TD1 : Modèle de régression linéaire

Le but de ce premier TD et de présenter le modèle classique de régression linéaire et de sa mise en oeuvre à l'aide du logiciel R. Nous allons illustrer ces techniques pour la base de données Carseats du package ISLR.

On cherche à expliquer/prédire une variable statistique Y à l'aide de p variables statistiques numériques X_1, \ldots, X_p . Lorsque la variable Y est numérique "continue", on parle de problème de régression. Y s'appelle la variable à expliquer (ou encore, variable réponse, dépendante, endogène...), et X_1, \ldots, X_p les variables explicatives (variables de contôle, indépendantes, exogènes, régresseurs, prédicteurs...). Notons le vecteur aléatoire (ligne)

$$\mathbf{X} := (X_1, \dots, X_p) \in \mathbb{R}^p$$

des p variables explicatives X_1, \ldots, X_p . Le problème de régression consiste à trouver une fontion $f : \mathbb{R}^p \to \mathbb{R}$ telle que $Y \approx f(\mathbf{X})$:

$$Y = f(X_1, \dots, X_p) + \varepsilon,$$

où ε est une variable aléatoire, non observable, représentant le terme d'erreur (le bruit).

Pour la fonction de perte quadratique, la fonction optimale

$$f^* := \underset{f}{\operatorname{arg inf}} \mathbb{E}\left((Y - f(\mathbf{X})^2)\right)$$

est l'espérance conditionnelle de Y sachant $\mathbf{X} = \mathbf{x}$, i.e., $\forall \mathbf{x} \in \mathbb{R}^p$, $f^*(\mathbf{x}) = \mathbb{E}(Y \mid \mathbf{X} = \mathbf{x})$.

Si la fonction de régression optimale $f^*(\cdot)$ est paramétrique et est linéaire, i.e., de la forme

$$f(\mathbf{x}) =: f(\mathbf{x}, \mathbf{w}) := w_0 + w_1 x_1 + \dots + w_p x_p,$$

on obtient le modèle de régression linéaire multiple (RLM) réécrit sous la forme

$$Y = w_0 + w_1 X_1 + \dots + w_p X_p + \varepsilon,$$

avec $\mathbb{E}(\varepsilon \mid \mathbf{X} = \mathbf{x}) = 0$. Le problème est alors d'estimer les paramètres

$$\mathbf{w} := (w_0, w_1, \dots, w_p)^\top \in \mathbb{R}^{1+p}$$

à partir de n observations,

$$(\mathbf{X}_1, Y_1) \in \mathbb{R}^{p+1}, \ldots, (\mathbf{X}_n, Y_n) \in \mathbb{R}^{p+1},$$

du vecteur aléatoire $(\mathbf{X}, Y) \in \mathbb{R}^{p+1}$. Nous allons utiliser les notations matricielles suivantes

$$\mathbf{Y} := \left[\begin{array}{c} Y_1 \\ \vdots \\ Y_n \end{array} \right] \in \mathbb{R}^n, \quad \mathbb{X} := \left[\begin{array}{ccc} 1 & X_{1,1} & \cdots & X_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n,1} & \cdots & X_{n,p} \end{array} \right], \quad \mathbf{w} := \left[\begin{array}{c} w_0 \\ w_1 \\ \vdots \\ w_n \end{array} \right] \in \mathbb{R}^{1+p}, \quad \boldsymbol{\varepsilon} := \left[\begin{array}{c} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{array} \right] \in \mathbb{R}^n,$$

qui représentent, respectivement, le vecteur des valeurs observées de la variable réponse Y, la matrice de design (matrice de dimension $n \times (1+p)$), le vecteur des paramètres du modèle de RLM, et enfin le vecteur des termes d'erreur du modèle, $\varepsilon_1, \ldots, \varepsilon_n$, non observés. Le modèle de RLM, associé aux données, s'écrit donc sous la forme matricielle suivante

$$\mathbf{Y} = \mathbb{X} \mathbf{w} + \boldsymbol{\varepsilon}.$$

L'estimateur MC

L'estimateur des moindres carrés $\widehat{\mathbf{w}}$, du vecteur \mathbf{w} , est défini par

$$\widehat{\mathbf{w}} := \underset{(w_0, w_1, \dots, w_p) \in \mathbb{R}^{1+p}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^n (Y_i - w_0 - w_1 X_{i,1} - \dots - w_p X_{i,p})^2$$

$$=: \underset{\mathbf{w} \in \mathbb{R}^{1+p}}{\operatorname{arg \, min}} \frac{1}{n} \|\mathbf{Y} - \mathbb{X} \mathbf{w}\|^2.$$

$$= (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top \mathbf{Y}. \tag{1}$$

