CSE 433S:
Introduction to
Computer Security

Authenticated Encryption Asymmetric Crypto

Washington University in St. Louis

Slides contain content from Professor Dan Boneh at Stanford University

Knowledge Check

- What is MAC, name one property of MAC
- What is Hash function, name the most important function of hash
- What should there be two keys in MAC design
- What was the construction that allows hash function to handle very long messages
- If I have a message that I want to send to the bank, but I don't care who can read it, what can I do?

Recap: the story so far

Confidentiality: semantic security against a CPA

Encryption secure against eavesdropping only

Integrity:

- Existential unforgeability under a CPA
- CBC-MAC, HMAC
- Hash functions

This lecture: encryption secure against tampering

Ensuring both confidentiality and integrity

Sample tampering attacks

TCP/IP: (highly abstracted)

Sample tampering attacks

IPsec: (highly abstracted)

Reading someone else's data

Note: attacker obtains decryption of any ciphertext beginning with "dest=25"

Easy to do for CBC with rand. IV (only IV is changed)

CBC Mode

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

IV', dest = 25 data

Encryption is done with CBC with a random IV.

What should IV' be? $m[0] = D(k, c[0]) \oplus IV = "dest=80..."$

$$IV' = IV \oplus (...25...)$$

$$IV' = IV \oplus (...80...)$$

$$IV' = IV \oplus (...80...) \oplus (...25...)$$

It can't be done

The lesson

CPA security cannot guarantee secrecy under active attacks.

Only use one of two modes:

- If message needs integrity but no confidentiality:
 use a MAC
- If message needs both integrity and confidentiality:
 use authenticated encryption modes

Goals

An authenticated encryption system (E,D) is a cipher where

As usual: E: $K \times M \times N \rightarrow C$

but D: $K \times C \times N \longrightarrow M \cup \{\bot\}$

Security: the system must provide

ciphertext is rejected

- sem. security under a CPA attack, and
- ciphertext integrity:

attacker cannot create new ciphertexts that decrypt properly

Authenticated encryption

Def: cipher (E,D) provides <u>authenticated encryption</u> (AE) if it is

- (1) semantically secure under CPA, and
- (2) has ciphertext integrity

Bad example: CBC with rand. IV does not provide AE

 D(k,·) never outputs ⊥, hence adv. easily wins Cl game

Implication 1: authenticity

Attacker cannot fool Bob into thinking a message was sent from Alice

⇒ if D(k,c) ≠⊥ Bob knows message is from someone who knows k (but message could be a replay)

Implication 2

Authenticated encryption ⇒

Security against

chosen ciphertext attacks (CCA)

Example chosen ciphertext attacks

Adversary has ciphertext c that it wants to decrypt

Often, adv. can fool server into decrypting certain ciphertexts
 (not c)

Often, adversary can learn partial information about plaintext

Chosen ciphertext security

Adversary's power: both CPA and CCA

- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge

(conservative modeling of real life)

Adversary's goal: Break sematic security

Authenticated enc. \Rightarrow CCA security

Thm: Let (E,D) be a cipher that provides AE. Then (E,D) is CCA secure!

In particular, for any q-query eff. A there exist eff. B_1 , B_2 s.t.

 $Adv_{CCA}[A,E] \le 2q \cdot Adv_{CI}[B_1,E] + Adv_{CPA}[B_2,E]$

So what?

Authenticated encryption:

 ensures confidentiality against an active adversary that can decrypt some ciphertexts

Limitations:

- does not prevent replay attacks
- does not account for side channels (timing)

Combining MAC and ENC (CCA)

Encryption key k_E . MAC key = k_I

Option 1: (SSL) $S(k_I, m)$ $E(k_E, mlltag)$ msq msg Option 2: (IPsec) $S(k_{I}, c)$ $E(k_F, m)$ always tag msg m correct Option 3: (SSH) $S(k_{I}, m)$ $E(k_E, m)$ tag msg

Standards (at a high level)

- GCM: CTR mode encryption then CW-MAC (accelerated via Intel's PCLMULQDQ instruction)
- CCM: CBC-MAC then CTR mode encryption (802.11i)
- EAX: CTR mode encryption then CMAC

All support AEAD: (auth. enc. with associated data). All are nonce-based.

