Sketching String Similarity

Yuchong Zhang

University of Toronto

December 8, 2021

Outline

Problem Background

My Algorithm for Weighted Jaccard Similarity Estimation

Some other interesting algorithms

Outline

Problem Background

My Algorithm for Weighted Jaccard Similarity Estimation

Some other interesting algorithms

Why do we care?

► Applications: search engine, DNA sequencing, intrusion detection, plagiarism detection etc.

Similarity Measurement

▶ $S \in \Sigma^*$: string. k-mers of S: substrings of length k. e.g.: AATT, TTCC are 4-mers of AATTCCGG. AATTCCGG

Similarity Measurement

- ▶ $S \in \Sigma^*$: string. k-mers of S: substrings of length k. e.g.: AATT, TTCC are 4-mers of AATTCCGG. AATTCCGG
- ► Given 2 sets A, B, the Jaccard Index $J(A, B) = \frac{|A \cap B|}{|A \cup B|}$.

Similarity Measurement

- ▶ $S \in \Sigma^*$: string. k-mers of S: substrings of length k. e.g.: AATT, TTCC are 4-mers of AATTCCGG. AATTCCGG
- ► Given 2 sets A, B, the Jaccard Index $J(A, B) = \frac{|A \cap B|}{|A \cup B|}$.
- ▶ $J_k(S_1, S_2) :=$ Jaccard Index of k-mer sets.
- ▶ Recall: MinHash Sketching estimate $J_k(S_1, S_2)$.

By treating S_1, S_2 as sets of k-mers and use $J_k(S_1, S_2)$, we ignore:

- k-mer frequency.
- order in which k-mers appear.

Both factors can affect string similarity.

e.g.: consider:

Intuitively: S_1, S_2 should be pertty similar (1 character difference.)

e.g.: consider:

- ▶ Intuitively: S_1, S_2 should be pertty similar (1 character difference.)
- ▶ But $J_k(S_1, S_2) = \frac{1}{k+1} \le 0.5$.

Idea: even though the "1" in S_1 created k extra k-mers, they should not affect the similarity too much because each of them only appeared once.

Account for frequency!

Might want better measurement of similarity.

- Classical: editing distance.
- ▶ We will use a simpler method that extends $J_k(S_1, S_2)$.

For k-mer σ and string S, define $N_k(\sigma, S) :=$ number of times σ appears in S (0 if not present).

- For k-mer σ and string S, define $N_k(\sigma, S) :=$ number of times σ appears in S (0 if not present).
- ▶ The Weighted Jaccard Similarity between strings S_1, S_2 is defined as

$$J_k^w(S_1, S_2) := \frac{\sum_{\sigma} \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\sigma} \max\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}$$

- For k-mer σ and string S, define $N_k(\sigma, S) :=$ number of times σ appears in S (0 if not present).
- ▶ The Weighted Jaccard Similarity between strings S_1, S_2 is defined as

$$J_k^w(S_1, S_2) := \frac{\sum_{\sigma} \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\sigma} \max\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}$$

▶ If ATCG appears 10 times in S_1 and 4 times in S_2 , treat the first 4 occurrences as "the same".

$$J_k^w(S_1, S_2) := \frac{\sum_{\sigma} \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\sigma} \max\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}$$

$$J_k^w(S_1, S_2) := \frac{\sum_{\sigma} \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\sigma} \max\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}$$

e.g.:

 $S_1 = AAAAAAT$

 $S_2 = AAAAAT$

The 4-mers are $\sigma = AAAA$ and $\tau = AAAT$.

$$N_4(\sigma, S_1) = 3, N_4(\sigma, S_2) = 2, N_4(\tau, S_1) = N_4(\tau, S_2) = 1$$

So

$$J_4^w(S_1, S_2) = \frac{2+1}{3+1} = \frac{3}{4} = 0.75$$

In comparison, $J_4(S_1,S_2)=1$. So the Weighted Jaccard Similarity picks up the difference that S_1 has 1 additional A compared to S_2 .

 $J_k^w(S_1, S_2)$ extends $J_k(S_1, S_2)$?

Append to each k-mer σ at certain position its occurrence number i: i =the number of times σ appears in S so far.

 $J_k^w(S_1, S_2)$ extends $J_k(S_1, S_2)$?

- Append to each k-mer σ at certain position its occurrence number i: i = the number of times σ appears in S so far.
- \blacktriangleright (σ, i) : an indexed k-mer of σ .

e.g.: in string ATCGCCCCATCGTTTTATCG, (ATCG, 1), (ATCG, 2), (ATCG, 3) are all the indexed 4-mers of ATCG

 $J_k^w(S_1, S_2)$ extends $J_k(S_1, S_2)$?

