Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной работе

по дисциплине "Механика жидкости и газа"

Выполнил студент Группы 5030102/90101

Можаев А.А.

Руководитель:

Синицина Д.Э.

Содержание

1.	Постановка задачи	Ę
2.	Реализация	Ę
3.	Результаты	6
	3.1. Векторное поле скорости	(
	3.2. Начальный участок канала	8
	3.3. Поле нормированного давления	Ć
	3.4. Коэффициент трения	1(
4.	Выволы	11

Список иллюстраций

1	Поле скалярной скорости, зависящей от х $\dots \dots \dots \dots \dots \dots \dots$
2	Поле скалярной скорости, зависящей от у
3	Поле векторной скорости
4	Характеристики профиля скорости от х
5	Длина начального участка при $\mathrm{Re}=135{,}235{,}435$
6	Поле нормированного давления
7	Коэффициент трения

Список таблиц

1	Таблица начальных участков в сопоставлении с аналитическими	6
2	Таблица коэффициентов сопротивления в сопоставлении с аналитическими	9
3	Таблина коэффициентов трения в сопоставлении с аналитическими	10

1. Постановка задачи

При анализе результатов расчетов следует (для всех рассмотренных значений Re):

- Проанализировать векторные поля скорости и скалярные распределения компонент скорости, проиллюстрировать изменение профиля скорости от входного к характерному для участка развитого течения.
- Оценить длину начального участка канала (в качестве границы начального участка следует выбрать сечение, в котором значение максимальной скорости составляет 98% от максимальной скорости развитого течения $V_{max} = 1.5V$); провести сопоставление полученных результатов по длине начального участка с аналитическим решением $\frac{L}{H} = 0.04 \cdot Re$; представить результаты в виде таблицы и графически.
- Проанализировать поле нормированного давления; найти коэффициент сопротивления λ для участка с установившимся параболическим профилем скорости при помощи формулы

$$\Delta p = \lambda \frac{\Delta L \rho v^2}{2H} \tag{1}$$

где Δp — перепад давления на участке канала длиной ΔL , $\rho = {\rm const}$ — плотность жидкости, V — средняя по сечению скорость, за масштаб давления в рассматриваемой постановке задачи принимается величина ρV^2 , где V — модуль скорости на входе. Определить значение λ для участка развитого течения из угла наклона линейного участка зависимости. Провести сопоставление с теоретической оценкой для развитого участка $\lambda = 24/{\rm Re}$; представить результаты в виде таблицы и графически.

• Построить график зависимости коэффициента трения на стенке канала, C_f , от координаты х. Одномерное распределение коэффициента трения следует экспортировать в формате Tecplot, вызвав визуализатор распределений физических величин по границам, четыре зоны в получающемся при экспорте данных plt-файле соответствуют четырем границам расчетной области, коэффициент трения экспортируется в Tecplot под названием «Skin Friction». Проанализировать распределение коэффициента трения и убедиться в том, что для участка развитого течения выполняется соотношение = $2C_f$.

2. Реализация

Лабораторная работа выполнена с помощью встроенных средств Tecplot, Flos.

3. Результаты

3.1. Векторное поле скорости

Рис. 1. Поле скалярной скорости, зависящей от х

Рис. 2. Поле скалярной скорости, зависящей от у

Рис. 3. Поле векторной скорости

Рис. 4. Характеристики профиля скорости от х

3.2. Начальный участок канала

Рис. 5. Длина начального участка при $\mathrm{Re}=135{,}235{,}435$

Re	$L_{\rm\scriptscriptstyle Haq}$	$L_{ m aha ext{ iny }}$	погр(%)
135	5.731	5.4	6.13
235	9.756	9.4	3.79
435	17.9	17.4	2.87

Таблица 1. Таблица начальных участков в сопоставлении с аналитическими

3.3. Поле нормированного давления

Рис. 6. Поле нормированного давления

Re	λ	$\lambda_{ m ahan}$	погр(%)
135	0.17399	0.17778	2.131
235	0.09666	0.10213	5.356
435	0.06053	0.05517	8.855

Таблица 2. Таблица коэффициентов сопротивления в сопоставлении с аналитическими

3.4. Коэффициент трения

Рис. 7. Коэффициент трения

Re	C_f	C_f _анал	погр(%)
135	0.08866	0.08889	0.25829
235	0.05192	0.05107	1.66438
435	0.02993	0.02759	8.48133

Таблица 3. Таблица коэффициентов трения в сопоставлении с аналитическими

4. Выводы

В данной работе было рассмотрено стационарное ламинарное течение несжимаемой жидкости в двумерном канале при разных числах Рейнольдса.

Исходя из графиков и таблиц разных характеристик можно сделать выводы, что

- 1) В верхней и нижней стенах жидкость не течет, а в середине из входа жидкость ускоряется(1). После первой четверти канала она достигает максимальную скорость и с этого момента времени жидкость остается устойчивой и стабильной. По вертикали(2), кроме углов входа, жидкость не течёт по "у". Ту же картину наблюдаем, рассмотрев график поля векторной скорости (3).
- 2) Выше было сказано, что примерно в четверти дистанции жидкость остается устойчивой и стабильной. Поэтому красная кривая и зеленая кривая не сильно отличены друг от друга(4). Еще можно наблюдать так называемую «м-образность» профилю скорости, при которой скорость потока у стенок больше скорости потока в середине канала. Это объясняется стремлением жидкости сохранить объемный расход в канале (площадь под кривой при х=0.0940 равна площади под кривой при х=0.0122).
- 3) Чем больше число Рейнольдса, тем больше длина начального участка канала.
- 4) Из таблицы (2) видно, что число Рейнольдса влияет на трение. Чем больше число Рейнольдса, тем меньше сопротивление.
- 5) Из графика видно, что в начале коэффициент трения гораздо больше. Это объясняется тензором градиента скорости, как меняется направление скорости и соответственно возникают касательные напряжения, так и показано в (3). Еще видно, что число Рейнольдса влияет на трение. Чем больше число Рейнольдса, тем меньше трение. Если сравниваем таблицу (2) и таблицу (3), то убедимся в том, что для участка развитого течения выполняется соотношение $\lambda = 2C_f$.

Проанализировав, сделаем вывод о числе Рейнольдса: чем оно больше, тем больше погрешность. Это связано с турбулизацией течения.