

Tómács Tibor

Matematikai statisztika gyakorlatok összefoglaló

Kivonat az alábbi jegyzetből:

 $\label{lem:https://tomacstibor.uni-eszterhazy.hu/tananyagok/Matematikai_statisztika_gyakorlatok.pdf$

Tartalomjegyzék

Je	Jelölések 3			
1.	Össz	zefoglal	ó	5
	1.1.	Eloszlá	sok generálása	5
		1.1.1.	Egyenletes eloszlásból származtatott eloszlások	5
		1.1.2.	Normális eloszlásból származtatott eloszlások	6
	1.2.	Grafiku	ıs illeszkedésvizsgálat	7
	1.3.	Interva	llumbecslések	7
	1.4.	Paramé	éteres hipotézisvizsgálatok	8
	1.5.	Nempa	raméteres hipotézisvizsgálatok	12
	1.6.	Regress	sziószámítás	15
	1.7.	Excel f	üggvények	17
		1.7.1.	Analysis ToolPak aktiválása	17
		1.7.2.	Képlet bevitele	18
		1.7.3.	Tömbképlet bevitele	18
		1.7.4.	Tömbképlet javítása	18
		1.7.5.	Műveletek	18
		1.7.6.	Relációk	18
		1.7.7.	Konstansok	18
		1.7.8.	Logikai függvények	19
		1.7.9.	Elemi függvények	19
		1.7.10.	Mátrixok	19
		1.7.11.	Kombinatorika	20
		1.7.12.	Pszeudo-véletlen szám generálása	20
		1.7.13.	Statisztikák	20
		1.7.14.	Eloszlásfüggvények	21
		1.7.15.	Inverz eloszlásfüggvények	22
		1.7.16.	Eloszlások	23
		1.7.17.	Sűrűségfüggvények	23

1.7.18.	Grafikus illeszkedésvizsgálat	24
1.7.19.	Intervallumbecslés	24
1.7.20.	Paraméteres hipotézisvizsgálatok	24
1.7.21.	Nemparaméteres hipotézisvizsgálatok	25
1.7.22.	Regressziószámítás	25

Jelölések

Általános

 \mathbb{N} a pozitív egész számok halmaza

 \mathbb{R} a valós számok halmaza

 \mathbb{R}^n \mathbb{R} -nek önmagával vett n-szeres Descartes-szorzata

 \mathbb{R}_{+} a pozitív valós számok halmaza

(a,b) rendezett elempár vagy nyílt intervallum

 \simeq közelítőleg egyenlő

[x] az x valós szám egész része

 f^{-1} az f függvény inverze

 A^{\top} az A mátrix transzponáltja

 A^{-1} az A mátrix inverze

Valószínűségszámítás

P(A) az A esemény valószínűsége

Εξ ξ várható értéke

 $D\xi$, $D^2\xi$ ξ szórása illetve szórásnégyzete

 $cov(\xi, \eta)$ kovariancia

 $\operatorname{corr}(\xi,\eta)$ korrelációs együttható

 φ a standard normális eloszlás sűrűségfüggvénye Φ a standard normális eloszlás eloszlásfüggvénye

Γ Gamma-függvény

 I_A az A esemény indikátorváltozója

 $\mathrm{Bin}(r;p)$ az r-edrendű p paraméterű binomiális eloszlású valószínűségi válto-

zók halmaza

 $\operatorname{Exp}(\lambda)$ a λ paraméterű exponenciális eloszlású valószínűségi változók hal-

maza

 $Norm(m; \sigma)$ az m várható értékű és σ szórású normális eloszlású valószínűségi

változók halmaza

 $Gamma(r; \lambda)$ az r-edrendű λ paraméterű gamma-eloszlású valószínűségi változók

halmaza

Khi(s)az s szabadsági fokú khi-négyzet eloszlású valószínűségi változók

halmaza

T(s)az s szabadsági fokú t-eloszlású valószínűségi változók halmaza

 $F(s_1; s_2)$ az s_1 és s_2 szabadsági fokú F-eloszlású valószínűségi változók hal-

maza

F[V]Ha ξ valószínűségi változó és V a ξ -vel azonos eloszlású valószínűségi

változók halmaza, akkor F[V] a V-beli valószínűségi változók közös

eloszlásfüggvényét jelenti. Például $\Phi = F[\text{Norm}(0; 1)].$

Matematikai statisztika

tapasztalati eloszlásfüggvény

a ξ -re vonatkozó minta átlaga (mintaátlag)

 S_n, S_n^2 tapasztalati szórás illetve szórásnégyzet

 ξ -re vonatkozó tapasztalati szórás illetve szórásnégyzet

 $S_{\xi,n}, S_{\xi,n}^2$ S_n^*, S_n^{*2} korrigált tapasztalati szórás illetve szórásnégyzet

 $S_{\varepsilon,n}^*, S_{\varepsilon,n}^{*2}$ ξ -re vonatkozó korrigált tapasztalati szórás illetve szórásnégyzet

 ξ_1^*,\ldots,ξ_n^* rendezett minta

 $Cov_n(\xi, \eta)$ tapasztalati kovariancia

 $\operatorname{Corr}_n(\xi,\eta)$ tapasztalati korrelációs együttható

 $\widehat{\vartheta}$ a ϑ paraméter becslése

 H_0, H_1 nullhipotézis, ellenhipotézis

1. fejezet

Összefoglaló

1.1. Eloszlások generálása

1.1.1. Egyenletes eloszlásból származtatott eloszlások

Itt az $\eta, \eta_0, \eta_1, \eta_2, \ldots$ független, a [0, 1] intervallumon egyenletes eloszlású valószínűségi változókat jelent.

• Diszkrét egyenletes eloszlás

Ha $m \in \mathbb{N}$, akkor $[m\eta] + 1$ diszkrét egyenletes eloszlású az $\{1, \ldots, m\}$ halmazon.

• Karakterisztikus eloszlás

Ha $0 akkor <math display="inline">\mathbf{I}_{\eta < p}$ karakterisztikus eloszlású p paraméterrel.

• Binomiális eloszlás

Ha $r \in \mathbb{N}$ és $0 , akkor <math>\sum\limits_{i=1}^r \mathbf{I}_{\eta_i < p}$ r-edrendű p paraméterű binomiális eloszlású.

• Hipergeometrikus eloszlás

Legyen $r, M, N \in \mathbb{N}, \ M < N,$ tovább
á $r \leq \min\{M, N - M\}.$ Ekkor

$$\xi_0 \equiv 0, \quad \xi_i := \begin{cases} \xi_{i-1} + 1, & \text{ha } \eta_i < \frac{M - \xi_{i-1}}{N - i + 1}, \\ \xi_{i-1}, & \text{k\"{u}l\"{o}nben}, \end{cases} \quad (i = 1, \dots, r)$$

jelöléssel ξ_r hipergeometrikus eloszlásúN,M,r paraméterekkel.

Poisson-eloszlás

Ha $\lambda > 0$, akkor min $\left\{ s \in \mathbb{N} \cup \{0\} : \eta_0 \eta_1 \cdots \eta_s < e^{-\lambda} \right\}$ Poisson-eloszlású λ paraméterrel.

• Geometriai eloszlás

Ha $0 , akkor min <math>\{s \in \mathbb{N} : \eta_s < p\}$ geometriai eloszlású p paraméterrel.

• Folytonos egyenletes eloszlás

Ha $a,b \in \mathbb{R},\ a < b,$ akkor $a + (b-a)\eta$ az [a,b] intervallumon egyenletes eloszlású.

• Exponenciális eloszlás

Ha $\lambda>0,$ akkor $-\frac{\ln\eta}{\lambda}$ exponenciális eloszlású λ paraméterrel.

• Gamma-eloszlás

Ha $\lambda>0$ és $r\in\mathbb{N}$, akkor $-\frac{1}{\lambda}\sum\limits_{i=1}^{r}\ln\eta_{i}$ r-edrendű λ paraméterű gamma-eloszlású. Tetszőleges $r,\lambda>0$ esetén $F^{-1}(\eta)$ r-edrendű λ paraméterű gamma-eloszlású, ahol $F=F[\mathrm{Gamma}(r;\lambda)]$.

