

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年4 月29 日 (29.04.2004)

PCT

(10) 国際公開番号 WO 2004/036679 A1

(51) 国際特許分類7:

WO 2004/036679 A1

(21) 国際出願番号:

H01M 8/02, C08J 5/22 PCT/JP2003/013278

(22) 国際出願日:

10 8 16 8 (16 10 2002)

(22) Epi-ani

2003年10月16日(16.10.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願 2002-303289

2002年10月17日(17.10.2002) JP

特願 2002-303290

2002年10月17日(17.10.2002) JF

特願 2002-312837

2002年10月28日 (28.10.2002) JP

特願 2002-313025

2002年10月28日 (28.10.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 東洋紡 績株式会社 (TOYO BOSEKI KABUSHIKI KAISHA) [JP/JP]; 〒530-8230 大阪府 大阪市 北区堂島浜二丁目 2番8号 Osaka (JP).

(72) 発明者; および

(72) 発明者; および (米国についてのみ): 北村 幸太(KITA-MURA, Kota) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田 二丁目 1番 1号東洋紡績株式会社 総合研究所内 Shiga (JP). 坂口 佳充 (SAKAGUCHI, Yoshimitsu) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番 1号東洋紡績株式会社 総合研究所内 Shiga (JP). 永原 重徳 (NA-GAHARA, Shigenori) [JP/JP]; 〒520-0292 滋賀県 大津市堅田二丁目 1番 1号東洋紡績株式会社総合研究所内 Shiga (JP). 濱本 史朗 (HAMAMOTO, Shiro) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番 1号東洋紡績株式会社総合研究所内 Shiga (JP). 濱本 史朗 (HAMAMOTO, Shiro) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番 1号東洋紡績株式会社総合研究所内 Shiga (JP). 滝本 直彦

[続葉有]

(54) Title: COMPOSITE ION-EXCHANGE MEMBRANE

(54) 発明の名称: 複合イオン交換膜

(57) Abstract: A composite ion-exchange membrane comprising an ion-exchange resin composition and a substrate membrane having open cells passing through the membrane, wherein the substrate membrane is impregnated with the ion-exchange resin composition and the ion-exchange resin composition comprises an ion-exchange resin containing as the main component an aromatic polyether obtained by subjecting a mixture comprising a compound having a specific chemical structure, an aromatic dihalide, a bisphenol, and an alkali metal carbonate and/or an alkali metal bicarbonate to polymerization in an organic solvent, and/or a derivative of the aromatic polyether. The composite ion-exchange membrane is excellent in resistance to swelling, mechanical strengths, and ionic conductivity.

(57) 要約: イオン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜と、を備える複合イオン交換膜であって、前記支持体膜は、前記空隙中に前記イオン交換樹脂組成物を含浸する支持体膜であり、前記イオン交換樹脂組成物は、特定の化学構造を有する化合物と、芳香族ジハロゲン化合物と、ビスフェノール化合物と、をアルカリ金属の炭酸塩および/または重炭酸塩と混合し、これらの混合物を有機溶媒中で重合させて得られる芳香族ポリューテルおよび/またはその誘導体を主成分とするイオン交換樹脂を含有するイオン交換樹脂組成物である、複合イオン交換膜によって耐膨潤性が高く、機械的強度とイオン伝導性とに優れる複合イオン交換膜を提供することができる。

(TAKIMOTO,Naohiko) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番1号 東洋紡績株式会社 総合研究所内 Shiga (JP). 杉原 秀紀 (SUGIHARA,Hideki). [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番1号 東洋紡績株式会社 総合研究所内 Shiga (JP). 高瀬敏 (PAKASE,Satoshi) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番1号 東洋紡績株式会社 総合研究所内 Shiga (JP). 北河享(KATAGAWA,Tooru) [JP/JP]; 〒520-0292 滋賀県 大津市 堅田二丁目 1番1号 東洋紡績株式会社 総合研究所内 Shiga (JP). 斉藤 都子(SAITO,Miyako) [JP/JP]; 〒553-0001 大阪市 福島区海老江 5-4-8-3 0 2 Osaka (JP).

- (74) 代理人:深見 久郎 , 外(FUKAMI,Hisao et al.); 〒 530-0054 大阪府 大阪市 北区南森町 2 丁目 1 番 2 9 号 三井住友銀行南森町ビル 深見特許事務所 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT,

LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 一 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受 領の際には再公開される。

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

複合イオン交換膜

5 技術分野

20

25

本発明は、複合イオン交換膜に関する。詳しくは、本発明は、機械的強度とイオン伝導性(プロトン伝導性)とに優れる複合イオン交換膜に関する。

背景技術

10 近年、エネルギー効率や環境性に優れた新しい発電技術が注目を集めている。 中でも高分子固体電解質膜を使用した固体高分子形燃料電池はエネルギー密度が 高く、また、他の方式の燃料電池に比べて運転温度が低いため起動、停止が容易 であるなどの特徴を有するため、電気自動車や分散発電などの電源装置としての 開発が進んできている。また、同じく高分子固体電解質膜を使用し、燃料として メタノールを直接供給する直接メタノール型燃料電池も携帯機器の電源などの用 途に向けた開発が進んでいる。

高分子固体電解質膜には、通常、プロトン伝導性のイオン交換樹脂を含む膜が使用される。高分子固体電解質膜にはプロトン伝導性以外にも、燃料の水素やメタノールなどの透過を防ぐ燃料透過抑止性や機械的強度などの特性が必要である。このような高分子固体電解質膜としては、たとえば米国デュポン社製ナフィオン(登録商標)に代表されるようなスルホン酸基を導入したパーフルオロカーボンスルホン酸ポリマーを含む膜が知られている。

しかしながら、パーフルオロカーボンスルホン酸ポリマーを含む膜は100℃以上では軟化するため、この膜を用いた燃料電池では運転温度が80℃以下に制限されていた。運転温度が上がると、エネルギー効率、装置の小型化、触媒活性の向上など、さまざまな利点があるため、耐熱性の高分子固体電解質膜が検討されてきた。

そこで、パーフルオロカーボンスルホン酸ポリマーを含む膜に代わる高分子固 体電解質膜として、ポリエーテルエーテルケトン系やポリエーテルスルホン系、

10

15

20

25

ポリスルホン系などのポリマーに、スルホン酸基などのイオン性基を導入したポリマーを含有する、いわゆる炭化水素系高分子固体電解質が近年盛んに検討されている。

その中の一つに、スルホン酸基を導入したポリスルホンを含む膜がある(たと えば、エフ ルフラノ (F. Lufrano) 他3名著、「スルホネイテッド ポリスルホン アズ プロマイジング メンブランズ フォー ポリマー エレ クトロライト フュエル セルズ」 (Sulfonated Polysulf one as Promising Membranes for Polym er Electrolyte Fuel Cells)、ジャーナル オブ アプライド ポリマー サイエンス (Journal of Applied Polymer Science)、(米国)、ジョン ワイリー アンド サ ンズ インク (John Wiley & Sons, Inc.)、2000 年、77号、p. 1250-1257を参照)。ポリスルホンは高い耐熱性を有 し、かつ有機溶媒に可溶であるなど加工性に優れることから、高分子固体電解質 膜の原料として適している。しかし、通常ポリスルホンは、濃硫酸や無水硫酸な どのスルホン化剤によってスルホン酸基を導入するが、この方法ではスルホン化 反応の制御が困難であった。そのため、所望のスルホン化度に調節できなかった り、不均一なスルホン化や副反応によって、ゲル化などの問題を起こす場合があ った。

また、前記スルホン酸基を導入したポリスルホンを含めた炭化水素系高分子固 体電解質は、パーフルオロカーボンスルホン酸ポリマーを含む膜に比べて、水和、 膨潤しやすく、高湿度下での耐水性に問題があった。

このような膨潤を抑制する方策の一つとして、塩基性ポリマーとの混合による技術が検討されている。この技術は、高分子固体電解質膜中のスルホン酸基を、塩基性ポリマーによって架橋することで膨潤を抑制しようとするものである。たとえば、スルホン酸基を有するポリエーテルスルホン系ポリマーや、スルホン酸基を有するポリエーテルストン系ポリマー(酸性ポリマー)などと、ポリベンズイミダゾール系ポリマー(塩基性ポリマー)との混合物を用いる技術などがある(たとえば、国際公開第99/54389号パンフレットを参照)。

10

15

20

25

また、イオン性基であるスルホン酸基間を共有結合により架橋することで、膨 潤を抑制する技術も検討されている(たとえば、特開平6-93114 (US5438082、EP0574791B1)、国際公開第99/61141号パンフレット、国際公開第99/38897号パンフレットを参照)。

しかし、上記の技術は、いずれも膨潤自体は抑制できるものの、イオン性基が 架橋反応によりイオン性を示さなくなるため、イオン伝導性が低下するという問 題点があった。

また、架橋構造を有する高分子固体電解質膜として、スチレン/ジビニルベンゼン共重合体のスルホン化物を含む膜は、初期の固体高分子形燃料電池に使用されたことで良く知られている。しかし、この高分子固体電解質膜は、ポリマー骨格そのものの耐久性に乏しく、燃料電池として満足な性質を示さなかった。

さらに、ルイス酸を触媒としてポリマー中のクロロメチル基を架橋反応させて得られるイオン交換体に関する技術もある(たとえば、特開平2-248434号公報、特開平2-245035号公報を参照)。しかし、この技術の架橋反応には、触媒が必要である。よって、ポリマーと触媒を混合してイオン交換体の成形体を得る場合には、触媒の残留が問題となる。また、ポリマーの成形体を触媒で処理してイオン交換体の成形体を得る場合には、ポリマーの成形体の内部で架橋反応が起こりにくいことが問題となる。

そこで、既存のポリマーをスルホン化するのではなく、スルホン酸基を有するモノマーを重合して、スルホン化ポリマーを合成し高分子固体電解質として利用することが検討されている(たとえば、特開平5-1149号公報および米国特許出願公開第2002/0091225号明細書を参照)。これらのスルホン化ポリマーは、スルホン化度の調節が容易にでき、均一な溶液が得やすいため優れている。ここで、高分子固体電解質をイオン交換膜として用いる場合、特に燃料電池のプロトン交換膜として用いる場合には、膜のイオン伝導性が高いほど性能が良くなる。そのため、膜中のスルホン酸基濃度を大きくすれば、イオン伝導性は大きくなる。しかしながら、上記のスルホン化ポリマーの中でもスルホン化度が大きいものは膨潤が著しくなるため、燃料電池のプロトン交換膜として使用した場合に、ガスのクロスオーバー、クロスリーク、電極の剥離、破損などの問題

10

15

25

が生じる傾向がある。

そのため、高分子固体電解質膜に種々の補強材を組合わせることで、高分子固体電解質膜の機械的強度を向上させ、寸法変化を抑制する技術が検討されている。その一つとして、スルホン化モノマーから重合したスルホン化ポリマーと類似の構造の非スルホン化ポリマーとをブレンドすることで補強することが行なわれている(たとえば、特開平5-4031号公報を参照)。しかしながら、スルホン化ポリマーと非スルホン化ポリマーとは極性が大きく異なるため相溶しにくく、均一な膜が得られないという欠点があった。

また、スルホン化ポリマーの補強を多孔質の支持体膜で行なうことも提案されている(たとえば、国際公開第00/22684号パンフレットを参照)。しかしながら、スルホン化ポリマーとしては、既存のポリマーのスルホン化物のみが挙げられており、より優れた高分子電解質であるスルホン化モノマーから重合したスルホン化ポリマーを用いた例は、この文献には記載されていない。また、この文献に記載されている支持体は膜の空隙率が小さいために、複合膜化するとイオン伝導性が低下するという欠点があった。

上記の現状に基づき、本発明の主要な課題は、耐膨潤性が高く、機械的強度と イオン伝導性とに優れる複合イオン交換膜を提供することである。

発明の開示

20 本発明者らは、上記の課題を解決するためには、スルホン化モノマーから重合されて得られるスルホン化ポリスルホンを含有するイオン交換樹脂組成物と、多孔質の支持体膜とを備える複合イオン交換膜を用いればよいとの着想を得、そのような複合イオン交換膜の中から、燃料電池における高分子固体電解質膜として好適な特性を有するものを見出すべく、鋭意研究開発を行った。

その結果、本発明者らは、特定の原料を重合して得られる芳香族ポリエーテルおよび/またはその誘導体を含有するイオン交換樹脂組成物を、膜を貫通する連続した空隙を有する支持体膜に含浸することにより、耐膨潤性が高く、機械的強度とイオン伝導性とに優れる複合イオン交換膜を得られることを見出した。

また、本発明者らは、上記の芳香族ポリエーテルおよび/またはその誘導体が

10

15

20

特定の化学構造を有する場合には、さらに複合イオン交換膜の性能が向上することを明らかにした。そして、本発明者らは、上記の複合イオン交換膜を特定の構造にすることによって、さらに複合イオン交換膜の性能が向上することを明らかにし、本発明の完成に至った。

すなわち、本発明の複合イオン交換膜は、イオン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜と、を備える複合イオン交換膜であって、この支持体膜は、この空隙中にこのイオン交換樹脂組成物を含浸する支持体膜であり、このイオン交換樹脂組成物は、化学式1で表される化合物と、芳香族ジハロゲン化合物と、ビスフェノール化合物とを主成分とするモノマー成分を、アルカリ金属の炭酸塩および/または重炭酸塩と混合し、これらの混合物を有機溶媒中で重合させて得られる芳香族ポリエーテルおよび/またはその誘導体を主成分とするイオン交換樹脂を含有するイオン交換樹脂組成物である、複合イオン交換膜である。

(なお、化学式 1 において、Q は-S (=O) $_2$ 一基または-C (=O) - 基を表わす。X はH, L i, N a, K 原子のいずれかを表わす。Y はF, C 1, B r, I 原子のいずれかを表わす。)

あるいは、本発明の複合イオン交換膜は、イオン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜と、を備える複合イオン交換膜であって、この支持体膜は、この空隙中にこのイオン交換樹脂組成物を含浸する支持体膜であり、このイオン交換樹脂組成物は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A:化学式2B=n:mの比率で含有するイオン交換樹脂を含有するイオン交換樹脂組成物である、複合イオン交換膜である。

— Ar2-O- Ar3-O- (化学式2B)

(なお、化学式 2 Aおよび化学式 2 Bにおいて、Z はH, Li, Na, K, 脂肪族または芳香族アミン由来のカチオンのいずれかを表わす。A r $_1$ および A r $_3$ はそれぞれ独立して 1 種類以上の二価の有機基を表わす。A r $_2$ は電子吸引性基を有する芳香環を含む 1 種類以上の二価の有機基を表わす。n は 1 \sim 1 0 0 0 の範囲の整数を、m は 0 \sim 1 0 0 0 の範囲の整数を、それぞれ表わす。)

ここで、この Ar_2 は、化学式3、化学式4、化学式5で表される結合単位からなる群より選ばれる1種類以上の結合単位であることが好ましい。

10 (なお、化学式3、化学式4、化学式5において、Aは他の結合単位との結合部 位を表わす。)

また、この Ar_1 およびこの Ar_3 は、化学式6および化学式7で表される結合単位よりそれぞれ独立して選ばれる1種類以上の結合単位であることが望ましい。

15

5

10

15

20

25

(なお、化学式6および化学式7において、Aは他の結合単位との結合部位を表わす。)

さらに、この Ar_1 およびこの Ar_3 は、いずれもこの化学式6で表される結合単位であり、この Ar_2 は、この化学式3で表される結合単位であり、このnおよびこのmは、数式1を満たす $1\sim1000$ の範囲の整数であることがさらに好ましい。

0. 2≤n/(n+m)≤0.8 (数式1)

あるいは、この Ar_1 およびこの Ar_3 は、いずれもこの化学式 6 で表される結合単位であり、この Ar_2 は、この化学式 4 で表される結合単位であり、このnおよびこのmは、数式 2 を満たす $1\sim 1$ 0 0 0 0 範囲の整数であってもよい。

0. 2≦n/(n+m)≦0.8 (数式2)

または、この Ar_1 およびこの Ar_3 は、いずれもこの化学式 7 で表される結合単位であり、この Ar_2 は、この化学式 3 で表される結合単位であり、この n およびこのnは、数式 3 を満たす $1\sim1000$ の範囲の整数であってもよい。

0. 3≤n/(n+m)≤0.7 (数式3)

そして、本発明の複合イオン交換膜は、このイオン交換樹脂組成物からなる表面層をこの支持体膜の両面に備えることが好ましい。また、この表面層のそれぞれの厚みは、 $1\sim50~\mu$ mの範囲であり、かつこの複合イオン交換膜の全厚みの半分を超えない範囲であることが望ましい。さらに、この支持体膜の少なくとも一方の面の開孔率は、 $40\sim95\%$ の範囲にあることが推奨される。

また、本発明の複合イオン交換膜におけるイオン交換樹脂組成物は、分子中に イオン性基を有し、かつ分子中に光架橋性基および/または熱架橋性基を有する イオン交換樹脂を架橋して得られる架橋イオン交換樹脂を含有するものであるこ とが好ましい。

ここで、この光架橋性基は、化学式8で表される化学構造の架橋性基および化

10

15

学式9で表される化学構造の架橋性基をともに含むことが好ましい。

(化学式 8 および化学式 9 において、R は炭素数が $1\sim1$ 0 の範囲の脂肪族炭化水素基を表わす。 o は、 $1\sim4$ の範囲の整数を表わす。)

