香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examinations 2001 - 2002

Course Code & Title: CSC 3130 Formal Languages and Automata Theory					
Time allowed	:2	hours	minutes		
Student I.D. No.	:	Seat No). :		

- 1. Decide whether the following statements about languages over the alphabet $\Sigma = \{0,1\}$ are true or false. Give brief justifications to your answers.
 - (a) Every finite language is regular. (5%)
 - (b) Every non-empty regular language has at least one proper subset that is also regular. (5%)
 - (c) Let $L = L_1 \cup L_2$. If both L and L_1 are regular, L_2 must also be regular. (5%)
- 2. Consider the following language L over the alphabet $\Sigma = \{a,b,c\}$:

 $L = \{ a^i b^j c^k | i \neq j \text{ and } j \neq k \text{ and } i \neq k \}$

- (a) Suppose we want to prove that L is not context free by using the Pumping Lemma directly. Let n>0 be the constant in the Pumping Lemma, and we consider the string $\alpha=a^nb^{n+2}c^{n+4}$ that is in L. However, we can indeed find u, v, w, x and y such that $\alpha=uvwxy$, $|vwx| \le n$, $|vx| \ge 1$ and $uv^i wx^i y \in L$ for all $i \ge 0$. Give an example of such u, v, w, x and y. (5%)
- (b) To prove that L is not context free, we can make use of the Ogden's Lemma that is a stronger version of the Pumping Lemma:

Ogden's Lemma: If L is a CFL, there is a constant n>0 such that for each $\alpha \in L$ where $\alpha = \alpha_1 \alpha_2 \alpha_3$ and $|\alpha_2|=n$, α_2 can be written as uvwxy such that $|vwx| \le n$, $|vx| \ge 1$ and $\alpha_1 uv^i wx^i y \alpha_3 \in L$ for all $i \ge 0$.

Prove that L is not context free by using the Ogden's Lemma. Hint: Consider a string with n! more a's (or c's) than b's where n is the constant in the Ogden's Lemma. (11%)

- 3. Consider the set S of all recursively enumerable languages over the alphabet $\Sigma = \{0,1\}$:
 - (a) Is S closed under complementation? Explain. (8%)
 - (b) Is S closed under intersection? Explain. (8%)
- 4. Consider a Turing machine $M=(\{q_0,q_1,q_2,q_3,q_4\},\{0,1\},\{0,1,\#\},\delta,q_0,\#,\{q_4\})$ where the transition function δ is:

$$\delta(q_0, 0) = (q_0, 0, R) \qquad \delta(q_1, 0) = (q_2, 1, L) \qquad \delta(q_2, 0) = (q_2, 0, L) \qquad \delta(q_3, \#) = (q_4, \#, R)$$

$$\delta(q_0, 1) = (q_0, 1, R) \qquad \delta(q_1, 1) = (q_1, 0, L) \qquad \delta(q_2, 1) = (q_2, 1, L)$$

$$\delta(q_0, \#) = (q_1, \#, L) \qquad \delta(q_1, \#) = (q_3, 1, L) \qquad \delta(q_2, \#) = (q_4, \#, R)$$

- (a) Draw the transition diagram of M. (5%)
- (b) What will be the output (tape contents) for the following input: (4%)
 - (i) (all blanks)
 - (ii) 1
 - (iii) 10
 - (iv) 111
- (c) What is the function of M? (4%)
- (d) In the following, we will use a black box to represent M:

By making use of M, we can construct a Turing machine M' that, given a unary number $x \ge 1$ (so there will be at least one "1" in the input), can convert x to a binary number y as in the following examples:

<u>Input</u> :	Output:	
##1111##	##100#1111##	
^	^	
##1##	##1#1##	
^	^	
##11##	##10#11##	
A	A	

Notice that the input unary number x should remain in the output and the binary number y is written on its left hand side separated by a blank. The tape head should be pointing to the leftmost digit of y when M' accepts. Give the transition diagram of M'. (12%)

5. Consider the Turing machine $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\{a,b,\#\},\delta,q_0,\#,\{q_3\})$ where the transition function δ is:

$$\delta(q_0, a) = (q_1, a, R)$$
 $\delta(q_0, b) = (q_2, b, R)$ $\delta(q_1, b) = (q_1, b, R)$
 $\delta(q_2, a) = (q_2, a, R)$ $\delta(q_1, \#) = (q_3, a, L)$ $\delta(q_2, \#) = (q_3, b, L)$

Now, we want to construct an MPCP instance I=(A,B) such that I has a solution if and only if M accepts the input "abb". Some of the corresponding pairs in list A and B are given as follows:

i	Λ	В	
1	#	#qoabb#	
2	а	а	
3	b	b	
4	#	#	
5	aq_3	q_3	
6	bq_3	q_3	
7	q_3a	q_3	

i	Λ	В
8	q_3b	<i>q</i> 3
9	aq₃a	q_3
10	bq_3b	q_3
11	aq₃b	q_3
12	bq₃a	q_{β}
13	q ₃ ##	#

- (a) Complete the construction of the MPCP instance I by adding more corresponding pairs to list Λ and B according to the transition function of M. (7%)
- (b) Does I have a solution? If yes, give the sequence of indices used in the construction of the solution. (5%)
- 6. (a) Given a Turing machine M for the following language over the alphabet $\Sigma = \{0,1\}$:

L={
$$(k,w)$$
 | Turing machine T_k on input w will halt with the tape head pointing to a blank symbol. }

Show how you can make use of M to check whether a Turing machine T_k will halt on an input w. Hint: You need to modify T_k to T_k before making use of M. (8%)

(b) Given that the following language H over the alphabet $\Sigma = \{0,1\}$ is non-recursive:

$$H=\{(k,w) \mid \text{Turing machine } T_k \text{ on input } w \text{ will halt. } \}$$

Show that L is also non-recursive. (8%)

--End of Paper----全 卷 完--