Análisis Funcional

Primer Cuatrimestre – 2019 Examen Final

Guido Arnone

Índice general

Índice general			1
1.	Preliminar	es	2
	1.0.1.	Proyectores, Teoremas de Representación y Sumas Hilbertianas	2
	1.0.2.	Operadores Compactos	4
	1.0.3.	Teoría Espectral	4
2.	El teorema espectral, cálculo funcional continuo y aplicaciones		6
	2.0.1.	El teorema espectral	6
	2.0.2.	Cálculo Funcional	6
	2.0.3.	Aplicaciones	9
Bibliografía			13

Parte 1

Preliminares

Recuerdo primero algunos resultados que vimos en la materia y serán necesarios para la demostración del teorema espectral.

1.0.1. Proyectores, Teoremas de Representación y Sumas Hilbertianas

Teorema 1.0.1 (de la proyección ortogonal). Sea H un espacio de Hilbert y K \subset H un subcojunto convexo, cerrado y no vacío. Dado f \in H, existe un único $\mathfrak{u} \in$ K tal que

$$\|f-u\| = \min_{v \in K} \|f-v\|.$$

Más aún, el vector u se caracteriza por satisfacer

$$\begin{cases} u \in K \\ (f - u, v - u) \le 0 \quad (\forall v \in K) \end{cases}$$

Notamos $P_K f := u$.

Demostración. content...

Corolario 1.0.1. Sea H un espacio de Hilbert y $M \le H$ un subespacio cerrado. La aplicación $f \in H \mapsto P_M f \in H$ es un operador continuo. Más aún, P_M es un proyector y para cada $f \in H$ el vector $P_M f$ se caracteriza como el único tal que (f - u, v) = 0 para todo $v \in M$.

Demostración. content...

Teorema 1.0.2 (de representación de Riesz). Sea H un espacio de Hilbert. Sin $\phi \in H^*$ es un funcional lineal, existe un único $u \in H$ tal que

$$\langle \phi, \nu \rangle = (\mathfrak{u}, \nu)$$

para todo $v \in H$.

Demostración. content...

Definición 1.0.1. Sea H un espacio de Hilbert y $\mathfrak{a}: H \times H \to \mathbb{R}$ una función bilineal. Decimos que \mathfrak{a} es

• **continua** si existe $C \ge 0$ tal que $|\mathfrak{a}(x,y)| \le C||x|| ||y||$ para todo $x,y \in H$.

• **cohesiva** si existe $\theta > 0$ tal que $\mathfrak{a}(x, x) \ge \theta ||x||^2$ para todo $x \in H$.

Observación 1.0.1. Si a es una función bilineal continua y cohesiva en un espacio de Hilbert, induce un producto interno equivalente al original.

Teorema 1.0.3 (Stampacchia). Sea H un espacio de Hilbert y $\mathfrak{a}: H \times H \to \mathbb{R}$ una función bilineal continua y cohesiva. Si K \subset H es convexo cerrado y no vacío y $\phi \in H^*$ un funcional lineal, entonces existe un único vector $\mathfrak{u} \in K$ tal que

$$a(u, v - u) \ge \langle \phi, v - u \rangle \quad (\forall v \in K)$$

Si además a es simétrica, el vector u se caracteriza por

$$\begin{cases} \mathfrak{u} \in K \\ \frac{1}{2}\mathfrak{a}(\mathfrak{u},\mathfrak{u}) - \langle \phi,\mathfrak{u} \rangle = \inf_{\nu \in K} \frac{1}{2}\mathfrak{a}(\nu,\nu) - \langle \phi,\nu \rangle \end{cases}$$

Demostración. content...

Definición 1.0.2. Sea H un espacio de Hilbert y $(E_n)_{n\geq 1}$ una sucesión de subespacios cerrados de H. Se dice que H es **suma hilbertiana** de $(E_n)_{n\geq 1}$ si

- $E_i \perp E_j \text{ si } i \neq j, y$
- gen $\{E_n\}_{n>1}$ es denso.

Notamos $H = \bigoplus_{n=1}^{\infty} E_n$.

