

MET-576-4

Modelagem Numérica da Atmosfera

Dr. Paulo Yoshio Kubota

Os métodos numéricos, formulação e parametrizações utilizados nos modelos atmosféricos serão descritos em detalhe.

3 Meses 24 Aulas (2 horas cada)

Dinâmica:

Métodos numéricos amplamente utilizados na solução numérica das equações diferencias parciais que governam os movimentos na atmosfera serão o foco, mas também serão analisados os novos conceitos e novos métodos.

- ✓ Métodos de diferenças finitas.
- ✓ Acurácia.
- √ Consistência.
- ✓ Estabilidade.
- ✓ Convergência.
- ✓ Grades de Arakawa A, B, C e E.
- ✓ Domínio de influência e domínio de dependência.
- ✓ Dispersão numérica e dissipação.
- ✓ Definição de filtros monótono e positivo.
- ✓ Métodos espectrais.
- ✓ Métodos de volume finito.
- √ Métodos Semi-Lagrangeanos.
- ✓ Conservação de massa local.
- ✓ Esquemas explícitos versus semi-implícitos.
- ✓ Métodos semi-implícitos.

Texto para o Curso

Modelo Numérico da Atmosfera *possui um problema* de valor de contorno e inicial

Dado

- Uma <u>estimativa do estado atual da atmosfera</u> (condições iniciais)
- Condições de superfície e limites laterais adequadas

Um modelo simula ou prevê a evolução da atmosfera consistentemente.

 Quanto mais precisa a estimativa das <u>condições iniciais</u>, melhor será a qualidade das previsões.

Agora consideramos métodos de resolver PDEs

 Da mesma forma, quanto mais preciso o método de solução, o melhor a qualidade das previsões.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida (*a incógnita da equação*).

<u>Equação Diferencial Ordinária</u> (EDO): Envolve derivadas de uma função de uma <u>só variável</u> <u>independente</u>.

$$\frac{\partial y}{\partial t} = -\lambda y$$

Só depende de y(t)

<u>Equação Diferencial Parcial</u> (EDP): Envolve derivadas parciais de uma função de <u>mais de</u> <u>uma variável independente</u>.

$$\frac{\partial \vec{u}}{\partial t} = \vec{u} \cdot \vec{\nabla} \vec{u}$$

Depende de u(t,x,y,z)

<u>Começamos olhando para a classificação de diferencial parcial</u> equações (PDEs).

O PDE linear geral de segunda ordem em 2D pode ser escrito

$$A\frac{\partial^2 u}{\partial x^2} + 2B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu + g = 0 \quad (2.1)$$

"pode ser mostrado que, transformando x, y, u em novas variáveis, é possível aplicar a Equação a qualquer EDP linear de segunda ordem e classificá-la."

$$+2B\frac{\partial^2 u}{\partial x \partial y} + A\frac{\partial^2 u}{\partial x^2} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = 0$$

essa expressão tem certa semelhança com a equação de uma seção cônica:"

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0 {(2.2)}$$

"onde a,b,c,d,f são constantes. Conforme ilustrado pela Figura abaixo, esta equação algébrica representa uma elipse, parábola ou hipérbole, dependendo se b^2-4ac é negativo, igual a zero ou positivo, respectivamente substantia substantia elipse.

Equações diferenciais parciais lineares de segunda ordem $\frac{\partial^2}{\partial x^2}$ são classificadas em três tipos, dependendo do sinal de

• Hiperbólica : $B^2 - AC > 0$

• Parabólica : $B^2 - AC = 0$

• Elíptica : $B^2 - AC < 0$

Lembre-se das equações das seções cônicas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 $x^2 = y$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Hiperbólica

Parabólica

Elíptica

"Tabela 2.1. Classificação dos três tipos de EDP e seus diferentes tipos de condições de contorno.

- Uma condição de contorno de Dirichlet especifica a função na fronteira do domínio.
- Uma condição de contorno de Neumann especifica o valor da derivada normal da função na fronteira do domínio.
- Uma condição de contorno de Cauchy especifica os valores da função e de sua derivada normal na fronteira do domínio.

PDE	$b^2 - 4ac$	Boundary & initial conditions	Examples
Elliptic	$b^2 - 4ac < 0$	Dirichlet/Neumann/Cauchy	Laplace Eq.
Parabolic	$b^2 - 4ac = 0$	One initial + two boundary conditions	Diffusion Eq.
Hyperbolic	$b^2 - 4ac > 0$	Two initial + two boundary conditions	Wave Eq.

"Cada tipo de sistema está associado a um comportamento característico significativamente diferente, e o esquema de solução para cada tipo de equação também pode variar."

Os exemplos mais simples (<u>canônicos</u>) dessas equações são

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

Equação de onda (Hiperbólica)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Equação de difusão (Parabólica)

$$y = x^2$$

Equação de Poisson (Elíptica)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Exemplo de equação hiperbólica:

- Corda vibratória.
- Ondas de água.

Exemplo de equação parabólica:

- Haste aquecida.
- Amortecimento viscoso.

