Quantum Learning of Concentrated Boolean Functions

Authors: Krishna Palem, Duc H. Pham, M. V. Panduranga Rao

Paper Review: Manish Kumar

Quantum Technology M.Tech. IISc Bengaluru

- Main Results
 - Context & Key Results
- 2 Brief Review of key concepts
 - PAC learning: Brief Review
 - Boolean Function & Fourier Series: Brief Review
- 3 Algorithm for Quantum PAC learning
 - CBF learning: A two stage process
 - Stage-I: Learning the concentration of a CBF
 - \bullet Satge-II: Learning the function from its concentration
- 4 Benchmarking
 - Complexity: Quantum and Classical PAC learning
 - Theoretical limits on Quantum learning
- 6 Conclusion

- Main Results
 - Context & Key Results
- 2 Brief Review of key concepts
 - PAC learning: Brief Review
 - Boolean Function & Fourier Series: Brief Review
- 3 Algorithm for Quantum PAC learning
 - CBF learning: A two stage process
 - Stage-I: Learning the concentration of a CBF
 - Satge-II: Learning the function from its concentration
- 4 Benchmarking
 - Complexity: Quantum and Classical PAC learning
 - Theoretical limits on Quantum learning
- 6 Conclusion

Learning Concentrated Boolean Function (CBF)

Objective: Is quantum speedup possible in learning Concentrated Boolean function via (i) PAC or (ii) Exact learning methods?

Learning CBF via Quantum PAC learner: Results

- There exists a poly-time quantum algorithms to **PAC learn** a CBF with (asymptotically) fewer query than the best-known classical algorithm. (due to Theorem-3)
- Source of Speedup: Sparse fourier sampling, an essential subroutinue, requires fewer query if done quantumly (via Quantum fourier sampling)

Learning CBF via Quantum Exact learner: Results

- Any **Exact learning** algorithm must make exponential number of query to learn CBF with high success probability. Thus, the problem remain intractable in Quantum regime too.
- Reason: A tight (exponential) lower bound on query complexity exist due to quantum information theoretic argument. (due to Theorem-10)

- 1 Main Results
 - Context & Key Results
- 2 Brief Review of key concepts
 - PAC learning: Brief Review
 - Boolean Function & Fourier Series: Brief Review
- 3 Algorithm for Quantum PAC learning
 - CBF learning: A two stage process
 - Stage-I: Learning the concentration of a CBF
 - Satge-II: Learning the function from its concentration
- 4 Benchmarking
 - Complexity: Quantum and Classical PAC learning
 - Theoretical limits on Quantum learning
- 6 Conclusion

PAC learning: Brief Review

Probably Approximately Correct (PAC) learning: Key terms

- Task: To learn a (Boolean) function f promised to belong to the set of function $\mathcal{C} = \{f_1, ..., f_r\}^a$
- Learning paradigm: Supervised Learning [an access to (x, f(x))]
- Learning Algorithm: A randamized algorithm that output a hypothesis function h. [with success probability $\geq (1 - \delta)$]
- α -approximate learning: Function h must agree to f on at least $(1-\alpha)$ fraction of the input. i.e., $Pr[h(x_i) = f(x_i)] \geq (1-\alpha) \ \forall i$
- Bounds on parameters: $0 < \delta, \alpha < 0.5$

Definition: (δ, α) -PAC learner

• An algorithm is called (δ, α) -learner, if for a given $f \in \mathcal{C}, x \in D(a)$ distribution over input sapce) and query access to (x, f(x)), it output a α -approximate function h with success prob $\geq (1 - \delta)$.

 $^{{}^{}a}\mathcal{C}$ is also called concept class (Hypothesis space) in VC-dimension.

Boolean Function & its Fourier Series: Brief Review

Boolean Function: Notations & Terms

- Boolean Function [in (-1,1) basis a]: $f: \{-1,1\}^n \to \{-1,1\}$. (Let, $0 \to 1; 1 \to -1$)
- Fourier (Series) Expansion:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S)x^{S}$$

• Notations: $S \subseteq [n]$ is an element of the powerset;

$$x^S = \prod_{i \in S} x_i$$

where x^S is fourier term; $\hat{f}(S)$ is fourier coefficient.

- Normalization: $\sum_{S \subset [n]} \hat{f}(S)^2 = 1$
- Perseval's identity: $\hat{f}(S) = \frac{1}{2^n} \sum_{x \in \{-1,1\}^n} f(x) x^S$

^aHadamard-Walsh basis

Concentrated Boolean Functions: Brief Review

Concentarted Boolean Function(CBF)

• Definition-1: A ϵ -concentrated boolean function f in a set $\mathcal{M} \subseteq [n]$ if:

$$\sum_{S \in \mathcal{M}} \hat{f}(S)^2 \ge (1 - \epsilon) \Leftrightarrow \sum_{S \notin \mathcal{M}} \hat{f}(S)^2 \le \epsilon$$

• Informally, a concentrated Boolean function on a set \mathcal{M} has all the crucial information about the function concentrated in a few important Fourier terms in the Fourier expansion.

Intuitive connection of CBF and Quantum Speedups:

Shor's (factoring) algorithm: Factor and non-factor integer of the input N corresponds to important and non-important fourier terms.

HHL algorithm: Sparsity requirement on the matrix corresponds to concentration of information idea.

- 1 Main Results
 - Context & Key Results
- 2 Brief Review of key concepts
 - PAC learning: Brief Review
 - Boolean Function & Fourier Series: Brief Review
- 3 Algorithm for Quantum PAC learning
 - CBF learning: A two stage process
 - Stage-I: Learning the concentration of a CBF
 - \bullet Satge-II: Learning the function from its concentration
- 4 Benchmarking
 - Complexity: Quantum and Classical PAC learning
 - Theoretical limits on Quantum learning
- 6 Conclusion

CBF learning: A two stage process

Structure of the algorithm

- Input: Partial (Fourier domain) information about a CBF to be learned is supplied. Mainly, a promise of CBF to be
 ε-concentarted on an unknown set of size atmost M.
- Resource available: Quantum/Classical Query access to function input-output pairs, e.g, (x, f(x))
- Output: A function h that α -approximate CBF f.

Two stage process of learning CBF

- Stage-I: Learning the concentration of the given CBF
- Stage-II: Learning the function from the concentration estimated in stage-I

Stage-I of Quantum PAC learn a CBF

Learning the concentration of a CBF

- Definition-2: (Sparse fourier sampling (SFS) problem) Given f to be ϵ —concentrated Boolean function on an unknown set of size at most \mathcal{M} ; sample a set L of fourier terms such that L contains all the fourier terms with coefficients greater than or equal to a threshold η .
- Set $\eta = O(\sqrt{\frac{\epsilon}{\mathcal{M}}})$. This relates the SFS problem to estimating the concentration of a CBF. (See definition-1)
- Use Quantum fourier sampling (QFS) to solve SFS problem, and hence, learn the concentration. [Algorithm on next page]

Complexity of Quantum Fourier Sampling: Results

- Query complexity: $O(\frac{\mathcal{M}}{\epsilon})$; (due to Theorem-2)
- Time complexity: $O(\frac{\mathcal{M}}{\epsilon})$; (due to Theorem-2)

Stage-I: Quantum Fourier Sampling Subroutinue

Algorithm for Quantum Fourier Sampling (QFS)

- Step-I: Satrt with $\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle |1\rangle$; (uniform superposition)
- Step-II: Apply H gate to the last qubit: $\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle| \rangle$
- Step-III: Query the oracle with the above state as input to get $\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle| \oplus f'(x)\rangle \implies \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} (-1)^{f'(x)} |x\rangle| \rangle$
- Step-IV: Apply H gate to the last qubit: $\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} f'(x) |x\rangle |1\rangle$
- Step-V: Apply $H^{\otimes n}$ gate to the first n-qubits: $\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} f'(x) \left(\frac{1}{2^n/2} \sum_{S} (-1)^{x \cdot S} |S\rangle\right) |1\rangle$ $\implies \frac{1}{2^n} \sum_{x} \sum_{S} (-1)^{x \cdot S} f'(x) |S\rangle |1\rangle = \sum_{S} \hat{f}(S) |S\rangle.$
- Step-VI: Measure the resulting state to obtain the desired result.

Stage-I: Learning the concentration (continue...)

Learning the concentration via QFS subroutinue

- Call the QFS subroutinue for $O(\mathcal{M}/\epsilon)$ times; store the result of each call in a list $L = \{S_1, ..., S_{\mathcal{M}'}\}$, where $\mathcal{M}' = O(\mathcal{M}/\epsilon)$. Output list L as the result of SFS problem. [due to theorem-2]
- With high probability, the list L contains mainly the dominant terms of the fourier series. Thus, we learned the concentration of the CBF f.