- Append to each k-mer σ at certain position its occurrence number i: i =the number of times σ appears in S so far.
- \blacktriangleright (σ, i) : an indexed k-mer of σ .

e.g.: in string ATCGCCCCATCGTTTTATCG, (ATCG, 1), (ATCG, 2), (ATCG, 3) are all the indexed 4-mers of ATCG

If we let $T_k(S)$ denote the set of indexed k-mers of S, then

$$J_k^w(S_1, S_2) = J(T_k(S_1), T_k(S_2)) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$$

$$\begin{split} J_k^w(S_1,S_2) &= J(T_k(S_1),T_k(S_2)) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|} \\ \text{e.g.:} \quad S_1 = &\mathsf{AAAAAA} \\ S_2 = &\mathsf{AAAA} \\ \\ T_4(S_1) &= \{(\mathsf{AAAA},1),\,(\mathsf{AAAA},2),\,(\mathsf{AAAA},3)\} \\ T_4(S_2) &= \{(\mathsf{AAAA},1)\}. \end{split}$$

$$\begin{split} J_k^w(S_1,S_2) &= J(T_k(S_1),T_k(S_2)) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|} \\ \text{e.g.:} \quad S_1 = & \text{AAAAAA} \\ S_2 = & \text{AAAA} \end{split}$$

$$T_4(S_1) &= \{(\text{AAAA},1), (\text{AAAA},2), (\text{AAAA},3)\} \\ T_4(S_2) &= \{(\text{AAAA},1)\}. \\ J_4^w(S_1,S_2) &= \frac{1}{3} = \frac{|\{(AAAA,1)\}|}{|\{(AAAA,1), (AAAA,2), (AAAA,3)\}|}. \end{split}$$

Compute Weighted Jaccard Similarity

Although
$$J_k^w(S_1, S_2) = J(T_k(S_1), T_k(S_2))$$
:

- can't simply run MinHash to compute J_k^w if we don't know $T_k(S_1), T_k(S_2)$.
- ▶ Brute force: store all their k-mer frequencies and compute $J_k^w(S_1, S_2)$ exactly.
- ► Low memory?

Outline

Problem Background

My Algorithm for Weighted Jaccard Similarity Estimation

Some other interesting algorithms

MinHash: construct an event (collision of minimum hash values in S_1, S_2) whose probability is $J_k(S_1, S_2)$, the quantity MinHash tries to estimate.

MinHash: construct an event (collision of minimum hash values in S_1, S_2) whose probability is $J_k(S_1, S_2)$, the quantity MinHash tries to estimate.

I wanted to follow the same idea. The goal is to estimate

$$J_k^w(S_1, S_2) = \frac{\sum_{\sigma} \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\sigma} \max\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}} = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$$

Want: event with prob $\frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$.

Want: event with prob $\frac{|T_k(S_1)\cap T_k(S_2)|}{|T_k(S_1)\cup T_k(S_2)|}.$

Want: event with prob $\frac{|T_k(S_1)\cap T_k(S_2)|}{|T_k(S_1)\cup T_k(S_2)|}.$

Candidate: random sample from $T_k(S_1) \cup T_k(S_2)$ falls in $T_k(S_1) \cap T_k(S_2)$.

Want: event with prob $\frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$.

Candidate: random sample from $T_k(S_1) \cup T_k(S_2)$ falls in $T_k(S_1) \cap T_k(S_2)$.

Sample (σ,i) is in $T_k(S_1)\cap T_k(S_2)\iff i\le \min\{N_k(\sigma,S_1),N_k(\sigma,S_2)\}$, the smaller frequency.

Problem: don't know $T_k(S_1), T_k(S_2)$ a priori

Problem: don't know $T_k(S_1), T_k(S_2)$ a priori

We need:

$$S_1 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

Problem: don't know $T_k(S_1), T_k(S_2)$ a priori

We need:

$$S_1 = \dots (\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots (\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

i.e., need to "match" first l copies and treat them as same in sample space.

Problem: don't know $T_k(S_1), T_k(S_2)$ a priori

We need:

$$S_1 = \dots (\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots (\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

i.e., need to "match" first l copies and treat them as same in sample space.

Reality:

$$S_1 = \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

$$S_2 = \dots \sigma \dots \sigma \dots \sigma \dots$$

Problem: don't know $T_k(S_1), T_k(S_2)$ a priori

We need:

$$S_1 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

i.e., need to "match" first l copies and treat them as same in sample space.

