# Controlled Conversational Models through Conversation-Dedicated Ontology

Barbara Gendron, under the supervision of Mathieu d'Aquin and Gaël Guibon

Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Université de Lorraine

☑ barbara.gendron@loria.fr | 됴 b-gendron.github.io | ⑦ b-gendron | in barbara.gendron





#### 1. Context

Recent advances in Large Language Models (LLMs) have improved conversational agents' realism and compliance towards human requirements and needs. However, controlling conversation flow towards positive outcomes remains crucial.

This Ph.D. aims to represent conversational knowledge using an ontology to enable language model control. Ontologies allow to model the knowledge in a domain, defining concepts and characterizing relations between them. While often used for domain-specific knowledge, few have explored using ontologies to guide conversation flow. Convology is a recent example focusing on managing health conversations. We plan to extend Convology's conceptualization capacities to a more general setup, therefore adaptable to general-purpose user/agent conversations.

### Want to know more?



An example: OntoGPT for Readability Level Assessment (seminar slides)

# 2. Methodology

PhDapproach. Iterative process progressive enrichment of the ontology conceptualize more and more notions related to conversations.

Tools. Protégé, HermiT and Pellet reasoners, rdflib, PyTorch, huggingface owlready2, transformers and parameter-efficient finetuning libraries, LoRA adapters.

#### Conceptualization. Progressively

incorporate and infer on linguistic features such as part-of-speech tags, affective computing such as emotions or dialog acts.

Experimental setup. Toy example design process is a trial and error approach?

Control. Explain how we plan to control the conversational dynamic in the context of a dialogue user-agent.

Challenges. It is not straightforward that the knowledge the ontology brings can be accurately learnt and applied by a language model, whether it be decoder-only or encoder-decoder.

# 3. Motivation & Objectives

The objective of this thesis is to develop knowledge-enhanced conversational models that exploit Large Language Models (LLMs) and Ontologies. This consists in improving stateof-the-art LLMs by providing structured knowledge to open-domain conversational agents.

## Objectives:

- Build conversation ontology that accounts for interpersonal relationships concepts and their evolution.
- Integrate and ontology assess understanding during fine-tuning.
- Bring control on conversational LLM outputs through encapsulated conversation knowledge.



Figure 1: The benefits of ontology-LLM hybridation systems for conversation modeling

# 4. OntoGPT: LLM Fine-Tuning Based on Ontology Validation

OntoGPT fine-tunes LLMs using LoRA adapters. It aims at improving generation by learning a classification task guided by the ontology knowledge.



Figure 2: OntoGPT is an end-to-end integration pipeline where the ontology information is assimilated at fine-tuning time. This example focuses on readability level assessment task.

## 5. Advances & Perspectives

Key findings in LLMs:

- Challenges to setup the fine-tuning procedure
- Computational time

Advances in ontology building:

- Advance 1
- Advance 2