Application de la programmation dynamique aux plus courts chemins

Quentin Fortier

December 12, 2022

Dans ce cours, on considère seulement des graphes orientés.

Définition

Un graphe **pondéré** est un graphe $\overrightarrow{G}=(V,\overrightarrow{E})$ muni d'une fonction de poids $w:\overrightarrow{E}\longrightarrow \mathbb{R}.$

w(u,v) est le **poids** de l'arête de u vers v.

Dans ce cours, on considère seulement des graphes orientés.

Définition

Un graphe **pondéré** est un graphe $\overrightarrow{G}=(V,\overrightarrow{E})$ muni d'une fonction de poids $w:\overrightarrow{E}\longrightarrow \mathbb{R}.$

w(u, v) est le **poids** de l'arête de u vers v.

Il est pratique de définir $w(u,v)=\infty$ s'il n'y a pas d'arête entre u et v. En Python, on peut utiliser float("inf") pour représenter $+\infty$.

Dans ce cours, on considère seulement des graphes orientés.

Définition

Un graphe **pondéré** est un graphe $\overrightarrow{G}=(V,\overrightarrow{E})$ muni d'une fonction de poids $w:\overrightarrow{E}\longrightarrow \mathbb{R}.$

w(u, v) est le **poids** de l'arête de u vers v.

Il est pratique de définir $w(u,v)=\infty$ s'il n'y a pas d'arête entre u et v. En Python, on peut utiliser float("inf") pour représenter $+\infty$.

Pour représenter un graphe pondéré, on utilisera ici une **matrice** d'adjacence pondéré, contenant w(u,v) sur la ligne u, colonne v.

Exemple de graphe représenté par matrice d'adjacence pondérée :


```
G = [
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      [0, float("inf"), 2, 4],
\begin{pmatrix} 0 & \infty & 2 & 4 \\ 1 & 0 & 5 & \infty \\ 2 & -1 & 0 & 7 \\ \vdots & \vdots & \vdots & \vdots \\ 2 & 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} [0, float("inf"), 2, 4], \\ [1, 0, 5, float("inf")], \\ [2, -1, 0, 7], \\ [float("inf"), float("inf"), float("inf"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        [float("inf"), float("inf"), -3, 0]
```

Vous avez déjà vu plusieurs algorithmes pour trouver des plus courts chemins :

- Parcours en largeur (BFS), si tous les poids sont égaux (distance = nombre d'arêtes).
- Dijkstra, si tous les poids sont positifs.

Nous allons voir 3 algorithmes supplémentaires de plus courts chemins, par programmation dynamique (n=|V|, $p=|\overrightarrow{E}|$) :

Algorithme	Condition	Complexité
Parcours en largeur	Tous les poids égaux	O(n+p)
	(distance = nombre d'arêtes)	
Dijkstra	Poids positifs	$O(p\log(n))$
Bellman-Ford		O(np)
Floyd-Warshall		$O(n^3)$
Prog. dyn. sur	Graphe acyclique	O(n + n)
graphe acyclique	Graphe acyclique	O(n+p)

Floyd-Warshall trouve toutes les distances entre deux sommets quelconques, contrairement aux autres algorithmes (qui calculent les distances depuis un sommet de départ).

Soit $\overrightarrow{G} = (V, \overrightarrow{E})$ un graphe orienté et $u, v \in V$. Alors :

$$d(u, v) = \min_{(w, v) \in \overrightarrow{E}} d(u, w) + w(w, u)$$

Soit $\overrightarrow{G}=(\,V,\overrightarrow{E})$ un graphe orienté et $u,v\in\,V.$ Alors :

$$d(u, v) = \min_{(w,v) \in \overrightarrow{E}} d(u, w) + w(w, u)$$

Preuve:

Soit C un plus court chemin de u à v et w le prédecesseur de v dans C.

Soit C' la partie de C allant de u à w.

Alors C' est un plus court chemin de u à w (sinon il existerait un chemin C'' plus court et C''+(w,v) serait plus court que C: absurde). Donc d(u,v)=d(u,w)+w(w,v).

