第六章有限域

信息与软件工程学院 电子科技大学

内容安排

- 6.1 域和扩域
- ○6.2 有限域的结构
- ○6.3 不可约多项式的根,迹和范数
- 6.4 有限域上元素的表示
- ○6.5 有限域中的算法

6.1 域和扩域

o 定义6.1.1一个有限域F是指只含有限个元素的域,F的阶是指F中元素的个数。有限域又称为Galois域。若域F的阶为n,则可将F记为F_n或GF(n)。

定义6.1.2 设F是域,K是F的子集。如果K在F的运算下也构成一个域,则称K为F的子域,称F为K的扩域。特别地,如果K≠F,则称K为F的真子域。一个域如果不包含真子域,则称该域为素域。

例6.1.1 有理数域和阶为素数p的有限域 Z_p 都是素域。

素域的结构

。定理6.1.1 特征为素数p的域F的素子域同构于 Z_p ;特征为0的域F的素子域同构于有理数域。

证明:设P是F的素子域,则0, $1 \in P$ 。

当 F 的特征为素数 P 时,因为 $\{0,1\}\subset P$,所以 $\{m\cdot 1\mid m\in Z\}\subset P$ 。构造映射

 $\phi: Z \to P: m \mapsto m \cdot 1.$

容易验证 ϕ 是一个环同态映射,且 $\ker \phi = \langle p \rangle$ 。所以 $Z_p = Z/\langle p \rangle = Z/\ker \phi \cong \phi(Z) \subset P$ 。又由于 Z_p 是域,P又没有真子域,因此 $Z_p \cong \phi(Z) = P$ 。

○证明(续)

当 F 的特征为 $\mathbf{0}$ 时,因为 $\{0,1\} \subset P$,所以 $\{(m\cdot 1)(n\cdot 1)^{-1} \mid m,n\in Z\} \subset P$ 。构造映射

 $\phi: Q \to P: m/n \mapsto (m\cdot 1)(n\cdot 1)^{-1}$

容易验证 ϕ 是一个环的单同态映射。所以 $Q \cong \phi(Q) \subset P$ 。又由于Q是域,P又没有真子域, 因此 $Q \cong \phi(Q) = P$ 。定理得证。

扩域、单扩域

。 定义6.1.3 设F是一个域,E是F的扩域,S⊆E,将E中既包含F又包含S的最小子域记为F(S),称之为由S生成的F的扩域。F(S): E中全体既包含F又包含S的子域的交集。

 \blacktriangleright 域 F(S)也称为由域 F 添加 S 的元素所生成的扩域。 若 S 有 限 且 $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, 我 们 记 $F(S) = F(\alpha_1, \alpha_2, \dots, \alpha_n)$ 。如果 S 仅含一个元 α ,则称 $F(\alpha)$ 为 F 的单扩域。

扩域、单扩域

ightharpoonup F(S) 中 的 元 素 形 如 $\frac{f(\alpha_1,\alpha_2,\cdots,\alpha_n)}{g(\alpha_1,\alpha_2,\cdots,\alpha_n)}$, 其 中 $f(\alpha_1,\alpha_2,\cdots,\alpha_n)$, $g(\alpha_1,\alpha_2,\cdots,\alpha_n)\in F[\alpha_1,\alpha_2,\cdots,\alpha_n]$, 且 $g(\alpha_1,\alpha_2,\cdots,\alpha_n)\neq 0$ 。其中, $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 是 S 的有任意 有限子集。

多元多项式:
$$f(x_1, x_2, \dots, x_n) = \sum_{i_1, i_2, \dots, i_n} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

问题: 记 $Q(\sqrt{2})$ 为 $\sqrt{2}$ 生成的Q的扩域。那么, $Q(\sqrt{2})$ 如何表示?

代数元

。 定义6.1.4 设K是F的一个子域, $\alpha \in F$,如果 α 是K上的一个非零多项式的根,则称 α 为K上的代数元。不是代数元的元素称为超越元。如果的一个扩张中所有的元素都是上的代数元,则称该扩张为代数扩张。

问题: 1.Q是 \mathbb{R} 的子域, $\sqrt{2}$ 是Q的代数元还是超越元?

2. 有没有**Q**的超越元?

代数元

定义 6.1.5 设 K 是 F 的一个子域, $\alpha \in F$,是 K 上的一个代数元,则 K[x] 中满足 $f(\alpha) = 0$ 的次数最小的多项式

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

称为 α 在域K上的极小多项式,该多项式的次数称为代数元次数

例 6.1.2 虚单位根i在实数域上的极小多项式为 x^2+1 ,

 $\sqrt{2}$ 在有理数域上的极小多项式为 x^2-2 。

极小多项式的性质

定理 6.1.2 设 K 是 F 的一个子域, $\alpha \in F$ 是 K 上的一个代数元,则 α 的极小多项式 f(x) 满足如下性质:

- (1) f(x) 是不可约多项式;
- (2) 令 $I = \{g(x) \in K[x] \mid g(\alpha) = 0\}$,则 I 是 K[x] 的理想,且 $I = \langle f(x) \rangle$ 。

证明: (1) 不妨设 $f(x) = f_1(x)f_2(x)$, 其中

 $1 \le \deg(f_1(x)), \deg(f_2(x)) < \deg(f(x))$,则有

$$f_1(\alpha)f_2(\alpha) = f(\alpha) = 0$$
,因而有 $f_1(\alpha) = 0$ 或 $f_2(\alpha) = 0$ 。

这与f(x)是 α 的极小多项式矛盾。因此,f(x)是不可约多项式。

(2) 很显然,对于任意多项式 $h(x), g(x) \in I$, 有 $h(\alpha) - g(\alpha) = 0$,

即有 $h(x)-g(x) \in I$ 且对于 任意多项式 $q(x) \in F[x]$,有

 $q(\alpha)h(\alpha)=0$,即有 $q(x)h(x)\in I$ 。所以 I 是是 K[x] 的理想。根据

f(x) 的极小性,不难验证 $I = \langle f(x) \rangle$ 。

向量空间 (线性空间)

