a)
$$m = \frac{5}{4}$$
; b) $m = 0$; c) $m = \frac{3}{2}$; d) $m = 1$; e) $m = 3$; f) $m = -1$.

Soluție. Coeficienții celor doi vectori trebuie să fie proporționali, deci $\frac{m}{2} = \frac{2}{4} \Leftrightarrow m = 1$.

2. Un triunghi isoscel are unghiurile egale de mărime $\frac{\pi}{8}$ și laturile egale de lungime 1. Atunci înălțimea corespunzătoare uneia dintre laturile egale este de lungime: (5 pct.)

a)
$$\frac{\sqrt{2}}{2}$$
; b) 2; c) $\sqrt{2}$; d) $\frac{1}{2}$; e) 1; f) $\frac{\sqrt{3}}{2}$.

Soluție. Notăm cu $\ell=1$ lungimea comună a laturilor egale; fie \hat{A} și \hat{B} unghiurile egale ale triunghiului isoscel. Folosind formula de arie $S=\frac{ab\sin\hat{C}}{2}$ pentru $a=b=\ell$ și unghiul $\hat{C}=\pi-(\hat{A}+\hat{B})=\pi-2\frac{\pi}{8}=\frac{3\pi}{4}$, rezultă aria triunghiului,

$$S = \frac{\ell^2 \sin \frac{3\pi}{4}}{2} = \frac{1}{2} \sin \frac{\pi}{4} = \frac{\sqrt{2}}{4},$$

deci lungimea h a înălțimii corespunzătoare uneia dintre laturile egale satisface relația $\frac{hl}{2}=S,$ deci $h=\frac{2S}{2}=\frac{\sqrt{2}}{2}.$

3. Numărul soluțiilor ecuației $\sin x = \frac{1}{2}$ din intervalul $[0, 2\pi]$, care verifică inegalitatea $\cos x < 0$ este: (5 pct.)

Soluție. Soluțiile ecuației $\sin x = \frac{1}{2}$ din intervalul $[0, 2\pi]$ sunt $\frac{\pi}{6}$ și $\frac{5\pi}{6}$. Dar $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} > 0$ iar $\cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} < 0$. Convine deci doar a doua soluție $\frac{5\pi}{6}$, iar numărul soluțiilor care satisfac condiția este 1.

4. Se dau vectorii \bar{u} și \bar{v} . Aflați produsul scalar al celor doi vectori știind că $\|\bar{u}\| = 2$, $\|\bar{v}\| = 3$ și unghiul format de cei doi vectori este $\frac{\pi}{2}$. (5 pct.)

a) 2; b)
$$-2$$
; c) -1 ; d) 0; e) 1; f) 4.

Soluție. Produsul scalar cerut are expresia

$$\langle \bar{u},\bar{v}\rangle = ||\bar{u}||\cdot||\bar{v}||\cdot\cos\widehat{(\bar{u},\bar{v})} = 2\cdot 3\cdot\cos\frac{\pi}{2} = 2\cdot 3\cdot 0 = 0.$$

5. Distanța dintre punctele A(2,0) și B(1,3) este: (5 pct.)

a)
$$\sqrt{11}$$
; b) $\sqrt{5}$; c) 2; d) $\sqrt{10}$; e) 3; f) $\sqrt{7}$.

Soluție. Distanța cerută este $\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(1 - 2)^2 + (3 - 0)^2} = \sqrt{1 + 9} = \sqrt{10}$.

6. Calculați expresia $E=\frac{\sin 30^{\circ} \cdot \cos 30^{\circ}}{\mathrm{tg}45^{\circ}}$. (5 pct.)

a)
$$E = 0$$
; b) $E = \frac{\sqrt{3}}{4}$; c) $E = \frac{\sqrt{2}}{2}$; d) $E = -1$; e) $E = \frac{1}{\sqrt{3}}$; f) $E = \frac{1}{2}$.

