نهاية متتالية عددية

عمتوى الدرس 1 أنشطة للتذكير 2 نهاية متتالية عدية 3 العمليات على النهايات 4 مصاديق التقارب 5 متتاليات خاصة

أنشطة للتذكير

نشاط 1

 $(\forall n\in\mathbb{N}):u_{n+1}=\sqrt{3u_n+4}\quad ;u_0=0$ لتكن المتتالية العددية المعرفة بما يلي:

- 1. بين أن (u_n) مصغورة بالعدد 0 و مكبورة بالعدد 1
 - بين أن (u_n) تزايدية قطعا.
 - $(\forall n \in \mathbb{N}): 4 u_{n+1} \le \frac{1}{2}(4 u_n)$ بین آن: 3.
 - $(\forall n \in \mathbb{N}): 4-u_n \leq 4\left(rac{1}{2}
 ight)^n$ استنتج أن: 4

نشاط 2

 $(\forall n \in \mathbb{N}^*): u_{n+1} = \frac{5u_n}{3u_n+5} \quad ; u_1 = 1$ يلي: المعتالية العددية المعرفة بما يلي: $(\forall n \in \mathbb{N}^*): v_n = \frac{5}{u_n}$ المتتالية العددية المعرفة بما يلي: $(v_n)_{n \geq 1}$ المتتالية العددية المعرفة بما يلي:

- الما احسب v_1 ثم بين أن $v_{n\geq 1}$ متتالية حسابية محددا أساسها.
 - \mathbb{N}^* من n من u_n عدد u_n عدد عدد الله عنه بدلاله عنه عنه u_n
- n بدلالة S_n حيث $n \in \mathbb{N}^*$ حيث $S_n = v_1 + v_2 + ... + v_n$ نضع .3

نشاط 3

 $(\forall n \in \mathbb{N}): u_{n+1} = 7u_n - 5; u_0 = 15$ لتكن (u_n) المتتالية العددية المعرفة بما يلي:

- u_2 u_1 u_2 .1
- $(\forall n \in \mathbb{N}): v_n = u_{n+1} u_n$ يلي: المعرفة بما يلي: المتتالية العددية المعرفة بما يلي: $v_n = u_{n+1} u_n$ بين أن v_n متتالية هندسية محددا أساسها، ثم حدد v_n بدلالة v_n من v_n من v_n
 - $S_n = v_1 + v_2 + ... + v_n$ نضع: $\mathbb N$ نضع: 3
 - u_n بين أن u_n بين أن u_n بين أن $S_n = u_{n+1} u_0$ بين أن

2. نهاية متتالية عددية

تعاريف

- نقول إن نهاية متتالية (u_n) هي العدد الحقيقي l و نكتب $u_n = l$ إذا كان: $(\forall \varepsilon > 0) \ (\exists n_0 \in \mathbb{N}) \ (\forall n \geq n_0) : |u_n l| \leq \varepsilon$ ابتداء من رتبة معينة n_0 تصبح حدود المتتالية (u_n) بجوار العددl.
 - $\lim_{n\to +\infty} u_n = +\infty$ $\lim_{n\to +\infty} u_n = +\infty$ $\lim_{n\to +\infty} u_n = +\infty$ إذا كان:

 $(\forall A > 0) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) : u_n > A$

 $+\infty$ ابتداء من رتبة معينة n_0 تصبح حدود المتتالية

• نقول إن نهاية متتالية (u_n) هي $-\infty$ و نكتب $u_n = -\infty$ إذا كان:

 $(\forall A > 0) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) : u_n < -A$

 $-\infty$ ابتداء من رتبة معينة n_0 تصبح حدود المتتاليّة (u_n^-) بجوار

- نقول إن المتتالية (u_n) متقاربة إذا كانت (u_n) تقبل نهاية منتهية.
- نقول إن المتتالية (u_n) غير متقاربة أو متباعدة إذا كانت (u_n) غير منتهية أو $\mathbb K$ تقبل نهاية.

خاصيات

- $\lim_{n\to+\infty}\frac{1}{\sqrt[p]{n}}=0\;; \lim_{n\to+\infty}\frac{1}{n^p}=0\;; \lim_{n\to+\infty}\sqrt[p]{n}=+\infty\;; \lim_{n\to+\infty}n^p=+\infty \qquad : p\geq 1\;\;\text{ ...}$ من أجل $p\geq 1$ لدينا:
 - إذا كانت المتتالية (u_n) تقبل نهاية منتهية فإن هذه النهاية وحيدة.
 - $\lim_{n \to +\infty} (u_n l) = 0 \Leftrightarrow \lim_{n \to +\infty} u_n = l \quad \mathbf{j} \quad \lim_{n \to +\infty} |u_n l| = 0 \Leftrightarrow \lim_{n \to +\infty} u_n = l \quad \mathbf{i}$ $u_n > 0 \Rightarrow \lim_{n \to +\infty} u_n \ge 0 \quad \mathbf{j} \quad \lim_{n \to +\infty} |u_n l| = 0 \Leftrightarrow \lim_{n \to +\infty} u_n = l \quad \mathbf{i}$ $u_n < v_n \Rightarrow \lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n \quad \mathbf{i}$

تمرين 1

أحسب نهاية المتتالية (u_n) في كل حالة:

