

Introdução ao Processamento de Dados Turma (2025.1)

Sistemas de Numeração

Tassio Sirqueira (IME/UERJ)

tassio.sirqueira@ime.uerj.br

Sistema de Numeração Binário

Explication de l'Arithmétique Binaire (Leibniz, 1703)

- Um sistema numérico (ou sistema de numeração) é um sistema de escrita para expressar números.
- Notação matemática para representar números de um determinado conjunto, usando dígitos ou outros símbolos de maneira consistente (algarismos).

0123456789 ΡΛΥΓΟ3Ψ7Ι• III IV V VI VII VIII IX X 025086666 <u>ം</u> ഫെൻത്രന്ന്യ Copace pulce 二三四五六七八九

Algarismos arábicos

Algarismos arábicos orientais

Algarismos romanos

Algarismos bengali-assameses

Algarismos malaiales

Algarismos tailandeses

Algarismos chineses

Exemplo: sistema numérico Romano

- Desenvolvido na Roma antiga.
- Muito usado na Europa até a idade média.
- Números são representados por combinações de sete letras (símbolos) maiúsculas do alfabeto latino.

Símbolo:	I	V	X	L	C	D	M
Valor:	1	5	10	50	100	500	1000

Números são construídos concatenando símbolos.

- 39 = XXX + IX = XXXIX
- 246 = CC + XL + VI = CCXLVI
- 789 = DCC + LXXX + IX = DCCLXXXIX
- 2421 = MM + CD + XX + I = MMCDXXI

	Milhares	Centenas	Dezenas	Unidades
1	M	С	X	I
2	MM	CC	XX	II
3	MMM	CCC	XXX	III
4		CD	XL	IV
5		D	L	V
6		DC	LX	VI
7		DCC	LXX	VII
8		DCCC	LXXX	VIII
9		CM	XC	IX

- O sistema de numeração mais usado atualmente é o sistema de numeração Hindu-Arábico.
- Desenvolvido por dois matemáticos indianos.
- Aryabhata desenvolveu a notação posicional no século V.
- Brahmagupta introduziu o símbolo zero no século VI.

- O sistema de numeração Hindu-Arábico tem base 10.
- Dez símbolos são usados para representar os dígitos:

0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.

Por que 10?

- Como construímos números?
- Primeiro consideramos os dígitos da base.
- Vamos usando os dígitos em ordem até eles acabarem.
- Quando eles acabam, acrescentamos um novo dígito na próxima posição e recomeçamos...

)

1

2

3

4

5

7

ŏ

10

11

12

••

19

20

21

...

- E se os seres humanos tivessem apenas 8 dedos?
- Imagine que o conjunto de dígitos permitidos/disponíveis fosse apenas: 0, 1, 2, 3, 4, 5, 6 e 7.

- E se os seres humanos tivessem apenas 8 dedos?
- Imagine que o conjunto de dígitos permitidos/disponíveis fosse apenas: 0, 1, 2, 3, 4, 5, 6 e 7.
- Repare que o número 10_8 (na base 8) corresponde ao número 8_{10} (na base 10).
- O número 12₈ corresponde ao número 10₁₀.

...

...

- E para bases maiores do que 10?
- Temos que usar outros símbolos.
- O conjunto de dígitos disponíveis para a base 16 é:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F.
- Repare que o número F_{16} (na base 16) corresponde ao número 15_{10} (na base 10).
- O número 10_{16} corresponde ao número 16_{10} .
- O número 2A₁₆ corresponde a que número na base 10?

10

1F

20

21

13

- E para a base 2?
- Só podemos usar dois dígitos: 0 e 1.

