Порядок обработки результатов прямых измерений

1. В качестве оценки истинного значения измеряемой величины А принять: при однократном измерении – результат этого измерения; при многократных измерениях – среднее арифметическое результатов всех измерений:

$$A_{_{\mathrm{H3}}} = \langle A \rangle = \frac{1}{n} \sum_{i=1}^{n} A_{i} . \tag{\Pi.2.1}$$

2. Для многократных измерений вычислить случайную абсолютную погрешность:

$$\Delta A_{\text{cn}} = t_{P,n} \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(A_{i} - \langle A \rangle\right)^{2}}{n(n-1)}}.$$
(II.2.2)

Коэффициент Стъюдента $t_{P,n}$ определить по табл. П.2.1. Доверительная вероятность, как правило, принимается равной 0,95. Для однократного измерения $\Delta A_{\rm cn}=0$.

Таблица П.2.1 Коэффициенты Стъюдента $t_{P,n}$ для некоторых значений n и P (n – число измерений; P – доверительная вероятность)

n P	0,7	0,8	0,9	0,95	0,98	0,99	0,999
2	2,0	3,1	6,3	12,7	31,8	63,7	636,6
3	1,3	1,9	2,9	4,3	7,0	9,9	31,6
4	1,3	1,6	2,4	3,2	4,5	5,8	12,9
5	1,2	1,5	2,1	2,8	3,7	4,6	8,7
6	1,2	1,5	2,0	2,6	3,4	4,0	6,9
7	1,1	1,4	1,9	2,4	3,1	3,7	6,0
8	1,1	1,4	1,9	2,4	3,0	3,5	5,4
9	1,1	1,4	1,9	2,3	2,9	3,4	5,0
10	1,1	1,4	1,8	2,3	2,8	3,3	4,8
20	1,1	1,3	1,7	2,1	2,5	2,9	3,9
∞	1,0	1,3	1,6	2,0	2,3	2,6	3,3

3. По классу точности измерительного прибора найти инструментальную погрешность $\Delta A_{_{\mathrm{UH}}}$. Если это возможно, оценить методическую погрешность $\Delta A_{_{\mathrm{MT}}}$ и рассчитать систематическую абсолютную погрешность $\Delta A_{_{\mathrm{CHCT}}} = \sqrt{(\Delta A_{_{\mathrm{HH}}})^2 + (\Delta A_{_{\mathrm{MT}}})^2}$. Если оценить методическую погрешность не представляется возможным, то считать систематическую погрешность равной инструментальной.

4. Найти абсолютную погрешность:

$$\Delta A = \sqrt{(\Delta A_{\text{cm}})^2 + (\Delta A_{\text{cmct}})^2} . \tag{\Pi.2.3}$$

Если одна из погрешностей составляет менее 1/3 от другой, то ею можно пренебречь.

5. Рассчитать относительную погрешность:

$$\delta A = \frac{\Delta A}{A_{_{\text{M3}}}} \tag{\Pi.2.4}$$

и выразить ее в процентах.

6. Записать окончательный результат в виде

$$A = A_{\mu_3} \pm \Delta A \tag{\Pi.2.5}$$

с указанием размерности измеряемой величины. Здесь же привести значение относительной погрешности δA . При записи результата: абсолютную ΔA и относительную δA погрешности округлить до одной или двух значащих цифр (если первая значащая цифра 1 или 2); величину $A_{_{\rm H3}}$ округлить так, чтобы разряд ее последней значащей цифры совпал с разрядом последней значащей цифры абсолютной погрешности.

Упрощенный метод обработки результатов прямых многократных измерений (метод Корнфельда)

1. В качестве оценки истинного значения измеряемой величины A принять полусумму максимального и минимального из результатов измерений:

$$A_{\text{H3}} = \frac{A_{\text{max}} + A_{\text{min}}}{2}.$$
 (II.2.6)

2. Вычислить случайную абсолютную погрешность как полуразность максимального и минимального из результатов измерений:

$$\Delta A_{\rm cn} = \frac{A_{\rm max} - A_{\rm min}}{2}.\tag{\Pi.2.7}$$

Доверительная вероятность в методе Корнфельда зависит от числа измерений n:

$$P = 1 - \left(\frac{1}{2}\right)^{n-1}.\tag{\Pi.2.8}$$

Остальные расчеты делаются так же, как в предыдущем случае (см. пп. 3–6).