Chapter 5: Numerical Solutions of Differential Equations

Lecture 2: Higher-order Methods

Problem: $y'(x) = f(x, y), y(x_0) = y_0$

$$\begin{cases} y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i) \\ y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}), & x_{i+\frac{1}{2}} = x_i + \frac{h}{2} \end{cases}$$

or

$$y_{i+1} = y_i + h f(x_i + \frac{h}{2}, y_i + \frac{h}{2} f(x_i, y_i))$$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i),$$
 $y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i),$$
 $y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i),$$
 $y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i),$$
 $y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i),$$
 $y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$

Example 1

Use the Midpoint Method with h=0.1 for the initial-value problem

$$y' = 1 + x^2 + y$$

$$y(0) = 1$$

to approximate y(0.1) and y(0.2)

Solution

$$x_i = a + ih = 0.1i$$

$$x_{i+\frac{1}{2}} = x_i + \frac{h}{2} = a + ih + \frac{h}{2} = a + (i + \frac{1}{2})h = 0.1(i + \frac{1}{2})$$

Problem: $f(x, y) = 1 + x^2 + y$, $y_0 = y(0) = 1$, h = 0.1

Step1:

$$y_{0+\frac{1}{2}} = y_0 + \frac{h}{2} f(x_0, y_0) = 1 + 0.05(1 + 0 + 1) = 1.1$$

$$y_1 = y_0 + h f(x_{0+\frac{1}{2}}, y_{0+\frac{1}{2}}) = 1 + 0.1(1 + 0.0025 + 1.1) = 1.2103$$

Step 2:

$$y_{1+\frac{1}{2}} = y_1 + \frac{h}{2} f(x_1, y_1) = 1.2103 + .05(1 + 0.01 + 1.2103) = 1.3213$$

$$y_2 = y_1 + h f(x_{1+\frac{1}{2}}, y_{1+\frac{1}{2}}) = 1.2103 + 0.1(2.3438) = 1.4446$$

Example 2

Find approximate values and the errors of the solution of the initial-value problem by Midpoint method

$$y' = 3xy$$
, $0 \le x \le 1/2$,

with step size h=0.1, and initial condition y(0) = 1

Solution

Exact solution

$$y' = 3xy \Rightarrow y'/y = 3x \Rightarrow \int y'/y dx = \int 3x dx$$

$$\ln(y) = 3x^2 / 2 + C$$

Using initial condition:

$$ln(y(0)) = ln(1) = 0 = C$$

$$\Rightarrow \ln(y) = 3x^2 / 2 \Rightarrow y = e^{3x^2/2}$$

Midpoint method:

$$y_{i+1} = y_i + h \ f(x_i + \frac{h}{2}, y_i + \frac{h}{2} \ f(x_i, y_i))$$

X	y-exact	y-E	Error	y-N	/IE Error	_
	4	4	0	4	0	
0	1	1	Ü	1	0	
0.1	1.015	1	0.01511	1.0	15 0.0001	131
0.2	1.062	1.03	0.03184	1.0	61 0.0004	764
0.3	1.145	1.092	0.05274	1.1	43 0.0011	87
0.4	1.271	1.19	0.08119	1.2	69 0.0024	45
0.5	1.455	1.333	0.1221	1.4	5 0.0046	21

Exercise

Find approximate values and the errors of the solution of the initial-value problem

$$y' = 3y - 2x$$
, $0 \le x \le 1$,

with step size h=0.2, and initial condition y(0) = 2

by

- a) Euler Method
- b) Midpoint Method

Heun's Predictor Corrector Method

Problem:
$$y'(x) = f(x, y), y(x_0) = y_0$$

Predictor:
$$y_{i+1}^{0} = y_{i} + h \ f(x_{i}, y_{i})$$
Corrector: $y_{i+1} = y_{i} + h \frac{f(x_{i}, y_{i}) + f(x_{i+1}, y_{i+1}^{0})}{2}$

or

$$y_{i+1} = y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_i + h, y_i + h \ f(x_i, y_i)) \right)$$

