101	
102-	λ
103-	8
115	

	10.
	10:
	10,
Please type a plus sign (+) inside this box → +	Approved for

		ā.
3		58
\leq		N
ح		ς.
0		ß
0	를	7

UTILITY
PATENT APPLICATION
TRANSMITTAL

Only for new nonprovisional applications under 37 CFR 1.53(b))

PEC/SB/05 (12/97)

Approved for use through 09/30/00. OMB 0651-0032

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. Attorney Docket No. 5539 ďD Total Pages 115 First Named Inventor or Application Identifier

Kohei Miyazono, et al.

Express Mail Label No.

EI828161075US

See MFEP chapter 600 concerning utility patent application contents. ADDRESS ID: Box Patent Application, DC 20231	See MFEP chapter 600 concerning withy patent application contents X Fee Transmittal Form Total Pages 94 Total Pages Total Pages 94 Total Pages Total	APPLICATION ELEMENTS	Assistant Commissioner for Patents			
1. X Fee Transmittal Form (Submit an original, and a duplacate for fee processing) (Submit an original, and a duplacate for fee processing) 2. X Specification (Preferred arrangement set forth below) - Descriptive title of the Invention - Cross References to Related Applications - Statement Regarding Fed sponsored R & D - Reference to Microfiche Appendix - Background of the Invention - Brief Summary of the Invention - Brief Summary of the Invention - Claim(s) - Abstract of the Disciosure 3. X Drawing(s) (35 USC 113) - Total Pages 3. Company From the proof of the Disciosure - Abstract of the Disciosure 3. X Drawing(s) (35 USC 113) - Copy from a prior application of 37 CFR 1.63(d) - Copy from a prior application of the box 5 below) - Copy from a prior application, See 37 CFR 1.63(d)(2) and 1.33(b) Incorporation By Reference (useable it Box 4b s checked) - The entire disclosure of the prior application, from which a copy of the eath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. - Continuation Divisional	1. X Fee Transmittal Form (Submit an original, and a duplocate for fee processing) 2. X Specification Description title of the Invention Ocass References to Related Applications - Statement Regarding Fed sponsored R & D - Reference to Microfiche Appendix Background of the Invention - Brief Summary of the Invention - Brief Description - Claim(s) - Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sheets 11 1] 4. Oath or Declaration [Total Pages 3] a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.83(01)) [Note Box 5 below] I. Signed statement statehed deleting inventor(s) named in the prior application, see ST CFR 1.63(02) and 1.33(b). The entire disclosure of the prior application, see ST CFR 1.63(02) and 1.33(b). Incorporation By Reference (assable # Box 4 bs. telecked) Incorporation Disclosure S. Incorporation By Reference (assable # Box 4 bs. telecked) Incorporation By Reference (assable # Box 4 bs. telecked) Incorporation By Reference (assable # Box 4 bs. telecked) S. The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. The entire disclosure of the prior application, from which accompanying application and is hereby inc	See MPEP chapter 600 concerning utility patent application contents.	ADDRESS TO: Box Patent Application			
Submit an original, and a duplicate for fee processing Specification	Submit an original, and a duplicate for fee processing) Specification Total Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 1 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Amino Acid Sequence Submission (Treat Pages 9.4 Nucleotide and/or Am	Foo Transmitted Form				
Computer arrangement set tont below	Descriptive title of the Invention Cross References to Related Applications	(Submit an original, and a duplicate for fee processing)	" (Appendix)			
Descriptive title of the Invention Cross References to Related Applications Statement Regarding Fed sponsored R & D Reference to Microfiche Appendix Background of the Invention Brief Description of the Drawings (if filed) Detailed Description Claim(s) Abstract of the Disclosure Abstract of the Disclosure Newly executed (original or copy) Detailed Description Copy from a prior application (37 CFR 1.63(d)) (Note Box 5 below) i. DELETION OF INVENTORIS) Signed statement attached deleting inventor(s) named in the prior application, soe 37 CFR 1.63(d)(2) and 1.33(b). Incorporation By Reference (useable #Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the prior application, from which a copy application and is hereby incorporated by reference therein. Customer Number or Bar Code Label Customer Number or Bar Code Label Corporations Customer Number or Bar Code Label Corpositions Computer Readable Copy D. X Paper Copy (identical to computer copy) D. X Paper Copy (identical to computer copy) Accomputer Readable Copy D. X Paper Copy (identical to computer copy) Accomputer Readable Copy D. X Paper Copy (identical to computer opplication packed) Accompanying identity of above copies Accompanying identity of above cop	Descriptive title of the Invention Cross References to Related Applications Statement Regarding Fed sponsored R & D Reference to Microfiche Appendix Background of the Invention Brief Summary of the Invention Brief Description Claim(s) Claim(s) Claim(s) Abstract of the Disclosure A Mory Drawing(s) (35 USC 113) A Control Declaration Copy from a prior application (37 CFR 1.63(d)) (for continuation-divisional with Gas 17 completed) (for continuation By Reference (useable if Gas 4b & chacked) Incorporation By Reference (useable if Gas 4b & chacked) Incorporation By Reference (useable if Gas 4b & chacked) Incorporation By Reference (useable if Gas 4b & chacked) Continuation Divisional Continuation Divisional Continuation Divisional Continuation By Reference (useable if Gas 4b & chacked) Incorporation By Reference (useable if Gas 4b & cha	(preferred arrangement set forth below)	7. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)			
- Statement Regarding Fed sponsored R & D - Reference to Microfiche Appendix - Background of the Invention - Brief Description of the Invention - Detailed Description - Claim(s) - Abstract of the Disciosure 3. X Drawing(s) (35 USC 113) [Total Sheets 1 1] - Abstract of the Disciosure 3. X Newly executed (original or copy) - Detailed Operation of the Invention (37 CFR 1.63(d)) - Detailed Description - Claim(s) - Abstract of the Disciosure - Abstract of the Disciosure - Abstract of the Disciosure - Total Pages 3] - Total Pages 3] - Reference to Microfiche Appendix - Assignment Papers (cover sheet & document(s)) - Regish Translation Document (if applicable) - Information Disciosure - Statement (IDS)/PTO-1449 Copies of IDS - S	- Statement Regarding Fed sponsored R & D Reference to Microfiche Appendix - Background of the Invention - Brief Summary of the Invention - Brief Summary of the Invention - Brief Description of the Drawings (if filed) - Detailed Description - Claim(s) - Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sneets 11] 4. Oath or Declaration - Claim(s) - Copy from a prior application (37 CFR 1.83(d)) - Copy from a prior application (37 CFR 1.83(d)) - Copy from a prior application (37 CFR 1.83(d)) - Copy from a prior application (37 CFR 1.83(d)) - Copy from a prior application, see 37 CFR 1.63(d)(2) and 1.33(b). - X Incorporation By Reference (usesable if Box 4b is chacked) - The entire disclosure of the prior application, from which a copy of the cath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. - Total Pages 3 [Tried Sneets 1] - Tried Sneets 2] - Tried Sneets 3] - Tried Sneets 4] - Tried Sneets 4 document(s) - Tried Sneets 4 document(s) - Tried Sneets 3] - Tried		<u> </u>			
Reference to Microfiche Appendix - Background of the Invention - Brief Summary of the Invention - Brief Summary of the Invention - Brief Summary of the Invention - Brief Description of the Drawings (if filed) - Detailed Description - Claim(s) - Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sheets 1 1]] 4. Oath or Declaration - A Declaration Document (if applicable) - A Declaration - A Declaration Declaration Declaration - A Declaration Declaration	Reference to Microfiche Appendix Background of the Invention Brief Summary of the Invention Brief Description of the Drawings (if filed) Detailed Description Claim(s) Abstract of the Disclosure 3. X Drawing(s) (3S USC 113) [Total Sheets 11] 4. Oath or Declaration Total Pages 3] a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d)) (flor continuation/discionative file between the flow of the carbon of the oath or declaration is usuplied under Box 4b. is considered as being part of the disclosure of the paccompanying application and is hereby incorporated by reference therein. It is CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) 17. It a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) 18. CORRESPONDENCE ADDRESS Orran D. Hanson FELFE & LYNCH ADDRESS ACCOMPANYING APPLICATION PARTS ACCOMPANYING APPLICATION PARTS ACCOMPANYING APPLICATION PARTS ACCOMPANYING APPLICATION parts document(s) ACCOMPANYING APPLICATION power of Attorney (when there is an assignee) Power of Attorney (when there is an assignee) Power of Attorney (information Divisional Total Sheets 11] 10. English Translation Document (if applicable) 11. Information Disclosure Copy from a prior application (application, Sheets of the prior application, from which a copy of Priority Document(s) 13. X Return Receipt Postcard (MPEP 503) (Should be specifically itemized) 14. Statement(s) Status still proper and desired information: 15. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: 16. Other: Other: Other: Other: Other Continuation Divisional Continuation-in-part (CIP) of prior application No: 0.8 / 4.36 , 2.65 Other Continuation No. 0.8 / 4.36 , 2.65 Other Continuat					
Background of the Invention Brief Summary of the Invention Brief Summary of the Invention Brief Description of the Drawings (if filed) Detailed Description Claim(s) Detailed Description Accompanyling Application (when there is an assignee) Assignment Papers (cover sheet & document(s)) Total Pages Tota	Background of the Invention Brief Summary of the Invention Brief Description of the Drawings (if filed) Detailed Description Claim(s) Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sheets 11] 4. Oath or Declaration Copy from a prior application (37 CFR 1.63(d)) Incorporation By Reference (usebule 180x 46) is considered as being part of the disclosure of the prior application, spee 37 CFR 1.63(d)(2) and 1.33(b). 5. X Incorporation By Reference (usebule 180x 46) is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Customer Number or Bar Code Label Incorporation Divisional X Continuation Incorporation By Reference (usebul 180x 46) Incorporation By Reference (usebul 180x 46) Incorporated by reference therein. Continuation Divisional X Continuation-in-part (CIP) Incorporation By Reference (usebul 180x 46) Incorporated by reference therein. Continuation Divisional X Continuation-in-part (CIP) Incorporation No. OB./436, 265					
Brief Description of the Drawings (if filed) Detailed Description Claim(s) Assignment Papers (cover sheet & document(s)) Assignment Papers (cover sheet & document(s)) Total Sheets Total Pages Tot	- Brief Description of the Drawings (if filed) - Detailed Description - Claim(s) - Abstract of the Disclosure 3.		c. Statement verifying identity of above copies			
- Detailed Description - Claim(s) - Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sheets 1 1] 4. Oath or Declaration [Total Pages 3] 5. X Newly executed (original or copy) 6. Detailed Description [Total Pages 3] 7. TFR 3.73(b) Statement Power of Attorney 7. English Translation Document (if applicable) 7. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations 7. Preliminary Amendment 7. Return Receipt Postcard (MPEP 503) (Should be specifically itemized) 7. Incorporation By Reference (useable if Box 4b is checked) 7. The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 7. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: 7. Ocntinuation Divisional Continuation-in-part (CIP) of prior application No: 08 J. 4.36, 2.65 7. Correspondence address below	Detailed Description Claim(s) Abstract of the Disclosure Abstract of the Disclosure Abstract of the Disclosure Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Pages 3] 4. Oath or Declaration [Total Pages 3] a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional with Box 17 completed) (Note Box 5 below) i. DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). The entire disclosure of the prior application from which a copy of the cath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the prior application, and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:	•	ACCOMPANIVING APPLICATION PARTS			
- Claim(s) - Abstract of the Disclosure 3.	- Claim(s) - Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sheets 1 1] 4. Oath or Declaration [Total Pages 3] a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/bisologial with Box 17 completed) (for continuation by Felerence (useable of Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) Of prior application No: 0.8 / 4.36 , 2.65	•				
- Abstract of the Disclosure 3. X Drawing(s) (35 USC 113)	- Abstract of the Disclosure 3. X Drawing(s) (35 USC 113) [Total Sheets 1 1] 4. Oath or Declaration [Total Pages 3] 5. X Newly executed (original or copy) 6. Copy from a prior application (37 CFR 1.63(d)) 7. (Copy from a prior application (37 CFR 1.63(d)) 7.	!				
3. X Drawing(s) (35 USC 113) [Total Sheets 1 1] 10. English Translation Document (if applicable) 4. Oath or Declaration [Total Pages 3] 11. Information Disclosure (IDS)/PTO-1449 Copies of IDS Statement (IDS)/PTO-1449 Citations a. X Newly executed (original or copy) 12. X Preliminary Amendment (IDS)/PTO-1449 (Information Disclosure of IDS Statement (IDS)/PTO-1449 (IDS)/PTO-1	3. X Drawing(s) (35 USC 113) [Total Sheets 1 1] 10. English Translation Document (if applicable) 4. Oath or Declaration [Total Pages 3] 11. Information Disclosure Copies of IDS Statement (IDS)/PTO-1449 [Citations Citations Information Disclosure Statement (IDS)/PTO-1449 [Citations Information Disclosure Copies of IDS (Citations Information Disclosure Statement (IDS)/PTO-1449 [Copies of IDS (Information Disclosure Copies of IDS (Information Disclosure Of Information Disclosure Of IDS (Information Disclosure Of Information Disclosure Of IDS (Information Disclosure Of Information Disclosure Of Infor	1				
4. Oath or Declaration a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional with Box 17 completed) (Note Box 5 below) i. DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). 5. X Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 J. 436 , 265 Copies of IDS Statement (IDS)/PTO-1449 Copies of IDS Citations 12. X Preliminary Amendment 13. X Return Receipt Postcard (MPEP 503) (Should be specifically itemized) Shall Entity Statement filed in prior application, Status still proper and desired in formity in sclaimed of the disclosure of the accompanying application and is hereby incorporated by reference therein. 14. Small Entity Statement filed in prior application, fif foreign priority is claimed of the disclosure of the accompanying application and is hereby incorporated by reference therein. 15. Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 J. 436 , 265 18. CORRESPONDENCE ADDRESS	4. Oath or Declaration a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional with Box 17 completed) (Note Box 5 below) i. DELETION OF INVENTORIS) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). 5. X Incorporation By Reference (useable of Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) 18. CORRESPONDENCE ADDRESS Norman D. Hanson FELFE & LYNCH ADDRESS Continuation Information Disclosure Copy of Prointy Decitation, Statement (IDS)/PTO-1449 Citations (IS) Statement (IDS)/PTO-1449 Citations (IS) Statement (IDS)/PTO-1449 Return Receipt Postcard (MPEP 503) (Should be specifically itemized) 14. Small Entity Statement filed in prior application, (Should be specifically itemized) 15. Correspondent filed in prior application, Small Entity Statement filed in prior application, Statement filed in prior application, (Should be specifically itemized) 16. Other: 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: 18. Correspondence address below 19. Correspondence address below	1	(When there is an assignee) Attorney			
a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d))	a. X Newly executed (original or copy) b. Copy from a prior application (37 CFR 1.63(d))		Information Disclosure Copies of IDS			
b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional with Box 17 completed) (Note Box 5 below) i. DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) Continuation Divisional Continuation-in-part (CIP) Continuation Continuation Continuation Continuation Divisional Continuation Continua	b. Copy from a prior application (37 CFR 1.63(d)) (flor continuation/divisional with Box 17 completed) (flor continuation/divisional with Box 17 completed) (flor continuation in the prior application, Signed statement attached delting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). Incorporation By Reference (useable if Box 40 is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) Continuation-in-part (CIP) Continuation-in-part ColP Continuation-in-part ColP (Insert Customer No. or Attach bar code label here) Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	Total Pages 3	Statement (IDS)/PTO-1449 Citations			
i. DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). The entire disclosure of the prior application, source of the prior application, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation in-part (CIP) of prior application No: 08 / 436, 265 Customer Number or Bar Code Label 13. X (Should be specifically itemized) 14. Small Entity Statement filed in prior application, Status still proper and desired (if foreign priority is claimed) 15. Certified Copy of Priority Document(s) (if foreign priority is claimed) 16. Other: 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS	Incorporation By Reference (useable if Box 45 below) 15.		7 Committed y Americanient			
i. DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). 5. X Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label Certified Copy of Priority Document(s) Status still proper and desired Certified Copy of Priority Document(s) (if foreign priority is claimed) Other: Other: Certified Copy of Priority Document(s) (if foreign priority is claimed) Other: Other: Other: Continuation Other: Other: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265	i. DELETION OF INVENTORIS) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). 5. X Incorporation By Reference (useable of Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436 , 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	(for continuation/divisional with Box 17 completed	113 X 1 Hotelit Hoocibi i Ostobiu (MIEE 303)			
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). Incorporation By Reference (useable it Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) Customer Number or Bar Code Label Certified Copy of Priority Document(s) (if foreign priority is claimed) Other: Other: Other: Certified Copy of Priority Document(s) (if foreign priority is claimed) Other: Other: Other: Continuation: Other: Continuation Divisional Continuation-in-part (CIP) Of prior application No: 08 / 436 , 265	Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). 15.	DELETION OF INVENTOR(S)	Small Entity Statement filed in prior application.			
see 37 CFR 1.63(d)(2) and 1.33(b). Incorporation By Reference (useable it Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label Correspondence address below	See 37 CFR 1.63(d)(2) and 1.33(b). Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	Signed statement attached deleting	Statement(s) Status still proper and desired			
Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 J 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label Correspondence address below	Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation	see 37 CFR 1,63(d)(2) and 1,33(b).	(if foreign priority is alaimed)			
copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label Customer Number or Bar Code Label	copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) NAME Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	5. X Incorporation By Reference (useable if Box 4b is check The entire disclosure of the prior application, from which is the prior application from which is the prior application.	ed)			
is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label Correspondence address below	is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 J. 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) NORMAN D. Hanson FELFE & LYNCH ADDRESS 805 Third Avenue CITY New York STATE N.Y. ZIP CODE 10022	copy of the oath or declaration is supplied under Be	x 4b.			
reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 J. 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label - or Correspondence address below	reference therein. 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: Continuation Divisional Continuation Divisional Continuation-in-part (CIP) 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) Norman Norman Norman Norman FELFE & LYNCH ADDRESS 805 Third Avenue CITY New York STATE N.Y. ZIP CODE 10022	is considered as being part of the disclosure of the	***************************************			
Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436 , 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label - or Correspondence address below	Continuation Divisional K Continuation-in-part (CIP) of prior application No: 08 J 436 , 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) Norman D. Hanson FELFE & LYNCH ADDRESS New York STATE N.Y. ZIP CODE 10022	reference therein.				
Continuation Divisional Continuation-in-part (CIP) of prior application No: 08 / 436, 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label - or Correspondence address below	Continuation Divisional K Continuation-in-part (CIP) of prior application No: 08 J 436 , 265 18. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) Norman D. Hanson FELFE & LYNCH ADDRESS New York STATE N.Y. ZIP CODE 10022	17. If a CONTINUING APPLICATION, check appropriate bo	x and supply the requisite information:			
Customer Number or Bar Code Label - or X Correspondence address below	Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022					
- Somospendence address below	NAME Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	18. CORRESPONDENCE ADDRESS				
- Somospendence address below	NAME Norman D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	Customer Number or Par Code Label	क्रि			
A PERSONAL PROPERTY FOR THE PROPERTY OF THE PR	NORMAN D. Hanson FELFE & LYNCH ADDRESS CITY New York STATE N.Y. ZIP CODE 10022	!	or Correspondence address below			
	FELFE & LYNCH ADDRESS 805 Third Avenue CITY New York STATE N.Y. ZIP CODE 10022		v Attach dar code iadel nere) :			
NAME	ADDRESS 805 Third Avenue CITY New York STATE N.Y. ZIP CODE 10022	NAME				
FELFE & LYNCH	CITY New York STATE N.Y. ZIP CODE 10022	FELFE & LYNCH				
ADDRESS 805 Third Avenue	CITY New York STATE N.Y. ZIP CODE 10022	ADDRESS 805 Third Avenue				
	COUNTRY STATE N.Y. ZIP CODE 10022					
CITY New York STATE N.Y. ZIP CODE 10022	COUNTRY	CITY New York STA	E N.Y. ZIP CODE 10022			
COUNTRY	1 0.5.A. 1 1212-688-9200 FAX 212-838-3884	COUNTRY U.S.A. TELEPHO				

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

FELFE & LYNCH 805 Third Avenue New York, NY 10022

"Express Mail" Number EI828161075US

Date of Deposit March 13, 1998

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 as the date indicated above and is addressed to the Commissioner of Patents and Trademarks,

Washington, D.C. 20231. FELFE & LYNCH

Pauline Smith

File No.: LUD 5539-JEL/NDH

HonorableCommissioner Patents and Trademarks Washington, D.C. 20231

Dear Sir:

BOX SN

Kohei Miyazono; Takeshe Imamura and Peter ten Dijke

ISOLATED ALK-1 PROTEIN, NUCLEIC ACIDS ENCODING IT, For:

AND USES THEREOF

We enclose:

(X)Specification <u>94 pages;</u> claims <u>4 pages;</u> Abstract <u>1</u> page.

(X)	Declaration, Power of Attorney (X)	Large Business	• •	Non-Profit Declaration
(X)	Preliminary Amendment		(Attached	
(X)	11 sheet(s) Drawings			
(X)	Basic Fee	\$790.00		\$395.00
	8 claims over 20 (\$22 each)	\$176.00	(\$11 each)	\$
	2 indep. claims over 3 (\$82 each)	\$164.00	(\$41 each)	\$
	multiple dep. claims (\$270)	\$	(\$135)	\$
ì	less than all co-inventors (\$140)	\$	(\$140)	\$
	late fee or declaration (\$130)	\$130.00	(\$65)	\$
	Foreign language text (\$130)	\$	(\$130)	\$
	TOTAL ESTIMATED FILING FEE:	\$1260.00		Ś

Assignment and Recording Fee (\$40)(\$40)

(X) Priority is hereby claimed on the basis of the following:

Country	Serial No.	<u>Date</u>	Priority Documents
U.S.	08/436,265	October 30, 1995	Continuation-in-part Application

(X) A check in the amount of \$1260.00 is enclosed to cover the filing fee. In the event the enclosed check is unacceptable and/or insufficient to cover the required fees, or omitted, please charge to Account No. 06-0530.

Respectfully submitted,

FELFE & LYNCH

Norman D. Hanson Reg. No. 30,946

(X) Triplicate

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s) : Kohei Miyazono, et al.

Serial No. : Continuation-in-part of Serial

No. 08/436,265

Filed : Concurrently herewith

For : ISOLATED ALK-1 PROTEIN, NUCLEIC

ACIDS ENCODING IT, AN USES THEREOF

Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

PRELIMINARY AMENDMENT

Sir:

Please amend this application as follows:

IN THE SPECIFICATION

Page 1: prior to "Field of The Invention" add:

-- Related Applications

This application is a continuation-in-part of Serial Number 08/436,265, filed on October 30, 1995, which was filed under 35 U.S.C. § 371, claiming priority of PCT/GB93/02367 which designates the United States and was filed on November 17, 1993, and claims priority of GB 9224057.1 (November 17, 1992); GB 9304677.9 (March 8, 1993); GB 9304680.3 (March 8, 1993); GB 9311047.6 (May 28, 1993); GB 9313763.6 (July 2, 1993); GB 9136099.2 (August 3, 1993);

and GB 321344.5 (October 15, 1993). These are all incorporated by reference.

REMARKS

This preliminary amendment simply adds priority claims to the specification. No new matter is added.

Respectfully submitted,

FELFE & LYNCH

Norman D. Hanson

Reg. No. 30,946

805 Third Avenue New York, New York 10022 (212) 688-9200

Field of the Invention

5

10

15

20

25

30

This invention relates to proteins having serine/threonine kinase domains, corresponding nucleic acid molecules, and their use.

Background of the Invention

The transforming growth factor-B (TGF-B) superfamily consists of a family of structurally-related proteins, including three different mammalian isoforms of TGF-8 (TGF-81, 82 and 83), activins, inhibins, mullerian-inhibiting substance and bone morphogenic proteins (BMPs) (for reviews see Roberts and Sporn, (1990) Peptide Growth Factors and Their Receptors, Pt.1, Sporn and Roberts, eds. (Berlin: Springer - Verlag) pp 419-472; Moses et al (1990) Cell 63, 245-247). The proteins of the TGF-B superfamily have a wide variety of biological activities. TGF-B acts as a growth inhibitor for many cell types and appears to play a central role in the regulation of embryonic development, tissue regeneration, immuno-regulation, as well as in fibrosis and carcinogenesis (Roberts and Sporn (199) see above).

Activins and inhibins were originally identified as factors which regulate secretion of follicle-stimulating hormone secretion (Vale et al (1990) Peptide Growth Factors and Their Receptors, Pt.2, Sporn and Roberts, eds. (Berlin: Springer-Verlag) pp.211-248). Activins were also shown to induce the differentiation of haematopoietic progenitor cells (Murata et al (1988) Proc. Natl. Acad. Sci. USA 85, 2434 - 2438; Eto et al (1987) Biochem. Biophys. Res. Commun. 142, 1095-1103) and induce mesoderm formation in Xenopus embryos (Smith et al (1990) Nature 345, 729-731; van den Eijnden-Van Raaij et al (1990) Nature 345, 732-734).

BMPs or osteogenic proteins which induce the formation of bone and cartilage when implanted subcutaneously (Wozney et al (1988) Science 242, 1528-1534), facilitate neuronal

15

20

25

30

differentiation (Paralkar et al (1992) J. Cell Biol. 119, 1721-1728) and induce monocyte chemotaxis (Cunningham et al (1992) Proc. Natl. Acad. Sci. USA 89, 11740-11744). Müllerian-inhibiting substance induces regression of the Müllerian duct in the male reproductive system (Cate et al (1986) Cell 45, 685-698), and a glial cell line-derived neurotrophic factor enhances survival of midbrain dopaminergic neurons (Lin et al (1993) Science 260, 1130-1132). The action of these growth factors is mediated through binding to specific cell surface receptors.

Within this family, TGF-B receptors have been most thoroughly characterized. By covalently cross-linking radio-labelled TGF-8 to cell surface molecules followed by polyacrylamide gel electrophoresis of the affinity-labelled complexes, three distinct size classes of cell surface proteins (in most cases) have been identified, denoted receptor type I (53 kd), type II (75 kd), type III or betaglycan (a 300 kd proteoglycan with a 120 kd core protein) (for a review see Massague (1992) Cell 69 1067-1070) and more recently endoglin (a homodimer of two 95 kd subunits) (Cheifetz et al (1992) J. Biol. Chem. 267 19027-19030). Current evidence suggests that type I and type II receptors are directly involved in receptor signal transduction (Segarini et al (1989) Mol. Endo., 3, 261-272; Laiho et al (1991) J. Biol. Chem. 266, 9100-9112) and may form a heteromeric complex; the type II receptor is needed for the binding of TGP-B to the type I receptor and the type I receptor is needed for the signal transduction induced by the type II receptor (Wrana et al (1992) Cell, 71, 1003-1004). The type III receptor and endoglin may have more indirect roles, possibly by facilitating the binding of ligand to type II receptors (Wang et al (1991) Cell, 67 797-805; López-Casillas et al (1993) Cell, 73 1435-1444).

Binding analyses with activin A and BMP4 have led to the identification of two co-existing cross-linked affinity complexes of 50-60 kDa and 70-80 kDa on responsive cells

(Hino et al (1989) J. Bicl. Chem. 264, 10309 - 10314; Mathews and Vale (1991), Cell 68, 775-785; Paralker et al (1991) Proc. Natl. Acad. Sci. USA 87, 8913-8917). By analogy with TGF-B receptors they are thought to be signalling receptors and have been named type I and type II receptors.

Among the type II receptors for the TGF-B superfamily of proteins, the cDNA for the activin type II receptor (Act RII) was the first to be cloned (Mathews and Vale (1991) Cell 65, 973-982). The predicted structure of the receptor was shown to be a transmembrane protein with an intracellular serine/threonine kinase domain. The activin receptor is related to the <u>C. elegans daf-1</u> gene product, but the ligand is currently unknown (Georgi et al (1990) Cell 61, 635-645). Thereafter, another form of the activin type II receptor (activin type IIB receptor), of which there are different splicing variants (Mathews et al (1992), Science 225, 1702-1705; Attisano et al (1992) Cell 68, 97-108), and the TGF-B type II receptor (TBRII) (Lin et al (1992) Cell 68, 775-785) were cloned, both of which have putative serine/threcnine kinase domains.

Summary of the Invention

The present invention involves the discovery of related novel peptides, including peptides having the activity of those defined herein as SEQ ID Nos. 2, 4, 8, 10, 12, 14, 16 and 18. Their discovery is based on the realisation that receptor serine/threonine kinases form a new receptor family, which may include the type II receptors for other proteins in the TGF-B superfamily. To ascertain whether there were other members of this family of receptors, a protocol was designed to clone ActRII/daf I related cDNAs. This approach made use of the polymerase chain reaction (PCR), using degenerate primers based upon the amino-acid sequence similarity between kinase domains of the mouse activin type II receptor and daf-I gene products.

10

15

20

25

35

This strategy resulted in the isolation of a new family of receptor kinases called Activin receptor like kinases (ALK's) 1-6. These CDNAs showed an overall 33-39% sequence similarity with ActRII and TGF-8 type II receptor and 40-92% sequence similarity towards each other in the kinase domains.

Soluble receptors according to the invention comprise at least predominantly the extracellular domain. These can be selected from the information provided herein, prepared in conventional manner, and used in any manner associated with the invention.

Antibodies to the peptides described herein may be raised in conventional manner. By selecting unique sequences of the peptides, antibodies having desired specificity can be obtained.

The antibodies may be monoclonal, prepared in known manner. In particular, monoclonal antibodies to the extracellular domain are of potential value in therapy.

products of the invention are useful in diagnostic methods, e.g. to determine the presence in a sample for an analyte binding therewith, such as in an antagonist assay. Conventional techniques, e.g. an enzyme-linked immunosorbent assay, may be used.

Products of the invention having a specific receptor activity can be used in therapy, e.g. to modulate conditions associated with activin or TGF- β activity. Such conditions include fibrosis, e.g. liver cirrhosis and pulmonary fibrosis, cancer, rheumatoid arthritis and glomeronephritis.

