# The Crystal Structure of NaMe<sub>2</sub><sup>IV</sup> (PO<sub>4</sub>)<sub>3</sub>; Me<sup>IV</sup> = Ge, Ti, Zr

### LARS-OVE HAGMAN and PEDER KIERKEGAARD

Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm, Sweden

The crystal structure of  $NaZr_2(PO_4)_3$ , a representative of an extensive group of isomorphous mixed phosphates containing alkali metals and germanium, titanium, zirconium or hafnium, has been determined from three-dimensional X-ray data. The space group is  $R^3/c$  and the dimensions of the hexagonal unit cell for the three members of the series studied by the present authors are

The crystals are built up of  $MeO_6$  octahedra and  $PO_4$  tetrahedra which are linked by corners to form a three-dimensional network. The sodium atoms are octahedrally surrounded by oxygen atoms. A discussion of the structure is given.

Studies on metal phosphates and in particular on transition metal phosphates have been conducted at this Institute for several years. In connection with an investigation now in progress of the detailed superstructure of  $ZrP_2O_7^2$  it was found of interest to analyze the atomic arrangement of zirconium phosphates less complex in structure. The mixed phosphate  $NaZr_2(PO_4)_3$  was selected for such an investigation.

Within the present study the compounds  $NaZr_2(PO_4)_3$ ,  $NaTi_2(PO_4)_3$ , and  $NaGe_2(PO_4)_3$  have been synthesized and found to be isomorphous. Sljukić et al. have prepared mixed zirconium and hafnium phosphates of all the alkali metals  $AMe_2^{TV}(PO_4)_3$ . The X-ray data reported by these authors suggest that all these compounds are isostructural.

# EXPERIMENTAL

Preparations of the crystals. A mixture of sodium metaphosphate (12.5 g, British Drug Houses, p.a.) and metal dioxide (1.2 g ZrO<sub>2</sub>, Schering-Kahlbaum, p.a., 1.0 g GeO<sub>2</sub>, Fairmont, p.a. or 0.75 g TiO<sub>2</sub>, Merck, p.a.) was heated in a platinum crucible for 24 h at 1200°C. The products thus obtained were crystalline and gave good X-ray powder patterns but did not contain single crystals well suited for collecting extensive X-ray data. Good crystals could, however, be obtained after tempering in platinum crucible for several weeks at 1100°C, or according to a method given by Matković et al.<sup>5</sup> by crystal-

Table 1. X-Ray powder data of  $NaGe_2(PO_4)_3$ .  $CuK\alpha_1$  radiation. ( $\lambda CuK\alpha = 1.54056$ ).

