

Curso:	Engenharias	SEMESTRE/ANO:	01/2020
DISCIPLINA:	Programação p/ Sistemas Paralelos e Distribuídos	Código:	206610
Carga Horária:	60 horas	CRÉDITOS:	04
Professor:	Luiz Augusto F. Laranjeira	TURMA:	A

PLANO DE ENSINO

19 de Agosto de 2020

Objetivos da Disciplina

Capacitar os alunos nos conteúdos relacionados à programação de sistemas computacionais paralelos (arquitetura de memória compartilhada - shared-memory) e distribuídos (arquitetura de troca de mensagens - message-passing), incluindo computadores stand-alone de um ou mais núcleos, clusters de computadores conectados em rede, GPUs e supercomputadores.

2 Ementa do Programa

- i. Conceitos Básicos
- ii. Modelos de Computação Paralela
- iii. Multithreaded Programming OpenMP
- iv. Modelo de Memória OpenMP
- v. Arquiteturas SIMD
- vi. Pipelined Programming
- vii. Arquiteturas MIMD

- viii. Programação Multiprocessada em MPI
 - ix. Programação Distribuída em MPI
 - x. Primitivas de Comunicação MPI
 - xi. Programação de GPUs (CUDA)
- xii. Memórias Cache
- xiii. Profilers
- xiv. Paralelismo de Tarefas

3 Horário das aulas e atendimento

AULAS: quarta e sexta-feira, das 10:00 às 11:50 hs.

ATENDIMENTO: agendado via e-mail com o professor (<u>luiz.laranjeira@gmail.com</u>) ou monitor. Teremos monitor(es) para a disciplina.

4 Metodologia

O método básico aplicado será o de aulas expositivas, com auxílio do quadro branco e utilização do projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas poderão ser complementadas com atividades de exercícios e demandas extra-classe. Estas atividades serão desenvolvidas com acompanhamento do professor.

5 Critérios de Avaliação

A avaliação do curso será feita através de 4 (quatro) testes. Ainda poderão ser passadas atividades extras de caráter facultativo.

5.1 Testes

A avaliação do curso será feita através de 4 (quatro) testes, a serem realizadas em datas determinadas no cronograma. Estas datas podem ser alteradas por motivos não previstos, e tais alterações serão comunicadas com a devida antecedência em sala de aula ou através da plataforma Moodle. Cada teste terá uma ou mais questões.

Cada questão será considerada correta apenas se o resultado final, e o respectivo desenvolvimento que leva a este resultado, forem descritos corretamente pelo aluno em sua prova. Uma questão cuja solução proposta pelo aluno tiver resultado final incorreto, desenvolvimento incorreto (mesmo com a resposta correta) ou não tiver desenvolvimento, terá pontuação zerada.

Cada teste abrangerá o conteúdo dado desde o teste anterior (ou o início das aulas, no caso do primeiro teste) até a aula anterior à aplicação do teste.

5.2 Atividades Extra

Poderão ser aplicadas, a critério do professor, atividades extras que também serão levadas em conta para a nota final do aluno. A forma, data de entrega e método de avaliação de tais atividades serão divulgados em sala de aula ou na plataforma Moodle.

5.3 Menção Final

Teremos quatro (4) testes e 3 (três) programas.

Cada teste valerá 10 pontos, e a média dos testes, M_T , será dada pela média das três melhores dentre as notas dos quatro testes:

$$M_T = \frac{(\sum_{i=1}^4 T_i) - T_{min}}{3}$$
 onde T_i é a nota do i -ésimo teste (1 $\leq i \leq$ 4) e T_{min} é a menor nota

Com o critério acima se um(a) aluno(a) perder um teste por qualquer razão a nota deste será automaticamente a nota T_{min} a ser desconsiderada no cômputo de sua média de testes.

A média dos programas, M_P , será dada por:

$$M_P = \frac{P_1 + P_2 + P_3}{3}$$
 onde P_i é a nota do i -ésimo programa (1 $\leq i \leq 3$)

A nota final do curso, N_F , será dada por: $N_F = 0.3M_T + 0.7M_P$

A menção final do curso será atribuída de acordo com a tabela abaixo:

NF	Menção	Descrição
0,0	SR	Sem Rendimento
de 0,1 a 2,9		Inferior
de 3,0 a 4,9	MI	Médio Inferior
de 5,0 a 6,9	MM	Médio
de 7,0 a 8,9	MS	Médio Superior
9,0 ou maior	SS	Superior

5.4 Critérios de Aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter média de testes, M_T , igual ou superior a 5,0.
- 3. Obter menção final igual ou superior a MM.

6 Cronograma

Semana	Aula / Data	TÓPICOS		
1ª	1ª - 19/08	Apresentação do Curso – Conceitos Básicos - 1		
	2 ^a - 21/08	Conceitos Básicos - 2		
2ª	3ª - 26/08	Modelos de Computação Paralela Disponibilização do Programa Básico		
	4 ^a - 28/08	Multithreaded Programming OpenMP - 1		
3ª	5 ^a - 02/09	Multithreaded Programming OpenMP - 2		
	6 ^a - 04/09	Multithreaded Programming OpenMP - 3		
4ª	7 ^a - 09/09	Multithreaded Programming OpenMP - 4		
	8 ^a - 11/09	Modelo de Memória OpenMP		
5ª	16/09	Atividade de Programação		
	18/09	Atividade de Programação		
6ª	23/09	Atividade de Programação Entrega do Programa em OpenMP (Multithreaded)		
U	9 ^a - 25/09	Arquiteturas SIMD		
7ª	10 ^a - 30/09	Arquiteturas SIMD – Pipeline – Arquiteturas MIMD		
	11 ^a - 02/10	Algoritmos Paralelos Básicos		
8 ^a	12 ^a - 07/10	Multiprocessed Programming MPI		
	13° - 09/10	Distributed Programming - MPI		
9ª	14 ^a - 14/10	Comunicações MPI - 1		
	15 ^a - 16/10	Comunicações MPI - 2		
10 ^a	21/10	Atividade de Programação		
	23/10	Atividade de Programação		
11ª	28/10	Atividade de Programação Entrega do Programa em MPI (Distributed)		
	16 ^a - 30/10	Programação GPU - 1		
12ª	17 ^a - 04/11	Programação GPU - 2		
	18 ^a - 06/11	Programação GPU – 3		
13ª	19 ^a - 11/11	Programação GPU - 4		
	20° - 13/11	Memórias Cache		
14ª	21 ^a - 18/11	Otimização para Caches – Divisão em Blocos		
	22ª - 20/11	Profilers		
15ª	23° - 25/11	Paralelismo de Tarefas		
	27/11	Atividade de Programação		
16ª	02/12	Atividade de Programação		
	04/12	Atividade de Programação Entrega do Programa em CUDA (GPU)		
17ª	09/12			
	11/12			
	16/12	Publicação de Menções Finais		
	18/12	Revisão de Notas		
	21/12	Submissão de Menções Finais no Sistema Acadêmico		

7 Bibliografia

- Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Addison Wesley, 2003.
 - Princípios Gerais de Paralelismo; Visão Algorítmica:
- John L. Hennessy, David A. Patterson: Computer Architecture: A
 Quantitative Approach, 4th edition, Morgan Kaufmann, 2007.
 Bíblia de Arquitetura de Computadores:
- Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, Andy White: *Sourcebook of Parallel Computing*, Morgan Kaufmann, 2003.
 - Um dos melhores livros em aplicações:
- David E. Culler, Jaswinder Pal Singh, Anoop Gupta: Parallel Computer Architecture, a Hw/Sw Approach, Morgan Kaufmann, 1999.
 Ênfase em hardware e seus impactos em software:
- Michael Wolfe: *High Performance Compilers for Parallel Computing*, Addison-Wesley, 1996.
 - Técnicas de otimização e de compilação para paralelismo:
- Livros e padrões de OpenMP, MPI e CUDA (citados nas respectivas aulas)