Unidad 1: Análisis exploratorio de datos

Mg. J. Eduardo Gamboa U.

Table of contents

Carga de paquetes	2
Lectura de datos	2
Medidas de tendencia central	3
Media	3
Mediana	4
Moda	5
Medidas de posición	6
Medidas de dispersión	8
Rango	8
Rango intercuartil	9
Varianza	10
Desviación estándar	10
Coeficiente de variabilidad	11
Medidas de asimetría	12
Coeficiente de asimetría de Fisher Pearson	12
Coeficiente de asimetría de Bowley	
Tablas de frecuencia	13
Tablas de frecuencia para variables cualitativas	13
Tablas de frecuencia para variables cuantitativas discretas	
Tablas de frecuencia para variables cuantitativas continuas	14
Gráficas	15
Gráficas para variables cualitativas	15
Gráficas para variables cuantitativas	

Resúmenes 28

Carga de paquetes

```
library(readr)
library(dplyr)
library(modeest)
library(sjstats)
library(cleaner)
library(DescTools)
library(moments)
library(reflimR)
library(janitor)
library(summarytools)
library(supplot2)
library(waffle)
library(treemapify)
library(skimr)
library(explore)
```

Lectura de datos

Se empleará el archivo Salud.csv, el cual recopila datos de pacientes en torno a las siguientes cuatro variables:

- Edad (en años)
- Tiempo semanal de ejercicios (en minutos)

dbl (4): Edad, Minutos_ejercicio, IMC, Presion_sistolica

- Índice de Masa Corporal
- Presión sistólica (en mmHg)

```
datos <- read_csv('Salud.csv')

Rows: 100 Columns: 4
-- Column specification ------
Delimiter: ","</pre>
```

```
i Use `spec()` to retrieve the full column specification for this data.
```

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

datos |> head(5)

```
# A tibble: 5 x 4
  Edad Minutos_ejercicio IMC Presion_sistolica
  <dbl>
                                           <dbl>
                   <dbl> <dbl>
1
    31
                     267 15.9
                                             111
2
    42
                     142 20.1
                                             142
3
                      58 20.2
    61
                                             139
4
    41
                      25 17.8
                                             120
                      46 17.4
     40
                                             133
```

datos |> tail(3)

A tibble: 3 x 4

	Edad	Minutos_ejercicio	IMC	Presion_sistolica
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	44	176	20.4	111
2	37	8	20.1	131
3	44	98	15.7	128

Medidas de tendencia central

Media

Ejemplo 1

Interpretar la media aritmética de la edad

```
datos |> summarize(Media = mean(Edad))
```

```
# A tibble: 1 x 1
   Media
   <dbl>
1 46.0
```

La edad promedio de los pacientes es de 46 años.

Ejemplo 2

Interpretar la presión sistólica media de los pacientes mayores de 50 años.

```
datos |> filter(Edad > 50) |> summarize(Media = mean(Presion_sistolica))

# A tibble: 1 x 1
   Media
   <dbl>
1 130.
```

La presión sistólica promedio de los pacientes mayores de 50 años es de 130 mmHg.

Mediana

Ejemplo 3

Interpretar la mediana del IMC

Al menos la mitad de las personas tiene un IMC menor o igual a 19.2.

Ejemplo 4

Interpretar la mediana de la presión sistólica para las personas que son sedentarias (menos de 30 minutos de ejercicios a la semana) y las que no lo son.

```
datos |>
  mutate(Sedentario = ifelse(Minutos_ejercicio<30, "Sí", "No")) -> datos

datos |>
  group_by(Sedentario) |>
  summarize(Medianas = median(Presion_sistolica))
```

Al menos la mitad de las personas sedentarias presenta una presión sistólica de como máximo 138 mmHg (¡elevada!). Por otro lado, al menos el 50% de las personas que no son sedentarias tiene una presión sistólica menor o igual a 121 mmHg (casi en el rango normal).

Moda

Ejemplo 5

Interpretar la moda de la presión sistólica

```
datos |>
   summarize(Moda = mfv(Presion_sistolica))

# A tibble: 1 x 1
   Moda
   <dbl>
1 121
```

La presión sistólica más frecuente es de 121 mHg.

