27 KEGEL 47

27 Kegel

Sei $H \subseteq \mathbb{P}^n(k)$ Hyperebene, $p \in \mathbb{P}^n(k) \backslash H$, $X \subseteq H$ abgeschlossene Unterprävarietät.

$$\overline{X,p} := \bigcup_{q \in X} \overline{qp}$$

heißt **Kegel von** X **über** p, es handelt sich um einen abgeschlossenen Untervarietät von $\mathbb{P}^n(k)$. Ohne Einschränkung: $H = V_+(X_n)$, $p = (0 : \cdots : 1)$ (nach Koordinatenwechsel: $H \cong k^n \oplus p \cong k$) Für

$$X = V_{+}(f_{1}, \dots, f_{m}) \subseteq \mathbb{P}^{n-1}(k) = H, \quad f_{i} \in k[X_{0}, \dots, X_{n-1}]$$

$$\Rightarrow X, p = V_{+}(\tilde{f}_{1}, \dots, \tilde{f}_{m}) \subseteq \mathbb{P}^{n}(k), \quad \tilde{f}_{i} \in k[X_{0}, \dots, X_{n}]$$

Verallgemeinerung. Sei $\mathbb{P}^n(k) \cong \Lambda \subseteq \mathbb{P}^n(k)$ linearer Unterraum, $\psi \subseteq \mathbb{P}^n(k)$ komplementärer linearer Unterraum, d.h. $\Lambda \cap \psi = \emptyset$ und $\mathbb{P}^n(k)$ ist der bekannte lineare Unterraum von $\mathbb{P}^n(k)$, der Λ und ψ enthält. $X \subseteq \psi$ abgeschlossene Unterprävarietät.

Kegel von X **über** Λ : $\overline{X}, \overline{\Lambda} = \bigcup_{q \in X} \overline{q}, \overline{\Lambda}$, wobei der von q und Λ aufgespannte lineare Unterraum $\overline{q}, \overline{\Lambda}$ der kleinste Unterraum sei, der q und Λ enthält.

28 Quadriken

Sei $char(k) \neq 2$ in diesem Abschnitt.

Definition 60 (orig. 57). Eine abgeschlossene Unterprävarietät $Q \subseteq \mathbb{P}^n(k)$ von der Form $V_+(q)$, $q \in k[X_0, \dots, X_n]_2 \setminus \{0\}$ heißt **Quadrik**.

$$Q = V_+(q)$$

Zur quadratischen Form q gehört eine Bilinearform β auf k^{n+1} ,

$$\beta(v,w) := \frac{1}{2}(q(v+w) - q(v) - q(w)), \quad v,w \in k^{n+1}$$

28 QUADRIKEN 48

Es gibt eine Basis von k^{n+1} , sodass die Strukturmatrix B von β die Gestalt

$$B = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & 0 & \\ & & 1 & & & \\ & & & 0 & & \\ & 0 & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

hat, d.h. Koordinatenwechsel zur Basiswechselmatrix liefert einen Isomorphismus

$$Q \xrightarrow{\cong} V_+(X_0^2 + \dots + X_{r-1}^2), \quad r = \operatorname{rg} B$$

Lemma 61 (orig. 58).

Proposition 62 (orig. 59). *Ist* $r \neq s$, *so sind* $V_{+}(T_0^2 + \cdots + T_{r-1}^2)$ *und* $V_{+}(T_0^2 + \cdots + T_{s-1}^2)$ *nicht isomorph.*

Proof. (später: Es gibt keinen Koordinatenwechsel von $\mathbb{P}^n(k)$, der beide Mengen identifiziert, damit auch kein Automorphismus in $\mathbb{P}^n(k)$.)

Definition 63. Eine Quadrik $Q \subseteq \mathbb{P}^n(k)$ mit $Q \cong V_+(T_0^2 + \cdots + T_{r-1}^2)$, $r \geq 1$, habe die Dimension n-1 und Rang r. (nach Satz eindeutig!)