Solution série 4

Andrey Martinez Cruz

Table des matières

1	Exe	rcise 1	3
	1.1	Question A	3
		1.1.1 Méthode itérative	3
		1.1.2 Méthode en arbre	4
		1.1.3 Théorème maître	5
	1.2	Question B	5
		1.2.1 Méthode itérative	5
		1.2.2 Méthode en arbre	6
		1.2.3 Théorème maître	7
	1.3	Question C	7
	1.4	Question D	7
		1.4.1 Méthode itérative	8
		1.4.2 Méthode en arbre	9
		1.4.3 Théorème maître	9
2	Exe	rcise 2	0
_	2.1		0
	2.2	·	1
	2.3	V	1
	2.4	·	1
3	Eve	rcise 3	2
J	3.1		2
	3.2		3
	0.2	Tai la definition originale du theoreme maitre	J
4	$\mathbf{E}\mathbf{x}\mathbf{e}$		3
	4.1	Question A	3
	4.2	Question B	3
	4.3	Question C	3
	4.4	Question D	.3
	4.5	Question E	3
	4.6	Question F	4
5	Exe	rcise 5	4

3	Exericse 6	14
7	Exerice 7	14

1 Exercise 1

La résolution des équations de récurrence se fera de trois façon : itérative, en arbre et par le théorème maître.

1.1 Question A

$$T(n) = 7T(\frac{n}{2}) + n^3$$

1.1.1 Méthode itérative

En posant, n = 8, on a le pattern suivant :

$$T(8) = 7T(4) + f(8)$$

$$= 7(7T(2) + f(4)) + f(8)$$

$$= 7(7(T(1) + f(2)) + f(4)) + f(8)$$

$$= 7(7(7f(1) + f(2)) + f(4)) + f(8)$$

$$= 7(7^{2}f(1) + 7f(2)) + f(4) + f(8)$$

$$= 7^{3}f(1) + 7^{2}f(2) + 7f(4) + f(8)$$

En voyant ce motif, on peut formuler la sommation suivante :

$$T(n) = \sum_{i=0}^{\log_2 n} 7^i f(n^{\log_2 n - i})$$
 (1)

en posant $n=2^p$ on obtient la substitution suivante :

$$T(2^p) = \sum_{i=0}^{p} 7^i f(2^{p-i})$$

Maintenant résoulons cette équation :

$$T(2^{p}) = \sum_{i=0}^{p} 7^{i} f(2^{p-i})$$

$$= \sum_{i=0}^{p} 7^{i} (2^{p-i})^{3}$$

$$= \sum_{i=0}^{p} 7^{i} 2^{3p-3i}$$

$$= 2^{3p} \sum_{i=0}^{p} 7^{i} 2^{-3i}$$

$$= 2^{3p} \sum_{i=0}^{p} \frac{7^{i}}{2^{3i}}$$

$$= 2^{3p} \sum_{i=0}^{p} (\frac{7}{8})^{i}$$

$$= 2^{3p} (\frac{1 - (\frac{7}{8})^{p+1}}{1 - \frac{7}{8}})$$

$$= 2^{3p} (\frac{1 - (\frac{7}{8})^{p+1}}{\frac{1}{8}})$$

$$= n^{3} (\frac{1 - 2n^{\log_{2} \frac{7}{8}}}{\frac{1}{8}})$$

$$= n^{3} (8 - 16n^{\log_{2} \frac{7}{8}})$$

$$= 8n^{3} - 16n^{\log_{2} 7} \in \Theta(n^{3})$$

1.1.2 Méthode en arbre

En dessinant l'arbre d'appel, on remarque qu'à partir du niveau 1 on fait 7 appel de T(n) dans lequel on divise par 2. Et ce processus est répetée jusqu'à atteindre T(1) qui atteint la profondeur $\log_2 n$. Pour chaque niveau, le travail effectif fait et de $7^i \frac{n^3}{2^i}$ où i représente le niveau de profondeur atteint.

