AHR geeniekspressioon kalakajakatel

Lisanne Nääb ja Anette Uiga

22.10.2020

Sissejuhatus

Arüülsüsivesinike retspetor (AHR) on valk, mille mõjul tehakse kahjutuks organismi kehasse sattunud välised saasteained (nt TCDD, PAH). Lisaks osaleb see valk transkriptsioonifaktorina paljudes teistes olulistes füsioloogilistes protsessides, surudes maha või võimendades eri geenide ekspressiooni. Seetõttu on AHR valgul oluline roll ka vähihaiguses, kusjuures võib ta vähitekkele aidata kaasa või suruda seda maha.

Kalakajakad on pikaealised merelinnud (vanimad kalakajakad elavad üle 30 aasta), kes võiksid olla oluline mudelliik uurimaks vananemisbioloogiat ning reostuse mõju füsioloogiale, sealhulgas vähihaigusele. Elavhõbedal (kui saasteainel) võib olla mõju AHR geeni ekspressioonile (ehk AHR valgule) või AHR-ga seotud teistele geenidele. Järgnev skeem näitab hüpoteesi, kus elavhõbe (Hg) mõjutab AHR-i ekspressioonitaset ning tunnused "Sugu" ja "Vanus" on kovariaadid.

Kuna sellise mudeli uurimine on juba keerulisem, siis selles projektis uuritakse, kas ja kuidas erineb elavhõbeda kontsentratsiooni tase ja AHR geeni eskpressioonitase emastel-isastel ja noortel-vanadel kalakajakatel ning kas AHR geeni ekspressioonitase ja elavhõbeda kontsentratsioon korreleeruvad.

Töö autorid püstitasid järgnevad küsimused:

- 1) Kas elavhõbeda kontsentratsioon erineb noorte ja vanade kalakajakate vererakkudes?
- 2) Kas elavhõbeda kontsentratsioon erineb emaste ja isaste kalakajakate vererakkudes?
- 3) Kas AHR geeni ekspressiooni tase erineb noortel ja vanadel kalakajakatel?
- 4) Kas AHR geeni ekspressiooni tase erineb emastel ja isastel kalakajatatel?
- 5) Kas elavhõbeda kontsentratsiooni tase ning AHR geeni avaldumismäär on korreleeritud?

Andmestikud

Projektis kasutati kahte andmetabelit, mis pärinevad Ökoloogia ja Maateaduste Instituudi loomaökoloogia töörühmalt, kes kogusid Kakrarahu koloonia kalakajakatelt geeniproove ning ökoloogiliste näitajate andmeid 24. mail 2018. aastal.

Andmestikus, mis sisaldab kalakajate ökoloogilisi andmeid, on 20 vaatlust ning 26 tunnust, kuid analüüsiks kasutati nelja tunnust, mis on järgmised: Sex (Sugu), Hg_Cells_ug.g (Hg_kontsentratsioon) ning tunnuste Birth (Sünd) ja Breeding_year (Paaritumisaasta) põhjal loodi uus diskreetne tunnus "Vanus", mille väärtusteks on 'noor' ja 'vana'. Tunnuse Field tube ID (ID) järgi seoti kalakajakate tabel geeniandmete tabeliga.

Kalakajakate andmestikku loodud uus diskreetne tunnus "Vanus" leiti järgnevalt:

- noor kui Sünd ≥ 2013 ja Paaritumisaasta ≤ 12
- vana kui Sünd < 2003 ja Paaritumisaasta > 12

Kui tunnuses Sünd esines puuduv väärtus, siis kontrolliti ainult tingimust Paaritumisaasta > 12. Kui tunnuses Paaritumisaasta esines puuduv väärtus, siis kontrolliti ainult tingimust Sünd < 2003.

Tabel 1: Kalakajakate andmestik.

	ID	Sugu	Sünd	Paaritumisaasta	Vanus	Hg_kontsentratsioon
1	ua12146	emane	2014	1	noor	1.4122707
2	5484	isane	2001	17	vana	2.1886721
3	2843	isane	2014	NA	noor	1.3737265
4	217	emane	2002	13	vana	0.7470183
5	ua14703	emane	2015	1	noor	0.4556523
6	1624	isane	2002	13	vana	2.6319900
7	8488	isane	2014	2	noor	1.0230231
8	2913	isane	1989	27	vana	0.4410279
9	ua11803	isane	2014	2	noor	1.3463614
10	845	emane	NA	24	vana	1.4705400
11	4416	emane	NA	17	vana	0.3635434
12	4828	isane	2001	16	vana	1.0446207
13	4111	isane	2001	15	vana	1.1281502
14	3987	isane	2001	15	vana	1.4950215
15	968	emane	2002	14	vana	0.9250602
16	ua12268	emane	2014	2	noor	1.8327961
17	9557	emane	2014	2	noor	0.7280972
18	8072	emane	2014	2	noor	1.1774476
19	8911	isane	2014	2	noor	1.9571161
20	9436	isane	2014	2	noor	2.5992546

Teine andmetabel sisaldab kalakajakatelt võetud geeniproovide andmeid. Selles andmetabelis on 19829 vaatlust ning 40 tunnust. Andmestikust filtreeriti välja read, mis sisaldavad ainult AHR geeni andmeid.

