Kapacitné plánovanie a zákazková logistika

- Stručné opakovanie
- Plánovanie výrobných kapacít:
 - Určenie veľkosti výrobnej kapacity
 - Statický výpočet úzkeho miesta
 - Stanovenie kapacitnej stratégie
 - Rôzne typy kapacitných stratégií
 - Kapacitné vyváženie výrobného procesu
 - Postupy používané pre operatívne úpravy kapacít
- Zákazková logistika:
 - Kumulácia, dávkovanie
 - Optimálna veľkosť dávky

Štruktúra činností výrobnej logistiky

Alokačné úlohy

Alokácia (výrobných procesov) do jedného miesta:

- 1. Nie sú k dispozícii presné údaje: Pomerovo-indexová metóda
- 2. Sú k dispozícii presné údaje: Optimálne umiestnenie distribučného centra
 - a) Euklidovská vzdialenosť
 - b) Kvadrát euklidovskej vzdialenosti
 - c) Rektilineárna vzdialenosť
 - d) Minimalizácia vzdialenosti najvzdialenejšieho odberateľa

II. Alokácia (výrobných procesov) do viacerých miest

- 1. Priradzovací problém (základná verzia)
- 2. Priradzovací problém (väzby len medzi novými a existujúcimi objektami)
- 3. Kvadratický priradzovací problém (väzby medzi novými objektmi navzájom)
- 4. Zovšeobecnený distribučný problém

Štruktúra činností výrobnej logistiky

Prognózovanie

Kvantitatívne metódy

- rôzne typy priemerov (aritmetický, kĺzavý, vážený)
- exponenciálne vyrovnávanie
- lineárna regresia
- metóda harmonických váh

Kvalitatívne metódy

- Odhad predajcov
- skupinový posudok
- prieskum trhu
- metóda Delphi

Štruktúra činností výrobnej logistiky

Plánovanie výrobných kapacít

- Cieľom je dosiahnuť maximálny súlad (rovnováhu) medzi kapacitami výrobného procesu a kapacitnými nárokmi vyplývajúcimi z požiadaviek naň.
- V rámci kapacitného plánovania sa riešia najmä tieto tri typy úloh:
 - 1. Určenie veľkosti výrobnej kapacity
 - 2. Stanovenie kapacitnej stratégie
 - 3. Kapacitné vyváženie výrobného procesu

1. Určenie veľkosti výrobnej kapacity

- Veľkosť výrobnej kapacity závisí od:
 - veľkosti firmy (firma1 < firma2 < firma3)
 - veľkosti produkcie
- Závislosť jednotkových výrobných nákladov od týchto faktorov znázorňuje nasledujúci graf:

1. Určenie veľkosti výrobnej kapacity

- Kapacita stroja je disponibilný čas, ktorý má daný stroj k dispozícii na výrobu určitých výrobkov.
- Výrobná kapacita je maximálna produkcia za časovú jednotku.
- Úzke miesto výrobného procesu je to tá výrobná operácia (stroj, prevádzka), na ktorej sa kapacita vyčerpá ako prvá pri zvyšovaní produkcie.
- <u>Maximálna kapacita je limitovaná úzkym miestom,</u>
 to znamená že výrobná kapacita sa rovná kapacite
 úzkeho miesta, ktoré je možné vypočítať napr.
 pomocou statického výpočtu.

