Report Assignment 3

Name - Parul Bansal Roll No - B14116

Question 1 (Weighted Interval Scheduling)

Psuedo Code of Compute-Opt(j)

```
\begin{split} &If \ j = \text{-}1 \\ & \text{return 0} \\ &Else \\ & \text{return max}(v_j + Compute\text{-}Opt(p(j)) \text{ , Compute\text{-}Opt(j\text{-}1))} \\ &Endif \end{split}
```

Recursion Tree

Observations

- Time complexity of above algorithm is exponential.
- Time complexity is more because of the spectacular redundancy in the number of times it issues each of these calls.

Psuedo Code of M-Compute-Opt(j)

```
\begin{split} & \text{If } j = \text{-1} \\ & \text{return } 0 \\ & \text{Else if } M[j] \text{ is not empty} \\ & \text{return } M[j] \\ & \text{Else} \\ & M[j] = \text{max}(v_j + M\text{-Compute-Opt}(p(j)) \text{, } M\text{-Compute-Opt}(j\text{-1})) \\ & \text{return } M[j] \\ & \text{Endif} \end{split}
```

Observations

- Time complexity of above algorithm is $O(n^2)$.
- The running time of M-Compute-Opt(n) is O(n) (assuming the input intervals are sorted by their finish times).
- The running time for sorting the input intervals by their finish times is O(nlogn).
- The running time for calculating the function p(j) for each interval j is $O(n^2)$.
- Memoization strategy is used in above algorithm and it is more efficient compared to the first one.

Psuedo Code of Find-Solution(j)

```
If j = -1
Ouput nothing
Else
```

```
If v_j + M[p(j)] >= M[j-1] then

Output j together with the result of Find-Solution(p(j))

Else

Output the result of Find-Solution(j-1)

Endif

Endif
```

Observations

- Find-Solution returns an optimal solution in O(n) time (assuming the array M of the optimal values of the sub problems is given).
- Find-Solution *traces back* through the array M to find the set of intervals in an optimal solution.

Question 2 (Counting Inversions)

Psuedo Code of Merge-and-Count(A,B)

Maintain a Current pointer into each list, initialized to point to the front elements

Maintain a variable Count for the number of inversions, initialized to 0

While both lists are nonempty:

Let a_i and b_j be the elements pointed to by the Current pointer Append the smaller of these two to the output list

If b_i is the smaller element then

Increment Count by the number of elements remaining in A Endif

Advance the Current pointer in the list from which the smaller element was selected.

EndWhile

Once one list is empty, append the remainder of the other list to the output

Return Count and the merged list

Psuedo Code of Sort-and-Count(L)

```
If the list has one element then there are no inversions Else Divide the list into two halves: A contains the first ceiling(n/2) elements B contains the remaining floor(n/2) elements (r_A, A) = Sort-and-Count(A) (r_B, B) = Sort-and-Count(B) (r, L) = Merge-and-Count(A, B) Endif Return r = r_A + r_B + r, and the sorted list L
```

Observations

- Time complexity of above algorithm is O(nlogn).
- It is almost same as merge sort.
- The Sort-and-Count algorithm correctly sorts the input list and counts the number of inversions; it runs in O(nlogn) time for a list with n elements.
- Divide and Conquer Strategy is applied in above algorithm.

```
Question 3 (Closest-Pair)
```

Psuedo Code of Closest-Pair(P)

```
Closest-Pair(P)
Construct P_x and P_y ( O(n log n) time)
(p_0^*, p_1^*) = Closest-Pair-Rec(P_x, P_y)
Closest-Pair-Rec(P_x, P_y)
```

```
If |P| \le 3 then
```

find closest pair by measuring all pairwise distances Endif

```
Construct Q_x, Q_y, R_x, R_y (O(n) time)
(q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)
(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)
\delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
x^* = maximum x-coordinate of a point in set Q
L = \{(x, y) : x = x^*\}
S = points in P within distance \delta of L .
Construct S_v ( O(n) time)
For each point s \in S y , compute distance from s
    to each of next 15 points in S y
    Let s, s' be pair achieving minimum of these distances
    (O(n) \text{ time})
If d(s, s') < \delta then
       Return (s, s')
Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
       Return (q_0^*, q_1^*)
Else
       Return (r_0^*, r_1^*)
Endif
```

Observations

- The running time of this algorithm is O(nlogn).
- The above algorithm divides all points in two sets and recursively calls for two sets.
- After dividing, it finds the strip in O(n) time.
- Also, it takes O(n) time to divide the $P_{\rm y}$ array around the mid vertical line.
- Finally finds the closest points in strip in O(n) time.
- Divide and Conquer Strategy is applied in above algorithm.

Question 4 (Segmented Least Squares)

Psuedo Code of Segmented-Least-Squares(n)

```
Array M[0 \dots n]

Set M[0] = 0

For all pairs i \le j

Compute the least squares error e_{i,j} for the segment p_i, \dots, p_j

Endfor

For j = 1, 2, \dots, n

M(j) = min((e_{i,j} + C + M[i-1]) \text{ forall } 1 \le i \le j)

Endfor

Return M[n]
```

Psuedo Code of Find-Segments(j)

```
\begin{split} &\text{If } j <= 0 \text{ then} \\ &\text{Output nothing} \\ &\text{Else} \\ &\text{Find an } i \text{ that minimizes } e_{i,j} + C + M[i-1] \\ &\text{Output the segment } \{p_i \text{ , . . . , } p_j\} \text{ and the result of } \\ &\text{Find-Segments}(i-1) \end{split}
```

Observations

- The running time of this algorithm is $O(n^2)$ once all the $e_{i,j}$ values have been determined..
- The total running time to compute all $e_{i,j}$ values is $O(n^2)$.
- Dynamic Programming strategy is applied in above algorithm.