Основы программной инженерии (ПОИТ)

Системы программирования

План лекции:

- понятие программного обеспечения;
- системы программирования;
- данные, представление данных, кодировки;
- кодировка ASCII;
- стандарт кодирования Unicode;
- прямой (LE) и обратный (BE) порядок байт;
- маркер последовательности байтов (ВОМ).

1. Программное обеспечение компьютера

Определение (ГОСТ Р 51904-2002)

Программное обеспечение (ПО) – совокупность компьютерных программ и программных документов, необходимых для эксплуатации этих программ.

Определение (ISO/IEC 26514:2008)

Программное обеспечение (ПО) — программа или множество программ, используемых для управления компьютером.

Классификация программного обеспечения:

Системное ПО – комплекс программ, которые обеспечивают управление компонентами компьютерной системы:

- управление ресурсами компьютера;
- создание копий используемой информации;
- проверка работоспособности устройств компьютера;
- и др.

Прикладное ПО — предназначено для выполнения определённых пользовательских задач и рассчитанная на непосредственное взаимодействие с пользователем.

Инструментальное ПО служит для автоматизации процесса разработки.

Операционная система – комплекс системных программ, расширяющий возможности вычислительной системы, обеспечивающий управление её ресурсами, загрузку и выполнение прикладных программ, взаимодействие с пользователями.

Системы программирования – системные программы, предназначенные для разработки программного обеспечения.

2. Система программирования

Система программирования:

комплекс программных средств, предназначенных для автоматизации процесса разработки, отладки программного обеспечения и подготовки программного кода к выполнению

Новые требования (тенденции) в современной технологии разработке программного обеспечения:

- распространение промышленных методов организации (планирование трудозатрат, учет, контроль результатов, и т.п.) при проведении работ по работ по разработке программного обеспечения:
- перенос акцента с процесса программирования на более ранние стадии анализ предметной области, формирование требований.

3. Состав системы программирования:

Состав системы программирования

трансляторы компоновщики отладчики профилировщики программные библиотеки редакторы кода системы поддержки версий и пр.

Система программирования является основным инструментом программиста.

4. Структура классической системы программирования

От исходного кода к исполняемому модулю, основные этапы преобразования:

Классическая схема создания исполняемого файла выполняется для компилируемых языков:

- (1) обработка исходного кода препроцессором,
- (2) компиляция в объектный код и
- (3) компоновка объектных модулей, включая модули из объектных библиотек, в исполняемый файл.

5. Язык программирования:

Язык программирования

формальная знаковая система, предназначенная для записи компьютерных программ.

Знаковая система определяет набор лексических, синтаксических и семантических правил написания программы (программного кода).

Язык программирования представляется в виде набора спецификаций, определяющих его синтаксис и семантику.

Язык программирования представляется в виде набора спецификаций, определяющих его синтаксис и семантику.

Язык программирования определяется не только через спецификации стандарта языка, формально определяющие его синтаксис и семантику, но и через реализации стандарта (программные средства, обеспечивающих трансляцию или интерпретацию программ на этом языке), которые выпуска, производителю, версии, времени различаются полноте воплощения стандарта, дополнительным возможностям; МОГУТ иметь определённые ошибки или особенности реализации.

Спецификация системы программирования: набор требований к системе программирования, достаточный для ее разработки.

6. Кодирование информации

Текстовая информация выражается с помощью естественных или формальных языков в письменной или печатной форме.

Пример:

преподаватель читает лекцию

→ процесс кодирования

студент делает для себя пометки

→ процесс декодирования

студент использует конспект

Сист	емы счис	сления	Степен	ь двойки	Данные в памяти компьютера					
десятичная	двоичная	шестнадц.	2^{0}	1						
0	0000	0		1	2^7 2^6 2^5 2^4 2^3 2^2 2^1	2^{0}				
1	0001	1	2^1	2						
2	0010	2	2^2	4		0				
		•••	2^3	8	↑	†				
9	1001	9	2^{4}	16	старший мла	адший				
10	1010	A	_		бит	бит				
11	1011	В	2^5	32	1	1				
12	1100	С	2^{6}	64	γ					
13	1101	D	2^{7}	128	байт – минимальная адресуемая едини	ца				
14	1110	E	$\frac{2}{2^8}$		бит — минимальная единица хранения (
15	1111	F	2°	256	онт минимальная одиница хранения ((0 11,111 1)				

Решение проблем с кодировкой текста

Текстовый символ кодируется его порядковым номером (0-127), представленным в двоичной системе счисления (1963 ASCII).

