

Index

Introduction	1
About the Data	2
Descriptive Data Analysis	5
Numerical Data Summary	7
Data Distribution Analysis "trtbps"	9
Analysis of the Distribution of "chol" Data	11
Data Distribution Analysis "thalachh"	13
Comparison of Numerical Variables	14
Multivariate Data	16
Linear Dependence between Variables	19
Selection of Main Components	23
Sedimentation Charts	25
Variance Proportion	25
Calculation of Eigenvalues	26
Cluster Analysis	
Comparison of Means of Two Populations	46
Are there significant differences between a person's sex and the likelihood of heart	
disease?	
Homoscedasticity or Equality of Variances	
Conclusion	50

Heart Attack

Introduction

Heart attacks represent a significant threat to global cardiovascular health, being one of the

leading causes of morbidity and mortality worldwide. Data analysis related to the

prediction and study of heart attacks has become an essential tool for understanding risk

factors, identifying underlying patterns, and developing effective preventive strategies. In

this context, the present work focuses on an exhaustive data analysis that covers clinical,

lifestyle variables and relevant biomarkers, with the aim of discerning patterns and

relationships that may contribute to the prediction and understanding of adverse cardiac

events.

The relevance of this analysis lies in the need to advance the predictive capacity of existing

models, as well as in the identification of new key variables that can improve the precision

in the evaluation of cardiovascular risk. By addressing this data set, we seek to not only

predict future events, but also deepen our understanding of the complex interactions

between various factors that contribute to the development of heart attacks.

Through advanced statistical analysis and predictive modeling techniques, we aim to

identify risk patterns, evaluate the relevance of specific variables, and provide a solid

foundation for personalized intervention strategies. The application of advanced analytical

approaches not only allows the identification of linear relationships between variables, but

also the discovery of non-linear patterns and complex interconnections that may be crucial

for an accurate assessment of cardiovascular risk.

In summary, this work aims to contribute to the advancement of research in the prediction

and analysis of heart attacks, using a comprehensive approach that leverages advanced data

analysis capabilities to improve understanding of risk factors and, ultimately, promote

cardiovascular health and disease prevention.

About the Data

These are the categories that are in the data set:

Age : Age of the patient

2

Heart Attack

- Sex : Sex of the patient
- cp : Chest Pain type:
- Value 0: typical angina
- Value 1: atypical angina
- Value 2: non-anginal pain
- Value 3: asymptomatic
- trtbps: resting blood pressure (in mm Hg)
- chol: cholesterol in mg/dl fetched via BMI sensor
- fbs: fasting blood sugar > 120 mg/dl:
- 1 = true
- 0 = false
- rest_ecg: resting electrocardiographic results:
- Value 0: normal
- Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
- Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- thalach: maximum heart rate achieved
- exang: exercise induced angina:
- -1 = yes
- -0 = no
- old peak: ST depression induced by exercise relative to rest
- slp: the slope of the peak exercise ST segment:
- 0 = unsloping
- 1 = flat
- 2 = downsloping
- caa: number of major vessels (0-3)

Heart Attack

- over: thalassemia:
- 0 = null
- 1 = fixed defect
- 2 = normal
- 3 = reversable defect
- output: diagnosis of heart disease (angiographic disease status):
- 0: < 50% diameter narrowing. less chance of heart disease
- 1: > 50% diameter narrowing. more chance of heart disease

Descriptive Data Analysis

The database is the following, and with the nrow function, it tells us the number of data it contains.

```
heart_heart_csv=read.csv("heart - heart.csv.csv",head=T,sep=",")
head(heart heart csv)
               sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa
##
      age
thall
## 1
      63
           Male 3
                        145
                             233
                                    1
                                             0
                                                     150
                                                             0
                                                                    2.3
                                                                          0
                                                                               0
1
                                                                               0
## 2
      37
           Male 2
                        130
                             250
                                    0
                                             1
                                                     187
                                                             0
                                                                    3.5
                                                                          0
2
                                                                          2
      41 Female
                                    0
                                             0
                                                     172
                                                             0
                                                                               0
## 3
                  1
                        130
                             204
                                                                    1.4
2
## 4
      56
            Male 1
                        120
                             236
                                    0
                                             1
                                                     178
                                                             0
                                                                    0.8
                                                                          2
                                                                               0
2
      57 Female 0
                                                                               0
## 5
                        120
                             354
                                    0
                                             1
                                                     163
                                                             1
                                                                    0.6
                                                                          2
2
## 6
            Male 0
                        140
                             192
                                    0
                                             1
                                                     148
                                                             0
                                                                    0.4
                                                                          1
                                                                               0
      57
1
     output
##
## 1
          1
          1
## 2
## 3
          1
## 4
          1
## 5
          1
## 6
          1
## [1] 303
```

nrow indicates the number of data contained in the heart attack database.

```
##
## 29 34 35 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
```



```
##
## Female Male
## 96 207
```

Ataque Corazón por Sexo

In view of all these data and graphs related to the qualitative variables of the database, we can say that the highest number of cases of heart attacks occur between 56 and 60 years of age. If we break it down by gender It is found that men are more likely to suffer these acute myocardial infarctions. It's not entirely clear why men face a higher risk of developing heart disease, but on average, a woman's cardiovascular risk is equivalent to that of a man who is 20 years older. One of the crucial factors in this disparity is attributed to hormones. Estrogens produced by the ovaries are presumed to have a protective effect. In fact, it is after menopause that the risk of cardiovascular diseases in women increases significantly.

Numerical Data Summary

In this section, you can see the relative information of each of the variables that make up the database.

```
##
         age
                         sex
                                                               trtbps
                                                ср
    Min.
           :29.00
                     Length:303
                                         Min.
                                                 :0.000
                                                          Min.
                                                                  : 94.0
## 1st Qu.:47.50 Class:character 1st Qu.:0.000 1st Qu.:120.0
    Median:55.00
                     Mode :character
                                         Median :1.000
                                                          Median :130.0
    Mean
           :54.37
                                         Mean
                                                 :0.967
                                                                  :131.6
                                                          Mean
```

```
## 3rd Qu.:61.00 3rd Qu.:2.000 3rd Qu.:140.0
   Max.
           :77.00
                                        Max.
                                                :3.000
                                                         Max.
                                                                :200.0
## chol fbs restecg thalachh
## Min. :126.0 Min. :0.0000 Min. :0.0000 Min. : 71.0
## 1st Qu.:211.0 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:133.5
   Median :240.0
                    Median :0.0000
                                      Median :1.0000
                                                        Median :153.0
##
    Mean
           :246.3
                    Mean
                            :0.1485
                                      Mean
                                              :0.5281
                                                        Mean
                                                               :149.6
## 3rd Qu.:274.5 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:166.0
   Max.
           :564.0
                            :1.0000
##
                    Max.
                                      Max.
                                              :2.0000
                                                        Max.
                                                               :202.0
##
                        oldpeak
                                          slp
         exng
                                                           caa
## Min. :0.0000 Min. :0.00 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00 1st Qu.:1.000 1st Qu.:0.0000
    Median :0.0000
                     Median :0.80
                                     Median :1.000
##
                                                      Median :0.0000
##
    Mean
           :0.3267
                     Mean
                             :1.04
                                     Mean
                                             :1.399
                                                      Mean
                                                             :0.7294
## 3rd Qu.:1.0000 3rd Qu.:1.60 3rd Qu.:2.000 3rd Qu.:1.0000
           :1.0000
                             :6.20
##
   Max.
                     Max.
                                             :2.000
                                                             :4.0000
                                     Max.
                                                      Max.
        thall
##
                         output
## Min. :0.000 Min. :0.0000
## 1st Qu.:2.000 1st Qu.:0.0000
   Median :2.000
                    Median :1.0000
   Mean
           :2.314
                    Mean
                            :0.5446
##
## 3rd Qu.:3.000 3rd Qu.:1.0000
           :3.000
##
   Max.
                    Max.
                            :1.0000
```

