作业9 对数运算与函数答案

1. 下列函数中是增函数的为()

A.
$$f(x) = \log_{\frac{1}{2}} x$$

B.
$$f(x) = (\frac{2}{3})^x$$

$$C. \quad f(x) = x^2$$

D.
$$f(x) = \sqrt[3]{x}$$

【答案】D

【分析】根据基本初等函数的性质逐项判断后可得正确的选项.

【详解】对于 A, $f(x) = \log_{\frac{1}{2}} x$ 为 $(0,+\infty)$ 上的减函数, A 不是;

对于 B, $f(x) = (\frac{2}{3})^x$ 为 **R** 上的减函数, B 不是;

对于 C, $f(x) = x^2$ 在 R 上不单调, C 不是;

对于 D, $f(x) = \sqrt[3]{x}$ 为 R 上的增函数, D 是.

故选: D

- 2. 函数 $f(x) = \log_2(-x^2 + 2x)$ 的单调递增区间为 ()
 - A. $(-\infty,1)$ B. (0,1) C. (1,2) D. $(1,+\infty)$

【答案】B

【详解】由题意得 $-x^2+2x>0$,解得0< x<2, $y=-x^2+2x$ 开口向下,对称轴为x=1,

所以 $y = -x^2 + 2x$ 在(0,1)上递增,在(1,2)上递减;因为 $y = \log_2 x$ 是定义域上的递增函

数,利用复合函数的同增异减可得 $f(x) = \log_2(-x^2 + 2x)$ 的单调递增区间为(0,1), 故选: B.

3. 图像过点(0,1)的函数是()

A.
$$y = 3^x$$

B.
$$y = x^2$$

C.
$$y = \sqrt{x}$$

D.
$$y = \ln x$$

【答案】A

【详解】对于 A 中, 函数 $y=3^x$, 由指数函数的性质, 可得函数的图象过(0,1), 符合题 意;

对于 B 中, 函数 $v = x^2$, 由幂函数的性质, 可得函数的图象恒过(1,1), 不符合题意;

对于 C 中, 函数 $v = \sqrt{x}$, 由幂函数的性质,可得函数的图象恒过(1,1),不符合题意;

对于 D 中,函数 $y = \ln x$,由对数函数的性质,可得函数的图象恒过(1,0),不符合题意.

故选: A.

4. 已知 x_1 , x_2 是方程 $|\lg x| = t$ 的两个不等实根,则 $\frac{2}{x_1} + \frac{1}{x_2}$ 的最小值是()

A. 2

B. $2\sqrt{2}$

C. $2\sqrt{3}$

D. 3

【答案】B【详解】由题意知 $\lg x_1 = -\lg x_2 = \lg \frac{1}{x_2}$, 其中 $x_1 > 1$, $0 < x_2 < 1$, 则 $x_1 x_2 = 1$,

所以 $\frac{2}{x_1} + \frac{1}{x_2} \ge 2\sqrt{\frac{2}{x_1} \times \frac{1}{x_2}} = 2\sqrt{2}$, 当且仅当 $\frac{2}{x_1} = \frac{1}{x_2}$, 即 $x_1 = \sqrt{2}$, $x_2 = \frac{\sqrt{2}}{2}$ 时取等号,故 B 正确.

5. (多选)下列结论正确的是()

A. 若幂函数
$$f(x) = x^{\alpha}$$
 的图象过点 $\left(\frac{1}{2}, 4\right)$,则 $\alpha = -\frac{1}{2}$

B. 若
$$x$$
, $y \in \mathbb{R}$, $x+2y=1$, 则 $\frac{1}{x}+\frac{2}{y}$ 的最小值为 8

C. " $\forall x \in \mathbb{R}$,有 $x^2 + x + 1 \ge 0$ "的否定是" $\exists x \in \mathbb{R}$,使 $x^2 + x + 1 < 0$ "

D.
$$\exists x \in (0,1), \left(\frac{1}{2}\right)^x > \log_{\frac{1}{2}} x$$

【答案】CD

【详解】对于 A, 因为幂函数 $f(x) = x^{\alpha}$ 的图象过点 $\left(\frac{1}{2}, 4\right)$,

所以 $\left(\frac{1}{2}\right)^{\alpha} = 4$,解得 $\alpha = -2$,故A错误;

