Область допустимых решений задачи представлена ниже на рисунке. Как будут записаны ограничения (1) и (2)?

Билет 3, вопрос 1 Строительной организации необходимо выполнить n видов земляных работ, объем которых составляет Vj куб. м (j=1, n). Для их осуществления можно использовать m механизмов. Производительность i-го механизма при выполнении j-ой работы составляет Pij куб. м в час., а себестоимость одного часа работы Sij руб. Плановый фонд рабочего времени i-го механизма составляет Ti часов. Составить план организации работ, обеспечивающий его выполнение с минимальными затратами. Какие из моделей верны?

$$\sum_{i} \sum_{j} S_{ij} * x_{ij} / P_{ij} \to min \qquad \sum_{i} \sum_{j} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} \sum_{i} \sum_{j} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} \sum_{i} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} \sum_{i} \sum_{j} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} \sum_{i} \sum_{j} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} S_{ij} * x_{ij} \to min \qquad \sum_{i} \sum_{j} \sum_{i}$$

2.

3.

Билет 3, вопрос 2 Дана начальная симплекс-таблица прямой (исходной) задачи линейного программирования, в которой x_1, x_2 -основные переменные, x_3, x_4 - дополнительные, Z –целевая функция

Итерация	Базис	Значение	x ₁	x ₂	Х3	X4	Строка Zmin
	- Z	0	-2	-1	0	0	
0	X ₃	-2	1	2	1	0	1
	X ₄	2	2	1	0	1	2

Каким алгоритмом решать задачу ? (прямой, двойственный, 2-х этапный)

Дана начальная симплекс-таблица прямой (исходной) задачи линейного программирования, в которой х-основные переменные, s-дополнительные, Q –целевая функция

БП	X ₁	X ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	Решение
s_1	-1	1	1	0	0	-4
<i>s</i> ₂	1	-1	0	1	0	0
<i>s</i> ₃	-5	-4	0	0	1	-20
Q	2	1	0	0	0	0

Запишите постановку двойственной ЗЛП

Составить уравнения Беллмана

Эффективность состояния системы на втором этапе определяется(продолжить)...

$$Z(X) = x_2 + 2x_1^2 \Rightarrow max$$

$$2\sqrt[2]{x_1} + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

Сетевое планирование

Укажите значение параметра $t_{\mathrm{ph}}(\mathbf{3},\mathbf{4})$

	1	2	3	4	5
1		4	5	7	
2			2	10	3
3				2	
4					4
5					

Пусть X представляет собой множество абитуриентов, принимающих участие в конкурсных экзаменах при поступлении в технический вуз, оценки которых по трем дисциплинам в пятибалльной шкале приведены в таблице

A647 (24017)	Дисциплина				
Абитуриенты	Математика	Физика	Литература		
x	5	3	4		
у	5	4	3		
Z	4	5	3		

Пусть веса критериев (дисциплин) $c_1 = 5, c_2 = 3, c_3 = 2.$

По методу ЭЛЕКТРА определите индекс согласия превосходства (доминирования) x над y

Задана матрица Y исходов в терминах затрат .По критерию максимума уверенности в получении заданного результата оцените альтернативу x_2 при пороге $\alpha \le 4$

$$P(y_{2j} \leq 4 \mid x_2) =$$

Альтернативы	Ситуации Е				
X	e_1	e_2	e_3	e_4	
x_1	5	4	3	2	
x_2	2	3	4	5	
x_3	3	4	5	2	
P	0,3	0,3	0,3	0,1	

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{HA}(x) = 1 - \sup_{y \in X} [\mu_R(y, x) - \mu_R(x, y)], \qquad x \in X$$

SUP —наибольшее положительное число (на сколько другие по максимуму доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	-	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_2 : $\mu_Q^{{}^{\mathrm{H}\mathrm{D}}}(x_2)$

Билет 3, вопрос 9

Метод анализа иерархий.

Дополните таблицу и определите коэффициент значимости критерия $\lambda_3 =$

Критерии	Критерий k_1	Критерий $oldsymbol{k}_2$	Критерий $oldsymbol{k}_3$	Коэффициент значимости
Критерий k_1	1/1	1/2	1/4	$\lambda_1 =$
Критерий $oldsymbol{k}_2$		1/1	4/1	$\lambda_2 =$
Критерий $oldsymbol{k}_3$			1/1	$\lambda_{3=}$
	•			