Dispense di Geometria I Seconda Parte

Federico De Sisti

1 Prefazione

Scrivo queste dispense in vista del secondo esonero dato il mio (potentissimo) 21 al primo. Governo ladro speriamo che il secondo vada meglio

L'utilizzo di queste dispense è solamente riservato a chi mi sta particolarmente simpatico quindi siate lieti di essere in questa cerchia.

Ciò che è scritto in queste dispense viene solamente dalle lezioni del Papi del 2024, potrei aggiungere qualcosa del libro di Edoardo Sernesi (mio padre). Detto ciò cominciamo subito questo magico viaggio!

1.1 Prodotti Hermitiani

V spazio vettoriale complesso

Definizione 1 (Funzione sesquilineare)

Una funzione sesquilineare su V è un'applicazione $h: V \times V \to \mathbb{C}$ che è lineare nella prima variabile e antilineare nella seconda, cioè

$$h(v + v', w) = h(v, w) + g(v', w)$$

$$h(\alpha v, w) = \alpha h(v, w)$$

$$h(v, w + w') = h(v, w) + h(v, w')$$

$$h(v, \alpha w) = \overline{\alpha}h(v, w)$$

per ogni scelta di $v, w, v', w' \in V$ e $\alpha \in \mathbb{C}$

Definizione 2 (Forma hermitiana)

Una forma sesquilineare si dice hermitiana se

$$h(v, w) = \overline{h(w, v)}.$$

Osservazione

Se h è hermitiana, $h(v,v) \in \mathbb{R}$, infatti deve risultare $h(v,v) = \overline{h(v,v)}$

Definizione 3 (Forma antihermitiana)

Una forma sesquilineare si dice antihermitiana se

$$g(v, w) = -\overline{h(v, w)}.$$

Osservazione

In questo caso $h(v,v) \in \sqrt{-1}\mathbb{R}$

Definizione 4

Una forma hermitiana si dice semidefinita positiva se

$$h(v,v) \ge 0 \quad \forall v \in V.$$

Definizione 5

Una forma hermitiana si dice definita positiva se

$$h(v, v) > 0 \quad \forall v \neq 0.$$

ovvero

$$(h(v, v) \ge 0 \ e \ h(v, v) = 0 \Rightarrow v = 0).$$

Esempio

$$V=\mathbb{C}^n$$

$$h\left(\left(\begin{array}{c} z_1\\ \vdots\\ z_n \end{array}\right), \left(\begin{array}{c} w_1\\ \vdots\\ w_n \end{array}\right)\right) = \sum_{i=1}^n z_i \overline{w_i}.$$

questo viene chiamato prodotto hermitiano standard su \mathbb{C}^n

$$h\left(\left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right), \left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right)\right) = \sum_{i=1}^n z_i \overline{z_i} = \sum_{i=1}^n |z_i|^2$$

Dato V, consideriamo una base $B = \{v_1, \dots, v_n\}$ di V.

Se h è una forma heritiana, diciamo che $H = (h_{ij}) = h(v_i, v_j)$ è la matrice che rappresenta h nella base B.

rappresenta
$$h$$
 nella base B .
se $u = \sum_{i=1}^{n} x_i v_i$, $w = \sum_{i=1}^{n} y_i v_i$
 $h(u, w) = h(\sum_{i=1}^{n} x_i v_i, \sum_{i=1}^{n} y_i v_i) =$
 $= \sum_{i=1}^{n} x_i h_i(v_i, \sum_{i=1}^{n} y_i v_i) =$
 $= \sum_{i=1}^{n} x_i \overline{y_i} h(v_i, v_i) =$
 $= x^t H \overline{y}$

Dato che h è hermitiana, abbiamo $h(v,w) = \overline{h(w,v)}$ da cui segue

$$\begin{split} X^t H Y &= \overline{Y^t H X} \\ &= \overline{Y}^t \overline{H X} \\ &= (\overline{Y}^t \overline{H X})^t \\ &= \overline{X}^t \overline{H}^t \overline{Y} \quad \Rightarrow \quad H = \overline{H}^t \end{split}$$

Definizione 6

Una matrice $M \in M_n(\mathbb{C})$ si dice hermitiana se

$$H = \overline{H}^t$$
.