Statický výpočet úzkeho miesta (1)

• Označme KN_j – kapacitné nároky na j-ty stroj. Vypočítame ich nasledovne:

$$KN_j = \sum_{i=1}^n M_i \cdot t_{i,j} \qquad \forall j = 1..m$$

- n počet rôznych typov výrobkov, pričom
- m počet jednotlivých strojov (resp. častí výroby), na ktorých prebieha výroba daných výrobkov
- pre každý i-ty typ výrobku je potrebné vyrobiť určité množstvo M_i (i = 1, 2, ..., n) tohto výrobku
- t_{ij} čas potrebný na spracovanie jednotkového množstva i-teho výrobku na j-tom stroji (j = 1, 2, ..., m)

Statický výpočet úzkeho miesta (2)

- Nech KM_j sú kapacitné možnosti j-teho stroja.
 Potom úzke miesto určíme nasledovne.
- A. Ak kapacitné možnosti jednotlivých strojov sú rovnaké, tj. KM_j je rovnaké pre všetky j=1,2,...,m, potom úzke miesto určíme podľa vzťahu:

$$J_{\vec{u}} = \max_{j} \left\{ K N_{j} \right\}$$

B. Ak KM_j je rôzne pre jednotlivé stroje, potom úzke miesto určíme podľa vzťahu:

$$J_{ii} = \min_{j} \left\{ KM_{j} - KN_{j} \right\}$$

Statický výpočet úzkeho miesta (3)

- Pri stanovení kapacitných možností KM_j je potrebné brať ohľad na dve hlavné skutočnosti:
- 1. Iba 75 90 % skutočnej maximálnej kapacity stroja možno vyčleniť pre KM_j , zvyšok slúži na regulačné účely (výpočet nezohľadňuje totiž väzby medzi strojmi).
- 2. Pri kalkulácii KM_j treba zohľadniť aj spoľahlivosť strojov vyplývajúcu z doby ich prevádzky, vzhľadom na ich životnosť. Jej priebeh vyjadruje nasledujúci graf:

Príklad (1)

 Majme dva stroje (dve časti výrobného procesu – S1, S2) a tri druhy výrobkov (V1, V2, V3), ktoré sa v danom výrobnom procese vyrábajú. Časy spracovania jedného kusu každého typu výrobku na každom stroji sú dané v tabuľke (v minútach):

t_{ij}	S1	S2
V1	5	8
V2	7	6
V3	9	7

- Ktorý zo strojov (častí výrobného procesu) je úzkym miestom v prípade výroby 100 ks V1, 150 ks V2 a 130 ks V3, ak:
 - a) kapacitné možnosti oboch strojov sú rovnaké
 - b) kapacitné možnosti sú rôzne (S1 má kapacitné možnosti 3000 minút a S2 má kapacitné možnosti 2800 minút)?

Príklad (2)

- Počet strojov m = 2, počet výrobkov n = 3
- Požiadavky na výrobu v počtoch výrobkov jednotlivých druhov sú: $M_1 = 100$, $M_2 = 150$, $M_3 = 130$.
- Jednotkové časy spracovanie výrobku i na stroji j (t.j. t_{ij}) sú uvedené v tabuľke.
- Kapacitné nároky na prvý stroj (KN₁) budú:

$$KN_1 = \sum_{i=1}^{3} M_i \cdot t_{i1} = 100 \cdot 5 + 150 \cdot 7 + 130 \cdot 9 = 2720$$

Kapacitné nároky na druhý stroj (KN₂) budú:

$$KN_2 = \sum_{i=1}^{3} M_i \cdot t_{i2} = 100 \cdot 8 + 150 \cdot 6 + 130 \cdot 7 = 2610$$

S2

6

V1

V2

V3

9

Príklad (3)

a) Platí, že $KM_1 = KM_2$, takže úzke miesto:

$$J_{ii} = \max_{j} \{KN_1, KN_2\} = \max\{2720, 2610\} = 1$$

- To znamená že v tomto prípade je úzkym miestom prvý stroj a ten teda určuje aj celkovú kapacitu výrobného procesu.
- b) Platí, že KM_I = 3000 a KM_2 = 2800, takže $J_{ii} = \min_{j} \{KM_1 KN_1, KM_2 KN_2\} = \min_{j} \{3000 2720, 2800 2610\} = \min_{j} \{280,190\} = 2$
- To znamená že v tomto prípade je úzkym miestom druhý stroj a ten určuje aj kapacitu výrobného procesu.