Exemplos de equação elíptica:

- Forma de um tambor.
- Relação função de corrente/vorticidade.

Nota: As seguintes equações elípticas surgem repetidamente em uma infinidade de contextos em toda a ciência:

- Equação de Poisson : $\nabla^2 u = f$
- Equação de Laplace $: \nabla^2 u = 0$

Transformações/Aproximações(Modelo Barotrópico)

$$\frac{\partial \nabla^2 \psi}{\partial t} - \frac{f_0^2}{g h_0} \frac{\partial \psi}{\partial t} = -\frac{\partial \psi}{\partial x} \left(\frac{\partial \nabla^2 \psi}{\partial y} - \frac{f_0^2}{g h_0} \frac{\partial \psi}{\partial y} \right) + \frac{\partial \psi}{\partial y} \left(\frac{\partial \nabla^2 \psi}{\partial x} - \frac{f_0^2}{g h_0} \frac{\partial \psi}{\partial x} \right) - \beta \frac{\partial \psi}{\partial x}$$

2 ,quasi-geostrophic shallow water equations

with geostrophic streamfunction
$$\psi = gh_g/f_0$$
:
$$u_x = -\frac{\partial \Psi}{\partial y}$$

$$v_g = \frac{\partial \Psi}{\partial x}$$

$$\zeta_x = \nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2}$$

$$\begin{split} \frac{\partial (\nabla^2 - \lambda^{-2})\Psi}{\partial t} &= -\frac{\partial \Psi}{\partial x} \frac{\partial (\nabla^2 - \lambda^{-2})\Psi}{\partial y} + \frac{\partial \Psi}{\partial y} \frac{\partial (\nabla^2 - \lambda^{-2})\Psi}{\partial x} - \beta \frac{\partial \Psi}{\partial x} \\ &= -J(\Psi, (\nabla^2 - \lambda^{-2})\Psi) - \beta \frac{\partial \Psi}{\partial x} \end{split}$$


```
subroutine laplace(pf,pdf,pdx,pdy,kx,ky)
  implicit none
  subroutine laplace computes the laplacian from a field
  integer :: kx
                ! x-dimension
  integer :: ky
                ! y-dimension
  real :: pdx ! x grid distance
  real :: pdy ! y grid distance
  real :: pf(0:kx+1,0:ky+1) ! input: field
  real :: pdf(0:kx+1,0:ky+1) ! output: Laplacian
  integer :: i,j ! loop indizes
  do j=1,ky
   do i=1,kx
   pdf(i,j)=(pf(i-1,j)-2.*pf(i,j)+pf(i+1,j))/(pdx*pdx) + (pf(i,j-1)-2.*pf(i,j)+pf(i,j+1))/(pdy*pdy)
   enddo
  enddo
  return
  end subroutine laplace
```


O tipo de PDE com o qual estamos lidando, dependem essencialmente de:

- 1. O comportamento das soluções,
- 2. Condições iniciais e /ou de contorno Adequadas
- 3. Os métodos numéricos que podem ser usados para encontrar as soluções.

Precisamos estudar os PDEs canônicos

- 1. Para desenvolver uma compreensão de suas propriedades
- 2. Aplicar <u>métodos semelhantes às equações NWP</u> mais complicadas.

Uma quarta equação canônica, de importância central na ciência da atmosfera, é

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$
 Equação da advecção

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

A equação da advecção tem a solução: u(x,t) = u(x-ct,0)

A equação de advecção <u>é uma PDE de primeira ordem</u>, mas também pode ser *classificada* como hiperbólica, pois suas soluções satisfazem a equação de onda:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x}\right) u = 0 \Rightarrow \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x}\right) u = 0$$

Obviamente, se
$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$
, então u é uma solução da equação de onda.

Problema Bem postado

Um problema de condição inicial / contorno bem postado tem uma solução única que depende continuamente das condições iniciais / contorno.

A <u>especificação das</u> condições iniciais e contorno adequadas para uma PDE é essencial para ter um problema bem colocado.

- Se <u>muitas condições</u> iniciais / contorno (incertas) forem especificadas, não haverá solução.
- Se <u>poucas condições</u> iniciais / contorno forem especificados, a solução não será exclusiva.
- Se o <u>número de condições</u> iniciais / contorno estiver certo , mas forem especificadas no lugar ou hora errada, a solução será única, mas não dependerá somente do amortecimento das condições iniciais / contorno .

Para problemas mal postado, pequenos erros nas condições iniciais / de contorno podem produzir erros enormes na solução.

Problema mal postado

Em qualquer um dos casos de PDOs, ter um problema mal postado. Não se pode encontrar uma solução numérica para um problema mal postado: o cálculo reagirá explodindo.