Proof of correctness

- Step-V of the QFS algorithms produce state $|\psi\rangle = \sum_{S} \hat{f}(S)|S\rangle$. Thus the measurement output the state $|S\rangle$ with probability $|\hat{f}(S)|^2$. Or, dominant fourier terms are more likey to be the measurement outcome.
- Let 'Good event-1' be a fourier tems with coefficient $> \sqrt{\epsilon/\mathcal{M}}$ is output in a single QFS call. Then $Pr[Good-1] \geq 2/3\mathcal{M}$. [Note: We want to sample such dominent terms. See definition-2
- Let 'Good event-M' be a fourier tems with coefficient $> \sqrt{\epsilon/\mathcal{M}}$ is output in all $\sim O(\mathcal{M})$ QFS calls. Then Pr[Good-M] $\geq (2/3\mathcal{M}) \cdot (\mathcal{M}) = 2/3$ (due to Union Bound).

Stage-II: Learning f from the estimated concentration

- Let the output from the stage-I be the list $L = \{S_1, ..., S_{\mathcal{M}'}\}$; the indices for dominant fourier terms
- Step-I: Make a list of t random queries: $\{(x_i, f(x_i))\} \forall i = \{1, ..., t\}$. Where, queries are made uniformly at random: $x_i \in_{u.a.r} \{-1, 1\}^n$. [This is classical query. We will reuse it whenever required.]
- Step-II: Use Perseval's identity to estimate the fourier coefficients as: $\tilde{f}(S) = \frac{1}{t} \cdot \sum_{i=1}^{t} f(x_i) x_i^S$.
- The **Lemma-1** guarantees $\tilde{f}(S)$ well approximate the actual value $\hat{f}(S)$ if the value of t (i.e., # of queries) is sufficiently large: $|\hat{f}(S) \tilde{f}(S)| < \gamma$; if, $t = O(\frac{1}{\gamma^2})$. [via Chernoff bound]

Theorem 1 Let $f: \{-1,1\}^n \to \{-1,1\}$ be an ϵ -concentrated Boolean function on an unknown set of size at most M. Then, if given a set L of Fourier terms such that all the Fourier terms with coefficient greater than or equal to $\sqrt{\epsilon/M}$ are included in L, there is a learning algorithm that can PAC learn the target function, with error $\alpha = O(\epsilon)$ and high success probability, in $O(\frac{|L|^2}{\epsilon})$ time using $O(\frac{|L|}{\epsilon})$ classical uniform random queries.

Figure: From the paper

(Continue...) Stage-II: Learning f from the concentration

- Remark-II: Theorem-I prescribe $\gamma = \sqrt{\frac{\epsilon}{L}}.$ (We use it in later analysis)
- Step-III: Using the strategy similar to Kushilevitz-Monsour Algorithm (a classical algorithm); define $g(x) = \sum_{S \in L} \tilde{f}(S) x^S$ and h(x) = sign(g(x)).
- Step-IV: Due to theorem-I, the above estimated h(x) is proven to α -approximate f(x). Output h(x) as PAC learned function.

Note: The Stage-II is classical in nature.

Theorem 2 Given $f: \{-1,1\}^n \to \{-1,1\}$ be an ϵ -concentrated Boolean function on an unknown set of size at most M, there exists a quantum algorithm that, using $O(\frac{M}{\epsilon})$ quantum uniform queries and time, recovers a list L of at size $O(\frac{M}{\epsilon})$ containing all Fourier terms of f with Fourier coefficient greater than $\sqrt{\epsilon/M}$ with high success probability.

Figure: From the paper

Time and Query complexity: Combining Stage-I and II

- The Stage-I requires $O(\frac{\mathcal{M}}{\epsilon})$ calls to subroutinue QFS. Assume each QFS call take O(1) time. Thus, stage-I time = $O(\frac{\mathcal{M}}{\epsilon})$.
- The Stage-II has two requirements:
- (II.a) Creating the list of t random queries: $\{(x_i, f(x_i))\}\ \forall\ i = \{1, ..., t\}$. It requires $t = O(\frac{1}{\gamma^2}) = O(\frac{|L|}{\epsilon})$ queries. (due to Remark-II)
- (II.b) Estimating each of $\tilde{f}(S)$, where $S \in L = \{S_1, ..., S_{\mathcal{M}'}\}$. For each $\tilde{f}(S)$, we use the list L and apply Perseval's identity. It need $O(|L| \cdot |L|/\epsilon)$ time.
- Replace $|L| = O(\frac{\mathcal{M}}{\epsilon})$ [due to theorem-2] to get stage-II Query: $O(\frac{\mathcal{M}}{\epsilon^2})$ and Time: $O(\frac{\mathcal{M}^2}{\epsilon^3})$.

