14. You're working with a group of security consultants who are helping to monitor a large computer system. There's particular interest in keeping track of processes that are labeled "sensitive." Each such process has a designated start time and finish time, and it runs continuously between these times; the consultants have a list of the planned start and finish times of all sensitive processes that will be run that day.

As a simple first step, they've written a program called status_check that, when invoked, runs for a few seconds and records various pieces of logging information about all the sensitive processes running on the system at that moment. (We'll model each invocation of status_check as lasting for only this single point in time.) What they'd like to do is to run status_check as few times as possible during the day, but enough that for each sensitive process *P*, status_check is invoked at least once during the execution of process *P*.

- (a) Give an efficient algorithm that, given the start and finish times of all the sensitive processes, finds as small a set of times as possible at which to invoke status_check, subject to the requirement that status_check is invoked at least once during each sensitive process *P*.
- (b) While you were designing your algorithm, the security consultants were engaging in a little back-of-the-envelope reasoning. "Suppose we can find a set of k sensitive processes with the property that no two are ever running at the same time. Then clearly your algorithm will need to invoke status_check at least k times: no one invocation of status_check can handle more than one of these processes."

This is true, of course, and after some further discussion, you all begin wondering whether something stronger is true as well, a kind of converse to the above argument. Suppose that k^* is the largest value of k such that one can find a set of k sensitive processes with no two ever running at the same time. Is it the case that there must be a set of k^* times at which you can run status_check so that some invocation occurs during the execution of each sensitive process? (In other words, the kind of argument in the previous paragraph is really the only thing forcing you to need a lot of invocations of status_check.) Decide whether you think this claim is true or false, and give a proof or a counterexample.

18. Your friends are planning an expedition to a small town deep in the Canadian north next winter break. They've researched all the travel options and have drawn up a directed graph whose nodes represent intermediate destinations and edges represent the roads between them.

In the course of this, they've also learned that extreme weather causes roads in this part of the world to become quite slow in the winter and may cause large travel delays. They've found an excellent travel Web site that can accurately predict how fast they'll be able to travel along the roads; however, the speed of travel depends on the time of year. More precisely, the Web site answers queries of the following form: given an

edge e=(v,w) connecting two sites v and w, and given a proposed starting time t from location v, the site will return a value $f_e(t)$, the predicted arrival time at w. The Web site guarantees that $f_e(t) \ge t$ for all edges e and all times t (you can't travel backward in time), and that $f_e(t)$ is a monotone increasing function of t (that is, you do not arrive earlier by starting later). Other than that, the functions $f_e(t)$ may be arbitrary. For example, in areas where the travel time does not vary with the season, we would have $f_e(t) = t + \ell_e$, where ℓ_e is the time needed to travel from the beginning to the end of edge e.

Your friends want to use the Web site to determine the fastest way to travel through the directed graph from their starting point to their intended destination. (You should assume that they start at time 0, and that all predictions made by the Web site are completely correct.) Give a polynomial-time algorithm to do this, where we treat a single query to the Web site (based on a specific edge e and a time t) as taking a single computational step.

5. *Hidden surface removal* is a problem in computer graphics that scarcely needs an introduction: when Woody is standing in front of Buzz, you should be able to see Woody but not Buzz; when Buzz is standing in front of Woody, . . . well, you get the idea.

The magic of hidden surface removal is that you can often compute things faster than your intuition suggests. Here's a clean geometric example to illustrate a basic speed-up that can be achieved. You are given n nonvertical lines in the plane, labeled L_1, \ldots, L_n , with the ith line specified by the equation $y = a_i x + b_i$. We will make the assumption that no three of the lines all meet at a single point. We say line L_i is *uppermost* at a given x-coordinate x_0 if its y-coordinate at x_0 is greater than the y-coordinates of all the other lines at x_0 : $a_i x_0 + b_i > a_j x_0 + b_j$ for all $j \neq i$. We say line L_i is v is there is some x-coordinate at which it is uppermost—intuitively, some portion of it can be seen if you look down from " $y = \infty$."

Give an algorithm that takes n lines as input and in $O(n \log n)$ time returns all of the ones that are visible. Figure 5.10 gives an example.

6. Consider an n-node complete binary tree T, where $n = 2^d - 1$ for some d. Each node v of T is labeled with a real number x_v . You may assume that the real numbers labeling the nodes are all distinct. A node v of T is a *local minimum* if the label x_v is less than the label x_w for all nodes w that are joined to v by an edge.

You are given such a complete binary tree T, but the labeling is only specified in the following *implicit* way: for each node v, you can determine the value x_v by *probing* the node v. Show how to find a local minimum of T using only $O(\log n)$ *probes* to the nodes of T.