

Metody předzpracování obrazu – barevné, jasové a geometrické

Strojové vidění a zpracování obrazu (BI-SVZ)

Motivace předzpracování obrazu

- Nevhodná volba vyvážení bílé
- Chybné nastavení expozice
- Požadavky na jiný barevný prostor
- Odstranění šumu, zaostření snímku
- Zisk relevantních regionů
- Geometrické zkreslení znemožňující aplikaci některých algoritmů (OCR)
- Komprese dat

Typy předzpracování obrazu

- Barevné a jasové transformace
 - Úprava jasu, kontrastu, ...
 - Ekvalizace histogramu
 - Zvýraznění určitých charakteristik obrazu
 - Prahování
 - Hranové detekce
 - Filtrace a vyhlazování
 - ..
- Geometrické transformace
 - Odstranění soudkovistosti
 - Euklidovské, afinní, projektivní, ...
- Frekvenční transformace

Barevné a jasové transformace

Převod barevného RGB snímku na černobílý

Průměrovací metoda

$$\bullet \ I = \frac{R + G + B}{3}$$

- Metoda váhování
 - I = 0.3R + 0.59G + 0.11B
- V průměrovací metodě bereme 33 % hodnotu z každého RGB kanálu, ve skutečnosti však všechny barvy nepřispívají stejným dílem (fyzíkální vlastnsti, snímač, apod.)

Originál

Převod průměrováním

Převod váhováním

Histogram

- Grafové znázornění distribuce jasových hodnot pixelů
- Dokáže prozradit, zda je snímek vhodně exponován, zda není světlo příliš mdlé nebo ostré, případně jaké úpravy na snímek aplikovat
- Osa Y vyjadřuje četnost v daném intervalu.
- Kromě jasů existuje i pro jednotlivé RGB kanály.
- Výpočet v OpenCV <u>cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])</u>

Ukázky histogramů

Domiující tmavé odstíny tzv. Low-key metoda

Dominující světlé odstíny tzv. High-key metoda

Fotografie s vysokým kontrastem

Fotografie s nízký kontrastem

Ekvalizace histogramu

- Zajišťuje snazší interpretaci vizualizovaného obrazu pomocí zvýšení lokálního kontrastu
- Užitečné pro obrazy, které jsou příliš tmavé, příliš světlé, nebo nekontrastní
- V ekvalizovaném histogramu jsou jasové úrovně zastoupeny zhruba stejně četně
- Jednoduchá transformace na výpočet, a zároveň invertibilní
- Nevýhodou je zvýrazněný šum v obraze

Implementace v OpenCV - <u>cv2.equalizehist(hist)</u>

Ekvalizace histogramu

- Využití:
 - Face recognition, kde usilujeme o co nejpodobnější jasové podmínky pro celý dataset
 - Rentgenové snímky
 - Snímky zaznamenané termokamerou
 - Chybně exponované snímky

CLAHE - Contrast Limited Adaptive Histogram Equalization

- Klasická verze ekvalizace uvažuje pouze globální transformaci
- CLAHE využívá k výpočtu klouzavé okénko, kde pro každý region vypočte lokální histogram
- Následně se provede ekvalizace nad tímto regionem
- K tomu, aby nedošlo k přílišnému zvýraznění šumu, v případě nekontrastního regionu, se využívá "chytrý" clipping
- Implementace v OpenCV pomocí <u>cv2.createCLAHE()</u>

CLAHE - Contrast Limited Adaptive Histogram Equalization

Original

Snímek po ekvalizaci histogramu

CLAHE - Contrast Limited Adaptive Histogram Equalization

Original

Snímek po aplikaci CLAHE

Porovnávání histogramů

- Velmi naivní způsob k zjištění podobnosti dvou obrázků
- Označme dva různé histogramy H_1 a H_2
- K porovnání H_1 a H_2 zaveďme podobnostní metriku $d(H_1,H_2)$
- V jakém barevném prostoru se vyplatí porovnávat histogramy?

Příklady metrik:

- Korelační
 - Čím větší, tím lepší maximální hodnota je 1

$$d(H_1,H_2) = rac{\sum_I (H_1(I) - ar{H}_1) (H_2(I) - ar{H}_2)}{\sqrt{\sum_I (H_1(I) - ar{H}_1)^2 \sum_I (H_2(I) - ar{H}_2)^2}}$$

• kde $\bar{H}_k = \frac{1}{N} \sum_J H_k(J)$

Porovnávání histogramů – příklady metrik

- Chí-kvadrát
 - Výpočet chí-kvadrát vzdálenosti

$$ullet d(H_1,H_2) = \sum_I rac{(H_1(I)-H_2(I))^2}{H_1(I)}$$

- Průnik
 - Výpočet průniku čím větší, tím lepší
 - $\bullet \quad d(H_1,H_2) = \sum_I \min(H_1(I),H_2(I))$
- Bhattacharyya vzdálenost (někdy také nazývána Hellingerova)
 - Nabývá hodnot z intervalu < 0, 1 > čím menší, tím lepší

$$egin{aligned} oldsymbol{d}(H_1,H_2) &= \sqrt{1-rac{1}{\sqrt{ ilde{H}_1 ilde{H}_2 N^2}} \sum_{I} \sqrt{H_1(I) \cdot H_2(I)} \end{aligned}$$