In view of the results, it can be seen that the average age is 55 years. Furthermore, the type of chest pain suffered by patients on average is type 1, angina typical. However, two other types exist. Type 2, which is atypical angina; and, type 3, non-anginal pain. On the other hand, the mean arterial pressure at rest (measured in mmHg upon admission to the hospital) is 130.

Data Distribution Analysis "trtbps"

[1] 0.7102301

At this point, we analyze the quantitative variable of blood pressure at rest and, of which we can say, that we are dealing with a multimodal density function because several local peaks are observed, being between 120 and 140, which indicate where the blood pressure is. the center of distribution. When calculating the skewness coefficient, we obtain a result of 0.7102301, which indicates that the distribution has a right or positive skewness, since this coefficient is positive or greater than 0. Also, it can be seen by comparing the mean and the median , since if the mean takes a value much higher than the median, we are faced with a case of positive asymmetry. In this case, there is not a big difference since the mean value is 131.6, and the median value is 130.

```
## The following objects are masked from heart_heart_csv (pos = 4):
##
## age, caa, chol, cp, exng, fbs, oldpeak, output, restecg, sex, slp,
## home, over, trtbps
```


On the other hand, the boxplot is similar to the histogram but not identical. While the histogram with its density is good for visualizing the center, spread, tails, and shape of the distribution, it is not useful when comparing distributions. A graph that allows you to observe the above and also compare distributions in the same figure is the boxplot.

When analyzing the boxplot we can observe a large concentration of values around the range between 120 and 140. This confirms, as mentioned above, that in the sample there is a significant proportion of patients with blood pressure in that range. Thanks to the arrangement of this data, we can identify the limits of the box, determined by the interquartile range. Likewise, several outliers are observed, those that are outside said box.

Analysis of the Distribution of "chol" Data

The condition of multimodal density is attributed to the present distribution due to the presence of multiple local points in its representation, indicating the existence of various significant concentrations.

[1] 1.137733

When calculating the skewness coefficient, we obtain a result of 1.137733, which indicates that the distribution exhibits a positive skewness or bias to the right, given that said coefficient is positive or greater than 0. This conclusion is also corroborated by comparing the mean and the median; When the mean significantly exceeds the median, a positive skew is suggested. In this particular case, although the mean is 246.3 and the median is 240, the disparity between the two is not considerable.

```
## The following objects are masked from heart_heart_csv (pos = 3):
##
```

```
## age, caa, chol, cp, exng, fbs, oldpeak, output, restecg, sex, slp,
## home, over, trtbps

## The following objects are masked from heart_heart_csv (pos = 5):
##

## age, caa, chol, cp, exng, fbs, oldpeak, output, restecg, sex, slp,
## home, over, trtbps
```


When examining the box plot, a notable concentration of values is observed in the interval between 200 and 300. In addition, the presence of extreme values can be confirmed, since these are outside the interquartile range.

Data Distribution Analysis "thalachh"

The characterization of this distribution as multimodal is based on the presence of multiple local points in its representation, which indicates the existence of various significant concentrations.

```
## [1] -0.5347455
```

We are facing a negative asymmetry, with a value of -0.5347, this indicates a unilateral distribution that extends towards more values.negatives.

```
## The following objects are masked from heart_heart_csv (pos = 3):
##

## age, caa, chol, cp, exng, fbs, oldpeak, output, restecg, sex, slp,
## home, over, trtbps

## The following objects are masked from heart_heart_csv (pos = 4):
##
```

```
## age, caa, chol, cp, exng, fbs, oldpeak, output, restecg, sex, slp,
## home, over, trtbps

## The following objects are masked from heart_heart_csv (pos = 6):
##

## age, caa, chol, cp, exng, fbs, oldpeak, output, restecg, sex, slp,
## home, over, trtbps
```


When analyzing the box plot, a notable concentration of values is noted in the interval from 130 to 170. Likewise, the existence of extreme values is confirmed, evidenced by their location outside the interquartile range.

Comparison of Numerical Variables

In this case, we are going to compare the variables "number of shares" cp, which measures chest pain, and "number of sads" restecg, which are the electrographic results at rest, with the aim of being able to relate both magnitudes.

In the box plot provided, the distributions of the variables "cp" (type of chest pain) and "restecg" (resting electrocardiographic results) are compared. Both boxplots present similar interquartile ranges, since the boxes range from the first quartile to the third quartile. It is interesting to note that both boxplots extend to their maximum values.

Plot de Densidad

The density graph shows the distribution of data over a continuous time interval, this graph is an alteration of a Histogram. The peaks on this density graph help show where the values that are concentrated in the interval. Areas of higher density on the graph may indicate regions where the combination of certain levels of chest pain and resting electrocardiographic results is more common. The shape and direction of the joint density curves can reveal patterns in the association between both variables. Low-density areas may point to less common combinations of values, and the presence of outliers could stand out in low-density regions.