そして、この熱架橋性基は、化学式10~化学式15で表される化学構造の熱 架橋性基からなる群より選ばれる1種類以上の熱架橋性基であることが望ましい。

(化学式10~化学式15において、 R^1 ~ R^9 は、それぞれ独立に、水素原子、炭素数1~10の範囲のアルキル基、フェニル基、炭素数6~20の範囲の芳香 族基、ハロゲン原子のいずれかを表わす。Pは、水素原子、炭素数1~10の範囲の炭化水素基、ハロゲン、ニトロ基、 $-SO_3$ T基のいずれかを表わす。Tは、H原子あるいは1価の金属イオンを表わす。nは、1~4の範囲の整数を表わす。)

また、このイオン性基は、スルホン酸基および/またはホスホン酸基であることが好ましい。さらに、このイオン交換樹脂のポリマー主鎖は、ポリエーテルスルホン系主鎖またはポリエーテルケトン系主鎖であることが望ましい。

10

15

20

25

そして、本発明の複合イオン交換膜は、このイオン交換樹脂組成物からなる表 面層をこの支持体膜の両面に備えることが好ましい。

ここで、この表面層のそれぞれの厚みは、 $1\sim50\mu$ mの範囲であり、かつ前記複合イオン交換膜の全厚みの半分を超えない範囲であることが望ましい。また、この支持体膜の少なくとも一方の面の開孔率は、 $40\sim95\%$ の範囲にあることが推奨される。

さらに、この支持体膜は、ポリベンザゾール系ポリマーを材質として含むこと が好ましい。

そして、この支持体膜は、このポリベンザゾール系ポリマーを 0.5~2質量%の範囲の含有率で含む等方性溶液を膜状に成型した後、凝固させて得られたものであることが望ましい。

また、本発明の複合イオン交換膜は、その断面において、複合イオン交換膜を厚み方向に縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について電子プローブマイクロアナライザーを用い線分析を行う場合に、X線カウント値のばらつきがCV値で50%以内となるものであることが好ましい。

さらにまた、本発明の複合イオン交換膜は、その断面において、複合イオン交換膜を厚み方向に縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について電子プローブマイクロアナライザーを用いて線分析を行った際、該測定元素のX線カウント値について、最大値に対して5%以下の値をとる分析点の数が全分析点の0~30%の範囲であるものであることが好ましい。

図面の簡単な説明

図1は、本発明の複合イオン交換膜の一例の断面構造の概略を示す模式図である。

図2は、本発明に用いる支持体膜の一例を、イオン交換樹脂組成物との複合化 前に臨界点乾燥して、その表面を走査型電子顕微鏡で観察した像の写真を写した 図である。

発明を実施するための最良の形態

10

15

20

25

以下、実施の形態を示して本発明をより詳細に説明する。

<複合イオン交換膜>

本発明の複合イオン交換膜は、イオン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜とを備える複合イオン交換膜であって、この支持体膜は、この空隙中にこのイオン交換樹脂組成物を含浸する支持体膜であり、このイオン交換樹脂組成物は、化学式1で表される化合物と、芳香族ジハロゲン化合物と、ビスフェノール化合物とを主成分とするモノマー成分を、アルカリ金属の炭酸塩および/または重炭酸塩と混合し、これらの混合物を有機溶媒中で重合させて得られる芳香族ポリエーテルおよび/またはその誘導体を主成分とするイオン交換樹脂を含有するイオン交換樹脂組成物である、複合イオン交換膜である。

ここで、上記の化学式1の化合物は、たとえば、4,4'ージクロロジフェニルスルホン、4,4'ージフルオロジフェニルスルホン、4,4'ージクロロベンゾフェノン、4,4'ージフルオロベンゾフェノンなどの化合物を発煙硫酸などで加熱してスルホン化することにより得ることができる。

また、上記の化学式1におけるQは、-S(=O) $_2$ -基であることが、モノマーおよびポリマーの溶解性が向上するため好ましい。さらに、上記の化学式1におけるYは、FまたはC1であることが、反応性が高くなるため好ましい。そして、上記の化学式1におけるXは、H原子ではないほうが好ましく、Na、K原子であることが好ましい。

ここで、上記の化学式1で表される化合物として好ましい例を化学式8A~化学式8Dおよび化学式9A~化学式9D(それぞれ複数の化学式を含む)として示す。

WO 2004/036679

5

10

本発明における芳香族ジハロゲン化合物は、少なくとも1つの芳香族環と、芳香族環に結合した少なくとも二つのハロゲン原子とを有する化合物を指す。かかる芳香族ジハロゲン化合物としては、ハロゲン原子が結合しているのと同一の芳香環に電子吸引性基が結合しているものが好ましく、ハロゲン原子に対してオルト位もしくはパラ位に結合しているものがより好ましい。さらに、電子吸引性基としては、たとえば、スルホン基、スルホニル基、カルボニル基、フォスフィンオキシド基、ニトロ基、シアノ基などを挙げることができる。そして、ハロゲン原子は下またはC1原子が好ましい。また、二つ以上のハロゲン原子は同一の芳香環に結合していても、別の芳香環に結合していてもよい。

ここで、上記の芳香族ジハロゲン化合物の好ましい例として、化学式10A~ 化学式10Iに表される化学構造の化合物が挙げられる。

10

(化学式10F) (化学式10G) (化学式10H) (化学式10I)

なお、化学式10Cの化合物は、二つ以上のハロゲン原子を有しているが、実質的に重合反応に寄与するハロゲン原子は二つであるため、他の芳香族ジハロゲン化合物と同様に、ポリマー合成に好適に用いることができる。

本発明における芳香族ジハロゲン化合物は、上記の化学式10A~化学式10 Iに表される化合物の中でも、4,4'ージクロロジフェニルスルホン、4,4'ージフルオロジフェニルスルホン、2,6ージクロロベンゾニトリル、2,6ージフルオロベンゾニトリルが特に好ましく、2,6ージクロロベンゾニトリル、2,6ージフルオロベンゾニトリルが最も好ましい。

そして、上記のビスフェノール化合物とは、芳香環に結合した水酸基(フェノール性水酸基)を2個有する化学構造の化合物を表わす。

ここで、上記のビスフェノール化合物の好ましい例として、化学式11A~化学式11Pに表される化学構造の化合物を挙げる。

(化学式11A) (化学式11B) (化学式11C) (化学式11D)

また、上記のビスフェノール化合物としては、化学式11A~化学式11Pに表される化学構造の化合物の中でも、4,4'ービフェノール、9,9ービス(ヒドロキシフェニル)フルオレンが特に好ましく、4,4'ービフェノールが最も好ましい。

10

15

20

25

<イオン交換樹脂の製造方法>

そして、本発明に用いるイオン交換樹脂の主成分である芳香族ポリエーテルおよび/またはその誘導体は、上記の化学式1で表される化合物と、芳香族ジハロゲン化合物と、ビスフェノール化合物とを主成分とするモノマー成分を、アルカリ金属の炭酸塩および/または重炭酸塩とを混合し、有機溶媒中で加熱して重合反応を生じさせることにより得られる。

ここで、上記の有機溶媒としては、高極性有機溶媒である、たとえば、Nーメチルー2ーピロリドン、N, N'ージメチルアセトアミド、N, N'ージメチルホルムアミド、スルホラン、ジメチルスルホキシド、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒を好適に用いることができる。また、これらの溶媒の中でも、沸点が高いNーメチルー2ーピロリドン、スルホランなどが、反応温度を高くして反応速度を大きくできるため特に好ましい。

上記のアルカリ金属の炭酸塩および/または重炭酸塩としては、たとえば、炭酸カリウム、炭酸ナトリウムなどが好ましい。

また、上記の化学式1で表される化合物は吸湿しやすいため、前もって乾燥しておくことが好ましい。さらに、上記のビスフェノール化合物とアルカリ金属の炭酸塩および/または重炭酸塩との反応で生成する水は、副反応の原因となるため、原料モノマーとの間の反応が起こるより前に系外に取り除くことが好ましい。ここで、系内の脱水は、トルエン、ベンゼン、クロロベンゼンなどとの共沸、水素化カルシウム、無水硫酸ナトリウム、モレキュラーシーブなどの脱水剤による吸着など、公知の任意の方法を用いることができる。

さらに、上記の重合反応の温度は、150 \mathbb{C} 以上であることが好ましく、特に 180 \mathbb{C} 以上であればより好ましい。また、この温度は、300 \mathbb{C} 以下であることが好ましく、特に 250 \mathbb{C} 以下であればより好ましい。この温度が 150 \mathbb{C} 未満の場合には、重合度が十分に上がらない傾向があり、この温度が 300 \mathbb{C} を超えると、架橋や分解などの副反応が著しくなるという傾向がある。

そして、上記の重合反応の時間は、3時間以上であることが好ましく、特に5時間以上であればより好ましい。また、この時間は、50時間以下であることが好ましく、特に30時間以下であればより好ましい。この時間が3時間未満の場

10

15

20

25

合には、ポリマーの重合度や回収率が低下するという傾向があり、この時間が5 0時間を超えると、架橋や分解などの副反応により目的の特性を有するポリマー を得ることが困難になるという傾向がある。

また、上記の重合反応は、窒素などの不活性ガス雰囲気中で行なうことが好ましい。

そして、上記の方法で重合反応を行なって芳香族ポリエーテルおよび/または その誘導体を得た場合、この芳香族ポリエーテルおよび/またはその誘導体を主 成分とするイオン交換樹脂は、単離してから本発明の複合イオン交換膜の材質の 一部として用いてもよいし、あるいは溶液中に溶解あるいは分散した状態で、そ のまま支持体膜中に含浸させて、本発明の複合イオン交換膜を製造してもよい。

ここで、上記の重合反応で得られた芳香族ポリエーテルおよび/またはその誘導体を主成分とするイオン交換樹脂の単離は、公知の任意の方法で行なうことができるが、たとえば、水、メタノール、エタノール、アセトンなど、およびこれらの混合溶媒中で再沈して単離することが一般的である。

また、上記のイオン交換樹脂を再沈して単離する前に、重合溶液を濾過してあらかじめ無機塩などを除いてもよい。そして、再沈して単離されたイオン交換樹脂は、熱水中で処理するなどして、溶媒、オリゴマー、残留したモノマー、無機塩などの不純物を除くことができる。さらに、再沈して単離されたイオン交換樹脂は、硫酸、塩酸などで処理して、スルホン酸基をアルカリ金属塩から酸へ変換しておくこともできる。これらの操作の後、再沈して単離されたイオン交換樹脂は、濾過し、乾燥することにより再沈溶媒を取除いて単離することができる。

上記のようにして単離されたイオン交換樹脂を、有機溶媒に溶解して溶液とした上で、支持体膜中に含浸させることにより、支持体膜と、単離されたイオン交換樹脂を含有するイオン交換樹脂組成物とを複合化して、本発明の複合イオン交換膜を得ることができる。

ここで、上記の有機溶媒としては、たとえば、N-メチル-2-ピロリドン、 N, N'-ジメチルアセトアミド、N, N'-ジメチルホルムアミド、スルホラン、 ジメチルスルホキシド、ヘキサメチルホスホンアミドなどを好適に用いることが

10

15

20

25

できる。また、これらの有機溶媒の中でも、N, N' -ジメチルアセトアミド、<math>N, N' -ジメチルホルムアミド、<math>N-メチル-2-ピロリドンなどが特に好ましい。

また、上記のようにして得られたイオン交換樹脂を含有するイオン交換樹脂組成物を支持体膜中に含浸させる際には、イオン交換樹脂の重合溶液をそのまま支持体膜中に含浸させることもできる。その際、イオン交換樹脂が溶解または分散した重合溶液を濾過や遠心沈降することによって、イオン交換樹脂が溶解または分散した重合溶液から無機塩などを除いておいてもよい。

また、この場合、イオン交換樹脂が溶解または分散した重合溶液に、適宜Nーメチルー2ーピロリドン、N, N'ージメチルアセトアミド、N, N'ージメチルホルムアミド、スルホラン、ジメチルスルホキシド、ヘキサメチルホスホンアミドなどの良溶媒を追加して、この重合溶液中のイオン交換樹脂の濃度を調整しておいてもよい。

ここで、支持体膜と上記のイオン交換樹脂組成物との複合化は、支持体膜にイオン交換樹脂を溶解または分散した溶液を含浸した後、溶媒を除去することにより行なうことができる。イオン交換樹脂を溶解または分散した溶液は、重合溶液をそのまま用いてもよいし、単離したイオン交換樹脂を再度、溶媒に溶解または分散した溶液を用いてもよい。

上記のイオン交換樹脂のスルホン酸基は、酸型であってもよいが、溶媒の分解 を抑制するためにはアルカリ金属などとの塩であることが好ましい。

上記のイオン交換樹脂を溶解または分散した溶液中における、イオン交換樹脂の濃度は、5 w t %以上であることが好ましく、特に10 w t %以上であればより好ましい。また、この濃度は、50 w t %以下であることが好ましく、特に40 w t %以下であればより好ましい。このイオン交換樹脂の濃度が5 w t %未満の場合には、本発明の複合イオン交換膜中のイオン交換樹脂の含有率が少なくなるためにイオン伝導性が低下する傾向があり、この濃度が50 w t %を超えると、イオン交換樹脂を溶解または分散した溶液の粘度が増大して取扱いが困難になる傾向がある。

また、上記のイオン交換樹脂を溶解または分散した溶液は、溶液の濁りやゲル

10

20

25

化が生じない範囲で、水やアルコールなどの非溶媒を含んでいてもよい。

ここで、支持体膜が上記のイオン交換樹脂を溶解または分散した溶液と相溶しない溶媒を含んでいる場合には、含浸する前に支持膜中の溶媒を、イオン交換樹脂溶液と同一の溶媒に置換しておくことが好ましい。なお、溶媒の置換の過程で、一度に置換することが困難な場合には、それぞれの溶媒の混合比率の異なる混合溶媒に浸漬するなどして、段階的に置換してもよい。

また、支持体膜を上記のイオン交換樹脂を溶解または分散した溶液に含浸する場合、含浸の時間、温度、浴比などは、特に限定されず、支持体膜の形状、大きさ、空隙率、開孔率など、あるいは上記のイオン交換樹脂の化学構造、分子量など、あるいは上記のイオン交換樹脂を溶解または分散した溶液の濃度、粘度などの条件に応じて、それぞれ適した条件を用いることができる。

さらに、上記のイオン交換樹脂を溶解または分散した溶液を含浸した支持体膜から溶媒を除去するための乾燥方法は、特に限定されず、熱風、赤外線、減圧など公知の任意の方法で行なうことができる。

15 そして、本発明の複合イオン交換膜に備わるイオン交換樹脂組成物に含有されるイオン交換樹脂中のスルホン酸基が塩になっている場合には、この複合イオン交換膜を酸で処理してスルホン酸基を酸型に変換しておくこともできる。なお、本発明の複合イオン交換膜を燃料電池のプロトン交換膜として用いる場合には、酸型で用いることが好ましい。

この場合、上記のイオン交換樹脂中のスルホン酸基酸型への変換に用いる酸としては、たとえば、0.1~10mol/Lの濃度の硫酸、塩酸、過塩素酸などの強酸の溶液を挙げることができる。

ここで、上記のイオン交換樹脂中のスルホン酸基酸型への変換の処理の際には、本発明の複合イオン交換膜を加熱してもよい。また、この酸処理の後は、本発明の複合イオン交換膜を水や熱水で充分洗浄して、遊離の強酸が複合イオン交換膜中に残存しないようにすることが好ましい。ここで、洗浄した本発明の複合イオン交換膜を乾燥する場合には、枠に固定して行なう方が好ましい。

<イオン交換樹脂の化学構造>

本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合

10

15

20

25

単位をそれぞれ化学式2A:化学式2B=n:mの比率で含有する化学構造を有するイオン交換樹脂として表わすこともできる。

(なお、化学式 2 Aおよび化学式 2 Bにおいて、2 はH,Li,Na,K,脂肪族または芳香族アミン由来のカチオンのいずれかを表わす。A r $_1$ および A r $_3$ はそれぞれ独立して 1 種類以上の二価の有機基を表わす。A r $_2$ は電子吸引性基を有する芳香環を含む 1 種類以上の二価の有機基を表わす。n は $1\sim1000$ の範囲の整数を、m は $0\sim1000$ の範囲の整数を、それぞれ表わす。)

ここで、上記の化学式 2A と化学式 2B とにおける n および m は、 $1\sim 100$ 0 の範囲の整数であるが、 $0.2\leq n/(n+m)\leq 0.9$ の数式を満たす範囲の整数であることが好ましい。

ここで、本発明の複合イオン交換膜を、燃料電池のプロトン交換膜(水素を燃料とするような固体高分子形燃料電池の高分子固体電解質膜)として用いる場合には、化学式2AにおけるZはH原子であることが好ましい。また、本発明の複合イオン交換膜を、メタノールを燃料として用いる直接メタノール型燃料電池の高分子固体電解質膜として用いる場合には、化学式2AにおけるZはH原子であることが好ましい。

また、上記の化学式 2 Bにおいて、A r $_2$ は電子吸引性基を有する二価の有機基を表わす。さらに、A r $_2$ は電子吸引性基を有する二価の有機基の中でも、電子吸引性基が結合した芳香族基であることが好ましい。前記電子吸引性基としては、たとえば、スルホン基、スルホニル基、カルボニル基、フォスフィンオキシド基、ニトロ基、シアノ基などを挙げることができる。さらに、電子吸引性基は、エーテル結合の酸素原子に対して芳香族基のオルト位またはパラ位に結合していることが好ましい。

ここで、 Ar_2 の例としては化学式12A~化学式12Eに表される化学構造の結合単位を挙げることができる。

(化学式12A)

(化学式12B)

(化学式12C)

(化学式12D)

(化学式12E)

(なお、化学式12A~化学式12Eにおいて、Aは他の結合単位との結合部位を表わす。)