30 Brief Description of the Drawings

Figure 1 shows the alignment of the serine/threonine (S/T) kinase domains (I-VIII) of related receptors from transmembrane proteins, including embodiments of the present invention. The nomenclature of the subdomains is accordingly to Hanks et al (1988).

Figures 2A to 2D shows the sequences and characteristics of the respective primers used in the

20

25

30

35

initial PCR reactions. The nucleic acid sequences are also given as SEQ ID Nos. 19 to 22.

Figure 3 is a comparison of the amino-acid sequences of human activin type II receptor (Act R-II), mouse activin type IIB receptor (Act R-IIB), human TGF-B type II receptor (TBR-II), human TGF-B type I receptor (ALK-5), human activin receptor type IA (ALK-2), and type IB (ALK-4), ALKs 1 & 3 and mouse ALK-6.

Figure 4 shows, schematically, the structures for <u>Paf-</u>
10 1, Act R-II, Act R-IIB, T&R-II, T&R-I/ALK-5, ALK's -1, -2
(Act RIA), -3, -4 (Act RIB) £ -6.

Figure 5 shows the sequence alignment of the cysteinerich domains of the ALKs, TBR-II, Act R-II, Act R-IIB and daf-1 receptors.

Figure 6 is a comparison of kinase domains of serine/threonine kinases, showing the percentage amino-acid identity of the kinase domains.

Figure 7 shows the pairwise alignment relationship between the kinase domains of the receptor serine/threonine kinases. The dendrogram was generated using the Jotun-Hein alignment program (Hein (1990) Meth. Enzymol. 183, 626-645).

Brief Description of the Sequence Listings

Sequences 1 and 2 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-1 (clone HP57).

Sequences 3 and 4 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-2 (clone HP53).

Sequences 5 and 6 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-3 (clone ONF5).

Sequences 7 and 8 the nucleotide and deduced aminoacid sequences of cDNA for hALK-4 (clone 11H8), complemented with PCR product encoding extracellular domain.

Sequences 9 and 10 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-5 (clone EMBLA).

Sequences 11 and 12 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-1 (clone AM6).

15

20

30

35

Sequences 13 and 14 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-3 (clones ME-7 and ME-D).

Sequences 15 and 16 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-4 (clone 8al).

Sequences 17 and 18 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-6 (clone ME-6).

Sequence 19 (B1-S) is a sense primer, extracellular domain, cysteine-rich region, BamHI site at 5' end, 28-mer, 64-fold degeneracy.

Sequence 20 (B3-S) is a sense primer, kinase domain II, BamHI site at 5' end, 25-mer, 162-fold degeneracy.

Sequence 21 (B7-S) is a sense primer, kinase domain VIB, S/T kinase specific residues, BamHI site at 5' end, 24-mer, 288-fold degeneracy.

Sequence 22 (E8-AS) is an anti-sense primer, kinase domain, S/T kinase-specific residues EcoRI site at 5' end, 20-mer, 18-fold degeneracy.

Sequence 23 is an oligonucleotide probe.

Sequence 24 is a 5' primer.

Sequence 25 is a 3' primer.

Sequence 26 is a consensus sequence in Subdomain I.

Sequences 27 and 28 are novel sequence motifs in Subdomain VIB.

25 Sequence 29 is a novel sequence motif in Subdomain VIII.

Description of the Invention

As described in more detail below, nucleic acid sequences have been isolated, coding for a new sub-family of serine/threonine receptor kinases. The term nucleic acid molecules as used herein refers to any sequence which codes for the murine, human or mammalian form, amino-acid sequences of which are presented herein. It is understood that the well known phenomenon of codon degeneracy provides for a great deal of sequence variation and all such varieties are included within the scope of this invention.

10

15

20

25

30

35

The nucleic acid sequences described herein may be used to clone the respective genomic DNA sequences in order to study the genes' structure and regulation. The murine and human cDNA or genomic sequences can also be used to isolate the homologous genes from other mammalian species. The mammalian DNA sequences can be used to study the receptors' functions in various in vitro and in vivo model systems.

As exemplified below for ALK-5 cDNA, it is also recognised that, given the sequence information provided herein, the artisan could easily combine the molecules with a pertinent promoter in a vector, so as to produce a cloning vehicle for expression of the molecule. promoter and coding molecule must be operably linked via anv cf the well-recognized and easily-practised methodologies for so doing. The resulting vectors, as well as the isolated nucleic acid molecules themselves, may be used to transform prokaryotic cells (e.g. E. coli), or transfect eukaryotes such as yeast (S. cerevisiae), PAE, COS or CHO cell lines. Other appropriate expression systems will also be apparent to the skilled artisan.

Several methods may be used to isolate the ligands for the ALKs. As shown for ALK-5 cDNA, cDNA clones encoding the active open reading frames can be subcloned into expression vectors and transfected into eukaryotic cells, for example COS cells. The transfected cells which can express the receptor can be subjected to binding assays for radioactively-labelled members of the TGF-B superfamily (TGF-B, activins, inhibins, bone morphogenic proteins and mullerian-inhibiting substances), as it may be expected that the receptors will bind members of the TGF-B superfamily. Various biochemical or cell-based assays can be designed to identify the ligands, in tissue extracts or conditioned media, for receptors in which a ligand is not known. Antibodies raised to the receptors may also be used to identify the ligands, using the immunoprecipitation of the cross-linked complexes. Alternatively, purified

10

15

20

30

35

receptor could be used to isolate the ligands using an affinity-based approach. The determination of the expression patterns of the receptors may also aid in the isolation of the ligand. These studies may be carried out using ALK DNA or RNA sequences as probes to perform in situ hybridisation studies.

The use of various model systems or structural studies should enable the rational development of specific agonists and antagonists useful in regulating receptor function. It may be envisaged that these can be peptides, mutated ligands, antibodies or other molecules able to interact with the receptors.

The foregoing provides examples of the invention Applicants intend to claim which includes, inter alia, isolated nucleic acid molecules coding for activin receptor-like kinases (ALKs), as defined herein. These include such sequences isolated from mammalian species such as mouse, human, rat, rabbit and monkey.

The following description relates to specific embodiments. It will be understood that the specification and examples are illustrative but not limitative of the present invention and that other embodiments within the spirit and scope of the invention will suggest themselves to those skilled in the art.

25 Preparation of mRNA and Construction of a cDNA Library

For construction of a cDNA library, poly (A) RNA was isolated from a human erythroleukemia cell line (HEL 92.1.7) obtained from the American Type Culture Collection (ATCC TIB 180). These cells were chosen as they have been shown to respond to both activin and TGF-8. Moreover leukaemic cells have proved to be rich sources for the cloning of novel receptor tyrosine kinases (Partanen et al (1990) Proc. Natl. Acad. Sci. USA 87, 8913-8917 and (1992) Mol. Cell. Biol. 12, 1698-1707). (Total) RNA was prepared by the guanidinium isothiocyanate method (Chirgwin et al (1979) Biochemistry 18, 5294-5299). mRNA was selected using the poly-A or poly AT tract mRNA isolation kit

10

15

20

30

35

(Promega, Madison, Wisconsin, U.S.A.) as described by the manufacturers, or purified through an oligo (dT)-cellulose column as described by Aviv and Leder (1972) Proc. Natl. Acad. Sci. USA 69, 1408-1412. The isolated mRNA was used for the synthesis of random primed (Amersham) cDNA, that was used to make a lgt10 library with 1x105 independent cDNA clones using the Riboclone cDNA synthesis system (Promega) and Agt10 in vitro packaging kit (Amersham) according to the manufacturers' procedures. An amplified oligo (dT) primed human placenta AZAPII cDNA library of 5x10⁵ independent clones was used. Poly (A)* RNA isolated from AG1518 human foreskin fibroblasts was used to prepare a primary random primed AZAPII cDNA library of 1.5x106 independent clones using the RiboClone cDNA synthesis system and Gigapack Gold II packaging extract (Stratagene). In addition, a primary oligo (dT) primed human foreskin fibroblast Agt10 cDNA library (Claesson-Welsh et al (1989) Proc. Natl. Acad. Sci. USA. 86 4917-4912) was prepared. An amplified oligo (dT) primed HEL cell lgt11 cDNA library of 1.5 X 106 independent clones (Poncz et al (1987) Blood 69 219-223) was used. A twelve-day mouse embryo AEXIOX CDNA library was obtained from Novagen (Madison, Wisconsin, U.S.A.); a mouse placenta 12APII cDNA library was also

25 Generation of cDNA Probes by PCR

For the generation of cDNA probes by PCR (Lee et al (1988) Science 239, 1288-1291) degenerate PCR primers were constructed based upon the amino-acid sequence similarity between the mouse activin type II receptor (Mathews and Vale (1991) Cell 65, 973-982) and daf-1 (George et al (1990) Cell 61, 635-645) in the kinase domains II and VIII. Figure 1 shows the aligned serine/threonine kinase domains (I-VIII), of four related receptors of the TGF-8 superfamily, i.e. hT&R-II, mActR-IIB, mActR-II and the daf-1 gene product, using the nomenclature of the subdomains according to Hanks et al (1988) Science 241, 45-52.

15

20

30

35

Several considerations were applied in the design of the PCR primers. The sequences were taken from regions of homology between the activin type II receptor and the daf-1 gene product, with particular emphasis on residues that confer serine/threonine specificity (see Table 2) and on residues that are shared by transmembrane kinase proteins and not by cytoplasmic kinases. The primers were designed so that each primer of a PCR set had an approximately similar GC composition, and so that self complementarity and complementarity between the 3' ends of the primer sets were avoided. Degeneracy of the primers was kept as low as possible, in particular avoiding serine, leucine and arginine residues (6 possible codons), and human codon Degeneracy was particularly preference was applied. avoided at the 3' end as, unlike the 5' end, where mismatches are tolerated, mismatches at the 3' end dramatically reduce the efficiency of PCR.

In order to facilitate directional subcloning, restriction enzyme sites were included at the 5' end of the primers, with a GC clamp, which permits efficient The primers utilised are restriction enzyme digestion. shown in Figure 2. Oligonucleotides were synthesized using Gene assembler plus (Pharmacia - LKB) according to the manufacturers instructions.

The mRNA prepared from HEL cells as described above 25 ' was reverse-transcribed into cDNA in the presence of 50 mM Tris-HCl, pH 8.3, 8 mM MgCl2, 30 mM KCl, 10 mM dithiothreitol, 2mM nucleotide triphosphates, excess oligo (dT) primers and 34 units of AMV reverse transcriptase at 42°C for 2 hours in 40 μl of reaction volume. Amplification by PCR was carried out with a 7.5% aliquot (3 μ l) of the reverse-transcribed mRNA, in the presence of 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 M MgCl2, 0.01% gelatin, 0.2 mM nucleotide triphosphates, 1 µM of both sense and antisense primers and 2.5 units of Taq polymerase (Perkin Elmer Cetus) in 100 µl reaction volume. Amplifications were performed on a thermal cycler (Perkin Elmer Cetus)

15

20

25

30

35

using the following program: first 5 thermal cycles with denaturation for 1 minute at 94° C, annealing for 1 minute at 50° C, a 2 minute ramp to 55° C and elongation for 1 minute at 72° C, followed by 20 cycles of 1 minute at 94° C, 30 seconds at 55° C and 1 minute at 72° C. A second round of PCR was performed with 3 μ 1 of the first reaction as a template. This involved 25 thermal cycles, each composed of 94° C (1 min), 55° C (0.5 min), 72° C (1 min).

General procedures such as purification of nucleic acids, restriction enzyme digestion, gel electrophoresis, transfer of nucleic acid to solid supports and subcloning were performed essentially according to established procedures as described by Sambrook et al, (1989), Molecular cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory (Cold Spring Harbor, New York, USA).

Samples of the PCR products were digested with <u>Bam</u>HI and <u>Eco</u>RI and subsequently fractionated by low melting point agarose gel electrophoresis. Bands corresponding to the approximate expected sizes, (see Table 1: ≈460 bp for primer pair B3-S and E8-AS and ≈ 140 bp for primer pair B7-S and E8-AS) were excised from the gel and the DNA was purified. Subsequently, these fragments were ligated into pUC19 (Yanisch-Perron <u>et al</u> (1985) Gene <u>33</u>, 103-119), which had been previously linearised with <u>Bam</u>HI and <u>Eco</u>R1 and transformed into <u>E. coli</u> strain DH5α using standard protocols (Sambrook <u>et al</u>, <u>supra</u>). Individual clones were sequenced using standard double-stranded sequencing techniques and the dideoxynucleotide chain termination method as described by Sanger <u>et al</u> (1977) Proc. Natl. Acad. Sci. USA <u>74</u>, 5463-5467, and T7 DNA polymerase.

Employing Reverse Transcriptase PCR on HEL mRNA with the primer pair B3-S and E8-AS, three PCR products were obtained, termed 11.1, 11.2 and 11.3, that corresponded to novel genes. Using the primer pair B7-S and E8-AS, an additional novel PCR product was obtained termed 5.2.

25

30

35

TABLE 1

5	XXXX OF PCR PRODUCT	PRIMERS	INSERT SISE (bp)	SINE OF DEA FRAGGERT IN MACTRII/ MISRII CLOKES (bp)	SEQUENCE IDENTITY WITE SEQUENCE BACTRII/bTSRII (%)	SEQUENCE IDENTITI BETWEEN BACTRII and IDR-II (%)
	11.1	B3-S/E8-A5	460	460	46/40	42
	11.2	B3-S/R8-AS	460	460	49/44	47
10	11.3	B3-S/E8-AS	460	460	44/36	48
	11.29	B3-S/E8-AS	460	460	ND/100	ND
	9.2	B1-S/E8-AS	800	795	100/אס	ND
	5.2	B7-S/E8-AS	140	143	40/38	60

15 Isolation of cDNA Clones

The PCR products obtained were used to screen various cDNA libraries described <u>supra</u>. Labelling of the inserts of PCR products was performed using random priming method (Feinberg and Vogelstein (1983) Anal. Biochem, <u>132</u> 6-13) using the Megaprime DNA labelling system (Amersham). The oligonucleotide derived from the sequence of the PCR product 5.2 was labelled by phosphorylation with T4 polynucleotide kinase following standard protocols (Sambrook <u>et al</u>, <u>supra</u>). Hybridization and purification of positive bacteriophages were performed using standard molecular biological techniques.

The double-stranded DNA clones were all sequenced using the dideoxynucleotide chain-termination method as described by Sanger et al, supra, using T7 DNA polymerase (Pharmacia - LKB) or Sequenase (U.S. Biochemical Corporation, Cleveland, Ohio, U.S.A.). Compressions of nucleotides were resolved using 7-deaza-GTP (U.S. Biochemical Corp.) DNA sequences were analyzed using the DNA STAR computer program (DNA STAR Ltd. U.K.). Analyses of the sequences obtained revealed the existence of six

15

20

25

30

35

distinct putative receptor serine/threonine kinases which have been named ALK 1-6.

To clone cDNA for ALK-1 the oligo (dT) primed human placenta cDNA library was screened with a radiolabelled insert derived from the PCR product 11.3; based upon their restriction enzyme digestion patterns, three different types of clones with approximate insert sizes. of 1.7 kb, The 2 kb clone, named 2 kb & 3.5 kb were identified. HP57, was chosen as representative of this class and subjected to complete sequencing. Sequence analysis of ALK-1 revealed a sequence of 1984 nucleotides including a poly-A tail (SEQ ID No. 1). The longest open reading frame encodes a protein of 503 amino-acids, with high sequence similarity to receptor serine/threonine kinases (see The first methionine codon, the putative below). translation start site, is at nucleotide 283-285 and is preceded by an in-frame stop codon. This first ATG is in a more favourable context for translation initiation (Kozak (1987) Nucl. Acids Res., 15, 8125-8148) than the second and third in-frame ATG at nucleotides 316-318 and 325-327. The putative initiation codon is preceded by a 5' untranslated sequence of 282 nucleotides that is GC-rich (80% GC), which is not uncommon for growth factor receptors (Kozak (1991) J. Cell Biol., 115, 887-903). The 3' untranslated sequence comprises 193 nucleotides and ends with a poly-A tail. No bona fide poly-A addition signal is found, but there is a sequence (AATACA), 17-22 nucleotides upstream of the poly-A tail, which may serve as a poly-A addition signal.

ALK-2 cDNA was cloned by screening an amplified oligo (dT) primed human placenta cDNA library with a radiolabelled insert derived from the PCR product 11.2. Two clones, termed HP53 and HP64, with insert sizes of 2.7 kb and 2.4 kb respectively, were identified and their sequences were determined. No sequence difference in the overlapping clones was found, suggesting they are both derived from transcripts of the same gene.

10

15

20

25

30

35

Sequence analysis of cDNA clone HP53 (SEQ ID No. 3) revealed a sequence of 2719 nucleotides with a poly-A tail. The longest open reading frame encodes a protein of 509 amino-acids. The first ATG at nucleotides 104-106 agrees favourably with Kozak's consensus sequence with an A at position 3. This ATG is preceded in-frame by a stop codon. There are four ATG codons in close proximity further downstream, which agree with the Kozak's consensus sequence (Kozak, supra), but according to Kozak's scanning model the first ATG is predicted to be the translation start site. The 5' untranslated sequence is 103 nucleotides. The 3' untranslated sequence of 1089 nucleotides contains a polyadenylation signal located 9-14 nucleotides upstream The cDNA clone HP64 lacks 498 from the poly-A tail. nucleotides from the 5' end compared to HP53, but the sequence extended at the 3' end with 190 nucleotides and This suggests that different poly-A tail is absent. polyadenylation sites occur for ALK-2. In Northern blots, however, only one transcript was detected (see below).

The cDNA for human ALK-3 was cloned by initially screening an oligo (dT) primed human foreskin fibroblast cDNA library with an oligonucleotide (SEQ ID No. 23) derived from the PCR product 5.2. One positive cDNA clone with an insert size of 3 kb, termed ON11, was identified. However, upon partial sequencing, it appeared that this clone was incomplete; it encodes only part of the kinase domain and lacks the extracelluar domain. The most 5' sequence of ON11, a 540 nucleotide XbaI restriction encoding a truncated kinase domain, was subsequently used to probe a random primed fibroblast cDNA library from which one cDNA clone with an insert size of 3 kb, termed ONF5, was isolated (SEQ ID No. 5). Sequence analysis of ONF5 revealed a sequence of 2932 nucleotides without a poly-A tail, suggesting that this clone was derived by internal priming. The longest open reading frame codes for a protein of 532 amino-acids. The first ATG codon which is compatible with Kozak's consensus

10

15

20

25

30

35

sequence (Kozak, <u>supra</u>), is at 310-312 nucleotides and is preceded by an in-frame stop codon. The 5' and 3' untranslated sequences are 309 and 1027 nucleotides long, respectively.

ALK-4 cDNA was identified by screening a human oligo (dT) primed human erythroleukemia cDNA library with the radiolabelled insert of the PCR product 11.1 as a probe. One cDNA clone, termed 11H8, was identified with an insert size of 2 kb (SEQ ID No. 7). An open reading frame was found encoding a protein sequence of 383 amino-acids encoding a truncated extracellular domain with high similarity to receptor serine/threonine kinases. The 3' untranslated sequence is 818 nucleotides and does not contain a poly-A tail, suggesting that the cDNA was internally primed. CDNA encoding the extracellular domain (nucleotides 1-366) was obtained from HEL cells by RT-PCR with 5' primer (SEQ ID No. 24) derived in part from sequence at translation start site of SKR-2 (a cDNA sequence deposited in GenBank data base, accesion number L10125, that is identical in part to ALK-4) and 3' primer (SEQ ID No. 25) derived from 11H8 cDNA clone.

ALK-5 was identified by screening the random primed HEL cell 1gt 10 cDNA library with the PCR product 11.1 as This yielded one positive clone termed EMBLA (insert size of 5.3 kb with 2 internal EcoRI sites). Nucleotide sequencing revealed an open reading frame of 1509 bp, coding for 503 amino-acids. The open reading frame was flanked by a 5' untranslated sequence of 76 bp, and a 3' untranslated sequence of 3.7 kb which was not completely sequenced. The nucleotide and deduced aminoacid sequences of ALK-5 are shown in SEQ ID Nos. 9 and 10. In the 5' part of the open reading frame, only one ATG codon was found; this codon fulfils the rules of translation initiation (Kozak, supra). An in-frame stop codon was found at nucleotides (-54)-(-52) in the 5' untranslated region. The predicted ATG start codon is followed by a stretch of hydrophobic amino-acid residues

15

20

25

30

35

which has characteristics of a cleavable signal sequence. Therefore, the first ATG codon is likely to be used as a translation initiation site. A preferred cleavage site for the signal peptidase, according to von Heijne (1986) Nucl. Acid. Res. 14, 4683-4690, is located between amino-acid residues 24 and 25. The calculated molecular mass of the primary translated product of the ALK-5 without signal sequence is 53,646 Da.

Screening of the mouse embryo LEX <u>Iox</u> cDNA library using PCR, product 11.1 as a probe yielded 20 positive clones. DNAs from the positive clones obtained from this digested with <u>Eco</u>RI and HindIII, were library electrophoretically separated on a 1.3% agarose gel and transferred to nitrocellulose filters according to established procedures as described by Sambrook et al, The filters were then hybridized with specific supra. probes for human ALK-1 (nucleotide 288-670), ALK-2 (nucleotide 1-581), ALK-3 (nucleotide 79-824) or ALK-4 nucleotide 1178-1967). Such analyses revealed that a clone termed ME-7 hybridised with the human ALK-3 probe. However, nucleotide sequencing revealed that this clone was incomplete, and lacked the 5' part of the translated Screening the same cDNA library with a probe region. corresponding to the extracelluar domain of human ALK-3 (nucleotides 79-824) revealed the clone ME-D. This clone was isolated and the sequence was analyzed. Although this clone was incomplete in the 3' end of the translated region, ME-7 and ME-D overlapped and together covered the complete sequence of mouse ALK-3. The predicted amino-acid sequence of mouse ALK-3 is very similar to the human sequence; only 8 amino-acid residues differ (98% identity; see SEQ ID No. 14) and the calculated molecular mass of the primary translated product without the putative signal sequence is 57,447 Da.

Of the clones obtained from the initial library screening with PCR product 11.1, four clones hybridized to the probe corresponding to the conserved kinase domain of

15

20

25

30

35

ALK-4 but not to probes from more divergent parts of ALK-1 to -4. Analysis of these clones revealed that they have an identical sequence which differs from those of ALK-1 to -5 and was termed ALK-6. The longest clone ME6 with a 2.0 kb insert was completely sequenced yielding a 1952 bp fragment consisting of an open reading frame of 1506 bp (502 aminoacids), flanked by a 5' untranslated sequence of 186 bp, and a 3' untranslated sequence of 160 bp. The nucleotide and predicted amino-acid sequences of mouse ALK-6 are shown in SEQ ID Nos. 17 and 18. No polyadenylation signal was found in the 3' untranslated region of ME6, indicating that the cDNA was internally primed in the 3' end. Only one ATG codon was found in the 5' part of the open reading frame, which fulfils the rules for translation initiation (Kozak, supra), and was preceded by an in-frame stop codon at nucleotides 163-165. However, a typical hydrophobic leader sequence was not observed at the N terminus of the Since there is no ATG codon and translated region. putative hydrophobic leader sequence, this ATG codon is likely to be used as a translation initiation site. The calculated molecular mass of the primary translated product with the putative signal sequence is 55,576 Da.

Mouse ALK-1 (clone AM6 with 1.9 kb insert) was obtained from the mouse placenta AZAPII cDNA library using human ALK-1 cDNA as a probe (see SEQ ID No. 11). Mouse ALK-4 (clone 8a1 with 2.3kb insert) was also obtained from this library using human ALK-4 cDNA library as a probe (SEQ ID No. 15).

To summarise, clones HP22, HP57, ONF1, ONF3, ONF4 and HP29 encode the same gene, ALK-1. Clone AM6 encodes mouse ALK-1. HP53, HP64 and HP84 encode the same gene, ALK-2. ONF5, ONF2 and ON11 encode the same gene ALK-3. ME-7 and ME-D encode the mouse counterpart of human ALK-3. 11H8 encodes a different gene ALK-4, whilst 8a1 encodes the mouse equivalent. EMBLA encodes ALK-5, and ME-6 encodes ALK-6.

15

20

25

30

35

The sequence alignment between the 6 ALK genes and TBR-II, mActR-II and ActR-IIB is shown in Figure 3. These molecules have a similar domain structure; an N-terminal predicted hydrophobic signal sequence (von Heijne (1986) Nucl. Acids Res. 14: 4683-4690) is followed by a relatively small extracellular cysteine-rich ligand binding domain, a single hydrophobic transmembrane region (Kyte & Doolittle (1982) J. Mol. Biol. 157, 105-132) and a C-terminal intracellular portion, which consists almost entirely of a kinase domain (Figures 3 and 4).

The extracelluar domains of these receptors have cysteine-rich regions, but they show little sequence similarity; for example, less than 20% sequence identity is found between <u>Daf</u>-1, ActR-II, T&R-II and ALK-5. The ALKs appear to form a subfamily as they show higher sequence similarities (15-47% identity) in their extracellular domains. The extracellular domains of ALK-5 and ALK-4 have about 29% sequence identity. In addition, ALK-3 and ALK-6 share a high degree of sequence similarity in their extracellular domains (46% identity).

The positions of many of the cysteine residues in all receptors can be aligned, suggesting that the extracellular domains may adopt a similar structural configuration. See Figure 5 for ALKS-1,-2,-3 &- 5. Each of the ALKS (except ALK-6) has a potential N-linked glycosylation site, the position of which is conserved between ALK-1 and ALK-2, and between ALK-3, ALK-4 and ALK-5 (see Figure 4).

The sequence similarities in the kinase domains between daf-1, ActR-II, TBR-II and ALK-5 are approximately 40%, whereas the sequence similarity between the ALKs 1 to 6 is higher (between 59% and 90%; see Figure 6). Pairwise comparison using the Jutun-Hein sequence alignment program (Hein (1990) Meth, Enzymol., 183, 626-645), between all family members, identifies the ALKs as a separate subclass among serine/threonine kinases (Figure 7).

The catalytic domains of kinases can be divided into 12 subdomains with stretches of conserved amino-acid

residues. The key motifs are found in serine/threonine kinase receptors suggesting that they are functional kinases. The consensus sequence for the binding of ATP (Gly-X-Gly-X-Gly in subdomain I followed by a Lys residue further downstream in subdomain II) is found in all the ALKs.

The kinase domains of <u>daf-1</u>, ActR-II, and ALKs show approximately equal sequence similarity with tyrosine and serine/threonine protein kinases. However analysis of the amino-acid sequences in subdomains VI and VIII, which are the most useful to distinguish a specificity for phosphorylation of tyrosine residues versus serine/threonine residues (Hanks <u>et al</u> (1988) Science <u>241</u> 42-52) indicates that these kinases are serine/threonine kinases; refer to Table 2.

TABLE 2

KINASE	SUBDOKAINS	
	VIB	VIII
Serine/threonine kinase consensus	DLKPEN	G (T/S) XX (Y/F) X
Tyrosine kinase consensus	DLAARN	XP(I/V) (K/R) W (T/M)
Act R-II	DIKSKN	GTRRYM
Act R-IIB	dfkskn	GTRRYM
TBR-II	DLKSSN	GTARYM
ALK-I	DFKSRN	GTKRYM
ALR -2, -3, -4, -5, & -6	DLKSKN	GTKRYM

The sequence motifs DLKSKN (Subdomain VIB) and GTKRYM (Subdomain VIII), that are found in most of the serine/threonine kinase receptors, agree well with the consensus sequences for all protein serine/threonine kinase receptors in these regions. In addition, these receptors, except for ALK-1, do not have a tyrosine residue surrounded by acidic residues between subdomains VII and VIII, which is common for tyrosine kinases. A unique characteristic of the members of the ALK serine/threonine kinase receptor family is the presence of two short inserts in the kinase

domain between subdomains VIA and VIB and between subdomains X and XI. In the intracellular domain, these regions, together with the juxtamembrane part and C-terminal tail, are the most divergent between family members (see Figures 3 and 4). Based on the sequence similarity with the type II receptors for TGF-B and activin, the C termini of the kinase domains of ALKs -1 to -6 are set at Ser-495, Ser-501, Ser-527, Gln-500, Gln-498 and Ser-497, respectively.

10 mRNA Expression

5

15

20

25

30

The distribution of ALK-1, -2, -3, -4 was determined by Northern blot analysis. A Northern blot filter with mRNAs from different human tissues was obtained from Clontech (Palo Alto, C.A.). The filters were hybridized with 32P-labelled probes at 42°C overnight in formaldehyde, 5 x standard saline citrate (SSC; 1xSSC is 50mM sodium citrate, pH 7.0, 150 mM NaCl), 0.1% SDS, 50 mM sodium phosphate, 5 x Denhardt's solution and 0.1 mg/ml In order to minimize crosssperm DNA. hybridization, probes were used that did not encode part of the kinase domains, but corresponded to the highly diverged sequences of either 5' untranslated and ligand-binding regions (probes for ALK-1, -2 and -3) or 3' untranslated sequences (probe for ALK-4). The probes were labelled by random priming using the Multiprime (or Mega-prime) DNA labelling system and $[\alpha^{-32}P]$ dCTP (Feinberg & Vogelstein (1983) Anal. Biochem. 132: 6-13). Unincorporated label was removed by Sephadex G-25 chromatography. Filters were washed at 65°C, twice for 30 minutes in 2.5 x SSC, 0.1% SDS and twice for 30 minutes in 0.3 x SSC, 0.1% SDS before being exposed to X-ray film. Stripping of blots was performed by incubation at 90-100°C in water for 20 minutes.

