MM302 Differential Equations Chapter 4

Dr Alison Ramage, A.Ramage@strath.ac.uk

LT10.11 Livingstone Tower

PDEs are fundamental to applied mathematics.

- PDEs are fundamental to applied mathematics.
- They occur in a huge variety of applications, such as

- PDEs are fundamental to applied mathematics.
- They occur in a huge variety of applications, such as
 - physics (e.g. heat conduction, fluid flow, wave propagation);

- PDEs are fundamental to applied mathematics.
- They occur in a huge variety of applications, such as
 - physics (e.g. heat conduction, fluid flow, wave propagation);
 - biology (e.g. modelling tumour growth or spread of disease);

- PDEs are fundamental to applied mathematics.
- They occur in a huge variety of applications, such as
 - physics (e.g. heat conduction, fluid flow, wave propagation);
 - biology (e.g. modelling tumour growth or spread of disease);
 - environmental science (e.g. predicting flood damage, monitoring pollution);

- PDEs are fundamental to applied mathematics.
- They occur in a huge variety of applications, such as
 - physics (e.g. heat conduction, fluid flow, wave propagation);
 - biology (e.g. modelling tumour growth or spread of disease);
 - environmental science (e.g. predicting flood damage, monitoring pollution);
 - financial mathematics (e.g. modelling option pricing, predicting the stock market);

- PDEs are fundamental to applied mathematics.
- They occur in a huge variety of applications, such as
 - physics (e.g. heat conduction, fluid flow, wave propagation);
 - biology (e.g. modelling tumour growth or spread of disease);
 - environmental science (e.g. predicting flood damage, monitoring pollution);
 - financial mathematics (e.g. modelling option pricing, predicting the stock market);
 - ...

- We will learn methods for finding analytic solutions to some classical PDEs.
- These methods have led to huge advances in understanding physical problems.

- We will learn methods for finding analytic solutions to some classical PDEs.
- These methods have led to huge advances in understanding physical problems.
- Many other types of PDEs cannot be solved in this way, but instead the behaviour of their solutions can be simulated using numerical methods.
- These techniques are taught elsewhere (e.g. in MM306, MM402 and MM406).

- A typical problem will consist of a PDE plus initial and/or boundary conditions.
- The first issue is whether or not a given problem is well posed.

- A typical problem will consist of a PDE plus initial and/or boundary conditions.
- The first issue is whether or not a given problem is well posed.
- To be well posed, a problem must satisfy three criteria:
 - Existence. A solution to the problem exists.
 - Uniqueness. The problem has no more than one solution.
 - Stability. A small change in the equation, initial or boundary conditions leads a small change in the solution.

- A typical problem will consist of a PDE plus initial and/or boundary conditions.
- The first issue is whether or not a given problem is well posed.
- To be well posed, a problem must satisfy three criteria:
 - Existence. A solution to the problem exists.
 - Uniqueness. The problem has no more than one solution.
 - Stability. A small change in the equation, initial or boundary conditions leads a small change in the solution.
- If any of these conditions do not hold, we say that the problem is ill posed.
- In this class, we will assume that our problems are well posed.

• We consider the function u(x, y, z, ..., t) of several independent variables, usually

spatial coordinates x, y and z, time t.

• We consider the function u(x, y, z, ..., t) of several independent variables, usually

spatial coordinates x, y and z, time t.

• We can write the partial derivative of u with respect to x as

$$\frac{\partial u}{\partial x}$$
 or u_x or $\partial_x u$

• We consider the function u(x, y, z, ..., t) of several independent variables, usually

spatial coordinates x, y and z, time t.

• We can write the partial derivative of *u* with respect to *x* as

$$\frac{\partial u}{\partial x}$$
 or u_x or $\partial_x u$

Similarly, for higher derivatives we write

$$\frac{\partial^2 u}{\partial t \partial x}$$
 or u_{tx} or $\partial_t \partial_x u$

• We consider the function u(x, y, z, ..., t) of several independent variables, usually

spatial coordinates x, y and z, time t.

