08

LINGUAGEM DE MONTAGEM (8086) – PARTE II

Objetivos

- Estudar e executar programas em linguagem "Assembly / 8086";
- Aprimorar/desenvolver programas básicos em linguagem "Assembly / 8086";
- Estudar novas instruções do 8086 e utilizar serviços da BIOS/DOS via interrupção de software...

Roteiro

- 1. O programa da listagem 1 exibe na tela o conteúdo da variável 'x' (2 dígitos). Crie uma nova subrotina capaz de imprimir números decimais de até 3 dígitos.
- 2. Considere o programa da listagem II, o qual está incompleto. Complete este programa criando uma subrotina capaz de exibir números decimais de até 4 dígitos. □
- 3. A listagem III recebe 1 número de dois dígitos e exibe o seu valor duplicado (2 dígitos). Altere este programa para receber números de até 4 dígitos e exibir números de até 5 dígitos.
- 4. Implemente, execute, entenda e comente o programa da listagem IV. Usando a opção "view" / "memory"no menu do EMU8086 verifique o seguinte: (a) os endereços de vec1, vec2 e vec3; (b) os valores armazenados nas posições de memória de vec3 após a execução do código. □
- 5. Altere a listagem IV de forma que o mesmo exiba na tela do computador os dados e resultados **exatamente** no formato indicado a seguir:

Vetor
$$1 = [abcd]$$

Vetor $2 = [efgh]$
Soma = $[ijkl]$

6. Utilizando ainda como base o programa da listagem IV, escreva um código que calcule o produto escalar entre **vec1** e **vec2**. Armazene em uma nova variável (**escalar**) esse valor. (Lembre-se de que, dados dois vetores no R³, descritos por **u** = (u1, u2, u3) e **v** = (v1, v2, v3), o produto escalar de **u** e **v** é definido por: **u**•**v** = u1.v1 + u2.v2 + u3.v3. □

Tabela 1 – Listagens de programas.

Listagem I	Listagem II	Listagem III		Listagem IV
org 100h	org 100h	org 100h	lea dx,quebra lin	org 100h
jmp ini	jmp ini	jmp ini	mov ah,9	imp start
x db 23	label 1 db "tempo = \$"	label1 db " $x = $ \$"	int 21h	vec1 db 1, 2, 5, 6
	label2 db "dist. = \$"	label2 db "2*x = \$"	lea dx,label2	vec2 db 3, 5, 3, 1
ini:	quebra lin db	quebra lin db 0x0d,0x0a,'\$'	mov ah,9	vec3 db?,?,?,?
mov al,[x]	0x0d,0x0a,'\$'	ini:	int 21h	, , ,
,,,,	tempo dw 3798	lea dx,label1	pop ax	start:
call imprime 2d	dist dw 9922	mov ah,9	mov dl,2	lea si, vec1
	ini:	int 21h	mul dl	lea bx, vec2
.EXIT	lea dx,label1	mov ah,1	call imprime 2d	lead di, vec3
	mov ah,9	int 21h	.EXIT	mov cx, 4
imprime 2d:	int 21h	sub al,48	imprime 2d:	sum:
mov ah,0	mov ax,[tempo]	mov dl,10	$\stackrel{1}{\text{mov ah,}0}$	mov al, [si]
mov dl,10	call imprime 4d	mul dl	mov dl,10	add al, [bx]
div dl	lea dx,quebra lin	mov dl,al	div dl	mov [di], al
mov dl,al	mov ah,9	mov ah,1	mov dl,al	inc si
mov cl,ah	int 21h	int 21h	mov cl,ah	inc bx
mov ah,2	lea dx,label2	sub al,48	mov ah,2	inc di
add dl,48	mov ah,9	add al,dl	add dl,48	loop sum
int 21h	int 21h	mov ah,0	int 21h	.EXIT
mov dl,cl	mov ax,[dist]	push ax	mov dl,cl	
add dl,48	call imprime 4d		add dl,48	
int 21h	.EXIT		int 21h	
ret	imprime 4d:		ret	
	ret			

Questões adicionais

- 1) Realize a leitura de uma palavra de 5 caracteres através do serviço 0Ah da INT 21h, e em seguida realize a conversão desta palavra (o usuário deve apenas digitar os caracteres de 0-9) em um número salvo no registrador AX. Para realizar esta tarefa, crie um laço e faça a varredura na área da variável lida utilizando o modo de endereçamento indexado através de SI.
- 2) Realizando a leitura sem eco do teclado, dígito por dígito, implemente uma subrotina capaz de ler 4 números (demais caracteres devem ser ignorados). Caso o caractere seja válido, faça a impressão na tela antes de realizar a próxima leitura.