Homework 2

Lindley Slipetz

7/11/2021

For this homework, I will be using the Childhood adversity and traumatic stress among inpatients at a psychiatric hospital in the Baltimore area from 1993-1995. The data include diagnoses, psychological symptoms, physical and sexual abuse, post-traumatic stress disorder, self-destructive behavior, and demographic data. I will be predicting psychoticism from gender, SES, age, occurrence of mood disorder, paranoid ideation, and level of substance abuse.

Let's load the data and packages!

```
library(caret)
#install.packages("glmnet")
library(glmnet)
library(pROC)
library(tidyverse)
#install.packages("e1071")
library(e1071)
full_data <- read.table(file = 'G:\\My Drive\\ICPSR\\ML\\HW_2\\36168-0001-Data.tsv', sep = '\t', header</pre>
```

Okay, let's subset our data to just the variables we're interested in.

```
subset_data <- full_data %>%
select(PSYCDX, SEX, SES, MOODDX, SCL_PAR, SISDB_SUB, AGE)
```

Now we're going to check if there's any missing data.

```
df <- as.data.frame(
   cbind(
    lapply(
       lapply(subset_data, is.na), sum)
   )
)
rownames(subset(df, df$V1 != 0))</pre>
```

```
## [1] "SCL_PAR" "SISDB_SUB"
```

Okay, SCL_PAR, and SISDB_SUB have missing values. Let's see how much of a problem this is.

```
sum(is.na(subset_data$SCL_PAR))
```

```
## [1] 1
```

```
sum(is.na(subset_data$SISDB_SUB))
```

[1] 10

That's not that much missing data (at least to me). I think we'd be safe to just omit the data with NA.

```
complete_data <- na.omit(subset_data)</pre>
Dummy encoding.
complete_data$PSYCDX <- factor(complete_data$PSYCDX, labels=c("non_psy", "psy"))</pre>
createDummies <- dummyVars(~., complete_data[,-1], fullRank = TRUE)</pre>
new.predictors <- predict(createDummies, complete_data[,-1])</pre>
complete_data <- data.frame(PSYCDX = complete_data$PSYCDX, new.predictors)</pre>
Time to standardize the data.
preProcValues <- preProcess(complete_data, method=c("center","scale"))</pre>
complete_data <- predict(preProcValues, complete_data)</pre>
Splitting the data.
set.seed(1985)
trainIndex <- createDataPartition(complete_data$PSYCDX, p=0.7, list=FALSE)
train <- complete data[trainIndex,]</pre>
test <- complete_data[-trainIndex,]</pre>
Set control parameters.
fitCtrl <- trainControl(method = "repeatedcv",</pre>
                         number = 3,
                         repeats = 2,
                         search = "random")
Set testing grid.
glmnetGrid <- expand.grid(alpha=seq(0,1,by=0.1), lambda=seq(0,1,by=0.05))</pre>
Train model.
glmnet.res <- train(PSYCDX ~ .,</pre>
    data=train,
    method="glmnet",
   trControl=fitCtrl,
    tuneGrid=glmnetGrid,
    metric="Accuracy")
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
```

```
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
```

```
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
```

```
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
```

```
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
## Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
## multinomial or binomial class has fewer than 8 observations; dangerous ground
glmnet.res
## glmnet
##
## 146 samples
##
     6 predictor
     2 classes: 'non_psy', 'psy'
##
##
## No pre-processing
## Resampling: Cross-Validated (3 fold, repeated 2 times)
## Summary of sample sizes: 98, 97, 97, 98, 96, 98, ...
## Resampling results across tuning parameters:
##
##
     alpha lambda Accuracy
                               Kappa
##
     0.0
            0.00
                    0.9247336
                              -0.01063950
##
     0.0
            0.05
                    0.9316071
                                0.00000000
    0.0
##
            0.10
                    0.9316071
                                0.0000000
##
     0.0
            0.15
                    0.9316071
                                0.00000000
            0.20
##
     0.0
                    0.9316071
                                0.0000000
##
     0.0
            0.25
                    0.9316071
                                0.00000000
##
     0.0
            0.30
                    0.9316071
                                0.00000000
##
     0.0
            0.35
                    0.9316071
                                0.00000000
##
     0.0
            0.40
                    0.9316071
                                0.00000000
##
     0.0
            0.45
                    0.9316071
                                0.00000000
##
     0.0
            0.50
                    0.9316071
                                0.0000000
    0.0
##
            0.55
                    0.9316071
                                0.0000000
##
     0.0
            0.60
                    0.9316071
                                0.0000000
##
     0.0
            0.65
                    0.9316071
                                0.00000000
##
     0.0
            0.70
                    0.9316071
                                0.00000000
##
     0.0
            0.75
                    0.9316071
                                0.0000000
##
     0.0
            0.80
                    0.9316071
                                0.00000000
##
            0.85
                    0.9316071
     0.0
                                0.00000000
##
     0.0
            0.90
                    0.9316071
                                0.00000000
                                0.0000000
##
     0.0
            0.95
                    0.9316071
```