|                                                                                | • -                 | ٠,           | 1,-        | •            |                  |
|--------------------------------------------------------------------------------|---------------------|--------------|------------|--------------|------------------|
| h k l                                                                          | Obs.                | Calc.        | Delta      | $D_{ m obs}$ | $I_{\mathrm{o}}$ |
| 012                                                                            | 1697                | 1715         | -18        | 5.91         | s                |
| 104                                                                            | 3237                | <b>3253</b>  | -16        | 4.28         | vs               |
| 11 0                                                                           | 3601                | <b>36</b> 06 | -5         | 4.06         | vs               |
| 113                                                                            | <b>4752</b>         | 4760         | -8         | 3.53         | vs               |
| $0\ 2\ 4$                                                                      | $\boldsymbol{6835}$ | 6860         | -25        | 2.95         | vs               |
| 116                                                                            | 8201                | 8221         | -20        | 2.69         | vs               |
| 211                                                                            | 8537                | 8543         | -6         | 2.64         | s                |
| 018                                                                            | 9391                | 9407         | -16        | 2.51         | $\mathbf{m}$     |
| 2 1 4                                                                          | 10450               | 10466        | -16        | 2.38         | s                |
| 300                                                                            | 10801               | 10819        | -18        | 2.34         | vs               |
| 208                                                                            | 13009               | 13013        | -4         | 2.14         | $\mathbf{m}$     |
| 119                                                                            | 13971               | 13990        | <b>—19</b> | 2.06         | $\mathbf{m}$     |
| 220                                                                            | 14434               | 14425        | 9          | 2.03         | $\mathbf{m}$     |
| 217                                                                            | 14694               | 14696        | -2         | 2.01         | $\mathbf{w}$     |
| 306                                                                            | 15429               | 15434        | -5         | 1.96         | $\mathbf{m}$     |
| 223                                                                            | 15569               | 15579        | -10        | 1.95         | $\mathbf{w}$     |
| 312                                                                            | 16145               | 16140        | 5          | 1.92         | $\mathbf{m}$     |
| 128                                                                            | 16613               | 16619        | -6         | 1.89         | s                |
| 0 2 10                                                                         | 17617               | 17628        | -11        | 1.84         | S                |
| 0 0 12                                                                         | 18469               | 18461        | 8          | 1.79         | $\mathbf{m}$     |
| 226                                                                            | 19041               | 19040        | 1          | 1.77         | 8                |
| $0 \ 4 \ 2$                                                                    | 19744               | 19747        | -3         | 1.73         | S                |
| 2 1 10                                                                         | 21229               | 21235        | -6         | 1.67         | vs               |
| 137                                                                            | 21883               | 21909        | -26        | 1.65         | $\mathbf{m}$     |
| 321                                                                            | 22969               | 22968        | 1          | 1.61         | w                |
| 318                                                                            | <b>23828</b>        | 23832        | -4         | 1.58         | s                |
| $3 \ 2 \ 4$                                                                    | 24892               | 24891        | 1          | 1.54         | s                |
| 410                                                                            | 25250               | 25244        | 6          | 1.53         | s                |
| 235                                                                            | 26059               | 26045        | 14         | 1.51         | vw               |
| 0114                                                                           | 26323               | 26329        | -6         | 1.50         | $\mathbf{m}$     |
| 048                                                                            | 27416               | 27438        | -22        | 1.47         | $\mathbf{m}$     |
| 1 3 10                                                                         | 28450               | 28447        | 3          | 1.44         | ន                |
| 3 0 12                                                                         | 29272               | 29280        | -8         | $\bf 1.42$   | $\mathbf{w}$     |
| 238                                                                            | 30989               | 31040        | 51         | 1.38         | w                |
| 3 1 11                                                                         | 31134               | 31139        | -5         | 1.38         | vw               |
| $\left. egin{matrix} 4 & 0 & 10 \\ 0 & 5 & 4 \\ \end{smallmatrix} \right\}$    | 32065               | 32054        | 11         | 1.36         | s                |
| $     \begin{array}{ccc}       1 & 1 & 15 \\       3 & 3 & 0     \end{array} $ | 32446               | 32451        | -5         | 1.35         | s                |
| 1 2 14                                                                         | 33558               | 33542        | 16         | 1.33         | $\mathbf{m}$     |
| $\left. \begin{array}{cccccccccccccccccccccccccccccccccccc$                    | 35684               | 35660        | 24         | 1.29         | $\mathbf{m}$     |
| 514'                                                                           | 39350               | 39317        | 33         | 1.23         | m                |
| 3 1 14                                                                         | 40767               | 40754        | 13         | 1.21         | $\mathbf{w}$     |
| 2 1 16                                                                         | 41235               | 41234        | 1          | 1.20         | vw               |
| 0 0 18                                                                         | 41550               | 41536        | 14         | 1.19         | w                |
| 600                                                                            | 43270               | 43270        | 0          | 1.17         | $\mathbf{m}$     |
|                                                                                |                     |              |            |              |                  |

lization from a melt of boric acid. The crystals thus obtained were found to consist of

colourless, rectangular prisms. Chemical analysis. A sample of the zirconium compound was fused with sodium potassium carbonate in a platinum crucible. After leaching with boiling water the amount of phosphorus in the solution was determined gravimetrically as  $Mg_2P_2O_7$ . The residue, insoluble in water, was in turn fused with sodium hydrogen sulphate in a platinum

crucible. After dissolving in hot water the amount of zirconium was determined gravimetrically as  $ZrO_2$ .<sup>6</sup> The following data were obtained:

|                   | Calc. for NaZr <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> | Obs.          |
|-------------------|-------------------------------------------------------------|---------------|
| $ZrO_2$           | 50.26                                                       | 48.5 weight % |
| $P_2O_5$          | 43.43                                                       | 45.1          |
| Na <sub>2</sub> O | 6.31                                                        | 6.4 (residue) |

X-Ray data collecting and treatment. The powder patterns of the three mixed sodium-transition metal phosphates prepared within this study could all be interpreted assuming a hexagonal (rhombohedral) unit cell. Accurate values of the cell dimensions were cal-

Table 2. X-Ray powder data of  $NaTi_2(PO_4)_3$ .  $CuK\alpha_1$  radiation. ( $\lambda CuK\alpha_1 = 1.54056$ ).

