Our goal is an optimisation of operations of type g (f(...) where f is a function that produces a big matrix and g is a reduce function that makes the and q is a reduce big matrix small. Example 1: $A^{T}B \times V$, where $A, B \in \mathbb{R}$ $V \in \mathbb{R}$ so our freve is f: R × R → R $A^{\mathsf{T}}, B \mapsto A^{\mathsf{T}} \times B$ and $g: \mathbb{R}^{N \times N} \times \mathbb{R}^N \to \mathbb{R}^N$ $(A^T \times B)$, $V \mapsto (A^T \times B) \times V$ the problematic matrix is a result of f(A,B)Example 2: (Pistance) $f(\alpha, b) = C$ and $g(C, V) = C \times V$ where $C \in \mathbb{R}^{N \times N}$ and $C_{ij} = [a_i - b_j]_{ij}$, aeR, beR, veR Example 3: (multiplication) The same as in Example 2, But $C_{ij} = [\alpha_i * \beta_j]_{ii}$

Example 4: (Squared distance)

$$f(A,B) = C, \text{ where } A \in \mathbb{R}^{N \times M}, B \in \mathbb{R}^{N \times M}$$

$$C_{ij} = \left[\left(\underbrace{E}_{k} A_{ik} - B_{jk} \right)^{2} \right]_{ij}, \text{ s.t. } C \in \mathbb{R}^{N \times N}$$

$$g(C, V) = C \times V$$

In Example 1 for A×B×V we could simply re-arronge computation, because of associativity property of the matrix product. So instead of computing (A×B) first that gives N×N mostrix, we could compute (B×V) first that gives N vector, and then A×(B×V).

It reduces the memory requirements and computational cost.

Re-arranging is a partial solution, the generic solution would be chunking/splitting/
pourtitioning big matrix computations and never materialise them at once on the same device. This could be referred as cache-wise computation.

E.g. for matrix-vector multiplication (MVM):

Diagram 1 becomes;

