Data Structure and Algorithm

Prof. Kanak Kalyani

Points to discuss

- Knowledge of C language
 - Function, Structures, Pointers
- Online Classes
 - 45 minutes lecture
 - Attendance is mandatory
 - MCQ or interactive session in between
 - Assignments will be uploaded on Google Classroom
 - PPTs will be provided at end of unit

Lab Courses will be offline, on Wednesday and Thursday

Basics of Programming

Characteristics of a good program

- runs correctly
- is easy to read and understand
- is easy to debug and
- is easy to modify.

Data Structure

- Data management is a complex
 - Collecting the data
 - Organizing the data
 - Retrieving correct information
- Data + STRUCTURE
 - Organizing the data in such a way that retrieval is fast and efficient

CLASSIFICATION OF DATA STRUCTURES

- Primitive
 - integer, real, character, and boolean
- Non-primitive Data Structures
 - linked lists, stacks, trees, and graphs
 - Linear and Non-linear Structures
 - Linear: Sequential memory locations,
 - Example: Array, Linked List, Stacks, Queues
 - Non-Linear: Trees, Graphs

OPERATIONS ON DATA STRUCTURES

- Traversing
- Searching
- Inserting
- Deleting
- Sorting
- Merging

Syllabus CDT201: DSA

UNIT - I: Data Structures and Algorithms Basics

Introduction: basic terminologies, elementary data organizations, data structure operations; abstract data types (ADT) and their characteristics.

Algorithms: definition, characteristics, analysis of an algorithm, asymptotic notations, time and space trade-offs.

Array ADT: definition, operations and representations – row-major and column-major.

UNIT - II: Stacks and Queues

Stack ADT: allowable operations, algorithms and their complexity analysis, applications of stacks – expression

conversion and evaluation (algorithmic analysis), multiple stacks.

Queue ADT: allowable operations, algorithms and their complexity analysis for simple queue and circular queue, introduction to doubleended queues and priority queues.

Syllabus CDT201: DSA

UNIT - III: Linked Lists

Singly Linked Lists: representation in memory, algorithms of several operations: traversing, searching,

insertion, deletion, reversal, ordering, etc.

Doubly and Circular Linked Lists: operations and algorithmic analysis.

Linked representation of stacks and queues, header node linked lists

UNIT – IV: Sorting and Searching

Sorting: different approaches to sorting, properties of different sorting algorithms (Insertion, Shell, quick, merge, heap, counting), performance analysis and comparison.

Searching: necessity of a robust search mechanism, searching linear lists (linear search, binary search) and complexity analysis of search methods.

Syllabus CDT201: DSA

UNIT - V: Trees

Trees: basic tree terminologies, binary tree and operations, binary search tree [BST] and operations with time

analysis of algorithms, threaded binary trees.

Self-balancing Search Trees: tree rotations, AVL tree and operations, B+-tree: definitions, characteristics, and operations (introductory).

UNIT - VI: Graphs and Hashing

Graphs: basic terminologies, representation of graphs, traversals (DFS, BFS) with complexity analysis, path

finding (Dijkstra's SSSP, Floyd's APSP), and spanning tree (Prim's method) algorithms.

Hashing: hash functions and hash tables, closed and open hashing, randomization methods (division method, mid-square method, folding), collision resolution techniques.

Course Outcome

On completion of the course the student will be able to:

- 1. Design and realize different linear data structures.
- 2. Identify and apply specific methods of searching and sorting to solve a problem.
- 3. Implement and analyze operations on binary search trees and AVL trees.
- 4. Implement graph traversal algorithms, find shortest paths and analyze them.

Books

Fundamentals of Data Structures in C

> By Ellis Horowitz, Sartaj Sahni & Susan Anderson-Freed

Data Structures Using C By REEMA THAREJA

Algorithm

- An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.
- In addition, all algorithms must satisfy the following criteria:
 - 1. Input
 - 2. Output
 - 3. Definiteness
 - 4. Finiteness
 - 5. Effectiveness

ALGORITHM SPECIFICATION

Pseudocode Convention

- Comment: //Block: { and }
- Identifier begins with LETTER
- Datatype of variables are not explicitly declared
- Assignment:- <variable> = <expression>
- Arrays:-
 - Single dimensional [i]
 - Two Dimensional [i,j]
 - Multi Dimensional [i, j, ...]