Ранние языки, возникшие в эпоху 6-битных символов, использовали более ограниченный набор.

Пример:

алфавит Фортрана включает 49 символов: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 = + - * / () . , \$ ' : пробел

а. Американский стандартный код для обмена информацией. ASCII

ASCII (American Standard Code for Information Interchange) – американский стандартный код для обмена информацией.

ASCII — 8-битная кодировка для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов.

Таблица кодов ASCII делится на две части:

Международным стандартом является первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

К концу 1980-х годов стандартом стали 8-битные кодировки.

	ASCII Code Chart															
١	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	∟ F _ı
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	=	#	\$	₉ 6	&	-	()	*	+	,	•	٠	/
3	0	1	2	3	4	5	6	7	8	9		;	٧	II	۸	?
4	@	Α	В	C	D	Е	F	G	Н	Ι	J	K	L	М	N	0
5	Р	Q	R	S	T	U	٧	W	Х	Υ	Z]	\]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	S	t	u	٧	W	х	у	z	{		}	?	DEL

Расширенные таблицы: в расширенных таблицах символы с порядковыми номерами 128-255 представляют символы национальных языков.

Переносимый набор символов

является базовым алфавитом для практически всех современных языков программирования.

Переносимый набор символов (portable character set) — набор из 103 символов, которые должны присутствовать в любой используемой кодировке (стандарт POSIX).

POSIX (англ. Portable Operating System Interface – переносимый интерфейс операционных систем) – набор стандартов, описывающих интерфейсы между операционной системой (ОС) и прикладной программой (системный API), библиотеку языка С и набор приложений и их интерфейсов.

Переносимый набор символов включает в себя все печатные символы US-ASCII и часть управляющих и является базовым алфавитом для практически всех современных языков программирования.

о Альтернативная кодировка **СР866** (операционная система MS-DOS):

Все специфические европейские символы во второй половине таблицы СР866 заменены на кириллицу, а псевдографические символы оставлены без изменения.

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
8	A	Б	В	Γ	Д	E	Ж	3	И	й	К	Л	M	\mathbf{H}	О	П
9	P	С	Т	У	Φ	X	Ц	ч	Ш	Щ	ъ	ы	Ь	Э	Ю	Я
A	a	б	В	Γ	д	е	ж	3	Н	й	к	Л	М	н	0	п
В		******			Н	=	1	П	₹	1		ī	ᆁ	Ш	4	٦
C	L		Т	F	_	+	F	╟	L	ĪĒ	╨	īī	ŀ	=	#	_
D	Ш	=	π	Ш	F	F	П	#	#	٦	Г					
E	р	С	Т	у	ф	x	ц	ч	ш	щ	ъ	ы	ь	э	ю	Я
F	Ë	ë	ϵ	ε	Ϊ	ï	ў	ğ	0			4	Nº	a		

о русская Windows-кодировка (Windows-1251, синоним CP1251)

Windows-1251 — набор символов и кодировка, являющаяся стандартной 8-битной кодировкой для русских версий Microsoft Windows до 10-й версии.

