Классическое машинное обучение.

Курсовая работа (vo_PJ)

Отчёт

Выполнил: Душкин Василий Алексеевич

Введение:

На основании предоставленных данных от химиков необходимо построить прогноз, позволяющий подобрать наиболее эффективное сочетание параметров для создания лекарственных препаратов.

Датасет включает в себя 1001 запись, содержащую 214 признаков.

					/ / 1	,2	1		
]	df.head()								
7	Unnamed	: IC50, mM	CC50, mM	SI	MaxAbsEStateIndex	MaxEStateIndex	MinAbsEStateIndex	MinEStateIndex	
	0	6.239374	175.482382	28.125000	5.094096	5.094096	0.387225	0.387225	(
	1	0.771831	5.402819	7.000000	3.961417	3.961417	0.533868	0.533868	(
	2	2 223.808778	161.142320	0.720000	2.627117	2.627117	0.543231	0.543231	(
	3	3 1.705624	107.855654	63.235294	5.097360	5.097360	0.390603	0.390603	(
	4	4 107.131532	139.270991	1.300000	5.150510	5.150510	0.270476	0.270476	(

5 rows × 214 columns

Описание данных:

Некоторые из ключевых характеристик включают:

IC50, мМ — концентрация вещества, при которой наблюдается 50% ингибирование активности (измеряет эффективность лекарства), выраженная в миллимолях.

СС50, мМ — концентрация, вызывающая гибель 50% клеток (измеряет токсичность), также в миллимолях.

SI (селективный индекс) — определяется как отношение СС50 к IС50 и отражает терапевтическое окно.

1. EDA:

Делаем первичный анализ

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000

Columns: 214 entries, Unnamed: 0 to fr urea

dtypes: float64(107), int64(107)

memory usage: 1.6 MB

Датасет включает в себя 1001 запись, содержащую 214 признаков.

В качестве первого шага мы вычислим медианные значения для всех трех признаков.

Медианы столбцов

IC50, mM: 46.58518345980803 CC50, mM: 411.0393423370522

SI: 3.846153846153846

Количество пропущенных значений:

MaxPartialCharge 3 MinPartialCharge 3 MaxAbsPartialCharge 3 MinAbsPartialCharge 3 BCUT2D MWHI 3 **BCUT2D MWLOW** 3 BCUT2D CHGHI 3 BCUT2D CHGLO 3 BCUT2D LOGPHI 3 BCUT2D LOGPLOW 3 BCUT2D MRHI 3 **BCUT2D MRLOW** 3

В общей сложности данные с пропусками составляют лишь 3 записи, что эквивалентно 0,3% от всего объема датасета. Таким образом, эти записи можно безопасно удалить. Также мы исключим первый столбец, поскольку он не содержит значимой информации.

Анализ IC50, mM

```
target = 'IC50, mM'
df[target].describe()
```

	IC50, mM	
count	998.000000	
mean	221.118757	
std	400.510657	
min	0.003517	
25%	12.491340	
50%	45.992006	
75%	224.408630	
max	4128.529377	

Корреляции между IC50, mM и

VSA_EState4 составляет: -0.2820 MinEStateIndex составляет: -0.2532 SlogP_VSA5 составляет: -0.2383 PEOE VSA7 составляет: -0.2303

Chi2v составляет: -0.2292 Chi2n составляет: -0.2280

NumAliphaticCarbocycles составляет: -0.2279

Chi4v составляет: -0.2249Chi4n составляет: -0.2203Chi3v составляет: -0.2180

SMR_VSA4 составляет: -0.2149

Chi3n составляет: -0.2148

VSA_EState7 составляет: -0.2131 EState_VSA8 составляет: -0.2113

NumSaturatedCarbocycles составляет: -0.2071 NumSaturatedHeterocycles составляет: 0.2117

fr alkyl halide составляет: 0.2363

CC50, mM составляет: 0.4124

Тепловая карта

Анализ СС50, тМ

target = 'CC50, mM'
<pre>df[target].describe()</pre>

	CC50, mM
count	998.000000
mean	586.668414
std	642.016454
min	0.700808
25%	99.999036
50%	408.793314
75%	891.770961
max	4538.976189

Анализ SI

```
target = 'SI'
print(f"Описательная статистика для {target}:")
df[target].describe()
```

Описательная статистика для SI:

SI

count	998.000000
mean	72.650005
std	685.504279
min	0.011489
25%	1.457233
50%	3.856410
75%	16.525000
max	15620.600000

Корреляционный анализ показывает, что признак SI имеет значимую корреляцию только с IC50 и fr_Imine.

fr_Imine — это дескриптор, который подсчитывает количество иминных групп в молекуле.

