XPX: Generalized Tweakable Even-Mansour with Improved Security Guarantees

Bart Mennink KU Leuven (Belgium)

CRYPTO 2016 August 15, 2016

Tweakable Blockciphers

Tweakable Blockciphers

- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Tweakable Blockciphers in OCBx

- OCBx by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, position) is unique for every evaluation
 - Different blocks always transformed under different tweak

Tweakable Blockciphers in OCBx

- OCBx by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, position) is unique for every evaluation
 - Different blocks always transformed under different tweak
- Change of tweak should be efficient

Tweakable Blockciphers from Scratch

- Hasty Pudding Cipher [Sch98]
 - AES submission, "first tweakable cipher"
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY [JNP14]
 - CAESAR submissions Deoxys, Joltik, KIASU

Tweakable Blockciphers from Blockcipher

• LRW₁ and LRW₂ by Liskov et al. (2002):

• h is XOR-universal hash

Tweakable Blockciphers from Blockcipher

• XEX by Rogaway (2004):

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and in about 14 CAESAR submissions

Tweakable Blockciphers from Permutation

Tweakable Even-Mansour (TEM):

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Introduced in CAESAR candidate Minalpher (2014)
- Generalized by Cogliati et al. (2015)

Tweakable Blockciphers from Permutation

• Related to XEX with Even-Mansour:

with
$$E_k(m) = P(m \oplus k) \oplus k$$

Tweakable Blockciphers from Permutation

• Related to XEX with Even-Mansour:

Tweakable Blockciphers in CAESAR

Dedicated

Deoxys, Joltik, KIASU, SCREAM

XEX-inspired

AEZ, CBA, COBRA, COPA, ELmD, iFeed, Marble, OCB, OMD, OTR, POET, SHELL

TEM-inspired

Minalpher, Prøst

Tweakable Blockciphers in CAESAR

Dedicated

Deoxys, Joltik, KIASU, SCREAM

XEX-inspired

AEZ, CBA, COBRA, COPA, ELmD, iFeed, Marble, OCB, OMD, OTR, POET, SHELL

We generalize this

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- ullet ${\mathcal T}$ can (still) be any set

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- ullet ${\mathcal T}$ can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$
 - lacksquare "Weak" $\mathcal{T} \longrightarrow$ insecure

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- T can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$
 - $lacksymbol{1}$ "Weak" $\mathcal{T} \longrightarrow \text{insecure}$
 - $m{2}$ "Normal" $\mathcal{T} \longrightarrow \text{single-key secure}$

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- T can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$
 - $lacksymbol{0}$ "Weak" \mathcal{T} \longrightarrow insecure
 - **2** "Normal" $\mathcal{T} \longrightarrow \text{single-key secure}$
 - $lacksquare{3}$ "Strong" \mathcal{T} \longrightarrow related-key secure

$$\begin{aligned} (0,0,0,0) \in \mathcal{T} &\implies & \mathsf{XPX}_k((0,0,0,0),m) = P(m) \\ (1,0,1,1) \in \mathcal{T} &\implies & \mathsf{XPX}_k((1,0,1,1),0) = k \end{aligned}$$

$$\begin{split} (0,0,0,0) \in \mathcal{T} &\implies & \mathsf{XPX}_k((0,0,0,0),m) = P(m) \\ (1,0,1,1) \in \mathcal{T} &\implies & \mathsf{XPX}_k((1,0,1,1),0) = k \\ (1,0,0,2) \in \mathcal{T} &\implies & \mathsf{XPX}_k((1,0,0,2),0) = 3P(k) \end{split}$$

"Valid" Tweak Sets

Technical definition to eliminate weak cases

$$(0,0,0,0) \in \mathcal{T} \implies \mathsf{XPX}_k((0,0,0,0),m) = P(m)$$

 $(1,0,1,1) \in \mathcal{T} \implies \mathsf{XPX}_k((1,0,1,1),0) = k$
 $(1,0,0,2) \in \mathcal{T} \implies \mathsf{XPX}_k((1,0,0,2),0) = 3P(k)$

"Valid" Tweak Sets

- Technical definition to eliminate weak cases
- Proven to be minimal: \mathcal{T} invalid \Rightarrow XPX insecure