• Normális eloszlás

Ha $m \in \mathbb{R}$ és $\sigma > 0$, akkor $m + \sigma \sqrt{-2 \ln \eta_1} \cos(2\pi \eta_2)$ illetve $F^{-1}(\eta)$ normális eloszlású m várható értékkel és σ szórással, ahol $F = F[\text{Norm}(m; \sigma)]$. (Standard normális eloszlás esetén m = 0, $\sigma = 1$ és $F = \Phi$.)

1.1.2. Normális eloszlásból származtatott eloszlások

Itt az η, η_i $(i \in \mathbb{N})$ független standard normális eloszlású valószínűségi változókat, míg ξ a [0,1] intervallumon egyenletes eloszlású valószínűségi változót jelent.

• Khi-négyzet eloszlás

Ha $s \in \mathbb{N}$, akkor $\sum_{i=1}^{s} \eta_i^2$ illetve $F^{-1}(\xi)$ khi-négyzet eloszlású s szabadsági fokkal, ahol F = F[Khi(s)].

• t-eloszlás

Ha $s \in \mathbb{N}$, akkor $\eta \sqrt{s/\sum_{i=1}^{s} \eta_i^2}$ illetve $F^{-1}(\xi)$ t-eloszlású s szabadsági fokkal, ahol F = F[T(s)].

• Cauchy-eloszlás

Ha $\mu \in \mathbb{R}$ és $\sigma > 0$, akkor $\mu + \sigma \frac{\eta_1}{\eta_2}$ illetve $\mu + \sigma \operatorname{tg} \frac{\pi}{2}(2\xi - 1)$ Cauchy-eloszlású μ és σ paraméterekkel. (Standard Cauchy-eloszlás esetén $\mu = 0$ és $\sigma = 1$.)

• F-eloszlás

Ha $s_1, s_2 \in \mathbb{N}$, akkor $\frac{s_2}{s_1} \sum_{i=1}^{s_1} \eta_i^2 / \sum_{i=s_1+1}^{s_1+s_2} \eta_i^2$ illetve $F^{-1}(\xi)$ F-eloszlású s_1 és s_2 szabadsági fokkal, ahol $F = F[F(s_1; s_2)]$.

1.2. Grafikus illeszkedésvizsgálat

Legyen $x_1 < x_2 < \cdots < x_r$, továbbá tegyük fel, hogy a mintarealizáció legkisebb eleme nagyobb x_1 -nél, a mintarealizáció legnagyobb eleme pedig kisebb x_r -nél.

• Exponencialitásvizsgálat

Ha a vizsgált valószínűségi változó exponenciális eloszlású λ paraméterrel, akkor $y_i := \ln \left(1 - F_n^*(x_i)\right)$ jelöléssel az $(x_1, y_1), \ldots, (x_r, y_r)$ koordinátájú pontok körülbelül egy olyan egyenesre esnek, melynek $-\lambda$ a meredeksége és átmegy az origón.

• Normalitásvizsgálat

Ha a vizsgált valószínűségi változó normális eloszlású m várható értékkel és σ szórással, akkor $y_i := \Phi^{-1} \left(F_n^*(x_i) \right)$ jelöléssel az $(x_1, y_1), \dots, (x_r, y_r)$ koordinátájú pontok körülbelül egy olyan egyenesre esnek, melynek $\frac{1}{\sigma}$ a meredeksége és $-\frac{m}{\sigma}$ értéknél metszi a függőleges tengelyt.

1.3. Intervallumbecslések

Legyen a ξ valószínűségi változóra vonatkozó minta ξ_1, \ldots, ξ_n , és $1 - \alpha$ a becsülendő paraméterre vonatkozó $[\tau_1, \tau_2]$ konfidenciaintervallum biztonsági szintje.

• $\xi \in \text{Norm}(m; \sigma)$

maz ismeretlen becsülendő paraméter, σ ismert

$$au_1 = \overline{\xi} - \frac{\sigma}{\sqrt{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \quad au_2 = \overline{\xi} + \frac{\sigma}{\sqrt{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$

• $\xi \in \text{Norm}(m; \sigma)$

mismert, σ az ismeretlen becsülendő paraméter

$$F = F[Khi(n)]$$

$$\tau_1 = \sqrt{\frac{1}{F^{-1}(1-\frac{\alpha}{2})} \sum_{i=1}^{n} (\xi_i - m)^2} \quad \tau_2 = \sqrt{\frac{1}{F^{-1}(\frac{\alpha}{2})} \sum_{i=1}^{n} (\xi_i - m)^2}$$

• $\xi \in \text{Norm}(m; \sigma)$

m ismeretlen, σ az ismeretlen becsülendő paraméter

$$\begin{split} n &\geq 2, \ F = F[\mathrm{Khi}(n-1)] \\ \tau_1 &= S_n \sqrt{\frac{n}{F^{-1}\left(1-\frac{\alpha}{2}\right)}} \quad \tau_2 = S_n \sqrt{\frac{n}{F^{-1}\left(\frac{\alpha}{2}\right)}} \end{split}$$

• $\xi \in \text{Norm}(m; \sigma)$

m az ismeretlen becsülendő paraméter, σ ismeretlen

$$n \ge 2, \ F = F[T(n-1)]$$

 $\tau_1 = \overline{\xi} - \frac{S_n^*}{\sqrt{n}} F^{-1} \left(1 - \frac{\alpha}{2}\right) \quad \tau_2 = \overline{\xi} + \frac{S_n^*}{\sqrt{n}} F^{-1} \left(1 - \frac{\alpha}{2}\right)$

• $\xi \in \text{Exp}(\lambda)$

 λ az ismeretlen becsülendő paraméter

$$F = F[\text{Gamma}(n; 1)]$$

$$\tau_1 = (n\bar{\xi})^{-1} F^{-1} \left(\frac{\alpha}{2}\right) \quad \tau_2 = (n\bar{\xi})^{-1} F^{-1} \left(1 - \frac{\alpha}{2}\right)$$

• $\xi \in Bin(1; p)$

$$p$$
az ismeretlen becsülendő paraméter
$$\tau_1 = \frac{1}{n} \max \left\{ z \in \mathbb{N} : \sum_{i=0}^z \binom{n}{i} \overline{\xi}^i (1 - \overline{\xi})^{n-i} < \frac{\alpha}{2} \right\}$$

$$\tau_2 = \frac{1}{n} \min \left\{ z \in \mathbb{N} : \sum_{i=0}^z \binom{n}{i} \overline{\xi}^i (1 - \overline{\xi})^{n-i} \ge 1 - \frac{\alpha}{2} \right\}$$

$$c = \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$

$$\tau_1 = \frac{\overline{\xi} + \frac{c^2}{2n} - \frac{c}{\sqrt{n}} \sqrt{\overline{\xi} (1 - \overline{\xi}) + \frac{c^2}{4n}}}{1 + \frac{c^2}{n}} \simeq \overline{\xi} - \frac{c}{\sqrt{n}} \sqrt{\overline{\xi} (1 - \overline{\xi})}$$

$$\tau_2 = \frac{\overline{\xi} + \frac{c^2}{2n} + \frac{c}{\sqrt{n}} \sqrt{\overline{\xi} (1 - \overline{\xi}) + \frac{c^2}{4n}}}{1 + \frac{c^2}{n}} \simeq \overline{\xi} + \frac{c}{\sqrt{n}} \sqrt{\overline{\xi} (1 - \overline{\xi})}$$

• ξ az [a,b] intervallumon egyenletes eloszlású a ismert, b az ismeretlen becsülendő paraméter $F = F[Gamma(n; 1)], c_1 = F^{-1}(\frac{\alpha}{2}), c_2 = F^{-1}(1 - \frac{\alpha}{2})$ $\tau_1 = a + \left(e^{c_1} \prod_{i=1}^n (\xi_i - a)\right)^{\frac{1}{n}}$ $\tau_2 = a + \left(e^{c_2} \prod_{i=1}^{n} (\xi_i - a)\right)^{\frac{1}{n}}$

1.4. Paraméteres hipotézisvizsgálatok

A következőkben $1 - \alpha$ a próba szintjét jelenti.

• Egymintás u-próba

 $\xi \in \text{Norm}(m; \sigma), m \text{ ismeretlen}, \sigma \text{ ismert, a } \xi\text{-re vonatkoz\'o minta } n \text{ elem\'u},$ $m_0 \in \mathbb{R}$.