- 定义6.1.6 设F为域,V为交换加群,集合 $F \times V = \{(a,v) \mid a \in F, v \in V\}$ 到V有一个映射: $(a,v) \to av \in V$ 。假定映射满足下列条件,对任意 $a,b \in F$, $u,v \in V$ 有
 - $\bullet \quad (1) \ a(u+v) = au + av$
 - $\bullet \quad (2) \ (a+b)v = av + bv$
 - $\bullet \quad (3) \ a(bv) = (ab)v$
 - (4) 1v = v
- 则V称为域F上的向量空间。

例如: \mathbb{R}^2 (复数域C) 为 \mathbb{R} 上的向量**空间**。

向量空间 (线性空间)

若存在 $v_1, v_2, \dots, v_n \in V$ 使得对于任意 $v \in V$ 都可唯一表示为 $v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n, \quad \text{其中}, a_i \in F, \quad 1 \leq i \leq n, \quad \text{则称 } V \text{ 为有限维向量}$ 空间, $v_1, v_2, \dots, v_n \in V$ 称为 V 的一组基, $n \in V$ 的维数。

扩张次数

○ 定义6.1.7 若E是F的扩域,则E是F上的向量空间。如果E作为F上的向量空间是有限维的,则称E为域F的有限扩域,E作为F上的向量空间的维数称为扩张次数,记为[E:F]。

问题: \mathbb{R}^n 为n维向量空间,则有 $[\mathbb{R}^n:\mathbb{R}] = n$;

那有没有无限扩域的例子?

定理6.1.3 设E是F的有限扩域, K是E的有限扩域,则有:

[K:F] = [K:E][E:F]

证明要点:利用基向量的线性无关性。

定理6.1.3的证明

证明: 假设[K:E]=m与[E:F]=n, $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 是 E 在 F 上的一

组基, $\{\beta_1,\beta_2,\cdots,\beta_m\}$ 是 K 在 E 上的一组基,于是 K 的任一元素 α 可表示成为

$$lpha=\sum_{i=1}^m \gamma_ieta_i$$
, $\gamma_i\in E$, 其中 $eta_i=\sum_{j=1}^n r_{ij}lpha_j$, $r_{ji}\in F$,

于是有

$$\alpha = \sum_{i=1}^m \gamma_i \beta_i = \sum_{i=1}^m (\sum_{j=1}^n r_{ij} \alpha_j) \beta_i = \sum_{i=1}^m \sum_{j=1}^n r_{ij} \alpha_j \beta_i .$$

这说明 $\{\alpha_i\beta_i \mid j=1,2,\cdots,n; i=1,2,\cdots,m\}$ 可生成向量空间K。

定理6.1.3的证明(续)

下证, $\{\alpha_i\beta_i \mid j=1,2,\cdots,n; i=1,2,\cdots,m\}$ 是K在F上的一组基。

假设存在 $S_{ii} \in F$, $j = 1, 2, \dots, n$; $i = 1, 2, \dots, m$, 使得

$$\sum_{i=1}^m \sum_{j=1}^n s_{ji} \alpha_j \beta_i = 0,$$

则

$$\sum_{i=1}^m (\sum_{j=1}^n s_{ji} \alpha_j) \beta_i = 0.$$

定理6.1.3的证明(续)

由于 $\{\beta_1, \beta_2, \dots, \beta_m\}$ 是 K 在 E 上的一组基,所以有

$$\sum_{j=1}^m s_{ji}\alpha_j = 0, 1 \le i \le n,$$

又 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 是 E 在 F 上的一组基,所以有

$$s_{ii} = 0, j = 1, 2, \dots, n; i = 1, 2, \dots, m$$
.

于是,K作为F上的向量空间的维数为[K:F] = mn = [K:E][E:F]。

代数扩张

o 定理6.1.4 每个有限扩张都是代数扩张。

证明:设 E 是 F 的扩域,[E:F]=n,则对于任意 $\alpha \in E$,n+1

个元素 $1,\alpha,\alpha^2,\dots,\alpha^n$ 一定线性相关。所以存在不全为零的元素

$$a_i \in F, i = 0, 1, 2, \dots, n$$
,使得 $\sum_{i=0}^n a_i \alpha^i = 0$ 。因此, α 满足多项式

$$f(x) = \sum_{i=0}^{n} a_i x^i$$
,即 α 是代数元。

代数扩张 (续)

定理 6.1.5 设 α 是域 F 上代数元,其极小多项式为 p(x), $\deg(p(x)) = n$,则

(1)
$$F(\alpha) \cong F[x]/\langle p(x) \rangle$$
;

(2)
$$[F(\alpha):F] = n$$
,且 $\{1,\alpha,\alpha^2,\dots,\alpha^{n-1}\}$ 是 $F[\alpha]$ 在 F 上的一组基。

证明: (1) 定义 ϕ : $F[x] \rightarrow F(\alpha)$ 如下:

$$\phi(\sum_{i=0}^k a_i x^i) = \sum_{i=0}^k a_i \alpha^i .$$

容易验证 ϕ 是环同态映射,且 $\ker \phi = \langle p(x) \rangle$ 。由同态基本定理可得

$$\phi(F[x]) \cong F[x]/\langle p(x) \rangle$$
.

