本章线下一次课,线上一次课,自己 看老师的MOOC,考试要求。

《操作系统原理》

第9章 文件系统

教师: 苏曙光 华中科技大学网安学院 2023年10月-2024年01月

文件系统

●内容

- ■文件和文件系统概念
- ■文件结构
- ■存储空间管理
- ■索引节点 (inode)
- ■虚拟文件系统VFS

●重点

- ■文件逻辑结构
- ■文件物理结构
- ■索引节点 (inode)

9.1 文件和文件系统概念

- ●文件
 - ■文件是计算机系统存放信息的一种形式,由若干信息项有序构成。

文件示例: word文档

- ●文件
 - ■文件是计算机系统存放信息的一种形式,由若干信息项有序构成。
 - ■文件具有唯一的文件名。
 - ■用户通过读写指针来存取文件的信息项。

- 文件分类
 - ■按文件的用途
 - ◆系统文件
 - ◆库文件
 - ◆用户文件
 - ■按文件的操作权限
 - ◆只读文件
 - ◆只写文件
 - ◆可执行文件
 - ◆可读可写文件
 - ◆不保护文件

- ■按文件的存储时间
 - ◆永久文件
 - ◆临时文件

- 按文件的性质
 - ■普通文件
 - ■目录文件
 - ■设备文件

```
susg:bash
[susg@localhost ~]$ ls -l /dev/
total 0
crw-----. 1 root root
                           10, 235 5月
                                         1 17:06 autofs
drwxr-xr-x. 2 root root
                               280 5月
                                         1 17:06 block
                                80 5月
drwxr-xr-x. 2 root root
                                         2 2017 bsg
crw-----. 1 root root
                           10, 234 5月
                                         1 17:06 btrfs-control
drwxr-xr-x. 3 root root
                                60 5月
                                         2 2017 bus
                                 3 5月
                                         1 17:06 cdrom -> sr0
lrwxrwxrwx. 1 root root
drwxr-xr-x. 2 root root
                              3400 5月
                                         1 17:06 char
                            5, 15月
                                         1 17:06 console
crw-----. 1 root root
                                11 5月
lrwxrwxrwx. 1 root root
                                         2 2017 core -> /proc/kcore
                           29, 0 5月 1 17:06 fb0
crw-rw----. 1 root video
                                         2 2017 fd -> /proc/self/fd
lrwxrwxrwx. 1 root root
                                13 5月
```

● 文件系统

- ●文件系统
 - ■管理文件的机构称为文件系统。
 - ◆实现文件的创建、撤消、读写、修改、复制和存取控制等
 - □方便用户以文件名存取文件
 - ◆管理文件存储设备的空间和存取。
 - □高效利用存储空间和高效存取文件

9.2 文件结构

- ●文件的逻辑结构
 - ■记录式文件
 - ■流式文件

- 文件的逻辑结构
 - ■记录式文件
 - ◆信息项是记录,记录包含若干成员。
 - □例如: 学生花名册.txt
 - ▲记录:姓名,学号,性别,成绩
 - ◆特点 记录长: 19; 记录数: 5
 - □文件王宇强 U202010445 男 90 信息
 - □浪费新梅 U202054221 女 67 □浪费于世强 U202023090 男 79
 - - □定长比水又行
 - □不定长记录文件

- 文件的逻辑结构
 - ■流式文件
 - ◆信息项是字节
 - ◆特点
 - □文件长度就是字节的数量
 - □文件无需额外说明信息或控制信息

- 文件的逻辑结构
 - ■记录式文件 | 流式文件

- 文件的逻辑结构
 - ■流式文件
 - ◆信息项是字节。
 - ◆特点
 - □文件长度就是字节的数量
 - □文件无需额外说明信息或控制信息
 - ■现代OS把文件当流式文件,由应用解释


```
*DrawCircleDlg - 记事本
                                                                               X
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
void CDrawCircleDlg::OnPaint()
         if (Islconic())
                  CPaintDC dc(this); // 用于绘制的设备上下文
                  SendMessage(WM_ICONERASEBKGND, reinterpret_cast<WPARAM>
                  // 使图标在工作区矩形中居中
                  int cxlcon = GetSystemMetrics(SM CXICON);
                  int cylcon = GetSystemMetrics(SM CYICON);
                                 第 131 行, 第 58 列 100%
                                                       Windows (CRLF)
                                                                     ANSI
```

```
X
*D:\DrawCircle\DrawCircleDlg.cpp - Notepad++
文件(F) 编辑(E) 搜索(S) 视图(V) 编码(N) 语言(L)
                             设置(T) 工具(O) 宏(M) 运行(R)
    🖫 🖫 T 📜 🐷
🔚 DrawCircle opp 🖸 님 DrawCircleDlg.opp 🗵
125
      void CDrawCircleDlg::OnPaint()
126
     ₽{
127
           if (IsIconic())
128
                CPaintDC dc(this); // 用于绘制的设备上下文
129
130
131
                SendMessage (WM ICONERASEBKGND, reinterpret cast<WPARAM
132
                // 使图标在工作区矩形中居中
133
                int cxIcon = GetSystemMetrics(SM CXICON);
134
                int cylcon = GetSystemMetrics(SM CYICON);
135
136
                CRect rect:
C++ source file length: 8,799 lines: 328
                             Ln:135 Col:15 Pos:2.941
                                                     Windows (CR LF) GB2312 (简体中文)
```