Multivariate Data

In this section, we will focus on the analysis and description of a multivariate data set. For the most part, the variables will be numerical or quantitative in nature, so our interest will focus on understanding the relationships between them. In order to quantify the joint variation of two variables, we will use covariance and calculate the matrix of variances and covariances between said variables. This approach will allow us to gain a deeper understanding of how different numerical variables interact with each other, providing a fundamental tool to explore the complexity and interrelationships within the data set.

```
##
                            trtbps
                                          chol
                                                        fbs
                    ср
                                                                 restecg
## cp
            1.06513234
                         0.8617140
                                    -4.1137740
                                                0.034719035
                                                            0.024107709
## trtbps
            0.86171399 307.5864533 111.9672153
                                                1.109042030 -1.052324438
## chol
           -4.11377396 111.9672153 2686.4267480 0.245426529 -4.116702730
## fbs
            0.03471903
                         1.1090420
                                     0.2454265 0.126876926 -0.015769458
                                    -4.1167027 -0.015769458 0.276528315
## restecg
            0.02410771 -1.0523244
##thalachh 6.99161804 -18.7591305 -11.8004940 -0.069897056 0.531462418
## exng
           -0.19116779
                         0.5571110
                                     1.6319913 0.004294800 -0.017474264
## oldpeak -0.17882106 3.9344863 3.2467937 0.002376893 -0.035882893
## slp
            0.07613708 -1.3128319
                                    -0.1289642 -0.013146679 0.030151028
                                     3.7372522 0.050258999 -0.038740629
## caa
           -0.19108037
                         1.8183726
## over -0.10220095 0.6680218 3.1354884 -0.006983149 -0.003857671
## output
            0.22332962 -1.2679496
                                    -2.2038555 -0.004983280 0.035997639
##
               thalachh
                                        oldpeak
                                                        slp
                               exng
                                                                   caa
             6.99161804 -0.19116779 -0.178821061 0.07613708 -0.19108037
## cp
## trtbps
           -18.75913055 0.55711101 3.934486263 -1.31283195 1.81837257
## chol
           -11.80049396 1.63199134 3.246793653 -0.12896422 3.73725220
## fbs
            0.53146242 -0.01747426 -0.035882893  0.03015103 -0.03874063
## restecg
## thalachh 524.64640570 -4.07629008 -9.153517802 5.45936878 -4.99323542
## exng
            -4.07629008 0.22070684 0.157215920 -0.07461806 0.05560291
## oldpeak -9.15351780 0.15721592 1.348095207 -0.41321881 0.26439578
## slp
             5.45936878 -0.07461806 -0.413218805 0.37973466 -0.05051035
            -4.99323542 0.05560291 0.264395777 -0.05051035 1.04572378
## caa
## over -1.35249055 0.05947151 0.149462330 -0.03952746 0.09506480
             4.81876598 -0.10235394 -0.249452495 0.10632090 -0.19982296
## output
##
                            output
                  thall
## cp
           -0.102200949 0.22332962
## trtbps
            0.668021769 -1.26794964
## chol
            3.135488383 -2.20385548
## fbs
           -0.006983149 -0.00498328
```

In order to evaluate the interdependence between variables, it is studied by calculating the correlation matrix.

```
##
                 ср
                        trtbps
                                     chol
                                                 fbs
                                                        restecg
           1.00000000
                     0.04760776 -0.076904391
                                          0.094444035
## cp
                                                      0.04442059
## trtbps
          0.04760776 1.00000000 0.123174207
                                          0.177530542 -0.11410279
## chol
          -0.07690439 0.12317421 1.000000000 0.013293602 -0.15104008
## fbs
          0.09444403 0.17753054 0.013293602 1.000000000 -0.08418905
## restecg 0.04442059 -0.11410279 -0.151040078 -0.084189054 1.00000000
## thalachh 0.29576212 -0.04669773 -0.009939839 -0.008567107 0.04412344
          ## exng
## oldpeak -0.14923016 0.19321647 0.053951920 0.005747223 -0.05877023
          0.11971659 -0.12147458 -0.004037770 -0.059894178 0.09304482
## slp
          -0.18105303 0.10138899 0.070510925 0.137979327 -0.07204243
## caa
## over -0.16173557 0.06220989 0.098802993 -0.032019339 -0.01198140
          0.43379826 -0.14493113 -0.085239105 -0.028045760 0.13722950
## output
##
             thalachh
                                    oldpeak
                                                 slp
                           exng
          0.295762125 -0.39428027 -0.149230158 0.11971659 -0.18105303
## cp
## trtbps -0.046697728 0.06761612 0.193216472 -0.12147458 0.10138899
## chol
          ## fbs
## restecg 0.044123444 -0.07073286 -0.058770226 0.09304482 -0.07204243
## thalachh 1.000000000 -0.37881209 -0.344186948 0.38678441 -0.21317693
          -0.378812094 1.00000000 0.288222808 -0.25774837 0.11573938
## exng
## oldpeak -0.344186948 0.28822281 1.000000000 -0.57753682 0.22268232
```

```
## slp
            0.386784410 -0.25774837 -0.577536817 1.00000000 -0.08015521
## caa
            -0.213176928 0.11573938 0.222682322 -0.08015521 1.00000000
## over -0.096439132 0.20675379 0.210244126 -0.10476379 0.15183213
            0.421740934 -0.43675708 -0.430696002 0.34587708 -0.39172399
## output
                 thall
##
                            output
## cp
           -0.16173557 0.43379826
          0.06220989 -0.14493113
## trtbps
## chol
            0.09880299 -0.08523911
## fbs
           -0.03201934 -0.02804576
## restecg -0.01198140 0.13722950
##thalachh -0.09643913 0.42174093
## exng
            0.20675379 -0.43675708
## oldpeak 0.21024413 -0.43069600
## slp
           -0.10476379 0.34587708
## caa
            0.15183213 -0.39172399
## over 1.00000000 -0.34402927
## output
           -0.34402927 1.00000000
## [1] 0.1287076
```

Since the determinant of the correlation matrix is close to 0, this suggests a high degree of dependence between the variables.

Linear Dependence between Variables

Furthermore, at this point, it is relevant to create scatter plots to visualize the relationships between the variables in pairs. These diagrams are essential to identify possible non-linear relationships, since in such cases the variance-covariance matrix may not be sufficient to summarize the dependence between the variables.

As evident in the scatter diagram, strong linear relationships between the variables are rare. Therefore, below, we will focus on analyzing the strongest relationship identified and the one that presents a minimal connection.

We can conclude that the relationship between both variables is practically null. This is because the "slp" variable, which measures the slope of the ST segment during maximal exercise, and the "oldpeak" variable, which assesses ST segment depression induced by exercise compared to rest, are linked to physical activity and changes in the electrocardiogram, but they measure different concepts.

If "output" assigns probabilities to the chance of having a heart attack, it is reasonable to assume that there could be a connection between "cp" and predictions of heart attack risk. In this sense, it would be plausible to anticipate that higher levels of chest pain would correlate with a greater probability that the models predict a higher risk of heart attack. Therefore, it is feasible that a linear relationship exists between both variables.

