UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 2 SEMESTRE - 2022

LICENCIATURA EN MATEMÁTICA APLICADA

Análisis de Variable Compleja

Catedrático: Dorval Carías

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

Índice

1 Números complejos		1	
	1.1	Función analítica	10
	1.2	Ecuaciones de Cauchy-Riemann	13
		1.2.1 Ecuaciones de Cauchy-Riemann en polares	16
2	Top	oología General	20
3	Sec	ción en C	24

1. Números complejos

Clase: 06/07/2022

Notas:

• $(\mathbb{R}^2, +, \cdot)$ donde:

•
$$+ : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \ni (a, b) + (c, d) := (a + c, b + d).$$

•
$$\cdot : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \ni (a,b) * (c,d) = (ac.db,ad+bc).$$

 \implies es un campo.

- $\mathbb{C} = (\mathbb{R}^2, +, \cdot)$
- $\mathbb C$ no es totalmente ordenado. Supóngase por el absurdo, que $\mathbb C$ tiene orden total. Considere: $i \geq \forall i \leq 0$:

• Si
$$i \ge 0 \implies i^2 \ge 0 \implies -i \ge 0 (\rightarrow \leftarrow)$$

• Si
$$i \le 0 \implies -i \ge 0 \implies (-i)^2 \ge 0 \implies -1 \ge 0 (\rightarrow \leftarrow)$$

- ¿Puede ordenarse C? Orden lexicográfico y de diccionario.
- Representación polar. Sea $z=a+bi\in\mathbb{C}\implies r=|z|=\sqrt{a^2+b^2},$ $\theta=\tan^{-1}(b/a)\mod(2\pi).\implies z=a+bi=r\cos\theta+i\sin\theta=r\sin\theta$
- Supongamos la identidad de Euler, $e^{ix} = \cos x + i \sin x$ y $e^{-ix} = \cos x i \sin x$. $\implies \cos x = \frac{e^{ix} + e^{-ix}}{2}$ y $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$.
- Exponencial compleja.

Definición 1. Si $z = x + yi\mathbb{C}$, entonces:

$$\exp(z) = e^z := e^x(\cos y + i\sin y) = (2.71...)^x(\cos y + i\sin y)$$

Propiedades.

Proposición 1. $e^x e^w = e^{x+w}, \forall z, w \in \mathbb{C}$

Proposición 2. e^z es periódica.

Demostración. Supóngase que $e^{z+w}=e^z, \forall x\in\mathbb{C}. \implies e^w=e^0 \implies e^w=1$. Sea $w=s+ti\implies e^{s+ti}=1\implies e^se^{ti}=1$. Si $s=0\implies e^{ti}=1\implies \cos t+i\sin t=1\implies \cos t=1$ y sin $t=0.\implies t=2\pi k$, para $k\in\mathbb{Z}.\implies w=2\pi ki$, para $k\in\mathbb{Z}.\implies e^z$ es periódica con período $2\pi k, k\in\mathbb{Z}^+$.

Clase: 12/07/2022

Proposición 3. $\forall z, w \in \mathbb{C}, |z \cdot w| = |z| \cdot |w|, \arg(z * w) = \arg z + \arg w \pmod{2\pi}$

Demostración. Sean $x = r_1[\cos \theta_1 + i \sin \theta_1], w = r_2[\cos \theta_2 + i \sin \theta_2] \implies zw = r_1r_2[\cos t_1 + i \sin \theta_1] * [\cos \theta_2 + i \sin \theta_2] = r_1r_2[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] \implies |x * w| = r_1r_2 = |z||w| \implies \arg(z * w) = \theta_1 + \theta_2 = \arg z + \arg w \pmod{2\pi}$

Proposición 4 (De Moivre). Sea $z = r[\cos \theta i \sin \theta]$ y $n \in \mathbb{Z}^+$. Entonces:

$$z^n = r^n \left[\cos n\theta + i \sin n\theta \right]$$

Demostración. Por inducción sobre n

- 1. n = 1: $z = r [\cos \theta + i \sin \theta]$
- 2. Suponemos que $z^k = r^k [\cos k\theta + i \sin k\theta]$
- 3. $z^{k+1} = z \cdot z^k = r[\cos \theta + i \sin \theta] \cdot r^k[\cos k\theta + i \sin k\theta] = r^{k+1}[\cos(k+1)\theta + i \sin(k+1)\theta]$

Problema 1. Dado $w \in \mathbb{C}$, encuentre $z \in \mathbb{C} \ni z^n = w, n \in \mathbb{Z}^+, n > 1$

Solución. Sean: $w = r[\cos \theta + i \sin \theta], z = \rho[\cos \phi + i \sin \phi] \implies z^n = w \iff \rho^n[\cos n\phi + i \sin n\phi] = r[\cos \theta + i \sin \theta] \implies \rho^n = r \implies \rho = r^{1/n} y n\phi = \theta + 2\pi k \implies \phi = \theta/n + 2\pi k/n, \quad k = 0, 1, \cdot, n - 1.$

$$\implies z_k = r^{1/n} \left[\cos \left(\frac{\theta}{n} + 2\pi k/n \right) + i \sin \left(\frac{\theta}{n} + 2\pi k/n \right) \right], k = 0, 1, \dots, n - 1$$

Ejemplo 1. Encuentre las raíces cúbicas de 1+i:

Solución. A resolver: $z^3 = 1 + i$. $\Longrightarrow 1 + i = \sqrt{2} \left[\cos \pi/4 + i \sin \pi/4\right]$

$$\implies z_k = (\sqrt{2})^{1/3} \left[\cos \left(\frac{\pi/4 + 2\pi k}{3} \right) + i \sin \left(\frac{\pi/4 + 2\pi k}{3} \right) \right], k = 0, 1, 2$$

Proposición 5. $Si \ z, w \in \mathbb{C}$, entonces:

1.
$$\overline{z+w} = \bar{z} + \bar{w}$$

2.
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

3.
$$\overline{(z/w)} = \bar{z}/\bar{w}, w \neq 0$$

4.
$$z \cdot \bar{z} = |z|^2$$
. Además, si $z \neq 0 \implies z^{-1} = \bar{z}/|z|^2$

5.
$$z = \bar{z} \iff z \in \mathbb{R}$$

6. Re
$$Z = (z + \bar{z})/2$$
; Im $z = (z - \bar{z})/zi$

7.
$$\bar{\bar{z}} = z$$

Demostración. 1. Sean $z = a + bi, w = c + di \Longrightarrow \overline{z+w} = \overline{(a+c)+(b+d)}i = (a+c)-(b+d)i = (a-bi)+(c-di)=\overline{z}+\overline{w}.$

2. Sea
$$\overline{(a+bi)\cdot(c+di)} = \overline{(ac-bd)+i(ad+bc)} = (ac-bd)-i(ad+bc)$$
 y se desarrolla el otro lado.

3. Sea
$$\bar{z} = \frac{\overline{z \cdot w}}{w} = \overline{(z/w) \cdot w} = \overline{(z/w)} \cdot \bar{w} = \overline{z}/\bar{w} = \overline{(z/w)}$$

4. Sea
$$z = a + bi \implies z \cdot \bar{z} = (a + bi)(a - bi) = a^2 + b^2 = |z|^2$$
. Entonces $z \cdot z^{-1} = 1 \implies \bar{z}(z \cdot z^{-1}) = \bar{z} \implies (\bar{z}z)z^{-1} = \bar{z} \implies z^{-1} = \bar{z}/|z|^2$

Proposición 6. Si $z, w \in \mathbb{C}$, entonces:

1.
$$|z \cdot w| = |z| \cdot |w|$$

2. Si
$$w \neq 0 \implies |z/w| = |z|/|w|$$

3.
$$|\operatorname{Re} z| \le |z|$$
; $|\operatorname{Im} z| \le |z|$

4.
$$|z| = |\bar{z}|$$

5.
$$|z + w| \le |z| + |w|$$

6.
$$|z - w| \ge ||z| - |w||$$

Demostración. 1. OK

2.
$$|z| = |(z/w) \cdot w| = |(z/w)||w| \implies |z|/|w| = |z/w|$$

3. Sea
$$z = a + bi \implies b^2 \ge 0 \implies a^2 + b^2 \ge a^2 \implies \sqrt{a^2 + b^2} \ge \sqrt{a^2} \implies |z| \ge |\operatorname{Re} z|$$

4. Si
$$z = a + bi \implies |\bar{z}| = |a - bi| = |a + (-b)i| = \sqrt{a^2 + (-b)^2} = |z|$$

5.
$$|z+w|^2 = (z+w)\overline{(z+w)} = (z+w)(\bar{z}+\bar{w}) = z\bar{z} + z\bar{w} + w\bar{z} + w\bar{w}$$

6.
$$|z| = |(z - w) + w| \le |z - w| + |w| \implies |z| - |w| \le |z - w| \text{ y } |w| = |(w - z) + z| \le |w - z| + |z| = |z - w| + |z|$$
. Tenemos $-|z| + |w| \le |z - w|$ $y - (|z| - |w|) \le |z - w|$. Por lo tanto, $||z| - |w|| \le |z - w|$.

Ejemplo 2. Si w es n-ésima raíz de la unidad, $w \neq 1$, entonces

$$1 + w + w^2 + \dots + w^{n-1} = 0$$

Solución.
$$w^n = 1 \implies w^n - 1 = 0 \implies (w - 1)(1 + w + w^2 + \dots + w^{n-1}) = 0.$$
 Como $w \neq 1 \implies 1 + w + w^2 + \dots + w^{n-1} = 0.$

Ejemplo 3. 1.
$$\arg \bar{z} = -\arg z \pmod{2\pi}$$

2.
$$\arg(z/w) = \arg z - \arg w, w \neq 0 \pmod{2\pi}$$

Solución. 1.
$$z \cdot \bar{z} = |z|^2 \implies \arg(z \cdot \bar{z}) = \arg|z|^2 = 0 \implies \arg(z) + \arg(\bar{z}) = 0$$
 (mód 2π)

2.
$$\arg z = \arg(\frac{z}{w} \cdot w) = \arg(z/w) + \arg(w)$$
, mód 2π

Clase: 14/07/2022

Ejemplo 4. 1. Encuentre las raíces cuadradas de -15-8i

Solución. Solución 1: $z^2 = -15 - 8i = 17 \left[\cos \underbrace{\theta}_{\theta+2\pi k} + i \sin \underbrace{\theta}_{\theta+2\pi k}\right]$, donde $\cos \theta = -15/17$, $\sin \theta = -8/17$. $\implies z_k = (17^{1/2}) \left[\cos \frac{\theta+2\pi k}{2} + i \sin \frac{\theta+2\pi k}{2}\right]$, k = 0, 1.

$$(-15-8i) = \sqrt{15^2+8^2} = \sqrt{225+64} = \sqrt{289} = 17$$

De esto tiene:

$$z_{0} = \sqrt{17} \left[\cos \theta / 2 + i \sin \theta / 2 \right]$$

$$= \sqrt{17} \left[-\frac{1}{\sqrt{17}} + \frac{4}{\sqrt{17}} i \right] = -1 + 4i$$

$$z_{1} = \sqrt{17} \left[\cos(\theta / 2 + \pi) + i \sin(\theta / 2 + \pi) \right] = -\sqrt{17} \left[\cos \theta / 2 + i \sin \theta / 2 \right]$$

$$= -\sqrt{17} \left[-\frac{1}{\sqrt{17}} + \frac{4}{\sqrt{17}} i \right] = 1 - 4i$$

Tenemos:

$$\cos \theta/2 = \pm \sqrt{\frac{1 + \cos \theta}{2}} = \pm \sqrt{\frac{1 - \frac{15}{17}}{2}} = \pm \frac{1}{\sqrt{17}}$$

(signo + no se toma en cuenta)

$$\sin \theta / 2 = \pm \sqrt{\frac{1 - \cos \theta}{2}} = \pm \sqrt{\frac{1 + \frac{15}{17}}{2}} = \pm \frac{4}{\sqrt{17}}$$

(signo - no se toma en cuenta)

Solución. [Segunda solución] Sean a+bi las raíces cuadradas. $\implies (a+bi)^2 = -15-8i \implies (a^2-b^2)+2abi=-15-8i \implies a^2-b^2=-15$ y $2ab=-8 \implies ab=-4 \implies b=-4/a$. Entonces, reemplazamos: $\implies a^2-(-4/a)^2=-15 \implies \frac{a^4-16}{a^2}=-15 \implies a^4+15a^2-16=0 \implies (a^2+16)(a^2-1)=0$. Por lo tanto, $a^2=-16$ o $a^2=1$, $a=\pm 4i$ o $a=\pm 1$. (Se excluye la parte imaginaria, ya que queremos un real).

Si
$$a=1 \implies b=-4$$
 y $a=-1 \implies b=4$. Entonces las raíces cuadradas son $1-4i$ y $-1+4i$.

Ejemplo 5. Resuelva la ecuación:

$$z^2 + (2i - 3)z + 5 - i = 0$$

Solución. Tenemos:

$$z = frac - (2i - 3) \pm \sqrt{(2i - 3)^2 - 4(5 - i)}2$$

$$= \frac{3 - 2i \pm \sqrt{-4 - 12i + 9 - 20 + 4i}}{2}$$

$$= \frac{3 - 2i \pm \sqrt{-15 - 8i}}{2}$$

Ejemplo 6. Demuestre que los ceros de un polinomio con coeficientes reales ocurre en pares conjugados.

Demostración. Supóngase que a + bi es raíz de:

$$a_0 z^n + a_1 z^{n-1} + \dots + a_n = 0,$$

nótese que $a_0 \neq a_1, \dots, a_n, a, b \in \mathbb{R}$. A probar: a - bi es raíz. Sea $a + bi = re^{i\theta}$. Entonces:

$$a_0 r^n e^{in\theta} + a_1 r^{n-1} e^{i(n-1)\theta} + \dots + a_n = 0$$

Tomando conjugado: $\implies a_0 r^n e^{-in\theta} + a_0 r^{n-1} e^{-i(n-1)\theta} + \dots + a_n = 0 \implies re^{i\theta} = \overline{a + bi} = a - bi$ es raíz del polinomio.

Ejemplo 7. Pruebe que la suma y producto de todas las raíces de

$$a_0 z^n + a_1 z^{n-1} + \dots + a_n = 0, a_0 \neq 0,$$

 $son -a_1/a \ y \ (-1)^n a_n/a_0$, respectivamente.

Demostración. Sea z_1, z_2, \dots, z_n las raíces del polinomio. \Longrightarrow $a_0(z-z_1)(z-z_2)\cdots(z-z_n)=0.$ \Longrightarrow $a_0[z^n]$. Entonces $a_0[z^n-(z_1+z_2+\dots+z_n)z^{n-1}+\dots+(-1)^nz_1\dots z_n]=0$. Por comparación $a_0(z_1+\dots+z_n)=1$ y $(-1)^na_0z_1\dots z_n=a_n$

Ejemplo 8. Compruebe que, si $z_1 = r_1 [\cos \theta_1 + i \sin \theta_1]$ y $z_2 = r_2 [\cos \theta_2 + i \sin \theta_2]$, entonces:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right]$$

Demostración. Sea

$$\frac{z_1}{z_2} = \frac{r_1[\cos\theta_1 + i\sin\theta_1]}{r_1[\cos\theta_2 + i\sin\theta_2]} * \frac{(\cos\theta_2 - i\sin\theta_2)}{(\cos\theta_2 - i\sin\theta_2)} = \cdots$$

Ejemplo 9. Calcule $(1+i)^{100}$.

Solución. Sea

$$(1+i)^{100} = \left[\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^{1000}$$
$$= 2^{500}\left[\cos 250\pi + i\sin 250\pi\right]$$
$$= 2^{500}$$

Ejemplo 10. Encuentre el número pares ordenados $(a,b), a,b \in \mathbb{R} \ni (a+bi)^{2002} = a-bi$.

Solución. Sea $z = a + bi \implies z^{2002} = \overline{z} \implies |z^{2000}| = |\overline{z}| \implies |z|^{2000} - |z| = 0 \implies |z| [|z|^{2001} - 1] = 0 \implies |z| = 0 \text{ o } |z| = 1.$

- 1. Si $|z| = 0 \implies z = 0 \implies (0,0)$ es solución.
- 2. Si $|z|=1 \implies z^{2002}=\overline{z} \implies z^{2003}=z\cdot\overline{z}=|z| \implies z^{2003}=1$. Entonces, en este caso, se tiene 2003 pares ordenados. \implies Tenemos 2004 pares ordenados.

Ejemplo 11 (**). Dos polígonos regulares están inscritos en el mismo circulo. El primer polígono tiene 1982 lados y el segundo 2973 lados. ¿Cuántos vértices comunes tienes los polígonos?

 \square

Clase: 19/07/2022

Proposición 7. Si $n|q| \implies cada \ raíz \ de \ z^n - 1 = 0 \ es \ raíz \ de \ z^9 - 1 = 0.$

Demostración. Como $n|q \implies \exists p \in \mathbb{Z}^+ \ni q = np$. Entonces: $z^q - 1 = z^{np} - 1 = (z^n)^p - 1 = (z^n - 1)(1 + z^n + (z^n)^2 + \dots + (z^n)^{p-1}) = 0$.

Teorema 1. Las raíces comunes de $z^m - 1 = 0$ y $z^n - 1 = 0$ son las raíces de $z^d - 1 = 0$, donde d = MCD(m, n).

Demostración. Sea

- [\iff] Como d/n y d|m. Por la propiedad anterior, las raíces de $z^d 1 = 0$ son las raíces de $z^n 1 = 0$ y de $z^m 1 = 0$.
- [⇒] Sea w una raíz de $z^n 1 = 0$ y de $z^m 1 = 0$ ⇒ $w^n = 1$ y $w^m = 1$. Sean $x, y \in \mathbb{R} \ni d = mx + ny$ (por Bezout). Nótese que: $w^{ny} = 1$ y $w^{mx} = 1$ ⇒ $w^{ny+mx} = 1$ ⇒ $w^d = 1$ ⇒ w es raíz de $z^d 1 = 0$.

Presentar la última sección del libro Conway. Francotirador en la esfera que le dispara al polo norte. Mecanismo de compactificación de la esfera de Riemann.

9

1.1. Función analítica.

Definición 2. Sea $f: A \to \mathbb{C}$, donde A es un abierto de \mathbb{C} . La función f es diferenciable (en el sentido de los complejos) en $z_0 \in A$, si existe

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} := f'(z_0)$$

NOTA. 1. La función f es analítica sobre A, si es complejo diferenciable en cada $z \in A$.

- 2. Algunas presentaciones utilizan holomorfa como sinónimo de analítica.
- 3. La frase analítica en z_0 significa que f es analítica en una vecindad de z_0 .

Teorema 2. Si $f'(z_0)$ existe \implies f es continua en z_0 .

Demostración. A probar:

$$\lim_{z \to z_0} f(z) = f(z_0) \iff \lim_{z \to z_0} [f(z) - f(z_0)] = 0$$

Sea

$$\lim_{z \to z_0} [f(z) - f(z_0)] = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \cdot \lim_{z \to z_0} (z - z_0)$$

$$= f'(z_0) \cdot 0 = 0.$$

Proposición 8. Suponga que f y g son funciona analíticas sobre A, donde A es un abierto de \mathbb{C} . Entonces,

1. af + bg es analítica sobre A, y

$$(af + bq)' = af' + bq',$$

 $a, b \in \mathbb{C}$.

2. $f \cdot g$ es analítica sobre A y

$$(fg)' = f'g + fg'$$

3. Si $g(z) \neq 0, \forall z \in A, f/g$ es analítica sobre A y:

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

4. Cualquier polinomio es una función **analítica sobre todo** C (una función entera).

Teorema 3 (Regla de la cadena). Sean $f:A\to\mathbb{C}$ y $g:B\to\mathbb{C}$ analíticas sobre los abiertos A y B de \mathbb{C} , respectivamente; y sea $f(A)\subset B$. Entonces, la composición de funciones $g\circ f:A\to\mathbb{C}\ni (g\circ f)(z)=g(f(z))$ es analítica sobre A, y se cumple:

$$[(g \circ f)(z)]' = [g(f(z))]' = g'(f(z)) \cdot f'(z)$$

Demostración. [Esquema] Si f(z) = w y $f(z_0) = w_0$, entonces:

$$\frac{g(f(z)) - g(f(z_0))}{z - z_0} = \frac{g(f(z)) - g(f(z_0))}{w - w_0} \cdot \frac{f(z) - f(z_0)}{z - z_0}$$

Si $z \to z_0 \implies g'(f(z_0)) \cdot f'(z_0)$.

Nótese que $w = w_0$ no es imposible \implies el argumento puede fallar.

Demostración. Sea $f(z_0) = w_0$, y definamos para $w_0 \in B$:

$$h(w) = \begin{cases} \frac{g(w) - g(w_0)}{w - w_0} - g'(w_0), & w \neq w_0 \\ 0, & w = w_0 \end{cases}$$

$$h(f(z)) = \frac{g(f(z)) - g(f(z_0))}{f(z) - w_0} - g'(w_0), w \neq w_0$$

$$\frac{g(f(z)) - g(f(z_0))}{z - z_0} = [h(f(z)) + g(w_0)] \left[\frac{f(z) - w_0}{z - z_0} \right]$$

Si $z \to z_0$:

$$\frac{d}{dz}g(f(z_0)) = [0 + g'(w_0)]f'(z_0)$$

Clase: 19/07/2022

Definición 3 (Región). Conexo (por trayectorias) y abierto.

Definición 4 (Conexo). No disconexo.

Definición 5 (Disconexo). A es disconexo si existen abierto G y H en la topología $\mathcal{X} \ni G \cap A \neq 0, H \cap A \neq \emptyset, G \cap H = \emptyset, (G \cap A) \cup (H \cap A) = A$.

Definición 6 (Conexo por trayectorias). A es conexo por trayectorias si $\exists \ una \ curva \ \gamma \ni \gamma : [a,b] \to A \ni \gamma(a) = x, \gamma(b) = y, \gamma([a,b]) \subset A, \gamma \ es$ diferenciable.

Proposición 9. Sea $A \subset \mathbb{C}$ una región, y sea $f : A \to \mathbb{C}$ una función analítica. Si f'(z) = 0 sobre A, entonces f(z) es constante sobre A.

Demostración. Sean $z_1, z_2 \in A \implies f(z_1) = f(z_2)$. Como A es conexo por trayectorias \implies existe una curva $\gamma(t)$ que une a z_1 con z_2 . Entonces,

$$\frac{d}{dz}f(\gamma(t)) = f'(\gamma(t)) \cdot \gamma'(t) = 0$$

Si $f = u + iv \implies \frac{d}{dt}u(\gamma(t)) = 0$ y $\frac{d}{dt}v(\gamma(t)) = 0$. $\implies u(\gamma(t)) = \text{const}_1$ y $c(\gamma(t)) = \text{const}_2$. Entonces, f es una función constante.

1.2. Ecuaciones de Cauchy-Riemann

NOTA. 1. Suponga que f(z) es analítica en $z_0 \in \mathbb{C}$. Entonces la medida de error de aproximación de $f'(z_0)$ se define:

$$\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0)$$

- 2. Como f es analítica en z_0 , entonces $z \to z_0 \implies \varepsilon(z) \to 0$.
- 3. Despeje:

$$f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + \varepsilon(z) \cdot (z - z_0),$$

i.e., cerca de z_0 , f(z) puede aproximarse por una función lineal.

Teorema 4 (Ecuaciones de Cauchy-Riemann (CR)). Sea U un abierto de \mathbb{R}^2 y sea u y v funciones de valores reales definidas de U. Entonces, la función

$$f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

es analítica sobre U ssi se safisfacen:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) \wedge \frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y)$$

para cada $(x,y) \in U$. En este caso, se tiene que:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} + i \frac{\partial u}{\partial y}$$

Clase: 28/07/2022

Demostración. Tenemos:

• (\Longrightarrow) Suponemos que f(z)=f(x+iy)=u(x,y)+iv(x,y) es analítica en un abierto de u de $\mathbb C$. Sea $(x_0,y_0)\in u$. Nótese:

$$f'(z_0) \approx \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z},$$

donde $\Delta z = z - z_0$.

1. $z \to z_0$ por el eje real, entonces: sea $z = z_0 + \Delta z = z_0 + \Delta x \implies$

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x_1, y_0) - f(x_0, y_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left[\frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0)}{\Delta x} - \frac{u(x_0, y_0) + iv(x_0, y_0)}{\delta x} \right]$$

$$= \lim_{\Delta x \to 0} \left[\frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + \frac{v(x_0 + \Delta x, y_0)}{\Delta x} \right]$$

$$= \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial u}{\partial x}(x_0, y_0)$$

2. $z \to z_0$ por el eje imaginario, i.e. $z = z_0 + i\Delta y$.

$$f'(z) = \lim_{\Delta y \to 0} \left[\frac{f(x_0 + i(y_0 + \Delta y)) - f(x_0 + iy_0)}{i\Delta y} \right]$$

$$= \lim_{\Delta y \to 0} \left[\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y} + \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y} \right]$$

$$= \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial y}(x_0, y_0)$$

Por lo tanto,

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

у

$$\frac{\partial v}{\partial x}(x_0, y_0) = -\frac{\partial u}{\partial y}(x_0, y_0)$$

• (\iff) Nótese que $u: \mathbb{R}^2 \to \mathbb{R}$ y $v: \mathbb{R}^2 \to \mathbb{R}$. Suponemos que u(x,y) y v(x,y) satisfacen las ecuaciones de Cauchy-Riemann y que sus segundas derivadas son continuas. Entonces:

$$u(x,y) - u(x_0,y_0) = \frac{\partial u}{\partial x}(x_0,y_0) \cdot (x - x_0) + \frac{\partial u}{\partial y}(x_0,y_0) \cdot (y - y_0) + \varepsilon_1(x,y) \|(x - x_0, y - y_0)\|$$

con $\varepsilon_1(x,y) \to 0$, cuando $(x,y) \to (x_0,y_0)$. Además,

$$v(x,y) - v(x_0,y_0) = \frac{\partial v}{\partial x}(x_0,y_0) \cdot (x-x_0) + \frac{\partial u}{\partial y}(x_0,y_0) \cdot (y-y_0) + \varepsilon_2(x,y) \|(x-x_0,y-y_0)\|$$

con
$$\varepsilon_2(x,y) \to 0$$
, cuando $(x,y) \to (x_0,y_0)$. Sea $f(z) = f(x,y) = u(x,y) + iv(x,y)$ y $f(z_0) = f(x_0,y_0) = u(x_0,y_0) + iv(x_0,y_0)$.

$$\implies f(x,y) - f(x_0,y_0) = [u(x,y) - u(x_0,y_0)] + i[v(x,y) - v(x_0,y_0)] \implies \left[\frac{\partial u}{\partial x}(x_0,y_0) \cdot (x-x_0) + \frac{\partial u}{\partial y}(x_0,y_0)(y-y_0) + \varepsilon_1(x,y) \cdot \|(x-x_0,y-y_0)\|\right] + i\left[\frac{\partial v}{\partial x}(x_0,y_0) + \frac{\partial v}{\partial y}(x_0,y_0) \cdot (y-y_0) + \varepsilon_2(x,y) \cdot \|(x-x_0,y-y_0)\|\right] = \left[\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right](x-x_0) + \left[\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right](y-y_0) + \varepsilon_1(x,y) \cdot \|(x-x_0,y-y_0)\| + \varepsilon_2(x,y)\|(x-x_0,y-y_0)\| = \left[\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right](x-x_0) + \left[-\frac{\partial v}{\partial x} + i\frac{\partial u}{\partial x}\right](y-y_0) + \varepsilon_1(x,y)\|(x-x_0,y-y_0)\| + \varepsilon_2(x,y)\|(x-x_0,y-y_0)\| = \left[\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right](x-x_0) + i(y-y_0)] + \varepsilon_1\|(,)\| + \varepsilon_2\|(,)\| = \left[\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial y}\right](z-z_0) + (\varepsilon_1+\varepsilon_2)\|(x-x_0,y-y_0)\|.$$
 Entonces, cuando $z \to z_0$, se tiene que $\varepsilon_1(x,y) + \varepsilon_2(x,y) = \varepsilon(x,y)$. $\Longrightarrow f(z) - f(z_0) = \left[\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial y}\right](z-z_0) + \varepsilon(z)\|(z-z_0)\|$

Clase: 02/08/2022

Ejemplo 12. Sea $f(z) = e^z$; si z = x + iy. $\Longrightarrow f(z) = e^x \cos y + ie^x \sin y \Longrightarrow$

$$\frac{\partial u}{\partial x} = e^x \cos y; \qquad \frac{\partial v}{\partial y} = e^x \cos y$$

$$\frac{\partial u}{\partial y} = -e^x \sin y;$$
 $\frac{\partial v}{\partial x} = e^x \sin y$

 \implies se verifican las ecuaciones de C-R, $\forall (x,y) \in \mathbb{R}^2 \implies f(z) = e^z$ es analítica en todo \mathbb{C} (entera). Entonces

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^x \cos y + i e^x \sin y = e^x (\cos y + i \sin y) = e^x e^{iy} = e^{x+iy} = e^z.$$

Ejemplo 13. Sea f(z) = Re(z); sea $z = x + iy \implies f(x + iy) = \underbrace{x}_{u(x,y)} + i0$.

Entonces:

$$\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = 0.$$

Por lo tanto, $f(z) = \text{Re no es analítica}, \forall z \in \mathbb{C}.$

Ejemplo 14. Sea $f(z) = |z|^2$; sea $z = x + iy \implies f(x + iy) = x^2 + y^2 + i0$. Entonces:

$$\frac{\partial u}{\partial x} = 2x; \qquad \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial u}{\partial y} = 2y; \qquad \frac{\partial v}{\partial x} = 0$$

 $\implies \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, si x = 0; además $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}$, si y = 0. Las ecuaciones de C-R, se cumplen en (0,0).

1.2.1. Ecuaciones de Cauchy-Riemann en polares

Sea $f(z) = u(x, y) + iv(x, y), x = r \cos \theta y y = r \sin \theta.$

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial y}$$
$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}$$

$$\frac{\partial v}{\partial r} = \cos\theta \left(-\frac{\partial u}{\partial y} \right) + \sin\theta \left(\frac{\partial u}{\partial x} \right)$$

$$\frac{\partial v}{\partial r} = -\cos\theta \left(\frac{\partial u}{\partial y}\right) + \sin\theta \left(\frac{\partial u}{\partial x}\right)$$

у

$$\frac{\partial v}{\partial \theta} = -r \sin \theta \left(-\frac{\partial u}{\partial y} \right) + r \cos \theta \left(\frac{\partial u}{\partial x} \right)$$

$$\frac{\partial v}{\partial \theta} = r \sin \theta \left(\frac{\partial u}{\partial y} \right) + r \cos \theta \left(\frac{\partial u}{\partial x} \right)$$

De esto, se tiene:

$$\frac{\partial v}{\partial \theta} = r \frac{\partial u}{\partial r}, \quad \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

$$\implies \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

Problema 2. Pruébese que, si se cumple las ecuaciones de Cauchy-Riemann en polares, entonces

$$f'(z) = e^{-i\theta} \left[\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right]$$

Ejemplo 15. Sea f(z) = 1/z, sea $z = re^{i\theta} \implies f(z) = 1/re^{i\theta} = \frac{1}{r}e^{-i\theta} = \frac{1}{r}\cos\theta - \frac{i}{r}\sin\theta \implies u(r,\theta) = (1/r)\cos\theta \ y \ v = -(1/r)\sin\theta$. Entonces

$$\frac{\partial u}{\partial r} = -\frac{1}{r^2}\cos\theta \qquad \frac{\partial v}{\partial \theta} = -\frac{1}{r}\cos\theta$$
$$\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}$$

$$\frac{\partial v}{\partial \theta} = -\frac{1}{r}\sin\theta$$
 $\frac{\partial v}{\partial r} = \frac{1}{r^2}\sin\theta$

$$-\frac{1}{r}\frac{\partial u}{\partial \theta} = \frac{\partial v}{\partial r}$$

Entonces:

$$f(z) = \frac{1}{z},$$

es analítica, $\forall z \in \mathbb{C} - \{0\}$. Entonces:

$$f'(z) = e^{-i\theta} \left[\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right]$$

$$= e^{-i\theta} \left[-\frac{1}{r^2} \cos \theta + i \frac{1}{r^2} \sin \theta \right]$$

$$= -\frac{e^{-i\theta}}{r^2} e^{-i\theta}$$

$$= -\frac{e^{-2i\theta}}{r^2}$$

$$= -\frac{1}{(re^{i\theta})^2}$$

$$= -\frac{1}{z^2}$$

NOTA. Sea f = u + iv analítica en una región $D \subseteq \mathbb{C} \implies$ se cumples las ecuaciones de Cauchy-Riemman.

$$\frac{\partial u}{\partial x} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\frac{\partial^2 u}{\partial x^2} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

(i.e. u(x,y) es solución de la ecuación de Laplace en dos variables. u(x,y) es una función armónica). Similarmente, v(x,y) es una función armónica.

Ejemplo 16. Sabemos que $f(z) = e^z$ es analítica en todo $\mathbb{C} \implies u(x,y) = e^x \cos y \ y \ v(x,y) = e^x \sin y \ son \ armónicas.$

NOTA. Suponga que u(x,y) (dada) es armónica. Se quiere encontrar una función v(x,y) (?) tal que

- 1. v(x,y) es armónica.
- 2. f = u + iv es analítica.

A la función v(x,y) se le llama conjugada armónica de u(x,y).

Ejemplo 17. Sea $u(x,y) = xy^3 - x^3y$. Nótese que u es una función armónica. Como

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \implies$$

 $si\ u = xy^3 - x^3y$

$$\implies \frac{\partial u}{\partial x} = y^3 - 3x^2y = \frac{\partial v}{\partial y}$$

Ahora

$$v(x,y) = \int (y^3 - 2x^2y)dy = \frac{y^4}{3} - \frac{3}{2}x^2y^2 + \phi(x)$$

Por otra parte

$$\frac{\partial v}{\partial x} = -3xy^2 + \phi'(x) = -\frac{\partial u}{\partial y}$$

Entonces

$$-3xy^2 + \phi'(x) = -3x^2y^2 + x^3$$

$$\phi'(x) = x^3 \implies \phi(x) = \frac{x^4}{4}$$

Entonces

$$v(x,y) = \frac{y^4}{4} - \frac{3}{2}x^2y^2 + \frac{x^4}{4}$$

Clase: 11/08/2022

2. Topología General

Definición 7. Sea X un conjunto no vacío. Una clase $\tau \subseteq P(X)$ es una **topología** sobre X si:

- 1. $\Phi, X \in \tau$
- 2. La unión de cualquier clase de elementos de τ es un elemento de τ .
- 3. La intersección de cualquier clase finita de miembros de τ está en τ .

NOTA. 1. Un espacio topológico es el par (X, τ)

- 2. A los miembros de τ se les llama abiertos de X.
- 3. A los elementos de X se les llama puntos.

Ejemplo 18. Sea X un espacio métrico, y sea τ la clase de todos los subconjuntos de X que son abiertos en el sentido analítico (términos de la métrica generando bolas abiertas, unión de bolas abiertas). Esta topología, se llama topología usual del espacio métrico.

Ejemplo 19. Sea $X \neq \emptyset$ y $\tau = \underbrace{P(X)}_{topología\ discreta}$, el potencia de $X. \implies (X, P(X))$

es un espacio discreto. Sea

$$A = \{1, 2, 3\}$$

$$\implies \tau = \{\varnothing, A, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$$

Ejemplo 20. Sea $X \neq \emptyset$ y $\tau = \{\emptyset, X\}$. \Longrightarrow (X, τ) es un espacio indiscreto.

$$\bigcup \varnothing = \varnothing; \qquad \bigcap \varnothing = X$$

Ejemplo 21. $Sea X = \{a, b, c\} \implies$

1.
$$\tau_1 = \{X, \emptyset, \{a\}\}$$

2.
$$\tau_2 = \{X, \emptyset, \{b, c\}\}$$

NOTA. 1. Un espacio topológico es metrizable si dada la topología del espacio, existe al menos una métrica que genera a dicha topología.

Proposición 10. $Si X es metrizable \implies X es métrico.$

2. Existen espacios topológicos que no son metrizables \implies teoría topológica es más amplia que la analítica.

NOTA. ¿Se hereda la propiedad de ser espacio topológico? No.

Ejemplo 22. Sea Y un subconjunto de una topología. Para que Y sea espacio topológico:

- 1. Se dota a Y de una topología propia.
- 2. Se dota a Y de la topología relativa:

$$\tau_y = \{G \cap Y : \forall G \in \tau\}$$

 $\implies Y$ es un subespacio de X.

NOTA. Dado el espacio topológico (X, τ) y $Y \subseteq X$, probemos que $\tau_y = \{Y \cap G : \forall G \in \tau\}$ es topología para Y.

- 1. $Como \varnothing, X \in \tau \implies \varnothing \cap Y = \varnothing \in \tau_y \ y \ X \cap Y = Y \in \tau_y \implies \varnothing, Y \in \tau_y.$
- 2. Sea $\{H_i\}_{i\in Z}$, una clase cualquier de elementos de $\tau_y \implies \exists G_i \in \tau \ni H_i = Y \cap G_i, \forall i.$ Entonces, $\bigcup_i H_i = \bigcup_i [Y \cap G_i] = Y \cap [\bigcup_i G_i] \in \tau_y$
- 3. Sean $H_1, H_2 \in \tau_y \implies H_i = Y \cap G_i, G_i \in \tau, i = 1, 2$. Entonces:

$$H_1 \cap H_2 = (Y \cap G_1) \cap (Y \cap G_2) = Y \cap (G_1 \cap G_2) \in \tau_y$$

Por lo tanto, τ_y es topología para Y.

Definición 8. Sean (X, τ) y (Y, τ') espacios topológicos y f un mapeo de X en Y. Entonces, f es:

1. Continuo, si $\forall G \in \tau'$, se tiene que $f^{-1}(G) \in \tau$

2. Mapeo abierto, si $\forall H \in \tau$, se tiene $f(H) \in \tau'$

NOTA. Cualquier imagen f(X), donde X es espacio topológico y f es un mapeo continuo, es una imagen continua de X.

Definición 9. Un homeomorfismo es un mapeo entre espacios topológicos que es biyectivo, continuo y abierto (bicontinuo).

NOTA. 1. Si existe un homeomorfismo entre los espacios topológicos X y Y, se dice que estos espacios son homeomorfos.

- 2. Dos espacios homeomorfos se diferencian en la naturaleza de sus puntos y son topológicamente indistinguibles.
- 3. "Ser homeomorfo a. es una relación de equivalencia de la clase de espacios topológicos.

Definición 10. Una propiedad topológica si, cuando la tiene un espacio X, la tiene también cualquier imagen homeomorfa de X.

$$f:(X,\tau)\to (Y,\tau')$$

NOTA. El objecto de estudio de la topología (como rama de la matemática, es encontrar y caracterizar las propiedades topológicas.)

Definición 11. Un conjunto F es cerrado en el espacio (X, τ) , si $F^c \in \tau$.

Proposición 11. La intersección de cualesquiera dos topologías de X es una topología de X.

Demostración. Sean τ_1, τ_2 topologías sobre X.

- 1. $\emptyset, X \in \tau_1 \text{ y a } \tau_2 \implies \emptyset, X \in \tau_1 \cap \tau_2.$
- 2. Sea $\{G_i\}_{i\in I}$ una colección de subconjuntos de $\tau_1 \cap \tau_2 \implies G_i \in \tau_1 \cap \tau_2, \forall i \implies G_i \in \tau_1 \text{ y } G_i \in \tau_2, \forall i \implies \cup_i G_i \in \tau_1 \text{ y } \cup_i G_i \in \tau_2 \implies \cup_i G_i \in \tau_1 \cap \tau_2.$

3. Si $G_1, G_2 \in \tau_1 \cap \tau_2 \implies G_1, G_2 \in \tau_1 \text{ y } G_1, G_2 \in \tau_2 \implies G_1 \cap G_2 \in \tau_1 \text{ y}$ $G_1 \cap G_2 \in \tau_2 \implies G_1 \cap G_2 \in \tau_1 \cap \tau_2 \implies \tau_1 \cap \tau_2 \text{ es topología sobre } X.$

NOTA. Sea $X = \{a, b, c\}$ y sean las topologías $\tau_1 = \{\emptyset, X, \{a\}\}$ y $\tau_2 = \{\emptyset, X, \{a\}\}$ $\Longrightarrow \tau_1 \cup \tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ no es topología sobre X.

Definición 12. Una sucesión (a_n) de puntos del espacio topológico (X, τ) converge a un punto $b \in X$ (i.e. lím $a_n = b$) si y solo si, $\forall G \in \tau$ que contiene a b, $\exists N \in \mathbb{Z}^+ \ni si \ n > N \implies a_n \in G$.

Ejemplo 23. Sea (X, τ) un espacio indiscreto y (a_n) una sucesión en X.

Clase: 23/08/2022

3. Sección en \mathbb{C}

NOTA. 1. Una curva o contorno en \mathbb{C} es un mapeo continuo:

$$\gamma: [a,b] \to \mathbb{C}$$

- 2. Una curva en C^1 -por tramos (primera derivada continua) si existe una partición $\{a=a_1 < a_2 < \cdot < a_n = b\}$ de $[a,b] \ni$
 - a) γ es diferenciable sobre (a_i, a_{i+1})
 - b) γ' es continua sobre $[a_i, a_{i+1}]$

En esta teoría todas las curvas son C^1 -por tramos.

Definición 13. Sea $h:[a,b]\to\mathbb{C}\ni h(t)=u(t)+iv(t)$.

$$\implies \int_a^b h(t)dt := \int_a^b u(t)dt + i \int_a^b v(t)dt$$

Definición 14. Sea f una función continua y definida sobre un abierto $A \subseteq \mathbb{C}$ y $\gamma: [a,b] \to \mathbb{C}$ una curva C^1 por tramos tal que $\gamma([a,b]) \subset A$, entonces:

$$\int_{\gamma} f = \int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt$$

NOTA. 1. Sea $\gamma:[a,b] \to \mathbb{C}$ una curva, $t \to \gamma(t)$. $\Longrightarrow -\gamma:[a,b] \to \mathbb{C} \ni (-\gamma)(t) = \gamma(a+b-t) \Longrightarrow -\gamma$ es la curva opuesta de γ .

2. Sea $\gamma_1: [a,b] \to \mathbb{C} \ y \ \gamma_2: [b,c] \to \mathbb{C} \ni$

$$\gamma_1(b) = \gamma_2(b)$$

$$\implies \gamma_1 + \gamma_2 : [a, c] \to \mathbb{C} \ni$$

$$(\gamma_1 + \gamma_2)(t) = \begin{cases} \gamma_1(t), & t \in [a, b] \\ \gamma_2(t), & t \in [b, c] \end{cases}$$

curva suma de γ_1 con γ_2 .

Proposición 12. 1. Sea $\int_{\gamma} [c_1 f + c_2 g] = c_1 \int_{\gamma} f + c_2 \int_{\gamma} g$, f, g funciones continuas, γ es una curva de C^1 por tramos. Es decir, la integral de línea es lineal.

$$2. \int_{-\gamma} f = -\int_{\gamma} f$$

$$3. \int_{\gamma_1 + \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$$

Definición 15. Sea $\gamma:[a,b]\to\mathbb{C}$ una curva C^1 -por tramos. Una curva suave (C^1-) por tramos $\tilde{\gamma}:[\tilde{a},\tilde{b}]\to\mathbb{C}$ es una reparametrización de γ si \exists una función $C^1,\alpha:[a,b]\to[\tilde{a},\tilde{b}]\ni\alpha'(t)>0, \alpha(a)=\tilde{a},\alpha(b)=\tilde{b}$ y $\gamma(t)=\tilde{\gamma}(\alpha(t))$.

Proposición 13. Si $\tilde{\gamma}$ es reparametrización de γ , entonces

$$\int_{\gamma} f = \int_{\tilde{\gamma}} f,$$

para cualquier función f continua y definida sobre un abierto que contenga a $\gamma([a,b])$.

 $\begin{array}{ll} \textbf{\textit{Demostración.}} \ \operatorname{Sea} \ \int_{\gamma} f = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt, \ \operatorname{donde} \ \gamma'(t) = \frac{d\gamma}{dt} = \frac{d\tilde{\gamma}(\alpha(t))}{dt} = \\ \tilde{\gamma}'(\alpha(t)) \frac{d\alpha(t)}{dt} \implies \int_{\gamma} f = \int_{a}^{b} f(\tilde{\gamma}(\alpha(t))) \tilde{\gamma}'(\alpha(t)) \frac{d(\alpha(t))}{dt} dt \implies \operatorname{sea} \ \alpha(t) = s, \ \operatorname{tal} \ \operatorname{que} \\ \int_{\tilde{a}}^{\tilde{b}} f(\tilde{\gamma}(s)) \tilde{\gamma}'(s) ds = \int_{\tilde{\gamma}f}. \end{array}$

Proposición 14. Sea f una función continua sobre un abierto $A \subseteq \mathbb{C}$ y γ una curva C^1 -por tramos sobre [a,b]. Si $\exists M \geq 0 \ni |f(z)| \leq M, \forall z \in A$, entonces

$$\left| \int_{\gamma} f \right| \le M \cdot l(\gamma),$$

donde $l(\gamma)$ es la longitud de γ sobre [a,b]. $(\int_a^b (\gamma'(t))dt)$

Demostración. 1. Sea $g:[a,b] \to \mathbb{C} \ni g(t) = u(t) + iv(t) \implies \int_a^b g(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt \implies \operatorname{Re} \int_a^b g(t)dt = \int_a^b u(t)dt = \int_a^b \operatorname{Re} g(t)dt.$

- 2. A probar: $\left| \int_a^b g(t)dt \right| \leq \int_a^b |g(t)|dt$. Sea $\int_a^b g(t)dt = re^{i\theta}, r, \theta$ fijos, r > 0. $\implies r = e^{-i\theta} \int_a^b g(t)dt = \int_a^b e^{-i\theta} g(t)dt \implies r = \text{Re} \int_a^b e^{-i\theta} g(t)dt = \int_a^b \text{Re}[e^{-i\theta}g(t)]dt \leq \int_a^b |e^{-i\theta}g(t)|dt = \int_a^b |e^{-i\theta}| \cdot |g(t)|dt = \int_a^b |g(t)|dt \implies |r| = r = \left| e^{-i\theta} \int_a^b g(t)dt \right| = |e^{-i\theta}| \cdot |\int_a^b g(t)dt = |\int_a^b g(t)dt | \leq \int_a^b |g(t)|dt.$
- 3. $\left| \int_{\gamma} f \right| = \left| \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt \right| \leq \int_{a}^{b} \left| f(\gamma(t)) \cdot \gamma'(t) \right| dt = \int_{a}^{b} \left| f(\gamma(t)) \right| \cdot \left| \gamma'(t) \right| dt \leq \int_{a}^{b} M \cdot \left| \gamma'(t) \right| dt = M \int_{a}^{b} \left| \gamma'(t) \right| dt = M \cdot l(\gamma).$

Proposición 15 (Teorema fundamental del cálculo para integrales de línea). Supóngase que $\gamma:[a,b] \to \mathbb{C}$ es C^1- por tramos y que F está definida y es analítica sobre el abierto A que contiene a $\gamma([a,b])$. Suponga que F' es continua (es redundante). $\Longrightarrow \int F'(t)dt = F(\gamma(b)) - F(\gamma(a))$. **Demostración.** Sea $F(\gamma(t)) = g(t) = u(t) + iv(t) \implies F'(\gamma(t)) \cdot \gamma'(t) = g'(t) = u'(t) + iv'(t)$.

$$\int_{\gamma} F'(t)dt = \int_{a}^{b} F'(\gamma(t)) \cdot \gamma'(t)dt$$

$$= \int_{a}^{b} [u'(t) + iv'(t)]dt$$

$$= \int_{a}^{b} u'(t)dt + i \int_{a}^{b} v'(t)dt$$

$$= u(t)|_{a}^{b} + iv(t)|_{a}^{b}$$

$$= u(b) - u(a) + i[v(b) - v(a)]$$

$$= [u(b) + iv(b)] - [u(a) + iv(a)]$$

$$= g(b) - g(a)$$

$$= F(\gamma(b)) - F(\gamma(a))$$

Clase: 25/08/2022

Proposición 16. Sea f una función definida y analítica sobre una región (Dominio: abierto y conexo) $G \subset \mathbb{C}$, y si $f'(z) = 0, \forall z \in G$, entonces f es constante.

Demostración. Sea $z_0 \in G$ un punto en G (fijo) y sea cualquier $z \in G \implies$ por el T.F.C.

$$\int_{\gamma} f'(z)dz = f(z) - f(z_0),$$

donde γ es una curva que une z_0 con z. \Longrightarrow como $f'(z) = 0, \forall z \in \mathbb{C}$ \Longrightarrow $\int_{\gamma} f'(z) dx = 0 \Longrightarrow f(z) = f(z_0), \forall z \in G \Longrightarrow f$ es constante.

Ejemplo 24. 1. Sean $z_1 = 1, z_0 = -1$ y $f(z) = 3z^2$. $\Longrightarrow \int_{\gamma} f(z)dz = \int_{\gamma} 3z^2 dz = z^3|_{z_0}^z = 1^3 - (-1)^3 = 2$. Para cualquier curva γ .

2. Sea
$$z_1 = -1, z_0 = 1$$
 y $f(z) = 1/z$.

a) Considere γ : el semicirculo unitario superior. Sea $\gamma(t)=e^{it}=\cos t+i\sin t, \quad 0\leq t\leq \pi$

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{\pi} \frac{1}{e^{it}} \cdot i e^{it} dt = \pi i$$

b) Considere γ : el semicirculo unitario inferior. Se
a $\gamma(t)=e^{-it}, \quad 0 \le t \le \pi$

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{\pi} \frac{1}{e^{-it}} \cdot (-i)e^{-it} dt = -\pi i$$

Teorema 5 (Independencia de trayectorias). Suponga que f es una función continua sobre una región $G \subseteq \mathbb{C}$. Los enunciados siguientes son equivalentes:

1. Las integrales son independientes de la curva: si $z_0, z_1 \in G$ y si γ_1, γ_2 son curvas de z_0 a z_1 sobre G, entonces:

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

2. Las integrales sobre las curvas cerradas son cero. Si γ es curva cerrada en G, entonces

$$\int_{\gamma} f = 0$$

3. Existe una antiderivada para f sobre G. Existe una función F definida g analítica sobre $G \ni$

$$F'(z) = f(z), \forall z \in G$$

Ejemplo 25. 1. Calcule $\int_{\gamma} x dz$, donde γ es el cuadrado unitario.

$$\begin{split} \int_{\gamma} x dz &= \int_{\gamma} \text{Re}(z) dz \\ &= \int_{\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4} \text{Re}(z) dz \\ &= \int_{\gamma_1} \text{Re}(z) dz + \int_{\gamma_2} \text{Re}(z) dz + \int_{\gamma_3} \text{Re}(z) dz + \int_{\gamma_4} \text{Re}(z) dz \end{split}$$

Un caso de parametrización:

$$\gamma_1: [0,1] \to \mathbb{C} \ni \gamma_1(t) = t + 0i$$

$$\gamma_2: [1,2] \to \mathbb{C} \ni \gamma_2(t) = 1 + i(t-1)$$

$$\gamma_3: [2,3] \to \mathbb{C} \ni \gamma_3(t) = (3-t) + i$$

$$\gamma_1: [3,4] \to \mathbb{C} \ni \gamma_4(t) = 0 + (4-t)i$$

Tenemos las integrales:

$$\int_{\gamma_1} f = \int_0^1 z \cdot 1 dt = \frac{1}{2}$$

$$\int_{\gamma_2} f = \int_1^2 1 \cdot i dt = i$$

$$\int_{\gamma_3} f = \int_2^3 (3 - t)(-1) dt = -\frac{1}{2}$$

$$\int_{\gamma_4} f = \int_3^4 0 dt = 0$$

Entonces la suma es i.

Ejemplo 26. Calcule $\int_{\gamma} e^z dz$, donde γ es la parte del circulo unitario que une 1 con i.

- 1. T.F.C $\implies \int_{\gamma} e^z dz = e^i e^1$
- 2. Por definición

$$\int_{\gamma} e^z dz = \int_0^{\pi/2} e^{\cos t + i \sin t} \left[-\sin t + \cos t \right] dt$$

Ejemplo 27. Calcule $\int_{\gamma} \frac{dz}{z-a}$, donde $\gamma(t) = a + re^{it}$, $0 \le t \le 2\pi$

$$\int_{\gamma} \frac{dz}{z - a} = \int_{0}^{2\pi} \frac{rie^{it}}{a + re^{it} - a} dt$$
$$= \int_{0}^{2\pi} i dt$$
$$= 2\pi i$$

Ejemplo 28. Encuentre un número $M \ni \left| \int_{\gamma} \frac{dz}{z^2+2} \right| \le M$, donde γ es el semicirculo unitario superior.

Solución. Si $|f(z)| = \left|\frac{1}{z^2+z}\right| \le K, K \ge 0$, entonces:

$$\left| \int_{\gamma} \frac{dz}{z^2 + z} \right| \le K \cdot l(\gamma)$$

Sea

$$|z^2 + 2| = |2 + z^2| \ge |2| - |z^2| = 2 - |z|^2 = 2 - 1 = 1 \implies \left|\frac{1}{z^2 + 2}\right| \le 1$$

Además,
$$l(\gamma) = \pi(1) = \pi$$
.

$$\implies \left| \frac{dz}{z^2 + 2} \right| \le \pi$$

Teorema 6 (De Cauchy - Versión intuitiva). Suponga que f es analítica sobre y en el interior de una curva cerrada y simple γ . Entonces,

$$\int_{\gamma} f = 0$$