Calculating the Minimum Planar Graph and genereating Voronoi tesselations

Sam Doctolero and Alex M Chubaty 2017-07-26

Contents

Introduction to spatial graphs
Overview of the MPG algorthim implemented in grainscpae
Terminologies
Data Structures
Type Definitions
The Engine Class
Fields/Properties
Methods/Functions
General MPG Algorithm
How to Use the Engine
References

Introduction to spatial graphs

(Fall et al. 2007)

Overview of the MPG algorithm implemented in grainscpae

The Minimimum Planar Graph (MPG) algorithm is used to find the Voronoi boundaries and approximate least cost paths between patches. The Voronoi boundaries are created using a spreading or marching algorithm. Each perimeter cell in the patches spread out to adjacent cells, that have not been visited yet or are not part of any patch, and are given a patch ID to mark the Voronoi territory. A Voronoi boundary is found when a cell is visited twice by two different Voronoi territories or IDs. Using a marching algorithm to find the Voronoi boundaries makes it possible to implement a linking algorithm that can run in parallel with the marching algorithm. As a cell is spread into, let's call it a child cell, it then creates a link or connection between the child cell and the cell that it spread from, which we call a parent cell. Finding the least cost path this way is only possible with the use of storing the child cells, which will eventually become parent cells, in a queueing table that sorts the cells in a certain order. The child cells are sorted by increasing eucledian distance between the child cell and their origin cell, the perimeter cell that the connection originally spawned from. A link or path between patches is then created at the first Voronoi boundary between two patches.

Terminologies

- Cell: A box or element in a map.
- Active Cell: A type of cell that is currently being evaluated. It refers to the child cell mentioned above
- *Time:* This could mean iterations. Time is used due to Andrew Fall's use of the term in his forest fire analogy.
- *Object:* An instance of a certain data type, class, or data structure (*i.e.*, Cell c, c then is an object of type Cell).

Data Structures

- Cell: stores its own position (row and column) and an ID.
- ActiveCell: inherits the properties of a Cell and has its own properties such as distance, originCell, parentCell, resistance, and time (or iterations). This type of cell is used to keep track of which cells are currently being evaluated.
- LinkCell: inherits the properties of a Cell and has its own properties such as cost, distance, fromCell, and originCell. This type of cell is used to create LinkMap.
- ActiveCellHolder: a type of container that stores a vector of ActiveCells in an order.
- ActiveCellQueue: contains an ActiveCellHolder. Its main purpose is to properly store the ActiveCellHolder in a vector in an order, increasing Euclidian distance.

Figure 1:

- InputData: contains all the data that is needed for the engine to operate. The user of the engine has to create an instance of it and initialize all the properties before giving the address of the object to the engine's constructor.
- Link: stores all the links (directly and indirectly) between the patches. Links are given a negative ID to distinguish them from patch IDs.
- OutputData: similar to InputData but it acts as a container for all the data that are calculated by the engine and gives that data to the user.
- Patch: a patch or a cluster are the habitats that are found in the resistance map, given a value for habitat.

Figure 2:

Type Definitions

- lcCol: a vector of LinkCells.
- LinkMap: a vector of lcCols, which in turn creates a Map. This type stores the connections between cells.
- flCol: a vector of floating point values.
- flMap: a vector of flCol, which in turn creates a Map that contains floating point values in each element or cell.

Figure 3:

The Engine Class

The main calculator of the program. It creates the minimum planar graph (MPG) using the MPG algorithm, finds least cost links or paths, and finds patches or clusters.

Fields/Properties

Property	Data Type	Description
in_data	InputData Pointer	Points to an InputData object. This is where the engine gets all the initialization values from.
out_data	OutputData Pointer	Points to an OutputData object. The engine stores all the calculated values in this variable.
maxCost	float	The maximum resistance or cost in the resistance map.
costRes	float	The minimum resistance or cost in the resistance map.
active_cell_holder	ActiveCellQueue	Holds or stores all the ActiveCells.
temporary_active_cell_hol	der ActiveCellQueue	Similar to active_cell_holder, except it acts as an intermediate or temporary holder of ActiveCells. Required for vector resizing and comparing.
spread_list	vector of ActiveCells	Stores all the ActiveCells that are ready to spread to all 4 adjacent cells, if possible.
iLinkMap	LinkMap	A map that keeps track of all the connections between cells due to the spreading and queuing functions.
voronoi_map	flMap	A map that contains floating point values, it stores the Voronoi boundaries/polygons.

Property	Data Type	Description
cost_map	flMap	A map that contains the resistance or cost in each cell/element.
error_message	Char Pointer	Stores the error messages that occur in the engine. It acts as a way to diagnose problems in the engine.

Methods/Functions

Public Functions

These are the functions that are visible to the user.

Function	Return Type	Input Arguments	Description
Engine	Instance of an Engine	Nothing	Default Engine constructor.
Engine	Instance of an Engine	InputData Pointer, OutputData Pointer, Char Pointer	Engine constructor.
initialize	Boolean	Nothing	Prepares the engine for calculation.
start	Void	Nothing	It runs the MPG algorithm.

