Even busier than usual: modelling excess congestion on the Strategic Road Network

Ayman Boustati, Alvaro Cabrejas Egea, Peter De Ford González, Laura Guzmán Rincón, Guillem Mosquera Doñate

University of Warwick

Friday 22nd June 2016

Project Summary

Processed Data: 10 TB obtained from Higways England.

► Studied Period: March-April-May 2016.

Studied Areas: Complete M6 and M11.

Outcome: 5 Proposed models + Null Model.

▶ Performance: Increased accuracy w.r.t. the original model.

Data Acquisition

Deviation from Profile Events

- ► The continuous exceedance (5 minutes or more) of the profile travel time by a certain threshold.
- Specified by a time series of the Deviation from Profile Intensities x_t:

$$x_t = c_t - p_t - \theta \tag{1}$$

- ▶ c_t and p_t are the current travel time and profile travel time respectively, and θ is the threshold.
- \triangleright θ was chosen to be 6.

Exploratory Data Analysis

Exploratory Data Analysis

Selection

- Discard any DPE that is shorter than 20 or longer than 360 minutes in duration.
- Only consider events where the maximum x_t is greater than or equal to 20 seconds.
- Smooth the observations using a low-pass filter.

Heuristic Algorithms

- Null Model
- Midpoint Prediction
- Dynamic Trapezium

Other Algorithms

- ► Linear Regression
- Weighted Multimodel

Linear Model - M11

Scoring

The Average Prediction Error at any percentile of the DPEs is defined as:

$$E_{p} = \frac{1}{N} \sum_{i=1}^{N} E_{p}^{(i)} \tag{2}$$

where $E_p^{(i)}$ is the percentage error at the p^{th} percentile of the duration of the i^{th} DPE. $E_p^{(i)}$ is calculated as follows:

$$E_{\rho}^{(i)} = 100 \frac{|y^{(i)} - \hat{y}_{\rho}^{(i)}|}{y^{(i)}}$$
 (3)

where $y^{(i)}$ is the true value of the duration of the i^{th} DPE and $\hat{y}_p^{(i)}$ is the predicted value at the p percentile of the i^{th} DPE.

Results - M6

Results - M11

Varying the Threshold - M6

Further Work

- ► Macroscopic Physical Models, e.g. Fluid Dynamics
- Microscopic Physical Models, e.g. IPS
- ► Machine Learning, e.g. Hidden Markov Models

Thank you!!!

Speed/Flow Trajectories

Speed/Flow Trajectories

Two trajectories u and v fixed to 100 points each using interpolation:

$$u: \{p_1^u, p_2^u, ..., p_i^u, ..., p_{100}^u\}$$
$$v: \{p_1^v, p_2^v, ..., p_i^v, ..., p_{100}^v\}$$

where a point p_i^{\bullet} is a coordinate (flow, speed) in the Speed vs. Flow graph. The distance metric developed is denoted by D:

$$D = \frac{1}{100} \sum_{i=1}^{100} ||p_i^u - p_i^v|| \tag{4}$$

Speed/Flow Trajectories

