Работа 1.2.5

Исследование прецессии уравновешенного гироскопа

Подлесный Артём группа 827

16 сентября 2019 г.

1 Цель работы

Исследовать вынужденную прецессию гироскопа. Установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа. Определить скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

2 Оборудование

Гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

3 Отчёт о работе

3.1 Общая теория

Уравнения движения твердого тела можно записать в виде:

$$\frac{d\vec{P}}{dt} = \vec{F},\tag{1}$$

$$\frac{d\vec{L}}{dt} = \vec{M}. (2)$$

Здесь (1) выражает закон движения центра масс тела, а (2) – уравнение моментов. Если сила \vec{F} не зависит от угловой скорости, а момент сил – от поступательного движения, то уравнения (1) и (2) можно рассматривать независимо друг от друга. В данной работе мы рассматриваем вращение твердого тела относительно неподвижной точки. Момент импульса твердого тела в XYZ равен

$$\vec{L} = \vec{i}I_{x}\omega_{x} + \vec{j}I_{y}\omega_{y} + \vec{k}I_{z}\omega_{z}, \tag{3}$$

где $I_{\rm x}$, $I_{\rm y}$, $I_{\rm z}$ – главные моменты инерции, $\omega_{\rm x}$, $\omega_{\rm y}$, $\omega_{\rm z}$, – компоненты вектора угловой скорости $\vec{\omega}$. Быстро вращающееся тело, для которого, например,

$$I_{\rm x}\omega_{\rm x}\gg I_{\rm y}\omega_{\rm y}, I_{\rm z}\omega_{\rm z},$$

Принято называть гироскопом. Гироскоп называют уравновешенным, если его центр масс неподвижен.

Так как приращение момента импульса по (2) определяется, как

$$\Delta \vec{L} = \int \vec{M} dt, \tag{4}$$

то если момент сил действует короткий промежуток времени, изменение момента импульса очень мало, по сравнению с ним, с этим связана устойчивость, которую приобретает движение гироскопов, после приведение их в быстрое вращение.

Рассмотрим для примера маховик, вращающийся вокруг оси z.

Пусть ось вращения повернулась в плоскости xy по направлению к оси x на бесконечномалый угол $d\varphi$. Такой поворот означает добавочное вращение вокруг оси y, где Ω — угловая скорость такого вращения. Будем предполагать, что

$$L_{\Omega} \ll L_{\omega_0}$$
. (5)

Таким образом:

$$|\vec{dL}| = Ld\varphi = L\Omega dt. \tag{6}$$

Но это изменение направлено по оси x, поэтому вектор $d\vec{L}$ можно представить, как

$$d\vec{L} = \left[\vec{\Omega}; \vec{L}\right] dt,$$

т.е. в силу (2) имеем

$$\vec{M} = \left[\vec{\Omega}; \vec{L} \right]. \tag{7}$$

Формула (7) справедлива, когда справедлива формула (5). Она позволяет определить момент сил, который надо приложить к маховику для того, чтобы вызвать вращение маховика с угловой скоростью $\vec{\Omega}$. Видно, что для поворота оси вращающегося маховика к оси x необходимо приложить силы, направленные не вдоль оси x, а вдоль оси y, так, чтобы их момент был направлен вдоль оси x.

 Π од действием момента внешних сил ось гироскопа медленно вращается вокруг оси y с

угловой скоростью Ω . Такое движение называют регулярной прецессией. В частности, создающей момент внешней силой может быть сила тяжести, если центр масс гироскопа не совпадает с точкой подвеса. Для гироскопа массой $m_{\rm r}$, ось которого наклонена на угол α от вертикали, скорость прецессии равна:

$$\Omega = \frac{M}{I_z \omega_0 \sin \alpha} = \frac{m_r g l_{\pi} \sin \alpha}{I_z \omega_0 \sin \alpha} = \frac{m_r g l_{\pi}}{I_z \omega_0},$$
(8)

где $l_{\rm ц}$ – расстояние от точки подвеса до ц.м. гироскопа, то есть от угла α скорость прецессии не зависит.

Для изучения уравновешенного гироскопа, к его оси подвешивают дополнительне грузы, в этом случае

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{9}$$

где m — масса груза, а l — расстояние от центра карданова подвеса, до точки крепления груза на оси гироскопа.

Уравновешенный гироскоп, закрепленный в кольцах карданова подвеса:

Получается, что гироскоп как бы подвешен а центр масс.

Экспериментальная установка для исследования прецессии уравновешенного гироскопа:

Момент силы трения, связанной с ротором гироскопа скомпенсирован действием электромотора. Для осей карданова подвеса компенсации нет, поэтому нужно оценить погешность, связанную с постепенным опусканием оси гироскопа в направлении действия груза.

