

Radboud University Nijmegen

Figure 1. (a) Schematic of a neuron and its axon. (b) Onedimensional axon model made of resistively coupled Hodgkin-Huxley cells. (c) Hodgkin-Huxley circuit model made of a capacitor Cw, a resistor RL, three batteries EN, Ex, and EL, a time-varying potassium resistor R_K, and a time-varying sodium resistor R_{Ne}. (d) Memristive Hodgkin-Huxley axon circuit model.

END DIRECTED EVOLUTION TO STATES OF HIGHER ENTROPY PRODUCTION

Complex behaviour from (physical) principles & laws (bottom-up)

Memristors

[<u>memristor.org</u>]
"memory resistors", are a type of passive circuit elements that maintain a relationship

between the time integrals of current and voltage across a two terminal element.

Thus, a memristors' resistance varies according to a devices memristance

function, allowing, via tiny read charges, access to a "history" of applied voltage

More properties: Memory Classical conditioning (aversion / preference)

Sah, M. P., Kim, H., & Chua, L. O. (2014). Brains are made of memristors. *IEEE* circuits and systems magazine, 14(1), 12-36.

Complex behaviour from (physical) principles & laws (bottom-up)

END DIRECTED EVOLUTION TO STATES OF HIGHER ENTROPY PRODUCTION

More properties:

Memory

Classical conditioning (aversion / preference)

Memristors

[memristor.org]

"memory resistors", are a type of passive circuit elements that maintain a relationship between the time integrals of current and voltage across a two terminal element. Thus, a memristors' resistance varies according to a devices memristance function, allowing, via tiny read charges, access to a "history" of applied voltage

dimensional axon model made of resistively coupled Hodgkin-

Huxley cells. (c) Hodgkin-Huxley circuit model made of a capacitor C_M, a resistor R_L, three batteries E_{No}, E_K, and E_L, a

time-varying potassium resistor R_K , and a time-varying sodium resistor R_{Na} . (d) Memristive Hodgkin-Huxley axon circuit model.

Sah, M. P., Kim, H., & Chua, L. O. (2014). Brains are made of memristors. *IEEE circuits and systems magazine*, *14*(1), 12-36.