

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Ακαδημαϊκό Έτος 2020-21 Εργαστήριο Στοιχείων Μηχανών & Μηχανολογικού Σχεδιασμού

ΜΕΙΩΤΗΡΑΣ ΓΙΑ ΚΙΝΗΤΗΡΕΣ TURBOPROP

ΤΕΧΝΙΚΉ ΕΚΘΕΣΉ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ "ΜΗΧΑΝΟΛΟΓΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΠΤΎΞΗ ΠΡΟΙΟΝΤΩΝ" ΥΠΕΥΘΎΝΟΣ ΚΑΘΗΓΗΤΗΣ: Θ.ΜΙΧΑΗΛΙΔΗΣ

Συντάκτες-Σχεδιαστική Ομάδα	AEM
Κατσαουνίδης Δημήτρης	6328
Στεφανίδης Άγγελος	6379
Τσιχλάκης Διογένης	6216

Θεσσαλονίκη 11/1/2021

ΠΕΡΙΕΧΟΜΕΝΑ

1. ΠΕΡΙΛΗΨΗ	3
2. ΣΧΕΔΙΑΣΤΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ	4
3. ΑΡΧΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ	5
3.1 Υπολογισμός και σύγκριση πλανητικών	5
3.2 Οδοντωτοί τροχοί	7
4. ΕΔΡΑΝΑ ΣΤΗΡΙΞΕΩΣ	8
5. ΔΙΑΓΡΑΜΜΑ ΕΛΕΥΘΕΡΟΥ ΣΩΜΑΤΟΣ	9
6. Σχεδιασμός Μειωτήρα	10
6.1 (1) Άτρακτος Εισόδου	11
6.2 (2) 2 ^η Βαθμίδα πλανητικού-Καπάκι κελύφους	12
6.3 (3) Στεφάνι 1 ^{ης} βαθμίδας- Ήλιος 2 ^{ης} βαθμίδας	13
6.4 (4) 1 ^η Βαθμίδα Πλανητικού – Άτρακτος Εξόδου	14
6.5 (5) Αριστερό μέρος Κελύφους	15
6.6 (6) Σύστημα Λίπανσης	16
6.7 (7) Φλαντζωτός Σύνδεσμος	17
7. ΕΛΕΓΧΟΣ ΠΡΟΔΙΑΓΡΑΦΩΝ ΚΑΙ ΑΠΑΙΤΗΣΕΩΝ	18
8. ΒΙΒΛΙΟΓΡΑΦΙΑ	21
ПАРАРТНМА А	22
ПАРАРТНМА В	88
ПАРАРТНМА Г	91
ΠΔΡΔΡΤΗΜΔ Λ	. 93

1. ΠΕΡΙΛΗΨΗ

Η τεχνική έκθεση που ακολουθεί αποτελεί μέρος εργασίας στο μάθημα Μηχανολογικός Σχεδιασμός & Ανάπτυξη Προϊόντων και πραγματεύεται τον σχεδιασμό ενός μειωτήρα για κινητήρα αεροσκάφους turboprop. Ο μειωτήρας είναι απαραίτητο κομμάτι του κινητήρα διότι η ισχύς εξέρχεται από τον στρόβιλο με πολύ υψηλότερη περιστροφική ταχύτητα από αυτήν στην οποία λειτουργεί η προπέλα. Η διαδικασία σχεδιασμού αποτελείται από τα εξής βήματα:

- 1. Υπολογισμός Ροής Ισχύος και Βαθμού απόδοσης
- 2. Επιλογή πλανητικού συστήματος
- 3. Σκαρίφημα μειωτήρα
- 4. Υπολογισμός Αντοχής Στοιχείων Μηχανών
- 5. Σχεδιασμός μειωτήρα
- 6. Απαραίτητα κατασκευαστικά Σχέδια

Στόχοι της παρούσας εργασίας είναι η εξοικείωση τον φοιτητών με εμπορικά λογισμικά σχεδίασης και υπολογισμού αντοχής. Ακόμα επιδιώκεται η εξοικείωση των φοιτητών με την ομαδική εργασία μιας και στην επαγγελματική τους πορεία θα κληθούν να συνεργαστούν με πολλούς και διαφορετικούς ανθρώπους.

Στο κείμενο που ακολουθεί αρχικά παρουσιάζονται οι σχεδιαστικές απαιτήσεις του μειωτήρα αεροσκάφους και οι υπολογισμοί για το επιλεγόμενο πλανητικό. Στην συνέχεια ακολουθεί η ανάλυση και ο σχολιασμός της κατασκευής, των σχεδιαστικών απαιτήσεων, των σχεδιαστικών λεπτομερειών και τον σχεδίων που κατασκευάστηκαν. Στο τέλος αυτής της τεχνικής έκθεσης βρίσκονται συγκεντρωμένες οι αναφορές αντοχής για τα χρησιμοποιούμενα στοιχεία και τα κατασκευαστικά σχέδια που ζητώνται. Πιο συγκεκριμένα:

Παράρτημα Α : Αναφορές οδοντωτών τροχών

Παράρτημα Β: Αναφορές εδράνων στηρίξεως

Παράρτημα Γ : Κατάσταση Τεμαχίων

Παράρτημα Δ : Κατασκευαστικά σχέδια μεγαλύτερου οδοντωτού τροχού και ατράκτου εξόδου

2. ΣΧΕΔΙΑΣΤΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ

Αρχικά πρέπει να γίνει κατηγοριοποίηση των επιθυμητών στόχων έτσι ώστε ο τελικός μειωτήρας που θα σχεδιαστεί να είναι η βέλτιστη κατασκευή και να ικανοποιεί όλες τις προδιαγραφές.

Από τα δεδομένα της εκφώνησης γνωρίζουμε την Ροπή στην είσοδο (T_A =250 Nm), την ταχύτητα στην είσοδο(n_A = 23000 rpm) και μια προσέγγιση της συνολικής σχέσης μετάδοσης($I_{AB} \approx 16$).

Η μεγάλη αυτή σχέση μετάδοσης επισημαίνει ότι απαιτείται σημαντική μείωση της ταχύτητας εισόδου έτσι ώστε η προπέλα του κινητήρα να λειτουργεί ομαλά, κάτι το οποίο μεταφράζεται σε κατασκευαστικούς όρους στο ότι οι διάμετροι των στοιχείων που χρησιμοποιούνται από την είσοδο προς την έξοδο πρέπει να αυξάνονται λόγο της αυξανόμενης ροπής και αντίστοιχα των μεγαλύτερων φορτίων καταπόνησης. Επιπλέον απαιτείται στην έξοδο στιβαρότερη στήριξη λόγω των αυξανόμενων φορτίων που προκύπτουν και από την μεγάλη ροπή αλλά και από την ώση της προπέλας. Γενικά όλα τα στοιχεία που αποτελούν τον κινητήρα απαιτούν όσο το δυνατόν καλύτερη στήριξη και μεγάλους συντελεστές ασφαλείας.

Μια ακόμα κατηγορία που πρέπει να ληφθεί υπόψη είναι η συναρμολόγηση και αποσυναρμολόγηση του μειωτήρα. Χρειάζεται να υπάρχει η δυνατότητα αντικατάστασης κομματιών χωρίς απαραίτητα να λυθεί η όλη κατασκευή. Επίσης απαιτείται ο μειωτήρας να μπορεί να αποσυναρμολογηθεί όλος μαζί χωρίς να χρειάζεται να λυθεί ο υπόλοιπος κινητήρας. Τα προηγούμενα επισημαίνουν την ύπαρξη ειδικών διατάξεων που θα διευκολύνουν την αποσυναρμολόγηση και επιπλέον την σωστή σχεδίαση των στοιχείων.

Ακόμα μια σημαντική προδιαγραφή αποτελεί το μικρότερο δυνατό βάρος και ο μικρότερος δυνατός όγκος για την κατασκευή. Αναλογιζόμενοι ότι σχεδιάζεται μειωτήρας αεροσκάφους είναι εύκολα κατανοητή η απαίτηση για το ελάχιστο δυνατό βάρος. Πιο συγκεκριμένα για αεροσκάφη με κινητήρες της δικιάς μας ισχύς ορίζεται περιοχή διακύμανσης του λόγου $A = \frac{I\sigma\chi \acute{\nu}\varsigma\ K\iota \nu \eta \tau \acute{\eta}\rho\alpha}{B\acute{\alpha}\rho o\varsigma\ Mειωτ\acute{\eta}\rho\alpha}$ ως : 0.1 < A < 0.7.

Επιπλέον πρέπει στο τέλος της ανάλυσης να ικανοποιούνται οι συντελεστές ασφαλείας του πλανητικού που ορίζονται για εφαρμογές αεροσκαφών. Κατά την σχεδίαση πρέπει να δοθεί προσοχή σε διαμορφώσεις που θα επιτρέπουν την σωστή λίπανση του μειωτήρα, με στόχο την αύξηση της διάρκειας ζωής και απόδοσης αυτού.

Τέλος για την επίτευξη των παραπάνω προδιαγραφών και την σωστή σχεδίαση του μειωτήρα χρησιμοποιήθηκαν τα εξής λογισμικά :

Σχεδίαση: Autodesk Inventor Professional

Υπολογισμός Αντοχής : KISSsoft

3. ΑΡΧΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ

Στο παρόν κεφάλαιο γίνεται η σύγκριση και επιλογή πλανητικού συστήματος για τον μειωτήρα. Παρουσιάζονται οι υπολογισμοί που έγιναν και σχολιάζεται η επιλογή που γίνεται για τον μειωτήρα που θα σχεδιαστεί.

3.1 Υπολογισμός και σύγκριση πλανητικών

Για την επιλογή του πλανητικού συστήματος που θα χρησιμοποιηθεί στον δικό μας μειωτήρα έγινε σύγκριση ανάμεσα στα 5 πλανητικά συστήματα που παρουσιάζονται στην Εικόνα 1. Μάς ζητείται η σχέση μετάδοσης να βρίσκεται κοντά στην τιμή 16.

Εικόνα 1 Διαφορετικά μονοβάθμια και διβάθμια πλανητικά συστήματα

Αρχικά θα γίνει αναλυτικά ο υπολογισμός της σχέσης μετάδοσης και του βαθμού απόδοσης για το πλανητικό V5 και στην συνέχεια η σύγκριση τον αποτελεσμάτων και για τα 5 πλανητικά.

Το σκαρίφημα του πλανητικού παρουσιάζεται στην Εικόνα 2.

Εικόνα 2 Σκαρίφημα πλανητικού συστήματος V5

Παρατηρώντας την Εικόνα 2. είναι εμφανής η ιδιαιτερότητα του πλανητικού V5 έναντι των υπολοίπων. Το συγκεκριμένο πλανητικό αποτελείται από διάφορα κοινά στοιχεία μεταξύ τον 2 βαθμίδων(πχ φορέας 1 – στεφάνη 2 – άτρακτος εξόδου κοινά). Η ιδιαιτερότητα αυτή επιδεικνύει τον μειωμένο όγκο της συγκεκριμένης διάταξης που συνεπάγεται σε μικρότερο βάρος έναντι των υπολοίπων. Όπως θα αποδειχθεί

και παρακάτω το βάρος του μειωτήρα προκύπτει ικανοποιητικά χαμηλό λόγω του μειωμένου όγκου του V5. Επιπλέον το πλανητικό αυτό χαρακτηρίζεται από διακλάδωση ισχύος(Power Split) όπως θα αποδειχθεί στην αμέσως επόμενη ενότητα. Αυτό σημαίνει ότι μικρότερα ποσά ισχύς θα μεταφέρονται διαμέσου τον στοιχείων, επομένως και μιρκότερες διαστάσεις στα στοιχεία και καλύτερη ροή της ισχύος.

Σχέση Μετάδοσης:

$$\omega_{H1} + \frac{z_{\Pi1}}{z_{H1}} \omega_{\Pi1} - \left(1 + \frac{z_{\Pi1}}{z_{H1}}\right) \omega_{\Phi1} = 0$$
 (1)

$$\omega_{\Pi 1} + \frac{z_{\Sigma 1}}{z_{\Pi 1}} \omega_{\Sigma 1} - \left(1 + \frac{z_{\Sigma 1}}{z_{\Pi 1}}\right) \omega_{\Phi 1} = 0$$
 (2)

$$\omega_{H2} + \frac{z_{\Pi2}}{z_{H2}} \omega_{\Pi2} - \left(1 + \frac{z_{\Pi2}}{z_{H2}}\right) \omega_{\Phi2} = 0$$
 (3)

$$\omega_{\Pi 2} + \frac{z_{\Sigma 2}}{z_{\Pi 2}} \omega_{\Sigma 2} - \left(1 + \frac{z_{\Sigma 2}}{z_{\Pi 2}}\right) \omega_{\Phi 2} = 0 \quad (4)$$

Με συνδυασμό των σχέσεων 1 έως 4 προκύπτει για την σχέση μετάδοσης:

$$I_{AB} = \frac{\omega_{H1}}{\omega_{\Sigma 2}} = \frac{z_{\Sigma 1}}{z_{H1}} \left(\frac{z_{\Sigma 2}}{z_{H2}} - 1 \right) + 1$$

και ο βαθμός απόδοσης υπολογίζεται από την σχέση:

$$\eta_{AB} = -\frac{P_B}{P_A} = \frac{1 - \frac{Z_{\Sigma 1}}{Z_{H1}} \eta_{H1\Pi 1} \eta_{\Pi 1\Sigma 1} + \frac{Z_{\Sigma 1}}{Z_{H1}} \frac{Z_{\Sigma 2}}{Z_{H2}} \eta_{H1\Pi 1} \eta_{\Pi 1\Sigma 1} \eta_{H2\Pi 2} \eta_{\Pi 2\Sigma 2}}{1 - \frac{Z_{\Sigma 1}}{Z_{H1}} + \frac{Z_{\Sigma 1}}{Z_{H1}} \frac{Z_{\Sigma 2}}{Z_{H2}}}$$

Από τις σχέσεις 5 και 6 γίνεται ο υπολογισμός του βαθμού απόδοσης και της σχέσης μετάδοσης για το πλανητικό V5. Με επανάληψη των υπολογισμών και για τα άλλα πλανητικά γίνεται η σύγκριση των 2 τιμών ενδιαφέροντος αφού πρώτα επιλεγούν οι αριθμοί οδοντώσεων για τις 2 βαθμίδες. Για τον δικό μας μειωτήρα επιλέχθηκαν οι τιμές για τις οδοντώσεις που παρουσιάζονται στον Πίνακα 1. Επίσης στον Πίνακα 1 γίνεται και η σύγκριση των σχέσεων μετάδοσης και των βαθμών απόδοσης.

Πίνακας 1 Σύγκριση Σχέσεων μετάδοσης και Βαθμών απόδοσης

ΑΡΙΘΜΟΙ ΟΔΟΝΤΩΣΕΩΝ			
z1	21	z4	21
z2	27	z5	25
z3	-75	z6	-75
	i	η	
V1	4,571429	0,984453	98,45%
V2	20,89796	0,963148	96,31%
V3	12,7551	0,960696	96,06%
V4	-17,3265	0,960163	96,01%
V5	17,32653	0,96689	96,69%

Παρατηρώντας τις τιμές του Πίνακα 1, βλέπουμε ότι για τους αριθμούς δοντιών που επιλέξαμε, αφού πρώτα απορριφθεί το πλανητικό V1 λόγο της πολύ μικρής σχέσης μετάδοσης (μονοβάθμιο), το πλανητικό σύστημα V5 μας δίνει τον καλύτερο βαθμό απόδοσης και η σχέση μετάδοσης

επίσης βρίσκεται πιο κοντά στην επιθυμητή τιμή 16 από όλα τα υπόλοιπα.

Επομένως επιλέγεται το διβάθμιο πλανητικό σύστημα V5 για τον μειωτήρα που θα σχεδιαστεί .

3.2 Οδοντωτοί τροχοί

Στο Παράρτημα Α παρουσιάζονται οι αναλυτικοί υπολογισμοί αντοχής, οι διαστάσεις και τα χαρακτηριστικά των οδοντώσεων για κάθε βαθμίδα εμπλοκής των οδοντωτών τροχών ξεχωριστά, όπως προκύπτουν από το λογισμικό KISSsoft.

Για κάθε βαθμίδα του πλανητικού που επιλέχθηκε χρησιμοποιούνται 3 πλανήτες για καλύτερη κατανομή της ροπής και των δυνάμεων από την εμπλοκή. Τα γρανάζια κατασκευάστηκαν από 18CrNiMo7-6, οπού είναι χάλυβας ενανθρακώσεως. Το υλικό αυτό προσδίδει στα γρανάζια υψηλή αντοχή και μεγάλη διάρκεια ζωής.

Κατά τους υπολογισμούς επιδιώκεται τα γρανάζια να είναι μακρόστενα (μεγάλη διάμετρος μικρό πάχος) έτσι ώστε να εμφανίζονται μικρότερες δυνάμεις στις εμπλοκές και καλύτερη κατανομή δυνάμεων. Επιπλέον τέτοιου τύπου οδοντωτοί τροχοί εμφανίζουν μια ελαστικότητα, έτσι δεν παραμορφώνονται οι παρειές τους σε υψηλές στροφές. Όπως είναι εμφανές και στις αναφορές των γραναζιών αλλά και στα σκαριφήματα του μειωτήρα που θα ακολουθήσουν, τα γρανάζια έχουν τις προτιμητέες αναλογίες.

Ιδιαίτερη σημασία έχει η χρήση λοξής οδόντωσης. Αυτό έχει ως αποτέλεσμα την αύξηση της αντοχής των γραναζιών και την εξάλειψη των αξονικών φορτίων στις οδοντώσεις ανάμεσα στα κοινά κομμάτια των 2 βαθμίδων του πλανητικού. Πιο συγκεκριμένα, όπως παρατηρείται και στις αναφορές του Παραρτήματος Α αλλά και εξηγείται αναλυτικά στην ενότητα 5, οι γωνίες κλίσεως των οδοντώσεων ανάμεσα στην $1^{\rm n}$ (β=25°) και την $2^{\rm n}$ (β=11°) βαθμίδα διαφέρουν τόσο ώστε να εξαλείφονται οι αξονικές δυνάμεις στο κοινό εξάρτημα Στεφάνι 1-Ήλιος 2.

4. ΕΔΡΑΝΑ ΣΤΗΡΙΞΕΩΣ

Στο Παράρτημα Β παρουσιάζονται οι αναφορές για τα έδρανα στηρίξεως που χρησιμοποιήθηκαν στον μειωτήρα. Οι αναφορές αυτές περιέχουν τύπο, διαστάσεις και αντοχή για τα επιλεγμένα έδρανα. Στον μειωτήρα χρησιμοποιήθηκαν 2 διαφορετικά είδη εδράνων. Πιο συγκεκριμένα χρησιμοποιήθηκαν διπλά ακτινικά βαρελωτά αυτορρυθμιζόμενα έδρανα κυλίσεως και κωνικά λοξά έδρανα κυλίσεως. Στην συνέχεια αναλύεται το είδος του κάθε εδράνου και ο σκοπός της χρήσης του.

Αυτορρυθμιζόμενα έδρανα κυλίσεως

Τα διπλά βαρελωτά είναι αυτορρυθμιζόμενα έδρανα. Αυτό σημαίνει ότι δίνεται η δυνατότητα στην ελαστική γραμμή της γωνίας κλίσεως του εδραζόμενου στοιχείου να έχει ένα αξιόλογο μέγεθος, χωρίς να μειώνεται η αντοχή του εδράνου. Έτσι τυχόν σφάλματα στην τοποθέτηση των στοιχείων που εδράζονται σε αυτά επιδιορθώνονται με την προσαρμογή των στοιχείων στις γωνίες που δημιουργούνται κατά την λειτουργία. Επιπλέον τα διπλά βαρελωτά μπορούν να αντέξουν υψηλά φορτία και ταχύτητες, διατηρώντας μια ικανοποιητική διάρκεια ζωής.

Στο μειωτήρα που σχεδιάστηκε οι πλανήτες των 2 βαθμίδων εδράζονται σε τέτοια έδρανα έτσι ώστε να μπορούν να πάρουν μια κλίση και να εμπλακούν σωστά με τον αντίστοιχο ήλιο και στεφάνη. Συνολικά χρησιμοποιούνται 3 όμοια έδρανα για την $1^{\rm n}$ βαθμίδα και 3 για την $2^{\rm n}$.

Κωνικά λοξά έδρανα κυλίσεως

Χρησιμοποιείται ένα ζευγάρι κωνικών εδράνων στην άτρακτο εξόδου για την στήριξη του μειωτήρα στο κέλυφος. Η χρήση αυτόν τον εδράνων δημιουργεί μια έδραση με προένταση για τον μειωτήρα, η επιλογή αυτών γίνεται λόγω των πολύ υψηλών φορτίων που μπορούν να καλύψουν χωρίς αντίκτυπο στην διάρκειας ζωής τους και επίσης λόγω των περιορισμένων διαστάσεων στο εσωτερικό του μειωτήρα. Επιπλέον, η αντοχή των εδράνων αυτών έχει υπολογιστεί έτσι ώστε να μπορούν να ανταπεξέλθουν και στις δυνάμεις που προέρχονται από την προπέλα, μιας και είναι η μόνη έδραση που αντισταθμίζει τις δυνάμεις αυτές.

5. ΔΙΑΓΡΑΜΜΑ ΕΛΕΥΘΕΡΟΥ ΣΩΜΑΤΟΣ

Στην ενότητα αυτή αναλύεται το διάγραμμα ελευθέρου σώματος(ΔΕΣ) για τον μειωτήρα. Η ανάλυση του ΔΕΣ επιδεικνύει τα κρίσιμα σημεία καταπόνησης για τις 2 βαθμίδες και για το κέλυφος.

Στην Εικόνα 3. παρουσιάζεται το ΔΕΣ του πάνω μισού μειωτήρα στο οποίο έχουν σημειωθεί οι δυνάμεις που αναπτύσσονται στις εμπλοκές των οδοντώσεων και στο κέλυφος με κόκκινο χρώμα, με μαύρο βέλος συμβολίζεται η ώση της προπέλας. Επίσης παρουσιάζεται το ΔΕΣ του αριστερού τμήματος του φορέα της 1^{ης} βαθμίδας στα δεξιά της εικόνας. Με πράσινα βέλη συμβολίζεται η ροή της ισχύος για τον μειωτήρα από την είσοδο προς την έξοδο. Για την ανάλυση, αν και δεν περιλαμβάνεται στο ΔΕΣ, λαμβάνουμε υπόψη μας και τους 3 πλανήτες

Εικόνα 3 Διάγραμμα ελευθέρου σώματος πάνω μισού Μειωτήρα και αριστερού μέρους φορέα 1^{ης} βαθμίδας

Αρχικά και για τις 2 βαθμίδες, βλέπουμε ότι στους πλανήτες όλες οι δυνάμεις των εμπλοκών εκτός των περιφερειακών αλληλοαναιρούνται. Επομένως τα έδρανα στα οποία εδράζονται οι πλανήτες καταπονούνται μόνο από την συνισταμένη των περιφερειακών για κάθε πλανήτη και η αντοχή τους υπολογίζεται ως προς αυτήν.

Λόγω της αύξησης της μεταφερόμενης ροπής καθώς κινούμαστε από την είσοδο στην έξοδο, με την πορεία που επισημαίνεται και από τα πράσινα βέλη, είναι λογικό και οι δυνάμεις που αναπτύσσονται στις εμπλοκές να αυξάνονται κατά την ίδια φορά, κάτι το οποίο υποδεικνύει και την αύξηση των διαστάσεων για τα στοιχεία του μειωτήρα κατά την ίδια φορά (άτρακτοι, γρανάζια, ρουλεμάν).

Το κοινό εξάρτημα της στεφάνης της $1^{ης}$ βαθμίδας και του ήλιου της $2^{ης}$ που επισημαίνεται και στην Εικόνα 3. έχει σχεδιαστεί με τέτοιες γωνίες κλίσεως ,έτσι ώστε οι αξονικές δυνάμεις F_{rB} kai $F_{r\Gamma}$ να έχουν το ίδιο μέτρο και να αλληλοαναιρούνται .