Reality:

$$S_1 = \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

$$S_2 = \dots \sigma \dots \sigma \dots \sigma \dots$$

All σ 's are made distinct by their positions in strings.

Reality:

$$S_1 = \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

 $S_2 = \dots \sigma \dots \sigma \dots \sigma \dots$

All σ 's are made distinct by their positions in strings.

Available sample space: all copies of k-mers treated distinct. size = $\sum_{\tau} N_k(\tau,S_1) + N_k(\tau,S_2)$ vs

hope:
$$T_k(S_1) \cup T_k(S_2)$$
, size $= \sum_{\tau} \max\{N_k(\tau, S_1), N_k(\tau, S_2)\}.$

Reality:

$$S_1 = \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

 $S_2 = \dots \sigma \dots \sigma \dots \sigma \dots$

All σ 's are made distinct by their positions in strings.

Available sample space: all copies of k-mers treated distinct. size = $\sum_{\tau} N_k(\tau,S_1) + N_k(\tau,S_2) \text{ vs}$ hope: $T_k(S_1) \cup T_k(S_2)$, size = $\sum \max\{N_k(\tau,S_1),N_k(\tau,S_2)\}$.

But:

▶ if we know position of a σ , then can compute its occurrence number m in string. So can still check if $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.

Intuition

Reality:

$$S_1 = \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

 $S_2 = \dots \sigma \dots \sigma \dots \sigma \dots$

All σ 's are made distinct by their positions in strings.

Available sample space: all copies of k-mers treated distinct. size = $\sum_{\tau} N_k(\tau,S_1) + N_k(\tau,S_2) \text{ vs}$ hope: $T_k(S_1) \cup T_k(S_2)$, size = $\sum \max\{N_k(\tau,S_1),N_k(\tau,S_2)\}$.

But:

- ▶ if we know position of a σ , then can compute its occurrence number m in string. So can still check if $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.
- ► Know exactly how much larger available sample space vs hope.

Intuition

Reality:

$$S_1 = \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

 $S_2 = \dots \sigma \dots \sigma \dots \sigma \dots$

All σ 's are made distinct by their positions in strings.

Available sample space: all copies of k-mers treated distinct. size = $\sum_{\tau} N_k(\tau,S_1) + N_k(\tau,S_2) \text{ vs}$ hope: $T_k(S_1) \cup T_k(S_2)$, size = $\sum \max\{N_k(\tau,S_1),N_k(\tau,S_2)\}$.

But:

- ▶ if we know position of a σ , then can compute its occurrence number m in string. So can still check if $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.
- ► Know exactly how much larger available sample space vs hope.
- Maybe: can sample from larger space. Compensate later.

- ► Treat all k-mer copies as distinct by positions.
- ▶ Sample k-mer σ at a random position anyway.

- Treat all k-mer copies as distinct by positions.
- ▶ Sample k-mer σ at a random position anyway.
- lacktriangle Compute the occurrence number m

- ► Treat all k-mer copies as distinct by positions.
- ▶ Sample k-mer σ at a random position anyway.
- ► Compute the occurrence number *m*
- ▶ What is $\mathbb{P}[(\sigma, m) \text{ is in } T_k(S_1) \cap T_k(S_2)]$?

- Treat all k-mer copies as distinct by positions.
- ▶ Sample k-mer σ at a random position anyway.
- Compute the occurrence number m
- ▶ What is $\mathbb{P}[(\sigma, m) \text{ is in } T_k(S_1) \cap T_k(S_2)]$?

Does
$$\mathbb{P} = J_k^w(S_1, S_2) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$$
?

- Treat all k-mer copies as distinct by positions.
- Sample k-mer σ at a random position anyway.
- Compute the occurrence number m
- ▶ What is $\mathbb{P}[(\sigma, m) \text{ is in } T_k(S_1) \cap T_k(S_2)]$?

Does
$$\mathbb{P} = J_k^w(S_1, S_2) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$$
?

▶ Probably not... True sample space is not $T_k(S_1) \cup T_k(S_2)$.

- Treat all k-mer copies as distinct by positions.
- Sample k-mer σ at a random position anyway.
- Compute the occurrence number m
- ▶ What is $\mathbb{P}[(\sigma, m) \text{ is in } T_k(S_1) \cap T_k(S_2)]$?

Does
$$\mathbb{P} = J_k^w(S_1, S_2) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$$
?

- ▶ Probably not... True sample space is not $T_k(S_1) \cup T_k(S_2)$.
- But we know how much larger True sample space is.
- ▶ Can we use this to transform \mathbb{P} to $J_k^w(S_1, S_2)$?