なお、これらの化学構造の結合単位の中でも、化学式3~化学式5で表される 化学構造の結合単位がより好ましく、さらに化学式3または化学式4で表される 化学構造の結合単位が特に好ましく、化学式4で表される化学構造の結合単位が 最も好ましい。

10

5

(なお、化学式3、化学式4、化学式5において、Aは他の結合単位との結合部位を表わす。)

また、上記の Ar_1 および Ar_3 は、それぞれ二価の有機基を表わす。その例として、上記の化学式11A~化学式11Pにおいてビスフェノール化合物とし

10

15

20

25

て例示した化合物から2つの水酸基を除いた化学構造の結合単位を挙げることができる。

ここで、 Ar_1 と Ar_3 とは、同一であっても異なっていてもよい。また、 Ar_1 と Ar_3 とのそれぞれが、違った 2 種類以上の結合単位からなっていてもよい。

上記の Ar_1 および Ar_3 の中でも、化学式6および化学式7で表される化学構造の結合単位が特に好ましく、化学式6で表される化学構造の結合単位が最も好ましい。

(なお、化学式6および化学式7において、Aは他の結合単位との結合部位を表わす。)

ここで、本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A: 化学式2B=n: mの比率で含有する化学構造を有するイオン交換樹脂であって、さらにAr₁およびAr₃がいずれも化学式6の化学構造の結合単位であり、Ar₂が化学式3で表される化学構造の結合単位であり、n、mが数式1を満たす $1\sim1000$ の範囲の整数であれば、より一層好ましい。

$$0.2 \le n / (n+m) \le 0.8$$
 (数式1)

あるいは、本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A: 化学式2B=n: mの比率で含有する化学構造を有するイオン交換樹脂であって、 Ar_1 および Ar_3 がいずれも化学式 6で表される化学構造の結合単位であり、 Ar_2 が化学式 4で表される化学構造の結合単位であり、n、mが数式 2 を満たす $1\sim 1$ 000の範囲の整数であっても、より一層好ましい。

また、本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A:化学式2B=n:mの比率で含有する化学構

15

20

25

造を有するイオン交換樹脂であって、 Ar_1 および Ar_3 がいずれも化学式 7 で表される化学構造の結合単位であり、 Ar_2 が化学式 3 で表される化学構造の結合単位であり、n、mが数式 3 を満たす $1\sim 1000$ の範囲の整数であっても、より一層好ましい。

5 0.3≦n/(n+m)≦0.7 (数式3)

数式1~3におけるn/(n+m)が大きくなるとイオン伝導性が向上するが、同時に水による膨潤性が大きくなり膜の形態安定性が損なわれる傾向が出てくる。また、数式1~3におけるn/(n+m)が小さくなると、イオン伝導性は低下するもののメタノールの透過性が小さくなる傾向がある。水素を燃料とする固体高分子形燃料電池では、n/(n+m)が大きくて高いイオン伝導性を示す膜が適している。また、メタノールを燃料とする直接メタノール型燃料電池では通常メタノールを水溶液として用いるため、n/(n+m)が小さくて水による膨潤とメタノール透過性が少ない膜が適している。

本発明に用いるイオン交換樹脂は、化学式 2 A と化学式 2 B とで表される結合単位をそれぞれ化学式 2 A : 化学式 2 B = n : m の比率で含有する化学構造を有するイオン交換樹脂であって、さらに A r $_1$ および A r $_3$ がいずれも化学式 6 の化学構造の結合単位であり、 A r $_2$ が化学式 3 で表される化学構造の結合単位であり、 n 、m が数式 4 を満たす 1 \sim 1 0 0 0 の範囲の整数であれば、水素を燃料とするような固体高分子形燃料電池の高分子固体電解質膜として用いる場合により一層好ましい。

0.5≦n/(n+m)≦0.7 (数式4)

あるいは、本発明に用いるイオン交換樹脂は、化学式 2A と化学式 2B とで表される結合単位をそれぞれ化学式 2A: 化学式 2B = n: m の比率で含有する化学構造を有するイオン交換樹脂であって、A r $_1$ および A r $_3$ がいずれも化学式 6 で表される化学構造の結合単位であり、A r $_2$ が化学式 4 で表される化学構造の結合単位であり、A r $_2$ が化学式 4 で表される化学構造の結合単位であり、n 、m が数式 5 を満たす 1 \sim 1 0 0 0 の範囲の整数であれば、水素を燃料とするような固体高分子形燃料電池の高分子固体電解質膜として用いる場合により一層好ましい。

0. 4≤n/(n+m)≤0.8 (数式5)

10

20

25

また、本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A:化学式2B=n:mの比率で含有する化学構造を有するイオン交換樹脂であって、 Ar_1 および Ar_3 がいずれも化学式7で表される化学構造の結合単位であり、 Ar_2 が化学式3で表される化学構造の結合単位であり、n、mが数式6を満たす $1\sim1000$ の範囲の整数であっても、より一層好ましい。

0. 4≤n/(n+m)≤0.6 (数式6)

本発明に用いるイオン交換樹脂は、化学式 2 A と化学式 2 B とで表される結合単位をそれぞれ化学式 2 A : 化学式 2 B = n : m の比率で含有する化学構造を有するイオン交換樹脂であって、さらに A r_1 および A r_3 がいずれも化学式 6 の化学構造の結合単位であり、 A r_2 が化学式 3 で表される化学構造の結合単位であり、 n 、m が数式 7 を満たす 1 ~ 1 0 0 0 の範囲の整数であれば、メタノールを燃料として用いる直接メタノール型燃料電池の高分子固体電解質膜として用いる場合により一層好ましい。

15 0. $2 \le n / (n+m) \le 0.5$ (数式7)

あるいは、本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A: 化学式2B=n: mの比率で含有する化学構造を有するイオン交換樹脂であって、 Ar_1 および Ar_3 がいずれも化学式6で表される化学構造の結合単位であり、 Ar_2 が化学式4 で表される化学構造の結合単位であり、n、m が数式8 を満たす $1\sim1000$ の範囲の整数であれば、メタノールを燃料として用いる直接メタノール型燃料電池の高分子固体電解質膜として用いる場合により一層好ましい。

0. 2≤n/(n+m)≤0.5 (数式8)

また、本発明に用いるイオン交換樹脂は、化学式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A:化学式2B=n:mの比率で含有する化学構造を有するイオン交換樹脂であって、 Ar_1 および Ar_8 がいずれも化学式7で表される化学構造の結合単位であり、 Ar_2 が化学式3で表される化学構造の結合単位であり、n、mが数式9を満たす $1\sim1000$ の範囲の整数であれば、メタノールを燃料として用いる直接メタノール型燃料電池の高分子固体電解質膜とし

10

15

20

25

て用いる場合により一層好ましい。

0. 3≤n/(n+m)≤0.5 (数式9)

燃料電池において、固体高分子形燃料電池であれば加湿された燃料ガスや酸化ガスに含まれる水分や、反応で生成する水によって、直接メタノール型燃料電池であれば燃料として供給するメタノール水溶液中の水によって、それぞれイオン交換膜は膨潤する。イオン交換膜の膨潤性が大きいと、膜の破損や電極のはがれなどが起こりやすくなるため好ましくない。以上に挙げた本発明におけるイオン交換樹脂の好ましい構造の中でも、 Ar_1 および Ar_3 がいずれも化学式 6 で表される化学構造の結合単位であり、 Ar_2 が化学式 4 で表される化学構造の結合単位である構造のものが、水による膨潤性がより小さいので、特に好ましい構造である。その中でも、n、mが数式 5 を満たすものは固体高分子形燃料電池のイオン交換膜として適しており、n、mが数式 8 を満たすものは直接メタノール型燃料電池のイオン交換膜として適している。

<イオン性基および架橋性基>

本発明におけるイオン交換樹脂組成物は、分子中にイオン性基を有し、かつ分子中に光架橋性基および/または熱架橋性基を有するイオン交換樹脂を架橋して得られる架橋イオン交換樹脂を含有するのが、好ましい。なお、本明細書中において、分子中にイオン性基を有し、かつ分子中に光架橋性基および/または熱架橋性基を有する場合のイオン交換樹脂の未架橋状態のものを「未架橋イオン交換樹脂」と呼ぶ。

前記未架橋イオン交換樹脂が分子中に有するイオン性基は、特に限定されるものではないが、たとえば、スルホン酸基、ホスホン酸基、リン酸基、カルボン酸基など、あるいはそれらのアルカリ金属などとの塩であることが好ましい。なお本明細書において、イオン性基とは、イオンに解離することのできる基を示す。ここで、上述したように本発明におけるイオン交換樹脂組成物は、スルホン酸基を必須とするモノマー(化学式1)、あるいは結合単位(化学式2A)を用いたものであるため、イオン性基を必須として有する。本発明におけるイオン交換樹脂組成物は、上記中から選ばれるイオン性基をさらに有していてもよい。たとえば、スルホン酸基をさらに有すると、イオン伝導性がさらに向上される。また、

10

15

20

25

たとえばホスホン酸基を有すると、高温でもイオン伝導性を示す利点がある。

未架橋イオン交換樹脂中のイオン性基の平均含有量は、0.1mmol/g以上であることが好ましく、特に1.0mmol/g以上であることがより好ましい。また、このイオン性基の平均含有量は、5.0mmol/g以下であることが好ましく、特に4.0mmol/g以下であることがより好ましい。このイオン性基の平均含有量が0.1mmol/g未満の場合には、イオン伝導性が著しく低下する傾向があり、このイオン性基の平均含有量が5.0mmol/gを超えると、架橋で抑制できないほど膜の膨潤性が著しく大きくなるという傾向がある。

そして、本発明に用いる未架橋イオン交換樹脂の有する架橋性基は、熱架橋性基および/または光架橋性基などの架橋性の反応性基であることが必要である。本発明に用いる未架橋イオン交換樹脂の有する架橋性基は、少なくとも熱架橋性基または光架橋性基を含んでいる必要があるが、他の架橋性の反応性基を含んでいても構わない。ここで、なお、本明細書において、熱架橋性基とは、加熱することによって架橋する性質を有する基を示す。また、本明細書において、光架橋性基とは、光照射によって架橋する性質を有する基を示す。さらに、本明細書において、架橋性基とは、熱架橋性基と光架橋性基とをともに含み、さらには他の架橋性の反応性基をも含む概念である。

さらに、本発明に用いる未架橋イオン交換樹脂中のこれらの架橋性基の平均含有量は、1分子中1個以上であることが好ましく、特に1mmol/kg以上であることがより好ましい。また、この平均含有量は、5,000mmol/kg以下であることが好ましく、特に500mmol/kg以下であることがより好ましい。この架橋性基の平均含有量が1分子中1個未満の場合には、架橋による膨潤抑制効果は極めて小さくなるという傾向があり、この架橋性基の平均含有量が5,000mmol/kgを超えると、イオン伝導性が低下したり、架橋後の膜の柔軟性が失われて取扱いが困難になるという傾向がある。

これらの架橋性基は、それぞれの反応性に応じた方法で処理することにより架橋させることができる。すなわち、熱架橋性基は、加熱処理により架橋させることができる。 とができ、光架橋性基は、光照射処理により架橋させることができる。

10

15

20

25

<熱架橋性基>

本発明に用いる未架橋イオン交換樹脂が好ましく有する熱架橋性基は、特に限 定するものではないが、たとえば、エチレン基、エチニル基などの多重結合基や、 ベンゾオキサジン基、オキサゾール基などを挙げることができる。

さらに、これらの基は、メチル基、フェニル基などの置換基を有していてもよい。なお、これらの熱架橋性基は、本発明に用いる未架橋イオン交換樹脂中の主鎖中に存在してもよく、側鎖として存在してもよく、末端基として存在してもよいが、未架橋イオン交換樹脂の末端基として存在することが特に好ましい。

ここで、このような熱架橋性基は、熱架橋性基を有する化学構造を有する原料 モノマーを、熱架橋性基を有さない化学構造を有する他の原料モノマーと混合し て、共重合モノマーや末端停止剤の役割を担う原料モノマーとして重合反応させ ることで、本発明に用いる未架橋イオン交換樹脂に導入することができる。

また、本発明に用いる未架橋イオン交換樹脂中の熱架橋性基の平均含有量は、1 mmol/kg以上であることが好ましく、特に5 mmol/kg以上であることがより好ましい。また、この熱架橋性基の平均含有量は、1,000 mmol/kg以下であることが好ましく、特に500 mmol/kg以下であることがより好ましい。この熱架橋性基の平均含有量が1 mmol/kg未満の場合には、架橋による膨潤抑制効果は極めて小さくなるという傾向があり、この熱架橋性基の平均含有量が1,000 mmol/kgを超えると、未架橋イオン交換樹脂の分子量が低下して膜の形成が困難になる傾向がある。

本発明に用いる未架橋イオン交換樹脂の有する熱架橋性基の架橋は、加熱処理 によって行なうことができる。なお、この加熱処理は窒素、アルゴンなどの不活 性ガス雰囲気中で行なうことが好ましい。

また、この加熱処理の温度は、100 \mathbb{C} 以上であることが好ましく、特に20 0 \mathbb{C} 以上であることがより好ましい。さらに、この加熱処理の温度は、400 \mathbb{C} 以下であることが好ましく、特に300 \mathbb{C} 以下であることがより好ましい。この加熱処理の温度が100 \mathbb{C} 未満の場合には、架橋反応が十分に進行しない傾向があり、この加熱処理の温度が400 \mathbb{C} を超えると、イオン交換樹脂そのものの熱分解が起こりやすくなるという傾向がある。

10

15

20

さらに、この加熱処理の時間は、1秒以上であることが好ましく、特に60秒以上であることがより好ましい。また、この加熱処理の時間は、100時間以下であることがより好ましい。この加熱処理の時間が1秒未満の場合には、膜の内部まで十分に熱が伝わらず架橋反応が不均一になるという傾向があり、この加熱処理の時間が100時間を超えると、イオン交換樹脂そのものの分解や変性が起こりやすくなるという傾向がある。

そして、この加熱処理を行なう場合に応じて、未架橋イオン交換樹脂を含有する樹脂組成物中には、アゾ系重合開始剤、過酸化物系重合開始剤などの公知の任意の重合開始剤を添加してもよい。

また、本発明に用いる未架橋イオン交換樹脂の有する熱架橋性基は、化学式1 0~化学式15で表される化学構造の熱架橋性基からなる群より選ばれる1種類 以上の熱架橋性基であることが望ましい。

(化学式10~化学式15において、 R^1 ~ R^9 は、それぞれ独立に、水素原子、 炭素数1~10の範囲のアルキル基、フェニル基、炭素数6~20の範囲の芳香 族基、ハロゲン原子のいずれかを表わす。 Pは、水素原子、炭素数1~10の範 囲の炭化水素基、ハロゲン、ニトロ基、 $-SO_8$ T基のいずれかを表わす。 Tは、 H原子あるいは1価の金属イオンを表わす。 oは、1~4の範囲の整数を表わ す。)

なお、これらの熱架橋性基は、単一の種類のみであってもよいが、複数の種類の熱架橋性基が同一の未架橋イオン交換樹脂の分子中に混在していてもよい。

<光架橋性基>

5

10

15

20

25

本発明に用いる未架橋イオン交換樹脂の有する熱架橋性基は、特に限定するものではないが、たとえば、ベングフェノン基、αージケトン基、アシロイン基、アシロインエーテル基、ベンジルアルキルケタール基、アセトフェノン基、多核キノン類からなる基、チオキサントン基、アシルフォスフィン基などを挙げることができる。

また、これらの光架橋性基の中でも、ベンゾフェノン基などの光によりラジカルを発生することのできる基と、メチル基やエチル基などの飽和炭化水素基を有する芳香族基、エチレン性不飽和基などの、ラジカルと反応することのできる基とを組合わせて用いることが特に好ましい。

もっとも、未架橋イオン交換樹脂の骨格構造によっては、ベンゾフェノン基などの光でラジカルを発生する基だけでも、架橋反応が起きる場合がある。その場合には、ラジカルと反応することのできる基は必ずしも必要ではなく、本発明に用いる未架橋イオン交換樹脂は、ラジカル発生基だけを有していてもよい。

なお、これらの光架橋性基は、本発明に用いる未架橋イオン交換樹脂中の主鎖 中に存在してもよく、側鎖として存在してもよく、末端基として存在してもよい が、未架橋イオン交換樹脂の末端基として存在することが特に好ましい。

ここで、このような光架橋性基は、光架橋性基を有する化学構造を有する原料 モノマーを、光架橋性基を有さない化学構造を有する他の原料モノマーと混合し て、共重合モノマーや末端停止剤の役割を担う原料モノマーとして重合反応させ ることで、本発明に用いる未架橋イオン交換樹脂に導入することができる。

また、本発明に用いる未架橋イオン交換樹脂中の光架橋性基の平均含有量は、 1 mm o 1 / k g以上であることが好ましく、特に5 mm o 1 / k g以上である ことがより好ましい。また、この光架橋性基の平均含有量は、5,000 mm o 1 / k g以下であることが好ましく、特に500 mm o 1 / k g以下であること がより好ましい。

この光架橋性基の平均含有量が1mmol/kg未満の場合には、架橋による

10

15

20

25

膨潤抑制効果は極めて小さくなるという傾向があり、この光架橋性基の平均含有量が5,000mmol/kgを超えると、イオン伝導性が低下したり、架橋後の膜の柔軟性が失われて取扱いが困難になるという傾向がある。

ここで、本発明に用いる未架橋イオン交換樹脂の有する光架橋性基の架橋は、 光照射処理によって行なうことができる。なお、この光照射処理は窒素、アルゴンなどの不活性ガス雰囲気中で行なうことが好ましい。

