

Universidade Estadual de Maringá – Centro de Ciências Exatas

Pêndulo Simples (MHS)

Relatório de Física Experimental I

Acadêmicos:

- 1. Giovanna Nogueira, RA 112491 Física, Turma F
- 2. Nathalia Castanho, RA 112492 Física, Turma F
- 3. Vitor Ferrari, RA 112481 Física, Turma F

Pêndulo Simples (MHS)

Relatório de Física Experimental I

Introdução

Em mecânica, um pêndulo simples é um dispositivo que consiste numa massa puntiforme presa a um fio inextensível que oscila em torno de um ponto fixo. O braço executa movimentos alternados em torno da posição central, chamada posição de equilíbrio. O pêndulo é muito utilizado em estudos da força peso e do movimento oscilatório

A descoberta da periodicidade do movimento pendular foi feita por Galileu Galilei. O movimento de um pêndulo simples envolve basicamente uma grandeza chamada período (simbolizada por τ) - é o intervalo de tempo que o objeto leva para percorrer toda a trajetória (ou seja, retornar a sua posição original de lançamento, uma vez que o movimento pendular é periódico).

Derivada dessa grandeza existe a frequência (f), numericamente igual ao inverso do período $(f = 1/\tau)$, e que, portanto se caracteriza pelo número de vezes (ciclos) que o objeto percorre a trajetória pendular num intervalo de tempo específico. A unidade da frequência no SI é o hertz, equivalente a um ciclo por segundo (1/s).

Denota-se o ângulo formado entre a vertical e o braço de pêndulo. Faz-se as seguintes hipóteses:

- O braço é formado por um fio não flexível que se mantém sempre com o mesmo formato e comprimento.
- Toda a massa m, do pêndulo está concentrada na ponta do braço a uma distância constante l, do eixo.

Resumo

A prática experimental consiste em construir um pêndulo simples de modo que possamos medir os períodos das oscilações variando o comprimento do fio que suspende a massa presa na extremidade do fio (oscilatória no tempo).

Tivemos como objetivo, verificar a dependência do período do movimento, com a massa suspensa, o ângulo de liberação da massa e com o comprimento do fio.

Podemos observar que o período não depende da massa, mas sim do comprimento do fio e da gravidade local.

Dessa forma podemos obter experimentalmente uma equação geral que determine a aceleração da gravidade local, e compará-la com os dados fornecidos pelo professor.

- Não existem outras forças a atuar no sistema senão a gravidade e a força que mantém o eixo do pêndulo fixo. (O movimento é, portanto conservativo).
- O pêndulo realiza um movimento bidimensional no plano x0y.

É fácil ver que a segunda lei de Newton fornece a seguinte equação diferencial ordinária não-linear conhecida como equação do pêndulo:

$$\frac{d^2\theta}{dt^2} + \frac{g}{l} \cdot \sin\theta = 0$$

Figura 1 - Pêndulo Simples

Fundamentação teórica

Como exemplo do tratamento do movimento de rotação, considere o movimento de um pêndulo simples, consistindo numa massa m suspensa num ponto fixo por meio de um fio ou de uma haste rígida e sem peso, de comprimento l. Como o fio suspende a massa m, deve-se supor que ele permanece esticado, de forma que a distância l de m a 0 permanece constante, por outro lado, não se pode tratar o sistema como se fosse rígido. Considere somente movimentos do pêndulo no plano vertical, para que se possa aplicar a teoria simples do movimento em torno de um eixo fixo que passa por 0. Tem-se, então (Fig. 1);

$$I_z=m\cdot l^2$$

$$N_z = -m \cdot g \cdot l \cdot \sin \theta$$

Onde o eixo z passa por θ e é perpendicular ao plano em que o pêndulo oscila. O torque é considerado negativo, pois age numa tal direção que tende a diminuir o ângulo θ .

