Experimental Data Analysis in ©MATLAB

Lecture 9:

Classification, logistic regression, linear discriminant analysis, support vector machine

Jan Rusz Czech Technical University in Prague

Supervised learning

Input variables

Linear classification model

$$y = \begin{cases} 0 & \text{if } \sum_{i=1}^{n} w_i x_i < c \\ 1 & \text{if } \sum_{i=1}^{n} w_i x_i \ge c \end{cases}$$

Comparing regression and classification

Different examples of decision boundaries

$$y = \begin{cases} 0 \text{ if } x_1 + x_2 < 0 \\ 1 \text{ if } x_1 + x_2 \ge 0 \end{cases}$$

$$y = \begin{cases} 0 \text{ if } x_1 - x_2^2 < 0\\ 1 \text{ if } x_1 - x_2^2 \ge 0 \end{cases}$$

$$y = \begin{cases} 0 \text{ if } x_1^2 + x_2^2 < 1\\ 1 \text{ if } x_1^2 + x_2^2 \ge 1 \end{cases}$$

Data

Among other speech problems, speakers with Huntington's disease (HD) typically manifest slower articulation rate and imprecise articulation of vowels. We collected reading passages from 40 speakers with HD and 40 age- and sex-matched healthy controls. Subsequently, we extracted features related to articulation rate (feature x) and vowel articulation quality (feature y). We would like to know how combination of these 2 features is able to contribute to correct diagnosis and thus robustly separate HD from controls.

Matlab example 1

Linear discriminant analysis (aka Fisher discriminant analysis)

Simple example of 2D data

0

2

4

6 5 4 > 3

8

10

12

Reducing 2D data to 1D data

Maximize the distance between means

6

Minimize the variation (called "scatter" in LDA) within each category

Fisher linear discriminant

$$J(w) = \frac{(\mu_1 - \mu_2)^2}{s_1^2 + s_2^2}$$

Measure of the difference between-class means normalized by a measure of within-class scatter matrix

The classes are:

Sample for class ω_1 :

$$X_1=(x_1,x_2)=\{(1,2),(3,5),(4,3),(5,6),(7,5)\}$$

Sample for class ω_2 :

$$X_2=(x_1,x_2)=\{(6, 2),(9,4),(10,1),(12,3),(13,6)\}$$

The classes means are:

$$\mu_1 = \frac{1}{N} \sum_{x \in \omega_1} x = \frac{1}{5} \left[\binom{1}{2} + \binom{3}{5} + \binom{4}{3} + \binom{5}{6} + \binom{7}{5} \right] = \binom{4}{4.2}$$

$$\mu_2 = \frac{1}{N} \sum_{x \in \omega_2} x = \frac{1}{5} \left[\binom{6}{2} + \binom{9}{4} + \binom{10}{1} + \binom{12}{3} + \binom{13}{6} \right] = \binom{10}{3.2}$$

The classes are:

Sample for class ω_1 :

$$X_1=(x_1,x_2)=\{(1,2),(3,5),(4,3),(5,6),(7,5)\}$$

Sample for class ω₂:

$$X_2=(x_1,x_2)=\{(6,2),(9,4),(10,1),(12,3),(13,6)\}$$

Covariance matrix of the first class:

$$S_{1} = \sum_{x \in \omega_{1}} (x - \mu_{1}) (x - \mu_{1})^{T}$$

$$= \left[\binom{1}{2} - \binom{4}{4 \cdot 2} \right]^{2} + \left[\binom{3}{5} - \binom{4}{4 \cdot 2} \right]^{2} + \left[\binom{4}{3} - \binom{4}{4 \cdot 2} \right]^{2} + \left[\binom{5}{6} - \binom{4}{4 \cdot 2} \right]^{2} + \left[\binom{7}{5} - \binom{4}{4 \cdot 2} \right]^{2}$$

$$= \binom{5}{2 \cdot 5} \frac{2 \cdot 5}{2 \cdot 7}$$

Covariance matrix of the second class:

$$\begin{split} S_2 &= \sum_{x \in \omega_2} (x - \mu_2) \left(x - \mu_2 \right)^T \\ &= \left[\binom{6}{2} - \binom{10}{3.2} \right]^2 + \left[\binom{9}{4} - \binom{10}{3.2} \right]^2 + \left[\binom{10}{1} - \binom{10}{3.2} \right]^2 + \left[\binom{12}{3} - \binom{10}{3.2} \right]^2 + \left[\binom{13}{6} - \binom{10}{3.2} \right]^2 \\ &= \binom{7.5}{3} \frac{3}{3.7} \end{split}$$

The main parameters are:

$$\mu_1 = \begin{pmatrix} 4 \\ 4.2 \end{pmatrix} \qquad \mu_2 = \begin{pmatrix} 10 \\ 3.2 \end{pmatrix}$$

•
$$S_1 = \begin{pmatrix} 5 & 2.5 \\ 2.5 & 2.7 \end{pmatrix}$$
 $S_2 = \begin{pmatrix} 7.5 & 3 \\ 3 & 3.7 \end{pmatrix}$