• We can write the partial derivative of u with respect to x as

$$\frac{\partial u}{\partial x}$$
 or u_x or $\partial_x u$

Similarly, for higher derivatives we write

$$\frac{\partial^2 u}{\partial t \partial x}$$
 or u_{tx} or $\partial_t \partial_x u$

• We will assume that u is smooth enough so $u_{tx} = u_{xt}$.

• We can now define a general PDE for u(x, y, z, ..., t) as

$$F(u,x,y,\ldots,t,u_x,u_y,\ldots,u_t,u_{xx},u_{yx},\ldots,u_{tx},\ldots)=0.$$

• We can now define a general PDE for u(x, y, z, ..., t) as

$$F(u,x,y,\ldots,t,u_x,u_y,\ldots,u_t,u_{xx},u_{yx},\ldots,u_{tx},\ldots)=0.$$

• For a PDE specified on a region of space Ω , we need boundary conditions (BCs) on the boundary $\partial\Omega$: this leads to a Boundary Value Problem (BVP) .

• We can now define a general PDE for u(x, y, z, ..., t) as

$$F(u,x,y,\ldots,t,u_x,u_y,\ldots,u_t,u_{xx},u_{yx},\ldots,u_{tx},\ldots)=0.$$

• For a PDE specified on a region of space Ω , we need boundary conditions (BCs) on the boundary $\partial\Omega$: this leads to a Boundary Value Problem (BVP) .

• If one of the independent variables is time, we need initial conditions (ICs) at time t=0: this leads to an Initial Value Problem (IVP).

4.2 Some important classical PDEs

• The advection equation describes the motion of a scalar quantity u(x,t) as it is carried along (or advected) by a known constant velocity field c:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0.$$

4.2 Some important classical PDEs

• The advection equation describes the motion of a scalar quantity u(x,t) as it is carried along (or advected) by a known constant velocity field c:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0.$$

 The wave equation governs all small amplitude waves, such as water waves, sound and radio waves, propagation of light, etc:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

where c is the (known) speed at which the wave travels.

 The heat equation (or diffusion equation) represents any diffusive phenomenon such as the flow of heat in a metallic rod, with u representing temperature and k the conductivity:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where k is the (known) diffusive constant.

 The heat equation (or diffusion equation) represents any diffusive phenomenon such as the flow of heat in a metallic rod, with u representing temperature and k the conductivity:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where k is the (known) diffusive constant.

 Laplace's equation has physical significance in the modelling of, e.g., electrostatic potentials, or the temperature distribution in a conducting plate:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Differential operators

 All of these PDEs can be written using a differential operator, usually denoted by £, which is a mapping between sets of differentiable functions.

$$\mathcal{L}(u) = f$$

$$\mathcal{L} = \frac{\partial}{\partial t} + c \frac{\partial}{\partial x}, \qquad \text{advection equation}$$

$$\mathcal{L} = \frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2}, \qquad \text{wave equation}$$

$$\mathcal{L} = \frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}, \qquad \text{heat equation}$$

$$\mathcal{L} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}, \qquad \text{Laplace's equation}$$

4.3 Order, linearity and homogeneity

- The order of a PDE is the highest order of the partial derivatives it contains.
- The advection equation is first order (as it contains only first derivatives).
- The other three equations are second order (as they contain second derivatives).
- This continues for higher order derivatives. . .

Linearity

• The PDE $\mathcal{L}(u) = f$ is said to be linear if the differential operator \mathcal{L} satisfies

$$\mathcal{L}(u+v) = \mathcal{L}(u) + \mathcal{L}(v)$$
$$\mathcal{L}(cu) = c\mathcal{L}(u)$$

where c is a real constant.

Linearity

• The PDE $\mathcal{L}(u) = f$ is said to be linear if the differential operator \mathcal{L} satisfies

$$\mathcal{L}(u+v) = \mathcal{L}(u) + \mathcal{L}(v)$$
$$\mathcal{L}(cu) = c\mathcal{L}(u)$$

where c is a real constant.

• All of our example PDEs are linear.

Linearity

• The PDE $\mathcal{L}(u) = f$ is said to be linear if the differential operator \mathcal{L} satisfies

$$\mathcal{L}(u+v) = \mathcal{L}(u) + \mathcal{L}(v)$$
$$\mathcal{L}(cu) = c\mathcal{L}(u)$$

where c is a real constant.

- All of our example PDEs are linear.
- An example of a nonlinear equation might be

$$\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} + u \frac{\partial u}{\partial x} + 4u^2 - \sin(u) = x^2.$$

Nonlinear PDEs are NOT considered in this class.

• The linearity test can be condensed to checking that

$$\mathcal{L}(c_1u_1+c_2u_2)=c_1\mathcal{L}(u_1)+c_2\mathcal{L}(u_2).$$

where c_1 and c_2 are real constants.

Examples 4.1-4.2

Show that the heat equation is linear.

Show that the heat equation is linear.

• Suppose that u_1 and u_2 are solutions of the heat equation, i.e., $\mathcal{L}(u_1)=0$ and $\mathcal{L}(u_2)=0$ where

$$\mathcal{L} \equiv \frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}.$$

Show that the heat equation is linear.

• Suppose that u_1 and u_2 are solutions of the heat equation, i.e., $\mathcal{L}(u_1) = 0$ and $\mathcal{L}(u_2) = 0$ where

$$\mathcal{L} \equiv \frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}.$$

For linearity, we need to show that

$$\mathcal{L}(c_1u_1 + c_2u_2) = c_1\mathcal{L}(u_1) + c_2\mathcal{L}(u_2)$$

for any real constants c_1 and c_2 .

Here we have

$$\mathcal{L}(c_1u_1 + c_2u_2) = \frac{\partial}{\partial t}(c_1u_1 + c_2u_2) - k\frac{\partial^2}{\partial x^2}(c_1u_1 + c_2u_2)$$

$$= c_1\frac{\partial u_1}{\partial t} + c_2\frac{\partial u_2}{\partial t} - kc_1\frac{\partial^2 u_1}{\partial x^2} - kc_2\frac{\partial^2 u_2}{\partial x^2}$$

$$= c_1\left(\frac{\partial u_1}{\partial t} - k\frac{\partial^2 u_1}{\partial x^2}\right) + c_2\left(\frac{\partial u_2}{\partial t} - k\frac{\partial^2 u_2}{\partial x^2}\right)$$

$$= c_1\mathcal{L}(u_1) + c_2\mathcal{L}(u_2)$$

so the heat equation is linear.

Show that the equation

$$u^2 \frac{\partial^2 w}{\partial u^2} + \sin(v) \frac{\partial^2 w}{\partial v^2} = 0$$

for the function w(u, v) is linear.

Show that the equation

$$u^2 \frac{\partial^2 w}{\partial u^2} + \sin(v) \frac{\partial^2 w}{\partial v^2} = 0$$

for the function w(u, v) is linear.

• Suppose that w_1 and w_2 are solutions of the given equation, i.e., $\mathcal{L}(w_1) = 0$ and $\mathcal{L}(w_2) = 0$ where

$$\mathcal{L} \equiv u^2 \frac{\partial^2}{\partial u^2} + \sin(v) \frac{\partial^2}{\partial v^2}.$$

• For any real constants c_1 and c_2 , we have

$$\mathcal{L}(c_{1}w_{1} + c_{2}w_{2})$$

$$= u^{2} \frac{\partial^{2}}{\partial u^{2}} (c_{1}w_{1} + c_{2}w_{2}) + \sin(v) \frac{\partial^{2}}{\partial v^{2}} (c_{1}w_{1} + c_{2}w_{2})$$

$$= c_{1} u^{2} \frac{\partial^{2}w_{1}}{\partial u^{2}} + c_{2} u^{2} \frac{\partial^{2}w_{2}}{\partial u^{2}} + c_{1} \sin(v) \frac{\partial^{2}w_{1}}{\partial v^{2}} + c_{2} \sin(v) \frac{\partial^{2}w_{2}}{\partial v^{2}}$$

