레이저 laser

•전자의 에너지 레벨

- 원자(原子, atom) 혹은 분자(分子, molecule)을 구성하는 **전자**는 **특정한 값의 에너지 상태**에서 존재하는데 이를 **에너지 레벨**이라 부름
- 이 에너지 레벨은 불연속하게 떨어져 있음
- 외부에서 주입하는 에너지가 없으면 높은 에너지 레벨에서 낮은 에너지 레벨로 전자 가 떨어짐
- 에너지 레벨 사이의 에너지 차에 해당하는 전자기파 가 방출

• 그림1

- 어떤 원자의 궤도 전자의 에너지 레벨 (왼쪽 그림)
- 파란색, 초록색, 빨간색 굵은 화살표는 방출되는 전자기파
- 에너지 레벨을 수평선으로 그려 전자기파 방출을 표현 (오른쪽 그림)

• 참고 : 가장 낮은 에너지 레벨을 **바닥 상태의 에너지 레벨**이라 부름

- 흡수 (吸收, absorption)
 - 입사 전자기파의 에너지가 두 에너지 레벨의 차 $(hv = E_2 E_1)$ 라면
 - 전자기파는 흡수(吸收, absorption)되어 없어지고,
 - 전자는 E_1 에서 E_2 로 움직임

- 자발 방출 (自發 放出, spontaneous emission)
 - 전자가 높은 에너지 레벨에서 낮은 에너지 레벨 즉, E_2 에서 E_1 으로 움직인다면
 - 전자기파가 방출(放出, emission)하는데
 - 전자기파의 에너지는 $hv = E_2 E_1$

- 유도 방출(誘導 放出, stimulated emission)
 - 입사 전자기파의 에너지가 두 에너지 레벨의 차 $(hv = E_2 E_1)$ 이고 전자가 E_2 에 있다면
 - 입사하는 전자기파의 영향에 의해 전자는 E_1 에서 E_2 로 움직이고,
 - 전자기파가 방출(放出, emission)하는데
 - 입사 전자기파와 모든 것이 같음
 - 이때 전자기파의 에너지는 $hv = E_2 E_1$

- * 지금까지 살펴본 바에 의하면 빛(light)을 대신하여 광자(光子, photon)라는 용어를 사용
- * 광자는 개수를 셀 수 있어서 여러분에게는 혼동될 수 있으나 실제로 빛은 광자의 특성을 보임
- * 따라서 파동의 성질을 갖는 빛은 개수로 셀 수 있는 광자임

- •레이저 (laser)
 - '유도 방출 복사에 의한 빛 증폭 (Light Amplification by the Stimulated Emission of Radiation)'의 머릿글짜
 - Radiation
 - 원자 혹은 분자에서 방출하는 모든 것
 - 핵을 다룰 때 이것을 방사능이라 해석했으나 레이저는 전자기파 방출이므로 복사(輻射)라는 용어로 사용
 - The stimulated Emission of Radiation
 - 유도 방출 복사 (유도 방출이라는 복사)

- 유도 방출 복사에 의해 서로 완벽하게 닮은 광자가 생성 → 빛 증폭
 - 유튜브 동영상 : https://www.youtube.com/watch?v=R_QOWbkc7UI

- •레이저 특성
 - (1) 단색성 (單色性, monochromaticity)
 - https://www.youtube.com/watch?v=y-JCF3K9ntc
 - (2) 결맞음 (coherence)
 - https://www.youtube.com/watch?v=bWTxf5dSUBE
 - (3) 방향성 (方向性, directionality)
 - https://www.youtube.com/watch?v=-o0Qhek38UE
 - (4) 밝기 (brightness)

- 수명 (壽命, lifetime) τ
 - τ 는 그리스 문자인데 tau로 읽음
 - 어떤 에너지 레벨에 전자가 머물러 있을 평균시간
 - 핵을 다룰 때 사용한 반감기 $T_{1/2}$ 와의 관계

$$au = rac{T_{1/2}}{\ln 2} pprox 1.44 T_{1/2}$$

•레벨의 에너지 폭 ΔE

- 어떤 에너지 레벨이 가지는 폭
 - 에너지 폭과 수명과의 관계

$$\Delta E \cdot \tau = \hbar = 9$$

• 에너지 폭이 넓으면(좁으면) 수명은 짧다(길다)

• 흡수

- 바닥 상태 E_{gnd}
 - 매우 안정 : $\tau_{gnd} = \infty \rightarrow \Delta E_{gnd} = 0$
- 흥분 상태 E_{exe} , ΔE_{exe}

$$au_{exe} = \frac{\hbar}{\Delta E_{exe}}$$

- ΔE_{exe} 증가
 - 쉽게 흡수 (absorption)
 - τ_{exe} 감소 (빠른 붕괴, fast decay)

