

쉽게 풀어쓴 C언어 Express[개정판] 천인국 저, 생능출판사 2012

#### 5장. 수식과 연산자

성결대학교 컴퓨터공학부 임 상 순

#### 강의 목표 및 내용

#### ▶ 강의 목표

- 수식과 연산자의 개념을 이해한다.
- 대입, 산술, 증감, 관계, 논리 연산자를 사용할 수 있고 결과값을 이해할 수 있다.
- 연산자의 우선 순위와 결합 규칙을 이해한다.

#### ▶ 내용

- 수식과 연산자의 개념
- 산술, 대입 연산자
- 형변환
- 관계, 논리 연산자
- 조건, 콤마, 비트 단위 연산자
- 연산자의 우선 순위와 결합 규칙

#### 수식

- ▶ 수식(expression)
  - 상수, 변수, 연산자의 조합
  - 연산자와 피연산자로 나누어짐

$$x + y$$
  
 $x*x + 5*x + 6$   
(principal \* interest\_rate \* period) / 12.0



## 기능에 따른 연산자의 분류

| 연산자의 분류    | 연산자             | 의미                       |
|------------|-----------------|--------------------------|
| 대입         | =               | 오른쪽을 왼쪽에 대입              |
| 산술         | + - * / %       | 사칙연산과 나머지 연산             |
| 부호         | + -             |                          |
| 증감         | ++              | 증가, 감소 연산                |
| 관계         | > < == != >= <= | 오른쪽과 왼쪽을 비교              |
| 논리         | &&   !          | 논리적인 AND, OR, NOT        |
| 조건         | ?               | 조건에 따라 선택                |
| 콤마         | ,               | 피연산자들을 순차적으로 실행          |
| 비트 단위 연산자  | &   ^ ~ << >>   | 비트별 AND, OR, XOR, 반전, 이동 |
| sizeof 연산자 | sizeof          | 자료형이나 변수의 크기를 바이트 단위로 반환 |
| 형변환        | (type)          | 변수나 상수의 자료형을 변환          |
| 포인터 연산자    | * & []          | 주소계산, 포인터가 가리키는 곳의 내용 추출 |
| 구조체 연산자    | >               | 구조체의 멤버 참조               |

### 피연산자수에 따른 연산자 분류

▶ 단항 연산자: 피연산자의 수가 1개

```
++x;
--y;
```

▶ 이항 연산자: 피연산자의 수가 2개

```
x + y
x - y
```

▶ 삼항 연산자: 연산자의 수가 3개

```
x ? y : z
```

### 중간 점검

- ▶ 수식(expression)이란 어떻게 정의되는가?
- ▶ 상수 10도 수식이라고 할 수 있는가?
- 아래의 수식에서 피연산자와 연산자를 구분하여 보라.
  - y = 10 + 20;
- 연산자를 단항 연산자, 이항 연산자, 삼항 연산자로 나누는 기준은 무엇인가?

### 산술 연산자

#### ▶ 산술 연산

- 컴퓨터의 가장 기본적인 연산
- 덧셈, 뺄셈, 곱셈, 나눗셈 등의 사칙 연산을 수행하는 연산자

| 연산자 | 기호  | 의미               |
|-----|-----|------------------|
| 덧셈  | х+у | x와 y를 더한다        |
| 뺄셈  | х-у | x에서 y를 뺀다.       |
| 곱셈  | x*y | x와 y를 곱한다.       |
| 나눗셈 | x/y | x를 y로 나눈다.       |
| 나머지 | x%y | x를 y로 나눌 때의 나머지값 |

### 산술 연산자의 예

$$y = mx + b$$
  $y = m^*x + b$   
 $y = ax^2 + bx + c$   $y = a^*x^*x + b^*x + c$   
 $m = \frac{x + y + x}{3}$   $m = (x + y + z)/3$ 



(참고) 거듭 제곱 연산자는?

