Lecture 11: Digital Logic

Announcements

- Midterm Grades Released
 - If you have any questions, email me or any of the Tas
 - Overall Class Average: ~81 %
- Project 3 released
 - Due August IIth II:55pm, 2 Weeks
 - Due day before Final, so plan accordingly
 - No Extension
- Lectures until final:
 - Digital Logic (Chapter 4 in book)
- Rest of lecture time / recitation today:
 - Overview of Programming Assignment 3

Logic Design

• How does your processor perform various operations?

Logic Gates

- Transition from representing information to implementing them
- Logic gates are simple digital circuits
 - Take one or more binary inputs
 - Produce a binary output
 - Truth table: relationship between the input and the output

And Gate

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

Or Gate

А— В—		– A+B
	OR	

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

Logical Completeness

Can implement any truth table with Not, Or, And gates.

Α	В	C	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

1. AND combinations that yield a "1" in the truth table.

2. OR the results of the AND gates.

NAND and NOR gates

Xor Gate

Beneath the Digital Abstraction

- Digital system uses discrete values
 - Represent it with continuous variables (voltage, etc)
 - Also must handle noise
- Transistors used to implement logical functions
- Voltage used to represent 0 or 1

Transistor

- Microprocessors contain millions (billions) of transistors
 - Intel Pentium 4 (2000): 48 million
 - IBM/Apple PowerPC G5 (2003): 58 million
- A transistor acts as a switch
- Combined to implement logic functions (AND, OR, NOT..)
- Combined to build higher-level structures (Adder, Decoder..)
- Combined to build processor

DeMorgan's Law

Converting AND to OR (and some NOT).

Α	В	\overline{A}	\overline{B}	$\overline{A}\cdot\overline{B}$	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	0
			0		1
1			1		1
1	1	0	0	0	1

• In general,

•
$$(1)PQ = P + Q$$

• (2)
$$\overline{P+Q} = \overline{PQ}$$

Recap

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

Nor Gate

6 Widely used logic gates

• Or Gate

Not Gate

Xor Gate

Can express any logic circuit with these as we have seen previously.

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

$$AB + BA$$

Nor Gate

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

• Xor Gate

$$AB + BA$$

Nor Gate

$$\overline{A+B}$$

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

$$AB + BA$$

Nor Gate

$$\overline{A+B}$$

$$\overline{AB}$$

• 6 Widely used logic gates

Or Gate

Not Gate

Xor Gate

In fact...
You just need
these two

$$\overline{A+B}$$

$$\overline{AB}$$

• 6 Widely used logic gates

Xor Gate

And Gate

Nor Gate

Or Gate

Nand Gate

- 6 Widely used logic gates
- And Gate

Or Gate

Xor Gate

Nor Gate

Nand Gate

- 6 Widely used logic gates
- And Gate

Or Gate

Xor Gate

Nor Gate

 $\overline{A}\overline{B}$

Nand Gate

- 6 Widely used logic gates
- And Gate

Or Gate

- Not Gate
 - $A \longrightarrow \overline{A}$

Xor Gate

Nor Gate

 $\overline{A}\overline{B}$

Nand Gate

 \overline{AB}

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

Nor Gate

6 Widely used logic gates Xor Gate Side note: Or You just need this Nor Gate to do anything Nor Gate Or Gate Not Gate

6 Widely used logic gates

Xor Gate

And Gate

Or Gate

Not Gate

Question

 Which of these circuits using NOR gates is equivalent to an AND gate?

More than 2 Inputs?

- AND/OR can take any number of inputs:
 - AND = I if all inputs are I
 - OR = I if any input is I.

So ... Circuit Design?

- You have a circuit you want to build
- Derive a truth table for this circuit
- Derive Boolean expression for the truth table
- Then build the circuit based on the boolean expression
- The tricky part is how do you optimize this circuit?

