Analysis I

Nutan Nepal

September 20, 2022

Homework 1

1. Choose either d_1 or d_2 below and show that it is a metric on \mathbb{R}^n .

$$d_1(x,y) = max\{|x_i - y_i|\}$$
 and $d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$ (taxicab metric).

Solution:

i. Since d_2 is a finite sum of positive numbers, $0 \le d_2(x,y) < \infty$.

ii. $d_2(x, y) = d_2(y, x)$ since $|x_i - y_i| = |y_i - x_i|$ for all *i*.

iii. $d_2(x,x) = 0$ since it is the sum of zeros.

iv. Since we have $|x_i - z_i| = |(x_i - y_i) + (y_i - z_i)| \le |x_i - y_i| + |y_i - z_i|$ (using triangle inequality for each $x_i, y_i, z_i \in \mathbf{R}$), we get

$$d_2(x,z) = \sum_{i=1}^n |x_i - z_i| \le \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) = d_2(x,y) + d_2(y,z).$$

Hence, d_2 also satisfies the triangle inequality for $x, y, z \in \mathbb{R}^n$.

Thus, d_2 is a metric in \mathbb{R}^n .

2. Let C[0,1] be the space of continuous functions on [0,1].

Show that $d(f,g) = \int_0^1 |f(x) - g(x)| dx$ is a metric on C[0,1]

Solution: For all $f \in C[0,1]$, f is bounded. Let |f(x)| < M and |g(x)| < N for $x \in [0,1]$.

i. Then $0 \le \int_0^1 |f(x) - g(x)| dx \le \int_0^1 |f(x)| + |g(x)| dx \le (M+N)(1-0) < \infty$. Hence $0 \le d(f,g) < \infty$.

ii. d(f,g) = d(g,f) since |f(x) - g(x)| = |g(x) - f(x)| for all $x \in [0,1]$.

iii. d(f, f) = 0 since it is the integration of zero function.

iv. For each $x \in [0,1]$ and $f,g,h \in C[0,1]$, we have $|f(x) - h(x)| = |(f(x) - g(x)) + (g(x) - h(x))| \le |f(x) - g(x)| + |g(x) - h(x)|$ (using triangle inequality for real numbers). Then

$$d(f,h) = \int_0^1 |f(x) - h(x)| dx \le \int_0^1 (|f(x) - g(x)| + |g(x) - h(x)|) dx = d(f,g) + d(g,h).$$

1

Hence, d satisfies the triangle inequality for $f, g, h \in C[0, 1]$.

Thus, d is a metric on C[0,1].

- 3. Let $x = \{x_n\}_1^{\infty}$ be a sequence.
 - a. True or False: If $x \in l^p$ for some $1 \le p < \infty$, then $x_n \to 0$ as $n \to \infty$. Justify your answer.

Solution: True. If $x \in l^p$ for some $1 \le p < \infty$, then $(\sum_1^\infty |x_i|^p)^{1/p} < \infty$. Hence $\sum_i^\infty |x_i|^p$ is a convergent series and $|x_i|^p \to 0$ as $i \to \infty$ which implies that $x_i \to 0$ as $i \to \infty$.

b. True or False: If $x_n \to 0$ as $n \to \infty$, then $x_n \in l^p$, for some $1 \le p < \infty$. Justify your answer.

Solution: False. The sequence given by $x = \{x_i = \frac{1}{\log(i+1)}\}_1^{\infty} \to 0$ as $i \to \infty$ but the sum $\sum_{i=1}^{\infty} |x_i|^p$ does not converge for any $1 \le p < \infty$. So, $x \notin l^p$ for any $1 \le p < \infty$.

4. Let $a, b \ge 0$, and $p \ge 1$. Prove that

$$(a+b)^p \le 2^{p-1}(a^p + b^p).$$

Solution: Let $f(x) = x^p$, $f: [0, \infty) \to \mathbf{R}$ and $p \ge 1$. Since f is a *convex* function, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
 for $\alpha \in [0, 1]$.

Taking $\alpha = 1/2$, we get

$$f\left(\frac{a}{2} + \frac{b}{2}\right) \le \frac{f(a)}{2} + \frac{f(b)}{2}$$
or,
$$\frac{1}{2^{p}}f(a+b) \le \frac{1}{2}(f(a) + f(b))$$
or,
$$(a+b)^{p} \le 2^{p-1}(a^{p} + b^{p}). \quad \Box$$

5. For p > 1, let q be its conjugate, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. Prove the **Young's Inequality**:

$$u \cdot v \le \frac{1}{p}u^p + \frac{1}{q}v^q, \quad \forall u, v \ge 0$$

Solution: If either u or v equals 0, then the inequality follows immediately. Suppose u > 0, v > 0 and let $f(x) = e^x$. Since f is a *convex* function,

$$u \cdot v = \exp\left(\log u + \log v\right)$$

$$= f\left(\frac{1}{p}\log u^p + \frac{1}{q}\log v^q\right)$$

$$\leq \frac{1}{p}f(\log u^p) + \frac{1}{q}f(\log v^q)$$

$$= \frac{u^p}{p} + \frac{v^q}{q}. \quad \Box$$

6. Prove Holder's Inequality for Sums.

Solution:

