$12n_{0380} (K12n_{0380})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{24} + 2u^{23} + \dots + b - 1, \ -u^{24} - u^{23} + \dots + 2a - 2, \ u^{25} + 3u^{24} + \dots - 4u - 2 \rangle \\ I_2^u &= \langle -36u^{11}a + 71u^{11} + \dots + 286a - 731, \ -2u^{11}a + 2u^{10}a + \dots - 4a - 1, \\ u^{12} - 2u^{10} + u^9 + 4u^8 - u^7 - 3u^6 + 3u^5 + 3u^4 - u^3 - u^2 + 2u + 1 \rangle \\ I_3^u &= \langle b + 1, \ -u^3 + 2u^2 + 2a + u - 2, \ u^4 - u^2 + 2 \rangle \\ I_4^u &= \langle b - 1, \ a - u, \ u^4 + 1 \rangle \\ I_5^u &= \langle b, \ a + 1, \ u - 1 \rangle \\ I_6^u &= \langle b + 1, \ a - 2, \ u - 1 \rangle \\ I_7^u &= \langle b + 1, \ a - 3, \ u - 1 \rangle \\ I_8^u &= \langle b + 1, \ a - 1, \ u + 1 \rangle \end{split}$$

* 9 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 62 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{24} + 2u^{23} + \dots + b - 1, -u^{24} - u^{23} + \dots + 2a - 2, u^{25} + 3u^{24} + \dots - 4u - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{24} + \frac{1}{2}u^{23} + \dots + u^{2} + 1 \\ -u^{24} - 2u^{23} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{24} + \frac{5}{2}u^{23} + \dots - 3u - 2 \\ -u^{23} - u^{22} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{24} + \frac{3}{2}u^{23} + \dots - u - 1 \\ -u^{23} - u^{22} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{12} + u^{10} - 3u^{8} + 2u^{6} - 2u^{4} + u^{2} + 1 \\ u^{12} - 2u^{10} + 4u^{8} - 4u^{6} + 3u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{24} - \frac{5}{2}u^{23} + \dots + 4u + 3 \\ u^{23} + u^{22} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -2u^{24} + 10u^{22} + 6u^{21} - 30u^{20} - 24u^{19} + 54u^{18} + 64u^{17} - 72u^{16} - 112u^{15} + 54u^{14} + 150u^{13} - 12u^{12} - 142u^{11} - 42u^{10} + 100u^9 + 66u^8 - 34u^7 - 56u^6 - 6u^5 + 22u^4 + 18u^3 - 2u - 4u^6 + 100u^8 +$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{25} + 5u^{24} + \dots + 11u + 1$
c_2, c_5, c_6 c_{12}	$u^{25} + u^{24} + \dots + u - 1$
c_3, c_9	$u^{25} + 3u^{24} + \dots - 4u - 2$
c_4	$u^{25} + 21u^{24} + \dots + 13332u + 2962$
c ₇	$u^{25} - 3u^{24} + \dots - 92u - 26$
c_8, c_{10}	$u^{25} - 9u^{24} + \dots - 8u - 4$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{25} + 43y^{24} + \dots + 11y - 1$
c_2, c_5, c_6 c_{12}	$y^{25} - 5y^{24} + \dots + 11y - 1$
c_3, c_9	$y^{25} - 9y^{24} + \dots - 8y - 4$
c_4	$y^{25} - 33y^{24} + \dots - 42476552y - 8773444$
c ₇	$y^{25} - 21y^{24} + \dots - 4952y - 676$
c_8, c_{10}	$y^{25} + 15y^{24} + \dots + 320y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.980316 + 0.233102I		
a = 0.44130 + 2.47602I	2.82058 - 3.81422I	4.98039 + 6.61368I
b = -0.622808 - 0.762022I		
u = -0.980316 - 0.233102I		
a = 0.44130 - 2.47602I	2.82058 + 3.81422I	4.98039 - 6.61368I