定理6.1.5 证明(续)

因此, $\phi(F[x]) \subseteq F(\alpha)$ 是子域。又因为 $\phi(x) = \alpha \in \phi(F[x])$,所以有 $F(\alpha) \subseteq \phi(F[x])$ 。综上所述有 $F(\alpha) = \phi(F[x])$,从而有 $F(\alpha) \cong F[x]/\langle p(x) \rangle$ 。

(2)由于 $F(\alpha) = \phi(F[x])$,所以对于任意 $\beta \in F(\alpha)$,存在 $f(x) \in F[x]$ 使得 $f(\alpha) = \beta$ 。因为 $p(\alpha) = 0$, $\deg(p(x)) = n$,根据带余除法可以找到次数小于n的 $f(x) \in F[x]$,满足 $f(\alpha) = \beta$,所以 β 可以表示成 $1, \alpha, \alpha^2, \cdots, \alpha^{n-1}$ 的组合。

定理6.1.5 证明(续)

下证 $1,\alpha,\alpha^2,\dots,\alpha^{n-1}$ 线性无关。若有 $a_i \in F, i = 0,1,\dots,n-1$ 使得

$$a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 = 0$$

则可得 α 满足多项式 $f(x) = a_{n-1}x^{n-1} + \cdots + a_1x + a_0$,但是 α 的极小多项式的次数为n,所以只有f(x) = 0,从而有 $a_{n-1} = \cdots = a_1 = a_0 = 0$ 。因此, $1, \alpha, \alpha^2, \cdots, \alpha^{n-1}$ 线性无关,即有 $[F(\alpha):F] = n$,且 $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ 是 $F[\alpha]$ 在F上的一组基。

域的单代数扩张实际上是添加了一个不可约多项式的根的扩张。

分裂域

定义 6.1.8 设 $f(x) \in F[x]$ 是一个 n 次多项式, E 是 F 的一个扩域, 若

(1) f(x) 在 E 上能够分解成一次因式的乘积,即

$$f(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

其中, $\alpha_i \in E, i = 1, \dots, n$, $a \in F$ 。

(2)
$$E = F(\alpha_1, \dots, \alpha_n)$$
,

则称 $E \neq f(x)$ 在 F 上的一个分裂域。

例 $6.1.3 x^2+1$ 是实数域上的一个不可约多项式,则复数域就是 x^2+1 在实数域上的一个分裂域。

分裂域 (续)

○ 定理6.1.6 域F上任意一个次数大于等于1的多项式 在F上都有分裂域。

证 明: 对 f(x) 的 次 数 作 归 纳 法 。 当 $\deg(f(x))=1$ 时, $f(x)=a(x-\alpha),\alpha\in F$,显然 F 本身是 f(x) 的一个分裂域。假设 当 $\deg(f(x))< n(n>1)$ 时, f(x) 有一个分裂域。当 $\deg(f(x))=n$ 时 任取 f(x) 的一个不可约因式 p(x),则存在一个单代数扩张 $E_1=F(\alpha_1),p(\alpha_1)=0$,于是 p(x)在 E_1 上可分解出一个一次因式, 因而 f(x)在 E_1 上至少可分解出一个一次因式。

分裂域 (续)

不妨设 $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_r) f_1(x)$, $f_1(x) \in E_1[x]$, $\alpha_i \in E_1$, $i = 1, \dots, r$, $r \ge 1$ 。此时 $\deg(f_1(x)) < n$ 。若 $f_1(x)$ 是常数,则 E_1 就是 f(x) 的一个分裂域。若 $\deg(f_1(x)) \ge 1$,则根据归纳假设, $f_1(x)$ 在 E_1 有一个分裂域,设为 E 。于是

$$\begin{split} f_1(x) &= c(x-\alpha_{r+1})(x-\alpha_{r+2})\cdots(x-\alpha_n) \;, \quad \alpha_i \in E_1 \;, \quad i = r+1, \cdots, n \;, \\ \\ E &= E_1(\alpha_{r+1}, \cdots, \alpha_n) = F(\alpha_1)(\alpha_{r+1}, \cdots, \alpha_n) \\ &= F(\alpha_1, \cdots, \alpha_r)(\alpha_{r+1}, \cdots, \alpha_n) = F(\alpha_1, \cdots, \alpha_n) \end{split}$$

所以E就是f(x)在F上的一个分裂域。

定理 6.1.7 设 $f(x) \in F[x]$,则 f(x) 在 F 上的任何两个分裂域是同构的。

6.2 有限域的结构

- 有限域的三条结构定理
- 。 定理6.2.1 设F是一个特征为素数p的有限域,则F中的元素个数为pⁿ, n是一个正整数。
- 定理6.2.2 (存在性)对于任何素数p和任意正整数n, 总存在一个有限域恰好含有pⁿ个元素。
- 定理6.2.3 (惟一性)任意两个q=pⁿ元域都同构,即pⁿ 元域在同构意义下是惟一的。

有限域中元素的个数

o 定理6.2.1 设F是一个特征为素数p的有限域,则F中的元素个数为pⁿ, n是一个正整数。

证明:由于F的特征为p,所以F的素域与GF(p)同构。又由于F是一个有限域,因此F是GF(p)上的有限维向量空间,设其维数为n,且 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是F在GF(p)上的一组基,则

$$F = \{a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n \mid a_i \in GF(p), i = 1, 2, \dots, n\}$$

所以F中的元素个数为 p^n 。

有限域的存在性

o 定理6.2.2 (存在性)对于任何素数p和任意正整数n,总存在一个有限域恰好含有pⁿ个元素。

证明: 考虑 GF(p) 上的多项式 $f(x) = x^q - x$, 其中 $q = p^n$ 。 f(x) 的形式导数为

$$f'(x) = qx^{q-1} - 1 = -1,$$

因此 f(x) 和 f'(x) 互素, 从而 f(x) 没有重根, 即 f(x) 在其分裂域上有 q 个不同的根。

取F为f(x)在GF(p)上的分裂域。令S是F中多项式f(x)的所有根

组成的集合容易验证 $S \neq F$ 的子域,又 f(x) 在 S 中可分解成一次因式的乘

积,所以S = F。因此,F是一个有 $q = p^n$ 个元素的有限域。

有限域的唯一性

o 定理6.2.3 (惟一性) 任意两个q=pⁿ元域都同构,即pⁿ元域在同构意义下是惟一的。

证明: F 是具有 $q = p^n$ 个元素的有限域,则 F 的特征为 p ,

且以GF(p)为其子域。所以F是GF(p)上的多项式 $x^q - x$ 的

分裂域,根据定理 6.1.7,多项式的分裂域是同构的。因此, p^n

元域都同构于GF(p)上的多项式 $x^q - x$ 的分裂域。

有限域的乘法群

定理 6.2.4 设 F_q 是 q 元域,则其乘法群 F_q^* 是一个循环群。

证明: F_q^* 的阶是 q-1,要证明 F_q^* 是一个循环群,只需要找到 F_q^* 中的一个 q-1 阶元素。

设 $q \ge 3$, $q-1 = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t} \neq q-1$ 的标准分解。

