Competing under Information Heterogeneity: Evidence from Auto Insurance

Marco Cosconati Yi Xin Yizhou Jin Fan Wu

July 8, 2025

IVASS, Bank of Italy

Caltech

Caltech

University of Toronto

Motivation

- Firms increasingly differ in information precision (data access/analytics) and in cost structures.
- This creates information asymmetries between firms (beyond classic buyer-seller asymmetry).
- Policy interest: regulations that equalize or share consumer risk information (e.g., centralized "risk bureau", Open Banking policies).

This paper

- Research Questions
 - How does heterogeneous information across insurers shape market equilibrium?
 - · What are the equilibrium impacts of establishing a centralized bureau to equalize information access?
- Contributions
 - · A tractable model of imperfect competition with firm-specific information precision and costs.
 - New identification/estimation strategy using offered-price distributions and demand to recover signals.
 - Evidence from Italian auto liability insurance with rich panel linking consumers across insurers.
 - Counterfactuals: centralized risk bureau, full information, and privacy/high-variance restrictions.

Literature

- 1. Selection markets
 - Competitive models: Einav et al. (2010, 2011), Azevedo & Gottlieb (2017); Assymmetric information: Cabral et al. (2018), Crawford et al. (2018), Cuesta et al. (2021) and Tebaldi (2024)
- 2 Demand estimation
 - Berry (1994), BLP(1995) and D'Haultfœuille et al. (2019)

→ Incorporates multidimensional cost heterogeneity

- \rightarrow Extends demand estimation when prices are not observed.
- 3. Antitrus/Consumer protection and Big Data
 - Einav et al. (2013), Chatterjee et al. (2023), Blattner & Nelson (2021), Lam & Liu (2020), Jin & Wagman (2021)
 - \rightarrow Policies that equalize information access can improve competition

Outline

Setting and Data

Descriptive evidenc

Model

Estimation

Results and Counterfactuals

Appendi

Institutional Background: Italian Auto Liability (RCA)

- Mandatory, annual, exclusive contracts; insurers cannot reject consumers.
- Large market: ${\approx}31\text{M}$ contracts in 2018; ${\approx}50$ national competitors.
- Key contract features widely standardized; little use of deductibles.

Data: IVASS IPER Microdata

- Nationally representative matched insurer-insuree panel with claims frequency/severity, premiums, coverage.
- Tracks policyholders across insurers and time ⇒ measure risk using ex-post claims panel.
- Focus sample: new customers in Rome (2013–2021); top 10 firms + fringe group.

Outline

Setting and Data

Descriptive evidence

Model

Estimation

Results and Counterfactuals

Appendi:

Sample & Summary Statistics

- $N \approx 124,428$ contracts; avg premium ≈ 478 ; within-year claim rate ≈ 0.08 .
- Demographics/vehicle: 56% male; avg age 48; BM class \approx 2; car age \approx 8.3 years.

Table	Table 1: Summary statistics						
Variables	Mean	Std. Dev.	Min	Max	N		
Premium (€)	477.68	208.79	133.68	1335.05	124,428		
Claim size (€)	260.89	10217.58	0	2521014	124,428		
No. of claims (within contract year)	0.08	0.29	0	4	124,428		
No. of accidents in last 5 years	0.81	1.22	0	3	124,428		
BM class	2.06	2.51	1	15	124,428		
Age	48.24	14.11	18	99	124,428		
Man	0.56	0.50	0	1	124,428		
Median city	0.10	0.30	0	1	124,428		
Big city	0.62	0.49	0	1	124,428		
Car age	8.30	5.27	0	19	124,428		
Horsepower	66.88	26.84	0	493	124,428		
Petrol vehicle	0.52	0.50	0	1	124,428		
One installment	0.67	0.47	0	1	124,428		

Stylized Facts: Price Variation & Sorting

- Large cross-firm variation in average premiums even at similar average risks/market shares.
- \bullet Firms with higher average claim costs attract riskier consumers \Rightarrow sorting across firms.

