Energy Stores Practice

1 Link each situation with the right energy store.

A hot water bottle A moving trolley Two charged balloons A book on a table

Thermal energy
Kinetic energy
Electrostatic energy
Gravitational potential energy

- 2 Which energy store is the energy moved from and to which one(s) does it go to?
 - (a) An atom of Uranium breaking apart.
 - (b) A burning marshmallow.
 - (c) A cyclist pedalling to the top of the hill and continuing going.
- Complete the conservation of energy equation.

 Total energy of the system before =
- 4 When a pop-up toy is held down, it has an elastic potential energy of 3000 J. Once released it jumps to up to a height of 5 cm. At that point it is no longer moving.
 - (a) What energy store is filled at its highest point?
 - (b) How much energy is in this store?
- You want to climb Ben Nevis. At the top, you will have a gravitational potential energy of 807,000 J. You want to bring chocolate bars with you as a snack. If a chocolate bar has 810,000 J of chemical energy, how many chocolate bars will you need to to give you enough chemical energy to reach the top?
- A battery is used to power a drill. When the drill head spins it has a store of kinetic energy and a store of thermal energy. The battery has a total chemical store of $4000\,\mathrm{J}$. How much energy is in
 - (a) the kinetic energy store of the drill if it takes $\frac{3}{4}$ of the battery's energy?
 - (b) the thermal energy store of the drill?

- 7 A toy hot air balloon floats $1 \, \mathrm{m}$ off the ground. At this height, it has a gravitational potential energy of $10 \, \mathrm{J}$.
 - (a) How much energy is needed in its thermal store to get it to that height?
 - (b) If a fifth of its thermal energy is dissipated as heat to its surroundings, how much gravitational potential energy will it have when it floats?
 - (c) Will it float at the same height as before?
- A cyclist travels down a mountain at the same speed. They have a kinetic energy of 2,240 J. The altitude of the cyclist and their gravitational potential energy is recorded in the table below.

Altitude (m)	800	700	600	500	400
Gravitational potential energy (J)	560,000	490,000	420,000	350,000	280,000

- (a) By how much does the cyclists gravitational potential energy store go down every 100 m?
- (b) How much of this energy is left if 2, 240 J fills the cyclist's kinetic energy store?
- (c) Into which store does this energy go to?
- (d) Is this a useful store in this case?