重庆大学

学生实验报告

实	验课	程	名称	数据结构与算法							
开ì	课实	:验:	室	DS1501							
学			院	<u>软件学院</u>	年级	202	<u>1_</u> 专	业班 <u> </u>	次件	<u>X</u> 班	
学	生	姓	名	XXX		<u>.</u> 学	号_	20212	XXX	XX	
开	课	时	间	2022	至_	202	<u>3</u> 当	全年第_	1	_学期	

总 成 绩	
教师签名	XXX

《数据结构与算法》实验报告

开课实验室: DS1501

2022年10月27日

学院	软件学院	年级、	专业、	班	2021 级软件工	姓名	XXX		成约	绩
					程X班					
课程	₩ H2 /士 H2 I Ø	ケン 上	实验项目 2022-2023 学年第一学期数		北巴地	击	VVV			
名称	数据结构与身	数据结构与算法 名 称 据结构与算法上机练习 00		03	指导教师		XXX			
教										
师										
评								券	加重為	签名:
语								4	マクロコ	
										年 月 日

一、实验目的

- 请自行复习,并尝试编码和掌握教材第7章内排序的三种 N2 算法,具体实现插入排序(必选)、冒泡排序和选择排序(二者选一),以及实现希尔排序 Shellsort(必选)。
- 在实验报告中附上以上规定所选算法的关键代码,并具体分析相应算法的运行时间代价, 按时提交实验报告。

二、使用仪器、材料

PC 微机;

Windows 操作系统, VS2022 编译环境;

三、实验步骤

- 1、实现插入排序(必选)、冒泡排序和选择排序(二者选一),以及实现希尔排序 Shellsort(必选);
- 2、具体分析相应算法的运行时间代价,完成实验报告并提交。

四、实验过程原始记录(数据、图表、计算等)

实现插入排序(必选)、冒泡排序和选择排序(二者选一),以及实现希尔排序 Shellsort (必选);

- (1) 插入排序
- ①关键代码:

```
void Insertion_sort(int n, int list[]) {
    int times = 0;
    cout << "插入排序前数组为: " << end1;
    for (int i = 0; i < n; i++) {
    cout << 1ist[i] << " ":
    cout << end1;
    for (int i = 1; i < n; i++) {
        for (int j = i; j > 0; j--) {
           if (list[j] < list[j - 1])
               swap(list[j], list[j-1]);
               times++:
    cout << "插入排序后数组为: " << end1;
    for (int i = 0; i < n; i++) {
      cout << list[i] << " ";
    cout << end1;
    cout << "交换次数为: " << times << end1;
```

②验证程序:

```
int main() {
    int n;
    int *list;
    list = new int();
    cout << "请输入数组长度: " << end1;
    cin >> n;
    cout << "请输入数组元素: " << end1;
    for (int i = 0; i < n; i++) {
        cin >> list[i];
    }
    Insertion_sort(n, list);
}
```

③结果:

```
Microsoft Visual Studio 调试控制台
请输入数组长度:
7
请输入数组元素:
20 22 11 3 7 12 4
插入排序前数组为:
20 22 11 3 7 12 4
插入排序后数组为:
3 4 7 11 12 20 22
交换次数为:15
```

④时间复杂度分析:

最好的情况下,即数组本身就是有序的,则只需要进行 n-1 次比较,由于每次都是 arr[i] >= arr[i+1],无需移动,时间复杂度为 O(n).

最坏的情况下,是排序表逆序,需要比较 [(n+2)(n-1)/2]次,移动[(n+4)(n-1)/2]次。 如果排序记录是随机的,根据元素完全随机分布的原则,平均比较和移动的次数约为 $(n^2/4)$ 次。

综上所述,插入排序算法的时间复杂度为 0(n^2)。

(2) 冒泡排序

①关键代码:

```
gvoid Bubble_sort(int *list, int n) {
    for (int i = 0; i < n - 1; ++i)
        {
        for (int j = 0; j < n - 1 - i; j++)
        {
            if (list[j]>list[j + 1])
            {
                 swap(list[j], list[j + 1]);
            }
        }
    }
}
```

②验证程序:

```
int main()
{
    int n;
    int *list;
    list = new int();
    cout << "请输入数组长度: " << endl;
    cin >> n;
    cout << "请输入数组元素: " << endl;
    Input(list, n);
    cout << "冒泡排序前数组为: " << endl;
    Output(list, n);
    cout << endl;
    Bubble_sort(list, n);
    cout << "冒泡排序后数组为: " << endl;
    Output(list, n);
    return 0;
```

③结果:

```
Microsoft Visual Studio i
请输入数组长度:
7
请输入数组元素:
32 12 56 7 13 9 3
冒泡排序前数组为:
32 12 56 7 13 9 3
冒泡排序后数组为:
3 7 9 12 13 32 56
```

④时间复杂度分析:

最好的情况下, 初始状态有序度是 n*(n-1)/2, 无需进行交换;

最坏的情况下, 初始状态有序度是 0, 需要进行 n*(n-1)/2 次交换;

平均情况下,根据元素完全随机分布的原则,可以认为需要 n*(n-1)/4 次交换操作,比较操作则比交换操作还要多。

综上所述,冒泡排序算法的时间复杂度是0(n^2)。

(3) 希尔排序

①关键代码:

②验证程序:

```
| int main() | {
| int n; | int *list; | list = new int(); | cout << "请输入数组长度: " << endl; | cin >> n; | cout << "请输入数组元素: " << endl; | Input(list, n); | cout << "希尔排序前数组为: " << endl; | Output(list, n); | cout << endl; | Shell_sort(list, n); | cout << "希尔排序后数组为: " << endl; | Output(list, n); | cout << "希尔排序后数组为: " << endl; | Output(list, n); | cout << "希尔排序后数组为: " << endl; | Output(list, n); | return 0; | }
```

③结果:

Microsoft Visual Studio 调试控制台 请输入数组长度: 7 请输入数组元素: 17 11 5 4 6 2 3 希尔排序前数组为: 17 11 5 4 6 2 3 希尔排序后数组为: 2 3 4 5 6 11 17

④时间复杂度分析:

希尔排序的时间复杂度是与选中的增量有关的;

综上所述,一般认为希尔排序的时间复杂度为 $0(n^21.5)$ (取序列为 $\{...,121,40,13,4,1\}$)。

五、实验结果及分析 结果都已对应显示在原始数据记录中,结果都与预期的分析符合。

L