A Primer on Virtualization

Agenda

Westmere EP on Intel Roadmap

Adv. Enc. Std: New Instructions (AES-NI) in Westmere EP

Intel® Virtualization Technology - a primer

Evolution of Virtualization

Intel Virtualization Technologies

A Framework for Optimizing Virtualization - improving efficiency and scaling

Reducing Virtualization Overheads: Processor, Memory, I/O

Improving VM scaling

VMM readiness

Improving VMM security through TXT

Summary

Intel® Virtualization Technologies

Intel® VT-x

Processor

Intel® VT-x
Hardware assists for robust virtualization
Intel® VT FlexMigration - Flexible live
migration
Intel® VT FlexPriority - Interrupt
acceleration
Intel® EPT - Memory Virtualization

Intel® VT-d
Chipset

Intel® VT for Directed I/O
Reliability and Security through device
Isolation
I/O performance with direct assignment

Intel® VT-c
Network

Intel® VT for Connectivity
NIC Enhancement with VMDq
Single Root IOV support
Network Performance and reduced CPU
utilization
Intel® I/OAT for virtualization
Lower CPU Overhead and Data Acceleration

A Framework for Optimizing Virtualization

- Reduce overheads from virtualization
 - Intel® VT-x Latency Reductions
 - Extended Page Tables
 - Virtual Processor IDs
 - APIC Virtualization (Flex Priority)
 - I/O Assignment via DMA Remapping

- Introduce capabilities that increase scaling out across VMs
 - Intel® Hyper-Threading Technology
 - PAUSE-loop Exiting
 - Network Virtualization

Latencies

What makes VM Context Switching

Saving-Loading privileged state

Compounded by consistency checking

Addressing Context changes

• Translation Lookaside Buffer (TLB) flushes

Virtual Machine Ctl Structure (VMCS)

- Maintains Guest & Host reg. state
 - "Backed" by host physical memory
- Accessed via architectural VMREAD/VMWRITE
- -Enables caching of VMCS state on-die

Virtual Processor IDs (VPIDs)

- -Tag µarch structures (TLBs)
- -Removes need to flush TLBs

Intel® Virtualization Technology (VT-x)

- VT-x® provides architected assists to allow guest OSes to run directly on hardware
- On Nehalem and Westmere VT-x is extended with:

Extended Page Tables (EPT)	Eliminates VM exits to the VMM for shadow page- table maintenance
Virtual Processor IDs (VPID)	Avoid flushes on VM transitions to give a lower-cost VM transition time
Guest Preemption Timer lets a VMM preempt a guest OS	Aids VMM vendors in flexibility and Quality of Service (QoS)
Descriptor Table Exiting –Traps on modifications of guest DTs	Allows VMM to protect a guest from internal attack
Transition Latency reductions	Continuing improvements in microarchitectural handling of VMM round trips

Issues with abstracting physical memory

Address Translation

- Guest OS expects contiguous, zero-based physical memory
- VMM must preserve this illusion

Page-table Shadowing

- VMM intercepts paging operations
- Constructs copy of page tables

Overheads

- VM exits add to execution time
- Shadow page tables consume significant host memory

How Extended Page Tables help with abstracting Physical Memory

Extended Page Tables (EPT)

- Map guest physical to host address
- New hardware page-table walker

Performance Benefit

A guest OS can modify its own page tables freely and without VM exits

Memory Savings

 A single EPT supports entire VM: instead of a shadow pagetable per guest process

2-level TLB reduces page-table walks

- VPID tags help to retain TLB entries Paging-structure caches
 - Cache intermediate steps in walk
 - Result: Reduce length of walks
 - Common case: Much better than 24 s

Difficulties in virtualizing I/O

Virtual Device Interface

- Traps device commands
- Translates DMA operations
- Injects virtual interrupts

Software Methods

- I/O Device Emulation
- Paravirtualize Device Interface

Challenges

- Controlling DMA and interrupts
- Overheads of copying I/O buffers

Solution: DMA remapping (Intel® VT-d)

Intel® VT FlexPriority

APIC Task Priority Register (TPR)

- Accessed very frequently by some guest

Without Intel VT FlexPriority

- Fetch/decode instruction
- Emulate APIC-TPR behavior
- Thousands of cycles per exit

With Intel VT FlexPriority

- Instruction executes directly
- Hardware emulates APIC-TPR access
- No VM exit in the common case

