

planetmath.org

Math for the people, by the people.

star refinement

Canonical name StarRefinement
Date of creation 2013-03-22 16:44:13
Last modified on 2013-03-22 16:44:13

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 54A99

Defines star

Defines star refine

Defines barycentric refinement

Let X be a set and $\mathscr{C} = \{C_i \mid i \in I\}$ be a cover of X (we assume C_i and X are all subsets of some universe). Let $A \subseteq X$. The *star* of A (with respect to the cover \mathscr{C}) is defined as

$$\star(A,\mathscr{C}) := \bigcup \{C_i \in \mathscr{C} \mid C_i \cap A \neq \varnothing\}.$$

When A is a singleton, we write $\star(x,\mathscr{C}) = \star(\{x\},\mathscr{C})$.

Properties of \star

- 1. $A \subseteq \star(A, \mathscr{C})$.
- 2. If $A \subseteq B$, then $\star(A, \mathscr{C}) \subseteq \star(B, \mathscr{C})$.
- 3. For any cover \mathscr{C} of X, the sets $\mathscr{C}^* := \{ \star(C_i, \mathscr{C}) \mid C_i \in \mathscr{C} \}$ and $\mathscr{C}^b := \{ \star(x, \mathscr{C}) \mid x \in X \}$ are both covers of X.
- 4. $\mathscr{C} \preceq \mathscr{C}^b \preceq \mathscr{C}^\star$ (\preceq denotes cover refinement).

Definitions. Let \mathscr{C}, \mathscr{D} be two covers of X. If $\mathscr{C}^* \preceq \mathscr{D}$, then we say that \mathscr{C} is a *star refinement* of \mathscr{D} , denoted by $\mathscr{C} \preceq^* \mathscr{D}$. If $\mathscr{C}^b \preceq \mathscr{D}$, then we say that \mathscr{C} is a *barycentric refinement* of \mathscr{D} , denoted by $\mathscr{C} \preceq^b \mathscr{D}$.

Remark. By property 4 above, it is easy to see that $\mathscr{C} \preceq^* \mathscr{D} \Rightarrow \mathscr{C} \preceq^b \mathscr{D} \Rightarrow \mathscr{C} \preceq \mathscr{D}$.

References

[1] S. Willard, *General Topology*, Addison-Wesley, Publishing Company, 1970.