Math 121, Winter 2023, Homework 2 Solutions

Section 13.2

Problem 1. Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}| = p^n$ for some positive integer n.

Solution. Since \mathbb{F} is characteristic p, the prime field of \mathbb{F} is isomorphic to \mathbb{F}_p . Therefore, F/\mathbb{F}_p is a field extension, so \mathbb{F} is a vector space over \mathbb{F}_p , and so $\mathbb{F} = \{a_1v_1 + \ldots + a_nv_n | a_n \in \mathbb{F}_p\}$ has order p^n .

Problem 4. Determine the degree over \mathbb{Q} of $2 + \sqrt{3}$ and of $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Solution. For the first problem, since $2 + \sqrt{3} \in \mathbb{Q}(\sqrt{3})$ and $\sqrt{3} \in \mathbb{Q}(2 + \sqrt{3})$, we have $\mathbb{Q}(2 + \sqrt{3}) = \mathbb{Q}(\sqrt{3})$. By Proposition 11, $\sqrt{3}$, the extension $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$, and $2 + \sqrt{3}$ all have the same degree, and since $x^2 - 3$ is the minimal polynomial for $\sqrt{3}$, this degree is 2.

We approach the second problem similarly. Let $\theta = 1 + \sqrt[3]{2} + \sqrt[3]{4}$. $\theta \in \mathbb{Q}(\sqrt[3]{2})$ since $\sqrt[3]{4} = (\sqrt[3]{2})^2$. On the other hand, $\theta^2 = 5 + 4\sqrt[3]{2} + 3\sqrt[3]{4}$, so $\sqrt[3]{2} = \theta^2 - 3\theta - 2 \in \mathbb{Q}(\theta)$ Therefore, θ has the same degree as $\sqrt[3]{2}$ i.e. 3.

Problem 5. Let $F = \mathbb{Q}(i)$. Prove that $x^3 - 2$ and $x^3 - 3$ are irreducible over F.

Solution. We'll consider the polynomial $p(x) = x^3 - 2$, and the other one is similar. By Proposition 11, we can prove the result by showing that $[\mathbb{Q}(i, \sqrt[3]{2}) : \mathbb{Q}(i)] = 3$ (see also Lemma 16). p(x) is irreducible over \mathbb{Q} by Eisenstein's criterion, so it's the minimal polynomial for $\sqrt[3]{2}$, and by Proposition 11, $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$. Also, $[\mathbb{Q}(i) : \mathbb{Q}] = 2$ since i has minimal polynomial $x^2 + 1$. The Tower Law then says

$$[\mathbb{Q}(i, \sqrt[3]{2}) : \mathbb{Q}] = [\mathbb{Q}(i, \sqrt[3]{2}) : \mathbb{Q}(i)][\mathbb{Q}(i) : \mathbb{Q}] = [\mathbb{Q}(i, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}],$$

SO

$$\left[\mathbb{Q}(i,\sqrt[3]{2}):\mathbb{Q}(i)\right] = \frac{3\left[\mathbb{Q}(i,\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})\right]}{2}$$

is a multiple of 3.

Problem 7. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Find an irreducible polynomial satisfied by $\sqrt{2} + \sqrt{3}$.

Solution. Since $\theta := \sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, we have containment one way. For the other direction, note that $\theta^3 = 11\sqrt{2} + 9\sqrt{3}$, so both $\sqrt{2} = \frac{1}{2}(\theta^3 - 9\theta)$ and $\sqrt{3} = -\frac{1}{2}(\theta^3 - 11\theta)$ are in $\mathbb{Q}(\theta)$.

By Corollary 15, $[\mathbb{Q}(\theta):\mathbb{Q}(\sqrt{2})] \leq 2$, and since $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ this degree must equal 2. Therefore, by the tower law,

$$\mathbb{Q}(\theta):\mathbb{Q}] = [\mathbb{Q}(\theta):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4.$$

Finally, we compute $\theta^2 = 5 + 2\sqrt{6}$ and $\theta^4 = 49 + 20\sqrt{6}$, and conclude that $\theta^4 - 10\theta^2 + 1 = 0$.

