Un/Straightening for Indexed and Fibred Sets

December 14, 2023

This chapter contains a discussion of the un/straightening equivalence in the context of sets, as well as a general discussion of indexed and fibred sets. In particular, it contains:

- 1. A discussion of indexed sets (i.e. functors $K_{\text{disc}} \to \text{Sets}$ with K a set), constructions with them like dependent sums and dependent products, and their properties (????);
- 2. A discussion of fibred sets (i.e. maps of sets $X \to K$), constructions with them like dependent sums and dependent products, and their properties (????);
- 3. A discussion of the un/straightening equivalence for indexed and fibred sets (Section 1).

Contents

1	Un/Straightening for Indexed and Fibred Sets	• • •	1
	1.1 Straightening for Fibred Sets		1
	1.2 Unstraightening for Indexed Sets		4
	1.3 The Un/Straightening Equivalence		7
2	Miscellany		
A	2.1 Other Kinds of Un/Straightening Other Chapters		

1 Un/Straightening for Indexed and Fibred Sets

1.1 Straightening for Fibred Sets

Let K be a set and let (X, ϕ) be a K-fibred set.

Definition 1.1.1.1. The straightening of (X, ϕ) is the K-indexed set

$$\operatorname{St}_K(X,\phi)\colon K_{\operatorname{\mathsf{disc}}}\to\operatorname{\mathsf{Sets}}$$

defined by

$$\operatorname{St}_K(X,\phi)_x \stackrel{\text{def}}{=} \phi^{-1}(x)$$

for each $x \in K$.

Proposition 1.1.1.2. Let K be a set.

1. Functoriality. The assignment $(X, \phi) \mapsto \operatorname{St}_K(X, \phi)$ defines a functor

$$\operatorname{St}_K \colon \mathsf{FibSets}(K) \to \mathsf{ISets}(K)$$

• Action on Objects. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$, we have

$$[\operatorname{St}_K](X,\phi) \stackrel{\text{def}}{=} \operatorname{St}_K(X,\phi);$$

• Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \text{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\operatorname{St}_{K|X,Y} \colon \operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K)}(\operatorname{St}_K(X),\operatorname{St}_K(Y))$$

of St_K at (X,Y) is given by sending a morphism

$$f: (X, \phi) \to (Y, \psi)$$

of K-fibred sets to the morphism

$$\operatorname{St}_K(f) \colon \operatorname{St}_K(X, \phi) \to \operatorname{St}_K(Y, \psi)$$

of K-indexed sets defined by

$$\operatorname{St}_K(f) \stackrel{\text{def}}{=} \{f_x^*\}_{x \in K},$$

where f_x^* is the transport map associated to f at $x \in K$ of ??.

2. Interaction With Change of Base/Indexing. Let $f: K \to K'$ be a map

of sets. The diagram

$$\begin{array}{cccc} \mathsf{FibSets}(K') & \stackrel{f^*}{\longrightarrow} & \mathsf{FibSets}(K) \\ & & & & & \downarrow \\ \mathsf{St}_{K'} & & & & \downarrow \\ \mathsf{ISets}(K') & \stackrel{f^*}{\longrightarrow} & \mathsf{ISets}(K) \end{array}$$

commutes.

3. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{FibSets}(K) \xrightarrow{\Sigma_f} \mathsf{FibSets}(K') \\ \\ \mathtt{St}_K & & & & \\ \mathsf{ISets}(K) \xrightarrow{\Sigma_f} \mathsf{ISets}(K') \end{array}$$

commutes.

