

Radiadores

Accesorios

Montajes Semistack

RADIADORES

Al circular una corriente eléctrica por un semiconductor se producen pérdidas en forma de calor que elevan la temperatura del semiconductor. Para evitar que éste alcance temperaturas demasiado elevadas se debe disponer de un camino de evacuación del calor hacia el exterior. Esta evacuación de calor se realiza por conducción a través de un radiador de calor, normalmente un perfil extrusionado de aluminio, el cual a su vez transmite el calor por convección y radiación hacia el aire ambiente u otro fluido refrigerante, como el agua o el aceite. Las pérdidas medias que se producen en un semiconductor funcionando a la frecuencia de red son:

$$Pfav = V_{TO} \times I_{FAV} + r_f \times I_{FRM}^2$$

 $Pfav = V_{TO} \times I_{FAV} + r_f \times I_{FRMS}^2$ siendo ${\bf r_f}$ la resistencia de caída directa, ${\bf V_{TO}}$ la tensión umbral del semiconductor y ${\bf I_{FAV}}$ e ${\bf I_{FRMS}}$ los valores medio y eficaz de la intensidad que circula por el semiconductor. El valor de estas dos intensidades depende del valor máximo de la intensidad, de su ángulo de conducción respecto al período total y de si su forma es rectangular o senoidal (ver manual de Semiconductores de potencia, Semikron 1979).

Una vez conocidas las pérdidas se debe determinar el radiador necesario para que la temperatura de la unión no supere su valor máximo y para ello se utiliza un circuito equivalente eléctrico del circuito térmico de evacuación del calor. El valor correspondiente a las pérdidas calculadas debe evacuarse al aire ambiente, y las resistencias térmicas que se oponen al paso del calor son: R_{thic} entre unión y cápsula, R_{thch} entre cápsula y radiador, R_{thha} entre radiador y aire ambiente. La resistencia térmica total entre la unión y el aire ambiente R_{thia} es la suma de las anteriores. La temperatura que alcanzará la unión para una temperatura ambiente y unas pérdidas directas medias dadas es:

$$T_i = T_a + R_{thia} \times P_{FAV}$$

Generalmente para el cálculo del radiador se dispone de los siguientes datos: temperatura máxima admisible de la unión T_{jmax} , temperatura ambiente máxima estimable T_{ambmax} , pérdidas directas medias P_{FAV} , resistencias térmicas unión-cápsula R_{hjc} y cápsula-radiador R_{thch} .

Con estos datos es posible calcular la resistencia térmica del radiador necesario R_{bba}. La resistencia térmica total debe ser:

$$R_{thja} \le \frac{T_{jmax} - T_{ambmax}}{P_{EAV}} \Rightarrow R_{thha} < R_{thja} - (R_{thjc} + R_{thch})$$

Del valor R_{hha} obtenido dependerá la necesidad de utilizar ventilación forzada o no. Si el valor no se puede conseguir hay que escoger un semiconductor de mayor calibre y un radiador de menor resistencia térmica o refrigerado por agua.

En las páginas siguientes se indican los valores de las resistencias térmicas para los distintos tipos de radiadores en función de sus longitudes. Estos valores se han determinado en el caso de convección natural para superficies anodizadas en negro mate y montaje vertical sin ningún obstáculo que dificulte el movimiento ascendente del aire. En el caso de la convección forzada se indica la velocidad a la que el aire debe circular por el interior del radiador, siendo indiferente el acabado superficial del radiador.

La superficie de contacto entre radiador y el semiconductor debe ser plana, poco rugosa y limpia. El anodizado debe eliminarse pues es muy buen aislante eléctrico. Es necesario meiorar el contacto térmico mediante el uso de una muy fina capa de pasta de silicona del calor como la SKS. Para semiconductores Press-pack se utilizará la grasa térmica 2GX. Las fuerzas de apriete indicadas por los fabricantes de los semiconductores deben aplicarse con exactitud, tanto si son semiconductores Press-pack, módulos aislados SEMIPACK o semiconductores de rosca.

Los radiadores se pueden servir en cualquier longitud y con el mecanizado necesario según la aplicación. Los radiadores indicados en las páginas numeradas como "FC" no están disponibles en stock, y únicamente pueden pedirse con una cantidad mínima que depende del tipo de radiador.

Curves tomedes con Semipade 1, ancho-20 ms n=2, Rithe x 0,6 n=3, Rithe x 0,49

ACCESORIOS

Dentro de un equipo de potencia el radiador no realiza solamente funciones térmicas sino que también desempeña un importante papel en la estructura mecánica y en el conexionado eléctrico. Para llevar a cabo estas tres funciones con eficacia es necesario un conjunto de accesorios.

En el montaje de los semiconductores de potencia sobre los radiadores se debe poner especial cuidado en el acabado de las superficies de contacto y en la fuerza de apriete, pues de estos dos aspectos depende el conseguir la resistencia térmica cápsula-radiador indicada por el fabricante del semiconductor. La superficie de montaje en el radiador debe ser plana y poco rugosa, las tolerancias mecánicas recomendadas son de menos de 20 μm (micras o milésimas de milimetro) para la planitud y de 10 μm para la rugosidad (ver Data-Book de **SEMIKRON**). Una superficie de aluminio recién pulida desarrolla una capa finísima de óxido en pocas horas. Como el óxido de aluminio es un buen aislante térmico y eléctrico, es imprescindible limpiar y desoxidar, en el mismo momento de montar los semiconductores, las superficies de contacto.

Hay que tener presente que el anodizado es un excelente aislante térmico y eléctrico, por lo que se debe eliminar de la superficie de contacto con el semiconductor. Además la superficie de unión se debe proteger con la pasta **SKS** o **SKG** con dos fines: a nivel microscópico el contacto entre las dos superficies se realiza solamente por unos pocos puntos de contacto, quedando huecos llenos de aire. La transmisión de calor a través de esta superficie será muy pobre. En cambio si se rellenan los huecos con una pasta conductora del calor, se mejora la transmisión del calor en un 30%. Al mismo tiempo, la circulación de una corriente eléctrica a través de una superficie de aluminio provoca una corrosión que degrada el contacto eléctrico. Para impedirlo, es necesario proteger las superficies de contacto con un agente de alta estabilidad eléctrica y térmica.

En los montajes en que la fuerza de apriete dependa de un tornillo, éste debe volver a apretarse al cabo de unas horas, pues la pasta térmica puede fluir y la fuerza de contacto no sería correcta.

Cuando se montan semiconductores con encapsulado de tipo disco (Press-pack), puede ser necesaria la refrigeración por una o dos caras. En los dos casos se dispone de unos accesorios previamente calibrados a la fuerza de apriete necesaria que permiten el montaje sin la necesidad de útiles especiales. En el caso de refrigerar por una sola cara se dispone de unas cajas de apriete (Box-Clamps) y en el caso de refrigerar por las dos caras, de unas barras de apriete (Bar-Clamps) que aseguran un perfecto centrado y paralelismo del montaje junto con la fuerza de apriete ajustada mediante unas arandelas de presión especiales tipo "Belleville".

Los semiconductores de tipo disco sólo pueden tener fijada rígidamente una de sus caras para evitar esfuerzos asimétricos sobre la cápsula, por lo que la unión eléctrica entre dos semiconductores se podrá hacer rígida por una cara mediante el montaje en un mismo radiador o mediante una pletina de conexión, pero es obligatorio que la conexión de la otra cara se haga mediante un conductor flexible.

Para la convección forzada se dispone de **ventiladores axiales** diseñados especialmente para su acoplo mecánico a los perfiles de los radiadores. Los modelo con motor de continua sin escobillas (**brushless**) presentan un rendimiento mucho mejor que los equipados con motores de alterna y de continua con escobillas, reduciéndose además las interferencias electromagnéticas y el nivel de ruido acústico producido.

Los módulos **SKRC 440** contienen las **RC** necesarias para amortiguar las sobretensiones provocadas por la conmutación de los semiconductores o que puedan llegar por la línea de alimentación, y al mismo tiempo mantienen los valores de **dV/dt** apropiados en los bornes de los semiconductores. Estos módulos **RC** están diseñados para ser fácilmente utilizados en los montajes con módulos **SEMIPACK** (raster de 80 mm).

13/05/02 32

BAR CLAMPS

INSTRUCCIONES DE MONTAJE

Para la utilización de semiconductores Press-pack (disco) es muy importante que la fuerza de apriete esté calibrada en concordancia con el valor indicado por el fabricante y que ésta sea ejercida perpendicularmente en el centro geométrico del disco, para asegurar una prestación eléctrica buena y la menor resistencia térmica posible.

El Bar-Clamp realiza estas funciones perfectamente: la fuerza de calibración es asegurada por el uso de un muelle, el cual está calibrado al valor requerido con una alta precisión. La perpendicularidad de la fuerza está garantizada por uno o dos cabezales hemisféricos de acero. La redondez de estos cabezales permite que el contacto se realice en el centro geométrico de la unidad Press-pack. Esta presión se consigue actuando alternativamente sobre los tornillos "A", NUNCA SOBRE EL TORNILLO CENTRAL "D", el cual ya viene calibrado a la fuerza pedida.

