What is claimed is:

1	1. A microlithographic reduction projection catadioptric		
2	objective (100, 200) comprising in sequence from an object side to an image side		
3	of:		
4	a catadioptric group (G1) for providing a virtual image, wherein		
5	the catadioptric group (G1) comprises a reflective field group and includes a		
6	folded off-axis field geometry; and		
7	a dioptric group (G2) for receiving the virtual image and providing		
8	a real image.		
1	2. A microlithographic reduction projection catadioptric		
2	objective (100. 200) comprising:		
3	a catadioptric group (G1) including a reflective field group for		
4	providing a virtual image, wherein the reflective field group is arranged in a		
5	folded off-axis field geometry to fold light such that object and image planes are		
6	parallel to one another and perpendicular to an optical axis to enable unlimited		
7	scanning in a step/scan lithographic configuration; and		
8	a dioptric group (G2) for receiving the virtual image and providing		
9	a real image.		
1	3. An objective (100, 200) as in any preceding claim, wherein		
2	the catadioptric group (G1) includes at least three lens elements (E1-E3).		
1	4. An objective (100, 200) as in any preceding claim, wherein		
2	the catadioptric group (G1) includes three mirrors (M1-M3) and two flat folding		
3	mirrors (F1, F2).		

1	5. An objective (100, 200) according to claim 4, wherein two		
2	mirrors (M2, M3) are positioned downstream of the two flat folding mirrors (F1,		
3	F2).		
1	6. An objective (100, 200) according to claim 5, wherein the		
2	two mirrors (M2, M3) downstream of the two flat folding mirrors (F1, F2)		
3	comprise a concave mirror and a convex mirror, respectively.		
1	7. An objective (100, 200) according to claim 6, wherein the		
2	convex mirror (M3) is the most image forward mirror.		
1	8. An objective (100, 200) according to claim 4, wherein one		
2	of the folding mirrors (F2) is upstream of the most image forward lens element		
3	(E2) of the catadiotric group (G1).		
1	9. An objective (100, 200) according to claim 4, wherein the		
2	most image forward folding mirror (F2) is disposed between a second lens		
3	element (E2) and a second mirror (M2), the most image forward folding mirror		
4	(F2) deviating a beam and directing it in a direction that is parallel to a beam		
5	emanating from the object plane.		
1	10. An objective as in any preceding claim, wherein the real		
2	image is formed with a numerical aperture of at least substantially 0.80.		
1	11. An objective as in any preceding claim, wherein the real		
2	image is formed with a numerical aperture of at least substantially 0.85.		
1	12. An objective according to claim 2, wherein the catadioptri		
2	group (G1) includes a most image forward convex mirror (M3) that receives a		

3 beam after it has been twice folded and wherein the dioptric group (G2) receives a

- 4 beam from the convex most image forward convex mirror (M3).
- 1 13. An objective (100, 200) according to claim 4, wherein one
- 2 folding mirror (F2) and two of the mirrors (M2, M3) are upstream of the most
- 3 image forward lens element (E2) of the catadioptric group (G1).
- 1 14. An objective (100, 200) according to claim 13, wherein the
- 2 two mirrors (M2, M3) are more image forward than the both folding mirrors (F1,
- 3 F2), where one of the two mirrors (M2) receives the folded beam from a second
- 4 folding mirror (F2) and reflects the beam to the other of the two mirrors (M3)
- 5 which represents the most image forward mirror of the catadioptric group (G1).
- 1 15. An objective (100, 200) according to claim 2, wherein the
- 2 catadioptric group (G1) includes a single-pass lens element (E1) and first and
- 3 second folding mirrors (F1, F2) that are arranged so that a beam incident to the
- 4 single-pass lens element (E1) and exiting the dioptric group (G2) propagate along
- 5 substantially parallel axes.
- 1 16. An objective (100, 200) as in any preceding claim, wherein
- 2 a least image forward lens element (E4) of the dioptric group (G2) is a negative
- 3 lens and a most image forward lens element (E16) of the dioptric group (G2) is a
- 4 positive lens.
- 1 17. An objective (100, 200) according to claim 4, wherein
- 2 second and third mirrors (M2, M3) are arranged upstream of the two folding
- 3 mirrors (F1, F2) and each of the three lens elements (E1-E3), the second mirror
- 4 (M2) being a concave mirror that receives the folded beam from a most image