Problem 12. Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

Solution. This is a straightforward consequence of the tower law. First note that a degree one field extension is trivial, since the extension field is a dimension-one vector space over the base field, and thus the same field. Then we have p = [K : F] = [K : E][E : F], and since these are all integers one of [K : E] and [E : F] must be p, and the other must be 1.

Problem 15. A field F is said to be formally real if -1 is not expressible as a sum of squares in F. Let F be a formally real field, let $f(x) \in F[x]$ be an irreducible polynomial of odd degree and let α be a root of f(x). Prove that $F(\alpha)$ is also formally real.

Solution. Suppose otherwise, and a counterexample α such that the degree of α over F is the minimum possible. Then $-1 = \beta_1^2 + \cdots + \beta_m^2$ for some choice of $\beta_i \in F(\alpha)$, Let the coset $p_i(x) + (f(x))$ be the image of β_i under the (inverse of the) isomorphism given in Theorem 6, and we choose the representatives p_i to have $\deg p_i < \deg f$ (otherwise, divide with remainder). Then we have

$$-1 + (f) = p_1^2 + \dots + p_m^2,$$

where we have collected copies of the ideal (f). Pulling this back to the polynomial ring F[x], we see that

$$-1 + f(x)g(x) = p_1^2 + \dots + p_m^2 \tag{1}$$

for some polynomial $g \in F[x]$. Since the degree of the right side of (1) is even and less that $2 \deg f$, so must be the degree of the left side, so $\deg g$ is odd and less than $\deg f$.

Now, g may not be irreducible, but at least one of its irreducible factors must have odd degree. Let β be a root of such a factor h(x); then β has odd degree over F. Under the maps $F[x] \to F[x]/(h) \to F(\beta)$, (1) becomes

$$-1 = \gamma_1^2 + \cdots + \gamma_m^2$$

for elements $\gamma_i \in F(\beta)$. This means that $F(\beta)$ is also not formally real, and since deg $\beta <$ deg α , this contradicts the minimality of α .

Section 13.3

Problem 2. Prove that Archimedes' construction actually trisects the angle θ . (See the book for the construction).

Solution. Let ϕ be the third angle of the triangle lying within the circle, ϵ be the angle supplementary to β , and η be the remaining angle of the other triangle. We have $\beta = \gamma$ and $\alpha = \eta$ since these pairs of angles are each part of the same isosceles triangle. Adding up the angles in the two triangles gives $\epsilon + 2\alpha = 180^{\circ}$ and $\phi + 2\beta = 180^{\circ}$. Decomposing straight line angles gives $\epsilon + \beta = 180^{\circ}$ and $\alpha + \phi + \theta = 180^{\circ}$; in particular, $\beta = 2\alpha$. Solving this last equation for θ and substituting, we get

$$\theta = 180^{\circ} - \phi - \alpha = 2\beta - \alpha = 3\alpha.$$

Problem 4. The construction of the regular 7-gon amounts to the constructibility of $\cos(2\pi/7)$. We shall see later (Section 14.5 and Exercise 2 of Section 14.7) that $\alpha = 2\cos(2\pi/7)$ satisfies the equation $p(x) = x^3 + x^2 - 2x - 1 = 0$. Use this to prove that the regular 7-gon is not constructible by straightedge and compass.

Solution. This problem amounts to showing that the degree of $\cos(2\pi/7)$ over \mathbb{Q} is not a power of 2, for which it suffices to show that p(x) is irreducible. Since p(x) is cubic, by Propositions 9 and 10 of Chapter 9, p(x) is reducible if and only if it has a root. By the rational root theorem, such a root must be ± 1 , and plugging in shows neither is a root.