Estimating Single-Agent Dynamic Models II

Paul T. Scott New York University

PhD Empirical IO Fall 2019

A "macroeconomic" introduction: Euler equations

 For a consumption-savings problem with CRRA utility, the following Euler equation describes optimal savings behavior:

$$c_t^{lpha}=eta R_t E_t \left[c_{t+1}^{lpha}
ight]$$
 ,

or

$$E_t\left[\left(\frac{c_{t+1}}{c_t}\right)^{\alpha}\right] = (\beta R_t)^{-1},$$

where

- ullet c_t is time-t consumption,
- α is the parameter of interest to be estimated,
- β is the discount factor,
- R_t is the rate of return on time t savings

A "macroeconomic" introduction: Euler equations

 For a consumption-savings problem with CRRA utility, the following Euler equation describes optimal savings behavior:

$$c_t^{lpha}=eta R_t E_t \left[c_{t+1}^{lpha}
ight]$$
 ,

or

$$E_t\left[\left(\frac{c_{t+1}}{c_t}\right)^{\alpha}\right] = (\beta R_t)^{-1},$$

where

- c_t is time-t consumption,
- α is the parameter of interest to be estimated,
- β is the discount factor,
- R_t is the rate of return on time t savings
 - Known at t
 - Time varying

Euler equations review II

Baseline Euler equation:

$$E_t\left[\left(rac{c_{t+1}}{c_t}
ight)^lpha
ight]=\left(eta R_t
ight)^{-1}$$
 ,

We can drop the expectation operator, writing

$$\left(\frac{c_{t+1}}{c_t}\right)^{\alpha} = \left(\beta R_t\right)^{-1} + e_t,$$

where
$$e_t = \left(\frac{c_{t+1}}{c_t}\right)^{\alpha} - E_t \left[\left(\frac{c_{t+1}}{c_t}\right)^{\alpha}\right]$$
.

Euler equations review III

• As observed by Hall (1978), e_t is uncorrelated with everything in the time-t information set by construction:

$$\begin{split} E\left[e_{t}x_{t}\right] &= E\left[\left(\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha} - E_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}\right]\right)x_{t}\right] \\ &= E\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}x_{t}\right] - E\left[E_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}\right]x_{t}\right] \\ &= E\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}x_{t}\right] - E\left[E_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}x_{t}\right]\right] \\ &= E\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}x_{t}\right] - E\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{\alpha}x_{t}\right] \\ &= 0, \end{split}$$

where the third line follows from x_t 's being in the time t information set, and the fourth follows from the law of iterated expectations.

Euler equations review IV

• In particular, $E\left(R_t^{-1}e_t\right)=0$. It follows that

$$\left(\frac{c_{t+1}}{c_t}\right)^{\alpha} = (\beta R_t)^{-1} + e_t \qquad (1)$$

is a valid (nonlinear) regression equation.

• Following Hansen and Singleton (1982), we could use an IV approach to estimating (1).

Euler equations review IV

• In particular, $E\left(R_t^{-1}e_t\right)=0$. It follows that

$$\left(\frac{c_{t+1}}{c_t}\right)^{\alpha} = (\beta R_t)^{-1} + e_t \qquad (1)$$

is a valid (nonlinear) regression equation.

- Following Hansen and Singleton (1982), we could use an IV approach to estimating (1).
 - E.g., suppose we have measurement error in $R_t = R_t^* + \nu_t$. As usual, we want an instrumental variable z_t that is correlated with the true value R_t^* and not correlated with the measurement error ν_t .
 - The instrument z_t should also be in the time-t information set so that it's not correlated with e_t .

Euler equations review IV

• In particular, $E\left(R_t^{-1}e_t\right)=0$. It follows that

$$\left(\frac{c_{t+1}}{c_t}\right)^{\alpha} = (\beta R_t)^{-1} + e_t \qquad (1)$$

is a valid (nonlinear) regression equation.

- Following Hansen and Singleton (1982), we could use an IV approach to estimating (1).
 - E.g., suppose we have measurement error in $R_t = R_t^* + \nu_t$. As usual, we want an instrumental variable z_t that is correlated with the true value R_t^* and not correlated with the measurement error ν_t .
 - The instrument z_t should also be in the time-t information set so that it's not correlated with e_t .
 - We could also deal with other endogeneity problems with instruments, e.g.