0.00000000

0.00670904

##

##

0.0

0.1

1.00

0.00

0.9316071

0.8972392

##	0.1	0.05	0.9316071	0.00000000
##	0.1	0.10	0.9316071	0.00000000
##	0.1	0.15	0.9316071	0.00000000
##	0.1	0.20	0.9316071	0.00000000
##	0.1	0.25	0.9316071	0.00000000
##	0.1	0.30	0.9316071	0.00000000
##	0.1	0.35	0.9316071	0.00000000
##	0.1	0.40	0.9316071	0.00000000
##	0.1	0.45	0.9316071	0.00000000
##	0.1	0.50	0.9316071	0.00000000
##	0.1	0.55	0.9316071	0.00000000
##	0.1	0.60	0.9316071	0.00000000
##	0.1	0.65	0.9316071	0.00000000
##		0.03	0.9316071	0.00000000
	0.1			
##	0.1	0.75	0.9316071	0.00000000
##	0.1	0.80	0.9316071	0.00000000
##	0.1	0.85	0.9316071	0.00000000
##	0.1	0.90	0.9316071	0.00000000
##	0.1	0.95	0.9316071	0.00000000
##	0.1	1.00	0.9316071	0.0000000
##	0.2	0.00	0.8972392	0.00670904
##	0.2	0.05	0.9316071	0.00000000
##	0.2	0.10	0.9316071	0.00000000
##	0.2	0.15	0.9316071	0.00000000
##	0.2	0.20	0.9316071	0.00000000
##	0.2	0.25	0.9316071	0.00000000
##	0.2	0.30	0.9316071	0.00000000
##	0.2	0.35	0.9316071	0.00000000
##	0.2	0.40	0.9316071	0.00000000
##	0.2	0.45	0.9316071	0.00000000
##	0.2	0.50	0.9316071	0.00000000
##	0.2	0.55	0.9316071	0.00000000
##	0.2	0.60	0.9316071	0.00000000
##	0.2	0.65	0.9316071	0.00000000
##	0.2	0.70	0.9316071	0.00000000
##	0.2	0.75	0.9316071	0.00000000
##	0.2	0.80	0.9316071	0.00000000
##	0.2	0.85	0.9316071	0.00000000
##	0.2	0.90	0.9316071	0.00000000
##	0.2	0.95	0.9316071	0.00000000
##	0.2	1.00	0.9316071	0.00000000
##	0.3	0.00	0.8972392	0.00670904
##	0.3	0.05	0.9316071	0.00000000
##	0.3	0.10	0.9316071	0.00000000
##	0.3	0.15	0.9316071	0.00000000
##	0.3	0.20	0.9316071	0.00000000
##	0.3	0.25	0.9316071	0.00000000
##	0.3	0.30	0.9316071	0.00000000
##	0.3	0.35	0.9316071	0.00000000
##	0.3	0.40	0.9316071	0.00000000
##	0.3	0.45	0.9316071	0.00000000
##	0.3	0.50	0.9316071	0.00000000
##	0.3	0.55	0.9316071	0.00000000
##	0.3	0.60	0.9316071	0.00000000
		•		

##	0.3	0.65	0.9316071	0.00000000
##	0.3	0.70	0.9316071	0.00000000
##	0.3	0.75	0.9316071	0.00000000
##	0.3	0.80	0.9316071	0.00000000
##	0.3	0.85	0.9316071	0.00000000
##	0.3	0.90	0.9316071	0.00000000
##	0.3	0.95	0.9316071	0.00000000
##	0.3	1.00	0.9316071	0.00000000
##	0.4	0.00	0.8972392	0.00670904
##	0.4	0.05	0.9316071	0.00000000
##	0.4	0.10	0.9316071	0.00000000
##	0.4	0.15	0.9316071	0.00000000
##	0.4	0.20	0.9316071	0.00000000
##	0.4	0.25	0.9316071	0.00000000
##	0.4	0.30	0.9316071	0.00000000
##	0.4	0.35	0.9316071	0.00000000
##	0.4	0.40	0.9316071	0.00000000
##	0.4	0.45	0.9316071	0.00000000
##	0.4	0.50	0.9316071	0.00000000
##	0.4	0.55	0.9316071	0.00000000
##	0.4	0.60	0.9316071	0.00000000
##	0.4	0.65	0.9316071	0.00000000
##	0.4	0.70	0.9316071	0.00000000
##	0.4	0.75	0.9316071	0.00000000
##	0.4	0.80	0.9316071	0.00000000
##	0.4	0.85	0.9316071	0.00000000
##	0.4	0.90	0.9316071	0.00000000
##	0.4	0.95	0.9316071	0.00000000
##	0.4	1.00	0.9316071	0.00000000
##	0.5	0.00	0.8972392	0.00670904
##	0.5	0.05	0.9316071	0.00000000
##	0.5	0.10	0.9316071	0.0000000
##	0.5	0.15	0.9316071	0.0000000
##	0.5	0.20	0.9316071	0.00000000
##	0.5	0.25	0.9316071	0.00000000
##	0.5	0.30	0.9316071	0.00000000
##	0.5	0.35	0.9316071	0.00000000
##	0.5	0.40	0.9316071	0.00000000
##	0.5	0.45	0.9316071 0.9316071	0.00000000
##	0.5 0.5	0.50	0.9316071	0.00000000
##	0.5	0.55	0.9316071	0.00000000
##	0.5	0.60 0.65	0.9316071	0.00000000
## ##	0.5	0.70	0.9316071	0.00000000
##	0.5	0.75	0.9316071	0.00000000
##	0.5	0.80	0.9316071	0.00000000
##	0.5	0.85	0.9316071	0.00000000
##	0.5	0.90	0.9316071	0.00000000
##	0.5	0.95	0.9316071	0.00000000
##	0.5	1.00	0.9316071	0.00000000
##	0.6	0.00	0.8972392	0.00670904
##	0.6	0.05	0.9316071	0.00000000
##	0.6	0.10	0.9316071	0.00000000
				0.00000000

