SBML Model Report

Model name: "Izhikevich2003_SpikingNeuron"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Enuo He¹ at July 16th 2007 at 9:41 a. m. and last time modified at February 14th 2014 at 11:28 a. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	2	constraints	0
reactions	0	function definitions	0
global parameters	8	unit definitions	2
rules	2	initial assignments	0

Model Notes

The model is according to the paper *Simple Model of Spiking Neurons* In this paper, a simple spiking model is presented that is as biologically plausible as the Hodgkin-Huxley model, yet as computationally efficient as the integrate-and-fire model. Known types of neurons correspond to different values of the parameters a,b,c,d in the model. Figure 2RS,IB,CH,FS,LTS have been simulated by MathSBML.

¹BNMC, enuo@caltech.edu

RS: a=0.02, b=0.2, c=-65, d=8. IB: a=0.02,b=0.2,c=-55,d=4 CH: a=0.02,b=0.2,c=-50,d=2 FS:a=0.1b=0.2c=-65,d=2 LTS:a=0.02,b=0.25,c=-65,d=2

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of six unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name ms

Definition ms

2.2 Unit mV

Definition mV

2.3 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.4 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.5 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.6 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell			3	1	litre	Ø	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

4 Parameters

This model contains eight global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
a			0.02		$lue{2}$
Ъ			0.20		
С		-	-65.00		\mathbf{Z}
d			8.00		
Vthresh			30.00		\mathbf{Z}
i			0.00		
v		0000259 -	-70.00		
U		-	-14.00		

5 Rules

This is an overview of two rules.

5.1 Rule v

Rule v is a rate rule for parameter v:

$$\frac{d}{dt}v = 0.04 \cdot v^2 + 5 \cdot v + 140 - U + i \tag{1}$$

5.2 Rule U

Rule U is a rate rule for parameter U:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{U} = \mathbf{a}\cdot(\mathbf{b}\cdot\mathbf{v} - \mathbf{U})\tag{2}$$

6 Events

This is an overview of two events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

6.1 Event event_0000001

Trigger condition

$$v > V thresh$$
 (3)

Assignments

$$v = c \tag{4}$$

$$U = U + d \tag{5}$$

6.2 Event event_0000002

Name Stimulus

Trigger condition

time
$$> 10$$
 (6)

Assignment

$$i = 10 \tag{7}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000259 voltage: Difference of electrical potential between two points of an electrical network, expressed in volts

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany