Package 'STAARpipelinePheWAS'

December 28, 2024

Type Package	
Title STAARpipeline for Phenome-Wide Association Study of Whole-Genome/Whole-Exome Sequencing Data	
Version 0.9.7	
Date 2024-12-28	
Author Xihao Li [aut, cre], Zilin Li [aut, cre]	
Maintainer Xihao Li <xihaoli@unc.edu>, Zilin Li <lizl@nenu.edu.cn></lizl@nenu.edu.cn></xihaoli@unc.edu>	
Description An R package for performing STAARpipeline in phenomewide association study of whole-genome/whole-exome sequencing data.	
License GPL-3	
Copyright See COPYRIGHTS for details.	
Imports STAAR, MultiSTAAR, STAARpipeline, dplyr, SeqArray, SeqVarTools, GenomicFeatures, TxDb.Hsapiens.UCSC.hg38.knownGene, Matrix, methods	
Encoding UTF-8	
LazyData true	
Depends R ($>= 3.2.0$)	
RoxygenNote 7.2.3	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
Gene_Centric_Coding_PheWAS Gene_Centric_Noncoding_PheWAS Individual_Analysis_PheWAS ncRNA_PheWAS Sliding_Window_PheWAS	2 4 6 8 10
Index	13

```
Gene_Centric_Coding_PheWAS
```

Gene-centric PheWAS analysis of coding functional categories using STAAR procedure

Description

The Gene_Centric_Coding_PheWAS function takes in chromosome, gene name, functional category, the object of opened annotated GDS file, and the list of objects from fitting the null models to analyze the association between a series of quantitative/dichotomous phenotypes (including imbalanced case-control design) and coding functional categories of a gene by using STAAR procedure. For each coding functional category, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For imbalance case-control setting, the results correspond to the STAAR-B p-value, which is a p-value from an omnibus test that aggregated Burden(1,25) and Burden(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For multiple phenotype analysis (obj_nullmodel\$n.pheno > 1), the results correspond to multi-trait association p-values (e.g. MultiSTAAR-O) by leveraging the correlation structure between multiple phenotypes.

Usage

```
Gene_Centric_Coding_PheWAS(
  chr,
  gene_name,
 category = c("all_categories", "plof", "plof_ds", "missense", "disruptive_missense",
    "synonymous", "ptv", "ptv_ds", "all_categories_incl_ptv"),
  genofile,
  obj_nullmodel_list,
  rare_maf_cutoff = 0.01,
  rv_num_cutoff = 2,
  rv_num_cutoff_max = 1e+09,
  rv_num_cutoff_max_prefilter = 1e+09,
  QC_label = "annotation/filter",
  variant_type = c("SNV", "Indel", "variant"),
  geno_missing_imputation = c("mean", "minor"),
  Annotation_dir = "annotation/info/FunctionalAnnotation",
 Annotation_name_catalog,
 Use_annotation_weights = c(TRUE, FALSE),
  Annotation_name = NULL,
  SPA_p_filter = TRUE,
  p_filter_cutoff = 0.05,
  silent = FALSE
)
```

Arguments

```
chr chromosome.

gene_name name of the gene to be analyzed using STAAR procedure.
```

category the coding functional category to be analyzed using STAAR procedure. Choices

include all_categories, plof, plof_ds, missense, disruptive_missense, synonymous, ptv, ptv_ds, all_categories_incl_ptv (default = all_categories).

genofile an object of opened annotated GDS (aGDS) file.

obj_nullmodel_list

a list of objects from fitting the null models, which are either the output from fit_nullmodel function in the STAARpipeline package, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function in the STAARpipeline package.

rare_maf_cutoff

the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).

rv_num_cutoff_max

the cutoff of maximum number of variants of analyzing a given variant-set (default = 1e+09).

rv_num_cutoff_max_prefilter

the cutoff of maximum number of variants before extracting the genotype matrix (default = 1e+09).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type type of variant included in the analysis. Choices include "SNV", "Indel", or "variant" (default = "SNV").

geno_missing_imputation

method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog

a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights

use annotations as weights or not (default = TRUE).

Annotation_name

a vector of annotation names used in STAAR (default = NULL).

SPA_p_filter logical: are only the variants with a normal approximation based p-value smaller than a pre-specified threshold use the SPA method to recalculate the p-value,

only used for imbalanced case-control setting (default = TRUE).

p_filter_cutoff

threshold for the p-value recalculation using the SPA method, only used for imbalanced case-control setting (default = 0.05).

silent logical: should the report of error messages be suppressed (default = FALSE).

Value

A list of data frames containing the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) corresponding to each coding functional category of the given gene for each phenotype.

