1 Laboratoria 4, 5 i 6

Wczytaj do pakietu statystycznego dane ze zbioru 'regresja wielokrotna.xlsx'.

- 1. Dla każdej z $\binom{11}{2}$ par utworzonych ze zmiennych Y, X_1, \ldots, X_{10} wykonaj wykres rozrzutu* i po przeanalizowaniu tych rysunków odpowiedz na następujące pytania:
 - (a) Które ze zmiennych objaśniających X_1, \ldots, X_{10} mogą mieć najmocniejszy liniowy wpływ na zmienną objaśnianą Y?
 - (b) Czy pojawia się problem współliniowości, to znaczy, czy istnieje choć jedna para silnie ze sobą skorelowanych zmiennych objaśniających?
 - (c) Czy pojawiają się obserwacje odstające?
 - * to polecenie można wykonać za pomocą jednej komendy.
- 2. Wyznacz macierz korelacji próbkowych dla zmiennych Y, X_1, \ldots, X_{10} i po przeanalizowaniu tak otrzymanych współczynników ponownie odpowiedz na pytania (a) i (b) z poprzedniego punktu.
- 3. Skonstruuj model regresji liniowej opisujący zależność między zmienną Y a zmiennymi objaśniającymi X_1, \ldots, X_{10} .
 - (a) Wyznacz estymator najmniejszych kwadratów $\widehat{\boldsymbol{\beta}} = (\widehat{\beta}_0, \dots, \widehat{\beta}_{10})^T$.
 - (b) Czy którakolwiek ze zmiennych objaśniających z tego (pełnego) modelu ma liniowy wpływ na zmienną objaśnianą? Odpowiedź uzasadnij podając p-wartość testu F.
 - (c) Wyznacz współczynniki determinacji R^2 i $AdjR^2$.
- 4. Rozwiaż problem współliniowości.
 - (a) Spośród zmiennych objaśniających, dla których VIF przekracza 10 (lub równoważnie TOL:=1/VIF<0,1), wybierz tę z największą wartością VIF i usuń ją z modelu.
 - (b) Oblicz wskaźniki podbicia wariancji w modelu regresji zawierającym **pozostałe** zmienne objaśniające. Jeśli któryś z tych wskaźników jest większy od 10 wróć do poprzedniego punktu.
- 5. Zidentyfikuj i ewentualnie usuń z próby obserwacje, które mogą być wpływowe. W tym celu przeanalizuj
 - (a) wplywy (leverages) kolejnych obserwacji, czyli liczby h_{11}, \ldots, h_{nn} tworzące główną przekątna macierzy \boldsymbol{H} ,
 - (b) odległości Cooke'a D_1, \ldots, D_n ,
 - (c) studentyzowane rezydua r_1, \ldots, r_n ,
 - (d) $DFFITS_1, \ldots, DFFITS_n$.

By ułatwić identyfikację obserwacji wpływowych wykonaj wykres rozproszenia dla punktów $(1, D_1), (2, D_2), \ldots, (n, D_n)$, umieszczając na nim próg odcięcia (np. $y = \frac{4}{n-p}$).

- 6. Wykorzystując zmienne i obserwacje, które nie zostały usunięte, ponownie zbuduj model regresji liniowej opisujący zależność między zmienną Y a zmiennymi objaśniającymi.
 - (a) Wyznacz estymator najmniejszych kwadratów $\widehat{\beta}$.
 - (b) Czy którakolwiek ze zmiennych objaśniających z tego (pełnego) modelu ma liniowy wpływ na zmienną objaśnianą? Odpowiedź uzasadnij podając p-wartość testu F.
 - (c) Wyznacz współczynniki determinacji R^2 i $AdjR^2$. Czy po usunięciu niektórych zmiennych lub obserwacji polepszyło się dopasowanie modelu do danych?
- 7. Wykorzystaj **regresję krokową**, opcje forward i backward (w pakiecie Statistica opcje: metoda wprowadzania postępującego i metoda eliminacji wstecz) do wyboru podzbioru zmiennych objaśniających "najlepiej" opisującego liniowy wpływ zmiennych objaśniających na zmienną Y. Wykorzystaj także inne opcje regresji krokowej, dostępne w używanym przez Ciebie pakiecie (w Statistice opcje metoda krokowa postępująca i metoda krokowa wstecz). Oczywiście, przy tej analizie użyj zmodyfikowanych danych, powstałych po usunięciu niektórych zmiennych i niektórych obserwacji (punkty 4. i 5.).

