Date: __/__/___ An unambiguous CFG is defined as a CFG for which all justifiable string has an individual leftmost desiration. As CFG is a proper subset of deterministic CFG's, it can be derived from deterministic finite automata and can be used to generate deterministic content free language. -DCFG's away show unambiguous behavior and an unambiguous CFG is an a super class of DCFG To prove, for every pushed down automata M, there exists an equivalent context free gramme G So M recognizes L& > 9, generales L.J. M determinate of so unambiguous. so . f we replace I by E in G, G > G generates L. Every DCFG is an unambigues CFG. -Ro dat state, T, w, 23 final state, n=9 R S T U V W X Y Z X X X X X X X X X X X X X X \times \times \times \times \times \times \times \times \times \times XXXXXXXXX x . x x x x x x x x WXXXXXXXX x x . x x x x x x x . * X · X X X X X X X X X X X X #learnthesmarterway

000	
	Date://
-	
-	From the transition table
-	
~	R-> start state,
0-0	
-	T, W, 2 > Final state, n=9
-	
-	Explanation of the table.
	1. Cross out all diagonal cells (k, k) and all the cells to the right
	the cells to the right
-	2. Consider final state T, W, Z.
-	Con M all t a C O - t d
	es (R, T). (S, W)
	es (K, 1). (S, W)
-	3 for each unmarked cell transition on 0,1.
	for call unmarter con trans, ion on o,
	- (17 6 (1/2): (1,12)
	$ (s, v) : (s, v)^{\circ} \rightarrow T, \omega $ $ (s, v) \rightarrow \omega, z $
	ic 50 112 115 -
-	if TW and W2 are cumoked, leave (s,v)
	or : (- any of them are cossmated, then cross (s,v).
	or it any of them are coss maked, then cross (S,V).
1	14 11 11 LL . CV TILL C.
9	. Usmarked states: SV, TW, RX, UX, SY, VY, WZ
-	
~	RX, SV, SY, VY, UX, TW, WZ
00	
00	SV, SY and VY can be considered a single state
4	→ (SVY)
1	
-	

left Ill 'x' is found Repeat the steps till all a, b, c are marked Transition 8 (q, a) ? (E, x, n) $\begin{cases}
(q_3, c) = (q_3, c, l) \\
(q_3, b) = (q_3, b, l) \\
(q_3, y) = (q_3, y, l) \\
(q_3, z) = (q_3, z, l)
\end{cases}$ #learnthesmarterway