b = -0.622808 + 0.762022I		
u = -0.568077 + 0.832369I		
a = 0.51973 - 1.50739I	4.15791 + 8.74016I	-1.84068 - 4.40634I
b = -1.13721 + 0.86526I		
u = -0.568077 - 0.832369I		
a = 0.51973 + 1.50739I	4.15791 - 8.74016I	-1.84068 + 4.40634I
b = -1.13721 - 0.86526I		
u = -0.733592 + 0.747057I		
a = 0.337972 - 0.198014I	-3.30756 - 0.71712I	-2.44059 + 3.90523I
b = 0.611523 + 0.222308I		
u = -0.733592 - 0.747057I		
a = 0.337972 + 0.198014I	-3.30756 + 0.71712I	-2.44059 - 3.90523I
b = 0.611523 - 0.222308I		
u = 0.932488 + 0.483370I		
a = 0.96761 + 1.60037I	1.59893 + 1.80276I	4.99535 - 2.09686I
b = -0.206915 - 0.805921I		
u = 0.932488 - 0.483370I		
a = 0.96761 - 1.60037I	1.59893 - 1.80276I	4.99535 + 2.09686I
b = -0.206915 + 0.805921I		
u = 0.932840		
a = 0.687051	1.77401	4.83650
b = -0.498290		
u = 0.764755 + 0.774203I		
a = 0.171446 - 0.325902I	-3.51376 - 2.47052I	-3.49276 + 4.45848I
b = 0.784319 + 0.533336I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.764755 - 0.774203I		
a = 0.171446 + 0.325902I	-3.51376 + 2.47052I	-3.49276 - 4.45848I
b = 0.784319 - 0.533336I		
u = -0.437237 + 0.783767I		
a = 0.49146 + 1.67035I	4.93859 - 5.35756I	-1.01874 + 4.42089I
b = -1.037150 - 0.927401I		
u = -0.437237 - 0.783767I		
a = 0.49146 - 1.67035I	4.93859 + 5.35756I	-1.01874 - 4.42089I
b = -1.037150 + 0.927401I		
u = 1.156340 + 0.047910I		
a = -2.12651 + 3.13266I	10.42970 + 7.39157I	4.47957 - 4.57784I
b = 1.12099 - 0.93923I		
u = 1.156340 - 0.047910I		
a = -2.12651 - 3.13266I	10.42970 - 7.39157I	4.47957 + 4.57784I
b = 1.12099 + 0.93923I		
u = -0.970077 + 0.698318I		
a = 0.166009 + 0.595943I	-2.58593 - 4.79128I	-0.37722 + 2.00234I
b = -0.620681 + 0.170359I		
u = -0.970077 - 0.698318I		
a = 0.166009 - 0.595943I	-2.58593 + 4.79128I	-0.37722 - 2.00234I
b = -0.620681 - 0.170359I		
u = 0.951621 + 0.731482I		
a = -0.63483 - 1.61897I	-2.94773 + 8.15802I	-2.49516 - 9.64578I
b = -0.831342 + 0.569410I		
u = 0.951621 - 0.731482I		
a = -0.63483 + 1.61897I	-2.94773 - 8.15802I	-2.49516 + 9.64578I
b = -0.831342 - 0.569410I		
u = -1.076120 + 0.616232I		
a = -2.32949 + 1.21588I	6.80687 + 0.12880I	1.81794 + 0.42247I
b = 1.02897 - 0.98641I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.076120 - 0.616232I		
a = -2.32949 - 1.21588I	6.80687 - 0.12880I	1.81794 - 0.42247I
b = 1.02897 + 0.98641I		
u = -1.066850 + 0.683933I		
a = -0.18246 - 3.26046I	5.6578 - 14.4091I	0.10967 + 8.76133I
b = 1.16937 + 0.87177I		
u = -1.066850 - 0.683933I		
a = -0.18246 + 3.26046I	5.6578 + 14.4091I	0.10967 - 8.76133I
b = 1.16937 - 0.87177I		
u = 0.060646 + 0.510945I		
a = 0.334239 + 0.498112I	-0.268317 + 1.373590I	-2.13600 - 4.81420I
b = 0.490067 - 0.520637I		
u = 0.060646 - 0.510945I		
a = 0.334239 - 0.498112I	-0.268317 - 1.373590I	-2.13600 + 4.81420I
b = 0.490067 + 0.520637I		

