用Python写一款App Inventor 网络微数据库服务器

李伟 浙江省杭州市基础教育研究室

涉及学科:信息技术、教学

App Inventor是目前广受中 小学生喜爱的图形化移动应用开 发软件,通过这款软件,用户可以 快速地开发简易的移动应用程序。 App Inventor的数据存储采用了 多种方式,包括文本文件、TinyDB、 TinyWebDB等,其中TinyWebDB 属于网络微数据库,用户使用此数 据库,可实现远程数据存储,从而 实现开发网络版应用程序。

由干网络微数据库需要服务 器的支持,一般的用户只能借助他 人提供的远程服务器才可以使用 这一功能,很不自由。在教学中,还 常常因为远程服务器的连接限制 而导致测试失败。因而,本文介绍 一种基于Python的Flask框架开发 App Inventor网络微数据库服务 器的方法,让任何计算机都能"摇 身"变为网络微数据库服务器,以 满足个人开发和日常教学的需求。

● 开发网络微数据库服务器 的技术分析

1.网络微数据库存储机制 App Inventor开发的应用 程序,是通过TinvWebDB可以完 成读取数据与存储数据的功能, 其相关的数据结构比较简洁,每 条记录只包含了tag(键)和value (值)两项。

在利用网络微数据库进行"读 取数据"时,其实质是发送一条网 页form表单请求,类似于"/get? tag=tagvalue"这样的一条请求语 句,传送一个tag值,服务器捕获这 个请求后, 查询数据库中是否存在 这个tagvalue值,假若存在,则将此 值返回给APP。

而当利用网络微数据库进 行"保存数据"时,其实质同样是 发送一条网页form表单请求。类 似于"/get? stored=storedvalue" 这样的一条请求语句,传送一个 stored值,此stored值实际上是 一个ison格式的数组字符串,即 ["STORED", "tag","value"],以此 告知服务器程序,需要保存的数据

网络微数据库服务器数据库结构

数据库表名称	字段名称	数据类型设计	作用
mylink	dbid	integer	主健,自动编号
	webtag	string	记录tag值
	webvalue	string	记录value值

为:tag="tag",value="value"。服 务器捕获这个get请求后,将此数据 作为一条记录存储进数据库。

2.网络微数据库服务器开发 技术

由网络微数据库存储机制可 知,服务器程序应提供两项服务, 即数据读取与数据存储功能,其实 质是一个典型的Web应用服务平 台。因此,只需搭建一个能提供数 据读取与数据存储功能的Web应 用服务平台,并且在格式上进行规 范,即可替代原有的网络微数据库 服务器。

3.开发环境选择

程序主体采用目前广受用户喜

爱的Python语 言的Flask网页 框架进行编写, 数据库可以采用 SQLite3模块进 行构建。由于数 据传输中需要进

行ison格式的转

导入json模块。 4.主要功能

模块设计

换,因此还需要

网络微数 据库服务器由数 据库、服务器端 等模块构成。

其中,数据 库用于数据的存 储,服务器端部 分属于反馈系统 的主逻辑,承载 着响应APP请 求,读取相应数 据返回APP、捕 获APP发送的 数据并存储到 数据库。

整体架构如上页图1所示。

● 网络微数据库服务器的 开发

1.数据库设计

数据库主要用于APP数据的存 储。对于最基本的服务,可以设计一 个数据表,并在数据表中设计两个 字段,分别为webtag与webvalue。 本系统采用Pvthon语言的SQLite3 模块构建与操作数据库,其数据库 结构设计如上页表所示。建立数据 库的核心代码如图2所示。

2. 网络微数据库服务器程序 编写

服务器端程序采用Flask网 页框架编写,主要包括以下两个 主函数。

getvalue()函数:用于接收APP 端读取数据请求,并返回ison格式 的目标数据。函数设计如图3所示。

storeavalue()函数:用于接收 APP端存储数据请求,并将接收到 的数据存储于数据库中。函数设计 如图4所示。

● 网络微数据库服务器的部 署与应用

1.启动服务器主程序

网络微数据库服务器编写完 成之后,即可在服务器计算机中以 命令行的方式运行主程序: python tinywebdb.py。假设服务器地址为 "192.168.31.132;8080" a