5 forward folding mirror (F2) and reflects the beam to the third convex mirror (M3)

- 6 which reflects light to the dioptric group (G2).
- 1 18. An objective (100, 200) according to claim 2, wherein the
- 2 catadioptric group (G1) includes two folding mirrors (F1, F2) and a reflective
- 3 group (M2, M3) upstream of a most image forward folding mirror (F2), the
- 4 reflective group (M2., M3) including one concave mirror and one convex mirror.
- 1 19. An objective (100, 200) according to claim 18, further
- 2 including a negative lens group (E2, E3) disposed between the two folding mirrors
- 3 (F1, F2).
- 1 20. An objective (100, 200) according to claim 2, wherein the
- 2 dioptric group (G2) includes more positive lens elements than negative lens
- 3 elements.
- 1 21. An objective (100, 200) according to any of claims 1 or 2,
- 2 wherein the dioptric group (G2) includes a number of lens elements (E4-E16) and
- 3 has a negative overall magnifying power for providing image reduction.
- 1 22. A photolithographic reduction projection catadioptric
- 2 objective (100, 200), comprising:
- a first optical group (G1) includes an odd number of mirrors (M1-
- 4 M3); and
- 5 a second substantially refractive optical group (G2) more image
- 6 forward than the first optical group (G1), the second optical group (G2) including
- 7 a number of lens elements (E4-E16) and having a negative overall magnifying
- 8 power for providing image reduction;

wherein the first optical group (G1) has a folded geometry for 9 producing a virtual image and the second optical group (G2) receives and reduces 10 the virtual image to form an image with a numerical aperture of at least 11 substantially 0.80, wherein a beam exiting the second optical group (G2) is 12 parallel to and displaced from a beam incident to a first lens element (E1) of the 13 first optical group (G1). 14 An objective (100, 200) according to claim 22, wherein the 23. 1 first optical group (G1) comprises a catadioptric group having a single pass lens 2 (E1) and a double-pass lens group (E2, E3). 3 An objective (100, 200) as in any of claims 22-23, wherein 1 24. the first optical group (G1) includes at least three mirrors (M1-M3) arranged such 2 that a second mirror (M2) having a concave surface faces a convex surface of a 3 third mirror (M3) such that the second mirror (M2) receives a beam that has been 4 folded within the first optical group (G1) and reflects the beam to the convex 5 surface of the third mirror (M3). 6 An objective (100, 200) according to claim 24, wherein 25. 1 light is folded within the first optical group (G1) by first and second folding 2 mirrors (F1, F2) that are arranged so that a beam exiting the first optical group 3 (G1) and a beam incident to a first lens element (E1) of the first optical group 4 (G1) propagate along substantially parallel axes. 5 An objective (100, 200) according to any of claims 22-25, 26. 1 wherein the second dioptric group (G2) includes more positive lens elements than 2 negative lens elements. 3

1	27. An objective (100, 200) according to any of claims 22-25,		
2	wherein the first and second optical groups (G1, G2) include at least eight		
3	aspheric surfaces.		
1	28. An objective (100, 200) according to any of claims 22-27,		
2	wherein the first optical group (G1) includes at least three mirrors (M1-M3) and		
3	two folding mirrors (F1, F2) with two of the three mirrors (M2, M3)being located		
4	along the optical path more image forward than the two folding mirrors (F1, F2)		
5	such that one of the two mirrors (M2) receives a folded beam from the folding		
6	mirror (F2) that is more image forward and reflects the beam to the other of the		
7	two mirrors (M3) which represents the most image forward mirror of the		
8	catadioptric group (G1).		
1	29. An objective (100, 200) according to any of claims 22-28,		
2	wherein the first optical group (G1) includes a single pass lens (E1) and a double-		
3	pass lens group (E2, E3), the double-pass lens group (E2, E3) being disposed		
4	between first and second folding mirrors (F1, F2).		
1	30. A photolithographic reduction projection catadioptric		
2	objective (100, 200), comprising:		
3	a first optical group (G1) includes an odd number of mirrors (M1-		
4	M3); and		
5	a second substantially refractive optical group (G2) more image		
6	forward than the first optical group (G1), the second optical group (G2) including		
7	a number of lenses (E4-E16) and having a negative overall magnifying power for		
8	providing image reduction;		
9	wherein the first optical group (G1) has a folded off-axis field		

10 geometry and provides compensative aberrative correction for the second optical.

