Equations of a straight line:

1. Slope-intercept form of a straight line is given as:

$$y = mx + c$$

Where, m is the slope of the line and c is the y-intercept.

And $m=tan\theta$,where θ is the angle that the line makes with the positive x-axis.

2. Point-slope form:

- $y y_1 = m(x x_1)$
- where m is the slope of the line and (x_1, y_1) are the coordinates of a point on the line.
- 3. Two-point form:

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

 $y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)$ Where, (x_1,y_1) and (x_2,y_2) are the coordinates of two points on the line.

4. Intercept form:

$$\frac{x}{a} + \frac{y}{b} = 1$$

• Where a and b are the intercepts of the line on the x-axis and y-axis respectively.

1

5. General form:

- ax + by + c = 0
- where a, b, and c are real numbers.

Parallel lines

- Two lines are called **parallel** to each other if the values of the slope are equal.
- Let's consider two lines $y = m_1x + c_1$ and $y = m_2x + c_2$
- The above two lines are parallel if $m_1=m_2$

Perpendicular lines

 \bullet The above two lines are **Perpendicular** to each other if: $m_1 = -\frac{1}{m_2}$

Hyperplane

- A hyperplane is a linear surface in n-dimensions.
- The general equation of a hyperplane is given as:

$$w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_nx_n + w_0 = 0$$

- Where, $w_1, w_2, w_3, ..., w_n$ are called the **weights/coefficients** and $x_1, x_2, x_3, ..., x_n$ are the **features**.
- The equation of a plane in 3-D is given as:

$$w_1x + w_2y + w_3z + w_0 = 0$$