Porovnávání histogramů – implementace

Porovnávání dvou histogramů v OpenCV - <u>cv2.compareHist(H1, H2, metric)</u>

Kde hodnota *metric* může být:

- cv2.HISTCMP_CORREL korelační
- cv2.HISTCMP_CHISQR chí-kvadrát vzdálenost
- cv2.HISTCMP_CHISQR_ALT alternativní chí-kvadrát vzdálenost
- cv2.HISTCMP INTERSECT průnik
- cv2.HISTCMP_BHATTACHARYYA Bhattacharyya vzdálenost měřící překryv histogramů
- cv2.HISTCMP_HELLINGER synonymum pro Bhattacharyya
- cv2.HISTCMP_KL_DIV Kullback-Leibler divergence

(Pozor, v každé verzi OpenCV trochu jiné názvy metrik)

Porovnávání histogramů – příklad na obrázku

Úprava jasu

• Dále předpokládáme 2D obrazový snímek reprezentovaný pomocí matice, funkci f(i, j), která vrátí hodnotu/vektor pixelu v řádku i a sloupci j a taktéž funkci g(i, j), která vrací hodnotu/vektor pixelu po transformaci

- Triviální příklad zvýšení jasu můžeme provést přičtením konstanty $\beta>0$ ke každému pixelu (naopak snížení jasu přičtením $\beta<0$)
 - $g(i,j) = f(i,j) + \beta$
 - Jak se tato transformace projeví v RGB snímku? Jak v černobílém?

Jak chytřeji změnit jas snímku? (Nápověda: jiný barevný prostor)

Úprava jasu - příklad

Originální obrázek:

12	23	84	122
123	34	92	200
23	45	29	73

Zvýšení jasu o 60:

12 + 60	23 + 60	84 + 60	122 + 60		72	83	144	182
123 + 60	34 + 60	92 + 60	200 + 60	=	183	94	152	255
23 + 60	45 + 60	29 + 60	73 + 60		83	105	89	133

• Při přesažení hodnoty 255 ztrácíme v 8 bitovém obraze informace

Úprava jasu - příklad

Úprava kontrastu

- Změna kontrastu $g(i,j) = \alpha * f(i,j)$
 - Snížení pro $0 < \alpha < 1$
 - Zvýšení pro $\alpha > 1$
- Originální obrázek:

144	245	132	54
10	62	81	84
99	106	29	7

Zvýšení kontrastu o faktor 2

144 * 2	245 * 2	132 * 2	54 * 2
10 * 2	62 * 2	81 * 2	84 * 2
99 * 2	106 * 2	29 * 2	7 * 2

255	255	255	108
20	124	162	168
198	212	58	14

• Při přesažení hodnoty 255 ztrácíme v 8 bitovém obraze informace

Úprava kontrastu - příklad

Změna jasu a kontrastu dohromady

- Nejčastěji se však setkáme s formulací
 - $g(i, j) = \alpha * f(i, j) + \beta$
 - viz dokumentace v <u>OpenCV</u>

Je jasová a kontrastní transformace invertibilní?

Změna jasu a kontrastu dohromady

Není, neboť při clippingu přicházíme o datové informace

Ukázka přidáni jasu a zvýšení kontrastu - $\alpha = 1.3 \, ^{\circ} \beta = 40$

Gamma korekce

 Je nelineární transformace všech pixelů, která se snaží dát stínům a světlům více prostoru

•
$$g(i, j) = \left(\frac{f(i,j)}{255}\right)^{\gamma} * 255$$

- Pro $\gamma < 1$ zesvětlení stínů posun histogramu doprava
- Pro $\gamma > 1$ ztmavení světel posun histogramu doleva

Gamma korekce

Ukázka gamma korekce pro $\gamma=0.4$

Úprava jasu vs gamma korekce – příklad histogramu

Zesvětlení pomocí zvýšení jasu (přičtení β)

Histogram originálního snímku

Zesvětlení pomocí gamma korekce

Geometrické transformace

Typy geometrických transformací

- Nejpoužívanější transformace v 2D rovině:
 - Posunutí
 - Euklidovská (lineární)
 - Podobnostní
 - Afinní
 - Projektivní
- 3D transformace jsou obdobné
 - využívají matice 4x4

