UV CM13

Nomenclature

Généralités

- Nomenclature systématique
 - exacte mais lourde
 - francophone ≠ anglophone
- Nomenclature usuelle ou triviale
- Numérotation grecque des carbones

Exemple

Sodium Cocoyl Isethionate, Stearic acid, Sodium Tallowate, Aqua, Sodium Isethionate, Coconut acid, Sodium Stearate, Cocamidopropyl Betaine, Parfum, Sodium Palm Kernelate, Sodium Chloride, trisodium EDTA, Zinc Stearate, Tetrasodium Etironate, CI 77891.

CO OH
$$CO - CH_3$$
 $CO - CH_3$ $CO - CH_3$ $CO - CH_3$ $CO - CH_3$

acide salicylique anhydride acétique acide acétyl sali cylique acide acétique

Acide 2hydroxybenzoïque Anhydride éthanoïque

Acide 2acétoxybenzoïque Acide éthanoïque

3-Hydroxy-2-methyl-4-pyrone, 99% [118-71-8] (maltol) FW 126.11 mp 161-163° Beil. 17,444 Merck Index 12,5752 ...

http://webbook.nist.gov/chemistry/ 3-Hydroxy-2-methyl-4h-pyran-4-one

Other Names: Maltol; 4H-Pyran-4-one, 3-hydroxy-2-methyl-; Larixic acid; Larixinic acid; Palatone; 2-Methyl-3-hydroxypyrone; 3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-4-pyranone; 3-Hydroxy-2-methyl-1,4-pyrone; Corps praline; Talmon; Vetol; 2-Methyl pyromeconic acid; 2-Methyl-3-hydroxy-4-pyrone; 3-Hydroxy-2-methyl- γ - pyrone; 2-Methyl-3-oxy- γ -pyrone; Veltol

Principe:

1. Linéaires

Alcanes ou paraffines de formule générale C_n H_{2n+2}

C H₄	Undécane C ₁₁ H ₂₄	1
$C_2 H_6$	Dodécane C ₁₂ H ₂₆	3
$C_3 H_8$	Tridécane C ₁₃ H ₂₈	3
$C_4 H_{10}$	Tétradécane C ₁₄ H ₃₀)
$C_5 H_{12}$	Pentadécane C ₁₅ H ₃₂	2
C ₆ H ₁₄	Hexadécane C ₁₆ H ₃₄	4
$C_7 H_{16}$	HeptadécaneC ₁₇ H ₃₆	3
C ₈ H ₁₈	Octadécane C ₁₈ H ₃₈	3
$C_9 H_{20}$	Nonadécane C ₁₉ H ₄₀)
$C_{10} H_{22}$	Eicosane C ₂₀ H ₄₂	2
	$C_{2}H_{6}$ $C_{3}H_{8}$ $C_{4}H_{10}$ $C_{5}H_{12}$ $C_{6}H_{14}$ $C_{7}H_{16}$ $C_{8}H_{18}$ $C_{9}H_{20}$	C_2 H_6 Dodécane C_{12} H_{26} C_3 H_8 Tridécane C_{13} H_{28} C_4 H_{10} Tétradécane C_{14} H_{30} C_5 H_{12} Pentadécane C_{15} H_{32} C_6 H_{14} Hexadécane C_{16} H_{32} C_7 H_{16} Heptadécane C_{17} H_{36} C_8 H_{18} Octadécane C_{18} H_{38} C_9 H_{20} Nonadécane C_{19} H_{40}

2. Cycliques

Cycloalcanes ou cyclanes ou cycloparaffines de formule générale $C_n H_{2n}$

Cyclobutane C_4 H_8 Cyclopentane C_5 H_{10} Cyclohexane C_6 H_{12} cycloheptane C_7 H_{14}

Méthane	CH₄	Méthyle	CH ₃ -
	7		J

Éthane
$$C_2H_6$$
 Éthyle C_2H_5 -

Propane
$$C_3H_8$$
 Propyle C_3H_7 -

Butane
$$C_4H_{10}$$
 Butyle C_4H_9 -

Pentane
$$C_5H_{12}$$
 Pentyle C_5H_{11} -

Hexane
$$C_6H_{14}$$
 Hexyle C_6H_{13} -

Principe:

3. Alcanes ramifiés

Chaîne principale

hexane

Ramification

3-méthylhexane

Principe:

1. Linéaires

Monoéthyléniques ou **Alcènes** ou oléfines (C_nH_{2n})