Para efectuar tal operación no se requiere instrumento especial alguno. La fuerza correcta se consigue en el momento en que sea posible mover ligeramente la lengüeta "H".

La longitud **'L**" de los tornillos o de los aisladores **"C"** depende del modelo, de los espesores del radiador y del elemento Press-pack.

Para obtener unos valores aproximados se pueden emplear las siguientes fórmulas, considerando que el aislador penetra hasta aproximadamente la mitad del radiador inferior:

SERIE 550	SERIE 1000	SERIE 2000
L=I+2ER+1ES	L=I+2ER+1ES	L=I+2ER+1ES
C=L-12-0.5ER	C=L-21-0.5ER	C=L-24-0.5ER

SERIE 3000	SERIE 6000
L=I+2ER+1ES	L=I+2ER+1ES
C=L-29-0.5ER	C=L-42-0.5ER

siendo:

L = longitud del tornillo (mm)

C = longitud del aislador (mm)

ER = espesor del radiador (mm)

ES = espesor del semiconductor (mm)

I = constante de cada Bar-Clamp (ver pág. siguiente)

KCDN 6000

Para los Press-pack y radiadores **SEMIKRON** se puede usar directamente la siguiente tabla:

Grueso	BAR	PE8	PE9	IL200	S70N	SA17
disco	CLAMP	L/C	L/C	L/C	L/C	L/C
14	550	80/52	80/52	110/75		
	1000	100/75	90/60	130/95		
	2000	110/60	100/70	140/100		
26	2000	120/80	110/80	150/100	140/90	150/100
	3000	130/95	120/90	160/100	150/100	160/100
	6000	170/100		200/100		200/100
30	2000	120/80		160/100	140/100	160/100
	3000	130/95		170/100	160/100	170/100
	6000	175/100		200/100		200/100
8	3000	110/95			130/80	140/100
	6000					180/100

13/05/02 33

CARACTERISTICAS TECNICAS

SERIE	550	1000	2000	3000	6000
MODELO	KCDN-KCDR KCSN-KCSR	KCDN-KCDR KCSN-KCSR	KCDN-KCDR KCSN-KCSR	KCDN-KCDR KCSN-KCSR	KCDN
Constante Q	3	5.5	5.5	8	12
I = E+F+Q	41/26 mm	60/38 mm	70/45 mm	82/47 mm	110 mm
F	23 mm	33 mm	40 mm	47 mm	68 mm
E	15 mm	22 mm	25 mm	30 mm	37 mm
K	54 mm	70 mm	89 mm	102 mm	140 mm
В	45 mm	59 mm	77 mm	91 mm	124 mm
0	9,5 mm	22 mm	24 mm	24 mm	24 mm
P (máx.)	12 mm	20 mm	20 mm	20 mm	30 mm
N	70 mm	96 mm	117 mm	129 mm	170 mm
J (hondo)	15 mm	25 mm	25 mm	25 mm	25 mm
Ø máx. disco	42 mm	56 mm	75 mm	88 mm	125 mm
Máx. fuerza apriete	6 KN	10 KN	20 KN	28 KN	45 KN
Rosca tornillos (M)	M6	M8	M8	M8	M10
Ø aislador (G)	9 mm	12 mm	12 mm	12 mm	15 mm

Longitudes normalizadas de los tornillos: 70, 80, 90, 100, 110, 120, 130, 140, 150, 160mm

KCDN Modelo

1000 Serie

Ejemplo de pedido: 1000 6KN Serie Fuerza

100/80 L C

BOX CLAMPS

INSTRUCCIONES DE MONTAJE

Estos Box Clamps son los únicos, de los actualmente existentes, que permiten la utilización de semiconductores Press-pack (disco) de cualquier tipo y marca. Para adaptar el Box Clamp al semiconductor Press-pack seleccionado, es suficiente escoger la justa combinación de los espesores calibrados que se entregan con cada Box Clamp. En el caso de venir calibrados con una fuerza concreta, podemos suministrar los diferentes espesores para modificarla. Dichos anillos calibrados deben montarse como sigue:

Modelo KX 5000: entre el muelle y el disco del perno. Modelo KX 6000 y KX 1000: entre el muelle y la caja de plástico.

La combinación de los espesores calibrados se determina mediante la siguiente fórmula:

KX 5000: ES = 14.2 - AL + KN/7.5 KX 6000: ES = 14.5 - AL + KN/2.7 KX 1000: ES = 29.0 - AL + KN/4.6

donde ES = espesor total requerido en mm

AL = altura del semiconductor en mm KN = presión de apriete en KN

Ejemplo: Box Clamp modelo KX 5000 con disco de altura 13.5 mm y apretado a 5.5 KN.

ES = 14.2 - 13.5 + 5.5/7.5 = 1.43 mm (redondeando 1.4 mm)

Escoger un espesor de 1mm y dos de 0.2 mm

MONTAJE

No se requiere ningún instrumento especial para el montaje. La presión correcta se ejerce automáticamente cuando la base llega a encontrarse en contacto con la superficie del radiador. En ese momento hay que dejar de apretar los tornillos. Para que el Box Clamp funcione correctamente es imprescindible comprobar que los muelles estén orientados exactamente como indica el dibujo y el despiece en el catálogo, y que el paquete de los espesores calibrados esté inserto en el lugar preciso, como se ha descrito anteriormente.

Es importante también que una vez montado el Box Clamp, la parte plana del terminal roscado sobresalga del plástico, ya que de no ser así, al apretar la tuerca el semiconductor quedaría flojo.

La pletina que una los diversos semiconductores por dicho terminal ha de ser flexible y no rígida, al objeto de asegurar que no se creen tensiones mecánicas.

13/05/02 35

CARACTERISTICAS TECNICAS

Modelo	Máx. f disco (mm)	Altura disco (mm)		Pre: (K	sión (N)	Anillos		
		min.	máx.	min.	máx.	Nº	tipo	
KX 5000	42	13.0	14.7	4.0	7.5	1	1.0 mm	
						1	0.5 mm	
						3	0.2 mm	
						1	0.1 mm	
KX 6000	52	13.7	16.4	4.0	10	1	2.0 mm	
						1	1.0 mm	
						1	0.5 mm	
						2	0.2 mm	
						1	0.1 mm	
KX 1000	59	25.6	30.5	7.0	12.0	2	2.0 mm	
						1	1.0 mm	
						1	0.5 mm	
						2	0.2 mm	
						1	0.1 mm	

MOTOR

Estos ventiladores van equipados con un motor con rotor externo y aislamiento B. Este tipo de rotor externo gira alrededor del estator interno. El resultado es un diseño compacto con unas excelentes características de caudal.

CONSTRUCCION

La carcasa es de fundición de aluminio. La superficie está acabada con pintura negra aplicada electrostáticamente, para proteger de las condiciones ambientales. Las aletas son de plástico de color negro.

IMPEDANCIA PROTEGIDA

Las características de estos ventiladores son tales que el bobinado no se quema, incluso trabajando en condiciones muy adversas. Todos los materiales utilizados para su fabricación son incombustibles.

RODAMIENTO A BOLAS O SINTERIZADO

Los ventiladores se pueden pedir con los rodamientos a bolas o bien sinterizados. Este último es de bronce sinterizado, impregnado de aceite de alta calidad. El bombeo hidrodinámico y la presión del aire obligan al aceite al desplazamiento a través del rodamiento para conseguir una película constante de lubricante. Hay que evitar desprender la etiqueta con la referencia del ventilador ya que al mismo tiempo hace de elemento de fijación del tapón de rellenado de aceite. Si se saca ésta, el tapón no queda hermético y puede ir perdiendo el aceite, con el consecuente enclavamiento del rotor.

TEMPERATURAS

Temperatura de trabajo: -10° C/+72° C cojinete sinterizado

-20° C/+80° C cojinete a bolas

Temperatura de almacenamiento: -40° C/+75° C

TENSIONES DE TRABAJO

En tensiones alternas, para 115V: 85/125V

para 220V: 185/245V

En tensiones continuas, tensiones indicadas $\pm 15\%$.

METODO DE MONTAJE

Se pueden montar por las dos caras con 4 taladros roscados. Se recomiendan tornillos M4.

CERTIFICACION UL/CSA, ESPERANZA DE VIDA

La vida de los ventiladores depende de las condiciones de funcionamiento, como temperatura ambiente, ciclos de funcionamiento, vibraciones, posición de montaje, etc.

La vida típica a 40°C de temperatura ambiente está entre 20.000 y 40.000 horas.

