Stochastic Differential Equations for Generative Modeling

Anton Bolychev

Moscow State University Faculty of Mechanics and Mathematics

May 2022

Table of Contents

- 1 GAN as Energy-Based Model
- Score-based Generative Modelling through SDE

GAN

$$\begin{split} L_D &= -\mathbb{E}_{x \sim p_{data}}[\log D(x)] - \mathbb{E}_{z \sim p_z}[\log (1 - D(G(z)))] \\ L_G &= -\mathbb{E}_{z \sim p_z}[\log D(G(z))] \end{split}$$

GAN as Energy Based Model

Assume that Discriminator is suboptimal, i.e. $D = D^*$

$$D(x) = \text{logit}(d(x)) = \frac{1}{1 + \exp(-d(x))} \approx \frac{p_d(x)}{p_d(x) + p_g(x)} = \frac{1}{1 + p_g(x)/p_d(x)}$$

Thus,

$$p_d^*(x) = p_g(x)e^{d(x)}/K = \exp(-(-\log p_g(x) - d(x)))/K$$

Energy Function. Boltzmann distribution

$$p(z) = \exp(-E(z))/K$$

Thus, assuming that x = G(z) one can obtain the following equation for Energy for GAN

$$E(z) = -\log p_0(z) - d(G(z))$$

Langevin Dynamics

$$z_{i+1} = z_i - \epsilon/2\nabla_z E(z) + \sqrt{\epsilon}n, n \sim N(0, I)$$
 (1)

Input: N \in N $_+$, $\epsilon > 0$ Output: Latent code $z_N \sim p_t(z)$ Sample $z_0 \sim p_0(z)$ for i=1 to N do $n_i \sim N(0,1)$ $z_{i+1} = z_i - \epsilon/2 \nabla_z E(z_i) + \sqrt{\epsilon} n_i$ end for

Frechet Inception Distance

FID can be calculated according to the following formula

$$d_F(\mu,\nu) \coloneqq \left(\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} \|x - y\|^2 \, d\gamma(x,y)\right)^{1/2}$$

Results

If one apply Langevin Dynamics for pretrained DCGAN on CIFAR10 we observe the following picture $\frac{1}{2}$

Table of Contents

- GAN as Energy-Based Model
- 2 Score-based Generative Modelling through SDE

Score-based Generative Modelling through SDE

The core idea of the paper can be described via the following picture

Score-based Generative Modelling through SDE

The main problem is to fit the neural network $s_{\theta}(\mathbf{x}(t),t)$ such that

$$\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$$

Loss function

$$\begin{aligned} \boldsymbol{\theta}^* &= \operatorname*{arg\,min}_{\boldsymbol{\theta}} \\ &\mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{\mathbf{x}(0)} \mathbb{E}_{\mathbf{x}(t)|\mathbf{x}(0)} \left[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) - \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) \right\|_2^2 \right] \right\}. \end{aligned}$$

where

$$\lambda \propto 1/\mathbb{E}\left[\left\|\nabla_{\mathbf{x}(t)}\log p_{0t}(\mathbf{x}(t)\mid\mathbf{x}(0))\right\|_{2}^{2}\right]$$

2 approaches

In $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ functions \mathbf{f} and g can be arbitrary, so we will consider 2 approaches

- Variance Exploding Approach
- Variance Preserving Approach

Variance Exploding

SDE

$$d\mathbf{x} = \sqrt{\frac{d\left[\sigma^2(t)\right]}{dt}} d\mathbf{w}$$

Forward Sampling

$$\mathbf{x}_i = \mathbf{x}_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} \mathbf{z}_{i-1}$$

Variance Preserving

SDE

$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}dt + \sqrt{\beta(t)}d\mathbf{w}$$

Forward Sampling

$$\mathbf{x}_i = \sqrt{1 - \beta_i} \mathbf{x}_{i-1} + \sqrt{\beta_i} \mathbf{z}_{i-1}$$

Ancestral Sampling for Variance Preserving

$$\mathbf{x}_{i-1} = \frac{1}{\sqrt{1-\beta_i}} \left(\mathbf{x}_i + \beta_i \mathbf{s}_{\boldsymbol{\theta}^*} \left(\mathbf{x}_i, i \right) \right) + \sqrt{\beta_i} \mathbf{z}_i, \quad i = N, N-1, \dots, 1$$

Reverse Diffusion

Given a forward SDE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + \mathbf{G}(t)d\mathbf{w}$$

and suppose the following iteration rule is a discretization of it:

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{f}_i(\mathbf{x}_i) + \mathbf{G}_i \mathbf{z}_i, \quad i = 0, 1, \dots, N-1$$

Thus, one can propose to discretize the reverse-time SDE

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \mathbf{G}(t)\mathbf{G}(t)^{\mathsf{T}} \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt + \mathbf{G}(t) d\overline{\mathbf{w}}$$

which gives the following iteration rule for $i \in \{0,1,\cdots,N-1\}$:

$$\mathbf{x}_{i} = \mathbf{x}_{i+1} - \mathbf{f}_{i+1} (\mathbf{x}_{i+1}) + \mathbf{G}_{i+1} \mathbf{G}_{i+1}^{\mathsf{T}} \mathbf{s}_{\boldsymbol{\theta}^{*}} (\mathbf{x}_{i+1}, i+1) + \mathbf{G}_{i+1} \mathbf{z}_{i+1},$$

where our trained score-based model $\mathbf{s}_{\theta} * (\mathbf{x}_i, i)$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Predictor-Corrector Sampling

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)			
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\text{max}}^2 \mathbf{I})$	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$			
2: $\mathbf{for} \ i = N - 1 \ \mathbf{to} \ 0 \ \mathbf{do}$	2: for $i = N - 1$ to 0 do			
3: $\mathbf{x}'_i \leftarrow \mathbf{x}_{i+1} + (\sigma^2_{i+1} - \sigma^2_i) \mathbf{s}_{\boldsymbol{\theta} *} (\mathbf{x}_{i+1}, \sigma_{i+1})$	3: $\mathbf{x}'_i \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta*}(\mathbf{x}_{i+1}, i+1)$			
4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$	4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$			
5: $\mathbf{x}_i \leftarrow \mathbf{x}'_i + \sqrt{\sigma^2_{i+1} - \sigma^2_i} \mathbf{z}$	5: $\mathbf{x}_i \leftarrow \mathbf{x}'_i + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor			
6: $\mathbf{for} \ j = 1 \mathbf{to} \ M \mathbf{do}$ 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta *}(\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$ 9: $\mathbf{return} \ \mathbf{x}_0$	6: for $j=1$ to M do Corrector 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta : \theta} (\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$ 9: return \mathbf{x}_0			

Results. FID on CIFAR10. VE

FID	P1000	P2000	PC1000
ancestral sampling	31.76	31.7	30.57
reverse diffusion	31.98	31.43	30.96

Results. FID on CIFAR10. VP

FID	P1000	P2000	PC1000
ancestral sampling	30.55	30.53	29.74
reverse diffusion	31.01	30.32	30.01