Tutorial on numerical optimal control

Sébastien Kleff

Oct. 3, 2024

Why optimal control?

Stairs climbing

https://youtu.be/v6MhPl2ICsc

Parkour

https://youtu.be/tF4DML7FIWk

Pick-and-place

https://youtu.be/ZtyCJYsGf4U

Obstacle avoidance

They all solve an optimal control problem

Tutorial objectives

Ideally, by the end of this tutorial:

- The relations between OC, MPC & DDP should be clear(er) to you
- You will understand words like "direct multiple shooting"
- You can implement your own MPC to control your favorite robot

To achieve these goals, I will provide

- Quick overview of Optimal Control
- Crash course on nonlinear optimization
- Tutorial using Crocoddyl and mim_solvers

Tutorial (will be) available on a dedicated repo: https://github.com/skleff1994/mpc_tutorial

Tutorial plan

Tentative plan:

- Session 1 : Optimal control
- Session 2 : Numerical optimization
- Session 3 : MPC

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

Components

• State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- \bullet Dynamics constraint $f:\mathbb{R}^{n_x}:\times\mathbb{R}^{n_u}\to\mathbb{R}^{n_x}$

Continuous-time Optimal Control Problem (OCP)

$$V\left(x_{0},t_{0}\right) = \min_{u(\cdot)} \int_{t_{0}}^{T} \ell\left(x(t),u(t)\right) dt + \ell_{T}(x(T)) \tag{1}$$

$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = f\left(x(t),u(t)\right) & \forall t \in [t_{0},T] \\ c\left(x(t),u(t)\right) \leq 0 & \forall t \in [t_{0},T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$
- Path constraints $c: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_c}$ (possibly terminal c_T)

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$
- Path constraints $c: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_c}$ (possibly terminal c_T)
- Initial condition $(x_0,t_0) \in \mathbb{R}^{n_x} \times \mathbb{R}^+$ and horizon T>0 (can be $+\infty$)

Continuous-time Optimal Control Problem (OCP)

$$V\left(x_{0},t_{0}\right) = \min_{u(\cdot)} \int_{t_{0}}^{T} \ell\left(x(t),u(t)\right) dt + \ell_{T}(x(T)) \tag{1}$$

$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = f\left(x(t),u(t)\right) & \forall t \in [t_{0},T] \\ c\left(x(t),u(t)\right) \leq 0 & \forall t \in [t_{0},T] \end{cases}$$

- State and control trajectories $x(.): \mathbb{R}^+ \to \mathbb{R}^{n_x}, u(.): \mathbb{R}^+ \to \mathbb{R}^{n_u}$
- Running cost $\ell: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^+$ and terminal cost $\ell_T: \mathbb{R}^{n_x} \to \mathbb{R}^+$
- Dynamics constraint $f: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$
- Path constraints $c: \mathbb{R}^{n_x}: \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_c}$ (possibly terminal c_T)
- Initial condition $(x_0,t_0) \in \mathbb{R}^{n_x} \times \mathbb{R}^+$ and horizon T>0 (can be $+\infty$)
- Some technical assumptions

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

- What is x?
- ullet What is u ?
- What is f?
- What is ℓ?
- What is c?

Continuous-time Optimal Control Problem (OCP)

$$V\left(x_{0},t_{0}\right) = \min_{u\left(\cdot\right)} \int_{t_{0}}^{T} \ell\left(x(t),u(t)\right) dt + \ell_{T}(x(T)) \tag{2}$$

$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = f\left(x(t),u(t)\right) & \forall t \in [t_{0},T] \\ c\left(x(t),u(t)\right) \leq 0 & \forall t \in [t_{0},T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

- We define the state variable $x=(q,\dot{q})\in\mathbb{R}^{2n_q}$ and the control input $u=\tau\in\mathbb{R}^{n_q}$ with $n_q=7$
- ullet The dynamics constraint f is given by the robot forward dynamics

$$\underbrace{\begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} \dot{q} \\ M(q)^{-1}(\tau - h(q, \dot{q})) \end{bmatrix}}_{f(x, u)}$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

 \bullet Path constraints are e.g. joint limits $[x^{\min},x^{\max}]$ and torque limits $[u^{\min},u^{\max}]$

$$c(x,u) = \begin{bmatrix} x - x^{\max} \\ x^{\min} - x \\ u - u^{\max} \\ u^{\min} - u \end{bmatrix}$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

A 7-DoF torque-controlled manipulator must reach an end-effector position $p^{\mathsf{des}} \in \mathbb{R}^3$ while using mimium energy and satisfying operating constraints

- Initial condition : robot at rest $x_0 = (q_0, 0)$ at $t_0 = 0$
- Cost function: penalizes the distance to the target and the energy

$$\ell(x, u) = \alpha ||u||_2^2$$

 $\ell_T(x) = ||p(q) - p^{\text{des}}||_2^2$

where $\alpha>0$ is a scalar parameter and the end-effector position p(q) is given by the robot's forward kinematics

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the *optimal feedback control policy* $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the *optimal feedback control policy* $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Very generic formulation

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg \min$ is called the *optimal feedback control policy* $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Very generic formulation

Well-established framework

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The \min is the optimal cost or value function $V: \mathbb{R}^{n_x} \times \mathbb{R}^+ \to \mathbb{R}^+$ The $\arg\min$ is called the optimal feedback control policy $\pi: \mathbb{R}^{n_x} \to \mathbb{R}^{n_u}$

Very generic formulation

Well-established framework

But how to solve this?

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(.)} \int_{t_0}^T \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The decision variable $u(.) \in (\mathbb{R}^{n_u})^{[0,T]}$ is infinite dimensional!

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^{T} \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The decision variable $u(.) \in (\mathbb{R}^{n_u})^{[0,T]}$ is infinite dimensional ! V is a functional characterized by the Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)

$$-\frac{\partial V(x,t)}{\partial t} = \min_{u} \left[\ell(x,u) + \mathcal{I}_{c}(x,u) + \frac{\partial V(x,t)}{\partial x} f(x,u) \right]$$

Continuous-time Optimal Control Problem (OCP)

$$V(x_0, t_0) = \min_{u(\cdot)} \int_{t_0}^{T} \ell\left(x(t), u(t)\right) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(t_0) = x_0 \\ \dot{x}(t) = f\left(x(t), u(t)\right) & \forall t \in [t_0, T] \\ c\left(x(t), u(t)\right) \le 0 & \forall t \in [t_0, T] \end{cases}$$

The decision variable $u(.) \in (\mathbb{R}^{n_u})^{[0,T]}$ is infinite dimensional ! V is a functional characterized by the Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)

$$-\frac{\partial V(x,t)}{\partial t} = \min_{u} \ \left[\ell(x,u) + \mathcal{I}_{c}(x,u) + \frac{\partial V(x,t)}{\partial x} f(x,u) \right]$$

No analytical solution except in very specific cases !

