Clifford Analysis and a Noncommutative Gelfand Representation

Colin Roberts

Overview

- 1 Introduction
- 2 Clifford analysis
- 3 Gelfand theory
- 4 Future work
- 5 Conclusions

Section 1

Introduction

Subsection 1

Motivation

Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) asks whether one can determine the conductivity of a medium based on measurements along the boundary.

Other questions

- lacktriangle Can we retrieve topological information from spaces of functions on a manifold M?
- Do these spaces also contain geometric information such as metric data?
- Can we determine enough about these spaces from partial information say information only on the boundary?

Subsection 2

Preliminaries

- Clifford algebra originated in 1878 with William Kingdon Clifford's work that extends Hermann Grassmann's exterior algebra.
- Clifford analysis arrived in the 1980's due to Hestenes, Sobczyk,

 Sommen, Brackx, and Delenghe in order to enrich Éllie Cartan's

differential forms.

Clifford algebras

Let V be a vector space over a field \mathbb{F} with quadratic form Q.

■ Define the tensor algebra

$$\mathcal{T}(V) \coloneqq \bigoplus_{j=0}^{\infty} V^{\otimes_j} = \mathbb{F} \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$

■ Form the *Clifford algebra* via a quotient

$$C\ell(V, Q) := \mathcal{T}(V)/\langle \mathbf{v} \otimes \mathbf{v} - Q(V) \rangle.$$

Geometric and exterior algebras

Let V be a vector space over a field \mathbb{F} with quadratic form Q.

■ Given a (pseudo) inner product g, we set $Q(\cdot) = g(\cdot, \cdot)$ and define a $geometric\ algebra$

$$\mathcal{G} \coloneqq C\ell(V,g).$$

 \blacksquare The *exterior algebra* is given by

$$\bigwedge(V) \coloneqq C\ell(V,0).$$

Algebra structure

We define a multiplication in $\mathcal G$ by noting how the product \otimes acts in the quotient.

■ Given $u, v \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}$$

- The scalar part is symmetric: $\mathbf{u} \cdot \mathbf{v} = g(\mathbf{u}, \mathbf{v})$.
- The bivector part is antisymmetric: $\mathbf{u} \wedge \mathbf{v} = -\mathbf{v} \wedge \mathbf{u}$.

Multivectors

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - There are $\binom{n}{r}$ elements of grade r called r-vectors.
 - Those that are exterior products of r independent vectors are r-blades. E.g., $\mathbf{A_r} = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r$.
- The most general elements are *multivectors* and are given by

$$A = \sum_{r=0}^{n} \langle A \rangle_r,$$

where $\langle A \rangle_r \in \mathcal{G}^r$ extracts the grade r part of A.

Algebra Structure

Extend the multiplication from vectors to multivectors by

$$A_r B_s = \langle A_r B_s \rangle_{|r-s|} + \langle A_r B_s \rangle_{|r-s|+2} + \dots + \langle A_r B_s \rangle_{r+s}$$

with

$$A_r \cdot B_s \coloneqq \langle A_r B_s \rangle_{|r-s|} \qquad A_r \wedge B_s \coloneqq \langle A_r B_s \rangle_{r+s}$$

$$A_r \rfloor B_s \coloneqq \langle A_r B_s \rangle_{s-r}$$
 $A_r \lfloor B_s \coloneqq \langle A_r B_s \rangle_{r-s}$

Reciprocals and reverses

Given any vector basis \mathbf{v}_i we define the *reciprocal vectors* by $\mathbf{v}^i \cdot \mathbf{v}_j = \delta^i_j$. The

reverse of a multivector is extended linearly from the action on r-blades by

$$\mathbf{A_r}^{\dagger} = (\mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r)^{\dagger} = \mathbf{v}_r \wedge \cdots \wedge \mathbf{v}_1.$$

Inner product and norm

We define the multivector inner product by

$$(A,B) \coloneqq \langle A^{\dagger}B \rangle$$

which is bilinear, symmetric, and positive definite if g is positive definite. Then we define the $multivector\ norm$ by

$$|A| \coloneqq \sqrt{(A,A)}.$$

Adjoint

Note the reverse acts as an adjoint by

$$(CA, B) = (A, C^{\dagger}B) \tag{1}$$

$$(AC,B) = (A,BC^{\dagger}). \tag{2}$$

Pseudoscalars

Pseudoscalars are the grade-n elements. For example, $\mu = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_n$. We define the $unit\ pseudoscalar$ by

$$I \coloneqq \frac{1}{|\boldsymbol{\mu}|} \boldsymbol{\mu}.$$

Blades and subspaces

If $|A_r| = 1$, then A_r is a *unit blade*.

