

Leaflets three, let it be?

-- Mushroom edibility classification

Wanli Zhang Martin Guyer Shangjia Dong

Introduction

• Task:

Classify mushrooms as poisonous or edible based on their physical attributes

Method

- Binary classification problem
- Naive Bayes

Introduction

Data set:

Response: Binary (poisonous/edible)

Attribute: Categorical

Instances: 8124

• Attributes: 22

- Missing value in one attribute (2480)
- Not missing completely at random
- Treat missing values as another category

Naïve Bayes classifier

Bayesian classifiers assign the most likely class to a given instance described by its feature vector.

Aim to computing the probability:

$$p(C|F_1, ... F_n)$$

Where C denotes a class variable with some number of classes.

Based on the Naïve Bayes assumption

$$p(C|F_1, ...F_n) = \frac{1}{Z}p(C)\prod_{i=1}^n p(F_i|C)$$

Where

$$Z = p(F_1, \dots F_n)$$

p(C): Calculated or estimated by relative frequencies.

 $p(F_i|C)$: Bernoulli and Multinomial distribution are adopted for feature probability distribution.

Classification Rule

In Binary classification, a threshold is utilized:

- ➤ If the prediction probability falls above the threshold, the instance is labeled positive (poisonous, in our case)
- ➤ If not, negative (edible).

Multi-class:

Assign instance to most probable class

Validation

K-fold cross validation

- Data set is split into six equally-sized folds
- Apply Naïve Bayes once for each run
- Each time:
 - Five folds as training set
 - Remaining one as test set

- Receiver Operating Characteristics (ROC)
 Select an optimal threshold to map instances to predicted classes
- Apparent Error Rate (APER)
 Fraction of misclassified sample observations
- False Negative (FN) Rate
 The probability of classifying a poisonous (positive) mushroom as being edible (negative)

R packages

Naïve Bayes:

```
library(e1071 )
Function: naiveBayes()
    predict()
```

• ROC plot:

ROC graph depicts relative tradeoffs between benefits (TP) and costs (FP). The more top-left a point lies, the better the corresponding classifier performance.

Finding optimal threshold by averaging over all runs:

Threshold	False Negative Rate	Apparent Error Rate
0.5	0.70588235	0.07976366
0.1	0.48366013	0.06351551
0.05	0.45751634	0.07828656
0.01	0.1633987	0.0760709
0.005	0.03921569	0.07976366
0.001	0.0000000	0.1329394

APER & FNR for each run:

Run	APER	FNR
1	0.0798	0.0392
2	0.0214	0.2302
3	0.0805	0.2013
4	0.0517	0.0234
5	0.0805	0.0428
6	0.2349	0.0385
Avg	0.0798	0.0392

Threshold = 0.005

With our choice of threshold (0.005):

- ➤ Naïve Bayes misclassifies 7.98% of mushrooms
- ➤ Poisonous mushrooms identified as being edible
- 3.92% of time

Discussion

Assumption

- > Independence between features given class labels
- Unrealistic in practice
- ➤ Naïve Bayes gives good results even if assumption is not met
- > Reason behind robustness is an open question

Discussion

Scaling to Big data

- > Run time of 6-fold CV: 6.13s
- Expect run time to increase with size of test set
- ➤ 1/6 training and 5/6 testing : **42.14s**
- Expect run time to increase with # of features
 - >Assume multinomial distribution
 - \triangleright Each new feature with k levels means an extra k-1 parameters to estimate

Discussion

Obstacles

Which classification method should we use?

- Logistic regression: did not work, because iterative algorithm didn't converge
- K-nearest neighbors: did not work, because *knn* does not take distance matrix as input, instead, it calculates a Euclidean distance matrix automatically
 - Side: R doesn't like a distance matrix of dim 8124 X 8124

Oregon State