

Cloud Computing Class 1: Introduction

Welcome to Cloud Computing 2022!

- This is a module for:
 - ► Cloud Computing Concepts (BUCI028H6)
 - ► Cloud Computing (BUCI029H7)
- Are you up for the challenge?
 - ▶ "Look at a day when you are supremely satisfied at the end. It's not a day when you lounge around doing nothing; it's a day you've had everything to do and you've done it." [Margaret Thatcher]

Plan for today

Lecture session part 1:

- ▶ Module administration
 - Is this module for me?
 - Assessment plan
 - Syllabus

Lecture session part 2:

- ▶ What is Cloud Computing?
- ▶ What are the advantages?
- What are the cloud deployment models?
- ▶ What is virtualization?

Lab session:

- Connect to the Google Cloud Platform
- ▶ Run Linux commands
- ► Install Apache2 server and create a simple cloud service

Module administration

Are you registered?

- Cloud computing is not open for audit
 - ▶ If you are not registered please exit Teams now!

Class starts at 6pm sharp!

◆Please join 5 minutes earlier

Let's have an interactive class!

- Please turn on your camera, microphone and interrupt me any time you like
- Participate in class, making mistakes is good!
- ●If you don't get it, ask!
- ❷ Be gentle with MS Teams...

Cloud computing 2022

◆To cover:

- ▶ State-of-the-art systems for Cloud application development and deployment
- ▶ Programming Cloud services using NodeJS and Python
- ▶ Di
- ▶ The module assumes that you have an **excellent** knowledge of programming (Python or Java etc.)
 - Or you are eager to learn!

What is this module about?

Is about:

- ▶ The theory of distributed systems, focusing on Cloud Computing
- ▶ The use of **distributed computing technologies** to develop distributed Cloud applications using NodeJS and Python
- This is a module for Computer Scientists:
 - ▶ Software developers, computer and data scientist aiming to the direction of software solutions for scalable application development and big data systems!

About Stelios

- PhD on scheduling in distributed systems
 - ▶ How large-scale systems can run faster and efficient
 - ▶ Heavily involved with data analytics and algorithms
- Worked as a researcher and developer to solve modern industrybased problems to improve systems performance
 - ▶ I developed projects for University of Toronto, Huawei, Autodesk, IBM and other companies and various startups in US, Canada, UK and EU
 - Looking to bring my experiences in class

How to contact?

- MS Teams (preferred way)
 - ▶ Feel free to send any time
- My office:
 - ▶ Room 151A (unlikely to find me there...)
- - ▶ s.sotiriadis@bbk.ac.uk

Cloud Computing on Social Media and Git

- YouTube channel:
 - ▶ CloudTV
- **⊘**LinkedIn channel:
 - ► cloud@Birkbeck
- GitHub repository
 - ► Link to cc repo

Classes will be online

- Classes will be delivered on MS Teams and will be recorded
 - ► Recordings will be available on Moodle
- To run the labs:
 - ▶ You will need patience!
 - ► Make sure you follow the instructions
- Labs are highly complex and require dedication

Material and timetable

- Material is on Moodle
 - ▶ Update of content: Material will be available every week 15' before the start of a class
- Times and place are unlikely to change (if so, I will let you know)
- Virtual Office hours:
 - ▶ Friday 4-6pm, send in Teams or contact to plan a meeting another day
- The teaching assistants are:
 - Spyros Chouliaras
 - ▶ Simona Stavarache
 - Jitesh Vora
 - Feel free to contact them for help in Teams (not for debugging..)
- Support sessions will be organised soon

Material is updated yearly

- I always try to improve the material
 - ▶ Material will be updated, make sure you download the updated slides
 - Check latest version on Moodle (usually slides will be online 5:30 pm)
 - ▶ Classes are linked, if you miss a class:
 - Make sure you watch the recordings and complete the labs
 - ▶ Lecture slides require extra study...
 - ▶ Labs are huge! You need to commit!