对于任意 $i, 1 \le i \le t$, 多项式 $x^{(q-1)/p_i} - 1$ 最多有 $(q-1)/p_i$ 个根, 而

 $(q-1)/p_i < q-1$, 所以存在非零元 $a_i \in F_q^*$, 使得 $a_i^{(q-1)/p_i} \neq 1$ 。令

$$b_i = a_i^{(q-1)/p_i^{e_i}}$$
 , M

$$b_i^{p_i^{e_i}} = 1$$

又 $b_i^{p_i^{e_i-1}} = a_i^{(q-1)/p_i} \neq 1$,所以 b_i 的阶为 $p_i^{e_i}$ 。令

$$b = b_1 b_2 \cdots b_t,$$

则 $b^{q-1}=1$ 。因此,b的阶m是q-1的因子。若m是q-1的真因子,则必然存在

某个i,使得 $m|(q-1)/p_i$ 。故

$$1 = b^{(q-1)/p_i} = b_1^{(q-1)/p_i} b_2^{(q-1)/p_i} \cdots b_t^{(q-1)/p_i} ...$$

当 $j \neq i$ 时,有 $p_j^{e_j} | (q-1)/p_i$,从而 $b_j^{(q-1)/p_i} = 1$,所以有 $b_i^{(q-1)/p_i} = 1$,矛盾。所以 m = q-1,即 $b \neq q-1$ 阶元。

本原元

。定义6.2.1 F_q^* 中的生成元成为 F_q 的本原元。

根据定理3.5.1, F_q 中的本原元有 $\varphi(q-1)$ 个。

例 6.2.1 $x^2 + x + 1$ 是 F_2 上的不可约多项式,设 α 是 $x^2 + x + 1$ 的根,则

$$F_2(\alpha) = \{0, 1, \alpha, \alpha + 1\}$$

又 $\alpha^2 = \alpha + 1$, $\alpha^3 = \alpha(\alpha + 1) = \alpha^2 + \alpha = 1$,所以 $\alpha \in F_2(\alpha)$ 的本原元。

本原多项式

定义 6.2.2 设 K 是 F 的一个子域, α 是 F 的本原元,

则α在域 Κ上的极小多项式称为本原多项式。

F_2 上的本原多项式 $x^2 + x + 1$ $x^{11} + x^2 + 1$ $x^{12} + x^6 + x^4 + x + 1$ $x^3 + x + 1$ $x^{13} + x^4 + x^3 + x + 1$ $x^4 + x + 1$ $x^{14} + x^{10} + x^6 + x + 1$ $x^5 + x^2 + 1$ $x^{15} + x + 1$ $x^6 + x + 1$ $x^{16} + x^{12} + x^3 + x + 1$ $x^7 + x^3 + 1$ $x^{17} + x^3 + 1$ $x^{8} + x^{4} + x^{3} + x^{2} + 1$ $x^{18} + x^7 + 1$ $x^9 + x^4 + 1$ $x^{19} + x^5 + x^2 + x + 1$ $x^{10} + x^3 + 1$ $x^{20} + x^3 + 1$

有限域的子域

定理 6.2.5 设 $q = p^n$, 其中 p 是素数, n 是正整数,则有限域 F_q

的任意一个子域含有 p^m 个元素,其中 $m \mid n$; 反之,对于任意正

整数m,若 $m \mid n$,则 F_q 含有惟一一个子域包含 p^m 个元素。

例 6.2.2 F_{230} 域的子域完全由 30 的因子决定。30 的因子有 1,

2, 3, 5, 6, 10, 15, 30。因此 $F_{2^{30}}$ 的子域有

$$F_2, F_{2^2}, F_{2^3}, F_{2^5}, F_{2^6}, F_{2^{10}}, F_{2^{15}}, F_{2^{30}}$$
 .

有限域的子域(续)

○ 定理6.2.5的证明:

证明: 若 K 是 F_q 的一个子域,则 K 含有 $t = p^m$ 个元素, $m \le n$ 。又 F_q 是 K

的扩域,设 $[F_q:K]=s$,则 $q=t^s$ 即 $p^n=p^{ms}$,所以m|n。

反之,若 $m \mid n$,有 $p^m - 1 \mid p^n - 1$,进而 $x^{p^m} - x \mid x^{p^n} - x$ 。因此, $x^{p^m} - x$ 在

 F_p 上的分裂域是 F_q 的一个子域,且含有 p^m 个元素。假设 F_q 有两个的含有

 p^{m} 个元素的子域,则这两个子域的元素都是 $x^{p^{m}}-x$ 的根,而 $x^{p^{m}}-x$ 只有

 p^m 个不同的根,因此,这两个域一定相同。

6.3 不可约多项式的根, 迹和范数

定理 6.3.1 设 $f(x) \in F_q[x]$ 是一个不可约多项式, α 是 f(x) 在 F_q 的

某一扩域中的根,则对于 $F_q[x]$ 中的多项式 h(x) ,有 $h(\alpha)=0$ 当且仅 当 f(x)|h(x)

证明:设 $a \in F_q$ 是f(x)的首项系数,令 $p(x) = a^{-1}f(x)$ 。 显然,p(x)的首项系数为 1,且 $p(\alpha) = 0$,所以p(x)是 α 的极小多项式。因此, $h(\alpha) = 0$ 当且仅当p(x) | h(x)当且仅当f(x) | h(x)。