• 레벨에 따른 레이저 구분

• 3 level lasers

- *E*₃ 레벨의 decay
 - 빠른 붕괴 (fast decay)
 - 비복사 붕괴
 - 광자를 방출하지 않는 복사

4 level lasers

- *E*₁과 *E*₃ 레벨의 decay
 - 빠른 붕괴 (fast decay)
 - 비복사 붕괴
 - 광자를 방출하지 않는 복사
- 효과적인 유도 방출
 - 강력한 레이저

- •레이저 발진 매질에 따른 분류
 - gas lasers
 - He-Ne lasers, CO₂ lasers, Excimer lasers
 - solid state lasers
 - Nd:YAG lasers
 - semiconductor lasers
 - Diode lasers
 - Fiber lasers
 - dye lasers
 - rhodamine 6G
 - free electron lasers

- •레이버 빔 타입에 따른 분류
 - 연속파 레이저 (CW lasers)
 - 펄스 레이저 (Pulse lasers)

- 헬륨-네온 레이저 (He-Ne laser)
 - 발진 파장은 주로 632.991 nm (빨간색)
 - 길이 15~ 50 cm
 - 광학적 출력 파워 0.5~50 mW (CW)
 - 스펙트럼 측정용
- 이산화탄소 레이저 (CO₂ laser)
 - 발진 파장 10.6 μm (마이크로미터)
 - 고출력
 - 수 mW ~ 수백 kW (연속파)
 - ~ 수 GW (펄스)
 - 용도
 - 레이저 절단 (laser cutting)
 - 레이저 용접 (laser welding)
 - 레이저 마킹 (laser marking)

- 엑사이머 레이저 (Excimer lasers)
 - 발진 파장 (자외선(紫外線, ultra-violet))
 - A₂* (126 nm), ArF (193 nm), KrF (248 nm), xeF (351 nm)
 - 펄스 레이저
 - 응용
 - 광노광 (광노광, photo-lithography)
 - ArF, KrF lasers : 7 nm 선폭 트랜지스터 제작
 - 의학
 - 표면에서 원하는 물질 제거
 - LASIK 눈 수술
 - 혈관 성형술 (angioplasty), 백혈벙
 - 크기가 큰 편이라 응용에 한계

• 엔디야그 레이저 (Nd:YAG laser)

- Nd:YAG laser rod
 - YAG(yttrium aluminum garnet, Y₃Al₅O₁₂)에 1% Nd (neodymium) 도핑된 고체 결정
- 4-level laser
- 응용
 - 의학 (안과, ophthalmology)
 - 의학 (종양학, oncology → skin cancers 제거)
 - 의학 (갑상선 결절, thyroid nodules)
 - 의학 (악성 간 병변, malignant liver lesions)
 - 의학 (전립선 수술, prostate surgery)
 - 의학 (혈관 결함, vascular defects) 거미 핏줄
 - Dentistry
 - Manufacturing
 - Fluid dynamics
 - Biophysics
 - Automotive
 - military

Nd:YAG laser rod

- 반도체 레이저 (semiconductor lasers)
 - Diode lasers
 - 반도체 소자로 제작

- 광섬유 레이저 (fiber lasers)
 - 반도체 레이저 여러 개를 광섬유와 결합하여 만든 레이저
 - 별도의 광학계없이 작동하므로 유지보수의 어려움이 없음

• 광섬유 레이저 유튜브 동영상 : https://www.youtube.com/watch?v=Vo8M5952YOI

- 염료 레이저 (dye laser)
 - 유기 염료 (organic dye)
 - rhodamine 6G : 발진 파장 560 nm ~ 635 nm
 - 다른 레이저로 펌핑
 - 응용
 - 천문학
 - 우라늄 같은 동위원소 분리
 - 의학 (피부과)
 - 분광학

- 자유 전자 레이저 (free-electron laser)
 - 위글러 (wiggler)
 - 자석이 주기적으로 N극과 S극이 엇갈려 배열한 형태
 - 자유 전자가 이 자기장 속을 운동
 - 전자가 움직이는 방향으로 레이저가 발생
 - 파장은 자기장의 세기와 전자의 운동에너지에 의해 결정
 - 발진 파장은 x-ray 영역 까지 도달

• 레이저 빔의 세기를 향상시키는 방법

- 렌즈를 이용한 초점맺힘
 - 레이저
 - 빔의 크기 직경 D
 - 레이저 파장 λ
 - 볼록렌즈
 - 초점 길이 *f*
 - 초점 크기 직경 d

•레이저 파장과 출력

