Twisting cochains and twisted complexes

Simplicial methods in complex-analytic geometry

Tim Hosgood

24/07/19

Université d'Aix-Marseille https://thosgood.github.io

[m] @thosgood:matrix.org

Plan

```
History
```

Twisting cochains (OTT)

The bicomplex

The total complex

Maurer-Cartan

Strictification

Twisted complexes (BK)

Pretriangulated, triangulated, and stable

Generalisation of twisting cochains

Other fun things

The A-infinity Yoneda embedding

The bar construction

History

First steps

- Edgar H Brown. "Twisted tensor products, I". In: Annals of Mathematics 69.1 (1959), pp. 223–246.
- John C Moore. "Differential homological algebra". In: Actes du Congres International des Mathématiciens 1 (1970), pp. 335–339.

Coherent sheaves

- Domingo Toledo and Yue Lin L Tong. "A parametrix for δ and Riemann-Roch in Čech theory". In: *Topology* 15.4 (1976), pp. 273–301.
- Domingo Toledo and Yue Lin L Tong. "Duality and Intersection Theory in Complex Manifolds. I". In: Mathematische Annalen 237 (1978), pp. 41–77.
- Nigel R O'Brian, Domingo Toledo, and Yue Lin L Tong. "The Trace Map and Characteristic Classes for Coherent Sheaves".
 In: American Journal of Mathematics 103.2 (1981), pp. 225–252.

Triangulation and stability

- A I Bondal and M M Kapranov. "Enhanced Triangulated Categories". In: Math. USSR Sbornik 70.1 (1991), pp. 1–15.
- Giovanni Faonte. Simplicial nerve of an A-infinity category.
 2015. arXiv: 1312.2127v2 [math.AT].

Nomenclature

Lemma

Let $x \in \{ \text{twisting}, \text{twisted} \}$ and $y \in \{ \text{cochain}, \text{complex} \}$.

Then there exists somebody who uses "x y" to denote what you call " $x^c y^c$ ".

Corollary

Sometimes it can be hard to figure out what people mean.

Nomenclature

Lemma

Let $x \in \{\text{twisting}, \text{twisted}\}\$ and $y \in \{\text{cochain}, \text{complex}\}.$

Then there exists somebody who uses "x y" to denote what you call " $x^c y^c$ ".

Corollary

Sometimes it can be hard to figure out what people mean.

I like "twisting cochain" for the topological Čech definition, which is a special case of a "twisted complex", defined in the dg-categorical setting.

Nomenclature

Lemma

Let $x \in \{ \text{twisting}, \text{twisted} \}$ and $y \in \{ \text{cochain}, \text{complex} \}$.

Then there exists somebody who uses "x y" to denote what you call " $x^c y^c$ ".

Corollary

Sometimes it can be hard to figure out what people mean.

I like "twisting cochain" for the topological Čech definition, which is a special case of a "twisted complex", defined in the dg-categorical setting.

But that's very possibly just me.

Twisting cochains (OTT)

Nice spaces

Definition (Stein spaces)

A complex-analytic 1 manifold Y is said to be Stein if it is

- 1. holomorphically convex; and
- 2. holomorphically separable.

¹analytic = \mathcal{O}_Y is holomorphic functions, Y has the \mathbb{C}^n -induced topology; algebraic = \mathcal{O}_Y is algebraic functions, Y has the Zariski topology.

Nice spaces

Definition (Stein spaces)

A complex-analytic 1 manifold Y is said to be Stein if it is

- 1. holomorphically convex; and
- 2. holomorphically separable.

Motto

Stein things are nice.

¹analytic = \mathcal{O}_Y is holomorphic functions, Y has the \mathbb{C}^n -induced topology; algebraic = \mathcal{O}_Y is algebraic functions, Y has the Zariski topology.

Nice spaces

Definition (Stein spaces)

A complex-analytic¹ manifold Y is said to be Stein if it is

- 1. holomorphically convex; and
- 2. holomorphically separable.

Motto

Stein things are nice.

Throughout, X is a complex-analytic manifold with a nice² cover $\mathcal{U}=\{U_{\alpha}\}_{{\alpha}\in I}.$

¹analytic = \mathcal{O}_Y is holomorphic functions, Y has the \mathbb{C}^n -induced topology; algebraic = \mathcal{O}_Y is algebraic functions, Y has the Zariski topology. ²Locally finite, Stein, and trivialising (for the bundles in question).