ECCP estimators

- ECCP: Euler Equations in Conditional Choice Probabilities
 - Derived from standard dynamic discrete choice tools (Hotz and Miller, 1993; Arcidiacono and Miller, 2011).
 - Like Euler equations from continuous choice contexts, ECCP equations relate observed behavior in successive time periods.
 - Aguirregabiria and Magesan (2013) formalize the analogy to continuous choice Euler equations: treat choice probabilities as choice variables.
- ECCP estimators make IV's tractable in dynamic discrete models.
- Easy to estimate (OLS or linear IV)
- No need to fully specify how all state variables evolve (unlike Hotz and Miller (1993), Aguirregabiria and Mira (2002), Pesendorfer and Schmidt-Dengler (2008))

Literature

- ECCP framework: Kalouptsidi, Scott, and Souza-Rodrigues (2018).
- Applied papers: Scott (2013), Traiberman (2018), De Groote and Verboven (2018), Diamond et al (2017), Almagro and Dominguez-lino (2019).
- Basic DDC tools: Rust (1987), Hotz and Miller (1993), Arcidiacono and Miller (2011), Arcidiacono and Ellickson (2011)
- Euler equation connection: Aguirregabiria and Magesan (2013)
- Related non-stationary framework: Arcidiacono and Miller (2017)
- Other approaches to unobservable state variables in the estimation of dynamic models: Arcidiacono and Miller (2011), Hu and Shum (2012), Berry and Compiani (2019), Kasahara and Shimotsu (2009)

Outline

- General framework for ECCP equations
 - Examples: land use change, durable demand
- Oerivation of ECCP regression equation
- Identification and Asymptotics (very briefly)
 - See Kalouptsidi, Scott, and Souza-Rodrigues (2018) for details
- Monte Carlo study with durable demand example

Example 1: Land Use Change

Applied question

• What are the effects of biofuels policy?

Methodological issue

- How to estimate long-run elasticities of crop supply?
 - Relevant for many agricultural and environmental policy questions

Contributions

- I develop a tractable and flexible empirical dynamic model of land use
- Taking dynamics into account implies larger environmental impacts, smaller price impacts from biofuels

Motivation: biofuels policy

- US biofuels mandate: about 10% of gasoline must come from biofuels (Renewable Fuels Standard)
- Appeal of biofuels: closing the carbon cycle
 - But what is the opportunity cost of the feedstock?
- Biofuels mandate ⇒ a long-run increase in demand for grains
 - 35-40% of US corn production used to for ethanol recently
- Increased demand ⇒ higher food prices and/or environmentally destructive land use change

Effects of the US biofuels mandate

Effects of the US biofuels mandate

Elastic supply \Rightarrow

Environmental Destruction

Effects of the US biofuels mandate

Elastic supply ⇒
Environmental Destruction

Inelastic supply \Rightarrow **Starvation**

Corn Prices

Choice data preview

Roberts County, SD, 2007

Choice data preview

Roberts County, SD, 2011

Dynamics in agricultural supply estimation

- Common in empirical agricultural economics are models featuring state dependence: Nerlove (1956), Lubowski (2002)
 - distinction between short- and long-run comes from changes compounding over time, behavior in current period is function of current price and current state
- My estimation strategy differs in allowing for dynamically optimizing agents
 - landowners may respond differently to different types of price variation
 - important if we want to predict response to counterfactual price variation that is (potentially) different than the type of price variation in the data
- Relative to adaptive expectations models,
 - My model is computationally simpler to estimate
 - My framework does not require the econometrician to specify the full state space and determine how all state variables evolve

Model I

- Agents indexed by i; markets, by m, time, by t.
- Agent chooses an action $a_{imt} \in \mathcal{A} = \{0, ..., A\}$, to maximize her expected discounted sum of payoffs, Π_{imt} ,

$$E\left[\sum_{ au=0}^{\infty}eta^{ au}\Pi_{im,t+ au}|\mathcal{I}_{imt}
ight],$$

where β is the discount factor, and $E\left[\cdot|\mathcal{I}_{imt}\right]$ denotes the expectation operator conditioned on the information set \mathcal{I}_{imt} .

Model II

Per-period utility payoff function:

$$\Pi_{imt}\left(\mathbf{a}\right)=\overline{\pi}\left(\mathbf{a},\mathbf{k}_{imt},\mathbf{w}_{mt}\right)+\xi\left(\mathbf{a},\mathbf{k}_{imt},\boldsymbol{\omega}_{mt}\right)+\varepsilon_{imt}\left(\mathbf{a}\right).$$

where

- k_{imt} is an agent-level state variable, observed by econometrician,
- w_{mt} is a market-level state variable, observed by econometrician,
- $oldsymbol{\omega}_{mt}$ is a market-level state variable, not observed by econometrician,
- ε_{imt} is an i.i.d. shock.
- State variables evolve as follows:

$$F\left(k',w',\omega',\varepsilon'|a,k,w,\omega,\varepsilon\right)=F^{\omega}\left(w',\omega'|w,\omega\right)F^{k}\left(k'|a,k,w\right)F^{\varepsilon}\left(\varepsilon'\right)$$

• Note: agents are "small"

Model III

Per-period utility payoff function:

$$\Pi_{imt}\left(a\right)=\overline{\pi}\left(a,k_{imt},w_{mt}\right)+\xi\left(a,k_{imt},\omega_{mt}\right)+\varepsilon_{imt}\left(a\right).$$

- ullet WLOG, assume $E\left(\xi
 ight)=0$ and define $\pi=\overline{\pi}+\xi$
- Note: no restrictions on dimension of or relationship between w and ω ; $\overline{\pi}$ and ξ may be correlated
 - Hence, the potential need for instrumental variables
- $oldsymbol{\xi}$ may be serially correlated; no need to specify an explicit process for how it evolves
- β and F^{ε} are assumed to be known.

