

ARMY RESEARCH LABORATORY

Enhancement of Semiconductor Bridge Initiators for Ignition of Large-Caliber Ammunition

Stephen L. Howard
Lang-Mann Chang

ARL-TR-776

June 1995

19950830 065

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTIC QUALITY INSPECTED 5

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project(0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	June 1995	Final, Oct 1991 - Sept 1993	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Enhancement of Semiconductor Bridge Initiators for Ignition of Large-Caliber Ammunition		PR: 1L161102AH43	
6. AUTHOR(S)			
Stephen L. Howard and Lang-Mann Chang			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
U.S. Army Research Laboratory ATTN: AMSRL-WT-PA Aberdeen Proving Ground, MD 21005-5066		ARL-TR-776	
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution is unlimited.			
13. ABSTRACT (Maximum 200 words) <p>Semiconductor bridge initiators (SCBI) have been proposed as a means of initiating the ballistic cycle in large-caliber ammunition. However, an ignition delay of more than 10 ms for a black powder basepad was not acceptable for multicomponent tank ammunition. Enhancement of the output from the SCBI was needed to reduce the ignition delay to acceptable levels. Early experiments in a small-caliber ammunition simulator suggested that if the energetic igniter material were confined around the SCBI, the ignition delay would be drastically reduced. This work presents the results obtained from a fabricated booster that, when initiated by an SCBI, reduces the ignition delay of black powder basepads to submillisecond intervals. Results obtained from replacing black powder in the basepad and/or booster with ball powder indicated that usage of ball powder is not appropriate except in the case of black powder in the booster and ball powder in the basepad. This combination provided a strong ignition stimulus with a marginal ignition delay for the basepad of about 12 ms.</p>			
14. SUBJECT TERMS		15. NUMBER OF PAGES	
ignition studies, primers, flamespreading, gun simulator		27	
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

INTENTIONALLY LEFT BLANK.

ACKNOWLEDGMENTS

The authors wish to thank Messrs. T. Rosenberger and M. Ridgley at the Indoor Range Facility of the U. S. Army Research Laboratory (ARL) for their assistance in performing the test firings.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution _____	
Availability Codes	
Dist	Avail and/or Special
R	

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

	<u>Page</u>
ACKNOWLEDGMENTS.....	iii
LIST OF FIGURES	vii
1. INTRODUCTION	1
2. EXPERIMENTAL.....	2
2.1 25-mm Simulator.....	2
2.2 Flamespread Chamber.....	2
3. RESULTS AND DISCUSSION.....	5
3.1 Preliminary Ignition Delay Data for Black Powder.....	5
3.2 Booster Test Matrix.....	7
3.2.1 Solitary SCBI in Basepad.....	8
3.2.2 Black Powder Boosters.....	9
3.2.3 Ball Powder Boosters.....	12
4. SUMMARY.....	14
5. REFERENCES.....	15
DISTRIBUTION LIST.....	17

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
1. Cross-sectional view of 25-mm simulator	2
2. Cross-sectional view of flamespread simulator with SCBI and basepad.....	3
3. Cross-sectional view of booster.	4
4. Cross-sectional view of booster in basepad.	4
5. Pressure curve for Class 3 black powder ignition by SCBI in 25-mm simulator.....	5
6. Pressure curve for Class 5 black powder ignition by SCBI in 25-mm simulator.....	6
7. Pressure curve for Class 3 black powder ignition by SCBI in flamespread chamber.....	7
8. Pressure curve of solitary SCBI in ball powder basepad.	8
9. Expanded pressure curve for solitary SCBI in ball powder basepad.	9
10. Pressure curve of black powder booster in black powder basepad.	10
11. Expanded pressure curve for black powder booster in black powder basepad.....	10
12. Pressure curve for black powder booster in ball powder basepad.	11
13. Ball powder booster in ball powder basepad.	12
14. Expanded pressure curve for ball powder booster in ball powder basepad.....	13
15. Pressure curve of ball powder booster in black powder basepad.	13

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

Electrically initiated ammunition typically utilizes a small bridgewire to ignite subsequent primer material, pyrotechnics, or propellants. There has been a lot of research to prevent accidental activation of the bridgewire assembly when the ammunition is exposed to radio-frequency or other large-field electrical environments. One approach to surmount this problem is the use of a semiconductor bridge initiator (SCBI) as the electrical initiator component. The SCBI has demonstrated adequate resistance to these environments and has qualified as a tentative Hazards of Electromagnetic Radiation to Ordnance (HERO) igniter (Hartman and McCampbell 1992).

