Tres problemas en grafos con costos

a) Grafos direccionales:

 encontrar la ruta más corta desde un vértice a todos los otros —el algoritmo de Dijkstra

b) Grafos no direccionales:

 encontrar el árbol de cobertura de costo mínimo, o minimum spanning tree (MST)

c) Grafos direccionales:

• encontrar las rutas más cortas entre todos los pares de vértices

Mejorando la conectividad digital

- El gobernador de la Región del Maule ha decidido mejorar significativamente la conectividad digital de la región
- La idea es conectar mediante fibra óptica subterránea varios pares de puntos relevantes de la región —cada conexión tiene un costo
- Sólo que hay demasiados puntos relevantes como para hacerlo todo de una vez
- Lo prioritario es conectar las ciudades más pobladas, que tienen escuelas, universidades, hospitales, compañías de bomberos, supermercados, etc.
- Aprovechamos que si A está conectado con B y B con C, entonces automáticamente A está conectado con C

¿Cuál es la **forma más barata** de hacer esto?

El problema es descrito por un grafo (conexo) no direccional con costos

Las ciudades son los nodos, V

Las conexiones posibles entre pares de ciudades son las aristas, E

... y los costos de las conexiones son los costos de las aristas

El grafo es no direccional, ya que las conexiones de las que estamos hablando son no direccionales:

... si u está conectado con v, entonces v está conectado con u

La solución es un subconjunto $T \subseteq E$ con las siguientes tres propiedades

- i) El grafo (V, T) es conexo \rightarrow las aristas de Tincluyen todos los vértices —forman una **cobertura**
- ii) No hay otro subconjunto T que cumpla con i) y tenga menor **costo total** (la suma de los costos de las aristas de T) —es una cobertura de **costo mínimo**
- iii) Las aristas de Tno forman ciclos —forman un $arbol^*$

Es decir, (V, T) es un árbol de cobertura de costo mínimo, o MST

* esta propiedad iii) de la solución se puede demostrar a partir de i) y ii)

MSTs

Originalmente, hace 100 años, redes de distribución de electricidad

Después, redes telefónicas

Hoy, redes de comunicación, eléctricas, hidráulicas, de computadores, de caminos, carreteras y autopistas, de tráfico aéreo

... incluso redes biológicas, químicas y físicas que se encuentran en la naturaleza

MSTs, cortes y aristas que cruzan el corte

Particionemos los vértices del grafo en dos (sub)conjuntos no vacíos, S y V-S —la partición (S, V-S) es un **corte** de V

Una arista **cruza** el corte si uno de sus extremos está en S y el otro en V-S

¿Qué podemos afirmar respecto a estas aristas y los MST?

El corte (S, V–S) y las aristas que cruzan el corte

¿Cuál debería ser la siguiente arista a incluir?

Buscando un MST

Si para cada corte la arista de menor costo está en un MST

... ¿cómo podemos encontrar un MST?

... ¿podremos construirlo una arista a la vez?

Propiedades del MST

¿Hay alguna arista que siempre pertenezca a un MST?

¿Se cumple esto recursivamente? ¿En qué casos?

¿Podremos aprovecharlo en un algoritmo codicioso?

El algoritmo de Kruskal

```
kruskal(G(V, E)):

ordenar E por costo, de menor a mayor

T \leftarrow \emptyset

foreach \ e \in E, en el orden obtenido arriba:

if agregar e a T no forma un ciclo:

agregar e a T
```

kruskal en acción: luego de ordenar las aristas no decrecientemente por costo, la arista de menor costo es (3,5): $\omega(3,5) = 18$

La arista (0, 1) es la próxima arista que debemos considerar, con costo $\omega(0, 1) = 32$, pero *la descartamos* ya que forma un ciclo con las aristas (1, 7) y (7, 0); y por lo tanto no contribuye a conectar entre sí nodos que aún no estén conectados

A propósito, ¿cuál es en este caso el *corte* del que hablamos en la diap. 9? En cada paso, al considerar la próxima arista de menor costo, (u, v), el corte queda formado por el subconjunto de nodos conectados a u mediante aristas que ya están en el MST (las aristas rojas), y por su complemento; o, alternativamente, por el subconjunto de nodos conectados a v mediante aristas que ya están en el MST, y por su complemento.

