Team Teaching Robotika Cerdas

Kecerdasan Buatan Pada Robot - Machine Learning

Universitas Gunadarma | 2021

Tim Pengajar Kami

Agenda

01 Perbedaan Al dan Machine Learning

102 Library Pada Python

O3 Supervised VS Unsupervised Learning

O4 Algoritma K-Nearest Neighbor

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Perbedaan AI dan Machine Learning

Universitas Gunadarma | 2021

Al vs. ML vs. DL

Artificial Intelegence

Setiap teknik yang membuat komputer dapat memiliki pengetahuan seperti manusia

Machine Learning

Teknik untuk mengajari komputer tanpa secara langsung memprogram

Deep Learning

Belajar untuk memahami fitur dari data-data dengan menggunakan neural network (Jaringan syaraf tiruan)

Pendekatan Tradisional

Pendekatan Machine Learning

Dataset Problem:

Anjing Komondor atau Pel

Dataset Problem: Kue atau Parrot

Dataset Problem: Kue atau Parrot

Contoh Kasus Bidang Kedokteran

Bagaimana cara kita mengenali sel ini jinak atau ganas?

Contoh Kasus Bidang Kedokteran

Gunakan Dataset yang berisi karakteristik ribuan Sampel sel manusia diekstraksi dari pasien yang diyakini berisiko berkembang kanker.

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
1000025	5	1	1	1	2	1	3	1	1	benig
1002945	5	4	4	5	7	10	3	2	1	benig
1015425	3	1	1	1	2	2	3	1	1	maligna
1016277	- 6	8	8	1	3	4	3	7	1	benig
1017023	4	1	1	3	2	1	3	1	1	benig
1017122	8	10	10	8	7	10		7	1	maligna
1018099	1	1	1	1	2	10	3	1	1	benig
1018561	2	1	2	Н	2	1	3	1	1	benig
1033078	2	1	1	1	2	1	1	1	5	benig
1033078	4	2	1	1	2	1	2	1	1	benig

Contoh Kasus Bidang Kedokteran

Setelah model telah dilatih secara berulang, dapat digunakan untuk memprediksi sel baru, dengan akurasi yang baik.

Accuracy = 89%

Beberapa Teknik Machine Learning

Regression

- Memprediksi nilai kontinyu.
 - Memprediksi harga rumah berdasarkan karakteristik.

Classification

- Mengelompokkan data ke dalam kategori tertentu berdasarkan label tertentu.
 - Mengelompokkan sel jinak dan ganas.

Clustering

- Menemukan struktur intrinsik dari data.
 - Pengelompokkan pasien rumah sakit yang serupa.

Associations

- Mengaitkan item yang sering terjadi bersama.
 - Barang grosir apa yang biasanya dibeli bersamaan.

Beberapa Teknik Machine Learning

Beberapa Teknik Machine Learning

Deteksi Anomali

- Menemukan kasus abnormal yang tidak biasanya terjadi dalam data.
- Mendeteksi penipuan kartu kredit

Dimension Reduction

Mengurangi besar dimensi dari data.

Sistem Rekomendasi

- Merekomendasikan item sesuai dengan perilaku pengguna.
- Sistem rekomendasi video yang dilakukan youtube

Machine Learning di Bidang Robotika

Universitas Gunadarma | 2021

Machine Learning di Bidang Robotika

Lima area utama pada robotika yang memiliki dampak signifikan dengan adanya Machine learning.