Στα δεξιά της Εικόνας 3 παρουσιάζεται το ΔΕΣ του αριστερού μέλους του φορέα της πρώτης βαθμίδας. Το κομμάτι αυτό αποτελεί κοινό κομμάτι και με την στεφάνη της $2^{n\varsigma}$ βαθμίδας. Οι δυνάμεις που αναπτύσσονται σε αυτό και στην συνέχεια οδηγούνται προς την έξοδο προέρχονται από την συνισταμένη των περιφερειακών στους

πλανήτες της $1^{ης}$ βαθμίδας και τις δυνάμεις από την εμπλοκή για την στεφάνη με τους πλανήτες της $2^{ης}$ βαθμίδας. Από τις δυνάμεις της $2^{ης}$ βαθμίδας, λόγω των γωνιών που σχηματίζουν μεταξύ τους οι πλανήτες, θα παραμείνουν μόνο οι αξονικές δυνάμεις F_r

Οι δυνάμεις από την στεφάνη θα είναι τελικά αυτές που μαζί με την ώση της προπέλας, καταπονούν τα ρουλεμάν της. Όπως έχει σημειωθεί και στο ΔΕΣ το σημείο έδρασης των ρουλεμάν στο κέλυφος βρίσκεται στην έξοδο Β. Το κέλυφος επομένως καταπονείται σε 2 σημεία . Το πρώτο σημείο προέρχεται από την έδραση του φορέα της 2^{ης} βαθμίδας σε αυτό και το δεύτερο από τα ρουλεμάν της εξόδου , οι πρώτες αυτές δυνάμεις για τους ίδιους λόγους με προηγουμένως αλληλοαναιρούνται. Επομένως για το κέλυφος κρίσιμο σημείο παραμένει μόνο εκεί που εδράζονται τα λοξά κωνικά έδρανα κυλίσεως.

6. Σχεδιασμός Μειωτήρα

Αφού επιλέχτηκε το πλανητικό σύστημα και έγινε ο υπολογισμός των γραναζιών και των στηρίξεων που χρειάζονται, μπορούμε να προχωρήσουμε στην σχεδίαση του μειωτήρα και την ανάλυση του τρόπου συναρμολόγησης του . Αρχικά παρουσιάζεται στην Εικόνα 4. το δισδιάστατο σχέδιο της συναρμολογημένης διάταξης στο οποίο επισημαίνονται τα κύρια μέρη του μειωτήρα. Τα κύρια αυτά μέρη είναι αριθμημένα με την σειρά συναρμολόγησης του μειωτήρα (από το 1 στο 7). Η ανάλυση που ακολουθεί ασχολείται ξεχωριστά με το κάθε μέρος .

Εικόνα 4. 2D σχέδιο συναρμολογημένης διάταξης του μειωτήρα

6.1 (1) Άτρακτος Εισόδου

Αρχικά γίνεται η συναρμολόγηση της ατράκτου εισόδου και των στοιχείων που εδράζονται πάνω σε αυτήν.

Εικόνα 5 Δισδιάστατο σχέδιο ατράκτου εισόδου και των στοιχείων που εφαρμόζονται σε αυτήν

Το δισδιάστατο σχέδιο της ατράκτου εισόδου παρουσιάζεται στην Εικόνα 5. Στην εικόνα αυτή είναι αριθμημένα τα στοιχεία που συνδέονται πάνω στην άτρακτο και που αναλύονται στην πορεία.

Αρχικά φαίνεται ότι γίνεται χρήση κοίλης ατράκτου με στόχο την εξοικονόμηση βάρους, μιας και το βάρος είναι βασικός παράγοντας όπως προαναφέρθηκε. Η άτρακτος εισόδου περιλαμβάνει επίσης στο αριστερό της άκρο κατεργασμένο πολύσφηνο μέσο του οποίου γίνεται η σύνδεση με το διπλό πομπέ πολύσφηνο του αριθμού (3). Στον αριθμό (2) βρίσκεται ο ήλιος της 1^{ης} βαθμίδας ο οποίος εδράζεται στο διπλό πομπέ πολύσφηνο με τον αριθμό (3).

Η χρήση του διπλού πομπέ πολύσφηνου δίνει την δυνατότητα στον ήλιο της 1^{ης} βαθμίδας να κινηθεί ακτινικά και να βρει την θέση του ανάμεσα στους πλανήτες έτσι, έχουμε δώσει την δυνατότητα αυτορρύθμισης στον ήλιο. Ο ήλιος στηρίζεται αξονικά με την χρήση διπτέρου(4) το οποίο βιδώνεται σε πείρο με φυτευτή κεφαλή. Ο πείρος διέρχεται μέσα από το πολύσφηνο, και για την σταθεροποίηση του υπάρχει μια διαμόρφωση μορφής(νύχι) έτσι ώστε να παραμένει σταθερός όταν βιδώνεται σε αυτόν το δίπτερο

Τέλος διακρίνεται στην θέση (6) ο ένας από τους δύο λαβύρινθους στεγανοποίησης, ο δεύτερος λαβύρινθος είναι εδρασμένος στο κέλυφος και θα παρουσιαστεί στην ανάλυση που ακολουθεί. Επομένως έχει επιλεχθεί ως μέθοδος στεγανοποίησης, η στεγανοποίηση χωρίς επαφή, λόγο των πολύ υψηλών περιστροφικών ταχυτήτων στον κινητήρα. Με αυτόν τον τρόπο αποφεύγουμε την φθορά τον στοιχείων στεγανοποίησης και την επίδραση της υψηλής θερμοκρασίας.

6.2 (2) 2η Βαθμίδα πλανητικού-Καπάκι κελύφους

Εικόνα 6. Δεύτερη βαθμίδα πλανητικού συστήματος

Αφού συναρμολογηθεί η άτρακτος, σειρά έχει η 2^η βαθμίδα του πλανητικού συστήματος. Στην 6 παρουσιάζεται δισδιάστατο σχέδιο της δεύτερης βαθμίδας με τομή σε παράλληλα επίπεδα . Ο ήλιος της δεύτερης βαθμίδας έχει παραληφθεί από το σχέδιο διότι θα αναλυθεί ξεχωριστά όντας ένα σύνθετο κομμάτι.

Αρχικά βλέπουμε την μεγέθυνση του στοιχείου 1 στην Εικόνα 6. Οι πλανήτες εδράζονται σε διπλά βαρελωτά αυτορρυθμιζόμενα έδρανα κυλίσεως (3). εσωτερικώς δακτύλιος των εδράνων στηρίζεται 2 με αποστάτες των οποίων το άλλο άκρο πατάει πάνω

δίσκους του φορέα (5) και (6). Τα ρουλεμάν στηρίζονται πάνω στους πείρους (2) των οποίων τα άκρα εισέρχονται σε διαμπερή και σε τυφλή οπή στα στοιχεία του φορέα (5),(6) αντίστοιχα. Ο εξωτερικός δακτύλιος των εδράνων στηρίζεται από την δεξιά μεριά με την διαμόρφωση(δόντι) που έχει δημιουργηθεί στους πλανήτες κατά την κατεργασία τους και από την άλλη μεριά βιδώνεται πάνω στο γρανάζι με 4 κοχλίες ένας δακτύλιος (4). Οι οπές για τους κοχλίες αυτούς είναι τυφλή, για την ασφάλιση των κοχλιών τοποθετούνται ασφάλειες με σχισμή σε αυτούς.

Τα στοιχεία (5) και (6) αποτελούν τον φορέα της δεύτερης βαθμίδας. Το αριστερά κομμάτι (6) περιλαμβάνει "θήκες" στις οποίες εισέρχονται οι πλανήτες, οι θήκες αυτές κατασκευάζονται με χρήση φρέζας. Το δεξιά κομμάτι (5) του φορέα βιδώνεται στο κέλυφος με την χρήση φλάντζας διότι απαιτείται να παραμένει σταθερό και αποτελεί παράλληλα και το καπάκι του κελύφους από την δεξιά μεριά. Τα 2 στοιχεία του φορέα 2 συνδέονται αξονικά με 3 ζευγάρια κοχλιών και την χρήση ελαστικής ασφάλειας ανά ζευγάρι . Κατά την σύσφιξη τον κοχλιών η ελαστική ασφάλεια τσακίζεται και αποτρέπει τους κοχλίες από το να ξεσφίξουν λόγω αυξανόμενης τριβής στις επιφάνειες επαφής . Η στήριξη σε διάτμηση και η κέντρωση των δίσκων του φορέα επιτυγχάνεται με την χρήση 3 πείρων. Οι πείροι αυτοί παρουσιάζονται στην Εικόνα 6 στο πάνω μέρος. Κατά την τοποθέτησή τους εισάγονται σε διαμπερείς οπές και έχουν ειδική διαμόρφωση όπως φαίνεται στην εικόνα, που τους αποτρέπει να περιστρέφονται μετά την συναρμολόγηση τους. Στο δεξιό του άκρο του (5) κεντρώνεται ο λαβύρινθος στεγανοποίησης της εισόδου(9).

Παρατηρείται επιπλέον το σημαντικό πάχος του εξαρτήματος (6). Το πάχος αυτό οφείλεται στο γεγονός ότι στον δίσκο (6) εδράζονται οι πείροι των πλανητών της 2^{ης} βαθμίδας. Όπως αποδείχθηκε και στο διάγραμμα ελευθέρου σώματος από τους πείρους αυτούς ο δίσκος καταπονείται σε 3 περιφερειακές δυνάμεις. Επομένως για λόγους ασφάλειας χρησιμοποιούμε το πάχος αυτό. Ένας ακόμα λόγος είναι οι αυξημένες θερμοκρασίες που επικρατούν στα δεξιά πλευρά του μειωτήρα λόγω της ύπαρξης του στροβίλου.

Η στεφάνη (7) της 2^{ης} βαθμίδας συνδέεται μέσω κοχλιών με το κωνικό στοιχείο 8. Από εκεί το στοιχείο (8) συνδέεται με την άτρακτο εξόδου μέσω φλάντζας στο αριστερό του άκρο. Από το κωνικό στοιχείο (8) έχει αφαιρεθεί υλικό για εξοικονόμηση βάρους και για να διευκολυνθεί η εισχώρηση του λαδιού στα κρίσιμα σημεία λίπανσης.

Ο δίσκος του φορέα (5) αποτελεί και το δεξιό καπάκι του μειωτήρα. Στο ένα άκρο του περιλαμβάνει τυφλές οπές για την εισαγωγή των πείρων και διαμπερείς από την άλλη όπου εισέρχονται τα ζευγάρια κοχλιών. Στο δεξιό του άκρο κεντρώνεται ο λαβύρινθος στεγανοποίησης της εισόδου (9).

6.3 (3) Στεφάνι 1^{ης} βαθμίδας- Ήλιος 2^{ης} βαθμίδας

Εικόνα 7 Στεφάνη 1ης βαθμίδας-Ήλιος 2ης βαθμίδας

Στην Εικόνα 7 παρουσιάζεται το "κοινό" κομμάτι των 2 βαθμίδων. Το κομμάτι αυτό μεταφέρει την ισχύς από την $\mathbf{1}^{n}$ βαθμίδα στην $\mathbf{2}^{n}$.

Η στεφάνη (2) της $1^{ης}$ βαθμίδας συνδέεται σε τυφλές οπές με κοχλίες στο στοιχείο (3). Αντίστοιχα γίνεται και η σύνδεση του ήλιου(1) της $2^{ης}$ βαθμίδας.

Αρχικά συναρμολογείται η άτρακτος εισόδου χωρίς τον ήλιο και το πομπέ πολύσφηνο, αντίστοιχα συναρμολογείται ο δεξιά δίσκος του φορέα της δεύτερης βαθμίδας με τους πλανήτες. Μέσω τον πείρων κεντράρεται ο δεξιά δίσκος της βαθμίδας 2 με την υπόλοιπη βαθμίδα. Στην συνέχεια, αφού τοποθετηθεί ο εξωτερικό λαβύρινθος στην άτρακτο

εισόδου, συνδέεται η είσοδος με την 2^η βαθμίδα και κεντράρεται ο λαβύρινθος. Έχοντας συνδέσει όλα τα προηγούμενα συνδέεται το κομμάτι της Εικόνας 8 και κεντράρεται ο ήλιος (1) ανάμεσα στους πλανήτες. Τέλος συναρμολογείται το πομπέ πολύσφηνο με τον πείρο και τον ήλιο και συνδέονται στην άτρακτο εισόδου. Έτσι μπορεί να θεωρηθεί ότι έχει συναρμολογηθεί το δεξιό μέρος του μειωτήρα.

6.4 (4) 1η Βαθμίδα Πλανητικού – Άτρακτος Εξόδου

Στην ενότητα αυτή αναλύονται μαζί η 1^η βαθμίδα του πλανητικού με την άτρακτο εξόδου, αφού ο φορέας της πρώτης βαθμίδας αποτελεί συνέχεια της ατράκτου εξόδου. Στην Εικόνα 8 παρουσιάζεται το δισδιάστατο σχέδιο του στοιχείου. Αφού έχει συναρμολογηθεί το δεξιό κομμάτι του μειωτήρα, συνεχίζεται η συναρμολόγηση στο αριστερό με την έξοδο.

Εικόνα 8 Άτρακτος εξόδου μειωτήρα και 1^η βαθμίδα πλανητικού

Παρατηρώντας την Εικόνα 8 είναι εμφανής η αύξηση των διαστάσεων και των παχών των στοιχείων σε σχέση με τις προηγούμενες εικόνες. Κάτι που είναι λογικό εξαιτίας της αύξησης της ροπής. Ορίζεται η σειρά συναρμολόγησης ως εξής : Αρχικά συναρμολογούνται οι πλανήτες (2) στον δίσκο του φορέα (1). Οι πλανήτες τοποθετούνται στον δίσκο (1) στις φρεζαριστές 'θήκες' όπως και στην 2^η βαθμίδα, η στήριξη των πλανητών στις θέσεις αυτές είναι ακριβώς ίδια με την βαθμίδα 2 και γι' αυτό δεν θα αναλυθεί. Στην συνέχεια, εισέρχονται οι κοχλίες σύνδεσης τον κομματιών (3),(1) σε διαμπερείς οπές και ασφαλίζονται με ελάσματα. Για την κέντρωση των δίσκων χρησιμοποιούνται πείροι όπως και προηγουμένως . Ο δίσκος (3) στην ουσία αποτελεί την άτρακτο εξόδου του μειωτήρα . Η άτρακτος αυτή αποτελείται από πληθώρα διαβαθμίσεων για την στερέωση διαφόρων στοιχείων.

Αρχικά, στηρίζεται στην θέση (5) το ζευγάρι των κωνικών λοξών εδράνων, οι δακτύλιοι των οποίων σταθεροποιούνται με την χρήση αποστατών και μεταφέρουν την ροπή στο κέλυφος μέσω μιας φλάντζας που θα αναλυθεί στην πορεία. Τα έδρανα

κυλίσεως προεντείνονται με το περικόχλιο ατράκτου (6). Τα έδρανα κυλίσεως υπολογίζονται έτσι ώστε να έχουν ικανοποιητική αντοχή και για τα φορτία από το κιβώτιο αλλά και από την ώση της εξόδου, αναλυτικά οι υπολογισμοί παρουσιάζονται στο Παράρτημα Β. Στην συνέχεια, τοποθετείται ένας αποστάτης για να στηρίξει τον στεγανοποιητικό λαβύρινθο (7) αξονικά. Ο λαβύρινθος αυτός, μαζί με έναν ακόμα λαβύρινθο που εδράζεται στο κέλυφος, δημιουργούν μια στεγανοποίηση χωρίς επαφή για την έξοδο. Στην θέση (9) της ατράκτου βρίσκεται κατεργασμένο πολύσφηνο με το οποίο μεταφέρεται ροπή από την έξοδο στην φλάντζα και στην συνέχεια στην προπέλα. Η αξονική στερέωση της φλάντζας επιτυγχάνεται με το περικόχλιο 10. Τέλος, στην άτρακτο εξόδου τοποθετείται μια φλαντζωτή ασφάλεια στην θέση (11), η οποία αφού συναρμολογηθεί θα αποτρέψει το πομπέ πολύσφηνο της εισόδου να κινηθεί αξονικά και να χάσει την επαφή του με τον ήλιο.

6.5 (5) Αριστερό μέρος Κελύφους

Στην Εικόνα 9 παρουσιάζεται το δισδιάστατο σχέδιο του αριστερού μέρους του κελύφους με όλα του τα κομμάτια.

Εικόνα 9 Αριστερό μέρος κελύφους

Το αριστερό μέρος του κελύφους αποτελείται από 3 διαφορετικά κομμάτια. Το πρώτο κομμάτι περιλαμβάνει την σύνδεση (1) με το δεξί μέρος του κελύφους. Επίσης, σε αυτό στην θέση (2) έχουν δημιουργηθεί 8 οπές με σπείρωμα περιμετρικά του τεμαχίου στις οποίες βιδώνονται τα μπεκ ψεκασμού νέφους λαδιού. Η θέση αυτών τον οπών είναι τέτοια έτσι ώστε να εξασφαλίζεται επαρκής λίπανση για όλα τα στοιχεία του κιβωτίου. Τα μπέκ αυτά βρίσκονται στο αριστερό μέρος του κελύφους για να αποφύγουμε πολύ τις υψηλές θερμοκρασίες που αναπτύσσονται στο πίσω μέρος του μειωτήρα λόγω του στροβίλου.

Το τεμάχιο (3) αποτελείται από μια φλάντζα και ένα κάθετο έλασμα το οποίο στηρίζει αξονικά τα ρουλεμάν της εξόδου και παραλαμβάνει όλα τα φορτία. Έχουν εξασφαλιστεί ικανά πάχη για να δέχονται τα ισχυρά φορτία που προέρχονται κυρίως από την προπέλα αλλά και από τον μειωτήρα. Το τεμάχιο (3) συνδέεται με το τεμάχιο 4) με κοχλίες σε τυφλές οπές. Οι κοχλίες αυτοί διέρχονται και από τα 3 τεμάχια (1),(3),(4). Στο τέλος του κελύφους κεντράρεται ο στεγανοποιητικός λαβύρινθος. Το

τεμάχιο (4) δεν παραλαμβάνει φορτία επομένως δεν απαιτούνται σημαντικές διαστάσεις πάχους γι' αυτό.

Παρατηρώντας τον σχήμα του κελύφους διακρίνεται η αεροδυναμική κατασκευή του που συμβάλει στην καλύτερη ροή αέρα από την προπέλα προς τον στρόβιλο. Το κέλυφος αυτό είναι μία χυτή κατασκευή.

6.6 (6) Σύστημα Λίπανσης

Σε εφαρμογές αεροπορικών κινητήρων, λόγω της ανάγκης για υψηλούς συντελεστές ασφαλείας, χαμηλές θερμοκρασίες και μεγάλη αντοχή, απαιτείται

1. Μπέκ ψεκασμού λαδιού 2. Σωλήνας Παροχής λαδιού 3. Διαμορφώσεις βελτίωσης της επίσης μια συνεχής και επαρκή λίπανση.

Για τον συγκεκριμένο μειωτήρα επιλέχθηκε ως τρόπος λίπανσης η λίπανση με εκτόξευση νέφους λαδιού. Κρίσιμα τεμάχια για την λίπανση είναι τα έδρανα στηρίξεως και οι οδοντωτοί τροχοί. Η διάταξη που παρέχει το λάδι στον μειωτήρα παρουσιάζεται στο δισδιάστατο σχέδιο της Εικόνας 10. Στο σχέδιο αυτό για καλύτερη κατανόηση της διάταξης έχει αφαιρεθεί το μισό κέλυφος.

Εικόνα 10 Σύστημα Παροχή και Ψεκασμού λαδιού στον Μειωτήρα

Στην Εικόνα 10 φαίνεται ο τρόπος Παροχής (2) και Ψεκασμού (1) λαδιού για τον μειωτήρα. Η σωλήνωση (2) παραλαμβάνει το λάδι από μια εξωτερική διάταξη και το διοχετεύει στα μπεκ (1). Τα μπεκ αποτελούνται από ειδική διάταξη η οποία αυξάνει την πίεση στο λάδι και το εκτοξεύει στο εσωτερικό του κιβωτίου με την μορφή νέφους. Στο εσωτερικό του κιβωτίου για την σωστή οδήγηση του νέφους λαδιού έχει αφαιρεθεί υλικό από διάφορα τεμάχια, τόσο ώστε να μην επηρεάζεται η αντοχή, με σκοπό την καλύτερη λίπανση.

6.7 (7) Φλαντζωτός Σύνδεσμος

Κατά την συναρμολόγηση του αριστερού μέρους του μειωτήρα ακολουθείται η σειρά που θα παρουσιαστεί σε αυτήν την ενότητα. Αρχικά συναρμολογούμε την 1^η βαθμίδα με του πλανήτες της και την άτρακτο εξόδου. Στην συνέχεια, συναρμολογούνται πάνω στην άτρακτο εξόδου όλα τα στοιχεία της εκτός της φλάντζας, του λαβύρινθου στεγανοποίησης και του περικοχλίου στήριξης της

Εικόνα 11 Φλατζωτός σύνδεσμος σύνδεσης προπέλας-μειωτήρα

φλάντζας τα οποία θα εισαχθούν στο τέλος. Ακολουθεί η σύνδεση τον επιμέρους κομματιών για το κέλυφος όπως αναφέρθηκαν προηγουμένως και η τοποθέτησή του επάνω στην άτρακτο εξόδου. Η τοποθέτηση του επισημαίνει αυτόματα την στήριξη των εδράνων κυλίσεως της εξόδου. Στην συνέχεια τοποθετείται ο λαβύρινθος στεγανοποίησης που πατάει στην έξοδο και εισέρχεται ο φλατζωτός σύνδεσμος που φαίνεται στην Εικόνα 11 . Ο σύνδεσμος αυτός στηρίζεται αξονικά από το περικόχλιο ατράκτου της εξόδου και μεταφέρει ροπή διαμέσου του πολύσφηνου που είναι κατεργασμένο στην άτρακτο εξόδου.

Ο σύνδεσμος στο άκρο του μειωτήρα συνδέεται με κοχλίες αντίστοιχα με έναν άλλο σύνδεσμο της προπέλας. Όπως παρατηρείται και στην Εικόνα αυτή η φλάντζα απαιτεί να είναι στιβαρό στοιχείο μιας και όλη

η ροπή και όλες οι δυνάμεις διέρχονται από αυτήν.

7. ΕΛΕΓΧΟΣ ΠΡΟΔΙΑΓΡΑΦΩΝ ΚΑΙ ΑΠΑΙΤΗΣΕΩΝ

Αφού έχει αναλυθεί η κατασκευή του μειωτήρα, σημασία έχει τώρα ο έλεγχος των απαιτήσεων που τέθηκαν. Αρχικά θα ελεγχθούν τα αποτελέσματα για την συγκεκριμένη σχεδίαση του μειωτήρα και στην συνέχεια οι σχεδιαστικές προδιαγραφές. Στον Πίνακα 2 παρουσιάζονται οι πληροφορίες του μειωτήρα σχετικά με τις διαστάσεις και τα κρίσιμα μεγέθη του. Αντίστοιχα στον Πίνακα 2 παρουσιάζονται πληροφορίες για τους οδοντωτούς τροχούς και τα έδρανα στηρίξεως που χρησιμοποιήθηκαν στον μειωτήρα.

Αρχικά, ελέγχεται ο βαθμός απόδοσης που υπολογίστηκε για τον μειωτήρα. Ο βαθμός απόδοσης όπως προαναφέρθηκε στην σύγκρισή του με τα υπόλοιπα πλανητικά είναι ο βέλτιστος εκ των 5, παράλληλα και η σχέση μετάδοσης βρίσκεται κοντά στην επιθυμητή (16).

Ύψιστης σημασίας είναι και το βάρος του μειωτήρα. Στην βιβλιογραφία αναφέρεται ότι για κινητήρες turboprop που κυμαίνονται στην ισχύ που μας δίνεται, ο λόγος $A=\frac{KW}{kg}$ οφείλει να κυμαίνεται ανάμεσα στις τιμές 0.1 και 0.7, για τον μειωτήρα που σχεδιάστηκε. Όπως φαίνεται και στον Πίνακα 2 A=0.272, επομένως η αποδιδόμενη ισχύς λειτουργίας ανά κιλό μειωτήρα είναι πάρα πολύ ικανοποιητική .