Holder's inequality: Let $p, q \ge 1$ be conjugate exponents. Let $x = \{x_i\}_1^\infty \in l^p$ and $y = \{y_i\}_1^\infty \in l^q$. Then

a.
$$xy = \{x_i y_i\}_1^\infty \in l^1$$
 and

b.
$$\sum_{1}^{\infty} |x_i y_i| \le \left(\sum_{1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{1}^{\infty} |y_i|^q\right)^{\frac{1}{q}}$$
.

Let $u_i = \frac{x_i}{\left(\sum_{1}^{\infty}|x_i|^p\right)^{1/p}}$ and $v_i = \frac{y_i}{\left(\sum_{1}^{\infty}|y_i|^q\right)^{1/q}}$. Then by Young's inequality,

$$u_i \cdot v_i = \frac{x_i}{\left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p}} \cdot \frac{y_i}{\left(\sum_{1}^{\infty} |y_i|^q\right)^{1/q}}$$
$$\leq \frac{x_i^p}{p \sum_{1}^{\infty} |x_i|^p} + \frac{y_i^q}{q \sum_{1}^{\infty} |y_i|^q}$$

Let $m = (\sum_{1}^{\infty} |x_i|^p)^{1/p}$ and $n = (\sum_{1}^{\infty} |y_i|^q)^{1/q}$. Then from above we have

$$\begin{split} \sum_{1}^{\infty} |x_i y_i| &= mn \sum_{1}^{\infty} |u_i v_i| \leq mn \sum_{1}^{\infty} \left| \frac{1}{pm^p} x_i^p + \frac{1}{qn^q} \cdot y_i^q \right| \leq mn \left(\frac{1}{pm^p} \cdot \sum_{1}^{\infty} |x_i^p| + \frac{1}{qn^q} \sum_{1}^{\infty} |y_i^q| \right) \\ &= mn \left(\frac{1}{pm^p} \cdot m^p + \frac{1}{qn^q} \cdot n^q \right) = mn \end{split}$$

Hence $\sum_{1}^{\infty}|x_iy_i| \leq mn = \left(\sum_{1}^{\infty}|x_i|^p\right)^{1/p} \cdot \left(\sum_{1}^{\infty}|y_i|^q\right)^{1/q}$ which proves (b). Since $0 \leq \sum_{1}^{\infty}|x_iy_i| < \infty$, we also have (a) by definition.

7. Prove Minkowski's Inequality for Sums.

Solution:

Minkowski's inequality: Let $p \ge 1$ and $x = \{x_i\}_1^\infty \in l^p$ and $y = \{y_i\}_1^\infty \in l^p$. Then

a.
$$x + y = \{x_i + y_i\}_{1}^{\infty} \in l^p \text{ and } l^p = 1$$

b.
$$\left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{1}^{\infty} |y_i|^p\right)^{\frac{1}{p}}$$
.

First we show that $x + y \in l^p$ by showing that

$$\left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/p} < \infty$$

We have,

$$\sum_{1}^{\infty} |x_i + y_i|^p \le \sum_{i}^{\infty} (|x_i| + |y_i|)^p \le 2^{p-1} \left(\sum_{i}^{\infty} |x_i|^p + \sum_{i}^{\infty} |y_i|^p \right) < \infty.$$

Now, since $x, y \in l^p$, $d_p(x, y) < \infty$. If p = 1 then the Minkowski inequality follows from the triangle inequality of real numbers. Let p > 1 then

$$\sum_{1}^{\infty} |x_i + y_i|^p = \sum_{1}^{\infty} |x_i + y_1| |x_i + y_i|^{p-1} \le \sum_{1}^{\infty} (|x_i| |x_i + y_i|^{p-1} + |y_i| |x_i + y_i|^{p-1})$$
(1)

$$= \sum_{1}^{\infty} (|x_i||x_i + y_i|^{p-1}) + \sum_{1}^{\infty} (|y_i||x_i + y_i|^{p-1})$$
 (2)

Now let q be the conjugate exponent of p, then we have $\frac{1}{p} + \frac{1}{q} = 1 \iff p + q = pq \iff p = p(q-1)$. Then, at line 2

$$\left(\sum_{1}^{\infty} |x_i + y_i|^{(p-1)q}\right)^{1/q} = \left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/q} < \infty$$

which shows that $\{|x_i+y_i|^{p-1}\}_i^{\infty} \in l^q$. Then by Holder's inequality,

$$\sum_{1}^{\infty} |x_i| |x_i + y_i|^{p-1} \le \left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p} \cdot \left(\sum_{1}^{\infty} |x_i + y_i|^{(p-1)q}\right)^{1/q} \tag{3}$$

$$= \left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p} \cdot \left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/q} \tag{4}$$