 $u_n = \frac{3n+2}{2n-1}$ •4

 $u_n = \frac{5n-2}{4n-3}$; •3

 $u_n = 2n - \frac{2}{n+1}$; •2 $u_n = \frac{n}{3} - 4 + \frac{n+2}{n^2+1}$; •1

 $u_n = \frac{7n^2 - 3n + 2}{n^2 - n + 1};$.8

 $u_n = \frac{-n^2 + 4n + 2}{(n+2)^2}; \, .7$

 $u_n = \frac{\sqrt{n+2}}{2n+1}; \cdot 6$

 $u_n = \frac{n\sqrt{n+n}}{n+1}$; •5

3. العمليات على النهايات

العمليات على المتتاليات العددية هي نفس العمليات على الدوال العددية. العمليات على نهايات متتالية تستنتج من نهايات الدوال العددية.

4. مصاديق التقارب

لتكن $(u_n)_{n\geq p}$ و $(v_n)_{n\geq p}$ و $(v_n)_{n\geq p}$ متتاليات عددية و $(u_n)_{n\geq p}$

خاصية 1

$$\begin{cases} (\forall n \ge p) : |u_n - l| \le v_n \\ \lim_{n \to +\infty} v_n = 0 \end{cases} \Rightarrow \lim_{n \to +\infty} u_n = l$$

خاصية 2

$$\begin{cases} (\forall n \ge p) : v_n \le u_n \le w_n \\ \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l \end{cases} \Rightarrow \lim_{n \to +\infty} u_n$$

خاصية 3

$$\left\{ \begin{array}{l} (\forall n \geq p) : u_n \leq v_n \\ \lim_{n \to +\infty} v_n = -\infty \end{array} \right. \Rightarrow \lim_{n \to +\infty} u_n = -\infty \qquad \text{\mathfrak{g}} \quad \left\{ \begin{array}{l} (\forall n \geq p) : u_n \geq v_n \\ \lim_{n \to +\infty} v_n = +\infty \end{array} \right. \Rightarrow \lim_{n \to +\infty} u_n = +\infty$$

خاصية 4

كل متتالية تزايدية و مكبورة أو تناقصية و مصغورة هي متقاربة.

تمرين 2

$$(\forall n\in\mathbb{N}^*):u_n=rac{n}{n^2+1}+rac{n}{n^2+2}+...+rac{n}{n^2+n}$$
 يلي: المعرفة بما يلي: 1.

$$\lim_{n\to +\infty} u_n$$
 بين أن: $u_n \leq \frac{n^2}{n^2+n} \leq u_n \leq \frac{n^2}{n^2+1}$ بين أن: (۱)

$$(\forall n\in\mathbb{N}^*):v_n=1+rac{1}{\sqrt{2}}+rac{1}{\sqrt{3}}+...+rac{1}{\sqrt{n}}$$
يلي: بعتبر المتتالية (v_n) المعرفة بما يلي: 2

$$\lim_{n \to +\infty} v_n$$
 بین أن: $v_n \geq \sqrt{n}$ استنتج (ا) بین أن:

 $u_n = \frac{1}{n}\cos\left(\frac{n\pi}{17}\right)$ عدد نهاية المتتالية.

5. متتاليات خاصة

نتائج

المتتالية	اپتها
$u_n = a^n$ $a \in \mathbb{R}$ حيث	$a > 1 \Rightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^n = +\infty$
	$a = 1 \Rightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^n = 1$
	$-1 < a < 1 \Rightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^n = 0$
	يستلزم أن (u_n) لا تقبل نهاية $a \leq -1$
$u_n = n^{\alpha}$ $\alpha \in \mathbb{Q}^*$ حيث	$\alpha > 0 \Rightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n^{\alpha} = +\infty$
	$\alpha < 0 \Rightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n^{\alpha} = 0$
$u_n = f(v_n)$ حيث f دالة عددية.	إذا كانت f متصلة في l فإن:
	$\lim_{n \to +\infty} v_n = l \Rightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f(v_n) = f(l)$
$u_{n+1} = f\left(u_n ight)$ حيث f دالة عددية معرفة على مجال f من g .	$f(u_n)$ و تحقق $f(I)$ و أو المحادلة $f(x)=x$ و المحادلة $f(x)=x$ و المحادلة على

تمرين 3

ا. أحسب نهاية المتتالية
$$(u_n)$$
 في كل حالة:

$$u_{n} = \sin^{n}(208) \cdot \tan^{n}\left(\frac{\pi}{4}\right) \left(\begin{array}{c} \checkmark \right) \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} + 3^{n}}{2^{n} - 3^{n}} \end{array} \right) \left(\begin{array}{c} 1 \\ \downarrow \\ u_{n} = \frac{2^{n} +$$

$$\left\{ \begin{array}{l} u_0=2 \\ u_{n+1}=4-rac{3}{u_n}; n\in \mathbb{N} \end{array}
ight.$$
يلي: المعرفة بما يلي: .2

$$(\forall n \in \mathbb{N}): \ 1 < u_n < 3$$
 : (۱) بین أن

(ب) بين أن
$$(u_n)$$
 متتالية متقاربة.

ا نضع
$$\lim_{n \to +\infty} u_n = l$$
 بين أن: $\lim_{n \to +\infty} u_n = l$ نضع أن: أن