Measuring Information Precision

- 1. Step 1: Construct individual risk measures
 - Panel regression of claim counts and size with individual fixed effects

• Risk measure =
$$\underbrace{\exp(X_{it}\delta_c + \zeta_i)}_{\text{Claim Count}} \cdot \underbrace{\exp(\delta_0 + X_{it} + \eta_{it})}_{\text{Claim Size}}$$

- 2. Step 2: Firm-specific premium-risk regressions
 - For each firm j: Premium $_{ij} = \alpha_j + \beta_j \cdot \mathsf{Risk}_i + \varepsilon_{ij}$
 - Higher eta_j suggests firm's prices are more responsive to actual risk

Heterogeneity in Risk Sensitivity

- ullet Strong cross-firm differences in premium—risk slopes \Rightarrow heterogeneous precision?
- ullet Prices are equilibrium outcomes \Rightarrow need structural model to recover information precision.

Outline

Setting and Data

Descriptive evidence

 Model

Estimation

Results and Counterfactuals

Appendi

Model overview

- *J* insurers; standardized product; no outside option.
- Consumer true risk θ (expected cost/year) unobserved ex ante.
- Firm j observes a private signal $\hat{\theta}_i$ with precision that differs across firms.
- D denotes the contract chosen by the consumer.

Signal Structure

$$\hat{\theta}_{j} \sim \mathcal{N}(\theta, \ \sigma_{j}^{2}), \quad \text{iid}$$
 (1)

- Denote by $\phi(\hat{\theta}_j \mid \theta, \sigma_j)$ the density
- Lower $\sigma_i^2 \Rightarrow$ higher information precision for firm j.
- Signals are used to form posterior beliefs about θ conditional on selection.

$$E(\theta|\hat{\theta}_{j}, D = j) = \int_{\theta} \theta f(\theta|\hat{\theta}_{j}, D = j) d\theta = \frac{\int_{\theta} \theta \operatorname{Pr}(D = j|\hat{\theta}_{j}, \theta) \phi(\hat{\theta}_{j}; \theta, \sigma_{j}) f_{0}(\theta) d\theta}{\int_{\theta} \operatorname{Pr}(D = j|\hat{\theta}_{j}, \theta) \phi(\hat{\theta}_{j}; \theta, \sigma_{j}) f_{0}(\theta) d\theta}$$
(2)

Pricing

Assumes:

$$p_j(\hat{\theta}_j) = \alpha_j + \beta_j \mathbb{E}[\theta \mid \hat{\theta}_j, D = j], \tag{3}$$

- α_i : baseline markup; β_i : sensitivity to risk rating.
- $\mathbb{E}[\theta \mid \hat{\theta}_j, D=j]$ embeds selection \Rightarrow nonlinearity in $\hat{\theta}_j$.

Demand

- Consumers choose one insurer (no outside option); utility depends on price and observable characteristics.
- Preference parameters allowed to vary with observables and risk type. Consumer i's utility from firm j:

$$U_{ij} = -\gamma(\theta)p_j(\tilde{\theta}_j) + \xi_j(\theta) + \varepsilon_{ij}$$
(4)

$$\Pr(D = j | \hat{\theta}, \theta) = \frac{\exp(-\gamma(\theta)p_j(\hat{\theta}_j) + \xi_j(\theta))}{\sum_{j'=1}^{J} \exp(-\gamma(\theta)p_{j'}(\hat{\theta}_{j'}) + \xi_{j'}(\theta))}$$
(5)

