Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 30. dubna 2023

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 5:

Měření modulu pružnosti pevných látek

 $T=21,1~^{\circ}\text{C}$ p=101,35~kPa $\varphi=47,7~\%$

1. Úvod

V úloze budu měřit moduly pružnosti všeho druhu. Zavádíme je následujícím způsobem:

Pro materiál v tahu platí v nejjednodušším případě Hookův zákon

$$\sigma_{\rm n} = \frac{dF_{\rm n}}{dS} = \frac{\Delta l}{l}E,\tag{1}$$

kde Δ l délkové prodloužení, l délka vzorku, dF_n průmět síly na kolmici ke zvolené plošce dS, σ_n normálové napětí a E modul pružnosti. Pokud je materiál v torzi místo v tahu a speciálně se zabýváme drátem o rozměrech l $\times \rho \times 2\pi$, bude platit velmi obdobný zákon

$$\sigma_{\rm t} = \frac{dF_{\rm t}}{dS} = \frac{\rho\varphi}{a}G\tag{2}$$

kde φ je úhel zkroucení konce drátu a G modul pružnosti ve smyku.

2. Postup měření

2.1. Měření modulu pružnosti v tahu přímou metodou z prodloužení drátu

Měření bude probíhat jako na obrázku 1. Z úchytu visí kolmo dolů drát o délce l a průměru d, který můžu postupně zatěžovat a úchylkoměrem velmi citlivě měřit jeho prodloužení.

Do Hookova zákona dosadím za S obsah průřezu drátu a za F gravitační sílu, kterou na drát působí závaží.

$$\Delta l(m) = \frac{4gl}{\pi d^2 E} m \tag{3}$$

Změřím odchylku pro každé další přidané závaží a modul pružnosti určím ze sklonu lineárního fitu hodnot.

$$k = \frac{4gl}{\pi d^2 E} \tag{4}$$
 Obrázek 1: Přímá metoda

2.2. Měření modulu pružnosti v tahu z průhybu plného obdélníkového nosníku

Měření bude probíhat jako na obrázku 2. Mezi dvěma podpěrami ve vzdálenosti l je položený obdélníkový nosník o rozměrech a \times b \times c, který můžu postupně zatěžovat přidáváním závaží a úchylkoměrem měřit výchylku y od původní polohy.

Obrázek 2: průhyb nosníku

Vztah mezi průhybem y daného nosníku a zatížením F=mg je

$$y = \frac{mgl^3}{4Ea^3b} \tag{5}$$

Stejně jako v předešlém případě budu postupovat zvyšováním zátěže pro závislost y(m), kterou vyhodnotím fitem.

2.3. Měření modulu pružnosti ve smyku dynamickou metodou

Na homogenní drát délky l o poloměru r je zavěšena homogenní koule o poloměru R a hmotnosti m mnohem větší, než je hmotnost drátu. Když kouli pootočím kolem svislé osy, vykonává torzní kmity. Pokud zkroucení drátu odpovídá pružné torzní deformaci, pak platí vztah pro modul pružnosti ve smyku G

$$G = \frac{16\pi mR^2 l}{5r^4 T^2}. (6)$$

Přitom T je perioda kmitání. Provedu 10 měření doby 10 period kmitání, veličiny zprůměruju a dopočítám G.

Obrázek 3: Torzní oscilátor

3. Výsledky měření

3.1. Měření modulu pružnosti v tahu přímou metodou z prodloužení drátu

Na svislý ocelový drát o průměru $d = (0.50 \pm 0.003)$ mm a délce l = 1567 mm jsem postupně přidával závaží a měřil prodloužení Δl . Získané hodnoty jsou uvedené v grafu 4.

Obrázek 4: Závislost prodloužení drátu na hmotnosti závaží

Dosazením do vztahu (4) dostávám modul pružnosti drátu E

$$E = (174 \pm 3) \ GPa.$$

3.2. Měření modulu pružnosti v tahu z průhybu plného obdélníkového nosníku

Na obdélníkové nosníky o rozměrech a \times b \times c jsem postupně přidával závaží a měřil prohnutí y. Získané hodnoty jsou uvedené v grafu 5 a dopočítané moduly pružnosti v tabulce 1.

Obrázek 5: Závislost prohnutí nosníku na hmotnosti závaží.

materiál	a (mm)	b (cm)	$k (10^{-6} \text{ mkg}^{-1})$	E (GPa)
hliník	5.03 ± 0.03	3.03 ± 0.02	6800 ± 8	67.9 ± 1
mosaz	5.06 ± 0.01	3.02 ± 0.05	4770 ± 5	95.6 ± 2
měď	5.05 ± 0.07	3.0 ± 0.1	3894 ± 9	116 ± 6
ocel	5.75 ± 0.02	2.98 ± 0.01	1528 ± 2	205 ± 2

Tabulka 1: Vypočítané moduly pružnosti E z rozměrů měřených nosníků a vzdálenosti břitů $l=89.9\pm0.03$ cm.

3.3. Měření modulu pružnosti ve smyku dynamickou metodou

Uvádím parametry ocelového torzního oscilátoru a změřenou periodu kmitání pro výpočet dynamického modulu pružnosti G ze vztahu (6).

m = 5.905 g	hmotnost koule
$R = (49.87 \pm 0.07) \text{ mm}$	poloměr koule
$r = (0.496 \pm 0.005) \text{ mm}$	poloměr drátu
$l = (51.450 \pm 0.003) \text{ cm}$	délka závěsu
$T = (3.983 \pm 0.032) \text{ s}$	změřená perioda kmitání

$$G = (79 \pm 4) \text{ GPa}$$

4. Závěr

Z prodloužení ocelového drátu jsem změřil modul pružnosti $E = (174\pm3)$ GPa. Ne celkové nejistotě se podílela nejistota typu B při měření průměru drátu mikrometrem a nejistota sklonu lineárního fitu hodnot.

Metodou prohnutí nosníků jsem změřil moduly pružnosti hliníku, mědi, mosazi a ocele a výsledné hodnoty uvedl v tabulce 1. Pro všechny čtyři kovy je rozdíl oproti tabulkám z odkazu [1] v řádech několika procent. Je vidět, že metoda průhybu nosníku dosáhla mnohem přesnějšího výsledku, než přímá metoda měření z prodloužení drátu.

Z periody torzních kmitů jsem změřil modul pružnosti ve smyku ocelového drátu $G=(79\pm4)$ GPa. Nepřesnost měření je převážně způsobená nejistotou periody kmitání. Bylo by potřeba místo manuálního spouštění stopek použít nějakou přesnější metodu. Tabulková hodnota je 79.3 GPa.

Reference

[1] Tabulky Youngových modulů pružnosti http://kabinet.fyzika.net/studium/tabulky/modul-pruznosti.php.