| h k l                                                                         | Obs.  | Calc. | Delta       | $D_{obs}$           | $I_{\mathrm{o}}$ |
|-------------------------------------------------------------------------------|-------|-------|-------------|---------------------|------------------|
| 012                                                                           | 1606  | 1597  | 9           | 6.08                | s                |
| 104                                                                           | 3099  | 3098  | ì           | 4.38                | vs               |
| 110                                                                           | 3295  | 3291  | $ar{f 4}$   | 4.24                | vs               |
| 113                                                                           | 4420  | 4417  | $ar{3}$     | 3.66                | vs               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          | 4895  | 4888  | 7           | 3.48                | vw               |
| $0\ 2\ 4$                                                                     | 6388  | 6389  | -1          | 3.05                | vs               |
| $   \begin{bmatrix}     1 & 1 & 6 \\     2 & 1 & 1   \end{bmatrix} $          | 7803  | 7804  | -1          | 2.76                | vs               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          | 9700  | 9680  | 20          | 2.47                | s                |
| 300                                                                           | 9883  | 9872  | 11          | 2.45                | m                |
| 208                                                                           | 12383 | 12394 | -11         | 2.19                | m                |
| 1 i 9                                                                         | 13403 | 13423 | -20         | 2.10                | w                |
| $\hat{2}$ $\hat{1}$ $\hat{7}$                                                 | 13810 | 13808 | $\ddot{2}$  | $\frac{2.07}{2.07}$ | vw               |
| $\tilde{2} \; \tilde{2} \; \; \dot{3}$                                        | 14276 | 14289 | $-1\bar{3}$ | 2.04                | w                |
| $   \begin{bmatrix}     3 & 0 & 6 \\     1 & 3 & 1   \end{bmatrix} $          | 14364 | 14376 | -12         | 2.03                | m                |
| 1 2 8                                                                         | 15665 | 15684 | -19         | 1.95                | ន                |
| 134                                                                           | 16256 | 16262 | -6          | 1.91                | s                |
| $0\ 2\ 10$                                                                    | 16908 | 16897 | 11          | 1.87                | s                |
| 226                                                                           | 17684 | 17666 | 18          | 1.83                | $\mathbf{m}$     |
| 2 1 10                                                                        | 20184 | 20188 | -4          | 1.71                | s                |
| 137                                                                           | 20401 | 20390 | 11          | 1.71                | $\mathbf{m}$     |
| 318                                                                           | 22278 | 22266 | 12          | 1.63                | s                |
| 324                                                                           | 22838 | 22843 | -5          | 1.61                | ន                |
| 410                                                                           | 23027 | 23035 | -8          | 1.61                | $\mathbf{m}$     |
| 413                                                                           | 24175 | 24161 | 14          | 1.57                | $\mathbf{m}$     |
| $048 \\ 0114$                                                                 | 25582 | 25557 | 25          | 1.52                | s                |
| 1 3 10                                                                        | 26793 | 26769 | 24          | 1.49                | s                |
| 416                                                                           | 27587 | 27539 | 48          | 1.47                | m                |
| 3 0 12                                                                        | 27898 | 27886 | 12          | 1.46                | w                |
| $   \begin{bmatrix}     5 & 0 & 12 \\     2 & 0 & 14   \end{bmatrix} $        | 28914 | 28906 | 8           | 1.43                | 8                |
| $     \begin{bmatrix}       3 & 1 & 11 \\       0 & 5 & 4     \end{bmatrix} $ | 29443 | 29425 | 18          | 1.42                | m                |
| 1 2 14                                                                        | 32188 | 32196 | -8          | 1.36                | m                |
| 3 3 6)                                                                        | 34163 | 34130 | 33          | 1.32                | w                |
| 51 1                                                                          |       |       |             |                     |                  |
| 1 5 5<br>4 2 8)                                                               | 37106 | 37132 | <b>—26</b>  | 1.26                | w                |
| 3 1 14                                                                        | 38764 | 38778 | -14         | 1.24                | $\mathbf{w}$     |
| 600                                                                           | 39497 | 39489 | 8           | 1.23                | $\mathbf{m}$     |
|                                                                               |       |       |             |                     |                  |

Acta Chem. Scand. 22 (1968) No. 6

Table 3. X-Ray powder data of NaZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>. Cu $K\alpha_1$  radiation. ( $\lambda$ Cu $K\alpha=1.54056$ ).