Prerequisites

- Excellent knowledge of Python programming
 - ▶ BSc: SP2; MSc: POP1 etc.
- Willingness to work with Unix environments
- No prior knowledge of parallel and distributed systems is required, only enthusiasm!
- No need to know NodeJS, but willingness to learn fast
- But you need to have an excellent background in programming (Python)
 - ▶ Object oriented programming, Functional programming, exception handling etc.

This is a heavily involved programming class!

The module is not for you if...

- You are not genuinely interested in the topic of DISTRIBUTED SYSTEMS
- You cannot put in the time
 - ▶ 1 hour in class requires 2-5 hours study outside the class
- You are not ready to do a lot of programming work
 - ▶ Coding, configuration and use of command line interfaces
- ◆This module is designed for the BSc Computing/MSc Advanced Computing Technologies
- We will learn hands on Cloud application and service development and deployment using the NodeJS framework
- Coursework is challenging!

Assessment

- ❷Programming coursework (30%)
 - ▶ BSc: One programming coursework with a report.
 - ▶ MSc: One programming coursework with a report.
 - ▶ Coursework will be published in Week 1
 - Time to complete the coursework: 14 weeks
 - You can start working on it after week 4
 - A new coursework every year!
- Written examination (70%)
 - ▶ Based on lecture and lab sessions
 - Exam will include writing coding tasks
 - Plus: Theory of distributed systems and understanding of algorithms

How the class is planned

⊘Lectures

- ▶ Theory
 - Usually half of the session time
- Each class starts with a short quiz on last class material
 - Time to complete: 5 minutes (18.00-18.05), so join on time!

⊘Labs

- ▶ In-class exercises aligned with the coursework
- ▶ Each student will have access to a virtual machine
 - This year we will use Google Cloud and MS Azure

Tutorials

- ▶ Demonstrations on how to access, use and deploy systems
- ▶ On-screen demos, will be recorded for further study

Resources and virtual environments

- ◆Each student has access to the Google Cloud Platform (GCP) and Microsoft Azure.
 - ▶ Each student will redeem:
 - \$50 coupon (GCP)
 - \$100 in MS Azure
 - ▶ For GCP: You will need to have a Gmail account
 - ▶ For MS Azure: You will need to use your University account
 - No credit card or any other information is required
 - Tutorial will be released soon...
 - ▶ We will learn how to use and deploy software in GCP and MS Azure

Syllabus

- Class 1 − Week1
 - ☐ Cloud computing Introduction
 ☐
 - ▲ Setting up a work environment + basic Linux commands
- Class 2 − Week2
 - ☐ Cloud services
 ☐
 - ▲ Developing cloud applications with NodeJS and MongoDB
- Class 3 Week3
 - ➡ Microservices, REST and introduction to Distributed systems
 - ▲ Developing RESTful APIs with NodeJS, MongoDB and oAuth
- Class 4 Week4
 - □ Distributed systems theory
 - ▲ Distributed applications with Python
- Class 5 Week5
 - 晃 Advanced distributed systems algorithms
 - ▲ Introduction to containerised systems with Docker

- Bonus class Week6 (reading week)
 - ☐ Let's decide together!
 - ▲ Blockchain, or MongoDB workshop or Graph DBs (Neo4J), Kubernetes or ..?
 - * Material of bonus class will not be assessed!
- Class 6 Week7
 - 🐺 Transactional and Messaging systems
 - ▲ Using Kafka/ZeroMQ for developing messaging applications
- Class 7 Week8
 - ₹ Practical DevOps
 - 👗 Infrastructure as a code with Terraform
- Class 8 Week9
 - ➡ Distributed databases (NoSQL)
 - ▲ Developing applications using Apache Cassandra NoSQL system
- Class 9 Week10
 - 💻 Introduction to Big Data using Hadoop MapReduce
 - ▲ Deploying Hadoop MapReduce and running big data applications
- Class 10 Week11
 - ☐ Big Data using Apache Spark
 - ▲ Deploying and running Apache Spark analytics

