Lecture: Two pointers

Agenda

— Pairs with given sum

Count pair sum=k

pair difference = k

___ dubarray with sun=k

Lontainer with most water.

Qu'l Given A[], and integer K, find any pair (i.j) such that

A(i) + A(j) = K and i = j

Brute force approach 0(n2)

Approach 2

A	pproach3	0 1 2 3 4 5 6 -5 -2 1 8 10 12 15 k=11	
	o L	Action	
	0	8um = A[0) + A[6] = 10 8um < k i ++ j ×	
-	1	6	

1	Ÿ	sum > k j
1	5	8um = 10 sum <k i++</k
2_	5	sum = 13 sum >k j
2	4	sum = 11 sum = = K return (i'y'); return true

```
Pseudocode
```

Tc: 0(n)

sc: 0(1)

Qu2 Count sum pair = k

find all pairs in dorted array whose sum is k. (i!=j) $\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{bmatrix}$ k=10ans = 3

Case! When all elements are distinct.

0	1	2	3	ч	5	6	7	ı
1	2	3	4	5	6	7	8	k = 10

```
i = 0;

j = A·length-1;

count = 0;

while ( i \ j ) {

gum = A(i) + A(j);

if ( sum > k) {

j --;

else if ( sum \ K) {

i++;

}

else {

count++;

j i++;

}

return count;
```


i	J.	Action	count
0	10	sum = A(0) + A(10) = 17 sum > k j	
0	9	8um = 12 8um < k 12 < 13 $i++$	
1	9	8um = 3 $8um = K $ $countI = 2$ $countT = 3$ $count = 2*3 [countI * countI]$	6
3	6	, , , , , , , , , , , , , , , , , , ,	1 1 1 1
		if (sum > k) { sum = A(v) + A(j); if (sum > k) { j; else if (sum < k) { i++; } else { countI = 1', count; while (i < j de A i++; count. } while (i < j de A j; count; count + = count 1 *	[(') = = A[(-1)) { [++;
		€++5 , (d'=-5	

Qu3 Given A(n) and integer k, find any pair (i,j) such that A(j) - A(i) = k and i! = j and k > 0.

$$an = true \begin{cases} 2.5 \\ 12 - 1 \end{bmatrix}$$

$$k = 11$$

TC: O(nlogn)
SC: O(1)

Approach3

					5		
-5	-2	l	8	10	12	15	K = 11

Where should we keep our pointers?

Option

$$i = 0, j = 6$$

$$sliff = A(j') - A(i')$$

$$= 15 - (-5) = 20$$

$$diff > k$$

$$20$$

$$i' + + i$$

$$j' - - i$$

$$cannot decide$$

$$(cannot move both i' dj')$$

i	j	Action	
0	J	diff = A[1] - A[0] = -2 - (-5) = 3 diff < K i++; diff \ j++; diff \	
٥	2	di'ff = A[2] - A[0] = 6	
O	3	drff = A[3] -A(0) = 13 drff >k. (++	
			0 1 2 3 4 5 6 -5 -2 1 8 10 12 15 K = 11
1	3	cliff = 10	
1	4	drff = 12 r++	
2	Ч	diff= 9 j*++	
2_	5	duff=11 return true.	

Pseudcode

<u>Qu</u> Given A[n] and integer K, check if there exists a subarray with dum = K

ans = true

1	3	15	10	20	3	23	k=43
ans	= no	Subar	ray			{ No of our	$barray = \frac{n(n+1)}{2}$

Brute force approach
$$O(n^2)$$
 { 40 to all outbarrays 4 calculate oum }

Break: 8:49-9:00

Brute force O(n²)

D	1	2	3	4	5	6	7
4	2	10	6	8	2	6	2

© [, t	A ction

Paeudocode