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
s.t.
$$\begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
s.t.
$$\begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V(x,t) = x^\top P(t)x$ where $P(t) \succ 0$ is the solution the Riccati differential equation

$$-\dot{P}(t) = A^{\top} P(t) + P(t)A - P(t)BR^{-1}B^{\top} P(t) + Q$$
 (4)

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
$$\text{s.t.} \begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V(x,t)=x^\top P(t)x$ where $P(t)\succ 0$ is the solution the Riccati differential equation

$$-\dot{P}(t) = A^{\top} P(t) + P(t)A - P(t)BR^{-1}B^{\top} P(t) + Q$$
 (4)

The optimal policy is linear $\pi(x(t)) = K(t)x(t)$ where $K(t) = -R^{-1}B^{\top}P(t)$

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V(x_{0}, t_{0}) = \min_{u(.)} \int_{t_{0}}^{T} \left(x(t)^{\top} Q x(t) + u(t)^{\top} R u(t) \right) + x(T)^{\top} Q_{T} x(T)$$
(3)
s.t.
$$\begin{cases} x(t_{0}) = x_{0} \\ \dot{x}(t) = A x(t) + B u(t) \end{cases} \forall t \in [t_{0}, T]$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V(x,t) = x^\top P(t)x$ where $P(t) \succ 0$ is the solution the Riccati differential equation

$$-\dot{P}(t) = A^{\top} P(t) + P(t)A - P(t)BR^{-1}B^{\top} P(t) + Q$$
 (4)

The optimal policy is linear $\pi(x(t)) = K(t)x(t)$ where $K(t) = -R^{-1}B^{\top}P(t)$

In the general case, HJB must be solved numerically

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mgl\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mgl\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

This is not LQR (f is nonlinear) so we must solve the HJB PDE numerically

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mgl\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

This is not LQR (f is nonlinear) so we must solve the HJB PDE numerically

We **discretize** the state and control spaces into finite meshes

We solve the PDE numerically to compute V explicitly for every $(\theta,\dot{\theta})$

Check-out the pendulum example and play with it : pendulum_bellman.py

Example: Pendulum swing-up task

State $x=(\theta,\dot{\theta})$, control $u=\tau$ and dynamics model f

$$ml^2\ddot{\theta} + mgl\sin\theta = \tau \tag{5}$$

Running cost $\ell(x,u) = \alpha \|u\|^2$ and terminal cost $\ell_T(x) = \|x\|^2$

This is not LQR (f is nonlinear) so we must solve the HJB PDE numerically

We **discretize** the state and control spaces into finite meshes

We solve the PDE numerically to compute V explicitly for every $(\theta,\dot{\theta})$

Check-out the pendulum example and play with it : pendulum_bellman.py

Numerical solution: Curse of dimensionality

Major problem : the number of points N required to maintain the same sampling density increases **exponentially** with the state space dimension n_x

100 points per dimension with $n_x=2$: $N=10^4$ points 100 points per dimension with $n_x=6$: $N=10^8$ points Our 7-DoF torque-controlled manipulator has $n_x=14...$

Computing V explicitly is not tractable if $n_x \ge 4$ or 5

Recap

Analytic resolution of HJB PDE: "Explicit formula for V"

- Exact global solution (i.e. compute V(x) for all x)
- Feedback (closed-loop) policy $\pi(x)$
- Only works in very specific cases (e.g. LQR)

Recap

Analytic resolution of HJB PDE: "Explicit formula for V"

- Exact global solution (i.e. compute V(x) for all x)
- Feedback (closed-loop) policy $\pi(x)$
- Only works in very specific cases (e.g. LQR)

Numerical resolution of HJB PDE: "Integrate the HJB PDE"

- Approximate global solution
- Feedback (closed-loop) policy $\pi(x)$
- Curse of dimensionality

Recap

Analytic resolution of HJB PDE: "Explicit formula for V"

- Exact global solution (i.e. compute V(x) for all x)
- Feedback (closed-loop) policy $\pi(x)$
- Only works in very specific cases (e.g. LQR)

Numerical resolution of HJB PDE: "Integrate the HJB PDE"

- Approximate global solution
- Feedback (closed-loop) policy $\pi(x)$
- Curse of dimensionality

Luckily there is an alternative: direct optimal control

Direct Optimal Control

• "First discretize" : Transform OCP into Nonlinear Program

Then optimize : Solve Nonlinear Program

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics
 - Relies on well-established numerical optimization tools

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize": Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics
 - Relies on well-established numerical optimization tools
 - ullet Local solutions only (only valid around some given x(t))

- "First discretize" : Transform OCP into Nonlinear Program
- Then optimize : Solve Nonlinear Program
 - Can deal with large, difficult problems
 - Many solvers available
 - Widely used in robotics
 - Relies on well-established numerical optimization tools
 - ullet Local solutions only (only valid around some given x(t))
 - Control trajectories u(t) (open-loop policy)*

^{*}Spoiler: MPC will essentially use direct optimal control to approximate the closed-loop policy $\pi(x)$ through repeated open-loop solutions u(t)

Transcription: Parametrize the infinite-dimensional OCP (13)

Transcription: Parametrize the infinite-dimensional OCP (13)

1. Discretization of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$

Transcription: Parametrize the infinite-dimensional OCP (13)

- 1. Discretization of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$
- **2. Parametrization** e.g. zero-order hold $u(t) = u(t_k)$ for $t \in [t_k, t_{k+1})$

Transcription: Parametrize the infinite-dimensional OCP (13)

- **1. Discretization** of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$
- **2. Parametrization** e.g. zero-order hold $u(t) = u(t_k)$ for $t \in [t_k, t_{k+1})$
- 3. Integration of the state dynamics x(.), e.g. using Euler and midpoint rule

$$x_{k+1} = x_k + \underbrace{F(x_k, u_k)} \delta \tag{6}$$

continuous-time dynamics

$$\ell(x_k, u_k) = \underbrace{L(x_k, u_k)}_{\text{continuous-time cost}} \delta \tag{7}$$

Transcription: Parametrize the infinite-dimensional OCP (13)