- group (G2) which forms an image with a numerical aperture of at least
- 12 substantially 0.80.
- 1 31. A photolithographic reduction projection catadioptric
- 2 objective (100, 200) devoid of a beam splitter device, the objective comprising:
- a first optical group (G1) including an odd number of at least three
- 4 mirrors (M1-M3) including a convex most image forward mirror (M3); and
- 5 a second substantially refractive optical group (G2) more image
- 6 forward than the first optical group (G1) for receiving a beam from the convex
- 7 most image forward mirror (M3) of the first group (G1) after the beam has been
- 8 folded along an optical path of the first optical group (G1), wherein the second
- 9 optical group (G2) includes a number of lens elements (E4-E16) for providing
- 10 image reduction.
- 1 32. An objective (100, 200) according to claim 31, wherein the
- 2 first optical group (G1) comprises a catadioptric group having at a positive lens
- 3 (E1) and a negative lens group (E2, E3) arranged such that the beam incident to a
- 4 first lens element (E1) is folded twice prior to the beam being received by a
- 5 reflective image forward mirror group (M2, M3) including the convex most image
- 6 forward mirror (M3).
- 1 33. An objective (100, 200) according to any of claims 31-32,
- 2 wherein the second optical group (G2) forms an image with a numerical aperture
- 3 of at least substantially 0.80.

1	34.	An objective (100, 200) according to any of claims 31-32,		
2	wherein the objective has a blank mass of less than 57 kg at a 22 mm x 6 mm field			
3	operating at a numerical aperture of at least substantially 0.85.			
1	35.	An objective (100, 200) according to any of claims 31-32,		
2	wherein the second optical group (G2) forms an image with a numerical aperture			
3	of at least substantially 0.85.			
1	36.	A projection exposure apparatus comprising a light source		
2	selected from the grou	p of light sources consisting of a DUV and a VUV light		
3	source, an illumination system, a reticle handling, positioning and scanning			
4	system, a projection objective according to any of claims 2, 22, 30 or 31 and a			
5	wafer handling, positioning and scanning system.			
		•		
1	37.	A microlithographic reduction projection objective (100,		
2	200), comprising:			
3	a first j	partial objective with a concave mirror (M1) and at least one		
4	negative lens (NL) do	ubly passed by light traveling to and from the concave		
5	mirror (M1);			
6	an inte	rmediate image (Imi); and		
7	a seco	nd partial objective with two curved mirrors (M2, M3) and a		
8	plurality of lenses (G	2).		
		A 1' (100, 200) according to claim 37, wherein the		
1		An objective (100, 200) according to claim 37, wherein the		
2	second partial objective has two curved mirrors (M2, M3) forming a virtual imag			
3	and imageward subse	equent a lens group (G2) with reduction magnification.		

1 39. An objective (100, 200) according to any of claims 37 or 2 38, wherein a system aperture (AP) is located within the second partial objective

- 3 and only a purely refractive lens group is arranged between the system aperture
- 4 (AP) and an image plane (IMG).
- 1 40. An objective (100, 200) according to any of claims 37-39,
- wherein the first partial objective is a catadioptric group providing the
- 3 intermediate image (Imi) and the second partial objective comprises an optical
- 4 group selected from the group of optical groups consisting of a catoptric group
- 5 and a catadioptric group, for providing the virtual image and the plurality of lenses
- 6 (G2) comprises a dioptric group providing the real image.
- 1 41. An objective (100, 200) according to any of claims 39-40,
- wherein the plurality of lenses (G2) includes a positive lens group of more than 5
- 3 lenses (E11-E16) and a least image forward lens of the purely refractive group
- 4 comprises a negative lens (E10).