## Logistic Regression and MaxEnt

Wei Wang @ CSE, UNSW

April 9, 2020

# Generative vs. Discriminative Learning

• Generative models:

$$Pr[y \mid x] = \frac{Pr[x \mid y]Pr[y]}{Pr[x]}$$

$$\propto Pr[x \mid y]Pr[y] = Pr[x, y]$$

- The key is to model the generative probability: Pr[x | y].
- Example: Naive Bayes.
- Discriminative models:
  - models  $Pr[y \mid x]$  directly as  $g(x; \theta)$ .
  - Example: Decision tree, Logistic Regression.
- Instance-based Learning.
  - Example: kNN classifier.

# Linear Regression



Figure: Linear Regression

#### Task

- Input:  $(x^{(i)}, y^{(i)})$  pairs  $(1 \le i \le n)$
- Preprocess: let  $\mathbf{x}^{(i)} = \begin{bmatrix} 1 & x^{(i)} \end{bmatrix}^{\top}$
- Output: The best  $\mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}^\top$  such that  $\hat{y} = \mathbf{w}^\top \mathbf{x}$  best explains the observations

## Least Square Fit

The criterion for "best":

- Individual error:  $\epsilon_i = \hat{y}^{(i)} y^{(i)}$
- Sum squared error:  $\ell = \sum_{i=1}^n \epsilon_i^2$

Find **w** such that  $\ell$  is minimized.

## Minimizing a Function

#### Taylor Series of f(x) at point a

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(i)}(a)}{n!} (x - a)^n$$
 (1)

$$= f(a) + f'(a) \cdot (x-a) + \frac{f''(a)}{2}(x-a)^2 + o((x-a)^2) \quad (2)$$

- Intuitively, f(x) is almost  $f(a) + f'(a) \cdot (x a)$  for all a if it is close to x.
- If f(x) has local minimum  $x^*$ , then
  - $f'(x^*) = 0$ , and
  - $f''(x^*) > 0$ .

Minimum of the local minima is the global minimum if it is smaller than the function values at all the boundary points.

• Intuitively, f(x) is almost  $f(a) + \frac{f''(a)}{2}(x-a)^2$  if a is close to  $x^*$ .

## Find the Least Square Fit for Linear Regression

$$\frac{\partial \ell}{\partial w_j} = \sum_{i=1}^n 2\epsilon_i \frac{\partial \epsilon_i}{\partial w_j} = \sum_{i=1}^n 2\epsilon_i \frac{\partial \mathbf{w}^\top \mathbf{x}^{(i)}}{\partial w_j}$$
$$= \sum_{i=1}^n 2\epsilon_i x_j^{(i)} = 2\sum_{i=1}^n (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)}$$

By setting the above to 0, this essentially requires, for all j

$$\sum_{i=1}^{n} \hat{y}^{(i)} x_{j}^{(i)} = \sum_{i=1}^{n} y^{(i)} x_{j}^{(i)}$$

what the model predicts

what the data says

# Find the Least Square Fit for Linear Regression

In the simple 1D case, we have only two parameters in  $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$ 

$$\sum_{i=1}^{n} (w_0 + w_1 x_1^{(i)}) x_0^{(i)} = \sum_{i=1}^{n} y^{(i)} x_0^{(i)}$$
$$\sum_{i=1}^{n} (w_0 + w_1 x_1^{(i)}) x_1^{(i)} = \sum_{i=1}^{n} y^{(i)} x_1^{(i)}$$

Since  $x_0^{(i)} = 1$ , they are essentially

$$\sum_{i=1}^{n} (w_0 + w_1 x_1^{(i)}) \cdot 1 = \sum_{i=1}^{n} y^{(i)} \cdot 1$$
$$\sum_{i=1}^{n} (w_0 + w_1 x_1^{(i)}) \cdot x_1^{(i)} = \sum_{i=1}^{n} y^{(i)} \cdot x_1^{(i)}$$