Selection of Main Components

Next, we will proceed to calculate the main components. To carry out this calculation, it is necessary to select the appropriate matrix for the determination of the eigenvalues and eigenvectors.

```
##
## Loadings:
##
              Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
Comp.10
## ср
                                                 0.353 0.663
                                                                0.605
                                                                        0.165
0.173
## trtbps
                           0.996
## chol
            -0.999
## fbs
                                                                 0.104 0.112
0.141
## restecg
                                                                -0.917 0.365
0.106
## thalachh 0.996
## exng
                                    -0.112 -0.130 0.112 0.105 0.105
0.866
## oldpeak -0.737 0.558 -0.113 -0.116 -0.146 -0.306
                                     0.217 -0.226
## slp
                                                                -0.295 -0.858
0.211
## caa
                                -0.445 -0.428 0.767
## over -0.165 0.945 -0.219
## output
                                        0.214
                                                                -0.176 -0.154
-0.311
##
           Comp.11 Comp.12
## cp
## trtbps
## chol
## fbs
           -0.832
                    0.509
## restecg
```

```
## thalachh
## exng
                  -0.416
## old peak
## slp
                   0.126
## caa
                  -0.127
## over -0.136 -0.101
## output -0.516 -0.719
##
##
                    Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
Comp.9
## SS loadings
                                 1.000
                                        1.000
                   1.000 1.000
                                               1.000 1.000 1.000
                                                                    1.000
1.000
## Proportion Var 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
## Cumulative Var 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667
0.750
##
                Comp.10 Comp.11 Comp.12
## SS loadings
                  1.000
                          1.000
                                  1.000
## Proportion Was 0.083 0.083 0.083
## Cumulative Var
                  0.833
                          0.917
                                 1.000
```

To make the decision on which components to retain, we have three study approaches to guide our choice.

Sedimentation Charts

In the left graph, it can be seen that the first three components explain most of the variability in the data. In the right graph, it is observed that a straight line can be approximated from the second component. This visual approach suggests choosing the first two or three components as the most relevant candidates to retain.

Variance Proportion

```
## Importance of components:
##
                              Comp.1
                                         Comp.2
                                                      Comp.3
                                                                   Comp.4
## Standard deviation
                          51.7967661 22.9076588 17.31797723 1.1991291037
## Proportion of Variance 0.7638997
                                      0.1494144 0.08539362 0.0004094143
## Cumulative Proportion
                           0.7638997
                                      0.9133142 0.99870777 0.9991171859
##
                                Comp.5
                                             Comp.6
                                                           Comp.7
                                                                        Comp.8
## Standard deviation
                          1.0104314122 0.9253485447 5.918983e-01 5.255744e-01
## Proportion of Variance 0.0002906998 0.0002438045 9.975285e-05 7.865013e-05
```

```
## Cumulative Proportion 0.9994078858 0.9996516903 9.997514e-01 9.998301e-01
## Comp.9 Comp.10 Comp.11 Comp.12
## Standard deviation 4.582512e-01 4.015061e-01 3.412882e-01 0.3302322094
## Proportion of Variance 5.979134e-05 4.590028e-05 3.316451e-05 0.0000310506
## Cumulative Proportion 9.998899e-01 9.999358e-01 9.999689e-01 1.0000000000
```

From the previous operation, the first row provides us with the standard deviations associated with each component. Furthermore, the eigenvalues reflect the variance related to each component; Therefore, the square of these values (the variance) is equivalent to the eigenvalues. The second row indicates the proportion of variance explained by each component, while the third row displays the proportion of variance accumulated by adding the variance explained by the current component to the previous ones. When focusing on the last row, and as evidenced in the scree plot, it is observed that the first component alone covers 66.3% of the variability. To reach a level of 90%, it would be necessary to retain the first two main components. However, if the goal is to reach 99%, it would be necessary to conserve the first three components.

Calculation of Eigenvalues

##	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5
Com	p.6				
##	2682.9049737	524.7608331	299.9123354	1.4379106	1.0209716
0.8	562699				
##	Comp.7	Comp.8	Comp.9	Comp.10	Comp.11
Com	p.12				
##	0.3503437	0.2762284	0.2099941	0.1612071	0.1164776
0.1	090533				
##	[1] 292.6764				

The reference value in this situation is 292.6764. When observing carefully, we notice that the first three components have an associated eigenvalue greater than said value. Therefore, this third method also supports the decision to retain the first three components.

After performing these calculations using the three methods, we can affirm that we chose to retain the first three principal components.

```
##
                  Comp.1
                                Comp.2
                                              Comp.3
            1.527711e-03 0.0130660971 0.0053855273
## cp
## trtbps -4.695977e-02 -0.0808990493 0.9955018118
## chol -9.988741e-01 0.0097270963 -0.0463424267
## fbs
           -1.105958e-04 -0.0002987658 0.0036155697
            1.547379e-03 0.0010959148 -0.0027081078
## restecg
## thalachh 5.863633e-03 0.9962467354 0.0815078358
           -6.245369e-04 -0.0077866839 0.0004926436
## exng
## oldpeak -1.294510e-03 -0.0179360342 0.0100901359
            8.301833e-05 0.0105573834 -0.0028630768
## slp
           -1.430361e-03 -0.0096975728 0.0041110936
## caa
## over -1.178518e-03 -0.0026186910 0.0013683051
## output
            8.509534e-04 0.0092985993 -0.0025613835
```

The first component can be interpreted as follows:

```
R1 = 1.527711e-03X1 + (-4.695977e-02X2) + (-9.988741e-01X3) + (-1.105958e-04X4) + 1.547379e-03X5 + 5.863633e-03X6 + (-6.245369e-04X7) + (-1.294510e-03X8) + 8.301833e-05X9 + (-1.430361e-03X10) + (-1.178518e-03X11) + 8.509534e-04X12
```


As evident, the coefficients have both positive and negative values. Consequently, we will proceed to classify the variables into two groups according to the sign of the coefficients that accompany them:

```
(1.527711e-03*given_num[,1]
                                             1.547379e-03*given_num[,5]
5.863633e-03*given_num[,6]
                                          8.301833e-05*given_num[,9]
8.509534e-04*given num[,12])
                                          (4.695977e-02*given num[,2]
9.988741e-01*given_num[,3]
                                          1.105958e-04*given_num[,4]
6.245369e-04*given_num[,7]
                                          1.294510e-03*given_num[,8]
1.430361e-03*given_num[,10] + 1.178518e-03*given_num[,11])
R1
##
        [1]
             -238.6661 -254.7282 -208.8682 -240.3250 -358.2820
                                                                    -197.4896
-299.3478
##
             -267.3241 -205.9018 -173.8334 -244.3684
                                                         -279.9771
                                                                    -270.8016
        [8]
-215.0834
##
      [15]
            -288.7736
                       -223.4610
                                   -344.2406 -232.1198 -252.7649
                                                                    -244.4203
-239.1338
```