All unit r-blades correspond to an r-dimensional subspace and can be identified with points in Gr(r, n).

Duality

Given any multivector A, we can take its dual

$$A^{\perp} \coloneqq A \mathbf{I}^{-1}$$
.

Note $A_r^{\perp} \in \mathcal{G}^{n-r}$, much like the Hodge star \star .

Quaternions and complex numbers

Claim: \mathbb{H} arises naturally as the even subalgebra \mathcal{G}_3^+ .

Claim: $\mathbb C$ arises naturally as the even subalgebra $\mathcal G_2^+$.

Take the standard basis e_1, e_2 , and define $B_{12} = e_1e_2$ and note $B_{12}^2 = -1$. Thus

$$(u_1 + v_1 \mathbf{B}_{12})(u_2 + v_2 \mathbf{B}_{12}) = u_1 u_2 - v_1 v_2 + (u_1 v_2 + u_2 v_1) \mathbf{B}_{12}.$$

Moreover, right multiplication of vectors by B_{12} rotates counter-clockwise by $\pi/2$.

Clifford algebra structure on manifolds

We let M be a smooth, compact, connected, and oriented n-dimensional Riemannian manifold with metric g (unless otherwise stated).

<u>Idea:</u> Form the Clifford algebras on tangent spaces.

■ Each $C\ell(T_pM, g_p)$ is a geometric tangent space which we glue together to form

$$C\ell(TM,g) \coloneqq \bigsqcup_{p \in M} C\ell(T_pM,g_p).$$

■ The space of (smooth) multivector fields is

$$\mathcal{G}(M) \coloneqq \{C^{\infty}\text{-smooth sections of } C\ell(TM, g)\}.$$

Section 2

Clifford analysis

Covariant derivative

On M we have the unique torsion free Levi-Civita connection ∇ and covariant derivative ∇_u .

$$\nabla_{\mathbf{u}}A_r = \langle \nabla_{\mathbf{u}}A_r \rangle_r$$
.

 \blacksquare ∇_u is compatible with dot and wedge since

indler, 2018, ∇_n can be extended to multivectors and it is grade preserving

$$\nabla_{\mathbf{u}}(A \cdot B) = (\nabla_{\mathbf{u}}A) \cdot B + A \cdot (\nabla_{\mathbf{u}}B)$$
$$\nabla_{\mathbf{u}}(A \wedge B) = (\nabla_{\mathbf{u}}A) \wedge B + A \wedge (\nabla_{\mathbf{u}}B).$$

Gradient

We define the gradient (or Dirac operator) in some local basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ by

$$\nabla = \sum_{i=1}^{n} \mathbf{v}^{i} \nabla_{\mathbf{v}_{i}}$$

Note that this has the algebraic properties of a vector in $\mathcal{G}(M)$.

Gradient

We define the gradient (or Dirac operator) in some local basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ by

$$\nabla = \sum_{i=1}^{n} \mathbf{v}^{i} \nabla_{\mathbf{v}_{i}}$$

Note that this has the algebraic properties of a vector in $\mathcal{G}(M)$ and has the Leibniz rule

$$\nabla(AB) = \dot{\nabla}\dot{A}B + \dot{\nabla}A\dot{B}.$$

Note $\nabla^2 = \Delta$, the Laplace-Beltrami operator.