对于 B, 当 x = 3, y = -1 时, x + 2y = 1, 此时 $\frac{1}{x} + \frac{2}{y} = \frac{1}{3} - 2 = -\frac{5}{3} < 8$, 故 B 错误;

对于 C, " $\forall x \in \mathbb{R}$,有 $x^2 + x + 1 \ge 0$ "的否定是" $\exists x \in \mathbb{R}$,使 $x^2 + x + 1 < 0$ ",故 C 正确;

对于 D, 如图, 作出函数 $y = \left(\frac{1}{2}\right)^x, y = \log_{\frac{1}{2}} x$ 的图象,

由图可知, $\exists x \in (0,1)$, $\left(\frac{1}{2}\right)^x > \log_{\frac{1}{2}} x$, 故 D 正确.故选: CD.

6. (多选)已知x > 0, y > 0, 且x + 2y = 4, 则 ()

A. $\ln x + \ln y \le \ln 2$ B. $2^x + 4^y < 8$ C. $\frac{1}{x} + \frac{2}{y} \ge \frac{9}{4}$ D. $e^{x^2} \ge e^{8-4y^2}$

【答案】ACD

【详解】对于 A, 因为 $4 = x + 2y \ge 2\sqrt{2xy} \leftarrow xy \le 2$, 当且仅当 x = 2, y = 1 时取等号,

所以 $\ln x + \ln y = \ln xy \le \ln 2$, A 正确;

对于 B, 取 $x = 1, y = \frac{3}{2}$, 则 $2^x + 4^y = 2 + 4^{\frac{3}{2}} = 2 + 8 = 10 > 8$, B 错误;

对于 C, $\frac{1}{x} + \frac{2}{y} = \frac{1}{4} (\frac{1}{x} + \frac{2}{y})(x + 2y) = \frac{1}{4} (1 + 4 + \frac{2y}{x} + \frac{2x}{y}) \ge \frac{1}{4} (5 + 2\sqrt{\frac{2y}{x} + \frac{2x}{y}}) = \frac{9}{4}$

当且仅当
$$\frac{2y}{x} = \frac{2x}{y}$$
, 即 $x = y = \frac{4}{3}$ 时取等号, C正确;

对于 D, 因为
$$x^2 + 4y^2 = (x + 2y)^2 - 4xy = 16 - 4xy \ge 8$$
,

所以
$$x^2 \ge 8 - 4y^2 \Rightarrow e^{x^2} \ge e^{8 - 4y^2}$$
, D 正确. 故选: ACD.

7. (多选)已知函数
$$f(x) = \log_2(x+1)$$
, 当 (x,y) 是函数 $f(x)$ 图象上的点时, $\left(\frac{x}{3}, \frac{y}{2}\right)$ 是函数 $g(x)$ 图象上的点,则()

A.
$$g(x) = \frac{1}{2}\log_2(3x+1)$$
 B. 若 $2g(x)-f(x) \ge 0$,则 x 的取值范围为 $(-1,+\infty)$

C. 若
$$2g(x) - f(x) \ge 0$$
, 则 x 的取值范围为 $[0,+\infty)$ D. $g(x) = \log_2(3x+1)$

【答案】AC

【详解】设
$$\begin{cases} \frac{x}{3} = a \\ \frac{y}{2} = b \end{cases} \Rightarrow \begin{cases} x = 3a \\ y = 2b \end{cases}, \quad \text{则 } 2b = \log_2(3a+1) \Rightarrow b = \frac{1}{2}\log_2(3a+1),$$

所以 $g(x) = \frac{1}{2}\log_2(3x+1)$,故A正确,D错误;

$$2g(x) - f(x) = \log_2(3x+1) - \log_2(x+1) \ge 0 \Rightarrow \log_2(\frac{3x+1}{x+1}) \ge \log_2 1$$
,

则
$$\begin{cases} 3x+1>0\\ x+1>0 \Rightarrow x \ge 0, \text{ 故 B 错误, C 正确.故选: AC}\\ \frac{3x+1}{x+1} \ge 1 \end{cases}$$

8. 定义在**R**上的奇函数 f(x)满足: 当 $x \ge 0$, $f(x) = \log_2(x+2) + m$, 则

$$f(-2) =$$
______.

