PROGRAMACIÓN FUNCIONAL

Lambda Cálculo: Semántica Operacional

- Semántica por reducción
 - regla β
 - → regla η
- Propiedades de la reducción
 - Confluencia
 - Corrección respecto de la semántica algebraica

- Semántica por reducción
 - Contracción: relación binaria entre λ -términos
 - ◆ Usualmente denotada →
 - → Reducción: cero o más contracciones
 - ◆ Usualmente denotada →*
 - Secuencia de reducción
 - Secuencia de expresiones relacionadas por contracción
 - Secuencia maximal de reducción
 - Secuencia que no es subsecuencia inicial de ninguna otra
 - finita (termina en una expresión que no se puede contraer)
 - infinita (no termina)

- Semántica por reducción
 - ❖ El significado de una expresión M está dado por las secuencias maximales de reducción que comienzan en M
 - Si hay una secuencia maximal finita, el significado está dado por la última expresión de la misma
 - Si todas son infinitas, la expresión está indefinida
 - → ¿Qué debe cumplirse para que la semántica por reducción esté bien definida?
 - \bullet Si hay más de una secuencia maximal finita para un término M, todas deben tener la misma expresión final

- Semántica por reducción
 - **→** Forma normal:
 - expresión que no pertenece al dominio de la contracción
 - → la última expresión de cualquier secuencia maximal finita es necesariamente una forma normal
 - si una expresión está en forma normal, sólo puede aparecer al final de una secuencia maximal finita
 - **Redex** (reducible expression):
 - subexpresión que se puede reemplazar por otra
 - la contracción se define como el reemplazo de un redex
 - una expresión está en forma normal sii no contiene redexes

- Def: β-contracción
 - Sea \rightarrow_{β} la menor relación que satisface las siguientes reglas (M,N,P,x) se asumen universalmente cuantificadas):
 - $(\lambda x.M)N \rightarrow_{\beta} M\{x \leftarrow N\}$ (regla β)
 - si $M \rightarrow_{\beta} N$, entonces (clausura contextual) $MP \rightarrow_{\beta} NP, PM \rightarrow_{\beta} PN \text{ y } \lambda x. M \rightarrow_{\beta} \lambda x. N$
- Observaciones
 - ightharpoonup la β -contracción se define entre α -clases de equivalencia
 - no es una relación de equivalencia
 - en particular, no es simétrica
 - exactamente una aplicación es reemplazada por su resultado

- ◆ Nomenclatura
 - β-contracción
 - la relación \rightarrow_{β} define el significado de la aplicación
 - → β-redex: subexpresión reducible por la regla β
 - β -forma normal: expresión que no contiene β -redexes
 - β -reducción: la clausura reflexiva-transitiva de $\rightarrow_{\beta} (\rightarrow_{\beta}^*)$
 - si $M \rightarrow_{\beta} N$, entonces $M \rightarrow_{\beta}^{*} N$
 - $M \rightarrow_{\beta} M$
 - si $M \rightarrow_{\beta} N y N \rightarrow_{\beta} P$, entonces $M \rightarrow_{\beta} P$

◆ Ejemplos $(\lambda x.y)(\lambda z.z) \rightarrow_{\beta} y$ $(\lambda x.x)(\lambda z.z) \rightarrow_{\beta} \lambda z.z$ β-contracciones β-redexes $(\lambda x.xx)(\lambda z.z) \rightarrow_{\beta} (\lambda z.z)(\lambda z.z) \rightarrow_{\beta} (\lambda z.z)$ secuencias $\rightarrow (\lambda x.(\lambda y.yx)z)(zw) \rightarrow_{\beta} (\lambda y.y(zw))z \rightarrow_{\beta} z(zw)$ maximales de reducción β-forma normal