| 2 4 6 10 6 12 2                                            | ray ponder a                     | **************************************        | 04/3. 042241 14  | (110 112       | 2102000                |
|------------------------------------------------------------|----------------------------------|-----------------------------------------------|------------------|----------------|------------------------|
| h k l                                                      | Obs.                             | Calc.                                         | Delta            | $D_{obs}$      | $I_{o}$                |
| 012                                                        | 1488                             | 1479                                          | 9                | 6.31           | 8                      |
| 104                                                        | 2862                             | 2853                                          | 9                | 4.55           | vs                     |
| 110                                                        | 3073                             | <b>3062</b>                                   | 11 .             | 4.39           | vs                     |
| 113                                                        | 4104                             | 4093                                          | 11               | 3.80           | vs                     |
| 024                                                        | 5921                             | 5915                                          | 6                | 3.17           | vs                     |
| 116                                                        | 7194                             | 7186                                          | 8 3              | 2.87           | vs                     |
| 211                                                        | <b>7262</b>                      | 7259                                          | 3                | <b>2.86</b>    | s                      |
| 018                                                        | 8353                             | $\bf 8352$                                    | ì                | 2.67           | $\mathbf{m}$           |
| 214                                                        | 8983                             | 8977                                          | 6.               | 2.57           | 8                      |
| 300                                                        | 9188                             | 9185                                          | 3                | 2.54           | vs                     |
| 208                                                        | 11411                            | 11414                                         | -3               | 2.28           | $\mathbf{m}$           |
| 2 2 0                                                      | 12260                            | 12247                                         | 13<br>-3         | 2.20           | m                      |
| 119                                                        | 12338                            | 12341                                         | -3               | 2.19           | m                      |
| $\begin{smallmatrix}1&0&10\\2&1&7\end{smallmatrix}$        | 12478                            | 12476                                         | 2<br>-4          | $2.18 \\ 2.16$ | m                      |
|                                                            | 12753                            | 12757                                         | -4<br>-4         | 2.16<br>2.11   | w                      |
| $\begin{array}{ccc} 3 & 0 & 6 \\ 3 & 1 & 2 \end{array}$    | 1 <b>33</b> 05<br>1 <b>37</b> 11 | $\frac{13309}{13726}$                         | 4<br>15          | 2.11           | s<br>w                 |
| $\begin{array}{ccc} 3 & 1 & 2 \\ 1 & 2 & 8 \end{array}$    | 14487                            | 14476                                         | - 15<br>11       | 2.02           | w<br>s                 |
| 13 4                                                       | 15118                            | 15100                                         | -15<br>11<br>18  | 1.98           | 8                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$       | 15528                            | 15538                                         | $-10^{13}$       | 1.95           | 8                      |
| 315                                                        | 16122                            | 16131                                         | <b>-9</b>        | 1.92           | w                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$       | 16372                            | 16371                                         | 1                | 1.90           | vs                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$       | 16497                            | 16496                                         | î                | 1.90           | w                      |
| 042                                                        | 16772                            | 16787                                         | $-15^{\circ}$    | 1.88           | m                      |
| $\overset{\circ}{4}\overset{\circ}{0}\overset{\circ}{4}$   | 18160                            | 18162                                         | - <b>2</b>       | 1.81           | w                      |
| $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{10}$                 | 18615                            | 18599                                         | 16               | 1.79           | vs                     |
| 137                                                        | 18889                            | 18881                                         | 8                | 1.77           | $\mathbf{m}$           |
| 321                                                        | 19491                            | 19506                                         | -15              | 1.74           | vvw                    |
| 318                                                        | 20603                            | 20599                                         | 4                | 1.70           | 8                      |
| 324                                                        | 21229                            | 21224                                         | 5                | 1.67           | s                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$       | 21470                            | 21432                                         | 38               | 1.66           | vs                     |
| 229                                                        | 21522                            | 21526                                         | - <b>4</b>       | 1.66           | $\mathbf{v}\mathbf{w}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$       | 22287                            | 22255                                         | 32               | 1.63           | $\mathbf{m}$           |
| 413                                                        | 22425                            | 22463                                         | -38              | 1.63           | $\mathbf{m}$           |
| 0 1 14                                                     | 23492                            | 23473                                         | 19               | 1.59           | $\mathbf{m}$           |
| 048                                                        | 23657                            | 23661                                         | -4               | 1.58           | $\mathbf{m}$           |
| 1 3 10                                                     | 24724                            | 24723                                         | 1                | 1.55           | s                      |
| 3 2 7                                                      | 25000                            | 25004                                         | -4               | 1.54           | vw                     |
| 416                                                        | 25560<br>25666                   | 25556<br>25681                                | 4                | $1.52 \\ 1.52$ | 8                      |
| $egin{smallmatrix} 3 & 0 & 12 \\ 2 & 0 & 14 \end{bmatrix}$ | $25686 \\ 26538$                 | 26535                                         | 5<br>3<br>4<br>3 | 1.52           | w<br>s                 |
| 238                                                        | 26726                            | $\begin{array}{c} 20335 \\ 26722 \end{array}$ | 3<br>1           | 1.49           | w                      |
| 3 1 11                                                     | 27132                            | 27129                                         | 3                | 1.48           | vw                     |
| 054                                                        | 27344                            | 27347                                         | -3               | 1.47           | m                      |
| 330                                                        | 27550                            | 27556                                         | -6               | 1.47           | m                      |
| 4010                                                       | 27791                            | 27785                                         | 6                | 1.46           | m                      |
| 3 3 3                                                      | 28580                            | 28587                                         | $-\ddot{7}$      | 1.44           | vw                     |
| 1 1 15                                                     | 28846                            | 28836                                         | 10               | 1.43           | $\mathbf{m}$           |
| 1 2 14                                                     | 29603                            | 29597                                         | 6                | 1.42           | s                      |
| 1 0 16                                                     | 30300                            | 30346                                         | -46              | 1.40           | m                      |
| 419                                                        | 30706                            | 30711                                         | -5               | 1.39           | vw                     |
| 3 2 10                                                     | 30851                            | 30846                                         | 5                | 1 39           | $\mathbf{m}$           |
| 336                                                        | 31675                            | 31680                                         | -5               | 1.37           | $\mathbf{m}$           |
| 511                                                        | 31744                            | 31752                                         | -8               | 1.37           | w                      |
| 1 3 13                                                     | <b>32603</b>                     | 32627                                         | -24              | 1.35           | vw                     |
| 514                                                        | 33481                            | 33471                                         | 10               | 1.33           | s                      |

Table 3. Continued.