【答案】-1

【详解】:: f(x)是定义在**R**上的奇函数, :: $f(0) = \log_2(0+2) + m = 0$, 则 m = -1,

$$f(-2) = -f(2) = -\log_2(2+2) + 1 = -1$$
.故答案为: -1

9. 已知函数
$$y = f(x)$$
, 其中 $f(x) = \begin{cases} a - |\ln x|, x > 0 \\ x^2 + 2x + a, x \le 0 \end{cases}$ ($a \in R$). 若关于 x 的方程 $f(x) = 2024$

恰有四个不同的实数根,则该方程所有实数根之和的取值范围是

【详解】
$$g(x) = f(x) - a = \begin{cases} -|\ln x|, x > 0 \\ x^2 + 2x, x \le 0 \end{cases}$$
, 画出图像如图所示.

方程 f(x) = 2024 等价于 g(x) = 2004 - a, 方程有 4 个不同的实数根,即函数 y = g(x)的

图象与水平直线 y = 2004 - a 有 4 个不同的交点, 故 $2004 - a \in (-1,0)$.

设四个交点的横坐标从左到右依次为 x_1, x_2, x_3, x_4 , 如图所示,可知

$$x_1 < 0, x_2 < 0, x_1 + x_2 = -2, \quad 0 < x_3 < 1 < x_4,$$

结合
$$2004 - a = g(x_3) = g(x_4) = -|\ln x_3| = -|\ln x_4|$$
, 得 $\ln x_3 = -\ln x_4$, 所以 $x_3x_4 = 1$.

又因为 $2004 - a \in (-1,0)$,所以 $\ln x_3 \in (-1,0)$,所以 $x_3 \in (e^{-1},1)$,所以 $x_3 + x_4 = x_3 + \frac{1}{x_2}$,

由于函数 $y = x + \frac{1}{r}$ 在(0,1]上单调递减,所以 $x_3 + x_4 \in (2, e + e^{-1})$,

$$x_1 + x_2 + x_3 + x_4 = -2 + x_3 + x_4 \in (0, e + e^{-1} - 2)$$
,

所以题设方程所有实数根之和的取值范围是 $(0,e+e^{-1}-2)$.故答案为: $(0,e+e^{-1}-2)$

- 10. 已知函数 $f(x) = \log_a x$ (a > 0且 $a \ne 1$), f(3) f(2) = 1.
- (1)求使 $f\left(x-\frac{2}{x}\right) = \log_{\frac{3}{2}} \frac{7}{2}$ 成立的 x 的值;
- (2)若f(3m-2) < f(2m+5), 求实数m的取值范围.

【答案】(1)
$$x = 4$$
 或 $x = -\frac{1}{2}(2)(\frac{2}{3},7)$

【详解】(1)解: 因为 $f(x) = \log_a x$,则 $f(3) - f(2) = \log_a 3 - \log_a 2 = \log_a \frac{3}{2} = 1$,解得 $a = \frac{3}{2}$

所以
$$f\left(x-\frac{2}{x}\right) = \log_{\frac{3}{2}}\left(x-\frac{2}{x}\right) = \log_{\frac{3}{2}}\frac{7}{2}$$
, 得 $x-\frac{2}{x} = \frac{7}{2}$,

即 $2x^2 - 7x - 4 = 0$,解得 x = 4 或 $x = -\frac{1}{2}$.

(2) 解: 由 (1) 知 $f(x) = \log_{\frac{3}{2}} x$ 是 $(0,+\infty)$ 上的增函数,

又 f(3m-2) < f(2m+5), 则 2m+5 > 3m-2 > 0, 解得 $\frac{2}{3} < m < 7$.

故实数m的取值范围是 $\left(\frac{2}{3},7\right)$.

- 11. 已知函数 $f(x) = \log_2(4^x + 1) + kx$ 为偶函数.
- (1)求实数k的值;
- (2)解不等式 $f(x) \ge \log_2(7 \cdot 2^x 1)$.

