Problemas Semanas 9-11

Teoría de invariantes

- (1) Si (V, ρ) es una representación fiel, demuestre que toda representación irreducible vive en $V^{\otimes k}$ para algún $k \in \mathbb{Z}^+$.
- (2) (a) Demuestre que $\mathbb{C}[x, xy, xy^2, \ldots]$ no es una \mathbb{C} -álgebra finitamente generada.

Figure 1: retículo $\mathbb{C}[x, xy, xy^2, \ldots]$

- (b) Toda subálgebra de $\mathbb{C}[x]$ es finitmente generada.?
- (3) Si e_1, \ldots, e_n son base para el espacio vectorial V, demuestre que $e_1^{a_1} \cdot \ldots \cdot e_n^{a_n}$ con $a_1 + \ldots + a_n = m$ son base para $\operatorname{Sym}^m(V)$.
- (4) Obligatorio 1!
 - (a) Sea χ un caracter irreducible de G y defina $R^{\chi} \subset R$ la componente isotípica de χ . Demuestre que R^{χ} es un R^{G} módulo graduado.
 - (b) Encuentre una generalización del teorema de Molien para calcular $HS(\mathbb{R}^{\chi})$.
 - (c) Sea $S_3 \curvearrowright \mathbb{C}[x_1, x_2, x_3]$ por permutación sobre las x_i 's. Calcular: $HS(\mathbb{R}^G)$, $HS(\mathbb{R}^{\chi_{\text{sgn}}})$ y $HS(\mathbb{R}^{\chi_U})$, donde U es la representación de dimensión dos.
- (5) Una pareja $(\bigwedge^k W^*, f)$ donde $\bigwedge^k W^*$ es un espacio vectorial y $f: W^* \times \ldots \times W^* \to \bigwedge W^*$ es k- lineal alternante que satisface:

(a) Muestre que la pareja $(\bigwedge^k W^*,f)$ es única salvo isomorfismo.

- (b) Constuya $\bigwedge^k W^*$ como cociente de $W^* \otimes \ldots \otimes W^*$.
- (c) Si ℓ_1, \ldots, ℓ_n son una base para W^* , mueste que

$$\{\ell_{i_1} \wedge \ldots \wedge \ell_{i_k} : 1 \leq i_1 < \ldots < i_k \leq n\}$$

son base para $\bigwedge^k W^*$.

(6) Si $T:A\to B$ es una transformación lineal defina $\bigwedge^k T:\bigwedge^k A\to \bigwedge^k B$ como sigue (note que es el único operaor lineal):

$$\bigwedge^{k} T(v_1 \wedge \ldots \wedge v_k) = T(v_1) \wedge \ldots \wedge T(v_k).$$

- (a) Demuestre que la matriz que representa a $\bigwedge^k T$ en alguna base esta dada por lo menores $k \times k$ de la matriz que representa a T.
- (b) Demuestre que:

$$* \bigwedge^{k} (T_{1} \circ T_{2}) = \bigwedge^{k} T_{1} \cdot \bigwedge^{k} T_{2}$$

$$* \bigwedge^{k} (\operatorname{Id}_{W^{*}}) = \operatorname{Id}_{\bigwedge^{k} W^{*}}.$$

- (c) Si (W, ρ) es una representación entonces $(\bigwedge^k W, \bigwedge^k (\rho(\cdot))$ es una representación.
- (7) Obligatorio 2!

Definición 1. Definimos el caracter de la representación de $\bigwedge^{\blacklozenge} W^*$ como sigue $(n = \dim W)$:

$$\chi_{\bigwedge^{\bullet} W^*}(g) = \sum_{k=0}^{n} \chi_{\bigwedge^{k} W^*}(g) t^{k}.$$

Demuestre que:

- (a) $\chi_{\bigwedge^{\bullet} W^*} = \det(\operatorname{Id} + t\rho^*(g)).$
- (b) Generalice el teorema de Molien para el álgebra exterior.
- (c) Calcule $HS(\bigwedge^{\blacklozenge} W^*)$.
- (d) Haga los calculos para el siguiete caso: $S_3 \curvearrowright \{e_1, e_2, e_3\}$, con $\langle e_1, e_2, e_3 \rangle = W$, $W^* = \langle x_1, x_2, x_3 \rangle$ y $R = \mathbb{C}[x_1, x_2, x_3]$.
- (8)

Definición 2. Una función regular de \mathbb{C}^n a \mathbb{C}^m es una finción con componentes polinomiales, es decir:

$$\varphi: \mathbb{C}^n \longrightarrow \mathbb{C}^m$$
$$(x_1, \dots, x_n) \longrightarrow (F_1(x_1, \dots, x_n), \dots, F_m(x_1, \dots, x_n))$$

(a) Demuestre que

$$\varphi^* : \mathbb{C}[y_1, \dots, y_m] \longrightarrow \mathbb{C}[x_1, \dots, x_n]$$

$$h \longrightarrow h \circ \varphi$$

es un homomorfismo de álgebras y que $\ker(\varphi^*)$ son precisamente los polinomios $q(y_1, \dots, y_m) \in \mathbb{C}[y_1, \dots, y_m]$ que se desvanecen en $\operatorname{Im}(\varphi^*)$.

- (b) Defina $J=\langle y_i-F_i(x_1,\ldots,x_n):1\leq i\leq m\rangle$ en $\mathbb{C}[x_1,\ldots,x_n,y_1,\ldots,y_m]$ y verifique que $J\cap\mathbb{C}[y_1,\ldots,y_m]=\ker(\varphi^*).$
- (c) Dé un algoritmo usando bases de Gröbner para calcular $\ker(\varphi^*)$.
- (d) Demuestre que la subálgebra de $\mathbb{C}[x_1,\ldots,x_n]$ generada por los F_i 's es isomorfa a $\mathbb{C}[y_1,\ldots,y_m]/\ker(\varphi^*)$.
- (e) Encuentre un ejemplo de una función regular $\varphi: \mathbb{A}^2 \to \mathbb{A}^3$, tal que $\operatorname{Im}(\varphi) \subsetneq V(\ker(\varphi^*))$.