

Predicting the Winning Football Team

Can we design a predictive model capable of accurately predicting if the home team will win a football match?

alt text

Steps

- 1. We will clean our dataset
- 2. Split it into training and testing data (12 features & 1 target (winning team (Home/Away/Draw))
- 3. Train 3 different classifiers on the data -Logistic Regression -Support Vector Machine -XGBoost
- 4. Use the best Classifer to predict who will win given an away team and a home team

History

Sports betting is a 500 billion dollar market (Sydney Herald)

Kaggle hosts a yearly competiton called March Madness

 $\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}}) \\ \underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}}) \\ \underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}}) \\ \underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}}) \\ \underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels}} (\underline{\text{https://www.kaggle.com/c/march-mac$

Several Papers on this

https://arxiv.org/pdf/1511.05837.pdf (https://arxiv.org/pdf/1511.05837.pdf)

"It is possible to predict the winner of English county twenty twenty cricket games in almost two thirds of instances."

https://arxiv.org/pdf/1411.1243.pdf (https://arxiv.org/pdf/1411.1243.pdf)

"Something that becomes clear from the results is that Twitter contains enough information to be useful for predicting outcomes in the Premier League"

https://gz.com/233830/world-cup-germany-argentina-predictions-microsoft/ (https://gz.com/233830/world-cup-germany-argentina-predictions-microsoft/)

For the 2014 World Cup, Bing correctly predicted the outcomes for all of the 15 games in the knockout round.

So the right questions to ask are

-What model should we use? -What are the features (the aspects of a game) that matter the most to predicting a team win? Does being the home team give a team the advantage?

Dataset

- Football is played by 250 million players in over 200 countries (most popular sport globally)
- . The English Premier League is the most popular domestic team in the world
- · Retrived dataset from http://football-data.co.uk/data.php (http://football-data.co.uk/data.php)

	Home Wins	Away Wins	Draws	Total
Overall	2659	1580	1461	5700

Aggregate Result Statistics

- · Football is a team sport, a cheering crowd helps morale
- · Familarity with pitch and weather conditions helps
- · No need to travel (less fatigue)

Acrononyms https://rstudio-pubs-static.s3.amazonaws.com/179121_70eb412bbe6c4a55837f2439e5ae6d4e.html (https://rstudio-pubs-static.s3.amazonaws.com/179121_70eb412bbe6c4a55837f2439e5ae6d4e.html)

Other repositories

- https://github.com/rsibi/epl-prediction-2017 (https://github.com/rsibi/epl-prediction-2017) (EPL prediction)
- https://github.com/adeshpande3/March-Madness-2017 (https://github.com/adeshpande3/March-Madness-2017) (NCAA prediction)

Import Dependencies In []: #data preprocessing

```
import pandas as pd
        #produces a prediction model in the form of an ensemble of weak prediction models, typically decision tree
        import xgboost as xgb
        #the outcome (dependent variable) has only a limited number of possible values.
        #Logistic Regression is used when response variable is categorical in nature.
        from sklearn.linear_model import LogisticRegression
        #A random forest is a meta estimator that fits a number of decision tree classifiers
        #on various sub-samples of the dataset and use averaging to improve the predictive
        #accuracy and control over-fitting.
        from sklearn.ensemble import RandomForestClassifier
        #a discriminative classifier formally defined by a separating hyperplane.
        from sklearn.svm import SVC
        #displayd data
        from IPython.display import display
        %matplotlib inline
In [2]: # Read data and drop redundant column.
        data = pd.read_csv('final_dataset.csv')
        # Preview data
        display(data.head())
```

#Input - 12 other features (fouls, shots, goals, misses,corners, red card, yellow cards)
#Output - Full Time Result (H=Home Win, D=Draw, A=Away Win)

	FTR	HTP	ATP	HM1	HM2	НМ3	AM1	AM2	АМ3	HTGD	ATGD	DiffFormPts	DiffLP
30	Н	1.25	1.00	D	D	W	D	W	L	0.50	0.25	0.25	-16.0
31	NH	0.75	0.25	L	L	W	D	L	L	-0.50	-0.75	0.50	-2.0
32	Η	1.00	1.00	L	D	W	D	W	L	0.00	0.25	0.00	-3.0
33	NH	0.75	0.50	L	L	W	D	L	D	-0.25	-0.25	0.25	3.0
34	NH	1.00	1.50	D	L	W	W	W	L	0.00	0.75	-0.50	3.0

