

Arduino vs. Teensy

Teensy 3.1 Vorteile:

- Analoger Ground Pin
- zweiter ADC Wandler
- analogReadResolution();
- analogReadAveraging();

Die Wahl des Sensors

Digitale Sensoren

= Proximity, High/Low

Analoge Sensoren = Distance, 1-1023

Konstante Spannung

(Alte) Sharp Sensoren funktionieren nur mit 5v.

Ausnahme: GP2YoA6oSZLF

Linearisierung

Ein exponentielles, analoges Signal sollte linearisiert werden, um ein "gleichmäßiges" Signal zu gewährleisten.

RC Low Pass Filter

Um Signale überhalb einer bestimmen Messfrquenz (Cut-Off) zu blocken, wird eine Widerstand-Kondensator Kombination verwendet.

16.5 ms / 60 Hz

 $R = 26.5 k\Omega$

C = 0.1 uf

40 ms / 25 Hz

 $R = 63.6 k\Omega$

C = 0.1 uf

RC Low Pass Filter

Um Signale überhalb einer bestimmen Messfrquenz (Cut-Off) zu blocken, wird eine Widerstand-Kondensator Kombination verwendet.

HARDWARE FIX #2

Abblock Kondensator

möglichst nah am Sensor: 10 uf Tantal (VCC zu GND)

am Microcontroller: 100 nf Keramik (5v zu GND)

Glättungs Kondensator

47 nf Keramik (OUT zu GND)

Vorsicht: Je höher der Wert, desto "träger" die Reaktion des Sensors.

Interferenzen vermeiden

Infrarot Interferenzen vermeiden, in dem man Sensoren leicht (3 Grad) auseinander "schielen" lässt.

Interferenzen vermeiden

Infrarot Interferenzen vermeiden, in dem man Sensoren leicht (3 Grad) auseinander "schielen" lässt.

Kurze Verkabelung

Lange Kabel können analoge Signale stören. Umso kürzer, umso besser.

Averaging 8 Resolution

Nur für Teensy Boards!

Averaging für Arduino: arduino.cc/en/Tutorial/ Smoothing

```
// analoger Bereich 1-1023
analogReadResolution(10);
```

// interne "Signalmittelung"
analogReadAveraging(16);

Zweiten ADC ansprechen

Nur für Teensy Boards!

Arduinos besitzen nur einen Analog-Digital-Converter.

// Teensy Library
github.com/pedvide/ADC

Testaufbau

Testaufbau mit fixem Abstand zu einem Objekt: Dient der Überprüfung der "Konstantheit" des Signals

Testaufbau

Testaufbau mit fixem Abstand zu einem Objekt: Dient der Überprüfung der "Konstantheit" des Signals

Oszillieren

Ein Oszilloskop visualisiert Spannungssprünge und Verbesserungen z.B. durch einen Low Pass Filter.

Ohne Low Pass

Ein Oszilloskop visualisiert Spannungssprünge und Verbesserungen z.B. durch einen Low Pass Filter.

Mit Low Pass

Ein Oszilloskop visualisiert Spannungssprünge und Verbesserungen z.B. durch einen Low Pass Filter.

Sketch für Linearisierung

www.pfingstday.com/ category/tinkcore/sensors

RTF Datasheet!

Sharp_IR_GP2Y0A41SK0F_Distance.ino

```
// Sharp IR GP2Y0A41SK0F Distance Test
    #define sensor 2 // Sharp IR GP2Y0A41SK0F (4-30cm, analog)
    void setup() {
      Serial.begin(9600); // start the serial port
    void loop() {
10
      // 5v
      float volts = analogRead(sensor)*0.0048828125; // value from sensor
      int distance = 13*pow(volts, -1); // worked out from datasheet graph
      delay(100); // slow down serial port
15
      if (distance \leq 30){
16
        Serial.println(distance); // print the distance
```

