University of Nevada – Reno Computer Science & Engineering Department

CS454/654 Reliability and Security of Computing Systems - Fall 2024

Lecture 16

Dr. Batyr Charyyev bcharyyev.com

CHAPTER

OTHER PUBLIC-KEY CRYPTOSYSTEMS

10.1 Diffie-Hellman Key Exchange

The Algorithm Key Exchange Protocols Man-in-the-Middle Attack

10.2 ElGamal Cryptographic System

10.3 Elliptic Curve Arithmetic

Abelian Groups Elliptic Curves over Real Numbers Elliptic Curves over \mathbb{Z}_p Elliptic Curves over $\mathbb{GF}(2^m)$

10.4 Elliptic Curve Cryptography

Analog of Diffie-Hellman Key Exchange Elliptic Curve Encryption/Decryption Security of Elliptic Curve Cryptography

10.5 Key Terms, Review Questions, and Problems

Diffie-Hellman Key Exchange

- First published public-key algorithm
- A number of commercial products employ this key exchange technique
- Purpose is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages
- The algorithm itself is limited to the exchange of secret values
- Its effectiveness depends on the difficulty of computing discrete logarithms

Figure 10.1 Diffie-Hellman Key Exchange

Figure 10.2 Man-in-the-Middle Attack

ElGamal Cryptography

Announced in 1984 by T. Elgamal

Public-key scheme based on discrete logarithms closely related to the Diffie-Hellman technique

Used in the digital signature standard (DSS) and the S/MIME e-mail standard

Global elements are a prime number *q* and *a* which is a primitive root of *q*

Security is based on the difficulty of computing discrete logarithms

Global Public Elements

q prime number

 α α < q and α a primitive root of q

Key Generation by Alice

Select private X_A

 $X_A \le q-1$

Calculate Y_A

 $Y_A = \alpha^{X_A} \mod q$

Public key

 $\{q, \alpha, Y_A\}$

Private key

 X_A

Encryption by Bob with Alice's Public Key

Plaintext:

 $M \le q$

Select random integer k

 $k \le q$

Calculate K

 $K = (Y_A)^k \bmod q$

Calculate C_1

 $C_1 = \alpha^k \mod q$

Calculate C_2

 $C_2 = KM \mod q$

Ciphertext:

 (C_1, C_2)

Decryption by Alice with Alice's Private Key

Ciphertext:

 (C_1, C_2)

Calculate K

 $K = (C_1)^{X_A} \mod q$

Plaintext:

 $M = (\mathsf{C}_2 \mathit{K}^{-1}) \bmod q$

Figure 10.3 The ElGamal Cryptosystem

Elliptic Curve Arithmetic

- Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA
 - The key length for secure RSA use has increased over recent years and this has put a heavier processing load on applications using RSA
- Elliptic curve cryptography (ECC) is showing up in standardization efforts including the IEEE P1363 Standard for Public-Key Cryptography
- Principal attraction of ECC is that it appears to offer equal security for a far smaller key size

Abelian Group

 A set of elements with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an element (a • b) in G, such that the following axioms are obeyed:

- (A1) Closure: If a and b belong to G, then a b is also in G
- (A2) Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G
- (A3) Identity element: There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G
- (A4) Inverse element: For each a in G there is an element a' in G such that $a \cdot a' = a' \cdot a = e$
- (A5) Commutative: $a \cdot b = b \cdot a$ for all a, b in G

Figure 10.4 Example of Elliptic Curves

Elliptic Curves Over Z

- Elliptic curve cryptography uses curves whose variables and coefficients are finite
- Two families of elliptic curves are used in cryptographic applications:

- Variables and coefficients all take on values in GF(2^m) and in calculations are performed over GF(2^m)
- Best for hardware applications

- Use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through p-1 and in which calculations are performed modulo p
- Best for software applications

Table 10.1

Points (other than 0) on the Elliptic Curve $E_{23}(1, 1)$

(0, 1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1, 7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9,7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4, 0)	(11, 3)	(18, 20)
(5, 4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)

Figure 10.5 The Elliptic Curve E $_{23}(1,1)$ $_{\odot}$ 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Elliptic Curves Over GF(2^m)

- Use a cubic equation in which the variables and coefficients all take on values in GF(2^m) for some number m
- Calculations are performed using the rules of arithmetic in GF(2^m)
- The form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for GF(2^m) than for Z_n
 - It is understood that the variables x and y and the coefficients a and b are elements of GF(2^m) and that calculations are performed in GF(2^m)

Table 10.2

Points (other than 0) on the Elliptic Curve $E_{5}^{4}(g^{4}, 1)$

물이 살아 있는 수의 이 걸 때 경기로 중요한 것이다.	(14일) [15] [15] (15] [15] [15] [15] [15] [15] [15] [15] [
(g^5, g^3)	(g^9, g^{13})
(g^5, g^{11})	(g^{10}, g)
(g^6, g^8)	(g^{10}, g^8)
(g^6, g^{14})	$(g^{12},0)$
(g^9, g^{10})	(g^{12}, g^{12})
	(g^5, g^{11}) (g^6, g^8) (g^6, g^{14})

Figure 10.6 The Elliptic Curve E₂₄(g⁴, 1)

Elliptic Curve Cryptography (ECC)

- Addition operation in ECC is the counterpart of modular multiplication in RSA
- Multiple addition is the counterpart of modular exponentiation

To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm

- Q=kP, where Q, P belong to a prime curve
- Is "easy" to compute Q given k and P
- But "hard" to find k given Q, and P
- Known as the elliptic curve logarithm problem

Global Public Elements

 $\mathbf{E}_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime

or an integer of the form 2^m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private n_A

 $n_A \le n$

Calculate public P_A

 $P_A = n_A \times G$

User B Key Generation

Select private n_B

 $n_R \le n$

Calculate public P_B

 $P_R = n_R \times G$

Calculation of Secret Key by User A

$$K = n_A \times P_B$$

Calculation of Secret Key by User B

$$K = n_B \times P_A$$

Figure 10.7 ECC Diffie-Hellman Key Exchange

Security of Elliptic Curve Cryptography

- Depends on the difficulty of the elliptic curve logarithm problem
- Fastest known technique is "Pollard rho method"
- Compared to factoring, can use much smaller key sizes than with RSA
- For equivalent key lengths computations are roughly equivalent
- Hence, for similar security ECC offers significant computational advantages

Table 10.3

Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis (NIST SP-800-57)

Symmetric key	Diffie-Hellman,	RSA	ECC
algorithms	Digital Signature	(size of <i>n</i> in bits)	(modulus size in
	Algorithm		bits)
80	L = 1024	1024	160–223
	N = 160		
112	L = 2048	2048	224–255
	N = 224		
128	L = 3072	3072	256–383
	N = 256		
192	L = 7680	7680	384–511
	N = 384		
256	<i>L</i> = 15,360	15,360	512+
	N = 512		

Note: L = size of public key, N = size of private key

#PublicKeyCryptography #Security #RSA

Summary

- Define
 Diffie-Hellman Key
 Exchange
- Understand the Man-in-the-middle attack
- Present an overview of the Elgamal cryptographic system

- Understand Elliptic curve arithmetic
- Present an overview of elliptic curve cryptography
- Present two techniques for generating pseudorandom numbers using an asymmetric cipher