Bayesian neural networks

(and VI in implicit models)

Dmitry Molchanov
Samsung Al Center, Samsung-HSE Laboratory

Lecture outline

- What are Bayesian Neural Networks (BNNs)
- Why go Bayesian
- How to train BNNs
- Variational inference with implicit posteriors

What you already know

- Stochastic optimization
- Bayesian modelling
- Latent variable models
- Variational inference
 - Bayesian inference ↔ (stochastic) optimization
 - (Doubly) Stochastic variational inference
 - Reparameterization Trick

⇒ Bayesian neural networks

Regularization by noise

Traditional (1943+) regularization: add some penalty for model complexity

- Norm-based regularization (L2, L1) Objective = DataLoss(X, W) + Regularizer(W)
- Max norm constraint

More recent (1990+) approaches: regularization by noise

- Input noise:
 - Denoising autoencoders
 - Data augmentation
- Weight noise:
 - Dropout (reviving noise regularization in 2012)
 - •Gaussian weight noise

$$Objective = \mathbb{E}_{p(\Omega)} DataLoss(X, W, \Omega)$$

Gradient noise

Generative models vs discriminative models

Bayesian Discriminative Model:

Likelihood
$$p(\boldsymbol{t}|X,\boldsymbol{w}) = \prod_{i=1}^N p(t_i|\boldsymbol{x}_i,\boldsymbol{w})$$
 Can be a neural network with weights W!

Posterior
$$p(w|X,t) = \frac{p(t|X,w)p(w)}{\int p(t|X,w)p(w)dw} = ?$$

- No local latent variables; we want the posterior over the weights instead
- Much higher dimensionality
 - 10²-10³ for generative models, 10⁵-10⁸ and more for discriminative models

Why go Bayesian?

A principled framework with many useful applications

- Regularization
- Ensembling
- Uncertainty estimation
- On-line / continual learning
- And more (stay tuned for the next lecture!)

Ensembling

A Bayesian neural network is an infinite ensemble of neural networks

$$\boldsymbol{w} \sim p(\boldsymbol{w}|\boldsymbol{X}, \boldsymbol{t})$$

One sample from the posterior

One element of the ensemble

Predictive distribution $p(t^*|\mathbf{x}^*, X, \mathbf{t}) = \int p(t^*|\mathbf{x}^*, \mathbf{w})p(\mathbf{w}|X, \mathbf{t})d\mathbf{w}$ And its unbiased estimate

$$\mathbb{E}_{p(\boldsymbol{w}|X,\boldsymbol{t})}p(t^*|\boldsymbol{x}^*,\boldsymbol{w}) \simeq \frac{1}{K}\sum_{i=1}^K p(t^*|\boldsymbol{x}^*,\boldsymbol{w}^k); \quad \boldsymbol{w}^k \sim p(\boldsymbol{w}|X,\boldsymbol{t})$$

- Higher accuracy
- More robust

Average SoftMax outputs across several samples

Ensembling

Accuracy quickly saturates

Ensembling

But the NLL keeps improving!
This is a measure of "uncertainty"

Uncertainty estimation

Deterministic NNs: a point estimate of the output, overconfident Bayesian framework allows us to obtain a distribution over the outputs

(a) LeNet with weight decay

(b) LeNet with multiplicative formalizing flows

Model selection and compression

- Empirical Bayes (maximum evidence)
 - Choose hyperparameters
 - Model compression
 - Similar to the Relevance Vector Machine
- Special sparsity-inducing priors
 - Stay tuned for the next lecture

On-line / incremental learning

Assume that the dataset arrives in independent parts.

$$\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \cdots \cup \mathcal{D}_M$$

We can train on the first dataset as usual...

$$p(\mathbf{w}|\mathcal{D}_1) = \frac{p(\mathcal{D}_1|\mathbf{w})p(\mathbf{w})}{\int p(\mathcal{D}_1|\mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

... And then use the obtained posterior as the prior for the next step!

$$p(\mathbf{w}|\mathcal{D}_{2}, \mathcal{D}_{1}) = \frac{p(\mathcal{D}_{2}|\mathbf{w})p(\mathcal{D}_{1}|\mathbf{w})p(\mathbf{w})}{\int p(\mathcal{D}_{2}|\mathbf{w})p(\mathcal{D}_{1}|\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{p(\mathcal{D}_{2}|\mathbf{w})p(\mathbf{w}|\mathcal{D}_{1})}{\int p(\mathcal{D}_{2}|\mathbf{w})p(\mathbf{w}|\mathcal{D}_{1})d\mathbf{w}}$$

Using these sequential updates, we can find $p(w|\mathcal{D})!$

Variational inference for Bayesian NNs

The posterior distribution
$$p(w|X, t) = \frac{p(t|X, w)p(w)}{\int p(t|X, w)p(w)dw}$$

How to find it? Use (doubly stochastic) variational inference!

$$q(\boldsymbol{w}|\boldsymbol{\phi}) \approx p(\boldsymbol{w}|X, \boldsymbol{t})$$

$$KL(q(\boldsymbol{w}|\boldsymbol{\phi}) \parallel p(\boldsymbol{w}|X, \boldsymbol{t})) \rightarrow \min_{\boldsymbol{\phi}}$$

$$\mathcal{L}(\boldsymbol{\phi}) = \mathbb{E}_{q(\boldsymbol{w}|\boldsymbol{\phi})} \log p(\boldsymbol{t}|X, \boldsymbol{w}) - KL(q(\boldsymbol{w}|\boldsymbol{\phi}) \parallel p(\boldsymbol{w})) \rightarrow \max_{\boldsymbol{\phi}}$$

Only two differences from LVMs:

- KL-term is global
- Extremely high-dimensional posterior

Reparameterization trick for Bayesian NNs

Reparameterize $q(\boldsymbol{w}|\boldsymbol{\phi})$ and plug the sample into the ELBO

$$w \sim q(w|\phi) \iff w = g(\epsilon, \phi); \quad \epsilon \sim p(\epsilon)$$

$$\mathcal{L}(\phi) = \mathbb{E}_{p(\epsilon)} \log p(t|X, w = g(\epsilon, \phi)) - \text{KL}(q \parallel p) \to \max_{\phi}$$

Obtain an unbiased differentiable mini-batch estimator

$$\mathcal{L}(\boldsymbol{\phi}) \simeq \sum_{i} \log p(\boldsymbol{t}_{m_i} | \boldsymbol{x}_{m_i}, \boldsymbol{w} = g(\boldsymbol{\epsilon}, \boldsymbol{\phi})) - \text{KL}(q \parallel p); \quad \boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$$

Very similar to conventional loss functions

Basically, using any kind of noise during training is close to being Bayesian Usually just 1 sample per iteration is enough!

Ex: dropout training as variational inference

Binary dropout results in a binary dropout posterior

$$\mathbf{w} = \boldsymbol{\phi} \cdot \operatorname{diag}(\boldsymbol{\epsilon}); \qquad \epsilon_i \sim \operatorname{Bernoulli}(p)$$

It can be shown that a Gaussian prior leads to L2 regularization here ELBO for binary dropout training:

$$\mathcal{L}(\boldsymbol{\phi}) = \mathbb{E}_{p(\boldsymbol{\epsilon})} \log p(\boldsymbol{t}|X, \boldsymbol{w} = \boldsymbol{\phi} \cdot \operatorname{diag}(\boldsymbol{\epsilon})) - \lambda \|\boldsymbol{\phi}\|_{2}^{2} \to \max_{\boldsymbol{\phi}}$$

- Using binary dropout means being Bayesian ©
- There are other uses beyond regularization!
 - Ensembling
 - Uncertainty estimation
 - We can tune the dropout rate p using REINFORCE and extensions

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning." *ICML* 2016.

Ex: Fully-Factorized Gaussians

Approximate posterior

Reparameterization

$$q(\mathbf{w}) = \prod_{i} \mathcal{N}(w_i | \mu_i, \sigma_i^2)$$

$$w = \mu + \sigma \odot \epsilon; \qquad \epsilon_i \sim \mathcal{N}(0, 1)$$

The prior here is, e.g. a zero-centered FF Gaussian prior with variance σ_{prior}^2 ELBO:

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\sigma}) = \mathbb{E}_{p(\boldsymbol{\epsilon})} \log p(\boldsymbol{t}|\boldsymbol{X}, \boldsymbol{w} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}) - \frac{\|\boldsymbol{\mu}\|_{2}^{2} + \|\boldsymbol{\sigma}\|_{2}^{2}}{2\sigma_{prior}^{2}} + \sum_{i} \log \frac{\sigma_{i}^{2}}{\sigma_{prior}^{2}} \rightarrow \max_{\boldsymbol{\mu}, \boldsymbol{\sigma}}$$

