Introduction to Algorithms 6.046J/18.401J

Lecture 9
Prof. Piotr Indyk

Today

Balanced search trees,
 or how to avoid this –
 even in the worst case

Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees

Examples:

Red-black trees

BSTs with an extra one-bit color field in each node.

Red-black properties:

- 1. Every node is either red or black.
- 2. The root and leaves (NIL's) are black.
- 3. If a node is red, then its parent is black.
- 4. All simple paths from any node *x* to a descendant leaf have the same number of black nodes.

Example of a red-black tree

Use of red-black trees

- What properties would we like to prove about red-black trees?
 - They always have O(log n) height
 - There is an O(log n)—time insertion procedure which preserves the red-black properties
- Is it true that, after we add a new element to a tree (as in the previous lecture), we can always recolor the tree to keep it red-black?

Example of a red-black tree

Use of red-black trees

- What properties would we like to prove about redblack trees?
 - They always have O(log n) height
 - There is an O(log n)—time insertion procedure which preserves the red-black properties
- Is it true that, after we add a new element to a tree (as in the previous lecture), we can always recolor the tree to keep it red-black?
- NO
- After insertions, sometimes we need to juggle nodes around

Rotations

Rotations maintain the inorder ordering of keys:

•
$$a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$$
.

A rotation can be performed in O(1) time.

Rotations can reduce height

Red-black tree wrap-up

- Can show how
 - $-O(\log n)$ re-colorings
 - 1 rotation

can restore red-black properties after an insertion

• Instead, we will see 2-3 trees (but will come back to red-black trees at the end)

2-3 Trees

- The simplest balanced trees on the planet!
- Although a little bit more wasteful

2-3 Trees

• Degree of each node is either 2 or 3

Keys are in the leaves

All leaves have equal depth

Leaves are sorted

 Each node x contains maximum key in the sub-tree, denoted

x.max

Internal nodes

- Internal nodes:
 - Values:
 - x.max: maximum key in the sub-tree
 - Pointers:
 - left[x]
 - mid[x]
 - right[x]: can be null
 - p[x] : can be null for the root
 - •
- Leaves:
 - x.max : the key

Height of 2-3 tree

- What is the maximum height h of a 2-3 tree with n nodes?
- Alternatively, what is the minimum number of nodes in a 2-3 tree of height h?
- It is $1+2+2^2+2^3+...+2^h=2^{h+1}-1$
- $n \ge 2^{h+1}-1 \implies h = O(\log n)$
- Full binary tree is the worst-case example!

Searching

How can we search for a key k?

Search(x,k):

- If x=NIL then return NIL
- Else if x is a leaf then
 - If x.max=k then return x
 - Else return NIL
- Else
 - If k ≤ left[x].maxthen Search(left[x],k)
 - Else if $k \le mid[x].max$ then Search(mid[x],k)
 - Else Search(right[x],k)

Search(8) Search(13)

Insertion

- How to insert x ?
- Perform Search for the key of x
- Let y be the last internal node
- Insert x into y in a sorted order
- At the end, update the max values on the path to root

(continued on the next slide)

Insertion, ctd.

(continued from the previous slide)

If y has 4 children, then Split(y)

Split

- Split y into two nodes
 y₁, y₂
- Both are linked toz=parent(y)*
- If z has 4 children, split z

*If y is a root, then create new parent(y)=new root

Split

Split

- Insert and Split preserve heights, unless new root is created, in which case all heights are increased by 1
- After Split, all nodes have 2 or 3 children
- Everything takes O(log n) time

Delete

- How to delete x?
- Let y=p(x)
- Remove x from y
- If y has 1 child:
 - -Remove y
 - Attach x to y's sibling z

Delete(8)

Delete

- How to delete x?
- Let y=p(x)
- Remove x from y
- If y has 1 child:
 - -Remove y
 - Attach x to y's sibling z
- If z has 4 children, then Split(z)

Delete(8)

INCOMPLETE – SEE THE END FOR FULL VERSION

Summing up

- 2-3 Trees:
 - $-O(\log n)$ depth \Rightarrow Search in $O(\log n)$ time
 - Insert, Delete (and Split) in O(log n) time
- We will now see 2-3-4 trees
 - Same idea, but:
 - Each parent has 2,3 or 4 children
 - Keys in the inner nodes
 - More complicated procedures

2-3-4 Trees

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Intuition:

- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.

Summing up

- We have seen:
 - Red-black trees
 - -2-3 trees (in detail)
 - -2-3-4 trees
- Red-black trees are undercover 2-3-4 trees
- In most cases, does not matter what you use

2-3 Trees: Deletions

• Problem: there is an internal node that has only 1 child

Full procedure for Delete(x)

• Special case: x is the only element in the tree: delete everything

• Not-so-special case: x is one of two elements in the tree. In this case, the procedure on the next slide will delete x

• Both NIL and (y) are special 2-3 trees

Procedure for Delete(x)

- Let y=p(x)
- Remove x
- If y≠root then
 - Let z be the sibling of y.
 - Assume z is the right sibling of y, otherwise the code is symmetric.
 - If y has only 1 child w left

Case 1: z has 3 children

- Attach left[z] as the rightmost child of y
- Update y.max and z.max

Case 2: z has 2 children:

- Attach the child w of y as the leftmost child of z
- Update z.max
- Delete(y) (recursively*)
- Else
 - Update max of y, p(y), p(p(y)) and so on until root
- Else
 - If root has only one child u
 - Remove root
 - Make u the new root

^{*}Note that the input of Delete does not have to be a leaf

Example

Example, ctd.

Example, ctd.

Example, ctd.

