Programowanie w R

Paweł Jamer

Proszę dla kredytu hipotecznego z ratą stałą udzielonego na kwotę **K**, przy rocznej stopie oprocentowania **r**, zaciągniętego na okres **n** miesięcy wyznaczyć:

- 1. wysokość oprocentowanie miesięcznego $q=1+\frac{r}{12}$,
- 2. wysokość raty miesięcznej $\mathbf{R} = K \cdot q^n \cdot \frac{q-1}{q^{n-1}}$,
- 3. całkowitą kwotę do spłaty $\mathbf{F} = R \cdot n$.

Proszę dla kredytu hipotecznego z ratą malejącą udzielonego na kwotę **K**, przy rocznej stopie oprocentowania **r**, zaciągniętego na okres **n** miesięcy wyznaczyć:

- 1. wysokość części kapitałowej raty $\mathbf{R_0} = \frac{K}{n}$,
- 2. wysokość części odsetkowej raty i-tej $\mathbf{R_1^i} = \frac{(K (i-1) \cdot R_0) \cdot r}{12}$,
- 3. wysokość raty i-tej $\mathbf{R}^i = R_0 + R_1^i$,
- 4. całkowitą kwotę do spłaty $\boldsymbol{F} = \sum_{i=1}^{n} R^{i}$.

Jaka była najniższa, średnia i najwyższa wartość raty?

W pliku wig_changes.rds znajduje się wektor uporządkowanych chronologicznie wartości tekstowych + oraz - reprezentujących dni w których

- (+) wartość indeksu WIG wzrosła względem wartości z dnia poprzedniego,
- (-) wartość indeksu WIG zmalała względem wartości z dnia poprzedniego. Bazując na tym wektorze wyznacz następującą macierz:

		t					
		+	-				
t-1	+	Prawdopodobieństwo wystąpienia stanu + po stanie +.	Prawdopodobieństwo wystąpienia stanu - po stanie +.				
	-	Prawdopodobieństwo wystąpienia stanu + po stanie	Prawdopodobieństwo wystąpienia stanu - po stanie				

Podnieś utworzoną macierz do potęgi 3.

Zadanie 4a

W ramach pewnego ubezpieczenia **N** klientów płaci składkę wysokości **K** w zamian za możliwość uzyskania kwoty **F** jeżeli nastąpi zdarzenie. Zbuduj symulację tego ubezpieczenia na okres **T** miesięcy zgodnie z poniższym algorytmem.

- 1. Przyjmij t = 1.
- 2. Wyznacz rezerwę na wypłaty: $S_t = \begin{cases} KN, & t = 1, \\ S_{t-1} + KN, & t > 1. \end{cases}$
- 3. Wyznacz liczbę wypłat: $a = \#\{n: c_n \ge F_{t(2)}^{-1}(0.9999)\}, c_n \sim t(2)$.
- 4. Wypłać odszkodowania: $S_t = S_t aF$.
- 5. Sprawdź płynność: $S_t \ge 0$.
 - 1. Jeżeli spełnione, to zmodyfikuj liczbę ubezpieczonych do N = N + n o a, gdzie n to losowa liczba z przedziału od 0 do 100 nowych klientów, natomiast o to losowa liczba z przedziału od 0 do 90 klientów rezygnujących.
 - 2. Jeżeli nie spełnione, to firma zbankrutowała. Zatrzymaj algorytm przed czasem.
- 6. Przyjmij t = t + 1.
- 7. Jeżeli $t \leq T$, to przejdź do 2, w przeciwnym przypadku KONIEC.

Zadanie 4b

Wykonaj następujące czynności.

- 1. Stwórz funkcję przeprowadzającą zaprojektowaną symulację
 - 1. o argumentach K, N, F, T z wartościami domyślnymi,
 - zwracającą wektor S_t długości T jako wynik, jeżeli firma zbankrutowała w wektorze powinny od tego momentu znajdować się wartości NA.
- 2. Napisz kod wykonujący symulacje ubezpieczenia **M** razy i zapisujący wyniki do macierzy **SIM** postaci:

		Miesiąc symulacji						
		1	2	3		Т		
i.j.	1							
Numer symulacji	2	Rezerwy w miesiącu 1 symulacji 2						
rsyr	3							
l me								
ž	М							

- 3. Bazując na macierzy **SIM** odpowiedz na poniższe pytania.
 - 1. Jakie jest prawdopodobieństwo tego, że spółka nie zbankrutuje do chwili t = 1, 2, ..., T?
 - 2. Jaki średni poziom rezerw będzie miała spółka pod warunkiem, że nie zbankrutuje do chwili t = 1, 2, ..., T?
 - 3. Jaki jest oczekiwany okres życia spółki przy założeniu, że maksymalny czas jej życia wynosi T?

