project

Yue Zhang et Gérémi Bridonneau

Introduction

1 La transformation de Box-Cox

1. (réfléchir un nom/titre)

```
Si \lambda = 0, h_{\lambda}(y) = log y, \forall y > 0.
On a (1) h_{\lambda}(y) = x'\theta + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma I_n).
– (mon idée de solution)
```

La transformation \tilde{h}_{λ} est valable seulement pour y>0. De plus pour tout $\lambda\neq 0$, la transformation \tilde{h}_{λ} est borné et donc la transformation ne peut pas être gaussienne. Pour $\lambda=0$ on n'a pas ce problème grâce à la surjectivité du logarithme.

Si toute les observations sont positives on peut quand même utiliser cette transformation car on perdra qu'une faible partie des données normalement dans la queue à gauche de la répartition. Par exemple si les données ne suivent pas une loi normale mais une loi beta de paramètre $\alpha=2$, $\beta=2.2$ et qu'on utilise la transformation de Box et Cox avec $\lambda=2$ on obtient:

```
lambda <- 2
a <- 2
b <- 2.2
plot({function (x) dbeta(x, a, b)})</pre>
```


plot({function (x) (dbeta(x, a, b)^lambda - 1)/lambda}, -0.2, 1.2)

On voit qu'on a aucune valeur négative et que donc la gaussianisation n'est pas parfaite mais cette transformation reste raisonnable.

2. Déterminer la fonction de vraisemblance

Supposons que pour $\beta=(\theta,\lambda,\sigma^2)'$ a $p\times 1$ vecteur de paramètres, on ait $h_\lambda(Y_i)=Z_i=x_i\theta+\varepsilon_i,\ \varepsilon_i\sim \mathcal{N}(0,\sigma^2),\ \varepsilon_i$ suivent une loi gaussien i.i.d. Donc par la définition de vraisemblance:

$$L(\lambda, \theta, \sigma^{2}; Y) = \prod_{i=1}^{n} \frac{\partial F}{\partial Y_{i}}$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(h_{\lambda}(Y_{i}) - x_{i}\theta)^{2}}{2\sigma^{2}}\right) \left| \frac{\partial h_{\lambda}(Y_{i})}{\partial Y_{i}} \right|$$

$$= \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n}{2}} \exp\left(-\frac{\sum_{i=1}^{n} (h_{\lambda}(Y_{i}) - x_{i}\theta)^{2}}{2\sigma^{2}}\right) \prod_{i=1}^{n} \left| \frac{\partial h_{\lambda}(Y_{i})}{\partial Y_{i}} \right|$$

$$= \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n}{2}} \exp\left(-\frac{(h_{\lambda}(Y_{i}) - x_{i}\theta)'(h_{\lambda}(Y_{i}) - x_{i}\theta)}{2\sigma^{2}}\right) \prod_{i=1}^{n} \left| Y_{i}^{\lambda-1} \right|$$

$$(1)$$

Donc le terme $J(\lambda; Y) = \prod_{i=1}^{n} \left| \frac{\partial h_{\lambda}(Y_i)}{\partial Y_i} \right| = \prod_{i=1}^{n} \left| Y_i^{\lambda - 1} \right|$, est la transformation de Jacobian de $h_{\lambda}(Y) - X\theta$ à Y.

3. Estimation du maximum de vraisemblance

A λ fixé, on peut déterminer l'emv par estimation du maximum de vraisemblance. Donc tout d'abord, depuis l'équation 1 on calcule le log-vraisemblance.

$$\ell = \log L(\lambda, \theta, \sigma^{2}; Y)$$

$$= -\frac{n}{2} \log(2\pi\sigma^{2}) - \frac{(h_{\lambda}(Y) - X\theta)'(h_{\lambda}(Y) - X\theta)}{2\sigma^{2}} + \sum_{i=1}^{n} \log |Y_{i}^{\lambda - 1}|$$

