Change of order in mixed region

We know that if strip move on more than two curve then the region is called mixed region.

Example:

Then for double integration, we divide into simple region.

Q.1. After the change of order of integration ,the double integral $\int_{0}^{8} \int_{x^{1/3}}^{2} dy dx$ becomes CUCET 2021

(a)
$$\int_{x^{1/3}}^{2} \int_{0}^{8} dx dy$$

(b)
$$\int_{0}^{2} \int_{0}^{y^3} dx dy$$

(c)
$$\int_{0}^{0} \int_{x}^{1/3} dx dy$$

(d)
$$\int_{0}^{2} \int_{y^{3}}^{0} dx dy$$

Let $f : R \rightarrow R$ be continuous function and a > 0 then the Q.2. integral $\int_{0.0}^{0.0} \int_{0.0}^{0} f(y) dy dx$ equals JAM - 2009

(a)
$$\int_{0}^{a} y f(y) dy$$

$$f(y)dy (b) \int_{0}^{a} (a-y)f(y)dy$$

(c)
$$\int_{0}^{a} (y-a)f(y)dy$$
 (d) $\int_{a}^{0} yf(y)dy$

(d)
$$\int_{a}^{0} yf(y)dy$$

Q3. The value of $I = \int_{0.0}^{1.x} x^2 e^{xy} dx dy$ is

(a)
$$\frac{e+2}{2}$$

(b)
$$\frac{e-2}{2}$$

(c)
$$\frac{e-1}{2}$$

(d)
$$\frac{e+1}{2}$$

 $\int_{0}^{\pi/2} \int_{x}^{\pi/2} \frac{\sin y}{y} dy dx$ is equal to

(a) 1

(b) 2 (d) 4

(c)3

Q5. The value of the double integral $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dxdy$ is

(a)
$$\frac{\pi a}{4}$$

(b)
$$\frac{3\pi a}{4}$$

(c)
$$-\frac{\pi a}{3}$$

(d)
$$\frac{2\pi a}{3}$$

Q6, If
$$\int_{y=0}^{1} \int_{x=0}^{y+4} dx dy = \int_{x=0}^{4} \int_{y=0}^{1} dy dx + \int_{x=4}^{5} \int_{y=g(x)}^{h(x)} dy dx$$
, then the

function g(x) and h(x) are, respectively JAM - 2009

(a)
$$(x - 4)$$
 and 1

(b)
$$(x + 4)$$
 and 1

(a)
$$(x-4)$$
 and 1 (b) $(x+4)$ and 1 (c) 1 and $(x-4)$ (d) 1 and $(x+4)$

(d) 1 and
$$(x + 4)$$

Q7. Evaluate $\iint \sqrt{4x^2 - y^2} dx dy$ over region bounded by y = 0, y = x, x = 1 is

(a)
$$\frac{\sqrt{3}}{6} + \frac{\pi}{9}$$

(b)
$$\frac{\sqrt{3}}{5} + \frac{\pi}{9}$$

(c)
$$\frac{\sqrt{2}}{3}$$

(d)
$$\frac{\sqrt{7}}{9}$$