Base: 2	10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15
10000	16
•••	•••

- Qual a regra geral?
- Por exemplo, no sistema decimal (base 10), o número 4327_{10} significa: $(4\times10^3) + (3\times10^2) + (2\times10^1) + (7\times10^0)$.
- O número binário 1010_2 (base 2) equivale ao número 10_{10} no sistema decimal: $(1\times2^3) + (0\times2^2) + (1\times2^1) + (0\times2^0) = 10_{10}$
- O número 201_8 (base 8) equivale ao número 129_{10} no sistema decimal: $(2\times8^2) + (0\times8^1) + (1\times8^0) = 129_{10}$
- O número $2A_{16}$ (base 16) equivale ao número 42_{10} no sistema decimal: $(2\times16^1) + (10\times16^0) = 42_{10}$

Qual é a regra geral?

$$(a_n a_{n-1} \cdots a_1 a_0)_b = \sum_{k=0}^n a_k b^k$$

Posição	3	2	1	0
Peso	b^3	b^2	b^1	b^0
Dígito	a_3	a_2	a_1	a_0
Peso decimal	1000	100	10	1
Dígito decimal	1	1	2	5

Qual é a regra geral?

$$(a_n a_{n-1} \cdots a_1 a_0.\, c_1 c_2 c_3 \cdots)_b = \sum_{k=0}^n a_k b^k + \sum_{k=1}^\infty c_k b^{-k}$$

Posição	3	2	1	0	-1	-2	•••
Peso	b^3	b^2	b^1	b^0	b^{-1}	b^{-2}	•••
Dígito	a_3	a_2	a_1	a_0	c_1	c_2	•••
Peso decimal	1000	100	10	1	0.1	0.01	•••
Dígito decimal	1	1	2	5	0	0	•••

Exemplos:

10 (decimal)	2 (binário)	8 (octal)	16 (hexadecimal)
0	0	0	0
3	11	3	3
10	1010	12	Α
15	1111	17	F
301	100101101	455	12D
1379	10101100011	2543	563
42685	1010011010111101	123275	A6BD

 Para converter um número de qualquer base para a base decimal, basta usar a regra mencionada anteriormente.

$$(a_n a_{n-1} \cdots a_1 a_0)_b = \sum_{k=0}^n a_k b^k$$

- 10000_2 : $(1 \times 2^4) + (0 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 16_{10}$
- 1771_8 : $(1 \times 8^3) + (7 \times 8^2) + (7 \times 8^1) + (1 \times 8^0) = 1017_{10}$
- $3F9_{16}:(3\times16^2)+(15\times16^1)+(9\times16^0)=1017_{10}$

- Para converter um número da base decimal para qualquer outra base:
 divisões sucessivas.
- Para converter o decimal 13₁₀ em binário: 1 1 0 1₂

- Para converter um número da base decimal para qualquer outra base:
 divisões sucessivas.
- Para converter o decimal 492₁₀ em octal: 754₈

- Para converter um número da base decimal para qualquer outra base:
 divisões sucessivas.
- Para converter o decimal 522₁₀ em hexadecimal: 20A₁₆

Conversão entre binário e octal: tabela de conversão.

Octal	0	1	2	3	4	5	6	7
Binário	000	001	010	011	100	101	110	111

- Para converter 472_8 em binário, substituir: 4_8 por 100_2 ; 7_8 por 111_2 ; 2_8 por 010_2 .
- Desta forma, obtemos o número binário 100111010₂.

Conversão entre binário e hexadecimal: tabela de conversão.

Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Binário	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

- Para converter $3A6_{16}$ em binário, substituir: 3_{16} por 0011_2 ; A_{16} por 1010_2 ; 6_{16} por 0110_2 .
- Desta forma, obtemos o número binário 001110100110₂.

Aritmética binária

Aritmética octal

Aritmética hexadecimal

- 1 bit: um número binário com uma posição (0 ou 1).
- 1 byte: um número binário com 8 posições (8 bits).

0	0	0	0	0	0	0	0	
							i	

- 1 bit: um número binário com uma posição (0 ou 1).
- 1 byte: um número binário com 8 posições (8 bits).

1 1 1 1 1 1 1 1 1

- 1 bit: um número binário com uma posição (0 ou 1).
- 1 byte: um número binário com 8 posições (8 bits).