The ALK-5 mRNA size and distribution were determined by Northern blot analysis as above. An <u>Eco</u>R1 fragment of 980bp of the full length ALK-5 cDNA clone, corresponding to the C-terminal part of the kinase domain and 3'

10

15

20

25

30

35

untranslated region (nucleotides 1259-2232 in SEQ ID No. 9) was used as a probe. The filter was washed twice in 0.5 x SSC. 0.1% SDS at 55°C for 15 minutes.

Using the probe for ALK-1, two transcripts of 2.2 and 4.9kb were detected. The ALK-1 expression level varied strongly between different tissues, high in placenta and lung, moderate in heart, muscle and kidney, and low (to not detectable) in brain, liver and pancreas. The relative ratios between the two transcripts were similar in most tissues; in kidney, however, there was relatively more of the 4.9 kb transcript. By reprobing the blot with a probe for ALK-2, one transcript of 4.0 kb was detected with a ubiquitous expression pattern. Expression was detected in every tissue investigated and was highest in placenta and skeletal muscle. Subsequently the blot was reprobed for One major transcript of 4.4 kb and a minor transcript of 7.9 kb were detected. Expression was high in skeletal muscle, in which also an additional minor transcript of 10 kb was observed. Moderate levels of ALK-3 mRNA were detected in heart, placenta, kidney and pancreas, and low (to not detectable) expression was found in brain, lung and liver. The relative ratios between the different transcripts were similar in the tested tissues, the 4.4 kb transcript being the predominant one, with the exception for brain where both transcripts were expressed at a similar level. Probing the blot with ALK-4 indicated the presence of a transcript with the estimated size of 5.2 kb and revealed an ubiquitous expression pattern. The results of Northern blot analysis using the probe for ALK-5 showed that a 5.5 kb transcript is expressed in all human tissues tested, being most abundant in placenta and least abundant in brain and heart.

The distribution of mRNA for mouse ALK-3 and -6 in various mouse tissues was also determined by Northern blot analysis. A multiple mouse tissue blot was obtained from Clontech, Palo Alto, California, U.S.A. The filter was hybridized as described above with probes for mouse ALK-3

10

15

20

25

30

35

and ALK-6. The <u>Ecori-Psti</u> restriction fragment, corresponding to nucleotides 79-1100 of ALK-3, and the <u>Saci-Hpai</u> fragment, corresponding to nucleotides 57-720 of ALK-6, were used as probes. The filter was washed at 65°C twice for 30 minutes in 2.5 x SSC, 0.1% SDS and twice for 30 minutes with 0.3 x SSC, 0.1% SDS and then subjected to autoradiography.

Using the probe for mouse ALK-3, a 1.1 kb transcript was found only in spleen. By reprobing the blot with the ALK-6 specific probe, a transcript of 7.2 kb was found in brain and a weak signal was also seen in lung. No other signal was seen in the other tissues tested, i.e. heart, liver, skeletal muscle, kidney and testis.

All detected transcript sizes were different, and thus no cross-reaction between mRNAs for the different ALKs was observed when the specific probes were used. This suggests that the multiple transcripts of ALK-1 and ALK-3 are coded from the same gene. The mechanism for generation of the different transcripts is unknown at present; they may be splicing, differential by alternative DRNA polyadenylation, use of different promotors, or by a combination of these events. Differences in mRNA splicing in the regions coding for the extracellular domains may lead to the synthesis of receptors with different affinities for ligands, as was shown for mActR-IIB (Attisano et al (1992) Cell 68, 97-108) or to the production of soluble binding protein.

The above experiments describe the isolation of nucleic acid sequences coding for new family of human receptor kinases. The cDNA for ALK-5 was then used to determine the encoded protein size and binding properties.

Properties of the ALKs cDNA Encoded Proteins

To study the properties of the proteins encoded by the different ALK cDNAs, the cDNA for each ALK was subcloned into a eukaryotic expression vector and transfected into various cell types and then subjected to immunoprecipitation using a rabbit antiserum raised against

a synthetic peptide corresponding to part of the intracellular juxtamembrane region. This region is divergent in sequence between the various serine/threonine kinase receptors. The following amino-acid residues were

5 used:

15

20

25

30

35

ALK-1 145-166

ALK-2 151-172

ALK-3 181-202

ALK-4 153-171

10 ALK-5 158-179

ALK-6 151-168

The rabbit antiserum against ALK-5 was designated VPN.

The peptides were synthesized with an Applied Biosystems 430A Peptide Synthesizer using t-butoxycarbonyl chemistry and purified by reversed-phase high performance liquid chromatography. The peptides were coupled to keyhole limpet haemocyanin (Calbiochem-Behring) using glutaraldehyde, as described by Guillick et al (1985) EMBO J. 4, 2869-2877. The coupled peptides were mixed with Freunds adjuvant and used to immunize rabbits.

Transient transfection of the ALK-5 cDNA

COS-1 cells (American Type Culture Collection) and the R mutant of MviLu cells (for references, see below) were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS) and 100 units/ml penicillin and 50 µg lml streptomycin in 5% CO, atmosphere at 37°C. The ALK-5 cDNA (nucleotides (-76) - 2232), which includes the complete coding region, was cloned in the pSV7d vector (Truett et al, (1985) DNA 4, 333-349), and used for transfection. Transfection into COS-1 cells was performed by the calcium phosphate precipitation method (Wigler et al (1979) Cell 16, 777-785). Briefly, cells were seeded into 6-well cell culture plates at a density of 5x103 cells/well, and transfected the following day with 10 µg of recombinant plasmid. After overnight incubation, cells were washed three times with a buffer containing 25 mM Tris-HCl, pH 7.4, 138 mM NaCl, 5 mM KCl, 0.7 mM CaCl, 0.5

10

15

20

25

30

35

mM MgCl, and 0.6 mM Na, HPO, and then incubated with Dulbecco's modified Eagle's medium containing FBS and antibiotics. Two days after transfection, the cells were metabolically labelled by incubating the cells for 6 hours in methionine and cysteine-free MCDB 104 medium with 150 uCi/ml of [35]-methionine and [35]-cysteine (in vivo labelling mix; Amersham). After labelling, the cells were washed with 150 mM NaCI, 25 mM Tris-HCl, pH 7.4, and then solubilized with a buffer containing 20mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM EDTA, 1% Triton X-100, 1% deoxycholate, 1.5% Trasylol (Bayer) and 1 mM phenylmethylsulfonylfluoride (PMSF; Sigma). After 15 minutes on ice, the cell lysates were pelleted by centrifugation, and the supernatants were then incubated with 7 μ l of preimmune serum for 1.5 hours at 4°C. Samples were then given 50 µl of protein A-Sepharose (Pharmacia-LKB) slurry (50% packed beads in 150 mm NaCl, 20 mm Tris-HCl, pH 7.4, 0.2% Triton X100) and incubated for 45 minutes at 4°C. The beads were spun down by centrifugation, and the supernatants (1 ml) were then incubated with either 7 μ l of preimmune serum or the VPN antiserum for 1.5 hours at 4°C. For blocking, 10 µg of peptide was added together with the antiserum. complexes were then given 50 µl of protein A-Sepharose (Pharmacia - LKB) slurry (50% packed beads in 150 mM NaCl, 20mM Tris-HCl, pH 7.4, 0.2% Triton X-100) and incubated for 45 minutes at 4°C. The beads were spun down and washed four times with a washing buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCI, 1% Triton X-100, 1% deoxycholate and 0.2% SDS), followed by one wash in distilled water. The immune complexes were eluted by boiling for 5 minutes in the SDSsample buffer (100 mM Tris-HCl, pH 8.8, 0.01% bromophenol blue, 36% glycerol, 4% SDS) in the presence of 10 mM DTT, and analyzed by SDS-gel electrophoresis using 7-15% polyacrylamide gels (Blobel and Dobberstein, (1975) J.Cell Biol. 67, 835-851). Gels were fixed, incubated with Amplify (Amersham) for 20 minutes, and subjected to fluorography. A component of 53Da was seen. This

10

15

25

30

35

component was not seen when preimmune serum was used, or when 10 μg blocking peptide was added together with the antiserum. Moreover, it was not detectable in samples derived from untransfected COS-1 cells using either preimmune serum or the antiserum.

Digestion with Endoglycosidase F

obtained as described above were incubated with 0.5 U of endoglycosidase F (Boehringer Mannheim Biochemica) in a buffer containing 100 mM sodium phosphate, pH 6.1, 50 mM EDTA, 1% Triton X-100, 0.1% SDS and 1% B-mercaptoethanol at 37°C for 24 hours. Samples were eluted by boiling for 5 minutes in the SDS-sample buffer, and analyzed by SDS-polyacrylamide gel electrophoresis as described above. Hydrolysis of N-linked carbohydrates by endoglycosidase F shifted the 53 kDa band to 51 kDa. The extracelluar domain of ALK-5 contains one potential acceptor site for N-glycosylation and the size of the deglycosylated protein is close to the predicted size of the core protein.

20 Establishment of PAE Cell Lines Expressing ALK-5

In order to investigate whether the ALK-5 cDNA encodes a receptor for TGF-8, porcine aortic endothelial (PAE) cells were transfected with an expression vector containing the ALK-5 cDNA, and analyzed for the binding of ¹²⁵I-TGF-81.

pae cells were cultured in Ham's F-12 medium supplemented with 10% FBS and antibiotics (Miyazono et al., (1988) J. Biol. Chem. 263, 6407-6415). The ALK-5 cDNA was cloned into the cytomegalovirus (CMV)-based expression vector pcDNA I/NEO (Invitrogen), and transfected into PAE cells by electroporation. After 48 hours, selection was initiated by adding Geneticin (G418 sulphate; Gibco - BRL) to the culture medium at a final concentration of 0.5 mg/ml (Westermark et al., (1990) Proc. Natl. Acad. Sci. USA 87, 128-132). Several clones were obtained, and after analysis by immunoprecipitation using the VPN antiserum, one clone denoted PAE/TBR-1 was chosen and further analyzed.

15

20

25

30

35

Todination of TGF-B1. Binding and Affinity Crosslinking

Recombinant human TGF-81 was indinated using the chloramine T method according to Frolik et al., (1984) J. Biol. Chem. 259, 10995-11000. Cross-linking experiments were performed as previously described (Ichijo et al., (1990) Exp. Cell Res. 187, 263-269). Briefly, cells in 6well plates were washed with binding buffer (phosphatebuffered saline containing 0.9 mM CaCl, 0.49 mM MgCl, and 1 mg/ml bovine serum albumin (BSA)), and incubated on ice in the same buffer with 1251-TGF-81 in the presence or absence of excess unlabelled TGF-81 for 3 hours. were washed and cross-linking was done in the binding buffer without BSA together with 0.28 mM disuccinimidyl suberate (DSS; Pierce Chemical Co.) for 15 minutes on ice. The cells were harvested by the addition of 1 ml of detachment buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 10% glycerol, 0.3 mM PMSF). The cells were pelleted by . centrifugation, then resuspended in 50 µl of solubilization buffer (125 mm NaCl, 10 mm Tris-HCl, pH 7.4, 1 mm EDTA, 1% Triton X-100, 0.3 mM PMSF, 1% Trasylol) and incubated for Cells were centrifuged again and 40 minutes on ice. supernatants were subjected to analysis by electrophoresis using 4-15% polyacrylamide gels, followed 125 I-TGF-81 formed a 70 kDa crossby autoradiography. linked complex in the transfected PAE cells (PAE/TSR-I cells). The size of this complex was very similar to that of the TGF-B type I receptor complex observed at lower amounts in the untransfected cells. A concomitant increase of 94 kDa TGF-B type II receptor complex could also be observed in the PAE/TBR-I cells. Components of 150-190 kDa, which may represent crosslinked complexes between the type I and type II receptors, were also observed in the PAE/TBR-I cells.

In order to determine whether the cross-linked 70 kDa complex contained the protein encoded by the ALK-5 cDNA, the affinity cross-linking was followed by immunoprecipitation using the VPN antiserum. For this,

10

15

20

25

30

35

cells in 25 cm2 flasks were used. The supernatants obtained after cross-linking were incubated with 7 μ l of preimmune serum or VPN antiserum in the presence or absence . of 10 µg of peptide for 1.5h at 4°C. Immune complexes were then added to 50 μ l of protein A-Sepharose slurry and incubated for 45 minutes at 4°C. The protein A-Sepharose beads were washed four times with the washing buffer, once with distilled water, and the samples were analyzed by SDSgel electrophoresis using 4-15% polyacrylamide gradient gels and autoradiography. A 70 kDa cross-linked complex was precipitated by the VPN antiserum in PAE/TBR-1 cells. and a weaker band of the same size was also seen in the untransfected cells, indicating that the untransfected PAE cells contained a low amount of endogenous ALK-5. The 70 kDa complex was not observed when preimmune serum was used. or when immune serum was blocked by 10 µg of peptide. Moreover, a coprecipitated 94 kDa component could also be observed in the PAE/TBR-I cells. The latter component is likely to represent a TGF-8 type II receptor complex, since an antiserum, termed DRL, which was raised against a synthetic peptide from the C-terminal part of the TGF-8 type II receptor, precipitated a 94 kDa TGF-8 type II receptor complex, as well as a 70 kDa type I receptor complex from PAE/TBR-I cells.

The carbohydrate contents of ALK-5 and the TGF-8 type II receptor were characterized by deglycosylation using endoglycosidase F as described above and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The ALK-5 cross-linked complex shifted from 70 kDa to 66 kDa, whereas that of the type II receptor shifted from 94 kDa to 82 kDa. The observed larger shift of the type II receptor band compared with that of the ALK-5 band is consistent with the deglycosylation data of the type I and type II receptors on rat liver cells reported previously (Cheifetz et al (1988) J. Biol. Chem. 263, 16984-16991), and fits well with the fact that the porcine TGF-8 type II receptor has two N-glycosylation sites (Lin et al (1992)

10

15

20

25

30

35

Cell <u>68</u>, 775-785), whereas ALK-5 has only one (see SEQ ID No. 9).

Binding of TGF-81 to the type I receptor is known to be abolished by transient treatment of the cells with dithiothreitol (DTT) (Cheifetz and Massague (1991) J. Biol. Chem. 266, 20767-20772; Wrana et al (1992) Cell 71, 1003-1014). When analyzed by affinity cross-linking, binding of 125 I-TGF-81 to ALK-5, but not to the type II receptor, was completely abolished by DTT treatment of PAE/TSR-1 cells. Affinity cross-linking followed by immunoprecipitation by the VPN antiserum showed that neither the ALK-5 nor the type II receptor complexes was precipitated after DTT treatment, indicating that the VPN antiserum reacts only The data show that the VPN antiserum with ALK-5. recognizes a TGF-8 type I receptor, and that the type I and type II receptors form a heteromeric complex. 125 T-TGF-B1 Binding & Affinity Crosslinking of Transfected COS Cells

Transient expression plasmids of ALKs -1 to -6 and TBR-II were generated by subcloning into the pSV7d expression vector or into the pcDNA I expression vector (Invitrogen). Transient transfection of COS-1 cells and iodination of TGF-81 were carried out as described above. Crosslinking and immunoprecipitation were performed as described for PAE cells above.

Transfection of cDNAs for ALKs into COS-1 cells did not show any appreciable binding of ¹²⁵I-TGF\$1, consistent with the observation that type I receptors do not bind TGF-B in the absence of type II receptors. When the T\$R-II cDNA was co-transfected with cDNAs for the different ALKs, type I receptor-like complexes were seen, at different levels, in each case. COS-1 cells transfected with T\$R-II and ALK cDNAs were analyzed by affinity crosslinking followed by immunoprecipitation using the DRL antisera or specific antisera against ALKs. Each one of the ALKs bound ¹²⁵I-TGF-B1 and was communoprecipitated with the T\$R-II complex using the DRL antiserum. Comparison of the

15

20

25

30

35

efficiency of the different ALKs to form heteromeric complexes with TBR-II, revealed that ALK-5 formed such complexes more efficiently than the other ALKs. The size of the crosslinked complex was larger for ALK-3 than for other ALKs, consistent with its slightly larger size. Expression of the ALK Protein in Different Cell Types

Two different approaches were used to elucidate which ALK's are physiological type I receptors for TGF-8.

Firstly, several cell lines were tested for the expression of the ALK proteins by cross-linking followed by immunoprecipitation using the specific antiseras against ALKs and the TGF-B type II receptor. The mink lung epithelial cell line, MvlLu, is widely used to provide target cells for TGF-B action and is well characterized regarding TGF-B receptors (Laiho et al (1990) J. Biol. Chem. 265, 18518-18524; Laiho et al (1991) J. Biol. Chem. Only the VPN antiserum efficiently 266, 9108-9112). precipitated both type I and type II TGF-8 receptors in the wild type Mv1Lu cells. The DRL antiserum also precipitated components with the same size as those precipitated by the VPN antiserum. A mutant cell line (R mutant) which lacks the TGF-B type I receptor and does not respond to TGF-B (Laiho et al, supra) was also investigated by cross-linking followed by immunoprecipitation. Consistent with the results obtained by Laiho et al (1990), supra the type III and type II TGF-B receptor complexes, but not the type I receptor complex, were observed by affinity crosslinking. Crosslinking followed by immunoprecipatition using the DRL antiserum revealed only the type II receptor complex, whereas neither the type I nor type II receptor complexes was seen using the VPN antiserum. When the cells were metabolically labelled and subjected to immunoprecipitation using the VPN antiserum, the 53 kDa ALK-5 protein was precipitated in both the wild-type and R mutant Mv1Lu These results suggest that the type I receptor expressed in the R mutant is ALK-5, which has lost the affinity for binding to TGF-B after mutation.

10

15

20

25

30

35

The type I and type II TGF-B receptor complexes could be precipitated by the VPN and DRL antisera in other cell lines, including human foreskin fibroblasts (AG1518), human lung adenocarcinoma cells (A549), and human oral squamous cell carcinoma cells (HSC-2). Affinity cross-linking studies revealed multiple TGF-B type I receptor-like complexes of 70-77 kDa in these cells. These components were less efficiently competed by excess unlabelled TGF-81 in HSC-2 cells. Moreover, the type II receptor complex was low or not detectable in A549 and HSC-2 cells. linking followed by immunoprecipitation revealed that the VPN antiserum precipitated only the 70 kDa complex among the 70-77 kDa components. The DRL antiserum precipitated the 94 kDa type II receptor complex as well as the 70 kDa type I receptor complex in these cells, but not the putative type I receptor complexes of slightly larger sizes. These results suggest that multiple type I TGF-8 receptors may exist and that the 70 kDa complex containing ALK-5 forms a heteromeric complex with the TGF-8 type II receptor cloned by Lin et al (1992) Cell 68, 775-785, more other species. efficiently that the In rat pheochromocytoma cells (PC12) which have been reported to have no TGF-8 receptor complexes by affinity cross-linking (Massagué et al (1990) Ann. N.Y. Acad. Sci. 593, 59-72), neither VPN nor DRL antisera precipitated the TGF-8 receptor complexes. The antisera against ALKs -1 to -4 and ALK6 did not efficiently immunoprecipitate the crosslinked receptor complexes in porcine aortic endothelial (PAE) cells or human foreskin fibroblasts.

Next, it was investigated whether ALKs could restore responsiveness to TGF-8 in the R mutant of Mv1Lu cells, which lack the ligand-binding ability of the TGF-8 type I receptor but have intact type II receptor. Wild-type Mv1Lu cells and mutant cells were transfected with ALK cDNA and were then assayed for the production of plasminogen activator inhibitor-1 (PAI-1) which is produced as a result of TGF-8 receptor activation as described previously by

15

20

25

30

35

Laiho et al (1991) Mol. Cell Biol. 11, 972-978. Briefly, cells were added with or without 10 ng/ml of TGF-81 for 2 in serum-free MCDB 104 without methionine. Thereafter, cultures were labelled with [35S] methionine (40 μ Ci/ml) for 2 hours. The cells were removed by washing on ice once in PBS, twice in 10 mM Tris-HCl (pH 8.0), 0.5% sodium deoxycholate, 1 mM PMSF, twice in 2 mM Tris-HCl (pH 8.0), and once in PBS. Extracellular matrix proteins were extracted by scraping cells into the SDS-sample buffer containing DTT, and analyzed by SDS-gel electrophoresis followed by fluorography using Amplify. PAI-1 can be identified as a characteristic 45kDa band (Laiho et al (1991) Mol. Cell Biol. 11, 972-978). Wild-type MviLu cells responded to TGF-B and produced PAI-1, whereas the R mutant clone did not, even after stimulation by TGF-81. Transient transfection of the ALK-5 cDNA into the R mutant clone led to the production of PAI-1 in response to the stimulation by TGF-B1, indicating that the ALK-5 cDNA encodes a In contrast, the R functional TGF-B type I receptor. mutant cells that were transfected with other ALKs did not produce PAI-1 upon the addition of TGF-81.

Using similar approaches as those described above for the identification of TGF-8-binding ALKs, the ability of ALKs to bind activin in the presence of ActRII was examined. COS-1 cells were co-transfected as described above. Recombinant human activin A was indinated using the chloramine T method (Mathews and Vale (1991) Cell 65, 973-982). Transfected COS-1 cells were analysed for binding and crosslinking of ¹²⁵I-activin A in the presence or absence of excess unlabelled activin A. The crosslinked complexes were subjected to immunoprecipitation using DRL antisera or specific ALK antisera.

All ALKs appear to bind activin A in the presence of Act R-II. This is more clearly demonstrated by affinity cross-linking followed by immunopreciptation. ALK-2 and ALK-4 bound 125I-activin A and were coimmunoprecipitated

15

20

25

30

35

with ActR-II. Other ALKs also bound 125 I-activin A but with a lower efficiency compared to ALK-2 and ALK-4.

In order to investigate whether ALKs are physiological activin type I receptors, activin responsive cells were examined for the expression of endogenous activin type I receptors. MvlLu cells, as well as the R mutant, express both type I and type II receptors for activin, and the R mutant cells produce PAI-1 upon the addition of activin A. MvlLu cells were labeled with ¹²⁵I-activin A, cross-linked and immunoprecipitated by the antisera against ActR-II or ALKs as described above.

The type I and type II receptor complexes in Mv1Lu cells were immunoprecipitated only by the antisera against ALK-2, ALK-4 and ActR-II. Similar results were obtained using the R mutant cells. PAE cells do not bind activin because of the lack of type II receptors for activin, and so cells were transfected with a chimeric receptor, to enable them to bind activin, as described herein. plasmid (chim A) containing the extracelluar domain and Cterminal tail of Act R-II (amino-acids -19 to 116 and 465 to 494, respectively (Mathews and Vale (1991) Cell, 65, 973-982)) and the kinase domain of TBR-II (amino-acids 160-543) (Lin et al (1992) Cell, 68, 775-785) was constructed and transfected into pcDNA/neo (Invitrogen). PAE cells were stably transfected with the chim A plasmid by electroporation, and cells expressing the chim A protein were established as described previously. PAE/Chim A cells were then subjected to 127-activin A labelling crosslinking and immunoprecipitation as described above.

Similar to MvlLu cells, activin type I receptor complexes in PAE/Chim A cells were immunoprecipitated by the ALK-2 and ALK-4 antisera. These results show that both ALK-2 and ALK-4 serve as high affinity type I receptors for activin A in these cells.

ALK-1, ALK-3 and ALK-6 bind TGF-81 and activin A in the presence of their respective type II receptors, but the

functional consequences of the binding of the ligands remains to be elucidated.

5

10

W

ij.

ũ

25

30

The experiments described supra suggested further experiments. Specifically, it is known that TGF-S family members act as ligands in connection with specific type I and type II receptors, with resulting complexes interacting with members of the Smad family. See Heldin et al., Nature 390: 465-471 (1997), incorporated by reference. The Smad molecules are homologs of molecules found in Drosophila ("Mad"), and \underline{C} . elegans (SMa), hence, the acronym These are involved in signal transduction pathways downstream of serine/threonine kinase receptors. See Massagué et al., Trends Cell Biol. 2: 187-192 (1997). The different members of the family have different signalling roles. Smad1, for example, as well as Smad 2 and 3, and perhaps Smad 5, become phosphorylated via specific type 1 serine/threonine kinase receptors, and act in For example, Xenopus Mad1 induces pathway restricted fashion. ventral mesoderm, in the presence of BMP. The human Smad1 has been shown to have ventralizing activity. See Liu et al., Nature 381: 620-623 (1996); Kretzschmer et al., Genes Dev 11: 984-995 (1997). There is also some evidence that TGF-S phosphorylates Smad1. Lechleider et al., J. Biol. Chem. 271: 17617-17620 (1996); Yingling et al., Proc. Natl. Acad. Sci. USA 93: 8940-8944 (1996). what was known regarding this complex signalling pathway, the role of ALK-1 was studied.

COS-7 cells, which do not express ALK-1, were transfected with cDNA encoding tagged ALK-1. The tag was hemagluttinin (hereafter "HA"), and a commercially available lipid containing transfecting agent was used. In parallel experiments, porcine aortic endothelial (PAE) cells were also used, because these cells express TGFS type II receptors, and ALK-5, but not ALK-1. Hence, PAE cells were either transfected, or not. Transfection protocols are given, supra.

The cells were then contacted with 125I labelled TGF-£1, and were then contacted with ALK-1 specific antisera, to ascertain

whether cross linking had occurred. See the experiments, supra, as well as ten Dijke et al., Science 264: 101-104 (1994), incorporated by reference. Antisera to ALK-5 were also used.

The results indicated that the ALK-1 antiserum immunoprecipitated complexes of the appropriate size from the transfected COS-7 and PAE cells, but not those which were not transfected, thereby establishing that ALK-1 is a receptor for TGF-ß.

5

10

115 mg sing of market

20

į

I

25

30

This was confirmed in experiments on human umbilical vein endothelial cells (HUVEC). These cells are known to express ALK-1 endogenously, as well as ALK-5. The ALK-5 antiserum and the ALK-1 antiserum both immunoprecipitated type I and type II receptor cross linked complexes. The ALK-1 antiserum immunoprecipitated band migrated slightly more slowly than the band immunoprecipitated by the ALK-5 antiserum. This is in agreement with the difference in size of ALK-1 and ALK-5, and it indicates that both ALK-1 and ALK-5 bind TGF-£1 in HUVECS.

Further, it shows that ALK-1 acts as a co-called "type I" TGF-S receptor in an endogenous, physiological setting.

Once it was determined that TGF-S1 and ALK-1 interact, studies were carried out to determine whether or not activation of ALK-1 To test this, COS-7 cells resulted in phosphorylation of Smads. were transfected in the same manner described supra with either Flag tagged Smad1 or Flag tagged Smad2 together with either a constitutively active form of ALK-1, or a constitutively active Specifically, the variant of ALK-1 is Q201D, and form of ALK-5. that of ALK-5 is T204D. Constitutively active ALK-1 was used to avoid the need for an additional transfection step. To elaborate, it is known that for the TGF-S pathway to function adequately, a complex of two, type I receptors, and two, type II receptors must interact, so as to activate the receptors. Constitutively active receptors, such as what was used herein, do not require the presence of the type II receptor to function. See Wieser et al., In order to determine if the EMBO J 14: 2199-2208 (1995).

resulting transfected cells produced phosphorylated Smads, Smads were determined using a Flag specific antibody, which precipitated determined using the phosphorylation was and antiphosphoserine antibody of Nishimura et al., J. Biol. Chem. 273: 1872-1879 (1998). It was determined, when the data were analyzed, that Smadl was phosphorylated following interaction with activated following interaction of TGF-ß not but of and led interaction TGF-S ALK-5 Conversely, the phosphorylation of Smad 2, but not Smad 1. This supports a conclusion that ALK-1 transduces signal in a manner similar to BMPs.

Additional experiments were then carried out to study the interaction of ALK-1 with Smad-1. Specifically, COS-7 cells were transfected with cDNA which encoded the wild type form of the TGFß type II receptor (TBR-II), a kinase inactive form of ALK-1, and Flag tagged Smad-1. Kinase inactive ALK-1 was used, because the interaction of Smad-1 and receptors is known to be transient, as once Smads are phosphorylated they dissociate from the type I receptor. See Marcias-Silva et al., Cell 87: 1215-1224 (1996); Nakao et al., EMBO J 16: 5353-5362 (1997). Affinity cross-linking, using 125I-TGF-ß1, and immunoprecipitation with Flag antibody was carried out, as discussed supra. The expression of ALK-1 was determined using anti-HA antibody, since the vector used to express ALK-1 effectively tagged it with HA.

The immunoprecipitating of Smadl resulted in coprecipitation of a cross linked TBR-II/ALK-1 complex, suggesting a direct association of Smadl with ALK-1.

These examples show that one can identify molecules which inhibit, or enhance expression of a gene whose expression is regulated by phosphorylated Smadl. To elaborate, as ALK-1 has been identified as a key constituent of the pathway by which Smadl is phosphorylated, one can contact cells which express both Smadl and ALK-1 with a substance of interest, and then determine if the Smadl becomes phosphorylated. The cells can be those which inherently

10

5

25

In an

express both ALK-1 and Smad1, or which have been transformed or transfected with DNA encoding one or both of these. determine the phosphorylation via, e.g., the use phosphorylated serine antibodies, as discussed supra. especially preferred embodiment, the assay can be carried out using 5 TGF-ß, as a competing agent. The TGF-ß, as has been shown, does bind to ALK-1, leading to phosphorylation of Smad1. determining a value with TGF-S alone, one can then compare a value determined with amounts of the substance to be tested, in the presence of TGF-S. Changes in phosphorylation levels can thus be 10

attributed to the test substance.

In this type of system, it must be kept in mind that both type I receptors and type II receptors must be present; however, as indicated, supra, one can eliminate the requirement for a type II receptor by utilizing a constitutively active form of ALK-1, such as the form described supra. Additional approaches to inhibiting this system will be clear to the skilled artisan. For example, since it is known that there is interaction between Smad1 and the ALK-1 receptor, one can test for inhibition via the use of small molecules which inhibit the receptor/Smad interaction. Heldin et al., supra, mention Smad6 and Smad7 as Smad1 inhibitors, albeit in Hence one can test for the context of a different system. inhibition, or inhibit the interaction, via adding a molecule to be tested or for actual inhibition to a cell, wherein the molecule is internalized by the cell, followed by assaying for phosphorylation, via a method such as is discussed supra.