Subsection 1

Integration

Differential forms

We define the r-dimensional directed measure

$$dX_r \coloneqq \mathbf{v}_{j_1} \wedge \cdots \mathbf{v}_{j_r} dx^1 \cdots dx^n$$

where summation is implied over the increasing set of indices $1 \le j_1 < \dots < j_r \le n$. This allows us to define an r-form α_r by

$$\alpha_r = A_r \cdot dX_k^{\dagger}$$

where $A_r = \frac{1}{r!} \alpha_{i_1 \cdots i_r} \mathbf{v}^{i_1} \wedge \cdots \wedge \mathbf{v}^{i_r}$. We call A_r the multivector equivalent of α_r .

Volume form

The $volume\ form$ on M is given in local coordinates by

$$\mu = \sqrt{|g|} \, dx^1 \cdots dx^n = \mathbf{I}^{-1} \cdot dX_n$$

Hence, we can integrate scalar fields A_0 on M by

$$\int_{M} A_0^{\perp} \cdot dX_n = \int_{M} A_0 \mu.$$

Exterior algebra and calculus

■ Given an r- and s-form α_r and β_s we have

$$\alpha_r + \beta_s = (A_r + B_s) \cdot dX_r^{\dagger}$$
$$\alpha_r \wedge \beta_s = (A_r \wedge B_s) \cdot dX_{r+s}^{\dagger}.$$

■ The exterior derivative on multivector equivalents is

$$d\alpha_r = (\nabla \wedge A_r) \cdot dX_{r+1}^{\dagger}$$

■ The Hodge star on multivector equivalents is

$$\star \alpha_r = (\boldsymbol{I}^{-1} A_r)^{\dagger} \cdot dX_{n-r}^{\dagger}$$

Multivector field inner product

■ We define an inner product on multivector fields by

$$\ll A, B \gg \coloneqq \frac{1}{\operatorname{vol}(M)} \int_{M} (A, B) \mu$$

 \blacksquare This realizes the r-form inner product

$$\int_{M} \alpha_r \wedge \star \beta_r = \int_{M} \langle A_r^{\dagger} B_r \rangle \mu = \text{vol}(M) \ll A, B \gg$$

■ A_r and B_s are orthogonal when $r \neq s$ so this agrees with the grade direct sum \oplus – we use the same notation for both.

Boundary

On the boundary ∂M , we have the boundary pseudoscalar I_{∂} and the boundary normal $\nu = I_{\partial}^{\perp}$. Then

$$\mu_{\partial} \coloneqq \boldsymbol{I}_{\partial}^{-1} \cdot dX_{n-1}$$

and we define

$$\ll A, B \gg_{\partial} := \frac{1}{\operatorname{vol}(M)} \int_{\partial M} (A, B) \mu_{\partial}.$$

Multivector valued integrals

We can define a multivector valued integral on an oriented submanifold R by taking $A \in \mathcal{G}(M)$ and computing

$$\int_R A \mathbf{I}_R \mu_R.$$

Theorem (Hestenes, Sobczyk, 1984)

Let
$$A, B \in \mathcal{G}(M)$$
, then

$$\int_{M}\dot{A}\dot{
abla}m{I}\mu=\int_{\partial M}Am{I}_{\partial}\mu_{\partial}$$

 $\int_{M} \mathbf{I} \nabla B \mu = \int_{\partial M} \mathbf{I}_{\partial} B \mu_{\partial}$

 $\int_{\mathcal{M}} \dot{A} \dot{\nabla} \mathbf{I} B \mu = (-1)^n \int_{\mathcal{M}} A \mathbf{I} \nabla B \mu + \int_{\partial \mathcal{M}} A \mathbf{I}_{\partial} B \mu_{\partial}.$

Theorem

We have the Green's formula for the gradient

$$\ll A, \mathbf{I} \nabla B \gg = (-1)^n \ll \nabla A, \mathbf{I} B \gg + \ll A, \mathbf{I}_{\partial} B \gg_{\partial}.$$