Soit $\overrightarrow{E} = (V, \overrightarrow{E})$ un graphe orienté et $u, v \in V$. Alors :

$$d(u, v) = \min_{(w, v) \in \overrightarrow{E}} d(u, w) + w(w, u)$$

 $\underline{\text{Problème}}$: on ne se ramène pas à des sous-problèmes plus petits...

Soit $\overrightarrow{E} = (V, \overrightarrow{E})$ un graphe orienté et $u, v \in V$. Alors :

$$d(u, v) = \min_{(w,v) \in \overrightarrow{E}} d(u, w) + w(w, u)$$

Problème : on ne se ramène pas à des sous-problèmes plus petits...

Il faut introduire un paramètre pour avoir une équation de récurrence exploitable :

- Bellman-Ford : nombre d'arêtes
- Floyd-Warshall : numéros des sommets que l'on peut utiliser

Ou ajouter une condition sur le graphe :

• **Graphe acyclique**: un tri topologique donne un ordre dans lequel traiter les sommets.

Lemme

Soit $d_k(v)$ le poids minimum d'un chemin de r à v utilisant au plus k arêtes. Alors :

$$d_{k+1}(v) = \min_{(u,v) \in E} d_k(u) + w(u,v)$$

Lemme

Soit $d_k(v)$ le poids minimum d'un chemin de r à v utilisant au plus k arêtes. Alors :

$$d_{k+1}(v) = \min_{(u,v) \in E} d_k(u) + w(u,v)$$

 $\underline{\text{Preuve}}$: soit C un plus court chemin de r à v utilisant au plus k+1 arêtes.

Lemme

Soit $d_k(v)$ le poids minimum d'un chemin de r à v utilisant au plus k arêtes. Alors :

$$d_{k+1}(v) = \min_{(u,v) \in E} d_k(u) + w(u,v)$$

 $\underline{\text{Preuve}}$: soit C un plus court chemin de r à v utilisant au plus k+1 arêtes.

Soit u le prédecesseur de v dans C.

Lemme

Soit $d_k(v)$ le poids minimum d'un chemin de r à v utilisant au plus k arêtes. Alors :

$$d_{k+1}(v) = \min_{(u,v) \in E} d_k(u) + w(u,v)$$

<u>Preuve</u>: soit C un plus court chemin de r à v utilisant au plus k+1 arêtes.

Soit u le prédecesseur de v dans C.

Alors le sous-chemin de ${\cal C}$ de r à u est un plus court chemin utilisant au plus k arêtes

Lemme

Soit $d_k(v)$ le poids minimum d'un chemin de r à v utilisant au plus k arêtes. Alors :

$$d_{k+1}(v) = \min_{(u,v) \in E} d_k(u) + w(u,v)$$

<u>Preuve</u>: soit C un plus court chemin de r à v utilisant au plus k+1 arêtes.

Soit u le prédecesseur de v dans C.

Alors le sous-chemin de C de r à u est un plus court chemin utilisant au plus k arêtes (s'il y avait un chemin plus court que C', on pourrait le remplacer dans C ce qui contredirait la minimalité de C).

Lemme

Soit $d_k(v)$ le poids minimum d'un chemin de r à v utilisant au plus k arêtes. Alors :

$$d_{k+1}(v) = \min_{(u,v) \in E} d_k(u) + w(u,v)$$

 $\underline{\text{Preuve}}$: soit C un plus court chemin de r à v utilisant au plus k+1 arêtes.

Soit u le prédecesseur de v dans C.

Alors le sous-chemin de C de r à u est un plus court chemin utilisant au plus k arêtes (s'il y avait un chemin plus court que C', on pourrait le remplacer dans C ce qui contredirait la minimalité de C).

Remarque : c'est une propriété de **sous-structure optimale** (un sous-chemin d'un plus court chemin est aussi un plus court chemin).

Algorithme de Bellman-Ford

```
Entrée: \overrightarrow{G} = (V, \overrightarrow{E}) pondéré par w et s \in V.
Sortie: d tel que d[v] soit la distance de s à v.
Pour u \in V:
     Pour k \in [0, n-2] :
       Si v = s: d[s][k] = 0
Sinon d[v][k] = \infty
Pour k \in [0, n-2] :
     Pour v \in V:
       \begin{array}{|c|c|} \hline \mathbf{Pour}\;(u,v) \in \overrightarrow{E} : \\ & \sqsubseteq d[v][k+1] = \min(d[v][k+1],d[u][k]+w(u,v)) \end{array}
```

Parcourir tous les sommets puis tous les arcs (u, v) entrants dans v revient à parcourir tous les arcs du graphe :

Algorithme de Bellman-Ford

```
Entrée : \overrightarrow{G}=(V,\overrightarrow{E}) pondéré par w et s\in V. Sortie : d tel que d[v] soit la distance de s à v.
```

```
Pour u \in V:
```

Pour
$$k \in \llbracket 0, n-2 \rrbracket$$
:
$$\begin{array}{ccc} & \text{Si } v=s: & d[s][k]=0 \\ & \text{Sinon} & d[v][k]=\infty \end{array}$$

$$\begin{array}{l} \textbf{Pour } k \in \llbracket 0, n-2 \rrbracket : \\ & \sqsubseteq \textbf{Pour } (u,v) \in \overrightarrow{E} : \\ & \sqsubseteq d[v][k+1] = \min(d[v][k+1], d[u][k] + w(u,v)) \end{array}$$

Comme on a juste besoin de stocker $d[\ldots][k-1]$ pour calculer $d[\ldots][k]$:

Comme on a juste besoin de stocker $d[\ldots][k-1]$ pour calculer $d[\ldots][k]$:

Algorithme de Bellman-Ford

```
Entrée : \overrightarrow{G} = (V, \overrightarrow{E}) pondéré par w et s \in V. Sortie : d tel que d[v] soit la distance de s à v.
```

$$\begin{array}{l} \mathbf{Pour} \ k \in \llbracket 0, n-2 \rrbracket \ \mathbf{:} \\ \quad | \ \mathbf{Pour} \ (u,v) \in \overrightarrow{E} \ \mathbf{:} \\ \quad | \ \ \, \lfloor \ d[v] = \min(d[v], d[u] + w(u,v)) \end{array}$$

Algorithme de Bellman-Ford

Soit $d_k(u,v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas).

Soit $d_k(u,v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas).

Théorème

$$d_{k+1}(u, v) = \min(d_k(u, v), d_k(u, k) + d_k(k, v))$$

Soit $d_k(u, v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas).

Théorème

$$d_{k+1}(u,v) = \min(d_k(u,v), d_k(u,k) + d_k(k,v))$$

Preuve:

Soit C un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k+1.

Soit $d_k(u, v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas).

Théorème

$$d_{k+1}(u,v) = \min(d_k(u,v), d_k(u,k) + d_k(k,v))$$

Preuve:

Soit C un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k+1.

• Si C ne passe pas par k:

Soit $d_k(u, v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas).

Théorème

$$d_{k+1}(u,v) = \min(d_k(u,v), d_k(u,k) + d_k(k,v))$$

Preuve:

Soit C un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k+1.

- ullet Si C ne passe pas par k : $d_{k+1}(u,v)=d_k(u,v)$
- Si C passe par k :

Soit $d_k(u, v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas).

Théorème

$$d_{k+1}(u,v) = \min(d_k(u,v), d_k(u,k) + d_k(k,v))$$

Preuve:

Soit C un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k+1.

