STOR 565 Homework

Show all work. Note: all logarithms are natural logarithms.

- 1. Let $\langle x, y \rangle = x^t y = \sum_{i=1}^d x_i y_i$ be the usual inner product in \mathbb{R}^d . Recall that the norm of a vector $x \in \mathbb{R}^d$ is defined by $||x|| = \langle x, x \rangle^{1/2}$
 - a. Show that ||x|| = 0 if and only if x = 0.
 - b. Use the definition of the norm to show that $||x+y||^2 = ||x||^2 + 2\langle x,y\rangle + ||y||^2$.
 - c. Use this equation and the Cauchy Schwarz inequality to establish the triangle inequality for the vector norm, namely $||x+y|| \le ||x|| + ||y||$.
 - d. The standard Euclidean distance between two vectors $x, y \in \mathbb{R}^d$ is defined by d(x, y) = ||x y||. Use part (c) to establish that $d(x, y) \leq d(x, z) + d(z, y)$ for any vectors $x, y, z \in \mathbb{R}^d$. Draw a picture illustrating this result.
- 2. Let $x = (x_1, \ldots, x_d)^t$ be a vector in \mathbb{R}^d .
 - a. Show that $||x|| \le |x_1| + \cdots + |x_d|$. Hint: use the fact that for $a, b \ge 0$ one has $a \le b$ if and only if $a^2 \le b^2$. Give an example where the bound holds with equality, and an example where one has strict inequality.
 - b. Use Cauchy-Schwarz to get the upper bound $|x_1| + \cdots + |x_d| \leq ||x|| d^{1/2}$. Find an example where the bound holds with equality.
- 3. Let a_1, \ldots, a_n be positive numbers. Use the Cauchy-Schwartz inequality for inner products to show that $(\sum_{k=1}^n a_k)(\sum_{k=1}^n a_k^{-1}) \ge n^2$. Hint: Begin with the identity $1 = a_k a_k^{-1}$.
- 4. (Inequalities from Calculus) Use calculus to establish the following inequalities.
 - a. $(1+u/3)^3 \ge 1+u$ for every $u \ge 0$
 - b. $x + x^{-1} \ge 2 \text{ for } x \ge 1$
 - c. $\log(1+x) \ge x x^2/2$ for $x \ge 0$. Note that this inequality requires taking a second derivative to show that the first derivative is increasing.

1

- 5. Let X, X' be independent random variables with the same distribution. In this case we say that X' is an independent copy of X. Show that $Var(X) = \frac{1}{2}\mathbb{E}(X X')^2$
- 6. Let $x = x_1, ..., x_n$ be a univariate sample of n numbers. It is a standard, and important, fact that the quantity $h(a) = \sum (x_i a)^2$ is minimized when (and only when) a is the sample mean $m(x) = n^{-1} \sum_{i=1}^{n} x_i$. Here we show this in two different ways.
 - a. Take a derivative to find the number a that minimizes or maximizes the function h, and then take another derivative to show that the number you found minimizes the function.
 - b. Add and subtract m(x) inside the parentheses, expand the square, take the sum, and examine the terms you find.
- 7. Let $x = x_1, ..., x_n$ be a univariate sample, and let $\tilde{x} = \tilde{x}_1, ..., \tilde{x}_n$ be the standardized version of x with $\tilde{x}_i = (x_i m(x))/s(x)$. Show that $m(\tilde{x}) = 0$ and $s(\tilde{x}) = 1$.
- 8. Let r(x,y) be the sample correlation of a bivariate data set $(x,y)=(x_1,y_1),\ldots,(x_n,y_n)$.
 - a. Let ax + b denote the data set $ax_1 + b, \ldots, ax_n + b$ and define cy + d similarly. Show that r(ax + b, cy + d) = r(x, y) if a, c > 0.
 - b. Use the Cauchy-Schwarz inequality to show that r(x, y) is always between -1 and +1.