Exemplo: Resolva a equação hiperbólica

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

sujeito às seguintes condições:

$$\frac{\partial u}{\partial x} = \frac{u_j^n - u_{j-1}^n}{\Delta x} + O\left(\frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2} + \frac{\Delta x^2}{6} \frac{\partial^3 u}{\partial x^3} - \frac{\Delta x^3}{24} \frac{\partial^4 u}{\partial x^4}\right)$$

$$\frac{\partial u}{\partial x} = \frac{u_{j+1}^n - u_j^n}{\Delta x} - O\left(\frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2} + \frac{\Delta x^2}{6} \frac{\partial^3 u}{\partial x^3} + \frac{\Delta x^3}{24} \frac{\partial^4 u}{\partial x^4}\right)$$

$$u(x,0) = a_0(x)$$
 $u(x,1) = a_1(x)$ $u(0,t) = b_0(t)$ $u(0,t) = b_1(t)$

$$u(x,0) = a_o(x) = ????$$

 $u(x,1) = a_1(x) = ????$
 $u(0,t) = b_0(t) = ????$
 $u(0,t) = b_1(t) = ????$

Problema mal postado

Em qualquer um dos casos de PDOs, ter um problema mal postado. Não se pode encontrar uma solução numérica para um problema mal postado: o cálculo reagirá explodindo.

Exemplo: Resolva a equação de advecção

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

$$\frac{\partial u}{\partial x} = \frac{u_j^n - u_{j-1}^n}{\Delta x} + O\left(\frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2} + \frac{\Delta x^2}{6} \frac{\partial^3 u}{\partial x^3} - \frac{\Delta x^3}{24} \frac{\partial^4 u}{\partial x^4}\right)$$

$$\frac{\partial u}{\partial x} = \frac{u_{j+1}^n - u_j^n}{\Delta x} - O\left(\frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2} + \frac{\Delta x^2}{6} \frac{\partial^3 u}{\partial x^3} + \frac{\Delta x^3}{24} \frac{\partial^4 u}{\partial x^4}\right)$$

em 0 < x < 1 e t > 0 com as condições iniciais / contorno

$$u(x,0) = u_0(x)$$
 $u(0,t) = u_L(t)$ $u(1,t) = u_R(t)$.

$$u(x,0) = u_0(x) = ????$$

$$u(0,t) = u_L(t) = ????$$

 $u(1,t) = u_R(t) = ????$

O Caso Parabólico

As equações elípticas de segunda ordem requerem uma condição de contorno em cada ponto da fronteira espacial.

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{j+1} - 2u_j + u_{j-1}}{\Delta x^2} - O\left[\frac{2}{4!} \frac{\partial^4 u}{\partial x^4} (\Delta x)^2\right]$$

Esses são problemas puros de valor contorno, independentes do tempo. As condições de contorno podem ser:

- O valor da função (problema de Dirichlet), quando especificamos a temperatura na borda de uma chapa.
- A derivada normal (problema de Neumann), quando especificamos o fluxo de calor (PBL).
- Uma condição de contorno mista, envolvendo uma combinação linear da função e sua derivada (problema de Robin).

 Paulo Yoshio Kubota

O Caso Parabólico

As equações parabólicas lineares requerem uma condição inicial no instante inicial e uma condição de contorno em cada ponto dos limites espaciais.

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}$$

Por exemplo:,

para uma **barra aquecida**, precisamos da <u>temperatura inicial em cada ponto T (x, 0) e da temperatura em cada extremidade, T (0, t) e T (L, t) em função do tempo.</u>

O Caso Parabólico

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}$$

Na ciência atmosférica, o <u>caso parabólico</u> surge principalmente quando consideramos processos difusivos: viscosidade interna; fricção da camada limite; etc.

Para dar um exemplo, considere os termos destacados das Equações de Navier-Stokes

$$\frac{\partial V}{\partial t} + V \cdot \nabla V + 2\Omega \times V + \frac{1}{\rho} \nabla P = v \nabla^2 V$$

$$\frac{\partial V}{\partial t} = v \nabla^2 V$$

O Caso Hiperbólico

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

As equações hiperbólicas lineares requerem tantas condições iniciais quanto o número de características (u) que saem de cada ponto na superfície em (t = 0), e <u>tantas condições de contorno</u> quanto o número de <u>características</u> que cruzam um ponto no contorno (espaço) apontando para dentro do contorno.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

$$\iota = \frac{\partial x}{\partial t}$$

O Caso Hiperbólico

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Por exemplo: Resolva $\frac{\partial \psi}{\partial t} + c \frac{\partial \psi}{\partial x} = 0$ para x> 0, t> 0.

As características são as soluções de $\frac{\partial x}{\partial t} = c$. número de características

O <u>contorno no espaço é x = 0.</u>

Se c> 0, precisamos da condição inicial $\psi(x,0) = f(x)$ e da condição de contorno $\psi(0,t) = g(t)$.

Se **c** <0, precisamos da condição inicial $\psi(x,0) = f(x)$, mas sem condições de contorno.

contorno no espaço é x = 0.

O Caso Hiperbólico

Esquema das características $\frac{\partial x}{\partial t} = c$ da equação de advecção

$$\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} = 0$$

para (a) velocidade positiva e (b) velocidade negativa c.

