Lecture Introduction into Cyber Security Internet Protocol Security (IPsec) (Part 2)

Asya Mitseva, M.Sc. Prof. Dr.-Ing. Andriy Panchenko

Chair of IT Security
Brandenburg University of Technology Cottbus-Senftenberg

10 January 2019

Recap: IPsec Overview

- Consist of two core protocols and set of supporting components
 - ► Authentication Header (AH): provides integrity & origin authentication
 - ► Encapsulating Security Payload (ESP): provides integrity, origin authentication, and encryption services
 - ► AH/ESP rely on pre-shared session keys & predefined crypto algorithms
 - Supporting components: specify mechanisms used for encryption and set up session keys for AH and ESP

Security Associations (SAs) (1/3)

- One-way logical connection between the sender and the receiver
- Determine the security services to the traffic on that connection
- Manually configured or negotiated through Internet Key Exchange
- Two SAs are required for bi-directional communication

- One SA can implement either AH or ESP but not both
- Combined use of AH and ESP requires security association bundle
 - Sequence of SAs through which traffic should be processed
- Sender stores several SAs for different receivers, types of traffic, etc.

Security Associations (SAs) (2/3)

- SAs are stored in Security Association database (SAD)
- In SAD, SA is uniquely identified by
 - ► Security Parameter Index (SPI): Carried in AH/ESP headers to enable receiver to select SA used to protect the packet
 - ► IP Destination Address: IP address of the receiver of the SA
 - ► Security Protocol Identifier. Shows if the association is AH or ESP SA
- IPsec host searches for the longest set of SA identifiers in SAD
- SAD contains parameters associated with each established SA
- SA is defined by the following parameters in SAD entry
 - Security Parameter Index (SPI): Used to uniquely identify SA utilized, selected by the receiver
 - Sequence Number Counter: Used to generate the Sequence Number field in AH/ESP headers

Security Associations (SAs) (3/3)

- SA is defined by the following parameters in SAD entry
 - Sequence Counter Overflow: Indicate if sequence number overflow should generate auditable event
 - Anti-Replay Window: Determine initial slot and size of anti-replay window for this SA
 - AH Information: Authentication algorithm, keys, keys lifetime, etc. used for AH
 - ► *ESP Information*: Authentication and encryption algorithms, keys, keys lifetime, etc. used for ESP
 - ► *Lifetime of SA*: Time interval or byte count after which SA must be replaced with new SA or terminated
 - ► *IPsec Protocol Mode*: Tunnel, transport or wildcard
 - ► Path MTU: Max size of packet that can be transmitted without fragmentation

Combinations of Security Associations (1/4)

- Case 1: IPsec security between hosts
 - AH in transport mode
 - ► ESP in transport mode
 - ► ESP followed by AH in transport mode, i.e., ESP SA inside AH SA
 - ► Anyone of the use cases above inside AH or ESP in tunnel mode

Combinations of Security Associations (2/4)

- Case 2: IPsec security between gateways, no hosts support IPsec
 - ▶ AH, ESP, or ESP with authentication in tunnel mode
 - ► Simple Virtual Private Network (VPN)

Combinations of Security Associations (3/4)

- Case 3: Combination of case 1 and case 2
 - ► ESP gateway-to-gateway tunnel with traffic flow confidentiality enabled
 - ► Hosts support (IPsec services) in transport mode

Combinations of Security Associations (4/4)

- Case 4: Remote host connects to company's firewall from outside
 - ► Tunnel mode is required between the remote host and the firewall
 - ▶ One or more SAs are used between the remote host and the local host

Security Policy Database (SPD) (1/2)

- IPsec provides flexibility with respect to which IPsec services are applied to which traffic
- SPD determines which traffic is related to specific SA or no SA (if the traffic is allowed to bypass IPsec)
- SPD entry is defined by a set of IP and upper-layer protocol field values, known as *selectors*
- SPD entry is determined by the following selectors
 - Remote IP Address: One or more IP addresses of the receiver(s)
 - ► Local IP Address: One or more IP addresses of the sender(s)
 - Next Layer Protocol: The protocol operating over IP
 - ▶ *Name*: User identifier from the operating system
 - ► Local and Remote Ports: One or more sender and receiver ports

Security Policy Database (SPD) (2/2)

