A rendre par trinôme

EXERCICE

Soient E et F deux ensembles non vides, quelconques et $f \in F^E$. On pose

$$S = \left\{ X \in \mathcal{P}\left(E\right) / f^{-1}\left(f\left(X\right)\right) = X \right\}$$

- 1. Montrer que:
 - a) $\forall X \in \mathcal{P}(E), X \subset f^{-1}(f(X))$
 - b) $\forall Y \in \mathcal{P}(F), f(f^{-1}(Y)) \subset Y.$
- **2.** Montrer que : $\forall (X, X') \in \mathcal{S}^2, X \cup X' \in \mathcal{S} \text{ et } X \cap X' \in \mathcal{S}.$
- **3.** a) Montrer que : $\forall X \in \mathcal{S}$, $\forall A \in \mathcal{P}(E)$, $(X \cap A = \emptyset \Rightarrow X \cap f^{-1}(f(A)) = \emptyset)$
 - b) Montrer que si $X \in \mathcal{S}$ alors $\overline{X} \in \mathcal{S}$ (\overline{X} désigne le complémentaire de X dans E).
 - c) Montrer que si $Y \in \mathcal{S}$ et $X \in \mathcal{S}$ alors $Y \setminus X \in \mathcal{S}$.
- **4.** Montrer que : $\forall X \subset E, \ f^{-1}(f(X)) \in \mathcal{S}.$
- **5.** Montrer que S = P(E) si et seulement si f est injective.

PROBLEME

On admettra le théorème suivant :

Soient a < b dans \mathbb{R} . Toute fonction continue sur [a, b] y est bornée et atteint ses bornes.

Soit f une fonction continue sur l'intervalle [0,1]. Pour tout entier naturel n, on note

$$I_n = \int_0^1 t^n f(t) \, \mathrm{d}t$$

Partie I:

- 1. Justifier l'existence d'un majorant M de |f| sur [0,1], puis montrer que la suite $(I_n)_{n\in\mathbb{N}}$ converge vers 0.
- **2.** Pour n dans \mathbb{N}^* , on note $J_n = \int_0^{1-\frac{1}{\sqrt{n}}} t^n f(t) \mathrm{d}t$ Montrer que : $\forall n \in \mathbb{N}^*$, $|J_n| \leqslant \frac{M}{n+1} \left(1-\frac{1}{\sqrt{n}}\right)^{n+1}$ et en déduire que $J_n = \mathrm{o}\left(\frac{1}{n}\right)$.
- **3.** Pour n dans \mathbb{N}^* , on note $K_n = \int_{1-\frac{1}{\sqrt{n}}}^1 t^n f(t) dt$ et on introduit $g: t \mapsto f(t) f(1)$.
 - a) Justifier l'existence d'un maximum noté M_n de la fonction |g| sur le segment $\left[1-\frac{1}{\sqrt{n}},1\right]$ et d'un réel α_n de $\left[1-\frac{1}{\sqrt{n}},1\right]$ tel que $M_n=|g\left(\alpha_n\right)|$, puis montrer que $(M_n)_{n\in\mathbb{N}^*}$ converge vers 0.
 - b) Montrer que : $\forall\,n\in\mathbb{N}^*,\;\left|\int_{1-\frac{1}{\sqrt{n}}}^1t^ng(t)\mathrm{d}t\right|\leqslant \frac{M_n}{n+1}$ et en déduire : $\lim nK_n=f(1)$.
- **4.** Montrer que : $nI_n = f(1)$.
- **5.** On suppose de plus dans cette question que f est de classe \mathcal{C}^1 sur [0,1], que f(1)=0 et que $f'(1)\neq 0$. Montrer que : $\lim I_n \sim -\frac{f'(1)}{n^2}$.

On pourra utiliser une intégration par parties.

PCSI 1 2019/2020

Partie II: applications

1. Dans cette question, on pose pour tout
$$n$$
 de \mathbb{N}^* , $I_n = \int_0^1 \frac{t^n}{1+t} dt$ et $u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.

On définit la fonction
$$h_n$$
 sur $[0,1]$ par $h_n: t \mapsto \sum_{i=0}^{n-1} (-1)^i t^i$.

- a) Donner la limite de la suite $(I_n)_{n\in\mathbb{N}^*}$ puis déterminer un équivalent de I_n (à l'aide de la partie 1)
- b) Montrer que pour tout n de \mathbb{N}^* , $u_n = \int_0^1 h_n(t) dt$.
- c) En déduire que $(u_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ que l'on précisera et déterminer un équivalent de $u_n-\ell$.
- **2.** Dans cette question, on pose pour tout n de \mathbb{N} , $I_n = \int_0^1 t^n \sin(\pi t) dt$ et $u_n = \sum_{k=1}^n (-1)^{k-1} \frac{\pi^{2k-1}}{(2k)!}$ (avec la convention $u_0 = 0$).
 - a) Donner la limite et un équivalent de $(I_n)_{n\in\mathbb{N}}$
 - b) Pour tout n de \mathbb{N} , relier I_{n+2} et I_n (on pourra intégrer par parties)
 - c) Pour tout n de \mathbb{N} , on pose : $a_n=(-1)^n\frac{\pi^{2n}}{(2n)!}$ et $v_n=a_nI_{2n}$. Relier v_{n+1} et v_n .
 - d) En déduire que : $\forall\,n\in\mathbb{N},\;v_n=I_0-u_n$
 - e) Établir que pour tout n de \mathbb{N}^* , on a $\left|\frac{a_{n+1}}{a_n}\right|\leqslant \frac{\pi^2}{12}$, et en déduire que $(a_n)_{n\in\mathbb{N}}$ converge vers 0.
 - f) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ que l'on précisera , et donner un équivalent de $u_n-\ell$.