17. Der Residuensatz und Folgerungen

Satz 17.1 (Residuensatz)

G sei ein Elementargebiet, es seien $z_1,\ldots,z_k\in G$ $(z_j\neq z_l$ für $j\neq l)$ und es sei $f \in H(G \setminus \{z_1, \dots, z_k\})$. Jedes z_i ist also eine isolierte Singularität von f. Weiter sei γ ein geschlossener, stückweise glatter Weg mit $Tr(\gamma) \subseteq G \setminus \{z_1, \dots, z_k\}$. Dann:

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{j=1}^{k} n(\gamma, z_j) Res(f, z_j)$$

Beweis

 $\forall j \in \{1 \dots k\}$ existiert ein $R_j > 0$: $\overline{U_{R_j}(z_j)} \subseteq G$ und $\overline{U_{R_j}(z_j)} \cap \overline{U_{R_l}(z_l)} = \emptyset$ $(j \neq l)$. Sei

 $\overset{14.4}{\Rightarrow}f$ hat auf $U_{R_{j}}(z_{j})$ die Laurententwicklung

$$f(z) = \sum_{n=0}^{\infty} a_n^{(j)} (z - z_j)^n + \underbrace{\sum_{n=1}^{\infty} a_{-n}^{(j)} (z - z_j)^{-n}}_{\varphi_j(z)}$$

wobei $\varphi_j \in H(\mathbb{C} \setminus \{z_j\})$

Definiere $g \in H(G \setminus \{z_1, \dots, z_k\})$ durch $g(z) = f(z) - \sum_{j=1}^k \varphi_j(z)$.

Dann hat g in z_j eine hebbare Singularität $(j = 1 \dots k)$. Also $g \in H(G)$. G ist ein Elementarge-

biet $\Rightarrow g$ hat eine Stammfunktion auf $G \overset{8.6}{\Rightarrow} \int\limits_{\gamma} g(z) dz = 0 \Rightarrow \int\limits_{\gamma} f(z) dz = \sum\limits_{j=1}^{\kappa} \int\limits_{\gamma} \varphi_{j}(z) dz.$

Noch zu zeigen: $\int \varphi_j(z)dz = 2\pi i \ n(\gamma, z_j)a_{-1}^{(j)} \ (j=1...k).$

Die Reihe für
$$\varphi_j^{\gamma}$$
 konvergiert lokal gleichmäßig (14.3).
$$\stackrel{8.4}{\Rightarrow} \int_{\gamma} \varphi_j(z) dz = \sum_{n=1}^{\infty} a_{-n}^{(j)} \int_{\gamma} (z-z_j)^{-n} dz. \text{ Sei } n \in \{2,3,4,\ldots\}. \text{ Die Funktion } \frac{1}{(z-z_j)^n} \text{ hat auf } G \setminus \{z_j\}$$

die Stammfunktion
$$\frac{(z-z_j)^{-n+1}}{-n+1}$$

$$\underset{\gamma}{\overset{8.6}{\Rightarrow}} \int_{\gamma} (z-z_j)^{-n} dz = 0 \ \forall n \in \{2, 3, 4, \ldots\}$$

$$\Rightarrow \int_{\gamma}^{\prime} \varphi_j dz = a_{-1}^{(j)} \int_{\gamma} \frac{1}{(z-z_j)} dz = a_{-1}^{(j)} n(\gamma, z_j) 2\pi i$$

Folgerung 17.2

 $G \subseteq \mathbb{C}$ sei ein Elementargebiet, es sei $f \in H(G)$ und γ sei ein geschlossener, stückweise glatter Weg mit $Tr(\gamma) \subseteq G$.

Dann:

(1) Cauchyscher Integralsatz für Elementargebiete

$$\int\limits_{\gamma} f(z)dz = 0$$

(2) Cauchysche Integralformel

$$n(\gamma, z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw \ \forall z \in G \backslash \text{Tr}(\gamma)$$