13/05/02

40 x 40 x 20 mm Tensión continua (BRUSHLESS)

ESPECIFICACIONES	FD40-24	FD40-12
Tensión Vdc	24	12
RPM	6.000	6.000
m ³ /h	11	11
Watts	1.2	0.9
DB	25.5	25.5
Conexión	cable	cable
Peso gramos	20	20

VENTILADORES AXIALES

60 x 60 x 25 mm Tensión continua (BRUSHLESS)

ESPECIFICACIONES	FD60-24	FD60-12
Tensión Vdc	24	12
RPM	4.500	4.500
m ³ /h	37	37
Watts	2.6	2.2
DB	34	34
Conexión	cable	cable
Peso gramos	60	60

80 x 80 x 25 mm Tensión continua (BRUSHLESS)

ESPECIFICACIONES	FD8025-24	FD8025-12
Tensión Vdc	24	12
RPM	3.000	3.000
m ³ /h	63	63
Watts	3.8	2.6
DB	33	33
Conexión	cable	cable
Peso gramos	120	120

13/05/02

119 x 119 x 25 mm Tensión continua (BRUSHLESS)

ESPECIFICACIONES	FM119-24	FM119-12
Tensión Vdc	24	12
RPM	3.000	3.000
m ³ /h	143	143
Watts	6	5
DB	44	44
Conexión	cable	cable
Peso gramos	250	250

VENTILADORES AXIALES

119 x 119 x 38 mm Tensión continua (BRUSHLESS)

ESPECIFICACIONES	FD119-24	FD119-12
Tensión Vdc	24	12
RPM	2.750	2.750
m ³ /h	178	178
Watts	6	5.9
DB	41	41
Conexión	cable	cable
Peso gramos	323	323

80 x 80 x 38 mm Tensión alterna

ESPECIFICACIONES	F80-230	FR80-230
Frecuencia (Hz)	50/60	50/60
Tensión Vac	220/240	220/240
RPM	2300/2750	2400/2850
m ³ /h	39/51	41/53
Watts	14/13.5	14/13.5
Rodamiento	sinterizado	bolas
DB	31/35	32/36.5
Conexión	cable	cable
Peso gramos	340	340

VENTILADORES AXIALES

80 x 80 x 25 mm Tensión alterna

	Inch-H	igO		AIR FL	ow	
6-				= 60Hz - 50Hz	200	
9 6-	020			ШП	11	
On the multiplication of the state of the st				Ш		
- W						
[8	0.10	\mathcal{N}		1111		
7-		\mathcal{N}	VIII.	Ш		
2 1-				Ш	1	
	ЩЩ	ШЩ	ALLIA LI	40	Ш	(1)
		10 70	30	40	M OF	VI

ESPECIFICACIONES	F8025-230
Frecuencia (Hz)	50/60
Tensión Vac	220/240
RPM	2300/2750
m ³ /h	39/51
Watts	14/13.5
Rodamiento	sinterizado
DB	29/33
Conexión	cable
Peso gramos	260

119 x 119 x 38 mm Tensión alterna

ESPECIFICACIONES	F119-230	FR119-230	F119-115
Frecuencia (Hz)	50/60	50/60	50/60
Tensión Vac	220/240	220/240	115
RPM	2550/2900	2750/3050	2550/2900
m ³ /h	144/178	148/182	144/178
Watts	20/19	20/19	20/18
Rodamiento	sinterizado	bolas	sinterizado
DB	43/48	45/50	43/48
Conexión	faston	faston	faston
Peso gramos	550	550	550

VENTILADORES AXIALES

119 x 119 x 25 mm Tensión alterna

ESPECIFICACIONES	F11925-230	FR119-115
Frecuencia (Hz)	50/60	50/60
Tensión Vac	220/240	220/240
RPM	2000/2200	2150/2300
m ³ /h	108/130	111/132
Watts	19/18	19/18
Rodamiento	sinterizado	bolas
DB	43/45	44/46
Conexión	faston	faston
Peso gramos	330	330

REJILLAS METALICAS PROTECTORAS PARA VENTILADORES

Diseñadas para evitar contactos accidentales con las aspas de los ventiladores. Fabricadas con hilo metálico o plástico. Cumplen con las normas UL, CSA y VDE.

Modelo metálico B5 (119x119)

Modelo plástico D1 (119x119)

¡Error!Imposible crear objetos modificando códigos de campo.

Modelo metálico B1 (80x80)

Otros modelos bajo demanda

ADAPTADOR VENTILADOR V1

Permite el acoplamiento de los ventiladores F119 sobre el radiador P3 y P1, evitando así el molesto efecto "sirena" por proximidad de las aspas a las aletas del radiador.

AISLADORES

Estos aisladores separadores de alta resistencia mecánica y elevada tensión de aislamiento, pueden utilizarse como soporte mecánico aislador para el montaje de radiadores y como bornes de conexión eléctrica.

CUADRO DE CARACTERISTICAS

Referencia	Rosca M	Terminales	H mm	SW mm	D mm	S mm	P mm	Tensión nominal Vac	Tensión nominal Vdc	Tracción kg	Compresión kg	Flexión kg	Torsión Nm
2033	M6	hembra- hembra	20	19	15	21	6	750	900	300		200	10
2819	M5	hembra- hembra	25	22	18	24	7	1000	1200	400		180	6
2827	M6	hembra- hembra	25	22	18	24	7	1000	1200	400		180	10
3049	M6	hembra- hembra	30	30	26	33	9	1200	1500	600		300	10
3056	M8	hembra- hembra	30	30	26	33	9	1200	1500	600		300	25
3569	M10	hembra- hembra	35	32	29	35	10	1400	1600	900		500	50
SIL 3 M-H	M6	macho- hembra						750		300	4100	110	
SIL 3 M-M	M6	hembra- hembra						750		300	4100	110	
SIL 6	M10	hembra- hembra						1500		780	3700	270	
PLM6	M6	macho						750		400	3000	200	
PLM8	M8	macho						750		500	3200	230	

SOPORTES Y ZOCALOS

Esta serie de soportes y zócalos aislantes permiten la fijación mecánica y la conexión eléctrica de los radiadores K3,K5 y SA5, sin la necesidad de mecanizados especiales.

Las partes metálicas son de latón y están embutidas dentro del material aislante que es una poliamida auto-extinguible reforzada con fibra de vidrio.

CASQUILLOS

Estos casquillos roscados interior y exteriormente, sirven para la adaptación de roscas entre un semiconductor y un radiador previamente mecanizado. Su principal aplicación se encuentra en el mantenimiento, cuando se deben intercambiar semiconductores con características mecánicas distintas.

Están construidos en latón con un acabado zincado blanco.

Los tipos existentes son:

Rosca interna	Rosca externa
M12	M16
M16	3/4"UNF
M16	M24
3/4"UNF	M24

PLETINAS DE CONEXION

Estas pletinas de conexión fabricadas en cobre estañado o en aluminio, están especialmente diseñadas para facilitar el conexionado de los diferentes montajes, estén realizados con módulos SEMIPACK o con elementos discretos (rosca o press-pack).

Dependiendo del montaje se dispone de una amplia gama de pletinas.

SILICONAS

GRASA DE SILICONA SKS

Está formada por aceites de silicona y óxidos metálicos. Presenta la particularidad de poseer una conductividad térmica elevada y unas buenas propiedades dieléctricas.

Se recomienda su uso en las superficies de contacto en que se debe transmitir calor.

Ventajas										
Características	1. Propiedades físicas									
	Color	blanco								
	Peso específico a 25°C	2.2								
	Evaporación después de 24h a 200°C	< 1.5%								
	2. Propiedades térmicas									
	Temperatura de funcionamiento continuo máxima	+200° C								
	Temperatura de funcionamiento continuo mínima	-40° C								
	Conductividad térmica a 25°C 4.1 W/mK									
	3. Propiedades dieléctricas									
	Rigidez dieléctrica	15 kV/mm								
	Cte. dieléctrica a 1 kHz 3.5									
	Resistividad	$>1*10^{13} \Omega*cm$								
Procedimiento de aplicación	Se recomienda aplicar la pasta SKS sobre superficies limpias y secas									
	(desengrasar si es necesario).									
	La pasta SKS se puede aplicar con una espátula o m	ejor con un rodillo								
	de goma previamente empapado en ella.									
	Nota: debido a la alta densidad del producto, puede existir una míni									
	exudación. En este caso simplemente es necesario mezclarla con ur									
	espátula, sin temer ninguna alteración del producto.									
Embalajes	En botes de 20, 50 y 500gramos.									
Almacenaje	Durante máximo 24 meses a temperaturas entre +2°C	C y +50°C.								

GRASA TERMICA SKG

Esta es una grasa exenta de siliconas, indicada para la evacuación térmica y la protección de las superficies de radiadores de aluminio. Dicha grasa está recomendada para los semiconductores de tipo press-pack, y en general en todos aquellos casos donde no sea posible la utilización de siliconas. Ver Data-Book de SEMIKRON.

