

REPORT DOCUMENTATION PAGE

Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)		2. REPORT TYPE Technical Papers		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER <u>2303</u>	
				5e. TASK NUMBER <u>M2C8</u>	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT	
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				11. SPONSOR/MONITOR'S NUMBER(S)	
12. DISTRIBUTION / AVAILABILITY STATEMENT					
Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
1121 039					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Leilani Richardson
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A		19b. TELEPHONE NUMBER (include area code) (661) 275-5015

2-1998-097

MEMORANDUM FOR IN-HOUSE PUBLICATIONS

FROM: PROI (TI) (STINFO)

30 Apr 98

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-1998-097
Mario Fajardo and Simon Tam "Solid Parahydrogen" HEDM Conference Presentation (Statement A)

HIGH ENERGY DENSITY MATTER CONTRACTORS CONFERENCE
Monterey, CA 20-22 May 1998.

Solid Parahydrogen

Mario E. Fajardo and Simon Tam
US Air Force Research Laboratory, Propulsion Directorate
AFRL/PRSP, Bldg. 8451, Edwards AFB, CA 93524-7680
Mario_Fajardo@ple.af.mil

Introduction

Atom Doped Cryogenic Solid Propellants
Laser Ablation/Matrix Isolation Spectroscopy
Rapid Vapor Deposition of Thick Transparent pH₂ Solids!
ortho/para Hydrogen Converter

Research Update

Microscopic Structure of Rapidly Deposited pH₂ Solids
IR, Raman, x-polarizers
MIS Spectroscopy in Doped pH₂ and oD₂ Samples
“High Resolution” IR Absorption Measurements
CH₄/pH₂, CH₃OH/pH₂
Application: CO/pH₂ -- a Molecular Thermometer
Photochemistry (guest-host reactions)
O₂/pH₂, B₂H₆/oD₂
Photodynamics (LIF and photobleaching)
B/pH₂, B/Ne, Na/pH₂, Na/Ne

Conclusions and Future Directions

High Resolution IR Spectroscopy in pH₂ Hosts

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20021121 039

High Energy Density Matter (HEDM) Cryosolid Propellants

Objectives

- * Trap 5% molar concentration of energetic additives in solid hydrogen.
- * Demonstrate size-scaleable sample production method.

Payoffs

Increased Specific Impulse

$$I_{sp} \propto \sqrt{\Delta H_{sp}}$$

$$\begin{aligned} \text{LOX/LH}_2 : I_{sp} &= 390 \text{ s} \\ 5\% \text{ B/H}_2 + \text{LOX} : I_{sp} &= 500 \text{ s (+30%)*} \end{aligned}$$

* calculated for $P_{chamber} = 1000 \text{ PSIA}$, $P_{exhaust} = 14.7 \text{ PSIA}$

Greater Propellant Density

liquid H_2 @ 20 K : $\rho = 0.070 \text{ g/cm}^3$

solid H_2 @ 2 K : $\rho = 0.087 \text{ g/cm}^3 (+25\%)$

50/50 liquid He/solid H_2 : $\rho = 0.105 \text{ g/cm}^3 (+50\%)$

Scientific/Tecnological Motivations

<u>Issue</u>	<u>Scientific Motivation</u>	<u>Tech. Application</u>
Chemical stability of M/pH ₂ samples	Chemical reactivity @ low T (1-10 K) existence of small reaction barriers in M + H ₂ reaction matrix host effects	Identify candidate M's
Microscopic model of sample deposition process	Molecular dynamics of "simple" condensed phase systems (models for more complicated chemistry)	Maximize [M]
Simulation of M/RGS and M/pH ₂ spectroscopy	Spectroscopy in condensed phases spectrum ↔ structure/fluctuations	Measure [M] and determine fuel ρ
Diffusion/recombination of M's	Diffusion in "classical" and "quantum" solids	Determine thermal stability of M/H ₂ fuel
Maximum attainable [M]	Limits of chemical energy storage	fuel performance

Experimental Diagram

Li/H_2 $T=3K$

M.E. RAJARAO, J. Chem. Phys. 98, 110 (1993).

Optical Scattering in Solid Hydrogen

Crystal Growing and Quality (p. 81)

“There is a considerable art to growing hydrogen crystals of high quality. Good crystals are always grown slowly from the melt; a rapid freeze from the gas produces snow.”

Crystallite Light Scattering (p. 83)

“The reason that a good hydrogen crystal is so hard to see is its low refractive index...an estimated 1.16!

Yet a 1 mm-thick layer of hydrogen crystallites can be a completely opaque brown-black.”