| 24 7                                      | 34186 | 34189 | -3            | 1.32 | vvw          |
|-------------------------------------------|-------|-------|---------------|------|--------------|
| 155                                       | 34506 | 34502 | 4             | 1.31 | vw           |
| 3 1 14                                    | 35726 | 35720 | 6             | 1.29 | $\mathbf{m}$ |
| 2 1 16                                    | 36463 | 36470 | <b>—7</b>     | 1.28 | w            |
| 600                                       | 36731 | 36741 | -10           | 1.27 | m            |
| 0 0 18                                    | 37104 | 37116 | -12           | 1.26 | w            |
| 5 1 7                                     | 37245 | 37251 | -6            | 1.26 | w            |
| $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{2}$ | 38216 | 38220 | -4            | 1.25 | w            |
| $\frac{1}{4}\frac{1}{3}\frac{1}{4}$       | 39613 | 39594 | 19            | 1.22 | w            |
| $5\ 2\ 0$                                 | 39797 | 39803 | -6            | 1.22 | $\mathbf{m}$ |
| 2 4 10                                    | 40042 | 40032 | 10            | 1.22 | m            |
| 606                                       | 40872 | 40865 | 7             | 1.20 | w            |
| 2 3 14                                    | 41858 | 41844 | 14            | 1.19 | m            |
| 5 1 10                                    | 43102 | 43093 | 9             | 1.17 | vw           |
| 5 2 6                                     | 43925 | 43927 | - <b>2</b>    | 1.16 | m            |
| 258                                       | 45103 | 45093 | 10            | 1.15 | m            |
| 1 5 11                                    | 45502 | 45499 | 3             | 1.14 | w            |
| 164                                       | 45710 | 45718 | -8            | 1.14 | w            |
| 3 0 18                                    | 46319 | 46301 | 18            | 1.13 | w            |
| 4 1 15                                    | 47213 | 47207 | 6             | 1.12 | w            |
| 3 2 16                                    | 48707 | 48717 | $-10^{\circ}$ | 1.10 | w            |
| 44 0                                      | 48970 | 48988 | $-18^{\circ}$ | 1.10 | w            |
| 0                                         | -0010 | 10000 | 10            | 2.10 | **           |

culated from Guinier-Hägg powder photographs taken with strictly monochromatic  $CuK\alpha_1$  radiation ( $\lambda=1.54056$  Å) with potassium chloride (a=6.29228 Å) <sup>7</sup> added to the specimens as an internal standard. The hexagonal unit cell dimensions refined by the method of least-squares are (25°C):

```
\begin{array}{lll} {\rm NaZr_2(PO_4)_2} & & a_{\rm H} = 8.8043 \pm 2 \ {\rm \AA} \\ & c_{\rm H} = 22.7585 \pm 9 \ {\rm \AA} \\ {\rm NaTi_2(PO_4)_2} & & a_{\rm H} = 8.4924 \pm 5 \ {\rm \AA} \\ & c_{\rm H} = 21.7788 \pm 15 \ {\rm \AA} \\ {\rm NaGe_2(PO_4)_3} & & a_{\rm H} = 8.1123 \pm 4 \ {\rm \AA} \\ & c_{\rm H} = 21.5133 \pm 11 \ {\rm \AA} \end{array}
```

The value of  $3.20 \text{ g/cm}^3$  for the density of  $\text{NaZr}_2(\text{PO}_4)_3$ , found from the apparent loss of weight in benzene, corresponds to six formula units in the unit cell ( $\varrho_{\text{calc}}=3.18 \text{ g/cm}^3$ ).

Crystals of all the three compounds were studied by taking rotation and Weissenberg photographs which confirmed the presence of strict isomorphism. Complete three-dimensional data were collected for  $\mathrm{NaZr_2(PO_4)_3}$  using  $\mathrm{Cu}K$  radiation. The crystal used was a rectangular prism measuring  $1.07 \times 10^{-4}$  mm³. Multiple film technique was used for the Weissenberg photographs. The relative intensities were estimated visually by comparison with an intensity scale obtained by photographing a reflection with different exposure times. A correction for absorption was included in the computation of the  $F^2$  values. (The linear absorption coefficient  $\mu=234.1~\mathrm{cm}^{-1}$ ).

In the first stages of this structural study the computational work was performed using the computers Facit EDB and TRASK. The limited capacity of these machines made it necessary to conduct the structural refinement with the unit cell described as monoclinic (C2/c). All the final calculations, however, made use of the computer CD 3600. This allowed the final structural refinement to be performed with the hexagonal description of the structure.

#### STRUCTURE DETERMINATION

The Weissenberg data, which confirmed the hexagonal (rhombohedral) symmetry of the crystal, showed the Laue symmetry to be  $\bar{3}m$ . The reflections systematically absent are hkil with  $-h+k+l\neq 3n$  and  $h\bar{h}0l$  with  $l\neq 2n$ .

This is characteristic of the space groups  $R\overline{3}c$  (No. 167) and R3c (No. 161). A test for piezoelectricity gave no effect. The structural investigation was thus undertaken assuming the atomic arrangement to be in accordance with the higher symmetry  $R\overline{3}c$ .