Uwaga: W ten sposób można otrzymać różne modele, więc do dalszej analizy **wybierz jeden z nich** (za pomocą współczynnika C_p Mallowsa albo skorygowanego R^2) i nazwij go modelem M.

- (a) Wyznacz estymator najmniejszych kwadratów $\widehat{\beta}$ w modelu M.
- (b) Czy którakolwiek ze zmiennych objaśniających z modelu M ma liniowy wpływ na zmienną objaśnianą? Odpowiedź uzasadnij podając p-value (p-wartość) odpowiedniego testu.
- (c) Dla każdej ze zmiennych objaśniających, które znalazły się w modelu M, sprawdź, czy ma ona liniowy wpływ na zmienną objaśnianą, gdy w modelu uwzględnione zostały pozostałe zmienne. Podaj p-wartość odpowiedniego testu i sformułuj wniosek.
- (d) Wyznacz przedział ufności na poziomie ufności 0.95 dla współczynników regresji, odpowiadających zmiennym z modelu M.
- (e) Wyznacz współczynniki determinacji \mathbb{R}^2 i $Adj\mathbb{R}^2$ w modelu M.
- 8. Przeanalizuj zachowanie reszt w modelu M, by sprawdzić czy spełnione są założenia występujące w modelu regresji liniowej (tzn. czy błędy pochodzą z rozkładu normalnego, mają średnią zero i tę samą wariancję). W tym celu należy wykonaj
 - (a) wykresy kwantylowe dla reszt,
 - (b) wykresy reszt względem każdej ze zmiennych objaśniających,
 - (c) wykresy reszt względem wartości przewidywanych przez model,
- 9. Wyznacz przewidywaną przez model M wartość zmiennej objaśnianej Y, gdy zmienne objaśniające X_1, X_2, \ldots, X_{10} mają wartość $1, 2, \ldots, 10$.

Zadania teoretyczne:

1. Udowodnij, że $P := I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T$ jest macierzą symetryczną, taką że $P^2 = P$. Dla ustalonego wektora $\mathbf{y} \in \mathbb{R}^n$ wyznacz wektor $P\mathbf{y}$.

Uwaga. $\mathbf{1}_n \in \mathbb{R}^n$ oznacza wektor złożony z samych jedynek, a \mathbf{I}_n to macierz jednostkowa stopnia n.

2. Załóżmy, że w modelu regresji liniowej

$$Y = X\beta + \varepsilon$$
, $\mathbb{E}(\varepsilon) = 0$, $Cov(\varepsilon) = \sigma^2 I$

macierz eksperymentu X jest rzędu pełnego. Dla każdego wektora $l \in \mathbb{R}^p$ znajdź wektor $a \in \mathbb{R}^n$, taki że

$$\mathbb{E}(\boldsymbol{a}^T\boldsymbol{Y}) = \boldsymbol{l}^T\boldsymbol{\beta}$$
 dla wszystkich $\boldsymbol{\beta} \in \mathbb{R}^p$. (*)

Czy istotne jest założenie, że \boldsymbol{X} jest macierzą rzędu pełnego? Jeśli tak, to podaj przykład macierzy \boldsymbol{X} i wektora \boldsymbol{l} , dla których (*) nie zachodzi.

Uwaga. Dla macierzy X wymiaru $n \times p$, z $n \geq p$, określenie macierz rzędu pełnego oznacza, że rząd(X) = p (kolumny X są liniowo niezależne). Wówczas $(X^TX)^{-1}$ istnieje, ale X jest odwracalna wtedy i tylko wtedy, gdy n = p.

3. Podaj postać każdej z macierzy X, X^TX i H dla modelu regresji liniowej z jedną zmienną objaśniającą i z danymi $(x_1, y_1), \ldots, (x_n, y_n)$.