XPX: Single-Key Security

(Strong) Tweakable PRP

- Information-theoretic indistinguishability
 - ullet $\widetilde{\pi}$ ideal tweakable permutation
 - P ideal permutation
 - k secret key

$$\mathcal{T}$$
 is valid \implies XPX is (S)TPRP up to $\mathcal{O}\left(\frac{q^2+qr}{2^n}\right)$

Related-Key (Strong) Tweakable PRP

- Information-theoretic indistinguishability
 - $rk\pi$ ideal tweakable related-key permutation
 - P ideal permutation
 - k secret key
- ullet ${\cal D}$ restricted to some set of key-deriving functions Φ

Key-Deriving Functions

• Φ_{\oplus} : all functions $k\mapsto k\oplus \delta$

Key-Deriving Functions

- Φ_{\oplus} : all functions $k\mapsto k\oplus \delta$
- $\Phi_{P\oplus}$: all functions $k\mapsto k\oplus \delta$ or $P(k)\mapsto P(k)\oplus \epsilon$

Key-Deriving Functions

- Φ_{\oplus} : all functions $k \mapsto k \oplus \delta$
- $\Phi_{P\oplus}$: all functions $k\mapsto k\oplus \delta$ or $P(k)\mapsto P(k)\oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

Key-Deriving Functions

- Φ_{\oplus} : all functions $k\mapsto k\oplus \delta$
- $\Phi_{P\oplus}$: all functions $k\mapsto k\oplus \delta$ or $P(k)\mapsto P(k)\oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

Results

if ${\mathcal T}$ is valid, and for all tweaks:	security	Φ
$t_{12} \neq 0$ $t_{12}, t_{22} \neq 0$ and $(t_{21}, t_{22}) \neq (0, 1)$	TPRP STPRP	$\Phi_{\oplus} \ \Phi_{\oplus}$

Key-Deriving Functions

- Φ_{\oplus} : all functions $k\mapsto k\oplus \delta$
- $\Phi_{P\oplus}$: all functions $k\mapsto k\oplus \delta$ or $P(k)\mapsto P(k)\oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

Results

if ${\mathcal T}$ is valid, and for all tweaks:	security	Φ
$t_{12} \neq 0$ $t_{12}, t_{22} \neq 0$ and $(t_{21}, t_{22}) \neq (0, 1)$	TPRP STPRP	$\Phi_{\oplus} \ \Phi_{\oplus}$
$t_{11}, t_{12} \neq 0 t_{11}, t_{12}, t_{21}, t_{22} \neq 0$	TPRP STPRP	$\Phi_{P\oplus} \ \Phi_{P\oplus}$

XPX Covers Even-Mansour

XPX Covers Even-Mansour

• Single-key STPRP secure (surprise?)

XPX Covers Even-Mansour

- Single-key STPRP secure (surprise?)
- ullet Generally, if $|\mathcal{T}|=1$, XPX is a normal blockcipher

XPX Covers XEX With Even-Mansour

ullet $(lpha,eta,\gamma)$ is in fact the "real" tweak

XPX Covers XEX With Even-Mansour

- ullet $(lpha,eta,\gamma)$ is in fact the "real" tweak
- $\Phi_{P\oplus}$ -related-key STPRP secure (if $2^{\alpha}3^{\beta}7^{\gamma} \neq 1$)

- By Andreeva et al. (2014)
- Implicitly based on XEX based on AES

- By Andreeva et al. (2014)
- Implicitly based on XEX based on AES
- Prøst-COPA by Kavun et al. (2014):
 COPA based on XEX based on Even-Mansour

Single-Key Security of COPA

Single-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

Related-Key Security of COPA

$$\begin{array}{c|c}
\hline
\text{COPA} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{-rk}} & \boxed{\text{XEX}} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{-rk}} & \boxed{E}
\end{array}$$

Single-Key Security of Prøst-COPA

Related-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

Related-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

Related-Key Security of Prøst-COPA

Application to AE: Minalpher

- By Sasaki et al. (2014)
- ullet Extra nonce N concatenated to k

 $2^{2d-1}3L$

Application to AE: Minalpher

- By Sasaki et al. (2014)
- Extra nonce N concatenated to k
- Based on XPX with $\mathcal{T} = \{(2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta})\}$