		-237.7907	-231.2760	-248.9659	-204.3054	-308.2253	-217.8836
-179	9.2448						
		-422.1851	-201.9918	-201.7225	-181.6165	-223.7556	-277.6719
-21	7.8978						
##	[36]	-182.5317	-308.9973	-237.8168	-275.1059	-366.2222	-313.3966
-249	9.7736						
##	[43]	-211.7877	-268.9710	-326.1441	-329.2592	-240.2526	-262.2746
-22	1.0893						
##	[50]	-239.2801	-260.9418	-306.4117	-235.9932	-144.8844	-257.0456
-20	6.1406						
##	[57]	-226.3898	-264.0242	-186.3128	-307.7402	-269.1048	-312.8085
-190	0.2134						
##	[64]	-208.3342	-216.3677	-188.2088	-225.6065	-238.8158	-224.3889
-21	3.6317						
##	[71]	-262.4828	-230.2556	-208.6904	-266.1918	-217.5189	-255.1158
-249	9.6223						
##	[78]	-226.3628	-209.6995	-243.7585	-253.9252	-312.6671	-321.4918
-30	3.7568						
##	[85]	-268.7784	-567.8288	-281.3446	-200.6060	-217.9971	-251.7041
-259	9.5095						
##	[92]	-211.9821	-228.2409	-292.9441	-164.2685	-231.7661	-399.2131
-23	6.9529						
##	[99]	-319.8008	-250.8161	-249.6323	-277.2082	-200.3064	-244.2266
-200	0.8781						
##	[106]	-215.7236	-240.4805	-241.3258	-248.4102	-257.9486	-332.1843
-13:	1.8874						
##	[113]	-318.4403	-214.9849	-266.8992	-219.3930	-218.8797	-197.4684
-20	7.6908						
##	[120]	-248.3176	-308.0536	-276.1095	-271.9481	-270.7901	-202.1373
-214	4.1782						
##	[127]	-208.1912	-282.8156	-201.1734	-273.6249	-207.3297	-276.0359
-299	9.3514						
		-239.0021	-310.6149	-273.8459	-182.8687	-212.9557	-205.2017

-26	8.1024						
##	[141]	-299.3815	-306.9993	-213.3823	-226.8971	-202.6691	-251.2112
	6.3937						
##	[148]	-245.7674	-230.3865	-185.0193	-234.4508	-153.3607	-233.8175
	3.6517						
	[155]	-225.3383	-202.1155	-257.7671	-196.4909	-224.7837	-225.9012
	4.3724						
		-346.8401	-161.3895	-180.2715	-180.2715	-292.5674	-233.6312
	3.3443						
		-258.9635	-208.4452	-260.9849	-232.9244	-288.3803	-228.9394
	1.1089	474 2450	224 2244	240 2602	404 7206	202 2024	350 0330
		-171.3158	-234.3044	-340.2683	-181./396	-282.0804	-358.0328
	1.1312	224 7445	224 0201	240 0266	204 0205	257 0012	270 0027
	[183] 8.3573	-334.7445	-234.0381	-249.0200	-294.0395	-257.9812	-2/0.892/
		-176.0488	-300 0338	_221 0107	-102 7661	-287 6696	_190_4603
	2.8038	-170.0400	-309.9320	-221.0107	-192.7001	-287.0090	-190.4003
		-236.9243	-258.6334	-271.7618	-251,9645	-200.9095	-262.7618
	6.0941	23013213	23010331	2,11,010	23213013	2001,7073	2021,010
	[204]	-281.2679	-170.4945	-259.7836	-243.0709	-263.8426	-192.6142
-18	2.4291						
##	[211]	-233.8758	-264.5302	-223.4772	-312.6128	-253.7513	-346.0254
-26	8.2417						
##	[218]	-334.9699	-259.3174	-260.9440	-412.6956	-222.6890	-287.1437
-29	6.3001						
##	[225]	-243.1653	-179.8863	-285.7200	-202.6546	-294.7257	-313.7557
-24	6.9044						
##	[232]	-295.7050	-295.3445	-250.8026	-327.1128	-304.2278	-304.5358
-29	8.2555						
##	[239]	-308.5849	-286.6887	-275.5586	-256.0535	-217.8030	-280.3189
-18	9.3817						
##	[246]	-278.5453	-413.9620	-252.5359	-290.5575	-259.4396	-303.5357
-25	2.0921						

##	[253]	-299.5355	-302.6333	-279.4708	-314.4668	-263.9678	-205.8035	
-249	9.8694							
##	[260]	-235.3108	-235.1414	-234.0644	-286.9095	-272.7844	-210.3047	
-216	5.2512							
##	[267]	-334.4027	-153.6391	-290.7368	-288.1885	-253.5149	-239.1813	
-243	1.9540							
##	[274]	-237.5212	-279.1697	-216.6522	-224.0009	-265.7031	-324.1397	
-173	1.5696							
##	[281]	-320.3014	-208.8668	-222.8866	-228.8273	-212.5400	-316.5283	
-209	9.1130							
##	[288]	-238.0111	-338.9577	-210.0228	-208.7807	-322.1825	-231.8821	
-218	3.0211							
##	[295]	-173.6044	-192.5315	-201.8051	-182.9809	-246.5846	-268.0932	
-198.7274								
##	[302] -1	.36.2885 -24	0.8210					

Therefore, it can be interpreted as the sum of two weighted averages. Where a high negative weight is seen in the chol variable, which measures cholesterol in mg/dl obtained through the BMI sensor; This negative value separates those affected by heart attacks into those who have a higher cholesterol level and those who do not.

The second component can be interpreted as follows:

```
R2 = 0.0130660971 \ 0.0179360342X8) + 0.0105573834X9 + (-0.0096975728X10) + (-0.0026186910 X11) + 0.0092985993X12
```



```
R2=
       (0.0130660971*given_num[,1] +
                                            0.0097270963*given_num[,3]
0.0010959148*given_num[,5]
                                         0.9962467354*given_num[,6]
0.0105573834*given_num[,9]
                                        0.0092985993*given_num[,12])
(0.0808990493*given_num[,2]
                                          0.0002987658*given_num[,4]
0.0077866839*given_num[,7]
                                         0.0179360342*given_num[,8]
                                +
0.0096975728*given_num[,10] + 0.0026186910*given_num[,11])
R2
##
        [1]
             139.97739
                       178.18155 162.83502 169.94462 156.13145 137.99741
143.96402
##
        [8]
             165.23774 149.45355 162.86993 150.40314
                                                        130.68519
                                                                  162.45730
136.62680
                       149.84248
##
            152.05602
                                  165.00617
                                             103.63332
                                                        160.62529
                                                                   141.44596
      [15]
151.75462
                                  126.73045
                                             167.97170
                                                                   146.36143
##
      [22]
            170.11515
                       168.23065
                                                        151.39847
115.38334
##
      [29]
            149.16803
                       142.83724
                                  160.83066
                                             131.50483
                                                        178.94599
                                                                   143.98415
116.51211
```

