Obsah

7	Slu	luneční soustava, Keplerovy zákony		
	7.1	Model	y sluneční soustavy	1
		7.1.1	Geocentrismus	1
		7.1.2	Heliocentrismus	1
	7.2	Slunce	9	1
		7.2.1	Fyzikální vlastnosti	1
	7.3	Planet	ty sluneční soustavy	1
		7.3.1	Merkur	2
		7.3.2	Venuše	2
		7.3.3	Země	2
		7.3.4	Mars	2
		7.3.5	Jupiter	2
		7.3.6	Saturn	3
		7.3.7	Uran	3
		7.3.8	Neptun	3
7	7.4	Další o	objekty sluneční soustavy	3
		7.4.1	Trpasličí planety	3
		7.4.2	Komety	3
		7.4.3	Planetky	4
		7.4.4	Měsíc / přirozený satelit	4
	7.5	Vesmí	rné jednotky	4
		7.5.1	Astronomická jednotka	4
		7.5.2	Světelný rok	4
		7.5.3	Parsec	5
	7.6	Keplei	rovy zákony	5
		7.6.1	První Keplerův zákon	5
		7.6.2	Druhý Keplerův zákon	5
		7.6.3	Třetí Keplerův zákon	6

7 Sluneční soustava, Keplerovy zákony

7.1 Modely sluneční soustavy

7.1.1 Geocentrismus

- názor, že Země je středem vesmíru / sluneční soustavy; planety obíhají okolo ní
- zastaralý názor, zformulovanáno Aristotelem, upřesněno Ptolemaiem
- podporován církví
- po objeven v 17. století nahrazeno heliocentrismem

7.1.2 Heliocentrismus

- model Sluneční soustavy se Sluncem ve středu
- 16. stol Mikuláš Koperník, Galileo Galilei

7.2 Slunce

- hvězda ve středu sluneční soustavy
- nejbližší hvězda Zemi
- koule žhavého plazmatu
 - produkce energie jadernou fúzí
- 99,8 % hmotnosti sluneční soustavy

- hlavně vodík (73%) a hélium (25%), dále O_2 , C, Ne, Fe
- stáří $4.6 \cdot 10^9$ let

7.2.1 Fyzikální vlastnosti

- hmotnost $1,9885 \cdot 10^{30} \,\mathrm{kg}$
- vzdálenost 1 au = 149597870700 m
- průměr 1392020 km
- povrchová teplota 5 780 K
- zářivý výkon $3.827 \cdot 10^{26} \,\mathrm{W}$

7.3 Planety sluneční soustavy

- planeta
 - těleso obíhající okolo Slunce
 - má dostatečnou hmotnost, aby ji její gravitační síly zformovaly do přibližně kulového tvaru (tj. nachází se v hydrostatické rovnováze),
 - dominantní v zóně své oběžné dráhy (tj. vyčistila svou gravitací okolí vlastní oběžné dráhy od jiných těles),
 - není družicí (měsícem) jiného tělesa.
- 8 planet sluneční soustavy
 - terestické / kamenné
 - * Merkur
 - * Venuše
 - * Země
 - * Mars
 - plynní obři
 - * Jupiter
 - * Saturn
 - * Uran
 - * Neptun

7.3.1 Merkur

- Slunci nejbližší a nejmenší planeta
- nemá měsíc
- oběžná dráha nejbližší Slunci (0,378 au)– perioda oběhu $T \doteq 88\,\mathrm{d}$
- povrch erodován kráter, podobný Měsíčnímu povrchu
- velké rozdíly teplot $\langle -180 \, ^{\circ}\text{C}, 430 \, ^{\circ}\text{C} \rangle$
- chybí atmosféra

7.3.2 Venuše

- pojmenovaná po římské bohyni lásky
- nemá měsíce
- nejmenší výstřednost eliptické dráhy
- druhá nejbližší Slunci (0,723 au)
- perioda oběhu $T=224,7\,\mathrm{d}$
- možno vidět pouhým okem ze Země "večernice"/"jitřenka"
 - po Slunci a Měsíci nejjasnějším objektem na obloze
- hustá oblačnost, nejhustší atmosféra z kamenných planet (převážně CO₂)
- silný skleníkový efekt \rightarrow nejteplejší planeta SS $\langle 460 \,{}^{\circ}\text{C}, 500 \,{}^{\circ}\text{C} \rangle$