MODULOS RC PARA PROTECCION DE SEMICONDUCTORES

El SKRC 440 es una red limitadora RC económica para aplicaciones de hasta 500Arms de corriente de carga. Este módulo se ha diseñado para limitar los tiempos de subida de los impulsos de tensión que puedan exceder el dV/dt nominal del tiristor, pero al mismo tiempo el módulo ayuda en la puesta en conducción de los tiristores utilizados en circuitos inductivos con bajos niveles de corrientes de carga.

El módulo SKRC 440 puede también opcionalmente suministrarse incorporando un varistor MOV (Metal Oxyde Varistor), formando una excelente unidad de protección para semiconductores contra sobretensiones de elevada energía.

El encapsulado en que se han realizado permite el montaje de estos módulos directamente al lado de los SEMIPACKS, realizándose las conexiones eléctricas con terminales faston de 2.8mm.

-40°C a +50°C

ESPECIFICACIONES

Temperatura de trabajo

Limitación dV/dt protege tiristores a partir de 100V/μs

Tensión nominal 440Vrms +10%

Frecuencia nominal 50/60Hz MOV(opcional) 22-100 Joules

Peso 0.06kg

El tipo SKRC 660 y 660-2 se puede conectar a redes de hasta 660V.

MONTAJES RECTIFICADORES "SEMISTACK"

Con los diodos y tiristores de potencia se pueden realizar distintos tipos de convertidores. Los más utilizados, por su simplicidad y robustez, son aquellos en que la conmutación de los tiristores se realiza de forma natural, por la propia tensión alterna de alimentación.

Son posibles dos tipos de convertidores con conmutación natural: los convertidores alterna-continua conocidos como rectificadores, y los convertidores alterna-alterna también llamados reguladores.

Los rectificadores monofásicos pueden ser con transformador de toma media (M2) o con un montaje en puente (B2). Estos últimos pueden ser semicontrolados si no es necesario invertir la polaridad de la tensión a la salida del puente, o totalmente controlados si es necesario trabajar en dos cuadrantes.

Los rectificadores monofásicos se utilizan en la alimentación de motores de corriente continua, en cargadores de baterías y otras aplicaciones que no superen potencias de unos 10 kW.

Los rectificadores trifásicos pueden estar montados en estrella (M3), puente (86), estrella con toma media (M6) y doble estrella (M3.2). El montaje más usual es el puente, pues no requiere transformador de alimentación. Los demás montajes tienen su origen en los antiguos rectificadores de vapor de mercurio con el cátodo común.

Los montajes M6 y M3.2 se utilizan en aplicaciones electroquímicas, donde se requieren muy altas corrientes a bajas tensiones.

El puente trifásico puede ser semicontrolado o totalmente controlado, según sea necesario el trabajo en uno o dos cuadrantes. de todas maneras es preferible utilizar siempre el montaje totalmente controlado, pues, aunque su precio es mayor, el rizado en la tensión de salida es mucho menor.

No ocurre lo mismo con el puente monofásico: en este caso es el montaje semicontrolado el que presenta menor rizado en la tensión de salida y un factor de potencia más elevado. Siempre que se utiliza un montaje semicontrolado es necesario disponer de un diodo de vía libre en paralelo con la carga, si ésta es inductiva.

El segundo tipo de convertidor de conmutación natural es el regulador de alterna, que puede ser monofásico (W1) o trifásico (W3). Estos convertidores se utilizan en control de temperatura e iluminación, en soldadura eléctrica y en el control de velocidad de motores universales y de inducción.

Para el cálculo del radiador es necesario, como hemos visto anteriormente, conocer la potencia disipada por cada semiconductor. Esta potencia es función de las características dadas por el fabricante del semiconductor y de las corrientes medias y eficaces que lo atraviesan. El valor de estas corrientes depende del valor máximo de la corriente por el semiconductor y del ángulo de conducción. Para cada uno de los montajes anteriores se especifica en la siguiente tabla el valor de dichas corrientes en función de la corriente continua máxima de salida si se trata de rectificadores, y en función del valor eficaz máximo que circula por la carga en el caso de reguladores.

CORRIENTES MEDIAS I_{AV} y EFICACES I_{RMS} POR CADA SEMICONDUCTOR, PARA LOS DISTINTOS MONTAJES

	I _{AV}	I _{RMS}		I _{AV}	I _{RMS}
M2, B2	$\frac{I_D}{2}$	$\frac{I_D}{\sqrt{2}}$	M3,2	$\frac{I_D}{6}$	$\frac{I_D}{2 \times \sqrt{3}}$
M3, B6	$\frac{I_D}{3}$	$\frac{I_D}{\sqrt{3}}$	W1	$\frac{\sqrt{2} \times I_{RMS}}{\Pi}$	$\frac{\sqrt{2} \times I_{RMS}}{2}$
М6	$\frac{I_D}{6}$	$\frac{I_D}{\sqrt{6}}$	W3	$\frac{\sqrt{2} \times I_{RMS}}{\Pi}$	$\frac{\sqrt{2} \times I_{RMS}}{2}$

Id: Intensidad máxima, calculada a temperatura de unión máxima.

Idn: Intensidad nominal (Id x 0.8)

			B2				В6							
	ORES / D SEMIPAC			- H	-			14	 					
			Tamb	=45°C		=35°C =6m/s	Tamb	=45°C	Tamb: Vaire		Tamb	=45°C		=35°C =6m/s
TRISTOR	DICCC	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A
SKKT 15 SKKH 15	SKKD 15	LE10/100 M3/100	15 12	12 10	25	20	16 17	13 13	29	23				
SKKT 20	SKKD 26	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	20 28 27 30 34	16 22 22 22 24 27	31 40 45 46 46	24 32 36 37 37	22 31 37 40 39	17 25 :: 30 32 31	37 50 56 57 55	29 40 45 46 44				
SKKT 27 SKKH 27	SKKD 26	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	24 34 34 37 43	19 27 27 30 34	38 51 58 60 59	30 40 46 48 47	25 37 44 48 48	20 30 35 38 38	45 62 71 73 70	36 49 57 58 56		÷		
SKKT 42 SKKH 42	SKKD 46	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	27 41 43 51 54	21 33 34 41 43	49 69 81 86 82	39 55 65 69 65	28 44 55 61 60	23 35 44 49 48	55 83 99 102 96	44 66 79 82 77				
SKKT 57 SKKH 57	SKKD81	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	30 47 49 59 63	24 37 39 47 50	56 81 96 101 96	44 64 77 81 77	32 50 63 70 69	25 40 50 56 55	63 96 116 119	50 76 93 95 89				
SKKT 72 SKKH 72	SKKD 81	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	32 50 53 64 68	25 40 42 51 55	60 90 109 116 109	48 72 87 93 87	33 53 67 75 74	26 42 54 60 59	67 105 130 134 123	53 84 104 107 98			i	
SKKT 92 SKKH 92	SKKD 100	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	34 55 58 72 77	27 44 46 58 61	68 105 130 140 128	54 84 104 112 102	35 58 74 84 83	28 46 59 67 66	73 121 153 158 144	58 96 122 126 115				
SKKT 106 SKKH 106	SKKD 100	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	36 58 62 76 81	29 46 50 61 65	71 110 136 146 133	56 88 109 117 107	37 61 78 88 87	30 49 62 70 70	77 127 159 165 150	61 101 127 132 120				
SKKT 131 SKKH 131	SKKD 201	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	59 61 87 99 82 99 76	47 49 70 79 66 79 61	126 151 159 192 187 210 298	100 120 127 153 150 168 238	61 63 91 105 93 119 80	49 50 73 84 74 95 64	139 172 171 211 220 260 313	111 137 137 169 176 208 250				
SKKT 132 SKKH 132	SKKD 162	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	55 56 80 92 76 92 70	44 45 64 73 61 74 56	117 143 145 175 171 191 252	93 114 116 140 137 153 202	57 59 85 98 86 111 75	46 47 68 78 69 89 60	130 160 160 196 203 239 266	104 128 128 156 162 191 213				

