

Agenda

- Exploratory Data Analysis
- Data Preprocessing
- LDA & Part-of-speech Tagging
- LDA K-topics Selection
- Model Selection & Hyperparameter tuning
- Results & Conclusions

Exploratory Data Analysis

- First of all, by checking the label distribution, we see that this is an unbalanced dataset with a majority of not-fake news.
- When checking the average length of texts in both classes, we see that they are almost equal.

Exploratory Data Analysis

- In order to better understand the characteristics of the dataset, we used a technique called
 Named entity recognition to extract tags from each sentence.
- When visualizing the count of tags and unique tags for each class, we notice that a fake news item is more likely to involve a person compared to non-fake news, while a non-fake item is more likely to involve an organisation, dates etc..

Exploratory Data Analysis

- Before continuing to preprocess the data, we extracted and visualised additional features regarding each text:
- 1. Number of sentences
- 2. Number of characters
- 3. Percentage of stop words

 It seems that in fake news, the percentage of stop words is usually lower than in non-fake news.

Data Preprocessing

LDA - Latent Dirichlet Allocation

- As part of the features engineering part, we used LDA to extract topics from our corpus (for ex. Politics or sports).
- We first identify the optimal K topics, then we predicted the topics' probability of each record and finally we added the probabilities as new features to our matrix.
- Since LDA is unsupervised method, we run it for the train and the test together

LDA - K-Topics Selection

- In order to choose the optimal number of topics, we strived to maximize the coherence of the resulting representation.
- We found that k=11 topics achieve maximal coherence.
- After choosing k, we ran the model on all of the samples, resulting in an extra 11 features for each sample, where each value is the percentage of a specific topic found in a specific text.

Final Features

	Words (TF-IDF)						Named Entity Recognition Tags				LDA Topics Probabilities			
	Term 1	Term 2	Term 3		Term N	NER 1	NER 2		NER N	Topic prob 1	Topic prob 2		Topic prob N	
Record 1	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	
Record 2	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	
Record 3	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	
	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	
	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	
	XX	XX	XX	•••	XX	XX	XX		XX	XX	XX	•••	XX	
	XX	XX	XX	•••	XX	XX	XX		XX	XX	XX	•••	XX	
	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	
Record N	XX	XX	XX	•••	XX	XX	XX	•••	XX	XX	XX	•••	XX	

Model selection & Hyperparameter tuning

- After completion of the preprocessing pipeline, we tried out different models with a variety of different hyperparameters to learn the training data and predict the class of unseen samples.
- This was done using the **k-fold cross validation** technique, setting different subsets of the training data as a validation sets, predicting them, and comparing them to the labels.
- As seen in the comparison below, the **SVM** classifier, optimizing loss using **stochastic gradient descent** managed to minimize all 3 important metrics: **f1** ,accuracy and recall, hence we will choose it as the optimal model for prediction.

clf	f1_score	accuracy_score	recall_score	best_params
SGDClassifier	61.04%	83.27%	54.97%	{'penalty': 'l2', 'n_jobs': -1, 'alpha': 0.0001}
LogisticRegression	60.76%	83.13%	54.78%	{'solver': 'liblinear', 'C': 29.763514416313132}
MultinomialNB	38.38%	80.90%	24.95%	{'alpha': 0.25}
RandomForestClassifier	52.60%	80.90%	44.44%	{'max_samples': None, 'max_features': 'sqrt', 'criterion': 'gini'}
XGBClassifier	51.01%	80.90%	41.72%	{'min_child_weight': 3, 'max_depth': 10, 'gamma': 0.1, 'eta': 0.2, 'colsample_bytree': 0.3}
AdaBoostClassifier	36.92%	79.83%	24.76%	{'learning_rate': 0.75}

Results and conclusions

- After choosing the stochastic gradient descent classifier, we used it to learn the preprocessed training set together with its labels.
- After that, we passed the test set through the preprocessing pipeline and used the classifier to predict whether each sample is fake news or not.
- The **F-score** for our predictions on the test set was **61.61%**

- In this analysis we explored natural language preprocessing methods that were new to us
- We found out that the straightforward Bag-of-Words approach can be improved by extracting additional features for each text using the Named entity recognition and Latent Dirichlet Allocation methods.
- Since the F-score for our final predictions (61.61%) was not lower than the cross validated F-score we received when choosing the optimal model (61.04%), we conclude that our model manages to generalize and doesn't overfit the training data.