CNN Techniques

Tuan Nguyen - Al4E

Outline

- Backpropagation
- Resnet introduction/architecture
- Why resnet works?
- Transfer learning
- Data augmentation
- Data synthesis

ImageNet Challange

Depth

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

Stack more layers

More and more layers

Why?

Mô hình neural network 2-3-3-1

Residual Block

Figure 2. Residual learning: a building block.

Residual Block

< dipth.

baght

Resnet architecture

Resnet result

Resnet doesn't hurt the performance

Figure 2. Residual learning: a building block.

Chain rule

Vanishing gradient

Transfer learning

Transfer learning: idea

Transfer learning

pre-travial middle Townstature: VGG16, renf 19
Autoset: Image Net.

Types of transfer learning

There are 2 types of transfer learning:

- Feature extractor: use pre-trained model to extract features, then use linear classifier (linear SVM, softmax classifier,..) to get the result.
- Fine-tuning: add more layers to the pre-trained model to continue training.

Feature extractor

Fine-tuning

Phase-1 fine-tuning

Phase-2 fine-tuning

Unfreeze Early Layers & Train All

When to use transfer learning?

	Similar dataset	Different dataset
Small dataset	Transfer learning: highest level features + classifier	Transfer learning: low <u>er leve</u> l features + classifier
Large dataset	Fi <u>ne-tune</u> *	Fi <u>ne-tu</u> ne*

Data augmentation

Three ways to improve data

1 - Collect more

- expensive
- requires manual labor

2 - Synthesize

- complicated
- might not truly represent the real data

3 - Augment

- simple
- but finding a good augmentation strategy takes lots of trial & error (=time of AI engineers)

Flip

Rotate

Crop & scale

Image synthesize

Q&A

