国家精品课程/国家精品资源共享课程/国家级精品教材 国家级十一(二)五规划教材/教育部自动化专业教学指导委员会牵头规划系列教材

控制系统仿真与CAD

第二章 MATLAB语言程序设计基础

矩阵的其他运算

Other Matrix Computations

主讲: 薛定字教授

矩阵的逻辑运算

- ▶ 逻辑变量:
 - ▶当前版本有逻辑变量
 - ▶非 0表示逻辑 1
- > 逻辑运算(相应元素间的运算)

▶与运算

A & B

▶或运算

 $A \mid B$

▶非运算

B = A

▶异或运算

xor(A, B)

矩阵的比较运算

> 各种允许的比较关系

▶ 例2-10 比较运算实例

```
>> A=[1,2,3; 4 5,6; 7,8 0];
i=find(A>=5),
```


解析结果的化简与变换

 \triangleright 函数simplify() 用于数学公式的化简 $s_1 = simplify(s)$

- > 其他常用化简函数
 - >numden(), collect(), expand(), factor()

例2-11 多项式处理

> 化简多项式

$$P(s) = (s+3)^2(s^2+3s+2)(s^3+12s^2+48s+64)$$

> 用不同的函数求解

```
>> syms s;
P=(s+3)^2*(s^2+3*s+2)*(s^3+12*s^2+48*s+64)
```

- ➤ 多项式的化简 → >> P1=simplify(P)
- > 多项式因式分解与展开

变量替换

> 变量替换语句

$$f_1 = \mathrm{subs}(f, x_1, x_1^*)$$
 $f_1 = \mathrm{subs}(f, \{x_1, x_2, \cdots, x_n\}, \{x_1^*, x_2^*, \cdots, x_n^*\})$

- ▶该函数执行点运算
- ▶后者同时替换若干个变量
- \rightarrow 转换成LaTeX表示 f_1 =latex(f)
 - ▶得出字符串,需要LaTeX环境解释

例2-12 双线性变换

- \rightarrow 试用 s = (z-1)/(z+1) 对 P(s) 进行双线性变换
- > 多项式表达式

$$P(s) = (s+3)^2(s^2+3s+2)(s^3+12s^2+48s+64)$$

> 变量替换的MATLAB代码


```
>> syms s z;

P=(s+3)^2*(s^2+3*s+2)*(s^3+12*s^2+48*s+64);

P1=simplify(subs(P,s,(z-1)/(z+1)))

latex(P1)
```

LaTeX处理结果

结果:
8\,{\frac { \left(2\,z+1 \right) ^{2}}
z \left(3\,z+1 \right) \left(
5\,z+3 \right) ^{3}}
{ \left(z+1 \right) ^{7}}}

➤LaTeX排版显示

$$8 \frac{(2z+1)^2 z (3z+1) (5z+3)^3}{(z+1)^7}$$

➤ LaTeX下载 建议: http://www.ctex.org

基本数据运算

> 常用计算函数

Function	Calling format
floor()	n=floor(x)
ceil()	n=ceil (x)
round()	n=round(x)
fix()	n=fix (x)
rat()	[n,d]=rat (x)
rem()	B=rem (A,C)
gcd()	$k = \gcd(n, m)$
lcm()	k=1cm(n,m)
<pre>factor()</pre>	factor(n)
<pre>isprime()</pre>	$oldsymbol{v}_1$ =isprime $(oldsymbol{v})$

例2-13 不同的取整函数

- ➢ 运用各种函数,对下面的数据进行取整运算 -0.2765, 0.5772, 1.4597, 2.1091, 1.191, -1.6187
- ➤ MATLAB代码:


```
>> A=[-0.2765,0.5772,1.4597,...
2.1091,1.191,-1.6187];
v1=floor(A), v2=ceil(A),
v3=round(A), v4=fix(A)
```

例2-14 Hilbert矩阵

► 假设 3×3 的 Hilbert 矩阵可以由 hilb() 定义, 试对其进行有理数变换。

$$h_{i,j} = \frac{1}{i+j-1}$$

➢ 结果: → A=hilb(3); [n,d]=rat(A)

$$m{n} = egin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \ m{d} = egin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

例2-15 最大公约数与最小公倍数

- ➤ 给定两个整数1856120和1483720
 - ▶求其最大公约数与最小公倍数
 - ▶求出所得出的最小公倍数的质因数分解
- ➤ MATLAB求解语句:

>> m=sym(1856120); n=sym(1483720); gcd(m,n), lcm(m,n), factor(lcm(n,m))

例2-16 找出1000以内全部质数

➤ 试求出1~1000间的全部质数

>> A=1:1000; B=A(isprime(A))

>> C=primes(1000)

> 得到的所有质数

2	29	67	107	157	199	257	311	367	421	467	541	599	647	709	769	829	887	967
3	31	71	109	163	211	263	313	373	431	479	547	601	653	719	773	839	907	971
5	37	73	113	167	223	269	317	379	433	487	557	607	659	727	787	853	911	977
7	41	79	127	173	227	271	331	383	439	491	563	613	661	733	797	857	919	983
11	43	83	131	179	229	277	337	389	443	499	569	617	673	739	809	859	929	991
13	47	89	137	181	233	281	347	397	449	503	571	619	677	743	811	863	937	997
17	53	97	139	191	239	283	349	401	457	509	577	631	683	751	821	877	941	
19	59	101	149	193	241	293	353	409	461	521	587	641	691	757	823	881	947	
23	61	103	151	197	251	307	359	419	463	523	593	643	701	761	827	883	953	

例2-16全排列计算

- ➤ MATLAB的perms()函数可以计算全排列
- 》假设5个人照集体照,共有多少种排列方式
 - \rightarrow 给出所有的排列可能 $B=A(v_1,v_2)$
 - → >> P=perms(1:5), size(P)
 - ➤如果5个人记作a,b,c,d,e,则
 - >> P=perms('abcde'), size(P)

矩阵其他运算小结

- > 矩阵的逻辑运算
 - ▶与&,或|,非~,异或xor
 - >逻辑运算是相应元素直接的运算,相当于点运算
- > 比较运算
- > 符号表达式化简与转换
- ➤ 数据计算: gcd, lcm, factor, 全排列

