CSI 2101 Lecture Notes

Last updated:

April 8, 2023

Contents

De	efinitions, Theorems, Lemmas, and Corollaries	3
1	Logic and Proof Techniques	6
2	Proof Examples	7
3	Proof by Induction and More Examples	8
4	Intro to Number Theory 4.1 Divisibility	9 9 11
5	Prime Numbers and GCD 5.1 Prime Numbers	12 12
6	Euclidean Algoirthm and Bézout's Theorem	14
7	Applications of Bézout's Theorem	18
8	GCD and Modulo n, Multiplicative Inverses in Modulo n	19
9	Solving Congruences 9.1 Linear Congruence System	23 23 24
10	Fermat's Theorem	27
12	Intro to Cryptography	28
13	Asympotic Notation 13.1 Big-O Notation	29 29 30 31
14	Recursivity	33

15 Recursivity Continued	37
15.1 K-ary Trees	40
16 K-Ary Trees	41
17	42
18 Graphs	43
20 More on Graphs	45
21 Spanning Trees Bipartite Graphs	47
22 Bipartite Graphs	49
23 Matchings	52
24 Neighbour Sets	54

Definitions, Theorems, Lemmas, and Corollaries

Definition 4.1.1. Let a and b be two integers such that $a \neq 0$. We say that a divides b if there exists c such that b = ac. If a divides be we say a is a factor or divisor of b. We also can say b is a multiple of a.

Theorem 4.1.1. Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$.

- 1. If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$
- 2. If $a \mid b$, then $a \mid bc$ for every integer
- 3. If $a \mid b$ and $b \mid c$, then $a \mid c$

Corollary 4.1.1. Let $a,b,c \in \mathbb{Z}$ with $a \neq 0$. If $a \mid b$ and $a \mid c$, $a \mid (mb+nc)$ for all integers m and n

Theorem 4.1.2 (The Division Algorithm). Let $a, d \in \mathbb{Z}$ with d > 0. There exists a unique q and r such that

$$0 \le r \le d$$

and

$$a = dq + r$$

We write

$$q = a \ div \ d$$

$$r = a \mod a$$

Definition 4.1.2. Let $a, b, m \in \mathbb{Z}$ with $m \geq 2$. We say a is congruent to b modulo m if $m \mid (a - b)$. We write $a \equiv b \pmod{m}$

Theorem 4.1.3. Let $a,b,c,d,m \in \mathbb{Z}$ with $m \geq 2$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- 1. $a + c \equiv b + d \pmod{m}$
- 2. $ac \equiv bd \pmod{m}$

Definition 5.1.1. A positive integer p is prime if it admits exactly two divisors.

Theorem 5.1.1 (Fundamental Theorem of Arithmetic). All integers greater than 1 can be written as a product of prime numbers. This representation is unique if we write the prime numbers in non-decreasing order.

Theorem 5.1.2. Let n > 1 be an integer. If n is not prime, then n has a prime divisor p such that $p \le \sqrt{n}$.

Corollary 6.0.1. Let

$$a = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_k^{a_k}$$
$$a = p_1^{b_1} \cdot p_2^{b_2} \cdot \dots \cdot p_k^{b_k}$$

Where p_i is prime, $a_i \ge 0$ and $b_i \ge 0$, $1 \le i \le k$. Then

$$gcd(a,b) = p_1^{\min(a_1,b_1)} \cdot p_2^{\min(a_2,b_2)} \cdot \dots \cdot p_k^{\min(a_k,b_k)}$$
$$lcm(a,b) = p_1^{\max(a_1,b_1)} \cdot p_2^{\max(a_2,b_2)} \cdot \dots \cdot p_k^{\max(a_k,b_k)}$$
$$gcd(a,b) \cdot lcm(a,b) = ab$$

Lemma 6.0.1. Let a, b, q, r be integers such that

$$a = b \cdot q + r$$

Then

$$gcd(a,b) = gcd(b,r)$$

Definition 6.0.1 (Euclidean Algorithm).

$$x = a$$
$$y = b$$

while $y \neq 0$

$$r = x \mod y$$

$$x = y$$

$$y = r$$

return x

Theorem 6.0.1 (Bézout). Let $a, b \in \mathbb{Z}$ be positive integers. There exists $s, t \in \mathbb{Z}$ such that

$$s \cdot a + t \cdot b = \gcd(a, b)$$

Lemma 6.0.1. Let $a,b,c \in \mathbb{Z}$ with $a \neq 0$. If gcd(a,b) = 1 and $a \mid (bc)$, then $a \mid c$.

Lemma 8.0.1. Let $a, b, c \in \mathbb{Z}$, with $a \neq 0$. If gcd(a, b) = 1, and $a \mid (bc)$, then $a \mid c$.

Theorem 8.0.1. Let $a, b, c, m \in \mathbb{Z}$, with $m \ge 2$. Assume $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1. Then $a \equiv b \pmod{m}$.

Lemma 8.0.2. Let p be a prime number and $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. If $p \mid (a_1 \cdot a_2 \cdot \cdots \cdot a_n)$, then there exists $1 \leq i \leq n$ such that $p \mid a_i$.

Theorem 8.0.2. Let $m \in \mathbb{Z}$ with $m \geq 2$ and let $a \in \mathbb{Z}_m$. The multiplicative inverse of a (mod n) exists if and only if gcd(a, m) = 1. When it exists, the inverse of a (mod n) is unique.

Logic and Proof Techniques

TBC.

Proof Examples

TBC.

Proof by Induction and More Examples

Intro to Number Theory

4.1 Divisibility

Definition 4.1.1. Let a and b be two integers such that $a \neq 0$. We say that a divides b if there exists c such that b = ac. If a divides be we say a is a factor or divisor of b. We also can say b is a multiple of a.

Theorem 4.1.1. Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$.

- 1. If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$
- 2. If $a \mid b$, then $a \mid bc$ for every integer
- 3. If $a \mid b$ and $b \mid c$, then $a \mid c$

Proof. 1. We have to prove if $a \mid b$ and $a \mid c$, then $a \mid (b+c)$ Let $a,b,c \in \mathbb{Z}$ with $a \neq 0$. Assume that $a \mid b$ and $a \mid c$, then for some $k,l \in \mathbb{Z}$

$$b = k \cdot a$$

$$c = l \cdot a$$

Thus, we have

$$b + c = k \cdot a + l \cdot a = a(k+l)$$

So
$$a \mid (b+c)$$

2. We have to prove if $a \mid b$, $a \mid bc$ for every c. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Assume that $a \mid b$. Then for some $k \in \mathbb{Z}$,

$$b = k \cdot a$$

Let $c \in \mathbb{Z}$, so

$$bc = k \cdot a \cdot c = a \cdot (kc)$$

Therefore, $a \mid bc$

3. We have to prove if $a \mid b$ and $b \mid c$, then $a \mid c$. Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Assume $a \mid b$ and $b \mid c$. Then we have for some $k, l \in \mathbb{Z}$

$$b = k \cdot a$$

$$c = l \cdot b$$

So,

$$c = l \cdot b = l \cdot (k \cdot a) = (lk)a$$

Therefore $a \mid c$

Corollary 4.1.1. Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. If $a \mid b$ and $a \mid c$, $a \mid (mb + nc)$ for all integers m and n

Proof. Let $a, bc \in \mathbb{Z}$ with $a \neq 0$. Assume $a \mid b \mid a \mid c$. By the previous theorem (part 2), we have $a \mid mb$ and $a \mid nc$. Therefore, by the previous theorem (part 1), $a \mid (mb + nc)$

Theorem 4.1.2 (The Division Algorithm). Let $a, d \in \mathbb{Z}$ with d > 0. There exists a unique q and r such that

$$0 \le r \le d$$

and

$$a = dq + r$$

We write

$$q = a \ div \ d$$

$$r = a \mod a$$

Definition 4.1.2. Let $a, b, m \in \mathbb{Z}$ with $m \geq 2$. We say a is congruent to b modulo m if $m \mid (a - b)$. We write $a \equiv b \pmod{m}$

Example: Prove or disprove. We have $a \equiv b \pmod{m}$ if and only if $b \equiv a \pmod{m}$

$$a \equiv b \pmod{m}$$

$$\iff m \mid (a - b) \qquad \text{(by definition)}$$

$$\iff a - b = km \qquad (k \in \mathbb{Z})$$

$$\iff b - a = -km$$

$$\iff m \mid (b - a)$$

$$\iff b \equiv a \pmod{b} \qquad \text{(by definition)}$$

Theorem 4.1.3. Let $a,b,c,d,m \in \mathbb{Z}$ with $m \geq 2$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

1.
$$a + c \equiv b + d \pmod{m}$$

2. $ac \equiv bd \pmod{m}$

Proof. 1. We have to prove $a+c\equiv b+d\pmod{m}$. Since $a\equiv b$ and $c\equiv d$, we have

$$m \mid (a-b)$$

$$m \mid (c - c)$$

By theorem 4.1.1 (part 1), we have

$$m \mid ((a-b) + (c-d)$$

$$m \mid ((a+c) - (b+d))$$

Therefore,

$$a + c \equiv b + d \pmod{m}$$

2. We have to prove $ac \equiv cd \pmod{m}$

Since $a \equiv b$ and $c \equiv d$, we have $m \mid (a - b)$ and $m \mid (c - d)$. By Corollary 4.1.1, we have

$$m \mid (c(a-b) + b(c-d))$$

$$m \mid (ac - bc + bc - bd)$$

$$m \mid (ac - bd)$$

Therefore $ac \equiv bd$.