#Full Time Result (H=Home Win, D=Draw, A=Away Win)

#DiffLP - Differnece in Last years prediction

#HTGD - Home team goal difference #ATGD - away team goal difference #HTP - Home team points #ATP - Away team points #DiffFormPts Diff in points

Data Exploration

```
In [3]: #what is the win rate for the home team?
        # Total number of matches.
        n_matches = data.shape[0]
        # Calculate number of features. -1 because we are saving one as the target variable (win/lose/draw)
        n_features = data.shape[1] - 1
        # Calculate matches won by home team.
        n homewins = len(data[data.FTR == 'H'1)
        # Calculate win rate for home team.
        win_rate = (float(n_homewins) / (n_matches)) * 100
        # Print the results
        print "Total number of matches: {}".format(n_matches)
        print "Number of features: {}".format(n_features)
        print "Number of matches won by home team: {}".format(n homewins)
        print "Win rate of home team: {:.2f}%".format(win_rate)
        Total number of matches: 5600
        Number of features: 12
        Number of matches won by home team: 2603
        Win rate of home team: 46.48%
In [4]: # Visualising distribution of data
        from pandas.tools.plotting import scatter_matrix
        #the scatter matrix is plotting each of the columns specified against each other column.
        #You would have observed that the diagonal graph is defined as a histogram, which means that in the
        #section of the plot matrix where the variable is against itself, a histogram is plotted.
        #Scatter plots show how much one variable is affected by another.
        #The relationship between two variables is called their correlation
        #negative vs positive correlation
        #HTGD - Home team goal difference
        #ATGD - away team goal difference
        #HTP - Home team points
        #ATP - Away team points
        #DiffFormPts Diff in points
        #DiffLP - Differnece in Last years prediction
        scatter_matrix(data[['HTGD','ATGD','HTP','ATP','DiffFormPts','DiffLP']], figsize=(10,10))
Out[4]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000000003A7BA90>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000A28B908>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000A1481D0>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000A1E9BA8>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000A0B3470>.
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000AA29470>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x0000000000AAE5DD8>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000AA38208>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000000000ACE4400>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000AD5EC88>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000000000AE9B5F8>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000AF56F60>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x0000000000AFF3EB8>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000000000B159860>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000000000B18DE80>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000000000B2CAE48>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000B3D5710>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000B4BA978>],
               [<matplotlib.axes._subplots.AxesSubplot object at 0x0000000000B544240>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000B625D68>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000B744860>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x00000000008813128>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000088B5A20>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000B9E82E8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x000000000BA4E320>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000BB48C88>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000BC0D2E8>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000BCEB8D0>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000000000BDF9198>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000BE9E128> ],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x000000000BF989B0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000BFCEE80>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x000000000C18BFD0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x00000000000253898>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000000C2F8B00>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x00000000C4053C8>]], dtype=object)
```


Preparing the Data

In [5]: # Separate into feature set and target variable

#FTR = Full Time Result (H=Home Win, D=Draw, A=Away Win)

```
X_{all} = data.drop(['FTR'],1)
                     y_all = data['FTR']
                     # Standardising the data.
                     from sklearn.preprocessing import scale
                     #Center to the mean and component wise scale to unit variance.
                     cols = [['HTGD','ATGD','HTP','ATP','DiffLP']]
                      for col in cols:
                               X_all[col] = scale(X_all[col])
In [6]: #Last 3 wins for both sides
                      X_all.HM1 = X_all.HM1.astype('str')
                     X_all.HM2 = X_all.HM2.astype('str')
                     X all.HM3 = X all.HM3.astype('str')
                     X_all.AM1 = X_all.AM1.astype('str')
                     X_all.AM2 = X_all.AM2.astype('str')
                     X_all.AM3 = X_all.AM3.astype('str')
                     #we want continous vars that are integers for our input data, so lets remove any categorical vars
                     def preprocess_features(X):
                                        Preprocesses the football data and converts catagorical variables into dummy variables. '''
                                # Initialize new output DataFrame
                               output = pd.DataFrame(index = X.index)
                                # Investigate each feature column for the data
                                for col, col_data in X.iteritems():
                                          # If data type is categorical, convert to dummy variables
                                          if col_data.dtype == object:
                                                     col_data = pd.get_dummies(col_data, prefix = col)
                                          # Collect the revised columns
                                          output = output.join(col_data)
                                return output
                     X_all = preprocess_features(X_all)
                     print "Processed feature columns ({} total features):\n{}".format(len(X_all.columns), list(X_all.columns))
                      Description of the continue of
```

```
rrocessed reacure columns (z4 total reacures).
['HTP', 'ATP', 'HM1_D', 'HM1_L', 'HM1_W', 'HM2_D', 'HM2_L', 'HM2_W', 'HM3_D', 'HM3_L', 'HM3_L', 'AM1_D', 'AM1_L', 'AM1_W', 'AM2_D', 'AM2_L', 'AM3_D', 'AM3_L', 'AM3_L', 'HTGD', 'ATGD', 'DiffformPts', 'DifffPr]
```