- Treat all k-mer copies as distinct by positions.
- Sample k-mer σ at a random position anyway.
- Compute the occurrence number m
- ▶ What is $\mathbb{P}[(\sigma, m) \text{ is in } T_k(S_1) \cap T_k(S_2)]$?

Does
$$\mathbb{P} = J_k^w(S_1, S_2) = \frac{|T_k(S_1) \cap T_k(S_2)|}{|T_k(S_1) \cup T_k(S_2)|}$$
?

- ▶ Probably not... True sample space is not $T_k(S_1) \cup T_k(S_2)$.
- But we know how much larger True sample space is.
- ▶ Can we use this to transform \mathbb{P} to $J_k^w(S_1, S_2)$?

Turns out, \mathbb{P} can be transformed into $J_k^w(S_1, S_2)!$

 $f(S_1, S_2, k)$. Inputs: strings S_1, S_2 and integer k.

 $f(S_1, S_2, k)$. Inputs: strings S_1, S_2 and integer k.

1. Sample a position i uniformly at random from all possible positions in S_1, S_2 where a k-mer resides.

 $f(S_1, S_2, k)$. Inputs: strings S_1, S_2 and integer k.

- 1. Sample a position i uniformly at random from all possible positions in S_1, S_2 where a k-mer resides.
- 2. Let S := the string containing position i, S' := the other string. $\sigma :=$ the k-mer at position i in S. (σ and i is our sketch.)

 $f(S_1, S_2, k)$. Inputs: strings S_1, S_2 and integer k.

- 1. Sample a position i uniformly at random from all possible positions in S_1, S_2 where a k-mer resides.
- 2. Let S := the string containing position i, S' := the other string. $\sigma :=$ the k-mer at position i in S. (σ and i is our sketch.)
- 3. Pass through S, find $m \leftarrow$ number of occurrences of σ in S up to and including position i. (m = Occurrence number)

 $f(S_1, S_2, k)$. Inputs: strings S_1, S_2 and integer k.

- 1. Sample a position i uniformly at random from all possible positions in S_1, S_2 where a k-mer resides.
- 2. Let S := the string containing position i, S' := the other string. $\sigma :=$ the k-mer at position i in S. (σ and i is our sketch.)
- 3. Pass through S, find $m \leftarrow$ number of occurrences of σ in S up to and including position i. (m = Occurrence number)

Next: Check if
$$(\sigma, m) \in T_k(S) \cap T_k(S')$$

4. Pass through S', check if σ appears at least m times in S'. Return 1 if true, 0 otherwise.

Example:

k=4 $S_1 = \mathsf{AATTCCGGAATTCCGG}$ $S_2 = \mathsf{AATTCCGG}$

Example:

```
k = 4

S_1 = \mathsf{AATTCCGGAATTCCGG}

S_2 = \mathsf{AATTCCGG}
```

Suppose random sample i = position 1 in S_1 :

A A T T C C G G A A T T C C G G 0 1 2 3 ...

Example:

```
k = 4

S_1 = \mathsf{AATTCCGGAATTCCGG}

S_2 = \mathsf{AATTCCGG}
```

Suppose random sample i = position 1 in S_1 :

AATTCCGGAATTCCGG 0123...

sample: (ATTC, 1) in $T_4(S_1)$.

Example:

```
k = 4

S_1 = \mathsf{AATTCCGGAATTCCGG}

S_2 = \mathsf{AATTCCGG}
```

Suppose random sample i = position 1 in S_1 :

AATTCCGGAATTCCGG 0123...

sample: (ATTC, 1) in $T_4(S_1)$.

Clearly: (ATTC, 1) is also in $T_4(S_2)$. So $f(S_1, S_2, 4)$ returns 1.

• $f(S_1, S_2, k)$ is the indicator of the event that the random sample $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.

- ▶ $f(S_1, S_2, k)$ is the indicator of the event that the random sample $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.
- ▶ Because we didn't exactly sample (σ, m) from $T_k(S_1) \cup T_k(S_2)$, $p = \mathbb{P}[f = 1]$ probably won't be $J_k^w(S_1, S_2)$.

- ▶ $f(S_1, S_2, k)$ is the indicator of the event that the random sample $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.
- ▶ Because we didn't exactly sample (σ, m) from $T_k(S_1) \cup T_k(S_2)$, $p = \mathbb{P}[f = 1]$ probably won't be $J_k^w(S_1, S_2)$.
- ▶ But we hope we can transform p into $J_k^w(S_1, S_2)$ somehow.