- **1. Discretization** of the time horizon $t_0,...,t_N$ with $t_k=k\delta$ for $k\in[0,N]$
- **2. Parametrization** e.g. zero-order hold $u(t) = u(t_k)$ for $t \in [t_k, t_{k+1})$
- **3.** Integration of the state dynamics x(.), e.g. using Euler and midpoint rule

$$x_{k+1} = x_k + \underbrace{F(x_k, u_k)} \delta \tag{6}$$

continuous-time dynamics

$$\ell(x_k, u_k) = \underbrace{L(x_k, u_k)}_{\text{continuous-time cost}} \delta \tag{7}$$

Pendulum with semi-explicit Euler

$$\dot{\theta}_{k+1} = \dot{\theta}_k - \overbrace{\left(\frac{-g\sin(\theta)}{l} + u\right)}^{\text{continuous-time acceleration}} \delta$$

$$\theta_{k+1} = \theta_k + \delta\dot{\theta}_{k+1}$$

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T) \tag{8}$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$

Remarks

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$
(8)

Remarks

Discrete-time problems are much easier to study (see Bertsekas)

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T) \tag{8}$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$

Remarks

- Discrete-time problems are much easier to study (see Bertsekas)
- Most of continuous-time optimal control theory applies in discrete-time

This leads to a discrete-time OCP with finite-dimensional decision variables

$$\min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$
s.t.
$$\begin{cases}
x_0 = \hat{x} \\
x_{k+1} = f(x_k, u_k) \\
c(x_k, u_k) \le 0
\end{cases}$$
(8)

Remarks

- Discrete-time problems are much easier to study (see Bertsekas)
- Most of continuous-time optimal control theory applies in discrete-time
- For instance, the Bellman equation is the discrete-time equivalent of HJB

$$V_j(x) = \min_{u} V_{j+1} \left(f(x, u) \right) + \ell(x, u) + \mathcal{I}_c(x, u)$$
 (9)

where V_j is the optimal cost-to-go at stage j

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \end{cases} \forall k \in \{0,...,N-1\}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

Particular case : Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \end{cases} \forall k \in \{0,...,N-1\}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V_k(x) = x^{\top} P_k x$ where $P_k \succ 0$ is the solution the Riccati differential equation

$$P_k = A^{\top} P_k A - (A^{\top} P_k B) (R + B^{\top} P_k B)^{-1} B^{\top} P_k A + Q$$
 (11)

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \forall k \in \{0,...,N-1\} \end{cases}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V_k(x) = x^{\top} P_k x$ where $P_k \succ 0$ is the solution the Riccati differential equation

$$P_k = A^{\top} P_k A - (A^{\top} P_k B) (R + B^{\top} P_k B)^{-1} B^{\top} P_k A + Q$$
 (11)

The optimal policy is linear $\pi_k(x) = K_k x$ where $K_k = -R^{-1}B^{\top}P_k$

Particular case: Linear-Quadratic Regulator (LQR)

When f is linear, ℓ is quadratic (no path constraints)

$$V_{0}(x_{0}) = \min_{u_{0},...,u_{T-1}} \sum_{k=0}^{T-1} \left(x_{k}^{\top} Q x_{k} + u_{k}^{\top} R u_{k} \right) + x_{T}^{\top} Q_{T} x_{T}$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = A x_{k} + B u_{k} \end{cases} \forall k \in \{0,...,N-1\}$$

where $Q, Q_T, R \succ 0$ and (A, B) is controllable.

The value function V is quadratic, i.e. $V_k(x) = x^{\top} P_k x$ where $P_k \succ 0$ is the solution the Riccati differential equation

$$P_k = A^{\top} P_k A - (A^{\top} P_k B) (R + B^{\top} P_k B)^{-1} B^{\top} P_k A + Q$$
 (11)

The optimal policy is linear $\pi_k(x) = K_k x$ where $K_k = -R^{-1}B^{\top}P_k$

In the general case, there is no analytic solution for V,π

Direct approach: "Then optimize"

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

can in theory be solved **globally** in the general case by solving Bellman's equation, but it suffers from the curse of dimensionality (like HJB).

Direct approach: "Then optimize"

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

can in theory be solved **globally** in the general case by solving Bellman's equation, but it suffers from the curse of dimensionality (like HJB).

Instead, we seek a local solution by solving (8) as a Nonlinear Program (NLP)

$$\min_{z} L(z)$$
 (12) s.t. $G(z) \le 0$

where $z \in \mathbb{R}^n$, $L : \mathbb{R}^n \to \mathbb{R}^+$ and $G : \mathbb{R}^n \to \mathbb{R}^{n_c}$.

Direct approach: "Then optimize"

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

can in theory be solved **globally** in the general case by solving Bellman's equation, but it suffers from the curse of dimensionality (like HJB).

Instead, we seek a local solution by solving (8) as a Nonlinear Program (NLP)

$$\min_{z} L(z)$$
 s.t. $G(z) \le 0$

where $z \in \mathbb{R}^n$, $L : \mathbb{R}^n \to \mathbb{R}^+$ and $G : \mathbb{R}^n \to \mathbb{R}^{n_c}$.

This is a standard nonlinear optimization problem that can be solved using textbook numerical optimization

Recap

- Optimal control is a generic framework
- OCPs are challenging to solve globally
- We can seek local solutions instead
- This requires to transform the original OCP into an NLP

Next time

Session 2 will focus on the NLP resolution

- What are the main techniques to solve a generic NLP
- How our NLP has an special structure
- How this structure can be exploited to solve it efficiently

Session 3 will focus on MPC implementation and introduction of the existing tools (Crocoddyl, mim_solvers)

Previously

In Session 1: the continuous-time optimal control problem (OCP)

$$V(x_0) = \min_{u(\cdot)} \int_0^T \ell(x(t), u(t)) dt + \ell_T(x(T))$$

$$\text{s.t.} \begin{cases} x(0) = x_0 \\ \dot{x}(t) = f(x(t), u(t)) & \forall t \in [0, T] \\ c(x(t), u(t)) \le 0 & \forall t \in [0, T] \end{cases}$$

was transcripted into a discrete-time OCP

$$V_{0}(x_{0}) = \min_{u_{0},\dots,u_{T-1}} \sum_{k=0}^{T-1} \ell(x_{k}, u_{k}) + \ell_{T}(x_{T})$$

$$\text{s.t.} \begin{cases} x_{0} = \hat{x} \\ x_{k+1} = f(x_{k}, u_{k}) & \forall k \in \{0, T-1\} \\ c(x_{k}, u_{k}) \leq 0 & \forall k \in \{0, T-1\} \end{cases}$$

which has now finite-dimensional decision variables.

