Vektorräume

(Unter)-Vektorräume

 ${\bf Aufgabe~1}~$ Es sei $V=\mathbb{R}^2$ ausgestattet mit den Verknüpfungen

$$(a,b) + (c,d) := (a+d,b+c)$$

 $\lambda \cdot (a,b) := (\lambda a, a+b)$

Überprüfen Sie, ob es sich dabei um einen Vektorraum handelt.

 $\bf Aufgabe~2~$ Wie viele Untervektorräume besitzt $\mathbb{R}^3?$ Geben Sie diese möglichst genau an.

Aufgabe 3 Es sei W ein Vektorraum und $V \subset W$ nichtleer. Zeigen Sie: Falls der Nullvektor nicht in V enthalten ist, so kann V kein Untervektorraum von W sein.

Aufgabe 4 Zeigen Sie, dass die Menge

$$\mathcal{U} := \left\{ x \in \mathbb{R}^4 \,\middle|\, x_1 + x_2 - x_4 = 0 \right\}$$

Ein Untervektorraum von \mathbb{R}^4 ist.

Basis und Erzeugendensystem

Aufgabe 5 Zeigen Sie, dass die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix},$$

ein Erzeugendensystem von \mathbb{R}^3 bilden. Sind die Vektoren linear unabhängig?

Aufgabe 6 Sind die folgenden Vektoren linear unabhängig? Stellen Sie die benötigten Gleichungssysteme auf und lösen Sie diese mit einem Verfahren Ihrer Wahl.

i)
$$v_1 = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$
 und $v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ in \mathbb{R}^2

ii)
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ und $v_3 = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$ in \mathbb{R}^3 .

Aufgabe 7 Wie viele verschiedene Basen existieren für den Vektorraum \mathbb{F}_2^2 ?

Aufgabe 8 Gegeben sei die Menge

$$M = \left\{ \begin{pmatrix} 2\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\-1\\3 \end{pmatrix}, \begin{pmatrix} 2\\-1\\8 \end{pmatrix}, \begin{pmatrix} 2\\4\\2 \end{pmatrix} \right\}$$

Finden Sie eine Teilmenge $N \subset M$, welche eine Basis von \mathbb{R}^3 bildet.

Aufgabe 9 Gegeben sei die Menge

$$V = \{ v \in \mathbb{R}^3 \mid v_1 - 2v_2 + v_3 = 0 \}$$

welche einen Untervektorraum von \mathbb{R}^3 bildet. Das müssen Sie nicht prüfen. Berechnen Sie stattdessen eine Basis von V.

Euklidische Vektorräume

Aufgabe 10 Gegeben sei der Vektor $v \in \mathbb{R}^2$. Geben Sie alle Vektoren $w \in \mathbb{R}^2$ an, welche dazu orthogonal sind. Dokumentieren Sie Ihren Lösungsweg.

Aufgabe 11 Gegeben sei die Menge

$$V = \left\{ v \in \mathbb{R}^3 \middle| \exists r \in \mathbb{R} : v = r \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\}$$

Diese bildet einen Untervektorraum von \mathbb{R}^3 . Das müssen Sie nicht überprüfen. Geben Sie das orthogonale Komplement V^\perp an.

Aufgabe 12 Wenden Sie das Gram-Schmidt-Verfahren auf die folgenden Vektoren an:

$$v_1 = \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0\\-1\\2 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$