- ullet Si C ne passe pas par k : $d_{k+1}(u,v)=d_k(u,v)$
- Si C passe par k: $d_{k+1}(u,v) = d_k(u,k) + d_k(k,v)$

```
Initialiser d_0(u,v) \leftarrow g[u][v] si (u,v) \in \overrightarrow{E}.

\infty sinon.
```

```
Pour k = 0 à n-1:
Pour tout sommet u:
Pour tout sommet v:
d_{k+1}(u,v) \leftarrow \min(d_k(u,v),d_k(u,k)+d_k(k,v))
```

Initialiser
$$d_0(u,v) \leftarrow g[u][v]$$
 si $(u,v) \in \overrightarrow{E}$.
 ∞ sinon.

```
Pour k = 0 à n-1:
Pour tout sommet u:
Pour tout sommet v:
d_{k+1}(u,v) \leftarrow \min(d_k(u,v),d_k(u,k)+d_k(k,v))
```

On peut utiliser un tableau d à 3 dimensions pour stocker $d_k(u,v)$ dans d[u][v][k].

Initialiser
$$d_0(u,v) \leftarrow g[u][v]$$
 si $(u,v) \in \overrightarrow{E}$.
 ∞ sinon.

```
Pour k = 0 à n-1:
Pour tout sommet u:
Pour tout sommet v:
d_{k+1}(u,v) \leftarrow \min(d_k(u,v),d_k(u,k)+d_k(k,v))
```

On peut utiliser un tableau d à 3 dimensions pour stocker $d_k(u,v)$ dans d[u][v][k].

On a en fait juste besoin de d_k pour calculer d_{k+1} : on peut donc utiliser une matrice d telle que d[u][v] contient le dernier $d_k(u,v)$ calculé

Initialiser
$$d_0(u,v) \leftarrow g[u][v]$$
 si $(u,v) \in \overrightarrow{E}$.
 ∞ sinon.

```
Pour k = 0 à n-1:
Pour tout sommet u:
Pour tout sommet v:
d_{k+1}(u,v) \leftarrow \min(d_k(u,v),d_k(u,k)+d_k(k,v))
```

On peut utiliser un tableau d à 3 dimensions pour stocker $d_k(u,v)$ dans d[u][v][k].

On a en fait juste besoin de d_k pour calculer d_{k+1} : on peut donc utiliser une matrice d telle que d[u] [v] contient le dernier $d_k(u,v)$ calculé (ça marche car $d_{k+1}(u,k)=d_k(u,k)$).

On utilise une matrice d telle que d[u] [v] contienne le dernier $d_k(u,v)$ calculé :

```
Algorithme de Floyd-Warshall
```

```
\begin{array}{l} {\rm d} = {\rm copie} \ {\rm de} \ {\rm g} \\ \\ {\rm Pour} \ {\rm k} = 0 \ {\rm a} \ n-1: \\ \\ {\rm Pour} \ {\rm tout} \ {\rm sommet} \ {\rm u}: \\ \\ {\rm Pour} \ {\rm tout} \ {\rm sommet} \ {\rm v}: \\ \\ {\rm d} [{\rm u}] [{\rm v}] = \min({\rm d} [{\rm u}] [{\rm v}], \ {\rm d} [{\rm u}] [{\rm k}] + {\rm d} [{\rm k}] [{\rm v}]) \end{array}
```

On utilise une matrice d telle que d[u] [v] contienne le dernier $d_k(u,v)$ calculé :

```
Algorithme de Floyd-Warshall
```

```
\begin{array}{l} {\rm d} = {\rm copie} \ {\rm de} \ {\rm g} \\ \\ {\rm Pour} \ {\rm k} = 0 \ {\rm a} \ n-1 : \\ \\ {\rm Pour} \ {\rm tout} \ {\rm sommet} \ {\rm u} : \\ \\ {\rm Pour} \ {\rm tout} \ {\rm sommet} \ {\rm v} : \\ \\ {\rm d} [{\rm u}] [{\rm v}] = \min({\rm d} [{\rm u}] [{\rm v}] \ , \ {\rm d} [{\rm u}] [{\rm k}] \ + \ {\rm d} [{\rm k}] [{\rm v}]) \end{array}
```

Complexité:

On utilise une matrice d telle que d[u] [v] contienne le dernier $d_k(u,v)$ calculé :

```
Algorithme de Floyd-Warshall
```

```
Complexité : O(n^3)
```


$$A = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Matrice d'adjacence

$$\begin{pmatrix}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}$$

Matrice des distances renvoyée par Floyd-Warshall

On suppose que le graphe g est représenté par matrice d'adjacence pondérée :

Algorithme de Floyd-Warshall

```
import copy

def floyd_warshall(g):
    n = len(g)
    d = copy.deepcopy(g) # pour éviter de modifier g
    for k in range(n):
        for u in range(n):
            for v in range(n):
                 d[u][v] = min(d[u][v], d[u][k] + d[k][v])
    return d
```

 $\text{Initialiser d[u] [v]} \leftarrow g[u][v] \text{ si } (u,v) \in \overrightarrow{E} \text{, } \infty \text{ sinon}.$

```
Pour \mathbf{k}=0 à n-1:
Pour tout sommet u:
Pour tout sommet v:
\mathbf{d}[\mathbf{u}][\mathbf{v}] = \min(\mathbf{d}[\mathbf{u}][\mathbf{v}], \ \mathbf{d}[\mathbf{u}][\mathbf{k}] + \mathbf{d}[\mathbf{k}][\mathbf{v}])
```

Question

Comment connaître un plus court chemin de n'importe quel sommet u à n'importe quel un autre v?

 $\text{Initialiser d[u] [v]} \leftarrow g[u][v] \text{ si } (u,v) \in \overrightarrow{E} \text{, } \infty \text{ sinon}.$

```
Pour \mathbf{k}=0 à n-1:

Pour tout sommet u:

Pour tout sommet v:

\mathbf{d}[\mathbf{u}][\mathbf{v}] = \min(\mathbf{d}[\mathbf{u}][\mathbf{v}], \ \mathbf{d}[\mathbf{u}][\mathbf{k}] + \mathbf{d}[\mathbf{k}][\mathbf{v}])
```

Question

Comment connaître un plus court chemin de n'importe quel sommet u à n'importe quel un autre v?

Utiliser une matrice pere telle que pere [u] [v] est le prédécesseur de v dans un plus court chemin de u à v.

Soit $d_k(u,v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas). Soit $p_k(u,v)$ un prédécesseur de v dans un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k. Soit C un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k+1.

• Si C n'utilise pas k comme sommet intermédiaire :

Soit $d_k(u,v)$ la longueur d'un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k (∞ s'il n'existe pas). Soit $p_k(u,v)$ un prédécesseur de v dans un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k. Soit C un plus court chemin de u à v n'utilisant que des sommets intermédiaires de numéro < k+1.

• Si *C* n'utilise pas *k* comme sommet intermédiaire :

$$d_{k+1}(u, v) = d_k(u, v)$$
$$p_{k+1}(u, v) = p_k(u, v)$$

ullet Si C utilise k comme sommet intermédiaire :

$$d_{k+1}(u, v) = d_k(u, k) + d_k(k, v)$$

 $p_{k+1}(u, v) = p_k(k, v)$

```
Initialiser d[u] [v] = w(u, v) si (u, v) \in \overrightarrow{E}, \infty sinon. Initialiser pere[u] [v] = u, \forall u, v \in V.
```

```
Pour \mathbf{k}=0 à n-1:

Pour tout sommet u:

Pour tout sommet v:

Si \mathbf{d}[\mathbf{u}][\mathbf{v}] > \mathbf{d}[\mathbf{u}][\mathbf{k}] + \mathbf{d}[\mathbf{k}][\mathbf{v}]:

\mathbf{d}[\mathbf{u}][\mathbf{v}] = \mathbf{d}[\mathbf{u}][\mathbf{k}] + \mathbf{d}[\mathbf{k}][\mathbf{v}]

pere [\mathbf{u}][\mathbf{v}] = \mathbf{pere}[\mathbf{k}][\mathbf{v}]
```

On obtient une matrice pere telle que pere [u] [v] est le prédécesseur de v dans un plus court chemin de u à v.