2 Operatori Unitari

Definizione 7

Sia $T \in End(V)$ questo si dice unitario se

$$\langle T(v), T(w) \rangle = \langle v, \rangle.$$

Lemma 1

 $T \in End(V)$ operatore unitario

- 1. Gli autovalori hanno modulo 1
- 2. Autospazi relativi ad autovalori distinti sono ortogonali

Dimostrazione

1. Sia v un autovettore di autovalore λ

$$\langle v, v \rangle = \langle Tv, Tv \rangle = \langle tv, tv \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 \langle v, v \rangle.$$

 $v \neq 0 \Rightarrow |\lambda|^2 = 1 \Rightarrow |\lambda| = 1.$

2. Sia $v \in V_{\lambda}$, $w \in V_{\mu}$ $\lambda \neq \mu$

$$\langle v, w \rangle = \langle Tv, Tw \rangle = \langle \lambda v, \mu w \rangle = \lambda \overline{\mu} \langle v, w \rangle.$$

Se
$$\langle v, w \rangle \neq 0 \Rightarrow \lambda \overline{\mu} = 1$$
 Per il punto 1.

$$\lambda \overline{\lambda} = 1 \quad \Rightarrow \quad \overline{\lambda} = \overline{\mu} \quad \Rightarrow \quad \lambda = \mu \quad assurdo.$$

Definizione 8

Diciamo che $U \in M_n(\mathbb{C})$ è unitaria se

$$U\overline{U}^t = Id.$$

Proposizione 1

 $T \in End(V)$ è unitario se e solo se la sua matrice in una base ortonormale è unitaria

Dimostrazione

Sia $B = \{v_1, \dots, v_n\}$ una base ortonormale di V

$$\delta_{ij} = \langle v_i, v_j \rangle = \langle Tv_i, Tv_j \rangle = \langle Ae_i, Ae_j \rangle = e_i^t A^t \overline{A} e_j = A_i^t \overline{A}_j$$

dove abbiamo posto $A = (T)_B e \{e_i\} \ e$ una base di \mathbb{C}^n .

Abbiamo ottenuto quindi $A_i^t \overline{A}_j$ che è il prodotto hermitiano standard tra la i-esima e la j-esima colonna di A

Teorema 1

Sia $T \in End(V)$ un operatore unitario Esiste una base standard di autovettori per T

In particolare, per ogni matrice unitaria $A \in U(n)$ esiste $M \in U(n)$ tale che $M^{-1}AM$ è diagonale a volte si pone

$$A^* = \overline{A}^t$$
.

Aunitario $AA^{\ast}=Id$

A hermitiano $A = A^*$

A antihermitiano $A = -A^*$

Definizione 9 (Operatore Aggiunto)

Dato $T \in End(V)$, esiste unico $S \in End(V)$ tale che

$$\langle Tu, w \rangle = \langle u, Sw \rangle \quad \forall u, w \in V.$$

Tale operatore è detto aggiunto hermitiano di T e denotato con T^*

Definizione 10 (operatore normale)

Sia V uno spazio vettoriale complesso dotato di prodotto hermitiano (forma hermitiana definita positiva), un operatore $L \in End(V)$ è normale se

$$L\circ L^*=L^*\circ L.$$

Osservazione

L unitario, hermitiano, antihermitiano $\Rightarrow L$ diagonale

Teorema 2

Sono equivalenti le seguenti affermazioni:

- 1) L è normale
- 2) esiste una base ortonormale di V formata da autovettori di L

3 Diangonalizzazione unitaria di operatori normali

 $(\mathbb{C}^n,$ prodotto hermitiano standard) Indichiamo $M^\star = \overline{M}^t$

