1. Сумма элементов матрицы

Напишите программу, которая вычисляет сумму элементов матрицы.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести одно число – сумму элементов матрицы.

Примеры

входные данные

```
4 5
1 2 3 4 5
6 12 8 9 10
11 12 12 14 15
16 17 18 12 20
```

выходные данные

207

2. Поиск в матрице

Напишите программу, которая определяет, сколько раз встречается в матрице элемент, равный K .

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами. В следующей строке записано целое число K .

Выходные данные

Программа должна вывести количество элементов матрицы, равных K .

Примеры

```
4 5
1 2 3 4 5
6 12 8 9 10
11 12 12 14 15
16 17 18 12 20
12
```

выходные данные

1

3. Подсчёт по сумме цифр в матрице

Напишите программу, которая определяет, сколько в матрице есть K -значных чисел, сумма цифр каждого из которых кратна R .

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами. Затем в двух разных строках вводятся числа K и R .

Выходные данные

Программа должны вывести одно число – количество K -значных чисел, сумма цифр каждого из которых кратна R .

Примеры

входные данные

```
5 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
2
3
```

выходные данные

5

4. Минимум и максимум в матрице

Напишите программу, которая находит минимальный и максимальный элементы в матрице. Если в матрице есть несколько одинаковых минимальных (максимальных) элементов, нужно найти индексы первого такого элемента в порядке обхода по строкам: сверху вниз, слева направо.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

В первой строке программа должна вывести индексы минимального элемента (строку и столбец), а затем – его значение. Нумерация строк и столбцов начинается с единицы. Все числа разделены пробелами. Во второй строке выводится информация о максимальном элементе в том же формате.

Примеры

входные данные

```
4 5
1 3 2 54 24
75 12 3 46 9
13 26 56 9 12
14 90 97 6 34
```

выходные данные

```
1 1 1
4 3 97
```

5. Минимальная строка

Напишите программу, которая находит в матрице строку с минимальной суммой.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \leq N$, $M \leq 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Программа должна вывести все элементы найденной строки с минимальной суммой, разделив их пробелами. Если строк с одинаковой минимальной суммой несколько, нужно выбрать из них строку с минимальным индексом.

Примеры

входные данные

```
4 5
1 3 2 54 234
75 12 3 46 9
13 26 56 9 12
14 90 897 6 34
```

выходные данные

13 26 56 9 12

6. Столбцы с максимумом

Напишите программу, которая находит в матрице столбцы, в которых есть элемент, равный максимальному.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести все столбцы, в которых есть элемент, равный максимальному элементу в матрице. Каждый столбец выводится в одну строку, элементы разделяются пробелами.

Примеры

входные данные

```
4 5
1 897 2 54 234
75 12 3 46 9
13 26 56 9 12
14 90 897 6 34
```

```
897 12 26 90
2 3 56 897
```

7. Обнуление верхнего треугольника

Напишите программу, которая обнуляет все элементы квадратной матрицы, расположенные выше главной диагонали.

Входные данные

В первой строке записаны через пробел размер квадратной матрицы N (количество строк равно количеству столбцов) ($1 \le N \le 100$). В следующих N строках записаны строки матрицы, в каждой – по N натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести матрицу, у которой все элементы выше главной диагонали нулевые, а остальные элементы такие же, как в исходной матрице.

Примеры

входные данные

```
5
1 2 3 4 5
6 7 8 9 1
5 4 3 2 1
1 9 8 7 6
4 5 6 7 8
```

выходные данные

```
1 0 0 0 0 0 6 7 0 0 0 0 5 4 3 0 0 1 9 8 7 0 4 5 6 7 8
```

8. Симметричная матрица

Написать программу, которая проверяет, является ли квадратная матрица симметричной относительно главной диагонали.

Входные данные

В первой строке записаны через пробел размер квадратной матрицы N (количество строк равно количеству столбцов) ($1 \le N \le 100$). В следующих N строках записаны строки матрицы, в каждой – по N натуральных чисел, разделённых пробелами.