定理 6.3.2 $f(x) \in F_a[x]$ 是 m 次不可约多项式,则

 $f(x) | x^{q^n} - x$ 当且仅当m | n。

证明: 假设 $f(x) \mid x^{q^n} - x$ 。 α 是 f(x) 在某一个分裂域中的根,则 $\alpha^{q^n} = \alpha$,

所以 $\alpha \in F_{q^n}$,因此有 $F_q(\alpha) \subseteq F_{q^n}$ 。又由于 $[F_q(\alpha):F_q] = m$, $[F_{q^n}:F_q] = n$,

根据定理 6.1.3 有 $m \mid n$ 。

反之,若 $m \mid n$,则 F_{q^n} 是 F_{q^n} 的子域。若 α 是f(x)在某一个分裂域中的根,

则有 $[F_q(\alpha):F_q]=m$,所以 $F_q(\alpha)=F_{q^m}$ 。因此 $\alpha\in F_{q^n}$,从而有 $\alpha^{q^n}=\alpha$,

即 α 是多项式 $x^{q^n} - x$ 的根,根据定理 **6.3.1**,有 $f(x) | x^{q^n} - x$ 。

不可约多项式的根

定理 6.3.3 $f(x) \in F_q[x]$ 是 m 次不可约多项式,则 f(x) 有

根 $\alpha \in F_{q^m}$,更进一步有,f(x)的所有根恰好为 F_{q^m} 中的m

个元素 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}$ 。

证明要点:由于m次多项式最多有m个根,所以我们只需证明 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}$ 是 f(x) 的根,并且两两不同即可。

定理6.3.3的证明

假设 α 是 f(x) 在某一个分裂域中的根,则 $[F_q(\alpha):F_q]=m$,所以 $F_q(\alpha)=F_{q^m}$

$$\alpha \in F_{q^m}$$
 。考虑 α^q 。设 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$,其中 $a_i \in F_q$,

则

$$f(\alpha^{q}) = a_{m}(\alpha^{q})^{m} + a_{m-1}(\alpha^{q})^{m-1} + \dots + a_{1}(\alpha^{q}) + a_{0}$$

$$= (a_{m}\alpha^{m} + a_{m-1}\alpha^{m-1} + \dots + a_{1}\alpha + a_{0})^{q}$$

$$= 0$$

同理,可依次证明 $\alpha^{q^2},\dots,\alpha^{q^{m-1}}$ 都是f(x)的根。

定理6.3.3的证明(续)

下证 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}$ 两两不同。 假设 $\alpha^{q^j} = \alpha^{q^k}$, 其中 $0 \le j < k \le m-1$,则

$$(\alpha^{q^j})^{q^{m-k}} = (\alpha^{q^k})^{q^{m-k}}$$

因此有 $\alpha^{q^{m-k+j}} = \alpha^{q^m} = \alpha$,从而由定理 **6.3.1** 可知, $f(x) | x^{q^{m-k+j}} - x$ 。 再由定理 **6.3.2** 可知 m | m-k+j,而 m-k+j < m,矛盾。所以 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}$ 两两不同。

共轭元与特征多项式

定义 6.3.1 设 F_{q^m} 是 F_q 的扩域, $\alpha \in F_{q^m}$, 称 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}$ 为 α 相对于 F_q 的共轭元。

定义 6.3.2 对于 $\alpha \in F_{q^m}$, 定义多项式

$$f(x) = (x - \alpha)(x - \alpha^q) \cdots (x - \alpha^{q^{m-1}})$$

为 α 在 F_q 上的特征多项式。

特征多项式

当 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{m-1}}$ 两两不同时, $\deg(f(x)) = m$,此时 α 的特征多项式与极小多项式 p(x) 相同。当 α 仅有d 个两两不同的共轭元 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{d-1}}$ 时, α 所有的共轭元正好是这d 个共轭元重复m/d 次此时 $f(x) = (p(x))^{m/d}$ 。由此可知, α 在 F_q 上的特征多项式 $f(x) \in F_q[x]$,将其展开可得

$$f(x) = x^m - (\alpha + \alpha^q + \dots + \alpha^{q^{m-1}})x^{m-1} + \dots + (-1)^m \alpha \alpha^q \cdots \alpha^{q^{m-1}}$$
.

迹

定义 6.3.3 设 $\alpha \in E = F_{q^m}$, $F = F_q$, 定义 α 的迹如下:

$$Tr_{E/F}(\alpha) = \alpha + \alpha^q + \cdots + \alpha^{q^{m-1}}$$
,

可简记为 $Tr(\alpha)$ 。

定理 6.3.4 设 $E=F_{q^m}$, $F=F_q$, $\alpha,\beta\in E$, $c\in F$, 则迹函数 Tr

满足:

- (1) $Tr(\alpha + \beta) = Tr(\alpha) + Tr(\beta)$;
- (2) $Tr(c\alpha) = cTr(\alpha)$;
- (3) Tr(c) = mc;
- (4) $Tr(\alpha^q) = Tr(\alpha)$.

迹的应用

例 6.3.1 试证明有限域 F_{2^n} 上方程 $x^2 + x + \beta = 0$ 有解的充要条件是 $Tr(\beta) = 0$ 。

证明:必要性。假设方程 $x^2 + x + \beta = 0$ 有解,设为 x_0 ,则

$$Tr(0) = Tr(x_0^2 + x_0 + \beta)$$

$$= Tr(x_0^2) + Tr(x_0) + Tr(\beta)$$

$$= Tr(x_0) + Tr(x_0) + Tr(\beta)$$

$$= Tr(\beta)$$

即 $Tr(\beta) = Tr(0) = 0$ 。

迹的应用 (续)

充分性。设 $Tr(\beta) = 0$,分两种情况证明。

当n 是奇数时, 定义函数 $\tau: F_{2^n} \to F_{2^n}$ 为

$$\tau(\beta) = \sum_{j=0}^{(n-1)/2} \beta^{2^{2j}}$$

则有

$$\tau(\beta)^{2} + \tau(\beta) + \beta = \sum_{j=0}^{(n-1)/2} \beta^{2^{2j+1}} + \sum_{j=0}^{(n-1)/2} \beta^{2^{2j}} + \beta$$
$$= Tr(\beta) + \beta + \beta$$
$$= Tr(\beta)$$
$$= 0$$

