```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
from sklearn.datasets import load_iris
irisdataset = load_iris()
irisdataset.target_names
     array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
\verb|irisdataset.feature_names|\\
     ['sepal length (cm)',
      'sepal width (cm)',
'petal length (cm)'
      'petal width (cm)']
df = pd.DataFrame(irisdataset.data,columns=irisdataset.feature_names)
df['target'] = irisdataset.target
```

df

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns


```
df['flower_name'] =df.target.apply(lambda x: irisdataset.target_names[x])
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 6 columns):
                              Non-Null Count Dtype
      # Column
                                                float64
      0 sepal length (cm) 150 non-null
          sepal width (cm) 150 non-null petal length (cm) 150 non-null
                                                float64
                                                float64
         petal width (cm) 150 non-null
                                                float64
          .
target
                               150 non-null
                                                int64
      5 flower_name
                               150 non-null
                                                object
     dtypes: float64(4), int64(1), object(1) memory usage: 7.2+ KB
```

df.describe()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	7
count	150.000000	150.000000	150.000000	150.000000	150.000000	
mean	5.843333	3.057333	3.758000	1.199333	1.000000	
std	0.828066	0.435866	1.765298	0.762238	0.819232	
min	4.300000	2.000000	1.000000	0.100000	0.000000	
df['flower_	_name'].unique()					
array(['setosa', 'versico	lor', 'virginica']	, dtype=object)			
75%	6 400000	3 300000	5 100000	1 800000	2 000000	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name	*
0	5.1	3.5	1.4	0.2	0	setosa	
1	4.9	3.0	1.4	0.2	0	setosa	
2	4.7	3.2	1.3	0.2	0	setosa	
3	4.6	3.1	1.5	0.2	0	setosa	
4	5.0	3.6	1.4	0.2	0	setosa	

df[df['flower_name']=="virginica"].head()

df[df['flower_name']=="setosa"].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name	0
100	6.3	3.3	6.0	2.5	2	virginica	
101	5.8	2.7	5.1	1.9	2	virginica	
102	7.1	3.0	5.9	2.1	2	virginica	
103	6.3	2.9	5.6	1.8	2	virginica	
104	6.5	3.0	5.8	2.2	2	virginica	

df[df['flower_name']=="versicolor"].head()

df0 = df[:50] #setosa

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name	1
50	7.0	3.2	4.7	1.4	1	versicolor	
5′	6.4	3.2	4.5	1.5	1	versicolor	
52	6.9	3.1	4.9	1.5	1	versicolor	
53	5.5	2.3	4.0	1.3	1	versicolor	
5/	1 65	2.8	16	1.5	1	versicolor	

```
df1 = df[50:100] #versicolor
df2 = df[100:] #virginica

#SETOSA VS versicolor VS virginica IN SEPAL LENGTH AND SEPAL WIDTH
plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="red",marker='*')
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="green",marker='.')
plt.scatter(df2['sepal length (cm)'], df2['sepal width (cm)'],color="blue",marker='+')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
```

```
Text(0, 0.5, 'Sepal Width')
        4.5 -
\verb|#SETOSA| VS| versicolor| VS| virginica| IN| PETAL| LENGTH| AND| PETAL| WIDTH|
plt.scatter(df0['petal \ length \ (cm)'], \ df0['petal \ width \ (cm)'], color="red", marker='*')
\verb|plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'], color="green", marker='.'||
plt.scatter(df2['petal \ length \ (cm)'], \ df2['petal \ width \ (cm)'], color="blue", marker='+')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
     Text(0, 0.5, 'Petal Width')
        2.5
        2.0
      Petal Width
                               Petal Length
  = df.drop(['target','flower_name'], axis='columns')
y = df.target
           sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
       0
                           5.1
                                               3.5
                                                                    1.4
                                                                                        0.2
       1
                           4.9
                                               3.0
                                                                                        0.2
                                                                    1.4
       2
                           4.7
                                               3.2
                                                                    1.3
                                                                                        0.2
       3
                                                                                        0.2
                           4.6
                                               3.1
                                                                    1.5
                           5.0
                                               3.6
                                                                    1.4
                                                                                        0.2
                           6.7
                                                                                        2.3
                                               3.0
                                                                    5.2
      145
      146
                           6.3
                                               2.5
                                                                    5.0
                                                                                        1.9
                                                                                        2.0
      147
                           6.5
                                               3.0
                                                                    5.2
      148
                           6.2
                                                                                        2.3
                           5.9
                                               3.0
                                                                    5.1
                                                                                        1.8
      149
     150 rows × 4 columns
     0
             0
             0
     2
             0
     3
             0
             0
     145
             2
     147
     148
     149
     Name: target, Length: 150, dtype: int64
#train test split
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.3)
#KNN classifier
from \ sklearn.neighbors \ import \ KNeighbors Classifier
knn=KNeighborsClassifier(n_neighbors=6)
knn.fit(xtrain,ytrain)
     KNeighborsClassifier(n_neighbors=6)
```

#Accuracy

1.0

knn.score(xtest,ytest)

from sklearn.metrics import confusion_matrix
ypred = knn.predict(xtest)
cm = confusion_matrix(ytest,ypred)
cm

sns.heatmap(cm,annot=True)
plt.xlabel("prediction")
plt.ylabel("truth")

Text(33.0, 0.5, 'truth')

from sklearn.metrics import classification_report
cr = classification_report(ytest,ypred)
print(cr)

support	f1-score	recall	precision	
17	1.00	1.00	1.00	0
11	1.00	1.00	1.00	1
17	1.00	1.00	1.00	2
45	1.00			accuracy
45	1.00	1.00	1.00	macro avg
45	1.00	1.00	1.00	weighted avg