Using the results from line 2 and line 4 on line 1,

$$\sum_{1}^{\infty} |x_i + y_i|^p \le \sum_{1}^{\infty} (|x_i||x_i + y_i|^{p-1}) + \sum_{1}^{\infty} (|y_i||x_i + y_i|^{p-1})$$
(5)

or,
$$\sum_{1}^{\infty} |x_i + y_i|^p \le \left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/q} \cdot \left(\left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{1}^{\infty} |y_i|^p\right)^{1/p}\right)$$
 (6)

Dividing both sides by $\left(\sum_{1}^{\infty}|x_i+y_i|^p\right)^{1/q}$, we get the Minkowski's inequality (since $1-\frac{1}{q}=\frac{1}{p}$).

8. For $1 \le p < \infty$, let $l^p = \{x = \{x_i\}_1^{\infty} \mid \sum_{1}^{\infty} |x_i|^p < \infty\}$. For any $x, y \in l^p$, define

$$d_p(x,y) = \left(\sum_{1}^{\infty} |x_i - y_i|^p\right)^{1/p}$$

Prove that (l^p, d_p) is a metric space.

Solution:

- i. Since $d_p(x,y)$ is the pth root of a sum of positive numbers, $d_p \ge 0$. Also from Minkowski inequality (a.), we have $d_p < \infty$.
- ii. $d_p(x,y) = d_p(y,x)$ since $|x_i y_i| = |y_i x_i|$ for all i.
- iii. $d_p(x,x) = 0$ since $|x_i x_i| = 0$ for all i.
- iv. The triangle inequality for d_p follows from the Minkowski inequality (b.)

$$\left(\sum_{1}^{\infty} |x_i - z_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{1}^{\infty} |x_i - y_i|^p\right)^{\frac{1}{p}} + \left(\sum_{1}^{\infty} |y_i - z_i|^p\right)^{\frac{1}{p}}$$
or, $d_p(x, z) \le d_p(x, y) + d_p(y, z)$

9. Prove Jensen's Inequality for Sums.

Solution:

$$\left(\sum_{i=1}^{\infty} |x_i|^{p_2}\right)^{1/p_2} \le \left(\sum_{i=1}^{\infty} |x_i|^{p_1}\right)^{1/p_1} \qquad \forall 1 \le p_1 < p_2 < \infty$$

Let $|y_i| = |x_i|^{p_1}$. Then we need to show that $\left(\sum_{i=1}^{\infty} |y_i|^{p_2/p_1}\right)^{p_1/p_2} \le \sum_{i=1}^{\infty} |y_i|$. First we show that this is true for a finite sequence $\{x_i\}_1^n$ using induction on n. Then we take the limit as $n \to \infty$ to prove Jensen's inequality.

When n = 1, $(|y_1|^{p_2/p_1})^{p_1/p_2} = y_1$. (True)

Let $H(k): \left(\sum_{i=1}^{k} |y_i|^{p_2/p_1}\right)^{p_1/p_2} \le \sum_{i=1}^{k} |y_i|$ be true for some integer k > 1. Then

Hence $H(k) \Longrightarrow H(k+1)$ which proves that H(n) is true for all $n \in \mathbb{Z}$. Taking the limit as $n \to \infty$ we get the required Jensen's inequality.

10. Show that $l^1 \subset l^2$ without using Jensen's inequality. Then show that inclusion is strict, i.e., find an element in l^2 that is not in l^1 .

Solution: Let $x \in l^1$ then $0 \le \sum_{1}^{\infty} |x_1| < \infty$ which implies that the sequence x converges to 0. Let $N \in \mathbb{Z}$ such that $x_i < 1$ for all i > N. Then for i > N, we have $|x_i|^2 < |x_i|$. Hence,

$$0 \le \sum_{i=1}^{\infty} |x_i|^2 \le \sum_{i=1}^{N} |x_i|^2 + \sum_{i=N+1}^{\infty} |x_i|^2 < \sum_{i=1}^{N} |x_i|^2 + \sum_{i=N+1}^{\infty} |x_i| < \infty.$$

So, $l^1 \subset l^2$.

The harmonic series given by the sequence $x = \{x_i = \frac{1}{i}\}_{1}^{\infty}$ does not converge. However

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} < \infty.$$

Here we see that $x \notin l^1$ but $x \in l^2$. Hence, the inclusion is strict.

Homework 2

1. Let (X, ρ) and (Y, σ) be metric spaces, and let $f: (X, \rho) \to (Y, \sigma)$ be a map such that $f^{-1}(V)$ is open in X, for all V open in Y. Show that f is continuous on X.

Solution: Let V be the open set around the image f(x) of a point $x \in X$. Then there exists an open set $f^{-1}(V) \in X$ such that $x \in f^{-1}(V)$. Let V be the open ball $B_{x,\varepsilon}(f(x))$ around the point f(x) for some given $\varepsilon > 0$. Then $f^{-1}(B_{x,\varepsilon}(f(x)))$ is also open in X. Since x is in the open set $f^{-1}(B_{x,\varepsilon}(f(x)))$, we can find a $\delta > 0$ such that $x \in B_{\delta}(x) \subset f^{-1}(B_{x,\varepsilon}(f(x)))$. This means that for all $z \in X$ such that $d(z,x) < \delta$ we have $d(f(z),f(x)) < \varepsilon$. Hence f is continuous a4 x. Since we can do this at every point $x \in X$, we see that f is continuous on X.

2. (Continuous mapping) Show that a mapping $T: X \to Y$ is continuous if and only if the inverse image of any closed set $M \subset Y$ is a closed set in X.

Solution: We first note that for any set $A \subset Y$, $f^{-1}(A) = \{x \in X : f(x) \in A\}$ and $f^{-1}(Y \setminus A) = \{x \in X : f(x) \notin A\}$. Then clearly, $f^{-1}(A)$ and $f^{-1}(Y \setminus A)$ are disjoint sets of X. Particularly,

$$f^{-1}(Y \backslash A) = X \backslash f^{-1}(A).$$

(\iff) Let V be a closed set of Y. Then there exists a closed set $f^{-1}(V)$ in X. Since all open sets can be written as a complement of closed set, we see that for any open set $Y \setminus V$ in Y there exists an open set $X \setminus f^{-1}(V)$ in X. Since $X \setminus f^{-1}(V) = f^{-1}(Y \setminus A)$, the preimage of any open set of Y is open in X. Hence f is continuous.

 (\Longrightarrow)

3. Assume that $f:(\mathbb{R}^2,d_1=\text{Euclidean metric})\to\mathbb{R}$ is continuous at $x\in\mathbb{R}^2$. Show that $f:(\mathbb{R}^2,d_2=\text{taxicab metric})\to\mathbb{R}$ is also continuous at x.

Solution: Since $f:(\mathbb{R}^2,d_1)=\mathbb{R}$ Euclidean metric) $\to \mathbb{R}$ is continuous, we know that $f^{-1}(V)$ is open in \mathbb{R}^2 , for all V open in \mathbb{R} . Our proof will be complete if we can show that every open set U in (\mathbb{R}^2,d_1) is also open with respect to the taxicab metric.

Let V be open in (\mathbb{R}^2, d_1) . Then for every point $(p, q) \in X$ there exists an open ball $B_{\delta}((p, q)) \subset V$ containing (p, q).

$$B_{\delta}((p,q)) = \{(x,y) \in \mathbb{R}^2 : (x-p)^2 + (y-q)^2 < \delta^2\}$$

4. Show that the discrete metric space (X, d) is separable iff X is countable.

Solution: If X is countable, then X is the countable dense subset in X. So, it is separable.

Now, we show that if (X, d) is separable, then it is countable. Let $Y \subset X$ be the countable dense subset of X. Then every open set of X must contain a point from Y. We note that all the singleton sets of X are open in X and so Y must contain all the points from the singleton sets. Hence we get $X \subset Y \implies X = Y$. So, X is countable.

5. Show that l^p , with $1 \le p < \infty$ is separable.

Solution: We will show that the set M of sequences in l^p with finite non-zero rational terms is the countable dense subset of l^p with $1 \le p < \infty$. That is M has all the sequences x of the form

$$(x_1, x_2, \ldots, x_n, 0, 0, \ldots)$$

with each $x_i \in \mathbb{Q}$. First, we show that M is countable. Note that for a fixed n, the set of sequences in l^p with rational terms and all but the first n terms zero is countable. Then M is the countable union of countable sets

and, hence, is countable.

Now, we show that the set M is dense in l^p with $1 \le p < \infty$. Let $x = \{x_i\}_1^\infty \in l^p$. Then $\sum_1^\infty |x_i|^p$ is convergent and so for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that,

$$\sum_{N+1}^{\infty} |x_i|^p < \varepsilon^p/2.$$

Then, for the first N terms, since rational numbers are dense in \mathbb{R} , we can choose rational numbers y_i such that $|x_i - y_i|^p < \varepsilon^p/2N$. So $(y_1, \dots, y_N, 0, 0, \dots)$ is a point in M and we see that

$$d(x,y) = \left(\sum_{i=1}^{\infty} |x_i - y_i|^p\right)^{1/p} = \left(\sum_{i=1}^{N} |x_i - y_i|^p + \sum_{i=N+1}^{\infty} |x_i - y_i|^p\right)^{1/p} < (\varepsilon^p/2 + \varepsilon^p/2)^{1/p} = \varepsilon$$

So, for every $\varepsilon > 0$, we can find a point of M in the ε -neighborhood of every point $x \in l^p$. Hence l^p with $1 \le p < \infty$ is separable.

