Apuntes de clase

José Antonio de la Rosa Cubero

Lema 1. Sea G un grupo finito, p un número primo divisor del orden de |G| y P un p-subgrupo de Sylow de G. Sea $H \leq G$ que es un p-subgrupo. Supongamos que $H \leq N_G(P)$, entonces $H \leq P$.

Demostración. $P \leq N_G(P),$ $H \leq N_G(P).$ Aplicamos el tercer teorema de isomorfía y tenemos:

$$H/(H \cap P) \equiv HP/P$$

con lo que $r=[H:H\cap P]=[HP:P].$ r||H|, y como H es un p-grupo, entonces $r=p^t$ para $t\geq 0$.

Consideramos $P \leq HP \leq G$, con lo que el índice [G:P] = [G:HP][HP:P] = r[G:HP], con lo que r|[G:P]. Como P es un p-subgrupo de Sylow, $\gcd([G:P],|P|) = 1$ con lo que $\gcd(r,p) = 1$ y como $r = p^t$, entonces t = 0 y r = 1.

Con lo que $1=[H:H\cap P]$ que implica que $H=H\cap P$ y por tanto $H\leq P.$

 $\begin{tabular}{lll} \square \\ \hline \textbf{Teorema 1} & (Segundo teorema de Sylow). $\it Sea G un grupo finito y p un $\it Sylow)$. } \\ \hline \end{tabular}$

número primo divisor de |G|. Supongamos que $|G| = p^k m$ con gcd(p, m) = 1.

- 1. Todo p-subgrupo de G está contenido en algún p-subgrupo de Sylow de G
- 2. Cualesquiera dos p-subgrupos de Sylow de G son conjugados. Es decir, si P_1 , P_2 son dos p-subgrupos de Sylow de G, entonces existe una $g \in G$ tal que $P_2 = gP_1g^{-1}$.
- 3. Si n_p es el número de p-subgrupos de Sylow de G, se tiene que $n_p|m$ y $n_p\equiv 1\mod(p)$.

Demostración.

Entonces:

$$S = \{ P \le G : P \text{ es } p - \text{subgrupo de Sylow} \} = \{ P \le G : |P| = p^k \}$$

Consideramos la acción de G sobre S por conjugación: ${}^gP = gPg^{-1}$. Elegimos $P_1 \in S$ fijo pero arbitrario. Tenemos que:

$$O(P_1) = \{ g P_1 g^{-1} : g \in G \}$$

Stab $G(P_1) = N_G(P_1)$. Sabemos que $P_1 \le N_G(P_1) \le G$. $m = [G: P_1] = [G: N_G(P_1)][N_G(P_1): P_1] = |T|[N_G(P_1): P_1]$ Con lo que |T||m, y en particular, $\gcd(p, |T|) = 1$.

Sea H un p-subgrupo de G no trivial, entonces $|H|=p^r$ para $1 \le r \le k$. Consideramos la acción anterior, la de conjugación, de H sobre T. $hPh^{-1} \in T$.

$$|T| = \sum_{P \in T} |O(P)| = \sum_{P \in T} [H : \operatorname{Stab}_H(P)]$$

Es fácil ver que $\operatorname{Stab}_H(P) = H \cap N_H(P)$. Aplicamos el lema $H \cap N_H(P)$ es un subgrupo de $N_G(P)$, y además es subgrupo de H. Por tanto es un p-subgrupo de G.

Por el lema, tenemos que la intersección anterior está en P y en H, como la otra inclusión es evidente, tenemos $H \cap P = H \cap N_G(P)$.

$$|T| = \sum_{P \in T} [H : H \cap P]$$

Tenemos que |T||m, $[H:H\cap P]||H|=p^r$ y $\gcd(p,m)=1$. Entonces, existe un $P\in T$ tal que $[H:H\cap P]=1$, entonces $H=H\cap P$ y por tanto $H\leq P$ lo que demuestra el primer apartado.

Veamos el segundo. Sean P_1 , P_2 dos p-subgrupos de Sylow de G. Apliamos el primer apartado a $H=P_2$ y entonces existe un $P \in T$ tal que $P_2 \leq P$. Como $|P_2|=p^k=|P|$, tenemos que $P_2=P$.

Por tanto existe un $g \in G$ tal que $P_2 = gP_1g^{-1}$, como queríamos ver.

Para el tercer apartado, consideramos que por el primero, S=T y tenemos que $n_p=|S|=|P|$ y $n_p|m$.

Tomamos $H = P_1$ en el primer punto y entonces la igualdad

$$|T| = n_p = \sum_{P \in T} [P_1 : P_1 \cap P]$$

Como anteriormente, existe un $P \in S$ tal que $[P_1 : P_1 \cap P] = 1$, con lo que $P_1 = P_1 \cap P$.

Tenemos que $P \leq P_1$ pero entonces por se ambos de Sylow, $|P| = p^k = |P_1|$.

Entonces existe un único $P = P_1 \in S$ tal que $[P_1 : P \cap P_1] = 1$ y para cualquier $P \in S$ tal que $P \neq P_1$, necesariamente $[P_1 : P_1 \cap P]$ es mayor que 1 y es una potencia de p.

Tenemos:

$$n_p = 1 + \sum_{P \in S} [P_1 : P_1 \cap P] = 1 + \text{ potencia de } p$$

de lo que se deduce $n_p \equiv 1 \mod (p)$.

Corolario 1. En las hipótesis del 2º teorema de Sylow. Sea P un p-subgrupo se Sylow de G. Entonces:

$$P \leq G \iff n_p = 1$$

Demostración. Como gPg^{-1} es p-subgrupo de G, entonces $n_p = 1$ si y solo si $gPg^{-1} = P$ para todo $g \in G$ si y solo si $P \subseteq G$.

Lema 2. Sea G un grupo, H_1, \ldots, H_k subgrupos normales de G tales que $\gcd(|H_i|, |H_j|) = 1$. Entonces $|H_1 \cdots H_k| = |H_1| \cdots |H_k|$.

Corolario 2. Sea G un grupo finito en el que todos sus subgrupos de Sylow son normales. Entonces G es el producto directo interno de sus subgrupos de Sylow.

Proposición 1. Si G es un grupo abeliano finito, entonces para cada p-primo divisor de |G|, $n_p = 1$, puesto que todo subgrupo de G es normal.

Además si P es el único p-subgrupo de Sylow de G, este viene dado por:

$$P = \{x \in G : \operatorname{ord}(x) = p^i \quad 0 \le i \le k\}$$

siendo p^k la máxima potencia de p que divide a |G|. P se llama la componente p-primaria de G.

Proposición 2.