C에는 거듭 제곱을 나타내는 연산자는 없다. x \* x와 같이 단순히 변수를 두 번 곱한다.

## 예제: 산술 연산자(arithmetic.c)

```
#include <stdio.h>
int main()
     int x, y, result;
     printf("두개의 정수를 입력하시오: ");
     scanf("%d %d", &x, &y);
     result = x + y;
     printf("%d + %d = %d\text{\psi}n", x, y, result);
     result = x - y; // 뺄셈
     printf("%d - %d = %d\foralln", x, y, result);
     result = x * y;  // 곱셈
     printf("%d + %d = %d\text{\psi}n", x, y, result);
     result = x / y; // 나눗셈
     printf("%d / %d = %d\foralln", x, y, result);
                     // 나머지
     result = x \% y;
     printf("%d %% %d = %d\text{\text{\psi}}n", x, y, result);
     return 0;
```





```
두개의 정수를 입력하시오: 7 4
7 + 4 = 11
7 - 4 = 3
7 + 4 = 28
7 / 4 = 1
7 % 4 = 3
```

### 나눗셈 연산자

- ▶ 정수형끼리의 나눗셈
  - 결과가 정수형으로 생성
  - 소수점 이하는 버려짐
- 부동 소수점형끼리의 나눗셈
  - 부동 소수점형끼리는 부동 소수점 값 생성



정수와 정수 끼리의 나눗셈.



실수와 실수 끼리의 나눗셈.





# 예제 : 나눗셈 연산자(arithmetic1.c)

```
#include <stdio.h>
int main()
    double x, y, result;
    printf("두개의 실수를 입력하시오: ");
    scanf("%lf %lf", &x, &y);
    result = x + y;  // 덧셈 연산을 하여서 결과를 result에 대입
    printf("%f / %f = %f", x, y, result);
    result = x / y;
    printf("%f / %f = %f", x, y, result);
                                           두개의 실수를 입력하시오: 7 4
    return 0;
                                           7.000000 + 4.000000 = 11.000000
                                           7.000000 - 4.000000 = 3.000000
                                           7.000000 + 4.000000 = 28.000000
```

7.0000000 / 4.0000000 = 1.750000

### 나머지 연산자

- ▶ 나머지 연산자(modulus operator)
  - 첫 번째 피연산자를 두 번째 피연산자로 나누었을 경우의 나머지를 계산
    - ▶ 10 % 2는 0이다.
    - ▶ 5 % 7는 5이다.
    - ▶ 30 % 9는 3이다.
- ▶ 나머지 연산자를 이용한 짝수와 홀수를 구분
  - x % 2가 0이면 짝수
- ▶ 나머지 연산자를 이용한 5의 배수 판단
  - x % 5가 0이면 5의 배수





# 예제 : 나머지 연산자(modulo.c)

```
// 나머지 연산자 프로그램
#include <stdio.h>
#define SEC PER MINUTE 60 // 1분은 60초
int main(void)
                                            input
                                                    minute
                                                             second
    int input, minute, second;
    printf("초단위의 시간을 입력하시요:(32억초이하) ");
    scanf("%d", &input); // 초단위의 시간을 읽는다.
    minute = input / SEC PER MINUTE; // 몇 분
    second = input % SEC PER MINUTE; // 몇 초
    printf("%d초는 %d분 %d초입니다. ₩n", input, minute, second);
    return 0;
                            초단위의 시간을 입력하시요:(32억초이하) 70
```

70초는 1분 10초 입니다.

### 부호 연산자

▶ 변수나 상수의 부호를 변경

x = -10;y = -x; // 변수 y의 값은 10이 된다. -는 이항 연산 자이기도 하고 단항 연산자이 기도 하죠 이항연산자 단항연산자

## 증감 연산자

- ▶ 증감 연산자
  - ++, --
  - 변수의 값을 하나 증가시키거나 감소시키는 연산자

++x는 변수 x의 값을 하나 증가시킨다.





