Travaux pratiques – TP 11 —

Cinétique d'une réaction de saponification par conductimétrie

III Analyser

B Préliminaires

III.B.1 Rappels de chimie organique

① C'est un ester. Son groupe caractéristique est -COOR. Sa formule semi-développée est $CH_3 - CO_2 - C_2H_5$. Les deux produits obtenus sont l'éthanoate de sodium et l'éthanol.

III.B.2 Choix de la méthode d'étude

2 On a une évolution des ions en solution : on perd 1 ion HO⁻ et on gagne 1 ion éthanoate. Comme leurs conductivités molaires sont différentes, on peut aisément suivre l'évolution de la réaction par ce biais.

III.B.3 Sécurité

3

Inflammable : stockage et loin des flammes.

Ronge: gants et lunettes.

Danger pour santé ou ozone : gants.

C Étude théorique de la cinétique

On cherche à vérifier que cette réaction est d'ordre global 2 avec un ordre partiel de 1 par rapport à chacun des réactifs.

 $\overline{(4)}$

$$v = k[RCOOR'][HO^-]$$

(5) Avec $[RCOOR'](t) = [HO^{-}](t) = c_0 - x$, on a

$$v = k(c_0 - x)^2$$

	Équation		RCOOR' +	- НО	$D^- \rightarrow RCOO^- + R'OH$		Na ⁺
6	Initial	x = 0	c_0	c_0	0	0	c_0
	Interm.	x	$c_0 - x$	$c_0 - x$	x	x	c_0
	Final	$x_f = x_{\text{max}}$	0	0	c_0	c_0	c_0

 $\overline{7}$

$$v = k(c_0 - x)^2 = -\frac{d(c_0 - x)}{dt} = \frac{dx}{dt}$$

$$\Leftrightarrow \frac{\mathrm{d}x}{(c_0 - x)^2} = k \, \mathrm{d}t$$

$$\Rightarrow \frac{1}{c_0 - x} = kt + A$$
or $x(0) = \frac{1}{c_0} \Leftrightarrow A = \frac{1}{c_0}$

$$\Rightarrow \frac{1}{c_0 - x} = kt + \frac{1}{c_0}$$

On trace donc

$$y = ax + b$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{1}{c_0 - x} \qquad k \qquad t \qquad \frac{1}{c_0}$$

(8)

$$\sigma = \sum_{i} \lambda_{i}[X_{i}]$$

 $\diamond \lambda t = 0$, on a

Tableau 11.1 – Espèces présentes.

t = 0		t		$t \to \infty$		
$\overline{\mathrm{Na^{+}}}$	c_0	$ \mathrm{Na^+}$	c_0	$\overline{\mathrm{Na^{+}}}$	c_0	
HO^-	c_0	HO^-	$c_0 - x$	HO^-	0	
$RCOO^-$	0	$RCOO^-$	x	$RCOO^-$	c_0	
$\sigma_0 = (\lambda_{\mathrm{HO}^-} - 1)$	$\sigma_0 = (\lambda_{\rm HO^-} + \lambda_{\rm Na^+})c_0$		$\sigma(t) = \sigma_0 + (\lambda_{\text{RCOO}^-} - \lambda_{\text{HO}^-})x$		$\sigma_{\infty} = (\lambda_{\text{RCOO}^-} + \lambda_{\text{Na}^+})c_0$	

(9) On calcule:

$$\sigma_{0} - \sigma_{\infty} = (\lambda_{\text{HO}^{-}} - \lambda_{\text{RCOO}^{-}})c_{0}$$
et
$$\sigma - \sigma_{\infty} = \sigma_{0} - \sigma_{\infty} + (\lambda_{\text{RCOO}^{-}} - \lambda_{\text{HO}^{-}})x$$

$$\Rightarrow \frac{\sigma_{0} - \sigma_{\infty}}{\sigma - \sigma_{\infty}} = \frac{(\lambda_{\text{HO}} - \lambda_{\text{RCOO}'})c_{0}}{(\lambda_{\text{HO}} - \lambda_{\text{RCOO}'})c_{0} - (\lambda_{\text{HO}} - \lambda_{\text{RCOO}'})x}$$

$$\Leftrightarrow \frac{\sigma_{0} - \sigma_{\infty}}{\sigma - \sigma_{\infty}} = \frac{c_{0}}{c_{0} - x}$$