## Example

Using the same example in https://en.wikipedia.org/wiki/Linear\_least\_squares\_(mathematics)

$$\mathbf{X} = \begin{bmatrix} - & (x^{(1)})^{\top} & - \\ - & (x^{(2)})^{\top} & - \\ - & (x^{(3)})^{\top} & - \\ - & (x^{(4)})^{\top} & - \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \qquad \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix} \qquad = \qquad \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \qquad \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \hat{v}_4 \end{bmatrix}$$

#### Generalization to *m*-dim

• Easily generalizes to more than 2-dim:

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_m^{(1)} \\ 1 & \dots & \dots & \dots \\ 1 & x_1^{(i)} & \dots & x_m^{(i)} \\ 1 & \dots & \dots & \dots \\ 1 & x_1^{(n)} & \dots & x_m^{(n)} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_m \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(i)} \\ \dots \\ y^{(n)} \end{bmatrix}$$

- How to perform polynomial regression for one dimensional x?
  - $\hat{y} = w_0 + w_1 x + w_2 x^2 \ldots + w_m x^m.$
  - Let  $x_j^{(i)} = (x_1^{(i)})^j \Longrightarrow \text{Polynomial least square fitting } (\text{http://mathworld.wolfram.com/} \text{LeastSquaresFittingPolynomial.html})$

## Probablistic Interpretation

#### High-level idea:

- Observations (i.e., training data) are noisy
  - $P(y^{(i)} | \hat{y}^{(i)}) = f_i(\mathbf{w})$
- Any w is possible, but some w is most likely.
  - Assuming independence of training examples, the likelihood of the training dataset is  $\prod_i f_i(\mathbf{w})$ .
  - We shall choose the  $\mathbf{w}^*$  that maximizes the likelihood.
    - Maximum likelihood estimation (MLE)
    - If we also incorporate some prior on  $\mathbf{w}$ , this becomes Maximum Posterior Estimation (MAP): If we assume some Gaussian prior on  $\mathbf{w}$ , this will add a  $\ell_2$  regularization term to the objective function.
- Many models and their variants can be deemed as different ways of estimating  $P(y^{(i)} | \hat{y}^{(i)})$



## Geometric Interpretation and the Closed Form Solution

Find **w** such that  $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2$  is minimized.

- What is Xw when X is fixed?
  - It is the hyperplane spanned by the d column vectors of  $\mathbf{X}$ .
- $\mathbf{y}$  in general is a vector outside the hyperplane. So the minimum distance is achieved when  $\mathbf{X}\mathbf{w}^*$  is exactly the projection of  $\mathbf{y}$  on the hyperplane. This means (denote i-th column of  $\mathbf{X}$  as  $X_i$ )

$$\begin{array}{ll} X_1^\top(\mathbf{y} - \mathbf{X}\mathbf{w}) &= 0 \\ X_2^\top(\mathbf{y} - \mathbf{X}\mathbf{w}) &= 0 \\ \dots \dots &= 0 \\ X_d^\top(\mathbf{y} - \mathbf{X}\mathbf{w}) &= 0 \end{array} \right\} \Longrightarrow \mathbf{X}^\top(\mathbf{y} - \mathbf{X}\mathbf{w}) = \mathbf{0}$$

$$\bullet \ \mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{+}\mathbf{y}$$

(X<sup>+</sup>: pseudo inverse of X)

#### Illustration



# Logistic Regression

Special case:  $y^{(i)} \in \{0, 1\}.$ 

- Not appropriate to directly regress  $y^{(i)}$ .
- Rather, model  $y^{(i)}$  as the observed outcome of a Bernoulli trial with an unknown parameter  $p_i$
- How to model p<sub>i</sub>
  - We assume that  $p_i$  depends on  $\mathbf{x} \triangleq \mathbf{X}_{i\bullet} \Longrightarrow$  rename  $p_i$  to  $p_{\mathbf{x}}$ .
  - Still hard to estimate  $p_x$  reliably.
    - MLE:  $p_x = E[y = 1 \mid x]$
  - What can we say about  $p_{x+\epsilon}$  when  $p_x$  is given?
- ullet Answer: we impose a linear relationship between  $p_{f x}$  and  ${f x}$ 
  - What about a simple linear model  $p_{\mathbf{x}} = \mathbf{w}^{\top} \mathbf{x}$  for some  $\mathbf{w}$ ? (Note: all points share the same parameter  $\mathbf{w}$ )
  - Problem: mismatch of the domains: vs
  - Solution: mean function / inverse of link function:  $g^{-1}: \Re \to \mathrm{params}$

