

School of Information Technology

Module : Business Statistics

Topic : Correlation Analysis and Linear Regression

Learning Outcomes:

By the end of this lesson, you should be able to

- 1. Identify the types of relationship between independent and dependent variables using a scatter diagram.
- 2. Describe the relationship between two sets of variables using Correlation Coefficient
- 3. Interpret the regression equation with reference to the slope and the intercept of the regression equation.
- 4. Evaluate regression equation's ability to predict using standard error of estimate and coefficient of determination.
- 5. Solve real-life business problems by applying regression and correlation analysis.

1

Tutorial 8

Topic: Correlation Analysis and Linear Regression

QUESTION 1

A survey is conducted to find the demand for a product in thousands of units, Y and its price in cents, X in six different market areas. The scatter diagram and the Excel summary output of the data are given below.

- a) State the correlation coefficient and comment on the relationship between the demand for the product and price
- b) Write down the equation of line of best fit which we can predict the demand for the product in terms of its price
- c) Estimate the demand for the product when it is priced at 20 cents.

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.9721118							
R Square	0.9450013							
Adjusted R Square	0.9312517							
Standard Error	12.074828							
Observations	6							

CURANA DV QUEDUT

ANOVA						
	df		SS	MS	F	Significance F
Regression		1	10020.79	10020.79	68.72903	0.001155783
Residual		4	583.2059	145.8015		
Total		5	10604			

	Standard						Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.0%	95.0%
Intercept	340.52941	33.83741	10.0637	0.000548	246.5816981	434.4771	246.5817	434.4771
X Variable 1	-14.86765	1.793379	-8.2903	0.001156	-19.8468659	-9.88843	-19.8469	-9.88843

QUESTION 2

A researcher wants to determine if there is a linear relationship between the magnitudes of earthquakes and their depths below the surface at the epicentre. The scatter diagram and the Excel summary output of the data are given below.

- a) State the correlation coefficient r and comment on the relationship between the magnitude, X and depth, Y.
- b) Find the equation of the line of best fit.
- c) Estimate the depth below the surface at the epicentre when the magnitude is 5.5.
- d) Comment on the reliability of the predicted depth when the magnitude of earthquake is 11.5.

SUMMARY OUTPUT	
Regression St	atistics
Multiple R	0.848252943
R Square	0.719533055
Adjusted R Square	0.672788564
Standard Error	5.718196516
Observations	8

df		SS	MS	F	Significance F
	1	503.3133717	503.313372	15.392895	0.007771717
	6	196.1866283	32.6977714		
	7	699.5			
	df	1	1 503.3133717 6 196.1866283	1 503.3133717 503.313372 6 196.1866283 32.6977714	1 503.3133717 503.313372 15.392895 6 196.1866283 32.6977714

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	lower 95.0%L	Jpper 95.0%
Ī	Intercept	-17.4092638	9.311050593	-1.86974215	0.1107184	-40.19258384	5.3740562	-40.192584	5.3740562
)	X Variable 1	5.833826388	1.486939652	3.92337805	0.0077717	2.195416132	9.4722366	2.1954161	9.4722366

2 Tutorial 8

QUESTION 3

A human resource management researcher is interested to know the relationship between performance appraisal scores, X and employee's salary Y (in thousands of dollars). A sample of eight employees was taken of their salary and performance appraisal scores. The scatter diagram and the Excel summary output of the data are given below.

- a) State the correlation coefficient r and comment on the relationship between the performance appraisal scores, X and salary, Y.
- b) Find the equation of the line of best fit.

- c) State and interpret the coefficient of determination and standard error of estimate.
- d) Explain if you would advise an employee to perform well in his/her job.

SUMMARY OUTPUT		ANOVA							
Regression St	atistics		df	SS	MS	F	Significance F		
Multiple R	0.97054928	Regression	1	432.8333333	432.8333333	97.3875	6.24576E-05		
R Square	0.941965905	Residual	6	26.6666667	4.44444444				
Adjusted R Square	0.932293556	Total	7	459.5					
Standard Error	2.108185107								
Observations	8		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%
		Intercept	-10.66666667	3.566283606	-2.990975437	0.02428959	-19.3930483	-1.940285047	-19.393048
		X Variable 1	4.666666667	0.472884601	9.868510526	6.2458E-05	3.509559731	5.823773602	3.5095597

SUPPLEMENTARY QUESTIONS

QUESTION 4

City planners collected data to examine if there is a relationship between the population size, X and the median age of resident, Y for a random sample of cities. Excel summary output of the data are given below.

- a) State the correlation coefficient r and comment on the relationship between population size, X and the median age of resident, Y.
- b) Find the equation of the line of best fit.
- c) Estimate the median age of resident with the population size is 0.9 million.
- d) State and interpret the coefficient of determination and standard error of estimate.

Regression S	Statistics
Multiple R	0.979625974
R Square	0.959667048
Adjusted R Squa	0.951600458
Standard Error	0.297802618
Observations	7

	df	55	MS	F	Significance F		
Regression	1	10.55085372	10.55085372	118.9681145	0.00011256		
Residual	5	0.443431997	0.088686399				
Total	6	10.99428571					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 9
Intercept	29.94293743	0.183856398	162.8604595	1.65596E-10	29.4703195	30.41555535	29.4703
X Variable 1	0.526039715	0.048228443	10.90725055	0.000112561	0.40206455	0.650014876	0.40206

3

Answers:

- Q1 a) -0.972
 - b) y = -14.868x + 340.529
 - c) 43.169 ('000)
- Q2 a) +0.848
 - b) y = 5.834x 17.409
 - c) 14.678
- Q3 a) +0.971
 - b) y = 4.667x 10.667
 - c) Standard error of estimate = 2.108
 Coefficient of determination = 0.942
- Q4 a) +0.9796
 - b) y = 0.526x + 29.943
 - c) Standard error of estimate = 0.298

Coefficient of determination = 0.95966

Tutorial 8