(10) D'après ??,

$$\frac{1}{c_0 - x} = kt + \frac{1}{c_0}$$

$$\Leftrightarrow \frac{c_0}{c_0 - x} = c_0kt + 1$$

$$\Leftrightarrow \frac{\sigma_0 - \sigma_\infty}{\sigma - \sigma_\infty} = c_0kt + 1$$
On remplace

①1 On trace donc $\frac{\sigma_0 - \sigma_\infty}{\sigma - \sigma_\infty}$, puisque nous n'avons pas accès à x. Le modèle à tracer sera

$$y = ax + b$$

$$\swarrow \qquad \swarrow \qquad \searrow$$

$$\frac{\sigma_0 - \sigma_\infty}{\sigma - \sigma_\infty} \qquad c_0 k \quad t \qquad 1$$

IV. Réaliser 3

IV Réaliser

A Protocole expérimental

1 On ne veut pas faire de mesure absolue : pas besoin d'étalonner le conductimètre. On ne cherche la valeur d'une pente. En plus, c'est plus compliqué à étalonner que l'absorbance.

IV.A.1 Détermination de σ_0 et de σ_{∞}

- Quand on met les réactifs ensemble, la réaction commence directement. On ne peut donc jamais avoir σ_0 précisément : il faut du temps que la mesure se stabilise et que le mélange s'homogénéise.
- 3 Pour simuler la situation initiale sans que la réaction ne commence, on prend le volume de soude demandé et le même volume d'eau, qu'on mélange ensemble : le tout a bien une concentration en $HO_{(aq)}$ similaire à celle qu'on aurait avec le même volume d'éthanoate d'éthyle. Ainsi :
 - 1) Prélever 50 mL de soude à $c=0{,}100\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ dans une fiole jaugée de 50 mL ;
 - 2) Les verser dans une fiole jaugée de 100 mL;
 - 3) Remplir avec de l'eau distillée jusqu'au trait de jauge;
 - 4) Verser le contenu dans un bécher;
 - 5) Mesurer la conductivité.
- $\boxed{4}$ σ_{∞} est difficile à mesurer parce qu'il faudrait pouvoir s'assurer que la réaction est terminée, ou attendre un temps infini...
- $\boxed{5}$ On utilise le produit disponible à $c=0.050\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ et on en mesure la conductivité. Ainsi,
 - 1) Prélever $\approx 40 \,\mathrm{mL}$ d'acétate de sodium à $0.050 \,\mathrm{mol \cdot L^{-1}}$ et les verser dans un bécher (de manière à faire tremper la cellule du conductimètre);
 - 2) Mesurer sa conductivité.

B Suivi conductimétrique à température ambiante

FIGURE 11.1

6

V Valider

A Exploitation des mesures

- 7 On perd des ions oxonium de grande conductivité pour gagner des RCOO⁻ de plus petite conductivité. La pente est décroissante.
- 8 solu

- [9] C'est bien un ordre 2, puisque la régression est validée : passe bien par les points sans déviation anormale.
- 10 On obtient

$$k \approx 5.0 \times 10^{-4} \,\mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1}$$

B Influence de la température; énergie d'activation

θ (°C)	Ambiante	35	40	45
k (SI)	Votre valeur!	0,188	$0,\!257$	$0,\!356$

11

$$k(T) = A \exp\left(-\frac{E_a}{RT}\right)$$

$$\ln(k(T)) = \ln A - \frac{E_a}{R} \times \frac{1}{T}$$

On trouve une régression de $r^2 = 0.994$, avec $\ln A = 15.8$ et

$$\frac{E_a}{R} = 5.37 \times 10^3 \,\mathrm{K}$$

$$\Leftrightarrow \boxed{E_a = 4.38 \times 10^4 \,\mathrm{J \cdot mol^{-1}}}$$

Lycée Pothier 4/4 MPSI3 – 2023/2024