Graphe acyclique

Définition

On appelle graphe acyclique un graphe qui ne contient pas de cycle.

Exemple de graphe acyclique :

Définition

Un **tri topologique** d'un graphe \overrightarrow{G} est un ordre des sommets de \overrightarrow{G} telle que si $(u,v)\in \overrightarrow{E}$, alors u est avant v dans l'ordre.

Définition

Un **tri topologique** d'un graphe \overrightarrow{G} est un ordre des sommets de \overrightarrow{G} telle que si $(u, v) \in \overrightarrow{E}$, alors u est avant v dans l'ordre.

Lemme

G est acyclique \iff il existe un tri topologique de G

Définition

Un **tri topologique** d'un graphe \overrightarrow{G} est un ordre des sommets de \overrightarrow{G} telle que si $(u, v) \in \overrightarrow{E}$, alors u est avant v dans l'ordre.

Lemme

G est acyclique \iff il existe un tri topologique de G

Question

Trouver un tri topologique du graphe ci-dessous.

Pour l'implémentation, on utilisera une liste d'adjacence où un arc $u \xrightarrow{w} v$ est représenté par un tuple (v,w).

Question

Donner la représentation du graphe ci-dessous.

Théorème (admis)

Soit \overrightarrow{G} un graphe acyclique.

La liste inversée des sommets de \overrightarrow{G} dans un parcours en profondeur postfixe (obtenue par dfs_postfixe) est un tri topologique de G.

```
Tri topologique
                                               python
def dfs_postfixe(G, s):
    seen = [False]*len(G)
    L = []
    def aux(G, u):
        if not seen[u]:
            seen[u] = True
            for w in G[u]:
                aux(G, v)
            L.append(u)
    aux(G, s)
    return L[::-1] # inverse la liste
```

Soit $\overrightarrow{G} = (V, \overrightarrow{E})$ un graphe orienté acyclique et $s \in V$.

Il est possible de trouver les distances depuis s dans G en complexité linéaire :

- Trouver un tri topologique de \vec{G} .
- Pour chaque sommet v dans l'ordre topologique, calculer d(s,v) par récurrence (programmation dynamique).

Graphe acyclique: Programmation dynamique

On utilise alors la formule de récurrence démontrée précédement :

Théorème

$$d(s,v) = \min_{(u,v) \in \overrightarrow{E}} d(s,u) + w(u,v)$$

Graphe acyclique : Programmation dynamique

Distances dans un graphe acyclique \overrightarrow{G}

Calculer un tri topologique de \overrightarrow{G} .

Pour chaque sommet \boldsymbol{v} dans l'ordre topologique :

$$d[v] = \min_{(u,v) \in \overrightarrow{E}} d[v] + w(u,v)$$

Graphe acyclique: Programmation dynamique

Distances dans un graphe acyclique \overrightarrow{G}

Calculer un tri topologique de \overrightarrow{G} .

Pour chaque sommet $\it v$ dans l'ordre topologique :

$$d[v] = \min_{(u,v) \in \overrightarrow{E}} d[v] + w(u,v)$$

Cependant, il est plus pratique de mettre à jour les successeurs plutôt que de considérer les prédécesseurs. D'où l'algorithme équivalent suivant :

Distances dans un graphe acyclique \overrightarrow{G}

Calculer un tri topologique de \overrightarrow{G} .

Pour chaque sommet $\it u$ dans l'ordre topologique :

Pour chaque arc $(u,v) \in \vec{E}$:

$$d[v] = \min(d[v], d[u] + w(u, v))$$

Graphe acyclique: Programmation dynamique

Distances dans un graphe acyclique

```
def distances_acyclic(G, s):
    n = len(G)
    d = [float('inf')]*n
    d[s] = 0
    for u in dfs_postfixe(G, s):
        for v, w in G[u]:
            d[v] = min(d[v], d[u] + w)
    return d
```