Интегралы и дифференциальные уравнения

Лекции

2 семестр

GitHub: malyinik

Содержание

1	Пер	ервообразная и неопределённый интеграл		
	1.1	Перво	образная	2
		1.1.1	Свойства первообразной	2
	1.2	Неопр	еделённый интеграл	3
		1.2.1	Свойства неопределённого интеграла	3
		1.2.2	Геометрический смысл	5
		1.2.3	Таблица основных интегралов	6
	1.3	Основ	ные методы интегрирования	7

Первообразная и неопределённый интеграл 1

Первообразная 1.1

Определение 1. Функция F(x) называется **первообразной** функции f(x) на интервале (a;b), если F(x) дифференцируема на (a;b) и $\forall x \in (a;b)$:

$$F'(x) = f(x) \tag{1}$$

Пример.

$$f(x) = \frac{1}{2\sqrt{x}}, \ D_f = (0; +\infty)$$

$$F(x) = \sqrt{x}$$
 — первообразная $f(x) = \frac{1}{2\sqrt{x}}$

$$F'(x) = (\sqrt{x})' = \frac{1}{2\sqrt{x}} = f(x)$$

$$f(x)=rac{1}{2\sqrt{x}},\; D_f=(0;+\infty)$$
 $F(x)=\sqrt{x}-$ первообразная $f(x)=rac{1}{2\sqrt{x}}$ $F'(x)=(\sqrt{x})'=rac{1}{2\sqrt{x}}=f(x)$ $F(x)=\sqrt{x}+3-$ первообразная $f(x)=rac{1}{2\sqrt{x}}$

1.1.1 Свойства первообразной

Свойство 1.

Если F(x) — первообразная функции f(x) на (a;b), то F(x)+C — первообразная функции f(x) на (a;b), где $\forall C-const.$

Свойство 2.

Если $\Phi(x)$ дифференцируема на (a;b) и $\forall x \in (a;b) \colon \Phi'(x) = 0$, то $\Phi(x) = const$, $\forall x \in (a;b).$

Свойство 3 (Существование первообразной).

Любая непрерывная функция на (a;b) имеет множество первообразных на этом интервале, причём любые две из них отличаются друг от друга на константу.

$$\Phi(x),\ F(x)$$
 — первообразные функции $f(x)$ на $(a;b)$
$$\Phi(x) - F(x) = const$$

1.2 Неопределённый интеграл

Определение 2. Множество первообразных функции f(x) на (a;b) называется **неопре**делённым интегралом.

$$\int f(x)dx = F(x) + C$$
 (2)

∫ — знак интеграла

f(x) — подынтегральная функция

f(x)dx — подынтегральное выражение

x — переменная

F(x) + C — множество первообразных

C — произвольная константа

Определение 3. Интегрирование — нахождение неопределённого интеграла.

1.2.1 Свойства неопределённого интеграла

Свойство 1.

Производная от неопределённого интеграла равна подынтегральной функции.

$$\left[\left(\int f(x)dx \right)' = f(x) \right]$$

Доказательство.

$$\left(\int f(x)dx\right)' \stackrel{(2)}{=\!\!\!=\!\!\!=} \left(F(x)+C\right)' = F'(x)+C' = F'(x) \stackrel{(1)}{=\!\!\!=\!\!\!=} f(x)$$

Свойство 2.

Дифференциал от неопределённого интеграла равен подынтегральному выражению.

$$d\left(\int f(x)dx\right) = f(x)dx$$

Доказательство.

$$d\left(\int f(x)dx\right) \stackrel{(2)}{=\!=\!=\!=} d\left(F(x) + C\right) = \left(F(x) + C\right)'dx = \left(F'(x) + C'\right)dx = F'(x)dx \stackrel{(1)}{=\!=\!=} f(x)dx$$

Свойство 3.

Неопределённый интеграл от дифференциала от некоторой функции равен сумме этой функции и константы.

$$\int d(F(x)) = F(x) + C, \quad \forall C - const$$

Доказательство.

$$\int d(F(x)) = \int F'(x)dx \xrightarrow{(1)} \int f(x)dx \xrightarrow{(2)} F(x) + C, \quad \forall C - const$$

Свойство 4.

Константу можно выносить за знак неопределённого интеграла.

$$\int \lambda \cdot f(x)dx = \lambda \int f(x)dx \, , \quad \lambda \neq 0$$

Доказательство.

Пусть F(x) — первообразная f(x)

$$\lambda \int f(x)dx \stackrel{(2)}{=} \lambda \cdot (F(x) + C), \quad \forall C - const$$

Функция $\lambda \cdot F(x)$ — первообразная $\lambda \cdot f(x)$:

$$\left(\lambda \cdot F(x)\right)' = \lambda \cdot F'(x) \xrightarrow{(1)} \lambda \cdot f(x)$$

$$\int \lambda \cdot f(x) dx \xrightarrow{(2)} \lambda \cdot F(x) + C_1, \quad \forall C_1 - const$$

Так как константы C_1 , C — произвольные, $\lambda \neq 0$, то их всегда можно выбрать так, чтобы $C_1 = \lambda C$. Тогда множества $\lambda \cdot (F(x) + C)$ и $\lambda \cdot F(x) + C_1$ совпадают.

Свойство 5.

Если функции $f_1(x)$ и $f_2(x)$ на (a;b) имеют первообразные $F_1(x)$ и $F_2(x)$ соответственно, то функция $\lambda_1 f_1(x) + \lambda_2 f_2(x)$, где $\lambda_1, \lambda_2 \in \mathbb{R}$, имеет первообразную на (a;b), причём $\lambda_1^2 + \lambda_2^2 > 0$:

$$\int \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx = \lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx$$

Доказательство.

 $F_1(x)$ — первообразная $f_1(x)$

 $F_2(x)$ — первообразная $f_2(x)$

$$\lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx \xrightarrow{(2)} \lambda_1 (F_1(x) + C_1) + \lambda_2 (F_2(x) + C_2) =$$

$$= \lambda_1 F_1(x) + \lambda_2 F_2(x) + \lambda_1 C_1 + \lambda_2 C_2, \quad \forall C_1, C_2 - const$$

Функция $F(x) = \lambda_1 F_1(x) + \lambda_2 F_2(x)$ — первообразная функции $\lambda_1 f_1(x) + \lambda_2 f_2(x)$.

$$F'(x) = \left(\lambda_1 F_1(x) + \lambda_2 F_2(x)\right)' = \lambda_1 F_1'(x) + \lambda_2 F_2'(x) \xrightarrow{\text{(1)}} \lambda_1 f_1(x) + \lambda_2 f_2(x)$$
$$\int \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx \xrightarrow{\text{(2)}} \lambda_1 f_1(x) + \lambda_2 f_2(x) + C, \quad \forall C - const$$

Так как константы C_1 , C_2 , C — произвольные, то всегда можно добиться выполнения равенства $C = \lambda_1 C_1 + \lambda_2 C_2$.

Тогда множества $\lambda_1 F_1(x) + \lambda_2 F_2(x) + \lambda_1 C_1 + \lambda_2 C_2$ и $\lambda_1 F_1(x) + \lambda_2 F_2(x) + C$ совпадают.

Свойство 6 (Инвариантность формы интегрирования).

Если $\int f(x)dx = F(x) + C$, где C - const, то $\int f(u)du = F(u) + C$, где C - const, $u = \varphi(x)$ — непрерывно-дифференцируемая функция.

Доказательство.

x — независимая переменная

f(x) — непрерывная функция

F(x) — первообразная f(x)

$$\int f(x)dx = F(x) + C, \ \forall C - const$$

Рассмотрим сложную функцию $F(u) = F(\varphi(x))$. Найдём дифференциал F(u):

$$d(F(u)) = F'(u) \cdot \underbrace{\varphi'(x)dx}_{du} = \begin{vmatrix} u = \varphi(x) \\ du = \varphi'(x)dx \end{vmatrix} = F'(u)du \xrightarrow{(1)} f(u)du$$

Неопределённый интеграл:

$$\int f(u)du = \int d(F(u)) \xrightarrow{\text{(cb. 3)}} F(u) + C, \quad \forall C - const$$

Пример.

$$\int \sin x dx = -\cos x + C \qquad \sin(2x)d(2x) = -\cos(2x) + C$$

1.2.2 Геометрический смысл

Неопределённый интеграл геометрически представляет собой семейство интегральных кривых (графиков функций) вида y = F(x) + C, $\forall C - const$.

