

A Sub-band Filter Design Approach for Sound Field Reproduction

Yongjie Zhuang Guochenhao Song Yangfan Liu

Ray W. Herrick Laboratories, school of Mechanical Engineering, Purdue University yangfan@purdue.edu

Content

Introduction

Methodology

• Results

Content

Introduction

Methodology

Results

Statement of research problem

- ☐ Sound field reproduction uses loudspeakers to produce desired sound at locations.
- ☐ When designing filter for sound that spans a wide frequency range:

Low frequency band

longer time span

Large number of filter coefficients

High frequency band

higher sampling frequency

Statement of research problem

An approach is proposed to design filter in a sub-band form:

☐ Design all sub-band filters directly in one optimization problem:

The transition region between two sub-band filters can be designed conveniently

☐ The **computational load** can be reduced even if sub-band filters structure is not required

Content

Introduction

Methodology

Results

Designing filter directly

□ Example:

Use loudspeaker to produce desired sound at certain locations

☐ Cost function:

Minimizing the power of error signal e

□ Constraints:

Filter response $W_x(f)$

Designing filter when sub-band technique is used

□ Example:

Use loudspeaker to produce desired sound at certain locations

☐ Cost function:

Minimizing the power of error signal e

☐ Constraints:

Filter response $W_i(f)$

RAY W. HERRICK

Expressing sub-band filters as one equivalent filter

☐ Conventional method (one single filter)

frequency response of designed filter at frequency f_k :

$$W_{x}(f_{k}) = F(f_{k}, f_{s}, N_{t}) \overrightarrow{w}_{x} , \qquad F(f_{k}, f_{s}, N_{t}) = \begin{bmatrix} e^{-\frac{j2\pi f_{k}}{f_{s}}} & e^{-\frac{j2\pi f_{k}(N_{t}-1)}{f_{s}} \end{bmatrix}$$

 f_s is the sampling frequency, N_t is the number of filter coefficients, \overrightarrow{w}_x is the filter coefficients

☐ Sub-band structure

frequency response of designed filter at frequency f_k :

$$\sum_{i=1}^{N} W_i(f_k) = \sum_{i=1}^{N} \begin{bmatrix} 1 & e^{-\frac{j2\pi f_k}{f_{s_i}}} & \dots & e^{-\frac{j2\pi f_k(N_t-1)}{f_{s_i}}} \end{bmatrix} \vec{w}_i$$

Expressing sub-band filters as one equivalent filter

So designing sub-band filters can be treated as:

designing one filter $\overrightarrow{\widetilde{w}}_{\chi}$ with modified Fourier matrix $\widetilde{F}(f_k)$

$$\widetilde{W}_{x}(f_{k}) = \sum_{i=1}^{N} W_{i}(f_{k}) = \sum_{i=1}^{N} \left[1 \quad e^{-\frac{j2\pi f_{k}}{f_{s_{i}}}} \quad \dots \quad e^{-\frac{j2\pi f_{k}(N_{t}-1)}{f_{s_{i}}}} \right] \overrightarrow{w}_{i} = \widetilde{F}(f_{k}) \overrightarrow{\widetilde{w}}_{x},$$

$$\tilde{F}(f_k) = [F(f_k, f_{S_1}, N_{t_1}) \quad \cdots \quad F(f_k, f_{S_N}, N_{t_N})],$$

$$\vec{\widetilde{w}}_{x} = \begin{bmatrix} \vec{w}_{1} \\ \vdots \\ \vec{w}_{N} \end{bmatrix}$$

So all the sub-band filters can be designed in one optimization problem if designed in the frequency domain. The transition region can be designed more conveniently.

LABORATORI

Overview of proposed design process

Problem formulation

Design Problem Expressed in Convex Problem

Cost function:

Total power of e:

$$\sum_{k=k_1}^{k_2} |E(f_k)|^2, \qquad \overrightarrow{\widetilde{w}}_{\chi}^{\mathrm{T}} \left(\sum_{k=k_1}^{k_2} A_J(f_k) \right) \overrightarrow{\widetilde{w}}_{\chi} + 2 \operatorname{Re} \left(\sum_{k=k_1}^{k_2} b_J^{\mathrm{T}}(f_k) \right) \overrightarrow{\widetilde{w}}_{\chi} + \sum_{k=k_1}^{k_2} c_J(f_k)$$

- Quadratic
- $A_I(f_k)$ p.s.d

Constraints:

Filter response:

The magnitude of frequency response:

$$|W_i(f_k)| \le C_i(f_k)$$

$$|W_i(f_k)| \le C_i(f_k)$$
 $||F(f_k, f_{s_1}, N_{t_1})\overrightarrow{w_i}||_2 - C_i(f_k) \le 0$ Vector norm Convex

Cone Programming Reformulation

Convex Problem

Cost function:

$$\vec{\widetilde{w}}_{x}^{\mathrm{T}} \left(\sum_{k=k_{1}}^{k_{2}} A_{J}(f_{k}) \right) \vec{\widetilde{w}}_{x} + 2 \operatorname{Re} \left(\sum_{k=k_{1}}^{k_{2}} b_{J}^{\mathrm{T}}(f_{k}) \right) \vec{\widetilde{w}}_{x} + \sum_{k=k_{1}}^{k_{2}} c_{J}(f_{k})$$

