Department of Computer Science and Engineering (Data Science)

Machine Learning - IV

Experiment 7

Name: Umang Kirit Lodaya SAP ID: 60009200032

Batch: D11

Aim:

The aim of this lab is to implement and comprehend the working principles of the Park-Chen-Yu (PCY) algorithm. PCY is a data mining algorithm designed to efficiently discover frequent itemsets in large datasets using a combination of hashing and counting techniques.

Theory:

Introduction to PCY Algorithm:

- The PCY algorithm, introduced by Park, Chen, and Yu, is a variant of the Apriori algorithm used for mining frequent itemsets in large databases.
- PCY employs a two-step process: first, it uses a hash function to count item pairs, and second, it filters the candidates based on their counts.
- The primary goal is to reduce the number of candidate itemsets that need to be examined, thereby improving efficiency.

Algorithm Overview:

• Step 1: Hashing and Counting Pairs

- Use a hash function to hash the pairs of items and maintain a hash table to count the occurrences of each pair.
- To efficiently use memory, the algorithm only counts pairs that hash to specific buckets (e.g., those whose hash value is a multiple of a certain number).

• Step 2: Candidate Generation and Counting

- Generate candidate itemsets from the frequent itemsets found in the first step.
- o Count the occurrences of these candidate itemsets in the dataset.

Step 3: Frequent Itemset Filtering

 Eliminate candidate itemsets that do not meet the minimum support threshold.

Step-by-Step Implementation:

Step 1: Counting Pairs Using Hashing

- o Implement a hash function for item pairs.
- Use a hash table to count the occurrences of hashed item pairs.

• Step 2: Candidate Generation and Counting

- Generate candidate itemsets from the frequent itemsets obtained in Step 1.
- o Count the occurrences of these candidate itemsets in the dataset.

• Step 3: Frequent Itemset Filtering

- o Apply a minimum support threshold to filter out infrequent itemsets.
- Output the final list of frequent itemsets.

Step 4: Parameter Tuning

 Experiment with different hash functions and threshold values to observe their impact on performance.

Implementation Tips:

- Optimize hash function selection for efficient pair counting.
- Adjust the threshold for determining frequent itemsets based on dataset characteristics.
- Monitor memory usage and adapt hash table size accordingly.

Lab Experiments to be Performed in This Session:

Execute the PCY algorithm on a transaction dataset to gain insights into its functionality and operation.

NAME: UMANG KIRIT LODAYA

SAP ID: 60009200032

BATCH: D11

PCY ALGORITHM

```
In [1]: import numpy as np
        import pandas as pd
        from random import randint
        from itertools import combinations
In [2]: MIN_SUPPORT = 2
In [3]: N = randint(5, 8)
In [4]: | data = {
              "TID": ['T' + str(i) for i in range(1, 7)],
              "ITEMS": [[1, 2, 3], [4, 5], [1, 4, 5], [1, 2, 4], [3,
        4, 5], [2, 4, 5]]
            "TID": ['T' + str(i) for i in range(N)],
            "ITEMS": [list(set(randint(1, N) for _ in range(randint(2,
        5)))) for _ in range(N)]
        data = pd.DataFrame(data)
        data
```

Out[4]:

	TID	ITEMS	
0	T0	[1, 2, 4, 5, 7]	
1	T1	[1, 2, 5, 6]	
2	T2	[8, 2]	
3	Т3	[8, 6]	
4	T4	[1, 4, 6, 7, 8]	
5	T5	[8, 3]	
6	Т6	[1, 6]	
7	T7	[8, 6]	

```
In [5]: | S_SUPPORT = {}
        for items in data['ITEMS']:
             for item in items:
                 S_SUPPORT[item] = S_SUPPORT.get(item, 0) + 1
        S_SUPPORT
Out[5]: {1: 4, 2: 3, 4: 2, 5: 2, 7: 2, 6: 5, 8: 5, 3: 1}
In [6]: | S_CANDIDATE = []
        for k, v in S_SUPPORT.items():
             if v ≥ MIN_SUPPORT:
                 S_CANDIDATE.append(k)
        S_CANDIDATE
Out[6]: [1, 2, 4, 5, 7, 6, 8]
In [7]: D_SUPPORT = {}
        for items in data['ITEMS']:
             for i, j in list(combinations(items, 2)):
                 key = f"{i},{j}"
                 if i in S_CANDIDATE and j in S_CANDIDATE:
                     D_SUPPORT[key] = D_SUPPORT.get(key, 0) + 1
                     D_SUPPORT[key] = 0
        D_SUPPORT
Out[7]: {'1,2': 2,
         '1,4': 2,
          '1,5': 2,
          '1,7': 2,
          '2,4': 1,
          '2,5': 2,
          '2,7': 1,
          '4,5': 1,
          '4,7': 2,
          '5,7': 1,
          '1,6': 3,
          '2,6': 1,
          '5,6': 1,
          '8,2': 1,
          '8,6': 2,
          '1,8': 1,
          '4,6': 1,
          '4,8': 1,
          '6,7': 1,
          '6,8': 1,
          '7,8': 1,
          '8,3': 0}
```

```
In [8]:
         D_CANDIDATE = []
          for k, v in D_SUPPORT.items():
              if v ≥ MIN_SUPPORT:
                  D_CANDIDATE.append(list(map(int, k.split(','))))
          D_CANDIDATE
 Out[8]: [[1, 2], [1, 4], [1, 5], [1, 7], [2, 5], [4, 7], [1, 6], [8,
 In [9]: def H(x, y):
              return (x * y) % 10
         BUCKET = \{\}
In [10]:
          for i, j in D_CANDIDATE:
              h = H(i, j)
              BUCKET[h] = BUCKET.get(h, []) + [f"{i},{j}"]
          BUCKET
Out[10]: {2: ['1,2'],
          4: ['1,4'],
          5: ['1,5'],
          7: ['1,7'],
          0: ['2,5'],
8: ['4,7', '8,6'],
          6: ['1,6']}
```

```
In [11]: TABLE = {
             'BIT': [],
             'BUCKET': [],
              'COUNT': [],
              'PAIR': [],
             'CANDIDATE': []
         }
         for bucket, pairs in BUCKET.items():
             TABLE['BIT'].append(1)
             TABLE['BUCKET'].append(bucket)
             count = 0
             temp = []
             for pair in pairs:
                 temp.append(pair.split(','))
                 count += D_SUPPORT[pair]
             TABLE['COUNT'].append(count)
             TABLE['PAIR'].append(temp)
             TABLE['CANDIDATE'].append(temp)
         TABLE = pd.DataFrame(TABLE)
         TABLE
```

Out[11]:

_		BIT	BUCKET	COUNT	PAIR	CANDIDATE
	0	1	2	2	[[1, 2]]	[[1, 2]]
	1	1	4	2	[[1, 4]]	[[1, 4]]
	2	1	5	2	[[1, 5]]	[[1, 5]]
	3	1	7	2	[[1, 7]]	[[1, 7]]
	4	1	0	2	[[2, 5]]	[[2, 5]]
	5	1	8	4	[[4, 7], [8, 6]]	[[4, 7], [8, 6]]
	6	1	6	3	[[1, 6]]	[[1, 6]]

```
In [12]: FINAL = []
for pairs in TABLE['CANDIDATE']:
    for pair in pairs:
        FINAL.append(pair)
```