

FAN7000D

Low Power Amplifier

Features

- Low quiescent current
- High power supply ripple rejection
- Low voltage operation
- A few of external part required
- Built in power save switch & mute switch

Typical Applications

- Portable compact disk player (DISCMAN)
- Portable mini disk player (MD)
- Disc-man
- MP3 player
- CD-ROM
- Other potable compact disk media Fan motor drive

Description

The FAN7000D is a monolithic integrated circuit and suitable dual amplifier for low power.

Pin Assignments

Pin Definitions

Pin Number	Pin Name	Pin Function Description
1	PS	Power Save Switch
2	INA	Signal Input A
3	GND	Signal Ground
4	INB	Signal Input B
5	REF	Reference Voltage
6	Vcc	Supply Voltage
7	OUTB	Signal Output B
8	GND	Power Ground
9	OUTA	Signal Output A
10	MUTE	Mute On Switch

Internal Block Diagram

Electrical Characteristics (RL = 16Ω , Rg = 600Ω , Ta = 25° C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Quiescent Current 1	ICC1	Vcc = 2.4V	-	5.5	10.0	mA
Quiescent Current 2	ICC2	VCC = 4.5V, Mute = GND	-	1.0	2.0	mA
Quiescent Current 3	ICC3	V _{CC} = 4.5V, PS = GND	-	-	1.0	μΑ
Close Loop Voltage Gain 1	G _{VC1}	V _{CC} = 2.4V, f = 1KHz, V _O = -10dBm	30	32	34	dB
Close Loop Voltage Gain 2	G _{VC1}	V _{CC} = 1.8V, f = 1KHz, V _O = -20dBm	29	32	34	dB
Channel Balance 1	ΔG_{V1}	VCC = 2.4V, f = 1KHz, VO = -10dBm	-	-	1.0	dB
Channel Balance 2	ΔG_{V2}	V _C C = 1.8V, f = 1KHz, V _O = -20dBm	-	-	1.0	dB
Total Harmonic Distortion	THD	VCC = 2.0V, f = 1KHz, PO = 1mW	-	0.5	1.5	%
Ripple Rejection Ratio	RR	$VCC = 1.8V$, $f = 100Hz$, $Rg = 1K\Omega$, $VR = -20dBm$, $BPF = 100Hz$	43	60	-	dB
Crosstalk	СТ	$V_{CC} = 2.4V, f = 100Hz,$ $Rg = 1K\Omega, V_{O} = -10dB$	43	50	-	dB
Output Noise Voltage	VNOISE	V_{CC} = 4.5V, Rg = 1KΩ, BPF = 20Hz ~ 20KHz	-	60	100	μVrms
Output Power	Роит	VCC = 3.0V, f = 1KHz, THD = 10%	20	40	-	mW
PS Attenuation Ratio	ATTPS	VCC = 1.8V, f = 100Hz, PS = GND, V _{IN} = -10dB	-	-	-80	dB
MUTE attenuation ratio	ATT _{MU}	VCC = 1.8V, f = 100Hz, MUTE = GND, V _{IN} = -10dB	-	-	-80	dB
PS ON input current	IPSON	VCC = 1.5V, VREF ≥ 0.85V	-	0.2	1.0	μΑ
MUTE OFF input current	IMOFF	VCC = 1.5V, V _{REF} ≥ 0.85V	-	0.2	1.0	μΑ
PS ON high level	VHPS	VCC = 1.5V, VREF ≥ 0.85V	0.5	0.65	-	V
MUTE OFF high level	VHMU	VCC = 1.5V, VREF ≥ 0.85V	0.5	0.65	-	V

Typical Application Circuits

