Déduction naturelle

Définition: Formule logique (rappel)

Soit V un ensemble (de variables). L'ensemble des formules logiques sur V est défini inductivement :

- \top (vrai) et \bot (faux) sont des formules
- Toute variable $x \in V$ est une formule
- Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Définition: Séquent

Un séquent, noté $\Gamma \vdash A$ et prononcé Γ thèse A, est constitué d'un ensemble Γ de formules logiques et d'une formule logique

 $\Gamma \vdash A$ signifie que sous les hypothèses Γ , on peut déduire A. Γ est l'ensemble des hypothèses à un instant donné d'une démonstration.

Définition: Règle d'inférence

Une règle d'inférence est constituée :

- d'un ensemble de séquents $\Gamma_1 \vdash A_1, ..., \Gamma_n \vdash A_n$ appelés prémisses
- d'un séquent $\Gamma \vdash A$ appelé conclusion.

On le représente :

$$\frac{\Gamma_1 \vdash A_1 \quad \Gamma_2 \vdash A_2 \quad \cdots \quad \Gamma_n \vdash A_n}{\Gamma \vdash A}$$

Une règle sans prémisse est appelée axiome.

Une règle comme ci-dessus est valable pour toutes formules $A_1, ..., A_n, A$ et tous ensembles de formules $\Gamma_1, ..., \Gamma_n, \Gamma$.

Définition : Preuve

On définit inductivement une preuve (ou arbre de preuve, dérivation) d'un séquent $\Gamma \vdash A$ par :

- si $\Gamma \vdash A$ est un axiome, alors $\overline{\Gamma \vdash A}$ est une preuve de $\Gamma \vdash A$

$$\frac{\Gamma_1 \vdash A_1 \quad \Gamma_2 \vdash A_2 \quad \dots \quad \Gamma_k \vdash A_k}{\Gamma \vdash A} R$$

est une règle d'inférence et que $P_1, P_2, ..., P_k$ sont des preuves de $\Gamma \vdash A_1, \Gamma \vdash A_2, ..., \Gamma_k \vdash A_k$ respectivement, alors $\underbrace{\frac{P_1 \quad P_2 \quad ... \quad P_k}{\Gamma \vdash A}}_{\Gamma \vdash A}$

est une preuve de $\Gamma \vdash A$.

On dit que $\Gamma \vdash A$ est prouvable s'il existe une preuve de $\Gamma \vdash A$.

Attention: Vous devez utiliser uniquement les règles autorisées pour construire une preuve. Par exemple, vous ne pouvez pas remplacer $\neg \neg A$ par A.

I.1 Axiome

ax

Si A appartient à l'ensemble des hypothèses alors A est prouvable.

I.2 Vrai \top et faux \bot

 $\top_i : \top$ est prouvable.

 \perp_e : Si \perp est prouvable, alors n'importe quelle formule A est prouvable.

I.3 Implication \rightarrow

 \rightarrow_i : Si sous l'hypothèse A, on peut prouver B, alors on peut prouver $A \rightarrow B$.

 \rightarrow_e : Si on peut prouver $A \rightarrow B$ et A, alors on peut prouver B.

Exercice 1.

Prouver $\vdash A \to A$.

Exercice 2.

Prouver $A \to (B \to C) \vdash (B \to A) \to (B \to C)$.

I.4 Conjonction \wedge

 \wedge_i : Si on peut prouver A et B, alors on peut prouver $A \wedge B$.

 \wedge_e^g : Si on peut prouver $A \wedge B$, alors on peut prouver A.

Exercice 3.

- 1. Prouver $(A \land B) \to C \vdash A \to (B \to C)$.
- 2. Prouver $A \to (B \to C) \vdash (A \land B) \to C$.

I.5 Disjonction \lor

 \vee_i^g : Si on peut prouver A, alors on peut prouver $A \vee B$.

 \vee_e : Si on peut prouver $A \vee B$ et que C est prouvable à partir de A et à partir de B, alors C est prouvable.

Exercice 4.

- 1. Prouver $A \vee (B \wedge C) \vdash A \vee B$
- 2. En déduire $\vdash A \lor (B \land C) \longrightarrow (A \lor B) \land (A \lor C)$.

I.6 Négation ¬

---- \neg_i

 \neg_i : Si sous l'hypothèse A, on peut prouver \bot , alors on peut prouver $\neg A$.

 \neg_e : Si on peut prouver $\neg A$ et A, alors on peut prouver $\bot.$

Exercice 5.

Prouver $A \vdash \neg \neg A$.

I.7 Raisonnement par l'absurde, tiers-exclu

Les règles précédentes forment la logique intuitioniste. On peut ajouter le raisonnement par l'absurde (raa) ou le tiers-exclu (te) pour obtenir la logique classique :

_____ raa _____ te

Exercice 6.

On ajoute raa à la logique intuitioniste et on veut montrer te.

- 1. Prouver $\neg (A \lor \neg A) \vdash \neg A$.
- 2. Prouver $\vdash A \lor \neg A$.

Inversement, on peut démontrer raa à partir de te et les règles de la logique intuitioniste.

