Chapter 1: introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history

1.1: What's the Internet: "nuts and bolts" view

m smartphone

- millions of connected computing devices:
 - hosts = end systems
 - running network apps

❖ communication links

transmission rate: bandwidth

- Packet switches: forward packets (chunks of data)
 - routers and switches

1-2

"Fun" internet appliances

Slingbox: watch, control cable TV remotely

IP picture frame http://www.ceiva.com/

Internet refrigerator

Tweet-a-watt: monitor energy use

1-1

Internet phones

What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- ❖ Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

1-5

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

1-6

1-8

What's a protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

1.2: A closer look at network structure:

network edge:

- hosts: clients and servers
- servers often in data centers
- access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access net: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

1-10

Access net: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access net: cable network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

1-11

Access net: home network

Enterprise access networks (Ethernet)

- * typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

1-13

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11,54 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G: LTE

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

1-14

transmission delay time needed to transmit L-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, I Gpbs Ethernet
 - Category 6: 10Gbps

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

1-18

1-17

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- * terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - I I Mbps, 54 Mbps

- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- satellite

- Kbps to 45Mbps channel (or multiple smaller channels)
- 270 msec end-end delay
- geosynchronous versus low altitude

1.3: The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay /R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = 5 sec

1-21

4-23

more on dehortly ...

Packet Switching: queueing delay, loss

queuing and loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

1-22

Two key network-core functions

routing: determines sourcedestination route taken by packets forwarding: move packets from router's input to appropriate router output

Alternative core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- Commonly used in traditional telephone networks

Advantage of this for voice calls

Circuit switching: FDM versus TDM

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

10 users

packet switching:

 with 35 users, probability > 10 active at same time is less than .0004 * Q: how did we get value 0.0004?

users

Q: what happens if > 35 users?

1-26

1 Mbps link

1-25

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- * excessive congestion possible: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- ❖ Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

Internet structure: network of networks

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- Access ISPs in turn must be interconnected.
 - So that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies
- Let's take a stepwise approach to describe current Internet structure

Internet structure: network of networks

Question: given millions of access ISPs, how to connect them together?

Internet structure: network of networks

Option: connect each access ISP to every other access ISP?

Internet structure: network of networks

Option: connect each access ISP to a global transit ISP? Customer and provider ISPs have economic agreement.

Internet structure: network of networks

But if one global ISP is viable business, there will be competitors

Internet structure: network of networks

But if one global ISP is viable business, there will be competitors which must be interconnected

Internet structure: network of networks

 \dots and regional networks may arise to connect access nets to $\ensuremath{\mathsf{ISPS}}$

Internet structure: network of networks

... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users

Internet structure: network of networks

- at center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g., Google): private network that connects it data centers to Internet, often bypassing tier-I, regional ISPs

Tier-I ISP: e.g., Sprint

I.4: How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link (temporarily) exceeds output link capacity
- * packets queue, wait for turn

1-38

Four sources of packet delay

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R$ $d_{trans} = and d_{prop}$

d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2x108 m/sec)

verv different

^{*} Check out the Java applet for an interactive animation on trans vs. prop delay

Caravan analogy

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?
- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr
- A: 62 minutes

Caravan analogy (more)

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?
 - A: Yes! after 7 min, 1st car arrives at second booth; three cars still at 1st booth.

1-41

Queueing delay (revisited)

- * R: link bandwidth (bps)
- ❖ L: packet length (bits)
- a: average packet arrival rate

- ❖ La/R ~ 0: avg. queueing delay small
- ❖ La/R → I: avg. queueing delay large
- La/R > I: more "work" arriving than can be serviced, average delay infinite!

La/R ->

"Real" Internet delays and routes

- what do "real" Internet delay & loss look like?
- traceroute program: provides delay measurement from source to router along endend Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router *i* will return packets to sender
 - sender times interval between transmission and reply.

La/R

La/R ~ 0

te!

^{*} Check out the Java applet for an interactive animation on queuing and loss

"Real" Internet delays, routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

3 delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms

2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms

3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms

4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms

5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms

6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms

7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms

8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms

9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms

10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms

11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms

12 nio-n2.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms

13 nice.cssi.renater.fr (195.220.98.102) 126 ms 126 ms 124 ms

15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms

16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms

17 ***

* means no response (probe lost, router not replying)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

* Do some traceroutes from exotic countries at www.traceroute.org

1-45

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

* Check out the Java applet for an interactive animation on queuing and loss

1-46

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput (more)

 $R_s < R_c$ What is average end-end throughput?

 $R_c > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection endend throughput: min(R_c,R_s,R/10)
- in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

1-49

I.5: Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

1-50

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
Gram
link
Frame
physical

Flow Control Error Control

Congestion can still happen even though we implement flow control.

-If a package is dropped at any point, then you have to re-transmit everything.

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

1-53

I.6: Network security

- field of network security:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ©
 - Internet protocol designers playing "catch-up"
 - security considerations in all layers!

Bad guys: put malware into hosts via Internet

1-54

- * malware can get in host from:
 - virus: self-replicating infection by receiving/executing object (e.g., e-mail attachment)
 - worm: self-replicating infection by passively receiving object that gets itself executed
- spyware malware can record keystrokes, web sites visited, upload info to collection site
- infected host can be enrolled in botnet, used for spam. DDoS attacks

Morris worm was the first worm to hit the internet

Bad guys: attack server, network infrastructure

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- I. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

1-57

1-59

Bad guys can sniff packets

packet "sniffing":

- broadcast media (shared ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

wireshark software used for end-of-chapter labs is a (free) packet-sniffer

1-58

Bad guys can use fake addresses

IP spoofing: send packet with false source address

... lots more on security (throughout, Chapter 8)

1.7: Internet history

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Dol Agency
- 1969: first ARPAnet node operational

- ***** 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

THE ARPA NETWORK

Internet history

1972-1980: Internetworking, new and proprietary nets

- ❖ 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- ❖ 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet. SNA. XNA
- ❖ late 70's: switching fixed length packets (ATM precursor)
- ❖ 1979: ARPAnet has 200 nodes.

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Internet history

1980-1990: new protocols, a proliferation of networks

Socket

- ❖ 1983: deployment of TCP/IP API
- ❖ 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- ❖ 1985: ftp protocol defined
- ❖ 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100.000 hosts connected to confederation of networks

1-64

1-62 1-61

Internet history

1990, 2000 's: commercialization, the Web, new apps

- early 1990's: ARPAnet decommissioned
- ❖ 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- *early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's1
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

- late 1990' s 2000' s:
- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host. 100 million+ users
- backbone links running at Gbps

Internet history

2005-present

- ❖ ~750 million hosts
 - Smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, emai, etc.
- · E-commerce, universities, enterprises running their services in "cloud" (eg, Amazon EC2)

Introduction: summary

covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

you now have:

- context, overview, "feel" of networking
- more depth, detail to follow!