- KDD 2020 -

고려대학교 DSBA 연구실 최희정 2021. 01. 27

Prerequisites

Prerequisites

Multivariate Time Series Anomaly Detection

- Multivariate Time Series Anomaly Detection
 - Dataset: set of time series $T = \{x_1, \dots, x_T\} \rightarrow x_t = \{x_{1,t}, \dots, x_{m,t}\}$ • w 제개의 변수로 이루어진 t시점 w차원 벡터가 총 시간 t만큼 존재하는 데이터
 - Task: 길이가 K인 time window $W_t = \{x_{t-K+1}, \cdots, x_{t-1}, x_t\}$ 를 input으로 t시점의 normal/abnormal 여부를 예측함

Prerequisites

AE-based Multivariate Time Series AD

- LSTM-AE (Unsupervised)
 - Training: 정상 데이터의 reconstruction error를 기반으로 LSTM-AE를 학습하여 정상 데이터의 분포를 학습함
 - Anomaly detection: 학습이 완료된 LSTM-AE를 기반으로 도출한 새로운 input 의 reconstruction error가 threshold를 초과하면 이상치로 탐지함

Anomaly Score =
$$\|W_t - D(E(W_t))\|_2$$

Prerequisites

GAN-based Multivariate Time Series AD

- MAD-GAN (Unsupervised)
 - Training: 정상 데이터만으로 LSTM 구조의 generator와 discriminator를 학습하 여 정상 데이터의 분포를 학습함

Prerequisites

GAN-based Multivariate Time Series AD

- MAD-GAN (Unsupervised)
 - Anomaly detection: 새로운 input의 optimal latent space를 기반으로 생성한 reconstructed sample과 input의 reconstruction loss와 input에 대한 discrimination loss의 가중 합이 특정 threshold를 초과하면 이상치로 탐지함

USAD: UnSupervised Anomaly Detection on Multivariate Time series

• USADKDD2020

- AE-based & GAN-based anomaly detection 모델에는 한계점이 존재함
 - ✔ AE-based AD: AE는 정상 데이터를 잘 복원하도록 학습되기 때문에 이상치가 정상 데이터와 유사하면 reconstruction error가 작아 이상치로 탐지되지 않음
 - ✔ GAN-based AD: GAN은 학습이 불안정하여 mode collapse와 non-convergence 같은 문제가 발생하기 쉬움
- 본 연구에서는 AE에 adversarial training을 접목하여 한계점을 해결함으로써 빠르고 안정적인 unsupervised multivariate time series AD 모델을 제안함

USAD: UnSupervised Anomaly Detection on Multivariate Time Series

Training

- Phase 1: Autoencoder Training
 - Encoder E가 input W_t 를 latent space Z로 압축한 후, Decoder D가 Z를 W_t 와 동일하게 복원하는 Autoencoder를 학습함

USAD: UnSupervised Anomaly Detection on Multivariate Time Series

Training

- Phase 1: Autoencoder Training
 - 이때, adversarial training을 위해 Encoder D_1 , Decoder D_2 를 기 반으로 encoder를 공유하는 두 개의 AE를 구축함

USAD: UnSupervised Anomaly Detection on Multivariate Time Series

Training

- Phase 2: Adversarial Training
 - Phase 1에서 AE_1 으로부터 복원된 샘플 $AE_1(W_t) = D_1(E(W_t))$ 를 기반으로 AE 의 adversarial training을 진행함

USAD: UnSupervised Anomaly Detection on Multivariate Time Series

Training

Phase 2: Adversarial Training

• AE_2 는 real data와 AE_1 의 reconstructed data를 잘 구분하고, AE_1 은 AE_2 를 잘 속이도록 적대적으로 학습을 진행해 AE가 정상 데이터와 유사한 이상치를 탐지할 수