ALGORITHM SPECIFICATION

Loops

```
while \langle condition \rangle do
           \langle statement 1 \rangle
           \langle statement \ n \rangle
for variable := value1 to value2 step step do
        \langle statement 1 \rangle
        \langle statement \ n \rangle
```

```
while ((variable - fin) * step \le 0) do
       \langle statement 1 \rangle
        \langle statement \ n \rangle
       variable := variable + incr;
               repeat
                      \langle statement 1 \rangle
                      \langle statement \ n \rangle
               until (condition)
```

ALGORITHM SPECIFICATION

IF Condition

```
if \langle condition \rangle then \langle statement \rangle
if \langle condition \rangle then \langle statement | 1 \rangle else \langle statement | 2 \rangle
```

Switch Statement

```
case {
 : \langle condition \ 1 \rangle : \langle statement \ 1 \rangle 
 : \langle condition \ n \rangle : \langle statement \ n \rangle 
 : else: \langle statement \ n + 1 \rangle 
}
```

Example - 1

Write an algorithm to find maximum of "n" given number

Example - 2

Write an algorithm to sort a given list of numbers using selection sort

Step-1: Find Minimum Value in the List

Step-2: Swap it with the value in current position

Step-3: Repeat the process until all the numbers of list are

traversed

Example-2

Consider the list:

Example-2

Algorithm

```
\begin{array}{ll} 1 & \textbf{Algorithm SelectionSort}(a,n) \\ 2 & // \mbox{ Sort the array } a[1:n] \mbox{ into nondecreasing order.} \\ 3 & \{ \\ 4 & \mbox{ for } i:=1 \mbox{ to } n \mbox{ do} \\ 5 & \{ \\ 6 & j:=i; \\ 7 & \mbox{ for } k:=i+1 \mbox{ to } n \mbox{ do} \\ 8 & \mbox{ if } (a[k] < a[j]) \mbox{ then } j:=k; \\ 9 & \mbox{ } t:=a[i]; \ a[i]:=a[j]; \ a[j]:=t; \\ 10 & \mbox{ } \} \\ 11 & \mbox{ } \} \end{array}
```

Another way of writing an Algorithm

Write an algorithm to find the sum of first N natural numbers.

Step 1: Input N

Step 2: SET I = 1, SUM = 0

Step 3: Repeat Step 4 while I <= N

Step 4: SET SUM = SUM + I

SET I = I + 1

[END OF LOOP]

Step 5: PRINT SUM

Step 6: END

Recursive Algorithm

- Every Recursive Problem has two MAJOR cases
- CASE -1 : **BASE Case**:- START of problem where the problem can be solved without calling it again
 - CAN BE CALLED AS TERMINATION CASE
- CASE-2: Recursive Case:-
 - Problem is subdivided into simpler sub-parts
 - Function is called with subpart
 - Result is obtained by combining the subparts

Example-3

Finding Factorial of a number

```
      PROBLEM
      SOLUTION

      5!
      5 \times 4 \times 3 \times 2 \times 1!

      = 5 \times 4!
      = 5 \times 4 \times 3 \times 2 \times 1

      = 5 \times 4 \times 3!
      = 5 \times 4 \times 3 \times 2

      = 5 \times 4 \times 3 \times 2!
      = 5 \times 4 \times 6

      = 5 \times 4 \times 3 \times 2 \times 1!
      = 5 \times 24

      = 5 \times 4 \times 3 \times 2 \times 1!
      = 5 \times 24

      = 120
```

- Base Case:- 1! = 1
- Recursive Case:- factorial(n) = n × factorial (n-1)

Example-3

Algorithm for finding Factorial of number

```
    Algorithm factorial(n)
    {
    if(n<=1)</li>
    return 1
    else
    fact=n * factorial(n-1)
    return fact
    }
```

- Write an recursive algorithm to find Fibonacci series
- Give an algorithm to solve the following problem: Given n, a positive integer, determine whether n is the sum of all of its divisors, that is, whether n is the sum of all t such that $1 \le t < n$, and t divides n.