• Euklidovské \subset Podobnostní \subset *Afinn*í \subset Projektivní

Geometrické transformace – posunutí

Příklad ve 2D

•
$$(u_x, u_y) = (v_x, v_y) + (t_x, t_y) \rightarrow u = v + t$$

- Maticově
 - Výhodné, neboť v homogenních souřadnicích se jedná o lineární operaci
 - Díky tomu se 2D posun vyjádří pomocí operace 3D zkosení

$$\bullet \begin{pmatrix} u_x \\ u_y \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} v_x \\ v_y \\ 1 \end{pmatrix}$$

Geometrické transformace – Euklidovská

- Rotace a posunutí
- Zachovává velikosti úhlu, poměry ploch a vzdálenosti mezi body (izometrické zobrazení)

 proto ten název
- Příklad ve 2D
 - $(u_x, u_y) = (v_x \cos \theta v_y \sin \theta + t_x, v_x \sin \theta + v_y \cos \theta + t_y)$
 - Kde θ je úhel otočení ve stupních od počátku souřadnicového systému
 - Maticově

•
$$u = T \times R \times v$$

$$\bullet \begin{pmatrix} u_x \\ u_y \\ 1 \end{pmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} v_x \\ v_y \\ 1 \end{pmatrix}$$

Jak by operace rotace mohla maticově vypadat ve 3D? <u>Vysvětlení</u>

Geometrické transformace – podobnostní

- Škálování, rotace a posunutí
- Zachovává velikosti úhlů a poměr vzdálenosti bodů na přímce

Příklad ve 2D

•
$$(u_x, u_y) = (sv_x \cos \theta - sv_y \sin \theta + t_x, sv_x \sin \theta + sv_y \cos \theta + t_y)$$

Maticově

•
$$u = T \times R \times S \times v$$

Geometrické transformace – afinní

- Skládá se z kombinace lineárních transformací (škálování, rotace a zkosení) a posunu
- Zachovává kolinearitu, vlastnost rovnoběžnosti, poměr vzdálenosti bodů na přímce a poměry ploch

- Zobrazení mezi afinními prostory všechny Euklidovské prostory jsou afinní, ale ne všechny afinní jsou Euklidovské.
- Transformace nemusí nutně zachovávat úhly, vzdálenosti a souřadnice počátku (nulový bod)
- Každá lineární transformace je afinní, ale ne každá afinní transformace je lineární (díky nezachovávání souřadnic počátku)

Geometrické transformace – afinní

- Není natolik silný nástroj, aby transformoval čtverec na libovolný čtyřúhelník – k tomu se využívá projektivní
- Nejčastěji využití je v počítačové grafice
- Záleží na pořadí prováděných operací?

Maticově ve 2D

•
$$u = A \times v$$

$$\bullet \begin{pmatrix} u_x \\ u_y \\ 1 \end{pmatrix} = \begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} \\ a_{1,0} & a_{1,1} & a_{1,2} \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} v_x \\ v_y \\ 1 \end{pmatrix}$$

Transformation name	Affine matrix	Example
Identity (transform to original image)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	***
Reflection	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
Scale	$egin{bmatrix} c_x = 2 & 0 & 0 \ 0 & c_y = 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	
Rotate	$\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	where $\theta = \frac{\pi}{6} = 30^{\circ}$
Shear	$egin{bmatrix} 1 & c_x = 0.5 & 0 \ c_y = 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	

Geometrické transformace – projektivní

- Zachovává dvojpoměr a kolinearitu
- Vyžaduje homogenní souřadnice, neboť je mění
- Body se souřadnicemi v nekonečnu dokáže převést na konečné a naopak
- Co má společného afinní a projektivní transformace?

• <u>Příklad</u>

- Transformace mezi projektivními rovinami
- K výpočtu se je nutné znát minimálně 4 bodové korespondence
- Následně se aplikuje algoritmus <u>DLT</u>, tím získáme matici H
- V OpeCV <u>cv2.findHomography()</u> a <u>cv2.warpPerspective()</u>

$$\begin{bmatrix} \rho_i'x_i'\\ \rho_i'y_i'\\ \rho_i' \end{bmatrix} = \tilde{\mathbf{x}}_i' = \mathbf{H}\tilde{\mathbf{x}}_i = \begin{bmatrix} h_{11} & h_{12} & h_{13}\\ h_{21} & h_{22} & h_{23}\\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i\\ y_i\\ 1 \end{bmatrix}$$
 image point
$$\begin{bmatrix} \text{image}\\ \text{point} \end{bmatrix}$$

Afinní transformace je speciálním případem když:

$$h_{31} = h_{32} = 0, h_{33} = 1$$

Zdroje

- https://www.opencv-srf.com
- https://www.alza.cz/slovnik/histogram
- http://www.cambridgeincolour.com/tutorials/histograms1.htm
- https://www.pyimagesearch.com/2014/07/14/3-ways-comparehistograms-using-opency-python/