程序代写代做 CS编程辅导

Copyright Copyright University of New South Wales 2020. All rights reserved.

Course materia Ha - 1 1 2 2 3 copyright

UNSW Sydney owns comparison of the material is subject to copyright under Australia under international treaties. The materials are provided for use by enrolled UNSW and the course without permission. Students may only copy a reasonable portion of the material for personal research or study or for criticism or review. Under no circumstances may these materials be copied or reproduced for sale or commercial purposes without prior written permission of UNSW Sydney.

We Chat: CStutorCS

Statement on class recording

To ensure the free and oping is useful fidence student in the property by any near scass repelled the discussion and/or activities without the advance written permission of the instructor, and any such recording properly approved in advance can be used solely for the students own private use.

WARNING: Your failure to popply with the second itions grade and trois oplinary action, and may give rise to a civil action or a criminal offence under the law.

THE ABOVE INFORMATION MUST NOT BE REMOVED FROM THIS MATERIAL.

QQ: 749389476

https://tutorcs.com

University of New South 科理辅号 School of Economics Financial Econometrics utorial 6

- (a) The specification $\varepsilon_t | \Omega_{t-1} \sim N(0, \sigma_t^2)$ implies that the conditional mean of ε_t is 0. The conditional mean of y_t is $c + \phi_1 y_{t-1}$. The unconditional mean of ε_t is 0, by iterated expectations. The unconditional mean of y_t is also obtained by Rule 3: $E(y_t) = c + \phi_1 E(y_{t-1})$ and stationarity $E(y_t) = E(y_{t-1}) = c/(1 \phi_1)$.

For the unconditional variance of y_t , we find $\operatorname{Var}(y_t) = \phi_1^2 \operatorname{Var}(y_{t-1}) + \operatorname{Var}(\varepsilon_t)$ because ε_t is uncorrelated with y_{t-1} . Then, by stationarity, $\operatorname{Var}(y_t) = \operatorname{Var}(y_{t-1}) = \operatorname{Var}(\varepsilon_t)/(1 - \phi_1^2)$. Finally, $\operatorname{Var}(\varepsilon_t) = E(\sigma_t^2) = \alpha_1 + \alpha_2 = \alpha_1 + \alpha_2 = \alpha_2 = \alpha_1 + \alpha_2 = \alpha_2 = \alpha_1 + \alpha_2 = \alpha_2 =$

(c) Yes, ε_t is a WN process because its variance is finite, mean is zero (verified in Part (a) and (b)) and autocovariances are zero for any j > 0: (iterated expectations)

$$\gamma_j = \operatorname{Cov} \left(\varepsilon_t, \varepsilon_{t-j} \right) = E \left(\varepsilon_t \varepsilon_{t-j} \right) = E \left\{ E \left(\varepsilon_t \varepsilon_{t-j} \middle| \Omega_{t-1} \right) \right\} = E \left\{ E \left(\varepsilon_t \middle| \Omega_{t-1} \right) \varepsilon_{t-j} \right\} = E \left\{ 0 \right\} = 0.$$

However, ε_t is NOT an independent WN process because the conditional variance of ε_t is a function of ε_{t-1} and ε_{t-2} , by definition.

- (d) The ARCH model differ from the standard homoscedastic model in that the conditional variance of the shock (or error term) is a function of lagged shocks whereas the conditional variance of the shock in any standard ARMA model is a constant. The variance equation in the ARCH model is designed to capture "clustering" or the dependence structure in squared shocks.
- (e) It is easily seen from the variance equation: $\partial \sigma_t^2 / \partial \varepsilon_{t-1}^2 = \alpha_1$.

(f) Now the variance equation is simplified to $\sigma_t^2 = \alpha_0 + \alpha_t \varepsilon_t^2$. First, we find $E(\varepsilon_t^4) = E\{E(\varepsilon_t^4 | \Omega_{t-1})\} = E\{3\sigma_t^4 = 3E\{\alpha_0^4 + 2\alpha_0\alpha_1\varepsilon_{t-1} + \alpha_1^2\varepsilon_{t-1}^4\}$. Because $E(\varepsilon_{t-1}) = \alpha_0/(1 - \alpha_1)$ by part (b) and $E(\varepsilon_t^4) = E(\varepsilon_{t-1}^4)$ by stationarity, it then follows that

$$E(\varepsilon_t^4) = 3\{\alpha_0^2 + 2\alpha_0^2 + 2\alpha_0^2$$

Finally, we find the u

Kurtosis =
$$\frac{E([\varepsilon_t - E(1)] - E(1))}{(Var(\varepsilon_1))} = \frac{\alpha_1^2}{3\alpha_1^2} > 3$$

and conclude that the angular and continuous and conclude that the angular and continuous ε_t is non-normal with heavy tails (kurtosis > 3), noting that its conditional distribution is normal.