References

Li, Z., Li, X., et al. (2022). A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. *Nature Methods*, 19(12), 1599-1611. (pub)

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. *Nature Genetics*, 52(9), 969-983. (pub)

Gene_Centric_Noncoding_PheWAS

Gene-centric PheWAS analysis of noncoding functional categories using STAAR procedure

Description

The Gene_Centric_Noncoding_PheWAS function takes in chromosome, gene name, functional category, the object of opened annotated GDS file, and the list of objects from fitting the null models to analyze the association between a series of quantitative/dichotomous phenotypes (including imbalanced case-control design) and noncoding functional categories of a gene by using STAAR procedure. For each noncoding functional category, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For imbalance case-control setting, the results correspond to the STAAR-B p-value, which is a p-value from an omnibus test that aggregated Burden(1,25) and Burden(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For multiple phenotype analysis (obj_nullmodel\$n.pheno > 1), the results correspond to multi-trait association p-values (e.g. MultiSTAAR-O) by leveraging the correlation structure between multiple phenotypes.

Usage

```
Gene_Centric_Noncoding_PheWAS(
  chr,
  gene_name,
 category = c("all_categories", "downstream", "upstream", "UTR", "promoter_CAGE",
    "promoter_DHS", "enhancer_CAGE", "enhancer_DHS"),
  genofile,
  obj_nullmodel_list,
  rare_maf_cutoff = 0.01,
  rv_num_cutoff = 2,
  rv_num_cutoff_max = 1e+09,
  rv_num_cutoff_max_prefilter = 1e+09,
  QC_label = "annotation/filter",
  variant_type = c("SNV", "Indel", "variant"),
  geno_missing_imputation = c("mean", "minor"),
  Annotation_dir = "annotation/info/FunctionalAnnotation",
  Annotation_name_catalog,
 Use_annotation_weights = c(TRUE, FALSE),
  Annotation_name = NULL,
  SPA_p_filter = TRUE,
  p_filter_cutoff = 0.05,
  silent = FALSE
```

Arguments

chr chromosome.

gene_name name of the gene to be analyzed using STAAR procedure.

category the noncoding functional category to be analyzed using STAAR procedure. Choices

include all_categories, downstream, upstream, UTR, promoter_CAGE, promoter_DHS,

enhancer_CAGE, enhancer_DHS (default = all_categories).

genofile an object of opened annotated GDS (aGDS) file.

obj_nullmodel_list

a list of objects from fitting the null models, which are either the output from fit_nullmodel function in the STAARpipeline package, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function in the STAARpipeline package.

rare_maf_cutoff

the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).

rv_num_cutoff_max

the cutoff of maximum number of variants of analyzing a given variant-set (default = 1e+09).

rv_num_cutoff_max_prefilter

the cutoff of maximum number of variants before extracting the genotype matrix (default = 1e+09).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type type of variant included in the analysis. Choices include "SNV", "Indel", or "variant" (default = "SNV").

geno_missing_imputation

method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog

a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights

use annotations as weights or not (default = TRUE).

Annotation_name

a vector of annotation names used in STAAR (default = NULL).

SPA_p_filter logical: are only the variants with a normal approximation based p-value smaller than a pre-specified threshold use the SPA method to recalculate the p-value,

only used for imbalanced case-control setting (default = TRUE).

p_filter_cutoff

threshold for the p-value recalculation using the SPA method, only used for imbalanced case-control setting (default = 0.05).

silent logical: should the report of error messages be suppressed (default = FALSE).

Value

A list of data frames containing the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) corresponding to each noncoding functional category of the given gene for each phenotype.

References

Li, Z., Li, X., et al. (2022). A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. *Nature Methods*, *19*(12), 1599-1611. (pub)

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. *Nature Genetics*, 52(9), 969-983. (pub)

Individual_Analysis_PheWAS

Individual-variant PheWAS analysis using score test

Description

The Individual_Analysis_PheWAS function takes in chromosome, starting location, ending location, the object of opened annotated GDS file, and the list of objects from fitting the null models to analyze the association between a series of quantitative/dichotomous phenotypes (including imbalanced case-control design) and each individual variant in a genetic region by using score test. For multiple phenotype analysis (obj_nullmodel\$n.pheno > 1), the results correspond to multi-trait score test p-values by leveraging the correlation structure between multiple phenotypes.