#### Solution

• Solution: Link function  $g(parameters) \rightarrow \Re$ 

$$g(p) = \operatorname{logit}(p) \triangleq \log \frac{p}{1-p} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$
 (3)

Equivalently, solve for p.

$$p = \frac{e^{\mathbf{w}^{\top}\mathbf{x}}}{1 + e^{\mathbf{w}^{\top}\mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^{\top}\mathbf{x}}} = \sigma(\mathbf{w}^{\top}\mathbf{x})$$
(4)

Where  $\sigma(z) = \frac{1}{1 + \exp(-z)}$ .

Recall that  $p_{\mathbf{x}} = \mathbf{E}[y = 1 \mid \mathbf{x}].$ 

- Decision boundary is  $p \ge 0.5$ .
  - Equivalent to whether w<sup>⊤</sup>x ≥ 0. Hence, LR is a linear classifier.

## Learning the Parameter w

- Consider a training data point  $\mathbf{x}^{(i)}$ .
  - Recall that the conditional probability  $(\Pr[y^{(i)} = 1 \mid \mathbf{x^{(i)}}])$  computed by the model is denoted by the shorthand notation p (which is a function of  $\mathbf{w}$  and  $\mathbf{x^{(i)}}$ ).
  - The likelihood of  $\mathbf{x^{(i)}}$  is  $\begin{cases} p & \text{, if } y^{(i)} = 1 \\ 1-p & \text{, otherwise} \end{cases}$  , or equivalently,  $p^{y^{(i)}}(1-p)^{1-y^{(i)}}$ .
- Hence, the likelihood of the whole training dataset is

$$L(\mathbf{w}) = \prod_{i=1}^{n} p(\mathbf{x}^{(i)})^{y^{(i)}} (1 - p(\mathbf{x}^{(i)}))^{1 - y^{(i)}}.$$

• Log-likelihood is (assume  $\log \triangleq \ln$ )

$$\ell(\mathbf{w}) = \sum_{i=1}^{n} y^{(i)} \log p(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - p(\mathbf{x}^{(i)}))$$
 (5)

## Learning the Parameter w

ullet To maximize  $\ell$ , notice that it is concave. So take its partial derivatives

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^n \left( y^{(i)} \frac{1}{p(\mathbf{x}^{(i)})} \frac{\partial p(\mathbf{x}^{(i)})}{\partial \mathbf{w}_j} + (1 - y^{(i)}) \frac{1}{1 - p(\mathbf{x}^{(i)})} \frac{\partial (1 - p(\mathbf{x}^{(i)}))}{\partial \mathbf{w}_j} \right)$$

$$= \sum_{i=1}^n \left( \mathbf{x}^{(i)}_j y^{(i)} - \mathbf{x}^{(i)}_j p(\mathbf{x}^{(i)}) \right)$$

ullet and set them to 0 essentially means, for all j

$$\sum_{i=1}^{n} \hat{y}^{(i)} \cdot \mathbf{x^{(i)}}_{j} = \sum_{i=1}^{n} \rho(\mathbf{x^{(i)}}) \mathbf{x^{(i)}}_{j} = \sum_{i=1}^{n} y^{(i)} \cdot \mathbf{x^{(i)}}_{j}$$

what the model predicts

what the data says

## Understand the Equilibrium

 Consider one dimensional x. The above condition is simplified to

$$\sum_{i=1}^{n} p^{(i)} x^{(i)} = \sum_{i=1}^{n} y^{(i)} x^{(i)}$$

- The RHS is essentially the sum of x values **only** for the training data in class Y = 1.
- The LHS says: if we use our learned model to assign a probability (of belonging to the class Y=1) for **every** training data, the LHS is the expected sum of x values.
- If this is still abstract, think of an example.

