Pesquisa e Ordenação de Dados

Unidade 2.8:

Radix Sort

Radix Sort

- Criado originalmente para ordenação de cartões perfurados
- O algoritmo computacional foi proposto por Harold H. Seward em 1954 no MIT
- Baseado na ordenação de chaves sem comparações
 - A chave é decomposta e tratada por partes (dígitos)
 - Utiliza a lógica do Counting Sort para contagem das ocorrências dos dígitos

Radix Sort

- Supondo que as chaves que desejamos ordenar possuem d dígitos
- Ideia geral:
 - Ordenar pelos dígitos, um de cada vez:
 - do dígito mais significativo para o menos (MSD most significant digit)

vamos usar

este!

- adequado para chaves do tipo string
- ou do menos significativo para o mais (LSD least significant digit)
 - adequado para chaves numéricas
- Deste modo, apenas d passadas pela lista são necessárias para realizar a ordenação

Radix Sort Seleciona o maior e verifica o número de dígitos

Faremos 2 passadas sobre os dados: para o primeiro dígito (mais à direita), depois para o segundo dígito

Neste exemplo os valores são decimais, portanto, o vetor de contagem terá 10 posições (0 a 9)

dig	cont
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

dig	cont
0	1
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

30	21	43	3	9	82	15
0	1	2	3	4	5	6

dig	cont
0	1
1	1
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	

cont
1
1
0
1
0
0
0
0
0
0

30	21	43	3	9	82	15
0	1	2	3	4	5	6

cont
1
1
0
2
0
0
0
0
0
0

 30
 21
 43
 3
 9
 82
 15

 0
 1
 2
 3
 4
 5
 6

cont
1
1
0
2
0
0
0
0
0
1

30 21 43 3 9 82 15 0 1 2 3 4 5 6

1
1
1
2
0
0
0
0
0
1

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	,

cont
1
1
1
2
0
1
0
0
0
1

Radix Sort Soma acumulada – 1º dígito

30	21	43	3	9	82	15
0	1	2	3	4	5	6

dig	cont	soma
0	1	1
1	1	2
2	1	3
3	2	5
4	0	5
5	1	6
6	0	6
7	0	6
8	0	6
9	1	7

						- Cittoroti
30	21	43	3	9	82	15
0	1	2	3	4	5	6
					15	
0	1	2	3	4	5	6

dig	cont	soma
0	1	1
1	1	2
2	1	3
3	2	5
4	0	5
5	1	6 5
6	0	6
7	0	6
8	0	6
9	1	7

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	
		82			15		
0	1	2	3	4	5	6	

	dig	cont	soma
	0	1	1
	1	1	2
	2	1	3 2
•	3	2	5
	4	0	5
	5	1	5
	6	0	6
	7	0	6
	8	0	6
	9	1	7

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	
		82			15	9	
0	1		2	4			
0	1	2	3	4	5	6	

dig	cont	soma
0	1	1
1	1	2
2	1	2
3	2	5
4	0	5
5	1	5
6	0	6
7	0	6
8	0	6
9	1	7 6

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	ı
		00		0	45		i
		82		3	15	9	
0	1	2	3	4	5	6	

dig	cont	soma
0	1	1
1	1	2
2	1	2
3	2	5 4
4	0	5
5	1	5
6	0	6
7	0	6
8	0	6
9	1	6

21	43	3	9	82	15	
1	2	3	4	5	6	
	82	43	3	15	9	
1	2	3	4	5	6	
	1	1 2	1 2 3	1 2 3 4	1 2 3 4 5	1 2 3 4 5 6 82 43 3 15 9

