

Informing Physical Design in SCD

Predicting parameter cost

Robert D'Angelo

March 26, 2019

What is physical design?

How can SCD help?

Real time feedback on cost of configuration choices.

- "Impact scores" per knob
 - Area
 - Power
 - Timing
 - Compute cost (PNR/timing optimization), e.g. clock gating
 - I/O requirements
 - Benchmarks

Why show this information? Motivating example

4x area reduction $\rightarrow 10x$ cost reduction

Real time knob cost predictions in your browser?!?

Need a model

Challenges to making front end prediction

- Compute time (Too many parameters)
- Modeling (Complex designs)
- Licensing (Expensive software, prohibitive use)

Need a model, Part 2

Single input, single output neural network may not be enough. Ideally, create a model that can map data from different correlated data sources to qualitative performance metrics.

- ullet Compute time o Sparse sampling + Pattern recognition/ML
- ullet Modeling o Statistical dependence over physical models
- ullet Licensing o Remote execution and FOSS

Need data

- Hardware measurements
 - Best, ground truth, fast (speed of RL)
 - Expensive (\$10k-\$1M), Time consuming (months to years)
 - Error prone (humans make mistakes), outlier effects (small sample size)
 - Cutting edge prohibitively expensive (> 14nm)

Need data

- ASIC Simulations (SPICE, PNR annotated gate sim, .lib delay models)
 - Accurate, time consuming (hours to days to weeks)
 - Can do some statistics for free with stat params from PDK
 - Expensive (\$40k per license per year), time (days to weeks, 10 hrs with prometheus)
 - Cutting edge (< 14nm simulations)

Need data

FPGA

- Apples vs. oranges, relative information possible, still real hardware
- Time consuming (minutes to hours)
- Cheap (\$500-\$3k/board, \$300/license)
- Limited to process on board (14-32nm)

Need data, Part 2

- Scoreboard great for integration testing, but not suitable for data collection
- Mini-scoreboard + Deputy + Wake = Data
- xarrays https://github.com/pydata/xarray, N-D extension of pandas
- database vs netCDF https://www.unidata.ucar.edu/blogs/developer/ entry/netcdf_schema_language
- Tensorflow(.js) to deploy trained models for front end design feedback

Typical gamma workload (lots of idle compute to be exploited):