Definizione 11

Mè normale se $MM^* = M^*M$

Nota

Sono normali le matrici

unitarie $MM^* = Id$ hermitiane $M = M^*$ antihermitiane $M = -M^*$

4 Classificazione delle isometrie

Nomenclatura 1

- $\cdot \ rotazioni$
- · riflessioni
- $\cdot \ traslazioni$
- · glissoriflessione = $t_v \circ s_\alpha$ con $v \parallel \alpha^t$ (disegno de li mortacci sua)
- $\cdot \ glissorotazioni = t \circ R \ dove \ v \parallel a, \ a \ asse \ di \ R \ (altro \ disegno)$
- · riflessioni rotatorie $s_a \circ R$ R rotazione di asse \underline{a} , $s_{\underline{a}}$ è una riflessione rispetto ad una retta parallela ad \underline{a}

Teorema 3 (Eulero 1776)

Ogni isometria di \mathbb{E}^3 è di uno dei sei tipi sopra descritti

5 Spazi Hermitiani

Lemma 2

Sia V uno spazio vettoriale su un campo \mathbb{R} Siano $P,Q \in End(V)$ tali che PQ = QP. Allora, se V_{λ} è l'autospazio di autovalore λ su P, risulta

$$Q(V_{\lambda}) \subseteq V_{\lambda}$$
.

Dimostrazione

Sia $v \in V_{\lambda}$ (cioè $P(v) = \lambda v$). Dobbiamo vedere che $Qv \in V_{\lambda}$.

$$P(Q(v)) = (P \circ Q)(v) = (Q \circ P)(v) = Q(\lambda v) = \lambda Q(v).$$

(V,h)spazio Hermitiano (Spazio vettoriale complesso h forma hermitiana definita positiva in V) $\dim(V)<+\infty$

Teorema 4

Sia (V,h) uno spazio hermitiano, $L \in End(V)$ operatore, sono equivalenti

- L è normale (rispetto ad h)
- ullet esiste una base ortonormale B di V composta da autovettori per L

Lemma 3

(V,h) spazio hermitiano, $L \in End(V)$ normale sono equivalenti

- $Lv = \lambda v$
- $L^*v = \overline{\lambda}v$

In particolare λ è l'autovalore per L se e solo se $\overline{\lambda}$ è autovalore per L^{\star}

$$V_{\lambda}(L) = V_{\overline{\lambda}}(L^{\star}).$$

Dimostrazione

Se v = 0 non c'è niente da dimostrare.

Se $v \neq 0$ basta far vedere che se $v \in V_{\lambda}(L)$ allora $v \in V_{\overline{\lambda}}(L^{\star})$. L'inclusione contraria segue da $L^{\star t} = L$

$$w \in V_{\lambda}(L), \quad v \in V_{\lambda}(L).$$

$$h(L^{*}(v), w) = h(v, L(w)) = h(v, \lambda w)$$

$$= \overline{\lambda}h(v, w) = h(\overline{\lambda}v, w)$$

$$h(L^{*}(v) - \overline{\lambda}v, w) = 0 \quad \circledast$$

Per il lemma, siccome per ipotesi L è normale,

$$L^{\star}(v) \in V_{\lambda}(L), \quad \overline{\lambda}v \in V_{\lambda}(L)$$

$$\Rightarrow L^*(v) - \overline{\lambda}v \in V_{\lambda}(L)$$

Quindi nella \circledast posso prendere $w = L^*(v) - \overline{\lambda}v$, ottenendo

$$h(L^{\star}(v) - \overline{\lambda}v, L^{\star}(v) - \overline{\lambda}v) = 0.$$

