LISTA DE EXERCÍCIOS 2

CURSO: ENGENHARIA DA COMPUTAÇÃO – UFC – CAMPUS DE SOBRAL

DISCIPLINA: PROGRAMAÇÃO COMPUTACIONAL

PROFESSOR: JONIEL BASTOS BARRETO

ALUNO:	DATA:	/ /20	

OBS: A lista de exercícios deve ser enviada com todos os códigos fontes em C zipados em um único arquivo .ZIP. O nome do arquivo de cada código-fonte deve obedecer ao seguinte critério: Para cada exercício, o nome do código correspondente deve ser Exerc<Número da questão com 2 dígitos>.c (ou cpp), ou seja, para a questão 1, o nome do código associado a mesma deve ser: "Exerc01.c", o mesmo para as outras questões.

Dados os seguintes exercícios, escreva programas em C para resolver tais questões:

- 1. Elabore um único código em C para ler uma matriz de números inteiros e que possua uma função para cada item abaixo:
 - a. Mostrar cada elemento da matriz;
 - b. Calcular e mostrar a soma dos elementos da matriz;
 - c. Calcular e mostrar o maior elemento da matriz:
 - d. Calcular e mostrar o menor elemento da matriz:
 - e. Calcular e mostrar o maior e o menor elemento da matriz;
 - f. Exibir cada elemento cujo valor seja maior que 50;
 - g. Exibir cada elemento cujo valor seja par;
 - h. Calcular e exibir a quantidade de elementos pares da matriz.
- 2. Elabore um algoritmo C para efetuar a correção das provas dos alunos da disciplina de Programação Computacional do curso de Engenharia da Computação da UFC. A prova é composta por 10 questões, onde cada uma vale 1,0 ponto. Primeiramente, o gabarito da prova deve ser lido. Em seguida, devem ser lidas as respostas de cada aluno. Assuma que a turma possua N alunos, tal que 1 ≤ N ≤ 100, calcule e imprima o número e a nota de cada aluno. (Considere que o gabarito é formado por apenas caracteres a, b, c ou d).
- 3. Crie um algoritmo para armazenar as quatro notas de uma turma de N alunos, informado pelo usuário. Como resultado, o algoritmo deve apresentar um relatório informando:
 - a. A média de cada aluno;
 - b. A prova em que o aluno teve MENOR nota;
 - c. Quais alunos foram aprovados por média. Assuma que a média seja 7,0.

OBS: Utilize uma função para cada item.

4. Dadas N datas dd/mm/aaaa, com $1 \le N \le 100$, e uma data de referência d, verifique qual das N datas é mais próxima à data d.

- **5.** Dados um inteiro positivo n, uma sequência de n nomes, telefones e datas de aniversário, e uma data no formato **dd/mm**, imprima os nomes e telefones das pessoas que aniversariam nesta data.
- **6.** (a) Escreva uma função **encaixa** que, recebendo dois números inteiros *a* e *b* como parâmetros, verifica se *b* corresponde aos últimos dígitos de *a*. Exemplo:

(b) Usando o mesmo código do item anterior, faça uma função que lê dois números a e b e verifica se o menor deles é segmento do outro. Exemplo:

a b

$$567890$$
 $678 \rightarrow b$ é segmento de a
 1243 $2212435 \rightarrow a$ é segmento de b
 2457 $236 \rightarrow \text{um não é segmento do outro}$

7. Podemos calcular o seno de um número segundo a série de Taylor-Maclaurin:

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

Faça um programa em C que lê um valor para x e calcule o valor de Sen(x). O valor deve ser calculado utilizando funções e enquanto o termo $\frac{x^n}{n!}$ calculado for maior que 10^{-12} .

8. Um matemático italiano da idade média conseguiu modelar o ritmo de crescimento da população de coelhos através de uma sequência de números naturais que passou a ser conhecida como sequência de Fibonacci. O enésimo número da sequência de Fibonacci dado pela seguinte fórmula de recorrência:

$$\begin{cases}
F_1 = 1 \\
F_2 = 1 \\
F_i = F_{i-1} + F_{i-2} \text{ para } i \ge 3
\end{cases}$$

Faça um programa que para um dado n apresente a sequência até F_n .

- **9.** Escreva uma função que receba uma matriz de números inteiros A, de dimensão $m \times m$, fornecidas pelo usuário, e dois números inteiros i e j, troque os conteúdos da linha i e da coluna j da matriz A e imprima a matriz resultante. Obs: $0 \le i, j < m$.
- **10.** Implemente uma função que calcule as raízes de uma equação do segundo grau do tipo $ax^2 + bx + c = 0$. Lembrando que:

$$x = -b \pm \frac{\sqrt{\Delta}}{2a}$$

Onde

$$\Delta = b^2 - 4ac$$

A variável a tem que ser diferente de 0.

- Se $\Delta < 0$ não existe real
- Se $\Delta = 0$ existe uma raiz real.
- Se $\Delta > 0$ existem duas raízes reais.

Essa função deve seguir o seguinte protótipo:

int raizes (float A, float B, float C, float * X1, float * X2);

Essa função deve ter como valor de retorno o número de raízes reais e distintas da equação. Se existirem raízes reais, seus valores devem ser armazenados nas variáveis apontadas por X1 e X2.