МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Моделювання операційних підсилювачів з негативним зворотнім зв'язком

Виконала: Бабур В.М.

Студентка 5-Б групи

ББК 73Ц

I-72

Укладачі: В. М. Бабур

I-72 Моделювання пасивних RC фільтрів./ укл. В. М. Бабур.

- К.: КНУ ім. Т. Шевченка, 2021. – 7 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі NI Multisim ^{тм}.

УДК 001.008 (002.21)

ББК 73Ц

© Київський Національний Університет імені Тараса Шевченка, 2021

Зміст

1. Вступ	.4
2. Теоретичні відомості	.5
3. Практична частина	.6
Висновки	.6
Використана література	.7

1.Вступ

Об'єкт дослідження: емітерний повторювач, парафазний, диференціальний підсилювач та підсилювач зі спільним емітером.

Предмет дослідження: теоретичні основи, принципи роботи, фізичний зміст і застосування підсилювачів.

Мета роботи: виміряти коефіцієнти передачі за напругою підсилювальних каскадів різних типів для гармонічних і імпульсних вхідних сигналів, а також зсуви фаз між вихідними і вхідними сигналами.

Метод дослідження: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів (метод співставлення).

2. Теоретичні відомості

• Підсилювач електричних сигналів — радіоелектронний пристрій, що перетворює вхідний електричний сигнал, який являє собою залежність від часу напруги $U_{ex}(t)$ або струму $I_{ex}(t)$, у пропорційний йому вихідний сигнал $U_{eux}(t)$ або $I_{eux}(t)$, потужність якого перевищує потужність вхідного сигналу.

Будь-який підсилювач електричних сигналів можна розглядати як активний чотириполюсник, маючи змогу досліджувати частотні характеристики підсилювача (його відгук на гармонічний сигнал певної частоти), імпульсні характеристики (відгук на одиничний імпульсний сигнал у вигляді *в*-функції) або перехідні характеристики (відгук на ступінчасту зміну вхідного сигналу).

- Підсилювальний каскад підсилювач, який містить мінімальне число підсилювальних елементів (1–2 транзистори) і може входити до складу багатокаскадного підсилювача.
- Коефіцієнт передачі за напругою K_u відношення амплітуди вихідного напруги підсилювача до амплітуди вхідної.

3.Практична частина

Усі потрібні дані параметри та змодельовані схеми наявні у файлах '№5.1' (емітерний повторювач), '№5.2' (парафазний підсилювач), '№5.3' (підсилювач зі спільним емітером) та '№5.4' (диференціальний підсилювач).

Висновки

У даній роботі було досліджено принцип роботи різних підсилювачів. Також було проаналізовано залежності вхідних та вихідних сигналів від часу. Порівнявши їх, можна зрозуміти принцип роботи кожного підсилювача та знайти їх відмінності.

Використана література

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.
- 4.https://kpfu.ru/staff_files/F1700343876/SPEKTRY_02.01.15.pdf