## Solution to Algebra : Chapter 0 by Paolo Aluffi

 $macyayaya^1$ 

Last updated at March 8, 2020 v0.4.3

Copyright (C) 2020 macyayaya @ https://github.com/macyayaya/. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being Prologue. A copy of the license is included in the section entitled "GNU Free Documentatin License".

## Prologue

Over a few months I want to improve my skills in solving algebra problems. I tried to find a textbook that can serves me good and is good enough to use in self-study.

Eventually, this is what I felt the most "comfortable" book in my opinion. It doesn't contain that much unlike Dummit & Foote, but the writing style, the explanation, and the exercises really served me well.

So here is the solution to Algebra: Chapter 0. There are a few important points to note here:

- The solution is *only* hosted on my GitHub page https://github.com/macyayaya/algebra-chapter-0-solutions. If you find this document outside this page, you might have an outdated version of the solution which might have errors, so please be aware.
- I will update the solution irregularly.
- I'll try to write this beginner-friendly (as I am also a beginner), so the answer might be way too detailed/verbose. Sorry if you find this annoying.
- If you found an error in the solutions, typos, bad grammar or want to give an advise on LaTeX formatting, etc., don't hesitate to open an issue or a pull request on my repo.
- The questions I picked is completely random, so if you want to see some solution of a certain problem (but please not all of them), you can also open an issue to notify me.
- However, I currently do *not* accept any PRs to new solutions; this is more than my note on self-study rather than a complete solution set.

Thanks.

macyayaya @ https://github.com/macyayaya/ Department of Mathematics, National Taiwan University February 16, 2020

# Contents

| Pı           | rologue                                             | i    |
|--------------|-----------------------------------------------------|------|
| Ι            | Preliminaries: Set theory and categories            | 1    |
|              | I.1                                                 | . 1  |
|              | I.2                                                 | -    |
|              | I.3                                                 | . 2  |
|              | I.4                                                 | . 4  |
|              | I.5                                                 | . 4  |
| II           | Groups, first encounter                             | 7    |
|              | II.1                                                | . 7  |
|              | II.2                                                | . 8  |
|              | II.3                                                | . 8  |
|              | II.4                                                | . 9  |
|              | II.5                                                | . 11 |
|              | II.6                                                | . 11 |
|              | II.7                                                | . 13 |
|              | II.8                                                | . 14 |
|              | II.9                                                | . 17 |
| II           | IRings and modules                                  | 19   |
|              | III.1                                               | . 19 |
|              | III.2                                               | . 20 |
|              | III.3                                               | . 22 |
|              | III.4                                               | . 24 |
|              | III.5                                               | . 27 |
|              | III.6                                               | . 29 |
|              | III.7                                               |      |
| IV           | Groups, second encounter                            | 38   |
|              | IV.1                                                | . 38 |
|              | IV.2                                                |      |
|              | IV.3                                                |      |
| $\mathbf{V}$ | Irreducibility and factorization in integral domain | 45   |
|              | V.1                                                 |      |

**46** 

## Chapter I

## Preliminaries: Set theory and categories

Throughout this solution manual, we will use the same notation (and convention) as in the book, with probably a little to none changes.

For your convenience, it is recommended to search your question via whatever your browser provides (e.g. F3). The format of questions are *Chapter* (in roman). *Section. Question*.

In the following, categories are denoted using the Sans-serif font, e.g. Set.

#### **I.1**

**Problem I.1.1.** Locate a discussion of Russel's paradox, and understand it.

**Problem I.1.2.** Prove that if  $\sim$  is an equivalence relation on a set S, then the corresponding family  $\mathscr{P}_{\sim}$  defined in §1.5 is indeed a partition of S.

*Proof.* The union of such class must contain S by definition, as at worse the elements can be in the equivalence class formed by themselves. It suffices to check disjointness: If  $a \in [x], a \in [y]$  but  $x \nsim y$ , then transitivity implies  $x \sim a, a \sim y \Rightarrow x \sim y$ , a contradiction.

### **I.2**

**Problem I.2.1.** How many different bijection are there between a set S with n elements and itself?

Solution. The first number has n choices; to make the map a bijection, the next number has only (n-1) choices remaining. By continuing choosing, we have n! different bijections.

**Problem I.2.5.** Formulate a notion of *epimorphism*, in the style of the notion of *monomorphism*, and prove a result analogous to Proposition 2.3, for epimorphisms and surjections.

Solution. Epimorphism are right-cancelable; that is,

A function  $f: A \to B$  is a epimorphism if for all sets Z and all functions  $\beta, \beta': Z \to A$ ,

$$\beta \circ f = \beta' \circ f \Longrightarrow \beta = \beta'.$$

We shall prove the following:

**Proposition.** A function is surjective if and only if it is an epimorphism.

Proof.

 $(\Rightarrow)$  Let f be surjective. By Proposition I.2.1, a surjective function has a right-inverse, which we

call it g. Then if  $\beta, \beta': B \to Z$  are arbitrary function such that  $\beta \circ f = \beta' \circ f$ , then by composition with g we obtain

$$(\beta \circ f) \circ q = (\beta' \circ f) \circ q \Rightarrow \beta \circ (f \circ q) = \beta' \circ (f \circ q) \Rightarrow \beta \circ id_A = \beta' \circ id_A \Rightarrow \beta = \beta'$$

as desired.

 $(\Leftarrow)$  Let f be an epimorphism. We need to consider some special  $\beta: B \to Z$  so we can prove the assertion. We done this by "labeling": define

$$\beta(b) = \begin{cases} 1, & b \in \text{im } f \\ 0, & b \notin \text{im } f \end{cases}, \quad \beta'(b) = 1$$

Then since

$$\beta \circ f = \beta' \circ f \Rightarrow \beta = \beta'$$

this implies that beta receives *only* values in im f, so im  $f \supseteq B$ . Since we have im  $f \subseteq B$  clearly for any function f, we conclude that im f = B, which is the definition of surjectivity.

## **I.3**

**Problem I.3.1.** Let C be a category. Consider a structure  $C^{op}$  with

- $Obj(C^{op}) = Obj(C);$
- for A, B objects of  $C^{op}$ ,  $\operatorname{Hom}_{C^{op}}(A, B) := \operatorname{Hom}_{C}(B, A)$ .

Show how to make this into a category.

Solution. For  $f \in \operatorname{Hom}_{\mathsf{C}^{op}}(A,B), g \in \operatorname{Hom}_{\mathsf{C}^{op}}(B,C)$ , define the composite of morphisms by

$$g \circ f := fg$$

where fg is defined in the sense of the category C. Now we check the definition of category:

- $1_A$  exists as  $\operatorname{Hom}_{\mathsf{C}^{op}}(A,A) := \operatorname{Hom}_{\mathsf{C}}(A,A) \ni 1_A$ ;
- The composition works as intended: the map on the right is a morphism from C to A;
- The composite law is checked as

$$(h \circ g) \circ f = gh \circ f = f(gh) = (fg)h = h \circ fg = h \circ (g \circ f);$$

• Identity morphism work as intended:

$$1_A \circ f = f1_A = f, \quad f \circ 1_A = 1_A f = f.$$

**Problem I.3.11.** Draw the relevant diagrams and define composition and identities for the category  $C^{A,B}$  mentioned in Example 3.9. Do the same for the category  $C^{\alpha,\beta}$  mentioned in Example 3.10.

Solution. By reversing the arrow of  $C_{A,B}$ , we obtain:

• Objects of this category are diagrams



• morphisms are



which are commutative diagrams



For the case  $C^{\alpha,\beta}$ :

• Objects are diagrams

$$C \xrightarrow{\alpha \nearrow} A \xrightarrow{f} Z$$

• morphisms are

which are commutative diagrams

$$C \qquad \begin{array}{c} A & \xrightarrow{f_2} \\ C & Z_1 \xrightarrow{\sigma} Z_2 \\ B & \xrightarrow{g_1} \end{array}$$

composition and identity are defined analogously as in Example 3.5.

## **I.4**

**Problem I.4.3.** Let A, B be objects of a category C, and let  $f \in \text{Hom}_{C}(A, B)$  be a morphism.

- $\bullet$  Prove that if f has a right-inverse, then f is an epimorphism.
- Show that the converse does not hold, by giving an explicit example of a category and an epimorphism without a right-inverse.

*Proof.* Let g be the right inverse of f, i.e. fg = 1. Then for any morphism  $h, h' \in \text{Hom}_{\mathsf{C}}(B, Z)$ ,

$$h \circ f = h' \circ f \Rightarrow h \circ f \circ g = h' \circ f \circ g \Rightarrow h \circ 1 = h' \circ 1 \Rightarrow h = h'$$

showing that f is an epimorphism. For a counterexample in which the converse does not hold, consider  $C = \mathbb{Z}$ , objects are integers, and morphisms are the relation  $\leq$  (c.f. p.p.27). Then

$$f:1\to 2$$

is an epimorphism, but there are no right inverse for f, since there are no morphisms in  $\operatorname{Hom}_{\mathsf{C}}(2,1)$ .

## **I.5**

**Problem I.5.1.** Prove that a final object in a category C is initial in the opposite category  $C^{op}$  (I.3.1).

*Proof.* Let F be a final object in C, which means that the set  $Hom_{C}(A, F)$  is a singleton for all  $A \in Obj(C)$ . Since

$$\operatorname{Hom}_{\mathsf{C}}(A,F) = \operatorname{Hom}_{\mathsf{C}^{\mathsf{op}}}(F,A)$$

we have that F is initial in  $C^{op}$ .

**Problem I.5.12.** Define the notions of *fibered products* and *fibered coproducts*, as terminal objects of the categories  $C_{\alpha,\beta}$ ,  $C^{\alpha,\beta}$  considered in Example 3.10 (cf. also I.3.11), by stating carefully the corresponding universal properties.

As it happens, **Set** has both fibered products and fibered coproducts. Define these objects 'concretely', in terms of naive set theory.

Solution. Fibered product is final in  $C_{\alpha,\beta}$ ; that is, there are only one morphism in

$$\operatorname{Hom}\left(\begin{array}{cccc} A & & & A \\ f_{a} \nearrow & & & A \\ Z & & C & F & & C \\ & & & \nearrow_{\beta} & & & & & \nearrow_{\beta} \end{array}\right)$$

for any choice of the triple  $(Z, f_a, f_b)$ . Expand this to a diagram leads to the following universal property:

The triple  $(F, i_a : F \to A, i_b : F \to B)$  is universal in the sense that for every triple  $(Z, f_a : Z \to A, f_b : Z \to B)$ , there exists a unique morphism  $\varphi : Z \to F$  such that the diagram



commutes. Fibered product are also called pullback.

Fibered coproduct is *initial* in  $C^{\alpha,\beta}$ . Following the same argument as above, we have the following universal property:

The triple  $(I, i_A : A \to I, i_B : B \to I)$  is universal in the sense that for every triple  $(Z, f_A : A \to Z, f_B : B \to Z)$ , there exists a unique morphism  $\varphi : I \to Z$  such that the diagram



commutes. Fibered coproduct are also called pushout.

Set has fibered products: Let us define

$$A \times_C B := I = \{(a, b) : a \in A, b \in B, \alpha(a) = \beta(b)\}\$$

with projections  $i_a, i_b$ . We check that this satisfy the universal property: define

$$\varphi(z) := (f_a(z), f_b(z))$$

we check:

•  $i_b \varphi = f_b$  (resp.  $i_a \varphi = f_a$ ):

$$i_b\varphi(z) = i_b(f_a(z), f_b(z)) = f_b(z)$$

•  $\alpha i_a = \beta i_b$ :

$$\alpha i_a(a,b) = \alpha(a) \stackrel{!}{=} \beta(b) = \beta i_b(a,b).$$

note that ! is true since I guarantees the existence of b.

Set also has fibered coproducts, but it's more complicated. We first define an equivalence relation: define

$$R = \{ (\alpha(x), 0) \sim (\beta(x), 1) : x \in C \}$$

This gives an equivalence relation on  $A \coprod B$ , which gives a new structure  $I = (A \coprod B) / \sim$ . Let  $i_A(a) = (a, 0), i_B(b) = (b, 1)$ , then it is direct that  $i_B\beta = i_A\alpha$ . Now we define

$$\varphi[i = (x, c)] = \begin{cases} f_A(x) & \text{if } c = 0\\ f_B(x) & \text{if } c = 1 \end{cases}$$

We need to check that it is well-defined, then it is direct that  $\varphi\beta = f_B$  (resp.  $\varphi\alpha = f_A$ ), proving the universal property. There are two cases to consider:

• Case [(a,0)] = [(a',0)] (resp. [(b,1)] = [(b',1)]): If there are relations

$$a = \alpha(x) \sim \beta(x) = \beta(x') \sim \alpha(x') = a'$$

then they evaluated to the same value since

$$\varphi[(a,0)] = \varphi i_A(a) = \varphi i_A(\alpha(x)) = \varphi i_B(\beta(x)) = \varphi i_B(\beta(x')) = \varphi i_A(\alpha(x')) = \varphi i_A(\alpha') = \varphi [(a',0)]$$

• Case [(a,0)] = [(b,1)]: If there are relations

$$a = \alpha(x) \sim \beta(x) = b$$

then

$$\varphi[(a,0)] = \varphi i_A(a) = \varphi i_A(\alpha(x)) = \varphi i_B(\beta(x)) = \varphi i_B(b) = \varphi[(b,1)]$$

as desired.

By the above analysis, as all elements in the same equivalence class connects to the other by some chain

$$a = \alpha(x_1) \sim \beta(x_1) = \beta(x_2) \sim \alpha(x_2) = \alpha(x_3) \cdots = b,$$

and since every  $\sim$  preserves the result,  $\varphi$  is well-defined.

## Chapter II

## Groups, first encounter

Unless otherwise specified, in the following G denotes a group, e denotes the identity of G. Some description and hints are omitted for simplicity.

### **II.1**

**Problem II.1.8.** Let G be a finite abelian group with exactly one element f of order 2. Prove that  $\prod_{g \in G} g = f$ .

*Proof.* For all elements that is not of order 2, they have an inverse that is not itself, so they canceled out in the product  $\prod_{g \in G} g$ , leaving only elements that is of order 2, i.e. f.

**Problem II.1.10.** If the order of g is odd, what can you say about the order of  $g^2$ ?

Solution. The order of  $g^2$  is |g| since the only number that divides |g| and in  $\{2, 4, ..., 2|g|\}$  is 2|g| if |g| is odd.

**Problem II.1.11.** Prove that for all g, h in a group G, |gh| = |hg|.

*Proof.* Simply observe that  $e = (gh)^{|gh|} = g(hg)^{(|gh|-1)}h$ , therefore

$$g^{-1}h^{-1} = (hg)^{-1} = (hg)^{|gh|-1}$$

hence  $(hg)^{|gh|} = e$ . The other case  $((gh)^{|hg|} = e)$  is the same.

**Problem II.1.13.** Give an example showing that  $|gh| \neq \text{lcm}(|g|, |h|)$  even if g and h commute.

Solution. In 
$$C_4$$
,  $|1+3| = |0| = 1$  but  $lcm(|1|, |3|) = 4$ . Clearly  $C_4$  is abelian.

**Problem II.1.14.** As a counterpoint of II.1.13, prove that if g and h commute and gcd(|g|, |h|) = 1, then |gh| = |g||h|.

*Proof.* One has |gh| divides lcm(|g|, |h|) = |g||h| by Proposition II.1.14, so it suffices to prove that |g||h| divides |gh|. Let N = |gh|. By noting that  $(gh)^N = g^N h^N$  since g and h commutes, we have

$$(gh)^{N|h|} = e^{|h|} = g^{N|h|}h^{N|h|} = g^{N|h|}$$

so |g| divides N|h|, which implies |g| divides N since  $\gcd(|g|,|h|)=1$ . Similarly |h| divides N, therefore |g||h| divides N=|gh|, as desired.

**Problem II.1.15.** Let G be a commutative group, and let  $g \in G$  be an element of maximal finite order. Prove that if h has finite order in G, then |h| divides |g|.

*Proof.* Suppose that |h| does not divide |g|, then we can assume that  $|g| = p^m r$ ,  $|h| = p^n s$ , where p is a prime, r, s relatively prime to p and m < n. Since |h| does not divide |g|,  $\gcd(h, g) = 1$ . Then by II.1.14 we can calculate the order of  $g^{p^m}h^s$ , which is  $p^n r$ . But this element has order bigger than g, which contradicts to the maximality of g. Hence |h| must divide |g|.