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$

$$\text{s.t.} \begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

is still intractable to solve globally.

But we said it could be solved locally as a Nonlinear Program (NLP)

$$\min_{z} L(z)$$
 s.t. $G(z) \le 0$

using standard numerical optimization techniques (see Nocedal)

The discrete-time OCP

$$V_0(x_0) = \min_{u_0, \dots, u_{T-1}} \sum_{k=0}^{T-1} \ell(x_k, u_k) + \ell_T(x_T)$$
s.t.
$$\begin{cases} x_0 = \hat{x} \\ x_{k+1} = f(x_k, u_k) \\ c(x_k, u_k) \le 0 \end{cases}$$
(8)

is still intractable to solve globally.

But we said it could be solved locally as a Nonlinear Program (NLP)

$$\min_{z} L(z)$$
 s.t. $G(z) \le 0$

using standard numerical optimization techniques (see Nocedal)

Today I will show you how to solve NLPs!

Today, we will study the NLP

$$\min_{z} F(z)$$
 (14) s.t. $G(z) = 0$
$$H(z) \leq 0$$

Today, we will study the NLP

$$\min_{z} F(z)$$
 s.t. $G(z) = 0$
$$H(z) \leq 0$$

Notations warning:

- The NLP cost is denoted by F (vs L last time)
- The NLP constraint is split into equality (G) and inequality (H)

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Definition (Global minimizer)

 z^* is called a global minimizer if for any $z \in \mathbb{R}^n$, $F(z^*) \leq F(z)$

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Definition (Global minimizer)

 z^* is called a global minimizer if for any $z \in \mathbb{R}^n$, $F(z^*) \leq F(z)$

Definition (Local minimizer)

 z^* is called a global minimizer if there exist a neighborhood $\mathcal N$ of z^* such that for any $z\in\mathcal N$, $F(z^*)\leq F(z)$

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Definition (Global minimizer)

 z^* is called a global minimizer if for any $z \in \mathbb{R}^n$, $F(z^*) \leq F(z)$

Definition (Local minimizer)

 z^* is called a global minimizer if there exist a neighborhood $\mathcal N$ of z^* such that for any $z\in\mathcal N$, $F(z^*)\leq F(z)$

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Definition (Global minimizer)

 z^* is called a global minimizer if for any $z \in \mathbb{R}^n$, $F(z^*) \leq F(z)$

Definition (Local minimizer)

 z^* is called a global minimizer if there exist a neighborhood $\mathcal N$ of z^* such that for any $z\in\mathcal N$, $F(z^*)\leq F(z)$

- Global minimizer ⇒ local minimizer (converse not true)
- Global minimizers are often difficult to find

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Definition (Global minimizer)

 z^* is called a global minimizer if for any $z \in \mathbb{R}^n$, $F(z^*) \leq F(z)$

Definition (Local minimizer)

 z^* is called a global minimizer if there exist a neighborhood $\mathcal N$ of z^* such that for any $z\in\mathcal N$, $F(z^*)\leq F(z)$

- Global minimizer ⇒ local minimizer (converse not true)
- Global minimizers are often difficult to find

Theorem (First-order necessary conditions)

If z^* is a local minimizer then it is a stationary point, i.e. $\nabla F(z^*) = 0$.

Consider the unconstrained optimization problem

$$\min_{z \in \mathbb{R}^n} F(z) \tag{15}$$

Definition (Global minimizer)

 z^* is called a global minimizer if for any $z \in \mathbb{R}^n$, $F(z^*) \leq F(z)$

Definition (Local minimizer)

 z^* is called a global minimizer if there exist a neighborhood $\mathcal N$ of z^* such that for any $z\in\mathcal N$, $F(z^*)\leq F(z)$

- Global minimizer ⇒ local minimizer (converse not true)
- Global minimizers are often difficult to find

Theorem (First-order necessary conditions)

If z^* is a local minimizer then it is a stationary point, i.e. $\nabla F(z^*) = 0$.

- We typically look for stationary points
- Most of the interesting results hold when F is convex

We look for **local** minimizers by constructing a sequence of iterates $(z^k)_{k\in\mathbb{N}}$ converging to a local minimum of F

$$z^{k+1} = z^k + \alpha^k \Delta z^k$$

where $\Delta z^k \in \mathbb{R}^n$ is the search direction and $\alpha^k \geq 0$ is the step size.

We look for **local** minimizers by constructing a sequence of iterates $(z^k)_{k\in\mathbb{N}}$ converging to a local minimum of F

$$z^{k+1} = z^k + \alpha^k \Delta z^k$$

where $\Delta z^k \in \mathbb{R}^n$ is the **search direction** and $\alpha^k \geq 0$ is the **step size**.

Definition (Descent direction)

The search direction Δz^k is a valid descent direction if

$$\nabla F(z^k)^{\top} \Delta z^k < 0$$

We look for **local** minimizers by constructing a sequence of iterates $(z^k)_{k\in\mathbb{N}}$ converging to a local minimum of F

$$z^{k+1} = z^k + \alpha^k \Delta z^k$$

where $\Delta z^k \in \mathbb{R}^n$ is the **search direction** and $\alpha^k \geq 0$ is the **step size**.

Definition (Descent direction)

The search direction Δz^k is a valid descent direction if

$$\nabla F(z^k)^{\top} \Delta z^k < 0$$

Example (Steepest descent)

The steepest descent direction $\Delta z = -\nabla F(z)$ is a valid descent direction.

We look for **local** minimizers by constructing a sequence of iterates $(z^k)_{k\in\mathbb{N}}$ converging to a local minimum of F

$$z^{k+1} = z^k + \alpha^k \Delta z^k$$

where $\Delta z^k \in \mathbb{R}^n$ is the search direction and $\alpha^k \geq 0$ is the step size.

Definition (Descent direction)

The search direction Δz^k is a valid descent direction if

$$\nabla F(z^k)^{\top} \Delta z^k < 0$$

Example (Steepest descent)

The steepest descent direction $\Delta z = -\nabla F(z)$ is a valid descent direction.

Example (Newton's method)

The Newton direction defined by

$$\Delta z = -\nabla^2 F(z)^{-1} F(z) \tag{16}$$

is a valid descent direction (for $\nabla^2 F(z) \succ 0$).

