Class 1 HR Analytics

Journeys

✓ HR Journeys Summary Table (with Recommendations)

₫ Share

HR Journey	Key Metrics	Analysis Type(s)	Primary Insight	Recommendations 🗇
1. Attract	Time to Hire, Offer Acceptance, Source of Hire, Cost per Hire	Uni, Bi	Hiring efficiency, employer brand strength, sourcing effectiveness	Streamline hiring workflows, invest in high-performing sources, enhance employer branding.
2. Hire	Quality of Hire, Diversity of Hire, Interview-to-Offer Ratio	Bi, Multi	Accuracy and fairness in hiring decisions	Improve selection criteria, diversify hiring panels, introduce structured interviews.
3. Onboard	New Hire Turnover, Time to Productivity, Onboarding Satisfaction	Uni, Bi	Effectiveness of onboarding and early engagement	Personalize onboarding, assign buddies/mentors, automate onboarding journeys.
4. Engage	Engagement Score, eNPS, Absenteeism, Internal Mobility	Uni, Bi	Employee sentiment, motivation, and morale	Run action planning from surveys, boost mobility through internal job platforms, address burnout triggers.
5. Develop	Training Hours, Training Effectiveness, Promotion Rate, Leadership Readiness	Uni, Bi, Multi	Learning culture, future talent pipeline	Map learning to business goals, expand leadership development, build personalized L&D paths.
6. Perform	Performance Ratings, Goal Achievement, High Performer Retention, Manager Effectiveness	Uni, Bi	Alignment, productivity, fairness in reviews	Calibrate performance reviews, link goals to KPIs, support people leader capability building.
7. Retain	Turnover Rate, Exit Reasons, Flight Risk Prediction	Uni, Bi, Multi	Root causes of attrition	Act on exit data themes, improve manager coaching, design retention programs for critical roles.
8. Reward	Compa-Ratio, Pay Equity Index, Benefits Utilization	Uni, Bi, Multi	Market competitiveness and fairness in total rewards	Conduct pay audits, promote benefits awareness, adjust packages by segment needs.
9. Exit & Alumni	Exit Themes, Time to Backfill, Boomerang Rate	√ ^{'ni, Bi}	Cultural improvement opportunities and rehire potential	Analyze exit themes quarterly, build alumni programs, develop internal talent for backfills.

Compare between different Times

Quarter to Quarter

Compere between different Companies or Market

Company score Vs Market

Data Driven Decision Making

The Study of Dots

The 2 Approaches

The 2 Approaches

System 1

System 2

Tendencies

People make decisions based on emotions and then justify them with logic

Heuristics = Mental Shortcuts

- Recency Effect
- Similarity Effect
- Anchoring Effect
- Confirmation Bias
- Loss Aversion
- Good Enough
- Known Devil is better Effect
- Rare and Scarcity Effect
- Superior Brand Effect
- Feel Good and Bad Effect

Bill James

Scope

Venn diagram presenting the key Data Science components

Full stack HR Analyst

Data Analytics Framework

Data Strategy (Business Value)

Data Engineering / Management (Infrastructure)

FOUR CATEGORIES OF ANALYTICS

Data analytics techniques are commonly described as part of four distinct categories: **descriptive**, **diagnostic**, **predictive** and **prescriptive**

Adoption Levels

Stats Required

Descriptive Statistics

Inferential Statistics

Probability Destributions

Sampling Methods

Regression Analysis

Hypothesis Testing

Data Visualization

Anova

Time Series Analysis

Bayesian Statsitics

Maths Required

Programming Required

Required

- Google Account
- Collab Access
- Sam's Github Access
- Datasets
- ChatGPT
- Ananconda Distribution
- Vscode
- Terminal (Windows)

Dataset – for Descriptive Analytics

p1	p2	p3	p4
Columns			
Features			
Properties			
Dimensions			

Dataset – for Descriptive Analytics

Employee No	Name	Tier	Designation	Gender	Salary
Columns					
Features					
Properties					
Dimensions					

Data Types

Qualitative vs Quantitative

Data can be qualitative or quantitative.

- Qualitative data is descriptive information (it describes something)
- Quantitative data is numerical information (numbers)

Data type	Description	Example
int	To store integer values	n = 20
float	To store decimal values	n = 20.75
complex	To store complex numbers (real and imaginary part)	n = 10+20j
str	To store textual/string data	name = 'Jessa'
bool	To store boolean values	flag = True
list	To store a sequence of mutable data	1 = [3, 'a', 2.5]
tuple	To store sequence immutable data	t =(2, 'b', 6.4)
dict	To store key: value pair	d = {1:'J', 2:'E'}
set	To store unorder and unindexed values	s = {1, 3, 5}
frozenset	To store immutable version of the set	<pre>f_set=frozenset({5,7})</pre>
range	To generate a sequence of number	<pre>numbers = range(10)</pre>
bytes	To store bytes values	b=bytes([5,10,15,11])

Python Data Types

Discrete Data

Discrete Data can only take certain values.

Example: the number of students in a class

We can't have half a student!

Example: the result of rolling 2 dice

Only has the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12

Discrete data is always countable, but can be a category, like shoe size.

Continuous Data

Continuous Data can take any value (within a range)

• A person's height: could be any value (within the range of human heights), not just certain fixed heights,

Time in a race: you could even measure it to fractions of a second,

- · A dog's weight,
- · The length of a leaf,
- Lots more!

