### 积分 第三讲 定积分 3.2

#### 一、问题的提出

#### 实例1 (求曲边梯形的面积)

曲边梯形由连续曲线  $y = f(x)(f(x) \ge 0)$ 、 x 轴与两条直线x = a、 x = b所围成.









## 用矩形面积近似取代曲边梯形面积



x o

b

a





x

观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.









曲边梯形如图所示, 在区间[a,b]内插入若干 个分点, $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ , 把区间[a,b]分成n个小区间 $[x_{i-1}, x_i]$ , 长度为  $\Delta x_i = x_i - x_{i-1}$ ; 在每个小区间 $[x_{i-1}, x_i]$ 上任取一点 $\xi_i$ ,  $o \mid a \mid x_1$  $x_{i-1} x_i$  $x_{n-1}h$ 以 $[x_{i-1},x_i]$ 为底, $f(\xi_i)$ 为高的小矩形面积为  $A_i = f(\xi_i) \Delta x_i$ 

曲边梯形面积的近似值为

$$A \approx \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

当分割无限加细,即小区间的最大长度  $\lambda = \max\{\Delta x_1, \Delta x_2, \cdots \Delta x_n\}$  趋近于零  $(\lambda \to 0)$  时,

曲边梯形面积为 
$$A = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$





#### 二、定积分的定义

定义 设函数 f(x) 在 [a,b] 上有界, 在 [a,b] 中任意插入 若干个分点  $a = x_0 < x_1 < x_2 < \dots < x_m < x_m = b$ 把区间[a,b]分成n个小区间,各小区间的长度依次为  $\Delta x_i = x_i - x_{i-1}$ ,  $(i = 1, 2, \cdots)$ , 在各小区间上任取 一点 $\xi_i$  ( $\xi_i \in \Delta x_i$ ),作乘积 $f(\xi_i)\Delta x_i$  ( $i = 1, 2, \cdots$ ) 并作和 $S = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$ ,  $ii\lambda = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\},$ 如果不论对[a,b]





怎样的分法, 也不论在小区间 $[x_{i-1},x_i]$ 上 点 $\xi_i$ 怎样的取法,只要当 $\lambda \to 0$ 时,和S总趋于 确定的极限I,我们称这个极限I为函数f(x)在区间[a,b]上的定积分,记为  $f(x)dx = I = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 函被数积 式 被 积 表 达 [a,b]积分区间

#### 三、定积分的几何意义

f(x) > 0,  $\int_a^b f(x)dx = A$  曲边梯形的面积

f(x) < 0,  $\int_a^b f(x)dx = -A$  曲边梯形的面积的负值







# 

#### 几何意义:

它是介于x轴、函数f(x)的图形及两条直线x=a, x=b之间的各部分面积的代数和. 在x轴上方的面积取正号;在x轴下方的面积取负号.







### 四、变上限积分函数 $\int_a^x f(t)dt$

$$b_1$$
  $\begin{bmatrix} a, b_1 \end{bmatrix}$   $f(t)$   $\int_a^b f(t) dt$   $b_2$   $\begin{bmatrix} a, b_2 \end{bmatrix}$   $f(t)$ 

$$\int_{a}^{b} f(x)dx = I = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$







#### 积分上限函数的性质

 $\Phi(x) = \int_{a}^{x} f(t)dt.$ 

如果f(x)在[a,b]上连续,则积分上限的函 数 $\Phi(x) = \int_a^x f(t)dt \, \Delta[a,b]$ 上具有导数,且它的导 数是 $\Phi'(x) = \frac{d}{dx} \int_a^x f(t)dt = f(x)$   $(a \le x \le b)$ 









$$\Phi(x) = \int_0^x \sin t^2 dt$$

$$\mathbf{(1)} \quad \Phi'(x) = \left[ \int_{-x}^{x} \mathbf{s} \right]$$

$$\mathbf{f}^{0} = \mathbf{f}^{0} = \mathbf{f}^{0} \mathbf{f}^{0}$$

2) 
$$\Phi(x) = \int_{x} \cos(3t+1)dt$$

例1 求下列函数的导数

(1) 
$$\Phi(x) = \int_0^x \sin t^2 dt$$

解 (1)  $\Phi'(x) = [\int_0^x \sin t^2 dt]' = \sin x^2$ 

(2)  $\Phi(x) = \int_x^0 \cos(3t+1) dt$ 

解 (2)  $\Phi'(x) = [\int_x^0 \cos(3t+1) dt]'$ 
 $= [-\int_0^x \cos(3t+1) dt]'$ 
 $= -\cos(3x+1)$ 

$$c(x) = \int_{x}^{0} \cos(3t + 1)$$

神充 如果
$$f(t)$$
连续, $a(x)$ 、 $b(x)$  可导,

则 $F(x) = \frac{d}{dx} \int_{a(x)}^{x} f(t) dt = f(x)$ 

补充 如果 $f(t)$ 连续, $a(x)$ 、 $b(x)$  可导,

 $F'(x) = \frac{d}{dx} \int_{a(x)}^{b(x)} f(t) dt$ 
 $f'(x) = \frac{d}{dx} \int_{a(x)}^{b(x)} f(t) dt$ 

