IST_597 Deep Learning Assignment 00010 Report tfv5097-Thejasvi Velaga

Inputs:

```
size_input = 784
size_hidden = [128,64]
size_output = 10
number_of_train_examples = 7000 #60000
number_of_test_examples = 1500 #10000
seed=5097
```

For GPU without Regularization						
	MNIST			Fashion MNIST		
Epoch	Avg categorical_c ross_entropy	accuracy	Epoch	Avg categorical_c ross_entropy	accuracy	
1	0.449406180 2455357	99.91666666 666667	1	0.444219656 8080357	99.91666666 666667	
2	0.441886858 2589286	100.0	2	0.424918980 1897321	99.91666666 666667	
3	0.426495221 8191964	99.95833333 333333	3	0.412638253 3482143	99.91666666 666667	
4	0.412300502 2321429	99.91666666 666667	4	0.411167306 0825893	99.875	
5	0.405413922 99107143	99.8333333 333333	5	0.410490234 375	99.8333333 333333	
6	0.404906005 859375	99.95833333 333333	6	0.409915039 0625	99.875	
7	0.404555943 08035714	99.91666666 666667	7	0.409361467 63392856	99.79166666 666667	
8	0.404233258 9285714	99.875	8	0.408947405 1339286	99.91666666 666667	
9	0.403880161 83035713	99.75	9	0.408492745 5357143	0.408492745 5357143	

10	0.403768310 546875	100.0	10	0.408492745 5357143	0.408492745 5357143
Total time taken (in seconds): 94.05		Total time taken (in seconds): 113.01			

For GPU without Drop Out						
	MNIST		Fashion MNIST			
Epoch	Avg categorical_c ross_entropy	accuracy	Epoch	Avg categorical_c ross_entropy	accuracy	
1	0.580371477 3995535	99.9375	1	0.440268310 546875	99.91666666 666667	
2	0.578351248 6049107	99.8125	2	0.440652378 62723217	99.875	
3	0.570089146 2053571	99.9375	3	0.438192313 0580357	99.91666666 666667	
4	0.570954241 0714286	99.8125	4	0.438430350 1674107	99.875	
5	0.564282191 6852678	99.8125	5	0.437439906 5290179	99.79166666 666667	
6	0.564434500 5580357	99.875	6	0.437729422 4330357	99.875	
7	0.562941824 7767857	99.75	7	0.436318743 0245536	99.875	
8	0.558334437 7790178	99.9375	8	0.435490722 65625	99.79166666 666667	
9	0.559834228 515625	99.875	9	0.432429966 51785715	99.875	
10	0.553708844 8660714	99.75	10	0.434183314 73214283	99.83333333 333333	
Total time take	n (in seconds): 1	45.35	Total time taken (in seconds): 89.09			

For GPU with L2						
	MNIST			Fashion MNIST		
Epoch	Avg categorical_c ross_entropy	accuracy	Epoch	Avg categorical_c ross_entropy	accuracy	
1	1.682006277 9017857	99.75	1	1.806360491 0714286	99.875	
2	1.625567801 3392858	99.875	2	1.731609235 4910715	1.731609235 4910715	
3	1.585320452 0089286	99.8333333 333333	3	1.634193498 8839286	99.75	
4	1.546716517 857143	99.66666666 666667	4	1.594478515 625	99.75	
5	1.509315987 7232143	99.58333333 333333	5	1.556518554 6875	99.75	
6	1.473194335 9375	99.70833333 333333	6	1.520040736 607143	99.79166666 666667	
7	1.406754464 2857144	99.70833333 333333	7	1.484473214 2857142	99.8333333 333333	
8	1.358173828 125	99.70833333 333333	8	1.449806780 1339285	99.75	
9	1.325374302 455357	99.5	9	1.416222237 7232143	99.75	
10	1.293384207 5892856	99.45833333 333333	10	1.416222237 7232143	99.70833333 333333	
Total time take	n (in seconds): 9	97.17	Total time taken (in seconds): 84.02			

One Step Inference							
	Default Mode for MNIST			Default Mod	e for Fashion MNIST		
	Without Regulariza tion	Drop out	L2	Without Regulariza tion	Drop out	L2	
categorical _cross_ent ropy	0.3997	0.4395	1.7845	0.4154	0.4330	1.8341	
Accuracy	99.958333 33333333	99.875	100.0	99.916666 66666667	99.875	99.875	

Graphs:

One Step Inference table

For GPU without Regularization							
	MNIST		Fashion MNIST				
Seed	Avg categorical_c ross_entropy	accuracy	Seed	Avg categorical_c ross_entropy	accuracy		
5097	0.3997	99.95833333 333333	5097	0.4154	99.91666666 666667		
1234	0.5557	99.9375	1234	0.4532	99.95833333 333333		
1111	0.4258	99.95833333 333333	1111	0.4313	99.95833333 333333		
1212	0.4430	99.95833333 333333	1212	0.4525	99.875		
98933	0.4166	99.91666666 666667	98933	0.4499	99.875		
737387532	0.4061	99.8333333 333333	737387532	0.4533	99.95833333 333333		
5473	0.4479	100.0	5473	0.4533	99.91666666 666667		
900000	0.4556	99.91666666 666667	900000	0.4544	99.79166666 666667		
65838	0.4574	99.8333333 333333	65838	0.4499	99.79166666 666667		
757493755	0.4542	99.95833333 333333	757493755	0.4545	99.875		

For GPU with Drop Out						
MNIST			Fashion MNIST			
seed	Avg categorical_c ross_entropy	accuracy	seed	Avg categorical_c ross_entropy	accuracy	
5097	0.4395	99.875	5097	0.4330	99.875	

1234	0.5915	100.0	1234	0.4293	99.95833333 333333
1111	0.4343	99.91666666 666667	1111	0.4359	99.875
1212	0.4399	99.95833333 333333	1212	0.4384	99.8333333 333333
98933	0.4452	99.95833333 333333	98933	0.4466	99.8333333 333333
737387532	0.4316	99.95833333 333333	737387532	0.4267	99.875
5473	0.4442	100.0	5473	0.4381	99.875
900000	0.4437	99.95833333 333333	900000	0.4513	99.79166666 666667
65838	0.4484	99.91666666 666667	65838	0.4457	99.875
757493755	0.4522	99.875	757493755	0.4254	99.95833333 333333

For GPU Regularization L2						
	MNIST			Fashion MNIST		
seed	Avg categorical_c ross_entropy	accuracy	seed	Avg categorical_c ross_entropy	accuracy	
5097	1.7845	100.0	5097	1.8341	99.875	
1234	2.4137	99.9375	1234	1.7933	99.91666666 666667	
1111	1.8593	99.875	1111	1.8621	99.95833333 333333	
1212	1.8010	99.91666666 666667	1212	1.8380	99.95833333 333333	
98933	1.7937	99.91666666 666667	98933	1.7833	99.91666666 666667	

737387532	1.7774	99.91666666 666667	737387532	1.8853	99.8333333 333333
5473	1.8094	99.875	5473	1.8211	100.0
900000	1.8224	99.8333333 333333	900000	1.8591	1.8591
65838	1.7984	99.95833333 333333	65838	1.7565	99.91666666 666667
757493755	1.8758	99.95833333 333333	757493755	1.8102	99.95833333 333333

Graphs for one step inference:

Fashion MNIST

Findings:

When changing the hyper parameters from SGD to ADAM, I observed that ADAM has better performance when compared to SGD when we are considering categorical_crossentropy as a loss equation.

Instead of mean squares using categorical_crossentropy would help to increase the performance of the model as there are 10 categories of MNIST.

Adding the drop out and L2 regularization, I observed that there is drop when using L2 and boost in performance when using drop out.

As part of the hyper-parameter optimization, I changed the batch sizes to 24,32 etc and used a different learning rate for adam.