Earlier work has demonstrated that semiconductor bridge initiators can successfully ignite black powder (Howard, Chang, and Atkeson 1992). During a review of the data from this work, it was noted that the ignition delay times for three grades of black powder (Class 1, Class 2, and Class 3) were shorter if the black powder was ignited in the 25-mm gun simulator (chamber diameter of 34 mm) than if it was ignited in the larger diameter (76 mm) flamespread chamber. This effect was thought, in part, to be due to the proximity of the chamber walls to the black powder and to the SCBI.

After the initiation of the SCBI, the rapidly expanding gases from the SCBI ignition break open the cloth basepad, and some of the black powder is scattered, which prevents feedback of heat and pressure from burning particles to the bulk of the black powder. If the chamber walls are close about the SCBI, as in the smaller simulator, the walls reflect the expanding gases back to the area containing the black powder as well as restrict the movement of scattered black powder from the basepad; thus, a local confinement is created. In a condition of local confinement, the heat and pressure contribute to enhancing the overall burn rate.

It was also noted that smaller particle size black powder ignited faster (i.e., Class 5 powder ignites more rapidly than Class 1 powder). It was postulated that even smaller black powder grain dimensions as well as closer packing of these grains to the SCBI would further reduce the ignition delay time. These attributes were used to construct a booster to reduce the ignition delay time of basepads. Use of ball powder was also investigated.

2. EXPERIMENTAL

2.1 25-mm Simulator. The 25-mm simulator (Chang 1992) used to obtain preliminary data of black powder ignition by SCBI initiation has been described earlier, and its schematic (Figure 1) is included for comparison to the flamespread chamber.

Figure 1. Cross-sectional view of 25-mm simulator.

2.2 Flamespread Chamber. The flamespread chamber (Kooker, Chang, and Howard 1992, 1994) also has been described elsewhere, and only its salient features will be discussed. The flamespread chamber (Figure 2) consisted of a transparent acrylic tube (interior diameter of 76 mm with an axial dimension of 350 mm) contained in a steel confinement casing that was designed for safety purposes to withstand pressures generated within the acrylic tube that are in excess of 70 MPa (10,000 psig). The acrylic chamber was fitted with a rupture disk rated at 21 MPa (3,000 psig). Therefore, the highest expected pressure was in the neighborhood of 21 MPa (3,000 psig). Ports were machined in the steel casing for pressure transducers. One of the pressure transducers was at the same axial position as the basepad. For these experiments, the acrylic casing was filled to within 20 mm of the top seal with inert propellant grains. The basepad containing the SCBI, the booster, and the Class 3 black powder (approximately 14 g of black powder) was then placed on the inert propellant grains. The SCBI was electrically connected to the firing line via a high-pressure electrical feedthrough in the top of the simulator.

Note: Usage of manufacturer name or model does not constitute endorsement of the product by the U. S. Government or its affiliates.

Figure 2. Cross-sectional view of flamespread simulator with SCBI and basepad.

The booster was fabricated from aluminum bar stock with interior dimensions of 12 mm by 20 mm (see Figure 3). The SCBI was glued in one end with an epoxy compound so that the active volume of the SCBI was completely within the booster volume and the base of the SCBI was securely attached to the booster body. It was desired that the SCBI base would remain in place during the ignition of the powder in the booster. The remaining booster volume was filled with approximately 2.2 g of Class 3 black powder that had been crushed to a fine powder. The booster was sealed with a thin aluminum disk held in place with more of the epoxy compound. The booster element was then placed in a cloth basepad filled with approximately 14 g of energetic material, as shown in Figure 4.

Figure 3. Cross-sectional view of booster.

Figure 4. Cross-sectional view of booster in basepad.

3. RESULTS AND DISCUSSION

3.1 Preliminary Ignition Delay Data for Black Powder. Earlier results of ignition of black powder in the 25-mm simulator demonstrated ignition delay times (ignition delay time defined as the amount of time required to double the pressure output from the SCBI) that were acceptable for tank ammunition. For these tests, a small cloth bag was constructed with 1.1 g of black powder placed in each bag. For Class 3 black powder, an ignition delay time of 2 ms (Figure 5) was observed, and for Class 5 black powder, a delay of approximately 1.8 ms (Figure 6) was observed.

Figure 5. Pressure curve for Class 3 black powder ignition by SCBI in 25-mm simulator.

Figure 6. Pressure curve for Class 5 black powder ignition by SCBI in 25-mm simulator.

However, in the larger flamespread chamber, Class 3 black powder demonstrated (Figure 7) an ignition delay time of approximately 20 ms. Several factors contributed to this long delay with respect to that in the 25-mm simulator. Most important was the confinement of the black powder. In the 25-mm simulator, the simulator walls were close to the basepad and hot gases formed in the basepad by the burning black powder remained in the immediate vicinity of the basepad. The confinement permitted thermal feedback from the hot gases into the black powder remaining in the basepad, as well as a higher pressure. The higher pressure created a higher density in the gases that also increased the thermal feedback.

