Wednesday, May 10, 2023 5:0

5:09 PM

- Consider the irrational number Pi the ratio of a circle's circumference to its diameter?
 - 1. How can you compute Pi via a digital computer? Hint: what is the series expansion for Pi?

Series Gransin for
$$\Pi$$
:

$$\frac{1}{1+\omega} = 1 - \omega + \omega^2 - \omega^3 + \omega^4 - \dots = \sum_{N=0}^{k} (-1)^N (\omega)^N = \sum_{N=0}^{k} (-\omega)^N$$

$$for \ \omega = \chi^2$$

$$\frac{1}{1+\chi^2} = 1 - \chi^2 + \chi^4 - \chi^6 + \chi^8 - \dots = \sum_{N=0}^{k} (-\omega^2)^N$$

$$Integral both sides$$

$$orctom \ \gamma = \gamma - \frac{\gamma^3}{3} + \frac{\gamma^5}{5} + \frac{\gamma^7}{7}$$

$$for \ \gamma = \begin{bmatrix} \Pi = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{7} & \dots & \sum_{N=0}^{k} (-1)^N \frac{1}{2^{N+1}} \\ \Pi = 4 \sum_{N=0}^{k} (-1) \frac{1}{2^{N+1}} \end{bmatrix}$$

$$T = 4 \sum_{N=0}^{k} (-1) \frac{1}{2^{N+1}}$$

Steps: - raise to the powr - multiply by (-1)

- Add
- Add
- Sum

2. How can you compute Pi via an analog computer? Hint: what are the differential equations for sinusoidal motion? How can this be used to compute Pi?

avalogue computers use physical phenomena (eg., electrical, mechanical)

=>
$$C^2 + \frac{1}{m} = 0$$

 $C = \pm \sqrt{-\frac{1}{m}}$
 $C = \pm \sqrt{\frac{1}{m}}$
 $X = e^{0+} \left[C_1 \cos \left(\sqrt{\frac{1}{m}} + \right) + C_2 \sin \left(\sqrt{\frac{1}{m}} + \right) \right]$
 $X = C \sin \left(\omega + \varphi \right)$

3. How can you compute Pi with the use of a random number generator? Hint what is the ratio the area of a square to that of an inscribed circle? If you draw two random numbers, how can you tell if they define a coordinate within a square or an inscribed circle?

4. For each of the above algorithms, analyze them in terms of representation of information, time (i.e., number of steps) to compute the value (i, e/r/execute the algorithm), the quality of the result, how to improve quality of result, and the primitive operations required.

metinal above

- Review the following elementary concepts:
 - 1. Complex numbers, their representation, visualization, magnitude and

Im
$$(a_3b)$$
 con be represented as!

(a_3b) magnifude:

(a_3b) | Magnifude:

(a_3b) | ||Z|| = $\sqrt{\alpha^2 + b^2}$

2. Matrix, matrix transpose, matrix inverse unitary matrix

(a_3c) = $\tan^2(\frac{ba}{a})$

$$A \in \mathbb{R}^{3r3}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$A^{-1} \times A = I$$

$$A^{-1} \cdot \text{must be square} \begin{cases} \text{non-singular} \\ \text{i.e.} \\ \text{invertable} \end{cases}$$

$$\text{ls det} \left(\text{BGR}^{2r1} \right) = \text{det} \left(\begin{bmatrix} a & b \\ c & a \end{bmatrix} \right)$$

$$A^{\tau} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

$$A_{31} \ a_{22} \ a_{33}$$

$$A_{32} \ a_{33} \ a_{33}$$

$$A_{33} \ a_{33} \ a_{33}$$

$$A_{33} \ a_{33} \ a_{33}$$

$$A_{33} \ a_{33} \ a_{33}$$

Unitary matrix

- Square matrix
- Maintains vector leath/norm, orthogonality Satisfies $A^{H} = A^{-1} \Rightarrow A^{H}A = I$ Conjugate Inverse

