COMP3251 Lecture 3: Master Theorem (Chapter 2.2)

The most important formula that you need to remember in this chapter.

Master Theorem. If T(n) = a T(n/b) + O(nd) for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \log_b a < d \\ O(n^{\log_b a}) & \log_b a > d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

The most important formula that you need to remember in this chapter.

divide the problem into a subproblems

Master Theorem. If $T(n) = \stackrel{\bullet}{a} T(n/b) + O(n^d)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \log_b a < d \\ O(n^{\log_b a}) & \log_b a > d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

The most important formula that you need to remember in

this chapter.

each subproblem has size *n/b*

divide the problem into a subproblems

Master Theorem. If $T(n) = \dot{a} T(n/b) + O(nd)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \log_b a < d \\ O(n^{\log_b a}) & \log_b a > d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

The most important formula that you need to remember in

this chapter.

each subproblem has size *n/b*

divide the problem into a subproblems dividing and combining takes *O(n^d)* time

Master Theorem. If $T(n) = \hat{a} T(n/\hat{b}) + O(\hat{n}^d)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \log_b a < d \\ O(n^{\log_b a}) & \log_b a > d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

The most important formula that you need to remember in

this chapter.

each subproblem has size *n/b*

divide the problem into a subproblems dividing and combining takes *O(n^d)* time

Master Theorem. If $T(n) = \hat{a} T(n/\hat{b}) + O(\hat{n}^d)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \log_b a < d \\ O(n^{\log_b a}) & \log_b a > d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

Implicit assumptions: (1) constant-size subproblems can be solved in O(1) time; (2) all subproblems have the same size.

The running time of solving size-1 subproblems is

$$a^{\log_b n} \cdot T(1) = n^{\log_b a} \cdot T(1) = O(n^{\log_b a})$$

The total running time of the combine steps (for all levels) is

$$O(n^d) + a \cdot O((n/b)^d) + \dots + a^k \cdot O((n/b^k)^d) + \dots + a^{\log_b n} \cdot O((n/b^{\log_b n})^d)$$

After simplification, it is equal to

$$O(n^d)(1 + a/b^d + \dots + (a/b^d)^k + \dots + (a/b^d)^{\log_b n})$$

Case 1: $a < b^d$, namely, $log_b a < d$.

Then, the first term dominates the above sum:

- Running time of the combine steps is O(n^d).
- So $T(n) = O(n^{\log_b a}) + O(n^d) = O(n^d)$.

The running time of solving size-1 subproblems is

$$a^{\log_b n} \cdot T(1) = n^{\log_b a} \cdot T(1) = O(n^{\log_b a})$$

The total running time of the combine steps (for all levels) is

$$O(n^d) + a \cdot O((n/b)^d) + \dots + a^k \cdot O((n/b^k)^d) + \dots + a^{\log_b n} \cdot O((n/b^{\log_b n})^d)$$

After simplification, it is equal to

$$O(n^d)(1 + a/b^d + \dots + (a/b^d)^k + \dots + (a/b^d)^{\log_b n})$$

Case 2: $a > b^d$, namely, $log_b a > d$.

Then, the last term dominates the above sum:

Running time of the combine steps is

$$O(n^d(a/b^d)^{\log_b n}) = O(n^d a^{\log_b n}/n^d) = O(a^{\log_b n}) = O(n^{\log_b n})$$

• So
$$T(n) = O(n^{\log_b a}) + O(n^{\log_b a}) = O(n^{\log_b a})$$
.

The running time of solving size-1 subproblems is

$$a^{\log_b n} \cdot T(1) = n^{\log_b a} \cdot T(1) = O(n^{\log_b a})$$

The total running time of the combine steps (for all levels) is

$$O(n^d) + a \cdot O((n/b)^d) + \dots + a^k \cdot O((n/b^k)^d) + \dots + a^{\log_b n} \cdot O((n/b^{\log_b n})^d)$$

After simplification, it is equal to

$$O(n^d)(1 + a/b^d + \dots + (a/b^d)^k + \dots + (a/b^d)^{\log_b n})$$

Case 3: $a = b^d$, namely, $log_b a = d$.

Then, all *log n* terms equal 1 in the above sum:

- Running time of the combine steps is O(nd log n).
- So $T(n) = O(n^{\log_b a}) + O(n^d \log n) = O(n^d \log n)$.

An Alternative Form of the Master Theorem

each subproblem has size *n/b*

divide the problem into a subproblems dividing and combining takes $O(n^d)$ time

Master Theorem. If $T(n) = \hat{a} T(n/\hat{b}) + O(\hat{n}^d)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^{\max\{d, \log_b a\}}) & \log_b a \neq d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

Example: Running Time of Merge Sort

Master Theorem. If $T(n) = a T(n/b) + O(n^d)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \log_b a < d \\ O(n^{\log_b a}) & \log_b a > d \\ O(n^d \log n) & \log_b a = d \end{cases}$$

Recall that:

- Merge Sort divides the problem into two n/2-size subproblems.
- Merging two n/2-size sorted lists takes O(n) time.

Hence,

- a = 2, b = 2, d = 1.
- The running time of Merge Sort is T(n) = O(n log n).