本次作業內容為Named-Entity Recognition

本次使用的環境為以下,套件則為附件中的requirements.txt

Environment types	If local
Running environment	System: Ubuntu 22.04, CPU: Ryzen 7-7800X3D
Python version	Python 3.10.1

一、資料前處理流程

本次作業使用的資料集為 Hugging Face 上的 ncbi_disease ,資料已以詞(word)為單位斷詞,並標註了 ner_tags ,採用 BIO tagging scheme,分別為:

111</l>1111111111111</l>111111<li

B-Disease: 疾病名稱開頭I-Disease: 疾病名稱延續詞

處理步驟如下:

- 1. 使用 AutoTokenizer (bert-base-uncased) 進行斷詞,設定 is_split_into_words=True。
- 2. 對 ner_tags 進行對齊處理,對 subword 的 label 設定為 -100 (忽略 loss 計算)。
- 4. 使用 DataCollatorForTokenClassification 動態 padding。

二、模型與超參數

使用 Hugging Face Transformers 的 BertForTokenClassification:

• 預訓練模型: bert-base-uncased

• 輸出類別數: 3 (O, B-Disease, I-Disease)

• 訓練設定 (TrainingArguments):

參數	值
batch size (train/eval)	16 / 32
learning rate	5e-5
optimizer	AdamW
warmup_ratio	0.1
epoch 數	3
gradient_accumulation_steps	2
logging / save strategy	每 epoch
evaluation_strategy	epoch
使用 FP16	是
load_best_model_at_end	是

三、模型訓練與效能提升方法

訓練方式: 使用 Hugging Face Trainer API, 自動管理 optimizer、scheduler、evaluation loop。

效能提升手法

- 1. 加入 warmup_ratio=0.1 使學習率平滑啟動。
- 2. 使用 FP16 加速訓練並減少記憶體使用。
- 3. 動態 padding (DataCollatorForTokenClassification)降低不必要的 padding 開銷。
- 4. 加入 load_best_model_at_end 以 validation loss 做 early selection。
- 5. 定義 compute_metrics 使用 sequal 評估 f1, precision, recall, accuracy。

四、模型效能與主要影響因子

Dataset	F1-score	Precision	Recall	Accuracy
Validation	0.8518	0.8228	0.8829	0.9821
Test	0.8583	0.8366	0.8813	0.9748

主要影響因子分析:

子詞分割(subword tokenization)造成 NER 標註不連續問題,是模型準確率與召回率的主因。透過正確處理 labels 與設計合理的 batch/padding 策略,可以穩定訓練並達到良好泛化能力。

五、額外補充

- 我嘗試在訓練前以小批量測試 compute_metrics , 並修正 id2label 映射錯誤問題。
- 在 debug 時,有使用 ChatGPT-4o 協助處理錯誤訊息(如 evaluation_strategy 、 seqeval.compute 模組問題),並已於程式碼內註記。
- 這次作業,是我第一次沒使用ChatGPT協助作業,幫助深入理解 Hugging Face Trainer 的工作流程與 token classification 的重點轉換邏輯