$$\text{II. } I_2^u = \langle -36u^{11}a + 71u^{11} + \dots + 286a - 731, \ -2u^{11}a + 2u^{10}a + \dots - 4a - 1, \ u^{12} - 2u^{10} + \dots + 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0599002au^{11} - 0.118136u^{11} + \cdots - 0.475874a + 1.21631 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.118136au^{11} - 0.128120u^{11} + \cdots + 1.21631a + 1.62895 \\ 0.0682196au^{11} + 0.0599002u^{11} + \cdots - 0.153078a - 1.47587 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0499168au^{11} - 0.0682196u^{11} + \cdots + 1.06323a + 0.153078 \\ 0.0682196au^{11} + 0.0599002u^{11} + \cdots - 0.153078a - 1.47587 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{10} + u^{9} + u^{8} - u^{7} - u^{6} + 3u^{5} + u^{4} - u^{3} + 2u + 2 \\ -u^{9} + u^{7} - u^{6} - 3u^{5} + u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{10} + u^{10} - u \\ -u^{10} + u^{10} - u \\ -u^{10} + u^{10} - u \\ -u^{10} - - u \\ -u$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{11} 8u^9 + 4u^8 + 12u^7 4u^6 8u^5 + 8u^4 + 4u^3 4u^2 4u + 2u^3 4u^4 + 2u^4 4u^4 -$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{24} + 8u^{23} + \dots + 268u + 49$
c_2, c_5, c_6 c_{12}	$u^{24} + 2u^{23} + \dots + 4u - 7$
c_3, c_9	$ (u^{12} - 2u^{10} + u^9 + 4u^8 - u^7 - 3u^6 + 3u^5 + 3u^4 - u^3 - u^2 + 2u + 1)^2 $
c_4	$ \left (u^{12} - 8u^{11} + \dots - 48u - 23)^2 \right $
c ₇	$(u^{12} + 2u^{11} + \dots + 4u + 1)^2$
c_8, c_{10}	$(u^{12} - 4u^{11} + \dots - 6u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y^{24} + 16y^{23} + \dots + 54988y + 2401$
c_2, c_5, c_6 c_{12}	$y^{24} - 8y^{23} + \dots - 268y + 49$
c_3, c_9	$(y^{12} - 4y^{11} + \dots - 6y + 1)^2$
c_4	$(y^{12} - 28y^{11} + \dots - 9802y + 529)^2$
c_7	$(y^{12} - 16y^{11} + \dots - 6y + 1)^2$
c_8, c_{10}	$(y^{12} + 8y^{11} + \dots - 14y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.511432 + 0.812623I		
a = 0.67786 + 1.48575I	5.38423 - 1.70959I	-0.128193 + 0.167200I
b = -0.900728 - 1.001250I		
u = 0.511432 + 0.812623I		
a = 0.55283 - 1.54744I	5.38423 - 1.70959I	-0.128193 + 0.167200I
b = -0.756837 + 1.060930I		
u = 0.511432 - 0.812623I		
a = 0.67786 - 1.48575I	5.38423 + 1.70959I	-0.128193 - 0.167200I
b = -0.900728 + 1.001250I		
u = 0.511432 - 0.812623I		
a = 0.55283 + 1.54744I	5.38423 + 1.70959I	-0.128193 - 0.167200I
b = -0.756837 - 1.060930I		
u = 0.850204 + 0.630914I		
a = -0.132727 - 0.669979I	-5.05906 + 2.46907I	-5.52253 - 3.95252I
b = 1.145980 + 0.247522I		
u = 0.850204 + 0.630914I		
a = 0.07414 - 2.86500I	-5.05906 + 2.46907I	-5.52253 - 3.95252I
b = -1.068390 + 0.305673I		
u = 0.850204 - 0.630914I		
a = -0.132727 + 0.669979I	-5.05906 - 2.46907I	-5.52253 + 3.95252I
b = 1.145980 - 0.247522I		
u = 0.850204 - 0.630914I		
a = 0.07414 + 2.86500I	-5.05906 - 2.46907I	-5.52253 + 3.95252I
b = -1.068390 - 0.305673I		
u = -0.635020 + 0.640255I		
a = -0.226456 + 0.011257I	-3.08210 + 0.49850I	-1.36863 - 1.38008I
b = 1.204970 - 0.052489I		
u = -0.635020 + 0.640255I		
a = 1.55856 - 1.03377I	-3.08210 + 0.49850I	-1.36863 - 1.38008I
b = -0.457992 + 0.354536I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.635020 - 0.640255I		
a = -0.226456 - 0.011257I	-3.08210 - 0.49850I	-1.36863 + 1.38008I
b = 1.204970 + 0.052489I		
u = -0.635020 - 0.640255I		
a = 1.55856 + 1.03377I	-3.08210 - 0.49850I	-1.36863 + 1.38008I
b = -0.457992 - 0.354536I		
u = -1.16193		
a = -1.91107 + 3.18977I	11.2998	5.66710
b = 0.855561 - 1.093600I		
u = -1.16193		
a = -1.91107 - 3.18977I	11.2998	5.66710
b = 0.855561 + 1.093600I		
u = -0.985497 + 0.634576I		
a = -0.67437 - 1.64764I	-2.05779 - 5.52285I	0.56374 + 6.48307I
b = 0.301152 + 0.483288I		
u = -0.985497 + 0.634576I		
a = 0.79418 + 1.81824I	-2.05779 - 5.52285I	0.56374 + 6.48307I
b = -1.207840 - 0.138399I		
u = -0.985497 - 0.634576I		
a = -0.67437 + 1.64764I	-2.05779 + 5.52285I	0.56374 - 6.48307I
b = 0.301152 - 0.483288I		
u = -0.985497 - 0.634576I		
a = 0.79418 - 1.81824I	-2.05779 + 5.52285I	0.56374 - 6.48307I
b = -1.207840 + 0.138399I		
u = 1.075030 + 0.655125I		
a = -2.21955 - 1.41327I	7.05914 + 7.20360I	2.08749 - 4.71657I
b = 0.739507 + 1.114900I		
u = 1.075030 + 0.655125I		
a = -0.12063 + 3.16354I	7.05914 + 7.20360I	2.08749 - 4.71657I
b = 0.949962 - 1.026010I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.075030 - 0.655125I		
a = -2.21955 + 1.41327I	7.05914 - 7.20360I	2.08749 + 4.71657I
b = 0.739507 - 1.114900I		
u = 1.075030 - 0.655125I		
a = -0.12063 - 3.16354I	7.05914 - 7.20360I	2.08749 + 4.71657I
b = 0.949962 + 1.026010I		
u = -0.470358		
a = -0.00729607	-2.62918	3.06920
b = 1.13611		
u = -0.470358		
a = 4.26177	-2.62918	3.06920
b = -0.746787		