- ▶ $f(S_1, S_2, k)$ is the indicator of the event that the random sample $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.
- ▶ Because we didn't exactly sample (σ, m) from $T_k(S_1) \cup T_k(S_2)$, $p = \mathbb{P}[f = 1]$ probably won't be $J_k^w(S_1, S_2)$.
- ▶ But we hope we can transform p into $J_k^w(S_1, S_2)$ somehow.

Analysis of p:

- ▶ $f(S_1, S_2, k)$ is the indicator of the event that the random sample $(\sigma, m) \in T_k(S_1) \cap T_k(S_2)$.
- ▶ Because we didn't exactly sample (σ, m) from $T_k(S_1) \cup T_k(S_2)$, $p = \mathbb{P}[f = 1]$ probably won't be $J_k^w(S_1, S_2)$.
- ▶ But we hope we can transform p into $J_k^w(S_1, S_2)$ somehow.

Analysis of p:

Let σ be any k-mer and suppose S_1, S_2 look like:

$$S_1 = \sigma \dots \sigma \dots \sigma \dots \sigma \dots \sigma \dots S_2 = \sigma \dots \sigma \dots \sigma \dots \sigma \dots$$

where σ and σ mark the last copy of σ in S_1, S_2 , respectively. Then by definition, σ is the $N_k(\sigma, S_2)$ th copy of σ in S_2 . Let σ be the $N_k(\sigma, S_2)$ th copy of σ in S_1 .

Sample = σ and f returns 1 happens in this region:

$$S_1 = [\sigma \dots \sigma \dots \sigma \dots \sigma'] \dots \sigma'$$

$$S_2 = [\sigma \dots \sigma \dots \sigma \dots \sigma'] \dots$$

Sample = σ and f returns 1 happens in this region:

$$S_1 = [\sigma \dots \sigma \dots \sigma \dots \sigma] \dots \sigma$$

$$S_2 = [\sigma \dots \sigma \dots \sigma \dots \sigma] \dots$$

The circled region above contains

$$2 \cdot N_k(\sigma, S_2) = 2 \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}$$
 copies of σ .

Sample = σ and f returns 1 happens in this region:

$$S_1 = [\sigma \dots \sigma \dots \sigma \dots \sigma'] \dots \sigma \dots S_2 = [\sigma \dots \sigma \dots \sigma \dots \sigma'] \dots$$

The circled region above contains

$$2 \cdot N_k(\sigma, S_2) = 2 \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}$$
 copies of $\sigma.$

There are in total $\sum_{\tau} N_k(\tau,S_1) + N_k(\tau,S_2)$ elements in the sample space (the total number of k-mer copies).

Explained

Sample = σ and f returns 1 happens in this region:

$$S_1 = [\sigma \dots \sigma \dots \sigma \dots \sigma] \dots \sigma$$

$$S_2 = [\sigma \dots \sigma \dots \sigma \dots \sigma] \dots$$

The circled region above contains

$$2 \cdot N_k(\sigma, S_2) = 2 \min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}$$
 copies of $\sigma.$

There are in total $\sum N_k(au,S_1)+N_k(au,S_2)$ elements in the sample space (the total number of k-mer copies). Because of uniform sampling:

$$\mathbb{P}[f \text{ returns 1 and sample is } \sigma] = \frac{2\min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)}$$

$$\mathbb{P}[f \text{ returns 1 and sample is } \sigma] = \frac{2\min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)}$$

$$\mathbb{P}[f \text{ returns 1 and sample is } \sigma] = \frac{2\min\{N_k(\sigma, S_1), N_k(\sigma, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)}$$

Thus:

$$p = \mathbb{P}[f \text{ returns 1}] = \frac{2\sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)}$$

$$\mathbb{P}[f \text{ returns 1 and sample is } \sigma] = \frac{2\min\{N_k(\sigma,S_1),N_k(\sigma,S_2)\}}{\sum_{\tau}N_k(\tau,S_1)+N_k(\tau,S_2)}$$

Thus:

$$p = \mathbb{P}[f \text{ returns 1}] = \frac{2\sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)}$$

This is not quite what we want:

$$J_k^w(S_1, S_2) = \frac{\sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} \max\{N_k(\tau, S_1), N_k(\tau, S_2)\}}$$

But, we can write:

$$\begin{split} p &= \frac{2 \sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)} \\ &= \frac{2 \sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\} + \max\{N_k(\tau, S_1), N_k(\tau, S_2)\}} \end{split}$$

