Probabilidad y Estadística Clase 1

Ud. se encuentra para poder estar aquí:

aquí:

Ejemplos de probabilidad en IA?

Probabilidad vs. Estadística

Cronograma

	Clase 1	Repaso Distribuciones útiles.
TP 1	✓ Clase 2	V.a. condicionadas Esperanza condicional
	Clase 3	ECM y estimadores de cuadrados mínimos Estimador de máxima verosimilitud
TP2	Clase 4	Estimación Bayesiana
	Clase 5	Estimación no paramétrica
	Clase 6	Intervalos de confianza
FINAL	✓Clase 7	Test de hipótesis
	Clase 8	Examen

Repaso

Espacios de Probabilidad sito, de una colección de subconjuntos de si 1, * DE & , Ø = DE $A_1 * A \in A => A \in A$ Cerrado por complemento $A * B, C \in A \Rightarrow BUC \in A$ Cerrado bajo Uniones Numerables (D, &) Espacio Medible \1\=\2\ &= {si, ø} La menor alpebra de sa d= {a,p} $\Omega = \mathbb{N}$, $\mathcal{D} = \{2, 4, 6, \dots\} \rightarrow \mathcal{P}_{ares}$, \mathbb{N} : Números naturales F= {P, I, N, Ø} BUØ=P P=I,I=P PUIL = N Q = 2 = 1 Otros subconjuntos de Omega: A= {1,2,3,4,5} B= {5, ..., 8}

$$A = \{1, 2, 3, 4, 5\}$$

 $B = \{5, ..., 8\}$

$$?=\{2,3,5,7,\ldots\}$$
 Numeros Primos

-Probar lo siguiente por Inducción:

Sid cumple con A_1, A_2 y A'3 => d e, un 6-2/pebro

Espacio de Probabilidad (Ω ,A,P) y variables aleatorias

$$egin{aligned} \Omega \in \mathcal{A} \ B \in \mathcal{A} &\Rightarrow B^c \in \mathcal{A} \ B, C \in \mathcal{A} &\Rightarrow B \cup C \in \mathcal{A} \end{aligned}$$
 $egin{aligned} \widehat{\mathcal{P}}: & \widehat{\mathcal{Q}} & \widehat{\mathcal{P}}(A) \leq 1, \ \forall A \in \mathcal{A} \ & \mathcal{P}(\Omega) = 1 \end{aligned}$
 $A \cap B = \emptyset, \ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

$$\begin{array}{c}
\Omega \in \mathcal{A} \\
B \in \mathcal{A} \Rightarrow B^c \in \mathcal{A} \\
B, C \in \mathcal{A} \Rightarrow B \cup C \in \mathcal{A}
\end{array} \qquad (\sigma \text{ - algebra on } \Omega)$$

$$\begin{array}{c}
P : \Omega \rightarrow [0,1] \\
0 \leq \mathbb{P}(A) \leq 1, \ \forall A \in \mathcal{A} \\
\mathbb{P}(\Omega) = 1
\end{aligned}$$

$$\begin{array}{c}
P(A \cup A^c) = P(A) + P(B)
\end{aligned}$$

$$\begin{array}{c}
P(A \cup A^c) = P(A) + P(A^c) = P(A) = P(A^c)
\end{aligned}$$
The publishing A Survey of the Mathematical Theory. It I ampertial to the probability of the Mathematical Theory.

"Probability: A Survery of the Mathematical Theory" J. Lamperti

ANB #

$$A = \{1, 2, 3\}$$

$$B = \{2, 3, 4, 5\}$$

$$AUB = \{1, 2, 3, 4, 5\}$$

Probabilidades condicionales y proba. total

Def: Se llama probabilidad condicional de A dado B ($\mathbb{P}(A|B)$) a la probabilidad de que ocurra el evento A sabiendo que B ha ocurrido, y está definida por

$$\mathbb{P}(A|B) = rac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Def: Diremos que los eventos $B_1,\dots B_n$ forman una partición si $B_i\cap B_j=\emptyset\ orall\ i,j$ y $igcup_{i=1}^n B_j=\Omega$.

Luego podemos describir al evento A como $A=(A\cap B_1)\cup\ldots\cup(A\cap B_n)$ de forma que

$$\mathbb{P}(A) = \mathbb{P}(A \cap B_1) + \ldots + \mathbb{P}(A \cap B_n) \stackrel{\textcircled{\$}}{=} \mathbb{P}(A|B_1)\mathbb{P}(B_1) + \ldots + \mathbb{P}(A|B_n)\mathbb{P}(B_n)$$

$$A = \widehat{U} A DB.$$

$$P(A) = P(\widehat{U} B_i) =$$

$$= \underbrace{\mathcal{E}}_{A} P DB.$$

Supongamos que en una poblacion la prevalencia de un virus es de un 0,5% (0,005) y la probabilidad de que un test sea positivo si la persona si la persona esta infectada es del 99% (0,99) P(Infectado | +) P(0,005 | 0,99)=??? <50% Aplicar el Teorema de Bayes B=Infectodo Bz= No Infectodo A = Pasitivo P(B,1A) = P(A1B,)P(B,) P(A(B1)P(B1) + P(A(B2)P(B2) P(B2) = P(B2) = 1- P(B1)

