Système éclipse ★

C2-04

Pas de corrigé pour cet exercice.

Le schéma-blocs sous la forme suivante avec un gain unitaire pour le capteur de vitesse.

$$H_L(p) = \frac{K_L}{1 + \tau_L p}$$
 et $H_G(p) = \frac{K_G}{1 + \tau_G p}$ avec $\tau_G = \tau_L = 20$ ms, $K_L = 1 \times 10^{-3}$ N⁻¹s⁻¹ et $K_G = 2 \times 10^{-5}$ mN⁻¹s⁻¹.

Le cahier des charges donne les valeurs des critères d'appréciation adoptés :

- ▶ la précision : en régime permanent à vitesse constante, soit $\varepsilon_S = 0$ et à accélération constante, soit $\varepsilon_T = 0$; ε_S désigne l'erreur statique de position et ε_T l'erreur statique de vitesse ou erreur de traînage;
- ▶ la rapidité : le temps de réponse à 5% tel que : $t_{R5\%} \le 1 \,\mathrm{s}$;
- ▶ la stabilité : marge de phase \geq 45 ° et marge de gain \geq 10 dB.

On choisit tout d'abord une correction proportionnelle telle que $C_V(p) = K_P$.

Question 1 Le cahier des charges est-il respecté en termes de précision, rapidité et stabilité?

Question 2 Peut-on choisir une valeur de K_P qui puisse assurer le respect complet du cahier des charges?

Question 3 Le système est-il robuste à une perturbation en échelon?

Corrigé voir .

