Given an integer, n, find the smallest integer m such that m is divisible by n (i.e., n is a factor of m) and satisfies the following properties:

- m must not contain zeroes in its decimal representation.
- The sum of m's digits must be *greater than or equal to* the product of m's digits.

Given n, find m and print the number of digits in m's decimal representation.

Input Format

A single integer denoting n.

Constraints

- $1 \le n \le 3 \times 10^4$ n is not divisible by 10.

Time Limits

• The time limits for this challenge are available <u>here</u>.

Output Format

Print the *number of digits* in the decimal representation of the smallest possible m.

Sample Input 0

1

Sample Output 0

Explanation 0

m=1 is evenly divided by n=1, doesn't contain any zeroes in its decimal representation, and the sum of its digits is not less than the product of its digits. Thus, we print the number of digits in m=1(which also happens to be 1) as our answer.

Sample Input 1

9

Sample Output 1

1

Explanation 1

m=9 is evenly divided by n=9, doesn't contain any zeroes in its decimal representation, and the sum of its digits is not less than the product of its digits. Thus, we print the number of digits in m=9, which is 1, as our answer.