Στον Πίνακα 2 επιπλέον παρουσιάζεται και η τιμή της ώσης F_u η οποία προκύπτει από την σχέση F_u = P/v όπου P η ισχύς του κινητήρα και v η ταχύτητα του αεροσκάφους. Η ταχύτητα αυτή για κινητήρες του ίδιου τύπου με τον σχεδιαζόμενο κυμαίνεται στις τιμές : 380 < v < 400 [km/h] . Ενδιαφερόμενοι βέβαια να υπολογίσουμε την απαιτούμενη ώση κατά την απογείωση, μιας και εκεί εμφανίζει την μέγιστη τιμή της, δουλεύουμε με την ελάχιστη τιμή του v.

Λόγο της ανομοιόμορφης λειτουργίας του κινητήρα επιλέχθηκε για τους οδοντωτούς τροχούς συντελεστή φορτίου $K_A = 1.75$, έτσι ώστε οι συντελεστές ασφαλείας που θα προκύψουν να είναι εντός ικανοποιητικών ορίων.

Για τους οδοντωτούς τροχούς ορίζονται συντελεστές ασφαλείας:

Εκκοιλάνσεις =1.3

Θραύση = 2

Άρπαγμα >2

Κοιτάζοντας τις τιμές του Πίνακα 3 βλέπουμε ότι όλοι οι οδοντωτοί τροχοί ικανοποιούν τις επιθυμητές τιμές για τους συντελεστές ασφαλείας. Από τον ίδιο πίνακα επιπλέον, παρατηρούμε την πολύ μεγάλη διάρκεια ζωής για τα έδρανα στηρίξεως τόσο των πλανητών όσο και της εξόδου.

Πίνακας 2 Πληροφορίες Μειωτήρα

Πληροφορίες Μειωτήρα			
Περιστροφική ταχύτητα n	Τεισοδου = 23000 rpm	Τεξόδου = 1406	
Ροπή	Τεισοδου =250 Nm	Τεξόδου = 3186 Nm	
Σχέση μετάδοσης ΙΑΒ	17,3		
Βαθμός απόδοσης η	0,9669		
Διαστάσεις Μειωτήρα	Μάζα = 164.2 kg	Όγκος = 0.1157 m^3	
A = Ισχύς ανά κιλό [KW/kg]	0.272		
F _u = Ώση προπέλας	6,2 kN		
Αξονική δύναμη κιβωτίου	1,158 kN		

Πίνακας 3 Πληροφορίες Στοιχείων Μειωτήρα

Αντοχή Στοιχείων Μειωτήρα				
Γρανάζια				
Συντελεστής ασφάλειας				
Σε εκκοιλάνσεις	Ήλιος 1 =1.66	Πλανήτης 1 = 2.42	Στεφάνη 1 = 3.27	
	Ήλιος 2 =1.72	Πλανήτης 2 = 1.99	Στεφάνη 2 = 2.32	
Σε θραύση	Ήλιος 1= 4.1	Πλανήτης 1 = 5.71	Στεφάνη 1 = 3.95	
	Ήλιος 2 =4.78	Πλανήτης 2 = 3.97	Στεφάνη 2 = 3.47	
Σε Άρπαγμα	Ήλιος 1= 2.73	Πλανήτης 1 = 2.73	Στεφάνη 1 = 4.72	
	Ήλιος 2 =3.19	Πλανήτης 2 = 3.19	Στεφάνη 2 = 4.08	
Έδρανα Στηρίξεως				
Τύπος	Διάρκεια ζωής			
Διπλό βαρελωτό				
22205/20E	95200 h			
Διπλό βαρελωτό 21308Ε	196000 h			
Κωνικό Λοξό T4DB 170	>200000 h			

Εκτός των υπολογισμών για τα μεγέθη του μειωτήρα πρέπει να ελεγχθούν και οι σχεδιαστικές προδιαγραφές που ορίσαμε. Για τον σχολιασμό αυτών παρατίθεται η εικόνα 12.

Εικόνα 12 Όψεις σε τομή του Μειωτήρα

Βλέποντας την Εικόνα 12 εξάγονται τα ακόλουθα συμπεράσματα :

- Αεροδυναμικό σχήμα του μειωτήρα από την μεριά της προπέλας. Σε εκείνη την μεριά είναι που μας ενδιαφέρει να αποφύγουμε της πρόσθετες αντιστάσεις λόγω σχήματος.
- Εύκολη συναρμολόγηση και αποσυναρμολόγηση του κιβωτίου. Κατά την αποσυναρμολόγηση αεροπορικών κινητήρων έχουμε πλήρη διαίρεση του κινητήρα στα επιμέρους κομμάτια, για έλεγχο, καθάρισμα και αντικατάσταση των στοιχείων του. Η αποσυναρμολόγηση στον συγκεκριμένο μειωτήρα επιτυγχάνεται με τα αντίστροφα βήματα της συναρμολόγησης που αναλύθηκε προηγουμένως. Στον μειωτήρα που σχεδιάστηκε υπάρχει η δυνατότητα να αποσυναρμολογηθεί όλη η κατασκευή χωρίς να κινηθεί ούτε ελάχιστα ο στρόβιλος και η άτρακτος του.
- Επαρκή Λίπανση. Η περιμετρική χρήση μπεκ δημιουργεί μια αναγκαστική οδήγηση του νέφους λαδιού σε όλες τις κρίσιμες θέσεις.
- Σωστή διαστασιολόγηση του κιβωτίου. Αύξηση διαστάσεων από την είσοδο προς την έξοδο σύμφωνα με την ροή ισχύος που παρουσιάστηκε στο διάγραμμα ελευθέρου σώματος και ικανοποιητικό πάχος του δεξιού καπακιού του κελύφους για αντοχή στις αυξημένες θερμοκρασίες και τις δυνάμεις των πείρων.

Η παραπάνω ανάλυση αποδεικνύει την αξιοπιστία του μειωτήρα που σχεδιάστηκε, αφού ικανοποιεί τις προδιαγραφές τον αεροπορικών μειωτήρων αλλά και των ζητούμενων σχεδιαστικών απαιτήσεων. Στην συνέχεια ακολουθούν τα Παραρτήματα των αναφορών.

8. ΒΙΒΛΙΟΓΡΑΦΙΑ

- Σημειώσεις μαθήματος 'Μηχανολογικός Σχεδιασμός & Ανάπτυξη Προϊόντος'
- Σημειώσεις μαθήματος 'Στοιχεία Μηχανών 1 & 2'
- Thomas Row, May 7th, 2017 SF-1600: A Next Generation High Efficiency Turboprop for Single- Engine Aircraft, KU Department of Aerospace Engineering
- EDWARD A.BRASS, Nov. 6,1962, TWO-STAGE SPLIT-POER REDUCTION GEAR, 6
- W. Sun, T.Chen & X.Zhang, 2 April 2012, Research on pre-controllable safety factors of a wind power gearbox transmissionbased on reliability optimization design, Journal of Marine Engineering & Technology, 1-8
- John M. Hawkins, July 24,2001 ,PROPELLER GEARBOX, United States Patent, US 6,264,138
- Tom Otten, Richardd Becker, Stanislaus Reitenbach, ISABE 2019, Development and application of a predesign tool for aero engine power gearboxes, Institute of Propulsion Technology, German Aerospace Center1-14

Ηλεκτρονικές διευθύνσεις

- en.wikipedia.org
- skf.com
- www.globalsecurity.org/military
- www.novagear.ch
- www.geartechnology.com

ПАРАРТНМА А

1η ΒΑΘΜΙΔΑ

Ήλιος-Πλανήτης

KISSsoft Release 2020 B

KISSsoft – student license (not for commercial use)

File

Name: SUN 1-PLANET 1

Changed by: TheMechanicson: 25.12.2020at: 13:13:40

Dimension over pins is not measurable (facewidth is too small)!

Calculation of a helical-toothed cylindrical gear pair

Drawing or article number:

Gear 1: 0.000.0 Gear 2: 0.000.0

Calculation method ISO 6336:2019

----- Gear 1 ----- Gear 2 --

Power (kW) [P] 186.872 Speed (1/min) 21500.0 16722.2 [n] Torque (Nm) 83.0 106.7 [T] **Application factor** 1.75 [KA] Distribution factor 1.20 [Kγ] Required service life (h) 10000.00 [H] Gear driving (+) / driven (-)

Working flank gear 1: Right flank

Gear 1 direction of rotation: Clockwise

Tooth geometry and material

Geometry calculation according to ISO 21771:2007

------ Gear 1 ------ Gear 2 --Center distance (mm) [a] 133.838

Center distance tolerance ISO 286:2010 Measure js7

Normal module (mm) [mn] 5.0000 Normal pressure angle (°) [α n] 25.0000 Helix angle at reference circle (°) [β] 25.0000 Number of teeth [z] 21 27

Facewidth (mm) [b] 15.87 22.00

Hand of gear		right	left
Accuracy grade	[Q-ISO	A6	A6
	1328:2013]		
Inner diameter (mm)	[di]	0.00	0.00
Inner diameter of gear rim (mm)	[dbi]	0.00	0.00
Material			

Gear 1

18CrNiMo7-6, Case-carburized steel, case-hardened

ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm<HRC28

Gear 2

Surface hardness

18CrNiMo7-6, Case-carburized steel, case-hardened

ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm<HRC28

Gear 1 Gear	2	
	HRC 61	HRC 61

Material treatment according to ISO 6336:2006 Normal, life factors ZNT and YNT >=0.85						
Fatigue strength. tooth root stress (N/mm²)	[σFlim]	430.00	430.00			
Fatigue strength for Hertzian pressure (N/mm²)	[σHlim]	1500.00	1500.00			
Tensile strength (N/mm²)	[σB]	1200.00	1200.00			
Yield point (N/mm²)	[σS]	850.00	850.00			
Young's modulus (N/mm²)	[E]	206000 2	06000			
Poisson's ratio	[v]	0.300	0.300			
Roughness average value DS, flank (μm)	[RAH]	0.60	0.60			
Roughness average value DS, root (μm)	[RAF]	3.00	3.00			
Mean roughness height, Rz, flank (μm)	[RZH]	4.80	4.80			
Mean roughness height, Rz, root (μm)	[RZF]	20.00	20.00			

Gear reference profile

1:

Reference profile	1.25 / 0.38 / 1.0 ISO 53:1998 Profil A			
Dedendum coefficient	[hfP*]	1.250		
Root radius factor	[pfP*]	0.380 (pfPmax*=		
	0.318)			
Addendum coefficient	[haP*]	1.000		
Tip radius factor	[paP*]	0.000		
Protuberance height coefficient	[hprP*]	0.000		
Protuberance angle	[ɑprP]	0.000		
Tip form height coefficient	[hFaP*]	0.000		
Ramp angle	[αKP]	0.000		
not topping				

Gear reference profile 2	Gear	reference	profile	2:
--------------------------	------	-----------	---------	----

Reference profile	1.25 / 0.38 / 1.0	SO 53:1998 Profil A
Dedendum coefficient	[hfP*]	1.250
Root radius factor	[ρfP*]	0.380
		(pfPmax*= 0.318)
Addendum coefficient	[haP*]	1.000
Tip radius factor	[ρaP*]	0.000
Protuberance height coefficient	[hprP*]	0.000
Protuberance angle	[ɑprP]	0.000
Tip form height coefficient	[hFaP*]	0.000
Ramp angle	[αKP]	0.000
	not	
	topping	
Information on final machining		
Dedendum reference profile	[hfP*]	1.250 1.250
Tooth root radius Refer. profile	[ρfP*]	0.380 0.380
Addendum Reference profile	[haP*]	1.000 1.000
Protuberance height coefficient	[hprP*]	0.000 0.000
Protuberance angle (°)	[ɑprP]	0.000 0.000
Tip form height coefficient	[hFaP*]	0.000 0.000
Ramp angle (°)	[αKP]	0.000 0.000
Type of profile modification:	none (only runnir	ng-in)
Tip relief by running in (μm)	[Ca L/R]	2.0 / 2.0 2.0 / 2.0
Lubrication type	Oil injection lubri	cation
Type of oil	ISO-VG 220	
Lubricant base	Mineral-oil base	
Oil nominal kinematic viscosity at 40°C (mm²/s)	[v40]	220.00
Oil nominal kinematic viscosity at 100°C (mm²/s)	[v100]	17.50
Specific density at 15°C (kg/dm³)	[ρ]	0.895
Oil temperature (°C)	[TS]	70.000
Gear pair		
Overall transmission ratio	[itot]	-1.286
Gear ratio	[u]	1.286
Transverse module (mm)	[mt]	5.517
Transverse pressure angle (°)	[at]	27.226
Working pressure angle (°)	[awt]	28.395

	[awt.e/i]	28.411 / 28.379
Working pressure angle at normal section (°)	[awn]	26.058
Helix angle at operating pitch circle (°)	[βw]	25.237
Base helix angle (°)	[βb]	22.521
Reference center distance (mm)	[ad]	132.405
Pitch on reference circle (mm) Base pitch (mm)	[pt] [pbt]	17.332 15.412
Transverse pitch on contact-path (mm)	[pet]	15.412
Sum of profile shift coefficients	[Σχί]	0.2922
Transverse contact ratio Transverse contact ratio with allowances	[εα] [εα.e/m/i]	1.226 1.229 /1.219
Overlap ratio Total contact ratio	[εβ] [εγ]	1.224 / 0.427 1.653
Total contact ratio with allowances	[εγ.e/m/i]	1.656 / 1.651 / 1.646
Length of path of contact (mm)	[ga, e/i]	18.895 (18.937 / 18.783) 18.709 (18.667
Length T1-A (mm)	[T1A]	/ 18.787)
Length T1-B (mm)	[T1B]	22.193 (22.193 / 22.159)
Length T1-C (mm)	[T1C]	27.845 (27.827 / 27.864)
Length T1-D (mm)	[T1D]	34.121 (34.079 / 34.198)
Length T1-E (mm)	[T1E]	37.604 (37.604 / 37.570) 44.937 (44.937
Length T2-A (mm)	[T2A]	/ 44.902)
Length T2-B (mm)	[T2B]	41.454 (41.412 / 41.530)
Length T2-C (mm)	[T2C]	35.801 (35.778 / 35.825)
Length T2-D (mm)	[T2D]	29.526 (29.526 / 29.490)
Length T2-E (mm)	[T2E]	26.042 (26.000 / 26.118)
Length T1-T2 (mm)	[T1T2]	63.647 (63.605 / 63.689)

Minimal length of contact line (mm)		[Lmin]	17.182
Gear 1			
Lead height (mm)		[pz]	780.532
Axial pitch (mm)		[px]	37.168
Profile shift coefficient		[x]	0.1754
Tooth thickness, arc, in module		[sn*]	1.7344
Tip alteration (mm)		[k*mn]	-0.029
Reference diameter (mm)		[d]	115.855
Base diameter (mm)		[db]	103.019
Tip diameter (mm)		[da]	127.551
(mm)		[da.e/i]	127.551 /
,		. , .	127.511
Tip diameter allowances (mm)		[Ada.e/i]	0.000 / -0.040
Tip form diameter (mm)		[dFa]	127.551
(mm)		[dFa.e/i]	127.551/
			127.511
Root diameter (mm)		[df]	105.109
Generating Profile shift coefficient		[xE.e/i]	0.1604/
			0.1518
Generated root diameter with xE (mm)		[df.e/i]	104.959 /
			104.873
Root form diameter (mm)		[dFf]	108.582
(mm)		[dFf.e/i]	108.479 /
			108.421
Involute length (mm)		[l_dFa-l_dFf]	10.869
Addendum, $m_n(h_{aP}^*+x+k)$ (mm)		[ha]	5.848
(mm)		[ha.e/i]	5.848 / 5.828
Dedendum (mm)		[hf=mn*(hfP*- x)]	5.373
(mm)		//] [hf.e/i]	5.448 / 5.491
Tooth height (mm)		[h]	11.221
Virtual gearno. of teeth		[zn]	27.155
Normal tooth thickness at tip circle (mm)		[san]	2.550
(mm)		[san.e/i]	2.500 / 2.431
Normal tooth thickness at tip form circle (mm)		[sFan]	2.550
(mm)		[sFan.e/i]	2.500 / 2.431
Normal space width at root circle (mm)		[efn]	2.942
(mm)		[efn.e/i]	2.975 / 2.995
Gear 2			
Lead height (mm)	[pz]	1003.5	42
Axial pitch (mm)	[px]	37.1	68
Profile shift coefficient	[x]	0.11	168
Tooth thickness, arc, in module	[sn*]	1.67	797

Tip alteration (mm)	[k*mn]	-0.029
Reference diameter (mm)	[d]	148.956
Base diameter (mm)	[db]	132.452
Tip diameter (mm)	[da]	160.066
(mm)	[da.e/i]	160.066 / 160.026
Tip diameter allowances (mm)	[Ada.e/i]	0.000 / -0.040
Tip form diameter (mm)	[dFa]	160.066
(mm)	[dFa.e/i]	160.066 / 160.026
Root diameter (mm)	[df]	137.624
Generating Profile shift coefficient	[xE.e/i]	0.0964/ 0.0857
Generated root diameter with xE (mm)	[df.e/i]	137.420 / 137.313
Root form diameter (mm)	[dFf]	140.942
(mm)	[dFf.e/i]	140.790 / 140.711
Involute length (mm)	[l_dFa-l_dFf]	10.865
Addendum, $m_n(h_{aP}^*+x+k)$ (mm)	[ha]	5.555
(mm)	[ha.e/i]	5.555 / 5.535
Dedendum (mm)	[hf=mn*(hfP*- x)]	5.666
(mm)	[hf.e/i]	5.768 / 5.821
Tooth height (mm)	[h]	11.221
Virtual gearno. of teeth	[zn]	34.913
Normal tooth thickness at tip circle (mm)	[san]	2.744
(mm)	[san.e/i]	2.667 / 2.590
Normal tooth thickness at tip form circle (mm)	[sFan]	2.744
(mm)	[sFan.e/i]	2.667 / 2.590
Normal space width at root circle (mm)	[efn]	2.777
(mm)	[efn.e/i]	2.810 / 2.828
Gear specific pair data Gear pair 1, Gear 1		
Operating pitch diameter (mm)	[dw]	117.108
(mm)	[dw.e/i]	117.126 / 117.091
Active tip diameter (mm)	[dNa]	127.551
(mm)	[dNa.e/i]	127.551 / 127.511
Theoretical tip clearance (mm)	[c]	1.250
Effective tip clearance (mm)	[c.e/i]	1.446 / 1.332
Active root diameter (mm)	[dNf]	109.604
(mm)	[dNf.e/i]	109.657 / 109.575
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.618 / 0.548
Max. sliding velocity at tip (m/s)	[vga]	39.061
Specific sliding at the tip	[ζа]	0.461
Specific sliding at the root	[ζf]	-0.868
Mean specific sliding	[ζm]	0.463
Sliding factor on tip	[Kga]	0.296
Sliding factor on root	[Kgf]	-0.277
Roll angle at dFa (°)	[{dFa.e/i]	41.829 / 41.791
Roll angle to dNa (°)	[ξdNa.e/i]	41.829 / 41.791
	[70	,,

Roll angle to dNf (°) Roll angle at dFf (°)	[ξdNf.e/i] [ξdFf.e/i]	
Diameter of single contact point B (mm)	[d-B]	112.174 (112.174 / 112.147)
Diameter of single contact point D (mm)	[d-D]	123.571 (123.524 / 123.657)
Addendum contact ratio	[ε]	0.633 (0.634 / 0.630
Gear specific pair data Gear pair 1, Gear 2		1
Operating pitch diameter (mm)	[dw]	150.567
(mm)	[dw.e/i]	150.590 / 150.545
Active tip diameter (mm)	[dNa]	160.066
(mm)	[dNa.e/i]	160.066 / 160.026
Theoretical tip clearance (mm)	[c]	1.250
Effective tip clearance (mm)	[c.e/i]	1.408 / 1.305
Active root diameter (mm)	[dNf]	142.325
(mm)	[dNf.e/i]	142.381 / 142.294
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.835 / 0.752
Max. sliding velocity at tip (m/s)	[vga]	36.569
Specific sliding at the tip	[ζa]	0.465
Specific sliding at the root	[ζf]	-0.857
Mean specific sliding	[ζm]	0.463
Sliding factor on tip	[Kga]	0.277
Sliding factor on root	[Kgf]	-0.296
Roll angle at dFa (°)	[ξdFa.e/i]	38.878 / 38.847
Roll angle to dNa (°)	[ξdNa.e/i]	38.878 / 38.847
Roll angle to dNf (°)	[ξdNf.e/i]	22.596 / 22.494
Roll angle at dFf (°)	[ξdFf.e/i]	20.647 / 20.545
Diameter of single contact point B (mm)	[d-B]	156.260 (156.216 / 156.341)
Diameter of single contact point D (mm)	[d-D]	145.020 (145.020 / 144.991)
Addendum contact ratio	[ε]	0.593 (0.594 / 0.589)
General influence factors		
Gear 1 Gear 2		
Nominal circum. force at pitch circle (N)	[Ft]	1432.8

Axial force (N)	[Fa]	668.1
Radial force (N)	[Fr]	737.2
Normal force (N)	[Fnorm]	1744.4
Nominal circumferential force per mm (N/mm)	[w]	90.27
Only as information: Forces at operating pitch circle	e:	
Nominal circumferential force (N)	[Ftw]	1417.5
Axial force (N)	[Faw]	668.1
Radial force (N)	[Frw]	766.3
Circumferential speed reference circle (m/s)	[v]	130.42
Circumferential speed operating pitch circle (m/s)	[v(dw)]	131.83
Running-in value (μm)	[yp]	0.7
Running-in value (μm)	[yf]	0.8
Correction factor	[CM]	0.800
Gear blank factor	[CR]	1.000
Basic rack factor	[CBS]	1.073
Material coefficient	[E/Est]	1.000
Singular tooth stiffness (N/mm/μm)	[c']	13.493
Meshing stiffness (N/mm/μm)	[cγα]	15.781
Meshing stiffness (N/mm/μm)	[cγβ]	13.413
Reduced mass (kg/mm)	[mRed]	0.03282
Resonance speed (min-1)	[nE1]	9971
Resonance ratio (-)	[N]	2.156
Overcritical range		
Running-in value (µm)	[γα]	0.7
Bearing distance I of pinion shaft (mm)	[1]	31.740
Distance s of pinion shaft (mm)	[s]	3.174
Outside diameter of pinion shaft (mm) Load in accordance with Figure 13, ISO 6336-1:2006 0:a), 1:b), 2:c), 3:d), 4:e)	[dsh] 6 [-]	15.870 4
Coefficient K' according to Figure 13, ISO 6336- 1:2006 Without stiffening	[K']	-1.00

Tooth trace deviation (active) (μm) from deformation of shaft (μm) fsh	[Fβy] [fsh*B1]	3.61 2.37
$(\mu m) = 2.37$, B1=1.00, fH β 5		
$(\mu m) = 6.00$		
Tooth without tooth trace modification		
Position of contact pattern:	favo	rable
from production tolerances (μm) B2=	[fma*B2]	11.67
1.00	[[0]]	4.25
Tooth trace deviation, theoretical (μm)	[Fβx]	4.25
Running-in value (μm)	[yβ]	0.64
Dynamic factor	[Kv]	1.383
Face load factor -flank	[ΚΗβ]	1.092
- Tooth root	[KFβ]	1.063
- Scuffing	[КВβ]	1.092
Transverse load factor - flank	[ΚΗα]	1.000
- Tooth root	[KFα]	1.000
- Scuffing	[ΚΒα]	1.000
Number of load cycles (in mio.)	[NL]	12900.000 10033.333
Tooth root load capacity		
Calculation of Tooth form coefficients according method: B		Gear 1 Gear
Calculated with gonerating profile shift coefficient	[vr :1	2 0.1518
Calculated with generating profile shift coefficient Tooth form factor	[xE.i] [YF]	0.1518 0.0857 1.21 1.22
Stress correction factor	[YS]	2.06 2.05
Load application angle (°)	[αFen]	26.72 26.26
Load distribution influence factor	[fε]	0.933
Load application diameter (mm)	$[d_{en}]$	121.079 153.869
Bending moment arm (mm)	[hF]	5.83 5.99
Tooth thickness at root (mm)	[sFn]	11.53 11.66
Tooth root radius (mm)	[ρF]	2.52 2.55
Bending moment arm (-)	[hF/mn]	1.165 1.198
Tooth thickness at root (-)	[sFn/mn]	2.305 2.333
Tooth root radius (-)	[pF/mn]	0.504 0.511
Calculation cross section diameter (mm) Tangents on calculation cross section (°)	$[d_{sFn}]$ $[\alpha_{sFn}]$	106.819 139.322 30.000 30.000
Notch parameter	[u _{sFn}] [q _s]	2.286 2.284
	เฟาไ	2.200 2.204

