The physics-patch package

Improved version of the physics package

Willie Shen (Willie 169)

Version 2.1

Last update: Feb. 16, 2025

Contents

1	Prefa	ace	1
2	Usag	ge	1
	2.1	Required packages	1
	2.2	Using physics-patch in your LATEX document	1
3	Com	amunication Channels	2
4	Lice	nse and Credit	2
5	List	of Commands	2
	5.1	Automatic bracing	2
	5.2	Vector notation	3
	5.3	Operators	4
	5.4	Quick quad text	6
	5.5	Derivatives	6
	5.6	Dirac bra-ket notation	7
	5.7	Matrix macros	8
	5.8	Symbols	10
	5.9	Shorthands for Greek letters	11
	5 10	Others	11

1 Preface

Since version 2.0, the physics-patch package has evolved from merely patching the physics package to fully replacing it, covering all its commands. While preserving the original goal—simplifying mathematical and physics typesetting for greater readability and efficiency—this package refines the design by addressing unconventional behaviors, extending commands, and introducing additional macros.

Like the original, this package provides commands with intuitive names and well-defined shorthands, ensuring both clarity and ease of recall.

This package resolved the unintuitive definitions and behaviors in physics without changing the command names and intended behaviors. For instance, in the original package, suffix parentheses and their contents in expressions like $\dv\{f\}\{x\}$ (\typical) are ignored.

Beyond refining existing functionality, this package extends commands for broader applicability—such as enabling \xmat to support ellipses—and introduces entirely new macros, such as \omat.

2 Usage

2.1 Required packages

The physics-patch package requires amsmath, etoolbox, xcolor, xparse, and xstring package to work properly in your LATEX document. If you are unsure whether you've had them installed, you can either install it again using your local package manager (comes with most distributions) or by visiting the CTAN online package database, or even just try to use physics-patch package without worrying about it. Many modern LATEX compilers will locate and offer to download missing required packages for you.

2.2 Using physics-patch in your LATEX document

To use physics-patch in your LaTeX document, simply insert \usepackage{physics-patch} in the preamble of your document, before $\begin{document} and after \documentclass{class}:$

```
\documentclass{class}
...
\usepackage{physics-patch}
...
\begin{document}
content...
\end{document}
```

- physics-patch has covered all commands in physics since version 2.0, so there's no need to load physics.
- It is ok to load physics before this package. This package will silently overrides macros in physics with an improved version. To use the original version provided by physics, load physics before this package and use the nooverride option (not recommended). nooverride falls back to override if physics is not loaded.

- This package pretends that physics package is loaded so that this package won't be overriden if loading physics is called afterward and packages loaded afterward that checks whether physics is loaded to determine its behavior (e.g. siunitx) work correctly. To disable this, use the nopretend option (not recommended).
- If siuitx is loaded before this package, this package will define \ITquantity and \ITqty as the integration of the improved definition of physics's \qty (in \PHquantity and \PHqty) and siuitx's \SI. You can optionally set siintegrate option to override \PTquantity and \PTqty with \ITqty (not recommended). siintegrate falls back to nosiintegrate if siunitx is not loaded.

3 Communication Channels

- Bug tracker: https://github.com/Willie169/physics-patch/issues.
- Announcements: https://github.com/Willie169/physics-patch/releases.
- **Repository:** https://github.com/Willie169/physics-patch.

4 License and Credit

- This package is released under the **LaTeX Project Public License** (**LPPL**) **1.3c.** See https://www.latex-project.org/lppl/lppl-1-3c for the details of that license.
- Many parts of this package are modified from the physics package, created by **Sergio C. de la Barrera** and licenced under **LPPL 1.3**.

See https://ctan.org/pkg/physics for the details of that package.

5 List of Commands

In the commands listed below, the left column is long-form names with non-default alternate names (if any), the middle column is default shorthand commands with detailed syntaxes and explanations. Commands that have different definitions come with PT in the beginning of their name (e.g. \PTmqty). If nooverride is not used or the physics package is not loaded before this package, the commands without PT will be silent overriden to be the same as the ones with PT.