Fibonacci Series

```
Algorithm Fibonacci(n)
    f_0 = 0
    f_1 = 1
    print f_0, f_1
    for i = 1 to n-1 do
          fib:= f_0 + f_1
           f_0 := f_1
           f_1 := fib
           print fib
```

```
Algorithm Rec_Fibonacci(n)
if ((n = 1)) then
       return 1
 else if(n=0)
       return 0
 else
       return
       Rec_Fibonacci(n-1)
       +Rec_Fibonacci(n-2)
```

Analysis of Algorithm

Time Complexity

- Best Case
- Average Case
- Worst Case
- Amortized Case

Space Complexity

- Fixed Part
- Variable Part

How to find Complexity?

- Linear Function: No Loops, No call to functions
 - Running Time = Number of Instructions
- Loops
 - Running Time depends upon
 - number of loops
 - Complexity of loops

Linear Loops

$$for(i=0;i<100;i++)$$

statement block;

$$for(i=0;i<100;i+=2)$$

statement block;

$$\rightarrow$$
 f(n) = n

$$\rightarrow$$
 f(n) = n/2

Logarithmic Loops

statement block;

$$for(i=1000;i>=1;i/=2)$$

statement block

$$\rightarrow$$
 f(n) = log n

Analyzing Time Complexity: Nested Loops

Linear logarithmic loop

$$\rightarrow$$
 f(n) = n log n

Quadratic loop

$$\rightarrow$$
 f(n) = n²

Dependent quadratic loop

$$\rightarrow$$
 f(n) = n (n + 1)/2

$$1 + 2 + \dots + 9 + 10 = 55$$

Arithmetic Series: 1 + 2 + 3 + ... + (n-2) + (n-1) = (n-1)(n)/2

```
Example 1:
int i = 1;
while (i <= n)
{
          System.out.println("*");
          i = 2 * i;
}</pre>
```

No. of times * prints $1 + \log_2 n$


```
Example 2:
for (int i = 1; i <= m; i += c) { Statement-1 }
for (int i = 1; i <=n; i += c) { Statement-2}
Complexity:= m + n
     if n=m then 2n
Example 3:
int i = n;
while (i > 0) {
        for (int j = 0; j < n; j++)
                 System.out.println("*");
        i = i / 2; 
Outer Loop: log<sub>2</sub>n
                                      F(n) = n * log_2 n
Inner Loop: n
```

Example 4:

```
Loop1:- n

Loop2:- 1

Loop 3:- Dependent

Follows arithmetic Series:- 1 + 2 + 3 + ... + (n-2) + (n-1)

Total= (n-1)(n)/2
```

Notations for Complexity

BIG O Notation: O

- a dominant factor in the expression is sufficient to determine the order of the magnitude of the result
- O stands for 'order of'
- When using the Big O notation, constant multipliers are ignored
- If f(n) and g(n) are the functions defined on a positive integer number n, then

$$f(n) = O(g(n))$$

if and only if positive constants c and n exist,

$$f(n) \leq cg(n)$$
.

TIGHT UPPER BOUND

BIG O Notation: 0

Constant "c" which depends upon the following factors

• t'	. 1	,	
• t	g(n)	f(n) = O(g(n))	
• t	10	0(1)	
• t	2n³ + 1	O(n³)) it,
• t	3n ² + 5	O(n²)	also
t	$2n^3 + 3n^2 + 5n - 10$	0(n³)	

• f(n) = O(g(n))

Example

- $O(n^3)$ will include $\rightarrow n^{2.9}$, n^3 , $n^3 + n$, $540n^3 + 10$.
- $O(n^3)$ will not include $\rightarrow n^{3.2}$, n^2 , n^2 + n, 540n + 10, 2n

BIG O Notation: O

- Best case O describes an upper bound for all combinations of input.
- It is possibly lower than the worst case.
- For example, when sorting an array the best case is when the array is already correctly sorted.
- Worst case O describes a lower bound for worst case input combinations. It is possibly greater than the best case.
- For example, when sorting an array the worst case is when the array is sorted in reverse order.
- If we simply write 0, it means same as worst case 0.