In a similar way, one can assay for inhibitors of type I/type II receptor interaction, by testing the molecule of interest in a system which includes both receptors, and then assaying for phorphorylation.

Conversely, activators or agonists can also be tested for, or utilized, following the same type of procedures.

Via using any of these systems, one can identify any gene or genes which are activated by phosphorylated Smad1. To elaborate,

25

5

10

the art is very familiar with systems of expression analysis, such as differential display PCR, subtraction hybridization, and other systems which combine driver and testes populations of nucleic acids, whereby transcripts which are expressed or not expressed can be identified. By simply using an activator/inhibitor of the system disclosed herein, on a first sample, and a second sample where none is used, one can then carry out analysis of transcript, thereby determining the transcripts of interest.

Also a part of the invention is the regulation of phosphorylation of Smad-1, with inhibitors, such as antibodies against the extracellular domain of ALK-1 or TGF-ß, or enhancers, such as TGF-ß itself, or those portions of the TGF-ß molecule which are necessary for binding. Indeed, by appropriate truncation, one can also determine what portions of ALK-1 are required for phosphorylation of Smad1 to take place.

The invention has been described by way of example only, without restriction of its scope. The invention is defined by the subject matter herein, including the claims that follow the immediately following full Sequence Listings.

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Miyazono, Kohei; Takeshe Imamura; ten Dijke, Peter
- (ii) TITLE OF INVENTION: Isolated ALK-1 Protein, Nucleic Acids Encoding It, And Uses Thereof
- (iii) NUMBER OF SEQUENCES: 29
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.5 inch, 1.44 MB storage
 - (B) COMPUTER: IBM
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/436,265
 - (B) FILING DATE: 30-October-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/GB93/02367
 - (B) FILING DATE: 17-November-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 9224057.1
 - (B) FILING DATE: 17-November-1992
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 9304677.9
 - (B) FILING DATE: 8-March-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 9304680.3
 - (B) FILING DATE: 8-March-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 9311047.6
 - (B) FILING DATE: 28-May-1993

<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 9313763.6 (B) FILING DATE: 2-July-1993</pre>	
<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 9136099.2 (B) FILING DATE: 3-August-1993</pre>	
<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 9321344.5 (B) FILING DATE: 15-October-1993</pre>	
<pre>(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Hanson, Norman D. (B) REGISTRATION NUMBER: 37,003 (C) REFERENCE/DOCKET NUMBER: LUD 5539</pre>	
<pre>(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (212) 688-9200 (B) TELEFAX: (212) 838-3884</pre>	
(2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1984 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (v) FRAGMENT TYPE: internal (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2831791 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
AGGAAACGGT TTATTAGGAG GGAGTGGTGG AGCTGGGCCA GGCAGGAAGA CGCTGGAATA	60
AGAAACATTT TTGCTCCAGC CCCCATCCCA GICCCGGGAG GCIGGGGG	120
GAGCGAGCCC CTCCCCGGCT CCAGCCCGGT CCGGGGCCGC GCCGAACCCC HCCCCGGCT CCAGCCCGGT CCGGGGCCGC GCCGAACCCCGGT CCGGGGCCGC GCCGAACCCGGT CCGGGGCCCGC GCCGAACCCGC GCCGAACCCGC GCCGAACCCGGC GCCGAACCCGGGCCCGC GCCGAACCCGC GCCCGAACCCGC GCCCGAACCCGC GCCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACAAA	180
CCAGCGCTGG CGGTGCAACT GCGGCCGCGC GGTGGAGGGG ACGTGGGGGC CGTGGGAACT	240
AGGCTAGCGC CCCGCCACCC GCAGAGCGGG CCCAGAGGGA CC ATG ACC TTG GGC Met Thr Leu Gly 1	294

,	TCC Ser 5	CCC Pro	AGG Arg	AAA Lys	GGC Gly	CTT Leu 10	CTG Leu	ATG Met	CTG Leu	CTG Leu	ATG Met 15	GCC Ala	TTG Leu	GTG Val	ACC Thr	CAG Gln 20	342
	GGA Gly	GAC Asp	CCT Pro	GTG Val	AAG Lys 25	CCG Pro	TCT Ser	CGG Arg	GGC Gly	CCG Pro 30	CTG Leu	GTG Val	ACC Thr	TGC Cys	ACG Thr 35	TGT Cys	390
	GAG Glu	AGC Ser	CCA Pro	CAT His 40	TGC Cys	AAG Lys	GGG Gly	CCT Pro	ACC Thr 45	TGC Cys	CGG Arg	GGG Gly	GCC Ala	TGG Trp 50	TGC Cys	ACA Thr	438
	GTA Val	GTG Val	CTG Leu 55	GTG Val	CGG Arg	GAG Glu	GAG Glu	GGG Gly 60	AGG Arg	CAC His	CCC Pro	CAG Gln	GAA Glu 65	CAT His	CGG Arg	GGC Gly	486
	Cys	GGG Gly 70	AAC Asn	TTG Leu	CAC His	AGG Arg	GAG Glu 75	CTC Leu	TGC Cys	AGG Arg	GGG Gly	CGC Arg 80	CCC Pro	ACC Thr	GAG Glu	TTC Phe	534
ı.	GTC Val	AAC Asn	CAC His	TAC Tyr	TGC Cys	TGC Cys 90	GAC Asp	AGC Ser	CAC His	CTC Leu	TGC Cys 95	AAC Asn	CAC His	AAC Asn	GTG Val	TCC Ser 100	582
	ama.	GTG Val	CTG Leu	GAG Glu	GCC Ala 105	ACC Thr	CAA Gln	CCT Pro	CCT Pro	TCG Ser 110	GAG Glu	CAG Gln	CCG Pro	GGA Gly	ACA Thr 115	GAT Asp	630
	GGC Gly	CAG Gln	CTG Leu	GCC Ala 120	CTG Leu	ATC Ile	CTG Leu	GGC Gly	CCC Pro 125	GTG Val	CTG Leu	GCC Ala	TTG Leu	CTG Leu 130	Ala	CTG Leu	678
	GTG Val	GCC Ala	CTG Leu 135	Gly	GTC Val	CTG Leu	GGC Gly	CTG Leu 140	Trp	CAT His	GTC Val	CGA Arg	CGG Arg 145	AGG Arg	CAG Gln	GAG Glu	726
	AAG Lys	CAG Gln 150	Arg	GGC	CTG Leu	CAC His	AGC Ser 155	Glu	CTG Leu	GGA Gly	GAG Glu	TCC Ser 160	Ser	CTC Leu	ATC Ile	CTG Leu	774
	AAA Lys 165	Ala	TCT Ser	GAG Glu	CAG Gln	GGC Gly 170	Asp	ACG Thr	ATG Met	TTG Leu	GGG Gly 175	Asp	: CTC	CTG Leu	GAC Asp	AGT Ser 180	822
	GAC Asp	TGC Cys	ACC Thr	ACA Thr	GGG Gly 185	Ser	GGC Gly	TCA Ser	GGG Gly	CTC Leu 190	Pro	TTC Phe	CTG Leu	GTG Val	CAG Gln 195	AGG Arg	870
	ACA Thr	GTG Val	GCA Ala	CGG Arg 200	r Gln	GTI Val	GCC Ala	TTG Leu	GTG Val 205	. Glu	F TGI	GTC Val	G GGA	AAA Lys 210	R GTĀ	CGC Arg	918

	TAT Tyr	GGC Gly	GAA Glu 215	GTG Val	TGG Trp	CGG Arg	GGC Gly	TTG Leu 220	TGG Trp	CAC His	GGT Gly	GAG Glu	AGT Ser 225	GTG Val	GCC Ala	GTC Val	966
	AAG Lys	ATC Ile 230	TTC Phe	TCC Ser	TCG Ser	AGG Arg	GAT Asp 235	GAA Glu	CAG Gln	TCC Ser	TGG Trp	TTC Phe 240	CGG Arg	GAG Glu	ACT Thr	GAG Glu	1014
	ATC Ile 245	TAT Tyr	AAC Asn	ACA Thr	GTA Val	TTG Leu 250	CTC Leu	AGA Arg	CAC His	GAC Asp	AAC Asn 255	ATC Ile	CTA Leu	GGC Gly	TTC Phe	ATC Ile 260	1062
	GCC Ala	TCA Ser	GAC Asp	ATG Met	ACC Thr 265	TCC Ser	CGC Arg	AAC Asn	TCG Ser	AGC Ser 270	ACG Thr	CAG Gln	CTG Leu	TGG Trp	CTC Leu 275	ATC Ile	1110
Androne Control of the Control of th	Thr	CAC His	TAC Tyr	CAC His 280	GAG Glu	CAC His	GGC Gly	TCC Ser	CTC Leu 285	TAC Tyr	GAC Asp	TTT Phe	CTG Leu	CAG Gln 290	AGA Arg	CAG Gln	1158
12	ACG Thr	CTG Leu	GAG Glu 295	CCC Pro	CAT His	CTG Leu	GCT Ala	CTG Leu 300	AGG Arg	CTA Leu	GCT Ala	GTG Val	TCC Ser 305	GCG Ala	GCA Ala	TGC Cys	1206
		CTG Leu 310	GCG Ala	CAC His	CTG Leu	CAC His	GTG Val 315	GAG Glu	ATC Ile	TTC Phe	GGT Gly	ACA Thr 320	CAG Gln	GGC Gly	AAA Lys	CCA Pro	1254
W	GCC Ala 325	Ile	GCC Ala	CAC His	CGC Arg	GAC Asp 330	TTC Phe	AAG Lys	AGC Ser	CGC Arg	AAT Asn 335	GTG Val	CTG Leu	GTC Val	AAG Lys	AGC Ser 340	1302
	AAC Asn	CTG Leu	CAG Gln	TGT Cys	TGC Cys 345	Ile	GCC Ala	GAC Asp	CTG Leu	GGC Gly 350	Leu	GCT Ala	GTG Val	ATG Met	CAC His 355	TCA Ser	1350
	CAG Gln	GGC Gly	AGC Ser	GAT Asp 360	Tyr	CTG Leu	GAC Asp	ATC Ile	GGC Gly 365	Asn	AAC	CCG Pro	AGA Arg	GTG Val 370	GIY	ACC Thr	1398
	AAG Lys	CGG Arg	TAC Tyr 375	Met	GCA Ala	. CCC . Pro	GAG Glu	GTG Val	Leu	GAC Asp	GAG Glu	CAG Glr	ATC Ile 385	Arg	ACG Thr	GAC Asp	1446
	TGC Cys	TTT: Phe	Glu	TCC Ser	TAC	AAG Lys	TGG Trp 395	Thr	GAC Asp	ATC	TGG Trp	GCC Ala 400	Pne	GGC Gly	CTG	GTG Val	1494
	CTG Lev 405	Trp	GAG	ATI	GCC Ala	CGC Arg 410	Arg	ACC Thr	ATC	GTG Val	AAT Asr 415	r GT2	C ATC	GTG Val	GAG Glu	GAC Asp 420	1542

TAT Tyr	AGA Arg	CCA Pro	Pro	TTC Phe 425	TAT Tyr	GAT Asp	GTG Val	GTG Val	CCC Pro 430	AAT Asn	GAC Asp	CCC Pro	AGC Ser	TTT Phe 435	GAG Glu	1590
GAC Asp	ATG Met	AAG Lys	AAG Lys 440	GTG Val	GTG Val	TGT Cys	GTG Val	GAT Asp 445	CAG Gln	CAG Gln	ACC Thr	CCC Pro	ACC Thr 450	ATC Ile	CCT Pro	1638
AAC Asn	CGG Arg	CTG Leu 455	GCT Ala	GCA Ala	GAC Asp	CCG Pro	GTC Val 460	CTC Leu	TCA Ser	GGC Gly	CTA Leu	GCT Ala 465	CAG Gln	ATG Met	ATG Met	1686
CGG Arg	GAG Glu 470	TGC Cys	TGG Trp	TAC Tyr	CCA Pro	AAC Asn 475	CCC Pro	TCT Ser	GCC Ala	CGA Arg	CTC Leu 480	ACC Thr	GCG Ala	CTG Leu	CGG Arg	1734
ATC 11	Lys	AAG Lys	ACA Thr	CTA Leu	CAA Gln 490	AAA Lys	ATT Ile	AGC Ser	AAC Asn	AGT Ser 495	Pro	GAG Glu	AAG Lys	CCT Pro	AAA Lys 500	1782
ot(ATT	CAA Gln	TAG	CCCA	gga (GCAC	CTGA	TT C	CTTT	CTGC	C TG	CAGG	GGGC			1831
Į.				GCAG	TG G	ATGG	TGCC	C TA	TCTG	GGTA	GAG	GTAG	TGT	GAGT	GTGGTG	1891
TG:	rgctg	GGG .	ATGG	GCAG	CT G	CGCC	TGCC	T GC	TCGG	cccc	CAG	CCCA	.CCC	AGCC	TAAAAA	1951
AC	AGCTG								A							1984
(2	(i	(EQUE A) L B) T D) T	NCE ENGT YPE: OPOL ULE	CHAR H: 5 ami OGY: TYPE	ACTE 03 a no a lin	RIST mind cid ear otei	ICS: aci	.ds	NO:	2:					
	t Thr 1	Leu	Gly	Ser 5	Pro	Arg	Lys	s Gly	Leu 10	ı Lev	ı Met	: Leı	ı Leı	ı Met 15	Ala	
Le	u Val	L Thr	Gln 20		Asp	Pro	Va]	L Lys 25	Pro	Sei	Arg	g Gly	Pro 30	Let)	ı Val	
Th	r Cys	s Thr 35		s Glu	ı Ser	Pro	His 40	s Cys	s Lys	s Gly	y Pro	Th:	c Cy: 5	s Arg	g Gly	
Al	a Trj		s Thr	r Val	l Val	L Let 5!	ı Vai	l Arg	g Gli	ı Glı	u Gl	y Arg	g Hi:	s Pro	Gln	

Glu His Arg Gly Cys Gly Asn Leu His Arg Glu Leu Cys Arg Gly Arg Pro Thr Glu Phe Val Asn His Tyr Cys Cys Asp Ser His Leu Cys Asn His Asn Val Ser Leu Val Leu Glu Ala Thr Gln Pro Pro Ser Glu Gln 100 105 Pro Gly Thr Asp Gly Gln Leu Ala Leu Ile Leu Gly Pro Val Leu Ala Leu Leu Ala Leu Val Ala Leu Gly Val Leu Gly Leu Trp His Val Arg Arg Arg Gln Glu Lys Gln Arg Gly Leu His Ser Glu Leu Gly Glu Ser 145 Ser Leu Ile Leu Lys Ala Ser Glu Gln Gly Asp Thr Met Leu Gly Asp T. 165 Leu Leu Asp Ser Asp Cys Thr Thr Gly Ser Gly Ser Gly Leu Pro Phe ⊌Leu Val Gln Arg Thr Val Ala Arg Gln Val Ala Leu Val Glu Cys Val 195 200 Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg Gly Leu Trp His Gly Glu 215 Ser Val Ala Val Lys Ile Phe Ser Ser Arg Asp Glu Gln Ser Trp Phe Arg Glu Thr Glu Ile Tyr Asn Thr Val Leu Leu Arg His Asp Asn Ile 245 255 Leu Gly Phe Ile Ala Ser Asp Met Thr Ser Arg Asn Ser Ser Thr Gln 265 Leu Trp Leu Ile Thr His Tyr His Glu His Gly Ser Leu Tyr Asp Phe 280 Leu Gln Arg Gln Thr Leu Glu Pro His Leu Ala Leu Arg Leu Ala Val 290 295 300 Ser Ala Ala Cys Gly Leu Ala His Leu His Val Glu Ile Phe Gly Thr 305 310 315 Gln Gly Lys Pro Ala Ile Ala His Arg Asp Phe Lys Ser Arg Asn Val 330

Leu Val Lys Ser Asn Leu Gln Cys Cys Ile Ala Asp Leu Gly Leu Ala 350 345 Val Met His Ser Gln Gly Ser Asp Tyr Leu Asp Ile Gly Asn Asn Pro 355 Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu Gln Ile Arg Thr Asp Cys Phe Glu Ser Tyr Lys Trp Thr Asp Ile Trp Ala 390 Phe Gly Leu Val Leu Trp Glu Ile Ala Arg Arg Thr Ile Val Asn Gly 415 405 Ile Val Glu Asp Tyr Arg Pro Pro Phe Tyr Asp Val Val Pro Asn Asp 425 420 Pro Ser Phe Glu Asp Met Lys Lys Val Val Cys Val Asp Gln Gln Thr Pro Thr Ile Pro Asn Arg Leu Ala Ala Asp Pro Val Leu Ser Gly Leu 460 Ala Gln Met Met Arg Glu Cys Trp Tyr Pro Asn Pro Ser Ala Arg Leu 465 475 470 * Thr Ala Leu Arg Ile Lys Lys Thr Leu Gln Lys Ile Ser Asn Ser Pro 490 £.... 485 Glu Lys Pro Lys Val Ile Gln 500

	(i) (ii) (iv) (v) (vi) (ix)	SE((A) (C) (D) (D) (MO) (A) FRA ORI (A) FEA (B)	QUENC) LEI) TYI) STI) TOI LECUI YPOTI GINA GINA) OR TURE) NA	ME/KI CATI	IARAO 272 PUCLE PURCE NO PE: URCE SM: ON:	CTERI 24 basic a SS: 1 linea cDN NO interi Homo CDS 104.	STICASE Jacid unknown A rnal sap	cs: pairs own iens									
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 3:							
CTCC	GAGT	AC C	CCAG	TGAC	C AG	AGTG	AGAG	AAG	CTCT	GAA	CGAG	GGCA	CG C	GGCT	TGAAG		60
GACT	GTGG	GC A	.GATG	TGAC	C AA	.GAGC	CTGC	TTA !	AAGT	TGT	ACA	ATG Met 1	GTA Val	GAT Asp	GGA Gly	:	115
Val	ATG Met	ATT Ile	CTT Leu	CCT Pro	GTG Val 10	CTT Leu	ATC Ile	ATG Met	ATT Ile	GCT Ala 15	CTC Leu	CCC Pro	TCC Ser	CCT Pro	AGT Ser 20		163
አጥር፤	GAA Glu	GAT Asp	GAG Glu	AAG Lys 25	CCC Pro	AAG Lys	GTC Val	AAC Asn	CCC Pro 30	AAA Lys	CTC Leu	TAC Tyr	ATG Met	TGT Cys 35	GTG Val		211
TGT Cys	GAA Glu	GGT Gly	CTC Leu 40	TCC Ser	TGC Cys	GGT Gly	AAT Asn	GAG Glu 45	GAC Asp	CAC His	TGT Cys	GAA Glu	GGC Gly 50	CAG Gln	CAG Gln		259
TGC Cys	Phe	TCC Ser 55	Ser	CTG Leu	AGC Ser	ATC Ile	AAC Asn 60	GAT Asp	GGC Gly	TTC Phe	CAC His	GTC Val 65	TAC Tyr	CAG Gln	AAA Lys		307
GGC Gly	TGC Cys 70	TTC Phe	CAG Gln	GTT Val	TAT Tyr	GAG Glu 75	CAG Gln	GGA Gly	AAG Lys	ATG Met	ACC Thr 80	Cys	AAG Lys	ACC Thr	CCG Pro		355
CCG Pro 85	Ser	CCT Pro	GGC Gly	CAA Gln	GCT Ala 90	GTG Val	GAG Glu	TGC Cys	TGC Cys	CAA Gln 95	GGG Gly	GAC Asp	TGG Trp	TGT Cys	AAC Asn 100		403
AGG Arg	AAC Asn	ATC Ile	ACG Thr	GCC Ala 105	Gln	CTG Leu	CCC Pro	ACT Thr	AAA Lys 110	GGA Gly	AAA Lys	TCC Ser	TTC Phe	CCT Pro 115	GGA Gly		451

		CAG Gln															499
		GCA Ala															547
		AAA Lys 150															595
		ACT Thr															643
	Ala	GAT Asp	Leu	Leu	Asp 185	His	Ser	Cys	Thr	Ser 190	Gly	Ser	Gly	Ser	Gly 195	Leu	691
	CCT Pro	TTT Phe	CTG Leu	GTA Val 200	CAA Gln	AGA Arg	ACA Thr	GTG Val	GCT Ala 205	CGC Arg	CAG Gln	ATT Ile	ACA Thr	CTG Leu 210	TTG Leu	GAG Glu	739
Man Man Man		GTC Val															787
		GAA Glu 230															835
		TTC Phe															883
		ATC Ile															931
		CAG Gln															979
		TAT Tyr															1027
		CTG Leu 310															1075

	GGG Gly 325	ACC Thr	CAA Gln	GGG Gly	AAA Lys	CCA Pro 330	GCC Ala	ATT Ile	GCC Ala	CAT His	CGA Arg 335	GAT Asp	TTA Leu	AAG Lys	AGC Ser	AAA Lys 340	1123
	AAT Asn	ATT Ile	CTG Leu	GTT Val	AAG Lys 345	AAG Lys	AAT Asn	GGA Gly	CAG Gln	TGT Cys 350	TGC Cys	ATA Ile	GCA Ala	GAT Asp	TTG Leu 355	GGC Gly	1171
	CTG Leu	GCA Ala	GTC Val	ATG Met 360	CAT His	TCC Ser	CAG Gln	AGC Ser	ACC Thr 365	AAT Asn	CAG Gln	CTT Leu	GAT Asp	GTG Val 370	GGG Gly	AAC Asn	1219
	AAT Asn	CCC Pro	CGT Arg 375	GTG Val	GGC Gly	ACC Thr	AAG Lys	CGC Arg 380	TAC Tyr	ATG Met	GCC Ala	CCC Pro	GAA Glu 385	GTT Val	CTA Leu	GAT Asp	1267
	GAA Glu	ACC Thr 390	ATC Ile	CAG Gln	GTG Val	GAT Asp	TGT Cys 395	TTC Phe	GAT Asp	TCT Ser	TAT Tyr	AAA Lys 400	AGG Arg	GTC Val	GAT Asp	ATT Ile	1315
	TGG Trp 405	GCC Ala	TTT Phe	GGA Gly	CTT Leu	GTT Val 410	TTG Leu	TGG Trp	GAA Glu	GTG Val	GCC Ala 415	AGG Arg	CGG Arg	ATG Met	GTG Val	AGC Ser 420	1363
Harry Man Harry	AAT Asn	GGT Gly	ATA Ile	GTG Val	GAG Glu 425	GAT Asp	TAC Tyr	AAG Lys	CCA Pro	CCG Pro 430	TTC Phe	TAC Tyr	GAT Asp	GTG Val	GTT Val 435	CCC Pro	1411
	AAT Asn	GAC Asp	CCA Pro	AGT Ser 440	TTT Phe	GAA Glu	GAT Asp	ATG Met	AGG Arg 445	AAG Lys	GTA Val	GTC Val	TGT Cys	GTG Val 450	GAT Asp	CAA Gln	1459
	71 -	AGG Arg	CCA Pro 455	Asn	ATA Ile	CCC Pro	AAC Asn	AGA Arg 460	\mathtt{Trp}	TTC Phe	TCA Ser	GAC Asp	CCG Pro 465	Thr	TTA Leu	ACC	1507
	TCT Ser	CTG Leu 470	Ala	AAG Lys	CTA Leu	ATG Met	AAA Lys 475	Glu	TGC Cys	TGG Trp	TAT	CAA Gln 480	Asn	CCA Pro	TCC Ser	GCA Ala	1555
	AGA Arg 485	Leu	ACA Thr	GCA Ala	. CTG . Leu	CGT Arg 490	Ile	AAA Lys	AAG Lys	ACT	TTG Leu 495	Thr	AAA Lys	ATT	GAT Asp	AAT Asn 500	1603
	TCC Ser	CTC	GAC Asp	: AAA	TTG Leu 505	. Lys	ACT Thr	GAC Asp	TGT Cys	TGA	CATI	TTC	ATAC	TGTC	!AA		1650
	GAA	GGAA	GAT	TTGA	CGTI	GT I	GTCA	TTGI	C CA	GCT	GGAC	CT	ATGO	TGG	CCT	ACTGGT	1710
	TGI	CAGA	ATG	GAAT	CCAI	CT G	FTCTC	CCTC	ec co	'AAA'	GGCI	GCT	rttg <i>i</i>	ACAA	GGC	AGACGTC	1770

	GTACCCAGCC	ATGTGTTGGG	GAGACATCAA	AACCACCCTA	ACCTCGCTCG	ATGACTGTGA	1830
	ACTGGGCATT	TCACGAACTG	TTCACACTGC	AGAGACTAAT	GTTGGACAGA	CACTGTTGCA	1890
	AAGGTAGGGA	CTGGAGGAAC	ACAGAGAAAT	CCTAAAAGAG	ATCTGGGCAT	TAAGTCAGTG	1950
	GCTTTGCATA	GCTTTCACAA	GTCTCCTAGA	CACTCCCCAC	GGGAAACTCA	AGGAGGTGGT	2010
	GAATTTTTAA	TCAGCAATAT	TGCCTGTGCT	TCTCTTCTTT	ATTGCACTAG	GAATTCTTTG	2070
	CATTCCTTAC	TTGCACTGTT	ACTCTTAATT	TTAAAGACCC	AACTTGCCAA	AATGTTGGCT	2130
	GCGTACTCCA	CTGGTCTGTC	TTTGGATAAT	AGGAATTCAA	TTTGGCAAAA	CAAAATGTAA	2190
	TGTCAGACTT	TGCTGCATTT	TACACATGTG	CTGATGTTTA	CAATGATGCC	GAACATTAGG	2250
	AATTGTTTAT	ACACAACTTT	GCAAATTATT	TATTACTTGT	GCACTTAGTA	GTTTTTACAA	2310
- T	AACTGCTTTG	TGCATATGTT	AAAGCTTATT	TTTATGTGGT	CTTATGATTT	TATTACAGAA	2370
	ATGTTTTTAA	CACTATACTC	TAAAATGGAC	ATTTTCTTTT	ATTATCAGTT	AAAATCACAT	2430
l	TTTAAGTGCT	TCACATTTGT	ATGTGTGTAG	ACTGTAACTT	TTTTTCAGTT	CATATGCAGA	2490
	ACGTATTTAG	CCATTACCCA	CGTGACACCA	CCGAATATAT	TATCGATTTA	GAAGCAAAGA	2550
	TTTCAGTAGA	ATTTTAGTCC	TGAACGCTAC	GGGGAAAATG	CATTTTCTTC	AGAATTATCC	2610
	ATTACGTGCA	TTTAAACTCT	GCCAGAAAAA	AATAACTATT	TTGTTTTAAT	CTACTTTTTG	2670
=	TATTTAGTAG	TTATTTGTAT	AAATTAAATA	AACTGTTTTC	AAGTCAAAAA	AAAA	2724

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 509 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Val Asp Gly Val Met Ile Leu Pro Val Leu Ile Met Ile Ala Leu 1 5 10 15

Pro Ser Pro Ser Met Glu Asp Glu Lys Pro Lys Val Asn Pro Lys Leu 20 25 30

Tyr Met Cys Val Cys Glu Gly Leu Ser Cys Gly Asn Glu Asp His Cys 35 40 45

Glu Gly Gln Gln Cys Phe Ser Ser Leu Ser Ile Asn Asp Gly Phe His Val Tyr Gln Lys Gly Cys Phe Gln Val Tyr Glu Gln Gly Lys Met Thr Cys Lys Thr Pro Pro Ser Pro Gly Gln Ala Val Glu Cys Cys Gln Gly Asp Trp Cys Asn Arg Asn Ile Thr Ala Gln Leu Pro Thr Lys Gly Lys Ser Phe Pro Gly Thr Gln Asn Phe His Leu Glu Val Gly Leu Ile Ile 125 115 Leu Ser Val Val Phe Ala Val Cys Leu Leu Ala Cys Leu Leu Gly Val 135 130 Ala Leu Arg Lys Phe Lys Arg Arg Asn Gln Glu Arg Leu Asn Pro Arg 155 Asp Val Glu Tyr Gly Thr Ile Glu Gly Leu Ile Thr Thr Asn Val Gly 170 Asp Ser Thr Leu Ala Asp Leu Leu Asp His Ser Cys Thr Ser Gly Ser 190 180 Gly Ser Gly Leu Pro Phe Leu Val Gln Arg Thr Val Ala Arg Gln Ile 200 Thr Leu Leu Glu Cys Val Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg 📆 Gly Ser Trp Gln Gly Glu Asn Val Ala Val Lys Ile Phe Ser Ser Arg 235 240 225 Asp Glu Lys Ser Trp Phe Arg Glu Thr Glu Leu Tyr Asn Thr Val Met 250 245 Leu Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ser Asp Met Thr Ser 265 Arg His Ser Ser Thr Gln Leu Trp Leu Ile Thr His Tyr His Glu Met 280 275 Gly Ser Leu Tyr Asp Tyr Leu Gln Leu Thr Thr Leu Asp Thr Val Ser 295 300 290 Cys Leu Arg Ile Val Leu Ser Ile Ala Ser Gly Leu Ala His Leu His 315 310 305

Ile Glu Ile Phe Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp 325 330 Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Gln Cys Cys Ile 340 Ala Asp Leu Gly Leu Ala Val Met His Ser Gln Ser Thr Asn Gln Leu 360 Asp Val Gly Asn Asn Pro Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu Thr Ile Gln Val Asp Cys Phe Asp Ser Tyr Lys 385 390 Arg Val Asp Ile Trp Ala Phe Gly Leu Val Leu Trp Glu Val Ala Arg 410 Arg Met Val Ser Asn Gly Ile Val Glu Asp Tyr Lys Pro Pro Phe Tyr Asp Val Val Pro Asn Asp Pro Ser Phe Glu Asp Met Arg Lys Val Val 445 435 Cys Val Asp Gln Gln Arg Pro Asn Ile Pro Asn Arg Trp Phe Ser Asp 455 450 Pro Thr Leu Thr Ser Leu Ala Lys Leu Met Lys Glu Cys Trp Tyr Gln 470 🗎 Asn Pro Ser Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Thr 490 Lys Ile Asp Asn Ser Leu Asp Lys Leu Lys Thr Asp Cys 500 505