Beweis

- (1) Alle z_i in 17.1 sind hebbare Singularitäten. $\stackrel{14.4}{\Rightarrow} Res(f(z_i)) = 0 \Rightarrow Behauptung.$
- (2) Sei $z_0 \in G \backslash \text{Tr}(\gamma)$. $g \in H(G \backslash \{z_0\})$ sei definiert durch $g(w) := \frac{f(w)}{w-z_0}$. Sei r > 0, so dass $U_r(z_0) \subseteq G$ $\stackrel{10,4}{\Rightarrow} f(w) = a_0 + a_1(w z_0) + \dots \forall w \in U_r(z_0)$ $\Rightarrow g(w) = \frac{a_0}{w-z_0} + a_1 + a_2(w z_0) + \dots \forall w \in \dot{U}_r(z_0)$ $\Rightarrow Res(g, z_0) = a_0 = f(z_0)$ $\Rightarrow \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw = \frac{1}{2\pi i} \int_{\gamma} g(w) dw \stackrel{17.1}{=} n(\gamma, z_0) f(z_0)$

Für die Berechnung von Residuen an Polstellen

Satz 17.3

Sei $D \subseteq \mathbb{C}$ offen, $z_0 \in D$, $f \in H(D \setminus \{z_0\})$ und f habe in z_0 einen Pol der Ordnung $m \ge 1$. Es existiert also (siehe 13.2) ein $g \in H(D)$ mit:

$$f(z) = \frac{g(z)}{(z-z_0)^m} \ \forall z \in D \setminus \{z_0\}$$

und $g(z_0) \neq 0$. Dann:

- (1) $\operatorname{Res}(f, z_0) = \frac{g^{(m-1)}(z_0)}{(m-1)!}$
- (2) Ist m = 1, so ist $Res(f, z_0) = \lim_{z \to z_0} (z z_0) f(z)$

Beweis

(1) Sei r > 0 so, dass $U_r(z_0) \subseteq D$. $\stackrel{10,4}{\Rightarrow} g(z) = b_0 + b_1(z - z_0) + \ldots + b_m(z - z_0)^m + \ldots \ \forall z \in U_r(z_0)$ $\Rightarrow f(z) = \frac{b_0}{(z - z_0)^m} + \ldots + \frac{b_{m-1}}{(z - z_0)} + b_m + b_{m+1}(z - z_0) + \ldots \ \forall z \in \dot{U}_r(z_0) \Rightarrow \operatorname{Res}(f, z_0) = b_{m-1} \stackrel{10.4}{=} \frac{g^{(m-1)}(z_0)}{(m-1)!}$

(2) Aus (1) folgt:
$$\operatorname{Res}(f, z_0) = g(z_0) = \lim_{z \to z_0} g(z) = \lim_{z \to z_0} (z - z_0) f(z)$$

Beispiel

(1)
$$f(z) = \frac{1}{(z-i)(z+1)}$$
 hat in $z = i$ und in $z = -1$ jeweils einen Pol der Ordnung 1. Also: $\operatorname{Res}(f,i) = \lim_{z \to i} (z-i) f(z) = \frac{1}{i+1} = \frac{1}{2} - \mathrm{i}\frac{1}{2}; \operatorname{Res}(f,-1) = -\frac{1}{2} + \mathrm{i}\frac{1}{2}$

(2) $f(z) = \frac{1}{(z-i)^3 z}$ hat in z=i einen Pol der Ordnung 3 und in z=0 eine Pol der Ordnung 1. Hier ist $g(z) = \frac{1}{z}$. $g'(z) = -\frac{1}{z^2}$, $g''(z) = \frac{2}{z^3} \Rightarrow \text{Res}(f, i) = \frac{2}{i^3 2!} = i$

Satz 17.4 (Das Argumentenprinzip)

 $G \subseteq \mathbb{C}$ sei ein Elementargebiet, es sei $f \in M(G)$, f habe in G genau die Pole b_1, \ldots, b_m (jeder Pol sei so oft aufgeführt, wie seine Ordnung angibt), f habe in G genau die Nullstellen a_1, \ldots, a_n (jede Nullstelle sei so oft aufgeführt, wie ihre Ordnung angibt) und γ sei ein stückweise glatter und geschlossener Weg mit $\text{Tr}(\gamma) \subseteq G \setminus \{b_1, \dots, b_m, a_1, \dots, a_n\}$. Dann:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} n(\gamma, a_j) - \sum_{j=1}^{m} n(\gamma, b_j)$$

Bemerkung: (1) in 17.4 ist $\{b_1, \ldots, b_m\} = \emptyset$ oder $\{a_1, \ldots, a_n\} = \emptyset$ zugelassen. I.d.Fall: $\sum_{j=1}^{m} n(\gamma, b_j) = 0 \text{ oder } \sum_{j=1}^{n} n(\gamma, a_j) = 0$