Ejemplo 6

Interpretar la moda de la edad

```
datos |>
  reframe(Moda = mfv(Edad))

# A tibble: 2 x 1
    Moda
  <dbl>
1    36
2    59
```

Las edades más frecuentes de los pacientes son 36 y 59 años.

Ejemplo 7

Intepretar la moda del tiempo semanal de ejercicio de los pacientes sedentarios

```
datos |>
  filter(Sedentario == "Si") |>
  reframe(Moda = mfv(Minutos_ejercicio))

# A tibble: 1 x 1
    Moda
  <dbl>
1    15
```

El tiempo de ejercicios más frecuente entre los pacientes sedentarios es de 15 minutos.

Medidas de posición

Ejemplo 8

Interpretar el percentil 41 de la edad

```
datos |>
   summarize(P41 = quantile(Edad, 0.41))

# A tibble: 1 x 1
    P41
   <dbl>
1 42
```

Al menos el 41% de los pacientes tiene 42 años de edad o menos.

Ejemplo 9

Interpretar los percentiles 12 y 74 de los tiempos semanales de ejercicio de las personas no sedentarias

```
datos |>
  filter(Sedentario == "No") |>
  reframe(Percentiles = quantile(Minutos_ejercicio, c(0.12,0.74)))
```

Al menos el 12% de los pacientes no sedentarios realiza como máximo 61.4 minutos de ejercicio a la semana, mientras que al menos el 74% realiza hasta 241 minutos semanales de actividad física.

Ejemplo 10

Interpretar los cuartiles del IMC de las personas adultas mayores (60 años a más)

Al menos el 25% de los pacientes tiene un IMC igual o inferior a 19.4, mientras que como máximo el 50% tiene un IMC igual o inferior a 20. Además, hasta el 75% de los pacientes presenta un IMC igual o inferior a 20.9.

Ejemplo 11

¿Cuál es el tiempo máximo de ejercicio semanal que realiza un paciente joven (menor de 30 años) para estar dentro del 20% que menos ejercicio realiza?

```
datos |>
  filter(Edad < 30) |>
  summarize(P20 = quantile(Minutos_ejercicio, 0.20))
```

```
# A tibble: 1 x 1
     P20
     <dbl>
1 58
```

58 minutos semanales es el tiempo máximo de ejercicio que realiza un paciente joven (menor de 30 años) para estar dentro del 20% que menos ejercicio realiza.

Medidas de dispersión

Rango

Ejemplo 12

Interpretar el rango de la edad

```
datos |> summarize(r = Range(Edad))
```

```
# A tibble: 1 x 1
          r
          <dbl>
1           49
```

La amplitud de la edad es de 49 años.

Ejemplo 13

Interpretar el rango del IMC para cada grupo de personas según su nivel de actividad física (sedentario / no sedentario).

```
datos |> group_by(Sedentario) |> summarize(r = Range(IMC))
```

La amplitud del IMC de las personas sedentarias es de 4.7 puntos, mientras que para las no sedentarias es de 9.5 puntos.

Rango intercuartil

Ejemplo 14

Interpretar el rango intercuartil de la edad

La amplitud del 50% central de las edades es de 22.2 años.

Ejemplo 15

Interpretar el rango intercuartil del IMC para cada grupo de personas según su nivel de actividad física (sedentario / no sedentario).

```
datos |> group_by(Sedentario) |> summarize(ric = IQR(IMC))
```

La amplitud del 50% central de los datos de IMC de las personas sedentarias es de 1.7 puntos, mientras que para las no sedentarias es de 2.6 puntos.

Varianza

Ejemplo 16

Calcular la varianza del tiempo semanal de ejercicios.

```
datos |> summarize(s2 = var(Minutos_ejercicio))

# A tibble: 1 x 1
        s2
        <dbl>
1 8183.
```

La varianza del tiempo semanal de ejercicios es de $8183 \ minutos^2$.

Desviación estándar

Ejemplo 17

Interpretar la desviación estándar del tiempo semanal de ejercicios.