6. Show that l^{∞} is not separable.

Solution: Let $x = \{x_i\}_{i=0}^{\infty}$ be the sequence of zeros and ones. Then since the sequence is bounded, it is in l^{∞} . Now we will show that the set of such sequences x are uncountably many and have disjoint open neighborhoods for some radius.

For each sequence x we associate a real number y whose binary representation is

$$\sum_{1}^{\infty} \frac{x_i}{2^i}.$$

Then for each $y \in [0, 1]$, there exists a unique sequence of zeros and ones as each y has a unique binary representation. Since there are uncountably many y, the sequences associated with them are also uncountable. The metric on l^{∞} given by

$$d(x,y) = \sup_{i \in \mathbb{N}} |x_i - y_i|$$

implies that any two distict binary sequences $\{x_i\}_{i=0}^{\infty}$ must be 1 distance apart. Then we can take r=1/2 to get the disjoint neighborhoods in l^{∞} associated with each sequence $\{x_i\}_{i=0}^{\infty}$.

Now, if M is any dense set in l^{∞} , then every open set in l^{∞} must contain a point of M. So, for each disjoint open neighborhood constructed above, M contains a point in the neighborhood. Hence, any dense set M is uncountable in l^{∞} and l^{∞} is not separable.

7. Let $\{x_n\}_{n\geq 1}$ be a sequence in a m.s. (X,d) which converges to x. Show that $\{x_n\}_{n\geq 1}$ is a bounded sequence. Then let $\{y_n\}_{n\geq 1}$ be a sequence in (X,d) which converges to y. Show that $\lim_{n\to\infty} d(x_n,y_n)=d(x,y)$.

Solution: Since the sequence $\{x_n\}_{n\geq 1}$ is converges to x, for every $\varepsilon > 0$, we can find a N such that $d(x_n, x) < \varepsilon$ for all $n \geq N$. If we take $\varepsilon = 1$, we see $x_n \leq |x| + 1$ for all $n \geq N$. Let $M = \max\{x_1, \ldots, x_{N-1}\}$. Then

$$x_n < \max\{M, |x| + 1\}$$
 for all $n \in \mathbb{Z}$.

Hence, $\{x_n\}_{n>1}$ is bounded.

If $\{x_n\}_{n>1}$ converges to x and $\{y_n\}_{n>1}$ converges to y, then for every $\varepsilon>0$, there exists N_1 and N_2 such that

 $d(x,x_n)<\varepsilon/2$ for $n>N_1$ and $d(y,y_n)<\varepsilon/2$ for $n>N_2$. Then for $n>\max\{N_1,N_2\}$,

$$d(x_n, y_n) \le d(x, x_n) + d(x, y_n) \le d(x, x_n) + d(y, y_n) + d(x, y) \le \varepsilon + d(x, y).$$

As $n \to \infty$, $d(x_n, y_n) \to d(x, y)$.

8. Show that any nonempty set $A \subset (X,d)$ is open if and only if it is a union of open balls.

Solution: If A is open in X then for all $x \in A$ we exists an open ball $B_{\delta_x}(x)$ such that $x \in B_{\delta_x}(x) \subset A$. Let

$$B = \bigcup_{x \in A} B_{\delta_x}(x).$$

Clearly, $B \subset A$ since each $B_{\delta_x}(x)$ is contained in A. Also, since B contains all the points of A, we have A = B. So, A is a union of open balls.

Now, if $A = \bigcup B_{\alpha}$ is a union of open balls B_{α} then for each $x \in A$, we have $x \in B_{\alpha}$ for some B_{α} . That means that for every $x \in A$ we have some open ball B_{α} such that $x \in B_{\alpha} \subset A$. Hence A is open in X.

- 9. Let (X, ρ) be a metric space, $E \subset X$, and $x \in X$. Prove that the following are equivalent:
 - (a) $x \in \overline{E}$
 - (b) $B(x,r) \cap E \neq \emptyset, \forall r > 0$
 - (c) $\exists \{x_n\} \in E \text{ s.t. } x_n \to x$

Solution: (a) \Longrightarrow (b). Let $x \in \overline{E} = X \setminus (X \setminus E)^{\circ}$. Then $x \notin (X \setminus E)^{\circ}$. Negating this statement, we see that for all r > 0, $B(x, r) \cap E \neq \emptyset$.

- (b) \Longrightarrow (c). We first define the radii $r_n = 1/n$ of the open balls around the point $x \in X$. Since $B(x,r) \cap E \neq \emptyset$, $\forall r > 0$, we can take a sequences of points $\{x_i\}_1^{\infty}$ in E such that $x_i \in B(x,r_i)$ for each i. Then this is the sequence in E which converges to the point x.
- (c) \Longrightarrow (a). Since $x_n \to x$, for every $\varepsilon > 0$ we can find a N such that $d(x, x_n) < \varepsilon$ all n > N. That is, every open ball around x contains a point of E. So $x \notin (X \setminus E)^{\circ} \Longrightarrow x \in X \setminus (X \setminus E)^{\circ}$. Thus x is in the closure \overline{E} .
- 10. If d_1 and d_2 are metrics on the same set X and there are positive numbers a and b such that for all $x, y \in X$,

$$ad_1(x,y) \le d_2(x,y) \le bd_1(x,y),$$

show that the Cauchy sequences in (X, d_1) and (X, d_2) are the same.

Solution: Let $\{x_n\}_1^{\infty}$ be a Cauchy sequence in (X, d_1) , then for every $\varepsilon' > 0$, we can find an integer N such that $d_1(x_m, x_n) < \varepsilon'$ for all m, n > N. Then taking $\varepsilon = \varepsilon'/b$ we have $d_2(x_m, x_n) \le \varepsilon$. Hence the sequence $\{x_n\}_1^{\infty}$ is Cauchy in (X, d_2) .

Now, let $\{y_n\}_1^{\infty}$ be a Cauchy sequence in (X, d_2) , then for every $\varepsilon' > 0$, we can find an integer N such that $d_2(y_m, y_n) < \varepsilon'$ for all m, n > N. Then taking $\varepsilon = a\varepsilon'$ we have $ad_1(y_m, y_n) \le a\varepsilon \implies d_1(y_m, y_n) \le \varepsilon$. Hence the sequence $\{y_n\}_1^{\infty}$ is Cauchy in (X, d_1) .

11. Show that l^p , with $1 \le p < \infty$ is complete.

Solution: Let $\{\{x_i^n\}_{i=1}^{\infty}\}_{n=1}^{\infty}$ be a Cauchy sequence in the space l^p where for each n, $\{x_i^n\}_{i=1}^{\infty}$ is a convergent sequence in \mathbb{R} . Then for every $\varepsilon > 0$, there exists an N such that

$$d(x_i^m, x_i^n) = \left(\sum_{i=1}^{\infty} |x_i^m - x_i^n|^p\right)^{1/p} < \varepsilon$$

for all m, n > N. Then for each fixed i, the term $|x_i^m - x_i^n|^p < \varepsilon^p \implies |x_i^m - x_i^n| < \varepsilon$. So $\{x_i^j\}_{1}^{\infty}$ is a Cauchy sequence of real numbers for each fixed i and it converges to some number that we can call x_i . We define $x = \{x_i\}_{i=1}^{\infty}$ and show that this is the limit of our sequence $\{\{x_i^n\}_{i=1}^{\infty}\}_{n=1}^{\infty}$ in l^p .

From above, we have

$$\sum_{i=1}^{k} |x_i^m - x_i^n|^p < \varepsilon^p$$

for all m, n > N. Then as $n \to \infty$, we have (by definition) for m > N

$$\sum_{i=1}^{k} |x_i^m - x_i|^p \le \varepsilon^p.$$

Then as $k \to \infty$, we have

$$\sum_{i=1}^{\infty} |x_i^m - x_i^n|^p \le \varepsilon^p$$

12. Prove that $(\mathbb{R}, d(x, y) = |x - y|)$ is complete.

Solution: First, we show that every Cauchy sequence in (\mathbb{R},d) is bounded. Let $\{x_n\}_1^{\infty}$ be a Cauchy sequence in (\mathbb{R},d) , then for every $\varepsilon > 0$, we can find an integer N such that $d(x_m,x_n) = |x_m-x_n| < \varepsilon$ for all m,n>N. Then when m=N+1 and $\varepsilon=1$, we see that $|x_m|-|x_{N+1}| \leq |x_m-x_{N+1}| < \varepsilon$. So $|x_m| \leq |x_{N+1}|+1$ for all m>N. Hence the sequence $\{x_n\}_1^{\infty}$ is bounded by M where $M=\max\{|x_1|,\ldots,|x_N|,|x_{N+1}|+1\}$. Then, since $\{x_n\}_{i=1}^{\infty}$ is bounded, by Bolzano-Weierstrass Theorem, we know that $\{x_n\}_1^{\infty}$ has a convergent subsequence $\{x_n\}_{i=1}^{\infty}$. Let $\{x_n\}_{i=1}^{\infty} \to x$ in \mathbb{R} .

Now, we show that our sequence $\{x_n\}_1^{\infty}$ itself converges to the point $x \in \mathbb{R}$. In the Cauchy sequence $\{x_n\}_1^{\infty}$, we have, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon/2$ for all m, n > N. Similarly, in the convergent subsequence $\{x_{n_i}\}_{i=1}^{\infty}$, there exists $N' \in \mathbb{N}$ such that $|x_{n_i} - x_i| < \varepsilon/2$ for all i > N'. Then for all $\varepsilon > 0$, there exists $N, N' \in \mathbb{N}$ such that, for all n > N and i > N' with $n_i > N$, we have

$$|x_n - x| \le |x_n - x_{n_i}| + |x_{n_i} - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Hence $\{x_n\}_{n=1}^{\infty}$ converges in (\mathbb{R}, d) and \mathbb{R} is complete.