In [7]: # Show the feature information by printing the first five rows
print "\nFeature values:"
display(X all. head())

Feature values:

	HTP	ATP	HM1_D	HM1_L	HM1_W	HM2_D	HM2_L	HM2_W	HM3_D	HM3_L	 AM2_D	AM2_L	AM2_W	ļ
30	-0.043829	-0.611968	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	(
31	-1.120644	-2.238746	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	1.0	0.0	(
32	-0.582236	-0.611968	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	C
33	-1.120644	-1.696487	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	1.0	0.0	1
34	-0.582236	0.472551	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0	1.0	C

```
5 rows × 24 columns
```

Training and Evaluating Models

```
In [9]: #for measuring training time
        from time import time
        # F1 score (also F-score or F-measure) is a measure of a test's accuracy.
        #It considers both the precision p and the recall r of the test to compute
        #the score: p is the number of correct positive results divided by the number of
        \#all positive results, and r is the number of correct positive results divided by
        #the number of positive results that should have been returned. The F1 score can be
        #interpreted as a weighted average of the precision and recall, where an F1 score
        #reaches its best value at 1 and worst at 0.
        from sklearn.metrics import f1_score
        def train_classifier(clf, X_train, y_train):
             ''' Fits a classifier to the training data. '''
            # Start the clock, train the classifier, then stop the clock
            start = time()
            clf.fit(X_train, y_train)
            end = time()
            # Print the results
            print "Trained model in {:.4f} seconds".format(end - start)
        def predict_labels(clf, features, target):
               Makes predictions using a fit classifier based on F1 score. '''
            # Start the clock, make predictions, then stop the clock
            start = time()
            y_pred = clf.predict(features)
            end = time()
            # Print and return results
            print "Made predictions in {:.4f} seconds.".format(end - start)
            return f1_score(target, y_pred, pos_label='H'), sum(target == y_pred) / float(len(y_pred))
        def train_predict(clf, X_train, y_train, X_test, y_test):
               Train and predict using a classifer based on F1 score. '''
            # Indicate the classifier and the training set size
            print "Training a {} using a training set size of {}...".format(clf.__class__.__name__, len(X_train
        ))
            # Train the classifier
            train_classifier(clf, X_train, y_train)
            # Print the results of prediction for both training and testing
```

```
f1, acc = predict_labels(clf, X_train, y_train)
print f1, acc
print "F1 score and accuracy score for training set: {:.4f} , {:.4f}.".format(f1 , acc)

f1, acc = predict_labels(clf, X_test, y_test)
print "F1 score and accuracy score for test set: {:.4f} , {:.4f}.".format(f1 , acc)
```

Logistic Regression

What is 'Logistic Regression'?

- · Logistic regression in a nutshell:
 - Logistic regression is used for prediction of the probability of occurrence of an event by fitting data to a logistic curve.
 - Logistic regression makes use of several predictor variables that may be either numerical or categorical.
 - For example, the probability that a person has a heart attack within a specified time period might be predicted from knowledge of the person's age, sex and body mass index.
 - Logistic regression is used extensively in the medical and social sciences as well as marketing applications such as prediction of a customer's propensity to purchase a product or cease a subscription.

Support Vector Machine

4/84

Support Vector Machine (SVM):

- Basic idea:
- The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.