En promedio, el tiempo semanal de ejercicios se desvía 90.5 minutos respecto su media.

Coeficiente de variabilidad

Ejemplo 18

¿Qué variable presenta mayor variabilidad: el IMC o la presión sistólica?

```
# A tibble: 1 x 6
   s_imc s_pres m_imc m_pres cv_imc cv_pres
   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   1
   2.03
   12.7
   19.1
   124.
   10.7
   10.3
```

El IMC presenta mayor variabilidad (cv = 10.7%) que la presión sistólica (cv = 10.3%).

Ejemplo 19

Los pacientes se dividen en 3 grupos: joven (menor de 30 años), adulto (de 30 a 59 años) y adulto mayor (de 60 a más años). ¿En qué grupo se observa mayor variabilidad en el tiempo semanal de ejercicios?

```
# A tibble: 3 x 4
Grupo_Edad s m cv
<chr> <dbl> <dbl> <dbl> <dbl> 1 Adulto 89.6 167. 0.536
2 Adulto mayor 84.4 114. 0.740
3 Joven 91.8 156. 0.588
```

El grupo con mayor variabilidad en el tiempo semanal de ejercicios es el de adultos mayores.

Medidas de asimetría

Coeficiente de asimetría de Fisher Pearson

Ejemplo 20

Interpretar el coeficiente de asimetría de Fisher Pearson para cada variable.

Las cuatro variables presentan distribuciones que tienden a la simetría, siendo la edad la que más se acerca a la simetría y el IMC la que más se aleja.

Coeficiente de asimetría de Bowley

Ejemplo 21

Interpretar el coeficiente de asimetría de Bowley para cada variable.

Las cuatro variables presentan distribuciones que tienden a la simetría en el 50% central de los datos, siendo el IMC la que más se acerca a la simetría y la edad la que más se aleja. ¿Es una contradicción respecto a la interpretación con el coeficiente de asimetría de Fisher Pearson?

Tablas de frecuencia

Tablas de frecuencia para variables cualitativas

1.00

Tablas de frecuencia para variables cuantitativas discretas

Total 100

Siempre que su rango de valores no sea extenso, de lo contrario tratar como variable cuantitativa continua:

```
datos |>
  filter(Edad>=60) |>
  summarytools::freq(Edad)
```

Frequencies

filter(.data = datos, Edad >= 60)\$Edad

Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
61	2	10.00	10.00	10.00	10.00
62	4	20.00	30.00	20.00	30.00
63	3	15.00	45.00	15.00	45.00
64	3	15.00	60.00	15.00	60.00
65	1	5.00	65.00	5.00	65.00
66	3	15.00	80.00	15.00	80.00
68	3	15.00	95.00	15.00	95.00
69	1	5.00	100.00	5.00	100.00
<na></na>	0			0.00	100.00
Total	20	100.00	100.00	100.00	100.00

Tablas de frecuencia para variables cuantitativas continuas

```
datos |>
  pull(Edad) |>
  DescTools::Freq()
```

	level	freq	perc	cumfreq	cumperc
1	[20,25]	8	8.0%	8	8.0%
2	(25,30]	10	10.0%	18	18.0%
3	(30,35]	6	6.0%	24	24.0%
4	(35,40]	14	14.0%	38	38.0%
5	(40,45]	13	13.0%	51	51.0%
6	(45,50]	7	7.0%	58	58.0%
7	(50,55]	11	11.0%	69	69.0%
8	(55,60]	11	11.0%	80	80.0%
9	(60,65]	13	13.0%	93	93.0%
10	(65,70]	7	7.0%	100	100.0%

Gráficas

Gráficas para variables cualitativas

Gráfico de barras

Gráfico circular

Gráfico waffle

```
datos |>
  count(Sedentario) |>
  mutate(n = round(n / sum(n) * 100)) |>
  pull(n) |>
  waffle(rows = 5, title = "Distribución de pacientes")
```