Endomorphisms of bounded-graded modules

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V_{lpha}^{ullet}=igoplus_{a\in\mathbb{N}}V_{lpha}^{q}$$
 such that V_{lpha}^{q} is zero for all but finitely many $q.$

Endomorphisms of bounded-graded modules

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V_lpha^ullet = igoplus_{q \in \mathbb{N}} V_lpha^q$$
 such that V_lpha^q is zero for all but finitely many q .

Think of a bounded chain complex of vector bundles, but without the information of a differential.

Endomorphisms of bounded-graded modules

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V_lpha^ullet = igoplus_{q \in \mathbb{N}} V_lpha^q$$
 such that V_lpha^q is zero for all but finitely many q .

Think of a bounded chain complex of vector bundles, but without the information of a differential.

Definition (Endomorphisms)

The collection of degree-q endomorphisms $\operatorname{End}^q(V)$ of V is, over each $U_{\alpha_0...\alpha_p}$, given by

$$\operatorname{End}^q(V)|U_{\alpha_0...\alpha_p} = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}(V_{\alpha_p}^i|U_{\alpha_0...\alpha_p}, V_{\alpha_0}^{i+q}|U_{\alpha_0...\alpha_p}).$$

Source and target

Warning

The maps are from the α_p part to the α_0 part.

Source and target

Warning

The maps are from the α_p part to the α_0 part.

We discuss this later.

The deleted Čech complex

Definition (Deleted Čech complex)

Define the chain complex $(\hat{\mathscr{C}}^{\bullet}(\mathcal{U},\operatorname{End}^{\circ}(V)),\hat{\delta})$ by

$$\hat{\mathscr{C}}^pig(\mathcal{U},\mathrm{End}^q(V)ig)=igoplus_{(lpha_0,\ldots,lpha_p)}\mathrm{End}^q(V)|U_{lpha_0...lpha_p}$$

(where $\operatorname{End}^q(V)|U_{\alpha_0...\alpha_p}=0$ if $U_{\alpha_0...\alpha_p}=\varnothing$) with the **deleted** Čech differential

$$\begin{split} \hat{\delta} \colon \hat{\mathcal{C}}^p \big(\mathcal{U}, \operatorname{End}^q(V) \big) &\to \hat{\mathcal{C}}^{p+1} \big(\mathcal{U}, \operatorname{End}^q(V) \big) \\ (\hat{\delta} c)_{\alpha_0 \dots \alpha_{p+1}} &= \sum_{i=1}^p (-1)^i c_{\alpha_0 \dots \widehat{\alpha_i} \dots \alpha_{p+1}}. \end{split}$$

A notational note

We use $\hat{\mathscr{C}}$ and $\hat{\delta}$ for the *deleted* Čech objects and $\check{\mathscr{C}}$ and $\check{\delta}$ for the 'full' Čech objects.

Further structure

• If V has a differential then this gives us a bicomplex.

Further structure

- If V has a differential then this gives us a bicomplex.
- There is a natural multiplication structure given by composition:

$$(c^{p,q}\cdot \tilde{c}^{\tilde{p},\tilde{q}})_{\alpha_0\dots\alpha_{p+\tilde{p}}}=(-1)^{q\tilde{p}}c^{p,q}_{\alpha_0\dots\alpha_p}\tilde{c}^{\tilde{p},\tilde{q}}_{\alpha_p\dots\alpha_{p+\tilde{p}}}.$$

Further structure

- If V has a differential then this gives us a *bicomplex*.
- There is a natural multiplication structure given by composition:

$$(c^{p,q}\cdot \tilde{c}^{\tilde{p},\tilde{q}})_{\alpha_0\dots\alpha_{p+\tilde{p}}}=(-1)^{q\tilde{p}}c_{\alpha_0\dots\alpha_p}^{p,q}\tilde{c}_{\alpha_p\dots\alpha_{p+\tilde{p}}}^{\tilde{p},\tilde{q}}.$$

 We could define the same complex for an arbitrary bounded graded vector bundle, i.e.

$$\hat{\mathscr{C}}^p(\mathcal{U},V^q) = igoplus_{(lpha_0,...,lpha_p)} V^q_{lpha_0}$$

but where the deleted Čech differential only omits the *first* index (but includes the (p+1)th).

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta}\in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

1. $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\beta}$ (the *cocycle* condition); and

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta}\in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

- 1. $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\beta}$ (the *cocycle* condition); and
- 2. $g_{\alpha\alpha} = id$ (the *invertibility* condition).

