Examen parcial de Física - CORRENT ALTERN 30 de abril de 2020

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Considereu el circuit RC de la figura, amb $\varepsilon = 4 \,\mathrm{V}$, $R = 39 \,k\Omega$ i $C = 0.8 \,\mu F$, inicialment descarregat. Un temps després de tancar l'interruptor l'energia del condensador val $U_C = 0.49 \,\mu J$. En aquest instant la intensitat que circula per la resistència és:

a) $74.2 \,\mu$ A

- b) $148.4 \,\mu$ A
- c) $111.3 \mu A$

- d) $37.1 \,\mu\,\text{A}$
- T2) Un circuit RLC sèrie connectat a una tensió alterna de freqüència f=1169.0 Hz té una impedància complexa amb una fase -73.8° . Si augmentem la freqüència en un factor 2 trobem que el circuit està en ressonància, i que ara la impedància val $Z=377.2\,\Omega$. El valor del coeficient d'autoinducció val:
 - a) 47.4 mH
- b) 58.9 mH
- c) 71.9 mH
- d) 54.2 mH
- T3) Si disposem d'un terminal mòbil 4G que té un ample de banda de 3.2 GHz, i necessitem transmetre un paquet de dades de 422 MiB (considerant que 1 MiB=2²³ bits), quin és el temps mínim de durada de la transmissió?
 - a) 2.2 s
- b) 0.22 s
- c) 1.1 s
- d) 0.11 s
- T4) Al circuit de la figura $R=100~\Omega,~X_L=100~\Omega$ i $X_C=50~\Omega,$ on hem indicat els fasors de la intensitat que circula per cadascun d'aquests elements amb $\mathbf{I}_R,~\mathbf{I}_L$ i \mathbf{I}_C respectivament. Si el fasor \mathbf{V} de la tensió entre els punts A i B té una amplitud $V_0=10~\mathrm{V}$ amb una fase inicial nul·la, quin dels diagrames fasorials és correcte?

- **T5)** En el circuit RL mostrat a la figura, per a un determinat valor de la freqüència ω_T es verifica que $X_L = R$. Per a una freqüència $\omega = 2.2 \omega_T$, quant valdrà la funció de transferència?
 - a) 0.91
- b) 0.83
- c) 0.95
- d) 0.09

Examen parcial de Física - CORRENT ALTERN 30 de abril de 2020

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Si disposem d'un terminal mòbil 4G que té un ample de banda de 3.2 GHz, i necessitem transmetre un paquet de dades de 422 MiB (considerant que 1 MiB=2²³ bits), quin és el temps mínim de durada de la transmissió?
 - a) 0.22 s
- b) 0.11 s
- c) 2.2 s
- d) 1.1 s
- **T2)** Al circuit de la figura $R = 100 \Omega$, $X_L = 100 \Omega$ i $X_C = 50 \Omega$, on hem indicat els fasors de la intensitat que circula per cadascun d'aquests elements amb \mathbf{I}_R , \mathbf{I}_L i \mathbf{I}_C respectivament. Si el fasor \mathbf{V} de la tensió entre els punts A i B té una amplitud $V_0 = 10 \mathrm{V}$ amb una fase inicial nul·la, quin dels diagrames fasorials és correcte?

T3) Considereu el circuit RC de la figura, amb $\varepsilon = 4 \,\mathrm{V}$, $R = 39 \,k\Omega$ i $C = 0.8 \,\mu F$, inicialment descarregat. Un temps després de tancar l'interruptor l'energia del condensador val $U_C = 0.49 \,\mu J$. En aquest instant la intensitat que circula per la resistència és:

- a) $148.4 \,\mu$ A
- b) 111.3 μ A

c) $74.2 \,\mu\,\text{A}$

- d) $37.1 \,\mu\,\text{A}$
- T4) Un circuit RLC sèrie connectat a una tensió alterna de freqüència f=1169.0 Hz té una impedància complexa amb una fase -73.8° . Si augmentem la freqüència en un factor 2 trobem que el circuit està en ressonància, i que ara la impedància val $Z=377.2\,\Omega$. El valor del coeficient d'autoinducció val:
 - a) 71.9 mH
- b) 58.9 mH
- c) 47.4 mH
- d) 54.2 mH
- **T5)** En el circuit RL mostrat a la figura, per a un determinat valor de la freqüència ω_T es verifica que $X_L = R$. Per a una freqüència $\omega = 2.2 \omega_T$, quant valdrà la funció de transferència?
 - a) 0.91
- b) 0.09
- c) 0.95
- d) 0.83

Cognoms i Nom:

Codi

Examen de Física - CORRENT ALTERN 30 de abril de 2020

Problema: 50% de l'examen

Considereu el circuit representat a la figura, amb $R=50\,\Omega,\ L=0.10\,\mathrm{H},\ \omega=1000\,\mathrm{rad/s}$ i en el que la font de tensió alterna estableix una ddp instantània $V(t)=20\,sin(\omega\,t)\,\mathrm{V},$ on el temps s'expressa en segons i la fase en radians.

a) Quins són els valors instantanis de la intensitat i de les tensions a borns de la resistència i a borns de la bobina?

- b) Quins són els fasors de la tensió i la impedància del circuit equivalent Thévenin entre els punts A i B?
- c) Si connectem una impedància $\bar{Z}'=50\,\Omega|\underline{60^\circ}$ entre A i B, quina potència mitjana es dissiparà en aquesta impedància?