Heun's Predictor Corrector Method (Prediction)

Prediction
$$y_{i+1}^0 = y_i + h f(x_i, y_i)$$

Heun's Predictor Corrector Method (Prediction)

Prediction
$$y_{i+1}^0 = y_i + h f(x_i, y_i)$$

Heun's Predictor Corrector Method (Correction)

$$y_{i+1} = y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, y_{i+1}^0) \right)$$

Example 1

Use the Heun's Method with h = 0.1 for the initial-value problem

$$y'(x) = 1 + x^2 + y$$

$$y(0) = 1$$

to approximate y(0.1) and y(0.2)

Solution

Problem:
$$f(x, y) = 1 + y + x^2$$
, $y_0 = y(x_0) = 1$, $h = 0.1$

Step1:

Predictor:
$$y_1^0 = y_0 + h \ f(x_0, y_0) = 1 + 0.1(2) = 1.2$$

Corrector:
$$y_1 = y_0 + \frac{h}{2} (f(x_0, y_0) + f(x_1, y_1^0)) = 1.215$$

Step 2:

Predictor:
$$y_2^0 = y_1 + h f(x_1, y_1) = 1.4326$$

Corrector:
$$y_2 = y_1 + \frac{h}{2} (f(x_1, y_1) + f(x_2, y_2^0)) = 1.4452$$

Example 2

Find approximate values and the errors of the solution of the initial-value problem by Heun's method

$$y' = 3xy$$
, $0 < x < 1/2$,

with step size h=0.1, and initial condition y(0) = 1

MAFF208IU-I 12

Solution

Exact solution

$$y' = 3xy \Rightarrow y'/y = 3x \Rightarrow \int y'/y dx = \int 3x dx$$

$$\ln(y) = 3x^2 / 2 + C$$

Using initial condition:

$$ln(y(0)) = ln(1) = 0 = C$$

$$\Rightarrow \ln(y) = 3x^2 / 2 \Rightarrow y = e^{3x^2/2}$$

Heun method:

Heun method:
$$y_{i+1} = y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_i + h, y_i + h f_{1.25}^{1.3} x_i, y_i) \right)$$

1.5

X	y-exact	y-Euler	Error-E	y-Heun Error-H
		_		
0	1	1	0	1 0
0.1	1.015	1	0.01511	1.015 0.0001131
0.2	1.062	1.03	0.03184	1.062 0.000248
0.3	1.145	1.092	0.05274	1.144 0.0004629
0.4	1.271	1.19	0.08119	1.27 0.0008695
0.5	1.455	1.333	0.1221	1.453 0.001677

Exercise

Find approximate values and the errors of the solution of the initial-value problem

$$\frac{dy}{dt} = yt -1.1t, \quad 0 \le t \le 2,$$

with step size h=0.5, and initial condition y(0) = 1

by

- a) Modified Euler Method
- b) Heun's Method

Runge-Kutta methods

$$y_{i+1} = y_i + h\phi(x_i, y_i, h)$$

where $\phi(x_i, y_i, h)$ is called the increment function:

$$\phi = a_1 k_1 + a_2 k_2 + ... + a_n k_n$$
$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$$

$$k_3 = f(x_i + p_2h, y_i + q_{21}k_1h + q_{22}k_2h)$$

• • •

$$k_n = f(x_i + p_{n-1}h, y_i + q_{n-1,1}k_1h + q_{n-1,2}k_2h + \dots + q_{n-1,n-1}k_{n-1}h)$$

