МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы 1.1.3

Статистическая обработка результатов многократных измерений

Автор: Сенокосов Арсений Олегович Б02-012

1 Введение

Цель работы: применение методов обработки экспериментальных данных при измерении сопротивлений.

В работе используются: набор резисторов (270 штук); универсальный цифровой вольтметр GDM-8145, работающий в режиме «Измерение сопротивление постоянному току».

2 Теоретические сведения

Производство резисторов на заводе – сложный технологический процесс. Поэтому измеренное сопротивление может отличаться от номинала. Погрешности могут быть как систематическими, так и случайными.

Для измерения сопротивления мы будем пользоваться прибором, погрешность которого мала $(\pm 0.5 \text{ Om})$ по сравнению с отклонениями от номинала, полученными при производстве. Поэтому систематической погрешностью можно пренебречь.

В работе измеряем сопротивление 270 резисторов. По полученным данным вычисляем среднее значение:

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^{N} R_i. \tag{1}$$

Чтобы охарактеризовать случайные погрешности при изготовлении набора резисторов, необходимо построить гистограмму.

3 Ход работы

Результаты измерения 270 резисторов представлены в таблице 1. По этой таблице построим гистограммы для m=20 и m=10. Для удобства сравнения с нормальным распределением по оси ординат будем откладывать не число результатов Δn , попадающих в каждый интервал, а это число делённое на полное число результатов N и величину интервала ΔR . В таблицах 2 и 3 в зависимости от номера группы к приведены значения Δn и $\omega = \Delta n/(N\Delta R)$. На рис. 1 и 2 представлены гистограммы. Среднее значение сопротивлений находим по формуле (1):

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^{N} R_i = 8{,}21$$
 кОм.

Среднеквадратичное отклонение находим по формуле:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (R_i - \langle R \rangle)^2} \approx 0.09 \text{ кОм}$$

При этом в интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ попадает 61% результатов, а в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ соответственно – 97%.

8,22	8,11	8,15	8,27	8,37	8,10	8,31	8,11	8,32
8,30	8,11	8,21	8,34	8,32	8,14	8,25	8,10	8,26
8,29	8,17	8,13	8,28	8,28	8,15	8,19	8,12	8,29
8,29	8,22	8,12	8,32	8,22	8,11	8,16	8,11	8,29
8,29	8,12	8,32	8,34	8,29	8,13	8,21	8,06	8,41
8,35	8,14	8,24	7,93	8,42	8,13	8,30	8,09	8,24
8,39	8,10	8,13	8,26	8,27	8,12	8,22	8,10	8,24
8,22	8,19	8,30	8,26	8,25	8,10	8,19	8,12	8,28
8,34	8,18	8,10	8,30	8,27	8,10	8,19	8,11	8,32
8,30	8,15	8,20	8,33	8,37	8,10	8,18	8,11	8,20
8,33	8,26	8,08	8,32	8,30	8,12	8,14	8,09	8,25
8,26	8,24	8,14	8,31	8,30	8,13	8,27	8,12	8,25
8,25	8,11	8,10	8,35	8,30	8,13	8,27	8,12	8,25
8,38	8,29	8,04	8,05	8,22	8,10	8,31	8,12	8,42
8,45	8,09	8,07	8,24	8,22	8,12	8,17	8,12	8,33
8,29	8,36	8,30	8,23	8,27	8,14	8,12	8,12	8,29
8,19	8,20	8,34	8,21	8,18	8,15	8,13	8,18	8,34
8,30	8,26	8,25	8,14	8,30	8,14	8,09	8,22	8,28
8,27	8,25	8,27	8,06	8,21	8,17	8,13	8,13	8,30
8,29	8,34	8,27	8,16	8,26	8,17	8,14	8,18	8,30
8,23	8,24	8,23	8,19	8,23	8,16	8,13	8,19	8,35
8,29	8,17	8,34	8,10	8,22	8,16	8,10	8,11	8,26
8,31	8,18	8,27	8,06	8,19	8,23	8,11	8,33	8,35
8,29	8,19	8,27	8,12	8,19	8,20	8,14	8,25	8,28
8,19	8,20	8,31	8,08	8,23	8,10	8,10	8,27	8,19
8,26	8,18	8,24	8,10	8,19	8,20	8,12	8,34	8,37
8,26	8,25	8,27	8,13	8,30	8,15	8,11	8,20	8,27
8,27	8,19	8,34	8,20	8,12	8,09	8,10	8,19	8,34
8,41	8,30	8,31	8,14	8,22	8,04	8,10	8,15	8,36
8,26	8,14	8,36	8,12	8,30	8,14	8,10	8,35	8,28

Таблица 1: Результаты измерения 270 резисторов в кОм

k	1	2	3	4	5	6	7	8	9	10
Δn	1	0	0	0	3	6	34	28	22	12
$\omega \cdot 100$	14,2	0,0	0,0	0,0	42,7	85,5	484,3	398,9	313,4	170,9
k	11	12	13	14	15	16	17	18	19	20
Δn	27	23	21	33	22	20	11	2	4	1
$\omega \cdot 100$	384,6	327,6	299,1	470,1	313,4	284,9	156,7	28,5	57,0	14,2

Таблица 2: m=20

k	1	2	3	4	5	6	7	8	9	10
Δn	1	0	9	62	34	50	54	42	13	5
$\omega \cdot 100 * 100$	7,1	0,0	64,1	441,6	242,2	356,1	384,6	299,1	92,6	35,6

Таблица 3: m=10

Рис. 1: Гистограмма для m=20

Рис. 2: Гистограмма для m=10

Нормальное распределение описывается следующей формулой:

$$y = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R - \langle R \rangle)^2}{2\sigma^2}}$$

Эта функция также изображена на рис. 1 и 2. Видно, что гистограмма практически соответствует этой зависимости. Теоретическая вероятность попадания измерений в интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ равна 68%, а в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ соответственно – 95%.

4 Обсуждение результатов и выводы

В ходе работы мы получили, что величина сопротивления резистора, наугад выбранного из данного набора, попадает в интервал 8.21 ± 0.09 кОм с вероятностью 61%, в интервал 8.21 ± 0.18 кОм с вероятностью 97%, в интервал 8.21 ± 0.27 кОм с вероятностью 99%.

Таким образом, величины всех сопротивлений укладываются в 5-процентный интервал ($\langle R \rangle \pm 3\sigma$).

Однако, как можно заметить, измеренные результаты неидеально описываются нормальным распределением. Это можно объяснить неточностью метода измерения, в том числе окислением контактов резисторов и/или измерительных приборов. Также незначительный вклад в отклонение вносит изменение сопротивления резисторов в зависимости от температуры окружающей среды.