5.1 Automatic bracing

	$\texttt{\PTqty\Big\{}} \to \Big\{\Big\}$	
	$\texttt{\PTqty\bigg}\{\} \to \left\{\right\}$	
	$\texttt{\PTqty\Bigg\{}} \to \left\{\right\}$	
	↔ \PTqty()	alternative syntax; robust and more LaTeX-friendly
	↔ \PTqty[]	ateriative syntax, robust and more garget mentaly
	↔ \PTqty	
	↔	
\absolutevalue	$\abs{a} \rightarrow a $	automatic sizing; equivalent to \PTqty a
	$\texttt{\ \ } a \rightarrow \left a \right $	inherits manual sizing syntax from $\texttt{\party}$
	$\abs*{\grande} \rightarrow $	star for no resize
\norm	$\operatorname{norm}\{a\} \to \ a\ $	automatic sizing
	$\texttt{\norm}\texttt{\Big\{a\}} \to \left\ a\right\ $	manual sizing
	$\texttt{\norm*}\{\texttt{\grande}\} \to \ $	star for no resize
\evaluated	$\left x\right = 0^{\infty}$	vertical bar for evaluation limits
	$\left. \left \left(x \right _{0} \right ^{\infty} \right $	alternate form
	$\left. \left $	alternate form
	$\left(\left(\left$	automatic sizing
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	star for no resize
\order	$\texttt{\ } \texttt{\ } \texttt{\ } \texttt{\ } \texttt{\ } \texttt{\ } \mathcal{O} \Big(x^2 \Big)$	order symbol; automatic sizing and space handling
	$\texttt{\ \ } \texttt{\ \ } \texttt{\ \ } \ \ \mathcal{O}\!\left(x^2\right)$	manual sizing
	$\operatorname{\operatorname{Vorder}}^*{\operatorname{\operatorname{Vorder}}} \to \mathcal{O}($	star for no resize
\commutator	$\backslash \mathrm{comm}\{\mathtt{A}\}\{\mathtt{B}\} \to [A,B]$	automatic sizing
	$\texttt{\comm}\texttt{\Big\{A\}\{B\}} \to \left[A,B\right]$	manual sizing
	$\verb \comm*{A}{\grande} \to [A, \ \ \ \]$	star for no resize
\anticommutator or \acommutator	$\texttt{\ \ } \{\mathtt{A}\} \{\mathtt{B}\} \to \{A,B\}$	same as \poissonbracket
\poissonbracket	$\texttt{\pb}\{\texttt{A}\}\{\texttt{B}\} \to \{A,B\}$	same as \anticommutator

5.2 Vector notation

The default del symbol ∇ used in physics-patch vector notation can be switched to appear with an arrow $\vec{\nabla}$ by including the option <code>arrowdel</code> in the document preamble:

\usepackage[arrowdel]{physics-patch}

\vectorbold	$\begin{picture}(1,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$	upright/no Greek
	$\verb \vb*{a} , \verb \vb*{\theta} \to a, \theta$	italic/Greek
\vectorarrow	$\forall a\{a\} ightarrow ec{a}$	upright/no Greek
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	italic/Greek

\vectorunit	$vu\{a\} \rightarrow a$	upright/no Greek
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	italic/Greek
\dotproduct	$\setminus \texttt{vdot} \to \boldsymbol{\cdot} \text{ as in } \mathbf{a} \boldsymbol{\cdot} \mathbf{b}$	note: \dp is a protected TeX primitive
\crossproduct	$\label{eq:cross} \ \to \ \ X \ \ \text{as in } \mathbf{a} \ X \ \ \mathbf{b}$	alternate name
	$\label{eq:cp} \texttt{\scalebox{\backslash}} cp \to \ensuremath{\times} as \ in \ a \times b$	shorthand name
\gradient	\grad $ ightarrow oldsymbol{ abla}$	
	\grad{\Psi} $ ightarrow oldsymbol{ abla}\Psi$	default mode
	$\texttt{\grad}(\texttt{\psi+\tall}) \to \boldsymbol{\nabla} \Big(\Psi + \boldsymbol{\square} \Big)$	long-form (like \PTqty but also handles spacing)
	$\texttt{\grad[\Psi+\tall]} \to \boldsymbol{\nabla} \Big[\Psi + \blacksquare \Big]$	
\divergence	\divg $ ightarrow oldsymbol{ abla} \cdot$	note: if nooriginal div option is used, \land div will be overriden as $\nabla \cdot$ too (not recommended)
\divisionsymbol	\divisionsymbol $ ightarrow \div$	
	$\displaystyle \{ \bigvee a \} \rightarrow oldsymbol{ a} \cdot a$	default mode
	$\texttt{\ \ } (\texttt{\ \ } \texttt{\ \ } \$	long-form
	$\texttt{\divg[\normalfootnotemark]} \rightarrow \boldsymbol{\nabla} \cdot \left[\boldsymbol{a} + \boldsymbol{\Box} \right]$	
\curl	$\setminus \text{curl} \to \boldsymbol{\nabla} \boldsymbol{X}$	
	$\left\{ \left\{ \left\{ vb\left\{ a\right\} \right\} \right\} \to \mathbf{\nabla} \times \mathbf{a}$	default mode
	$\texttt{\curl}(\texttt{\chib}(\texttt{a})+\texttt{\chib})\to \boldsymbol{\nabla}\times\left(\texttt{a}+\blacksquare\right)$	long-form
	$\texttt{\curl[\normalfootnotemark]} \rightarrow \boldsymbol{\nabla} \times \left[\boldsymbol{a} + \boldsymbol{\Box} \right]$	
\laplacian	\laplacian $ ightarrow abla^2$	
	\laplacian{\Psi} $ ightarrow abla^2 \Psi$	default mode
	$\texttt{\laplacian(\Psi+\tall)} \to \nabla^2 \Big(\Psi + \blacksquare \Big)$	long-form
	$\texttt{\laplacian[\Psi+\tall]} \to \nabla^2 \Big[\Psi + \blacksquare \Big]$	

