《高等数学 A (二)、B (二)》考试试卷(A 卷)

(闭卷 时间 120 分钟)

题 号	 1 1	Ξ	四	五.	总 分
得 分					
阅卷人					

一、填空题(每小题2分,共10分)

製

得分

- 1. 过点(1, 2, 3)且与直线 $\frac{x-3}{3} = \frac{y}{2} = \frac{z-1}{1}$ 平行的直线方程为_____
- 2. 设 $f(x, y) = \frac{xy}{\sqrt{xy+1}-1}$, 则 $\lim_{(x,y)\to(0,0)} f(x, y) = \underline{\hspace{1cm}}$.
- 3. 累次积分 $\int_{0}^{2} dx \int_{x^{2}}^{2x} f(x, y) dy$ 交换积分次序后为_____
- 4. 已知曲线 $L: x^2 + y^2 = a^2$ (常数 a > 0),则 $\oint_{\mathcal{L}} x^2 ds = \underline{\hspace{1cm}}$
- 5. 已知 f(x) 是周期为 2π 的周期函数,在 $(-\pi, \pi]$ 上 f(x) 的解析式为 $f(x) = \begin{cases} -\pi, & -\pi < x \le 0 \\ x, & 0 < x < \pi \end{cases}, \quad \text{M} \ f(x) \ \text{height} \ \text{height} \ \text{height} \ \text{Mean} \ \text{height} \ \text{Mean} \ \text{height} \ \text{height} \ \text{Mean} \ \text{height} \ \text{height$

二、单项选择题(每小题2分,共10分)

得分

- 6. 设 $y_1(x)$ 、 $y_2(x)$ 、 $y_3(x)$ 是非齐次线性方程 y'' + p(x)y' + q(x)y = f(x) 的三个线性 无关的解, C_1 、 C_2 是任意常数,则该非齐次线性方程的通解可表示为(
 - A. $C_1 y_1 + C_2 y_2 + C_3$
- B. $C_1 y_1 + C_2 y_2 (C_1 + C_2) y_3$
- C. $C_1 y_1 + C_2 y_2 (1 C_1 C_2) y_3$ D. $C_1 y_1 + C_2 y_2 + (1 C_1 C_2) y_3$
- 7. 已知二元函数 $f(x,y) = \begin{cases} x^2 + y^2, & xy = 0 \\ 1, & xy \neq 0 \end{cases}$, 则 f(x,y) 在 (0,0) 处 ().

 - A. 连续, 一阶偏导数不存在 B. 不连续, 一阶偏导数不存在
 - C. 不连续, 一阶偏导数存在 D. 连续, 一阶偏导数存在

- A. 8x y 2z = 108 B. 16x y + 2z = 268
- C. 8x y 2z = 140 D. 16x y + 2z = 244
- 9. 常数 a > 0,则第一型曲面积分 $\iint_{x^2+y^2+z^2=a^2} x^2 dS$ 的值为() . A. $\frac{4}{3}\pi a^4$ B. $\frac{4}{3}\pi a^2$ C. $4\pi a^4$ D. $4\pi a^2$

- 10. 下列级数中,绝对收敛的是().
 - A. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}}$
- B. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
- C. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+\sqrt{n+1}}}$ D. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$

三、计算题(每小题8分,共64分)

11. 已知直线 $L_1: \frac{x-3}{3} = \frac{y}{0} = \frac{z-1}{-4}$, 平面 $\Sigma: x+2y+2z=5$, 求直线 L_1 与平面 Σ 的夹角.

14. 计算二重积分
$$\iint_D e^{-\frac{y^2}{2}} dxdy$$
, 其中 D 是由直线 $x=0$ 、 $y=1$ 及 $y=x$ 所围成的区域.

15. 计算三重积分
$$\iint\limits_{x^2+y^2+z^2\leq R^2} (x^2+y^2+xz) dx dy dz$$
, 其中常数 $R>0$.

16. 计算第二型曲线积分 $I = \int_C (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$, 其中 C 为 上半圆周 $x^2 + y^2 = ax$, 方向为从 A(a,0) 到 O(0,0), 常数 a > 0.

17. 设抛物面 Σ : $z=1-x^2-y^2$ ($z\geq 0$),方向取其上侧,计算 $\iint_{\Sigma} 2x^3 dydz + 2y^3 dzdx + 2dxdy$.

18. 将 $f(x) = \frac{1}{1+2x}$ 展开为 (x+2) 的幂级数,并求该幂级数的收敛域.