Donc, la sommation du travail total fait à chaque niveau est de

$$T(n) = n^{\log_2 7} + \sum_{i=0}^{\log_2 n - 1} 7^i \left(\frac{n^3}{2^{3i}}\right)$$

La résolution de cette équation de récurrence est la suivante en posant $n=2^p$.

$$T(2^{p}) = 2^{p \log_{2} 7} + \sum_{i=0}^{p-1} 7^{i} (\frac{2^{3p}}{2^{3i}})$$

$$= 2^{p \log_{2} 7} + 2^{3p} \sum_{i=0}^{p-1} (\frac{7}{8})^{i}$$

$$= 2^{p \log_{2} 7} + 2^{3p} (\frac{1 - (\frac{7}{8})^{p}}{1 - \frac{7}{8}})$$

$$= 2^{p \log_{2} 7} + 2^{3p} (\frac{1 - (\frac{7}{8})^{p}}{\frac{1}{8}})$$

$$= n^{\log_{2} 7} + n^{3} (\frac{1 - n^{\log_{2} \frac{7}{8}}}{\frac{1}{8}})$$

$$= n^{\log_{2} 7} + n^{3} (8 - 8n^{\log_{2} \frac{7}{8}})$$

$$= n^{\log_{2} 7} + 8n^{3} - 8n^{\log_{2} 7}$$

$$= 8n^{3} - 7n^{\log_{2} 7} \in \Theta(n^{3})$$

1.1.3 Théorème maître

On a $\alpha=7$ et $\beta=2$. Cela donne $c=\log_{\alpha}\beta=\log_{2}7$. Dans notre cas, on pourrait être dans le cas 3, mais d'abord vérifions cela :

$$\alpha f(\frac{n}{\beta}) \le cf(n), 0 < c < 1, n \ge n_0$$
$$7\frac{n^3}{8} \le cn^3$$
$$\frac{7}{8}n^3 \le n^3$$

Cela est vrai pour $c = \frac{7}{8}$ et $n_0 = 0$. Pour l'autre vérification, on a $n^3 \in \Omega(n^{\log_2 7 + \epsilon})$ qui est vrai pour $\epsilon = 0, 1$ et donc en ayant vérifier ces deux conditions, $T(n) \in \Theta(n^3)$.

1.2 Question B

$$T(n) = 4T(\tfrac{n}{3}) + n$$

1.2.1 Méthode itérative

En posant, n = 9, on a le pattern suivant :

$$T(9) = 4T(3) + f(9)$$

$$= 4(4T(1) + f(3)) + f(9)$$

$$= 4(4f(1) + f(3)) + f(9)$$

$$= 16f(1) + 4f(3) + f(9)$$

En voyant ce motif, on peut formuler la sommation suivante :

$$T(n) = \sum_{i=0}^{\log_3 n} 4^i f(n^{\log_3 n - i})$$
 (2)

en posant $n=3^p$ on obtient la substitution suivante :

$$T(3^p) = \sum_{i=0}^{p} 4^i f(3^{p-i})$$

Maintenant résoulons cette équation :

$$T(3^p) = \sum_{i=0}^p 4^i f(3^{p-i})$$

$$= \sum_{i=0}^p 4^i 3^{p-i}$$

$$= 3^p \sum_{i=0}^p (\frac{4}{3})^i$$

$$= 3^p (\frac{1 - \frac{4}{3}^{p+1}}{1 - \frac{4}{3}})$$

$$= 3^p (\frac{1 - \frac{4}{3}^{p+1}}{-\frac{2}{3}})$$

$$= 3^p (\frac{1 - \frac{4}{3}^{p+1}}{-\frac{2}{3}})$$

$$= n(\frac{1 - \frac{4n^{\log_3 \frac{4}{3}}}{3}}{-\frac{2}{3}})$$

$$= n(-1, 5 + 2n^{\log_3 \frac{4}{3}})$$

$$= 2n^{\log_3 4} - 1, 5n \in \Theta(n^{\log_3 4})$$

1.2.2 Méthode en arbre

En dessinant l'arbre d'appel, on remarque qu'à partir du niveau 1 on fait 4 appel de T(n) dans lequel on divise par 3. Et ce processus est répetée jusqu'à atteindre T(1) qui atteint la profondeur $\log_3 n$. Pour chaque niveau, le travail effectif fait et de $4^i \frac{n}{3^i}$ où i représente le niveau de profondeur atteint.

Donc, la sommation du travail total fait à chaque niveau est de

$$T(n) = n^{\log_3 4} + \sum_{i=0}^{\log_3 n - 1} (\frac{4}{3})^i n$$

.