Teorema 1.0.4. Sea H un espacio de Hilbert con $H=\bigoplus_{n=1}^\infty E_n$ y $u\in H$. Si notamos $u_n=P_{E_n}u$ para cada $n\in \mathbb{N}$, entonces

- (i) $u = \sum_{n \geq 1} u_n$.
- (ii) $\|\mathbf{u}\|^2 = \sum_{n \ge 1} \|\mathbf{u}_n\|^2$.

Recíprocamente, si tomamos $u_n \in E_n$ para cada $n \in \mathbb{N}$ y es $\sum_{n \geq 1} \|u_n\|^2 < \infty$, entonces $u := \sum_{n \geq 1} u_n$ converge y se tiene que $u_n = P_{E_n} u$ para cada $n \in \mathbb{N}$.

Definición 1.0.3. Sea H un espacio de Hilbert. Una sucesión $\{e_n\}_{n>1}$ se dice una **base hilbertiana** si

- $(e_n, e_m) = \delta_{nm}$ para todo $n, m \in \mathbb{N}$, y
- gen $\{e_n\}_{n>1}$ es denso.

Corolario 1.0.2. Sea H un espacio de Hilbert. Si $\{e_n\}_{n\geq 1}\subset H$ es una sucesión ortonormal, entonces esta es una base hilbertiana si y sólo si

$$u = \sum_{n \ge 1} (u, e_n) e_n y \|u\|^2 = \sum_{n \ge 1} \|(u, e_n)\|^2.$$

Recíprocamente, si $(\alpha_n)_{n\geq 1}\subset \ell^2$ entonces la serie $\sum_{n\geq 1}\alpha_ne_n$ converge en H a un elemento, y su norma es exactamente $\sum_{n\geq 1}\alpha_n^2$.

Demostración.

Observación 1.0.2. Si H admite una base Hilbertiana $\{e_n\}_{n\geq 1}$, la aplicación $u\in H\mapsto \{(u,e_n)\}_{n\geq 1}\in \ell^2$ es un isomorfismo isométrico.

Teorema 1.0.5. Un espacio de Hilbert separable de dimensión infinita admite una base hilbertiana.

Demostración. content...

1.0.2. Operadores Compactos

Proposición 1.0.1. Si E y F dos espacios de Banach, el conjunto $\mathcal{K}(E,F)$ es un subsepacio cerrado de $\mathcal{L}(E,F)$.

Demostración. content...

Corolario 1.0.3. Sean E y F son espacios de Banach. Si $T \in \mathcal{L}(E, F)$ es un operador que es límite de operadores de rango finito, entonces es compacto.

Demostración. content...

Teorema 1.0.6. Sean E un espacio de Banach y H un espacio de Hilbert. Si $T \in \mathcal{L}(E,H)$ es un operador acotado, entonces existe una sucesión $(T_n)_{n\geq 1} \subset \mathcal{L}(E,H)$ de operadores de rango finito tal que $T_n \rightrightarrows T$.

Demostración. content...

Observación 1.0.3. Sean E, F y G espacios de Banach y T $\in \mathcal{L}(E, F)$, S $\in \mathcal{L}(F, G)$ operadores acotados. Si S o T son compactos S \circ T lo es.

Teorema 1.0.7 (Alternativa de Fredholm). Sea E un espacio de Banach y $T \in \mathcal{K}(E)$ un operador compacto. Entonces

- (a) dim $N(I-T) < \infty$.
- (b) R(I-T) es cerrado y $R(I-T) = {}^{\perp}N(I-T^*)$.
- (c) $N(I-T) = \{0\} \iff R(I-T) = E$.
- (d) $\dim N(I T^*) = \dim N(I T)$.

Demostración. content...

1.0.3. Teoría Espectral

Proposición 1.0.2. Si E un espacio de Banach y T $\in \mathcal{L}(E)$, el espectro de T es compacto y $\sigma(T) \subset [-\|T\|, \|T\|]$.

Demostración. content...

Teorema 1.0.8. Sea E un espacio de Banach de dimensión infinita. Si $T \in \mathcal{K}(E)$ es un operador compacto, entonces

- (i) $0 \in \sigma(T)$.
- (ii) $\sigma(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$.
- (iii) O bien $\sigma(T) = \{0\}$, o bien $\sigma(T)$ es finito, o bien es $\sigma(T) \setminus \{0\} = \{\lambda_n\}_{n \ge 1}$ con $\lambda_n \to 0$.

Demostración. content...

Teorema 1.0.9. Sea H es un espacio de Hilbert y T $\in \mathcal{L}(H)$ un operador autoadjunto. Notando

$$m = \inf_{\|x\|=1}(Tx,x) \ y \ M = \sup_{\|x\|=1}(Tx,x),$$

se tiene que $\sigma(T) \subset [m, M]$ y m, $M \in \sigma(M)$. Más aún, es $||T|| = máx\{||m||, ||M||\}$.

Demostración. content...

Parte 2

El teorema espectral, cálculo funcional continuo y aplicaciones

2.0.1. El teorema espectral

Teorema 2.0.1 (espectral para operadores compactos y autoadjuntos). Sea H un espacio de Hilbert separable. Si $A \in \mathcal{L}(H)$ es un operador compacto y autoadjunto, entonces existe una base ortonormal de autovectores $\{e_n\}_{n\geq 1}$ de A.

Demostración. content...

2.0.2. Cálculo Funcional

Extendiendo la noción de « polinomios evaluados en una matriz », el teorema espectral nos permitira darle sentido a la expresión f(A) para un operador A y cierta clase de funciones f. Concretamente, **Definición 2.0.1.** Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Tenemos entonces una base ortonormal de autovectores $\{e_n\}_{n\geq 1}$ de A con $Ae_n = \lambda_n e_n$ y $\lambda_n \in \sigma(A)$.

Si f : $\sigma(A) \to \mathbb{R}$ una función acotada, definimos la evaluación de f en A como

$$ev_A(f)(x) := \sum_{n \geq 1} f(\lambda_n)(e_n, x)e_n.$$

Observemos que esta función está bien definida pues $\sum_{n\geq 1} f(\lambda_n)^2 (e_n, x)^2 \leq \|f\|_{\infty}^2 \cdot \|x\|^2$, y más aún este argumento dice que resulta continua: como es

$$\|f(A)x\|^2 = \left(\sum_{n\geq 1} f(\lambda_n)(e_n, x)e_n , \sum_{m\geq 1} f(\lambda_m)(e_m, x)e_m\right) = \sum_{n\geq 1} f(\lambda_n)^2(e_n, x)^2 \leq \|f\|_{\infty}^2 \|x\|^2,$$

se tiene que $\|f(A)\| \le \|f\|_{\infty}$. Notar además que esta definición no depende de la base: si $\{v_m\}_{m\ge 1}$ es otra base ortonormal de autovectores, y construimos $\widetilde{f(A)}$ reemplazando cada e_n por v_n , entonces

$$\widetilde{f(A)}e_n = \sum_{\nu_m \in E_n} f(\lambda_m)(\nu_m, e_n)\nu_m = f(\lambda_n) \sum_{\nu_m \in E_n} (\nu_m, e_n)\nu_m = f(\lambda_n)e_n = f(A)e_n.$$

Como ambos operadores son acotados y coinciden en una base hilbertiana, deben ser iguales.

A partir de ahora H denotará un espacio de Hilbert separable. Fijamos también un operador A compacto y autoadjunto y una base hilbertiana $\{e_n\}_{n>1}$ de autovectores de A en el sentido anterior.

Es decir, en vista del **Teorema 2.0.1** tomamos una base hilbertiana tal que para cada $n \in \mathbb{N}$ es $Ae_n = \lambda_n e_n$ con $\lambda_n \in \sigma(A)$, y más aún tal que cada autoespacio tenga por base a una subcolección de $\{e_n\}_{n\geq 1}$.

Teorema 2.0.2. La aplicación

$$\operatorname{ev}_{\mathsf{A}}: \mathsf{B}(\sigma(\mathsf{A}),\mathbb{R}) \to \mathcal{L}(\mathsf{H})$$

$$\mathsf{f} \mapsto \operatorname{ev}_{\mathsf{A}}(\mathsf{f})$$

es un morfismo de álgebras de Banach continuo que satisface $\|ev_A\| \le 1$. Más aún, se tiene que $ev_A(1) = I$ y $ev_A(id) = A$. Notaremos $f(A) := ev_A(f)$.