(2) $n(\gamma, a_j) = n(\gamma, b_k)$ (j = 1, ..., n, k = 1, ..., m). Dann: $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \text{Anzahl der Nullstellen von } f - \text{Anzahl der Polstellen von } f$ (jeweils gezählt mit Vielfachheiten!)

$$f(z) = \frac{z}{(z-i)^2} \ n = 1, a_n = 0, m = 2, b_1 = b_2 = i; \gamma(t) = 2e^{it} \ t \in [0, 2\pi]. \ \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = 1 - 2 = -1$$

(von 17.4) Sei β_1, \ldots, β_p die paarweise verschiedenen Pole von f $(p \leq m)$ und $\alpha_1, \ldots, \alpha_q$ die paarweise verschiedenen Nullstellen $(q \le n)$.

$$h := \frac{f'}{f}$$
.

 $h := \frac{f'}{f}$. Dann: $h \in H(G \setminus \{\alpha_1, \dots, \alpha_q, \beta_1, \dots, \beta_p\})$.

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} h(z) dz \stackrel{17.1}{=} \sum_{j=1}^{q} n(\gamma, \alpha_j) \operatorname{Res}(n, \alpha_j) + \sum_{j=1}^{p} n(\gamma, \beta_j) \operatorname{Res}(n, \beta_j).$$

Sei $\alpha \in \{\alpha_1, \ldots, \alpha_q\}, \beta \in \{\beta_1, \ldots, \beta_p\}, \nu = \text{Ordnung der Nullstelle von } \alpha \text{ von } f \text{ und } \mu = \beta_1, \ldots, \beta_q\}$ Ordnung der Polstelle β von f.

Zu zeigen: $\operatorname{Res}(h, \alpha) = \nu$ und $\operatorname{Res}(h, \beta) = -\mu$.

 $\stackrel{11.8}{=} \exists \delta > 0 : U_{\delta}(\alpha) \subseteq G, \ \exists \varphi \in H(U_{\delta}(\alpha)) \ \text{und} \ f(z) = (z - \alpha)^{\nu} \varphi(z) \ \forall z \in U_{\delta}(\alpha) \ \text{und} \ \varphi(z) \neq 0$ $\forall z \in U_{\delta}(\alpha).$

Dann:
$$f'(z) = \nu(z - \alpha)^{\nu - 1} \varphi(z) + (z - \alpha)^{\nu} \varphi'(z) \ \forall z \in U_{\delta}(\alpha)$$

 $\Rightarrow h(z) = \frac{f'(z)}{f(z)} = \frac{\nu}{z - \alpha} + \underbrace{\frac{\varphi'(z)}{\varphi(z)}}_{\text{optition}} \quad \forall z \in U_{\delta}(\alpha) \Rightarrow \text{Res}(h, \alpha) = -\nu.$

Analog: Res $(h, \beta) = \mu$ (statt 11.8 nimmt man 13.2)

Folgerungen 17.5

Sei $G \subseteq \mathbb{C}$ ein Gebiet, $z_0 \in G$, r > 0, $\overline{U_r(z_0)} \subseteq G$, $\gamma(t) = z_0 + re^{it}$ $(t \in [0, 2\pi])$ und $f, g \in H(G)$. Sei $N_f := \text{Anzahl der Nullstellen von } f \text{ in } U_r(z_0) \text{ (gezählt mit Vielfachheiten!)}.$

(1) Ist
$$f(z) \neq 0 \ \forall z \in \text{Tr}(\gamma) \Rightarrow N_f = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

(2) Satz von Rouché Gilt (*) $|g(z) - f(z)| < |f(z)| \ \forall z \in \text{Tr}(\gamma)$, so gilt $N_f = N_g$

Beweis

(1) $\exists R > r : \overline{U_r(z_0)} \subseteq \overline{U_R(z_0)} \subseteq G$. Also: $\overline{U_r(z_0)} \subseteq U_R(z_0)$. $U_R(z_0)$ ist ein Elementargebiet. Seien a_1, \ldots, a_n die Nullstellen von f in $U_R(z_0)$. (gezählt mit Vielfachheiten).