4.2 Arithmetic Modulo m

Let $m \geq 2$ be an integer and

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

We define

$$a +_m b = (a+b) \pmod{m}$$

$$a \cdot_m b = (a \cdot b) \pmod{m}$$

in \mathbb{Z}_m , this is arithmetic modulo m. TBC

Prime Numbers and GCD

5.1 Prime Numbers

Definition 5.1.1. A positive integer p is prime if it admits exactly two divisors.

Theorem 5.1.1 (Fundamental Theorem of Arithmetic). All integers greater than 1 can be written as a product of prime numbers. This representation is unique if we write the prime numbers in non-decreasing order.

Proof. (Existence) By induction,

- Base Case: Take n = 2. We have 2 = 2, the product of 1 prime number.
- Induction Hypothesis: Let $k \geq 2$ be an integer. Suppose that all numbers $2, 3, 4, \ldots, k-1, k$ can be written as a product of primes.
- **Induction Step:** Consider k+1. If k+1 is prime, then we're done. If not, then $K+1=d\cdot e$ for integers 1< d< k+1 and 1< e< k+1 By the induction hypothesis, d and e can be written as products of prime. So $k+1=d\cdot e$ can be written as a product of primes.

(Uniqueness) to be seen later.

Theorem 5.1.2. Let n > 1 be an integer. If n is not prime, then n has a prime divisor p such that $p \le \sqrt{n}$.

Proof. Let n > 1, if n is not prime, then $n = a \cdot b$ for two integers 1 < a < n and 1 < b < n. We will show that $a \le \sqrt{n}$ or $b \le \sqrt{n}$ by contradiction. Assume $a > \sqrt{n}$ and $b > \sqrt{n}$. Then $n = a \cdot b > \sqrt{n} \cdot \sqrt{n} = n$. This is a contradiction so $a \le \sqrt{n}$.

Assume without loss of generality that $a \leq \sqrt{n}$. If a is prime, we're done. If not, then by the fundamental theorem of arithmetic, a is divisible by a prime number p

Theorem 5.1.3. There exists an infinite number of prime numbers.

Proof. By contradiction, suppose there exists a finite number of prime numbers, say k prime numbers, and we order them

$$p_1 < p_2 < p_3 < \dots < p_k$$

Consider the number

$$Q = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1 \in \mathbb{Z}$$

Since $Q > p_k$, then Q is not prime by our assumption. By Theorem 5.1.2, Q is divisible by a prime number. So $p_i \mid Q$ for some $1 \le i \le k$. We also have that

$$p_i \mid (p_1 \cdot p_2 \cdot \ldots \cdot p_i \cdot \ldots \cdot p_k)$$

By Corollary 4.1.1, we get

$$p_i \mid (Q - p_1 \cdot p_2 \cdot \ldots \cdot p_k)$$

 $p_i \mid 1$ Therefore $p_i = 1$, this is a contradiction since we assumed p_k is the largest prime but $Q > p_k$ is prime.

Euclidean Algoirthm and Bézout's Theorem

Corollary 6.0.1. Let

$$a = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_k^{a_k}$$
$$a = p_1^{b_1} \cdot p_2^{b_2} \cdot \dots \cdot p_k^{b_k}$$

Where p_i is prime, $a_i \ge 0$ and $b_i \ge 0$, $1 \le i \le k$. Then

$$gcd(a,b) = p_1^{\min(a_1,b_1)} \cdot p_2^{\min(a_2,b_2)} \cdot \dots \cdot p_k^{\min(a_k,b_k)}$$
$$lcm(a,b) = p_1^{\max(a_1,b_1)} \cdot p_2^{\max(a_2,b_2)} \cdot \dots \cdot p_k^{\max(a_k,b_k)}$$
$$gcd(a,b) \cdot lcm(a,b) = ab$$

Example:

$$24 = 2^{3} \cdot 3$$
$$36 = 2^{2} \cdot 3^{2}$$
$$gcd(24, 36) = 2^{2} \cdot 3^{1} = 12$$
$$lcm(24, 36) = 2^{3} \cdot 3^{2} = 72$$
$$12 \cdot 72 = 864 = 24 \cdot 36$$

Lemma 6.0.1. Let a, b, q, r be integers such that

$$a = b \cdot q + r$$

Then

$$gcd(a,b) = gcd(b,r)$$

Proof. Let a, b, q, r be integers such that

$$a = bq + r$$

Let $d \in \mathbb{Z}$. We will prove that

$$d \mid a \wedge d \mid b \iff d \mid b \wedge d \mid r$$

 (\Longrightarrow) Let $d\in\mathbb{Z}$. Assume $d\mid a$ and $d\mid b$. Then $d\mid (1\cdot a+(-q)\cdot b)$, by Corollary 4.1.1. Then $a=bq+r\implies r=a-bq$, so $d\mid (1\cdot a+(-q)\cdot b)\implies d\mid r$.

(\Leftarrow) Let $d \in \mathbb{Z}$. Assume $d \mid b$ and $d \mid r$. Then $d \mid (q \cdot b + 1 \cdot r)$ by Corollary 4.1.1. Then $d \mid a$, therefore $d \mid a$ and $d \mid b$

Example: $gcd(414, 662), 662 = 1 \cdot 414 + 248$

$$662 = 1 \cdot 414 + 248$$

$$414 = 1 \cdot 248 + 166$$

$$248 = 1 \cdot 166 + 82$$

$$166 = 2 \cdot 82 + 2$$

$$82 = 41 \cdot 2 + 0$$

The last none-zero remainder of this sequence is the *gcd* of 414 and 662 by the previous lemma. (can someone find which lemma this is!)

Definition 6.0.1 (Euclidean Algorithm).

$$x = a$$

$$y = b$$

while $y \neq 0$

$$r = x \mod y$$

$$x = y$$

$$y = r$$

return x

This algorithm returns the gcd of a and b.

Example: gcd(465, 144)

$$465 = 3 \cdot 144 + 33$$

$$144 = 4 \cdot 33 + 12$$

$$33 = 2 \cdot 12 + 9$$

$$12 = 1 \cdot 9 + 3$$

$$9 = 3 \cdot 3 + 0$$

Therefore gcd(465, 144) = 3.

Note: When you show the trace of Euclid's algorithm, you must include the last line with a remainder of 0.

Theorem 6.0.1 (Bézout). Let $a, b \in \mathbb{Z}$ be positive integers. There exists $s, t \in \mathbb{Z}$ such that

$$s \cdot a + t \cdot b = \gcd(a, b)$$

Proof. Let $a, b \in \mathbb{N} \setminus \{0\}$. Run Euclidian algorithm, and assume without loss of generality b < a.

$$\begin{aligned} a &= q \cdot b + r \\ r_0 &= q_1 \cdot r_1 + r_2 \\ r_1 &= q_2 \cdot r^2 + r_3 \\ r_2 &= q_3 \cdot r_3 + r_4 \\ &\vdots \\ r_{n-3} &= q_{n-2} \cdot r_{n-2} + r_{n-1} \\ r_{n-2} &= q_{n-1} \cdot r_{n-1} + r_n \\ r_{n-1} &= q_n \cdot r_n + 0 \end{aligned}$$

Then, we have

$$\begin{split} gcd(a,b) &= r_n \\ &= r_{n-2} - q_{n-1} \cdot r_{n-1} \\ &= r_{n-2} - q_{n-1}(r_{n-3} - q_{n-2}r_{n-2}) \\ &= r_{n-2} - q_{n-1}(r_{n-3} - q_{n-2}r_{n-2}) \\ &= -q_{n-1} \cdot + (1 + q_{n-2}q_{n-1}) \cdot r_{n-2} \\ &\vdots \\ &= s \cdot r_0 + t \cdot r_1 \\ &= s \cdot a + t \cdot tb \end{split}$$

So we read the trace of Euclid's algorithm backward while keeping gcd(a,b) on the same side of the equality.