$H_0: m = m_0$	kritikus tartomány
	$2 - 2\Phi(u) < \alpha$
$H_1 : m < m_0$	$1 - \Phi(u) < \alpha \text{ \'es } u < 0$
	$1 - \Phi(u) < \alpha \text{ \'es } u > 0$

ahol

$$u = \frac{\overline{\xi} - m_0}{\sigma} \sqrt{n}.$$

• Kétmintás u-próba

 $\xi \in \text{Norm}(m_1; \sigma_1), \, \eta \in \text{Norm}(m_2; \sigma_2)$ függetlenek, m_1, m_2 ismeretlenek, σ_1, σ_2 ismertek, a ξ -re vonatkozó minta n_1 elemű, az η -ra vonatkozó minta n_2 elemű.

$H_0 \colon m_1 = m_2$	kritikus tartomány
$H_1 \colon m_1 \neq m_2$	$2 - 2\Phi(u) < \alpha$
$H_1: m_1 < m_2$	$1 - \Phi(u) < \alpha \text{ \'es } u < 0$
$H_1: m_1 > m_2$	$1 - \Phi(u) < \alpha \text{ \'es } u > 0$

ahol

$$u = \frac{\overline{\xi} - \overline{\eta}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}.$$

• Egymintás t-próba

 $\xi \in \text{Norm}(m; \sigma)$, a paraméterek ismeretlenek, a ξ -re vonatkozó minta n elemű, $m_0 \in \mathbb{R}$.

H_0 : $m=m_0$	kritikus tartomány
$H_1: m \neq m_0$	$2 - 2F(t) < \alpha$
$H_1: m < m_0$	$1 - F(t) < \alpha \text{ és } t < 0$
$H_1: m > m_0$	$1 - F(t) < \alpha \text{ \'es } t > 0$

ahol

$$t = \frac{\overline{\xi} - m_0}{S_n^*} \sqrt{n}$$
 és $F = F[T(n-1)].$

• Kétmintás t-próba

 $\xi \in \text{Norm}(m_1; \sigma_1), \ \eta \in \text{Norm}(m_2; \sigma_2)$ függetlenek, $\sigma_1 = \sigma_2$, a paraméterek ismeretlenek, a ξ -re vonatkozó minta n_1 elemű, az η -ra vonatkozó minta n_2 elemű.

$H_0: m_1 = m_2$	kritikus tartomány
$H_1 \colon m_1 \neq m_2$	$2 - 2F(t) < \alpha$
$H_1: m_1 < m_2$	$1 - F(t) < \alpha \text{ és } t < 0$
$H_1: m_1 > m_2$	$1 - F(t) < \alpha \text{ és } t > 0$

ahol

$$t = \frac{\overline{\xi} - \overline{\eta}}{\sqrt{n_1 S_{\xi, n_1}^2 + n_2 S_{\eta, n_2}^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \quad \text{és} \quad F = F[T(n_1 + n_2 - 2)].$$

Scheffé-módszer

 $\xi \in \text{Norm}(m_1; \sigma_1), \ \eta \in \text{Norm}(m_2; \sigma_2)$ függetlenek, a paraméterek ismeretlenek, a ξ -re vonatkozó minta n_1 elemű, az η -ra vonatkozó minta n_2 elemű, $n_1 \leq n_2$.

$H_0 \colon m_1 = m_2$	kritikus tartomány
$H_1 \colon m_1 \neq m_2$	$2 - 2F(t) < \alpha$
$H_1: m_1 < m_2$	$1 - F(t) < \alpha \text{ \'es } t < 0$
$H_1: m_1 > m_2$	$1 - F(t) < \alpha \text{ és } t > 0$

ahol

$$\zeta_i := \xi_i - \sqrt{\frac{n_1}{n_2}} \eta_i + \frac{1}{\sqrt{n_1 n_2}} \sum_{k=1}^{n_1} \eta_k - \overline{\eta} \quad (i = 1, \dots, n_1)$$

jelöléssel

$$t = \frac{\overline{\zeta}}{S_{\zeta,n_1}^*} \sqrt{n_1}$$
 és $F = F[T(n_1 - 1)].$

Speciálisan $n_1 = n_2$ esetén $\zeta_i = \xi_i - \eta_i$ teljesül. A módszert ekkor *párosított t-próbának* is nevezik. Ebben az esetben a módszer akkor is alkalmazható, ha a minták nem függetlenek, de csak akkor, ha $\xi - \eta$ normális eloszlású.

Welch-próba

 $\xi \in \text{Norm}(m_1; \sigma_1), \ \eta \in \text{Norm}(m_2; \sigma_2)$ függetlenek, a paraméterek ismeretlenek, a ξ -re vonatkozó minta n_1 elemű, az η -ra vonatkozó minta n_2 elemű.

$H_0 \colon m_1 = m_2$	kritikus tartomány
$H_1 \colon m_1 \neq m_2$	$2 - 2F(t) < \alpha$
$H_1: m_1 < m_2$	$1 - F(t) < \alpha \text{ és } t < 0$
$H_1: m_1 > m_2$	$1 - F(t) < \alpha \text{ és } t > 0$

ahol

$$t := \frac{\overline{\xi} - \overline{\eta}}{\sqrt{\frac{S_{\xi, n_1}^{*^2}}{n_1} + \frac{S_{\eta, n_2}^{*^2}}{n_2}}} \quad \text{és} \quad F \simeq F[T(s)].$$

Az s szabadsági fok a c értékének kerekítése a legközelebbi egészre, ahol

$$a:=\frac{S_{\xi,n_1}^{*^2}}{n_1},\quad b:=\frac{S_{\eta,n_2}^{*^2}}{n_2},\quad c:=\frac{(a+b)^2}{\frac{a^2}{n_1-1}+\frac{b^2}{n_2-1}}.$$

• F-próba

 $\xi \in \text{Norm}(m_1; \sigma_1), \ \eta \in \text{Norm}(m_2; \sigma_2)$ függetlenek, a paraméterek ismeretlenek, a ξ -re vonatkozó minta n_1 elemű, az η -ra vonatkozó minta n_2 elemű.

H_0 : $\sigma_1 = \sigma_2$	kritikus tartomány
$H_1: \sigma_1 \neq \sigma_2$	$2\min\{F(F), 1 - F(F)\} < \alpha$
	$\min\{F(F), 1 - F(F)\} < \alpha \text{ \'es } F < 1$
$H_1: \sigma_1 > \sigma_2$	$\min\{F(F), 1 - F(F)\} < \alpha \text{ és } F > 1$

ahol

$$\mathsf{F} = \frac{{S_{\xi,n_1}^*}^2}{{S_{\eta,n_2}^*}} \quad \text{és} \quad F := F[F(n_1 - 1; n_2 - 1)].$$

• Khi-négyzet próba normális eloszlás szórására

 $\xi \in \mathrm{Norm}(m;\sigma),$ a paraméterek ismeretlenek, a ξ -re vonatkozó minta nelemű, $\sigma_0 > 0.$

H_0 : $\sigma = \sigma_0$	kritikus tartomány
$H_1: \sigma \neq \sigma_0$	$2\min\{F(\chi^2), 1 - F(\chi^2)\} < \alpha$
$H_1: \sigma < \sigma_0$	$\min\{F(\chi^2), 1 - F(\chi^2)\} < \alpha \text{ és } \chi^2 < n - 1$
$H_1: \sigma > \sigma_0$	$\min\{F(\chi^2), 1 - F(\chi^2)\} < \alpha \text{ és } \chi^2 > n - 1$

ahol

$$\chi^2 = \frac{S_n^{*2}}{\sigma_0^2} (n-1)$$
 és $F = F[\text{Khi}(n-1)].$

• Statisztikai próba az exponenciális eloszlás paraméterére

 $\xi \in \text{Exp}(\lambda)$, ahol λ ismeretlen, a ξ -re vonatkozó minta n elemű, $\lambda_0 > 0$.

H_0 : $\lambda = \lambda_0$	kritikus tartomány
$H_1: \lambda \neq \lambda_0$	$2\min\{F(\gamma), 1 - F(\gamma)\} < \alpha$
$H_1: \lambda < \lambda_0$	$\min\{F(\gamma), 1 - F(\gamma)\} < \alpha \text{ és } \gamma > n$
$H_1: \lambda > \lambda_0$	$\min\{F(\gamma), 1 - F(\gamma)\} < \alpha \text{ és } \gamma < n$

ahol

$$\gamma = \lambda_0 n \overline{\xi}$$
 és $F = F[Gamma(n; 1)].$

• Statisztikai próba valószínűségre

 $\xi \in \text{Bin}(1; p), p$ ismeretlen, a ξ -re vonatkozó minta n elemű, $0 < p_0 < 1$.