= f[b(x)]b'(x) - f[a(x)]a'(x)

如果f(t)连续, a(x)、b(x) 可导,

 $\Phi'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$ 

则 $F(x) = \int_{a(x)}^{b(x)} f(t)dt$ 的导数F'(x)为

补充

(3) 
$$\Phi(x) = \int_0^{x^2} \sqrt{1+t^2} dt$$
  
**#** (3)  $\Phi'(x) = [\int_0^{x^2} \sqrt{1+t^2} dt]' = \sqrt{1+(x^2)^2} \cdot (x^2)'$   
 $= 2x\sqrt{1+x^4}$   
(4)  $\Phi(x) = \int_{x^2}^{x^3} \frac{1}{\sqrt{1+t^2}} dt = -2x\frac{1}{\sqrt{1+x^4}} + 3x^2 \frac{1}{\sqrt{1+x^6}}$   
**#** (4)  $\Phi'(x) = (\int_{x^2}^{x^3} \frac{1}{\sqrt{1+t^2}} dt)'$ 

$$= \left(\int_{x^2}^a \frac{1}{\sqrt{1+t^2}} dt + \int_a^{x^3} \frac{1}{\sqrt{1+t^2}} dt\right)'$$

$$c x^2 = 1$$

$$c x^3 = 1$$

 $= -\left(\int_{a}^{x^{2}} \frac{1}{\sqrt{1+t^{2}}} dt\right)' + \left(\int_{a}^{x^{3}} \frac{1}{\sqrt{1+t^{2}}} dt\right)'$ 

例2 设
$$y = \int_{\sqrt{x}}^{\sqrt[3]{x}} \ln(1+t^6) dt$$
, 求 $\frac{dy}{dx}$ 

解

- $\frac{dy}{dx} = \ln\left(1 + (\sqrt[3]{x})^6\right) \cdot \left(\sqrt[3]{x}\right)' \ln\left(1 + \left(\sqrt{x}\right)^6\right) \cdot \left(\sqrt{x}\right)'$

 $= \frac{1}{3\sqrt[3]{x^2}} \ln(1+x^2) - \frac{1}{2\sqrt{x}} \ln(1+x^3)$ 

例3 求 
$$\lim_{x\to 0} \frac{\int_{\cos x}^{1} e^{-t^{2}} dt}{x^{2}}$$
.

分析: 这是  $\frac{0}{0}$  型不定式,应用洛必达法则。

解  $\frac{d}{dx} \int_{\cos x}^{1} e^{-t^{2}} dt = -\frac{d}{dx} \int_{1}^{\cos x} e^{-t^{2}} dt$ ,

$$= -e^{-\cos^{2} x} \cdot (\cos x)' = \sin x \cdot e^{-\cos^{2} x}$$
,
$$\lim_{x\to 0} \frac{\int_{\cos x}^{1} e^{-t^{2}} dt}{x^{2}} = \lim_{x\to 0} \frac{\sin x \cdot e^{-\cos^{2} x}}{2x} = \frac{1}{2e}$$
.

例4 求 
$$\lim_{x \to 0} \frac{\int_{\cos x}^{1} \ln(1+t)dt}{x^{2}}$$

$$\lim_{x \to 0} \frac{\int_{\cos x}^{1} \ln(1+t)dt}{x^{2}} = \lim_{x \to 0} \frac{-\int_{1}^{\cos x} \ln(1+t)dt}{x^{2}}$$

$$\lim_{x \to 0} \frac{\int_{\cos x}^{\cos x} \frac{\ln(1+t)dt}{x^2} = \lim_{x \to 0} \frac{-\int_{1}^{\infty} \frac{\ln(1+t)dt}{x^2}$$

$$\left(\int_{1}^{\cos x} \ln(1+t)dt\right)' = \sin x \ln(1+\cos x)$$

$$= -\lim_{x \to 0} \frac{\left(\int_{1}^{\cos x} \ln(1+t)dt\right)'}{\left(x^{2}\right)'} = \lim_{x \to 0} \frac{\sin x \ln(1+\cos x)}{2x}$$

例4 求 
$$\lim_{x \to 0} \frac{\int_{\cos x}^{1} \ln(1+t)dt}{x^{2}}$$

$$\lim_{x \to 0} \frac{\int_{\cos x}^{1} \ln(1+t)dt}{x^{2}} = \lim_{x \to 0} \frac{-\int_{1}^{\cos x} \ln(1+t)dt}{x^{2}}$$

$$= -\lim_{x \to 0} \frac{\left(\int_{1}^{\cos x} \ln(1+t)dt\right)'}{\left(x^{2}\right)'} = \lim_{x \to 0} \frac{\sin x \ln(1+\cos x)}{2x}$$

$$= \frac{\ln 2}{2}$$



#### 五、牛顿—莱布尼茨公式

定理 3 (微积分基本公式)

HHHHHHHHHHH

如果F(x)是连续函数f(x) 在区间[a,b]上 的一个原函数,则 $\int_a^b f(x)dx = F(b) - F(a)$ .





