb{R}^d \to \mathbb{R}$ is a μ -strongly convex $\exists \mu > 0$ such that $\forall w, w' \in \mathbb{R}^d$: $F(w) \geq F(w') + \langle \nabla F(w'), (w-w') \rangle + \frac{\mu}{2} \|w-w'\|^2$
- $f(w; \xi)$ is L-smooth for every realization of ξ $\exists L > 0$ such that, $\forall w, w' \in \mathbb{R}^d$: $\|\nabla f(w; \xi) \nabla f(w'; \xi)\| \le L\|w w'\|$
- we can compute unbiased gradient $\mathbb{E}[\nabla f(w_t; \xi_t)] = \nabla F(w_t)$

The SGD Algorithm

- 1: **Input:** $\{\eta_t\}_{t=0}^{\infty}$ such that $\sum_t \eta_t = \infty$
- 2: choose $w_0 \in \mathbb{R}^d$
- 3: **for** $t = 0, 1, \dots$ **do**
- 4: sample ξ_t
- 5: compute $\nabla f(w_t; \xi_t)$
- 6: update $w_{t+1} = w_t \eta_t \nabla f(w_t; \xi_t)$
- 7: end for

Example:

- $F(w) = \frac{1}{2} \left(\underbrace{\frac{1}{2} w^2}_{f_1(w)} + \underbrace{w}_{f_2(w)} \right)$ is smooth and SC
- with probability $(1/2)^t$ we will have $w_{t+1} = w_0 \sum_{i=0}^t \eta_t$ SGD can go arbitrary far with non-zero probability

Bounded Gradient Assumption

Common Assumption in SGD analysis

• $\exists G < \infty \text{ such that } \mathbb{E}[\|\nabla f(w;\xi)\|^2] \leq G, \ \forall w$

Clash with Strong Convexity Assumption

$$2\mu(F(w) - F^*) \le \|\nabla F(w)\|^2 = \|\mathbb{E}[\nabla f(w;\xi)]\|^2$$

$$\le \mathbb{E}[\|\nabla f(w;\xi)\|^2] \le G < \infty$$

Alternative Bound on Second Moment

• $f(w; \xi)$ is convex:

$$\mathbb{E}[\|\nabla f(w,\xi)\|^2] \le 4L[F(w) - F^*] + N,$$

• $f(w; \xi)$ is nonconvex:

$$\mathbb{E}[\|\nabla f(w;\xi)\|^2] \le 4L\kappa[F(w) - F^*] + N,$$

where $\kappa = \frac{L}{\mu}$ and

$$N = 2 \mathbb{E}[\|\nabla f(w_*; \xi)\|^2]$$

Convergence Rate of SGD

• $f(w; \xi)$ is convex: Let $\eta_t = \frac{2}{4L+\mu t} \le \eta_0 = \frac{1}{2L}$. Then

$$\mathbb{E}[\|w_t - w_*\|^2] \le \frac{16N}{\mu} \cdot \frac{1}{4L + \mu(t - T)}$$

- for $t \ge T = \frac{4L}{\mu} \max\{\frac{L\mu}{N} ||w_0 w_*||^2 1, 0\}$
- $f(w; \xi)$ is nonconvex: Let $\eta_t = \frac{2}{4L\kappa + \mu t} \le \eta_0 = \frac{1}{2L\kappa}$. Then

$$\mathbb{E}[\|w_t - w_*\|^2] \le \frac{16N}{\mu} \cdot \frac{1}{4L\kappa + \mu(t - T)}$$

for
$$t \ge T = \frac{4L\kappa}{\mu} \max\{\frac{L\kappa\mu}{N} ||w_0 - w_*||^2 - 1, 0\}$$

HogWild!

- w_t state of the shared memory after the t-th update is fully written
- \hat{w}_t state of the shared memory read which is used to produce w_t

$$w_t = w_{t-1} - \eta_t \nabla f(\hat{w}_t; \xi_t)$$

Convergence Rate of HogWild!

 $-\tau$ - the maximum **delay** between "read" and "write"

Theorem: Let $\eta_t = \frac{4}{\mu t + E}$, $E = \max\{16L, 2\tau\mu\}$ then $\mathbb{E}[\|\hat{w}_t - w_*\|^2]$ and $\mathbb{E}[\|w_t - w_*\|^2]$ are at most

$$\frac{64N}{\mu} \frac{t}{(\mu(t-1)+E)^2} + O\left(\frac{\ln t}{t^2}\right)$$

Note: In the paper, we also analyze Lazy Hogwild! (when only portion of gradient is applied)

Numerical Experiments

- Logistic regression
- covtype dataset

References

- [1] Léon Bottou, Frank E Curtis, and Jorge Nocedal Optimization methods for large-scale machine learning, 2016
- [2] Eric Moulines and Francis R. Bach Non-asymptotic analysis of stochastic approximation algorithms for machine learning, NIPS 2011.
- [3] Benjamin Recht, Christopher Re, Stephen Wright and Feng Niu A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, NIPS 2011.
- [4] H. Mania, X. Pan, D. Papailiopoulos, B. Recht K. Ramchandran and M.I. Jordan Perturbed Iterate Analysis for Asynch. Stoch. Opt., 2015.
- [5] Remi Leblond, Fabian Pedregosa and Simon Lacoste-Julien Improved asynchronous parallel optimization analysis for stochastic incremental methods, 2018.