

First-principles modelling of hydrogen stability and transport in candidate nuclear microreactor moderator and cladding materials

Aditya Sundar¹, Jianguo Yu² and M Nedim Cinbiz²

¹Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, ²Idaho National Laboratory, ID, 83415

Background and Motivation

Hydrogen containing solid hydride moderators provide efficient neutron moderation and offer compact nuclear reactor designs. However, at high temperatures, hydrogen can desorb from the solid-state moderator which impact the criticality and operational safety of these reactors. Therefore, it is important to investigate hydrogen stability and transport in Fuel rod OModerator rod OHeat pipe solid-state moderator and cladding materials. This helps to establish the operation and safety envelope of these reactors.

In this work, we research the hydrogen retention properties in YH₂ (moderator) and FeCrAl + Al_2O_3 (cladding). The key scientific enquiries of our work are:

- 1. What is the temperature dependent self diffusivity of H in YH₂?
- 2. How do impurities (O) and alloying elements (Cr, Cd, Rb, Ag) affect H retention in YH₂?
- 3. What are the binding characteristics of H with elements in FeCrAl?
- 4. Does the charge state of H significantly affect transport in Al_2O_3 ?

The desired/targeted properties are slow hydrogen diffusion in YH₂ and FeCrAl, so that thermal neutrons can be generated to sustain the fission reaction.

Methodology

- 1. Density functional theory calculations implemented in VASP, to calculate formation energy and binding energy.
- 2. Climbing image nudged elastic band (CI-NEB) calculations in VASP, to calculate migration barriers
- 3. Kinetic monte carlo simulations implemented using a python script

Impurities and alloying elements in YH₂

The filled yellow circle represents an O atoms. The empty circle represents a vacancy on the interstitial sites. For the shown hopping paths, the barrier varies by ± 0.1 eV compared to pure YH₂.

Conclusion

- 1. YH₂ is a promising nuclear moderator, as shown by the large activation energy barriers (\sim 2.3 eV) from KMC simulations.
- Alloying with Cr, Ag, Cd, Rb has a negative effect on H retention
- FeCrAl is a strong candidate for application as cladding material due to low H solubility.
- Cr/Al addition makes the metal-H interactions even more repulsive (H binding energy is more positive).
- Passive Al₂O₃ also poses high energy barriers for H transport

Future work

- Improving KMC simulations by calculating quantum corrections to the energy barriers in YH₂.
- Hydrogen binding energy calculations with Ti and Y as minor alloying elements in FeCrAl.
- Searching for other promising moderators and cladding materials using DFT

References

[1]. Shivprasad et al., J. Alloys Compounds 826, 153995 (2020), [2]. Jiang et al., Physical Review B 70, 064102 (2004), [3]. Samin et al., Physical Review B 99, 014110 (2019), [4]. Yu et al., J. Chem. Phys. 134, 064111 (2011)