ПРИНЯТИЕ РЕШЕНИЙ ПО ПРЕЦЕДЕНТНОСТИ (ЗАДАЧА РАСПОЗНАВАНИЯ)

АЛГОРИТМ РАСПОЗНАВАНИЯ#1 (произвольные признаки)

Begin (режим обучения)

Задана выборка объектов $X^0: X_I^0,...,X_l^0$ (*I* - число классов). Разбиваем X^0 на две части: $X^{0,P}$, $X^{0,T}$ (назовем их **параметрической** и **обучающей** соответственно) так, чтобы при этом выполнялись условия:

$$1.X^{0,P} \cap X^{0,T} = \emptyset$$

$$2.K_i^P := X^{0,P} \cap X_i^0 \neq \varnothing, K_i^T := X^{0,T} \cap X_i^0 \neq \varnothing \forall i = 1,...,l$$

Обозначим
$$\left|X^{\,0,T}\right|=n, \left|X^{\,0,P}\right|=m, \left|K_i^T\right|=n_i, \left|K_i^P\right|=m_i$$

Этап 1. (вычисление попарной близости для объектов).

Begin Для каждого объекта $x_i \in X^{0,T}$ вычисляем **близость** к объектам $x^u \in X^{0,P}$. Для этого предварительно выбираем некоторую функцию близости

$$d: X \times X \to R$$

где X - пространство признаков, т.е. $X^0 \subseteq X$, R -пространство действительных чисел (например, это может быть обычная метрика). В результате получим $n \times m$ матрицу $D := \left\| d(x_i, x^u \right\|_{\mathbb{R}^{n}}$.

end

<u>Этап 2</u>. (вычисление близости объектов из обучающей выборки к классам и оптимизация).

Begin Выбираем / функций близости объектов к классам

$$b_i: \underbrace{R \times \times R}_{r} \rightarrow R, i = 1,...,l$$

В зависимости от вида этой функции выбираем решающее правило для вычисления алгоритмических предикатов

$$P^{A} := (P_{1}^{A}, ..., P_{l}^{A}) : \underbrace{R \times \times R}_{l} \rightarrow \{0,1\}^{l}$$

Пример решающего правила:

$$P_{i}^{A}(x) = \begin{cases} 1, & \text{if } b_{l}(x, K_{i}^{P}) = \min \{b(x, K_{I}^{P}), \dots, b(x, K_{l}^{P})\}, \\ 0, & \text{otherwise.} \end{cases}$$

Устанавливаем **логический признак** := false.

While not логический признак do (оптимизация)

1. для каждого объекта $x_j \in X^{0,T}$ вычисляем близость к классам K_l^P, \dots, K_l^P , на основе матрицы D, полагая

$$b_i(x_i, K_i^P): d(x_i, x^{u_i}) \times ... \times d(x_i, x^{u_{m_i}}) \rightarrow R$$

где $x^{u_I},...,x^{u_{m_i}}$ – объекты из K_i^P . В результате получаем матрицу вещественных чисел $B=\left\|b_i(x_j,K_i^P)\right\|_{r > 1}$.

2. Вычисляем P^A для всех объектов $x_j \in X^{0,T}$. Т.к. для каждого такого объекта известна принадлежность к классам K_i^T , то можно вычислить функционал качества

$$\varphi(X^{0,T}) = \frac{n_0(X^{0,T})}{n}$$
,

где $n_{\scriptscriptstyle 0}(X^{\scriptscriptstyle 0,T})$ – число правильно распознанных объектов из $X^{\scriptscriptstyle 0,T}$.

 $\underline{\mathbf{if}}$ качество распознавания (значение функционала φ) устраивает

then фиксируем функции $b_1,...,b_l$ и решающее правило;

логический признак := true.

else корректируем функции $b_l,...,b_l$ (и/или в случае необходимости решающее правило).

<u>end</u>

end

Begin (режим распознавания)

Пользуясь полученными в режиме обучения функциями d, b и решающим правилом для каждого объекта $x \notin X^0$

- вычисляем $d(x,x^{I}),...,d(x,x^{m})$;
- вычисляем $b_l(x, K_l^P), ..., b_l(x, K_l^P)$;
- вычисляем P^A .

Работа в этом режиме осуществляется до тех пор, пока имеются объекты $x \notin X^0$.

end

АЛГОРИТМ РАСПОЗНАВАНИЯ#2 (булевские признаки – {0,1})

Begin (режим обучения)

Задана выборка объектов X^0 : X_I^0 ,..., X_l^0 (I - число классов) с известной классификацией. Назовем эту выборку **обучающей** и потребуем, чтобы при этом выполнялось условие:

$$X_i^0 \cap X_j^0 = \emptyset \quad \forall i, j \in \{1,...,l\}, i \neq j$$

Обозначим
$$\left|X_{i}^{0}\right|=m_{i}$$
, $X^{0}\subset B_{2}^{n}$, $x=(x_{1},...,x_{n})$

Шаг 1. Фиксируем номер класса $i \in \{1,...,l\}$ и переходим к шагу 2.

Шаг 2. Для всех признаков $t \in \{1,...,n\}$ вычисляем:

$$b_{it} = \frac{\sum_{j=1}^{m_i} x_{jt}^i}{m_i}$$

где x_{jt}^{i} - значение признака t в векторе $x_{j} \in X_{i}^{0}$.

Шаг 3. Шаги 1&2 выполняем до тех пор, пока все номера классов и все признаки в каждом классе не будут исчерпаны. Затем переходим к шагу 4.

Шаг 4. Для всех признаков $t \in \{1,...,n\}$ и классов $i \in \{1,...,l\}$ вычисляем:

$$b_t = \frac{\sum_{i=1}^{l} b_{it}}{l}, a_{it} = |b_{it} - b_t|$$

end

Begin (режим распознавания)

Пользуясь полученными в режиме обучения параметрами для каждого объекта $x \notin X^0$ выполняем следующую последовательность шагов:

Шаг 1. Фиксируем номер $i \in \{1,...,l\}$ и для всех объектов $x' \in X_i^0$ вычисляем:

$$\mu_{X_{i}}(x,x') = \max \{0, \frac{\sum_{j=1}^{n} (-1)^{t} \cdot a_{ji}}{\sum_{j=1}^{n} a_{ji}} \}$$

где
$$t = \begin{cases} 1, & \text{if } x_j \neq x'_j, \\ 2, & \text{otherwise.} \end{cases}$$

Шаг 2. Для номера класса $i \in \{1,...,l\}$ вычисляем:

$$\mu_A(k_i) = \max_{x' \in X_i^0} \{\mu_{X_i}(x, x')\}$$

Шаг 3. Шаги 1&2 выполняем до тех пор, пока все номера классов не будут исчерпаны.

Если не все объекты $x \notin X^0$ исчерпаны, то повторяем последовательность шагов 1&2&3. В противном случае переходим к шагу 4.

Шаг 4. (*интерпретация*) В результате каждому вектору $x \notin X^0$ будет поставлен в соответствие вектор $(\mu_A(k_1),...,\mu_A(k_l))$. Содержательно величины $\mu_A(k_i)$ можно интерпретировать как степень принадлежности объекта $x \notin X^0$ к классу X_i . Для однозначного отнесения объекта к какому-либо классу можно использовать решающее правило (см. алгоритм выше).

<u>end</u>