

目錄

- 1.麥寮VCM廠製程說明
- 2. 改善動機
- 3. 數據蒐集
- 🤎 4. AI模型開發歷程
- 5. 各階段詳細說明
- 6. 效益說明
- 7.結論及後續推動事項

1. 麥寮VCM廠製程說明

2. 改善動機

- ➤ EDC精餾單元以控制純EDC中氯仿、四氯化碳、三氯乙烷的濃度為主要目標。
- 由於氯仿及四氯化碳沸點相近,於低沸塔難以控制最佳條件,易造成能源浪費。
- 本單元製程操作變數主要為低沸塔迴流比、祛除塔冷凝溫度及高沸塔迴流比。

3. 數據蒐集

時間 2019-03-31	入料量 (噸/時)	冷凝器 温度(℃)	四氯化碳 出料濃度	
15:00:00	119.92	46.99	空值	
15:00:10	119.94	46.96	工 但	
15:00:20	119.93	47.01	1,150 ppm	
15:00:30	119.96	47.03		
15:00:40	119.94	46.99		
15:00:50	119.90	46.98		
15:01:00	119.95	46.98		
15:01:10	119.93	46.97		
15:01:20	119.94	47.00	r in /=	
15:01:30	119.97	46.98	空值	
15:01:40	119.94	46.96		
15:01:50	119.92	46.94		
15:02:00	119.98	46.92		
15:02:10	119.99	46.88		
15:02:20	120.02	46.85		
15:02:30	120.06	46.81		

製程參數:2019年2月~4月底約有350萬餘筆

檢驗數據:2019年2月~4月底有269筆

- (1)RTPMS(即時生產管理系統)最快每10秒可讀取 一次DCS製程參數,並進行儲存。
- (2)檢驗數據過去為每天1筆,本案增加為每天6筆, 總計2月~4月底共269筆。
- (3)雖RTPMS數據有350萬餘筆,但檢驗數據僅269筆, 故只能用檢驗數據所對應的製程參數進行AI模型 訓練。

4. AI模型開發歷程

Start

EDC精餾單元AI模型的開發歷程

4/29

5/13

6/10

6/15

7/11

8/21

上線

項目	四氯化碳(CCI ₄)濃度估算模型開發			操作模型開發	模型上線		
階段	第一階段	第二階段	第三階段	第四階段	第五階段	第六階段	
演算法	Ridge	Ridge	DNN	DNN+遷移式學習	1.將AI濃度估算	由盤控人員依AI	
資料來源	檢驗數據	模擬數據	模擬數據	模擬數據	製程環境。 2.利用虛擬製程環境及增強式環境及增強式學習訓練AI操作模型。 3.部署AI操作模型至DCS,由操作人員觀察建議值合理性。	製程環境。 驗證濃度能否達 2.利用虛擬製程 預期目標並節 環境及增強式 能耗。	建議進行製程調整
樣本數量	269筆	1,983筆	1,983筆	1,983筆			· 一般超振度能占建划 一預期目標並節省
平均誤差率	5.11%	15.69%	14.57%	6.93%			
結果說明	平均誤差率符合 要求,但因檢驗 數據量少, 訓練後的模型其 製程參數權重的 相關性不符化工 原理。	利用模擬軟體 產生之數據訓練 模型後,符合化工 製程原理,但以 269筆檢驗數據 驗證,平均誤差率 偏高。	利用非線性的 深度神經網 演算法, 學 達確率, 是 整檢 整 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	1.利用遷移式學習 技巧,將模擬數據 訓練後的DNN模型 重新利用100筆檢驗 數據訓練,以修正 平均誤差率,再以 169筆進行驗證。 2.目標平均誤差率 降至10%以內。			

註: DNN (Deep Neural Networks)

5.1 第一階段(演算法選定)

- ▶ 因濃度估算目標為連續型數值,初期研討可採用迴歸演算法。
- ▶ 蒐集製程檢驗數據269筆,以5種迴歸演算法進行模型的訓練與驗證。

各種迴歸演算法之四氯化碳濃度估算模型

迴歸演算法	訓練平均誤差率%	驗證平均誤差率%
1. Random Forest	3.34	13.1
2. SVM	6.39	5.11
3. KNN	6.75	12.95
4. Ridge	5.33	5.11
5. Lasso	6.31	5.51

➢ Ridge演算法的訓練與驗證的平均誤差率值較小,故先選用Ridge做為模型的演算法。

5.1 第一階段(Ridge演算結果)

