Frequency Principle

Yaoyu Zhang, Tao Luo

Background

Frequency Principle

Implication of F-Principle

Quantitative theory for F-Principle

Background—Why DNN remains a mystery?

Supervised Learning Problem

Given \mathcal{D} : $\{(x_i, y_i)\}_{i=1}^n$ and \mathcal{H} : $\{f(\cdot; \Theta) | \Theta \in \mathbb{R}^m\}$, find $f \in \mathcal{H}$ such that $f(x_i) = y_i$ for $i = 1, \dots, n$.

Example 1 (mystery)—Deep Learning

find

$$\dot{\Theta} = -\nabla_{\Theta} L(\Theta)$$

Initialized by special Θ_0

$$L(\Theta) = \sum_{i=1}^{n} (h(x_i; \Theta) - y_i)^2 / 2n$$

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{W}^{[L]} \sigma \circ (\cdots \boldsymbol{W}^{[2]} \sigma \circ (\boldsymbol{W}^{[1]} \boldsymbol{x} + \boldsymbol{b}^{[1]}) + \cdots) + \boldsymbol{b}^{[L]}$$

Supervised Learning Problem

Given
$$\mathcal{D}$$
: $\{(x_i, y_i)\}_{i=1}^n$ and \mathcal{H} : $\{f(\cdot; \Theta) | \Theta \in \mathbb{R}^m\}$, find $f \in \mathcal{H}$ such that $f(x_i) = y_i$ for $i = 1, \dots, n$.

Example 2 (well understood)—polynomial interpolation

 \mathcal{D}

$$\{(x_i \in \mathbb{R}, y_i \in \mathbb{R})\}_{i=1}^n$$

 \mathcal{H}

$$h(x; \Theta) = \theta_1 + \dots + \theta_M x^{m-1}$$
with $m = n$

find

Newton's interpolation formula

Q: Why we think polynomial interpolation is well understood?

Supervised Learning Problem

Given \mathcal{D} : $\{(x_i, y_i)\}_{i=1}^n$ and \mathcal{H} : $\{f(\cdot; \Theta) | \Theta \in \mathbb{R}^m\}$, find $f \in \mathcal{H}$ such that $f(x_i) = y_i$ for $i = 1, \dots, n$.

Example 3 (well understood)—linear spline

 \mathcal{D}

$$\{(x_i \in \mathbb{R}, y_i \in \mathbb{R})\}_{i=1}^n$$

 ${\cal H}$ piecewise linear functions

find

explicit solution

Why deep learning is a mystery?

Given
$$\mathcal{D}$$
: $\{(x_i, y_i)\}_{i=1}^n$ and \mathcal{H} : $\{f(\cdot; \Theta) | \Theta \in \mathbb{R}^m\}$, find $f \in \mathcal{H}$ such that $f(x_i) = y_i$ for $i = 1, \dots, n$.

Deep learning (black box!)

High dimensional real data (e.g., d=32*32*3)

Conventional methods

Low dimensional data $(d \le 3)$

Deep neural network
(#para>>#data)

find Gradient-based method with proper initialization

Spanned by simple basis functions (#para≤#data)

explicit formula

Is deep learning alchemy?

Golden ages of neural network

1960-1969

- Simple (#data small)
- Single-layer NN (cannot solve XOR)
- Non-Gradient based (nondiff activation)

1984-1996

- Moderate (e.g., MNIST)
- Multi-layer NN (universal approx)
- Gradient based (BP)

2010-now

- Complex real data (e.g., ImageNet)
- Deep NN
- Gradient based (BP) with good initialization

NN is still a black box!

Leo Breiman 1995

- 1. Why don't heavily parameterized neural networks overfit the data?
- 2. What is the effective number of parameters?
- 3. Why doesn't backpropagation head for a poor local minima?
- 4. When should one stop the backpropagation and use the current parameters?

Frequency Principle

Conventional view of generalization

Conventional view of generalization

"With four parameters you can fit an elephant to a curve; with five you can make him wiggle his trunk."

-- John von Neumann

A model that can fit anything likely overfits the data.

airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks

Understanding deep learning requires rethinking generalization

Chiyuan Zhang*
Massachusetts Institute of Technology chiyuan@mit.edu

Samy Bengio Google Brain bengio@google.com Moritz Hardt Google Brain mrtz@google.com

Benjamin Recht[†] University of California, Berkeley brecht@berkeley.edu

Oriol Vinyals
Google DeepMind
vinyals@google.com

Cifar10: 60,000 training data

model	# params	random crop	weight decay	train accuracy	test accuracy
Inception	1,649,402	yes yes	yes no	100.0 100.0	89.05 89.31
		no	yes	100.0	86.03
		no	no	100.0	85.75
(fitting random labels)		no	no	100.0	9.78

Overparameterized DNNs often generalize well.