Proof. Fix A^{\dagger} , $B \in \mathcal{G}(M)$ and note that

$$\int_{M} A^{\dagger} \mathbf{I} \nabla B \mu = (-1)^{n} \int_{M} \dot{A}^{\dagger} \dot{\nabla} \mathbf{I} B \mu + \int_{\partial M} A^{\dagger} \mathbf{I}_{\partial} B \mu_{\partial}$$
$$= (-1)^{n} \int_{M} (\nabla A)^{\dagger} \mathbf{I} B \mu + \int_{\partial M} A^{\dagger} \mathbf{I}_{\partial} B \mu_{\partial}.$$

Then, take the scalar part and divide by vol(M) to find

$$\ll A, \mathbf{I} \nabla B \gg = (-1)^n \ll \nabla A, \mathbf{I} B \gg + \ll A, \mathbf{I}_{\partial} B \gg_{\partial}.$$

Monogenic fields and gradients

■ The space of *monogenic fields* is

$$\mathcal{M}(M) := \{ A \in \mathcal{G}(M) \mid \nabla A = 0 \}.$$

■ Let $f = u + v\mathbf{B} \in \mathcal{G}_2^+(\mathbb{R}^2)$ then $\nabla f = 0$ yields the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

■ The *gradients* are

$$\nabla \mathcal{G}(M) \coloneqq \{ \nabla A \mid A \in \mathcal{G}(M) \text{ and } A|_{\partial M} = 0 \}.$$

For M a domain in \mathbb{R}^n with $n \geq 2$, we have the vector valued field

where S_n is the surface area of the unit ball. Note

We then define the *Cauchy kernel* by G(x, x') = E(x' - x).

 $E(x) \coloneqq \frac{1}{S_n} \frac{x}{|x|^n}$

 $\nabla E(x) = -\dot{E}(x)\dot{\nabla} = \delta(x).$

Cauchy integral

If $A \in \mathcal{M}(M)$, then we have the Cauchy integral formula

$$A(x) = (-1)^n \mathbf{I}^{-1} \int_{\partial M} G(x, x') \mathbf{I}_{\partial}(x') A(x') \mu_{\partial}(x').$$

This allows us to uniquely determine a monogenic field from boundary values $A|_{\partial M}$.

Lemma

Let $A \in \mathcal{M}(M)$ be such that $A|_{\partial M} = 0$. Then A = 0 on all of M.

Proof.

$$|A(x)| \leq \left| \int_{\partial M} G(x, x') \mathbf{I}_{\partial}(x') A(x') \mu_{\partial}(x') \right| \leq \int_{\partial M} \left| G(x, x') \mathbf{I}_{\partial}(x') A(x') \right| \mu_{\partial}(x') = 0.$$

Lemma

Fix a multivector field
$$A \in \mathcal{G}(M)$$
. If

 $\ll A, B \gg = 0$

for all $B \in \mathcal{G}(M)$ with $B|_{\partial M} = 0$, then A = 0.

Proof sketch.

- Use mollifiers to smooth indicator functions χ_U on open subsets U to be supported only on closed ϵ neighborhood $\overline{U^{\epsilon}}$. Call these functions χ_U^{ϵ} .
- Write $A = \sum_{I} A_{I} \mathbf{V}^{J}$ with $\mathbf{V}^{J} = \mathbf{v}^{j_1} \wedge \cdots \wedge \mathbf{v}^{j_r}$. Then note

$$\ll A, A_I \mathbf{V}_I \chi_{II}^{\epsilon} \gg = 0$$

implies $A_J = 0$ on U^{ϵ} for all J since $(\mathbf{V}^J, \mathbf{V}_K) = \delta_K^J$. Hence A = 0 on U^{ϵ} .

■ Cover M in such U^{ϵ} and repeat the argument leaving the $A|_{\partial M}$ undetermined. But, by smoothness of A, A = 0 on M.

Theorem (Clifford-Hodge-Morrey Decomposition)

The space of multivector fields $\mathcal{G}(M)$ has the L^2 -orthogonal decomposition

The space of manifector fields
$$g(m)$$
 has the B -orthogonal accomposition

 $\mathcal{G}(M) = \mathcal{M}(M) \oplus \mathbf{I} \nabla \mathcal{G}(M).$

Proof

• Orthogonality: Let $A \in \mathcal{M}(M)$ and $I \nabla B \in I \nabla \mathcal{G}(M)$ and note

 $\ll A, \mathbf{I} \nabla B \gg = (-1)^n \ll \nabla A, \mathbf{I} B \gg + \ll A, \mathbf{I}_{\partial} B \gg = 0,$

by the multivector Green's formula.

