Resumo: Criptografia -Pontos Essenciais para Prova

1. Definição e Conceitos Básicos

O que é Criptografia?

- Definição: Escrita (grafia) Secreta (cripto)
- Objetivo: Esconder a informação daqueles a quais a informação não se destina
- Aplicação: Solução tecnológica para problemas de segurança em computação e comunicação

Terminologia Importante

- Plain Text/Clear Text: Texto claro/plano/aberto conteúdo legível para todos
- · Ciphered Text/Encrypted Text: Texto encriptado/criptografado/cifrado resultado da criptografia
- Chave: Elemento utilizado pelo algoritmo para criptografar as informações

Princípio de Kerckhoff (1883)

"A segurança de um criptossistema não deve depender da manutenção de um criptoalgoritmo em segredo. A segurança depende apenas de se manter em segredo a chave."

2. Objetivos da Criptografia (4 Pilares)

☐ Confidencialidade

Apenas as partes comunicantes devem interpretar o conteúdo da mensagem

□ Integridade

A mensagem não deve ser modificada durante a transmissão

☐ Autenticidade

· O destinatário deve garantir que o autor da mensagem foi o remetente esperado

□ Não-repúdio

• O remetente não deve poder negar a autoria da mensagem

Importante: Esses objetivos não precisam ser atingidos todos simultaneamente - dependem da necessidade.

3. Tipos de Ameaças à Comunicação

Tipos de Ataques

1. Interceptação: Adversário captura a mensagem

2. Interrupção: Bloqueio da comunicação

3. Modificação: Alteração do conteúdo da mensagem

4. Fabricação: Criação de mensagens falsas

4. Criptografia Simétrica (Chave Secreta)

Características

- Uma única chave para cifrar e decifrar
- Mesma chave compartilhada entre emissor e receptor
- Requer canal seguro para troca de chaves

Vantagens

- □ Rapidez na criptografia e descriptografia
- 🗆 Privacidade segura

Desvantagens

- □ Chave deve ser trocada de forma segura
- □ Não garante identidade do remetente
- □ Problema de escalabilidade: Para n pessoas = n(n-1)/2 chaves

Exemplos de Algoritmos

- AES (Advanced Encryption Standard) Simétrico
- 3DES (Data Encryption Standard) da IBM Simétrico

Tabela de Gerenciamento de Chaves

Participantes Chaves Necessárias

2 1 4 6 8 28 16 120

5. Criptografia Assimétrica (Chave Pública)

Características

Par de chaves: pública e privada
Chave pública: divulgada livremente
Chave privada: mantida em sigilo
Cifragem: com chave pública
Decifragem: com chave privada

Vantagens

- □ Não compartilha segredo
- □ Provê autenticação
- ☐ Provê não-repúdio
- □ Escalável: Para n pessoas = 2n chaves

Desvantagens

- Lenta (computacionalmente intensiva)
- Requer autoridade de certificação

Comparação de Escalabilidade

Participantes Simétrica Assimétrica

2	1	4
4	6	8
8	28	16
16	120	32

Exemplos de Algoritmos

RSA (Ronald Rivest, Adi Shamir e Leonard Adleman)

6. Tipos de Segurança com Criptografia **Assimétrica**

Configurações de Chaves

Decodificação Codificação Segurança Fornecida Pública de A Privada de A Integridade e Confidencialidade Privada de A Pública de A Autenticação e Não-repúdio

Pública B + Privada A Pública A + Privada B Todos os 4 objetivos

7. Autoridade Certificadora (CA)

Problema

· Como saber se a chave pública realmente pertence ao usuário desejado?

Solução

- Certificação das Chaves por uma autoridade confiável
- Autoridade Certificadora: Entidade que certifica a autenticidade das chaves públicas
- · O transmissor deve possuir a chave pública do certificador

Componentes do Certificado

- · Chave pública a ser certificada
- Identificação do proprietário
- Assinatura eletrônica da CA

8. Assinatura Digital

Definição

- Identifica o transmissor e fornece mecanismos para verificar a integridade
- · Valor numérico função de:
 - o Conteúdo do documento
 - Chave do transmissor

Características

- Combinação de criptografia assimétrica + funções de hashing
- Garante autenticidade e integridade

Verificação da Integridade

- 1. Receptor recalcula a assinatura digital
- 2. Aplica mesmo algoritmo com mesma chave na mensagem recebida
- 3. Se assinatura calculada = recebida → mensagem íntegra

9. Funções de Hashing

Definição

• Gera código de tamanho fixo (hash/message digest) a partir de mensagem de qualquer tamanho

Propriedades Essenciais

- 1. Consistente: Mesma mensagem \rightarrow mesmo hash
- 2. Aleatória: Evita adivinhar a mensagem original
- 3. Única: Probabilidade infinitesimal de colisão
- 4. Unidirecional: Impossível determinar informação original a partir do hash

Exemplos de Algoritmos

- MD5 (Message Digest 5): 128 bits Ron Rivest (MIT)
- SHA (Secure Hash Algorithm): 160 bits NIST

Uso em Segurança

- Adição simples de hash: NÃO garante integridade
- Garantia de integridade: Hash + assinatura digital (criptografar hash con chave privada)

10. Pontos de Atenção para a Prova

Fórmulas Importantes

- Criptografia Simétrica: n(n-1)/2 chaves
- Criptografia Assimétrica: 2n chaves

Conceitos Críticos

- 1. Princípio de Kerckhoff: Segurança na chave, não no algoritmo
- 2. 4 Objetivos: Confidencialidade, Integridade, Autenticidade, Não-repúdio
- 3. Diferenças Simétricas vs Assimétricas: Velocidade vs Escalabilidade
- 4. Papel da CA: Certificação de chaves públicas
- 5. Assinatura Digital: Hash + Criptografia assimétrica

Exemplos Históricos

- Máquina Enigma (1919): Baseada em rotores, usada pelos alemães na Segunda Guerra
- Importância das chaves: Quebra da Enigma pelos Aliados

Dicas de Estudo

- Foque nas diferenças práticas entre simétrica e assimétrica
- Memorize as fórmulas de quantidade de chaves
- Entenda o papel das funções de hash na assinatura digital
- Pratique cenários de uso para cada tipo de criptografia