l'Ingénieur

PSI× - MP

Applications

Applications

Savoirs et compétences :

Soit un système de fonction de transfert $G(p) = \frac{1}{(1+10p)(1+0,1p)(1+0,2p)}$ placé dans une boucle à retour unitaire.

Question 1 Calculer la précision du système ε_S pour une entrée échelon unitaire.

Correction Le système est de classe 0. L'entrée est de type échelon. $K_{\rm BO}=1$. L'écart statique est de $\frac{1}{1+1}=\frac{1}{2}$.

Question 2 Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

Question 3 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

Correction

- On résout $\varphi(\omega) = -135^{\circ}$: $\varphi(\omega) = -\arctan 10\omega \arctan 0, 1\omega \arctan 0, 2\omega$. $\varphi(\omega) = -135^{\circ} \iff \omega = 2.95 \text{ rad s}^{-1} \text{ (solveur Excel)}.$
- Calculons $G_{\rm dB}(\omega) = -20\log\left(\sqrt{1+10^2\omega^2}\right) 20\log\left(\sqrt{1+0,1^2\omega^2}\right) 20\log\left(\sqrt{1+0,2^2\omega^2}\right) = -31\,\rm dB$. Il faut donc augmenter le gain de 31 dB soit $K_P = 10^{31/20} = 35,48$.
- On a alors un écart statique de $\frac{1}{1+35,48} = 0,027$.
- Pour déterminer la marge de gain, il faut résoudre $\varphi(\omega) = -180^\circ$. On obtient $\omega = 7.17 \, \text{rad/s}$ et $M_G = 12 \, \text{dB}$.

Question 4 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correction

1

Correcteur proportionnel

D'après ressources P. Dupas

Soit un système de fonction de transfert $G(p) = \frac{10}{p\left(1+p+p^2\right)}$ placé dans une boucle à retour unitaire. On souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de $-45\,^{\circ}$ et une marge de gain de $10\,\mathrm{dB}$.

On donne le diagramme de Bode associé à cette fonction de transfert.

Question 1 Mesurer puis calculer la marge de phase.

Correction

• On cherche ω tel que $G_{\rm dB}(\omega)=0\,{\rm dB}$: $G_{\rm dB}(\omega)=-20\log(10)-20\log\omega-20\log\left(\sqrt{(1-\omega^2)^2+\omega^2}\right)$ On trouve $\omega=2.21\,{\rm rad/s}$ et $M_{\varphi}=-60^{\circ}$. Le système est instable.

Question 2 Calculer la marge de gain.

Correction Pour $\varphi = -180^\circ$, on a $\omega = 1 \text{ rad/s}$ et $M_G = -20 \text{ dB}$. Le système est instable.

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Correction Pour $\varphi = -135^{\circ}$ on a $\omega = 0.62 \, \text{rad/s}$. On trouve un gain proportionnel de 0,54.

La marge de gain est alors de 5.35 dB ce qui est inférieur aux 10 dB demandés.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

Correction Pour $\varphi = -180^{\circ}$ on a $\omega = 1 \, \text{rad/s}$. On trouve un gain proportionnel de 0,316.

La marge de phase est alors de $70^{\circ}(\omega = 0.333 \,\text{rad/s}.$

- 1. $M_{\varphi} = -60^{\circ}$.
- 2. $M_G = -20 \, \text{dB}$.

- 3. $K_P = 0.54$ et $M_G = 5.35$ dB.
- 4. $K_P = 0.316$ et $M_{\varphi} = 70^{\circ}$.

Correcteur proportionnel

Soit un système de fonction de transfer G(p) = $\frac{1}{(1+0,05p)(1+p+2p^2)}$. On souhaite corriger le comportement de ce système par un correcteur proportionnel.

Déterminer le gain K qui assure une marge Question de phase de 45°.

Correcteur proportionnel Correcteur proportionnel intégral

Soit un système de fonction de transfert G(p) =placé dans une boucle à retour unitaire.

On souhaite disposer d'une marge de phase de 45°en utilisant un correcteur proportionnel intégral de la forme $C(p) = K_p \frac{1 + \tau p}{\tau p}.$

Question 5 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Correcteur à avance de phase

Soit un système de fonction de transfert G(p) = $\frac{100}{(p+1)^2}$ placé dans une boucle à retour unitaire.

Question Corriger ce système de sorte que sa marge de phase soit égale à 45°.

- Pulsation de coupure à 0 dB su système non corrigé en BO : $\omega = 9.95 \,\text{rad s}^{-1}$.
- Pour cette pulsation la marge de phase est de 11°.
- On cherche $\varphi_{\text{max}} = 25^{\circ}$ et a = 3,54. $\omega_{\text{max}} = 9.95 \, \text{rad} \, \text{s}^{-1} = \frac{1}{T\sqrt{a}}$ ce qui conduit à $T = 0.053 \, \text{s}$.