Helix angle factor	[Υβ]		224
Deep tooth factor	[YDT]		000
Gear rim factor	[YB]	1.00	1.00
Effective facewidth (mm)	[beff]	15.87	22.00
Nominal stress at tooth root (N/mm²)	[σF0]	55.18	39.89
Tooth root stress (N/mm²)	[σF]	170.37	123.18
Permissible bending stress at root of Test-gear			
Notch sensitivity factor	[YdrelT]	0.998	0.998
Surface factor	[YRrelT]	0.957	0.957
Size factor, tooth root	[YX]	1.000	1.000
Finite life factor	[YNT]	0.850	0.850
$Y_{drelT}*Y_{RrelT}*Y_X*Y_{NT}$		0.812	0.812
Alternating bending factor, mean stress influence			
coefficient			
	[YM]	1.000	1.000
Stress correction factor	[Yst]	2.	00
Yst*σFlim (N/mm²)	[σFE]	860.00	860.00
Permissible tooth root stress σFG/SFmin (N/mm²)	[σFP]	498.53	498.52
Limit strength tooth root (N/mm²)	[σFG]	697.94	697.92
Required safety	[SFmin]	1.40	1.40
Safety for tooth root stress	[SF=σFG/σF]	4.10	5.67
Transmittable power (kW)	[kWRating]	546.82	756.30
Flank safety	[KWIKathi8]	3 10.02	750.50
Tiank baroty			
Ge	ar 1 Gear 2 -	-	
Zone factor	[ZH]	2.	079
Elasticity factor (VN/mm²)	[ZE]	189.	812
Contact ratio factor	[Ζε]	0.	937
Helix angle factor	[Ζβ]	1.	050
Effective facewidth (mm)	[beff]	15.	87
Nominal contact stress (N/mm²)	[σH0]	457.	.17
Contact stress at operating pitch circle (N/mm²)	[σHw]	814.	.32
Coefficient[fZCa] 1.20(Helical gear sets without flar	nk modifications)		
Single tooth contact factor	[ZB,ZD]	1.06	1.04
Contact stress (N/mm²)	[σHB, σHD]	866.62	
			845.06
Lubrication factor for NL	[ZL]	1.020	1.020
Speed factor for NL	[ZV]	1.067	1.067
	[2]	1.007	1.007
Roughness factor for NL	[ZR]	0.975	0.975
Material hardening factor for NL	[ZW]	1.000	1.000
Finite life factor	[ZNT]	0.850	0.850
	[ZL*ZV*ZR*ZNT]	0.902	0.902

Limited pitting is permitted:	No		
Size factor (flank)	[ZX]	1.000	1.000
Permissible contact stress, σHG/SHmin (N/mm²)	[σΗΡ]	1352.44	1352.44
Pitting stress limit (N/mm²)	[σHG]	1352.44	
			1352.44
Required safety	[SHmin]	1.00	1.00
Safety factor for contact stress at operating pitch circle	[SHw]	1.66	1.66
Safety against pressure, σHG/σHBD Single contact	[SHBD]	1.56	1.60
Safety regarding transmittable torque	[(SHBD)^2]	2.44	2.56
Transmittable power (kW)	[kWRating]	455.11	478.64
Micropitting according to	ISO/TS 6336-22:	2018	

Calculation has not been carried out, lubricant: Load stage micropitting test not known

Scuffing load capacity

Calculation method according to	ISO/TS 6336-20/21:	2017		
Helical load factor for scuffing	[КВү]	1.0	000	
Lubrication coefficient for lubrication type	[XS]	1.2	200	
Scuffing test and load stage	[FZGtest] FZG - Te 14635 - 1)	est A / 8.3 /	′ 90 (ISO	12
Multiple meshing factor	[Xmp]	1.0	000	
Relative structural factor, scuffing	[XWrelT]	1.0	000	
Thermal contact factor (N/mm/s^.5/K)	[BM]	13.780	13.780	
Relevant tip relief (µm)	[Ca]	2.00	2.00	
Optimaltip relief (µm)	[Ceff]	12.0	01	
Ca taken as optimal in the calculation (0=no, 1=yes)	0	0	
Effective facewidth (mm)	[beff]	15.	872	
Applicable circumferential force/facewidth (N/mm KB γ = 1.000 , wBt*KB γ =286.419) [wBt]	286	.419	

Angle factor	[Χαβ]	1.091	
ε1: 0.633,ε2: 0.593			
Flash temperature-criteria			
Lubricant factor	[XL]	0.830	
Tooth mass temperature (°C) θMi = θoil + XS*0.47*Xmp*θflm	[θMi]	88.28	
Average flash temperature (°C)	[θflm]	32.42	
Scuffing temperature (°C)	[θS]	531.65	
Contact time (µsec)	[tc]	7.84	
theS increased because of short contact time by (°	C)	182.85	
Γ coordinates (point of highest temperature)	[୮]	0.220	
[r.A]= -0.328 [r.E]= 0.350 Highest contact temp. (°C)	[0 B]	142.87	
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058	
Approach factor	[XJ]	1.000	
Load sharing factor	[X Г]	1.000	
Dynamic viscosity (mPa*s) Coefficient of friction	[ηM] [μ _m]	41.90 (70.0 °C 0.032	C)
Required safety	[SBmin]	2.000	
Margin of safety for scuffing, flash temperature	[SB]	6.336	
Integral temperature-criteria			
Lubricant factor	[XL]	1.000	
Tooth mass temperature (°C) θ MC = θ oil + XS*0.70* θ flaint	[θMC]	92.28	
Mean flash temperature (°C)	[θflaint]	26.52	
Integral scuffing temperature (°C)	[θSint]	360.78	
- · · · · ·			
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058	
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058	
Flash factor (°K*N^75*s^.5*m^5*mm) Running-in factor, well run in	[XM]	50.058 1.000 0.355	C)

Meshing factor	[XQ]	1.0	000
Tip relief factor	[XCa]	1.1	.11
Integral tooth flank temperature (°C)	[θint]	132.0	07
Required safety	[SSmin]	1.8	300
Safety factor for scuffing (intgtemp.)	[SSint]	2.7	<i>'</i> 32
Safety referring to transmittable torque	[SSL]	4.6	585
Measurements for tooth thickness	_	Gear 1	Gear 2
Tooth thickness tolerance			DIN 3967 cd25
Tooth thickness allowance (normal section) (mm)	[As.e/i]	-0.070 /-0.110	-0.095 /-0.145
Number of teeth spanned Base tangent length (no backlash) (mm) Base tangent length with allowance (mm)	[k] [Wk] [Wk.e/i]	4.000 54.310 54.247 /	6.000 83.604 83.518 /
(mm)	[ΔWk.e/i]	54.210 -0.063 / - 0.100	83.473 -0.086 / - 0.131
Diameter of measuring circle (mm)	[dMWk.m]	114.552	153.272
> Gear 1 base tangent length cannot be measured> Gear 2 base tangent length cannot be measured thin).)	
Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm)	[DM] [DMeff] n) [MrK] [MrK.e/i]	9.157 10.000 66.788 66.726 /	8.971 9.000 81.624 81.533 /
Diameter of measuring circle (mm) Diametral measurement over two balls without cl	[dMMr.m] earance (mm)	66.691 118.581 133.231	81.485 149.945 162.987
Diametral two ball measure (mm)	[MdK] [MdK.e/i]	133.107 /133.036	162.805 /162.709
Diametral measurement over pins without clearar	nce (mm) [MdR]	133.577	163.247
Measurement over pins according to DIN 3960 (m		133.452 /133.381	163.065 /162.969
Measurement over 2 pins, free, according to AGM	IA 2002 (mm) [dk2f.e/i]	132.995 /132.924	162.726 /162.630
Measurement over 2 pins, transverse, according t (mm)	o AGMA 2002		
Measurement over 3 pins, axial, according to AGMA 2002 (mm)	[dk2t.e/i]	0.000 / 0.000	163.320 /163.223

	[dk3A.e/i]	133.452 /133.381	163.065 /162.969
Chordal tooth thickness (no backlash) (mm)	[sc]	8.666	8.396
Normal chordal tooth thickness with allowance	[sc.e/i]	8.598 /	8.303 /
(mm)	[ha]	8.559 5.971	8.254 5.642
Reference chordal height from da.m (mm) Tooth thickness, arc (mm)	[ha] [sn]	5.971 8.672	5.042 8.399
(mm)	[sn.e/i]	8.602 /	
,	. ,.	8.562	8.254
Backlash free center distance (mm)	[aControl.e/i]	133.66	7 /133.574
Backlash free center distance, allowances (mm)	[jta]	-0.17	1/-0.264
dNf.i with aControl (mm)	[dNf0.i]	109.228	141.921
Reserve (dNf0.i-dFf.e)/2 (mm)	[cF0.i]	0.375	0.566
Tip clearance (mm)	[c0.i(aControl)]		1.062
Center distance allowances (mm)	[Aa.e/i]	0.02	0 / -0.020
Circumferential backlash from Aa (mm)	[jtw_Aa.e/i]		2 / -0.022
Radial backlash (mm)	[jrw.e/i]		4 / 0.151
Circumferential backlash (transverse section) (mm)	[jtw.e/i]	0.30	6 / 0.162
Normal backlash (mm)	[jn.e/i]	0.24	8 / 0.133
Torsional angle on input with output fixed:			
Total torsional angle (°)	[j.tSys]	0.2995	6/0.1589
Toothing tolerances		Gear 1	- Gear 2
Toothing tolerances According to ISO 1328-1:2013, ISO 1328-2:1997		Gear 1	- Gear 2
•	 [Q]	Gear 1	- Gear 2 A6
According to ISO 1328-1:2013, ISO 1328-2:1997	[Q] [fptT]	A6 10.00	
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm)	[Q] [fptT] [fpbT]	A6 10.00 8.90	A6 10.00 9.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm)	[Q] [fptT] [fpbT] [Fpk/8T]	A6 10.00 8.90 22.00	A6 10.00 9.00 20.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μ m) Base circle pitch deviation (μ m) Sector pitch deviation over k/8 pitches (μ m) Profile form deviation (μ m)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT]	A6 10.00 8.90 22.00 11.00	A6 10.00 9.00 20.00 11.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT]	A6 10.00 8.90 22.00 11.00 8.50	A6 10.00 9.00 20.00 11.00 8.50
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT]	A6 10.00 8.90 22.00 11.00 8.50 14.00	A6 10.00 9.00 20.00 11.00 8.50 14.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT]	A6 10.00 8.90 22.00 11.00 8.50	A6 10.00 9.00 20.00 11.00 8.50
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm) Total helix deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50 12.00	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00 13.00 32.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm) Total helix deviation (μm) Total cumulative pitch deviation (μm) Adjacent pitch difference (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT] [fβT] [fβT] [fβT] [fβT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50 12.00 31.00 14.00	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00 13.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm) Total helix deviation (μm) Total cumulative pitch deviation (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT] [FβT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50 12.00 31.00	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00 13.00 32.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm) Total helix deviation (μm) Total cumulative pitch deviation (μm) Adjacent pitch difference (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT] [FβT] [fpT] [fpT] [fuT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50 12.00 31.00 14.00	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00 13.00 32.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm) Total helix deviation (μm) Total cumulative pitch deviation (μm) Adjacent pitch difference (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT] [fβT] [fβT] [fβT] [fβT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50 12.00 31.00 14.00	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00 13.00 32.00
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade Single pitch deviation (μm) Base circle pitch deviation (μm) Sector pitch deviation over k/8 pitches (μm) Profile form deviation (μm) Profile slope deviation (μm) Total profile deviation (μm) Helix form deviation (μm) Helix slope deviation (μm) Total helix deviation (μm) Total cumulative pitch deviation (μm) Adjacent pitch difference (μm)	[Q] [fptT] [fpbT] [Fpk/8T] [ffαT] [fHαT] [FαT] [ffβT] [fHβT] [FβT] [fpT] [fpT] [fuT]	A6 10.00 8.90 22.00 11.00 8.50 14.00 9.50 8.50 12.00 31.00 14.00	A6 10.00 9.00 20.00 11.00 8.50 14.00 10.00 9.00 13.00 32.00 14.00

Radial composite, total (μ m) [FidT] 44.00

51.00

Radial composite, tooth-to-tooth [fidT] 22.00

(μm) 22.00

FidT (Fi"), fidT (fi") according to ISO 1328:1997 calculated with the geometric mean values for mn and d

Axis alignment tolerances (recommendation acc. to ISO TR 10064-3:1996, Quality)

6

Maximum value for deviation error of axis (μ m) [f Σ β] 13.00 (F β = 13.00) Maximum value for inclination error of axes (μ m) [f Σ δ] 26.00

Modifying and defining the tooth form

Data for the tooth form calculation:

Data not available.

Please run the calculation in the "Tooth form" tab and open the main report again.

Supplementary data

Mass (kg)	[m]	1.321 2.997
Total mass (kg)	[mGes]	4.318
Moment of inertia for system, relative to the input:		
calculation without consideration of the exact tootl	า	
shape		
Single gears, (da+df)/2di (kg*m²)	[J]	0.00223 0.00830
System (da+df)/2di (kg*m²)	[J]	0.00726
Torsional stiffness at driving gear with fixed driven		
gear:		
Torsional stiffness (MNm/rad)	[cr]	0.559
Torsion when subjected to nominal torque (°)	[δcr]	0.009
Mean coefficient of friction (as defined in Niemann)	$[\mu_m]$	0.032
Wear sliding coef. by Niemann	[ζw]	0.568
Loss factor	[HV]	0.152
Gear power loss (kW)	[PVZ]	0.893
Meshing efficiency (%)	[ηz]	99.522
Sound pressure level according to Masuda, without	contact analysis	
	[dB(A)]	86.5
Oil requirement for injection lubrication (I/min) [Vo	il] 2.788	

with oil cooler, for assumed difference in temperature of oil (°C):

Service life, damage

Required safety for tooth root [SFmin] 1.40
Required safety for tooth flank [SHmin] 1.00

Service life (calculated with required safeties):

System service life (h) [Hatt] > 1000000

Tooth root service life (h) [HFatt] 1e+06 1e+06
Tooth flank service life (h) [HHatt] 1e+06

1e+06

Note: The entry 1e+006 h means that the Service life > 1,000,000 h.

Damage calculated on the basis of the required service life [H] (10000.0 h)

F1% F2% H1% H2% 0.00 0.0000 0.0000 0.0000

Remarks:

- Specifications with [.e/i] imply: Maximum [e] and minimum value [i] for Taking all tolerances into account

Specifications with[.m] imply: Mean value within tolerance

- For the backlash tolerance, the center distance tolerances and the tooth thickness allowance are taken into account.

The maximum and minimum clearance according to the largest or smallest allowances are defined..

The calculation is performed for the operating pitch circle.

- Calculation of Zbet according to Corrigendum 1 ISO 6336-2:2008 with $Z\beta$ =

 $1/(COS(\beta)^{0.5})$ - Details of calculation method: cy according to

Method B

Kv according to Method B

 $KH\beta$ and $KF\beta$ according to Method C

fm according to Equation 64, fsh according to 57/58, F β x according to 52/53/54 KH α , KF α according to Method B

fatigue strength and the static strength, based on the number of load cycles, is used for coefficients ZL, ZV, ZR, ZW, ZX, YdrelT, YRrelT and YX... **End of Report** lines: 636 Πλανήτης- Στεφάνη KISSsoft Release 2020 KISSsoft – student license (not for File PLANET 1 - RING 1 Name : TheMechanics on: 25.12.2020at: 13:16:23 Changed by: Calculation of a helical-toothed cylindrical gear pair Drawing or article number: 0.000.0 Gear 1: 0.000.0 Gear 2: Calculation method ISO 6336:2019 ----- Gear 1 ----- Gear 2 --Power (kW) [P] 187.124 16700.0 Speed (1/min) [n] 6012.0 107.0 297.2 Torque (Nm) [T] **Application factor** [KA] 1.75 Distribution factor [Kγ] 1.20 Required service life (h) 10000.00 [H] Gear driving (+) / driven (-) Working flank gear 1: Right flank Gear 1 direction of rotation: Clockwise Tooth geometry and material Geometry calculation according to ISO 21771:2007 ----- Gear 1 ----- Gear 2 --Center distance (mm) [a] 133.838 ISO 286:2010 Measure js7 Center distance tolerance Normal module (mm) 5.0000 [mn] Normal pressure angle (°) [an] 25.0000

[β]

- The logarithmically interpolated value taken from the values for the

Helix angle at reference circle (°)

25.0000

Number of teeth	[z]	27	-75
Facewidth (mm)	[b]	22.00	15.87
Hand of gear		right	right
Accuracy grade	[Q-ISO	A6	A6
	1328:2013]		
Inner diameter (mm)	[di]	0.00	
External diameter (mm)	[di]		
			530.76
Inner diameter of gear rim (mm)	[dbi]	0.00	
Outer diameter of gear rim (mm)	[dbi]		0.00

Material

Gear 1

18CrNiMo7-6, Case-carburized steel, case-hardened

ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm<HRC28

Gear 2

Surface hardness

18CrNiMo7-6, Case-carburized steel, case-hardened

ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm<HRC28

HRC 61

HRC 61

Material treatment according to ISO 6336:2006 No	ormal, life fact	ors ZNT and YNT >=0.85	
Fatigue strength. tooth root stress (N/mm²)	[σFlim]	430.00 430.00	
Fatigue strength for Hertzian pressure (N/mm²)	[σHlim]	1500.00 1500.00	
Tensile strength (N/mm²)	[σB]	1200.00 1200.00	
Yield point (N/mm²)	[σS]	850.00 850.00	
Young's modulus (N/mm²)	[E]	206000 206000	
Poisson's ratio	[v]	0.300 0.300	
Roughness average value DS, flank (μm)	[RAH]	0.60 0.60	
Roughness average value DS, root (μm)	[RAF]	3.00 3.00	
Mean roughness height, Rz, flank (μm)	[RZH]	4.80 4.80	
Mean roughness height, Rz, root (μm)	[RZF]	20.00 20.00	

Gear reference profile

1:

Reference profile	1.25 / 0.38 / 1.0 ISO 53:3	1998 Profil	Α
Dedendum coefficient	[hfP*]	1.250	
Root radius factor	[ρfP*]	0.380	(pfPmax*=
	0.318)		
Addendum coefficient	[haP*]	1.000	

Tip radius factor Protuberance height coefficient Protuberance angle Tip form height coefficient Ramp angle	[paP*] [hprP*] [αprP] [hFaP*] [αKP] 0.000 not to	0.000 0.000 0.000 0.000 opping
Gear reference profile		
2:		
Reference profile Dedendum coefficient Root radius factor	1.25 / 0.38 / 1.0 ISO 53 [hfP*] [pfP*]	1.250 0.380 (pfPmax*=
Addendum coefficient Tip radius factor Protuberance height coefficient Protuberance angle Tip form height coefficient Ramp angle	[haP*] [paP*] [hprP*] [αprP] [hFaP*] [αKP] not topping	1.000 0.000 0.000 0.000 0.000 0.000
Information on final machining Dedendum reference profile Tooth root radius Refer. profile Addendum Reference profile Protuberance height coefficient Protuberance angle (°) Tip form height coefficient Ramp angle (°)	[pfP*] 0. [haP*] 1. [hprP*] 0. [αprP] 0. [hFaP*] 0.	250
Type of profile modification: Tip relief by running in (μm)	none (only running-in) [Ca L/R] 2.0	/2.0 2.0 /2.0
Lubrication type Type of oil	Oil injection lubrication ISO-VG 220	1
Lubricant base	Mineral-oil base	
Oil nominal kinematic viscosity at 40°C (mm²/s)	[v40]	220.00
Oil nominal kinematic viscosity at 100°C (mm²/s)	[v100]	17.50
Specific density at 15°C (kg/dm³)	[ρ]	0.895
Oil temperature (°C)	[TS]	70.000

Gear pair

Overall transmission ratio	[itot]	2.778
Gear ratio	[u]	-2.778
Transverse module (mm)	[mt]	5.517
Transverse pressure angle (°)	[αt]	27.226
Working pressure angle (°)	[awt]	28.395
	[awt.e/i]	28.379 /
Marking procesure angle at normal section (°)	[autum]	28.411
Working pressure angle at normal section (°)	[ɑwn]	26.058
Helix angle at operating pitch circle (°)	[βw]	25.237
Base helix angle (°)	[βb]	22.521
Reference center distance (mm)	[ad]	132.405
Pitch on reference circle (mm)	[pt]	17.332
Base pitch (mm)	[pbt]	15.412
Transverse pitch on contact-path (mm)	[pet]	15.412
Sum of profile shift coefficients	[Σχί]	-0.2922
Transverse contact ratio	[εα]	1.342
Transverse contact ratio with allowances	[εα.e/m/i]	1.349 / 1.343 / 1.337
Overlap ratio	[εβ]	0.427
Total contact ratio	[εγ]	1.769
Total contact ratio with allowances	[εγ.e/m/i]	1.777 / 1.770 / 1.764
Length of path of contact (mm)	[ga, e/i]	20.682 (20.798 /
		20.605)
Longth T1 A (mm)	[T1 A]	24.358 (24.243 /
Length T1-A (mm) Length T1-B (mm)	[T1A] [T1B]	24.400) 29.629 (29.629 /
Length 11 D (mm)	[110]	29.593)
Length T1-C (mm)	[T1C]	35.801 (35.825 <i>/</i>
		35.778)
Length T1-D (mm)	[T1D]	39.770 (39.655 / 39.812)
Length T1-E (mm)	[T1E]	45.041 (45.041 /
		45.005)
		88.005 (87.932 /
Length T2-A (mm)	[T2A]	88.005)
Length T2-B (mm)	[T2B]	93.276 (93.318 / 93.198)
Length T2-C (mm)	[T2C]	99.448 (99.514 /
	1	99.382)

Length T2-D (mm)	[T2D]	103.416 (103.343 /
Length T2-E (mm)	[T2E]	103.416) 108.687 (108.729 / 108.610)
Length T1-T2 (mm)	[T1T2]	63.647 (63.689 <i>/</i> 63.605)
Minimal length of contact line (mm)	[Lmin]	17.182
Gear 1		
Lead height (mm)	[pz]	1003.542
Axial pitch (mm)	[px]	37.168
Profile shift coefficient	[x]	0.1168
Tooth thickness, arc, in module	[sn*]	1.6797
		0.020
Tip alteration (mm) Reference diameter (mm)	[k*mn] [d]	0.029 148.956
Base diameter (mm)	[d] [db]	132.452
Tip diameter (mm)	[db] [da]	160.182
(mm)	[da] [da.e/i]	160.182 / 160.142
Tip diameter allowances (mm)	[Ada.e/i]	0.000 / -0.040
Tip form diameter (mm)	[dFa]	160.182
(mm)	[dFa.e/i]	160.182 / 160.142
Root diameter (mm)	[df]	137.624
Generating Profile shift coefficient	[xE.e/i]	0.0964/ 0.0857
Generated root diameter with xE (mm)	[df.e/i]	137.420 / 137.313
Root form diameter (mm)	[dFf]	140.942
(mm)	[dFf.e/i]	140.790 / 140.711
Internal toothing: Calculation dFf with pinion type		,
cutter (z0=	0.0000	
27	, x0=0.000)	
Involute length (mm)	[l_dFa-l_dFf]	10.936
Addendum, $m_n(h_{aP}^*+x+k)$ (mm)	[ha]	5.613
(mm)	[ha.e/i]	5.613 / 5.593
Dedendum (mm)	[hf=mn*(hfP*- x)]	5.666
(mm)	[hf.e/i]	5.768 / 5.821
Tooth height (mm)	[h]	11.279
Virtual gearno. of teeth	[zn]	34.913
Normal tooth thickness at tip circle (mm)	[san]	2.675
(mm)	[san.e/i]	2.598 / 2.521
Normal tooth thickness at tip form circle (mm)	[sFan]	2.675
(mm)	[sFan.e/i]	2.598 / 2.521
Normal space width at root circle (mm)	[efn]	2.777
(mm)	[efn.e/i]	2.810 / 2.828