### **II.2**

**Problem II.2.10.** Prove that  $\mathbb{Z}/n\mathbb{Z}$  consists of precisely n elements.

**Problem II.2.14.** Show that the multiplication in  $\mathbb{Z}/n\mathbb{Z}$  is a well-defined action.

*Proof.* If  $a \equiv a' \mod n$  and  $b \equiv b' \mod n$ , then a = a' + kn, b = b' + ln for  $k, l \in \mathbb{Z}$ , therefore

$$(ab) - (a'b') = (a' + kn)(b' + ln) - a'b' = a'ln + b'kn + kln^2 \equiv 0 \mod n$$

**Problem II.2.16.** Find the last digit of 1238237<sup>18238456</sup>.

Solution. 
$$1238237^{18238456} \equiv 7^{18238456} = 49^{9119228} = 2401^{4559614} \equiv 1^{4559614} = 1 \mod 10.$$

**Problem II.2.17.** Show that if  $m \equiv m' \mod n$ , then gcd(m, n) = 1 if and only if gcd(m', n) = 1.

*Proof.* We can write 
$$m = nk + m'$$
 for  $n \in \mathbb{Z}$  and use Euclidean Algorithm to conclude.

#### **II.3**

**Problem II.3.1.** Let  $\varphi: G \to H$  be a morphism in a category  $\mathsf{C}$  with products. Explain why there is a unique morphism  $(\varphi \times \varphi): G \times G \to H \times H$  compatible in the evident way with the natural projections.

Solution. The compatibility of  $(\varphi \times \varphi)$  comes from the commutative diagram

$$G \xrightarrow{\varphi} H$$

$$\uparrow^{\pi_2} \qquad \uparrow^{\rho_2}$$

$$G \times G \xrightarrow{\exists!(\varphi \times \varphi)} H \times H$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\rho_1}$$

$$G \xrightarrow{\varphi} H$$

which is easy to check. The uniqueness follows from the universal property of products that there is a unique homomorphism such that the diagram



commutes.

**Problem II.3.3.** Show that if G, H are abelian groups, then  $G \times H$  satisfies the universal property for coproducts in Ab.

*Proof.* Let A be an arbitrary abelian group,  $f_G$ ,  $f_H$  be homomorphisms,  $i_G$ ,  $i_H$  be inclusions. We are required to prove the commutativity of the diagram



To check the universal property, define  $\varphi(g,h) := f_G(g)f_H(h)$ . It is direct that the diagram commutes. Finally,  $\varphi$  is a homomorphism since for  $g_1, g_2 \in G, h_1, h_2 \in H$ ,

$$\varphi((g_1, h_1)(g_2, h_2)) = \varphi(g_1g_2, h_1h_2) = f_G(g_1g_2)f_H(h_1h_2) = f_G(g_1)f_G(g_2)f_H(h_1)f_H(h_2)$$

$$\xrightarrow{abelian} f_G(g_1)f_H(h_1)f_G(g_2)f_H(h_2) = \varphi(g_1, h_1)\varphi(g_2, h_2)$$

as desired.

**Problem II.3.6.** Consider the product  $C_2 \times C_3$ , which is a coproduct in Ab. Show that it is *not* a coproduct of  $C_2$  and  $C_3$  in Grp.

*Proof.* If  $C_2 \times C_3$  is a coproduct, then take  $A = S_3$ . Although there are injective homomorphisms

$$\varphi_1: C_2 \to S_3$$
 by  $\varphi_1(1) = (12)$  or other two cycle  $\varphi_2: C_3 \to S_3$  by  $\varphi_2(1) = (123)$  or other three cycle

but there are no homomorphisms  $\varphi: C_2 \times C_3 \to S_3$  that satisfies the universal property of coproducts: Observe that any choice of cycles in  $\varphi_1$  and  $\varphi_2$  will exhaust all possible element of  $S_3$ , hence forces  $\varphi$  to be an isomorphism. But the element  $\varphi(1,1)$  must be either a 2(or 3)-cycle (i.e.  $\varphi^2(1,1)$  (or  $\varphi^3(1,1)$ ) is zero), and neither  $(1,1)^2$  nor  $(1,1)^3$  are (0,0), and  $\varphi$  will map a non-identity element to the identity, a contradiction (since  $\varphi$  is an isomorphism and must map (0,0) to the trivial cycle).

## **II.4**

**Problem II.4.3.** Prove that a group of order n is isomorphic to  $\mathbb{Z}/n\mathbb{Z}$  if and only if it contains an element of order n.

*Proof.* Let G be such group.

- $(\Rightarrow)$  Trivial.
- ( $\Leftarrow$ ) Let g be an element of order n. Then consider a homomorphism  $\varphi: G \to \mathbb{Z}/n\mathbb{Z}$  with  $\varphi(g) = \overline{1}$ . It is a direct check that this is an isomorphism.

**Problem II.4.8.** Let  $g \in G$ . Prove that the function  $\gamma_g : G \to G$  defined by  $\gamma_g(a) = gag^{-1}$  is an automorphism of G. Prove that the function  $G \to \operatorname{Aut}(G)$  defined by  $g \to \gamma_g$  is a homomorphism, and show that this homomorphism is trivial if and only if G is abelian.

*Proof.*  $\gamma_g$  is injective since if  $gag^{-1} = gbg^{-1}$  then a = b; it is surjective since for  $k \in G$  we can find  $g^{-1}kg$  so that  $\gamma_g(g^{-1}kg) = k$ ; it is a homomorphism since

$$\gamma_g(ab) = gabg^{-1} = gag^{-1}gbg^{-1} = \gamma_g(a)\gamma_g(b).$$

If G is abelian then the automorphism is simply  $\gamma_g(a) = a$ ; conversely if  $gag^{-1} = a$  then ga = ag for all  $a, g \in G$ , hence abelian.

**Problem II.4.9.** Prove that if m, n are positive integers such that gcd(m, n) = 1, then  $C_{mn} \cong C_m \times C_n$ .

Proof.

$$\varphi: C_{mn} \to C_m \times C_n, \ \varphi(a) = (a \mod m, a \mod n)$$

is a homomorphism and a bijection.

**Problem II.4.11.** Assuming the fact that the equation  $x^d = 1$  can have at most d solutions in  $\mathbb{Z}/p\mathbb{Z}$  for a prime p, prove that  $(\mathbb{Z}/p\mathbb{Z})^*$  is cyclic.

*Proof.* Let g be an element of maximal order, and by II.1.15, all elements have degree that divides |g|, i.e.  $|h|^{|g|} = 1$  for all  $h \in G$ . Using the fact, we have  $|G| \le |d|$ , since only at most |g| elements can be the solution to  $h^{|g|} = 1$ . Clearly we also have  $|G| \ge |d|$ , so |G| = |d|. Thus the proof is complete by II.4.3.

**Problem II.4.13.** Prove that  $\operatorname{Aut}_{\mathsf{Grp}}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3$ .

*Proof.* To make an automorphism  $\varphi$ ,  $\varphi$  must fix (0,0), leaving 6 possible permutations for elements (0,1),(1,0),(1,1). It suffices to check that all permutations of these elements are homomorphisms(hence isomorphisms).

**Problem II.4.14.** Prove that the order of the group of automorphisms of a cyclic group  $C_n$  is the number of positive integers  $r \leq n$  that are relatively prime to n (cf. II.6.14).

*Proof.* We shall first show that every endomorphism of cyclic group C is of form  $\varphi_n(x) = x^n$  for some n. Indeed, if  $\sigma$  is a endomomorphism that  $\sigma(x) = x^a = \varphi_a(x)$ , then for every  $x^b \in C$  we have

$$\sigma(x^b) = \sigma(x)^b = (x^a)^b = (x^b)^a = \varphi(x^b)$$

so every endomorphism is of form  $\varphi_n : x \mapsto x^n$  for some n. Now to make this into an automorphism, if k is not relatively prime to n, say  $\gcd(n,k) = r > 1$ , then for a generator  $x \in C_n$ , we have

$$\varphi_k(x^{n/r}) = x^{n/r \cdot k} = x^{n \cdot k/r} = (x^n)^{k/r} = e^{k/r} = e$$

and since n/r is not n,  $\varphi_k$  maps a non-identity element to e, in which it is already mapped by  $e \in C_n$ , so  $\varphi_k$  fails to be a bijection. Therefore the order of  $\operatorname{Aut}(C_n)$  is the number of positive integers that is relatively prime to n.

**Problem II.4.16.** Prove the Wilson's theorem: for  $p \in \mathbb{N}_{>1}$ , p is a prime if and only if

$$(p-1)! \equiv -1 \mod p$$

*Proof.* ( $\Rightarrow$ ) Assuming that the result of II.1.8 and II.4.11 is true, consider  $G = (\mathbb{Z}/n\mathbb{Z})^*$ . It is cyclic, and has exactly one element of order 2 since for  $0 \le k \le p-2$ ,

$$(p-1-k)^2 \equiv 1+2k+k^2 \equiv 1 \mod p \iff k(k+2) \equiv 0 \mod p$$

and such solution can only be k=0 or p-2 since p is a prime, which correspond to p-1 and 1 (identity). Therefore by II.1.8

$$\prod_{g \in G} g = (p-1)! \equiv (p-1) \equiv -1 \mod p$$

as desired.

 $(\Leftarrow)$  If p is not a prime, then there exists 1 < k < p such that k|p. Since k < p we have k|(p-1)!, i.e.

$$(p-1)! \equiv rk \mod p \text{ for some } r \in \mathbb{Z}$$

and clearly no choice of r will make  $rk \equiv -1 \mod p$  by the fact that k|p. Therefore p must be a prime.

#### II.5

**Problem II.5.3.** Use the universal property of free groups to prove that the map  $j: A \to F(A)$  is injective.

*Proof.* If there is  $a, b \in A$  such that j(a) = j(b) but  $a \neq b$ , then let f be a set function such that  $f(a) \neq f(b)$ ; in particular, let  $G = \mathbb{Z}$  and let f(a) = 1, f(b) = 2. Then there are no homomorphisms that will make the diagram commute, therefore j must be injective.

**Problem II.5.6.** Prove that the group  $F(\{x,y\})$  is a coproduct  $\mathbb{Z}*\mathbb{Z}$  of  $\mathbb{Z}$  by itself in the category Grp.

*Proof.* We are given the universal property of free group: for  $j:\{x,y\}\to F(\{x,y\}), \exists G,f$  such that the diagram

commutes. To check that it is a coproduct, consider the coproduct diagram composed with above. Let i(0) = x, j be the inclusion, then we have the following diagram:



Note that the arrows  $j, h, \varphi$  comes from the free group diagram. From this, we have  $f \circ \gamma = \varphi \circ j$ . To check the coproduct diagram commutes, it suffices to check  $f = \varphi \circ i$  (the case  $g = \varphi \circ i$  is identical). To do this, define  $\gamma(x) = 0, \gamma(y) = 1$ . Then

$$f \circ \gamma(x) = f(0) = \varphi(x) = \varphi \circ j(x), \quad f \circ \gamma(y) = f(1) = \varphi(y) = \varphi \circ j(y)$$

Since  $f(1) = \varphi \circ i(1) = \varphi(y)$ , the homomorphisms agree on the generator, hence are the same.

### **II.6**

**Problem II.6.5.** Let G be a *commutative* group, and let n > 0 be an integer. Prove that  $\{g^n : g \in G\}$  is a subgroup of G. Prove that this is not necessarily the case if G is not commutative.

*Proof.* For any two elements a, b in the set, they can be represented as  $g^n$  and  $h^n$  respectively. Now

$$ab^{-1} = g^n h^{-n} = (gh^{-1})^n$$

which shows that  $ab^{-1}$  is also in the set, proving the set is a subgroup. A counterexample would be  $D_6$ , the dihedral group with 6 elements, with the choice n = 3. Let s denote the reflection, r denotes the rotation, we then have

$$\{g^3:g\in D_3\}=\{1,r^3,r^{2\cdot3},s^3,(sr)^3,(sr^2)^3\}=\{1,1,1,s,sr,sr^2\}$$

this set is not a subgroup, as  $s^{-1}sr = r$  is not an element of this set.

**Problem II.6.7.** Show that inner automorphisms (the collection of  $\gamma_g$  in II.4.8) form a subgroup Inn(G) of Aut(G), and show that Inn(G) is cyclic if and only if Inn(G) is trivial if and only if G is abelian. Deduce that if Aut(G) is cyclic, then G is abelian.

*Proof.* Inn(G) is a subgroup since

$$\gamma_q \circ \gamma_{h^{-1}} = gh^{-1}ahg^{-1} = (gh^{-1})a(gh^{-1})^{-1} \in \text{Inn}(G).$$

If  $\operatorname{Inn}(G)$  is cyclic, then let  $\gamma_g(a) = gag^{-1}$  be a generator of order n. Then for any  $b \in G$ , we have  $\gamma_b(x) = \gamma_g^n(x)$ , for some integer n. Then by plug in b into the homomorphism, we have  $gbg^{-1} = b^nbb^{-n}$ . This gives  $gb = bg \ \forall b \in G$ , so  $\gamma_g$  is in fact trivial. Since the generator is trivial, we conclude that  $\operatorname{Inn}(G)$  is trivial. If  $\operatorname{Inn}(G)$  is trivial, then the function given in II.4.8 can only be the trivial map, so G is abelian by II.4.8. Finally, if G is abelian, then all inner automorphisms are trivial, and clearly trivial group is cyclic.

The last statement follows from Proposition II.6.11 that every subgroup of cyclic group is cyclic.  $\hfill \blacksquare$ 

**Problem II.6.9.** Prove that an *abelian* group G is finitely generated if and only if there is a surjective homomorphism

$$\underline{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}} \twoheadrightarrow G$$

for some n.

Proof.

 $(\Rightarrow)$  As the group is abelian, for  $G=\langle a_1,\cdots a_n\rangle$ , we can represent an element g uniquely as

$$g = a_1^{p_1} \cdots a_n^{p_n}$$

where  $p_i \in \mathbb{Z}$ ,  $i = 1, \dots, n$ . Therefore we can explicitly write down the surjective homomorphism

$$\varphi: \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text{ times}} \twoheadrightarrow G \quad \text{by} \quad \varphi(p_1, \cdots, p_n) = a_1^{p_1} \cdots a_n^{p_n} = g$$

as desired.

 $(\Leftarrow)$  By the universal property of  $\mathbb{Z}^{\oplus n}$  we have the following diagram that commutes:

To prove, it suffices to "replace" the set  $\{1, \dots, n\}$  by a subset of G.

$$\mathbb{Z}^{\oplus n} \xrightarrow{\exists ! \varphi} G$$

$$\uparrow \qquad \uparrow \qquad \downarrow i$$

$$\{1, \cdots, n\} \xrightarrow{f} A$$

By the diagram (\*), we have  $i \circ f = \varphi \circ j$ . It is a fast check that the diagram formed by  $\tilde{j}$ , i and  $\varphi$  commutes. Finally since A is a finite set and im  $\varphi = G$ , it follows by definition that G is finitely generated.

**Problem II.6.14.** Let  $\phi$  be the Euler's  $\phi$ -function. Prove that for  $n \in \mathbb{N}$ ,

$$\sum_{m>0, m|n} \phi(m) = n.$$

*Proof.* Let  $\langle x \rangle = C_n$ . We have the trivial equation

$$\sum_{q \in C_n} 1 = n$$

Now note that every element in  $C_n$  generates a cyclic subgroup. To establish the result, we show that for every d > 0 that is a divisor of n, the subgroup of order d is *unique*, i.e. the unique subgroup is given by

$$\langle x^{n/d} \rangle = \{ g \in G : g^d = 1 \}$$

Indeed, if  $g = x^{kn/d}$  for some positive integer k, then  $g^d = x^{kn} = 1$ . Conversely, if  $g^d = 1$ , then we have  $g = x^m$  for some m since x is a generator. But this means that  $x^{md} = 1$ , and this implies n|md. Hence we have

$$g = x^m = x^{n/d \cdot dm/n} = x^{n/d} \in \langle x^{n/d} \rangle$$

as desired.