Seien
$$a_1, \ldots, a_n$$
 die Nullstellen von f in U_R

$$\stackrel{17.4}{\Rightarrow} \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} \underbrace{n(\gamma, a_j)}_{16.2}$$

$$\stackrel{16.2}{=} \begin{cases} 1, & a_j \in U_r(z_0) \\ 0, & a_j \notin U_r(z_0) \end{cases}$$

(2) Für $s \in [0,1]: h_s := f + s(g-f) \in H(G); N(s) := N_{h_s}$. Aus (*) folgt $h_s(z) \neq 0 \ \forall s \in [0,1] \ \forall z \in Tr(\gamma)$.

Aus (1):
$$N(s) = \frac{1}{2\pi i} \int_{\gamma} \frac{h_s'(z)}{h_s(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) + s(g'(z) - f'(z))}{f(z) + s(g(z) - f(z))} dz$$

 \Rightarrow die Funtion $s\mapsto N(s)$ ist stetig. Wegen $N(s)\subseteq\mathbb{N}_0\ \forall s\in[0,1]:\ N(s)$ ist konstant. Also $N_f=N(0)=N(1)=N_g$

Satz 17.6 (Satz von Hurwitz)

 $G \subseteq \mathbb{C}$ sei ein Gebiet. (f_n) sei eine Folge in H(G) und (f_n) konvergiert auf G lokal gleichmäßig gegen eine Funktion $f: G \to \mathbb{C}$. $\stackrel{10.5}{\Rightarrow} f \in H(G)$. Dann:

- (1) Ist $Z(f_n) = \emptyset \ \forall n \in \mathbb{N} \Rightarrow Z(f) = \emptyset \ \text{oder} \ f \equiv 0$
- (2) Sind alle f_n auf G injektiv $\Rightarrow f$ ist auf G injektiv oder f ist auf G konstant.

Beweis

(1) Sei $f \not\equiv 0$ auf G; $z_0 \in G$, r > 0 so, dass $\overline{U_r(z_0)} \subseteq G$ und $f(z) \not\equiv 0 \ \forall z \in \overline{U_r(z_0)} \setminus \{z_0\}$. $\gamma(t) = z_0 + re^{it} \ (t \in [0, 2\pi]). \ (f_n)$ konvergiert auf $\text{Tr}(\gamma)$ gleichmäßig gegen $f : \stackrel{10.5}{\Rightarrow} (f'_n)$

konvergiert auf $\text{Tr}(\gamma)$ gleichmäßig gegen f'. Übung: $(\frac{1}{f_n})$ konvergiert auf $\text{Tr}(\gamma)$ gleichmäßig gegen $\frac{1}{f}$.

Fazit: $(\frac{f_n'}{f_n})^n$ konvergiert auf $\text{Tr}(\gamma)$ gleichmäßig gegen $(\frac{f'}{f})$.

$$\underbrace{\frac{1}{2\pi i} \int_{\gamma} \frac{f'_n}{f_n} dz}_{17.5} \to \underbrace{\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz}_{17.5}$$

$$\underbrace{N_{f_n}^{17.5}}_{N_f}$$

Also: $N_f = 0$. Somit: $f(z_0) \neq 0$

(2) Sei $z_0 \in G$. $g_n = f_n - f_n(z_0)$, $g := f - f(z_0)$. $\widetilde{G} := G \setminus \{z_0\}$. Dann: (g_n) konvergiert auf \widetilde{G} lokal gleichmäßig gegen g. $g_n(z) \neq 0 \, \forall z \in \widetilde{G}$ $(1) \Rightarrow g \equiv 0$ oder $g(z) \neq 0 \, \forall z \in \widetilde{G} \Rightarrow f$ ist auf G konstant oder $f(z) \neq f(z_0) \, \forall z \in G \setminus \{z_0\}$

Berechnung von Integralen

Satz 17.7

Sei R(x,y) = R(x+iy) = R(z) eine rationale Funktion ohne Pole auf $\partial \mathbb{D}$. Weiter sei $R_1(z) = \frac{1}{iz} R(\frac{z + \frac{1}{z}}{2}, \frac{z - \frac{1}{z}}{2i})$ und $M := \{z \in \mathbb{D} : z \text{ ist ein Pol von } R_1\}$ (endlich)

$$\int_{0}^{2\pi} R(\cos t, \sin t) dt = 2\pi i \sum_{z \in M} Res(R_1, z)$$

$$\int_{0}^{2\pi} R(\cos t, \sin t) dt = \int_{0}^{2\pi} \frac{1}{ie^{it}} R(\frac{e^{it} + e^{-it}}{2}, \frac{e^{it} - e^{-it}}{2i}) ie^{it} dt$$

$$= \int_{\gamma} R_1(z) dz, \text{ wobei } \gamma(t) = ie^{it} \ (t \in [0, 2\pi]).$$