But, we can write:

$$\begin{split} p &= \frac{2 \sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} N_k(\tau, S_1) + N_k(\tau, S_2)} \\ &= \frac{2 \sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\} + \max\{N_k(\tau, S_1), N_k(\tau, S_2)\}} \end{split}$$

and solve:

$$\frac{p}{2-p} = \frac{\sum_{\tau} \min\{N_k(\tau, S_1), N_k(\tau, S_2)\}}{\sum_{\tau} \max\{N_k(\tau, S_1), N_k(\tau, S_2)\}}$$
$$= J_k^w(S_1, S_2)$$

To estimate $J_k^w(S_1, S_2, k)$, simply run $g(S_1, S_2, k)$:

- 1. Run R independent copies of $f(S_1,S_2,k)$. $\delta_j=$ return value of the jth copy.
- **2.** $\hat{p} = \frac{1}{R} \sum_{j=1}^{R} \delta_j$.
- 3. Output $\frac{\hat{p}}{2-\hat{p}}$ as the estimate of $J_k^w(S_1,S_2)$.

In step 1 and 2, $\hat{p}=\frac{1}{R}\sum_{j=1}^R \delta_j$ is simply an estimate of the true probability $p=\mathbb{P}[f \text{ returns 1}].$

Accuracy Analysis

Because:

$$\blacktriangleright \ \mathbb{E}[\hat{p}] = \frac{1}{R} \sum_{j=1}^{R} \mathbb{E}[\delta_j] = p$$

$$I_k^w(S_1, S_2) = \frac{p}{2-p}$$

Accuracy Analysis

Because:

$$\blacktriangleright \ \mathbb{E}[\hat{p}] = \frac{1}{R} \sum_{j=1}^{R} \mathbb{E}[\delta_j] = p$$

$$J_k^w(S_1, S_2) = \frac{p}{2 - p}$$

we can hope that $\frac{\hat{p}}{2-\hat{p}}$ will not be too far from $J_k^w(S_1,S_2)$ if \hat{p} is not too far from p.

Accuracy Analysis

Indeed:

$$|\frac{p}{2-p} - \frac{\hat{p}}{2-\hat{p}}| = \frac{2|p-\hat{p}|}{(2-p)(2-\hat{p})} \le 2|p-\hat{p}|$$

Accuracy Analysis

Indeed:

$$\left|\frac{p}{2-p} - \frac{\hat{p}}{2-\hat{p}}\right| = \frac{2|p-\hat{p}|}{(2-p)(2-\hat{p})} \le 2|p-\hat{p}|$$

So if \hat{p} is within ϵ of p, then $\frac{\hat{p}}{2-\hat{p}}$ will be within 2ϵ of $J_k^w(S_1,S_2)$.

Accuracy Analysis

Indeed:

$$\left|\frac{p}{2-p} - \frac{\hat{p}}{2-\hat{p}}\right| = \frac{2|p-\hat{p}|}{(2-p)(2-\hat{p})} \le 2|p-\hat{p}|$$

So if \hat{p} is within ϵ of p, then $\frac{\hat{p}}{2-\hat{p}}$ will be within 2ϵ of $J_k^w(S_1,S_2)$.

Can apply Chebyshev's inequality to obtain:

$$\mathbb{P}[|\hat{p} - p| \ge \epsilon] \le \frac{p - p^2}{R\epsilon^2}$$

Accuracy Analysis

Indeed:

$$|\frac{p}{2-p} - \frac{\hat{p}}{2-\hat{p}}| = \frac{2|p-\hat{p}|}{(2-p)(2-\hat{p})} \le 2|p-\hat{p}|$$

So if \hat{p} is within ϵ of p, then $\frac{\hat{p}}{2-\hat{p}}$ will be within 2ϵ of $J_k^w(S_1,S_2)$.

Can apply Chebyshev's inequality to obtain:

$$\mathbb{P}[|\hat{p} - p| \ge \epsilon] \le \frac{p - p^2}{R\epsilon^2}$$

Simulation: if f is repeated 100 times, then with 0.9 probability, $\frac{\hat{p}}{2-\hat{p}}$ will be within 5 percent of $J_k^w(S_1,S_2)$.

runtime(g) = $O(R \cdot \text{runtime}(f))$ (run f R times)

- runtime(g) = $O(R \cdot \text{runtime}(f))$ (run f R times)
- runtime(f) = O(time for sampling + $|S_1| + |S_2|$) (only need 1 pass after sampling)

- runtime(g) = $O(R \cdot \text{runtime}(f))$ (run f R times)
- runtime(f) = O(time for sampling + $|S_1| + |S_2|$) (only need 1 pass after sampling)
- ▶ Sample a random position: random integer in certain range (need to know $|S_1|, |S_2|$) \implies O(1) time and space.

