Artificial Neural Networks & Deep Learning Practice #8 (2 points)

Practice #8 Practice – Important Notice

- You will tune hyperparameters of a CNN model for CIFAR10.
- Use the codes in the lecture slide, "CNN(4)".
- I provided "chapter5_1_cifar10.py".
- Follow the instruction in this file, "step-by-step" and collect the results.
- Each run would take 5-10 minutes (even with a GPU). Please start this practice & quiz early.
- To do the practice in this file, I recommend to GPU use through a torque server. See the lecture 8-3 and 3.
 - Copy and adapt conda_job.sh to your codes!

Practice #8 – Q1 (0.25 points)

- We will add "Dropout" layers after the max-pooling layer and the hidden layer of MLP.
- Add the following lines to the right locations. model.add(layers.Dropout(0.25)) # after max-pooling model.add(layers.Dropout(0.5)) # after the hidden layer of MLP
- Show the modified "build_model" function.

Practice #8 – Q1 (0.25 points)

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	============ 896
conv2d_1 (Conv2D)	(None, 28, 28, 64)	18496
max_pooling2d (MaxPooling2D)	(None, 14, 14, 64)	0
dropout (Dropout)	(None, 14, 14, 64)	0
flatten (Flatten)	(None, 12544)	0
dense (Dense)	(None, 128)	1605760
dropout_1 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 10)	1290
Total params: 1,626,442 Trainable params: 1,626,442 Non-trainable params: 0		

Added

Added

Practice #8 – Q2 (0.75 points)

- When we use the dropout, we need more time to learn the model. So, please increase the number of maximum epochs to 50.
- Run the code.
- What is the test accuracy? Attach the loss graph.

Practice #8 – Q3 (0.5 points)

- The above learning curve is oscillating.
- Maybe it's better to decrease the learning rate. Change the learning rate of RMSprop to 0.0001.
- Also, the smaller size of minibatch also helps to stabilize the learning procedure. Set minibatch to 32. (it will increase the learning time about three times)
- Run the code.
- What is the test accuracy? Attach the loss graph.

Practice #8 – Q4 (0.5 points)

- As I told before, the other approach of machine learning is "high-capacity model with strong regularization".
- Indeed, it is not recommended to add dropout layers to the small-sized NN model.
- Do you think our model is large enough? Is there any chance that our model is underfitting currently?
- To test it, let's increase model capacity. (See the structure in the next page)
- Since the model becomes more complex, we need more time to learn. Set the number of maximum epochs to 100.
- What is the test accuracy? Attach the loss graph.
- Do you think the final model is better than what we used in the lecture (the original model)?

Practice #8 – Q4 (0.5 points)

Model: "sequential"			
Layer (type)	0utput	Shape	Param #
conv2d (Conv2D)	(None,	30, 30, 32)	896
conv2d_1 (Conv2D)	(None,	28, 28, 64)	18496
max_pooling2d (MaxPooling2D)	(None,	14, 14, 64)	0
dropout (Dropout)	(None,	14, 14, 64)	0
conv2d_2 (Conv2D)	(None,	12, 12, 32)	18464
conv2d_3 (Conv2D)	(None,	10, 10, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	5, 5, 64)	0
dropout_1 (Dropout)	(None,	5, 5, 64)	0
flatten (Flatten)	(None,	1600)	0
dense (Dense)	(None,	128)	204928
dropout_2 (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	10)	1290
Total params: 262,570 Trainable params: 262,570 Non-trainable params: 0			

Copy-and-paste two cond2D layers, maxpooling layers and dropout layers before the MLP layer.

Added

Practice #8 – Extra (1 points)

- There is another possible way to have "high-capacity model".
- Let's try to increase the number of hidden neurons in MLP four times (512) without adding convolution layers. (see structure in the next page)
- Run the code.
- What is the test accuracy? Attach the loss graph.
- How much is it improved?
- Is it worthy? (Consider the number of parameters, total learning time etc)

Practice #8 – Extra (1 points)

Model: "sequential"			
Layer (type)	Output Shape		Param #
conv2d (Conv2D)	(None, 30, 30,	32)	896
conv2d_1 (Conv2D)	(None, 28, 28,	64)	18496
max_pooling2d (MaxPooling2D)	(None, 14, 14,	64)	0
dropout (Dropout)	(None, 14, 14,	64)	0
flatten (Flatten)	(None, 12544)		0
dense (Dense)	(None, 512)		6423040
dropout_1 (Dropout)	(None, 512)		0
dense_1 (Dense)	(None, 10)		5130
Total params: 6,447,562 Trainable params: 6,447,562 Non-trainable params: 0			

Modified