$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^{2}) - \frac{\|h_{\lambda}(Y) - X\theta\|^{2}}{2\sigma^{2}} + (\lambda - 1) \sum_{i=1}^{n} \log |Y_{i}|$$
(2)

En suite, étant donnée que le log-vraisemblance ℓ l'équation 2 est une transforamtion monotone de vralsemblance L dans l'équation 1, on maximise log-vraisemblance ℓ en respectant θ , σ^2 et λ , donc on obtient le premier ordre dérivation ci-dessous:

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{(h_{\lambda}(Y) - X\theta)'(h_{\lambda}(Y) - X\theta)}{2\sigma^4} = 0$$
(3)

Donc on a $\widehat{\sigma}^2 = \frac{(h_{\lambda}(Y) - X\theta)'(h_{\lambda}(Y) - X\theta)}{n} = \frac{h_{\lambda}(Y)'(I_n - H)h_{\lambda}(Y)}{n}$, avec $H = X(X'X)^{-1}X'$ et I_n matrice identidé.

$$\frac{\partial \ell}{\partial \theta} = -\frac{2(-X)'(h_{\lambda}(Y) - X\theta)}{2\sigma^2}
= \frac{X'(h_{\lambda}(Y) - X\theta)}{\sigma^2} = 0$$
(4)

Donc, $\widehat{\theta} = (X'X)^{-1}X'h_{\lambda}(Y)$, par $X'h_{\lambda}(Y) = X'X\theta$.

Pour vérifier $L_{max}(\lambda)$, on remplace notre l'emv $\widehat{\sigma}^2$ et $\widehat{\theta}$ calculé par l'équation 3 et 4 dans log-vraisemblance ℓ :

$$L_{max}(\lambda) := \ell = \log L(\lambda, \widehat{\theta}(\lambda), \widehat{\sigma}^{2}(\lambda))$$

$$= -\frac{n}{2} \log(\frac{\|h_{\lambda}(Y) - X\theta\|^{2}}{n}) - \frac{\|h_{\lambda}(Y) - X\theta\|^{2}n}{2\|h_{\lambda}(Y) - X\theta\|^{2}} + (\lambda - 1) \sum_{i=1}^{n} \log|Y_{i}| - \frac{n}{2} \log(2\pi)$$

$$= -\frac{n}{2} \log(\widehat{\sigma}^{2}(\lambda)) + (\lambda - 1) \sum_{i=1}^{n} \log|Y_{i}| - \frac{n}{2} - \frac{n}{2} \log(2\pi)$$
(5)

Donc $a(n) = -\frac{n}{2} - \frac{n}{2} \log(2\pi)$ est bien une constante ne dépendant que n. Maintenant on calcule l'emv $\hat{\lambda}$:

$$\frac{\partial \ell}{\partial \lambda} = -\frac{2(h_{\lambda}(Y) - X\theta) \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right|}{2\sigma^2} + \sum_{i=1}^{n} \log |Y_i| = 0$$
 (6)

Et

$$\frac{\partial L_{max}}{\partial \lambda} = -\frac{n}{2} \frac{1}{\widehat{\sigma}^{2}(\lambda)} \left| \frac{\partial \widehat{\sigma}^{2}(\lambda)}{\partial \lambda} \right| + \sum_{i=1}^{n} \log |Y_{i}|$$

$$= -\frac{n}{2} \frac{1}{\widehat{\sigma}^{2}(\lambda)} \frac{2(h_{\lambda}(Y) - X\theta) \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right|}{n} + \sum_{i=1}^{n} \log |Y_{i}|$$

$$= -\frac{(h_{\lambda}(Y) - X\theta) \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right|}{\widehat{\sigma}^{2}} + \sum_{i=1}^{n} \log |Y_{i}| = 0$$
(7)

