Contents

1	Disuguaglianza di Markov															1							
	1.1	Dimos	strazion	e.																			1
2	Chebychev													2									
	2.1 Dimostrazione																					3	
		2.1.1	Primo																				3
		2.1.2	Secon	do																			4
		2.1.3	Metti	ins	siei	ne																	4

1 Disuguaglianza di Markov

 $lode\ a\ \texttt{https://en.wikipedia.org/wiki/Markov\%27s_inequality}$

La disuguaglianza di Markov (che in realtà ha pubblicato prima Chebychev) afferma che data

• X una V.A. non negativa per cui

$$-\exists \mathbb{E}[X]$$

allora

$$\mathbb{P}(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$$

1.1 Dimostrazione

Partendo dalla definizione di $\mathbb{E}[X]$

$$\mathbb{E}[X] = \int_{\mathbb{R}} x f(x) dx, \text{ ma } X \text{ non negativa, quindi}$$

$$= \int_{0}^{+\infty} x f(x) dx$$

$$= \int_{0}^{\alpha} x f(x) dx + \int_{\alpha}^{+\infty} x f(x) dx$$

$$\geq \int_{\alpha}^{+\infty} x f(x) dx$$

$$\geq \int_{\alpha}^{+\infty} \alpha f(x) dx$$

$$= \alpha \int_{\alpha}^{+\infty} f(x) dx, \text{ che per definizione di } f(x)$$

$$= \alpha \mathbb{P}(X \in [\alpha, +\infty])$$

$$= \alpha \mathbb{P}(X \geq \alpha)$$

da questo puttanaio si arriva a

$$\mathbb{E}[X] \ge \alpha \mathbb{P}(X \ge \alpha)$$

da cui si ricava abbastanza facilmente che

$$\mathbb{P}(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$$

2 Chebychev

La disuguaglianza di Chebychev da un limite a quanto può variare dalla media una V.A. data la sua varianza 1

essa afferma che, dati

- X una V.A. per cui
 - $\exists \text{ finito } \mathbb{E}[X]$
- μ la media di X
- $\bullet \ \sigma^2$ la varianza di x $\iff \sigma$ la deviazione standard di X

¹perchè la gente si diverte male

• un qualche k a caso $\in \mathbb{R}$, con $k \ge 0$

allora

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

2.1 Dimostrazione

La disuguaglianza di Chebychev si può dimostrare come "corollario" di quella di Markov, questo si fa facendo gli stronzi con Markov come segue :

da Markov sappiamo che $\forall \ va \ X \in \alpha \in \mathbb{R}$ allora

$$\mathbb{P}(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$$

visto che sta cosa vale $\forall \ va\ X, \alpha \in \mathbb{R}$ allora facciamo l'adattatore di tacchini per Markov ponendo

$$\bullet \ Y = (X - \mu)^2$$

•
$$\alpha = (k\sigma)^2$$

date queste scelte 2 si arriva a

$$\mathbb{P}(Y \ge (k\sigma)^2) \le \frac{\mathbb{E}[Y]}{(k\sigma)^2}$$

massacriamo ora il primo termine, e poi il secondo

2.1.1 Primo

$$\mathbb{P}(Y \ge (k\sigma)^2)$$

=\mathbb{P}((X - \mu)^2 \ge (k\sigma)^2)

visto che sia $(X - \mu)^2$ che $(k\sigma)^2$ sono positivi, allora possiamo mettere la radice da entrambe le parti della disequanzione, ottenendo

$$\mathbb{P}((X - \mu)^2 \ge (k\sigma)^2)$$

$$= \mathbb{P}(\sqrt{(X - \mu)^2} \ge \sqrt{(k\sigma)^2})$$

$$= \mathbb{P}(|(X - \mu)| \ge |k\sigma|)$$

²fatte palesemente per distruggere il pianeta a semplificazioni

visto che sia k(ipotesi) che $\sigma(\text{definizione})$ sono positivi, allora $k\sigma \geq 0$, quindi

$$= \mathbb{P}(|(X - \mu)| \ge k\sigma)$$

2.1.2 Secondo

$$= \frac{\mathbb{E}[Y]}{(k\sigma)^2}$$

$$= \frac{\mathbb{E}[(X - \mu)^2]}{(k\sigma)^2}$$

Visto che $Var[X] = \sigma^2$ si può definire anche come

$$\sigma^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[(X - \mu)^2]$$

allora

$$\frac{\mathbb{E}[(X - \mu)^2]}{(k\sigma)^2}$$

$$= \frac{\sigma^2}{(k\sigma)^2}$$

$$= \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2}$$

2.1.3 Metti insieme

$$\mathbb{P}(Y \ge (k\sigma)^2) \le \frac{\mathbb{E}[Y]}{(k\sigma)^2}$$

riscrivendo il primo termine

$$\mathbb{P}(|(X - \mu)| \ge |k\sigma|) \le \frac{\mathbb{E}[Y]}{(k\sigma)^2}$$

e riscrivendo il secondo termine

$$\mathbb{P}(|(X - \mu)| \ge |k\sigma|) \le \frac{1}{k^2}$$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$, puppa