Kavi Dey Physics 50 Section 7 Lab Partner: Avery Smith Module 1 Lab Report October 3, 2023

1 Filter Specifications

		Simulated w/	Simulated w/	
Parameter	Analytical	ideal components	real components	Measured
Filter type	Chebyshev I	NA	NA	NA
Filter order	3	NA	NA	NA
Pass Band	100 MHz	100 MHz		
Edge				
(defined as				
exceeding 1dB				
ripple)				
Stop Band	170 MHz	173.78 MHz		
Start				
(defined @20dB				
of rejection)				
Insertion Loss	0 dB	0.0206 dB		
In-Band Ripple	0.5	0.5210 dB	_	

2 Pictures and Schematics

(a) Ideal Components

(b) Real Components

(c) Assembled Design

3 Hand Calculations

We want to design an LC lowpass filter with an f_c of 100 MHz and minimum attenuation of 20 dB at 200 MHz. The allowable passband ripple is 1 dB and the maximum insertion loss is 3 dB. The source and load resistance are equal at 50 ohms.

We can then normalize the attenuation requirements to use attenuation curves:

$$\frac{f}{f_c} = \frac{200 \text{ MHz}}{100 \text{ MHz}} = 2$$

Now we want to select a normalized lowpass filter that offers at least 20 dB of attenuation at a ratio of $f/f_c = 2$. From the attenuation plot, we can see that a 3rd order chebyshev filter

Figure 2: Attenuation characteristics for a Chebyshev filter with 0.5-dB ripple.

has greater than the required attenuation at $f/f_c=2$ and that the attenuation is equal to 20 dB at $f/f_c\approx 1.7 \implies f_{\rm stop\ band}=170\ {\rm MHz}$

We can predict the attenuation as a function of frequency using

$$A_{\rm dB} = 10 \log \left[1 + \epsilon^2 C_n^2 \left(\frac{\omega}{\omega_c} \right)' \right]$$

Where:
$$\epsilon = \sqrt{10^{R_{\text{dB}}/10} - 1} = 0.3493$$
, $\left(\frac{\omega}{\omega_c}\right)' = \left(\frac{\omega}{\omega_c}\right) \cosh B$, $B = \frac{1}{n} \cosh^{-1}\left(\frac{1}{\epsilon}\right)$, and $C_3^2(x) = 4x^3 - 3x$.

Plotting this in python (code link) we get: Extracting the pass band ripple from the graph we get 0.5 dB, as predicted from the filter table in figure 4 The same table can also be used to calculate component values for n = 3 and $R_S/R_L = 1$ as follows

Figure 3: Attenuation characteristics for a Chebyshev filter with 0.5-dB ripple.

Figure 4: Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple.

$$C_1 = \frac{1.864}{2\pi (100 \times 10^6)50} = 59.33 \text{ pF}$$

$$L_2 = \frac{(1.280)(50)}{2\pi (100 \times 10^6)} = 101.86 \text{ nH}$$

$$C_3 = \frac{1.864}{2\pi (100 \times 10^6)50} = 59.33 \text{ pF}$$

Because we are making a lowpass filter, we can use the provided schematic as is. We have chosen to use the **top** schematic in 4.

4 Magnitude of S21 in Pass band

(c) Simulated Design with real components

(d) Assembled Design

5 Phase of S21 in Pass band

Figure 6: Phase of S21 in Pass band for ideal simulation, real simulation, and assembled design

Magnitude of S21 from DC to Stop band 6

(a) Analytical Design

(b) Simulated design with ideal components

(c) Simulated Design with real components

(d) Assembled Design

7 Magnitude of S11 from DC to Stop band

(b) Simulated design with ideal components

(c) Simulated Design with real components

(d) Assembled Design

8 Smith Charts for S11 and S21 from DC to Stop band

9 Discussions

10 Takeaways