即当 $Tr(\beta) = 0$ 时, $\tau(\beta)$ 是方程 $x^2 + x + \beta = 0$ 的一个根。可以验证 $\tau(\beta) + 1$ 是

方程 $x^2 + x + \beta = 0$ 的另一个根。

迹的应用 (续)

当n 是偶数时,首先需要找到一个元素 $\delta \in F_{2^n}$, $\delta \neq 1$, $Tr(\delta) = 1$ 。找到这样的 δ 后,

令

$$x_0 = \sum_{i=0}^{n-2} \left(\sum_{j=i+1}^{n-1} \delta^{2^j} \right) \beta^{2^i} ,$$

则当 $Tr(\beta) = 0$ 时, x_0 和 $x_0 + 1$ 就是方程 $x^2 + x + \beta = 0$ 的两个根。因为

$$x_0^2 + x_0 = \sum_{i=1}^{n-1} \left(\sum_{j=i+1}^{n-1} \delta^{2^j} \right) \beta^{2^i} + \sum_{i=0}^{n-2} \left(\sum_{j=i+1}^{n-1} \delta^{2^j} \right) \beta^{2^i}$$

$$= \delta(\beta^{2^{n-1}} + \beta^{2^{n-2}} + \dots + \beta^2) + (\delta^{2^{n-1}} + \delta^{2^{n-2}} + \dots + \delta^2) \beta$$

$$= \delta(Tr(\beta) + \beta) + (Tr(\delta) + \delta) \beta$$

$$= \delta Tr(\beta) + \beta$$

因此, x_0 是方程 $x^2 + x + \beta = 0$ 的一个根。容易验证 $x_0 + 1$ 也是方程 $x^2 + x + \beta = 0$ 的根。

范数

定义 6.3.3 设 $\alpha \in E = F_{q^m}$, $F = F_q$, 定义 α 的范数如下:

$$N_{E/F}(\alpha) = \alpha \alpha^q \cdots \alpha^{q^{m-1}}$$
,

可简记为 $N(\alpha)$ 。

定理 6.3.5 设 $E=F_{q^m}$, $F=F_q$, $\alpha,\beta\in E$, $c\in F$,则范数函数 N 满

足:

- (1) $N(\alpha\beta) = N(\alpha)N(\beta)$;
- (2) $N(c) = c^m$;
- (4) $N(\alpha^q) = N(\alpha)$.

- 6.4 有限域上元素的表示
- ○有限域上元素的三种表示方法:
 - 多项式表示法
 - 本原元表示法
 - 伴随矩阵表示法

多项式表示法

设 p 是素数, $q=p^n$ 。根据推论 **5.3.1** 可知,只要找到 F_p 上一个 n 次不可约多项式 f(x) ,就有

$$F_q = F_p[x]/\langle f(x) \rangle$$
,

取 f(x) 的一个根 α ,根据定理 6.1.5, $F_p(\alpha) \cong F_q$,且 $1, \alpha, \alpha^2, \cdots, \alpha^{n-1}$ 是

 $F_p[\alpha]$ 在 F_p 上的一组基。因此, F_q 中的元素可以表示成 F_p 上 α 的次数小于 n 的多项式,其上的加法为多项式的加法,而乘法为模多项式 $f(\alpha)$ 的乘法。

多项式表示法 (续)

○ 例6.4.1 给出有限域F₉的元素表示,并给出F₉的乘法表。

解: F_0 可以看成是 F_3 通过添加一个二次不可约多项式的根 α 得到的 2 次扩张。

$$f(x) = x^2 + 1$$
 是 F_3 上一个不可约多项式,设 α 是 $f(x)$ 的一个根,即

$$f(\alpha) = \alpha^2 + 1 = 0$$
,则 $1, \alpha$ 是 F_9 在 F_3 上的一组基,从而, F_9 中的元素可以表示

成 F_3 上 α 的次数小于2的多项式,即

$$F_9 = \{0, 1, 2, \alpha, 1 + \alpha, 2 + \alpha, 2\alpha, 1 + 2\alpha, 2 + 2\alpha\}$$

多项式表示法 (续)

乘法表如下:

*	0	1	2	α	$1+\alpha$	$2+\alpha$	2α	$1+2\alpha$	$2+2\alpha$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	α	$1+\alpha$	$2+\alpha$	2α	$1+2\alpha$	$2+2\alpha$
2	0	2	1	2α	$2+2\alpha$	$1+2\alpha$	α	$2+\alpha$	$1+\alpha$
α	0	α	2α	2	$2+\alpha$	$2+2\alpha$	1	$1+\alpha$	$1+2\alpha$
$1+\alpha$	0	$1+\alpha$	$2+2\alpha$	$2+\alpha$	2α	1	$1+2\alpha$	2	α
$2+\alpha$	0	$2+\alpha$	$1+2\alpha$	$2+2\alpha$	1	α	$1+\alpha$	2α	2
2α	0	2α	α	1	$1+2\alpha$	$1+\alpha$	2	$2+2\alpha$	$2+\alpha$
$1+2\alpha$	0	$1+2\alpha$	$2+\alpha$	$1+\alpha$	2	2α	$2+2\alpha$	α	1
$2+2\alpha$	0	$2+2\alpha$	$1+\alpha$	$1+2\alpha$	α	2	$2+\alpha$	1	2α

本原元表示法

设 ξ 是 F_q 中的本原元,则 $F_q = \{0, \xi, \xi^2, \dots, \xi^{q-1}\}$ 。在本原元表示下,乘法很容易实现,但加法

需要结合 F_q 的多项式表示来计算。

例 6.4.2 设 $F_9 = F_3(\xi)$, 其中 ξ 是 F_9 中的本原元, 且 ξ 是多项式

 $x^2 + x + 2$ 的根,则有 $F_9 = \{0, \xi, \xi^2, \dots, \xi^8\}$ 。注意到,若 $\alpha^2 + 1 = 0$,

