For Final exam:

Dual-simplex to change

co Chapter q

Mov. 20 /17

Knapsack problem - IP with single constraint

Max $z = 40 x_1 + 80 x_2 + 10 x_3 + 10 x_4 + 4 x_5 + 20 x_6 + 60 x_7$ st. $\rightarrow 40 x_1 + 50 x_2 + 30 x_3 + 10 x_4 + 10 x_5 + 40 x_6 + 30 x_7 \le 60$

1 tem	c:/a:	Ranking
1	40/40 e 1	T3
2	80/50 = 9/5	2
3	10/90 = 1/3	5
4	10/10 = 1	τ3
5	4/10 = 640	4
6	20/40 = 1/2	6
7	60/30 22	<u> </u>

Implicit Enumeration

Solve 0-1 IPs

each Variable must

equal a 0 or 1

Max $z = -7x_1 - 3x_2 - 2x_3 - x_4 - 2x_5$ s.t. $-4x_1 - 2x_2 + x_3 - 2x_4 - x_5 \le -3$ $-4x_1 - 2x_2 - 4x_3 + x_4 + 2x_5 \le -7$ $x_1 = 0 \text{ or } 1 \quad (i = 1, 2, 3, 4, 5)$

(2)
$$X_1 = 1$$
, $X_2 = X_3 = X_4 = X_5 = 0$

$$-4 = -3 \quad -4 = -3$$
8 using this, branch.

NOV. 22 117 LINEAR PROF.

Max
$$Z = 8x_1 + 5x_2$$

5.6. $x_1 + x_2 \le 6$
 $9x_1 + 5x_2 \le 45$

- 1- Change b, Find optimised sol.

 Solution Changed, point doesnot (?)
- 2 branen + bound
- 3 enumeration
- 4 dual simplex, graphic, the stuff from this class. See table 84.