また、この光照射処理の際の温度は、室温(25°C)以上であることが好ましく、特に50°C以上であることがより好ましい。さらに、この光照射処理の際の温度は、250°C以下であることが好ましく、特に200°C以下であることがより好ましい。この光照射処理の際の温度が室温(25°C)未満の場合には、架橋反応が進行し難い傾向があり、この光照射処理の際の温度が250°Cを超えると、分解などの副反応が起こりやすくなる傾向がある。

さらに、この光照射処理の時間は、1秒以上であることが好ましく、特に30秒以上であることがより好ましい。また、この光照射処理の時間は、100時間以下であることがより好ましい。この光照射処理の時間が1秒未満の場合には、架橋反応の進行度が膜の面方向で不均一になる傾向があり、この光照射処理の時間が100時間を超えると、イオン交換樹脂の分解や劣化などの副反応が起こりやすくなる傾向がある。

ここで、本発明に用いる未架橋イオン交換樹脂の有する光架橋性基は、化学式8で表される化学構造の架橋性基および化学式9で表される化学構造の架橋性基および化学式9で表される化学構造の架橋性基をともに含むことが好ましい。

(化学式8および化学式9において、Rは炭素数が $1\sim10$ の範囲の脂肪族炭化水素基を表わす。oは、 $1\sim4$ の範囲の整数を表わす。)

なお、本発明に用いる未架橋イオン交換樹脂は、化学式8および化学式9で表

10

15

される化学構造の二種類の光架橋性基をともに含むことが好ましい。

<その他の架橋性を有する反応性基>

本発明に用いる未架橋イオン交換樹脂の有するその他の架橋性を有する反応性 基としては、特に限定するものではないが、たとえば、アミノ基、エポキシ基、 ヒドロキシル基、ハロゲン基、ハロメチル基、カルボキシル基などの反応性基が 挙げられる。

<未架橋イオン交換樹脂のポリマー主鎖への架橋性基の導入>

本発明に用いる未架橋イオン交換樹脂のポリマー主鎖への架橋性基の導入を行 うためには、架橋性基の原料となる特定の化合物を用いることが好ましい。なお、 これらの化合物は、ポリマー主鎖を得るための縮合重合反応系に最初から原料と して加えておいてもよいし、この縮合重合反応がある程度進んだ段階で加えても よい。

本発明に用いる未架橋イオン交換樹脂のポリマー主鎖に熱架橋性基を導入する ための化合物としては、特に限定されるものではないが、たとえば、下記の化学 式16A~化学式16Kで表される化学構造を有する化合物からなる群より選ば れる1種類以上の化合物を挙げることができる。

なお、これらの化合物は、単独で用いてもよいし、複数の種類を混合して用いてもよい。

これらの化合物を用いて導入される熱架橋性基の中でも、上記の化学式10で表される化学構造を有する熱架橋性基は、下記の化学式17に表されるように、フェノール性水酸基末端を有するポリマー主鎖に、ホルムアルデヒドおよびアミンを反応させることで得ることができる。

(化学式17)

(化学式17において、R'は水素原子、炭素数1~10の範囲のアルキル基、フェニル基、炭素数6~20の範囲の芳香族基のいずれかを表わす。)

10 なお、これらの化合物は、単独で用いてもよいし、複数の種類を混合して用いてもよい。

また、本発明に用いる未架橋イオン交換樹脂のポリマー主鎖に光架橋性基の一種であるラジカル発生基を導入するための化合物としては、特に限定されるものではないが、たとえば、下記の化学式18A~化学式18Dで表される化学構造を有する化合物からなる群より選ばれる1種類以上の化合物を挙げることができる。

15

(化学式18A)

(化学式18C)

(化学式18B)

(化学式18D)

15

なお、これらの化合物は、単独で用いてもよいが、複数の種類を混合して用いてもよい。

また、本発明に用いる未架橋イオン交換樹脂のポリマー主鎖に光架橋性基の一種であるラジカルと反応する基(本明細書において、ラジカル反応性基とも記載する)を導入するための化合物としては、特に限定するものではないが、たとえば、下記の化学式19A~化学式19Fで表される化学構造を有する化合物からなる群より選ばれる1種類以上の化合物を挙げることができる。

10 なお、これらの化合物は、単独で用いてもよいが、複数の種類を混合して用いてもよい。

ここで、本発明に用いる未架橋イオン交換樹脂においては、上記のラジカル発生基とラジカル反応性基とは、同一のポリマー主鎖にあっても、別々のポリマー主鎖にあってもよい。

また、本発明に用いる未架橋イオン交換樹脂としては、ラジカル発生基を有する未架橋イオン交換樹脂と、ラジカル反応性基を有する未架橋イオン交換樹脂とを含む二種以上の未架橋イオン交換樹脂を混合して用いてもよいし、あるいはラジカル発生基とラジカル反応性基とをともに有する未架橋イオン交換樹脂を単独

で用いてもよい。

ここで、本発明に用いる未架橋イオン交換樹脂の化学構造の具体例を下記の化学式20A~化学式20Iとして表わす。なお、本発明に用いる未架橋イオン交換樹脂の化学構造は、これらの化学構造に限定されるものではない。

(化学式20B)

(化学式20C)

(化学式20E)

(化学式20F)

(化学式20H)

(化学式20 I)

(化学式20A~化学式20Iにおいて、Lは、H原子あるいは一価の金属イオ

10

15

20

25

ンを表わす。 r および p は、それぞれ独立して、任意の正の整数を表わす。) <未架橋イオン交換樹脂のポリマー主鎖へのイオン性基の導入>

本発明におけるイオン交換樹脂は、上記のようにスルホン酸基を有するモノマーまたは結合単位を有するため、イオン性基を必須として有するものではあるが、 当該イオン交換樹脂のポリマー主鎖に、さらにイオン性基を導入してもよい。

未架橋イオン交換樹脂にイオン性基をさらに導入する場合には、イオン性基の 原料となる特定の化合物を用いることが好ましい。なお、これらの化合物は、ポ リマー主鎖を得るための縮合重合反応系に最初から原料として加えておいてもよ いし、この縮合重合反応がある程度進んだ段階で加えてもよい。また、上記の架 橋性基が既に導入されたポリマー主鎖にイオン性基を導入してもよい。

本発明に用いる未架橋イオン交換樹脂のポリマー主鎖にイオン性基を導入する ための化合物としては、特に限定するものではないが、たとえば、イオン性基が スルホン酸基である場合には、無水硫酸、無水硫酸の錯体、発煙硫酸、濃硫酸、 クロロスルホン酸などのスルホン化剤などを用いることができる。

ここで、上記のように架橋性基を既に導入されたポリマー主鎖にイオン性基を 導入するためには、たとえば、架橋性基を有するポリマー主鎖の成形体を、無水 硫酸、無水硫酸の錯体、発煙硫酸、濃硫酸、クロロスルホン酸などのスルホン化 剤で処理する方法を用いることができる。

あるいは、架橋性基を有するポリマー主鎖を、スルホン化剤に対して不活性な 溶媒に溶解した状態で、スルホン化剤を反応させる方法を用いることもできる。 また、架橋性基を有するポリマー主鎖を、適当な溶媒で膨潤させた状態で、スル ホン化剤を反応させる方法を用いることもできる。さらに、架橋性基を有するポ リマー主鎖を、直接スルホン化剤と反応させる方法を用いることもできる。

なお、上記のスルホン化剤はそのまま用いてもよいし、適当な溶媒に溶解、分散した状態で用いることもできる。また、上記のスルホン化反応は、気相や液相で行なうことができる。

そして、上記のスルホン化反応の温度は、-100 \mathbb{C} 以上であることが好ましく、特に-30 \mathbb{C} 以上であることがより好ましい。また、このスルホン化反応の温度は、100 \mathbb{C} 以下であることが好ましく、特に80 \mathbb{C} 以下であることがより

10

15

20

25

好ましい。このスルホン化反応の温度が-100℃未満の場合には、溶液の粘度が著しく上昇したり、反応速度が低下して所望のスルホン化物を得ることが困難になる傾向があり、このスルホン化反応の温度が100℃を超えると、ポリマーの分解や架橋などの副反応が起きやすくなる傾向がある。

また、上記のスルホン化反応の時間は、1時間以上であることが好ましく、特に2時間以上であることがより好ましい。また、このスルホン化反応の時間は、100時間以下であることが好ましく、特に80時間以下であることがより好ましい。このスルホン化反応の時間が1時間未満の場合には、スルホン化が不均一になったり、十分に進行しなかったりする傾向があり、このスルホン化反応の温度が100時間を超えると、ポリマーの分解や架橋などの副反応が起きやすくなる傾向がある。

<イオン交換樹脂の特性>

本発明の複合イオン交換膜に用いるイオン交換樹脂(上記分子中にイオン性基を有し、かつ、光架橋性基および/または熱架橋性基を有する場合には、未架橋イオン交換樹脂)の分子量は、1,000以上であることが好ましく、特に5,00以上であればより好ましい。また、この分子量は、1,000,000以下であることが好ましく、特に500,000以下であれば、物性と加工性のバランスが取れるためにより好ましい。この分子量が1,000未満の場合には、膜の形成が困難になったり、膜の膨潤性や水溶性が大きくなってしまう傾向があり、この分子量が1,000,000を超えると、溶液粘度が非常に大きくなるため取扱いが困難になるという傾向がある。

ここで、本発明に用いるイオン交換樹脂の重合度は、後述する方法で測定される対数粘度で表わすこともできる。すなわち、本発明に用いるイオン交換樹脂を 0. 25g/dlのNーメチルー2ーピロリドン溶液に溶解した場合の30℃における対数粘度は、0. 1以上であることが好ましく、特に0. 4以上であることがより好ましい。また、この対数粘度は、2. 0以下であることが好ましく、特に1. 5以下であることがより好ましい。

この対数粘度が0.1未満の場合には、膜の形成が困難になったり、膜の膨潤性や水溶性が大きくなってしまう傾向があり、この対数粘度が2.0を超えると、

溶液粘度が非常に大きくなるため取扱いが困難になるという傾向がある。

<支持体膜>

5

10

15

20

25

本発明の複合イオン交換膜に用いる支持体膜は、膜を貫通する連続した空隙を 有する多孔性の支持体膜である必要がある。膜を貫通する連続した空隙内にイオ ン交換樹脂組成物が含浸されていなければ、良好なイオン伝導性を得ることがで きないからである。

ここで、本発明の支持体膜の空隙率は90体積%以上であることが好ましく、 特に95体積%以上であることがより好ましい。そして、この空隙率は、当然に 100体積%以下であり、99体積%以下であることが好ましい。この空隙率が 95体積%未満の場合には、イオン交換樹脂組成物を支持体膜に含浸させた場合 の本発明の複合イオン交換膜中に含まれるイオン交換樹脂の含有率が小さくなっ てイオン伝導性が低下する傾向がある。また、この空隙率が99体積%を超える と、支持体膜や複合膜の強度が低下するという傾向がある。

本発明の支持体膜は、少なくとも一方の面の開孔率が40%以上であることが好ましく、特に50%以上であることがより好ましく、さらに60%以上であれば最も好ましい。また、この開孔率は、当然に100%以下であるが、95%以下であることが好ましい。この開孔率が40%未満である場合には、支持体膜中にイオン交換樹脂組成物を含浸させる際に、支持体膜の空隙内部にイオン交換樹脂が含浸されにくくなるため、イオン伝導性が低下する場合がある。また、この開孔率が95%を超えると、支持体膜や複合膜の強度が低下するという傾向がある。

本発明に用いる支持体を形成する材質としては、特に限定されず、たとえば、ポリエチレン系、ポリプロピレン系などのポリマーを含むポリオレフィン系樹脂 多孔質膜、ポリテトラフルオロエチレン系などのポリマーを含むフッ素系樹脂多 孔質膜、ポリイミド系ポリマーを含むポリイミド系樹脂多孔質膜、ポリアミド系ポリマーを含むポリイミド系樹脂多孔質膜、ポリアミド系 ポリマーを含むポリアミド系樹脂多孔質膜、セルロース系ポリマーを含むセルロース系樹脂系多孔質膜、ポリベンザゾール系ポリマーを含むポリベンザゾール系 樹脂多孔質膜が挙げられる。これらの材質の中でも、ポリベンザゾール系ポリマーを含むポリベンザゾール系ポリマーを含むポリベンザゾール系ポリマーを含むポリベンザゾール系ポリマーを含むポリベンザゾール系ポリマーを含むポリベンザゾール系樹脂多孔質膜が、耐熱性、強度に優れ、薄膜化が可

10

15

20

25

能であるため、本発明に用いる支持体膜を形成する材質として特に好ましい。

ここで、本発明に用いる支持体膜がポリベンザゾール系ポリマーを含むポリベンザゾール系樹脂多孔質膜を材質とする場合には、本発明に用いる支持体膜は、このポリベンザゾール系ポリマーを0.5~2質量%の範囲の含有率で含む等方性溶液を膜状に成型し、成型されたこの溶液を凝固させてこの支持体膜を得ることにより得られる支持体膜であることが好ましい。このようなポリベンザゾール系ポリマーを材質として含む支持体膜は、ポリベンザゾール系ポリマーを含む溶液から製膜され、貧溶媒と接触させて凝固させられることにより得られた膜を洗浄することにより得られる。

ここで、上記のポリベンザゾール系ポリマーを含む溶液が光学異方性を示す溶液である場合には、イオン交換樹脂を大量に含浸できるような、空隙率の大きな連続した空隙を有する多孔質のポリベンザゾール系ポリマーを材質として含む膜が得られない場合があるため、ポリベンザゾール系ポリマーを含む溶液としては、等方性の溶液を用いることが好ましい。

本発明における支持体膜として使用されるポリベンザゾール系ポリマーとは、 ポリマー鎖中にオキサゾール環、チアゾール環、イミダゾール環を含む構造のポ リマーをいい、下記一般式で表される繰り返し単位をポリマー鎖中に含むものを いう。

ここで、 U_1 , U_2 , U_3 は、芳香族単位を示し、各種脂肪族基、芳香族基、ハロゲン基、水酸基、ニトロ基、シアノ基、トリフルオロメチル基等の置換基を有していても良い。これら芳香族単位は、ベンゼン環などの単環系単位、ナフタレン、アントラセン、ピレンなどの縮合環系単位、それらの芳香族単位が 2 個以上任意の結合を介してつながった多環系芳香族単位でも良い。また、芳香族単位におけるNおよびBの位置はベンザゾール環を形成できる配置であれば特に限定されるものではない。さらに、これらは炭化水素系芳香族単位だけでなく、芳香環

内にN, O, S等を含んだヘテロ環系芳香族単位でも良い。BはO, S, NHを示す。

上記U₁は、下記一般式で表されるものが好ましい。

(化学式22-1)

ここで、 T_1 、 T_2 はCHまたはNを示し、 T_3 は直接結合、-O-, -S-, $-SO_2-$, -C(CH_3) $_2-$, -C(CF_3) $_2-$, -CO-を示す。 T_2 は、下記一般式で表されるものが好ましい。

ここで、Wは-O-, -S-, $-SO_2-$, -C (CH_3) $_2-$, -C (CF₃) ₂-, -CO-を示す。

(化学式23-23)

U₃は、下記一般式で表されるものが好ましい。

(化学式23-22)

(化学式23-21)

5

10 これらライオトロピック液晶ポリマーを形成し得る結合単位を含むポリベンザ ゾール系構成単位の具体例としては、下記構造式で表すものを例示することがで きる。

(化学式25-5)

(化学式25-7)

(化学式25-9)

(化学式25-2)

$$\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\$$

(化学式25-4)

(化学式25-6)

$$\left(\begin{array}{c} N \\ N \\ N \end{array} \right) \left(\begin{array}{c} N \\ N \end{array} \right) \left(\begin{array}{c}$$

(化学式25-8)

(化学式25-10)

(化学式26-3)

$$+ \bigvee_{H}^{N} \bigvee_{H}^{N} \bigvee_{H}^{CH_3}$$

(化学式26-5)

(化学式26-7)

(化学式26-9)

$$\left(\begin{array}{c} N \\ O \end{array} \right) \left(\begin{array}{c} H_3C \\ O \end{array} \right)$$

(化学式26-11)

(化学式26-2)

(化学式26-4)

(化学式26-6)

(化学式26-8)

(化学式26-10)

$$+$$
 S
 H_3C
 N

(化学式27-11)

(化学式27-12)

(化学式28-1)

(化学式28-3)

(化学式28-5)

(化学式28-7)

(化学式29-1)

(化学式29-3)

(化学式29-5)

(化学式29-7)

(化学式28-2)

(化学式28-4)

(化学式28-6)

$$\left(\begin{array}{c} s \\ N \end{array} \right) \left(\begin{array}{c} s \\$$

(化学式28-8)

(化学式29-2)

(化学式29-4)

(化学式29-6)

(化学式29-8)

(化学式30-11)

(化学式30-12)

10

(化学式31-11) (化学式31-10)

さらに、これらポリベンザゾール系構成単位だけでなく、他のポリマー構成単 位とのランダム、交互あるいはブロック共重合体であっても良い。この時、他の ポリマー構成単位としては耐熱性に優れた芳香族系ポリマー構成単位から選ばれ ることが好ましい。具体的には、ポリイミド系構成単位、ポリアミド系構成単位、 ポリアミドイミド系構成単位、ポリオキシジアゾール系構成単位、ポリアゾメチ ン系構成単位、ポリベンザゾールイミド系構成単位、ポリエーテルケトン系構成 単位、ポリエーテルスルホン系構成単位などを挙げることができる。