##	[36]	149.63080	161.44972	154.52253	137.55981	141.02812	133.15182
171	.21477						
##	[43]	141.00728	134.52180	173.16475	164.84361	170.33572	146.80159
106	.37089						
##	[50]	150.53673	140.45636	143.67040	137.15996	167.00869	162.93560
	.53695						
	[57]	177.61680	177.55648	165.63555	151.01094	123.23217	149.71979
	.60647						
	[64]	122.58920	155.15827	171.93406	136.54533	166.11937	161.83336
	.41597	139.28093	140 05704	102 74752	176.53219	156 62116	151 00070
	[71] .64512	139.28093	148.05784	192./4/55	1/0.55219	130.02110	151.90870
		154.23984	174 98741	147.28168	171.75165	162.04105	154.28370
	.96441	154.25504	174.50741	147.20100	171.75105	102.04103	154.20570
	[85]	115.87194	155.59160	143.60373	149.19635	150.60284	115.86120
	.82482						
##	[92]	158.72015	159.38439	150.54642	130.00647	101.30882	148.91044
139	.97005						
##	[99]	153.94776	164.24859	167.76290	132.64737	168.91903	185.91251
153	.91116						
##	[106]	106.92675	119.88264	142.56427	154.07711	152.00019	142.03996
161	.47764						
##	[113]	124.26573	153.57290	146.48920	161.79779	158.93905	153.57853
	.88370						
	[120]	142.63595	113.93298	172.81406	164.94413	160.28455	172.71175
	.80276						
		135.41140	161.79490	159.30890	113.47173	151.44222	153.21632
	.59292	145 05206	155 21077	154 51420	07 71533	121 10064	110 56600
	[134] 80108	145.85206	155.210//	154.51420	87.71533	131.18064	118.56698
	[141]	1/0 61280	173.95877	164.71761	135.06238	106.17821	132.26441
	.27540	149.01209	1/3.330//	104./1/01	133.00230	100.1/021	132.20441
		160.60717	160.90854	140.72342	126.74252	116.90650	142.91389
11 15	[0]	100.00/1/	100.7007	1.0.,2572	120,77232	110.50050	1,2,0100

142.35343						
## [155]	142.44724	121.91264	170.32465	165.38419	135.46731	154.05665
161.01054						
## [162]	158.04277	173.17551	162.90247	162.90247	97.37429	120.96433
150.59127						
## [169]	138.36997	144.99543	133.44582	160.68643	152.44019	163.81348
122.92395						
## [176]	106.25670	152.13328	149.38280	111.51349	102.10915	124.22435
103.58154	444 0744	4	447 70440	444 40000	125 2552	101 000=0
## [183]	161.07464	157.53155	117.70448	146.19209	135.37537	101.09258
153.33823	150 10441	122 00141	122 10066	104 66560	122 40501	144 06053
## [190] 128.81611	150.19441	133.89141	122.18066	104.66568	132.40501	144.86953
## [197]	136.52835	154.72704	91.46201	150.90875	169.35919	132.80300
101.06597	130.32633	134.72704	91.40201	130.90073	109.33919	132.80300
## [204]	137.53246	132.95902	152.51793	134.85661	146.72214	130.56407
151.78467	137.33240	132.33302	132.31733	154.05001	140.72214	150.50407
## [211]	141.32140	132.21745	132.04096	136.68486	135.73521	128.06863
88.67599						
## [218]	124.14143	118.01543	141.39605	145.14793	101.25331	164.93532
119.01533						
## [225]	118.88906	114.43181	95.61980	121.69747	147.49011	123.39147
145.09920						
## [232]	112.95276	134.29393	88.26249	101.13932	163.91109	163.15780
160.84790						
## [239]	154.21563	147.96972	101.21281	130.80752	121.78902	78.00307
95.66981						
## [246]	158.00443	142.51636	108.98385	181.50489	136.56071	113.00650
134.14123						
	97.24080	119.31133	114.29757	137.93210	121.59803	115.80182
143.63407						
	173.82303	152.15684	152.58329	87.37664	162.19214	100.68737
124.50262						

##	[267]	105.11854	117.42891	108.39763	94.80467	136.17260	135.87103				
63.	63.31943										
##	[274]	149.60359	111.30307	159.29624	94.87338	133.00012	143.53943				
114	.90474										
##	[281]	116.56157	147.02937	125.41000	170.20750	128.13139	111.19320				
152	.55825										
##	[288]	153.20194	136.75547	121.10259	150.40192	133.23683	133.81802				
139	.21698										
##	[295]	135.33599	133.86696	127.37294	78.07704	113.54914	125.19510				
130	.62178										
##	## [302] 105.29054 165.13434										

We can interpret this second principal component as the contrast between two variables, the negative being the pressure arterial resting (trtbps), and the positive one, the maximum heart rate reached (land). This is because, in general, when blood pressure decreases, the body can respond by increasing heart rate to compensate for decreased blood flow and maintain an adequate supply of oxygen to organs and tissues.

The third component can be interpreted as follows:

```
R3 = 0.0053855273X1 + 0.9955018118X2 + (-0.0463424267X3) + 0.0036155697X4 + (-0.0027081078X5) + 0.0815078358X6 + 0.0004926436X7 + 0. 0100901359X8 + (-0.0028630768X9) + 0.0041110936X10 + 0.0013683051X11 + (-0.0025613835X12)
```



```
R3= (0.0053855273*given_num[,1] + 0.9955018118*given_num[,2]
0.0036155697*given_num[,4]
                                          0.0815078358*given_num[,6]
0.0004926436*given_num[,7]
                                        0.0100901359*given_num[,8]
0.0041110936*given_num[,10]
                                    0.0013683051*given_num[,11]
                              +
(0.0463424267*given_num[,3]
                                        0.0027081078*given_num[,5]
                           +
0.0028630768*given_num[,9] + 0.0025613835*given_num[,12])
R3
##
       [1]
            145.81794 133.11515 133.99469 123.03700 116.33906 142.53294
138.23209
                       175.22098 155.74076 141.33952 128.00519
##
        [8]
            121.37151
                                                                 131.02917
111.49620
##
            149.43895
                      122.21098
                                 117.72565 148.18363
                                                      151.82341
                                                                 140.63638
      [15]
136.67240
                                 149.25021 144.68039
                                                      158.49853
                                                                 152.31968
##
      [22]
            133.21439
                      143.39700
111.42930
##
      [29]
            132.86321
                      132.70164
                                 109.04644 122.66585
                                                      134.58955
                                                                 124.19554
124.78460
```

##	[36]	146.22547	134.16711	152.04535	153.91041	154.91799	136.69537	
132.73747								
##	[43]	105.98420	128.83780	139.33398	118.41742	143.15641	138.18969	
126	126.79015							
##	[50]	139.57082	129.70651	117.77384	130.64752	115.25521	136.73902	
136	136.96996							
##	[57]	126.31811	117.50708	123.22786	126.34078	107.83342	105.90810	
	124.34811							
		135.74289	143.04963	143.73888	100.93576	132.84373	123.11834	
	.03418							
		119.49901	95.61813	136.42580	142.43028	125.03647	135.94672	
	.65005	1.42 40240	422 02222	105 07371	114 50201	127 00602	00 05347	
		142.49348	132.92222	105.9/3/1	114.50301	127.00693	99.85217	
	.04248	99.20776	101 41242	116 05912	104 12256	112.48768	98.00862	
	[85] .90313	99.20776	101.41245	110.95615	104.15550	112.40/00	90.00002	
		135.50028	140 83867	131 02742	115 32949	139.93155	133 91 <i>71</i> 19	
	.70813	133.30020	140.03007	131.02742	113.32343	133.33133	133.31743	
		128.04743	132.13702	150.56201	176.56558	144.92873	124.17185	
	.62491							
##	[106]	119.07858	159.13589	138.83145	121.36516	110.68842	176.67348	
157	157.60061							
##	[113]	135.71151	112.84282	129.90436	123.35544	133.21954	123.75441	
109	109.09031							
##	[120]	138.50504	125.34044	139.64933	113.10149	108.75780	98.94744	
123	.39100							
##	[127]	113.69072	152.50539	140.08905	116.86301	163.25786	134.04270	
118.99060								
##	[134]	111.08255	124.53535	130.22664	119.04215	129.19955	110.46922	
123.79709								
	[141]	118.59721	115.20058	123.88088	106.76593	139.70947	155.59984	
	.41153							
##	[148]	152.15791	122.76417	133.30229	159.97859	114.79041	171.37018	

