

EECE5698 Parallel Processing for Data Analytics

Lecture 11: Sparsity and Parallelism

Loss Functions

$$\min_{\beta \in \mathbb{R}^d} F(\beta)$$

$$F(\beta) = \sum_{i=1}^{n} \ell(\beta; x_i, y_i)$$

- $lue{}$ If ℓ is convex, so is $F(\beta)$
- Examples:
 - □ Squared loss
 - ☐ Logistic
 - □ Hinge

$$\ell(\beta; x, y) = (y - \beta^{\mathsf{T}} x)^2$$

$$\ell(\beta; x, y) = \log(1 + \exp(-y\beta^{\top}x))$$

$$\ell(\beta; x, y) = \max(0, 1 - y\beta^{\top} x)$$

Parallel Computation of Gradient Descent

$$F(\beta) = \sum_{i=1}^{n} \ell(\beta; x_i, y_i)$$

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla_{\beta} \ell(\beta; x_i, y_i)$$

- □ GD step
- ☐ Convergence Criterion

Parallel Computation

$$F(\beta) = \sum_{i=1}^{n} \ell(\beta; x_i, y_i)$$


```
rdd = [(x1,y1),
       (x2,y2),
       (xn,yn)]
beta = np.array([0.1,0.4,-2.0])
rdd.map( lambda (x,y):
                  loss(beta,x,y))\
         .reduce(add)
□ Broadcasts O(d) sized vector
```

- ☐ Reduction msg size O(1)

Parallel Computation

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla_{\beta} \ell(\beta; x_i, y_i)$$


```
rdd = [(x1,y1),
       (x2,y2),
       (xn,yn)
beta = np.array([0.1,0.4,-2.0])
rdd.map( lambda (x,y):
                  gradLoss(beta,x,y))\
         .reduce(add)
```

- □ Broadcasts O(d) sized vector
- □ Reduction msg size O(d)

Let's be a bit more precise

Round 1: Move results to n/2 processors

Round 1: Combine results

Round 2: Repeat

par_sum1+5 par_sum2+6 par_sum3+7 par_sum4+8

Round 3: Repeat

m processors: m-1 messages log m rounds

How does broadcast work? Reverse Process!

Round 3: Repeat

β

How does broadcast work? Reverse Process!

Round 3: Repeat

How does broadcast work? Reverse Process!

Round 3: Repeat

m processors: m-1 messages log m rounds

Communication and Computation

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla_{\beta} \ell(\beta; x_i, y_i)$$

Suppose that the time necessary to compute

$$\nabla_{\beta}\ell(\beta;x,y)$$

on a single point is **c**

Serial Time (no spark, single machine)

Parallel time with m workers

Total computation time: n * c

Total communication time: 0

Total computation time: n * c/m

Total communication: 2*(m-1) * d messages

Total communication time: ~log m *d (ideal)

in reality, it is higher

Increasing **m** decreases computation, but increases communication! For large **d**, this can be quite high

Problem with Generic Model

$$\nabla F(\beta) = \sum_{i=1}^{N} \nabla_{\beta} \ell(\beta; x_i, y_i)$$
 when d is large, beta should be an RDD!
$$(x_1, y_1), \quad (x_2, y_2), \quad (x_3, y_2), \quad (x_2, y_2), \quad (x_3, y_2), \quad (x_1, y_1), \quad (x_1, y_1), \quad (x_2, y_2), \quad (x_1, y_1), \quad (x_2, y_2), \quad (x_1, y_1), \quad$$

Works well for **n large** and **d small**, but not well when **both n** and **d are big**.

(x1000,y1000)]

Main Challenge

Reduce the number of messages to something less than

m*d

Sparsity Revisited

$$\min_{\beta \in \mathbb{R}^d} F(\beta) \qquad F(\beta) = \sum_{i=1}^n \ell(\beta; x_i, y_i)$$
$$\ell(\beta; x, y) = \ell(\beta^\top x, y)$$

- ☐ Examples:
 - □ Squared loss
 - ☐ Logistic
 - □ Hinge

- $\ell(\beta; x, y) = (y \beta^{\top} x)^2$
- $\ell(\beta; x, y) = \log(1 + \exp(-y\beta^{\top}x))$
- $\ell(\beta; x, y) = \max(0, 1 y\beta^{\top} x)$

Suppose \boldsymbol{x} is sparse

Then, both ℓ and $\nabla_{\beta}\ell$ depend only on a small subset of coordinates of β !