Example 1: Land Use Change Model

$$\overline{\pi}\left(a_{imt}, k_{imt}, w_{mt}\right) + \xi\left(a_{imt}, k_{imt}, \omega_{mt}\right) + \varepsilon_{imt}\left(a_{imt}\right).$$

- Each period, each farmer chooses whether to plant crops or not.
- Agent-level state variable k_{imt} denotes condition of field has it been cleared, or is it covered in rough vegetation?
- Observed market-level state variable w_{mt} includes input and output prices, technological conditions that affect yield/productivity.
- Unobserved market-level state variable ω_{mt} may capture unobserved local price variation and/or components of farmer's returns that weren't measured.

Example 2: Durable Demand

$$\overline{\pi}\left(a_{imt}, k_{imt}, w_{mt}\right) + \xi\left(a_{imt}, k_{imt}, \omega_{mt}\right) + \varepsilon_{imt}\left(a_{imt}\right).$$

- Each period, a consumer decides whether to buy a good or not.
- Individual-level state k_{imt} indicates whether consumer already owns a working unit of the good or not.
- \bullet Observed market-level state variable w_{mt} is the price of the good
- ullet Unobserved component of payoffs ξ represents quality/demand shock.

Value Functions and Choice Probabilities

- Let $V(k, \omega, \varepsilon)$ be the agent's value function. Note: absorbing w_{mt} into ω_{mt}
- Ex ante value function:

$$V\left(k_{imt},\omega_{mt}\right)\equiv\int V\left(k_{imt},\omega_{mt},\varepsilon_{imt}\right)dF^{\varepsilon}\left(\varepsilon_{imt}\right)$$

Conditional value function:

$$v_{a}\left(\mathit{k_{imt}},\omega_{\mathit{mt}}\right) = \pi\left(\mathit{a},\mathit{k_{imt}},\omega_{\mathit{mt}}\right) + \beta E\left[V\left(\mathit{k_{imt+1}},\omega_{\mathit{mt+1}}\right) \middle| \mathit{a},\mathit{k_{imt}},\omega_{\mathit{mt}}\right]$$

Conditional choice probabilities:

$$p_{a}\left(k,\omega\right)=\int 1\left\{ v_{a}\left(k,\omega\right)+\varepsilon\left(a\right)\geq v_{j}\left(k,\omega\right)+\varepsilon\left(j\right),\forall j\in\mathcal{A}\right\} dF^{\varepsilon}\left(\varepsilon\right)$$

Rational Expecations

Rational Expectations

Agent's expectations conditional on the information set \mathcal{I}_{imt} correspond to the conditional expectations of the true data generating process given \mathcal{I}_{imt} .

Forecast errors

For a particular realization $\omega^* \in \Omega$,

$$\mathrm{e}^{V}\left(k',\omega,\omega^{*}\right)\equiv \mathit{E}_{\omega'\mid\omega}\left[V\left(k',\omega'\right)\mid\omega\right]-V\left(k',\omega^{*}\right)$$
 ,

$$e^{V}\left(a,k,\omega,\omega^{*}\right)\equiv\sum_{k'}e^{V}\left(k',\omega,\omega^{*}\right)F^{k}\left(k'|a,k,w\right),$$

where k' and ω' denote next period values for k and ω .

Some background: Logit Inclusive Value

- For a static logit model, suppose mean utilities (before the logit shocks) are $(u_1, u_2, ..., u_J)$
- The logit inclusive value (i.e., ex ante value of the choice set) is

$$U = \ln \sum_{j} \exp\left(u_{j}\right) + \gamma$$

• Adding and subtracting u_1 ,

$$U = \ln \left(\exp \left(u_1 \right)^{-1} \sum_{j} \exp \left(u_j \right) \right) + \gamma + u_1$$

• Given that the probability of choosing j=1 is $p_1=\exp{(u_1)} / \sum_j \exp{(u_j)}$,

$$U = -\ln(p_1) + \gamma + u_1$$

Useful Tool: The Arcidiacono-Miller Lemma

• From Arcidiacono and Miller (2011, Lemma 1):

$$V(k,\omega) = v_a(k,\omega) + \psi_a(p(k,\omega))$$

where ψ_a is a known function as long as the distribution of idiosyncratic shocks F^{ε} is known.

- Note: this equation holds for any action a. By differencing the equation across actions, we get the better-known Hotz-Miller inversion.
- This is an implication of dynamic optimization. It's the starting point for ECCP equations just as first-order conditions are the starting point for standard Euler equations in a continuous choice setting.

