

**VORRICHTUNG ZUR KAPAZITIVEN DEHNUNGSMESSUNG**

**Publication number:** DE2715831

**Publication date:** 1978-10-19

**Inventor:** NORRIS ELWOOD B (US); YEAKLEY LESTER M (US)

**Applicant:** ELECTRIC POWER RES INST

**Classification:**

- **international:** G01B7/16; G01B7/16; (IPC1-7): G01B7/22

- **european:** G01B7/22

**Application number:** DE19772715831 19770407

**Priority number(s):** DE19772715831 19770407

**Report a data error here**

Abstract not available for DE2715831

---

Data supplied from the **esp@cenet** database - Worldwide

⑤

Int. Cl. 2:

**G 01 B 7/22**

⑯ BUNDESREPUBLIK DEUTSCHLAND



**DE 27 15 831 A 1**

⑪

## **Offenlegungsschrift 27 15 831**

⑫

Aktenzeichen: P 27 15 831.2

⑬

Anmeldetag: 7. 4. 77

⑭

Offenlegungstag: 19. 10. 78

⑯

Unionspriorität:

⑯ ⑯ ⑯

—

⑮

Bezeichnung: Vorrichtung zur kapazitiven Dehnungsmessung

⑯

Anmelder: Electric Power Research Institute, Inc., Palo Alto, Calif. (V.St.A.)

⑯

Vertreter: Vossius, V., Dipl.-Chem. Dr. rer.nat., Pat.-Anw., 8000 München

⑯

Erfinder: Norris, Elwood B.; Yeakley, Lester M.; San Antonio, Tex. (V.St.A.)

**DE 27 15 831 A 1**

DIPL.-CHEM. DR. VOLKER VOSSIUS  
PATENTANWALT

8 MÜNCHEN 86, 7. APR. 1977  
SIEBERTSTRASSE 4  
P.O. BOX 86 07 67  
PHONE: (0 89) 47 40 75  
CABLE ADDRESS: BENZOLPATENT MÜNCHEN  
TELEX 5-29453 VOPAT D

2715831

5 u.Z.: M 162

Case: 6092-1D

ELECTRIC POWER RESEARCH INSTITUTE, INC.  
Palo Alto, California, V.St.A.

10

"Vorrichtung zur kapazitiven Dehnungsmessung"

15

P a t e n t a n s p r ü c h e

1. Vorrichtung zur kapazitiven Deformationsmessung,  
gekennzeichnet durch mindestens zwei jeweils  
einen Spalt zwischen sich begrenzende Trägerplatten (10, 12,  
20 14), zwei auf der den Spalt begrenzenden Oberfläche einer  
Trägerplatte (12) angeordnete erregbare Kondensatorplatten  
(22, 24, 22', 24'), eine auf der den Spalt begrenzenden  
Oberfläche der anderen Trägerplatte (10, 14) und parallel  
zu den erregbaren Kondensatorplatten (22, 24, 22', 24') an-  
25 geordnete Kondensatormeßplatte (28, 28') und eine Blendenan-  
ordnung (32, 34, 32', 34') zwischen den Kondensatorplatten  
(22, 24 bzw. 22', 24') und der Kondensatormeßplatte (28 bzw.  
28') zur Veränderung der Differenz der Kapazitäten zwischen

L

809842/0134

J

ORIGINAL INSPECTED

- 1 den Kondensatorplatten (22, 24) bzw. (22', 24') und der Kondensatormeßplatte (28 bzw. 28') in Abhängigkeit einer Veränderung der Blendeneinstellung.
- 5 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Blendenanordnung (2) je mindestens eine Durchbrechung (32a bzw. 34a) aufweisende Blendenplatten (32, 34, 32', 34') aufweist, daß sich die Durchbrechungen (32a) der einen Blendenplatte (32, 32') mit den Durchbrechungen (34a) der anderen Blendenplatte (34, 34') überlappen, um dadurch Kondensatorpalte (C1, C2) zu bilden, deren Größe mit der Verschiebung der Blendenplatten (32, 34 bzw. 32', 34') relativ zueinander veränderbar ist, daß die Blendenplatten (32, 34, 32', 34') nach entgegengesetzten Seiten aus dem 15 Spalt herausragen und daß Kupplungsmittel (33, 35, 33') vorgesehen sind, um die aus dem Spalt herausragenden Abschnitte der Blendenplatten (32, 34, 32', 34) mit der Meßoberfläche zu verbinden, in der eine Deformation gemessen werden soll.
- 20 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Kupplungsmittel ein Paar von Abstandselementen (33, 35, 33') umfassen, die in ihrer Dicke dem Abstand zwischen den jeweils nach außen herausragenden Abschnitten der Blendenplatten (32, 34, 32', 34') und der 25 Meßoberfläche entsprechen.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die erregbaren Kondensatorplatten (22, 24, 22', 24') eine Mehrzahl langer, parallel  
809842/0134

1 und mit einem Abstand zueinander angeordneter fingerartiger Vorsprünge aufweisen, wobei die Vorsprünge einer Kondensatorplatte (22, 22') jeweils zwischen den Vorsprüngen der anderen Kondensatorplatte (24, 24') liegen.

5

5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie eine Oszillatoreinrichtung (60) umfaßt, um Wechselstromträgersignale an die erregbaren Kondensatorplatten (22, 24, 22', 24') anzulegen, wobei das an die eine erregbare Kondensatorplatte (22, 22' bzw. 24, 24') angelegte Trägersignal bezüglich des an die andere aktive Kondensatorplatte (24, 24' bzw. 22, 22') angelegten Trägersignals um  $180^\circ$  phasenverschoben ist, und daß ein phasenempfindlicher Detektor (165) vorgesehen ist zur Messung von Größe und Phase der durch die Blendenanordnung hindurch an die Kondensatormeßplatte (28, 28') gekoppelten Signale.