Now we count the generators of each subgroup of  $C_n$ , which is  $\phi(d)$  for every d that is a divisor of n. Since every element in  $C_n$  generates a cyclic subgroup  $C_d$ , the sum of generator along each subgroup is exactly n, namely

$$\sum_{g \in C_n} 1 = \sum_{m: m|n} \phi(m) = n$$

which proved the assertion.

**Problem II.6.15.** Prove that if  $\varphi: G \to G'$  has a left inverse, then  $\varphi$  is a monomorphism.

*Proof.* If  $a, b \in G$  are distinct elements that satisfies  $\varphi(a) = \varphi(b)$ , then having left inverse means there exists a homomorphism  $\psi$  such that  $\psi \circ \varphi = id_G$ . Then we would have  $\psi \circ \varphi(a) = \psi \circ \varphi(b)$ , which means a = b, a contradiction.

### **II.7**

**Problem II.7.3.** Verify that the equivalent conditions for normality given in §7.1 are indeed equivalent.

*Proof.* Let  $g \in G$  be fixed.

- $(gng^{-1} \in N \Rightarrow gNg^{-1} \subseteq N)$  is clear.
- $(gNg^{-1} \subseteq N \Rightarrow gNg^{-1} = N)$ : For  $n \in N$ , there is an element  $g^{-1}ng \in N$  by normality, so  $g(g^{-1}ng)g^{-1} = n$ , showing that  $gNg^{-1} \supseteq N$ .
- $(gNg^{-1} = N \Rightarrow gN \subseteq Ng)$ : For  $h \in gN$ , there is h = gn for some  $n \in N$ . By normality of N, there is some  $n' \in N$  such that  $gng^{-1} = n'$ , or gn = n'g. Hence h = n'g, therefore  $h \in Ng$ .
- $(gN \subseteq Ng \Rightarrow gN = Ng)$ : If  $gN \subseteq Ng$ , then we also have  $g^{-1}N \subseteq Ng^{-1}$ , which is  $Ng \subseteq gN$ .
- $(gN = Ng \Rightarrow gng^{-1} \in N)$ : If gn = n'g, then  $gng^{-1} = n'$ . Since N is a subgroup,  $gng^{-1} \in N$ .

**Problem II.7.7.** Let n be a positive integer. Let  $H \subset G$  be the subgroup generated by all elements of order n in G. Prove that H is normal.

*Proof.* For  $a \in H, g \in G$ , since  $a^n = e$ ,

$$(gag^{-1})^n = ga^ng^{-1} = e$$

we have  $gag^{-1} \in H$ , hence normal.

**Problem II.7.11.** Prove that the commutator subgroup [G, G] is normal, and the quotient G/[G, G] is commutative.

Proof. Observe

$$gaba^{-1}b^{-1}g^{-1} = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1}) = xyx^{-1}y^{-1} \in [G,G]$$

for  $x = gag^{-1}, y = gbg^{-1}$ . The quotient is commutative since  $aba^{-1}b^{-1}[G, G] = [G, G]$  implies ab[G, G] = ba[G, G].

**Problem II.7.12.** Let F = F(A) be a free group, and let  $f : A \to G$  be a set-function from the set A to a *commutative* group G. Prove that f induces a unique homomorphism  $F/[F, F] \to G$ , where [F, F] is the commutator subgroup of F defined in Exercise 7.11. Conclude that  $F/[F, F] \cong F^{ab}(A)$ .

*Proof.* We need to define a proper homomorphism  $\tilde{f}: F/[F,F] \to G$ . By the universal property of free group, we have a unique homomorphism  $\varphi: F \to G$  induced from f. Now observe that for  $g,h \in A$ ,

$$\varphi(g)\varphi(h)\varphi(g)^{-1}\varphi(h)^{-1}=\varphi(ghg^{-1}h^{-1})=e$$

as G is commutative, we know that  $\varphi$  vanish on [F, F]. Now we just define

$$\tilde{f}: F/[F, F] \to G$$
 by  $\tilde{f}(x[F, F]) = \varphi(x)$ .

It is a fast check that  $\tilde{f}$  is the required homomorphism. This gives the following diagram.



Since both triangles commutes, the "triangle" formed by the edges  $\pi \circ j$ , f and  $\tilde{f}$  also commutes. By general nonsense (Proposition I.5.4), we conclude that  $F/[F,F] \cong F^{ab}(A)$ .

## **II.8**

**Problem II.8.2.** Extend Example 8.6 as follows. Suppose G is a group and  $H \subseteq G$  is a subgroup of *index* 2, that is, such that there are precisely two (say, left-) cosets of H in G. Prove that H is normal in G.

*Proof.* Let  $x \in H$ , and we need to prove that  $gxg^{-1} \in H$  for all  $g \in G$ . If  $g \in H$  then there is nothing to prove, so assume that  $g \in aH$ , another coset of H in G. We can write g = ah for some h, so it remains to study  $ahxh^{-1}a^{-1}$ . By noting that  $ahxh^{-1} \in aH$ , we know that  $ahxh^{-1}$  does not belong to H, and in the sense of right cosets,  $ahxh^{-1}$  must belong to Ha, so there exists  $h' \in H$  such that  $ahxh^{-1} = h'a$ . Finally

$$gxg^{-1} = ahxh^{-1}a^{-1} = h'aa^{-1} = h' \in H$$

which shows that H is normal.

**Problem II.8.7.** Let  $(A|\mathcal{R}), (A'|\mathcal{R}')$ , be the presentation for groups G, G', respectively, and assume that A and A' are disjoint. Prove that

$$G * G' := (A \cup A' \mid \mathcal{R} \cup \mathcal{R}')$$

satisfies the universal property for the coproduct of G and G' in Grp.

*Proof.* Write  $H = \mathcal{R} \cup \mathcal{R}'$ . Let us construct a homomorphism from G to G \* G'. As G = F(A)/R, by the universal property of quotient we have a commutative diagram

$$F(A) \xrightarrow{f} G * G'$$

$$F(A)/\mathscr{R}$$

In particular, we let f be an quotient map, i.e. f(w) = wH. Then naturally we have  $\varphi_1(w\mathscr{R}) = wH$ . Similarly, for G' we have another homomorphism  $\varphi_2(v\mathscr{R}') = vH$ .

Now it suffices to check the universal property. For every homomorphism that maps G and G' to a group K, which we call them  $f_1$  and  $f_2$ , we can define  $\phi: G*G' \to K$  by

$$\phi(wH) = \prod_{i=1}^{|w|} (f_1(w_i \mathscr{R}) \chi_{F(A)}(w_i) + f_2(w_i \mathscr{R}') \chi_{F(A')}(w_i))$$

where  $w = w_1 \cdots w_n$ ,  $\chi$  is the indicator function. The commutative of the coproduct diagram is clear, and  $\phi$  is clearly a homomorphism since we can clearly combine two finite product to one.

**Problem II.8.13.** Let G be a finite group, and assume |G| is odd. Prove that every element of G is a square.

*Proof.* Let |G| = 2n - 1,  $n \in \mathbb{N}$ . For every  $g \in G$ , we have

$$g = g \cdot g^{2n-1} = g^{2n} = (g^n)^2$$

which implies that every element in G is a square.

**Problem II.8.14.** Generalize the result of II.8.13: if G is a group of order n and k is an integer relatively prime to n, then the function  $G \to G$ ,  $g \to g^k$  is surjective.

*Proof.* By the prime condition, we can apply Bezout's identity, namely there exists integers a, b such that an + bk = 1. Then for every  $g \in G$ , we have

$$g = g \cdot g^{-an} = g^{1-an} = g^{bk} = (g^b)^k$$

which implies that every element in G is a k-power of some element in G.

**Problem II.8.17.** Assume that G is a finite abelian group, and let p be a prime divisor of |G|. Prove that there exists an element in G of order p.

*Proof.* We proceed by induction. Clearly if |G| = 1 then the statement is true. Now suppose for all abelian group with order less than n, we can find a element whose order is a prime and a divisor of G. Then for any group G that has order n, consider an element  $g \in G$ , and consider the subgroup generated by g,  $H = \langle g \rangle$ .

Clearly H is cyclic, so we can find a element  $q^{|g|/q}$  of order q where q is a prime since

$$1 = g^{|g|} = (g^{|g|/q})^q$$

provided that  $q \mid |g|$ . Now if q = p, then we are done; otherwise, we replace G with  $G/\langle h \rangle$ , where  $h = g^{|g|/q}$  (note that all subgroups are normal since G is abelian). Now this quotient has order less than n, and by induction, we can find an element of order p in it, which we call it  $m\langle h \rangle$ . Finally the element  $mh^q$  has order p, since

$$(mh^q)^p = m^p g^{p|g|} = 1$$

Note that the commutative is used here.

**Problem II.8.20.** Assume that G is a finite abelian group, and let d be a divisor of |G|. Prove that there exists a subgroup  $H \subseteq G$  of order d.

*Proof.* We proceed by induction. Clearly if |G| = 1 then the statement is true. Now suppose for all abelian group with order less than n, we can find a subgroup whose order is a divisor of |G|. Then if |G| = n, then by II.8.18, we have an element in G that is of order p, where p is a prime and a divisor of d. If p = d, then we are done. Otherwise, we consider the quotient  $G/\langle p \rangle$ . This group has order |G|/p, and by induction hypothesis, we can find a subgroup H in the quotient that is of order d/p. Now we claim that the set

$$H' = \{gp^n : n \in \{0, \cdots, p-1\}, g\langle p \rangle \in H\}$$

is a subgroup of order d. It is indeed a subgroup since for  $g, h \in H'$ ,

$$gh^{-1}=ap^kb^{-1}p^{-l}=ab^{-1}p^{k-l}\in H'$$

for some a,b that is a coset representative  $(ab^{-1}\langle p\rangle \in H \text{ since } H \text{ is a subgroup})$ . As the cosets are disjoint, there are precisely  $p \cdot d/p = d$  elements in H', proving the assertion.

**Problem II.8.21.** Let H, K be subgroups of a group G. Construct a bijection between the set of cosets hK with  $h \in H$  and the set of left-cosets of  $H \cap K$  in H. If H and K are finite, prove that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}.$$

*Proof.* The map  $hK \leftrightarrow h(K \cap H), h \in H$  is a bijection: it is well-defined since for  $g, h \in H$ , gK = hK implies  $gh^{-1} \in K$ , and since  $g, h \in H$ ,  $gh^{-1} \in H \cap K$  and hence  $g(H \cap K) = h(H \cap K)$ . It is injective by reversing the above argument, and surjective by construction.

$$\{hK : h \in H\} \longleftrightarrow \{h(H \cap K) : h \in H\}$$

Now the set on the left has |HK|/|H| elements in total, and the set on the right has  $|H|/|H \cap K|$ . A simple rearrangement gives the result.

**Problem II.8.22.** Let  $\varphi: G \to G'$  be a group homomorphism, and let N be the smallest normal subgroup containing im  $\varphi$ . Prove that G'/N satisfies the universal property of coker  $\varphi$  in Grp.

*Proof.* By universal property of quotient, for every homomorphism  $\alpha: G' \to L$ , the homomorphism  $\bar{\alpha}: G'/N \to L$  exists and is unique. Now it suffices to check the universal property of cokernel. For any  $\alpha: G' \to L$  such that  $\alpha \circ \varphi = 0$ , define  $\bar{\alpha}(gN) = \alpha(g)$ . We need to check that this is well defined. If  $\bar{\alpha}(gN) = \bar{\alpha}(hN)$  but  $\alpha(g) \neq \alpha(h)$ , then  $gh^{-1} \notin \ker \alpha$ . However since  $\alpha \circ \varphi = 0$ , im  $\varphi \subseteq \ker \alpha$ . By noting that N is normal and minimal, we have

$$\ker \alpha \supset N \ni qh^{-1}$$

since gN = hN. This is a contradiction, therefore  $\alpha(g) = \alpha(h)$ , showing the well-definedness of  $\bar{\alpha}$ . Then

$$\bar{\alpha}(\pi(\varphi(g)) = \bar{\alpha}(N) = \alpha(e) = e_L$$

for all  $g \in G$ . This shows  $\bar{\alpha} \circ \pi \circ \varphi = 0$ , and the assertion is proved.

**Problem II.8.24.** Show that epimorphisms in **Grp** do not necessarily have right-inverses.

*Proof.* Let

$$\varphi: \mathbb{Z} \to \mathbb{Z}_2, \quad \varphi(x) = x \mod 2$$

this map has no right inverses as any homomorphism from  $\mathbb{Z}_2$  to  $\mathbb{Z}$  can only be the identity map.

### **II.9**

**Problem II.9.7.** Prove that stabilizers are indeed subgroups.

*Proof.* Assume G acts on A, and pick  $a \in A$ . For  $g, h \in Stab_G(a)$ , we have

$$gh^{-1}a = g(h(h^{-1}a)) = ga = a$$

as required.

**Problem II.9.11.** Let G be a finite group, and let H be a subgroup of index p, where p is the smallest prime dividing |G|. Prove that H is normal in G.

*Proof.* We consider the left-multiplication action of G on the left cosets of H, which is  $g \cdot hH = ghH$ . This induces a homomorphism  $\varphi : G \to S_p$ , whose kernel includes H since

if 
$$g \in \ker \varphi$$
, then  $aH = gaH \ \forall a \in G \Rightarrow g = gH \Rightarrow g \in H$ .

Then  $G/\ker\varphi\cong\operatorname{im}\varphi$ , so  $G/\ker\varphi$  is a subgroup of  $S_p$ , therefore it has order dividing p!. However by Lagrange, such order also divides |G|, and hence must be divisible by p, so  $|G/\ker\varphi|=p$ . Finally

$$p = [G:H] = [G:\ker\varphi][\ker\varphi:H] = p[\ker\varphi:H]$$

which leads to  $[\ker \varphi : H] = 1$ . Since  $\ker \varphi \subseteq H$ ,  $\ker \varphi = H$  by index consideration, proving the assertion.

**Problem II.9.12.** Let G be a group, and let  $H \subseteq G$  be a subgroup of index n. Prove that H contains a subgroup K that is normal in G and such that [G:K] divides the gcd of |G| and n!. (In particular,  $[G:K] \leq n!$ .)

*Proof.* Following the same pattern from II.9.11, consider the left-multiplication action of G on the left cosets of H, which is  $g \cdot hH = ghH$ . This induces a homomorphism  $\varphi : G \to S_n$  (as there are n left cosets), whose kernel includes H since

if 
$$g \in \ker \varphi$$
, then  $aH = gaH \ \forall a \in G \Rightarrow g = gH \Rightarrow g \in H$ .

Define  $K = \ker \varphi$ . Then  $G/K \cong \operatorname{im} \varphi$ , so G/K is a subgroup of  $S_n$ , therefore it has order dividing n!. By Lagrange, such order also divides |G|, so we've found the required K.

**Problem II.9.13.** Prove 'by hand' that for all subgroups H of a group G and  $\forall g \in G, G/H$  and  $G/(gHg^{-1})$  (endowed with the action of G by left-multiplication) are isomorphic in G-Set.

*Proof.* We want to find a bijection function  $\varphi: G/H \to G/gHg^{-1}$  such that the diagram

$$G \times G/H \xrightarrow{id_G \times \varphi} G \times G/gHg^{-1}$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho'}$$

$$G/H \xrightarrow{\varphi} G/gHg^{-1}$$

commutes. Indeed the most natural map would be  $\varphi(xH) = (gxg^{-1})gHg^{-1}$ . We check that this is well-defined; if aH = bH, then  $gaHg^{-1} = gbHg^{-1}$  clearly. We now check that this is a bijection, by explicitly give the inverse

$$\phi: G/gHg^{-1} \to G/H, \quad \phi(xgHg^{-1}) = (g^{-1}xg)H$$

so  $\varphi \circ \phi = id$ . Therefore G/H and  $G/(gHg^{-1})$  are isomorphic in G-Set. Note that if we assume  $\varphi(xH) = xgHg^{-1}$ , then H would need to be normal in order to be well-defined.

**Problem II.9.17.** Consider G as a G-set, by acting with left-multiplication. Prove that  $\operatorname{Aut}_{G-\mathsf{Set}(G)} \cong G$ .

