

CAMBRIDGE INSTITUTE OF TECHNOLOGY K.R. PURAM, BENGALURU-560036

Department of Basic sciences

Program:

B.E. .

M.Tech.

Specialization:

Second Internal Assessment - Even Semester 2018-19

Sub. Name: Advanced Calculus &

Sub. Code:18MAT21

Semester: II

Numerical Methods Date: 13-05-2019

Time: 9:00 AM

Duration: 90 Minutes

Max. Marks: 30

Instructions: Answer any two full questions as indicated below

SI. No.	QUESTIONS			RBT levels	Marks
V	a)	Find the partial differential equation given $\varphi(xy+z^2,x+y+z)=0$.	СОЗ	LI	04M
	b)	Determine the solution of $\frac{\partial^2 z}{\partial x \partial y} + 9x^2y^2 = \cos(2x - y)$	CO3	L2	05M
	3.12	given $z = 0$ when $y = 0$ and $\frac{\partial z}{\partial y} = 0$ when $x = 0$.			
	c)	Derive one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.	CO3	L3	06M
		OR			
2.	a)	Find the partial differential equation given $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.	CO3	LI	04M
	b)	Determine the solution of $(x^2 - y^2 - z^2)p + (2xy)q = (2xz)$.	CO3	L2	05M
	c)	Derive the various possible solutions of one dimensional heat equation	СОЗ	L3	06M
		$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}.$			

			-	Section 1997	-
3.	a)	Find the root of the equation $3x = \cos x + 1$ nearer to $x_0 = 0.6$ by Newton Raphson method. Perform two iterations.	CO5	LI	04M
	b)	Determine an interpolating polynomial using Newton's backward interpolation formula from the following data and hence find f (12.5).	CO5	L2	05M
		X 10 11 12 13			
		f(x) 22 24 28 34			
	c)	Use Simpson's $\left(\frac{3}{8}\right)^{th}$ rule to find the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ taking 6 parts.	CO5	L3	06M
		OR			
4.	a)	Find the fourth root of 12 correct to three decimal places by using Regula Falsi method.	CO5	LI	04M -
	b)	Determine f(4) by using divided difference formula given:	CO5	L2	05M
		x 0 2 3 6 f(x) -4 2 14 158			
	c)	Apply Lagrange's Method to find an interpolating polynomial from the	CO5	L3	06M
	-	following table and hence find f(3).			
		x 0 1 2 5			
	1	f(x) 2 3 12 147			6

CALL	\
 CIVI)