Statistiques à deux variables, terminale STMG

1 Vocabulaire

Définition:

- Soient x et y deux caractères quantitatifs d'une même population. Á chaque individu de la population on associe un couple $(x_i; y_i)$ où x_i et y_i pour $i \in \{1; ...; n\}$ avec n entier naturel sont les valeurs prises respectivement par x et y. L'ensemble de ces couples constitue une série statistique à deux variables x et y.

....

et

. . . .

Exemple:

Un magasin réalise une étude sur l'influence du prix de vente sur le nombre de machines à laver vendues au cours d'une année. Le tableau suivant donne les résultats de cette étude :

Prix x_i en euros	300	350	400	448	500	600
Nombre de machines vendues	208	190	160	152	124	102

Le nuage de points associé à cette série est constitué des points M_1 (300; 208), M_2 (350; 190),..., M_6 (600; 102).

$$\bar{x} = \dots$$

et
$$\bar{y} = \dots$$

donc le point moyen est $G(\dots, \dots, \dots)$.

2 Ajustement d'un nuage de points

Définition:

Toute droite "résumant approximativement" le nuage est appelée du nuage de points.

3 Détermination d'une équation de droite d'ajustement affine

Méthode graphique au jugé :

On trace « au jugé » une droite qui « semble résumer » le nuage de points. C'est une méthode simple mais

Propriété:

.....

Exemple de savoir faire [Détermination de l'équation d'une droite dont on connaît les coordonnées de deux points] :

Soit \mathcal{D} la droite passant par les points M_1 (300; 208), M_2 (350; 190) Son équation est de la forme

.....

donc son équation est $y = \dots$

Or $M_1 \in \mathcal{D}$ donc ses coordonnées vérifient l'équation d'où

c'est à dire $b = \dots$

L'équation est donc

Méthode des moindres carrés :

Avec les notations de la figure ci-dessous, étant donné un nuage de n points M_i , il existe une droite passant par le point moyen G et telle que la somme des carrés des écarts (ou résidus) $P_1M_1^2 + P_2M_2^2 + \ldots + P_nM_n^2$ soit minimale. Cette droite est appelée droite de régression de y en x. On peut montrer que son équation réduite est y = mx + p avec :

$$m = \frac{(x_1 - \bar{x})(y_1 - \bar{y}) + (x_2 - \bar{x})(y_2 - \bar{y}) + \ldots + (x_p - \bar{x})(y_p - \bar{y})}{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_p - \bar{x})^2}$$

et

$$p = \bar{y} - m\bar{x}$$

En pratique, on utilisera la calculatrice pour l'obtenir.

Exemple:

On reprend l'exemple précédent.

• Recherche de l'équation réduite à l'aide des formules :

$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
	Total		
D: \		•	

D'où:

 $m = \dots$

et $p = \dots$

- Recherche de l'équation réduite avec la calculatrice :
 - TI 82 et plus :

Aller dans le menu STAT puis EDIT. Entrer les valeurs x_i dans la colonne L_1 et les valeurs y_i dans la colonne L_2 . Quitter (2nde QUIT) puis menu STAT et CALC. Choisir LinReg(ax+b) puis 2nd L1, 2nd L2 pour indiquer les deux colonnes à utiliser. Valider ensuite par ENTER.

• CASIO Graph 25 et plus :

Aller dans le menu $\boxed{\text{STAT}}$ puis entrer les valeurs x_i dans la colonne 1 et les valeurs y_i dans la colonne 2. Sélectionner ensuite $\boxed{\text{CALC}}$. Choisir $\boxed{\text{SET}}$ et vérifier que la ligne « 2Var XList » est mise à « List1 » et que la ligne « 2Var YList » est mise à « List2 », sinon choisir le menu $\boxed{\text{LIST}}$ pour indiquer les numéros de liste adaptés. Taper ensuite sur $\boxed{\text{EXIT}}$ puis choisir $\boxed{\text{REG}}$ puis $\boxed{\text{X}}$.

• Obtention de l'équation réduite à l'aide d'un programme :

```
def moindreCarres(L1,L2):
 mL1=0
 for k in range(len(L1)):
         mL1=mL1+L1 [k]
mL1=mL1/len(L1)
 mL2=0
 for k in range(len(L2)):
         mL2=mL2+L2 [k]
 mL2=mL2/len(L2)
 numerateur=0
 denominateur=0
 for k in range(len(L1)):
         numerateur=numerateur+(L1[k]-mL1)*(L2[k]-mL2)
         denominateur=denominateur+(L1[k]-mL1)**2
m=numerateur/denominateur
 p=mL2-a*mL1
 return m, p
```