La dernière égalité a lieu si la matrice $\mathbb{X}^{\top}\mathbb{X}$ est inversible, ce qui est équivalent à supposer que les colonnes de \mathbb{X} sont linéairement indépendantes (donc le nombre d'observations n doit être supérieur à 1+p, p étant le nombre de variables explicatives). Cette hypothèse garantit l'existence et l'unicité de l'estimateur MC précédent.

Lien avec l'estimation par maximum de vraisemblance (MV)

On suppose que les termes d'erreur,

$$\varepsilon_1, \ldots, \varepsilon_n,$$

sont i.i.d. de même loi normale $\mathcal{N}(0, \sigma^2)$, $\mathbb{E}(\varepsilon \mid \mathbf{X} = \mathbf{x}) = 0$, et $\mathrm{Var}(\varepsilon \mid \mathbf{X} = \mathbf{x}) = \sigma^2$ ne dépendant pas de \mathbf{x} (hypothèse d'homoscédasticité). Par conséquent, la loi de Y, conditionnellement à $\mathbf{X} = \mathbf{x}$, est une loi normale d'espérance $w_0 + w_1x_1 + \ldots + w_px_p$, et de variance σ^2 ne dépendant pas de \mathbf{x} . La log-vraisemblance (conditionnelle) s'écrit donc sous la forme

$$\mathcal{L}_n(\mathbf{w}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^2} \|\mathbf{Y} - \mathbb{X}\mathbf{w}\|^2.$$

On peut voir dans ce cas que l'estimateur du maximum de vraisemblance (MV), de \mathbf{w} , coïncide avec l'estimateur des MC : Notons $(\widetilde{\mathbf{w}}, \widetilde{\sigma}^2)$ l'EMV de (\mathbf{w}, σ^2) , i.e.,

$$(\widetilde{\mathbf{w}}, \widetilde{\sigma}^2) := \underset{\mathbf{w} \in \mathbb{R}^{1+p}, \, \sigma^2 \in \mathbb{R}_+^*}{\arg \max} \, \mathcal{L}_n(\mathbf{w}, \sigma^2).$$

Il est clair que l'EMV $\widetilde{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \|\mathbf{Y} - \mathbb{X}\,\mathbf{w}\|^2 =: \widehat{\mathbf{w}} =: EMC$. L'EMV $\widetilde{\sigma}^2$, de σ^2 , vaut

$$\widetilde{\sigma}^2 = \frac{1}{n} \left\| \mathbf{Y} - \mathbb{X} \, \widehat{\mathbf{w}} \right\|^2.$$

La log-vraisemblance du modèle (évaluée à l'EMV) est donnée par

$$\mathcal{L}_n(\widetilde{\mathbf{w}}, \widetilde{\sigma}^2) = -\frac{n}{2} \log \frac{\|\widehat{\boldsymbol{\varepsilon}}\|^2}{n} - \frac{n}{2} (1 + \log(2\pi)), \tag{2}$$

οù

$$\widehat{\boldsymbol{\varepsilon}} := (\widehat{\varepsilon}_1, \dots, \widehat{\varepsilon}_n)^{\top} := \mathbf{Y} - \mathbb{X} \, \widehat{\mathbf{w}} =: \mathbf{Y} - \widehat{\mathbf{Y}}$$

représentant le vecteur des résidus : les écarts entre les valeurs observées $\mathbf{Y} := (Y_1, \dots, Y_n)^{\top}$, de la variable réponse Y, et les valeurs ajustées $\widehat{\mathbf{Y}} := \mathbb{X} \widehat{\mathbf{w}} =: (\widehat{Y}_1, \dots, \widehat{Y}_n)^{\top}$.