TBC.

Lemma 6.0.2. Let $a,b,c \in \mathbb{Z}$ with $a \neq 0$. If gcd(a,b) = 1 and $a \mid (bc)$, then $a \mid c$.

Proof. Assume gcd(a,b)=1 and $a\mid (bc)$. By Bézout, there exist $s,t\in\mathbb{Z}$ such that

$$s \cdot a + t \cdot b = \gcd(a, b) = 1$$

$$s \cdot a \cdot c + t \cdot b \cdot c = c \tag{*}$$

Since $a \mid a$ and $a \mid (bc)$, we have

$$a \mid (s \cdot c \cdot a + t \cdot b \cdot c)$$

By Corollary 4.1.1. Then from (*), this means

 $a \mid c$

Applications of Bézout's Theorem

TBC.

GCD and Modulo n, Multiplicative Inverses in Modulo n

Lemma 8.0.1. Let $a, b, c \in \mathbb{Z}$, with $a \neq 0$. If gcd(a, b) = 1, and $a \mid (bc)$, then $a \mid c$.

Proof. Seen last week.

Theorem 8.0.1. Let $a, b, c, m \in \mathbb{Z}$, with $m \ge 2$. Assume $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1. Then $a \equiv b \pmod{m}$.

Proof. Let $a, b, c, m \in \mathbb{Z}$ with $m \geq 2$. Assume $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1.

$$\begin{array}{c} m \mid (ac-bc) & \text{(def of mod)} \\ m \mid (c(a-b)) & \\ m \mid (a-b) & \text{(by previous lemma)} \\ a \equiv b \pmod{m} & \text{(def of mod)} \end{array}$$

Lemma 8.0.2. Let p be a prime number and $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. If $p \mid (a_1 \cdot a_2 \cdot \cdots \cdot a_n)$, then there exists $1 \leq i \leq n$ such that $p \mid a_i$.

Proof. By induction on n.

- Base Case: n = 1. Let p be a prime number, if $p \mid a_1$, then $p \mid a_1$
- Induction Hypothesis: Let $k \ge 1$ be an integer. Suppose that for all integers a_1, a_2, \ldots, a_k

$$p \mid (a_1 \cdot a_2 \cdot \ldots \cdot a_k) \implies \exists 1 \leq i \leq k \ s.t \ p \mid a_i$$

If $p \mid a_{k+1}$, then we're done. If not, then

$$gcd(p, a_{k+1}) = 1$$

So $p \mid (a_1 \cdot a_2 \cdot \ldots \cdot a_k)$ by the previous lemma. By the induction hypthesis, ther exists $1 \leq i \leq k$ such that $p \mid a_i$.

Induction Step: Suppose

$$p \mid (a_1 \cdot a_2 \cdot \ldots \cdot a_k \cdot a_{k+1})$$

Theorem 8.0.2. Let $m \in \mathbb{Z}$ with $m \geq 2$ and let $a \in \mathbb{Z}_m$. The multiplicative inverse of a $(mod\ n)$ exists if and only if gcd(a, m) = 1. When it exists, the inverse of a $(mod\ n)$ is unique.

Proof. Let $m \in \mathbb{Z}$ with $m \geq 2$ and $a \in \mathbb{Z}_m$

(\Longrightarrow): Assume the multiplicative inverse of $a \pmod n$ exists. Let \bar{a} be this inverse. By definition,

$$a \cdot \bar{a} \equiv 1 \pmod{m}$$

$$m \mid (a \cdot \bar{a} - 1)$$
 (def. of modulo)

Then, $a \cdot \bar{a} - 1 = k \cdot m$ for some $m \in \mathbb{Z}$. Let d = gcd(a, m) Then d|a and d|m. By a result seen in class,

$$d \mid (\bar{a} \cdot a + (-k)m)$$
$$d \mid 1$$

So, d=1

(\Leftarrow): Assume gcd(a, m) = 1. By Bézout, there exists $s, t \in \mathbb{Z}$ such that

$$s \cdot a + t \cdot m = qcd(a, m) = 1$$

$$s \cdot a + t \cdot m \equiv 1 \pmod{m}$$
$$s \cdot a + t \cdot 0 \equiv 1 \pmod{m}$$
$$s \cdot a \equiv 1 \pmod{m}$$

So, we can take $\bar{a} \equiv s \pmod{m}$

(Uniqueness): Consider two arbitrary multiplicative inverses of $a \pmod{m}$. Denote them by, $s, s' \in \mathbb{Z}_m$. So by definition

$$sa \equiv 1 \pmod{m}$$
 and $s'a \equiv 1 \pmod{m}$

Then gcd(a, m) = 1 by the previous proof, also we have

$$\begin{array}{lll} sa \equiv s'a \pmod{m} \\ m \mid (sa-s'a) & \text{(def. of modulo)} \\ m \mid (a(s-s')) & \\ m \mid (s-s') & \text{(since } \gcd(a,m)=1) \\ s \equiv s' \pmod{m} & \text{(def. of modulo)} \end{array}$$

Therefore, s and s' are the same in \mathbb{Z}_m .

Example: Find the multiplicative inverse of 101 (mod 4620).

Euclid:

$$4620 = 45 \cdot 101 + 75$$

$$101 = 1 \cdot 75 + 26$$

$$75 = 2 \cdot 26 + 23$$

$$26 = 1 \cdot 23 + 3$$

$$23 = 7 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

Bézout:

$$\begin{split} 1 &= 3 - 1 \cdot 2 \\ 1 &= 3 - 1 \cdot (23 - 7 \cdot 3) \\ 1 &= 3 - 1 \cdot 23 + 7 \cdot 3 \\ 1 &= 8 \cdot 3 - 1 \cdot 23 \\ 1 &= -1 \cdot 23 + 8 \cdot 3 \\ 1 &= -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23) \\ 1 &= -1 \cdot 23 + 8 \cdot 26 - 8 \cdot 23 \\ 1 &= -9 \cdot 23 + 8 \cdot 26 \\ 1 &= 8 \cdot 26 - 9 \cdot 23 \\ 1 &= 8 \cdot 26 - 9 \cdot (75 - 2 \cdot 26) \\ 1 &= 8 \cdot 26 - 9 \cdot 75 + 18 \cdot 26 \\ 1 &= -9 \cdot 75 + 26 \cdot 26 \\ 1 &= -9 \cdot 75 + 26 \cdot (101 - 1 \cdot 75) \\ 1 &= -9 \cdot 75 + 26 \cdot 101 - 26 \cdot 75 \\ 1 &= 26 \cdot 101 - 35 \cdot (4620 - 45 \cdot 101) \\ 1 &= 26 \cdot 101 - 35 \cdot 4620 + 1575 \cdot 21 \\ 1 &= -35 \cdot 4620 + 1601 \cdot 101 \\ \end{split}$$

So,

```
-35 \cdot 4620 + 1601 \cdot 101 \equiv 1 \pmod{4620}-35 \cdot 0 + 1601 \cdot 101 \equiv 1 \pmod{4620}1601 \cdot 101 \equiv 1 \pmod{4620}101 \equiv 1601 \pmod{4620}
```

Therefore, the inverse of 101 in \mathbb{Z}_{4620} is 1601.

Example: Find the multiplicative inverses in \mathbb{Z}_{10} .

- $\bar{0}$ does not exist since $gcd(0, 10) = 10 \neq 1$
- $\bar{1} \equiv 1 \pmod{10}$
- $\bar{2}$ does not exist since $gcd(2,10)=2\neq 1$
- $\bar{3} \equiv 7 \pmod{10}$
- $\bar{4}$ does not exist since $gcd(4,10) = 2 \neq 1$
- $\bar{5}$ does not exist since $gcd(5,10) = 5 \neq 1$
- $\bar{6}$ does not exist since $gcd(6,10)=2\neq 1$
- $\bar{7} \equiv 3 \pmod{10}$
- $\bar{8}$ does not exist since $gcd(8,10) = 2 \neq 1$
- $\bar{9} \equiv 9 \pmod{10}$

This concludes the material for midterm 1.