Once a valid descent direction Δz has been chosen, we need to make sure that the step corresponds to an actual decrease in the objective F, i.e. find α s.t.

$$F(z + \alpha \Delta z) < F(z)$$

Once a valid descent direction Δz has been chosen, we need to make sure that the step corresponds to an actual decrease in the objective F, i.e. find α s.t.

$$F(z + \alpha \Delta z) < F(z)$$

Example (Exact line search)

Select the step size that benefits the most from Δz

$$\alpha = \operatorname*{arg\,min}_{\alpha>0} F(z + \alpha \Delta z)$$

Once a valid descent direction Δz has been chosen, we need to make sure that the step corresponds to an actual decrease in the objective F, i.e. find α s.t.

$$F(z + \alpha \Delta z) < F(z)$$

Example (Exact line search)

Select the step size that benefits the most from Δz

$$\alpha = \operatorname*{arg\,min}_{\alpha > 0} F(z + \alpha \Delta z)$$

Example (Backtracking line search (BLTS))

Try and reduce α until some "sufficient decrease" condition is met

Numerical optimization: Steepest descent

 $\mbox{\bf Gradient descent}$ minimizes the $1^{st}\mbox{-}\mbox{order Taylor expansion of }F$ around the current iterate

$$F(z + \Delta z) \approx F(z) + \nabla F(z)^{\top} \Delta z + o(\|\Delta z^2\|)$$

by searching along the negative gradient $\Delta z = -\nabla F(z)$

Numerical optimization: Steepest descent

 $\mbox{\bf Gradient descent}$ minimizes the $1^{st}\mbox{-}\mbox{order Taylor expansion of }F$ around the current iterate

$$F(z + \Delta z) \approx F(z) + \nabla F(z)^{\top} \Delta z + o(\|\Delta z^2\|)$$

by searching along the negative gradient $\Delta z = -\nabla F(z)$

Theorem (Global linear convergence of gradient descent)

When f is strongly convex, gradient descent with BLTS converges linearly to the global mimimum $F^* \in \mathbb{R}$, i.e. there exist $\eta > 0$ s.t.

$$F(z^{k+1}) - F^* \le \eta \left(F(z^{k+1}) - F^* \right)$$

Numerical optimization: Steepest descent

 $\mbox{\bf Gradient descent}$ minimizes the $1^{st}\mbox{-}\mbox{order Taylor expansion of }F$ around the current iterate

$$F(z + \Delta z) \approx F(z) + \nabla F(z)^{\top} \Delta z + o(\|\Delta z^2\|)$$

by searching along the negative gradient $\Delta z = -\nabla F(z)$

Theorem (Global linear convergence of gradient descent)

When f is strongly convex, gradient descent with BLTS converges linearly to the global mimimum $F^* \in \mathbb{R}$, i.e. there exist $\eta > 0$ s.t.

$$F(z^{k+1}) - F^* \le \eta \left(F(z^{k+1}) - F^* \right)$$

- Global linear convergence
- \bullet The linear convergence rate η depends on the conditioning $\nabla^2 F(z)$
- In practice, convergence can be ridiculously slow
- Play with the code: mpc_tutorial/optimization/unconstrained.py

Numerical optimization: Newton direction

Newton method minimizes the 2^{nd} -order Taylor expansion

$$F(z + \Delta z) \approx F(z) + \nabla F(z)^{\top} \Delta z + \frac{1}{2} \Delta z^{\top} \nabla^2 F(z) \Delta z + o(\|\Delta z^3\|)$$

by searching along
$$\Delta z = -\left(\nabla^2 F(z)\right)^{-1} \nabla F(z)$$

Numerical optimization: Newton direction

Newton method minimizes the 2^{nd} -order Taylor expansion

$$F(z + \Delta z) \approx F(z) + \nabla F(z)^{\top} \Delta z + \frac{1}{2} \Delta z^{\top} \nabla^2 F(z) \Delta z + o(\|\Delta z^3\|)$$

by searching along $\Delta z = -\left(\nabla^2 F(z)\right)^{-1} \nabla F(z)$

Theorem (Local quadratic convergence of Newton)

When f is strongly convex, Newton method with BLTS converges quadratically to $F^* \in \mathbb{R}$, i.e. there exist $\eta > 0$ s.t.

$$\|\nabla F(z^{k+1})\| \le \left(\eta \|\nabla F(z^{k+1})\|\right)^2$$

provided that z^0 is close enough to z^*

Numerical optimization: Newton direction

Newton method minimizes the 2^{nd} -order Taylor expansion

$$F(z + \Delta z) \approx F(z) + \nabla F(z)^{\mathsf{T}} \Delta z + \frac{1}{2} \Delta z^{\mathsf{T}} \nabla^2 F(z) \Delta z + o(\|\Delta z^3\|)$$

by searching along $\Delta z = -\left(\nabla^2 F(z)\right)^{-1} \nabla F(z)$

Theorem (Local quadratic convergence of Newton)

When f is strongly convex, Newton method with BLTS converges quadratically to $F^* \in \mathbb{R}$, i.e. there exist $\eta > 0$ s.t.

$$\|\nabla F(z^{k+1})\| \le \left(\eta \|\nabla F(z^{k+1})\|\right)^2$$

provided that z^0 is close enough to z^*

- ullet Local quadratic convergence : z^0 must be "close enough" to z^*
- Convergence is much faster than gradient descent
- $\nabla^2 F(z)$ is expensive to compute and must be $\succ 0$
- Play with the code : mpc_tutorial/optimization/unconstrained.py

In order to solve the unconstrained minimization problem

$$\min_{z\in\mathbb{R}^n}\;F(z)$$

In order to solve the unconstrained minimization problem

$$\min_{z \in \mathbb{R}^n} F(z)$$

we are looking for **local minimizers** of F by iteratively computing a **descent direction** and searching for a sufficient decrease along this direction.

In order to solve the unconstrained minimization problem

$$\min_{z \in \mathbb{R}^n} F(z)$$

we are looking for **local minimizers** of F by iteratively computing a **descent direction** and searching for a sufficient decrease along this direction.

Gradient descent

 1^{st} -order method leveraging ∇F

Global linear convergence rate

In order to solve the unconstrained minimization problem

$$\min_{z \in \mathbb{R}^n} F(z)$$

we are looking for **local minimizers** of F by iteratively computing a **descent direction** and searching for a sufficient decrease along this direction.

Gradient descent

 $\mathbf{1}^{st}\text{-}\mathrm{order}$ method leveraging ∇F

Global linear convergence rate

Newton method

 $2^{nd}\text{-}\mathrm{order}$ method leveraging $\nabla F, \nabla^2 F$

Local quadratic convergence rate

In order to solve the unconstrained minimization problem

$$\min_{z \in \mathbb{R}^n} F(z)$$

we are looking for **local minimizers** of F by iteratively computing a **descent direction** and searching for a sufficient decrease along this direction.