2. регрессия ІС50

Топ-10 наиболее важных дескрипторов для IC50:

0.016481

	0
BCUT2D_MWLOW	0.187558
VSA_EState4	0.056110
Chi1n	0.049614
Kappa2	0.032389
BCUT2D_MRLOW	0.026263
Chi4v	0.022165
MinEStateIndex	0.019823
FpDensityMorgan1	0.017069
EState_VSA5	0.016864

dtype: float64

Chi1v

Рез	Результаты моделей (таргет: IC50, mM):					
	Model	MSE	RMSE	MAE	r2	
0	KNN	141572.045065	376.260608	225.628585	0.012167	
1	Random Forest	111768.740873	334.318323	194.204800	0.220123	
2	Gradient Boosting	118481.640735	344.211622	195.888401	0.173283	
3	HistGradientBoosting	95274.069624	308.664980	191.231119	0.335216	
4	AdaBoostRegressor	198698.722474	445.756349	371.003872	-0.386440	
5	XGBoost	142558.931675	377.569771	197.890063	0.005281	
6	CatBoost	119182.138803	345.227662	189.800134	0.168395	

наилу	/чшии	резу	льтат	

	Model	MSE	RMSE	MAE	r2
3 HistG	GradientBoosting	95274.069624	308.66498	191.231119	0.335216

3. регрессия СС50

Топ-10 наиболее важных дескрипторов для ІС50:

	0
Chi1	0.096628
Kappa2	0.057268
LabuteASA	0.050829
BCUT2D_MWLOW	0.045647
FpDensityMorgan1	0.030224
Kappa3	0.026649
Chi1n	0.025900
BCUT2D_MRLOW	0.024828
SPS	0.023210
BCUT2D_CHGLO	0.021536

Результаты моделей (таргет: CC50, mM):					
	Model	MSE	RMSE	MAE	r2
0	KNN	329130.739724	573.699172	427.787672	0.202105
1	Random Forest	174854.330334	418.155868	290.524837	0.576109
2	Gradient Boosting	171916.254416	414.627851	304.738134	0.583232
3	HistGradientBoosting	150649.531050	388.135970	278.924685	0.634788
4	AdaBoostRegressor	253871.254925	503.856383	434.282687	0.384553
5	XGBoost	187333.221960	432.820080	285.593407	0.545858
6	CatBoost	165651.136417	407.002625	278.048167	0.598420

Наилучший результатModelMSERMSEMAEr23 HistGradientBoosting150649.53105388.13597278.9246850.634788

4. регрессия SI

Топ-10 наиболее важных дескрипторов для ІС50:

	0
VSA_EState6	0.399126
VSA_EState9	0.083731
FpDensityMorgan1	0.033675
MinPartialCharge	0.026929
BalabanJ	0.026566
Chi1	0.023823
MaxPartialCharge	0.021419
qed	0.017184
Chi1n	0.016737
Kappa3	0.016715

Результаты моделей (таргет: SI):

	Model	MSE	RMSE	MAE	r2
0	KNN	1.221340e+06	1105.142410	181.916912	0.116976
1	Random Forest	1.620292e+06	1272.906985	213.540525	-0.171466
2	Gradient Boosting	2.489946e+06	1577.956395	257.932775	-0.800223
3	HistGradientBoosting	1.284243e+06	1133.244456	189.409971	0.071497
4	AdaBoostRegressor	2.480675e+06	1575.016015	285.854219	-0.793520
5	XGBoost	1.984235e+06	1408.628915	202.759415	-0.434595
6	CatBoost	2.423124e+06	1556.638701	253.662441	-0.751910

Наилучший результат

Model MSE RMSE MAE r2 0 KNN 1.221340e+06 1105.14241 181.916912 0.116976

5 Классификация ІС50 медианное значение выборки

Добавляем новые данные.

a. iC50 Median

Получили новые признаки: ['MolLogP_MolWt', 'MolLogP^2', 'MolLogP MolWt', 'MolWt^2', 'MolLogP_gt_3'] б.

HistGradientBoosting

CatBoost

KNN

Gradient Boosting

XGBoost

Результаты классификации:

	Model	Precision	Recall	F1 Score	Accuracy	ROC-AUC
0	Logistic Regression	0.875000	0.074468	0.137255	0.534392	0.529395
1	KNN	0.629213	0.595745	0.612022	0.624339	0.659966
2	Random Forest	0.695122	0.606383	0.647727	0.671958	0.776596
3	Gradient Boosting	0.750000	0.638298	0.689655	0.714286	0.809462
4	HistGradientBoosting	0.720930	0.659574	0.688889	0.703704	0.777324
5	XGBoost	0.714286	0.638298	0.674157	0.693122	0.773292
6	CatBoost	0.720930	0.659574	0.688889	0.703704	0.794905

Наилучший результат

Model Precision Recall F1 Score Accuracy ROC-AUC
3 Gradient Boosting 0.75 0.638298 0.689655 0.714286 0.809462

6 Классификация СС50 медианное значение выборки.

Добавляем новые данные.

a. CC50 Median

Получили новые признаки: ['MolLogP_MolWt', 'MolLogP^2', 'MolLogP MolWt', 'MolWt^2', 'MolLogP_gt_3'] δ .

	Model	Precision	Recall	F1 Score	Accuracy	ROC-AUC
0	Logistic Regression	0.497354	1.000000	0.664311	0.497354	0.489362
1	KNN	0.566265	0.500000	0.531073	0.560847	0.585946
2	Random Forest	0.818182	0.670213	0.736842	0.761905	0.852632
3	Gradient Boosting	0.776316	0.627660	0.694118	0.724868	0.870773
4	HistGradientBoosting	0.802469	0.691489	0.742857	0.761905	0.855879
5	XGBoost	0.762500	0.648936	0.701149	0.724868	0.831691
6	CatBoost	0.797468	0.670213	0.728324	0.751323	0.878052

Наилучший результат

Model Precision Recall F1 Score Accuracy ROC-AUC 6 CatBoost 0.797468 0.670213 0.728324 0.751323 0.878052

07 Классификация SI медианное значение выборки Добавляем новые данные.

a. SI Median

Получили новые признаки: ['MolLogP_MolWt', 'MolLogP^2', 'MolLogP MolWt', 'MolWt^2', 'MolLogP_gt_3'] δ .

Random Forest

HistGradientBoosting

CatBoost

Gradient Boosting

XGBoost

Результаты классификации:

	Model	Precision	Recall	F1 Score	Accuracy	ROC-AUC
0	Logistic Regression	0.000000	0.000000	0.000000	0.502513	0.576869
1	KNN	0.600000	0.545455	0.571429	0.592965	0.621414
2	Random Forest	0.731183	0.686869	0.708333	0.718593	0.759040
3	Gradient Boosting	0.725275	0.666667	0.694737	0.708543	0.749192
4	HistGradientBoosting	0.670103	0.656566	0.663265	0.668342	0.740707
5	XGBoost	0.676471	0.696970	0.686567	0.683417	0.731566
6	CatBoost	0.718750	0.696970	0.707692	0.713568	0.767374

Наилучший результат
Model Precision Recall F1 Score Accuracy ROC-AUC
CatBoost 0.71875 0.69697 0.707692 0.713568 0.767374

8 Классификация превышает ли значение SI значение 8 Добавляем новые данные.

a. SI 8

Получили новые признаки: ['MolLogP_MolWt', 'MolLogP^2', 'MolLogP MolWt', 'MolWt^2', 'MolLogP_gt_3'] б.

Модель

Результаты классификации:

	Model	Precision	Recall	F1 Score	Accuracy	ROC-AUC
0	Logistic Regression	0.000000	0.000000	0.000000	0.648241	0.540310
1	KNN	0.519231	0.385714	0.442623	0.658291	0.539313
2	Random Forest	0.675676	0.357143	0.467290	0.713568	0.716334
3	Gradient Boosting	0.577778	0.371429	0.452174	0.683417	0.711406
4	HistGradientBoosting	0.586957	0.385714	0.465517	0.688442	0.713400
5	XGBoost	0.652174	0.428571	0.517241	0.718593	0.686711
6	CatBoost	0.694444	0.357143	0.471698	0.718593	0.728018

Наилучший результат

Model Precision Recall F1 Score Accuracy ROC-AUC 6 CatBoost 0.694444 0.357143 0.471698 0.718593 0.728018

Выводы:

У регрессии ІС50

Наилучший результат

	Model	MSE	RMSE	MAE	r2
3	HistGradientBoosting	95274.069624	308.66498	191.231119	0.335216

У регрессии СС50

Наилучший результат
Model MSE RMSE MAE r2
3 HistGradientBoosting 150649.53105 388.13597 278.924685 0.634788

У регрессии SI

Наилучший результат Model MSE RMSE MAE r2 0 KNN 1.221340e+06 1105.14241 181.916912 0.116976

У классификации ІС50 медианное значение выборки

Наилучший результат

Model Precision Recall F1 Score Accuracy ROC-AUC

Gradient Boosting 0.75 0.638298 0.689655 0.714286 0.809462

У классификации СС50 медианное значение выборки.

Наилучший результат
Model Precision Recall F1 Score Accuracy ROC-AUC
6 CatBoost 0.797468 0.670213 0.728324 0.751323 0.878052

У классификации SI медианное значение выборки

Наилучший результат
Model Precision Recall F1 Score Accuracy ROC-AUC
6 CatBoost 0.71875 0.69697 0.707692 0.713568 0.767374

У классификации превышающее значение SI значение 8

Наилучший результат
Model Precision Recall F1 Score Accuracy ROC-AUC
6 CatBoost 0.694444 0.357143 0.471698 0.718593 0.728018