Particle identification

A particle decay

$$M^{2} = m_{1}^{2} + m_{2}^{2} + \frac{2}{c^{4}} (E_{1}E_{2} - p_{1}p_{2}c^{2}\cos\alpha)$$

R

Particle identification

The goal of the **particle identification** (**PID**) is to identify a type of a particle associated with a track using responses from different systems.

LHC experiments Alps Geneva Geneva Lake ATLAS LHCb ALICE CMS LHC Illustration Philippe Mouche LHC Home / http://lhcathome.web.cern.ch/about

LHCb event example

ATLAS event example

Tracking system

Particle identification

R

Tracking system

Hits allows to reconstruct particle tracks and estimate α . **Track pattern recognition** – recognition of particle tracks among set of hits in the detector.

Tracking system

Magnetic field deflects charged particles and allows to estimate particle momentum. Tracking stations are needed to estimate the deflection.

LHCb tracking system

ATLAS tracking system

 $Paul Laycock, \underline{https://twiki.cern.ch/twiki/bin/view/Atlas Public/Event Display Run 2 Collisions$

Particle identification

RICH detector is based on Cherenkov radiation effect:

RICH detector is based on Cherenkov radiation effect:

RICH detector is based on Cherenkov radiation effect:

$$\cos \theta = \frac{1}{n\beta}$$
$$\beta = \frac{v}{c}$$

Momentum of a particle:

$$p = \frac{mc\beta}{\sqrt{1 - \beta^2}}$$

Then

$$p = \frac{mc\beta}{\sqrt{1 - \beta^2}}$$

$$\beta = \frac{p}{\sqrt{p^2 + m^2c^2}}$$

Cherenkov emission angle takes form:

$$\cos \theta = \frac{1}{n\beta} = \frac{\sqrt{p^2 + m^2 c^2}}{np}$$

Reconstructed Cherenkov angle as a function of track momentum:

How it looks in the LHCb RICH detectors:

LHCb / https://inspirehep.net/record/857115/plots

LHCb / https://inspirehep.net/record/857115/plots

Calorimeters

Particle identification

R

The calorimeter system is designed to measure particles energy.

Particles interact with matter of the calorimeter and lose energy. The calorimeter measures how much energy the particles lose before they stop.

The **electromagnetic calorimeter** is responsible for measuring the energy of electrons and photons.

Interacting with matter an electron emits an photon:

 $\vec{x}(\vec{R})$

Interacting with matter an phonon decays into an electron and a positron:

 $\vec{X}(\vec{R})$

The process repeats creating an **electromagnetic shower**:

Particle energy is defined as:

$$E(x) \approx E_0 e^{-\frac{x}{X_0}}$$

Electromagnetic shower grows while the energy of the particles is above the critical value E_C . The shower size X_{max} can be estimated as follow:

$$E_C \approx E_0 e^{-\frac{X_{max}}{X_0}}$$

$$X_{max} \approx X_0 \ln \frac{E_0}{E_C}$$

Electromagnetic shower grows while the energy of the particles is above the critical value E_C . The shower size X_{max} can be estimated as follow:

$$E_C \approx E_0 e^{-\frac{X_{max}}{X_0}}$$

$$X_{max} \approx X_0 \ln \frac{E_0}{E_C}$$

The total number of particles in the shower is estimated as:

$$N \sim \frac{E_0}{E_C}$$

Measuring the number of particles allows to determine the energy of the incoming particle. This number is measured by **Scintillation Counters**.

LHCb electromagnetic calorimeter

Maximilien Brice / http://cds.cern.ch/record/835712

LHCb electromagnetic calorimeter

Estimated from this equation. **Identifies a particle**.

Measured in the tracking system

Particle identification

R

Hadron calorimeter

The **hadron calorimeter** is responsible for measuring the energy of protons, neutrons and other particles containing quarks.

Hadron calorimeter

- The **hadron calorimeter** is similar to the electromagnetic calorimeter.
- But a particle produces a **hadronic shower** due to interactions with the nuclei of matter atoms.

 The shower consists of a large number of different particle types.

Hadron calorimeter

The hadron calorimeter composition:

Matter: creates an hadronic shower

Scintillation Counters: counts number of particles in the shower

LHCb electromagnetic calorimeter

Muon system

Particle identification

R

Muon chambers

- A muon chamber is filled with gas and has a wire inside.
- Voltage is applied between the wire (anode) and the chamber walls (cathode).

Muon chambers

- A muon passes through the gas and ionizes it.
- Due to the electrostatic field inside the chamber, ions go to the cathode, electrons go to the anode. This creates signal in the chamber that detects the muon.

Muon chambers

- A muon system has several layers of muon chambers with layers of metal between them.
- The goal of the metal is to stop muons.
- The larger X_{max} the higher muon energy.