Theorem 3 Let C be a concept class such that every $f: \{-1, 1\}^n \to \{-1, 1\}$ in C has its Fourier spectrum ϵ -concentrated on a collection of at most M Fourier terms. Then, C can be PAC learned using $O(\frac{M}{\epsilon^2})$ quantum uniform queries in $O(\frac{M^2}{\epsilon^3})$ time.

Figure: From the paper

- Main Results
 - Context & Key Results
- 2 Brief Review of key concepts
 - PAC learning: Brief Review
 - Boolean Function & Fourier Series: Brief Review
- 3 Algorithm for Quantum PAC learning
 - CBF learning: A two stage process
 - Stage-I: Learning the concentration of a CBF
 - Satge-II: Learning the function from its concentration
- 4 Benchmarking
 - Complexity: Quantum and Classical PAC learning
 - Theoretical limits on Quantum learning
- 6 Conclusion

Complexity table: Classical and Quantum PAC learning

 $\textbf{Table 2} \quad \text{Different algorithms solving the learning of concentrated Boolean functions problem using different types of query}$

Algorithm	Time complexity	Query complexity	Query type
Hassanieh2012 [23]	$O(M\log(2^n/M)n/\epsilon)$	$O(M\log(2^n/M)n/\epsilon)$	Uniform random query
Indyk2014 [25]	$\tilde{O}(2^n n^c)$	$\tilde{O}(Mn)$	Uniform random query
Kushilevitz-Mansour [20, 26]	$O(nM^3/\epsilon^3)$	$O(nM^3/\epsilon^3)$	Membership query
Our algorithm	$O(M^2/\epsilon^3)$	$O(M/\epsilon^2)$	Quantum uniform random query

Figure: (From the paper) **Hassanieh2012 algorithm** is the best-known classical algorithmic for CBF PAC learning (as per Query×time metric). The **Quantum PAC** learning of the paper perform relatively better in terms of query complexity. For better time complexity, $\mathcal{M} = \tilde{O}(n^2)$ is essential. (Note: First three algorithms are classical.)

• Notation: $\tilde{O}(f(n)) = O(f(n) \cdot log^k(n))$

Theoretical bounds on query complexity for Quantum learning of a CBF

- Any Quantum PAC learning algorithm for a ϵ -concentrated Boolean function on an unknown set sized \mathcal{M} must make $\Omega(\mathcal{M})$ queries to be 'decently' successful.
- Reason: (Theorem-9) Let $\mathcal{C} = \{f_1, ..., f_r\}$ be the class of boolean function that are ϵ -concentrated on an unknown set of size at most \mathcal{M} . Then, the number of quantum queries necessary to PAC learn \mathcal{C} with approx. error $\alpha \leq 1/10$ under arbitary distribution is $\Omega(M)$.
- Any Quantum Exact¹ learning algorithm for a ε-concentrated Boolean function on an unknown set sized M must require exponential number of queries to be decently successful.
- Reason: (Theorem-10) Let $C = \{f_1, ..., f_r\}$ be the class of boolean function that are ϵ -concentrated on an unknown set of size at most \mathcal{M} . Then, the number of uniform quantum queries examples to exact learn C is $\Omega(\epsilon \cdot 2^n \cdot log(\mathcal{M})/n)$

4 D L 4 D L 4 E L 4 E L E

¹i.e., approximation error $\alpha = 0$

- - Context & Key Results
- - PAC learning: Brief Review
 - Boolean Function & Fourier Series: Brief Review
- - CBF learning: A two stage process
 - Stage-I: Learning the concentration of a CBF
 - Satge-II: Learning the function from its concentration
- - Complexity: Quantum and Classical PAC learning
 - Theoretical limits on Quantum learning
- Conclusion

Conclusions

- Asymptotically, certain Concentarted Boolean function can be quantumly PAC learned using lesser query and time resources.
- Exact learning remain interactable both in the classical and the quantum way.

Open Problem: Can Satge-II be optimized?

- Stage-II estimate the hypothesis function h based on the concentration learned in stage-I. In this paper, it is done using Kushilevitz-Mansour algorithms.
- Can Hassanieh (2012) algorithm, a highly optimized classical PAC algorithm that stress on finding high-level structure for important fourier terms, be used in this context to reduce time/query complexity?

Thanks!