Data Types: Categorical & Numerical

p1	p2	р3	p4
Manager	48	25,000	Male
Executive	25	45,000	Female
Consultant	33	64,000	Male

Governance: Data Dictionary

Python Data Science Suite

Prompt Engineering

You Can't Do Prompting
if you Don't Know the
Basics and the Subject

Convert to a Data Frame / Table

Assign a Matrix to a Variable

p1	p2	р3	p4

Y=df['Sales']

X=df[['TV','Newspaper','Radio']]

Check Shape

a.shape

ь	₹	tit	le_quality	thumbnail_quality	video_length_min	tags_count	upload_hour	has_custom_thumbnail	has_cta	vide
		0	3	4	4.613301	1	16	1	1	
		1	5	1	10.275315	11	2	0	0	
		2	3	2	10.545023	12	23	0	0	
		3	2	2	8.663742	6	20	0	0	
		4	4	1	4.440813	12	3	0	0	
-	Next steps: Generate code with df View recommended plots New interactive sheet									
√ Os	[2] a=df["views"]									
✓ Os	a.shape									
	ROCE = Rows First Columns Next									

Check Variable Type

type(a)

```
pandas.core.series.Series

def __init__(data=None, index=None, dtype: Dtype | None=None, name=None, copy: bool | None=None,
    fastpath: bool | lib.NoDefault=lib.no_default) -> None

Due to input data type the Series has a copy of
    the original data even though `copy=False`, so
    the data is unchanged.

Constructing Series from a 1d ndarray with `copy=False`.

>>> r = np.array([1, 2])
```

Analytics

- Univariate Analysis Only 1 Variable
- Bi-Variate 2 Variables and Relationship
- Muti-Variate More than 2 Variables and their Relationships

Uni-Variate Data Analysis (One Column)

We can do lots of things with univariate data:

- Find a central value using <u>mean</u>, <u>median</u> and <u>mode</u>
- Find how spread out it is using <u>range</u>, <u>quartiles</u> and <u>standard deviation</u>
- Make plots like <u>Bar Graphs</u>, <u>Pie Charts</u> and <u>Histograms</u>

Import Statistics Library & Basic Central Tendency Measures

```
import statistics

# Calculating mean, median, and mode
mean value = statistics.mean(a)
median value = statistics.median(a)
mode value = statistics.mode(a)
std_dev = statistics.stdev(a)

# Displaying results
print("Mean:", mean value)
print("Median:", median value)
print("Mode:", mode value)
print("Standard Deviation:", std_dev)
```

Measures of Dispersion

Uni-Variate Analytics

Range

The Range (Statistics)

The Range is the difference between the lowest and highest values.

Example: In {4, 6, 9, 3, 7} the lowest value is 3, and the highest is 9.

So the range is 9 - 3 = 6.

Histograms

Histogram: a graphical display of data using bars of different heights.

It is similar to a <u>Bar Chart</u>, but a histogram groups numbers into **ranges**.

The height of each bar shows how many fall into each range.

And you decide what ranges to use!

Ranges or Bins on X Axis and Values on Y Axis

Quartiles

Quartiles

Quartiles are the values that divide a list of numbers into quarters:

- Put the list of numbers in order
- Then cut the list into four equal parts
- The Quartiles are at the "cuts"

Like this:

Box and Whisker Plot

We can show all the important values in a "Box and Whisker Plot", like this:

Interquartile Range

The "Interquartile Range" is from Q1 to Q3:

Measures of Variation

Standard Deviation

And the good thing about the Standard Deviation is that it is useful. Now we can show which heights are within one Standard Deviation (147 mm) of the Mean:

So, using the Standard Deviation we have a "standard" way of knowing what is normal, and what is extra large or extra small.

Rottweilers **are** tall dogs. And Dachshunds **are** a bit short, right?

Code

import statistics

Assign data column to variable "a"

```
std_dev = statistics.stdev(a)
print("Standard Deviation:", std_dev)
```

Standard Deviation

Whether a standard deviation is "low" or "high" is relative to:

- The **mean** of the dataset
- The range of possible values
- The real-world tolerance or variability that's acceptable

For normally distributed data:

- About 68% of values lie within ±1 standard deviation of the mean
- About 95% within ±2 standard deviations
- About 99.7% within ±3 standard deviations

This helps you judge whether the variation you're seeing is typical or extreme.

So, a rule of thumb is to express SD as a percentage of the mean: Relative SD (%) = (Standard Deviation / Mean) × 100

Field	Low SD Example	High SD Example
Manufacturing	<2% of mean	>10% of mean
Agriculture (growth)	<5% of mean	>20% of mean
Financial returns	<5% volatility	>15% volatility

So What?

HR Analytics

III HR Analytics

Measure	Use Case	Description
Mean (Average)	Average Time to Hire	Calculate the mean number of days taken to hire across departments to assess recruitment efficiency.
	Average Employee Tenure	Helps in understanding retention trends and planning succession.
Median	Median Salary	Gives a better central value when salaries have outliers (e.g., a few very high executive salaries).
	Median Performance Score	Useful when performance scores are skewed or contain extreme values.
Mode	Most Common Job Title	Understand which roles are most prevalent in the organization.
	Most Frequent Reason for Exit	Identify the most common reason employees leave (e.g., resignation, retirement).

Charts & Dashboards

Code – Check the Jupyter Notebook

