FIT3179 Data Visualisation

Data Classification

Reading

Required reading

axismaps, The Basics of Data Classification, online: http://axismaps.github.io/ thematic-cartography/articles/classification.html

Recommended reading

Slocum, T. et al. 2005. "Chapter 5: Data Classification." Thematic cartography and geographic visualization, Second Edition.

Data Classification

- For diagrams, choropleth maps, proportional symbols, flow lines, etc.
- For quantitative data: reduce from quantitative to ordinal

Data Classification

Why classify data?

Simplify data to make visualisation

easer to read.

Clarify the message.

- · Show trends.
- Two questions:
 - How many classes?
 - What class limits?

Number of Classes

- Q: How many classes?
- A: Normally not more than 7 or 8. The more classes, the more difficult a mark is to match with the legend.
- Fewer classes: visualisation
 - vis easier to read,
 - vis easier to remember,
 - clearer pattern,
 - but loss of details and information.

Oregon Population Density -- 2000

Data Classification Methods

- Goal: group together similar observations and split apart observations that are substantially different.
- Minimise within-group variance and maximise between-group differences
- Identify gaps in the histogram of your data

http://axismaps.github.io/thematic-cartography/articles/classification.html

Class Breaks: Guidelines

- Group similar values in one class
- Show clusters and extreme values
- Avoid empty classes if possible
- No overlap between classes
- Avoid gaps between classes, as they are confusing

Data Classification Methods

http://axismaps.github.io/thematic-cartography/articles/classification.html

Data Classification Methods

- Equal intervals: class limits are equidistant
 - Problem: not good for skewed data, as empty classes are likely.
- Quantiles: equal number of observations in each class
 - Problem: classes can have very different ranges.
- Natural breaks: minimises within-class variance and maximises betweenclass differences (for given number of classes). Algorithm: Jenks natural breaks optimisation (a clustering method).
- Manual: adjust to "round" numbers, set class breaks at critical values (e.g. mean value, or legal threshold value). Needed when comparing multiple data sets.

Oregon Population Density -- 2000

1,561

Class Breaks: Guidelines

- Goal: group together similar observations and split apart observations that are substantially different.
- Minimise within-group variance and maximise between-group differences.
- Make the map simple to read. Limit the number of classes.
- All mathematical classification schemes suggest class breaks at "non-round" numbers, which should be changed to reduce the cognitive load for the reader.
- E.g., round class breaks, or change breaks to meaningful values.

Classification optional

Classification needed

Area-proportional

Graduated symbol

Continuous vs. Classed Representation

- Classify...
 - when values are not known accurately
 - when the data set has "natural" boundaries
 - when the order of magnitude is more important than exact values
 - to simplify the representation
 - for use with pictographic symbols

Classified Data on Choropleth Map

Classified Data for Graduated Symbol Map

Classified Data on Dot Map

