Worksheet 10 Solution

March 19, 2020

Question 1

a.

$$(165)_8 = 5 \times 8^0 + 6 \times 8^1 + 1 \times 8^2 \tag{1}$$

$$= 5 + 48 + 64 \tag{2}$$

$$=117\tag{3}$$

b. Reference Table

$$(B4)_{16} = 4 \times 16^0 + 11 \times 16^1 \tag{1}$$

$$=4+176$$
 (2)

$$= 180 \tag{3}$$

Question 2

a.

$$357 \div 2 = 178$$
, remainder $\mathbf{1}$
 $178 \div 2 = 89$, remainder $\mathbf{0}$
 $89 \div 2 = 44$, remainder $\mathbf{1}$
 $44 \div 2 = 22$, remainder $\mathbf{0}$
 $22 \div 2 = 11$, remainder $\mathbf{0}$
 $11 \div 2 = 5$, remainder $\mathbf{1}$
 $5 \div 2 = 2$, remainder $\mathbf{1}$
 $2 \div 2 = 1$, remainder $\mathbf{0}$
 $1 \div 2 = 0$, remainder $\mathbf{1}$

Hence, the binary representation of 357 is (101100101).

b.

$$357 \div 8 = 44$$
, remainder $\mathbf{5}$
 $44 \div 8 = 5$, remainder $\mathbf{4}$
 $5 \div 8 = 0$, remainder $\mathbf{5}$

Hence, the octal representation of 357 is $(545)_8$

c.

$$357 \div 16 = 22$$
, remainder $\mathbf{5}$
 $22 \div 16 = 1$, remainder $\mathbf{6}$
 $1 \div 16 = 0$, remainder $\mathbf{1}$

Hence, the hexadecimal representation of 357 is $(165)_{16}$

Question 3