6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß drei stapelartig übereinander geschichtete Trägerplatten (10, 12, 14) vorgesehen sind, von denen je zwei einen Spalt zwischen sich definieren, daß in jedem Spalt mindestens ein kapazitätsveränderndes, verschiebbar angeordnetes und aus dem Spalt herausragendes Element angeordnet ist, daß der eine der zwischen je zwei Trägerplatten (10, 12 bzw. 12, 14) ausgebildeten Deformationsmesser (16, 16') gegenüber dem anderen Deformationsmesser (16', 16) um einen vorbestimmten Winkel verdreht angeordnet ist und daß Kupp lungsmittel (33, 35, 33') vorgesehen sind, um die nach außen herausragenden Abschnitte der kapazitätsverändernden Elemente L

1 mit der Meßoberfläche zu verbinden, in der eine Deformation  
gemessen werden soll.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet,  
5 daß der vorbestimmte Winkel etwa  $90^\circ$  beträgt,  
wodurch die Meßachsen der beiden Deformationsmesser (16, 16')  
orthogonal zueinander verlaufen.

8. Vorrichtung nach Anspruch 6 oder 7, dadurch  
10 gekennzeichnet, daß die Verbindungsmitte eine  
Mehrzahl von Abstandselementen (33, 35, 33') umfassen, die in  
ihrer Dicke dem Abstand zwischen den jeweils nach außen her-  
vorragenden Abschnitten der kapazitätsverändernden Elemente  
(32, 34, 32', 34') und der Meßoberfläche entsprechen.

15 9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch  
gekennzeichnet, daß die beiden Deformations-  
messer (16, 16') jeweils mindestens eine erregbare Konden-  
satorplatte (22, 24, 22', 24') an der Oberfläche einer spalt-  
begrenzenden Trägerplatte (12) und eine parallel zu der Kon-  
densatorplatte (22, 22', 24, 24') angeordnete Kondensatormeß-  
platte (28, 28') an der zum Spalt hinweisenden Oberfläche der  
anderen Trägerplatte (10, 14) aufweisen, wobei das kapazitäts-  
verändernde Element (32, 34, 32', 34') zwischen der Konden-  
satorplatte (22, 24, 22', 24') und der Kondensatormeßplatte  
(28, 28') liegt.

10. Vorrichtung nach Anspruch 9, dadurch gekenn-  
zeichnet, daß mit jeder der erregbaren Kondensator-

1 platten (22, 22', 24, 24') eine Oszillatoreinrichtung (60) zum Erzeugen eines Wechselstromträgersignals verbunden ist und daß ein Detektor (165) vorgesehen ist, um die durch die entsprechenden kapazitätsverändernden Elemente (32, 34,  
5 32', 34') hindurch mit den Kondensatormeßplatten (28, 28') gekuppelten Wechselstromträgersignale aufzunehmen.

11. Vorrichtung nach einem der Ansprüche 5 bis 10, dadurch  
gekennzeichnet, daß die Detektorvorrichtung  
10 einen mit der Kondensatormeßplatte (28) verbundenen Ladungsverstärker (62) aufweist und daß eine den Ausgang und den Eingang des Ladungsverstärkers (62) miteinander koppelnde Rückkopplungsschleife vorgesehen ist, um ein virtuelles Erdpotential am Verstärkereingang zu erzeugen.  
15

12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Rückkopplungsschleife einen Kondensator (66) aufweist.

20 13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß sie einen phasenempfindlichen Demodulator (165) aufweist, der mit dem Ausgang (64) des Ladungsverstärkers (62) verbunden ist.

25

DIPL.-CHEM. DR. VOLKER VOSSIUS  
PATENTANWALT

6

8 MÜNCHEN 88, 7. JUN 1977  
SIEBERTSTRASSE 4  
P.O. BOX 88 07 67  
PHONE: (0 89) 47 40 75  
CABLE ADDRESS: BENZOLPATENT MÜNCHEN  
TELEX 5-29452 VOPAT D

2715831

5 u.Z.: M 162

Case: 6092-1D

ELECTRIC POWER RESEARCH INSTITUTE, INC.

Palo Alto, California, V.St.A.

10

---

"Vorrichtung zur kapazitiven Dehnungsmessung"

---

15 Die Erfindung betrifft eine Vorrichtung zur Messung von Dehnungen oder Spannungen, insbesondere einen biaxialen kapazitiven Dehnungsmesser.

Es ist üblicherweise wünschenswert, die auf verschiedene Elemente einer Struktur einwirkenden Belastungen und Kräfte zu bestimmen, um sicherzustellen, daß diese Elemente in der geeigneten Weise konstruiert sind, um den auf sie einwirkenden Belastungen mit einem gewissen Sicherheitsspielraum standhalten zu können. Während in einfachen Strukturen bei Kenntnis der Belastungen die Spannungskräfte leicht berechnet werden können, werden diese Berechnungen für komplizierte Strukturen und/oder unbekannte Lasten unverhältnismäßig komplex und ihre Lösung ist in vielen Fällen praktisch unmöglich. So ist es in vielen Anwendungsbereichen wünschenswert, die Kräfte empirisch zu bestimmen. Im allgemeinen sind die Kräfte einer

809842/0134

1 direkten Messung nicht zugänglich. Vielmehr wird die mit der angreifenden Kraft in einer direkten funktionalen Beziehung stehende Dehnung oder Deformation des Materials unter Verwendung von Dehnungs- oder Spannungsmessern gemessen.

5

Ein Dehnungsmesser oder Dehnungsmefwandler ist eine Vorrichtung, welche eine Änderung einer elektrischen Größe in Abhängigkeit der Spannung oder der Deformation des Materials zeigt, mit dem sie verbunden ist. Der am weitesten verbreitete Typ ist der Widerstandsdehnungsmesser, umfassend einen Draht, der bei Dehnung eine Änderung seines elektrischen Widerstandes zeigt. Dieser Draht des Widerstandsdehnungsmessers wird an der Oberfläche des Materials, in dem eine Spannung gemessen werden soll, so befestigt, daß die auftretende Spannung oder Dehnung eine entsprechende Änderung des Widerstandes hervorruft. Eine geeignete elektronische Schaltung, die üblicherweise eine Wheatstone-Brücke umfaßt, dient dazu, die Änderung des Widerstandes und damit die Dehnung zu erfassen und zu messen.