Программа должна вывести слово 'YES', если матрица симметричная, и слово 'NO', если матрица несимметричная.

Примеры

входные данные

```
4
1 2 3 4
2 6 7 8
3 7 9 1
4 8 1 2
```

выходные данные

YES

9. Седловые точки

Седловая точка – это элемент матрицы, который одновременно является наибольшим в своем столбце и наименьшим в своей строке. Напишите программу, которая находит индексы всех седловых точек матрицы. Нумерация строк и столбцов матрицы начинается с единицы.

Входные данные

В первой строке записаны через пробел размеры прямоугольной матрицы $N \spadesuit$ и М М (количество строк и количество столбцов, $1 \le N, M \le 1001 \le \spadesuit, \spadesuit \le 100$). В следующих $N \spadesuit$ строках записаны строки матрицы, в каждой – по $M \spadesuit$ натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести индексы всех седловых точек матрицы в порядке обхода по строкам (сверху вниз, слева направо). Номер строки и номер столбца каждой седловой точки разделяются пробелами. Нумерация начинается с единицы. Если в матрице нет ни одной седловой точки, нужно вывести число 0.

Примеры

входные данные

```
4 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
9 17 18 19 20
```

10. В шахматном порядке

Заполнить двоичную матрицу (состоящую только из нулей и единиц) в шахматном порядке. В левом верхнем углу должен быть нулевой элемент.

Входные данные

Во входной строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$).

Выходные данные

Программа должна вывести двоичную матрицу по строкам.

Примеры

входные данные

4 5

выходные данные

01010

10101

0 1 0 1 0

10101

11. Диагонали

Напишите программу, которая заполняет матрицу неотрицательными числами по диагоналям (см. пример). Значение элемента матрицы равно расстоянию от левого верхнего угла матрицы.

Входные данные

Во входной строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$).

Выходные данные

Программа должна вывести полученную матрицу по строкам.

Примеры

входные данные

4 5

```
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
```

12. Диагонали-2

Напишите программу, которая заполняет матрицу неотрицательными числами по диагоналям (см. пример). Значение элемента матрицы равно расстоянию от главной диагонали (главной диагональю будем называть элементы, к которых индексы строки и столбца совпадают).

Входные данные

Во входной строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$).

Выходные данные

Программа должна вывести полученную матрицу по строкам.

Примеры

входные данные

4 5

выходные данные

```
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
```

13. Змейка-1

Напишите программу, которая заполняет матрицу из N строк и M столбцов натуральными числами змейкой, как показано в примере.

Входные данные

Входная строка содержит числа N и M ($1 \le N$, $M \le 100$), разделённые пробелом.

Выходные данные

Программа должна вывести матрицу, заполненную заданным способом.

Примеры

входные данные

4 5

выходные данные

```
1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

20 19 18 17 16
```

14. Змейка-2

Напишите программу, которая заполняет матрицу из N строк и M столбцов натуральными числами змейкой, как показано в примере.

Входные данные

Входная строка содержит числа N и M ($1 \le N$, $M \le 100$), разделённые пробелом.

Выходные данные

Программа должна вывести матрицу, заполненную заданным способом.

Примеры

входные данные

4 5

выходные данные

```
1 8 9 16 17
2 7 10 15 18
3 6 11 14 19
4 5 12 13 20
```

15. Змейка-3

Напишите программу, которая заполняет матрицу из N строк и M столбцов натуральными числами змейкой по диагонали, как показано в примере.

Входные данные

Входная строка содержит числа N и M ($1 \le N$, $M \le 100$), разделённые пробелом.

Программа должна вывести матрицу, заполненную заданным способом.

Примеры

входные данные

4 5

выходные данные

```
1 3 4 10 11
2 5 9 12 17
6 8 13 16 18
7 14 15 19 20
```

16. По спирали

Напишите программу, которая заполняет матрицу из N строк и M столбцов натуральными числами по спирали, как показано в примере. Спираль раскручивается по часовой стрелке.

Входные данные

Входная строка содержит числа N и M ($1 \le N$, $M \le 100$), разделённые пробелом.