La résolution de cette équation de récurrence est la suivante en posant $n=3^p$.

$$T(3^{p}) = 3^{p \log_{3} 4} + \sum_{i=0}^{p-1} (\frac{4}{3})^{i} 3^{p}$$

$$= 3^{p \log_{3} 4} + 3^{p} \sum_{i=0}^{p-1} (\frac{4}{3})^{i}$$

$$= 3^{p \log_{3} 4} + 3^{p} (\frac{1 - (\frac{4}{3})^{p}}{1 - \frac{4}{3}})$$

$$= 3^{p \log_{3} 4} + 3^{p} (\frac{1 - (\frac{4}{3})^{p}}{-\frac{2}{3}})$$

$$= n^{\log_{3} 4} + n (\frac{1 - n^{\log_{3} \frac{4}{3}}}{-\frac{2}{3}})$$

$$= n^{\log_{3} 4} + n (-\frac{3}{2} + \frac{3}{2} n^{\log_{3} \frac{4}{3}})$$

$$= n^{\log_{3} 4} + \frac{3}{2} n^{\log_{3} 4} - \frac{3}{2} n$$

$$= \frac{5}{2} n^{\log_{3} 4} - \frac{3}{2} n \in \Theta(n^{\log_{3} 4})$$

1.2.3 Théorème maître

On a $\alpha=4$ et $\beta=3$. Cela donne $c=\log_{\alpha}\beta=\log_{3}4$. On a $n\in\mathcal{O}(n^{\log_{3}4-\epsilon})$ qui est vrai pour $\epsilon=1$ et donc, $T(n)\in\Theta(n)$.

1.3 Question C

La solution se trouve dans les diapositives du dépôt. :)

1.4 Question D

$$T(n) = 8T(\frac{n}{4}) + n^3$$

1.4.1 Méthode itérative

En posant, n = 16, on a le pattern suivant :

$$T(16) = 8T(4) + f(16)$$

$$= 8(8T(1) + f(4)) + f(16)$$

$$= 8(8f(1) + f(4)) + f(16)$$

$$= 64f(1) + 8f(4) + f(16)$$

En voyant ce motif, on peut formuler la sommation suivante :

$$T(n) = \sum_{i=0}^{\log_4 n} 8^i f(n^{\log_4 n - i})$$
 (3)

en posant $n=4^p$ on obtient la substitution suivante :

$$T(3^p) = \sum_{i=0}^{p} 8^i f(4^{p-i})$$

Maintenant résoulons cette équation :

$$T(3^{p}) = \sum_{i=0}^{p} 8^{i} f(4^{p-i})$$

$$= \sum_{i=0}^{p} 8^{i} (4^{p-i})^{3}$$

$$= \sum_{i=0}^{p} 8^{i} 4^{3p-3i}$$

$$= 4^{3p} \sum_{i=0}^{p} (\frac{8}{64})^{i}$$

$$= 4^{3p} \left(\frac{1}{8}\right)^{p} \left(\frac{1}{8}\right)^{p}$$

$$= 4^{3p} \left(\frac{1 - (\frac{1}{8})^{p+1}}{1 - \frac{1}{8}}\right)$$

$$= 4^{3p} \left(\frac{1 - (\frac{1}{8})^{p+1}}{\frac{7}{8}}\right)$$

$$= n^{3} \left(\frac{1 - \frac{n^{\log_{4} \frac{1}{8}}}{\frac{7}{8}}\right)$$

$$= n^{3} \left(\frac{8}{7} - \frac{8n^{\log_{4} \frac{1}{8}}}{\frac{35}}\right)$$

$$= \frac{8}{7} n^{3} - \frac{8}{35} n^{\log_{4} \frac{1}{8} + 3} \in \Theta(n^{3})$$

1.4.2 Méthode en arbre

En dessinant l'arbre d'appel, on remarque qu'à partir du niveau 1 on fait 8 appel de T(n) dans lequel on divise par 4. Et ce processus est répetée jusqu'à atteindre T(1) qui atteint la profondeur $\log_4 n$. Pour chaque niveau, le travail effectif fait et de $8^i \frac{n^3}{4^{3i}}$ où i représente le niveau de profondeur atteint.

Donc, la sommation du travail total fait à chaque niveau est de

$$T(n) = n^{\log_4 8} + \sum_{i=0}^{\log_4 n - 1} 8^i \left(\frac{n^3}{4^{3i}}\right)$$

.