13. Prove that $(\mathbb{Q}, d(x, y) = |x - y|)$ is incomplete.

Solution: We take the sequence $\{x_n\}_1^{\infty}$ of rational numbers given by $x_n = (1 + \frac{1}{n})^n$. Note that this is a convergent sequence in \mathbb{R} with the same metric and hence it is Cauchy in \mathbb{Q} too. However, it does not converge to any number in \mathbb{Q} . So, \mathbb{Q} is not complete.

14. Prove that $\left(\mathbb{C}[-1,1], d(f,g) = \int_{-1}^{1} |f(t) - g(t)| dt\right)$ is incomplete.

Solution: We take the sequence $\{f_n\}_{1}^{\infty}$ of piecewise defined functions in C[-1,1] such that

$$f_n(x) = \begin{cases} 1, & x > \frac{1}{n} \\ nx, & -\frac{1}{n} \le x \le \frac{1}{n} \\ -1, & x < \frac{1}{n} \end{cases}$$

We first observe that $d(f_m, f_n) = 2 \times$ area of the triangle with base $\left| \frac{1}{m} - \frac{1}{n} \right|$ and height 1 = |1/m - 1/n|. Then, the sequence is Cauchy since for every $\varepsilon > 0$ we have an integer $N > 1/\varepsilon$ such that for all m, n > N, $d(f_m, f_n) < \varepsilon$.

Now, for every $g \in C[0,1]$, we have

$$d(f_n, g) = \int_{-1}^{1} |f_n(t) - g(t)| dt = \int_{-1}^{-\frac{1}{n}} |-1 - g(t)| dt + \int_{-\frac{1}{n}}^{\frac{1}{n}} |f_n(t) - g(t)| dt + \int_{\frac{1}{n}}^{1} |1 - g(t)| dt$$

Since $d \ge 0$ for all $g \in C[0,1]$, $d(f_n,g) \to 0$ implies that each integral on the right should also approach 0. Then we should have

$$g(t) = -1$$
 for $t \in [-1, 0)$ and $g(t) = 1$ for $t \in (0, 1]$.

But then g cannot be continuous so we have a contradiction. So, the Cauchy sequence $\{f_n\}_{1}^{\infty}$ does not converge in C[0,1] and the space is not complete.

15. Determine whether or not the discrete metric space is complete. Justify your answer.

Solution: Let $\{x_i\}_{i=0}^{\infty}$ be a Cauchy sequence in the discrete metric space. Then for every $\varepsilon > 0$ there exists an N such that for all m, n > N, we have

$$d(x_m, x_n) < \varepsilon$$
.

If we take $\varepsilon < 1$ then we see that $x_m = x_n = x$ for all m, n > N for some N. So the sequence $\{x_i\}_{i=0}^{\infty}$ converges to x and the space is complete.

16. Prove the Completion of a Metric Space Theorem.

Solution:

Theorem 1 (Completion of a Metric Space). For a metric space X = (X, d) there exists a complete metric space X' = (X', d') which has a subspace W that is isometric with X and is dense in X'. This space X' is unique except for isometries, that is, if \tilde{X} is any complete metric space having a dense subspace \tilde{W} isometric with X, then X' and \tilde{X} are isometric.

Proof. We prove the theorem in the following steps.

(a) We first define a relation \sim on Cauchy sequences of X and show that it is a well-defined equivalence relation. For the Cauchy sequences $x = \{x_i\}_1^{\infty}$, $y = \{y_i\}_1^{\infty}$ in X, we say that $x \sim y$ if

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Clearly, this relation is symmetric and reflexive. For transitivity we see that if $x \sim y$ and $y \sim z$ then

$$0 \le \lim_{n \to \infty} d(x_n, z_n) \le \lim_{n \to \infty} d(x_n, z_n) + d(y_n, z_n) = 0.$$

Hence \sim is an equivalence relation on the Cauchy sequences of X. Now, let X' be the set of all equivalence classes of Cauchy sequences on X and define the function $d': X' \to \mathbb{R}$ by

$$d'(x',y') = \lim_{n \to \infty} d(x_n, y_n)$$

where x' and y' are the equivalence classes of x and y respectively. We show that this limit exists and the function d' is well defined. We have,

$$d(x_n,y_n) \le d(x_n,x_m) + d(x_m,y_m) + d(y_n,y_m)$$
 or, $|d(x_n,y_n) - d(x_m,y_m)| \le d(x_n,x_m) + d(y_n,y_m)$.

Taking limit as m, n go to ∞ on both sides we obtain,

$$\lim_{n \to \infty} |d(x_n, y_n) - d(x_m, y_m)| \le \lim_{n \to \infty} [d(x_n, x_m) + d(y_n, y_m)] = 0$$

Hence the limit $d'(x', y') = \lim_{n \to \infty} d(x_n, y_n)$ exists.