Figure 7. Pressure curve for Class 3 black powder ignition by SCBI in flamespread chamber.

In the flamespread chamber, the walls were further away and the hot gases formed in the basepad could escape into the greater chamber volume and not remain as long within the basepad. This effect reduced the thermal feedback to the remaining black powder and increased the ignition delay. For tank ammunition, this amount of ignition delay time of the igniter alone is not acceptable. The total ignition delay time will be even longer in the completed round since an ignition delay time for the propellant also exists. The ammunition is also of larger diameter than the flamespread chamber, and the same factors that increased the ignition delay time in the flamespread chamber over that in the 25-mm simulator will increase the time over that observed in the flamespread chamber. Hopefully, a fast-burning booster material confined in close proximity to the SCBI would significantly decrease the ignition delay time of the igniter. Therefore, the booster concept was attempted.

3.2 Booster Test Matrix. Since there is interest in replacing black powder in ammunition, experiments were also conducted with an available ball powder (Winchester 748 propellant, Lot number 748066BF6A). The following test matrix was created that utilized black powder and ball powder in both boosters and basepads:

- Solitary SCBI in a black powder basepad,
- Solitary SCBI in a ball powder basepad,
- Black powder booster in a black powder basepad,
- Black powder booster in a ball powder basepad,
- Ball powder booster in a black powder basepad,
- Ball powder booster in a ball powder basepad.

Both black powder and ball powder boosters contained approximately 2.2 g active material in addition to an SCBI. They were used to ignite basepads (approximately 14 g of energetic material). All experiments were conducted in the flamespread chamber.

3.2.1 Solitary SCBI in Basepad. The case of the solitary SCBI within a black powder basepad was discussed in Section 3.1 with an ignition delay of approximately 20 ms. However, the solitary SCBI in a ball powder basepad had a completely different result. In Figure 8, it looks as if nothing happened. On close examination (Figure 9), the pressure resulting from the SCBI ignition is evident with an ignition delay less than approximately 0.5 ms. Any ignition of the ball powder was insignificant and rapidly quenched. At this higher resolution a 270-Hz noise signal is obvious.

Figure 8. Pressure curve of solitary SCBI in ball powder basepad.

Figure 9. Expanded pressure curve for solitary SCBI in ball powder basepad.

3.2.2 Black Powder Boosters. The boosters containing black powder operated much better than the solitary SCBI. Figure 10 shows the pressure curve of a black powder basepad ignited by a black powder booster. The pressure rise occurs immediately upon application of the firing voltage, and the pressure gradient is steep, indicating a rapid ignition of the entire basepad (approximately 1 ms to maximum pressure). Figure 11 is a closeup of the initial ignition. The SCBI required approximately 0.1 ms for initiation followed by a slight reduction in pressure as the black powder in the booster began to ignite. This period was then followed by a large pressure rise as the basepad subsequently ignited. The ignition delay for Class 3 black powder in the basepad was approximately 0.35 ms. This time is well within the ignition delay time variance of standard igniters such as the M83 headstock.

Figure 10. Pressure curve of black powder booster in black powder basepad.

Figure 11. Expanded pressure curve for black powder booster in black powder basepad.

When the black powder basepad was replaced with one containing ball powder, the ignition delay time increased as may have been anticipated by the solitary SCBI results. The ball powder is harder to ignite than black powder. In Figure 12, the ignition and rupture of the black powder booster occurred in less than a millisecond. The bulk of the black powder from the booster then was dispersed into the basepad. This black powder continued to burn until its maximum pressure occurred approximately 6 ms after the SCBI ignition. The gases then began to cool and the pressure dropped. Approximately 10 ms after SCBI ignition, the ball powder began to burn as evidenced by the increase in pressure. The maximum pressure was obtained about 10 ms later. Ignition of the ball powder basepad ultimately provided a more vigorous ignition source than the black powder basepad. This item in the matrix was the only one that ruptured the blowout disk, an 18-mm-thick acrylic plate. Therefore, more gases at higher pressures were generated than for the essentially equivalent mass of black powder. However, ball powder does not have as great a low-pressure burn rate as black powder, and more time is required for effective ignition. Therefore, if an ignition delay time of several milliseconds is not an issue, this configuration may provide a better igniter combination than a black powder booster with a black powder basepad.

Figure 12. Pressure curve for black powder booster in ball powder basepad.