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta}\in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

- 1. $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\beta}$ (the *cocycle* condition); and
- 2. $g_{\alpha\alpha} = id$ (the *invertibility* condition).

Note that these are maps from $E|U_{\alpha_p}$ to $E|U_{\alpha_0}$ in the specific case where p=1.

Rewriting the cocycle condition

Thinking of $g_{\alpha\beta}$ as an element of $\hat{\mathscr{C}}^1(\mathcal{U}, E)$, we see that

$$(\hat{\delta}g)_{lphaeta\gamma} = -g_{lpha\gamma} \ (g\cdot g)_{lphaeta\gamma} = g_{lphaeta}g_{eta\gamma}.$$

Rewriting the cocycle condition

Thinking of $g_{\alpha\beta}$ as an element of $\hat{\mathscr{C}}^1(\mathcal{U},E)$, we see that

$$(\hat{\delta} g)_{lphaeta\gamma} = -g_{lpha\gamma} \ (g\cdot g)_{lphaeta\gamma} = g_{lphaeta}g_{eta\gamma}.$$

This means that we can rewrite the cocycle condition as

$$\hat{\delta}g + g \cdot g = 0,$$

which looks like the *Maurer-Cartan equation* (an observation to which we will later return).

Twisting cochains

Definition (Twisting cochains)

A (holomorphic) twisting cochain over V is a formal sum

$$\mathbf{a} = \bigoplus_{k \in \mathbb{N}} \mathbf{a}^{k,1-k}$$

where $a^{k,1-k} \in \hat{\mathscr{C}}^k(\mathcal{U},\operatorname{End}^{1-k}(V))$ such that

- 1. $\hat{\delta}a + a \cdot a = 0$; and
- 2. $a_{\alpha\alpha}^{1,0} = id$.

Twisting cochains

Definition (Twisting cochains)

A (holomorphic) twisting cochain over V is a formal sum

$$\mathbf{a} = \bigoplus_{k \in \mathbb{N}} \mathbf{a}^{k,1-k}$$

where $a^{k,1-k} \in \hat{\mathscr{C}}^k(\mathcal{U},\operatorname{End}^{1-k}(V))$ such that

- 1. $\hat{\delta}a + a \cdot a = 0$; and
- 2. $a_{\alpha\alpha}^{1,0} = id$.

The invertibility condition "should" really be weakened by asking only that $a_{\alpha\alpha}^{1,0}$ be *homotopic* to the identity.

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

• It might be the case that all but finitely many of the $a^{k,1-k}$ are zero, but **never** $a^{1,0}$, since it has to be the identity on $\alpha\alpha$.

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

- It might be the case that all but finitely many of the $a^{k,1-k}$ are zero, but **never** $a^{1,0}$, since it has to be the identity on $\alpha\alpha$.
- ullet If V has a differential then a is an element of total degree 1.

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

- It might be the case that all but finitely many of the $a^{k,1-k}$ are zero, but **never** $a^{1,0}$, since it has to be the identity on $\alpha\alpha$.
- ullet If V has a differential then a is an element of total degree 1.
- We haven't said when twisting cochains exist, but under pretty mild assumptions they always do (by an inductive construction).

Unpacking the definition

(
$$k=0$$
) \rightsquigarrow $a_{\alpha}^{0,1} \cdot a_{\alpha}^{0,1} = 0$, which tells us that $a_{\alpha}^{0,1}$ is a differential on V_{α}^{\bullet} .

Unpacking the definition

- $(k=0) \rightsquigarrow a_{\alpha}^{0,1} \cdot a_{\alpha}^{0,1} = 0$, which tells us that $a_{\alpha}^{0,1}$ is a differential on V_{α}^{\bullet} .
- (k=1) \rightsquigarrow $a_{\alpha}^{0,1} \cdot a_{\alpha\beta}^{1,0} = a_{\alpha\beta}^{1,0} \cdot a_{\beta}^{0,1}$, which tells us that we have a chain map of chain complexes

$$\mathbf{a}_{\alpha\beta}^{1,0}\colon \left(V_{\beta}^{\bullet}|U_{\alpha\beta},\mathbf{a}_{\beta}^{0,1}\right) \to \left(V_{\alpha}^{\bullet}|U_{\alpha\beta},\mathbf{a}_{\alpha}^{0,1}\right)$$

