Techniques in Sequences and Series

Archis R. Bhandarkar April 20th, 2011

1 Introduction

In this lecture I will outline several problem solving techniques in the general topic of sequences and series. I hope that today I will be able to cater to everyone's inner problem solver and I encourage you to work either in groups or alone to solve the provided challenge problems.

2 Techniques

2.1 Telescoping

Example (1): Compute
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \frac{1}{4(5)} + \dots$$

Hmph. This is definitely neither a geometric nor an arithmetic series, so how do we even solve this problem? The key to realizing the telescoping nature of this sum is through **partial fraction decompositions**. I quickly run by on the board how we may find that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

Thanks to this fact we have that:
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots = 1.$$

Clearly, telescoping is quite the powerful technique and through employing clever factorization strategies tandem partial fraction decompositions many series problems may be solved almost immediately.

Example (2): Compute
$$\sum_{n=1}^{\infty} \frac{4n}{n^4 + 4} = \frac{4}{1^4 + 4} + \frac{4(2)}{2^4 + 4} + \frac{4(3)}{3^4 + 4} + \frac{4(4)}{4^4 + 4} + \dots$$

I would like to highlight through this example how clever factorizations may reveal the telescoping nature of a series. Here, we use the **Sophie Germain Identity**: $n^4 + 4 = n^4 + 4n^2 + 4 - 4n^2 = (n+2)^2 - (2n)^2 = (n+2n+2)(n-2n+2)$. We note that $\frac{4n}{n^4+4} = \frac{1}{n^2-2n+2} - \frac{1}{n^2+2n+2}$. Using this fact, we telescope the sum and arrive at $\frac{3}{2}$ for our answer.

2.2 Arithmetico-Geometric

Arithmetico-Geometric series take the form where part of the sum is progressing arithmetically and the other is progressing geometrically. Most solutions incorporate clever manipulation of the original series itself.

1

Example (3): Compute
$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{2^n} = \frac{1}{2} - \frac{2}{4} + \frac{3}{8} - \frac{4}{16} + \dots$$

The geometric nature of the denominator tempts us to divide by 2 and add back to our original series.

$$S = \frac{1}{2} - \frac{2}{4} + \frac{3}{8} - \frac{4}{16} + \frac{5}{32} + \dots$$

$$\frac{S}{2} = \frac{1}{4} - \frac{2}{8} + \frac{3}{16} - \frac{4}{32} + \dots$$

From this, we have that $\frac{3S}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n} = \frac{1}{3}$. Therefore, $S = \frac{2}{9}$. (Source: TJARML Practice)

2.3 Combinatorial Sums

I claim a three step plan to evaluate any combinatorial sum:

- 1. Simplify through Identities
- 2. Apply Binomial Expansions
- 3. Work Backwards to the Combinatorics Problem

Identities: The following identities are extremely powerful in discovering the symmetry of a combinatorial sum and overall simplification.

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^n$$

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$$

Binomial Expansions: Versatility with binomial expansions is crucial in some combinatorial sums. Be comfortable with the expansions of $(1 \pm i)^n$ and the binomial theorem generalized to non-integer powers:

$$(x+y)^n = \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y^1 + \binom{n}{2} x^{n-2} y^2 + \dots$$

Lastly, Working Backwards to the Combinatorics Problem is a powerful technique in translating from an algebraic sum to combinatorial arguments.

Example (4): Simplify
$$\sum_{i=1}^{n} i \binom{n}{i} = \binom{n}{1} + 2 \binom{n}{2} + 3 \binom{n}{3} + \dots + n \binom{n}{n}$$

We apply one of the identies: $S = \binom{n}{n-1} + 2\binom{n}{n-2} + \cdots + (n-1)\binom{n}{1} + n\binom{n}{0}$. Adding back to the original sum, we have $2S = n\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$. Therefore, $S = n2^{n-1}$.

2.4 Polynomial Sums

Polynomial sums are encountered quite frequently in the realm of contest math, but have you ever wondered how to arrive at the closed form of $\sum_{i=1}^{n} i^3$ or how to generalize to greater powers? **Discrete Calculus** definitely provides a powerful outlet in doing so, but today I would like to provide a simpler analysis bridging what we learned from Combinatorial Sums.

Example (5): Arrive at the closed form of
$$\sum_{i=1}^{n} i^3$$

We will say that $i^3 = a_1\binom{i}{3} + a_2\binom{i}{2} + a_3\binom{i}{1}$, where a_1 , a_2 , and a_3 are coefficients we must determine. Through expanding the combinations, we realize that this boils down in the same we did partial fraction decompositions: $i^3 = a_1\left(\frac{i(i-1)(i-2)}{6}\right) + a_2\left(\frac{i(i-1)}{2}\right) + a_3i$. By cleverly plugging in i=0,1,2, we may determine $a_1=6$, $a_2=6$; $a_3=1$. This means that:

$$\sum_{i=1}^n i^3 = \sum_{i=1}^n \left(6 \binom{i}{3} + 6 \binom{i}{2} + \binom{i}{1} \right) = 6 \binom{n+1}{4} + 6 \binom{n+1}{3} + \binom{n+1}{2} = \left(\frac{n(n+1)}{2} \right)^2, \text{ as we learned from Combinatorial Sums. This powerful approach may be generalized to even further powers of the index.}$$

2.5 Nested Radicals

Evaluation of nested radicals hinges on identifying the recursive nature of the sum at hand.