Constraints:

$$||F(f_k, f_{S_1}, N_{t_1}) \overrightarrow{w}_i||_2 - C_i(f_k) \le 0$$

Standard Cone Programming

Cost function: $c^{T}x$

Constraints: $x \in K_i$, $i = 1, 2, 3 \dots$

$$Ax = b$$

c to be a constant vector

 K_i to be a convex cone

A, b to be a constant matrix and vector

Cone Programming Reformulation

Convex Problem

Cone Programming

Reformulate quadratic cost function

Cost function:
$$x^T A x + b^T x + c$$

Cost function:

$$t_0 + b^{\mathrm{T}} x$$

Constraints:

$$\|\sqrt{A} x\|_2 \le \sqrt{t_0 \, \tilde{t}_0}$$

$$\tilde{t}_0 = 1$$

Linear constraint

The vector norm constraint

Constraints:

$$||x||_2 - c \le 0$$

Constraints:

$$||x||_2 \le t$$

$$t = c$$

Second-order cone

Linear constraint

Cone Programming Reformulation

Convex Problem

Cost function:

$$\vec{\widetilde{w}}_{x}^{\mathrm{T}} \left(\sum_{k=k_{1}}^{k_{2}} A_{J}(f_{k}) \right) \vec{\widetilde{w}}_{x} + 2 \operatorname{Re} \left(\sum_{k=k_{1}}^{k_{2}} b_{J}^{\mathrm{T}}(f_{k}) \right) \vec{\widetilde{w}}_{x} + \sum_{k=k_{1}}^{k_{2}} c_{J}(f_{k})$$

Constraints:

$$||F(f_k, f_{s_1}, N_{t_1}) \vec{w}_i||_2 - C_i(f_k) \le 0$$

Cone Programming

Cost function:

$$t_0 + 2\operatorname{Re}\left(\sum_{k=k_1}^{k_2} b_J^{\mathrm{T}}(f_k)\right) \overrightarrow{\widetilde{w}}_{\chi}$$

Constraints:

$$||F(f_k, f_{s_1}, N_{t_1}) \overrightarrow{w}_i||_2 \le t_{3,k}$$
,

$$t_{3,k} = \mathcal{C}(f_k)$$

A reduced order technique

Sometimes, the designed filter has high frequency response concentrated in small time span:

In this case, \vec{w}_i (with higher sampling frequency) can be chosen to start with $t = M\Delta$, where M > 0, then we have:

$$F_r(f_k, f_s, N_t) = \begin{bmatrix} e^{-\frac{j2\pi f_k M}{f_s}} & e^{-\frac{j2\pi f_k (M+1)}{f_s}} & e^{-\frac{j2\pi f_k (N_t-1)}{f_s}} \end{bmatrix}$$

Content

Introduction

Methodology

• Results

Experimental setup

- An experimental setup for psychoacoustic listening test
- Speaker should produce desired sound at listening location

Experimental setup

 \square Required sampling frequency: 48 kHz (Δ =20.83 us)

 \Box Desired delay: **19200** Δ

☐ Two sub-band filters:

	Sampling frequency	Filter coefficients	Starting time
Filter 1	2.4 kHz	1920	0
Filter 2	48 kHz	3000	17700 ∆

☐ SeDuMi is used to solve the reformulated cone programming problem

Result

The frequency response of both filter around 1200 Hz

Result

The frequency response of $H(f)\widetilde{W}_{\chi}(f)$

$\mathrm{H}(\mathrm{f})\widetilde{W}_{\chi}(f)$ around 1200 Hz

LABORATORIES

Result

Combining two sub-band filters together in time domain

The combination is done by:

- Upsampling the sub-band filter 1 with lower sampling frequency
- Adds the upsampled filter 1 with filter 2

The designed filter coefficients are 1920+3000 = 4920, which is much smaller than $48000 \times \frac{1920}{2400} = 38400$

Content

Introduction

Methodology

Results

- ☐ The proposed method can design sub-band filters for sound field reconstruction in one optimization problem, so designing transition region is more convenient.
- ☐ The optimization problem can be reformulated to a convex problem, then further reformulated to a cone programming problem. These guarantees the global optimal solution can be found in an efficient way.
- ☐ A reduced-order technique can be used to reduce the variables in filter design problem if different frequency bands of required filter have impulse response concentrated in different time intervals.

Q&A

References

- Zhuang, Yongjie, and Yangfan Liu. "Study on the cone programming reformulation of active noise control filter design in the frequency domain." *INTER-NOISE and NOISE-CON Congress and Conference Proceedings*. Vol. 260. No. 1. Institute of Noise Control Engineering, 2019.
- Zhuang, Yongjie, and Yangfan Liu. "Development and application of dual form conic formulation of multichannel active noise control filter design problem in frequency domain." *INTER-NOISE and NOISE-CON Congress and Conference Proceedings*. Vol. 261. No. 6. Institute of Noise Control Engineering, 2020.

