FICHE DE COURS 21

Moment cinétique

			^.			c •	`	•	•		
Сe	aue 16	e dois	etre	capable	de	taire	apres	avoir	appris	mon	cours

Définir et exprimer dans une base donnée le moment cinétique associé à un point matériel.
Définir et exprimer dans une base donnée le moment d'une force.
Calculer et utiliser le bras de levier d'une force.
Établir le TMC en précisant les conditions dans lesquelles il s'applique.
Définir et reconnaître une force centrale.
Montrer qu'une force centrale a un moment nul par rapport au centre.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\ \square$ Moment cinétique par rapport à un point A ou un axe Δ d'un point M de masse m :

$$\overrightarrow{\mathcal{L}_A}(M) = \overrightarrow{AM} \wedge m \overrightarrow{v}(M/\mathcal{R}) \quad \text{et} \quad \left(\overrightarrow{AM} \wedge m \overrightarrow{v}(M/\mathcal{R}) \cdot \overrightarrow{u_\Delta} \right)$$

 $\hfill \square$ Moment d'une force \overrightarrow{F} par rapport à un point A ou un axe Δ :

$$\overrightarrow{\mathcal{M}_A}(\overrightarrow{F}(M)) = \overrightarrow{AM} \wedge \overrightarrow{F}(M) \qquad \text{et} \qquad \left(\overrightarrow{\mathcal{M}_\Delta}(\overrightarrow{F}(M)) = \left(\overrightarrow{AM} \wedge \overrightarrow{F}(M) \right) \cdot \overrightarrow{u_\Delta} \right)$$

 \square Théorème du moment cinétique (O fixe et \mathcal{R}_g galiléen) :

$$\frac{\overrightarrow{\mathrm{d}\mathcal{L}_O(M)}}{\mathrm{d}t} = \overrightarrow{\mathcal{M}_O}(\overrightarrow{F}_{\mathrm{r\acute{e}s}}(M)) \qquad \text{et} \qquad \frac{\overrightarrow{\mathrm{d}\mathcal{L}_\Delta(M)}}{\mathrm{d}t} = \mathcal{M}_\Delta(\overrightarrow{F}_{\mathrm{r\acute{e}s}}(M))$$