USAD: UnSupervised Anomaly Detection on Multivariate Time Series

Training

- Two-phase Training
 - USAD를 구성하는 두 AE의 학습 목표는 다음과 같음
 - ✓ AE_1 : input을 잘 복원하면서 AE_2 를 잘 속이는 모델 학습
 - ✓ AE_2 : input을 잘 복원하면서 AE_1 이 복원한 데이터와 input을 잘 구별하는 모델 학습
 - AE_2 도입 및 adversarial training을 통해 정상 데이터와 유사한 이상치를 탐지하는 것을 가능하게 하며, AE 구조를 통해 안정적인 학습이 가능하게 함

$$\min_{AE_1} \frac{1}{n} \|W_t - AE_1(W_t)\|_2 + \left(1 - \frac{1}{n}\right) \|W_t - AE_2(AE_1(W_t))\|_2$$

$$\min_{AE_2} \frac{1}{n} \|W_t - AE_2(W_t)\|_2 - \left(1 - \frac{1}{n}\right) \|W_t - AE_2(AE_1(W_t))\|_2$$

$$\|n - epoch\|$$

안정적인 학습을 위해 초반에는 reconstruction에 가중치를 주고 후반에는 adversarial training에 가중치를 부여함

Inference

- Anomaly Score
 - 학습이 완료된 두 AE를 기반으로 아래와 같이 anomaly score를 산출함

Anomaly Score =
$$\alpha \|\widehat{W}_t - AE_1(\widehat{W}_t)\|_2 + \beta \|\widehat{W}_t - AE_2(AE_1(\widehat{W}_t))\|_2$$

Inference

Anomaly Score

- Anomaly score의 계수의 합은 1이며, 계수의 비중에 따라 아래와 같이 false positive와 true positive 간의 trade-off가 발생함
 - \checkmark $\alpha > \beta$: true & false positive 감소 → low detection sensitivity scenario
 - \checkmark $\alpha < \beta$: true & false positive 증가 → high detection sensitivity scenario

Anomaly Score =
$$\alpha \|\widehat{W}_t - AE_1(\widehat{W}_t)\|_2 + \beta \|\widehat{W}_t - AE_2(AE_1(\widehat{W}_t))\|_2$$

		Tr	ue
		Abnormal	Normal
Predicted	Abnormal	<u>True Positive</u>	<u>False Positive</u>
Fredicted	Normal	False Negative	True Negative

Datasets

- 5개의 public datasets와 1개의 internal dataset을 기반으로 실험을 진행함
- Window 내부의 한 시점이라도 abnormal이면 해당 구간의 ground truth를 abnormal로 부여하는 point-adjust 방식을 통해 모델의 성능을 평가함

Dataset	Dim	Anomalies(%)	Description
SWaT	51	11.98	Secure Water Treatment: 7 normal days, 4 abnormal days
WADI	123	5.99	Water Distribution: 14 normal days, 2 abnormal days
SMD	38	4.16	Server Machine: 28 machines, 38 metrics
SMAP	25	13.13	Soil Moisture Active Massive: 55 entities, 25 metrics
MSL	55	10.72	Mars Science Laboratory: 27 entities, 55 metrics
Orange	33	33.72	Internal dataset for feasibility study

Experiments

Baselines

- 아래 5개의 baseline과 제안된 모델의 성능을 비교함
 - ✔ IF, DAGMM: 한 시점의 데이터를 input으로 사용해 시간 정보를 반영하지 못함
 - ✔ AE, LSTM-VAE, OmniAnomaly: 제안된 모델과 동일하게 연속적인 여러 시점의 데이 터를 input으로 사용해 시간 정보를 반영함

Model	Exploiting Temporal Information	
IF (Isolation Forests)	V	
DAGMM (Deep Autoencoding Gaussian Mixture Model)	X	
AE		
LSTM-VAE	О	
OmniAnomaly		

Experiments

Overall Performance

- 제안한 방법론이 대부분의 데이터에서 우수한 성능을 도출함
- 시계열 정보를 사용하지 않은 IF와 DAGMM이 낮은 성능을 도출하는 것을 통해 temporal information을 모델링하는 것이 중요함을 알 수 있음

Methods	SWaT						WADI					
	Without		With			Without			With			
	P	R	F1	P	R	F1	P	R	F1	P	R	F1
AE	0.9903	0.6295	0.7697	0.9913	0.7040	0.8233	0.9947	0.1310	0.2315	0.3970	0.3220	0.3556
IF	0.9512	0.5884	0.7271	0.9620	0.7315	0.8311	0.2992	0.1583	0.2071	0.6241	0.6155	0.6198
LSTM-VAE	0.9897	0.6377	0.7756	0.7123	0.9258	0.8051	0.9947	0.1282	0.2271	0.4632	0.3220	0.3799
DAGMM	0.4695	0.6659	0.5507	0.8292	0.7674	0.7971	0.0651	0.9131	0.1216	0.2228	0.1976	0.2094
OmniAnomaly	0.9825	0.6497	0.7822	0.7223	0.9832	0.8328	0.9947	0.1298	0.2296	0.2652	0.9799	0.4174
USAD	0.9851	0.6618	0.7917	0.9870	0.7402	0.8460	0.9947	0.1318	0.2328	0.6451	0.3220	0.4296