II Méthode

Pour prouver un séquent, on peut commencer par appliquer la règle la plus proche de ce qu'on souhaite obtenir.

On peut essayer de réfléchir à la façon dont on prouverait le séquent intuitivement : par exemple, pour prouver $A \to B$, $A \land C \vdash B$, on va utiliser le fait que $A \land C$ implique A et, comme $A \to B$, on obtient B. On applique ensuite les règles correspondantes à l'envers (car on part de la conclusion pour arriver aux prémisses).

Parfois, on peut être bloqué dans une preuve :

$$\frac{ \overline{ \begin{array}{c} ? \\ \neg (A \wedge B) \vdash \neg A \end{array} }}{ \neg (A \wedge B) \vdash \neg A \vee \neg B} \ \vee_i^g$$

On voit qu'à partir de l'hypothèse $\neg(A \land B)$, on ne va pas pouvoir prouver $\neg A$. Il faut donc utiliser une autre règle que \vee_i^g .

III Rappels de logique propositionnelle

Définition : Valuation

Une valuation sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$ (faux, vrai).

Définition : Évaluation

Soit v une valuation sur V. L'évaluation $[\![\varphi]\!]_v$ d'une formule φ sur v est définie inductivement :

- $[\![\top]\!]_v = 1, [\![\bot]\!]_v = 0$
- $[x]_v = v(x)$ si $x \in V$
- $\llbracket \neg \varphi \rrbracket_v = 1 \llbracket \varphi \rrbracket_v$
- $\llbracket \varphi \wedge \psi \rrbracket_v = \min(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$
- $\llbracket \varphi \lor \psi \rrbracket_v = \max(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$

Si $[\![\varphi]\!]_v = 1$, on dit que v est un modèle pour φ .

Définition: Modèle

On note $\Gamma \models A$, et on dit que Γ est un modèle pour A, si toute valuation satisfaisant les formules de Γ satisfait aussi A, c'est-à-dire :

$$(\forall A \in \Gamma, \, [\![A]\!]_v = 1) \implies [\![A]\!]_v = 1$$

IV Lien entre prouvabilité et vérité

Théorème : Correction de la déduction naturelle

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

<u>Preuve</u>: Soit P(h): « si T est un arbre de preuve de hauteur h pour $\Gamma \vdash A$ alors $\Gamma \models A$ ».

P(0) est vraie : Si T est un arbre de hauteur 0 pour $\Gamma \models A$ alors il est constitué uniquement d'une application de ax, ce qui signifie que $A \in \Gamma$ et implique $\Gamma \models A$.

Soit T un arbre de preuve pour pour $\Gamma \vdash A$ de hauteur h+1. Considérons la règle appliquée à la racine de T.

•
$$(\land_i)$$
 Supposons T de la forme : $\frac{T_1}{\Gamma \vdash A} = \frac{T_2}{\Gamma \vdash B} \land_i$

Par hypothèse de récurrence sur T_1 et T_2 , on obtient $\Gamma \models A$ et $\Gamma \models B$.

Une valuation v satisfaisant toutes les formules de Γ satisfait donc à la fois A et B, et donc $A \wedge B$. On a bien $\Gamma \models A \wedge B$.

- (\land_e) Supposons T de la forme : $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$ (\land_e^g) Par récurrence sur T_1 , $\Gamma \models A \land B$ et donc $\Gamma \models A$.
- Les autres cas sont similaires...

Exercice 7.

Montrer que le séquent $\vdash \bot$ n'est pas prouvable (on dit que la déduction naturelle est cohérente).

Théorème: Théorème de complétude (HP)

Si $\Gamma \models A$ alors $\Gamma \vdash A$ est prouvable.

Exercice 8.

On considère les deux problèmes suivants :

DNAT

- Instance : un séquent $\Gamma \vdash \varphi$
- Question : $\Gamma \vdash \varphi$ est-il dérivable ?

TAUTOLOGIE

- \bullet Instance : une formule logique φ
- Question : φ est-elle une tautologie ?

On admet le théorème de complétude.

1. Montrer que TAUTOLOGIE se réduit polynomialement à DNAT.			
2. Montrer que DNAT se réduit polynomialement à TAUTOLOGIE.			
3. Montrer que DNAT est décidable.			
4. Montrer que DNAT est co-NP complet.			

Logique du premier ordre

La logique du premier ordre permet de faire des raisonnements dans un langage plus élaboré que celui qui se limite aux variables propositionnelles.

Définition: Langage du premier ordre

Un langage du premier ordre est la donnée de symboles de fonctions, ayant chacune une arité (nombre d'arguments), d'un nombre de symboles de relation, doté chacun d'une arité strictement positive.

Une fonction d'arité 0 est dite constante.

Exemples:

- La théorie des groupes avec la constante e, la fonction ⁻¹ d'arité 1, la fonction * d'arité 2 et la relation = d'arité 2.
- La théorie des ensembles avec la constante \emptyset , la fonction c d'arité 1, les fonctions c et c d'arité 2 et les relations c cd'arité 2.

