Carefully PRIN	Γ your full name:		
Math 51	Differential Equations Alternate Exam 2 (90 pts.+ 10 bonus pts)		Spring 2022
(including your After finish submission and your exam). You if you remove th For the par available space i * * * * * * Please sign	phones) must be sile ing your exam, you upload it to Grades a should write your te staples from your tial credit problems f possible. * * * * * * * * * * *	s, always show your work. Try ********* Vith your signature, you pledge	ration of the exam. et. We will scan your need to take images of as indicated (especially to fit this work in the * * * * * * * *
Signature:		S CAGIII.	

- 1. (16 points) True-false and multiple choice. Circle the correct choice.
 - (a) Let $\mathbf{h}_1, \ldots, \mathbf{h}_n$ be n solutions of an order-n linear system $D\vec{x} = A\vec{x}$ on an interval I. Is it possible that the Wronkisan $W[\mathbf{h}_1, \ldots, \mathbf{h}_n](t)$ is 0 at one point t_0 of I but nonzero at another point t_1 of I?
 - A. Yes
 - B. No
 - (b) True or False. An $n \times n$ real matrix must have n linearly independent eigenvectors, some of which may be complex.
 - (c) True or False. Let A be a matrix of real numbers. The linear system $D\vec{x} = A\vec{x}$ must have n linearly independent real solutions.
 - (d) True or False. Let A be a matrix of real numbers. If \vec{x} is a complex solution of $D\vec{x} = A\vec{x}$, then both Re \vec{x} and Im \vec{x} are real solutions of $D\vec{x} = A\vec{x}$.
 - (e) True or False. Five vectors in \mathbb{R}^5 are linearly independent if and only if they generate (span) \mathbb{R}^5 .
 - (f) True or False. Let A be an $n \times n$ matrix with an eigenvalue λ of multiplicity 3. An eigenvector corresponding to λ is also a generalized eigenvector.
 - (g) True or False. Let A be an $n \times n$ real matrix. The general solution of $D\vec{x} = A\vec{x}$ can be generated by fewer than n solutions.
 - (h) True or False. For every eigenvalue λ of an $n \times n$ matrix, there must be a corresponding eigenvector.

2. (8 pts) Write down an annihilator of smallest possible order with real coefficients for the function

$$4te^{3t} + t^2e^{2t}\sin t.$$

3. (10 points) Make a simplified guess for a particular solution of the differential equation

$$(D+2)^7(D^2+1)^6x = te^{-2t} + \cos t.$$

Do not solve for the coefficients.

4. (14 points)

(a) Convert the differential equation

$$x''' - t^2x'' + \pi x' + tx = \sin t$$

into a linear system of three equations in three unknowns x_1, x_2, x_3 .

(b) Write the linear system in the form $D\vec{x}=A(t)\vec{x}+\vec{E}(t)$ for some matrix A(t) and vector $\vec{E}(t)$.

5. (15 points)

(a) (10 pts) The matrix $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$ has eigenvalue $\lambda = 2$ of multiplicity 2. It has an eigenvector $\vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and a generalized eigenvector $\vec{u} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$. Using these two vectors, write down two solutions of $D\vec{x} = A\vec{x}$ that generate the general solution.

(b) (5 pts) Suppose we have found three solutions of a linear system $D\vec{x} = A\vec{x}$:

$$e^{t} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \frac{1}{2}t^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}, \quad e^{t} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix} - t^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix},$$

$$e^{t} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \frac{1}{2}t^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}.$$

Explain why these three solutions generate the general solution of $D\vec{x} = A\vec{x}$.

6. (12 points) Suppose i, -i are eigenvalues of the 2×2 matrix A with corresponding eigenvectors $\begin{bmatrix} 1 \\ i \end{bmatrix}, \begin{bmatrix} 1 \\ -i \end{bmatrix}$, respectively. Write down two linearly independent real solutions of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$. Show your work and simplify your answers.

7. (15 points) Find the general solution of the differential equation

$$5x'' - 10x' + 5x = t^{1/5}e^t,$$

given that two independent solutions of the related homogeneous equation are e^t and te^t .

(Continuation of Question 7)

(End of Exam)