

Übung zur Vorlesung Materialwissenschaften

Prof. Peter Müller-Buschbaum, Lea Westphal, Ziyan Zhang, Doan Duy Ky Le

Übungsblatt 1

Lösung

Aufgabe 1 - Materialklassen

Eigenschaft	Metalle	Gläser	Keramiken	Polymere	Elastomere	Hybrid- materialien
Elastizitätsmodul	hoch	niedrig	hoch	niedrig	niedrig	variierend
Festigkeit	hoch	/	hoch	hoch	variierend	variierend
Schlagzähigkeit	hoch	gering	hoch	variierend	hoch	variierend
Verformbarkeit	leicht	$\operatorname{mit} \operatorname{T}$	schwer	leicht	leicht	schwer
Härte	variierend	hoch	hoch	gering	gering	variierend
Thermische Leitfähigkeit	hoch	variierend	variierend	niedrig	niedrig	variierend
Elektrische Leitfähigkeit	hoch	nein	niedrig	niedrig	niedrig	variierend
Korrosionsverhalten	leicht	nicht	nicht^-	nicht	nicht^-	variierend
Sprödigkeit	nein	ja	ja	variierend	T-abhängig	variierend
Optische Eigenschaften	glänzend	transparent	opak	variierend	variierend	variierend

Aufgabe 2 – Passende Materialeigenschaften

a) Material für Baggerzähne:

- Sehr hohe mechanische Beanspruchung durch Schneiden, Schaufeln und Zerkleinern von Gestein und Erde.
- Wichtig: hohe Härte H für Verschleißbeständigkeit.
- Zusätzlich: hohe Bruchzähigkeit K_{1c} , damit kein Abbrechen erfolgt.
- Korrosionsbeständigkeit bei Einsatz in Wasser, Schlamm etc. von Vorteil.
- Materialkosten sind nachrangig entscheidend ist die Vermeidung von Ausfallzeiten.

b) Material für energieeffizienten Kochtopf:

- Gute Wärmeübertragung und -verteilung erforderlich \rightarrow hohe Wärmeleitfähigkeit λ .
- Korrosionsbeständigkeit gegenüber:
 - * Salzwasser,
 - * Säuren (z.B. Essig),
 - * Laugen (z.B. Backpulver).
- Typische Materialien: Aluminium- oder Kupferkern, evtl. mit Edelstahlbeschichtung.

c) Material für umweltschonende Einweg-Wasserflaschen:

Wesentliche Anforderungen:

- * Ungiftigkeit keine Schadstoffabgabe an Wasser.
- * Frei von Rückständen aus der Verarbeitung.

* Günstig herstellbar – Massengebrauch.

- Wünschenswerte Eigenschaften:

- * Recyclingfähigkeit oder biologische Abbaubarkeit.
- * Mechanisch robust nicht spröde, leicht transportierbar.
- * Geringes Gewicht und transparenter Werkstoff bevorzugt.

Aufgabe 3 – Kristallstrukturen und Dichte

a) Verhältnis $c/a = 1{,}633$ bei hcp:

Abbildung 1: Skizze schichtweise Aufbau hcp-Struktur

- Die hcp-Struktur besteht aus drei Kugelschichten in ABA-Stapelung mit dichtester Packung.
- In einer A-Schicht bilden drei Atome ein gleichseitiges Dreieck mit Seitenlänge a.
- Das Atom der B-Schicht befindet sich direkt über dem Mittelpunkt dieses Dreiecks.
- Abstand vom Mittelpunkt zum Eckatom: $l = \frac{a}{\sqrt{3}}$.
- Senkrechter Abstand zwischen A- und B-Schicht: $z = \sqrt{a^2 l^2} = \sqrt{\frac{2}{3}}a$.
- Die Zellenhöhe ergibt sich zu $c=2z=\sqrt{\frac{8}{3}}a$.
- Damit folgt: $\frac{c}{a} = \sqrt{\frac{8}{3}} \approx 1,633$.

b) Dichte von Lithium (bcc):