Second-order Runge-Kutta methods

 The second-order version of Runge-Kutta methods is

$$y_{i+1} = y_i + h(a_1k_1 + a_2k_2)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \alpha h, y_i + \beta k_1 h)$$

$$\alpha = p_1, \beta = q_{11}$$

where

$$a_1 + a_2 = 1$$
, $a_2 \alpha = \frac{1}{2}$, $a_2 \beta = \frac{1}{2}$

Derivation of 2nd-order Runge-Kutta Methods

$$y_{i+1} = y_i + h(a_1k_1 + a_2k_2)$$

$$k_1 = f(x_i, y_i), k_2 = f(x_i + \alpha h, y_i + \beta k_1 h)$$

$$y_{i+1} = y_i + h(a_1f(x_i, y_i) + a_2f(x_i + \alpha h, y_i + \beta h f(x_i, y_i)))$$

$$x = x_i:$$

$$f(x + \alpha h, y + \beta h f) = f + \alpha h f_x + \beta h f(x, y) f_y + O(h^2)$$

$$y_{i+1} = y(x) + (a_1 + a_2)h f(x, y) + h^2(\alpha a_2 f_x + \beta a_2 f_y f) + O(h^3)$$

Problem: Find α, β, a_1, a_2

to match as many terms of the Taylor series as possible.

$$y(x+h) = y(x) + hy'(x) + \frac{h^2}{2}y''(x) + \frac{h^3}{6}y'''(x) + \dots$$

Derivation of 2nd-order Runge-Kutta Methods

$$y(x+h) = y(x) + hy'(x) + \frac{h^2}{2}y''(x) + \frac{h^3}{6}y'''(x) + \dots$$

$$y_{i+1} = y(x) + (a_1 + a_2)h f(x, y) + h^2(\alpha a_2 f_x + \beta a_2 f_y f) + O(h^3)$$

$$\Rightarrow a_1 + a_2 = 1, \quad \alpha \, a_2 = \frac{1}{2}, \quad \beta \, a_2 = \frac{1}{2}$$

$$y' = f(x, y)$$

$$y'' = f_x(x, y) + f_y(x, y)y' = f_x(x, y) + f_y(x, y)f(x, y)$$

Derivation of 2nd-order Runge-Kutta Methods

$$y_{i+1} = y_i + h(a_1k_1 + a_2k_2)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \alpha h, y_i + \beta k_1 h)$$

$$a_1 + a_2 = 1, \quad \alpha a_2 = \frac{1}{2}, \quad \beta a_2 = \frac{1}{2}$$

Heun's method and Midpoint method are special cases of 2nd-order R-K methods:

Heun's method:

$$a_1 = \frac{1}{2}, \ a_2 = \frac{1}{2}, \ \alpha = 1, \beta = 1$$

Modified Euler method:

$$a_1 = 0, \quad a_2 = 1, \quad \alpha = \beta = \frac{1}{2}$$

4th-order Runge-Kutta Method

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2} k_1)$$

$$k_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2} k_2)$$

$$k_4 = f(x_i + h, y_i + hk_3)$$

$$i = 0, 1, 2, ...$$

Example

 Find the approximate solution by fourth-order Runge-Kutta method and the error of the initial-value problem

$$y' = 3xy$$
, $0 \le x \le 1/2$,

with step size h = 0.1, and initial condition y(0) = 1

X	\mathcal{Y}_{exact}	${\cal Y}_{Approximate}$	Errors
0	1	1	0
0.1	1.01511	1.01511	2.11572e-009
0.2	1.06184	1.06184	2.30571e-008
0.3	1.14454	1.14454	1.02112e-007
0.4	1.27125	1.27125	3.55607e-007
0.5	1.45499	1.45499	1.11013e-006

Solution

Exercise

Find the first two approximate values y_i , i=1,2, and the errors of the solution of the initial-value problem

$$y' = 3y - 2x, \quad x > 0,$$

with step size h=0.5, and initial condition y(0) = 1 by the 4th-order Runge-Kutta method

Exact solution:
$$y = \frac{1}{9} \left(6x + 7e^{3x} + 2 \right)$$