

## **SECOND SEMESTER 2023-2024**

Course Handout Part II

Date: 09.01.2024

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F353

Course Title : Statistical Inference and Applications

Instructor-in-Charge : Sayan Ghosh

# **Scope and Objective of the Course:**

The goal of statistical inference is to study data with the intention of inferring knowledge that goes beyond the immediate scope of the data. One usually focusses on two kinds of inference: Estimation and Testing of Hypothesis. More specifically, the course deals with some of the statistical techniques of decision making. Both parametric and non-parametric methods will be discussed. Comparison of two treatments and several treatments using analysis of variance is also dealt with.

## **Textbooks:**

1. Venkateswaran, S., & B. Singh, Operations Research, Notes-EDD, Vol.1 and 2, 1997

#### Reference books:

- 1. Vijay K. Rohatgi: Statistical Inference: Dover Publications, Inc. New York, 2003.
- 2. Michael W. Trosset, An Introduction to Statistical Inference and Its Applications with R, CRC Press, 2009.
- 3. Devore JL, Probability and Statistics for Engineering and the Sciences, 5th ed., Thomson, 2000
- 4. Johnson, R.A.: Miller Freund's Probability and Statistics for engineers, 8th. Ed., PHI, 2005.



# Course Plan:

| Lecture | Learning Objectives                                                                                                                                                                                                                                                                                                                                                            | Topics to be covered                                                                                                                                                             | Chapter in<br>the Text<br>Book |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1-7     | predictions about experiments whose outcomes depend upon chance. Consequently, it lends itself beautifully to the use of computers as a mathematical tool to simulate and analyze experiments. Students will learn the theory, methods and practice of forming Judgements about the parameter of population and the reliability of statistical relationships, typically on the |                                                                                                                                                                                  | Chapter 1                      |
| 8-9     | -basis of random sampling. Students will learn the concept of likelihood ratios and the concept of Hypothesis testing, possible coming of                                                                                                                                                                                                                                      | Classification of hypotheses as simple and composite, Distributional and parametric hypotheses. Examples                                                                         | 2.1 to 2.2                     |
| 10-11   | errors, power of the test, Best<br>Critical Regions and                                                                                                                                                                                                                                                                                                                        | Hypothesis testing in General<br>Terminology                                                                                                                                     | 2.3 to 2.4                     |
| 12-13   | Uniformly Most powerful Critical regions, Generalized                                                                                                                                                                                                                                                                                                                          | Neyman Pearson's lemma, BCR (Simple vs. Simple hypotheses)                                                                                                                       | 2.5,2.5.1                      |
| 14-15   | likelihood ratio tests.                                                                                                                                                                                                                                                                                                                                                        | UMPCR (Simple vs composite, composite vs composite). Monotone likelihood ratio and its application.                                                                              | 2.5.2-2.5.3                    |
| 16-17   |                                                                                                                                                                                                                                                                                                                                                                                | GLRT (No derivation of GLRT needs to be discussed. One example of derivation of GLRT given in the book may be explained.) Use of various tests based on GLRT without derivation. | 2.6                            |
| 18      | Parametric tests and Non parametric tests. Students learn to investigate the cause of rejection of the                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                | 2.7                            |
| 19      | hypothesis in multiple comparison procedures.                                                                                                                                                                                                                                                                                                                                  | Testing of hypotheses about multinomial probabilities.                                                                                                                           | 2.8                            |
| 20-22   | Identify multiple applications where non parametric approaches are appropriate.                                                                                                                                                                                                                                                                                                | Applications of the test in lect.1                                                                                                                                               | 3.2,3.3                        |

|       |                             | goodness of fit.                     |                 |
|-------|-----------------------------|--------------------------------------|-----------------|
| 23-24 |                             | Kolmogorov-Smirnov one sample        | 3.4             |
|       |                             | test.                                |                 |
| 25-26 |                             | Chi-Square test for independence     | 3.5,3.6         |
|       |                             | and homogeneity                      |                 |
| 27-28 |                             | Wilcoxon's test                      | 3.7,3.8,3.8.2   |
| 29-31 |                             | Sign test, Signed rank-sum test      | 3.9,3.9.1,3.9.2 |
| 32-33 | Students learn the use of   | Introduction and one-way             | 4.1,4.2         |
|       | Analysis of Variance        | classification (Fixed Effects Model) |                 |
| 34-37 | (ANOVA-one way, Two Way     | Randomized Block Design for one      | 4.3,4.3.1,4.3.3 |
|       | Classifications) when there | and classification, two-way          | and 4.4         |
|       | are more than two           | classification (one observation per  |                 |
|       | independent populations     | <u> </u>                             |                 |
| 38-40 |                             | Latin Square Design and missing      | 4.5,4.6,4.7     |
|       |                             | values, Test for the equality of     |                 |
|       | designs (CRD, RBD and       | variances                            |                 |
|       | LSD).                       |                                      |                 |
|       |                             |                                      |                 |

#### **Evaluation Scheme:**

| EC<br>No. | Evaluation<br>Component | Duration        | (Total<br>Marks= 100)<br>Weightage<br>(%) | Date & Time              | Nature of<br>Component |
|-----------|-------------------------|-----------------|-------------------------------------------|--------------------------|------------------------|
| 1.        | Quizzes (2)             | 30 min          | 20%                                       | To be announced          | Open Book              |
| 2.        | Mid Semester            | 90 min          | 30%                                       | 15/03 - 4.00 -<br>5.30PM | Closed Book            |
| 3.        | Assignment (1)          | To be announced | 10%                                       | To be announced          | Open Book              |
| 4.        | Comprehensive           | 180 min         | 40%                                       | 17/05 AN                 | Closed Book            |

**Chamber Consultation Hour:** Will be announced in the class.

**Notices:** All notices in relation to above course will be put up on CMS or Google classroom..

**Make-up Policy:** Make up will be granted only in genuine cases. Permission must be taken in advance except in extreme cases.

**Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

**INSTRUCTOR-IN-CHARGE** 