$$= c_{1} \left(u^{2} \frac{\partial^{2}w_{1}}{\partial u^{2}} + \sin(v) \frac{\partial^{2}w_{1}}{\partial v^{2}} \right) + c_{2} \left(u^{2} \frac{\partial^{2}w_{2}}{\partial u^{2}} + \sin(v) \frac{\partial^{2}w_{2}}{\partial v^{2}} \right)$$

$$= c_{1} \mathcal{L}(w_{1}) + c_{2} \mathcal{L}(w_{2})$$

so the equation is linear.

Homogeneity

• The linear partial differential equation $\mathcal{L}(u) = f$ is homogeneous if f = 0, otherwise it is inhomogeneous.

Homogeneity

- The linear partial differential equation $\mathcal{L}(u) = f$ is homogeneous if f = 0, otherwise it is inhomogeneous.
- All of our example PDEs are homogeneous.

Homogeneity

- The linear partial differential equation $\mathcal{L}(u) = f$ is homogeneous if f = 0, otherwise it is inhomogeneous.
- All of our example PDEs are homogeneous.
- Linearity and homogeneity also apply to boundary conditions:

$$u(0,t)+rac{\partial u}{\partial x}(0,t)=g(t)$$
 is a linear inhomogeneous BC, $rac{\partial u}{\partial x}(a,t)-u^2(a,t)=0$ is a nonlinear homogeneous BC, $u(a,t)+\kapparac{\partial u}{\partial x}(a,t)=0$ is a linear homogeneous BC.

• A problem is homogeneous if both the differential equation and its boundary conditions are homogeneous.

4.4 The principle of superposition

• If $u = u_1$ and $u = u_2$ are solutions of the linear homogeneous PDE $\mathcal{L}(u) = 0$, then $u = c_1 u_1 + c_2 u_2$ is also a solution, for arbitrary constants c_1 and c_2 .

4.4 The principle of superposition

• If $u = u_1$ and $u = u_2$ are solutions of the linear homogeneous PDE $\mathcal{L}(u) = 0$, then $u = c_1 u_1 + c_2 u_2$ is also a solution, for arbitrary constants c_1 and c_2 .

• As $\mathcal{L}(u_1) = 0$ and $\mathcal{L}(u_2) = 0$, the linearity of \mathcal{L} gives

$$c_1\mathcal{L}(u_1) + c_2\mathcal{L}(u_2) = \mathcal{L}(c_1u_1 + c_2u_2) = 0.$$

4.4 The principle of superposition

• If $u = u_1$ and $u = u_2$ are solutions of the linear homogeneous PDE $\mathcal{L}(u) = 0$, then $u = c_1u_1 + c_2u_2$ is also a solution, for arbitrary constants c_1 and c_2 .

• As
$$\mathcal{L}(u_1) = 0$$
 and $\mathcal{L}(u_2) = 0$, the linearity of \mathcal{L} gives

$$c_1\mathcal{L}(u_1) + c_2\mathcal{L}(u_2) = \mathcal{L}(c_1u_1 + c_2u_2) = 0.$$

• This result is called the principle of superposition since one solution can be superposed (or added) to another.

• More generally, if u_1, u_2, \ldots, u_N are solutions of $\mathcal{L}(u) = 0$, then

$$u = \sum_{n=1}^{N} c_n \mathcal{L}(u_n)$$

is also a solution.

• More generally, if u_1, u_2, \ldots, u_N are solutions of $\mathcal{L}(u) = 0$, then

$$u=\sum_{n=1}^N c_n \mathcal{L}(u_n)$$

is also a solution.

• This also holds as $N \to \infty$, so that the sum of the resulting infinite series is also a solution of $\mathcal{L}(u) = 0$.

