Mały Projekt nr 2.

Temat: Multiplikatywne grupy (Z_n^*, \cdot_n)

Niech n będzie ustaloną liczbą naturalną i niech $Z_n^* := \{k \in \mathbb{N} \mid 1 \le k \le n-1, \text{ NWD}(k,n) = 1\}$ będzie zbiorem liczb naturalnych mniejszych od n i względnie pierwszych z n. Określmy w Z_n^* binarne działanie w następujący sposób:

$$a \cdot_n b := (a \cdot b)_n$$
.

 $((a \cdot b)_n$ - reszta z dzielenia ab przez n)

Uwaga 1. (Z_n^*, \cdot_n) jest grupą.

Niech $n \in \mathbb{N}$ oraz $a \in \mathbb{Z}_n^*$. Przypomnijmy, najmniejszą dodatnią liczbę naturalną d taką, że

$$a^d \equiv_n 1$$

nazywamy rzedem elementu $a \in Z_n^*$ w grupie (Z_n^*, \cdot_n) .

Definicja 1. Liczba $a \in Z_n^*$ jest pierwiastkiem pierwotnym modulo n, jeżeli rząd a jest równy $\varphi(n) = |Z_n^*|$.

Twierdzenie 2. Jeśli p jest liczbą pierwszą, to w grupie (Z_p^*, \cdot_p) istnieje pierwiastek pierwotny modulo p. $(Tzn., \dot{z}e \ grupa \ (Z_p^*, \cdot_p) \ jest \ cykliczna.)$

Twierdzenie 3 (Test pierwszości Lucasa). Niech $n \in \mathbb{N}$ i $b \in \mathbb{Z}$ będą takie, że $2 \le b \le n-1$. Wtedy, jeśli dla każdego pierwszego podzielnika p liczby n-1 zachodzą warunki:

- $b^{n-1} \equiv_n 1$,
- $b^{\frac{n-1}{p}} \neq 1 \pmod{n}$,

to n jest liczbą pierwszą.

Zadania do wykonania:

- (a) Określić rzędy elementów w grupach (Z_{19}^*, \cdot_{19}) i (Z_{24}^*, \cdot_{24}) .
- (b) Znaleźć pierwiastki pierwotne w grupach (Z_{19}^*,\cdot_{19}) i $(Z_{41}^*,\cdot_{41}).$
- (c) Sprawdzić, czy w grupie $(Z_{2^8}^*, \cdot_{2^8})$ istnieje pierwiastek pierwotny. Czy istnieje takie $n \geq 3$, że grupa $(Z_{2^n}^*, \cdot_{2^n})$ jest cykliczna?
- (d) Znaleźć elementy odwrotne do wybranych elementów w grupach (Z_{19}^*, \cdot_{19}) i (Z_{24}^*, \cdot_{24}) .
- (e) Zastosować test Lucasa dla wybranych dużych liczb całkowitych.
- (f)[⋆] Udowodnić Twierdzenie 3.