Table. A.1 – Table des transformées de Laplace et en Z usuelles.

X(p)	x(t)	X(z)
1	$\delta(t)$	1
e^{-kT_ep}	$\delta(t-kT_e)$	z^{-k}
$\frac{1}{p}$	Γ(t)=1	$\frac{z}{z-1}$
$\frac{1}{p^2}$	t	$\frac{T_e z}{(z-1)^2}$
$\frac{1}{p+a}$	e^{-at}	$\frac{z}{z-e^{-aT\epsilon}}$
$\frac{1}{(p+a)^2}$	te^{-at}	$\frac{T_e z e^{-aTe}}{(z - e^{-aTe})^2}$
$\frac{1}{p(1+\tau p)}$	$1 - e^{-t/ au}$	$\frac{(1-e^{-Te/\tau})z}{(z-1)(z-e^{-Te/\tau})}$
$\frac{1}{p^2(1+\tau p)}$	$t - \tau + \tau e^{-t/\tau}$	$\left\{ rac{T_e z}{(z-1)^2} - rac{ au(1-e^{-T_e/ au})z}{(z-1)(z-e^{-T_e/ au})} ight.$
$\frac{1}{p(1+\tau p)^2}$	$1-(1+\tfrac{t}{\tau})e^{-t/\tau}$	$\frac{z}{z-1} - \frac{z}{z-e^{-T_e/\tau}} - \frac{T_e z e^{-T_e/\tau}}{\tau (z-e^{-T_e/\tau})^2}$
$\frac{\omega}{p^2 + \omega^2}$	$\sin \omega t$	$\frac{z\sin\omega T_e}{z^2 - 2z\cos\omega T_e + 1}$
$\frac{p}{p^2+\omega^2}$	$\cos \omega t$	$\frac{z(z-\cos\omega T_e)}{z^2-2z\cos\omega T_e+1}$
$\frac{\omega}{(p+a)^2+\omega^2}$	$e^{-at}\sin\omega t$	$\frac{ze^{-aT_e}\sin\omega T_e}{z^2 - 2ze^{-aT_e}\cos\omega T_e + e^{-2aT_e}}$
$\frac{p}{(p+a)^2+\omega^2}$	$e^{-at}\cos\omega t$	$\frac{z^2 - ze^{-aT_e}\cos\omega T_e}{z^2 - 2ze^{-aT_e}\cos\omega T_e + e^{-2aT_e}}$
$\frac{\omega_n^2}{p(p^2 + \omega_n^2)}$	$1-\cos\omega_n t$	$\frac{z}{z-1} - \frac{z(z-\cos\omega_n T_e)}{z^2 - 2z\cos\omega_n T_e + 1}$
1 2	$\frac{\omega_p}{1-\xi^2}e^{-\xi\omega_n t}\sin\omega_p t$	
$\frac{1}{1+2\xi\frac{p}{\omega_n}+\frac{p^2}{\omega_n^2}}$	$\omega_p = \omega_n \sqrt{1 - \xi^2}$	
	$1 - \frac{\omega_n}{\omega_p} e^{-\xi \omega_n t} \sin(\omega_p t + \psi)$	
$\frac{1}{p\left(1+2\xi\frac{p}{\omega_n}+\frac{p^2}{\omega_n^2}\right)}$	$\omega_p = \omega_n \sqrt{1 - \xi^2}$	
-17	$\psi = \cos^{-1} \xi$	
$\frac{b-a}{(p+a)(p+b)}$	$e^{-at} - e^{-bt}$	$\frac{z}{z-e^{-aT_e}} - \frac{z}{z-e^{-bT_e}} $
$\frac{ab}{p(p+a)(p+b)}$	$1 - \frac{b}{a-b}e^{-at} - \frac{a}{a-b}e^{-bt}$	$\frac{z}{z-1} + \frac{bz}{(a-b)(z-e^{-aTe})} - \frac{az}{(a-b)(z-e^{-bTe})}$