Regression Equation Derivation I

Recall the conditional value function:

$$v_{a}\left(k_{imt},\omega_{mt}\right) = \pi\left(a,k_{imt},\omega_{mt}\right) + \beta E\left[V\left(k_{imt+1},\omega_{mt+1}\right) \middle| a,k_{imt},\omega_{mt}\right].$$

After substituting with the Arcidiacono-Miller Lemma:

$$V(k_{imt}, \omega_{mt}) = \pi(a, k_{imt}, \omega_{mt}) -\psi_a(k_{imt}, \omega_{mt}) + \beta E[V(k_{imt+1}, \omega_{mt+1}) | a, k_{imt}, \omega_{mt}].$$

And then substituting for the expectation using the forecast error:

$$\begin{split} \pi\left(\mathbf{a}, k_{imt}, \omega_{mt}\right) + \beta \mathbf{e}^{V}\left(\mathbf{a}, k_{imt}, \omega_{mt}, \omega_{mt+1}\right) \\ &= V\left(k_{imt}, \omega_{mt}\right) - \psi_{a}\left(k_{imt}, \omega_{mt}\right) \\ &- \beta \sum_{k'} V\left(k', \omega_{mt+1}\right) F^{k}\left(k'|\mathbf{a}, k_{imt}, w_{mt}\right) \end{split}$$

Regression Equation Derivation II

• Letting mt subscripts stand for dependence on ω_{mt} and stacking equations across k, we have

$$\overline{\pi}_{\mathsf{amt}} + \xi_{\mathsf{amt}} + \beta e^{\mathsf{V}}_{\mathsf{amt},t,t+1} = V_{\mathsf{mt}} - \beta F^{\mathsf{k}}_{\mathsf{amt}} V_{\mathsf{mt}+1} - \psi_{\mathsf{amt}}$$

• The V_{mt} term can be by differencing across actions a and j:

$$\begin{array}{ll} \psi_{jmt} - \psi_{amt} & = & \overline{\pi}_{amt} - \overline{\pi}_{jmt} \\ & + \xi_{amt} - \xi_{jmt} + \beta \left(e^{V}_{am,t,t+1} - e^{V}_{jm,t,t+1} \right) \\ & + \beta \left(F^{k}_{amt} - F^{k}_{jmt} \right) V_{mt+1}. \end{array}$$

• Notice that the LHS can be estimated in a first stage. Before we have a regression equation, we need to deal with the V_{mt+1} term.

Regression Equation Derivation III

$$\begin{array}{ll} \psi_{jmt} - \psi_{amt} & = & \overline{\pi}_{amt} - \overline{\pi}_{jmt} \\ & + \xi_{amt} - \xi_{jmt} + \beta \left(e^{V}_{am,t,t+1} - e^{V}_{jm,t,t+1} \right) \\ & + \beta \left(F^{k}_{amt} - F^{k}_{jmt} \right) V_{mt+1}. \end{array}$$

ullet Using the Arcidiacono and Miller Lemma to substitute for V_{mt+1} ,

$$\begin{split} \psi_{jmt} - \psi_{amt} &= \\ \overline{\pi}_{amt} - \overline{\pi}_{jmt} \\ + \xi_{amt} - \xi_{jmt} + \beta \left(e^{V}_{am,t,t+1} - e^{V}_{jm,t,t+1} \right) \\ + \beta \left(F^{k}_{amt} - F^{k}_{jmt} \right) \left(\overline{\pi}_{Jmt+1} + \xi_{Jmt+1} + \psi_{Jmt+1} \right) \\ + \beta \left(F^{k}_{amt} - F^{k}_{jmt} \right) \left(F^{k}_{Jmt} E_{t+1} \left[V_{mt+2} \right] \right) \end{split}$$

Regression Equation Derivation IV

$$\begin{split} \psi_{jmt} - \psi_{amt} &= \\ \overline{\pi}_{amt} - \overline{\pi}_{jmt} \\ + \xi_{amt} - \xi_{jmt} + \beta \left(e^{V}_{am,t,t+1} - e^{V}_{jm,t,t+1} \right) \\ + \beta \left(F^{k}_{amt} - F^{k}_{jmt} \right) \left(\overline{\pi}_{Jmt+1} + \xi_{Jmt+1} + \psi_{Jmt+1} \right) \\ + \beta \left(F^{k}_{amt} - F^{k}_{jmt} \right) \left(F^{k}_{Jmt} E_{t+1} \left[V_{mt+2} \right] \right) \end{split}$$

• If J is a renewal (or terminal) action, then F_J^k has constant columns. Consequently,

$$F_{amt}^k F_{Jmt}^k = F_{jmt}^k F_{Jmt}^k.$$

and

$$\left(F_{amt}^{k} - F_{jmt}^{k}\right)\left(F_{Jmt}^{k}E_{t+1}\left[V_{mt+2}\right]\right) = 0$$