Lead height (mm)	[pz]	2787.616
Axial pitch (mm)	[px]	37.168
Profile shift coefficient	[x]	-0.4090
Tooth thickness, arc, in module	[sn*]	1.1894
Tip alteration (mm)	[k*mn]	0.000
Reference diameter (mm)	[d]	413.767
Base diameter (mm)	[db]	367.924
Tip diameter (mm)	[da]	407.857
(mm)	[da.e/i]	407.857 / 407.794
Tip diameter allowances (mm)	[Ada.e/i]	0.000 / -0.063
Tip form diameter (mm)	[dFa]	407.857
(mm)	[dFa.e/i]	407.857 / 407.794
Root diameter (mm)	[df]	430.357
Generating Profile shift coefficient	[xE.e/i]	-0.4369/ -0.4497
Generated root diameter with xE (mm)	[df.e/i]	430.764 / 430.636
Root form diameter (mm)	[dFf]	428.672
(mm)	[dFf.e/i]	429.085 / 428.955
Internal toothing: Calculation dFf with pinion type cutter (z0=		
24	, x0=0.000)	
Involute length (mm)	[l_dFa-l_dFf]	11.832
Addendum, m _n (h _{aP} *+x+k) (mm)	[ha]	2.955
(mm)	[ha.e/i]	2.987 / 2.955
Dedendum (mm)	[hf=mn*(hfP*-	8.295
	x)]	
(mm)	[hf.e/i]	8.434 / 8.499
Tooth height (mm)	[h]	11.250
Virtual gearno. of teeth	[zn]	96.981
Normal tooth thickness at tip circle (mm)	[san]	3.229
(mm)	[san.e/i]	3.101 / 3.014
Normal tooth thickness at tip form circle (mm)	[sFan]	3.229
(mm)	[sFan.e/i]	3.101 / 3.014
Normal space width at root circle (mm)	[efn]	1.535
(mm)	[efn.e/i]	1.518 / 1.509
Gear specific pair data Gear pair 1, Gear 1		
	fal1	150 567
Operating pitch diameter (mm)	[dw]	150.567
(mm)	[dw.e/i]	150.545 / 150.590
Active tip diameter (mm)	[dNa]	160.182
(mm) Theoretical tip clearance (mm)	[dNa.e/i]	160.182 / 160.142 1.250
·	[c]	
Effective tip clearance (mm)	[c.e/i]	1.493 / 1.369
Active root diameter (mm) (mm)	[dNf] [dNf.e/i]	141.127 141.156 / 141.048
(11111)	[uivi.e/i]	141.130 / 141.048

Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.223 / 0.129
Max. sliding velocity at tip (m/s)	[vga]	10.341
Specific sliding at the tip	[ζa]	0.131
Specific sliding at the root	[ζf]	-0.301
Mean specific sliding Sliding factor on tip	[ζm] [Kga]	0.187 0.079
Sliding factor on root	[Kgf]	-0.097
Roll angle at dFa (°)	[{dFa.e/i]	38.967 / 38.936
Roll angle to dNa (°)	[ξdNa.e/i]	38.967 / 38.936
Roll angle to dNf (°)	[ξdNf.e/i]	21.110 / 20.974
Roll angle at dFf (°)	[ξdFf.e/i]	20.647 / 20.545
Diameter of single contact point B (mm)	[d-B]	145.104 (145.104 /
Discourt of single contact point D (none)	[4.6]	145.075)
Diameter of single contact point D (mm)	[d-D]	154.500 (154.381 / 154.543)
Addendum contact ratio	[ε]	0.600 (0.598 / 0.599
	[0])
Gear specific pair data Gear pair 1, Gear 2		
Operating pitch diameter (mm)	[dw]	418.243
(mm)	[dw.e/i]	418.306 / 418.181
Active tip diameter (mm)	[dNa]	407.857
(mm)	[dNa.e/i]	407.857 / 407.794
Theoretical tip clearance (mm)	[c]	1.279
Effective tip clearance (mm)	[c.e/i]	1.454 / 1.329
Active root diameter (mm)	[dNf]	427.340
(mm)	[dNf.e/i]	427.383 / 427.261
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.912 / 0.786
Max. sliding velocity at tip (m/s)	[vga]	12.808
Specific sliding at the tip	[ζа]	0.231
Specific sliding at the root	[ζf]	-0.151
Mean specific sliding	[ζm]	0.187
Sliding factor on tip	[Kga]	0.097
Sliding factor on root	[Kgf]	-0.079
Roll angle at dFa (°)	[ξdFa.e/i]	27.387 / 27.409
Roll angle to dNa (°)	[ξdNa.e/i]	27.387 / 27.409
Roll angle to dNf (°)	[ξdNf.e/i]	33.827 / 33.864
Roll angle at dFf (°)	[ξdFf.e/i]	34.343 / 34.382

Diameter of single contact point B (mm)	[d-B]	412.516 (412.554 / 412.445)
Diameter of single contact point D (mm)	[d-D]	422.075 (422.004 / 422.075)
Addendum contact ratio	[ε]	0.743 (0.752 / 0.738)
General influence factors		
Gear 1 Gear 2		
Nominal circum. force at pitch circle (N)	[Ft]	1436.7
Axial force (N)	[Fa]	669.9
Radial force (N)	[Fr]	739.2
Normal force (N)	[Fnorm]	1749.1
Nominal circumferential force per mm (N/mm)	[w]	90.52
Only as information: Forces at operating pitch circl	e:	
Nominal circumferential force (N)	[Ftw]	1421.3
Axial force (N)	[Faw]	669.9
Radial force (N)	[Frw]	768.3
Circumferential speed reference circle (m/s)	[v]	130.25
Circumferential speed operating pitch circle (m/s)	[v(dw)]	131.66
Running-in value (μm)	[yp]	0.7
Running-in value (μm)	[yf]	0.8
Correction factor	[CM]	0.800
Gear blank factor	[CR]	1.000
Basic rack factor	[CBS]	1.073
Material coefficient	[E/Est]	1.000
Singular tooth stiffness (N/mm/μm)	[c']	15.035
Meshing stiffness (N/mm/μm)	[cγα]	18.892
Meshing stiffness (N/mm/μm)	[cγβ]	16.058
Reduced mass (kg/mm)	[mRed]	0.06786
Resonance speed (min-1)	[nE1]	5901
Resonance ratio (-)	[N]	2.830
Overcritical range		
Running-in value (μm)	[yα]	0.7
Bearing distance I of pinion shaft (mm)	[1]	44.000

Distance s of pinion shaft (mm)	[s]	4.400
Outside diameter of pinion shaft (mm)	[dsh]	22.000
Load in accordance with Figure 13, ISO 6336-1:200 0:a), 1:b), 2:c), 3:d), 4:e)	06 [-]	4
Coefficient K' according to Figure 13, ISO 6336-1:2006	[K']	-1.00
Without stiffening Tooth trace deviation (active) (μm)	[Ғβу]	4.03
from deformation of shaft (µm) fsh	[fsh*B1]	1.33
(μm) = 1.33, B1=1.00 , fHβ5 $(μm) = 6.50$		
Tooth without tooth trace modification		
Position of contact pattern:	favorable	
from production tolerances (μm) B2=	[fmα*B2]	12.04
1.00 Tooth trace deviation, theoretical (μm)	[Fβx]	4.74
Running-in value (μm)	[γβ]	0.71
Dynamic factor	[Kv]	1.490
Face load factor -flank	[КНβ]	1.114
- Tooth root	[ΚFβ]	1.078
- Scuffing	[КВβ]	1.114
Transverse load factor - flank	[ΚΗα]	1.014
- Tooth root	[KFα]	1.014
- Scuffing	[KBα]	1.014
Number of load cycles (in mio.)	[NL]	10020.000 3607.200
Tooth root load capacity		
Calculation of Tooth form coefficients according method: B		
Internal toothing:	Calculation of Y cutter, z0=	F, YS with pinion type
		24 , x0= 0.000
0.380		ρaP0*= · Gear 1 Gear 2

Calculated with generating profile shift coefficient	[xE.i]	0.0857	-0.4497
Tooth form factor	[YF]	1.02	0.76
Stress correction factor	[YS]	2.19	3.18
Load application angle (°)	[αFen]	24.94	25.93
Load distribution influence factor	[fε]	0.	919
Load application diameter (mm)	[d _{en}]	152.176	-414.574
Bending moment arm (mm)	[hF]	5.02	6.28
Tooth thickness at root (mm)	[sFn]	11.66	14.99
Tooth root radius (mm)	[ρF]	2.55	1.49
Bending moment arm (-)	[hF/mn]	1.004	1.256
Tooth thickness at root (-)	[sFn/mn]	2.333	2.998
Tooth root radius (-)	[pF/mn]	0.511	0.297
Calculation cross section diameter (mm)	[d _{sFn}]	139.322	-430.306
Tangents on calculation cross section (°)	$[\alpha_{sFn}]$	30.000	60.000
Notch parameter	[q _s]	2.284	5.042
Helix angle factor	[Υβ]		224
Deep tooth factor	[YDT]	1,	000
_	•		
Deep tooth factor	[YDT]	1,	000
Deep tooth factor Gear rim factor	[YDT] [YB]	1.00	1.00
Deep tooth factor Gear rim factor Effective facewidth (mm)	[YDT] [YB] [beff]	1.00 22.00	1.00 15.87
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²)	[YDT] [YB] [beff] [σF0]	1.00 22.00 35.57	1.00 15.87 53.85
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²)	[YDT] [YB] [beff] [σF0] [σF] [YdrelT]	1.00 22.00 35.57	1.00 15.87 53.85
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT]	1.00 22.00 35.57 121.67 0.998 0.957	1.00 15.87 53.85 184.20 1.020 0.957
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT] [YX]	1.00 22.00 35.57 121.67 0.998 0.957 1.000	1.00 15.87 53.85 184.20 1.020 0.957 1.000
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT]	1.00 22.00 35.57 121.67 0.998 0.957 1.000 0.850	1.00 15.87 53.85 184.20 1.020 0.957 1.000 0.868
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor YdreIT*YREIT*YX*YNT Alternating bending factor, mean stress influence	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT] [YX]	1.00 22.00 35.57 121.67 0.998 0.957 1.000	1.00 15.87 53.85 184.20 1.020 0.957 1.000
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor YdrelT*YRrelT*Yx*YNT	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT] [YX]	1.00 22.00 35.57 121.67 0.998 0.957 1.000 0.850	1.00 15.87 53.85 184.20 1.020 0.957 1.000 0.868
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor YdreIT*YREIT*YX*YNT Alternating bending factor, mean stress influence	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT] [YX] [YNT]	1.00 22.00 35.57 121.67 0.998 0.957 1.000 0.850 0.812	1.00 15.87 53.85 184.20 1.020 0.957 1.000 0.868 0.847
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor YdrelT*YRrelT*Yx*YNT Alternating bending factor, mean stress influence coefficient	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT] [YX] [YNT]	1.00 22.00 35.57 121.67 0.998 0.957 1.000 0.850 0.812	1.00 15.87 53.85 184.20 1.020 0.957 1.000 0.868 0.847
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor YdrelT*YRrelT*Yx*YNT Alternating bending factor, mean stress influence coefficient Stress correction factor Yst*σFlim (N/mm²) Permissible tooth root stress σFG/SFmin (N/mm²)	[YDT] [YB] [beff] [oF0] [oF] [YdrelT] [YRrelT] [YX] [YNT]	1.00 22.00 35.57 121.67 0.998 0.957 1.000 0.850 0.812	1.00 15.87 53.85 184.20 1.020 0.957 1.000 0.868 0.847
Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²) Tooth root stress (N/mm²) Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor YdrelT*YRrelT*Yx*YNT Alternating bending factor, mean stress influence coefficient Stress correction factor Yst*oFlim (N/mm²)	[YDT] [YB] [beff] [σF0] [σF] [YdrelT] [YRrelT] [YX] [YNT] [YM] [Yst] [σFE]	1.00 22.00 35.57 121.67 0.998 0.957 1.000 0.850 0.812 1.000 2.860.00	1.00 15.87 53.85 184.20 1.020 0.957 1.000 0.868 0.847 1.000

Safety for tooth root stress Transmittable power (kW) Flank safety	[SF=σFG/σF] [kWRating]	5.74 766.70	3.95 528.50
	Gear 1 Gear 2 -		
Zone factor	[ZH]		2.079
Elasticity factor (VN/mm²)	[ZE]		9.812
Contact ratio factor	[Ζε]		0.909
Helix angle factor	[Ζβ]		1.050
Effective facewidth (mm)	[beff]		5.87
Nominal contact stress (N/mm²)	[σH0]		4.92
Contact stress at operating pitch circle (N/mm²)	[σHw]		1.75
Coefficient[fZCa] 1.20(Helical gear sets without f			
Single tooth contact factor	[ZB,ZD]	1.12	1.00
Contact stress (N/mm²)	[σHB, σHD]	493.93	
			441.75
Lubrication factor for NL	[ZL]	1.020	1.020
Speed factor for NL	[ZV]	1.067	1.067
Roughness factor for NL	[ZR]	1.008	1.008
Material hardening factor for NL	[ZW]	1.000	1.000
Finite life factor	[ZNT]	0.850	0.877
	[ZL*ZV*ZR*ZNT]	0.933	0.962
Limited pitting is permitted: No			
Size factor (flank)	[ZX]	1.000	1.000
Permissible contact stress, oHG/SHmin	[σHP]	1399.11	
(N/mm²)			1443.56
Pitting stress limit (N/mm²)	[σHG]	1399.11	
			1443.56
Required safety	[SHmin]	1.00	1.00
Safety factor for contact stress at operating pitch circle	[SHw]	3.17	3.27
Safety against pressure, σHG/σHBD Single contact	[SHBD]	2.83	3.27
Safety regarding transmittable torque	[(SHBD)^2]	8.02	10.69
Transmittable power (kW)	[kWRating]	1501.40	10.68
Micropitting according to	ISO/TS 6336-22:20	18	1998.20

Calculation has not been carried out, lubricant: Load stage micropitting test not known

Scuffing load capacity

Calculation method according to	ISO/TS 6336-20/21	L:2017		
Helical load factor for scuffing Lubrication coefficient for lubrication type	[KΒγ] [XS]		000 200	
Scuffing test and load stage	[FZGtest] FZG - Tes	st A / 8.3 /	90 (ISO	12
Multiple meshing factor	14635 - 1) [Xmp]	1.	000	
Relative structural factor, scuffing	[XWrelT]	1.	000	
Thermal contact factor (N/mm/s^.5/K)	[BM]	13.780	13.780	
Relevant tip relief (µm)	[Ca]	2.00	2.00	
Optimaltip relief (µm)	[Ceff]	10.	06	
Ca taken as optimal in the calculation (0=no, 1=yes)		0	0	
Effective facewidth (mm)	[beff]	15.	872	
Applicable circumferential force/facewidth (N/mm)	[wBt]	320	.078	
$KB\gamma = 1.000$, $wBt*KB\gamma = 320.078$ Angle factor	[Χαβ]	1.	091	
ε1: 0.600, ε2: 0.743				
Flash temperature-criteria				
Lubricant factor	[XL]	0.	830	
Tooth mass temperature (°C) θMi = θoil + XS*0.47*Xmp*θflm	[θMi]	73.3	33	
Average flash temperature (°C)	[0flm]	5.9	90	
Scuffing temperature (°C)	[θS]	398.9	97	
Contact time (µsec)	[tc]	15.2	21	
theS increased because of short contact time by (°C))	50.2	17	
Γ coordinates (point of highest temperature)	[୮]	-0.	168	
[Γ.A]= -0.320 [Γ.Ε]= 0.258 Highest contact temp. (°C)	[θΒ]	83.4	12	
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.	058	
Approach factor	[XJ]	1.	004	
Load sharing factor	[XГ]	1.	000	
Dynamic viscosity (mPa*s) Coefficient of friction	[ηM] [μ _m]	41.9 0.	90 (70.0 025	°C)

Required safety	[SBmin]	2.000)
Margin of safety for scuffing, flash temperature	[SB]	24.520	0
Integral temperature-criteria Lubricant factor	[XL]	1.000)
Tooth mass temperature (°C) θ MC = θ oil + XS*0.70* θ flaint	[ӨМС]	72.30	
Mean flash temperature (°C)	[θflaint]	2.74	
Integral scuffing temperature (°C)	[θSint]	360.78	
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.05	8
Running-in factor, well run in	[XE]	1.000)
Contact ratio factor	[Χε]	0.370)
Dynamic viscosity (mPa*s) Mean coefficient of friction	[ηOil] [μ _m]	41.90 0.017	(70.0 °C) 7
Geometry factor	[XBE]	0.037	7
Meshing factor	[XQ]	1.000)
Tip relief factor	[XCa]	1.158	3
Integral tooth flank temperature (°C)	[θint]	76.40	
Required safety	[SSmin]	1.800)
Safety factor for scuffing (intgtemp.)	[SSint]	4.722	2
Safety referring to transmittable torque	[SSL]	45.42	4
Measurements for tooth thickness			
	(Gear 1 Gear	2
Tooth thickness tolerance		DIN 3967 cd25	DIN 3967 cd25
Tooth thickness allowance (normal section) (mm)	[As.e/i]	-0.095 /-0.145	-0.130 /- 0.190
Number of teeth spanned	[k]	6.000	-0.000
For internal toothing: k = measurement gap num		92.604	0.000
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm)	[Wk] [Wk.e/i]	83.604 83.518 /	-0.000 -0.000 / -
base tangent tength with anowance (min)	[***	83.473	0.000
(mm)	[ΔWk.e/i]	-0.086 / - 0.131	0.000 / 0.000
Diameter of measuring circle (mm)	[dMWk.m]	153.272	-0.000
> Gear 1 base tangent length cannot be measured	l (gear too thin)		

Theoretical diameter of ball/pin (mm)	[DM]	8.971	8.702
Effective diameter of ball/pin (mm)	[DMeff]	9.000	9.000
Radial single-ball measurement backlash free (mm	n) [MrK]	81.624	202.202
Radial single-ball measurement (mm)	[MrK.e/i]	81.533 /	202.406
		81.485	/202.341
Diameter of measuring circle (mm)	[dMMr.m]	149.945	417.615
Diametral measurement over two balls without cl	earance (mm) [MdK]	162.987	404.313
Diametral two ball measure (mm)	[MdK.e/i]	162.805	404.721
		/162.709	/404.592
Diametral measurement over pins without clearar	nce (mm) [MdR]	163.247	-0.000
Measurement over pins according to DIN 3960 (m	m)[MdR.e/i]	163.065	-0.000/-
		/162.969	0.000
Measurement over 2 pins, free, according to AGM	A 2002 (mm)	162.726	0.000 /
	[dk2f.e/i]	/162.630	0.000
Measurement over 2 pins, transverse, according to (mm)	o AGMA 2002		
()	[dk2t.e/i]	163.320	0.000 /
Measurement over 3 pins, axial, according to AGN		/163.223	0.000
Wedsdrenient over 5 pins, axiai, according to Adiv	[dk3A.e/i]	163.065	-0.000/-
Note: Internal gears with helical teeth cannot be rollers.		/162.969	0.000
Chordal tooth thickness (no backlash) (mm)	[sc]	8.396	5.947
Normal chordal tooth thickness with allowance	[sc.e/i]	8.303 /	5.816 /
(mm)	[00:0/.]	8.254	5.756
Reference chordal height from da.m (mm)	[ha]	5.700	2.953
Tooth thickness, arc (mm)	[sn]	8.399	5.947
(mm)	[sn.e/i]	8.304 /	5.817 /
		8.254	5.757
Backlash free center distance (mm)	[aControl.e/i]	134.069	/134.182
Backlash free center distance, allowances (mm)	[jta]		/ 0.344
dNf.i with aControl (mm)	[dNf0.i]	140.588	428.075
Reserve (dNf0.i-dFf.e)/2 (mm)	[cF0.i]	-0.101	0.440
Tip clearance (mm)	[c0.i(aControl)]	1.045	1.005
Center distance allowances (mm)	[Aa.e/i]	-0.020	/ 0.020
Circumferential backlash from Aa (mm)	[jtw_Aa.e/i]		/ -0.022
Radial backlash (mm)	[jrw.e/i]		/ 0.211
Circumferential backlash (transverse section) (mm			/ 0.229
Normal backlash (mm)	[jn.e/i]	0.321	/ 0.187
Torsional angle on input with output fixed:	f: . o . 3	•	
Total torsional angle (°)	[j.tSys]	0.3008/0	0.1745

Toothing tolerances

		Gear 1	Gear 2
1328-2:1997			
	[Q]	A6	A6
	[fptT]	10.00	10.00
	[fpbT]	9.00	9.30
ches (µm)	[Fpk/8T]	20.00	24.00
	[ff α T]	11.00	11.00
	[fH $lpha$ T]	8.50	9.00
	[FaT]	14.00	
			14.00
	[ffβT]	10.00	
			10.00
	[fHβT]	9.00	
	[=0=]	40.00	9.00
	[FB1]	13.00	4400
	[cT]	22.00	14.00
	[ғрт]	32.00	20.00
	[fT]	14.00	39.00
	[lul]	14.00	15.00
	[ErT]	20.00	13.00
	[111]	23.00	35.00
	[FisT]	42 00	33.00
	[1131]	42.00	49.00
(um)	[fisT]	9.50	13.00
(μ)	[]	3.30	9.50
	[FidT]	51.00	
	[]		60.00
	[fidT]	22.00	
			22.00
		[Q] [fptT] [fpbT] [fpbT] [fpbT] [fpbT] [ffαT] [ffαT] [ffαT] [ffβT] [ffβT] [ffβT] [fpT] [fpT] [fuT] [frT] [fisT] (μm) [fisT] [fidT]	[Q] A6 [fptT] 10.00 [fpbT] 9.00 ches (μm) [Fpk/8T] 20.00 [ffαT] 11.00 [fHαT] 8.50 [FαT] 14.00 [ffβT] 10.00 [ffβT] 10.00 [fβT] 32.00 [FpT] 32.00 [fuT] 14.00 [FrT] 29.00 [FisT] 42.00 (μm) [fisT] 9.50 [FidT] 51.00

FidT (Fi"), fidT (fi") according to ISO 1328:1997 calculated with the geometric mean values for mn and d

Axis alignment tolerances (recommendation acc. to ISO TR 10064-3:1996, Quality)

Maximum value for deviation error of axis (μm) $[f\Sigma\beta]$ 19.41 $(F\beta=14.00)$ 19.41 $(F\beta=14.00)$ 38.81

Modifying and defining the tooth form

Data for the tooth form calculation:

Data not available.

Please run the calculation in the "Tooth form" tab and open the main report again.

_		
Supp	lementary	data

Mass (kg) Total mass (kg)	[m] [mGes]	3.000	3.541 6.541
Moment of inertia for system, relative to the input		·	0.5 11
calculation without consideration of the exact too			
shape	LTI		
Single gears, (da+df)/2di (kg*m²)	[1]	0 008	31 0.17155
System (da+df)/2di (kg*m²)	[J]	0.008	0.03055
	[5]		0.03033
Torsional stiffness at driving gear with fixed driven			
gear: Torsional stiffness (MNm/rad)	[cr]		1.106
Torsion when subjected to nominal torque (°)	[δcr]		0.006
Mean coefficient of friction (as defined in Niemann			0.000
Wear sliding coef. by Niemann	, [ζw]		0.250
Loss factor	[HV]		0.046
Gear power loss (kW)	[PVZ]		0.197
Meshing efficiency (%)	[ŋz]		9.895
Sound pressure level according to Masuda, without			
	[40/4/]	0	0.0
	[dB(A)]	8	39.9
Oil requirement for injection lubrication (I/min) [Volume 1]	oil] 0.615		
with oil cooler, for assumed difference in temper	ature of oil (°C):		
	10		
Service life, damage			
Required safety for tooth root	[SFmin]	1	1.40
Required safety for tooth flank	[SHmin]	_	1.40 1.00
Service life (calculated with required safeties):	[Sillilli]	١	1.00
Service me (calculated with required safeties).			
System service life (h)	[Hatt]		>
			1000000
Tooth root service life (h)	[HFatt]	1e+06	1e+06
Tooth flank service life (h)	[HHatt]	1e+06	1e+06
Note: The entry 10+006 h means that the Service li	fo > 1 000 000		

Note: The entry 1e+006 h means that the Service life > 1,000,000

h.

