Computer & Information Security (3-721-460-1)

Firewalls

Dept. of Software and Information Systems Engineering, Ben-Gurion University

Prof. Yuval Elovici, Dr. Asaf Shabtai {elovici, shabtaia}@bgu.ac.il

Spring, 2018

Firewall Goals

- separate between two zones/networks
 - private / public
 - sub-networks
- inspect all traffic from inside to outside and vice versa
 - based on applied rule set
- prevent unwanted/unknown traffic from entering the network; only authorized traffic
- immune to penetration
- service control
- direction control
- user control (local users)
- behavior control (filter spam)

Firewall Guidelines

- least privilege
- defines a single choke point
- fail-safe (define how will it react in case of failure)
- block all unless allowed
- provides a location for monitoring security events
- convenient platform for some Internet functions such as NAT, usage monitoring, IPSEC VPNs
- avoid connection from outside to the internal network

Firewall Limits

- cannot protect against attacks bypassing firewall (e.g., dial-out capability to an ISP)
- may not protect fully against internal threats
- improperly secured wireless LAN
- laptop, PDA, portable storage device infected outside then used inside

Types of Firewalls

- (Stateless) packet filtering firewall
- Stateful inspection firewall
- Application proxy firewall
- Circuit-level proxy firewall
- Different in
 - analyzed info
 - analysis time
 - decision level

Types of Firewalls

Packet Filtering Firewall

Packet Filtering Firewall

- scans and applies rules to packets in/out of firewall
- based on information in packet header
 - src/dest IP addr & port, IP protocol, interface
- typically a list of rules of matches on fields
 - if match rule says if forward or discard packet
- two default policies:
 - discard prohibit unless expressly permitted
 - more conservative, controlled, visible to users
 - forward permit unless expressly prohibited
 - easier to manage/use but less secure

Packet Filtering Firewall

- Rule table is not updated dynamically
- Checks rules one-by-one
- If none of the rules is matched, discard
- Ack bit
 - applies to TCP traffic only
 - first TCP packet ack=0; the rest of the packets in the same session ack=1
 - Therefore, ack=0 means new session attempt
 - use rules on the ack bit to prevent initiating sessions from outside

Packet Filter Rules

- Allow telnet from private network to servers in public networks
- Any other traffic is not allowed

Rule	Dir- ection	Source Addr	Dest. Addr	Protocol	Source Port	Dest. Port	Ack	Action
spoof	in	Internal	any	any	any	any	any	Deny
telnet	out	Internal	any	TCP	>1023	23	any	Permit
telnet	in	any	Internal	TCP	23	>1023	yes	Permit
default	any	any	any	any	any	any	any	Deny

Packet Filter Rules

Rule Set A

action	ourhost	port	theirhost	port	comment
block			SPIGOT		we don't trust these people
allow	OUR-GW	25	•	*	connection to our SMTP port

Rule Set B

action	ourhost	port	theirhost	port	comment
block				100	default

Rule Set C

action	ourhost	port	theirhost	port	comment
allow			•	25	connection to their SMTP port

Rule Set D

action	src	port	dest	port	flags	comment
allow	{our hosts}		•	25		our packets to their SMTP port
allow		25			ACK	their replies

Rule Set E

action	src	port	dest	port	flags	comment
allow	{our hosts}		*	•		our outgoing calls
allow		•			ACK	replies to our calls
allow				>1024		traffic to nonservers

Packet Filter - FTP Protocol

- Uses two static ports: 21 (command), 20 (data transmission)
- Active mode:
 - Client sends in the command session (port 21) the port that will be used in the data session (higher ports, selected randomly)
 - Server opens a data session from port 20 to the port sent by the client

Packet Filter - FTP Protocol

- Solution: use passive mode
- Client sends pasv command in the command session
- Server sends random port (>1023)
- Client opens a session from a random port to the port sent by the server

Packet Filter Weaknesses

weaknesses

- cannot prevent attack on application bugs (content is not examined)
- limited logging functionality
- do no support advanced user authentication
- vulnerable to attacks on TCP/IP protocol bugs (e.g., network layer IP spoofing)
- improper configuration can lead to breaches
- Dynamic multi ports protocols (dynamic FTP)

Packet Filter Weaknesses

attacks

- IP address spoofing send crafter packets with internal IP address
- source route attacks bypass security measures
- tiny fragment attacks fragmentation of TCP header information

Stateful Firewall

Stateful Inspection Firewall

- Keeps the context of a session otocol, src address, src port, dst address, dst port
- Apply static rules on the first packet of the session
- Store all tuples of the session (drop others)
- Example, Simple Mail Transfer Protocol (SMTP)
 - TCP connection from client to mail server (port 25)
 - Local (client) port between 1024 65535

Stateful Inspection Firewall

- Reviews packet header information but also keeps info on TCP connections
 - typically have low, "known" port number for server
 - and high, dynamically assigned client port number
 - simple packet filter must allow all return high port numbered packets back in
 - stateful inspection packet firewall tightens rules for TCP traffic using a directory of TCP connections
 - only allow incoming traffic to high-numbered ports for packets matching an entry in this directory
 - may also track TCP seq numbers as well

Application Proxy Firewalls

Application-Level Gateway

- Acts as a relay of application-level traffic (e.g., Browser, Mail) / legitimate Man in the Middle
 - user contacts gateway with remote host name
 - authenticates themselves
 - gateway contacts application on remote host and relays TCP segments between server and user
- Must have proxy code for each application
 - may restrict application features supported
- More secure than packet filters (can apply antimalware scanning for example) but have higher overheads