Methods		SI	MD			S	MAP			1	MSL	
	P	R	F1	F1*	P	R	F1	F1*	P	R	F1	F1*
AE	0.8825	0.8037	0.8280	0.8413	0.7216	0.9795	0.7776	0.8310	0.8535	0.9748	0.8792	0.9101
IF	0.5938	0.8532	0.5866	0.7003	0.4423	0.5105	0.4671	0.4739	0.5681	0.6740	0.5984	0.6166
LSTM-VAE	0.8698	0.7879	0.8083	0.8268	0.7164	0.9875	0.7555	0.8304	0.8599	0.9756	0.8537	0.9141
DAGMM	0.6730	0.8450	0.7231	0.7493	0.6334	0.9984	0.7124	0.7751	0.7562	0.9803	0.8112	0.8537
OmniAnomaly	0.9809	0.9438	0.9441	0.9620	0.7585	0.9756	0.8054	0.8535	0.9140	0.8891	0.8952	0.9014
USAD	0.9314	0.9617	0.9382	0.9463	0.7697	0.9831	0.8186	0.8634	0.8810	0.9786	0.9109	0.9272

F1: best threshold에 대한 F1 score

F1*: average recall과 average precision으로 도출한 F1 score

Experiments

- Effect of Parameters
 - SWaT dataset을 기반으로 총 4개의 parameter가 모델에 미치는 영향을 확인함
 - ✔ Down-sampling: 데이터를 샘플링하는 주기
 - ✔ Windows size: input의 sequence 길이
 - ✔ Dimension of latent space: AE의 latent space 차원
 - ✔ Percentage of anomalies: train dataset에 포함되는 anomaly 비율

Experiments

Effect of Parameters

- Down-sampling 값이 5일 때 최고 성능을 도출하며, 비율의 값에 관계없이 일정한 성능을 도출하는 것을 통해 모델이 down-sampling에 민감하지 않음을 알 수 있음
- Window size가 10일 때 최고 성능을 도출하는 것을 통해 각 시점이 이상치 탐지에 큰 영향을 미치고 USAD가 이상치를 빠르게 탐지할 수 있다고 볼 수 있음

Experiments

Effect of Parameters

- Dimension of latent space가 20일 때 최고 성능을 도출하며, 값이 작을 때는 정보 손실이 발생하고 클 때는 memorization이 발생해 성능이 낮은 것을 확인할 수 있음
- Training data의 percentage of anomalies가 증가함에 따라 precision이 크게 감소하는 것을 통해 false positive가 증가함을 알 수 있음

Experiments

- Effect of Parameters
 - SWaT dataset을 기반으로 anomaly score의 parameter의 영향을 확인함
 - α 와 β 의 값에 따라 상이한 결과가 도출되는 것을 통해 모델이 α 와 β 에 민감함을 알수 있으며, α 가 증가하고 β 가 감소할수록 false positive와 true positive가 모두 감소하는 것을 확인할 수 있음

Anomaly Score =
$$\alpha \|\widehat{W}_t - AE_1(\widehat{W}_t)\|_2 + \beta \|\widehat{W}_t - AE_2(AE_1(\widehat{W}_t))\|_2$$

α	β	FP	TP	F1
0.0	1.0	604	35,616	0.7875
0.1	0.9	580	35,529	0.7853
0.2	0.8	571	35,285	0.7833
0.5	0.5	548	34,590	0.7741
0.7	0.3	506	34,548	0.7738
0.9	0.1	299	34,028	0.7684

Experiments

Ablation Study

- SMD, SMAP, MSL datasets를 기반으로 2개의 phase의 효과를 검증함
- Adversarial training의 접목이 AE의 성능을 유의미하게 향상시키는 것을 통해 adversarial training이 정상 데이터와 유사한 이상치를 탐지하는데 도움이 된다고 볼 수 있음

Experiments

- Feasibility Study
 - 실제 현장에서 사용되는 internal dataset을 기반으로 제안한 모델의 feasibility를 검증한 결과 이상치 탐지 성능이 우수한 것을 확인함

Method	Precision	Recall	F1-score
USAD	0.7448	0.6428	0.6901

감사합니다