Para <u>equações não lineares</u>, nenhuma declaração geral pode ser feita, mas o insight físico e a linearização local <u>podem ajudar a determinar as condições</u> iniciais/ contorno adequadas.

Por exemplo, na equação de advecção não linear

$$\frac{\partial u(x,t)}{\partial t} + \mathbf{u}(x,t) \frac{\partial u(x,t)}{\partial x} = 0$$

as características são $\frac{dx}{dt} = u(x, t)$.

Não sabemos a priori o sinal de u no contorno e se as características apontarão para dentro ou para fora (sinal de u).

Um método de resolver PDEs simples é o método de separação de variáveis. Infelizmente, na maioria dos casos, não é possível usá-lo.

No entanto, é instrutivo resolver alguns PDEs simples analiticamente, usando o método de separação de variáveis.

método de separação de variáveis

Método de Separação de Variáveis

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$

Exemplo 1: Uma equação elíptica.

Resolva, pelo método de separação de variáveis, o PDE:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad 0 \le x \le 1 \quad 0 \le y \le 1$$

sujeito às condições de contorno

$$u(x,0) = 0$$
 $u(0,y) = 0$ $u(1,y) = 0$ $u(x,1) = A\sin m\pi x$,

Método de Separação de Variáveis

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \quad 0 \le x \le 1 \quad \ 0 \le y \le 1$$

Suponha que a solução seja um produto de uma função de x e a função de y:

$$u(x,y) = X(x) \cdot Y(y)$$

A equação se torna

$$Y\frac{d^{2}X}{dx^{2}} + X\frac{d^{2}Y}{dy^{2}} = 0$$
 or $\frac{1}{X}\frac{d^{2}X}{dx^{2}} = -\frac{1}{Y}\frac{d^{2}Y}{dy^{2}}$

O lado esquerdo é uma função de x, o direito é uma função de y.

Método de Separação de Variáveis

$$Y\frac{\partial^2 X}{\partial x^2} + X\frac{\partial^2 Y}{\partial y^2} = 0$$

$$Y\frac{\partial^2 X}{\partial x^2} + X\frac{\partial^2 Y}{\partial y^2} = 0 \qquad \qquad \frac{1}{X}\frac{\partial^2 X}{\partial x^2} = -\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} = 0$$

$$Y \frac{d^2 X}{dx^2} + X \frac{d^2 Y}{dy^2} = 0$$
 or $\frac{1}{X} \frac{d^2 X}{dx^2} = -\frac{1}{Y} \frac{d^2 Y}{dy^2}$

$$\frac{1}{X}\frac{d^2X}{dx^2} = -\frac{1}{Y}\frac{d^2Y}{dy^2}$$

Assim, eles devem ser iguais a uma constante $-K^2$

$$\frac{1}{X}\frac{\partial^2 X}{\partial x^2} = -\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} = -K^2$$

$$\frac{d^2X}{dx^2} + K^2X = 0$$

$$\frac{d^2Y}{dy^2} - K^2Y = 0$$

Método de Separação de Variáveis

$$\frac{1}{X}\frac{\partial^2 X}{\partial x^2} = -\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} = -K^2$$

$$\frac{\partial^2 X}{\partial x^2} + K^2 X = 0$$

As soluções da equações X

$$X = C_1 \sin(Kx) + C_2 \cos(Kx)$$

$$\frac{\partial^2 Y}{\partial v^2} - K^2 Y = 0$$

As soluções da equações Y

$$Y = C_3 \sinh(Ky) + C_4 \cosh(Ky)$$

$$u(x,y) = X(x) \cdot Y(y)$$

$$u(x,y) = [C_1 \sin(Kx) + C_2 \cos(Kx)][C_3 \sinh(Ky) + C_4 \cosh(Ky)]$$

Método de Separação de Variáveis

$$u(x,0) = 0$$
 $u(0,y) = 0$ $u(1,y) = 0$ $u(x,1) = A\sin m\pi x$,

$$u(x,y) = X(x) \cdot Y(y)$$

$$u(x,y) = [C_1 \sin(Kx) + C_2 \cos(Kx)][C_3 \sinh(Ky) + C_4 \cosh(Ky)]$$

Método de Separação de Variáveis

Assim, eles devem ser iguais a uma constante $-K^2$

$$\frac{\partial^2 X}{\partial x^2} + K^2 X = 0$$

$$\frac{\partial^2 Y}{\partial y^2} - K^2 Y = 0$$

$$u(x,y) = [C_1 \sin(Kx) + C_2 \cos(Kx)][C_3 \sinh(Ky) + C_4 \cosh(Ky)]$$

As soluções das duas equações são

$$X = C_1 \sin(Kx) + C_2 \cos(Kx)$$

$$Y = C_3 \sinh(Ky) + C_4 \cosh(Ky)$$

A condição de contorno u(0, y) = 0 força $C_2 = 0$, então $X = C_1 \sin(Kx)$.