Now, if $x \sim x'$ and $y \sim y'$, then

$$d(x_n, y_n) \le d(x_n, x'_n) + d(x'_n, y'_n) + d(y_n, y'_n)$$

And as before,

$$0 \le \lim_{n \to \infty} |d(x_n, y_n) - d(x'_n, y'_n)| \le \lim_{n \to \infty} [d(x_n, x'_n) + (y_n, y'_n)] = 0$$

which implies that $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(x'_n,y'_n)$. Hence d' is a well-defined function on X'.

We now show that d' is a metric on X'. Clearly $0 \le d' < \infty$ since the limit exists and d'(x', x') = 0. Furthermore,

$$d'(x', y') = 0 \implies x \sim y \implies x' \sim y'.$$

And,

$$d'(x', z') = \lim_{n \to \infty} d(x_n, z_n) \le \lim_{n \to \infty} d(x_n, y_n) + \lim_{n \to \infty} d(y_n, z_n) = d'(x', y') + d'(y', z').$$

So, d' satisfies the definition of a metric.

(b) Now, we construct an isometry $T: X \to W$ where W is a dense subset of X'. Let T be a function that takes each element to the equivalence class x' in X' of the Cauchy sequence $\{x\}_1^{\infty} = (x, x, x, \ldots)$ associated with that element. Then T is an isometry since for each $x, y \in X$,

$$d'(T(x), T(y)) = \lim_{n \to \infty} d(x_n, y_n) = d(x, y).$$

We note that isometry is injective map and if W = T(X), then $T : X \to W$ is surjective. So, W and X are isometric.

We need to show that W is dense in X'. Let $x' \in X'$ be the equivalence class of the Cauchy sequence $\{y_i\}_1^{\infty}$. Then for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(y_n, y_m) < \varepsilon$ for all m, n > N. Let $z = y_{N+1}$. Then, if z' is the image of z under T,

$$d'(y',z') = \lim_{n\to\infty} d(y_n - z) < \varepsilon.$$

Thus we see that every open neighborhood around the point x' in X' contains a point z' of W and so, W is dense in X'.

(c) We now show that X' is a complete metric space. Let $\{x_i'\}_1^{\infty}$ be a Cauchy sequence in X'. Since W is dense in X', every open neighborhood in X' contains a point of W. So, for each i, there exists $z_i' \in W$ such that

$$d'(x_i', z_i') < 1/n$$

Then

$$d'(z_j', z_i') \leq d'(z_j', x_j') + d'(x_j', x_i') + d'(x_i', z_i') < 1/j + 1/i + d'(x_j', x_i')$$

So, since $\{x_i'\}_1^{\infty}$ is Cauchy, as $i, j \to \infty$, $d'(z_j', z_i') \to 0$. So the sequence $\{z_i'\}_1^{\infty}$ is Cauchy in X'. Since T is an isometry, we see that the sequence $T^{-1}(\{z_i'\}_1^{\infty}) = (T^{-1}(z_1'), T^{-1}(z_2'), T^{-1}(z_3'), \ldots) = (z_1, z_2, z_3, \ldots)$ is

Cauchy in X. Let x' be the equivalence class of the Cauchy sequence $(z_1, z_2, z_3, ...)$. We now show that x' is the limit of our Cauchy sequence $\{x_i'\}_1^{\infty}$ in X'. We have

$$d'(x_i', x') \le d'(x_i', z_i') + d'(x', z_i') < 1/n + d'(x', z_i')$$

for $z_i' \in W$. Then, since x' is the equivalence class of the Cauchy sequence (z_1, z_2, z_3, \ldots) and z_i' is the equivalence class of (z_i, z_i, z_i, \ldots) , $d'(x', z_i') = \lim_{n \to \infty} d(z_n, z_i)$. Then

$$d'(x_i', x') < 1/n + \lim_{n \to \infty} d(z_n, z_i).$$

The right hand side goes to zero as $n, i \to \infty$. So the Cauchy sequence $\{x_i'\}_{1}^{\infty}$ is convergent in X' and X' is complete.

(d) Now, we show that the space X' is unique upto isometry. If (\tilde{X}, \tilde{d}) is another space that contains a dense subset \tilde{W} isometric to X, then for any \tilde{x} , $\tilde{y} \in \tilde{X}$, we have sequences $\{\tilde{x}_n\}_1^{\infty}$ and $\{\tilde{y}_n\}_1^{\infty}$ in \tilde{W} such that $\tilde{x}_n \to \tilde{x}$ and $\tilde{y}_n \to \tilde{y}$ with

$$\tilde{d}(\tilde{x}, \tilde{y}) = \lim_{n \to \infty} \tilde{d}(\tilde{x}_n, \tilde{y}_n).$$

Since W and \tilde{W} are isometric and the closure of W in X' is X' itself, X' and \tilde{X} must be isometric.