III.
$$I_3^u = \langle b+1, -u^3 + 2u^2 + 2a + u - 2, u^4 - u^2 + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + 2 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + 1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} - u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} + u \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{2}u^{3} - u^{2} - \frac{3}{2}u + 1 \\ u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -4u^2 4$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_{2}, c_{6}	$(u+1)^4$
c_3,c_4,c_7 c_9	$u^4 - u^2 + 2$
c ₈	$(u^2 + u + 2)^2$
c_{10}	$(u^2 - u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2 - y + 2)^2$
c_8, c_{10}	$(y^2 + 3y + 4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.978318 + 0.676097I		
a = -0.191776 - 0.844803I	-4.11234 + 5.33349I	-6.00000 - 5.29150I
b = -1.00000		
u = 0.978318 - 0.676097I		
a = -0.191776 + 0.844803I	-4.11234 - 5.33349I	-6.00000 + 5.29150I
b = -1.00000		
u = -0.978318 + 0.676097I		
a = 1.19178 + 1.80095I	-4.11234 - 5.33349I	-6.00000 + 5.29150I
b = -1.00000		
u = -0.978318 - 0.676097I		
a = 1.19178 - 1.80095I	-4.11234 + 5.33349I	-6.00000 - 5.29150I
b = -1.00000		

IV.
$$I_4^u = \langle b-1, a-u, u^4+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -u^{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u^{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -u^{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	$(u-1)^4$
c_3, c_4, c_7 c_9	$u^4 + 1$
c_5,c_{12}	$(u+1)^4$
c_8,c_{10}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2+1)^2$
c_8, c_{10}	$(y+1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 0.707107 + 0.707107I	-4.93480	-8.00000
b = 1.00000		
u = 0.707107 - 0.707107I		
a = 0.707107 - 0.707107I	-4.93480	-8.00000
b = 1.00000		
u = -0.707107 + 0.707107I		
a = -0.707107 + 0.707107I	-4.93480	-8.00000
b = 1.00000		
u = -0.707107 - 0.707107I		
a = -0.707107 - 0.707107I	-4.93480	-8.00000
b = 1.00000		

V.
$$I_5^u = \langle b, a+1, u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	u
c_3, c_6, c_7 c_8, c_9, c_{10} c_{12}	u-1
c_4, c_{11}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	y
c_3, c_4, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	1.64493	6.00000
b = 0		