On course completion

- Understand Cloud computing architecture and models
 - Cloud scalability and elasticity
- Use Linux systems for application deployment
- Develop and deploy Cloud applications and secure RESTFul web services

- •Understand complex distributed systems algorithms and systems
- Understand containerized environments
 - ▶ Use of Docker for deployment
- ◆Understand how Big Data systems work (Hadoop Map Reduce and Apache Spark)

Questions?

Thank you!

Lecture 1: Cloud, a gentle intro

We make sacred pact...

I promise teach karate to you, you promise learn.

I say, you do, no questions...

*not in our case!

[Mr. Miyagi]

Material to cover today

- Cloud Computing lecture session
 - What is cloud computing?
 - What is a virtual machine?
- **②**Lab session:
 - ► Connect to virtual machine in Google Cloud Platform (GCP)
 - ▶ Using the Linux command line interface
 - Basic commands
 - Deploy a web server
 - Run a simple application
 - Develop a service

Some facts!

- How much data is generated every minute?
 - YouTube users search 5M videos per day
 - Netflix users spent a combined 164 million hours per day watching content
 - ▶ Amazon ships 306 items per second
 - ▶ In the fourth quarter of 2020, Uber's ridership worldwide reached 1.4 billion trip, it was 1.9 in 2019...
 - ▶ Instagram users post 49.380 photos
 - ► Google conducts 5.9M searches per day, it was 3.9 two years ago...
 - Everyday, we create roughly 2.5 quintillion bytes of data.

640K ought to be enough for anybody! (B. Gates – <u>a rumor</u>)

Essential questions?

- •Where is such humongous data stored?
- How is data managed?
- ◆Do we have enough resources to accommodate data, if data size is growing every day?
 - ▶ That is called data scaling

- How fast a software can analyze such data?
 - ► Computational intensive applications:
 - Need a lot of CPU and memory
 - ▶ Data intensive applications
 - Big data software solutions
 - Need CPU, memory and access to huge storage

Cloud computing aims to answer such questions!

Where data is stored?

- ●In a Cloud datacenter...
 - ▶ A building, dedicated space within a building, or a group of buildings used to house computer systems and associated components, such as telecommunications and storage systems. [Source]

Apple (Maiden, N.C.)

NSA (Utah)

Switch SUPERNAP Campus (Las Vegas)
Size: 7 football fields...

SUPERNAP at a glance

- SUPERNAP
 - ▶ A big building with a lot of electricity and air conditioning.

- ❷It uses renewable power sources, the Nevada desert is an ideal place for solar panels
- ●From the street, though, all you see is a high concrete wall to innocent bystanders, it could be a prison or military base back there
- ●SUPERNAP clients include eBay, AWS, Marvel, Cisco, PS4, MGM, Verizon, Salesforce, HP, Deutsche Bank...
 - ► [Source]

- ✓ Is it true or false?
 - a. A cloud data service is located somewhere away from your company's physical premises and lets you access your data through the internet.
 - In a cloud datacentre, the actual hardware is managed and run by a client that hires system administrators to support IT operations.
 - c. Netflix is an example of a computational expensive application

Quiz 1!

True of False?

- a. A cloud data service is located somewhere away from your company's physical premises and lets you access your data through the internet.
- b. In a cloud datacentre, the actual hardware is managed and run by a client that hires system administrators to support IT operations.
- c. Netflix is an example of a computational expensive application

That's true ©

That's false, the hardware is managed by the cloud provider)

According to Netflix, you use about **1GB of data per hour for streaming a TV** show or movie in standard definition and up to 3GB of data per hour when streaming HD video, so it could be considered as a data intensive application.

The Cloud need...