Sparsity: Computing Loss at a Datapoint

Sparsity: Dependence Graph

Suppose that each feature vector has at most k non-zero features

Sparsity: Dependence Graph

Suppose that each feature vector has at most k non-zero features

Computing Loss over Dependence Graph

$$\ell_i(\beta) = \ell(\beta^\top x_i; y_i)$$

$$= \ell(\sum_{j: x_{ij} \neq 0} \beta_j x_{ij}; y_i)$$

Computing Loss over Dependence Graph

$$\ell_i(\beta) = \ell(\beta^\top x_i; y_i)$$

$$= \ell(\sum_{j: x_{ij} \neq 0} \beta_j x_{ij}; y_i)$$

Parallel Computation Through Dependence Graph

Parallel Computation Through Dependence Graph

Improvements

Improvements

In Summary: Function Evaluation

Suppose that each feature vector has at most k non-zero features

Another Improvement: Partition-Aware (HW3)

Suppose that each feature vector has at most k non-zero features

$$\nabla \ell_i(\beta) = \nabla \ell(\beta^\top x_i; y_i) = \ell'(\beta^\top x_i; y_i) \cdot x_i$$
$$= \ell'(\sum_{j: x_{ij} \neq 0} \beta_j x_{ij}; y_i) \cdot x_i$$

depends only on k values of β

is sparse!!

$$\nabla \ell_i(\beta) = \nabla \ell(\beta^\top x_i; y_i) = \ell'(\beta^\top x_i; y_i) \cdot x_i$$
$$= \ell'(\sum_{j: x_{ij} \neq 0} \beta_j x_{ij}; y_i) \cdot x_i$$

depends only on k values of β

$$(x_i,y_i)$$
 β_3 feature_3 β_j feature_j $\nabla \ell_i(\beta)$ β_{d-1} feature_d-1

is sparse!!

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla \ell_i(\beta) \qquad \frac{\partial F(\beta)}{\partial \beta_j} = \sum_{i=1}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$
$$= \sum_{i:x_{ij} \neq 0}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$

0 if ℓ_i does not depend on β_j !

feature_ j

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla \ell_i(\beta) \qquad \frac{\partial F(\beta)}{\partial \beta_j} = \sum_{i=1}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$
$$= \sum_{i:x_{ij} \neq 0}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$

0 if ℓ_i does not depend on β_j !

feature_ j

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla \ell_i(\beta) \qquad \frac{\partial F(\beta)}{\partial \beta_j} = \sum_{i=1}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$
$$= \sum_{i:x_{ij} \neq 0}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$

0 if ℓ_i does not depend on β_j !

feature_ j

$$\nabla F(\beta) = \sum_{i=1}^{n} \nabla \ell_i(\beta) \qquad \frac{\partial F(\beta)}{\partial \beta_j} = \sum_{i=1}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$
$$= \sum_{i:x_{ij} \neq 0}^{n} \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$

0 if ℓ_i does not depend on β_j !

Stage 1: Compute Gradients per Data Point

$$\nabla \ell_i(\beta) = \ell'(\sum_{j:x_{ij} \neq 0} \beta_j x_{ij}; y_i) \cdot x_i \qquad \text{dataRDD} = [\text{(1,(x1,y1))}, \text{(2,(x2,y2))}, \dots, \text{(n,(xn,yn))}]$$

$$x_i \in \mathbb{R}^d \text{ restriction} \qquad \text{(n,(xn,yn))}]$$

$$betaRDD = [\text{(feature1: val1)}, \text{ (feature2: val2)}, \dots, \text{(feature2: val2)}, \dots, \text{(feature4: vald)}]$$

$$\vdots \qquad \text{invGRDD} = [\text{(feature1,1)}, \text{(feature7,1)}, \dots, \text{(feature16,2)}, \text{(feature2,2,2)}, \dots, \text{(feature2,n)}, \text{(feature2,n)}, \text{(feature99,n)}]$$

$$tmp = \text{invGRDD.join(beta)} \qquad \text{(feature2,n)}, \text{(feature2,n)}, \text{(feature3,n)}, \text{(feature3,n)}, \text{(feature3,n)}, \text{(feature3,n)}, \text{(feature4,n)}, \text{(featu$$

Stage 2: Compute Gradients per Data Point

$$\nabla \ell_i(\beta) = \ell'(\sum_{j: x_{ij} \neq 0} \beta_j x_{ij}; y_i) \cdot x_i$$

$$\frac{\partial F}{\partial \beta_j} = \sum_{i: x_{i,j} \neq 0}^n \frac{\partial \ell_i(\beta)}{\partial \beta_j}$$

```
localGrad = [ ... ,
              SparseVector( {feat:val,feat:val,feat:val}),
```

```
grad = localGrad.flatMap(lambda x:x.items())\
```

.reduceByKey(add)

items() returns list of (key, value) tuples, so this is a (feature,val) RDD!

(feature,val) containing $\frac{\partial F}{\partial \beta_{s}}$!

Gradient descent?