 $\stackrel{*}{\bigoplus} 2^{2d-1}3L$

Application to AE: Minalpher

- By Sasaki et al. (2014)
- ullet Extra nonce N concatenated to k
- Based on XPX with $\mathcal{T} = \{(2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta})\}$

$$\boxed{ \mathsf{Minalph.}} \xrightarrow{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)} \boxed{ \mathsf{XPX}} \xrightarrow{\frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{P\oplus}\text{-rk}}} \boxed{P}$$

 $\stackrel{*}{\bigoplus} 2^{2d-1}3L$

Application to MAC: Chaskey

- By Mouha et al. (2014)
- $\bullet \text{ Original proof based on 3 EM's: } \begin{cases} E_k(m) = P(m \oplus k) \oplus k \\ E_k(m) = P(m \oplus 3k) \oplus 2k \\ E_k(m) = P(m \oplus 5k) \oplus 4k \end{cases}$

Application to MAC: Chaskey

- By Mouha et al. (2014)
- $\bullet \text{ Original proof based on 3 EM's: } \begin{cases} E_k(m) = P(m \oplus k) \oplus k \\ E_k(m) = P(m \oplus 3k) \oplus 2k \\ E_k(m) = P(m \oplus 5k) \oplus 4k \end{cases}$
- \bullet Equivalent to XPX with $\mathcal{T} = \{(1,0,1,0), (3,0,2,0), (5,0,4,0)\}$

Application to MAC: Chaskey

- By Mouha et al. (2014)
- $\bullet \text{ Original proof based on 3 EM's: } \begin{cases} E_k(m) = P(m \oplus k) \oplus k \\ E_k(m) = P(m \oplus 3k) \oplus 2k \\ E_k(m) = P(m \oplus 5k) \oplus 4k \end{cases}$
- Equivalent to XPX with $\mathcal{T} = \{(1,0,1,0), (3,0,2,0), (5,0,4,0)\}$

$$\begin{array}{c|c}
\hline
\text{Chaskey} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\mathsf{sk}} & \text{XPX} & \xrightarrow{\mathbf{sk}} & P
\end{array}$$

ullet Extra P-call

- Extra P-call
- Based on XPX with $\mathcal{T}' = \{(0,1,0,1), (2,1,2,0), (4,1,4,0)\}$

- Extra P-call
- Based on XPX with $\mathcal{T}' = \{(0,1,0,1), (2,1,2,0), (4,1,4,0)\}$

- Extra P-call
- Based on XPX with $\mathcal{T}' = \{(0,1,0,1), (2,1,2,0), (4,1,4,0)\}$

- Approach can also be applied to:
 - Keyed Sponge and Duplex
 - 10 Sponge-inspired CAESAR candidates

Conclusions

XPX

- Generalized tweakable Even-Mansour
- Various levels of security
 - Single-key to related-key
- Applications to
 - AE schemes (including 12 CAESAR candidates)
 - MAC functions

Further Research

- Beyond birthday bound?
- Other related-key settings?

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define good and bad transcripts

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define good and bad transcripts

$$\mathbf{Adv}^{\mathrm{rk-(s)prp}}_{\mathsf{XPX}}(\mathcal{D}) \leq \underline{\varepsilon} + \mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ (\widetilde{\mathsf{rk}\pi}, P) \right] \\ \qquad \qquad ^{\underline{}} \mathsf{prob.} \ \mathsf{ratio} \ \mathsf{for} \ \mathsf{good} \ \mathsf{transcripts}$$

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define good and bad transcripts

$$\begin{aligned} \mathbf{Adv}_{\mathsf{XPX}}^{\mathsf{rk-}(s)\mathsf{prp}}(\mathcal{D}) &\leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ (\widetilde{\mathsf{rk}\pi}, P)\right] \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad$$

Trade-off: define bad transcripts smartly!

Before the Interaction

Reveal "dedicated" oracle queries

After the Interaction

- Reveal key information
 - Single-key: k and P(k)
 - Φ_{\oplus} -related-key: k and $P(k \oplus \delta)$
 - $\Phi_{P\oplus}\text{-related-key: }k$ and $P(k\oplus\delta)$ and $P^{-1}(P(k)\oplus\varepsilon)$

Bounding the Advantage

Smart definition of bad transcripts