

Efficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction

Robert Maier*

Raphael Schaller*

Daniel Cremers

Motivation

Real-time large-scale 3D reconstruction:

Global **pose** optimization to reduce drift

 Usually no surface update on pose changes

Goal: correct 3D surface onthe-fly on pose changes

Contributions

- **Efficient on-the-fly surface correction** for large-scale dense 3D reconstruction (single GPU)
 - **Keyframe fusion** of RGB-D frames using different keyframe strategies
- Re-integrate fused keyframes into sparse SDF volume on pose updates
- Efficient re-integration strategy: reduced host-GPU-streaming
- 93% more efficient than state-of-the-art (equivalent surface quality)
- Combination with dense Visual SLAM system (CPU)

3D Reconstruction System

DVO-SLAM: Dense Visual RGB-D SLAM [1]

- Frame-to-(key)frame tracking using robust dense visual odometry
- Loop closure detection and continuous pose graph optimization

Keyframe Fusion

Depth fusion (weighted mean of warped input depth maps)

Color fusion (unsharp masking, blurriness, weighted median)

Efficient Online Surface Re-Integration

Keyframe Strategies

- Selection of independent keyframes for fusion
 - \rightarrow number of fused frames per keyframe k
- Strategies: Constant, DVO, Distance, Overlap

On-the-fly Surface Correction

- Integrate keyframes into SDF volume with original poses
- On DVO-SLAM pose graph updates:
 - Select m changed keyframes for re-integration
- **De-integrate** keyframes at original poses
- **Re-integrate** on-the-fly with updated poses

Re-integration Strategy

- BundleFusion [2] strategy: select m most-moved frames
- Better: select group of most-moved m consecutive keyframes

$$j^* = \underset{j \in [1, K-m+1]}{\operatorname{argmax}} \sum_{i=j}^{j+m-1} ||st_i - st_i'||$$

- → Significantly reduced GPU-host-streaming!
- Example: BundleFusion (12, 8, 13, 5, 3) vs. ours (4 to 8)

Evaluation and Experimental Results

Surface Completeness/Correctness vs. Frames per Keyframe

AUG_ICL/Liv1

Correctness (k=5 vs. k=60)

Completeness (k=5 vs. k=60)

CORR Correctness

Runtime Evaluation

93% more efficient compared to BundleFusion [2] (k=20, m=5)

Qualitative Results: On-the-fly Surface Re-integration

Without (left) and with (right) online surface correction

BundleFusion/apt0

i = 6000

i = 8000

Final

TUM/long_office_household

i = 1750

Final

Qualitative Comparison: ElasticFusion [3]

ElasticFusion [3] Ours

ElasticFusion [3]

Ours

References

[1] C. Kerl, J. Sturm, D. Cremers. Dense Visual SLAM for RGB-D Cameras. IROS 2013. [2] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, C. Theobalt. BundleFusion: Real-time

Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration. TOG 2017.

[3] T. Whelan, S. Leutenegger, R.F. Salas-Moreno, B. Glocker, A.J. Davison. ElasticFusion: Dense SLAM Without A Pose Graph. RSS 2015.