Document Semantic Similarity TIS Project

Alberto Pirovano Francesco Picciotti

Politecnico di Milano

4th May 2017

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- 3 Word2Ved
- 4 Doc2Ved

Introduzione

Le tecniche adottate attualmente per trovare la **similitudine semantica tra testi** si basano su tre approcci:

- NLP Tradizionale
- Vector Space Model
- Deep Learning based

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- Word2Vec
- 4 Doc2Vec

NLP Tradizionale

Questo approccio si basa sull'utilizzo delle tradizionali tecniche di Natural Language Processing e si costituisce dei seguenti step:

- Cleaning dei dati
- Pos-Tagging
- Stemming o Lemmatisation
- Parsing
- Ontologia

Tuttavia, dato che il nostro lavoro è molto sensibile e dipendente dalla qualità dei tool utilizzati, abbiamo trovato alcune consistenti criticità riguardanti:

- L'affidabilità del Pos-Tagger italiano di TreeTagger
- Reperire una Ontologia e un parsing toll per la lingua italiana

NLP Tradizionale

NLP: the process

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- 3 Word2Ved
- 4 Doc2Ved

Vector Space Model - Explanation

Differentemente dal precedente, questo approccio ha le sue basi nello sviluppo di una rappresentazione geometrica e vettoriale per i documenti testuali. Documenti e query sono rappresentati da vettori con un numero di elementi pari al numero di termini presenti nel vocabolario. Tipicamente i termini sono le parole distinte presenti nell'insieme di documenti, tuttavia un termine può essere anche una keyword o una frase. A valle di questa rappresentazione vengono spesso utilizzate le operazioni vettoriali per confrontare due documenti.

Vector Space Model - Encoding

Nel vector space model proposto da **Salton, Wong and Yang** i vettori sono composti da **weights**, ognuna associata ad un termine del dizionario e calcolata tramite **tf-idf**.

Considerando un **documento** d_j , questo viene rappresentato tramite un **vettore** d_i :

•
$$d_j = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$
 dove: $w_{i,j} = tf_{t,d} * \log \frac{|D|}{|\{d' \in D|t \in d'\}|}$

Vector Space Model - LSA

Latent Semantic Analysis è una tecnica di Topic Modelling che si colloca a valle del document encoding con tfidf.

Questa procedura viene usata per astrarre una categorizzazione di un set di documenti in un set di topic o anche per osservare le parole che descrivono un certo topic.

Si basa sulla creazione di una **Document-Term Matrix** nella quale le **righe** rappresentano le parole del **Bag Of Words** e ha una **colonna** per **documento** nel corpora.

Il cuore di questa procedura sta nella **riduzione della dimensionalità** di questa matrice tramite **SVD**.

Vector Space Model - LSA - SVD

Find three matrices U, Σ and V so that: $X = U\Sigma V^t$

Vector Space Model - LSA

Questa procedura ci permette di:

- Estrarre quanti topic desideriamo da un set di documenti.
- Conoscere la rilevanza di un certo topic dopo averlo estratto, in questo modo siamo in grado di fermare il processo di estrazione quando i topic cominciano a diventare poco significativi.
- Categorizzare documenti in topic
- Descrivere topics con le parole del Bag Of Words.

Vector Space Model - LSA - Example

In questo esempio possiamo osservare la riduzione di dimensionalità.

LSA is essentially low-rank approximation of document term-matrix

Il processo di LSA permette di costruire le 3 matrici che vediamo sopra, ognuna con una sua utilità:

- Word assignment to topics
- Topic importance
- Topic distribution across documents, è la nuova Document-Term Matrix.

Vector Space Model - Algorithm

Riassumendo, possiamo individuare i seguenti passaggi:

- Cleaning dei dati (Stemming o Lemmatisation)
- Document encoding using TF/IDF
- Similarity (Cosine, Pearson, ...)

Nel caso di un ampio **Bag Of Word**, tra il passo 2 e il passo 3 si può inserire uno step di **LSA** in modo tale da **ridurne** la cardinalità.

Vector Space Model (con LSA) - Pros and Cons

Pros:

- Modello semplice basato sull'algebra.
- Le weights non sono binarie.
- Permette di calcolare un grado di similarità continuo.

Cons:

- Non adatto a trattare lunghi documenti, infatti a causa della alta dimensionalità il valore tfidf dei compoenti si riduce, riducendo il dot-product.(LSA fixes)
- Fortemente sensibile a Falsi
 Negativi, infatti documenti nello stesso
 contesto ma con diversa terminologia
 non saranno considerati simili.(LSA
 partially fixes)
- Perdiamo l'ordine delle parole.
- Pre-processing dipendente.

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- 3 Word2Ved
- 4 Doc2Ved

Deep Learning

Deep Learning: W2V & D2V

Negli ultimi anni il **Deep Learning** è stato usato in numerosi ambiti con ottimi risultati.

In particolare **Google**, con la release di **Word2Vec**, ha offerto alla community una tecnica per determinare **la similarità semantica** che un particolare **corpus di testi** assegna ad un **Bag Of Words** di parole. **Doc2Vec** invece, rilasciato anche esso da **Google**, è una tecnica che si

configura come una estensione di Word2Vec che, preso in ingresso un set di documenti (corpora), genera un grado di similarità reciproco.

Pros and Cons

Dopo una ampia **discussione**, seguita da una approfondita **analisi critica** di questi due approcci, siamo giunti alle seguenti **conclusioni**, che in termini di pro e contro si possono riassumere nel seguente modo:

Pros:

- Molto meno dipente da un preprocessing
- Context-aware
- Combina il metodo Geometrico con quello NLP Tradizionale
- Non sfrutta una ontologia, ma la crea

Cons:

- Tecnica unsupervised
- Necessità di un esperto per validare la similarità
- Può risultare in GIGO system (Garbage In Garbage Out)

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- Word2Vec
- 4 Doc2Ved

Dataset

"Preprocessing is 80% of NLP work"

Lev Konstantinovskiy

Il dataset fornitoci è composto da due corpora:

- il corpus del Sole 24 Ore con 3265 articoli, di cui 31 non hanno body
- il corpus di Radiocor con 6916 articoli

Il corpus prima del preprocessing contiene quindi 10150 articoli. Togliendo i duplicati otteniamo 9283 articoli, cioé ci sono 867 articoli duplicati.

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- 3 Word2Vec
- 4 Doc2Ved

Pipeline completa

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- 3 Word2Ved
- 4 Doc2Ved

Cleaning pipeline

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- Word2Vec
- 4 Doc2Ved

Hello

Qui speghiamo per bene come funziona word2vec

- State of art
 - NLP tradizionale
 - Vector Space Model
 - Deep Learning
- 2 Data Preparation
 - Preprocessing
 - Cleaning del testo
- 3 Word2Ved
- 4 Doc2Vec

Hello

Qui speghiamo per bene come funziona word2vec