Demostración. Al definir $\operatorname{ev}_A(f)$ vimos que se satisface $\|\operatorname{ev}_A(f)\| \le \|f\|_{\infty}$. Por otro lado, es

$$\text{ev}_{A}(1)x = \sum_{n \ge 1} 1(\lambda_{n})(e_{n}, x)e_{n} = \sum_{n \ge 1} (e_{n}, x)e_{n} = x$$

y

$$ev_A(id)x = \sum_{n \ge 1} id(\lambda_n)(e_n, x)e_n = \sum_{n \ge 1} \lambda_n(e_n, x)e_n = \sum_{n \ge 1} (e_n, \lambda_n x)e_n = \sum_{n \ge 1} (e_n, Ax)e_n = Ax,$$

así que $ev_A(1) = I y ev_A(id) = A$.

La linealidad es consecuencia de la linealidad de las series: si f, $g:\sigma(A)\to\mathbb{R}$ son acotadas y $\mu\in\mathbb{R}$, entonces

$$\begin{split} (f + \mu g)(A) x &= \sum_{n \geq 1} (f + \mu g)(\lambda_n) (e_n, x) e_n = \sum_{n \geq 1} f(\lambda_n) (e_n, x) e_n + \mu \sum_{n \geq 1} g(\lambda_n) (e_n, x) e_n \\ &= f(A) x + \mu g(A) x = (f(A) + \mu g(A)) x. \end{split}$$

Por último, veamos que ev_A es un morfismo de álgebras de Banach: si f, $g : \sigma(A) \to \mathbb{R}$, entonces

$$\begin{split} f(A)g(A)x &= f(A)\left[\sum_{n\geq 1}g(\lambda_n)(e_n,x)e_n\right] = \sum_{n\geq 1}g(\lambda_n)(e_n,x)[f(A)e_n] \\ &= \sum_{n\geq 1}f(\lambda_n)g(\lambda_n)(e_n,x)e_n)x = fg(A)x \end{split}$$

para todo $x \in H$.

Proposición 2.0.1. Si $f : \sigma(A) \to \mathbb{R}$ es una función acotada, entonces

- (i) $\sigma(f(A)) = f(\sigma(A))$.
- (ii) f(A) es autoadjunta.

- (iii) $||f(A)|| = ||f|_{\sigma(A)}||_{\infty}$.
- (iv) Si f > 0 entonces f(A) > 0.

Demostración. Hacemos cada inciso por separado.

(i) Si $\lambda_i \in \sigma(A)$, es

$$f(A)e_j = \sum_{n \geq 1} f(\lambda_n)(e_n, e_j)e_n = f(\lambda_j)e_j,$$

así que $f(\sigma(A)) \subset \sigma(f(A))$.

Recíprocamente, tomemos $\lambda \notin f(\sigma(A))$. Como esto dice que función $g(t) = (f(t) - \lambda)^{-1}$ está bien definida en $\sigma(A)$ y es allí acotada, está bien definida su evaluación g(A) en A. Como es $g(f - \lambda) = (f - \lambda)g = 1$, aplicando ev $_A$ obtenemos que

$$g(A)(f(A)-\lambda I)=(f(A)-\lambda I)g(A)=I.$$

y en consecuencia λ no pertenece al espectro de f(A),

(ii) Por un cálculo directo, tomando $x, y \in H$ se tiene que

$$(f(A)x,y)=\sum_{n\geq 1}f(\lambda_n)(e_n,x)(e_n,y)=(f(A)y,x)=(x,f(A)y).$$

(iii) Como es $\|ev_A\| \le 1$, ya sabemos que $\|f(A)\| \le \|f_{\sigma(A)}\|_{\infty}$. En vista de (i) tenemos la otra desigualdad, pues acotando inferiormente por los autovectores de norma 1 se tiene que

$$\|f(A)\| = \sup_{\|x\|=1} \|f(A)(x)\| \ge \sup_{\lambda \in \sigma(f(A))} |\lambda| = \sup_{\lambda \in f(\sigma(A))} |\lambda| = \|f|_{\sigma(A)}\|_{\infty}.$$

(iv) Supongamos ahora que $f \ge 0$ y sea $x \in H$. Por definición de f(A) es

$$(f(A)x,x) = \sum_{n\geq 1} f(\lambda_n)(e_n,x)^2 \geq 0$$

pues por hipótesis sabemos que $f(\lambda_n) \ge 0$ para todo $n \ge 1$.