Within-class scatter matrix:

$$S_w = S_1 + S_2 = \begin{pmatrix} 5 & 2.5 \\ 2.5 & 2.7 \end{pmatrix} + \begin{pmatrix} 7.5 & 3 \\ 3 & 3.7 \end{pmatrix} = \begin{pmatrix} 12.5 & 5.5 \\ 5.5 & 6.4 \end{pmatrix}$$

Between-class scatter matrix:

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T = \begin{bmatrix} 4 \\ 4.2 \end{bmatrix} - {10 \choose 3.2} \begin{bmatrix} 4 \\ 4.2 \end{bmatrix} - {10 \choose 3.2} \end{bmatrix}^T$$
$$= {-6 \choose 1}(-6 \quad 1) = {36 \quad -6 \choose -6 \quad 1}$$

The updated parameters are:

$$\mu_1 = \begin{pmatrix} 4 \\ 4.2 \end{pmatrix} \qquad \mu_2 = \begin{pmatrix} 10 \\ 3.2 \end{pmatrix}$$

•
$$S_w = \begin{pmatrix} 12.5 & 5.5 \\ 5.5 & 6.4 \end{pmatrix}$$
 $S_B = \begin{pmatrix} 36 & -6 \\ -6 & 1 \end{pmatrix}$

LDA projection is obtained as the solution of generalized eigen value problem:

$$S_w^{-1}S_Bw = \lambda w$$
 Highest eigen value corresponds to the best projection

Or directly:

$$w = S_w^{-1} (\mu_1 - \mu_2) = \begin{pmatrix} 12.5 & 5.5 \\ 5.5 & 6.4 \end{pmatrix}^{-1} \begin{bmatrix} 4 \\ 4.2 \end{pmatrix} - \begin{pmatrix} 10 \\ 3.2 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} 0.1286 & -0.1106 \\ -0.1106 & 0.2513 \end{pmatrix} \begin{pmatrix} -6 \\ 1 \end{pmatrix} = \begin{pmatrix} -0.8824 \\ 0.9146 \end{pmatrix}$$

LDA projection

Vector with highest eigen value

Good separability between two classes

Vector with **lowest** eigen value

Bad separability between two classes

LDA decision

Linear discrimination analysis

Logistic regression: 88.8%

Linear discriminant analysis: 88.8%

LDA: fitcdiscr

class assignment: predict

Discriminant analysis

- + perform a dimensionality reduction while preserve as much of the class discriminatory information as possible
- + can be easily extended to classify more than two classes
- it is parametric method that assumes unimodal Gaussian distributions
- it will fail when the discriminatory information is not in the mean but

rather in the variance of the data

Logistic regression

- + more robust
- + variable do not need to be normally distributed
- + there is no homogeneity of variance assumption
- + it may handle nonlinear effects

Why to even consider discriminant analysis over logistic regression?

- logistic regression requires greater data sample to achieve stable and meaningful results at least 50 data points per predictor are necessary
- + typically 20 data points per predictor are considered the lower bound for discriminant analysis

Support Vector Machine

Support Vector Machine

Total margin is computed by:

$$\frac{1}{\|w\|} + \frac{1}{\|w\|} = \frac{2}{\|w\|}$$

Minimazing this term will maximize separability

Can be solved by quadratic programming (quadprog)

Margin: bubles around samples

Support vectors

What is the best weight?

 X_{1}

Data can be linearly separated but margin is pretty narrow

Large margin solution is likely better, even one point is classified incorrectly

It is better to find solution that will be most stable under perturbation of the inputs

SVM basic example for linearly separable data

$$w^T x + b = 1$$
$$w^T x + b = -1$$

$$a + 2a + b = -1$$
 using point (1,1)
 $2a + 6a + b = 1$ using point (2,3)

$$b = 1 - 8a$$

 $3a + (1 - 8a) = -1$
 $a = 2/5$

$$b = 1 - 8*(2/5)$$

 $b = -11/5$

Weight vector:

$$w = (a, 2a) = \left(\frac{2}{5}, \frac{4}{5}\right)$$

Decision boundary:

$$f(x) = w^{T}x + b$$
$$f(x) = \frac{2}{5}x_1 + \frac{4}{5}x_2 - \frac{11}{5}$$

 $f(x) = x_1 + 2x_2 - 5.5$

Sample for class
$$\omega_1$$
:

$$X_1=(X_1,X_2)=\{(1,0),(1,1)\}$$

Sample for class ω_2 :

$$X_2=(x_1,x_2)=\{(2,3),(3,3)\}$$

By visual inspection: support vectors= (x_1,x_2) = $\{(1,1),(2,3)\}$

Weight vector: w = (2,3) - (1,1) = (a,2a)

Margin:

$$z = \frac{2}{\|w\|} = \frac{2}{\sqrt{\frac{4}{25} + \frac{16}{25}}} = \sqrt{5}$$

Support vector machine

Linear discrimination analysis

Logistic regression: 88.8%

Linear discriminant analysis: 88.8% Support vector machine: 90.0%

SVM: fitcsvm

class assignment: predict

Support vector machine

- + better performance in most cases
- + works well for high number of dimensions and not linearly separated data
- + computationally cheaper $O(N^{2}*K)$ where K is number of support vectors, whereas logistic regression $O(N^{3})$
- + classifier depends only on a subset of points unlike logistic regression
- kernel models can be quite sensitive to over-fitting