【答案】
$$(1)k = -1(2)(-\log_2 7, -1]$$

【详解】(1):函数 $f(x) = \log_2(4^x + 1) + kx$ 为偶函数,

$$f(-x) = f(x)$$
, $\exists \log_2 (4^{-x} + 1) - kx = \log_2 (4^x + 1) + kx$,

$$\therefore 2kx = \log_2(4^{-x} + 1) - \log_2(4^x + 1) = \log_2\frac{\frac{4^x + 1}{4^x}}{4^x + 1} = \log_2 4^{-x} = -2x , \quad \therefore k = -1.$$

(2) 由 (1) 知, k=-1,

$$\therefore f(x) = \log_2(4^x + 1) - x = \log_2\left(\frac{4^x + 1}{2^x}\right) = \log_2(2^x + 2^{-x}),$$

不等式 $f(x) \ge \log_2(7 \cdot 2^x - 1)$, 等价于 $\log_2(2^x + 2^{-x}) \ge \log_2(7 \cdot 2^x - 1)$,

即 $2^x + 2^{-x} \ge 7 \cdot 2^x - 1 > 0$,由 $7 \cdot 2^x - 1 > 0$,解得 $x > -\log_2 7$,

由
$$2^x + 2^{-x} \ge 7 \cdot 2^x - 1$$
, 得 $6 \cdot (2^x)^2 - 2^x - 1 \le 0$, 得 $0 < 2^x \le \frac{1}{2}$, 即 $x \le -1$,

综上,不等式 $f(x) \ge \log_2(7 \cdot 2^x - 1)$ 的解集为 $(-\log_2 7, -1]$.

12. (多选)通过等式 $a^b = c(a > 0, a \ne 1)$ 我们可以得到很多函数模型,例如将 a 视为常数,b 视为自变量 x,那么 c 就是 b (即 x) 的函数,记为 y,则 $y = a^x$,也就是我们熟悉的指数函数.若令 c = e,(e 是自然对数的底数),将 a 视为自变量 $x(x > 0, x \ne 1)$,则 b 为 x 的函数,记为 y = f(x),下列关于函数 y = f(x) 的叙述中正确的有(

A.
$$f(\sqrt{e}) = 2$$
 B. $\forall x \in (0,1) \cup (1,+\infty)$, $e^{f(x)} = \frac{1}{x}$

C. $y = f(x) \pm (0,1)$ 上单调递减

D. 若对任意 $x \in (0,1) \cup (1,+\infty)$, 不等式 $(mx^2 + x + 2m - 1) f(x) > 0$ 恒成立, 则实数 m 的值为 0

【答案】ACD

【详解】由题意可得, $x^y = e$,两边取自然对数得, $y = \frac{1}{\ln x}$,即 $f(x) = \frac{1}{\ln x}$.

对于 A 选项, $f(\sqrt{e}) = \frac{1}{\ln \sqrt{e}} = 2$,故 A 项正确;

对于 B 选项, $\forall x \in (0,1) \cup (1,+\infty)$, $e^{f(x)} = e^{\ln x}$, 因 $e^{-\ln x} = \frac{1}{e^{\ln x}} = \frac{1}{x}$, 但是 $\frac{1}{\ln x} \neq -\ln x$ (否则 $\ln^2 x = -1$, x 值不存在),

则 $e^{f(x)} \neq \frac{1}{x}$,故 B 项错误;

对于 C 选项,当 $x \in (0,1)$ 时, $\ln x < 0$ 且 $y = \ln x$ 为增函数,则 $f(x) = \frac{1}{\ln x}$ 恒为负且为减函数,故 C 项正确;

对于 D 选项,①当 $x \in (0,1)$ 时, $f(x) = \frac{1}{\ln x} < 0$,则由 $\left(mx^2 + x + 2m - 1 \right) f(x) > 0$ 可推得 $mx^2 + x + 2m - 1 < 0$ 在(0,1) 上恒成立,

即
$$m < \frac{1-x}{r^2+2}$$
 在 $(0,1)$ 上恒成立, 不妨设 $t=1-x$, 则 $t \in (0,1)$, $x^2+2=(1-t)^2+2=t^2-2t+3$,

$$\lim_{t \to \infty} g(t) = \frac{t}{t^2 - 2t + 3} = \frac{1}{t + \frac{3}{t} - 2},$$

