

Pontificia Universidad Católica de Chile

FACULTAD DE MATEMÁTICA

Departamento de Estadística

Primer Semestre de 2019

Profesor: Fernando Quintana – Ayudante: Rubén Soza

Modelos Probabilísticos - EYP1026 Ayudantía 3

02 de Abril de 2019

- 1. Sean $A, B \subset \Omega$ eventos tales que P(A), P(B) > 0. Demuestre que:
 - a) Si A y B son disjuntos, entonces no pueden ser independientes.
 - b) Si A y B son independientes, entonces no pueden ser disjuntos.
- 2. Una caja contiene 6 bolitas verdes y 9 rojas. Se realiza el experimento de sacar una bolita de la caja, observar su color y luego retirarla 3 veces seguidas.
 - a) Calcule la probabilidad de que la tercera bolita extraída sea verde.
 - b) Si la tercera bolita extraída fue verde, ¿cuál es la probabilidad de que la segunda haya sido roja?
 - c) Si la segunda bolita fue roja, ¿cual es la probabilidad de que la tercera bolita sea verde?
- 3. Sean (Ω, \mathcal{F}, P) un espacio medible, $A_1, A_2, \ldots \in \mathcal{F}$. Demuestre las siguientes afirmaciones
 - a) Si $P(A_n) = 1 \ \forall n \in \mathbb{N}$ entonces

$$P\left(\bigcap_{n\in\mathbb{N}}A_i^c\right)=1.$$

b) Si A_1, A_2, \ldots son independientes entonces

$$P\left(\bigcup_{i=1}^{n} A_i\right) = 1 - \prod_{i=1}^{n} [1 - P(A_i)].$$

c) Si A_1,A_2,\ldots son independientes y $P(A_i)=1-e^{-i}\ \forall i\in\mathbb{N}$ entonces

$$\lim_{n\to\infty}P\left(\bigcup_{i=1}^nA_i\right)=1$$

- d) Si los A_i son independientes y $P(A_i) = e^{-\ln(i)}$. Demuestre que con probabilidad 1 ocurren una cantidad infinita de eventos A_i .
- 4. Un individuo lanza repetiamente y en forma inependiente un daro al azar sobre un tablero representado por el círculo unitario

$$C = \{(x, y) : x^2 + y^2 \le 1\}.$$

Para $A \subset C$, se define la función $P(A) = \frac{\operatorname{Area}(A)}{\pi}$.

- a) Pruebe que $P(\cdot)$ es una medida de probabilidad en el espacio medible $(C,2^C)$.
- b) Pruebe que cualquiera que sea $0 < \delta < 1$, una infinidad de los lanzamientos aterrizará en una región a distancia mayor que δ del centro (0,0) del tablero.
- c) Considere los eventos

$$A_n = \left\{ \text{en el n-\'esimo intento el dardo aterriza a una distancia menor que } \frac{1}{n^\alpha} \right\}, \quad n \geqslant 1.$$

Pruebe que si $0 < \alpha \le 1/2$ entonces con probabilidad 1 una infinidad de dichos eventos ocurrirá, pero que si $\alpha > 1/2$, entonces con probabiliad 1 a lo más un número finito de dichos eventos ocurrirá.

Propuestos:

- 1. Sean $A, B \subset \Omega$ eventos. Pruebe que
 - a) Si P(B) = 1, entonces $P(A \mid B) = P(A)$.
 - b) Si $A \subset B$ con P(A) > 0, entonces $P(B \mid A) = 1$ y $P(A \mid B) = P(A)/P(B)$.
 - c) Si $A \cap B = \emptyset$ y P(A) > 0, entonces $P(A \mid A \cup B) = P(A)/(P(A) + P(B))$.
- 2. Las ciudades A,B y C (desde C hacia) se ubican a lo largo de un río sujeto a posibles desbordes. Las probabilidades anuales de inundaciones son 0.2, 0.3 y 0.1 para las ciudades A,B y C respectivamente. Los eventos de desborde en cada ciudad no son independientes. Si la ciudad C se inunda, la probabilidad que la ciudad B también lo haga es 0.6; si en ambas ciudades hubo inundaciones, la probabilidad que la ciudad A también experimente inundaciones crece a 0.8. Sin embargo, si la ciudad C no se inunda, la probabiliad que A y B no se inunden es 0.9.
 - a) ¿Cuál es la probabilidad que toas las ciudades se inunden?
 - b) ¿Cuál es la probabiliad que al menos una de las ciudades se inunde?