Problem simplification

 \mathcal{D}

 \mathcal{H}

$$f_{\boldsymbol{ heta}}(oldsymbol{x}) = oldsymbol{W}^{[L]} \sigma \circ (\cdots oldsymbol{W}^{[2]} \sigma \circ (oldsymbol{W}^{[1]} oldsymbol{x} + oldsymbol{b}^{[1]}) + \cdots) + oldsymbol{b}^{[L]}$$

only observe $f(x,t) := f(x; \Theta(t))$

find

$$\dot{\Theta} = -\nabla_{\Theta} L(\Theta)$$

Initialized by special $heta_0$

Overparameterized DNNs still generalize well

 $\#para(\sim 1000) >> \#data: 5$

evolution of f(x, t)

tanh-DNN, 200-100-100-50

Through the lens of Fourier transform $\widehat{h}(\xi,t)$

Frequency Principle (F-Principle):

DNNs often fit target functions from low to high frequencies during the training.

Xu, Zhang, Xiao, Training behavior of deep neural network in frequency domain, 2018

Synthetic curve with equal amplitude

(a) True image

How DNN fits a 2-d image?

Target: image $I(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}$

x: location of a pixel

 $I(\mathbf{x})$: grayscale pixel value

(b) DNN output

High-dimensional real data?

Frequency

Image frequency (NOT USED)

• This frequency corresponds to the rate of change of intensity across neighboring pixels.

Response frequency

 Frequency of a general Input-Output mapping f.

$$\hat{f}(\mathbf{k}) = \int f(\mathbf{x}) e^{-i2\pi \mathbf{k} \cdot \mathbf{x}} d\mathbf{x}$$

0123456789

MNIST: $\mathbb{R}^{784} \to \mathbb{R}^{10}$, $\mathbf{k} \in \mathbb{R}^{784}$

"panda" 57.7% confidence

 $sign(\nabla_x J(\theta, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Goodfellow et al.

high freq Adversarial example

Zero freq Same color

high freq Sharp edge

Examining F-Principle for high dimensional real problems

Nonuniform Discrete Fourier transform (NUDFT) for training dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:

$$\hat{y}_{\mathbf{k}} = \frac{1}{n} \sum_{i=1}^{n} y_i e^{-i2\pi \mathbf{k} \cdot \mathbf{x}_i}, \hat{h}_{\mathbf{k}}(t) = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}_i, t) e^{-i2\pi \mathbf{k} \cdot \mathbf{x}_i}$$

Difficulty:

• Curse of dimensionality, i.e., $\#\mathbf{k}$ grows exponentially with dimension of problem d.

Our approaches:

- **Projection**, i.e., choose $\mathbf{k} = k\mathbf{p}_1$
- Filtering

Projection approach

Relative error: $\Delta_F(k) = |\hat{h}_k - \hat{y}_k|/|\hat{y}_k|$

Decompose frequency domain by filtering

$$\mathbf{y}_i^{\mathrm{low},\delta} = (\mathbf{y}*G^\delta)_i$$

$$\mathbf{y}_i^{\mathrm{high},\delta} \triangleq \mathbf{y}_i - \mathbf{y}_i^{\mathrm{low},\delta}$$

$$e_{\text{low}} = \left(\frac{\sum_{i} |\mathbf{y}_{i}^{\text{low},\delta} - \mathbf{h}_{i}^{\text{low},\delta}|^{2}}{\sum_{i} |\mathbf{y}_{i}^{\text{low},\delta}|^{2}}\right)^{\frac{1}{2}}$$

$$e_{ ext{high}} = \left(rac{\sum_{i} |\mathbf{y}_{i}^{ ext{high},\delta} - \mathbf{h}_{i}^{ ext{high},\delta}|^{2}}{\sum_{i} |\mathbf{y}_{i}^{ ext{high},\delta}|^{2}}
ight)^{rac{1}{2}}$$

F-Principle in high-dim space

Implication of F-Principle

Why don't heavily parameterized neural networks overfit the data?

F-Principe: DNN prefers low frequencies

CIFAR10

For
$$\vec{x} \in \{-1,1\}^n$$

 $f(\vec{x}) = \prod_{j=1}^n x_j$,
Even #'-1' \rightarrow 1;
Odd #'-1' \rightarrow -1.