2. Stanovenie kapacitnej stratégie

• Kapacitná stratégia hovorí o tom, akým spôsobom podnik pristupuje z dlhodobého hľadiska k pomeru medzi kapacitou výroby K_j a skutočnými požiadavkami (resp. prognózou) P_j

$$KV_j = K_j - P_j$$

- je hlavný kapacitný vzťah, pričom je zrejmé, že
 - KV_j < 0 ak kapacita výroby je nižšia ako požiadavky (to zodpovedá konzervatívnej kapacitnej stratégii podniku)
 - $KV_j \cong 0$ ak je kapacita približne rovná požiadavkám (je ťažké dosiahnuť presnú rovnosť)
 - KV_j > 0 ak kapacita výroby prevyšuje požiadavky (zodpovedá agresívnej kapacitnej stratégii podniku)

Konzervatívna kapacitná stratégia

 $KV_j < 0$

Stratégia "wait and see"

Agresívna kapacitná stratégia

Stratégia "preempt of competition"

3. Kapacitné vyváženie výrobného procesu

- Cieľom je dosiahnuť požadovanú hodnotu kapacitného vzťahu v zmysle podnikovej kapacitnej stratégie
- Podnik môže rôznymi spôsobmi ovplyvňovať obe veličiny, tj. K_i aj P_i
- Prispôsobenie výrobnej kapacity K_j sa týka rôznych typov kapacít, ktoré je možné rozdeliť na:
 - jednorazové (suroviny, resp. materiál)
 - trvalé (ľudia, stroje)
- Pre podnik je ťažšie ovplyvňovať požiadavky na výrobu P_i ale aj to je do istej miery možné

Тур Кј	Zvýšenie Kj	Zníženie Kj
Materiál	- minimálna spotreba materiálu	- zníženie plánu zásob
	na jednotku výroby	- presun na iné výrobné
	- náhrada inými materiálmi	procesy
	 zvýšenie plánovaných zásob 	
	- presun z iných výrobných procesov	
Stroje	- skrátenie výrobných časov	- štandardná výroba
	- minimalizovanie priestorov	- zvýšenie plánu udržby
	(skrátenie udržby)	- zaradenie na iné práce
	- automatizácia výroby	
	- nové stroje (kapacity)	
	- sprostredkovanie výrobkov od	
	iného výrobcu	
Ľudské zdroje	- nadčasy (2., 3. smena)	- preplánovanie dovoleniek
	- zmena plánov dovoleniek	- čiastočne obmedzenie
	- presun ľudí z iných	pracovnej doby
	výrobných procesov	- zníženie počtu prác
	- prijatie nových zamestnancov	- preradenie na inú prácu
Požiadavky na	- zvýšenie intenzity reklamy	- odmietnutie reálnych zákaziek
výrobu	- presun niektorých zákaziek	- rozdelenie veľkých zákaziek
	z nasledujúceho obdobia do	do budúcich období
	súčasnosti	- presun zákaziek do ďalšieho
		obdobia

Štruktúra činností výrobnej logistiky

Zákazková logistika

- Cieľom je riadenie toku objednávok vo firme od ich evidencie až po podpis (potvrdenie) kúpnych zmlúv a ich prípravu pre operatívne plánovanie.
- Táto fáza výrobnej logistiky môže výrazne ovplyvniť efektívnosť výrobného procesu
- Nejde iba o administratívne spracovanie objednávok, ale o súčasť taktického riadenia firmy.
- Všeobecný postup pre spracovanie objednávok je uvedený na nasledujúcom obrázku

Kapacitné (agregované) plánovanie

- Výrobný postup udáva aj výrobný cyklus, t.j. minimálny čas od začiatku výrobného procesu po jeho ukončenie
- Objednávky teda musíme zaradzovať do plánovacích periód s predstihom, aby sa dodržal stanovený termín dodávky
- Možno pritom použiť napr. nasledovné dva prístupy
 - 1. Priradenie objednávok do plánovacích periód
 - 2. Zostavenie sekvencie objednávok

