Redes: Grafos en Neurociencias Intro al TP2

Andreas Vesalius, 1543

El caso de Phineas P. Gage (1823-1860)

Accidente en 1848 destruye su lobo frontal izquierdo

No produjo grandes déficits en sus funciones motoras, sensoriales y cognitivas...

... pero "Phineas ya no es el mismo". Su personalidad se vio alterada.

Frenología Fanz Gall (1758–1828)

Redes en el cerebro: balance segregación/integración

Ray & Barath, 2018

Contents lists available at SciVerse ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle

Enzo Tagliazucchi *, Frederic von Wegner, Astrid Morzelewski, Verena Brodbeck, Sergey Borisov, Kolja Jahnke, Helmut Laufs

Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany

¿Cómo medimos ciclos de vigilia-sueño? Electroencefalografía (EEG)

¿Cómo medimos ciclos de vigilia-sueño?

Electroencefalografía (EEG)

¿Cómo medimos ciclos de vigilia-sueño? Electroencefalografía (EEG)

alpha (8–13 Hz), beta (13–30 Hz), delta (0.5–4 Hz), y theta (4–7 Hz)

¿Cómo medimos la actividad de regiones cerebrales? Resonancia magnética funcional (fMRI)

Resonancia magnética (MRI)

Estado basal

Spins de átomos de hidrógeno desalineados

Aplico campo magnético (B₀)

hidrógeno alineados /
Precesión de

los spins

Pulsos de radio frecuencia (RF) que resuenan con el ¹H y mido relajación de la precesión

"Contraste" entre tejidos

Resonancia magnética funcional (fMRI)

Blood-Oxygen-Level Dependent (BOLD) contrast imaging

Actividad neuronal

Consumo local de oxígeno

Aumento del flujo sanguíneo

Cambios en la concentración de oxígeno local reflejado en la relación entre hemoglobina oxigenada (HbO₂) y desoxigenada (Hb)

HbO₂ es diamagnético y Hb es paramagnético: interactúan diferentemente con campos magnéticos

Resonancia magnética funcional (fMRI)

Blood-Oxygen-Level Dependent (BOLD) contrast imaging

Precisión espacial ~ 1.5 - 3mm Es la suma de la actividad local de millones de neuronas

Precisión temporal ~ 5s La actividad de una neurona tiene una escala temporal de 1ms

Redes en el cerebro: construyendo grafos

Redes en el cerebro: construyendo grafos

Contents lists available at SciVerse ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle

Enzo Tagliazucchi *, Frederic von Wegner, Astrid Morzelewski, Verena Brodbeck, Sergey Borisov, Kolja Jahnke, Helmut Laufs

Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany

Definir módulos / comunidades:

- Objetivo: Maximizar Q
- Heurística para la búsqueda óptima: Algoritmo de Louvain (Blondel et al., 2008).

<u>Intra-modular degree:</u>

$$z_i = rac{k_i - < k >}{\sigma_k}$$

ki: Grado intra-módulo

<k>, σ: Promedio y desvío de los grados intra-módulo

Participation coefficient:

$$P_i = 1 - \sum_{j}^{N_M} \left(\frac{k_i^{U_j}}{k_i}\right)^2$$

 P_i es cero si todos sus enlaces son con su módulo, es máximo si sus enlaces se distribuyen homogéneamente entre modulos (valor depende del # modulos)

k.: Grado global

 k_{\cdot}^{Uj} : Número de aristas de i al módulo j

Hubs: Provincial Hubs:

Provincial Nodes:

Connector Nodes:

 $(z_C = 1, P_C = 0.05)$