Gradient descent

 $1^{st}\text{-order method leveraging }\nabla F$

Global linear convergence rate

Newton method

 2^{nd}-order method leveraging $\nabla F, \nabla^2 F$

Local quadratic convergence rate

Example

In order to solve the unconstrained minimization problem

$$\min_{z \in \mathbb{R}^n} F(z)$$

we are looking for **local minimizers** of F by iteratively computing a **descent direction** and searching for a sufficient decrease along this direction.

Gradient descent

 $1^{st}\text{-order method leveraging }\nabla F$

Global linear convergence rate

Newton method

 2^{nd}-order method leveraging $\nabla F, \nabla^2 F$

Local quadratic convergence rate

What about constraints?

Consider now the problem with constraints $G: \mathbb{R}^n \mapsto \mathbb{R}^{n_e}, H: \mathbb{R}^n \mapsto \mathbb{R}^{n_i}$

$$\min_{z \in \mathbb{R}^n} F(z)$$

$$\mathrm{s.t.}\ G(z)=0$$

$$H(z) \le 0$$

Consider now the problem with **constraints** $G: \mathbb{R}^n \mapsto \mathbb{R}^{n_e}, H: \mathbb{R}^n \mapsto \mathbb{R}^{n_i}$

$$\min_{z \in \mathbb{R}^n} F(z)$$
 s.t. $G(z) = 0$
$$H(z) \le 0$$

Definition (Feasible set)

The feasible set is defined as

$$\Omega = \{ z \in \mathbb{R}^n \mid G(z) = 0 \land H(z) \le 0 \}$$

A minimizer z^* is a feasible point $z^* \in \Omega$ that minimizes F.

Consider now the problem with **constraints** $G: \mathbb{R}^n \mapsto \mathbb{R}^{n_e}, H: \mathbb{R}^n \mapsto \mathbb{R}^{n_i}$

$$\min_{z \in \mathbb{R}^n} F(z)$$
 s.t. $G(z) = 0$
$$H(z) < 0$$

Definition (Feasible set)

The feasible set is defined as

$$\Omega = \{ z \in \mathbb{R}^n \mid G(z) = 0 \land H(z) \le 0 \}$$

A minimizer z^* is a feasible point $z^* \in \Omega$ that minimizes F.

- Same notions of global vs local minimizers
- We are usually looking for a *local* solution $z^* \in \Omega$
- ullet Easier (i.e. many results) when F is convex and G,H are linear

Consider now the problem with **constraints** $G: \mathbb{R}^n \mapsto \mathbb{R}^{n_e}, H: \mathbb{R}^n \mapsto \mathbb{R}^{n_i}$

$$\min_{z \in \mathbb{R}^n} F(z)$$
 s.t. $G(z) = 0$
$$H(z) \le 0$$

Definition (Feasible set)

The feasible set is defined as

$$\Omega = \{ z \in \mathbb{R}^n \mid G(z) = 0 \land H(z) \le 0 \}$$

A minimizer z^* is a feasible point $z^* \in \Omega$ that minimizes F.

- Same notions of global vs local minimizers
- We are usually looking for a *local* solution $z^* \in \Omega$
- ullet Easier (i.e. many results) when F is convex and G,H are linear

Like in the unconstrained case, we will look for **local optima** by enforcing some first-order **necessary** conditions

Constrained optimization: KKT conditions

Definition (Lagrangian)

We define the Lagrangian as

$$\mathcal{L}(z,\lambda,\mu) = F(z) + \lambda^{\top} G(z) + \mu^{\top} H(z)$$

where $(\lambda,\mu)\in\mathbb{R}^{n_e}\times\mathbb{R}^{n_i}$ are the Lagrange multipliers associated (G,H). (λ,μ) are also called the *dual variables* and z the *primal variable*.

Constrained optimization: KKT conditions

Definition (Lagrangian)

We define the Lagrangian as

$$\mathcal{L}(z, \lambda, \mu) = F(z) + \lambda^{\top} G(z) + \mu^{\top} H(z)$$

where $(\lambda, \mu) \in \mathbb{R}^{n_e} \times \mathbb{R}^{n_i}$ are the Lagrange multipliers associated (G, H). (λ, μ) are also called the *dual variables* and z the *primal variable*.

Theorem (First-order necessary conditions for optimality)

If z^* be a local minimizer (+ some assumptions), then there exist $\lambda^* \in \mathbb{R}^{n_e}$ and $\mu^* \in \mathbb{R}^{n_i}$ such that the Karush-Kuhn-Tucker (KKT) conditions hold

$$\nabla_z \mathcal{L}(z^*, \lambda^*, \mu^*) = 0 \quad \text{Stationarity}$$
 (17)

$$G(z^*) = 0 \land H(z^*) \le 0$$
 Primal feasibility (18)

$$\mu_i \ge 0$$
 Dual feasibility (19)

$$\mu_i H_i(z^*) = 0$$
 Complementary slackness (20)

- In the unconstrained case we were looking for stationary points
- We are now looking for KKT points

Let's focus on the equality-constrained problem first (no \it{H})

$$\begin{bmatrix} \nabla_z \mathcal{L}(z,\lambda) \\ G(z) \end{bmatrix} = 0 \tag{21}$$

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z,\lambda) \\ G(z) \end{bmatrix} = 0 \tag{21}$$

Now recall a fundamental result from undergrad analysis.

Theorem (Newton-Raphson method for nonlinear equations)

We can find a root of the nonlinear equation

$$r(w) = 0$$

iteratively using the Newton-Raphson algorithm

Result: Root w

while ||r(w)|| > tol do

Compute the step direction Δw s.t. $\nabla r(w)^{\top} \Delta w = -r(w)$

Take the step $w \leftarrow w + \Delta w$

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z, \lambda) \\ G(z) \end{bmatrix} = 0 \tag{21}$$

Now recall a fundamental result from undergrad analysis.

