Universidade Federal de Santa Catarina, INE/CTC INE 5366 – Arquitetura de Computadores I **Primeira avaliação 2006-2**

Nome:	Matrícula:

Parte I [3,0 pontos]

- 1. [valor: $6 \times 0.5 = 3.0$] Responda <u>sucintamente</u> as perguntas abaixo:
- a) As seguintes instruções pertencem à arquitetura de uma CPU: lw s1, k(s2); sw s1, k(s2) e add s1, s2, k(s2), onde k(s2) denota um endereço de memória. Afirmação: "A arquitetura é uma máquina load/store." A afirmação é verdadeira ou falsa? Justifique.
- **b)** Após a execução da instrução add \$s1, \$s2, \$s3, o conteúdo do registrador \$s1 é 0x0F00AA00, tendo sido detectado transbordo aritmético ("overflow"). Quais os sinais dos valores armazenados em \$s2 e \$s3 ? **Justifique.**
- c) Seja P a potência dinâmica dissipada por circuitos CMOS. Sabe-se que nos últimos 20 anos houve uma queda nas tensões de alimentação de 5 para 1,5 volts. Supondo mesma carga capacitiva e mesma freqüência de chaveamento, de quantas vezes a potência dinâmica é reduzida com essa redução de tensão?

P (5V)/P(1,5V) vezes

d) O processo de fabricação de um circuito integrado envolve uma série de etapas que resultam em N "chips" ou "dies", os quais são testados para detectar defeitos. Dentre eles, são selecionado G "chips" que não apresentam falhas. Os chips selecionados são então encapsulados. Dentre os G circuitos encapsulados, apenas F funcionam corretamente. Expresse o rendimento ("yield") do processo usando os números N e/ou G e/ou F.

Rendimento =

- e) Dados são transmitidos entre duas máquinas B e L através de um protocolo que envia lê um byte de memória por vez da máquina transmissora, do menor para o maior endereço de e os armazena na memória da máquina receptora, do menor para o maior endereço. O protocolo não leva em conta o fato de que a máquina B é do tipo big-endian e a máquina L é do tipo little-endian. Suponha que a palavra 0xEFACFFFF, que reside na máquina B seja transmitida para a máquina L. Qual o valor em hexadecimal da palavra armazenada em memória na máquina L.
 Valor na máquina L = 0x
- f) Um programa que executa normalmente no MIPS de 32 bits utiliza a instrução jr \$s3. É possível determinar o valor dos dois bits menos significativos armazenados no registrador \$s3? Em caso afirmativo, **justifique** como o valor é determinado; em caso negativo, **justifique** a impossibilidade determiná-lo.

Resposta:

Parte II [4,0 pontos]

- 2. [valor: 2 x 0,5 = 1,0] A tabela abaixo mostra o número de ciclos de relógio necessários para executar uma instrução de uma dada classe e a respectiva proporção em relação ao número total de instruções executadas. Sabe-se que o número de instruções por segundo pode ser calculado como f/CPI, onde f é a freqüência expressa em Hz e CPI é o número médio de ciclos por instrução. Sabe-se também que a freqüência é de 3,9 GHz e que a CPU é uma máquina load/store.
 - a) Calcule o número de instruções executadas por segundo

CPI =

Instruções/segundo = f/CPI =

b) Calcule o número total de leituras na memória por segundo (dados + instruções).

Leituras/segundo =

Classe	ciclos	Proporção
Desvios	3	20%
Operações aritméticas e lógicas	4	60%
Load	5	10%
Store	4	10%

3. [valor: 2 × 0,5 = 1,0] Seja uma palavra de 32 bits armazenada no registrador \$s0, conforme esquematizado abaixo. Quer-se extrair o campo sombreado de 17 bits e carregá-lo nos 17 bits menos significativos de \$s3, anulando seus 15 bits mais significativos. Escreva duas seqüências distintas (com no máximo duas instruções cada) que realizem a extração e carga pretendida.

