

United International University (UIU) Dept. of Computer Science Engineering (CSE)

Final Exam. Trimester: Summer 2020

Course Code: CSE 1325, Course Title: DIGITAL LOGIC DESIGN

Total Marks: 25 Duration: 1 hour 15 minutes + 15 minutes (for uploading)

Answer any 3 Questions from Q1 to Q4 $[3 \times 5 = 15]$

- 1. Design a sequential circuit for the given state diagram using **D flip-flops**. You must show [5]
 - (a) flip-flops' input table
 - (b) K-map minimizations of inputs and output
 - (c) the logic diagram

(a) JK Flip-Flop			
Q (t)	Q(t+1)	J	κ
0	0	0	·x
0	1	1	Х
1	0	X	1
1	1	х	0

[5]

[2]

- 2. Using **J-K flip-flops**, design a synchronous counter that goes through the sequence, 3, 5, [5]
 - 6, 7, 1, 4 ... and repeat. You have to show
 - (a) the flip-flops' input table
 - (b) flip-flops' input equations
 - (c) the logic diagram.
- 3. A sequential circuit with two D flip-flops *A* and *B*, one input *X*, and one output *Z* is specified by the following equations:

$$D_A=\bar{B}X+AX,\ D_B=\bar{A}X,\ Z=AB$$

- (a) draw the logic diagram of this circuit
- (b) derive the state table and
- (c) draw the state diagram.
- Design a 4-bit ripple counter with two control bits C and D. The circuit counts up when the control variable C is logic 'HIGH' and counts down when C is logic 'LOW'. The circuit will work only if D=1 and remains unchanged if D=0.

Answer any 2 Questions from Q5 to Q7 $[2 \times 5 = 10]$

- 5. Design a 4-input Priority Encoder with inputs D_0 , D_1 , D_2 , D_3 and outputs Y_1 , Y_0 . Y_1 and Y_0 are the two bits representing the binary equivalent of the inputs Y_1 , Y_2 , Y_3 and Y_4 are the two bits representing the binary equivalent of the inputs Y_1 , Y_2 , Y_3 and Y_4 and Y_4 are the two bits representing the binary equivalent of the inputs Y_1 , Y_2 , Y_3 and Y_4 are the two bits representing the binary equivalent of the inputs Y_3 , Y_4 and Y_4 are the two bits representing the binary equivalent of the inputs Y_4 , Y_4 , Y_5 , Y_4 and Y_4 are the two bits representing the binary equivalent of the inputs Y_4 , Y_5 ,
 - (a) Derive the truth table of the priority encoder where priority is set according to the following sequence of priority from highest to lowest $D_1 > D_3 > D_0 > D_2$.
 - (b) Derive the Boolean expressions for Y_1 and Y_0 .
 - (c) Draw the circuit diagram.
- 6. a) Is it possible to use a 16×1 MUX as a 4×1 MUX? Explain your answer with necessary diagram.
 - b) Implement a 3×8 line decoder using 1×2 line decoders only. [3]

7. (a) Implement the following Boolean function using a 8×1 line multiplexer and other basic gates.

$$F(A,B,C,D) = \prod M(0,2,3,7,9,13,14,15)$$

[2]

- (b) Suppose you have to build a circuit with a 4-bit number as input and 2 output bits, O_1 and O_0 . [3]
 - If the input number is even, O₁ will be '1' otherwise it will be '0'.
 - If the input number is divisible by 6, O_0 will be '1' otherwise it will be '0'. Implement this circuit using a single decoder of your choice and OR gates only.