CAE Midterm Project Wind Turbine Design

Myisha Hassan, Joseph Sutton, Spencer Kirsch, Andrew Lunyk

Design Goals

Category	Constraint		
Equivalent Stress*	< 23.6 KSI		
Normal Deflection	< 12.6 in		
Extreme Deflection	< 17.0 in		
Buckling	FS of > 8		
Natural Frequency	> 12 RPM		

^{*}Considering Safety Factor and Fatigue of Infinite Cycles

Tower Design Methodology

- 'Straight Cylinder' tower for hand calcs and initial simulations.
- 'Fully Tapered' tower : No substantial volume or mass savings
- Final 'Hybrid Cylinder-Tapered' design:
 - A hollow cylinder for the first quarter of the tower's height
 - Base is stronger to withstand loads
 - Steeper tapered section for the remaining three-quarters
 - Lower volume compared fully tapered design to base region to save on material costs

Final Design

Tower Loading and Constraints (Normal)

I: Copy of Deformation/Stress Normal Ambient Static Structural Time: 1. s 11/9/2024 4:40 PM A Fixed Support B Force: 2.4e + 005 lbf C Remote Force: 45000 lbf D Remote Force 2: 1.2056e + 005 lbf E Standard Earth Gravity: 386.09 in/s² Pressure: 9.9583e-002 psi

Tower Loading and Constraints (Extreme)

D: Deformation/Stress Extreme High Temp Static Structural Time: 1. s 11/9/2024 3:02 PM A Fixed Support B Force: 2.4e+005 lbf C Remote Force: 45000 lbf D Remote Force 2: 4.4838e+005 lbf E Standard Earth Gravity: 32.174 ft/s² F Pressure: 53.35 psf

Tower Meshing Methodology

- Multizone Hexa/Prism
- Mesh ½ foot element size
- Deemed sufficient via meshing analysis

Tower: Von Mises Stress Normal Wind Conditions and Ambient Temperature (62.5 °F)

Tower: Von Mises Stress Extreme Wind Conditions and Ambient Temperature (62.5 °F)

Tower: Deflection Under Normal Wind Conditions and Ambient Temperature (62.5 °F)

Tower: Height Change Due to 135 °F Ambient Temperature

Tower: Height Change Due to -10 °F Ambient Temperature

Tower: Deflection Under Extreme Wind Conditions and Ambient Temperature (62.5 °F)

Vibrational Performance

Ta	Tabular Data						
	Mode	Frequency [Hz]					
1	1.	0.53409					
2	2.	0.5341					
3	3.	1.9694					
4	4.	1.9694					
5	5.	4.6033					
6	6.	4.6033					

Conversion Factor: 1Hz = 60 RPM

First Mode: $0.534 \, Hz * \frac{60RPM}{1 \, Hz} = 32.04 \, RPM$

Buckling Resilience

Tabular Data					
	Mode	✓ Load Multiplier			
1	1.	94.933			
2	2.	95.697			

Tower Design Results Comparison

	Design Constraints		Hand Calculation		FEA Simulation	
		Straight Cylinder		Hybrid Cylinder-Tapered		
Weather Condition	Normal	Extreme	Normal	Extreme	Normal	Extreme
Max Deflection [in]	< 12.6	< 17.0	3.7	13.6	4.5	16.5
Max Tower Stress [ksi]	< 23.7	< 23.7	2.0	7.2	6.4	12.0
Buckling Load Failure Multiplier	> 8		31		95	
Natural Frequency: 2 blades [rpm]	> 12		21		32	
Thermal Effects: Tower Height Change for -10°F [in]	-		-4.4		-5.0	
Thermal Effects: Tower Height Change for 135°F [in]	-		4.4		3.6	

Thermal Consideration: Baseplate

- Tolerancing bolt holes \rightarrow Greatest ΔR due to Δ °F was 0.3 inches.
- Flange containing 75 bolts: B7M bolts (7in diameter) manufactured by Lightning Bolt Supply
- Maximum deformation in radius around the holes is minimum tolerancing used for the bolt holes
- Bolt holes modeled with 7.6 in diameter

Flange Loading and Constraints (Extreme)

Single Body Meshing Methodology

- Tetrahedral mesh
- 1/2-foot element size
- Hole elements are coarse

Sub-modeling Methodology

- To accurately portray the bolt holes, we needed a finer mesh than we would have memory for across the whole tower
- We therefore split up the geometries in Design Modeler and meshed them separately
- We then applied a cut boundary constraint on the connecting edge of the flange
- This allowed us apply the reaction forces from our tower model to our finer flange model

Flange Meshing Methodology

- Tetrahedral mesh
- 1/2-foot element size
- Deemed sufficient via meshing analysis

Flange: Von Mises Stress Extreme Wind Conditions and Ambient Temperature (-10 °F)

Flange: Von Mises Stress Extreme Wind Conditions and Ambient Temperature (62.5 °F)

Flange: Von Mises Stress Extreme Wind Conditions and Ambient Temperature (135 °F)

How the FEA affected our Design

- Although we were able to calculate parameters for a uniform section tower, the FEA enabled us to quickly characterize a tapered section that helped us save material
- The FEA also showed us unanticipated stress concentrations around our bolted flange which prompted us to redesign it.
- After the redesign, the FEA instilled us with confidence in the compliance of our final design.

Time Estimate

About 160 hours

Thank You!

Questions?