dig	cont	soma
0	1	1
1	1	2
2	1	2
3	2	4 3
4	0	5
5	1	5
6	0	6
7	0	6
8	0	6
9	1	6

30	21	43	3	9	82	15
0	1	2	3	4	5	6
	21	82	43	3	15	9
0	1	2	3	4	5	6

dig	cont	soma
0	1	1
1	1	2 1
2	1	2
3	2	3
4	0	5
5	1	5
6	0	6
7	0	6
8	0	6
9	1	6

atual

Fim da ordenação pelo 1º dígito

Copia do auxiliar para o vetor original

30	21	82	43	3	15	9
		2				

dig	cont	soma
0	1	± 0
1	1	1
2	1	2
3	2	3
4	0	5
5	1	5
6	0	6
7	0	6
8	0	6
9	1	6

30	21	82	43	3	15	9	
0	1	2	3	4	5	6	

Recomeça o processo, agora para o segundo dígito

dig	cont
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

dig	cont
0	0
1	0
2	0
3	1
4	0
5	0
6	0
7	0
8	0
9	0

30	21	82	43	3	15	9
0	1	2	3	4	5	6

dig	cont
0	0
1	0
2	1
3	1
4	0
5	0
6	0
7	0
8	0
9	0

30	21	82	43	3	15	9	
0	1	2	3	4	5	6	

dig	cont
0	0
1	0
2	1
3	1
4	0
5	0
6	0
7	0
8	1
9	0

30	21	82	43	3	15	9	
0	1	2	3	4	5	6	

cont
0
0
1
1
1
0
0
0
1
0

 30
 21
 82
 43
 3
 15
 9

 0
 1
 2
 3
 4
 5
 6

dig	cont
0	1
1	0
2	1
3	1
4	1
5	0
6	0
7	0
8	1
9	0

30 21 82 43 3 15 9
0 1 2 3 4 5 6

dig	cont
0	1
1	1
2	1
3	1
4	1
5	0
6	0
7	0
8	1
9	0

30 21 82 43 3 15 9 0 1 2 3 4 5 6

dig	cont
0	2
1	1
2	1
3	1
4	1
5	0
6	0
7	0
8	1
9	0

Radix Sort Soma acumulada – 2º dígito

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	

dig	cont	soma
0	2	2
1	1	3
2	1	4
3	1	5
4	1	6
5	0	6
6	0	6
7	0	6
8	1	7
9	0	7

atual

30	21	43	3	9	82	15
0	1	2	3	4	5	6

dig	cont	soma
0	2	2
1	1	3 2
2	1	4
3	1	5
4	1	6
5	0	6
6	0	6
7	0	6
8	1	7
9	0	7

atual

30	21	43	3	9	82	15
0	1	2	3	4	5	6
		15				82

dig	cont	soma
0	2	2
1	1	2
2	1	4
3	1	5
4	1	6
5	0	6
6	0	6
7	0	6
8	1	76
9	0	7

30	21	43	3	9	82	15	
			•		5		

	9	15				82
0	1	2	3	4	5	6

dig	cont	soma
0	2	2 1
1	1	2
2	1	4
3	1	5
4	1	6
5	0	6
6	0	6
7	0	6
8	1	6
9	0	7

30	21	43	[3]	9	82	15	
0	1	2	3	4	5	6	

3	9	15				82
0	1	2	3	4	5	6

dig	cont	soma
0	2	1 0
1	1	2
2	1	4
3	1	5
4	1	6
5	0	6
6	0	6
7	0	6
8	1	6
9	0	7

30	21	43	3	9	82	15	
0	1	2	3	4	5	6	

3	9	15			43	82
0	1	2	3	4	5	6

0
2
4
5
6 5
6
6
6
6
7

3	9	15	21		43	82
0	1	2	3	4	5	6

COIIL	soma
2	0
1	2
1	4 3
1	5
1	5
0	6
0	6
0	6
1	6
0	7
	1 1 1 0 0 0 1

3	9	15	21	30	43	82
0	1	2	3	4	5	6

cont	soma
2	0
1	2
1	3
1	5 4
1	5
0	6
0	6
0	6
1	6
0	7
	2 1 1 1 0 0 0 1

Fim da ordenação pelo 2º dígito

Copia do auxiliar para o vetor original

Radix Sort Implementação

O algoritmo será implementado em duas partes:

radixSort

- Função principal que será chamada pelos demais programas
- Responsável por identificar o maior número e contar o número de dígitos.
- Realiza a chamada da função de contagem que ordena baseada nos dígitos

countingSort

- Função auxiliar responsável por ordenar os valores de um dígito específico
 - Construída geralmente na base de 10, mas pode ser feita com qualquer base numérica
- Itera sobre os dígitos fazendo a contagem
- Após a contagem reescreve o vetor com base na nova ordem obtida pela contagem

Radix Sort Pseudocódigo

```
função radixSort(A∏, n)
Inicio
                                               Busca o maior elemento do vetor
  max = buscaMax(A, n)
  para pos = 1, max/pos > 0, pos*=10 faça
    countingSort(A, n, pos)
                                                     Chamada do counting com o digito
fim
```

Radix Sort Pseudocódigo

```
função countingSort(A[], n, pos)
                                                          para i = n-1, i \ge 0 faça
Inicio
                                                           // constroi o vet de saida
  declara vetor aux com n posições
                                                           digito \leftarrow (A[i] / pos) % 10
  count[10] \leftarrow 0
                                                           count[digito]--
  para i = 0, i < n faça // conta as ocorrências
                                                           aux[count[digito]] ← A[i]
    digito ← (A[i] / pos) % 10 // isola o dig. atual
                                                          fim para
    count[digito]++
                                                          para i = 0, i < n faça
  fim para
  para i = 1, i < 10 faça
                                                           A[i] ← aux[i] // copia os valores
    count[i] ← count[i] + count[i-1]; // soma ac
                                                          fim para
  fim para
                                                       fim
```

Radix Sort Análise

- Complexidade O(d * (n + k))
 - Independente da ordenação da entrada
 - se $\frac{d}{d}$ é constante e $\frac{d}{d}$ é no máximo igual a $\frac{d}{d}$, então o radix sort é O(n)
 - O número de dígitos pode ser visto como log n, o que o faz comparável ao quickSort em certas situações
- Estável