EXERCISES

on

Functional Dependencies, Normalization, Lossless Join

QUESTIONS

Question 1: Consider relation R=(A,B,C,D) with the following FDs:

$$AB \rightarrow C, C \rightarrow D, and D \rightarrow A$$

- a. List all candidate keys of R.
- b. Isf R in 3NF? BCNF??

Question 2: Consider relation S=(A,B,C,D) with the following FDs:

$$A \rightarrow B, B \rightarrow C, C \rightarrow D, and D \rightarrow A$$

- a. List all candidate keys of S.
- b. Is S in 3NF? in BCNF?

Question 3: Given relation R=(A,B,C,D), find if R is in 3NF or BCNF with respect to the following FDs (each Roman-numeral question is separate):

- i. $B \rightarrow C, C \rightarrow A, C \rightarrow D$
- ii. ABC \rightarrow D, D \rightarrow A
- iii. $A \rightarrow C, B \rightarrow D$

Question 4: Consider a relation R=(A,B,C,D,E,F) that satisfies the following four FDs:

$$AB \rightarrow C$$
, $BC \rightarrow AD$, $D \rightarrow E$, $CF \rightarrow B$

Does AB \rightarrow D hold? If so, show a formal proof; otherwise, give a counterexample.

Question 5: Consider a relation R=(A,B,C). For each of the following rules/implications, determine whether it holds (i.e., yes or no). If yes, provide a formal proof; otherwise, give a counterexample.

- i. If $AB \rightarrow C$, then $A \rightarrow C$?
- ii. If AB \rightarrow C, then B \rightarrow C?
- iii. If $AB \rightarrow C$, then $(A \rightarrow C)$ or $(B \rightarrow C)$?

ANSWERS

Question 1:

- a. 3 candidate keys for R: (A,B), (B,C), (B,D)
- b. R is in 3NF, but not in BCNF

Question 2:

- a. 4 candidate keys for S: A, B, C, D
- b. S is in BCNF

Question 3:

- i. B is the candidate key and R is not in 3NF
- ii. (A,B,C), (B,C,D) are candidate keys and R is in 3NF, but not in BCNF
- iii. (A,B) is the key and R is not in 3NF

Question 4:

Yes, $AB \rightarrow D$ holds. Here is a proof:

- 1. $AB \rightarrow B$ reflexivity
- 2. AB \rightarrow BC union: 1 and FD1
- 3. $AB \rightarrow AD$ transitivity: 2 and FD2
- 4. AB \rightarrow D decomposition: 3

Or you can compute {A, B}+

Question 5:

- i. No, counterexample:
 - A B C
 - 1 1 1
 - 1 2 2
- ii. No, counterexample:
 - A B C
 - 1 1 1
 - 2 1 2
- iii. No, counterexample:
 - A B C
 - 1 1 1
 - 1 2 2
 - 2 1 2