Fizika snov

Rok Kos

Gimnazija Vič, Tržaška cesta 72

Kazalo

1 FIZIKALNE KOLIČINE IN ENOTE

Fizikalna količina je produkt merskega števila in merske enote.

1.1 Osnovne in sestavljene enote

Osnovne fizikalne količine	Osnovne fizikalne enote
dolžina	m
masa	kg
čas	S
el. tok	Α
temperatura	K
svetilnost	cd
količina snovi	mol

Vse ostale enote lahko zapišemo s temi.

Sestavljene fizikalne enote: $\frac{m}{s}$, N, J, W..

$$1N = \frac{1kgm}{s^2}$$

1.2 Predpone

P(peta)	$10^{1}5$
T(tera)	$10^{1}2$
G(giga)	10^{9}
М	10^{6}
k	10^{3}
h	10 ²
da	10
d	10^{-1}
С	10^{-2}
m	10^{-3}
μ	10^{-6}
n	10^{-9}
p(piko)	10^{-12}
f(fento)	10^{-15}

1.3 Merjenje

NAPAKE:

 SLUČAJNE(odvisne od natačnosti merilca) → te napake se da zmanjašati z večkratnim merjenjem

• SISTEMATIČNE(odvisne od merilne naprave) → se jih <u>neda odpraviti</u> z večkratnim merjenjem

Vse meritve zapišemo v tabelo

dolžina l	[m]
1	x_1
2	x_2
3	X 3
:	:
n	x_n

Izračun povprečne vrednosti : \overline{x}

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Absolutna Napaka Δx

 Δx je največje odstopanje meritve od povprečne vrednosti.

$$x = \overline{x} \pm \Delta x$$

Relativna Napaka δx

$$\delta x = \frac{\Delta x}{\overline{x}}$$

$$x = \overline{x}(1 \pm \frac{\Delta x}{\overline{x}})$$

1.4 Računanje z napakami

Vsota in razlika

$$a = \overline{a} \pm \Delta a$$

$$b = \overline{b} \pm \Delta b$$

$$(a+b)_{max} = (\overline{a} + \Delta a) + (\overline{b} + \Delta b) = (\overline{a} + \overline{b}) + (\Delta a + \Delta b)$$

$$(a+b)_{min} = (\overline{a} - \Delta a) + (\overline{b} - \Delta b) = (\overline{a} + \overline{b}) - (\Delta a + \Delta b)$$

$$a+b = (\overline{a} + \overline{b}) \pm (\Delta a + \Delta b)$$

$$a-b = (\overline{a} - \overline{b}) \pm (\Delta a + \Delta b)$$

Pri seštevanju in odštevanju seštevamo **absolutne napake. Množenje in deljenje**

$$a = \overline{a} \pm \Delta a$$

$$b = \overline{b} \pm \Delta b$$

$$ab_{max} = (\overline{a} + \Delta a)(\overline{b} + \Delta b) = \overline{a}\overline{b} + \overline{a}\Delta b + \overline{a}\Delta b + \Delta a\Delta \overline{b}^{*0}$$

$$= \overline{a}\overline{b}(1 + \frac{\Delta a}{\overline{a}} + \frac{\Delta b}{\overline{b}}) = \overline{a}\overline{b}(1 + (\delta a + \delta b))$$

$$ab_{min} = (\overline{a} - \Delta a)(\overline{b} - \Delta b) = \overline{a}\overline{b} - \overline{a}\Delta b - \overline{a}\Delta b + \Delta a\Delta \overline{b}^{*0}$$

$$= \overline{a}\overline{b}(1 - \frac{\Delta a}{\overline{a}} - \frac{\Delta b}{\overline{b}}) = \overline{a}\overline{b}(1 - (\delta a + \delta b))$$

$$ab = \overline{a}\overline{b}(1 \pm (\delta a + \delta b))$$

$$\frac{a}{b} = \frac{\overline{a}}{\overline{b}}(1 \pm (\delta a + \delta b))$$

Pri množenju in deljenju seštevamo **realtivne napake. Potenciranje**

$$a = \overline{a} \pm \Delta a$$
$$a^n = \overline{a}^n (1 \pm (n\delta a))$$

1.5 Grafična predstavitev rezultatov

- 1. Urejene osi(enote, številke)
- 2. Pravilno vnešene meritve
- 3. Premica, ki se najbolj prilega
- 4. Smerni koeficient(z enotami)
- 5. Fizikalni pomen smernega koeficienta(hitrost, fizikalna količina)

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

Zveza: S = vt

2 PREMO IN KRIVO GIBANJE

2.1 Premo gibanje

Gibanje je **realtivno**(vse se vedno giba), vedno je treba povedati glede na kaj se giba.

