COM2004/3004

Data Driven Computing

Non-parametric classifiers

Dr. Po Yang

The University of Sheffield po.yang@sheffield.ac.uk

Outline

Recap

Non-parametric Classifiers

Nearest Neighbour Classifier

k-Nearest Neighbour Classifier

Recap

Recap

- Minimising risk
- Linear Classifier
- Analysis of the Gaussian Bayes Classifier
- Parameterising a linear classifier

Non-parametric Classifiers

Non-parametric classifiers

In this lecture we will,

• Explain the terms parametric classifier and non-parametric classifier.

Non-parametric classifiers

In this lecture we will,

- Explain the terms parametric classifier and non-parametric classifier.
- Compare the strengths and weaknesses of these two approaches.

Parametric Classifiers

• The classifiers we have seen so far have been parametric classifiers.

- The classifiers we have seen so far have been parametric classifiers.
- This means that they are governed by a fixed number of learnable parameters, e.g.

- The classifiers we have seen so far have been parametric classifiers.
- This means that they are governed by a fixed number of learnable parameters, e.g.
 - The mean and variance of a normal distribution

- The classifiers we have seen so far have been parametric classifiers.
- This means that they are governed by a fixed number of learnable parameters, e.g.
 - The mean and variance of a normal distribution
 - The weights of a linear classifier

- The classifiers we have seen so far have been parametric classifiers.
- This means that they are governed by a fixed number of learnable parameters, e.g.
 - The mean and variance of a normal distribution
 - The weights of a linear classifier
- So what do we mean by a non-parametric classifier?

Non-Parametric Classifiers

• Non-parametric classifiers use the data directly at classification time

- Non-parametric classifiers use the data directly at classification time
- No explicit model of the data

- Non-parametric classifiers use the data directly at classification time
- No explicit model of the data
- i.e., so they're not governed by parameters

- Non-parametric classifiers use the data directly at classification time
- No explicit model of the data
- i.e., so they're not governed by parameters
- No explicit learning stage

• parametric classifiers

- parametric classifiers
 - Everything we've seen so far

- parametric classifiers
 - Everything we've seen so far
 - Simple underlying model of the classes is assumed (e.g Gaussian)

- parametric classifiers
 - Everything we've seen so far
 - Simple underlying model of the classes is assumed (e.g Gaussian)
 - Parameters of the model learnt from the training data

- parametric classifiers
 - Everything we've seen so far
 - Simple underlying model of the classes is assumed (e.g Gaussian)
 - Parameters of the model learnt from the training data
 - $\bullet\,$ Number of parameters fixed and typically << amount of training data

- Everything we've seen so far
- Simple underlying model of the classes is assumed (e.g Gaussian)
- Parameters of the model learnt from the training data
- Number of parameters fixed and typically << amount of training data
- Once parameters are known the training data can be discarded.

- parametric classifiers
 - Everything we've seen so far
 - Simple underlying model of the classes is assumed (e.g Gaussian)
 - Parameters of the model learnt from the training data
 - Number of parameters fixed and typically << amount of training data
 - Once parameters are known the training data can be discarded.
- non-parametric classifiers

- parametric classifiers
 - Everything we've seen so far
 - Simple underlying model of the classes is assumed (e.g Gaussian)
 - Parameters of the model learnt from the training data
 - Number of parameters fixed and typically << amount of training data
 - Once parameters are known the training data can be discarded.
- non-parametric classifiers
 - No real model of the classes

• parametric classifiers

- Everything we've seen so far
- Simple underlying model of the classes is assumed (e.g Gaussian)
- Parameters of the model learnt from the training data
- Number of parameters fixed and typically << amount of training data
- Once parameters are known the training data can be discarded.

non-parametric classifiers

- No real model of the classes
- Data not assumed to belong to any particular distribution

• parametric classifiers

- Everything we've seen so far
- Simple underlying model of the classes is assumed (e.g Gaussian)
- Parameters of the model learnt from the training data
- Number of parameters fixed and typically << amount of training data
- Once parameters are known the training data can be discarded.

non-parametric classifiers

- No real model of the classes
- Data not assumed to belong to any particular distribution
- More flexible, but often expensive and often requiring a lot of data to learn things that were assumed by parametric approaches

parametric classifiers

- Everything we've seen so far
- Simple underlying model of the classes is assumed (e.g Gaussian)
- Parameters of the model learnt from the training data
- Number of parameters fixed and typically << amount of training data
- Once parameters are known the training data can be discarded.

non-parametric classifiers

- No real model of the classes
- Data not assumed to belong to any particular distribution
- More flexible, but often expensive and often requiring a lot of data to learn things that were assumed by parametric approaches
- Poor choice when data is known to come from simple distributions!

