Math 170E: Winter 2023

Lecture 2, Wed 11th Jan

Properties of probability spaces

^

Last time:

We reviewed some concepts in set theory:

- union ∪
- intersection ∩
- complement $\Omega \setminus A$, A'
- De Morgan's laws

Today:

Today, we'll begin discussing **probability**:

- Definition of a probability space
- Properties of a probability measure
- How to compute probabilities using the inclusion-exclusion principle

Definition 1.1: A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- Ω is a nonempty set called the state space, \longrightarrow finite or in finite.
- \mathcal{F} is a collection of subsets of Ω (note: $\emptyset, \Omega \in \mathcal{F}$)
 - ullet An element $A\in \mathcal{F}$ is called an event and $A\subseteq \Omega$
 - (In this course, $\mathcal{F} = \{\text{all subsets of } \Omega\}$)
- A function $\mathbb{P}: \mathcal{F} \mapsto [0,1]$ is called a probability measure if it satisfies:
 - 1. $\mathbb{P}(A) \geq 0$ for any $A \in \mathcal{F}$
 - 2. $\mathbb{P}(\Omega) = 1$

3. (Countable additivity) If $\{A_j\}_{j=1}^k$ are events, such that $A_i \cap A_j = \emptyset$ for $i \neq j$ (mutually exclusive), then

$$\mathbb{P}igg(igcup_{j=1}^k A_jigg) = \sum_{j=1}^k \mathbb{P}(A_j),$$

and (when " $k = +\infty$ "),

$$\mathbb{P}igg(igcup_{j=1}^{\infty}A_jigg)=\sum_{j=1}^{\infty}\mathbb{P}(A_j),$$

Comments

$$A_{j} \cap A_{t} = \emptyset$$
if $j \neq i$.

Sevent:
$$A = \bigcup_{j=1}^{\infty} A_j$$

$$\mathbb{P}(A) = \sum_{j=1}^{\infty} \mathbb{P}(A_j)$$

Example 1.1: You flip a fair coin twice. What is the probability that you see at least one head? Probability of HEADS Or TAILS equal. Enumerate HH, HT, TH, IX & 4 total all the outcomes: Enumerate all the outeres at least 1H.

3 possible outeres at least 1H.

(5) P(at least 1H) = 3/4, SP(A) = $\frac{|A|}{|S2|}$ = #of Consonut a probability space: 5 (I, F, IP), elements $T = \text{set of all subsets of } \Omega = \{f, \{HH\}, \{HT\}, \{HT\}, \{HH\}, \{H$ S2= {HH, HT, TH, TT }. Define $P(A) = \frac{|A|}{|Q|} = \frac{|A|}{4}$ for $A \in F$.

Check: {P Satisfies preparies (1), (2), (3) | 5 | 7 | -1. [A(UA2) = [A() + [A2] .-Cdisjoniti WANT: P(at(east 1H)=P(A) uhere A is theorems we gut at least It P(A)= P(SHH, HT, THS) $\{HH,HT\}$ $U\{TH\}$ = $I\{HH,HT,TH\}$ = 3/4Countable additivity A=A,UA2UA3 = { HH} & U { HT & U{ TTH } $P(A_1) + P(A_2) + P(A_3)$ $= \frac{|A_0|}{4} + \frac{|A_3|}{4} = \frac{3}{4}.$ mutually exclusive.

Properties of \mathbb{P} :

Proposition 1.2: $\mathbb{P}(\emptyset) = 0$

Proof: Since SZ = SZU4, SZN4 = 4The sets SZ & ¢ are murially exclusive ($SZ, ¢ \in F$) Soly countable additivity:

$$\frac{3}{2}$$
 $P(22) + P(4)$

$$\Rightarrow |P(\phi) = 0.$$

Proposition 1.3: If A is an event, then A' is an event and $\mathbb{P}(A') = 1 - \mathbb{P}(A)$

Proof:

Weante SZ=AUA, ANA=¢ So A \$A are mutually exclusive.

So
$$\mathbb{P}(\mathfrak{I}) = \mathbb{P}(AUA') = \mathbb{P}(A) + \mathbb{P}(A')$$

$$C_{3} (P(A^{1}) = 1 - P(A).$$

Example 2: I flip two fair coins. What is the probability of getting no heads?

Let
$$A = \{arleast one HEAD\} = \{HH, HT, TH\}$$

 $B = \{no HEADS\} = \{TT\} \longrightarrow P(B) = \frac{B}{4} = \frac{14}{4}$

$$G = B$$
, $G = P(B) = 1 - P(A)$
= $1 - \frac{3}{4} = \frac{1}{4}$.

$$G(P(A) = 1 - P(B) = 1 - 14 = 34$$

Proposition 1.4: If $A \subseteq B$, then $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$

(P(B)A) = (P(B)-1P(A).

Corollary 1.5: If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$ \longrightarrow $\mathbb{P}(S)$ increasing $\mathbb{P}(B)$

Proof: P(B) = P(B|A) + P(A)> O + P(A) = P(A)

If we put $B=SL_1 \Rightarrow P(A) \neq 1$ for all events $A \in \mathcal{F}$.

• Cor. 1.5 implies $\mathbb{P}(A) \leq \mathbb{P}(\Omega) = 1$

 Λ : if you calculate a probability and it's > 1, it's wrong! (also if < 0)

Example 3: I roll a fair 20 sided die. Which of the following is true?

$$P(\text{rolled a} \# \ge 5) \le P(\text{rolled a} \# \ge 11)$$
 $P(\text{rolled a} \# \ge 5) \ge P(\text{rolled a} \# \ge 11)$

$$A = \{1, 2, 3, ---, 20\}.$$

$$A = \{\text{rolled } \ge 5\} = \{5, 6, ---, 20\}.$$

$$B = \{11, 12, ---, 20\}.$$

Example 3 (cont.): I now roll a weighted 20 sided die. Which of the following is true?

$$\mathbb{P}(\text{rolled a} \# \geq 5) \leq \mathbb{P}(\text{rolled a} \# \geq 11)$$

$$\mathbb{P}(\text{rolled a} \# \geq 5) \geq \mathbb{P}(\text{rolled a} \# \geq 11) \qquad \qquad \mathbb{R} \cup \mathbb{P}$$

$$\mathbb{P}(\mathbb{A}) = \sum_{j=5} \mathbb{P}(\mathbb{A}) \qquad \mathbb{P}(\mathbb{A}) = \sum_{j=1} \mathbb{P}(\mathbb{A})$$

Theorem 1.6: (The inclusion-exclusion principle) For any events A and B,

Proof:
$$AUB = P(A) + P(B) - P(A \cap B)$$

Proof: $AUB = [A \setminus (A \cap B)] \cup [B \setminus (A \cap B)] \cup [A \cap B]$
Proof: $AUB = [A \setminus (A \cap B)] \cup [B \setminus (A \cap B)] \cup [A \cap B]$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(A \cap B)$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(B \setminus (A \cap B))$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(B \setminus (A \cap B))$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(B \setminus (A \cap B))$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(B \setminus (A \cap B))$
 $P(A \cup B) = P(A \setminus (A \cap B)) + P(B \setminus (A \cap B)) + P(B \setminus (A \cap B))$