1. Priradenie objednávok do plánovacích periód

- Zostavíme si grafickú reprezentáciu výrobného procesu rozdeleného na jednotlivé výrobné úseky tak, ako nasledujú časovo za sebou.
- 2) Pre každú objednávku na základe známych výrobných cyklov zakreslíme trajektóriu reprezentujúcu splnenie danej objednávky za predpokladu, že by sa začala okamžite realizovať.
- 3) Časovú os rozdelíme na plánovacie periódy
- 4) Spočítame kapacitné nároky vyplývajúce z objednávok ktoré končia v jednotlivých plánovacích periódach.
- 5) Kapacitné nároky porovnáme s úzkym miestom pre jednotlivé výrobné úseky a snažíme sa posunmi jednotlivých objednávok v čase dosiahnuť neprekročenie kapacitných možností.

1. Priradenie objednávok do plánovacích periód

2. Zostavenie sekvencie objednávok

- 1) Usporiadame objednávky podľa plánovaných termínov dodávky, čím vznikne ich sekvencia.
- Z tejto sekvencie vyberieme vždy takú časť objednávok, ktoré maximálne využijú kapacitu úzkeho miesta.

Kumulácia, dávkovanie

- V rámci jednej plánovacej periódy rovnaké výrobky z rôznych zákaziek spájame do väčších skupín, čo sa nazýva kumulácia zákaziek
- Niekedy je vhodné, aby množstvo výrobkov obsiahnuté v jednej skupine bolo celým násobkom tzv. dávky
 - Veľkosť dávky môže byť daná technológiou (napr. v homogénnych výrobných procesoch veľkosť konvertora na oceliarni)
 - V diskrétnych výrobných procesoch ide napr. o palety
- V diskrétnych výrobných procesoch je možné stanoviť aj optimálnu veľkosť dávky z pohľadu celkových nákladov

Optimálna veľkosť dávky (1)

- Snažíme sa nájsť takú veľkosť dávky, kedy úhrnné náklady sú minimálne
- Existujú dva typy nákladov:
 - 1. Náklady spojené so skladovaním N_S (financie uviaznuté v zásobách na sklade)
 - 2. Náklady na zoraďovanie strojov N_Z (potrebné zmeny v nastavení výroby pri prechode na iný typ výrobku)
- Každý typ nákladov sa správa inak:
 - Skladovacie náklady rastú s veľkosťou dávky
 - Zoraďovacie náklady naopak klesajú s veľkosťou dávky (v dôsledku klesajúcej frekvencie zmien)

Optimálna veľkosť dávky (2)

Skladovacie náklady

$$N_S(Q) = \frac{S.Q}{2}$$

- S sú náklady na skladovanie jednej dávky tovaru
- -Q je veľkosť dávky

Zoraďovacie náklady

$$N_Z(Q) = O \cdot \frac{D}{Q}$$

- O sú zoraďovacie náklady na jedno prestavenie výrobných zariadení
- -D je ročná výroba

Optimálna veľkosť dávky (3)

Celkové náklady:

$$N(Q) = N_S(Q) + N_Z(Q) = \frac{S.Q}{2} + \frac{O.D}{Q}$$

 Extrém funkcie nákladov získame ak jej deriváciu položíme rovnú 0, t.j.

$$\frac{dN(Q)}{dQ} = \frac{S}{2} - \frac{O.D}{Q^2} \Rightarrow \frac{S}{2} - \frac{O.D}{Q_{OPT}^2} = 0$$

Takže po úpravách dostaneme postupne nasledovné:

$$\frac{S}{2} = \frac{O.D}{Q_{OPT}^2}$$
 $Q_{OPT}^2 = \frac{2.O.D}{S}$ $Q_{OPT} = \sqrt{\frac{2.O.D}{S}}$

Optimálna veľkosť dávky (4)