В первой части работы исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Эта зависимость позволяет вычислить угловую скорость вращения ротора по формуле (9). Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на жесткой проволоке. Период крутильных колебаний:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}},\tag{10}$$

где f — модуль кручения проволоки. Чтобы их исключить, к той же проволоке подвесим цилиндр известного момента инерции $I_{\rm n}$, тогда имеем:

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2},\tag{11}$$

где $T_{\rm u}$ – период крутильных колебаний цилиндра.

Во второй части работы скорость вращения ротора гироскопа измеряется с помощью фигур Лиссажу, полуаемых на осциллографе с обмотки гироскопа и прокаллиброванного генератора.

3.2 Экспериментальные данные

3.2.1 Момент сил трения

Соберем экспериментальную установку, и приведем её к виду рис.3. Проверяя устойчивость гироскопа при легком постукивании по ручагу С, можно убедится, что вращение ротора происходит достаточно быстро. Эта устойчивость связана с тем, что при небольшом времени воздействия момента внешних сил, приращение момента импульса гироскопа очень мало, данный факт подробнее объяснен в теории. По реакции гироскопа на нажатие на рычаг С определим, в какую сторону вращается ротор:

При нажатии на рычаг гироскоп начал вращаться по направлению против часовой стрелки в горизонтальной плоскости. Из распределения моментов сил на рис.4 можно определить направление вектора угловой скорости вращения ротора. Отсюда видно, что он вращается против часовой стрелки в вертикальной плоскости, представленной на рисунке.

Из рис.5 можно видеть, в какой оси возникает трение, которое приводит к тому, что рычаг С начинает медленно опускаться:

Рычаг опускается, когда возникает небольшая прецессия, вызванная моментом сил трения, как показано на рисунке. Из векторных уравнений можно определить, как направлен момент, а из этого найти точку его приложения (в каждый момент времени) ⇒ найти ось. Из рисунка понятно, что это ось ОО.

Трение присутствует и в других осях ротора гироскопа, однако его действие компенсирует электрогенератор. Момент силы трения можно посчитать, используя следующую формулу:

$$M_{\rm TD} = I_z \omega_0 \Omega_{\rm TD} \sin \alpha = I_z \omega_0 \Omega_{\rm TD}, \tag{12}$$

Т.к. в данном случае угол α примерно равен 90°. Здесь ω_0 – угловая скорость собственного вращения ротора, которую еще необходимо определить.

3.2.2 Скорость регулярной прецессии

Измерение скорости регулярной прецессии проводилось следующим образом: на рычаг С по очереди на определенном расстоянии $l_{\rm u}=121$ мм от центра карданова подвеса надевались грузы различной массы. Для каждого из грузов проводилась серия из 3-5 повторений, в которых секундомнером измерялось время, за которое гироскоп совершит какое-то число оборотов прецессии, из чего вычеслялась скорость прецессии: $\Omega=\frac{n}{\tau}$, где n — число оборотов за время τ . Сразу были вычислены и погрешности для каждого значения Ω . Результаты эксперимента предаставлены в таблице 1.

m, г	М, Н*м	T, c	N, дел	n, об	Ω, c^{-1}	$\Omega_{\rm cp},c^{-1}$	σ_{Ω}, c^{-1}
268	0,31779	136	1	3	0,022059	0,02207	0,00024
268	0,31779	228	2	5	0,02193		
268	0,31779	183	2	4	0,021858		
268	0,31779	90	1	2	0,022222		
268	0,31779	217	2	4,83	0,022258		
335	0,39724	183	2	5	0,027322	0,02733	0,00020
335	0,39724	220	2	6	0,027273		
335	0,39724	146	2	4	0,027397		
215	0,25495	229	2	4	0,017467	0,01695	0,00056
215	0,25495	187	2	3,25	0,01738		
215	0,25495	125	1	2	0,016		
173	0,20514	73	1	1	0,013699	0,01406	0,00027
173	0,20514	78	1	1,08	0,013846		
173	0,20514	142	1	2	0,014085		
173	0,20514	200	2	2,92	0,0146		
141	0,16720	85	1	1	0,011765	0,01158	0,00014
141	0,16720	167	2	1,92	0,011497		
141	0,16720	87	1	1	0,011494		
141	0,16720	173	2	2	0,011561		
116	0,13755	108	1	1	0,009259	0,0093	0,00009
116	0,13755	215	2	2	0,009302		
116	0,13755	106	1	1	0,009434		
93	0,11028	100	1	0,75	0,0075	0,00751	0,00014
93	0,11028	164	2	1,25	0,007622		
93	0,11028	135	1	1	0,007407		

Так же эти результаты представлены в виде графика зависимости Ω от M.