Technologies to improve VM scaling

- Hyper-threading
- Decreasing lock holder preemption impact
- Network virtualization with Virtual Machine Device Queues
- Single Root I/O Virtualization (SR-IOV)

Reducing Lock Holder preemption impact

Problem:

- In an SMP guest, a vCPU holding a lock may get preempted
- Other vCPUs that attempt to acquire that lock spin for the full quantum

Solution: Pause-Loop Exiting (PLE)

- Spin-locking code typically uses PAUSE instructions in a loop
- A longer than "normal" loop duration taken as a sign of lock-holder preemption
- When that happens, HW forces an exit into VMM
- VMM takes control and schedules some other vCPU

```
spin_lock:
   attempt lock-
acquire;
   if fail {
      PAUSE;
      jmp spin_lock
   }
```

Network Virtualization: HW traffic management

Virtual Machine Device Queues (VMDq)

- Data packets grouped and sorted in HW
- Packets sent to their respective VMs
- Round-robin servicing on transmit

Tests measure Wire Speed Receive (Rx) Side Performance With VMDq on Intel® 82598 10 Gigabit Ethernet Controller

PCI-SIG SR-IOV

Description:

PCI-SIG Single Root I/O Virtualization (SR-IOV) Standard: Allows for I/O devices to be simultaneously shared among VMs Virtual interfaces can be directly assigned to reduce routing overheads

Benefits:

Provide near native performance due to direct connectivity Allows direct VM control of I/O virtual functions

Requirements:

Intel VT-d as the core platform ingredient BIOS support of SR-IOV

Westmere: Trusted Execution Technology (TXT) Server Extensions

TXT uses features in processor, chipset and TPM to enable more secure platforms

TXT works through measurement, memory locking and sealing secrets

TXT helps prevent software attacks such as, attempts to insert rogue VMM (rootkit hypervisor) compromise platform secrets in memory

and, reset-attacks that are designed to

Guest Guest Guest VM VM VM **VMM Rootkit Hypervisor Platform hardware** with VT-x support

Helps prevent hijacking by rootkit

ology incorporates multiple and, BIOS and firmware update attacks componer

TXT Makes Platforms More Robust Against SW-based Attacks

Intel VT Features/VMM Support

	Feature		VMware ESX		Microsoft Hyper-V		Xen OSS		Red Hat (RHEL)		KVM		Novell (SLES)	
			Min Rev	Dat e	Min Rev	Dat e	Min Rev	Dat e	Mi n Re v	Dat e	Rev	Dat e	Mi n Re v	Dat e
Virtualization	Processor (VT-x)	Min Rev for Nehalem	3.5U4	Now	Win Svr '08	Now	Any	Now	Any	Now	Any Recent	Now	Any	Now
		FlexPriority	3.5U4	Now	Win Svr '08	Now	3.1	Now	5.2	Now	2.6.24	Now	10 SP1	Now
		FlexMigration	3.5U4	Now	Win Svr '08 ²	Now	3.3	Now	TBD	TBD			TBD	TBD
		EPT + VPID	4.0	Now	Win Svr '08 R2	1H'10	3.3	Now	5.3	Now	2.6.26	Now	10 SP2	Now
	Chipset (VT-d)	VT-d2	4.0	Now	TBD	TBD	3.3	Now	5.4	Q3'09	2.6.31	Now	11	Now
	Network	SR-IOV	TBD	TBD	TBD	TBD	3.4 ¹	Now ³	TBD	TBD	TBD	TBD	TBD	TBD
PWR	(VT-c)	VMDq	3.5U4	Now	Win Svr '08 R2	1H'10	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Power Mgmt (S, P, C, T States)	4.0	Now	1.0 (S- state TBD)	Now	3.3	Now	TBD	TBD			11	Now
Other		SSE 4.2	4.0	Now	TBD	TBD	Any	Now	Any	Now			Any	Now
		Turbo	4.0	Now	1.0	Now	Any	Now	Any	Now			Any	Now
	Notes: Table is base and subject to chan	d on latest informat ge; Pleas&contact v	ion as of: Vi rendors direc	-c : July 0 :tlyNf0W	9; VT-x and \ unreleased	/T-d: May (products	Any 3	Requires oth Product allov PCI-SIG SR-IC	er ecosyste vs capabilit DV standard	em support y but robustr l is supported	ess improv d now	ements in f	utu ji e lea	ases <mark>Now</mark>

