Math 623: Problem set 6

- 1. Show that the Cauchy-Schwarz inequality $|(f,g)| \leq ||f|| ||g||$ is an equality if and only f = cg for some $c \in \mathbb{C}$.
- 2. Exercise 4, p. 194
- 3. (a) Show that neither the inclusion $L^1(\mathbf{R}^d) \subset L^2(\mathbf{R}^d)$ nor the inclusion $L^2(\mathbf{R}^d) \subset L^1(\mathbf{R}^d)$ are valid.
 - (b) Suppose E is a set of finite measure. Show then that $L^2(E) \subset L^1(E)$
- 4. Exercise 6, p. 194
- 5. Consider a vector space (real or complex) \mathcal{B} with a norm $\|\cdot\|$. We may ask the question whether the norm $\|\cdot\|$ derive from a scalar product, i.e. is there a scalar product (\cdot,\cdot) on \mathcal{B} such that $(f,f) = \|f\|^2$.
 - (a) Suppose that \mathcal{B} is a **real** vector space with norm $\|\cdot\|$. Prove that the norm is induced by a scalar product if and only if the parallelogam law holds, i.e., we have

$$||x + y||^2 + ||x - y||^2 = 2[||x||^2 + ||y||^2].$$

and the scalar product is given by

$$(x,y) := \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$$
 (1)

Hint: To show that (x, y) given in eq. (1) is additive in the first variable show first that

$$4(u + v, w) + 4(u - v, w) = 8(u, w)$$

Deduce from this that (x + y, z) = (x, z) + (y, z). Prove then that $(\alpha x, y) = \alpha(x, y)$ first for integers α then for rational α .

Remark: The same result holds for **complex** scalar products but then the scalar product is given by

$$(x,y) := \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$
 (2)

The proof is similar but more tedious....

- (b) Show that the norm on vector space $L^1(\mathbf{R}^d)$ does not derive from a scalar product
- 6. Exercise 9, p. 195

- 7. Exercise 24, p. 198
- 8. Exercise 25, p. 198
- 9. Exercise 28, p. 199
- $10. \ Exercise\ 32,\ p.\ 201$