5.3 Operators

The standard set of trig functions is redefined in physics-patch to provide automatic braces that behave like $\PTqty()$. In addition, an optional power argument is provided. This behavior can be switched off by including the option notrig in the preamble:

\usepackage[notrig]{physics-patch}

Example trig redefinitions:

The full set of available trig functions in ${\tt physics-patch}$ includes:

 $\sin(x)$ $\sin(x)$ $\arcsin(x)$ $\arcsin(x)$

\cos(x)	\cosh(x)	\arccos(x)	\acos(x)
\tan(x)	\tanh(x)	\arctan(x)	\atan(x)
\csc(x)	\csch(x)	\arccsc(x)	\acsc(x)
\sec(x)	\sech(x)	\arcsec(x)	\asec(x)
\cot(x)	\coth(x)	\arccot(x)	\acot(x)

 \Rightarrow

asin(x)	$\arcsin(x)$	sinh(x)	sin(x)
acos(x)	$\arccos(x)$	$\cosh(x)$	$\cos(x)$
$\operatorname{atan}(x)$	$\arctan(x)$	tanh(x)	tan(x)
acsc(x)	$\operatorname{arccsc}(x)$	$\operatorname{csch}(x)$	$\csc(x)$
$\operatorname{asec}(x)$	arcsec(x)	$\operatorname{sech}(x)$	sec(x)
acot(x)	arccot(x)	coth(x)	$\cot(x)$

The standard trig functions (plus a few that are missing in amsmath) are available without any automatic bracing under a new set of longer names:

\sine	\hypsine	\arcsine	\asine
\cosine	\hypcosine	\arccosine	\acosine
\tangent	\hyptangent	\arctangent	\atangent
\cosecant	\hypcosecant	\arccosecant	\acosecant
\secant	\hypsecant	\arcsecant	\asecant
\cotangent	\hypcotangent	\arccotangent	\acotangent

Similar behavior has also been extended to the following functions:

\exp(\tall)	exp		\exponential
\log(\tall)	$\log\left(\begin{array}{c} \\ \end{array}\right)$		\logarithm
\ln(\tall)	ln (old definitions \Rightarrow	\naturallogarithm
\det(\tall)	det		\determinant
\Pr(\tall)	Pr(\Probability

New operators:

\trace or \tr	$\label{eq:transformation} $$ \tr(\tall) \to tr(\tall) \to tr(\tall) = tr(\tall) $	trace; same bracing as trig functions
\Trace or \Tr	$\texttt{Tr}\texttt{\ }Tr \rho$	alternate
\rank	$\verb rank M \to \operatorname{rank} M $	matrix rank
\erf	$\operatorname{f verf}({f x}) o \operatorname{f erf}(x)$	Gauss error function
\Res	$\label{eq:Res} \operatorname{Res}[f(z)] o \operatorname{Res}[f(z)]$	residue; same bracing as trig functions

5.4 Quick quad text

This set of commands produces text in math-mode padded by \quad spacing on either side. This is meant to provide a quick way to insert simple words or phrases in a sequence of equations. Each of the following commands includes a starred version which pads the text only on the right side with \quad for use in aligned environments such as cases.