An example API (OpenSSL)

- int AES_GCM_Init(AES_GCM_CTX *ain,
 unsigned char *nonce, unsigned long noncelen,
 unsigned char *key, unsigned int klen)
- int AES_GCM_EncryptUpdate(AES_GCM_CTX *a, unsigned char *aad, unsigned long aadlen, unsigned char *data, unsigned long datalen, unsigned char *out, unsigned long *outlen)

Further reading

- The Order of Encryption and Authentication for Protecting Communications, H. Krawczyk, Crypto 2001.
- Authenticated-Encryption with Associated-Data,
 P. Rogaway, Proc. of CCS 2002.
- Password Interception in a SSL/TLS Channel,
 B. Canvel, A. Hiltgen, S. Vaudenay, M. Vuagnoux, Crypto 2003. [padding oracle]
- Plaintext Recovery Attacks Against SSH,
 M. Albrecht, K. Paterson and G. Watson, IEEE S&P 2009 [ssh attack]
- Problem areas for the IP security protocols,
 S. Bellovin, Usenix Security 1996.

Summary

Authenticated encryption:

CPA security + ciphertext integrity

- Confidentiality in presence of active adversary
- Prevents chosen-ciphertext attacks

Limitation: cannot help bad implementations ...

Authenticated encryption modes:

- Standards: GCM, CCM, EAX, [OCB]
- General construction: encrypt-then-MAC

CSE 433S:
Introduction to
Computer Security

Protocol Designs

Washington University in St. Louis

Slides contain content from Professor Dan Boneh at Stanford University

How do you prove your identity to someone over the network?

Why Security Protocols

- Alice and Bob want to communicate securely over the Internet, they need to:
 - (Mutually) authenticate
 - Establish and exchange keys
 - Agree to cryptographic operations and algorithms
- Building blocks:
 - Public-key (asymmetric) and secret-key (symmetric) algorithms, hash functions

Network Security Protocol

- A protocol is a set of rules for exchanging messages between 2 or more entities
- A protocol has a number of rounds (>1) and a number of messages (>1)

Basic Elements

- A message is a unit of information send from one entity to another as part of a protocol
- A round is a basic unit of protocol time:
 - Wake up because of:
 - Alarm clock
 - Initial start or
 - Receive message(s) from other(s)
 - Compute something
 - Send message(s) to others
 - Repeat steps 2-3, if needed
 - Wait for message(s) or sleep until alarm clock

- When acting honestly, entities (participants) achieve the stated goal of the protocol, e.g.:
 - A successfully authenticates to B
 - A and B exchange a fresh session key
- Adversary can defeat this goal
 - e.g., by successfully impersonating A in an authentication protocol with B

The Entities (2-party setting)

- Alice and Bob want to mutually authenticate and/or share a key
- Eve, the adversary passive or active
- In more complex protocols, TTP 3rd party trusted by both Alice and Bob

Challenge-response Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

Failure scenario??

Authentication

 Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

in a network,
Bob can not "see"
Alice, so Trudy simply
declares
herself to be Alice

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Failure scenario??

Protocol ap 2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Trudy can create a packet "spoofing" Alice's address

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

record
and
playback
still works!

Challenge and response

Goal: avoid playback attack

Nonce: number (R) used only once -in-a-lifetime

<u>ap4.0:</u> to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Failures, drawbacks?

In principle

Random numbers:

- pseudo-random numbers that are unpredictable to an adversary;
- need strong pseudo-random strings;
- must maintain state;

Sequences:

- serial number or counters;
- long-term state information must be maintained by both parties+ synchronization;

Timestamp:

- provides timeliness and detects forced delays;
- requires synchronized clocks.