

INTRO TO DATA SCIENCE LECTURE 11: NAIVE BAYESIAN CLASSIFICATION

January 12, 2015 DAT11-SF RECAP 2

LAST TIME:

- ENSEMBLE METHODS
- BOOSTING: GRADIENT BOOSTING TREES
- BAGGING: RANDOM FOREST

QUESTIONS?

AGENDA 3

- I. INTRO TO PROBABILITY
 II. NAÏVE BAYESIAN CLASSIFICATION
 III. RANKING CLASSIFIERS AND ROC CURVES
- EXERCISES: IV. NAÏVE BAYES IN SCIKIT-LEARN

INTRO TO DATA SCIENCE

I. INTRO TO PROBABILITY

INTRO TO PROBABILITY

The probability of event A is denoted P(A).

The probability of event B is denoted P(B).

The probability of event $A \cap B$ is denoted P(AB).

Suppose event B has occurred. The probability of A given this information about B is called the **conditional probability** of A given B, written P(A|B) = P(AB) / P(B).

The intersection of $A \cap B$ divided by region B.

Q: What does it mean for two events to be **independent**?

A: Information about one does not affect the probability of the other.

This can be written as P(A|B) = P(A).

Using the definition of the conditional probability, we can also write:

$$P(A|B) = P(AB) / P(B) = P(A) \rightarrow P(AB) = P(A) * P(B)$$

INTRO TO PROBABILITY

$$P(A|B) = P(AB) / P(B) = > P(AB) = P(A|B) P(B)$$

$$P(AB) = P(A|B) *P(B)$$

$$P(BA) = P(B|A) * P(A)$$

But
$$P(AB) = P(BA)$$

$$\rightarrow P(A|B)*P(B) = P(B|A)*P(A)$$

$$\rightarrow P(A|B) = P(B|A)*P(A) / P(B)$$

since event AB = event BA

by combining the above

by rearranging last step

BAYES' THEOREM 9

This result is called **Bayes' theorem**:

$$P(A \mid B) = P(B \mid A) * P(A) / P(B)$$

Thomas Bayes, 1701-1761

INTRO TO DATA SCIENCE

II. NAÏVE BAYESIAN CLASSIFICATION

BAYESIAN LEARNING 11

h – hypothesis, D – data

P(h) — prior probability (apriory) of h

P(D|h) — probability of observing data under hypothesis h

P(h|D) — posterior probability of hypothesis h after seeing D

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Learning — selecting most probable hypothesis h after seeing data

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Select maximum a posteriory hypothesis:

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h|D)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h)$$

Suppose we have a dataset with features $x_1, ..., x_n$ and a class label C. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a new data point (record) belonging to a class, *given* the data we observe.

This term is the **likelihood function**. It represents the joint probability of observing features $\{x_i\}$ given that that record belongs to class C.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

We can observe the value of the likelihood function from the training data.

This term is the **prior probability** of C. It represents the probability of a record belonging to class C before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The value of the prior is also observed from the data.

This term is the **normalization constant.** It doesn't depend on C, and is generally ignored until the end of the computation.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The normalization constant doesn't tell us much.

THE POSTERIOR 17

This term is the **posterior probability** of *C*. It represents the probability of a record belonging to class *C* after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The goal of any Bayesian computation is to find ("learn") the posterior distribution of a particular variable.

Remember the likelihood function?

$$P({x_i} | C) = P({x_1, x_2, ..., x_n}) | C)$$

Observing this exactly would require us to have enough data for every possible combination of features to make a reasonable estimate.

Make a simplifying assumption. In particular, we assume that the features x_i are conditionally independent from each other:

$$P(\{x_i\} | C) = P(x_1, x_2, ..., x_n) | C) \approx P(x_1 | C) * P(x_2 | C) * ... * P(x_n | C)$$

This "naïve" assumption simplifies the likelihood function to make it tractable.

Selecting most probable MAP (maximum a-posteriory) hypothesis: Assign class labels $\hat{y} = C_k$ according to :

$$\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^n p(x_i | C_k).$$

Gaussian NB — continuous data

$$p(x = v|c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{(v-\mu_c)^2}{2\sigma_c^2}}$$

Multinomal NB — discrete counts (histogram of event counts)