H_0 : $p=p_0$	kritikus tartomány
$H_1: p \neq p_0$	$n\overline{\xi} < F^{-1}\left(\frac{\alpha}{2}\right) \text{ vagy } n\overline{\xi} > F^{-1}\left(1 - \frac{\alpha}{2}\right)$
$H_1: p < p_0$	$n\overline{\xi} < F^{-1}(\alpha)$
$H_1: p > p_0$	$n\overline{\xi} > F^{-1}(1-\alpha)$

ahol

$$F^{-1}(x) = \min \left\{ z \in \mathbb{N} : \sum_{i=0}^{z} {n \choose i} p_0^i (1 - p_0)^{n-i} \ge x \right\}.$$

1.5. Nemparaméteres hipotézisvizsgálatok

A következőkben $1-\alpha$ a próba szintjét jelenti.

• Tiszta illeszkedésvizsgálat valószínűségre

 A_1, \ldots, A_r teljes eseményrendszer, $p_1, \ldots, p_r \in \mathbb{R}_+, p_1 + \cdots + p_r = 1$.

$$H_0: A_i$$
 valószínűsége $p_i \ \forall i$

Legyen ϱ_i az A_i gyakorisága n kísérlet után ($\varrho_i \geq 10 \ \forall i$),

$$\nu_i = np_i, \quad \chi^2 = \sum_{i=1}^r \frac{(\varrho_i - \nu_i)^2}{\nu_i} \quad \text{és} \quad F \simeq F[\text{Khi}(r-1)].$$

Kritikus tartomány: $1 - F(\chi^2) < \alpha$.

Tiszta illeszkedésvizsgálat eloszlásfüggvényre

Legyen ξ a vizsgált valószínűségi változó és F_0 egy eloszlásfüggvény.

$$H_0$$
: ξ eloszlásfüggvénye F_0

Legyen $a_1 < a_2 < \cdots < a_{r-1}$, $I_1 = (-\infty, a_1)$, $I_2 = [a_1, a_2)$, $I_3 = [a_2, a_3)$, \dots , $I_{r-1} = [a_{r-2}, a_{r-1})$, $I_r = [a_{r-1}, \infty)$. Jelölje ϱ_i a ξ -re vonatkozó n elemű mintában az I_i intervallumba eső mintaelemek számát $(\varrho_i \ge 10 \ \forall i)$, továbbá legyen $p_1 = F_0(a_1)$, $p_2 = F_0(a_2) - F_0(a_1)$, $p_3 = F_0(a_3) - F_0(a_2)$, \dots , $p_{r-1} = F_0(a_{r-1}) - F_0(a_{r-2})$, $p_r = 1 - F_0(a_{r-1})$,

$$\nu_i = np_i, \quad \chi^2 = \sum_{i=1}^r \frac{(\varrho_i - \nu_i)^2}{\nu_i} \quad \text{és} \quad F \simeq F[\text{Khi}(r-1)].$$

Kritikus tartomány: $1 - F(\chi^2) < \alpha$.

Becsléses illeszkedésvizsgálat

Legyen ξ a vizsgált valószínűségi változó és F_{ϑ} eloszlásfüggvény minden $\vartheta \in \Theta \subset \mathbb{R}^{v}$ esetén.

$$H_0\colon \xi$$
eloszlásfüggvénye F_ϑ valamely $\vartheta\in\Theta$ esetén

Legyen $a_1 < a_2 < \cdots < a_{r-1}$, $I_1 = (-\infty, a_1)$, $I_2 = [a_1, a_2)$, $I_3 = [a_2, a_3)$, \dots , $I_{r-1} = [a_{r-2}, a_{r-1})$, $I_r = [a_{r-1}, \infty)$. Jelölje ϱ_i a ξ -re vonatkozó n elemű mintában az I_i intervallumba eső mintaelemek számát ($\varrho_i \geq 10 \ \forall i$). Legyen

 $\widehat{\vartheta}$ a $\widehat{\vartheta}$ maximum likelihood becslése H_0 feltételezésével, továbbá $\widehat{p}_1 = F_{\widehat{\vartheta}}(a_1)$, $\widehat{p}_2 = F_{\widehat{\vartheta}}(a_2) - F_{\widehat{\vartheta}}(a_1)$, $\widehat{p}_3 = F_{\widehat{\vartheta}}(a_3) - F_{\widehat{\vartheta}}(a_2)$, ..., $\widehat{p}_{r-1} = F_{\widehat{\vartheta}}(a_{r-1}) - F_{\widehat{\vartheta}}(a_{r-2})$, $\widehat{p}_r = 1 - F_{\widehat{\vartheta}}(a_{r-1})$,

$$\nu_i = n\widehat{p}_i, \quad \chi^2 = \sum_{i=1}^r \frac{(\varrho_i - \nu_i)^2}{\nu_i} \quad \text{és} \quad F \simeq F[\text{Khi}(r - 1 - v)].$$

Kritikus tartomány: $1 - F(\chi^2) < \alpha$.

Függetlenségvizsgálat eseményrendszerekre

 A_1, \ldots, A_r és B_1, \ldots, B_s két teljes eseményrendszer. A nullhipotézisben azt feltételezzük, hogy a két eseményrendszer független egymástól, azaz

$$H_0: P(A_i \cap B_j) = P(A_i) P(B_j) \forall i, j$$

ahol P a valódi valószínűség. Végezzünk n darab kísérletet. Legyen ϱ_{ij} az $A_i \cap B_j$ gyakorisága ($\varrho_{ij} \geq 10$), k_i az A_i gyakorisága, l_j az B_j gyakorisága,

$$\nu_{ij} = \frac{k_i l_j}{n}, \quad \chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(\varrho_{ij} - \nu_{ij})^2}{\nu_{ij}} \quad \text{és} \quad F \simeq F[\text{Khi}((r-1)(s-1))].$$

Kritikus tartomány: $1 - F(\chi^2) < \alpha$.

• Függetlenségvizsgálat két valószínűségi változóra

A vizsgált valószínűségi változók ξ és η .

$$H_0$$
: ξ és η függetlenek

A (ξ, η) -ra vonatkozó minta $(\xi_1, \eta_1), \dots, (\xi_n, \eta_n)$.

Legyen $a_0 < a_1 < \cdots < a_r$, tegyük fel, hogy ξ_1, \ldots, ξ_n minden eleme benne van az $[a_0, a_r)$ intervallumban. Jelölje k_i a ξ_1, \ldots, ξ_n mintában az $[a_{i-1}, a_i)$ intervallumba eső elemek számát.

Legyen $b_0 < b_1 < \cdots < b_s$, tegyük fel, hogy η_1, \ldots, η_n minden eleme benne van a $[b_0, b_s)$ intervallumban. Jelölje l_j az η_1, \ldots, η_n mintában a $[b_{j-1}, b_j)$ intervallumba eső elemek számát.

Jelölje ϱ_{ij} a $(\xi_1, \eta_1), \ldots, (\xi_n, \eta_n)$ mintában az $[a_{i-1}, a_i) \times [b_{j-1}, b_j)$ tartományba eső elemek számát $(\varrho_{ij} \ge 10)$,

$$\nu_{ij} = \frac{k_i l_j}{n}, \quad \chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(\varrho_{ij} - \nu_{ij})^2}{\nu_{ij}} \quad \text{és} \quad F \simeq F[\text{Khi}((r-1)(s-1))].$$

Kritikus tartomány: $1 - F(\chi^2) < \alpha$.

Homogenitásvizsgálat

Legyenek ξ_1, \ldots, ξ_{n_1} és $\eta_1, \ldots, \eta_{n_2}$ a ξ illetve η független valószínűségi változókra vonatkozó minták.

$$H_0$$
: ξ és η azonos eloszlású

Legyen $a_0 < a_1 < \cdots < a_r$, tegyük fel, hogy mindkét minta minden eleme benne van az $[a_0, a_r)$ intervallumban. Jelölje ϱ_{i1} a ξ_1, \ldots, ξ_{n_1} mintában az $[a_{i-1}, a_i)$ intervallumba eső elemek számát $(\varrho_{i1} \ge 10)$, illetve ϱ_{i2} az $\eta_1, \ldots, \eta_{n_2}$ mintában az $[a_{i-1}, a_i)$ intervallumba eső elemek számát $(\varrho_{i2} \ge 10)$, továbbá

$$\nu_{ij} = \frac{(\varrho_{i1} + \varrho_{i2})n_j}{n_1 + n_2}, \quad \chi^2 = \sum_{i=1}^r \sum_{j=1}^2 \frac{(\varrho_{ij} - \nu_{ij})^2}{\nu_{ij}} \quad \text{és} \quad F = F[\text{Khi}(r-1)].$$

Kritikus tartomány: $1 - F(\chi^2) < \alpha$.

• Kétmintás előjelpróba

 (ξ, η) -ra vonatkozó minta $(\xi_1, \eta_1), \dots, (\xi_n, \eta_n)$.

$H_0: P(\xi > \eta) = \frac{1}{2}$	kritikus tartomány
$H_1: P(\xi > \eta) \neq \frac{1}{2}$	$B < F^{-1}(\frac{\alpha}{2}) \text{ vagy } B > F^{-1}(1 - \frac{\alpha}{2})$
$H_1: P(\xi > \eta) < \frac{1}{2}$	$B < F^{-1}(\alpha)$
$H_1: P(\xi > \eta) > \frac{1}{2}$	$B > F^{-1}(1 - \alpha)$

ahol B azon (ξ_i, η_i) mintaelemek száma, melyekre $\xi_i - \eta_i$ pozitív, továbbá

$$F^{-1}(x) = \min \left\{ z \in \mathbb{N} : \sum_{i=0}^{z} {n \choose i} \left(\frac{1}{2}\right)^n \ge x \right\}.$$

• Kolmogorov – Szmirnov-féle kétmintás próba

 ξ és η folytonos eloszlásfüggvényű független valószínűségi változók, az ezekre vonatkozó minták ξ_1, \ldots, ξ_n illetve η_1, \ldots, η_n (n > 30).

$$H_0$$
: ξ és η azonos eloszlású

 ξ -re illetve η -ra vonatkozó mintákhoz tartozó tapasztalati eloszlásfüggvények F_n^* illetve $G_n^*,$

$$D = \sqrt{\frac{n}{2}} \max_{i=1,\dots,n} \max \{ |F_n^*(\xi_i) - G_n^*(\xi_i)|, |F_n^*(\eta_i) - G_n^*(\eta_i)| \},$$

$$K(z) = 1 + 2\sum_{i=1}^{\infty} (-1)^i e^{-2i^2 z^2}.$$

Kritikus tartomány: $K(D) \ge 1 - \alpha$.

• Kolmogorov – Szmirnov-féle egymintás próba

 ξ folytonos eloszlásfüggvényű valószínűségi változó, az erre vonatkozó minta $\xi_1,\dots,\xi_n\ (n>30).$

$$H_0$$
: ξ eloszlásfüggvénye F

$$D = \sqrt{n} \max_{i=1,\dots,n} \max \{ |F_n^*(\xi_i) - F(\xi_i)|, |G_n^*(\xi_i) - F(\xi_i)| \},$$

ahol F_n^* a tapasztalati eloszlásfüggvény, k_i azon mintaelemek száma, melyek nem nagyobbak ξ_i -nél és $G_n^*(\xi_i) = \frac{k_i}{n}$.

$$K(z) = 1 + 2\sum_{i=1}^{\infty} (-1)^i e^{-2i^2 z^2}.$$

Kritikus tartomány: $K(D) \ge 1 - \alpha$.

1.6. Regressziószámítás

Az $\eta, \xi_1, \ldots, \xi_k$ valószínűségi változókra adjuk meg azt az $\eta \simeq g(\xi_1, \ldots, \xi_k)$ közelítést adó g függvényt, melyre $\mathrm{E} \left(\eta - g(\xi_1, \ldots, \xi_k) \right)^2$ minimális. Az ilyen tulajdonságú g függvényt (regressziós függvény) a gyakorlatban csak becsülni tudjuk az $(\eta, \xi_1, \ldots, \xi_k)$ valószínűségi vektorváltozóra vonatkozó

$$(\eta_i, \xi_{i1}, \dots, \xi_{ik}), \quad i = 1, \dots, n$$

minta alapján. Legyen ez a becslés \hat{g} . Ezután az $\boxed{\eta \simeq \hat{g}(\xi_1, \dots, \xi_k)}$ közelítést fogjuk használni.

• Lineáris regresszió

A regressziós függvényt csak a

$$g(x_1,\ldots,x_k)=a_0+a_1x_1+\cdots+a_kx_k\quad (a_0,\ldots,a_k\in\mathbb{R})$$

alakú függvények között keressük. Ekkor az

$$\overline{\eta \simeq \hat{a}_0 + \hat{a}_1 \xi_1 + \dots + \hat{a}_k \xi_k}$$

közelítést fogjuk használni, ahol $\hat{a}_0, \dots, \hat{a}_k$ rendre a_0, \dots, a_k becslései.

• Fixpontos lineáris regresszió

Legyenek $t_0, \ldots, t_k \in \mathbb{R}$ rögzített konstansok. A regressziós függvényt

$$g(x_1, \dots, x_k) = t_0 + a_1(x_1 - t_1) + \dots + a_k(x_k - t_k) \quad (a_1, \dots, a_k \in \mathbb{R})$$

alakban keressük. Ekkor az

$$\eta \simeq t_0 + \widehat{a}_1(\xi_1 - t_1) + \dots + \widehat{a}_k(\xi_k - t_k)$$

közelítést fogjuk használni, ahol $\widehat{a}_1,\dots,\widehat{a}_k$ rendre a_1,\dots,a_k becslései.

• Polinomos regresszió

k=1 és a regressziós függvényt

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_r x^r \quad (a_0, \dots, a_r \in \mathbb{R}_+)$$

alakban keressük. Az a_0, \ldots, a_r együtthatókat az $[\eta, \xi_1, \xi_1^2, \ldots, \xi_1^r]$ között végrehajtott lineáris regresszió adja.

Hatványkitevős regresszió

k=1 és a regressziós függvényt

$$y = ax^b \quad (a \in \mathbb{R}_+, \ b \in \mathbb{R})$$

alakban keressük. Ez azzal ekvivalens, hogy

$$\ln y = \ln a + b \ln x,$$

így ekkor $[\ln \eta$ és $\ln \xi_1]$ között lineáris regressziót végrehajtva, a kapott a_0, a_1 együtthatókra teljesül, hogy

$$a = e^{a_0}, \quad b = a_1.$$

Exponenciális regresszió

k=1 és a regressziós függvényt

$$y = ab^x \quad (a, b \in \mathbb{R}_+)$$

alakban keressük. Ez azzal ekvivalens, hogy

$$ln y = ln a + (ln b)x,$$

így ekkor $[\ln \eta$ és $\xi_1]$ között lineáris regressziót végrehajtva, a kapott a_0, a_1 együtthatókra teljesül, hogy

$$a = e^{a_0}, \quad b = e^{a_1}.$$

• Logaritmikus regresszió

k=1 és a regressziós függvényt

$$y = a + b \ln x \quad (a, b \in \mathbb{R})$$

alakban keressük. Így ekkor η és $\ln \xi_1$ között lineáris regressziót végrehajtva,

$$a = a_0, b = a_1.$$

• Hiperbolikus regresszió

k=1 és a regressziós függvényt

$$y = \frac{1}{a + bx} \quad (a, b \in \mathbb{R})$$

alakban keressük. Ez azzal ekvivalens, hogy

$$y^{-1} = a + bx,$$

így ekkor $\boxed{\eta^{-1} \text{ és } \xi_1}$ között lineáris regressziót végrehajtva,

$$a = a_0, b = a_1.$$

1.7. Excel függvények

1.7.1. Analysis ToolPak aktiválása

Az Adatok/Adatelemzés menüpont használatához aktiválja az Analysis ToolPak bővítményt: Fájl/Beállítások/Bővítmények majd Ugrás gomb. Pipálja ki az Analysis ToolPak sort majd OK.