• More generally, if u_1, u_2, \ldots, u_N are solutions of $\mathcal{L}(u) = 0$, then

$$u=\sum_{n=1}^N c_n \mathcal{L}(u_n)$$

is also a solution.

- This also holds as $N \to \infty$, so that the sum of the resulting infinite series is also a solution of $\mathcal{L}(u) = 0$.
- For an inhomogeneous linear equation $\mathcal{L}(u) = f$, the RHS vectors associated with different solutions can be added together in an analogous way: if u_1 and u_2 are solutions of $\mathcal{L}(u) = f_1$ and $\mathcal{L}(u) = f_2$, respectively, then $u_1 + u_2$ is a solution of $\mathcal{L}(u) = f_1 + f_2$.
- This also extends to N solutions in the obvious way.

General solutions

• We can also apply this principle when $f_1 = 0$ and $f_2 \neq 0$, which helps us to find the general solution of a inhomogeneous PDE.

The general solution of an inhomogeneous PDE is

general solution of the homogeneous equation + particular solution of the inhomogeneous equation.

• That is, if u_G is the general solution of $\mathcal{L}(u) = 0$, and u_P is a particular solution of $\mathcal{L}(u) = f$, then $u_G + u_P$ is the general solution of $\mathcal{L}(u) = f$.

Example 4.3

Example 4.3

Show that

$$u = f(2x + y^2) + g(2x - y^2)$$

satisfies the PDE

$$y^{2} \frac{\partial^{2} u}{\partial x^{2}} + \frac{1}{y} \frac{\partial u}{\partial y} - \frac{\partial^{2} u}{\partial y^{2}} = 0$$

for arbitrary functions f and g.

Example 4.3

Show that

$$u = f(2x + y^2) + g(2x - y^2)$$

satisfies the PDE

$$y^{2} \frac{\partial^{2} u}{\partial x^{2}} + \frac{1}{y} \frac{\partial u}{\partial y} - \frac{\partial^{2} u}{\partial y^{2}} = 0$$

for arbitrary functions f and g.

 As f and g are each functions of only one variable, we can use ' to denote differentiation of these functions (without specifying the variable).

$$u = f(2x + y^2) + g(2x - y^2)$$

$$u = f(2x + y^2) + g(2x - y^2)$$

First derivatives:

$$\frac{\partial u}{\partial x} = 2f'(2x + y^2) + 2g'(2x - y^2)$$
$$\frac{\partial u}{\partial y} = 2yf'(2x + y^2) - 2yg'(2x - y^2)$$

$$u = f(2x + y^2) + g(2x - y^2)$$

First derivatives:

$$\frac{\partial u}{\partial x} = 2f'(2x + y^2) + 2g'(2x - y^2)$$
$$\frac{\partial u}{\partial y} = 2yf'(2x + y^2) - 2yg'(2x - y^2)$$

Second derivatives:

$$\frac{\partial^2 u}{\partial x^2} = 4f''(2x + y^2) + 4g''(2x - y^2)$$

$$\frac{\partial^2 u}{\partial y^2} = 2f'(2x + y^2) + 2yf''(2x + y^2) \cdot 2y$$

$$- (2g'(2x - y^2) + 2yg''(2x - y^2) \cdot (-2y))$$

$$= 2(f'(2x + y^2) - g'(2x - y^2))$$

$$+ 4y^2(f''(2x + y^2) + g''(2x - y^2))$$

$$y^2 \frac{\partial^2 u}{\partial x^2} + \frac{1}{y} \frac{\partial u}{\partial y} - \frac{\partial^2 u}{\partial y^2} = 0$$

Substituting these expressions into the PDE gives

$$y^{2} [4f''(2x + y^{2}) + 4g''(2x - y^{2})]$$
+
$$\frac{1}{y} [2yf'(2x + y^{2}) - 2yg'(2x - y^{2})]$$
-
$$[2 (f'(2x + y^{2}) - g'(2x - y^{2}))$$
+
$$4y^{2} (f''(2x + y^{2}) + g''(2x - y^{2}))]$$
=
$$0$$

as required.