- Observaciones
 - $M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} ... \rightarrow_{\beta} M_n \text{ sii } M_1 \rightarrow_{\beta} M_n$
 - en particular, siempre se cumple que $M \rightarrow_{\beta} M$
 - Ejemplos: $(\lambda x.xx)(\lambda z.z) \rightarrow_{\beta}^{*} (\lambda z.z)(\lambda z.z)$

$$(\lambda x.(\lambda y.yx)z)(zw) \rightarrow_{\beta}^{*} z(zw)$$

$$(\lambda z.z) \rightarrow_{\beta}^{*} (\lambda z.z)$$

- $(\lambda z.z) \rightarrow_{\beta}^{*} (\lambda z.z)$ Si $M \rightarrow_{\beta}^{*} N$ y N está en forma normal (fn), entonces N es el significado de M
 - las fins sólo aparecen al final de secuencias maximales
 - \bullet en este caso se dice que N es 'la forma normal de M'

- ¿Está bien definida esta semántica?
- Para ver esto debemos responder las preguntas:
 - → ¿Todo término tiene una forma normal?
 - No. Hay expresiones que no tienen forma normal.
 - Ejemplo: $\Omega = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta}^{*} (\lambda x.xx)(\lambda x.xx)$
 - ◆ Si la fn de un término existe, ¿es única?
 - Sí. Lo demuestra el teorema de Church-Rosser.
 - ¿Coincide esta semántica con la algebraica?
 - Sí. Debemos demostrarlo.

→ Teorema de Church-Rosser (confluencia)

Si
$$M \rightarrow_{\beta} P$$
 y $M \rightarrow_{\beta} Q$, entonces
existe N tal que $P \rightarrow_{\beta} N$ y $Q \rightarrow_{\beta} N$

◆ Corolario (unicidad de las formas normales)

Si la forma normal de un término existe, es única.

<u>Dem:</u> supongamos que P y Q son fins de M (o sea, $M \rightarrow_{\beta} P$ y $M \rightarrow_{\beta} Q$). Por Church-Rosser, existe N tal que $P \rightarrow_{\beta} N$ y $Q \rightarrow_{\beta} N$. Pero como una fin sólo reduce a sí misma, entonces P y Q son iguales a N, y por ello son iguales entre sí.

- Equivalencia con la semántica algebraica
- **▶ Propiedad:** Si $M \rightarrow_{\beta} {}^*N$, entonces $M \approx_{\alpha\beta} N$
 - → <u>Dem</u>: sencilla, utilizando las definiciones
- → **Propiedad:** Si M≈_{αβ}N, entonces existe P tal que M→_β*P y N→_β*P
 - Dem: por inducción en la demostración de $\approx_{\alpha\beta}$
- * Corolario: cada β-clase contiene a lo sumo una forma normal (salvo renombre de variables)

- Se sigue un camino similar para agregar la propiedad de extensionalidad (η)
- Def: η-contracción
 - Sea \rightarrow_{η} la menor relación que satisface las siguientes reglas (M,N,P,x) se asumen universalmente cuantificadas):
 - si x no ocurre libre en M, (regla η) entonces $(\lambda x.Mx) \rightarrow_{\eta} M$
 - si $M \rightarrow_{\eta} N$, entonces (clausura contextual) $MP \rightarrow_{\eta} NP, PM \rightarrow_{\eta} PN \text{ y } \lambda x. M \rightarrow_{\eta} \lambda x. N$

- Esta semántica deja indefinidos a términos útiles
 - en particular aquellos que no tienen forma normal, pero que al ser aplicados reducen a una forma normal
 - Ej: $(\lambda f.f\Omega)$ y $((\lambda f.f\Omega)(\lambda z.(\lambda w.w)))$
- Para definir bien la semántica debemos
 - cambiar la noción de forma normal (a fn a la cabeza)
 - cambiar la noción de secuencia maximal de reducción
 - ◆ Entonces, el significado de un término es su fn a la cabeza, si esta existe
- Eso escapa al alcance de este curso

Resumen

- * Se definió una semántica operacional del λ-cálculo
- ❖ Se enunciaron algunas de propiedades de dicha semántica