10  
15  
20

Unglücklicherweise zeigen Drähte, welche die wünschenswerten Eigenschaften für eine Verwendung in Widerstandsdehnungsmessern aufweisen, im allgemeinen auch Änderungen des Widerstandes in Abhängigkeit von Temperaturänderungen. Für kurze Zeitabschnitte können diese Änderungen durch eine Temperaturkompensationsschaltung kompensiert werden. Längereres Einwirken von höheren Temperaturen aber kann zu Änderungen des Widerstandes führen, die durch unter der Bezeichnung "thermisches Altern" bekannte Erscheinungen hervorgerufen werden. Diese

1 Änderungen des Widerstandes können im allgemeinen nicht kompen-  
siert werden.

Eine andere Art von Dehnungsmessern oder Dehnungsmeßwandlern  
5 verwendet die Änderung einer Kondensatorkapazität in Abhängig-  
keit der Dehnung oder Spannung als Meßgröße. Die bisherigen  
kapazitiven Dehnungsmesser sind in der Weise ausgebildet, daß  
die operativen Elemente der Vorrichtung der Belastung ausge-  
setzt sind. In diesen kapazitiven Dehnungsmessern und in  
10 Widerstandsdehnungsmessern, bei denen in ähnlicher Weise das  
elektrische Widerstandselement den einwirkenden Kräften aus-  
gesetzt ist, ändern sich die elektrischen Eigenschaften der  
Meßvorrichtungen allmählich bei längerer Einwirkung einer Be-  
lastung als Folge einer permanenten Deformation der belaste-  
15 ten Elemente. Diese Erscheinungen werden allgemein als "Krie-  
chen" bezeichnet. Infolge des Kriechens und des thermischen  
Alterns sind Dehnungsmesser im allgemeinen instabil, wenn sie  
über lange Zeiträume und insbesondere bei hohen Temperaturen  
verwendet werden.

20 Im allgemeinen sind Dehnungsmesser einachsig, d.h. sie reagie-  
ren nur auf Dimensionsänderungen in einer einzigen Richtung.  
Um die Kräfte an einem Punkt genau bestimmen zu können, ist  
es aber notwendig, die Dehnung oder Spannung in mindestens  
25 zwei Richtungen zu messen, woraus sich die wahre Größe und  
Richtung der Spannung bestimmen läßt. Zu diesem Zwecke können  
zwei oder mehr Dehnungsmesser nahe beieinander und mit einer  
bestimmten Winkelstellung zueinander an der zu untersuchenden  
Oberfläche angebracht werden. Diese Annäherung wird ungenau,

- 1 wenn die tatsächlich gemessenen Spannungen nicht an exakt der gleichen Stelle auftreten. Daher sind im allgemeinen Dehnungsmesser vorzuziehen, die übereinandergeschichtet werden können, um auf diese Weise einen mehrachsigen Dehnungsmesser zu schaffen. Dieser kann auf in unterschiedlichen Richtungen wirkende Spannungen ansprechen, die im wesentlichen an ein und derselben Stelle der zu prüfenden Materialoberfläche registriert werden.
- 10 Der Erfindung liegt die Aufgabe zugrunde, einen kapazitiven Dehnungsmesser anzugeben, der eine verbesserte Langzeitstabilität aufweist und im wesentlichen unanfällig ist für thermisches Altern und Kriechen. Ferner soll der kapazitive Dehnungsmesser so ausgebildet sein, daß er für die Herstellung eines mehrachsigen kapazitiven Dehnungsmessers geeignet ist und bei einfacher Bauart zuverlässig und genau arbeitet.
- 20 zur Lösung dieser Aufgaben wird gemäß einer bevorzugten Ausführung der Erfindung ein zweiachsiger kapazitiver Dehnungsmesser mit einer lamellaren Schichtenstruktur vorgeschlagen, die zwei einachsige kapazitive Dehnungsmesser mit orthogonal zueinander liegenden Messrichtungen definiert. Jeder kapazitive Dehnungsmesser umfaßt aktive durch einen Oszillator erregte Kondensatorplatten und eine Kondensatormeßplatte, die 25 in einem Abstand zu den erregten Kondensatorplatten und parallel zu diesen angeordnet ist. Ein Blendenmechanismus in Form zweier mit Durchbrechungen versehenen Blendenplatten ist zwischen den aktiven Kondensatorplatten und den Kondensatormeßplatten angeordnet. Die Endabschnitte der mit Durch-

- 1 brechungen versehenen Blendenplatten ragen aus der Schichtenstruktur und sind mit der Oberfläche verbunden, in welcher eine Spannung oder Dehnung gemessen werden soll. Eine Spannung führt zu einer relativen Verschiebung zwischen den Blendenplatten,
- 5 was wiederum eine Änderung der durch die Durchbrechungen hindurch erfolgenden kapazitiven Kopplung zwischen der Kondensatormeßplatte und den aktiven Kondensatorplatten zur Folge hat.
- 10 Diese Kapazitätsdifferenz steht daher in einer funktionalen Beziehung zu der zu messenden Spannung und wird durch eine geeignete elektronische Vorrichtung registriert und gemessen.
- 15 In einer besonderen Ausführung werden die aktiven Kondensatorplatten jedes Dehnungsmessers durch zwei in der Amplitude gleiche aber um  $180^\circ$  gegeneinander phasenverschobene Signale erregt. Der von den Blendenplatten gebildete Blendenmechanismus bewirkt infolge der im Material auftretenden Spannung eine Abnahme der Kapazität zwischen der einen aktiven Kondensatorplatte und der Kondensatormeßplatte und gleichzeitig eine Zunahme der Kapazität zwischen der anderen aktiven Kondensatorplatte und der Kondensatormeßplatte. Die resultierende Änderung in den Signalniveaus wird von einem phasenempfindlichen Demodulator aufgenommen, der ein der Spannung proportionales Analogsignal erzeugt.
- 20
- 25 Da die den Blendenmechanismus bildenden Blendenplatten des kapazitiven Dehnungsmessers gemäß der vorliegenden Erfindung keinen Spannungskräften ausgesetzt sind, ist die Erscheinung des Kriechens im wesentlichen ausgeschaltet. Ferner werden