More tractable

KL between two ${\mathcal N}$

- Richer approximation
- Twice as many parameters
- Start with small σ , optimize w.r.t. $\log \sigma$ to avoid constrained optimization

The local reparameterization trick

ELBO estimator may have high variance:

Imator may have high variance:
$$\mathcal{L}(\phi) \simeq \hat{\mathcal{L}}(\phi) = \frac{N}{M} \sum_{i=1}^{M} L_i(\phi, \epsilon)$$

$$\operatorname{Var}[\hat{\mathcal{L}}] = \frac{N^2}{M^2} \Biggl(\sum_{i=1}^{M} \operatorname{Var}[L_i] + 2 \sum_{i}^{M} \sum_{i=1}^{M} \operatorname{Cov}[L_i, L_j] \Biggr)$$

$$= N^2 \Biggl(\frac{1}{M} \operatorname{Var}[L_i] + \frac{M-1}{M} \operatorname{Cov}[L_i, L_j] \Biggr)$$

Shared noise sample!

Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." *Advances in NIPS* 2015.

The local reparameterization trick

Consider a linear layer with weight matrix W, input A and output B.

$$w_{ij} \sim \mathcal{N}(\mu_{ij}, \sigma_{ij}^2)$$
$$B = AW$$

Predictions have high correlation because there is one weight sample per batch

$$\mathbb{E}B = A\mu \qquad \text{Var}B = A^2\sigma^2$$

$$B \sim \mathcal{N}(A\mu, A^2\sigma^2)$$

$$B = A\mu + \sqrt{A^2\sigma^2} \odot \epsilon$$

Predictions have zero correlation because there is one weight sample per object

Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." *Advances in NIPS* 2015.

The local reparameterization trick

LRT also reduces the variance of the stochastic gradient for **one** object $\frac{\partial L}{\partial \mu_i}$ is the same for both RT and LRT, but

$$\frac{\partial L}{\partial \sigma_i} = \frac{\partial L}{\partial b} \cdot \frac{\partial b}{\partial \sigma_i} = \frac{\partial L}{\partial b} \cdot a_i \epsilon_i$$

$$\frac{\partial L}{\partial \sigma_i} = \frac{\partial L}{\partial b} \cdot \frac{\partial b}{\partial \sigma_i} = \frac{\partial L}{\partial b} \cdot \frac{a_i^2 \sigma_i \epsilon}{\sqrt{a^2 \sigma_i^2}}$$

RT, 1 sample per weight
A lot of redundant stochasticity

LRT, 1 sample per neuron No redundant stochasticity

Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." *Advances in NIPS* 2015.

LRT for convolutions

- B no longer factorizes in convolutional layers
 - Same weight samples should be used for different spatial positions
- Exact local reparameterization is too complex
 - We need to calculate the full covariance matrix for each activation

- Not justified (yet)
- Performs much better than plain reparameterization

$$\mathbb{E}B = A \star \mu \qquad \text{Var}B = A^2 \star \sigma^2$$

$$B \sim \mathcal{N}(A \star \mu, A^2 \star \sigma^2)$$

$$B = A \star \mu + \sqrt{A^2 \star \sigma^2} \odot \epsilon$$

What next?

- How to choose prior
- Faster test-time averaging
- Better posterior approximations
 - Implicit models

A good time take a 5 minute break?

Treating deterministic parameters

What about other parameters, not just weight matrices?

- Biases
- Linear transformation in BatchNorm
- Any other "non-expressive" parameters
- 1) We can put priors over them, and treat them as random variables
- 2) We can treat them as deterministic parameters
 - Essentially it assumes a flat prior and a delta-peak posterior
 - Or we could see it as bounding the marginal likelihood of the data given these parameters

$$\log p(\boldsymbol{t}|X,\boldsymbol{\theta}) \ge \mathcal{L}(\boldsymbol{\phi},\boldsymbol{\theta}) = \mathbb{E}_{q(\boldsymbol{w}|\boldsymbol{\phi})} \log p(\boldsymbol{t}|X,\boldsymbol{w},\boldsymbol{\theta}) - \mathrm{KL}(q(\boldsymbol{w}|\boldsymbol{\phi}) \parallel p(\boldsymbol{w})) \to \max_{\boldsymbol{\phi},\boldsymbol{\theta}}$$

Empirical Bayes for Bayesian NNs

- How to choose the prior distribution?
- Type-II maximum likelihood (maximum evidence):

$$\log p(\boldsymbol{t}|X,\boldsymbol{\theta}) \to \max_{\boldsymbol{\theta}}$$

$$\log p(\boldsymbol{t}|X,\boldsymbol{\theta}) \ge$$

$$\ge \mathcal{L}(\boldsymbol{\phi},\boldsymbol{\theta}) = \mathbb{E}_{q(\boldsymbol{w}|\boldsymbol{\phi})} \log p(\boldsymbol{t}|X,\boldsymbol{w}) - \text{KL}(q(\boldsymbol{w}|\boldsymbol{\phi}) \| p(\boldsymbol{w}|\boldsymbol{\theta})) \to \max_{\boldsymbol{\phi},\boldsymbol{\theta}}$$

- It is okay when $\dim \boldsymbol{\theta}$ is small
- May overfit if $\dim \boldsymbol{\theta}$ is large
 - Ideally we would have $p(w|\theta) = q(w|\theta) = \delta(w_{ML})$
 - You never know whether you can overfit with a particular parameterization
- Usually used to induce sparsity (RVM, SWS, ...)

Distillation

Test-time averaging is expensive

Imaging we have a good sampler $q_t(w_t)$ for w

- SG MCMC
- Variational approximate posterior

We can train a separate deterministic neural network (student) to "mimic" the ensemble (teacher):

$$\mathcal{L}(\mathbf{w}_{st}) = \mathbb{E}_{q_t(\mathbf{w}_t)} \mathcal{H}(p(\mathbf{t}|X, \mathbf{w}_{st}), p(\mathbf{t}|X, \mathbf{w}_t))$$

- Worse than the ensemble
- Better than a single network

Balan, Anoop Korattikara, et al. "Bayesian dark knowledge." NIPS 2015.

Distillation: examples

VI distillation:

- 1) Train the "teacher" network, obtain approx. posterior q(w)
- 2) For each iteration of learning of the "student" network:
 - Sample a minibatch of data
 - Sample predictions of the "teacher"
 - 3) Use SoftMax output of the teacher as "soft" labels

MCMC distillation:

- 1) Warm-up a Markov Chain for the "teacher"
- 2) For each iteration of learning of the "student" network:
 - 1) Sample a minibatch of data
 - 2) Make one SG MCMC update of the teacher
 - 3) Use SoftMax output of the teacher as "soft" labels

Variational inference with implicit posteriors

Implicit posterior: $\mathbf{w} = f(\boldsymbol{\epsilon}, \boldsymbol{\phi}), q_{\boldsymbol{\phi}}(\mathbf{w})$ is intractable

Example: $f(\epsilon, \phi)$ is an arbitrary neural network

$$\mathcal{L}(\boldsymbol{\phi}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{w})} \log p(\boldsymbol{t}, \boldsymbol{w}|X) - \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{w})} \log q_{\boldsymbol{\phi}}(\boldsymbol{w})$$

Semi-implicit formulation:

$$q_{\phi}(\mathbf{w}) = \int q_{\phi}(\mathbf{w}|\mathbf{z}) q_{\phi}(\mathbf{z}) d\mathbf{z}$$
$$\mathbf{z} \sim q_{\phi}(\mathbf{z}), \qquad \mathbf{w} \sim q_{\phi}(\mathbf{w}|\mathbf{z}) \iff \mathbf{w} \sim q_{\phi}(\mathbf{w})$$

- •Any implicit distribution has a semi-implicit formulation $q(w|z) = \delta(w-z)$
- Any semi-implicit distribution is implicit

Variational inference with implicit posteriors

	MCMC	IPM	Variational Bayes
Bias	No	???	Strong
Sampling/ Ensembling	Inefficient	???	Efficient
Density	No	???	Yes
Likelihood	Needed	???	Needed

Variational inference with implicit posteriors

	MCMC	IPM	Variational Bayes	
Bias	No	Weak	Strong	
Sampling/ Ensembling	Inefficient	Efficient	Efficient	
Density	No	Can be estimated?	Yes	
Likelihood	Needed	Can be avoided	Needed	

Hierarchical variational inference

How to perform approximate inference with a semi-implicit posterior? You should already know this:

- VI with auxiliary variables
- VI in RL with options

Assumptions:

- Can compute densities of both q(w|z) and q(z)
- Can reparameterize both q(w|z) and q(z)
- Can approximate inverse model $r(z|w) \approx \frac{q(w|z)q(z)}{q(w)}$

$$\mathcal{L} \geq \mathbb{E}_{q(w)} \log p(t, w|X) - \mathbb{E}_{q(z)q(w|Z)} [\log q(w|z)q(z) - \log r(z|w)]$$
(Prove it if you didn't do it yet!)

Hierarchical variational inference

$$\mathcal{L}(\boldsymbol{\phi}) \ge \underline{\mathcal{L}}(\boldsymbol{\phi}, \boldsymbol{\theta}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{w})} \log p(\boldsymbol{t}, \boldsymbol{w}|\boldsymbol{X}) - \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{w}, \boldsymbol{z})} \log \frac{q_{\boldsymbol{\phi}}(\boldsymbol{w}|\boldsymbol{z})q_{\boldsymbol{\phi}}(\boldsymbol{z})}{r_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{w})} \to \max_{\boldsymbol{\phi}, \boldsymbol{\theta}}$$

Additional inference gap:

$$\mathcal{L}(\boldsymbol{\phi}) - \underline{\mathcal{L}}(\boldsymbol{\phi}, \boldsymbol{\theta}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(w)} KL \left(r_{\boldsymbol{\theta}}(z|w) \parallel q_{\boldsymbol{\phi}}(z|w) \right)$$

Multiplicative normalizing flows

Consider the following semi-implicit posterior:

$$q_{\phi}(\mathbf{w}) = \int q_{\phi}(\mathbf{w}|\mathbf{z})q(\mathbf{z})d\mathbf{z}$$

$$q_{\phi}(w_{ij}|z_i) = \mathcal{N}(w_{ij}|\mu_{ij}z_i,\sigma_{ij}^2)$$

$$q_{\phi}(\mathbf{z}) = \text{NF}(\boldsymbol{\epsilon},\boldsymbol{\phi}); \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0,I)$$

$$r_{\theta}(z|w) = \text{NF}(f_{\theta}(w),\theta)$$

Can reparameterize and compute log-density

- Learn non-trivial correlations between neurons
- Not clear how to evaluate the inference gap of HVI
- Normalizing flows are limited
 - Need a lot of depth for complex distributions
 - The width of each layer is the same
- One of the most complex posteriors for Bayesian NNs yet

Semi-implicit variational inference

• The rough idea: obtain a "MC" estimate of q(w)

$$q(w) = \int q(w|z)q(z)dz = \mathbb{E}_{q(z)}q(w|z) \approx$$

$$\approx q_{1..K}(w|z^1,...,z^K) = \frac{1}{K} \sum_{k=1}^K q(w|z^k)$$

Note that it is asymptotically exact:

$$q_{1..K}(w|z^1,...,z^K) \xrightarrow[K\to\infty]{} q(w)$$

• This idea can be used to obtain a sandwich bound for the entropy of q(w):

$$-\mathbb{E}_{z^0,\dots,z^K}\mathbb{E}_{w|z^0}\log\frac{1}{K}\sum_{k=1}^K q(w|z^k) \ge$$

$$\geq -\mathbb{E}_{q(w)}\log q(w) \geq$$

$$\geq -\mathbb{E}_{z^0,...,z^K} \mathbb{E}_{w|z^0} \log \frac{1}{K+1} \sum_{k=0}^K q(w|z^k)$$

SIVI: upper bound

$$-\mathbb{E}_{z^{0},...,z^{K}}\mathbb{E}_{w|z^{0}}\log\frac{1}{K}\sum_{k=1}^{K}q(w|z^{k}) \geq -\mathbb{E}_{q(w)}\log q(w)$$

This is just plain Jensen's inequality (
$$\log \mathbb{E} \geq \mathbb{E} \log$$
)
$$-\mathbb{E}_{z^0,\dots,z^K} \mathbb{E}_{w|z^0} \log \frac{1}{K} \sum_{k=1}^K q(w|z^k) = -\mathbb{E}_{z^0,w|z^0} \mathbb{E}_{z^1\dots z^K} \log \frac{1}{K} \sum_{k=1}^K q(w|z^k) \geq \\ \geq -\mathbb{E}_{z^0,w|z^0} \log \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{z^k} q(w|z^k) = -\mathbb{E}_{q(w)} \log q(w)$$

