ArmOrQol

A bionic prosthesis based on electrical muscle signals

Aim of the project

In Kazakhsta, there are

12794

people with upper and lower limb amputatations

Approximately

5000

prostheses are purchased by the government annualy

Most of them are mechanical, where one's price exceeds

700,000 KZT

A Russian company that manufactures bionic prostheses

Germany

11,100 \$

600 g

England

от 33,000 \$

515 g

Michelangelo

Germany

60,000\$

420 g

England

100,000\$

1400 g

Muscle sensor kit v3

Grove EMG detector

56,000 KZT

Prosthesis

Exoskeleton

Robot arm, wheelchair control

Principle of work

- Acquistion
- 2 Sensor Circuit
- 3 Programming

4 Control

- Two sEMG channels on two muscle groups
- Two stage amplification

 Filtering
- Rectification

- Servomotor rotation proportional to the sEMG signal amplitude
- Five finger flexion (simultaneous)
 - 90 degrees wrist rotation

Cost price: 47,459KZT

3D model of the prosthesis

Project demonstration

Appendix

Figure 1. The EMG sensor circuit in LTSpice XVII

Figure 2. The input signal of 2-3 millivolts

Figure 3. The amplified, rectified and filtered output EMG signal of 4-6 volts