CG1108 Extra Practice questions

1. An incandescent light bulb rated at 60W will dissipate 60W as heat and light when connected across a 100V ideal voltage source. Similarly a 100W light bulb will dissipate 100W when connected to the same source. If the bulbs are connected in series, determine the power that each one of the bulbs will dissipate.

[23.44W, 14.06W]

- 2. With no load attached, the voltage at the terminals of a particular power supply is 50.8V. When a load is connected, the voltage across the load is 49V and the power dissipated by the load is 10W.
 - a) Determine the V_s and R_s for this non-ideal source. [50.8V, 8.82 Ω]
 - b) What voltage would be measured at the terminals in the presence of a 15Ω resistor? [32.99V]
 - c) How much current could be drawn from this power supply under short-circuit condition? [5.76A]
- 3. Assume $R_0=2\Omega$, $R_1=1\Omega$, $R_2=4/3\Omega$, $R_3=6\Omega$., and $V_s=12V$ in the circuit.

a) Find
$$i_a, i_b, i_c$$
. [2A,6A,8A]

b) The current through each resistance. $[i_{R_0}=2A,i_{R_1}=4A,i_{R_2}=6A,i_{R_3}=-2A]$

4. Determine the equivalent resistance of the infinite network of resistors in the circuit.

[2.73R]

5. A practical volt meter has an internal resistance r_m . What is the value of r_m if the meter reads 11.81V when connected as shown in the circuit.

 $V_s = 12V R_s = 25k\Omega$

[1554kΩ]

6. Determine the voltge "gain" $\,A_{\!\scriptscriptstyle V}=v_2/v_1^{}\,\,$ in the amplifier circuit.

$$R_1 = 1\Omega, R_2 = 0.5\Omega, R_3 = 0.25\Omega, R_r = 0.25\Omega, R_5 = 0.25\Omega$$

[0.33]

7. Find the Thevenin equivalent circuit for the circuit between nodes a and b.

[5V, 30Ω]

8. Compute the Norton's equivalent of the circuit between nodes a and b.

 $[0.005A, 200\Omega]$

9. Find the voltage $\,v\,$ across the $\,0.25\Omega\,$ resistance.

[0.34V]

10. Determine the node voltages v_1 , v_2 and v_3 with respect to v_n .

[23.54V, -111.14V, -136.29V]

11. Find the Thevenin equivalent resistance seen by the load resistor $\,R_{\scriptscriptstyle L}\,$ in the circuit.

 $[23.81\Omega]$

12. In the circuit determine the current $\it I$ and the voltage $\it V_{AB}$ for each of the cases $\it R=2,0,6\,\Omega$.

13. In the circuit determine the voltage across the terminals X and Y when (a) they are on open-circuit, (b) they are short-circuited and (c) a resistor of 1Ω is connected across them. Determine also the current I for all three cases.

[(a) 6V, 0A; (b)12A, 0V; (c) 4V, 4A]

14. Determine the current gain $A_i = rac{i_{load}}{i_{in}}$.

[-75.76]

15. In the circuit when the switch is closed, the ammeter AM reads 3A. Predict ammeter reading with the switch S open. Use Norton's theorem.

16. Determine the voltage $\,v_{\scriptscriptstyle o}^{}$ in the circuit.

[20V]

17. Determine the Thevenin and Norton equivalent circuits between a and b.

[65V, 10Ω ; 6.5A, 10Ω]

18. Determine the maximum power delivered to the load resistor $R_{\scriptscriptstyle L}$.

[1.56W]

19. For the circuit, solve for $\,i_{s}\,.$

[1A]

20. Find the equivalent resistance of the network.

[13.33 Ω]

21. Find the voltage $\,V_{{\scriptscriptstyle AB}}\,$ in the circuit.

[-23V]