VE216 Lecture 11

CT Frequency Response and Bode Plots

Asymptotic Magnitude Behavior

Isolated Zero

Isolated Pole

Complicated Systems Asymptotic Behavior

$$H(s_0) = K rac{\prod_{q=1}^Q (s_0 - z_q)}{\prod_{p=1}^P (s_0 - p_p)}$$
 , then $|H(s_0)| = \left|K rac{\prod_{q=1}^Q (s_0 - z_q)}{\prod_{p=1}^P (s_0 - p_p)}
ight| = |K| rac{\prod_{q=1}^Q |s_0 - z_q|}{\prod_{p=1}^P |s_0 - p_p|}$

Thus
$$log|H(j\omega)| = log|K| + \sum_{q=1}^Q log|j\omega - z_q| - \sum_{p=1}^P log|j\omega - p_p|$$

With proportion to the $log(\omega)$, we get the bode plot.

Bode Plot Angle

According to the previous lectures:

$$ngle H(s_0) = ngle (Krac{\prod_{q=1}^Q(s_0-z_q)}{\prod_{p=1}^P(s_0-p_p)}) = ngle K + \sum_{q=1}^Q ngle (s_0-z_q) - \sum_{p=1}^P ngle (s_0-p_p)$$

If we need more calculation, then we can add them together as a graph.

Bode Plot: dB

$$|H(j\omega)|[ext{dB}] = 20log_{10}|H(j\omega)|$$

For $H(j\omega)=rac{1}{j\omega+1}$, the approximation is here

X	$20log_{10}X$
1	0 dB
$\sqrt{2}$	3 dB
2	6 dB
10	20 dB
100	40 dB

Frequency Response of High-Q System

$$H(s)=rac{1}{1+rac{1}{Q}rac{s}{\omega_0}+(rac{s}{\omega_0})^2}$$

Peak Magnitude Dependence

Assume Q>3. Then we see on the $\frac{s}{\omega_0}$ plane:

So the peak magnitude increase with Q.

3dB Bandwidth and Phase Change

Change in phase approximately $\pi/2$.

Frequency Response of a High-Q System

As $oldsymbol{Q}$ increases, the phase changes more abruptly with $oldsymbol{\omega}$.

