CHAP 14 - INTEGRATION

Dans tout le chapitre a et b désignent des réels tels que a < b.

1 Intégrale d'une fonction en escalier

1.1 Définitions

Définition 1

- On appelle subdivision du segment [a, b] toute suite finie $\sigma = (a_0, a_1, \dots, a_n), n \in \mathbb{N}^*$ de points de [a, b] vérifiant : $a = a_0 < a_1 < \dots < a_n = b$.
- On dit que la subdivision est **régulière** lorsque pour tout $k \in [0, n]$, $a_k = a + k \frac{b-a}{n}$.
- Si une subdivision $\sigma = (a_0, a_1, \dots, a_n)$ est régulière on appelle **pas de la subdivision** la longueur de chaque intervalle $[a_k, a_{k+1}]$, c'est-à-dire le nombre $\frac{b-a}{n}$.

Définition 2

• Soit φ un application de [a, b] dans \mathbb{R} . On dit que φ est une fonction en escalier sur [a, b] s'il existe un subdivision $\sigma = (a_0, a_1, \dots, a_n)$ de [a, b] et $(\lambda_0, \lambda_1, \dots, \lambda_{n-1}) \in \mathbb{R}^n$ tels que

$$\forall k \in [0, n-1], \quad \forall x \in]a_k, a_{k+1}[, \quad \varphi(x) = \lambda_k$$

• Lorsqu'une fonction φ en escalier sur [a, b] est constante sur chaque intervalle d'une subdivision σ de [a, b], on dit que la subdivision σ est **adaptée**, ou **subordonnée**, à φ . On note $\mathscr{E}([a, b])$ l'ensemble des fonctions en escalier sur [a, b].

Remarque 1

Si σ et σ' sont deux subdivisions de [a,b] adaptée à $\varphi \in \mathscr{E}([a,b])$, alors la subdivision $\sigma \cup \sigma'$ est adaptée à φ .

Proposition 1

L'ensemble $\mathscr{E}([a,b])$ est un sous-espace vectoriel de $\mathbb{R}^{[a,b]}$.

Théorème 1

Soient $\varphi \in \mathscr{E}([a,b])$ et $\sigma = (a_0, a_1, \dots, a_n)$ une subdivision de [a,b] adaptée à φ telle que $\forall k \in [0, n-1], \forall x \in]a_k, a_{k+1}[, \varphi(x) = \lambda_k.$

Le réel $I(\varphi, \sigma) = \sum_{k=0}^{n-1} (a_{k+1} - a_k) \lambda_k$ ne dépend pas de la subdivision σ choisie.

Définition 3

La valeur du nombre $I(\varphi, \sigma)$ du théorème précédent est appelée **intégrale** de φ sur [a, b]. On le note $\int_a^b \varphi(x) dx$, ou $\int_{[a,b]} \varphi$ ou $\int_a^b \varphi$.

Interprétation géométrique:

 $\int_{a}^{b} \varphi(x) dx$ représente une somme d'aires algébriques de rectangles dans un repère orthonormé.

1.2 Propriétés

Proposition 2 Linéarité

Soit
$$(\varphi, \psi) \in (\mathscr{E}([a, b]))^2$$
. $\forall (\alpha, \beta) \in \mathbb{R}^2$, $\int_a^b (\alpha \varphi + \beta \psi) = \alpha \int_a^b \varphi + \beta \int_a^b \psi$.

Proposition 3 Positivité

Soit
$$\varphi \in \mathscr{E}([a,b])$$
, telle que $\forall x \in [a,b], \varphi(x) \geq 0$. Alors $\int_a^b \varphi \geq 0$.

Proposition 4 Conservation de l'ordre

Soit
$$(\varphi, \psi) \in (\mathscr{E}([a, b]))^2$$
. Si $\varphi \leq \psi$ alors $\int_a^b \varphi \leq \int_a^b \psi$.

2 Intégrale d'une fonction continue

2.1 Définition

Théorème 2

Soit f une fonction continue sur [a,b] à valeurs réelles. Pour tout $\varepsilon > 0$ il existe φ, ψ dans $\mathscr{E}([a,b])$ telles que pour tout $x \in [a,b], \varphi(x) \leq f(x) \leq \psi(x)$ et $\psi(x) - \varphi(x) \leq \varepsilon$.

Théorème 3

Soit f une fonction continue sur [a, b], à valeurs réelles.

On note
$$E^-(f) = \left\{ \int_a^b \varphi(x) dx, \varphi \in \mathscr{E}([a,b]), \varphi \leq f \right\}$$
 et $E^+(f) = \left\{ \int_a^b \psi(x) dx, \psi \in \mathscr{E}([a,b]), \psi \geq f \right\}$.
On a:

$$I(f) = \sup (E^{-}(f)) = \inf (E^{+}(f))$$

Définition 4

La valeur du nombre I(f) du théorème précédent est appelée **intégrale** de f sur [a,b]. On le note

On le note
$$\int_a^b f(x) dx$$
, ou $\int_{[a,b]}^b f$ ou $\int_a^b f$.

Par convention,
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$
.

Interprétation géométrique :

Dans le plan muni d'un repère orthogonal, $\int_a^b f(x) dx$ est l'aire algébrique, en unités d'aires, de la partie du plan délimitée par la courbe représentative de f et les droites d'équations x = a, x = b et y = 0.

Définition 5

Soit f une fonction continue sur [a, b] à valeurs réelles.

Le réel
$$\mu = \frac{1}{b-a} \int_a^b f(x) dx$$
 est appelé valeur moyenne de f sur $[a, b]$.

Définition 6

Soit f une fonction complexe continue sur [a, b]. On appelle **intégrale** de f sur [a, b] le réel

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \operatorname{Re}(f(x)) dx + i \int_{a}^{b} \operatorname{Im}(f(x)) dx$$

2.2 Propriétés

• Relation de Chasles

Soit f une fonction réelle ou complexe continue sur [a, b].

$$\forall c \in [a, b], \qquad \int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

• Linéarité

Soient f et g des fonctions réelles ou complexes, continues sur [a, b].

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \qquad \int_a^b (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$$

• Conservation de l'ordre

Soit f et g des fonctions réelles, continues sur [a,b], avec $\forall x \in [a,b], f(x) \leq g(x)$. Alors on a :

$$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$$

• Positivité stricte

Soit f une fonction réelle continue sur [a, b] telle que $\forall x \in [a, b], f(x) \ge 0$. Alors on a : $\int_a^b f(x) dx \ge 0$ et s'il existe $x_0 \in [a, b]$ tel que $f(x_0) > 0$ alors $\int_a^b f(x) dx > 0$.

Remarque 2

Si f est continue positive sur [a, b] et si $\int_a^b f(x) dx = 0$, alors f = 0.

• Inégalité triangulaire

Soit f une fonction réelle ou complexe continue sur [a, b]. Alors

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Proposition 5

Soient f et g deux fonctions réelles continues sur [a, b], avec $g \ge 0$.

En posant
$$m = \inf_{x \in [a,b]} (f(x))$$
 et $M = \sup_{x \in [a,b]} (f(x))$, on a :

$$m\int_a^b g(x)\mathrm{d}x \leq \int_a^b f(x)g(x)\mathrm{d}x \leq M\int_a^b g(x)\mathrm{d}x$$
 Inégalité de la moyenne

$$\exists c \in [a, b], \quad \int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx$$
 Formule de la moyenne

Remarque 3

On a en particulier, $\left| \int_a^b f(x) dx \right| \le (b-a) \sup_{x \in [a,b]} |f(x)|.$

Théorème 4 Inégalité de Cauchy Schwarz pour les intégrales

Soient f et g deux fonctions réelles continues sur [a, b]. On a :

$$\left(\int_a^b f(x)g(x)\mathrm{d}x\right)^2 \le \int_a^b f(x)^2 \mathrm{d}x \int_a^b g(x)^2 \mathrm{d}x$$

Théorème 5 Sommes de Riemann

Si f est une fonction réelle continue sur [a, b], alors :

$$\lim_{n \to +\infty} \left(\sum_{k=0}^{n-1} \frac{b-a}{n} f\left(a + k \frac{b-a}{n}\right) \right) = \int_{a}^{b} f(x) dx$$

Remarque 4

On a également :
$$\lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{b-a}{n} f\left(a + k \frac{b-a}{n}\right) \right) = \int_a^b f(x) dx$$

3 Théorèmes du calcul intégral

3.1 Lien entre intégrale et primitive

Théorème 6

Soient f une fonction continue sur un intervalle I, et $a \in I$.

La fonction $x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f qui s'annule en a.

Corollaire

- Toute fonction continue sur un intervalle admet des primitives.
- Pour tout primitive F de f sur I = [a, b], on a : $\int_a^b f(x) dx = [F(x)]_a^b = F(b) F(a).$
- Si une fonction f est de classe C^1 sur [a,b], alors pour tout $x \in [a,b]$, $f(x) f(a) = \int_a^x f'(t) dt$.

3.2 Inégalité de Taylor-Lagrange

Théorème 7

Soit f une fonction réelle ou complexe, de classe C^{n+1} sur [a,b]. on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right| \le \left| \sup_{x \in [a,b]} f^{(n+1)}(x) \right| \frac{(b-a)^{n+1}}{(n+1)!}$$