*Proof.* The set of automorphisms on  $G - \mathsf{Set}(G)$  are bijections that satisfies  $g\varphi(h) = \varphi(gh)$ . In particular we can define

$$\varphi_g(h) = g^{-1}h$$

this is clearly a bijection and forms a group structure by  $\varphi_g \varphi_h = \varphi_{gh}$ . We now consider the map  $\psi : \operatorname{Aut}_{G-\mathsf{Set}(G)} \to G$  by  $\psi(\varphi_g) = g$ . We claim that this is an isomorphism. Indeed, its kernel is precisely  $\varphi_e$ , which is the identity of  $\operatorname{Aut}_{G-\mathsf{Set}(G)}$ . The map is clearly surjective, and it is an homomorphism by construction. Therefore  $\operatorname{Aut}_{G-\mathsf{Set}(G)} \cong G$ .

## Chapter III

## Rings and modules

Unless otherwise specified, in the following  $R = (R, +, \cdot)$  denotes an arbitrary ring with identity (the book assumes this throughout this book), 0, 1 denotes the additive and multiplicative identity of R, respectively. In the case of possible confusion, I will use  $0_R$ ,  $1_R$  instead.

Some description and hints are omitted for simplicity.

#### III.1

**Problem III.1.1.** Prove that if 0 = 1 in a ring R, then R is a zero ring.

*Proof.* If r is any element in R, then

$$r = r \cdot 1 = r \cdot 0 = 0$$

showing that R = 0.

**Problem III.1.6.** Prove that if a and b are nilpotent in R and ab = ba, then so is a + b.

*Proof.* If  $a^n = 0, b^m = 0$ , then

$$(a+b)^{n+m} = a^{n+m} + \binom{n+m-1}{1}a^{n+m-1}b + \dots + b^{n+m}$$

and all terms are zeros since every term either have  $a^n$  or  $b^m$ . If we do not assume that ab = ba, then the statement would be false, for example, in  $M_n(\mathbb{Z})$ ,

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 and  $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ 

are nilpotent of degree 3, but  $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$  is not nilpotent.

**Problem III.1.7.** Prove that [m] is nilpotent in  $\mathbb{Z}/n\mathbb{Z}$  if and only if m is divisible by all prime factors of n.

Proof.

 $(\Rightarrow)$  If  $[m]^k = [0]$  for some integer k, then this implies  $m^k = dn$  for some integer d. Now we write  $n = p_1^{a_1} \cdots p_n^{a_n}$ , where  $p_i$  are primes, and  $a_i$  are positive integers. Then

$$m^k = dp_1^{a_1} \cdots p_n^{a_n}$$

and it is clear to see that m must contain each  $p_i$  at least once.

 $(\Leftarrow)$  If  $n = p_1^{a_1} \cdots p_n^{a_n}$  where  $p_i$  are primes, and  $a_i$  are positive integers, then we can write

$$m = p_1^{b_1} \cdots p_n^{b_n} d$$

where  $b_i$ , d are positive integers, and  $p_i \nmid d$  for all i. Define

$$f = \text{floor}\left(\max\left\{\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}\right\}\right)$$

then let  $r = m^f/n$ , which is an integer larger than 0 by the choice of f. Finally

$$m^f = nr = 0 \mod n$$

showing that m is nilpotent in  $\mathbb{Z}/n\mathbb{Z}$ .

**Problem III.1.9.** Prove Proposition 1.12, that is:

- The inverse of a two-sided unit is unique;
- two-sided units form a group under multiplication.

*Proof.* For a two-sided unit v, we have uv = 1 and vw = 1 for some  $u, w \in R$ . Then

$$w = 1 \cdot w = uvw = u \cdot 1 = u$$

showing that w = u, so the inverse can be uniquely defined as  $v^{-1} = u$ . Now as the inverse is unique, we can properly define a group structure, using the multiplication from the ring R.

**Problem III.1.15.** Prove that R[x] is a domain if and only if R is a domain.

Proof.

- $(\Rightarrow)$  Trivial since  $R \subset R[x]$ .
- ( $\Leftarrow$ ) Assume the contrary that R[x] is not a domain. Then we can find  $f = \sum_{i=0}^{n} a_i x^i$ ,  $g = \sum_{j=0}^{m} b_j x^j$ ,  $f \neq 0, g \neq 0$  such that fg = 0. Then we would have  $a_n b_m = 0$ , and since R is a domain, either  $a_n$  or  $b_m$  is zero. Without loss of generality, we can reduce the case to  $f = a_0 \neq 0$ . Then by the same argument, we would arrive at  $a_0 b_0 = 0$ , since all higher terms must be zero. But this contradict to the assumption that R is a domain, since  $f = a_0$  and  $g = b_0$  are nonzero. Hence R[x] must be a domain.

#### III.2

**Problem III.2.1.** Prove that if there is a homomorphism from a zero ring to a ring R, then R is a zero ring.

*Proof.* If  $1_R$  is the multiplicative identity of R, then for any homomorphism  $\varphi: 0 \to R$ ,

$$0_R = \varphi(0) = \varphi(1) = 1_R$$

and by III.1.1, R is a zero-ring.

**Problem III.2.6.** Verify the 'extension property' of polynomial ring:

Let  $\alpha: R \to S$  be a fixed ring homomorphism, and let  $s \in S$  be an element commuting with  $\alpha(r)$  for all  $r \in R$ . Then there is a unique ring homomorphism  $\bar{\alpha}: R[x] \to S$  extending  $\alpha$  and sending x to s.

*Proof.* Indeed, for  $\sum_{i>0} a_i x^i \in R[x]$ , we have no choice but to define

$$\bar{\alpha}\left(\sum_{i\geq 0} a_i x^i\right) = \sum_{i\geq 0} \alpha(a_i) s^i \tag{1}$$

so that  $\bar{\alpha}(r) = \alpha(r)$  and x sends to s in this map. It is clearly a homomorphism (note that the commutativity of s is used in the proof of  $\bar{\alpha}(fg) = \bar{\alpha}(f)\bar{\alpha}(g)$ ), so it suffices to check that  $\bar{\alpha}$  is unique. But it is clear by the fact that any map that extends  $\alpha$  and send x to s must have the same value evaluated as in (1).

**Problem III.2.9.** Prove that the center of R is a subring. Moreover, prove that the center of a division ring is a field.

*Proof.* A subset of a ring S is a subring if it is a subgroup of (R, +), closed under multiplication, and 1 is in it. So we check that:

• it is a subgroup of (R, +): for  $a, b \in C$ , for all  $r \in R$ ,

$$(a-b)r = ar - br = ra - rb = r(a-b)$$

showing that  $a - b \in C$ , hence a subgroup;

• closed under multiplication: for  $a, b \in C$ , for all  $r \in R$ ,

$$abr = a(br) = a(rb) = (ar)b = (ra)b = rab$$

showing that  $ab \in C$ ;

• finally, 1 is in C since 1r = r1 for all  $r \in R$ .

Clearly the center forms a commutative ring since for  $a, b \in C$ , ab = ba. Then it follows by definition that a commutative division ring is a field.

**Problem III.2.10.** Prove that the centralizer of a is a subring for every  $a \in R$ . Prove that the center is the intersection of all its centralizers, and prove that every centralizer of a division ring is a division ring.

*Proof.* We use the same test as above. Let  $C_x$  denotes the centralizer of x.

• It is a subgroup of (R, +): for  $a, b \in C_x$ ,

$$(a-b)x = ax - bx = xa - xb = x(a-b)$$

showing that  $a - b \in C_x$ , hence a subgroup;

• closed under multiplication: for  $a, b \in C_x$ ,

$$abx = a(bx) = a(xb) = (ax)b = (xa)b = xab$$

showing that  $ab \in C_x$ ;

• finally, 1 is in  $C_x$  since 1x = x1.

It is easy that the center is the intersection of all its centralizers, since such elemet in the intersection must commute with the whole ring R. Finally, if R is a division ring, then for every element  $a \in C_x$ , we can show that  $a^{-1} \in C_x$ :

$$ax = xa \Rightarrow axa^{-1} = x \Rightarrow xa^{-1} = a^{-1}x$$

Therefore every element in  $C_x$  has a inverse, and by definition,  $C_x$  is a division ring.

**Problem III.2.11.** Prove that a division ring R which consists of  $p^2$  elements where p is a prime, is commutative.

*Proof.* Suppose the contrary that R is not commutative. Then the center C must be a proper subring, which can only consist of p elements by Lagrange. Now let  $r \in R \setminus C$ . Then the centralizer of r will contain at least r and C by III.2.10, therefore the centralizer of r must be R itself (again by Lagrange), for every  $r \in R \setminus C$ . But then the intersection of all centralizer are now R (element of center has centralizer R clearly), which is a contradiction to that C is proper. Therefore R must be commutative, i.e. a field.

**Problem III.2.12.** Consider the inclusion map  $\iota : \mathbb{Z} \hookrightarrow \mathbb{Q}$ . Describe the cokernel of  $\iota$  in Ab and its cokernel in Ring.

Solution. In Ab, this is easy: it is just  $\mathbb{Q}/\operatorname{im} \iota = \mathbb{Q}/\mathbb{Z}$ . However in Ring, we notice that for any map  $\alpha : \mathbb{Q} \to F$  that satisfy  $\alpha \circ \iota = 0$ , we have

$$0_F = \alpha(1) = \alpha \circ \iota(1) = \alpha(1) = 1_F$$

which shows that F must be the zero ring by III.1.1. Now the unique homomorphism  $\bar{\alpha}$ : coker  $\iota \to F$  must also be the zero map, and by the requirement  $\bar{\alpha} \circ \pi \circ \iota = 0$ , we finally have  $\pi \circ \iota = 0$ , and by the same argument as above, we have that the codomain of  $\pi$  is the zero ring, i.e. coker  $\iota = 0$ .

### III.3

**Problem III.3.2.** Let  $\varphi: R \to S$  be a ring homomorphism, and let J be an ideal of S. Prove that  $\varphi^{-1}(J)$  is an ideal.

*Proof.* The ideal is clearly nonempty, so it suffices to check that  $\varphi^{-1}(J)$  is a additive subgroup and satisfies the absorption property. For  $x, y \in \varphi^{-1}(J)$ , we have  $\varphi(x), \varphi(y) \in J$ , so  $\varphi(x) - \varphi(y) = \varphi(x - y) \in J$ , therefore  $x - y \in \varphi^{-1}(J)$ , showing that it is a subgroup of (R, +).

Now for any  $r \in R$ ,  $a \in \varphi^{-1}(J)$ , we have  $\varphi(a) \in J$ , so  $\varphi(r)\varphi(a) = \varphi(ra) \in J$ , and hence  $ra \in \varphi^{-1}(J)$ , showing the left-absorption property. The right case is the same.

**Problem III.3.3.** Let  $\varphi: R \to S$  be a ring homomorphism, and let J be an ideal of R.

- Show that  $\varphi(J)$  need not be an ideal of S.
- Assume that  $\varphi$  is surjective; then prove that  $\varphi(J)$  is an ideal of S.
- Assume that  $\varphi$  is surjective, and let  $I = \ker \varphi$ . Let  $\bar{J} = \varphi(J)$ . Prove that

$$\frac{R/I}{\bar{J}} \cong \frac{R}{I+J}.$$

*Proof.* Let  $\varphi : \mathbb{Z} \hookrightarrow \mathbb{R}$  be inclusion (and clearly a homomorphism). Then every ideal of  $\mathbb{Z}$  will be directly transformed into  $\mathbb{R}$ . But since  $\mathbb{R}$  is a field, by III.3.8 (which will be proved later) the possible ideal of  $\mathbb{R}$  are only  $\{0\}$  and  $\mathbb{R}$  itself, so the image of a homomorphism need not to be an ideal.

However, If  $\varphi$  is surjective, Then  $\varphi(J)$  is indeed an ideal: if  $\varphi(x), \varphi(y) \in \varphi(J)$ , then so is  $\varphi(x) - \varphi(y) = \varphi(x - y) \in \varphi(J)$ . The absorption property is also true since  $\varphi(r)\varphi(x) = \varphi(rx) \in \varphi(J)$ .

Finally, we consider the homomorphism

$$\phi: R/I \to R/(I+J), \quad \phi(a+I) = a+I+J$$

 $\phi$  is clearly a surjective homomorphism, and by first isomorphism theorem

$$\frac{R/I}{\ker \phi} \cong \frac{R}{I+J}$$

so it remains to solve  $\ker \phi$ , which is

$$\begin{aligned} \ker \phi &= \{a+I: a+I+J=I+J\} \\ &= \{a+b+I: a\in I, b\in J\} \\ &= \{b+I: b\in J\} \\ &= \{\varphi(b)\in S: b\in J\} \quad (\text{regarding } R/I \text{ as } S) \\ &= \varphi(J) = \bar{J} \end{aligned}$$

therefore

$$\frac{R/I}{\bar{J}} \cong \frac{R}{I+J}$$

as required.

**Problem III.3.7.** Let R be a ring, and let  $a \in R$ . Prove that Ra is a left-ideal of R and aR is a right-ideal of R. Prove that a is a left-, resp. right-, unit if and only if R = aR, resp. R = Ra.

*Proof.* We prove only the left-ideal case since the same argument holds for right-ideal case. Ra is a subgroup of (R, +) since for  $ra, sa \in Ra, ra - sa = (r - s)a \in Ra$ . The absorption property follows easily since  $rsa = (rs)a \in Ra$ .

If a is a right unit, then there exists u such that ua = 1. Then 1 is contained in Ra, and since for all  $r \in R$ ,  $r \cdot 1 \in Ra$ , we conclude that R = Ra.

**Problem III.3.8.** Prove that R is a division ring if and only if its only left-ideals and right-ideals are  $\{0\}$  and R.

In particular, a commutative ring R is a field if and only if the only ideals of R are  $\{0\}$  and R.

Proof.

 $(\Rightarrow)$  If a nonzero element a is in the left-ideal I, then so is 1 since

$$1 = a^{-1}a \in I$$
 by definition

Therefore any nonzero left-ideals are automatically R itself. The right-ideal case is the same. ( $\Leftarrow$ ) If a nonzero element a does not have a left inverse, then aR would be a proper right-ideal by III.3.7. Therefore all elements must have left(and hence right) inverse.

**Problem III.3.10.** Let  $\varphi: k \to R$  be a ring homomorphism, where k is a field and R is a nonzero ring. Prove that  $\varphi$  is *injective*.

*Proof.*  $\varphi$  is injective if and only if  $\ker \varphi = \{0\}$  by Proposition III.2.4. Also, the ideals of k are only  $\{0\}$  and k by III.3.8. If  $\ker \varphi = \{0\}$  then there is nothing to prove, so let  $\ker \varphi = k$ . But this means that  $\varphi = 0$ , so we have

$$1_R = \varphi(1) = 0 = \varphi(0) = 0_R$$

and by III.1.1, R is a zero ring, a contradiction to the hypothesis. Therefore  $\ker \varphi = \{0\}$ , showing that  $\varphi$  is injective.

**Problem III.3.12.** Let R be a *commutative* ring. Prove that the set of nilpotent elements forms an ideal of R. This ideal is called the *nilradical* of R.

*Proof.* From III.1.6 we already know that it forms a subgroup of (R, +) by relpacing b with -b, so it remains to check that it is an ideal. Let I be such ideal. If  $a \in R, r \in I$  and  $r^n = 0$ , then since

$$(ar)^n \stackrel{!}{=} a^n r^n = 0$$

in which! is where commutative is used. Therefore  $ar \in I$ , proving the absorption property.

For an counter-example where R is not commutative, simply consider the example of III.1.6: it is not even a subgroup of (R, +).

**Problem III.3.13.** Let R be a commutative ring, and let N be its nilradical. Prove that R/N contains no nonzero nilpotent elements. Such a ring is said to be reduced.

*Proof.* Pick an element  $a \in R \setminus N$ . Then for every integer n > 0,

$$(a+N)^n = a^n + \binom{n}{1}a^{n-1}N + \dots + N^n = a^n + N$$

Since a is not nilpotent,  $a^n \neq 0$  for every n, showing that a + N is not nilpotent for  $a \in R \setminus N$ .

## **III.4**

**Problem III.4.1.** Let R be a ring, and let  $\{I_{\alpha}\}_{{\alpha}\in A}$  be a family of ideals of R. We let

$$\sum_{\alpha \in A} I_{\alpha} := \left\{ \sum_{\alpha \in A} r_{\alpha} \text{ such that } r_{\alpha} \in I_{\alpha} \text{ and } r_{\alpha} = 0 \text{ for all but finitely many } \alpha \right\}.$$

Prove that  $\{I_{\alpha}\}_{{\alpha}\in A}$  is an ideal of R and that it is the smallest ideal containing all of the ideals  $I_{\alpha}$ .