Limitations of Big O Notation

- Many algorithms are simply too hard to analyse mathematically.
- There may not be sufficient information to calculate the behavior of the algorithm in the average case.
- Big O analysis only tells us how the algorithm grows with the size of the problem, not how efficient it is, as it does not consider the programming effort.
- It ignores important constants.
- For example, if one algorithm takes $O(n^2)$ time to execute and the other takes $O(100000n^2)$ time to execute, then as per Big O, both algorithm have equal time complexity, but this may be a serious consideration.

Categories of Algorithms

According to the Big O notation, we have five different categories of algorithms:

- Constant time algorithm: O(1)
- Linear time algorithm: O(n)
- Logarithmic time algorithm: as O(log n)
- Polynomial time algorithm: $O(n^k)$ where k > 1
- Exponential time algorithm: as O(2ⁿ)

OMEGA NOTATION (Ω)

- provides a tight lower bound for f(n)
- Ω notation is simply written as, $f(n) \in \Omega(g(n))$
- $\Omega(g(n)) = \{h(n): \exists \text{ positive constants } c > 0, n0 \text{ such that } 0 \le cg(n) \le h(n), \forall n \ge n0 \}.$
- If $cg(n) \le f(n)$, c > 0, $\forall n \ge n_0$, then $f(n) \in \Omega(g(n))$ and g(n) is an asymptotically tight lower bound for f(n).

- Examples of functions in $\Omega(n^2)$ include: n^2 , $n^{2.9}$, $n^3 + n^2$, n^3
- Examples of functions not in $\Omega(n^3)$ include: n, $n^{2.9}$, n^2

- Best case Ω describes a lower bound for all combinations of input
- Worst case Ω describes a lower bound for worst case input combinations
- If we simply write Ω , it means same as best case Ω .

THETA NOTATION (Θ)

- Theta notation provides an asymptotically tight bound for f(n).
- Θ notation is simply written as, $f(n) \in \Theta(g(n))$
- $\Theta(g(n)) = \{h(n): \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le h(n) \le c_2 g(n), \forall n \ge n_0 \}.$

- The best case in Θ notation is not used.
- Worst case Θ describes asymptotic bounds for worst case combination of input values.
- • If we simply write Θ , it means same as worst case Θ .

Time Complexity

QUIZ TIME

• Time: 5 Minutes

• URL: https://forms.gle/mu9mvwALbNgbzVuf6

Abstract Data Type

- Data Type: int, float, char etc
 - What can we store
 - Operations that can be performed
- Abstract:
 - No implementation is specified
 - Generalized
- An abstract data type (ADT) is the specification of a data type within some language, independent of an implementation.
- An ADT does not specify how the data type is implemented. These implementation details are hidden from the user of the ADT and protected from outside access, a concept referred to as <u>encapsulation</u>.

Example of ADT

Lets create student record

```
record{
roll_no number
name String
a1, a2, a3 Decimal
t1, t2, t3 Decimal
total Decimal
}
```

array[record] to store the records of multiple students

Functions for Student

- Find number of students in class
- Find total marks for each student
- Find class average
- Find highest marks

Array

One-dimensional array with six elements

 We can create array of any data type like int, char, struct, array etc

Array

Operations we can define on an array

- Creating the array
- Traversing elements
- Getting and setting an element at a particular position
- Inserting and deleting an element in an array
- Searching an element in an array
- Sorting the elements

Representation of an Single Dimensional Array in memory

Consider an array of 6 elements

Index —	→ 0	1	2	3	4	5
Element ——	→ 20	30	40	50	60	70
Memory Location	> 1000	1004	1008	1012	1016	1020

- How do we calculate memory location given the index value??
- Array stores Base Address:- 1000
- Calculate address of Arr[4]:-
 - Address of A [I] = B + W * (I LB)
 **LB=0 in C
 - \rightarrow 1000+ 4 * (4 0) = 1016

