NeuroLit:

A Visualization & Prediction Tool for Reading Research

[Authors]:

Maggie Clarke, Speech & Hearing Sciences Patrick Donnelly, Speech & Hearing Sciences Sritam Kethireddy, Applied Mathematics

80% of children with learning disabilities have a

reading disability

Reading research aims to:

- Find struggling readers early
- Individualize treatment
- Learn how we can tailor a faulty educational system to work for all students

How can NeuroLit help?

Incorporating the power of Data Science

- Building models
- Exploring data in methodical ways
- Looking for hidden relationships

The Data

Two datasets:

- Behavioral measures of reading skill, standardized
- 2. Survey responses, mostly binary + 1 Likert scale rating of reading ability

** All data used is de-identified and available by permission of the research participants in accordance with the UW IRB **

The Interface

NeuroLit Github Repository

Use Cases

Data Visualization:

- 1. Can we create a tool that will produce fast, easy, and presentation-worthy visualizations of relationships in our data?
- 2. Using our survey data, do parent perceptions of reading difficulty correlate with assessed reading skill?

Model-building:

3. Is our reading assessment able to predict the diagnosis of reading disability?

NeuroLit Visualization Tool

UW Reading and Dyslexia Research Program.

Pe	erceived Reading Skill	× •
C	TOPP Phonological Awareness	× •
W	J Basic Reading Skills	× •

NeuroLit Model Building

User: UW researchers/students interested in using reading data to predict dyslexia diagnosis

- Pull RedCap data
- Select variables of interest
- Visualize relationships
- Use machine learning to predict outcomes
- Visualize outcomes

Layout

- Setup.py
- Ipython notebook
 - Imports scripts to call functions
 - Visualization script

Design

Curating Data

- Data retrieval
- Dataset object
- Variable selection
- Missing data imputation
- Data normalization

Data Analysis

- Dimensionality reduction
- Classification
- Regression
- Clustering

Visualization

- Variable relationships
- Model parameters
- Model performance
- Raw data distributions

Lessons Learned/Future Directions

Lessons:

- Time is limited
- Start simple and build on it

Looking to future:

- Visualize machine learning outcomes
- Incorporate functional brain-imaging data
- Generalize to other kinds of categorical data

pip install NeuroLit Today!

https://github.com/UWSEDS-aut17/uwseds-group-neurolit