Выходные данные

Программа должна вывести матрицу, заполненную заданным способом.

Примеры

входные данные

4 5

выходные данные

```
1 2 3 4 5
14 15 16 17 6
13 20 19 18 7
12 11 10 9 8
```

17. Проверка магического квадрата

Магическим квадратом порядка N называется квадратная матрица размера $N \times N$, составленная из чисел 1, 2, ..., N^2 так, что суммы по каждому столбцу, каждой строке и каждой из двух больших диагоналей равны между собой. Напишите

программу, которая проверяет, является ли заданная квадратная матрица магическим квадратом.

Входные данные

В первой строке вводится размер матрицы N ($1 \le N \le 100$). В следующих N строках вводятся строки матрицы, по N значений в каждой, разделённые пробелами.

Выходные данные

Программа должна вывести слово 'YES', если матрица является магическим квадратом, и слово 'NO', если не является.

Примеры

входные данные

3

8 1 6

3 5 7

4 9 2

выходные данные

YES

18. Магический квадрат

Магическим квадратом порядка N называется квадратная матрица размера $N \times N$, составленная из чисел 1, 2, ..., N^2 так, что суммы по каждому столбцу, каждой строке и каждой из двух больших диагоналей равны между собой. Напишите программу, которая строит магический квадрат заданного порядка N.

Входные данные

Входная строка содержит размер матрицы N ($3 \le N \le 100$).

Выходные данные

Программа должна вывести магический квадрат размера $N \times N$.

Примеры

входные данные

4

```
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
```

19. Отражение по горизонтали

Напишите программу, которая выполняет зеркальное отражение матрицы по горизонтали относительно середины (слева направо).

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести матрицу, полученную в результате зеркального отражения исходной матрицы по горизонтали (слева направо).

Примеры

входные данные

```
4 5
11 12 13 14 15
26 27 28 29 30
41 42 43 44 45
56 57 58 59 60
```

выходные данные

```
15 14 13 12 11
30 29 28 27 26
45 44 43 42 41
60 59 58 57 56
```

20. Отражение по вертикали

Напишите программу, которая выполняет зеркальное отражение матрицы по вертикали относительно середины (сверху вниз).

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести матрицу, полученную в результате зеркального отражения исходной матрицы по вертикали (сверху вниз).

Примеры

входные данные

```
4 5
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
```

выходные данные

```
26 27 28 29 30
21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
```

21. Вращение влево

Напишите программу, которая выполняет вращение квадратной матрицы влево (против часовой стрелки).

Входные данные

В первой строке записан размер матрицы – количество строк и столбцов N ($1 \le N \le 100$). В следующих N строках записаны строки матрицы, в каждой – по N натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести матрицу, полученную из исходной вращением влево (против часовой стрелки).

Примеры

```
5
11 12 13 14 15
```

```
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
```

выходные данные

```
15 20 25 30 35

14 19 24 29 34

13 18 23 28 33

12 17 22 27 32

11 16 21 26 31
```

22. Вращение вправо

Напишите программу, которая выполняет вращение квадратной матрицы вправо (по часовой стрелке).

Входные данные

В первой строке записан размер матрицы – количество строк и столбцов N ($1 \le N \le 100$). В следующих N строках записаны строки матрицы, в каждой – по N натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести матрицу, полученную из исходной вращением вправо (по часовой стрелке).

Примеры

входные данные

```
5
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
```

```
31 26 21 16 11
32 27 22 17 12
33 28 23 18 13
34 29 24 19 14
35 30 25 20 15
```

23. Цветной в чёрно-белый

Яркости пикселей рисунка закодированы числами от 0 до 255 в виде матрицы. Преобразовать рисунок в черно-белый по следующему алгоритму:

- 1. вычислить среднюю яркость пикселей по всему рисунку
- 2. все пиксели, яркость которых меньше средней, сделать черными (записать код 0), а остальные -- белыми (код 255)

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел в диапазоне от 0 до 255, разделённых пробелами.

