CME 307 / MS&E 311: Optimization

Quadratic optimization

Professor Udell

Management Science and Engineering
Stanford

January 29, 2024

Outline

Quadratic optimization

Quadratic approximations

Quadratic optimization

a quadratic optimization problem is written as

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|Ax - b\|^2 := f_0(x) \\ \text{variable} & x \in \mathbf{R}^n \end{array}$$

where

- $ightharpoonup A \in \mathbf{R}^{m \times n}$: matrix
- ▶ $b \in \mathbf{R}^m$: vector

how to solve?

Quadratic optimization

a quadratic optimization problem is written as

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|Ax - b\|^2 := f_0(x) \\ \text{variable} & x \in \mathbf{R}^n \end{array}$$

where

- ▶ $A \in \mathbf{R}^{m \times n}$: matrix
- ▶ $b \in \mathbf{R}^m$: vector

how to solve? take gradient and set to 0:

$$\nabla f_0(x) = A^T (Ax - b) = 0$$

⇒ linear system solvers also solve quadratic optimization problems

Symmetric positive semidefinite matrices

Definition

a symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive semidefinite** (psd) if $x^T Qx > 0$ for all $x \in \mathbb{R}^n$.

these matrices are so important that there are many ways to write them! for $Q \in \mathbf{R}^{n \times n}$,

$$Q \in \mathbf{S}_{+}^{n} \iff Q \succeq 0 \iff Q = Q^{T}, \ \lambda_{\min}(Q) \geq 0$$

Symmetric positive semidefinite matrices

Definition

a symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive semidefinite** (psd) if $x^T Qx \ge 0$ for all $x \in \mathbb{R}^n$.

these matrices are so important that there are many ways to write them! for $Q \in \mathbf{R}^{n \times n}$,

$$Q \in \mathbf{S}_{+}^{n} \iff Q \succeq 0 \iff Q = Q^{T}, \ \lambda_{\min}(Q) \geq 0$$

 $Q \in \mathbf{S}_{+}^{n}$ is symmetric positive definite (spd) $(Q \succ 0)$ if $x^{T}Qx > 0$ for all $x \in \mathbf{R}^{n}$.

Symmetric positive semidefinite matrices

Definition

a symmetric matrix $Q \in \mathbf{R}^{n \times n}$ is **positive semidefinite** (psd) if $x^T Qx \ge 0$ for all $x \in \mathbf{R}^n$.

these matrices are so important that there are many ways to write them! for $Q \in \mathbf{R}^{n \times n}$,

$$Q \in \mathbf{S}_{+}^{n} \iff Q \succeq 0 \iff Q = Q^{T}, \ \lambda_{\min}(Q) \geq 0$$

 $Q \in \mathbf{S}_{+}^{n}$ is symmetric positive definite (spd) $(Q \succ 0)$ if $x^{T}Qx > 0$ for all $x \in \mathbf{R}^{n}$.

why care about psd matrices Q?

- least-squares objective has a psd $Q = A^T A$
- \triangleright level sets of $x^T Qx$ are (bounded) ellipsoids
- ▶ the quadratic form $x^T Qx$ is a metric iff Q > 0
- eigenvalue decomp and svd coincide for psd matrices

Quadratic program

a quadratic program is written as

minimize
$$\frac{1}{2}x^TQx + c^Tx$$

subject to $Ax = b$
variable $x \in \mathbf{R}^n$

where

- $\triangleright Q \in \mathbf{R}^{n \times n}$: symmetric positive semidefinite matrix
- $c \in \mathbf{R}^n$: vector

how to solve?

Quadratic program

a quadratic program is written as

minimize
$$\frac{1}{2}x^TQx + c^Tx$$

subject to $Ax = b$
variable $x \in \mathbf{R}^n$

where

- $\triangleright Q \in \mathbf{R}^{n \times n}$: symmetric positive semidefinite matrix
- $c \in \mathbf{R}^n$: vector

how to solve? reduce to quadratic optimization problem:

- (explicit) form solution set $\{x : Ax = b\} = \{x_0 + Vz \mid z \in \mathbf{R}^{n-m}\}$ by computing a solution $Ax_0 = b$ and a basis V for the null space of A
- (implicit) use duality to recast problem as larger linear (KKT) system

Quadratic program: application

Markowitz portfolio optimization problem:

minimize
$$\gamma x^T \Sigma x - \mu^T x$$

subject to $\sum_i x_i = 1$
 $Ax = 0$
variable $x \in \mathbf{R}^n$

where

- $\Sigma \in \mathbb{R}^{n \times n}$: asset covariance matrix
- $\blacktriangleright \mu \in \mathbf{R}^n$: asset return vector
- $ightharpoonup \gamma \in \mathbf{R}$: risk aversion parameter
- rows of $A \in \mathbb{R}^{m \times n}$ correspond to other portfolios
 - ensures new portfolio is independent, e.g., of market returns

Quadratic program: application

control system design problem:

$$x^+ = Ax + Bu$$

- $x \in \mathbb{R}^n$: state (e.g., position, velocity)
- ▶ $u \in \mathbf{R}^m$: control (e.g., force, torque)

minimize
$$\sum_{t=1}^{T} x_t^T Q x_t + u_t^T R u_t$$
subject to
$$x_{t+1} = A x_t + B u_t, \quad t = 0, \dots, T-1$$
$$x_0 = x^{\text{init}}$$

Outline

Quadratic optimization

Quadratic approximations

Quadratic approximation

Suppose $f : \mathbf{R} \to \mathbf{R}$ is twice differentiable. For any $x \in \mathbf{R}$, approximate f about x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x).$$

If f is a quadratic function, $\nabla^2 f(x) = H$ is constant.