Regression Equation Derivation V

 Thus, if J is a terminal or renewal action, we have the following regression equation:

$$\begin{split} \psi_{jmt} - \psi_{amt} - \beta \left(F_{amt}^k - F_{jmt}^k \right) \psi_{Jmt+1} &= \\ \overline{\pi}_{amt} - \overline{\pi}_{jmt} + \beta \left(F_{amt}^k - F_{jmt}^k \right) \overline{\pi}_{Jmt+1} \\ + \xi_{amt} - \xi_{jmt} + \beta \left(F_{amt}^k - F_{jmt}^k \right) \xi_{Jmt+1} \\ + \beta \left(e_{am,t,t+1}^V - e_{jm,t,t+1}^V \right) \end{split}$$

 Note LHS is observable (with an imputed discount factor); RHS has only payoff function that we want to estimate and error terms.

Finite Dependence

Finite Dependence

A pair of choices a and j satisfies τ -period finite dependence if there exists two sequences of actions $(a, a_1, \ldots, a_{\tau})$ and $(j, j_1, \ldots, j_{\tau})$ such that, for all t,

$$F_{amt}^k F_{a_1mt+1}^k \dots F_{a_{\tau}mt+\tau}^k = F_{jmt}^k F_{j_1mt+1}^k \dots F_{j_{\tau}t+\tau}^k$$

 With finite dependence, we can eventually get cancellation of continuation values with repeated substitution with the Arcidiacono-Miller Lemma.

Example: Durable Demand

- $a_{imt} = b$ indicates buying; $a_{imt} = nb$, not buying.
- $k_{imt} = 0$ if the consumer does not have a unit of the good, and $k_{imt} = 1$ when she already owns it.
- The state evolves as follows, where buying is a renewal action:

$$Pr(k_{imt+1} = 1 | k_{imt}, a_{imt}) = \begin{cases} 1 & \text{if } a_{imt} = b \\ 0 & \text{if } a_{imt} = nb, k_{imt} = 0 \\ 1 - \phi & \text{if } a_{imt} = nb, k_{imt} = 1. \end{cases}$$

where ϕ is the rate of product failure/death.

 The consumer enjoys the following flow utility if purchasing the product:

$$\pi\left(b, k_{imt}, \omega_{mt}\right) = \theta_0 + \theta_1 w_{mt} + \xi_{mt},$$

where w_{mt} is the price of the good and ξ_{mt} is a demand shock.

Payoffs when not purchasing:

$$\pi\left(nb, k_{imt}, \omega_{mt}\right) = \begin{cases} \theta_0 & \text{if } k_{imt} = 1\\ 0 & \text{if } k_{imt} = 0. \end{cases}$$

• The Hotz-Miller inversion (differenced Arcidiacono-Miller Lemma):

$$\ln \left(\frac{p_{b,mt}\left(k_{imt}\right)}{p_{nb,mt}\left(k_{imt}\right)} \right) = v_{b,mt}\left(k_{imt}\right) - v_{nb,mt}\left(k_{imt}\right).$$

• Focusing on k = 0,

$$\ln \left(\frac{p_{b,mt}(k_{imt})}{p_{nb,mt}(k_{imt})} \right) = \theta_0 + \theta_1 w_{mt} + \xi_{mt} + \beta \left(V_{mt+1}(1) - V_{mt+1}(0) \right) + e^V \left(1, \omega_{mt}, \omega_{mt+1} \right) - e^V \left(0, \omega_{mt}, \omega_{mt+1} \right).$$

• Focusing on k = 0,

$$\ln \left(\frac{p_{b,mt} (k_{imt})}{p_{nb,mt} (k_{imt})} \right) = \theta_0 + \theta_1 w_{mt} + \xi_{mt} \\
+ \beta (V_{mt+1} (1) - V_{mt+1} (0)) \\
+ e^V (1, \omega_{mt}, \omega_{mt+1}) - e^V (0, \omega_{mt}, \omega_{mt+1}).$$

Substituting for V using the Arcidiacono-Miller Lemma:

$$\ln \left(\frac{p_{b,mt} (k_{imt})}{p_{nb,mt} (k_{imt})} \right) = \theta_0 + \theta_1 w_{mt} + \xi_{mt} + \beta \left[-\ln p_{b,mt+1} (1) + \ln p_{b,mt+1} (0) \right] + e^V (1, \omega_{mt}, \omega_{mt+1}) - e^V (0, \omega_{mt}, \omega_{mt+1}).$$

noting that the π_{mt+1} terms completely cancel.

$$\ln \left(\frac{p_{b,mt} (k_{imt})}{p_{nb,mt} (k_{imt})} \right) = \theta_0 + \theta_1 w_{mt} + \xi_{mt} + \\ \beta \left[-\ln p_{b,mt+1} (1) + \ln p_{b,mt+1} (0) \right] \\ + e^{V} (1, \omega_{mt}, \omega_{mt+1}) - e^{V} (0, \omega_{mt}, \omega_{mt+1}) .$$