$$\ddot{\theta} = -\frac{g}{l} \cdot \sin \theta$$

Esta equação não é fácil de resolver. Se, entretanto, considera-se somente pequenas oscilações do pendulo (digamos, $\theta \ll \pi/2$), então $\sin \theta \cong \theta$, podendo se escrever:

$$\ddot{\theta} + \frac{g}{l} \cdot \theta = 0$$

Esta equação tem solução:

$$0 = k \cdot \cos(\omega \cdot t + \beta)$$

Onde:

$$\omega = \left(\frac{g}{l}\right)^{1/2}$$

k e β são constantes arbitrárias que determinam a amplitude e a fase da oscilação. Note que a frequência de oscilação é independente da amplitude, considerando-se que esta seja suficientemente pequena, de forma que a $\ddot{\theta} + \frac{g}{l} \cdot \theta = 0$ seja uma boa aproximação. Esta é a base para o uso do pêndulo na regulagem da velocidade de um relógio.

$$\omega = \frac{2 \cdot \pi}{\tau}$$
 ; $\tau = \frac{2 \cdot \pi}{\omega}$

Portanto:

$$\tau = 2 \cdot \pi \cdot \sqrt{\frac{l}{g}} \Longrightarrow l = \frac{g}{4 \cdot \pi^2} \cdot \tau^2$$

Pode-se tratar do problema do movimento para grandes amplitudes por meio da integral da energia. A energia potencial associada ao tosque dado pela equação $N_z=-m\cdot g\cdot l\cdot \sin\theta$ é:

$$V(0) = -\int_{\theta_c}^{\theta} -m \cdot g \cdot l \cdot \sin \theta \cdot d\theta = -m \cdot g \cdot l \cdot \cos \theta$$

Onde considera-se, por conveniência, $\theta_s = \pi/2$. Poder-se-ia escrever $V(\theta)$ imediatamente como a energia potencial gravitacional de massa m, tendo o plano horizontal que passa por 0 como nível zero da energia potencial. A integral da energia é:

$$\frac{1}{2} \cdot m \cdot l^2 \cdot \dot{\theta}^2 - m \cdot g \cdot l \cdot \cos \theta = E$$

Poder-se-ia provar que E é constante a partir da equação de movimento, mas não é necessário, pois temos teoremas que garante que o para o movimento linear numa dimensão é válido nas formas análogas para o movimento de rotação em torno do eixo. Um gráfico da energia potencial V(0) é mostrado na Fig. 2. Pode-se verificar que para $-m \cdot g \cdot f < E < m \cdot g \cdot l$, o movimento é oscilatório, tornando-se harmônico simples para E ligeiramente maior do que $-m \cdot g \cdot l$. Para $E > m \cdot g \cdot l$, o movimento é não-oscilatório;

 θ crescerá ou decrescerá sempre, com $\dot{\theta}$ oscilando entre um valor máximo e um mínimo. Fisicamente, quando $E > m \cdot g \cdot l$, o pêndulo tem suficiente energia para girar em torno de um círculo completo. (Neste caso, é claro que a massa deve estar presa a uma haste rígida em vez de a um fio, a menos que θ seja muito grande.) Este movimento é ainda periódico, pois o pêndulo realiza uma revolução completa cada vez que θ aumenta ou diminui de 2π .

Figura 2 - Energia Potencial para um Pêndulo Simples

Equações do Período para Diversas Amplitudes de um Pêndulos Simples

Para pequenas oscilações, Huygens mostrou no seu livro *Horologium oscillatorium* (1673) que a aproximação $\sin\theta \cong \theta$, fornece a seguinte expressão para o período do pêndulo:

$$\tau_0 = 2 \cdot \pi \cdot \sqrt{\frac{l}{g}}$$

Uma aproximação para o período τ válida para amplitudes tão grandes quanto $\theta=30^\circ$ foi obtida por Bernoulli em 1749:

$$\tau \approx \tau_0 \cdot \left(1 + \frac{\theta^2}{16}\right)$$

A obtenção de equações aproximadas para o período do pêndulo no regime nãolinear (i.e., para grandes amplitudes) tem recebido muita atenção nos últimos 20 anos. Por exemplo, Kidd e Fogg propuseram, em 2002, a seguinte fórmula prática, válida para $\theta \le$ 60° ;

