CSE-170 Computer Graphics

Lecture 22

Implicit Curves and Metaballs

Dr. Renato Farias rfarias2@ucmerced.edu

Curves

- Main approaches to define curves:
 - Procedural curves: fractals, subdivision rules

- Parametric curves: are mappings
 - Ex.: Continuous map from 1D space to n-D space
 f(t)=(x,y), ex: f(t)=(cos t, sin t)
- Implicit curves: defined by an equation
 - Described by all points satisfying an equation
 f(x,y)=0 ex: x²+y²-1=0

Drawing Implicit Curves with Marching Cubes and Marching Squares

How to draw an arbitrary implicit curve?

Main algorithm: Marching Cubes

- How to draw an arbitrary implicit curve?
 - Marching squares (marching cubes for 3D)
 - Variations: instead of cubes, use tetrahedra/triangles
 - Extensions: adaptive, etc.

Cases

- How to apply cases:
 - just use midpoint of each cell edge (simpler)
 - interpolate along cell edges according to weights from the function evaluations at vertices (better)

- Marching Squares
 - Ambiguous cases are possible
 - Increasing the grid evaluation resolution may solve ambiguities
 - For ex., the two options below are both possible:

- Marching Cubes in 3D
 - More cases to consider
 - More ambiguities possible

Example:

• Example:

- Marching Tetrahedra
 - Subdivide cube in tetrahedra
 - How?
 - Why?
 - When we use tetrahedra as cells we have less vertices per cell (4 and not 8): thus, less cases to consider per cell

- Marching Tetrahedra
 - Subdivide cube in tetrahedra
 - How?
 - A cube can be divided in 5 or 6 tetrahedra
 - Example with 6 is shown
 - All share a diagonal

- Marching Tetrahedra
 - Computing intersections

• Examples:

• Examples:

Examples:

Result:

With Additional Smoothing:

"Octree/quadtree" recursive subdivision:

• Each "mixed region" is further subdivided

• Until desired precision is reached

 Boundary reconstruction is then based on cells of different sizes

Metaballs

Metaballs

- Basic idea of metaballs
 - Use implicit equation of the form:

$$\sum_{i=0}^{n} \operatorname{metaball}_{i}(x, y, z) \leq \operatorname{threshold}$$

- ...where each metaball function f(x,y,z) is for ex:

$$f(x,y,z) = 1/((x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2) = 1/r^2$$

with (x_0, y_0, z_0) being the center of the metaball, and $r = distance ((x,y,z), (x_0,y_0,z_0)).$

So:
$$f(x,y,z) = 1/r^2$$

Other formulations exist

Metaballs: result

• Final surface depends on the proximity between the metaball centers:

Metaballs: marching cubes evaluation

Many uses