$$u(0,y) = [C_1 \sin(K0) + C_2 \cos(K0)][C_3 \sinh(Ky) + C_4 \cosh(Ky)] = 0$$

A condição de contorno u(1, y) = 0 força $\sin(Kx) = 0$ ou $K = n\pi$ então $X = C_1 \sin(n\pi x)$.

então
$$X = C_1 \sin(n\pi x)$$

$$u(1,y) = [C_1 \sin(n\pi x)][C_3 \sinh(Ky) + C_4 \cosh(Ky)] = 0$$

A condição de contorno u(x, 0) = 0 força $C_4 = 0$, então $Y = C_3 \sinh(n\pi y)$.

$$u(1, y) = [C_1 \sin(n\pi x)][C_3 \sinh(K0)] = 0$$

A condição de contorno $u(x,1) = Asin(m\pi x)$ força $C_1 \sin(n\pi x) \times C_3 \sin h(n\pi 1) = A \sin(n\pi x)$, tal que, n=m e Paulo Yoshio Kubota $C_1C_3\sinh(m\pi)=A$

Método de Separação de Variáveis

A condição de contorno $u(x,1) = Asin(m\pi x)$ força $C_1 \sin(n\pi x) \times C_3 \sin h(n\pi 1) = A \sin(n\pi x)$, tal que, n=m e $C_1 C_3 \sinh(m\pi) = A$

$$C_1C_3 \sin h(m\pi 1) = A$$

Assim, $C_1C_3 = A/\sin(m\pi)$ e a solução será

$$u(x,y) = \left(\frac{A}{\sinh m\pi}\right) \sin m\pi x \sinh m\pi y$$

Método de Separação de Variáveis

mais geral condição de contorno (BCs)

Suponha que a solução no lado "norte" seja agora

$$u(x,1) = f(x)$$

Encontre a solução.

Notamos que a equação é linear e homogênea, de forma que, dadas duas soluções, uma combinação linear delas também é uma solução da equação.

Assumimos que podemos analisar Fourier a função f (x):

$$f(x) = \sum_{k=1}^{\infty} a_k \sin k\pi x$$

$$\sum_{k=1}^{\infty} k^2 |a_k| < \infty$$

$$\sum_{k=1}^{\infty} k^2 |a_k| < \infty$$

Método de Separação de Variáveis

Então, a solução pode ser expressa como:

$$u(x,y) = \sum_{k=1}^{\infty} \left(\frac{a_k}{\sinh k\pi} \right) \sin k\pi x \sinh k\pi y$$

Da mesma forma, podemos encontrar soluções para valores de contorno não desaparecem nas outras três arestas. Assim, o problema mais geral em um domínio retangular:

$$\nabla^2 u(x,y)=0\,,$$

$$u(x,y)=F(x,y)$$

Sobre o contorno

pode ser resolvido.

Método de Separação de Variáveis

Outro exemplo: uma equação parabólica.

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1 \quad t \ge 0$$

Condições de contorno:

$$u(0,t) = 0$$
 $u(1,t) = 0$

Condições de inicial:

$$u(x,0) = f(x) = \sum_{k=1}^{\infty} a_k \sin k\pi x$$

Encontre a solução:

$$u(x,t) = f(x) * f(t)$$

$$u(x,t) = \sum_{k=1}^{\infty} a_k e^{-\sigma k^2 \pi^2 t} \sin k\pi x$$

$$\frac{\partial u}{\partial x} = k\pi \sum_{k=1}^{\infty} a_k \cos(k\pi x)$$

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial x} = -k^2\pi^2 \sum_{k=1}^{\infty} a_k \sin(k\pi x)$$

$$\frac{\partial u}{\partial t} = -\sigma k^2 \pi^2 u(x, t = 0)$$

$$\frac{\partial u}{\partial u} = -\sigma k^2 \pi^2 \partial t$$

$$ln(u) = -\sigma k^2 \pi^2 t$$

$$f(t) = u = e^{-\sigma k^2 \pi^2 t}$$

Observe que quanto maior o número de onda, mais rápido ele vai para zero, ou seja, a solução é suavizada com o passar do tempo.

Método de Separação de Variáveis

Outro exemplo: uma equação hiperbólica.

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1 \quad 0 \le t \le 1$$

Condições de contorno:

$$u(0,t) = 0$$
 $u(1,t) = 0$

Condições de inicial:

$$u(x,0) = f(x) = \sum_{k=1}^{\infty} a_k \sin k\pi x \qquad \frac{\partial u}{\partial t}(x,0) = g(x) = \sum_{k=1}^{\infty} b_k \sin k\pi x$$

Encontre a solução pelo método de separação de variáveis.