ポリイミド系構成単位の例としては、下記一般式で表されるものが挙げられる。

ここで、U₄は四価の芳香族単位で表されるが、下記構造で表されるものが好ましい。

また、U₅は二価の芳香族単位であり、下記構造で表されるものが好ましい。 ここで示される芳香環上には、メチル基、メトキシ基、ハロゲン基、トリフルオ ロメチル基、水酸基、ニトロ基、シアノ基等の各種置換基が存在していても良い。

これらポリイミド系構成単位の具体例としては、下記構造式で表すものを例示することができる。

ポリアミド系構成単位の例としては、下記構造式で表されるものが挙げられる。

ここで、 U_6 , U_7 , U_8 はそれぞれ独立に下記構造から選ばれるものが好まし 5 い。ここで示される芳香環上には、メチル基、メトキシ基、ハロゲン基、トリフ ルオロメチル基、水酸基、ニトロ基、シアノ基等の各種置換基が存在していても 良い。

(化学式38-1)

(化学式38-2)

(化学式38-3)

(化学式38-4) (化学式38-5)

(化学式38-6)

10

これらポリアミド系構成単位の具体例としては、下記構造式で表すものを例示 することができる。

(化学式39-1)

(化学式39-2)

(化学式39-3)

(化学式39-4)

ポリアミドイミド系構成単位の例としては、下記構造で表されるものが挙げら れる。 15

ここで、Ugは上記Ugの具体例として示される構造から選ばれるものが好ま しい。

これらポリアミドイミド構成単位の具体例としては、下記構造式で表すものを 例示することができる。 5

(化学式41-1)

(化学式41-2)

ポリオキシジアゾール系構成単位の例としては、下記構造式で表されるものが 挙げられる。

ここで、U₁₀は上記U₅の具体例として示される構造から選ばれるものが好ま 10 しい。

これらポリオキシジアゾール系構成単位の具体例としては、下記構造式で表す ものを例示することができる。

(化学式43-1)

(化学式43-2)

ポリアゾメチン系構成単位の例としては、下記構造で表されるものが挙げられ 15 る。

ここで、 U_{11} , U_{12} は、上記 U_6 の具体例として示される構造から選ばれるも のが好ましい。

これらポリアゾメチン系構成単位の具体例としては、下記構造式で表すものを 例示することができる。

ポリベンザゾールイミド系構成単位の例としては、下記構造式で表されるもの が挙げられる。

(化学式45-5)

ここで、 U_{13} 、 U_{14} は上記 U_4 の具体例として示される構造から選ばれるものが好ましい。

これらポリベンザゾールイミド系構成単位の具体例としては、下記構造式で表 10 すものを例示することができる。

10

ポリエーテルケトン系構成単位、ポリエーテルスルホン系構成単位は、一般に 芳香族ユニットをエーテル結合とともにケトン結合やスルホン結合で連結した構 造を有するものであり、下記構造式から選択される構造成分を含む。

(化学式48-6) (化学式48-4) (化学式48-5)

ここで、U₁₅~U₂₃はそれぞれ独立に下記構造で表されるものが好ましい。 ここで示される芳香環上には、メチル基、メトキシ基、ハロゲン基、トリフルオ ロメチル基、水酸基、ニトロ基、シアノ基等の各種置換基が存在していても良い。

これらポリエーテルケトン系構成単位の具体例としては、下記構造式で表すも のを例示することができる。

10

15

(化学式50-3)

(化学式50-7)

(化学式50-8)

これらポリベンザゾール系ポリマー構成単位と共に共重合できる芳香族ポリマ 一構成単位は、厳密にポリマー鎖内の繰り返し単位を指しているのではなく、ポ リマー主鎖中にポリベンザゾール系構成単位と共に存在できる構成単位を示して いるものである。これら共重合できる芳香族ポリマー構成単位は一種だけでなく 二種以上を組み合わせて共重合することもできる。このような共重合体を合成す るには、ポリベンザゾール系ポリマー構成単位からなるユニット末端にアミノ基、 カルボキシル基、水酸基、ハロゲン基等を導入して、これらの芳香族系ポリマー の合成における反応成分として重合しても良いし、これらの芳香族系ポリマー構 成単位を含むユニット末端にカルボキシル基を導入してポリベンザゾール系ポリ マーの合成における反応成分として重合しても良い。

ここで、本発明に用いるポリベンザゾール系ポリマーは、上記のような結合単 位をポリ燐酸溶媒中で縮合重合させることにより得られる。

そして、本発明に用いるポリベンザゾール系ポリマーの重合度は極限粘度で表 され、この極限粘度は、15dL/g以上であることが好ましく、特に20dL /g以上であることがより好ましい。また、この極限粘度は、35dL/g以下

15

20

25

であることが好ましく、特に26 d L/g以下であることがより好ましい。

この極限粘度が15dL/g未満の場合には、ポリベンザゾール系ポリマーを 材質として得られる支持体膜の強度が低くなる傾向があり、この極限粘度が35 dL/gを超えると、等方性の溶液が得られるポリベンザゾール系ポリマー溶液 5 中のポリベンザゾール系ポリマーの濃度範囲が限られ、等方性の条件での支持体 膜の製膜が困難となる場合がある。

また、本発明に用いるポリベンザゾール系ポリマーを含む溶液からの支持体膜の製膜方法としては、ドクターブレードなどを用いて、このポリマー溶液を基板上にキャスティングする流延法と呼ばれる製膜方法のほかにも、直線状スリットダイからこのポリマー溶液を押出す方法や、円周状スリットダイからこのポリマー溶液をブロー押出しする方法、二枚の基体に挟んだこのポリマー溶液をローラーでプレスするサンドイッチ法、スピンコート法など、このポリマー溶液を膜状に成型するあらゆる方法が使用できる。

そして、これらの製膜方法の中でも、本発明に用いる支持体膜の目的に適した特に好ましい製膜方法は、流延法、サンドイッチ法である。流延法の基板やサンドイッチ法の基体には、ガラス板や金属板、樹脂フィルムなどの他、凝固時の支持体膜の空隙構造を制御することなどの目的で、種々の多孔質材料を基板、基体として好ましく用いることができる。

また、本発明で用いるポリベンザゾール系ポリマーの溶液は、均一でかつ空隙 率の大きな支持体膜を得るためには、等方性条件の組成で支持体膜に製膜することが重要である。

そのため、本発明に用いるポリベンザゾール系ポリマーの溶液中のポリベンザ ゾール系ポリマーの濃度は、0.5%以上であることが好ましく、特に0.8% 以上であることがより好ましい。また、この濃度は、2%以下であることが好ま しく、特に1.5%以下であることがより好ましい。この濃度が0.5%未満の 場合には、ポリベンザゾール系ポリマーの溶液の粘度が小さくなり、適用できる 製膜方法が限られ、得られる支持体膜の強度が小さくなる場合がある。また、こ の濃度が2%を超えると、空隙率の大きな支持体膜が得にくい場合や、ポリベン ザゾール系ポリマーのポリマー組成や重合度によっては、ポリベンザゾール系ポ

10

15

20

25

リマーの溶液が異方性を示す場合がある。

本発明に用いるポリベンザゾール系ポリマーの溶液の濃度を上記で示したような範囲に調整するには、次に示すような方法をとる事ができる。 すなわち、重合 反応により得られたポリベンザゾール系ポリマーの溶液から一旦ポリベンザゾール系ポリマーの固体を分離し、再度溶媒を加えて溶解することで濃度調整を行な う方法などが具体例として挙げられる。

さらには、ポリ燐酸中で縮合重合反応により得られた状態のポリベンザゾール 系ポリマーの溶液から、ポリベンザゾール系ポリマーの固体を分離することなく、 そのポリベンザゾール系ポリマーの溶液に溶媒を加えて希釈し、濃度調整を行な う方法なども挙げられる。あるいは、ポリベンザゾール系ポリマーの重合組成を 調整することで、上記濃度範囲のポリベンザゾール系ポリマーの溶液を直接得る 方法なども挙げられる。

ここで、本発明に用いるポリベンザゾール系ポリマーの溶液の濃度調整に用いるのに好ましい溶媒としては、たとえば、メタンスルホン酸、ジメチル硫酸、ポリ燐酸、硫酸、トリフルオロ酢酸などが挙げられ、あるいはこれらの溶媒を組み合わせた混合溶媒を用いることもできる。これらの中でも、メタンスルホン酸、ポリリン酸が特に好ましい。

本発明に用いる支持体膜の多孔質構造を実現する手段としては、たとえば、製膜された等方性のポリベンザゾール系ポリマーの溶液を、貧溶媒と接触させて凝固させる方法を用いる。この貧溶媒は、ポリベンザゾール系ポリマーの溶液の溶媒と混和できる溶媒であることが好ましく、液相状態であっても気相状態であってもよい。さらに、気相状態の貧溶媒による凝固と液相状態の貧溶媒による凝固を組合わせる方法も好ましく用いることができる。

ここで、上記の凝固に用いる貧溶媒としては、水、酸水溶液、無機塩水溶液の他、アルコール類、グリコール類、グリセリンなどの有機溶媒などを利用することができる。ただし、使用するポリベンザゾール系ポリマーの溶液との組合せによっては、支持体膜の表面開孔率や空隙率が小さくなったり、支持体膜の内部に不連続な空洞ができたりするなどの問題が生じる場合があるため、凝固に用いる貧溶媒の選択には特に注意が必要である。

10

15

20

25

また、本発明における等方性のポリベンザゾール系ポリマーの溶液の凝固においては、水蒸気、メタンスルホン酸水溶液、リン酸水溶液、グリセリン水溶液の他、塩化マグネシウム水溶液などの無機塩水溶液などの中から貧溶媒を選択し、さらに凝固条件を選択することにより、支持体膜の表面および内部の構造、空隙率を制御することができる。

これらの中でも、特に好ましい凝固の手段は、水蒸気と接触させて凝固する方法や、凝固の初期において水蒸気に短時間接触させた後に水に接触させて凝固する方法、およびメタンスルホン酸水溶液に接触させて凝固する方法などである。

そして、ポリベンザゾール系ポリマーの溶液の凝固が進むと、支持体膜は収縮 しようとする。そのため、凝固が進行する間は、支持体膜の不均一な収縮による シワの発生などを抑制する目的で、テンターや固定枠を用いる場合もある。また、 ガラス板などの基板上に成型したポリベンザゾール系ポリマーの溶液を凝固する 場合には、基板面の粗さを制御することで、基板上での支持体膜の収縮を制御す る場合もある。

さらに、上記のようにして凝固された支持体膜は、残留する溶媒によるポリベンザゾール系ポリマーの分解の促進や、複合イオン交換膜の材質として使用する際に残留溶媒が流出するなどの問題を避ける目的で、十分に洗浄することが望ましい。この洗浄は、支持体膜を洗浄液に浸漬することで行なうことができる。特に好ましい洗浄液は水である。水による洗浄は、支持体膜を水中に浸漬したときの洗液のpHが5~8の範囲になるまで行なうことが好ましく、pHが6.5~7.5の範囲になるまで行なうことがさらに好ましい。

そして、上記に述べた特定の濃度範囲のポリベンザゾール系ポリマーの等方性 溶液を用い、上記に述べたような方法から選ばれた適当な凝固手段を用いること により、本発明に用いる支持体膜の目的に最も適した構造を有するポリベンザゾ ール系ポリマーを材質とする支持体膜が得られる。すなわち、支持体膜の少なく とも一方の表面に適当な開孔率の開孔部を持つ連続した空隙を有する多孔質の支 持体膜である。この支持体膜は、ポリベンザゾール系ポリマーのフィブリル状繊 維から形成される立体網目構造からなり、三次元的に連続した空隙を有する。か かる支持体膜の構造は、原子間力顕微鏡を用いた水中での支持体膜の表面の観察、

10

15

20

25

および、エポキシ包埋-脱エポキシにより水中の構造を保持した支持体膜の透過 型電子顕微鏡観察による断面観察によって確認することができる。

本発明における支持体膜は、その空隙率が90%以上であることが好ましく、 さらに好ましくは95%以上である。空隙率がこの範囲よりも小さいと、イオン 交換樹脂を複合化させた場合のイオン交換樹脂の含有率が小さく、イオン導電性 が低下するため好ましくない。

本発明の支持体膜は両面に開孔部を持つ。少なくとも一方の面の開孔率は40%以上であることが好ましく、さらに好ましくは50%以上、特に好ましくは60%以上である。少なくとも一方の面の開孔率がこの範囲よりも小さいと、内部にイオン交換樹脂が含浸された支持体膜の層と、支持体膜の両面に形成されたイオン交換樹脂の層との密着性が低下し、イオン導電性が低下するだけでなく、該イオン交換樹脂層が剥離しやすくなるため好ましくない。

<複合イオン交換膜の製造方法>

上述のような方法で得られたポリベンザゾール系ポリマーを材質とする多孔質 の支持体膜にイオン交換樹脂組成物を含浸させ、複合イオン交換膜を得る方法に ついて説明する。

すなわち、この支持体膜を乾燥させずに、イオン交換樹脂組成物を含む溶液に 浸漬し、この支持体膜の内部の液をイオン交換樹脂組成物を含む溶液に置換して から乾燥させる方法により、複合イオン交換膜を得る方法について説明する。

なお、この支持体膜内部の液がイオン交換樹脂組成物を含む溶液の溶媒組成と 異なる場合には、その溶媒組成にあわせてあらかじめ内部の液を置換しておく方 法を採る場合もある。

ここで、等方性のポリベンザゾール系ポリマーの溶液から得られる多孔質の支持体膜は、乾燥により支持体膜の空隙内部の液体の体積が減少するのにしたがって、空隙構造が収縮するため、支持体膜の見かけの体積が大幅に減少するという特徴を有する。

そのため、この支持体膜の内部にイオン交換樹脂組成物を含浸することなく金属の枠などに固定して面方向の収縮を制限して乾燥させた場合には、収縮は膜厚方向に起こり、この支持体膜における乾燥後の見かけの膜厚は、乾燥前の膜厚の

10

15

0.5~10%の範囲になることが通常である。

なお、本発明に用いる支持体膜以外の多孔質支持体膜、たとえば、延伸ポリテトラフルオロエチレンポリマーを材質とする多孔質膜からなる支持体膜ではこのような大幅な収縮は起こらない。

本発明に用いる支持体膜のこのような特徴により、この支持体膜の空隙内部の液をイオン交換樹脂組成物を含む溶液に置換してから乾燥させた場合には、空隙内部に含浸されたこのイオン交換樹脂組成物を含む溶液の溶媒が蒸発して、このイオン交換樹脂組成物を含む溶液の体積が減少するにつれて、この支持体膜も収縮する。そのため、この支持体膜の内部の空隙が析出したイオン交換樹脂組成物によって満たされた、緻密な複合イオン交換膜の構造を容易に得ることができる。この複合イオン交換膜の構造によって、本発明の複合イオン交換膜は、優れた寸法安定性、機械強度、燃料透過抑止性を示すことになる。

そして、上記に記述したイオン交換樹脂組成物を含む溶液の溶媒は、ポリベン ザゾール系ポリマーを材質とする支持体膜を溶解、分解あるいは極端に膨潤させ ず、かつイオン交換樹脂組成物を溶解できる溶媒の中から選ぶことができる。

ただし、イオン交換樹脂組成物を含む溶液を支持体膜に含浸させた後に、溶媒 を除去してイオン交換樹脂組成物を析出させるためには、溶媒は加熱や減圧など の手段を用いて蒸発させるなどして除去することができるものであることが好ま しい。

20 このような溶媒としては、たとえば、N, N'ージメチルホルムアミド、N, N'ージメチルアセトアミド、Nーメチルー2ーピロリドン、ヘキサメチルホスホンアミド、ジメチルスルホキシド、スルホランなどの非プロトン性極性溶媒や、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、アセトンやメチルエチルケトンなどの極性溶媒、クレゾールなどのフェノール類、水、およびこれらの混合溶媒などを挙げることができる。

本発明に用いる支持体膜は、ポリベンザゾール系ポリマーを材質とする支持体膜である場合には、高い耐熱性を有する。そのため、100℃程度の温度からクリープを生じるポリテトラフルオロエチレン製の支持体膜を用いる従来公知の複合イオン交換膜の作製では使用できない、高沸点の溶媒を含むイオン交換樹脂組

10

15

20

25

成物の溶液を使用して複合イオン交換膜を作製できる。このことからも、本発明 に用いる支持体膜は、多くの種類のイオン交換樹脂組成物が選択できるという観 点から優れた特徴を有するといえる。

なお、本発明に用いるイオン交換樹脂組成物の溶液中のイオン交換樹脂の濃度は、特に限定されるものではないが、1質量%以上であることが好ましく、特に10質量%以上であることがより好ましい。また、この濃度は、50質量%以下であることが好ましく、特に40質量%以下であることがより好ましい。この濃度が1質量%未満の場合には、複合膜中のイオン交換樹脂含有量が低下するという傾向があり、この濃度が50質量%を超えると、複合膜中で複合層の厚みが占める割合が低下して補強効果が小さくなったり、複合膜の膜厚が大きくなりすぎて発電性能が低下したり、支持体膜へのイオン交換樹脂溶液の含浸が不完全になって複合膜中に空隙が生じやすくなるという傾向がある。

さらに、本発明の複合イオン交換膜に占めるイオン交換樹脂の含有率は、50質量%以上であることが好ましく、特に80質量%以上であることがより好ましい。また、この含有率は当然に100質量%未満であるが、99質量%以下であることが好ましい。この含有率が50質量%未満の場合には、複合イオン交換膜の導電抵抗が大きくなったり、複合イオン交換膜の保水性が低下したりして、十分な発電性能が得られないため好ましくない傾向がある。また、この含有率が99質量%を超えると、複合膜の強度や耐膨潤性が低下するという傾向がある。