Lega je kordinata telesa v prostoru.Lahko jo zapišemo s kordinatami kot:

- številsko premico(ena dimenzija)
- 2-dimenzionalni kordinatni sistem(dve dimenziji)
- 3-dimenzionalni kordinatni sistem(tri dimenzije)

Premik definiramo kot <u>razdaljo</u> med <u>začetno</u> in <u>kočno lego</u>, kateremu lahko določimo smer.(se vprašamo kam)

Zapis:

Kartezični(Vektor) \rightarrow (-60km, -70km) ali (x, y) Cilindrične kordinate \rightarrow (-92km, 230 °C) ali (r, α)

Pot se vedno **veča** zato nikoli ne gre v **minus**.

2.2 Hitrost

Hitrost nam pove kakšna pot naredimo v določenem času. Hitrost je vektorska kolilčina odvisna od smeri. Poznamo tudi skalarne količine(npr. Masa).

Enačbe, ki so svete:

$$v = v_0 + at$$

$$s = v_0 t + \frac{at^2}{2}$$

$$v^2 = v_0^2 + 2as$$

2.3 Enakomerno gibanje

To je gibanje pri katerem je **hitrost konstantna**. Telo v enakih časovnih intervalih naredi enako pot. Primer: krogla, ki jo iztrelimo v breztežnostnem prostoru.

$$a = 0$$

$$v = v_0$$

$$s = v_0 t \rightarrow v_0 = \frac{s}{t}$$

$$v^2 = v_0^2$$

Naklon pove hitrost

$$f = tan\alpha = k$$
$$k = \frac{\Delta y}{\Delta x} = \frac{\Delta s}{\Delta t} = v$$

Ploščina pod krivuljo nam pove prepotovano pot.

$$s = tv$$

2.4 Enakomerno pospešeno gibanje

Enakomerno pospešeno gibanje je gibanje pri katerem se hitrost **enakomerno spreminja**. Pospešek nam pove za koliko se v določenem

času spremeni hitrost.
$$\frac{\frac{m}{s}}{s} \rightarrow [\frac{m}{s^2}] \rightarrow enota$$

$$a = \frac{\Delta v}{\Delta t}$$

Strmina premice hitrosti od časa nam pove velikost pospeška.

$$k = \frac{\Delta v}{\Delta t} = a$$

Tangenta na krivuljo grafa poti od časa v vsaki točki govori o hitrosti telesa. Ploščina pod krivuljo grafa pospeška od časa nam pove hitrost.

$$v = at$$

Odvod poti proti času in odvod hitrosti po času

$$v = \frac{ds}{dt}$$
$$v = \frac{dv}{dt}$$

2.5 Prosti pad

$$v = gt$$

$$h = \frac{gt^2}{2}$$

$$v^2 = 2gh$$

Gimnazija Vič

2.6 Navpični met navzdol

$$v = v_0 \pm gt$$

$$h = v_0 t \pm \frac{gt^2}{2}$$

$$v^2 = v_0^2 \pm 2gh$$

2.7 Navpični met navzgor

Smer in velikost pospeška sta vedno ista(osvisna od mase zemlje.) Ko gre telo gor govorimo o pojemku, ko pa dol pa o pospešku.

Ker je pospešek vedno enak se graf ne lomi.

ENAKOMERNO POJEMAJOČE

$$v = v_0 \pm gt$$

$$h = v_0 t \pm \frac{gt^2}{2}$$

$$v^2 = v_0^2 \pm 2gh$$

ENAKOMERNO POSPEŠUJOČE

$$v = gt$$

$$h = \frac{gt^2}{2}$$

$$v^2 = 2gh$$

2.8 Ravninsko gibanje

Gibanje v eno smer ni odvisno od nasprotnega gibanja. Hitrosti se vektorsko seštevajo.