Définition: Terme

Soit $\mathcal X$ un ensemble de variables. On définit par induction l'ensemble des termes sur $\mathcal X$:

- Une variable $x \in \mathcal{X}$ est un terme.
- Une constante est un terme.
- Si f est une fonction d'arité n > 0 et $t_1, ..., t_n$ des termes alors $f(t_1, ..., t_n)$ est un terme.

Définition : Formule de la logique du premier ordre

Soit \mathcal{L} un langage du premier ordre. L'ensemble des formules de la logique du premier ordre est alors défini par induction par :

- si R est une relation d'arité n et $t_1, ..., t_n$ des termes alors $R(t_1, t_2, ..., t_n)$ est une formule de la logique du premier ordre.
- si A et B sont des formules de la logique du premier ordre et $x \in \mathcal{X}$, alors :
 - $-\neg A, A \land B, A \lor B$ et $A \to B$ sont des formules de la logique du premier ordre.
 - $-\exists x A \text{ et } \forall x A \text{ sont des formules de la logique du premier ordre.}$

Exemples:

- Dans le langage de la théorie des groupes, $\forall x \exists y (x \star y = e)$ est une formule.
- Dans le langage de la théorie des ensembles, $\forall x \forall y ((x \cup y)^c = x^c \cap y^c))$ est une formule.

<u>Attention</u>: il ne faut pas confondre variable (terme décrivant un objet du langage du premier ordre étudié), par exemple un nombre réel, et variable propositionnelle (objet qui possède une valeur de vérité).

Définition: Variable libre, variable liée

Si ϕ est une formule du premier ordre et x une variable, on dit que x est libre dans ϕ si elle n'est pas associée à un \exists ou un \forall . Sinon, on dit que x est liée.

Définition: Substitution

Si ϕ est une formule du premier ordre, on note $\phi[x:=t]$ la formule obtenue en remplaçant toutes les occurrences libres de x par t dans ϕ , après renommage des variables si nécessaire.

Exemple: Si
$$A = (\forall x(x=x)) \land \exists y(x=y)$$
. Alors $A[x:=y \star y] = (\forall x(x=x)) \land \exists z(y \star y=z)$.

V.1 Quantificateur universel \forall

Si x n'est pas une variable libre de Γ :

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x \, A} \,\, \forall_i$$

Si A n'a pas de variable liée en commun avec t:

$$\frac{\Gamma \vdash \forall x \, A}{\Gamma \vdash A[x := t]} \,\, \forall_e$$

 \forall_i : Si A est vraie sans faire d'hypothèse sur x, alors elle est vraie quelle que soit la valeur de cette variable.

 \forall_e : Si A est vraie pour toute valeur de x, alors elle est vraie en remplaçant x par t.

V.2 Quantificateur existentiel \exists

$$\frac{\Gamma \vdash A[x := t]}{\Gamma \vdash \exists x A} \ \exists_i$$

Si x n'est pas une variable libre de B ni de Γ :

$$\frac{\Gamma \vdash \exists \, xA \quad \Gamma, A \vdash B}{\Gamma \vdash B} \, \, \exists_e$$

 \exists_i : Si A est vraie pour une certaine valeur de x, alors elle est vraie pour une certaine variable.

 \exists_e : Si A est vraie pour une certaine variable, alors B est vraie.

Exercice 9.

Montrer les séquents suivants :

1.
$$\vdash \forall x \exists y \ x \lor y$$

2.
$$\exists x (A \lor B) \vdash \exists x A \lor \exists x B$$

3.
$$\neg(\exists x A) \vdash \forall x \neg A$$

4. $\forall x (x \star x^{-1} = e) \vdash \forall x \forall y \exists z (x \star y) \star z = e$ dans le langage de la théorie des groupes

	Introduction	Élimination
Conjonction	$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B} \ \land_i$	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land_e^g \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \land_e^d$
Disjonction	$\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \vee_i^g \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B} \vee_i^d$	$\frac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C \qquad \Gamma \vdash A \lor B}{\Gamma \vdash C} \lor_e$
Implication	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_i$	$\frac{\Gamma \vdash A \to B \Gamma \vdash A}{\Gamma \vdash B} \to_e$
Négation	$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \ \neg_i$	$\frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ \neg_e$
Vrai $ op$	$\overline{\Gamma \vdash \top} \ ^{\top_i}$	
Faux \perp		$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \perp_e$
Universel	Si x n'est pas une variable libre de Γ : $\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \forall_i$	Si A n'a pas de variable liée en commun avec t : $\frac{\Gamma \vdash \forall xA}{\Gamma \vdash A[x:=t]} \ \forall_e$
Existentiel	$\frac{\Gamma \vdash A[x := t]}{\Gamma \vdash \exists x A} \exists_i$	Si x n'est pas une variable libre de B ni de Γ : $\frac{\Gamma \vdash \exists xA \Gamma, A \vdash B}{\Gamma \vdash B} \ \exists_e$

Règles de logique classique, où $A,\,B,\,C$ sont des formules quelconques

Axiome	Réduction à l'absurde
$\overline{\Gamma, A \vdash A}$ ax	$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \text{ raa}$

Règles supplémentaires