

A3 On page 12, line 34, insert [] - The present invention is also useful for cutting, shaping or ablation of fibrocartilage and articular cartilage during arthroscopic or endoscopic procedure. The target tissue will be, by way of example but not limited to, articular cartilage, fibrocartilage, and meniscal tissue, such as found in the joints of the knee, shoulder, hip, foot, hand and spine.

A4 On page 17, line 38, after "preferably", please insert the following text: [] - to within 5°C) before the onset of the next energy (current) pulse.

In addition to the above described methods, the applicant has discovered another mechanism for ablating tissue while minimizing the depth of necrosis. This mechanism involves applying a high frequency voltage between the active electrode surface and the return electrode to develop high electric field intensities in the vicinity of the target tissue site. The high electric field intensities lead to electric field induced molecular breakdown of target tissue through molecular dissociation (rather than thermal evaporation or carbonization). In other words, the tissue structure is volumetrically removed through molecular disintegration of complex organic molecules into non-viable hydrocarbons and nitrogen compounds. This molecular disintegration completely removes the tissue structure, as opposed to transforming the tissue material from a solid form directly to a vapor form, as is typically the case with ablation.

The high electric field intensities may be generated by applying a high frequency voltage that is sufficient to vaporize the electrically conducting liquid over at least a portion of the active electrode(s) in the region between the distal tip of the active electrode and the target tissue. Since the vapor layer or vaporized region has a relatively high electrical impedance, it increases the voltages differential between the active electrode tip and the tissue and causes ionization within the vapor layer due to the presence of an ionizable species (e.g., sodium when isotonic saline is the electrically conducting fluid). This ionization, under optimal conditions, induces the discharge of energetic electrons and photons from vapor layer and to the surface of the target tissue. This energy may be in the form of energetic photons (e.g., ultraviolet radiation), energetic particles (e.g., electrons) or a combination thereof.

[On page 20, line 38, after "fields are on the order of the", please insert the following text:] --external field. Spatial extent of this region should be larger than the distance required for an electron avalanche to become critical and for an ionization front to develop.

This ionization front develops and propagates across the vapor layer via a sequence of processes occurring the region ahead of the front, viz, heat by electron injection, lowering of the local liquid density below the critical value and avalanche growth of the charged particle concentration.

A5
DRAFT--DO NOT CITE
Electrons accelerated in the electric field within the vapor layer will apparently become trapped after one or a few scatterings. These injected electrons serve to create or sustain a low density region with a large mean free path to enable subsequently injected electrons to cause impact ionization within these regions of low density. The energy evolved at each recombination is on the order of half of the energy band gap (i.e., 4 to 5 eV). It appears that this energy can be transferred to another electron to generate a highly energetic electron. This second, highly energetic electron may have sufficient energy to bombard a molecule to break its bonds, i.e., dissociate the molecule into free radicals.

The electrically conducting liquid should have a threshold conductivity in order to suitably ionize the vapor layer for the inducement of energetic electrons and photons. The electrical conductivity of the fluid (in units of millSiemens per centimeter or mS/cm) will usually be greater than 0.2 mS/cm, preferably will be greater than 2 mS/cm and more preferably greater than 10 mS/cm. In an exemplary embodiment, the electrically conductive fluid is isotonic saline, which has a conductivity of about 17 mS/cm. The electrical conductivity of the channel trailing the ionization front should be sufficiently high to maintain the energy flow required to heat the liquid at the ionization front and maintain its density below the critical level. In addition, when the electrical conductivity of the liquid is sufficiently high, ionic pre-breakdown current levels (i.e., current levels prior to the initiation of ionization within the vapor layer) are sufficient to also promote the initial growth of bubbles.

44

A