In the space group  $R\overline{s}c$  (hexagonal axes) the following point positions exist:

```
\begin{array}{l} (000;\ \frac{1}{3},\frac{2}{3},\frac{2}{3};\ \frac{2}{3},\frac{1}{3},\frac{1}{3})+\\ 6(a)\ (0,0,\frac{1}{4};\ 0,0,\frac{3}{4})\\ 6(b)\ (0,0,0;\ 0,0,\frac{1}{2})\\ 12(c)\pm(0,0,z;\ 0,0,\frac{1}{2}+z)\\ 18(d)\ (\frac{1}{2},0,0;\ 0,\frac{1}{2},0;\ \frac{1}{2},\frac{1}{2},0;\ \frac{1}{2},0,\frac{1}{2};\ \frac{1}{2},\frac{1}{2},\frac{1}{2})\\ 18(e)\pm(x,0,\frac{1}{4};\ 0,x,\frac{1}{4};\ \overline{x},\overline{x},\frac{1}{4})\\ 36(f)\pm(x,y,z;\ \overline{y},x-y,z;\ y-x,\overline{x},z;\ \overline{y},\overline{x},\frac{1}{2}+z;\ x,x-y,\frac{1}{2}+z;\ y-x,y,\frac{1}{2}+z)\\ \end{array}
```

From calculations of the Patterson projection P(pvw) and section P(0vw) and subsequent calculations of the electron density distributions in  $\varrho(pyz)$  and  $\varrho(0yz)$  the positions of the twelve zirconium, the eighteen phosphorus, and the six sodium atoms — found to be situated in 12(c), 18(e), and 6(b) — in the unit cell could easily be determined with moderate accuracy. Starting from these data it was possible to make three-dimensional electron density calculations and find the positions of the 72 oxygen atoms situated in  $2\times36$  (f) point positions. At the electron density calculations and subsequent refinement atomic scattering curves for unionized atoms were used. The real part of the anomalous dispersion correction  $^9$  was applied to the scattering curves.

A refinement of the coordinates so obtained was then performed by means of the least-squares method. The starting values of the individual isotropic temperature factors used in the program, were zero for all of the atoms. Initially all 296 of the independent reflections measured were included in the calculations, but after a few cycles, eight strong, low-angle reflections were omitted as suffering from extinction. The refinement was considered as

| Table 4 | . v | Veight | analyses | obtained | in | the | final              | cycle | $\mathbf{of}$ | the | least-squares | refinement | $\mathbf{of}$ |
|---------|-----|--------|----------|----------|----|-----|--------------------|-------|---------------|-----|---------------|------------|---------------|
|         |     | •      | •        |          |    |     | r <sub>o</sub> (PO |       |               |     | •             |            |               |

| Interval $\sin \theta$ | Number of independent reflections | $\overline{w \Delta^2}$ | $\frac{\text{Interval}}{F_{\text{obs}}}$ | Number of independent reflections | $\overline{w \Delta^2}$ |
|------------------------|-----------------------------------|-------------------------|------------------------------------------|-----------------------------------|-------------------------|
| 0.0000 - 0.4642        | 30                                | 1.36                    | 0.0- 23.1                                | 28                                | 0.14                    |
| 0.4642 - 0.5848        | 36                                | 0.98                    | 23.1 — 31.3                              | 29                                | 0.47                    |
| 0.5848 - 0.6694        | 30                                | 0.58                    | 31.3 - 52.2                              | 29                                | 1.22                    |
| 0.6694 - 0.7368        | 35                                | 0.80                    | 52.2 - 63.4                              | 29                                | 1.06                    |
| 0.7368 - 0.7937        | 27                                | 1.02                    | 63.4 - 82.5                              | 29                                | 1.61                    |
| 0.7937 - 0.8434        | 22                                | 0.47                    | 82.5 — 99.6                              | 29                                | 1.28                    |
| 0.8434 - 0.8879        | 36                                | 0.85                    | 99.6-115.5                               | 28                                | 1.14                    |
| 0.8879 - 0.9283        | 23                                | 1.13                    | 115.5-143.3                              | 30                                | 1.18                    |
| 0.9283 - 0.9655        | 30                                | 0.97                    | 143.3-192.1                              | 28                                | 0.61                    |
| 0.9655 - 1.0000        | 19                                | 1.84                    | 192.1 - 345.3                            | 29                                | 1.29                    |

Table 5. Observed and calculated structure factors. The five columns within each group contain the values  $h,\ k,\ l,\ F_{\rm c}$  and  $k\,|\,F_{\rm o}|$ . The reflections deleted from the final cycles in the least-squares refinement are marked with an asterisk.

| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6 0 9 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 198<br>198<br>198<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1111111111122222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 60666777777778888899900000111111111222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -151 -50 -151 -151 -151 -151 -151 -151 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 160 69 77 125 125 125 125 125 125 125 125 125 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 2 2 1 36 6 2 2 2 2 2 2 2 5 5 5 5 1 6 6 6 6 6 7 7 7 7 7 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -45<br>-118<br>-24<br>-54<br>122<br>34<br>181<br>1<br>15<br>18<br>12<br>-107<br>-249<br>-29<br>-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60 103 103 103 103 105 105 105 105 105 105 105 105 105 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 555555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1111122222222333333344444445555556600001111111122222223333334444555000011111112222222333333344644555000011111112222222333333334464445555556600001111111222222223333333333446444555555660000111111122222222333333333334464445555556600001111111122222222333333344444555000011111112222222333333344644555000011111111222222233333334444455500001111111122222223333333444445550000111111112222222333333344444555000011111111222222233333334444455500001111111122222223333333444445550000111111112222222333333344444555000011111111122222223333333444445550000111111112222222333333344444550000111111112222222333333344444455000001111111112222222333333344444455000001111111112222222333333344444455000001111111112222222333333344444455000000000000000000 |
| -71 -71 -72 -73 -73 -73 -73 -73 -73 -73 -73 -73 -73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 645 685 685 685 685 685 685 685 685 685 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

complete when the parameter shifts were less than 5 % of the standard deviations, at which stage the discrepancy index R was 0.089. Hughes' weighting function  $w=1/h^2|F_{\rm obs},\min|^2$  for  $|F_{\rm obs}| \leq h|F_{\rm obs},\min|$  and  $w=1/|F_{\rm obs}|^2$  for  $|F_{\rm obs}| > h|F_{\rm obs},\min|$  with h=4.0 was used in the refinement. A weight analysis obtained in the final cycle is given in Table 4.

Table 6. Interatomic distances and estimated standard deviations  $(\pm \sigma)$  in Å.

$$egin{array}{lll} {
m Rec} & {$$

Table 7. The structure of NaZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>.

Space group:  $R\overline{3}/c$ 

Unit cell dimensions: 
$$a = 8.8043 \pm 2 \text{ Å}$$
  
 $c = 22.7585 \pm 9 \text{ Å}$   
 $V = 1527.7 \text{ Å}^3$ 

Cell content: 6 NaZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>

6 Na in 6(b): 
$$(0,0,0; 0,0,\frac{1}{2})$$
  
12 Zr in 12(c):  $\pm (0,0,z; 0,0,\frac{1}{2},+z)$   
18 P in 18(e):  $\pm (x,0,\frac{1}{4}; 0,x,\frac{1}{4}; \bar{x},\bar{x},\frac{1}{4})$   
36 O<sub>1</sub> and 36 O<sub>2</sub>

$$\begin{array}{ll} \text{in} \ \ 2\times 36(\textit{f}) \colon & \pm (x,y,z; \ \bar{y},x-y,z; \ y-x,\bar{x},z; \ \bar{y},\bar{x},\frac{1}{2}+z; \\ & x,x-y,\frac{1}{2}+z; \ y-x,y,\frac{1}{2}+z) \end{array}$$

Atomic parameters and isotropic temperature factors with estimated standard deviations  $(\pm \sigma)$ .

| Atom                                              | x                                                                                      | y                                                                       | z                                                                                       | B Å2                                                                                                  |
|---------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Na<br>Zr<br>P<br>O <sub>1</sub><br>O <sub>2</sub> | $\begin{matrix} 0 \\ 0 \\ 0.2909 \pm 6 \\ 0.1860 \pm 15 \\ 0.1913 \pm 15 \end{matrix}$ | $egin{array}{c} 0 \\ 0 \\ 0 \\ -0.0144\pm15 \\ 0.1683\pm15 \end{array}$ | $egin{array}{c} 0 \ 0.1456\pm 1 \ rac{1}{2} \ 0.1949\pm 5 \ 0.0866\pm 5 \ \end{array}$ | $\begin{array}{c} 4.20 \pm 40 \\ 1.80 \pm 7 \\ 2.40 \pm 10 \\ 3.20 \pm 20 \\ 2.90 \pm 20 \end{array}$ |

A list of the observed and calculated structure factors is given in Table 5. A three-dimensional difference synthesis calculated over the unique part of the unit cell at points 0.2 Å apart showed very small maxima and minima. The largest maximum in this synthesis has a magnitude of about 20 % of the heights of the oxygen peaks in the electron density functions. Thus, from this calculation as well as from a computation of the interatomic distances (cf. Table 6), which were found to be within the normal range, further evidence was obtained that the atomic parameters arrived at in the final cycle of refinement and listed in Table 7 should present an adequate description of the structure. Also an attempt to improve the structure by lowering the symmetry to R3c was unsuccessful.

#### DESCRIPTION AND DISCUSSION OF THE STRUCTURE

The crystal structure of  $NaZr_2(PO_4)_3$  thus derived may be described in terms of  $PO_4$  tetrahedra and  $ZrO_6$  octahedra which are linked by corners to a three-dimensional network (cf. Fig. 1). Every oxygen atom thus belongs simultaneously within a  $PO_4$  group and a  $ZrO_6$  group. The sites of the sodium atoms are in the strongly distorted octahedra formed by the triangular faces of two  $ZrO_6$  octahedra stacked on top of each other as illustrated in Fig. 2. The groups  $O_3ZrO_3NaO_3ZrO_3$  thus formed may be considered as major struc-



Fig. 1. Schematic drawing showing the structure of  $NaZr_2(PO_4)_3$ . The structure viewed along [001] showing the contacts between  $PO_4$  tetrahedra,  $ZrO_6$  octahedra and  $NaO_6$  octahedra. Only one third of the structure has been indicated (i.e. atoms with z parameters within the limits  $0.00 \le z \le 0.33$ ).



