import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import stats

df = pd.read_csv("/content/abalone.csv")

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64

7 Shell weight 4177 non-null float64 8 Rings 4177 non-null int64 dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	1
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.
4							•

df.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

sns.heatmap(df.isnull(),yticklabels=False,cmap='pink')

<matplotlib.axes._subplots.AxesSubplot at 0x7f1043c14cd0>

df.corr()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819

Sex	Length	Diameter	Height	wnoie weight	weight	viscera weight	weight	Rings

df.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	2	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	0	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	0	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	2	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	0	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

ADDING AGE COLUMN

```
df['Age'] = df['Rings'] + 2.5
```

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	17.5
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	9.5
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	11.5
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	12.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	9.5

df.columns

Data visualization

```
df['Sex'].value_counts().plot(kind='pie')
plt.legend()
plt.xlabel('Sex')
plt.ylabel('Count')
```

Text(0, 0.5, 'Count')


```
sns.distplot(df['Age'])
plt.xlabel('Age')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

Text(0, 0.5, 'Count')


```
sns.distplot(df['Rings'])
plt.xlabel('Rings')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

Bi-variate analysis

0.00

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	17.5
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	9.5
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	11.5
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	12.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	9.5

sns.scatterplot(data=df, x='Length', y='Shucked weight', hue='Rings',)

<matplotlib.axes._subplots.AxesSubplot at 0x7f10435c8190>

sns.boxplot(data=df, x='Whole weight', y='Shucked weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f1042effcd0>

sns.boxplot(data=df, x='Sex', y='Whole weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f10363711d0>

sns.scatterplot(data=df, x='Sex', y='Shucked weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f1034358b90>

sns.boxplot(data=df, x='Sex', y='Shell weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f1034b7eed0>

Univariate analysis

sns.pairplot(data=df, hue='Rings')

df.describe()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	V
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
mean	0.947091	0.523992	0.407881	0.139516	0.828742	0.359367	0.
std	0.822240	0.120093	0.099240	0.041827	0.490389	0.221963	0.
min	0.000000	0.075000	0.055000	0.000000	0.002000	0.001000	0.
25%	0.000000	0.450000	0.350000	0.115000	0.441500	0.186000	0.

df.corr()['Age']

Sex	0.034627
Length	0.556720
Diameter	0.574660
Height	0.557467
Whole weight	0.540390
Shucked weight	0.420884
Viscera weight	0.503819
Shell weight	0.627574
Rings	1.000000
Age	1.000000
Name: Age, dtype:	float64

df.shape

(4177, 10)

Checking outliers for the data

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	17.5
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	9.5
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	11.5
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	12.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	9.5

df.drop('Age',axis=1,inplace=True)

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

sns.boxplot(x=df['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f1043f46890>


```
tenth_per = np.percentile(df['Length'], 10)
nine_per = np.percentile(df['Length'], 90)

df['Length'] = np.where(df['Length'] < tenth_per, tenth_per, df['Length'])
df['Length'] = np.where(df['Length'] > nine_per, nine_per, df['Length'])
```

IQR

sns.boxplot(x=df['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f1043f9f350>

```
sns.boxplot(x=df['Diameter'])
tenth_per = np.percentile(df['Diameter'], 10)
nine per = np.percentile(df['Diameter'], 90)
df['Diameter'] = np.where(df['Diameter'] < tenth_per, tenth_per, df['Diameter'])</pre>
df['Diameter'] = np.where(df['Diameter'] > nine per, nine per, df['Diameter'])
sns.barplot(x=df['Diameter'])
sns.boxplot(x=df['Height'])
tenth per = np.percentile(df['Height'], 10)
nine per = np.percentile(df['Height'], 90)
df['Height'] = np.where(df['Height'] < tenth_per, tenth_per, df['Height'])</pre>
df['Height'] = np.where(df['Height'] > nine per, nine per, df['Height'])
sns.boxplot(x=df['Height'])
sns.boxplot(x=df['Whole weight'])
tenth per = np.percentile(df['Whole weight'], 10)
nine per = np.percentile(df['Whole weight'], 90)
df['Whole weight'] = np.where(df['Whole weight'] < tenth_per, tenth_per, df['Whole weight'])</pre>
df['Whole weight'] = np.where(df['Whole weight'] > nine_per, nine_per, df['Whole weight'])
sns.boxplot(x=df['Whole weight'])
sns.boxplot(x=df['Shucked weight'])
```

```
tenth per = np.percentile(df['Shucked weight'], 10)
nine_per = np.percentile(df['Shucked weight'], 90)
df['Shucked weight'] = np.where(df['Shucked weight'] < tenth per, tenth per, df['Shucked weig
df['Shucked weight'] = np.where(df['Shucked weight'] > nine_per, nine_per, df['Shucked weight
sns.boxplot(x=df['Shucked weight'])
sns.boxplot(x=df['Viscera weight'])
tenth_per = np.percentile(df['Viscera weight'], 10)
nine per = np.percentile(df['Viscera weight'], 90)
df['Viscera weight'] = np.where(df['Viscera weight'] < tenth per, tenth per, df['Viscera weig</pre>
df['Viscera weight'] = np.where(df['Viscera weight'] > nine per, nine per, df['Viscera weight
sns.boxplot(x=df['Viscera weight'])
sns.boxplot(df['Shell weight'])
tenth per = np.percentile(df['Shell weight'], 10)
nine per = np.percentile(df['Shell weight'], 90)
df['Shell weight'] = np.where(df['Shell weight'] < tenth per, tenth per, df['Shell weight'])</pre>
df['Shell weight'] = np.where(df['Shell weight'] > nine_per, nine_per, df['Shell weight'])
sns.boxplot(df['Shell weight'])
sns.boxplot(df['Rings'])
tenth_per = np.percentile(df['Rings'], 10)
nine_per = np.percentile(df['Rings'], 90)
df['Rings'] = np.where(df['Rings'] < tenth_per, tenth_per, df['Rings'])</pre>
df['Rings'] = np.where(df['Rings'] > nine_per, nine_per, df['Rings'])
sns.boxplot(df['Rings'])
df.describe()
df.head()
```

Outlier treatment

```
df['Age'] = df['Rings'] + 2.5
df.head()
X = df.drop('Age', axis=1)
y = df['Age']
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.3, random_state=101)
X_train.shape
X_test.shape
y_train.shape
y_test.shape
from sklearn.linear_model import LinearRegression
model1 = LinearRegression()
model1.fit(X_train,y_train)
y_pred1 = model1.predict(X_test)
y_pred1
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
print(mean_absolute_error( y_test, y_pred1))
```