3.2.3 Ball Powder Boosters. The pressure data obtained from the ball powder boosters are represented by Figures 13 to 15, respectively. For all three test cases the ball powder booster did rupture upon ignition. Since the pressure pulse in Figures 13 and 14 was approximately three times that of the solitary SCBI, it was supposed that some ignition of the ball powder in the booster did occur. However, the gases and/or the force of the rupturing booster walls only blew apart the basepad and scattered ball powder throughout the chamber. No visible evidence of ball powder ignition was observed.

Further evidence for some ignition in the ball powder booster is shown in Figure 15. For this case, the booster ruptured and the pressure rose to over 1.5 MPa. However, the ignition delay time of the black powder in the basepad was greater than 3 ms. Maximum pressure was attained in approximately 20 ms. This result indicated that even if the rupturing booster did blow apart the black powder basepad, residual gases were hot enough to be an ignition source for the black powder. However, this ignition source was quite weak and did not provide an adequate ignition source for even black powder.

Figure 13. Ball powder booster in ball powder basepad.

Figure 14. Expanded pressure curve for ball powder booster in ball powder basepad.

Figure 15. Pressure curve of ball powder booster in black powder basepad.

4. SUMMARY

The following table summarizes the results of the test matrix in this study:

SCBI	Ball Powder	Black Powder	Ignition Delay (ms)	Pressure (MPa)
Yes	Basepad		No Ignition	
Yes		Basepad	20	2.8
Yes	Booster/Basepad		No Ignition	
Yes	Booster	Basepad	5	1.5
Yes	Basepad	Booster	12	>4.3
Yes		Booster/Basepad	0.4	3.2

Placement of energetic material in close proximity to an SCBI in the form of a booster increases the output of the SCBI. Fine black powder provides a rapid and adequate ignition source for subsequent igniter material (both black powder and ball powder). Ignition delay time of a Class 3 black powder basepad can be reduced to several tenths of a millisecond.

Ball powder does not provide an adequate booster material for SCBI initiators. However, the combination of a black powder booster with a ball powder basepad could provide a good ignition source for subsequent propellant ignition. This combination could be even better than a black powder booster with a Class 3 black powder basepad if the ignition delay time of several milliseconds in addition to the time required for propellant ignition is acceptable.

5. REFERENCES

Chang, L.-M. "Interior Ballistic Simulations of 25-mm Gun Charges." BRL-TR-3330, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1992.

Hartman, J. K., and C. B. McCampbell. "HERO Resistant Semiconductor Bridge Igniter." Twenty-ninth JANNAF Combustion Meeting, CPIA Publication 539, vol. 2, p. 193, 1992.

Howard, S. L., L.-M. Chang, and P. Atkeson. "Characterization of SemiConductor Bridge Initiators for Ballistic Propulsion Systems." Twenty-ninth JANNAF Combustion Meeting, CPIA Publication 539, vol. 3, p. 69, 1992.

Kooker, D. E., L.-M. Chang, and S. L. Howard. "An Attempt to Characterize Planar Flamespreading in Granular Propellant: Preliminary Results." Twenty-ninth JANNAF Combustion Meeting, CPIA Publication 539, vol. 1, p. 1, 1992.

Kooker, D. E., L.-M. Chang, and S. L. Howard. "Flamespreading in Granular Solid Propellant: Initial Results." ARL-TR-446, U. S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1994.

INTENTIONALLY LEFT BLANK.

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	ADMINISTRATOR ATTN DTIC DDA DEFENSE TECHNICAL INFO CTR CAMERON STATION ALEXANDRIA VA 22304-6145
1	DIRECTOR ATTN AMSRL OP SD TA US ARMY RESEARCH LAB 2800 POWDER MILL RD ADELPHI MD 20783-1145
3	DIRECTOR ATTN AMSRL OP SD TL US ARMY RESEARCH LAB 2800 POWDER MILL RD ADELPHI MD 20783-1145
1	DIRECTOR ATTN AMSRL OP SD TP US ARMY RESEARCH LAB 2800 POWDER MILL RD ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

