University of Tehran School of Electrical and Computer Engineering

Antenna Theory, Spring 2017

Instructor: Dr. L. Yousefi

Homework#5 Due Date: 30 Ordibehesht

Q1, 10 Marks

Find the relationship for the directivity of an N-Element End-Fire Linear Array.

Q2, 30 Marks

A 4-element array of half-wave dipoles is shown in the following figure. Use array theory to find the normalized radiation pattern and plot it on xoz and yoz planes for $d = \lambda/2$, and λ . All excitations have equal amplitude and phase.

Q3, 20 Marks

Design a Dolph-Tschebyscheff broadside array of 5 elements with a -30 dB side lobe level.

Q4, 20 Marks

Using Fourier Transform method, find a continuous line source current that provides the following Space Factor:

$$SF(\theta) = Sin(\pi \cos \theta)$$

Q5, 30 Marks

Find the array factor of the following array, with excitations shown in the figure. Plot the array factor in xoy and xoz planes.

University of Tehran School of Electrical and Computer Engineering

Antenna Theory, Spring 2017

Instructor: Dr. L. Yousefi

Homework#5 Due Date: 30 Ordibehesht

Q6*, 20 Bonus Marks

Consider a full-wave dipole and a full-wave monopole above a perfect ground plane. Use array theory to find the radiation pattern of each case.

