Resolution Refutation Proof

10/02/2025

Koustav Rudra

Procedure for Resolution

- Convert the set of rules and facts into clause form (conjunction of clauses)
- Insert the negation of the goal as another clause
- Use resolution to deduce a refutation
- If the refutation is obtained then the goal can be deduced from the set of facts and rules
- φ : F1 \wedge F2 \wedge ... \wedge Fn \rightarrow G
- $\varphi : \sim (F1 \land F2 \land ... \land Fn) \lor G \longrightarrow Valid$
- $\sim \varphi$: F1 \land F2 \land ... \land Fn $\land \sim$ G Unsatisfiable

Resolution

• If Unify $(z_j, \sim q_k) = \theta$

• $z_1 V \dots z_m, q_1 V \dots, q_n$

• SUBST(θ , $z_1 \vee ... z_{i-1} \vee z_{i-1} ... z_m \vee q_1 \vee ... q_{k-1} \vee q_{k+1} ... \vee q_n$)

Example

- Akash, Amit, and Arun are students of a school
- Every student is either wicked or is a good Cricket player, or both
- No Cricket player likes rain and all wicked students like potions
- Arun dislikes whatever Akash likes and likes whatever Akash dislikes
- Arun likes rain and potions
- Is there anyone who is good in Cricket but not in potions?

- Akash, Amit, and Arun are students of a school
 - C1: Student(Akash)
 - C2: Student(Amit)
 - C3: Student(Arun)
- Every student is either wicked or is a good Cricket player, or both
 - $\forall_x \text{Student}(x) \rightarrow \text{Wicked}(x) \vee \text{Cricket}(x)$
 - C4: ~Student(x) V Wicked(x) V Cricket(x)

- No Cricket player likes rain and all wicked students like potions
 - $\forall_x \operatorname{Cricket}(x) \rightarrow \sim \operatorname{Likes}(x, \operatorname{Rain})$
 - \forall_x Wicked(x) \rightarrow Likes(x, Potions)
 - C5: $\forall_x \sim \text{Cricket}(x) \vee \sim \text{Likes}(x, \text{Rain})$
 - C6: \forall_{χ} ~Wicked(x) \lor Likes(x, Potions)

- Arun dislikes whatever Akash likes and likes whatever Akash dislikes
 - \forall_x Likes(Akash, x) \Leftrightarrow ~Likes(Arun, x)
 - \forall_x [Likes(Akash, x) \rightarrow ~Likes(Arun, x)] \land [~Likes(Arun, x) \rightarrow Likes(Akash, x)]
 - C7: \forall_x ~Likes(Akash, x) \vee ~Likes(Arun, x)
 - C8: \forall_x Likes(Akash, x) \vee Likes(Arun, x)
- Arun likes rain and potions
 - C9: Likes(Arun, Rain)
 - C10: Likes(Arun, Potions)

- Is there anyone who is good in Cricket but not in potions?
 - G: \exists_x Cricket(x) \land ~Likes(x, Potions)
 - \sim G: $\forall_x \sim \text{Cricket}(x) \vee \text{Likes}(x, \text{Potions})$
 - C11: $\forall_{x} \sim \text{Cricket}(x) \vee \text{Likes}(x, \text{Potions})$

Resolution Refutation Strategies

Resolution Strategies

- Unit Resolution
 - Every resolution step must involve a unit clause
 - Unit clause
 - A clause that does not have any OR
 - It just has one predicate or its negation
 - Leads to a good speedup
 - Incomplete in general
 - There might be cases that can't be deduced using unit resolution but can be deduced using other resolution methods
 - Complete for Horn knowledge bases

Resolution Strategies

- Input Resolution
 - Every resolution step must involve an input sentence (from the query or KB)
 - All can't be derived clauses
 - In Horn knowledge bases, Modus Ponens is a kind of input resolution strategy
 - Incomplete in general
 - Complete for Horn knowledge bases

C1: Student(Akash)

C2: Student(Amit)

C3: Student(Arun)

C4: ~Student(x) V Wicked(x) V Cricket(x)