\$s0	9 bits	17 bits		6 bits
\$s3	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1	7 bits

a) Seqüência 1:

- b) Seqüência 2:
- 4. [valor: $4 \times 0.25 = 1.0$] Para a pseudo-instrução abaixo, determine uma seqüência equivalente com no máximo 4 instruções nativas do MIPS. Suponha que big seja uma constante cujos 16 bits mais significativos e menos significativos, respectivamente, sejam denotados por upper (big) e lower (big), respectivamente.

bge \$t4, big, L # se (\$t4 \geq big), vá para L

5. [valor: $4 \times 0.25 = 1.0$] Na tabela abaixo, a primeira coluna mostra os endereços de memória (expressos em hexadecimal) onde serão armazenadas as instruções mostradas na segunda coluna. Para cada instrução, complete os 32 bits de sua codificação binária.

Endereço	Instrução		Codificação binária da instrução																														
		3	3	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0
		1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0										
0000FF00	beq \$s0,\$s1, L																																
0000FF04	addi \$t0,\$t1, 15																																
0000FF08	lw \$t8, 4(\$t1)																																
0000FF0C	L: srl \$s0, \$t1, 15												0	0	0	0	0																

Parte III [3,0 pontos]

- **6. [valor:** 2 x 0,5 = 1,0] Sabe-se que, devido às restrições impostas pelo comprimento fixo de instruções, os desvios beq e jL possuem limitações quanto ao máximo endereço para onde podem desviar. Assim, se o compilador detectar que o endereço-alvo é inacessível através de um certo desvio, ele será substituído por uma seqüência de código equivalente. Para os segmentos de código abaixo, suponha que o endereço correspondente ao rótulo L1 não seja atingível pelo desvio utilizado. Mostre um código substitutivo equivalente, que pode ser gerado pelo compilador. (As reticências representam instruções que antecedem e sucedem o segmento de código explicitamente mostrado).
 - a) Use a instrução j L1 para desviar para o endereço-alvo associado ao rótulo L1.

```
beq $s0, $s1, L1 add $t0, $t1,$t2 ...

b) Use a instrução jr $s0 para desviar para o endereço-alvo associado ao rótulo L1. ...

j L1 ...
```

7. [valor: 2 x 0,5 = 1,0] Sejam M e L rótulos que representam endereços-alvo de desvios não mostrados no segmento de código abaixo.

```
M: lw $s1, 40($s4)

sw $s2, 30($s3)

L: add $s5, $s1, $s2

beq $t1, $t0, X

addi $s7, $s6, 14
```

- a) <u>Afirmação</u>: "No segmento acima, as instruções lw e add pertencem a um mesmo bloco básico." A afirmação é verdadeira ou falsa? **Justifique**.
- b) <u>Afirmação</u>: "No segmento acima, as instruções add e addi pertencem a blocos básicos distintos." A afirmação é verdadeira ou falsa? **Justifique**.
- **8.** [valor: 2 x 0,5 = 1,0] As Figuras 1 e 2 mostram, respectivamente, o desempenho relativo e a eficiência energética relativa de três CPUs operando em três modos distintos: freqüência máxima, modo adaptativo e freqüência mínima. Assuma que os valores de desempenho tenham sido obtidos com o mesmo compilador, de forma que as três CPUs executam exatamente as mesmas instruções. Para o modo de operação que leva ao menor consumo de potência ao executar os programas do benchmark de ponto flutuante, calcule (e mostre os principais passos de cálculo):
 - a) Quantas vezes o CPI médio do Pentium-4 M (CPI $_{\rm P4}$) é maior do que o CPI médio do Pentium M (CPI $_{\rm PM}$).

b) quantas vezes a potência média do Pentium-4 M (POT $_{P4}$) é maior do que a potência média do Pentium M (POT $_{PM}$). A eficiência energética é dada por: Eficiência =1/(POT \times tex), onde tex denota o tempo de execução médio.

Figura 1 - Desempenho relativo de três CPUs

Figura 2 – Eficiência energética relativa de três CPUs