Modern mikroszkópos technikák

Haluszka Dóra

Fluoreszcencia mikroszkóp

Fény abszorpciós és emissziós spektrum

Egerjesztés ≥ Efluoreszcencia

 $\lambda_{\text{gerjesztés}} \leq \lambda_{\text{fluoreszcencia}}$

Fluoreszcencia forrása

• Intrinsic (belső) fluorofórok:

pl: triptofán, tirozin aminósavak, porfirinek

• Extrinsic (külső) fluorofórok:

pl: kívülről bevitt festékmolekulák

Az ideális fluorofór:

- Kicsi
- Hidrofil
- A látható tartományban nyel el és emittál
- A Stokes eltolódás nagy
- Specifikusan kötődik
- Nem eredményez fotokémiai reakciókat

triptofán

porfirin fluoreszcencia

- 1. Alexa Fluor® 350
 2. Alexa Fluor® 405
 3. Alexa Fluor® 430
 4. Alexa Fluor® 500
 6. Alexa Fluor® 514
 7. Alexa Fluor® 538
 8. Alexa Fluor® 548
- Alexa Fluor® 54
 Alexa Fluor® 55
 Alexa Fluor® 56
- Alexa Fluor[®] 568
 Alexa Fluor[®] 594
- 12. Alexa Fluor® 610
- Alexa Fluor® 633
 Alexa Fluor® 633
- 14. Alexa Fluor® 63: 15. Alexa Fluor® 647
- 16. Alexa Fluor® 660 17. Alexa Fluor® 680
- 19. Alexa Fluor® 750
- 20. Alexa Fluore 79

Fluoreszcens fehérjék

- Green Fluorescent Protein (GFP)
- 1960-as évek, medúzából izolálták
- ~27 kDa, 238 as, 11 szálú β-hordó
- A központi hélix Ser-65, Tyr-66, és Gly-67 oldalláncai alkotják a kromofórt
- gerjesztés: kék (475 nm) és UV (396 nm) fénnyel
- emisszió: 508 nm-en
- Vizsgálni kívánt fehérjéhez kötik fúziós fehérje
- Mivel kis méretű nem zavarja már fehérje funkcióját
- Transzfekció: tenyésztett sejtekbe juttatják a fehérjét
- Transzgenezis: ha megtermékenyített petesejtbe

Transzgén egerek

Béka izom sejtek GFP jelölése

Egér Purkinje sejtek

Tumor sejtek követése

2008. Kémiai Nobel-díj

Photo: J. Henriksson/SCANPIX

Osamu Shimomura

Photo: J. Henriksson/SCANPIX

Martin Chalfie

Photo: UCSD

Roger Y. Tsien

Lézerek általános tulajdonságai

light amplification by stimulated emission of radiation

- Monokromatikus
- koherens
- poláros
- jól fókuszálható

Rövid impulzusidő lehetséges – *ps, fs*Nagy teljesitmény érhető el– *kW - GW*Nagy teljesitmenysűrűség lehetséges

Fény behatolási mélysége a bőrbe

A fény intenzitás gyengülése elnyelődés, fénytörés és visszaverődéssel egyaránt megvalósul.

Az, hogy a fény milyen mélyen képes behatolni a szövetbe, hullámhossz függő!!!

Konfokális pásztázó mikroszkóp

Konfokális elv: apertúra segítségével takarjuk ki a nem fókuszsíkból érkező fénynyalábokat – a detektorba csupán a fókuszsíkból eredő nyalábok jutnak

- lézer fényforrás
- fényútba helyezett szűrőkkel a hullámhossz kiválasztható
- minta pásztázása pontról pontra
- XY irányban pásztázó tükrök
- számítógépes vezérlés
- "optikai szeletelés" 3D képalkotás

Fluoreszcens és konfokális mikroszkóp összehasonlítása

konfokális

Kétfoton mikroszkópia

- 1931. Maria Göppert-Mayer
- a gerjesztendő molekulába egyszerre két foton abszorbeálódik, és energiájuk összeadódik
- nagy intenzitású lézer fényforrás ~ megfelelő fotonsűrűség
- 1990. Első kétfoton abszorpciós fluoreszcencia mikroszkóp
- Wienfried Denk, Cornell University

Maria Göppert-Mayer (1906-1972)

Wienfried Denk (1957-)

Fény abszorpciós és emissziós spektrum

Előnyök

- Csak a fókuszfoltban gerjeszt nincs kétfoton elnyelődés a fókuszon kívül
- A lézer mintára eső teljesítménye néhány mW – in vivo képalkotás
- Infravörös tartományban (700-1300 nm) hangolt fényforrás – kevésbé szórodik
- Mélyebb penetráció
- Több festék gerjeszthető egyszerre
- Az összes fluoreszcencia fényt detektáljuk

Jelölés nélküli képalkotás

3D képalkotás

Kontroll és 2. típusú cukorbeteg egér dermisz kollagén szerkezetének összehasonlítása *in vivo* kétfoton mikroszkópiával

200 μm x 200 μm exc: 990 nm

Többszörös fluoreszcens jelölés

vese kéregállomány

gyűjtőcsatorna és JGA sejtek

Mekkorák a dolgok?

Szuperrezolúciós mikroszkópia

The Royal Swedish Academy of Sciences has decided to award the 2014 NOBEL PRIZE IN CHEMISTRY Eric Betzig, Stefan W. Hell and William E. Moerner

"for the development of super-resolved fluorescence microscopy"

Szuperrezolúciós mikroszkópia

- 2014-ben Eric Betzig, Stefan W. Hell és William E. Moerner kémiai Nobel-díjban részesültek
- Intézetünkben 2018. augusztus
- nanométeres, molekuláris felbontást tesz lehetővé

- gerjesztő fénynyalábra azzal koncentrikus, gyűrű alakú kioltó fénynyalábot vetítünk
- STED (stimulated emission depletion microscopy)
- a leképezés pásztázó lézernyalábbal történik pontról pontra

konfokális STED konfokális STED