- 1 alle Kondensatorplatten in einer festen Zuordnung zueinander gehalten, um auf diese Weise die Erscheinungen des thermischen Alterns und Kriechens auf ein Minimum zu reduzieren. Damit erhält man einen kapazitiven Dehnungsmesser mit verbesserter
- 5 Langzeitstabilität. Die für den zweiachsigen kapazitiven Dehnungsmesser gemäß der vorliegenden Erfindung verwendete elektronische Vorrichtung ist relativ unbeeinflußt von Verstärkerdrift oder Störsignalen. Insbesondere können die Ausgänge des Dehnungsmessers auf einem virtuellen Erdpotential
- 10 gehalten werden durch Verwendung einer geeigneten negativen Rückkopplungsschleife in Verbindung mit den Verstärkern, die mit den Ausgängen des Dehnungsmessers verbunden sind. Wenn die Kapazitäten zwischen den aktiven Kondensatorplatten und der Kondensatormesplatte nicht im Gleichgewicht stehen, liefert
- 15 daher der Ausgang des Verstärkers über die Rückkopplungsschleife die notwendige Ladung, um den Eingang auf das virtuelle Erdpotential zu bringen. Wenn die Ausgangsleitungen des Dehnungsmessers auf dem Erdpotential liegen, gibt es keine kapazitive Kopplung zwischen diesen Leitungen und der Erde.
- 20 So kann ein geerdetes abgeschirmtes Kabel verwendet werden, um die Leitungen gegen Störsignale abzuschirmen. Die Drähte von beiden Kondensatormesplatten des zweiachsigen Dehnungsmessers können in der gleichen Abschirmung geführt werden, ohne daß ein "Übersprechen" stattfindet. Die Kabel können
- 25 lang ausgeführt sein und eine Umlaufung tragen, ohne daß dabei nachteilige Auswirkungen auftreten.

Weitere Merkmale und Vorteile ergeben sich aus der folgenden  
L Beschreibung, in der in Verbindung mit den beiliegenden

1 Zeichnungen die Erfindung anhand eines Ausführungsbeispiels  
erläutert wird. Es stellen dar:

5 Fig. 1 eine teilweise aufgebrochene perspektivische Ansicht  
eines zweiachsigen kapazitiven Dehnungsmessers gemäß  
einer bevorzugten Ausführungsform der vorliegenden  
Erfindung,

10 Fig. 2 einen Querschnitt durch die in Fig. 1 dargestellte  
Vorrichtung,

Fig. 3a und 3b Draufsichten auf die aktiven Kondensatorplat-  
ten der in Fig. 1 dargestellten Vorrichtung,

15 Fig. 4 eine teilweise aufgebrochene Draufsicht auf die  
den Blendenmechanismus bildenden Blendenplatten in  
der in Fig. 1 dargestellten Vorrichtung, und

20 Fig. 5 ein schematisches Diagramm des zweiachsigen kapazi-  
tiven Dehnungsmessers gemäß der Erfindung mit der  
zugehörigen elektronischen Schaltung.

25 In den Fig. 1 und 2 erkennt man einen allgemein mit A be-  
zeichneten zweiachsigen kapazitiven Dehnungsmesser gemäß  
einer bevorzugten Ausführungsform der Erfindung. Der Dehnungs-  
messer A umfaßt drei Trägerplatten oder Lamellen 10, 12 und  
14, die aufeinandergeschichtet sind, wobei jeweils zwei  
Lamellen 10, 12 bzw. 12, 14 einen Spalt zwischen sich be-

1 grenzen. Ein erster einachsiger kapazitiver Dehnungsmesser 16, der auf eine Spannung in einer ersten Richtung oder Achse anspricht, ist in dem Spalt zwischen den einander benachbarten und in einem Abstand zueinander angeordneten Oberflächen der  
5 Lamellen 10 und 12 ausgebildet. In gleicher Weise ist ein zweiter Dehnungsmesser 16' in dem Spalt zwischen den einander benachbarten und in einem Abstand zueinander angeordneten Oberflächen der Lamellen 12 und 14 ausgebildet. Der zweite Dehnungsmesser 16' spricht auf eine Spannung in einer zweiten  
10 Richtung oder Achse an, die in einem rechten Winkel zu der ersten Achse verläuft.

Gemäß der bevorzugten Ausführungsform der Erfindung ist der zweite Dehnungsmesser 16' in seinem Aufbau im wesentlichen  
15 identisch mit dem ersten Dehnungsmesser 16, jedoch gegenüber diesem um 90° versetzt, um dadurch die Meßachsen der Dehnungsmesser 16 und 16' orthogonal zueinander auszurichten. Es wird daher nur der erste Dehnungsmesser 16 im Detail beschrieben, wobei diese Beschreibung auch für den zweiten  
20 Dehnungsmesser 16' gilt. Zum leichteren Verständnis sind die in Verbindung mit dem ersten Dehnungsmesser 16 verwendeten Bezugsziffern in den Zeichnungen auch für entsprechende Elemente des zweiten Dehnungsmessers 16' verwendet worden unter Hinzufügen eines Striches. Das heißt die Elemente 22, 24  
25 usw. des ersten Dehnungsmessers 16 entsprechen Elementen 22', 24' usw. des zweiten Dehnungsmessers 16'.