- 1. Robot Vision
- 2. Imitation Learning
- Self Supervised Learning
- 4. Assistive and Medical Technologies
- 5. Multi-Agent Learning

Technique	Input	Output			
Signal Processing	Electrical signals	Electrical signals			
Image Processing	Images	Images			
Computer Vision	Images	Information/features			
Pattern Recognition/Machine Learning	Information/features	Information			
Machine Vision	Images	Information			
Robot Vision	Images	Physical Action			

Object Detection

• Arm Robot with Camera

Contactless Checkout

Self Driving Car

Inspection Cell for QoC

Fruit Harvesting

https://youtu.be/c-JduOfLEpc

Machine Learning – Imitation Learning

- Bagian integral dari robotika yang memiliki karakteristik mobilitas diluar pengaturan pabrik, seperti:
 - 1. Konstruksi
 - 2. Militer
 - 3. Pertanian
 - 4. Pencarian dan Penyelamatan

https://thenewstack.io/

Machine Learning – Imitation Learning

Contruction Robot

https://www.youtube.com/watch?v=BGhP-LK_o20&t=44s

Machine Learning – Imitation Learning

Seedling, Planting and Weeding Robot

Machine Learning – Self Supervised

- Memberikan robot kemampuan belajar berdasarkan data yang sudah diberikan dan yang akan/telah didapatkan untuk meningkatkan performanya.
 - Agriculture Robot yang dapat mendeteksi dan mengidentifikasi objek. (membedakan Tanaman atau hama).
 - Soccer robot yang dapat bertindak secara situasional.
 - Road detection pada self driving car.

Machine Learning – Self Supervised

Road detection

Machine Learning – Self Supervised

Watch-Bot will never let you forget to put the milk back in the fridge

By Evan Ackerman

Image: Watch-Bot Project

Library Pada Python

Universitas Gunadarma | 2021

Library Python untuk Machine Learning

SciPy

 SciPy adalah kumpulan algoritma numerik dan toolbox domain spesifik, termasuk sinyal pemrosesan, optimisasi, statistik, dan banyak lagi.

 SciPy adalah library yang baik untuk perhitungan ilmiah dan berkinerja tinggi.

NumPy

- Numpy, merupakan library matematika untuk bekerja dengan array n-dimensional dalam Python.
- Numpy untuk melakukan perhitungan secara efisien dan efektif.
- Numpy lebih baik daripada python biasa karena kemampuannya yang luar biasa. Misalnya, untuk bekerja dengan array, kamus, fungsi, tipe data, dan bekerja dengan gambar.

Matplotlib

- Matplotlib adalah library paket plot yang sangat populer yang menyediakan plot 2D dan juga plot 3D.
- Matplotlib dapat digunakan di dalam script Python, shell Python dan ipython (ala MATLAB or Mathematica), server aplikasi web, dan enam GUI toolkit.
- Dengan Matplotlib dapat menjadi lebih mudah membuat plot, histogram, power spectra, grafik batang, grafik error, scatterplot, dll, hanya dengan beberapa baris kode.

Supervised VS Unsupervised Learning

Universitas Gunadarma | 2021

Machine Learning Berdasarkan Campur Tangan Manusia

Apa itu Supervised Learning?

 Mengajarkan model dan melatihnya dengan beberapa data dari dataset yang berlabel.

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	malignant
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10		7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	Н	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign

Tipe Supervised Learning

1. Klasifikasi

2. Regresi

Apa itu Klasifikasi?

Klasifikasi adalah proses memprediksi label atau kategori kelas diskrit.

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class			1		± .
1000025	5	1	1	1	2	1	3	1	1	benign	1	0	1		工士
1002945	5	4	4	5	7	10	3	2	1	benign		à		`	444
1015425	3	1	1	1	2	2	3	1	1	malignant	Ш	atego		1, -	-+ . 再、
1016277	6	8	8	1	3	4	3	7	1	benign	ш	0		1	77-14
1017023	4	1	1	3	2	1	3	1	1	benign		ric			` +
1017122	8	10	10	8	7	10		7	1	malignant	_	a			1
1018099	1	1	1	1	2	10	3	1	1	benign	Ш	<	•		``
1018561	2	1	2	Н	2	1	3	1	1	benign	Ш	alu	0.0		`\
1033078	2	1	1	1	2	1	1	1	5	benign		Values			``,
1033078	4	2	1	1	2	1	2	1	1	benign				4	

Apa itu Regresi?