5 DIR USARL
 ATTN AMSRL OP AP L (305)

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	CHAIRMAN DOD EXPLOSIVES SAFETY BOARD RM 856C HOFFMAN BLDG 1 2461 EISENHOWER AVE ALEXANDRIA VA 22331-0600	3	PROJECT MANAGER ATTN SFAE ASM AF E LTC A ELLIS T KURIATA J SHIELDS ADVANCED FIELD ARTILLERY SYSTEM PCTNY ARSRL NJ 07801-5000
2	HQ DNA ATTN D LEWIS A FAHEY 6801 TELEGRAPH RD ALEXANDRIA VA 22310-3398	1	PROJECT MANAGER ATTN SFAE ASM AF Q W WARREN ADVANCED FIELD ARTILLERY SYSTEM PCTNY ARSRL NJ 07801-5000
1	SDIO DA ATTN E GERRY PENTAGON WASHINGTON DC 21301-7100	1	PROJECT MANAGER ATTN AMCPM TMA PEO ARMAMENTS TANK MAIN ARMAMENT SYSTEM PCTNY ARSRL NJ 07806-5000
1	SDIO TNI ATTN L H CAVENY PENTAGON WASHINGTON DC 21301-7100	1	PROJECT MANAGER ATTN AMCPM TMA 105 PEO ARMAMENTS TANK MAIN ARMAMENT SYSTEM PCTNY ARSRL NJ 07806-5000
1	HQDA ATTN SARD TR MS K KOMINOS PENTAGON WASHINGTON DC 20310-0103	1	PROJECT MANAGER ATTN AMCPM TMA 120 PEO ARMAMENTS TANK MAIN ARMAMENT SYSTEM PCTNY ARSRL NJ 07806-5000
1	HQDA ATTN SARD TR DR R CHAIT PENTAGON WASHINGTON DC 20310-0103	1	PROJECT MANAGER ATTN AMCPM TMA AS H YUEN PEO ARMAMENTS TANK MAIN ARMAMENT SYSTEM PCTNY ARSRL NJ 07806-5000
1	HEADQUARTERS ATTN AMCICP AD M FISSETTE US ARMY MATERIAL COMMAND 5001 EISENHOWER AVE ALEXANDRIA VA 22331-0001	2	COMMANDER ATTN SMCAR CCH V C MANDALA E FENNELL USA ARDEC PCTNY ARSRL NJ 07806-5000
1	US ARMY BALLISTIC MISSILE DEF SYS CMD ADVANCED TECHNOLOGY CENTER PO BOX 1500 HUNTSVILLE AL 35807-3801	1	COMMANDER ATTN SMCAR CCH T L ROSENDORF USA ARDEC PCTNY ARSRL NJ 07806-5000
1	DEPARTMENT OF THE ARMY ATTN SFAE AR HIP IP MR R DE KLEINE OFFICE OF THE PRODUCT MANAGER 155 MM HOWITZER M109A6 PALADIN PCTNY ARSRL NJ 07806-5000		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER ATTN SMCAR CCS USA ARDEC PCTNY ARSNL NJ 07806-5000	1	COMMANDER ATTN ASQNC ELC IS L R MYER CENTER USACECOM R&D TECHNICAL LIBRARY FT MONMOUTH NJ 07703-5301
1	COMMANDER ATTN SMCAR AEE J A LANNON USA ARDEC PCTNY ARSNL NJ 07806-5000	1	PROGRAM MANAGER ATTN AMCPM ABMS T DEAN US TANK AUTOMOTIVE COMMAND WARREN MI 48092-2498
5	COMMANDER ATTN SMCAR AEE WW M MEZGER J PINTO D WIEGAND P LU C HU USA ARDEC PCTNY ARSNL NJ 07806-5000	1	PROGRAM MANAGER ATTN SFAE ASM BV US TANK AUTOMOTIVE COMMAND FIGHTING VEHICLE SYSTEMS WARREN MI 48397-5000
11	COMMANDER ATTN SMCAR AEE B A BEARDELL D S DOWNS S EINSTEIN S WESTLEY S BERNSTEIN J RUTKOWSKI B BRODMAN P O'REILLY R CIRINCIONE P HUI J O'REILLY USA ARDEC PCTNY ARSNL NJ 07806-5000	1	PROJECT MANAGER ATTN SFAE ASM AB ABRAMS TANK SYSTEM WARREN MI 48397-5000
		1	DIRECTOR ATTN ATCD MA HQ TRAC RPD FT MONROE VA 23651-5143
		1	COMMANDANT US ARMY COMMAND AND GEN STAFF COLLEGE FT LEAVENWORTH KS 66027
		1	COMMANDANT ATT REV & TRNG LIT DIV US ARMY SPECIAL WARFARE SCHOOL FT BRAGG NC 28307
1	COMMANDER ATTN SMCAR AES S KAPLOWITZ USA ARDEC PCTNY ARSNL NJ 07806-5000	1	COMMANDER ATT SMCAR QA HI LIB RADFORD ARMY AMMUNITION PLANT RADFORD VA 24141-0298
2	COMMANDER ATTN TECHNICAL LIBRARY D MANN US ARMY RESEARCH OFFICE PO BOX 12211 RES TRI PARK NC 27709-2211	1	COMMANDER ATTN AMXST MC 3 US ARMY FOREIGN SCI & TECH CTR 220 SEVENTH ST NE CHARLOTTSVL VA 22901-5396