Der Dehnungsmesser 16 umfaßt zwei aktive Kondensatorplatten

1 22 und 24, die auf der zum Spaltinneren hinweisenden Oberfläche  
der Lamelle 12 angeordnet sind. Die Kondensatorplatten 22 und  
24 werden als aktive Kondensatorplatten bezeichnet, da sie  
durch Signale von der in Verbindung mit dem Dehnungsmesser  
5 verwendeten elektronischen Einrichtung erregt werden. In  
Fig. 3a erkennt man, daß die aktiven Kondensatorplatten 22 und  
24 in einer Ebene liegen und jeweils mit einer Reihe von  
parallel zueinander liegenden länglichen Vorsprüngen oder  
Fingern ausgebildet sind, die an ihrer Basis miteinander ver-  
10 bunden sind. Die Finger der aktiven Kondensatorplatten 22  
und 24 greifen derart ineinander, daß die Finger der aktiven  
Kondensatorplatten 22 und 24 in alternierender Folge parallel  
zueinander in einer Reihe liegen. Wie man aus dem folgenden  
noch genauer erkennen wird, verlaufen die Finger der aktiven  
15 Kondensatorplatten 22 und 24 im wesentlichen senkrecht zur  
Spannungsmeßachse des Dehnungsmessers 16. So erkennt man aus  
Fig. 3b, in der die aktiven Kondensatorplatten 22' und 24'  
des zweiten Dehnungsmessers 16' dargestellt sind, daß die  
Kondensatorplatten 22' und 24' um  $90^\circ$  relativ zu den Konden-  
satorplatten 22 und 24 gedreht sind, wodurch die Spannungs-  
20 meßachse des Dehnungsmessers 16' rechtwinklig zur Spannungs-  
meßachse des Dehnungsmessers 16 verläuft.

Ein Überzug aus einem dielektrischen Material bedeckt die  
25 Kondensatorplatten 22 und 24. Der dielektrische Überzug 26  
dient zur Isolierung der aktiven Kondensatorplatten 22 und  
24 gegenüber den anderen Elementen des Dehnungsmessers 16.  
Eine Ecke der Kondensatorplatten 22 und 24 ist jeweils nicht

- 1 isoliert, so daß elektrische Leitungen 38 und 40 an den entsprechenden Kondensatorplatten 22 und 24 befestigt werden können, was üblicherweise durch Punktschweißen erfolgt.
- 5 Auf der zum Spaltinneren hinweisenden inneren Oberfläche der Lamelle 10 ist eine Kondensatormeßplatte 28 angeordnet. Die Kondensatormeßplatte 28 ist auf diese Weise parallel und in einem Abstand zu den aktiven Kondensatorplatten 22 und 24 gehalten. Die Kondensatormeßplatte 28 hat allgemein eine
- 10 rechteckige Form, entsprechend dem von den Fingern der Kondensatorplatte 22 und 24 eingenommenen Bereich. Die Kondensatormeßplatte 28 wird so genannt, weil sie mit einer geeigneten elektronischen Vorrichtung zum Messen der Änderung in der Kapazitätsdifferenz der aktiven Platten 22 und 24 verbunden ist. Eine elektrische Leitung 36 ist daher an der Kondensatormeßplatte 28 befestigt, und zwar vorzugsweise
- 15 durch Punktschweißen an einer Ecke der Kondensatormeßplatte 28. Die Oberfläche der Kondensatormeßplatte 28 ist von einer dielektrischen Schicht 30 bedeckt, ähnlich dem die Kondensatorplatten 22 und 24 bedeckenden dielektrischen Überzug 26, um die Kondensatormeßplatte 28 von den übrigen Elementen des Dehnungsmessers 16 zu isolieren.

Wie man aus den Fig. 2 und 4 erkennt, ist zwischen den aktiven Kondensatorplatten 22 und 24 und der Kondensatormeßplatte 28 ein Blendenmechanismus in Form von mit Durchbrechungen versehenen Blendenplatten 32 und 34 angeordnet. Die Blendenplatten 32 und 34 sind in dem zwischen den Lamellen 10 und 12 definierten Spalt so gelagert, daß sie längs der

1 Spannungsmeßachse des Dehnungsmessers 16 bewegt werden können.  
Die Blendenplatten 32 und 34 erstrecken sich nach entgegen-  
gesetzten Seiten über die Lamellen 10 und 12 hinaus, so daß sie  
mit der Oberfläche verbunden werden können, in der eine Dehnung  
5 oder Spannung gemessen werden soll. Zu diesem Zweck sind an  
den äußeren Enden der Blendenplatten 32 und 34 Distanzelemente  
33 bzw. 35 befestigt. Die Dicke der Distanzelemente 33 und 35  
entspricht dem Abstand zwischen den Blendenplatten 32 und 34  
und der Oberfläche, in der eine Deformation  
10 bzw. Dehnung gemessen werden soll. Daher führt ein Zusammen-  
drücken oder Dehnen der Oberfläche, in welcher eine Spannung  
gemessen werden soll, zu einer Verschiebung der Blendenplat-  
ten 32 und 34 relativ zueinander. Diese Verschiebung wird da-  
zu verwendet, eine Kapazitätsdifferenz zwischen den aktiven  
15 Kondensatorplatten 22 und 24 und der Kondensatormeßplatte 28  
zu erzeugen.