			B2				В6							
	ORES / D SEMIPAC			- H	-			14	 					
			Tamb	=45°C		=35°C =6m/s	Tamb	=45°C	Tamb: Vaire		Tamb	=45°C		=35°C =6m/s
TRISTOR	DICCC	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A
SKKT 15 SKKH 15	SKKD 15	LE10/100 M3/100	15 12	12 10	25	20	16 17	13 13	29	23				
SKKT 20	SKKD 26	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	20 28 27 30 34	16 22 22 22 24 27	31 40 45 46 46	24 32 36 37 37	22 31 37 40 39	17 25 :: 30 32 31	37 50 56 57 55	29 40 45 46 44				
SKKT 27 SKKH 27	SKKD 26	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	24 34 34 37 43	19 27 27 30 34	38 51 58 60 59	30 40 46 48 47	25 37 44 48 48	20 30 35 38 38	45 62 71 73 70	36 49 57 58 56		÷		
SKKT 42 SKKH 42	SKKD 46	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	27 41 43 51 54	21 33 34 41 43	49 69 81 86 82	39 55 65 69 65	28 44 55 61 60	23 35 44 49 48	55 83 99 102 96	44 66 79 82 77				
SKKT 57 SKKH 57	SKKD81	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	30 47 49 59 63	24 37 39 47 50	56 81 96 101 96	44 64 77 81 77	32 50 63 70 69	25 40 50 56 55	63 96 116 119	50 76 93 95 89				
SKKT 72 SKKH 72	SKKD 81	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	32 50 53 64 68	25 40 42 51 55	60 90 109 116 109	48 72 87 93 87	33 53 67 75 74	26 42 54 60 59	67 105 130 134 123	53 84 104 107 98			i	
SKKT 92 SKKH 92	SKKD 100	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	34 55 58 72 77	27 44 46 58 61	68 105 130 140 128	54 84 104 112 102	35 58 74 84 83	28 46 59 67 66	73 121 153 158 144	58 96 122 126 115				
SKKT 106 SKKH 106	SKKD 100	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	36 58 62 76 81	29 46 50 61 65	71 110 136 146 133	56 88 109 117 107	37 61 78 88 87	30 49 62 70 70	77 127 159 165 150	61 101 127 132 120				
SKKT 131 SKKH 131	SKKD 201	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	59 61 87 99 82 99 76	47 49 70 79 66 79 61	126 151 159 192 187 210 298	100 120 127 153 150 168 238	61 63 91 105 93 119 80	49 50 73 84 74 95 64	139 172 171 211 220 260 313	111 137 137 169 176 208 250				
SKKT 132 SKKH 132	SKKD 162	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	55 56 80 92 76 92 70	44 45 64 73 61 74 56	117 143 145 175 171 191 252	93 114 116 140 137 153 202	57 59 85 98 86 111 75	46 47 68 78 69 89 60	130 160 160 196 203 239 266	104 128 128 156 162 191 213				

							W1				W3			
TIRISTO	RES / D SEMIPA	ı						***			**	- +	*	*
			Tamb	=45°C		=35°C =6m/s	Tamb:	=45°C	Tamb= Vaire=		Tamb	=45°C	Tamb=	
TRISTOR	DIODO	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A
SKKT 15 SKKH 15		LE10/100 M3/100					23 24	18 19			3x12 3x13	3x10 3x10		
SKKT 20		LE10/150 PE16/200 P3/120 P3/180 SEU200/200					31 39 31 35 44	25 31 25 28 35	45 52 54 56 54	36 41 43 45 43	3x17 3x24 3x26 3x28 3x31	3x13 3x19 3x21 3x22 3x24	3x37 3x39 3x44 3x48 3x44	3x29 3x31 3x35 3x38 3x35
SKKT 27 SKKH 27		LE10/150 PE16/200 P3/120 P3/180 SEU200/200				: .	38 49 38 43 57	30 39 30 34 45	58 67 72 73 71	46 53 58 58 57	3x20 3x29 3x32 3x36 3x37	3x16 3x23 3x26 3x29 3x30	3x45 3x49 3x56 3x61 3x55	3x36 3x39 3x45 3x49 3x44
SKKT 42 SKKH 42		LE10/150 PE16/200 P3/120 P3/180 SEU200/200					46 64 47 56 78	37 51 38 45 62	82 97 106 109 105	65 77 85 87 84	3x21 3x34 3x39 3x45 3x46	3x17 3x27 3x31 3x36 3x37	3x58 3x65 3x76 3x86 3x74	3x46 3x52 3x61 3x69 3x69
SKKT 57 SKKH 57		LE10/150 PE16/200 P3/120 P3/180 SEU200/200					53 75 54 95 92	43 60 43 76 73	97 115 126 133 124	77 92 101 106 99	3x24 3x38 3x45 3x57 3x53	3x19 3x31 3x36 3x45 3x42	3x67 3x75 3x88 3x98 3x86	3x53 3x60 3x70 3x79 3x69
SKKT 72 SKKH 72		LE10/150 PE16/200 P3/120 P3/180 SEU200/200					57 82 82 95 104	46 66 66 76 83	111 130 148 154 146	88 104 118 123 117	3x25 3x40 3x48 3x55 3x57	3x20 3x32 3x38 3x44 3x45	3x73 3x82 3x98 3x114 3x95	3x58 3x65 3x78 3x91 3x76
SKKT 92 SKKH 92		LE10/150 PE16/200 P3/120 P3/180 SEU200/200					63 94 99 110 122	50 75 79 88 98	132 160 182 190 179	105 128 146 152 143	3x26 3x43 3x53 3x65 3x65	3x21 3x35 3x42 3x52 3x50	3x82 3x93 3x114 3x135 3x110	3x65 3x74 3x91 3x108 3x88
SKKT 106 SKKH 106		LE10/150 PE16/200 P3/120 P3/180 SEU200/200					67 99 106 118 128	53 79 85 94 103	138 167 190 198 187	110 133 152 158 149	3x28 3x46 3x56 3x68 3x66	3x22 3x37 3x45 3x54 3x53	3x86 3x97 3x120 3x141 3x115	3x68 3x77 3x96 3x113 3x92
SKKT 131 SKKH 131		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200					110 113 153 170 142 157 138	88 90 122 134 114 126 110	212 248 246 282 270 294 355	169 198 197 226 216 235 284	3x46 3x47 3x69 3x79 3x64 3x77 3x60	3x36 3x38 3x55 3x63 3x51 3x62 3x48	3x107 3x135 3x131 3x162 3x171 3x206 3x309	3x85 3x108 3x105 3x130 3x137 3x165 3x247
SKKT 132 SKKH 132		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200					102 104 139 155 129 143 127	81 83 112 124 103 114 102	193 225 222 253 242 262 307	154 180 178 202 194 210 246	3x43 3x44 3x64 3x74 3x60 3x71 3x56	3x34 3x35 3x51 3x59 3x48 3x57 3x45	3x100 3x125 3x121 3x149 3x160 3x188 3x263	3x80 3x100 3x97 3x120 3x128 3x150 3x210

	ORES / D SEMIPAC		B2	[**	7		B6		 					
			Tamb	=45°C		=35°C =6m/s	Tamb	=45°C	Tamb Vaire	=35°C =6m/s	Tamb	=45°C		=35°C =6m/s
TRISTOR	DIODO	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	Ы А	ldn A
SKKT 161 SKKH 161	SKKD 201	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	60 62 90 103 88 103 78	48 50 72 82 70 82 62	132 164 166 202 194 224 295	105 131 133 162 155 179 236	62 64 94 108 97 127 127	50 51 75 87 78 102 102	146 181 180 224 233 278 420	116 144 144 179 186 222 336				
SKKT 162 SKKH 162	SKKD 162	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	64 65 93 106 90 105 81	51 52 74 84 72 84 65	133 163 166 199 193 220 259	106 130 133 159 154 176 207	66 68 98 112 101 130	53 54 78 90 81 104 104	149 183 182 222 230 270 373	119 146 145 177 184 216 298				
SKKT 210 SKKH 210	SKKD 201	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	66 68 101 116 99 117 87	53 55 80 93 79 94 70	153 195 196 244 242 286 390	122 156 156 195 194 229 312	68 70 104 121 109 144 144	54 56 83 97 87 115	166 211 209 265 279 339 552	132 168 167 212 223 271 442				
SKKT 213	SKKD 201	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	62 65 93 107 92 108 82	49 52 74 85 74 86 66	138 172 173 211 210 245 324	110 137 138 168 168 168 196 259	65 67 97 113 102 133 133	52 53 77 90 82 106 106	152 190 188 234 246 294 457	121 152 150 187 197 235 366				
SKKT 250 SKKH 250	SKKD 260	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	69 71 105 121 103 123 283	55 57 84 97 82 96 227	161 205 205 257 256 304 450	128 164 164 206 205 243 360	70 72 109 127 113 150 314	56 58 87 101 90 120 252	174 222 219 280 295 360 526	139 177 175 224 236 288 421				
SKKT 253	SKKD 260	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	70 72 104 118 102 120 91	56 57 83 94 82 96 73	153 191 191 233 232 270 357	122 152 152 186 186 216 286	72 74 108 125 113 147 147	57 59 86 100 90 118 118	168 210 208 259 271 324 503	134 168 166 207 217 259 402				

