

Digital Signatures

- The most important development from the work on public-key cryptography is the digital signature.
- The digital signature provides a set of security capabilities that would be difficult to implement in any other way.

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

2

Digital Signatures

- Digital signatures and seals are the electronic equivalent of handwritten signatures and seals
- They provide:
 - Authentication (of origin only)
 - Non-repudiation
 - Integrity
- Due to the requirement for non-repudiation only public-key cryptography can be used
 - Signature is tied to the user's private key

o.g. ratar o ro a ou ro

Digital Signatures

- Digital signatures have legal significance in certain jurisdictions
 - They can be more difficult to forge than regular handwritten signatures

20 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

4

5

Hash Values

- Apart from security, using the hash value to create the digital signature provides
 - Storage efficiency the signature is easy to store
 - Computational efficiency the signature can be computed and verified quickly
 - Compatibility the signature scheme might require a fixed length input

2020 Pearson Education, Inc., Hoboken, NJ, All rights reserved.

Attacks

- The goal of an attack against a digital signature is to create a forgery
 - Forge a signature for a message
 - Forge a message that matches a signature

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

8

Digital Signature Notions

- While there are many formal definitions for the security of digital signature. The two most common ones you will encounter are:
- EUF-CMA
 - Existential Unforgeability-Under Chosen Message Attack
- SeUF-CMA
- Strong Existential Unforgeability-Under Chosen Message Attack

2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

11

Digital Signature Requirements

- The signature must be a bit pattern that depends on the message being signed
- The signature must use some information unique to the sender to prevent both forgery and denial
- It must be relatively easy to produce the digital signature
- It must be relatively easy to recognize and verify the digital signature
- It must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital signature or by constructing a fraudulent digital signature for a given message
- It must be practical to retain a copy of the digital signature in storage
 Topic Education on All Philipping Property.

NIST Digital Signature Algorithm

- Published by NIST as Federal Information Processing Standard FIPS 186
- Makes use of the Secure Hash Algorithm (SHA)
- The latest version, FIPS 186-3, also incorporates digital signature algorithms based on RSA and on elliptic curve cryptography

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved

13

14

Summary	
Present an overview of the digital signature process O 2029 Pearson Education, Inc., Hoboken, NJ. All rights reserved.	Understand the NIST digital signature scheme