7.3.3 Země

- největší terestická planeta
- jediná planeta s potvrzeným výskytem života
- jeden satelit Měsíc
- oběh s periodou $T=365,\!15\,\mathrm{d}$ ve vzdálenosti 1 au
- dynamický povrch (litosféra)
- nedokonalá koule (na rovníku rozšířené)
- pevné jádro, polotekuté vnější jádro, plášť, zemská kůra
- má magnetosféru
- přítomnost kapalné vody (asi 71 % povrchu)

7.3.4 Mars

- druhá nejmenší planeta po Merkuru
- pevný povrch pokrytý impaktními krátery, vysokými sopkami, hlubokými kaňony atd.
- dva měsíce Phobos a Deimos
- oběh s periodou $T \doteq 687\,\mathrm{d}$ ve vzdálenosti 1,523 au
- velký počet vyslaných sond a vozítek na zkoumání

7.3.5 Jupiter

- největší planeta sluneční soustavy
- plynný obr, nemá pevný povrch
- 79 měsíců
- \bullet oběh s periodou $T=4\,332,6\,\mathrm{d}$ ve vzdálenosti 5,203 au
- třetí nejjasnější objekt na noční obloze
- slabé prstence okolo planety
- atmosféra rozčleněna v závislosti na planetární šířce, velké množství bouří
- složení převážně vodík, hélium a organické sloučeniny

7.3.6 Saturn

- druhá největší planeta SS
- 60 měsíců, největší Titan
- oběh s periodou $T=10\,757,7\,\mathrm{d}$ ve vzdálenosti $9,537\,\mathrm{au}$
- stejně jako Jupiter nemá pevný povrch, pouze hustá atmosféra
- jediná planeta s menší střední hustotou než voda
- znám mohutnými planetárními prstenci

7.3.7 Uran

- společně s Neptunem tzv. ledový obr
- 27 měsíců
- oběh s periodou $T=30\,708,2\,\mathrm{d}$ ve vzdálenosti 19,191 au
- atmosféra hlavně vodík a hélium, dále voda, čpavek, metan, uhlovodíky...
 - nejchladnější ve SS ($\approx 49 \,\mathrm{K}$)
- planetární prstence
- rotační osa téměř v rovině s oběhem okolo Slunce

7.3.8 Neptun

- podobný Uranu
- nejvzdálenější planeta
- oběh s periodou $T=60\,190\,\mathrm{d}$ ve vzdálenosti 30,069 au
- skvrny v atmosféře podobných skvrnám na Jupiteru

• metan v atmosféře \rightarrow modrá barva

7.4 Další objekty sluneční soustavy

7.4.1 Trpasličí planety

- definice
 - obíhají okolo Slunce
 - má dostatečnou hmotnost, aby jeho gravitace překonala vnitřní síly a dosáhl hydrostatické rovnováhy
 - během svého vývoje nepročistil své okolí, aby se stal v dané zóně dominantní (na rozdíl od planet)
 - není satelitem
- "malé planety"
- Ceres, Pluto, Haumea, Makemake, Eris
- kromě Cerery všechno plutoidy (trpasličí planeta za dráhou Neptunu)
- Pluto kdysi vedeno jako planeta; v roce 2006 na shromáždění Mezinárodní astronomické unie v Praze předefinovaná planeta \to Pluto trpasličí planetou

7.4.2 Komety

- malé těleso podobné planetce
- z ledu (CO₂, metan, voda) a prachu
- oběh po velmi excentrických drahách kolem Slunce
- některé se vracejí pravidelně a často (jednou za několik let až staletí)
 - Halleyova, Hale-Boppova, Kohoutkova kometa

7.4.3 Planetky

- malé těleso obíhající okolo Slunce
- malá hmotnost \rightarrow nepravidelný tvar
- výskyt hlavně v hlavním pásu (prostor mezi Marsem a Jupiterem) či v páse za Neptunem