Ethylène (éthène)	$C_2 H_4$	ou	CH ₂ = CH ₂
Propène	$C_3 H_6$	ou	CH_3 - $CH = CH_2$
But-2-ène But-1-ène	C ₄ H ₈ C ₄ H ₈	ou ou	CH_3 - CH = CH - CH_3 CH_3 - CH_2 - CH = CH_2
Pent-1-ène	C ₅ H ₁₀ ou	CH ₃ -	$CH_2 - CH_2 - CH = CH_2$
Pent-2-ène	C ₅ H ₁₀ ou	CH ₃ -	CH_2 - CH = CH - CH_3

1. Linéaires

Acétyléniques ou **Alcynes**, C_n H_{2n-2}

Acétylène (éthyne) $C_2 H_2$ ou CH = CH

Propyne $C_3 H_4$ ou $CH_3 - C = CH$

But-1-yne $C_4 H_6$ ou $CH_3 - CH_2 - C = CH$

But-2-yne $C_4 H_6$ ou $CH_3 - C \equiv C - CH_3$

• • • •

1. Linéaires

Diéthyléniques ou dioléfines	$C_n H_{2n-2}$
------------------------------	----------------

Buta-1,3-diène
$$C_4 H_6$$
 ou $CH_2 = CH - CH = CH_2$

Penta-1,3-diène
$$C_5 H_8$$
 ou $CH_3 - CH = CH - CH = CH_2$

Penta-1,4-diène
$$C_5 H_8$$
 ou $CH_2 = CH - CH_2 - CH = CH_2$

2. Cycliques

Cycloalcènes ou cyclènes, C_n H_{2n-2}

Cyclobutène (cyclobut-1-ène) C₄ H₆

Cyclopentène (cyclopent-1-ène) C₅ H₈

Cyclohexène (cyclohex-1-ène) C₆ H₁₀

2. Cycliques

Benzéniques, de formule générale

 $C_n H_{2n-6}$

Benzène $C_6 H_6$

Toluène

 $C_7 H_8$ ou $CH_3 - C_6 H_5$

Xylène**s**

 $C_8 H_{10} ou \qquad (CH_3)_2 - C_6 H_4$

Phényle

 C_6H_5 - CH_2 —

Benzyle

Principe:

Chaîne principale

hexane

Ramification

3-méthylhexane

Insaturation

4-méthylhex-2-ène

Structure	Type de composés	Exemple	Nom	Usage
A. Hydrocarbures				
c=c	alcène	$H_2C=CH_2$	éthylène	polyéthylène
—c≡c—	alcyne	нс≡сн	acétylène	soudage
	arène		benzène	matière première pour la fabrication du polystyrène et du phénol

Structure	Type de composés	Exemple	Nom	Usage				
B. Groupes fond	B. Groupes fonctionnels oxygénés							
1. Avec une liaiso	on carbone-oxygène							
—он	alcool	СН₃СН₂ОН	éthanol	boissons alcooliques				
—o —	éther-oxyde	CH₃CH₂OCH₂CH₃	diéthyl éther	anesthésique				
2. Avec deux liaisons carbone-oxygène								
c=0	aldéhyde, cétone	H ₂ C=O	formaldéhyde	conservation des spécimens biologiques				

Structure	Type de compos	és Exemple	Nom	Usage
B. Groupes	fonctionnels oxygé	nés		
3. Avec trois liai	sons carbone-oxygène			
OH OH	acide carboxylique	H³C C OH	acide éthanoi qu	e vinaigre
O C OR	ester	H ₃ C CH ₂ C	H 3 éthanoate d'éthy	le fabrication des colles
C 0 C C	anhydride d'acide	H^3C C C C C C C C C C	anhydride éthan C H 3	oi que fabrication de la rayonne

Structure	Type de composés	Exemple	Nom	Usage
C. Groupes for	actionnels azotés			
NH_2	amine primaire	CH₃CH₂NH₂	éthylamine	préparation de colorants et produits pharmaceutiques
—NHR	amine secondaire	(CH ₃ CH ₂) ₂ NH	diéthylamine	produits pharmaceutiques
NRR'	amine tertiaire	(CH ₃) ₃ N	triméthylamine	attractif d'insecte
—c≡n	nitrile (cyanure)	H ₂ C=CHCN	acrylonitrile	fabrication de l'orlon

D. Groupes fonctionnels oxygénés et azotés

Structure	Type de composés	Exemple	Nom	Usage		
E. Groupes fonctionnels halogénés						
—х	halogénure d'alkyle ou d'aryle	CH ₃ Cl	chlorure de méthyle	agent réfrigérant et anesthésique local		
\rangle C \C	halogénure d'acyle	H ³ C C	chlorure d'éthanoyle	agent acétylant		
F. Groupes for	nctionnels sulfurés					
—SH	thi(alco)ol	CH₃CH₂SH	éthanethiol	odorant pour détecter les fuites de gaz		
—s—	thioéther	(CH ₂ =CHCH ₂) ₂ S	sulfure d'allyle	odeur d'ail		
О 	acide sulfonique H ₃ (SO ₃ H	acide para- toluènesulfonique	acide organique fort		

