Christopher David Miller FSMAT 201 Problem 1.8 Version 1

1.8

Let $\mathbf{u} \in \mathbb{R}^n$. Prove that the normalization of \mathbf{u} has norm 1.

Proof. Let $\mathbf{u} \in \mathbb{R}^n$. The normalization of a vector \mathbf{u} is the vector \mathbf{v} given by

$$\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|}.$$

Also notice to calculate the norm of a vector \mathbf{v} , we need to use the following formula

$$\|\mathbf{v}\| = \sqrt{\sum_{k=1}^{n} v_k^2}$$

$$= \sqrt{\sum_{k=1}^{n} \frac{u_k^2}{\|\mathbf{u}\|^2}}$$

$$= \sqrt{\sum_{k=1}^{n} \frac{u_k^2}{\|\mathbf{u}\|^2}}$$

$$= \sqrt{\frac{1}{\|\mathbf{u}\|^2} \sum_{k=1}^{n} \frac{u_k^2}{1}}$$

$$= \frac{1}{\|\mathbf{u}\|} \sqrt{\sum_{k=1}^{n} \frac{u_k^2}{1}}$$

$$= \frac{1}{\|\mathbf{u}\|} \|\mathbf{u}\|$$

$$= 1$$