Интегралы, зависящие от параметра

Собственные интегралы, зависящие от параметра

Пусть функция f(x,y) определена на $[a,b] \times Y$.

Пусть при каждом $y \in Y$ функция f(x,y) интегрируема по x на [a,b]. Тогда

$$\int_a^b f(x,y) \, dx =: I(y)$$

— собственный интеграл, зависящий от параметра $y \in Y$.

Теорема (о предельном переходе под знаком собственного интеграла).

Пусть при каждом $y \in Y$ функция f(x,y) интегрируема по x на [a,b]. Пусть $y_0 \in Y'$ и $f(x,y) \stackrel{[a,b]}{\Longrightarrow} \varphi(x)$ при $y \to y_0$. Тогда $\varphi(x)$ интегрируема на [a,b], существует $\lim_{y \to y_0} I(y)$ и

$$\lim_{y \to y_0} I(y) = \int_a^b \varphi(x) \, dx.$$

Теорема (о непрерывности собственного интеграла, зависящего от параметра).

Пусть f(x,y) непрерывна на $[a,b] \times [c,d]$. Тогда I(y) непрерывна на [c,d].

Теорема (о дифференцируемости собственного интеграла, зависящего от параметра).

Пусть при каждом $y \in [c,d]$ функция f(x,y) интегрируема по x на [a,b]. Пусть $f_y'(x,y)$ непрерывна на $[a,b] \times [c,d]$. Тогда I(y) дифференцируема на [c,d] и

$$\frac{d}{dy}I(y) = \int_a^b f_y'(x,y) \, dx, \quad y \in [c,d],$$

или

$$\frac{d}{dy} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial}{\partial y} f(x, y) dx, \quad y \in [c, d].$$

Пример.
$$\int_0^1 \frac{x^b - x^a}{\ln x} dx = I(b), \ b \geqslant a > 0.$$

Замечания: Пусть функция f(x,y) определена на $[a,b] \times [c,d]$ и при каждом $y \in [c,d]$ интегрируема по x на [a,b]. Пусть заданы функции $\alpha(y):[c,d] \to [a,b]$ и $\beta(y):[c,d] \to [a,b]$. Тогда определён интеграл

$$I(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) \, dx.$$

- Если f(x,y) непрерывна на $[a,b] \times [c,d]$, а функции $\alpha(y)$ и $\beta(y)$ непрерывны на [c,d], то I(y) непрерывна на [c,d].
- Если при каждом $y \in [c,d]$ функция f(x,y) непрерывна по x на [a,b], функция $f'_y(x,y)$ непрерывна на $[a,b] \times [c,d]$, а функции $\alpha(y)$ и $\beta(y)$ непрерывно дифференцируемы на [c,d], то I(y) дифференцируема на [c,d] и

$$I'(y) = \int_{\alpha(y)}^{\beta(y)} f'_y(x, y) \, dx + f(\beta(y), y) \beta'(y) - f(\alpha(y), y) \alpha'(y).$$

Теорема (об интегрируемости собственного интеграла, зависящего от параметра).

Пусть f(x,y) непрерывна на $[a,b] \times [c,d]$. Тогда для каждого $t \in [c,d]$ функция I(y) интегрируема на [c,t] и

$$\int_c^t dy \int_a^b f(x,y) dx = \int_a^b dx \int_c^t f(x,y) dy.$$

Пример.
$$\int_0^1 \frac{x^b - x^a}{\ln x} dx, \ b \geqslant a > 0.$$

Несобственные интегралы, зависящие от параметра

Пусть f(x,y) определена на $[a,+\infty)\times Y$ и для каждого $y\in Y$ и A>a определен интеграл

$$I(A,y) := \int_a^A f(x,y) \, dx.$$

Если существует (конечный) предел

$$\lim_{A \to +\infty} \int_{a}^{A} f(x, y) \, dx =: I(y),$$

то функция I(y) называется несобственным интегралом 1 рода, зависящим от параметра:

$$I(y) = \int_{a}^{+\infty} f(x, y) \, dx, \quad y \in Y.$$

Определение. Интеграл $\int_a^{+\infty} f(x,y) dx$ сходится равномерно на Y, если

$$I(A,y) \stackrel{Y}{\rightrightarrows} I(y)$$
 при $A \to +\infty$.

Пример.
$$\int_0^{+\infty} y e^{-xy} dx, \ y \geqslant 0.$$

Hecoбственный интеграл 2 рода — аналогично.

Пример.
$$\int_0^1 \frac{y}{x^2 + y^2} dx, \ y \in [0, 1].$$

Необходимые и достаточные условия сходимости интегралов

Теорема (критерий Коши). Интеграл $\int_a^b f(x,y) \, dx$ сходится равномерно на Y тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \in (0, b - a) \ \forall A, B \in (b - \delta, b) \ \forall y \in Y \quad \left| \int_A^B f(x, y) \, dx \right| < \varepsilon.$$

Теорема (признак Вейерштрасса). Если найдётся такая функция $\varphi(x)$, что

$$|f(x,y)| \le \varphi(x), \quad x \in [a,b), \quad y \in Y,$$

и интеграл $\int_a^b \varphi(x) \, dx$ сходится, то интеграл $\int_a^b f(x,y) \, dx$ сходится равномерно и абсолютно на Y.

Теорема (признак Абеля). Пусть интеграл $\int_a^b f(x,y) \, dx$ сходится равномерно на Y. Пусть функция g(x,y) при каждом $y \in Y$ монотонна по x и

$$\exists C > 0 : |g(x,y)| \leq C, \quad x \in [a,b), \ y \in Y.$$

Тогда $\int_a^b f(x,y)g(x,y)\,dx$ сходится равномерно на Y.

Теорема (признак Дирихле). Пусть интегралы $\int_a^A f(x,y) \, dx$ равномерно по $A \in [a,b)$ и $y \in Y$ ограничены. Пусть функция g(x,y) при каждом $y \in Y$ монотонна по x и

$$g(x,y) \stackrel{Y}{\Longrightarrow} 0$$
 при $x \to b - 0$.

Тогда $\int_a^b f(x,y)g(x,y)\,dx$ сходится равномерно на Y.

Пример.
$$\int_0^{+\infty} \frac{x \sin(ax)}{n^2 + x^2} dx$$
, $0 < a_0 \le a$.

Пример.
$$\int_0^{+\infty} \frac{\sin x}{x} \cdot e^{-ax} \, dx, \, a \geqslant 0.$$