	00	01	02	03	04	05	06	07	80	09	0A	ОВ	0C	OD	0E	OF
00	NUL 0000	STX 0001	<u>SOT</u> 0002	ETX 0003	EOT 0004	ENQ 0005	ACK 0006	BEL 0007	<u>BS</u> 0008	<u>HT</u> 0009	<u>LF</u> 000A	<u>VT</u>	<u>FF</u> 000C	CR 000D	<u>30</u> 000E	<u>SI</u> 000F
10	DLE	DC1	DC2	DC3	DC4	<u>NAK</u>	<u>SYN</u>	ETB	<u>CAN</u>	<u>EM</u>	<u>SUB</u>	ESC	<u>FS</u>	<u>GS</u>	<u>RS</u>	<u>US</u>
	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001□	001E	001F
20	<u>SP</u> 0020	<u>I</u> 0021	0022	# 0023	\$ 0024	용 0025	& 0026	† 0027	(0028) 0029	* 002A	+ 002B	, 002C	- 002D	002E	/ 002F
30	0030	1 0031	2 0032	3 0033	4 0034	5 0035	0036 6	7 0037	8 0038	9 0039	: 003A	; 003B	003C	003D	003E	? 003F
40	@	A	B	C	D	E	F	G	H	I	Ј	K	L	M	N	O
	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	004А	004B	004C	004D	004E	004F
50	P 0050	Q 0051	R 0052	ន 0053	T 0054	U 0055	V 0056	₩ 0057	X 0058	Y 0059	Z 005A	[005B	\ 005C] 005D	^ 005E	005F
60	0060	a 0061	b 0062	0063 C	d 0064	e 0065	f 0066	g 0067	h 0068	i 0069	ј 006А	k 006B	1 006C	m 006D	n 006E	0 006F
70	p	역	r	ප	t	u	V	W	X	У	Z	{		}	~	<u>DEL</u>
	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F
80	Ъ	Ѓ	7	Ѓ	,,		†	‡	€	್ಲಿ	Љ	<	Њ	Ќ	Ћ	Џ
	0402	0403	201A	0453	201E	2026	2020	2021	20AC	2030	0409	2039	040A	040С	040В	040F
90	力 0452	N 2018	2019	w 2010	″ 201□	• 2022	— 2013	— 2014		2122	Љ 0459	> 203A	Њ 045А	Ŕ 045C	ћ 045B	Џ 045F
AO	NBSP	Ў	Ў	J	∷	ゴ		§	Ë	©	€	≪	⊓	-	®	Ï
	00A0	040E	045E	0408	00A4	0490	00A6	00A7	0401	00A9	0404	00AB	00AC	00AD	00AE	0407
во	00B0	± 00B1	I 0406	i 0456	ピ 0491	μ 00B5	¶ 00B6	00B7	ë 0451	№ 2116	년 0454	» 00BB	ј 0458	ន 0405	ප 0455	ï 0457
CO	A	B	B	Г	Д	E	Ж	'3	И	Й	K	Л	M	H	O	П
	0410	0411	0412	0413	0414	0415	0416	0417	0418	0419	041A	041В	041C	041□	041E	041F
DO	P	C	T	ソ	Ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	9	Ю	Я
	0420	0421	0422	0423	0424	0425	0426	0427	0428	0429	042A	042В	042C	042D	042E	042F
EO	a.	ნ	B	Г	Д	⊖	Ж	¹3	И	Й	K	Л	M	H	O	П
	0430	0431	0432	0433	0434	0435	0436	0437	0438	0439	043A	043B	043C	043D	043E	043F
FO	p	C	Т	ゾ	Ф	X	Ц	ᄕ	Ш	Щ	ъ	Ы	ь	9	Ю	я
	0440	0441	0442	0 44 3	0444	0445	0446	0447	0448	0 44 9	044A	044В	044С	044D	044E	044F

Интегрированная среда разработки Visual Studio. Открытие файла в двоичном редакторе:

Представление в памяти файла с исходным кодом:

```
Обозрева
00000000 23 69 6E 63 6C 75 64 65
                                  20 3C 69 6F 73 74 72 65
                                                          #include <iostre
                                                                                006
00000010
         61 6D 3E 0D 0A 0D 0A 69
                                  6E 74 20 6D 61 69 6E 28
                                                          am>....int main(
000000<mark>2</mark>0 29 0D 0A 7B 0D 0A 09 73 74 64 3A 3A 63 6F 75 74
                                                          )..{...std::cout
                                                                                Обозрева
                                                           << "Hello, worl
00000030
         20 3C 3C 20 22 48 65 6C 6C 6F 2C 20 77 6F 72 6C
                                                                                🔽 Реше
00000640
         64 21 21 22 20 3C 3C 20 73 74 64 3A 3A 65 6E 64 d!!" << std::end
                                                                                   ₩.
000000<mark>5</mark>0 6C 3B 0D 0A 09 72 65 74 75 72 6E 20 30 3B 0D 0A l;...return 0;..
0000<u>0000 7D 0D</u> 0A
                                                                                  Þ
 код символа #
        Исходный код на C++ в кодировке Windows-1251
                                                                                     D
```

Представление символьной информации в кодировке Windows-1251:

b. Международный стандарт UNICODE

Решение проблем

неправильного декодирования; ограниченность набора символов; преобразования из одной кодировки в другую; проблема дублирования шрифтов.

Стандарт предложен в **1991 году некоммерческой организацией** Unicode Consortium, стандарт ISO/IEC 10646:2020.