■ Let $C \in \mathcal{G}(M)$ be in the orthogonal complement to $I \nabla \mathcal{G}(M)$. Then, by the Cauchy integral formula, construct a monogenic field \tilde{C} from $C|_{\partial M}$ and note $C = \tilde{C} + C_0$ where $C_0|_{\partial M} = 0$. Note

$$0 = \ll C \cdot \mathbf{I} \nabla B \gg = \ll \nabla C_0 \cdot \mathbf{I} B \gg .$$

By the previous lemmas, it must be that $C_0 = 0$. Hence the orthogonal complement to $I\nabla \mathcal{G}(M)$ is $\mathcal{M}(M)$.

Comparing to Hodge-Morrey

The Hodge-Morrey decomposition reads

$$\mathcal{G}^r(M) = \mathcal{E}^r(M) \oplus \mathcal{C}^r(M) \oplus \mathcal{M}^r(M).$$

whereas the Clifford-Hodge-Morrey decomposition ignores specific grades

$$\mathcal{G}(M) = \mathcal{M}(M) \oplus \mathbf{I} \nabla \mathcal{G}(M).$$

Section 3

Gelfand theory

Open question

Motivation from belishev 2d and 3d papers. Mention we will work with M imbedded in \mathbb{R}^n

Subsurface spinor fields

■ Let $\mathbf{B} \in \mathcal{G}(M)$ be a constant unit 2-blade, then an even multivector field f_+ satisfying

$$f_+ = \mathbf{P}_{\boldsymbol{B}} \circ f_+ \circ \mathbf{P}_{\boldsymbol{B}}$$

is a subsurface spinor field and we let $\mathcal{G}_B^+(M)$ to denote the space such fields.

■ We note that the space

$$\mathcal{A}_{\boldsymbol{B}(M)} = \{ f_+ \in \mathcal{G}_{\boldsymbol{B}}^+(M) \mid \nabla f_+ = 0 \}$$

is a commutative unital Banach algebra.

Functionals

We define the *spinor dual* $\mathcal{M}^*(M)$ as the continuous right \mathcal{G}_n -module homomorphisms

$$\mathcal{M}^*(M) \coloneqq \{l: \mathcal{M}^+(M) \to \mathcal{G}_n^+ \mid l(fs+g) = l(f)s + l(g), \ \forall f, g \in \mathcal{M}(M), \ s \in \mathcal{G}_n^+\}$$

and refer to the elements as $spin \ functionals$. We provide $\mathcal{M}^*(M)$ with the weak-* topology so that every $x \in M$ corresponds to a continuous map on $\mathcal{M}^*(M)$.

Characters

Define the algebra \mathbb{A}_{B} to be the algebra generated by 1 and B. Then, the $spinor\ spectrum\ \mathfrak{M}(M)$ is the set of algebra homomorphisms

$$\mathfrak{M}(M) \coloneqq \{ \delta \in \mathcal{M}^*(M) \mid \delta(f) \in \mathbb{A}_{\mathbf{B}}, \ \delta(fg) = \delta(f)\delta(g), \ \forall f, g \in \mathcal{A}_{\mathbf{B}}(M), \ \mathbf{B} \in \mathrm{Gr}(2,n) \}$$

and refer to the elements as *spin characters*. Note that one example of such characters are point evaluations $\delta(f) = f(x^{\delta})$.

z analogs and monogeneic polynomials

Take e_i to be an orthonormal basis for \mathbb{R}^n , let $B_{ij} = e_i e_j$ and define the functions $z_{ij} = x_j - x_i B_{ij}$ and note $z_{ij} \in \mathcal{A}_{B_{ii}}(M)$.

Let σ be a permutation of $\{2,3,\ldots,n\}$, then the homogeneous polynomial of degree j

$$p_{j_2\cdots j_n}(x) = \frac{1}{j!} \sum_{\text{permutations}} z_{1\sigma(1)}(x)\cdots z_{1\sigma(j)}(x)$$

is monogenic.