					•		W1				W3			
TIRISTO	RES / D SEMIPAC							***			 - 	- <u> </u>	* *	*
			Tamb	=45°C		=35°C ≔6m/s	Tamb	=45°C		=35°C =6m/s	Tamb	=45°C		=35°C =6m/s
TRASTOR	DIODO	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	Iq A	ldn A	ld A	ldn A	ld A	ldn A
SKKT 161 SKKH 161		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200					115 118 160 179 149 165 145	92 94 128 143 119 132 116	225 266 263 303 290 317 386	180 212 211 243 232 254 309	3x46 3x48 3x71 3x82 3x66 3x79 3x62	3x37 3x38 3x56 3x65 3x65 3x63 3x63 3x60	3x111 3x141 3x137 3x171 3x181 3x219 3x334	3x88 3x112 3x109 3x136 3x145 3x175 3x267
SKKT 162 SKKH 162		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200			:		117 120 159 176 148 164 145	94 96 127 141 118 131	219 254 252 285 273 296 346	175 203 201 228 218 237 277	3x50 3x51 3x74 3x85 3x69 3x82 3x65	3x40 3x41 3x59 3x68 3x55 3x66 3x52	3x114 3x143 3x139 3x170 3x179 3x213 3x296	3x91 3x114 3x111 3x136 3x143 3x170 3x237
SKKT 210 SKKH 210		PE16/200 PE16/300 SEU/200/200 SEU/200/300 P3/180 P3/300 P16/200				X	131 134 189 213 174 196 168	105 108 151 171 139 157	275 333 328 388 368 409 522	220 266 263 310 294 327 418	3x51 3x52 3x78 3x91 3x82 3x91 3x68	3x40 3x42 3x62 3x73 3x66 3x73 3x54	3x126 3x163 3x157 3x201 3x214 3x265 3x436	3x100 3x130 3x126 3x161 3x171 3x212 3x349
SKKT 213		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200		·		:	121 123 168 189 156 175 152	96 98 134 151 125 140 122	238 283 279 325 310 342 425	190 226 223 260 248 274 340	3x49 3x50 3x74 3x85 3X77 3X85 3X65	3x39 3x40 3x59 3x68 3x62 3x68 3x52	3x116 3x148 3x142 3x178 3X190 3X232 3X343	3x92 3x118 3x113 3x142 3X152 3X186 3X274
SKKT 250 SKKH 250		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200				معمد موجد معرب وزير راجع وزير المعالمة والمعالمة والمعال	137 140 198 225 182 206 177	109 112 159 180 146 165 142	291 354 349 414 392 437 562	232 283 279 331 314 350 450	3x52 3x54 3x81 3x95 3X85 3X95 3X71	3x42 3x43 3x65 3x76 3X68 3X76 3X57	3x131 3x171 3x165 3x211 3X226 3X282 3X467	3x104 3x136 3x132 3x169 3X181 3X226 3X374
SKKT 253		PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200		:			134 137 187 209 173 193 169	107 109 149 167 138 154 135	263 313 308 358 342 377 468	210 250 246 286 274 302 374	3x54 3x56 3x82 3x95 3X85 3X95 3X72	3x43 3x44 3x65 3x76 3X68 3X76 3X58	3x129 3x164 3x158 3x197 3X210 3X255 3X399	3x103 3x131 3x126 3x157 3X168 3X204 3X319

			M2 B2 I			M3 B6				M6				
	ORES / D scretos re		¥	*		7		* *	#	 - 4- 4- 4-	2	* * * * 	* *	
			Tamb=45°C Tamb=35°C Vaire=6m/s		Tamb	=45°C	Tamb Vaire	=35°C =6m/s	Tamb	=45°C	Tamb: Vaire			
TIRISTOR	DIODO	RADIADOR	td A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A
SKT 10	\$KN 26	K5/60 K3/80	20 24	16 19			28 32	22 26			46 52	37 42		
SKT 16	SKN 26	K5/60 K3/80	23 27	18 21			31 36	24 29			50 58	40 46		
SKT 24	SKN 26	K5/60 K3/80 PE2/90	26 31 40	21 25 32	58	46	36 43 57	29 35 46	80	64	61 72 90	49 58 72	123	98
SKT 40	SKN 70	K5/60 K3/80 PE2/90	29 36 52	23 29 42	75	60	40 49 74	32 40 59	105	84	68 82 114	55 66 91	157	126
SKT 55	SKN 100	K5/60 K3/80 PE2/90	38 48 81	30 38 65	120	96	53 67 113	43 54 90	165	132	93 115 190	74 92 152	270	216
SKT 80	SKN 100	K3/80 PE2/90 PE11/130 P1/150 PE4/200	41 79 107 112 141	33 63 86 90 113	122 146 173 187	98 117 138 150	58 125 150 156 191	46 100 120 125 153	170 202 237 249	136 162 190 199	103 187 242 251 308	83 150 194 201 247	271 293 363 394	217 234 290 316
SKT 100	SKN 130	PE2/90 PE11/130 P1/150 PE4/200	97 133 139 176	78 106 111 141	152 183 217 234	122 146 174 187	137 187 195 238	110 150 156 191	212 253 297 313	170 202 238 250	230 303 315 388	184 242 252 311	341 369 458 499	273 295 366 399
SKT 130	SKN 240	PE2/90 PE11/130 P1/150 PE4/200	99 140 148 196	79 112 118 157	163 206 260 282	130 165 208 226	142 200 210 269	114 160 168 215	230 287 358 379	184 230 286 303	244 330 345 443	195 264 276 354	375 424 555 607	300 339 444 486
SKT 160	SKN 240	PE2/90 PE11/130 P1/150 PE4/200	120 169 179 237	96 135 143 189	196 247 314 340	157 198 251 272	171 240 253 324	137 192 202 259	277 347 432 457	222 278 346 365	294 399 415 534	235 319 332 427	452 563 670 733	362 442 536 587
SKT 250	SKN 320	PE11/130 P1/150 PE4/200	214 232 306	171 186 245	329 444 478	263 355 382	311 332 428	249 266 343	465 617 655	372 494 524	524 573 735	419 458 588	777 1000 1086	622 800 869
SKT 300	SKN 320	PE11/130 P1/150 PE4/200	250 273 364	200 218 291	393 545 587	314 436 470	369 396 512	295 317 409	565 774 807	452 619 645	611 670 882	489 536 706	919 1201 1340	735 961 1072

			M3.2				W1		·		W3			
	ORES / D scretos r		# ************************************	* * * :				**	-		*	- J	*	*
			Tamb=45°C Tamb=35°C Vaire=6m/s		Tamb	=45°C		=35°C	Tamb	=45°C	Tamb	,		
TIRISTOR	DICCCC	RADIADOR	ld A	ldn A	ld A	=om⊮s Id⊓ A	ld A	ldn A	Vaire: Id A	Idn A	ld A	ldn A	Vaire: Id A	ldn A
SKT 10	SKN 26	K5/60 K3/80	56 64	45 52			22 25	17 20			3x22 3x25	3x17 3x20		
SK⊤16	SKN 26	K5/60 K3/80	61 72	49 58			24 28	19 23		-	3x24 3x28	3x19 3x23		
SKT24	SKN 26	K5/60 K3/80 PE2/90	73 87 114	58 69 91	161	129	30 33 45	24 27 36	64	51	3x30 3x33 3x45	3x24 3x27 3x36	3x64	3x51
SKT 40	SKN 70	K5/60 K3/80 PE2/90	81 99 146	65 79 117	210	168	31 38 57	25 31 46	84	67	3x31 3x38 3x57	3x25 3x31 3x46	3x84	3x67
SKT 55	SKN 100	K5/60 K3/80 PE2/90	106 134 226	85 107 181	330	.264	41 51 90	32 41 72	134	107	3x41 3x51 3x90	3x32 3x41 3x72	3x134	3x107
SKT80	SKN 100	K3/80 PE2/90 PE11/130 P1/150 PE4/200	116 225 301 313 382	93 180 241 250 305	341 405 473 499	273 324 378 399	44 87 119 124 149	35 70 95 99 119	135 162 192 196	108 130 154 157	3x44 3x87 3x119 3x124 3x149	3x35 3x70 3x95 3x99 3x119	3x135 3x162 3x192 3x196	3x108 3x130 3x154 3x157
SKT 100	SKN 130	PE2/90 PE11/130 P1/150 PE4/200	275 375 390 477	220 300 312 381	425 506 594 626	340 405 475 501	107 148 154 186	86 114 123 149	169 203 241 245	135 162 193 196	3x107 3x143 3x154 3x186	3x86 3x114 3x123 3x149	3x169 3x203 3x241 3x245	3x135 3x162 3x193 3x196
SKT 130	SKN 240	PE2/90 PE11/130 P1/150 PE4/200	285 379 420 537	228 319 336 430	460 575 716 758	368 460 573 606	110 157 165 208	88 126 132 167	181 229 289 296	145 183 231 237	3x110 3x157 3x165 3x208	3x88 3x126 3x132 3x167	3x181 3x229 3x289 3x296	3x145 3x183 3x231 3x237
SKT 160	SKN 240	PE2/90 PE11/130 P1/150 PE4/200	343 481 506	274 385 405	554 694 864	443 555 691	133 189 198	106 151 158	218 276 349	174 221 279	3x133 3x189 3x196	3x106 3x151 3x158	3x218 3x276 3x349	3x174 3x221 3x279
SKT 250	SKN 320	PE11/130 P1/150 PE4/200	601 665 857	481 532 685	930 1235 1311	744 988 1049	233 257 328	186 206 263	365 493 508	292 394 406	3×233 3×257 3×328	3x186 3x206 3x263	3x365 3x493 3x508	3x292 3x394 3x406
SKT 300	SKN 320	PE11/130 P1/150 PE4/200	712 792 1024	570 634 819	1131 1548 1614	905 1238 1291	272 303 392	186 242 314	437 605 625	350 484 500	3×272 3×303 3×392	3x218 3x242 3x314	3x437 3x605 3x625	3x350 3x484 3x500

