Babeş-Bolyai University, Fakultät für Mathematik und Informatik Numerik, SS2019/20

1. Labor

Die graphische Darstellung reellweriger Funktionen

- 1. Es sei $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2}{x^2 + 1}$. Man stelle f dar, wobei folgende Fragen berücksichtigt werden
- a) Was sind passende untere und obere Grenzen für die die dargestellten Intervalle auf den Ox bzw. Oy Achsen? (Vergleiche entstehende Bilder mit $x \in [-1,1], y \in [-1,1]$ und mit $x \in [-100,100], y \in [-1,1]$.)
- b) Lässt f horizontale Asymptoten zu? (Falls ja, sollten auch diese im selben Bild wie f dargestellt werde.)
- c) Das Taylor Polynom zweiten Grades welches f um $x_0 = 0$ approximiert ist T(x) = ? (Stelle auch diese Polynomialfunktion im selben Bild dar.)

2. Die Rosenbrock Funktion.

Es sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $f(x,y) = (1-x)^2 + 100(y-x^2)^2$. Stelle f dar sowohl in einer 3D Darstellung als auch als Kontourdiagramm (contour plot).

Finde das Minimum von f und untersuche ob f convex ist (f convex genau dann wenn ihre Subniveaumengen¹ convex sind).

Warum wird f als Testfunktion für Optimierungsalgorithmen benutzt?

¹Subniveaumenge = sublevel set (engl.) = submulțime de nivel (ro.)