Wie man in Fig. 4 erkennt, weisen die Blendenplatten 32 und  
34 jeweils eine Mehrzahl von rechteckigen Durchbrechungen  
20 auf, die mit 32a bzw. 34a bezeichnet sind. Die Durchbrechun-  
gen 32a und 34a sind parallel zu den Fingern der aktiven  
Kondensatorplatten 22 und 24 ausgerichtet. Wenn die Blenden-  
platten 32 und 34 übereinander liegen, sind die Durchbrechun-  
gen 32a und 34a gegeneinander versetzt und bilden dadurch eine  
25 Vielzahl von länglichen rechteckigen, durch die Platten 32 und  
34 hindurch offenen Durchtrittsschlitzten. Genauer gesagt ist  
jede der Durchbrechungen 32a bezüglich zweier benachbarter  
Durchbrechungen 34a so zentriert, daß zwei durch die einander

- 1 Überlappenden Abschnitte der Durchbrechungen 32a und 34a hindurch offene Kondensatorspalte C1 und C2 gebildet sind. Die Zahl der Kondensatorspalte C1 und C2 ist also doppelt so groß wie die Zahl der Durchbrechungen 32a und 34a in den  
5 Blendenplatten 32 bzw. 34.

Auf diese Weise ist eine alternierende Reihe von Kondensatorspalten C1 und C2 gebildet, die sich voneinander in der Weise unterscheiden, daß ihre Abmessungen in entgegengesetzter Weise  
10 variieren, wenn die Blendenplatten 32 und 34 relativ zueinander verschoben werden. So bewirkt eine Einwärtsbewegung der Blendenplatten 32 und 34 eine Verringerung des Kondensatorspaltes C1, während gleichzeitig der Kondensatorspalt C2 vergrößert wird. In dem Dehnungsmesser sind also die Kondensatorspalte C1 nahe den Fingern der Kondensatorplatte 22 angeordnet,  
15 die Kondensatorspalte C2 dagegen nahe den Fingern der Kondensatorplatte 24. Entsprechend führt eine Einwärtsverschiebung der Blendenplatten 32 und 34 zu einer Abnahme der Kapazität zwischen der Kondensatorplatte 22 und der Kondensatormeßplatte 28, während gleichzeitig die Kapazität zwischen der  
20 Kondensatorplatte 24 und der Kondensatormeßplatte 28 vergrößert wird. In ähnlicher Weise führt eine Auswärtsbewegung der Blendenplatten 32 und 34 zu einer Vergrößerung der Kapazität zwischen der Kondensatorplatte 22 und der Kondensatormeßplatte 28, wogegen gleichzeitig die Kapazität zwischen der  
25 Kondensatorplatte 24 und der Kondensatormeßplatte 28 verkleinert wird.

L Das Arbeitsprinzip des Dehnungsmessers liegt also darin, daß L  
809842/0134

- 1 jeweils die Tatsächlichkapazität zwischen der Kondensatormeßplatte 28 und der Kondensatorplatte 22 bzw. 24 durch die relative Lage der Blendenplatten bestimmt ist. Die tatsächliche Kapazität zwischen der Kondensatorplatte 22 und der Kondensatormeßplatte 28 ist der Fläche des Kondensatorspaltes  $C_1$  proportional. Wird nur ein Kondensatorspalt  $C_1$  betrachtet, ergibt sich unter Vernachlässigung von Randeffekten für die Kapazität zwischen der Kondensatorplatte 22 und der Kondensatormeßplatte 28:

10

$$C_1 = k \cdot x_1 \cdot l_c$$

Dabei ist  $k$  eine Proportionalkonstante, deren Wert vom Plattenabstand und der Dielektrizitätskonstante abhängt.

- 15 Entsprechend ergibt sich für die Kapazität zwischen der Kondensatorplatte 24 und der Kondensatormeßplatte 28:

$$C_2 = k \cdot x_2 \cdot l_c$$

- 20 Für die Kapazitätsdifferenz erhält man daher:

$$C_d = C_1 - C_2 = k \cdot l_c \cdot (x_1 - x_2)$$

da aber

$$x_c = x_1 + x_a + x_2$$

- 25 folgt

$$C_d = k \cdot l_c \cdot (2x_1 + x_a - x_c).$$

Dabei ist mit  $l_c$  die Länge eines Schlitzes 34a, mit  $x_a$  die

- L Breite eines Steges zwischen zwei einander benachbarten Durch-

809842/0134

- 1 brechungen 32a, mit  $x_c$  die Breite einer Durchbrechung 34a, mit  $x_1$  die Breite eines Kondensatorspaltes  $C_1$  und mit  $x_2$  die Breite eines Kondensatorspaltes  $C_2$  bezeichnet.
- 5 Die Kapazitätsdifferenz ist also eine Funktion der relativen Lage der Blendenplatten 32 und 34 sowie der Dimensionen der Durchbrechungen 32a und 34a und der Konstante k.

10 Die Ansprechgenauigkeit des Dehnungsmessers auf eine Relativverschiebung der Blendenplatten 32 und 34 wird ausgedrückt durch:

$$K_x = N \cdot \frac{dC_d}{dx_1} = 2N \cdot k l_c$$

15 Dabei gibt N die Anzahl der Durchbrechungen 32a bzw. 34a an, von denen bei der vorstehenden Analyse nur eine betrachtet wurde.

20 Wie oben bereits kurz ausgeführt wurde, ist der zum Dehnungsmesser 16 orthogonal ausgerichtete Dehnungsmesser 16' mit dem Dehnungsmesser 16 hinsichtlich des Aufbaus und der Arbeitsweise im wesentlichen identisch. Natürlich soll der Dehnungsmesser 16' auf orthogonal zur Spannungsmeßachse des Dehnungsmessers 16 gerichtete Deformationen ansprechen und daher sind alle Elemente des Dehnungsmessers 16' gegenüber den entsprechenden Elementen des Dehnungsmessers 16 um  $90^\circ$  gedreht.