Meteoroidy

- speciální případ planetky
- velikost menší než 100 m

7.4.4 Měsíc / přirozený satelit

- kosmické těleso přirozeného původu
- pohyb se po oběžné dráze kolem jiného většího vesmírného tělesa (planeta, trpasličí planeta, planetka)
- dodnes 182 měsíců, z toho 9 kolem trpasličích planet
- velký počet u plynných obrů, malé počty u terestických planet

7.5 Vesmírné jednotky

7.5.1 Astronomická jednotka

- značka au
- jednotka vzdálenosti, vyjadřuje vzdálenost mezi Sluncem a Zemí
- 1 au = 149597870700 m
- měření vzdálenosti těles v rámci sluneční soustavy

Obr. 7.1: Vennův diagram objektu ve sluneční soustavě

7.5.2 Světelný rok

- značka ly
- vzdálenost, kterou světlo urazí za jeden rok
- $1 \text{ ly} \approx 9.46 \cdot 10^{15} \text{ m} \approx 63241 \text{ au}$

7.5.3 Parsec

- značka pc
- vzdálenost, ze které má 1 au úhlový rozměr jedné vteřiny
- $1 \text{ pc} = 1 \text{ au}/\text{ tg } 1'' \approx 206\,265 \text{ au} \approx 3{,}262 \text{ ly} \approx 3{,}086 \cdot 10^{16} \text{ m}$
- měření velký vzdáleností mimo sluneční soustavu
- v odborné literatuře více preferován než-li světelný rok

Obr. 7.2: Geometrické odvození parsecu

7.6 Keplerovy zákony

- zákony popisující pohyb planet ve sluneční soustavě, resp. pohyb těles v centrálních silových polích
- zformulovány Johannesem Keplerem na počátku 17. století

7.6.1 První Keplerův zákon

• "Planety obíhají kolem Slunce po eliptických drahách (přesněji trajektoriích), v jejichž jednom společném ohnisku je Slunce."

7.6.2 Druhý Keplerův zákon

- "Obsahy ploch opsaných průvodičem planety (spojnice planety a Slunce) za stejný čas jsou stejně velké."
- odvození
 - přírůstek plochy d ${f S}$ je plocha pravoúhlého trojúhelníku o stranách ${f r}$ a d ${f r}$

$$\mathrm{d}S = \frac{1}{2}(\mathbf{r} \times \mathrm{d}r)$$

 $-\,$ plošná rychlost ${\bf w}-$ změna opsané plochy v čase

$$\mathbf{w} = \frac{\mathrm{d}\mathbf{S}}{\mathrm{d}t} = \frac{1}{2} \left(\mathbf{r} \times \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right) = \frac{1}{2} (\mathbf{r} \times \mathbf{v})$$

– pro moment hybnosti platí $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ a $\mathbf{p} = m\mathbf{v}$

$$\mathbf{L} = \mathbf{r} \times m\mathbf{v} = m(\mathbf{r} \times \mathbf{v}) = 2m\mathbf{w}$$

- ze zákona zachování momentu hybnosti

$$\mathbf{L} = \operatorname{konst} \wedge m = \operatorname{konst} \rightarrow \mathbf{w} = \operatorname{konst}$$

7.6.3 Třetí Keplerův zákon

• "Poměr druhých mocnin oběžných dob dvou planet je stejný jako poměr třetích mocnin délek jejich hlavních poloos (středních vzdáleností těchto planet od Slunce)."

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$

- odvození
 - inerciální soustava spojená se Sluncem, kruhové dráhy planet

$$F_{\rm g} = F_{\rm d}$$

$$G\frac{mM}{r^2} = \frac{mv^2}{r}$$

$$v^2 = G\frac{M}{r}$$

- * M hmotnost Slunce
- * r vzdálenost planety a Slunce
- $-\,$ planeta urazí obvod kružnice za čas Trychlostí v

$$vT = 2\pi r$$

$$v^2T^2 = 4\pi^2 r^2$$

$$G\frac{M}{r}T^2 = 4\pi^2 r^2$$

$$T^2 = \frac{4\pi^2}{GM}r^3$$

- v případu dvou planet můžeme konstantu porovnat \rightarrow získáme tvar 3. KZ