Damage calculated on the basis of the required service life [H] ($$\,^{\circ}$$ h) 10000.0

F1% F2% H1% H2% 0.00 0.0000 0.0000 0.0000

Remarks:

- Specifications with [.e/i] imply: Maximum [e] and minimum value [i] for Taking all tolerances into account

Specifications with[.m] imply: Mean value within tolerance

- For the backlash tolerance, the center distance tolerances and the tooth thickness allowance are taken into account.

The maximum and minimum clearance according to the largest or smallest allowances are defined..

The calculation is performed for the operating pitch circle.

- Calculation of Zbet according to Corrigendum 1 ISO 6336-2:2008 with Zβ =

 $1/(COS(\beta)^{0.5})$ - Details of calculation method: cy according to

Method B

Kv according to Method B

KHβ and KFβ according to Method C

fm according to Equation 64, fsh according to 57/58, F β x according to 52/53/54 KH α , KF α according to Method B

- The logarithmically interpolated value taken from the values for the fatigue strength and the static strength, based on the number of load cycles, is used for coefficients ZL, ZV, ZR, ZW, ZX, YdrelT, YRrelT and YX..

End of Report	lines:	645
Life of Neport	illics.	σ

2η ΒΑΘΜΙΔΑ ΠΛΑΝΗΤΙΚΟΥ

ΗΛΙΟΣ- ΠΛΑΝΗΤΗΣ

KISSsoft Release 2020 B

KISSsoft – student license (not for commercial use)

File

Name: SUN 2- PLANET 2

Changed by TheMechanics on: 25.12.2020at: 12:51:16

Calculation of a helical-toothed cylindrical gear pair

Drawing or article number: Gear 1: 0.000.0 0.000.0 Gear 2: Calculation method ISO 6336:2019 ----- Gear 1 ----- Gear 2 --[P] Power (kW) 156.255 Speed (1/min) 5024.0 [n] 4220.2 Torque (Nm) [T] 297.0 353.6 Application factor [KA] 1.75 Distribution factor 1.20 [Kγ] Required service life (h) 10000.00 [H] Gear driving (+) / driven (-) Working flank gear 1: Right flank Gear 1 direction of rotation: Clockwise Tooth geometry and material Geometry calculation according to ISO 21771:2007 ----- Gear 1 ----- Gear 2 --Center distance (mm) [a] 196.000 Center distance tolerance ISO 286:2010 Measure js7 Normal module (mm) [mn] 8.0000 25.0000 Normal pressure angle (°) [an] Helix angle at reference circle (°) 11.0000 [β] Number of teeth 21 25 [z] 26.00 Facewidth (mm) [b] 28.00 Hand of gear right left Accuracy grade [Q-ISO Α6 A6 1328:2013] Inner diameter (mm) 0.00 0.00 [di] 0.00 Inner diameter of gear rim (mm) [dbi] 0.00 Material Gear 1 18CrNiMo7-6, Case-carburized steel, case-hardened ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm<HRC28 Gear 2 18CrNiMo7-6, Case-carburized steel, case-hardened ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm<HRC28

----- Gear 1 ----- Gear 2 --

Surface hardness		HRC 61		HRC 61
Material treatment according to ISO 6336:2006 Nor Fatigue strength. tooth root stress (N/mm²) Fatigue strength for Hertzian pressure (N/mm²) Tensile strength (N/mm²)	mal, life fact [σFlim] [σHlim] [σΒ]	ors ZNT and YN 430.00 1500.00 1200.00	NT >=0. 430 1500 1200	.00
Yield point (N/mm²)	[σS]	850.00	850	.00
Young's modulus (N/mm²)	[E]		206000	
Poisson's ratio	[v]	0.300		.300
Roughness average value DS, flank (μm) Roughness average value DS, root (μm)	[RAH] [RAF]	0.60 3.00		.60 .00
Mean roughness height, Rz, flank (µm)	[RZH]	4.80		.80
Mean roughness height, Rz, root (μm)	[RZF]	20.00		.00
тов. по в В. тов по в в тов (р. т.)	[]			
Gear reference profile				
1:	/			
Reference profile	1.25 / 0.38 Profil A	/ 1.0 ISO 53:19	998	
Dedendum coefficient	[hfP*]		1.250	
Root radius factor	[ρfP*]	(0.380	(ρfPmax*= 0.318)
Addendum coefficient	[haP*]	-	1.000	·
Tip radius factor	[ρaP*]	(0.000	
Protuberance height coefficient	[hprP*]	(0.000	
Protuberance angle	[aprP]	(0.000	
Tip form height coefficient	[hFaP*]	(0.000	
Ramp angle	[αKP]	0.000 not topp	ing	
Gear reference profile 2:				
Reference profile	1.25 / 0.38 Profil A	/ 1.0 ISO 53:19	98	
Dedendum coefficient	[hfP*]	-	1.250	
Root radius factor	[ρfP*]	(0.380	(ρfPmax*= 0.318)
Addendum coefficient	[haP*]	-	1.000	0.510)
Tip radius factor	[ρaP*]	(0.000	
Protuberance height coefficient	[hprP*]	(0.000	
Protuberance angle	[aprP]	(0.000	
Tip form height coefficient	[hFaP*]	(0.000	

Ramp angle	[αKP] not topping	0.000
Information on final machining		
Dedendum reference profile	[hfP*]	1.250 1.250
Tooth root radius Refer. profile Addendum Reference profile	[ρfP*] [haP*]	0.380 0.380 1.000 1.000
Protuberance height coefficient	[hprP*]	0.000 0.000
Protuberance angle (°)	[αprP]	0.000 0.000
Tip form height coefficient	[hFaP*]	0.000 0.000
Ramp angle (°)	[αKP]	0.000 0.000
Type of profile modification:	none (only runni	=
Tip relief by running in (μm)	[Ca L/R]	2.0 / 2.0 2.0 / 2.0
Lubrication type Type of oil	Oil injection lubr ISO-VG 220	ication
Lubricant base	Mineral-oil base	
Oil nominal kinematic viscosity at 40°C (mm²/s)	[v40]	220.00
Oil nominal kinematic viscosity at 100°C (mm²/s)	[v100]	17.50
Specific density at 15°C (kg/dm³)	[ρ]	0.895
Oil temperature (°C)	[TS]	70.000
Gear pair		
Overall transmission ratio	[itot]	-1.190
Gear ratio	[u]	1.190
Transverse module (mm)	[mt]	8.150
Transverse pressure angle (°)	[at]	25.409
Working pressure angle (°)	[awt]	30.250
	[αwt.e/i]	30.262 / 30.239
Working pressure angle at normal section (°)	[αwn]	29.748
Helix angle at operating pitch circle (°)	[βw]	11.489
Base helix angle (°)	[βb]	9.958
Reference center distance (mm)	[ad]	187.444
Pitch on reference circle (mm)	[pt]	25.603
Base pitch (mm)	[pbt]	23.126

Transverse pitch on contact-path (mm)	[pet]	23.126
Sum of profile shift coefficients	[Σχί]	1.1672
Transverse contact ratio Transverse contact ratio with allowances Overlap ratio	[εα] [εα.e/m/i] [εβ]	1.190 1.192 / 1.188 / 1.185 0.197
Total contact ratio	[εγ]	1.387
Total contact ratio with allowances	[εγ.e/m/i]	1.389 / 1.386 / 1.382
Length of path of contact (mm)	[ga, e/i]	27.518 (27.564 / 27.395) 31.654 (31.608 /
Length T1-A (mm) Length T1-B (mm)	[T1A] [T1B]	31.738) 36.045 (36.045 / 36.007)
Length T1-C (mm)	[T1C]	45.077 (45.056 / 45.098)
Length T1-D (mm)	[T1D]	54.780 (54.734 / 54.865)
Length T1-E (mm)	[T1E]	59.172 (59.172 / 59.134)
Length T2-A (mm)	[T2A]	67.087 (67.087 / 67.048)
Length T2-B (mm)	[T2B]	62.695 (62.650 / 62.779)
Length T2-C (mm)	[T2C]	53.663 (53.639 / 53.688)
Length T2-D (mm)	[T2D]	43.960 (43.960 /
Length T2-E (mm)	[T2E]	43.921) 39.569 (39.523 / 39.653)
Length T1-T2 (mm)	[T1T2]	98.741 (98.695 / 98.786)
Minimal length of contact line (mm)	[Lmin]	26.398
Gear 1		
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module	[pz] [px] [x] [sn*]	2766.052 131.717 0.5690 2.1015
Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm)	[k*mn] [d] [db] [da]	-0.781 171.144 154.589 194.686

(mm)	[da.e/i]	194.686 / 194.640
Tip diameter allowances (mm)	[Ada.e/i]	0.000 / -0.046
Tip form diameter (mm)	[dFa]	194.686
(mm)	[dFa.e/i]	194.686 / 194.640
Root diameter (mm)	[df]	160.248
Generating Profile shift coefficient	[xE.e/i]	0.5563/ 0.5496
Generated root diameter with xE (mm)	[df.e/i]	160.045 / 159.937
Root form diameter (mm)	[dFf]	164.495
(mm)	[dFf.e/i]	164.334 / 164.249
Involute length (mm)	[l_dFa-l_dFf]	17.537
Addendum, $m_n(h_{aP}^*+x+k)$ (mm)	[ha]	11.771
(mm)	[ha.e/i]	11.771 / 11.748
Dedendum (mm)	[hf=mn*(hfP*-	5.448
	x)]	
(mm)	[hf.e/i]	5.550 / 5.603
Tooth height (mm)	[h]	17.219
Virtual gearno. of teeth	[zn]	22.053
Normal tooth thickness at tip circle (mm)	[san]	3.700
(mm)	[san.e/i]	3.626 / 3.536
Normal tooth thickness at tip form circle (mm)	[sFan]	3.700
(mm)	[sFan.e/i]	3.626 / 3.536
Normal space width at root circle (mm)	[efn]	3.858
(mm)	[efn.e/i]	3.888 / 3.904
Gear 2		
	[nz]	3292 919
Lead height (mm)	[pz]	3292.919 131.717
	[px]	131.717
Lead height (mm) Axial pitch (mm) Profile shift coefficient	[px] [x]	
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module	[px] [x] [sn*]	131.717 0.5982 2.1287
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm)	[px] [x] [sn*] [k*mn]	131.717 0.5982 2.1287 -0.781
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm)	[px] [x] [sn*] [k*mn] [d]	131.717 0.5982 2.1287 -0.781 203.743
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm)	[px] [x] [sn*] [k*mn] [d] [db]	131.717 0.5982 2.1287 -0.781 203.743 184.034
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm) Tip form diameter (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm) Tip form diameter (mm) (mm) Root diameter (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753 227.753 / 227.707 193.315
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm) Tip form diameter (mm) (mm) Root diameter (mm) Generating Profile shift coefficient	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa] [dFa]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753 227.753 / 227.707 193.315 0.5855/ 0.5788
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa] [dFa] [dFa] [df] [xE.e/i] [dff] [dff] [dff]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753 227.753 / 227.707 193.315 0.5855/ 0.5788 193.111 / 193.004
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm) Tip form diameter (mm) (mm) Root diameter (mm) Generating Profile shift coefficient Generated root diameter with xE (mm) Root form diameter (mm) (mm) Involute length (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa] [dFa.e/i] [df] [xE.e/i] [df.e/i] [dff] [dff.e/i]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753 227.753 / 227.707 193.315 0.5855/ 0.5788 193.111 / 193.004 197.363 197.192 / 197.102 17.550
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm) (mm) Tip diameter allowances (mm) Tip form diameter (mm) (mm) Root diameter (mm) Generating Profile shift coefficient Generated root diameter with xE (mm) Root form diameter (mm) (mm)	[px] [x] [sn*] [k*mn] [d] [db] [da] [da.e/i] [Ada.e/i] [dFa] [dFa] [dFa] [df] [xE.e/i] [dff] [dff] [dff]	131.717 0.5982 2.1287 -0.781 203.743 184.034 227.753 227.753 / 227.707 0.000 / -0.046 227.753 227.753 / 227.707 193.315 0.5855 / 0.5788 193.111 / 193.004 197.363 197.192 / 197.102

Dedendum (mm)	[hf=mn*(hfP*- x)]	5.214
(mm)	[hf.e/i]	5.316 / 5.370
Tooth height (mm)	[h]	17.219
Virtual gearno. of teeth	[zn]	26.253
Normal tooth thickness at tip circle (mm)	[san]	3.918
(mm)	[san.e/i]	3.845 / 3.757
Normal tooth thickness at tip form circle (mm)	[sFan]	3.918
(mm)	[sFan.e/i]	3.845 / 3.757
Normal space width at root circle (mm)	[efn]	3.688
(mm)	[efn.e/i]	3.711 / 3.723
Gear specific pair data Gear pair 1, Gear 1		
Operating pitch diameter (mm)	[dw]	178.957
(mm)	[dw.e/i]	178.978 / 178.936
Active tip diameter (mm)	[dWa]	194.686
(mm)	[dNa.e/i]	
Theoretical tip clearance (mm)	• • •	194.686 / 194.640 2.000
Effective tip clearance (mm)	[c]	
• • • •	[c.e/i]	2.201 / 2.079
Active root diameter (mm)	[dNf]	167.049
(mm)	[dNf.e/i]	167.114 / 167.015
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	1.432 / 1.341
Max. sliding velocity at tip (m/s)	[vga]	13.644
Specific sliding at the tip	[ζa]	0.438
Specific sliding at the root	[ζf]	-0.780
Mean specific sliding	[ζm]	0.438
Sliding factor on tip	[Kga]	0.290
Sliding factor on root	[Kgf]	-0.276
Roll angle at dFa (°)	[ξdFa.e/i]	43.862 / 43.834
Roll angle to dNa (°)	[ξdNa.e/i]	43.862 / 43.834
Roll angle to dNf (°)	[ξdNf.e/i]	23.527 / 23.430
Roll angle at dFf (°)	[ξdFf.e/i]	20.662 / 20.569
Diameter of single contact point B (mm)	[d-B]	170.572 (170.572 /
		170.540)
Diameter of single contact point D (mm)	[d-D]	189.476 (189.423 /
		189.574)
Addendum contact ratio	[ε]	0.609 (0.610 / 0.607
)
Gear specific pair data Gear pair 1, Gear 2		
Operating pitch diameter (mm)	[dw]	213.044
(mm)	[dw.e/i]	213.069 / 213.019
Active tip diameter (mm)	[dNa]	227.753
(mm)	[dNa.e/i]	227.753 / 227.707
Theoretical tip clearance (mm)	[c]	2.000
Effective tip clearance (mm)	[c.e/i]	2.201 / 2.079
, ,		•

Active root diameter (mm) (mm)	[dNf] [dNf.e/i]	200.328 200.394 / 200.292
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	1.646 / 1.550
Max. sliding velocity at tip (m/s)	[vga]	12.995
Specific sliding at the tip	[ζa]	0.438
Specific sliding at the root	[ζf]	-0.780
Mean specific sliding	[ζm]	0.438
Sliding factor on tip	[Kga]	0.276
Sliding factor on root	[Kgf]	-0.290
Roll angle at dFa (°)	[ξdFa.e/i]	41.773 / 41.748
Roll angle to dNa (°)	[ξdNa.e/i]	41.773 / 41.748
Roll angle to dNf (°)	[ξdNf.e/i]	24.690 / 24.610
Roll angle at dFf (°)	[ξdFf.e/i]	22.050 / 21.972
Diameter of single contact point B (mm)	[d-B]	222.691 (222.640 / 222.786)
Diameter of single contact point D (mm)	[d-D]	203.958 (203.958 / 203.924)
Addendum contact ratio	[ε]	0.580 (0.582 / 0.578)
General influence factors		
Gear 1 Gear 2		
Nominal circum. force at pitch circle (N)	[Ft]	3470.8
Axial force (N)	[Fa]	674.6
Radial force (N)	[Fr]	1648.7
Normal force (N)	[Fnorm]	3901.2
Nominal circumferential force per mm (N/mm)	[w]	133.49
Only as information: Forces at operating pitch circ	e:	
Nominal circumferential force (N)	[Ftw]	3319.2
Axial force (N)	[Faw]	674.6
Radial force (N)	[Frw]	1935.7
Circumferential speed reference circle (m/s)	[v]	45.02
Circumferential speed operating pitch circle (m/s)	[v(dw)]	47.08
Running-in value (μm)	[yp]	0.8

Correction factor	[CM]	0.800
Gear blank factor	[CR]	1.000
Basic rack factor	[CBS]	1.073
Material coefficient	[E/Est]	1.000
Singular tooth stiffness (N/mm/μm)	[c']	15.836
Meshing stiffness (N/mm/μm)	[cγα]	18.092
Meshing stiffness (N/mm/μm)	[cγβ]	15.378
Reduced mass (kg/mm)	[mRed]	0.07439
Resonance speed (min-1)	[nE1]	7091
Resonance ratio (-)	[N]	0.708
Subcritical range		
Running-in value (μm)	[yα]	0.8
Bearing distance I of pinion shaft (mm)	[1]	56.000
Distance s of pinion shaft (mm)	[s]	5.600
Outside diameter of pinion shaft (mm)	[dsh]	28.000
1	000 []	_
Load in accordance with Figure 13, ISO 6336-1:20	006 [-]	4
0:a), 1:b), 2:c), 3:d), 4:e)	006 [-]	4
<u>-</u>		-1.00
0:a), 1:b), 2:c), 3:d), 4:e)		
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1		
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1 Without stiffening	:2006 [K']	-1.00
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μm)	:2006 [K'] [Fβy]	-1.00 3.83
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μm) from deformation of shaft (μm)	:2006 [K'] [Fβy]	-1.00 3.83
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1 Without stiffening Tooth trace deviation (active) (μ m) from deformation of shaft (μ m) fsh (μ m) = 3.15 , B1=1.00, fH β 5 (μ m) = 6.50	:2006 [K'] [Fβy]	-1.00 3.83
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1 Without stiffening Tooth trace deviation (active) (μ m) from deformation of shaft (μ m) fsh (μ m) = 3.15 , B1=1.00, fH β 5 (μ m) = 6.50 Tooth without tooth trace modification	:2006 [K'] [Fβy] [fsh*B1]	-1.00 3.83
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μ m) from deformation of shaft (μ m) fsh (μ m) = 3.15 , B1=1.00, fH β 5 (μ m) = 6.50 Tooth without tooth trace modification Position of contact pattern:	:2006 [K'] [Fβy] [fsh*B1] favorable	-1.00 3.83 3.15
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μ m) from deformation of shaft (μ m) fsh (μ m) = 3.15 , B1=1.00, fH β 5 (μ m) = 6.50 Tooth without tooth trace modification Position of contact pattern: from production tolerances (μ m) B2=	:2006 [K'] [Fβy] [fsh*B1] favorable	-1.00 3.83 3.15
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μ m) from deformation of shaft (μ m) fsh (μ m) = 3.15 , B1=1.00, fH β 5 (μ m) = 6.50 Tooth without tooth trace modification Position of contact pattern: from production tolerances (μ m) B2=	:2006 [K'] [Fβy] [fsh*B1] favorable [fmα*B2]	-1.00 3.83 3.15
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μ m) from deformation of shaft (μ m) fsh (μ m) = 3.15 , B1=1.00, fH β 5 (μ m) = 6.50 Tooth without tooth trace modification Position of contact pattern: from production tolerances (μ m) B2=	:2006 [K'] [Fβy] [fsh*B1] favorable	-1.00 3.83 3.15
0:a), 1:b), 2:c), 3:d), 4:e) Coefficient K' according to Figure 13, ISO 6336-1. Without stiffening Tooth trace deviation (active) (μm) from deformation of shaft (μm) fsh (μm) = 3.15 , B1=1.00, fHβ5 (μm) = 6.50 Tooth without tooth trace modification Position of contact pattern: from production tolerances (μm) B2= 1.00 Tooth trace deviation, theoretical (μm)	:2006 [K'] [Fβy] [fsh*B1] favorable [fmα*B2]	-1.00 3.83 3.15 12.73

- Tooth root - Scuffing	[KFβ] [KBβ]	1.049 1.072
Transverse load factor - flank - Tooth root - Scuffing	[KHα] [KFα] [KBα]	1.000 1.000 1.000
Number of load cycles (in mio.)	[NL]	3014.400 2532.096
Tooth root load capacity		
Calculation of Tooth form coefficients according method: B		Gear 1 Gear 2
Calculated with generating profile shift coefficient Tooth form factor Stress correction factor Load application angle (°) Load distribution influence factor Load application diameter (mm) Bending moment arm (mm) Tooth thickness at root (mm) Tooth root radius (mm) Bending moment arm (-) Tooth thickness at root (-) Tooth root radius (-) Calculation cross section diameter (mm) Tangents on calculation cross section (°) Notch parameter Helix angle factor Deep tooth factor Gear rim factor Effective facewidth (mm) Nominal stress at tooth root (N/mm²)	[xE.i] [YF] [YS] [αFen] [fε] [den] [hF] [sFn] [pF] [hF/mn] [sFn/mn] [σ_{sFn} [σ_{sFn} [Yβ] [YDT] [YB] [beff]	0.5496 0.5788 1.29 1.28 2.19 2.22 32.20 31.55 0.982 188.664 221.902 11.20 11.25 19.51 19.75 3.30 3.24 1.400 1.406 2.438 2.469 0.412 0.405 162.460 195.597 30.000 30.000 2.958 3.047 1.038 1.000 1.00 1.00 28.00 26.00 45.61 49.18
Tooth root stress (N/mm²)	[σF]	146.07 157.52
Permissible bending stress at root of Test-gear Notch sensitivity factor Surface factor Size factor, tooth root Finite life factor Y _{drelT} *Y _{RrelT} *Y _X *Y _{NT} Alternating bending factor, mean stress influence coefficient	[YdreIT] [YRreIT] [YX] [YNT]	1.004 1.005 0.957 0.957 0.970 0.970 0.871 0.874 0.811 0.815
Stress correction factor Yst* σ Flim (N/mm²) Permissible tooth root stress σ FG/SFmin (N/mm²)	[Yst] [σFE] [σFP]	2.00 860.00 860.00 436.12 437.98

Limit strength tooth root (N/mm²) Required safety Safety for tooth root stress Transmittable power (kW) Flank safety	[σFG] [SFmin] [SF=σFG/σF] [kWRating]	697.79 1.60 4.78 466.53	700.77 1.60 4.45 434.46
	Gear 1 Gear 2		
Zone factor	[ZH]		2.035
Elasticity factor (VN/mm²)	[ZE]	18	9.812
Contact ratio factor	[Ζε]	().958
Helix angle factor	[Ζβ]	1	1.009
Effective facewidth (mm)	[beff]	20	6.00
Nominal contact stress (N/mm²)	[σH0]	44	7.35
Contact stress at operating pitch circle (N/mm²)	[σHw]	80	9.25
Coefficient[fZCa] 1.20(Helical gear sets without fl Single tooth contact factor	ank modifications) [ZB,ZD]	1.05	1.02
Contact stress (N/mm²)	[σHB, σHD]	846.97	825.95
Lubrication factor for NL Speed factor for NL	[ZL] [ZV]	1.020 1.044	1.020 1.044
Roughness factor for NL	[ZR]	0.986	0.986
Material hardening factor for NL	[ZW]	1.000	1.000
Finite life factor	[ZNT]	0.882	0.887
	[ZL*ZV*ZR*ZNT]	0.926	0.931
Limited pitting is permitted: No			
Size factor (flank)	[ZX]	1.000	1.000
Permissible contact stress, σHG/SHmin (N/mm²)	[σHP]	1068.69	1074.42
Pitting stress limit (N/mm²)	[σHG]	1389.30	1396.75
Required safety	[SHmin]	1.30	1.30
Safety factor for contact stress at operating pitch circle	[SHw]	1.72	1.73
Safety against pressure, σHG/σHBD Single contact	[SHBD]	1.64	1.69
Safety regarding transmittable torque	[(SHBD)^2]	2.69	2.86
Transmittable power (kW)	[kWRating]	248.77	264.41
Micropitting according to	ISO/TS 6336-22	2:2018	

Calculation has not been carried out, lubricant: Load stage micropitting test not known