本発明の複合イオン交換膜は、その内部におけるイオン交換樹脂の含有率の不均一が少ないことが望ましい。すなわち、複合膜を厚み方向に縦断する直線について、イオン交換樹脂のみが含有する元素について電子プローブマイクロアナライザーを用い線分析を行う場合について、X線カウント値のばらつきがCV値で50%以内であるのが好ましく、40%以内であることがより好ましく、25%以内であることが特に好ましい。X線カウント値のばらつきがこれより多い場合、複合イオン交換膜の内部におけるイオン交換樹脂の含有率が不均一であり、膜のイオン伝導性が低下し、さらに複合膜の機械的強度が低下するため、十分な発電性能が得られない虞があるためである。

また、本発明の複合イオン交換膜は、その内部において、イオン交換樹脂が存

15

20

25

在しない領域ができるだけ少ないことが望ましい。すなわち、該複合膜を厚み方向に縦断する分析領域において電子プローブマイクロアナライザーを用いて線分析を行った際、該測定元素のX線カウント値について、複合膜内の分析点における値のうちの最大値に対して5%以下の値をとる分析点の数が全分析点の0~30%、より好ましくは0~20%、さらに好ましくは0~10%の範囲であることが望ましい。最大値に対して5%以下の値をとる分析点の数がこれより多い場合、複合イオン交換膜の内部において、イオン交換樹脂が存在しない領域、すなわちイオン伝導に寄与しない領域が多くなり、膜のイオン伝導性が低下するため、十分な発電性能が得られない。

10 <複合イオン交換膜の構造>

本発明の複合イオン交換膜の厚みは、 10μ m以上であることが好ましく、特に 20μ m以上であることがより好ましい。また、この厚みは、 500μ m以下であることが好ましく、特に 100μ m以下であることがより好ましい。この厚みが 10μ m未満の場合には、燃料のクロスオーバーなどが大きくなるという問題が生じやすくなる。また、この厚みが 500μ mを超えると、複合イオン交換膜の導電抵抗が増大する傾向がある。

本発明の複合イオン交換膜の厚みは、支持体膜を作製する際に支持体膜を形成するポリベンザゾール系ポリマーの溶液の濃度やクリアランスを調整したり、イオン交換樹脂組成物を含む溶液の濃度を調整することによって、制御することができる。

また、本発明の複合イオン交換膜は、上記のイオン交換樹脂組成物からなる表面層を上記の支持体膜の両面に備えることが好ましい。

すなわち、本発明の複合イオン交換膜は、図1に示すように、支持体膜とイオン交換樹脂組成物とを備える複合層2を挟む形で、この複合層2の両面に支持体膜を含まないイオン交換樹脂組成物からなる表面層1,3を有しているとさらに優れた特性を示す。このような構造を有することにより、本発明の複合イオン交換膜は、高い機械的強度を有し、かつ表面に電極層を形成させた場合の電極層との密着性に優れるという優れた特性を有することとなるためである。

ここで、この表面層のそれぞれの厚みは、 1μ m以上であることが好ましく、

10

15

20

25

特に 2μ m以上であることがより好ましい。また、この厚みは、 50μ m以下であることが好ましく、特に 30μ m以下であることがより好ましい。さらに、この厚みは、複合イオン交換膜の全厚みの半分を超えないことが好ましい。この厚みが 1μ m未満の場合には、電極層との密着性が低下し、イオン伝導性が低下する場合がある。またこの厚みが 50μ mを超えるか、あるいは複合イオン交換膜の全厚みの半分を超える場合には、複合層による補強の効果が複合イオン交換膜の最外表面まで及ばず、複合イオン交換膜が吸湿した場合に表面層のみが大きく膨潤して表面層が複合層から剥離する場合がある。

また、本発明の複合イオン交換膜においては、機械的強度やイオン伝導性、表面に形成される架橋イオン交換樹脂組成物層の耐剥離性などの特性をさらに向上させる目的で、複合イオン交換膜を適当な条件で熱処理する方法も好ましく用いることができる。

また、本発明の複合イオン交換膜においては、表面に形成されるイオン交換樹脂組成物の表面層の厚みを調整するために、この複合イオン交換膜をさらにイオン交換樹脂組成物を含む溶液に浸漬してもよい。さらに、本発明の複合イオン交換膜においては、この複合イオン交換膜にイオン交換樹脂組成物を含む溶液を塗布したりしてから乾燥することにより、イオン交換樹脂組成物の層の付着量を増加させてもよい。

あるいは、本発明の複合イオン交換膜においては、この複合イオン交換膜をイオン交換樹脂組成物を含む溶液に浸漬した後に、支持体膜の表面に付着したイオン交換樹脂組成物を含む溶液の一部を、スクレーパー、エアナイフ、ローラーなどで掻落としたり、ろ紙やスポンジのような溶液吸収性のある材料で吸収したりすることにより、イオン交換樹脂組成物の層の付着量を減少させたりする方法も用いることができる。

さらには、本発明の複合イオン交換膜においては、熱プレスをかけることによ りイオン交換樹脂組成物の層の密着性をさらに向上させるなどの方法を併せて用 いることもできる。

このような構造を有する、本発明の複合イオン交換膜は、高いイオン伝導性を 有しながら、機械的強度に優れる。また、その特性を生かして、本発明の複合イ

オン交換膜は、固体高分子形燃料電池の高分子固体電解質膜として利用することができる。

実施例

5

20

25

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。

<イオン交換樹脂の合成>

まず、本発明の実施例および比較例に用いるイオン交換樹脂を、下記の合成例のようにして合成した。

(i) 合成例1

まず、4,4'ージクロロジフェニルスルホンー3,3'ージスルホン酸ソーダ12.28g(25.0mmol)、4,4'ークロロジフェニルスルホン7.18g(25.0mmol)、4,4'ービフェノール9.31g(50.0mmol)、炭酸カリウム7.95g(57.5mmol)、Nーメチルー2ーピロリドン100ml、トルエン15mlを、窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取り付けた200ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。

次いで、トルエンとの共沸による脱水を140℃で行なった後、トルエンを全て留去した。その後、200℃に昇温し、15時間加熱した。続いて、室温まで冷却した溶液を2000m1の純水に注ぎイオン交換樹脂を再沈させた。そして、濾過したイオン交換樹脂は50℃で減圧乾燥して、合成例1のイオン交換樹脂を得た。

(i i) 合成例2~12

モノマーの種類およびモル比を表1に示すように変えた点以外は、合成例1と同様にして、合成例2~12のイオン交換樹脂を合成した。なお、イオン交換樹脂の収率および対数粘度の測定結果を表1に併せて示す。

表 1

10

15

20

モノマーの仕込量(mmol) 収率 対数粘度												
		モノマー	収率	対数粘度								
	S-DCDPS	DCBN	DCDPS	BP	BPF	(%)	(dl/g)					
合成例1	25	-	25	50	-	95	0.95					
合成例2	30	_	20	50	_	93	0.83					
合成例3	35	_	15	50	_	90	0.77					
合成例4	25		25		50	91	0.54					
合成例5	35		15	1	50	89	0.53					
合成例6	40	_	10	_	50	85	0.59					
合成例7	20	30	_	50	_	93	0.88					
合成例8	25	25	_	50	_	91	0.91					
合成例9	30	20	_	50		84	0.79					
合成例10			35	50	_	97	0.94					
合成例11	18	_	32	_	50	98	0.55					
合成例12		37		50	-	96	0.91					

S-DCDPS: 4, 4' ージクロロジフェニルスルホンー3, 3' ージスルホン酸ソーダ

DCBN: 2, 6ージクロロベンゾニトリル

DCDPS: 4, 4'ージクロロジフェニルスルホン

BP: 4, 4' ービフェノール

BPF:9,9-ビス(4-ヒドロキシフェニル)フルオレン

(i i i) 比較合成例1

まず、ポリフェニルスルホン(アルドリッチ社製、商品名Polypheny Isulfone)10gを、<math>100gの濃硫酸に溶解した。次いで、5 $\mathbb C$ の冷水浴中で30%発煙硫酸4m1(SO_3 として0.03mol) を滴下し、3 時間反応させた。その後、反応溶液を水に注いで再沈し、遊離の酸が洗浄液にpH 試験紙で検出できなくなるまで水で洗浄し、濾過した後、50 $\mathbb C$ で減圧乾燥して、比較合成例1 のスルホン化ポリフェニルスルホンを得た。なお、収率は90%であった。

<実施例1>

まず、ポリ燐酸中に極限粘度 2 5 d L/g のポリパラフェニレンシスベンゾビスオキサゾールポリマーを 1 4 質量%含んだドープに、メタンスルホン酸を加えて希釈し、ポリパラフェニレンシスベンゾビスオキサゾール濃度 1 質量%の等方性溶液を調製した。

次いで、この溶液を、90 ℃に加熱したガラス板上にクリアランス 300μ m のアプリケータを用いて製膜速度 5 mm/秒で製膜した。このようにしてガラス板上に製膜したドープ膜をそのまま 25 ℃、相対湿度 80 %の恒温恒湿槽中に置いて 1 時間凝固し、生成した膜を洗液が p H 7 ± 0 . 5 を示すまで水洗を行って

10

15

20

支持体膜を作成した。

続いて、作成した支持体膜は両面に開孔部を持つ連続した空孔を有する多孔質の膜であることを原子間力顕微鏡による表面形態観察および、透過型電子顕微鏡による断面形態観察により確認した。なお、観察による測定の結果、支持体膜の開孔率は69%、空隙率は98%だった。

その後、この支持体膜を水中でステンレス製のフレームに固定し、ジメチルアセトアミド (DMAc) 25%水溶液、DMAc50%水溶液、DMAc75%水溶液の順にそれぞれ1時間ずつ浸漬した後、最終的にDMAcに浸漬して支持体膜に含まれる溶媒を水からDMAcに置換した。

そして、合成例1で重合反応により作製したイオン交換樹脂10gを40gのDMAcとともに3日間攪拌してイオン交換樹脂を含む溶液を作成した。次いで、上記の支持体膜をこのイオン交換樹脂を含む溶液に25℃で15時間浸漬した後溶液から取出し、膜の内部に含浸および膜表面に付着したイオン交換樹脂を含む溶液中の溶媒を熱風により揮発させ乾燥させた。

さらに、乾燥させた膜は120℃で一晩減圧乾燥を行なった。その後、膜を80℃の1 m o 1 / L硫酸で1 時間処理してスルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄し、実施例1 の複合イオン交換膜を得た。

<実施例 $2\sim12>$

複合イオン交換膜の材質となるイオン交換樹脂を、表 2 に示す合成例のイオン 交換樹脂に変更した点以外は、実施例 1 と同様にして、実施例 2 ~ 1 2 の複合イ オン交換膜を作製した。

表 2

	ICP	支持膜		(μm)	ICP含有率 (wt%)	IEC (meq/g)	イオン伝導性 (S/cm)	膨潤性 (%)	メタノール 透過速度 (mmol·m ⁻² ·sec ⁻¹)
実施例1	合成例1	PBO	全厚み	複合層 30	93	1.67	0.25	31	8.1
実施例2	合成例2		49	28		1.92	0.25	38	10,7
		PBO	44	29	93		0.30	40	13.1
実施例3	合成例3	PBO	39			2.11			
実施例4	合成例4	PBO	41	29	92	1.24	0.14	29	3.9
実施例5	合成例5	PBO	51	28	94	1.65	0.20	36	4.9
実施例6	合成例6	PBO	45	26	93	1.83	0.23	39	6.8
実施例7	合成例7	PBO	48	28	93	1.66	0.24	28	5.3
実施例8	合成例8	PBO	48	30	93	1.89	0.31	35	7.1
実施例9	合成例9	PBO	42	26	92	2.04	0.33	40	9.3
実施例10	合成例10	PBO	41	25	92	1.15	0.09	25	4.5
実施例11	合成例11	PBO	38	26	91	0.99	0.07	20	3.2
実施例12	合成例12	PBO	40	27	92	1.02	0.06	21	3.3
比較例1	合成例1	なし	39	_	100	1.73	0.26	50	12.3
比較例2	合成例2	なし	44		100	2.00	0.32	59	14.3
比較例3	合成例3	なし	41		100	2.16	0.36	68	16.7
比較例4	合成例4	なし	45		100	1,21	0.12	51	4.9
比較例5	合成例5	なし	42		100	1.67	0,24	62	6.4
比較例6	合成例6	なし	45		100	1.91	0.27	69	9.5
比較例7	合成例7	なし	49		100	1.62	0.24	48	6.3
比較例8	合成例8	なし	50		100	1.95	0.29	58	9.1
比較例9	合成例9	なし	42		100	2.14	0.35	74	12.8
比較例10	合成例10	なし	39	 	100	1.21	0.11	32	6.1
比較例11	合成例11	なし	38	-	100	1.05	0.09	27	5.5
比較例12	合成例12	なし	40	 	100	1.09	0.07	26	5.3
比較例13	比較合成例1		35	9	84	1.65	0.09	33	7.1

ICP:イオン交換樹脂 IEC:イオン交換当量

<比較例1>

5 比較例1においては、実施例1~12とは異なり、合成例1で合成したイオン 交換樹脂を複合膜化せず、単独で膜を作製した。

すなわち、まず、合成例1のイオン交換樹脂0.8gを、3.2gのジメチルアセトアミドに溶解した溶液を、 300μ mの厚みでガラス板上にキャストし、70℃で3日間減圧乾燥した。

10 次いで、ガラス板から膜を剥離した後、膜を60℃の1mo1/L硫酸で1時間処理してスルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。そして、洗浄した膜を風乾し、比較例1のイオン交換膜を得た。

<比較例2~12>

イオン交換膜の材質となるイオン交換樹脂を、表 2 に示す合成例のイオン交換 樹脂に変更した点以外は、比較例 1 と同様にして、比較例 2 ~ 1 2 の複合イオン 交換膜を作製した。

<比較例13>

15

比較合成例1で重合反応により作製したスルホン化ポリフェニルスルホンを用

10

15

いた他は、実施例1と同様にして、複合イオン交換膜を作製した。比較合成例の イオン交換樹脂の溶液は粘度が高く、ややゲル的な挙動を示した。

<イオン交換樹脂の合成>

(i) 合成例13:架橋性基を有するイオン交換樹脂(1)の合成

まず、4,4'-ジクロロジフェニルスルホン-3,3'-ジスルホン酸ソーダ39.30g(80.0mmol)、4,4'-ジフルオロベンゾフェノン4.28g(20.0mmol)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン25.63g(100.0mmol)、炭酸カリウム15.89g(115.0mmol)、N-メチル-2-ピロリドン200ml、トルエン30mlを、窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取付けた1,000ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。

次いで、トルエンとの共沸による脱水を140℃で行なった後、トルエンを全て留去した。その後、200℃に昇温し、15時間加熱した。続いて、室温まで冷却した溶液を5000mlの純水に注ぎイオン交換樹脂を再沈させた。そして、濾過したイオン交換樹脂は50℃で減圧乾燥した。

なお、測定したイオン交換樹脂の対数粘度は、0.63d1/gだった。また、 得られたイオン交換樹脂の収量は、45.3g(収率74%)だった。

(i i) 合成例14:架橋性基を有するイオン交換樹脂(2)

まず、4,4'-ジクロロジフェニルスルホン-3,3'-ジスルホン酸ソーダ29.48g(60.0mmol)、4,4'-ジクロロジフェニルスルホン11.49g(40.0mmol)、4,4'-ビフェノール18.25g(98.0mmol)、炭酸カリウム15.89g(115.0mmol)、Nーメチルー2ーピロリドン170ml、トルエン30mlを、窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取付けた1,000ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。

次いで、トルエンとの共沸による脱水を140で行なった後、トルエンを全て留去した。その後、200でに昇温し、15時間加熱した。続いて、反応溶液を140でまで冷却してから、4-エチニルフェノール0.240 g(2.0 m

mo1)とトルエン30m1とを加え、さらに2時間攪拌した。その後、室温まで冷却した溶液を5000m1の純水に注ぎイオン交換樹脂を再沈させた。そして、濾過したイオン交換樹脂は50℃で減圧乾燥した。

なお、測定したイオン交換樹脂の対数粘度は、0.61dl/gだった。また、 得られたイオン交換樹脂の収量は、48.0g(収率92%)だった。

<実施例13>

5

10

15

まず、ポリ燐酸中に極限粘度24dL/gのポリパラフェニレンシスベンゾビスオキサゾールポリマーを14質量%含んだドープに、メタンスルホン酸を加えて希釈し、ポリパラフェニレンシスベンゾビスオキサゾール濃度1質量%の等方性溶液を調製した。

次いで、この溶液を、90 ℃に加熱したガラス板上に、クリアランス 300μ mのアプリケータを用いて、製膜速度 5 mm/秒で製膜した。このようにしてガラス板上に製膜したドープ膜を、そのまま 25 ℃、相対湿度 80 %の恒温恒湿槽中に置いて 1 時間凝固し、生成した膜を洗液が p H 7 ± 0 . 5 を示すまで水洗を行って支持体膜を作成した。

続いて、作成した支持体膜は、両面に開孔部を持つ連続した空隙を有する多孔質の膜であることを、原子間力顕微鏡による表面形態観察および、透過型電子顕微鏡による断面形態観察により確認した。なお、観察による測定の結果、支持体膜の開孔率は69%、空隙率は98%だった。

20 その後、この支持体膜を水中でステンレス製のフレームに固定し、ジメチルア セトアミド (DMAc) 25%水溶液、DMAc50%水溶液、DMAc75% 水溶液の順にそれぞれ1時間づつ浸漬した後、最終的にDMAcに浸漬して支持 体膜に含まれる溶媒を水からDMAcに置換した。