2. (GARCH model derectistics): CStutorcs

(a-b) From $\varepsilon_t | \Omega_{t-1} \sim N(0, \sigma_t^2)$, it is clear that $E(\varepsilon_t | \Omega_{t-1}) = 0$ and $Var(\varepsilon_t | \Omega_{t-1}) = \sigma_t^2$. It follows that $E(y_t | \Omega_t \Delta) = 0$ and $Var(\varepsilon_t | \Omega_{t-1}) = \sigma_t^2$. It follows that $E(y_t | \Omega_t \Delta) = 0$ are obtained by iterated expectations:

$$E(\varepsilon_t) = E\{E(\varepsilon_t | \Omega E_t)\} = E\{E(\varepsilon_t | \Omega E_t$$

$$E(y_t) = E\{E(y_t|\Omega_{t-1})\} = c + \phi_1 E(y_{t-1})$$
 and

$$E(y_t) = E(y_{t-1})$$

Because the (conditional) mean of ε_t is zero, we find

 $Var(\varepsilon_t) = E\{Var | \mathbf{f}(t)\} = \frac{1}{2} \int \mathbf{f}(t) \cdot \mathbf{f}$

$$Var(\varepsilon_t) = E\{\sigma_t^2\} = E(\varepsilon_{t-1}^2) = E(\sigma_{t-1}^2) = \alpha_0/(1 - \alpha_1 - \beta_1).$$

Further $Var(y_t) = \phi_1^2 Var(y_{t-1}) + Var(\varepsilon_t)$ because ε_t is uncorrelated with y_{t-1} . Again, by stationarity, we find $Var(y_t) = Var(y_{t-1}) = Var(\varepsilon_t)/(1 - \phi_1^2)$.

(c) Yes, ε_t is a WN process because its variance is finite, mean is zero (verified in Part (a) and (b)) and autocovariances are zero for any j > 0:

$$\gamma_{j} = \operatorname{Cov}(\varepsilon_{t}, \varepsilon_{t-j}) = E(\varepsilon_{t}\varepsilon_{t-j}) = E\{E(\varepsilon_{t}\varepsilon_{t-j}|\Omega_{t-1})\} = E\{E(\varepsilon_{t}|\Omega_{t-1})\varepsilon_{t-j}\} = E\{0\} = 0.$$

However, ε_t is NOT an independent WN process because the conditional variance of ε_t is a function of ε_{t-1} , by definition.

(d) It is easily seen from the variance equation: $\partial \sigma_t^2/\partial \varepsilon_{t-1}^2 = \alpha_1$. Note that σ_{t-1}^2 in the variance equation is a function of Ω_{t-2} .

© Copyright University of New South Wales 2020. All rights reserved. This copyright notice must not be removed from this material.

(e-i) We show that $w=\frac{2}{2}-\sigma_t^2$ has zero mean and zero autocorrelations. First, because $E(\varepsilon_t|\Omega_{t-1})=0$, $E(w_t|\Omega_{t-1})=E(\varepsilon_t^2|\Omega_{t-1})-\sigma_t^2=\sigma_t^2-\sigma_t^2=0$, implying $E(w_t)=0$. Second, $\operatorname{Cov}(w_t,w_{t-1})=E(w_tw_{t-1})=E\{E(w_t|\Omega_{t-1})w_{t-j}\}=E\{0\}=0$, for all $j\geq 1$. (e-ii) It only involutes: $\varepsilon_t^2=\sigma_t^2+w_t=\alpha_0$

i.e., an ARMA(1,1) for ε_t^2 .

(f) When $\alpha_1 + \beta_1 = 0$ Chat: estutores

 $\sigma_t^2 = \omega(1 - \alpha_1 - \beta_1) + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = (1 - \beta_1) \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$ becomes an EWMA of ε_t . Signment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

COMPUTING EXERCISES P代写代做 CS编程辅导

3. (Estimation of ARCH)

(a) The time serice correlogram shows lited data distribution in the large kurtosis (5.016).

correlogram of the return series are given below. The ne return (large p-values for Ljung-Box Q-statistics). The "bell shaped" but has a negative skewness (-0.147) and ceted (JB = 171.74 with a tiny p-value).

https://tutorcs.com

Series: R Sample 1 994 Observations 993					
Mean	0.015735				
Median	0.007796				
Maximum	4.964596				
Minimum	-7.043759				
Std. Dev.	1.301875				
Skewness	-0.146823				
Kurtosis	5.016094				
Inner Dane	474 7400				
Jarque-Bera	171.7420				
Probability	0.000000				

(b) For the squared return series, the electering is prominent in the time series plot and the correlagram reveals strong autocorrelations tiny positive for the c-statistics.

(c) The LM test for ARCH effect rejects the null hypothesis of no ARCH effect (tiny p-values).

We note that the auxiliary equation in the test have large coefficients at lag 1,2 and 5. We conclude that the ARCH effect hould be accounted for the return series.