General text:					
\qqtext			general quick quad text with argument		
		$\verb qq{word or phrase} \to \underline{\hspace{0.4cm}} word or phrase \underline{\hspace{0.4cm}}$	normal mode; left and right		
		$\label{eq:qq*word} $$ \neq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	starred mode; right only		
Special macros:					
\qcomma or \qc $ ightarrow$,	right only				
\qcc →_c.c	complex conjugate; left and right	unless starred \qcc* $ ightarrow$ c.c			
\qif →if	left and right unless starred \qif	* → if			
Similar to \qif:					
\qthen, \qelse, \qoth	\qthen, \qelse, \qotherwise, \qunless, \qgiven, \qusing, \qassume, \qsince,				
\qlet, \qfor, \qall, \qeven, \qodd, \qinteger, \qand, \qor, \qas, \qin					

5.5 Derivatives

 $The default differential symbol \ d \ which is used in \verb|\differential| and \verb|\derivative| can be switched to an italic form \ d \ by including the option italic diffinith the preamble:$

\usepackage[italicdiff]{physics-patch}

\differential	$\backslash \text{dd} \to d$	
	\dd $\mathbf{x} ightarrow \mathbf{d} x$	no spacing (not recommended)
	$\dd\{x\} ightarrow _{\sqcup} \mathrm{d}x_{\sqcup}$	automatic spacing based on neighbors
	$\dd[3]\{x\} \to d^3x$	optional power
	$\verb \dd(\cos\theta) \to d(\cos\theta)$	long-form; automatic braces
\PTderivative	$\texttt{\ptdv}\{\mathtt{x}\} \to \frac{d}{dx}$	one argument
	$\propty {f} {x} \rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$	two arguments
	$\label{eq:ptdv[n] ff} \texttt{PTdv[n] ff} \texttt{\{x\}} \to \frac{d^n f}{d x^n}$	optional power
	$\P \operatorname{PTdv}\{x\} (\operatorname{grande}) \to \frac{\mathrm{d}}{\mathrm{d}x} \left(\operatorname{bl} \right) \left(\operatorname{bl} \right)$	long-form; automatic braces, spacing

 $\texttt{\parbox{fldv*}ff}\{\texttt{f}\}\{\texttt{x}\} \,\to\, \texttt{d}f/\texttt{d}x$ inline form using \fi $\PTdv\{f\}\{x\}\ (\grande) \to \frac{df}{dx} \left(\right)$ note: in original physics package, $\forall x \text{ (\sc d}f) \text{ (\sc d}f) \rightarrow df$ \PTpartialderivative or \PTpderivative $\P \operatorname{PTpdv}\{x\} \to \frac{\partial}{\partial x}$ shorthand name $\label{eq:ptpdv} $$ \PTpdv\{f\}\{x\} \to \frac{\partial f}{\partial x} $$$ two arguments $\label{eq:ptpdv} $$ \Pr[n] \{f\} \{x\} \to \frac{\partial^n f}{\partial x^n} $$$ optional power $\texttt{\propto}(x) (\texttt{\grande}) \to \frac{\partial}{\partial x} \left(\begin{array}{c} \\ \end{array} \right)$ long-form $\texttt{\prop} \{ \texttt{f} \} \{ \texttt{x} \} \{ \texttt{y} \} \to \frac{\partial^2 f}{\partial x \partial y}$ mixed partial $\label{eq:power_power} $$ \P dv^* \{f\} \{x\} \to \partial f/\partial x .$ inline form using \flatfrac $\label{eq:ptpdvff} $$ \PTpdv{f}(x) (\grande) \to \frac{\partial f}{\partial x} (\grande) $$$ note: in original physics package, $\pdv{f}{x} (\grande) \to \partial f$ $\texttt{\var}\{\texttt{F}[\texttt{g}(\texttt{x})]\} \to \delta F[g(x)]$ \variation $\vor(E-TS) o \delta(E-TS)$ long-form $\fdv\{g\} o rac{\delta}{\delta g}$ \functionalderivative functional derivative (works like \PTdv) $\fdv{F}{g} o rac{\delta F}{\delta g}$ $\label{eq:dv_variance} \texttt{\ \ } \mathsf{fdv}\{\mathtt{V}\}\,(\mathtt{E-TS}) \,\to\, \frac{\delta}{\delta V}\big(E-TS\big)$ $\fdv*{F}{x} \rightarrow \delta F/\delta x$ inline form using \flatfrac

