CS570: Introduction to Data Mining Basic Clustering

Reading: Chapter 10 Han, Chapter 8 Tan

Anca Doloc-Mihu, Ph.D.

Slides courtesy of Li Xiong, Ph.D.,

©2011 Han, Kamber & Pei. Data Mining. Morgan Kaufmann, and

© 2006 Tan, Steinbach & Kumar. Introd. Data Mining., Pearson. Addison Wesley.

Cluster Analysis

- Overview
- Partitioning methods
- Hierarchical methods
- Density-based methods
- Other Methods
- Outlier analysis
- Summary

What is Cluster Analysis?

- Finding groups of objects (clusters)
 - Objects similar to one another in the same group
 - Objects different from the objects in other groups

- Marketing research
- Social network analysis

WWW: Documents and search results clustering

Earthquake studies

- Biology: plants and animals
- Bioinformatics: microarray data, flow cytometry data, genes and sequences

Event Count: 30585

Requirements of Clustering

- Quality
- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Ability to deal with noise and outliers
- Ability to deal with high dimensionality
- Minimal requirements for domain knowledge to determine input parameters
- Incorporation of user-specified constraints
- Interpretability and usability

Quality: What Is Good Clustering?

- Agreement with "ground truth"
- A good clustering will produce high quality clusters with
 - Homogeneity high <u>intra-class</u> similarity

Bad Clustering vs. Good Clustering

Similarity or Dissimilarity between Data Objects

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$
 • Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Minkowski distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

Chebyshev distance

$$\lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{\frac{1}{p}} = \max_{i=1}^{n} |x_i - y_i|.$$

Other Similarity or Dissimilarity Metrics

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Pearson correlation
$$r = \frac{\sum_{i=1}^n (X_i - X)(Y_i - Y)}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \bar{Y})^2}}.$$

• Cosine measure $\frac{X_i \bullet X_j}{\|X_i\| \cdot \|X_j\|}$

- Jaccard coefficient $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$.
- KL divergence, Bregman divergence, ...

12

Different Attribute Types

• To compute $|x_i - x_i|$

$$|x_{if} - x_{jf}|$$

- f is numeric (interval or ratio scale)
 - Normalization if necessary

•
$$f$$
 is ordinal $Z_{if} = \frac{I_{if} - 1}{M_f - 1}$

- f is nominal
 - Mapping function

$$|x_{i_f} - x_{j_f}| = 0$$
 if $x_{if} = x_{if}$, or 1 otherwise

Hamming distance (edit distance) for strings

Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Others

Cluster Analysis

- Overview
- Partitioning methods
- Hierarchical methods
- Density-based methods
- Other Methods
- Outlier analysis
- Summary

Partitioning Algorithms: Basic Concept

Partitioning method: Construct a partition of a database D of n objects into a set of k clusters, s.t., the sum of squared distance is minimized

$$\sum_{i=1}^k \sum_{p \in C_i} (p - m_i)^2$$

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

K-Means Clustering: Lloyd Algorithm

- Given k, randomly choose k initial cluster centers
- Partition objects into k nonempty subsets by assigning each object to the cluster with the nearest centroid
- Update centroid, i.e. mean point of the cluster
- Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example

K-means Clustering – Details

- Initial centroids are often chosen randomly.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(tkn)
 n is # objects, k is # clusters, and t is # iterations.

Comments on the *K-Means* Method

Strength

- Simple and works well for "regular" (spherical shape) disjoint clusters
- Relatively efficient and scalable (normally, k, t << n)
- Effective for small to medium size data sets.

Weakness

- Need to specify k, the number of clusters, in advance
- Depending on initial centroids, may terminate at a local optimum
 - Potential solutions
- Unable to handle noisy data and outliers
- Not suitable for clusters of
 - Different sizes
 - Non-convex shapes

Importance of Choosing Initial Centroids – Case 1

Importance of Choosing Initial Centroids – Case 2

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-convex Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

Variations of the *K-Means* Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

K-Medoids Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

The K-Medoids Clustering Method

PAM (Kaufman and Rousseeuw, 1987)

- Arbitrarily select k objects as medoid
- Assign each data object in the given data set to most similar medoid.
- Randomly select nonmedoid object O'
- Compute total cost, S, of swapping a <u>medoid</u> object to O' (cost as total sum of absolute error)
- If S<0, then swap initial medoid with the new one</p>
- Repeat until there is no change in the medoid.

k-medoids and (n-k) instances pair-wise comparison

A Typical K-Medoids Algorithm (PAM)

October 2, 2013

30

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - Complexity? O(k(n-k)t)
 n is # of data,k is # of clusters, t is # of iterations
- → Sampling based method,
 CLARA(Clustering LARge Applications)

CLARA (Clustering Large Applications) (1990)

- CLARA (Kaufmann and Rousseeuw in 1990)
- It draws multiple samples of the data set, applies PAM on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

CLARANS ("Randomized" CLARA) (1994)

- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94)
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
 - PAM examines neighbors for local minimum
 - CLARA works on subgraphs of samples
 - CLARANS examines neighbors dynamically
 - If local optimum is found, starts with new randomly selected node in search for a new local optimum

Cluster Analysis

- Overview
- Partitioning methods
- Hierarchical methods and graph-based methods
- Density-based methods
- Other Methods
- Outlier analysis
- Summary

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram, a tree like diagram
 - Clustering obtained by cutting at desired level
- Do not have to assume any particular number of clusters

May correspond to meaningful taxonomies

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Agglomerative Clustering Algorithm

- 1. Compute the proximity matrix
- Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- 6. **Until** only a single cluster remains

Starting Situation

Start with clusters of individual points and a

proximity matrix

Proximity Matrix

Intermediate Situation

	C 1	C2	С3	C4	C 5
C 1					
C2					
C 3					
<u>C4</u>					
C 5					

Proximity Matrix

October 2, 2013

How to Define Inter-Cluster Similarity

	p 1	p2	рЗ	p4	p5	<u> </u>
p1						
<u>p2</u>						
р3						
p4						
p5						
						_

Proximity Matrix

Distance Between Clusters

- Single Link: smallest distance between points
- Complete Link: largest distance between points
- Average Link: average distance between points
- Centroid: distance between centroids

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

MST (Minimum Spanning Tree)

- An aggolomerative algorithm using minimum distance can be also called a minimal spanning tree (MST) algorithm
- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not; add q to the tree and put an edge between p and q

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Strength of MAX

Original Points

Two Clusters

Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- Tends to break large clusters
- Biased towards globular clusters

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
 - Can handle categorical and numerical data
- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Major Weaknesses

- Do not scale well (N: number of points)
 - Space complexity: O(N²)
 - Time complexity: O(N³)

 $O(N^2 \log(N))$ for some cases/approaches

- Cannot undo what was done previously
- Quality varies in terms of distance measures
 - MIN (single link): susceptible to noise/outliers
 - MAX/GROUP AVERAGE: may not work well with nonglobular clusters

October 2, 2013

Recent Hierarchical Clustering Methods

- BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
- CURE(1998): uses representative points for inter-cluster distance
- ROCK (1999): clustering categorical data by neighbor and link analysis
- CHAMELEON (1999): hierarchical clustering using dynamic modeling

Cluster Analysis

- Overview
- Partitioning methods
- Hierarchical methods and graph-based methods
 - Classical methods
 - Recent methods
- Density-based methods
- Other Methods
- Outlier analysis
- Summary

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scientific, 1996
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers.
 SIGMOD 2000.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB'98.

References (2)

- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases.
 SIGMOD'98.
- S. Guha, R. Rastogi, and K. Shim. <u>ROCK: A robust clustering algorithm for categorical attributes</u>. In *ICDE'99*, pp. 512-521, Sydney, Australia, March 1999.
- A. Hinneburg, D.I A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
- G. Karypis, E.-H. Han, and V. Kumar. <u>CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling</u>. *COMPUTER*, 32(8): 68-75, 1999.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.

References (3)

- L. Parsons, E. Haque and H. Liu, <u>Subspace Clustering for High Dimensional Data: A Review</u>,
 SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets.
 Proc. 1996 Int. Conf. on Pattern Recognition,.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. <u>Constraint-Based Clustering in Large</u>
 Databases, *ICDT'01*.
- A. K. H. Tung, J. Hou, and J. Han. <u>Spatial Clustering in the Presence of Obstacles</u>, ICDE'01
- H. Wang, W. Wang, J. Yang, and P.S. Yu. <u>Clustering by pattern similarity in large data</u> sets, SIGMOD'02.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. SIGMOD'96.

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = min(t_{ip}, t_{jq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = max(t_{ip}, t_{iq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = avg(t_{ip}, t_{iq})$
- Centroid: distance between the centroids of two clusters, i.e.,
 dis(K_i, K_j) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_j)
 - Medoid: one chosen, centrally located object in the cluster