Bachelier Model

Keith A. Lewis

June 28, 2023

Abstract

Normal stock price

The Bachelier model assumes stock price has the form $F_t = f + \sigma B_t$ where f and σ are constants and B_t is standard Brownian motion, assuming zero interest rate.

The risk-neutral value of a put with strike k expiring at t is

$$E[(k-F_t)^+] = E[(k-F)1(F \le k)] = E[k-F]P(F \le k) + \mathrm{Cov}(k-F,1(F \le k)).$$

Exercise. Show if M and N are jointly normal then $\mathrm{Cov}(M,g(N))=\mathrm{Cov}(M,N)E[g'(N)].$

Hint: Use $E[e^{\alpha N}g(M)] = E[e^{\alpha N}]E[g(M + \text{Cov}(\alpha N, M))]$, take a derivative with respect to α , then set it equal to 0.

This shows $\operatorname{Cov}(k-F,1(F\leq k))=\operatorname{Cov}(k-F,F)E[-\delta_k(F)]=\operatorname{Var}(F)E[\delta_k(F)].$

Exercise Show $E[\delta_a(b+cZ)] = \phi((a-b)/c)/c$ if ϕ is the density function of Z.

▼ Solution

If $d_a(x)=1/h$ for $a< x\leq a+h$ and 0 otherwise then $E[\delta_a(b+cZ)]=\lim_{h\to 0} E[d_a(b+cZ)]$. Using y=(b+cz)/c=b/c+z we have

$$egin{align} E[d_a(b+cZ)] &= (1/h) \int_a^{a+h} (b+cz) \phi(z) \, dz \ &= (1/h) \int_{b/c+a}^{b/c+a+h} cy \phi(y-b/c) \, dy \end{cases}$$

If g is differentiable at $z=g^{-1}(a)$ then $E[\delta_a(g(Z))]=\phi(z)/g'(z)$ since $g(x)\approx g(z)+g'(z)(x-z)$ for $z\approx x$.

We have $E[\delta_k(F)] = E[\delta_k(f + \sigma\sqrt{t}Z)] = \phi(z)/\sigma\sqrt{t}$, where Z is standard normal and $z = (k-f)/\sigma\sqrt{t}$ so

$$E[(k-F_t)^+] = (k-F)\Phi(z) + \sigma\sqrt{t}\phi(z)$$

where Φ is the standard normal cumulative distribution function and $\phi = \Phi'$.

Exercise. Show $E[(F_t-k)^+]=(f-k)\Phi(-z)+\sigma\sqrt{t}\phi(-z)$.