1	0	1	1	0	0	1	1
1						l	

- 1 bit: um número binário com uma posição (0 ou 1).
- 1 byte: um número binário com 8 posições (8 bits).
- 1 Kilobyte (KB): 2¹⁰ (1.024) bytes.
- 1 Megabyte (MB): 2²⁰ (1.048.576) bytes.
- 1 Gigabyte (GB): 2³⁰ (1.073.741.824) bytes.
- 1 Terabyte (TB): 2⁴⁰ (1.099.511.627.776) bytes.
- 1 Petabyte (PB): 2⁵⁰ (1.125.899.906.842.624) bytes.

Sinal e Magnitude (S + M)

- Utiliza um bit para representar o sinal, o bit mais à esquerda
- Valor positivo é indicado por um 0; valor negativo é indicado por um 1.

Complemento de 1

- Invertem-se todos os bits de um número para representar o seu complementar (negativo ou positivo).
- Quando o bit mais à esquerda é 0, o valor é positivo; se for 1, então é negativo.

1
$$|$$
 0 $|$ **0** $|$ **1** $|$ **1** $|$ **0** $|$ **1** $|$ **1** $|$ **=** -100 $_{10}$

Complemento de 1

- Invertem-se todos os bits de um número para representar o seu complementar (negativo ou positivo).
- Quando o bit mais à esquerda é 0, o valor é positivo; se for 1, então é negativo.
- Problema: o número 0 (zero) pode ter duas representações:

$$0_{10} = 00000000_2 = 111111111_2$$

Complemento de 2

- Para determinar o complemento (negativo ou positivo) de um número, invertem-se todos os seus bits e soma-se uma unidade.
- O bit da esquerda indica o sinal: O para positivo; 1 para negativo.
- Exemplo:

$$101_{10} = 01100101_2$$
 (com 8 bits)

Invertendo todos os bits:

10011010₂

Somando uma unidade

$$10011010_2 + 1_2 = 10011011_2 = -101_{10}$$

Complemento de 2

- Para determinar o complemento (negativo ou positivo) de um número, invertem-se todos os seus bits e soma-se uma unidade.
- O bit da esquerda indica o sinal: O para positivo; 1 para negativo.

$$-13_{10}$$
= ?₂
 13_{10} = 00001101₂ (8 bits)
 -13_{10} = 11110010₂ + 1
 -13_{10} = 11110011₂

Números binários negativos

Complemento de 2

Pode-se somar números da mesma forma que com números sem sinal.

Números binários negativos

Complemento de 2

Pode-se somar números da mesma forma que com números sem sinal.

$$+ 11110011_{2} = -13_{10}$$

$$-13_{10} = 26_{10}$$

$$-13_{10} = 26_{10}$$

$$-13_{10} = 26_{10}$$

Codificação de textos

ASCII: American Standard Code for Information Interchange

- Padrão de codificação de caracteres para comunicação eletrônica.
- Representam texto em computadores, equipamentos de telecomunicações e outros dispositivos.
- A maioria dos esquemas de codificação de caracteres modernos é baseada em ASCII, embora eles suportem muitos caracteres adicionais.
- https://pt.wikipedia.org/wiki/ASCII

Codificação de textos

Tabela ASCII

Decimal	Нех	Char	Decimal	Нех	Char	_I Decimal	Hex	Char	ı Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	100	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	ř
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	(SUBSTITUTE)	58	ЗА		90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	Ň	124	7C	Ĩ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
			•			•		_			

- Uma imagem digital é uma matriz de pixels.
- Uma imagem digital colorida é composta por três matrizes: uma para cada cor primária no modelo RGB (Red – vermelho; Green – verde; Blue – azul).
- Há vários tipos de codificação, mas uma das mais comuns é a imagem de 24 bits: um byte para cada cor.
- Valor 0₁₀: intensidade mínima da cor.
- Valor 255₁₀: intensidade máxima da cor.

Vermelho

Verde

Azul

Introdução ao Processamento de Dados Turma (2025.1)

Sistemas de Numeração

Tassio Sirqueira (IME/UERJ)

tassio.sirqueira@ime.uerj.br