AHR geeni andmestikus on 3 rida ning 40 veergu. Read näitavad iga AHR geeni osa avaldumismäära ning 10 esimest veergu on lindude id-d. Seega tuli kõigepealt eemaldada tunnused, mida analüüsis ei kasutata (alles jäid ainult lindude id-d), ning iga ID kohta võeti mediaan kolmes reas olevast väärtusest. Seega jäi uude andmetabelisse tunnused ID ning AHR, mis näitab AHR geeni ekspressioonitaset.

Tabel 2: AHR geeni andmestik.

ID	AHR
ua12146	1.243
5484	0.366
2843	2.739
217	1.192
ua14703	1.495
1624	1.108
8488	0.991
2913	0.938
ua11803	1.032
845	0.258

Kaks andmetabelit (Tabel 1 ja Tabel 2) ühendati veeru ID järgi, kusjuures Tabel 1-st võeti ainult esimesed 10 vaatlust, kuna geeniandmed olid olemas ainult esimese 10 linnu kohta. Seega ühendatud andmetabelis on 10 rida.

Tabel 3: Ühendatud andmestik

ID	Sugu	Sünd	Paaritumisaasta	Vanus	$Hg_kontsentratsioon$	AHR
1624	isane	2002	13	vana	2.6319900	1.108
217	emane	2002	13	vana	0.7470183	1.192
2843	isane	2014	NA	noor	1.3737265	2.739
2913	isane	1989	27	vana	0.4410279	0.938
5484	isane	2001	17	vana	2.1886721	0.366
845	emane	NA	24	vana	1.4705400	0.258
8488	isane	2014	2	noor	1.0230231	0.991
ua11803	isane	2014	2	noor	1.3463614	1.032
ua12146	emane	2014	1	noor	1.4122707	1.243
ua14703	emane	2015	1	noor	0.4556523	1.495

Analüüs

Elavhõbedaga seotud küsimuste uurimiseks kasutati andmetabelit 1, kus on 20 vaatlust. Nagu on näha järgnevast sagedustabelist, siis emaseid on 9, isaseid on 11 ning noori ja vanu on mõlemaid 10.

Tabel 4: Soo ja vanuse sagedustabel.

	emane	isane
noor	5	5
vana	4	6

Joonis 1. Elavhõbeda kontsentratsiooni histogramm

Histogrammilt on näha, et pooled vaatlustest jäävad vahemikku umbes 0.9-1.6 mikrogrammi.

1. Kas elavhõbeda kontsentratsioon erineb noorte ja vanade kalakajakate vererakkudes?

Tabel 5. Hg kontsentratsiooni erinevus emaste ja isaste vahel

Vanus	Miinimum	Mediaan	Keskmine	Standardhälve	Maksimum
noor	0.46	1.36	1.39	0.62	2.60
vana	0.36	1.09	1.24	0.73	2.63

Tabelist 5 on näha, et noortel lindudel on keskmine Hg kontsentratsioonitase veidi kõrgem kui vanadel ja standardhälve veidi väiksem, kuid need erinevused ei ole väga suured.

T-testi järgi ei erine keskmine elavhõbeda kontsentratsiooni tase vererakkudes vanade ja noorte kalakajate vahel (p-väärtus = 0.63).

Järgnevalt karpdiagrammilt on näha, et minimaalsed kui ka maksimaalsed väärtused erinevad vähem kui 0.5 võrra. Samuti on mediaanide vahel väike vahe, kuid üldiselt elavhõbeda kontsentratsiooni tase noorte ja vanade kalakajakate veres ei erine.

Hg kontsentratsioon (gg)

The second second

Joonis 2. Elavhõbeda kontsentratsiooni taseme võrdlus vanuste vahel

2. Kas elavhõbeda kontsentratsioon erineb emaste ja isaste kalakajakate vererakkudes?

Võib arvata, et elavhõbeda kontsentratsiooni keskmised võivad olla erinevad emaste ja isaste lindude vahel, kuna ühe-faktorilise ANOVA p-väärtus tuli väga 0.05 lähedale (p-väärtus = 0, 0.06).