因 $y = t + \frac{3}{t}$ 在 (0,1) 上单调递减,故 $t + \frac{3}{t} > 4$,从而 $0 < g(t) < \frac{1}{2}$,即 $0 < \frac{1-x}{x^2+2} < \frac{1}{2}$,故 $m \le 0$,

②当
$$x \in (1,+\infty)$$
时, $f(x) = \frac{1}{\ln x} > 0$,则由 $(mx^2 + x + 2m - 1)f(x) > 0$ 可推得

 $mx^2 + x + 2m - 1 > 0$ 在 $(1, +\infty)$ 上恒成立,

即 $m > \frac{1-x}{x^2+2}$ 在 $(1,+\infty)$ 上恒成立,不妨设 t = 1-x,则 $t \in (-\infty,0)$,同法得

$$g(t) = \frac{t}{t^2 - 2t + 3} = \frac{1}{t + \frac{3}{t} - 2}$$

因 $y = t + \frac{3}{t}$ 在在 $(-\infty, -\sqrt{3})$ 上单调递增, $(-\sqrt{3}, 0)$ 上单调递减,故 $t + \frac{3}{t} \le -2\sqrt{3}$,从而

$$-\frac{\sqrt{3}-1}{4} \le g(t) < 0, \quad \mathbb{R}^{J} - \frac{\sqrt{3}-1}{4} \le \frac{1-x}{x^2+2} < 0, \quad \text{iff } m \ge 0.$$

综上分析知, 实数 m 的值为 0,故 D 项正确.故选: ACD.

13. 设函数 $f(\log_2 x)$ 的定义域为 $\left[\frac{1}{4},4\right]$,且满足 $f(\log_2 x) = \frac{x-1}{x+1}$,则不等式

$$f\left(\left(\frac{1}{4}\right)^x - 4\right) + f\left(2 - \left(\frac{1}{2}\right)^x\right) < 0$$
 的解集是_____.

【答案】 $\left(-1, -\frac{1}{2}\right]$

【详解】 令 $t = \log_2 x$,则 $x = 2^t$,由 $x \in \left[\frac{1}{4}, 4\right]$,得 $t \in [-2, 2]$,

所以
$$f(t) = \frac{2^t - 1}{2^t + 1}$$
, $t \in [-2, 2]$,

因为
$$f(-t) = \frac{2^{-t}-1}{2^{-t}+1} = \frac{1-2^t}{2^t+1} = -\frac{2^t-1}{2^t+1} = -f(t)$$
, 所以函数 $f(t)$ 为奇函数,

因为
$$f(t) = \frac{2^t - 1}{2^t + 1} = 1 - \frac{2}{2^t + 1}$$
,而 $y = 2^t + 1$ 在其定义域内单调递增,则 $y = \frac{2}{2^t + 1}$ 在其定义

域内单调递减,所以函数f(t)单调递增,

而不等式
$$f\left(\left(\frac{1}{4}\right)^x - 4\right) + f\left(2 - \left(\frac{1}{2}\right)^x\right) < 0$$
 可变形为

由
$$-2 \le \left(\frac{1}{4}\right)^x - 4$$
, 解得 $x \le -\frac{1}{2}$, 由 $\left(\frac{1}{2}\right)^x - 2 \le 2$, 解得 $x \ge -2$,

曲
$$\left(\frac{1}{4}\right)^x - 4 < \left(\frac{1}{2}\right)^x - 2$$
, 令 $m = \left(\frac{1}{2}\right)^x$, 得 $m^2 - m - 2 < 0$, 即 $-1 < m < 2$,

所以
$$-1 < \left(\frac{1}{2}\right)^x < 2$$
,则 $x > -1$,综上, $-1 < x \le -\frac{1}{2}$.故答案为: $\left(-1, -\frac{1}{2}\right]$.

- 14. 已知函数 $g(x) = \log_3 \frac{x-a}{x+1}$ 为奇函数.
- (1)求实数 a 的值;
- (2)判断函数g(x)的单调性,并用函数单调性的定义证明;

(3)若存在
$$s,t \in (1,+\infty)$$
,使 $g(x)$ 在区间 $[s,t]$ 上的值域为 $\left[\log_3\left(ns-\frac{n}{2}\right),\log_3\left(nt-\frac{n}{2}\right)\right]$,求实数 n 的取值范围.