Poiché h è definito positivo, segue

$$L^{\star}(v) - \overline{\lambda}v = 0$$

 $cio\grave{e}$

$$L^{\star}(v) = \overline{\lambda}v$$

Osservazione

Dal lemma segue $V_{\lambda}(L) \perp V_{\mu}(L)$ se $\lambda \neq \mu$

$$v \in V_{\lambda}, \quad w \in V_{\mu}$$

 $\lambda h(v,w) = h(\lambda v,w) = h(Lv,w) = h(v,L^*w) = h(v,\overline{\mu}w) = \mu h(v,w) \Rightarrow h(v,w) = 0$ Dato che $\lambda \neq \mu$

Nomenclatura 2

Chiamiamo U(n) lo spazio delle matrici unitarie

Teorema 5 (Spettrale)

 $M \ \dot{e} \ normale \ se \ e \ solo \ se \ \exists A \in U(n): \ A^tMA \ \dot{e} \ ortogonale$

Dimostrazione (Teorema Spettrale)

1) \Rightarrow 2) Procediamo per induzione su dim V, con base ovvia dim V=1

Supponiamo il teorema vero per gli spazi hermitiani di dimensione $\leq n-1$ e sia $\dim_{\mathbb{C}} V = n$

Sia $v_1 \in V$ un autovettore per L, che possiamo assumere di norma 1. Sia $V_1 = \mathbb{C}v_1, W = V_1^{\perp}$.

Allora $V = V_1 \oplus W$.

Poiché V_1 è L-invariante (per costruzione) e L*-invariante per il lemma precedente, lo stesso accade per W.

Inoltre $L|_W \in End(V)$ è normale.

Per induzione, esiste una base $h|_W$ -ortonormale formata da autovettori per $L|_W$, sia $\{v_2, \ldots, v_n\}$. Allora $\{v_1, \ldots, v_n\}$ è una base h-ortonormale di V formata da autovettori per L.

2) \Rightarrow 1). Sia $B = \{v_1, \dots, v_n\}$ una base h-ortonormale di autovettori per L. Allora

$$[L]_{B}^{B} = \bigwedge = \begin{pmatrix} \lambda_{1} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_{n} \end{pmatrix}$$
$$[L^{\star}]_{B}^{B} = \overline{[L]_{B}^{B}}^{t} = \overline{\bigwedge}$$

$$[L\circ L^{\star}]_{B}^{B}=[L]_{B}^{B}[L^{\star}]_{B}^{B}=\bigwedge\overline{\bigwedge}=\overline{\bigwedge}\bigwedge=[L^{\star}]_{B}^{B}[L]_{B}^{B}=[L^{\star}\circ L]_{B}^{B}$$
 Poiché la mappa $A\to [A]_{B}^{B}$ è un isomorfismo tra $End(V)$ e $M_{nn}(\mathbb{C})$, segue

$$L \circ L^* = L^* \circ L$$
.

cioè L è normale

Esercizio 1

$$L=\begin{pmatrix}1&i\\-i&1\end{pmatrix}\quad L^\star=\begin{pmatrix}1&i\\-i&1\end{pmatrix}\Rightarrow L \text{ matrice hermitiana}$$
 Trovo ora il polinomio caratteristico

 $t^2-2t=0$ che ha quindi autovalori t=0, t=2

$$\begin{aligned} v_0 &= \mathbb{C} \begin{pmatrix} 1 \\ i \end{pmatrix} & v_2 &= \mathbb{C} \begin{pmatrix} 1 \\ -i \end{pmatrix} \\ \langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix} \rangle &= 1 \cdot 2 + i \cdot i = 0 \\ \langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ i \end{pmatrix} \rangle &= 1 \cdot 1 + i \cdot (-i) = 1 - i^2 = 2 \end{aligned}$$

$$U = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix} \qquad U^-1LU = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}.$$

Il prodotto scalare standard è stato utilizzato per verificare che siano ortogonali, il secondo mi serve per normalizzare la matrice (di fatti divido per la radice del risultato) [I calcoli sono errati, guarda le slide]

Esempio 2

La content de l

$$U = \begin{pmatrix} i/\sqrt{2} & i/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}.$$