Truth Table to Boolean Expression

sensor inputs					
A	В	С	Output		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

 Given a circuit, isolate the rows in which the output of the circuit is I

Truth Table to Boolean Expression

sensor inputs				
Α	В	С	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

• A product term that contains exactly one instance of every variable is called a minterm

Minterm

Α	В	С	minterm
0	0	0	m0 ĀĒŌ
0	0	1	m1 ĀBC
0	1	0	m2 ĀBŌ
0	1	1	m3 ĀBC
1	0	0	m4 ABC
1	0	1	m5 ABC
1	1	0	m6 ABC
1	1	1	m7 ABC

- A product term in which all variables appear once.
- Each minterm evaluates to 1 in exactly one case. All other case, it evalutes to 0.

Truth Table to Boolean Expression

sensor inputs				
Α	В	С	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

 Given expressions for each row, build a larger Boolean expression. This is called a sum-of-products (SOP) form.

$$Output = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

Truth Table to Boolean Expression

- Finally build the circuit
- However, SoP forms are usually not minimal. We must optimize.

Canonical Forms

- There are two canonical forms:
 - Sum of Products (SOP)

$$F = YZ + XYZ + XYZ$$

Product of Sums (POS)

$$F = (Y + Z)(X + Y + Z)(X + Y + Z)$$

$$F = (Y + Z)(X + Y + Z)(X + Y + Z)$$

$$F = (Y+Z)(X+Y+Z)(X+Y+Z)$$

$$F = (XY+Y+YZ+XZ+YZ+ZZ)(X+Y+Z)$$

$$F = (Y+Z)(X+Y+Z)(X+Y+Z)$$

$$F = (XY+Y+YZ+XZ+YZ+ZZ)(X+Y+Z)$$

$$F = (Y+XZ+YZ)(X+Y+Z)$$

$$F = (Y+Z)(X+Y+Z)(X+Y+Z)$$

$$F = (XY+Y+YZ+XZ+YZ+ZZ)(X+Y+Z)$$

$$F = (Y+XZ+YZ)(X+Y+Z)$$

$$F = \overline{XY} + Y\overline{Y} + YZ + \overline{XZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + Y\overline{YZ} + YZ$$

$$F = (Y + Z)(X + Y + Z)(X + Y + Z)$$

$$F = (XY + Y + YZ + XZ + YZ + ZZ)(X + Y + Z)$$

$$F = (Y + XZ + YZ)(X + Y + Z)$$

$$F = XY + YY + YZ + XZ + XYZ + XZ + XYZ + YYZ + YZ$$

$$F = XY + YZ + XZ$$

$$F = \overline{YZ} + X\overline{YZ} + XY\overline{Z}$$

$$F = \overline{YZ} + X\overline{YZ} + XY\overline{Z}$$

$$\overline{F} = (Y + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$$

$$F = \overline{YZ} + X\overline{YZ} + XY\overline{Z}$$

$$\overline{F} = (Y + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$$

$$\overline{F} = \overline{XY} + YZ + \overline{XZ}$$

$$F = \overline{YZ} + X\overline{YZ} + XY\overline{Z}$$

$$\overline{F} = (Y + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$$

$$\overline{F} = \overline{XY} + YZ + \overline{XZ}$$

$$F = (X + \overline{Y})(\overline{Y} + \overline{Z})(X + \overline{Z})$$

$$\overline{ABC} + A\overline{BC} + AB\overline{C} + AB\overline{C}$$

$$ABC + ABC + ABC + ABC$$

 $BC(A + A) + ABC + ABC$

$$ABC + ABC + ABC + ABC$$

$$BC(A + A) + ABC + ABC$$

$$BC + ABC + ABC$$

$$ABC + ABC + ABC + ABC$$

$$BC(A + A) + ABC + ABC$$

$$BC + ABC + ABC$$

$$B(C + AC) + ABC$$

$$ABC + ABC + ABC + ABC + ABC$$

$$BC(A + A) + ABC + ABC$$

$$BC + ABC + ABC$$

$$B(C + AC) + ABC$$

$$B(C + A) + ABC$$

$$ABC + ABC + ABC + ABC$$
 $BC(A + A) + ABC + ABC$
 $BC + ABC + ABC$
 $BC + ABC + ABC$
 $B(C + AC) + ABC$
 $B(C + A) + ABC$
 $AB + BC + ABC$