2.编写APP, 并设置网络微数 据库服务器地址

设计示例APP的界面如下页

import salite3 DATABASE = 'data/data.db' def setup db(): db = salite3.connect(DATABASE) cur = db.cursor() cur.execute("CREATE TABLE IF NOT EXISTS mvlink(dbid INTEGER PRIMARY KEY autoincrement, webtag text, webvalue text)") db.commit()

图2

```
def getvalue():
   ddtag = request.form.get('tag') #获取 APP 端数据请求中的 tag 值
   db = sqlite3.connect(DATABASE)
   cur = db.cursor()
   db.commit()
   cur.execute("SELECT * FROM mylink where webtag = '%s'" % ddtag)
   d1 = cur.fetchone()
                   #判断数据库是否存在所请求的 tag 值
       d2 = d1[2]
                   #如数据库中 tag 的值存在,则返回相应的 value 值
   else
       d2='nothing!
   cur.close()
   db.close()
   return1 = ["VALUE", ddtag, d2]
   return2 = json.dumps(return1) #将返回值转换成 json 格式
    return return2
```

图3

```
def storeavalue()
    ddtag = request.form.get('tag')
                                     #获取 APP 端数据请求中的 tag 值
   ddvalue = request.form.get('value') #获取 APP 端数据请求中的 value 值
   db = salite3.connect(DATABASE)
   cur = db.cursor()
   d2value = cur.execute("select * from mylink where webtag='%s'" % ddtag)
   d2v = d2value fetchone()
   if d2v: #如数据库中存在 tag 值,则更新其 value 值,否则新建一条记录,存储
tag 与 value
       cur.execute("update mylink set webvalue="%s" where webtag="%s" " %
( ddvalue,ddtag))
       db.commit()
       cur.execute("INSERT INTO mylink(webtag,webvalue) VALUES('%s','%s')" % (ddtag.
ddvalue))
        db.commit()
   cur.close()
    db.close()
    return1 = ["STORED", ddtag, ddvalue]
    return2 = json.dumps(return1)
    return return2
```

图4

信息技术试验

编者按: 在过去的2021年,身处科技圈的我们,总会多多少少听到"元宇宙"这个词,它是一个庞大的商业计划,但也是一个简单的哲学命题: 我们是否可以复制或者超越真实的世界。回望计算机发展史,英国计算机科学家图灵做了一个重要的工作,就是提出了一个假设,相信存在一台抽象的通用计算机可以模拟任何物理过程,这个假设被多次印证之后,被称作是图灵原理。当我们将物理过程推广到生命过程或者智能行为的时候,狭义的图灵原理就被推广到广义的层面,我们可以称其为广义的图灵原理。

本年度的信息技术实验栏目的选题,仍然关注信息技术实验教学、人工智能、基于数据素养的跨学科学习等之前一直受推动和关注的领域,但是我们希望用"真实数据—模拟—仿真数据"这样一个相对统一的过程,最后通过对"真实数据"和"仿真数据"判定的不可区分性来验证图灵原理在狭义和广义层面上的正确性。这可以看作是一种计算机科学的"溯源",也可以作为信息科技核心素养的另一种表达方式。

构建基于模拟的世界观: 图灵原理回望

吴俊杰 北京师范大学

相对于图灵测试,很多人对图灵原理更加陌生。图灵原理来自"通用图灵机",认为存在一种通用

的机器,可以运行任意的指令,这 些指令可以计算物理问题。二战期 间,在处理计算导弹弹道和破译

密码这两类不同问题的时候,都可以用同一个计算机来完成,也就是 说现代计算机就是一种"通用图灵

图5所示,网络微数据库服务器地址设置如图6所示。

本示例APP只实现两个功能,即将文本框中输入的tag值与value值存入网络微数据库中;向服务器发送读取数据请求,并将相应tag值的返回值加以显示。其逻辑设计如图7所示。

3.调试

在APP编写完毕后,使用AI伴侣进行测试,结果如图8所示。e

图5

图6

图7

作者简介: 李伟(1970.3—), 高级教师, 硕士, 主要研究中小学信息技术教育。