Selectors are used to filter outgoing/incoming traffic & map it into SA

Protocol	Local IP	Port	Remote IP	Port	Action	Comment
UDP	1.2.3.101	500	*	500	BYPASS	IKE
ICMP	1.2.3.101	*	*	*	BYPASS	Error messages
*	1.2.3.101	*	1.2.3.0/24	*	PROTECT: ESP intransport-mode	Encrypt intranet traffic
TCP	1.2.3.101	*	1.2.4.10	80	PROTECT: ESP intransport-mode	Encrypt to server
TCP	1.2.3.101	*	1.2.4.10	443	BYPASS	TLS: avoid double encryption
*	1.2.3.101	*	1.2.4.0/24	*	DISCARD	Others in DMZ
*	1.2.3.101	*	*	*	BYPASS	Internet

IP Traffic Processing

Alice sends IP packet to Bob

- ► Look up SPD to check if the packet should be protected with IPsec
- ► SPD provides pointer to the corresponding SA entry in SAD
- ► SA gives information about SPI, protocol, crypto algorithms, keys, etc.
- ► Include the SPI in the encapsulated packet

Bob receives the packet from Alice

- ► Lookup the corresponding SA in SPD based on {SPI, destination IP address, security protocol identifier}
- ▶ Based on SA, find crypto algorithms, keys, etc. in SAD
- ► Decrypt the packet and check if it matches selectors in SPD

IPsec Architecture

Key Management of IPsec

- Assure the determination and distribution of secret keys
- Support two types of key management
 - ► Manual: System administrator manually configure his system with its own keys and the keys of other systems
 - Automated: Enable on-demand creation of keys for SAs, suitable for large distributed systems with evolving configuration
- Automated IPsec key management protocols
 - ► Internet Key Exchange version 1 (IKEv1): Consists of two protocols
 - Oakley Key Determination Protocol: Key exchange protocol based on Diffie-Hellman algorithm
 - Internet Security Association & Key Management Protocol (ISAKMP): Framework for Internet key management
 - ► Internet Key Exchange version 2 (IKEv2)

IKEv2: Overview

- IKEv2 is refinement of Diffie-Hellman key exchange algorithm
- IKEv2 considers the following Diffie-Hellman (DH) weaknesses
 - ▶ Does not provide any data about identities of parties
 - ► Man-in-the-middle attack possible
 - Vulnerable to clogging attacks
 - The opponent requests huge number of keys by using many spoofed IP addresses
 - The victim spends considerable resources to do useless computations
- Security features provided by IKEv2
 - ▶ Use of *groups* to specify global parameters for Diffie-Hellman
 - Use of cookies to thwart clogging attacks
 - Use of nonces to protect against replay attacks
 - ► Authenticate Diffie-Hellman exchange to thwart man in the middle

IKEv2 Security Features (1/2)

- Groups specifying global parameters for Diffie-Hellman
 - ► Include definition of two global parameters and identity of the algorithm
- Use of cookies to thwart clogging attacks
 - Receiver stores sender's state in unforgeable cookie
 - The cookie is sent to the sender
 - ► If the IP address of the sender is not spoofed, it will obtain the cookie and respond by putting the corresponding cookie in message
 - Cookie is regenerated by the receiver and compared with the cookie returned by the sender
- Use of nonces to protect against replay attacks
 - Locally generated pseudo-random numbers
 - ► Transmitted encrypted during certain portions of the exchange

IKEv2 Security Features (2/2)

- Authentication of **Diffie-Hellman exchange**
 - Use of digital signatures
 - Signing mutually obtainable hash
 - Each peer encrypts the hash with its private key
 - ► The hash is generated over parameters such as user IDs, nonces
 - Use of public-key encryption
 - ▶ Peers encrypt parameters, such as user IDs, nonces, with its private key
 - ► Use of *symmetric-key encryption*
 - ▶ Peers encrypt parameters, such as user IDs, nonces, with symmetric key
 - The key is derived out-of-band

IKEv2: Key Exchange (1/4)

Initial exchange

- Peers exchange data about security parameters and DH values
- Set up IKE SA defining security parameters for subsequent IKE message exchanges
- ► Set up *initial SA* for regular IPsec communication, known as *child SA*

IKEv2: Key Exchange (2/4)