Scuffing load capacity

Calculation method according to	ISO/TS 6336-20/21:2017			
Helical load factor for scuffing	[ΚΒγ]	1.000		
Lubrication coefficient for lubrication type	[XS]	1.200		
Scuffing test and load stage	[FZGtest] FZG - Te	st A / 8.3 / 90 (ISO 14635 - 1)12		
Multiple meshing factor	[Xmp]	1.000		
Relative structural factor, scuffing	[XWrelT]	1.000		
Thermal contact factor (N/mm/s^.5/K)	[BM]	13.780 13.780		
Relevant tip relief (µm)	[Ca]	2.00 2.00		
Optimaltip relief (µm)	[Ceff]	15.49		
Ca taken as optimal in the calculation (0=no, 1=	yes)	0 0		
Effective facewidth (mm)	[beff]	26.000		
Applicable circumferential force/facewidth (N/	mm) [wBt]	436.828		
$KB\gamma = 1.000 , wBt*KB\gamma = 436.828$				
Angle factor	[Χαβ]	1.130		
ε1: 0.609 , ε2: 0.580				
Flash temperature-criteria				
Lubricant factor	[XL]	0.830		
Tooth mass temperature	[θΜί]	83.32		
(°C) θMi = θoil +				
XS*0.47*Xmp*θflm Average flash temperature (°C)	[θflm]	23.61		
Scuffing temperature (°C)	[θS]	348.80		
Γ coordinates (point of highest temperature)	[୮]	0.214		
[г.A]= -0.298 [г.E]= 0.313				
Highest contact temp. (°C)	[0 B]	125.09		
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058		
Approach factor	[XJ]	1.000		
Load sharing factor	[ХГ]	1.000		
Dynamic viscosity (mPa*s)	[ηM]	41.90 (70.0 °C)		
Coefficient of friction	[µ _m]	0.032		
Required safety	[SBmin]	2.000		

Margin of safety for scuffing, flash temperature	[SB]	5.061
Integral temperature-criteria		
Lubricant factor	[XL]	1.000
Tooth mass temperature (°C) θMC = θoil + XS*0.70*θflaint	[θΜC]	85.47
Mean flash temperature (°C)	[θflaint]	18.41
Integral scuffing temperature (°C)	[θSint]	360.78
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058
Running-in factor, well run in	[XE]	1.000
Contact ratio factor	[Χε]	0.374
Dynamic viscosity (mPa*s) Mean coefficient of friction	[ηOil] [μ _m]	41.90 (70.0 °C) 0.027
Geometry factor	[XBE]	0.209
Meshing factor	[XQ]	1.000
Tip relief factor	[XCa]	1.091
Integral tooth flank temperature (°C)	[θint]	113.08
Required safety	[SSmin]	1.800
Safety factor for scuffing (intgtemp.)	[SSint]	3.190
Safety referring to transmittable torque	[SSL]	6.749
Measurements for tooth thickness		C. v. 1
Tooth thickness tolerance		Gear 1 Gear 2 DIN 3967 cd25 DIN 3967 cd25
Tooth thickness allowance (normal section) (mm)	[As.e/i]	-0.095 /-0.145 -0.095 /-0.145
Number of teeth spanned	[k]	4.000 5.000
Base tangent length (no backlash) (mm)	[Wk]	88.376 112.266
Base tangent length with allowance (mm)	[Wk.e/i]	88.289 / 88.244 112.180
(mm)	[ΔWk.e/i]	/112.135 -0.086 / -0.131 -0.086 / -
()	[2001.071]	0.131
Diameter of measuring circle (mm)	[dMWk.m]	177.358 214.643
Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm Radial single-ball measurement (mm)	[DM] [DMeff]) [MrK] [MrK.e/i]	16.594 16.233 18.000 18.000 104.806 121.493 104.732 /104.693 121.417 /121.377

Diameter of measuring circle (mm) Diametral measurement over two balls without	[dMMr.m] [MdK]	181.535 209.077	215.103 242.542
clearance (mm)	[WICK]	203.077	272.372
Diametral two ball measure (mm)	[MdK.e/i]	208.929 /208.8 /242.310	52 242.390
Diametral measurement over pins without clearance (mm)	[MdR]	209.613	242.986
Measurement over pins according to DIN 3960 (mm)	[MdR.e/i]	209.465 /209.3 /242.754	387 242.834
Measurement over 2 pins, free, according to AGM. 2002 (mm)	A[dk2f.e/i]	208.903 /208.8 /242.289	325 242.369
Measurement over 3 pins, axial, according to AGMA 2002 (mm)		,	
	[dk3A.e/i]	209.465 /209.3 /242.754	387 242.834
Chordal tooth thickness (no backlash) (mm)	[sc]	16.787	17.011
Normal chordal tooth thickness with allowance (mm)	[sc.e/i]	16.695 / 16.64 16.871	16.919 /
Reference chordal height from da.m (mm)	[ha]	12.157	12.336
Tooth thickness, arc (mm)	[sn]	16.812	17.029
(mm)	[sn.e/i]	16.717 / 16.66 16.884	57 16.934 /
Backlash free center distance (mm)	[aControl.e/i]	195.827	/195.735
Backlash free center distance, allowances (mm)	[jta]	-0.174	/ -0.265
dNf.i with aControl (mm)	[dNf0.i]	166.652	199.914
Reserve (dNf0.i-dFf.e)/2 (mm)	[cF0.i]	1.159	1.361
Tip clearance (mm)	[c0.i(aControl)	-	1.836
Center distance allowances (mm)	[Aa.e/i]	0.023	/ -0.023
Circumferential backlash from Aa (mm)	[jtw_Aa.e/i]	0.027	/ -0.027
Radial backlash (mm)	[jrw.e/i]	0.288	/ 0.151
Circumferential backlash (transverse section) (mm) [jtw.e/i]	0.336	/ 0.176
Normal backlash (mm) Torsional angle on input with output fixed:	[jn.e/i]	0.282	/ 0.153
Total torsional angle (°)	[j.tSys]	0.2150/0).1124
Toothing tolerances			
		Gear 1	Gear 2
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade	[Q]	A6	A6
Single pitch deviation (μm)	[fptT]	12.00	12.00
Base circle pitch deviation (µm)	[fpbT]	10.70	10.70

Sector pitch deviation over k/8 pitches (µm)		[Fpk/8T]	25.00	24.00
Profile form deviation (µm)		[ffαT]	13.00	13.00
Profile slope deviation (μm)		$[fH\alpha T]$	10.00	10.00
Total profile deviation (μm)		[FαT]	17.00	17.00
Helix form deviation (μm)		[ffβT]	10.00	10.00
Helix slope deviation (μm)		[fHβT]	9.00	9.00
Total helix deviation (μm)		[FβТ]	14.00	14.00
Total cumulative pitch deviation (μm)		[FpT]	36.00	37.00
Adjacent pitch difference (μm)		[fuT]	17.00	17.00
Runout (μm)		[FrT]	32.00	33.00
Single flank composite, total (μm)		[FisT]	47.00	48.00
Single flank composite, tooth-to-tooth	(μm)	[fisT]	11.00	11.00
Radial composite, total (μm)		[FidT]	64.00	64.00
Radial composite, tooth-to-tooth (μm)		[fidT]	34.00	34.00
E: IT (E:II) C: IT (C:II) I:	4000 4007	1 . 1		

FidT (Fi''), fidT (fi'') according to ISO 1328:1997 calculated with the geometric mean values for mn and ${\tt d}$

Axis alignment tolerances (recommendation acc. to ISO TR 10064-3:1996, Quality)

 $6 \\ \label{eq:maximum} \text{Maximum value for deviation error of axis } (\mu m) \qquad [f\Sigma\beta] \\ \label{eq:maximum} 15.08 \quad (F\beta= 14.00 \) \\ \label{eq:maximum value} \text{Maximum value for inclination error of axes } (\mu m) \qquad [f\Sigma\delta] \\ \label{eq:maximum value} 30.15$

Modifying and defining the tooth form

Data for the tooth form calculation:

Data not available.

Please run the calculation in the "Tooth form" tab and open the main report again.

Supplementary data

 Mass (kg)
 [m]
 5.422
 7.087

 Total mass (kg)
 [mGes]
 12.509

Moment of inertia for system, relative to the input:

calculation without consideration of the exact tooth
shape

Single gears, (da+df)/2di (kg*m²)	[J]	0.02135 0.03927
System (da+df)/2di (kg*m²)	[J]	0.04905
Torsional stiffness at driving gear with fixed drive	en	
gear:		
Torsional stiffness (MNm/rad)	[cr]	2.284
Torsion when subjected to nominal torque (°)	[δcr]	0.007
Mean coefficient of friction (as defined in Niema	nn) [μ _m]	0.027
Wear sliding coef. by Niemann	[ζw]	0.522
Loss factor	[HV]	0.145
Gear power loss (kW)	[PVZ]	0.606
Meshing efficiency (%)	[ŋz]	99.612
Sound pressure level according to Masuda, with	out contact analys	sis
	[dB(A)]	89.6
Oil requirement for injection lubrication (I/min)	[Voil] 1.890	
with oil cooler, for assumed difference in temp	erature of oil (°C)	:
	10	

Service life, damage

Required safety for tooth root	[SFmin]		1.60
Required safety for tooth flank	[SHmin]		1.30
Service life (calculated with required safeties): System service life (h)	[Hatt]		> 1000000
Tooth root service life (h) Tooth flank service life (h)	[HFatt] [HHatt]	1e+06 1e+06	1e+06 1e+06

Note: The entry 1e+006 h means that the Service life > 1,000,000 h.

Damage calculated on the basis of the required service life [H] (10000.0 h)

F1%	F2%	H1%	H2%
0.00	0.0000	0.0000	0.0000

Remarks:

- Specifications with [.e/i] imply: Maximum [e] and minimum value [i] for Taking all tolerances into account

Specifications with[.m] imply: Mean value within tolerance

- For the backlash tolerance, the center distance tolerances and the tooth thickness allowance are taken into account.

The maximum and minimum clearance according to the largest or smallest allowances are defined..

The calculation is performed for the operating pitch circle.

- Calculation of Zbet according to Corrigendum 1 ISO 6336-2:2008 with $Z\beta$ =

 $1/(COS(\beta)^0.5)$ - Details of calculation method: cy according to

Method B

Kv according to Method B

KHβ and KFβ according to Method C

fm according to Equation 64, fsh according to 57/58, F β x according to 52/53/54 KH α , KF α according to Method B

- The logarithmically interpolated value taken from the values for the fatigue strength and the static strength, based on the number of load cycles, is used for coefficients ZL, ZV, ZR, ZW, ZX, YdrelT, YRrelT and YX..

End of Report lines: 630

Πλανήτης- Στεφάνη

KISSsoft Release 2020 B

KISSsoft – student license (not for commercial use)

File

Name : PLANET 2 _ RING 2

Changed by: The Mechanicon: 25.12.2020at: 12:52:59

Calculation of a helical-toothed cylindrical gear pair

Drawing or article number:

Gear 1: 0.000.0

Gear 2:	0.000.0				
Calculation method	ISO 6336:2019				
	G	ear 1 G	ear 2		
Power (kW)	[P]	156.			
Speed (1/min)	[n]		1406.7		
Torque (Nm)	[T]		1062.0		
Application factor	[KA]		75		
Distribution factor	[Κγ]		20		
Required service life (h)	[H]	10000.	.00		
Gear driving (+) / driven (-)		+	-		
Working flank gear 1:	Right flank				
Gear 1 direction of rotation:	Clock	wise			
-					
Tooth geometry and material	ISO 21771.200	7			
Geometry calculation according to	ISO 21771:200)/			
	G	ear 1 G	ear 2		
Center distance (mm)	[a]	196.	000		
Center distance tolerance	ISO 286:2010	Measure js7			
Normal module (mm)	[mn]	8.	.0000		
Normal pressure angle (°)	[ɑn]	25	.0000		
Helix angle at reference circle (°)	[β]	11	.0000		
Number of teeth	[z]	25	-75		
Facewidth (mm)	[b]	26.00	28.00		
Hand of gear		right	right		
Accuracy grade	[Q-ISO	A6	A6		
Inner diameter (mm)	1328:2013]	0.00			
Inner diameter (mm)	[di]	0.00			
External diameter (mm)	[di]				
Inner diameter of gear rim (mm)	[dhi]	0.00	787.31		
Inner diameter of gear rim (mm)	[dbi]	0.00			
Outer diameter of gear rim (mm)	[dbi]		0.00		
Material					
Gear 1					
18CrNiMo7-6, Case-carburized steel, case-hardened					
ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm <hrc28< td=""></hrc28<>					
Gear 2					
18CrNiMo7-6, Case-carburized steel, case-hardened					
ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm <hrc28< td=""></hrc28<>					

----- Gear 1 ----- Gear 2 --

Ge	al 1	Jedi 2	
Surface hardness		HRC 61 HRC 61	
Material treatment according to ISO 6336:2006 Nor Fatigue strength. tooth root stress (N/mm²) Fatigue strength for Hertzian pressure (N/mm²) Tensile strength (N/mm²) Yield point (N/mm²) Young's modulus (N/mm²) Poisson's ratio Roughness average value DS, flank (μm) Roughness average value DS, root (μm) Mean roughness height, Rz, flank (μm) Mean roughness height, Rz, root (μm)	rmal, life fa [σFlim] [σHlim] [σS] [E] [v] [RAH] [RAF] [RZH]	ctors ZNT and YNT >=0.85 430.00	
Gear reference profile			
1: Reference profile Dedendum coefficient	1.25 / 0.3 Profil A [hfP*]	88 / 1.0 ISO 53:1998 1.250	
Root radius factor	[ρfP*]	0.380 (pfPmax*=	
Addendum coefficient	[haP*]	0.318) 1.000	
Tip radius factor	[paP*]	0.000	
Protuberance height coefficient	[hprP*]	0.000	
Protuberance angle	[aprP]	0.000	
Tip form height coefficient	[hFaP*]	0.000	
Ramp angle	[αΚΡ]	0.000 not topping	
Gear reference profile 2:			
Reference profile	1.25 / 0.38 / 1.0 ISO 53:1998		
Dedendum coefficient	Profil A [hfP*]	1.250	
Root radius factor	[ρfP*]	0.380 (pfPmax*=	
Addendum coefficient	[haP*]	0.318) 1.000	
Tip radius factor	[paP*]	0.000	
Protuberance height coefficient	[hprP*]	0.000	
Protuberance angle	[αprP]	0.000	

Tip form height coefficient Ramp angle	[hFaP*] [αKP] not topping	0.000 0.000
Information on final machining Dedendum reference profile Tooth root radius Refer. profile Addendum Reference profile Protuberance height coefficient Protuberance angle (°) Tip form height coefficient Ramp angle (°)	[hfP*] [ρfP*] [haP*] [hprP*] [αprP] [hFaP*] [αKP]	1.250 1.250 0.380 0.380 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Type of profile modification: Tip relief by running in (μm)	none (only runni [Ca L/R]	ng-in) 2.0 / 2.0 2.0 / 2.0
Lubrication type Type of oil	Oil injection lubr	ication
Lubricant base	Mineral-oil base	
Oil nominal kinematic viscosity at 40°C (mm²/s)	[v40]	220.00
Oil nominal kinematic viscosity at 100°C (mm²/s)	[v100]	17.50
Specific density at 15°C (kg/dm³)	[ρ]	0.895
Oil temperature (°C)	[TS]	70.000
Gear pair		
Overall transmission ratio Gear ratio	[itot] [u]	3.000 -3.000
Transverse module (mm)	[mt]	8.150
Transverse pressure angle (°)	[at]	25.409
Working pressure angle (°)	[awt]	20.124
	[awt.e/i]	20.105 / 20.142
Working pressure angle at normal section (°)	[ɑwn]	19.808
Helix angle at operating pitch circle (°)	[βw]	10.592
Base helix angle (°)	[βb]	9.958
Reference center distance (mm)	[ad]	203.743
Pitch on reference circle (mm) Base pitch (mm)	[pt] [pbt]	25.603 23.126

Transverse pitch on contact-path (mm)	[pet]	23.126
Sum of profile shift coefficients	[Σχί]	0.8774
Transverse contact ratio Transverse contact ratio with allowances Overlap ratio	[εα] [εα.e/m/i] [εβ]	1.381 1.388 / 1.383 / 1.377 0.197
Total contact ratio	[εγ]	1.579
Total contact ratio with allowances	[εγ.e/m/i]	1.586 / 1.580 / 1.574
Length of path of contact (mm)	[ga, e/i]	31.946 (32.111 / 31.841) 37.665 (37.500 /
Length T1-A (mm) Length T1-B (mm)	[T1A] [T1B]	37.732) 46.485 (46.485 / 46.446)
Length T1-C (mm)	[T1C]	33.717 (33.750 / 33.683)
Length T1-D (mm)	[T1D]	60.792 (60.626 / 60.859)
Length T1-E (mm)	[T1E]	69.611 (69.611 / 69.573) 105.099 (105.001 /
Length T2-A (mm)	[T2A]	105.099)
Length T2-B (mm)	[T2B]	113.918 (113.985 / 113.813)
Length T2-C (mm)	[T2C]	101.151 (101.251 / 101.050)
Length T2-D (mm)	[T2D]	128.225 (128.127 / 128.225)
Length T2-E (mm)	[T2E]	137.045 (137.112 / 136.940)
Length T1-T2 (mm)	[T1T2]	67.434 (67.501 / 67.367)
Minimal length of contact line (mm)	[Lmin]	26.398
Gear 1		
Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module	[pz] [px] [x] [sn*]	3292.919 131.717 0.5982 2.1287
Tip alteration (mm) Reference diameter (mm) Base diameter (mm) Tip diameter (mm)	[k*mn] [d] [db] [da]	0.724 203.743 184.034 230.763

(mm) Tip diameter allowances (mm) Tip form diameter (mm)	[da.e/i] [Ada.e/i] [dFa] [dFa.e/i] [df] [xE.e/i] [df.e/i] [dFf] [dFf.e/i]	230.763 / 230.717 0.000 / -0.046 230.763 230.763 / 230.717 193.315 0.5855/ 0.5788 193.111 / 193.004 197.363 197.192 / 197.102
25	, x0=0.000)	
Involute length (mm) Addendum, mn(hap*+x+k) (mm)	[l_dFa-l_dFf] [ha] [ha.e/i] [hf=mn*(hfP*-x)] [hf.e/i] [h] [zn] [san]	19.425 13.510 13.510 / 13.487 5.214 5.316 / 5.370 18.724 26.253 1.770
(mm) Normal tooth thickness at tip form circle (mm) (mm) Normal space width at root circle (mm)	[san.e/i] [sFan] [sFan.e/i] [efn]	1.697 / 1.607 1.770 1.697 / 1.607 3.688
(mm)	[efn.e/i]	3.711 / 3.723
Gear 2 Lead height (mm) Axial pitch (mm) Profile shift coefficient Tooth thickness, arc, in module	[pz] [px] [x] [sn*]	9878.756 131.717 0.2792 1.8312
Tip alteration (mm) Reference diameter (mm) Base diameter (mm)	[k*mn] [d] [db]	0.000 611.230 552.103
Tip diameter (mm)	[da] [da.e/i] [Ada.e/i] [dFa] [dFa.e/i] [df] [xE.e/i] [df.e/i]	590.763 590.763 / 590.693 0.000 / -0.070 590.763 590.763 / 590.693 626.763 0.2557/ 0.2450 627.310 / 627.138 623.061
(mm)	[dFf.e/i]	623.713 / 623.509

Internal toothing: Calculation dFf with pinion	type	
cutter (z0=	24 , x0=0.000)	
Involute length (mm)	[l_dFa-l_dFf]	17.752
Addendum, $m_n(h_{aP}^*+x+k)$ (mm)	[ha]	10.234
(mm)	[ha.e/i]	10.269 / 10.234
Dedendum (mm)	[hf=mn*(hfP*-	7.766
	x)]	
(mm)	[hf.e/i]	7.954 / 8.040
Tooth height (mm)	[h]	18.000
Virtual gearno. of teeth	[zn]	78.759
Normal tooth thickness at tip circle (mm)	[san]	5.691
(mm)	[san.e/i]	5.522 / 5.417
Normal tooth thickness at tip form circle (mm		5.691
(mm)	[sFan.e/i]	5.522 / 5.417
Normal space width at root circle (mm)	[efn]	2.926
(mm)	[efn.e/i]	2.909 / 2.901
Gear specific pair data Gear pair 1, Gear	1	
Operating pitch diameter (mm)	[dw]	196.000
(mm)	[dw.e/i]	195.977 / 196.023
Active tip diameter (mm)	[dNa]	230.763
(mm)	[dNa.e/i]	230.763 / 230.717
Theoretical tip clearance (mm)	[c]	2.000
Effective tip clearance (mm)	[c.e/i]	2.320 / 2.165
Active root diameter (mm)	[dNf]	198.855
(mm)	[dNf.e/i]	198.906 / 198.730
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.902 / 0.769
Max. sliding velocity at tip (m/s)	[vga]	10.575
Specific sliding at the tip	[ζa]	0.344
Specific sliding at the root	[ζf]	0.070
Mean specific sliding	[ζm]	0.344
Sliding factor on tip	[Kga]	-0.244
Sliding factor on root	[Kgf]	0.027
Roll angle at dFa (°)	[ξdFa.e/i]	43.344 / 43.321
Roll angle to dNa (°)	[ξdNa.e/i]	43.344 / 43.321
Roll angle to dNf (°)	[ξdNf.e/i]	23.494 / 23.350
Roll angle at dFf (°)	[ξdFf.e/i]	22.050 / 21.972
Diameter of single contact point B (mm)	[d-B]	206.184 (206.184 /
		206.150)
Diameter of single contact point D (mm)	[d-D]	220.570 (220.388 /
		220.644)
Addendum contact ratio	[ε]	1.381 (1.388 / 1.377

Gear specific pair data Gear pair 1, Gear 2

Operating pitch diameter (mm) (mm)	[dw] [dw.e/i]	587.999 588.068 / 587.930
Active tip diameter (mm)	[dw.e/1]	590.763
(mm)	[dNa.e/i]	590.763 / 590.693
Theoretical tip clearance (mm)	[c]	2.724
Effective tip clearance (mm)	[c.e/i]	2.903 / 2.768
Active root diameter (mm)	[dNf]	616.395
(mm)	[dNf.e/i]	616.454 / 616.301
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	3.706 / 3.527
Max. sliding velocity at tip (m/s)	[vga]	-1.163
Specific sliding at the tip	[ζа]	-0.075
Specific sliding at the root	[ζf]	-0.524
Mean specific sliding	[ζm]	0.344
Sliding factor on tip	[Kga]	-0.027
Sliding factor on root	[Kgf]	0.244
Roll angle at dFa (°)	[ξdFa.e/i]	21.793 / 21.814
Roll angle to dNa (°)	[ξdNa.e/i]	21.793 / 21.814
Roll angle to dNf (°)	[ξdNf.e/i]	28.423 / 28.458
Roll angle at dFf (°)	[ξdFf.e/i]	30.068 / 30.113
Diameter of single contact point B (mm)	[d-B]	597.266 (597.317 / 597.186)
Diameter of single contact point D (mm)	[d-D]	608.757 (608.674 / 608.757)
Addendum contact ratio	[ε]	0.000 (0.000 / 0.000)
General influence factors		
Gear 1 Gear 2		
Nominal circum. force at pitch circle (N)	[Ft]	3475.0
Axial force (N)	[Fa]	675.5
Radial force (N)	[Fr]	1650.7
Normal force (N)	[Fnorm]	3906.0
Nominal circumferential force per mm (N/mm)	[w]	133.65
Only as information: Forces at operating pitch circ	le:	
Nominal circumferential force (N)	[Ftw]	3612.2

