Statistics for Data Science -1 Lecture 6.2: Probability- Events

Usha Mohan

Indian Institute of Technology Madras

1. Understand uncertainty and concept of a random experiment.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.
- 6. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.
- 6. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 7. Distinguish between independent and dependent events.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.
- 6. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 7. Distinguish between independent and dependent events.
- 8. Solve applications of probability.

Statistics for Data Science -1

Random Experiment, Sample Space, Events

Events

Definition

An event E is a collection of basic outcomes.

- ▶ That is, an event is a subset of the sample space.
- We say an event has occurred if the outcome is contained in the subset.

► Experiment: Guessing answers to a four option multiple choice question:

Experiment: Guessing answers to a four option multiple choice question:

Event: answer is A; $E = \{A\}$

- Experiment: Guessing answers to a four option multiple choice question:
 - Event: answer is A; $E = \{A\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Experiment: Guessing answers to a four option multiple choice question:

Event: answer is A; $E = \{A\}$

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Event: A finishes the race first

 $E = \{ABCDEF, ABCDFE, ABDCFE, \dots, AFEDBC\}$

Experiment: Guessing answers to a four option multiple choice question:

Event: answer is A; $E = \{A\}$

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Event: A finishes the race first

 $E = \{ABCDEF, ABCDFE, ABDCFE, \dots, AFEDBC\}$

Experiment: Tossing two coins and noting the outcomes

Experiment: Guessing answers to a four option multiple choice question:

Event: answer is A; $E = \{A\}$

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Event: A finishes the race first $E = \{ABCDEF, ABCDFE, ABDCFE, \dots, AFEDBC\}$

Experiment: Tossing two coins and noting the outcomes Event: head on the first toss $E = \{HH, HT\}$

- Experiment: Guessing answers to a four option multiple choice question:
 - Event: answer is A; $E = \{A\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Event: A finishes the race first $E = \{ABCDEF, ABCDFE, ABDCFE, \dots, AFEDBC\}$
- Experiment: Tossing two coins and noting the outcomes Event: head on the first toss $E = \{HH, HT\}$
- Experiment: Measuring the lifetime (in hours) of a bulb

- Experiment: Guessing answers to a four option multiple choice question:
 - Event: answer is A; $E = \{A\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Event: A finishes the race first $E = \{ABCDEF, ABCDFE, ABDCFE, \dots, AFEDBC\}$
- Experiment: Tossing two coins and noting the outcomes Event: head on the first toss $E = \{HH, HT\}$
- Experiment: Measuring the lifetime (in hours) of a bulb Event: life time is less than or equal to four hours $E = \{x : 0 < x < 4\}$

Union of events

▶ For any two events E and F, we define the new event $E \cup F$ called the union of events E and F, to consist of all outcomes that are in E or in F or in both E and F.

Union of events

- For any two events E and F, we define the new event $E \cup F$ called the union of events E and F, to consist of all outcomes that are in E or in F or in both E and F.
- ▶ That is, the event $E \cup F$ will occur if either E or F occurs.

► Experiment: Guessing answers to a four option multiple choice question:

Experiment: Guessing answers to a four option multiple choice question:

Event:

- ightharpoonup answer is A; $E_1 = \{A\}$
- ightharpoonup answer is B; $E_2 = \{B\}$
- ▶ answer is *A* or *B*; $E_3 = E_1 \cup E_2 = \{A, B\}$

Experiment: Guessing answers to a four option multiple choice question:

Event:

- ightharpoonup answer is A; $E_1 = \{A\}$
- ightharpoonup answer is B; $E_2 = \{B\}$
- ▶ answer is *A* or *B*; $E_3 = E_1 \cup E_2 = \{A, B\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Experiment: Guessing answers to a four option multiple choice question:

Event:

- ightharpoonup answer is A; $E_1 = \{A\}$
- ▶ answer is A or B; $E_3 = E_1 \cup E_2 = \{A, B\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F. Event:
 - ▶ A finishes the race first E₁ = {ABCDEF, ABCDFE, ABDCFE, ..., AFEDBC}
 - ► B comes second in the race E₂ = {ABCDEF, ABCDFE, ABDCFE, ..., CBADEF}
 - A comes first or B comes second.

$$E_1 \cup E_2 =$$

 $\{\mathsf{ABCDEF}, \mathsf{ABCDFE}, \mathsf{ABDCFE}, \dots, \mathsf{AFFDBC}, \mathsf{CBADEF}\}_{\mathsf{QQC}}\}_{\mathsf{QQC}}$

Experiment: Tossing two coins and noting the outcomes

- Experiment: Tossing two coins and noting the outcomes Event:
 - ▶ head on the first toss $E_1 = \{HH, HT\}$
 - ▶ head on second toss $E_2 = \{HH, TH\}$
 - ▶ head on first or second toss $E_1 \cup E_2 = \{HH, HT, TH\}$

Intersection of events

For any two events E and F, we define the new event $E \cap F$ called the intersection of events E and F, to consist of all outcomes that are in E and in F.

Intersection of events

- For any two events E and F, we define the new event $E \cap F$ called the intersection of events E and F, to consist of all outcomes that are in E and in F.
- ▶ That is, the event $E \cap F$ will occur if both E and F occurs.

