Comparação de Tempos: Merge Sort Recursivo vs Iterativo

Comparação da Implementação Recursiva x Iterativa do Merge Sort

1. Clareza do Código: - A implementação recursiva é geralmente mais clara e concisa, refletindo a lógica do algoritmo de maneira mais direta. A recursão é mais fácil de entender para aqueles que estão familiarizados com a divisão e conquista.

Após implementar e testar o algoritmo Merge Sort nas versões recursiva e iterativa, foram observadas as seguintes considerações:

- A versão iterativa, embora funcional, tende a ser um pouco mais complexa e difícil de seguir, especialmente devido à necessidade de gerenciar manualmente a mesclagem das sublistas.

2. Desempenho:

- Em termos de tempo de execução, ambas as implementações têm complexidade teórica O(n log n). Contudo, a implementação recursiva pode ser mais lenta em alguns casos devido ao overhead das chamadas de função e à profundidade da pilha, especialmente para n menores.
- A implementação iterativa, por outro lado, tende a ser mais eficiente em termos de uso de memória, pois não utiliza a pilha de chamadas recursivas, o que pode levar a estouros de pilha em listas muito grandes,
- especialmente para n menores. - Por outro lado, para n a partir de valores 10 ^ 4, a versão recursiva é mais eficiente devido a otimizações como realizar a mesclagem em sublistas que são geralmente menores e, portanto, mais eficientes. Isso ocorre porque em listas maiores, as vantagens de dividir a lista em sublistas e resolver cada parte de forma independente tornam-se

mais evidentes na versão recursiva.

- 3. Uso de Memória:
- A implementação recursiva pode consumir mais memória, especialmente para entradas grandes, devido à pilha de chamadas. Cada chamada recursiva consome espaço na pilha, o que pode levar a problemas em entradas grandes.
 - A versão iterativa, em contrapartida, gerencia a mesclagem dentro de um único bloco de memória, o que a torna mais robusta para listas grandes.

Essas observações sublinham a importância de considerar tanto a clareza do código quanto o desempenho e o uso de memória ao escolher entre abordadens recursivas e iterativas em algoritmos de ordenação

Resultados de Tempo de Execução - Recursivo

	Tamanho da Entrada (n)	Tempo Recursivo Aleatório (s)	Tempo Recursivo Ordenado (s)	Tempo Recursivo Inverso (s)
	100.0	5.507469177246094e-05	4.744529724121094e-05	4.696846008300781e-05
	1000.0	0.0007276535034179688	0.0005872249603271484	0.0005574226379394531
	5000.0	0.004269838333129883	0.0031273365020751953	0.0031867027282714844
	10000.0	0.008709192276000977	0.007249593734741211	0.007110595703125
Г	50000.0	0.05776357650756836	0.05020761489868164	0.04845285415649414
	100000.0	0.13126707077026367	0.09947371482849121	0.09949350357055664

Resultados de Tempo de Execução - Iterativo

Tamanho da Entrada (n)	Tempo Iterativo Aleatório (s)	Tempo Iterativo Ordenado (s)	Tempo Iterativo Inverso (s)
100.0	5.936622619628906e-05	3.790855407714844e-05	3.504753112792969e-05
1000.0	0.0007462501525878906	0.0004210472106933594	0.0004177093505859375
5000.0	0.004641532897949219	0.0029299259185791016	0.0024797916412353516
10000.0	0.012639760971069336	0.008360147476196289	0.006334781646728516
50000.0	0.21261191368103027	0.14975833892822266	0.08457231521606445
100000.0	0.7313745021820068	0.5069615840911865	0.2727048397064209