Deep learning & applications

Practice#1-3

Tae Hyun Kim

Task: binary classification using logistic regression (loss = binary cross entropy loss)

```
Input: 2-dim vector, \mathbf{x} = \{x_1, x_2\}
Output: label of the input, \mathbf{y} \in \{0,1\}
```

Pseudo code to generate dataset

Step 1. Generate 10000(=m) train samples & 1000(=n) test samples:

```
x1_{train}=[], x_{2}_{train}=[], y_{train}=[]
for i in range(m):
   x1_train.append(random.uniform(-10, 10))
   x2_train.append(random.uniform(-10, 10))
   if x1_{train}[-1] < -5 or x1_{train}[-1] > 5:
       y_train.append(1)
   else:
       y_train.append(0)
x_test=[], y_test=[] #similarly generate 1000 test samples!
```

Task: binary classification using logistic regression (loss = binary cross entropy loss)

Input: 2-dim vector, $x = \{x_1, x_2\}$

Output: label of the input, $\mathbf{y} \in \{0,1\}$

Pseudo code to train a 2-layered net.

Step 2. Initialize $W = [w_1, w_2, ..., w_6]$ and $b = [b_1, b_2, b_3]$

Step 3. Determine the learning rate α (let's tart with 1/100)

Step 4. Update W & b with 'm' samples for 5000 (=K) iterations: #K updates with the grad descent

Step 4-1. Print *W*, *b* every 500 iterations

Step 4-2. Calculate the cost on the 'm' train samples!

Step 4-3. Assume that predicted output is 1 if $\tilde{y} > 0.5$, other wise 0. Then, print accuracy for the 'm' train samples! (display the number of correctly predicted outputs/m*100)

Step 4-4. print accuracy with the 'n' test samples! (display the number of correctly predicted outputs/n*100)

Report

- You need to submit a short report; (Due: 3/30, 3pm)
 - Format: studentid_name_report#1-3.pdf + single source file (.py or .ipynb)
 - Should be a single page pdf
 - Need to include:
 - Initial function parameters W & b
 - Estimated unknown function parameters W & b
 - Empirically determined (best) hyper parameter, α
 - Accuracy (fill in the blanks in the tables below and add them to the report)

table1	m=10, n=1000, K=5000	m= 100, n=1000, K=5000	m=10000, n=1000, K=5000
Accuracy (with 'm' train samples)			
Accuracy (with 'n' test samples)			

table2	m=10000, n=1000, K=10	m=10000, n=1000, K=100	m=10000, n=1000, K=5000
Accuracy (with 'm' train set)			
Accuracy (with 'n' test samples)			