そして、合成例13で重合した架橋性基を有するイオン交換樹脂(1)20g 25 を、80gのDMAcとともに3日間攪拌して、イオン交換樹脂組成物を含む溶 液を作成した。

次いで、上記のようにして得た支持体膜を、このイオン交換樹脂組成物を含む 溶液に25℃で15時間浸漬した後、溶液から取り出し、膜の内部に含浸および 膜表面に付着したイオン交換樹脂を含む溶液中の溶媒を熱風により揮発させ乾燥

させた。

そして、乾燥させた膜は、120℃で一晩減圧乾燥を行なった後、金属製の枠に固定したまま、窒素雰囲気下、50℃の条件下、紫外線ランプを用いて1時間 光照射した。

5 その後、膜を80Cの1mo1/L硫酸で1時間処理してスルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。そして、洗浄した膜を風乾したところ、厚み 47μ mの複合イオン交換膜が得られた。

なお、得られた複合イオン交換膜のイオン性基濃度は、2.1 m e q / g であり、イオン交換樹脂の含有率は93%であり、複合層の厚みは14μmだった。

10 また、得られた複合イオン交換膜は、耐水性試験での質量減少率は0%であり、 イオン伝導性は0.30S/cmであった。

さらに、得られた複合イオン交換膜は、良好な耐水性とイオン伝導性を示し、 柔軟かつ強靭でハンドリング性に優れていた。

<実施例14>

20

25

15 まず、実施例13と同様にして支持体膜を作製し、この支持体膜を水中でステンレス製のフレームに固定し、ジメチルアセトアミド(DMAc)25%水溶液、DMAc50%水溶液、DMAc75%水溶液の順にそれぞれ1時間ずつ浸漬した後、最終的にDMAcに浸漬して支持体膜に含まれる溶媒を水からDMAcに置換した。

次いで、合成例14で重合した架橋性基を有するイオン交換樹脂(2)20gを、80gのDMAcとともに3日間撹拌して、イオン交換樹脂組成物を含む溶液を作製した。

続いて、上記のようにして得た支持体膜をこのイオン交換樹脂組成物を含む溶液に25℃で15時間浸漬した後、この溶液から取出し、膜の内部に含浸および膜表面に付着したイオン交換樹脂を含む溶液中の溶媒を熱風により揮発させ乾燥させた。

その後、乾燥させた膜は、70℃で3日間減圧乾燥を行った後、金属製の枠に 固定したまま、窒素雰囲気下200℃で、1時間加熱処理した。

そして、枠から取外した膜を、80℃の1mo1/L硫酸中で1時間処理して、

スルホン酸基を酸型に変換し、さらに遊離の酸が検出できなくなるまで水で洗浄し、風乾して厚み0.0048cmの複合イオン交換膜を得た。

なお、得られた複合イオン交換膜のイオン性基濃度は、1.9meq/gであり、イオン交換樹脂の含有率は9.2%であり、複合層の厚みは 1.4μ mだった。

5 また、得られた複合イオン交換膜は、耐水性試験での質量減少率は0%であり、 イオン伝導性は0.29S/cmであった。

さらに、得られた複合イオン交換膜は、良好な耐水性とイオン伝導性を示し、 柔軟かつ強靭でハンドリング性に優れていた。

<比較例14>

次いで、ガラス板から膜を剥離した後、金属製の枠に固定し、窒素雰囲気下に おいて、50℃で紫外線ランプで1時間光照射した。

15 その後、この膜を80%の1 m o 1 / L硫酸で1時間処理して、スルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。洗浄した膜は風乾したところ、厚み $47\mu m$ の透明なイオン交換膜が得られた。

本比較例のイオン交換膜のイオン性基濃度は2.2meq/gだった。

また、本比較例のイオン交換膜の耐水性試験での質量減少率は0%であり、イオン伝導性は0.33S/cmであり、良好な耐水性とイオン伝導性を示したが、膜は固くて柔軟性に欠け、やや脆かった。

<比較例15>

20

25

まず、合成例 14 の架橋性基を有するイオン交換樹脂(2) 0.4 g を、1.6 g のジメチルアセトアミドに溶解した溶液を、300 μ m の厚みでガラス板上にキャストし、70 $\mathbb C$ $\mathbb C$

次いで、ガラス板から膜を剥離した後、金属製の枠に固定し、窒素雰囲気下200℃で1時間処理した。

その後、この膜を80 \mathbb{C} の1 \mathbb{m} o 1 \mathbb{Z} L硫酸で1時間処理して、スルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。洗浄した膜は

10

15

20

25

風乾したところ、厚み49μmの透明なイオン交換膜が得られた。

本比較例のイオン交換膜のイオン性基濃度は2.1meq/gだった。

また、本比較例のイオン交換膜の耐水性試験での質量減少率は0%であり、イオン伝導性は0.33S/cmであり、良好な耐水性とイオン伝導性を示したが、この膜も固くて柔軟性に欠け、やや脆かった。

結果、比較例13~15の複合イオン交換膜またはイオン交換膜は、イオン伝 導性、耐膨潤性、機械的強度、耐水性などのいずれかの指標において欠点が認め られ、燃料電池の高分子固体電解質膜として好適に用いることは困難である。

一方で、実施例13および実施例14の複合イオン交換膜は、イオン伝導性が 良好であるとともに、複合化の点でも良好であり、さらに膨潤についても抑制さ れており、耐水性にも優れているため、燃料電池の高分子固体電解質膜として好 適に用いることができる、優れた特性を有する複合イオン交換膜であることが明 らかとなった。

<各種測定方法および評価方法>

本発明の実施例および比較例においては、各種測定方法および評価方法は以下 の方法に従って行なった。これらの測定方法および評価方法の結果得られた各種 測定結果および評価結果を、表1および表2に示す。

(i) 極限粘度の測定方法

支持体膜を形成するポリマーについて、メタンスルホン酸を溶媒として、0. 5g/Lの濃度に調整したポリマー溶液の粘度をウベローデ型粘度計を用いて2 5℃恒温槽中で測定し、極限粘度を算出した。

(i i) 支持体膜の表面開孔率の測定方法

支持体膜の表面開孔率は次の方法により測定した。

まず、水洗した支持体膜内部の水をエタノールに置換、さらに酢酸イソアミルに十分置換した後、(株)日立製作所製、臨界点乾燥装置(HCP-1)を用いて、CO₃臨界点乾燥を施した。

次いで、このようにして臨界点乾燥した支持体膜に、厚さ150オングストロームの白金コートを施し、(株)日立製作所製、SEM(S-800)を用いて加速電圧10kV、試料傾斜角度30度で、走査型電子顕微鏡(SEM)観察を

行った。

5

10

15

20

25

続いて、図2で示すように、撮影した支持体膜の表面の撮影倍率1万倍の走査型電子顕微鏡写真上で、 5μ m角に相当する視野を選び、膜の最外表面に相当するポリマー部分を白、それ以外の部分を黒に色分けした後、イメージスキャナーを用いて画像をコンピューターに取り込み、米国Scion社製の画像解析ソフトである、Scion Imageを用いて、画像のヒストグラムから画像中の黒部分が占める比率を測定した。なお、図2において、符号4は支持体膜のフィブリルを示し、符号5は空隙を示す。

そして、上記の操作を一つのサンプルに対して各3回行い、その平均値を計算 して、支持体膜の表面開孔率とした。

(i i i) 支持体膜の空隙率の測定方法

支持体膜の空隙率は次の方法により測定した。

まず、含水状態の支持体膜の重量と、絶乾状態の支持体膜の重量と、の差から 求められた水の重量を、水の密度で除して、膜内の空隙を満たす水の体積Vw [mL] を得た。

次いで、Vwと含水状態の膜の体積Vm [mL] から以下の計算により支持体膜の空隙率を求めた。

支持体膜の空隙率 [%] = V w / V m×100

(i v) 複合イオン交換膜を構成する各層の厚さの測定方法

複合イオン交換膜を構成する複合層の厚さ、およびこの複合層を挟む形で複合層の両面に形成された支持体膜を含まないイオン交換樹脂組成物からなる表面層の厚さは、下記のようにして測定した。

まず、幅 300μ m×長さ5mmに切り出した複合イオン交換膜片を、ルベアック812(ナカライテスク(株)製)/ルベアックNMA(ナカライテスク (株) 製)/DMP30 (TAAB製)=100/89/4の組成とした樹脂で包埋し、60Cで12時間硬化させて試料ブロックを作製した。

次いで、ウルトラミクロトーム(LKB製、2088ULTROTOMEV)を用いて、平滑な断面が露出するようブロックの先端をダイヤモンドナイフ (住友電気工業 (株) 製、SK2045) で切削した。

20

25

続いて、このようにして露出させた複合イオン交換膜の断面を光学顕微鏡で写 真撮影し、既知の長さのスケールを同倍率で撮影したものと比較することで各層 の厚みを測定した。

支持体膜の空隙率が大きい場合などで、少なくとも一方の面の表面層とその内側の複合層とが明確な界面を形成せずに、界面付近の構造が連続的に変化している場合があるが、その場合は光学顕微鏡で連続的な構造の変化が確認できる部分のうち、複合イオン交換膜の外表面に最も近い部分を複合層の最外表面として、そこから複合イオン交換膜の外表面までの距離を表面層の厚みとした。

(v) イオン伝導性の測定方法

まず、自作測定用プローブ (テフロン(登録商標) 製) 上で、短冊状複合イオン交換膜試料の表面に白金線 (直径: 0.2mm) を押しあて、80℃95%RHの恒温、恒湿オーブン ((株)ナガノ科学機械製作所製、LH-20-01)中に試料を保持し、白金線間の10KHzにおける交流インピーダンスをSOLARTRON社製、1250FREQUENCY RESPONSE ANALYSERにより測定した。

その際、極間距離を変化させて測定し、極間距離と抵抗測定値をプロットした 勾配から、以下の式により膜と白金線間の接触抵抗をキャンセルしたイオン伝導 率を算出した。

イオン伝導率 [S/cm] = 1/膜幅 [cm] ×膜厚 [cm] ×抵抗極間勾配 [Ω/cm]

(vi) イオン交換樹脂の対数粘度の測定方法

イオン交換樹脂を、ポリマー濃度 0.25g/d1となるようにNーメチルー 2-ピロリドン溶液に溶解し、オストワルド粘度計を用いて30℃で測定した。 (vii) 複合イオン交換膜のイオン交換当量の測定方法

まず、複合イオン交換膜100mgを、0.01NのNaOH水溶液50mlに浸漬し、25℃で一晩攪拌した。その後、0.05NのHCl水溶液で中和滴定した。中和滴定には、平沼産業(株)製、電位差滴定装置COMTITE-980を用いた。イオン交換当量は下記式で計算して求めた。

イオン交換当量 [m e q / g] = (10-滴定量 [m l]) / 2

25

(viii) 複合イオン交換膜のイオン交換樹脂(ICP) 含有率の測定方法 複合イオン交換膜のイオン交換樹脂含有率は以下の方法により測定した。

まず、110℃で6時間真空乾燥させた複合イオン交換膜の目付け $Dc[g/m^2]$ を測定した。次いで、複合イオン交換膜の作製に用いたのと同じ製造条件の支持体膜を、イオン交換樹脂組成物を複合化させずに乾燥させて乾燥支持体膜の目付け $Ds[g/m^2]$ を測定した。そして、これらの値から、以下の計算により複合イオン交換膜のイオン交換樹脂含有率を求めた。

イオン交換樹脂含有率 [質量%] = (Dc-Ds) / Dc×100

(i x) 複合イオン交換膜の膨潤性の評価方法

10 複合イオン交換膜の膨潤性は以下のようにして測定した。

まず、複合イオン交換膜を80℃の熱水中で3時間処理したのち、取出してすぐに複合イオン交換膜の膜厚を測定した。熱水処理前の複合イオン交換膜の膜厚に対する変化率(%)を複合イオン交換膜の膨潤性とした。

(x) メタノール透過性の測定

15 二つのガラス水槽を、サンプルを隔膜として連結し、片方の水槽に 5 Mのメタ ノール水溶液、もう片方に蒸留水をそれぞれ入れ、蒸留水を入れた側のメタノー ル濃度を適当な時間ごとに定量した。メタノールの定量はガスクロマトグラフィ 一法で行い、あらかじめ所定の濃度のメタノール溶液を注入したときのピーク面 積から作成した検量線を用いてメタノール濃度を算出した。得られたメタノール 濃度を経過時間に対してプロットしたときの傾きから、以下の式によりメタノー ル透過速度を求めた。

メタノール透過速度($mmol·m^{-2}·sec^{-1}$)=プロットの傾き(mmol/sec)÷サンプル面積(m^2)

これらの測定結果および評価結果から分かるように、比較例1~12のイオン 交換樹脂を単独の材質とするイオン交換膜は、イオン伝導性自体は良好であるも のの膨潤が著しいため、燃料電池の高分子固体電解質膜として好適に用いること は困難である。

また、比較例13の複合イオン交換膜は、膨潤自体は抑制されているものの、 複合化が不良であり、イオン伝導性も低くなってしまっていたため、やはり燃料

10

15

20

25

電池の高分子固体電解質膜として好適に用いることは困難である。

一方で、実施例1~12の複合イオン交換膜は、イオン伝導性が良好であるとともに、複合化の点でも良好であり、さらに膨潤についても抑制されているため、燃料電池の高分子固体電解質膜として好適に用いることができる、優れた特性を有する複合イオン交換膜であることが明らかとなった。また、実施例1~12の複合イオン交換膜は、対応するイオン交換樹脂のみからなるイオン交換膜である比較例13に比べてイオン伝導性がほとんど低下せずにメタノール透過性が小さくなっている。中でもイオン交換容量の小さい実施例4、10~12の複合イオン交換膜は、メタノール透過性が特に小さいため、直接メタノール型燃料電池の高分子固体電解質膜として好適に用いることができる。

また、実施例1および比較例13の複合イオン交換膜について、以下のように して、イオン交換樹脂分布状態を評価した。

(x i) 複合イオン交換膜内のイオン交換樹脂分布状態評価 (1)

電子プローブマイクロアナライザー(日本電子製JXA-8900RL)を用 い、複合膜においてイオン交換樹脂のみが含有する元素の線分析測定を行った。 幅300μm×長さ5mmに切り出した複合膜片をルベアック812(ナカライ テスク製) /ルベアックNMA (ナカライテスク製) /DMP30 (TAAB 製) =100/89/3の組成とした樹脂で包埋し、60℃で12時間硬化させ て作成したブロックを、ウルトラミクロトーム(LKB製2088ULTROT OME 5)を用いて幅300μm×複合膜厚みの平滑な断面が露出するようブ ロックの先端をダイヤモンドナイフ(住友電工製SK2045)で切削した。測 定面にカーボン蒸着膜を付与したものを測定用試料とした。500倍の光学顕微 鏡にて測定面の傷、汚染が認められない測定部位が確保できることを確認し、目 . 的元素から発生する X 線のうち K α 線がブラッグの回折条件を満たす角度で分光 結晶に入射するように固定した分光器位置で、高角バック 5 μ m、低角バック 5 μmとし、ビーム径を最小に設定し、目的元素のX線カウント値を読み取った。 測定領域は、複合膜を厚み方向に縦断する直線とした。なお加速電圧、照射電流、 測定時間については、複合膜の中心部で膜表面からの距離が等しい5点を無作為 に選び、予め上述の分光器条件、ビーム径にて点分析を行い、測定値がCV2

20

0%以内のばらつきになる条件を採用した。得られた線分析データにおいて、複合膜外で両表面からそれぞれ最も近い点で最小値をとるものを結んでベースラインとし、これを減算して各点のカウント値を算出した。このうち、複合膜内の値についてCV値を算出した。測定は分析位置を変えて10回行い、その平均値をもらて目的の値とした。

なお、複合膜内の領域でn点のデータを収集した場合におけるベースライン減算後のカウント値を x_i (i=1, 2, …, n) とした場合の、CV値(%)の算出式は以下の通りである。

$$CV$$
 (%) = $s/ × 100$
 $s=\sqrt{\sum_{i=1}^{n} (x_i - < x>)^2/(n-1)}$
 $: 全データの算術平均値$

10 実施例1および比較例13の複合イオン交換膜において、イオン交換樹脂のみが含有する元素である硫黄についてのX線カウント値を用いてイオン交換樹脂の分布状態を分析した結果、複合イオン交換膜中の硫黄のX線カウント値のばらつきはCV値で表すとそれぞれ21%、58%であった。本発明の複合イオン交換膜は、本発明外の複合イオン交換膜に比べて、複合膜中のイオン交換樹脂の分布が均一であり、より優れた膜である。

(x i i) 複合イオン交換膜内のイオン交換樹脂分布状態評価 (2)

波長分散型電子プローブマイクロアナライザー(日本電子製 JXA-8900 RL)を用い、複合膜においてイオン交換樹脂のみが含有する元素の線分析測定を行った。幅 300μ m×長さ 5 mmに切り出した複合膜片を、ルベアック 81 2(ナカライテスク製)/ルベアック MA(ナカライテスク製)/DMP 30(MA (アカライテスク製) MA (アック MA (アカライテスク製) MA (アック MA (アカライテスク製) MA (アック MA (アカライテスク製) MA (アック MA (アカライテスク製) MA (アカライテスク製) MA (アカライテスク製) MA (アック MA (アカライテスク製) MA (アック MA) MA (アックの MA) MA (アック) MA (アック) MA) MA (アックの MA) MA (アック) MA (アック) MA (アック) MA) MA (アック) MA (アック) MA (アック) MA (アック) MA (アック) MA (アック) MA) MA (アック) MA (アック) MA (アック) MA) MA (アック) MA (アック