Example (6): Compute
$$\sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + 5\sqrt{1 + \dots}}}}}$$

We will define a function
$$f(x) = \sqrt{1 + x\sqrt{1 + (x+1)\sqrt{1 + (x+2)\sqrt{1 + \dots}}}}$$
. We then have $f(x) = \sqrt{1 + xf(x+1)}$ or $[f(x)]^2 = 1 + xf(x+1)$. The left hand side is of order $2n$, whereas the right hand side is of order $n+1$, so we know that our solution is linear $(n=1)$. By plugging in $f(x) = ax + b$, we discover that the function $f(x) = x + 1$ satisfies this relation. Our sum is $f(2)$, giving us a final answer of 3. (Source: Ramanujan's Notebooks)

2.6 Trignometric Sums

Often we must expose the telescoping nature of trignometric sums to get to the heart of the sum. The following are some helpful trignometric identities for telescoping.

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy} \mod \pi$$

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin(\alpha)\cos(\beta)$$

$$\cos(\alpha - \beta) - \cos(\alpha + \beta) = 2\sin(\alpha)\sin(\beta)$$

Symmetry, like $\cos 180 - x = -\cos x$, is also another powerful tool in evaluating trignometric sums.

Example (7): Compute
$$\cos(\frac{\pi}{7}) - \cos(\frac{2\pi}{7}) + \cos(\frac{3\pi}{7})$$

This is only three terms, but it's already looking nasty! Hoping things will telescope we look to the second identity, $S = \frac{2\sin\pi/7}{2\sin\pi/7}(\cos(\frac{\pi}{7}) - \cos(\frac{2\pi}{7}) + \cos(\frac{3\pi}{7})) = \frac{\sin(2\pi/7) + \sin(\pi/7) - \sin(3\pi/7) + \sin(4\pi/7) - \sin(2\pi/7)}{2\sin\pi/7}$

This simplifies to $\frac{\sin \pi/7}{2\sin \pi/7} = \frac{1}{2}$ and demonstrates telescoping is a powerful technique in evaluating trignometric series.

3 Problems

- 1. Evaluate $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$
- 2. In the sequence $\frac{1}{2}, \frac{5}{3}, \frac{11}{8}, \ldots$ the (n+1)st term is the sum of the numerator and the denominator of the *n*th term. The numerator of the (n+1)st term is the sum of the denominators of the (n+1)st term and the *n*th term. Find the limit of this sequence (TJARML)
- 3. Evaluate $\sum_{n=1}^{\infty} \frac{F_n}{3^n}$, where $F_0 = 1$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. (Mandelbrot)
- 4. Compute the value of the infinite series $\sum_{n=2}^{\infty} \frac{n^4 + 3n^2 + 10n + 10}{2^n(n^4 + 4)}$ (HMMT 2006)
- 5. Evaluate $\sum_{n=1}^{1994} \left[(-1)^n \frac{n^2 + n + 1}{n!} \right] (Canada 1994)$
- 6. Evaluate $\sum_{n=1}^{2010} \left[(-1)^{n+1} {2011 \choose 2n} \right] (TJML \ 2011)$
- 7. Evaluate $\sum_{n=1}^{\infty} \frac{(7n+32)3^n}{n(n+2)4^n}$ (Mildorf)
- 8. Evaluate $1\sin 2^{\circ} + 2\sin 4^{\circ} + 3\sin 6^{\circ} + \cdots + 90\sin 180^{\circ}$ (TJML 2011)
- 9. Prove that $\sum_{n=0}^{88} \left[\frac{1}{\cos(n)\cos(n+1)} \right] = \frac{\cos 1}{\sin^2 1} \ (USAMO \ 1992)$
- 10. Where $F_0 = 1$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, prove that a quadrilateral ABCD in the coordinate plane with vertices $A(F_n, F_{n-1}), B(F_{n+1}, F_n), C(F_{n+2}, F_{n+1}), D(F_{n+3}, F_{n+2})$ always has an area of $\frac{1}{2}$ for all $n \ge 1$. (BhandarkarA)

11. Prove that for every positive integer n, and for every real number x not of the form $\frac{k\pi}{2^n}$, where $0 \le t \le n$ and k is an integer:

$$\sum_{n=1}^{n} \frac{1}{\sin(2^{a}x)} = \cot(x) - \cot(2^{n}x)$$

(IMO 1966)

- 12. Compute $\prod_{n=2}^{\infty} \frac{n^3 1}{n^3 + 1}$ (Putnam 1977)
- 13. Compute $\sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{k}{2^{n+k}}$ (HMMT 2008)
- 14. Evaluate the sum $\sum_{n=0}^{\infty} \left[\binom{2n}{n} \left(\frac{1}{5} \right)^n \right]$ (HMMT 2008)
- 15. Define the sequence $\{a_n\}$ by $a_0 = 1, a_1 = 1$, and $a_n = a_{n-1} + \frac{a_{n-1}^2}{a_{n-2}}$ for $n \ge 2$ and $\{b_n\}$ by $b_0 = 1, b_1 = 3$, and $b_n = b_{n-1} + \frac{b_{n-1}^2}{b_{n-2}}$ for $n \ge 2$. Prove that $\frac{b_n}{a_n} = \frac{(n+1)(n+2)}{2}$ for all $n \ge 0$ (AIME 2008 extension)