On peut bien vérifier que $\frac{\partial \ell}{\partial \lambda}$ et $\frac{\partial L_{max}}{\partial \lambda}$ sont équaux par calculation l'équation maximum vraisemblance. Par l'équation 3, on sait que $\hat{\sigma}^2(\lambda) = \frac{h_{\lambda}(Y)^{'}(I_n - H)h_{\lambda}(Y)}{n} = \frac{SCR(\lambda)}{n}$ avec $H = X(X^{'}X)^{-1}X^{'}$, est la somme de carrés résiduels de variance $h_{\lambda}(Y)$ divisée par n. Depuis l'équation 7, on peut continuer cette calculation en remplaçant $\hat{\sigma}^2$, et pour rappel $h_{\lambda}(Y) = \frac{Y^{\lambda} - 1}{\lambda}$:

$$\frac{\partial L_{max}}{\partial \lambda} = -\frac{n}{2} \frac{n}{h_{\lambda}(Y)'(I_{n} - H)h_{\lambda}(Y)} \frac{2h_{\lambda}(Y)'(I_{n} - H)}{n} \left(\frac{Y^{\lambda} \log Y}{\lambda} - \frac{Y^{\lambda} - 1}{\lambda^{2}}\right) + \sum_{i=1}^{n} \log|Y_{i}|$$

$$= -n \frac{h_{\lambda}(Y)'(I_{n} - H)}{h_{\lambda}(Y)'(I_{n} - H)h_{\lambda}(Y)} \left(\frac{Y^{\lambda} \log Y}{\lambda} - \frac{h_{\lambda}(Y)}{\lambda}\right) + \sum_{i=1}^{n} \log|Y_{i}|$$

$$= -n \frac{h_{\lambda}(Y)'(I_{n} - H)\lambda^{-1}Y^{\lambda} \log Y}{h_{\lambda}(Y)'(I_{n} - H)h_{\lambda}(Y)} + n \frac{h_{\lambda}(Y)'(I_{n} - H)h_{\lambda}(Y)}{h_{\lambda}(Y)'(I_{n} - H)h_{\lambda}(Y)\lambda} + \sum_{i=1}^{n} \log|Y_{i}|$$

$$= -n \frac{h_{\lambda}(Y)'(I_{n} - H)u_{\lambda}(Y)}{h_{\lambda}(Y)'(I_{n} - H)h_{\lambda}(Y)} + \frac{n}{\lambda} + \sum_{i=1}^{n} \log|Y_{i}|$$
(8)

avec $u_{\lambda}(Y) = \lambda^{-1}Y^{\lambda}\log Y$. Le numérateur dans l'équation 8 est la somme résiduelle des produits dans l'analyse de la covariance de $h_{\lambda}(Y)$ et $u_{\lambda}(Y)$. Maintenant on utilise la transformation normalisée afin de simplifier le résultat, on définit $z_{\lambda}(Y)$ ci-dessous:

$$z_{\lambda}(Y) = \frac{h_{\lambda}(Y)}{J(\lambda; Y)^{1/n}}$$

$$= \frac{h_{\lambda}(Y)}{(\prod_{i=1}^{n} |Y_{i}|)^{\lambda - 1/n}}$$
(9)

Donc $\widehat{\sigma}^2$ devient $\widehat{\sigma}^2(\lambda;z) = \frac{z_\lambda(Y)'(I_n - H)z_\lambda(Y)}{n} = \frac{SCR(\lambda;z)}{n}$, $SCR(\lambda;z)$ est la somme des carrées résiduelle de $z_\lambda(Y)$. De plus, $L_{max} = -\frac{n}{2}\log(\widehat{\sigma}^2(\lambda;z)) + a(n)$, donc on propose de trouver $\widehat{\lambda}$ qui maximize $L_{max}(\lambda)$, c'est à dire minimize $\widehat{\sigma}^2(\lambda;z)$. Donc on cherche l'emc (estimateur des moindres carrées)

$$\widehat{\lambda} = \underset{\lambda}{\arg\min} SCR(\lambda; z) \tag{10}$$

Pour répondre que l'emv est-il gaussien à distance finie? Je sais pas comment expliquer mais par le théorème du cours, l'emv est asymptotiquement normale non? emmm je vais réfléchir. genre la distribution de $\sqrt{n}(\widehat{\beta}-\beta)$, quand $n\to\infty$, elle converge en une loi normale.

$$\left[\frac{I_n(\beta)^{-1}}{n}\right]^{1/2} \sqrt{n}(\widehat{\beta} - \beta) \to \mathcal{N}(0, I_n) \tag{11}$$

 $I_n(\beta)^{-1}$ est la matrice de l'information de Fisher.