19. 在椭圆 $x^2 + 4y^2 = 4$ 上求一点,使该点到直线 2x + 3y - 12 = 0 的距离最短.

五、证明题(本大题共8分)

得 分

20. 设数列 $\{a_n\}$ 单调减小,且 $a_n \ge 0$ ($n=1,2,\cdots$),又级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散. 证明:级数 $\sum_{n=0}^{\infty} \left(\frac{1}{1+a_n}\right)^n$ 收敛.

姓名线

装

R

亭

安徽大学 2008-2009 学年第二学期

《高等数学 A (二)、B(二)》考试试卷 (A 卷) 参考答案及评分细则

一、填空题(每小题2分,共10分)

1.
$$\frac{x-1}{3} = \frac{y-2}{2} = \frac{z-3}{1}$$

1.
$$\frac{x-1}{3} = \frac{y-2}{2} = \frac{z-3}{1}$$
 2. 2 3. $\int_0^4 dy \int_{y/2}^{\sqrt{y}} f(x, y) dx$ 4. πa^3 5. $-\frac{\pi}{2}$

4.
$$\pi a^3$$

5.
$$-\frac{\pi}{2}$$

二、 **单项选择题 (每小题 2 分, 共 10 分)**6. D 7. C 8. B 9. A 10. D

三、计算题(每小题8分,共64分)

11. 解:设直线的方向向量为 \vec{l} :

则
$$\vec{l} = (3,0,-4)$$
, 平面 Σ 的法向量 $\vec{n} = (1,2,2)$, $\cos(\vec{l},\vec{n}) = \frac{\vec{l} \cdot \vec{n}}{|\vec{l}| \cdot |\vec{n}|} = -\frac{1}{3}$.

故直线 L_1 与平面 Σ 的夹角为 $\theta = \frac{\pi}{2} - \arccos \frac{1}{3}$ (或 $\theta = \arcsin \frac{1}{3}$).

12 ft:
$$\frac{\partial z}{\partial x} = \frac{\frac{1}{y}}{1 + (\frac{x}{y})^2} = \frac{y}{x^2 + y^2}, \quad \frac{\partial z}{\partial y} = \frac{-\frac{x}{y^2}}{1 + (\frac{x}{y})^2} = \frac{-x}{x^2 + y^2}$$

故
$$dz = z_x dx + z_y dy = \frac{y dx - x dy}{x^2 + y^2}$$

13. 解: 齐次方程 y''-3y'+2y=0 对应的特征方程为: $\lambda^2-3\lambda+2=0$,则 $\lambda_{1,2} = 1, 2$.

因此齐次方程对应的通解为: $y(x) = C_1 e^x + C_2 e^{2x}$, 其中 C_1 , C_2 为任意常数。

令非齐次方程的特解为: $y^*(x) = A \cdot e^{-2x}$

代入原式得:
$$A = \frac{1}{12}$$
, 故 $y^*(x) = \frac{1}{12} \cdot e^{-2x}$

因此非齐次方程的通解为: $Y(x) = C_1 e^x + C_2 e^{2x} + \frac{1}{12} e^{-2x}$

14. 解:

$$\iint_{D} e^{-\frac{y^{2}}{2}} dx dy = \int_{0}^{1} dy \int_{0}^{y} e^{-\frac{y^{2}}{2}} dx = \int_{0}^{1} e^{-\frac{y^{2}}{2}} y dy = 1 - e^{-\frac{1}{2}}$$

15. 解

$$\iiint_{x^2+y^2+z^2 \le R^2} (x^2 + y^2) dx dy dz + \iiint_{x^2+y^2+z^2 \le R^2} xz dx dy dz \quad (対称性)$$

$$= \iiint_{x^2+y^2+z^2 \le R^2} (x^2 + y^2) dx dy dz = \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^R r^4 \sin^3 \phi dr$$

$$= \frac{8}{15} \pi R^5$$

提示:本题可以化为:

$$\iiint\limits_{x^2+y^2+z^2\leq R^2}(x^2+y^2)dxdydz+\iiint\limits_{x^2+y^2+z^2\leq R^2}xzdxdydz$$
(对称性)

$$= \iiint_{x^2+y^2+z^2 \le R^2} (x^2+y^2) dx dy dz = \frac{2}{3} \iiint_{x^2+y^2+z^2 \le R^2} (x^2+y^2+z^2) dx dy dz = \frac{8}{15} \pi R^5$$