Unpacking the definition

- (k=0) $\rightsquigarrow a_{\alpha}^{0,1} \cdot a_{\alpha}^{0,1} = 0$, which tells us that $a_{\alpha}^{0,1}$ is a differential on V_{α}^{\bullet} .
- (k=1) \rightsquigarrow $a_{\alpha}^{0,1} \cdot a_{\alpha\beta}^{1,0} = a_{\alpha\beta}^{1,0} \cdot a_{\beta}^{0,1}$, which tells us that we have a chain map of chain complexes

$$\mathbf{a}_{\alpha\beta}^{1,0} \colon \left(V_{\beta}^{\bullet} | U_{\alpha\beta}, \mathbf{a}_{\beta}^{0,1}\right) \to \left(V_{\alpha}^{\bullet} | U_{\alpha\beta}, \mathbf{a}_{\alpha}^{0,1}\right)$$

 $\begin{array}{l} \text{($k=2$)} \leadsto & -\mathrm{a}_{\alpha\gamma}^{1,0} + \mathrm{a}_{\alpha\beta}^{1,0} \cdot \mathrm{a}_{\beta\gamma}^{1,0} = \mathrm{a}_{\alpha}^{0,1} \cdot \mathrm{a}_{\alpha\beta\gamma}^{2,-1} + \mathrm{a}_{\alpha\beta\gamma}^{2,-1} \cdot \mathrm{a}_{\gamma}^{0,1} \text{, which} \\ & \text{says that } \mathrm{a}_{\alpha\beta\gamma}^{2,-1} \text{ witnesses a } chain \ homotopy \ \text{between} \\ & \mathrm{a}_{\alpha\gamma}^{1,0} \text{ and } \mathrm{a}_{\alpha\beta}^{1,0} \cdot \mathrm{a}_{\beta\gamma}^{1,0} \text{. On } \alpha\beta\alpha \ \text{and } \beta\alpha\beta \ \text{this tells us} \\ & \text{that } \mathrm{a}_{\alpha\beta}^{1,0} \text{ and } \mathrm{a}_{\beta\alpha}^{1,0} \text{ are } chain \ homotopic inverses, i.e.} \\ & \textit{quasi-isomorphism.} \end{array}$

Unpacking the definition (cont.)

($k \ge 3$) \leadsto some sort of 'higher homotopic gluings', whatever this might mean.

Unpacking the definition (cont.)

($k \geqslant 3$) \leadsto some sort of 'higher homotopic gluings', whatever this might mean.

This is one of the things that we want to formalise!

Unpacking the definition (cont.)

($k \ge 3$) \leadsto some sort of 'higher homotopic gluings', whatever this might mean.

This is one of the things that we want to formalise!

Extra-curricular

By taking (internal) homology we obtain something strict: a complex of *coherent sheaves* $H^{\bullet}(a)$. This is because quasi-isomorphisms become strict isomorphisms in homology.

We can use this fact to construct twisting cochains that resolve coherent sheaves by taking *local* resolutions by vector bundles.

The total differential

Lemma

For any $a \in \operatorname{Tot}^1 \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, \operatorname{End}^{\circ}(V))$, the map

$$\mathrm{D_a} \colon \mathrm{Tot}^r \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, V^{\circ}) \to \mathrm{Tot}^{r+1} \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, V^{\circ})$$
$$c \mapsto \hat{\delta}c + c \cdot \mathrm{a}$$

defines a differential (i.e. squares to zero) if and only if a is a twisting cochain.

Proof.

(Tedious) definition chasing.

The total differential (cont.)

We can actually define twisting cochains in a different way using this lemma (but we won't do so today).

The total differential (cont.)

We can actually define twisting cochains in a different way using this lemma (but we won't do so today).

But this approach lets us think of a twisting cochain as a first-order perturbation of the deleted Čech differential.

