ベクトル③ ~外積~

■ベクトルの外積 (cross product、vector product)

2つのベクトル $\vec{a}=\left(a_x,a_y,a_z\right),\ \vec{b}=\left(b_x,b_y,b_z\right)$ の外積はつぎのように定義される。

$$\vec{a} \times \vec{b} = \{(a_y b_z - a_z b_y), (a_z b_x - a_x b_z), (a_x b_y - a_y b_x)\}$$

ベクトル \vec{a} と \vec{b} の外積を $\vec{c} = (c_x, c_y, c_z)$ としたときの成分表示は

$$c_x = a_y b_z - a_z b_y$$

$$c_y = a_z b_x - a_x b_z$$

$$c_z = a_x b_y - a_y b_x$$

となる。また、次のような性質がある。

性質① 外積 \vec{c} は \vec{a} と \vec{b} にそれぞれ直交するベクトルである

性質② 外積 \vec{c} の向きは、右手系では右ねじの進む方向、左手系では左ねじの進む方向となる

性質③ 外積 \vec{c} の大きさ(長さ)は、 \vec{a} と \vec{b} が作る平行四辺形の面積に等しい

右手系の例 $\vec{c} = \vec{a} \times \vec{b}$ \vec{c} の向きは右ネジが進む方向 %左手系の場合は左ネジ

 \vec{c} の大きさ(長さ)は \vec{a} と \vec{b} が 作る平行四辺形の面積の値に等しい

「 ベクトル③ ~外積~」

岡山情報 IT クリエイター専門学校

ゲームにおける外積の用途

- ・カメラやキャラクタの姿勢制御
- ・当たり判定の計算
- ・2次元の領域判定
- ・ジオメトリシェーダにおけるポリゴン頂点の法線計算

練習問題

- ① $\vec{a} = (-3,1,4)$ と $\vec{b} = (1,-1,-2)$ の外積 $\vec{a} \times \vec{b}$ を求めてください。
- ② $\vec{a} = (1,0,0)$ と $\vec{b} = (0,1,0)$ の外積 $\vec{a} \times \vec{b}$ を求めてください。

グループワーク: プリント | ページにある外積の性質①を証明せよ

ヒント: 直交するベクトル同士の内積は? ・・・・ 内積: $\vec{a} \cdot \vec{b} = (a_x b_x + a_y b_y)$

2つのベクトル $\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$ と表す。

定義より $\vec{a} \times \vec{b} = \{(a_y b_z - a_z b_y), (a_z b_x - a_x b_z), (a_x b_y - a_y b_x)\}$

直交するベクトルの内積は (ア) であるから

(イ) $\vec{a} =$ (ア) かつ (イ) $\vec{b} =$ (ア) となればよい。

(イ) \vec{a} = (以下、x,y,z 成分表示で計算)

= (7)

(イ) \vec{b} = (以下、x,y,z 成分表示で計算)

= (ア)

グループワーク: プリント1ページにある外積の性質③を証明せよ

ヒント: 平行四辺形の面積の公式。三角関数、内積の定義

2つのベクトル $\vec{a}=(a_x,a_y,a_z)$ 、 $\vec{b}=(b_x,b_y,b_z)$ が成す角 θ の平行四辺形を考える。

ベクトル \vec{a} 、 \vec{b} の大きさ(長さ)をそれぞれ $|\vec{a}|$ 、 $|\vec{b}|$ とすると、その平行四辺形の面積 S は「底辺x高さ」の公式より

$$\mathbf{S} = |\vec{a}| \times$$
 (†) \cdots (1)

両辺を2乗すると

また、内積の定義より

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

式(1)に代入すると

$$S^2 = \boxed{(\underline{x})}^2 \boxed{(\underline{x})}^2 - \boxed{(\underline{y})}^2 \qquad \cdots (2)$$

となる。

式(2)の右辺を x,y,z 成分表示で計算すると

式(2) = (以下、
$$x, y, z$$
成分表示で計算)
$$=$$

$$=$$

$$=$$

$$=(a_y b_z - a_z b_y)^2 + (a_z b_x - a_x b_z)^2 + (a_x b_y - a_y b_x)^2 \cdots (3)$$

また、外積 $\vec{a} \times \vec{b}$ の定義より

$$\vec{a} imes \vec{b} = \{ (1), (2), (7) \}$$

 $\vec{\mathbf{c}} = \vec{a} \times \vec{b}$, $\vec{\mathbf{c}} = (c_x, c_y, c_z)$ \forall \vec{b}

$$c_x = (+)$$

$$c_y = \boxed{(2)}$$

$$c_z = \boxed{ (7)}$$

となり、式(3)に代入すると

式(3) =
$$(3)^2 + (4)^2 + (5)^2$$

= $|(3)^2 + (5)^2$

となり、すなわち

$$S = | (z) |$$

よって、式(1)から $\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| sin \theta$

証明以上。