1.7.2. Képlet bevitele

Minden képletet = jellel kell kezdeni. Ha a képlet egyértékű eredményt ad, akkor nyomjon *Enter*-t.

1.7.3. Tömbképlet bevitele

Ha a képlet eredménye tömb (például egy mátrix inverze), akkor először jelölje ki a megfelelő méretű tömböt, gépelje be a képletet (előtte =), majd nyomjon Ctrl+Shift+Enter-t.

1.7.4. Tömbképlet javítása

Ha egy tömbképletet javítani akar, akkor jelölje ki a tömbképletre vonatkozó tömböt, F2, javítás, majd Ctrl+Shift+Enter.

1.7.5. Műveletek

_		1/
-	OSSZEA	doc

□ kivonás

* szorzás

/ osztás

hatványozás

1.7.6. Relációk

≡ egyenlő

 \geq nagyobb

kisebb vagy egyenlő

>= nagyobb vagy egyenlő

✓> nem egyenlő

1.7.7. Konstansok

 $e = \boxed{\texttt{KITEVŐ(1)}}$

 $\pi = \boxed{\text{PI()}}$

1.7.8. Logikai függvények

```
HA(feltétel;ha igaz;ha hamis)
ÉS(feltétel1;feltétel2;...)
VAGY(feltétel1;feltétel2;...)
```

1.7.9. Elemi függvények

```
|x| = \overline{\mathtt{INT}(x)} \ x \in \mathbb{R}
[x] = \overline{\mathtt{INT}(x)} \ x \in \mathbb{R}
\operatorname{sign} x = \overline{\mathtt{ELOJEL}(x)} \ x \in \mathbb{R}
\ln x = \overline{\mathtt{LN}(x)} \ x > 0
\log_a x = \overline{\mathtt{LOG}(x;a)} \ x > 0, \ a > 0, \ a \neq 1
\sqrt{x} = \overline{\mathtt{GY\"OK}(x)} \ x \geq 0
x^a = \overline{\mathtt{HATV\'ANY}(x;a)} = \overline{x^a}
e^x = \overline{\mathtt{KITEV\~O}(x)} \ x \in \mathbb{R}
\sin x = \overline{\mathtt{SIN}(x)} \ x \in \mathbb{R}
\cos x = \overline{\mathtt{COS}(x)} \ x \in \mathbb{R}
\operatorname{tg} x = \overline{\mathtt{TAN}(x)} \ x \in \mathbb{R}, \ x \neq k\frac{\pi}{2}, \ \text{ahol} \ k \ \text{p\'aratlan eg\'esz}
\operatorname{arcsin} x = \overline{\mathtt{ARCSIN}(x)} \ x \in [-1, 1]
\operatorname{arccos} x = \overline{\mathtt{ARCCOS}(x)} \ x \in \mathbb{R}
\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} \, \mathrm{d}u = \overline{\mathtt{GAMMA}(x)} \ x > 0
```

1.7.10. Mátrixok

MDETERM(tömb) A tömb-ben található $n \times n$ típusú mátrix determinánsa

TRANSZPONÁLÁS (tömb) A tömb-ben található $m \times n$ típusú mátrix transzponáltja, mely egy $n \times m$ méretű tömbben helyezkedik el (tömbképlet!).

INVERZ.MÁTRIX(tömb) A tömb-ben található $n \times n$ típusú mátrix inverze, mely egy $n \times n$ méretű tömbben helyezkedik el (tömbképlet!).

MSZORZAT(tömb1; tömb2) A tömb1-ben található $m \times n$ típusú mátrix és a tömb2-ben található $n \times k$ típusú mátrix szorzata, mely egy $m \times k$ méretű tömbben helyezkedik el (tömbképlet!).

1.7.11. Kombinatorika

```
\begin{split} m! &= \boxed{\texttt{FAKT}(m)} \ m \in \mathbb{N} \\ m!! &= \boxed{\texttt{FAKTDUPLA}(m)} \ m \in \mathbb{N} \ (m!! \ \text{az ún. } \textit{szemifaktoriális}, \ \text{amely } 1 \cdot 3 \cdot \ldots \cdot m, \ \text{ha } m \\ \text{páratlan, illetve } 2 \cdot 4 \cdot \ldots \cdot m, \ \text{ha } m \ \text{páros.}) \\ \binom{m}{k} &= \boxed{\texttt{KOMBINÁCIÓK}(m;k)} \ m \in \mathbb{N}, \ k = 0, \ldots, m \\ \frac{m!}{(m-k)!} &= \boxed{\texttt{VARIÁCIÓK}(m;k)} \ m \in \mathbb{N}, \ k = 0, \ldots, m \\ \frac{(k_1 + k_2 + \cdots + k_r)!}{k_1! \cdot k_2! \cdot \ldots \cdot k_r!} &= \boxed{\texttt{SZORHÁNYFAKT}(k_1; k_2; \ldots; k_r)} \ k_1, k_2, \ldots, k_r \in \mathbb{N} \end{split}
```

1.7.12. Pszeudo-véletlen szám generálása

1.7.13. Statisztikák

Legyen a ξ valószínűségi változóra vonatkozó x_1, \ldots, x_n mintarealizáció az A oszlopban. Jelölje x_1^*, \ldots, x_n^* a rendezett mintarealizációt. Ekkor

```
x_1^* = \overline{\text{MIN(A:A)}}
x_n^* = \overline{\text{MAX(A:A)}}
x_k^* = \overline{\mathtt{KICSI(A:A;k)}} \ k = 1, \dots, n
x_{n-k}^* = \overline{[{\tt NAGY}({\tt A} : {\tt A} ; k+1)]} \ k = 0, \dots, n-1
\min\{k: x_k^* = x_i\} = \boxed{\mathtt{RANG.EGY}(x_i;\mathtt{A:A;1})} \ i = 1,\ldots,n
\min\{k: x_{n-k}^* = x_i\} + 1 = \boxed{\mathtt{RANG.EGY}(x_i;\mathtt{A:A;O})} \ i = 1,\ldots,n
n = [DARAB(A:A)]
\overline{\xi} = [\text{ATLAG}(A:A)]
S_n = \boxed{\text{SZOR.S(A:A)}}
S_n^2 = [VAR.S(A:A)]
S_n^* = \boxed{\mathtt{SZOR.M(A:A)}}
S_n^{*2} = \overline{\text{VAR.M(A:A)}}
tapasztalati medián = MEDIÁN(A:A)
tapasztalati módusz = \boxed{\texttt{MÓDUSZ.EGY}(A:A)}
100t\%-os tapasztalati kvantilis = PERCENTILIS.TARTALMAZ(A:A;t) 0 \le t \le 1
tapasztalati alsó kvartilis = KVARTILIS.TARTALMAZ(A:A;1)
tapasztalati felső kvartilis = |KVARTILIS.TARTALMAZ(A:A;3)
tapasztalati ferdeség = FERDESÉG.P(A:A)
tapasztalati lapultság (csúcsosság) = CSÚCSOSSÁG(A:A)
```

$$\sum_{i=1}^n x_i = \boxed{\text{SZUM}(A:A)}$$

$$\sum_{i=1}^n x_i^2 = \boxed{\text{NÉGYZETÖSSZEG}(A:A)}$$

$$\sum_{i=1}^n (x_i - \overline{\xi})^2 = \boxed{\text{SQ}(A:A)}$$

$$\frac{1}{n} \sum_{i=1}^n |x_i - \overline{\xi}| = \boxed{\text{ÁTL.ELTÉRÉS}(A:A)}$$

$$\prod_{i=1}^n x_i = \boxed{\text{SZORZAT}(A:A)}$$

$$\prod_{i=1}^n x_i = \boxed{\text{MÉRTANI.KÖZÉP}(A:A)} \ x_i > 0 \ (i=1,\ldots,n)$$

$$\left(\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right)^{-1} = \boxed{\text{HARM.KÖZÉP}(A:A)} \ x_i > 0 \ (i=1,\ldots,n)$$

$$a\text{-nál kisebb elemek száma} = \boxed{\text{DARABTELI}(A:A; "<"\&a)} \ a \in \mathbb{R}$$

$$(a,b]\text{-beli elemek száma} = \boxed{\text{DARABHATÖBB}(A:A; ">"\&aA:A; "<="\&b)} \ a,b \in \mathbb{R}$$

$$a\text{-nál kisebb elemek összege} = \boxed{\text{SZUMHA}(A:A; "<"\&a)} \ a \in \mathbb{R}$$

$$(a,b]\text{-beli elemek összege} = \boxed{\text{SZUMHATÖBB}(A:A;A;A;">"\&aA:A;"<="\&b)} \ a,b \in \mathbb{R}$$

$$a\text{-nál kisebb elemek átlaga} = \boxed{\text{ÁTLAGHA}(A:A;A;"<"\&a)} \ a \in \mathbb{R}$$

$$(a,b]\text{-beli elemek átlaga} = \boxed{\text{ÁTLAGHA}(A:A;A;A;">"\&aA:A;"<="\&b)} \ a,b \in \mathbb{R}$$