$$u(x,t) = ?$$

$$\frac{\partial}{\partial t} \left[\frac{\partial u}{\partial t} \right] = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial x} = -k^2\pi^2 \sum_{k=1}^{\infty} a_k \sin(k\pi x)$$

$$\frac{\partial}{\partial t} \left[\frac{\partial u}{\partial t} \right] = -c^2 k^2 \pi^2 \sum_{k=1}^{\infty} a_k \sin(k\pi x)$$

$$\int_{t=0}^{t} \frac{\partial}{\partial t} \left[\frac{\partial u}{\partial t} \right] \partial t = -c^2 k^2 \pi^2 \sum_{k=1}^{\infty} a_k \sin(k\pi x) \int_{t=0}^{t} dt$$

$$\left[\frac{\partial u}{\partial t}\right]_{t=0}^{t} = -c^{2}k^{2}\pi^{2} \sum_{k=1}^{\infty} a_{k} \sin(k\pi x) t$$

$$\frac{\partial u}{\partial t} - \sum_{k=1}^{\infty} b_k \sin(k\pi x) = -c^2 k^2 \pi^2 \sum_{k=1}^{\infty} a_k \sin(k\pi x) t$$

$$u(x,t) = u(x,0) + \sum_{k=1}^{\infty} b_k \sin(k\pi x)t - c^2 k^2 \pi^2 \sum_{k=1}^{\infty} a_k \sin(k\pi x) \frac{t^2}{2}$$
 ta

Método de Separação de Variáveis

Mesma equação acima, mas diferentes condições de contorno:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1 \quad 0 \le t \le 1$$

Condições de contorno:

$$u(0,t) = 0 \qquad u(1,t) = 0$$

Em vez de duas condições iniciais, fornecemos uma condição inicial e uma condição "final":

$$u(x,0)=f(x) \qquad u(x,1)=g(x)$$

Em outras palavras, tentamos resolver uma equação hiperbólica (onda) como se fosse uma equação elíptica (problema do valor de contorno).

$$u(x,t) = X(x) * Y(t) X\frac{d^2Y}{dt^2} - c^2Y\frac{d^2X}{dx^2} = 0 \frac{1}{Y}\frac{d^2Y}{dt^2} = \frac{c^2}{X}\frac{d^2X}{dx^2}$$

Assim, eles devem ser iguais a uma constante $-K^2$

Método de Separação de Variáveis

Exercício: Mostre que a **solução é única**, mas é verdade que não dependem continuamente das condições de contorno, e portanto, não é um problema bem colocado.

Assim, eles devem ser iguais a uma constante $-K^2$

$$\frac{c^2}{X}\frac{d^2X}{dx^2} = -K^2$$

$$\frac{1}{Y}\frac{d^2Y}{dt^2} = -K^2$$

$$\frac{c^2}{X}\frac{d^2X}{dx^2} = -K^2$$

$$u(x,0)=f(x) \qquad u(x,1)=g(x)$$

As soluções das duas equações são

$$X = C_1 \sin Kx + C_2 \cos Kx$$

$$Y = C_3 \sinh Ky + C_4 \cosh Ky$$

Método de Separação de Variáveis

Conclusão: Antes de tentar resolver um problema numericamente, devemos ter certeza de que ele está bem postado: ele tem uma solução única que depende continuamente dos dados que definem o problema.

Pense.....

Lorenz mostrou que a atmosfera tem um limite finito de previsibilidade:

Mesmo que os modelos e as observações sejam perfeitos, o bater de uma borboleta no Brasil resultará em uma previsão completamente diferente para o Texas.

Isso significa que o problema do NWP não está bem postado?

Se não, porque não?

Considere novamente a definição de um problema mal-postado.

Problemas de valor inicial

PDEs hiperbólicos e parabólicos são problemas de valor inicial ou problemas de marcha (um termo introduzido por Richardson).

A solução é obtida usando os valores iniciais conhecidos e marchando ou avançando no tempo.

Se os valores de contorno são necessários, eles são chamados de problemas de valores de contorno e iniciais mistos.

Os protótipos mais simples desses problemas de valor inicial são:

The advection equation (with solution u(x, t) = u(x-ct, t=0))

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$
, que é uma equação hiperbólica.

A equação de difusão,

$$\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}$$

 $\frac{\partial u}{\partial t} = \sigma \frac{\partial^2 u}{\partial x^2}$ que é uma equação parabólica.

Dinâmica 23/09/2021 a 23/09/2021 Métodos de diferenças finitas.

Muitas vezes o método de separação de variáveis não pode ser aplicado para resolver as equações diferenciais parciais

Portanto:

Agora consideramos métodos de resolver PDEs numericamente

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida (*a incógnita da equação*).

Equação Diferencial Ordinária (EDO): Envolve derivadas de uma função de uma só variável independente.

$$\frac{\partial y}{\partial t} = -\lambda y$$

Equação Diferencial Parcial (EDP): Envolve derivadas parciais de uma função de mais de uma variável independente.

$$\frac{\partial \vec{u}}{\partial t} = \vec{u} \cdot \vec{\nabla} \vec{u}$$

Ordem: é a <u>ordem da derivada de mais alta ordem</u> da função incógnita que está presente na equação.