P.C. Souers,
Hydrogen Properties for Fusion Energy
(UC Press, Berkeley, 1986).

S.TAM + M.E.FAJARDO, UNPUBLISHED.

B / H₂ raw data (c 1993)

Ortho and Para Hydrogen

(9) ————— 4

I.F. Silvera,
 Rev. Mod. Phys. **52**, 393 (1980).
 Ortho H_2
 $I=1$

Ortho/Para Hydrogen Converter Bobbin

1/8 inch OD by 1.5 m long copper tube packed with 1.4 g of APACHI catalyst, coiled around bobbin and potted in place with metal-filled thermally conductive epoxy.

Catalyst is activated by heating to 150 °C under vacuum, then with a slow flow of H₂ gas.

UV Transmission of 1 mm Thick B/pH₂ Sample

IR Absorption of 6 mm Thick Parahydrogen Solid

T = 2 K.

Non-observation of the Q₁(0) transition (4153 cm⁻¹) demonstrates the absence of OH₂ impurities, and that the microscopic structure is not amorphous or porous.

Observation of S₁(0) transition demonstrates the absence of inversion symmetry for some H₂ molecular environments.

[J. van Kranendonk and H.P. Gush, Phys. Lett. 1, 22 (1962)]

Raman Spectra of 4.5 and 6 mm Thick Parahydrogen Solids

Mixed hcp/fcc as-deposited
structure, anneals to hcp;
compare with:

G.W. Collins, et al.,
Phys. Rev. B **53**, 102 (1996).

(d) sample in (c) warmed to
4.5 K.

(c) 4.5 mm sample as deposited
at 3.3 K ($\Phi = 290 \text{ mmol/hr}$).

(b) sample in (a) warmed to
4.5 K.

(a) 6 mm sample as deposited at
3.1 K ($\Phi = 200 \text{ mmol/hr}$).

Infrared spectroscopic study of rovibrational states of methane trapped in parahydrogen crystal

Takamasa Momose,^{a)} Masaaki Miki, Tomonari Wakabayashi,
and Tadamasa Shida

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-01, Japan

Man-Chor Chan,^{b)} Steven S. Lee, and Takeshi Oka

Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

(Received 23 June 1997; accepted 15 August 1997)

The ν_3 and ν_4 vibrational transitions of methane trapped in solid parahydrogen have been observed by using Fourier transform infrared and high resolution laser spectroscopy. The observed spectrum is interpreted in terms of rovibrational states of the spherical rotor which are subjected to the crystal field splitting. The ν_4 band shows extremely sharp lines of a width of $\sim 0.003 \text{ cm}^{-1}$, while the ν_3 band exhibits broader lines of a width of 1 cm^{-1} . The infrared selection rules derived from an extended group theory to take into account the field effect are consistent with the observed spectra. The intermolecular interaction and the field effect in solid parahydrogen are analyzed quantitatively.

© 1997 American Institute of Physics. [S0021-9606(97)04743-0]

JCP 107, 7707 (1997)

110 PPM CH₄/pH₂, d = 1.2 mm

st2320a: as dep. T=2 K

b: 4.4K, c: 3.0K, d: 2.2K

ST2117A MeOH:pH2 1:560 as deposited at 2 K

Deposition Cartoon

Experimental Diagram – Sample Deposition

IR Absorptions of CO/pH₂

Intensity of 2135 cm^{-1} band vs. Temperature

“Van’t Hoff Plot”

st2345, diborane/oD₂ (20 μm)

B/pH₂ LIF
 $\lambda_{\text{exc}} = 217 \text{ nm}, 125 \mu\text{J}/\text{pulse}$

B/pH₂ LIF
 $\lambda_{\text{exc}} = 207, 210, 217, \text{ and } 220 \text{ nm}$

B/pH₂ UV absorption and photobleaching

B/pH₂ UV photobleached lineshape

B/pH₂ LIF Cartoon

ν_{17} B_2H_6 in B/pH_2 solid
as deposited and photobleached

B/Ne UV absorption

B/Ne LIF
 $\lambda_{\text{exc}} = 210, 213, 215, 217, 219, 220, 221 \text{ nm}$

Na/Ne LIF
 $\lambda_{\text{exc}} = 535, 540, 545, 550, 555, 560, 565, 570 \text{ nm}$