Soluţie. Obţinem $E = \frac{\frac{1}{2} \cdot \frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{4}$.

7. Se dă triunghiul ABC în care $\widehat{A}=60^{\circ}$, $\widehat{B}=75^{\circ}$ și AB=2. Atunci raza R a cercului circumscris triunghiului este: (5 pct.)

a)
$$R = 2\sqrt{2}$$
; b) $R = 3\sqrt{2}$; c) $R = 4$; d) $R = 2$; e) $R = 1$; f) $R = \sqrt{2}$.

Soluție. Calculăm al treilea unghi, $\hat{C} = 180^{\circ} - (60^{\circ} + 75^{\circ}) = 45^{\circ}$. Fie R raza cercului circumscris triunghiului. Atunci, aplicând teorema sinusului, obținem:

$$\frac{AB}{\sin \hat{C}} = 2R \Leftrightarrow R = \frac{1}{2} \frac{2}{\sqrt{2}/2} \Leftrightarrow R = \sqrt{2}.$$

8. Aflați $\sin x$ știind că $x \in (0, \frac{\pi}{2})$ și $\cos x = \frac{\sqrt{2}}{2}$. (5 pct.)

a)
$$-1$$
; b) 2; c) 1; d) 0; e) $\frac{\sqrt{5}}{4}$; f) $\frac{\sqrt{2}}{2}$.

Soluție. Folosind formula trigonometrică fundamentală $\sin^2 x + \cos^2 x = 1$, rezultă $\sin^2 x = 1 - \frac{1}{2} = \frac{1}{2}$, deci $\sin x \in \{\pm \frac{\sqrt{2}}{2}\}$. Dar $x \in (0, \frac{\pi}{2})$ impune condiția $\sin x > 0$ și deci $\sin x = \frac{\sqrt{2}}{2}$.

9. Se dau vectorii $\bar{u} = 3\bar{i} + 4\bar{j}$, $\bar{v} = \bar{i} + 2\bar{j}$, $\bar{w} = 2\bar{i} + 2\bar{j}$. Aflați parametrii reali a și b astfel încât $a\bar{u} + b\bar{v} = \bar{w}$. (5 pct.)

a)
$$a = 2$$
, $b = 0$; b) $a = b = 1$; c) $a = b = -1$; d) $a = 0$, $b = 1$; e) $a = -2$, $b = -1$; f) $a = 1$, $b = -1$.

Soluție. Egalitatea din enunț se rescrie

$$a\bar{u} + b\bar{v} = \bar{w} \Leftrightarrow 2\bar{i} + 2\bar{j} = a(3\bar{i} + 4\bar{j}) + b(\bar{i} + 2\bar{j}) \Leftrightarrow (3a + b)\bar{i} + (4a + 2b)\bar{j} = 2\bar{i} + 2\bar{j}.$$

Din unicitatea descompunerii unui vector după baza $\{\bar{i},\bar{j}\}$, identificând coeficienții vectorilor \bar{i},\bar{j} , obținem sistemul liniar $\begin{cases} 3a+b=2\\ 4a+2b=2 \end{cases}$ în necunoscutele $a,b\in\mathbb{R}$, a cărui soluție unică este $a=1,\,b=-1$. Altă soluție. Se observă cu ochiul liber că $\bar{u}-\bar{v}=\bar{w}$, deci $\bar{w}=1\cdot\bar{u}+(-1)\cdot\bar{v}$. Coeficienții vectorilor \bar{u} și \bar{v} nu sunt poporționali $(\frac{3}{1}\neq\frac{4}{2})$, deci acești doi vectori sunt liniar independenți. Prin urmare, descompunerea semnalată este unică, iar deci cei doi coeficienți ai descompunerii (1=a și -1=b) sunt singurele valori care satisfac condiția din enunț.