- runtime(g) = $O(R \cdot \text{runtime}(f))$ (run f R times)
- runtime(f) = O(time for sampling + $|S_1| + |S_2|$) (only need 1 pass after sampling)
- Sample a random position: random integer in certain range (need to know $|S_1|, |S_2|$) $\implies O(1)$ time and space.
- ► Thus: $runtime(f) = O(|S_1| + |S_2|)$, $runtime(g) = O(R(|S_1| + |S_2|))$.

- runtime(g) = $O(R \cdot \text{runtime}(f))$ (run f R times)
- runtime(f) = O(time for sampling + $|S_1| + |S_2|$) (only need 1 pass after sampling)
- Sample a random position: random integer in certain range (need to know $|S_1|, |S_2|$) $\Longrightarrow O(1)$ time and space.
- ► Thus: runtime(f) = $O(|S_1| + |S_2|)$, runtime(g) = $O(R(|S_1| + |S_2|))$.
- f only need O(k) space to store k-mer sample and another k-mer in stream.

In the previous analysis, we assumed:

ightharpoonup Can access k-mer at any position in O(1) time.

In the previous analysis, we assumed:

- ▶ Can access k-mer at any position in O(1) time.
- i.e., assumed input strings are stored in something like RAM.

In the previous analysis, we assumed:

- ▶ Can access k-mer at any position in O(1) time.
- i.e., assumed input strings are stored in something like RAM.

What if strings are sent piece by piece from some source?

In the previous analysis, we assumed:

- ▶ Can access k-mer at any position in O(1) time.
- i.e., assumed input strings are stored in something like RAM.

What if strings are sent piece by piece from some source?

WLOG, assume each piece is a k-mer.

In the previous analysis, we assumed:

- ▶ Can access k-mer at any position in O(1) time.
- i.e., assumed input strings are stored in something like RAM.

What if strings are sent piece by piece from some source?

WLOG, assume each piece is a k-mer.

Need: random sample from an incoming stream without knowing how many items there are.

In the previous analysis, we assumed:

- ▶ Can access k-mer at any position in O(1) time.
- i.e., assumed input strings are stored in something like RAM.

What if strings are sent piece by piece from some source?

WLOG, assume each piece is a k-mer.

Need: random sample from an incoming stream without knowing how many items there are.

Reservoir Sampling to the rescue.

Reservoir Sampling: sample without replacement l items from a stream (unknown length = n).

▶ We only need to sample 1 item with prob 1/n.

$$\mathbb{P}[\text{select item } t] = \frac{1}{t} \cdot \frac{t}{t+1} \cdot \frac{t+1}{t+2} \cdot \cdot \cdot \frac{n-1}{n} = \frac{1}{n}$$

Thus, under the incoming stream model, can modify f to be:

1. Use Reservoir Sampling to sample a k-mer σ (and its position) uniformly at random.

- 1. Use Reservoir Sampling to sample a k-mer σ (and its position) uniformly at random.
- 2. Restart the stream again. Count the occurrence number m of σ in the string from which it is sampled.

- 1. Use Reservoir Sampling to sample a k-mer σ (and its position) uniformly at random.
- 2. Restart the stream again. Count the occurrence number m of σ in the string from which it is sampled.
- 3. Count whether the other string contains at least m copies of σ , and return 0 or 1 accordingly.

- 1. Use Reservoir Sampling to sample a k-mer σ (and its position) uniformly at random.
- 2. Restart the stream again. Count the occurrence number m of σ in the string from which it is sampled.
- 3. Count whether the other string contains at least m copies of σ , and return 0 or 1 accordingly.
- ▶ f still has runs in $O(|S_1| + |S_2|)$ time and takes O(k) space.

- 1. Use Reservoir Sampling to sample a k-mer σ (and its position) uniformly at random.
- 2. Restart the stream again. Count the occurrence number m of σ in the string from which it is sampled.
- 3. Count whether the other string contains at least m copies of σ , and return 0 or 1 accordingly.
- ▶ f still has runs in $O(|S_1| + |S_2|)$ time and takes O(k) space.
- Need 2 passes in total. Can we do it in one pass? (suspect: no)

Outline

Problem Background

My Algorithm for Weighted Jaccard Similarity Estimation

Some other interesting algorithms

Assume access to $T_k(S_1), T_k(S_2)$. (all k-mers are labeled with their occurrence numbers).

