

Estrutura de Dados Avançada

Daniel de Sousa Moraes danielmoraes14@gmail.com

Radix Sort

- Ordena os elementos processando dígito a dígito (bit a bit)
- Supondo que os elementos são definidos em um sistema númerico e com uma certa quantidade de dígitos
- Ordena em múltiplas passadas
 - Distribui cada elemento em listas (compartimentos) de acordo com o valor do dígito verificado
- Os elementos processado são frequentemente chamados de "chaves", e podem ser strings de caracteres ou números

Radix Sort

- Pode ser usado para ordenar a partir do dígito menos significativo (LSD) ou do dígito mais significativo (MSD)
- No LSD, chaves curtas vem antes das chaves longas e chaves de mesmo tamanho são ordenadas lexicograficamente.
- O MSD é o inverso

Radix Sort

```
radixSort(V, d)
for i = 1 to d
ordenar V sobre o dígito i
```

Exemplo Radix Sort

Para inteiros, o número de compartimentos (listas) é 10, 0 a
9.

- 134
- 286
- 130
- 467
- 981
- 723
- 832
- 67

- ****
- 134 130
- 286 981
- 130 832
- 468 723
- 98**1** 134
- 72<mark>3</mark> 286
- 83<mark>2</mark> 67
- 67 468

```
• 723
          • 130
• 134
          • 981
                    • 130
• 286
          • 832
                    • 832
• 130

    723

                    • 134
 468
• 981
          134
                    • 67
          286
                      468
• 723
             67
                      981
 832
          468
                    • 286
• 67
```

		↓	
• 134	• 130	• 7 23	• 67
• 286	• 981	130	• 130
• 130	• 832	 832 	• 134
• 468	• 723	134	• 286
• 981	• 134	067	• 468
• 723	• 286	468	• 723
• 832	• 67	 981 	• 832
• 67	• 468	286	• 981

- 134 Qual o intervalo das chaves? (quantidade de
- 286 compartimentos) Inteiros
- 130
- 467
- 981
- 723
- 832
- 67

```
0-
• 134
• 286
         2-
• 130
         3→
 467
         4-
• 981
         5→
• 723
         6→
• 832
          7→
  67
```

```
134
• 286
• 130
• 467
          4 → 134
• 981
          5→
• 723
          6→
• 832
          7→
  67
```

```
• 134
286
• 130
          3→
• 467
          4 → 134
• 981
          5→
• 723
          6→286
• 832
          7→
  67
```

```
0 - 130
• 134
• 286
• 130
          3→
• 467
          4 → 134
• 981
          5→
• 723
          6→286
• 832
          7→
  67
```

```
0 - 130
• 134
• 286
          2-
• 130
          3→
• 467
          4 → 134
• 981
• 723
          6→286
• 832
          7 → 467
  67
```

```
0 - 130
• 134
          1 → 981
• 286
          2-
• 130
          3→
• 467
          4 → 134
• 981
          5→
• 723
          6→286
• 832
          7→467
  67
```

```
0 - 130
• 134
          1-981
• 286
          2-
• 130
          3 - 723
• 467
          4 → 134
• 981
          5→
723
          6→286
• 832
          7→467
  67
```

```
0 - 130
• 134
          1-981
• 286
          2-832
• 130
          3 - 723
 467
          4 → 134
• 981
          5→
• 723
          6→286
• 832
          7→467
   67
```

```
0 - 130
• 134
          1-981
• 286
          2-832
• 130
          3 - 723
 467
          4 → 134
• 981
          5→
• 723
          6→286
 832
          7 - 467 - 67
   67
          8-
```

↓	0 → 130	0-
• 134	1 → 981	1→
• 286	2 → 832	2_
• 130	3→723	3 →
• 467	4→134	4 →
• 981	5 →	5 →
• 723	6→286	6 →
• 832	7 → 467 → 67	7-
• 67	8 -	8→
	9-	9-

↓	0 → 130	0 -
• 134	1 → 981	1 →
• 286	2 → 832	2 _→ 723
• 130	3 → 723	3 → 130 → 832 → 134
467	4 → 134	4
• 981	5 →	5→
• 723	6 → 286	6 →
• 832	7 → 467 → 67	7 → 467 → 67
• 67	8-	8→981→286
	9 →	9→

↓	0 -	0 -
• 134	1 →	1 →
• 286	2→	2 → 723
• 130	3→	3 → 130 → 832 - 1 34
467	4 →	4
• 981	5 →	5 →
• 723	6→	6 →
• 832	7→	7 → 467 → 67
• 67	8-	8→981→286
	9→	9-

↓	0 → 67	0 →
• 134	1 → 130 → 134	1→
• 286	2 → 286	2 → 723
• 130	3→	3 → 130 → 832 → 134
• 467	4 → 4 67	4 →
• 981	5 →	5→
• 723	6→	6 →
• 832	7 → 723	7 → 467 → 67
• 67	8 → 832	8→981→286
	9→981	9→

```
0 - 67
• 134
           1 → 130 → 134
 286
          2-286
 130
          3→
  467
          4-467
                          67 130 134 286 467 723 832 981
• 981
          5→
 723
          6→
 832
          7→723
   67
          8→832
          9 -> 981
```

Radix Sort e Bucket Sort

 Usando o algoritmo estável (Counting Sort) para ordenar os números por cada bit, temos O (d(n+k)), onde d é o número de dígitos e que o algoritmo estável leva O(n+k)

Bibliografia

Cormen, Thomas H. et al. Algoritmos.; [tradução Arlete Simille]. 3ª ed - Rio de Janeiro - Elsevier, 2011.

Carlos de Salles Soares Neto - Notas de Aula da Disciplina de ED II - UFMA