$$p(\mathbf{x}|C_k) = \frac{(\sum_i x_i)!}{\prod_i x_i!} \prod_i p_{ki}^{x_i}$$

Bernoully NB — discrete counts, boolean/binary variables

$$p(\mathbf{x}|C_k) = \prod_{i=1}^n (x_i p_{ki} + (1 - x_i)(1 - p_{ki}))$$

Α	В	С		D	E	F	G	H		I	J	K	L
assengerld	Survived	Pclass	Name		Sex	Age	SibSp	Parch		Ticket	Fare	Cabin	Embarked
1	0		3 Braund, Mr.		male	22		1		A/5 21171	7.25		S
2	1		1 Cumings, M	rs. John Bradley (Florence Briggs Thayer)	female	38		1	0	PC 17599	71.2833	C85	С
3	1		3 Heikkinen, N	Aiss. Laina	female	26		0	0	STON/O2. 31	7.925		S
4	1		1 Futrelle, Mr.	s. Jacques Heath (Lily May Peel)	female	35		1	0	113803	53.1	C123	S
5	0		3 Allen, Mr. W	/illiam Henry	male	35		0	0	373450	8.05		S
6	0		3 Moran, Mr.	James	male			0	0	330877	8.4583		Q
7	0		1 McCarthy, N	Лr. Timothy J	male	54		0	0	17463	51.8625	E46	S
8	0		3 Palsson, Ma	ster. Gosta Leonard	male	2		3	1	349909	21.075		S
9	1		3 Johnson, Mi	rs. Oscar W (Elisabeth Vilhelmina Berg)	female	27		0	2	347742	11.1333		S
10	1		2 Nasser, Mrs	. Nicholas (Adele Achem)	female	14		1	0	237736	30.0708		С
11	1		3 Sandstrom,	Miss. Marguerite Rut	female	4		1	1	PP 9549	16.7	G6	S
12	1		1 Bonnell, Mis	ss. Elizabeth	female	58		0	0	113783	26.55	C103	S
13	0		3 Saundercoc	k, Mr. William Henry	male	20		0	0	A/5. 2151	8.05		S
14	0		3 Andersson,	Mr. Anders Johan	male	39		1	5	347082	31.275		S
15	0		3 Vestrom, M	iss. Hulda Amanda Adolfina	female	14		0	0	350406	7.8542		S
16	1		2 Hewlett, Mr	s. (Mary D Kingcome)	female	55		0	0	248706	16		S
17	0		3 Rice, Master	r. Eugene	male	2		4	1	382652	29.125		Q
18	1		2 Williams, M	r. Charles Eugene	male			0	0	244373	13		S
19	0		3 Vander Plan	ke, Mrs. Julius (Emelia Maria Vandemoorte	female	31		1	0	345763	18		S
20	1		3 Masselmani	, Mrs. Fatima	female			0	0	2649	7.225		С
21	0		2 Fynney, Mr.	Joseph J	male	35		0	0	239865	26		S
22	1		2 Beesley, Mr.	. Lawrence	male	34		0	0	248698	13	D56	S
23	1		3 McGowan, I	Miss. Anna "Annie"	female	15		0	0	330923	8.0292		Q
24	1		1 Sloper, Mr.	William Thompson	male	28		0	0	113788	35.5	A6	S
25	0		3 Palsson, Mis	ss. Torborg Danira	female	8		3	1	349909	21.075		S
26	1		3 Asplund, Mr	s. Carl Oscar (Selma Augusta Emilia Johans	female	38		1	5	347077	31.3875		S
27	0		3 Emir, Mr. Fa		male			0	0	2631	7.225		С
28	0		1 Fortune, Mr	. Charles Alexander	male	19		3	2	19950	263	C23 C25 C27	S
29	1		3 O'Dwyer, M	iss. Ellen "Nellie"	female			0	0	330959	7.8792		Q
30	0		3 Todoroff, M		male			0	0	349216	7.8958		S

TITANIC DATA

 $Find\ P(Class = Yes | Status = First, Age = Adult, Sex = Male)$?

ATTRIBUTE	VALUE	CLASS=YES	CLASS=NO
STATUS	FIRST SECOND THIRD CREW	203 118 178 212	122 167 528 673
AGE	ADULT CHILD	654 57	1438 52
SEX	MALE FEMALE	367 344	1364 126

 $P(Status = First, Age = Adult, Sex = Male \mid Class = Yes)*P(Class = Yes) =$

 $= P(Status = First \mid Class = Yes) *P(Age = Adult \mid Class = Yes) *P(Sex = Male \mid Class = Yes) *P(Class = Yes)$

INTRO TO DATA SCIENCE

III. RANKING CLASSIFIERS AND ROC CURVES

CONFUSION MATRIX

	actual	actual
	positive	negative
predicted positive	TP	FP
predicted negative	FN	TN

(a) Confusion Matrix

Recall =
$$\frac{TP}{TP+FN}$$

Precision = $\frac{TP}{TP+FP}$

True Positive Rate = $\frac{TP}{TP+FN}$

False Positive Rate = $\frac{FP}{FP+TN}$

(b) Definitions of metrics

CONFUSION MATRIX 26

fp rate =
$$\frac{FP}{N}$$
 tp rate = $\frac{TP}{P}$

Accuracy is a property of a classifier + data

 $accuracy = \frac{Number of correct decisions made}{Total number of decisions made}$

$$accuracy = \frac{TP + TN}{P + N}$$

fp rate =
$$\frac{FP}{N}$$
 tp rate = $\frac{TP}{P}$

True class P True False Positives N False Negatives True Negatives

ls: P N

RANKING CLASSIFIERS

ROC SPACE

True Positive Rate $= \frac{TP}{TP+FN}$

False Positive Rate = $\frac{FP}{FP+TN}$

ROC =Receiver Operating Characteristic

AUC = Area under the ROC curve

INTRO TO DATA SCIENCE

III. LAB: NAIVE BAYES IN SCI-KIT LEARN