Distribución de pacientes

Gráfico treemapify

```
datos |>
  count(Sedentario) |>
  ggplot(aes(area = n, fill = Sedentario, label = Sedentario)) +
  geom_treemap() +
  geom_treemap_text(colour = "white", place = "centre", grow = TRUE) +
  labs(title = "Distribución de pacientes") +
  theme_minimal()
```

Distribución de pacientes

Gráficas para variables cuantitativas

Gráfica de varas (barras)

Distribución de las edades de los pacientes adultos mayores

Histograma

```
datos |>
  ggplot(aes(x = Edad)) +
  geom_histogram(binwidth = 5, fill = "mediumorchid", color = "white") +
  labs(title = "Distribución de la edad", x = "Edad", y = "Frecuencia") +
  theme_minimal()
```

Distribución de la edad 10 20 40 60

Edad

Gráfico de densidad

```
datos |>
  ggplot(aes(x = Edad)) +
  geom_density(fill = "chocolate1", alpha = 0.4) +
  labs(title = "Curva de densidad de la edad", x = "Edad", y = "Densidad") +
  theme_minimal()
```

Curva de densidad de la edad

Boxplot

```
datos |>
  ggplot(aes(y = Edad)) +
  geom_boxplot(fill = "lightblue", width = 0.2) +
  labs(title = "Distribución de la edad", y = "Edad") +
  theme_minimal()
```

Distribución de la edad


```
datos |>
  ggplot(aes(y = Edad, x = Sedentario)) +
  geom_boxplot(fill = "lightblue") +
  labs(title = "Distribución de la edad según actividad física", y = "Edad") +
  theme_minimal()
```

Distribución de la edad según actividad física


```
datos |>
  ggplot(aes(x = "", y = Edad)) +
  geom_violin(fill = "skyblue") +
  labs(title = "Distribución de la edad", y = "Edad") +
  theme_minimal()
```

Distribución de la edad


```
datos |>
  ggplot(aes(x = Sedentario, y = Edad)) +
  geom_violin(fill = "skyblue") +
  labs(title = "Distribución de la edad según actividad física", y = "Valor") +
  theme_minimal()
```

Distribución de la edad según actividad física

Resúmenes

datos |> skim()

Table 1: Data summary

Name	datos
Number of rows	100
Number of columns	5
Column type frequency:	
character	1
numeric	4
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
Sedentario	0	1	2	2	0	2	0

Variable type: numeric

skim_variable n_missingcomplete_ratnean					p0	p25	p50	p75	p100	hist
Edad	0	1	45.97	13.88	20.0	36.00	45.0	58.25	69.0	
Minutos_ejercicio	0	1	154.71	90.46	2.0	69.25	159.0	235.75	294.0	
IMC	0	1	19.07	2.03	13.8	17.95	19.2	20.50	23.3	
Presion_sistolica	0	1	123.58	12.71	100.0	113.00	121.5	133.25	152.0	

datos |> group_by(Sedentario) |> skim()

Table 4: Data summary

Name	group_by(datos, Sedentari
Number of rows	100
Number of columns	5
Column type frequency:	
numeric	4
Group variables	Sedentario

Variable type: numeric

skim_va	riableSedentari a _	_missingon	nplete_	_ratean	sd	p0	p25	p50	p75	p100	hist
Edad	No	0	1	45.67	13.95	20.0	35.75	45.0	57.25	69.0	
Edad	Sí	0	1	48.17	13.73	25.0	40.00	48.5	59.75	66.0	
Minutos	_ejerd iko io	0	1	174.18	78.15	33.0	106.75	179.0	242.50	294.0	
Minutos	_ejer S ćio	0	1	11.92	8.25	2.0	5.50	11.5	15.00	28.0	
IMC	No	0	1	18.88	2.04	13.8	17.70	19.0	20.30	23.3	
IMC	Sí	0	1	20.47	1.35	17.8	19.53	20.6	21.23	22.5	
Presion_	_sisto lN oa	0	1	121.93	12.35	100.0	113.00	121.0	131.25	152.0	
$Presion_{_}$	_sisto lS ía	0	1	135.67	8.17	120.0	130.00	137.5	140.50	148.0	

datos |> explore::explore()