Rewriting this, we have a regression equation

$$Y_{mt} = \theta_0 + \theta_1 w_{mt} + u_{mt},$$

where

$$Y_{mt} = \ln \left(\frac{p_{b,mt}(0)}{p_{nb,mt}(0)} \right) + \beta \ln \left(\frac{p_{b,mt+1}(1)}{p_{b,mt+1}(0)} \right),$$

and

$$u_{mt} = \xi_{mt} + e^{V} \left(1, \omega_{mt}, \omega_{mt+1} \right) - e^{V} \left(0, \omega_{mt}, \omega_{mt+1} \right).$$

The regression equation:

$$Y_{mt} = \theta_0 + \theta_1 w_{mt} + u_{mt},$$

where

$$Y_{mt} = \ln \left(\frac{p_{b,mt}(0)}{p_{nb,mt}(0)} \right) + \beta \ln \left(\frac{p_{b,mt+1}(1)}{p_{b,mt+1}(0)} \right),$$

and

$$u_{mt} = \xi_{mt} + e^{V}(1, \omega_{mt}, \omega_{mt+1}) - e^{V}(0, \omega_{mt}, \omega_{mt+1}).$$

- In our Monte Carlo simulations, we will assume the existence of an instrument z_{mt} (a cost shifter) that is correlated with the price w_{mt} but not the demand shock ξ_{mt} .
- Note that z_{mt} is automatically uncorrelated with $e^{V}(k, \omega_{mt}, \omega_{mt+1})$ as long as it is in the consumer's time t information set.

Instrumental variables

IV Assumption

There exist instruments z_{mt} such that:

- (i) For all functions $q(w_{mt})$ with finite expectation, if $E[q(w_{mt})|z_{mt}] = 0$ almost surely, then $q(w_{mt}) = 0$ almost surely,
- (ii) $E[\widetilde{\xi}_{ajmt}|z_{mt}] = 0$, for all a and j, and
- (iii) $E[\widetilde{e}_{aimt}^{V}|z_{mt}] = 0$, for all a and j.

Identification and Asymptotics

Proposition 1

Suppose (β, F^{ε}) are known and Rational Expectations and the IV Assumption hold. Assume that, for all pair of actions a and j, the single-action τ -period finite dependence property holds for action J, and that the payoff $\overline{\pi}(J, k, w)$ is known for all (k, w). Then, given the joint distribution of observables $\Pr(y)$, where $y_{imt} = (a_{imt}, k_{imt}, w_{mt}, z_{mt})$, the flow payoff $\overline{\pi}(a, k, w)$ is identified for all (a, k, w).

- We also show that, given a payoff function that is linear in parameters, there is no need to restrict/know the payoffs of the action involved in finite dependence J (the other requirements are still needed).
- We also show that two-step GMM estimates of will be consistent and asymptotically normal under standard conditions.

Rational Expecations: Implications

Lemma 1

Assume Rational Expectations. For any action a, the forecast error term $e^h\left(a,k_{imt},\omega_{mt},\omega_{mt+1}^*\right)$ is mean zero given the information set available to the agent \mathcal{I}_{imt} : $E\left[e^h\left(a,k_{imt},\omega_{mt},\omega_{mt},\omega_{mt+1}^*\right)|\mathcal{I}_{imt}\right]=0$.

Lemma 2

Assume Rational Expectations, and assume $z_{mt} \in \mathcal{I}_{imt}$. Then, $E[\widetilde{e}_{ajmt}^{V}|z_{mt}] = 0$, for all a and j.

Furthermore, expectational errors are serially uncorrelated.

Short and Long Panels

- Lemma 2 establishes that, given RE, the terms in our moments involving forecast errors are mean zero.
- Furthermore, given the lack of serial correlation, we can be confident that as $T \to \infty$, the sample average of the \tilde{e}^V_{ajmt} terms in our moments will converge to zero.
- However, with finite T, there is nothing to suggest that the forecast errors will average to zero even as $M \to \infty$ (aggregate shocks)
- Thus, Assumption 2 is less plausible in the context of a short panel.

Monte Carlo: Setup I

$$\begin{aligned} \pi_{mt}\left(b, k_{imt}\right) &= \theta_0 + \theta_1 w_{mt} + \xi_{mt} \\ \pi_{mt}\left(nb, k_{imt}\right) &= \theta_0 \mathbb{1}\left[k_{imt} = 1\right] \\ Y_{mt} &= \theta_0 + \theta_1 w_{mt} + u_{mt} \end{aligned}$$

• Evolution of prices:

$$w_{mt} = \gamma_0 + \gamma_1 z_{mt} + \gamma_2 \xi_{mt} + \varepsilon_{mt}^{w}$$