Solving Congruences

Definition 9.0.1 (Linear Congruence). $ax \equiv b \pmod{m}$

Example:

$$3x \equiv 5 \pmod{7}$$

$$x \equiv 0 \pmod{7}$$

$$x - 0 = 7k$$

Question: What is the multiplicative inverse of 3 (mod 7) So we have $3x \equiv 5 \pmod{7}$.

$$15x \equiv 25 \pmod{7}$$

$$x \equiv 4 \pmod{7}$$

$$3 \cdot 4 = 12 \equiv 5 \pmod{7}$$

9.1 Linear Congruence System

Find x such that

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_n}$$

:

$$x \equiv a_n \pmod{m_n}$$

Example:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod{7}$$

Try x = 68

$$68 \equiv 2 \ (mod \ 3)$$

$$68 \equiv 3 \pmod{5}$$

$$68 \equiv 5 \pmod{7}$$

So, x = 68 is a solution to the system.

9.1.1 Substitution Method

$$x \equiv 2 \; (mod \; 3)$$

$$x = 3 \cdot t + 2$$

For some $t \in \mathbb{Z}$

$$x \equiv \pmod{5}$$

$$3t + 2 \equiv 3 \pmod{5}$$

$$3t \equiv 1 \pmod{5}$$

Multiply 3x by the multiplicative inverse of 3 in \mathbb{Z}_5 .

$$2 \cdot 3t \equiv 2 \cdot 1 \pmod{5}$$

$$t \equiv 2 \pmod{5}$$

$$t = 5u + 2 \pmod{5}$$

For an $u \in \mathbb{Z}$

$$x = 3t + 2$$
$$t = 5u + 2$$

$$\implies x = ?$$

$$x = 3(5u + 2) + 2 = 15u + 8$$

$$15u + 8 \equiv 5 \pmod{7}$$

$$15u \equiv -3 \pmod{7}$$

$$15u \equiv 4 \pmod{7}$$

$$15u - 14u \equiv 4 \pmod{7}$$

$$u \equiv 4 \pmod{7}$$

So u = 7v + 4 for some $v \in \mathbb{Z}$. Thus,

$$x = 15u + 8$$

$$= 15(7v + 4) + 8$$

$$= 105v + 68$$

So,

$$105v + 68 \equiv 2 \pmod{3}$$

 $105v + 68 \equiv 3 \pmod{5}$
 $105v + 68 \equiv 5 \pmod{7}$

Example:

$$x \equiv 1 \pmod{4}$$
$$x \equiv 3 \pmod{5}$$

Then x = 4t + 1 for some $t \in \mathbb{Z}$. Then from the second equation, we get

$$4t + 1 \equiv 3 \pmod{5}$$

$$4t + 1 - 1 \equiv 3 - 1 \pmod{5}$$

$$4t \equiv 2 \pmod{5}$$

$$4 \cdot 4t \equiv 4 \cdot 2 \pmod{5}$$

$$16t \equiv 8 \pmod{5}$$

$$16t \equiv 8 \pmod{5}$$

$$16t - 15t \equiv 8 - 5 \pmod{5}$$

$$t \equiv 3 \pmod{5}$$

Thus, t = 5u + 3 for some $u \in \mathbb{Z}$. So x = 20u + 13 is a solution to the system.

$$20u + 13 \equiv 1 \pmod{4}$$

 $20u + 13 \equiv 3 \pmod{5}$

Question: Are there systems that admit no solution? Consider

$$x \equiv 2 \; (mod \; 4)$$

$$x \equiv 3 \pmod{6}$$

So x = 4t + 2 for some $t \in \mathbb{Z}$

$$4t + 2 \equiv 3 \pmod{6}$$

$$4t \equiv 1 \pmod{6}$$

But, 4 does not have a multiplicative inverse in \mathbb{Z}_6 since $gcd(4,6) \neq 1$.

Theorem 9.1.1 (Chinese Remainder Theorem). Let $m_1, m_2, \ldots, m_r \in \mathbb{Z}$ be pairwise co-prime integers such that $m_i \geq 2$ for $1 \leq i \leq r$

Definition 9.1.1 (Pairwise Co-prime). $gcd(m_i, m_j) = 1$

Let $a_1, a_2, \ldots, a_r \in \mathbb{Z}$, then the system

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$\vdots$$

$$x \equiv a_r \pmod{m_r}$$

admits a unique solution ($mod\ m_1 \cdot m_2 \cdots m_r$). In other words, the solution exists and is unique in $\mathbb{Z}_{m_1 \cdot m_2 \cdots m_r}$

Consider the system

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$
$$x \equiv 5 \pmod{7}$$

So we have $\mathbb{Z}_{3.5.7} = \mathbb{Z}_{105}$, $68 \in \mathbb{Z}_{105}$ and x = 105u + 68.

Fermat's Theorem

Theorem 10.0.1 (Fermat's Theorem). Let $p, a \in \mathbb{Z}$ such that p is prime, then

1.

$$a^p \equiv a \pmod{p}$$

2. If gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$

Example:

$$1534^{2016} \pmod{2017}$$

2017 is prime and 1534 < 2017, so $\gcd(1534,2017) = 1$ and 1534 $^{2016} \equiv 1 \pmod{2017}$

Proof. For (2), we need to usthe following property

$$1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, (p-1) \cdot a$$

are all different (mod p). Consider $s, e \in \{1, 2, \dots, p-1\}$ such that

$$ra \equiv sa \pmod{p}$$

Since gcd(a, p) = 1, we can divide both sides by a to get

$$r \equiv s \pmod{p}$$

Then since r, s < p, then r = s"

Intro to Cryptography

Asympotic Notation

13.1 Big-O Notation

The *O-notation* describes an asymptoic upper bound.

Definition 13.1.1. Let

$$f: \mathbb{N} \to \mathbb{R}^+$$
$$q: \mathbb{N} \to \mathbb{R}^+$$

be two functions. We say that f is O(g) if there exists a real number c > 0 and $k \in \mathbb{N}$ such that for all $n \geq k$,

$$f(n) \le c \cdot g(n)$$

Notation:

$$f(n) \le c \cdot g(n)$$

$$f = O(g)$$

$$\exists c \exists k \forall n (n \ge k \implies f(n) \le c \cdot g(n))$$

Domain: $k, n \in \mathbb{N}, c \in \mathbb{R}^+ \setminus \{0\}$

Example: $13x^3 + 12x^2 + 5 = O(x^3)$. We have

$$13x^3 + 12x^2 + 5 \le 13x^3 + 12x^3 + 5x^2 = 30x^3$$

Take c = 30 and k = 1. So

$$13x^3 + 12x^2 + 5 \le 30 \cdot x^3$$

for all $x \ge 1$. Therefore $13x^3 + 12x^2 + 5 = O(x^3)$.

Example: $x^2 = O\left(\frac{1}{2}x^2 - 10x\right)$. We have

$$x^2 \le 2\left(\frac{1}{2}x^2 - 10x\right)$$

Now we want

$$x^2 \ge 40x$$

so that that $x^2 - 40x$ is positive. So

Then,

$$x^{2} = 2x^{2} - x^{2}$$

$$\leq 2x^{2} - 40x$$

$$= 4\left(\frac{1}{2}x^{2} - 10x\right)$$

So take c=4 and k=40. Then $x^2=O\left(\frac{1}{2}x^2-10x\right)$ for all $x\geq 40$.

Proposition 13.1.1. Let a > 0 and b > 0. be two rael numbers. We have

$$log^a(x) = O(x^b)$$

Proof. Let a > 0 and b > 0 be two real numbers. We'll use that fact that $\forall x \geq 0$, we have $x \leq e^x$. From which, we have $\log(x) \leq x$. Let x be an integer. We have, by the previous property,

$$\log(x^{\frac{b}{a}}) \le x^{\frac{b}{a}}$$

$$\frac{b}{a}\log(x) \le x^{\frac{b}{a}}$$

$$\left(\frac{b}{a}\right)^{a}\log^{a}(x) \le x^{b}$$

$$\log^{a}(x) \le \left(\frac{a}{b}\right)^{a}x^{b}$$

So we take $c = \left(\frac{a}{b}\right)^a$ and k = 1.

13.2 Big-Omega Notation

The Ω -notation describes an asymptotic lower bound.

Definition 13.2.1. Let

$$f: \mathbb{N} \to \mathbb{R}^+$$
$$g: \mathbb{N} \to \mathbb{R}^+$$

be two functions. We say that f is $\Omega(g)$ if there exists a real number c > 0 and $k \in \mathbb{N}$ such that for all $n \geq k$,

$$f(n) \ge c \cdot g(n)$$

Notation:

$$f(n) = \Omega(g(n))$$

$$f = \Omega(g)$$

$$\exists c \exists k \forall n (n \ge k \implies f(n) \ge c \cdot g(n))$$

Domain: $k, n \in \mathbb{N}, c \in \mathbb{R}^+ \setminus \{0\}$

Example: $13x^3 + 12x^2 + 5 = \Omega(x^3)$.

$$13x^3 + 12x^2 + 5 > 13x^3$$

Take c = 13 and k = 0. So $13x^3 + 12x^2 + 5 = \Omega(x^3)$.

Example: $x^2 = \Omega(\frac{1}{2}x^2 - 10x)$.

$$x^{2} \ge \frac{1}{2}x^{2}$$

$$\ge \frac{1}{2}x^{2} - 10x$$

$$= 1 \cdot \left(\frac{1}{2}x^{2} - 10x\right)$$

Take c = 1 and k = 0. So $x^2 = \Omega\left(\frac{1}{2}x^2 - 10x\right) \forall x \ge k$.

Proposition 13.2.1. Let f(n) and g(n) be two functions.

$$f(n) = O(g(n)) \iff g(n) - \Omega(f(n))$$

Proof. (\Longrightarrow) Let f(n) and g(n) be two functions. Assume f(n) = O(g(n)). Then there exists c > 0 and $k \in \mathbb{N}$ such that for all $n \ge k$, we have $f(n) \le c \cdot g(n)$. So,

$$f(n) \le c \cdot g(n)$$

given that $n \geq g(n)$, then

$$g(n) \ge \frac{1}{c}f(n)$$

 (\longleftarrow) The proof follows the same.

13.3 Big-Theta Notation

The Θ -notation describes an asymptoic upper and lower bound.

Definition 13.3.1. Let

$$f: \mathbb{N} \to \mathbb{R}^+$$
$$g: \mathbb{N} \to \mathbb{R}^+$$

be two functions. We say that f is $\Theta(g)$ if there exists a real number $c_1 > 0$, $c_2 > 0$ and $k \in \mathbb{N}$ such that for all $n \geq k$. In otherwords,

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Notation:

$$f(n) = \Theta(g(n))$$
$$f = \Theta(g)$$

Proposition 13.3.1. Let f(n) and g(n) be two functions. $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $g(n) = \Omega(f(n))$.

Proof.

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

By the definition of theta, so

$$g(n) = \Omega(f(n))$$
 and $g(n) = O(f(n))$

From the previous proposition, then

$$g(n) = \Theta(f(n))$$

Recursivity

Lemma 14.0.1. Let $F_n = F_{n-1} + F_{n-2}$ denote the nth term of the Fibonacci sequence with $F_0 = 0$ and $F_1 = 1$. And let $\alpha = \frac{\sqrt{5}+1}{2}$ (golden ratio). Then $\forall n \geq 3$,

$$F_n > \alpha^{n-2}$$

Proof. By induction,

Note:
$$\alpha^2 = \left(\frac{\sqrt{5}+1}{2}\right)^2 = \frac{5+2\sqrt{5}+1}{4} = \frac{\sqrt{5}+3}{2} = \frac{\sqrt{5}+1}{2} + 1 = \alpha + 1$$

• Base case: n = 3. Then $F_3 = F_2 + F_1 = 1 + 1 = 2$. We have

$$3 > \sqrt{5}$$

$$4 > \sqrt{5} + 1$$

$$2 > \frac{\sqrt{5} + 1}{2}$$

$$F_3 > \frac{\sqrt{5} + 1}{2}^2 = \alpha^{3-2}$$

For n = 4, $F_4 = F_3 + F_2 = 2 + 1 = 3$. We have

$$2>\alpha$$

$$2+1>\alpha+1 \hspace{1cm} \text{(From Note)}$$

$$3>\alpha^2$$

$$F_4>\alpha^2=\alpha^{4-2}$$

• Induction Hypothesis: Let $k \ge 4$ be an integer. Assume $F_i > \alpha^{i-2}$ for all $3 \le i \le k$.

• Induction Step:

$$F_{k+1} = F_k + F_{k-1}$$
 (By def.)

$$> \alpha^{k-2} + \alpha^{(k-1)-2}$$
 (By IH)

$$= \alpha^{k-2} + \alpha^{k-3}$$

$$= \alpha^{k-3}(\alpha^1 + 1)$$

$$= \alpha^{k-3}(\alpha^2)$$
 (From Note)

$$= \alpha^{k-1}$$

$$= \alpha^{(k+1)-2}$$

Theorem 14.0.1 (Lamé). Let $a, b \in \mathbb{Z}$ such that $a \geq b > 0$. Euclid's algorithm takes $O(\log(b))$ steps.

Proof. Let $a, b \in \mathbb{Z}$ such that $a \geq b > 0$. Euclid's algorithm performs the following devisions:

$$\begin{array}{lll} a = q \cdot b + r & 0 \le r < b \\ r_0 = q_1 \cdot r_1 + r_2 & 0 \le r_2 < r_1 \\ r_1 = q_2 \cdot r_2 + r_3 & 0 \le r_3 < r_2 \\ \vdots & \vdots & \vdots \\ r_{n-2} = q_{n-1} \cdot r_{n-1} + r_n & 0 \le r_n < r_{n-1} \\ r_{n-1} = q_n \cdot r_n + r_{n+1} & 0 \le r_{n+1} < r_n \end{array}$$

We have

- $r_n = \gcd(a, b)$
- $q_i \ge 1$ $1 \le i \le n-1$
- $q_n \geq 2$
- \bullet n is the number of divisons performed by Euclid's algorithm

Therefore,
$$r_n = \gcd(a, b) \ge 1 = F_2$$

$$r_{n-1} = q_n \cdot r_n \ge 2 \cdot 1 = 2 = F_3$$

$$r_{n-2} = q_{n-1} \cdot r_{n-1} + r_n \ge 1 \cdot F_3 + F_2 = F_4$$

$$r_{n-3} = q_{n-2} \cdot r_{n-2} + r_{n-1} \ge 1 \cdot F_4 + F_3 = F_5$$

$$\vdots$$

$$r_2 = q_3 \cdot r_3 + r_4 \ge 1 \cdot F_{n-1} + F_{n-2} = F_n$$

$$b = r_1 = q_2 \cdot r_2 + r_3 \ge 1 \cdot F_n + F_{n-1} = F_{n+1}$$

Sp $b \ge F_{n+1} > \alpha^{(n+1)-2}$ by the previous lemma.

$$b > \alpha^{n-1}$$

$$\log(b) > \log(\alpha^{n-1})$$

$$\log(b) > n - 1\log(\alpha)$$

$$\log(b) > (n-1)\log\left(\frac{\sqrt{5}+1}{2}\right)$$

$$\log(b) > (n-1)\frac{2}{5}$$

$$\frac{5\log(b)}{2} + 1 > n$$

Therefore the number of steps $n < 1 + \frac{5}{2}\log(b) < \log(b) + \frac{5}{2}\log(b) = \frac{7}{2}\log(b)$ $\forall b > 3$. So $n = O(\log(b))$.

The Fibonnaci recurrence is an example of a linear homogenous recurrence of order k.

$$a_n = c_1 \cdot a_n n - 1 + c_2 \cdot a_{n-2} + \ldots + c_k \cdot a_{n-k}$$

In general, a solution of the form

$$a_n = r^n$$

will work for some $r \in \mathbb{R}$

$$r^{n} = c_{1} \cdot r^{n-1} + c_{2} \cdot r^{n-2} + \ldots + c_{k} \cdot r^{n-k}$$

Divide by r^{n-k} ,

$$r^{k} = c_{1} \cdot r^{k-1} + c_{2} \cdot r^{n-2} + \dots + c_{k}$$
$$r^{k} - c_{1} \cdot r^{k-1} + c_{2} \cdot r^{n-2} + \dots + c_{k} = 0$$

This is known as the characteristic equation. The solutions to this equation are called the *characteristic roots*.

Example: $a_n = 1 \cdot a_{n-1} + 2 \cdot a_{n-2}$. Characteristic Equation:

$$r^{2} - 1 \cdot r - 2 = 0 \implies (r+1)(r-1) = 0$$

So we have the roots $r_1 = -1$ and $r_2 = 1$. So,

$$(-1)^n = 1 \cdot (-1)^{n-1} + 2(-1)^{n-2}$$
$$2^n = 1 \cdot 2^{n-1} + 2 \cdot 2^{n-2}$$

Moreover, for all $\alpha, \beta \in \mathbb{R}$, we have

$$(\alpha(-1)^n + \beta \cdot 2^n) = 1 \cdot (\alpha \cdot (-1)^{n-1} + \beta \cdot 2^{n-1}) + 2 \cdot (\alpha(-1)^{n-2} + \beta \cdot 2^{n-2})$$

Any linear combintion works.