La résolution de cette équation de récurrence est la suivante en posant $n=4^p$.

$$\begin{split} T(4^p) &= 4^{p \log_4 8} + \sum_{i=0}^{p-1} 8^i (\frac{4^{3p}}{4^{3i}}) \\ &= 4^{p \log_4 8} + 4^{3p} \sum_{i=0}^{p-1} (\frac{1}{8})^i \\ &= 4^{p \log_4 8} + 4^{3p} (\frac{1 - (\frac{1}{8})^p}{1 - \frac{1}{8}}) \\ &= 4^{p \log_4 8} + 4^{3p} (\frac{1 - (\frac{1}{8})^p}{\frac{7}{8}}) \\ &= n^{\log_4 8} + n^3 (\frac{1 - n^{\log_4 \frac{1}{8}}}{\frac{7}{8}}) \\ &= n^{\log_4 8} + n^3 (\frac{8}{7} - \frac{8}{7} n^{\log_4 \frac{1}{8}}) \\ &= \frac{8}{7} n^3 + n^{\log_4 8} - \frac{8}{7} n^{-\log_4 8 + 3} \in \Theta(n^3) \end{split}$$

1.4.3 Théorème maître

On a $\alpha=8$ et $\beta=4$. Cela donne $c=\log_{\alpha}\beta=\log_{4}8$. Dans notre cas, on pourrait être dans le cas 3, mais d'abord vérifions cela :

$$\alpha f(\frac{n}{\beta}) \le cf(n), 0 < c < 1, n \ge n_0$$
$$8\frac{n^3}{64} \le cn^3$$
$$\frac{1}{8}n^3 \le n^3$$

Cela est vrai pour $c=\frac{1}{8}$ et $n_0=0$. Pour l'autre vérification, on a $n^3\in\Omega(n^{\log_4 8+\epsilon})$ qui est vrai pour $\epsilon=0,1$ et donc en ayant vérifier ces deux conditions, $T(n)\in\Theta(n^3)$.

2 Exercise 2

2.1 Question A

2.2 Question B

Pour savoir le travail totale, il faut faire la sommation du travail de chaque niveau ou le niveau 0 est f(27) et le dernier niveau est f(1).

- Niveau $0: 1 \times f(27) = 27$
- Niveau 1 : $2 \times f(9) = 2 \times 9 = 18$
- Niveau 2: $4 \times f(3) = 4 \times 3 = 12$
- Niveau $3: 8 \times f(1) = 8$

Donc, la sommation du travail fait à chaque niveau est de 27 + 18 + 12 + 8 = 65.

2.3 Question C

Ce qu'on remarque c'est qu'à chaque niveau, le travail effectué à certain niveau est le suivant : $2^a \frac{n}{3^a}$ où a correspond au niveau de l'arbre. Donc, en posant $n=3^p$, on a $2^a \frac{3^p}{3^a}=2^a \times 3^{p-a}$.

Par conséquent, le travail effectué à un certain niveau peut être représenté de la manière suivante :

- Niveau $0:3^p$
- Niveau $1:2^i \times 3^{p-1}$
- Niveau $2:2^2\times 3^{p-2}$
- Niveau $i: 2^i \times 3^{p-i}$

2.4 Question D

En généralisant cela, la charge de travail total est représentable de la manière suivante :

$$T(3^p) = \sum_{i=0}^{p} 2^i 3^{p-i}$$

Maintenant on peut faire une analyse classique de celle-ci pour trouver la complexité de T(n).

$$T(3^p) = \sum_{i=0}^p 2^i 3^{p-i}$$

$$= \sum_{i=0}^p 2^i 3^{-i} 3^p$$

$$= 3^p \sum_{i=0}^p (\frac{2}{3})^i$$

$$= 3^p (\frac{1 - (\frac{2}{3})^{p+1}}{1 - \frac{2}{3}})$$

$$= 3^p (\frac{1 - (\frac{2}{3})^{p+1}}{\frac{1}{3}})$$

$$= n(\frac{1 - \frac{2}{3}n^{\log_3 \frac{2}{3}}}{\frac{1}{3}})$$

$$= n(3 - 2n^{\log_3 \frac{2}{3}})$$

$$= 3n - 2n^{\log_3 2} \in \Theta(n)$$

Note : le travail totale fait au dernier niveau est égale à $n^{\log_3 2}$ et le dernier niveau est $\log_3 n$. Il était possible d'arriver au même conclusion on utilisant la sommation suivante substitué en 3^p :

$$T(3^p) = 3^{p \log_3 2} + \sum_{i=0}^{p-1} 2^i 3^{p-i}$$

3 Exercise 3

Avant de trouver un c telle que $T_a' \in o(T_a)$, il faut d'abord trouver la complexité de T_a .