25 Im übrigen stimmen Aufbau und Arbeitsweise mit der vorstehenden Beschreibung überein.

1 Der zweiachsige kapazitive Dehnungsmesser A gemäß der bevor-  
zugten Ausführungsform der vorliegenden Erfindung umfaßt  
Sicherungseinrichtungen gegen Interferenzerscheinungen und  
Störsignale. Insbesondere sind ein Paar von Abschirmplatten  
5 20 an den äußeren Oberflächen der Lamellen 10 bzw. 14 vorge-  
sehen, die an der Abschirmung des Dehnungsmessers A geerdet  
sind. In der gleichen Weise sind die Blendenplatten 32, 34,  
32' und 34' geerdet. Wenn der Dehnungsmesser A auf einer geer-  
deten Metallocberfläche befestigt wird, kann die Erdung der  
10 jeweiligen Platten durch Berührung mit der Oberfläche erfol-  
gen, in der eine Deformation gemessen werden soll. Im anderen  
Fall, wenn der Dehnungsmesser A auf einer isolierten oder  
nicht geerdeten Oberfläche verwendet werden soll, sollten  
Erdungsleitungen zu den Blendenplatten vorgesehen sein. Zu-  
15 sätzlich zu der Abschirmung durch die Abschirmplatten 20 und  
die Blendenplatten 32 bzw. 34 erfolgt eine zusätzliche Isolie-  
rung gegen Interferenzerscheinungen und Störsignale aus der  
Art der elektronischen Einrichtung, die zusammen mit dem  
Dehnungsmesser A verwendet wird und nun im folgenden beschrie-  
20 ben werden soll.

Unter Bezugnahme auf Fig. 5 soll nun die zusammen mit dem  
Dehnungsmesser A verwendete elektronische Einrichtung genauer  
beschrieben werden. Da die Dehnungsmesser 16 und 16' im  
25 wesentlichen unabhängig voneinander sind, ist eine doppel-  
kanalige Ausführung der elektronischen Einrichtung für die  
beiden Dehnungsmesser 16 und 16' vorgesehen, mit der Ausnahme,  
daß ein einziger Signalgeber zum Erregen der Dehnungsmesser

- 1 verwendet werden kann. Der Dehnungsmesser 16 wird von einem  
5 einen sehr niedrigen Ausgangswiderstand aufweisenden Oszilla-  
tor 60 her durch zwei gegeneinander um  $180^{\circ}$ -phasenversetzte  
Trägersignale gleicher Amplitude erregt. Die Leitung 38  
10 verbindet also einen ersten Phasenausgang des Oszillators  
60 mit der Kondensatorplatte 22. Entsprechend verbindet die  
Leitung 40 den Ausgang für die zweite Phase (um  $180^{\circ}$  gegenüber  
der ersten Phase phasenversetzt) des Oszillators 60 mit der  
Kondensatorplatte 24. Da ein einziger Oszillator 60 zur Er-  
15 regung beider Dehnungsmesser 16 und 16' verwendet werden kann,  
sind die Kondensatorplatten 22 und 22' parallel zueinander  
an die Leitung 38 und die Kondensatorplatten 24 und 24'  
parallel zueinander an die Leitung 40 angeschlossen.
- 20 15 Der Dehnungsmesser 16 kann mit zwei veränderbaren Kondensa-  
toren verglichen werden, die miteinander in der Weise ge-  
koppelt sind, daß ihre Kapazitäten sich invers zueinander  
ändern, wie dies in Fig. 5 dargestellt ist. Die Ausgänge  
der beiden Kondensatoren fallen zusammen in der Kondensator-  
platte 28, die mit einer Ausgangsleitung 36 verbunden ist.  
25 Ohne eine erzwungene Spannung oder Deformation sind die  
von den Blendenplatten 32 und 34 gebildeten Kondensator-  
spalte C1 und C2 im wesentlichen identisch in ihrer Größe,  
so daß gleiche Amplituden des ersten in Phase befindlichen  
Oszillatorsignales und des zweiten oder phasenversetzten  
25 Oszillatorsignales mit der Kondensatormeßplatte 28 ge-  
koppelt werden. Die Signale gleicher Amplitude löschen einan-  
der aus, so daß das Ausgangssignal des Dehnungsmessers 16  
bei nicht vorhandener Deformation gleich Null ist. Ein Zu-

1 sammendrücken der Oberfläche, an der eine Deformation gemessen  
werden soll, führt zu einer Verengung der Kondensatorspalte  
C1 und gleichzeitig zu einer Erweiterung der Kondensator-  
schlitze C2. Daraus ergibt sich eine Reduzierung der Amplitude  
5 des durch die Kondensatorschlitz C1 mit der Kondensatormeß-  
platte 28 gekoppelten, in Phase befindlichen Oszillatorsignals  
und gleichzeitig eine Vergrößerung der Amplitude des durch  
die Kondensatorspalte C2 hindurch mit der Kondensatormeßplatte  
28 gekoppelten phasenverschobenen Oszillatorsignal. Eine  
10 Druckdeformation verursacht also ein phasenverschobenes Aus-  
gangssignal an der Ausgangsleitung 36. Entsprechend bewirkt  
eine Dehnungsdeformation die Vergrößerung der Kondensator-  
spalte C1 und eine Verengung der Kondensatorspalte C2, was  
zu einem in Phase befindlichen Ausgangssignal an der Ausgangs-  
15 leitung 36 führt.