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	a	c
T2)	b	c
T3)	a	c
T4)	c	b
T5)	a	a

Resolució del Model A

- **T1)** Sabent que l'energia del condensador val $U_C = 0.49 \,\mu$ J deduim que la ddp a borns del condensador és $\Delta V_C = \sqrt{2U_C/C} = 1.11 \,\text{V}$. Així doncs, la intensitat que circula per la resistència és $I = (4 1.11)/39 \,\text{mA} = 74.2 \,\mu\,\text{A}$.
- T2) Quan la freqüència és f=1169,0 Hz la impedància val $\bar{Z}=R+jX_L-jX_C$ i sabem que $\tan(-73.8^{\circ})=(X_L-X_C)/R=-3.442$ Si augmentem la freqüència en un factor 2 la nova impedància val $\bar{Z}=R+j2\,X_L-j\,X_C/2=R=377.2\,\Omega$ d'on deduim que $2X_L=X_C/2\Rightarrow X_C=4X_L$ i $R=377.2\,\Omega$. Per tant, $\frac{3X_L}{R}=3.442\Rightarrow X_L=3.442R/3=432.78\,\Omega$ i $L=X_L/(2\pi f)=58.9$ mH.
- **T3)** La velocitat de transmissió màxima és la meitat de l'ample de banda: $v = 1.6 \times 10^9$ bits/s. La durada mínima de la transmissió serà $t = 422 \times 2^{23}/1.6 \times 10^9 = 2.2$ s.
- T4) Els tres elements estan en paral·lel i, per tant, estan sotmesos a la mateixa tensió d'amplitud $V_0 = 10$ V. L'amplitud de la intensitat a cada element és $I_{R0} = V_0/R = 0.1$ A, $I_{L0} = V_0/X_L = 0.1$ A i $I_{C0} = V_0/X_C = 0.2$ A. Per tant, com que $I_{R0} = I_{L0}$, dels quatre diagrames fasorials només poden ser correctes el c) o el d). D'altra banda, en una bobina la intensitat va endarrerida 90^o respecte la tensió als seus borns, mentre que en un condensador s'avança 90^o , la qual cosa només es compleix als diagrames b) i c). Per tant, la resposta correcta és la c)
- **T5)** La funció de transferència d'aquest circuit és $\frac{L\omega}{\sqrt{R^2 + (L\omega)^2}}$. Quan $\omega = \omega_T$ es verifica que $X_L = R$, i per a una freqüencia $\omega = 2.2 \omega_T$ tenim que $X_L = 2.2R$, per tant la funció de transferència valdrà $2.2/\sqrt{1 + 2.2^2} = 0.91$

Resolució del Problema

- a) La impedància del circuit és $Z=\sqrt{50^2+100^2}=111.8\,\Omega,\ \varphi=\arctan(100/2)=63.4^\circ,$ és a dir $\bar{Z}=(111.8\,\Omega)|\underline{63.4^\circ},\ \mathrm{per}$ tant la intensitat té el fasor $\bar{I}=\frac{\bar{V}}{\bar{Z}}=\frac{20|\underline{0^\circ}}{111.8|\underline{63.4^\circ}}=(0.179\,A)|\underline{-63.4^\circ}$ i la intensitat instantània és $I(t)=0.179\,A\sin(\omega\,t-63.4^\circ)$. El fasor de la tensió de la resistència és $\bar{V}_R=\bar{I}R=(8.94\,V)|\underline{-63.4^\circ}$ i el valor instantani és doncs $V_R(t)=8.94\,V\sin(\omega\,t-63.4^\circ)$. El fasor de la tensió de la bobina és $\bar{V}_L=\bar{I}\bar{Z}_L=(0.179|\underline{-63.4^\circ})(100|\underline{+90^\circ})=(17.9\,V)|\underline{+25.6^\circ}$ i el valor instantàni és doncs $V_L(t)=17.9\,V\sin(\omega\,t+25.6^\circ)$.
- b) El fasor de la tensió de Thévenin és $\bar{V}_{Th} = \bar{V}_L = (17.9 \, V) | \underline{+25.6^{\circ}}$ La impedància de Thévenin és $\bar{Z}_{Th} = (\frac{1}{R} + \frac{1}{(jL\omega)})^{-1} = (40 + j\,20)\,\Omega = (44.72\,\Omega)\,|\underline{26.6^{\circ}}$.
- c) La impedància connectada entre A i B és $\bar{Z}'=(50\,\Omega)|\underline{60^\circ}=(25+j\,43.30)\,\Omega$. La potència mitjana dissipada en aquesta impedància pot calcular-se com $P=I_{ef}^2\,R'$. Tenim que $R'=\mathrm{Re}(\bar{Z}')=25\,\Omega$, i el fasor de la intensitat que circula entre A i B és $\bar{I}=\frac{\bar{V}_{Th}}{\bar{Z}_{Th}+\bar{Z}'}=\frac{17.9|\pm25.6^\circ}{(40+j\,20)+(25\,\Omega+j\,43.30)}=\frac{17.9|\pm25.6^\circ}{90.73|\pm44.2^\circ}=(0.197\,A)|\underline{-17.7^\circ}$. La intensitat eficaç és doncs $I_{ef}=0.197\,A/\sqrt{2}$ i la potència dissipada $P_{diss}=I_{ef}^2\,R'=(0.197^2/2)25\,A^2\,\Omega=0.486\,W$.