Also:
$$\int_{0}^{2\pi} R(\cos t, \sin t) dt = \int_{\gamma} R_{1}(z) dz \stackrel{17.1}{=} 2\pi i \sum_{\mathbf{z} \text{ Pol von } R_{1}} \underbrace{n(\gamma, z)}_{\mathbf{z} \text{ Pol von } R_{1}} Res(R_{1}, z).$$

$$= \begin{cases} 1, & z \in M \\ 0, & z \notin M \end{cases}$$

Z und N seien Polynome. $R:=\frac{Z}{N}$ habe auf \mathbb{R} keine Pole und es gelte (*) grad $N\geq \operatorname{grad} Z+2$ $(\implies \int R(x)dx$ konvergiert absolut). Weiter sei $M:=\{z\in\mathbb{C}: \operatorname{Im} z>0,\ z \text{ ist Pol von } R\}.$

$$\int_{-\infty}^{\infty} R(x)dx = 2\pi i \sum_{z \in M} Res(R, z)$$

(*)
$$\Longrightarrow \exists m \ge 0 \exists c > 0 : |R(z)| \le \frac{m}{|z|^2} \forall z \in \mathbb{C} \text{ mit } |z| > c. \text{ (**)}$$

Sei $\delta > c$ so gross, dass alle Pole von R in $U_s(0)$ liegen

Sei $\delta > c$ so gross, dass alle Pole von R in $U_{\delta}(0)$ liegen.

$$\gamma_1(t) := t \ (t \in [-\delta, \delta]); \ \gamma_2(t) := \delta e^{it} \ (t \in [0, \pi]) \ \gamma := \gamma_1 \oplus \gamma_2.$$

$$\int\limits_{\gamma}R(z)dz=\int\limits_{\gamma_{1}}R(z)dz+\int\limits_{\gamma_{2}}R(z)dz.$$

$$\int_{\gamma_1} R(z)dz = \int_{-\delta}^{\delta} \to \int_{-\infty}^{\infty} R(t)dt \ (\delta \to \infty).$$

 $\begin{array}{l} \gamma & \gamma_1 \\ \int\limits_{\gamma_1} R(z)dz = \int\limits_{-\delta}^{\delta} \to \int\limits_{-\infty}^{\infty} R(t)dt \ (\delta \to \infty). \\ \mathrm{Sei} \ z \in \mathrm{Tr}(\gamma_2). \ \mathrm{Dann:} \ |z| = \delta > 0, \ \mathrm{also} \ \mathrm{nach} \ (**): \ |R(z)| \leq \frac{m}{|z|^2} = \frac{m}{\delta^2} \implies |\int\limits_{\gamma_2} R(z)dz| \leq 1. \end{array}$

$$\frac{m}{|z|^2}L(\gamma_2) \le \frac{m\pi\delta}{\delta^2} = \frac{m\pi}{\delta}$$

$$\implies \int_{\gamma_2} R(z)dz \to 0 \ (\delta \to \infty). \ \text{Dann:} \int_{\gamma} R(z)dz \to \int_{-\infty}^{\infty} R(x)dx \ (\delta \to \infty). \ 17.1 \implies \int_{\gamma} R(z)dz = 0$$

$$|z|^{2D(\gamma z)} \stackrel{\leq}{=} \frac{\delta^{2}}{\delta^{2}} \stackrel{=}{=} \frac{\delta}{\delta}$$

$$\implies \int_{\gamma_{2}} R(z)dz \to 0 \ (\delta \to \infty). \ \text{Dann:} \int_{\gamma} R(z)dz \to \int_{-\infty}^{\infty} R(x)dx \ (\delta \to \infty). \ 17.1 \implies \int_{\gamma} R(z)dz = 2\pi i \sum_{z \text{ Pol von R}} \underbrace{n(\gamma, z)}_{z \text{ Pol von R}} Res(R, z). .$$

$$= \begin{cases} 1, z \in M \\ 0, z \notin M \end{cases}$$