Overview i

Examples of non-parametric approaches include,

- Nearest Neighbour
- Decision Trees
 - Classification and Regression Tree (CART) model
- Support Vector Machines

Figure: k-nearest neighbour

Figure: Decision tree

Figure: SV machine

Overview ii

We will be focusing on,

- Nearest Neighbour
- k-Nearest Neighbour (k-NN)

These approaches will operate by comparing a sample against previously seen examples.

Nearest Neighbour Classifier

Nearest neighbour classification

We will be covering,

• What is a nearest neighbour classifier

Figure: Nearest neighbour classifier

Nearest neighbour classification

We will be covering,

- What is a nearest neighbour classifier
- Some common applications

Figure: Nearest neighbour classifier

Nearest neighbour classification

We will be covering,

- What is a nearest neighbour classifier
- Some common applications
- Analysis of the decision boundary

Figure: Nearest neighbour classifier

Nearest Neighbour Classification

Nearest neighbour rule

• label new sample by copying the class of the nearest sample in a labeled database (i.e., training data set)

Nearest Neighbour Classification

Nearest neighbour rule

- label new sample by copying the class of the nearest sample in a labeled database (i.e., training data set)
 - no prior assumptions about the distributions of instances in the database

Nearest Neighbour Classification

Nearest neighbour rule

- label new sample by copying the class of the nearest sample in a labeled database (i.e., training data set)
 - no prior assumptions about the distributions of instances in the database
- advantage: simple and high performance

Nearest neighbour rule

- label new sample by copying the class of the nearest sample in a labeled database (i.e., training data set)
 - no prior assumptions about the distributions of instances in the database
- advantage: simple and high performance
 - often exceeds accuracy of more complicated classification methods

Nearest neighbour rule

- label new sample by copying the class of the nearest sample in a labeled database (i.e., training data set)
 - no prior assumptions about the distributions of instances in the database
- advantage: simple and high performance
 - often exceeds accuracy of more complicated classification methods
- problem: computationally intensive

Nearest neighbour rule

- label new sample by copying the class of the nearest sample in a labeled database (i.e., training data set)
 - no prior assumptions about the distributions of instances in the database
- advantage: simple and high performance
 - often exceeds accuracy of more complicated classification methods
- problem: computationally intensive
 - efficient nearest neighbour classification is a non-trivial problem when the database is very large

```
Input
      \mathbf{v} – sampled to classify.
      \mathbf{x}_1, ..., \mathbf{x}_N – training data,
      \omega_1,...,\omega_N – labels
      dist() - a distance function
Algorithm
      set minimum distance, d_{min}, to infinity
      for i = 1 to N
             compute d = dist(\mathbf{y}, \mathbf{x}_i)
             if d < d_{min}
                   output label = \omega_i
                   d_{min} = d
```

return output label

Figure: Nearest neighbour classifier

(from 'http://cs-people.bu.edu/athitsos/nearest-neighbors/')

Applications

- recognition problems
 - face recognition, fingerprints verification, speaker identification, optical characters recognition
- data mining
 - plagiarism detection, synonym detection
- recommendation systems
 - music, film, shopping recommendations
- information retrieval
 - spelling correction, concept matching, search for DNA sequences, related webpage search

Issues

• definition of similarity

- definition of similarity
 - similarity between two faces?

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure
 - Euclidean distance?

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure
 - Euclidean distance?
 - Manhattan distance?

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure
 - Euclidean distance?
 - Manhattan distance?
 - Cosine distance?

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure
 - Euclidean distance?
 - Manhattan distance?
 - Cosine distance?
- efficient classification

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure
 - Euclidean distance?
 - Manhattan distance?
 - Cosine distance?
- efficient classification
 - very large database

- definition of similarity
 - similarity between two faces?
 - distance between multiple webpages?
- choice of similarity measure
 - Euclidean distance?
 - Manhattan distance?
 - Cosine distance?
- efficient classification
 - very large database
 - similarity calculation may not be simple

Decision Boundary

Decision Boundary

What does the decision boundary of a nearest neighbour classifier look like?

Is it linear?

Is it smooth?

Voronoi tessellation and decision boundary

Voronoi tessellation

- conditions:
 - $\mathbf{x}_1, \dots, \mathbf{x}_N$ are L-dimensional feature vectors
 - nearer neighbour rule is used
 - distance measure $d(\mathbf{x}_i, \mathbf{x}_j)$
- the feature vectors define a partition of the L-dimensional space into N regions R_i :

$$R_i = \{\mathbf{x}: d(\mathbf{x}, \mathbf{x}_i) < d(\mathbf{x}, \mathbf{x}_j), i \neq j\}$$

• R_i contains all points in space that are closer to \mathbf{x}_i than any other points of the feature set

Decision Boundary of Voronoi tessellation

Figure : An example in a 2-D feature space.

Examples

Figure: Nearest neighbour classifier

More complex visualisation: http://vision.stanford.edu/teaching/cs231n-demos/knn/

Summary

• Nearest neighbour classification is a non-parametric technique

- Nearest neighbour classification is a non-parametric technique
- We classify a sample by outputting the label of the closest labeled sample

- Nearest neighbour classification is a non-parametric technique
- We classify a sample by outputting the label of the closest labeled sample
- Need to define a distance measure (typically Euclidean distance)

- Nearest neighbour classification is a non-parametric technique
- We classify a sample by outputting the label of the closest labeled sample
- Need to define a distance measure (typically Euclidean distance)
- A basic implementation can be slow because need to compute distance to all samples in training set

- Nearest neighbour classification is a non-parametric technique
- We classify a sample by outputting the label of the closest labeled sample
- Need to define a distance measure (typically Euclidean distance)
- A basic implementation can be slow because need to compute distance to all samples in training set
- The decision boundary is piece-wise linear (i.e., made up of segments of a line, plane, hyperplane)

In this lecture we will be

• Presenting the algorithm.

 $\textbf{Figure}: \ 3\text{-nearest neighbour classifier}$

In this lecture we will be

- Presenting the algorithm.
- Asking how does the value of k affect the classifier's behaviour?

Figure: 3-nearest neighbour classifier

In this lecture we will be

- Presenting the algorithm.
- Asking how does the value of k affect the classifier's behaviour?
- Discussing the computational cost.

Figure: 3-nearest neighbour classifier

A generalisation of the nearest neighbour classifier that we discussed in the previous segment.

- ullet find the k nearest neighbours
- assign a new sample to the class most common amongst its k nearest neighbours

Note, when k=1 it is equivalent to the standard nearest neighbour classifier.

Figure: 3-nearest neighbour classifier

Algorithm of k-Nearest Neighbour

Algorithm

- 1. Load the training data
- 2. Select a distance function
- 3. Choose the value of k
- 4. Find the distance of test point to all training data points
 - ullet keep track of the k closest points
- Assign a class to the test point based on the majority of classes present in the chosen points

Figure: 3-nearest neighbour classifier

Youtube: https://www.youtube.com/watch?v=Mhv-HxGSgHU

Notes,

 \bullet no explicit training step, but the labeled data is sometimes referred to as the training set

Notes,

- no explicit training step, but the labeled data is sometimes referred to as the training set
- the algorithm is sensitive to the local structure, e.g., sensitive to outliers or poorly labeled data.

Visualise: http://vision.stanford.edu/teaching/cs231n-demos/knn/

Notes,

- no explicit training step, but the labeled data is sometimes referred to as the training set
- the algorithm is sensitive to the local structure, e.g., sensitive to outliers or poorly labeled data.

Visualise: http://vision.stanford.edu/teaching/cs231n-demos/knn/

• the contributions can be weighted

Notes,

- no explicit training step, but the labeled data is sometimes referred to as the training set
- the algorithm is sensitive to the local structure, e.g., sensitive to outliers or poorly labeled data.

Visualise: http://vision.stanford.edu/teaching/cs231n-demos/knn/

- the contributions can be weighted
 - the nearer neighbours contribute more than the distant ones

Notes,

- no explicit training step, but the labeled data is sometimes referred to as the training set
- the algorithm is sensitive to the local structure, e.g., sensitive to outliers or poorly labeled data.

Visualise: http://vision.stanford.edu/teaching/cs231n-demos/knn/

- the contributions can be weighted
 - the nearer neighbours contribute more than the distant ones (e.g.) give each neighbour a weight of $\frac{1}{d}$, where d is the distance to the neighbour

K Wedrest Weighbour Classifier

Choosing the value of k

Effect of k

Choice of parameter k

- ullet increasing k
 - reduces the effect of noise
 - makes class boundaries smoother
 - too large and can over-smooth the boundaries (under-fitting)
- optimum value is data dependent
 - can be selected by some heuristics (e.g.) cross validation

Figure: 3-nearest neighbour classifier

Computational Complexity

Consider classifying a single test sample given N training samples, each with F features.

- ullet N distances will need to be computed regardless of the value of k
- ullet Finding shortest k distances does not require sorting the complete list
- The overhead for tracking k best distances will be small compared to the cost of computing the distances.
- ullet So the cost scales linearly with number of training samples, N.
- ullet The cost of the distance measurement will typically scale with the number of features F
- ullet So overall computational cost should scale as $\mathcal{O}(\mathcal{N} \times \mathcal{F})$

Summary

Summary

- *k*-Nearest Neighbour is a generalisation of the nearest neighbour algorithm.
- Labels according to a majority vote of the closest k training samples.
- ullet Larger k will lead to a smoother decision boundary, reduced influence of outliers.
- If too large then can over-smooth and performance will decrease.
- k is often tuned using validation data.
- For the basic algorithmn, computational cost proportional to size of training data set.