(2)	(ii (ii (iv (v) (vi (ix)	SE (A (B (C (D (D (MO i) MO FRA (A (A (B	TION QUEN) LE) TY) ST) TO LECU YPOT TI-S GMEN IGIN) OR TURE) NA	CE C. NGTH PE: RAND POLO LE T HETI ENSE T TY AL S GANI ME/K	HARA: 29 nucl EDNE GY: YPE: CAL: NO PE: OURC SM: EY: ON:	CTER 32 b eic SS: line cDN NO inte E: Homo CDS 310.	ISTI ase ; acid unkn ar A rnal sap	CS: pair own iens		O: 5	:					
GCTC	:CGCG	ICC G	AGGG	CTGG	A GG	ATGC	GTTC	CCT	GGGG	TCC	GGAC	TTAT	GA A	AATA	TGCAT	60
															GAGAA	120
ַ ⊒ אַ אַרר														-	GGGAG	180
															AGTCA	240
															CATTAC	300
1																348
The second secon	CAAC	IA AI Me	rG AC et Th 1	r Gl	ig Ci	A TA	r II	e Ty	r Il	Le Ar	g Le	u Le	eu Gl	y Al	la	310
ii ii tat	TTG	TTC	ATC	ATT	TCT	CGT	GTT	CAA	GGA	CAG	AAT	CTG	GAT	AGT	ATG	396
Tyr	Leu 15	Phe	Ile	Ile	Ser	Arg 20	Val	Gin	GTĀ	Gin	Asn 25	теп	Asp	per	Mec	
Стт	CAT	GGC	ACT	GGG	ATG	AAA	TCA	GAC	TCC	GAC	CAG	AAA	AAG	TCA	GAA	444
Leu 30	His	Gly	Thr	Gly	Met 35	Lys	Ser	Asp	Ser	Asp 40	Gln	Lys	Lys	Ser	Glu 45	
	GGA	ርሞ አ	∆ CC	מידים	GCA	CCA	GAG	GAT	ACC	TTG	CCT	TTT	TTA	AAG	TGC	492
Asn	Gly	Val	Thr	Leu 50	Ala	Pro	Glu	Asp	Thr 55	Leu	Pro	Phe	Leu	Lys 60	Cys	
			555		m.cm	GG3	ረግ አጠን	_{ርን} ጥ		אונינט ע	አልጥ	ልልሮ	aca		ATA	54(
TAT Tyr	TGC Cys	Ser	Gly	His	Cys	Pro	Asp	Asp 70	Ala	Ile	Asn	Asn	Thr 75	Cys	ATA Ile	- -
			65						<i>a.</i> .	73.7	Cl x m	מאמ		CCA	CAN	588
ACT Thr	AAT Asn	GGA Gly	CAT His	TGC Cys	TTT Phe	GCC Ala	ATC Ile	ATA Ile	GAA Glu	GAA	Asp	Asp	Gln	Gly	GAA Glu	500
		80		-			85					90				

ACC Thr	ACA Thr 95	TTA Leu	GCT Ala	TCA Ser	GGG Gly	TGT Cys 100	ATG Met	AAA Lys	TAT Tyr	GAA Glu	GGA Gly 105	TCT Ser	GAT Asp	TTT Phe	CAG Gln	6	36
TGC Cys 110	AAA Lys	GAT Asp	TCT Ser	CCA Pro	AAA Lys 115	GCC Ala	CAG Gln	CTA Leu	CGC Arg	CGG Arg 120	ACA Thr	ATA Ile	GAA Glu	TGT Cys	TGT Cys 125	6	58 4
CGG Arg	ACC Thr	AAT Asn	TTA Leu	TGT Cys 130	AAC Asn	CAG Gln	TAT Tyr	TTG Leu	CAA Gln 135	CCC Pro	ACA Thr	CTG Leu	CCC Pro	CCT Pro 140	GTT Val	Ī	732
GTC Val	ATA Ile	GGT Gly	CCG Pro 145	TTT Phe	TTT Phe	GAT Asp	GGC Gly	AGC Ser 150	ATT Ile	CGA Arg	TGG Trp	CTG Leu	GTT Val 155	TTG Leu	CTC Leu	•	780
Ile	TCT Ser	ATG Met 160	GCT Ala	GTC Val	TGC Cys	ATA Ile	ATT Ile 165	GCT Ala	ATG Met	ATC Ile	ATC Ile	TTC Phe 170	TCC Ser	AGC Ser	TGC Cys	;	828
TTT Phe	TGT Cys 175	TAC Tyr	AAA Lys	CAT His	TAT Tyr	TGC Cys 180	AAG Lys	AGC Ser	ATC Ile	TCA Ser	AGC Ser 185	AGA Arg	CGT Arg	CGT Arg	TAC Tyr		876
AAT	Δτα	GAT Asp	TTG Leu	GAA Glu	CAG Gln 195	GAT Asp	GAA Glu	GCA Ala	TTT Phe	ATT Ile 200	CCA Pro	GTT Val	GGA Gly	GAA Glu	TCA Ser 205		924
Leu	AAA Lys	GAC Asp	CTT Leu	ATT Ile 210	GAC Asp	CAG Gln	TCA Ser	CAA Gln	AGT Ser 215	TCT Ser	GGT Gly	AGT Ser	GGG Gly	TCT Ser 220	GGA Gly		972
CTA Leu	CCT Pro	TTA Leu	TTG Leu 225	Val	CAG Gln	CGA Arg	ACT Thr	ATT Ile 230	GCC Ala	AAA Lys	CAG Gln	ATT Ile	CAG Gln 235	ATG Met	GTC Val	1	020
CGG Arg	CAA Gln	GTT Val 240	Gly	AAA Lys	GGC Gly	CGA Arg	TAT Tyr 245	Gly	GAA Glu	GTA Val	TGG Trp	ATG Met 250	GTA	AAA Lys	TGG	1	.068
CGT Arg	GGC Gly 255	Glu	AAA Lys	GTG Val	GCG Ala	GTG Val 260	Lys	GTA Val	TTC Phe	TTT Phe	ACC Thr 265	Tnr	GAA Glu	GAA Glu	GCC Ala	1	.116
AGC Ser 270	Trp	TTT Phe	CGA Arg	GAA Glu	ACA Thr 275	Glu	ATC	TAC	CAA Gln	ACT Thr 280	. Val	CTA Leu	. ATG . Met	CGC Arg	CAT His 285	1	164
GAA Glu	AAC Asn	ATA	CTI Leu	GGT Gly 290	Phe	ATA	GCG Ala	GCA Ala	GAC Asp 295) Ile	AAA Lys	GGT Gly	ACA Thr	GGT Gly 300	TCC Ser	1	L2 12

	TGG Trp	ACT Thr	CAG Gln	CTC Leu 305	TAT Tyr	TTG Leu	ATT Ile	ACT Thr	GAT Asp 310	TAC Tyr	CAT His	GAA Glu	AAT Asn	GGA Gly 315	TCT Ser	CTC Leu	1260
	TAT Tyr	GAC Asp	TTC Phe 320	CTG Leu	AAA Lys	TGT Cys	GCT Ala	ACA Thr 325	CTG Leu	GAC Asp	ACC Thr	AGA Arg	GCC Ala 330	CTG Leu	CTT Leu	AAA Lys	1308
	TTG Leu	GCT Ala 335	TAT Tyr	TCA Ser	GCT Ala	GCC Ala	TGT Cys 340	GGT Gly	CTG Leu	TGC Cys	CAC His	CTG Leu 345	CAC His	ACA Thr	GAA Glu	ATT Ile	1356
	TAT Tyr 350	GGC Gly	ACC Thr	CAA Gln	GGA Gly	AAG Lys 355	CCC Pro	GCA Ala	ATT Ile	GCT Ala	CAT His 360	CGA Arg	GAC Asp	CTA Leu	AAG Lys	AGC Ser 365	 1404
	Lys	Asn	Ile	Leu	Ile 370	Lys	Lys	Asn	Gly	Ser 375	Cys	Cys	ATT Ile	Ala	Asp 380	Leu	1452
	GTA	CTT Leu	GCT Ala	GTT Val 385	AAA Lys	TTC Phe	AAC Asn	AGT Ser	GAC Asp 390	ACA Thr	AAT Asn	GAA Glu	GTT Val	GAT Asp 395	GTG Val	CCC Pro	1500
į.i	mma	AAT Asn	ACC Thr 400	AGG Arg	GTG Val	GGC Gly	ACC Thr	AAA Lys 405	CGC Arg	TAC Tyr	ATG Met	GCT Ala	CCC Pro 410	GAA Glu	GTG Val	CTG Leu	1548
																GAC Asp	1596
	ATC Ile 430	TAC Tyr	AGC Ser	TTC Phe	GGC Gly	CTA Leu 435	ATC Ile	ATT Ile	TGG Trp	GAG Glu	ATG Met 440	GCT Ala	CGT Arg	CGT Arg	TGT Cys	ATC Ile 445	1644
	ACA Thr	GGA Gly	GGG Gly	ATC Ile	GTG Val 450	GAA Glu	GAA Glu	TAC Tyr	CAA Gln	TTG Leu 455	CCA Pro	TAT Tyr	TAC Tyr	AAC Asn	ATG Met 460	GTA Val	1692
	CCG Pro	AGT Ser	GAT Asp	CCG Pro 465	TCA Ser	TAC Tyr	GAA Glu	GAT Asp	ATG Met 470	CGT Arg	GAG Glu	GTT Val	GTG Val	TGT Cys 475	GTC Val	AAA Lys	1740
	CGT Arg	TTG Leu	CGG Arg 480	CCA Pro	ATT Ile	GTG Val	TCT Ser	AAT Asn 485	Arg	TGG Trp	AAC Asn	AGT Ser	GAT Asp 490	GAA Glu	TGT Cys	CTA Leu	1788
	CGA Arg	GCA Ala 495	Val	TTG Leu	AAG Lys	CTA Leu	ATG Met 500	TCA Ser	GAA Glu	TGC Cys	TGG Trp	GCC Ala 505	His	AAT Asn	CCA Pro	GCC Ala	1836

TCC AGA CTC ACA GCA TTG AGA ATT AAG AAG ACG CTT GCC AAG ATG GTT Ser Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ala Lys Met Val 510 515 520 525	1884
GAA TCC CAA GAT GTA AAA ATC TGATGGTTAA ACCATCGGAG GAGAAACTCT Glu Ser Gln Asp Val Lys Ile 530	1935
AGACTGCAAG AACTGTTTTT ACCCATGGCA TGGGTGGAAT TAGAGTGGAA TAAGGATGTT	1995
AACTTGGTTC TCAGACTCTT TCTTCACTAC GTGTTCACAG GCTGCTAATA TTAAACCTTT	2055
CAGTACTCTT ATTAGGATAC AAGCTGGGAA CTTCTAAACA CTTCATTCTT TATATATGGA	2115
CAGCTTTATT TTAAATGTGG TTTTTGATGC CTTTTTTTAA GTGGGTTTTT ATGAACTGCA	2175
TCAAGACTTC AATCCTGATT AGTGTCTCCA GTCAAGCTCT GGGTACTGAA TTGCCTGTTC	2235
ATAAAACGGT GCTTTCTGTG AAAGCCTTAA GAAGATAAAT GAGCGCAGCA GAGATGGAGA	2295
AATAGACTTT GCCTTTTACC TGAGACATTC AGTTCGTTTG TATTCTACCT TTGTAAAACA	2355
GCCTATAGAT GATGATGTGT TTGGGATACT GCTTATTTTA TGATAGTTTG TCCTGTGTCC	2415
TTAGTGATGT GTGTGTCT CCATGCACAT GCACGCCGGG ATTCCTCTGC TGCCATTTGA	2475
ATTAGAAGAA AATAATTTAT ATGCATGCAC AGGAAGATAT TGGTGGCCGG TGGTTTTGTG	2535
CTTTAAAAT GCAATATCTG ACCAAGATTC GCCAATCTCA TACAAGCCAT TTACTTTGCA	2595
AGTGAGATAG CTTCCCCACC AGCTTTATTT TTTAACATGA AAGCTGATGC CAAGGCCAAA	2655
AGAAGTTTAA AGCATCTGTA AATTTGGACT GTTTTCCTTC AACCACCATT TTTTTTGTGG	2715
TTATTATTTT TGTCACGGAA AGCATCCTCT CCAAAGTTGG AGCTTCTATT GCCATGAACC	2775
ATGCTTACAA AGAAAGCACT TCTTATTGAA GTGAATTCCT GCATTTGATA GCAATGTAAG	2835
TGCCTATAAC CATGTTCTAT ATTCTTTATT CTCAGTAACT TTTAAAAGGG AAGTTATTTA	2895
TATTTTGTGT ATAATGTGCT TTATTTGCAA ATCACCC	2932

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 532 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
- Met Thr Gln Leu Tyr Ile Tyr Ile Arg Leu Leu Gly Ala Tyr Leu Phe
 1 5 10 15
- Ile Ile Ser Arg Val Gln Gly Gln Asn Leu Asp Ser Met Leu His Gly 20 25 30
- Thr Gly Met Lys Ser Asp Ser Asp Gln Lys Lys Ser Glu Asn Gly Val
- Thr Leu Ala Pro Glu Asp Thr Leu Pro Phe Leu Lys Cys Tyr Cys Ser 50 55
- Gly His Cys Pro Asp Asp Ala Ile Asn Asn Thr Cys Ile Thr Asn Gly 65 70 75 80
- His Cys Phe Ala Ile Ile Glu Glu Asp Asp Gln Gly Glu Thr Thr Leu 85 90 95
 - Ala Ser Gly Cys Met Lys Tyr Glu Gly Ser Asp Phe Gln Cys Lys Asp 100 105 110
 - Ser Pro Lys Ala Gln Leu Arg Arg Thr Ile Glu Cys Cys Arg Thr Asn 115 120 125
- Leu Cys Asn Gln Tyr Leu Gln Pro Thr Leu Pro Pro Val Val Ile Gly
 130 135 140
 - Pro Phe Phe Asp Gly Ser Ile Arg Trp Leu Val Leu Leu Ile Ser Met
 145 150 155 160
 - Ala Val Cys Ile Ile Ala Met Ile Ile Phe Ser Ser Cys Phe Cys Tyr 165 170 175
 - Lys His Tyr Cys Lys Ser Ile Ser Ser Arg Arg Arg Tyr Asn Arg Asp 180 185 190
 - Leu Glu Gln Asp Glu Ala Phe Ile Pro Val Gly Glu Ser Leu Lys Asp 195 200 205
 - Leu Ile Asp Gln Ser Gln Ser Ser Gly Ser Gly Leu Pro Leu 210 215 220

Leu Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Met Val Arg Gln Val Gly Lys Gly Arg Tyr Gly Glu Val Trp Met Gly Lys Trp Arg Gly Glu Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Glu Ala Ser Trp Phe Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Met Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly Ser Trp Thr Gln Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly Ser Leu Tyr Asp Phe Leu Lys Cys Ala Thr Leu Asp Thr Arg Ala Leu Leu Lys Leu Ala Tyr Ser Ala Ala Cys Gly Leu Cys His Leu His Thr Glu Ile Tyr Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile Leu Ile Lys Lys Asn Gly Ser Cys Cys Ile Ala Asp Leu Gly Leu Ala W Val Lys Phe Asn Ser Asp Thr Asn Glu Val Asp Val Pro Leu Asn Thr Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu Ser Leu Asn Lys Asn His Phe Gln Pro Tyr Ile Met Ala Asp Ile Tyr Ser Phe Gly Leu Ile Ile Trp Glu Met Ala Arg Arg Cys Ile Thr Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr Tyr Asn Met Val Pro Ser Asp Pro Ser Tyr Glu Asp Met Arg Glu Val Val Cys Val Lys Arg Leu Arg Pro Ile Val Ser Asn Arg Trp Asn Ser Asp Glu Cys Leu Arg Ala Val

525

Leu Lys Leu Met Ser Glu Cys Trp Ala His Asn Pro Ala Ser Arg Leu 500 505 510

Thr Ala Leu Arg Ile Lys Lys Thr Leu Ala Lys Met Val Glu Ser Gln

Asp	Val 530	Lys	Ile													
(2)	(i) (ii (iv (v) (vi	SE (A (B (C (D (D) MC i) H (A (C) A (A (C) C (A (C (C (C) C (C	TION QUEN) LE) TY) ST) TO LECU YPOT CHECK CH	CE ON MOTH PE: RAND POLO ILE IN TYPE PER TYPE PE	HARA : 23 nucl EDNE CYPE: CAL: CYPE: COURC SOURC CSM: CEY:	CTER 33 b eic SS: line cDN NO inte Homo	isti ase acid unkn ar A ernal	CS: pair own): 7 :						
ATG Met	GCG Ala	GAG Glu	TCG Ser	GCC Ala 5	GGA Gly	GCC Ala	TCC Ser	TCC Ser	TTC Phe 10	TTC Phe	CCC Pro	CTT Leu	GTT Val	GTC Val 15	CTC Leu	48
CTG Leu	CTC Leu	GCC Ala	GGC Gly 20	AGC Ser	GGC Gly	GGG Gly	TCC Ser	GGG Gly 25	CCC Pro	CGG Arg	GGG Gly	GTC Val	CAG Gln 30	GCT Ala	CTG Leu	96
CTG Leu	TGT Cys	GCG Ala 35	TGC Cys	ACC Thr	AGC Ser	TGC Cys	CTC Leu 40	CAG Gln	GCC Ala	AAC Asn	TAC Tyr	ACG Thr 45	TGT Cys	GAG Glu	ACA Thr	144
GAT Asp	GGG Gly 50	GCC Ala	TGC Cys	ATG Met	GTT Val	TCC Ser 55	TTT Phe	TTC Phe	AAT Asn	CTG Leu	GAT Asp 60	GGG Gly	ATG Met	GAG Glu	CAC His	192
CAT His	GTG Val	CGC Arg	ACC Thr	TGC Cys	ATC Ile 70	CCC Pro	AAA Lys	GTG Val	GAG Glu	CTG Leu 75	GTC Val	CCT Pro	GCC Ala	GGG Gly	AAG Lys 80	240

:	CCC Pro	TTC Phe	TAC Tyr	TGC Cys	CTG Leu 85	AGC Ser	TCG Ser	GAG Glu	GAC Asp	CTG Leu 90	CGC Arg	AAC Asn	ACC Thr	CAC His	TGC Cys 95	TGC Cys	288
;	TAC Tyr	ACT Thr	GAC Asp	TAC Tyr 100	TGC Cys	AAC Asn	AGG Arg	ATC Ile	GAC Asp 105	TTG Leu	AGG Arg	GTG Val	CCC Pro	AGT Ser 110	GGT Gly	CAC His	336
	CTC Leu	AAG Lys	GAG Glu 115	CCT Pro	GAG Glu	CAC His	CCG Pro	TCC Ser 120	ATG Met	TGG Trp	GGC Gly	CCG Pro	GTG Val 125	GAG Glu	CTG Leu	GTA Val	384
	GGC Gly	ATC Ile 130	ATC Ile	GCC Ala	GGC Gly	CCG Pro	GTG Val 135	TTC Phe	CTC Leu	CTG Leu	TTC Phe	CTC Leu 140	ATC Ile	ATC Ile	ATC Ile	ATT Ile	432
	Val 145	TTC Phe	CTT Leu	GTC Val	ATT Ile	AAC Asn 150	TAT Tyr	CAT His	CAG Gln	CGT Arg	GTC Val 155	TAT Tyr	CAC His	AAC Asn	CGC Arg	CAG Gln 160	480
	AGA Arg	CTG Leu	GAC Asp	ATG Met	GAA Glu 165	GAT Asp	CCC Pro	TCA Ser	TGT Cys	GAG Glu 170	ATG Met	TGT Cys	CTC Leu	TCC Ser	AAA Lys 175	GAC Asp	528
III Hami	አአር	ACG Thr	CTC Leu	CAG Gln 180	GAT Asp	CTT Leu	GTC Val	TAC Tyr	GAT Asp 185	CTC Leu	TCC Ser	ACC Thr	TCA Ser	GGG Gly 190	TCT Ser	GGC Gly	576
	TCA Ser	GGG Gly	TTA Leu 195	Pro	CTC Leu	TTT Phe	GTC Val	CAG Gln 200	Arg	ACA Thr	GTG Val	GCC Ala	CGA Arg 205	ACC Thr	ATC Ile	GTT Val	624
	TTA Leu	CAA Gln 210	Glu	ATT	ATT Ile	GGC Gly	AAG Lys 215	GGT Gly	CGG Arg	TTT Phe	GGG Gly	GAA Glu 220	Val	TGG Trp	CGG Arg	GGC Gly	672
	CGC Arg 225	Trp	AGG Arg	GGT Gly	GGT	GAT Asp 230	Val	GCT Ala	GTG Val	AAA Lys	ATA Ile 235	Phe	TCT Ser	TCT Ser	CGT	GAA Glu 240	720
	GAA Glu	. CGG . Arg	TCT Ser	TGG Trp	TTC Phe 245	Arg	GAA Glu	GCA Ala	GAG Glu	ATA Ile 250	Туг	CAG Glr	ACG Thr	GTC Val	Met 255	CTG Leu	768
	CGC Arg	CAT His	GAA	AAC Asn 260	lle	CTI Leu	GGA Gly	TTI Phe	ATI Ile 265	ATS	GCT A Ala	GAC Asp	AAT Asi	AAA Lys 270	. Ast	AAT Asn	816
	GGC Gly	ACC Thr	TGG Trp	Thr	CAG Glr	CTC	TGG Trp	CTT Let 280	ı Val	TCI Sei	GAC Asi	TAT	CAT His 285	s GIT	CAC His	GGG Gly	864

i	TCC Ser	CTG Leu 290	TTT Phe	GAT Asp	TAT Tyr	CTG Leu	AAC Asn 295	CGG Arg	TAC Tyr	ACA Thr	GTG Val	ACA Thr 300	ATT Ile	GAG Glu	GGG Gly	ATG Met	912
	ATT Ile 305	AAG Lys	CTG Leu	GCC Ala	TTG Leu	TCT Ser 310	GCT Ala	GCT Ala	AGT Ser	GGG Gly	CTG Leu 315	GCA Ala	CAC His	CTG Leu	CAC His	ATG Met 320	960
	GAG Glu	ATC Ile	GTG Val	GGC Gly	ACC Thr 325	CAA Gln	GGG Gly	AAG Lys	CCT Pro	GGA Gly 330	ATT Ile	GCT Ala	CAT His	CGA Arg	GAC Asp 335	TTA Leu	1008
	AAG Lys	TCA Ser	AAG Lys	AAC Asn 340	ATT Ile	CTG Leu	GTG Val	AAG Lys	AAA Lys 345	AAT Asn	GGC Gly	ATG Met	TGT Cys	GCC Ala 350	ATA Ile	GCA Ala	1056
	Asp	CTG Leu	GGC Gly 355	CTG Leu	GCT Ala	GTC Val	CGT Arg	CAT His 360	GAT Asp	GCA Ala	GTC Val	ACT Thr	GAC Asp 365	ACC Thr	ATT Ile	GAC Asp	1104
	Ile	GCC Ala 370	CCG Pro	AAT Asn	CAG Gln	AGG Arg	GTG Val 375	GGG Gly	ACC Thr	AAA Lys	CGA Arg	TAC Tyr 380	ATG Met	GCC Ala	CCT Pro	GAA Glu	1152
ļ.	GTA	T	GAT Asp	GAA Glu	ACC Thr	ATT Ile 390	AAT Asn	ATG Met	AAA Lys	CAC His	TTT Phe 395	GAC Asp	TCC Ser	TTT Phe	AAA Lys	TGT Cys 400	1200
	GCT Ala	GAT Asp	ATT Ile	TAT Tyr	GCC Ala 405	CTC Leu	GGG Gly	CTT Leu	GTA Val	TAT Tyr 410	TGG Trp	GAG Glu	ATT Ile	GCT Ala	CGA Arg 415	AGA Arg	1248
	TGC Cys	AAT Asn	TCT Ser	GGA Gly 420	Gly	GTC Val	CAT His	GAA Glu	GAA Glu 425	TAT Tyr	CAG Gln	CTG Leu	CCA Pro	TAT Tyr 430	TAC Tyr	GAC Asp	1296
	TTA Leu	GTG Val	CCC Pro 435	Ser	GAC Asp	CCT Pro	TCC Ser	ATT Ile 440	Glu	GAA Glu	ATG Met	CGA Arg	AAG Lys 445	Val	GTA Val	TGT Cys	1344
	GAT Asp	CAG Gln 450	Lys	CTG Leu	CGT Arg	CCC Pro	AAC Asn 455	Ile	CCC	AAC Asn	TGG Trp	TGG Trp 460	Gln	AGT Ser	TAT Tyr	GAG Glu	1392
	GCA Ala 465	Leu	CGG Arg	GTG Val	ATG Met	GGG Gly 470	Lys	ATG Met	ATG Met	CGA Arg	GAG Glu 475	. Суз	TGG Trp	TAT	GCC Ala	AAC Asn 480	1440
	GGC Gly	GCA Ala	GCC Ala	CGC Arg	CTG Leu 485	Thr	GCC Ala	CTG Leu	CGC Arg	ATC Ile 490	Lys	AAG Lys	ACC Thr	CTC Leu	TCC Ser 495	CAG Gln	1488

								AAG L Lys			GCT	CC CTC	TCTCC	CAC		15	35
	ACGG	EAGC:	rcc	TGGC	AGCGZ	AG .	AACT	ACGCAC	: AG	CTGCCG	CG	TTGAGC	GTAC	GATGG	AGGCC	15	95
	TACC	CTCT	CGT	TTCT	GCCCZ	AG	CCCT	CTGTGG	; CC	AGGAGC	CC	TGGCCC	GCAA	GAGGG	ACAGA	16	555
	GCC	CGGG	AGA	GACT	CGCT	CA	CTCC	CATGTI	GG	GTTTGA	GA	CAGACA	CCTT	TTCTA	TTAC	17	715
	CTC	CTAA!	rgg	CATG	GAGA	CT	CTGA	GAGCGA	ra A	TGTGTG	GA	GAACTO	AGTG	CCACAC	CCTCG	17	775
	AACT	rggt'	TGT	AGTG	GGAA	GT	CCCG	CGAAAC	c cc	CGGTGCA	TC	TGGCAC	GTGG	CCAGG	AGCCA	18	335
	TGAG	CAGG	GGC	GCTT	GGGA	GG	GGCC	ggagg <i>i</i>	A	CCGAGGT	GT	TGCCAG	TGCT	AAGCT	GCCCT	18	395
										CACCAAG						19	955
44	GCA	GCCC	CTC	TCAC	AGGC:	AG	CTCT	GAGCC	3 C	GCTTTCC	CCC	TCCTCC	CTGG	GATGG	ACGCT	20	015
										CCGCTTI						20	075
mil in	-	CCGA	GGT	GCGT	CCCC	CG	TTGT	GCCTG	3 T7	rcgrgcc	CAT	GCCCTT	CACAC	GTGCG	TGTGA	2:	135
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GTG'	TGTG	TGT	GTGT	CTGT.	AG	GTGC	GCACT	r A	CCTGCTI	rga	GCTTTC	CTGTG	CATGT	GCAGG	2	195
4	TCG	GGGG	TGT	GGTC	GTCA	TG	CTGT	CCGTG	C T	rgctggi	rgc	CTCTTT	rtcag	TAGTG	AGCAG	2	255
	CAT	CTAG	TTT	CCCI	GGTG	CC	CTTC	CCTGG	A GO	GTCTCT	ccc	TCCCC	CAGAG	CCCCT	CATGC	2	315
		AGTG	GTA	CTCT	'GTGT											2:	333

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 505 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Ala Glu Ser Ala Gly Ala Ser Ser Phe Phe Pro Leu Val Val Leu 1 5 10 15

Leu Leu Ala Gly Ser Gly Gly Ser Gly Pro Arg Gly Val Gln Ala Leu 20 25 30

Leu Cys Ala Cys Thr Ser Cys Leu Gln Ala Asn Tyr Thr Cys Glu Thr 35 40 45

Asp Gly Ala Cys Met Val Ser Phe Phe Asn Leu Asp Gly Met Glu His 50 His Val Arg Thr Cys Ile Pro Lys Val Glu Leu Val Pro Ala Gly Lys 75 Pro Phe Tyr Cys Leu Ser Ser Glu Asp Leu Arg Asn Thr His Cys Cys Tyr Thr Asp Tyr Cys Asn Arg Ile Asp Leu Arg Val Pro Ser Gly His Leu Lys Glu Pro Glu His Pro Ser Met Trp Gly Pro Val Glu Leu Val 115 Gly Ile Ile Ala Gly Pro Val Phe Leu Leu Phe Leu Ile Ile Ile 140 135 130 Val Phe Leu Val Ile Asn Tyr His Gln Arg Val Tyr His Asn Arg Gln 155 150 Arg Leu Asp Met Glu Asp Pro Ser Cys Glu Met Cys Leu Ser Lys Asp Lys Thr Leu Gln Asp Leu Val Tyr Asp Leu Ser Thr Ser Gly Ser Gly 185 180 Ser Gly Leu Pro Leu Phe Val Gln Arg Thr Val Ala Arg Thr Ile Val Leu Gln Glu Ile Ile Gly Lys Gly Arg Phe Gly Glu Val Trp Arg Gly Arg Trp Arg Gly Gly Asp Val Ala Val Lys Ile Phe Ser Ser Arg Glu 235 225 Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln Thr Val Met Leu Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Asn Lys Asp Asn 270 265 Gly Thr Trp Thr Gln Leu Trp Leu Val Ser Asp Tyr His Glu His Gly 280 275 Ser Leu Phe Asp Tyr Leu Asn Arg Tyr Thr Val Thr Ile Glu Gly Met 295 290 Ile Lys Leu Ala Leu Ser Ala Ala Ser Gly Leu Ala His Leu His Met 320 315 310 305