Na/pH₂ transmission spectrum
as deposited and photobleached

Na/pH₂ photobleaching
60 to 90 μ J/pulse, $d_{\text{spot}} \approx 4$ mm

Conclusions

- * As-deposited pH₂ samples are mixed hcp/fcc close-packed solids that transform to hcp upon annealing to ≈ 5 K.
- * Demonstrated trapping of various dopant atoms, molecules, and ionic species using conventional matrix isolation sources.
- * Some dopant IR absorption bands show unresolved structure even at 0.1 cm⁻¹ resolution.
- * Measured ~ 1 K temperature rises in ~ 0.1 cm thick samples subjected to 10 mW/cm² heat loads during deposition; estimated thermal conductivity of rapid vapor deposited pH₂ is ~ 1 mW/cm-K.
- * Observed guest-host photochemistry during attempts to produce energetic dopants via 193 nm irradiation.
- * Observed LIF of B atoms in solid pH₂. Emission lineshape is independent of excitation wavelength. Photobleaching results in uniform changes to absorption lineshape.
- * LIF of Na atoms in solid pH₂ is at least four orders of magnitude weaker than LIF of Na atoms in solid Ne. Photobleaching effect depends on excitation wavelength and produces varying changes to absorption lineshape.

Future Directions

- * Bruker IFS120HR on order.
- * High resolution IR absorption (0.003 cm^{-1}) and Raman (0.05 cm^{-1}) spectroscopies:
 - unresolved rotational (hindered rotor?) structure in presently available spectra.
 - determine inhomogeneities in dopant environment:
 - hcp/fcc vs. random stacked for as-deposited dopant-dopant interactions (clusters).
- * Analysis and simulation of IR spectra:
 - dopant absorptions
 - CO/pH₂ "crystal field" model
 - (collaboration with T. Momose, Kyoto U)
 - direct simulation given dopant-H₂ potentials.
 - induced H₂ absorptions
- * Measure fluorescence decay of "B atom" LIF.
- * Work to increase dopant concentrations from 0.1 to 1% levels; demonstrate useful energy storage.

Substrate and Bulk Hydrogen Temperatures During Deposition

“thermometer curve.”

$$y = A \exp[-E/T]$$

$$A = 0.08602$$

$$E = 7.896 \text{ K}$$

Prior to depositions

$$T_B = 1.89(\pm 0.02) \text{ K}$$

After depositions

$$T_B = 2.08(\pm 0.05) \text{ K}$$

pH₂ inlet & deposition rates:

$$\text{ST2212: } 110 \text{ mmol/hr}$$

$$26 \mu\text{m/min}$$

$$\text{ST2207: } 200 \text{ mmol/hr}$$

$$48 \mu\text{m/min}$$

$$\text{ST2217: } 240 \text{ mmol/hr}$$

$$55 \mu\text{m/min}$$

4.64 K
3.92 K
3.06 K

1-D Heat Transfer

$$T_{lo} \quad T_{hi}$$

$$\dot{Q}/A = -\kappa \Delta T / \Delta x$$

$$\Delta T = T_{hi} - T_{lo}$$

κ is the thermal conductivity

units:

$$\dot{Q}/A \text{ (mW/cm}^2)$$

$$\Delta T \text{ (K)}$$

$$\Delta x \text{ (cm)}$$

$$\kappa \text{ (mW/cm-K)}$$

note: 1 mW/cm-K = 0.1 W/m-K

Calculated Heat Flux vs. pH₂ Deposition Rate

Thermal Conductivity of Rapid Vapor Deposited pH₂

Expt.	$[T_{co} - T_B]$ (K)	Δx (cm)	\dot{Q}/A (mW/cm ²)	κ (mW/cm-K)	κ (W/m-K)
ST2212	0.61	0.12	9.2	1.8	0.18
ST2207	1.19	0.22	13.8	2.6	0.26
ST2217	1.74	0.25	16.6	2.4	0.24
Expt.	$[T_{co} - T_B]$ (K)	Δx (cm)	\dot{Q}/A (mW/cm ²)	κ (mW/cm-K)	κ (W/m-K)
ST2212	0.61	0.12	6.9	1.4	0.14
ST2207	1.19	0.22	10.7	2.0	0.20
ST2217	1.74	0.25	12.5	1.8	0.18

Comparison with Literature TC Values

Previous studies on pH_2 single crystals grown from the gas phase in an enclosed cell near 10 K.

V.G. Manzhelii, B.Ya. Gorodilov, and A.I. Krivchikov, "Heat transfer in solid parahydrogen with heavy impurities (neon, argon)," Low Temp. Phys. v22, p131 (1996).

FIG. 1. Thermal conductivity of crystals of pure pH_2 and pH_2 with Ne impurity (the concentration in ppm are indicated); the solid lines are calculated results.

ST2330a&b
1100 PPM O₂/pH₂
photolyzed at 193 nm