Čas, ki ga bo potreboval za prehod reke je odvisen od samo od **dolžine reke** in **njegove hitrosti**. Celotna pot in zamik pa sta odvisna od reke. Gibanje je **enakomerno**.

$$S = vt$$

$$t = \frac{h}{v_c}$$

$$v^2 = v_r^2 + v_c^2$$

$$S = \sqrt{x^2 + h^2}$$

$$x = v_r t$$

2.9 Vodoravni met

Hitrost \vec{v} je vedno **tangentna** na traektorijo(pot po kateri se premika).

X smer	Y smer
enakomerno gibanje	enakomerno pospešeno gibanje
v = konst.	$a = g, v \neq konst.$
/	prosti pad
t	t

$$v_{x} = \frac{x}{t}$$

$$v = \sqrt{v_{x}^{2} + v_{y}^{2}}$$

$$v_{y} = gt$$

$$h = \frac{gt^{2}}{2}$$

2.10 Kroženje

ENAKOMERNO

Kroženje je vedno pospešeno gibanje saj se **vektor vedno spreminja**. Enakomerno pa ker je $|\vec{v}|$ **vedno konstanten**, ne pa sam \vec{v} . t_0 - obhodni čas.

ν - frekvenca, predstavi število obratov v nekem času.

$$v = \frac{N}{t} = \frac{1}{t_0}[Hz]$$

 ω - kotna hitrost, pove nam za kakšen kot prepotujemo v določenem času, enote so v radianih na sekundo

$$v = \frac{\Delta \phi}{\Delta t} = \frac{360^{\circ}}{t_0} = \frac{2\pi}{t_0} = 2\pi \frac{1}{t_0} = \frac{2\pi v}{s} \left[\frac{1}{s}\right]$$

v - ubodna histrost, je tangentan na krožnico, ubod pomeni zunanji rob, pove nam kolikšen krožni lok(odsek krožnice opravi v določenem času).

$$v = \frac{\Delta l}{\Delta t} = \frac{2\pi r}{t_0} = 2\pi \frac{1}{t_0} r = \omega r \left[\frac{m}{s}\right]$$

 α_r - radialni pospešek, cedno kaže v središče, spreminja smer hitrosti na krožnici.

$$a_r = \frac{\Delta v}{\Delta t} = v\omega = r\omega^2 = \frac{v^2}{r} \left[\frac{m}{s^2}\right]$$

3 SILA IN NAVOR

3.1 **Sila**

Učinki sil:

- SPREMEMBE GIBANJA(ustavi, sprememba hitrosti, smeri...)
- DEFORMACIJA(sprememba oblike)

SILE:

- NOTRANJE(med deli opazovanega telesa)
- ZUNANJE(s katerimi predmeti iz okolice delujemo na opazovalno telo)

SEŠTEVANJE SIL:

 PARALELOGRAMSKO PRAVILO(premaknemo v izhodišče in naredimo vzporednice(paralelogram))

• TRIKOTNIŠKO PRAVILO(silo premaknemo na konce prve sile)

RASTAVLJANJE SIL

3.2 Newtnovi zakoni

- 1. **IZREK O RAVNOVESJU**(če je vsota vseh zunanjih sil, delujejo na telo enaka 0 potem telo miruje ali se giblje premo enakomerno(Telo vztraja v gibanju)).
- 2. F = ma
- 3. **ZAKON O VZAJEMNEM UČINKU**(zakon akcije in reakcije), če <u>1</u>. telo deluje na <u>2</u>. z neko silo, deluje tudi <u>2</u>. nazaj z nasprotno enako silo.

3.3 Ravnovesje sil

3.4 Trenje in lepenje

Telo miruje na vodoravni podlagi.

 F_g - teža je volumsko porazdeljena sila, narišemo jo z prijemališčem v sredini.

 F_n - sila podlage je ploskovno razdeljena in jo narišemo s prejemališčem na sredini ploskve.

Telo še zmeraj miruje.

Sila podlage je sestavljena iz vzdolžne komponente in sile normale. Če povečujemo vlečno silo se spreminja samo vzdolžna komponenta sile podlage.

$$0 <= F' < F_l$$

F_l- sila lepenja

$$F_l = k_l N$$

 k_l - koeficijent lepenja, je neko število brez enote, ki je odvisen samo od hrapavosti stičnih ploskev podlage in telesa

Telo se giblje: F_{tr} - sila trenja

$$F_{tr} = k_{tr}N$$

 k_{tr} - koeficijent trenja

$$k_{tr} < k_l$$

Je vedno manjši, ker zato da **premaknemo telo** potrebujemo več sile, ker moramo pretrgati **medmulekulske vezi** in potem, ko se telo enkrat premika teh vezi ni več in je manjši koeficijent.