Grau: é o <u>valor do expoente para a derivada mais alta da equação</u>, quando a equação tem a "forma" de um polinômio na função incógnita e em suas derivadas,

$$Ay^3 + By^2 + Cy^1 + Dy^0 = 0$$

1)
$$y'' + 3y' + 6y = \sin(x) e y'' + 3yy' + 6y = e^x tem ordem 2 e grau 1$$

2)
$$(y'')^3 + 3(y')^{10} + 6y = \tan(x)$$
 tem ordem 2 e grau 3

3)
$$(y')^3 = f(x,y) e M(x,y) dx + N(x,y) dy = 0 tem ordem 1 e grau 3$$

Quanto à linearidade de uma equação diferencial ordinária de ordem n pode ser vista como uma função

$$F(x, y, y', y'', \dots, y^n) = 0$$

A equação diferencial é linear se F for linear em $y, y'(x), ..., y^n(x)$

Leitura recomendada

- > Durran D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New York, Springer-Verlag.
- > Haltiner, G.J. and Williams, R.T. (1980) Numerical prediction and dynamic meteorology.

 2nd ed

As diferenças entre soluções analíticas e métodos numéricos

1) Soluções numéricas são os seguintes:
□ Valor aproximado
□ Sempre particular para um determinado conjunto de parâmetro
2) Soluções analíticas são as seguintes:
□ Exata
□ Global (Geral)
3) As principais fontes de erros para soluções numéricas são :
□ Round-off
□ Truncamento

Erro de Round-off

- Em geral, isso é menos importante do que as outras fontes de erro. No entanto, torna-se importante quando
- Ao Somar os números pequenos aos numero grandes, especialmente quando se está em forma de acúmulos de somas

e.g.
$$\hat{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
; $N = 10^8$; começando com $i = 1$; $i = 1, ..., 10^8$

- 1. A soma dos primeiros 9999999 número é 0.9999999e7.
- 2. Adicionar o próximo 0.1000000e1 (= 0.0000001e7) resultara' 0.1000000e8
- 3. O próximo xi será convertido em 0.0000000e8 e este xi Não vai Alterar mais a soma.
- 4. O mesmo será verdade para todos os xi e o último Resultado é 10 e a média será 10 / 10 =0,1.
- Devido a esse erro, é uma boa prática a utilização de Variáveis de precisão dupla para acumular somas.

Erro de Round-off

```
PROGRAM Main
IMPLICIT NONE
INTEGER, PARAMETER :: N=100000000
 REAL (KIND=4) :: X
INTEGER :: i
X = 0.0
DO i=1, N
 X=X+1.0
  IF (I > X) THEN
   PRINT*,X,i
   exit
  END IF
 END DO
PRINT*,X,X/N
END PROGRAM Main
```


Erro de truncamento

- O Truncamento é produzido quando funções contínuas são representada por uma série de valores pontuais.
- Em geral, quando mais valores de ponto de grade (Dx reduz) são utilizados para aproximar a função mais precisa será aproximação.

 A resolução necessária para reduzir o erro de truncamento para um nível aceitável depende da função a ser aproximada.

Resolver Numericamente as Equações Diferenciais

$$\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} = -\frac{1}{\rho} \overrightarrow{\nabla P} + \vec{g} + \mu \nabla^2 u$$

Simplificando a equação para uma dimensão (considerando somente aceleração local e convectiva)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

Como representar as derivadas espaciais e temporais como função discretas

Diferença numérica aproximação de diferenciação

Diferenciação

Considere um conjunto de pontos espaçados, indicados com um índice i, com o espaçamento físico entre eles definido como Δx . Pode-se expressar a primeira derivada de uma quantidade a em um ponto i na forma:

$$\left. \frac{da}{dx} \right|_i \approx \frac{a_i - a_{i-1}}{\Delta x}$$

$$\left. \frac{da}{dx} \right|_i \approx \frac{a_{i+1} - a_i}{\Delta x}$$

$$\left. \frac{da}{dx} \right|_{i} \approx \frac{a_{i+1} - a_{i-1}}{2\Delta x}$$

Se tomamos valores discretos para x e t: $x_j = j\Delta x$ e $t_n = n\Delta t$.

A solução da equação de diferença finita também é definida nos pontos discretos $(x_i t_n) = (j\Delta x, n\Delta t)$:

$$U_j^n = U(j\Delta x, n\Delta t) = U(x_j, t_n)$$

Ou seja, usamos um u pequeno para definir a solução do PDE (contínua) e um $\mathbf U$ maiúsculo para definir a solução da equação de diferenças finitas (FDE, uma solução discreta). Considere novamente a equação de advecção

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \,,$$

Suponha que escolhamos aproximar este PDE com o FDE

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + c \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0$$

Grade Espaço x Tempo

Espaço Eixo Horizontal

Repetir:

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + c \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0$$

Isso é chamado de esquema upstream (estamos assumindo c> 0). Observe que ambas as diferenças não são centralizadas em relação ao ponto $(x_i, t_n) = (j\Delta x, n\Delta t)$.

Podemos fazer duas perguntas fundamentais:

- [1] O FDE é consistente com o PDE?
- [2] Para um dado tempo t> 0, a solução do FDE convergirá para a do PDE quando $\Delta x \to 0$ e $\Delta t \to 0$?

