- 🔯 Özellikleri belirtildiğinde kişilerin diyabet hastası olup olmadıklarını tahmin edebilecek bir makine öğrenmesi modeli geliştirmek
- 4 Hedef değişken "outcome" 1 diyabet test sonucunun pozitif oluşunu 0 ise negatif oluşunu belirtmektedir.
- Değişkenler
- ► Pregnancies: Hamilelik sayısı
- ► Glucose: Glikoz.
- ▶ BloodPressure: Kan basıncı.
- ► SkinThickness: Cilt Kalınlığı
- ▶ Insulin: İnsülin.
- ▶ BMI: Beden kitle indeksi.
- ▶ DiabetesPedigreeFunction: Soyumuzdaki kişilere göre diyabet olma ihtimalimizi hesaplayan bir fonksiyon.
- ► Age: Yaş (yıl)
- ▶ Outcome: Kişinin diyabet olup olmadığı bilgisi. Hastalığa sahip (1) ya da değil (0)

```
# kullanılacak kütüphanelri ayarlayalım
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.preprocessing import RobustScaler
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score, roc auc score, confusion matrix, classification report # plot roc curve
from sklearn.model_selection import train_test_split, cross_validate
import sklearn.metrics
# kullanacağımız bizim yazdığımız fonksiyonlar
# eşik değerleri hesaplamak # çoğunlukla eşik değer oranı 0,25 -0,75 dir biz burada keskin bir traşlama yapmıyoruz
def outlier_thresholds(dataframe, col_name, q1=0.05, q3=0.95):
   quartile1 = dataframe[col_name].quantile(q1)
   quartile3 = dataframe[col_name].quantile(q3)
   interquantile range = quartile3 - quartile1
   up_limit = quartile3 + 1.5 * interquantile_range
   low limit = quartile1 - 1.5 * interquantile range
   return low_limit, up_limit
```

```
# aykırı değer var mı yok mu ?
def check outlier(dataframe, col name):
   low_limit, up_limit = outlier_thresholds(dataframe, col_name)
   if dataframe[(dataframe[col name] > up limit) | (dataframe[col name] < low limit)].any(axis=None):</pre>
        return True
   else:
        return False
# aykırı değerlerin baskılanması
def replace_with_thresholds(dataframe, variable):
   low limit, up limit = outlier thresholds(dataframe, variable)
   dataframe.loc[(dataframe[variable] < low limit), variable] = low limit</pre>
   dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit
# görüntü ayarlamalarını yapalım
pd.set option("display.max columns", None)
pd.set_option("Display.float_format", lambda x: "%.3f" %x)
pd.set_option("display.width", 500)
# veri setini okutup inceleyelim
df = pd.read_csv("/content/diabetes.csv")
df.head()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	C
0	6	148	72	35	0	33.600	0.627	50	_
1	1	85	66	29	0	26.600	0.351	31	
2	8	183	64	0	0	23.300	0.672	32	
3	1	89	66	23	94	28.100	0.167	21	
4	0	137	40	35	168	43.100	2.288	33	

df.shape

(768, 9)

target analizi : outcome 1 ve 0 değerlerinden oluşan bir kategorik değişken df["Outcome"].value_counts()

0 5001 268

Name: Outcome, dtype: int64

```
# ilgili değerleri görselleştirelim
sns.countplot(x="Outcome", data=df)
plt.show()
```


FEATURE ANALİZİ

df.describe().T

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.000	3.845	3.370	0.000	1.000	3.000	6.000	17.000
Glucose	768.000	120.895	31.973	0.000	99.000	117.000	140.250	199.000
BloodPressure	768.000	69.105	19.356	0.000	62.000	72.000	80.000	122.000
SkinThickness	768.000	20.536	15.952	0.000	0.000	23.000	32.000	99.000
Insulin	768.000	79.799	115.244	0.000	0.000	30.500	127.250	846.000
BMI	768.000	31.993	7.884	0.000	27.300	32.000	36.600	67.100
DiabetesPedigreeFunction	768.000	0.472	0.331	0.078	0.244	0.372	0.626	2.420
Age	768 000	33 241	11 760	21 000	24 000	29 000	41 000	81 000

sayısal değişkenlerden bazılarına histogram grafiklte inceleyelim
def plot_numerical_col(dataframe, numerical_col):
 dataframe[numerical_col].hist(bins=10)
 plt.xlabel(numerical_col)
 plt.show()

cols = [col for col in df.columns if "Outcome" not in col] # target 1 grafikten çıkaralım

for col in cols:
 plot_numerical_col(df,col)

Düzenlemek için çift tıklayın (veya enter tuşuna basın)

bu iki değer incelendiğinde göze çarpan 0 değerlerin olduğu ama canlı insanın kan basıncı ve/veya skinthickness değeri 0 olamaz. Muhtemelen null değerler 0 ile doldurulmuş

```
# Target vs Features
df.groupby("Outcome").agg({"Pregnancies":"mean"})

Pregnancies
Outcome
```

Outcome	
0	3.298
1	4.866

```
# target la ilişkiyi açıklayan bir fonksiyon tanımlayalım
def target_summary_with_num(dataframe, target, numerical_col):
 print(dataframe.groupby(target).agg({numerical col: "mean"}))
 print("##############"")
for col in cols:
 target_summary_with_num(df, "Outcome", col)
          Pregnancies
   Outcome
   0
               3.298
              4.866
   Glucose
   Outcome
   0
          109.980
          141.257
   BloodPressure
   Outcome
```