Axial force (N)	[Faw]	675.5
Radial force (N)	[Frw]	1323.6
Circumferential speed reference circle (m/s)	[v]	45.02
Circumferential speed operating pitch circle (m/s)	[v(dw)]	43.31
Running-in value (μm)	[yp]	0.8
Running-in value (μm)	[yf]	1.0
Correction factor	[CM]	0.800
Gear blank factor	[CR]	1.000
Basic rack factor	[CBS]	1.073
Material coefficient	[E/Est]	1.000
Singular tooth stiffness (N/mm/μm)	[c']	17.475
Meshing stiffness (N/mm/μm)	[cγα]	22.474
Meshing stiffness (N/mm/μm)	[cγβ]	19.103
Reduced mass (kg/mm)	[mRed]	0.14565
Resonance speed (min-1)	[nE1]	4745
Resonance ratio (-)	[N]	0.889
Range of the main resonance!		
Running-in value (μm)	[γα]	0.8
Bearing distance I of pinion shaft (mm)	[1]	52.000
Distance s of pinion shaft (mm)	[s]	5.200
Outside diameter of pinion shaft (mm)	[dsh]	26.000
Load in accordance with Figure 13, ISO 6336-1:200	6 [-]	4
0:a), 1:b), 2:c), 3:d), 4:e)		
Coefficient K' according to Figure 13, ISO 6336-1:20	006 [K']	-1.00
Without stiffening		
Tooth trace deviation (active) (μm)	[Ғβу]	4.25
from deformation of shaft (μ m) fsh (μ m) = 5.08 , B1=1.00 , fH β 5 (μ m) = 7.00	[fsh*B1]	5.08
Tooth without tooth trace modification Position of contact pattern:	favorable	

from production tolerances (μm) B2=	[fma*B2]	13.45
1.00		
Tooth trace deviation, theoretical (μm)	[Fβx]	5.00
Running-in value (μm)	[yβ]	0.75
Dynamic factor Note: Kv is limited by preset Kv <= Kvmax 2.00 =	[Kv]	2.000
Face load factor -flank	[ΚΗβ]	1.072
- Tooth root	[KFβ]	1.050
- Scuffing	[КВβ]	1.072
Transverse load factor - flank - Tooth root	[KHα] [KFα]	1.000 1.000
- Scuffing	[ΚΒα]	1.000
Number of load cycles (in mio.)	[NL]	2532.000 844.000
Tooth root load capacity Calculation of Tooth form coefficients according		
method: B		
_		YF, YS with pinion type
method: B	Calculation of cutter, z0=	
method: B	cutter, z0=	24 , x0= 0.000 ρaP0*=
method: B Internal toothing:	cutter, z0=	24 , x0= 0.000
method: B Internal toothing:	cutter, z0= 	24 , x0= 0.000 ρaP0*=
method: B Internal toothing: 0.380	cutter, z0= 	24 , x0= 0.000 ρaP0*= Gear 1 Gear 2
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient	cutter, z0= [xE.i]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788 0.2450
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor	cutter, z0= [xE.i] [YF]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor Stress correction factor	cutter, z0= [xE.i] [YF] [YS]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor Stress correction factor Load application angle (°)	cutter, z0= [xE.i] [YF] [YS] [αFen]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor Stress correction factor Load application angle (°) Load distribution influence factor	cutter, z0= [xE.i] [YF] [YS] [αFen] [fε]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor Stress correction factor Load application angle (°) Load distribution influence factor Load application diameter (mm)	cutter, z0= [xΕ.i] [YF] [YS] [αFen] [fε] [d _{en}]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor Stress correction factor Load application angle (°) Load distribution influence factor Load application diameter (mm) Bending moment arm (mm)	cutter, z0= [xE.i] [YF] [YS] [αFen] [fε] [d _{en}] [hF]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788
method: B Internal toothing: 0.380 Calculated with generating profile shift coefficient Tooth form factor Stress correction factor Load application angle (°) Load distribution influence factor Load application diameter (mm) Bending moment arm (mm) Tooth thickness at root (mm)	cutter, z0= [xE.i] [YF] [YS] [αFen] [fε] [d _{en}] [hF] [sFn]	24 , x0= 0.000 paP0*= Gear 1 Gear 2 0.5788

Tooth root radius (-)	[ρF/mn]	0.405	0.308
Calculation cross section diameter (mm)	$[d_{sFn}]$	195.597	-626.637
Tangents on calculation cross section (°)	$[\alpha_{sFn}]$	30.000	60.000
Notch parameter	[qs]	3.047	4.750
Helix angle factor Deep tooth factor	[Yβ] [YDT]		.038 .000
Gear rim factor	[YB]	1.00	1.00
Effective facewidth (mm)	[beff]	26.00	28.00
Nominal stress at tooth root (N/mm²)	[σF0]	45.60	47.41
Tooth root stress (N/mm²)	[σF]	201.00	208.99
Permissible bending stress at root of Test-gear Notch sensitivity factor	[YdreIT]	1.005	1.018
Surface factor	[YRrelT]	0.957	0.957
Size factor, tooth root	[YX]	0.970	0.970
Finite life factor	[YNT]	0.874	0.893
Y _{drelT} *Y _{RrelT} *Y _x *Y _{NT} Alternating bending factor, mean stress influence coefficient		0.815	0.844
	[YM]	1.000	1.000
Stress correction factor Yst*oFlim (N/mm²) Permissible tooth root stress oFG/SFmin (N/mm²) Limit strength tooth root (N/mm²) Required safety Safety for tooth root stress Transmittable power (kW) Flank safety	[Yst] [σFE] [σFP] [σFG] [SFmin] [SF=σFG/σF] [kWRating]	860.00 437.98 700.77 1.60 3.49 340.89	.00 860.00 453.67 725.87 1.60 3.47 339.59
	ar 1 Gear 2 -		
Zone factor	[ZH]		567
Elasticity factor (VN/mm²)	[ZE]	189	9.812
Contact ratio factor	[Ζε]	0	.918
Helix angle factor	[Ζβ]	1	.009
Effective facewidth (mm)	[beff]	26	5.00
Nominal contact stress (N/mm²)	[σH0]	298	3.68

Contact stress at operating pitch circle (N/mm²)) [σHw]	633	3.85
Coefficient[fZCa] 1.20(Helical gear sets without	flank modifications)		
Single tooth contact factor	[ZB,ZD]	1.00	1.00
Contact stress (N/mm²)	[σHB, σHD]	633.85	633.85
Lubrication factor for NL	[ZL]	1.020	1.020
Speed factor for NL	[ZV]	1.044	1.044
Roughness factor for NL	[ZR]	1.006	1.006
Material hardening factor for NL	[ZW]	1.000	1.000
Finite life factor	[ZNT]	0.887	0.917
	[ZL*ZV*ZR*ZNT]	0.949	0.982
Limited pitting is permitted: No			
Size factor (flank)	[ZX]	1.000	1.000
Permissible contact stress, σHG/SHmin (N/mm²)	[σHP]	1095.39	1132.93
Pitting stress limit (N/mm²)	[σHG]	1424.00	1472.81
Required safety	[SHmin]	1.30	1.30
Safety factor for contact stress at operating pitch circle	[SHw]	2.25	2.32
Safety against pressure, σHG/σHBD Single contact	[SHBD]	2.25	2.32
Safety regarding transmittable torque	[(SHBD)^2]	5.05	5.40
Transmittable power (kW)	[kWRating]	467.20	499.78

Micropitting according to ISO/TS 6336-22:2018 Calculation has not been carried out, lubricant: Load stage micropitting test not known

Scuffing load capacity

Calculation method according to	ISO/TS 6336-20/2	1:2017
Helical load factor for scuffing	[ΚΒγ]	1.000
Lubrication coefficient for lubrication type	[XS]	1.200
Scuffing test and load stage	[FZGtest] FZG - Test	A / 8.3 / 90 (ISO 14635 - 1)12
Multiple meshing factor	[Xmp]	1.000
Relative structural factor, scuffing	[XWrelT]	1.000

Thermal contact factor (N/mm/s^.5/K)	[BM]	13.780	13.780
Relevant tip relief (µm)	[Ca]	2.00	2.00
Optimaltip relief (µm)	[Ceff]	12.4	9
Ca taken as optimal in the calculation (0=no, 1=yes)		0	0
Effective facewidth (mm)	[beff]	26.0	000
Applicable circumferential force/facewidth (N/mm) $KB\gamma = 1.000$, $wBt*KB\gamma = 601.933$	[wBt]	601.9	933
Angle factor ε1: 1.381 , ε2: 0.000	[Χαβ]	0.9	985
Flash temperature-criteria Lubricant factor	[XL]	0.8	330
Tooth mass temperature (°C) θMi = θoil + XS*0.47*Xmp*θflm	[ӨМі]	82.7	
Average flash temperature (°C)	[θflm]	22.5	58
Scuffing temperature (°C)	[θS]	348.8	30
Γ coordinates (point of highest temperature) [Γ .A]= 0.117 [Γ .E]= 1.065	[୮]	0.7	
Highest contact temp. (°C)	[θB]	121.3	14
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.0)58
Approach factor	[XJ]	1.0	000
Load sharing factor	[XL]	1.0	000
Dynamic viscosity (mPa*s) Coefficient of friction	[ηM] [μ _m]	41.9 0.0	90 (70.0 °C) 932
Required safety	[SBmin]	2.0	000
Margin of safety for scuffing, flash temperature	[SB]	5.4	152
Integral temperature-criteria Lubricant factor	[XL]	1.0	000
Tooth mass temperature (°C) θ MC = θ oil + XS*0.70* θ flaint	[ӨМС]	76.6	50
Mean flash temperature (°C)	[θflaint]	7.8	35
Integral scuffing temperature (°C)	[θSint]	360.7	78
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.0)58
Running-in factor, well run in	[XE]	1.0	000

Contact ratio factor	[Χε]	0.3	87	
Dynamic viscosity (mPa*s) Mean coefficient of friction	[ηOil] [μ _m]	41.9 0.0	0 (70.0 22	°C)
Geometry factor	[XBE]	0.1	16	
Meshing factor	[XQ]	1.0	00	
Tip relief factor	[XCa]	1.3	72	
Integral tooth flank temperature (°C)	[θint]	88.3	8	
Required safety	[SSmin]	1.8	00	
Safety factor for scuffing (intgtemp.)	[SSint]	4.0	82	
Safety referring to transmittable torque	[SSL]	15.8	22	
Measurements for tooth thickness				
Tooth thickness tolerance		Gear 1 DIN 3967 cd25		d25
Tooth thickness allowance (normal section) (mm)	[As.e/i]	-0.095 /-0.145	-0.175 /-0.2	255
Number of teeth spanned	[k]	5.000	-0.000	
For internal toothing: k = measurement gap number				
Base tangent length (no backlash) (mm)	[Wk]	112.266	-0.000	
	[Wk] [Wk.e/i]	112.180 /112.135		0/-
Base tangent length (no backlash) (mm)				0 / -
Base tangent length (no backlash) (mm)		112.180 /112.135 0.000 -0.086 / -	0.000 /	0 / -
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm)	[Wk.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131	-0.000	0 / -
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643	0.000 / 0.000 / 0.000 -0.000	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm)	[Wk.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131	0.000 / 0.000 /	0 / -
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233	0.000 / 0.000 / 0.000 -0.000 13.518	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000	0.000 / 0.000 / 0.000 -0.000 13.518 14.000	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103	0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm)	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i] [dMMr.m] arance (mm)	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103 242.542	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181 585.984	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm) Diametral measurement over two balls without clean	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i] [dMMr.m] arance (mm) [MdK] [MdK.e/i]	112.180 /112.135 0.000 -0.086 / -	0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181 585.984 586.580 /586.394	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm) Diametral measurement over two balls without clean	[Wk.e/i] [ΔWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i] [dMMr.m] arance (mm) [MdK] [MdK.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103 242.542	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181 585.984	0/-
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm) Diametral measurement over two balls without clean	[Wk.e/i] [AWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i] [dMMr.m] arance (mm) [MdK] [MdK.e/i] ce (mm)	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103 242.542 242.390 /242.310 242.986 242.834	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181 585.984 586.580 /586.394 -0.000	
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm) Diametral measurement over two balls without cle Diametral two ball measure (mm) Diametral measurement over pins without clearance Measurement over pins according to DIN 3960 (mr)	[Wk.e/i] [AWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i] [dMMr.m] arance (mm) [MdK] [MdK.e/i] ce (mm) [MdR] n)[MdR.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103 242.542 242.390 /242.310 242.986 242.834 /242.754	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181 585.984 586.580 /586.394 -0.000 / 0.000 /	
Base tangent length (no backlash) (mm) Base tangent length with allowance (mm) (mm) Diameter of measuring circle (mm) Theoretical diameter of ball/pin (mm) Effective diameter of ball/pin (mm) Radial single-ball measurement backlash free (mm) Radial single-ball measurement (mm) Diameter of measuring circle (mm) Diametral measurement over two balls without clearance Diametral two ball measure (mm) Diametral measurement over pins without clearance	[Wk.e/i] [AWk.e/i] [dMWk.m] [DM] [DMeff] [MrK] [MrK.e/i] [dMMr.m] arance (mm) [MdK] [MdK.e/i] ce (mm) [MdR] n)[MdR.e/i]	112.180 /112.135 0.000 -0.086 / - 0.131 214.643 16.233 18.000 121.493 121.417 /121.377 215.103 242.542 242.390 /242.310 242.986 242.834 /242.754	0.000 / 0.000 / 0.000 -0.000 13.518 14.000 293.058 293.356 /293.263 606.181 585.984 586.580 /586.394 -0.000	

Measurement over 3 pins, axial, according to AGMA 2002 (mm)

	[dk3A.e/i]	242.834	-0.000 / -
Note: Internal gears with helical teeth cannot be rollers.	measured with	/242.754	0.000
Chordal tooth thickness (no backlash) (mm)	[sc]	17.011	14.648
Normal chordal tooth thickness with allowance	[sc.e/i]	16.919 /	14.471/
(mm)		16.871	14.390
Reference chordal height from da.m (mm)	[ha]	13.841	10.167
Tooth thickness, arc (mm)	[sn]	17.029	14.649
(mm)	[sn.e/i]	16.934 /	14.474 /
		16.884	14.394
Backlash free center distance (mm)	[aControl.e/i]	196.358 /	196.529
Backlash free center distance, allowances (mm)	[jta]	0.359 /	0.530
dNf.i with aControl (mm)	[dNf0.i]	197.648	617.756
Reserve (dNf0.i-dFf.e)/2 (mm)	[cF0.i]	0.228	2.876
Tip clearance (mm)	[c0.i(aControl)]	1.658	2.262
Center distance allowances (mm)	[Aa.e/i]	-0.023 /	0.023
Circumferential backlash from Aa (mm)	[jtw_Aa.e/i]	0.017 /	-0.017
Radial backlash (mm)	[jrw.e/i]	0.553 /	0.336
Circumferential backlash (transverse section) (mm)	[jtw.e/i]	0.409 /	0.248
Normal backlash (mm)	[jn.e/i]	0.382 /	0.225
Torsional angle on input with output fixed:			
Total torsional angle (°)	[j.tSys]	0.2390/0.	1448

Toothing tolerances

	G	ear 1	Gear 2
According to ISO 1328-1:2013, ISO 1328-2:1997 Accuracy grade	[Q]	A6	A6
Single pitch deviation (µm)	[fptT]	12.00	12.00
Base circle pitch deviation (µm)	[fpbT]	10.70	11.30
Sector pitch deviation over k/8 pitches (µm)	[Fpk/8T]	24.00	28.00
Profile form deviation (μm)	[ff α T]	13.00	13.00
Profile slope deviation (μm)	[fHαT]	10.00	11.00
Total profile deviation (μm)	[FαT]	17.00	17.00
Helix form deviation (μm)	[ffβT]	10.00	11.00
Helix slope deviation (µm)	[fHβT]	9.00	10.00
Total helix deviation (µm)	[FβT]	14.00	15.00

Total cumulative pitch deviation (μm)	[FpT]	37.00	46.00
Adjacent pitch difference (μm)	[fuT]	17.00	18.00
Runout (μm)	[FrT]	33.00	41.00
Single flank composite, total (μm)	[FisT]	48.00	57.00
Single flank composite, tooth-to- (μm) tooth	[fisT]	11.00	11.00
Radial composite, total (μm)	[FidT]	64.00	83.00
Radial composite, tooth-to-tooth (μm)	[fidT]	34.00	34.00

FidT (Fi"), fidT (fi") according to ISO 1328:1997 calculated with the geometric mean values for mn and d

Axis alignment tolerances (recommendation acc. to ISO TR 10064-3:1996, Quality)

Modifying and defining the tooth form

Data for the tooth form calculation:

Data not available.

Please run the calculation in the "Tooth form" tab and open the main report again.

Supplementary data

Mass (kg) Total mass (kg)	[m] [mGes]	7.189 14.585 21.773
Moment of inertia for system, relative to the input:	[mdes]	21.773
calculation without consideration of the exact tooth shape	ı	
Single gears, (da+df)/2di (kg*m²)	[J]	0.04040 1.50568
System $(da+df)/2di (kg*m²)$	[J]	0.20770
Torsional stiffness at driving gear with fixed driven		
gear:		
Torsional stiffness (MNm/rad)	[cr]	4.371
Torsion when subjected to nominal torque (°)	[δcr]	0.005
Mean coefficient of friction (as defined in Niemann)	$[\mu_m]$	0.024
Wear sliding coef. by Niemann	[ζw]	0.475
Loss factor	[HV]	0.130
Gear power loss (kW)	[PVZ]	0.486

Meshing efficiency (%) [ηz]

99.690

Sound pressure level according to Masuda, without contact analysis

[dB(A)] 102.1

Oil requirement for injection lubrication (I/min) [Voil] 1.516 with oil cooler, for assumed difference in temperature of oil (°C):

10

Service life, damage

Required safety for tooth root [SFmin] 1.60
Required safety for tooth flank [SHmin] 1.30

Service life (calculated with required safeties):

System service life (h) [Hatt] > 1000000

Tooth root service life (h) [HFatt] 1e+06 1e+06

Tooth flank service life (h) [HHatt] 1e+06

1e+06

Note: The entry 1e+006 h means that the Service life > 1,000,000 h.

Damage calculated on the basis of the required service life [H] (10000.0 h)

F1% F2% H1% H2% 0.00 0.0000 0.0000 0.0000

Remarks:

Specifications with [.e/i] imply: Maximum [e] and minimum value [i] for
 Taking all tolerances into account

Specifications with[.m] imply: Mean value within tolerance

- For the backlash tolerance, the center distance tolerances and the tooth thickness allowance are taken into account.

The maximum and minimum clearance according to the largest or smallest allowances are defined..

The calculation is performed for the operating pitch circle.

- Calculation of Zbet according to Corrigendum 1 ISO 6336-2:2008 with $Z\beta$ =

 $1/(COS(\beta)^0.5)$ - Details of calculation method: cy according to

Method B

Kv according to Method B

KHβ and KFβ according to Method C

fm according to Equation 64, fsh according to 57/58, F β x according to 52/53/54 KH α , KF α according to Method B

- The logarithmically interpolated value taken from the values for the fatigue strength and the static strength, based on the number of load cycles, is used for coefficients ZL, ZV, ZR, ZW, ZX, YdrelT, YRrelT and YX...

End of Report	lines:	641
-na or neport		0.1

ПАРАРТНМА В

ΕΔΡΑΝΑ ΣΤΗΡΙΞΕΩΣ

Βαρελωτό έδρανο 22205/20Ε

Βαρελωτό έδρανο 21308 Ε

Κωνικά λοξά έδρανα T4DB 170

Required input

Requirements system The bearings are mounted Shaft orientation Horizontal Vertical Bearing distance To mm Shaft orientation Rotating ring

Load case

Coordinates system Cart (x,y) Polar (r,0)	Coordina	tes		Forces			Speed		Temperature ☐ ①	
Cal C(A,y) Fular (I,Q)	x r mm	y θ mm/deg	z mm	Fx Fr	Fy F8	Fz	r/min		Left Rig	ght
F1	0	0	0	7.5	0	0	1345	Inner ring	70	
								Outer ring	70	

BEARING RATING LIFE

	Designation	Life mode	el	SKF life modification factor	Contamination factor
		Basic	SKF		
		L _{10h}	L _{10mh/10GMh} *	a _{skf}	η_c
Left	T4DB 170	> 2x10 ⁵	> 2x10 ⁵	50	0.8
Right	T4DB 170	> 2x10 ⁵	> 2x10 ⁵	50	0.8

ΠΑΡΑΡΤΗΜΑ Γ

ΚΑΤΑΣΤΑΣΗ ΤΕΜΑΧΙΩΝ

Item	Part Number	Unit QTY	QTY	Description
1	atraktos_eisodou	1	1	·
2	AsfaleiaDIpteroy	1	1	
3	diptero	1	1	
4	piraki	1	1	
5	sun_1_narrow	1	1	
6	Diskos_Forea1	1	1	
7	Foreas_1	1	3	
8	Flantza_Forea1	1	3	
9	Spacer1	1	6	
10	22205/20 E	1	3	BS2_001-Spherical roller bearings
11	carrier2	1	1	
12	pin2vathmida	1	3	
13	apostaths	1	6	
14	sun_2_narrow	1	1	
15	ring_1_narrow	1	1	
16	planet_2_narrow	1	3	
17	planet_1_narrow	1	3	
18	flatza	1	3	
19	LABYRINTHOSeisodos	1	1	
20	labyrinth	1	1	
21	21308 E	1	3	BS2_001-Spherical roller bearings
22	ring_2_narrow	1	1	
23	pompe	1	1	
24	Eksodos_Foreas_1_teliko	1	1	
25	foreas_2_2_old	1	1	
26	Flantza_Exodou	1	1	
27	elasmaROyleman	1	1	
28	AS 1968 - 1976 - 8	1	24	Helical spring lock washers (metric series)
29	AS 1968 - 1976 - 12	1	5	Helical spring lock washers (metric series)
30	AS 1968 - 1976 - 14	1	12	Helical spring lock washers (metric series)

31	AS 1968 - 1976 - 4	1	12	Helical spring lock washers (metric series)
32	ISO 4017 - M14 x 40	1	4	Hexagon head screws- Product grade A and B
33	ISO 4017 - M12 x 40	1	5	Hexagon head screws- Product grade A and B
34	AS 1427 - M8 x 20	1	12	ISO metric machine screws
35	AS 1427 - M8 x 40	1	12	ISO metric machine screws
36	ISO 4017 - M4 x 12	1	12	Hexagon head screws- Product grade A and B
37	T4DB 170	1	2	BT1_001_101-Tapered roller bearings, single row
38	Spacer2_exodos	1	1	
39	Spacer1_exodos	1	1	
40	kelyfos_2	1	1	
41	kelifos 3	1	1	
42	Spacer_Flantzas_Exodou	1	1	
43	lavyrintosecondchance	1	1	
44	CSN 02 3640 - MB 33	1	1	Rolling bearings. Circular slotted nuts fo adapter and withdrawal sleeves
45	DIN 981 - KM 33	1	1	Slotted Round Nuts
46	lavirinthos_exodos	1	1	
47	DIN 981 - KM 25	1	1	Slotted Round Nuts
48	CSN 02 3640 - MB25	1	1	Rolling bearings. Locknuts and lockwashers for nuts of adapter sleeves
49	pervane	1	1	
50	Stefani_ladiou	1	1	
51	MUSAB ASSEMPLY	1	8	
52	Screw GB/T 2171.1 M14 x 30	1	8	Hexalobular socket cheese (short) head screws
53	AS 1968 - 1976 - 10	1	8	Helical spring lock washers (metric series)
54	AS 1427 - M10 x 25	1	8	ISO metric machine screws
55	AS 1085.7 - 20	1	6	Railway permanent way material - Spring washers
56	ISO 8765 - M20 x 2 x 100	1	6	Hexagon head bolts with metric fine pitch thread- Product grade A and B
	JIS B 1180 - A + B			-
57	M24x45	1	6	Hex-Head Bolt
58	AS 1085.7 - 24	1	6	Railway permanent way material - Spring washers
59	CNS 9215 - 20 x 90	1	3	Grooved Pin
60	Elasma_diskou2 Bolt M24x75-8.8-A PN-	1	3	
61	85/M-82101	1	6	Hex-Head Bolt - A Grooved pins, full-Length parallel grooved with chamfer
62	ISO 8740 - 20 x 100	1	3	(ISO 8740 : 1997) Engisn version of DIN EN 8740
63	asfaleia_koxlia	1	3	

	Bolt M20x95-8.8-A PN-			
64	85/M-82101	1	6	Hex-Head Bolt - A
	Bolt M16x25-8.8-A PN-			
65	85/M-82105	1	5	Hexagon head screws - A
66	AS 1968 - 1976 - 16	1	5	Helical spring lock washers (metric series)
67	AS 1110 - M8 x 12	1	3	ISO metric hexagon precision bolts and screws
68	stefani_2	1	1	
69	ring_1-sun_2	1	1	

ΠΑΡΑΡΤΗΜΑ Δ

ΚΑΤΑΣΚΕΥΑΣΤΙΚΑ ΣΧΕΔΙΑ