 Transpose

eg.
$$U = \frac{1}{2} \begin{bmatrix} 1-i & 1+i \\ 1+i & 1-i \end{bmatrix}$$

3. Vector space (Vector Ho)rms
$$U^{H} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$$
Multiply k show $U^{H}U = I$

- 2. Closure under scalar multipli contin
- 3. Associativity of addition
- 4. Boolean algebra: divity of addition
 - 5. Identity elevent and dition
 - 6. Existance of additive Inverse

logic opperations (pathid), OR, NOT, NAND, NOR, XOR, etc.);
8. Compatibility of scalar multiplications

truth tables:	And Tu	1919
X mylicotion	Nord -Do	00101
XO7 exausive or	x0(2 =) D-	0000
X=y equivaluce	NOR DO-	0000
DeMorgan's rule;	XVIOL JOO	000000000000000000000000000000000000000

(AUB) = A' MB'

Parity - Check for errors during data transmissin/storage universality of NAND, parity - make total # of ones add Che. parity) universality of NAND, parity - make total # ones even

XORs - output He invosed input

- functional completeness

sum-of-produciny logical or orithmetic operation conbe expressed as a combination of only And a not operating

product-tristing Completeness Lo Sane as above

3. Let x be a rector in RAN, and let U be Appinitary matrix that can operate on x. What is the 2-norm of x? What is the 2-norm of Ux?

Output true for a specific input

- equivilant to logical OR function
$$F(A_3B) = (A + B)(A + B)(A + B)(A + B)$$
ontput false for a specific imput

Code search() that takes an input list and a keying function f as input, and behaves as described in the lecture.

$$\chi \in \mathbb{R}^{N \times 1}$$

$$\| \chi \|^{2} = \sqrt{\chi_{1}^{2} \chi_{2}^{2} + \dots + \chi_{N}^{2}}$$

$$\| \chi \|^{2} = \| \chi \|^{2}$$

Code sort() that takes an input list and a two-input compare function f as input, and behaves as described in any computer algorithms resource.

6. Let u be 555 signed binary word. Design the function sqrt(u), that returns the square root of u to two bits of precision (and full dynamic range). Show the truth table and the logic equations.

Truth Table:

U	Binary	Sqrt(u)	Sqrt(u) Binary
o just da	oo boble	Sort	00
1	00001/	Input_li	91 f):
200	00010	1	Λ1
3	COOTI	le Coput	O T
4	784.00	n range (14	nith -1);

_	00010	L- /	Y = 1\	1
3	00011	le Cront 1 nrange (1	Llist) 01	
4	00100	nrange(1	enth -1):	
5	00101	in range	(0, leigh -;-1)	į. (· · · · · · · · · · · · ·
6	00110	1 1 Ci	Put-list Lid John	T-list Lu+1); -[i], inpod-list [j+1])
7	00111	3 + 1%	111	1777 (My - 112)
8	01000	input_lis	11	
9	01001	3	11	
10	01010	3	11	
11	01011	3	11	(, ', , , , , ,
12	01100	3	11	Cogic egn
13	01101	4	11	Y= if v erv2 or v3 or v4 or the
14	01110	4	11	=> only caus live are U2 V3
15	01111	4	10	$\gamma_1 = V_2 + V_3$
			0	
Logic I	Eqns:		0	Yo all zoro >NANO
			0	_
			0	. 0, 0, 0, 0,
			0	$V_0 \overline{V}_1 \overline{V}_2 \overline{V}_3$
			ω	. V ₀ U ₁ V ₂ U ₃
			Ω	$\gamma_{o} = \left(\overline{V_{o}V_{1}V_{2}V_{3}}\right) \cdot \left(V_{o}\overline{V_{1}V_{2}V_{3}}\right)$
			\bigcirc	λο= (ΛοΛιΛΣΛ3). (ΛοΛιΛΣΛ3)
			Ω	* (VaV, U2 U5) * (V, V, U2 U5)
			Ω	
			\circ	
			(C) (C) (Q)	
	۷۵۶۷۷۷۱۵۵			
	ط عيديا ه		7,70	

Y0 =