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	COMMANDANT ATTN ATSF CO MW E DUBLISKY ATSF CN P GROSS US ARMY FIELD ARTILLERY CTR & SCHOOL FT SILL OK 73503-5600	1	COMMANDER ATTN STRBE WC US ARMY BELVOIR RES & DEV CTR FT BELVOIR VA 22060-5006
1	COMMANDANT ATTN ATZK CD MS M FALKOVITCH US ARMY ARMOR SCHOOL ARMOR AGENCY FT KNOX KY 40121-5215	1	DIRECTOR ATTN ATCD MA HQ TRAC RPD FT MONROE VA 23651-5143
1	COMMANDER ATTN SMCAR FSA F S FLOROFF USA ARDEC PCTNY ARSNL NJ 07806-5000	1	PROGRAM MANAGER ATTN SFAE ASM BV US TANK AUTOMOTIVE COMMAND FIGHTING VEHICLE SYSTEMS WARREN MI 48092-2498
1	COMMANDER ATTN SMCAR FSA T M SALSBURY USA ARDEC PCTNY ARSNL NJ 07806-5000	1	COMMANDANT ATTN AVIATION AGENCY US ARMY AVIATION SCHOOL FT RUCKER AL 36360
1	COMMANDER ATTN SMCAR HFM E BARRIERES USA ARDEC PCTNY ARSNL NJ 07806-5000	1	COMMANDER ATTN SMCAR FS DH J FENECK USA ARDEC PCTNY ARSNL NJ 07806-5000
1	COMMANDER ATTN SMCAR FSN N K CHUNG USA ARDEC PCTNY ARSNL NJ 07806-5000	1	COMMANDER ATTN SMCAR FS T GORA USA ARDEC PCTNY ARSNL NJ 07806-5000
3	COMMANDER ATTN SMCAR FSS A R KOPMANN B MACHEK L PINDER USA ARDEC PCTNY ARSNL NJ 07806-5000	1	COMMANDER ATTN SMCAR FSC G FERDINAND USA ARDEC PCTNY ARSNL NJ 07806-5000
1	US ARMY RES DEV AND STAND GROUP (UK) ATTN DR R E RICHENBACH PSC 802 BOX 15 FPO AE 09499-1500	1	COMMANDER ATTN AMSMC PBM E L LAIBSON PRODUCTION BASE MOD AGENCY USA ARDEC PCTNY ARSNL NJ 07806-5000
1	DIRECTOR ATTN ATRC L MR CAMERON US ARMY TRAC FT LEE FT LEE VA 23801-6140	1	COMMANDER ATTN AMSMC PBM A SIKLOSI PRODUCTION BASE MOD AGENCY USA ARDEC PCTNY ARSNL 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	COMMANDER ATTN SEA 62R SEA 64 NAVAL SEA SYSTEMS COMMAND WASHINGTON DC 20362-5101	4	COMMANDER ATTN CODE G30 GUNS & MUNITIONS DIV CODE G32 GUNS SYSTEMS DIVISION CODE G33 T DORAN CODE E23 TECHNICAL LIBRARY NAVAL SURFACE WARFARE CTR DAHLGREN VA 22448-5000
1	COMMANDER ATTN AIR 954 TECH LIBRARY NAVAL AIR SYSTEMS COMMAND WASHINGTON DC 20360	2	COMMANDER ATTN CODE 730 CODE R13 R BERNECKER NAVAL SURFACE WARFARE CTR SILVER SPRNG MD 20903-5000
4	COMMANDER ATTN TECHNICAL LIBRARY CODE 4410 K KAILASANATE J BORIS E ORAN NAVAL RESEARCH LIBRARY WASHINGTON DC 20375-5000	1	WL MNSH ATTN R DRABCZUK EGLIN AFB FL 32542-5434
1	OFFICE OF NAVAL TECHNOLOGY ATTN ONT 213 D SIEGEL 800 N QUINCY ST ARLINGTON VA 22217-5000	1	WL MNME 2306 PERIMETER RD STE 9 ENERGETIC MATERIALS BRANCH EGLIN AFB FL 32542-5910
7	COMMANDER ATTN T C SMITH K RICE S MITCHELL S PETERS J CONSAGA C GOTZMER TECHNICAL LIBRARY NAVAL SURFACE WARFARE CENTER INDIAN HEAD MD 20640-5000	1	WL MNAA ATTN B SIMPSON EGLIN AFB FL 32542-5434
5	COMMANDER ATTN CODE 388 C F PRICE T BOGGS CODE 3895 T PARR R DERR NAVAL AIR WARFARE CENTER INFORMATION SCIENCE DIVISION CHINA LAKE CA 93555-6001	3	AL LSCF ATTN J LEVINE L QUINN T EDWARDS EDWARDS AFB CA 93523-5000
1	COMMANDING OFFICER ATTN CODE 5B331 TECHNICAL LIBRARY NAVAL UNDERWATER SYS CTR NEWPORT RI 02840	1	OLAC PL TSTL ATTN D SHIPLETT EDWARDS AFB CA 93523-5000
		1	AFOSR NA ATTN J TISHKOFF BOLLING AFB DC 20332-6448
		1	CENTRAL INTELLIGENCE AGENCY OFFICE OF THE CENTRAL REFERENCES DISSEMINATION BRANCH RM GE 47 HQS WASHINGTON DC 20505
		1	CENTRAL INTELLIGENCE AGENCY ATTN J BACKOFEN NHB RM 5N01 WASHINGTON DC 20505