Theorem (Newton-Raphson method for nonlinear equations)

We can find a root of the nonlinear equation

$$r(w) = 0$$

iteratively using the Newton-Raphson algorithm

Result: Root w

while ||r(w)|| > tol do

Compute the step direction Δw s.t. $\nabla r(w)^{\top} \Delta w = -r(w)$

Take the step $w \leftarrow w + \Delta w$

Example : Newton-Raphson to solve r(w) = 0 with $r(w) = w^4 - 3w^3 + 2$

Play with it: mpc_tutorial/optimization/newton_raphson.py

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z,\lambda) \\ G(z) \end{bmatrix} = 0$$
 (21)

Idea: Apply Newton-Raphson to find a root of (21)

Solve
$$r(z, \lambda) = 0$$
 with

$$r(z,\lambda) = \begin{bmatrix} \nabla_z \mathcal{L}(z,\lambda) \\ G(z) \end{bmatrix}$$

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z,\lambda) \\ G(z) \end{bmatrix} = 0$$
 (21)

The Newton-Raphson step $\Delta w \triangleq (\Delta z, \Delta \lambda)$ is given by solving

$$\underbrace{\begin{bmatrix} \nabla_{zz}^{2} \mathcal{L}(z,\lambda) & \nabla G(z) \\ \nabla G(z)^{\top} & 0 \end{bmatrix}}_{"\nabla r(w)^{\top}"} \underbrace{\begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}}_{"\Delta w"} = - \underbrace{\begin{bmatrix} \nabla_{z} \mathcal{L}(z,\lambda) \\ \nabla G(z) \end{bmatrix}}_{"r(w)"}$$
(22)

and it is called the Newton direction

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z, \lambda) \\ G(z) \end{bmatrix} = 0 \tag{21}$$

The Newton-Raphson step $\Delta w \triangleq (\Delta z, \Delta \lambda)$ is given by solving

$$\underbrace{\begin{bmatrix} \nabla_{zz}^{2} \mathcal{L}(z,\lambda) & \nabla G(z) \\ \nabla G(z)^{\top} & 0 \end{bmatrix}}_{"\nabla r(w)^{\top}"} \underbrace{\begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}}_{"\Delta w"} = - \underbrace{\begin{bmatrix} \nabla_{z} \mathcal{L}(z,\lambda) \\ \nabla G(z) \end{bmatrix}}_{"r(w)"}$$
(22)

and it is called the Newton direction

The primal-dual variables (z, λ) are then updated

$$\begin{bmatrix} z^{k+1} \\ \lambda^{k+1} \end{bmatrix} = \begin{bmatrix} z^k \\ \lambda^k \end{bmatrix} + \begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}$$
 (23)

We need $\nabla^2_{zz}\mathcal{L}(z,\lambda) \succ 0$ and $\nabla G(z)$ full row rank

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z, \lambda) \\ G(z) \end{bmatrix} = 0 \tag{21}$$

The Newton-Raphson step $\Delta w \triangleq (\Delta z, \Delta \lambda)$ is given by solving

$$\underbrace{\begin{bmatrix} \nabla_{zz}^{2} \mathcal{L}(z,\lambda) & \nabla G(z) \\ \nabla G(z)^{\top} & 0 \end{bmatrix}}_{"\nabla r(w)^{\top}"} \underbrace{\begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}}_{"\Delta w"} = - \underbrace{\begin{bmatrix} \nabla_{z} \mathcal{L}(z,\lambda) \\ \nabla G(z) \end{bmatrix}}_{"r(w)"}$$
(22)

and it is called the Newton direction

The primal-dual variables (z, λ) are then updated

$$\begin{bmatrix} z^{k+1} \\ \lambda^{k+1} \end{bmatrix} = \begin{bmatrix} z^k \\ \lambda^k \end{bmatrix} + \begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}$$
 (23)

We need $\nabla^2_{zz} \mathcal{L}(z,\lambda) \succ 0$ and $\nabla G(z)$ full row rank

Example:
$$F(z) = z^{T}Az$$
 and $G(z) = z^{T}Bz - c$

Play with it: mpc_tutorial/optimization/constrained.py

Let's focus on the equality-constrained problem first (no H)

$$\begin{bmatrix} \nabla_z \mathcal{L}(z, \lambda) \\ G(z) \end{bmatrix} = 0 \tag{21}$$

The Newton-Raphson step $\Delta w \triangleq (\Delta z, \Delta \lambda)$ is given by solving

$$\underbrace{\begin{bmatrix} \nabla_{zz}^{2} \mathcal{L}(z,\lambda) & \nabla G(z) \\ \nabla G(z)^{\top} & 0 \end{bmatrix}}_{"\nabla r(w)^{\top}"} \underbrace{\begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}}_{"\Delta w"} = - \underbrace{\begin{bmatrix} \nabla_{z} \mathcal{L}(z,\lambda) \\ \nabla G(z) \end{bmatrix}}_{"r(w)"}$$
(22)

and it is called the Newton direction

The primal-dual variables (z,λ) are then updated

$$\begin{bmatrix} z^{k+1} \\ \lambda^{k+1} \end{bmatrix} = \begin{bmatrix} z^k \\ \lambda^k \end{bmatrix} + \begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}$$
 (23)

We need $\nabla^2_{zz} \mathcal{L}(z,\lambda) \succ 0$ and $\nabla G(z)$ full row rank

What about inequalities now?

Constrained optimization: Inequalities

The complementary slackness condition $\mu_i H_i(z^*) = 0$ is non-smooth

We cannot apply Newton-Raphson directly in the presence of inequalities

Constrained optimization: Inequalities

Key: re-interpret the Newton method for equality-constrained problems

Theorem (Quadratic model interpretation)

The Newton-Raphson direction is **also** given by solving a linear-quadratic approximation of the original NLP

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z, \lambda) \Delta z + \nabla F(z)^{\top} \Delta z$$

$$s.t. \ \nabla G(z)^{\top} \Delta x + G(z) = 0 \qquad (\lambda^{QP})$$
(24)

In particular we have $\lambda^{QP} = \lambda^{k+1}$

Constrained optimization: Inequalities

Key: re-interpret the Newton method for equality-constrained problems

Theorem (Quadratic model interpretation)

The Newton-Raphson direction is **also** given by solving a linear-quadratic approximation of the original NLP

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z, \lambda) \Delta z + \nabla F(z)^{\top} \Delta z$$

$$\mathbf{s.t.} \ \nabla G(z)^{\top} \Delta x + G(z) = 0 \qquad (\lambda^{QP})$$
(24)

In particular we have $\lambda^{QP} = \lambda^{k+1}$

Constrained optimization: Inequalities

Key: re-interpret the Newton method for equality-constrained problems

Theorem (Quadratic model interpretation)

The Newton-Raphson direction is **also** given by solving a linear-quadratic approximation of the original NLP

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z, \lambda) \Delta z + \nabla F(z)^{\top} \Delta z$$

$$\mathbf{s.t.} \ \nabla G(z)^{\top} \Delta x + G(z) = 0 \qquad (\lambda^{QP})$$
(24)

In particular we have $\lambda^{QP} = \lambda^{k+1}$

We were just solving a QP!