5.6 Dirac bra-ket notation

The following collection of macros for Dirac notation contains two fundamental commands, \bra and \ket, along with a set of more specialized macros which are essentially combinations of the fundamental pair. The fundamental commands are designed to contract with one another algebraically when appropriate and are thus suggested for general use. For instance, the following code renders correctly leading to the fundamental pair.

$$\label{phi} $$ \left\{ \psi \right\} \to \left< \phi | \psi \right> $$ as opposed to $$ \left< \phi | \psi \right> $$$$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$\label{eq:dyad_psi} $$ \left[\right] \rightarrow \left< \phi \right| \left| \psi \right> (\xi) .$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

$$\label{eq:phi} $$ \left\{ \phi \right\} \left(xi\right) \to \left(\phi \right) \left(\xi \right) $$$$

allowing the user to type out complicated quantum mechanical expressions without worrying about bra-ket contractions. That being said, the high-level macros do have a place in convenience and readability, as long as the user is aware of rendering issues that may arise due to an absence of automatic contractions.

 $\left\{ \left\{ \lambda \right\} \right\}$ \ket automatic sizing \ket*{\tall} → | no resize $\bra{\tall} \rightarrow \langle$ \bra automatic sizing $\bra*{\tilde} \to \langle$ no resize $\beta \langle \phi | \psi \rangle$ automatic contraction $\bra{\phi}\$ contraction inherits automatic sizing $\bra{\phi} \ket*{tall} \rightarrow \langle \phi \rangle$ a star on either term in the contraction prohibits resizing

Note the lack of a space between the bra and ket commands. This is necessary in order for the bra to find the corresponding ket and form a contraction.

5.7 Matrix macros

 $Note: \verb|\mode| and \verb|\mode| in physics uses \verb|\mode| while \verb|\PTmqty| and \verb|\PTsmqty| in physics-patch| don't.$

\end{pmatrix}

$$\Rightarrow \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ c & d & e \end{pmatrix}$$

he extra \PTmqty groups were required in this case in order to get the a and b elements to behave as a single element, since \PTmqty{\imat{2}} also acts like a single matrix element (the same can be said of the grouped of the

$$\Rightarrow \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ c & d & e \end{bmatrix}$$

\PTmatrixquantity

 $\omega_{} \longleftrightarrow \pTmqty{}$

 $\verb|\pmqty{|} \leftrightarrow \verb|\pTmqty()|$

 $\verb| PTpmqty{} > \leftrightarrow \verb| PTmqty()$

 $\label{eq:ptpmqty*} $$ \PTmqty*{} $$ $$ \PTmqty*{} $$ $$ \PTmqty*() $$$

\bmqty{} \ \PTmqty[]

 $\forall x \in \mathbb{P}$

\PTsmallmatrixquantity

\matrixdeterminant

\identitymatrix

 $\verb|\PTsmqty*() or \spmqty{} or \spmqty*{}|$

\PTsmqty[] or \sbmqty{}

\PTsmqty|| or \svmqty{}

\smdet{a & b \\ c & d} ightarrow $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

\ir

\PTxmatrix

 $\label{eq:ptxmat} $$ \propty(\propty(3)(3)) \to $$ $$ x = x$ $$$

$$\begin{cases} x & x \\ x & x \end{cases}$$

 $\begin{array}{c} x \\ \\ x \\ \\ x \\ \end{array}$

\PTxmat*{x}{n}{m}

$$\begin{cases} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{cases}$$

$$\land \texttt{PTmqty}(\texttt{PTxmat*}(\texttt{x})\{3\}\{3\}) \rightarrow \begin{cases} x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & x_{3} \\ x_{2} & x_{3} \end{cases}$$

$$\land \texttt{PTmqty}(\texttt{PTxmat*}(\texttt{x})\{3\}\{1\}) \rightarrow \begin{cases} x_{1} & x_{2} & x_{3} \\ x_{2} & x_{3} \\ x_{3} & x_{3} \end{cases}$$

