Kernel Methods AMMI 2024

Matrix Operations

In what follows, $A \in \mathbb{R}^{m imes n}$, $B \in \mathbb{R}^{n imes p}$ and $x,y \in \mathbb{R}^n$.

- 1. Compute the following, giving conditions on m, n, p for the formulas to be well-defined. When the result is a matrix, give its value at position (i, j). When it is a vector, give its value at position i.
- *AB*
- $\bullet x^T A$
- $\bullet x^T y$
- xy^T
- $y^T A x$
- $Tr(A^TA)$
- 2. Show that
- $(AB)^T = B^T A^T$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$
- ullet The *trace* operator A o Tr(A) is a *linear operator* on $\mathbb{R}^{m imes n}$.
- Tr(AB) = Tr(BA).
- 3. Given a matrix $A\in\mathbb{R}^{n\times n}$ and a vector $r\in\mathbb{R}^n$, how to multiply each row of A by the elements of r?
- 4. Given $x_i\in\mathbb{R}^d,\ i=1,...,n,$ how to compute the mean of $\{||x_i-x_j||_2;\ i,j=1,...,n\}$ in Python, without a loop?

Gradients

- 1. Let $A \in \mathbb{R}^{m \times n}$. In the following, give the function's output dimension and compute the gradient:
- ullet $abla_x (xA), \quad x \in \mathbb{R}$
- $\nabla_{\mathbf{x}} (A\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n$

1 of 3

- $\nabla_{\mathbf{x}} (\mathbf{y}^T A \mathbf{x}), \nabla_{\mathbf{y}} (\mathbf{y}^T A \mathbf{x}), \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- $ullet
 abla_{\mathrm{x}} \ (\mathrm{x}^T A \mathrm{x}), \quad \mathrm{x} \in \mathbb{R}^n$
- $ullet \,
 abla_{\mathrm{x}} \, ||\mathrm{y} A\mathrm{x}||_2^2, \quad \mathrm{x} \in \mathbb{R}^n$
- ullet $abla_X \ Tr(A^TX), \quad X \in \mathbb{R}^{m imes n}$
- 2. Compute the following gradients using the chain rule:
- $\nabla_z Ax(z)$
- $\nabla_z y(z)^T A x(z)$

Symmetric matrices

Reminders

Def (Eigenvector Equation). Let $A \in \mathbb{R}^n$. If $Au = \lambda u$ with $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^n$, then λ is called an *eigenvalue* of A and u an *eigenvector*.

Def (Orthogonal matrix). $U \in \mathbb{R}^n$ is orthogonal $\iff U$ is inversible and $U^{-1} = U^T$.

Spectral theorem. Any (real) symmetric matrix $A \in \mathbb{R}^{n imes n}$ can be decomposed as

$$A = U\Lambda U^T$$

where U is an orthogonal matrix and $\lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$.

Exercises

1. Show that for an orthogonal matrix \boldsymbol{U} ,

$$u_i^T u_j = \left\{egin{array}{ll} 1 & ext{if } i=j \ 0 & ext{otherwise} \end{array}
ight.$$

- 2. Let $A\in\mathbb{R}^{n\times n}$ a (real) symmetric matrix and $A:=U\Lambda U^T$ with U orthogonal and $\Lambda=\mathrm{diag}(\lambda_1,...,\lambda_n)$. Show that the columns of U are eigenvectors of A and $\lambda_i, i=1,...,n$ are eigenvalues.
- 3. Let $A=U\Lambda U^T$ a symmetric matrix. Show that:
 - a. A is inversible $\iff \lambda_i
 eq 0, orall i$
 - b. $A^{-1} = U \Lambda^{-1} U^T$ with $\Lambda^{-1} = \mathrm{diag}(\lambda_1^{-1},...,\lambda_n^{-1})$
 - c. $\mathrm{Tr}(A) = \sum_i \lambda_i, \; \mathrm{Tr}(A^{-1}) = \sum_i \lambda_i^{-1}$

Positive semi-definte matrices

Reminders

Def (Positive (semi-)definite matrix). Let $A \in \mathbb{R}^{n \times n}$.

$$egin{array}{lll} A & \mathrm{p.s.d.} & & \Longleftrightarrow & x^TAx \geq 0, orall x \in \mathbb{R}^n \ A & \mathrm{p.d.} & & \Longleftrightarrow & x^TAx > 0, orall x \in \mathbb{R}^n \end{array}$$

Exercies

- 1. Let $A \in \mathbb{R}^{n \times n}$. Show that
 - a. A p.s.d. and symmetric $\iff A$ has n eigenvalues $\lambda_i \geq 0$
 - b. A p.d. and symmetric $\iff A$ has n eigenvalues $\lambda_i>0$
- 2. Let $X\in\mathbb{R}^{n\times p},\ \lambda>0$. Prove that $M=X^TX+\lambda I_p$ is inversible. Hint: Prove that the eigenvalues of M are larger than λ .
- 3. For any general $X \in \mathbb{R}^{m imes n}$, show that
 - a. X^TX and XX^T are symmetric, p.s.d.
 - b. the non-zero eigenvalues of X^TX and XX^T are the same, that are $\{\sigma_i^2,\sigma_i\neq 0,i=1,...,\min(m,n)\}$ where σ_i 's are singular values of X

3 of 3