Plik **age.rds** zawiera dane dotyczące wieku klientów pewnego banku. Przeanalizuj te dane pod kątem odpowiedzi na następujące pytania.

- 1. Jaki wiek ma najmłodszy i najstarszy klient?
- 2. Jaki jest przeciętny wiek klientów banku?
- 3. Jak bardzo zróżnicowani są klienci banku pod względem wieku?
- 4. Ilu klientów banku jest niepełnoletnich? Jaki to procent całości?
- 5. Ilu klientów banku jest w wieku 30-50 lat? Jaki to procent całości?
- 6. Ilu klientów nie podało swojego wieku? Jaki to procent całości?
- 7. Ile klientów bank posiada w segmentach wiekowych [16,17], [18,24], [25,34], [35,44], [45,64], [65,Inf]? Jaki to procent całości?

Wykonanie poniższego kodu spowoduje skonstruowanie prostego modelu linowego zapisanego w postaci listy w obiekcie model. Wykonaj ten kod, a następnie:

- 1. przyjrzyj się strukturze obiektu model,
- 2. znajdź i wyświetl współczynniki modelu (coefficients),
- 3. Znajdź i wyświetl wartości resztowe modelu (residuals),
- 4. znajdź i wyświetl wartość dopasowanego R² (adj.r.squared).

```
c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) \rightarrow ctl c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) \rightarrow trt gl(2, 10, 20, labels = <math>c("Ctl","Trt")) \rightarrow group c(ctl, trt) \rightarrow weight summary(lm(weight <math>\sim group)) \rightarrow model
```

Załaduj plik **ugly_diamonds.csv** do R w postaci poprawnej ramki danych, tzn. ramki danych, która spełnia poniższą specyfikację:

```
'data.frame':10 obs. of 10 variables:
                0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23
$ carat
         : num
                "Ideal" "Premium" "Good" "Premium" ...
$ cut
         : chr
                 "E" "E" "E" "I"
$ color
         : chr
                 "SI2" "SI1" "VS1" "VS2" ...
$ clarity: chr
$ depth
                61.5 59.8 56.9 62.4 NA 62.8 62.3 61.9 65.1 59.4
         : num
$ table
                55 61 65 58 58 57 57 55 61 61
         : int
         : int
$ price
                 326 326 327 334 335 336 336 337 337 338
                 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4
  X
          : num
                 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05
  У
          : num
$ z
                2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39
          : num
```

Plik **bank_register.rds** zawiera dane dotyczące klientów pewnego banku w postaci następującej struktury.

id	date	income	demographic	products
Identyfikator klienta i umowy.	Data dokonania wpisu.	Roczny dochód klienta.	Płeć, wiek i liczba dzieci.	Posiadane obecnie produkty bankowe.
463_1	Jul 21, 2018	15.331,22\$	F,37,0	DEP,MOR

Przekształć te dane do poniższej postaci.

client_id	agreement_id	date	income	sex	age	child	dep	cre	mor
Id klienta.	Id umowy.	Data.	Dochód.	Płeć.	Wiek.	Dzieci.	Czy posiada depozyt?	Czy posiada kredyt?	Czy posiada kredyt hipoteczny?
463	1	2018-06-21	15331.22	F	37	0	TRUE	FALSE	TRUE

Plik albums.csv zawiera następujące dane dotyczące albumów muzycznych:

- artist_id dentyfikator artysty,
- album_title tytuł albumu,
- genre gatunek muzyczny,
- year_of_pub rok publikacji,
- num_of_tracks liczba piosnek na płycie,
- num_of_sales liczba sprzedanych płyt,
- rolling_stone_critic ocena Rolling Stone Magazine,
- mtv_critic ocena MTV,
- music_maniac_critic ocena Music Maniac.

Bazując na zdobytej dotychczas wiedzy przeprowadź prostą analizę tej próbki.