4. Distribution asymptotique de l'emv

Estimer la variance de $\widehat{\lambda}$

Soit $\widehat{\beta}$ l'emv asymptotiquement normal,

$$\sqrt{n}(\widehat{\beta} - \beta) \to \mathcal{N}(0, I_n(\beta)^{-1})
\widehat{\beta} \sim \mathcal{N}(\beta, I_n(\beta)^{-1})$$
(12)

Par la définition, la matrice de l'information de Fisher est écrite ci-dessous:

$$I_n(\beta) = \mathbb{E}_{\beta}[\dot{\ell}\dot{\ell}']$$

= $\mathbb{E}_{\beta}[-\ddot{\ell}]$ (13)

où $\ddot{\ell}$ est la matrice Hessien $\ddot{\ell}=\frac{\partial^2\ell}{\partial\beta\partial\beta'}$ (pour rappelle que on a définit $\beta=(\theta,\lambda,\sigma^2)'$ a $p\times 1$ vecteur de paramètres). En particulier, on n'a pas forcément besoin d'estimer σ^2 simultanément avec θ et λ , donc pour simplifier les calculs, on décide de calculer la matrice Hessien de $L_{max}(\lambda)$. Dans l'équation 7, on a calculé

$$\frac{\partial L_{max}}{\partial \lambda} = -\frac{(h_{\lambda}(Y) - X\theta) \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right|}{\widehat{\sigma}^2} + \sum_{i=1}^{n} \log |Y_i|, \text{ et on obtient sans souci } \frac{\partial L_{max}}{\partial \theta} = \frac{X'(h_{\lambda}(Y) - X\theta)}{\widehat{\sigma}^2}.$$

$$\tilde{\ell} := H_n(\beta) = \frac{\partial^2 L_{max}}{\partial \beta \partial \beta'}$$

$$= -\widehat{\sigma}^{-2} \begin{bmatrix} X'X & -X' \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right| \\ -\left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right| X & \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right|' \left| \frac{\partial h_{\lambda}(Y)}{\partial \lambda} \right| + \left| \frac{\partial^2 h_{\lambda}(Y)}{\partial^2 \lambda} \right| (h_{\lambda}(Y) - X\theta) \end{bmatrix}$$
(14)

 $H_n(\beta)$ est bien une matrice définie négative. Etant donnée la distribution asymptotique normale de l'emv, on peut concluire que $\widehat{Var(\widehat{\beta})} = -[H_n(\widehat{\beta})]^{-1}$, maintenant on calcul $\widehat{Var(\widehat{\lambda})}$:

$$\widehat{Var(\widehat{\lambda})} = -H_n(\widehat{\lambda})^{-1} \tag{15}$$

où
$$H_n(\lambda) = \frac{\partial^2 L_{max}}{\partial^2 \lambda} = \frac{\left|\frac{\partial h_{\lambda}(Y)}{\partial \lambda}\right|' \left|\frac{\partial h_{\lambda}(Y)}{\partial \lambda}\right| + \left|\frac{\partial^2 h_{\lambda}(Y)}{\partial^2 \lambda}\right| h_{\lambda}(Y)'(I_n - H)}{-\widehat{\sigma}^2}.$$

