

ENGINEERING MECHANICS Lecture (P3)

Sheba Varghese Asst Professor Department of Mechanical Engg KJSCE

Somanja

Engineering Mechanics

Engineering Mechanics is the branch of Applied Science which deals with the laws and principles of Mechanics along with their applications to engineering problems.

Knowledge of engineering mechanics is very essential for an engineer in planning, designing and construction of various types of structures and machines.

Course Code	Course Title						
116U06C104	Engineering Mechanics						
		TH		P		TUT	Total
Teaching Scheme(Hrs.)		03					03
Credits Assigned		03					03
	Marks						
Examination	CA	ECE				P&O	Total
Scheme	ISE	IA	ESE	TW	O	rau	Total
	30	20	50				100

Course prerequisites

- Basics of units and conversions
- Basics of Trigonometry
- Newton's Laws of Motion

Course Objectives

Engineering mechanics is the application of physics to solve problems involving common engineering elements. This course introduces system of forces and its effect on stationary and moving objects. The goal of this course is to expose students to problems in real-world scenarios and respond accordingly.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Evaluate resultant and moment of a force system
- CO2. Analyze the concept of kinematics of particle and rigid body.
- CO3. Determine center of gravity of wires (rods), lamina and solids
- CO4. Analyze applications of equilibrium using free body diagram
- CO5. Analyze the dynamic system using D'Alembert, work energy and impulse momentum principle.

Module	Unit	Details	Hrs.	CO	
No.	No.				
1	Syster	System of forces			
	1.1	1.1 System of coplanar forces: Resultant of concurrent forces,			
		parallel forces, non-concurrent non parallel system of			
		forces, moment of force about a point, couples,			
		Varignon's theorem, Principle of transmissibility of forces			
	1.2	Resultant of forces in space			
2	Kinen	natics of Particles and Rigid Bodies	11	CO 2	
	2.1	Variable motion, motion curves (a-t, v-t, s-t) (acceleration			
		curves restricted to linear acceleration only), motion along			
		plane curved path, velocity & acceleration in terms of			
		rectangular components, tangential & normal component			
		of acceleration, relative velocities.			
	2.2	Introduction to general plane motion, problems based on			
		ICR method for general plane motion of bodies (up to 2			
		linkage mechanism and no relative velocity method)			
3	Centr	oid of Wires, Laminas and Solids	5	CO 3	
	3.1	Centroid of wires/rods			
		Centroid of plane laminas: Plane lamina consisting of			
		primitive geometrical shapes			
		Center of gravity of solids: Solids consisting of primitive			
		solids			

4	Equilibrium of Force System and Friction			CO 4		
	4.1	Equilibrium of system of coplanar forces: Condition of				
		equilibrium for concurrent forces, parallel forces and non-				
		concurrent, non-parallel force system (general force				
	system), Free body diagram.					
	4.2 Types of support, loads, beams, determination of reactions					
		at supports for various types of loads on beams (excluding				
		internal hinge problems)				
	4.3	Laws of friction, cone of friction, angle of repose,				
		equilibrium of bodies on inclined plane, application to				
		problems involving wedges and ladders				
5	Kinet	ics of particle	9	CO5		
	5.1	Force and acceleration: Introduction to basic concepts,				
	equations of dynamic equilibrium, Newton's second law of motion (only rectilinear motion) 5.2 Work energy principle					
	5.3	Impulse and Momentum: Principle of linear impulse and				
		momentum, law of conservation of momentum, impact				
		and collision, direct central and oblique central impact.				
		Total	45			

Text Books

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	Tayal, A.K.	Engineering	Universal	14th
		Mechanics, Statics	Publication,	Edition
		and Dynamics	India	2011
2.	Bhavikatti S. S.	Engineering	New Age	Revised
		Mechanics	international,	Edition
			India	2019

Reference books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Hibbeler, H. C.	Engineering	Prentice Hall	Revised
	and Gupta	Mechanics, Statics	Private	Edition
		and Dynamics	limited, India	2017
2.	Bhattacharyya B.	Engineering	Oxford	2nd Edition
		Mechanics	University	2014
			Press,	
			India	

Engineering Mechanics

1	Syster	n of forces	7	CO 1
	1.1	System of coplanar forces: Resultant of concurrent forces,		
		parallel forces, non-concurrent non parallel system of		
		forces, moment of force about a point, couples,		
		Varignon's theorem, Principle of transmissibility of forces		
	1.2	Resultant of forces in space		

Force

- An external agency which changes or tends to change the state of rest or of uniform motion of a body upon which it acts.
- One Newton Force force required to produce an acceleration of 1 m/s2 in a body of mass 1 kg
- Characteristics of Force
 - Magnitude
 - Direction
 - Point of application

Force

- Definition
- Types and Classifications
 - 1.According to the effect produced by the force
 - 2.According to the origin of force
 - 3. According to the nature of the force
 - 4.According to whether the force acts at a point or distributed over a large area
 - 5. According to whether the force acts at a distance or by contact

Particle and Rigid Body

- Particle A body infinitely small volume and is considered to be a concentrated point
- Rigid Body A body which can retain its shape and size, even if subjected to some external forces.

Principle of Transmissibility of Forces

- It states that the condition of equilibrium or uniform motion of rigid body will remain unchanged if the point of application of a force acting on a rigid body is transmitted to act at any other point along its line of action.
- i.e, If a force acts at any point on a rigid body, it may also be considered to act at any other point on its line of action, provided this point is rigidly connected with the body.

Systems of Forces

Composition of Forces

The process of finding resultant of forces is called composition of forces.

- Parallelogram Law of Forces
- Triangle Law of Forces
- Polygon Law of Forces

Parallelogram law of forces - to find the Resultant of a

"If two forces, acting simultaneously on a particle, be represented in magnitude and direction by the two adjacent sides of a parallelogram, then their resultant may be represented in magnitude and direction by the diagonal of the parallelogram, which passes through their point of intersection."

Triangle Law of Force (Corollary of parallelogram Law)

"If two forces, acting simultaneously on a particle, be represented in magnitude and direction by the two sides of a triangle, taken in order; their resultant may be represented in magnitude and direction by the third side of the triangle, taken in opposite order."

Polygon Law of Force

"If a no: of forces, acting simultaneously on a particle, be represented in magnitude and direction by the sides of a polygon taken in order: then the resultant of all these forces may be represented, in magnitude and direction, by the closing side of the polygon, taken in opposite order."

Two forces of 100N and 150N are acting simultaneously at a point. What is the resultant of these two forces if the angle between them is 45?

Resolution of a Force into Component forces.

- The process of splitting up the given force into two components without changing its effect on the body is called **Resolution of a Force.**
- Force which is split into two parts is called the **resolved force** and the parts are called **component forces**.

Q. Two forces of 120 N and 80 N act on an eye bolt at A as shown. Determine the resultant of the two forces.

Resultant of a Concurrent Force System

$$R_x = \Sigma F_x$$
 $R_y = \Sigma F_y$
 $R = \sqrt{{R_x}^2 + {R_y}^2}$
 $an heta_x = rac{R_y}{R_x}$

Q. Find the resultant of the four concurrent forces acting on a particle P.

