変分質問回答ペア生成による質問応答モデルの

汎化性能と頑健性の向上

篠田一聡 (東大/NII) shinoda@is.s.u-tokyo.ac.jp 菅原朔 (NII) saku@nii.ac.jp 相澤彰子 (東大/NII) aizawa@nii.ac.jp

q: 質問 a: 回答

c: 文章

分布外データセット:

・TriviaQA (雑学)

難しいテストセット:

・NewsQA (ニュース記事)

・NQ (検索クエリ+Wiki)

・non-Adv/Adv (質問のパラフレーズ)

・Implications (一貫性を要する質問)

・Easy/Hard (簡単/難しい質問)

1. 導入

質問応答モデルは訓練時と同じ分布の テストセットには汎化するが違う分布 のテストセットには汎化しない[1]

質問応答モデルの分布外データセット への汎化性能と難しいテストセットへ の頑健性の向上

変分質問回答ペア生成によるデータ拡 張によって訓練セット中の質問回答ペ アの多様性を向上する

2. 変分質問回答ペア生成

- を学習することで多様な質問と回答の生成が可能
- ▶ 出力が潜在変数に依存しないPosterior Collapse問 題を回避するためにKL項を C_a , C_a によって制御

→質問生成+回答抽出

z,y: 潜在 $\checkmark C_a$, C_a が0より大きい時にこの問題を回避(表1,2)

3. 実験

訓練セット: SQuAD-Du (Wikipedia) ベースライン:

- HarQG (BiLSTM-CRF + seq2seq) ➤ SemQG (BiLSTM-CRF + 強化学習)

質問応答モデル: BERT-base

提案データ拡張手法: $(C_a, C_a) = (5, 5), (5, 5)$ 20), (20, 20)で訓練/生成

 \checkmark (C_a , C_a)によって出力の分布が異なり(表1,

2) それぞれが精度向上に寄与(付録表5)

4. 実験結果

	Rele	Diversity	
	Precision	Recall	Dist
	Prop. Exact	Prop. Exact	2100
NER	34.44 19.61	64.60 45.39	30.0k
HarQG	45.96 33.90	41.05 28.37	-
Ours			
$C_a = 0$	58.39 47.15	21.82 16.38	3.1k
$C_a = 5$	30.16 13.41	83.13 60.88	71.2k
$C_a = 20$	21.95 5.75	72.26 42.15	103.3k
表1 テン	ストデータに:	おける回答抽	出の結果.

N: 生成文の数 Token: 単語数 B1: Bleu1 ME: Meteor RL: Rouge-L D1: Dist-1 E4: Ent-4 SB4: Self-B4 -R: 再現率

回答の評価指標 Exact: 完全一致

> 評価指標 EM/F1スコア

EM: 完全一致 F1: 部分一致

Prop.: 部分一致

√人手データやNERよりも**多様な回答の抽出**

√既存手法よりも高い再現率

	Dev	Test
SQuAD-Du	80.12/87.85	72.69/84.08
+HarQG	79.49/87.05	72.32/83.31
+SemQG	81.02/88.53	73.59/84.72
+Ours	81.49/88.61	73.11/84.53

表 4 半教師あり学習

✔分布内データセットにおいて提案 手法は既存手法に匹敵する精度

		Relevance				Diversity		
	N	B1-R	ME-R	RL-R	Token	D1	E4	SB4
SemQG	50	62.32	36.77	62.87	7.0M	15.8k	18.28	91.44
Ours								
$C_q = 0$	50	35.57	18.31	33.92	7.6M	14.4k	17.33	97.61
$C_{q} = 5$	50	44.19	25.84	45.18	11.5M	19.0k	19.71	82.59

 $C_a = 20 50 48.19 25.29 48.26 4.9M$ **22.4k 19.72 44.41** 表2 テストデータにおける質問生成の結果.

✓ベースラインよりも多様な質問の生成

		Generalization to OOD QA Datasets			Robustness to Challenge Test Sets				
	Data	NewsQA	TriviaQA	NQ	non-Adv	Adv	Easy	Hard	Implications
	SQuAD-Du	32.81/49.21	37.40/47.57	55.35/67.70	78.15/85.73	42.86/50.16	82.49/90.13	67.43/75.59	49.43/64.72
	+HarQG	32.85/48.46	36.42/45.84	54.97/66.20	76.65/85.15	51.79 /56.52	82.00/89.67	66.04/73.01	49.24/63.47
\rangle	+SemQG	33.86/50.51	37.56/47.50	58.19 /69.81	78.91/86.21	46.43/51.82	83.50/ 91.05	67.73/75.02	49.72/65.08
	+Ours	32.81/49.25	38.19/47.72	58.02/ 70.06	79.00/86.73	51.79/59.00	83.87 /90.94	68.75/76.10	50.63/66.26
	Target	42.61/62.90	55.80/61.66	74.19/83.03	-	-	-	-	-

表3 質問応答モデルの汎化性能と頑健性の評価

✓分布外データセットにおいて特にNOに対して汎化性能が向上 ✓難しいテストセットではほぼ一貫して最も高い精度を達成

5. 結論

✓質問回答ペアの多様性の 向上により質問応答モデル の汎化性能・頑健性が向上

√提案手法は**ターゲットの** 分布が未知にも関わらず分 布内と分布外の双方での精 度向上が可能

(ターゲットの分布が既知の設定でのデータ 拡張は分布内テストセットでの精度を犠牲に してしまうと報告している既存研究もある)

✓生成データの質の改善 と外部コーパスの利用が 今後の課題

参考文献

[1]Talmor+ "MultiQA: An empirical investigation of generalization and transfer in reading comprehension". In ACL (2019)