SIVI: lower bound

$$-\mathbb{E}_{q(w)}\log q(w) \ge -\mathbb{E}_{z^0,\dots,z^K} \mathbb{E}_{w|z^0} \log \frac{1}{K+1} \sum_{k=0}^K q(w|z^k)$$

Symmetrize the right side:

$$\begin{split} -\mathbb{E}_{z^{0},\dots,z^{K}}\mathbb{E}_{w|z^{0}}\log\frac{1}{K+1}\sum_{k=0}^{K}q(w|z^{k}) &= -\mathbb{E}_{z^{0},\dots,z^{K}}\mathbb{E}_{w|z^{j}}\log\frac{1}{K+1}\sum_{k=0}^{K}q(w|z^{k}) = \\ &= -\frac{1}{K+1}\sum_{j=0}^{K}\mathbb{E}_{z^{0},\dots,z^{K}}\mathbb{E}_{w|z^{j}}\log\frac{1}{K+1}\sum_{k=0}^{K}q(w|z^{k}) = \\ &= -\mathbb{E}_{z^{0},\dots,z^{K}}\int\frac{1}{K+1}\sum_{j=0}^{K}q(w|z^{j})\log\frac{1}{K+1}\sum_{k=0}^{K}q(w|z^{k})dw = \\ &= -\mathbb{E}_{z^{0},\dots,z^{K}}\mathbb{E}_{q_{0.K}}(w|z^{0},\dots,z^{K})\log q_{0.K}(w|z^{0},\dots,z^{K}) \end{split}$$

SIVI: lower bound

$$-\mathbb{E}_{q(w)}\log q(w) \ge -\mathbb{E}_{z^0,...,z^K}\mathbb{E}_{q_{0..K}(w|z^0,...,z^K)}\log q_{0..K}(w|z^0,...,z^K)$$

Rewrite the left side in the same expectations:

$$-\mathbb{E}_{q(w)}\log q(w) = -\mathbb{E}_{z^{0},...,z^{K}}\mathbb{E}_{q_{0..K}(w|z^{0},...,z^{K})}\log q(w)$$

And subtract the right side:

$$\begin{split} & - \mathbb{E}_{z^{0},...,z^{K}} \mathbb{E}_{q_{0..K}}(w|z^{0},...,z^{K}) \log q(w) + \\ & + \mathbb{E}_{z^{0},...,z^{K}} \mathbb{E}_{q_{0..K}}(w|z^{0},...,z^{K}) \log q_{0..K}(w|z^{0},...,z^{K}) = \\ & = \mathbb{E}_{z^{0},...,z^{K}} \mathbb{E}_{q_{0..K}}(w|z^{0},...,z^{K}) \log \frac{q_{0..K}(w|z^{0},...,z^{K})}{q(w)} = \\ & = \mathbb{E}_{z^{0},...,z^{K}} KL(q_{0..K}(w|z^{0},...,z^{K}) || q(w)) \ge 0 \end{split}$$

Semi-implicit variational inference

- This idea can be used to obtain a sandwich for ELBO
 - $\mathcal{L}_K \leq \mathcal{L} \leq \mathcal{L}^K$
 - Both \mathcal{L}_K and \mathcal{L}^K monotonically converge to \mathcal{L}
 - We can now estimate ELBO in **any** semi-implicit model!
 - q(z) can be fully implicit (any reparameterizable distribution)

•
$$q(z)$$
 can be fully implicit (any reparameterizable distribution)

$$\underline{\mathcal{L}}_{K} = \mathbb{E}_{w} \log p(t, w | X) - \mathbb{E}_{z^{0}, z^{1}, \dots, z^{K}} \mathbb{E}_{w | z^{0}} \log \frac{1}{K + 1} \sum_{k=0}^{K} q(w | z^{k})$$

$$\overline{\mathcal{L}}^{K} = \mathbb{E}_{w} \log p(t, w | X) - \mathbb{E}_{z^{0}, z^{1}, \dots, z^{K}} \mathbb{E}_{w | z^{0}} \log \frac{1}{K} \sum_{k=1}^{K} q(w | z^{k})$$
Bo

Optimize w.r.t. ϕ

Implicit models: takeaways

- We can now model arbitrarily complex posteriors!
- Applicable to both Bayesian NNs and VAEs

The next big thing in Bayesian learning!