Regresi adalah proses memprediksi nilai kontinu sebagai lawan dari prediksi nilai kategorikal dalam Klasifikasi.

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	2

Algoritma Supervised Learning

- k-Nearest Neighbors
- Linear Regression
- Logistic Regression
- Support Vector Machines (SVMs)
- Decision Trees and Random Forests
- Neural networks

Apa itu Unsupervised Learning?

- Unsupervised learning adalah Pembelajaran tanpa pengawasan, membiarkan model bekerja sendiri untuk menemukan informasi yang mungkin tidak terlihat oleh mata manusia.
- Algoritma Unsupervised melatih dataset, dan menarik kesimpulan pada data tidak berlabel (unlabeled)

Teknik Unsupervised Learning

Dimension reduction (reduksi dimensi)

Density estimation (Estimasi Kepadatan)

Market Basket analysis (Analisis Keranjang Belanja)

Clustering (Pengelompokan)

Apa itu Clustering?

 Clustering dianggap sebagai salah satu pembelajaran mesin tanpa pengawasan yang paling populer. Teknik yang digunakan adalah untuk mengelompokkan titik data atau objek yang serupa.

Dataset dan Evaluasi Metrik

Universitas Gunadarma | 2021

Training dan Testing Data

- Pengukuran Evaluasi (Evaluation Metrics) mendeskripsikan performa dari *model classifier* kita.
- Untuk membuat Evaluation Metrics, data training dibagi menjadi dua:

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn		
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1	1	
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1) Tr	raining Da
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0		J
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0)	
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0	> Te	esting Dat
5	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1	J	

- Training data = Membuat model classifier.
- Testing data = Memeriksa akurasi dari classifier

Training dan Testing Data

F1 Score

- Cara membaca Confusion Matrix
- True Positive:
 - Diprediksi *True*
 - Class sebenarnya *True*
- False Negative:
 - Diprediksi *False*
 - Class sebenarnya *True*
- False Positive:
 - Diprediksi *True*
 - Class sebenarnya False
- True Negative
 - Diprediksi *False*
 - Class sebenarnya False

F1 Score

Confusion Matrix Evaluation Metric:

• Precision =
$$\frac{TP}{(TP+FP)}$$

• Recall =
$$\frac{TP}{(TP+FN)}$$

• F1-Score =
$$2 \times \frac{\text{Precision} \times \text{Recall}}{(\text{Precision} + \text{Recall})}$$

Algoritma K-Nearest Neighbor

Universitas Gunadarma | 2021

Apa itu K-Nearest Neighbor

- Sebuah metode untuk melakukan klasifikasi berdasarkan similaritas terhadap data lainnya.
- Beberapa data terdekat disebut dengan "Tetangga" atau "Neighbors"
- Tetangga yang terdekat dianggap memiliki fitur yang serupa dengan data yang dimaksud.

Algoritma K-Nearest Neighbor

- 1. Diberikan sebuah data tidak terklasifikasi p, dan kumpulan data training \boldsymbol{P} yang telah dilengkapi label classnya .
- 2. Pilih nilai dari jumlah ketetanggan *K*.
- 3. Hitung jarak antara p ke seluruh data yang ada dalam P.
- 4. Ambil K observasi yang merupakan data terdekat dengan p.
- 5. Klasifikasikan data tersebut dengan mayoritas class dari K-Tetangga terdekatnya.

Mencari Jarak Antara 2 Titik di 2D

Mencari Jarak Antara 2 Titik di 3D

Menentukan Jumlah K

- Bagaimana menentukan jumlah K yang tepat?
 - Terlalu sedikit = rentan outlier
 - Terlalu banyak = tidak relevan

Menentukan Jumlah K

- Bagaimana menentukan jumlah K yang tepat?
 - Terlalu sedikit = rentan outlier
 - Terlalu banyak = tidak relevan

Praktik Menggunakan Google Colab

TERIMA KASIH

Sistem Penginderaan Visual Robot