

LOGIC GATES

INTRODUCTION

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Logic Gates

- Logic Symbol
- Truth Table
- Timing Diagram

LOGIC GATES

INVERTER

The <u>inverter</u> (NOT gate) performs the operation called inversion or <u>complementation</u>.

Logic Symbol

Truth Table

A	Y
0	1
1	0

Given the inverter network, determine the logic levels at points E and F when a LOW signal is applied at point A.

$$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E = C$$

$$F = 1$$

AND GATE

The <u>AND</u> gate is one of the basic gates that can be combined to form any logic function. It performs logical <u>multiplication</u>.

Logic Symbol

$$\begin{array}{ccc}
A & & \\
B & & \\
\end{array}$$

$$Y = AB$$

Truth Table

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

For the 3-input AND gate, determine the output waveform in relation to the inputs.

OR GATE

The <u>OR</u> gate is another basic gates from which all logic functions are constructed. It performs logical <u>addition</u>.

Logic Symbol

$$\begin{array}{ccc}
A & & \\
B & & \\
\end{array}$$

$$Y = A + B$$

Truth Table

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

For the 3-input OR gate, determine the output waveform in relation to the inputs.

NAND GATE

The NAND gate is a logical complement of the AND gate. It is considered a universal gate, meaning it can be used in combination to perform AND, OR, and inverter operations.

Logic Symbol

Truth Table

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

For the 4-input NAND gate, operating as negative-OR gate, determine the output with respect to the inputs.

Bubble indicates active-LOW input

NOR GATE

NOR gate is also a universal gate, and it is the logical complement of the OR gate.

Logic Symbol

$$\begin{array}{ccc}
A & & \\
B & & \\
\end{array}$$

$$Y = \overline{A + B}$$

Truth Table

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

As part of an aircraft's functional monitoring system, a circuit is required to indicate the status of the $\zeta_1 = 0$ $\zeta_2 = 0$ $\zeta_3 = 0$ landing gears prior to landing. A green LED display turns on if all three gears are properly extended when the "gear down" switch has been activated in preparation for landing. A red LED display turns on if any of the gears fail to extend properly prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

As part of an aircraft's functional monitoring system, a circuit is required to indicate the status of the $\zeta_1 = 0$ $\zeta_2 = 0$ $\zeta_3 = 0$ landing gears prior to landing. A green LED display turns on if all three gears are properly extended when the "gear down" switch has been activated in preparation for landing. A red LED display turns on if any of the gears fail to extend properly prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

EXCLUSIVE-OR GATE

The exclusive-OR (XOR) gate performs modulo-2 addition.

Logic Symbol

$$\begin{array}{ccc}
A & & \\
B & & \\
\end{array}$$

$$Y = A \oplus B$$

Truth Table

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

EXCLUSIVE-NOR GATE

The exclusive-NOR (XNOR) gate is the logical complement of the XOR gate.

Logic Symbol

Truth Table

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Determine the output waveforms for the XOR gate and for the XNOR gate, given the input waveforms, A and B.

In the simple programmed AND array with programmable links, determine the Boolean output expressions.

IC PACKAGES

DIP (Dual In-line Package)

SOIC (Small-Outline IC)

Datasheet links

7404-Inverter Gate datasheet

7408-AND Gate datasheet

7432-OR Gate datasheet

7403-NAND Gate datasheet

7402-NOR Gate datasheet

74136-XOR Gate datasheet

74266-XNOR Gate datasheet

PIN CONFIGURATION

Hex inverter

Quad 2-input OR

Quad 2-input NOR

Quad 2-input AND

Quad 2-input NAND

Quad 2-input XNOR

Quad 2-input XOR

LABORATORY