МСМС	VI	SG MCMC	SVI	RT	LRT	Implicit Models	s!
1953	1999	2011	2012	2013	2015	2018+	

Bayesian neural networks: takeaways

- Regularization by noise
- Reparameterization
- Local reparameterization
- Deterministic parameters
- Empirical Bayes
- Use implicit model if you want better approximation

Unbiased implicit variational inference

Main idea: we can consider the reparameterization of $q_{\phi}(z)$ as a part of

Main idea: we can consider the reparameterization of
$$q_{\phi}(z)$$
 the conditional $q_{\phi}(w|z)$:
$$\int q_{\phi}(w|z)q_{\phi}(z)dz = \int q_{\phi}(w|\epsilon)p(\epsilon)d\epsilon$$

$$q_{\phi}(w|\epsilon) = q_{\phi}(w|z)\Big|_{z=f_{\phi}(\epsilon)}$$
 The recorded states the case as less the signal distribution is given.

The model stays the same, but the joint distribution is now explicit!

$$q_{\phi}(w, \epsilon) = q_{\phi}(w|\epsilon)p(\epsilon)$$

We now might be able to run HVI with a fully implicit $q_{\phi}(z)$...

... Or go even further

Unbiased implicit variational inference

Provides an unbiased gradient estimate for the ELBO

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(w)} \log q_{\phi}(w) = \nabla_{\phi} \mathbb{E}_{p(\epsilon)} \log q_{\phi} \left(f_{\phi}(\epsilon) \right) =$$

$$= \mathbb{E}_{p(\epsilon)} \nabla_{\phi} \log q_{\phi}(w) \Big|_{w = f_{\phi}(\epsilon)} + \mathbb{E}_{p(\epsilon)} \nabla_{w} \log q_{\phi}(w) \Big|_{w = f_{\phi}(\epsilon)} \cdot \nabla_{\phi} f_{\phi}(\epsilon) =$$

$$= \mathbb{E}_{q_{\phi}(w)} \nabla_{\phi} \log q_{\phi}(w) + \mathbb{E}_{p(\epsilon)} \nabla_{w} \log q_{\phi}(w) \Big|_{w = f_{\phi}(\epsilon)} \cdot \nabla_{\phi} f_{\phi}(\epsilon)$$

$$= 0$$

$$\nabla_{w} \log q_{\phi}(w) = \mathbb{E}_{q(\epsilon'|w)} \nabla_{\phi} \log q_{\phi}(w|\epsilon')$$

Can be sampled using plain HMC!
We can start HMC using pair (eps, w) to avoid warm-up

Unbiased implicit variational inference: proof?

$$\nabla_{w} \log q_{\phi}(w) = \mathbb{E}_{q(\epsilon'|w)} \nabla_{w} \log q_{\phi}(w|\epsilon')$$

$$\begin{split} \nabla_{w} \log q_{\phi}(w) &= \frac{1}{q_{\phi}(w)} \nabla_{w} \int q_{\phi}(w|\epsilon') q(\epsilon') d\epsilon' = \frac{1}{q_{\phi}(w)} \int \nabla_{w} q_{\phi}(w|\epsilon') q(\epsilon') d\epsilon' = \\ &= \frac{1}{q_{\phi}(w)} \int q_{\phi}(w|\epsilon') q(\epsilon') \nabla_{w} \log q_{\phi}(w|\epsilon') d\epsilon' = \\ &= \int \frac{q_{\phi}(w|\epsilon') q(\epsilon')}{q_{\phi}(w)} \nabla_{w} \log q_{\phi}(w|\epsilon') d\epsilon' = \\ &= \int q(\epsilon'|w) \nabla_{w} \log q_{\phi}(w|\epsilon') d\epsilon' \end{split}$$

Unbiased implicit variational inference

Provides an unbiased gradient estimate for the ELBO

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(w)} \log q_{\phi}(w) = \mathbb{E}_{p(\epsilon)} \nabla_{w} \log q_{\phi}(w) \Big|_{w = f_{\phi}(\epsilon)} \cdot \nabla_{\phi} f_{\phi}(\epsilon)$$

$$\nabla_{w} \log q_{\phi}(w) = \mathbb{E}_{q(\epsilon|w)} \nabla_{w} \log q_{\phi}(w|\epsilon)$$

- Still cannot estimate ELBO directly (only gradients)
- Can use SIVI bounds to monitor / compare ELBO
- Need sufficiently "nice" $q(\epsilon)$
 - $\mathcal{N}(0,I)$ works fine and is used almost always
 - Discrete $q(\epsilon)$ may be problematic (e.g. no dropout in the implicit generator f_{ϕ})