Examples

Example

Look at the most trivial example: let V be an ungraded vector bundle, and $a=a^{0,1}+a^{1,0}$, where $a_{\alpha}^{0,1}=\mathrm{id}_{V_{\alpha}}$, and the $a^{1,0}$ are the transition maps. Then

$$(\mathbf{D}_{\mathbf{a}}c)_{\alpha_{0}\dots\alpha_{p+1}} = \mathbf{a}_{\alpha_{0}\alpha_{1}}^{1,0}c_{\alpha_{1}\dots\alpha_{p+1}} + \sum_{i=1}^{p+1}(-1)^{i}c_{\alpha_{0}\dots\widehat{\alpha_{i}}\dots\alpha_{p+1}}.$$

Examples

Example

Look at the most trivial example: let V be an ungraded vector bundle, and $a=a^{0,1}+a^{1,0}$, where $a_{\alpha}^{0,1}=\mathrm{id}_{V_{\alpha}}$, and the $a^{1,0}$ are the transition maps. Then

$$(D_{a}c)_{\alpha_{0}...\alpha_{p+1}} = a_{\alpha_{0}\alpha_{1}}^{1,0}c_{\alpha_{1}...\alpha_{p+1}} + \sum_{i=1}^{p+1} (-1)^{i}c_{\alpha_{0}...\widehat{\alpha_{i}}...\alpha_{p+1}}.$$

We can't use the full Čech differential on $\mathscr{C}^{\bullet}(\mathcal{U},V^{\circ})$ because everything has to lie over U_{α_0} , but this total differential solves that problem — $\mathbf{a}_{\alpha_0\alpha_1}^{1,0}$ is a (quasi-)isomorphism.

Examples

Example

Look at the most trivial example: let V be an ungraded vector bundle, and $a=a^{0,1}+a^{1,0}$, where $a_{\alpha}^{0,1}=\mathrm{id}_{V_{\alpha}}$, and the $a^{1,0}$ are the transition maps. Then

$$(D_{a}c)_{\alpha_{0}...\alpha_{p+1}} = a_{\alpha_{0}\alpha_{1}}^{1,0}c_{\alpha_{1}...\alpha_{p+1}} + \sum_{i=1}^{p+1} (-1)^{i}c_{\alpha_{0}...\widehat{\alpha_{i}}...\alpha_{p+1}}.$$

We can't use the full Čech differential on $\mathscr{C}^{\bullet}(\mathcal{U},V^{\circ})$ because everything has to lie over U_{α_0} , but this total differential solves that problem — $\mathbf{a}_{\alpha_0\alpha_1}^{1,0}$ is a (quasi-)isomorphism.

A spectral-sequence argument shows that, in fact, D_a here really is 'the same as' the full Čech differential.

Examples (cont.)

Example

Now look at a slightly-less trivial example: let V^{\bullet} consist of complexes $(V_{\alpha}^{\bullet}, d_{\alpha})$ of vector bundles, and $a = a^{0,1} + a^{1,0}$, where $a_{\alpha}^{0,1} = d_{\alpha}$, and the $a^{1,0}$ are the transition maps. Then

$$(D_{a}c)_{\alpha_{0}...\alpha_{p+1}} = (-1)^{p} a_{\alpha_{0}}^{0,1} c_{\alpha_{0}...\alpha_{p}} + a_{\alpha_{0}\alpha_{1}}^{1,0} c_{\alpha_{1}...\alpha_{p+1}} + \sum_{i=1}^{p+1} (-1)^{i} c_{\alpha_{0}...\widehat{\alpha}_{i}...\alpha_{p+1}}.$$

Examples (cont.)

Example

Now look at a slightly-less trivial example: let V^{\bullet} consist of complexes $(V_{\alpha}^{\bullet}, d_{\alpha})$ of vector bundles, and $a = a^{0,1} + a^{1,0}$, where $a_{\alpha}^{0,1} = d_{\alpha}$, and the $a^{1,0}$ are the transition maps. Then

$$(D_{a}c)_{\alpha_{0}...\alpha_{p+1}} = (-1)^{p} a_{\alpha_{0}}^{0,1} c_{\alpha_{0}...\alpha_{p}} + a_{\alpha_{0}\alpha_{1}}^{1,0} c_{\alpha_{1}...\alpha_{p+1}}$$

$$+ \sum_{i=1}^{p+1} (-1)^{i} c_{\alpha_{0}...\widehat{\alpha_{i}}...\alpha_{p+1}}.$$

Identifying the second and third terms with the full Čech differential, as before, gives the usual total differential of the Čech bicomplex:

$$D_{a} = \delta \pm d_{V}.$$

Why this emphasis on the first index?

• Transition maps naturally go from α_p to α_0 .

Why this emphasis on the first index?

- Transition maps naturally go from α_p to α_0 .
- We want to be able to compare local things, and we need to pull everything back to lie over the same open set in order to do so.

The Maurer-Cartan equation in other fields

Subject	Equation	Interpretation
Differential geometry	$F_{\nabla} = \mathrm{d}A + A \cdot A$	curvature of a Koszul connection ³
Gauge the- ory	$\Omega = \mathrm{d}A + \tfrac{1}{2}[A \wedge A]$	curvature of a principal connection
Deformation theory	$\partial a + \frac{1}{2}[a,a]$	deformations of f.d. associative k -algebras with unit ⁴

³Here be Christoffel symbols.

⁴There is also the beautiful fact (that we won't explain at all) that $\mathrm{MC}(A\otimes\mathfrak{g})\simeq\mathrm{Hom}_{\mathsf{dgAlg}}(\mathrm{CE}(\mathfrak{g}),A).$

Flatness

Motto

Solutions to (i.e. zeros of) the Maurer-Cartan equation are always (in some sense) *flat objects*.

Can we strictify?

No.5

⁵But sort of, yes.

Twisted complexes (BK)

Stability

Motto

Pretriangulated dg-categories are those whose homotopy category is triangulated, where triangulated denotes the structure left over from taking the homotopy category of a stable $(\infty, 1)$ -category.⁶

⁶Loop spaces and suspensions form an equivalence.

Stability (cont.)

Problem

There is no reason for an arbitrary dg-category to be pretriangulated, which means that homotopy theorists might be unhappy. This is bad.

Stability (cont.)

Problem

There is no reason for an arbitrary dg-category to be pretriangulated, which means that homotopy theorists might be unhappy. This is bad.

Solution

Twisted complexes à la Bondal and Kapranov.

dg-categories

Definition

A *dg-category* is a category enriched over chain complexes. That is, the hom-sets are hom-*complexes*.

dg-categories

Definition

A *dg-category* is a category enriched over chain complexes. That is, the hom-sets are hom-*complexes*.

Definition

Let $\mathcal A$ be a dg-category. Then a *twisted complex* $\mathfrak C$ *over* $\mathcal A$ is a collection

$$\mathfrak{C} = \{ E_i \in \mathcal{A}, q_{ij} \colon E_i \to E_j \mid i, j \in \mathbb{Z} \}$$

such that

- all but finitely many of the E_i are zero;
- the q_{ij} are of degree i j + 1; and
- $dq_{ij} + \sum_{s \in \mathbb{Z}} q_{sj} q_{is} = 0.$

The main result

Theorem

Given a dg-category, the smallest dg-category containing it in which we can define shifts and functorial cones is exactly its category of twisted complexes.

The main result

Theorem

Given a dg-category, the smallest dg-category containing it in which we can define shifts and functorial cones is exactly its category of twisted complexes.

Further, if the original dg-category is pretriangulated then this embedding is a quasi-equivalence (which lets us pull back the shift and the cones, which descend exactly to a triangulated structure on the homotopy category).

The main result

Theorem

Given a dg-category, the smallest dg-category containing it in which we can define shifts and functorial cones is exactly its category of twisted complexes.

Further, if the original dg-category is pretriangulated then this embedding is a quasi-equivalence (which lets us pull back the shift and the cones, which descend exactly to a triangulated structure on the homotopy category).

We can also use the simplicial nerve to construct stable $(\infty,1)$ -categories.

Twisting cochains as twisted complexes

Warning

It is **not** the case that, by picking the 'right' dg-category \mathcal{A} , we can recover the definition of holomorphic twisting cochains from that of twisted complexes.

Twisting cochains as twisted complexes

Warning

It is **not** the case that, by picking the 'right' dg-category \mathcal{A} , we can recover the definition of holomorphic twisting cochains from that of twisted complexes.

Rather, twisting cochains are a *specific* case of twisted complexes.

• Let $\mathcal{A} = \operatorname{dgMod}_B$ where $B = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, \mathcal{O}_X)$ with differential $\hat{\delta}$.

- Let $\mathcal{A} = \operatorname{dgMod}_{\mathcal{B}}$ where $\mathcal{B} = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, \mathcal{O}_{\mathcal{X}})$ with differential $\hat{\delta}$.
- Let $E_0 = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, V)$ (with **trivial** differential) and $E_i = 0$ for all $i \neq 0$.

- Let $\mathcal{A} = \operatorname{dgMod}_B$ where $B = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, \mathcal{O}_X)$ with differential $\hat{\delta}$.
- Let $E_0 = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, V)$ (with **trivial** differential) and $E_i = 0$ for all $i \neq 0$.
- We need a degree-1 B-linear endomorphism $a=q_{00}$ of E_0 such that $\hat{\delta}a+aa=0$, but we can show that the dg-algebra $\operatorname{End}_B(E_0)$ is exactly $\mathscr{E}^{\bullet}(\mathcal{U},\operatorname{End}^{\circ}(V))$.

- Let $\mathcal{A} = \operatorname{dgMod}_B$ where $B = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, \mathcal{O}_X)$ with differential $\hat{\delta}$.
- Let $E_0 = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, V)$ (with **trivial** differential) and $E_i = 0$ for all $i \neq 0$.
- We need a degree-1 B-linear endomorphism $a=q_{00}$ of E_0 such that $\hat{\delta}a+aa=0$, but we can show that the dg-algebra $\operatorname{End}_B(E_0)$ is exactly $\mathscr{E}^{\bullet}(\mathcal{U},\operatorname{End}^{\circ}(V))$.
- Decomposing a into a^{k,1-k} we can see that the equation that must be satisfied is exactly what we want.

- Let $\mathcal{A} = \operatorname{dgMod}_B$ where $B = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, \mathcal{O}_X)$ with differential $\hat{\delta}$.
- Let $E_0 = \hat{\mathscr{C}}^{\bullet}(\mathcal{U}, V)$ (with **trivial** differential) and $E_i = 0$ for all $i \neq 0$.
- We need a degree-1 B-linear endomorphism $a=q_{00}$ of E_0 such that $\hat{\delta}a+aa=0$, but we can show that the dg-algebra $\operatorname{End}_B(E_0)$ is exactly $\mathscr{E}^{\bullet}(\mathcal{U},\operatorname{End}^{\circ}(V))$.
- Decomposing a into $a^{k,1-k}$ we can see that the equation that must be satisfied is exactly what we want.

Motto

Twisting cochains are twisted complexes that are *concentrated in degree zero* and *'projective/free'*.

Other fun things

The reference

Bernhard Keller. *Introduction to A-infinity algebras and modules*. 2001. arXiv: 9910179v2 [math.RA].

Preliminary definitions

Definition

- An A_∞-algebra is 'like a loop space' it is a k-algebra with a graded derivation, but where associativity of multiplication holds only up to homotopy, which hold only up to homotopy, which...;
- $\mathcal{C}_{\infty}A$ is the *category of* A_{∞} -modules over an A_{∞} -algebra A;
- $\mathcal{D}_{\infty}\mathcal{A}$ is the homotopy category of $\mathcal{C}_{\infty}\mathcal{A}$; and $\mathrm{tria}\mathcal{A}$ the $(\mathcal{A}_{\infty}\text{-version of the})$ triangulated subcategory of $\mathcal{D}\mathcal{A}$ generated by the free rank-1 \mathcal{A} module.

Preliminary definitions

Definition

- An A_∞-algebra is 'like a loop space' it is a k-algebra with a graded derivation, but where associativity of multiplication holds only up to homotopy, which hold only up to homotopy, which...;
- $\mathcal{C}_{\infty}A$ is the *category of* A_{∞} -modules over an A_{∞} -algebra A;
- $\mathcal{D}_{\infty}\mathcal{A}$ is the homotopy category of $\mathcal{C}_{\infty}\mathcal{A}$; and tria \mathcal{A} the $(\mathcal{A}_{\infty}$ -version of the) triangulated subcategory of $\mathcal{D}\mathcal{A}$ generated by the free rank-1 \mathcal{A} module.

In the non- A_{∞} case, up to isomorphism, the objects of $\mathrm{tria}\mathcal{A}$ are bounded complexes of finitely-generated free \mathcal{A} -modules, and the morphisms "are" homotopy classes of morphisms of complexes.

Factorisation of the Yoneda functor

Theorem

Let $\mathcal A$ be an A_∞ -category (with strict identities). Then the Yoneda functor \sharp factors through the A_∞ -category $\mathrm{tw}\mathcal A$ of twisting cochains

Factorisation of the Yoneda functor

Theorem

Let $\mathcal A$ be an A_∞ -category (with strict identities). Then the Yoneda functor \sharp factors through the A_∞ -category $\mathrm{tw}\mathcal A$ of twisting cochains

Further, \sharp_1 is (strictly) fully faithful, and \sharp_2 induces an equivalence

$$\mathrm{H}^0\mathrm{tw}\mathcal{A}\xrightarrow{\sim}\mathrm{tria}\mathcal{A}.$$

Factorisation of the Yoneda functor

Theorem

Let $\mathcal A$ be an A_∞ -category (with strict identities). Then the Yoneda functor \sharp factors through the A_∞ -category $\mathrm{tw}\mathcal A$ of twisting cochains

$$\begin{array}{c}
\mathcal{A} \xrightarrow{\sharp_1} \operatorname{tw} \mathcal{A} \\
\downarrow \sharp_2 \\
\mathcal{C}_{\infty} \mathcal{A}
\end{array}$$

Further, \sharp_1 is (strictly) fully faithful, and \sharp_2 induces an equivalence

$$\mathrm{H}^0\mathrm{tw}\mathcal{A}\xrightarrow{\sim}\mathrm{tria}\mathcal{A}.$$

This lets us formalise what the A_{∞} -version of $\mathrm{tw}\mathcal{A}$ really is.

• dg-coalgebra (C, d_C) with comultiplication Δ ;

- dg-coalgebra (C, d_C) with comultiplication Δ ;
- ullet dg-algebra (A, d_A) with multiplication $\mu.$

- dg-coalgebra (C, d_C) with comultiplication Δ ;
- dg-algebra (A, d_A) with multiplication μ .

Then a *twisting cochain* is a morphism $\tau \colon C \to A[1]$ such that

$$d_A \circ \tau + \tau \circ d_C + \mu \circ (\tau \otimes \tau) \circ \Delta = 0.$$

- dg-coalgebra (C, d_C) with comultiplication Δ ;
- dg-algebra (A, d_A) with multiplication μ .

Then a *twisting cochain* is a morphism $\tau \colon C \to A[1]$ such that

$$d_{\mathcal{A}} \circ \tau + \tau \circ d_{\mathcal{C}} + \mu \circ (\tau \otimes \tau) \circ \Delta = 0.$$

Note that this is Maurer-Cartan, since the last term is the product $\tau\star\tau$ in the convolution algebra.

The bar-cobar adjunction is $(\Omega \dashv B)$ between cocomplete dg-coalgebras dgCog_{cc} and dg-algebras dgAlg.

The bar-cobar adjunction is $(\Omega \dashv B)$ between cocomplete dg-coalgebras dgCog_{cc} and dg-algebras dgAlg.

Given $f \in \mathsf{dgCog}_{cc}(C, BA)$ we can define $\tau_f = f \circ \rho$, where $\rho \colon BA \to A[1]$ is the natural projection. Then $\tau_f \colon C \to A[1]$.

The bar-cobar adjunction is $(\Omega \dashv B)$ between cocomplete dg-coalgebras dgCog_{cc} and dg-algebras dgAlg.

Given $f \in \mathsf{dgCog}_{cc}(C, BA)$ we can define $\tau_f = f \circ \rho$, where $\rho \colon BA \to A[1]$ is the natural projection. Then $\tau_f \colon C \to A[1]$.

Maurer-Cartan then reduces to asking that f is a *chain map* (which is true, by definition).

The bar-cobar adjunction is $(\Omega \dashv B)$ between cocomplete dg-coalgebras dgCog_{cc} and dg-algebras dgAlg.

Given $f \in \mathsf{dgCog}_{cc}(C, BA)$ we can define $\tau_f = f \circ \rho$, where $\rho \colon BA \to A[1]$ is the natural projection. Then $\tau_f \colon C \to A[1]$.

Maurer-Cartan then reduces to asking that f is a *chain map* (which is true, by definition).

We can do something similar to then turn τ_f into a chain map (again, by Maurer-Cartan) $f' \colon \Omega C \to A$.

Koszul duality and twisted tensor products — full circle

Given some twisting cochain $\tau\colon C\to A[1]$ we can define the twisted tensor products $-\otimes_{\tau}A$ and $-\otimes_{\tau}C$ on the level of (co)derived categories of (co)modules.

Koszul duality and twisted tensor products — full circle

Given some twisting cochain $\tau\colon C\to A[1]$ we can define the twisted tensor products $-\otimes_{\tau}A$ and $-\otimes_{\tau}C$ on the level of (co)derived categories of (co)modules.

These two functors form an equivalence if and only if

$$A \otimes_{\tau} C \otimes_{\tau} A \to A$$

is a quasi-isomorphism.

If this is the case then

$$H_{\bullet}C = \operatorname{Tor}_{\bullet}^{A}(k, k)$$

 $H^{\bullet}A = \operatorname{Ext}_{C}^{\bullet}(k, k).$