Firm profits

- Firms simultaneously choose pricing coefficients (α_j, β_j) to maximize expected profits, given common knowledge of all firms' primitives (e.g., signal distributions, costs) and $f_0(\theta)$.
- Firm j's profit

$$\pi_{j}(\alpha,\beta) = \int_{\hat{\theta}} \int_{\theta} \underbrace{(p_{j}(\hat{\theta}_{j}) + c_{j} - k_{j}\theta)}_{\text{net profit}} \underbrace{\Pr(D = j|\hat{\theta})}_{\text{choice prob.}} \underbrace{\left(\prod_{j'=1}^{J} \phi(\hat{\theta}_{j'};\theta,\sigma_{j'})\right)}_{\text{signal dist.}} \underbrace{f_{0}(\theta)}_{\text{type dist.}} d\theta d\hat{\theta}.$$

- c_i: "net benefits" of contracting with a customer irrespective of the risk.
- k_i: efficiency at processing claims.

Outline

Setting and Data

Descriptive evidenc

Mode

Estimation

Results and Counterfactuals

Appendi

Estimation Overview

- Joint distribution of premium and risk types
 - Uses panel of claim records
 - Claim size estimated via regression
 - Accident rate identified from panel of accident counts (repeated noisy measurements)
 - Output $\hat{g}(p|\theta, D=j)$
- Demand $(\gamma(\theta), \xi_i(\theta))$
 - $\xi_i(\theta)$: matched to observed market shares
 - $\gamma(\theta)$: identified from sorting patterns
- Supply $(\alpha_j, \beta_j, \sigma_j^2, c_j, k_j)$
 - Average price conditional on risk identifies $(lpha_j,eta_j)$ lacksquare
 - σ_i is identified from price dispersion given risk \bullet
 - Cost parameters (c_i, k_i) recovered from first-order conditions \bigcirc

Demand Estimation

Challenge:

- Observe accepted prices, not offered prices
- Lower prices over-represented in data

Solution:

 Use selection rule (demand model) to recover distribution of offered prices

Relationship:

$$g(p|\theta, D = j) \propto g_j(p|\theta) \Pr(D = j|p_j = p, \theta)$$

Recover offered prices:

$$g_j(p|\theta) = \frac{g(p|\theta, D=j)/\Pr(D=j|p_j=p, \theta)}{\int_{p'} g(p|\theta, D=j)/\Pr(D=j|p_j=p', \theta)dp'}$$

Iterative Algorithm for Demand Estimation

Nested Fixed-Point Algorithm: Jointly estimate sorting probabilities, price distributions, and demand parameters

Inner Loop: For fixed γ (price sensitivity)

- 1. Initialize: $\xi_j^1 = 0$ and $\Pr^1(D = j | p_j = p, \theta) = \exp(\alpha p)$ for all j
- 2. Update offered-price density, using Bayes' rule:

$$g_j^r(p|\theta) = \frac{\hat{g}(p|\theta, D=j)/\operatorname{Pr}^r(D=j|p_j=p, \theta)}{\int_{p'} \hat{g}(p'|\theta, D=j)/\operatorname{Pr}^r(D=j|p_j=p', \theta)dp'}$$

3. Update ξ^{r+1} to match observed market shares:

$$\hat{s}_j = \int_{\theta} \int_{\rho} \frac{\exp(\alpha p_j + \xi_j^{r+1})}{\sum_{j'} \exp(\alpha p_{j'} + \xi_{j'}^{r+1})} \left(\prod_{j'} g_{j'}^r(p_{j'}|\theta) \right) f_0(\theta) d\rho d\theta$$

- 4. Update selection probabilities $Pr^{r+1}(D=j|p_i=p,\theta)$ using demand model
- 5. Iterate until g^r converges. Output $\{g_j(p \mid \theta; \gamma)\}_j$, $\Pr(D = j \mid p, \theta; \gamma)$, and $\xi(\gamma)$.

