Model Details:

SBERT = type of transformer model trained specifically to create sentence embeddings

Model name: all-MiniLM-L6-v2

This is one specific SBERT model in the family.

Details of the name:

all \rightarrow trained on a variety of data sources, so it works for general-purpose text.

 $MiniLM \rightarrow a$ smaller, faster transformer architecture.

 $L6 \rightarrow 6$ transformer layers (compact, good speed).

 $v2 \rightarrow version 2$ of this training setup.

Trade-off: fast (~384-dim vectors) but still accurate for semantic similarity.

With SBERT, each bio becomes a 384-dimensional vector of floats learned by the model.

- 1. **Tokenize the text** → subwords (WordPiece/BPE).
- 2. **Transformer layers** encode context for each token.
- 3. **Pooling** turns all token vectors into one sentence vector.
- 4. **Normalize** (we set normalize_embeddings=True) \rightarrow scale the vector to unit length so cosine similarity is just a dot product.

How it works:

Sample Data:

row index (i)	user_id	age	sex	orientation	location	bio_text (short)
0	100	26	f	straight	NYC	"i like hiking and music "
1	101	27	m	straight	NYC	"i love trails and concerts "
2	102	24	m	gay	SF	"i like hiking and coding "
3	103	29	f	bi	LA	"i enjoy swimming and coding "

After SBERT encoding (and normalization), suppose the model gives these 3-D embeddings

- E[0] (user 100): **A** = [0.7071, 0.7071, 0.0000]
- E[1] (user 101): **B** = [0.6000, 0.8000, 0.0000]
- E[2] (user 102): **C** = [0.7071, 0.0000, 0.7071]
- E[3] (user 103): **D** = [0.0000, 0.0000, 1.0000]

(All four are length 1, i.e., already normalized.)

When the top k semantic neighbors(user id=100, k=2) is run:

We're asking: "Who are the top-2 semantic neighbors of user 100?"

1) Find row index i

2) Compute similarities sims = E @ E[i]

Because embeddings are normalized, dot product = cosine similarity. Compute dot products with A:

$$A \cdot A = 0.7071 \cdot 0.7071 + 0.7071 \cdot 0.7071 + 0 \cdot 0$$

= 0.5000 + 0.5000 + 0 = 1.0000

$$B \cdot A = 0.6000^{*}0.7071 + 0.8000^{*}0.7071 + 0^{*}0$$

= 0.4243 + 0.5657 + 0 = 0.9900 (\approx 0.9899)

$$C \cdot A = 0.7071*0.7071 + 0*0.7071 + 0.7071*0$$

= 0.5000 + 0 + 0 = 0.5000

$$D \cdot A = 0*0.7071 + 0*0.7071 + 1*0$$

= 0 + 0 + 0 = 0.0000

So sims = [1.0000, 0.9900, 0.5000, 0.0000]

3) Exclude self

$$sims[i] = -1$$

Now sims = [-1.0000, 0.9900, 0.5000, 0.0000].

4) Grab the top-k indices (fast)

We negate sims so "largest similarity" becomes "smallest negative number." For k=2, this returns the indices of the two highest sims. Top two indices are 1 (0.99) and 2 (0.50).

5) Sort those k by true similarity

This sorts the selected indices in descending similarity. idx = [1, 2] (since 0.99 > 0.50).

6) Build the output table

user_id	age	sex	orientation	location	score (cosine)
101	27	m	straight	NYC	0.9900
102	24	m	gay	SF	0.5000

Top-2 semantic neighbors for user 100 based on bio text meaning alone.