Les 12 premières fonctions sont classées par ordre de priorité décroissante

CLASSE FONCT	IONNELLE	PREFIXE	SUFFIXE
1 R—C—OH	acide carboxylique	carboxy	acideoi [*] que
$\mathbf{R} - \mathbf{S} - \mathbf{OH}$	acide sulfonique	sulfo	acide sulfonique
3 R—C—OR¹	ester	carboalkoxy	-oate d'alkyle
4 R—C—X	halogénure d'acide	halgénoformyl	halogénure deoyle
5 R-C-N	amide	carboxamido	-amide
6 R—C≡N	nitrile	cyano	-nitrile
7 R—C—H	aldé hyde	aldo, formyl, oxo	-al
8 R—C—R'	cétone	céto, oxo	-one
9 R — OH	alcool	hydroxy	-ol

Les 12 premières fonctions sont classées par ordre de priorité décroissante

	CLASSE FONCTI	ONNELLE	PREFIXE	SUFFIXE
10	R—SH	mercaptan, thioalcool	mercapto	-thiol
11	R-N	amine	amino	-amine
12	R—O—R'	éther-oxyde	alkoxy	oxyde de dialkyle
		double liaison (alcène)		-ène
	-c≡c-	triple liaison (alcyne)		-yne
	<u></u>	carbone saturé		-ane
	R—NO ₂	dérive nitré	nitro	
	R—X	halogénure	halogéno	

Chaîne principale

hexane

Ramification

3-méthylhexane

Insaturation

4-méthylhex-2-ène

4-méthylhex-2-ène-1-ol

acide 6-hydroxy-3-méthylhex-4-ènoïque

 C_4H_6O

But-2-ènal

2-butenal

 $C_3H_3BrO_2$

Acide 2-bromoprop-2-ènoïque

Acide 2-bromoacrylique

2-bromoacrylic acid

 $C_6H_{10}O_2$

Hexa-1,5-diène-3,4-diol

1,5-hexadiene-3,4-diol

 $C_6H_{10}O_2$

Cyclohex-4-ène-1,3-diol *4-cyclohexene-1,3-diol*

- Nomenclature systématique
 - exacte mais lourde
 - Francophone ≠ anglophone
- Nomenclature usuelle ou triviale
- Numérotation grecque des carbones

Très nombreux noms consacrés par l'usage

HCOOH acide méthanoïque acide formique

HOH₂C-CHOH-CH₂OH propane-1,2,3-triol glycérol

HCOOH	Acide méthanoïque	formique
CH3COOH	Acide éthanoïque	acétique
CH ₃ CH ₂ COOH	Acide propanoïque	propionique
CH3(CH2)2COOH	Acide butanoïque	butyrique
CH3(CH2)3COOH	Acide pentanoïque	valérique
CH3(CH2)4COOH	Acide hexanoïque	caproïque

Isopropyle

1-Méthyléthyle

Tert-butyle (butyle tertiaire) 1,1-Diméthyléthyle

$$\begin{array}{c|c} \text{CH}_3 & \text{CH}_2 \\ \text{CH}_3 & \text{C} \\ \text{CH}_3 \end{array}$$

	Primaire	Secondaire	e Tertiaire
Carbone	R-CH ₃	RR'-CH ₂	RR'R"-CH
Hydrogène	R-CH ₃	RR'-CH ₂	RR'R"-CH
Carbocation	R-C+H ₂	RR'-C+H	RR'R"-C+

	Primaire	Secondaire	Tertiaire
Alcool	R-CH ₂ OH	RR'-CHOH	RR'R"-COH
Amine	R-NH ₂	RR'-NH	RR'R"-N

Numérotation grecque

Numérotation des carbones (azote...) en lettre grecque croissante,

à partir du carbone adjacent à un groupement fonctionnel (carbone alpha),

ou en partant du dernier carbone de la chaîne principale (carbone oméga)

exemple : les acides « Oméga 3 »

Numérotation grecque

Oméga 3 : acides alphalinolénique (ALA), eicosapentaénoïque (EPA), docosahexaénoïque (DHA)

Les acides gras ω 3 seraient meilleurs pour la santé, on les retrouve dans les poissons gras d'eau froide (saumon, truite, hareng, maquereau)