En utilisant le théorème maître pour trouver la complexité de T_A , on $\alpha=7$, $\beta=2$ et $\lambda=2$. On $c=\log_{\alpha}\beta=\log_{2}7$.

3.1 Raccourci

Ici $c > \lambda$, donc, on est dans le premier cas du théorème maître et donc, $T_A \in \Theta(n^{\log_2 7})$.

3.2 Par la définition originale du théorème maître

Dans ce cas, $n^2 \in \mathcal{O}(n^{\log_2 7 - \epsilon})$ est vrai avec $\epsilon = 0, 1$ et donc, on est dans le premier cas du théorème maître ce qui conclut que $T(n) \in \Theta(n^{\log_2 7})$.

Maintenant, dans le cas de $T_{A'}$, on aura la valeur de $\log_{\alpha}\beta$ suivante : $\log_4 c$. En revanche, λ est la même valeur que dans T_A . Ici, ce qu'on peut remarquer c'est que $\log_2 7 \approx 2,8074$. Et donc, pour trouver le plus gros c possible qui fait que $T'_a \in o(T_a)$ est vraie, il faut que $T_{a'}$ se retrouve dans le premier cas du théorème maître. On remarque que si c=16, on tomberais dans le deuxième cas du théorème ($\log_4 16=2$) et grossir un peu plus c nous rapprocherais de la valeur $\log_2 7$. Donc, c est au moins supérieur à 16. Pour trouver la plus grande valeur de c possible qui rend la complexité citée précédemment vraie, il faut trouver le point d'intersection entre $\log_4 c$ et $\log_2 7$ de la manière suivante :

$$\begin{aligned} \log_4 c &= \log_2 7 \\ c &= 4^{\log_2 7} \\ c &\approx 4^{2,8074} \\ c &\approx 49 \end{aligned}$$

Or, $\log_4 49 \approx 2,8074$. Donc, pour prendre la plus grande valeur possible qui fait que la complexité précisée précédémment soit vrai, il faut prendre le prédecceur de 49 qui est 48. $\log_4 48 \approx 2,7925 < 2,8074$ respecte notre contrainte. Donc, c=48.

4 Exercice 4

4.1 Question A

 $T(n) \in \Theta(\log n)$

4.2 Question B

$$T(n) \in \Theta(n)$$

4.3 Question C

$$T(n) \in \Theta(n!)$$

4.4 Question D

$$T(n) \in \Theta(n^2 \log n)$$

4.5 Question E

$$T(n) \in \Theta(n)$$

4.6 Question F

$$T(n) \in \Theta(n^2 \log^3 n)$$

5 Exercise 5

En posant p=2 en à la le développement :

$$T(2^{2^{2}}) = T(16) = T(\sqrt{16}) + f(16)$$
$$= T(\sqrt{4}) + f(4) + f(16)$$
$$= f(1) + f(4) + f(16)$$

En essayant de développer plus en détail, on remarque le motif suivant :

$$T(2^{2^p}) = T(2^{2^{p-1}}) + 1 = T(2^{2^{p-2}}) + 2 = T(2^{2^{p-i}}) + i = \dots = T(2^{2^0}) + p = T(4) + p$$
 Or, $p = \log \log n$ et donc $T(n) \in \Theta(\log \log n)$

6 Exericse 6

La solution sera donnée après le labo sur le chapitre diviser pour régner.;)

7 Exerice 7

Les fonctions utilisées pour les liste chainées sont les suivantes :

- estVide : Vérifie si la liste chainée est vide $\Theta(1)$
- obtenir Tete : Obtient l'élément en tête de la liste chainée $\Theta(1)$
- inserer : Inserer l'élément au début de la liste $\Theta(1)$
- retirer Debut : Retire l'élément en tête de la liste chainée $\Theta(1)$
- 1. Fonction Renverser(L_1, L_2)
- 2. Si $\operatorname{estVide}(L_1)$ alors
- 3. Renvoyer L_2
- 4. element \leftarrow obtenir Tete(L_1)
- 5. $inserer(L_2, element)$
- 6. retirerDebut(L_1)
- 7. Renvoyer Renverser (L_1, L_2)
- 8. Fin Fonction

La complexité de cette fonction peut être représentée ainsi :

$$T(n) = T(n-1) + 1 \in \Theta(n)$$

.