Рис. 1: Геометрический смысл неопределённого интеграла

1.2.3 Таблица основных интегралов

Таблица 1: Таблица основных интегралов

$$\begin{aligned} 1. & \int x^n dx = \frac{x^{n+1}}{n+1} + C, \ \forall C - const \end{aligned} & 11. & \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C \\ 2. & \int dx = x + C \end{aligned} & 12. & \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{a-x}{a+x} \right| + C \\ 3. & \int \frac{dx}{x} = \ln |x| + C \end{aligned} & 13. & \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \\ 4. & \int e^x dx = e^x + C \end{aligned} & 14. & \int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C \\ 5. & \int a^x dx = \frac{a^x}{\ln a} + C \end{aligned} & 15. & \int \sinh x \, dx = \cosh x + C \\ 6. & \int \sin x \, dx = -\cos x + C \end{aligned} & 16. & \int \cosh x \, dx = \sinh x + C \\ 7. & \int \cos x \, dx = \sin x + C \end{aligned} & 16. & \int \cosh x \, dx = \sinh x + C \\ 8. & \int \frac{dx}{\cos^2 x} = \tan x + C \end{aligned} & 17. & \int \frac{dx}{\cosh^2 x} = -\cot x + C \\ 9. & \int \frac{dx}{\sin^2 x} = -\cot x + C \end{aligned} & 19. & \int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C \\ 10. & \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arcctg} \frac{x}{a} + C \end{aligned} & 20. & \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \end{aligned}$$

Доказательство (19).

$$\int \frac{dx}{\sin x} = \int \frac{dx}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \frac{1}{2}\int \frac{\frac{1}{\cos^2\frac{x}{2}}}{\frac{\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2}}} dx = \int \frac{\frac{1}{2\cos^2\frac{x}{2}}}{\operatorname{tg}\frac{x}{2}} dx = \int \frac{d\left(\operatorname{tg}\frac{x}{2}\right)}{\operatorname{tg}\frac{x}{2}} = \left|\operatorname{tg}\frac{x}{2}t\right| = \int \frac{dt}{t} = \ln|t| + C = \ln\left|\operatorname{tg}\frac{x}{2}\right| + C$$

1.3 Основные методы интегрирования

1. Непосредственное интегрирование (свойства + таблица)

Пример.

$$\int \left(3e^x + \sin x - \frac{1}{1+x^2}\right) dx = 3\int e^x dx + \int \sin x \, dx - \int \frac{dx}{1+x^2} =$$
$$= 3e^x - \cos x - \arctan x + C, \ \forall C - const$$

- 2. Метод подстановки
 - (2.1) Занесение под знак дифференциала

Пример.

$$\int \frac{e^{\arcsin x} \cdot 1}{\sqrt{1 - x^2}} dx = \int e^{\arcsin x} d(\arcsin x) = e^{\arcsin x} + C, \ \forall C - const$$

(2.2) Замена переменной

Пусть функция $x = \varphi(t)$ определена и дифференцируема на T, а множество X — множество значений этой функции, на котором определена f(x). Тогда, если существует первообразная функции f(x) на X, то на множестве T верно равенство:

$$\int f(x)dx = \begin{vmatrix} x = \varphi(t) \\ dx = \varphi'(t) \end{vmatrix} = \int f(\varphi(t))\varphi'(t)dt$$

Пример.

$$\int x(3x-1)^{2024} dx = \begin{vmatrix} 3x-1=t & 3x=t+1\\ x=\frac{1}{3}(t+1)\\ dx = \left(\frac{1}{3}t+\frac{1}{3}\right)' dt = \frac{1}{3}dt \end{vmatrix} = \int \frac{1}{3}(t+1) \cdot t^{2024} \frac{1}{3} dt$$