144.86146						
## [155]	139.57848	130.96396	132.28302	126.73297	126.00136	132.46054
122.11571						
## [162]	129.09666	127.01601	143.38914	143.38914	154.85704	119.39850
140.03902						
## [169]	129.64539	142.63595	129.14924	112.60297	119.36364	135.17605
130.66190						
## [176]	111.07982	118.87833	136.72885	121.06551	145.67280	125.82164
148.21378						
## [183]	127.89407	114.32759	148.52454	110.52872	129.44213	120.02754
141.87772						
## [190]	114.41092	126.86604	128.12806	119.97500	142.89152	143.47153
165.57768						
## [197]	150.64608	125.96492	115.18148	110.90043	114.80375	124.00808
145.86713						
## [204]	178.75094	163.57777	128.72995	110.02143	150.20135	122.11925
144.37219						
## [211]	129.05815	118.86175	118.74196	142.03261	124.65579	126.72416
125.15896						
## [218]	124.91425	133.00687	129.78846	143.07005	138.41971	138.53093
196.65108						
## [225]	108.73074	146.50078	114.85817	120.89561	168.86785	120.82340
108.64725						
	160.99909	157.71988	115.91427	123.41375	139.62703	124.47944
139.66983						
## [239]	123.56373	125.07876	155.98622	173.33133	145.30911	145.80639
131.46185						
## [246]	124.28099	126.69849	157.67500	193.92334	139.54395	135.55790
131.63808						
	132.42669	95.89994	156.83045	139.03717	126.05779	144.36458
150.58171						
	123.64307	180.10300	113.87711	117.14883	108.84695	108.76598
112.43327						

##	[267]	173.60203	120.86237	117.69307	124.71999	119.66453	134.41953		
114	114.27137								
##	[274]	101.42207	106.39352	128.32043	143.82176	122.84354	133.00844		
139	139.91569								
##	[281]	130.99331	130.69423	126.28912	155.73050	141.04761	134.76411		
137	137.17441								
##	[288]	155.92963	105.66951	128.54066	151.04930	110.21409	170.74749		
153.73794									
##	[295]	123.39288	142.48880	125.39549	162.46217	138.22824	108.05663		
145.94546									
## [302] 132.73302 132.67016									

In this last principal component, we observe that the variable "trtbps", which measures the pressure arterial At rest, it is the one that has the most positive weight. In contrast, the cholesterol is variable heavier on the negatives.

Cluster Analysis

In this section we are going to focus on cluster analysis, whose objective is to group the observations in our database into homogeneous groups that have common characteristics between them.

We are going to begin by grouping quantitative variables that do not measure a pain scale such as the "cp" variable.

```
## Warning in age$oldpeak = subset(heart_heart_csv, select = c("age",
"oldpeak")):
## Performing LHD coercion on a list

## Warning: package 'factoextra' was built under R version 4.1.3

## Loading required package: ggplot2

## Welcome! Want to learn more? See two factoextra-related books at
https://goo.gl/ve3WBa
```


When analyzing the graph generated by this function, it is crucial to identify the point at which an "elbow" is formed, since from that point the reduction in variability decreases. In this scenario, we can conclude that 3 groups could be an appropriate number to represent the underlying structure of this data set. After determining the appropriate number of groups, we implement the algorithm to group the data into each of those groups using R's kmeans() function. This function performs a random assignment of the initial centers, and the number of random assignments is specified by the nstart() parameter of the function

```
## K-means clustering with 3 clusters of sizes 130, 90, 83
##
## Cluster means:
            age oldpeak
##
## 1 54.80000 1.050769
   2 64.67778 1.392222
## 3 42.50602 0.639759
##
## Clustering vector:
##
      1
           2
                 3
                      4
                           5
                                 6
                                      7
                                           8
                                                9
                                                    10
                                                         11
                                                              12
                                                                  13
                                                                       14
                                                                            15
                                                                                 16
                                                                                      17
                                                                                           18
19
    20
      2
##
           3
                 3
                      1
                                      1
                                           3
                                                1
                                                     1
                                                          1
                                                               3
                                                                    1
                                                                         2
                                                                             1
                                                                                  1
                                                                                       1
                                                                                            2
                           1
                                 1
3
    2
##
    21
          22
               23
                    24
                         25
                              26
                                   27
                                         28
                                              29
                                                   30
                                                        31
                                                             32
                                                                  33
                                                                       34
                                                                            35
                                                                                 36
                                                                                      37
                                                                                           38
    40
39
      1
           3
                 3
                      2
                           3
                                 2
                                      1
                                           1
                                                2
                                                     1
                                                          3
                                                               2
                                                                    3
                                                                         1
                                                                             1
                                                                                  3
                                                                                       1
                                                                                            1
##
2
    2
    41
          42
                         45
                                   47
                                         48
                                              49
                                                   50
                                                        51
                                                             52
                                                                  53
##
               43
                    44
                              46
                                                                       54
                                                                            55
                                                                                 56
                                                                                      57
                                                                                           58
    60
59
      1
##
           3
                 3
                      1
                           3
                                 1
                                      3
                                           3
                                                1
                                                     1
                                                          1
                                                               2
                                                                    2
                                                                         3
                                                                             2
                                                                                  1
                                                                                       3
                                                                                            3
    1
3
          62
##
    61
               63
                         65
                              66
                                   67
                                         68
                                              69
                                                   70
                                                        71
                                                             72
                                                                  73
                                                                       74
                                                                            75
                                                                                 76
                                                                                      77
                                                                                           78
                    64
79
    80
      2
##
           1
                 1
                                 3
                                                3
                                                     2
                                                                    3
                                                                         1
                                                                             3
                                                                                  1
                                                                                       1
                                                                                            1
                      3
                           1
                                      1
                                           3
                                                          1
                                                               1
    1
1
```

```
##
  81
       82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
                                                                     98
99 100
                    3
                       2
                             2
                               3
                                    1
                                        1
                                           3
                                                1
                                                  1
                                                               1
##
   3
        3
             2
               1
                                                       1
                                                          3
                                                                   2
                                                                      1
   1
3
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120
                                 3
                             2
                                            2
##
   3
        1
            2 3
                    1
                         2
                                     1
                                         1
                                                1
                                                    2
                                                       3
                                                           1
                                                               3
                                                                  3
                                                                      1
3
   3
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
139 140
                             3
                                 2
                                         2
##
   2
            3
               1
                    3
                         3
                                     1
                                            1
                                                1
                                                    3
                                                       3
                                                           3
                                                               1
                                                                   2
                                                                      2
        1
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
159 160
##
   1
        3 3
               2
                    2
                       2
                           3
                                 2
                                     3
                                        3
                                           2
                                                2
                                                  2
                                                       2
                                                           3
                                                               1
                                                                      3
   1
1
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
179 180
##
   1
           3 3
                    3
                         2
                             2
                                 2
                                     2
                                         1
                                            1
                                                3
                                                    1
                                                       1
                                                           2
                                                               3
                                                                   2
                                                                      2
        1
3
   1
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
199 200
                             2
                                        3
##
  1
           2
               1
                    1
                       3
                                 1
                                     1
                                            1
                                                1
                                                    1
                                                       2
                                                           2
                                                               1
                                                                   3
                                                                      2
        2
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
219 220
##
   3
        2
            1
               2
                    2
                         1
                             1
                                 2
                                     1
                                        1
                                           1
                                                2
                                                   3
                                                       2
                                                           1
                                                               3
                                                                   2
                                                                      2
2
   3
## 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
239 240
   2
                                 3
##
        1
            2
               1
                    1
                         2
                             2
                                     1
                                         2
                                            3
                                                1
                                                    1
                                                       2
                                                           2
                                                               1
                                                                  1
                                                                      2
2
   3
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
```

```
259 260
##
     2
         1
              2
                      1
                         3
                               1
                                    2
                                        1
                                            2
                                                1
                                                     3
                                                         2
                                                             2
                                                                             1
2
   3
## 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
279 280
##
     2
         1
              1
                  2
                       1
                           2
                               1
                                    1
                                        1
                                            1
                                                3
                                                     2
                                                         2
                                                             1
                                                                3
                                                                     1
                                                                         1
                                                                             1
    2
1
## 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
299 300
##
     3
         1
              1
                  3
                       2
                           3
                               1
                                    1
                                        1
                                            1
                                                2
                                                     1
                                                         1
                                                             2
                                                                 3
                                                                     2
                                                                         2
                                                                             1
    3
## 301 302 303
##
     2
         1
            1
##
## Within cluster sum of squares by cluster:
## [1] 1353.325 1350.780 1319.746
## (between_SS / total_SS = 84.1 %)
##
## Available components:
##
## [1] "cluster"
                            "centers"
                                                "totss"
                                                                    "withinss"
"tot.withinss"
## [6] "betweenss"
                                                    "ifault"
                      "size"
                                     "iter"
```