Quadratic approximation

Suppose $f : \mathbf{R} \to \mathbf{R}$ is twice differentiable. For any $x \in \mathbf{R}$, approximate f about x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x).$$

If f is a quadratic function, $\nabla^2 f(x) = H$ is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

$$y^* = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T H(y - x)$$
$$\Longrightarrow \nabla f(x) + H(y^* - x) = 0$$
$$y^* = x - H^{-1}(\nabla f(x)).$$

Quadratic approximation

Suppose $f : \mathbf{R} \to \mathbf{R}$ is twice differentiable. For any $x \in \mathbf{R}$, approximate f about x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x).$$

If f is a quadratic function, $\nabla^2 f(x) = H$ is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

$$y^* = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T H(y - x)$$
$$\implies \nabla f(x) + H(y^* - x) = 0$$
$$y^* = x - H^{-1}(\nabla f(x)).$$

If we approximate the Hessian of f by $H = \frac{1}{t}I$ for some t > 0 and choose x^+ to minimize the quadratic approximation, we obtain the **gradient descent** update with step size t:

$$x^+ = x + -t\nabla f(x)$$

Quadratic upper bound

Definition (Smooth)

A function $f : \mathbf{R} \to \mathbf{R}$ is *L*-smooth if for all $x, y \in \mathbf{R}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{L}\nabla f$ is *L*-**Lipschitz continuous**:

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$$

▶ $\nabla^2 f(x) \leq LI$ for all $x \in \text{dom } f$.

Quadratic upper bound

Definition (Smooth)

A function $f : \mathbf{R} \to \mathbf{R}$ is *L*-smooth if for all $x, y \in \mathbf{R}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{L}\nabla f$ is *L*-**Lipschitz continuous**:

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$$

▶ $\nabla^2 f(x) \leq LI$ for all $x \in \text{dom } f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-smooth

Quadratic upper bound

Definition (Smooth)

A function $f: \mathbf{R} \to \mathbf{R}$ is L-smooth if for all $x, y \in \mathbf{R}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{L}\nabla f$ is *L*-**Lipschitz continuous**:

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$$

▶ $\nabla^2 f(x) \leq LI$ for all $x \in \operatorname{dom} f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-smooth

A: $\lambda_{\max}(A)$ -smooth

Quadratic lower bound

Definition (Strongly convex)

A function $f : \mathbf{R} \to \mathbf{R}$ is μ -strongly convex if for all $x, y \in \mathbf{R}$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{\mu}\nabla f$ is μ -coercive:

$$\|\nabla f(y) - \nabla f(x)\| \ge \mu \|y - x\|$$

▶ $\nabla^2 f(x) \succeq \mu I$ for all $x \in \operatorname{dom} f$.

Quadratic lower bound

Definition (Strongly convex)

A function $f : \mathbf{R} \to \mathbf{R}$ is μ -strongly convex if for all $x, y \in \mathbf{R}$,

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2}.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{\mu}\nabla f$ is μ -coercive:

$$\|\nabla f(y) - \nabla f(x)\| \ge \mu \|y - x\|$$

▶ $\nabla^2 f(x) \succeq \mu I$ for all $x \in \operatorname{dom} f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-strongly convex

Quadratic lower bound

Definition (Strongly convex)

A function $f : \mathbf{R} \to \mathbf{R}$ is μ -strongly convex if for all $x, y \in \mathbf{R}$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{\mu}\nabla f$ is μ -coercive:

$$\|\nabla f(y) - \nabla f(x)\| \ge \mu \|y - x\|$$

▶ $\nabla^2 f(x) \succeq \mu I$ for all $x \in \operatorname{dom} f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-strongly convex

A: $\lambda_{\min}(A)$ -strongly convex

Optimizing the upper bound

start at $x^{(0)}$. suppose f is L-smooth, so for all $y \in \mathbf{R}$,

$$f(y) \le f(x^{(0)}) + \nabla f(x)^T (y - x^{(0)}) + \frac{L}{2} ||y - x^{(0)}||^2$$

let's choose next iterate $x^{(1)}$ to minimize this upper bound:

$$x^{(1)} = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||^{2}$$

$$\implies \nabla f(x^{(0)}) + L(x^{(1)} - x^{(0)}) = 0$$

$$x^{(1)} = x^{(0)} - \frac{1}{L} \nabla f(x^{(0)})$$

Optimizing the upper bound

start at $x^{(0)}$. suppose f is L-smooth, so for all $y \in \mathbf{R}$,

$$f(y) \le f(x^{(0)}) + \nabla f(x)^T (y - x^{(0)}) + \frac{L}{2} ||y - x^{(0)}||^2$$

let's choose next iterate $x^{(1)}$ to minimize this upper bound:

$$x^{(1)} = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||^{2}$$

$$\implies \nabla f(x^{(0)}) + L(x^{(1)} - x^{(0)}) = 0$$

$$x^{(1)} = x^{(0)} - \frac{1}{L} \nabla f(x^{(0)})$$

- **proof** gradient descent update with step size $t = \frac{1}{L}$
- lower bound ensures true optimum can't be too far away...