

DERIVED DISTROS

PMF.	function	Οİ	disc	rete	RV
$p_Y(y)$)=P(g(x)=	= <i>y</i>)	$=\sum_{x:g(x)}$		(x)
			u.9(u)-9	

Linear Functions

$$Y = aX + b$$

$$p_Y(y) = p_X\left(rac{y-b}{a}
ight)$$

$$f_Y(y) = rac{1}{|a|} f_Xigg(rac{y-b}{a}igg)$$

g is monotonic

$$\left|f_Y(y)=f_X(h(y))
ight|rac{dh}{fy}(y)
ight|$$

general case

1) find CDF:
$$F_Y(y) = P(g(x) \leq y)$$

2) derive CDF for PDF

CONVOLUTIONS

$$Z = X + Y$$

$$p_Z(z) = \sum_z p_X(x) p_Y(z-x)$$

$$f_Z(z) = \int_{-\infty}^{\infty} \!\! f_X(x) f_Y(z-x) dx$$

COVARIANCE

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])$$

Direction

Cov(X,Y)>0 same sign

If Indie

$$Cov(X,Y)=0$$

△ inverse not true

Properties

Cov(X, X) = Var(X)

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

Cov(aX + b, Y) = aCov(X, Y)

$$Cov(X,Y+Z) = Cov(X,Y) + Cov(Y,Z)$$

CORRELATION COEF.

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

FRESH START/MEMORYLESSNESS

$\begin{array}{l} {\tt Exponential} \\ f_{X|X>t}(x\mid x>t) = t + f_X(x) \end{array}$

Bernouilli/Poisson

$$P(A \mid B) = P(A)$$

i.e. prob of two arrivals (A) after 1 arrival (B) = prob of

after 1 arrival (B) = pro 2 arrivals (A)

BERNOUILLI PROCESS

requires indie, time homogen.

Properties

$$S = X_1 + \dots + X_n$$

$$P(S = K) = \binom{n}{k} p^k (1-p)^{n-k}$$

E[S] = np

$$Var(S) = np(1-p)$$

Time until 1st success

 $T_1 = \min \{i \colon X_i = 1\}$

$$P(T_1 = k) = (1-p)^{k-1}p$$

Time of kth arrival

$$egin{aligned} p_{Y_k}(t) = inom{t-1}{k-1} p^k (1-p)^{t-k} \end{aligned}$$

$$\left| E[Y_k] = rac{k}{p}
ight|$$

$$Var(Y_k) = rac{k(1-p)}{n^2}$$

Merging

 $Z_t = g(X_t, Y_t) \sim Ber(p+q-pq)$ \Rightarrow prob either or both have arrival at time t

Splitting

flip a coin with prob q

 $A \sim Ber(qp)$

$$B \sim Ber((1-q)p)$$

△ these streams are not indie

INTER-ARRIVAL TIMES / R.INCIDENCE

we arrive at t* u,v are each $Exp(\lambda)$ away from t*

 \Rightarrow E[V-U] is twice the expectation of $\mathrm{Exp}(\lambda)$

POISSON PROCESS

indie, time homogen. seq of exp λ : arrival rate

$$P(k, au) = rac{(\lambda au)^k e^{-\lambda au}}{k!}$$

 $E[N_{ au}] = \lambda au$

$$Var(N_{ au}) = \lambda au$$

$$\lambda = E \frac{1}{\tau}$$

Time of kth arrival / Erlang

$$egin{aligned} f_{Y_k} &= rac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)\,!} \ &= Erlang(k) \ &= Erlangigg(rac{k}{2}igg) + Erlangigg(rac{k}{2}igg) \end{aligned}$$

Sum

△ must be indie

M: $Poisson(\mu)$ N: Poisson(v) M+N: $Poisson(\mu + v)$

Merging

A: λ_A B: λ_B

$$\lambda = \lambda_A + \lambda_B$$

$$P(k^{th} ext{arrival is A}) = rac{\lambda_A}{\lambda_A + \lambda_B}$$

$$P(ext{k arrivals are A})$$
 is $ext{Binomial}igg(rac{\lambda_A}{\lambda_A+\lambda_B}igg)$

Splitting

flip a coin with prob q

riangle these streams <u>are</u> indie

A:
$$\lambda_A = \lambda q$$

B:
$$\lambda_B = \lambda(1-q)$$

Multiple Engine Example

3 engines with death rate λ_e rate until 1st dies is $\lambda=3\lambda_e$ then rate until 2nd dies $\lambda=2\lambda_e$

Min

$$P(\min \{X, Y, Z\} \ge t) = P(X \ge t, Y \ge t, Z \ge t) = e^{-3\lambda t}$$

 \Rightarrow have 3 merged Poissons and want to know first arrival $\Rightarrow \min \{X,Y,Z\}$ is $\operatorname{Exp}(3\lambda)$

$$E[\min\{X, Y, Z\}] = \frac{1}{3N}$$

Max

$$P(\max (T_1,T_2,T_3) \leq t) \ = P(T_1 \leq t)P(T_2 \leq t)P(T_3 \leq t) \ = \left(1-e^{-\lambda t}\right)^3$$
 then derive this to get PDF