Collect these into the set of monogenic polynomials

$$\mathcal{M}^{\mathcal{P}}(M) = \left\{ \sum_{j=0}^{N} \left(\sum_{\substack{j_2 \dots j_n \\ j_2 + \dots j_n = j}} p_{j_2 \dots j_n} a_{j_2 \dots j_n} \right) \mid j_2 + \dots + j_n = j, N \in \mathbb{N}, \ a_{j_2 \dots j_n} \in \mathcal{G}_n \right\}.$$

Lemma (Density)

The space $\mathcal{M}^{\mathcal{P}}(M)$ is dense in $\mathcal{M}(M)(\mathbb{B}_{R,w})$.

Proof sketch. Let $f \in \mathcal{M}(\mathbb{B}_{R,w})$ and use the Cauchy integral formula to define the coefficients by

$$a_{j_2\cdots j_n} = \int_{\partial B(w,R)} \frac{\partial^j G(w,y)}{\partial y_2^{j_2}\cdots \partial y_n^{j_n}} \boldsymbol{\nu}(y) f(y) \mu_{\partial}(y),$$

where each $a_{j_2\cdots j_n}\in\mathcal{G}_n^+$. Then

$$f(x) = \sum_{j=0}^{\infty} \left(\sum_{\substack{j_2 \cdots j_n \\ j_2 + \cdots j_n = j}} p_{j_2 \cdots j_n} (x - w) a_{j_2 \cdots j_n} \right),$$

converges pointwise for $x \in \mathbb{B}_{R,w}$ by [Ryan, 2004].

Idea

By linearity, we can note that for $\delta \in \mathfrak{M}(M)$

$$\delta(f(x)) = \sum_{j=0}^{\infty} \left(\sum_{\substack{j_2 \dots j_n \\ j_2 + \dots j_n = j}} \delta(p_{j_2 \dots j_n}(x - w)) a_{j_2 \dots j_n} \right)$$

and on each monogenic polynomial

$$\delta(p_{j_2...j_n}(x)) = \frac{1}{j!} \sum_{\text{permutations}} \delta((z_{1\sigma(1)}(x)) \cdots \delta(z_{1\sigma(j)}(x))$$

by the multiplicativity of δ .

Lemma (Point evaluation)

Let
$$\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$$
 and $z_{ij} \in \mathcal{A}_{\mathbf{B}_{ij}}(\mathbb{B}_{R,w})$, then $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

Proof sketch. Note that δ is an algebra homomorphism and thus

$$\delta(z_{ij}) = \alpha_{ij} + \beta_{ij} \mathbf{B}_{ij}.$$

Two key relationships $z_{ij} \boldsymbol{B}_{ji} = -z_{ji}$ and $z_{ij} + z_{kj} + z_{ik} \boldsymbol{B}_{kj}$ yield the relationships

$$\alpha_{ji} = -\beta_{ij}$$
 $\alpha_{ij} = \alpha_{kj}$ $\beta_{ij} = \beta_{ik}$ $\alpha_{ik} = -\beta_{kj}$.

Each set of constants α and β is thus given by n independent numbers and so it must be that $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

Lemma (Identification)

Let $f \in \mathcal{M}(\mathbb{B}_{R,w})$, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof: Take $G_0 \in \mathcal{M}^+(\mathbb{B}_{R,w})$ by $G_0(x) = G(x,x_0)\mathbf{e}_1$ with $x_0 \notin \mathbb{B}_{R,w}$. Fix $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and note $\delta(G_0) = G_0(x^{\delta})$. Take a sequence $x_n \to x^{\delta}$ with $x_n \notin \mathbb{B}_{R,w}$ and note that the sequence of functions $G_n(x) = G(x,x_n)\mathbf{e}_1 \in \mathcal{M}(\mathbb{B}_{R,w})$. But

$$\lim_{n\to\infty}\delta(G_n)=\lim_{n\to\infty}G_n(x^{\delta})$$

does not converge due to a singularity at x^{δ} . It must be that $x^{\delta} \in \mathbb{B}_{R,w}$ by continuity of δ .