Constrained optimization: Inequalities

Key: re-interpret the Newton method for equality-constrained problems

Theorem (Quadratic model interpretation)

The Newton-Raphson direction is **also** given by solving a linear-quadratic approximation of the original NLP

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z, \lambda) \Delta z + \nabla F(z)^{\top} \Delta z$$

$$s.t. \ \nabla G(z)^{\top} \Delta x + G(z) = 0 \qquad (\lambda^{QP})$$
(24)

In particular we have $\lambda^{QP} = \lambda^{k+1}$

We were just solving a QP!

Based on this key observation, there are 2 main ways to handle inequalities :

- Interior Point (IP): "Get rid of inequality"
- Sequential-Quadratic Programming (SQP): "Give it to the QP"

Idea: relegate the inequalities to the QP

Idea: relegate the inequalities to the QP

We are solving a sequence of linear-quadratic approximations of the original NLP around each iterate (z^k,λ^k)

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z^{k}, \lambda^{k}) \Delta z + \nabla F(z^{k})^{\top} \Delta z$$
s.t.
$$\nabla G(z^{k})^{\top} \Delta x + G(z^{k}) = 0$$

$$\nabla H(z^{k})^{\top} \Delta x + H(z^{k}) \leq 0$$
(25)

Idea: relegate the inequalities to the QP

We are solving a sequence of linear-quadratic approximations of the original NLP around each iterate (z^k,λ^k)

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z^{k}, \lambda^{k}) \Delta z + \nabla F(z^{k})^{\top} \Delta z$$
s.t.
$$\nabla G(z^{k})^{\top} \Delta x + G(z^{k}) = 0$$

$$\nabla H(z^{k})^{\top} \Delta x + H(z^{k}) \leq 0$$
(25)

Use any QP solver you like to compute the Newton direction $(\Delta z, \Delta \lambda, \Delta \mu)$

Idea: relegate the inequalities to the QP

We are solving a sequence of linear-quadratic approximations of the original NLP around each iterate (z^k,λ^k)

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z^{k}, \lambda^{k}) \Delta z + \nabla F(z^{k})^{\top} \Delta z$$
s.t.
$$\nabla G(z^{k})^{\top} \Delta x + G(z^{k}) = 0$$

$$\nabla H(z^{k})^{\top} \Delta x + H(z^{k}) \leq 0$$
(25)

Use any QP solver you like to compute the Newton direction $(\Delta z, \Delta \lambda, \Delta \mu)$

Typically perform a line-search using a merit function [Nocedal]

$$\begin{split} z^{k+1} &= z^k + \alpha \Delta z \\ \lambda^{k+1} &= \lambda^k + \alpha \Delta \lambda \\ \mu^{k+1} &= \mu^k + \alpha \Delta \mu \end{split}$$

Idea: relegate the inequalities to the QP

We are solving a sequence of linear-quadratic approximations of the original NLP around each iterate (z^k,λ^k)

$$\min_{\Delta z} \frac{1}{2} \Delta z^{\top} \nabla_{zz} \mathcal{L}(z^{k}, \lambda^{k}) \Delta z + \nabla F(z^{k})^{\top} \Delta z$$
s.t.
$$\nabla G(z^{k})^{\top} \Delta x + G(z^{k}) = 0$$

$$\nabla H(z^{k})^{\top} \Delta x + H(z^{k}) \leq 0$$
(25)

Use any QP solver you like to compute the Newton direction $(\Delta z, \Delta \lambda, \Delta \mu)$

Typically perform a line-search using a merit function [Nocedal]

$$z^{k+1} = z^k + \alpha \Delta z$$
$$\lambda^{k+1} = \lambda^k + \alpha \Delta \lambda$$
$$\mu^{k+1} = \mu^k + \alpha \Delta \mu$$

SQP has local quadratic convergence!

Key take-aways:

• Constrained optimization is much harder

- Constrained optimization is much harder
- ullet KKT conditions are the 1^{st} -order necessary conditions for optimality

- Constrained optimization is much harder
- ullet KKT conditions are the 1^{st} -order necessary conditions for optimality
- We can solve equality-constrained problems using Newton's method

- Constrained optimization is much harder
- ullet KKT conditions are the 1^{st} -order necessary conditions for optimality
- We can solve equality-constrained problems using Newton's method
- This is equivalent to solving a sequence of equality-constrained QPs

- Constrained optimization is much harder
- ullet KKT conditions are the 1^{st} -order necessary conditions for optimality
- We can solve equality-constrained problems using Newton's method
- This is equivalent to solving a sequence of equality-constrained QPs
- Inequality constraints are handled based on this idea

- Constrained optimization is much harder
- ullet KKT conditions are the 1^{st} -order necessary conditions for optimality
- We can solve equality-constrained problems using Newton's method
- This is equivalent to solving a sequence of equality-constrained QPs
- Inequality constraints are handled based on this idea
- In particular, SQP solves a sequence of inequality-constrained QPs

Key take-aways:

- Constrained optimization is much harder
- ullet KKT conditions are the 1^{st} -order necessary conditions for optimality
- We can solve equality-constrained problems using Newton's method
- This is equivalent to solving a sequence of equality-constrained QPs
- Inequality constraints are handled based on this idea
- In particular, SQP solves a sequence of inequality-constrained QPs
- SQP converges quadratically to KKT points

This was a long detour from our original problem

Now how to use SQP to solve our discrete-time OCP?

Next time

In Session 3 we will address 2 questions

- How to apply SQP to the solve the OCP ? i.e. what is z in terms of the OCP decision variables u_k , x_k ?
 - Single-shooting $z \triangleq (u_0,...,u_{T-1})$. Only controls are decision variables
 - Multiple-shooting $z \triangleq (x_0, u_0, ..., x_{T-1}, u_{T-1}, x_T)$. Both controls and states are decisions variables.
- How to solve the SQP (14) efficiently by exploiting the underlying structure of the OCP ?
- What is Model-Predictive Control (MPC) and how to achieve it in practice?

Single vs multiple shooting

What is z w.r.t. our optimal control variables x_k, u_k ?

We consider 2 options :

• Single-shooting $z \triangleq (u_0,...,u_{T-1})$. Only controls are decision variables, states are recovered from controls through integration of the dynamics

$$x_{k+1} = f(x_k, u_k) (26)$$

② Multiple-shooting $z \triangleq (x_0, u_0, ..., x_{T-1}, u_{T-1}, x_T)$. Both controls and states are decisions variables.