四氯化碳濃度估算-模型特徵權重表

_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1	
	特徵參數(Xn)	點位	權重(Wn)	是否符合化工原理
	四氯化碳入料濃度	wet_edc_ccl4	+36.4	
	氯仿入料濃度	wet_edc_chcl3	-15.1	
L	入料量	FRC-C102-F.PV	-4.2	
	入料溫度	TI-C102-F.PV	+3.4	_
L	蒸氣用量(T/H)	FRC-E105A.PV	-117.6	是
	低沸塔#75層溫度	TR-C102-1.PV	+21.0	
	低沸塔#68層溫度	TR-C102-2.PV	-460.3	
	低沸塔塔底溫度	TR-C102-5PV	+262.0	
	低沸塔冷凝器溫度	TRC-E106.PV	+39.2	否(權重應為負值)
L	氯仿袪除塔塔頂壓力	PR-C112-B.PV	+9.5	
	氯仿袪除塔塔底壓力	PR-C112-T.PV	-39.2	是
	氯仿袪除塔塔底溫度	TI-C112-T.PV	-61.9	走
	氯仿袪除塔塔頂溫度	TI-C112-B.PV	+18.0	
	氯仿袪除塔冷凝器溫度	TRC-E118.PV	+60.7	否(權重應為負值)
	NC-102背壓(kg/cm2)	PRC-C102.PV	+16.6	
	NC-102尾氣排放流量	FI-C102-V.PV	+17.8	是
	S-102低沸物排放流量	FR-S102.PV	+26.7	
	迴流比	NC-102 Ratio	-103.5	否(權重應為正值)

$$Y(CCI_4出料濃度) = \sum_{n=1}^{n} w_n X_n + b$$

- 1.權重 (w_n) 正負號表示製程特徵參數 (X_n) 與濃度的相關性
 - +表示製程參數愈大,對應四氯化碳濃度愈高
 - 一表示製程參數愈大·對應四氯化碳濃度愈低
- 2.Ridge演算法雖估算結果與實際檢驗數據相近, 但因檢驗數據只有269筆,導致Ridge部分特徵 參數權重的正負值與化工原理不符。

3.例如:

以氯仿袪除塔冷凝器溫度為例,溫度愈高, 四氯化碳愈容易由塔頂脫除,造成出料EDC中 四氯化碳濃度愈低,顯示Ridge建模後的部分 特徵係數不符化工原理。

5.2 第二階段(Aspen模擬軟體介紹)

- 因檢驗數據僅269筆,導致訓練結果不符合化工原理,故再以Aspen模擬軟體 產生更多的模擬數據進行AI模型訓練。
- > Aspen模擬軟體特色與優勢:

5.2 第二階段(產生模擬數據的流程)

Step1: 收集製程相關資料

1.基本設計資料 製程流程圖、

質能平衡、

基本物性資料

2.目標單元資料

蒸餾塔板數、塔板 效率及塔壓差

Step2: 藉由模擬軟體元件庫建立模擬系統

模擬數據

- 1.入料濃度
- 2.低沸塔入料量
- 3.低沸塔冷凝器溫度

•••

Step4: 輸入製程條件

Step3: 利用實際運轉數據, 調整模擬軟體內建 方程式的參數

製程運轉數據

- 1.RTPMS製程數據
- 2.檢驗數據

品質數據

- 1.氯仿濃度
- 2.四氯化碳濃度
- 3.三氯乙烷濃度

5.2 第二階段(模擬製程條件)

現場操作穩定,難有變動較大的特徵資料供AI學習,因此模擬可設定較廣的製程條件,以提供更多製程變化的數據給AI模型學習,以低沸塔塔底四氯化碳濃度為範例如下。

特徵(製程參數)	現場數值範圍	模擬製程條件
四氯化碳入料濃度(ppm)	3,120~3,464	2,000~4,000
低沸塔入料量(T/H)	113.6~126.4	100~140
低沸塔冷凝器溫度(℃)	65.4~68.6	64~70
氯仿祛除塔冷凝器溫度(℃)	42.75~46	40~48
低沸塔迴流比	0.9~1.05	0.8~1.1

➤ 利用Aspen軟體產生的模擬數據有1,983筆。

5.2 第二階段(用模擬數據訓練結果)

➤ 利用Aspen模擬的數據1,983筆進行訓練,訓練後的結果原本與化工原理不符的 製程參數權重皆已獲得解決,但是驗證後的平均誤差率偏高,詳如下表:

特徵(製程參數)	使用前		使用後	
付银(表任参数)	權重	化工原理	權重	化工原理
低沸塔冷凝器溫度	+39.2	不符合	-12.22	符合
氯仿祛除塔 冷凝器溫度	+60.7	不符合	-360.73	符合
低沸塔迴流比	-103.5	不符合	+89.40	符合
平均誤差率	5.11%	-	15.69%	_

- ▶ 由於Aspen模擬軟體與製程實際操作會有落差,造成濃度估算誤差提高,故需用 實際檢驗數據修正模型。
- 經檢討,決定使用遷移式學習(Transfer learning),縮小Aspen模擬與實際製程操作的落差,但因Ridge演算法無法固定製程參數權重,不適用於遷移式學習,故改用深度神經網路(DNN)重新建立模型。

5.3 第三階段(深度神經網路DNN原理)