Example: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$. Charactereristic Equation:

$$r^2 - r - 1 = 0$$
$$r = \frac{1 \pm \sqrt{5}}{2}$$

So,

$$F_n = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

is a solution for any $\alpha, \beta \in \mathbb{R}$. Now we can find α, β to match the base cases.

$$F_0 = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^0 + \beta \left(\frac{1-\sqrt{5}}{2}\right)^0 = 0 \implies \alpha + \beta = 0$$
$$F_1 = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^1 + \beta \left(\frac{1-\sqrt{5}}{2}\right)^1 = 1$$

So, $\beta = -\alpha$. Then,

$$\alpha \left(\frac{1 + \sqrt{5}}{2} \right) - \alpha \left(\frac{1 - \sqrt{5}}{2} \right) = 0$$

$$\alpha \left(\left(\frac{1 + \sqrt{5}}{2} \right) - \left(\frac{1 - \sqrt{5}}{2} \right) \right) = 1$$

$$\alpha \sqrt{5} = 1$$

$$\alpha = \frac{1}{\sqrt{5}}$$

Sos $\beta = -\alpha = -\frac{1}{\sqrt{5}}$. Therefore,

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Recursivity Continued

Let us consider the special case where some characteristic roots are repeated. We only focus on the case of order k=2.

$$a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2}$$

Charactereristic Equation:

$$1 \cdot r^2 - c_1 \cdot r - c_2 = 0$$

Since the roots are repeated, we have

$$(r-t)^2 = 0 \rightarrow r^2 - 2rt + t^2 = 0$$

For some $t \in \mathbb{R}$. So $c_1 = 2t$, $c_2 = -t^2 = \frac{-c_1^2}{4}$. And the repeated root is $t = \frac{c}{2}$.

For any $\alpha, \beta \in \mathbb{R}$, the general solution is

$$a_n = \alpha \left(\frac{c_1}{2}\right)^n + \left(\beta \cdot n \cdot \frac{c_1}{2}\right)^n$$

Indeed we have

$$\left(\alpha\left(\frac{c_1}{2}\right)^n + \beta \cdot n \cdot \left(\frac{c_1}{2}\right)^n\right) = c_1 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-1} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-1}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-1} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-1} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-1} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-1} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-1} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_1 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\beta \cdot (n-1) \cdot \frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2} + \left(\alpha\left(\frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2}\right) + c_2 \cdot \left(\alpha\left(\frac{c_1}{2}\right)^{n-2}\right$$

Example: $a_0 = 1$, $a_1 = 6$, $a_n = 6a_{n-1} - 9a_{n-2}$ for $n \ge 2$. Charactereristic Equation

$$r^2 - 6r + 9 = 0 \rightarrow (r - 3)^2 = 0$$

So

$$a_n = \alpha \cdot 3^n + \beta \cdot n \cdot 3^n$$

For some $\alpha, \beta \in \mathbb{R}$. We have

$$a_n = \alpha \cdot 3^0 + \beta \cdot 0 \cdot 3^0 = 1$$

$$a_n = \alpha \cdot 3^1 + \beta \cdot 1 \cdot 3^1 = 6$$
$$\alpha = 1$$
$$3\alpha + 3\beta = 6$$

So $\alpha = 1$, and $\beta = 1$, so

$$a_n = 1 \cdot 3^n + 1 \cdot n \cdot 3^n = (n+1) \cdot 3^n$$

Example: $a_0 = 1$, $a_1 = 1$, $a_n = 4a_{n-1} - 4 \cdot a_{n-2}$ for $n \ge 2$. Charactereristic Equation:

$$r^2 - 4r + 4 = 0$$
$$(r - 2)^2 = 0$$

So

$$a_n = \alpha \cdot 2^n \beta \cdot n \cdot 2^n$$

for some $\alpha, \beta \in \mathbb{R}$. We have

$$a_0 = \alpha \cdot 2^0 + \beta \cdot 0 \cdot 2^0 = 0$$

$$a_1 = \alpha \cdot 2^1 + \beta \cdot 1 \cdot 2^1 = 1$$

Then $\alpha = 0$, $2\alpha + 2\beta = 1$. So alpha = 0, $\beta = \frac{1}{2}$. So

$$a_n = 0c\dot{2}^n + \frac{1}{2} \cdot n \cdot 2^n = n \cdot 2^{n-1}$$

Example: Let S be the set defined recursively by

- $3 \in S$
- If $x, y \in S$, then $x + y \in S$

So we can take x = 3, y = 3, then $3 + 3 \in S$ and so on.

Conjecture: Let $E = \{3, 6, 9, ...\}$ and S = E.

Proof. We will prove $S \subseteq E$ and $E \subseteq S$.

 $S \subseteq E$ By induction,

- Base Case: $3 \in S$ and $3 \in E$
- Inductive Hypothesis: Let $x, y \in S$. Assume $x \in E$, and $y \in E$.
- Induction Step: We have $x+y \in S$ by definition. We want to show $x+y \in E$. Since $x,y \in E$ (from the induction hypthesis), then $x=3k,\ y=3l$ For some $k,l \in \mathbb{Z}$ with $k,l \geq 1$. So $x+y=3k+3l=3(k+l) \in E$.

 $E \subseteq S$ By induction,

• Base Case: $3 \in E$ and $3 \in S$

- Inductive Hypothesis: Let $m \in E$. Assume that $m \in S$
- Induction Step: We want to prove that $m+3 \in S$. By definition, $3 \in S$. By the induction hypothesis, $m \in S$. From the definition of S, $m+3 \in S$.

Example: Find a rexursvie definition for the set

$$E = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\}$$

How do we get $\frac{k+1}{k+2}$ from $\frac{k}{k+1}$?

If $x = \frac{k}{k+1}$, then we have

$$kx + x = k \implies x = k(1 - x)$$

$$\frac{x}{1 - x} = k$$

$$\frac{k + 1}{k + 2} = \frac{\frac{x}{1 - x} + 1}{\frac{x}{1 - x} + 2} = \frac{\frac{x}{1 - x} + \frac{1 - x}{1 - x}}{\frac{x}{1 - x} + \frac{2 - 2x}{1 - x}}$$

$$= \frac{\frac{1}{1 - x}}{\frac{2 - x}{1 - x}}$$

$$= \frac{1}{2 - x}$$

Conjecture:

- $0 \in S$
- If $x \in S$, then $x + \frac{1}{2-x} \in S$

Proof. We want to prove E = S, so we will prove $E \subseteq S$ and $S \subseteq E$.

 $E \subseteq S$ By induction,

- Base Case: $0 \in E$, and $0 \in S$.
- Inductive Hypothesis: Let $x \in E$. Assume $x \in S$.
- Induction Step: Since $x \in E$, $x = \frac{k}{k+1}$, for an integer $k \ge 0$. We want to show

$$\frac{k+1}{k+2} \in S$$

We know $x \in S$ by the induction hypothesis. By the definition of S,

$$\frac{1}{2-x} \in S$$

So,

$$\frac{1}{2-x} = \frac{1}{2-\frac{k}{k+1}} = \frac{k+1}{2(k+1)-k} = \frac{k+1}{k+2} \in S$$

 $S \subseteq E$ By induction,

- Base Case: $0 \in S$, and $0 \in E$.
- Inductive Hypothesis: Let $x \in S$. That is, assume

$$x = \frac{k}{k+1}$$

for some integer $k \ge 0$

• Induction Step: We want to prove that

$$\frac{1}{2-x} \in E$$

We have

$$\frac{1}{2-x} = \frac{1}{2 - \frac{k}{k+1}}$$
 (By the IH.)
$$= \frac{k+1}{2(k+1) - k}$$

$$= \frac{k+1}{(k+1) + 1} \in E$$

15.1 K-ary Trees

Definition 15.1.1. A complete k-ary tree with height h and root r is defined recursively by

- ullet An isolated node r is a complete k-ary tree with height 0 and root r
- Let h≥ 0. Let T_i be a complete k-ary tree with height h and root r_i with
 1 ≤ i ≤ k, and let r be an isolated node. The graph obtained by adding
 the edges {r, r_i} is a complete tree with heigh h + 1 and root r.

K-Ary Trees

Example: Ternary Trees

Graphs

Definition 18.0.1. A graph G is made of a non-empty set V of vertices (nodes) together with a set E of edges. Each edge in E is an unordered pair $u, v \subseteq V$ with $u \neq v$. We write G = (V, E). Graphs without loops and parallel edges are said to be simple.

Important Note: All graphs this semester are simple.