Application-Level Gateway

- Traffic should pass through the proxy (enforced by packet filters)
- No direct TCP communication between client and server
- Transparent to the user
- Difficult to configure

Telnet with/out proxy

Circuit Level Firewall

Circuit-Level Gateway

- Sets up two TCP connections, to an inside user and to an outside host
- Relays TCP segments from one connection to the other without examining contents
 - hence independent of application logic
 - just determines whether relay is permitted
- · Typically used when inside users trusted
 - may use application-level gateway inbound and circuit-level gateway outbound
 - hence lower overheads

Connecting Mobile Users

- Use proxy server to implement access control and application level filtering
- Stateful authenticated to the firewall and then keep the assigned IP
- Stateless not possible

Common Implementation

Host-Based Firewalls

- Used to secure individual host
- Available in/add-on for many OS
- Filter packet flows
- Often used on servers
- Advantages:
 - tailored filter rules for specific host needs
 - protection from both internal / external attacks
 - additional layer of protection to org firewall

Personal Firewall

- Controls traffic flow to/from PC/workstation
- For both home or corporate use
- May be software module on PC or in home cable/DSL router/gateway
- Typically much less complex
- · Primary role to deny unauthorized access
- May also monitor outgoing traffic to detect/block worm/malware activity

Bastion Host

- Can be accessed from the public network
- Can be accessed sometimes from the internal network
- Should not hold sensitive data
- Make sure that attackers cannot attack the internal/private network
 - serve the two networks, all Internet users, internal

Demilitarized Zone

- Intermediate network separating the internal / private network and public network
- Usually hosts the bastion machines
- Additional security layer (e.g., can deploy proxies)

Firewall Locations

Demilitarized Zone

Demilitarized Zone

Virtual Private Networks

Firewalls

- Traffic not passing through the firewall is not protected
- Trust internal users
- Bypass using legitimate applications (FTP active mode, HTTP)
- · Use additional solutions such as IDS

Example - XML firewall

```
<?xml version="1.0" encoding="UTF-8" ?>
- <xsd:schema xmlns:xsd="...">
  - <xsd:element name="TXLife">
    - <xsd:element name="PntAmt">
      - <xsd:complexType>
         - <xsd:simpleContent>
          <xsd:extension base="xsd:double"/>
        </xsd:simpleContent>
      </xsd:complexType>
    </xsd:element>
    - <xsd:element name="PyValue">
       - <xsd:complexType>
         - <xsd:simpleContent>
          <xsd:extension base="xsd:enumeration"/>
        </xsd:simpleContent>
      </xsd:complexType>
    </xsd:element>
    - <xsd:element name="Name">
       - <xsd:complexType>
        - <xsd:simpleContent>
          <xsd:extension base="xsd:String"/>
        </xsd:simpleContent>
      </xsd:complexType>
    </xsd:element>
 </xsd:schema>
                              דוגמא לקובץ XSD
```


Example - XML firewall

```
<Holding>
                                                       <Holding>
  <PntAmt>1500</PntAmt>
                                                          <PntAmt>3300</PntAmt>
  <PyValue>0</PyValue>
                                                          <Name>J. Y. Dep</Name>
  <IssueDate>2006-04-01</IssueDate>
                                                          <Date>
                                                            <IssueDate>2008-03-11</IssueDate>
  </Holding>
                                                          </Date>
  <Old>
                                                        </Holding>
   <Holding>
      <PntAmt>2500</PntAmt>
                                                       <Holding>
      <PvValue>1</PvValue>
                                                           <PntAmt>3500</PntAmt>
      <IssueDate>2005-03-10</IssueDate>
                                                           <Name>Eduard N.</Name>
   </Holding>
                                                           <Date>
  </Old>
                                                             <IssueDate>2008-03-11</IssueDate>
                                                           </Date>
</TXLife>
                                                       </Holding>
                                                     </TXLife>
                      דוגמא לשני קבצי XML שונים המוגדרים על-בסיס ה- XSD שלעיל.
```


Example - XML firewall

```
<Holding>
                                   <Holding>
                                                                      <Holding>
  <PntAmt>3500</PntAmt>
                                    <PntAmt>9982</PntAmt>
                                                                      <PntAmt>3500</PntAmt>
  <Name>Eduard N.</Name>
                                    <Name>Eduard N.</Name>
                                                                      <Name> a secret msg</Name>
  <|ssueDate>2008-03-11</|ssueDate>
                                    <|ssueDate>1999-11-03</|ssueDate>
                                                                       </ssueDate>2008-03-11
 </Holding>
                                   </Holding>
                                                                      </Holding>
 (a) Source XML file
                                                                       (c) Information Leakage
                                    (b) Value tampering
 <Holding>
                                   <Holding>
                                                                     <Holding>
                                    <PntAmt>3500</PntAmt>
 <PntAmt>3500</PntAmt>
                                                                      <PntAmt>3500</PntAmt>
  <Name>Eduard N.</Name>
                                    <Name>Eduard N.</Name>
                                                                      <Name>' or 1=1 --'
  <JssueDate>2008-03-11</JssueDate>
                                    <|ssueDate>2008-03-11</|ssueDate>
                                                                     </Name>
                                                                      <|ssueDate>2008-03-11</|ssueDate>
<Malicious Node!!!>
                                   </Holding>
                                  <SCRIPT ... > ... </SCRIPT>
 </Holding>
                                                                      </Holding>
 (d) New node insertion
                                   (e) Malicious script
                                                                       (f) SQL injection
                   טבלה 1: חמש מניפולציות (התקפות) אפשריות על מסמכי XML
```


Unified Threat Management Products