Esclareceremos essas questões a seguir.

Aviso: Às vezes, o sobrescrito n denota um potência; às vezes é apenas um índice. Seja cuidadoso!

Diferença numérica aproximação de diferenciação

Aproximações por diferença finita para derivadas são baseadas na série de Taylor Truncada.

$$f(x_{i+1}) = f(x + \Delta x) = f(x_i) + \Delta x f'(x_i) + \frac{(\Delta x)^2}{2} f''(x_i) + \frac{(\Delta x)^3}{6} f'''(x_i) + O(\Delta x^4) \tag{1}$$

$$f(x_{i-1}) = f(x - \Delta x) = f(x_i) - \Delta x f'(x_i) + \frac{(\Delta x)^2}{2} f''(x_i) - \frac{(\Delta x)^3}{6} f'''(x_i) + O(\Delta x^4)$$
 (2)

Enquanto Eq. 2 Dá a Aproximação por diferença adiantada

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} + O(\Delta x) , \qquad (3)$$

A reorganização das Eq. 1. Dá a Aproximação por diferença atrasada

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{\Delta x} + O(\Delta x) . \tag{4}$$

Estes são chamados aproximações de primeira ordem porque o Erro Truncamento é proporcional a Δx a potência de 1.

Diferença numérica aproximação de diferenciação

Para Aproximação de diferença centralizada segunda-ordem: subtraindo a Eq. 2 da Eq. 1. E a reorganização leva a:

$$f(x_{i+1}) = f(x + \Delta x) = f(x_i) + \Delta x f'(x_i) + \frac{(\Delta x)^2}{2} f''(x_i) + \frac{(\Delta x)^3}{6} f'''(x_i) + O(\Delta x^4)$$
 (1)

$$f(x_{i-1}) = f(x - \Delta x) = f(x_i) - \Delta x f'(x_i) + \frac{(\Delta x)^2}{2} f''(x_i) - \frac{(\Delta x)^3}{6} f'''(x_i) + O(\Delta x^4)$$
(2)

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O(\Delta x^2) .$$
 (5)

Quando Δx Aproxima-se de zero, Δx^2 Aproxima-se de zero muito mais rápido em relação a Δx .

Portanto, uma aproximação de segunda ordem irá <u>convergir</u> mais rápido do que uma aproximação primeira-ordem.

Diferença numérica aproximação de diferenciação

Uma aproximação para a segunda derivada pode ser encontrado adicionando a Eq. 2 na Eq. 1.

$$f(x_{i+1}) = f(x + \Delta x) = f(x_i) + \Delta x f'(x_i) + \frac{(\Delta x)^2}{2} f''(x_i) + \frac{(\Delta x)^3}{6} f'''(x_i) + O(\Delta x^4)$$
(1)

$$f(x_{i-1}) = f(x - \Delta x) = f(x_i) - \Delta x f'(x_i) + \frac{(\Delta x)^2}{2} f''(x_i) - \frac{(\Delta x)^3}{6} f'''(x_i) + O(\Delta x^4)$$
(2)

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{\Delta x^2} + 0(\Delta x^2) .$$
 (6)

Esta fórmula tem precisão de segunda ordem.

Erro de Truncamento e Consistência

O FDE é <u>consistente</u> com o PDE se, no limite $\Delta x \to 0$ e $\Delta t \to 0$, o FDE coincidir com o PDE. Obviamente, esse é um requisito básico que o FDE deve atender se suas soluções forem boas aproximações das soluções do PDE.

Definição: A diferença entre o PDE e o FDE é chamada de erro de discretização ou erro de truncamento local.

A consistência é bastante simples de verificar:

- Substitua u em vez de U no FDE.
- Avalie todos os termos usando uma expansão da série de Taylor centrada no ponto $(x_i t_n)$.
- Subtraia o PDE do FDE.

Se a diferença (erro de truncamento local) for para zero como $\Delta x \to 0$ e $\Delta t \to 0$, então o FDE é consistente com o PDE.

Exemplo: Equações diferenciais Ordinárias

Considere uma equação diferencial ordinária linear

$$\frac{\partial y}{\partial t} = -\lambda y \tag{7}$$

Onde $\lambda > 0$, com a condição inicial $(t = 0 \rightarrow y(t = 0) = y_0)$. Como já se sabe a solução exata é $y = y_0 e^{-\lambda t}$

A derivada temporal da Eq. 7º pode ser aproximadas utilizando as diferenciação avançadas

$$\frac{y^{n+1} - y^n}{\Delta t} = -\lambda y^n \qquad (8) \qquad y^{n+1} = y^n - \lambda \Delta t y^n \qquad y^{n+1} = (1 - \lambda \Delta t) y^n \qquad (9)$$

Onde y^n é definido como $y(t_n)$ e $t_n = n\Delta t$, n = 1,2,3,...,N,Portanto;:

$$y^{n+1} = (1 - \lambda n \Delta t) y^o$$