例5 求 
$$\int_0^1 xe^{x^2} dx$$
 解

解
$$\int_0^1 xe^{x^2} dx = \frac{1}{2} \int_0^1 xe^{x^2} dx$$

例5 求 
$$\int_{0}^{1} xe^{x^{2}} dx$$
 解
$$\int_{0}^{1} xe^{x^{2}} dx = \frac{1}{2}$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$



$$\int_{0}^{1} xe^{x^{2}} dx = \frac{1}{2} \int_{0}^{1} e^{x^{2}} dx$$

$$\int_{0}^{1} xe^{x^{2}} dx = \frac{1}{2} \int_{0}^{1} e^{x^{2}} dx$$

 $=\frac{1}{2}e^{x^2}\mid_0^1$ 

 $=\frac{1}{2}(e-e^{0})=\frac{1}{2}(e-1)$ 





$$\int_{-a}^{a} f(x)dx = \begin{cases} 0, & f(-x) = -f(x) \\ 2\int_{0}^{a} f(x)dx, & f(-x) = f(x) \end{cases}$$

$$= \int_{-2}^{2} \frac{x}{\cos x} dx + \int_{-2}^{2} \sqrt{4 - x^{2}} dx$$

$$= \frac{1}{2} \pi \cdot 4 = 2\pi$$

例6 计算  $\int_{-2}^{2} \left( \frac{x}{\cos x} + \sqrt{4 - x^2} \right) dx$ 

例7 计算 
$$\int_{\ln 3}^{\ln 8} \sqrt{1 + e^x} dx$$

解 令  $\sqrt{1 + e^x} = t$ , 则 $x = \ln(t^2 - 1)$ ,  $dx = \frac{2t}{t^2 - 1} dt$ .

当 $x = \ln 3$ 时,  $t = 2$ ; 当 $x = \ln 8$ 时,  $t = 3$ .

$$\int_{\ln 3}^{\ln 8} \sqrt{1 + e^x} dx = \int_{2}^{3} \frac{2t^2}{t^2 - 1} dt = 2\int_{2}^{3} \left(1 + \frac{1}{t^2 - 1}\right) dt$$

$$= \left[2t + \ln\left|\frac{t - 1}{t + 1}\right|\right]_{2}^{3} = 2 + \ln\frac{3}{2}$$

$$\sqrt{1+e^{x}}dx = \int_{2}^{3} \frac{2t^{2}}{t^{2}-1}dt = 2\int_{2}^{3} \left(1+\frac{1}{t^{2}-1}\right)dt$$
$$= \left[2t+\ln\left|\frac{t-1}{t-1}\right|\right]_{2}^{3} = 2+\ln\frac{3}{2}$$



# 

#### 分部积分公式

设函数u(x)、v(x)在区间a,b]上具有连续

导数,则有 $\int_a^b u dv = \left[uv\right]_a^b - \int_a^b v du$ . 定积分的分部积分公式





例8 计算下列积分
$$\int_{0}^{1} xe^{x} dx = \int_{0}^{1} xde^{x} = xe^{x} \Big|_{0}^{1} - \int_{0}^{1} e^{x} dx = e - e^{x} \Big|_{0}^{1} = 1$$

$$\int_{0}^{\sqrt{3}} \arctan x dx = x \arctan x \Big|_{0}^{\sqrt{3}} - \int_{0}^{\sqrt{3}} \frac{x}{1+x^{2}} dx$$

$$\int_{0}^{2} \arctan \sec x = x \arctan x |_{0}^{2} \int_{0}^{2} 1 + x^{2} dx$$

$$= \frac{\sqrt{3}}{3} \pi - \frac{1}{2} \ln (1 + x^{2}) \Big|_{0}^{\sqrt{3}} = \frac{\sqrt{3}}{3} \pi - \ln 2$$

$$\int_{1}^{2} x \ln x dx = \frac{1}{2} \int_{1}^{2} \ln x dx^{2} = \frac{1}{2} x^{2} \ln x \Big|_{1}^{2} - \frac{1}{2} \int_{1}^{2} x dx$$

$$= 2 \ln 2 - \frac{1}{4} x^{2} \Big|_{1}^{2} = 2 \ln 2 - \frac{3}{4}$$





计算  $\int_0^1 \frac{\ln(1+x)}{(2+x)^2} dx$ .

#### **例10** 计算 $\int_{-1}^{1} (x+|x|)e^{-|x|}dx$

$$\mathbf{F} \int_{-1}^{1} (x+|x|)e^{-|x|}dx = \int_{-1}^{1} xe^{-|x|}dx + \int_{-1}^{1} |x|e^{-|x|}dx$$

$$= 0 + 2 \int_0^1 x e^{-x} dx$$



$$=2(1-\frac{2}{e})$$

返回