Data Structure and Algorithm 13-12-2021

Representation of an Two Dimensional Array in memory ROW MAJOR ORDER

Consider the array of size 3x3

Index _	[0][0]	[0][1]	[0][2]
Element –	→ 10	20	30
Memory –		1004	1008
Location	[1][0]	[1][1]	[1][2]
	40	50	60
	1012	1016	1020
	[2][0]	[2][1]	[2][2]
	70	80	90
	1024	1028	1032

10	20	30	40	50	60	70	80	90
1000	1004	1008	1012	1016	1020	1024	1028	1032

Address Calculation in Row Major

Address of A [I][J] = B + W * [N * (I - Lr) + (J - Lc)]

B = Base address

I = Row subscript

J = Column subscript

W = Storage Size of one element stored in the array (in byte)

Lr = Lower limit of row

Lc = Lower limit of column

M = Number of row of the given matrix

N = Number of column of the given matrix

Find address of int arr[1][2]

$$arr[1][2] = 1000 + 4 * [3 * (1 - 0) + (2-0)]$$

= 1020

Data Structure and Algorithm 13-12-2021

Representation of an Two Dimensional Array in memory **COLUMN MAJOR ORDER**

Consider the array of size 3x3

Index _	[0][0]	[0][1]	[0][2]
Element –	→ 10	20	30
Memory –		1012	1024
Location	[1][0]	[1][1]	[1][2]
	40	50	60
	1004	1016	1028
	[2][0]	[2][1]	[2][2]
	70	80	90
	1008	1020	1032

10	40	70	20	50	80	30	60	90
1000	1004	1008	1012	1016	1020	1024	1028	1032

Address Calculation in Column Major

Address of A [I][J] = B + W * [(I - Lr) + M*(J - Lc)]

B = Base address

I = Row subscript

J = Column subscript

W = Storage Size of one element stored in the array (in byte)

Lr = Lower limit of row

Lc = Lower limit of column

M = Number of row of the given matrix

N = Number of column of the given matrix

Find address of int arr[1][2]

$$arr[1][2] = 1000 + 4 * [(1 - 0) + 3 * (2-0)]$$

= 1028

Address Calculation for 3 – Dimensional Array

• To calculate address of element arr[i,j,k] using row-major order:

$$A[I][J][K] = B + W*(MN(K-L) + (I-L) + N*(J-L))$$

$$arr[2][1][2] = 1000 + 4* (3*3*(2-0) + (2-0) + 3*(1-0))$$

= $1000 + 4* (18 + 2 + 3)$
= $1000 + 4* (23)$

Kanak Kalyani

Address Calculation for 3 – Dimensional Array

• To calculate address of element arr[i,j,k] using row-major order:

$$A[I][J][K] = B + W*(MN(K-L) + M*(I-L) + (J-L))$$

$$arr[2][1][2] = 1000 + 4* (3*3 (2-0) + 3*(2-0) + (1-0))$$

= $1000 + 4* (18 + 6 + 1)$
= $1000 + 4* (25)$

56

Array — Abstract Data Type

Operations we can define on an array

 Creating the array int arr[5];

Traversing elements

```
for (int i=0;i<5;i++)
printf("%d", arr[i])
```

Getting and setting an element at a particular position

```
arr[2]=20;
printf("%d", a[2]);
```

Array — Abstract Data Type

Inserting an element in an array

Consider the array arr [5]

- Insert the element 70
 - This should give error as no space is left

```
void insert(int arr[], int size, int element, int index)
       if(size==max){
               printf("Array is Full");
               return;}
       for(int i=max-1; i>=index;i--)
               arr[i+1]=arr[i];
       arr[index]=element;
       size+=1;
       for(int i=0; i < max; i++)
               printf("%d", arr[i]);
```

Array — Abstract Data Type

Delete an element 30

10	20	40	50	

```
int delete(int arr[], int size, int index)
       if(size<0 || size>index)
               printf("index element is not in array");
               return 0;
       for(int i=index; i>max;i++)
               arr[i]=arr[i+1];
       for(int i=0; i< max; i++)
               printf("%d", arr[i]);
       return 1;
```

ARRAY - ADT

Arrays:-

Disadvantage:- Static Memory Allocation
Size needs to be specified at Compile Time
int a[100]

Partial Solution to the Problem: - Create Dynamic Allocated Arrays

int *arr = (int*) malloc(5 * sizeof(int));

Advantage: - Size can be specified at Runtime

Disadvantage:- Resizing of Array is not possible

ARRAY - ADT

Complete Solution to the Problem:-

CREATE DYNAMIC ARRAY

Dynamic Array (Resizable Array)

→ Store a pointer to dynamically created array and replace with newly created Array.