Legyen a ξ -re vonatkozó mintarealizáció x_1, \ldots, x_n és az η -ra vonatkozó mintarealizáció y_1, \ldots, y_n . Az A oszlop *i*-edik sorában legyen x_i , illetve a B oszlop *i*-edik sorában legyen y_i . Ekkor

$$\begin{aligned} &\operatorname{Cov}_n(\xi,\eta) = \boxed{\operatorname{KOVARIANCIA.S(A:A;B:B)}} \\ &\operatorname{Corr}_n(\xi,\eta) = \boxed{\operatorname{KORREL(A:A;B:B)}} \\ &R^2 = \operatorname{Corr}_n^2(\xi,\eta) = \boxed{\operatorname{RN\acute{E}GYZET(A:A;B:B)}} \\ &\sum_{i=1}^n x_i y_i = \boxed{\operatorname{SZORZAT\"OSSZEG(A:A;B:B)}} \\ &\sum_{i=1}^n (x_i - y_i)^2 = \boxed{\operatorname{SZUMXB\H{O}LY2(A:A;B:B)}} \\ &\sum_{i=1}^n (x_i^2 - y_i^2) = \boxed{\operatorname{SZUMX2B\H{O}LY2(A:A;B:B)}} \\ &\sum_{i=1}^n (x_i^2 + y_i^2) = \boxed{\operatorname{SZUMX2MEGY2(A:A;B:B)}} \end{aligned}$$

1.7.14. Eloszlásfüggvények

- Binomiális eloszlás (r-edrendű p paraméterű) $\sum_{i=0}^k \binom{r}{i} p^i (1-p)^{r-i} = \boxed{\texttt{BINOM.ELOSZL}(k;r;p;\texttt{IGAZ})}$ $r \in \mathbb{N}, \ k=0,\ldots,r, \ 0$
- Hipergeometrikus eloszlás

$$\begin{split} & \sum\limits_{i=0}^{k} \frac{\binom{M}{i} \binom{N-M}{r-i}}{\binom{N}{r}} = \boxed{\texttt{HIPGEOM.ELOSZLÁS}(k;r;M;N;\texttt{IGAZ})} \\ & r, M, N \in \mathbb{N}, \ M < N, \ r < \min\{M, N-M\}, \ k = 0, \ldots, r \end{split}$$

Poisson-eloszlás (λ paraméterű)

$$\sum\limits_{i=0}^k rac{\lambda^i}{i!} e^{-\lambda} = extbf{POISSON.ELOSZLÁS}(k;\lambda; extbf{IGAZ}) \lambda > 0, \ k=0,1,\dots$$

• Exponenciális eloszlás (λ paraméterű)

$$F(x) = 1 - e^{-\lambda x} = \overline{[\mathtt{EXP.ELOSZL}(x;\lambda;\mathtt{IGAZ})]} \ \lambda > 0, \ x \geq 0$$

• **F-eloszlás** (s_1 és s_2 szabadsági fokú)

$$F(x) = [\texttt{F.ELOSZL}(x; s_1; s_2; \texttt{IGAZ})] \ s_1, s_2 \in \mathbb{N}, \ x \ge 0$$

• Gamma-eloszlás (r-edrendű λ paraméterű)

$$F(x) = \overline{\text{GAMMA.ELOSZL}(x;r;1/\lambda;\text{IGAZ})} \ r, \lambda > 0, \ x \ge 0$$

• Khi-négyzet eloszlás (s szabadsági fokú)

$$F(x) = \overline{\text{KHINÉGYZET.ELOSZLÁS}(x; s; \text{IGAZ})} \ s \in \mathbb{N}, \ x \ge 0$$

• Normális eloszlás (m és σ paraméterű)

$$F(x) = \Phi\left(\frac{x-m}{\sigma}\right) = \boxed{\texttt{NORM.ELOSZLÁS}(x; m; \sigma; \texttt{IGAZ})}$$

$$m, x \in \mathbb{R}, \ \sigma > 0$$

• Standard normális eloszlás

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = [NORM.S.ELOSZLÁS(x;IGAZ)] x \in \mathbb{R}$$

t-eloszlás (s szabadsági fokú)

$$F(x) = [T.ELOSZL(x;s;IGAZ)] s \in \mathbb{N}, x \in \mathbb{R}$$

1.7.15. Inverz eloszlásfüggvények

Exponenciális eloszlás (λ paraméterű)

$$F^{-1}(x) = [-LN(1-x)/\lambda] \lambda > 0, \ 0 < x < 1$$

• **F-eloszlás** (s_1 és s_2 szabadsági fokú)

$$F^{-1}(x) = \overline{\text{F.INVERZ}(x; s_1; s_2)} | s_1, s_2 \in \mathbb{N}, \ 0 < x < 1$$

• Gamma-eloszlás (r-edrendű λ paraméterű)

$$F^{-1}(x) = \overline{\text{GAMMA.INVERZ}(x;r;1/\lambda)} r, \lambda > 0, \ 0 < x < 1$$

• Khi-négyzet eloszlás (s szabadsági fokú)

$$F^{-1}(x) = [\text{KHINEGYZET.INVERZ}(x;s)] s \in \mathbb{N}, \ 0 < x < 1$$

• Normális eloszlás (m és σ paraméterű)

$$F^{-1}(x) = [NORM.INVERZ(x; m; \sigma)] m \in \mathbb{R}, \ \sigma > 0, \ 0 < x < 1$$

• Standard normális eloszlás

$$\Phi^{-1}(x) = \boxed{\mathtt{NORM.S.INVERZ}(x)} \ 0 < x < 1$$

• t-eloszlás (s szabadsági fokú)

$$F^{-1}(x) = \boxed{\mathtt{T.INVERZ}(x;s)} \ s \in \mathbb{N}, \ 0 < x < 1$$

1.7.16. Eloszlások

• Binomiális eloszlás (r-edrendű p paraméterű)

$$\binom{r}{k} p^k (1-p)^{r-k} = \boxed{\texttt{BINOM.ELOSZL}(k;r;p;\texttt{HAMIS})}$$

$$r \in \mathbb{N}, \ k=0,\ldots,r, \ 0$$

• Hipergeometrikus eloszlás

$$\frac{\binom{M}{k}\binom{N-M}{r-k}}{\binom{N}{r}} = \boxed{\texttt{HIPGEOM.ELOSZLÁS}(k;r;M;N;\texttt{HAMIS})}$$

$$r,M,N \in \mathbb{N}, \ M < N, \ r \leq \min\{M,N-M\}, \ k = 0,\ldots,r$$

Poisson-eloszlás (λ paraméterű)

$$\tfrac{\lambda^k}{k!}e^{-\lambda} = \left[\text{POISSON.ELOSZLÁS}(k;\lambda; \text{HAMIS}) \right] \lambda > 0, \ k = 0, 1, \dots$$

1.7.17. Sűrűségfüggvények

• Exponenciális eloszlás (λ paraméterű)

$$f(x) = \lambda e^{-\lambda x} = \left[\texttt{EXP.ELOSZL}(x;\lambda;\texttt{HAMIS}) \right] \lambda > 0, \ x \geq 0$$

• **F-eloszlás** (s_1 és s_2 szabadsági fokú)

$$F(x) = \boxed{\texttt{F.ELOSZL}(x; s_1; s_2; \texttt{HAMIS})} \ s_1, s_2 \in \mathbb{N}, \ x \geq 0$$

• Gamma-eloszlás (r-edrendű λ paraméterű)

$$f(x) = \overline{\text{GAMMA.ELOSZL}(x;r;1/\lambda;\text{HAMIS})} \ r, \lambda > 0, \ x \ge 0$$

Khi-négyzet eloszlás (s szabadsági fokú)

$$f(x) = [KHINÉGYZET.ELOSZLÁS(x;s;HAMIS)] x \ge 0$$

• Normális eloszlás (m és σ paraméterű)

$$f(x) = \frac{1}{\sigma} \varphi\left(\frac{x-m}{\sigma}\right) = \boxed{\text{NORM.ELOSZLÁS}(x; m; \sigma; \text{HAMIS})} \\ m, x \in \mathbb{R}, \ \sigma > 0$$

• Standard normális eloszlás

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} = [\text{NORM.S.ELOSZLÁS}(x; \text{HAMIS})] x \in \mathbb{R}$$

• t-eloszlás (s szabadsági fokú)

$$F(x) = \overline{\texttt{T.ELOSZL}(x; s; \texttt{HAMIS})} \ s \in \mathbb{N}, \ x \in \mathbb{R}$$

1.7.18. Grafikus illeszkedésvizsgálat

MEREDEKSÉG(tömb_ y_i ; tömb_ x_i) Az (x_i, y_i) , i = 1, ..., r pontokra illesztett lineáris trendvonal meredeksége.