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	NASA Langley Research Center ATTN MS 408 W SCALLION D WITCOFSKI HAMPTON VA 23605	1	CA INSTITUTE OF TECHNOLOGY ATTN L STRAND MS 125 224 JET PROPULSION LABORATORY 4800 OAK GROVE DR PASADENA CA 91109
3	DIRECTOR ATTN SMCAR CCB RA G P O'HARA G A PFLEGL BENET WEAPONS LABORATORIES WATERVLIET NY 12189-4050	2	PRINCETON COMBUSTION RES LABS INC ATTN N MER N A MESSINA PRINCETON CORP PLAZA 11 DEERPARK DR BLDG IV STE 119 MONMOUTH JUNCTION NH 08852
1	DIRECTOR ATTN M BAER SANDIA NATIONAL LABORATORIES ENERGETIC MAT & FLUID MECH DEPT 1512 PO BOX 5800 ALBUQUERQUE NM 87185	1	GENERAL APPLIED SCIENCES LAB ATTN J ERDOS 77 RAYNOR AVE RONKONKAMA NY 11779-6649
1	DIRECTOR ATTN R CARLING SANDIA NATIONAL LABORATORIES LIVERMORE CA 94551-0469	1	BATTELLE PNL ATTN M C C BAMPTON PO BOX 999 RICHLAND WA 99352
2	DIRECTOR ATTN L 355 A BUCKINGHAM M FINGER LAWRENCE LIVERMORE NATL LABORATORY PO BOX 808 LIVERMORE CA 94550-0622	1	DIRECTOR ATTN 8741 G A BENEDETTI SANDIA NATIONAL LABORATORIES PO BOX 969 LIVERMORE CA 94551-0969
2	DIRECTOR ATTN T3 D BUTLER M DIVISION B CRAIG LOS ALAMOS NATIONAL LAB PO BOX 1663 LOS ALAMOS NM 87545	3	GEORGIA INST OF TECHNOLOGY ATTN E PRICE W C STRAHLE B T ZIM SCHOOL OF AEROSPACE ENGINEERING ATLANTA GA 30332
2	BATTELLE ATTN TWISTIAC V LEVIN 505 KING AVE COLUMBUS OH 43201-2693	1	UNIVERSITY OF MARYLAND ATTN DR J D ANDERSON COLLEGE PK MD 20740
2	CPIA JHU ATTN H J HOFFMAN T CHRISTIAN 10630 LITTLE PATUXENT PKWY STE 202 COLUMBIA MD 21044-3200	1	MASSACHUSETTS INST OF TECHNOLOGY ATT T TOONG DEPT OF MECH ENGINEERING 77 MASSACHUSETTS AVE CAMBRIDGE MA 02139-4307
		1	UNIVERSITY OF ILLINOIS ATTN H KRIER DEPT OF MECH IND ENGINEERING 144 MEB 1206 N GREEN ST URBANA IL 61801-2978

