Step-1

We know that a matrix N is normal if $NN^H = N^H N$.

Consider *N* is normal matrix, then we have to show that ||Nx|| = ||N''x|| for every vector *x*.

If x is the vector then we know that norm is given by

$$(\|x\|)^2 = \langle x, x \rangle$$

Step-2

If we consider the vector $(\|Nx\|)^2$ then we have

$$(\|Nx\|)^2 = \langle Nx, Nx \rangle$$

Multiply the vectors by N^H , we get

$$(\|Nx\|)^{2} = \langle N^{H} Nx, N^{H} Nx \rangle$$
$$= \langle N^{H} Nx, x \rangle$$

Since $NN^H = N^H N$, so we have

$$(\|Nx\|)^{2} = \langle N^{H}Nx, x \rangle$$
$$= \langle NN^{H}x, x \rangle$$

Step-3

Now multiply the vectors by N^H , we get

$$(\|Nx\|)^{2} = \langle N^{H}NN^{H}x, N^{H}x \rangle$$
$$= \langle N^{H}x, N^{H}x \rangle$$
$$= (\|N^{H}x\|)^{2}$$

Therefore, $(\|Nx\|)^2 = (\|N^H x\|)^2$.

Step-4

Let the i^{th} column of N be Ne_i , here e_1, \dots, e_n are the elements of a canonical basis.

Let the i^{th} row of N be $e_i^T N = (N^H e_i)^H$.

We know that the length of a matrix and its transpose are same so we have:

$$\begin{aligned} \left\| e_i^T N \right\| &= \left\| \left(N^H e_i \right)^H \right\| \\ &= \left\| \left(N^H e_i \right) \right\| \\ &= \left\| N e_i \right\| \end{aligned}$$

Therefore, the length of i^{th} row of N is same as the i^{th} column, $\|e_i^T N\| = \|Ne_i\|$.