$$\tau \approx \tau_0 \cdot \frac{1}{\sqrt{\cos(\theta/2)}}$$

Em seguida, o brasileiro Fábio Lima, físico da Universidade de Brasília, propôs em 2006 uma fórmula simples ainda mais precisa, válida para qualquer amplitude;

$$\tau \approx -\tau_0 \cdot \frac{\ln a}{1-a}$$

Onde $a \equiv \cos(\theta/2)$

Conservação da Energia

Em pêndulos simples, se a massa presa à extremidade do fio for solta de um ponto *A* a uma determinada altura *h*, a energia potencial gravitacional do sistema nesse ponto é máxima, enquanto que a energia cinética é nula, pois ainda não há movimento. Após ser solta, a energia potencial gravitacional máxima irá se transformar em energia cinética, até que atinja a vertical do pêndulo (isto é, a posição normal do pêndulo sem sofrer perturbações). Ao atingir a vertical, o sistema terá energia cinética máxima, pois, passado este ponto, a massa vai contra a gravidade. Passando a vertical, o sistema reverte a energia cinética em energia potencial gravitacional, até que a massa atinja sua altura máxima; neste ponto, a energia potencial gravitacional é máxima e a cinética volta a ser nula, já que é o momento em que a massa para e o movimento muda de sentido.

Dessa forma, em um pêndulo simples, a energia mecânica, na ausência de forças dissipativas (ex: atrito, força de resistência do ar) se conserva.

Procedimento e dados experimentais

Materiais Utilizados

- Massa pendular;
- Fio de suspensão;
- Cronômetro;
- Trena;
- Fita adesiva;
- Transferidor meia lua;
- Balança;
- Suporte na parede.

Montagem Experimental

Adote um comprimento de fio em torno de 3 m. Amarre uma das extremidades do fio na massa pendular (m – Figura 3 item (3)), a outra extremidade passe pelo orifício do suporte (Figura 3 item (2)) que se encontra na parede (Fig. 3 item (1)). Use o sistema de deslizamento do fio (Fig. 3 item (5)) no orifício do suporte para controlar o comprimento do fio. Fixe o comprimento do fio (L) a partir do suporte até a posição do centro de massa do corpo pendular, e fixe a extremidade livre do fio com fita adesiva na parede, tal que o fio não deslize no seu suporte.

Figura 3 - Figura esquemática (visão lateral) - posição de equilíbrio e *L* o raio da trajetória.

- (1) Parede;
- (2) Suporte pendular;
- (3) Fio;
- (4) Massa pendular;
- (5) Extensão do fio para o sistema de deslizamento para controle do comprimento do fio.

Procedimento Experimental

- 1. Para verificar a dependência do ângulo de liberação e da massa no período de oscilação, divida a turma em 4 equipes ou mais, dependendo do número de alunos e suportes disponíveis, cada equipe escolhe um ângulo θ e uma massa pendular de valor diferente, bem como somente um valor de comprimento (L) igual a todas as equipes (100,00 cm), as demais medidas de comprimentos devem diferir entre as equipes;
- 2. Anotem esses valores pré-determinados no quadro, e sigam o seguinte procedimento:
- a) Ajuste o comprimento do fio do pêndulo de modo que tenha a medida prédeterminada da ponta do fio ao centro de massa da massa pendular (*L* indicado na Figura 3);
- b) Marque com uma fita adesiva o ângulo (θ), aferida com um transferidor, obedecendo à relação de que este ângulo não deve ser maior do que 15,0° a partir da posição de equilíbrio;
- c) Para a realização do experimento, desloca-se a massa pendular da posição de equilíbrio (mantenha o fio paralelo a parede), até o ângulo θ e libera-se a massa

 $(v_0 = 0.00 \ cm/s)$, sem impulso) e meça o tempo de 10 períodos, repetindo esta operação 5 vezes para cada comprimento L do fio; Utilize 5 diferentes comprimentos para L, sendo um dos comprimentos igual a de todas as equipes;

d) Anotem os resultados nas Tabela 1.