- ◆Companies need computational power (CPU, Memory, Disks, Networks, Storage systems) to run their workloads.
 - ▶ What is a workload?
 - A Cloud workload is the amount of computational work required from an application or service that can be run on a Cloud server.
 - ▶ For example, serving up a Web site or watching a movie in Netflix is a Cloud workload.
 - Storing data in your iCloud is also a workload

What do we need as Cloud users?

- Remote access to a reliable infrastructure
- Cheap hardware in a pay per use model
 - No IT costs
- Scalable (if we need more resources we just ask)
- Offsite data storage
 - ▶ Not in our computer...
- Security and reliability
 - ▶ Cloud providers promise 99.9% service uptime
 - ▶ This is called Service Level Agreement (SLA)
 - An SLA outlines what a Cloud provider intends to provide, and the client expects to receive

Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user.

Wikipedia

Cloud computing includes a variety of technologies including virtualization, storage services, networks and other.

What is Cloud Computing?

- Example of New York stock exchange market
 - www.nyse.com
- NYSE is the largest equities-based exchange in the world, according to the total market capitalization of its listed securities
 - ▶ Data is generated on huge volumes
- ◆Core Trading Session: 9:30 a.m. TO 4:00 p.m. ET
 - ▶ NYSE calendar

NYSE system

- On-line real time stock market data system resource utilization
 - ► Example of NYSE workload

- 9:30 AM 4 PM, Monday-Friday
- Why to pay for resources and capacity for evening-early morning and weekends?
- Why to run the servers if there aren't any workloads?

all other days and times

Use of a Cloud provider!

- Ouse of a Cloud provider to deploy NYSE system such as Google Cloud, Amazon EC2 etc.
- ◆Provision new servers every morning before 9:30 and deprovision after 4:30pm!
- Payments of \$0.10* per server per hour
- The Cloud provider will manage and administer the infrastructure
 - NYSE will access it remotely
 - ► 24/7 support with high availability
- Contract between service provider and client
 - Service level agreement (SLA)
 - ▶ Service will be up and running 99.99% of the time

What is provision?

- Provision of resources:
 - ▶ Create a virtualized environment with resources
 - Resources: CPU, memory, hard disk, virtual networks etc.
 - ▶ Cloud environments are virtualized, this means it is easy to scale up in size
 - Scale up means:
 - From 2 cores, 4GB RAM, 100GB disk to move to
 - 4 cores, 64GB RAM, 250GB disk

What is deprovision?

- Deprovision of resources:
 - ▶ Freeing up resources
 - ▶ In some case refer to changing the configuration of a virtualized environment
 - ▶ Deprovision also refers: turning off a virtual server
 - More cheap!

SLA vs SLO

- ◆A service level agreement, or SLA, is a formal set of service commitments made to a customer by a service provider.
 - ► Google Cloud SLA:
 - Cloud Functions uptime >= 99.95%
- A service level objective, or SLO, is a specific target for a service metric that is included in an SLA.
 - ► Google Cloud SLO:
 - "Service responses shall be faster than 400 milliseconds (ms) for 95% of all valid requests measured over 14 days."

SLA vs SLO vs SLI

A service level indicator:

- ▶ An SLI should be measured as a percentage such that 0% constitutes horrible (non-existent) performance and 100% represents a perfect performance.
- ▶ SLA specifies that your systems will be available 99.95% of the time, your SLO is likely 99.95% uptime and your SLI is the actual measurement of your uptime. Maybe it's 99.96%.

Quiz 2!

It is an advantage or a disadvantage?

What do you think?:

Security

Reliability

Zero downtime

Bandwidth

Cost savings

Trust of a Vendor

Fully Control

Quiz 2 Solutions...

Cloud advantage or disadvantage?

