

What is claimed is:

- 1 1. A method for a processor to access data in a memory, the method
2 comprising:
 - 3 receiving a request to read a file stored in the memory, the memory
 - 4 having a fragmented array of files across a single partition;
 - 5 building a look up table (LUT) for the memory;
 - 6 storing at least temporarily the LUT in the processor;
 - 7 accessing the LUT in the processor to create an index table which
 - 8 specifies a plurality of addresses for the file;
 - 9 storing the index table in the memory.
- 1 2. A method as in claim 1 wherein the memory is a flash memory.
- 1 3. A method as in claim 1 wherein the memory is a SmartMedia;
- 1 4. A method as in claim 1 wherein building a lookup table comprises parsing the
2 memory's File Allocation Table to find clusters for all files located on the memory.
- 1 5. A method as in claim 1 wherein building a lookup table comprises converting
2 file clusters associated with a file into logical sectors.
- 1 6. A method as in claim 5 wherein building a lookup table further comprises
2 mapping the logical sectors of the files to their corresponding physical sectors.

- 1 7. A method as in claim 1 wherein storing the LUT comprises storing the LUT
- 2 into a Digital Signal Processor (DSP).

- 1 8. A method as in claim 1 wherein creating an index table comprises utilizing the
- 2 LUT to create an index table which specifies physical addresses for each file.

- 1 9. A method as in claim 1 wherein the index table in the memory comprises a
- 2 table of records readable by the processor.

- 1 10. A method as in claim 9 wherein the processor is a Digital Signal Processor.

- 1 11. A method for a processor to write data to a memory, the method comprising:
 - 2 receiving a request to write a file to the memory, the memory
 - 3 having a fragmented array of files across a single partition;
 - 4 determining the size of the file;
 - 5 writing the file to the memory;
 - 6 building a look up table (LUT) for the memory;
 - 7 storing at least temporarily the LUT in the processor;
 - 8 accessing the LUT in the processor to create an index table which
 - 9 specifies a plurality of addresses for the file;
 - 10 storing the index table in the memory.

- 1 12. A method as in claim 11 wherein the memory is a flash memory.

- 1 13. A method as in claim 11 wherein the memory is a SmartMedia;

- 1 14. A method as in claim 11 wherein writing the file to the memory comprises
2 searching a file allocation table (FAT) to find empty space within the memory to
3 store the file.

- 1 15. A method as in claim 11 wherein writing the file to the memory comprises
2 allocating empty clusters within flash memory for the file.

- 1 16. A method as in claim 11 wherein writing the file to the memory comprises
2 storing the file in empty clusters in the memory.

- 1 17. A method as in claim 11 wherein building a lookup table comprises parsing
2 the memory's File Allocation Table to find clusters for all files located on the
3 memory.

- 1 18. A method as in claim 11 wherein building a lookup table comprises
2 converting file clusters associated with a file into logical sectors.

- 1 19. A method as in claim 18 wherein building a lookup table further comprises
2 mapping the logical sectors of the files to their corresponding physical sectors.

1 20. A method as in claim 11 wherein storing the LUT comprises storing the LUT
2 into a Digital Signal Processor (DSP).

1 21. A method as in claim 11 wherein creating an index table comprises utilizing
2 the LUT to create an index table which specifies physical addresses for each file.

1 22. A method as in claim 11 wherein the index table in the memory comprises a
2 table of records which can be read by a processor.

1 23. A method as in claim 22 wherein the processor is a Digital Signal Processor.

1 24. A computer readable storage medium containing executable computer
2 program instructions which when executed cause a method for a processor to
3 access data in a memory, the method comprising:
4 receiving a request to read a file stored in the memory, the memory
5 having a fragmented array of files across a single partition;
6 building a look up table (LUT) for the memory;
7 storing at least temporarily the LUT in the processor;
8 accessing the LUT in the processor to create an index table which
9 specifies a plurality of addresses for the file;
10 storing the index table in the memory.

1 25. A computer readable storage medium as in claim 24 wherein the memory is
2 a flash memory.

1 26. A computer readable storage medium as in claim 24 wherein the memory is
2 a SmartMedia;

1 27. A computer readable storage medium as in claim 24 wherein building a
2 lookup table comprises parsing the memory's File Allocation Table to find
3 clusters for all files located on the memory.

1 28. A computer readable storage medium as in claim 24 wherein building a
2 lookup table comprises converting file clusters associated with a file into logical
3 sectors.

1 29. A computer readable storage medium as in claim 28 wherein building a
2 lookup table further comprises mapping the logical sectors of the files to their
3 corresponding physical sectors.

1 30. A computer readable storage medium as in claim 24 wherein storing the LUT
2 comprises storing the LUT into a Digital Signal Processor (DSP).

1 31. A computer readable storage medium as in claim 24 wherein creating an
2 index table comprises utilizing the LUT to create an index table which specifies
3 physical addresses for each file.

1 32. A computer readable storage medium as in claim 24 wherein the index table
2 in the memory comprises a table of records readable by the processor.

1 33. A computer readable storage medium as in claim 32 wherein the processor
2 is a Digital Signal Processor.

1 34. A computer readable storage medium containing executable computer
2 program instructions which when executed cause a method for a processor to
3 write data to a memory, the method comprising:

4 receiving a request to write a file to the memory, the memory

5 having a fragmented array of files across a single partition;

6 determining the size of the file;

7 writing the file to the memory;

8 building a look up table (LUT) for the memory;

9 storing at least temporarily the LUT in the processor;

10 accessing the LUT in the processor to create an index table which

11 specifies a plurality of addresses for the file;

12 storing the index table in the memory.

1 35. A computer readable storage medium as in claim 34 wherein the memory is
2 a flash memory.

1 36. A computer readable storage medium as in claim 34 wherein the memory is
2 a SmartMedia;

1 37. A computer readable storage medium as in claim 34 wherein writing the file
2 to the memory comprises searching a file allocation table (FAT) to find empty
3 space within the memory to store the file.

1 38. A computer readable storage medium as in claim 34 wherein writing the file
2 to the memory comprises allocating empty clusters within flash memory for the
3 file.

1 39. A computer readable storage medium as in claim 34 wherein writing the file
2 to the memory comprises storing the file in empty clusters in the memory.

1 40. A computer readable storage medium as in claim 34 wherein building a
2 lookup table comprises parsing the memory's File Allocation Table to find
3 clusters for all files located on the memory.

1 41. A computer readable storage medium as in claim 34 wherein building a
2 lookup table comprises converting file clusters associated with a file into logical
3 sectors.

1 42. A computer readable storage medium as in claim 41 wherein building a
2 lookup table further comprises mapping the logical sectors of the files to their
3 corresponding physical sectors.

1 43. A computer readable storage medium as in claim 34 wherein storing the LUT
2 comprises storing the LUT into a Digital Signal Processor (DSP).

1 44. A computer readable storage medium as in claim 34 wherein creating an
2 index table comprises utilizing the LUT to create an index table which specifies
3 physical addresses for each file.

1 45. A computer readable storage medium as in claim 34 wherein the index table
2 in the memory comprises a table of records which can be read by a processor.

1 46. A computer readable storage medium as in claim 45 wherein the processor
2 is a Digital Signal Processor.