Test accuracy: 72% %>>10%

Test accuracy: ~50%, random guess

When should one stop the backpropagation and use the current parameters?

Studies elicited by F-Principle

Theoretical study

- Rahaman, N., Arpit, D., Baratin, A., Draxler, F., Lin, M., Hamprecht, F. A., Bengio, Y. & Courville, A. (2018), 'On the spectral bias of deep neural networks'.
- Jin, P., Lu, L., Tang, Y. & Karniadakis, G. E. (2019), 'Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness'
- Basri, R., Jacobs, D., Kasten, Y. & Kritchman, S. (2019), 'The convergence rate of neural networks for learned functions of different frequencies'
- Zhen, H.-L., Lin, X., Tang, A. Z., Li, Z., Zhang, Q. & Kwong, S. (2018), 'Nonlinear collaborative scheme for deep neural networks'
- Wang, H., Wu, X., Yin, P. & Xing, E. P. (2019), 'High frequency component helps explain the generalization of convolutional neural networks'

Empirical study

- Jagtap, A. D. & Karniadakis, G. E. (2019), 'Adaptive activation functions accelerate convergence in deep and physics-informed neural networks'
- Stamatescu, V. & McDonnell, M. D. (2018), 'Diagnosing convolutional neural networks using their spectral response'
- Rabinowitz, N. C. (2019), 'Meta-learners' learning dynamics are unlike learners",

Application

- Wang, F., Müller, J., Eljarrat, A., Henninen, T., Rolf, E. & Koch, C. (2018), 'Solving inverse problems with multi-scale deep convolutional neural networks'
- Cai, W., Li, X. & Liu, L. (2019), 'Phasednn-a parallel phase shift deep neural network for adaptive wideband learning'

Quantitative theory for F-Principle

The NTK regime

$$L(\Theta) = \sum_{i=1}^{n} (h(x_i; \Theta) - y_i)^2$$
$$\dot{\Theta} = -\nabla_{\Theta} L(\Theta)$$

•
$$\partial_t h(x; \Theta) = -\sum_{i=1}^n K_{\Theta}(x, x_i)(h(x_i; \Theta) - y_i)$$

Where $K_{\Theta}(x, x') = \nabla_{\Theta} h(x; \Theta) \cdot \nabla_{\Theta} h(x'; \Theta)$

Neural Tangent Kernel (NTK) regime:

$$K_{\Theta(t)}(x,x') \approx K_{\Theta(0)}(x,x')$$
 for any t.

Theorem 1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ , and in the limit as the layers width $n_1, ..., n_{L-1} \to \infty$ sequentially, the NTK $\Theta^{(L)}$ converges in probability to a deterministic limiting kernel:

$$\Theta^{(L)} \to \Theta^{(L)}_{\infty} \otimes Id_{n_L}$$
.

Problem simplification

 \mathcal{D}

 \mathcal{H}

Two-layer ReLU NN

$$h(x; \Theta) = \sum_{i=1}^{n} w_i \sigma (r_i(x + l_i))$$

find

$$\dot{\Theta} = -\nabla_{\Theta} L(\Theta)$$

Initialized by special Θ_0

Kernel gradient flow

$$\begin{aligned} &\partial_t f(x,t) \\ &= -\sum_{i=1}^n K_{\Theta_0}(x,x_i) (f(x_i,t) - y_i) \end{aligned}$$

Linear F-Principle (LFP) dynamics

2-layer NN: $h(x; \Theta) = \sum_{i=1}^{n} w_i \text{ReLU}(r_i(x + l_i))$

Assumptions:

(i) NTK regime, (ii) sufficiently wide distribution of l_i .

$$\partial_t \, \widehat{h}(\xi,t) = - \left[\frac{4\pi^2 \langle r^2 w^2 \rangle}{\xi^2} + \frac{\langle r^2 \rangle + \langle w^2 \rangle}{\xi^4} \right] \left(\widehat{h_p}(\xi,t) - \widehat{f_p}(\xi,t) \right)$$

 $\langle \cdot \rangle$: mean over all neurons at initialization

f: target function; $(\cdot)_p = (\cdot)p$, where $p(x) = \frac{1}{n} \sum_{i=1}^n \delta(x - x_i)$;

