

Dr. A. Alldridge:

Mathematik für Physiker C (WS 2008/9), Blatt 8

Aufgabe 1 (Greensche Formeln — 5 Punkte) Sei $G \subset \mathbb{R}^n$ offen, $A \subset G$ ein Greenscher Bereich und seien $\phi, \psi: G \to \mathbb{R}$ \mathcal{C}^2 -Funktionen. Man schreibt $\Delta \phi = \operatorname{div} \nabla \phi$ für den Laplaceoperator und $\frac{\partial \phi}{\partial \nu} = \langle \nabla \phi, \nu \rangle$ für die Normalenableitung. Zeigen Sie die Greenschen Formeln:

(a)
$$\int_{A} (\phi \cdot \Delta \psi + \langle \nabla \phi, \nabla \psi \rangle) dx = \int_{\partial A} \phi \cdot \frac{\partial \psi}{\partial \nu} d\sigma$$
(b)
$$\int_{A} (\phi \cdot \Delta \psi - \Delta \phi \cdot \psi) dx = \int_{\partial A} (\phi \cdot \frac{\partial \psi}{\partial \nu} - \frac{\partial \phi}{\partial \nu} \cdot \psi) d\sigma$$

Aufgabe 2 (Ein verblüffendes Integral — 5 Punkte)

Sei $A \subset \mathbb{R}^n$ ein Greenscher Bereich, der 0 im Inneren enthält. Für alle $x \in \partial_{reg} A$ sei $\alpha(x) \in [0,\pi]$ der Winkel zwischen dem Ortvektor x und dem Normalenvektor $\nu(x)$. Zeigen Sie

$$\int_{\partial A} \frac{\cos \alpha(x)}{\|x\|^{n-1}} \, d\sigma(x) = \omega_n \,,$$

wobei $\omega_n = A_{n-1}(\mathbb{S}^{n-1})$ die Oberfläche der *n*-dimensionalen Einheitskugel ist.

Hinweis: Drücken Sie $\cos \alpha(x)$ formelmäßig durch x und $\nu(x)$ aus. Betrachten Sie das Vektorfeld $F(x) = \frac{x}{\|x\|^n}$ und für kleine $\varepsilon > 0$ den Greenschen Bereich $A_{\varepsilon} = A \setminus U_{\varepsilon}(0)$. Wenden Sie hierauf den Gaußschen Integralsatz an.

Aufgabe 3 (Wachstum und Integral der Divergenz — 5 Punkte)

Sei $F = (f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ ein \mathcal{C}^1 -Vektorfeld. Es gebe ein $\delta > 0$, so dass für alle $k = 1, \ldots, n$

$$\lim_{\|x\|\to 0} \|x\|^{n-1} f_k = 0$$
 und $\sup_{x\in\mathbb{R}^n} \|x\|^{n+\delta} |D_k f_k(x)| < \infty$.

Zeigen Sie, dass dann gilt

$$\int_{\mathbb{R}^n} \operatorname{div} F(x) \, dx = 0 \,,$$

wobei das Integral absolut konvergiert. (Die absolute Konvergenz ist zu begründen!) **Hinweis:** Betrachten Sie $\int_{\|x\| < R} \operatorname{div} F(x) \, dx$ und den Limes $R \to \infty$.

Aufgabe 4 (Elektrische Ladung innerhalb und außerhalb einer Kugel — mündlich) Das \mathcal{C}^1 -Vektorfeld $E:\mathbb{R}^3\to\mathbb{R}^3$ stelle das elektrische Feld mit Ladungsdichte $\varrho=\operatorname{div} E$ dar. Wir nehmen an, ϱ sei die Ladungsverteilung einer homogen geladenen Kugelschale vom Radius R>0. D.h., $\|E\|$ sei rotationssymmetrisch, E(x) sei proportional zum Ortsvektor x und es gebe ein $\varepsilon>0$, so dass $\varrho(x)=0$ für alle $x\in\mathbb{R}^3$ mit $\|x\|\geqslant R+\varepsilon$ oder $\|x\|\leqslant R-\varepsilon$.

- (a) Zeigen Sie, dass E(x) = 0 für $||x|| \le R \varepsilon$.
- (b) Sei $Q(r) = \int_{B_r(0)} \varrho(x) dx$ die Ladung und $Q = Q(R + \varepsilon)$ die Gesamtladung. Zeigen Sie, dass $E(x) = \frac{Q}{4\pi r^2} \cdot \frac{x}{r}$ für alle $x \in \mathbb{R}^3$ mit $r = \|x\| \geqslant R + \varepsilon$.

Bitte geben Sie die Übungsaufgaben am *Montag, 8.12.2008,* vor der Vorlesung ab. Bereiten Sie die mündliche Aufgabe zur Übung am *Mittwoch, 17.12.2008,* vor.