Esempio 3

$$\begin{split} L = \begin{pmatrix} 1+i & i \\ -i & 1+i \end{pmatrix} & L^\star = \begin{pmatrix} 1-i & i \\ -i & 1-i \end{pmatrix} \\ & LL^\star = \begin{pmatrix} 3 & 2i \\ -2i & 3 \end{pmatrix} = L^\star L. \\ t^2 - 2(i+1) + 2i - 1 = 0 & t_1, t_2 \end{split}$$

$$t^{2} - 2(i+1) + 2i - 1 = 0 \quad t_{1}, t$$

$$v_{t_{1}} = \mathbb{C} \begin{pmatrix} i \\ 1 \end{pmatrix} \quad v_{t_{2}} = \mathbb{C} \begin{pmatrix} i \\ -1 \end{pmatrix}$$

U come nell'esercizio precedente

Osservazioni

1. È essenziale che h sia definita positiva.

$$h(x,y) = x^t H \overline{y} \quad M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

non è definita positiva $h(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = -1$

$$L_A: \mathbb{C}^2 \to \mathbb{C}^2 \quad A = \begin{pmatrix} 0 & i \\ i & -2 \end{pmatrix}.$$

Dico che L_A è autoaggiunto, quindi normale

$$h(L_{A}X,Y) = h(X,L_{A}Y)$$

$$(L_{A}X)^{t}H\overline{Y} = X^{t}H\overline{L_{A}Y}$$

$$X^{t}A^{t}H\overline{Y} = X^{t}H\overline{AY} \quad \forall X,Y$$

$$A^{t}H = H\overline{A}$$

$$\begin{pmatrix} 0 & u \\ i & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ -i & -2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix}$$
Calcolo il poli-

nomio caratteristico di A

$$\det \begin{pmatrix} t & -i \\ -i & t+2 \end{pmatrix} = t(t+2) + 1 = (t+1)^2.$$

Ma
$$A \neq \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
, in particolare non è diagonalizzabile

2. Vediamo in dettaglio il fatto che $L|_W$ è normale

Ritornando alla dimostrazione del teorema spettr
lae, osserviamo che se W è L-invariante è anche L^* -invariante.

Infatti, se $V = \bigoplus_{\lambda} V_{\lambda}(L)$ (per esercizio da dimostrare)

$$W = \bigoplus_{\lambda} (V_{\lambda}(L) \cap W)$$

$$= \bigoplus_{\lambda} (V_{\overline{\lambda}}(L^{\star}) \cap W)$$

$$=> W$$
 è L^* -invariante

Adesso osservo che $(L|_W)^* = (L^*)|_W$

$$(\mathbf{L}\big|_W) \circ (L\big|_W)^\star = (L|_W) \circ (L^star|_W) =$$

$$(L \circ L^{\star})|_{W} = (L^{\star} \circ L)|_{W} = (L^{\star}|_{W}) \circ L|_{W} = (L|_{W})^{\star} \circ L|_{W}$$

6 Richiami su spazi vettoriali duali

V spazio vettoriale su $\mathbb K$ di dimensione finita

$$V^V = V^* = Hom(V, \mathbb{K}).$$

sia $A \leq V$

$$Ann(A) = A^{\#} = \{ f \in V^{*} | f(a) = 0 \ \forall a \in A \}.$$

Osservazioni

- 1) $A^{\#}$ è un sottospazio
- 2) $A^{\#\#} = \langle A \rangle$

$$i:V\to V^{\star\star}$$

$$v \in V$$
, $f \in V^*$

$$i(v)(f) = f(v)$$

V,W spazi vettoriali di dimensione finita $f\in Hom_{\mathbb{K}}(V,W),\,f^{\star}\in Hom_{\mathbb{K}}(W^{\star},V^{\star}),$ la trasposta di f è definita con $\phi\in W^{\star}$

