Non-Equilibrium Statistical Field Theory

quinten tupker

October 13 2020 - October 14, 2020

Introduction

These notes are based on the course lectured by Johannes Pausch in Michaelmas 2020. Due to the measures taken in the UK to limit the spread of Covid-19, these lectures were delivered online. These are not meant to be an accurate representation of what was lectures. They solely represent a mix of what I thought was the most important part of the course, mixed in with many (many) personal remarks, comments and digressions... Of course, any corrections/comments are appreciated.

Non-Equilibrium Statistical Field Theory is the study of statistical properties of field theory that is changing in time (which is what non-equilibrium refers to here).

1 Master Equations

Firstly, we try to derive some master equations to use in our model. How do we model our system? We first discretise time into steps t_n . For some reason, in this field by convention, time travels from right to left. Anyways, having discretised time, we model systems as Markov chains with $N(t_n)$ being the number of particles "present" at t_n .

We can then write the Chapman-Kolmogorov equation as

$$\mathbb{P}(N(t_3)|N(t_1)) = \sum_{N(t_2)} \mathbb{P}(N(t_3)|N(t_2))\mathbb{P}(N(t_2)|N(t_1))$$

Now we want to take the continuum limit of this equation by defining

$$W_t(N'|N) = \partial_{t'} \mathbb{P}(N'(t')|N(t))|_{t'=t}$$

then we can write

$$\mathbb{P}(N'(t+\Delta t)|N(t)) \approx \mathbb{P}(N'(t)|N(t)) + \Delta t W_t(N'|N) = \delta_{N'(t),N(t)} + \Delta W_t(N'|N)$$

Notice that since probabilities add to 1, $\sum_{N'} W_t(N'|N) = 0$, so in particular $W_t N | N = -\sum_{N' \neq N} W_t(N'|N)$. Using that we can rewrite the Chapman-Kolmogorov equation as

$$\begin{split} \mathbb{P}(N(t_3)|N(t_1)) - \mathbb{P}(N(t_2)|N(t_1)) &= \sum_{N(t_2)} \mathbb{P}(N(t_3)|N(t_2)) \mathbb{P}(N(t_2)|N(t_1)) \\ &= \Delta t \sum_{N_2 \neq N_3} W_{t_2}(N_3|N_2) \mathbb{P}(N_2|N_1) - W_{t_3}(N_2|N_3) \mathbb{P}(N_3|N_1) \end{split}$$

Taking limits and removing the $|N_1|$ part in the conditional probabilities for notational simplicity we get the final form of our **Master Equation** (which has no other name?)

$$\partial_t \mathbb{P}(N) = \sum_{N' \neq N} W_t(N|N') \mathbb{P}(N') - W_t(N'|N) \mathbb{N}$$

where the first term in the sum can be called the **gain**, and the second subtracted term can be called the **loss** (we can interpret them as such). To build intuition we provide a simple example.

Example 1. We consider a simple extinction process where a group of particles are gradually disappearing. Here $W(N-1|N)=N\epsilon, W(N|N)=-N\epsilon$ for some $\epsilon>0$ while all other values of the matrix W are zero. As such we get a simple master equation

$$\partial_t \mathbb{P}(N) = \epsilon(N+1)\mathbb{P}(N+1) - \epsilon N\mathbb{P}(N)$$

[End of lecture 1]