

Primer examen parcial: Conteo y combinatoria. Matemáticas discretas II Duración 2 horas

Carlos Andres Delgado S, Msc *

25 de Febrero de 2019

Importante: Debe mostrar el procedimiento realizado en cada uno de los puntos, no es válido únicamente mostrar la respuesta.

- 1. [20 puntos] Los números de teléfono se estructuran así:
 - Código de país: Empiezan con el símbolo +, seguida de dos dígitos o tres dígitos, el primer y ultimo dígito no pueden ser 0.
 - Código de área Empiezan con un número, seguido de una letra y seguida por uno o dos números
 - Número telefónico: Son siete u ocho números

Los teléfonos se estructuran así:

Código de país: Código de área Número telefónico. Ejemplo:

+12 3G2 12404576

¿Cuantos números de teléfonos existen en el mundo?

- 2. [15 puntos] Usando principio de palomar indique ¿Cuantos habitantes deben existir en Tulua para que al menos 7 personas tengan la misma edad (suponga que la edad es entera y va de 0 hasta 120) y compartan inicial del primer nombre y las dos primera letras del primer apellido?. Las letras están en alfabeto inglés y en mayúsculas.
- 3. [20 puntos] Cuantas palabras de tamaño 8 y 9 podemos formar con las letras de:

RECORRIDO

4. [35 puntos] Resuelva la relación de recurrencia: $T(n) = 5T(n-1) - 4T(n-2) + 43 + 4^n$. T(0) = 2, T(1) = 8.

Ayudas

Conceptos básicos

Ecuación cuadrática de $ax^2 + bx + c$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Principio de Palomar

$$\left| \frac{N}{k} \right|$$

Tenemos N palomas para k nidos.

Combinatoria y permutación

Permutación:

$$P(n,r) = \frac{n!}{(n-r)!} \tag{2}$$

Combinatoria:

$$C(n,r) = \frac{n!}{r!(n-r)!} \tag{3}$$

Permutación con objetos indistinguibles:

$$P_n^{a,b,c} = \frac{n!}{a!b!c!} \tag{4}$$

Combinatoria con repetición:

$$C(n+r-1,r) (5)$$

 $^{^*}$ carlos.andres.delgado@correounivalle.edu.co

Forma solución particular

F(n)	$a_n^{(p)}$
C_1	A
$\mid n \mid$	$A_1n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
$n^t, t \in Z^+$	$A_t n^t + A_{t-1} n^{t-1} + \ldots + A_1 n + A_0$
$r^n, r \in R$	Ar^n
$\sin(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$\cos(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$n^t r^n, t \in Z^+, r \in R$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \ldots + A_{1}n + A_{0})$
$r^n \sin(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$
$r^n \cos(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$

Cuadro 1: Forma de la solución particular dado f(n)

Método del maestro

$$T(n) = aT(n/b) + cn^d$$

Siempre que $n=b^k$, donde k es un entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números reales tales que c>0 y $d\geq 0$, Entonces,

$$T(n) \quad es \left\{ \begin{array}{ll} O(n^d) & \text{si } a < b^d \\ O(n^d \log n) & \text{si } a = b^d \\ O(n^{\log_b a}) & \text{si } a > b^d \end{array} \right\}$$