2.5: Continuity

Continuity at a Point

A function f is **continuous from the left** at a if

$$\lim_{x \to a^{-}} f(x) = f(a).$$

A function f is **continuous from the right** at a if

$$\lim_{x \to a^+} f(x) = f(a).$$

Example 1. (a) $f(x) = \lfloor x \rfloor$

(b)
$$g(x) = \lceil x \rceil$$

A function f is **continuous** at a if

$$\lim_{x \to a} f(x) = f(a).$$

Notice this definition implicitly assumes that $\lim_{x\to a} f(x)$ and f(a) exist.

Therfore, a function f is **discontinuous** at a if at least one of the following is true

- $\lim_{x \to a} f(x)$ does not exist,
- f(a) does not exist, or
- $\lim_{x \to a} f(x) \neq f(a)$.

Simply, the graph of a continuous function can be drawn without lifting your pencil.

Example 2. Find the discontinuities of the following functions, and state why each is discontinuous.

(a)
$$f(x) = \tan(x)$$
 (b) $g(x) = \frac{1}{x^2}$ (c) $h(x) = \frac{(x+1)^2(x-1)}{x+1}$

Example 3. Find each x-value at which f is discontinuous and for each x-value, determine whether f is continuous from the right, from the left or neither.

$$f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ e^x & \text{if } 0 \le x \le 1 \\ 2-x & \text{if } x > 1 \end{cases}$$

Continuity on an Interval

A function f is **continuous** on an *open* interval (a,b) where a < b, if f is continuous at every $c \in (a,b)$. Furthermore, f is continuous on the *closed* interval [a,b] if f is continuous on (a,b), continuous from the right at a, and continuous from the left at b.

Example 4. Show that $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1, 1].

Example 5. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

Example 6. Find the intervals on which the following functions are continuous

(a)
$$f(x) = \frac{\ln x + \arctan x}{x^2 - 1}$$
 (b) $g(x) = \ln(\sin^2 x)$

Theorem 1. If f and g are continuous at a and c is a constant, then the following functions are continuous at a:

Example 7. Suppose that f and g are continuous functions such that $\lim_{x\to 2} [3f(x) + f(x)g(x)] = 36$ and g(2) = 6. Find f(2).

Theorem 2. Any polynomial function is continuous on its domain $\mathbb{R} = (-\infty, \infty)$. Any rational function $f = \frac{P}{Q}$, for polynomials P, Q, is continuous on its domain $\{x \in \mathbb{R} \mid Q(x) \neq 0\}$.

Additionally, the following types of functions are continuous on their domains

• root functions

• exponential functions

- trigonometric
- inverse trigonometric functions
- logarithmic functions

Theorem 3. If $\lim_{x\to a} g(x) = L$ and f is continuous at L, then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L).$$

Theorem 4. If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a. That is,

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(g(a)).$$

Example 8. Use continuity to evaluate the limits

(a)
$$\lim_{x \to \pi} \cos\left(x + \cos\frac{x}{2}\right)$$

(b)
$$\lim_{x \to 1} \arcsin\left(\frac{1-\sqrt{x}}{1-x}\right)$$

Theorem 5. (Intermediate Value Theorem) If f is continuous on [a,b], then for every $N \in (f(a), f(b))$ there exists $c \in (a,b)$ such that f(c) = N.

Example 9. Use the Intermediate Value Theorem to show that there is a root of the equation $\sqrt[3]{x} = 1 - x$ in the interval (0,1).

Example 10. Is there a number that is exactly 1 more than its cube?