Assume access to $T_k(S_1), T_k(S_2)$. (all k-mers are labeled with their occurrence numbers).

i.e., assume:

$$S_1 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

Assume access to $T_k(S_1), T_k(S_2)$. (all k-mers are labeled with their occurrence numbers).

i.e., assume:

$$S_1 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

Estimate (Levenshtein) editing similarity:

$$Ed(S_1, S_2) = \frac{1 - \text{editing distance}}{\max\{|S_1|, |S_2|\}}$$

▶ Hash functions \mathcal{H} : permutations of $T_k(S_1) \cup T_k(S_2)$.

Assume access to $T_k(S_1), T_k(S_2)$. (all k-mers are labeled with their occurrence numbers).

i.e., assume:

$$S_1 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

Estimate (Levenshtein) editing similarity:

$$Ed(S_1, S_2) = \frac{1 - \text{editing distance}}{\max\{|S_1|, |S_2|\}}$$

- ▶ Hash functions \mathcal{H} : permutations of $T_k(S_1) \cup T_k(S_2)$.
- Sketch: list of l smallest elements in the order of appearance.

Assume access to $T_k(S_1), T_k(S_2)$. (all k-mers are labeled with their occurrence numbers).

i.e., assume:

$$S_1 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots (\sigma, m) \dots$$

$$S_2 = \dots(\sigma, 1) \dots (\sigma, 2) \dots (\sigma, l) \dots$$

Estimate (Levenshtein) editing similarity:

$$Ed(S_1, S_2) = \frac{1 - \text{editing distance}}{\max\{|S_1|, |S_2|\}}$$

- ▶ Hash functions \mathcal{H} : permutations of $T_k(S_1) \cup T_k(S_2)$.
- Sketch: list of l smallest elements in the order of appearance.
- Collison probability p satisfies:

$$s_1 \le Ed(S_1, S_2) \le s_2 \implies p_1(s_1) \le p \le p_2(s_2)$$

for some $p_1,p_2,s_1,s_2\in\mathbb{R}$. So by repeated experiments, can estimate p, thus $Ed(S_1,S_2)$.

- Editing distance is a very accurate measure.
- ▶ But need the stronger assumption about knowing $T_k(S_1), T_k(S_2)$.

Estimate number of distinct elements. (Set Cardinality)

- Estimate number of distinct elements. (Set Cardinality)
- Sketches for A,B can easily be combined to estimate $|A \cup B|$.

- Estimate number of distinct elements. (Set Cardinality)
- Sketches for A,B can easily be combined to estimate $|A \cup B|$.
- ▶ Inclusion-exclusion principle: $|A \cap B| = |A| + |B| |A \cup B|$.

- Estimate number of distinct elements. (Set Cardinality)
- Sketches for A,B can easily be combined to estimate $|A \cup B|$.
- ▶ Inclusion-exclusion principle: $|A \cap B| = |A| + |B| |A \cup B|$.
- Can estimate Jaccard index.

▶ Same way to obtain sketches: *m* register values.

- Same way to obtain sketches: m register values.
- Use a Poisson distribution to model the distribution of the registers.

- Same way to obtain sketches: m register values.
- Use a Poisson distribution to model the distribution of the registers.
- Turns out Poisson parameter is an unbiased estimator for cardinality.

- Same way to obtain sketches: m register values.
- Use a Poisson distribution to model the distribution of the registers.
- Turns out Poisson parameter is an unbiased estimator for cardinality.
- Ideas from probabilistic learning: Maximum Likelihood Estimation.

- Same way to obtain sketches: m register values.
- Use a Poisson distribution to model the distribution of the registers.
- Turns out Poisson parameter is an unbiased estimator for cardinality.
- Ideas from probabilistic learning: Maximum Likelihood Estimation.
- Basically: fit a distribution that is most likely to have produced the observed sketches.

- Same way to obtain sketches: m register values.
- Use a Poisson distribution to model the distribution of the registers.
- Turns out Poisson parameter is an unbiased estimator for cardinality.
- Ideas from probabilistic learning: Maximum Likelihood Estimation.
- Basically: fit a distribution that is most likely to have produced the observed sketches.

This is implemented by "Dashing" to produce fast and accurate genome distance estimations.

References

- [1] Locality-sensitive hashing for the edit distance. Marcais, 2019
- [2] New cardinality estimation algorithms for HyperLogLog sketches. Ertl, 2017
- [3] HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. Flajolet, 2007
- [4] Dashing: fast and accurate genomic distances with HyperLogLog. Baker & Langmead, 2019