- ▶ Security → Advantage / Disadvantage (always online)
- ▶ Reliability → Advantage
- → Zero downtime → Advantage (almost zero)
- ▶ Bandwidth → Disadvantage (requires high bandwidth)
- Cost savings → Advantage (definitely cheaper)
- ▶ Trust a Vendor → Advantage (optimized services) / Disadvantage (vendor lock-in)
- Fully Control → Advantage (you don't have to worry) / Disadvantage (no control)

Zero downtime deployment is a deployment method where your website or application is never down or in an unstable state during the deployment process.

Cloud uses Hardware and Software

- What is a stack?
 - ▶ It's a data structure,
 - ▶ But also a way to demonstrate how hardware (HD) and software (SW) are stacked on top of each other
- Example?
 - My desktop HW and SW stack looks like this:

Virtualization

- Act of creating a virtual (rather than actual) version of something
 - ► Something: HW + SW
- ✔It includes virtual computer hardware platforms, storage devices, and computer network resources. [Wikipedia]

Virtual machine (VM)

- Preffered definition:
 - ▶ A virtual machine is a computer file, typically called an image, that behaves like an actual computer
- Each virtual machine provides its own virtual hardware, including CPU, memory, hard drive, network interface, and other devices.
- Multiple virtual machines can run simultaneously on the same physical computer.
- ◆The virtual machine is sandboxed from the rest of the system.
 - ▶ A VM provides isolation from the rest of the environment

[Source: MS Azure]

Characteristics of virtualization

- Multi tenancy in one bare metal server
 - ▶ Bare metal?
 - A 'Single-tenant physical server'
 - Cloud administrators creates several virtual machines (multi-tenancy).
 - ▶ Run multiple VMs of same or different operating systems in same hardware
- **⊘**Isolation:
 - ► Each VMs is isolated from each other
 - This means that users have access to only their own data and applications

Let us summarize what we just learned

Cloud Computing:

- ▶ A fancy name for a very cool technology
- ▶ Pay as you go for online services (HW and SW)
- ▶ On demand hardware resources over the network

Virtualization

- ▶ Process of creating a virtual version of a computer
- Virtual machines (VMs) are "seating" on top of a bare metal
 - Easy to manage!
 - Hard to alter (e.g. scale up and down)

Quiz 3!

- ▼ True or False?
- Cloud computing is the delivery of different software services through the Internet. These resources include tools and applications like data storage, servers, databases, networking, and software.
- Virtualization is a process that allows for more efficient utilization of physical computer hardware and is the foundation of cloud computing.
- Virtualisation is mainly dependent on processing power and memory. So you'll need to factor in both much more memory and processing power into your Virtualisation strategy.

Quiz 3 Solutions...

- True or False?
- Cloud computing is the delivery of different software services through the Internet. These resources include tools and applications like data storage, servers, databases, networking, and software.
 - False, not only software
- Virtualization is a process that allows for more efficient utilization of physical computer hardware and is the foundation of cloud computing.
 - True
- Virtualisation is mainly dependent on processing power and memory. So you'll need to factor in both much more memory and processing power into your Virtualisation strategy.
 - ▶ True

Cloud Computing systems

- Public Cloud
 - ▶ Available over the Internet to access, pay and deploy.
 - ▶ Amazon EC2, Google Cloud etc.
- Private Cloud
 - ▶ Under a secure network, usually government or organisation systems
- Hybrid Cloud
 - ▶ Mix of private and private services

What is Cloud deployment?

- Cloud deployment refers to the enablement of:
 - ► SaaS (software as a service)
 - ▶ PaaS (platform as a service)
 - ▶ laaS (infrastructure as a service)
- Models are delivered to end users over the Internet
- ❷A key technical skill for a modern computer engineer, application developer and data engineer
 - Understanding the complexity of a deployment will give you intuitions to develop a better software

Types of Cloud deployment models

- SaaS Software as a Service
 - ▶ Software delivered over the Internet
- ◆PaaS Platform as a Service
 - ▶ Tools delivered over the Internet
- ❷laaS Infrastructure as a Service
 - ▶ Hardware resources delivered over the Internet

SaaS - Software as a Service

- Software delivery over the Internet, usually as a Web service
- SaaS applications are also known as Web-based software, on-demand software and hosted software.
- SaaS apps are typically accessed by users using a thin client, e.g. via a web browser.
- SaaS providers generally price applications using a subscription fee, most commonly a monthly fee or an annual fee [Source]

Useful terminology

- A thin client is software that is primarily designed to communicate with a server
 - ▶ Its features are produced by servers such as a cloud platform
 - Web applications e.g. www.google.com
- A thick client is software that implements its own features
 - ▶ E.g. including a local data storage
 - Microsoft Outlook etc.

SaaS – Software as a Service

- Example of SaaS products:
 - ▶ Google Docs
 - ▶ Facebook
 - ▶ Email
 - ▶ Dropbox
 - ▶ Slack
 - ► Microsoft Office 365
 - **)** ...

PaaS - Platform as a Service

- A platform allows customers to develop, run, and manage applications without the complexity of building and maintaining the infrastructure
- Its typically associated with developing and launching an app
- Example of SaaS products:
 - ► AWS EC2
 - Windows Azure
 - ▶ Force.com
 - ► Google App Engine
 - **.**..

laaS – Infrastructure as a Service

- ◆Delivers fundamental compute, network, and storage resources to consumers on-demand, over the internet, and on a pay-as-you-go basis
- ❷laaS delivers virtualized hardware over the Internet
- Typically laaS involves the use of a cloud orchestration technology to manage and create virtualized environments such as Virtual Machines or containers.

laaS – Infrastructure as a Service

- Google Compute Engine
- Amazon AWS
- Microsoft Azure
- Rackspace Open Cloud
- HP Enterprise Converged Infrastructure
- **⊘IBM SmartCloud Enterprise**

• • •

Quiz 4!

An online accounting tool (e.g. Xero) is an example of SaaS

Netflix is an example of an application

Gmail is an example of PaaS

A VM is an example of laaS

Salesforce is an example of SaaS

Quiz 4 Solutions...

True or False?

- ▶ An online accounting tool (e.g. Xero) is an example of SaaS TRUE
- ► Netflix is an example of an application TRUE
- Gmail is an example of PaaS FALSE (it's a SaaS)
- ► A VM is an example of laaS TRUE
- Salesforce is an example of SaaS (it's PaaS and PaaS)

Let us summarize what we just learned

⊗SaaS

Iaas + PaaS + Application and Data

⊗PaaS

laaS + Runtime environment

⊗laaS

Virtualized Hardware

Thank you!

- •Quote:
 - "Patience you must have, my young padawan"
 - ~ Yoda

- ▼Time for break…
- Lab sessions starts in 15!!

Lab 1: Connecting to a VM

Lab preparations

- Connecting to the GCP
 - ▶ Follow the video tutorials:
 - How to connect to the GCP platform and redeem coupon
 - Setup Visual Studio Code
- Connecting to the VMs using an editor
 - ▶ Terminal based editors are hard to use, and not recommended when coding...
 - ▶ The use of a good editor is a key to a smooth development-deployment
 - We will use Visual Studio Code

To do

- 1. Watch the Video:
 - ► Connect to GCP and redeem your coupon
- 2. Watch the Video:
 - ► Setup VSC
- 3. Follow the tutorials
 - ► Lab 1: Linux Intro
 - ► Lab 2: Linux user management
 - ► Lab 3: Homework

Labs are in CC GitHub repo

If you don't complete the first class labs you will NOT BE ABLE to complete most of the remaining lab sessions!

End of Class 1

◆Take home:

- ▶ What is Cloud? What is Virtualization? What is a VM?
- ▶ What are the Cloud deployment models, and what are their differences?
- ▶ Connect to the VM and run commands
- ▶ Play around with the data generator and collector homework