##	0.6	0.20	0.9316071	0.00000000
##	0.6	0.25	0.9316071	0.00000000
##	0.6	0.30	0.9316071	0.00000000
##	0.6	0.35	0.9316071	0.00000000
##	0.6	0.40	0.9316071	0.00000000
##	0.6	0.45	0.9316071	0.00000000
##	0.6	0.50	0.9316071	0.00000000
##	0.6	0.55	0.9316071	0.00000000
##	0.6	0.60	0.9316071	0.00000000
##	0.6	0.65	0.9316071	0.00000000
##	0.6	0.70	0.9316071	0.00000000
##	0.6	0.75	0.9316071	0.00000000
##	0.6	0.80	0.9316071	0.00000000
##	0.6	0.85	0.9316071	0.00000000
##	0.6	0.90	0.9316071	0.00000000
##	0.6	0.95	0.9316071	0.00000000
##	0.6	1.00	0.9316071	0.00000000
##	0.7	0.00	0.8972392	0.00670904
##	0.7	0.05	0.9316071	0.00000000
##	0.7	0.10	0.9316071	0.00000000
##	0.7	0.15	0.9316071	0.00000000
##	0.7	0.20	0.9316071	0.00000000
##	0.7	0.25	0.9316071	0.00000000
##	0.7	0.30	0.9316071	0.00000000
##	0.7	0.35	0.9316071	0.00000000
##	0.7	0.40	0.9316071	0.00000000
##	0.7	0.45	0.9316071	0.00000000
##	0.7	0.50	0.9316071	0.00000000
##	0.7	0.55	0.9316071	0.00000000
##	0.7	0.60	0.9316071	0.00000000
##	0.7	0.65	0.9316071	0.00000000
##	0.7	0.70	0.9316071	0.00000000
##	0.7	0.75	0.9316071	0.00000000
##	0.7	0.80	0.9316071	0.00000000
##	0.7	0.85	0.9316071	0.00000000
##	0.7	0.90	0.9316071	0.00000000
##	0.7	0.95	0.9316071	0.00000000
##	0.7	1.00	0.9316071	0.00000000
##	0.8	0.00	0.8972392	0.00670904
##	0.8	0.05	0.9316071	0.00000000
##	0.8	0.10	0.9316071	0.00000000
##	0.8	0.15	0.9316071	0.00000000
##	0.8	0.20	0.9316071	0.00000000
##	0.8	0.25	0.9316071	0.00000000
##	0.8	0.30	0.9316071	0.00000000
##	0.8	0.35	0.9316071	0.00000000
##	0.8	0.40	0.9316071	0.00000000
##	0.8	0.45	0.9316071	0.00000000
##	0.8	0.50	0.9316071	0.00000000
##	0.8	0.55	0.9316071	0.00000000
	0.8		0.9316071	0.00000000
##		0.60		
##	0.8	0.65	0.9316071	0.00000000
##	0.8	0.70	0.9316071	0.00000000
##	0.8	0.75	0.9316071	0.0000000

```
##
     0.8
            0.80
                     0.9316071
                                  0.0000000
##
     0.8
            0.85
                     0.9316071
                                  0.0000000
##
     0.8
            0.90
                     0.9316071
                                  0.0000000
##
     0.8
            0.95
                     0.9316071
                                  0.0000000
##
     0.8
            1.00
                     0.9316071
                                  0.0000000
##
     0.9
            0.00
                     0.8972392
                                  0.00670904
##
                     0.9316071
     0.9
            0.05
                                  0.0000000
##
     0.9
            0.10
                     0.9316071
                                  0.0000000
##
     0.9
            0.15
                     0.9316071
                                  0.0000000
##
     0.9
            0.20
                     0.9316071
                                  0.0000000
##
     0.9
            0.25
                     0.9316071
                                  0.0000000
##
            0.30
                     0.9316071
     0.9
                                  0.0000000
##
     0.9
            0.35
                     0.9316071
                                  0.0000000
##
     0.9
            0.40
                     0.9316071
                                  0.0000000
##
            0.45
                     0.9316071
                                  0.0000000
     0.9
##
     0.9
            0.50
                     0.9316071
                                  0.0000000
##
            0.55
     0.9
                     0.9316071
                                  0.0000000
##
     0.9
            0.60
                     0.9316071
                                  0.0000000
##
                     0.9316071
     0.9
            0.65
                                  0.0000000
##
     0.9
            0.70
                     0.9316071
                                  0.0000000
##
     0.9
            0.75
                     0.9316071
                                  0.0000000
##
     0.9
            0.80
                     0.9316071
                                  0.0000000
##
     0.9
            0.85
                     0.9316071
                                  0.0000000
            0.90
                     0.9316071
##
     0.9
                                  0.0000000
##
     0.9
            0.95
                     0.9316071
                                  0.0000000
##
     0.9
            1.00
                     0.9316071
                                  0.0000000
##
            0.00
                     0.8972392
                                  0.00670904
     1.0
##
     1.0
            0.05
                     0.9316071
                                  0.0000000
##
                     0.9316071
                                  0.0000000
     1.0
            0.10
##
     1.0
            0.15
                     0.9316071
                                  0.0000000
##
     1.0
            0.20
                     0.9316071
                                  0.0000000
##
     1.0
            0.25
                     0.9316071
                                  0.0000000
##
     1.0
            0.30
                     0.9316071
                                  0.0000000
            0.35
##
     1.0
                     0.9316071
                                  0.0000000
##
     1.0
            0.40
                     0.9316071
                                  0.0000000
##
     1.0
            0.45
                     0.9316071
                                  0.0000000
##
     1.0
            0.50
                     0.9316071
                                  0.0000000
##
     1.0
            0.55
                     0.9316071
                                  0.0000000
##
     1.0
            0.60
                     0.9316071
                                  0.0000000
##
     1.0
            0.65
                     0.9316071
                                  0.0000000
##
            0.70
                     0.9316071
     1.0
                                  0.0000000
##
            0.75
                     0.9316071
                                  0.0000000
     1.0
##
     1.0
            0.80
                     0.9316071
                                  0.0000000
##
            0.85
                     0.9316071
                                  0.0000000
     1.0
            0.90
##
     1.0
                     0.9316071
                                  0.0000000
##
     1.0
            0.95
                     0.9316071
                                  0.0000000
                     0.9316071
            1.00
##
     1.0
                                  0.0000000
##
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were alpha = 0 and lambda = 1.
plot(glmnet.res)
```


