Bitcoin and Cryptocurrency Technologies Lecture 11: Other Cryptocurrencies

Yuri Zhykin

Apr 28, 2025

Problems and Solutions

- As of 2021, there is more than 4000 cryptocurrencies, most of which have no useful application.
- Various cryptocurrencies claim to "solve" one or several problems of Bitcoin protocol, such as:
 - "small" blocks, "long" periods between blocks,
 - "weak" (inflexible) scripting system,
 - mining centralization,
 - energy consumption,
 - transaction privacy.
- Bitcoin, unlike most other cryptocurrency systems, does not have a central governing body.

Scripting System 1/3

- One of the first ideas of the "next generation" cryptocurrencies: make the transaction validation language Turing-complete to allow arbitrary "smart contracts".
- A smart contract is a self-executing contract with the terms of the agreement between the parties specified as code.

Scripting System 2/3

- Bitcoin Script is a simple stack-based Turing-incomplete language by design.
- Bitcoin's approach:
 - simple language is easier to analyze for incorrect behavior;
 - Turing-incompleteness prevents infinite loops and undefined behavior;
 - most "smart contracts" are simple enough to be expressed in Bitcoin Script;
 - "smart contracts" that cannot be expressed in Bitcoin Script, can/should be implemented as second-layer protocols.
- In fact, Bitcoin Script is considered by some to too flexible (Miniscript, Simplicity).

Scripting System 3/3

- Main types of smart contracts on Ethereum platform:
 - fungible tokens similar to stocks (ICOs based on ERC-20 protocol, 2017);
 - non-fungible (collectible) tokens like CryptoKitties (2017) or NFTs (2020);
 - digital identity management.
- Both fungible and non-fungible tokens can be natively represented on Bitcoin via "coloring" - UTXO is "marked" and considered a new token - multiple projects around 2015.
- All of the above can be implemented on top of Bitcoin using ideas like client side validation (e.g. RGB protocol on the Lightning Network), providing both contract flexibility and scalability.

Mining Centralization 1/2

- Bitcoin's Proof-of-Work system uses simple SHA-256d (double SHA-256) algorithm.
- SHA-256d can be easily implemented in specialized hardware (ASICs - Application Specific Integrated Circuits.
- As of 2022, Bitcoin is mined solely on ASICs, as any generic purpose hardware is way to slow to be profitable.
- Bitcoin ASICs are mostly produced in China, which, combined with the low electricity consts, resulted in an accumulation of significant amounts of hash-power in mainland China in 2014-2017.
- Some people within cryptocurrency community consider ASIC resistance to be an important characteristic of the "next generation" cryptocurrency system.

Mining Centralization 1/2

Bitcoin's point of view:

- ASICs are slowly approaching theoretical efficiency limits, so the incentive to install them close to the manufacturer (i.e. in China) is diminishing;
- a decentralization tendency has been observed in the last several years - more mining operations are being set up in other countries,
- that said, there are discussions of a potential change of the PoW algorithm in a distant future - this will most definitely require a hard-fork.

Energy Consumption

- Lately, Bitcoin is being aggressively criticized by the mainstream media for its total energy consumption.
- Most of the claims on Bitcoin's energy consumption show little to no understanding of both Bitcoin and electricity usage (discussed in great detail by Nic Carter on Twitter):
 - excess electricity generated from renewables cannot be stored;
 - no evidence of Bitcoin mining operations causing electrical grid outages in their respective areas, which indicates that only the excess electricity is being consumed;
 - miners are incentivized to put their equipment close to cheap excess electricity sources;
 - Bitcoin mining will optimize inefficient renewable energy production and incentivize nuclear energy.
- Does Bitcoin's value proposition outweigh the costs of consumed electricity?

Proof of Stake

- Proof of stake (PoS) protocols are a class of consensus mechanisms for blockchains that work by selecting validators in proportion to their quantity of holdings in the associated cryptocurrency.
- The first functioning use of PoS for cryptocurrency was Peercoin in 2012.
- Proof of stake violates the energy-based interpretation of decentralized consensus: Bitcoin blocks are secured by large amounts of energy needed to generate one.
- "Proof of Stake is why Proof of Work was invented." -@notgrubles on Twitter.