Así, al considerar la arista (0, 1), el corte es ({0, 2, 7, 1, 6}, {3, 4, 5}), y vemos que ambos nodos 0 y 1 quedan en el mismo subconjunto, por lo que la arista (0, 1) no cruza el corte

Ahora la arista considerada es la arista (3, 4), de costo $\omega(3, 4) = 34$; y el corte puede ser ($\{3, 5\}, \{0, 1, 2, 4, 6, 7\}$), o bien ($\{4\}, \{0, 1, 2, 3, 5, 6, 7\}$). En ambos casos, la arista (3, 4) **cruza** el corte

En ambos casos, la arista (3, 4) **cruza** el corte, es decir, no forma un ciclo con las aristas (rojas) que ya son parte del MST, y por lo tanto la agregamos a la solución

Si la arista considerada forma un ciclo con aristas que ya están en el MST, significa que no cruza el corte y la descartamos

Si el grafo tiene |V| vértices, entonces el MST tiene |V|-1 aristas

Una vez que el MST tiene |V|-1 aristas, cualquiera otra arista forma un ciclo ... y en la práctica no es necesario revisar las aristas restantes

Corrección de kruskal

Para demostrar que **kruskal** es correcto

- ... basta demostrar que dado cualquier corte, la arista de menor costo que cruza el corte está en el MST:
 - haciendo el supuesto de que todos los costos son distintos, se puede demostrar (más o menos fácilmente) por contradicción
- ... y luego demostrar que kruskal efectivamente implementa esta estrategia *hints*:
 - ya vimos cómo define kruskal el corte (V_1, V_2)
 - ¿cómo elije kruskal la arista de menor costo que cruza el corte anterior?

Un "detalle" no menor


```
kruskal(G(V, E)):

ordenar E por costo, de menor a mayor

T \leftarrow \emptyset

foreach \ e \in E, en el orden obtenido arriba:

if agregar e a T no forma un ciclo:

agregar e a T
```

¿cómo revisamos esto eficientemente?

Agregar (*u,v*) forma un ciclo **ssi** *u* y *v* están en el mismo subárbol (de aristas rojas)

Un nodo puede pertenecer a un solo sub-árbol del grafo

Los conjuntos de nodos de cada sub-árbol son disjuntos

¿Cómo podemos modelar esto para aprovecharlo?

kruskal con el vocabulario de conjuntos disjuntos

```
kruskal(G(V, E)):
    ordenar E por costo, de menor a mayor
    considerar cada nodo como formando un conjunto por sí mismo
    T \leftarrow \emptyset
    foreach(u, v) \in E, en el orden obtenido arriba:
    if si u y v no están en el mismo conjunto:
        agregar (u, v) a T
        unir los conjuntos de u y v
return T
```

kruskal con las operaciones de conjuntos disjuntos

```
kruskal(G(V, E)):

ordenar E por costo, de menor a mayor

foreach \ v \in V: make \ set(v)

T \leftarrow \emptyset

foreach \ (u, v) \in E, en el orden obtenido arriba:

if \ find \ (u) \neq find \ (v):

T \leftarrow T \cup \{(u, v)\}

union(u, v)

return \ T
```

¿Cuál es la complejidad de **kruskal**, si representamos los conjuntos como árboles?

Primero, hay que ordenar las |E| aristas $\rightarrow O(E \log E)$

Luego, hay que construir |V| conjuntos (de un elemento cada uno) \rightarrow O(V)

Durante la ejecución del segundo loop, se realizan |V|-1 uniones ... y 2|E| operaciones find

Cada union toma $O(1) \rightarrow O(V)$ para el total de |V|-1 operaciones union

¿Cuánto toman en total las 2|E| operaciones find?

¿Cuánto toman en total las 2|E| operaciones *find*?

El costo promedio de una operación *find* en un conjunto de n elementos es $O(\log *n)$ —usando unión por rango y compresión de ruta

El *n* más pequeño para el cual $\log^* n$ es 5 es $n = 2^{16} = 65536$

... y va a quedarse en 5 para todos los $n \le 2^{65536}$

 \rightarrow en cualquier uso práctico, $\log^* n$ es constante (aunque en teoría tiende a ∞)

Así, las 2|E| operaciones find toman $O(E\log^*E)$

... y la complejidad de **kruskal** es

$$O(E\log E) + O(V) + O(E\log E)$$

- $= O(E \log E)$
- = O(ElogV), ya que $|E| = O(V^2)$