3.5 Sile na klancu

Klada miruje na klancu: Velikosti(smeri nasprotne):

- $F_p = F_q$
- $F_d = F'$
- $F_s = N$

$$F_s = F_g \cos \alpha$$

$$F_s = mg \cos \alpha$$

$$F_d = F_g \sin \alpha$$

$$F_d = mg \sin \alpha$$

$$F_s = N = mg \cos \alpha$$

$$F_d = F' = mg \sin \alpha$$

 $\alpha_l \dots$ tik preden se klada premakne(mejni primer)

$$F_{d} = F_{l}$$

$$mg^{*} \sin \alpha_{l} = k_{l}mg^{*} \cos \alpha_{l}$$

$$k_{l} = \frac{\sin \alpha_{l}}{\cos \alpha_{l}}$$

$$k_{l} = \tan \alpha_{l}$$

Uporabljamo samo v tem mejnem primeru.

 α_{tr} . . . mejni kot, klada drsi enakomerno

$$F_{d} = F_{tr}$$

$$mg^{r} \sin \alpha_{tr} = k_{tr} mg^{r} \cos \alpha_{tr}$$

$$k_{tr} = \frac{\sin \alpha_{tr}}{\cos \alpha_{tr}}$$

$$k_{tr} = \tan \alpha_{tr}$$

Klada drsi pospešeno:

$$F = m\alpha$$

$$F_d - F_{tr} = m\alpha$$

$$m^r g \sin \alpha - k_{tr} m^r g \cos \alpha = m^r \alpha$$

$$\alpha = g \sin \alpha - k_{tr} g \cos \alpha$$

1. Pojemek, ko telo zadrsamo po vodoravni podlagi

$$\alpha = 0^{\circ}$$

$$\alpha = -k_{tr}g$$

2. Prosti pad

$$\alpha = 90^{\circ}$$
 $\alpha = -g$

3.6 Sile pri kroženju

$$a_r = \omega^2 r = \frac{v^2}{r} = \omega r$$
 $F_r = ma_r \rightarrow radialnasila$
 $F_r = m\omega^2 r = m\frac{v^2}{r} = m\omega r$

3.7 Deformacije trdnin

- PROŽNE(ko se telo po končanju deformacije vrne v prvotno stanje)
- NEPROŽNE(ko se telo ne vrne ali pa se delno vrne v prvotno stanje)

$$P = \frac{F}{S} \left[1 \frac{N}{m^2} = 1Pa \right]$$
$$\left[1bar = 10^5 \frac{N}{m^2} \right]$$

Velja samo če je pravokotno na ploskev

$$P = \frac{F'}{S}$$

3.8 Hookov zakon

I . . . prvotna dolžina

x . . . raztezek

S...premer žice

$$\frac{F}{S} = \Delta$$

 $\Delta \dots$ raztezna napestost $\left[\frac{N}{m^2}\right]$

$$\frac{x}{k} = \epsilon$$

 $\epsilon \dots$ relativni raztezek

Hookov zakon:

$$\frac{F}{S} = E\frac{X}{l}$$

$$F = \frac{ES}{l}X$$

$$F = kX$$

$$k = \frac{ES}{l}$$

E . . . prožnostni model snovi $[\frac{N}{m^2}]$

3.9 Navor

M ... navor [1Nm]

$$M = rF''$$

$$F'' = F \cos \alpha$$

$$M = rF \cos \alpha$$

$$\cos \alpha = \frac{r'}{r}$$

$$M = rF \frac{r'}{r}$$

$$M = FF'$$

r' . . . ročica(pravokotna razdalja med nosilko sile in osjo)

$$\vec{M} = \vec{r} X \vec{F}$$

Navor je ročica krat sila. **Smer navora** je po <u>desnem vijaku</u>(v našem primeru bi kazal v list). Mi bomo gledali samo kako navor zasuka telo. **Izrek o ravnovesju** pravi:

- 1. Da mora biti rezultanta vseh zunanjih sil 0
- 2. Da mora biti rezultanta vseh navorov 0

Takrat telo miruje ali se giba premo enakomerno.