Outline

Setting and Data

Descriptive evidence

Model

Estimation

Results and Counterfactuals

Appendi

Results: Supply-Side

- Large differences in information precision (σ_j^2) and price sensitivity (β_j) across firms
- Baseline markups (α_j) differ, consistent with market power from information advantages
- Large contracting net benefits (e.g., for F8 is four times average premium)
- Heterogeneity in claim efficiency(e.g. F8 roughly 2.5 times less efficient than F6)

Table 3: Estimates of supply-side parameters

Firm ID	Pricing Coefficients		Signal	Net	Claim	
			Std. Dev.	Benefits	Efficiency	
	α_{j}	β_{j}	σ_{j}	c_{j}	k_{j}	
1	-342.22	1.72	1339.05	1165.31	1.90	
	(48.56)	(0.10)	(56.12)	(346.43)	(0.34)	
2	-333.44	1.81	1217.08	1087.50	1.98	
	(80.47)	(0.17)	(83.71)	(349.50)	(0.37)	
3	-163.18	1.65	1053.16	1110.60	2.29	
	(43.31)	(0.10)	(72.66)	(280.35)	(0.26)	
4	-315.64	1.45	1178.77	1034.33	1.60	
	(58.59)	(0.12)	(72.82)	(237.37)	(0.20)	
5	-194.72	1.65	1117.57	922.39	1.86	
	(61.41)	(0.16)	(85.78)	(290.10)	(0.31)	
6	-310.08	1.47	1301.49	943.08	1.37	
	(43.47)	(0.09)	(60.30)	(273.87)	(0.24)	
7	-220.93	1.50	1118.80	858.29	1.54	
	(90.81)	(0.19)	(115.56)	(293.74)	(0.33)	
8	-1404.66	3.00	1580.41	2132.07	3.16	
	(252.91)	(0.39)	(119.79)	(371.91)	(0.49)	
9	-688.85	2.15	1637.52	1440.84	2.45	
	(312.62)	(0.57)	(172.54)	(424.11)	(0.74)	
10	-246.68	1.59	1245.79	972.73	1.79	
	(138.25)	(0.28)	(107.35)	(317.01)	(0.39) 24	

Results: supply-side

• More(less) precise firms, attract less(more) risky consumers

Counterfactuals: Information Policies

• Centralized Risk Bureau: aggregate firms' signals (weighted by precision), share equally with all.

$$E(\theta|\hat{\theta}) = \int_{\theta} \theta f(\theta|\hat{\theta}) d\theta = \frac{\int_{\theta} \theta \left(\prod_{j} \phi(\hat{\theta}_{j}; \theta, \sigma_{j}) \right) f_{0}(\theta) d\theta}{\int_{\theta} \left(\prod_{j} \phi(\hat{\theta}_{j}; \theta, \sigma_{j}) \right) f_{0}(\theta) d\theta}$$
(6)

- Full Information Benchmark: firms observe true θ (eliminate information asymmetry).
- **Privacy/Restriction**: firms can only use basic information; set σ_i^2 to the worst observed.

Counterfactuals: results

- Eliminating information asymmetries helps consumers.
- More(less) info. benefits less(more) risky consumers, due to less(more) cross-subsidies.

	Baseline	Observing True Risk	Centralized Risk Bureau	Privacy Regulation
Average CS (€)	-542.83	-451.05	-457.59	-523.42
		(+16.91%)	(+15.70%)	(+3.57%)
Average CS: Low risk (€)	-477.24	153.74	-103.63	-480.25
		(+132.21)	(+78.28%)	(-0.63%)
Average CS: High risk (€)	-608.42	-1055.83	-811.55	-566.60
		(-73.54%)	(-33.39%)	(+6.87%)
Average premium (€)	461.25	342.56	361.61	441.79
, ,		(-25.73%)	(-21.60%)	(-4.22%)
Average profit (€)	849.58	802.11	799.29	834.38
, ,		(-5.59%)	(-5.92%)	(-1.79%)
ННІ	2297.26	2241.40	2264.29	2303.38
		(2.420)	(1 4407)	(.0.270)

Change in firm profits

- Equalizing information weakens market power of precise firms.
- Common risk evaluation ⇒ more effective undercutting ⇒ stronger price competition.
- Perfect correlation in signals (uniform risk evaluation) leads to higher price competition.