Järgnevast tabelist on näha, et emaste keskmine Hg-kontsentratsioon on 1.0 (ug) ja isaste keskmine Hg-kontsentratsioon on 1.6 (ug). Lisaks on isastel lindudel standardhälve suurem.

Tabel 6. Hg kontsentratsiooni erinevus emaste ja isaste vahel

Sugu	Miinimum	Mediaan	Keskmine	Standardhälve	Maksimum
emane	0.36	0.93	1.01	0.49	1.83
isane	0.44	1.37	1.57	0.70	2.63

Karpdiagrammilt on näha, et isastel varieerub elavhõbeda kontsentratsioon rohkem kui emastel ning ka mediaan on isastel suurem. Isaste ja emaste miinimumid on peaaegu võrdsed, kuid isaste maksimum on kõrgem kui emaste maksimum.

Joonis 3. Elavhõbeda kontsentratsiooni taseme võrdlus sugude vahel

Järgnevad analüüsid on tehtud Tabel 2 põhjal, milles on 10 vaatlust.

emane

Tabel 7: Soo ja vanuse sagedustabel.

Sugu

isane

	emane	isane
noor	2	3
vana	2	3

Järgnevalt histogrammilt on näha, et pooled vaatlustest jäävad vahemikku 0.5-1.5 ning üks vaatlus (mis järgnevate tabelite põhjal on vana isane) on ülejäänutest väga kaugel.

Joonis 4. AHR histogramm

3. Kas AHR geeni ekspressiooni tase erineb noortel ja vanadel kalakajakatel?

Tabelist 8 on näha, et vanadel kajakatel on keskmiselt AHR geeniekspressioonitase kõrgem kui noortel ning ühefaktorilise ANOVA p-väärtus on 0, 0.09).

Tabel 8. AHR geeni avaldumise määr vanadel ja noortel

Vanus	Miinimum	Mediaan	Keskmine	Standardhälve	Maksimum
vana	0.26	0.94	0.77	0.43	1.19
noor	0.99	1.24	1.50	0.72	2.74

4. Kas AHR geeni ekspressiooni tase erineb emastel ja isastel kalakajatatel?

T-testi järgi ei erine AHR geeniekspressioonitase ka emaste ja isaste lindude vahel (p-väärtus = 0.74).

Tabel 9. AHR geeni avaldumise määr emastel ja isastel

Sugu	Miinimum	Mediaan	Keskmine	Standardhälve	Maksimum
isane	0.37	1.01	1.20	0.80	2.74
emane	0.26	1.22	1.05	0.54	1.50

5. Kas elavhõbeda kontsentratsiooni tase ning AHR geeni avaldumismäär on korreleeritud?

Joonis 5. AHR ekspressiooni ja Hg kontsentratsiooni seos

Hajuvusdiagrammilt on näha, et elavhõbeda kontsentratsioonil ja AHR geeni avaldumisetaseme vahel ei ole korrelatsiooni.

Kokkuvõte

Projekti käigus vastati küsimustele, mis olid projekti alguses püstitatud. Kuna andmestik on väga väike (elavhõbeda uurimiseks 20 vaatlust ning AHR geeni uurimiseks 10 vaatlust), ei saa tulemustest põhjapanevaid järeldusi teha, kuid nende baasil saab planeerida edasisi uuringuid suurema andmehulga kogumisega.

Projektist tulid välja kaks olulisemat tulemust, mida saaks uurida edasi suurema andmehulga põhjal. Esiteks, elavhõbeda kontsentratsiooni keskmine tase tundub erinevat emaste ja isaste lindude vahel. See on kooskõlas teiste uuringutega, kus on leitud, et munemisperioodil on emastel lindudel väiksem elavhõbeda kontsentratsiooni tase kui isastel, sest emased suunavad mürgiseid aineid munadesse. Teine oluline tulemus on, et AHR geeni ekspressioonitase võib olla erinev vanadel ja noortel lindudel (väikse andmestiku põhjal tuli p-väärtus 0.08) ja seetõttu oleks seda huvitav uurida suurema andmestiku põhjal.

Ülejäänud küsimused said selle projekti põhjal eitava vastuse: vanade ja noorte vahel ei ole Hg kontsentratsioon erinev, emaste ja isaste vahel ei ole AHR geeni ekspressioonitase erinev ning Hg kontsentratsioon ja AHR avaldumistase ei ole omavahel seotud.