

Uninformed Search

2I1AE1: Artificial Intelligence

Régis Clouard, ENSICAEN - GREYC

"Intelligence is what you use when you do not know what to do." **Jean Piaget**

In this chapter

Unformed Search Algorithms

- Brute force algorithms that do not use information on the problem.
 - → This is not AI! But these are prerequisites for AI algorithms.
- 1) Breadth-first search
- 2) Depth-first search
- 3) Iterative deepening depth-first search
- 4) Bidirectional search
- 5) Elimination of state repeats
- 6) Uniform cost search

1. Breadth-First Search (BFS)

- Strategy: expand the shallowest node first
- Implementation of the open-list: FIFO
 - ADD-IN-LIST: add successors to the end of the list

```
function GENERAL-SEARCH(problem) returns solution
  var open-list ← MAKE-LIST(MAKE-NODE(INITIAL-STATE[problem]))
  LOOP
    IF EMPTY(open-list) THEN return failure
    node ← REMOVE-FRONT-LIST(open-list)
    IF IS-GOAL(problem, STATE[node]) THEN return the related solution
    open-list ← ADD-IN-LIST(GET-SUCCESSORS(node, problem), open-list)
end
```

Breadth-First Search (BFS)

Strategy: expand the shallowest node first.

Properties of Breadth-First Search

Completeness

Yes. All nodes are examined.

Optimality

Yes, for the smallest number of nodes.

Time complexity

Proportional to the number of examined nodes.

Space complexity

Proportional to the number of nodes stored at a time.

Assume:

- b maximum **b**ranching factor.
- *d d*epth of the optimal solution.
- m maximum depth of the search tree.

BFS. Time Complexity (Max)

Proportional to the number of examined nodes.

Depth Number of nodes (case b = 2)

0 1

 $1 2^1 = 2$

 $2 2^2 = 4$

 $3 2^3 = 8$

d 2^d (b^d)

Total examined nodes: O(bd)

Total nodes =
$$\sum_{i=0}^{d} b^{i}$$
$$= \frac{1-b^{d+1}}{1-b}$$

Properties of Breadth-First Search

Completeness

• Yes. All nodes are examined.

Optimality

• Yes, for the smallest number of nodes.

Time complexity

- Worst-case O(b^d)
- Exponential in the depth of the solution.

Space complexity

• ?

BFS. Space Complexity (Max)

Count nodes kept in the tree structure or in the queue.

Depth Number of nodes $(Case \ b = 2)$

0 1

1 $2^1 = 2$

 $2 2^2 = 4$

 $3 2^3 = 8$

d 2^d (b^d)

d+1 2^{d+1} (b^{d+1})

Total stored nodes : $O(b^{d+1})$

Properties of Breadth-First Search

Completeness

Yes. All nodes are examined.

Optimality

Yes, for the smallest number of nodes.

Time complexity

- Worst-case O(b^d)
- Exponential in the depth of the solution.

Space complexity

- Worst-case $O(b^{d+1})$
- Exponential with the number of nodes kept in the memory.

Properties of Breadth-First Search

- The costs are very high.
- Example: assuming the machine performances.
 - b=10; 100,000 nodes/second; 1000 bytes/node.

Depth	Nodes	Time	Space
2	111	1.1 milliseconds	107 kilobytes
4	11,111	111 milliseconds	10.6 megabytes
6	10^{6}	11 seconds	1 gigabytes (10 ⁹)
8	108	19 minutes	103 gigabytes
10	1010	31 hours	10 terabytes (10 ¹²)
12	1012	129 days	1 petabytes (10 ¹⁵)
14	1014	35 years	99 petabytes
16	1016	3,523 years	10 exabytes (10 ¹⁹)

2. Depth-First Search (DFS)

- Strategy: expand the deepest node first.
 - Backtrack when the path cannot be further expanded.
- Implementation of the open-list: LIFO
 - ADD-IN-LIST: add successors to the beginning of the list.

```
function GENERAL-SEARCH(problem) returns solution
  var open-list ← MAKE-LIST(MAKE-NODE(INITIAL-STATE[problem]))
  LOOP
    IF EMPTY(open-list) THEN return failure
    node ← REMOVE-FRONT-LIST(open-list)
    IF IS-GOAL(problem, STATE[node]) THEN return the related solution
    open-list ← ADD-IN-LIST(GET-SUCCESSORS(node, problem), open-list)
end
```

Depth-First Search (DFS)

- Strategy: expand the deepest node first.
 - Backtrack when the path cannot be further expanded.