Intervalle de confiance

Etant donné que l'emv est asymptotiquement normalement distribué, donc on peut construire le test $T = \frac{\widehat{\beta} - \beta}{\sqrt{\frac{\widehat{Var}(\widehat{\beta})}{n}}} \sim \mathcal{N}(0, I_n). \text{ Par définition, } P(q_{\alpha/2} < \frac{\widehat{\beta} - \beta}{\sqrt{\frac{\widehat{Var}(\widehat{\beta})}{n}}} < q_{1-\alpha/2}) = 1 - \alpha, \text{ donc on peut obtenir } \frac{\widehat{\beta} - \beta}{\sqrt{\frac{\widehat{Var}(\widehat{\beta})}{n}}} = 1$ l'intervalle de confiance $[\widehat{\beta} - q_{1-\alpha/2}\sqrt{\frac{\widehat{Var}(\widehat{\beta})}{n}}, \widehat{\beta} - q_{\alpha/2}\sqrt{\frac{\widehat{Var}(\widehat{\beta})}{n}}]$, où $q_{\alpha/2}$ et $q_{1-\alpha/2}$ sont quantiles d'ordre $\alpha/2$ et $1 - \alpha/2$ sous la loi normale. La distribution est symétrique par rapport à o, donc l'IC estimateur β

est également $[\widehat{\beta} - q_{1-\alpha/2}\sqrt{\frac{Var(\widehat{\beta})}{n}}, \widehat{\beta} + q_{1-\alpha/2}\sqrt{\frac{Var(\widehat{\beta})}{n}}].$

L'intervalle de confiance de λ donc est $[\widehat{\lambda} - q_{1-\alpha/2}\sqrt{\frac{\widehat{Var(\widehat{\lambda})}}{n}}, \widehat{\lambda} + q_{1-\alpha/2}\sqrt{\frac{\widehat{Var(\widehat{\lambda})}}{n}}]$, où $\widehat{Var(\widehat{\lambda})}$ est calculé dans l'équation 15.

Test de Wald

On définit $A = (0, \frac{1}{\lambda_0}, 0), \beta = (\theta, \lambda, \sigma^2)'$

 $H_0: A\beta = 1$ contre $H_1: A\beta \neq 1$

Sous H_0 , avec la delta méthode:

$$\sqrt{n}(A\widehat{\beta}-1) \to \mathcal{N}(0, AV_nA')$$
 (16)

$$T_n = [AV_n A']^{-1/2} A(\widehat{\beta} - 1) \to \mathcal{N}(0, 1)$$
 (17)

En utilisant la propriété de la statistique de Wald, W est la carré de la norme de T_n et sa loi asymptotique sous H_0 est:

$$W = n(A\hat{\beta} - 1)(A\hat{V}_n A')^{-1}(A\hat{\beta} - 1)' \to \chi^2(1)$$
(18)

où $\widehat{V}_n = I_n(\widehat{\beta})^{-1}$, et $W \geq 0$, la région de rejet est unilatère à droite de niveau asymptotique α pour une hypothèse bilatère est $\mathcal{R} = \left\{W > q_{1-\alpha}^{\chi^2(1)}\right\}$ avec $P_{(H_0)}(\mathcal{R}) \to \alpha$.

5. Test du rapport vraisemblance

Par le théorème asymptotique du RV, sous H_0 :

$$TRV = -2\log(RV) \to \chi^2(1) \tag{19}$$

 $\mathit{TRV} \geq 0$, la région de rejet $\mathcal{R} = \left\{\mathit{TRV} > q_{1-\alpha}^{\chi^2(1)}\right\}$ du test de rapport de vraisemblances maximales est asymptotiquement de niveau α , $P_{(H_0)}(\mathcal{R}) \rightarrow \alpha$.

Par la définition de rapport de vraisemblance:

$$RV = \frac{L(\lambda_0; Y)}{L(\widehat{\lambda}; Y)} \tag{20}$$

où L est la fonction de vraisemblance.

$$TRV = -2\log(\frac{L(\lambda_0; Y)}{L(\widehat{\lambda}; Y)})$$

$$= -2(\log L(\lambda_0; Y) - \log L(\widehat{\lambda}; Y))$$

$$= 2(L_{max}(\widehat{\lambda}; Y) - L_{max}(\lambda; Y))$$
(21)

2 Test de la méthode sur des données simulées

1.

3 Cas pratique

Conclusion