Glu Ile Val Gly Thr Gln Gly Lys Pro Gly Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Met Cys Ala Ile Ala 345 340 Asp Leu Gly Leu Ala Val Arg His Asp Ala Val Thr Asp Thr Ile Asp 365 Ile Ala Pro Asn Gln Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu 375 Val Leu Asp Glu Thr Ile Asn Met Lys His Phe Asp Ser Phe Lys Cys 400 390 Ala Asp Ile Tyr Ala Leu Gly Leu Val Tyr Trp Glu Ile Ala Arg Arg 410 Cys Asn Ser Gly Gly Val His Glu Glu Tyr Gln Leu Pro Tyr Tyr Asp Leu Val Pro Ser Asp Pro Ser Ile Glu Glu Met Arg Lys Val Val Cys 440 Asp Gln Lys Leu Arg Pro Asn Ile Pro Asn Trp Trp Gln Ser Tyr Glu 455 450 Ala Leu Arg Val Met Gly Lys Met Met Arg Glu Cys Trp Tyr Ala Asn 470 L Gly Ala Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ser Gln 490 485 🏻 Leu Ser Val Gln Glu Asp Val Lys Ile

(2)	(i) (ii (iv (v)	(A) (B) (C)	QUENC) LEM) TYI) STI) TOI LECUI YPOTI TI-SI GMEN	CE CINGTH PE: 1 RAND POLOG LE T HETI ENSE I TY	HARAC : 230 nucle EDNE: GY: 3 YPE: CAL: : NO PE:	CTERIOS DE SERVICIONES DE CONTENTO NO ENTRE	ISTI(ase] acid unkno ar A	CS: pair: own	s						-	•	
	·	(A) FE) OR	GANI E:	SM:	Mous	e										
	(xi	(A (B) SE) NA) LO QUEN	CATI	ON:	77	1585 ON:	SEQ	ID N	o: 9	:						
GG	CGAGGC	GA G	GTTT	GCTG	G GG	TGAG	GCAG	CGG	CGCG	GCC	GGGC	CGGG	CC G	GGCC	ACAGG	; 6	0
i cg i cg i	GTGGCG	GC G	GGAC	C AT Me	G GA t Gl	.G GC .u Al	G GC a Al	G GT .a Va	C GC 1 Al 5	T GC a Al	T CC a Pr	G CG	y Fr	C CG O Ar	.a G	10	9
E CT(G CTC u Leu	CTC Leu	CTC Leu 15	GTG Val	CTG Leu	GCG Ala	GCG Ala	GCG Ala 20	GCG Ala	GCG Ala	GCG Ala	GCG Ala	GCG Ala 25	GCG Ala	CTG Leu	15	57
	C CCG u Pro	GGG Gly 30	GCG Ala	ACG Thr	GCG Ala	TTA Leu	CAG Gln 35	TGT Cys	TTC Phe	TGC Cys	CAC His	CTC Leu 40	TGT Cys	ACA Thr	AAA Lys	20	05
GA As	C AAT p Asn 45	TTT Phe	ACT Thr	TGT Cys	GTG Val	ACA Thr 50	GAT Asp	GGG Gly	CTC Leu	TGC Cys	TTT Phe 55	GTC Val	TCT Ser	GTC Val	ACA Thr	2	53
Gl	G ACC u Thr	Thr	GAC Asp	Lys	Val	ATA Ile	CAC His	AAC Asn	AGC Ser	ATG Met 70	TGT Cys	ATA Ile	GCT Ala	GAA Glu	ATT Ile 75	3	01
GA As	C TTA	ATT Ile	CCT Pro	CGA Arg 80	Asp	AGG Arg	CCG Pro	TTT Phe	GTA Val 85	TGT Cys	GCA Ala	CCC Pro	TCT Ser	TCA Ser 90	AAA Lys	3	49
AC Th	CT GGG nr Gly	TCT Ser	GTG Val 95	ACT Thr	ACA Thr	ACA Thr	TAT Tyr	TGC Cys 100	Cys	AAT Asn	CAG Gln	GAC Asp	CAT His 105	TGC Cys	AAT Asn	3	97
A. L	AA ATA ys Ile	GAA Glu 110	Leu	CCA Pro	ACT Thr	ACT Thr	GTA Val 115	. Lys	TCA Ser	TCA Ser	CCT Pro	GGC Gly 120	CTT Leu	GGT Gly	CCT Pro	4	45

	GTG Val	GAA Glu 125	CTG Leu	GCA Ala	GCT Ala	GTC Val	ATT Ile 130	GCT Ala	GGA Gly	CCA Pro	GTG Val	TGC Cys 135	TTC Phe	GTC Val	TGC Cys	ATC Ile	493
	TCA Ser 140	CTC Leu	ATG Met	TTG Leu	ATG Met	GTC Val 145	TAT Tyr	ATC Ile	TGC Cys	CAC His	AAC Asn 150	CGC Arg	ACT Thr	GTC Val	ATT Ile	CAC His 155	541
	CAT His	CGA Arg	GTG Val	CCA Pro	AAT Asn 160	GAA Glu	GAG Glu	GAC Asp	CCT Pro	TCA Ser 165	TTA Leu	GAT Asp	CGC Arg	CCT Pro	TTT Phe 170	ATT Ile	589
	TCA Ser	GAG Glu	GGT Gly	ACT Thr 175	ACG Thr	TTG Leu	AAA Lys	GAC Asp	TTA Leu 180	ATT Ile	TAT Tyr	GAT Asp	ATG Met	ACA Thr 185	ACG Thr	TCA Ser	637
	Gly	TCT Ser	GGC Gly 190	TCA Ser	GGT Gly	TTA Leu	CCA Pro	TTG Leu 195	CTT Leu	GTT Val	CAG Gln	AGA Arg	ACA Thr 200	ATT Ile	GCG Ala	AGA Arg	685
	Thr	ATT Ile 205	GTG Val	TTA Leu	CAA Gln	GAA Glu	AGC Ser 210	ATT Ile	GGC Gly	AAA Lys	GGT Gly	CGA Arg 215	TTT Phe	GGA Gly	GAA Glu	GTT Val	733
L.	TGG		GGA Gly	AAG Lys	TGG Trp	CGG Arg 225	GGA Gly	GAA Glu	GAA Glu	GTT Val	GCT Ala 230	GTT Val	AAG Lys	ATA Ile	TTC Phe	TCC Ser 235	781
	TCT Ser	AGA Arg	GAA Glu	GAA Glu	CGT Arg 240	TCG Ser	TGG Trp	TTC Phe	CGT Arg	GAG Glu 245	GCA Ala	GAG Glu	ATT Ile	TAT Tyr	CAA Gln 250	ACT Thr	829
	GTA Val	ATG Met	TTA Leu	CGT Arg 255	CAT His	GAA Glu	AAC Asn	ATC Ile	CTG Leu 260	Gly	TTT Phe	ATA Ile	GCA Ala	GCA Ala 265	Asp	AAT Asn	877
	AAA Lys	GAC Asp	AAT Asn 270	GGT Gly	ACT Thr	TGG Trp	ACT Thr	CAG Gln 275	CTC Leu	TGG Trp	TTG Leu	GTG Val	TCA Ser 280	GAT Asp	TAT Tyr	CAT His	925
	GAG Glu	CAT His 285	Gly	TCC Ser	CTT	TTT Phe	GAT Asp 290	Tyr	TTA Leu	AAC Asn	AGA Arg	TAC Tyr 295	Thr	GTT Val	ACT Thr	GTG Val	973
	GAA Glu 300	Gly	ATG Met	ATA	AAA Lys	CTT Leu 305	Ala	CTG Leu	TCC Ser	ACG Thr	GCG Ala 310	Ser	GGT Gly	CTT Leu	GCC Ala	CAT His 315	1021
	CTT Leu	CAC His	ATG Met	GAG Glu	ATT Ile 320	Val	GGT Gly	ACC Thr	CAA Gln	GGA Gly 325	' Lys	CCA Pro	GCC Ala	ATT Ile	GCT Ala 330	CAT	1069

•	AGA Arg	GAT Asp	TTG Leu	AAA Lys 335	TCA Ser	AAG Lys	AAT Asn	ATC Ile	TTG Leu 340	GTA Val	AAG Lys	AAG Lys	AAT Asn	GGA Gly 345	ACT Thr	TGC Cys	1117
1	TGT Cys	ATT Ile	GCA Ala 350	GAC Asp	TTA Leu	GGA Gly	CTG Leu	GCA Ala 355	GTA Val	AGA Arg	CAT His	GAT Asp	TCA Ser 360	GCC Ala	ACA Thr	GAT Asp	1165
	ACC Thr	ATT Ile 365	GAT Asp	ATT Ile	GCT Ala	CCA Pro	AAC Asn 370	CAC His	AGA Arg	GTG Val	GGA Gly	ACA Thr 375	AAA Lys	AGG Arg	TAC Tyr	ATG Met	1213
	GCC Ala 380	CCT Pro	GAA Glu	GTT Val	CTC Leu	GAT Asp 385	GAT Asp	TCC Ser	ATA Ile	AAT Asn	ATG Met 390	AAA Lys	CAT His	TTT Phe	GAA Glu	TCC Ser 395	1261
	Phe	Lys	Arg	Ala	GAC Asp 400	Ile	Tyr	Ala	Met	Gly 405	Leu	Val	Phe	Trp	Glu 410	Ile	1309
	GCT Ala	CGA Arg	CGA Arg	TGT Cys 415	TCC Ser	ATT Ile	GGT Gly	GGA Gly	ATT Ile 420	CAT His	GAA Glu	GAT Asp	TAC Tyr	CAA Gln 425	CTG Leu	CCT Pro	1357
m the Mer We	TAT Tyr	TAT Tyr	GAT Asp 430	CTT Leu	GTA Val	CCT Pro	TCT Ser	GAC Asp 435	CCA Pro	TCA Ser	GTT Val	GAA Glu	GAA Glu 440	ATG Met	AGA Arg	AAA Lys	1405
	GTT Val	GTT Val 445	TGT Cys	GAA Glu	CAG Gln	AAG Lys	TTA Leu 450	AGG Arg	CCA Pro	AAT Asn	ATC Ile	CCA Pro 455	Asn	AGA Arg	TGG Trp	CAG Gln	1453
	AGC Ser 460	TGT Cys	GAA Glu	GCC Ala	TTG Leu	AGA Arg 465	GTA Val	ATG Met	GCT Ala	AAA Lys	ATT Ile 470	ATG Met	AGA Arg	GAA Glu	TGT Cys	TGG Trp 475	1501
	TAT Tyr	GCC Ala	AAT Asn	GGA Gly	GCA Ala 480	Ala	AGG Arg	CTT Leu	ACA Thr	GCA Ala 485	Leu	CGG Arg	ATT Ile	AAG Lys	AAA Lys 490	ACA Thr	1549
	TTA Leu	TCG Ser	CAA Gln	CTC Leu 495	AGT Ser	CAA Gln	CAG Gln	GAA Glu	GGC Gly 500	· Ile	AAA Lys	ATG Met	TAA	TTCT	ACA		1595
	GCT	TTGC	CTG	AACT	CTCC	TT T	TTTC	TTCA	G AT	CTGC	TCCI	' GGG	TTTI	'AAT	TTGG	GAGGTC	1655
	AGT	TGTT	CTA	CCTC	ACTG	AG A	.GGGA	ACAG	A AG	GATA	TTGC	TTC	CTTI	TGC	AGCA	GTGTAA	1715
	TAA	AGTC	'AAT	TAAA	AACT	TC C	CAGG	ATTI	C TI	'TGGA	CCCA	GGA	AACA	GCC	ATGT	GGGTCC	1775
	TTT	'CTGI	GCA	CTAT	'GAAC	GC I	TCTT	TCCC	'A GO	ACAG	AAAA	TGI	GTAG	TCT	ACCI	TTATTT	1835

TTTATTAACA	AAACTTGTTT	TTTAAAAAGA	TGATTGCTGG	TCTTAACTTT	AGGTAACTCT	1895
GCTGTGCTGG	AGATCATCTT	TAAGGGCAAA	GGAGTTGGAT	TGCTGAATTA	CAATGAAACA	1955
TGTCTTATTA	CTAAAGAAAG	TGATTTACTC	CTGGTTAGTA	CATTCTCAGA	GGATTCTGAA	2015
CCACTAGAGT	TTCCTTGATT	CAGACTTTGA	ATGTACTGTT	CTATAGTTTT	TCAGGATCTT	2075
AAAACTAACA	CTTATAAAAC	TCTTATCTTG	AGTCTAAAAA	TGACCTCATA	TAGTAGTGAG	2135
GAACATAATT	CATGCAATTG	TATTTTGTAT	ACTATTATTG	TTCTTTCACT	TATTCAGAAC	2195
ATTACATGCC	TTCAAAATGG	GATTGTACTA	TACCAGTAAG	TGCCACTTCT	GTGTCTTTCT	2255
AATGGAAATG	AGTAGAATTG	CTGAAAGTCT	CTATGTTAAA	ACCTATAGTG	TTT	2308

INFORMATION FOR SEQ ID NO: 10: (2) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 503 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

ŦŢ.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Glu Ala Ala Val Ala Ala Pro Arg Pro Arg Leu Leu Leu Val 10 5 1

Leu Ala Ala Ala Ala Ala Ala Ala Ala Leu Leu Pro Gly Ala Thr 20

🖆 Ala Leu Gln Cys Phe Cys His Leu Cys Thr Lys Asp Asn Phe Thr Cys

Val Thr Asp Gly Leu Cys Phe Val Ser Val Thr Glu Thr Thr Asp Lys 50 55

Val Ile His Asn Ser Met Cys Ile Ala Glu Ile Asp Leu Ile Pro Arg 75 70 65

Asp Arg Pro Phe Val Cys Ala Pro Ser Ser Lys Thr Gly Ser Val Thr

Thr Thr Tyr Cys Cys Asn Gln Asp His Cys Asn Lys Ile Glu Leu Pro 110 100 105

Thr Thr Val Lys Ser Ser Pro Gly Leu Gly Pro Val Glu Leu Ala Ala 120 115

Val Ile Ala Gly Pro Val Cys Phe Val Cys Ile Ser Leu Met Leu Met 130 135 Val Tyr Ile Cys His Asn Arg Thr Val Ile His His Arg Val Pro Asn 150 145 Glu Glu Asp Pro Ser Leu Asp Arg Pro Phe Ile Ser Glu Gly Thr Thr 170 165 Leu Lys Asp Leu Ile Tyr Asp Met Thr Thr Ser Gly Ser Gly Ser Gly Leu Pro Leu Leu Val Gln Arg Thr Ile Ala Arg Thr Ile Val Leu Gln 195 Glu Ser Ile Gly Lys Gly Arg Phe Gly Glu Val Trp Arg Gly Lys Trp Arg Gly Glu Glu Val Ala Val Lys Ile Phe Ser Ser Arg Glu Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln Thr Val Met Leu Arg His 255 245 🕌 Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Asn Lys Asp Asn Gly Thr 260 Trp Thr Gln Leu Trp Leu Val Ser Asp Tyr His Glu His Gly Ser Leu Phe Asp Tyr Leu Asn Arg Tyr Thr Val Thr Val Glu Gly Met Ile Lys 295 Leu Ala Leu Ser Thr Ala Ser Gly Leu Ala His Leu His Met Glu Ile 320 305 310 315 Val Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser 325 330 Lys Asn Ile Leu Val Lys Lys Asn Gly Thr Cys Cys Ile Ala Asp Leu Gly Leu Ala Val Arg His Asp Ser Ala Thr Asp Thr Ile Asp Ile Ala 365 355 360 Pro Asn His Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu 370 Asp Asp Ser Ile Asn Met Lys His Phe Glu Ser Phe Lys Arg Ala Asp 390 395

Ile	Tyr	Ala	Met	Gly 405	Leu	Val	Phe	Trp	Glu 410	Ile	Ala	Arg	Arg	Cys 415	Ser	
Ile	Gly	Gly	Ile 420	His	Glu	Asp	Tyr	Gln 425	Leu	Pro	Tyr	Tyr	Asp 430	Leu	Val	
Pro	Ser	Asp 435	Pro	Ser	Val	Glu	Glu 440	Met	Arg	Lys	Val	Val 445	Cys	Glu	Gln	
Lys	Leu 450	Arg	Pro	Asn	Ile	Pro 455	Asn	Arg	Trp	Gln	Ser 460	Cys	Glu	Ala	Leu	
Arg 465	Val	Met	Ala	Lys	Ile 470	Met	Arg	Glu	Cys	Trp 475	Tyr	Ala	Asn	Gly	Ala 480	
	Arg			485			Ile	Lys	Lys 490	Thr	Leu	Ser	Gln	Leu 495	Ser	
Gln	Gln	Glu	Gly 500	Ile	Lys	Met										
	(i (i (i (v (v) S. (. (. (. (. i.) Mii) V) A. (. (. i.) O. (. x.) F. (. (. (. (. i.) Mi.) F. (. (. i.) Mi.) F. (. (. (. i.) Mi.) F. (. (. i.) Mi.) F. (. (. (. i.) Mi.) F. (. i.) F	EQUEA) L B) T C) S C) T CO	FOR NCE ENGT YPE: TRAN OPOL ULE THET SENS NT T NAL RGAN RE: AME/	CHAR H: 1 nuc DEDN OGY: TYPE ICAL E: N YPE: SOUR ISM: KEY:	ACTE 922 leic ESS: lin : cD : NO O int CE: Mou	RIST base aci unk ear NA erna se	ICS: paid nown		NO:	11:					
GAC	AGCA	CAG	CCCT	TCCC	AG I	cccc	GGAG	C CG	CCGC	GCCA	CGC	:GCGC	ATG	ATCA	AGACCT	60
TTT	rcccc	:GGC	CCCA	CAGG	GC C	TCTG	GACG	T GA	GACC	CCGG	CCG	CCTC	CGC	AAGG	AGAGGC	120
GG	GGTC	GAG	TCGC	CCTG	TC C	'AAAG	GCCI	C AA	TCTA	AACA	ATC	TTGA	TTC	CTGI	TGCCGG	180
CTC	GCGG	GAC	CCTG	BAATO	GC A	GGAA	ATCI	C AC	CACA	TCTC	TTC	TCCI	ATC	TCCA	AGGACC	240
Me	ACC Thr	TTC	GGG Gly	AGC Ser	Phe	AGA Arg	AGG Arg	GGC Gly	CTI Lev	ı Lev	ATG Met	CTC Lev	TCG Ser	GTG Val	GCC Ala	288

TTG Leu	GGC Gly	CTA Leu	ACC Thr 20	CAG Gln	GGG Gly	AGA Arg	CTT Leu	GCG Ala 25	AAG Lys	CCT Pro	TCC Ser	AAG Lys	CTG Leu 30	GTG Val	AAC Asn	336
TGC Cys	ACT Thr	TGT Cys 35	GAG Glu	AGC Ser	CCA Pro	CAC His	TGC Cys 40	AAG Lys	AGA Arg	CCA Pro	TTC Phe	TGC Cys 45	CAG Gln	GGG Gly	TCA Ser	3,84
TGG Trp	TGC Cys 50	ACA Thr	GTG Val	GTG Val	CTG Leu	GTT Val 55	CGA Arg	GAG Glu	CAG Gln	GGC Gly	AGG Arg 60	CAC His	CCC Pro	CAG Gln	GTC Val	432
TAT Tyr 65	CGG Arg	GGC Gly	TGT Cys	GGG Gly	AGC Ser 70	CTG Leu	AAC Asn	CAG Gln	GAG Glu	CTC Leu 75	TGC Cys	TTG Leu	GGA Gly	CGT Arg	CCC Pro 80	480
ACG Thr	GAG Glu	TTT Phe	CTG Leu	AAC Asn 85	CAT His	CAC His	TGC Cys	TGC Cys	TAT Tyr 90	AGA Arg	TCC Ser	TTC Phe	TGC Cys	AAC Asn 95	CAC His	528
AAC Asn	GTG Val	TCT Ser	CTG Leu 100	ATG Met	CTG Leu	GAG Glu	GCC Ala	ACC Thr 105	CAA Gln	ACT Thr	CCT Pro	TCG Ser	GAG Glu 110	GAG Glu	CCA Pro	576
GAA Glu	GTT Val	GAT Asp 115	GCC Ala	CAT His	CTG Leu	CCT Pro	CTG Leu 120	ATC Ile	CTG Leu	GGT Gly	CCT Pro	GTG Val 125	CTG Leu	GCC Ala	TTG Leu	624
CCG Pro	GTC Val 130	CTG Leu	GTG Val	GCC Ala	CTG Leu	GGT Gly 135	GCT Ala	CTG Leu	GGC Gly	TTG Leu	TGG Trp 140	Arg	GTC Val	CGG Arg	CGG Arg	672
W AGG Arg 145	Gln	GAG Glu	AAG Lys	CAG Gln	CGG Arg 150	GAT Asp	TTG Leu	CAC His	AGT Ser	GAC Asp 155	Leu	GGC Gly	GAG Glu	TCC Ser	AGT Ser 160	720
CTC Leu	ATC Ile	CTG Leu	AAG Lys	GCA Ala 165	Ser	GAA Glu	CAG Gln	GCA Ala	GAC Asp 170	Ser	ATG Met	TTG Leu	GGG Gly	GAC Asp 175	TTC Phe	768
CTG Leu	GAC Asp	AGC Ser	GAC Asp 180	Cys	ACC Thr	ACG Thr	GGC Gly	AGC Ser 185	Gly	TCG Ser	GGG Gly	CTC Leu	CCC Pro 190	Pne	TTG Leu	816
GTG Val	CAG Gln	AGG Arg	Thr	GTA Val	GCT Ala	CGG Arg	Gln 200	. Val	GCG Ala	CTG Leu	GTA Val	GAG Glu 205	Cys	GTG Val	GGA Gly	864
AAG Lys	GGC Gly 210	Arg	TAT	GGC Gly	GAG Glu	GTG Val 215	. Trp	GCGC Arg	GGT Gly	TCG Ser	TGG Trg 220	His	GGC Gly	GAA Glu	AGC Ser	912

•	GTG Val 225	GCG Ala	GTC Val	AAG Lys	ATT Ile	TTC Phe 230	TCC Ser	TCA Ser	CGA Arg	GAT Asp	GAG Glu 235	CAG Gln	TCC Ser	TGG Trp	TTC Phe	CGG Arg 240	:	960
	GAG Glu	ACG Thr	GAG Glu	ATC Ile	TAC Tyr 245	AAC Asn	ACA Thr	GTT Val	CTG Leu	CTT Leu 250	AGA Arg	CAC His	GAC Asp	AAC Asn	ATC Ile 255	CTA Leu	1	800
	GGC Gly	TTC Phe	ATC Ile	GCC Ala 260	TCC Ser	GAC Asp	ATG Met	ACT Thr	TCG Ser 265	CGG Arg	AAC Asn	TCG Ser	AGC Ser	ACG Thr 270	CAG Gln	CTG Leu	1	.056
	TGG Trp	CTC Leu	ATC Ile 275	ACC Thr	CAC His	TAC Tyr	CAT His	GAA Glu 280	CAC His	GGC Gly	TCC Ser	CTC Leu	TAT Tyr 285	GAC Asp	TTT Phe	CTG Leu	1	.104
;** <u>*</u>	Gln	Arg 290	Gln	Thr	CTG Leu	Glu	Pro 295	Gln	Leu	Ala	Leu	Arg 300	Leu	Ala	Val	Ser	1	.152
	ETO.	GCC Ala	TGC Cys	GGC Gly	CTG Leu	GCG Ala 310	CAC His	CTA Leu	CAT His	GTG Val	GAG Glu 315	ATC Ile	TTT Phe	GGC Gly	ACT Thr	CAA Gln 320	1	L200
<u> </u>		AAA Lys	CCA Pro	GCC Ala	ATT Ile 325	GCC Ala	CAT His	CGT Arg	GAC Asp	CTC Leu 330	AAG Lys	AGT Ser	CGC Arg	AAT Asn	GTG Val 335	CTG Leu	1	L248
	GTC Val	AAG Lys	AGT Ser	AAC Asn 340	TTG Leu	CAG Gln	TGT Cys	TGC Cys	ATT Ile 345	GCA Ala	GAC Asp	CTG Leu	GGA Gly	CTG Leu 350	GCT Ala	GTG Val	1	L296
	ATG Met	CAC His	TCA Ser 355	Gln	AGC Ser	AAC Asn	GAG Glu	TAC Tyr 360	Leu	GAT Asp	ATC Ile	GGC Gly	AAC Asn 365	Thr	CCC Pro	CGA Arg		1344
	GTG Val	GGT Gly 370	Thr	AAA Lys	AGA Arg	TAC Tyr	ATG Met 375	Ala	CCC	GAG Glu	GTG Val	CTG Leu 380	. Asp	GAG Glu	CAC His	ATC Ile	:	1392
	CGC Arg 385	Thr	GAC Asp	TGC Cys	TTT	GAG Glu 390	Ser	TAC	AAG Lys	TGG Trp	ACA Thr 395	Asp	ATC Ile	TGG Trp	GCC Ala	TTT Phe 400	:	1440
	GGC Gly	CTA	GTG Val	CTA Leu	TGG Trp 405	Glu	ATC Ile	GCC Ala	CGG Arg	CGG Arg 410	Thr	ATC	ATC	AAT Asn	GGC Gly 415	ATT	;	1488
*	GTG Val	GAG	GAT Asp	TAC Tyr 420	. Arg	CCA Pro	CCT Pro	TTC Phe	TAT Tyr 425	. Ast	ATG Met	GTA Val	CCC Pro	AAT Asn 430	Asp	CCC Pro		1536

Ser	TTT Phe	GAG Glu 435	GAC Asp	ATG Met	AAA Lys	AAG Lys	GTG Val 440	GTG Val	TGC Cys	GTT Val	GAC Asp	CAG Gln 445	CAG Gln	ACA Thr	CCC Pro	1584
ACC Thr	ATC Ile 450	CCT Pro	AAC Asn	CGG Arg	CTG Leu	GCT Ala 455	GCA Ala	GAT Asp	CCG Pro	GTC Val	CTC Leu 460	TCC Ser	GGG Gly	CTG Leu	GCC Ala	1632
CAG Gln 465	ATG Met	ATG Met	AGA Arg	GAG Glu	TGC Cys 470	TGG Trp	TAC Tyr	CCC Pro	AAC Asn	CCC Pro 475	TCT Ser	GCT Ala	CGC Arg	CTC Leu	ACC Thr 480	1680
GCA Ala	CTG Leu	CGC Arg	ATA Ile	AAG Lys 485	AAG Lys	ACA Thr	TTG Leu	CAG Gln	AAG Lys 490	CTC Leu	AGT Ser	CAC His	AAT Asn	CCA Pro 495	GAG Glu	1728
	CCC Pro					TAG	CCCA	GGG (CCAC	CAGG	CT T	CCTC'	rgcc'	r		1776
AAA	GTGT	GTG (CTGG	GAA(BA AC	BACA'	ragc(C TG	rctg	3GTA	GAG	GGAG'	TGA .	AGAG.	AGTGTG	1836
CAC	GCTG	ecc :	rgtg:	rgtg	CC TO	3CTC	AGCT'	r gc'	rccc	AGCC	CAT	CCAG	CCA .	AAAA'	TACAGC	1896
	GCTG															1922
'n.																
a.i																
	(i (i) S: (, (; i) M	B) T D) T OLEC	NCE (ENGT) YPE: OPOL ULE '	CHAR H: 5 ami: OGY: TYPE	ACTE 02 a no a lin pr	RIST mino cid ear otei	ICS: aci		NO:	12:					
(2)	(i (x Thr) S: (. () i) M i) S	EQUE A) L B) T D) T OLEC EQUE	NCE (ENGT: YPE: OPOL ULE ' NCE :	CHAR H: 5 ami: OGY: TYPE DESC	ACTE 02 a no a lin pr RIPT	RIST mino cid ear otei ION:	ICS: aci n SEQ	ID :			Leu	. Ser	Val	Ala	
Met	(i (i (x Thr) S. (. () i) M i) S Leu	EQUE A) L B) T D) T OLEC EQUE	NCE (SPORTED NCE SET SET SET SET SET SET SET SET SET SE	CHAR H: 5 ami: OGY: TYPE DESC: Phe	ACTE 02 a no a lin : pr RIPT Arg	RIST mino cid ear otei ION: Arg	ICS: aci n SEQ Gly	ID :	Leu	Met			15 Val	Ala Asn	
Met	(i (i (x Thr) S. (; (i) M i) S Leu	EQUE A) L B) T D) T OLEC EQUE Gly Thr 20	NCE ENGTI YPE: OPOL ULE NCE Ser 5	CHAR. H: 5 ami: OGY: IYPE DESC: Phe Gly	ACTE 02 a 00 a 1in 1ip RIPT Arg Arg	RIST mino cid ear otei ION: Arg	ICS: aci n SEQ Gly Ala 25	ID : Leu 10	Leu	Met Ser	Lys	Leu 30	15 Val		
Met 1 Leu	(i (x Thr Gly) S. ((((() i) Mi) S Leu Leu Cys 35 Thr	EQUE A) L B) T D) T OLEC EQUE Gly Thr 20	NCE (Ser Ser Ser Ser	CHAR. H: 5 ami: OGY: TYPE DESC Phe Gly Pro	ACTE 02 a 00 a 1in 1ip RIPT Arg Arg	RIST mino cid ear otei ION: Arg Leu Cys 40 Arg	ICS: aci n SEQ Gly Ala 25	ID : Leu 10 Lys	Leu Pro	Met Ser	Cys 45	Leu 30	Val Val	Asn	