Fig. 2. Schematic drawing showing the sites of the sodium atoms between ZrO<sub>6</sub> octahedra in the structure of NaZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>.

tural units of the atomic arrangement. Such groups are mutually linked in the c direction by PO<sub>4</sub> tetrahedra in such a way that empty trigonal prisms of oxygen atoms are formed. The endless columns resulting from this linking are also connected normal to the c direction by the PO<sub>4</sub> tetrahedra (cf. Fig. 1).

All the interatomic distances are of normal lengths (cf. Table 6). The PO<sub>4</sub> tetrahedra are nearly regular. The P—O distances are comparable to those found by Furberg <sup>10</sup> in H<sub>3</sub>PO<sub>4</sub> and also by Cruickshank <sup>11</sup> and Kierkegaard <sup>12</sup> in several phosphate structures.

Rather few zirconium oxygen compounds have been found to contain  $ZrO_6$  octahedra, more frequent coordination numbers of oxygen around this metal being seven (e.g. in  $ZrO_2$ , monoclinic, <sup>12</sup> and  $Zr_4(OH)_6(CrO_4)_5 \cdot 2H_2O$  <sup>14</sup>)



Fig. 3a. The PO<sub>4</sub> tetrahedron in the structure of  $NaZr_2(PO_4)_3$ .

Fig. 3b. The  $ZrO_6$  octahedron in the structure of  $NaZr_2(PO_4)_3$ .

Acta Chem. Scand. 22 (1968) No. 6



Fig. 3c. The NaO<sub>6</sub> octahedron in the structure of NaZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>.

or eight (e.g. in  $ZrO_2$ , cubic, <sup>15</sup>  $Zr(SO_4)_2 \cdot 4H_2O$ , <sup>16</sup>  $Zr(IO_3)_4$ , <sup>17</sup> and  $ZrOCl_2 \cdot 8H_2O$  <sup>18</sup>). The Zr-O distances of the somewhat distorted octahedra (Fig. 3b) of NaZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (2.048 and 2.084 Å) are somewhat shorter than the value 2.097 Å reported for BaZrO<sub>3</sub> 18 of perovskite type structure.

The six-fold coordination of oxygen around sodium (Fig. 3c) represents a heavily distorted octahedron with O-Na-O angles of 66.0° and 114.0°.

Acknowledgements. This investigation has been sponsored in part by the Swedish Natural Science Research Council and in part by the European Research Office, United States Army, Frankfurt am Main, Germany. Permission for the use of the computers Facit EDB, TRASK and CD 3600 was granted by the Computer Division of the National

Swedish Rationalization Agency.

The authors sincerely thank Professor Arne Magnéli for his encouraging and stimulating interest and for all facilities placed at their disposal. They are also indebted to Mr. Lars Tallbacka for his willing help in the measurement of the piezoelectric effect.

## REFERENCES

- 1. Kierkegaard, P. Arkiv Kemi 19 (1962) 51.

- Levi, G. R. and Peyronell, G. Z. Krist. 92 (1935) 190.
   Sljukić, M., Matković, B. and Prodić, B. Croat. Chem. Acta 39 (1967) 145.
   Gmelin's Handbuch, 8 Ed., System Nos. 42, 410, Verlag Chemie, Weinheim/Bergstrasse 1958.
- 5. Matković, B., Sljukić, M. and Prodić, B. Croat. Chem. Acta 38 (1967) 69.
- 6. De Hevesy, G. and Kimura, K. Angew. Chem. 38 (1925) 775.
- Hambling, P. G. Acta Cryst. 6 (1953) 98.
   International Tables for X-Ray Crystallography, Kynoch Press, Birmingham 1962, Vol. III.
- 9. Dauben, C. H. and Tempelton, D. H. Acta Cryst. 8 (1955) 841.
- 10. Furberg, S. Acta Chem. Scand. 9 (1955) 1557.
- Cruickshank, D. W. J. Acta Cryst. 17 (1964) 671.
   Nord, A. G. and Kierkegaard, P. Acta Chem. Scand. 22 (1968) 1466.
   McCullough, J. D. and Trueblood, K. N. Acta Cryst. 12 (1959) 507.

- Lundgren, G. Arkiv Kemi 13 (1958) 59.
   Passerini, L. Gazz. Chim. Ital. 60 (1930) 672.
   Singer, J. and Cromer, D. T. Acta Cryst. 12 (1959) 719.
   Larson, A. C. and Cromer, D. T. Acta Cryst. 14 (1961) 128.
   Clearfield, A. and Vaughan, P. A. Acta Cryst. 9 (1956) 555.
- 19. Megav, H. D. Proc. Phys. Soc. 58 (1946) 133.

Received January 19, 1968.