$$AB + BC + A\overline{B}C$$

$$AB + BC + ABC$$

$$BC + A(B + BC)$$

$$AB + BC + ABC$$

 $BC + A(B + BC)$
 $BC + A(B + C)$

$$AB + BC + ABC$$

$$BC + A(B + BC)$$

$$BC + A(B + C)$$

$$AB + BC + AC$$

Question

Simplify the following expression:

$$\overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

- A:A
- B: B
- C: C
- D:AC + BC
- E:A + C

Question

Simplify the following expression:

$$\overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

- A:A
- B: B
- C: C
- D:AC + BC
- E:A + C

Decoder

- n inputs, 2ⁿ outputs
- Exactly one output is 1 for a single possible input pattern

Decoder circuit

- n inputs, 2ⁿ outputs
- Exactly one output is 1 for a single possible input pattern

Decoder Circuit

• Converts n-bit input to 2ⁿ bit output

"Standard" Decoder: ith output = 1, all others = 0, where i is the binary representation of the input (ABC)

Decoder Circuit

• Converts n-bit input to 2ⁿ bit output

"Standard" Decoder: ith output = 1, all others = 0, where i is the binary representation of the input (ABC)

Internal of 2:4 Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

2:4 Decoder from 1:2 Decoders

3:8 Decoder from Smaller Decoders

Encoder

• Inverse of decoder:

■ TABLE 3-7 Truth Table for Octal-to-Binary Encoder

Inputs							Outputs			
D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	Ao
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Multiplexer (MUX)

- 2ⁿ inputs, n-bit selector, one output
 - Output equals one of the inputs, depending on the selector

Functions with Decoders and Multiplexers

• e.g., $F = A\overline{C} + BC$

Α	В	С	minterm	F
0	0	0	ABC	0
0	0	1	ABC	0
0	1	0	ĀBC	0
0	1	1	ABC	1
1	0	0	ABC	1
1	0	1	ABC	0
1	1	0	ABC	1
1	1	1	ABC	1

Functions with Decoders and Multiplexers

• e.g.,
$$F = A\overline{C} + BC$$

Α	В	С	minterm	F
0	0	0	ABC	0
0	0	1	AB C	0
0	1	0	ĀBC	0
0	1	1	ABC	1
1	0	0	ABC	1
1	0	1	ABC	0
1	1	0	ABC	1
1	1	1	ABC	1

 OR minterms for which F should evaluate to I

Functions with Decoders and Multiplexers

• e.g.,
$$F = A\overline{C} + BC$$

Α	В	С	minterm	F
0	0	0	ABC	0
0	0	1	AB C	0
0	1	0	ĀBC	0
0	1	1	ABC	1
1	0	0	ABC	1
1	0	1	ABC	0
1	1	0	ABC	1
1	1	1	ABC	1

 Feed the value of F for each minterm in the input

- We can use 4-to-1 mux with a trick:
- Every two rows have same A and B value. The output F depends on the value C.

• We can use 4-to-1 mux with a trick:

• Every two rows have same A and B value. The output F depends on the value.

• We can use 4-to-1 mux with a trick:

• Every two rows have same A and B value. The output F depends on the value If AB = 01, then F = C

• We can use 4-to-1 mux with a trick:

• Every two rows have same A and B value. The output F depends on the value If AB = 10, then $F = \overline{C}$

• We can use 4-to-1 mux with a trick:

• Every two rows have same A and B value. The output F depends on the value If AB = 11, then F = 1

Another Example

$$F = \overline{A}C + \overline{B}\overline{C} + A\overline{C}$$