We say that u is adjacent to v (u and v are neighbors) if $\{u, v\}$ is an edge. An edge e is said to be incident to u if one of the two endpoints of e is u. The degree of a vertex $u \in V$ is the number of edges incident u.

Theorem 18.0.1 (Handshaking Lemma). Let G = (V, E) be a graph.

$$\sum_{u \in V} deg(u) = 2|E|$$

Proof. Look at an abritrary edge $u, v \in E$. Each edge is counted twice.

Theorem 18.0.2. Let G = (V, E) be a graph. Then G has an even number of vertices with an odd degree.

Proof. By contradiction. Let V_{even} denote the set of vertices of G with an even degree, and V_{odd} denote the set of vertices of G with an odd degree. So

$$V_{even} \cap V_{odd} = \emptyset$$
$$V_{even} \cup V_{odd} = V$$

For a contradiction, assume $|V_{odd}|$ is odd. Then

$$\begin{aligned} 2|E| &= \sum_{u \in V} \deg(u) & \text{(Handshaking Lemma)} \\ &= \sum_{u \in V_{even}} \deg(u) + \sum_{u \in V_{odd}} \deg(u) \\ &= 2k + 2l + 1 \\ &= 2(k+l) + 1 \end{aligned}$$

Example: Can you find a graph with 5 verices with degrees 1,2,3,3,3? Yes, since by the previous theorem, we have an even number of vertices with an odd degree.

Example: Can you find a graph with 5 vertices with degrees 1,2,2,3,3? No, since by the previous theorem, we have an odd number of vertices with odd degree.

Definition 18.0.2. A path in a graph G = (V, E) is a sequence of vertices v_0, v_1, \ldots, v_n such that $\{v_i, v_{i+1}\} \in E$ for all $0 \le i \le n-1$. A path can also be described as a sequence of the n-1 edges. The vertices v_0 and v_n are the endpoints of the path and n is its length.

Definition 18.0.3. If there is a path with endpoints $u, w \in V$, we say that v and w are connected. If any two vertices of a graph are connected, then we say that the graph is connected.

More on Graphs

Definition 20.0.1 (Cycles). A cycle is a sequence of vertices $v_0, v_1, v_2, \ldots, v_{l-1}, v_0$ such that $v_0, v_1, v_2, \ldots, v_{l-1}$ is a path and $\{v_0, v_1\}, \{v_1, v_2\}, \ldots, \{v_{l-2}, v_{l-1}\}, \{v_{l-1}, v_0\}$ are disstict edges. The length of this cycle is l

Note: Cycles of length 0,1,2 are now allowed by this definition.

Definition 20.0.2 (Walks). A walk is a path where we allow vertices to be repeated. A closed walk is a cycle where we allow vertices to be repeated.

Definition 20.0.3 (Subgraph). Let G = (V, E) be a graph. A subgraph H of G, denoted by $H \subseteq G$, is a graph H = (V', E'), where $V' \subseteq V$ and $E' \subseteq E$.

Definition 20.0.4 (Connectedness). A connected component of G is a subgraph of G consisting of

- All vertices that are connected to a given vertex.
- Together with all edges incident to them.

Definition 20.0.5 (Forests). A forest is a graph that has no cycle. A tree is a connect forest. A leaf in a forest is a vertex of degree 1.

Theorem 20.0.1. Let G = (V, E) be a graph. Let n = |V| and m = |E|. If G is a forest, then n > m and G has n - m connected components (trees).

Proof. By induction on m.

- Base Case: m = 0. If a forest has no edges, then n > 0 = m. Moreover, each vertex is its own connected component, so there are exactly n = n 0 = n m connected components.
- Induction Hypothesis: Let $k \ge 0$ be an integer. Assume that for all graphs G with n vetices and k edges, if G is a forest, then n > k and G has n k connected componenets.

• Induction Step: Let G be a forest with n vertices and k+1 edges. Remove an arbitrary edge $e = \{a, b\}$ from G without modifying the vertices. Removing e from G does not create a cycle, so the resulting graph G' is a forest with n vertices and k edges. By the induction hypothesis, n > k and G' has n - k connected components.

Observe that a and b cannot both belong to the same connected component of G'. Otherwise, the path from a to b would create a cycle in G and so G would not be a forest. So, a and b are in two different connected components of G'. So,

$$n - k \ge 2 \implies n \ge 2 + k = 1 + (1 + k) > k + 1$$

If we put e back in G, this connects the two connected components for a and b together. So G has

$$(n-k) - 1 = n - (k+1)$$

connected components, as required.

Corollary 20.0.1. Let G = (V, E) be a tree. Then

$$n = |V| = |E| + 1 = m + 1$$

Proof. A tree is a forest with 1 connected component. By the previous theorem, n-m=1, so n=m+1.

Definition 20.0.6 (Spanning Tree). A spanning tree of a connected graph G is a subgraph of G that includes all vertices of G and that is a tree.

Spanning Trees Bipartite Graphs

Theorem 21.0.1. Every connected graph graph G = (V, E) has a spanning tree

Proof. Let G = (V, E) be a connected graph. By induction on the m = |E|.

- Base Case: m = 0. For G to be connected graph, it must contain a single vertext v. Then v itself is a spanning tree.
- Induction Hypothesis: Let $k \geq 0$ be an integer. Assume that all connected graphs with k edges have a spanning tree.
- Induction Step: Let G be a connected graph with k+1 edges. We consider two cases.
 - Case 1: G is a tree, then it is its own spanning tree.
 - Case 2: If G is not a tree, since G is connected, then G has a cycle. Remove an edge $e = \{a, b\}$ from this cycle. We get a graph G' that is connected. Indeed, if a path uses e, we can reroute it along the other edges of the cycle. So G' is connected and it has k edges. By the induction hypothesis, G' has a spanning tree T. T covers all vertice of G', so it covers all vertices of G, so T is a spanning tree of G.

This gives us a way to build a spanning tree; If G is a tree, then it is its own spanning tree. Otherwise, find a cycle, remove an edge from this cycle, and recursively find a spanning tree.

Corollary 21.0.1. Every graph with n vertices and m edges has at least n-m connected components.

Proof. Let G be a graph with n vertices and m edges. By the previous theorem, every connected component of G has a spanning tree. Let F be the union of these spanning trees. Then F is a forest with n vertices, and $m' \leq m$. Moreover, the number of connected components in F is the same as in G. So G has $n-m' \geq n-m$ connected components.

We say that two sets S and T partition a set E if

- $S \neq \emptyset$
- $T \neq \emptyset$
- $S \cup T = E$
- $S \cap T =$

We say that a graph G = (V, E) is bipartite if V can be partitioned into two sets A and B such that each edge has one endpoint in A and one endpoint in B.

Bipartite Graphs

Note: Final Exam Topics

- All lectures and all exercises
- 2 hour Exam
- 6 long answer questions and **nothing** Examples
- Study notes and exercises!

Lemma 22.0.1. let G = (V, E) be a bipartite graph with partition (A, B). Then

$$\sum_{v \in A} \deg(v) = \sum_{v \in B} \deg(V)$$

Proof. In the proof of the handshaking lemma, we saw that each edge in

$$\sum_{v \in V} \deg(v)$$

is counted twice. Since each edge has one endpoint in A and one endpoint in B, the equality follows.

Lemma 22.0.2. Let G = (V, E) be a graph. If G has a closed walk of odd length, then G has a cycle of odd length.

Proof. By induction on the length l of the closed walk.

- Base Case: l = 1. Closed walks of length 1 do not exist. So the base case holds trivially.
- Induction Hypothesis: Let $K \in \mathbb{Z}$ be an odd integer. Assume that if a graph has a closed walk of odd length at most K, then it has a cycle of odd length.

• Induction Step: Let G = (V, E) be a graph having a closed walk of length k + 2 (which is odd). Let

$$v_0, v_1, v_2, \dots v_{k+1}, v_0$$

be this closed walk. If all v_i 's are different then this is a cycle with odd length. Otherwise, two vertices must be repeated, say v_i and v_j

$$v_0, v_1, v_2, \dots, v_{i-1}, v_i, \dots v_{j-1}, v_j, \dots, v_k, v_{k+1}$$

Consider the closed walks

$$v_i, v_{i+1}, \dots, v_{j-1}, v_j = v_i$$

$$v_i, v_{i+1}, \dots, v_{k+1}, v_0, v_1, \dots, v_{i-1}, v_i = v_i$$

Since the length of the walk is k+2, we have the length of the first walk is less than k+2 and the second walk as well. Since k+2 is odd, then either the first walk or the second walk has odd length. By the induction hypothesis, one of these walks is a cycle. Therefore G has a cycle of odd length.