*Proof.* We only consider the case when  $A = \{1, 2\}$ : Any other A follows the same exact argument. Let  $I = I_1 + I_2$ . I is a subgroup of (R, +): the two elements in I can be represented as  $r_1 + r_2$  and  $r'_1 + r'_2$ , and clearly  $(r_1 - r'_1) + (r_2 - r'_2)$  is in I. The absorption property is also clear, since  $r(r_1 + r_2) = (rr_1 + rr_2) \in I$ .

Now it suffice to show that I is minimal. For every ideal that contains  $I_1$  and  $I_2$ , they must also contain  $r_1 + r_2$  for  $r_1 \in I_1$  and  $r_2 \in I_2$ , since ideal is a subgroup of (R, +). Therefore every such ideal must also contain I, proving the minimality of I.

**Problem III.4.2.** Prove that the homomorphic image of a Noetherian ring is Noetherian.

*Proof.* Let R be Noetherian, S be any ring,  $\varphi: R \to S$  be a surjective ring homomorphism. Let J be an ideal of S. By III.3.2, the preimage is an ideal, which we call  $I = \langle a_1, ... a_n \rangle$ . We claim that  $J = \langle \varphi(a_1), ... \varphi(a_n) \rangle$ , so every finitely generated ideal will map to a finitely generated ideal, proving that S is Noetherian.

Indeed, since  $a_i \in \varphi^{-1}(J)$ ,  $\varphi(a_i) \in J$  for i = 1, ..., n, so  $\langle \varphi(a_1), ... \varphi(a_n) \rangle \subseteq J$ . On the other hand, for an element  $j \in J$ , there exists  $i \in R$  such that  $\varphi(i) = j$  by surjectivity, therefore  $i \in I$ , so i is generated by elements  $a_1, ..., a_n$ , i.e.  $i = r_1 a_1 + ... + r_n a_n$ . Then since  $\varphi$  is a homomorphism,

$$\varphi(i) = j = \varphi(r_1 a_1 + \ldots + r_n a_n) = s_1 \varphi(a_1) + \ldots + s_n \varphi(a_n)$$

so  $J \subseteq \langle \varphi(a_1), ... \varphi(a_n) \rangle$ , and the claim is proved.

**Problem III.4.3.** Prove that the ideal (2, x) of  $\mathbb{Z}[x]$  is not principal.

*Proof.* Assume that (f) = (2, x). Then there is some  $q \in \mathbb{Z}[x]$  such that fq = 2. Then f, q are constant and f must be 2 since 1 is not in it. But we also have fg = x for some  $g \in \mathbb{Z}[x]$ , and there are no possible choice of g such that 2g = x. Hence (2, x) is not principal.

**Problem III.4.4.** Prove that if k is a field, then k[x] is a PID.

*Proof.* Let I be any ideal of k[x]. If I = (0), then there is nothing to prove. Otherwise, there is some polynomial  $f \in I$  that has minimal degree in I and is monic (since you can do scalar division). We claim that I = (f). Indeed, for  $g \in I$ , we can use division algorithm to write

$$g(x) = f(x)q(x) + r(x)$$

where  $\deg r(x) < \deg f(x)$ . Since k[x] is a subgroup,  $r = g - fq \in I$ , and by the minimality of f, r(x) = 0, so every element of I can be written as g(x)f(x) for some  $g \in k[x]$ , showing that k[x] is a PID.

**Problem III.4.5.** Let I, J be ideals in a commutative ring R, such that I + J = (1). Prove that  $IJ = I \cap J$ .

*Proof.* If  $x \in IJ$ , then it can be represented as ij for some  $i \in I, j \in J$ , and by the property of ideal,  $ji \in I, ij \in J$ , so  $ij \in I \cap J$ . Conversely, we have

$$I \cap J = (I \cap J)(1) = (I \cap J)(I + J) = (I \cap J)I + (I \cap J)J \subseteq IJ + IJ = IJ$$

showing the identity.

**Problem III.4.7.** Let R = k be a field. Prove that every nonzero (principle) ideal in k[x] is generated by a unique *monic* polynomial.

*Proof.* From III.4.4 we already know that every ideal is generated by a single polynomial f. Since k is a field, we can do division, so there is a monic polynomial f(x)/a where a is the coefficient of the largest degree in f. Then it's trivial that (f) = (f/a).

**Problem III.4.11.** Let R be a commutative ring,  $a \in R$ , and  $f_1(x), \ldots, f_r(x) \in R[x]$ .

• Prove the equality of ideals

$$(f_1(x), \dots, f_r(x), x - a) = (f_1(a), \dots, f_r(a), x - a).$$

• Prove the useful substitution trick

$$\frac{R[x]}{(f_1(x),\ldots,f_r(x),x-a)} \cong \frac{R}{(f_1(a),\ldots,f_r(a))}$$

*Proof.* We consider only the case k = 1; the other cases are just extending the same argument. We are required to prove that

$$(f(x), x - a) = (f(a), x - a)$$

For f(x), we can apply division algorithm to get

$$f(x) = q(x)(x - a) + r$$

where  $q(x) \in R[x], r \in R$ . By plug in x = a, we obtain r = f(a). Therefore f(x) is generated by f(a) and (x - a), showing  $f(x) \in (f(a), x - a)$ . On the other hand, note the division algorithm also implies

$$f(a) = f(x) - q(x)(x - a) \in (f(x), x - a)$$

therefore  $f(a) \in (f(x), x-a)$ , so (f(x), x-a) = (f(a), x-a). Now since  $R[x]/(x-a) \cong R$ , by III.3.3

$$\frac{R}{\varphi(J)} \cong \frac{R[x]}{\ker \varphi + J}$$

for an ideal  $J \in R[x]$ ,  $\varphi : R[x] \to R$  a surjective homomorphism. It is clear that how should we choose these: by taking

$$J = (f_1(x), \dots, f_r(x)), \quad \varphi(f(x)) = f(a)$$

we have

$$\frac{R}{(f_1(a),\ldots,f_r(a))} \cong \frac{R[x]}{(f_1(x),\ldots,f_r(x),x-a)}$$

as desired (note that  $\varphi$  is surjective).

**Problem III.4.13.** Let R be an integral domain. For all k = 1, ..., n, prove that  $(x_1, ..., x_k)$  is prime in  $R[x_1, ..., x_n]$ .

*Proof.* We proceed by induction. For the case k = 1, we have

$$\frac{R[x]}{(x)} \cong R \quad \text{(p.p.151)}$$

and since R is a domain, it follows by definition that (x) is a prime ideal. Suppose that for k < n, the argument holds. Then for k = n, choose

$$J = (x_1, \dots, x_{n-1}), \quad \varphi : R[x_1, \dots, x_n] \hookrightarrow R[x_1, \dots, x_{n-1}]$$

where  $\varphi$  is the inclusion map and  $\ker \varphi = (x_n)$ . Then by III.3.3

$$\frac{R[x_1, \dots, x_n]/(x_n)}{(x_1, \dots, x_{n-1})} \cong \frac{R[x_1, \dots, x_n]}{(x_1, \dots, x_{n-1}) + (x_n)}$$

which simplifies to

$$\frac{R[x_1, \dots, x_{n-1}]}{(x_1, \dots, x_{n-1})} \cong \frac{R[x_1, \dots, x_n]}{(x_1, \dots, x_n)}$$

By induction hypothesis, the quotient on the left is a domain since  $(x_1, \ldots, x_{n-1})$  is a prime ideal, therefore by definition,  $(x_1, \ldots, x_n)$  is a prime ideal.

**Problem III.4.16.** Let R be a commutative ring, and let P be a prime ideal of R. Suppose 0 is the only zero-divisor of R contained in P. Prove that R is an integral domain.

*Proof.* Let  $a, b \in R$  such that ab = 0. Then since  $0 \in P$ ,  $ab \in P$ , so either  $a \in P$  or  $b \in P$ . Without loss of generality, let  $a \in P$ . If a = 0, then we are done; otherwise,  $a \neq 0$ , and since ab = 0, we must have b = 0 as a is not a zero divisor (0 is the only zero-divisor in P). In both cases, we show that ab = 0 implies a = 0 or b = 0, showing that R is a domain.

**Problem III.4.18.** Let R be a commutative ring, and let N be its nilradical (III.3.12). Prove that N is contained in every prime ideal of R.

*Proof.* Let  $x^n = 0$  for some positive integer n, and P a prime ideal. Then since  $0 \in P$ , we have

$$P \ni 0 = x^n = x \cdot x^{n-1}$$

By the property of prime ideal, either  $x \in P$  or  $x^{n-1}$  in P. If the former case is true, then we are done; else, we can reduce to the case where either  $x \in P$  or  $x^{n-2} \in P$ . By continuing this process, we will arrive at either  $x \in P$  or  $x \in P$ , showing that in any cases,  $x \in P$ . Therefore all nilpotent elements are in P, proving the statement.

**Problem III.4.21.** Let k be an algebraic closed field, and let  $I \subseteq k[x]$  be an ideal. Prove that I is maximal if and only if I = (x - c) for some  $c \in k$ .

Proof.

 $(\Leftarrow)$  We have

$$\frac{k[x]}{(x-c)} \cong k \quad \text{(p.p.151)}$$

and since k is a field, it follows by definition that (x-c) is maximal.

( $\Rightarrow$ ) Let J be a maximal ideal. By III.4.4, k[x] is a PID, hence every ideal is being generated by a single monic polynomial  $f(x) \in k[x]$  (III.4.7). Since k is algebraic closed, we can write f(x) = q(x)(x-c) for some  $q(x) \in k[x]$ ,  $c \in k$ . Then

$$J = (f(x)) = (q(x)(x-c)) \subseteq (x-c)$$

and by Proposition III.4.11, either J=(x-c) or J=k[x]. The latter case could not happen since the maximal can not be k[x] itself, therefore J=(x-c), as desired.

Unless otherwise specified, in the following M denotes a (left-)module over R.

#### III.5

Problem III.5.2. Prove claim 5.1.

*Proof.* Let  $\sigma: R \to \operatorname{End}_{\mathsf{Ab}}(M)$  be a ring homomorphism and  $\rho: R \times M \to M$  a function. We verify the following properties:

•  $\rho(r, m+n) = \rho(r, m) + \rho(r, n)$ . Note that  $\sigma(r)$  is a endomorphism on M. Then

$$\rho(r, m+n) = \sigma(r)(m+n) = \sigma(r)(m) + \sigma(r)(n) = \rho(r, m) + \rho(r, n)$$

•  $\rho(r+s,m) = \rho(r,m) + \rho(s,m)$ .

$$\rho(r+s,m) = \sigma(r+s)(m) = \sigma(r)(m) + \sigma(s)(m) = \rho(r,m) + \rho(s,m)$$

$$\rho(rs,m) = \sigma(rs)(m) = \sigma(r)\sigma(s)(m) = \sigma(r)\rho(s,m) = \rho(r,\rho(s,m))$$

•  $\rho(1, m) = m$ .

$$\rho(1,m) = \sigma(1)(m) = 1(m) = m$$

**Problem III.5.3.** Prove that  $0 \cdot m = 0$  and that  $(-1) \cdot m = -m$  for all  $m \in M$ .

*Proof.* Since 
$$0m = (0+0)m = 0m + 0m, 0m = 0$$
. Since  $0 = 0m = (-1+1)m = (-1)m + m, (-1)m = -m$ .

**Problem III.5.4.** Let R be a ring. A nonzero R-module M is simple (or irreducible) if its only submodules are  $\{0\}$  and M. Let M, N be simple modules, and let  $\varphi: M \to N$  be a homomorphism of R-modules. Prove that either  $\varphi = 0$  or  $\varphi$  is an isomorphism.

*Proof.* The kernel of a R-module homomorphism is a submodule of M, which can only be  $\{0\}$  or M. If ker  $\varphi = M$  then  $\varphi = 0$ , and if ker  $\varphi = \{0\}$  then  $\varphi$  is injective. The image of a R-module homomorphism is a submodule of N, which again can only be  $\{0\}$  or M. if im  $\varphi = \{0\}$  then  $\varphi = 0$ , and if im  $\varphi = N$  then  $\varphi$  is surjective.

So there are four different combination of images and kernels:

- $\ker \varphi = M, \operatorname{im} \varphi = \{0\} \Rightarrow \varphi = 0;$
- $\ker \varphi = M, \operatorname{im} \varphi = N \Rightarrow \varphi = 0, N = 0$ , which can't be by hypothesis;
- $\ker \varphi = \{0\}, \operatorname{im} \varphi = \{0\} \Rightarrow \varphi = 0, M = 0$ , which can't be by hypothesis;
- $\ker \varphi = \{0\}, \operatorname{im} \varphi = N \Rightarrow \varphi \text{ is an isomorphism.}$

so either  $\varphi = 0$  or  $\varphi$  is an isomorphism.

**Problem III.5.11.** Let R be commutative, and let M be an R-module. Prove that there is a natural bijection between the set of R[x]-module structures on M (extending the given R-module structure) and  $\operatorname{End}_{R-\operatorname{\mathsf{Mod}}}(M)$ .

*Proof.* If  $f \in \operatorname{End}_{R-\mathsf{Mod}}(M)$ , then we have to show that there are some suitable maps

$$R[x] \times M \to M$$
  
 $(f(x), m) \to ?$ 

that makes M into a R[x]-module. We consider  $(g(x), m) \to g(f)(m)$ , where if  $g(x) = \sum_i a_i x^i$ , then

$$\sigma(f,m) = \sum_{i} a_i f^i(m)$$
 where  $f^i = \underbrace{f \circ \cdots \circ f}_{i \text{ times}}$ 

We can easily check by definition that M is a R[x]-module. Conversely, if M is a R[x]-module, then define f(m) = xm. Then f is indeed an endomorphism (note that the commutativity of R ensures that rxm = xrm for  $r \in R$ , so f is an endomorphism), proving the statement.

**Problem III.5.12.** Let M, N be R-modules, and let  $\varphi : M \to N$  be a homomorphism of R-modules which has a inverse (therefore a bijection). Prove that  $\varphi^{-1}$  is also a homomorphism of R-modules. Conclude that a bijective R-module homomorphism is a R-module isomorphism.

Proof. Since

$$\varphi(\varphi^{-1}(m) + \varphi^{-1}(n)) = m + n = \varphi(\varphi^{-1}(m+n))$$

we have  $\varphi^{-1}(m) + \varphi^{-1}(n) = \varphi^{-1}(m+n)$ . And

$$\varphi(r\varphi^{-1}(m)) = r\varphi(\varphi^{-1}(m)) = rm = \varphi(\varphi^{-1}(rm))$$

so  $r\varphi^{-1}(m) = \varphi^{-1}(rm)$  indeed.

**Problem III.5.14.** Prove Proposition 5.18, that is:

Let N, P be submodules of an R-module M. Then

- N + P is a submodule of M:
- $N \cap P$  is a submodule of P, and

$$\frac{N+P}{N} \cong \frac{P}{N \cap P}.$$

*Proof.* Every element of N+P can be written as n+p where  $n \in N, p \in P$ . Then it is clear that  $r(n+p) = rn + rp \in N + P$  for  $r \in M$ . For the intersection  $N \cap P$ , it is also clear that for  $p \in P, n \in N \cap P, pr \in N$  since  $r \in N$ , and  $pr \in P$  since  $p \in P$ .