Observación 2.0.1. Lo anteriores resultados también valen cuando f está definida en un dominio que contiene al espectro (mientras esté acotada allí) precomoponiendo ev_A con la restricción de f al $\sigma(A)$. Más aún, el operador f(A) sólo depende de los valores que f toma en su espectro. En particular, esto nos dice que podemos definir f(A) para $f: \mathbb{R} \to \mathbb{R}$ continua o medible Borel.

Más aún, la aplicación $ev_A : \mathcal{C}(\mathbb{R}) \to \mathcal{L}(H)$ es el único morfismo de álgebras de Banach continuo que tiene a I por imagen de 1 y A por imagen de id.

Proposición 2.0.2. Si $f: \mathbb{R} \to \mathbb{R}$ es una función continua, entonces existe un operador compacto $S \in \mathcal{K}(H)$ tal que

$$f(A) = S + f(0)I.$$

Demostración. Por el teorema de Stone-Weierstraß, sabemos que existe una sucesión de polinomios $(p_n)_{n\geq 1}$ tal que $p_n\to f$ uniformemente y en particular, es $p_n(0)\to f(0)$. Ahora, para cada $n\in\mathbb{N}$ definimos

$$q_n = p_n - p_n(0),$$

y en vista de la observación anterior, se tiene que $q_n \to f - f(0)$. Aplicando e v_A y usando que ésta es continua, es

$$q_n(A) \to (f - f(0))(A) = f(A) - f(0)I.$$
 (2.1)

Fijemos ahora $n \in \mathbb{N}$. Como $q_n(0) = p_n(0) - p_n(0) = 0$, existe $r \in \mathbb{R}[X]$ tal que $q_n = Xr$. Por lo tanto, obtenemos $q_n(A) = (Xr)(A) = ev_A(X) \circ ev_A(r) = A \circ r(A)$. Al ser A un operador compacto, el operador $q_n(A)$ es compacto para cada $n \in \mathbb{N}$. En vista de (2.1), obtenemos finalmente que el operador f(A) - f(0)I es compacto. Resta notar entonces que

$$f(A) = (f(A) - f(0)I) + f(0)I.$$

Corolario 2.0.1. Si $f : \mathbb{R} \to \mathbb{R}$ es una función continua que se anula en 0, el operador f(A) resulta compacto. \square

Observación 2.0.2. Aún cuando f(A) no es compacto, la **Proposición** 2,0,2 nos dá información a través de la Alternativa de Fredholm. Por ejemplo, sabemos que el núcleo de la evaluación siempre es de dimensión finita.

Proposición 2.0.3. Si f, $g \in C(\mathbb{R}, \mathbb{R})$ son dos funciones continuas, entonces $(f \circ g)(A) = f(g(A))$.

Demostración. En efecto, fijando una base ortonormal $\{e_n\}_{n\geq 1}$ de autovectores con $Ae_n=\lambda_n e_n$, ésta resulta una base ortonormal de autovectores de g(A) con $g(A)e_n=g(\lambda_n)e_n$. Por lo tanto, para cada $x\in H$ es

$$f(g(A))x = \sum_{n \geq 1} f(g(\lambda_n))(e_n, x)e_n = \sum_{n \geq 1} (f \circ g)(\lambda_n)(e_n, x)e_n = (f \circ g)(A).$$

2.0.3. Aplicaciones

En primer lugar, veamos que todo operador A compacto y autoadjunto « tiene una raíz enésima ». Esto es, para cada $n \in \mathbb{N}$ existe un operador B tal que $B^n = A$.