Properties of the Depth-First Search

Completeness

• No. For example Knuth's conjecture problem ("one can start at 3 and reach any integer by iterating factorial, sqrt, and floor.", eg. $|\sqrt{\sqrt{(3!)!}}|=5$) \rightarrow infinite depth

Optimality

No. Solution found first may not be the shortest.

Time complexity

• 3

Space complexity

• 3

DFS. Time Complexity

Proportional to the number of examined nodes.

Total examined nodes: $O(b^m)$

Total nodes =
$$\sum_{i=0}^{m} b^{i}$$
$$= \frac{1-b^{m+1}}{1-b}$$

Properties of the Depth-First Search

Completeness

No. Infinite loops can occur.

Optimality

No. Solution found first may not be the shortest.

Time complexity

- Worst-case O(b^m)
- Exponential in the maximum depth of the search tree.
- Terrible if *m* is much larger than *d*.

Space complexity

• ?

DFS. Space Complexity

Depth Number of nodes kept 0 1

$$m 2 = b$$

Complexity: O(b.m)

Properties of the Depth-First Search

Completeness

No. Infinite loops can occur.

Optimality

No. Solution found first may not be the shortest.

Time complexity

- Worst-case O(b^m)
- Exponential in the maximum depth of the search tree.
- Terrible if m is much larger than d.

Space complexity

- Worst-case O(b.m)
- Linear in the maximum depth of the search tree.
- Example: assuming the machine performances.
 - ► b=10; 1000 bytes/node
 - ▶ Depth $16 \rightarrow 160 \times 10^3$ bytes (vs 10^{19} bytes for BFS)

Limited-Depth Depth-First Search

- How to eliminate infinite depth-first exploration?
- Put a limit I on the depth of the depth-first exploration.

- Completeness
 - yes
- Optimality
 - no
- Time complexity
 - Worst-case O(b^l)
- Space complexity
 - Worst-case O(b.l)

Limited-Depth Depth-First Search

- Problem: How to pick the maximum depth?
- Example: Assume we have a traveler problem with 20 cities.
 - How to pick the maximum tree depth?
 - Trivial: we need to consider only paths of length <= 20.
 - \Rightarrow Limited-depth DFS with I = 20.
 - ► Time complexity (worst-case): O(b)
 - Space complexity (worst-case): O(bl)
- But most of the time, it is impossible to predict the maximum depth.

3. Iterative Deepening Search (IDS)

- Based on the idea of the limited-depth search, but it resolves the difficulty of knowing the depth limit ahead of time.
- Idea:
 - Try all depth limits in an increasing order.
 - That is, search first with the depth limit *l*=1, then *l*=2, *l*=3.., and so on until the solution is reached.
- Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead.

IDS

 Progressively increases the limit of the limited-depth depth-first search.

Properties of IDS

Completeness

• Yes. The solution is reached if it exists (when the limit is always increased by 1).

Optimality

• Yes, for the smallest number of nodes.

Time complexity

• 3

Space complexity

• [

IDS. Time Complexity

Level 0 Level 1 Level 2 Level d $= 1 + d.b + (d-1).b^2 + ... + (1)b^d$ = $[b^{d+2} + d(b-1) + 1)] / [b - 1]^2$ $= O(b^d)$

Properties of IDS

Completeness

• Yes. The solution is reached if it exists (when the limit is always increased by 1).

Optimality

Yes, for the smallest number of nodes.

Time complexity

- Worst-case O(b^d)
- Exponential in the depth of the solution.

Space complexity

• ?

IDS. Space Complexity

Properties of IDS

Completeness

• Yes. The solution is reached if it exists (when the limit is always increased by 1).

Optimality

 Yes, for the smallest number of nodes (and path cost is a non-decreasing function of depth).

Time complexity

- Worst-case O(b^d)
- Exponential in the depth of the solution.

Space complexity

Worst-case O(db) much better than BFS.

Compare IDS and BFS

- IDS and BFS are complete and optimal.
- Time overhead
 - Time complexity IDS is worse than BFS, but asymptotically the same since the most part of the nodes is at the last level.
 - Previous levels are explored multiple times

$$= 1 + d.b + (d-1).b^2 + ... + (2)b^{d-1}$$

$$= [b^{d+1} + d(b-1) + 1)] / [b - 1]^2 = O(b^{d-1})$$

- ► Last level: **O(b**^d**)**, which is explored once.
- ► So, the last level have more nodes to explore than all the previous levels even if they are explored several times.
- Example with (b=10 and d=5)
 - Arr N(IDS) = d.b + (d-1).b² + .. + b^d = 123,540 nodes expanded.
 - ► N(BFS) = b + b^2 + .. + b^d = 111,110 nodes expanded.
 - ▶ Difference is about 10%.
- The majority of nodes are at the last level and they are examined once.
- Space complexity of IDS is linear, BFS is exponential.

4. Bidirectional Search

Bi-directional search idea:

- Search both from the initial state and the goal state.
 - Adaptable for BSF, DFS with limited depth and IDS.
- Use **inverse operators** for the goal-initiated search.
 - ► Not all problem.

Bidirectional Search

- Why bidirectional search? What is the benefit? Assume BFS.
 - Cut the depth of the search space by half.

• $O(b^{d/2})$ for time and space complexity.

Bidirectional Search

- What is necessary?
 - Merge the solutions

- How?
 - A hash table
 - ► The hash structure remembers the side of the tree the state was expanded first time. If the same state is reached from other side we have a solution.

5. Elimination of State Repeats

- While searching the state space for the solution we can encounter the same state many times.
- Failure to detect repeated states can cause exponentially more work. Why?
 - The search space is a no more a search tree but a graph.

Elimination of State Repeats: BFS

- In BFS, we can safely eliminate all repeats of the same state.
 - Can this wreck completeness? No: we proceed iteratively on depth
 - Can this wreck optimality? No: depth(1-2-3) > depth(1-3) always

Elimination of State Repeats: BFS

- Implementation: very simple fix: never expand a state twice.
 - Store the explored list (aka. **closed list**) as a separated list.
 - In Python, prefer a Set over a List for efficiency.

```
function GENERAL-SEARCH(problem) returns solution
  var open-list ← MAKE-LIST(MAKE-NODE(INITIAL-STATE[problem]))
  LOOP
    IF EMPTY(open-list) THEN return failure
    node ← REMOVE-FRONT-LIST(open-list)
    IF IS-GOAL(problem, STATE[node]) THEN return the related solution
    open-list ← ADD-IN-LIST(GET-SUCCESSORS(node, problem), open-list)
end
```

Elimination of State Repeats: BFS

- Implementation: very simple fix: never expand a state twice.
 - Store the explored list (aka. closed list) as a separated list.
 - In Python, prefer a Set over a List for efficiency.

```
function GRAPH-SEARCH(problem) returns solution
  var open-list ← MAKE-LIST(MAKE-NODE(INITIAL-STATE[problem]))
  var closed-list ← MAKE-SET(MAKE-NODE(INITIAL-STATE[problem])
 L<sub>00</sub>P
     IF EMPTY(open-list) THEN return failure
     node ← REMOVE-FRONT(open-list)
    closed-list.add(STATE[node])
     IF IS-GOAL(problem, STATE[node]) THEN return the solution
     neighbors ← GET-SUCCESSORS(node, problem)
     FOR neighbor in neighbors DO
        IF STATE[neighbor] is not in closed-list THEN
          open-list ← ADD-IN-LIST(neighbor, open-list)
end
```

Elimination of State Repeats: DFS

- In DFS, we can also safely eliminate all repeats of the same state.
 Why?
 - Can this wreck completeness? DFS is not complete anyway
 - Can this wreck optimality? 1-2-3 > 1-3 always

Use same fix than BFS: a set of explored nodes (closed-list).

Elimination of State Repeats: IDS

• In IDS, we cannot eliminate all repeats of the same state as in the previous algorithms. Why?

Depth of the solution = 3

If path 1-2-3-4 is examined first, it prevents path 1-3-4-6, so it wrecks optimality

Elimination of State Repeats: IDS

- Use of closed-list is not possible, however:
 - We could eliminate loops.
 - No need to use an extra list, use the current branch.
 - We could eliminate state explored at a higher depth than the previous visit.
 - Use a hashmap (dictionary in Python).

```
closed-list[node] = depth
neighbors ← GFT-SUCCESSORS (node, problem)

FOR neighbor in neighbors DO

loop ← node in current_path
isAlreadyVisited ← closed-list[node] <= depth
IF not loop and not isAlreadyVisited THEN
open-list ← ADD-IN-LIST(neighbor, open-list)
```

Elimination of State Repeats: Complexity

- How the space complexity is affected by using a closed list?
 - BFS
 - ▶ The explored list size: $O(b^d)$
 - ▶ So, the space complexity remains exponential $O(b^{d+1})$
 - DFS
 - ▶ The explored list size: $O(b^m)$
 - ▶ So, the space complexity becomes exponential! $O(b^m)$
 - Depth-Limited DFS
 - ▶ The explored list size: $O(b^d)$
 - ▶ So, the space complexity becomes exponential! $O(b^d)$
 - IDS
 - ▶ If we use a dictionary of explored nodes: $O(b^d)$
 - \blacktriangleright So, the space complexity becomes exponential! $O(b^d)$
- Note: In practice, the closed list reduces the number of explored nodes, therefore the average space complexity.
- Note: Not all problem needs closed-list (e.g, puzzle-8).

6. Case of Minimum Cost Path-Search Problem

New problem statement

- Adds weights or costs to operators (links).
 - e.g., distance between two neighboring cities.
- Path cost function *g*(*n*)
 - ▶ Path cost from the initial state to node n.

Searching for the Minimum Cost Path

Traveler example with distances [km].

Optimal path: the shortest distance path.

3- Uniform Cost Search (aka Dijkstra algorithm)

- The basic algorithm for finding the minimum cost path:
 - Dijkstra's shortest path (only with non-negative edge costs).
 - In AI, the algorithm goes under the name: **Uniform Cost Search**.
- Strategy
 - For each node n, keep the cost from the start: g(n)
 - At each search step, expand the cheapest node (minimum g(n)).
- Note
 - When operator costs are all equal to 1 it is equivalent to BFS. It finds the shortest path in terms of number of visited nodes.

Uniform Cost Search (UCS)

- Strategy: expand the shallowest node first
- Implementation of the open-list: Priority queue ordered by g(n).
 - ADD-IN-LIST: Ordered nodes by current path cost.

```
function GENERAL-SEARCH(problem) returns solution
  var open-list ← MAKE-LIST(MAKE-NODE(INITIAL-STATE[problem]))
  LOOP
     IF EMPTY(open-list) THEN return failure
     node ← REMOVE-FRONT-LIST(open-list)
     IF IS-GOAL(problem, STATE[node]) THEN return the related solution
     open-list ← ADD-IN-LIST(GET-SUCCESSORS(node, problem), open-list)
end
```

Uniform Cost Search

- Implementation (same general algorithm).
 - The open list is: **Priority queue** ordered by g(n).
 - ADD-IN-LIST: Ordered nodes by current path cost.

Properties of the Uniform Cost Path

Completeness

- Yes, assuming that operator costs are non-negative (the cost of path never decreases).
 - ▶ $g(n) \le g(successor(n))$
- In the worst case, all node will be examined.

Optimality

- Yes. Returns the least-cost path.
- At each search step, we follow the cheapest route.

Time complexity

- Worst case O(b^d)
- In practice: proportional to the number of nodes for paths with g(n) < optimal cost.

Space complexity

- Worst case $O(b^{d+1})$
- In practice: proportional to the number of nodes for paths with

Action Cost

- Cost is the only way to express constraint on the problem. Cost can favor or penalize paths to the solution without prohibiting them.
- Example 1: By changing the cost function, we can encourage Pacman to find different paths.

- For example, we can charge more for dangerous steps in ghost-ridden areas or less for steps in food-rich areas, and a rational Pacman agent should adjust its behavior in response.
- Example 2: project Formula one
 - Penalize sand routes.

Summary

Uniformed algorithms

Algorithm	Completeness	Optimality	Time complexity (Worst-case)	Space complexity (Worst-case)
BFS	YES	YES	$O(b^d)$	$O(b^{d+1})$
DFS	NO	NO	$O(b^d)$	O(b.m)
Limited-Depth DFS	YES (if l≥d)	NO	$O(b^d)$	O(b.l)
IDS	YES	YES	$O(b^d)$	O(b.d)
UCS	YES	YES	$O(b^d)$	$O(b^{d+1})$