Linking Functions

These functions create the links between cells and finds the least cost (direct or indirect) paths between patches.

Function	Return Type	Input Arguments	Description
findPath	Void	LinkCell Pointer, LinkCell Pointer, Vector of Links	Finds the least cost path between two patches.
connectCell	Void	ActiveCell Pointer, Integer, Integer, Float	Connects the child cell to the parent cell.
parseMap	Cell	LinkCell, Link	Given a starting Cell it follows the connections until it reaches a patch. The last cell in the connection is returned.
lookForIndirec	tPat ‰ oid	Vector of Links, Link	Tries to find an indirect link and updates the second argument.

Function Return Type Input Arguments Description	Function	Return Type	Input Arguments	Description	
--	----------	-------------	-----------------	-------------	--

Patch Finding Functions

The functions are responsible for finding the patches or clusters in a resistance map, given a value for a habitat.

Function	Return Type	Input Arguments	Description
findPatches	Void	Nothing	Finds all the patches in the patch vector and assign patch IDs.
getIndexFromList	Int	Float, Vector of Patches	Finds the index in the vector of patches that the given ID correspond to.
combinePatches	Int	Int, Int, Vector of Patches	Given two indeces and the list of patches. Extract the two patches from the list and combine those two into one patch. Insert the new patch into the list and return the index value of the new patch.

Common Functions

Common functions are almost used in almost all of the functions in the engine.

Function	Return Type	Input Arguments	Description
outOfBounds	Bool	Int, Int, Int, Int	Checks to see if the given row and column is still within the resistance map's dimensions.
cellIsEqual	Bool	Cell, Cell	Compares the two cells' row and column if they match.

Static Functions

Static functions are functions that can be used without delcaring an object of the class.

Figure 4:

Function	Return Type	Input Arguments	Description
emax	Float	Vector of Floats	Finds the maximum value from the vector of floating point values
emin	Float	Vector of Floats	Finds the minimum value from the vector of floating point values
calcDistance	Float	Cell, Cell	Finds the eucledian distance between two Cells

General MPG Algorithm

The MPG algorithm has the following steps:

- 1. Create Active Cells.
- 2. Check if the Active Cells are ready to spread.
- 3. Spread to all 4 adjacent cells for all the Active Cells that ready to spread.
- 4. The cells that have been recently spread in to become new Active Cells.
- 5. Repeat.

The linking algorithm is embedded within the spreading functions of the MPG algorithm. When an Active Cell spreads a link map creates a connection between the parent Active Cell to the new (child) Active Cell. Linking is assisted by the ActiveCellQueue to find the least cost/resistive paths.

How to Use the Engine

- 1. Create InputData and OutputData objects.
- 2. Initialize the InputData object's fields. Keep in mind that the vectors in the InputData and Output data structures are all of type float.
- 3. Create an array of Char with the length of MAX_CHAR_SIZE or a larger value.
- 4. Create an Engine object and give the address of the InputData and OutputData objects, the Char array and the size of the array as arguments.
- 5. Call the initialization function from the Engine object.
- 6. If the initialization is successful, call the start function from the Engine object. If the initialization is not successful, the array of char will contain the reason for the initialization failure.
- 7. Once the engine is doen calculating, extract all the fields needed in the OutputData object.

A snippet C++ code is shown below as an example:

Figure 5:

```
vector<float> EngineInterface(vector<float> resistance, vector<float> patches ,int nrow, int n
    //InputData and OutputData objects
    InputData inObj;
    OutputData outObj;
    //Initialize InputData object
    inObj.cost_vec = resistance;
    inObj.nrow = nrow;
    inObj.ncol = ncol;
    inObj.patch_vec = patches;
    //Array of chars with a size of MAX_CHAR_SIZE
    char error[MAX_CHAR_SIZE];
    //Engine object while passing in the InputData and OutputData objects' address and the arra
    Engine engineObj(&inObj, &outObj, error, MAX_CHAR_SIZE);
    //Initialize the engineObj, if it fails output the reason why and exit the function
    if (engineObj.initialize() == false)
        cout << error << endl;</pre>
        return outObj.voronoi_map;
    //start the calculation
    engineObj.start();
    //extract the data needed, in this case the voronoi_map
    return outObj.voronoi_map;
}
```

Note that the current Engine has two lines of code that are meant for interfacing with R. In order to make the Engine run with any programming or scripting language, remove those two lines. One of them is an include statement for Rcpp, at the very top of source code, and the other is inside the start function, the first line inside the while loop. Those two lines are convenient for R users when they want to interrupt or stop the MPG algorithm safely, without crashing their console and possibly losing their data.

References

Fall, Andrew, Marie-Josée Fortin, Micheline Manseau, and Dan O'Brien. 2007. "Spatial Graphs: Principles and Applications for Habitat Connectivity." *Ecosystems* 10 (3): 448–61. doi:10.1007/s10021-007-9038-7.