The optimal values are $\alpha=0$ and $\lambda=1$. Since α is 0, this elastic net is ridge regression not lasso regression. Model performance.

```
predclass <- predict(glmnet.res, test)
table(predclass, test$PSYCDX[complete.cases(test)])

##
## predclass non_psy psy
## non_psy 58 3
## psy 0 0
predprob <- predict(glmnet.res, test, type="prob")[,"psy"]
hist(predprob, col="skyblue", breaks=20)</pre>
```

Histogram of predprob


```
roc(test$PSYCDX[complete.cases(test)] ~ predprob)
```

```
## Setting levels: control = non_psy, case = psy
## Setting direction: controls < cases
##
## Call:
## roc.formula(formula = test$PSYCDX[complete.cases(test)] ~ predprob)
##
## Data: predprob in 58 controls (test$PSYCDX[complete.cases(test)] non_psy) < 3 cases (test$PSYCDX[complete.cases(test)] ##
## Area under the curve: 1</pre>
```

I got an area under the curve of 1...that really makes me feel like something went wrong because I highly doubt I have a perfect model. Let's keep moving forward.

Here we find the beta coefficients.

```
fit.elasticnet <- glmnet(as.matrix(train[,-1]), as.numeric(train[,1]), family="binomial", alpha=0, lamb
fit.elasticnet$beta</pre>
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## s0
## SEX 0.060431601
## SES 0.028883468
## MOODDX -0.030461034
## SCL_PAR 0.009019624
## SISDB_SUB 0.043673927
## AGE -0.042595333
```

Since my results suggested a ridge regression, none of my coefficients are actually shrunk to zero and that's expected. So, all of my predictors are included in the model.