```
68.184
1
      70.825
SkinThickness
Outcome
0
      19.664
1
      22.164
Insulin
Outcome
0
   68.792
1
   100.336
Outcome
0
   30.304
1
   35.143
DiabetesPedigreeFunction
Outcome
0
          0.430
          0.550
Age
Outcome
0
  31.190
   37.067
```

VERİ ÖN İŞLEME

df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	C
0	6	148	72	35	0	33.600	0.627	50	_
1	1	85	66	29	0	26.600	0.351	31	
2	8	183	64	0	0	23.300	0.672	32	
3	1	89	66	23	94	28.100	0.167	21	
4	0	137	40	35	168	43.100	2.288	33	

df.isnull().sum()

Pregnancies	6
Glucose	6
BloodPressure	6
SkinThickness	6
Insulin	6
BMI	6

ıl.

DiabetesPedigreeFunction 0 Age 0 Outcome 0

dtype: int64

Age False

df.describe().T

	count	mean	std	min	25%	50%	75%	max	7
Pregnancies	768.000	3.845	3.370	0.000	1.000	3.000	6.000	17.000	
Glucose	768.000	120.895	31.973	0.000	99.000	117.000	140.250	199.000	
BloodPressure	768.000	69.105	19.356	0.000	62.000	72.000	80.000	122.000	
SkinThickness	768.000	20.536	15.952	0.000	0.000	23.000	32.000	99.000	
Insulin	768.000	79.799	115.244	0.000	0.000	30.500	127.250	846.000	
BMI	768.000	31.993	7.884	0.000	27.300	32.000	36.600	67.100	
DiabetesPedigreeFunction	768.000	0.472	0.331	0.078	0.244	0.372	0.626	2.420	
Age	768.000	33.241	11.760	21.000	24.000	29.000	41.000	81.000	
Outcome	768.000	0.349	0.477	0.000	0.000	0.000	1.000	1.000	

```
# aykırı değer var mı yok mu bakalım
for col in cols:
 print(col, check_outlier(df, col)) # sadece insulinde aykırılık var görünüyor
     Pregnancies False
     Glucose False
    BloodPressure False
    SkinThickness False
     Insulin True
     BMI False
    DiabetesPedigreeFunction False
     Age False
replace_with_thresholds(df, "Insulin")
for col in cols:
 print(col, check_outlier(df, col))
     Pregnancies False
     Glucose False
     BloodPressure False
    SkinThickness False
     Insulin False
     BMI False
    DiabetesPedigreeFunction False
```

#standartlaştırma yapalım robustscaler bütün gözlemlerin değerinden medyanı çıkarıp range değerine bölüyor #standarScaler dan farkı aykırı değerlerden etkilenmiyor

```
for col in cols:
    df[col] = RobustScaler().fit_transform(df[[col]])
```

df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
0	0.600	0.752	0.000	0.375	-0.240	0.172	0.665	1.235
1	-0.400	-0.776	-0.333	0.188	-0.240	-0.581	-0.056	0.118
2	1.000	1.600	-0.444	-0.719	-0.240	-0.935	0.783	0.176
3	-0.400	-0.679	-0.333	0.000	0.499	-0.419	-0.537	-0.471
4	-0.600	0.485	-1.778	0.375	1.081	1.194	5.008	0.235

log_model = LogisticRegression().fit(X, y)

bu modelin sabitlerine bakalım b değeri
log_model.intercept_[0]

-1.2343958783485596

(768,)

W değerleri 8 ayrı bileşen için log_model.coef_

MODEL BAŞARI DEĞERLENDİRMESİ

```
# confision matrix i görselleştrecek fonksiyon yazalım
def plot_confusion_matrix(y, y_pred):
    acc = round(accuracy_score(y, y_pred), 2)  # acuracy : doğru sınıflandırma oranı
    cm = confusion_matrix(y, y_pred)  #
    sns.heatmap(cm, annot=True, fmt=".0f")
    plt.xlabel("y_pred")
    plt.ylabel("y")
    plt.title("Accuracy Score : {0}".format(acc), size=10)
    plt.show()

# fonksiyonu modelimizde deneyelim
plot_confusion_matrix(y, y_pred)
```

Accuracy Score : 0.78 - 400 - 446 54 - 350 - 300

print(classification_report(y, y_pred))

- # 1 olarak yaptığımız tahminlerin % 74 ü başarılı # recall 1 olanları %58 başarıyla doğru sınıflandırdık
 - precision recall f1-score support 500 0.80 0.89 0.84 0.74 0.58 0.65 268 0.78 768 accuracy macro avg 0.77 0.74 0.75 768 weighted avg 0.78 0.78 768

farkl1 thresoldlara göre oluşan metrik
y_prob = log_model.predict_proba(X)[:,1]

roc_auc_score(y, y_prob)

0.8393955223880598

modeli kurduğumuz veride yine modeli test ettik

MODEL DOĞRULAMA

holdout yöntemiyle veriyi 2 ye böleceğin train ve test olarak

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=17) # random state i aynı sonuçları almak için kullandık yani aynı %20 dilimde aynı veriler olacak

train setinde modelimizi kuralım
log_model = LogisticRegression().fit(X_train, y_train)

kurduğummuz modele modelin görmediği %20 lik x_test veri setini sorup tahminleri alalım y_pred = $\log_{100} (x_t)$