 $\hat{\cdot}$: Fourier transform; ξ : frequency

aliasing

Preference induced by LFP dynamics

$$\partial_{t} \hat{h}(\xi, t) = -\left[\frac{4\pi^{2}\langle r^{2}w^{2}\rangle}{\xi^{2}} + \frac{\langle r^{2}\rangle + \langle w^{2}\rangle}{\xi^{4}}\right] \left(\widehat{h_{p}}(\xi, t) - \widehat{f_{p}}(\xi, t)\right)$$

low frequency preference

$$\min_{h \in F_{\gamma}} \int \left[\frac{4\pi^2 \langle r^2 w^2 \rangle}{\xi^2} + \frac{\langle r^2 \rangle + \langle w^2 \rangle}{\xi^4} \right]^{-1} \left| \hat{h}(\xi) \right|^2 d\xi$$

s.t.
$$h(x_i) = y_i$$
 for $i = 1, \dots, n$

Case 1: ξ^{-2} dominant

- $\min \int \xi^2 |\hat{h}(\xi)|^2 d\xi \sim \min \int |h'(x)|^2 d\xi \rightarrow \text{linear spline}$ Case 2: ξ^{-4} dominant
- $\min \int \xi^4 |\hat{h}(\xi)|^2 d\xi \sim \min \int |h''(x)|^2 d\xi \rightarrow \text{cubic spline}$

Regularity can be changed through initialization

High-dimensional Case

$$\partial_t \, \widehat{h}(\xi,t) = - \left[\frac{\left\langle |r|^2 \right\rangle + \left\langle w^2 \right\rangle}{|\xi|^{d+3}} + \frac{4\pi^2 \left\langle |r|^2 w^2 \right\rangle}{|\xi|^{d+1}} \right] \left(\widehat{h_p}(\xi,t) - \widehat{f_p}(\xi,t) \right)$$

where f: target function; $(\cdot)_p = (\cdot)p$, where $p(x) = \frac{1}{n}\sum_{i=1}^n \delta(x-x_i)$; $\widehat{(\cdot)}$: Fourier transform; ξ : frequency.

Theorem (informal). Solution of LFP dynamics at $t \to \infty$ with initial value $h_{\rm ini}$ is the same as solution of the following optimization problem

$$\min_{h-h_{\text{ini}} \in F_{\gamma}} \int \left[\frac{\langle |r|^{2} \rangle + \langle w^{2} \rangle}{|\xi|^{d+3}} + \frac{4\pi^{2} \langle |r|^{2} w^{2} \rangle}{|\xi|^{d+1}} \right]^{-1} \left| \hat{h}(\xi) - \hat{h}_{\text{ini}}(\xi) \right|^{2} d\xi$$
s.t. $h(X) = Y$.

FP-norm and FP-space

We define the FP-norm for all function $h \in L^2(\Omega)$:

$$||h||_{\gamma} := ||\hat{h}||_{H_{\Gamma}} = \left(\sum_{k \in \mathbb{Z}^{d*}} \gamma^{-2}(k) |\hat{h}(k)|^2\right)^{1/2}$$

Next, we define the FP-space:

$$F_{\gamma}(\Omega) = \{ h \in L^{2}(\Omega) : ||h||_{\gamma} < \infty \}$$

A priori generalization error bound

Theorem (informal). Suppose that the real-valued target function $f \in F_{\gamma}(\Omega)$, h_n is the solution of the regularized model

$$\min_{h \in F_{\gamma}} ||h||_{\gamma} \text{ s.t. } h(X) = Y$$

Then for any $\delta \in (0,1)$ with probability at least $1-\delta$ over the random training samples, the population risk has the bound

$$L(h_n) \le \left(\|f\|_{\infty} + 2 \|f\|_{\gamma} \|\gamma\|_{l^2} \right) \left(\frac{2}{\sqrt{n}} + 4 \sqrt{\frac{2\log(4/\delta)}{n}} \right)$$

Leo Breiman 1995

- 1. Why don't heavily parameterized neural networks overfit the data?
- 2. What is the effective number of parameters?
- 3. Why doesn't backpropagation head for a poor local minima?
- 4. When should one stop the backpropagation and use the current parameters?

A picture for the generalization mystery of DNN

Conclusion

DNNs prefer low frequencies!

References:

- Xu, Zhang, Xiao, Training behavior of deep neural network in frequency domain, 2018
- Xu, Zhang, Luo, Xiao, Ma, Frequency Principle: Fourier
 Analysis Sheds Light on Deep Neural Networks, 2019
- Zhang, Xu, Luo, Ma, Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks, 2019
- Zhang, Xu, Luo, Ma, A type of generalization error induced by initialization in deep neural networks, 2019
- Luo, Ma, Xu, Zhang, Theory on Frequency Principle in General Deep Neural Networks, 2019.