Theorem (Noncommutative Gelfand representation)

For any
$$\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$$
, there is a point $x^{\delta} \in \mathbb{B}_{R,w}$ such that $\delta(f) = f(x^{\delta})$ for any

is a homeomorphism.

 $f \in \mathcal{M}(\mathbb{B}_{R,w})$. Given the weak-* topology on $\mathcal{M}^*(\mathbb{B}_{r,w})$, the map

 $\gamma: \mathfrak{M}(\mathbb{B}_{R,w}) \to \mathbb{B}_{R,w}, \quad \delta \mapsto x^{\delta}$

Proof: The lemmas show that the map $\gamma: \mathfrak{M}(\mathbb{B}_{R,w}) \to \mathbb{B}_{R,w}$ is bijective. To see that this map is a homeomorphism, take a sequence $\delta_n \to \delta$ in $\mathfrak{M}(\mathbb{B}_{R,w})$ and note

$$\gamma(\delta_n) = x^{\delta_n}$$
.

For $f \in \mathcal{M}(\mathbb{B}_{R,w})$ we have

$$f(\gamma(\delta_n)) = f(x^{\delta_n}) = \delta_n(f) = \gamma^{-1}(x^{\delta_n})(f).$$

Taking $n \to \infty$ we realize γ and γ^{-1} are continuous therefore γ is a homeomorphism.

Section 4

Future work

Calderón problem on manifolds

Question: Let (M, g) be an unknown Riemannian manifold with known boundary ∂M . Consider the forward problem

$$\begin{cases} \Delta \omega = 0 & \text{in } M \\ \iota^* \omega = \phi & \text{on } \partial M \end{cases}$$

Define the *Dirichlet-to-Neumann map* on forms by $\Lambda \phi = \iota^*(\star d\omega)$. Can we determine (M, g) from Λ ?

Calderón problem on manifolds

This problem is equivalent to the electical impedance tomography problem in dimension 3. The problem has been solved in dimension n=2 [Belishev, 2003] and in dimensions $n\geq 3$ when M is an analytic manifold [Krupchyk, Lassas, Uhlmann, 1989]. The smooth cases is still unsolved.

Calderón problem on manifolds

When M is dimension n = 3, the scalar potential u and magnetic bivector field b are two parts of a monogenic field f = u + b due to Ohm's and Ampere's laws

$$-\nabla \wedge u = \nabla \rfloor b.$$

If Λ can provide us $b|_{\partial M}$, then we can reconstruct $\mathcal{M}^+(M)$. Perhaps we can show that $\mathcal{M}^+(M)$ recreates M up to homeomorphism. Moreover, we know the algebraic structure of each $\mathcal{A}_B(M)$, can this be used to determine g up to isometry?

Other inverse problems

- Can the magnetic impedance tomography problem can provide some extra insight on the EIT problem?
- The Hodge-Morrey decomposition is an instrumental tool for boundary value problems that, for example, allows one to show that Λ determines the Betti numbers of M.
- Can the Clifford-Hodge-Morrey decomposition can allow us to work on other related boundary inverse problems?
- These problems could include spacetime problems where the metric g is of mixed signature.

Section 5

Conclusions

- We have utilized multivector fields to serve as a meaningful generalization of both the complex numbers and differential forms.
- or both the complex numbers and differential forms.

 This provides a new way to decompose fields on domains of \mathbb{R}^n and this can likely be generalized to arbitrary compact orientable
- Likewise, we have proven that the monogenic fields contain a wealth of topological information and this information is supported on the boundary by the Cauchy integral formula.

pseudo-Riemannian manifolds.

Data Assimilation

Over the past two years I have also worked with a team on developing new techniques for data assimilation. We have submitted an article titled "Model and Data Reduction for Data Assimilation: Particle Filters Employing Projected Forecasts and Data with Application to a Shallow Water Model" We are continuing to work to apply our scheme to new models such as the Modular Arbitrary-Order Ocean-Atmospheric Model (MAOOAM).