Who goes where? Sorting patterns

- With equal access to risk, firms more efficient at processing claims re-target higher-risk consumers.
- Sorting shifts from info advantages (baseline) to cost specialization (bureau).
 - \rightarrow increases efficiency, avg cost \downarrow by ${\sim}3.7\%$
- Sorting is lowest under privacy regulation.

Conclusion

- This paper develops empirical framework for studying competition under information assymetries
- This paper studies the impacts of a credit bureau, it finds:
 - Centralized information can lower prices, raise consumer surplus and reorient sorting toward cost efficiency.
 - Distributional trade-offs: low-risk consumers gain more under information sharing; high-risk under privacy.
 - Industry composition effects: advanced-screening firms lose profits; potential dynamic innovation effects.

Comments

- What is the impact of a credit bureau on a dynamic world with learning-switching costs?
 - Cost of risk missclassification is low -> can update prices.
 - c_j should be risk specific to capture inertia?
- What is a credit bureau doing in the model
 - Pooling Data: if there are economies of scale, what is the market failure?
 - Sharing algorithms: impact of investment in algorithms.

Outline

Setting and Data

Descriptive evidenc

Model

Estimation

Results and Counterfactuals

Appendix

Identification of Risk Types

- Risk type $heta_i = \underbrace{\mu}_{ ext{claim size accident rate}} \lambda_i$,
- Claim size μ estimated via regression
- Accident rate λ_i (latent variable) identified from panel of accident counts (repeated noisy measurements)
- Observe accident counts y_{it} over T periods: $y_{it} \sim \mathsf{Poisson}(\lambda_i)$
- Joint distribution of counts identifies $f(\lambda_i|p_i, D_i = j)$:

$$f(y_{i1},y_{i2},\ldots,y_{iT}|p_i,D_i=j)=\int\prod_{t=1}^T\frac{\lambda_i^{y_{it}}e^{-\lambda_i}}{y_{it}!}f(\lambda_i|p_i,D_i=j)d\lambda_i$$

• Output $\hat{g}(p|\theta,D=j)$ for demand estimation lacksquare

Conditional choice probabilities

• Demand is produced by the model:

$$\Pr(D = j | p_j = p, \theta) = \int_{\mathbf{p}_{-j}} \frac{\exp(-\gamma p + \xi_j)}{\exp(-\gamma p + \xi_j) + \sum_{j' \neq j} \exp(-\gamma p_{j'} + \xi_{j'})} \left(\prod_{j' \neq j} g_{j'}(p'_{j'} | \theta) \right) d\mathbf{p}_{-j}.$$

▶ Go back

Identification of Pricing Coefficients (α_j, β_j)

- Pricing strategy: $p_j(\hat{\theta}_j) = \alpha_j + \beta_j E(\theta|\hat{\theta}_j, D = j)$
- Key Insight: Linear structure allows identification from first and second moments
- **Objects already recovered:** within-firm offered-price density $g_i(p \mid \theta)$

Within-firm moments:

Mean premium:
$$E(p|D=j) = \alpha_j + \beta_j E(E(\theta|\hat{\theta}_j, D=j)|D=j) = \alpha_j + \beta_j E(\theta|D=j)$$

Premium and Risk covariance:
$$cov(p, \theta|D=j) = \beta_j var(E(\theta|\hat{\theta}_j, D=j)|D=j) = \frac{var(p|D=j)}{\beta_j}$$

Solution: Solve system of two linear equations

$$\beta_j = \frac{\operatorname{var}(p \mid D = j)}{\operatorname{cov}(p, \theta \mid D = j)}, \qquad \alpha_j = \mathbb{E}(p \mid D = j) - \beta_j \mathbb{E}(\theta \mid D = j),$$