Teorema 2.0.3. Sea H un espacio de Hilbert y $A \in \mathcal{L}(H)$ un operador compacto y autoadjunto. Dado $n \in \mathbb{N}$, se tiene que

- (i) Si n es impar, existe un único operador $B \in \mathcal{L}(H)$ tal que $B^n = A$.
- (ii) Si n es par, existe un operador positivo $B \in \mathcal{L}(H)$ tal que $B^n = A$ sí y solo si $A \ge 0$. En tal caso existe un único operador B positivo con esta propiedad.

Notaremos $A^{1/n} := B$ en ambos casos a este operador, que de existir resulta siempre compacto.

Demostración. Para cada $n \ge 1$, definimos $f : t \in \sigma(A) \mapsto t^{1/n} \in \mathbb{R}$.

(i) Sea $B = f_n(A)$. Por definición, es $B^n = f_n(A) \circ \cdots \circ f_n(A) = f_n^n(A) = id(A) = A$. Además, si B' es tal que $B'^n = A$, entonces

$$B'=\operatorname{id}(B')=(f_n^n\circ(t\mapsto t^n))(B')=f_n^n(B'^n)=f_n^n(A)=B.$$

(ii) Recordemos que como A es autoadjunta, es ínf $\sigma(A) = \inf_{\|x\|=1}(Ax, x)$ y por lo tanto tenemos que $A \ge 0$ si y sólo si $\sigma(A) \subset [0, +\infty)$. Esto nos permite hacer la misma construcción que antes para este caso, y como ahora es $f_n \ge 0$, de aquí se concluye que $A^{1/n} \ge 0$. Para la unicidad resta notar que si $B' \ge 0$, entonces $B' = |B'| = \sqrt{1/n}B'^n = A^{1/n}$.

Finalmente, como para todo $n \ge 1$ es $f_n(0) = 0$, sabemos que $A^{1/n}$ siempre resulta compacto.

uma vomoióm dol

La siguiente aplicación es una adaptación del Teorema 12.44 de [3], que es una versión del teorema ergódico de Von Neumann para transformaciones unitarias,

Teorema. Si H es un espacio de Hilbert y B $\in \mathcal{U}(H)$ una transformación unitaria, entonces para cada $x \in H$ los *promedios* $\frac{1}{n}(x+Bx+\cdots+B^{n-1}x)$ convergen puntualmente a un elemento $y \in H$.

La demostración presente en [3] hace uso del teorema espectral en un caso más general. Usando que los autovalores de una transformación unitaria yacen en el círculo de radio 1, el teorema se reduce a un cálculo directo de convergencia puntual para una cierta sucesión de funciones.

Siguiendo la idea de esta demostración pero en el caso de operadores compactos y autoadjuntos, definimos a continuación el concepto de medida espectral y con esto probamos que un resultado auxiliar de convergencia.

Concluimos con el **Teorema 2.0.4**, el cual afirma que si A es un operador compacto, autoadjunto y de norma 1, entonces sus promedios convergen puntualmente a la proyección ortogonal del subespacio de sus puntos fijos.

Teorema (Riesz-Markov-Kakutani). Sea X un espacio topológico Hausdorff y localmente compacto. Si $\psi: C(X) \to \mathbb{R}$ es un funcional lineal positivo, existe una única medida Borel regular μ en X tal que

$$\psi(f) = \int_X f d\mu.$$

para toda $f \in C(X)$.

Definición 2.0.2. Sea H un espacio de Hilbert y A : H \rightarrow H un operador compacto y autoadjunto. Para cada $h \in H$, la aplicación

$$f \in C(\sigma(A)) \mapsto (f(A)h, h) \in \mathbb{R}$$

resulta un funcional lineal positivo. El teorema de Riesz-Markov-Kakutani nos asegura entonces que existe una única medida Borel regular μ_h en $\sigma(A)$ que satisface

$$(f(A)h,h) = \int_{\sigma(A)} f d\mu_h$$

para toda $f : \sigma(A) \to \mathbb{R}$ continua. Llamamos a μ_h la **medida espectral de** A **asociada a** h.

Proposición 2.0.4. Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Si $(g_n)_{n\geq 1} \subset \mathcal{C}(\sigma(A), \mathbb{R})$ es una sucesión uniformemente acotada que converge puntualmente a cierta función $g: \sigma(A) \to \mathbb{R}$, la sucesión de operadores $\{g_n(A)\}_{n\geq 1} \subset \mathcal{L}(H)$ sot-converge a g(A).

Demostración. Observemos que por el teorema de convergencia dominada, para cada $h \in H$ es

$$(g_n(A)h,h) = \int_{\sigma(A)} g_n d\mu_h \to \int_{\sigma(A)} g d\mu_h = (g(A)h,h).$$

Usando la identidad de polarización, vemos que $(g_n(A)x,y) \to (g(A)x,y)$ para todo $x,y \in H$. Por lo tanto tenemos convergencia débil,

$$g_n(A)x \rightarrow g(A)x$$

para cada $x \in H$. Para terminar alcanza ver que siempre es $\|g_n(A)x\| \to \|g(A)x\|$.

Por hipótesis sabemos que las funciones $(g_n^2)_{n\geq 1}$ también están uniformemente acotadas y $g_n^2\to g^2$ puntualmente. Por lo tanto, el argumento anterior nos dice que para cada $x\in H$ es

$$\|g_n(A)x\|^2 = (g_n(A)x, g_n(A)x) = (g_n(A)g_n(A)x, x) = (g_n^2(A)x, x) \to (g^2(A)x, x) = \|g(A)x\|^2.$$

y tomando raíces vemos que $\|g_n(A)x\| \to \|g(A)x\|.$

Teorema 2.0.4 (un caso particular del teorema ergódico de Von Neumann). Sea H un espacio de Hilbert separable. Si $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto tal que $\|A\| = 1$, entonces los promedios de A **sot**-convergen al proyector π_A del subsepacio de puntos fijos de A. Es decir, si notamos $E_1 = \{x \in H : Ax = x\}$ y $\pi_A := P_{E_1}$, entonces

$$\frac{1}{n}\sum_{i=1}^n A^i x \xrightarrow{n\to\infty} \pi_A x.$$

para todo $x \in H$.

Demostración. Notemos en primer lugar que $\sigma(A) \subset [-\|A\|, \|A\|] = [-1, 1]$. Para cada $n \in \mathbb{N}$, definimos $g_n(x) := \frac{1}{n} \sum_{i=1}^n x^i$ para cada $x \in [-1, 1]$. Tenemos así que $\frac{1}{n} \sum_{i=1}^n A^i = g_n(A)$. Por otro lado, la proyección π_A coincide con la evaluación en A de

$$g(x) := \begin{cases} 1 & \text{si } x = 1 \\ 0 & \text{en caso contrario} \end{cases}$$

En vista de la **Proposición 2.0.4**, basta probar que la sucesión $(g_n)_{n\geq 1}$ está uniformemente acotada y converge puntualmente a g. Lo primero se deduce de que si $x\in [-1,1]$ entonces

$$|g_n(x)| \le \frac{1}{n} \sum_{i=1}^n |x|^i \le \frac{1}{n} \sum_{i=1}^n 1 = 1.$$

Ahora veamos la convergencia puntual. En primer lugar, la sucesión $(g_n(1))_{n\geq 1}$ es constantemente 1 y por lo tanto converge a g(1)=1. Por otro lado, sabemos que $g_n(-1)$ es cero para n

par y -1/n para n impar. De aquí se ve que entonces que $g_n(-1) \to 0 = g(-1)$. Finalmente, si $\lambda \in (-1,1)$ entonces

$$|g_n(\lambda)| \leq \frac{1}{n} \sum_{i=1}^n |\lambda|^i \leq \frac{1}{n} \sum_{i \geq 0} |\lambda|^i = \frac{1}{n} \cdot \frac{1}{1-|\lambda|} \to 0.$$

Consecuentemente, debe ser $g_n(\lambda) \to 0 = g(\lambda).$

Bibliografía

- [1] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010.
- [2] M. Reed, B. Simon. Methods of Modern Mathematical Physics. Academic Press Inc., 1980.
- [3] W. Rudin. *Functional Analysis*. International Series in Pure and Applied Mathematics, McGraw-Hill, 1991.
- [4] G. Teschl. *Topics in Real and Functional Analysis*, versión del 9/7/19 (https://www.mat.univie.ac.at/gerald/ftp/book-fa/fa.pdf).