Propriétés des estimateurs MC

Si les conditions suivantes sont vérifiées

(i) Les erreurs, ε_i , i = 1, ..., n, sont non corrélées;

- (ii) $\mathbb{E}(\varepsilon_i \mid \mathbb{X}) = 0$, $\operatorname{Var}(\varepsilon_i \mid \mathbb{X}) = \sigma^2$, $i = 1, \dots, n$, ne dépendant pas de \mathbb{X} (hypothèse d'homoscédasticité); alors on a les propriétés suivantes
 - (1) $\hat{\mathbf{w}}$ est un estimateur sans biais de \mathbf{w} ;
 - (2) La matrice de variance-covariance de $\hat{\mathbf{w}}$, conditionnellement à \mathbb{X} , est donnée par

$$\operatorname{Var}(\widehat{\mathbf{w}} \mid \mathbb{X}) = \sigma^2 (\mathbb{X}^\top \mathbb{X})^{-1}.$$

Lois des estimateurs MC

Dans cette section, on suppose que les termes d'erreur, $\varepsilon_1, \ldots, \varepsilon_n$, sont i.i.d. (et indépendentes de \mathbb{X}) de même loi normale $\mathcal{N}(0, \sigma^2)$, de variance σ^2 ne dépendant pas de \mathbf{x} (hypothèse d'homoscédasticité). Soit

$$\widehat{\boldsymbol{\varepsilon}} := \mathbf{Y} - \mathbb{X} \, \widehat{\mathbf{w}} =: \mathbf{Y} - \widehat{\mathbf{Y}}$$

le vecteur des résidus, et $\hat{\sigma}^2$ l'estimateur, de σ^2 , défini par

$$\widehat{\sigma}^2 := \frac{1}{n-p-1} \|\widehat{\boldsymbol{\varepsilon}}\|^2.$$

Notons que les résulats de cette section restent valables (asymptotiquement, i.e., pour n suffisamment grand) si les erreurs $\varepsilon_1, \ldots, \varepsilon_n$ sont i.i.d. centrées de variance σ^2 (ne dépendant pas de \mathbf{x} , homoscédasticité), même si la normalité n'est pas vérifiée. Les erreurs $\varepsilon_1, \ldots, \varepsilon_n$ ne sont pas observables. Elles sont alors approchées par les résidus, pour tester par exemple les hypothèses d'homoscédasticité ou de non-corrélation des erreurs.

Proposition

On a

- (1) $\hat{\mathbf{w}}$ est un vecteur gaussien d'espérance \mathbf{w} et de matrice de variance-covariance $\sigma^2 \left(\mathbb{X}^\top \mathbb{X} \right)^{-1}$;
- (2) La statistique (n-p-1) $\frac{\widehat{\sigma}^2}{\sigma^2}$ suit la loi du $\chi^2_{(n-p-1)}$ (la loi du χ^2 à n-p-1 degrès de liberté);
- (3) $\widehat{\mathbf{w}}$ et $\widehat{\sigma}^2$ sont indépendants.

Intervalles de confiance et tests

On note
$$\widehat{\sigma}_j^2 := \widehat{\sigma}^2 \left[\left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \right]_{j,j}$$
, pour $j = 0, 1, \dots, p$. On a

$$\forall j = 0, \dots, p$$
, la statistique $\frac{\widehat{w}_j - w_j}{\widehat{\sigma}_j}$ suit la loi $\mathcal{T}_{(n-p-1)}$,

(la loi de Student à n-p-1 degrès de liberté), ce qui permet de construire des intervalles de confiance, au niveau $1-\alpha$, pour les paramètres w_j , et de réaliser des tests d'hypothèses du type $\mathcal{H}_0: w_j = 0$ contre $\mathcal{H}_1: w_j \neq 0$.

Intervalle de confiance, au niveau $1 - \alpha$, pour w_j

$$\left[\widehat{w}_j - t_{(n-p-1)}(1 - \alpha/2)\,\widehat{\sigma}_j, \ \widehat{w}_j + t_{(n-p-1)}(1 - \alpha/2)\,\widehat{\sigma}_j\right],$$

où $t_{(n-p-1)}(1-\alpha/2)$ est le quantile d'ordre $1-\alpha/2$ de la loi de Student à (n-p-1) degrés de liberté.

Test de Student

Considérons le problème de test de l'hypothèse nulle \mathcal{H}_0 : $w_j = 0$ contre l'alternative \mathcal{H}_1 : $w_j \neq 0$.

Notons $t := \frac{\widehat{w}_j}{\widehat{\sigma}_j}$ (la statistique de Student). La P-value du test (de Student) est donnée par

P-value =
$$\mathbb{P}(|T| > |t_{obs}|)$$
,

où T est une variable aléatoire suivant la loi $\mathcal{T}_{(n-p-1)}$.

Prévision et intervalles de confiance

On dispose d'une nouvelle observation $\mathbb{X}_{n+1} := (1, X_{n+1,1}, \dots, X_{n+1,p})$. On prédit la valeur Y_{n+1} correspondante par

$$\widehat{Y}_{n+1} := \mathbb{X}_{n+1} \widehat{\mathbf{w}}.$$

Intervalle d'estimation, au niveau $1 - \alpha$, pour Y_{n+1} :

$$\left[\widehat{Y}_{n+1} - t_{(n-p-1)} (1 - \alpha/2) \, \widehat{\sigma} \, \sqrt{\mathbb{X}_{n+1} \, \left(\mathbb{X}^\top \, \mathbb{X} \right)^{-1} \, \mathbb{X}_{n+1}^\top}, \, \, \widehat{Y}_{n+1} + t_{(n-p-1)} (1 - \alpha/2) \, \widehat{\sigma} \, \sqrt{\mathbb{X}_{n+1} \, \left(\mathbb{X}^\top \, \mathbb{X} \right)^{-1} \, \mathbb{X}_{n+1}^\top} \right];$$

Intervalle de prévision, au niveau $1 - \alpha$, pour Y_{n+1} :

$$\left[\widehat{Y}_{n+1} - t_{(n-p-1)}(1 - \alpha/2)\,\widehat{\sigma}\,\sqrt{1 + \mathbb{X}_{n+1}\,\left(\mathbb{X}^{\top}\,\mathbb{X}\right)^{-1}\,\mathbb{X}_{n+1}^{\top}},\,\,\widehat{Y}_{n+1} + t_{(n-p-1)}(1 - \alpha/2)\,\widehat{\sigma}\,\sqrt{1 + \mathbb{X}_{n+1}\,\left(\mathbb{X}^{\top}\,\mathbb{X}\right)^{-1}\,\mathbb{X}_{n+1}^{\top}}\right].$$

Équation de l'analyse de variance

On a d'après le théorème de Pythagore

$$\|\mathbf{Y} - \overline{\mathbf{Y}}\mathbf{1}\|^2 = \|\widehat{\mathbf{Y}} - \overline{\mathbf{Y}}\mathbf{1}\|^2 + \|\widehat{\boldsymbol{\varepsilon}}\|^2$$

$$SST = SSR + SSE.$$

(somme totale des carrés = somme des carrés de la régression + somme des carrés résiduels) (total sum of squares = regression sum of squares + sum of squared errors)

Coefficient de détermination R^2

Le coefficient de détermination R^2 est défini par

$$R^2 := \frac{\|\widehat{\mathbf{Y}} - \overline{\mathbf{Y}}\mathbf{1}\|^2}{\|\mathbf{Y} - \overline{\mathbf{Y}}\mathbf{1}\|^2} =: \frac{SSR}{SST}.$$

Il vérifie les propriétés suivantes

- (i) $0 < R^2 < 1$;
- (ii) Si $R^2 = 1$, la variabilité de la variable réponse est entièrement expliquée par le modèle;
- (iii) Si $R^2 = 0$, toute la variabilité se trouve dans le bruit (le terme d'erreur).

Test du modèle global

Le modèle de RLM s'écrit

$$Y_i = w_0 + w_1 X_{i,1} + \dots + w_p X_{i,p} + \varepsilon_i, \ i = 1, \dots, n,$$

où les termes d'erreurs ε_i , $i=1,\ldots,n$, sont supposés ici i.i.d. de même loi $\mathcal{N}(0,\sigma^2)$.

