

User Diversity: Una Métrica para Diversidad en Recomendaciones

Fernanda Pérez Hargreaves, Mathias Madsen Sánchez, Felipe Olivares Labarca, Beatriz Errázuriz Camus

Motivación

- Los sistemas de recomendación se enfocan en el comportamiento pasado del usuario.
- Priorizan categorías ya exploradas, dejando de lado áreas relevantes poco desarrolladas.
- User Diversity fomenta la exploración de nuevas áreas, equilibrando Personalización y Diversidad
- Ofrece recomendaciones variadas que enriquecen la experiencia del usuario y fomentan el descubrimiento de nuevos intereses.

Objetivo

Objetivo Principal: Desarrollar una métrica que evalúe la diversidad en las recomendaciones, promoviendo la exploración de áreas menos exploradas por el usuario.

Objetivos Específicos:

- Definir formalmente la métrica User Diversity.
- Implementarla en datasets como MovieLens, Last.fm y Yelp (data de restaurantes).
- Compararla con métricas existentes para identificar ventajas y limitaciones.

Dataset

- MovieLens: Calificaciones de usuarios sobre películas.
- Last.fm y Music-dataset-1950-to-2019: Información sobre preferencias musicales de usuarios y metadatos de canciones (géneros y características auditivas).
- Yelp (restaurantes): Datos de negocios y reseñas, enfocados en categorías gastronómicas.

Conjunto	N° Usuarios	N° Items	Géneros
Música	11	3037	7
Películas	138,493	22,854	20
Restaurantes	112,330	49,362	12

Modelos

- Baselines: Random (recomendaciones aleatorias) y
 Most Popular (ítems más populares).
- Modelos avanzados: iKNN (similitud entre ítems),
 FastFM (factorización de máquinas), DeepFM (redes profundas y factorización), y Hybrid (precisión y diversidad).

Métricas

- De renidmiento: MAP, NDCG@10, Precision@10 y Recall@10
- De diversidad: Entropía de Shannon, Long Tail, Intra-List Diversity (ILD), Diversity Coverage, Inverse Propensity Score (IPS)

Fórmula de User Diversity

$$UD = 1 - \frac{\left|\sum_{j=1}^{k} {R_j \over R} \log \left(\frac{R_j}{R}\right)\right|}{\log(k)}$$

Donde:

- R_j : Número de recomendaciones en la categoría j.
- ullet R: Total de recomendaciones relevantes para el usuario.
- k: Total de categorías consideradas.
- $\log(k)$: Factor de normalización para garantizar que $UD \in [0,1]$

Interpretación:

- UD=1: Máxima diversidad. Las recomendaciones están equilibradas entre las categorías consideradas.
- UD=0: Sin diversidad. Las recomendaciones están concentradas en una única categoría.

Resultados

El modelo **Hybrid** alcanzó los valores más altos de **User Diversity**, pero sacrificó el rendimiento en otras métricas como precisión y recall, lo que lo hace menos práctico para aplicaciones generales. Por otro lado, **DeepFM** mostró un equilibrio entre diversidad y métricas de rendimiento, siendo el modelo más consistente.

- User Diversity se comportó de manera más robusta que otras métricas como Long Tail e Intra-List Diversity (ILD), al combinar personalización y variedad en las recomendaciones.
- Shannon Entropy y Diversity Coverage también reflejan tendencias similares, pero no ajustan tan bien la diversidad personalizada como lo hace User Diversity.
- User Diversity frente a métricas tradicionales: Long Tail fomenta la inclusión de ítems menos populares, pero no considera relevancia personalizada. Shannon Entropy mide dispersión general, pero no distingue entre categorías relevantes y no relevantes. Intra-List Diversity (ILD) analiza la variedad dentro de las listas, pero carece de enfoque en preferencias específicas del usuario. Diversity Coverage evalúa amplitud de categorías, pero puede generar listas desbalanceadas.

Conclusiones

- Fortalezas de User Diversity:
 - Combina diversidad y relevancia, adaptándose a las categorías principales del usuario.
 - Normaliza resultados para diferentes valores de k, ofreciendo un análisis robusto.
 - Supera métricas tradicionales al integrar personalización explícita con diversidad.
- Limitaciones de la métrica:
- Depende de datos detallados del usuario, lo que dificulta su uso en escenarios con poca información.
- Requiere mayor poder computacional que las métricas tradicionales.
- Enfocada en categorías conocidas, puede limitar la exploración de nuevas áreas
- Conclusión general: User Diversity es una métrica innovadora que equilibra diversidad y personalización, destacándose como una herramienta poderosa para enriquecer la experiencia del usuario en sistemas de recomendación.

Dificultades

- Datos de Last.fm sin rankings, lo que requirió estrategias personalizadas.
- Incompatibilidad con pyRecLab, obligando a desarrollar herramientas desde cero.
- Limitaciones de memoria en Google Colab para procesar grandes datasets.
- Simplificación de procedimientos y ajustes en el plan original.

Trabajo Futuro

- \blacksquare Estudiar el impacto de diferentes valores de k.
- Analizar cómo top_n afecta el balance entre precisión y diversidad.
- Incorporar pesos personalizados según las preferencias del usuario.

Referencias

- Kunaver, M., & Požrl, T. (2017). Diversity in recommender systems A survey. Knowledge-Based Systems, 123, 154-162. https://doi.org/10.1016/j.knosys.2017.02.009
- Adomavicius, G., & Kwon, Y. (2012). Improving aggregate recommendation diversity using ranking-based techniques. *IEEE Transactions on Knowledge and Data Engineering*.
- Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*.