Resultados

A tabela abaixo possui medidas experimentais do Pêndulo Simples (MHS), que foram obtidos através do trilho plano com suporte de mola da Pasco. As quais apresentam (t) em segundos – tempo pela qual móvel teve para concluir uma oscilação (período) e (*l*) em metros - comprimento do fio.

$\tau(s)$	l(m)
3,19	2,53
3,04	2,315
2,77	1,92
2,44	1,485
2,11	1,105
1,66	0,685
1,12	0,305

Tabela 1 - Medidas Experimentais - MHS

Com os dados da tabela 1, elevaremos τ ao quadro, para que possamos fazer uma regressão linear e ainda, construir um gráfico de l versus τ^2 .

$\tau^{2}\left(s\right)$	l(m)
10,18	2,53
9,24	2,315
7,67	1,92
5,95	1,485
4,45	1,105
2,76	0,685
1,25	0,305

Tabela 2 - Medidas Experimentais com au^2

Para representar os dados acima, obtidos experimentalmente em uma gráfico (plano milímetro) é necessário definir um módulo de escala para que todos os valores caibam dentro do gráfico, para isso iremos utilizar a equação abaixo:

$$\label{eq:Modulo} \textit{M\'odulo de Escala} = \frac{\textit{Intervalo dipon\'ivel no papel mil\'imetrado}}{\textit{Maior valor obtido experimentalemte}}$$

Iremos usar os dois maiores dados obtidos entre os dois experimentos para definirmos uma escalar, de modo que caibam os dois gráficos em um único plano:

Me eixo
$$y(l) = \frac{150}{4} = 37,5$$

$$Me \ eixo \ x \ (\tau^2) = \frac{200}{12} = 16,67$$

$\tau^2 \times Me_x(mm/s)$	$l \times Me_y(mm/m)$
$10,18 \times 16,67 = 170$	$2,53 \times 37,5 = 95$
9,24 × 16,67 = 154	$2,315 \times 37,5 = 87$
$7,67 \times 16,67 = 128$	$1,92 \times 37,5 = 72$
$5,95 \times 16,67 = 99$	$1,485 \times 37,5 = 56$
$4,45 \times 16,67 = 74$	$1,105 \times 37,5 = 41$
$2,76 \times 16,67 = 46$	$0,685 \times 37,5 = 26$
$1,25 \times 16,67 = 21$	$0,305 \times 37,5 = 11$

Tabela 3 - Valores prontos para serem plotados em um plano milímetrado

No plano a seguir está representada a tabela 3, sendo (τ^2 - tempo) o eixo das abcissas – eixo x e (l – comprimento do fio) o eixo das coordenadas – eixo y. Também se encontra em anexo ao final deste documento um gráfico com os dados plotados e a reta de ajuste traçada.

Ao trabalharmos com dados obtidos experimentalmente, devemos levar em consideração diversos tipos de erros que podem aparecer durante o experimento, como, por exemplo, atrito com o ar, atrito entre o fio e o ponto fixo e entre outros; ao olharmos o gráfico feito à mão, vemos que nem todos os pontos ficam alinhados como uma reta, para isso, existe um método em que conseguiremos traçar uma reta de ajuste, esse método recebe o nome de "método dos mínimos quadrados". Para isso é necessário considerar a equação da reta $l = A + B\tau^2$ onde:

Seu coeficiente linear (*A*), é dado pela seguinte equação:

$$A = \frac{\sum x \sum t^2 - \sum t \sum tx}{n \sum t^2 - (\sum t)^2}$$

E seu coeficiente angular (B), é dado pela seguinte equação:

$$B = \frac{n\sum tx - \sum t\sum x}{n\sum t^2 - (\sum t)^2}$$

Utilizando os dados da tabela 2, temos que da equação da reta $l=A+B\tau^2$, onde l representa comprimento do fio e τ^2 o período.