10

15

20

なお、n点のデータを収集した場合におけるカウント値を x_i ($i=1,\ 2,\ ...$, n)とした場合の、CV値(%)の算出式は以下の通りである。

$$CV$$
(%) $=s/\langle x \rangle \times 100$
 $s=\sqrt{\left(\sum_{i=1}^{n}(x_i,-\langle x \rangle)^2/(n-1)\right)}$
 $\langle x \rangle$:全データの算術平均値

実施例1および比較例13の複合イオン交換膜において、イオン交換樹脂のみが含有する元素である硫黄についてのX線カウント値を用いてイオン交換樹脂の分布状態を分析した結果、複合イオン交換膜中の硫黄のX線カウント値の最大値に対して5%以下の値をとる分析点の数が全分析点に占める割合はそれぞれ2%、42%であった。本発明の複合イオン交換膜は、本発明外の複合イオン交換膜に比べて、複合膜中のイオン交換樹脂の分布のむらが小さくイオン交換樹脂の少ない複合部分がほとんどないため、より優れた膜である。

今回開示された実施の形態および実施例はすべての点で例示であって制限的な

ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて 特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での すべての変更が含まれることが意図される。

5 産業上の利用可能性

上記の結果より、本発明の複合イオン交換膜は、耐膨潤性が高く、機械的強度 とイオン伝導性とに優れる複合イオン交換膜である。

そのため、本発明の複合イオン交換膜は、固体高分子形燃料電池の高分子固体 電解質膜として好適に利用することができる。

10

20

請求の範囲

1. イオン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜とを備える複合イオン交換膜であって、

前記支持体膜は、前記空隙中に前記イオン交換樹脂組成物を含浸する支持体膜であり、

前記イオン交換樹脂組成物は、化学式1で表される化合物と、芳香族ジハロゲン化合物と、ビスフェノール化合物とを主成分とするモノマー成分を、アルカリ金属の炭酸塩および/または重炭酸塩と混合し、これらの混合物を有機溶媒中で重合させて得られる芳香族ポリエーテルおよび/またはその誘導体を主成分とするイオン交換樹脂を含有するイオン交換樹脂組成物である、複合イオン交換膜。

(なお、化学式 1 において、Qは-S(=O) $_2$ 一基または-C(=O) 一基を表わす。XはH, L i , N a , K原子のいずれかを表わす。YはF , C 1 , B F I 原子のいずれかを表わす。)

2. イオン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜と、 を備える複合イオン交換膜であって、前記支持体膜は、前記空隙中に前記イオン 交換樹脂組成物を含浸する支持体膜であり、前記イオン交換樹脂組成物は、化学 式2Aと化学式2Bとで表される結合単位をそれぞれ化学式2A:化学式2B= n:mの比率で含有するイオン交換樹脂を含有するイオン交換樹脂組成物である、 複合イオン交換膜。

(なお、化学式 2 Aおよび化学式 2 Bにおいて、Z はH,Li,Na,K,脂肪族または芳香族アミン由来のカチオンのいずれかを表わす。A r $_1$ および A r $_3$ はそれぞれ独立して 1 種類以上の二価の有機基を表わす。A r $_2$ は電子吸引性基を有する芳香環を含む 1 種類以上の二価の有機基を表わす。n は 1 \sim 1 0 0 0 の範囲の整数を、m は 0 \sim 1 0 0 0 の範囲の整数を、それぞれ表わす。)

3. 前記Ar₂は、化学式3、化学式4、化学式5で表される結合単位からなる群より選ばれる1種類以上の結合単位である、請求の範囲第2項に記載の複合イオン交換膜。

10

15

5

(なお、化学式3~化学式5において、Aは他の結合単位との結合部位を表わす。)

4. 前記 Ar_1 および前記 Ar_3 は、化学式6および化学式7で表される結合単位よりそれぞれ独立して選ばれる1種類以上の結合単位である、請求の範囲第2項に記載の複合イオン交換膜。

10

15

20

(化学式7)

(なお、化学式6および化学式7において、Aは他の結合単位との結合部位を表わす。)

- 5. 前記 Ar_1 および前記 Ar_3 は、いずれも前記化学式6で表される結合単位であり、前記 Ar_2 は、前記化学式3で表される結合単位であり、前記nおよび前記mは、数式1を満たす $1\sim1000$ の範囲の整数である、請求の範囲第2項に記載の複合イオン交換膜。
- 0. 2≤n/(n+m)≤0.8 (数式1)
- 6. 前記 Ar_1 および前記 Ar_3 は、いずれも前記化学式6で表される結合単位であり、前記 Ar_2 は、前記化学式4で表される結合単位であり、前記nおよび前記mは、数式2を満たす $1\sim1000$ の範囲の整数である、請求の範囲第2項に記載の複合イオン交換膜。
 - 0. 2≦n/(n+m)≦0.8 (数式2)
- 7. 前記 Ar_1 および前記 Ar_3 は、いずれも前記化学式 7 で表される結合単位であり、前記 Ar_2 は、前記化学式 3 で表される結合単位であり、前記n および前記mは、数式 3 を満たす $1\sim 1000$ の範囲の整数である、請求の範囲第 2 項に記載の複合イオン交換膜。
 - 0.3≦n/(n+m)≦0.7 (数式3)
- 8. 前記イオン交換樹脂組成物が、分子中にイオン性基を有し、かつ分子中に 光架橋性基および/または熱架橋性基を有するイオン交換樹脂を架橋して得られ る架橋イオン交換樹脂を含有することを特徴とする請求の範囲第1項に記載の複 合イオン交換膜。
 - 9. 前記光架橋性基は、化学式8で表される化学構造の架橋性基および化学式9で表される化学構造の架橋性基をともに含む、請求の範囲第8項に記載の複合イオン交換膜。

(化学式 8 および化学式 9 において、R は炭素数が $1\sim1$ 0 の範囲の脂肪族炭化水素基を表わす。 o は、 $1\sim4$ の範囲の整数を表わす。)

10. 前記熱架橋性基は、化学式10~化学式15で表される化学構造の熱架橋性基からなる群より選ばれる1種類以上である、請求の範囲第8項に記載の複合イオン交換膜。

(化学式10~化学式15において、 R^1 ~ R^9 は、それぞれ独立に、水素原子、炭素数1~10の範囲のアルキル基、フェニル基、炭素数6~20の範囲の芳香族基、ハロゲン原子のいずれかを表わす。 Pは、水素原子、炭素数1~10の範囲の炭化水素基、ハロゲン、ニトロ基、 $-SO_3$ T基のいずれかを表わす。 Tは、H原子あるいは1価の金属イオンを表わす。 oは、1~4の範囲の整数を表わす。)

11. 前記イオン交換樹脂組成物からなる表面層を前記支持体膜の両面に備える、請求の範囲第1項~第10項のいずれかに記載の複合イオン交換膜。

10

- 12. 前記表面層のそれぞれの厚みは、 $1\sim50\mu$ mの範囲であり、かつ前記複合イオン交換膜の全厚みの半分を超えない範囲である、請求の範囲第11項に記載の複合イオン交換膜。
- 13. 前記支持体膜の少なくとも一方の面の開孔率は、40~95%の範囲にある、請求の範囲第11項に記載の複合イオン交換膜。
- 14. 前記支持体膜は、ポリベンザゾール系ポリマーを材質として含む、請求の範囲第11項に記載の複合イオン交換膜。
- 15. 前記支持体膜は、ポリベンザゾール系ポリマーを材質として含む、請求の範囲第12項に記載の複合イオン交換膜。
- 16. 前記支持体膜は、ポリベンザゾール系ポリマーを材質として含む、請求 の範囲第13項に記載の複合イオン交換膜。
 - 17. 前記支持体膜が、前記ポリベンザゾール系ポリマーを 0.5~2質量%の範囲の含有率で含む等方性溶液を膜状に成型した後、凝固させて得られたものである、請求の範囲第14項に記載の複合イオン交換膜。
- 18. 前記複合イオン交換膜の断面において、複合イオン交換膜を厚み方向に 縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について 電子プローブマイクロアナライザーを用い線分析を行う場合に、X線カウント値 のばらつきがCV値で50%以内となることを特徴とする、請求の範囲第1項ま たは第2項に記載の複合イオン交換膜。
- 20 19. 前記複合イオン交換膜の断面において、複合イオン交換膜を厚み方向に 縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について 電子プローブマイクロアナライザーを用いて線分析を行った際、該測定元素のX 線カウント値について、最大値に対して5%以下の値をとる分析点の数が全分析 点の0~30%の範囲であることを特徴とする、請求の範囲第1項または第2項 に記載の複合イオン交換膜。

FIG. 1

FIG. 2

. CLASSIFIC	CATION OF SUBJECT MATTER 1 H01M8/02, C08J5/22		
ccording to I	international Patent Classification (IPC) or to both nationa	l classification and IPC	
COST DC C	HADCUED		
Minimum doc Int . C	numentation searched (classification system followed by cl 17 H01M8/02, C08J5/22, C25B13/0 C08L71/00, C08G65/00	0, 6000,0,00,	
Jitsuy Kokai	Jitsuyo Shinan Koho 1971-2004 To	oroku Jitsuyo Shinan Koho	1994-2004
Electronic da CAplu	ta base consulted during the international search (name of LS (STN), REGISTRY (STN)	data base and, where practicable, see	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
	Citation of document, with indication, where appro	priate, of the relevant passages	Relevant to claim No.
Category* Y A	JP 2002-203576 A (Toyota Cent: Development Laboratories, Inc. 19 July, 2002 (19.07.02), Full text; Figs. 1 to 2 (Family: none)	ral Research And	2-4 1,5-19
Y A	Mitsuru UEDA et al., 'Synthesi Characterization of Aromatic P Sulfone)s Containing Pendant S Groups', Journal of Polymer Sc Polymer Chemistry, March 1993, pages 853 to 858	oly (ether odium Sulfonate sience PartA:	2-4 5-10
A	JP 2001-514431 A (Foster-Mill 11 September, 2001 (11.09.01) & WO 99/10165 Al & US	•	1-19
Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
* Spec "A" docu conside: "B" earli date "L" docu cites spec "O" doc mea	cial categories of cited documents: ument defining the general state of the art which is not red to be of particular relevance er document but published on or after the international filing ument which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other cial reason (as specified) ument referring to an oral disclosure, use, exhibition or other	"X" later document published after the interpriority date and not in conflict with understand the principle or theory of document of particular relevance; the considered novel or cannot be consistently when the document is taken all document of particular relevance; the considered to involve an inventive combined with one or more other such combination being obvious to a perfect document member of the same path of mailing of the international 24 February, 2004	h the application but cited to inderlying the invention he claimed invention cannot be sidered to involve an inventive one the claimed invention cannot be step when the document is such documents, such scron skilled in the art ent family
Nome or	d mailing address of the ISA/ panese Patent Office	Authorized officer	
Telephone No.		_	

	C1/0103/101/
tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passag	ges Relevant to claim No.
JP 50-124881 A (Matsushita Electric Industria Co., Ltd.), 01 October, 1975 (01.10.75),	1-19
WO 02/25764 A1 (VIRGINIA TECHINTELLECTUAL PROPERTIES, INC.), 28 March, 2002 (28.03.02), & EP 1327278 A1	1
JP 2003-217342 A (Toyobo Co., Ltd.), 31 July, 2003 (31.07.03), (Family: none)	1,8-9
JP 2003-217343 A (Toyobo Co., Ltd.), 31 July, 2003 (31.07.03), (Family: none)	1,8,10
	Citation of document, with indication, where appropriate, of the relevant passage JP 50-124881 A (Matsushita Electric Industria Co., Ltd.), 01 October, 1975 (01.10.75), (Family: none) WO 02/25764 A1 (VIRGINIA TECHINTELLECTUAL PROPERTIES, INC.), 28 March, 2002 (28.03.02), & EP 1327278 A1 JP 2003-217342 A (Toyobo Co., Ltd.), 31 July, 2003 (31.07.03), (Family: none) JP 2003-217343 A (Toyobo Co., Ltd.), 31 July, 2003 (31.07.03),

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
Box I Observations where certain claims were found unsearchable (contraction of the following reasons: This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
This international search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report has not been established in respect of or the search report in the search report report in the search report report report in the search report repor
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as to low. A group of inventions set forth in Claim can fulfill the requirement of unity of invention only when there is a special technical feature which can so link the group of inventions as to form a single general which can so link the group of inventions as to form a single general which can so link the group of inventions of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of the description of Claim itself, a inventive concept. In the sight of considered as being group of inventions set forth in claims 1-19 is considered as being linked only by a matter of "a composite ion-exchange membrane comprising linked only by a matter of "a composition and a substrate membrane having open an ion-exchange resin composition". However, this impregnated with the ion-exchange resin composition". However, this impregnated with the ion-exchange resin composition.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
) ————————————————————————————————————
claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
of any decisions are the applicant this international search report covers
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
only most visual as we
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Internal application No.

Continuation of Box No. II of continuation of first sheet(1)

A (Toyota Central Research And Development Laboratories, Inc.) 19 July, 2002 (19. 07. 02) and is therefore not a special technical feature. Thus, a group of inventions set forth in claims 1-19 does not fulfill the requirement of unity of invention and it is apparent that this application includes multiple inventions.

国際出願番号 PCT/JP03/13278

Α.	発明の属す Int.Cl	トる分野の分類(国際特許分類(IPC)) * H01M8/02 , C08 J5/22	·	·
調金	nt C13	った分野 小限資料(国際特許分類(I PC)) ・ H01M8/02, C08J5/22, C2 L71/00, C08G65/00	5B13/08, C08G73/06	, C07B45
	日本国実用 日本国公則 日本国実月 日本国登録	の資料で調査を行った分野に含まれるもの 開新案公報 1922-1996年 開実用新案公報 1971-2004年 開新案登録公報 1996-2004年 最実用新案公報 1994-2004年		
国	祭調査で使用 CAplu:	した電子データベース(データベースの名称、調 s (STN), REGISTRY (STN)]査に使用した用語)	
-		1. 40 本 2. 2 女 六		
	. 関連する 用文献の テゴリー*	らと認められる文献 引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号
7	Y A	JP 2002-203576 A 2002.07.19,全文,第1図	(株式会社豊田中央研究所)	$\begin{bmatrix} 2-4 \\ 1, 5-19 \end{bmatrix}$
	Y A	Mitsuru UEDA et and Characterizat ic Poly (ether Sul taining Pendant So Groups' Journal of Science PartA:Poly March 1993, Vol. 31	fon of Aromat fone) s Con- dium Sulfonate Polymer mer Chemistry , No. 4, pages	2-4 5-10
	X C欄の続きにも文献が列挙されている。			川紙を参照。
	「A」特にの出た権のの出た権力の関係を権力を関係を権力を関係を権力を関係を対している。	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 順日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する (理由を付す) よる開示、使用、展示等に言及する文献 1願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表出願と矛盾するものではなく、の理解のために引用するもの「X」特に関連のある文献であって、の新規性又は進歩性がないと考「Y」特に関連のある文献であって、上の文献との、当業者にとって、よって進歩性がないと考して、「&」同一パテントファミリー文献	発明の原理又は理論 当該文献のみで発明 きえられるもの 当該文献と他の1以 に自明である組合せに
f	国際調査を完	E了した日 06.02.2004	国際調査報告の発送日	2004
	国際調査機関	題の名称及びあて先 本国特許庁(ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 小川 進	4X 3348
1	東江	京都千代田区霞が関三丁目4番3号	電話番号 03-3581-110	1 四級 34//

国際調査報告

国際出願番号 PCT/JP03/13278

	国际网位教育 日水口水口	
C (締き)	関連すると認められる文献	関連する
引用文献の カテゴリー*	スの明本ナス体系の字子	請求の範囲の番号
A	853-858 JP 2001-514431 A (フオスター・ミラー・インコーポレイテツド) 2001. 09. 11 & WO 99/10165 A1 & US 2002/0045085 A1	1-19
A	JP 50-124881 A (松下電器産業株式会社) 197 5.10.01 (ファミリーなし)	1-19
A	WO 02/25764 A1 (VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.) 2 002.03.28 & EP 1327278 A1	1
P, A	JP 2003-217342 A (東洋紡績株式会社) 200 3.7.31 (ファミリーなし)	1, 8-9
P, A	JP 2003-217343 A (東洋紡績株式会社) 200 3.7.31 (ファミリーなし)	1, 8,

国際出願番号PCT/JP03/13278

一 一
第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き) 法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作 成しなかった。
1. □ 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
第 I 欄 発明の単一性が欠如しているとさの意思である。 次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
請求の範囲に記載されている一群の発明が単一性の要件を満たすには、その一群の発明を 単一の一般的発明概念を形成するように連関させるための、特別な技術的特徴の存在が必要 であるところ、請求の範囲1~19記載の一群の発明は、請求の範囲自体の記載からして、「イ であるところ、請求の範囲1~19記載の一群の発明は、請求の範囲自体の記載からして、「イ オン交換樹脂組成物と、膜を貫通する連続した空隙を有する支持体膜とを備える複合イオン 交換膜であって、前記支持体膜は、前記空隙中に前記イオン交換樹脂組成物を含浸する支持 交換膜であって、前記支持体膜は、前記空隙中に前記イオン交換樹脂組成物を含浸する支持 体膜であ」るという事項でのみ連関していると認める。しかし、この事項は、先行技術文 献、JP 2002-203576 A (株式会社豊田中央研究所) 2002.07.19等に記載されており、特別な 献、JP 2002-203576 A (株式会社豊田中央研究所) 2002.07.19等に記載されており、特別な 技術的特徴とはなり得ない。そのため、請求の範囲1~19記載の一群の発明は、発明の単一性 の要件を満たしておらず、二以上の発明があることは明らかである。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. X 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. Ш 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意