After data clustering has been performed, it may be relevant, for future research, to add a column in the data set that identifies which cluster each experimental unit has been assigned to.

```
## Warning: package 'dplyr' was built under R version 4.1.3
##
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
## filter, layers
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
     age oldpeak cluster
##
## 1
      63
             2.3
                        2
## 2
      37
             3.5
                        3
      41
             1.4
                        3
## 3
      56
             0.8
                        1
## 4
             0.6
                        1
      57
                        1
## 6
      57
             0.4
```

Next, we will plot the groups on a graph to visualize the assignment of each country to its respective group.

Heart Attack

What we've done is grouped people by age and exercise-induced ST depression relative to rest. In the blue zone of the cluster plot are the younger people, in the red zone are the people with an intermediate age, between 50 and 60 years old. Finally, the green area represents the data of the elderly.

Comparison of Means of Two Populations

In this apart, we are going to study the relationship between a quantitative and a qualitative variable in order to analyze the database more deeply.

Are there significant differences between a person's sex and the likelihood of heart disease?

Our variable under study will be the probability of heart disease (output), while sex will be the factor with two levels of study: Female and Male. For this, It is necessary to check that the variable intended as a factor is of class "factor".

```
## [1] "character"
```

When we verify that class is not a factor, we must change it.

```
## [1] "factor"
```

Next, we will analyze the data with the summary command to study the sample size of the variable in each population:

```
##
        sex
                      output
##
   Female: 96
                 Min.
                         :0.0000
## Male:207 1st Qu.:0.0000
##
                 Median :1.0000
##
                         :0.5446
                 Mean
## 3rd Q.:1.0000
##
                        :1.0000
                 Max.
```

As we can see, the sample size for men is 207, while that for women is 96. In both cases the sample size is very large, so it is not necessary to analyze normality.

Before addressing the resolution of the hypothesis tests, we can carry out a descriptive analysis examining the sample means of the variable under study for each level of the factor. Additionally, we can visualize this data using a tiered box plot.

```
## Warning: package 'car' was built under R version 4.1.3
```

```
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.1.3
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## Female Male
## 0.7500000 0.4492754
```


In view of the box plot and the numerical values of the means, it seems that there is a notable difference in the probability of having heart disease between different sexes. To confirm this we must solve the t-Student test after analysis of equality of variances.

Homoscedasticity or Equality of Variances

To study whether there is equality of variances in both populations, we apply Levene's test with the intention of solving the following test:

$$\{H_0: \sigma_1 = \sigma_2 H_1: \sigma_1 \neq \sigma_2\}$$

```
## Levene's Test for Homogeneity of Variance (center = "mean")

## Df F value Pr(>F)

## group 1 56.409 6.74e-13 ***

## 301

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Once the Levene test has been carried out and after obtaining a p-value less than 2.2e-16 and less than 0.05, we reject H0 and, therefore, there is no equality of variances in both populations. Now we will perform the Student t test to resolve the equality of means test.

$$\{H_0\colon \, \mu_1 = \mu_2 \, H_1 \colon \, \mu_1 \neq \, \mu_2$$

```
##
## Welch Two Sample t-test
##
## data: output by sex
## t = 5.3372, df = 209.95, p-value = 2.44e-07
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
## 0.1896497 0.4117996
## sample estimates:
## mean in group Female mean in group Male
## 0.7500000 0.4492754
```

Heart Attack

After performing t-test We obtain a p-value less than 2.2e-16, being less than 0.05, so we reject H0 and also the equality of means, stating that there are significant differences between the probability of having heart disease in different sexes.

Conclusion

Once the study of the Heart Attack data is completed, we can say that older people have a greater risk of developing cardiovascular diseases. On the other hand, we have seen that there is a significant difference between men and women when it comes to suffering a heart attack. This may be because women may experience different heart attack symptoms than men, and these symptoms may be less recognized or misattributed to other health conditions. Women may have more subtle or atypical symptoms, such as fatigue, shortness of breath, nausea, or back pain, instead of typical chest pain. These differences in symptoms and risk perception can sometimes lead to underdiagnosis and, consequently, later treatment in women.

Finally, in the main components, especially in the second of them, it is observed that, in general terms, when blood pressure decreases, the body responds by increasing heart rate to counteract the reduction in blood flow.