10. Fie M mulţimea soluţiilor ecuaţiei $1 + \cos x - \sin^2 x = 0$, care aparţin intervalului $[0, \frac{\pi}{2}]$. Atunci: (5 pct.) a) $M = \{0\}$; b) $M = \{\frac{\pi}{2}\}$; c) $M = \{\frac{3\pi}{4}\}$; d) $M = \{\frac{\pi}{3}, \frac{\pi}{6}\}$; e) $M = \{\frac{\pi}{6}\}$; f) $M = \{\frac{\pi}{3}\}$.

Soluţie. Folosind formula trigonometrică fundamentală $\sin^2 x + \cos^2 x = 1$, ecuația se rescrie

$$\cos^2 x + \cos x = 0 \Leftrightarrow \cos x(\cos x + 1) = 0 \Leftrightarrow \cos x \in \{-1, 0\}.$$

Varianta $\cos x = -1$ nu are soluții în intervalul $[0, \frac{\pi}{2}]$, pe când varianta $\cos x = 0$ admite soluția care aparține acestui interval $x = \frac{\pi}{2}$. Prin urmare $M = \{\frac{\pi}{2}\}$.

11. Dacă $m = \sin 105^{\circ} + \sin 75^{\circ}$, atunci: (5 pct.)

a)
$$m = 1$$
; b) $m = -2$; c) $m = \frac{\sqrt{6} - \sqrt{2}}{2}$; d) $m = \frac{\sqrt{6} + \sqrt{2}}{2}$; e) $m = \frac{\sqrt{6}}{2}$; f) $m = \frac{\sqrt{2}}{2}$.

Soluţie. Folosim formula $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha$, pentru cei doi termeni ai sumei m. Obţinem

$$m = \sin(60^{\circ} + 45^{\circ}) + \sin(30^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \sin 45^{\circ} \cos 60^{\circ} + \sin 30^{\circ} \cos 45^{\circ} + \sin 45^{\circ} \cos 30^{\circ}$$
$$= \frac{\sqrt{2}}{2} \left(\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{1}{2} + \frac{\sqrt{3}}{2} \right) = \frac{\sqrt{2}}{2} (\sqrt{3} + 1) = \frac{\sqrt{6} + \sqrt{2}}{2}.$$

Altă soluție. Folosim formula $\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$ pentru $\alpha = 105^\circ$ și $\beta = 75^\circ$. Obținem $m = 2\sin 90^\circ \cdot \cos 15^\circ$. Folosind formula $\cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2}$ pentru $\alpha = 30^\circ$, rezultă $\cos^2 15^\circ = \frac{1+\cos 30^\circ}{2} = \frac{1+\frac{\sqrt{3}}{2}}{2} = \frac{2+\sqrt{3}}{4}$. Dar $\cos 15^\circ > 0$, deci $\cos 15^\circ = \sqrt{\frac{2+\sqrt{3}}{4}} = \frac{\sqrt{2+\sqrt{3}}}{2}$. Aplicăm formula $\sqrt{a\pm\sqrt{b}} = \sqrt{\frac{a+c}{2}} \pm \sqrt{\frac{a-c}{2}}$ ($c = \sqrt{a^2-b}$), varianta cu plus, pentru a = 2, b = 3 și obținem $c = \sqrt{2^2-3} = 1$ și $\sqrt{2+\sqrt{3}} = \sqrt{\frac{2+1}{2}} \pm \sqrt{\frac{2-1}{2}} = \frac{\sqrt{3}+1}{\sqrt{2}}$. Deci $\cos 15^\circ = \frac{\sqrt{2+\sqrt{3}}}{2} = \frac{\sqrt{3}+1}{2\sqrt{2}}$, iar $m = 2\cos 15^\circ = 2\frac{\sqrt{3}+1}{2\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{2}$.

12. Calculați cateta unui triunghi dreptunghic isoscel a cărui arie este 18. (5 pct.)

a) 4; b) 2; c)
$$4\sqrt{2}$$
; d) 6; e) $2\sqrt{2}$; f) 1.

Soluţie. Notând cu c lungimea celor două catete egale ale unui triunghiului dreptunghic isoscel şi cu S aria acestuia, are loc relația $S = \frac{c^2}{2}$. Înlocuind aria dată, obținem $18 = \frac{c^2}{2} \Rightarrow c = 6$. Altă rezolvare. Două triunghiuri identice cu cel din enunț, "lipite" de-a lungul ipotenuzei lor formează un pătrat de latură c şi arie $2 \cdot 18 = 36$. Deci cateta triunghiului privită ca latură a pătratului este de lungime $c = \sqrt{36} = 6$.

13. Fie A(2,1), B(0,3) şi C(3,4). Atunci aria triunghiului ABC este: **(5 pct.)** a) $\sqrt{2}$; b) 8; c) $2\sqrt{2}$; d) 1; e) 4; f) 2.

Soluție. Notând cu S aria triunghiului ABC, putem folosi formula cu determinant,

$$S = \frac{1}{2} abs \left(\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} \right) = \frac{1}{2} abs \left(\begin{vmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 3 & 4 & 1 \end{vmatrix} \right) = \frac{1}{2} abs \left(-8 \right) = 4.$$

14. Aflați valoarea lui $m \in \mathbb{R}$ pentru care punctul A(1,m) aparține dreptei de ecuație 2x + y = 1. (5 pct.)

a)
$$m = -1$$
; b) $m = \frac{1}{2}$; c) $m = -2$; d) $m = 0$; e) $m = \frac{3}{2}$; f) $m = 1$.

Soluție. Înlocuind coordonatele punctului A în ecuație, obținem $2 \cdot 1 + m = 1 \Leftrightarrow m = -1$.

15. Distanța de la punctul A(1,2) la dreapta de ecuație x-y-2=0 este: (5 pct.)

a) 1; b)
$$\frac{1}{2}$$
; c) $\frac{3\sqrt{2}}{2}$; d) $\frac{\sqrt{2}}{2}$; e) $\sqrt{3}$; f) $\frac{7}{2}$.

Soluție. Folosim formula distanței d de la punctul $A(x_A, y_A)$ la dreapta de ecuație ax + by + c = 0,

$$d = \frac{|a \cdot x_A + b \cdot y_A + c|}{\sqrt{a^2 + b^2}} = \frac{|1 \cdot 1 + (-1) \cdot 2 + (-2)|}{\sqrt{1^2 + (-1)^2}} = \frac{|-3|}{\sqrt{2}} = \frac{3\sqrt{2}}{2}.$$

Altă soluție. Distanța cerută este cea dintre A și proiecția B a lui A pe dreapta dată. Aflăm B intersectând dreapta dată y=x-2 a cărei pantă este m=1 cu dreapta ce trece prin A de pantă $-\frac{1}{m}=-1$ și care are deci ecuația $y-2=(-1)\cdot(x-1)$. Sistemul celor două ecuații are drept soluție coordonatele punctului B:

$$\left\{ \begin{array}{l} y=x-2 \\ y-2=-x+1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=x-2 \\ y=-x+3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x=5 \\ 2y=1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=\frac{5}{2} \\ y=\frac{1}{2}, \end{array} \right.$$

deci distanța cerută este $\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}=\sqrt{(\frac{5}{2}-1)^2+(\frac{1}{2}-2)^2}=\sqrt{\frac{9}{2}}=\frac{3}{\sqrt{2}}=\frac{3\sqrt{2}}{2}$.

16. Să se determine valoarea lui $m \in \mathbb{R}$ astfel încât dreapta de ecuație mx + 2y + 4 = 0 să fie paralelă cu dreapta 9x + 6y - 1 = 0. (5 pct.)

a)
$$m = 1$$
; b) $m = 3$; c) $m = -\frac{3}{2}$; d) $m = \frac{3}{4}$; e) $m = 4$; f) $m = -1$.