Demand shock:

$$\xi_{mt+1} = \rho_1 + \rho_2 \xi_{mt} + \varepsilon_{mt}^{\xi}$$

Cost shifter (instrument):

$$z_{mt+1} = \rho_3 + \rho_4 z_{mt} + \varepsilon_{mt}^z$$

 \bullet Each of the $\varepsilon^{\rm x}$ terms is an i.i.d. shock with variance $\sigma_{\rm x}^2$

Monte Carlo: Setup II

Payoff Parameters:	θ_0	1	$\xi \sim Normal\;AR(1)$	ρ_1	0
	$ heta_1$	1		ρ_2	.2
				$ ho_2 \ \sigma_{\xi}^2$	0 or 16
Prob. of Product Failure:	δ	.1			
			$z\sim Normal\;AR(1)$	$ ho_3$	0
Discount Factor:	β	.95		ρ_4 σ_z^2	.7
				σ_z^2	25
Process for price w_{mt} :	γ_0	40			
	γ_1	1	Aggregate Shocks	λ_z	0 or .7
	γ_2	1			
	σ_w^2	4			

• λ_z represents the fraction of ε_{mt}^z that comes from an aggregate shock.

Estimation Approaches

We will estimate the model using the ECCP equation,

$$Y_{mt} = \theta_0 + \theta_1 w_{mt} + u_{mt},$$

estimated using OLS or 2SLS.

- We also use a "Standard CCP" estimation approach (more structural) that requires a full model of how all state variables evolve.
 - Similar to Hotz and Miller (1993), Aguirregabiria and Mira (2002), and Pesendorfer and Schmidt-Dengler (2008)
- The Standard CCP estimator assumes that w_{mt} is the only market-level state variable and is first-order Markov process.
- 5000 replications per specification

	ECCP-OLS Estimates
$\sigma_{\xi}^2 = 0$	True Parameters: $ heta_0=1$, $ heta_1=1$

		λ_z	$\lambda_z = 0$		$\lambda_z = .7$	
	Т	160	10	160	10	160
	M	10	160	10	160	160
$ heta_0$	Mean Est.	1.01	1.01	0.99	0.75	0.99
	Rel. Bias	0.74%	0.81%	-1.49%	-24.6%	-1.38%
	SD	0.04	0.04	0.09	0.29	0.09
	RMSE	0.04	0.04	0.10	0.38	0.09
$ heta_{ extbf{1}}$	Mean Est.	-0.10	-0.10	-0.10	-0.09	-0.10
	Rel. Bias	0.18%	0.20%	-0.38%	-6.20%	-0.33%
	SD	1.04e-3	9.97e-4	2.22e-3	6.78e-3	2.05e-3
	RMSE	1.06e-3	1.02e-3	2.26e-3	9.19e-3	2.07e-3

	ECCP-2SLS Estimates
$\sigma_{\tilde{\xi}}^2 = 0$	True Parameters: $ heta_0=1$, $ heta_1=1$

		λ_z	= 0		$\lambda_z = .7$	
	Т	160	10	160	10	160
	M	10	160	10	160	160
$ heta_0$	Mean Est.	1.01	1.01	0.98	0.72	0.98
	Rel. Bias	0.79%	0.87%	-1.66%	-28.2%	-1.57%
	SD	0.04	0.04	0.10	0.33	0.09
	RMSE	0.05	0.04	0.10	0.43	0.10
$ heta_1$	Mean Est.	-0.10	-0.10	-0.10	-0.09	-0.10
	Rel. Bias	0.19%	0.22%	-0.42%	-7.08%	-0.38%
	SD	1.08e-3	1.03e-3	2.40e-3	7.67e-3	2.23e-3
	RMSE	1.10e-3	1.06e-3	2.44e-3	0.01	2.26e-3

	Standard CCP Estimates
$\sigma_{\xi}^2 = 0$	True Parameters: $ heta_0=1$, $ heta_1=1$

		λ_z	= 0		$\lambda_z = .7$	
	Т	160	10	160	10	160
	M	10	160	10	160	160
$ heta_0$	Mean Est.	1.00	1.00	1.00	1.00	1.00
	Rel. Bias	-0.27%	-0.11%	-0.31%	-0.02%	-0.19%
	SD	8.45e-3	0.01	0.02	0.07	0.02
	RMSE	8.87e-3	0.01	0.02	0.07	0.02
$ heta_1$	Mean Est.	-0.10	-0.10	-0.10	-0.10	-0.10
	Rel. Bias	-0.51%	-0.30%	-0.60%	-0.64%	-0.25%
	SD	3.88e-4	6.41e-4	5.27e-4	1.33e-3	5.18e-4
	RMSE	6.42e-4	7.08e-4	7.95e-4	1.48e-3	5.73e-4

	ECCP-OLS Estimates
$\sigma_{\xi}^2 = 16$	True Parameters: $ heta_0=1$, $ heta_1=1$