- ➤ DNN是一種非線性數學模型,常用於探索輸入和輸出間複雜的關係,透過大量的「神經元」連結來進行計算,達到模型訓練的目的。
- ➤ DNN訓練過程:

5.3 第三階段(用模擬數據訓練DNN模型)

▶ 利用Aspen模擬的數據(1,983筆)進行訓練,並以檢驗數據(269筆)驗證, 平均誤差率為14.57%仍偏高。

5.4 第四階段(用遷移式學習修正誤差率)

▶以實際檢驗數據100筆套入經Aspen模擬數據(1,983筆)訓練後的DNN模型進行訓練,再以實際檢驗數據169筆驗證,平均誤差率由14.57%降為6.93%。

5.4 第四階段(估算模型驗證)

▶ 7/11~8/5模型驗證結果,估算數據與檢驗數據趨勢相符(平均誤差率<10%)。

5.5 第五階段(AI操作模型開發)

- ➢ 為使AI模型能提供建議值給製程操作人員參考,決定以增強式學習(Reinforcement Learning)來訓練AI操作模型。
- ▶ 增強式學習能夠讓AI不依靠人類經驗,透過不斷的trial and error,來進行自我 學習及修正,但AI不可能在化工廠實際操作來學習品質控制,故需開發虛擬製程 環境來訓練AI操作。
- 增強式學習的應用案例如自動駕駛車、機器手臂。

Google 利用七個機械手臂,共訓練超過 58 萬次嘗試抓取不同的物品。最後成功抓取率為96%。

5.5 第五階段(虛擬製程環境建立)

濃度估算

DNN模型

開發增強式學習之虛擬環境, 包括製程參數、控制參數、濃度 估算模型、估算濃度與目標濃度 的差距。

製程參數

四氯化碳入料濃度

低沸塔入料量

低沸塔冷凝器温度

控制參數

氯仿祛除塔冷凝器 溫度

低沸塔迴流比

▶ 隨機產生100種虛擬製程條件組合,每個組合操作200次,30分鐘訓練2萬次。

調整權重以貼近設定目標濃度

▶ 隨機產生100種虛擬製程條件組合,每個組合操作200次,30分鐘訓練2萬次。

調整權重以貼近設定目標濃度

▶ 隨機產生100種虛擬製程條件組合,每個組合操作200次,30分鐘訓練2萬次。

調整權重以貼近設定目標濃度

隨機產生100種虛擬製程條件組合,每個組合操作200次,30分鐘訓練2萬次。

調整權重以貼近設定目標濃度

5.5 第五階段(AI操作模型訓練過程)

為節省訓練時間,加入基本操作限制條件:

若四氯化碳濃度低於1,400ppm,則冷凝器溫度往下調整 若四氯化碳濃度高於1,600ppm,則冷凝器溫度往上調整

5.6 第六階段(8/21操作模型上線)

5.6 第六階段(操作模型上線後DCS畫面)

▶ 四氯化碳8/21上線,8/21~8/31平均誤差率為14.1%偏高,經將袪除塔冷凝溫度由 一次調整至目標值,改為逐步調整,9/1~9/7平均誤差率已降為8.7%。

ppm

▶ 氯仿測試8/21上線驗證結果,8/21~9/7平均誤差率已降為6.3%。

➤ 三氯乙烷8/21上線驗證結果,8/21~9/7平均誤差率已降為9.8%。

▶ 高沸塔迴流比操作由0.9降到0.85,AI改善前純化每噸EDC的蒸汽單位用量為0.25噸,改善後降為0.241噸,節省蒸汽1.13噸/時(EDC入料125噸/時)。

6. 效益說明

單位:台幣仟元

1.裂解爐 效益	①裂解率增加0.6%,裂解爐燃料LPG用量減少(0.024 噸/時 X 8,000 小時/年 X 23,000 元/噸)	4,416
	②裂解蒸發罐蒸汽用量減少 (0.088 噸/時 X 8,000 小時/年 X 972 元/噸)	684
	小計	5,100
	①裂解精餾系統蒸汽用量減少 (0.209 噸/時 X 8,000 小時/年 X 972 元/噸)	1,628
2.精餾系統效益	②迴流EDC精餾系統蒸汽用量減少 (0.031 噸/時 X 8,000 小時/年 X 972 元/噸)	241
	③高沸塔蒸汽用量減少 (1.13 噸/時 X 8,000 小時/年 X 972 元/噸)	8,787
	小計	10,656
	總計	15,756

7. 結論及後續推動事項

- 1.本AI專案執行過程中突破下列兩點:
 - ①推動AI可利用模擬系統產生數據進行訓練,再配合遷移式學習,可解決製程操作檢驗數據量不足的問題。
 - ②增強式學習依本案驗證的結果,確實能有效導引操作人員進行控制, 達到最佳化生產目標。

2.後續推動事項:

本案將持續精進,再推廣至其它類似精餾塔製程,擴大效益。