 $\textbf{Advantage:} \ \ \text{estimated separately from other parameters} \rightarrow \text{reduces computational burden} \\ \textbf{$^{\texttt{Go back}}$}$

Identification of Signal Variance (σ_j)

- Key Insight: monotonicity of prices on the signal (similar to GPV(2000))
- 1. Using monotonicity and then inverting:

$$G_j(p_j(\hat{ heta}_j)| heta) = \Phi\left(rac{\hat{ heta}_j - heta}{\sigma_j}
ight) \implies p_j^{\circ}(\hat{ heta}_j; heta,\sigma_j) = G_j^{-1}\left(\Phi\left(rac{\hat{ heta}_j - heta}{\sigma_j}
ight)
ight)$$

where $G_i(p|\theta) = \text{CDF}$ of offered prices (recovered from demand estimation)

2. For a given σ_i , evaluate risk rating at equilibrium prices:

$$E(\theta|\hat{\theta}_{j}, D = j; \sigma_{j}) = \frac{\int_{\theta} \theta \Pr(D = j|p_{j}^{o}(\hat{\theta}_{j}; \theta, \sigma_{j}), \theta)\phi(\hat{\theta}_{j}; \theta, \sigma_{j})f_{0}(\theta)d\theta}{\int_{\theta} \Pr(D = j|p_{j}^{o}(\hat{\theta}_{j}; \theta, \sigma_{j}), \theta)\phi(\hat{\theta}_{j}; \theta, \sigma_{j})f_{0}(\theta)d\theta}$$

- 3. Using $p_j(\hat{\theta}_j; \sigma_j) = \hat{\alpha}_j + \hat{\beta}_j E(\theta|\hat{\theta}_j, D = j; \sigma_j)$ obtain the model-implied joint distribution of (p, θ) within firm j
- 4. Match model implied dist. of (p, θ) to the empirical dist. recovered from the data.

Supply parameters: c_j, k_j

Net profit from servicing consumer: $p_j(\hat{\theta}_j) + c_j - k_j\theta$

- c_i = net benefit from contracting (inertia, dynamic pricing, cross-selling)
- $k_i\theta$ = claim processing cost (efficiency parameter k_i times expected claims)

First-Order Conditions: Firm j optimally chooses (α_j, β_j)

$$\frac{\partial \pi_{j}}{\partial \alpha_{j}} = \int_{\theta} \int_{\hat{\theta}} \Pr(D = j \mid \hat{\theta}, \theta) f(\hat{\theta} \mid \theta) f_{0}(\theta) d\hat{\theta} d\theta + \int_{\theta} \int_{\hat{\theta}} (\alpha_{j} + \beta_{j}\theta + c_{j} - k_{j}\theta) \frac{\partial \Pr(D = j \mid \hat{\theta}, \theta)}{\partial \alpha_{j}} f(\hat{\theta} \mid \theta) f_{0}(\theta) d\hat{\theta} d\theta,$$

$$\frac{\partial \pi_{j}}{\partial \beta_{j}} = \int_{\theta} \int_{\hat{\theta}} \theta \Pr(D = j \mid \hat{\theta}, \theta) f(\hat{\theta} \mid \theta) f_{0}(\theta) d\hat{\theta} d\theta + \int_{\theta} \int_{\hat{\theta}} (\alpha_{j} + \beta_{j}\theta + c_{j} - k_{j}\theta) \frac{\partial \Pr(D = j \mid \hat{\theta}, \theta)}{\partial \beta_{j}} f(\hat{\theta} \mid \theta) f_{0}(\theta) d\hat{\theta} d\theta.$$

Solution: Given previously recovered $\{g_j, E(\theta \mid \hat{\theta}_j, D = j), \alpha_j, \beta_j, \sigma_j\}$ and $Pr(D = j \mid \cdot)$, it is a system of 2 linear equations in (c_i, k_j) where all other terms are known • Go back