Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Rația progresiei geometrice $(b_n)_{n\geq 1}$ este $q=-3$	2p
	$b_5 = b_1 q^4 = (-1)(-3)^4 = -81$, deci $ b_5 = 81$	3 p
2.	$-2x^2 + 7x + 9 > 0 \Leftrightarrow (2x - 9)(x + 1) < 0$	2p
	$x \in \left(-1, \frac{9}{2}\right)$	3 p
3.	$\log_3 \frac{x-1}{6-x} = -2 \Rightarrow \frac{x-1}{6-x} = \frac{1}{9}$	3 p
	$x = \frac{3}{2}$, care convine	2p
4.	$\frac{n(n-1)}{2} - n = 5 \Leftrightarrow n^2 - 3n - 10 = 0$	3p
	Cum n este număr natural, $n \ge 2$, obținem $n = 5$	2p
5.	Distanța de la punctul A la dreapta d este egală cu $0 \Rightarrow A \in d$	2p
	$-1 = (m-1) \cdot 3 - 2m \iff m = 2$	3p
6.	$\cos(\pi - 2x) = -\cos 2x = 1 - 2\cos^2 x = 1 - 2\cdot\left(\frac{2}{3}\right)^2 =$	3р
	$=1-2\cdot\frac{4}{9}=\frac{1}{9}$	2p

SUBIECTUL al II-lea (30 de puncte)

	(** ** I **	,
1.a)	$A(2) = \begin{pmatrix} 3 & 1 & -1 \\ 1 & -2 & 1 \\ 2 & 2 & -1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 3 & 1 & -1 \\ 1 & -2 & 1 \\ 2 & 2 & -1 \end{vmatrix} = $ $= 6 - 2 + 2 - 4 + 1 - 6 = -3$	2p 3p
b)	$B(a) = A(a) \cdot A(a) = \begin{pmatrix} 8 & 3-2a & -1 \\ 5-a & a^2+a+1 & -2-a \\ 4+a & -a^2-a+2 & -1+a \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	Matricea $B(a)$ are două elemente egale cu 0 dacă $a = -2$ sau $a = 1$	3p
c)	Pentru $a=1$, sistemul devine $\begin{cases} 3x+y-z=1\\ x-y+z=3 & \text{si adunând primele două ecuații ale sistemului}\\ 2x+y-z=2 & \text{obținem } 3x+y-z+x-y+z=4 \text{, deci } x=1 \end{cases}$	3р
	Adunând a doua și a treia ecuație din sistem, obținem $x - y + z + 2x + y - z = 5 \Rightarrow x = \frac{5}{3}$, deci sistemul nu are soluții	2p

2.a)	$(-3)*3 = \frac{1}{2} \cdot (-3) + \frac{1}{2} \cdot 3 - (-3) \cdot 3 =$	3р
	$= -\frac{3}{2} + \frac{3}{2} + 9 = 9$	2p
b)	$x * y = \frac{1}{4} - xy + \frac{1}{2}x + \frac{1}{2}y - \frac{1}{4} =$	2p
	$= \frac{1}{4} - x\left(y - \frac{1}{2}\right) + \frac{1}{2}\left(y - \frac{1}{2}\right) = \frac{1}{4} - \left(x - \frac{1}{2}\right)\left(y - \frac{1}{2}\right), \text{ pentru orice numere reale } x \text{ şi } y$	3p
c)	$\frac{1}{4} - \left(2^x - \frac{1}{2}\right) \left(4^{x-1} - \frac{1}{2}\right) = \frac{1}{4} \Leftrightarrow 2^x = \frac{1}{2} \text{ sau } 4^{x-1} = \frac{1}{2}$	3p
	$x = -1 \text{ sau } x = \frac{1}{2}$	2p

SUBIECTUL al III-lea (30 de puncte)

	DECTOD at III-ica (50 de punce		
1.a)	$f'(x) = \left(-1 + 3x^{-1} - 4x^{-\frac{3}{2}}\right)' = 3 \cdot (-1)x^{-2} - 4 \cdot \left(-\frac{3}{2}\right)x^{-\frac{5}{2}} =$	3p	
	$= -\frac{3}{x^2} + \frac{6}{x^2 \sqrt{x}} = \frac{-3x + 6\sqrt{x}}{x^3} = \frac{3\sqrt{x}(2 - \sqrt{x})}{x^3}, \ x \in (0, +\infty)$	2p	
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 + \frac{3}{x} - \frac{4\sqrt{x}}{x^2} \right) = -1$	3р	
	Dreapta de ecuație $y = -1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p	
c)	$\lim_{x \to 4} \frac{4^x \cdot f'(x)}{x - 4} = \lim_{x \to 4} \frac{4^x \cdot 3\sqrt{x}(2 - \sqrt{x})}{x^3(x - 4)} = \lim_{x \to 4} \frac{4^x \cdot 3\sqrt{x}(2 - \sqrt{x})}{x^3(\sqrt{x} - 2)(\sqrt{x} + 2)} =$	3p	
	$= \lim_{x \to 4} \frac{-4^x \cdot 3\sqrt{x}}{x^3 \left(\sqrt{x} + 2\right)} = -6$	2p	
2.a)	$F'(x) = \left(\ln x + 2e^x - 2x + 2021\right)' = \frac{1}{x} + 2e^x - 2 =$	3 p	
	$=\frac{1+2xe^x-2x}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	2p	
b)	$\int_{1}^{e} f(x) dx = F(x) \Big _{1}^{e} = F(e) - F(1) =$	3р	
	$=2e^{e}-4e+3$	2p	
c)	$\int_{1}^{2} x f(x) dx = \int_{1}^{2} (2xe^{x} - 2x + 1) dx = ((2x - 2)e^{x} - x^{2} + x) \Big _{1}^{2} =$	3 p	
	$=2e^2-4+2=2e^2-2$	2p	