# Monte Carlo Simulations I. Introduction

Y. Yin

#### Monte Carlo simulations

- Randomness and MC
- Key elements in Monte Carlo simulations
- Some practical examples of MC
- Simple MC tutorial



#### Monte Carlo (MC) simulations

- Refers to a broad class of computational methods that rely on random statistical sampling
- Uses random numbers (Monte Carlo is the casino capital of Monaco)
- Initial developed in statistical physics
- Adapted for materials phenomena, in particular grain growth and phase transformations



John von Neumann



Monte-Carlo, Monaco



#### Buffon's needle problem (1777)

- Used to approximate the number  $\pi$
- Problem: find the probability that a needle of length L will land on a line, given a floor with equally spaced parallel lines at distance d apart.



Drop a need on the surface -> not intersect / intersect with line
The randomness of the problem means that any position of the needle are equally probable.



#### **Mathematical Solution**

- The probability of intersection can be mathematically expressed by:
- $P_{intersect} = 2l/\pi d$
- If we randomly drop the need N times and in these drops the needle intersects with the line M times, then the fraction of intersection is
- $P_{intersect} = M/N$
- Then  $\pi$  can be estimated by  $\pi = 2lN/dM$



# Statistical Sampling of the Buffon's Problem

| Experiments | Year | Needle Length | Sample Size | Intersected<br>Sample | Estimated $\pi$ |
|-------------|------|---------------|-------------|-----------------------|-----------------|
| Wolf        | 1850 | 0.8           | 5000        | 2532                  | 3.1596          |
| Smith       | 1855 | 0.6           | 3204        | 1218                  | 3.1554          |
| De Morgan   | 1860 | 1.0           | 600         | 382                   | 3.137           |
| Fox         | 1884 | 0.75          | 1030        | 489                   | 3.1595          |
| Lazzerini   | 1901 | 0.83          | 3408        | 1808                  | 3.1415929       |
| Reina       | 1925 | 0.5419        | 2520        | 859                   | 3.1795          |

$$\pi = \frac{2lN}{dM}$$



#### Lessons from Buffon: Important Steps in Monte Carlo Simulation

#### General

**Mathematical** 

Formulate a probabilistic analogue of the problem

Formulate integral expressions of the governing differential equations that describe the stochastic process

Apply a Monte Carlo algorithm

Integrate the governing expression using a weighted or nonweighted random sampling method

Present and interpret results

Extract state equation values, correlation functions, structural information, or MC kinetics



### Lessons from Buffon: Important Steps in Monte Carlo Simulation

#### General

Formulate a probabilistic analogue of the problem

# $P_{intersect} = M/N$

Apply a Monte Carlo algorithm

Present and interpret results

#### **Mathematical**

Formulate integral expressions of the governing differential equations that describe the stochastic process

Integrate the governing expression using a weighted or nonweighted random sampling method

Extract state equation values, correlation functions, structural information, or MC kinetics

2*lN* 



 $P_{intersect}$ 

 $= 2l/\pi d$ 

#### **Basic Concepts of Monte Carlo Simulations**

- The objective of Monte Carlo simulations is to find the probability of a certain event, or the mathematic expectation of a certain random variable, or a related parameter.
- Monte Carlo simulations can be used to solve deterministic problems (e.g. calculate multiple integral, or solve differential equation), as well as nondeterministic problems (i.e. problems with randomness involved) (e.g. nuclear physics, materials physics problems)



#### Basic Concepts of Monte Carlo Simulations

- The objective of Monte Carlo simulations is to find the probability of a certain event, or the mathematic expectation of a certain random variable, or a related parameter.
- Monte Carlo simulations can be used to solve deterministic problems (e.g. calculate multiple integral, or solve differential equation), as well as nondeterministic problems (i.e. problems with randomness involved) (e.g. nuclear physics, materials physics problems)
- Due to the extensive employment of stochastic sampling, the development of the Monte Carlo method was closely connected with the progress in computational technology.



