Procesamiento de video y detección de objetos, Ago-Dic 2025 Profr: Dr. Francisco Javier Hernández López

Tarea 3. Estimación de movimiento global

Dadas dos imágenes de entrada:

1. Estimar el vector de desplazamiento $\vec{d} = (d_x, d_y)$, resolviendo el siguiente problema de optimización:

$$\min_{\vec{d}} \mathcal{E}(\vec{d}) = \sum_{\vec{x} \in \Omega} \left[I_k(\vec{x}) - I_{k-1}(\vec{x} + \vec{d}) \right]^2,$$

- a) Usando el método de emparejamiento simple, considerando un conjunto $(N+1)\times (N+1)$ de desplazamientos enteros $\vec{d}=(d_1,d_2)$ con $d_k\in\{-N/2,\ldots,N/2\}$ y $k=\{1,2\}$.
- b) Usando el algoritmo de Lucas-Kanade (Alineamiento Aditivo).
- 2. Aplicar el desplazamiento encontrado a la imagen I_{k-1} :

$$\tilde{I}_{k-1} = I_{k-1}(\vec{x} + \vec{d})$$

y mostrar la imagen \tilde{l}_{k-1} .

3. Calcular $I_r = |I_k - \tilde{I}_{k-1}|$ y mostrar la imagen I_r .

Enviar el reporte (.doc o .pdf) de los ejercicios y los códigos correspondientes (.cpp, .m, .py o .ipynb).