统计论林 V.S. ML·	线计分析的重要目的应该是去分析或解析已存在的数据,例如,用某个概
	幸横老,从数据左位计场的参数,每计算置倍设证;
	而和思到,虽然看起来比较类似,但由质已割在了, 机烈等可加回加
	不在于台村了首门翻挂,而是对未来数于尾西部外。
RP屋.	为了领于量于的场长不,未是据现象到证证"与东数据。
生在牙唇用下唇	$Rn(f) = \frac{1}{n} \sum l_f(x_i, y_i)$
	为了得量于的真实风险,也谈池于在我。老棍上的风险,落的
	对整体卷括的布证很多设 P.
	$R(f) = E_{XY} [J_f(X,Y)] = \int_{XXY} J_f dP.$
	具体到 0-1 jo)题.
	$P(f) = G_{Y}[X_{f(X)} \neq Y] = P(f(X) \neq Y)$
	'成们并从的内容的中,本是扩张从中中采样出来 us sample Su来文t PA用系统复
	估计, 这是统计引得从实现的基础。
) 我们加图的是找到使 R(f)最小的手,但P未见 两以 R(f)包含本
	得,可的通过Snik Rn(+),然后根据大数定理,对某个国定证外,
	$P_{\mathcal{U}}(t)$ 信値 $n \rightarrow \omega$ 中区 $R(t)$,
	33 聚.
	1、根据 Sn 或 Rn(f) 强小 f·
	2. 手国度,术民推大数定理求 R(f).

Indi

$$R^* = \inf_f R(f)$$

理想情况下 R*=0,但例例 题相隔的原则决定,专辑信元辅用度, 以不发量。

双于二公案和 0-1 loss 可以指导力。

$$R^* = \inf_{f \in R(f)} R(f)$$

 $R^* = \inf_{f} R(f)$ = $\inf_{f} EIX_{f(X)\neq Y}$

= inf $E_X \Gamma P(f(X) \neq Y \mid X = \delta)$

= inf Ex[X+10)=0 P(Y=1 | X=15) + X+10)=1 P(Y=0 | X=15)]

= inf $E_{X}[X_{f(b)=0} \eta(b) + X_{f(b)=1}(1-\eta(b))]$ = $E_{X}[min \{\eta(b), 1-\eta(b)]$

 $=\frac{1}{2}-\frac{1}{2}E_{X}[12\eta(b)-11].$

其中り(も)表別X=カリナインの相発。

荒りか=0或方1时 PX=0.