VI.
$$I_6^u=\langle b+1,\ a-2,\ u-1
angle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_4	u+1
c_2, c_3, c_5 c_7, c_8, c_9 c_{10}	u-1
c_6, c_{11}, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9, c_{10}	y-1
c_6, c_{11}, c_{12}	y

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 2.00000	1.64493	6.00000
b = -1.00000		

VII.
$$I_7^u=\langle b+1,\; a-3,\; u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_{10}, c_{11}, c_{12}	u-1
c_2, c_4, c_6 c_7, c_8, c_9	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 3.00000	0	0
b = -1.00000		

VIII.
$$I_8^u = \langle b+1, \ a-1, \ u+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_7, c_9, c_{10} c_{11}, c_{12}	u-1
c_2, c_3, c_6 c_8	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6	y-1	
c_7, c_8, c_9 c_{10}, c_{11}, c_{12}		

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	0	0
b = -1.00000		

IX.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_6 c_{11}	u-1	
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	u	
c_5, c_{12}	u+1	

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	y-1	
c_3, c_4, c_7 c_8, c_9, c_{10}	y	

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u(u-1)^{11}(u+1)(u^{24} + 8u^{23} + \dots + 268u + 49)$ $\cdot (u^{25} + 5u^{24} + \dots + 11u + 1)$
c_2, c_6	$u(u-1)^{6}(u+1)^{6}(u^{24}+2u^{23}+\cdots+4u-7)(u^{25}+u^{24}+\cdots+u-1)$
c_3,c_9	$ u(u-1)^3(u+1)(u^4+1)(u^4-u^2+2) $ $ \cdot (u^{12}-2u^{10}+u^9+4u^8-u^7-3u^6+3u^5+3u^4-u^3-u^2+2u+1)^2 $ $ \cdot (u^{25}+3u^{24}+\cdots-4u-2) $
c_4	$u(u-1)(u+1)^{3}(u^{4}+1)(u^{4}-u^{2}+2)(u^{12}-8u^{11}+\cdots-48u-23)^{2}$ $\cdot (u^{25}+21u^{24}+\cdots+13332u+2962)$
c_5,c_{12}	$u(u-1)^{7}(u+1)^{5}(u^{24}+2u^{23}+\cdots+4u-7)(u^{25}+u^{24}+\cdots+u-1)$
C ₇	$u(u-1)^{3}(u+1)(u^{4}+1)(u^{4}-u^{2}+2)(u^{12}+2u^{11}+\cdots+4u+1)^{2}$ $\cdot (u^{25}-3u^{24}+\cdots-92u-26)$
c_8	$u(u-1)^{2}(u+1)^{2}(u^{2}+1)^{2}(u^{2}+u+2)^{2}$ $\cdot ((u^{12}-4u^{11}+\cdots-6u+1)^{2})(u^{25}-9u^{24}+\cdots-8u-4)$
c_{10}	$u(u-1)^{4}(u^{2}+1)^{2}(u^{2}-u+2)^{2}(u^{12}-4u^{11}+\cdots-6u+1)^{2}$ $\cdot (u^{25}-9u^{24}+\cdots-8u-4)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y(y-1)^{12}(y^{24} + 16y^{23} + \dots + 54988y + 2401)$ $\cdot (y^{25} + 43y^{24} + \dots + 11y - 1)$
c_2, c_5, c_6 c_{12}	$y(y-1)^{12}(y^{24} - 8y^{23} + \dots - 268y + 49)(y^{25} - 5y^{24} + \dots + 11y - 1)$
c_3, c_9	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}(y^{12}-4y^{11}+\cdots-6y+1)^{2}$ $\cdot (y^{25}-9y^{24}+\cdots-8y-4)$
c_4	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}$ $\cdot (y^{12}-28y^{11}+\cdots-9802y+529)^{2}$ $\cdot (y^{25}-33y^{24}+\cdots-42476552y-8773444)$
c_7	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}(y^{12}-16y^{11}+\cdots-6y+1)^{2}$ $\cdot (y^{25}-21y^{24}+\cdots-4952y-676)$
c_8,c_{10}	$y(y-1)^{4}(y+1)^{4}(y^{2}+3y+4)^{2}(y^{12}+8y^{11}+\cdots-14y+1)^{2}$ $\cdot (y^{25}+15y^{24}+\cdots+320y-16)$