

Fig.3

4/20

Fig.6

Fig.7(a)

MATERIAL	ELASTIC MODULUS (kg/mm²)	POISSON'S RATIO	
BASE MATERIAL OF SEMICONDUCTOR CHIPS	17335	0.07	
LEAD FRAME	14800	0.3	
RESIN ENCAPSULATING OR SEALING BODY	80	0.24	
ADHESIVE	240	0.3	

Fig.7(b)

THE RATIO TO LENGTH OF SEMICONDUCTOR CHIPS

CONDITIONS	1	2	3	
AMOUNT A OF DISPLACEMENT	0.1	0.2	0.3	
THICKNESS B OF CHIP	0.02	0.04	0.06	
HALF C OF LENGTH OF DIE PAD	0.7	1	1.3	

SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF Application No. NEW - Attorney Docket No. OKI.621 Inventor: Akio NAKAMURA

F-03ED0120

										m ₂
MAXIMUM STRESS (EDGE PORTION)	2.6	2.9	1.8	1.5	3.1	4.4	-	5.3	3.9	RESS: kg/m
MAXIMUM STRESS (ALL)	9.1	6.9	3	9.2	7	4.6	9.2	6.4	4.6	MEASURE OF STRESS: kg/mm ²
O	-	2	က	2	3	1	3	1.	2	MEAS
В	-	2	က	-	2	ဧ	-	2	က	
∢ .	-	-	_	2	2	2	က	က	က	
NUMBER OF EXPERIMENTS	-	2	п	4	ß	Ø	7	ω	6	

6.4 \aleph HALF C OF LENGTH OF DIE PAD 6.9 880LEVEL-BY-LEVEL AVERAGE OF MAXIMUM STRESS (ALL) (kg/mm^2) \overline{c} 6.7 \overline{c} FACTORIAL EFFECTS CHART (ALL) **B**3 4.1 LEVELS THICKNESS B OF CHIP Fig.9(a) **B**2 6.8 **B**2 <u>m</u> Ŋ <u>B</u> တ **A3** АЗ 6.7 **A**2 6.9 **4**2 A 4.0 2.0 0.0 8.0 6.0 6.3 A **MAXIMUM STRESS**

Fig.10(a)

Fig.12(a)

Fig.12(b)

Fig.13

SHAPE OF DIE PAD SECTION	STRESS (kg/mm ²⁾		
SLITS	4.0		
NO SLIT	0.1		