则 $\xi = 1 + \alpha$ 是多项式 $x^2 + x + 2$ 的根,可建立对应关系: $\xi = 1 + \alpha$,

$$\xi^2=2lpha$$
 , $\xi^3=1+2lpha$, $\xi^4=2$, $\xi^5=2+2lpha$, $\xi^6=lpha$, $\xi^7=2+lpha$,

 $\xi^8 = 1$ 。这样就可以很方面的计算 F_9 中的加法。

伴随矩阵表示法

设 $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$, 定义 f(x) 的伴随矩阵为

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

经过计算有, $f(x) = xI - A = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$, 即 f(x) 是 A 的特征多项式。

因此, $f(A) = A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0I = 0$,其中 I 是单位矩阵。所以 A 可以看作是 f(x) 的根。

利用上述结果可给出有限域中元素的伴随矩阵表示,其加法和乘法均为矩阵的加法和乘法。

伴随矩阵表示法 (续)

例 6.4.3 设 $f(x) = x^2 + 1 \in F_3[x]$, 其伴随矩阵为

$$A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix},$$

所以 F_9 中的元素可以表示为 $F_9 = \{0, I, 2I, A, I + A, 2I + A, 2A, I + 2A, 2I + 2A\}$,其加法和乘法为矩阵的加法和乘法,如

$$(I+A)+A=I+2A=\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$
,

$$A \cdot (I + 2A) = A + 2A^2 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A + I$$

6.5 有限域中的算法

- 素域F_p中的加法和乘法可由第二章介绍的模整数的加法和乘法来实现。求逆运算也可由算法2.5.1来实现。
- \circ 根据 F_{p^n} 中元素的多项式表示, F_{p^n} 中元素的乘法和求逆运算都可以通过模 F_p 上的不可约多项式来实现。

设 f(x) 是 F_p 上的 n 次不可约多项式,取 α 为 f(x) 的根,设 $g(\alpha), h(\alpha) \in F_{p^n}$,则 $g(\alpha), h(\alpha)$ 乘积可以这样得出,先将 $g(\alpha)h(\alpha)$ 按照一般的多项式乘法求积,再以 $f(\alpha)$ 去除得出余式,余式即为所求。

逆元的实现

算法 6.5.1 在 F_{p^n} 中计算乘法逆元

输入: 非零多项式 $g(\alpha) \in F_{p^n}$ (F_{p^n} 中的元素以 f(x) 的根 α 的次数小

于n的多项式形式表示,其中 $f(x) \in F_p[X]$ 是 Z_p 上的次数为n的不可约多项式):

输出: $g(\alpha)^{-1} \in \mathbf{F}_{p^m}$;

- 1、利用适用于多项式的扩展的欧几里得算法 (算法 5.5.2) 得出两个 多项式 $s(\alpha), t(\alpha) \in F_n(\alpha)$,使得 $s(\alpha)g(\alpha) + t(\alpha)f(\alpha) = 1$;
- 2、返回 $(s(\alpha))$ 。

幂运算的实现(重复平方乘)

算法 6.5.2 适用于 F_{n^n} 中幂运算的重复平方乘算法

输入:
$$g(\alpha) \in F_{p^n}$$
,整数 $0 \le k \le p^n - 1$ 其二进制表示为 $k = \sum_{i=0}^t k_i 2^i$ 。

 $(F_{p^n}$ 中的元素以 f(x) 的根 α 的次数小于 n 的多项式形式表

示,其中 $f(x) \in F_p[X]$ 是 F_p 上的次数为 n 的不可约多项式)

输出: $g(\alpha)^k$

幂运算的实现(重复平方乘)

1、
$$\diamondsuit s(\alpha) \leftarrow 1$$
,如果 $k = 0$,返回 $(s(\alpha))$;

2、
$$\diamondsuit$$
 $G(\alpha)$ ← $g(\alpha)$;

3、如果
$$k_0 = 1$$
,则令 $s(\alpha) \leftarrow g(\alpha)$;

4、对i从1到t,作

4.1
$$\diamondsuit G(\alpha) \leftarrow G(\alpha)^2 \mod f(\alpha)$$
;

- **4.2** 如果 $k_i = 1$,则令 $s(\alpha) \leftarrow G(\alpha) \cdot s(\alpha) \mod f(\alpha)$;
- 5、返回 $(s(\alpha))$ 。

有限域运算实现举例

例 6.5.1 考察阶为 16 的有限域 F_{2^4} 。容易验证多项式 $f(x) = x^4 + x + 1$ 在 F_2 上

不可约。设 α 是 f(x) 的一个根。因此有限域 F_{2^4} 可以表示为 α 的所有 F_2 次数小于 4 的多项式集合,即

$$F_{2^4} = \{a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 \mid a_i \in \{0,1\}\}\$$

为方便起见,多项式 $a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0$ 可以用长度为 4 的向量 $(a_3a_2a_1a_0)$ 表示,且

$$F_{2^4} = \{ (a_3 a_2 a_1 a_0) | a_i \in \{0, 1\} \}$$

有限域运算实现举例 (续)

- \circ 域 F_{2^4} 中算术的一些例子:
- (1)域中元素相加,即为对应分量的简单相加,例如 (1011)+(1001)=(0010);
- (2) 要将域中元素(1101)与(1001)相乘,将它们做多项式乘法,再模去 $f(\alpha)$ 得到的乘积,取其余式:

$$(\alpha^3 + \alpha^2 + 1)(\alpha^3 + 1) = \alpha^6 + \alpha^5 + \alpha^2 + 1$$
$$\equiv \alpha^3 + \alpha^2 + \alpha + 1 \pmod{f(\alpha)}$$