On veut tester

$$\mathcal{H}_0: w_1 = \dots = w_p = 0$$
 contre $\mathcal{H}_1: \exists j \in \{1, \dots, p\} \text{ t.q. } w_j \neq 0.$

Sous \mathcal{H}_0 , la statistique de Fisher

$$F := \frac{R^2}{1 - R^2} \frac{n - p - 1}{p} \text{ suit la loi } \mathcal{F}_{(p, n - p - 1)} \text{ (la loi de Fisher à } p \text{ et } n - p - 1 \text{ degrés de liberté)}.$$

On rejette \mathcal{H}_0 si $F_{obs} > F_{(p,n-p-1)}(1-\alpha)$, où $F_{(p,n-p-1)}(1-\alpha)$ est le quantile d'ordre $(1-\alpha)$ de la loi $\mathcal{F}_{(p,n-p-1)}$.

La P-value est donc donnée par

P-value =
$$\mathbb{P}(Z > F_{obs})$$
,

où Z est une variable aléatoire suivant la loi $\mathcal{F}_{(p,n-p-1)}$.

Tests entre modèles emboîtés

On veut tester le modèle réduit \mathcal{M}_0

$$Y_i = w_0 + w_{q+1} X_{i,q+1} + \dots + w_p X_{i,p} + \varepsilon_i,$$

avec $1 \leq q < p$, à l'intérieur du modèle plus large \mathcal{M}

$$Y_i = w_0 + w_1 X_{i,1} + \dots + w_n X_{i,n} + \varepsilon_i$$
.

Cela revient à tester (à l'intérieur du modèle \mathcal{M}) l'hypothèse nulle

$$\mathcal{H}_0: w_1 = 0, \dots, w_q = 0$$
 contre $\mathcal{H}_1: \exists j \in \{1, \dots, q\} \text{ t.q. } w_j \neq 0.$

Pour réaliser le test précédent, on utilise la statistique de Fisher suivante

$$F := \frac{\|\widehat{\mathbf{Y}}_0 - \widehat{\mathbf{Y}}\|^2 / q}{\|\mathbf{Y} - \widehat{\mathbf{Y}}\|^2 / (n - p - 1)}$$

qui suit la loi $\mathcal{F}_{(q,n-p-1)}$, sous \mathcal{H}_0 . ($\hat{\mathbf{Y}}_0$ désigne le vecteur des valeurs ajustées du modèle réduit).

On rejette \mathcal{H}_0 si $F_{obs} > F_{(q,n-p-1)}(1-\alpha)$.

La P-value est donc définie par

P-value :=
$$\mathbb{P}(Z > F_{obs})$$
,

où Z est une variable aléatoire suivant la loi $\mathcal{F}_{(q,n-p-1)}$.

Ce test peut se faire sous R à l'aide de la fonction anova() qu'on applique à des modèles linéaires calculés avec la fonction lm().

Exercice

- (1) Construire le modèle de RLM de la variable Sales en fonction de toutes les variables de la base de données Carseats : utiliser la fonction lm();
- (2) Commenter les résultats;
- (3) Vérifier graphiquement : (i) la non-corrélation des erreurs (utiliser la fonction acf()); (ii) la relation linéaire entre la variable réponse et les variables explicatives; (iii) l'hypothèse d'homoscédasticité des erreurs (appliquer la fonction plot() au modèle calculé par la fonction lm());
- (4) Tester l'hypothèse de non corrélation des erreurs (Utiliser le test de Durbin-Watson);
- (5) Tester l'hypothèse d'homoscédasticité des erreurs: utiliser le test de Breusch-Pagan (fonction bptest() du package lmtest);
- (6) Vérifier graphiquement l'hypothèse de normalité du terme d'erreur : utiliser la représentation Q-Q plot, et comparer l'histogramme des erreurs et la densité gaussienne;
- (7) Tester l'hypothèse de normalité du terme d'erreur : utiliser le test de Shapiro-Wilk;
- (8) Donner les résulats du test de Student de l'hypothèse nulle de non-significativité de chacune des variables explicatives. Ordonner les variables explicatives de la plus significative à la moins significative;
- (9) Donner les résulats du test de Fisher de l'hypothèse nulle de non-significativité de chacune des variables explicatives. Ordonner les variables explicatives de la plus significative à la moins significative;
- (10) Comparer les résultats des deux questions précédentes, et commenter;
- (11) Parmi les deux tests précédents, lequel choisiriez-vous? Justifiez.