 $\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$ · Formulation as a convex optimization problem Find the hyperplane satisfying

$$\begin{aligned} \arg\min_{\mathbf{w},b} \frac{1}{2}\|\mathbf{w}\|^2 \\ \text{under the constraints} \\ t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \geq 1 \quad \forall n \\ \text{based on training data points } x_n \text{ and target values } t_n \in \{-1,1\}. \end{aligned}$$

XGBoost


```
) = 2 + 0.9 = 2.9
```


)= -1 - 0.9= -1.9


```
In [10]: # Initialize the three models (XGBoost is initialized later)
         clf_A = LogisticRegression(random_state = 42)
         clf_B = SVC(random_state = 912, kernel='rbf')
         #Boosting refers to this general problem of producing a very accurate prediction rule
         #by combining rough and moderately inaccurate rules-of-thumb
         clf C = xgb.XGBClassifier(seed = 82)
         train_predict(clf_A, X_train, y_train, X_test, y_test)
         print
         train_predict(clf_B, X_train, y_train, X_test, y_test)
         print
         train_predict(clf_C, X_train, y_train, X_test, y_test)
         print
         Training a LogisticRegression using a training set size of 5550. . .
         Trained model in 0.2450 seconds
         Made predictions in 0.0380 seconds.
         0.621561035256 0.665405405405
         F1 score and accuracy score for training set: 0.6216 , 0.6654.
         Made predictions in 0.0000 seconds.
         F1 score and accuracy score for test set: 0.6957 , 0.7200.
         Training a SVC using a training set size of 5550. . .
         Trained model in 2.5040 seconds
         Made predictions in 1.2430 seconds.
         0.620453572957 0.68036036036
         F1 score and accuracy score for training set: 0.6205 , 0.6804.
         Made predictions in 0.0250 seconds.
         F1 score and accuracy score for test set: 0.6818 , 0.7200.
         Training a XGBClassifier using a training set size of 5550. . .
         Trained model in 0.4470 seconds
```

```
naue predictions in 0.0000 seconds.
0.652147113211 0.694954954955
F1 score and accuracy score for training set: 0.6521 , 0.6950.
Made predictions in 0.0020 seconds.
F1 score and accuracy score for test set: 0.7451 , 0.7400.
```

Clearly XGBoost seems like the best model as it has the highest F1 score and accuracy score on the test set.

Tuning the parameters of XGBoost.

GBDT Hyper Parameter Tuning

Hyper Parameter	Tuning Approach	Range	Note
# of Trees	Fixed value	100-1000	Depending on datasize
Learning Rate	Fixed => Fine Tune	[2 - 10] / # of Trees	Depending on # trees
Row Sampling	Grid Search	[.5, .75, 1.0]	
Column Sampling	Grid Search	[.4, .6, .8, 1.0]	3
Min Leaf Weight	Fixed => Fine Tune	3/(% of rare events)	Rule of thumb
Max Tree Depth	Grid Search	[4, 6, 8, 10]	
Min Split Gain	Fixed	0	Keep it 0

Best GBDT implementation today: https://github.com/tqchen/xgboost by **Tianqi Chen** (U of Washington)


```
In [39]: # TODO: Import 'GridSearchCV' and 'make_scorer'
         from sklearn.grid_search import GridSearchCV
         from sklearn.metrics import make_scorer
         # TODO: Create the parameters list you wish to tune
         parameters = { 'learning_rate' : [0.1],
                         'n estimators' : [40],
                         'max_depth': [3],
                         'min_child_weight': [3],
                         'gamma':[0.4],
                         'subsample' : [0.8],
                         'colsample_bytree' : [0.8],
'scale_pos_weight' : [1],
                         'reg_alpha':[1e-5]
         # TODO: Initialize the classifier
         clf = xgb.XGBClassifier(seed=2)
         # TODO: Make an f1 scoring function using 'make_scorer'
         f1_scorer = make_scorer(f1_score,pos_label='H')
         \# TODO: Perform grid search on the classifier using the f1\_scorer as the scoring method
         grid_obj = GridSearchCV(clf,
                                  scoring=f1_scorer,
                                  param_grid=parameters,
                                  cv=5)
         # TODO: Fit the grid search object to the training data and find the optimal parameters
         grid_obj = grid_obj.fit(X_train,y_train)
         # Get the estimator
         clf = grid_obj.best_estimator_
         print clf
         # Report the final F1 score for training and testing after parameter tuning
         f1, acc = predict_labels(clf, X_train, y_train)
         print "F1 score and accuracy score for training set: {:.4f} , {:.4f}.".format(f1 , acc)
         f1, acc = predict_labels(clf, X_test, y_test)
         print "F1 score and accuracy score for test set: {:.4f} , {:.4f}.".format(f1 , acc)
         XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=0.8,
```