

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY				
MATEMATYKA – POZIOM ROZSZERZONY				
TEST DIAGNOSTYCZNY	WYPEŁNIA ZESPÓŁ NADZORUJĄCY			
	Uprawnienia zdającego do: nieprzenoszenia			
TERMIN: marzec 2021 r.	zaznaczeń na kartę			
Czas pracy: 180 minut Liczba punktów do uzyskania: 50	dostosowania zasad oceniania			
	dostosowania w zw.			

EMAP-R0-**100**-2103

z dyskalkulią.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 10. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 11. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\log_2 9$ jest równa

A.
$$\frac{1}{\log_3 4}$$

$$\mathbf{C.}\,\frac{1}{\log_3\sqrt{2}}$$

D.
$$\log_3 \sqrt{2}$$

Zadanie 2. (0-1)

Dane są dwie urny z kulami. W pierwszej urnie jest 10 kul: 8 białych i 2 czarne, w drugiej jest 8 kul: 5 białych i 3 czarne. Wylosowanie każdej z urn jest jednakowo prawdopodobne. Wylosowano jedną z tych urn i wyciągnięto z niej losowo jedną kulę. Wyciągnięta kula była czarna. Prawdopodobieństwo zdarzenia, że wylosowana kula pochodziła z pierwszej z tych urn, jest równe

A.
$$\frac{2}{18}$$

B.
$$\frac{15}{23}$$
 C. $\frac{8}{23}$

c.
$$\frac{8}{23}$$

D.
$$\frac{5}{18}$$

Zadanie 3. (0-1)

Prosta dana równaniem $y = \frac{1}{2}x + \frac{3}{2}$ jest prostopadła do stycznej do wykresu funkcji $f(x) = x^4 - 3x^3 + x^2 + x + 5$ w punkcie

A.
$$(-1,6)$$

Zadanie 4. (0-1)

Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie $\frac{1}{\sqrt{3}}$. Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie $\left(-\frac{1}{\sqrt{2}}\right)$. Wynika stąd, że liczba x - y jest równa

B.
$$\sqrt{3}$$

c.
$$\frac{2}{\sqrt{3}-1}$$

BRUDNOPIS (nie podlega ocenie)

Oblicz, ile jest liczb dziesięciocyfrowych takich, że suma cyfr w każdej z tych liczb jest równa 13 i żadna cyfra nie jest zerem.

W poniższe kratki wpisz kolejno – od lewej do prawej – cyfrę setek, dziesiątek i jedności otrzymanego wyniku.

Zadanie 6. (0-3)

Wykaż, że dla każdej liczby rzeczywistej x większej od 2 i dla każdej liczby rzeczywistej y prawdziwa jest nierówność $5x^2 - 6xy + 3y^2 - 2x - 4 > 0$.

	Nr zadania	5.	6.
Wypełnia	Maks. liczba pkt	2	3
egzaminator	Uzyskana liczba pkt		

Zadanie 7. (0-4)

Rozwiąż równanie:

$$\sin\left(x + \frac{1}{4}\pi\right) \cdot \cos\left(x + \frac{1}{4}\pi\right) = \frac{\sqrt{2}}{4}$$

	Nr zadania	7.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 8. (0-4)

Na przeciwprostokątnej AB trójkąta prostokątnego ABC zbudowano kwadrat ABDE (zobacz rysunek). Stosunek pola trójkąta do pola kwadratu jest równy k.

Wykaż, że suma tangensów kątów ostrych tego trójkąta jest równa $\frac{1}{2k}$.

	Nr zadania	8.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 9. (0-4)

Czworokąt ABCD jest wpisany w okrąg o promieniu $R=5\sqrt{2}$. Przekątna BD tego czworokąta ma długość 10. Kąty wewnętrzne BAD i ADC czworokąta ABCD są ostre, a iloczyn sinusów wszystkich jego kątów wewnętrznych jest równy $\frac{3}{8}$. Oblicz miary kątów wewnętrznych tego czworokąta.

	Nr zadania	9.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 10. (0-4)

Reszty z dzielenia wielomianu $W(x) = x^4 + bx^3 + cx^2$ przez dwumiany (x-2) i (x-3) są odpowiednio równe (-8) oraz (-18). Oblicz resztę z dzielenia wielomianu W przez dwumian (x-4).

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 11. (0-4)

Dany jest graniastosłup prawidłowy trójkątny *ABCDEF*. Krawędź podstawy tego graniastosłupa ma długość 4, a wysokość graniastosłupa jest równa 6 (zobacz rysunek).

Oblicz sinus kąta AFB.

147 1 1	Nr zadania	11.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 12. (0-5)

Czterowyrazowy ciąg (a,b,c,d) jest rosnący i arytmetyczny. Kwadrat największego wyrazu tego ciągu jest równy podwojonej sumie kwadratów pozostałych wyrazów tego ciągu. Ponadto ciąg (a+100,b,c) jest geometryczny. Oblicz wyrazy ciągu (a,b,c,d).

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 13. (0-5)

Dany jest równoległobok, którego boki zawierają się w prostych o równaniach: y=x+b, y=x+2b, y=b, y=2, gdzie liczba rzeczywista b spełnia warunki: $b\neq 2$ i $b\neq 0$. Wyznacz wszystkie wartości parametru b, dla których pole tego równoległoboku jest równe 1.

	Nr zadania	13.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 14. (0-5)

Wyznacz wszystkie wartości parametru a, dla których równanie $x^2 - 2ax + a^3 - 2a = 0$ ma dwa różne rozwiązania dodatnie.

147 1 1	Nr zadania	14.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-6)

Rozpatrujemy wszystkie trójkąty ABC, których wierzchołki A i B leżą na wykresie funkcji f określonej wzorem $f(x)=\frac{9}{x^4}$ dla $x\neq 0$. Punkt C ma współrzędne $\left(0,-\frac{1}{3}\right)$, a punkty A i B są położone symetrycznie względem osi Oy (zobacz rysunek). Oblicz współrzędne wierzchołków A i B, dla których pole trójkąta ABC jest najmniejsze. Oblicz to najmniejsze pole.

Wypełnia egzaminator	Nr zadania	15.
	Maks. liczba pkt	6
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

