National University of Computer and Emerging Sciences, Lahore Campus

Course:	Numerical Computing	Course Code:	CS2008	
Program:	BSCS/BSR/BSSE	Semester:	V	
Duration:	60 min	Total Marks:	40	
Paper Date:	Sep 30, 2023	Weight	15	
Section:	(Page(s):	1	
Exam:	Sessional - I	Roll No:		

Instruction/Notes: Attempt All Questions

Q 1. Derive formula for numerical differentiation based on Newton's backward difference interpolation. Use the obtained formula to find f'(120) for the following data

Points (10)

75	90	105	120	
38.2	43.2	40.9	37.7	-0-1011
Y	-)			
	75 38.2	75 90 38.2 43.2	75 90 105 38.2 43.2 40.9	75 90 105 120

Q 2. Evaluate f (25), given that f (20) = 2765, f (23) = 3261, f (26) = 3454, f (29) = 3929 using Bessel's interpolation formula given below:

Points (10)

$$y_{p} = \frac{y_{o} + y_{1}}{2} + (p - 0.5) \triangle y_{o} + \frac{p(p - 1)}{2!} \left[\frac{\triangle^{2} y_{o} + \triangle^{2} y_{-1}}{2} \right] + \frac{(p - 0.5)p(p - 1)}{3!} \triangle^{3} y_{-1} + \frac{(p + 1)p(p - 1)(p - 2)}{4!} \left[\frac{\triangle^{4} y_{-2} + \triangle^{4} y_{-1}}{2} \right]$$

$$32.95$$

Q 3. Suppose that if f(0) = 1, f(0.5) = 2.5, f(1) = 2, $f(0.25) = f(0.75) = \beta$. Find the value of β if the Composite Simpson rule gives the value of 2.75 for $\int_0^1 f(x) dx$ Points (10)

Q 4. Determine the values of h and N that will ensure an approximation error less than 0.00001 when approximating $\int_0^1 e^x dx$ by employing composite Trapezoidal rule? Points (10)