16.解 如图所示:

C 为上半圆周,方向为逆时针。添加 \overline{OA} 线段,方向如图所示. 这时 C 与 \overline{OA} 构成一个平面区域 D.然后再 D 上应用 Green 公式:

$$I = \left(\int_C + \int_{\overline{OA}} - \int_{\overline{OA}} \right) (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$$

$$= \iint_{D} \left[\frac{\partial}{\partial x} (e^{x} \cos y - 2) - \frac{\partial}{\partial y} (e^{x} \sin y - 2y) \right] dx dy - \int_{0}^{1} 0 dx$$

$$= \iint_D 2dxdy = \frac{\pi a^2}{4}$$

17. 解: 补充平面 $\Sigma_0: z = 0(x^2 + y^2 \le 1)$ 取下侧,则 Σ_0 与 Σ 围成空间区域 Ω 于是

$$I = \bigoplus_{\Sigma_0 + \Sigma} - \iint_{\Sigma_0}$$

$$= 6 \iiint_{\Omega} (x^2 + y^2) dv + 2\pi$$

$$= 6 \int_0^{2\pi} d\theta \int_0^1 dr \int_0^{1-r^2} r^3 dz + 2\pi$$

$$= 12\pi \int_0^1 (r^3 - r^5) dr + 2\pi$$

$$= 3\pi$$

解出得收敛域为: $(-\frac{7}{2}, -\frac{1}{2})$

四、 应用题(本大题共8分)

19. 设(x, y)为椭圆 $x^2 + 4y^2 = 4$ 上任一点,则该点到直线2x + 3y - 12 = 0的距离为

$$d = \frac{\left|12 - 2x - 3y\right|}{\sqrt{13}}$$

$$\Rightarrow L = (12 - 2x - 3y)^2 + \lambda(x^2 + 4y^2 - 4)$$

于是由:

$$\begin{cases} L_x = -4(12 - 2x - 3y) + 2\lambda x = 0 \\ L_y = -6(12 - 2x - 3y) + 8\lambda y = 0 \\ L_\lambda = x^2 + 4y^2 - 4 = 0 \end{cases}$$

得条件驻点: $M_1(\frac{8}{5}, \frac{3}{5}), M_2(-\frac{8}{5}, -\frac{3}{5})$

$$d \mid_{M_1} = \frac{|12 - 2x - 3y|}{\sqrt{13}} = \frac{7\sqrt{13}}{13} \qquad d \mid_{M_2} = \frac{|12 - 2x - 3y|}{\sqrt{13}} = \frac{17\sqrt{13}}{13}$$

因此 $M_1(\frac{8}{5},\frac{3}{5})$ 为到直线距离最小值点.

提示,本题可以直接在椭圆上求一点的切线平行于直线。

对椭圆两边关于 x 求导得:
$$2x+8yy'=0 \Rightarrow y'=-\frac{x}{4y}$$

$$\Rightarrow$$
 $y' = -\frac{x}{4y} = -\frac{2}{3} \Rightarrow y = \frac{3}{8}x$

代入椭圆得: $M_1(\frac{8}{5},\frac{3}{5}), M_2(-\frac{8}{5},-\frac{3}{5})$

$$d \mid_{M_1} = \frac{|12 - 2x - 3y|}{\sqrt{13}} = \frac{7\sqrt{13}}{13} \qquad d \mid_{M_2} = \frac{|12 - 2x - 3y|}{\sqrt{13}} = \frac{17\sqrt{13}}{13}$$

因此 $M_1(\frac{8}{5},\frac{3}{5})$ 为到直线距离最小值点.

五、证明题(本大题共8分)

20. 证明: 因为 $\{a_n\}$ 单调减小,且 $a_n \ge 0$,即单调减小有下界,故 $\{a_n\}$ 收敛。

设其极限为a,即 $\lim_{n\to\infty}a_n=a$,又因为 $\sum_{n=1}^{\infty}(-1)^na_n$ 发散,所以a>0(否则交错级数

$$\sum_{n=1}^{\infty} (-1)^n a_n 收敛).$$

于是对于任意的
$$n$$
有 $\frac{1}{1+a_n} < \frac{1}{1+a} < 1$,

而等比级数 $\sum_{n=0}^{\infty} (\frac{1}{1+a})^n$ 收敛。由比较判别法知级数 $\sum_{n=0}^{\infty} (\frac{1}{1+a_n})^n$ 收敛。