63

Pointers

```
Declaration: int* p;
Initialization:
int *pc, c;
c = 5;
pc = &c;
Display
printf("%d", *pc); // print 5
printf("%p", pc); // prints address of c
```

```
c = 1;
                                   printf("%d", c); // OUTPUT 1
    OR
                                   printf("%d", *pc);// OUTPUT 1
    *pc = 1;
   Pointer Arithmetic
   int *ptr;
   ptr++;
int v[3] = \{10, 100, 200\};
ptr=v
for (int i = 0; i < 3; i++)
    printf("Value of *ptr = %d\n", *ptr);
    printf("Value of ptr = %p\n\n", ptr);
    ptr++;
                        v[0]
                                              v[1]
                                                                    v[2]
                        10
                                              100
                                                                    200
                     0x7fff9a9e7920
                                          0x7fff9a9e7924
                                                                 0x7fff9a9e7928
                                  ptr++
                                                        ptr++
```

lyani

Structures and Pointers

```
Syntax of struct
struct structureName
{ dataType member1;
dataType member2; ... };
struct Person {
      char name[50];
      int citNo;
      float salary; }
person1, *personptr, p[20];
int main()
{ struct Person person1, person2, p[20];
return 0; }
```

```
Accessing members
```

```
Member Operator: - •
```

Structure pointer operator :- ->

```
person1.salary = 2000;
```

personptr->salary = 3000;

(*personptr).salary=300

Dynamic Memory Allocation

4 library functions provided by C in **<stdlib.h>**

malloc() : ptr = (cast-type*) malloc(byte-size)ptr = (int*) malloc(5 * sizeof(int));

calloc(): ptr = (cast-type*)calloc(n, element-size);ptr = (float*) calloc(5, sizeof(float));

Dynamic Memory Allocation

free: - free(ptr);

realloc() method

ptr = realloc(ptr, newSize);

Data Structure and Algorithm

```
Declaration of struct Array
struct Array
    int *a;
    int size;
    int max;
Initializing the array
 void create(){
 SArray = (struct Array *)malloc(sizeof(struct Array));
 printf("Enter max elements that can be stored in an Array");
   scanf("%d",&SArray->max);
   SArray->a=(int *)malloc(SArray->max*sizeof(int));
   SArray->size=0;
 SArray->a[0]=1;
 SArray->a[1]=2;
 SArray->a[2]=3; }
```

Displaying all elements of an array

```
void display(struct Array *SArray)
  printf("\nThe elements are : ");
  for(int i=0;i<SArray->size;i++)
    printf("%d",SArray->a[i]);
Get an element at a given index
int Get(struct Array *SArray, int index){
        return SArray->a[index];
```

Set an element at a given index

```
void Set(struct Array *SArray, int index, int key){
    SArray->a[index] = key;
```

/1

Resizing the Array

```
void resize(struct Array *a)
   int *temp=(int *)malloc (2*a->size * sizeof(int));
   for(int i=0;i<a->length;i++)
      temp[i]=a->A[i];
   a->A=temp;
   a->size *= 2;
                              OR
 void resize(struct Array *a)
    a->A=(int *)realloc(a->A, 2*a->max*sizeof(int));
          a->max *=2;
```

Lab Assignment

E-1: To study an Array ADT and to implement various operations on an Array ADT.

Create an array and implement the operations – traverse(), insert_element(), delete_element(), sort(), search(), copy(), create().

Write a C program to demonstrate an array ADT using defined operations appropriately using a menu-driven approach. Your program should be able to print the array contents appropriately at any or all instances (as required may be).

Note:- You must also ensure that no input is acquired within the body of functions, nor (preferably) display any prompts/results.