Theorem 22.0.1. A graph is bipartite if and only if it has no odd cycles.

Proof. (\Longrightarrow) Assume G is bipartite with partition $V=A\cup B$. If G has no cycle, then it is bipartite. Otherwise, let

$$v_0, v_1, v_2, \ldots, v_{l-1}, v_0$$

be a cycle of length $l \geq 3$. We will show that l is even. Without loss of generality, assume $v_0 \in A$. Since $v_0 \in A$, we must have $v_1 \in B$, then $v_2 \in A$, and so on. So $v_{l-1} \in A$ if l-1 is even and $v_{l-1} \in B$ if l-1 is odd. Since $\{v_{l-1}, v_0\}$ is an edge of the cycle, v_{l-1} must be in B. So l-1 is odd, and l is even.

(\iff) Assume G has no cycle of odd length. We want to prove that G is bipartite. Consider two cases where G is connected and where G is not connected.

• Case 1: G is connected. We need to build A and B. Let v_0 be an arbitrary vertext. Let

 $A = \{w \in V : \text{ there is a path of even length between } v_0 \text{ and } w\}$

 $B = \{w \in V : \text{ there is a path of odd length between } v_0 \text{ and } w\}$

We will show that A and B are disjoint and that $A \cup B = V$, so A and B partition V. Since G is connected, every vertex is connected to v_0 , so every vertex belongs to either A or B. We want to show that A and B

are disjoint. For a contradiction, suppose $u \in A \cap B$. Since $v \in A$, there is a path of even length

$$v_0, v_1, \ldots, v_s = u$$

where s is even. Since $v \in B$, there is a path of odd length between v_0 and v. The reverse path also has odd length.

$$u = v_s, v_{s+1}, v_{s+2} \dots, v_{s+t} = v_0$$

where t is odd. Now

$$v_0, v_1, \dots, v_s, v_{s+1}, \dots, v_{s+t} = v_0$$

is a closed walk of length s+t where s+t is odd. By the previous lemma, there is a cycle of odd length. This is a contradiction. So $A \cap B = \emptyset$. So A, B is a partition of V. It remains to show that all edges have one endpoint in A and one endpoint in B. For a contradiction, suppose there is an edge $\{u,w\}$ with both endpoints in A. Then there is a path of even length from u to v_0 and a path of even length from v_0 to v_0 . If v_0 are different, then this is a cycle of even length then take the edge v_0 we get an odd length. by the previous lemma, there is a cycle of odd length. Thus, a contradiction.

• Case 2: G is not connected. Then we can apply case (1) to each connected component C of G. For each C, we get a partition (A_c, B_c) . It remains to take

$$A = \bigcup_{C \in G} A_C$$
 and $B = \bigcup_{C \in G} B_C$

So G is bipartite.

Matchings

Definition 23.0.1 (Matching). A matching in a graph G = (V, E) is a subset of $M \subseteq E$ where no pair of edges share a vertex.

Example:

$$M = \{\{a, b\}, \{c, d\}\}\$$

 $M = \emptyset$ is a matching.

Definition 23.0.2 (Maximum Matching). A maximum matching if it contains the greatest number of edges possible.

Example:

This is not a maximum matching because we could add the edge $\{1,2\}$ to get a matching with 3 edges. So

$$M = \{\{6, 3\}, \{6, 1\}, \{2, 1\}\}$$

This matching is maximum.

Definition 23.0.3 (Perfect Matchings). A matching is perfect if it matches all vertices.

Example:

$$M = \{\{6,3\},\{6,1\},\{2,1\}\}$$

is a perfect matching. In general, if a graph has an odd number of vertices, it cannot have a perfect matching.

Theorem 23.0.1. Let G = (V, E) be a graph whose set of edges is the union of two matchings. Then G is bipartite.

Proof. Let M_1 and M_2 be the two matchings such that $E = M_1 \cup M_2$. We have to prove that G does not have a cycle of odd length. By the previous theorem, this implies that G is bipartite. For a contradiction, let

$$v_0, v_1, v_2, \dots, v_{l-1}, v_0$$

be a cycle of odd length. The edge $\{v_0, v_1\}$ is in M_1 or M_2 . Without loss of generality, assume that $\{v_0, v_1\} \in M_1$. Then $\{v_1, v_2\} \in M_2$ otherwise M_1 would not be a matching. Then $\{v_2, v_3\} \in M_1$ and so on. So we have

$$\{v_i, v_{i+1}\} \in M_1$$
 if i is even

$$\{v_i, v_{i+1}\} \in M_2 \text{ if } i \text{ is odd}$$

Then, $\{v_{l-2}, v_{l-1} \in M_2\}$ since l-2 is odd, and $\{v_{l-1}, v_0\} \in M_1$ since l-1 is even. But, the edge $\{v_0, v_1\}$ in M_1 shares an edge with $\{v_{l-1}, v_0\}$ in M_1 . This is a contradiction since M_1 is a matching.

Example:

$$M_1 = \{\{a, b\}, \{c, d\}, \{e, f\}\}\$$

 $M_2 = \{\{b, c\}, \{d, e\}\}\$

 $M_1 \cup M_2$ is equal to the set of edges. So this graph is bipartite.

Neighbour Sets

Definition 24.0.1 (Neighbour Set). Let G = (V, E) be a graph. Let $S \subseteq V$. The neighbour set of S, denoted N(S) is the set of vertices having at least one neighbour in S.

$$N(S) = \{v \in V | \{v, s\} \text{ is an edge for some } s \in S\}$$

Example:

$$N(\{3,4\}) = \{1,2,3,4,7,8\}$$

$$N(\{1\}) = \{3\}$$

$$N(\{2,3,4\}) = \{1,2,3,4,5,6,7,8,9\}$$

Theorem 24.0.1 (Hall's Theorem). Let G = (V, E) be a bipartite graph with partition (A, B). There exists a matching that matches all vertices in A if and only for every $S \subseteq A$. We have $|N(S)| \ge |S|$.

Proof. (\Longrightarrow) Suppose all vertices in A can be matched. Let $S\subseteq A$ be a subset. We need to show that $|N(S)|\geq |S|$. For every $s\in S$, let v be its partner in the matching. All these v's are different. So there are |S| of them. They are all

neighbours of vertices in S. So they are in N(S). Therefore, $|N(S)| \geq |S|$.

(\Leftarrow) Assume that for every subset $S \subseteq A$, we have $|N(S)| \ge |S|$. We want to prove that all vertices in A can be matched. By indunction,

- Base Case: n = |A| = 1. Then $|N(A)| \ge |A| = 1$. So the unique vertex in A has a neighbour in B and it can be matched.
- Induction Hypothesis: Let $K \ge 1$ be an integer. Assume that for all bipartite graphs G with partition (A, B) where $|A| \le K$, if $|N(S)| \ge |S|$ for all $S \subseteq A$, then all vertices in A can be matched.
- Induction Step: Let G be a bipartite graph with partition (A, B) where |A| = k+1. Consider two cases where for every $X \subset A$, we have $|N(X)| \ge |X| + 1$, and there exists a subset $X \subset A$ such that

$$|N(X) < |X| + 1 \implies |N(X)| = |X|$$

- Case 1: Let $a \in A$ and match it with an arbitrary neighbour $b \in B$. Remove a and b from G. Now for every proper subset $X \subset A$, we have $|N(X)| \geq |X|$. By the induction hypothesis, all vertices in $A \setminus \{a\}$ can be matched. So all vertices in A can be matched.
- Case 2: Let $X \subset A$ be a proper subset such that |N(X)| = |X|. Observe that all subsets $X' \subseteq X$ are subsets of A, and $|N(X')| \ge |X'|$. So by the induction hypothesis, all vertices in X can be matched. Remove all vertices in X and N(X) from G. Suppose we can show that for all subsets $Y \subseteq A \setminus X$, Y has at least |Y| neighbours in $B \setminus N(X)$, then we apply the induction hypothesis to match all vertices in $A \setminus X$. Combining the two matchings will give us a matching that matches all vertices in A. To prove our supposition, suppose for a contradiction that there exists a subset $Y \subseteq A \setminus X$ that has less than |Y| neighbours in $B \setminus N(X)$. Then the vertices in $X \cup Y$ have less than |N(X)| + |Y| neighbours in G. Then

$$|N(X \cup Y)| < |N(X)| + |Y|$$

$$= |X| + |Y|$$

$$= |X \cup Y|$$

$$\leq |N(X \cup Y)|$$

Which is a contradiction.