groups a set of matrix elements into a single object

parentheses

alternate parentheses

square brackets

vertical bars

Iternative syntax; robust and more LATEX-friendly

the smallmatrix form of \PTmqty

small version of \PTmqty()
small version of \PTmqty*()

small version of \PTmqty[]

small version of \PTmqty||

matrix determinant

small matrix determinant

elements of n imes n identity matrix

formatted with \PTmqty or \PTsmqty

lements of n imes m matrix filled with x , if not provided, 1 is used

star for element indices, skip row/column indices $n\,=\,1/m\,=\,1$

\PTxmat{x}{n}{m}[p]

$$\label{eq:ptmqty(PTxmat(x){3}{3})} \begin{tabular}{ll} x & x & x \\ \vdots & \vdots & \vdots & \vdots \\ x & x & x \\ \\ x & x & x & x \\ \\ x & x & x & x \\ \\ x & x & x & x \\ \\ x & x & x & x & x \\ \\ x & x & x & x & x \\ \\ x & x & x & x & x \\ \\ x & x & x & x & x & x \\ \\ x & x & x & x & x & x \\ \\ x & x & x & x & x & x & x \\ \\ x & x &$$

\PTxmat{x}{n}{m}[p][q]

only show p rows (including \vdots row) and q columns (including \ldots column) with skipped rows indicated by \vdots, skipped columns indicated by \ldots, intersection of \vdots row and \ldots column being \ldots. If n/m isn't provided, p/q is used. No indices will be added for ellipses even if star is given

\PTxmat*{x}{n}{m}{g}

$$\begin{array}{c} \text{ \begin{tabular}{lll} \label{table} \begin{tabular}{lll} $x_{11} & x_{12} & x_{13} \\ $x_{21} & x_{22} & x_{23} \\ $x_{A1} & x_{A2} & x_{A3} \\ \end{tabular} } \\ \text{ \begin{tabular}{lll} \below & begin{tabular}{lll} \begin{tabular}{lll} \begin{tabular}{ll$$

customize last row's element indices to $oldsymbol{g}$

\PTxmat*{x}{n}{m}{g}{h

customize last row's element indices to $oldsymbol{g}$ and last column's element indices to $oldsymbol{h}$

 $\label{eq:ptxmat} $$ \Pr x = [0 \text{ or } 1 \text{ or } 2]_{x}_{n}^{m}[p][q] $$$

$$\label{eq:continuous} $$ \Pr{\operatorname{Impty}(\operatorname{PTxmat}\{0\}\{x\}\{5\}\{5\}\{3\}\{3\})} \to \left\{ \begin{array}{cccc} x & x & \dots & \\ x & x & \dots & \\ \vdots & \vdots & \ddots & \\ x & x & \dots & x \\ \vdots & \vdots & \ddots & x \\ x & x & \dots & x \\ x & x & \dots & x \\ x & x & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \end{array} \right.$$

5.8 Symbols

a visible space character, where the optional argument (defaulting to .3em) sets the width of the horizontal rule

5.9 **Shorthands for Greek letters**

If option shortgreek is used, the following shorthands will be defined for every Greeks letter:

\DeclareDocumentCommand{\tgAlpha}{O{}}{\text{\textAlpha}} $\verb|\DeclareDocumentCommand{| vAlpha}{|} {| varAlpha}|$ $\verb|\DeclareDocumentCommand{|\valpha|{|} {|} varalpha|}|$ \DeclareDocumentCommand{\uAlpha}{}{\upAlpha} \DeclareDocumentCommand{\ualpha}{}{\upalpha} \DeclareDocumentCommand{\uvAlpha}{}{\upvarAlpha}

\DeclareDocumentCommand{\uvalpha}{}{\upvaralpha}

5.10 Others

\autommode	\amm{content}	\relax\ifmmode #1\else\(#1\)\fi
\mathcolorbox	\mcbox{color}{content}	\colorbox for math environment, applying to all four levels of math
	$\mbox{cyan}{} \rightarrow$	styles
\autocolorbox or \acbox	\cbox{color}(content)	samw as \colorbox in text environment, same as \mathcolorbox in math environment
\tentothepowerof	$\texttt{tenpow\{n\}} \to 10^n$	work in both math mode and text mode
\scientificnotation	$\verb \scinote{3.00}{8} \rightarrow 3.00 \times 10^8$	work in both math mode and text mode