#### ++x와 x++의 차이

▶ ++x와 x++는 어떤 차이가 있을까?



# 증감 연산자 정리

| 증감 연산자 | 의미                       |
|--------|--------------------------|
| ++X    | 수식의 값은 증가된 x값이다.         |
| X++    | 수식의 값은 증가되지 않은 원래의 x값이다. |
| X      | 수식의 값은 감소된 x값이다.         |
| X      | 수식의 값은 감소되지 않은 원래의 x값이다. |

### Quiz

▶ nextx와 nexty의 값은?

```
x = 1;
y = 1;
nextx = ++x;
nexty = y++;
```



#### 예제 : 증감 연산자(incdec.c)

```
#include <stdio.h>
int main(void)
           int x=10, y=10;
            printf("x=%dWn", x);
            printf("++x의 값=%d₩n", ++x);
            printf("x = %d \forall n \forall n", x);
            printf("y=%dWn", y);
            printf("y++의 값=%d₩n", y++);
            printf("y=%dWn", y);
                                                             x = 10
                                                             ++x<sup>2</sup>/ <sup>2</sup>/<sub>4</sub>=11
           return 0;
                                                             x = 11
                                                             y = 10
                                                             y++의 값=10
                                                             y = 11
```

# 대입(배정, 할당) 연산자

▶ 왼쪽에 있는 변수에 오른쪽의 수식의 값을 계산하여 대입

▶ (예) z = x + y;



### 대입 연산자 주의점[1/2]

▶ 등호의 왼편에는 변수가 와야함

-100 = x + y;

// 컴파일 오류!



### 대입 연산자 주의점[2/2]

- x = x + 1;
  - 변수의 값을 1 만큼 증가



### 대입 연산의 결과값



# 여러 변수에 같은 값을 대입

$$y = x = 3;$$



### 예제: 대입 연산자(assignment.c)

```
/* 대입 연산자 프로그램 */
#include <stdio.h>
int main(void)
     int x, y;
     x = 1;
     printf("수식 x+1의 값은 %d₩n", x+1);
     printf("수식 y=x+1의 값은 %d₩n", y=x+1);
     printf("수식 y=10+(x=2+7)의 값은 %d₩n", y=10+(x=2+7));
     printf("수식 y=x=3의 값은 %d₩n", y=x=3);
                                     수식 x+1의 값은 2
     return 0;
                                     수식 y=x+1의 값은 2
                                     수식 y=10+(x=2+7)의 값은 19
                                     수식 y=x=3의 값은 3
```

### 복합 대입 연산자[1/2]

- ▶ 복합 대입 연산자
  - +=처럼 대입연산자 =와 산술연산자를 합쳐 놓은 연산자
  - 소스를 간결하게 만들 수 있음



# 복합 대입 연산자[2/2]

| 복합 대입 연산자 | 의미             |
|-----------|----------------|
| x += y    | x = x + y      |
| × -= y    | x = x - y      |
| x *= y    | x = x * y      |
| × /= y    | x = x / y      |
| x %= y    | x = x % y      |
| x &= y    | x = x & y      |
| ×  = y    | $x = x \mid y$ |
| × ^= y    | $x = x ^ y$    |
| x >>= y   | x = x >> y     |
| x <<= y   | x = x << y     |

#### Quiz

▶ 다음 수식을 풀어서 다시 작성하면?

$$x *= y + 1$$
  
 $x %= x + y$   
 $x = x * (y + 1)$   
 $x = x % (x + y)$ 

### 예제 : 복합 대입 연산자(abbr.c)

```
// 복합 대입 연산자 프로그램
#include <stdio.h>
int main(void)
{
     int x = 10, y = 10, z = 33;
                                             X
                                                        y
    x += 1;
     y *= 2;
     z \% = 10 + 20;
     printf("x = \%d y = \%d z = \%d \n", x, y, z);
     return 0;
                                                        x = 11
                                                                y = 20 z = 3
```