Thr Glu Phe Leu Asn His His Cys Cys Tyr Arg Ser Phe Cys Asn His Asn Val Ser Leu Met Leu Glu Ala Thr Gln Thr Pro Ser Glu Glu Pro Glu Val Asp Ala His Leu Pro Leu Ile Leu Gly Pro Val Leu Ala Leu Pro Val Leu Val Ala Leu Gly Ala Leu Gly Leu Trp Arg Val Arg Arg Arg Gln Glu Lys Gln Arg Asp Leu His Ser Asp Leu Gly Glu Ser Ser Leu Ile Leu Lys Ala Ser Glu Gln Ala Asp Ser Met Leu Gly Asp Phe Leu Asp Ser Asp Cys Thr Thr Gly Ser Gly Ser Gly Leu Pro Phe Leu ű Val Gln Arg Thr Val Ala Arg Gln Val Ala Leu Val Glu Cys Val Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg Gly Ser Trp His Gly Glu Ser Val Ala Val Lys Ile Phe Ser Ser Arg Asp Glu Gln Ser Trp Phe Arg Glu Thr Glu Ile Tyr Asn Thr Val Leu Leu Arg His Asp Asn Ile Leu Gly Phe Ile Ala Ser Asp Met Thr Ser Arg Asn Ser Ser Thr Gln Leu Trp Leu Ile Thr His Tyr His Glu His Gly Ser Leu Tyr Asp Phe Leu Gln Arg Gln Thr Leu Glu Pro Gln Leu Ala Leu Arg Leu Ala Val Ser Pro Ala Cys Gly Leu Ala His Leu His Val Glu Ile Phe Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Arg Asn Val Leu Val Lys Ser Asn Leu Gln Cys Cys Ile Ala Asp Leu Gly Leu Ala Val

Met His Ser Gln Ser Asn Glu Tyr Leu Asp Ile Gly Asn Thr Pro Arg 355 360 365

Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu His Ile 370 375 380

Arg Thr Asp Cys Phe Glu Ser Tyr Lys Trp Thr Asp Ile Trp Ala Phe 385 390 395 400

Gly Leu Val Leu Trp Glu Ile Ala Arg Arg Thr Ile Ile Asn Gly Ile 405 410 415

Val Glu Asp Tyr Arg Pro Pro Phe Tyr Asp Met Val Pro Asn Asp Pro 420 425 430

Ser Phe Glu Asp Met Lys Lys Val Val Cys Val Asp Gln Gln Thr Pro 435 440 445

Thr Ile Pro Asn Arg Leu Ala Ala Asp Pro Val Leu Ser Gly Leu Ala 450 450 460

Gln Met Met Arg Glu Cys Trp Tyr Pro Asn Pro Ser Ala Arg Leu Thr
465 470 475 480

Ala Leu Arg Ile Lys Lys Thr Leu Gln Lys Leu Ser His Asn Pro Glu 485 490 495

Lys Pro Lys Val Ile His 500

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2070 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mouse
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 217..1812
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

T	'AGC	CACA'	TC T	CTGA	GAAT'	r ct	GAAG	AAAG	CAG	CAGG	TGA	AAGT	CATT	GC C	AAGT	GATTT		L20
Т	GTT	CTGT.	AA G	GAAG	CCTC	C CT	CATT	CACT	TAC.	ACCA	.GTG	AGAC	AGCA	.GG A	.CCAG	TCATT	:	180
c	AAA	.GGGC	CG T	GTAC	AGGA	c GC	GTGG	CAAT	CAG	ACA	ATG Met 1	ACT Thr	CAG Gln	CTA Leu	TAC Tyr 5	ACT Thr	:	234
7	TAC Tyr	ATC Ile	AGA Arg	TTA Leu 10	CTG Leu	GGA Gly	GCC Ala	TGT Cys	CTG Leu 15	TTC Phe	ATC Ile	ATT Ile	TCT Ser	CAT His 20	GTT Val	CAA Gln		282
(GG Gly	CAG Gln	AAT Asn 25	CTA Leu	GAT Asp	AGT Ser	ATG Met	CTC Leu 30	CAT His	GGC Gly	ACT Thr	GGT Gly	ATG Met 35	AAA Lys	TCA Ser	GAC Asp		330
]	rTG Leu	GAC Asp 40	CAG Gln	AAG Lys	AAG Lys	CCA Pro	GAA Glu 45	AAT Asn	GGA Gly	GTG Val	ACT Thr	TTA Leu 50	GCA Ala	CCA Pro	GAG Glu	GAT Asp		378
	ACC Thr 55	TTG Leu	CCT Pro	TTC Phe	TTA Leu	AAG Lys 60	TGC Cys	TAT Tyr	TGC Cys	TCA Ser	GGA Gly 65	CAC His	TGC Cys	CCA Pro	GAT Asp	GAT Asp 70		426
	GCT Ala	ATT Ile	AAT Asn	AAC Asn	ACA Thr 75	TGC Cys	ATA Ile	ACT Thr	AAT Asn	GGC Gly 80	CAT His	TGC Cys	TTT Phe	GCC Ala	ATT Ile 85	ATA Ile		474
	GAA Glu	GAA Glu	GAT Asp	GAT Asp 90	CAG Gln	GGA Gly	GAA Glu	ACC Thr	ACA Thr 95	TTA Leu	ACT Thr	TCT Ser	GGG Gly	TGT Cys 100	ATG Met	AAG Lys		522
	TAT Tyr	GAA Glu	GGC Gly 105	TCT Ser	GAT Asp	TTT Phe	CAA Gln	TGC Cys 110	Lys	GAT Asp	TCA Ser	. CCG	AAA Lys 115	Ala	CAG Gln	CTA Leu		570
	CGC Arg	AGG Arg 120	Thr	ATA Ile	GAA Glu	TGT Cys	TGT Cys 125	CGG Arg	ACC Thr	AAT Asn	TTG Leu	TGC Cys 130	AAC Asn	CAG Gln	TAT	TTG Leu		618
	CAG Gln 135	Pro	ACA Thr	CTG Leu	CCC	CCT Pro 140	Val	GTT Val	ATA	GGT Gly	CCG Pro 145) Lue	TTT Phe	GAT Asp	GGC Gly	AGC Ser 150		666
	ATC Ile	CGA Arg	TGG Trp	CTG Leu	GTT Val 155	Val	CTC Leu	ATI Ile	TCC Ser	Met	: Ala	GT(C TGI L Cys	ATA	GTT Val 165	GCT Ala		714
	ATC Met	ATC	ATC	TTC Phe 170	e Ser	AGC Ser	TGC Cys	TTI	TGC Cys 175	ту	C AA(G CA'	r TAI s Tyr	TG7 Cys 180	э пăs	AGT Ser		762

;	ATC Ile	TCA Ser	AGC Ser 185	AGG Arg	GGT Gly	CGT Arg	Tyr	AAC Asn 190	CGT Arg	GAT Asp	TTG Leu	GAA Glu	CAG Gln 195	GAT Asp	GAA Glu	GCA Ala	810
,	TTT Phe	ATT Ile 200	CCA Pro	GTA Val	GGA Gly	GAA Glu	TCA Ser 205	TTG Leu	AAA Lys	GAC Asp	CTG Leu	ATT Ile 210	GAC Asp	CAG Gln	TCC Ser	CAA Gln	858
	AGC Ser 215	TCT Ser	GGG Gly	AGT Ser	GGA Gly	TCT Ser 220	GGA Gly	TTG Leu	CCT Pro	TTA Leu	TTG Leu 225	GTT Val	CAG Gln	CGA Arg	ACT Thr	ATT Ile 230	906
	GCC Ala	AAA Lys	CAG Gln	ATT Ile	CAG Gln 235	ATG Met	GTT Val	CGG Arg	CAG Gln	GTT Val 240	GGT Gly	AAA Lys	GGC Gly	CGC Arg	TAT Tyr 245	GGA Gly	954
	Glu	GTA Val	TGG Trp	ATG Met 250	GGT Gly	AAA Lys	TGG Trp	CGT Arg	GGT Gly 255	GAA Glu	AAA Lys	GTG Val	GCT Ala	GTC Val 260	AAA Lys	GTG Val	1002
	TTT Phe	TTT Phe	ACC Thr 265	ACT Thr	GAA Glu	GAA Glu	GCT Ala	AGC Ser 270	TGG Trp	TTT Phe	AGA Arg	GAA Glu	ACA Thr 275	GAA Glu	ATC Ile	TAC Tyr	1050
, Miles	Gln	Thr 280	Val	Leu	Met	Arg	His 285	Glu	Asn	IIe	Leu	290	TTT Phe	TTE	Ala	ALA	1098
	205	TTE	AAA Lys	GGC Gly	ACT Thr	GGT Gly 300	TCC Ser	TGG Trp	ACT Thr	CAG Gln	CTG Leu 305	TAT	TTG Leu	ATT Ile	ACT Thr	GAT Asp 310	1146
	TAC	CAT His	GAA Glu	AAT Asn	GGA Gly 315	Ser	CTC Leu	TAT	GAC Asp	TTC Phe 320	Leu	AAA Lys	TGT Cys	GCC Ala	ACA Thr 325	CTA Leu	1194
	GAC Asp	ACC Thr	AGA Arg	GCC Ala 330	Leu	CTC Leu	AAG Lys	TTA	GCT Ala 335	Туг	TCI Ser	GCT Ala	GCT Ala	TGT Cys 340	GTA	CTG Leu	1242
	TGC Cys	CAC	CTC Leu 345	. His	ACA Thr	GAA Glu	ATT Ile	TAT Tyr 350	: Gly	ACC Thr	CAA Glr	GGG Gly	AAG Lys 355	Pro	GCA Ala	ATT	1290
	GCT Ala	CAT His	a Arg	A GAC J Asp	CTG Lev	AAG Lys	AGC Ser 365	Lys	A AAC B Asr	ATC	CTI Lev	T ATT 1 Ile 370	э гАз	AAA Lys	AAT Asn	GGA Gly	1338
	AGT Ser 375	Cys	C TGT	T ATT	r GCT a Ala	GAC Asp 380) Let	G GGG	C CTA Y Let	A GCT	GTT a Val 38!	гга	A TTC	AAC Asn	! AGT Ser	GAT Asp 390	1386

,	ACA Thr	AAT Asn	GAA Glu	GTT Val	GAC Asp 395	ATA Ile	CCC Pro	TTG Leu	AAT Asn	ACC Thr 400	AGG Arg	GTG Val	GGC Gly	ACC Thr	AAG Lys 405	CGG Arg	1434
	TAC Tyr	ATG Met	GCT Ala	CCA Pro 410	GAA Glu	GTG Val	CTG Leu	GAT Asp	GAA Glu 415	AGC Ser	CTG Leu	AAT Asn	AAA Lys	AAC Asn 420	CAT His	TTC Phe	1482
	CAG Gln	CCC Pro	TAC Tyr 425	ATC Ile	ATG Met	GCT Ala	GAC Asp	ATC Ile 430	TAT Tyr	AGC Ser	TTT Phe	GGT Gly	TTG Leu 435	ATC Ile	ATT Ile	TGG Trp	1530
	GAA Glu	ATG Met 440	GCT Ala	CGT Arg	CGT Arg	TGT Cys	ATT Ile 445	ACA Thr	GGA Gly	GGA Gly	ATC Ile	GTG Val 450	GAG Glu	GAA Glu	TAT Tyr	CAA Gln	1578
	TTA Leu 455	CCA Pro	TAT Tyr	TAC Tyr	AAC Asn	ATG Met 460	GTG Val	CCC Pro	AGT Ser	GAC Asp	CCA Pro 465	TCC Ser	TAT Tyr	GAG Glu	GAC Asp	ATG Met 470	1626
	CGT Arg	GAG Glu	GTT Val	GTG Val	TGT Cys 475	GTG Val	AAA Lys	CGC Arg	TTG Leu	CGG Arg 480	CCA Pro	ATC Ile	GTG Val	TCT Ser	AAC Asn 485	CGC Arg	1674
111	TGG Trp	AAC Asn	AGC Ser	GAT Asp 490	GAA Glu	TGT Cys	CTT Leu	CGA Arg	GCA Ala 495	GTT Val	TTG Leu	AAG Lys	CTA Leu	ATG Met 500	TCA Ser	GAA Glu	1722
22	Cve	TGG Trp	GCC Ala 505	His	AAT Asn	CCA Pro	GCC Ala	TCC Ser 510	Arg	CTC Leu	ACA Thr	GCT Ala	TTG Leu 515	Arg	ATC Ile	AAG Lys	1770
	AAG Lys	ACA Thr 520	Leu	GCA Ala	AAA Lys	ATG Met	GTT Val 525	Glu	TCC Ser	CAG Gln	GAT Asp	GTA Val 530	Lys	ATT	: :		1812
	TGA	CAAT	TAA	ACAA	TTTT	GA G	GGAG	TTAA	T AG	ACTG	CAAG	AAC	TTCT	TCA	CCCA	AGGAAT	1872
	GGG	TGGG	ATT	AGCA	TGGA	AT A	GGAT	'GTTG	A CI	TGGI	TTCC	AGA	CTCC	TTC	CTCT	'ACATC'I	1932
	TCA	CAGG	CTG	CTAA	CAGI	'AA A	CCTI	'ACCG	T AC	TCTA	CAGA	ATA	CAAG	ATT	GGAA	CTTGGA	1992
	ACT	TCAA	ACA	TGTC	'ATTC	TT T	'ATA'	'ATGA	C AG	CTTI	GTTI	TAP	TGT	GGG	TTTT	TTTGT	2052
	TGC	TTTT	TTT	GTTT	TGTI	7											2070

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 532 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Met Thr Gln Leu Tyr Thr Tyr Ile Arg Leu Leu Gly Ala Cys Leu Phe 1 5 10 15

Ile Ile Ser His Val Gln Gly Gln Asn Leu Asp Ser Met Leu His Gly 20 25 . 30

Thr Gly Met Lys Ser Asp Leu Asp Gln Lys Lys Pro Glu Asn Gly Val

Thr Leu Ala Pro Glu Asp Thr Leu Pro Phe Leu Lys Cys Tyr Cys Ser 50 55

Gly His Cys Pro Asp Asp Ala Ile Asn Asn Thr Cys Ile Thr Asn Gly
70 75 80

His Cys Phe Ala Ile Ile Glu Glu Asp Asp Gln Gly Glu Thr Thr Leu
85 90 95

Thr Ser Gly Cys Met Lys Tyr Glu Gly Ser Asp Phe Gln Cys Lys Asp

Ser Pro Lys Ala Gln Leu Arg Arg Thr Ile Glu Cys Cys Arg Thr Asn 115 120 125

Leu Cys Asn Gln Tyr Leu Gln Pro Thr Leu Pro Pro Val Val Ile Gly
130 135 140

Pro Phe Phe Asp Gly Ser Ile Arg Trp Leu Val Val Leu Ile Ser Met 145 150 155 160

Ala Val Cys Ile Val Ala Met Ile Ile Phe Ser Ser Cys Phe Cys Tyr 165 170 175

Lys His Tyr Cys Lys Ser Ile Ser Ser Arg Gly Arg Tyr Asn Arg Asp 180 185 190

Leu Glu Gln Asp Glu Ala Phe Ile Pro Val Gly Glu Ser Leu Lys Asp 195 200 205

Leu Ile Asp Gln Ser Gln Ser Ser Gly Ser Gly Leu Pro Leu 210 215 220

Leu Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Met Val Arg Gln Val 235 225 Gly Lys Gly Arg Tyr Gly Glu Val Trp Met Gly Lys Trp Arg Gly Glu 250 Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Glu Ala Ser Trp Phe 265 Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Met Arg His Glu Asn Ile 285 Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly Ser Trp Thr Gln 295 290 Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly Ser Leu Tyr Asp Phe 310 305 Leu Lys Cys Ala Thr Leu Asp Thr Arg Ala Leu Leu Lys Leu Ala Tyr 330 Ser Ala Ala Cys Gly Leu Cys His Leu His Thr Glu Ile Tyr Gly Thr 340 Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile 355 Leu Ile Lys Lys Asn Gly Ser Cys Cys Ile Ala Asp Leu Gly Leu Ala Val Lys Phe Asn Ser Asp Thr Asn Glu Val Asp Ile Pro Leu Asn Thr 400 390 Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu Ser 410 Leu Asn Lys Asn His Phe Gln Pro Tyr Ile Met Ala Asp Ile Tyr Ser Phe Gly Leu Ile Ile Trp Glu Met Ala Arg Arg Cys Ile Thr Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr Tyr Asn Met Val Pro Ser Asp 455 450 Pro Ser Tyr Glu Asp Met Arg Glu Val Val Cys Val Lys Arg Leu Arg 475 470 465 Pro Ile Val Ser Asn Arg Trp Asn Ser Asp Glu Cys Leu Arg Ala Val 490 485

Leu Lys Leu Met Ser Glu Cys Trp Ala His Asn Pro Ala Ser Arg Leu 500 505 510

Thr	Ala	Leu 515	Arg	Ile	Lys	Lys	Thr 520	Leu	Ala	Lys	Met	Val 525	Glu	Ser	Gln	
Asp	Val 530	Lys	Ile													
(2)	(i) (ii (iv (v) (vi	(A (E (C (D (D (D (A) (A) (A) (A) (A) (A) (A) (A) (A)	QUEN () LE () TY () ST () TO (CE C TRANC POLC THETI ENSE TT TY JAL S RGANI RE:	HARP I: 21 nucl DEDNI DEST: YPE: YPE: SOURC SM:	ACTER 60 h leic ESS: line CDN: NO inte CE: Mous	ernal	CCS: pair i nown		vo: I	15:					
GGC	GGTT <i>I</i>	AC AT	rg go et Al	CG GA La GI	AG TO Lu Se	CG G(er Al	CC G(la G: 5	GA GO	CC TO	CC TO	er P	FC Ti he Pi 10	rc co	CC CT	rr eu	48
GTT Val	GTC Val 15	CTC Leu	CTG Leu	CTC Leu	GCC Ala	GGC Gly 20	AGC Ser	GGC Gly	GGG Gly	TCC Ser	GGG Gly 25	CCC Pro	CGG Arg	GGG Gly	ATC Ile	96
CAG Gln 30	GCT Ala	CTG Leu	CTG Leu	TGT Cys	GCG Ala 35	TGC Cys	ACC Thr	AGC Ser	TGC Cys	CTA Leu 40	CAG Gln	ACC Thr	AAC Asn	TAC Tyr	ACC Thr 45	144
TGT Cys	GAG Glu	ACA Thr	GAT Asp	GGG Gly 50	GCT Ala	TGC Cys	ATG Met	GTC Val	TCC Ser 55	ATC Ile	TTT Phe	AAC Asn	CTG Leu	GAT Asp 60	GGC Gly	192
GTG Val	GAG Glu	CAC His	CAT His 65	GTA Val	CGT Arg	ACC Thr	TGC Cys	ATC Ile 70	CCC Pro	AAG Lys	GTG Val	GAG Glu	CTG Leu 75	GTT Val	CCT Pro	240
GCT Ala	GGA Gly	AAG Lys 80	Pro	TTC Phe	TAC Tyr	TGC Cys	CTG Leu 85	Ser	TCA Ser	GAG Glu	GAT Asp	CTG Leu 90	CGC Arg	AAC Asn	ACA Thr	288

:	CAC His	TGC Cys 95	TGC Cys	TAT Tyr	ATT Ile	GAC Asp	TTC Phe 100	TGC Cys	AAC Asn	AAG Lys	ATT Ile	GAC Asp 105	CTC Leu	AGG Arg	GTC Val	CCC Pro		336
	AGC Ser 110	GGA Gly	CAC His	CTC Leu	AAG Lys	GAG Glu 115	CCT Pro	GCG Ala	CAC His	CCC Pro	TCC Ser 120	ATG Met	TGG Trp	GGC Gly	CCT Pro	GTG Val 125		384
	GAG Glu	CTG Leu	GTC Val	GGC Gly	ATC Ile 130	ATC Ile	GCC Ala	GGC Gly	CCC Pro	GTC Val 135	TTC Phe	CTC Leu	CTC Leu	TTC Phe	CTT Leu 140	ATC Ile		432
	ATT Ile	ATC Ile	ATC Ile	GTC Val 145	TTC Phe	CTG Leu	GTC Val	ATC Ile	AAC Asn 150	TAT Tyr	CAC His	CAG Gln	CGT Arg	GTC Val 155	TAC Tyr	CAT His	and the Walter Conference	480
	AAC Asn	CGC Arg	CAG Gln 160	AGG Arg	TTG Leu	GAC Asp	ATG Met	GAG Glu 165	GAC Asp	CCC Pro	TCT Ser	TGC Cys	GAG Glu 170	ATG Met	TGT Cys	CTC Leu		528
	TCC Ser	AAA Lys 175	GAC Asp	AAG Lys	ACG Thr	CTC Leu	CAG Gln 180	GAT Asp	CTC Leu	GTC Val	TAC Tyr	GAC Asp 185	CTC Leu	TCC Ser	ACG Thr	TCA Ser		576
W. Street	Gly 190	Ser	Gly	Ser	Gly	Leu 195	Pro	Leu	Phe	Val	Gln 200	Arg	Thr	Val	Ala	205		624
The second second	ACC Thr	ATT Ile	GTT Val	TTA Leu	CAA Gln 210	GAG Glu	ATT Ile	ATC Ile	GGC Gly	AAG Lys 215	GGC Gly	CGG Arg	TTC Phe	GGG Gly	GAA Glu 220	GTA Val		672
	TGG Trp	CGT Arg	GGT Gly	CGC Arg 225	Trp	AGG Arg	GGT Gly	GGT Gly	GAC Asp 230	GTG Val	GCT Ala	GTG Val	AAA Lys	ATC Ile 235	Phe	TCT Ser		720
	TCT Ser	CGT Arg	GAA Glu 240	Glu	. CGG . Arg	TCT Ser	TGG Trp	TTC Phe 245	Arg	GAA Glu	GCA Ala	GAG Glu	ATC Ile 250	TAC Tyr	CAG Gln	ACC Thr		768
	GTC Val	ATG Met 255	Leu	CGC Arg	CAT His	GAA Glu	AAC Asn 260	Ile	CTT Leu	GGC Gly	TTT Phe	ATT Ile 265	Ala	GCT Ala	GAC Asp	AAT Asn		816
	AAA Lys 270	Asp	AAT Asn	GGC Gly	ACC Thr	TGG Trp 275	Thr	CAG Gln	CTG Leu	TGG Trp	CTT Leu 280	. Val	TCT Ser	GAC Asp	TAT	CAC His 285		864

(GAG Glu	CAT His	GGC Gly	TCA Ser	CTG Leu 290	TTT Phe	GAT Asp	TAT Tyr	CTG Leu	AAC Asn 295	CGC Arg	TAC Tyr	ACA Thr	GTG Val	ACC Thr 300	ATT Ile	912
	GAG Glu	GGA Gly	ATG Met	ATT Ile 305	AAG Lys	CTA Leu	GCC Ala	TTG Leu	TCT Ser 310	GCA Ala	GCC Ala	AGT Ser	GGT Gly	TTG Leu 315	GCA Ala	CAC His	960
	CTG Leu	CAT His	ATG Met 320	GAG Glu	ATT Ile	GTG Val	GGC Gly	ACT Thr 325	CAA Gln	GGG Gly	AAG Lys	CCG Pro	GGA Gly 330	ATT Ile	GCT Ala	CAT His	1008
	CGA Arg	GAC Asp 335	TTG Leu	AAG Lys	TCA Ser	AAG Lys	AAC Asn 340	ATC Ile	CTG Leu	GTG Val	AAA Lys	AAA Lys 345	AAT Asn	GGC Gly	ATG Met	TGT Cys	1056
	GCC Ala 350	Ile	GCA Ala	GAC Asp	CTG Leu	GGC Gly 355	CTG Leu	GCT Ala	GTC Val	CGT Arg	CAT His 360	GAT Asp	GCG Ala	GTC Val	ACT Thr	GAC Asp 365	1104
	3.00	2 111 2	GAC Asp	ATT Ile	GCT Ala 370	CCA Pro	AAT Asn	CAG Gln	AGG Arg	GTG Val 375	GIŢ	ACC Thr	AAA Lys	CGA Arg	TAC Tyr 380	ATG Met	1152
To an	GCT Ala	CCT Pro	GAA Glu	GTC Val 385	CTT Leu	GAC Asp	GAG Glu	ACA Thr	ATC Ile 390	Asn	ATG Met	AAG Lys	CAC His	TTT Phe 395	Asp	TCC Ser	1200
	TTC Phe	AAA Lys	TGT Cys 400	Ala	GAC Asp	ATC Ile	TAT Tyr	GCC Ala 405	Leu	GGG Gly	CTI Leu	GTC Val	TAC Tyr 410	Trp	GAG Glu	ATT	1248
	GCA Ala	CGA Arg 415	Arg	TGC	AAT Asn	TCT Ser	GGA Gly 420	GTA	GTC Val	CAT His	GAA Glu	GAC Asp 425	, TAT	CAA Gln	CTG Leu	CCG Pro	1296
	TAT Tyr 430	Tyr	GAC Asp	TTA	GTG Val	CCC Pro 435	Ser	GAC Asp	CCT Pro	TCC Ser	ATT 116 440	S GTI	GAG Glu	ATG Met	G CGA	AAG Lys 445	1344
	GTT Val	GTA Val	A TGT L Cys	GAC Asp	CAG Gln 450	Lys	CTA Leu	. CGG	G CCC	AAI Asi 45	ı va.	C CCC L Pro	C AAC o Asi	TGG Tr	TGG Trp 460	CAG Gln	1392
	AGT Ser	TAT	GAC Glu	G GC0 1 Ala 46	a Lev	G CGF	A GTG J Val	ATO	G GG# E Gl ₃ 470	У гу	G ATO	3 ATO	G CGC t Arg	GA0 G Glu 47	LCys	TGG Trp	1440
	TAC Ty:	C GCC	C AAS a Asi 480	a Gly	r GCI y Ala	GCC A Ala	C CGT	CTC J Let 48!	r .I.U.	A GC' r Ala	r CT a Le	G CG u Ar	C ATO g Ile 490	יעַני כ	G AAC s Lys	ACT Thr	1488

CTG Leu	TCC (Ser (495	CAG Gln	CTA Leu	AGC Ser	Val	CAG Gln 500	GAA Glu	GAT Asp	GTG Val	AAG Lys	ATT Ile 505	TAAG	CTGT	TC			1534
CTCT	GCCT	AC A	CAAA	GAAC	C TG	GGCA	GTGA	A GGA	TGAC	TGC	AGC	CACCG	TG C	AAGC	GTCG	T	1594
GGAG	GCCT	AT C	CTCI	TGTI	T CI	'GCCC	:GGCC	CTC	TGGC	AGA	GCC	CTGGC	CT G	CAAG	AGGG	A	1654
CAGA	GCCT	GG G	AGAC	GCGC	G CA	CTCC	CGTI	r GGG	TTTG	AGA	CAG	CACT	TT I	'TATA	ATTT.	.C	1714
CTCC	TGAT	GG C	ATGG	GAGAC	C TG	AGCA	TAA	CATO	TAGI	CAC	TCA	ATGCC	AC A	ACTC	AAAC	T	1774
GCTT	CAGT	GG G	AAGI	ACAG	BA GA	CCCA	GTG	C ATI	rgcgi	GTG	CAG	AGCG	TG A	GGTG	CTGG	IG	1834
CTCG	CCAG	GA G	CGGC	eccc	A TA	CCTI	GTG	J TCC	CACTO	GGC	TGC	AGGTT	TT C	CTCC	AGGG	A	1894
CCAG	TCAA	CT G	GCAT	CAAG	A TA	TTG	AGAG	G AAC	CCGGA	AGT	TTC	rccci	CC I	TCCC	GTAG	C	1954
AGTC	CTGA	GC C	CACAC	CCATC	C TI	CTC	ATGG2	A CAT	rccge	AGG	ACT	GCCC	TA G	BAGAC	ACAA	'C	2014
CTGC	TGCC	TG I	CTG	CCAG	C C	AGTO	GCGC2	A TGT	rgcco	AGG	TGT	FTCCC	AC A	TTGT	GCCT	:G	2074
GTCI	GTGC	CA C	CGCC	CGTGI	rg To	TGT	GTGT(G TG1	rgtg?	AGTG	AGT	GTGTG	TG T	GTAC	'ACTI	'A	2134
ACCI	GCTT	GA C	€CTT(CTGTO	EC AT	rgtgi	ľ										2160
(2)	(i) (ii (xi	SI (1 (1 (1) M(EQUEI A) LI 3) TI O) TO OLECI EQUEI	YPE: OPOLO ULE : NCE I	CHARA i: 50 amin OGY: TYPE: DESCI	ACTEN 05 and and and all all all all all all all all all al	RIST: mino cid ear otei: ION:	ICS: acio n SEQ	ID I								
Met 1	Ala	Glu	Ser	Ala 5	Gly	Ala	Ser	Ser	Phe 10	Phe	Pro	Leu	Val	Val 15	Leu		
Leu	Leu	Ala	Gly 20	Ser	Gly	Gly	Ser	Gly 25	Pro	Arg	Gly	Ile	Gln 30	Ala	Leu		
Leu	Cys	Ala 35	Cys	Thr	Ser	Cys	Leu 40		Thr	Asn	Tyr	Thr 45	Cys	Glu	Thr		
Asp	Gly	Ala	Cys	Met	Val	Ser	Ile	Phe	Asn	Leu	Asp	Gly	Val	Glu	His		