- Struktur: kubisch raumzentriert (bcc), 2 Atome pro Elementarzelle.
- Gegeben: Atomradius $r = 0.152 \,\mathrm{nm}$, Atommasse $M = 6.94 \,\mathrm{g/mol}$.
- Gitterkonstante: $a = \frac{4r}{\sqrt{3}} = \frac{4 \cdot 0,152}{\sqrt{3}} \approx 0,351 \,\mathrm{nm}.$
- Zellvolumen: $V = a^3 = (0.351 \cdot 10^{-7} \,\mathrm{cm})^3 \approx 4.33 \cdot 10^{-23} \,\mathrm{cm}^3$.
- Dichteformel: $\rho = \frac{n \cdot M}{N_A \cdot V}$, mit n = 2, $N_A = 6{,}022 \cdot 10^{23}$.
- Eingesetzt:

$$\rho = \frac{2 \cdot 6{,}94}{6{,}022 \cdot 10^{23} \cdot 4{,}33 \cdot 10^{-23}} \approx 0{,}534\,\mathrm{g/cm^3}.$$

- Ergebnis stimmt mit Literaturwert überein.

Aufgabe 4 – Ionengrößenverhältnis und Packungsdichte

a) Größenverhältnis $R_k/R_a \ge 0.732$ bei Koordinationszahl 8:

- RD = squrt($(2R_A)^2 + (2R_A)^2 + (2R_A)^2$)
- A-K -> RD/2
- Bedingung Berühren: Rk+RA != Rasqurt3

Abbildung 2: Skizze Ionenkristall

- In ionischen Kristallen mit ZK = 8 befindet sich das Kation in der Mitte eines Würfels, die Anionen an den Ecken.
- Die Raumdiagonale des Würfels ist $d = \sqrt{3}a = 2(R_k + R_a)$.
- Die Würfelkante ist $a = 2R_a \Rightarrow R_k = \left(\frac{\sqrt{3}-1}{2}\right)a$.
- Daraus ergibt sich:

$$\frac{R_k}{R_a} = \sqrt{3} - 1 \approx 0.732.$$

b) Packungsdichten für fcc und bcc:

- Die Packungsdichte ist definiert als $\eta = \frac{V_{\text{Atome}}}{V_{\text{Zelle}}}$.
- fcc-Struktur:
 - * 4 Atome pro Elementarzelle.
 - * Kugeln berühren sich entlang der Flächendiagonale: $a = 2\sqrt{2}r$.
 - * Zellvolumen: $V = a^3 = (2\sqrt{2}r)^3 = 16\sqrt{2}r^3$.
 - * Atomvolumen: $4 \cdot \frac{4}{3}\pi r^3 = \frac{16}{3}\pi r^3$.
 - * Packungsdichte:

$$\eta_{\text{fcc}} = \frac{\frac{16}{3}\pi r^3}{16\sqrt{2}r^3} = \frac{\pi}{3\sqrt{2}} \approx 0.74.$$

- bcc-Struktur:

- * 2 Atome pro Elementarzelle.
- * Kugeln berühren sich entlang der Raumdiagonale: $a = \frac{4r}{\sqrt{3}}$.
- * Zellvolumen: $V = a^3 = \left(\frac{4r}{\sqrt{3}}\right)^3 = \frac{64}{3\sqrt{3}}r^3$.
- * Atomyolumen: $2 \cdot \frac{4}{3}\pi r^3 = \frac{8}{3}\pi r^3$.
- * Packungsdichte:

$$\eta_{\text{bcc}} = \frac{\frac{8}{3}\pi r^3}{\frac{64}{3\sqrt{3}}r^3} = \frac{\pi\sqrt{3}}{8} \approx 0.68.$$

${\bf Aufgabe~5-Polymerrechnung}$

a) Wiederholeinheit und molare Masse von PVAL:

- Wiederholeinheit: $-[CH_2CH(OH)]$ -.
- Atommassen:
 - * C: 12,01 g/mol,
 - * H: 1,008 g/mol,
 - * O: 16,00 g/mol.
- Berechnung:

$$M_0 = 2 \cdot 12,01 + 4 \cdot 1,008 + 16,00 = 44,05 \,\mathrm{g/mol}.$$

b) Anzahl der Wiederholeinheiten N:

- Gegeben: $M=10\,\mathrm{kg/mol}=10\,000\,\mathrm{g/mol}.$
- Formel: $N = \frac{M}{M_0}$.
- Eingesetzt:

$$N = \frac{10\,000}{44,05} \approx 227.$$

– Ein solches PVAL-Molekül enthält ca. 227 Wiederholeinheiten.