#### **Numeric Solution**

- There is no closed-form solution to maximize  $\ell$ .
- Use the *Gradient Ascent* algorithm to maximize  $\ell$ .
- There are faster algorithms.

## (Stochastic) Gradient Ascent

- w is intialized to some random value (e.g., 0).
- Since the gradient gives the steepest direction to increase a function's value, we move a small step towards that direction, i.e.,

$$w_j \leftarrow w_j + \alpha \frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j}$$
, or  $w_j \leftarrow w_j + \alpha \sum_{i=1}^n (y^{(i)} - p(\mathbf{x^{(i)}})) \mathbf{x^{(i)}}_j$ 

where  $\alpha$  (learning rate) is usually a small constant, or decreasing over the epochs.

 Stochastic version: using the gradient on a randomly selected training instance, i.e.,

$$w_j \leftarrow w_j + \alpha(y^{(i)} - p(\mathbf{x^{(i)}}))\mathbf{x^{(i)}}_j$$

#### Newton's Method

- Gradient Ascent moves to the "right" direction a tiny step a time. Can we find a good step size?
- Consider 1D case: **minimize** f(x) and the current point is a.

• 
$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2$$
 for x near a.

• To minimize f(x), take  $\frac{\partial f(x)}{\partial x} = 0$ , i.e.,

$$\frac{\partial f(x)}{\partial x} = 0$$

$$\Leftrightarrow f'(a) \cdot 1 + \frac{f''(a)}{2} \cdot 2(x - a) \cdot 1 = f'(a) + f''(a)(x - a) = 0$$

$$\Leftrightarrow x = a - \frac{f'(a)}{f''(a)}$$

• Can be applied to multiple dimension cases too  $\Rightarrow$  need to use  $\nabla$  (gradient) and Hess (Hessian).



#### Regularization

- Regularization is another method to deal with overfitting.
  - It is designed to penalize large values of the model parameters.
  - Hence it encourages simpler models, which are less likely to overfit.
- Instead of optimizing for  $\ell(\mathbf{w})$ , we optimize  $\ell(\mathbf{w}) + \lambda R(\mathbf{w})$ .
  - $\bullet$   $\lambda$  is a hyper-parameter that controls the strength of regularization.
    - It is usually determined by cross validating with a list of possible values (e.g., 0.001, 0.01, 0.1, 1, 10, ...)
    - Grid search: http:
      //scikit-learn.org/stable/modules/grid\_search.html
    - There are alternative methods.
  - R(w) quantifies the "size" of the model parameters. Popular choices are:
    - $L_2$  regularization (Ridge LR)  $R(\mathbf{w}) = ||\mathbf{w}||_2^2$
    - $L_1$  regularization (Lasso LR)  $R(\mathbf{w}) = ||\mathbf{w}||_1$
    - $\bullet$   $L_1$  regularization is more likely to result in sparse models.

## Generalizing LR to Multiple Classes

■ LR can be generalized to multiple classes ⇒ MaxEnt.

$$\Pr[c \mid \mathbf{x}] \propto \exp\left(\mathbf{w}_c^{\top}\mathbf{x}\right) \implies \Pr[c \mid \mathbf{x}] = \frac{\exp\left(\mathbf{w}_c^{\top}\mathbf{x}\right)}{Z}$$

- Z is the normalization constant..
- Let  $\mathbf{c}^*$  be the last class in C, then  $\mathbf{w}_{\mathbf{c}^*} = \mathbf{0}$ .
- Derive LR from MaxEnt How?
- Both belong to *exponential* or *log-linear* classifiers.

## Further Reading

- Andrew Ng's note: http://cs229.stanford.edu/notes/cs229-notes1.pdf
- Cosma Shalizi's note: http://www.stat.cmu.edu/ ~cshalizi/uADA/12/lectures/ch12.pdf
- Tom Mitchell's book chapter: https: //www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf