מתמטיקה בדידה - תרגיל בית 1

מידע כללי

מגיש: שחר פרץ

ת.ז.: 334558962

תאריך הגשה: 15.11.2023

1. הצרנת תבניות

- :א. n הוא מספר ראשוני
- : הצרנה באמצעות i

$$\forall a \in \mathbb{N}.(a \mid n) \to (a = 1 \lor a = n)$$

ii. הצרנה בלי הסימן:

$$\forall a \in \mathbb{N}. \left(\frac{n}{a} \in \mathbb{Z}\right) \to (a = 1 \lor a = n)$$

ב. קבוצת המספרים A היא מחזורית:

$$\exists t \in R. (t \ge 0) \land (\forall a \in A. \forall b \in \mathbb{Z}. a + t \cdot b \in A)$$

z הוא העיגול כלפי מטה של המספר הממשיz .

$$(z \in \mathbb{Z}) \land (r \in \mathbb{R}) \land (\exists a \in \mathbb{R}. (0 \le a < 1) \rightarrow (r - a = z))$$

2. הוכחות באינדוקציה

(א) סעיף

... צ.ל.:

$$S_n := \sum_{k=1}^{n} (2k - 1)$$
$$\forall n \in \mathbb{N}. S_n = n^2$$

- נוכיח באינדוקציה:
- :(n=1) בסיס האידוקציה \circ

$$2 \cdot 1 - 1 = 1^2$$

$$S_{n+1}=(n+1)^2$$
 צעד האינדוקציה: נניח $S_n=n^2$, ונוכיח עבור א $S_{n+1}=S_n+2(n+1)-1$
$$=n^2+2n+1$$

$$=(n+1)^2$$

מש"ל ■

(ב) סעיף

:.ל.:

$$S_n := \sum_{i=0}^n i^2$$

$$\forall n \in \mathbb{N}. S_n = \frac{n(n+1)(2n+1)}{6}$$

: נוכיח באינדוקציה

:(n = 0) בסיס \circ

$$0^2=rac{0(0+1)(2\cdot 0+1)}{6}=0$$

$$\mathrm{S}_{n+1}=rac{(n+1)(n+2)(2n+3)}{6}$$
 ונוכיח $S_n=rac{n(n+1)(2n+1)}{6}$ יצעד: נניח $S_{n+1}=S_n+(n+1)^2$
$$=rac{n(n+1)(2n+1)}{6}+n^2+2n+1$$

$$=rac{(n+1)(2n+1)\cdot n+6(n+1)^2}{6}$$

$$=rac{(n+1)(2n^2+n+6n+6)}{6}$$

$$=rac{(n+1)(n+2)(2n+3)}{6}$$

■ מש"ל •

(ג) סעיף

. צ.ל.:

$$S_n := \sum_{k=0=1}^n \frac{1}{k(k+1)}$$

$$\forall n \in \mathbb{N}. n \ge 1 \to S_n = 1 - \frac{1}{n+1}$$

:נוכיח באינדוקציה

∘ בסיס:

$$\frac{1}{1(1+1)} = 1 - \frac{1}{2}$$

$$:S_{n+1}=1-rac{1}{n+2}$$
 ונוכיח א $S_n=1-rac{1}{n+1}$ פעד: נניח אי

$$S_{n+1} = S_n + \frac{1}{(n+1)(n+2)}$$

$$= 1 - \frac{1}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$= 1 + \frac{-n-2+1}{(n+1)(n+2)}$$

$$= 1 - \frac{1}{n+2}$$

ש"ל ■

(ד) סעיף

צ.ל.:

$$S_n := \sum_{i=1}^n \frac{1}{n+i}$$

$$\forall n \in \mathbb{N}. n \ge 3 \to \left(S_n > \frac{3}{5}\right)$$

- נוכיח באינדוקציה:
 - :סיס: ∘

$$\frac{1}{3+1} + \frac{1}{3+2} + \frac{1}{3+3} = \frac{37}{60} > \frac{3}{5}$$

- n+1 צעד: נניח שזה נכון על n, ונוכיח עבור \circ
- במילים אחרות, הנחת האינדוקציה הינה:

$$a := \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{3}{5}$$

וצ.ל.: ■

$$b := \frac{1}{n+2} + \dots + \frac{1}{2n+1} + \frac{1}{2n+2} > \frac{3}{5}$$

:נגדיר ■

$$r_1 := \frac{1}{n+1} \cdot 0.5 = \frac{1}{2n+2}$$

;וכמו כן

$$(r_2 := \frac{1}{2n+1} > \frac{1}{2n+2} = r_1)$$

 $\rightarrow (r_2 > r_1)$
 $\rightarrow (r_2 + r_1 > 2r_1)$

:נסכם

$$b = a - 2r_1 + r_1 + r_2$$

ב כלומר: ■

$$b > a > \frac{3}{5}$$

- משמע שצעד האינדוקציה הוכח, **כדרוש**.
 - מש"ל •

(ה) סעיף

צ.ל.:

$$\forall n \in \mathbb{N}. \forall x \in \mathbb{R}. \left((x > 0) \land \left(x + \frac{1}{x} \in \mathbb{Z} \right) \right) \rightarrow \left(x^n + \frac{1}{x^n} \in \mathbb{Z} \right)$$

- נסמן ב־A את סדרת המספרים שמקיימים (מסודרים לפי גודלם) ב־ $x\in\mathbb{R}\wedge(x>0)\wedge\left(x+rac{1}{x}\in\mathbb{Z}
 ight)$ לצורך הנוחות.
 - כמו כן, לצורך הנוחות נגדיר גם:

$$Q(m,n) := m^n + \frac{1}{m^n} \in \mathbb{Z}$$

:.ל.:

$$\forall n \in \mathbb{N}. \forall k \in A.Q(k,n)$$

- n נוכיח באינדוקציה על
 - :ס בסיס

$$\forall k \in A.k^1 + \frac{1}{k^1} \in \mathbb{Z}$$

- A^{-} שנכון לפי הגדרת המספרים ב
- $\forall r \in A.Q(r,n+1)$, ונוכיח עבור אם פעד: יהי ($0 \le k < n$), נניח שמתקיים, אעד: יהי ($0 \le k < n$) ($0 \le k < n$), נניח שמתקיים):
- . לצורך הנוחות, נניח שהפסוקים הבאים קשורים ע"י הכמת $r \in A$. במילים אחרות, צ.ל. לצורך הנוחות, נניח שהפסוקים הבאים קשורים ע"י הכמת $r^n + \frac{1}{r^n} \in \mathbb{Z}$

$$\begin{split} r^{(n-1)+1} + (r^{-1})^{(n-1)+1} &= (r^{n-1} + (r^{-1})^{n-1})(r+r^{-1}) - r^{n-1} \cdot r^{-1} - r \cdot (r^{-1})^{n-1} \\ &= \left(r^{n-1} + \frac{1}{r^{n-1}}\right)\left(r + \frac{1}{r}\right) - \frac{r^{n-1}}{r} - \frac{r}{r^{n-1}} \end{split}$$

- לפי ה"א לכל n טבעי $r^{n-1}+(r^{-1})^{n-1}$ שלם. נוסף על כך, מתוך הגדרת r כאיבר ב־ $r^{n-1}+(r^{-1})^{n-1}$ שלם. משום שמכפלת שלמים תוצאתה שלמה, נותר להוכיח בי $r+\frac{1}{r}$ שלם. (יתרת המשוואה) שלם:
 - :נצמצם

$$\frac{r^{n-1}}{r} + \frac{r}{r^{n-1}} = \frac{r^{2n-2} + r^2}{r^n}$$

$$= \frac{(r^{n-2} + r^{-n+2})p^{x}}{p^{x}}$$

$$= r^{n-2} + \frac{1}{r^{n-2}}$$

- , שלם. משום שכפל מספר שלם ב־(-1) הינו מספר שלם. שלם. שלם. משום שכפל $r^{n-2}+\frac{1}{r^{n-2}}$ הינו מספר שלם. שלפי, $\forall r\in A.-\frac{r}{r}-\frac{r}{r^n}\in\mathbb{Z}$ ניתן לקבוע כי
- נסכם: הביטוי מהווה הכפלה של שני מספרים שלמים וחיסור של מספר שלם נוסף, תוצאה אשר ידוע שהיא טבעית. כל זאת בקשיאה עבור $r \in A$. צעד האינדוקציה הוכח.
 - האינדוקציה הוכחה וההוכחה השולמה, כדרוש.
 - מש"ל •

שאלה (ו)

. צ.ל.:

$$\forall n \in \mathbb{N}. n > 12 \rightarrow (\exists m, k \in \mathbb{N}. n = 3m + 7k)$$

- :נוכיח באמצעות אינדוקציה
 - :(n=12) בסיס \circ

$$12 = 3 \cdot 4 + 7 \cdot 0 \ (m = 4, k = 0)$$

- n+1 צעד: נניח באינדוקציה על n, ונוכיח על \circ
- $\exists a,b \in \mathbb{N}. (a+b=n) \wedge (3\mid a) \wedge (7\mid b)$ לפי הנחת האינדוקציה
 - :נמצא ■

$$n+1 = a+b+1 = a-2\cdot 3+b+7$$

b,7 וכי a,-6 מתחלקים ב־3, וכי +1 משום ש+3 מתחלקים ב־3, וכי +1 מתחלקים ב־7).

- זאת מותר להגיד בהנחה ש־m=2, a=6 או במילים אחרות: $3m-6\geq 0 \implies m=2, a=6$ או במילים אחרות: $12\leq n<18$ שנכון לפי הנחת האינדוקציה, עבור m, kn-6=3m+7k נבדוק ידנית את הטענה, נמצא כי היא נכונה עבור כל חמשת המספרים האלו.
 - לכן, **צעד האינדוקציה הוכח**, כדרוש.
 - ש"ל ■

3. הוכחת היחידות של המשפט היסודי של האריתמטיקה

- $(n \ge 2$ אותו (עבור $n \ge 2$ ב.ל.: שתי מכפלות של גורמים ראשוניים השוות לאותו מספר n
 - נוכיח באינדוקציה:
 - . בסיס (n=2) בסיס יכק. \circ
 - $P(x) = \prod_{i=0}^{x} i$ לצורך הנוחות, נגדיר \circ
 - n צעד: נניח באינדוקציה שזה נכון עבור אינדוקציה שזה נכון עבור יבאינדוקציה פאינדוקציה שזה נכון אינדי
- לפי חלק הקיום במשפט, ניתן לבטא את n כמכפלת ראשוניים. נניח בשלילה כי קיימות שתיa, b מכפלות שונות כאלו, ונקראן

$$a = \{a_1, a_2, \dots, a_t\} \land P(a) = n$$

 $b = \{b_1, b_2, \dots, b_m\} \land P(b) = n$

- נתבונן ב־ $\frac{P(a)}{q}, \frac{P(b)}{q}, \frac{P(b)}{q}$. שתי המכפלות הללו מקיימות את ה"א לכן הן יחודייות לאותו הערך. נוסיף את q למכפלות הראשוניים הקטנות יותר בחזרה ונמצא כי המכפלות זהות והנחת השלילה שגויה.
 - ש"ל ■

4. הוכחה כי שבר אמיתי הוא סכומם של שני שברים יסודיים שונים זה מזה

סעיף (א) - חימום

$$\frac{3}{7} = \frac{1}{3} + \frac{1}{11} + \frac{1}{231}$$

סעיף (ב) - הוכחה

. צ.ל.:

$$\forall n \in \mathbb{N}. n \ge 1 \to \forall m \in \mathbb{N}. (m > n) \to (\exists A := \{a_1, a_2, ..., a_n \in \mathbb{N}\}. (\forall t, m \in \mathbb{N}. a_t \ne a_m) \to \sum_{i=0}^n \frac{1}{A_i} = \frac{n}{m})$$

- P(n)נסמן את הטענה האחרונה בגרירה ב
 - :נוכיח באינדוקציה
 - :(n=1) בסיס \circ
- עבור כל m שמקיים n=1 שמקיים .m>n=1. נתבונן בשבר $\frac{n}{m}=\frac{n}{m}$. מכיוון שהוא עצמו שבר יסודי, הוא מהווה את הסכום של עצמו והטענה נכונה באופן טריוואלי.
 - Q(n) ונוכיח Q(k) נניח 0 < k < n יהי בעד: יהי
 - $\frac{n}{m}$ יהי m < n, נתבונן ב
 - a בתוך הפורום ניתן כי $\frac{n}{m} < \frac{1}{q}$, כלומר בלומר הוא השבר היסודי הכי גדול ב $\frac{n}{m} < \frac{1}{q}$. נגדיר -

$$a := \frac{n}{m} - \frac{1}{q}$$

- נוכל להפעיל על a את הנחת האינדוקציה, משום שהוא קטן מ־n. לכן, ניתן להרכיב אותו מחיבור $\frac{n}{m}$ שברים יסודיים. ניתן להוכיח כי $a \neq \frac{1}{q}$, דבר נכון כי $a \neq \frac{1}{q}$ הוא השבר היסודי הכי גדול ב־ $a \neq \frac{1}{q}$. מכאן ש־מורכב משברים יסודיים שונים. צעד האינדוקציה הוכח, והאינדוקציה הושלמה.
 - ש"ל ■

5. הוכחת עקונות האינדוקציה על בסיס אינדוקציה רגילה

שאלה (א) - עקרון האינדוקציה הזוגית

..ל.:

$$(\varphi(0) \land \varphi(1) \land (\forall n \in \mathbb{N}.\varphi(n) \to \varphi(n+2))) \to (\forall n \in \mathbb{N}.\varphi(n))$$

- . נניח את אגף ימין של הגרירה ונוכיח את אגף שמאל.
 - $\psi(x)=arphi(2x)$ נגדיר פונקציה חדשה
 - $\forall n \in \mathbb{N}. \psi(n)$ נוכיח באינדוקציה רגילה
- . בסיס: $\psi(0)=\varphi(0)$ שנכון לפי ההנחה שלנו. $\phi(0)=\varphi(0)$
 - ≥ צעד (במקום להניח, נוכיח בלוגיקה):
- נניח $\varphi(2n)$. לפיכך $\varphi(2n)$. לפי הנתון $\varphi(x)\to \varphi(x+2)$, הטענה $\varphi(2n)$ גוררת $\varphi(2n+2)$. לפיכך $\varphi(2n+2)$. לפיכך, צעד האינדוקציה הוכח.
 - $\forall n \in \mathbb{N}. \vartheta(n)$ כמו כן נגדיר $\vartheta(x) = \varphi(2x+1)$, ונוכיח באינדוקציה רגילה
 - בסיס: $\theta(0)=(1)$ שנכון לפי ההנחה שלנו. $n=0 \implies \theta(0)=(1)$

- :צעד ∘
- $\vartheta(n+1)$ נניח ($\vartheta(n)$, ונוכיח -
- $\varphi(2n+3)$ כי ניתן להסיק כי $\vartheta(n) \iff \varphi(2n+1)$, ניתן להסיק כי פי לפי הגדרת $\vartheta(n) \iff \varphi(2n+1)$, אשר שווה ערך ל $\vartheta(n+1)$. צעד האינדוקציה הוכח, כדרוש.
 - :נסכם

$$\mathbb{N} = \{ x \in \mathbb{N} \mid \psi(x) \} \cup \{ x \in \mathbb{N} \mid \vartheta(x) \}$$

- במילים אחרות, ϑ עוברת על המספרים האי־זוגיים ו" ψ עוברת על הזוגיים, כך שיחדיו הן מרכיבות את במילים אחרות, ϑ עוברת על המספרים שלל אחת מהן נכונה לכל η , אז $\forall n \in \mathbb{N}$. כון, **כדרוש**.
 - מש"ל •

שאלה (ב) - עקרון האינדוקציה המלאה

. צ.ל.:

$$(\forall n \in \mathbb{N}. \forall k \in \mathbb{N}. \forall 0 < k < n. \varphi(k) \to \varphi(n)) \to (\forall n \in \mathbb{N}. \varphi(n))$$

- נניח את אגף שמאל של הגרירה, ונוכיח שאגף ימין נובע ממנו:
 - $\forall n \in \mathbb{N}. \varphi(n)$ נוכיח באינדוקציה •
- ים בסיס: נתבונן ב־n=0. לפי הנתון של הגרירה, $\varphi(0) \to \varphi(k) \to \varphi(0)$. הגרירה הראשונה י בסיס: נתבונן ב־ $T \to \varphi(0)$ והוכחנו את הבסיס.
 - :צעד ∘
 - . $\forall k. \varphi(k)$ ענה (1): נניח ($\varphi(n)$. לפי הנתונים, יהי 0 < k < n טענה (1): נניח ($\varphi(n)$
- φ טענה (2): נניח בשלילה ש־(n+1) שגוי. על בסיס זאת n+1 הוא המספר הקטן ביותר עליו $\varphi(n+1)$. נכון. לפי טענה (1), כל המספרים שלפניו גם הם מקיימים את φ .
- משמע, שלפי טענה (2), העובדה שכל המספרים שלפניו מקיימים φ לא גוררת את (2), משמע, שלפי טענה (2), משמע, שלילה של לפי טענת השלילה), זאת בניגוד לנתון כי $\forall n \in \mathbb{N}. \forall 0 \leq k < n. \varphi(k)$. לפי זאת, הנחת שלילה של טענה (2) שגויה ו $\varphi(n+1)$ נכון.
 - צעד האינדוקציה הוכח, והאינדוקציה הושלמה.
 - תש"ל ■

(סוף – תרגיל בית 1, 15.11.2023)