METSZ(tömb_ y_i ; tömb_ x_i) Az (x_i, y_i) , i = 1, ..., r pontokra illesztett lineáris trendvonal függőleges tengelymetszete.

1.7.19. Intervallumbecslés

$$\begin{split} &\frac{\sigma}{\sqrt{n}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right) = \underbrace{\texttt{MEGB\'IZHAT\'OS\'AG.NORM}(\alpha;\sigma;n)} \ 0 < \alpha < 1, \ \sigma > 0, \ n \in \mathbb{N} \\ &\frac{S_n^*}{\sqrt{n}}F^{-1}\left(1-\frac{\alpha}{2}\right) = \underbrace{\texttt{MEGB\'IZHAT\'OS\'AG.T}(\alpha;S_n^*;n)} F = F[\texttt{T}(n-1)], \ 0 < \alpha < 1, \ n \in \mathbb{N} \\ &\min\left\{c \in \mathbb{N}: \sum\limits_{i=0}^{c} \binom{n}{i} p^i (1-p)^{n-i} \geq x\right\} = \underbrace{\texttt{BINOM.INVERZ}(n;p;x)} \ n \in \mathbb{N}, \ 0 < p < < 1, \ 0 < x < 1 \end{split}$$

1.7.20. Paraméteres hipotézisvizsgálatok

A ξ -re illetve η -ra vonatkozó mintarealizációk az A illetve B oszlopokban vannak.

• Egymintás u-próba

$$\begin{split} 1 - \Phi(u) &= \boxed{\mathtt{Z.PR\acute{O}B}(\mathtt{A}:\mathtt{A}; m_0; \sigma)} \\ 2 - 2\Phi(|u|) &= \boxed{\mathtt{2*MIN}(\mathtt{Z.PR\acute{O}B}(\mathtt{A}:\mathtt{A}; m_0; \sigma); \mathtt{1-Z.PR\acute{O}B}(\mathtt{A}:\mathtt{A}; m_0; \sigma))} \end{split}$$

• Egymintás t-próba

A ξ -re vonatkozó mintarealizáció minden tagja mellett szerepeljen m_0 értéke a B oszlopban.

$$\begin{aligned} 2 - 2F(|t|) &= \boxed{\texttt{T.PROB(A:A;B:B;2;1)}} \\ 1 - F(|t|) &= \boxed{\texttt{T.PROB(A:A;B:B;1;1)}} \end{aligned}$$

• F-próba

$$2\min\{F(\mathsf{F}),1-F(\mathsf{F})\}=\overline{\mathsf{F.PROB}(\mathsf{A:A;B:B})}$$

• Kétmintás t-próba

$$2-2F(|t|) = \boxed{\texttt{T.PRÓB(A:A;B:B;2;2)}}$$

$$1-F(|t|) = \boxed{\texttt{T.PRÓB(A:A;B:B;1;2)}}$$

• Scheffé-módszer azonos mintaelemszámra (párosított t-próba)

$$2 - 2F(|t|) = \boxed{\texttt{T.PROB}(\texttt{A:A;B:B;2;1})}$$
$$1 - F(|t|) = \boxed{\texttt{T.PROB}(\texttt{A:A;B:B;1;1})}$$

• Scheffé-módszer különböző mintaelemszámra

Az ζ -ra vonatkozó mintarealizáció a C oszlopban van és minden tagja mellett szerepeljen 0 a D oszlopban.

$$\begin{aligned} 2 - 2F(|t|) &= \boxed{\texttt{T.PR\acute{O}B(C:C;D:D;2;1)}} \\ 1 - F(|t|) &= \boxed{\texttt{T.PR\acute{O}B(C:C;D:D;1;1)}} \end{aligned}$$

• Welch-próba

$$2 - 2F(|t|) = \boxed{\texttt{T.PROB(A:A;B:B;2;3)}}$$

$$1 - F(|t|) = \boxed{\texttt{T.PROB(A:A;B:B;1;3)}}$$

• Statisztikai próba valószínűségre

$$F^{-1}(x) = \boxed{\mathtt{BINOM.INVERZ}(n; p_0; x)}$$

1.7.21. Nemparaméteres hipotézisvizsgálatok

• Tiszta illeszkedésvizsgálat

$$1-F(\chi^2)=oxed{ t KHINÉGYZET.PRÓBA(arrho_i\, {
m tartom\'anya;}
u_i\, {
m tartom\'anya)}}$$

• Függetlenségvizsgálat

$$1-F(\chi^2)=$$
 KHINÉGYZET.PRÓBA($arrho_{ij}$ tartománya; u_{ij} tartománya)

• Homogenitásvizsgálat

$$1 - F(\chi^2) = [ext{KHINÉGYZET.PRÓBA}(\varrho_{ij} ext{tartománya}; \nu_{ij} ext{tartománya})]$$

• Kétmintás előjelpróba

$$F^{-1}(x) = \overline{\text{BINOM.INVERZ}(n; 1/2; x)}$$

1.7.22. Regressziószámítás

• Lineáris regresszió

eta: η -ra vonatkozó mintarealizációt tartalmazó $n \times 1$ méretű tömb. xi: (ξ_1, \ldots, ξ_k) -ra vonatkozó mintarealizációt tartalmazó $n \times k$ méretű tömb. x: x_1, \ldots, x_k számokat tartalmazó $1 \times k$ méretű tömb. $(\widehat{a}_k, \widehat{a}_{k-1}, \ldots, \widehat{a}_0) = \boxed{\texttt{LIN.ILL(eta;xi)}} (1 \times (k+1) \text{ méretű tömbképlet!})$ $\widehat{a}_0 + \widehat{a}_1 x_1 + \cdots + \widehat{a}_k x_k = \boxed{\texttt{TREND(eta;xi;x)}}$

• Fixpontos lineáris regresszió

eta-t: $(\eta-t_0)$ -ra vonatkozó mintarealizációt tartalmazó $n\times 1$ méretű tömb. xi-t: $(\xi_1-t_1,\ldots,\xi_k-t_k)$ -ra vonatkozó mintarealizációt tartalmazó $n\times k$ méretű tömb.

x-t: $x_1 - t_1, \ldots, x_k - t_k$ számokat tartalmazó $1 \times k$ méretű tömb. $(\widehat{a}_k, \widehat{a}_{k-1}, \ldots, \widehat{a}_1) = \boxed{\texttt{LIN.ILL(eta-t;xi-t;HAMIS)}} \ (1 \times k \text{ méretű tömbképlet!})$ $\widehat{a}_1(x_1 - t_1) + \cdots + \widehat{a}_k(x_k - t_k) = \boxed{\texttt{TREND(eta-t;xi-t;HAMIS)}}$

• Exponenciális regresszió

eta: η -ra vonatkozó mintarealizációt tartalmazó $n \times 1$ méretű tömb.

xi: ξ_1 -re vonatkozó mintarealizációt tartalmazó $n \times 1$ méretű tömb.

$$(\widehat{b},\widehat{a}) = \boxed{\texttt{LOG.ILL(eta;xi)}} \ (1 \times 2 \text{ méretű tömbképlet!})$$
 $\widehat{a} \cdot \widehat{b}^x = \boxed{\texttt{NÖV(eta;xi;}x)}$