Выходные данные

Программа должна вывести в первой строчке среднее значение яркости для заданного рисунка с точностью 4 знака в дробной части. В следующих N строчках выводится построенная матрица, соответствующая чёрно-белому изображению.

Примеры

входные данные

```
4 4
12 14 67 45
32 87 45 63
69 45 14 11
40 12 35 15
```

выходные данные

```
37.8750

0 0 255 255

0 255 255

255 255 0 0

255 0 0 0
```

24. Сортировка строк матрицы

Напишите программу, которая переставляет строки матрицы так, чтобы значения в столбце K шли в порядке убывания. Строки, у которых значения в столбце K равны, должны быть выведены в том же порядке, в котором они стояли в исходной матрице.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами. В последней строке вводится номер столбца K.

Выходные данные

Программа должна вывести получившуюся матрицу, в которой строки переставлены так, чтобы значения в столбце K шли в порядке убывания.

Примеры

входные данные

```
4 5
21 22 23 24 25
26 12 18 29 33
11 37 31 14 39
16 17 18 5 20
1
```

выходные данные

```
26 12 18 29 33
21 22 23 24 25
16 17 18 5 20
11 37 31 14 39
```

25. Сортировка столбцов матрицы

Напишите программу, которая переставляет столбцы матрицы так, чтобы они шли в порядке убывания суммы элементов столбцов (сначала – столбец с наибольшей суммой). Столбцы, у которых одинаковая сумма элементов, должны быть выведены в том же порядке, в котором они стояли в исходной матрице.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести получившуюся матрицу, в которой столбцы переставлены так, чтобы они шли в порядке убывания суммы элементов столбцов (сначала – столбец с наибольшей суммой).

Примеры

входные данные

```
4 5
21 12 23 24 55
26 12 28 39 43
11 27 21 14 39
16 17 18 35 20
```

выходные данные

```
55 24 23 21 12
43 39 28 26 12
39 14 21 11 27
20 35 18 16 17
```

26. Путь в лабиринте

Напишите программу, которая определяет длину кратчайшего пути в лабиринте из левого верхнего угла в правый нижний. Лабиринт задаётся в виде матрицы из N строк и M столбцов, в которой каждый элемент равен 0 (клетка свободна) или -1 (клетка непроходима). Гарантируется, что левый верхний угол и правый нижний свободны. Если нужного маршрута нет, программа должна вывести число -1.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M чисел (могут быть только значения 0 или -1), разделённых пробелами.

Выходные данные

Программа должна вывести одно число – длину кратчайшего маршрута из левого верхнего угла лабиринта в правый нижний. Если таких маршрутов нет, нужно вывести число -1.

Примеры

```
5 5

0 -1 0 0 0

0 -1 0 -1 0

0 0 0 -1 0

-1 -1 -1 0
```

выходные данные

12

27. Транспонирование матрицы

Напишите программу, которая выполняет *транспонирование* матрицы – преобразование, в результате которого строки становятся столбцами, а столбцы – строками.

Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

Выходные данные

Программа должна вывести матрицу, полученную в результате транспонирования по строкам.

Примеры

входные данные

```
4 5
1 2 3 4 5
6 7 8 9 3
5 4 3 2 1
7 9 8 7 6
```

выходные данные

```
1 6 5 7
2 7 4 9
3 8 3 8
4 9 2 7
5 3 1 6
```

28. Острова

На карте островного государства Лимония, которая хранится в виде прямоугольной таблицы, нули обозначают море, а единицы — сушу. Все острова имеют форму прямоугольников и не соприкасаются. Написать программу, которая по готовой карте определяет количество островов.

Входные данные

В первой строке записаны через пробел размеры карты: количество строк N и количество столбцов M ($1 \le N$, $M \le 100$). В следующих N строках записаны строки матрицы, в каждой – по M чисел (0 или 1), разделённых пробелами.

Выходные данные

Программа должна вывести количество островов на карте.

Примеры

входные данные

```
4 5
1 1 1 1 1
0 0 0 0 0
0 0 1 1 0
1 0 1 1 0
```

выходные данные

3