			M2 B2			М3		B6		M6				
TIRISTO	ORES / D presspac		\ \mathbf{T}	. +		14	Į Į	* *			2	* * * * * * * * * * * * * * * * * * *		
			Tamb=45°C Tamb=35°C Vaire=6rn/s			Tamb	=45°C	ı	=35°C =6m/s	Tamb	=45°C		=35°C =6m/s	
TRISTOR	DXDDO	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	ldn A
SKT 240	SKN 501	PE8/180 IL200/200	324 354	259 283	568 556	454 445	454 477	298 381	775 732	506 586	711 767	569 613	1140 1142	912 913
SKT 340	SKN 501	PE8/180 IL200/200	361 392	289 313	654 631	523 505	509 536	407 429	895 843	716 675	817 885	654 708	1343 1343	1074 1074
SKT 491	SKN 501	PE8/180 IL200/200	395 425	316 340	795 745	636 596	555 590	444 472	1090 1005	872 804	925 994	740 795	1690 1621	1352 1297
SKT 551	SKN 501	PE8/180 1L200/200	475 514	380 411	972 908	778 726	674 728	539 582	1335 1251	1068 1000	1125 1210	900 968	2080 1965	1664 1572
SKT 520	SKN 870	PE8/180 IL200/200	400 437	320 349	875 812	700 649	572 624	4 5 8 499	1215 1131	972 904	976 1052	780 841	1900 1786	1520 1428
SKT 600	SKN 870	PE8/180 IL200/200	475 516	380 413	1040 952	832 7 61	682 724	546 579	1440 1 29 7	1152 1038	1157 1246	926 997	2250 2129	1800 1703
SKT 760	SKN 870	PE8/180 IL200/200 SA17/200 SA17/300	528 570 731 783	422 456 585 626	1165 1061 1445 1576	932 849 1156 1261	756 804 1019 1088	605 643 816 870	1620 1453 1950 2117	1296 1163 1560 1694	1295 1395 1735 1842	1036 1116 1388 1473	2540 2402 3148 3396	2032 1922 2518 2717
SKT 1000	SKN 1500	PE8/180 IL200/200 SA17/200 SA17/300	500 530 705 764	400 424 564 611	1250 1086 1610 1809	1000 869 1288 1447	720 761 1003 1083	576 609 802 866	1750 1517 2206 2465	1400 1213 1765 1972	1280 1369 1768 1897	1024 1095 1414 1518	2830 2587 3650 4040	2264 2070 2920 3232
SKT 1200	SKN 1500	PE8/180 IL200/200 SA17/200 SA17/300	600 632 840 909	480 506 672 727	1480 1290 1907 2140	1184 1032 1525 1712	870 906 1191 1286	696 725 953 1028	2060 1797 2606 2908	1648 1437 2085 2327	1534 1623 2092 2244	1227 1299 1673 1795	3340 3052 4294 4749	2672 2442 3435 3799
SKT 1800	SKN 2000	SA17/200 SA17/300	1006 1066	804 852	2294 2734	1835 2187	1463 1549	11 7 0 1239	3259 3859	2604 3087	2587 2727	2069 2181	5402 6308	4321 5046
SKT 2500	SKN 3000	SA17/200 SA17/300	1048 1117	838 893	2603 3197	2082 2557	1528 1625	1222 1300	3686 4483	2948 3586	2751 2912	2200 2329	6161 7351	4928 5880
														:

			M3.2				W1				W3			
TIRISTO	RES / Di presspac		 	2 * * * ·	*			**	-		*	- <u> </u>	¥ *	}
*			Tamb	=45°C		=35°C	Tamb	=45°C	Tamba Vaire		Tamb	=45°C	Tamb	=35°C =6m/s
TRISTOR	DIODO	RADIADOR	ld A	ldn A	ld A	=6m/s Idn A	ld A	ldn A	ld A	Idn A	ld A	ldn A	ld A	Idn A
SKT 240	SKN 501	PE8/180 IL200/200	908 953	726 763	1550 1 46 5	1240 1172	359 373	287 298	630 578	504 463	3x359 3x373	3x287 3x298	3x630 3x578	3x504 3x463
SKT 340	SKN 501	PE8/180 IL200/200	1019 1072	815 858	1790 1686	1432 1349	400 416	320 333	725 661	580 529	3x400 3x416	3x320 3x333	3x725 3x661	3x580 3x529
SKT 491	SKN 501	PE8/180 IL200/200	1110 1179	888 945	2185 2009	1748 1607	435 455	348 364	885 785	708 628	3x435 3x455	3x348 3x364	3x885 3x785	3x708 3x628
SKT 551	SKN 501	PE8/180 IL200/200	1345 1456	1076 1164	2670 2502	2136 2001	525 571	420 456	1080 1008	864 806	3x525 3x571	3x420 3x456	3x1080 3x1008	3x864 3x806
SKT 520	SKN 870	PE8/180 IL200/200	1148 1249	918 999	2430 2262	1944 1810	443 485	354 388	975 901	780 720	3x443 3x485	3x354 3x388	3x975 3x901	3x780 3x720
SKT 600	SKN 870	PE8/180 IL200/200	1364 1448	1091 1158	2880 2595	2304 2076	530 555	424 444	1150 1008	920 806	3x530 3x555	3x424 3x444	3x1150 3x1008	3x920 3x806
SKT 760	SKN 870	PE8/180 IL200/200 SA17/200 SA17/300	1518 1608 2039 2176	1214 1286 1631 1741	3230 2907 3900 4234	2584 2325 3120 3387	586 615 784 837	469 492 627 670	1290 1127 1523 1657	1032 901 1218 1325	3x586 3x615 3x784 3x837	3x469 3x492 3x627 3x670	3x1290 3x1127 3x1523 3x1657	3x1032 3x901 3x1218 3x1325
SKT 1000	SKN 1500	PE8/180 IL200/200 SA17/200 SA17/300	1450 1522 2005 2165	1160 1218 1604 1732	3500 3033 4413 4929	2800 2427 3530 3943	554 576 763 825	443 461 611 660	1385 1165 1710 1916	1108 932 1368 1532	3x554 3x576 3x763 3x825	3x443 3x461 3x611 3x660	3x1385 3x1165 3x1710 3x1916	3x1108 3x932 3x1368 3x1532
SKT 1200	SKN 1500	PE8/180 IL200/200 SA17/200 SA17/300	1735 1812 2383 2571	1388 1449 1906 2057	4120 3594 5212 5817	3296 2875 4170 4653	665 687 908 981	532 549 726 785	1650 1382 2022 2263	1320 1106 1618 1811	3x665 3x687 3x908 3x981	3x532 3x549 3x726 3x785	3x1650 3x1382 3x2022 3x2263	3x1320 3x1106 3x1618 3x1811
SKT 1800	SKN 2000	SA17/200 SA17/300	2927 3098	2341 2478	6519 7718	5215 6174	1117 1184	893 947	2546 3034	2051 2427	3x1117 3x1184	3x893 3x947	3x2546 3x3034	3x2036 3x2427
SKT 2500	SKN 3000	SA17/200 SA17/300	3065 3250	2452 2600	7373 8967	5898 7173	1164 1239	931 991	2890 3548	2312 2838	3x1164 3x1239	3x931 3x991	3x2890 3x3548	3x2312 3x2838
										.1				

