

10/536824

National Stage Entry of PCT/JP03/15270
"Method of Analyzing C-terminal Amino
Acid Sequence of Peptide"
Filed: May 27, 2005 - Ref.: Q-88284
Atty: Bernstein; Tel.: 202-293-7060

Fig. 1

Best Available Copy

Mb truncation reaction in gel

Fig. 2

101536824
National Stage Entry of PCT/JP03/15270
"Method of Analyzing C-terminal Amino
Acid Sequence of Peptide"
Filed: May 27, 2005 - Ref.: Q-88284
Atty: Bernstein; Tel.: 202-293-7060

Mb, 3h in test tube

Fig. 3

National Stage Entry of PCT/JP03/15270
"Method of Analyzing C-terminal Amino Acid Sequence of Peptide"
Filed: May 27, 2005 - Ref.: Q-88284
Atty: Bernstein; Tel.: 202-293-7060

10/536824

NOTE: (78-102) is presumed to be a fragment resulting from the digestion by trypsin at the lysine site, which is caused by insufficient acetylation thereto.

Fig. 4

101536824

myoglobin – horse

[1 - 153] mass = 17738.180
Cleavage at R

Small polar : D(7)	E(13)	N(3)	Q(6)			
Large polar : K(19)	R(2)	H(11)				
Small non-polar : S(5)	T(7)	A(15)	G(15)			
Large non-polar : L(17)	I(9)	V(7)	M(2)	F(7)	Y(2)	W(2)
Special : C(0)	P(4)					

$$\begin{array}{cccc}
K[16] + 42.04 & K[42] + 42.04 & K[45] + 42.04 & K[47] + 42.04 \\
K[50] + 42.04 & K[56] + 42.04 & K[62] + 42.04 & K[63] + 42.04 \\
K[77] + 42.04 & K[78] + 42.04 & K[79] + 42.04 & K[87] + 42.04 \\
K[96] + 42.04 & K[98] + 42.04 & K[102] + 42.04 & K[118] + 42.04 \\
K[133] + 42.04 & K[145] + 42.04 & K[147] + 42.04 &
\end{array}$$

1 GLSDGEWQQVLNVWGVEADIAGHGQEVL 30
31 Riftghpetlefdkfhlsteaemased 60
61 lhgtvvltalggilkgghheaelpla 90
91 qshatkhipiylefisdaaihvlhsph 120
121 gnfgadagamtaalelfrndiaayyELG 150
151 FQG 153

$$(1) [1-31] = 3444.742 \quad (2) [32-139] = 12692.649 \quad (3) [140-153] = 1636.809$$