3.10 Navor teže

$$m = m_1 + m_2 + \dots + m_n$$

$$M = m_1 x_1' g + m_2 x_2' g + \dots + m_n x_n' g$$

$$M = x_t mg$$

$$x_t = \frac{m_1 x_1' + m_2 x_2' + \dots + m_n x_n'}{m}$$

4 NEWTNOVI ZAKONI IN GRAVITACIJA

4.1 Keplerjevi zakoni

(Opisujejo gibanje planetov)

- 1. Planeti se gibljejo po elipsi, sonce je v gorišču elipse.
- 2. Radij vectorja med planetom in soncem opiše v enakih časih enake ploščine(ploščinska hitrost je enaka)
- Kvocient kuba polmera in kvadrata obhodnega časa planeta je za vse planete enaka.

$$\frac{r^3}{t_0^2} = konst$$

Gimnazija Vič

2015-2016

4.2 Newtnov gravitacijski zakon

(opisuje privlačno silo med dvema točkastema telesoma) *smer sile je na smeri veznice

$$F = \frac{Gm_1m_2}{r^2}$$

*če povečamo eno maso se obe sile povečata

G . . . gravitacijska konstanta

$$G = 6,67 * 10^{-11} \frac{Nm^2}{kg^2}$$

*vzamemo razdaljo med središčem

1. MASA ZEMLJE

 $g_0 \dots$ težni pospešek na površini zemlje

 $r_0 \dots$ polmer zemlje

$$mg_0 = \frac{Gmm_z}{r_0^2}$$

$$g_0 = \frac{Gm_z}{r_0^2}$$

$$m_z = \frac{g_0r_0}{G}$$

$$m_z = \frac{9,81\frac{m}{s^2}(6400km)^2}{6,67 * 10^{-11}\frac{Nm^2}{kg^2}} = 6,02 * 10^{24}kg$$

2. Težni pospešek nad površino zemlje

$$g = g_0(\frac{r_0^2}{r})\dots odsredia$$

 $g = g_0(\frac{r_0^2}{r_0 + h})\dots odpovrinezemlje$

3. Hitrost umetnega satelita, ki kroži okrog zemlje na majhni višini

$$m^{r}g = m^{r}a_{r}$$

$$g_{0}(\frac{r_{0}}{r})^{2} = \frac{v^{2}}{r}$$

$$r = r_{0}$$

$$v^{2} = g_{0}r_{0}$$

$$v = \sqrt{g_{0}r_{0}}$$

$$v = \sqrt{9,81\frac{m}{s^{2}}6400km}$$

$$v = 8000\frac{m}{s} \rightarrow kozminahitrost$$

Obhodni čas:

$$v = \omega r = \frac{2\pi}{t_0} r$$

$$t_0 = \frac{2\pi r}{v}$$

$$t_0 = \frac{2\pi 6400 km}{80000 \frac{m}{s}} = 83.8 min$$

4. Višina geostacionarnega satelita

 $t_0 = 1$ dan \rightarrow ker je goestacionarni satelit

$$\omega = \frac{2\pi}{t_0}$$

$$m^*g = m^*a_r$$

$$g_0(\frac{r_0}{r})^2 = \omega^2 r$$

$$g_0\frac{r_0^2}{r^2} = \frac{4\pi^2}{t_0^2} r$$

$$r^3 = \frac{g_0r_0^2t_0^2}{4\pi^2}$$

$$r = \sqrt{\frac{9,81\frac{m}{s^2}(6400km)^2(24h)^2}{4\pi^2}}$$

$$r = 42354km$$

$$h = r - r_0 = 36100km$$

5. Masa sonca

$$r_{sz} = 1,5 * 10^{8}km$$

$$t_{0} = 365dni = 32 * 10^{6}s$$

$$\frac{Gm_{s}m_{z}^{**}}{r_{sz}^{2}} = m_{z}^{**}\omega r_{sz}$$

$$\frac{Gm_{s}}{r_{sz}^{2}} = \frac{4\pi^{2}}{t_{0}^{2}}r_{sz}$$

$$m_{s} = \frac{4\pi^{2}r_{sz}^{3}}{t_{0}^{2}G}$$

$$m_{s} = 2 * 10^{30}kg$$