## ESc201A Home Assignment 7 Oct. 12, 2019. Solutions of the HA#7 will be on Brihaspati on 20/10/19.

## Consider all voltage and current sources to be ideal.

1. In fig. 7.1, the OpAmp is ideal. For  $v_i=2\cos(10^6 t)$  V, find the small signal voltage gain  $v_0/v_i$ .



- 2. In fig. 7.2 the operational amplifiers are ideal..
- (a) Find  $v_0$  as a function of  $\alpha$ ,  $\sigma$ ,  $v_{S_1}$ , and  $v_{S_2}$ , when the OpAmps operate in their linear regions..
- (b) Describe the behavior of the circuit when  $\alpha = \sigma = 1.0$ ..
- (c) Repeat the calculation for when  $\alpha = \sigma = 0$ .

3. In fig. 7.3, considering the OpAmp to be ideal, the resistances are slightly mismatched due to their tolerances. Find the output voltage for  $v_1$ =3.98 V and  $v_2$ =4.02 V. How much is the error in the measurement.



Figure 7.4 Figure 7.4

- 4. In the ideal-OpAmp Instrumentation amplifier of fig. 7.4, the input voltages are  $v_1$ =4.99 V and  $v_2$ =5.01 V. Find all the voltages  $v_a$ ,  $v_b$ ,  $v_c$ , .....  $v_f$ , and  $v_o$ . What are the values of  $A_{dm}$ ,  $A_{cm}$ , and CMRR.
- 5. In the circuit of fig. 7.5(a) the input signal is shown in fig. 7.5(b) and the diodes  $D_1$  and  $D_2$  have  $V_{on}$ =0.6V and  $R_F$ =0. Sketch the output waveform.



6. What are the switching thresholds and the hysteresis of the Schmitt Trigger in fig. 7.6 ? For both D<sub>Z1</sub> and D<sub>Z2</sub>, V<sub>z</sub>=4.3V.



- 7. A 4-bit ( $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$ ) Digital-to-Analog Converter (DAC) is shown in fig. 7.7. The 4-bits control the switches  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$  for the OpAmp inverting inputs. When the bit is 1, the switch connects to  $V_{REF}$ , otherwise it connects to ground. The configuration in fig. 7.7 is for bits 0101. Find the output voltage  $v_0$  for these bits for  $V_{REF}$ =3V. Repeat for all 16 combinations of 1's and 0's for the 4-bit input. What is the value of the digital quantization?
- 8. Considering the OpAmp in fig. 7.8 to be ideal, find the oscillation frequency of the astable (has no stable state) multivibrator circuit of fig. 7.8(a). Do the same for fig. 7.8(b) but you need to be more careful to see the trick question.



9. For the oscillator shown in fig. 7.9, find the frequency of oscillation and the minimum value of  $\sigma$  for oscillation to sustain.

