Example of Written Test

Numerical Methods for Partial Differential Equations

max 26 pt (over 30) - duration 1h 30'

Students entitled to take the test reduced by 30% according to Law 170/2010 (Multichance team indications) DO NOT complete the questions marked with (***)

Answer to questions on the paper (handwritten). Upload files on WeBeeP.

Exercise 1 (15 pt)

Let us consider the domain $\Omega = (0,1)^2$, with boundary $\partial \Omega = \Gamma_D \cup \Gamma_R = \bigcup_{i=0}^3 \Gamma_i$, where $\Gamma_D = \Gamma_2 = \{\mathbf{x} = (x_1, x_2) \in \partial \Omega : x_2 = 0\}$ and $\Gamma_R = \partial \Omega \setminus \Gamma_D = \Gamma_0 \cup \Gamma_1 \cup \Gamma_3$; **n** indicates the unit vector normal to $\partial \Omega$ and outward directed. See Fig. 1.

Figure 1: Domain Ω and boundary $\partial \Omega = \bigcup_{i=0}^{3} \Gamma_{i}$. Each boundary subset Γ_{i} corresponds to the tag i in the mesh files

Let us consider the following strong problem: find $u:\Omega\to\mathbb{R}$ such that

$$\begin{cases} -\mu \Delta u = f & \text{in } \Omega, \\ u = 0 & \text{on } \Gamma_D = \Gamma_2, \\ -\mu \nabla u \cdot \mathbf{n} + \gamma \ (u - u_R) = 0 & \text{on } \Gamma_R = \Gamma_0 \cup \Gamma_1 \cup \Gamma_3. \end{cases}$$

We have: $\mu \in \mathbb{R}$, with $\mu > 0$; $\gamma \in \mathbb{R}$ with $\gamma \geq 0$; $u_R : \Gamma_R \to \mathbb{R}$ and $f : \Omega \to \mathbb{R}$ are functions.

- 1.1 [3 pt] Write the weak formulation of the problem by including the definitions, choice of the function spaces, and the derivation of the formulation.
- 1.2 [2 pt] Write the Galerkin–Finite Element approximation of the problem with Finite Elements of degree $r \geq 1$. Include the definition of the function spaces, basis functions, and the approximate solution.
- **1.3** [5 pt] Set $\mu = 1 = \gamma = 1$, $f(x_1, x_2) = \pi^2 (x_1^2 + x_2^2) \sin(\pi x_1 x_2)$,

$$u_R(x_1, x_2) = \begin{cases} \pi x_2 & \text{if } x_1 = 0, \ x_2 \in (0, 1) \ \text{ (on } \Gamma_0), \\ \sin(\pi x_2) - \pi x_2 \cos(\pi x_2) & \text{if } x_1 = 1, \ x_2 \in (0, 1) \ \text{ (on } \Gamma_1), \\ \sin(\pi x_1) - \pi x_1 \cos(\pi x_1) & \text{if } x_1 \in (0, 1), \ x_2 = 1 \ \text{ (on } \Gamma_3), \end{cases}$$

Use the mesh \mathcal{T}_h of triangular Finite Elements of size h=0.1 provided at the following link: https://github.com/michelebucelli/nmpde-labs/tree/main/examples/gmsh

See Fig. 1 for boundary tags. Use Finite Elements built over the polynomial space \mathbb{P}_2 . Implement the Finite Element approximation in *deal.II* and upload the necessary files.

- **1.4** [1 pt] Following the answer provided at Point 1.4), visualize the finite element solution u_h in Paraview and upload the corresponding file with the picture.
- **1.5** [2 pt, ***] By knowing that the exact solution of the problem is $u(x_1, x_2) = \sin(\pi x_1 x_2)$, compute the errors $||u u_h||_{H^1(\Omega)}$ and $||u u_h||_{L^2(\Omega)}$ for different values of the mesh size h = 0.1, 0.05, 0.025, and 0.0125, still with polynomials \mathbb{P}_2 . Upload the file and report the values of the errors obtained.
- **1.6** [2 pt, ***] Use the results obtained at Point 1.5) to estimate the convergence orders of the errors with respect to h. Report the procedure used for the estimation, compare the results with the theory, and critically discuss them.

Exercise 2 (11 pt)

Let us consider the domain $\Omega = (0,1)^2$ and the following Stokes problem: find $\mathbf{u}: \Omega \to \mathbb{R}^2$ and $p: \Omega \to \mathbb{R}$ such that

$$\begin{cases}
-\mu \Delta \mathbf{u} + \nabla p = \mathbf{0} & \text{in } \Omega, \\
\nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\
\mathbf{u} = \mathbf{g} & \text{on } \partial \Omega = \bigcup_{i=0}^{3} \Gamma_i,
\end{cases}$$

where $\mu \in \mathbb{R}$ and $\mu > 0$, while $\mathbf{g} : \Omega \to \mathbb{R}^2$. See Fig. 1.

- **2.1** [2 pt] Write the weak formulation of the problem by including the definitions, choice of the function spaces, and the derivation of the formulation.
- **2.2** [2 pt] Write the Galerkin–Finite Element approximation of the problem with Finite Elements built over the space \mathbb{P}_r for \mathbf{u} , while \mathbb{P}_q for \mathbf{q} . Include the definition of the function spaces, basis functions, and the approximate solution.
- **2.3** [4 pt] Set $\mu = 1$,

$$\mathbf{g}(x_1, x_2) = \begin{cases} \mathbf{0} & \text{if } x_1 = 0 \text{ or } x_1 = 1, \ x_2 \in (0, 1) \ \text{ (on } \Gamma_0 \cup \Gamma_1), \\ \mathbf{0} & \text{if } x_1 \in (0, 1), \ x_2 = 0 \ \text{ (on } \Gamma_2), \\ (1, 0)^T & \text{if } x_1 \in (0, 1), \ x_2 = 1 \ \text{ (on } \Gamma_3). \end{cases}$$

Use the mesh \mathcal{T}_h of triangular Finite Elements of size h=0.1 provided at the following link: https://github.com/michelebucelli/nmpde-labs/tree/main/examples/gmsh

See Fig. 1 for boundary tags. Use Finite Elements built on the pair of spaces \mathbb{P}_2 – \mathbb{P}_1 . Implement the Finite Element approximation in deal.II and upload the necessary files.

- **2.4** [1 pt, ***] Following the answer provided at Point 2.4), visualize the Finite Element solutions $\|\mathbf{u}_h\|_2$ and p_h in Paraview and upload the corresponding file with the picture.
- **2.5** [2 pt, ***] Repeat Points 2.3)–2.4) by means of the Finite Element pair \mathbb{P}_1 – \mathbb{P}_1 . Visualize the result on the pressure field and motivate it on the basis of the theory.