Um das an der Ausgangsleitung 36 auftauchende Signal aufzu-  
nehmen und zu messen, ist die Ausgangsleitung 36 an den Ein-  
gang eines Ladungsverstärkers 62 zur Verstärkung des Signals  
20 angeschlossen. Der Ladungsverstärker 62 weist einen Rück-  
kopplungskondensator 66 auf, der den Ausgang 64 mit dem Ein-  
gang an der Ausgangsleitung 36 koppelt. Die durch den Rück-  
kopplungskondensator 66 bewirkte negative Rückkopplung dient  
dazu, die Ausgangsleitung 36 auf einem virtuellen Erdpotential  
25 zu halten. Insbesondere hat also das Auftauchen eines Signals  
in der Ausgangsleitung 36 zur Folge, daß genügend Ladung auf  
den Rückkopplungskondensator 66 zurückfließt, um die Aus-  
gangsleitung 36 auf ein virtuelles Erdpotential zu bringen.  
Durch das Halten der Ausgangsleitung 36 auf einem virtuellen

- 1 Erdpotential wird die Empfindlichkeit der Anordnung gegenüber einer Änderung der Kabelkapazität und gegenüber Störsignalen weiter vermindert. Darüberhinaus kann die Ausgangsleitung 36 in einem einfachen geerdeten Abschirmkabel ohne nachteilige  
5 Auswirkungen geführt werden. Die mit dem orthogonal ausgerichteten Dehnungsmesser 16' verbundene Ausgangsleitung 36' kann in dem gleichen Abschirmkabel parallel zur Leitung 36 verlaufen.
- 10 Der Ausgang 64 des Ladungsverstärkers 62 kann mit einem phasenempfindlichen Detektor 165 zur Erzeugung eines einfachen Gleichstromsignales verbunden sein, das proportional zur Kapazitätsdifferenz und damit proportional zur Deformation ist. Der Detektor 165, beispielsweise ein Demodulator, dient  
15 dazu, die Wechselstromträgersignale zu eliminieren, die sachliche Amplitudeninformation aber zu erhalten. Der Demodulator ist vorzugsweise phasenempfindlich, um eine Unterscheidung zwischen kompressiven und extensiven Deformationen treffen zu können, die entsprechend der vorstehenden Beschreibung Ausgangssignale entgegengesetzter Phase erzeugen.  
20

Für die Konstruktion eines zweiachsigen kapazitiven Dehnungsmessers A entsprechend der vorliegenden Erfindung kann eine Vielzahl von Materialien verwendet werden. Es wurde jedoch  
25 gefunden, daß bestimmte Materialien für die Verwendung des Dehnungsmessers in Umgebungen mit hoher Temperatur besonders geeignet sind. So sind die Lamellen 10, 12 und 14 vorzugsweise aus Aluminium hergestellt, während die Kondensatorplatten 22, 24, 22', 24', die Kondensatormeßplatten 28 und 28'  
L 809842/0134

- 1 und die Abschirmplatten 20 vorzugsweise aus auf die Oberfläche  
der Lamellen 10, 12 und 14 aufgedrucktem Platin bestehen. Die  
Blendenplatten 32, 34, 32' und 34' sind vorzugsweise aus rost-  
freiem Stahl hergestellt. Die Durchbrechungen 32a, 34a, 32a'  
5 und 34a' werden üblicherweise durch ein übliches Fotoätzver-  
fahren erzeugt. Die dielektrischen Isolierschichten 26, 30,  
26' und 30' können im wesentlichen von einem dünnen Keramik-  
film gebildet sein. Die Leitungen 36, 36', 38 und 40 können  
aus Nickel hergestellt sein. Alle diese Materialien wurden  
10 aufgrund ihres Widerstandes gegen eine Oxidation bei hohen  
Temperaturen ausgewählt, wodurch die bevorzugte Ausführungs-  
form der vorliegenden Erfindung besonders geeignet ist für  
die Verwendung in Umgebungen mit hohen Temperaturen. So wurde  
beispielsweise eine erfindungsgemäße Konstruktion über lange  
15 Zeiträume bei Temperaturen von annähernd  $593,6^{\circ}\text{C}$  ( $1100^{\circ}\text{F}$ )  
erfolgreich verwendet. Natürlich können auch andere für eine  
gegebene Umgebung geeignete und die erforderlichen elektrischen  
Eigenschaften aufweisenden Materialien verwendet werden.
- 20 Der wesentliche Teil der zwischen den Kondensatorplatten  
einerseits und der Kondensatormeßplatte andererseits ent-  
wickelten Kapazität ist eine Folge des Luftspaltes zwischen  
den Platten. Der Dehnungsmesser A kann jedoch auch mit irgend-  
einer nicht leitenden Flüssigkeit in dem Spalt zwischen diesen  
25 Platten arbeiten, so lange diese Flüssigkeit die Bewegung  
der Blendenplatten 32, 34, 32' und 34' nicht physisch be-  
hindert.

1 Der Dehnungsmesser A gemäß der vorliegenden Erfindung kann in  
jeder beliebigen Größe gebaut werden. Eine geeignete Aus-  
führungsform weist einen Lamellenstapel von im wesentlichen  
quadratischem Grundriß auf mit einer Kantenlänge von 12,7 mm  
5 und einer Höhe von 2,31 mm. Eine bevorzugte Nenndicke für alle  
Platten und Schichten mit Ausnahme der Lamellen 10, 12 und 14  
ist 0,0254 mm. Es wurde gefunden, daß bei einer derartigen  
Konstruktion eine Zahl von vier Durchbrechungen 32a oder 34a  
in den Blendenplatten 32 oder 34 geeignet ist. Entsprechend  
10 weisen bei dieser Ausführungsform die Kondensatorplatten 22  
und 24 jeweils vier längliche Vorsprünge oder Finger auf,  
wobei vier Kondensatorspalte C1 zur Kopplung der Kondensator-  
platte 22 an die Kondensatormeßplatte 28 und vier Kondensator-  
spalte C2 zur Kopplung der Kondensatorplatte 24 an die Konden-  
15 satormeßplatte 28 vorhanden sind. Natürlich können je nach der  
gewünschten Größe und Form des Dehnungsmessers auch andere  
Abmessungen und Anzahlen von Durchbrechungen und Spalten ver-  
wendet werden.

20

25

- 27 -

**Nummer:** 27 15 831  
**Int. Cl.2:** G 01 B 7/22  
**Anmeldetag:** 7. April 1977  
**Offenlegungstag:** 19. Oktober 1978

2715831



FIG - 5

809842/0134

2715831 -26 -



FIG -2



## FIG\_3a



FIG\_3b



FIG\_4

809842 / 0134