Particle spectrograph

Wave operator and propagator

$\mathfrak{r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24k^2}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1}^{\#2}$	0	0	0	<u>آلائل</u> ع	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\overline{l}kt_1\left -\frac{1}{3}\overline{l}\right $
${f}_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\bigg \frac{1}{3}k^2(t_1+t_2)\bigg $	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + ^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} + ^{lpha}$

 $\tau_{1}^{#2}\alpha + 2ik\sigma_{1}^{#1}\alpha = =$

 $\sigma_{0}^{\#1} == 0$

 $r_{0}^{\#1} == 0$

Multiplicities

SO(3) irreps

0 ==

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

	$\sigma_{2^{-}}^{\#1} \alpha eta \chi$	0	0	$\frac{2}{t_1}$
20	$\tau_{2}^{\#1}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
Total constraints:	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
Total cor		$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

 $\tau_2^{\#1}\alpha\beta - 2\,\overline{i}\,k\,\,\sigma_2^{\#1}\alpha\beta == 0$

 $\tau_{1+}^{\#1}\alpha\beta + \bar{\imath}\,k\,\,\sigma_{1+}^{\#2}\alpha\beta == 0$

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$