_	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1-\alpha}^{\#2}$	τ#1 α	τ ₁ -2 α
$\sigma_{1}^{\#1} \dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_{1}^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\!\#1}\dagger^lpha$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0
$ au_1^{#2} \dagger^{lpha}$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$

Total #:	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
16	5	3	3	3	1	1	#	

_	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	$6 k^2 r_3$	0	0	0
$f_{0+}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

$$\sigma_{2^{+} \alpha \beta}^{\#1} \qquad \tau_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1}$$

$$\sigma_{2^{+}}^{\#1} \uparrow^{\alpha \beta} \qquad \frac{2}{(1+2 k^{2})^{2} t_{1}} - \frac{2 i \sqrt{2} k}{(1+2 k^{2})^{2} t_{1}} \qquad 0$$

$$\tau_{2^{+}}^{\#1} \uparrow^{\alpha \beta} \qquad \frac{2 i \sqrt{2} k}{(1+2 k^{2})^{2} t_{1}} \qquad \frac{4 k^{2}}{(1+2 k^{2})^{2} t_{1}} \qquad 0$$

$$\sigma_{2^{-}}^{\#1} \uparrow^{\alpha \beta \chi} \qquad 0 \qquad 0 \qquad \frac{2}{t_{1}}$$

 $\frac{\text{Unitarity conditions}}{r_5 < -2 r_3 \&\& t_1 < 0 \mid\mid t_1 > 0}$

(No massive particles)

$-\frac{1}{3}t_{1} \omega_{\alpha}^{\alpha l} \omega_{\kappa\alpha}^{\kappa} - t_{1} \omega_{\kappa}^{\kappa\lambda} \omega_{\kappa\lambda}^{l} - 2r_{3} \partial_{l}\omega_{\kappa}^{\kappa\lambda} \partial^{l}\omega_{\lambda}^{\alpha} - r_{5} \partial_{l}\omega_{\kappa}^{\kappa\lambda} \partial^{l}\omega_{\lambda}^{\alpha} + 2r_{3} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda} - 2r_{3} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} + r_{5} \partial_{\alpha}\omega^{\kappa\lambda\theta} $	Lagrangian density
--	--------------------

$f_{1}^{#2} + \alpha$	$f_{1-}^{#1} +^{\alpha}$	$\omega_{1^{-}}^{#2} \uparrow^{\alpha}$	$\omega_{1^{-}}^{*1}\dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{#2} + \alpha \beta$	$\omega_{1}^{#1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i kt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$+^{\alpha\beta} k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2}f_{1+\alpha\beta}^{\#1}$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$-\frac{1}{3}ikt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	0	0	0	$\omega_{1^-lpha}^{*1}$
$-\frac{1}{3}i\sqrt{2}kt_1$	0	$\frac{t_1}{3}$	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^- \; lpha}^{\# 2}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
$\frac{2 k^2 t_1}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	<u>i kt1</u> 3	0	0	0	$f_{1^-\alpha}^{\#2}$