#### A General Algorithm for MC

- 1. We start with a system of N particles and calculate its energy E.
- 2. Select one random particle and give it a random displacement, and calculate the energy of the system after the move, denoted as E'.
- 3. Accept the move if E'-E<0
- or exp(kB/T\*(E'-E))<1 if E'-E>0
- 4. If accepted, use the new configuration as the base configuration and return to Step 1.
- If rejected, do nothing and return to Step 1.
- 5. The loop is stopped when a certain criterion is meet. Then we regard the system as "relaxed".



• The stochastic character of this method requires input of huge series of uncorrelated random numbers.

Ways of generating random numbers: <u>Physical Method</u>



Dice



Radio Noise



• The stochastic character of this method requires input of huge series of uncorrelated random numbers.

Ways of generating random numbers: <u>Physical Method</u>

#### Disadvantages:

- The generated random sequence is not reproducible.
- 2. The cost of adding new random number generator is expensive.



 The stochastic character of this method requires input of huge series of uncorrelated random numbers.

Ways of generating random numbers: <u>Computational Method</u>

| TABLE 1 - | RANDOM |
|-----------|--------|
|-----------|--------|

| 11164 | 36318 | 75061 | 37674 | 26320 | 75100 |
|-------|-------|-------|-------|-------|-------|
| 21215 | 91791 | 76831 | 58678 | 87054 | 31687 |
| 10438 | 44482 | 66558 | 37649 | 08882 | 90870 |
| 36792 | 26236 | 33266 | 66583 | 60881 | 97395 |
| 73944 | 04773 | 12032 | 51414 | 82384 | 38370 |
|       |       |       |       |       |       |
| 49563 | 12872 | 14063 | 93104 | 78483 | 72717 |
| 64208 | 48237 | 41701 | 73117 | 33242 | 42314 |
| 51486 | 72875 | 38605 | 29341 | 80749 | 80151 |
| 99756 | 26360 | 64516 | 17971 | 48478 | 09610 |
| 71325 | 55217 | 13015 | 72907 | 00431 | 45117 |
|       |       |       |       |       |       |
| 65285 | 97198 | 12138 | 53010 | 94601 | 15838 |
| 17264 | 57327 | 38224 | 29301 | 31381 | 38109 |
|       |       |       |       |       |       |

Ensure probability of sampling of any number in the random number table is equal



- The stochastic character of this method requires input of huge series of uncorrelated random numbers.
- Ways of generating random numbers: Pseudorandom number generator
- · Most computer generated random numbers are obtained using this method
- Such algorithms usually start with a number called a **seed** (chosen arbitrarily).

$$x_{n+1} = (ax_n + c) \pmod{M}$$
Lehmer method (1951)

$$x_0 = Seed$$
  $0 \le Seed \le 199617$ 

$$c = 99991$$
  $a = 24298$   $M = 199617$ 



• Simple Sampling: use an equal contribution of random numbers



The column indicate the weight frequency
Of chosen x values



• Simple Sampling: use an equal contribution of random numbers



The column indicate the weight frequency
Of chosen x values



Importance sampling: Use a distribution accommodated to the problem being investigated.



The column indicate the weight frequency
Of chosen x values



 Simple sampling requires much large number of trais to approximate the true integral than the weighted scheme.



Therefore Importance sampling is more effective in solving this problem.





#### Simple or Importance?

- In practice, the simple sampling techniques is often employed in problems involving integration methods which choose the random numbers from a uniform distribution.
- Most Monte Carlo Simulations in materials science use importance sampling. (e.g membrane growth and graphene edge reconstruction)
- Metropolis Monte Carlo method is the best known algorithm based on importance sampling method (NEXT LECTURE).



### **Boundary Conditions**

- We usually apply periodic boundary conditions to our simulation box.
- The surface atoms only accounts for a small fraction of total atoms (for a simple cubic crystal of 1000000 atoms, the fraction of surface atoms is only ~6%).
- An effective method for simulating homogeneous bulk systems.



#### <u>Truncation of Interactions</u>

- Another way to reasonably reduce computational costs.
- Interatomic potentials are usually truncated beyond a critical distance (called cut-off distance), beyond which the interatomic potential is ignored (i.e. regarded as zero).





### **Summary**

- Buffon's Problem Our 1st Monte Carlo Simulation
- Basic concepts of Monte Carlo Simulations
- Key elements in MC:
- RNG, sampling, boundary conditions, and