$$f^{\star}(\phi) = \phi \circ f$$

Definizione 12

 $Definisco\ la\ dualit\`{a}\ standard\ su\ V\ come$

$$\langle , \rangle : V^* \times V \to \mathbb{K}.$$

$$\langle v, f \rangle = \langle f, v \rangle = f(v)$$

con questa proprietà

$$\langle f(v), w^* \rangle = \langle v, f^*(w^*) \rangle.$$

Ricordo che se $B = \{v_1, \dots, v_n\}$ è una base di V allora i funzionali v_i^{\star} definiti

$$\langle v_i^{\star}, v_i \rangle = \delta_{ij}.$$

per $1 \leq i \leq n$ formano una base B^{\star} di V^{\star} detta base duale di BSia $f: V \to W$ un'applicazione lineare, siano $B = \{v_1, \dots, v_n\}, L = \{w_1, \dots, w_m\}$ basi di V, W consideriamo $f^*: W^* \to V^*$ Allora:

$$[f]_{B}^{B} = [f^{\star}]_{L^{\star}}^{B^{\star}t}$$

$$\parallel \qquad \parallel$$

$$(a_{ij}) \qquad (a_{ij}^{\star})$$

Tesi $a_{ih} = a_{hi}^{\star}$ $f^{\star}(w_{i}^{\star}) = \sum_{i=1}^{n} a_{ij}^{\star} f^{\star}(w_{i}^{\star})(v_{h}) = \sum_{i=1}^{n} a_{ij}^{\star} v_{i}^{\star}(v_{h}) = \sum_{i=1}^{n} a_{ij}^{\star} \delta_{ih} = a_{hi}^{\star}$ $w_i^{\star}(f(w_h)) = w_i^{\star}(\sum_{i=1}^n a_{ih}w_i) = \sum_{i=1}^n a_{ih}w_i^{\star}(w_i) = \sum_{i=1}^n a_{ih}\delta_{ij} = a_{ih}$

Teorema 6 (Qualche proprietà importante)

 $f: V \to W \ lineare \ f^*: W^* \to V^*$

 $1)(Imf)^{\#} = \ker f^{\star}$

 $2)(\ker f)^{\#} = Imf^{*}$

 $3)(\lambda f + \mu g)^{\star} = \lambda f^{\star} + \mu g^{\star} \qquad (\lambda, \mu \in \mathbb{K}, g \in Hom(V, W))$

 $4)(h \circ f)^* = f^* \circ h^*$ $h: W \Rightarrow U \ lineare$

Dimostrazione (Il punto 2, 3 e 4 vengono lasciati per esercizio)

1) $\emptyset \in (Imf)^{\#}$

 $\Leftrightarrow \forall w \in Imf \ \emptyset(w) = 0$

 $\Leftrightarrow \forall v \in V \emptyset(f(v)) = 0$

 $\Leftrightarrow \emptyset \circ f = 0$

 $\Leftrightarrow \emptyset \in kerf^*$

Quindi abbiamo visto che $(Imf)^{\#} = \ker F^{*}$

Proposizione 2

Sia V uno spazio vettoriale di dimensione n su \mathbb{K} e W un sottospazio. Allora

$$\dim(W) + \dim W^{\#} = n.$$

Dimostrazione

Da quanto visto, la mappa

$$Hom(V_1, V_2) \to Hom(V^s tar_2, V^s tar_1)$$
 $f \to f^t$

è un isomorfismo di spazi vettoriali. Inoltre f è iniettiva (rispettivamente suriettiva) se e solo se f^* è suriettiva (rispettivamente iniettiva)

Consideriamo la proiezione $\pi:V\to V|_W:=U$ Poiché π è suriettiva $\pi^\star:U^\star\to V^\star$ è iniettiva e

$$W^{\#} = (\ker \pi)^{\#} = Im\pi^{*}.$$

 $per\ cui$

$$\dim W^{\#} = \dim(Im\pi^{\star}) = \dim U^{\star} = \dim V - \dim W.$$