Usage

```
Individual_Analysis_PheWAS(
  chr,
  start_loc,
  end_loc,
  genofile,
  obj_nullmodel_list,
 mac_cutoff = 20,
  subset_variants_num = 5000,
 QC_label = "annotation/filter",
  variant_type = c("variant", "SNV", "Indel"),
 geno_missing_imputation = c("mean", "minor"),
  tol = .Machine$double.eps^0.25,
 max_iter = 1000,
  SPA_p_filter = TRUE,
 p_filter_cutoff = 0.05
)
```

Arguments

chr chromosome.

start_loc starting location (position) of the genetic region for each individual variant to be analyzed using score test.

end_loc ending location (position) of the genetic region for each individual variant to be

analyzed using score test.

genofile an object of opened annotated GDS (aGDS) file.

obj_nullmodel_list

a list of objects from fitting the null models, which are either the output from fit_nullmodel function in the STAARpipeline package, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function in the STAARpipeline package.

mac_cutoff the cutoff of minimum minor allele count in defining individual variants (default

= 20).

subset_variants_num

the number of variants to run per subset for each time (default = 5e3).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type type of variant included in the analysis. Choices include "variant", "SNV", or

"Indel" (default = "variant").

geno_missing_imputation

method of handling missing genotypes. Either "mean" or "minor" (default =

'mean").

tol a positive number specifying tolerance, the difference threshold for parameter

 $estimates\ in\ saddlepoint\ approximation\ algorithm\ below\ which\ iterations\ should$

be stopped (default = ".Machine\$double.eps^0.25").

max_iter a positive integer specifying the maximum number of iterations for applying the

saddlepoint approximation algorithm (default = "1000").

SPA_p_filter logical: are only the variants with a score-test-based p-value smaller than a pre-

specified threshold use the SPA method to recalculate the p-value, only used for

imbalanced case-control setting (default = TRUE).

p_filter_cutoff

threshold for the p-value recalculation using the SPA method, only used for

imbalanced case-control setting (default = 0.05)

Value

A list of data frames containing the score test p-value and the estimated effect size of the minor allele for each individual variant in the given genetic region for each phenotype. The first 4 columns of each data frame correspond to chromosome (CHR), position (POS), reference allele (REF), and alternative allele (ALT).

References

Chen, H., et al. (2016). Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. *The American Journal of Human Genetics*, 98(4), 653-666. (pub)

Li, Z., Li, X., et al. (2022). A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. *Nature Methods*, 19(12), 1599-1611. (pub)

8 ncRNA_PheWAS

ncRNA_PheWAS

Gene-centric PheWAS analysis of long noncoding RNA (ncRNA) category using STAAR procedure

Description

The ncRNA_PheWAS function takes in chromosome, gene name, the object of opened annotated GDS file, and the list of objects from fitting the null models to analyze the association between a series of quantitative/dichotomous phenotypes (including imbalanced case-control design) and the exonic and splicing category of an ncRNA gene by using STAAR procedure. For each ncRNA category, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For imbalance case-control setting, the results correspond to the STAAR-B p-value, which is a p-value from an omnibus test that aggregated Burden(1,25) and Burden(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For multiple phenotype analysis (obj_nullmodel\$n.pheno > 1), the results correspond to multi-trait association p-values (e.g. MultiSTAAR-O) by leveraging the correlation structure between multiple phenotypes.

Usage

```
ncRNA_PheWAS(
  chr,
  gene_name,
  genofile,
  obj_nullmodel_list,
  rare_maf_cutoff = 0.01,
  rv_num_cutoff = 2,
  rv_num_cutoff_max = 1e+09,
  rv_num_cutoff_max_prefilter = 1e+09,
  QC_label = "annotation/filter",
  variant_type = c("SNV", "Indel", "variant"),
  geno_missing_imputation = c("mean", "minor"),
  Annotation_dir = "annotation/info/FunctionalAnnotation",
  Annotation_name_catalog,
  Use_annotation_weights = c(TRUE, FALSE),
  Annotation_name = NULL,
  SPA_p_filter = TRUE,
  p_filter_cutoff = 0.05,
  silent = FALSE
)
```

Arguments

```
chr chromosome.

gene_name name of the ncRNA gene to be analyzed using STAAR procedure.

genofile an object of opened annotated GDS (aGDS) file.

obj_nullmodel_list
```

a list of objects from fitting the null models, which are either the output from fit_nullmodel function in the STAARpipeline package, or the output from

ncRNA_PheWAS 9

fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function in the STAARpipeline package.

rare_maf_cutoff

the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).

rv_num_cutoff_max

the cutoff of maximum number of variants of analyzing a given variant-set (default = 1e+09).

rv_num_cutoff_max_prefilter

the cutoff of maximum number of variants before extracting the genotype matrix (default = 1e+09).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type type of variant included in the analysis. Choices include "SNV", "Indel", or "variant" (default = "SNV").

geno_missing_imputation

method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog

a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights

use annotations as weights or not (default = TRUE).

Annotation_name

a vector of annotation names used in STAAR (default = NULL).

SPA_p_filter logical: are only the variants with a normal approximation based p-value smaller than a pre-specified threshold use the SPA method to recalculate the p-value, only used for imbalanced case-control setting (default = TRUE).

p_filter_cutoff

threshold for the p-value recalculation using the SPA method, only used for imbalanced case-control setting (default = 0.05).

silent logical: should the report of error messages be suppressed (default = FALSE).

Value

A list of data frames containing the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) corresponding to the exonic and splicing category of the given ncRNA gene for each phenotype.

References

Li, Z., Li, X., et al. (2022). A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. *Nature Methods*, 19(12), 1599-1611. (pub)

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. *Nature Genetics*, 52(9), 969-983. (pub)

Sliding_Window_PheWAS Genetic region PheWAS analysis of sliding windows using STAAR procedure

Description

The Sliding_Window_PheWAS function takes in chromosome, starting location, ending location, sliding window length, the object of opened annotated GDS file, and the list of objects from fitting the null models to analyze the association between a series of quantitative/dichotomous phenotypes (including imbalanced case-control design) and variants in a genetic region by using STAAR procedure. For each sliding window, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For imbalance case-control setting, the results correspond to the STAAR-B p-value, which is a p-value from an omnibus test that aggregated Burden(1,25) and Burden(1,1) together with p-values of each test weighted by each annotation using Cauchy method. For multiple phenotype analysis (obj_nullmodel\$n.pheno > 1), the results correspond to multi-trait association p-values (e.g. MultiSTAAR-O) by leveraging the correlation structure between multiple phenotypes.

Usage

```
Sliding_Window_PheWAS(
  chr,
  start_loc,
  end_loc,
  sliding_window_length = 2000,
  type = c("single", "multiple"),
  genofile,
 obj_nullmodel_list,
  rare_maf_cutoff = 0.01,
  rv_num_cutoff = 2,
  rv_num_cutoff_max = 1e+09,
  rv_num_cutoff_max_prefilter = 1e+09,
  QC_label = "annotation/filter",
  variant_type = c("SNV", "Indel", "variant"),
  geno_missing_imputation = c("mean", "minor"),
  Annotation_dir = "annotation/info/FunctionalAnnotation",
  Annotation_name_catalog,
  Use_annotation_weights = c(TRUE, FALSE),
  Annotation_name = NULL,
  SPA_p_filter = TRUE,
 p_filter_cutoff = 0.05,
  silent = FALSE
)
```

Arguments

chr chromosome.

start_loc starting location (position) of the genetic region to be analyzed using STAAR procedure.

end_loc ending location (position) of the genetic region to be analyzed using STAAR

procedure.

sliding_window_length

the (fixed) length of the sliding window to be analyzed using STAAR procedure.

type the type of sliding window to be analyzed using STAAR procedure. Choices

include single, multiple (default = single).

genofile an object of opened annotated GDS (aGDS) file.

obj_nullmodel_list

a list of objects from fitting the null models, which are either the output from fit_nullmodel function in the STAARpipeline package, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function in the STAARpipeline package.

rare_maf_cutoff

the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).

rv_num_cutoff_max

the cutoff of maximum number of variants of analyzing a given variant-set (default = 1e+09).

rv_num_cutoff_max_prefilter

the cutoff of maximum number of variants before extracting the genotype matrix (default = 1e+09).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type type of variant included in the analysis. Choices include "SNV", "Indel", or "variant" (default = "SNV").

 ${\tt geno_missing_imputation}$

method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file

(default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog

a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights

use annotations as weights or not (default = TRUE).

Annotation_name

a vector of annotation names used in STAAR (default = NULL).

SPA_p_filter logical: are only the variants with a normal approximation based p-value smaller than a pre-specified threshold use the SPA method to recalculate the p-value,

only used for imbalanced case-control setting (default = TRUE).

p_filter_cutoff

threshold for the p-value recalculation using the SPA method, only used for

imbalanced case-control setting (default = 0.05).

silent logical: should the report of error messages be suppressed (default = FALSE).

Value

A list of data frames containing the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) corresponding to each sliding window in the given genetic region for each phenotype.

References

Li, Z., Li, X., et al. (2022). A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. *Nature Methods*, *19*(12), 1599-1611. (pub)

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. *Nature Genetics*, *52*(9), 969-983. (pub)

Index

```
Gene_Centric_Coding_PheWAS, 2
Gene_Centric_Noncoding_PheWAS, 4
Individual_Analysis_PheWAS, 6
ncRNA_PheWAS, 8
Sliding_Window_PheWAS, 10
```