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	UNIVERSITY OF MINNESOTA ATTN E FLETCHER DEPT OF MECH ENGINEERING MINNEAPOLIS MN 55414-3368	1	TEXTRON DEFENSE SYSTEMS ATTN A PATRICK 2385 REVERE BEACH PKWY EVERETT MA 02149-5900
3	PENNSYLVANIA STATE UNIVERSITY ATTN V YANG K KUO C MERKLE DEPT OF MECH ENGINEERING UNIVERSITY PK PA 16802-7501	4	HERCULES INC ATTN L GIZZI D A WORRELL W J WORRELL C CHANDLER RADFORD ARMY AMMUNITION PLANT RADFORD VA 24141-0299
1	INSTITUTE FOR ADVANCED TECHNOLOGY ATTN T M KIEHNE THE UNIV OF TEXAS AT AUSTIN 4030 2 W BAKER LANE AUSTIN TX 78759-5329	2	HERCULES INC ATTN W B WALKUP T F FARABAUGH ALLEGHENY BALLISTICS LAB PO BOX 210 ROCKET CENTER WV 26726
1	INSTITUTE OF GAS TECHNOLOGY ATTN D GIDASPOW 3424 S STATE ST CHICAGO IL 60616-3896	1	HERCULES INC ATTN R CARTWRIGHT AEROSPACE 100 HOWARD BLVD KENVILLE NJ 07847
1	AFELM THE RAND CORPORATION ATTN LIBRARY D 1700 MAIN ST SANTA MONICA CA 90401-3297	1	HERCULES INC ATTN B M RIGGLEMAN HERCULES PLAZA WILMINGTON DE 19894
1	ARROW TECHNOLOGY ASSOC INC ATTN W HATHAWAY PO BOX 4218 S BURLINGTON VT 05401-0042	1	MBR RESEARCH INC ATTN DR M BEN-REUVEN 601 EWING ST STE C22 PRINCETON NJ 08540
2	AAI CORPORATION ATTN J FRANKLE D CLEVELAND PO BOX 126 HUNT VALLEY MD 21030-0126	1	OLIN ORDNANCE ATTN H A MCELROY 10101 9TH ST N ST PETERSBURG FL 33716
6	ALLIANT TECHSYSTEMS INC ATTN J BODE C CANDLAND L OSGOOD R BURETTA R BECKER M SWENSON 600 SECOND ST NE HOPKINS MN 55343	1	PAUL GOUGH ASSOC INC ATTN P S GOUGH 1048 SOUTH ST PORTSMOUTH NH 03801-5423
		2	ROCKWELL INTNL SCIENCE CTR ATTN DR S CHAKRAVARTHY DR S PALANISWAMY 1049 CAMINO DOS RIOS PO BOX 1085 THOUSAND OAKS CA 91360

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	SVERDRUP TECHNOLOGY INC ATTN DR J DEUR 2001 AEROSPACE PKWY BROOK PK OH 44142	1	IITRI ATTN M J KLEIN 10 W 35TH ST CHICAGO IL 60616-3799
1	SRI INTERNATIONAL ATTN TECH LIBRARY PROPULSION SCIENCES DIVISION 333 RAVENWOOD AVE MENLO PK CA 94025-3493	1	GENERAL ELECTRIC COMPANY ATTN J MANDZY TACTICAL SYSTEM DEPARTMENT 100 PLASTICS AVE PITTSFIELD MA 01201-3698
1	UNIVERSAL PROPULSION COMPANY ATTN H J MCSPADDEN 25401 N CENTRAL AVE PHOENIX AZ 85027-7837	3	THIOKOL CORPORATION ATTN R BIDDLE R WILLER TECH LIBRARY ELKTON DIVISION PO BOX 241 ELKTON MD 21921-0241
1	SOUTHWEST RESEARCH INSTITUTE ATTN J P RIEGEL 6220 CULEBRA RD PO DRAWER 28510 SAN ANTONIO TX 78228-0510	1	VERITAY TECHNOLOGY INC ATTN E B FISHER 4845 MILLERSPORT HWY PO BOX 305 E AMHERST NY 14051-0305
1	SCIENCE APPLICATIONS INTL CORP ATTN M PALMER 2109 AIR PARK RD ALBUQUERQUE NM 87106	1	ELI FREEDMAN & ASSOCIATES ATTN E FREEDMAN 2411 DIANA RD BALTIMORE MD 21209-1525
3	ROCKWELL INTL ROCKETDYNE DIVISION ATTN BA08 J FLANAGAN J GRAY R B EDELMAN 6633 CANOGA AVE CANOGA PK CA 91303-2703		<u>Aberdeen Proving Ground, MD</u>
1	PHYSICS INTL LIBRARY ATTN H WAYNE WAMPLER PO BOX 5010 SAN LEANDRO CA 94577-0599	1	Cdr, USACSTA ATTN: STEC-LI, R. Hendrickson
3	OLIN ORDNANCE ATTN E J KIRSCHKE A F GONZALES D W WORTHINGTON PO BOX 222 ST MARKS FL 32355-0222		
1	OLIN CORPORATION ATTN F E WOLF BADGER ARMY AMMUNITION PLANT BARABOO WI 53913		

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number ARL-TR-776 Date of Report June 1995

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Organization _____

CURRENT
ADDRESS

Name _____

Street or P.O. Box No. _____

City, State, Zip Code _____

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization _____

OLD
ADDRESS

Name _____

Street or P.O. Box No. _____

City, State, Zip Code _____

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-WT-PA
ABERDEEN PROVING GROUND, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

A vertical stack of eight thick horizontal black bars, likely a postal bar code.