Transaction Privacy 1/2

- Bitcoin block chain data is transparent: for every "chunk" of bitcoin created by a coinbase transaction, the whole transaction history can be followed by simply looking at the chain data.
- Bitcoin addresses are pseudonymous: outputs to the same address can be easily tied together, but one should not reuse addresses.
- As a result, Bitcoin chain is susceptible to chain analysis that in some cases allows to establish the sender and the recipient of the bitcoin (the amount is publicly visible directly).
- This might complicate Bitcoin's use as a currency for daily payments, where transaction privacy is essential (salary, medication bills, etc).

Transaction Privacy 2/2

- Lightning Network significantly improves transaction privacy by moving day-to-day transactions off chain.
- Channel open and channel close transactions are still visible on chain - taproot partially fixes this and is a first step towards a general solution to the problem.
- Proposals to implement privacy features on Bitcoin sidechains.
- Proposals to implement privacy features directly on Bitcoin mainnet - unlikely to happen in the near future, but will probably be implemented eventually in one way or another.

Case Study: Ethereum 1/2

- Created by Vitalik Buterin a Russian-Canadian programmer and an active member of Bitcoin community in the early days.
- Launched in 2014.
- Main difference from Bitcoin: Turing-complete smart contract language Solidity with JavaScript-like syntax.
- In order to avoid the infinite loops and transaction spam, Ethereum's fee system requires users to pay for operations executed by their smart contracts - this is called paying for gas.

Case Study: Ethereum 2/2

- Turing-completeness of the Ethereum was the reason behind the infamous "DAO hack" - loss of a large amount of funds in 2016 that caused the Ethereum governing body to revert a transaction via a hard fork.
- An investigation in 2019 indicated that 60% of Ethereum nodes were running in the cloud on centralized platforms like AWS (claim by AWS confirms that 25% of Ethereum infrastructure runs there in 2022).
- Ethereum's scalability problem is even worse than that of Bitcoin: full node is 700 Gb, archive node is approximately 10 Tb of data (Bitcoin blockchain for comparison is 380 Gb, and it's twice as old).
- Ethereum network is determined to move to a Proof-of-Stake system.

Case Study: Monero 1/2

- Based on the CryptoNote protocol described by a pseudonymous entity Nickolas van Saberhagen.
- Created by a pseudonymous individual thankful_for_today
 who forked the codebase of CryptoNote-based coin Bytecoin
 and launched the network.
- Similar to Bitcoin, has no central governing body.
- Very simple transaction structure with no scripting system.
- ASIC-resistant Proof-of-Work algorithm.
- Variable block size, short period between blocks (2 minutes).
- Protocol upgrades are performed via planned hard forks, which is only feasible because the network is comparatively small.

Case Study: Monero 2/2

- The privacy of Monero is achieved by concealing the following information:
 - the sender of the money via the ring signatures,
 - the receiver of the money via the stealth addresses,
 - the amount sent via the Confidential Transactions system that encrypts the amounts in transaction but allows to check that the amount spend is greater than the amount received.
- Monero is very low-use blockchain system and is therefore dangerous for serious use-cases.

Founder Influence

- Bitcoin and Monero are arguable the only interesting cryptocurrencies whose creators are no longer engaging with the community and have no influence over it.
- Satoshi Nakamoto never appeared online since 2011.
- Some people believe Satoshi disappeared to prevent any entity, including themselves, from manipulating the community using their name, identity, sentimental role, or the amount of bitcoin they presumably own.
- Satoshi's disappearance is considered a "gift" to Bitcoin ecosystem, as he/she removed himself/herself from the discussion to avoid undermining the decentralization of the system via founder influence in its formative years.
- Founder (Foundation) influence persuaded Ethereum community to accept a hard-fork in 2016 and lose credibility as a decentralized finance system.

Conclusions

- Bitcoin community is very conservative regarding the protocol changes, and network safety and stability are considered the most important goals.
- Features that Bitcoin lacks can often be implemented as layer-2 solutions.
- Transaction privacy is one of the first priority goals (after safety and stability).
- Is store of value Bitcoin's niche or will it become a single global payment system as well?
- Do we need other cryptocurrencies?

The End

Thank you!