His Val Arg Thr Cys Ile Pro Lys Val Glu Leu Val Pro Ala Gly Lys

Pro Phe Tyr Cys Leu Ser Ser Glu Asp Leu Arg Asn Thr His Cys Cys Tyr Ile Asp Phe Cys Asn Lys Ile Asp Leu Arg Val Pro Ser Gly His 105 Leu Lys Glu Pro Ala His Pro Ser Met Trp Gly Pro Val Glu Leu Val Gly Ile Ile Ala Gly Pro Val Phe Leu Leu Phe Leu Ile Ile Ile Ile 130 135 Val Phe Leu Val Ile Asn Tyr His Gln Arg Val Tyr His Asn Arg Gln 145 150 Arg Leu Asp Met Glu Asp Pro Ser Cys Glu Met Cys Leu Ser Lys Asp Lys Thr Leu Gln Asp Leu Val Tyr Asp Leu Ser Thr Ser Gly Ser Gly 180 185 190 Ser Gly Leu Pro Leu Phe Val Gln Arg Thr Val Ala Arg Thr Ile Val Leu Gln Glu Ile Ile Gly Lys Gly Arg Phe Gly Glu Val Trp Arg Gly Arg Trp Arg Gly Gly Asp Val Ala Val Lys Ile Phe Ser Ser Arg Glu _ 225 230 240 Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln Thr Val Met Leu Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Asn Lys Asp Asn Gly Thr Trp Thr Gln Leu Trp Leu Val Ser Asp Tyr His Glu His Gly 275 285 Ser Leu Phe Asp Tyr Leu Asn Arg Tyr Thr Val Thr Ile Glu Gly Met 290 Ile Lys Leu Ala Leu Ser Ala Ala Ser Gly Leu Ala His Leu His Met 310 Glu Ile Val Gly Thr Gln Gly Lys Pro Gly Ile Ala His Arg Asp Leu 335 Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Met Cys Ala Ile Ala 340 345

- Asp Leu Gly Leu Ala Val Arg His Asp Ala Val Thr Asp Thr Ile Asp 355 360 365
- Ile Ala Pro Asn Gln Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu 370 375 380
- Val Leu Asp Glu Thr Ile Asn Met Lys His Phe Asp Ser Phe Lys Cys 385 390 395 400
- Ala Asp Ile Tyr Ala Leu Gly Leu Val Tyr Trp Glu Ile Ala Arg Arg 405 410 415
- Cys Asn Ser Gly Gly Val His Glu Asp Tyr Gln Leu Pro Tyr Tyr Asp 420 425 430
- Leu Val Pro Ser Asp Pro Ser Ile Glu Glu Met Arg Lys Val Val Cys
 435 440 445
- Asp Gln Lys Leu Arg Pro Asn Val Pro Asn Trp Trp Gln Ser Tyr Glu 450 455 460
- Ala Leu Arg Val Met Gly Lys Met Met Arg Glu Cys Trp Tyr Ala Asn 470 475 480
- Gly Ala Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ser Gln 485 490 495
- Leu Ser Val Gln Glu Asp Val Lys Ile
 500 505
 - (2) INFORMATION FOR SEQ ID NO: 17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1952 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mouse
 - (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 187..1692
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

T	GGAA	.GCGG	CGGC	GGGT'	TA AC	TTC	GCT	G AA	rcac:	AACC	ATT	rggc	GCT (GAGCT	TATGAC	: :	120
AZ	AGAGA	.GCAA	ACAA	AAAG'	TT AA	\AGG2	AGCA	A CC	CGGC	CATA	AGT	GAAG	AGA (BAAG	rtatt	:	180
G2	\TAAC		CTC Leu													;	228
L			T GGA p Gly													•	276
			A TGC s Cys		His												324
Cy I			A GAT r Asp 50	Gly													372
₫ gg ug:	GA AT Ly Me	G CC t Pr 6	T GTI o Val 5	GTC Val	ACC Thr	TCT Ser	GGA Gly 70	TGT Cys	CTA Leu	GGA Gly	CTA Leu	GAA Glu 75	GGG Gly	TCA Ser	GAT Asp		420
***	ne Gl		T CGI s Arg														468
₩ C3			A GAA r Glu														516
			C AAG u Lys														564
			T ATC u Ile 130	Ser													612
			C TGT e Cys 5														660
		r Il	T GGG e Gly														708
	er Le		A GAC g Asp													ı	756

GGC Gly	CTC Leu	CCT Pro	CTG Leu	CTG Leu 195	GTC Val	CAA Gln	AGG Arg	ACA Thr	ATA Ile 200	GCT Ala	AAG Lys	CAA Gln	TTE	CAG Gln 205	ATG Met	804
GTG Val	AAG Lys	CAG Gln	ATT Ile 210	GGA Gly	AAA Lys	GGC Gly	CGC Arg	TAT Tyr 215	GGC Gly	GAG Glu	GTG Val	TGG Trp	ATG Met 220	GGA Gly	AAG Lys	852
TGG Trp	CGT Arg	GGA Gly 225	GAA Glu	AAG Lys	GTG Val	GCT Ala	GTG Val 230	AAA Lys	GTG Val	TTC Phe	TTC Phe	ACC Thr 235	ACG Thr	GAG Glu	GAA Glu	900
GCC Ala	AGC Ser 240	TGG Trp	TTC Phe	CGA Arg	GAG Glu	ACT Thr 245	GAG Glu	ATA Ile	TAT Tyr	CAG Gln	ACG Thr 250	GTC Val	CTG Leu	ATG Met	CGG Arg	948
His 255	GAG Glu	AAT Asn	ATT Ile	CTG Leu	GGG Gly 260	TTC Phe	ATT Ile	GCT Ala	GCA Ala	GAT Asp 265	ATC Ile	AAA Lys	GGG Gly	ACT Thr	GGG Gly 270	996
TCC Ser	TGG Trp	ACT Thr	CAG Gln	TTG Leu 275	TAC Tyr	CTC Leu	ATC Ile	ACA Thr	GAC Asp 280	TAT Tyr	CAT His	GAA Glu	AAC Asn	GGC Gly 285	TCC Ser	1044
CTT	TAT Tyr	GAC Asp	TAT Tyr 290	CTG Leu	AAA Lys	TCC Ser	ACC Thr	ACC Thr 295	TTA Leu	GAC Asp	GCA Ala	AAG Lys	TCC Ser 300	ATG Met	CTG Leu	1092
_AAG _Lys	CTA Leu	GCC Ala 305	Tyr	TCC Ser	TCT Ser	GTC Val	AGC Ser 310	${ t Gly}$	CTA Leu	TGC Cys	CAT His	TTA Leu 315	CAC His	ACG Thr	GAA Glu	1140
EATC Elle	TTT Phe 320	Ser	ACT Thr	CAA Gln	GGC Gly	AAG Lys 325	Pro	GCA Ala	ATC Ile	GCC Ala	CAT His 330	Arg	GAC Asp	TTG Leu	AAA Lys	1188
AGT Ser 335	Lys	AAC Asn	ATC Ile	CTG Leu	GTG Val 340	. Lys	AAA Lys	AAT Asn	GGA Gly	ACT Thr 345	Cys	TGC Cys	ATA Ile	GCA Ala	GAC Asp 350	1236
CTG Leu	GGC Gly	TTC	GCT Ala	GTC Val	. Lys	TTC Phe	ATI	AGT Ser	GAC Asp 360	Thr	AAT Asn	GAG Glu	GTT Val	GAC Asp 365	ATC	1284
CCA Pro	CCC Pro	AAC Asr	2 ACC 1 Thr 370	: Arg	GTT Val	GGC Gly	ACC Thr	AAG Lys 375	arg	TAT Tyr	ATO	CCI Pro	CCA Pro 380	GIU	GTG Val	1332
CTG Lev	GAC L Asp	GAC Glu 385	ı Seı	C TTO	AA] 1 Asi	r AGA	A AA(J Asi 39(ı His	TTC Phe	C CAC	TC(TAC Tyr 395	: Ile	ATG Met	GCT : Ala	1380

Asp	ATG Met 400	TAC Tyr	AGC Ser	TTT Phe	GGA Gly	CTC Leu 405	ATC Ile	CTC Leu	TGG Trp	GAG Glu	ATT Ile 410	GCA Ala	AGG Arg	AGA Arg	TGT Cys	1428
GTT Val 415	TCT Ser	GGA Gly	GGT Gly	ATA Ile	GTG Val 420	GAA Glu	GAA Glu	TAC Tyr	CAG Gln	CTT Leu 425	CCC Pro	TAT Tyr	CAC His	GAC Asp	CTG Leu 430	1476
GTG Val	CCC Pro	AGT Ser	GAC Asp	CCT Pro 435	TCT Ser	TAT Tyr	GAG Glu	GAC Asp	ATG Met 440	AGA Arg	GAA Glu	ATT Ile	GTG Val	TGC Cys 445	ATG Met	1524
AAG Lys	AAG Lys	TTA Leu	CGG Arg 450	CCT Pro	TCA Ser	TTC Phe	CCC Pro	AAT Asn 455	CGA Arg	TGG Trp	AGC Ser	AGT Ser	GAT Asp 460	GIU	TGT Cys	1572
Leu =	AGG Arg	CAG Gln 465	ATG Met	GGG Gly	AAG Lys	CTT Leu	ATG Met 470	ACA Thr	GAG Glu	TGC Cys	TGG Trp	GCG Ala 475	GIII	AAT Asn	CCT Pro	1620
GCC Ala	TCC Ser 480	Arg	CTG Leu	ACG Thr	GCC Ala	CTG Leu 485	AGA Arg	GTT Val	AAG Lys	AAA Lys	ACC Thr 490	. Leu	GCC Ala	AAA Lys	ATG Met	1668
TCA Ser 495	Glu	TCC Ser	CAG Gln	GAC Asp	ATT Ile 500	Lys	CTC Leu	TGA	.CGTC	AGA	TACT	TGTG	GA C	AGAG	CAAGA	1722
ATT	TCAC	AGA	AGCA	TCGT	TA G	CCCA	AGCC	T TG	AACG	TTAC	CCI	ACTO	CCC	AGTO	AGTTCA	1782
_ _GAC	TTTC	CTG	GAAG	AGAG	CA C	GGTG	GGCA	G AC	ACAC	BAGG	A ACC	CCAG	AAAC	ACG	ATTCAT	1842
CAT	'GGC'I	TTC	TGAG	GAGG	ag A	AACI	GTTI	G GG	TAAC	CTTGT	r TCI	AAGAT	CATG	ATG	CATGTTG	1902
CTI	TCT	AGA	AAGO	CCT	TA T	TTTG	TAA	TA CO	CATT	TTTT:	r ati	AAAA	AAAA			1952

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 502 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Met Leu Leu Arg Ser Ser Gly Lys Leu Asn Val Gly Thr Lys Lys Glu
10 15

Asp Gly Glu Ser Thr Ala Pro Thr Pro Arg Pro Lys Ile Leu Arg Cys 20 25 30

Lys Cys His His Cys Pro Glu Asp Ser Val Asn Asn Ile Cys Ser Thr Asp Gly Tyr Cys Phe Thr Met Ile Glu Glu Asp Asp Ser Gly Met Pro Val Val Thr Ser Gly Cys Leu Gly Leu Glu Gly Ser Asp Phe Gln Cys Arg Asp Thr Pro Ile Pro His Gln Arg Arg Ser Ile Glu Cys Cys Thr Glu Arg Asn Glu Cys Asn Lys Asp Leu His Pro Thr Leu Pro Pro Leu Lys Asp Arg Asp Phe Val Asp Gly Pro Ile His His Lys Ala Leu Leu Ile Ser Val Thr Val Cys Ser Leu Leu Leu Val Leu Ile Ile Leu Phe Cys Tyr Phe Arg Tyr Lys Arg Gln Glu Ala Arg Pro Arg Tyr Ser ্বle Gly Leu Glu Gln Asp Glu Thr Tyr Ile Pro Pro Gly Glu Ser Leu Arg Asp Leu Ile Glu Gln Ser Gln Ser Gly Ser Gly Ser Gly Leu Li Pro Leu Leu Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Met Val Lys Gln Ile Gly Lys Gly Arg Tyr Gly Glu Val Trp Met Gly Lys Trp Arg Gly Glu Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Glu Ala Ser Trp Phe Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Met Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly Ser Trp Thr Gln Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly Ser Leu Tyr Asp Tyr Leu Lys Ser Thr Thr Leu Asp Ala Lys Ser Met Leu Lys Leu

Ala Tyr Ser Ser Val Ser Gly Leu Cys His Leu His Thr Glu Ile Phe Ser Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Thr Cys Cys Ile Ala Asp Leu Gly Leu Ala Val Lys Phe Ile Ser Asp Thr Asn Glu Val Asp Ile Pro Pro Asn Thr Arg Val Gly Thr Lys Arg Tyr Met Pro Pro Glu Val Leu Asp Glu Ser Leu Asn Arg Asn His Phe Gln Ser Tyr Ile Met Ala Asp Met Tyr Ser Phe Gly Leu Ile Leu Trp Glu Ile Ala Arg Arg Cys Val Ser Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr His Asp Leu Val Pro Ser Asp Pro Ser Tyr Glu Asp Met Arg Glu Ile Val Cys Met Lys Lys Theu Arg Pro Ser Phe Pro Asn Arg Trp Ser Ser Asp Glu Cys Leu Arg Gln Met Gly Lys Leu Met Thr Glu Cys Trp Ala Gln Asn Pro Ala Ser Arg Leu Thr Ala Leu Arg Val Lys Lys Thr Leu Ala Lys Met Ser Glu

Ser Gln Asp Ile Lys Leu 500

(2)	<pre>INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS:</pre>	
GCGG	ATCCTG TTGTGAAGGN AATATGTG	28
(2)	<pre>INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS:</pre>	24
(2)	<pre>INFORMATION FOR SEQ ID NO: 21: (i) SEQUENCE CHARACTERISTICS:</pre>	26
GCG	GATCCGC GATATATTAA AAGCAA	20

(2)	<pre>INFORMATION FOR SEQ ID NO: 22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:</pre>	
CGGA	ATTCTG GTGCCATATA	20
	<pre>INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
TTA	CAAGGGC ACATCAACTT CATTTGTGTC ACTGTTG	37
(2) I	<pre>INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
מכם	GATCCAC CATGGCGGAG TCGGCC	26

20

```
INFORMATION FOR SEQ ID NO: 25:
(2)
          SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: cDNA
     (iii) HYPOTHETICAL: NO
     (iv) ANTI-SENSE: NO
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:
AACACCGGGC CGGCGATGAT
     INFORMATION FOR SEQ ID NO: 26:
(2)
           SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 6 amino acids
           (B) TYPE: amino acid
           (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: peptide
      (v) FRAGMENT TYPE: internal
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:
      Gly Xaa Gly Xaa Xaa Gly
                       5
William Marie
      INFORMATION FOR SEQ ID NO: 27:
           SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
            (B) TYPE: amino acid
            (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: peptide
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
      Asp Phe Lys Ser Arg Asn
                       5
      1
```

- (2) INFORMATION FOR SEQ ID NO: 28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Asp Leu Lys Ser Lys Asn 1 5

- (2) INFORMATION FOR SEQ ID NO: 29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

Gly Thr Lys Arg Tyr Met 1 5

We claim:

- 1. An isolated nucleic acid molecule which encodes an ALK-1 protein, the complementary sequence of which hybridizes, under stringent conditions to the nucleotide sequence set forth in SEQ ID NO: 1.
- 2. The isolated nucleic acid molecule of claim 1, wherein said isolated nucleic acid molecule is cDNA.
- The isolated nucleic acid molecule of claim 1, wherein said isolated nucleic acid molecule is genomic DNA.
- 4. The isolated nucleic acid molecule of claim 1, which encodes a protein whose amino acid sequence is the amino acid sequence encoded by SEQ ID NO: 1.
- 5. The isolated nucleic acid molecule of claim 1, consisting of SEQ ID NO: 1.
- 6. The isolated nucleic acid molecule of claim 1, comprising nucleotides 283 to 1791 of SEQ ID NO: 1.
- 7. Expression vector comprising the isolated nucleic acid molecule of claim 1, operably linked to a promoter.

- 8. Recombinant cell comprising the isolated nucleic acid molecule of claim 1.
- 9. Recombinant cell comprising the expression vector of claim 7.
- 10. Isolated protein encoded by the isolated nucleic acid molecule of claim 1.
- 11. The isolated protein of claim 10, comprising the amino acid sequence of the protein encoded by SEQ ID NO: 1.
- 12. Antibody which binds to the isolated protein of claim 10.
- 13. The antibody of claim 12, wherein said antibody binds to an extracellular domain of said protein.
- 14. A method for inhibiting expression of a gene, expression of which is activated by phosphorylated Smad1, comprising contacting a cell which expresses said gene and which presents ALK-1 on its surfaces with an inhibitor which interferes with phosphorylation of Smad1.
- 15. The method of claim 14, wherein said inhibitor inhibits binding of TGF-S and ALK-1.

- 16. The method of claim 14, wherein said inhibitor is an antibody which binds to TGF-S.
- 17. The method of claim 14, wherein said inhibitor is an antibody which binds to an extracellular domain of said protein.
- 18. The method of claim 14, wherein said inhibitor inhibits binding of said Smadl to ALK-1.
- 19. The method of claim 18, wherein said inhibitor is Smad6 or Smad7.
- 20. The method of claim 14, wherein said inhibitor inhibits interaction of said Smad1 with a type II, TGF receptor.
- 21. A method for enhancing expression of a gene, expression of which is activated by phosphorylated Smad1, comprising contacting a cell which is capable of expressing said gene with a molecule which activates phosphorylation of Smad1.
- 22. The method of claim 21, wherein said molecule binds to the extracellular domain of ALK-1.
- 23. The method of claim 21, wherein said molecule is TGF-ß.

- 24. The method of claim 21, wherein said molecule is a portion of TGF-ß sufficient to bind to ALK-1.
- 25. The method of claim 21, wherein said molecule phosphorylates Smad1 without interaction with ALK-1.
- 26. The method of claim 21, wherein said molecule facilitates interaction of ALK-1 and a TGF-S type II receptors.
- 27. A method for determining if a substance effects phosphorylation of Smadl, comprising contacting a cell which expresses both Smadl and ALK-1 with a substance to be tested, and determining phosphorylation of Smad-1, or lack thereof.
- A method for identifying a gene whose activation is effected 28. by phosphorylated Smad1, comprising contacting a first sample of cells which express and phosphorylate Smad1 with an agent which inhibits or activates phorphorylation of Smad1, removing said cell sample, and comparing said of transcripts transcripts from transcripts of a second sample not treated with said agent, wherein any differences therebetween are transcripts of genes whose activation is effected by phorphorylation of Smad1.

ABSTRACT OF THE DISCLOSURE

The invention relates to the molecule referred to as ALK-1, and its role as a type I receptor for members of the TGF-ß family. The molecule has a role in the phosphorylation of Smad1, which also acts as an activator of certain genes. Aspects of the invention relate to this interaction.

1/11

cons.aa	G TG G V		. X	E.		
hTGFBR-II	LDTLVGKGRFAEVYKA	XLKONTSEQFETVA	VKI FPYDHY)	SWIDERDIFS	dinlichenilof	•
mACLR-IIB	LLEIKARGREGCVWK	OLENDFVA	VKI KPLQDKO	SWQSEREIFS	TPGHINENLLQF	7
mACTR-II	LLEVKARGREGCVWX	OLINEYVA	VKIFPIODKO	SWONEYEVYS	I POMRHENI LQF	7.
daf-1	LEGRYGSGREGNVSRO	DYRGEAVA	VKVFNAIDEI	AFHKEIEIFE	TRHIRHPHVLRY	ľ
subdomains			II	III	IV	
SUDCOMAINS	1	•	**			
						٠.
hTGFBR-II	LTAEERKTELGKQYWI	.TTAFHAKGNLOEYL	TRHVI SWEDI	RNVGSSLARG	LSHLHSDHTP-(2
mActR·IIB	IAAEKRGSNLEVELWI					
mActR-II	IGAETRGTSVDVDLWI					
	IGSDRVDTGFVTELM					
daf-1			TIER I VIVI E I		T-A	
subdomains	}	v .		v	7.V	
cons.aa	DLK	N I	PG			
hTGFBR-II	-GRPK-PIVHRDLKS	•		-GPYSSVDDL	UNSGOVGTARYM	AΡ
	GEGHKPSIAHRDFKS					
mACTR-IIB						
mactr-II	-DGHKPAISHRDIKS					
daf-1	-esnkpamahrdiks	KNIMYKNDLTCAIG		DAASDIIAN		
subdomains	vi-B		VII		VIII	

Fig. 1

2/11

a.a C C E G N M C 5' GCGGATCCTGTTGTGAAGGNAATATGTG 3' Fig. 2A BAMHI C C G C

a.a V A V K I F

5' GCGGATCCGTCGCAGTCAAAATTTT 3' Fig. 2B

BamHI G C G G C

T T T A

a.a R D I K S K N
5' GCGGATCCGCGATATTAAAAGCAA 3' Fig. 2C
BAMHI A C C GTCT
G A

a.a E P A M Y

5' CGGAATTCTGGTGCCATATA Fig. 2D

ECORI G G

A A

```
168-11
168-1/ALK-5
AC LR - []
AC LR - []B
                                              즈-프로- VINO =
                          ०७ । । उउउ
                       KK 0 0 4 0 X 0 0
                         X X F U U F F F
                       005785455
                       · · -- -- --
                                              - 04 - 1
                       200 L . . EZ E
            z
            0
                         7 2 0 0 0 0 0 0 0
            0
            >
                       りひとしろららるH
            IISR
                       FF ZUUUUUU
     A I M I O H
                                               ତ୍ରଳ । ତ୍ରିକ । ନ
                                               ~ ~ @ + ~ 0 0 0 0 0
                        I
```

Fig.

```
RA OLI CALLA CALLA
                                                                                                                                                                                                                                                                                                                                                                                    M Z Z Z Z D V
                                                                                                                                                                                                                                                                                                                                100KKE XE X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~~=
                                                                                                                                                                                                                                                                                                                              EE>UE<u>×</u>E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         * * > * 」 > ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     6000000
```

```
16R-1/ALK-5
ALK-1
ALK-2
ALK-3
ALK-4
ALK-6
                                 J J > > > H > >
 0 X X J Z J Z J
00->>>>
  NNOZZOOO
                 人に内内にして限る
                 XX- X QQXXX
                 REFEREERE
                  NANNANNANN
004 E 0 X 4 E 4
* * > \unu u u u u
4 4 4 4 4 4
                   VERKE-K
                                   - WARREN
                                  x x w w x > x w x
                   K X X X X X X X X X X
```

IBR-1/AL

- dz z z

ActR-118

```
wooooo
              00000000
              ZZ MOK X OOO
                                LIIIIII
                             ****
                               UU 4 4 4 4 U U
              m m 0 0 0 0 m m m
                              그글> 포트릭> 포 포
               4 4 W --
               00.02200
                              0 0 0 T & & F OF
                              01104F F 04
                 このト エロしし
IIVZIIII
  < < U U A < A
 · 」 - - > > - -
000000000
  MODEEDE
                              X M R R O O E X M
               IIIIuu
               44×4×4×
   <del>그로로로</del> 따됨 ĸ
               XXXXXXX
                              00x8x8x8
               REQUEE ZUZ
                               ZZZZZZZ
                              Om v m o o o m o
                  w w w
                              000000000
                              x x x 0 0 0 0 0 0
  FFFOONE
                              OOUNEENSS
               00 8 0 0 0 0 0
                              -- <del>5>>>>></del>
```

3 contd Fig.

ig. s contu

Fig. 4

E E G AJK-1/CR N D G AJK-2/CR D D Q AJK-3/CR L D G AJK-3/CR T T D AJK-5/CR T T D AJK-5/CR S G S ACKR-11/CR S G T ACKR-11/CR N D E T BR-11/CR R P S DAF-1/CR	Majority ALK-1/CR	ALK-3/CR ALK-4/CR ALK-5/CR ALK-5/CR	ACCE-IID/CR TOR-II/CR DAF-1/CR
	FVNHYG-GDSHLC	2	
G D - D I T C E T - S C G N E D H C E G C N E D H C E G C N E D H C E G C N E N F T C E T C C C N E C C C N E C C C C C C C C C C	KSPKSPG-TVT Reparent	KITPPESPGOAVIOS KAOLRRTI	FROM SERVICE KNOSPE VYFCCCEGNFCCCEGNFCCCEGNFCCCEGNFCCCEGNFCCCEGNFCCCEGNFCCFFFMCSCFFFMCSCSSDFCFFFMCSCFFFMCSCSSDFCFFFMCSCFFFMCSCNFCCFFFMCSCNFCCFFFMCSCNFCCFFFMCSCNFCCFFFMCSCNFCCFFFMCSCNFCCFFFFMCSCNFCCFFFMCSCNFCCFMMTCCCDMCGNFCCFFFFMCSCNFCCFMMTCCCDMCGNFCFFFMCSCNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMMTCCCDMCGNFCCFMTCCCCMCMTCCCCCCCCCMCMTCCCCCCCCCCMCMTCCCCCC
1 11111661	H 7	1 1 1 12	THE F H D TAAR VOT
	**************************************	NA WA	C X L D D I N C X D R C X L D D I N C X D R C X C X D R C X C X D R C X C X D R C X C X D R C X C X C X C X C X C X C X C X C X C
	H C S R E V	H P O E H R S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T L A S T T T L A S T T T L A S T T T L A S T T T L A S T T T L A S T T T L A S T T T L A S T T T L A S T T T T L A S T T T T L A S T T T T L A S T T T T L A S T T T T L A S T T T T L A S T T T T T L A S T T T T T L A S T T T T T L A S T T T T T L A S T T T T T T T T T T T T T T T T T T	K VIII N S M I E L V K G G I E L V K G G G I E L V K K G G G G G G G G G G G G G G G G G

10/11

ALK-2	ALK-3	ALK-4	ALK-5	ActR-II	ActR-11B	T8R-11	daf-1	
79	60	61	63	40	40	37	39	ALK-1
L	63	64	65	41	39	37	39	ALK-2
	L	63	65	41	38	37	39	ALK-3
		<u></u>	90	41	40	39	42	ALK-4
				42	40	41	43	ALK-5
				<u></u>	78	48	35	ActR-II
						47	32	ActR-IIB
							34	TBR-II

Fig. 6

Fig. 7

DECLARATION FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

9313763.6

(Number)

My resident, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled ISOLATED ALK-1 PROTEIN, NUCLEIC ACID ENCODING IT, AND USES THEREOF, the specification of which

(X) is attached	hereto.		7 27-	
() was filed on		as Application Seri	al No	(if
and was amend	ded on (1)	, (2)		(11
applicable).				
I hereby state t identified speci referred to abov	ification, includi	red and understand the co. ing the claims, as amendo	ntents of ed by any	the above amendment
I acknowledge t examination of t Regulations, 1.	chis application 1	lose information which in accordance with Title	is materi 37, Code	al to the of Federal
119 of any forei	foreign priority of gn application(s) also identified b ificate having a f	benefits under Title 35, for patent or inventor's below any foreign applica Filing date before that or	ation for f the appl	patent or ication on
			<u>Priority</u>	Claimed
D <u>PCT/GB93/02367</u> (Number)	<u>Great Britain</u> (Country)	<u>17 November 1993</u> (Day/Month/Year Filed)	Yes (X)	No ()
9224057.1 (Number)	<u>Great Britain</u> (Country)	<u>17 November 1992</u> (Day/Month/Year Filed)	Yes (X)	No ()
9304677.9 (Number)	<u>Great Britain</u> (Country)	<u>8 March 1993</u> (Day/Month/Year Filed)	Yes (X)	No ()
9304680.3 (Number)	<u>Great Britain</u> (Country)	<u>8 March 1993</u> (Day/Month/Year Filed)	Yes (X)	No ()
9311047.6 (Number)	<u>Great Britain</u> (Country)	<u>28 May 1993</u> (Day/Month/Year Filed)	Yes (X)	No ()
9313763.6	Great Britain	2 July 1993	Yes (X)	No ()

(Country)

(Day/Month/Year Filed)

9136099.2 (Number)	<u>Great Britain</u> (Country)	<u>3 August 1993</u> (Day/Month/Year Filed)	Yes (X)	No ()
321344.5 (Number)	<u>Great Britain</u> (Country)	<u>15 October 1993</u> (Day/Month/Year Filed)	Yes (X)	No ()

U.S. Priority Applications

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

© 08/436,265	October 30, 1995	Pending
(Applic. Serial No.)	(Filing Date)	(Status-patented/pending/abandoned)
m		
Tax 5		

Power of Attorney

I hereby appoint the following attorneys to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: John E. Lynch, Reg. No. 20,940; Peter F. Felfe, Reg. No. 20,297; Norman D. Hanson, Reg. No. 30,946; Andrew L. Tiajoloff, Reg. No. 31,575; John A. Bauer, Reg. No. 32,554; Mary Anne Schofield, Reg. No. 36,669; Madeline F. Baer, Reg. No. 36,437; James Zubok, Reg. No. 38,671; James R. Crawford, Reg. No. 39,155, and Susan L. Hess, Reg. No. 37,350, Attorneys with full power of substitution and revocation. Address all telephone calls to Norman D. Hanson, at (212) 4688-9200. Address all correspondence to:

> FELFE & LYNCH 805 Third Avenue 10022 New York, New York

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

LUD 5527-JEL/NDH

(1)	Kohei M	Miyazono			Data
Full	Name/Sc	ole or First Invento.	r	Signature	Date
Resid	dence: _	751 23 Uppsala, Swe	den		Sweden
	-				Citizenship
Post	Office	Address: <u>751 23 U</u>	opsala, Swede	n	
			<u> </u>		
(2)	Takesh	e Imamura		Signature	Date
	•	econd Inventor		Digitalate	
Resi	dence: .	751 23 Uppsala, Swe	den		Sweden
					Citizenship
D Post	office	Address: <u>751 23 U</u>	ppsala, Swede	en	
					
i i Li					
(3) Full 1	Peter	ten Dijke hird Inventor		Signature	Date
=			ndon	-	
Res	idence:	751 23 Uppsala, Swe	euen		Sweden
					Citizenship
≡ □Post	t Office	e Address: <u>751 23 l</u>	Jppsala, Swed	en	