

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:		
Michael	Leishear	

UB Person Number:

-						- 1	
5	0	2	6	4	1-	5	8
		0 1 3 4 5 6 7 8 9				0 1 2 3 4 6 7 8 9	0 1 2 3 4 5 6 7 9 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
						\$ >		

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

b) Is the set
$$\{v_1, v_2, v_3\}$$
 unearly undependent in standing $\{v_1, v_2, v_3\}$ unearly undependent in $\{v_1, v_2, v_3\}$ unearly $\{v_1, v_2, v_3\}$ unearly $\{v_1, v_2, v_3\}$ unearly $\{v_1, v_2, v_3\}$ undependent in $\{v_1, v_3\}$ undependent in $\{v$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
1 & 0 & 1 & | & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 0 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 & 0 \\
0 & 1 & -\frac{1}{2} & | & 0 & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{2} & | & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -\frac{1}{2} & | & 0 & 0 & \frac{1}{2} \\
0 & 0 & | & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -\frac{1}{2} & | & 0 & 0 & \frac{1}{2} \\
0 & 0 & | & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0
\end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{7} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 21 & -1 \end{pmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & 0 \\
-1 & 0 & 2 & | & 0 & 0 \\
2 & | & | & 0 & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & 0 \\
-1 & 0 & 2 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & 0 \\
0 & | & 4 & | & 0 & 20 \\
0 & | & 2 & | & 1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & 0 \\
0 & | & 4 & | & 0 & 20 \\
0 & | & 2 & | & 1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & 0 \\
0 & | & 4 & | & 0 & 20 \\
0 & | & 2 & | & 1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & 0 \\
0 & | & 4 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & | & 1 & 0 &$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors **u** satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$e_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad T(e_{1}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad T(e_{2}) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$e_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
Standard matrix $\begin{bmatrix} 1 & -2 \\ 0 & -3 \end{bmatrix}$

$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 10 \\ 0 & -3 & -2 \end{bmatrix} R2, -\frac{1}{3}R3 \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} R3+3R$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\mathbf{b)} \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 2 & 4 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 \\
 3 & 4 & 4 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 \\
 3 & 4 & 4 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 \\
 0 & 4 & 6 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 \\
 0 & 4 & 6 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 1 & 1 & 0 & 0 \\
 0 & 1 & 2 & 0 & 0
 \end{bmatrix}$$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

Trues No this in the spanis

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

false, Ell, us could have a different!
Solution with nothing trivial

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Sobre being multiplied by A

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True, it. (u) is in span (TW), T(W))
if wisin span (U, w)