		λ_z	= 0		$\lambda_z = .7$	
	Т	160	10	160	10	160
	M	10	160	10	160	160
$ heta_0$	Mean Est.	-8.63	-8.61	-8.81	-11.60	-8.85
	Rel. Bias	-963%	-961%	-981%	-1260%	-985%
	SD	0.58	0.57	1.03	2.77	0.89
	RMSE	9.64	9.62	9.86	12.90	9.89
$ heta_1$	Mean Est.	0.14	0.14	0.15	0.22	0.15
	Rel. Bias	-241%	-240%	-245%	-315%	-246%
	SD	0.01	0.01	0.02	0.06	0.02
	RMSE	0.24	0.24	0.25	0.32	0.25

Paul T. Scott

	ECCP-2SLS Estimates	
$\sigma_{\xi}^2 = 16$	True Parameters: $ heta_0=1$, $ heta_1=1$	

		λ_z =	= 0		$\lambda_z = .7$	
	Т	160	10	160	10	160
	M	10	160	10	160	160
$ heta_0$	Mean Est.	1.00	1.02	1.02	0.87	0.99
	Rel. Bias	-0.20%	1.82%	1.97%	-12.8%	-0.76%
	SD	0.77	0.75	0.78	0.90	0.20
	RMSE	0.77	0.75	0.78	0.91	0.20
$ heta_1$	Mean Est.	-0.10	-0.10	-0.10	-0.10	-0.10
	Rel. Bias	-0.05%	0.42%	0.44%	-3.25%	-0.19%
	SD	0.02	0.02	0.02	0.02	4.96e-3
	RMSE	0.02	0.02	0.02	0.02	4.96e-3

Standard CCP Estimates

$$\sigma_{\xi}^2=16$$
 True Parameters: $heta_0=1$, $heta_1=-.1$

		λ_z	= 0		$\lambda_z = .7$	
	Т	160	10	160	10	160
	M	10	160	10	160	160
$ heta_0$	Mean Est.	0.26	0.25	0.26	0.26	0.17
	Rel. Bias	-74.4%	-74.7%	-74.3%	-73.5%	-83.3%
	SD	0.03	0.03	0.03	0.05	0.02
	RMSE	0.75	0.75	0.74	0.74	0.83
$ heta_1$	Mean Est.	-0.01	-0.01	-0.01	-0.01	2.12e-3
	Rel. Bias	-87.8%	-89.2%	-87.8%	-89.9%	-102%
	SD	5.12e-3	5.74e-3	5.41e-3	9.24e-3	3.66e-3
	RMSE	0.09	0.09	0.09	0.09	0.10

Counterfactuals: real vs feasible

- It's great to estimate parameters without needing a fully specified model, but what does this mean for counterfactuals?
- The measurement issues that motivate the ECCP seem to pose problems for counterfactuals: if it's difficult to say exactly how ξ evolves, how do we think about counterfactuals?
- We perform counterfactuals in two ways:
 - Real: simulated using true data generating process for ξ .
 - Feasible: simulated assuming $\xi_{m,t} = 0$ for all m, t.

Counterfactuals: long-run elasticity

- The counterfactual of interest is the impact of a permanent increase in the mean price. We calculate the long-run elasticity of the unconditional probability of purchase.
- That is, we solve the agent's problem given mean price level w_0 and compute the long-run unconditional probability of purchase:

$$Pr\left(a_{it}=1|\overline{w}=w_0\right)$$

And then we define the long-run elasticity as follows:

$$\mathcal{E} = \frac{Pr\left(a_{it} = 1 \middle| \overline{w} = w_0\right) - Pr\left(a_{it} = 1 \middle| \overline{w} = w_0 + \epsilon\right)}{\epsilon} \frac{w_0}{Pr\left(a_{it} = 1 \middle| \overline{w} = w_0\right)}$$

Real LRE	-1.106	Mean Estimate Relative Bias SD RMSE	60.15 -5540% 16.62 63.48	-1.104 -0.1561% 0.04227 0.04231	0.01471 -101.3% 0.02545 1.121
Feasible LRE	-1.022	Mean Estimate Relative Bias SD RMSE	-1.187e4 1.162e6% 1.382e6 1.382e6	-1.064 4.114% 0.1184 0.1256	0.03888 -103.8% 0.06774 1.063
Notes: 5000 replications with sample structure $M=T=160$. SD is the standard					

deviation across replications. RMSE is root-mean squared error. Relative Bias is bias as percentage of the true parameter.

True value

ECCP

ĪV

OLS

Standard

CCP

Conclusion

- ECCP estimators make estimating single-agent DDC models easy:
 - First-stage estimation of CCP's like traditional CCP approach, but with time-t subscripts
 - Second stage is linear regression
- ECCP estimators offer important modeling advantages:
 - Easy to incorporate instrumental variables
 - Does not require model of how market-level states evolve
- The measurement issues that motivate ECCP estimators don't necessarily undermine using estimates from them for counterfactuals.
- Practitioners should be careful about short panels.