Comparando

$$l = \frac{g}{4 \cdot \pi^2} \cdot \tau^2$$

Com a equação da reta $l = A + B\tau^2$, temos que:

$$A = 0$$
 e $B = \frac{g}{4 \cdot \pi^2}$

Tendo feito o cálculo dos coeficientes pela regressão linear, obtemos:

$$A = -6,00 \times 10^{-3}$$
 $Sxy = 16,56617857$ $B = 0,250$ $QMR = 1,0096429 \times 10^{-3}$ $r^2 = 0,99$ $Me(A) = 0,067$ $Sxx = 66,18828571$ $Me(B) = 0,01$ $Syy = 4,146592857$

Com todos os coeficientes calculados, podemos agora calcular a gravidade por meio do experimento pela seguinte expressão:

$$g_{exp} = 4 \cdot \pi^2 \cdot B$$

$$g_{exp} = 4 \cdot \pi^2 \cdot 0.250$$

$$g_{exp} = 9.8696$$

Para finalizar, calcularemos o desvio percentual Δ_g – entre g_{exp} e a aceleração gravitacional no local do experimento (em Maringá, $g=9,83~m/s^2$.

$$\Delta_g = \left| \frac{g - g_{exp}}{g} \right| \times 100$$

$$\Delta_g = \left| \frac{9,83 - 9,8696}{9,83} \right| \times 100$$

$$\Delta_g = 0,41\%$$

Conclusão

Numa análise mais rigorosa, percebe-se que alguns fatores não podem ser desprezados na conclusão final da análise dos dados. Alguns desses fatores são: a resistência do ar contra a superfície da plataforma rotatória, o erro humano na imprecisão da medição dos tempos, a deformação da corda que ligava a massa suspensa, interferências nas leituras do equipamento e até mesmo o atrito entre o eixo de rotação e o suporte. Mesmo que quase não houvesse atrito entre e a plataforma, possível inclinação na plataforma e até mesmo alguma anomalia na mola podem ter interferido nos resultados. Inúmeros são os fatores que podem atuar como interferências no experimento mesmo fazendo o máximo para evitá-los.

Todavia, os dados obtidos neste experimento não extraviaram as tolerâncias admitidas. O resultado do notável trabalho realizado por todos os grandes cientistas que estudaram os movimentos ao longo da história pode ser observado. O experimento mostrou um resultado satisfatório pois, dentro dos erros admitidos, cumpriu as previsões teóricas esperadas.

Conclui-se que a partir dos procedimentos anteriormente listados em materiais métodos, obtemos os seguinte valor para g_{exp} , r^2 e desvios percentuais:

$$g_{exp} \pm ME(g_{exp}) = 9.87 \pm 0.01$$

$$\Delta_g = 0.41\%$$

$$r^2 = 0.99$$

Isso nos mostra que o experimento foi bem executado, pois o desvio percentual e a margem de erro das medidas foram bastante baixa; e o coeficiente r^2 está muito próximo de 1, assegurando que o coeficiente de determinação condiz com a realidade.

Não foi possível obter resultados perfeitos, pois, toda medida ou grandeza quando analisada experimentalmente contém erros, mas, como é possível observar na linha de tendência presente no gráfico os resultados encontrados estão numa margem de erro praticamente nula constatando assim o objetivo da prática de comprovar a velocidade constante do movimento observado no experimento.

Pêndulo Simples (MHS)

• •

Referências Bibliográficas

MUKAI, H., FERNANDES, P.R.G. Manual de Laboratório de Física I - DFI/UEM, 2008 a 2017.

NUSSENZVEIG, H. M. Curso de Física Básica – Fluidos, Oscilações e Ondas, Calor, Vol.2 - 5a Edição - São Paulo: Edgard Blücher, 2013.

KEITH, R. Symon - Mecânica (Quarta edição), Livro Texto.

https://pt.wikipedia.org/wiki/P%C3%AAndulo