Soluție. Dreptele sunt paralele d.n.d. rapoartele coeficienților corespunzători sunt egale, dar diferite de raportul termenilor liberi. Această condiție se scrie în cazul nostru $\frac{m}{9} = \frac{2}{6} \neq \frac{4}{-1}$, în care ultima inegalitate este satisfăcută, iar egalitatea din stânga conduce la $m = \frac{2 \cdot 9}{6} = 3$, deci m = 3.

17. Aflați simetricul B al punctului A(1,2) față de dreapta de ecuație x-y=0. (5 pct.)

a)
$$B(-1,-5)$$
; b) $B(3,4)$; c) $B(2,1)$; d) $B(1,0)$; e) $B(2,2)$; f) $B(0,1)$.

Soluție. Fie B(a,b) simetricul căutat. Cerem ca mijlocul $M(\frac{a+1}{2},\frac{b+2}{2})$ al segmentului AB să se afle pe dreapta dată și panta m=1 a dreptei date y=x și panta $m'=\frac{y_B-y_A}{x_B-x_A}=\frac{b-2}{a-1}$ a dreptei AB să verifice condiția de ortogonalitate $m\cdot m'=-1$. Cele două condiții au forma

$$\left\{ \begin{array}{l} \frac{a+1}{2} - \frac{b+2}{2} = 0 \\ \frac{b-2}{a-1} = -1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a-b=1 \\ a+b=3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a=2 \\ b=1, \end{array} \right.$$

deci punctul căutat este B(2,1). Altă soluție. Aflăm în prealabil proiecția C(u,v) a punctului A pe dreaptă, intersectând dreapta dată, cu dreapta care trece prin A de pantă $-\frac{1}{m}$, unde m=1 este panta dreptei date și care are deci ecuația $y-y_A=-\frac{1}{m}(x-x_A\Leftrightarrow y-2=(-1)(x-1))$. Obținem sistemul ale cărui soluții sunt coordonatele punctului C, $\begin{cases} x-y=0\\ y=-x+3 \end{cases} \Leftrightarrow x=y=\frac{3}{2}, \ \text{deci } C(\frac{3}{2},\frac{3}{2}). \ \text{Dar } C$ este mijlocul segmentului AB, deci satisface condițiile $x_C=\frac{x_A+x_B}{2},\ y_C=\frac{y_A+y_B}{2},\ \text{care se rescriu} x_B=2x_C-x_A=3-1=2,\ y_B=2y_C-y_A=3-2=1. \ \text{Prin urmare avem } B(2,1).$

18. Se consideră triunghiul ABC cu laturile AC=5, BC=10 și $\hat{C}=60^{\circ}$. Atunci mărimea laturii AB este: (5 pct.)

a)
$$5\sqrt{3}$$
; b) $3\sqrt{3}$; c) $\sqrt{3}$; d) 5; e) $2\sqrt{3}$; f) $4\sqrt{3}$.

Soluție. Aplicăm teorema cosinusului, obținem

$$AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos \hat{C} = 5^2 + 10^2 - 2 \cdot 5 \cdot 10 \cdot \cos 60^\circ = 125 - 100 \cdot \frac{1}{2} = 75,$$

deci $AB = \sqrt{75} = 5\sqrt{3}$. Altă soluție. Notând cu M millocul laturii BC, se observă că CM = CA (deci ACM triunghi isoscel), iar unghiul din care pleacă laturile egale este $\hat{C} = 60^{\circ}$. Celelalte două unghiuri egale rezultă tot de 60° , deci ACM triunghi echilateral. Atunci avem AM = AC = AB, deci în cercul de centru M și rază AM, unghiul A subântinde un arc capabil de 180° , deci este unghi drept. Prin urmare ABC este triunghi dreptunghic cu $\hat{A} = 90^{\circ}$, și din teorema lui Pitagora rezultă $AB = \sqrt{BC^2 - AC^2} = \sqrt{100 - 25} = \sqrt{75} = 5\sqrt{3}$.