【答案】(1)1 (2)增区间为
$$\left(-\infty,-1\right)$$
, $\left(1,+\infty\right)$,无减区间,证明见解析 (3) $\left(0,\frac{2}{9}\right)$

【详解】(1) 因为函数
$$g(x) = \log_3 \frac{x-a}{x+1}$$
为奇函数,所以 $g(-x) + g(x) = 0$,

$$\mathbb{E} \log_3 \frac{-x-a}{-x+1} + \log_3 \frac{x-a}{x+1} = 0 , \log_3 \frac{(-x-a)(x-a)}{(-x+1)(x+1)} = 0 , \frac{-x^2 + ax - ax + a^2}{1-x^2} = 1,$$

化简得 $a^2-x^2=1-x^2$,即 $a^2=1$, $a=\pm 1$;

当
$$a = -1$$
 时, $g(x) = \log_3 \frac{x+1}{x+1}$, 定义域为 $x \neq -1$, 不符合题意;

当
$$a = 1$$
 时, $g(x) = \log_3 \frac{x-1}{x+1}$, $\frac{x-1}{x+1} > 0$, 定义域为 $(-\infty, -1) \cup (1, +\infty)$,

定义与关于原点对称,所以a=1满足题意,

综上所述, 实数 a 的值为1.

(2) 函数g(x)在 $(-\infty,-1)$, $(1,+\infty)$ 上为增函数;

证明: 由 (1) 知
$$g(x) = \log_3 \frac{x-1}{x+1}$$
, 定义域为 $(-\infty, -1) \cup (1, +\infty)$,

任取
$$x_1$$
, $x_2 \in (1, +\infty)$, 不妨设 $x_1 < x_2$, 则 $g(x_1) - g(x_2) = \log_3 \frac{x_1 - 1}{x_1 + 1} - \log_3 \frac{x_2 - 1}{x_2 + 1}$

=
$$\log_3 \frac{(x_1-1)(x_2+1)}{(x_1+1)(x_2-1)}$$
, $\boxtimes \supset x_1-1>0$, $x_2+1>0$, $\iiint (x_1-1)(x_2+1)>0$,

因为
$$x_1+1>0$$
, $x_2-1>0$, 所以 $(x_1+1)(x_2-1)>0$, 所以 $\frac{(x_1-1)(x_2+1)}{(x_1+1)(x_2-1)}>0$,

$$(x_1-1)\big(x_2+1\big)-\big(x_1+1\big)\big(x_2-1\big)=2\big(x_1-x_2\big)<0\;,\quad \text{for } \ \ \, \bigcup 0<\frac{\big(x_1-1\big)\big(x_2+1\big)}{\big(x_1+1\big)\big(x_2-1\big)}<1\;,$$

所以 $\log_3 \frac{(x_1-1)(x_2+1)}{(x_1+1)(x_2-1)} < 0$,即 $g(x_1) < g(x_2)$,所以 g(x) 在 $(1,+\infty)$ 上为增函数;

同理可证g(x)在 $(-\infty,-1)$ 上为增函数.

(3) 由 (2) 知, g(x)在 $(1,+\infty)$ 上为增函数,又因为g(x)在区间[s,t]上的值域为

即 s,t 是方程 $\frac{x-1}{x+1} = nx - \frac{n}{2}$ 的两个实数根,问题等价于 $nx^2 - \left(1 - \frac{n}{2}\right)x + 1 - \frac{n}{2} = 0$

在 $(1,+\infty)$ 上有两个不等实根, $\Leftrightarrow h(x) = nx^2 - \left(1 - \frac{n}{2}\right)x + 1 - \frac{n}{2}$,

对称轴为
$$x = \frac{1}{2n} - \frac{1}{4}$$
,则
$$\begin{cases} n > 0 \\ \frac{1}{2n} - \frac{1}{4} > 1 \\ \Delta = \left(1 - \frac{n}{2}\right)^2 - 4n\left(1 - \frac{n}{2}\right) > 0 \end{cases}$$
,即
$$\begin{cases} n > 0 \\ 0 < n < \frac{2}{5} \end{cases}$$
,
$$n > 2$$
或 $n < \frac{2}{9}$

解得 $0 < n < \frac{2}{9}$,即实数n的取值范围为 $\left(0, \frac{2}{9}\right)$