C5: $\forall_x \sim \text{Cricket}(x) \lor \sim \text{Likes}(x, \text{Rain})$

C6: $\forall_x \sim \text{Wicked}(x) \lor \text{Likes}(x, \text{Potions})$

C7: $\forall_{x} \sim \text{Likes}(Akash, x)$

V ~Likes(Arun, x)

C8: \forall_{χ} Likes(Akash, x) \vee Likes(Arun, x)

C9: Likes(Arun, Rain)

C10: Likes(Arun, Potions)

C11: $\forall_x \sim \text{Cricket}(x) \lor \text{Likes}(x, \text{Potions})$

Resolution Strategies

- Linear Resolution
 - Slight generalization of input resolution
 - Allows P and Q to be resolved together either
 - if P is in the original KB, or
 - if P is an ancestor of Q in the proof tree
 - Linear resolution is complete

What is Deduction?

• Deduction is also a kind of search

• We have to search within the rules, facts, and clauses

• Find them in appropriate order in which to apply them to deduce clauses and goals

Logic Programming: Prolog

10/02/2025

Koustav Rudra

Objective

• How to write programs using Prolog?

- Tools:
 - GNU Prolog
 - SWI Prolog

Language Choice

- "Known" languages like FORTRAN, C/C++, Java, python
 - Imperative: How-type language
- Goal Oriented Languages (Declarative)
 - Declarative: What-type language
 - LISP
 - ProLog: Truly what-type language

Imperative vs Declarative

- Imperative: Comprises a sequence of commands
- Declarative: Declare what result we want and leave the language to come up with the procedure to produce them

Prolog and FOL

- Prolog Language Syntax
 - Horn clause
 - F1 \land F2...Fn \rightarrow G
 - $child(x) \land male(x) \rightarrow boy(x)$
- Prolog proof procedure
 - Resolution Principle
- Prolog goal matching
 - Unification and substitution

How to specify rule?

• $child(x) \land male(x) \rightarrow boy(x)$

• boy(x) :- child(x) \land male(x)

Prolog Computation Model

Prolog

- Declarative language
 - Don't have to specify how a program should execute
 - Just declare what you want to do

Basics

- The notion of instantiation
 - likes(harry, school).
 - likes(ron, broom).
 - likes(harry, X) :- likes(ron, X). [likes(ron, X) \rightarrow likes(harry, X)]
 - In order to deduce what harry likes we have to deduce first what ron likes
- Consider following goals:
 - ?-likes(harry,broom)

Solution

- ?-likes(harry, broom)
 - likes(harry, X) :- likes(ron, X)
 - likes(ron, broom)
- ?-likes(harry, Y)
 - Prolog will identify all possible instantiations of Y that satisfies likes(harry, Y)

Processing Sequence

• Prolog processes the facts and rules in sequential order

• Put the base condition always has to be specified high up in the order, so that it first tries the base condition, then recursion

Prolog Rules

- $\forall_{xz}\exists_y \text{ advisor}(X,Y) \land \text{ advisor}(Y,Z) \rightarrow \text{grand_advisor}(X,Z)$
- IF there is a Y such that X is advisor of Y AND Y is advisor of Z THEN X is a grand advisor of Z
- Prolog rules are Horn Clauses:
 - $(P_{11}VP_{12}V...VP_{1m})\Lambda...\Lambda(P_{n1}VP_{n2}V...VP_{nr}) \rightarrow Q$
 - Q:- P_{11} ; P_{12} ;...; P_{1m} ,..., P_{n1} ; P_{n2} ;...; P_{nr}

Prolog Rules: Recursion

- ancestor(X, Z) :- advisor(X, Z)
- ancestor(X, Z) :- advisor(X, Y), advisor(Y, Z)
- ancestor(X, Z):- advisor(X, Y1), advisor(Y1, Y2), advisor(Y2, Z)

- ancestor(X, Z) :- advisor(X, Z)
- ancestor(X, Z) :- advisor(X, Y), ancestor(Y, Z)
- X is an ancestor of Z if X is an advisor of Y AND Y is an ancestor of Z

Thank You