	. <u> </u>	M2		B2		М3		B6		<u>м</u> 6				M3.2			
	DOS PACK	*			14	***	**	##	 	3	* * * 1	* * *		ا د د	¥ ¥ *	* * *	•
		Tamb	- 45°C	Tamba Vaire		Tamb	=45°C	Tamb		Tamb	=45°C	Tamb	=35°C =6m/s	Tamb	=45°C		=35°C =6m/s
DICODO	RADIADOR	ld A	ldn A	ld A	ldn A	ld A	ldn A	ld A	Idn A	ld A	ldn A	Id A	ldn A	id A	ldn A	ld A	Idn A
SKKD 15	LE10/100 M3/100	18 19	14 15	•		20 21	16 17										
SKKD 46	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	30 46 47 54 60	24 37 38 43 48	54 75 89 94 90	43 75 71 75 72	32 50 57 67 67	25 40 46 54 53	61 91 114 121 104	48 72 91 97 83								
SKKD 81	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	35 56 59 73 77	28 44 47 58 61	69 104 128 137 126	55 83 102 110 100	36 59 70 86 84	29 47 56 69 67	76 123 161 175 144	56 98 129 140 115								
SKKD 100	LE10/150 PE16/200 P3/120 P3/180 SEU200/200	36 58 62 77 82	28 47 50 62 66	73 112 141 152 138	58 89 113 122 110	37 62 74 91 89	29 49 59 73 72	80 132 176 193 157	64 105 141 154 126								
SKKD 162	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	65 68 97 111 92 115 85	52 54 77 88 74 92 68	143 177 179 216 208 239 319	114 141 143 172 166 191 255	68 70 103 119 105 128 91	54 56 82 95 84 102 73	162 201 197 244 258 310 435	129 160 158 195 206 248 348								
SKKD 201	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	74 76 110 126 105 135 96	59 61 88 101 84 108 77	160 198 203 247 233 269 382	128 158 162 197 186 215 306	76 79 115 133 117 143 101	61 63 92 106 94 114 81	179 222 219 272 286 344 403	143 177 175 217 229 275 322								
SKKD 260	PE16/200 PE16/300 SEU200/200 SEU200/300 P3/180 P3/300 P16/200	71 73 108 126 105 135 95	56 58 87 101 84 108 76	167 215 215 271 262 313 495	133 172 172 217 210 250 396	73 75 113 131 116 143 99	58 60 90 105 93 114 79	183 234 229 294 315 394 531	146 187 183 235 252 315 425								

		M2		B2		МЗ		В6		M6				M3.2			
	DOS os rosca	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*			*:			14 14 14	3].	Ι.	* * * *	* * *	ı
		Tamb	=45°C	Tamb		Tamb	=45°C		=35°C	Tamb	=45°C		=35°C	Tamb	=45°C		=35°C
DIODO	RADIADOR	ld A	ldn A	Vaire∈ Id A	=6m/s Idn A	ld A	ldn A	Vaire Id A	=6m/s Idn A	ld A	ldn A	Vaire Id A	=6m/s Idn A	ld A	ldn A	Vaire Id A	=6m/s Idn A
SKN 20 y 26	K5/60 K3/80	33 37	26 30			45 50	36 40			73 81	58 65			89 101	71 81		
SKN 45	K5/60 K3/80 PE2/90	50 61 92	40 49 73	115	92	70 84 130	56 67 104	163	130	116 138 207	93 111 166	256	205	139 168 260	111 134 208	327	262
SKN 70	K5/60 K3/80 PE2/90	58 73 124	47 58 99	160	128	82 102 177	66 81 142	227	182	141 172 286	113 137 229	361	289	164 203 355	131 163 284	455	364
SKN 100	K3/80 PE2/90 PE11/130 P1/150 PE4/200	83 156 198 205 246	67 125 158 164 197	212 246 279 302	170 197 223 241	118 225 283 293 330	94 180 226 234 264	303 349 397 401	242 279 319 321	205 372 459 475 529	164 298 367 380 423	489 558 627 633	391 446 502 507	236 451 567 587 660	189 361 454 470 528	607 700 794 802	486 560 627 642
SKN 130	PE2/90 PE11/130 P1/150 PE4/200	171 231 243 292	137 185 194 234	249 294 343 369	199 235 274 295	247 332 349 396	198 266 279 316	357 420 488 494	286 336 390 395	416 546 571 641	333 437 456 513	583 678 778 787	466 542 622 630	494 665 698 791	395 532 558 633	714 841 976 988	571 673 781 790
SKN 240	PE2/90 PE11/130 P1/150 PE4/200	221 328 359 440	177 262 287 352	357 451 568 611	286 361 454 489	323 475 416 606	258 380 333 485	516 649 813 828	413 519 650 662	567 808 878 1011	454 646 702 809	872 1076 1323 1346	698 861 1058 1077	646 951 1040 1213	517 761 832 970	1033 1299 1625 1656	826 1039 1300 1325
SKN 320	PE11/130 P1/150 PE4/200	382 423 526	306 338 421	541 703 758	433 562 607	555 612 726	444 490 581	779 1006 1028	623 805 823	949 1039 1215	759 831 972	1296 1639 1672	1037 1311 1338	1110 1224 1452	888 979 1162	1558 2012 2057	1246 1610 1645
	DOS	M2		B2		МЗ		B6		М6				M3.2			·
press	spack	Tomb	-4E°C	Tamb	-2500	Tomb	=45°C	Tamb	-25%	Tomb	=45°C	Tomb	-2500	T	-4500	T	-2500
DIODO	RADIADOR	id	ldn	Vaire:		ld	ldn	i .	-33 C =6m/s Idn	Id	ldn .	l	=35°C =6m/s Idn	l Id	=45°C Idn		=35°C =6m/s Idn
		A	A	A	Α	A	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α
SKN 501	PE8/180 IL200/200	670 728	536 582	1100 1102	880 882	9 54 875	763 780	1549 1448	1239 1158	1526 1557	1221 1245	2400 2249	1920 1799	1908 1950	1526 1560	3100 2896	2480 2317
SKN 870	PE8/180 IL200/200 SA17/200 SA17/300	746 762 970 1036	597 610 776 829	1515 1362 1852 2021	1212 1089 1481 1617	1075 1052 1323 1409	860 842 1059 1127	2146 1827 2448 2661	1717 1461 1958 2129	1785 1761 2173 2302	1428 1409 1738 1842	3370 2924 3836 4147	2696 2339 3069 3317	2150 2105 2647 2818	1720 1684 2117 2254	4280 3653 4896 5323	3424 2923 3917 4258
SKN 1500	PE8/180 IL200/200 SA17/200 SA17/300	910 955 1217 1301	728 764 974 1041	1840 1692 2308 2522	1472 1353 1847 2017	1320 1321 1665 1774	1056 1057 1332 1419	2620 2276 3060 3329	2096 1821 2448 2663	2218 2220 2745 2909	1774 1776 2196 2327	4150 3661 4813 5206	3320 2928 3850 4165	2645 2643 3330 3547	2116 2114 2664 2838	5240 4553 6119 6658	4192 3642 4895 5326
SKN 2000	IL200/200 SA17/200 SA17/300	1072 1401 1510	857 1121 1208	2023 2904 3228	1618 2323 2583	1510 1950 2094	1208 1560 1675	2767 3902 4315	2213 3121 3452	2616 3310 3533	2093 2648 2826	4562 6260 6871	3650 5008 5497	3019 3900 4188	2415 3121 3350	5533 7803 8630	4427 6243 6905
SKN 4000	IL200/200 SA17/200 SA17/300	1454 1930 2088	1163 1544 1671	2850 4180 4671	2280 3344 3737	2108 2774 2994	1686 2219 2395	4039 5827 6479	3231 4662 5183	3868 5000 5367	3094 4000 4293	7079 9916 10929	5663 7933 10922	4215 5548 5988	3372 4439 4790	8078 11654 12958	6462 9324 10366
SKN 6000	SA17/200 SA17/300	2051 2232	1640 1785	4064 4700	3251 3760	3010 2617	2408 2093	5886 6785	4708 5428	5393 5826	4314 4660	10008 11402	8006 9121	6020 6542	4816 5233	11772 13570	9417 10856

Tabla para el cálculo de circuitos rectificadores

Simbola	E1	M2	B2	МЗ	B6	M6	(M3)2
Circuito	P/∧ → □	Ph † pi	PA PI	N N N N N N N N N N	\$\frac{1}{2}		
N° de brazos		2	7	3	9	6	. 6
Frecuencia del 1er Hz armónico	90	100	100	150	300	300	300
Tensión continua en Vdi/Vvo vacío	0,45	0,45	06'0	0,67	1,35	0,67	0.67 %
Factor de forma f=Vdrms/Vd	1,57	1,11	1,11	1,017	1,001	1,001	1,001
	121%	48%	48%	18,3%	4,2%	4,2%	4,2%
Corriente media por laav/ld	-	8,0	6,5	0,33	0,33	0,1666	0,1666
Corriente eficaz por larms/ld brazo	1,57	62'0	0,79	0,59	0,59	0,41	0,29
Corriente eficaz en el Ivms/Id secundario del transformador	1,57	0,79	1,11	69'0	0,82	0,41	0,29
Potencia del Ps/(Vdi x Id) secundario del transformador	3,50	1,75	1,23	1,48	1,05	1,81	1,48
Potencia del primario Pp/(Vdi x Id) del transformador	2,68	1,23	1,23	1,22	1,05	1.29	1,05
Potencia nominal del Pn/(Vdix Id) transformador	3,09	1,49	1,23	1,35	1,05	1,55	1,26

Todos los valores de esta tabla están calculados para una carga resistiva. Se suponen nulas las pérdidas en el rectificador y en el transformador.
Debido a la caída de tensión en la bobina interfase, la tensión continua en carga es de sólo 0,87 x 0,67 x Vv.