4. Interaction With Dependent Products. Let $f\colon K\to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{Sets}_{/K} \stackrel{\Pi_f}{\longrightarrow} \mathsf{FibSets}(K') \\ \\ \text{St}_K & & & \Big| \text{St}_{K'} \\ \mathsf{ISets}(K) \xrightarrow[\Pi_f]{} \mathsf{ISets}(K') \end{array}$$

commutes.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Change of Base/Indexing: Indeed, we have

$$\operatorname{St}_{K}(f^{*}(X,\phi))_{x} \stackrel{\operatorname{def}}{=} \operatorname{St}_{K}(K \times_{K'} X)_{x}$$

$$\stackrel{\operatorname{def}}{=} \left(\operatorname{pr}_{1}^{K \times_{K'} X}\right)^{-1}(x)$$

$$= \left\{(k,y) \in K \times_{K'} X \mid \operatorname{pr}_{1}^{K \times_{K'} X}(k,y) = x\right\}$$

$$= \left\{(k,y) \in K \times_{K'} X \mid k = x\right\}$$

$$= \left\{(k,y) \in K \times X \mid k = x \text{ and } f(k) = \phi(y)\right\}$$

$$\cong \left\{y \in X \mid \phi(y) = f(x)\right\}$$

$$= \phi^{-1}(f(x))$$

$$\stackrel{\operatorname{def}}{=} f^{*}(\phi^{-1}(x))$$

$$\stackrel{\operatorname{def}}{=} f^{*}(\operatorname{St}_{K'}(X,\phi)_{x})$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K'))$ and each $x \in K$, and similarly for morphisms.

Item 3, Interaction With Dependent Sums: Indeed, we have

$$\operatorname{St}_{K'}(\Sigma_f(X,\phi))_x \stackrel{\text{def}}{=} \Sigma_f(\phi)^{-1}(x)$$

$$\cong \coprod_{\substack{y \in X \\ f(y) = x}} \phi^{-1}(y)$$

$$\cong \Sigma_f(\phi^{-1}(x))$$

$$\stackrel{\text{def}}{=} \Sigma_f(\operatorname{St}_K(X,\phi)_x)$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used ?? of ?? for the first bijection, and similarly for morphisms.

Item 4, Interaction With Dependent Products: Indeed, we have

$$\operatorname{St}_{K'}(\Pi_f(X,\phi))_x \stackrel{\text{def}}{=} \Pi_f(\phi)^{-1}(x)$$

$$\cong \prod_{\substack{y \in X \\ f(y) = x}} \phi^{-1}(y)$$

$$\cong \Pi_f(\phi^{-1}(x))$$

$$\stackrel{\text{def}}{=} \Pi_f(\operatorname{St}_K(X,\phi)_x)$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used ?? of ?? for the first bijection, and similarly for morphisms.

1.2 Unstraightening for Indexed Sets

Let K be a set and let X be a K-indexed set.

Definition 1.2.1.1. The unstraightening of X is the K-fibred set

$$\phi_{\operatorname{Un}_K} \colon \operatorname{Un}_K(X) \to K$$

consisting of

• The Underlying Set. The set $Un_K(X)$ defined by

$$\operatorname{Un}_K(X) \stackrel{\text{def}}{=} \coprod_{x \in K} X_x;$$

• The Fibration. The map of sets

$$\phi_{\operatorname{Un}_K} \colon \operatorname{Un}_K(X) \to K$$

defined by sending an element of $\coprod_{x \in K} X_x$ to its index in K.

Proposition 1.2.1.2. Let K be a set.

1. Functoriality. The assignment $X \mapsto \operatorname{Un}_K(X)$ defines a functor

$$\operatorname{Un}_K \colon \mathsf{ISets}(K) \to \mathsf{FibSets}(K)$$

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\operatorname{Un}_K](X) \stackrel{\text{def}}{=} \operatorname{Un}_K(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on Hom-sets

 $\operatorname{Un}_{K|X,Y} : \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K)}(\operatorname{Un}_K(X),\operatorname{Un}_K(Y))$

of Un_K at (X,Y) is defined by

$$\mathrm{Un}_{K|X,Y}(f) \stackrel{\mathrm{def}}{=} \coprod_{x \in K} f_x^*.$$

2. Interaction With Fibres. We have a bijection of sets

$$\phi_{\operatorname{Un}_K}^{-1}(x) \cong X_x$$

for each $x \in K$.

3. As a Pullback. We have a bijection of sets

$$\operatorname{Un}_K(X) \cong K_{\operatorname{\mathsf{disc}}} \times_{\operatorname{\mathsf{Sets}}} \operatorname{\mathsf{Sets}}_*, \qquad \bigvee_{K_{\operatorname{\mathsf{disc}}}} \bigvee_{X} \operatorname{\mathsf{Sets}}_*$$

4. As a Colimit. We have a bijection of sets

$$\operatorname{Un}_K(X) \cong \operatorname{colim}(X)$$
.

5. Interaction With Change of Indexing/Base. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{ISets}(K') & \stackrel{f^*}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathsf{ISets}(K) \\ & & \downarrow^{\operatorname{Un}_{K'}} & & \downarrow^{\operatorname{Un}_K} \\ \mathsf{FibSets}(K') & \stackrel{\rightarrow}{-\!\!\!-\!\!\!-} \mathsf{FibSets}(K) \end{array}$$

commutes.

6. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{ISets}(K) & \xrightarrow{\Sigma_f} & \mathsf{ISets}(K') \\ & & & & \downarrow \mathsf{Un}_{K'} \\ \mathsf{FibSets}(K) & \xrightarrow{\Sigma_f} & \mathsf{FibSets}(K') \end{array}$$

commutes.

7. Interaction With Dependent Products. Let $f \colon K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{ISets}(K) & \xrightarrow{\Pi_f} & \mathsf{ISets}(K') \\ & & & \downarrow^{\operatorname{Un}_{K'}} \\ \mathsf{FibSets}(K) & \xrightarrow{\Pi_f} & \mathsf{FibSets}(K') \end{array}$$

commutes.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Omitted.

Item 3, As a Pullback: Omitted.

Item 4, As a Colimit: Clear.

Item 5, Interaction With Change of Indexing/Base: Indeed, we have

$$\operatorname{Un}_{K}(f^{*}(X)) \stackrel{\text{def}}{=} \operatorname{Un}_{K}(X \circ f)$$

$$\stackrel{\text{def}}{=} \coprod_{x \in K} X_{f(x)}$$

$$\cong \left\{ (x, (y, a)) \in K \times \coprod_{y \in K'} X_{y} \middle| f(x) = y \right\}$$

$$\cong K \times_{K'} \coprod_{y \in K'} X_{y}$$

$$\stackrel{\text{def}}{=} K \times_{K'} \operatorname{Un}_{K'}(X)$$

$$\stackrel{\text{def}}{=} f^{*}(\operatorname{Un}_{K'}(X))$$

for each $X \in \mathrm{Obj}(\mathsf{ISets}(K'))$. Similarly, it can be shown that we also have $\mathrm{Un}_K(f^*(\phi)) = f^*(\mathrm{Un}_{K'}(\phi))$ and that $\mathrm{Un}_K \circ f^* = f^* \circ \mathrm{Un}_{K'}$ also holds on morphisms.

Item 6, Interaction With Dependent Sums: Indeed, we have

$$\operatorname{Un}_{K'}(\Sigma_f(X)) \stackrel{\text{def}}{=} \coprod_{x \in K'} \Sigma_f(X)_x$$

$$\cong \coprod_{x \in K'} \coprod_{y \in f^{-1}(x)} X_y$$

$$\cong \coprod_{y \in K} X_y$$

$$\cong \operatorname{Un}_K(X)$$

$$\stackrel{\text{def}}{=} \Sigma_f(\operatorname{Un}_K(X))$$

for each $X \in \text{Obj}(|\mathsf{Sets}(K)|)$, where we have used $\ref{eq:total_set}$ for the first bijection. Similarly, it can be shown that we also have $\text{Un}_{K'}(\Sigma_f(\phi)) = \Sigma_f(\phi_{\text{Un}_K})$ and that $\text{Un}_{K'} \circ \Sigma_f = \Sigma_f \circ \text{Un}_K$ also holds on morphisms.

Item 7, Interaction With Dependent Products: Indeed, we have

$$\begin{aligned} \operatorname{Un}_{K'}(\Pi_f(X)) &\stackrel{\text{def}}{=} \coprod_{x \in K'} \Pi_f(X)_x \\ &\cong \coprod_{x \in K'} \prod_{y \in f^{-1}(x)} X_y \\ &\cong \left\{ (x, h) \in \coprod_{x \in K'} \operatorname{Sets}(f^{-1}(x), \phi_{\operatorname{Un}_K}^{-1}(f^{-1}(x))) \;\middle|\; \phi \circ h = \operatorname{id}_{f^{-1}(x)} \right\} \\ &\stackrel{\text{def}}{=} \Pi_f \left(\coprod_{y \in K} X_y \right) \\ &\stackrel{\text{def}}{=} \Pi_f(\operatorname{Un}_K(X)) \end{aligned}$$

for each $X \in \text{Obj}(|\mathsf{Sets}(K)|)$, where we have used ?? of ?? for the first bijection. Similarly, it can be shown that we also have $\text{Un}_{K'}(\Pi_f(\phi)) = \Pi_f(\phi_{\text{Un}_K})$ and that $\text{Un}_{K'} \circ \Pi_f = \Pi_f \circ \text{Un}_K$ also holds on morphisms. \square

1.3 The Un/Straightening Equivalence

Theorem 1.3.1.1. We have an isomorphism of categories

$$(\operatorname{St}_K \dashv \operatorname{Un}_K) \colon \operatorname{\mathsf{FibSets}}(K) \underbrace{\downarrow}_{\operatorname{Un}_K} \operatorname{\mathsf{ISets}}(K).$$

Proof. Omitted.

2 Miscellany

2.1 Other Kinds of Un/Straightening

Remark 2.1.1.1. There are also other kinds of un/straightening for sets, where Sets is replaced by **Rel** or Span:

• Un/Straightening With Rel, I. We have an isomorphism of sets

$$Rel(A, B) \cong Sets(B \times A, \{true, false\}).$$

by the definition of a relation from A to B, Relations, Definition 1.1.1.1.

• Un/Straightening With Rel, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}}, \mathbf{Rel}) \overset{\mathrm{eq.}}{\cong} \mathsf{Cats}^{\mathsf{fth}}_{/K_{\mathsf{disc}}},$$

where $\mathsf{Cats}^\mathsf{fth}_{/K_\mathsf{disc}}$ is the full subcategory of $\mathsf{Cats}_{/K_\mathsf{disc}}$ spanned by the faithful functors; see [Nie04, Theorem 3.1].

• $Un/Straightening\ With\ \mathsf{Span},\ I.\ \mathsf{For\ each}\ A,B\in \mathsf{Obj}(\mathsf{Sets}),$ we have a morphism of sets

$$\mathsf{Span}(A,B) \to \mathsf{Sets}(A \times B, \mathbb{N} \cup \{\infty\})$$

which assemble into an equivalence of categories between Span(Sets) and the category MRel of "multirelations"; see Spans, Remark 7.5.1.1.

• Un/Straightening With Span, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}},\mathsf{Span})\stackrel{\mathrm{eq.}}{\cong} \mathsf{Cats}_{/K_{\mathsf{disc}}};$$

see [nLa23, Section 3].

Appendices

A Other Chapters

Set Theory	11. Kan Extensions
1. Sets	Bicategories
2. Constructions With Sets	12. Bicategories
3. Pointed Sets	13. Internal Adjunctions
4. Tensor Products of Pointed Sets	Internal Category Theory
5. Indexed and Fibred Sets	14. Internal Categories
6. Relations	Cyclic Stuff
7. Spans	15. The Cycle Category
8. Posets	Cubical Stuff
Category Theory	16. The Cube Category
9. Categories	Globular Stuff
10. Constructions With Categories	17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids Probability Theory With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes