

CREDIT CARD FRAUD DETECTION

Deteção de Fraude 2024 Matilde Isabel da Silva Simões 202108782

COMPREENSÃO DO TEMA

Este problema tem como objetivo prever se uma transação de cartão de crédito é **legítima** ou **fraudulenta**, utilizando um *dataset*.

O objetivo do modelo machine learning, especializado em classificação binária, consiste em classificar cada transação num dos dois grupos mutuamente exclusivos:

Legítima: Transação autorizada, realizada pelo titular do cartão.

Fraudulenta: Transação não autorizada, efetuada por terceiros.

Será treinado utilizando uma abordagem de supervised learning.

COMPREENSÃO DOS DADOS

index	int64
<pre>trans_date_trans_time</pre>	object
cc_num	int64
device_os	object
merchant	object
amt	float64
trans_num	object
unix_time	int64
is_fraud	int64
first	object
last	object
gender	object
street	object
city	object
zip	float64
job	object
dob	object
lat	float64
long	float64
city_pop	float64
state	object
category	object
merch_lat	float64
merch_long	float64
merchant_id	float64

index	-int64
<pre>trans_date_trans_time</pre>	object
cc_num	-int64
device_os	object
merchant	object
amt	float64
trans_num	object
unix_time	int64
is_fraud	-int64
first	object
last -	object
gender	object
street	object
city	object
zip	-float64
job	object
dob	object
lat	float64
long	float64
city pop	float64
state	object
category	object
merch lat	float64
merch long	float64
merchant_id	float64

Remover

Ligadas a localização Mudança de tipo

	Não	Fraude	Fraude
day_of_week			
Monday		4315	93
Tuesday		4169	92
Friday		4162	92
Thursday		4251	86
Wednesday		4081	77
Saturday		4242	71
Sunday		4209	60

Period of Day: Madrugada

Total Frauds: 186

Total Transactions: 10074

Fraud Rate: 1.85%

Period of Day: Manhã

Total Frauds: 128

Total Transactions: 6259

Fraud Rate: 2.05%

Period of Day: Noite

Total Frauds: 149

Total Transactions: 7500

Fraud Rate: 1.99%

Period of Day: Tarde

Total Frauds: 108

Total Transactions: 6167

Fraud Rate: 1.75%

Age Category: Adult Total Frauds: 192

Total Transactions: 9875

Fraud Rate: 1.94%

Min Age: 37.0 Max Age: 55.0

Age Category: Middle Age

Total Frauds: 209

Total Transactions: 11849

Fraud Rate: 1.76%

Min Age: 56.0 Max Age: 74.0

Age Category: Senior

Total Frauds: 0

Total Transactions: 10

Fraud Rate: 0.00%

Min Age: nan Max Age: nan

Age Category: Young Adult

Total Frauds: 170

Total Transactions: 8266

Fraud Rate: 2.06%

Min Age: 18.0 Max Age: 36.0

index	29970
trans_date_trans_time	29868
cc_num	1101
device_os	5
merchant	101
amt	22615
trans_num	29470
unix_time	29959
is_fraud	2
first	108
last	108
gender	2
street	102
city	6
zip	1077
job	7
dob	1062
lat	5
long	5
city_pop	5
state	5
category	5
merch_lat	98
merch_long	100
merchant_id	100

index	0
trans_date_trans_time	100
cc_num	0
device_os	17964
merchant	0
amt	100
trans_num	0
unix_time	0
is_fraud	0
first	10
last	10
gender	10
street	10
city	10
zip	216
job	216
dob	10
lat	19980
long	19980
city_pop	19980
state	19980
category	599
merch_lat	599
merch_long	10
merchant id	10

index
trans_date_trans_time
cc_num
device_os
merchant
amt Valores Duplicados!
trans_num
<u>unix time</u>
is_fraud
first
lasi
gender
street
city
zip
job
dob
lut
long
city_pop
state
category
merch_lat
mer ch_long
merchant id

PREPARAÇÃO DOS DADOS

- Tirar duplicados
- Feature Engineering
- Correr o teste de Shapiro-Wilk para ver a distribuição das variáveis - MinMaxScale
- Dividir em treino e teste (com stratify e shuffle) e normalização
- O Usar o kNN de R para imputar os valores no treino
- O Usar a **média** e a **moda** para imputar no **teste**
- Transformar para variáveis numéricas

						Faixas etárias	Transações feitas até ao momento	Com quar comercianto transação a moment	es fez té ao	Tempo que passou entre a última transaçã	
device_os	amt	gender	city	job	category	age_category	transactions_count	unique_merchar	nts_count	time_since_last	day_of_week_sin
other	0.503056	М	Test City	Doctor	Travel	Adult	0.285714		1.0	0.010520	0.277479
macOS	0.743241	М	Los Angeles	Clerk	Travel	Adult	0.000000		1.0	0.265077	0.277479
Linux	0.633570	М	Test City	Clerk	Apparel	Middle Age	0.000000		1.0	0.019855	1.000000
macOS	0.567772	F	Los Angeles	Doctor	Travel	Adult	0.000000		1.0	0.000000	1.000000
macOS	0.422648	М	Test City	Engineer	Groceries	Adult	0.428571		1.0	0.003864	1.000000
			Diag	day_of	f_week_cos	period_of_day_sir	n period_of_day_co	s city_has_info	Se e	existe	
			Dias c semar		0.000000	1.0	⁰ Período ^{0.}	5 0	infor	informação sobre a cidade	
					0.000000	0.0	$_0$ do dia $_{0.1}$	5 1	SOUTE	a cidade	
					0.356896	0.0	0	5 0			
					0.356896	0.5	5 1.0	0 1			
					0.356896	0.0	0	5 0			

MODELAÇÃO

- Usado pipeline
- Cross validation
- Usado grid search nalguns modelos
- Smote para fazer oversampling com Tomek links para undersampling informado
- o Retiradas métricas como *AUC*, *f1*, precisão e *recall*

MODELOS IMPLEMENTADOS

DECISION TREE (SEM GRIDSEARCH)

DECISION TREE (COM GRIDSEARCH)

NEURAL NETWORK

SVM

RANDOM FOREST (COM GRIDSEARCH)

LOGISTIC REGRESSION (COM GRIDSEARCH) AVALIAÇÃO

Local

Modelo	Precision	Recall	F1-Score	AUC
Decision Tree (sem GridSearch)	0.90%	1.40%	1.10%	49.20%
Decision Tree (com GridSearch)	0.78%	0.70%	0.74%	49.09%
Neural Network	1.30%	0.70%	0.91%	55.32%
SVM	0.00%	0.00%	0.00%	54.97%
Random Forest (com GridSearch)	0.00%	0.00%	0.00%	54.28%
Logistic Regression (com GridSearch)	0.00%	0.00%	0.00%	50.26%

Kaggle

Nome do Teste	Modelo Utilizado	Valor Obtido
teste1.csv	Árvore de Decisão Sem GridSearch	0.50345
teste2.csv	SVM Sem GridSearch	0.54154
teste3.csv	Logistic Regression Com GridSearch	0.48420
teste4.csv	Neural Network Sem GridSearch	0.63801
teste5.csv	Random Forest Com GridSearch	0.59903

A **Rede Neural** foi o modelo com melhor AUC, apesar do desempenho limitado nas outras métricas.

O desequilíbrio extremo do dataset afetou a capacidade de classificação de vários modelos, mesmo com **SMOTE-Tomek Links**.

Os resultados do **clustering** podem ser incorporados como novas variáveis nos modelos para melhorar a capacidade preditiva e identificar grupos com maior propensão a fraudes.

CONCLUSÕES, LIMITAÇÕES E TRABALHO FUTURO