Teorema de Bayes e independencia

Teorema de Bayes: Sean $B_1, \dots B_n$ una partición de Ω , y A un evento con probabilidad positiva:

$$\mathbb{P}(B_i|A) = rac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{i=1}^n \mathbb{P}(A|B_i)\mathbb{P}(B_i)}$$

Def: Diremos que dos eventos A y B son independientes si y sólo sí vale que

$$\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$$

$$X: \Omega \longrightarrow \mathbb{R}$$
 $\omega \longmapsto X(\omega)$

Variables aleatorias

Variables aleatorias

Una va. X es una función que mapea eventos a números.

Ejemplo: basto $\rightarrow 1$, Oro $\rightarrow 2$, espada $\rightarrow 3$, copa $\rightarrow 4$

X tiene asociada una función de distribución, definida como

$$F_X(x) = \mathbb{P}(X \leq x)$$

 $F_X(x) \in [0,1] \ orall \ x \in \mathbb{R}$

 $F_X(x)$ es monótona no decreciente

 $F_X(x)$ es continua por derecha

$$\lim_{x o -\infty} F_X(x) = 0$$
 y $\lim_{x o \infty} F_X(x) = 1$

además se define la función de distribución inversa o función cuantil como $\nabla -1$

$$F_X^{-1}(q) = \inf\{x: F(x) > q\}$$

Si F_X es estrictamente creciente y contínua, F_X^{-1} es su inversa.

Tipos de v.a.

• Discretas (v.a.d): toman valores en un conjunto discreto o numerable de puntos. Si X es **v.a.d**, tendrá además función de probabilidad dada por $p_X(x) = \mathbb{P}(X = x)$

Continuas (v.a.c): toman valores en un intervalo continuo. Si X es una
 v.a.c. tendrá asociada una función de densidad

$$f_X(x)=rac{dF_X(x)}{dx}$$

¿Qué propiedades debían cumplir cada una de estas funciones?

Espacio de Probabilidad (Ω,A,P) y variables aleatorias

 $F_X(x) = \mathbb{P}(X \leq x), \quad orall \, x \in \mathbb{R}$

"Probability: A Survery of the Mathematical Theory" J. Lamperti

$$X: \Omega \longrightarrow \mathbb{R}$$

$$W \longmapsto \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$X: \chi_2(w)$$

Vectores aleatorios

Distribución conjunta y marginales

XXX	Y = 0		P (4)
X=0	$1/10_{0}$	2/10	3/10
X=1	1/10 3/10 px	4/10	7/10
P, (4)	4/10	6/10	1

Si tenemos dos variables X e Y se define su función de distribución conjunta como $F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y)$ y vale la regla del rectángulo:

$$\mathbb{P}(a < X \leq b, c < Y \leq d) = F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

Caso continuo: $f_{X,Y}(x,y)$ es la función de densidad conjunta y se definen las funciones de densidad marginales como $f_X(x)=\int_{\mathbb{R}}f_{X,Y}(x,y)dy$ y $f_Y(y)=\int_{\mathbb{R}}f_{X,Y}(x,y)dx$

Caso discreto: $p_{X,Y}(x,y)$ es función de probabilidad conjunta y se definen las funciones de probabilidad marginal como $p_X(x) = \sum_y p_{X,Y}(x,y)$ y $p_X(x) = \sum_y p_{X,Y}(x,y)$

Independencia de v.a.

Diremos que dos v.a. X e Y son independientes si vale que

$$F_{X.Y}(x,y) = F_X(x) F_Y(y) \quad orall \, x,y \in \mathbb{R}$$

Caso discreto:

$$p_{X.Y}(x,y) = p_X(x)p_Y(y) \quad orall \, x,y \in \mathbb{R}$$

Caso continuo:

$$f_{X.Y}(x,y) = f_X(x) f_Y(y) \quad orall \, x,y \in \mathbb{R}$$

$$f_{\chi,\gamma}(z,y)$$

$$f_{\chi(z)}(z)$$

$$f_{\chi(z)}(z)$$

$$P_{X}(x) = \sum_{y} P_{X,Y}(x,y) = \frac{3}{10} + \frac{7}{10}$$

$$P_{Y}(y) = ?$$

Bibliografía

Bibliografía

"Mathematical Statistics with Applications", Dennis D. Wackerly, William Mendenhall III, Richard L. Scheaffer.

"All of Statistics: A Concise Course in Statistical Inference", Larry Wasserman.