The proof for the second isomorphism theorem follows exactly the same as in groups (Proposition II.8.11). Consider the homomorphism

$$\varphi: P \to \frac{N+P}{N}, \quad \varphi(p) = pN$$

it is surjective since for every (n+p)N, there is a corresponding p. Then

$$\ker \varphi = \{ p \in P : p \in N \} = P \cap N$$

finally it follows by first isomorphism theorem that

$$\frac{N+P}{N}\cong \frac{P}{N\cap P}.$$

### **III.6**

**Problem III.6.1.** Prove Claim 6.3, that is,  $F^R(A) \cong R^{\oplus A}$ .

*Proof.* Observe that every element in  $R^{\oplus A}$  can be uniquely written as

$$\sum_{a \in A} r_a \chi(a)$$

where  $\chi(a) = \chi_a(x)$ , the indicator function of a, and  $r_a \in R$  for  $a \in A$ . Then it suffices to check the universal property of free modules: given a function  $f: A \to M$  where M is a module, we show that the following diagram

$$R^{\oplus A} \xrightarrow{\exists ! \varphi} M$$

$$\chi \uparrow \qquad \qquad f$$

$$A$$

commutes. Indeed, we define

$$\varphi\left(\sum_{a\in A} r_a \chi(a)\right) = \sum_{a\in A} r_a f(a)$$

then the diagram clearly commutes (and is unique). Finally,  $\varphi$  is a  $R-\mathsf{Mod}$  homomorphism since

$$\varphi\left(\sum_{a\in A} r_a \chi(a)\right) + \varphi\left(\sum_{a\in A} r'_a \chi(a)\right) = \sum_{a\in A} r_a f(a) + \sum_{a\in A} r'_a f(a) \stackrel{\checkmark}{=} \sum_{a\in A} (r_a + r'_a) f(a)$$
$$= \varphi\left(\sum_{a\in A} (r_a + r'_a) \chi(a)\right) = \varphi\left(\sum_{a\in A} r_a \chi(a) + \sum_{a\in A} r'_a \chi(a)\right)$$

Note that R-module's definition gurantees the commutative of  $\checkmark$  (scalar multiplication is direct).

**Problem III.6.3.** Let R be a ring, M an R-module, and  $p: M \to M$  an R-module homomorphism such that  $p^2 = p$ . Prove that  $M \cong \ker p \oplus \operatorname{im} p$ .

*Proof.* We are required to prove that the diagram



commutes. Notice that for  $x \in \ker p, p(x) = 0$ , and

for 
$$x \in \text{im } p, x - p(x) = p(y) - p(p(y)) = p(y) - p(y) = 0$$

where p(y) = x. This suggest that we define  $\varphi$  as

$$\varphi(x) = f_k(x - p(x)) + f_m(p(x))$$

Indeed, if  $x \in \ker p$ , then  $\varphi(x) = f_k(x)$ ; if  $x \in \operatorname{im} p$ , then  $\varphi(x) = f_m(p(x)) = f_m(x)$  since for  $x \in \operatorname{im} p$ ,

$$p(y) = x, p(p(y)) = p(y) \Rightarrow p(x) = x.$$

But what about  $x \in \ker p \cap \operatorname{im} p$ ? In fact, the only element in the intersection is 0, as such x must have

$$x = p(y) = p(p(y)) = p(x) = 0$$

so  $\varphi$  is well-defined. Now it suffices to check that  $\varphi$  is a homomorphism, which is direct since  $p, f_k$  and  $f_m$  are both R-homomorphisms, so it preserves the action on M (check yourself if you're not convinced). Therefore by the universal property of coproduct,  $\ker p \oplus \operatorname{im} p \cong M$ .

**Problem III.6.4.** Let R be a ring, and let n > 1. View  $R^{\oplus (n-1)}$  as a submodule of  $R^{\oplus n}$ , via the injective homomorphism  $R^{\oplus (n-1)} \hookrightarrow R^{\oplus n}$  defined by

$$(r_1,\ldots,r_{n-1}) \hookrightarrow (r_1,\ldots,r_{n-1},0).$$

Give a one-line proof that

$$\frac{R^{\oplus n}}{R^{\oplus (n-1)}} \cong R.$$

*Proof.* The surjective map

$$(r_1,\ldots,r_{n-1},r_n) \twoheadrightarrow r_n.$$

has kernel precisely  $R^{\oplus (n-1)}$ , therefore by first isomorphism theorem

$$\frac{R^{\oplus n}}{R^{\oplus (n-1)}} \cong R.$$

**Problem III.6.5.** For any ring R and any two sets  $A_1, A_2$ , prove that  $(R^{\oplus A_1})^{\oplus A_2} \cong R^{\oplus (A_1 \times A_2)}$ .

*Proof.* By III.6.1, it is equivalent to prove the following diagram commutes:

$$(R^{\oplus A_1})^{\oplus A_2} \xrightarrow{\exists ! \varphi} M$$

$$\downarrow j \qquad \qquad f$$

$$A_1 \times A_2$$

To do this, note that an element in  $(R^{\oplus A_1})^{\oplus A_2}$  is a function  $g: A_2 \to R^{\oplus A_1}$ , in which we send an element  $a_2 \in A_2$  to

$$j_{a_1,a_2}(x) := \begin{cases} 1 & \text{if } x = a_1 \\ 0 & \text{if } x \neq a_1 \end{cases}$$
 (p.p.168)

this suggests us to define

$$j(a_1, a_2) \mapsto (j_{a_1, a_2}(b_2))(b_1) = \chi_{a_1}(b_1)\chi_{a_2}(b_2)$$

where  $\chi$  is the indicator function. Then it follows the same pattern as in III.6.1: for  $f: A_1 \times A_2 \to M$  given and any element  $\sum_{a_1 \in A_1, a_2 \in A_2} r_{a_1, a_2}(j_{a_1, a_2}(b_2))(b_1) \in (R^{\oplus A_1})^{\oplus A_2}$ , define

$$\varphi\left(\sum_{a_1 \in A_1, a_2 \in A_2} r_{a_1, a_2}(j_{a_1, a_2}(b_2))(b_1)\right) = \sum_{a_1 \in A_1, a_2 \in A_2} r_{a_1, a_2}f(a_1, a_2)$$

The commutative of diagram is direct. Finally, the check for  $\varphi$  is a  $R-\mathsf{Mod}$  homomorphism is the same as in III.6.1.

**Problem III.6.7.** Let A be any set, and for any module M over a ring R, define

$$M^A := \prod_{a \in A} M, \quad M^{\oplus A} := \bigoplus_{a \in A} M.$$

Prove that  $\mathbb{Z}^{\mathbb{N}} \ncong \mathbb{Z}^{\oplus \mathbb{N}}$ .

*Proof.* Note that  $\mathbb{Z}^{\mathbb{N}}$  can be regarded as the collection of functions

$$f: \mathbb{Z} \to \mathbb{N}$$

which is the collection of all infinite sequences in  $\mathbb{Z}$ . This set has uncountably many elements (as one can argue using Cantor's diagonal argument). On the other hand,  $\mathbb{Z}^{\oplus \mathbb{N}}$  is also the collection of these function, but with the additional criterion that

$$f(n) = 0$$
 for all but finitely many  $n \in \mathbb{Z}$ 

which says that this set collects all finite sequence in  $\mathbb{Z}$ , and as we know (i.e. can construct a bijection to  $\mathbb{Z}$ ), this set is countable. As the cardinality does not match,  $\mathbb{Z}^{\mathbb{N}} \ncong \mathbb{Z}^{\oplus \mathbb{N}}$ , as required.

**Problem III.6.9.** Let R be a ring, F a nonzero free R-module, and let  $\varphi: M \to N$  be a homomorphism of R-modules. Prove that  $\varphi$  is onto if and only if for all R-module homomorphisms  $\alpha: F \to N$  there exists an R-module homomorphism  $\beta: F \to M$  such that  $\alpha = \varphi \circ \beta$ .

*Proof.* As M is free, it is generated by a set  $X = \{x_i\}$  (not necessarily finite).

- $(\Rightarrow)$  Let  $\{n_i\} \in N$  be such that  $\varphi(x_i) = n_i$ . If  $\varphi$  is onto, then each  $n_i$  corresponds to a  $m_i \in M$  such that  $\varphi(m_i) = n_i$ . We then just define  $\beta(x_i) = m_i$ , and the commutativity is clear (note that  $\beta$  might not be unique, but that's fine).
- ( $\Leftarrow$ ) If  $\varphi$  is not onto, i.e. there exists  $n \in N$  such that  $n \notin \operatorname{im} \varphi$ , then this also means that  $n \notin \operatorname{im}(\varphi \circ \beta)$  for any  $\beta$ . Now we choose a suitable  $\alpha$  so  $\alpha = \varphi \circ \beta$  does not hold. Indeed, we can define

$$\alpha(x_i) = n$$

for all i. Then the commutativity does not hold for any choice of  $\beta$ , a contradiction. Therefore  $\varphi$  must be surjective.

**Problem III.6.10.** Let M, N, and Z be R-modules, and let  $\mu : M \to Z, \nu : N \to Z$  be homomorphism of R-modules. Prove that  $R - \mathsf{Mod}$  has 'fibered products' (I.5.12).

*Proof.* As in the case  $\mathsf{Set}(\mathsf{I}.5.12)$ , we define fibered coproduct by the set of elements that agrees on Z after being pushed by  $\mu$  and  $\nu$ :

$$M \times_Z N := \{ (m, n) \in M \oplus N : m \in M, n \in N, \mu(m) = \nu(n) \}$$

By the universal property of fibered product on Set, the diagram with the choice  $\varphi(z) := (f_M(z), f_N(z))$  makes the following diagram



commutes, regarding in Set. Now we check that  $M \times_Z N$  indeed is a submodule of  $M \oplus N$ : for  $(m,n) \in M \times_Z N$ , r(m,n) = (rm,rn), and since  $\mu(m) = \nu(n)$ ,  $r\mu(m) = \mu(rm) = \nu(rn) = r\nu(n)$ , so  $(rm,rn) \in M \times_Z N$  as required.

Now it remains to check  $\varphi$  is a R-module homomorphism, which is direct.

**Problem III.6.11.** Define a notion of *fibered coproduct* of two R-modules M, N, along an R-module A, in the style of III.6.10 (and cf. I.5.12).

Prove that fibered coproducts exist in R-Mod. The fibered coproduct  $M \oplus_A N$  is called the push-out of M along  $\nu$  (or of N along  $\mu$ ).

*Proof.* The universal property is as the same stated in I.5.12, but by replacing every set with R-modules and every morphism with R-Mod homomorphisms. We now show that the fibered coproduct is almost the same in Set: define an equivalence relation

$$S = \{ (\mu(x), \nu(x)) \in M \oplus N : x \in A \}$$

on  $M \oplus N$ , and let  $M \oplus_A N := (M \oplus N)/S$ . We show that R is a submodule, so the quotient make sense. For  $(m, n) \in S$ ,

$$r(m,n) = r(\mu(x), \nu(x)) = (r\mu(x), r\nu(x)) = (\mu(rx), \nu(rx)) \in S$$

which shows that S is indeed an R-module. Now define

$$\varphi((m,n) + R) = f_M(m) + f_N(n)$$

It is a simple check that  $\varphi$  is a R-module homomorphism, and  $\varphi$  is well-defined, using the same argument as in  $\mathsf{Set}(\mathrm{I}.5.12)$ . This makes the following diagram



commutes, as we check:

•  $i_N \nu = i_M \mu$ :

$$i_N \nu(x) = (0, \nu(x)) + S = (\mu(x), 0) + S = i_M \mu(x)$$

•  $f_M = \varphi i_M$  (resp.  $f_N = \varphi i_N$ ):

$$\varphi i_M(m) = \varphi((m,0) + S) = f_M(m).$$

**Problem III.6.14.** Prove that the ideal  $(x_1, x_2, ...)$  of the ring  $R = \mathbb{Z}[x_1, x_2, ...]$  is not finitely generated (as an ideal, i.e. as an R-module).

*Proof.* If it were, then there exists a surjective R-Mod homomorphism

$$\varphi: R^{\oplus n} \to (x_1, x_2, \dots).$$

Then we collect the polynomials

$$\{\varphi(0,\ldots,\frac{1}{i-\text{th place}},\ldots,0)\}_{i=1}^n$$

Since each polynomials can only contain finitely many indeterminates, and there are only finite polynomials, there must be some indeterminates  $x_j$  that is not in the domain of  $\varphi$  (as there are countably many indeterminates in the ideal), contradicting to the surjectivity of  $\varphi$ . Therefore  $(x_1, x_2, \dots)$  is not finitely generated.

**Problem III.6.16.** Let R be a ring. A (left-)R-module M is cyclic if  $M = \langle m \rangle$  for some  $m \in M$ . Prove that simple modules (cf. Exercise III.5.4) are cyclic. Prove that an R-module M is cyclic if and only if  $M \cong R/I$  for some (left-)ideal I. Prove that every quotient of a cyclic module is cyclic.

*Proof.* By the universal property of free module there is a unique homomorphism of R-modules

$$\varphi:R^{\{m\}}\to M$$

Since M is simple, we can only have  $\varphi(R^{\{m\}}) = 0$  or  $\varphi(R^{\{m\}}) = M$ . We definitely can't have  $\varphi = 0$  unless m = 0, so  $\varphi(R^{\{m\}}) = M = \langle m \rangle$  for  $m \neq 0$ .

If  $M = \langle m \rangle$ , then we define a R-module homomorphism  $\varphi : R \to M$  by  $\varphi(r) = rm$ . It is surjective by construction, and we have  $M \cong R/\ker \varphi$ . Conversely if  $M \cong R/I$ , then there is a surjective R-module homomorphism  $\varphi : R \to M$  such that its kernel is I. By identifing R with  $R^{\{m\}}$ , the result is now clear.

The last statement follows from that you can restrict a surjective map  $\varphi: R \to M$  to another surjective map  $\varphi': R \to M/N$ .

**Problem III.6.17.** Let M be a cyclic R-module, so that  $M \cong R/I$  for a (left-)ideal I, and let N be another R-module.

- Prove that  $\operatorname{Hom}_{R\operatorname{\mathsf{-Mod}}}(M,N)\cong\{n\in N: (\forall a\in I), an=0\}.$
- For  $a, b \in \mathbb{Z}$ , prove that  $\operatorname{Hom}_{R\text{-Mod}}(\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}) \cong \mathbb{Z}/\gcd(a, b)\mathbb{Z}$ .

*Proof.* Every homomorphism  $\varphi: M \to N$  is begin fixed by the generator of M, so we only need to investigate  $\varphi(m)$  where  $M = \langle m \rangle$ . To make  $\varphi$  into an R-module homomorphism, we must have

$$\varphi(a+I+b+I) = \varphi(a+I) + \varphi(b+I)$$
 and  $r\varphi(a+I) = \varphi(ra+rI)$ 

In particular, let  $\varphi(m+I) = n$ , where m+I is the element identified by the generator m. Clearly we must have  $\varphi(I) = 0$ , and for  $r \in R$  we have

$$r\varphi(m+I) = \varphi(rm+I) = rn$$

so if  $rm \in I$ , i.e.  $r \in I$ , then rn = 0. So the set of all possibe  $\varphi(m)$  coincide with the set on the right, showing the isomorphism. Now

$$\operatorname{Hom}_{R\operatorname{\mathsf{-Mod}}}(\mathbb{Z}/a\mathbb{Z},\mathbb{Z}/b\mathbb{Z}) \cong \{n \in \mathbb{Z}/b\mathbb{Z} : (\forall a \in a\mathbb{Z})an = 0\}$$

which is precisely  $Z/\gcd(a,b)\mathbb{Z}$ .

**Problem III.6.18.** Let M be an R-module, and let N be a submodule of M. Prove that if N and M/N are both finitely generated, then M is finitely generated.

*Proof.* Let  $\{a_i + N\}_{i=1}^m$  be generators of M/N, and  $\{b_i\}_{i=1}^n$  be generators of N. Then for every  $m \in M$ , we consider

$$m + N = \sum_{i=1}^{m} r_i(a_i + N) = \sum_{i=1}^{m} r_i a_i + N$$

this says that  $m - \sum_{i=1}^{m} r_i a_i \in N$ , and therefore we can again write  $m - \sum_{i=1}^{m} r_i a_i = \sum_{j=1}^{n} s_i b_i$ . To this point we showed that every element in M can be generated by  $\{a_i, b_j\}_{1 \le i \le m, 1 \le j \le n}$ , showing that M is finitely generated.

## **III.7**

**Problem III.7.1.** Assume that the complex

$$\cdots \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow \cdots$$

is exact. Prove that  $M \cong 0$ .

Proof.

$$0 = \operatorname{im}(0 \longrightarrow M) = \ker(M \longrightarrow 0) = M.$$

**Problem III.7.2.** Assume that the complex

$$\cdots \longrightarrow 0 \longrightarrow M \longrightarrow M' \longrightarrow 0 \longrightarrow \cdots$$

is exact. Prove that  $M \cong M'$ .

*Proof.* The map  $(M \longrightarrow M')$  is both a monomorphism and an epimorphism by Example III.7.1 and Example III.7.2. By definition, the map is an isomorphism.

**Problem III.7.3.** Assume that the complex

$$\cdots \longrightarrow 0 \longrightarrow L \longrightarrow M \stackrel{\varphi}{\longrightarrow} M' \longrightarrow N \longrightarrow 0 \longrightarrow \cdots$$

is exact. Show that, up to natural identifications,  $L = \ker \varphi$  and  $N = \operatorname{coker} \varphi$ .

*Proof.* The map  $(L \longrightarrow M)$  is a monomorphism, so by canonical decomposition

$$L = \frac{L}{\ker(L \longrightarrow M)} \cong \operatorname{im}(L \longrightarrow M) = \ker(M \longrightarrow M') = \ker \varphi.$$

The map  $(M' \longrightarrow N)$  is an epimorphism, so it follows by first isomorphism theorem that

$$\operatorname{coker} \varphi = \frac{M'}{\operatorname{im} \varphi} = \frac{M'}{\operatorname{im} (M \longrightarrow M')} = \frac{M'}{\ker(M' \longrightarrow N)} \cong N.$$

**Problem III.7.6.** Prove the 'split epimorphism' part of Proposition 7.5, that is,  $\varphi$  has a right-inverse if and only if the sequence

$$0 \longrightarrow \ker \varphi \longrightarrow M \stackrel{\varphi}{\longrightarrow} N \longrightarrow 0 \quad splits.$$

Proof.

- ( $\Leftarrow$ ) If the sequence splits, then by identifying  $\varphi$  with the projection map from  $\ker \varphi \oplus N$  to N, we can let  $\psi: N \to \ker \varphi \oplus N$  to be the inclusion, and it gives a right-inverse.
- $(\Rightarrow)$  Assume that  $\varphi$  has a right inverse, which says that

$$\begin{array}{c}
N \xrightarrow{\psi} M \\
\downarrow \varphi \\
N
\end{array}$$

To prove the statement, we claim that  $M \cong \ker \varphi \oplus N$ . This isomorphism is given by

$$(k,n) \mapsto k + \psi(n)$$

it has inverse

$$m \mapsto (m - \psi \varphi(m), \varphi(m))$$

Indeed, we check

$$m \mapsto (m - \psi \varphi(m), \varphi(m)) \mapsto m - \psi \varphi(m) + \psi \varphi(m) = m$$

and  $m - \psi \varphi(m)$  is in ker  $\varphi$  since

$$\varphi(m - \psi\varphi(m)) = \varphi(m) - \varphi\psi\varphi(m) = 0$$

and the claim is proved.

#### Problem III.7.7. Let

$$0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0$$

be a short exact sequence of R-modules, and let L be an R-module.

(i) Prove that there is an exact sequence

$$0 \, \longrightarrow \, \operatorname{Hom}_{\mathsf{R}\text{-}\mathsf{Mod}}(P,L) \, \longrightarrow \, \operatorname{Hom}_{\mathsf{R}\text{-}\mathsf{Mod}}(N,L) \, \longrightarrow \, \operatorname{Hom}_{\mathsf{R}\text{-}\mathsf{Mod}}(M,L).$$

- (ii) Redo Exercise 6.17.
- (iii) Construct an example showing that the rightmost homomorphism in (i) need not to be onto.
- (iv) Show that if the original sequence splits, then the rightmost homomorphism in (i) is onto.

Proof.

(i)

$$0 \longrightarrow M \stackrel{\beta}{\longrightarrow} N \stackrel{\alpha}{\longrightarrow} P \longrightarrow 0$$
$$0 \longrightarrow \operatorname{Hom}_{\mathsf{R-Mod}}(P,L) \stackrel{a(x)=x\circ\alpha}{\longrightarrow} \operatorname{Hom}_{\mathsf{R-Mod}}(N,L) \stackrel{b(y)=y\circ\beta}{\longrightarrow} \operatorname{Hom}_{\mathsf{R-Mod}}(M,L)$$

With definition as above, we show that

$$\ker a = 0$$
 and  $\operatorname{im} a = \ker b$ .

Clearly a is injective: if a(x) = a(y), then  $x \circ \alpha = y \circ \alpha$ , and since  $\alpha$  is an epimorphism by exactness, x = y. For the second part, note by exactness

$$P \cong N / \ker \alpha = N / \operatorname{im} \beta = \operatorname{coker} \beta$$

which leads us to consider the universal property of cokernels



so for  $y \in \ker b$ , i.e.  $y \circ \beta = 0$ , by universal property of cokernel, there is a unique  $\varphi : P \to L$  such that  $\varphi \circ \alpha = y$ , which shows  $\ker b \subseteq \operatorname{im} a$ . Since the other inclusion is clear (by definition of chain complex), we conclude that  $\operatorname{im} a = \ker b$ .

#### (ii) The exact sequence

$$0 \longrightarrow I \stackrel{i}{\longrightarrow} R \stackrel{\pi}{\longrightarrow} R/I \cong M \longrightarrow 0$$

with the target R-module N yields another exact sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathsf{R-Mod}}(M,N) \longrightarrow \operatorname{Hom}_{\mathsf{R-Mod}}(R,N) \longrightarrow \operatorname{Hom}_{\mathsf{R-Mod}}(I,N)$$

by canonical decomposition

$$G = \frac{G}{\ker a} \cong \operatorname{im} a = \ker b$$

and  $\ker b$  is

$$\ker \varphi = \{\phi(x) = nx \in \operatorname{Hom}_{\mathsf{R-Mod}}(R,N) : \phi \circ i = 0_{\operatorname{Hom}_{\mathsf{R-Mod}}(I,N)}\} \cong \{n \in R : (\forall a \in I) \ an = 0\}$$

as required.

#### (iii) The example

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

yields the exact sequence (with target  $\mathbb{Z}$ )

$$0 \longrightarrow \operatorname{Hom}_{\mathsf{R-Mod}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathsf{R-Mod}}(\mathbb{Z},\mathbb{Z}) \stackrel{\cdot 2}{\longrightarrow} \operatorname{Hom}_{\mathsf{R-Mod}}(\mathbb{Z},\mathbb{Z})$$

but the last morphism is not surjective as all morphism that is of form  $\varphi(x) = nx$  where n is odd is missing in the first  $\operatorname{Hom}_{\mathsf{R-Mod}}(\mathbb{Z},\mathbb{Z})$ .

(iv) The map

$$\operatorname{Hom}_{\mathsf{R-Mod}}(M \oplus P, L) \xrightarrow{\phi \circ i} \operatorname{Hom}_{\mathsf{R-Mod}}(M, L)$$

is clearly surjective: for each  $\varphi: M \to L$ , we can find  $\varphi': M \oplus P \to L$  defined by  $\varphi'((m,p)) = \varphi(m)$ , so that the restriction of  $\varphi'$  on M is precisely  $\varphi$ .

Problem III.7.8. Prove that every exact sequence

$$0 \longrightarrow M \longrightarrow N \longrightarrow F \longrightarrow 0$$

of R-modules, with F free, splits.

*Proof.* By exactness,  $\varphi: N \longrightarrow F$  is surjective. Therefore by III.6.9, for every  $\alpha: F \to F$ , there is  $\beta: F \to N$  such that  $\alpha = \varphi \circ \beta$ . In particular, let  $\alpha = id_F$ , then  $\varphi \circ \beta = id_F$ .

$$0 \longrightarrow M \xrightarrow{i} N \xrightarrow{\varphi} F \longrightarrow 0$$

With this, we now show that  $M \oplus F \cong N$ . Define

$$h: M \oplus F \to N$$
,  $h(m, f) = i(m) + \beta(f)$ 

h is clearly an R-module homomorphism, so it remains to show that it is an isomorphism. h is injective: if h(m, f) = 0, then

$$i(m) + \beta(f) = 0 \Rightarrow \varphi i(m) + \varphi \beta(f) = 0 \Rightarrow 0$$
 (definition of chain complex)  $f = 0$ 

showing that f = 0. Then i(m) = 0, so we must have m = 0. h is surjective: we want to find m, f such that  $i(m) + \beta(f) = n$  for  $n \in N$ . By applying  $\varphi$  we have

$$\varphi i(m) + \varphi \beta(f) = 0 + f = \varphi(n)$$

so we have the candidate of f. Now it remains to decide m in which  $i(m) = n - \beta(\varphi(n))$ : notice that by exactness, im  $i = \ker \varphi$ , so we check that  $\varphi(n - \beta(\varphi(n))) = 0$  to guarantee the existence of m:

$$\varphi(n - \beta(\varphi(n))) = \varphi(n) - \varphi \circ \beta \circ \varphi(n) = \varphi(n) - \varphi(n) = 0$$

Hence h is an isomorphism, and by definition, the sequence splits.

# Chapter IV

# Groups, second encounter

Unless otherwise specified, in the following G denotes a group, e denotes the identity of G. The conjugacy class of an element g is denoted by [g]. Some description and hints are omitted for simplicity.

Unless otherwise specified, all groups in this chapter are *finite*.

#### IV.1

**Problem IV.1.1.** Let p be a prime integer, let G be a p-group, and let S be a set such that  $|S| \neq 0 \mod p$ . If G acts on S, prove that the action must have fixed points.

*Proof.* This is direct by Corollary IV.1.3: since  $|S| \neq 0 \mod p$ , the set of fixed points Z satisfies  $|S| \equiv |Z| \neq 0$ .

**Problem IV.1.4.** Let G be a group, and let N be a subgroup of Z(G). Prove that N is normal in G.

Proof. For  $g \in G$ ,  $n \in N$ ,

$$gng^{-1} = gg^{-1}n = n \in N.$$

One should note that *normal is not transitive*: if  $G \subseteq H$  and  $H \subseteq I$ , it is in general not true that  $G \subseteq I$ .

**Problem IV.1.5.** Let G be a group. Prove that G/Z(G) is isomorphic to the group Inn(G) (II.6.7). Then prove Lemma 1.5 again.

*Proof.* Let  $\varphi: G \to \text{Inn}(G), \varphi(g) = \gamma_g(a) := gag^{-1}$  be a homomorphism (II.4.8). By construction it is clearly surjective, and the kernel is

$$\ker \varphi = \{g : gag^{-1} = a\} \Rightarrow \{g : ga = ag\} = Z(G)$$

therefore by first isomorphism theorem,  $G/Z(G) \cong \operatorname{Inn}(G)$ . If G/Z(G) is cyclic, then by II.6.7 G is commutative.

**Problem IV.1.6.** Let p, q be prime integers, and let G be a group of order pq. Prove that either G is commutative or the center of G is trivial. Conclude that every group of order  $p^2$ , for a prime p, is commutative.

*Proof.* The subgroups can only be of order 1, p, q or pq by Lagrange, and |Z(G)| can be one of these four. If |Z(G)| = 1, then there is nothing to prove; if |Z(G)| = p(or q), then the quotient is cyclic, so it follows by Lemma IV.1.5 that G is commutative; if |Z(G)| = pq, then G is clearly commutative.

By Corollary IV.1.9, the center of a nontrivial p-group is nontrivial, so the order of the center for  $|G| = p^2$  can not be 1. Then by above, all the remaining cases will conclude that G is commutative.

**Problem IV.1.8.** Let p be a prime number, and let G be a p-group:  $|G| = p^r$ . Prove that G contains a normal subgroup of order  $p^k$  for every nonnegative  $k \le r$ .

*Proof.* We proceed by induction. If r = 1 then there is nothing to prove, so we assume that for n < r, the p-group with order  $p^n$  has a normal subgroup of order  $p^k$  for  $k \le n$ .

Now consider the center of G: it is abelian and is a nontrivial p-group by Corollary IV.1.9, so by II.8.20, there exists a (normal) subgroup N that is of order p in Z(G). By IV.1.4, N is normal in G, so we can consider the quotient G/N. The quotient is a p-group and has order  $p^{r-1}$ , so by induction hypothesis, G/N has normal subgroups of order  $p^k$  for  $k \le r - 1$ , which we name them  $H_k$  for each k. By noting that  $H_k$  contains N, we can identify each  $H_k$  by  $H_k/N$  via Proposition II.8.9. Finally, since  $|H_k/N| = p^k$ ,  $|H_k| = p^{k+1}$ , so we've found normal subgroup of order  $p^k$  for  $k \le r$ , proving the statement.

**Problem IV.1.9.** Let p be a prime number, G a p-group, and H a nontrivial normal subgroup of G. Prove that  $H \cap Z(G) \neq \{e\}$ .

*Proof.* Let G act on itself by conjugation. Since H is normal, it is the union of some conjugacy class and some element of Z(G), with each conjugacy class of order  $p^n$  for some n by Corollary II.9.10. If  $H \cap Z(G) = \{e\}$ , then this means that H only take e from Z(G), and since the order of all conjugacy classes in H are divisible by p, we would arrive at  $|H| \equiv 1 \mod p$ , a contradiction since |H| must be a multiple of p.

**Problem IV.1.10.** Prove that if G is a group of odd order and  $g \in G$  is conjugate to  $g^{-1}$ , then g = e.

*Proof.* Suppose  $g \neq e$ . Since [g] contains  $g^{-1}$ , there are two cases:

- If  $g = g^{-1}$ , then  $g^2 = 1$ , so |g| = 2. But this is impossible since |g| does not divide |G|, a contradiction.
- If  $g \neq g^{-1}$ , then since [g] must be odd order, there is some  $y \in [g]$  such that  $g = xyx^{-1}$ . But this implies  $g^{-1} = xy^{-1}x^{-1}$ , so  $y^{-1} \in [g]$ , and  $y \neq y^{-1}$  by above. So this says that [g] must contain even number of elements(so must have even order), which again is impossible.

By above, we must have q = e, proving the assertion.

**Problem IV.1.14.** Let G be a group, and assume [G:Z(G)]=n is finite. Let  $A\subseteq G$  be any subset. Prove that the number of conjugates of A is at most n.

*Proof.* We claim that there is a surjective set function from G/Z(G) to  $\{gAg^{-1}\}_{g\in G}$ . Define

$$\varphi:G/Z(G)\to\{gAg^{-1}\}_{g\in G},\quad \varphi(gZ)=gAg^{-1}$$

We check that it is well defined: If gZ = hZ, then  $gh^{-1} \in Z$ . Now for any element  $\alpha = gAg^{-1}$  we have  $\alpha = gag^{-1}$  for some  $a \in A$ , so we have  $g^{-1}\alpha g = a$ , and  $hg^{-1}\alpha gh^{-1} = hah^{-1}$ . Since  $gh^{-1} \in Z$ ,  $hg^{-1}\alpha gh^{-1} = hg^{-1}gh^{-1}\alpha = \alpha$ , so  $\alpha \in hAh^{-1}$ , hence  $gAg^{-1} = hAh^{-1}$ , which showed the well-definedness. Clearly the map is surjective by construction, and by above, there can be only at most [G: Z(G)] = n distinct conjugates of A, which proved the assertion.

**Problem IV.1.17.** Let H be a proper subgroup of a finite group G. Prove that G is not the union of the conjugates of H.

Proof. By Lemma IV.1.13, the numbers of conjugates of H is  $[G:N_G(H)]$ . Since  $H \subseteq N_G(H)$ ,  $[G:N_G(H)]|H| \leq [G:H]|H| = |G|$ . Even if the equality might hold, by noting that every conjugate is a subgroup and e is a common element for all subgroup, there are in fact at most  $([G:N_G(H)]|H|-|H|+1)$  distinct elements in the union of all conjugates of H. Since this number is strictly less than G, G will never be the union of conjugates of H.

**Problem IV.1.18.** Let S be a set endowed with a transitive action of finite group G, and assume  $|S| \geq 2$ . Prove that there exists a  $g \in G$  without fixed points in S, that is, such that  $gs \neq s$  for all  $s \in S$ .

Proof. In the sense of Proposition II.9.9, we can assume that S = G/H (left cosets, not quotient!) where  $H = \operatorname{Stab}_G(s)$  for some  $s \in S$ , with H proper in G (as  $|S| \ge 2$ ). Suppose the contrary, i.e. every g satisfies gkH = kH for some k. This means  $k^{-1}gk \in H$ , or equivalently,  $g \in kHk^{-1}$ . So every element in G is in some conjugacy class of H, which is a contradiction to IV.1.17 that G cannot be exhausted by conjugates of H. Hence G must have some elements that has no fixed points on S, as desired.

**Problem IV.1.21.** Let H, K be subgroups of a group G, with  $H \subseteq N_G(K)$ . Verify that the function  $\gamma: H \to \operatorname{Aut}_{\mathsf{Grp}}(K)$  defined by conjugation is a homomorphism of group and that  $\ker \gamma = H \cap Z_G(K)$ , where  $Z_G(K)$  is the centralizer of K.

*Proof.* Let  $\gamma$  maps h to a automorphism  $\varphi_h(k) = hkh^{-1}$ . It is a group homomorphism since

$$\gamma(g)\gamma(h) \mapsto \varphi_g \varphi_h(k) = ghkh^{-1}g^{-1} = \varphi(gh) \mapsto \gamma(gh).$$

The kernel of this map is

$$\ker \gamma = \{ h \in H : hkh^{-1} = k \ \forall k \in K \} = \{ h \in H : hk = kh \ \forall k \in K \} = H \cap Z_G(K).$$

**Problem IV.1.22.** Let G be a finite group, and let H be a cyclic subgroup og G of order p. Assume that p is the smallest prime dividing the order of G and that H is normal in G. Prove that H is contained in the center of G.

Proof. In the sense of IV.1.21, we have a homomorphism  $\gamma: G \to \operatorname{Aut}_{\mathsf{Grp}}(H)$  since  $H \subseteq N_G(G) = G$ . By II.4.14,  $\operatorname{Aut}_{\mathsf{Grp}}(H)$  has order  $\phi(p) = p - 1$ . But since G does not contain an element of order p-1 by the minimality of p,  $\gamma$  can only be the trivial homomorphism, so it has kernel equal to G. But by IV.1.21,  $\ker \gamma = G \cap Z_G(H) = Z_G(H)$ , so we must have  $Z_G(H) = G$ , which means that the element that commutes with h are the whole G, i.e.  $H \subseteq Z(G)$ , as desired.

## IV.2

**Problem IV.2.1.** Prove Claim 2.2: Let G be a finite group, let p be a prime divisor of |G|, and let N be the number of cyclic subgroups of G of order p. Then  $N \equiv 1 \mod p$ .

*Proof.* We proceed with the same argument as in Theorem IV.2.1. Let S be a set that collects the p-tuple

$$(a_1,\ldots,a_n)$$

such that  $a_1 \cdots a_p = 1$ . It is clear that  $|S| = |G|^{p-1}$ , and since  $a_2 \cdots a_p a_1 = 1$ , we can consider the action of  $\mathbb{Z}/p\mathbb{Z}$  on S, by

$$\alpha_m:(a_1,\ldots,a_n)\mapsto(a_{m+1},\ldots,a_p,a_1,\ldots,a_m)$$

By Corollary IV.1.3,  $|Z| \equiv |S| \mod 0$ , where Z is the fixed points under  $\mathbb{Z}/p\mathbb{Z}$ . The fixed points are of form  $(a, \ldots, a)$  for  $a \in G$ , and since  $(e, \ldots, e) \in Z$  and p divides |Z|, |Z| > 1. Now notice that for each  $a \in G$  such that  $(a, \ldots, a) \in Z$ , a is a generator for some cyclic group of order p, so there are N(p-1)+1 (identity) elements in Z. But since  $|Z| \equiv 0 \mod p$ , we have

$$Np - N + 1 \equiv 0 \mod p \Longrightarrow N \equiv 1 \mod p$$

as desired.

**Problem IV.2.2.** Let G be a group. A subgroup H of G is *characteristic* if  $\varphi(H) \subseteq H$  for every automorphism  $\varphi$  of G.

- Prove that every characteristic subgroups are normal.
- Let  $H \subseteq K \subseteq G$ , with H characteristic in K and K normal in G. Prove that H is normal in G.
- Let G, K be groups, and assume that G contains a single subgroup H isomorphic to K. Prove that H is normal in G.
- Let K be a normal subgroup of a finite group G, and assume that |K| and |G/K| are relatively prime. Prove that K is characteristic in G.

Proof.

- Consider  $\gamma_g(h) := ghg^{-1}$  for all  $g \in G$ . Then  $gHg^{-1} \subseteq H$  by characteristic property of H, so H is normal.
- By normalness of K, we have  $gKg^{-1} = K$ , so  $\gamma_g$  is an automorphism on K. Then since  $\gamma_g(H) \subseteq H$ ,  $gHg^{-1} \subseteq H$ , so H is normal.
- Let  $\varphi$  be any automorphism of G. Then  $\varphi(H) \cong H \cong K$  since  $\varphi$  is an isomorphism. But since H is the only subgroup that is isomorphic to K,  $\varphi(H) = H$ , so H is characteristic, hence normal.
- Let  $\varphi$  be any automorphism of G, and let  $\pi: G \to G/K$  be the quotient homomorphism. Let  $K' = \varphi(K)$ . Then  $\pi(K')$  is a subgroup of G/K, so  $|\pi(K')|$  divides |G/K|. Also, by first isomorphism theorem,  $K'/\ker \pi \cong \operatorname{im} \pi = \pi(K')$ , so  $|\pi(K')|$  divides |K'| = |K|. Since |K| and |G/K| are relatively prime, we can only have  $|\pi(K')| = 1$ , i.e.  $\pi(K') = e_{G/H}$ . Combining with  $\ker \pi = K$ , we have

$$\varphi(K) = K' \subseteq \ker \pi = K$$

as desired.

**Problem IV.2.4.** Prove that a nontrivial group G is simple if and only if its only homomorphic image are the trivial group and G itself (up to isomorphism).

Proof.

( $\Rightarrow$ ) Let  $\varphi: G \to G'$  be a surjective homomorphism. By first isomorphism theorem,  $G/\ker \varphi \cong G'$ . But since kernel is a normal subgroup, the only possibility of G' are  $G/\{e\} = G$  or  $G/G = \{e\}$ . ( $\Leftarrow$ ) If G is not simple, i.e. there are some nontrivial normal subgroup of G, which we call it H, then  $\varphi: G \to G/H$ ,  $g \mapsto gH$  is a surjective homomorphism, and G/H is neither  $\{e\}$  nor G(up to isomorphism), a contradiction.

**Problem IV.2.5.** Let G be a *simple* group, and assume  $\varphi: G \to G'$  is a nontrivial group homomorphism. Prove that  $\varphi$  is injective.

*Proof.*  $\ker \varphi$  can only be  $\{0\}$  or G by simpleness. If  $\ker \varphi = \{0\}$  the we are done; if  $\ker \varphi = G$  then  $\varphi = 0$ , which can't be by hypothesis.

**Problem IV.2.6.** Prove that there are no simple groups of order 4, 8, 9, 16, 25, 27, 32 or 49. In fact, prove that no p-group of order  $\geq p^2$  is simple.

*Proof.* The center of p-group, by Corollary IV.1.9, is nontrivial. Since center is a normal subgroup, no group of order  $p^n$  for  $n \ge 2$  is simple.

**Problem IV.2.8.** Let G be a finite group, p a prime integer, and let N be the intersection of the p-Sylow subgroups of G. Prove that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof. Let P be a p-Sylow, then we can let  $N = \bigcap_{g \in G} gPg^{-1}$ . The conjugate of N is  $pNp^{-1} = \bigcap_{g \in G} pgP(pg)^{-1}$ , which is again N, so N is normal. Now if N' is a normal p-subgroup, then by Sylow II we can assume that  $N \subseteq P$ . Then for all  $g \in G$ ,  $N' = gN'g^{-1} \subseteq gPg^{-1}$ , so  $N' \subseteq \bigcap_{g \in G} gPg^{-1} = N$ , and N' is in N, as required.

**Problem IV.2.9.** Let P be a p-Sylow subgroup of a finite group G, and let  $H \subseteq G$  be a p-subgroup. Assume  $H \subseteq N_G(P)$ . Prove that  $H \subseteq P$ .

*Proof.* By noting that P is normal in  $N_G(P)$  (Remark IV.1.12), we consider PH, which is a subgroup of  $N_G(P)$  by Proposition II.8.11. Then by second isomorphism theorem

$$\frac{PH}{P}\cong \frac{H}{P\cap H}$$

Now  $|PH| = \frac{|P||H|}{|P\cap H|}$  by II.8.21, and since either  $|P\cap H| = 1$  or |H| by Sylow II, PH is a p-group, and it must be P since P is the maximal p-subgroup of G. Then we have  $H \subseteq P$  since  $PH = P \Leftrightarrow H \subseteq P$ .

**Problem IV.2.10.** Let P be a p-Sylow subgroup of a finite group G, and act with P by conjugation on the set of p-Sylow subgroups of G. Show that P is the unique fixed point of this action.

*Proof.* Let S be the collection of p-Sylow subgroups of G, and let P act on S by conjugation. If H is any p-Sylow that is fixed by P, then we have  $H \subseteq N_G(P)$   $(PHP^{-1} = H \Rightarrow HPH^{-1} = P)$ , so we can apply IV.2.9 and obtain  $H \subseteq P$ . But by Sylow II, H must be P, proving the statement.

**Problem IV.2.12.** Let P be a p-Sylow subgroup of a finite group G, and let  $H \subseteq G$  be a subgroup containing the normalizer  $N_G(P)$ . Prove that  $[G:H] \equiv 1 \mod p$ .

*Proof.* By Sylow III,  $[G:N_G(P)] \equiv 1 \mod p$ . Since H contains P, P is also a p-Sylow of H. Since  $H \supseteq N_G(P)$ , the normalizer of P in H is also  $N_G(P)$ , so  $N_H(P) = N_G(P)$ . Then clearly  $[G:N_G(P)] = [G:N_H(P)] \equiv 1 \mod p$ . Finally

$$[G:H] = \frac{[G:N_G(P)]}{[H:N_G(P)]} = \frac{[G:N_G(P)]}{[H:N_H(P)]}$$

and since both numerator and the denominator are both congruent to 1 mod p,  $[G:H] \equiv 1 \mod p$ .

**Problem IV.2.13.** Let P be a p-Sylow subgroup of a finite group G.

- Prove that if P is normal in G, then it is in fact characteristic in G.
- Let  $H \subseteq G$  be a subgroup containing the Sylow subgroup P. Assume P is normal in H and H is normal in G. Prove that P is normal in G.
- Prove that  $N_G(N_G(P)) = N_G(P)$ .

Proof.

- Since gcd(|P|, |G/P|) = 1 as P is Sylow, by the 4th point of IV.2.2, P is characteristic in G.
- By above, P is characteristic in H, so by 2nd point of IV.2.2, P is normal in G.
- We have the normal chain

$$P \leq N_G(P) \leq N_G(N_G(P))$$

and by above, P is normal in  $N_G(N_G(P))$ , so for any  $g \in N_G(N_G(P))$ ,  $gPg^{-1} = P$ , i.e.  $g \in N_G(P)$ . Since the other inclusion is clear, we conclude that  $N_G(N_G(P)) = N_G(P)$ .

## **IV.3**

**Problem IV.3.1.** Prove that  $\mathbb{Z}$  has normal series of arbitrary length.

*Proof.* If  $\mathbb{Z}$  has a normal series  $\mathbb{Z} \supseteq \cdots \supseteq n\mathbb{Z}$ , then we have an extended normal series  $\mathbb{Z} \supseteq \cdots \supseteq n\mathbb{Z} \supseteq 2n\mathbb{Z}$ , which can be further extended by infinitely times.

**Problem IV.3.3.** Prove that every finite group has a composition series. Prove that  $\mathbb{Z}$  does not have a composition series.

*Proof.* Proceed by induction, since groups of order 1 has a composition series, assume that for a given positive integer n, all groups that has order less than n admits a composition series. Then for |G| = n, it suffices to show that there exists some normal subgroup H such that G/H is simple, and the rest follows from induction.

Indeed, we can let H be the *largest* normal subgroup (in the sense that if H is normal in H', then H' = H, assuming H' proper). Then in view of Proposition II.8.9, G/H is simple if and only if H is the largest normal subgroup of G, as required.

 $\mathbb{Z}$  does not have a composition series: If there were one, then all decomposition factors are of the form  $d\mathbb{Z}/dp\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z}$  where p is a prime. Then we can clearly write

$$\{0\} = \prod_{i=1}^{n} p_i \mathbb{Z} \subsetneq \cdots \subsetneq p_1 p_2 p_3 \mathbb{Z} \subsetneq p_1 p_2 \mathbb{Z} \subsetneq p_1 \mathbb{Z} \subsetneq 1 \mathbb{Z} = \mathbb{Z}$$

for  $p_i$  being primes. But this is absurd since product of primes will never be zero.

**Problem IV.3.4.** Find an example of two nonisomorphic groups with the same decomposition factors.

Solution. The groups  $D_8$  and  $C_8$  both has  $C_2$  and  $C_4$  as their normal subgroups, so there are series

$$D_8 \triangleright C_4 \triangleright C_2 \triangleright \{e\}$$
$$C_8 \triangleright C_4 \triangleright C_2 \triangleright \{e\}$$

**Problem IV.3.5.** Show that if H, K are *normal* subgroups of a group G, then HK is a normal subgroup of G.

Proof. For  $hk \in HK$ ,  $g \in G$ ,

$$ghkg^{-1} = ghg^{-1}gkg^{-1} \in (gHg^{-1})(gKg^{-1}) = HK$$

so  $gHKg^{-1} = HK$ , hence normal.

**Problem IV.3.8.** Prove Lemma 3.7: Let  $\varphi: G_1 \to G_2$  be a group homomorphism. Then  $\forall g, h \in G_1$  we have

$$\varphi([g,h]) = [\varphi(g), \varphi(h)]$$

and  $\varphi(G_1) \subseteq G_2$ .

Proof.

$$\varphi([g,h]) = \varphi(ghg^{-1}h^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1})\varphi(h^{-1}) = [\varphi(g),\varphi(h)].$$

The subgroup inclusion is immediate.

# Chapter V

# Irreducibility and factorization in integral domain

Unless otherwise stated, all rings in this chapter are *commutative*.

### V.1

**Problem V.1.1.** Let R be an Notherian ring, and let I be an ideal of R. Prove that R/I is a Notherian ring.

*Proof.* The projection  $\varphi: R \to R/I$  is clearly an surjective homomorphism, and by III.4.2 R/I is Notherian.

**Problem V.1.2.** Prove that if R[x] is Notherian, then so is R.

Proof.

$$\pi: R[x] \to R[x]/(x) \cong R$$

is surjective, and by V.1.1 R is Notherian.

**Problem V.1.6.** Let I be an ideal of R[x], and let  $A \subseteq R$  be the set defined in the proof of Theorem 1.2. Prove that A is an ideal of R.

*Proof.* A is a subgroup of (R, +): For  $a, b \in A$ , there is some  $f, g \in I$  so that the leading coefficient of f (resp. g) is a (resp. b). Assume that  $\deg(f) \geq \deg(g)$ . Then  $f - x^{\deg(f) - \deg(g)}g$  is an element of I, and it has leading coefficient a - b, which is in A, so A is a subgroup.

A satisfies absorption property: If  $a \in R$ , then there is some  $f \in I$  such that a is the leading coefficient of f. Then rf has leading coefficient ra, which is in A, so  $ra \in A$  for all  $r \in R$ . Therefore A is an ideal.

**Problem V.1.12.** Let R be an integral domain. Prove that a nonzero a is irreducible if and only if (a) is maximal among proper principle ideal of R.

#### Proof.

- (⇒) If a is irreducible but there is some  $b \in R$  such that  $(a) \subseteq (b)$ , then we can write a = bc for some  $c \in R$ . Then either b is a unit, or c is a unit. The former would lead to that (b) = R, and the latter says that there is also  $c^{-1}$  such that  $ac^{-1} = b$ , so  $(a) \supseteq (b)$ , so (a) = (b). Either way, (a) is the maximal amongst all principle ideals.
- ( $\Leftarrow$ ) If a = bc, then  $(a) \subseteq (b)$ . Since (a) is maximal amongst all principle ideal, we must have (b) = R or (b) = (a). In the former we have that b is a unit, and the latter implies that c is a unit. In both cases at least one of b and c is a unit, so a is irreducible.

This is the end of the solution manual as of March 8, 2020. Please revisit

https://github.com/macyayaya/algebra-chapter-0-solutions/releases for possible new releases.

Thanks for your reading.