Initial exchange

- **1** The initiator informs the responder about set of supported crypto algorithms (SA_i1) , its Diffie-Hellman value (KE_i) , and its nonce (N_i) .
- ② The responder informs the receiver about its choice of crypto algorithms from SA_i1 (SA_r1), its Diffie-Hellman value (KE_r), and its nonce (N_r). It also requests proof of initiator's identity (CERTREQ).
- The initiator and the responder can compute shared but unauthenticated shared key by using the shared nonces, KE_i, and KE_r.
- The initiator asserts its identity (ID_i) , sends its certificate (CERT), requests responder's certificate (CERTREQ), and specifies to which of the responder's identity (ID_r) it wants to talk. It also announces set of supported crypto algorithms (SA_i2) for IPsec SA and which portions of traffic will be protected by the $SA(TS_i, TS_r)$. The message is encrypted and authenticated.
- **5** The responder asserts its identity (ID_r) , sends its certificate (CERT), and completes the IPsec SA negotiation.

IKEv2: Key Exchange (3/4)

Child SA exchange

- ► Used to create new child SAs and to rekey both IKE SAs and child SAs
- ► [N] indicates which SA is being rekeyed
- ► SA is rekeyed by creating a new SA and then deleting the old one

HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

HDR = IKE header

SAx1 = offered and chosen algorithms, DH group

KEx = Diffie-Hellman public key

Nx= nonces

CERTREQ = Certificate request

IDx = identity

CERT = certificate

 $SK \{...\} = MAC$ and encrypt

AUTH = Authentication

SAx2 = algorithms, parameters for IPsec SA

TSx = traffic selectors for IPsec SA

N = Notify

D = Delete

CP = Configuration

IKEv2: Key Exchange (4/4)

Informational exchange

 Used to exchange management information, IKE error messages, other notifications

HDR, SK {[N,] [D,] [CP], ...} HDR, SK {[N,] [D,] [CP], ...}

HDR = IKE header SAx1 = offered and chosen algorithms, DH group KEx = Diffie-Hellman public key

Nx= nonces

CERTREQ = Certificate request

IDx = identity

CERT = certificate

SK {...} = MAC and encrypt

AUTH = Authentication

SAx2 = algorithms, parameters for IPsec SA

TSx = traffic selectors for IPsec SA

N = Notify

D = Delete

CP = Configuration

IKE Packet

- Consist of one IKE header and one or more payloads
- Carried in UDP (User Datagram Protocol) datagram
- IKE header format

IKE Packet Header Format

- Initiator SPI: Identify unique IKE SA chosen by the initiator
- Responder SPI: Identify unique IKE SA chosen by the responder
- Next Payload: Identify the type of the first payload in the message
- Major Version: Define major version of IKE in use
- Minor Version: Define minor version of IKE in use
- Exchange Type: Identify the type of exchange
- Flags: Identify specific options set for this IKE exchange
- Message ID: Used to control retransmissions of lost packets and match requests to responses
- Length: Length of the total message

IKE Payload Types

- SA Payload: Used to begin establishment of SA
 - Consists of proposal, transform, and attributes
- Key Exchange Payload: Set up session key, different key exchange techniques are supported
- Authentication Payload: Contain data for message authentication purposes
- Notify payload: Contain either error or status information associated with given SA
- **Delete payload:** Indicate one or more SAs deleted by the sender and no longer valid
- **Traffic Selector Payload:** Peers can identify which packet flows are IPsec protected
- Etc.

IPsec: Conclusion

- IPsec provides transparent security for users of IP
- IPsec consists of two core protocols and set of supporting elements
 - ► AH assures integrity protection and origin authentication
 - ▶ ESP assures integrity, origin authentication, and payload encryption
 - ► SAD and SPD define which IPsec security services should be applied to which traffic
 - ► IKE provides automated establishment and management of key material
- IPsec provides *host-to-host* security
- IPsec does not provide user-to-user or application-to-application security

References

- William Stallings, Cryptography and Network Security, Chapter 20
- Charlie Kaufman et al., Network Security: Private Communication in a Public World, Chapter 16, 17
- RFC 4301, https://tools.ietf.org/html/rfc4301
- RFC 4302, https://tools.ietf.org/html/rfc4302
- RFC 4303, https://tools.ietf.org/html/rfc4303
- RFC 4835, https://tools.ietf.org/html/rfc4835
- RFC 2410, https://tools.ietf.org/html/rfc2410
- RFC 6071, https://tools.ietf.org/html/rfc6071