(feature, (valBeta, valGrad))

.mapValues(lambda (valBeta, valGrad): valBeta - gamma valGrad)

In Summary: Computing Gradient

Suppose that each feature vector has at most k non-zero features

In Summary: Computing Gradient

Suppose that each feature vector has at most k non-zero features

So What? What is the Big Picture?

□Does all this remind you of anything?

PageRank!

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Graph-Parallel Algorithm: Computation happens over a directed graph through scatter, gather and apply operations.

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Scatter: Every node sends data to its neighbors

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Gather: Every node collects data from its neighbors and aggregates it.

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Apply: Every node transforms its data locally

☐ There exist programming frameworks (e.g., GraphLab, Giraph) for parallelizing the execution of graph-parallel algorithms.

- ☐ Many interesting data mining, ML, and graph algorithms are graph-parallel:
 - □ Shortest paths
 □ Matrix Factorization through GD/ALS
 - □ PageRank
 □ ERM through GD
 - ☐ Triangle counting ☐ DNNs
 - ☐ Graph coloring ☐ ...

Key Intution: Scatter, gather and apply can be implemented through appropriate join, reduceByKey, and map operations!!

These are efficient when the graph is SPARSE!!!

Graph-Parallel Algorithms: Formal definition

Consider a directed, sparse graph ${\cal G}(V\!,E)$

Graph-Parallel Algorithms: Formal definition

Both nodes and edges carry data.

Graph-Parallel Algorithms: Formal definition

Apply (f_A) : Every node $v \in V$ applies function f_A to their data d(v) in parallel.

Graph-Parallel Algorithms: Formal Definition

Scatter(): Every node $v \in V$ sends their data d(v) to adjoining edges

Graph-Parallel Algorithms: Formal Definition

Gather(f_G , \odot): Every node $v \in V$ aggregates adjacent edge data through binary operator \odot and combines it with its local data through f_G . I.e.:

$$d(v) \leftarrow f_G\left(d(v), \bigodot_{e \in N(v)} d(e)\right)$$
, where $\bigodot_{e \in N(v)} d(e) = \underbrace{d(e_1) \odot d(e_2) \odot \ldots \odot d(e_k)}_{e_i \in N(v)}$

Graph-Parallel Algorithms via Spark

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Data and graph represented through two RDDs

Graph-Parallel Algorithms via Spark

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Data and graph represented through two RDDs

RDD representing graph with tuples (v,u)

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Scatter: Every node sends data to its neighbors

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Gather: Every node collects data from its neighbors and aggregates it.

[Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski; SIGMOD 2010]
[Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein; PVLDB 2012]
[Ching; Hadoop Summit 2011]

Apply: Every node transforms its data locally

Example 1: PageRank

Each iteration implements

$$d(v) \leftarrow \gamma \frac{1}{|V|} + (1 - \gamma) \sum_{(u,v) \in N(v)} \frac{d(u)}{|N(u)|}, \quad \forall v \in V$$

repeated until convergence

Example 2: High-Dimensional, Sparse Gradient Descent

Non-zero elements: $|\mathcal{D}| = O(n+m)$

Gradient Descent:
$$\beta_j \leftarrow \beta_j - \gamma \left(\sum_{i:x_{ij} \neq 0} \ell'(\langle x_i, \beta \rangle, y_i) \cdot x_{ik} + 2\lambda \beta_j \right), \quad \forall j \in \{1, \dots, m\}$$

Example 3: Matrix Factorization

Dataset \mathcal{D}

 r_{ij} : rating by user i to item j.

$$r_{ij} = \langle u_i, v_j
angle + arepsilon_{ij}$$
 , where $u_i \in \mathbb{R}^d$, $v_j \in \mathbb{R}^d$.

:

3 ? 1 2 ? 5

user profile

item profile

$$lue{}$$
 Prediction: $\hat{r}_{ij} = \langle u_i, v_j \rangle$

$$\square \text{ LSE: } (U, V) = \underset{U \in \mathbb{R}^{n \times d}, V \in \mathbb{R}^{m \times d}}{\arg \min} \sum_{(i, j, r_{ij}) \in \mathcal{D}} (r_{ij} - \langle u_i, v_j \rangle)^2$$

Example 3: Matrix Factorization

Dataset \mathcal{D}

HW4!!!

☐ Gradient Descent:

$$u_{i} \leftarrow u_{i} + \gamma \cdot \sum_{j:(i,j,r_{ij}) \in \mathcal{D}} (r_{ij} - \langle u_{i}, v_{j} \rangle) v_{j}$$
$$v_{j} \leftarrow v_{j} + \gamma \cdot \sum_{i:(i,j,r_{ij}) \in \mathcal{D}} (r_{ij} - \langle u_{i}, v_{j} \rangle) u_{i}$$

