Math 493 Lecture 14

Thomas Cohn

10/23/19

Midterm Review

Topics:

- 1. Group Theory
- 2. Linear Algebra
- 3. Rigid Motions of the Plane
- 4. Group Actions

I Group Theory

The main focus of this is groups themselves, group homomorphisms, and group isomorphisms.

Ex: The most important groups:

- The trivial group
- $\mathbb{Z}/n\mathbb{Z}$ or \mathbb{Z} (cyclic groups)
- S_n the symmetric group and A_n the alternating group
- $GL_n(F)$ the general linear group over field F
- D_n the dihedral group of order 2n

Constructing Groups

Ex: G any group, the group of automorphisms Aut(G)

 $\exists \gamma: G \to \operatorname{Aut}(G)$ a group homomorphism where $g \mapsto \gamma_g$ where $\gamma_g(h) = ghg^{-1}$ (conjugation by g). The γ_g are inner automorphisms.

 $\ker \gamma = Z(G)$, the center of G

 $\operatorname{im} \gamma = \operatorname{Inn}(G)$, the group of inner automorphisms of G, is a normal subgroup of $\operatorname{Aut}(G)$.

Given groups G and H, we can build a new group $G \times H$ called the direct product of G and H, with group law $(g,h)(g',h') \mapsto (gg',hh')$.

If $N \subseteq G$ is a normal subgroup, we can form the quotient gruop G/N. Elements are left cosets (or right cosets, because N is normal) gN. We have the projection map $\pi: G \to G/N$, a surjective group homomorphism where $g \mapsto gN$. $\ker(\pi) = N$. From π , we have the mapping property: given a group H, we have a bijection

$$\left\{\text{homomorphisms }G/N \stackrel{\bar{f}}{\to} H\right\} \stackrel{\sim}{\to} \left\{\text{homomorphisms }G \stackrel{f}{\to} H \text{ s.t. } N \subseteq \ker(f)\right\}$$

$$G \atop \pi \downarrow \qquad f \atop G/N \xrightarrow{\bar{f}} H$$

If G is any group, $S \subset G$ a set of elements in G, then the subgroup of G generated by S is $\langle S \rangle$. We have two perspectives of this:

Top-Down: $\langle S \rangle$ is the intersection of all subgroups of G that contain S.

Bottom-Up: $\langle S \rangle$ is the set of finite products of elements of S and S^{-1} .

Results about Groups

Thm: (First Isomorphism Theorem) If $f: G \to H$ is a surjective group homomorphisms, then via the mapping property, f induces an isomorphism $\bar{f}: G/\ker f \xrightarrow{\sim} \operatorname{im} f = H$.

$$G \xrightarrow{f} H$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{g}$$

$$G/\ker f$$

Thm: (Correspondence Theorem) Let $N \subseteq G$ a normal subgroup, $\pi: G \to G/N$ the quotient map. We have

{subgroups of
$$G/N$$
} $\stackrel{\sim}{\to}$ {subgroups of G containing N } $H \mapsto \pi^{-1}(H)$

Let p be prime. Groups of small order:

- Every group of order p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- Every group of order p^2 is abelian and isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}/p^2\mathbb{Z}$.
- There are 2 groups of order 6: $\mathbb{Z}/6\mathbb{Z}$ and $S_3 = D_3$.

II Linear Algebra

Fields

Ex:

- \bullet \mathbb{R}
- C
- \bullet \mathbb{F}_p
- Q

Some important things:

- Vector spaces and linear transformations
- Span, linear independence. Both together implies a basis.
- Every vector space has a basis. (Thank you axiom of choice!)
- A vector space is finite dimensional if it can be spanned by finitely many elements.
- If $\dim(V) = n$, choosing a basis is equivalent to choosing an isomorphism $V \stackrel{\sim}{\to} F^n$.

We have several ways of constructing vector spaces:

- Direct sum
- Quotient vector spaces
- Span

Thm: (Rank-Nullity) Given $T: V \to W$ with V finite-dimensional, then

$$\dim v = \dim(\operatorname{im}(T)) + \dim(\ker(T)) = \operatorname{rank}(T) + \operatorname{nullity}(T)$$

Eigen-stuff

Let $T:V\to V$ be a linear operator, with V finite dimensional.

- $v \in V \setminus \{0\}$ is an eigenvector for T if $\exists \lambda$ s.t. $Tv = \lambda v$.
- The characteristic polynomial of T is det(T tI).
- We say T is diagonalizable if there is a basis for V s.t. the matrix for T is diagonal.
- \bullet T is diagonalizable iff V has a basis of eigenvectors.

III Rigid Motions of the Plane

M is the group of rigid motions of the plane P.

We can look at the structure of M:

- Elements ρ_{θ} rotation, t_a translation, r reflection
- \bullet T is the group of translations, and is a normal subgroup.
- O(2) is the subgroup of M fixing the origin, generated by ρ_{θ} and r.

$$O(2) \xrightarrow{\text{Id}} M \xrightarrow{\pi} M/T$$

Every finite subgroup of M is conjugate to $\mathbb{Z}/n\mathbb{Z}$ or D_n inside of $\mathrm{O}(2)$.

Given a subset S of P (i.e. a plane figure), its symmetry group is the subgroup of M preserving S.

IV Group Actions

- G-sets, homomorphisms/isomorphisms
- Orbits and stabilizers. Let X be a G-set, $x \in X$. Then
 - $\begin{array}{l} \text{ Orbit } O_x = \{gx \mid g \in G\} \\ \text{ Stabilizer } G_x = \{g \in G \mid gx = x\} \end{array}$

Let X be a G-set. The orbits partition X into disjoint, transitive G-sets.

Every transitive G set is isomorphic to G/H for some subgroup H of G.

Counting formula: let X be a G-set with G finite, and $x \in X$. Then $\#O_x \cdot \#G_x = \#G$.