Edited VERSioN

ISA design 2.0

Highlighted the changed parts

PC	Functionality	Instruction	Coding	Example	Ex ML
PC++	Rx = Mem[Ry]	Lw rx,ry	000 xx yy	Lw R1,R1	0000101
PC++	Mem[Ry] = Rx	Sw Rx, Ry	001 xx yy	Sw R1,R1	0010101
PC++	Rx+Ry	Add Rx,Ry	010 xx yy	Add R1,R2	0100110
PC++	If Rx < Ry then R0 = 1 Otherwise R0=0	Slt Rx,Ry	0110 x yy	Slt R1,R2	0110010
PC= PC+imm	If R(0,1)=0 then PC + R(0,1,2,3)	Beqz Rx, Ry	0111 x yy	beqz R1,R3	0111111
PC++	Rx-Ry	Sub Rx,Ry	100 xx,yy	Sub R1,R1	1000101
PC++	Rx = Ry AND 1	Andi Rx,Ry	101 xx yy	Andi R0,R2	1010010
PC++	Rx = imm [-4,3]	Li Rx iii	110 x iii	Li R0, -4	1100111
PC++	Rx = Rx-1	Subi Rx	11100 Rx	Subi R3	1110011
PC++	R0=R0 XOR Rx	XOR Rx	11101 Rx	Xor R1	1110101
PC++	Rx >> 1	SRL Rx	11110 Rx	Srl R2	1111010
PC= PC+Rx	PC+Rx	J Rx	11111 Rx	J R2	1111110
PC = 0	End Program	HALT	0111000	N/A	N/A

1. Justification for Beqz Change:

- a. Provides beqz with more flexibility with what it's comparing and give it the ability to jump anywhere
- b. Provides more options

Will have to use Beqz less frequently thus reducing the DIC

ISA 1.0 OLD

PC	Functionality	Instruction	Coding	Example	Ex ML
PC++	Rx = Mem[Ry]	Lw rx,ry	000 xx yy	Lw R1,R1	0000101
PC++	Mem[Ry] = Rx	Sw Rx, Ry	001 xx yy	Sw R1,R1	0010101
PC++	Rx+Ry	Add Rx,Ry	010 xx yy	Add R1,R2	0100110
PC++	If Rx < Ry then R0 = 1 Otherwise R0=0	Sit Rx,Ry	0110 x yy	Sit R1,R2	0110010
PC= PC+imm	If R0=0 then PC + imm [0,7]	Beqz iii	0111 iii	beqz 2	0111010
PC++	Rx-Ry	Sub Rx,Ry	100 xx,yy	Sub R1,R1	1000101
PC++	Rx = Ry AND 1	Andi Rx,Ry	101 xx yy	Andi R0,R2	1010010
PC++	Rx = imm [-4,3]	Li Rx iii	110 x iii	Li R0, -4	1100111
PC++	Rx = Rx-1	Subi Rx	11100 Rx	Subi R3	1110011
PC++	R0=R0 XOR Rx	XOR Rx	11101 Rx	Xor R1	1110101
PC++	Rx >> 1	SRL Rx	11110 Rx	Srl R2	1111010
PC= PC+Rx	PC+Rx	J Rx	11111 Rx	J R2	1111110
PC = 0	End Program	HALT	0111000	N/A	N/A