Name: Pages:2 Student University Roll No.: School of Engineering Second Sessional Examination, Even Semester (AS: 2022-23) B. Tech: CS-10, CS-19, AI-1(CSE), AI-2(CSE), AI-3(CSE), CCML-1(CSE), IOTBC-1(CSE) Year: 1st Semester: 2nd Course Title: Basic Electronics Engineering Max Marks: 60 Course Code: BEC3201 Time: 3hrs Instructions: Read the question Carefully. SECTION 'A' Course Marks Objective Q.N.1. Attempt all parts of the following: What is the PIV of the diode used in Half wave a) CO₁ 1 rectifier? Draw the characteristics of ideal diode. b) CO₁ 1 What do you mean by ICBO? c) CO₁ 1 Why gate current is always zero in MOSFET? d) CO₂ 1 Implement X-OR gate with basic gate? e) CO₃ 1 f) Define amplitude modulation CO₃ 1 What do you mean by CMRR? g) CO₂ 1 h) Draw the circuit diagram of differentiator and CO2 1 Integrator. SECTION 'B' Course Marks Objective Q.N.2. Attempt any two parts of the following: Explain working of full wave Bridge rectifier with input and output waveforms. In a centre tap full wave rectifier the rms half CO₁ a) secondary voltage is 9 V. Assume load resistor (RL) 6 of 1 K Ω and diode forward resistor of 1 Ω . Calculate Ide, Irms, ripple factor, Pdc, Pac and rectification efficiency. Perform the following conversion. (i) $(64.625)_{10} = (?)_2$ (ii) $(47.32)_8 = (?)_{10}$ b) 6 $(EF8C.D06)_{16} = (?)_2$ (iii) CO₃ (iv) $(235.151)_8 = (?)_{16}$ Derive the expression for the output difference amplifier using OP-Amp. c) 6 Find the output voltage of the following circuit

45	R1 500KVL 100KVL + Vo 2V=Vi	CO2	
d)	Explain the working of n-channel JFET. Also define JFET parameters. Determine IDSQ and VDSQ for the following circuit. 18V G TPSS = 10mA VP = -4V	CO2	6
	SECTION 'C'	Course	Marks
		Objective	Marks
Q.N.	3. Attempt any two parts of the following: Explain the working of pn junction diode in reverse bias condition. Determine Vo for the following circuit.	Objective	Marks
Q.N.	Explain the working of pn junction diode in reverse bias condition. Determine V _o for the	CO1	5

	5KYL III YIL I	COI	
	12 V - T V2=8 V		
(c)	For the following voltage divider Circuit find I_{CQ} and V_{CEQ} . Assume germanium transistor and $\beta = 100$.	CO1	5
	N.4. Attempt any two parts of the following:		
4.			
a)	With neat sketch explain the working of PNP transistor. Also derive the relationship between α and β.	CO2	5
b)	Explain the input and output characteristics of a BJT in CB configuration.	CO2	5
e)	Explain the construction and drain characteristics of N channel D-MOSFET.	CO2	5
Q.N	N.5. Attempt any two parts of the following:		
a)	Explain the block diagram of Communication system. What is the need for modulation?	соз	5
b)	Perform the following subtraction using 1's and 2's complement (24) ₁₀ -(17) ₁₀	CO3	5
c)	What are the universal gates? Reduce the following function using k map and implement the reduced function with NAND gate	СОЗ	5
c)	What are the universal gates? Reduce the following function using k map and implement the reduced function with NAND	соз	5

		many and a second	area a series a serie
	$F(A CD) = \Sigma(0,1,4,5,6,7,8,9,10,11,13,14)$		
Q.N	.6. Attempt any two parts of the following:		
	Derive the output expression for the inverting summing op amp. Find the output voltage for the following network. INDED OSV NOW SKAL HIVE SKAL HIVE NOW SKAL HIVE SKAL HIV	CO2	5
b)	Enlist the characteristics of ideal op-amp. Derive the expression of the output of the non-inverting op amp. Find the output V ₀ of the following circuit.	CO3	5
c)	Which type of feedback is used for the oscillation? Explain the principle of oscillator and describe the Bark Hausen Criterion.	CO3	5

Table 1: Mapping between COs and questions
(Number of COs may vary from course to course)

COs	Questions Numbers	Total Marks
COI	Q1(a,b,c)Q2(a)Q3(a,b,c)	24
CO2	Q1(d,g,h)Q2(c,d)Q4(a,b,c)Q6(a)	35
CO3	Q1(e,f) Q2(b)Q5(a,b,c)Q6(b,c)	33