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 Event:
 - ▶ A finishes the race first E₁ = {ABCDEF, ABCDFE, ABDCFE, ..., AFEDBC}
 - ▶ B comes second in the race $E_2 = \{ABCDEF, ABCDFE, ABDCFE, \dots, CBADEF\}$
 - ▶ A comes first and B comes second. $E_1 \cap E_2 = \{ ABCDEF, ABCDFE, ABDCFE, \dots, ABDCFE \}$

- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 Event:
 - ► A finishes the race first E₁ = {ABCDEF, ABCDFE, ABDCFE,..., AFEDBC}
 - ▶ B comes second in the race $E_2 = \{ABCDEF, ABCDFE, ABDCFE, \dots, CBADEF\}$
 - ▶ A comes first and B comes second. $E_1 \cap E_2 = \{ ABCDEF, ABCDFE, ABDCFE, \dots, ABDCFE \}$
- Experiment: Tossing two coins and noting the outcomes

Experiment: Order of finish in a race with six students-A, B, C, D, E, F. Event:

- A finishes the race first E₁ = {ABCDEF, ABCDFE, ABDCFE, ..., AFEDBC}
- ▶ B comes second in the race
 E₂ = {ABCDEF, ABCDFE, ABDCFE, ..., CBADEF}
- ▶ A comes first and B comes second. $E_1 \cap E_2 = \{ ABCDEF, ABCDFE, ABDCFE, ..., ABDCFE \}$
- Experiment: Tossing two coins and noting the outcomes Event:
 - ▶ head on the first toss $E_1 = \{HH, HT\}$
 - ▶ head on second toss $E_2 = \{HH, TH\}$
 - ▶ head on first and second toss $E_1 \cap E_2 = \{HH\}$

Random Experiment, Sample Space, Events

Null event and disjoint event

Definition

We call the event without any outcomes the null event, and designate it as $\boldsymbol{\Phi}$

Definition

If the intersection of E and F is the null event, then since E and F cannot simultaneously occur, we say that E and F are disjoint, or mutually exclusive.

Examples of null event

Experiment: Guessing answers to a four option multiple choice question:

Examples of null event

- Experiment: Guessing answers to a four option multiple choice question:
 - Event:
 - ightharpoonup answer is A; $E_1 = \{A\}$
 - ightharpoonup answer is B; $E_2 = \{B\}$
 - ightharpoonup answer is A and B; $E_3 = E_1 \cap E_2 = \Phi$
 - We say events E₁ and E₂ are mutually exclusive or disjoint. Occurrence of E_1 disallows occurrence of E_2 . In other words, if my A(B) is my guess, then B(A) cannot be my guess.

Complement of an event

Definition

The complement of E, denoted by E^c , consists of all outcomes in the sample space S that are not in E.

Complement of an event

Definition

The complement of E, denoted by E^c , consists of all outcomes in the sample space S that are not in E.

▶ That is, E^c will occur if and only if E does not occur.

Complement of an event

Definition

The complement of E, denoted by E^c , consists of all outcomes in the sample space S that are not in E.

- ▶ That is, E^c will occur if and only if E does not occur.
- lackbox The complement of the sample space is the null set, that is $S^c = \Phi$

Experiment: Toss a coin once and note the outcomes

- Experiment: Toss a coin once and note the outcomes
 - ▶ Sample space: $S = \{H, T\}$
 - Event E_1 : out come is head $E_1 = \{H\}$
 - ▶ Event E_2 : out come is tail $E_2 = \{T\}$
 - Event E_2 is complement of event E_1 . In other words, $E_2 = E_1^c$

- Experiment: Toss a coin once and note the outcomes
 - ► Sample space: $S = \{H, T\}$
 - Event E_1 : out come is head $E_1 = \{H\}$
 - ▶ Event E_2 : out come is tail $E_2 = \{T\}$
 - ▶ Event E_2 is complement of event E_1 . In other words, $E_2 = E_1^c$
- Experiment: Tossing two coins and noting the outcomes

- Experiment: Toss a coin once and note the outcomes
 - Sample space: $S = \{H, T\}$
 - Event E_1 : out come is head $E_1 = \{H\}$
 - ▶ Event E_2 : out come is tail $E_2 = \{T\}$
 - ▶ Event E_2 is complement of event E_1 . In other words, $E_2 = E_1^c$
- Experiment: Tossing two coins and noting the outcomes
 - ightharpoonup Sample space: $S = \{HH, HT, TH, TT\}$
 - ▶ Event: head on the first toss $E_1 = \{HH, HT\}$
 - $ightharpoonup E_1^c = \{TH, TT\};$

- Experiment: Toss a coin once and note the outcomes
 - ▶ Sample space: $S = \{H, T\}$
 - Event E_1 : out come is head $E_1 = \{H\}$
 - ▶ Event E_2 : out come is tail $E_2 = \{T\}$
 - ▶ Event E_2 is complement of event E_1 . In other words, $E_2 = E_1^c$
- Experiment: Tossing two coins and noting the outcomes
 - ▶ Sample space: $S = \{HH, HT, TH, TT\}$
 - ▶ Event: head on the first toss $E_1 = \{HH, HT\}$
 - $ightharpoonup E_1^c = \{TH, TT\}$; tail on first toss

Subsets

Definition

For any two events E and F, if all of the outcomes in E are also in F, then we say that E is contained in F, or E is a subset of F, and denote it as $E \subset F$

 Example: Experiment: Tossing two coins and noting the outcomes

Subsets

Definition

For any two events E and F, if all of the outcomes in E are also in F, then we say that E is contained in F, or E is a subset of F, and denote it as $E \subset F$

- Example: Experiment: Tossing two coins and noting the outcomes
 - ► Sample space: $S = \{HH, HT, TH, TT\}$
 - ▶ Event: head on the first toss $F = \{HH, HT\}$
 - ▶ Event: head in both the tosses $E = \{HH\}$
 - E ⊂ F

Section summary

- 1. Notion of events
- 2. Union, intersection, complement of events
- 3. Null event and mutually exclusive (disjoint) events