- o 因此(1101) ×(1001) =(1111);
- \circ (3) F_{2^4} 的乘法单位元是(0001);
- o (4) (1011) 的逆元是 (0101), 因为:

$$(\alpha^3 + \alpha + 1)(\alpha^2 + 1) = \alpha^5 + \alpha^2 + \alpha + 1$$

$$\equiv 1 \pmod{f(x)}$$

o 即(1011) × (0101)=(0001)。

GF (256) 中运算的快速实现

域 F_2 上的 8 次不可约多项式 $f(x) = x^8 + x^6 + x^5 + x + 1$, α 是 f(x) 的一个

根。因此有限域 F_{18} 可以表示为 α 的所有 F_2 次数小于8的多项式集合,即

$$F_{2^8} = \{a_7\alpha^7 + a_6\alpha^6 + a_5\alpha^5 + a_4\alpha^4 + a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 \mid a_i \in \{0,1\}\}$$

定义一个由 $a_7a_6a_5a_4a_3a_2a_1a_0$ 组成的字节a可表示为系数为 $\{0,1\}$ 的二进制多项式:

$$a_7\alpha^7 + a_6\alpha^6 + a_5\alpha^5 + a_4\alpha^4 + a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0$$

GF (256) 中运算的快速实现

- o 还可以将每个字节表示为一个16进制数,即每4比特表示一个16进制数,代表较高位的4比特的符号仍在左边。例如,01101011可表示为6B。
- 也可以用0-255这256个十进制整数来表示域 中的元素。
- 加法定义为二进制多项式的加法,且其系数模2
- 乘法定义为多项式的乘积模一个次数为8的不可约多项式。
- 元素 "02" 是域 中的一个本原元。

乘法的两种方法

- 直接模多项式m(x)
 - 需要64次GF(2)上乘法以及模多项式运算
- 建立乘法表
 - 需要256×256字节(64K)的存储空间
- 建立指数对数表
 - 512个字节的存储,每次乘法仅需要查表3次和1次加法

指数对数表的建立

- o 域GF(256)中的元素用0-255这256个十进制整数来 表示
- (1) 将元素 '02' 表示成为 α ,依次计算 $\alpha^i \mod(f(\alpha))$, $i = 0,1,\cdots,254$,将 所得结果转变为十进制数,设为 β_i , $i = 0,1,\cdots,254$;如下表所示:
 - (2) 建表。第一行为 $0,1,\dots,254,255$,第二行元素依次为 β_i , $i=0,1,\dots,254$ 。

由于 $\alpha^0 \equiv \alpha^{255} \mod(f(\alpha))$,约定第2行,第255列元素为0。

0	1	2	3	• • •	253	254	255
1	2	4	8	• • •	233	177	0

指数对数表的建立 (续)

(3) 按所建表的第二行元素的大小进行重排列,如下表所示:

255	0	1	197	• • •	72	230	104
0	1	2	3	• • •	253	254	255

(4)将(3)中表的第一行放在(2)中表的第三行,即

序号	0	1	2	3	•••	253	254	255
$(02)^i$	1	2	4	8		233	177	0
$\log_{(02)} i$	255	0	1	197	•••	72	230	104

指数对数表的使用

例 6.5.2 取 F_2 上的 8 次不可约多项式 $f(x) = x^8 + x^6 + x^5 + x + 1$

 α 是 f(x) 的 一 个 根 。 试 求 F_{2^8} 中 元 素 $\alpha+1$ 和

 $\alpha^7 + \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + 1$ 的乘积,并计算 $\alpha + 1$ 的逆元。

解: $\alpha + 1$ 对应于 "03", $\alpha^7 + \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + 1$ 对应于 "253"。通过查 指数对数表可得 $03 = (02)^{197}$, $253 = (02)^{72}$, 因此,

$$(03) \cdot (253) = (02)^{197 + 72 \pmod{255}} = (02)^{14} = 100$$
.

"100"对应于 $\alpha^6 + \alpha^5 + \alpha^2$,即

$$(\alpha+1)(\alpha^7+\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+1) \equiv (\alpha^6+\alpha^5+\alpha^2) \pmod{f(\alpha)}$$

由
$$03 = (02)^{197}$$
,而 $255 - 197 = 58$,所以 $(03)^{-1} = (02)^{58} = 222$ 。

"222"对应于

$$\alpha^7 + \alpha^6 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha$$
,

$$\mathbb{P}(\alpha+1)^{-1} \equiv (\alpha^7 + \alpha^6 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha) \operatorname{mod}(f(\alpha)).$$

实验内容

- 1. 实现2⁸域上元素的**多项式基表示**,实现模多项式的乘法运算和求逆运算,从而 实现2⁸域上元素**乘法运算和逆元运算**。
- 2. 构造指数对数表,从而通过查表实现28域上元素乘法运算和逆元运算。

习题

o P95: 11, 20, 21

公钥密码体制的原理

2018/12/18

13

算法描述

- 选择两个素数p和q (p!=q);
- 计算出n=p*q;
- 计算出f(n)=(p-1)*(q-1);
- 选择一个e使得其与f(n)互素,并且小于f(n);
- 确定d使得de≡1 mod f(n)且d<f(n);

注:f(n)是Euler函数,即小于n且与n互素的正整数的个数.

RSA算法中要用到元素

- 两个素数:p和q;(保密,选定的)
- n=p*q;(公开,计算得出的)
- e,gcd(f(n),e)=1;1<e< f(n);(公开,选定的)
- d≡e-1mod f(n)(保密,计算得出的)

公钥: PK_B={e, n}; 私钥: SK={d, n}

RSA的加密

- 明文:M<n
- 密文:C=M^d(mod n)

RSA的解密

- 明文: C
- 密文:M=Cd(mod n)

RSA算法举例

P=17,q=31,e=7,M=2,d=343;

 $PK_B = \{7, 527\}; SK = \{343, 527\}$

那么,已知p,q和公钥(私钥)如何求私钥呢?

例如: p=7,q=13, 公钥e=5,求私钥d?

RSA的安全性

RSA的安全性主要是依赖于:

大素数的难于分解.

注:现今加密中p,q的取值相当于十进制100位以上的大素数.