Экспериментальные точки аппроксимируются прямой, построеной по методу наименьших квадратов. Теоретическая зависимость для этой прямой такая:

$$\Omega = \frac{M}{2\pi I_0 \omega_0}.$$

Отсюда, зная коэффициент наклона графика получаем:

$$I_0\omega_0 = (2.29 \pm 0.02)$$
 Дж*с.

Осталось только найти момент инерции ротора I_0 .

3.2.3 Момент инерции ротора

Он вычислялся из формулы (11). К проволоке прикрепляли обычный цилиндр и ротор, и смотрели период крутильных колебаний этих тел. Для каждого из тел была снята серия времён, за которые происходили 10 колебаний. Результаты представлены в таблице: Это – геометрические размеры цилиндра, с помощью которых можно найти его момент иненрции.

$$m_{\mathrm{II}} = (1617, 9 \pm 0, 1)$$
 г.
$$r_{\mathrm{II}} = (3, 89 \pm 0, 01) \; \mathrm{cm}.$$

Рис. 1: Зависимость Ω от M.

T_{r10}, c	$T_{\rm p},{ m c}$	$\sigma_{T_{\mathrm{p}}}, \mathrm{c}$	T_{c10}, c	$T_{\rm ц}$, с	$\sigma_{T_{\mathfrak{U}}}, c$
32,31			40,75		
32,37			40,72		
32,28	3,24	0,02	40,84	4,09	0,02
32,5			41,05		
32,38			40,97		

По формуле

$$I_{\mathrm{II}} = \frac{mr^2}{2},$$

получаем:

$$I_{\mathrm{II}} = (1.22 \pm 0.01) \; \mathrm{мДж}.$$

Таким образом момент инерции ротора:

$$I_{
m p} = (0.77 \pm 0.02) \; {
m мДж}.$$

3.2.4 Частота вращения ротора

По известным нам соотношениям легко вычислить ω_0 – собственную частоту вращения ротора:

$$\omega_0 = (473.54 \pm 16.27) \text{ об/сек.}$$

Зная эту частоту, можно оценить момент сил трения.

3.2.5 Оценка момента сил трения

С помощью формулы (12) оценим момент сил трения, но для начала построим график скорости прецессии из-за трения $\Omega_{\rm Tp}$ от скорости прецессии из-за момента силы тяжести $\Omega_{\rm cp}$, используя данные таблицы1.

Рис. 2: Зависимость $\Omega_{\rm Tp}$ от $\Omega_{\rm cp}$.

По этому рисунку видно, что данные по скорости прецессии носят лишь оценочный характер, потому что они сняты с очень большой неточностью, что связано с утановкой, поэтому имеет смысл лишь оценивать значение момента сил трения и его вклад по сравнению с моментом сил тяжести груза. Как видно из таблицы, он очень мал.

$M_{\mathrm{тр}}$, мДж	3,777	4,48	3,644	4,341	4,663	3,72	3,933
М, мДж	317,8	397,2	255	205	167	138	110
%	1,19	1,13	1,43	2,12	2,79	2,70	3,58

Таким образом, момент сил трения меньше момента сил тяжести груза примерно на 2 порядка и составляет $\approx 10^{-3}~\rm Дж$.

3.3 Определение частоты через фигуры Лиссажу

После того, как установка была приведена в нужное положение, были получены результаты резонансной частоты для включенного генератора:

$$\omega_r = (489 \pm 1) \ \Gamma$$
ц,

и только что выключенного:

$$\omega_r = (464 \pm 1) \ \Gamma$$
ц.

Так как когда генератор включен, он мешает измерению (наводит ЭДС в обмотке выхода, ведущего к осциллографу), то следует считать более достоверным результат, который был получен сразу при выключении генератора, то есть 464 Гц. Он должен совпадать с частотой вращения ротора. Фигура Лиссажу при этом результате:

Рис. 3: Фигура Лиссажу, и резонансная частота.

4 Вывод

Таким образом была исследована вынужденная прецессия гироскопа под действием силы тяжести и сил трения. Была определена скорость вращения ротора гироскопа двумя разными способами, и с учетом погрешности, скорость, определенная через скорость прецессии от силы тяжести, совпадает со скоростью, определенной более точным методам. Исходя из этого можно сделать вывод о том, что соотношение (5) здесь вполне применимо. Так же был оценен момент сил трения, и было показано, что его вклад в прецессию гироскопа мал по сравнению с исследуемым моментом сил тяжести.