Юникод — стандарт кодирования символов, позволяющий представить знаки почти всех письменных языков, состоит из 2х разделов:

- UCS universal character set (универсальный набор символов);
- UTF Unicode transformation format (семейство кодировок).

Принято обозначение символа **U+xxx**, где **xxx**- число в шестнадцатеричном формате.

• UNICODE:

- UCS расположены в 17 плоскостях (0-16);
- в каждой плоскости 2¹⁶ (65 536) символов;
- плоскость 0 основная (основные символы);
- 1-14 дополнительные;
- 15-16 для частного использования.

• UNICODE: http://foxtools.ru/Unicode

Диапазо	он: 002	0-007F: (Основная	латини	ца						•					
	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
002		!	"	#	\$	%	&	,	()	*	+	,	-		I
003	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
004	@	А	В	С	D	Е	F	G	Н	I	J	К	L	M	N	0
005	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	1	1	1	^	-
006	•	а	b	С	d	е	f	g	h	İ	j	k	I	m	n	0
007	р	q	r	S	t	u	V	w	х	у	z	{	I	}	~	

• UNICODE: кодировка UTF-8

UTF-8 — представление Юникода, обеспечивающее совместимость со старыми системами, использовавшими 8-битные символы.

Алгоритм кодирования в *UTF-8*:

- 1) определить количество октетов (октет: 8 битов или 1 байт) т.е. в какой диапазон значений попадает количество значащих символов (7, 11, 16, 21, 26, 31);
- 2) подготовить старшие биты первого октета:
 - а. Оххххххх для одного октета;
 - b. 110xxxxx для *двух*;
 - с. 1110xxxx для *mpex* и т.д..
 - d. 10хххххх для *остальных* октетов;
- 3) заполнить оставшиеся биты (выше обозначены как х) в октетах кодом символа Юникода в двоичном виде. Начать с младших битов, поставив их в младшие биты последнего октета кода. И так далее, пока все биты кода символа не будут перенесены в свободные биты октетов.

Пример:

 $0446_{16} = 4*16^2 + 4*16 + 6 = 1094_{10}$

Пример:

UNICODE: *кодировка UTF-8*. Для символов в диапазоне:

 $0x00000000 \div 0x0000007$ F: 0xxxxxxx (один октет)

 $0x00000080 \div 0x000007FF$: 110xxxxx 10xxxxxx (два октета)

 $0x00000800 \div 0x0000FFFF$: 1110xxxx 10xxxxxx 10xxxxxx (три октета)

 $0x00010000 \div 0x001FFFFF$: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

UNICODE: кодировка UTF-16

В UTF-16 символы кодируются двухбайтовыми словами (16 битов) с использованием всех возможных диапазонов значений (от 0 до FFFF16).

• Маркер последовательности байтов UNICODE: BOM (Byte Order Mark)

Для определения формата представления Юникода в начало текстового файла записывается сигнатура (обозначение) — символ U+FEFF — маркер последовательности байтов.

Шестнадцатеричное представление маркера последовательности байтов для кодировок:

Кодировка	Представление (<u>hex</u>)
UTF-8	EF BB BF
<u>UTF-16</u> (<u>BE</u>)	FE FF
<u>UTF-16</u> (<u>LE</u>)	FF FE
<u>UTF-32</u> (BE)	00 00 FE FF
<u>UTF-32</u> (LE)	FF FE 00 00

• Порядок следования байтов:

- **LE** (Little endian order, прямой порядок, от младшего к старшему);
- **BE** (Big endian order, обратный порядок, от старшего к младшему).

Представление в памяти целочисленного числа на платформе x86: порядок следования байтов LE

(Little endian order, прямой порядок, от младшего к старшему)

```
lab02.cpp + ×
Lab_02
                                             (Глобальная область)
           #include <iostream>
                                                    Память 1
     2
                                                    Адрес: 0x005DFA14
         □int main()
                                                    0x0050FA28 01 00 00 00 80 8d 90 00 08
               int namber = 0x12345678;
     5
                                                    0x005DFA32 90 00 01 00 00 00 80 8d 90
               char hello[] = "Hello, "; ≤2мспрошло
     6
                                                    0x005DFA3C 08 98 90 00 9c fa 5d 00 87
               std::cout << hello << fio << std::endl;
               char fio[] = "Ivanov Ivan Ivanovich";
     7
     9
               return 0;
           }
    10
                            Представление шестнадцатиричного числа в памяти
                            компьютера
```