LHCb muon system

Particle identification overview

C. Lippmann - 2003

CMS detector (3) Silicon Tracker Electromagnetic Calorimeter Hadron Superconducting Calorimeter Iron return yoke interspersed Solenoid with muon chambers Muon Electron Charged hadron (e.g. pion)

Neutral hadron (e.g. neutron)

Photon

CMS / https://cds.cern.ch/record/2120661

Machine learning in particle identification

Problem statement

The goal of the **particle identification** (**PID**) is to identify a type of a particle associated with a track using responses from different subdetectors (detector systems).

There are 5 particle types: Electron (e), Proton (p), Kaon (K), Pion (π) , Muon (μ) .

Detector systems:

- Tracking system
- Ring Imaging Cherenkov detector (RICH)
- Electromagnetic calorimeter (ECAL)
- Hadron calorimeter (HCAL)
- Muon Chambers

Machine learning in PID

Particle identification is multiclass problem in machine learning:

ROC curve in PID

Typical ROC AUC values in PID are 0.90 – 0.995 depending on particle type.

ROC AUC dependencies

PID quality depends on different particle parameters such as momentum or transverse momentum.

Signal efficiency dependencies

Signal efficiency dependencies

Pion 1/(Transverse Momentum MeV/c)

Derkach D. et. al., Machine-Learning-based global particle-identification algorithms at the LHCb experiment, ACAT 2017, Seattle, USA

Uniform Classifiers

Consider how to train a boosting over decision trees classifier to provide flat performance on a set of features.

AdaBoost classifier with the following loss function:

$$L_{ada} = \sum_{i=0}^{n} \exp(-\gamma_i s_i)$$

where $\gamma_i \in \{-1,1\}$ is a true label of an event, s_i is score obtained for each event as the sum of predictions of all trees in the series.

Modify the AdaBoost loss function:

$$L_{ada+flat} = L_{flat} + \alpha L_{ada}$$

where

$$L_{flat} = \sum_{b} w_b \int |F_b(s) - F(s)|^2 ds$$

where w_b is the fraction of signal events in a bin b, $F_b(s)$ is the cumulative distribution of the classifier output in the bin, F(s) is the global cumulative distribution of the classifier output.

For the flat classifier efficiency $L_{flat}
ightarrow 0$

Rogozhnikov A. etc., New approaches for boosting to uniformity, Journal of Instrumentation, Volume 10, March 2015, DOI: 10.1088/1748-0221/10/03/T03002

Global signal efficiency is 50%

Rogozhnikov A. etc., New approaches for boosting to uniformity, Journal of Instrumentation, Volume 10, March 2015, DOI: 10.1088/1748-0221/10/03/T03002

Derkach D. et. al., Machine-Learning-based global particle-identification algorithms at the LHCb experiment, ACAT 2017, Seattle, USA

Classifier is trained to identify particle type. It returns score (probability) particle belong to a type.

Adversary is trained to predict particle parameter such as momentum, mass and other. The parameter is predicted using multiclassification problem.

To provide flat output of the classifier minimize concurrently two loss functions:

 $L_{adversary}$

and

 $L = L_{classifier} - \lambda L_{adversary}$

Summary

$$M^{2} = m_{1}^{2} + m_{2}^{2} + \frac{2}{c^{4}}(E_{1}E_{2} - p_{1}p_{2}c^{2}\cos\alpha)$$

Summary

--- Muon

— Electron

—— Charged hadron (e.g. pion)

--- Neutral hadron (e.g. neutron)

---- Photon

CMS / https://cds.cern.ch/record/2120661

Summary

Machine Learning cases:

- Particle tracks pattern recognition among detector hits
- Combining recognized tracks into vertices
- Particle momentum estimation
- Ring image recognition in RICH subdetectors
- Particle energy estimation and neutral particle identification based on calorimeter responses
- Global particle identification based on responses of different subdetectors

References

- Marian Stahl, Machine learning and parallelism in the reconstruction of LHCb and its upgrade, Journal of Physics: Conf. Series 898 (2017) 042042, DOI:10.1088/1742-6596/898/4/042042
- Calvo M. et al., A tool for γ/π0 separation at high energies, LHCb-PUB-2015-016, https://cds.cern.ch/record/2042173
- Checalina V. et al., Machine Learning Photons Separation in the LHCb Calorimeter, ACAT2017, https://indico.cern.ch/event/567550/contributions/2638699/
- LHCb collaboration, Identification of beauty and charm quark jets at LHCb, JINST 10 (2015) P06013, DOI:10.1088/1748-0221/10/06/P06013
- Gligorov, Vladimir V et al., The HLT inclusive B triggers, LHCb-PUB-2011-016, https://cds.cern.ch/record/1384380
- Borisyak M. et. al., Towards automation of data quality system for CERN CMS experiment, DOI:10.1088/1742-6596/898/9/092041
- De Cian, Michel et al., Fast neural-net based fake track rejection in the LHCb reconstruction, LHCb-PUB-2017-011, https://cds.cern.ch/record/2255039
- Farrell S. et al., The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking, EPJ Web Conf. Volume 150, 2017, DOI: https://doi.org/10.1051/epjconf/201715000003