ARCH Test:

https://tutorcsbeen 53.01425 Probability 0.000000 0.000000

Test Equation: Dependent Variable: RESID*2 Method: Least Squares

Sample (adjusted): 7 994

Included observations: 988 after adjustments

Dependent Variable: R Method: Least Squares

Sample (adjusted): 2 994

Included observations: 993 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	0.015735	35 0.041314 0.380854		0.7034	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.000000 0.000000 1.301875 1681.319 -1670.464	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		0.015735 1.301875 3.366494 3.371430 1.994052	

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C	1.058869	0.144610	7.322252	0.0000	
RESID*2(-1)	0.096896	0.031449	3.081046	0.0021	
RESID*2(-2)	0.122086	0.031600	3.863463	0.0001	
RESID*2(-3)	-0.004176	0.031837	-0.131154	0.8957	
RESID*2(-4)	0.004833	0.031617	0.152863	0.8785	
RESID*2(-5)	0.152973	0.031463	4.861981	0.0000	
R-squared	0.053658	Mean dependent var		1.690413	
Adjusted R-squared	0.048840	S.D. dependent var		3.394152	
S.E. of regression	3.310230	Akaike info criterion		5.237967	
Sum squared resid	10760.38	Schwarz criterion		5.267698	
Log likelihood	-2581.556	F-statistic		11.13600	
Durbin-Watson stat	2.004102	Prob(F-statistic)		0.000000	

(f) We may use AIC or SIC to choose the number of lags in ARCH models. For ARCH(q), the AIC and SIC for q = 1,2,...,9 are displayed in the bar chart below, where AICs are in group 1 on the left and SICs are in group 2 on the right. Clearly, AIC selects q = 8 but SIC selects q = 5.

Based on SIC and the principle of parsimons, the ARCH(5) model stays for the variance equation. For the mean equation, as the returns have little autocorrelation, a mole sophistical of ARMA specification is unlikely to improve the model's fit.

4. (Estimation of GWCHChat: cstutorcs

- (a) The estimation results at Part (e) below in Part that all restriction on the parameters are satisfied: $\alpha_0 > 0$, $\alpha_1 \ge 0$, $\beta_1 \ge 0$ and $\alpha_1 + \beta_1 < 1$. We also note that the β_1 estimate is about 0.9, the α_1 estimate is about 0.1 and the $\alpha_1 + \beta_1$ estimate is very close to 1.

 (b) The plot below contain the absolute return series (RA) and σ_t series from ARCH(5)
- (b) The plot below contain the absolute return series (RA) and σ_t series from ARCH(5) and GARCH(1,1) respectively. Both σ_t series match the variations in the return. However the two σ_t series differ markedly in a number of places. The GARCH σ_t appears smoother than the ARCH σ_t .

(c) The LM test for ARCH effect (see below) cannot reject that the null hypothesis that there is no ARCH effect in the standardised residuals, as the p-value is quite large (0.17). The correlogram of the squared standardised residuals also indicate that there are no

autocorrelations. Hence the SARCH variance equation has a dequately captured the clustering in the error term ε_t .

Email: tutorcs@163.com

(d) The histogram of the standardised residual show that the null hypothesis of normality is strongly rejected (virtally zero product) Sometheres, the kurtosis is much smaller than the kurtosis in the return series, which confirms that the variance equation can partially explain the excess kurtosis in the return series.

(e) The estimation results with or without the quasi ML robust standard errors are given below. They are different and may lead to different conclusions. Generally, the robust standard errors in the variance equation are larger.

序代写代做 CS编程辅导

Dependent Variable: R Method: ML - ARCH (Marquardt) - Normal distribution

Dependent Variable: R Method: ML - ARCH (Marquardt) - Normal distribution

Sample (adjusted): 2 994 Included observations: 993 af Sample (adjusted): 2 994 Convergence achieved after 1 Bollerslev-Wooldrige robust s Variance backcast: ON

Included observations: 993 after adjustments Convergence achieved after 11 iterations

Variance backcast: ON

GARCH = C(2) + C(3)	*RESID				GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*GARCH(-1)				
	Coeffi	Tutor CS		Prob.		Coefficient	Std. Error	z-Statistic	Prob.
С	0.04		11	0.2439	С	0.042397	0.040573	1.044951	0.2960
Variance ⊏quation			Variance Equation						
C RESID(-1) ² GARCH(-1)	0.073836 0.080407 0.877381	0.032445 0.026746 0.026746	2.275744 3.006251 24.21561	0.0229 0.0026 0.00690	C RESID(-1)^2	0.073836 0.080407 0.877380	0.025873 0.015193 0.026154	2.853797 5.292469 33.54611	0.0043 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000420 -0.003454 1.304121 1682.025 -1634	Mean depend S.D. depend Akaike info d Schwarz crit	ent var criterion erion	0.015735 1.301875 3.300572 3.320313 1913215	R-squared Adjusted R-squared S.E. of regression Sum squared resid Logn(ke)ifocd	-0.000420 -0.003454 1.304121 1682.025	Mean deper S.D. depend Akaike info Schwarz ch Diri in-V at	dent var criterion erion	0.015735 1.301875 3.300572 3.320313 1.993215

(f) AIC and SIC for GARCH(1,1), GARCH(2,1), GARCH(1,2) are GARCH(2,2) are presented Signative (right). Clearly, both AIC and SIC in the bar chart below (AIC on the lest and select GARCH(1,1).

