

Self-configurable Manufacturing Industrial Agent (SMIA)

Self-configurable Manufacturing Industrial Agent (SMIA) © 2025 by Ekaitz Hurtado, Aintzane Armentia and Oskar Casquero is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International © () ()

- I Introducción
 - III Enfoque SMIA
 - III Resultados esperados
- IV Prueba de concepto

Adoptando la Industria 4.0

Conectividad

Comunicación entre activos de planta e integración resto de sistemas empresariales.

Interoperabilidad

Potenciar el uso de descripciones normalizadas de activos para facilitar su integración.

Autonomía

Reducir las intervenciones manuales en la ejecución de órdenes de producción y resolución de eventos.

Conectividad en un entorno industrial

Interoperabilidad

Interoperabilidad

Enfoque SMIA

Modularización de recursos

FACULTY OF ENGINEERING **BILBAO** UNIVERSITY OF THE BASQUE

Entorno SMIA

en Python

Entorno SMIA

Integración en un entorno industrial

Colaboración en SMIA

Fabricación flexible en SMIA

Pasos:

- 1. Diseño del plan de producción
 - Definición de capacidades requeridas por el plan de producción
- 2. Identificación de capacidades ofrecidas por los activos
- 3. Despliegue de SMIAs de activos necesarios
 - Posibilidad de configuración de implementación de capacidades
- 4. Arranque de plan de producción
 - Comprobación de viabilidad de ejecución de capacidades (restricciones)

Resultados esperados

Características SMIA

- Estandarizado (AAS-compliant)
- Simple
 - Abstracción de complejidad de las funcionalidades
 - Abstracción de complejidad de adopción de estándares (herramientas de soporte)
- Virtualizado (encapsulado en Docker)
- Orquestado (desplegado en Kubernetes)
- Open-science (accesibilidad)
 - Open-source con repositorio GitHub disponible (https://github.com/ekhurtado/SMIA)
 - Plataforma de documentación disponible (https://smia.readthedocs.io/en/latest/)
- Extensible (escalabilidad)
 - Además del código fuente en GitHub, está disponible como paquete Python en PyPI (https://pypi.org/project/smia/)
 - Ofrece extensibilidad mediante diferentes métodos

Resultados esperados

FACULTY
OF ENGINEERING
BILBAO
UNIVERSITY
OF THE BASQUE
COUNTRY

Respuestas a necesidades de Industria 4.0

- Interoperabilidad gracias al AAS
- Autonomía mediante el uso de agentes industriales
- Conectividad gracias a la API y SDK
- Fabricación flexible
- Escalabilidad y adaptabilidad gracias a los métodos de extensión
 - Aplicabilidad a diferentes escenarios/sectores
 - Mayor autonomía
 - Nuevas capacidades sociales
- Plataforma de ejecución
 - Sistema distribuido
 - Soporte para puesta en marcha de órdenes de producción
 - Gestión de eventos
- Integración de herramientas IA

Vídeo de demostración

Link al archivo

Self-configurable Manufacturing Industrial Agent (SMIA)

Self-configurable Manufacturing Industrial Agent (SMIA) © 2025 by Ekaitz Hurtado, Aintzane Armentia and Oskar Casquero is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International © () ()