- 文件的存取方法
 - ■顺序存取
 - ■随机存取

- ●文件的存取方法
 - ■顺序存取
 - ◆按从前到后的顺序依次对文件信息项进行读/写, 直到定位到目标信息项为止。
 - ■随机存取/直接访问
 - ◆直接定位到文件目标信息项进行读/写。
 - ◆适合流式文件或定长记录文件。

- 文件的物理结构
 - ■文件在存储设备上的存储结构
 - ■强调合理利用储存空间,缩短I/0时间。
- 文件的物理结构类型
 - ■连续文件
 - ■串联文件
 - ■索引文件

硬盘

- 连续文件
 - ■连续文件指文件存放在连续的存储块中。
 - ◆文件的存储块顺序与逻辑块顺序一致且连续
 - ■文件目录记录文件长度(块数)和首个存储块号

- 连续文件
 - ■特点
 - ◆文件建立时给出文件最大长度和文件起始位置。
 - ◆支持顺序存取和随机存取
 - □顺序存取速度快(寻道次数和寻道时间最少)
 - ■缺点
 - ◆文件不易动态增长
 - ◆预留空间容易造成浪费
 - ◆造成外部碎片问题

- ●串联文件
 - ■串联文件存放在离散的存储块中,每个存储块包含 一个链接指针记录下一个存储块位置。
 - ■文件目录记录文件首个存储块号

- ●串联文件
 - ■串联文件存放在离散的存储块中,每个存储块包含 一个链接指针记录下一个存储块位置。
 - ■特点
 - ◆串联文件可以显著消除存储碎片
 - ◆创建文件时无须知道文件长度
 - ◆文件动态增长时可动态分配存储块
 - □支持文件增、删、改等操作。

- ●串联文件
 - ■串联文件存放在离散的存储块中,每个存储块包含 一个链接指针记录下一个存储块位置。
 - ■缺点
 - ◆随机访问效率极低(仅适合顺序访问方式)
 - ◆如果某个链接指针损坏,文件后面将无法访问。

●串联文件

■串联文件存放在离散的存储块中,每个存储块包含

一个链接指针记录下一个存储块位置。

■实例: FAT文件系统

◆File Allocation Table, FAT, 文件分配表

◆文件分配表是一维数组,与存储设备空间对应,元素与存储块一一有序对应,每个元素存放文件下一个逻辑块所在存储块的块号。

实例: FAT文件系统

● FAT/ File Allocation Table, FAT

■文件分配表

实例: FAT文件系统

- FAT/ File Allocation Table, FAT
 - ■FAT16文件系统
 - ◆存储块(簇) = 64个扇区
 - ◆FAT元素16位宽,存储块(簇)数 $\leq 2^{16}$ 簇
 - ◆磁盘容量 ≤ 2¹⁶簇 * 64扇区 * 512字节 = 2GB
 - ■FAT32文件系统
 - ◆FAT元素32位宽

FAT	
NULL	0
NULL	1
0003	2 3
0004	
NULL	4
0006	5
8000	6
NULL	7
FFFF	8
••••	9
••••	•••
• • • •	N-1

- ●索引文件
 - ■文件存放在不连续的存储块中,系统建立索引表记录文件逻辑块和存储块的对应关系。
 - ◆索引文件=索引表+数据区
 - ■文件目录记录文件名和对应的索引表。

文	文件目录			索引表		数据区(存储块)	
文件名	索引表		逻辑块	存储块		存储块23	
FileA	0002		0	23			
FileB	0005		1	19		/丁阳约(13	
FileC	0007		2	26	·····	存储块26	
11100			3	29		存储块29	
						1十1年大29	

- 索引文件特点
 - ■读取索引文件时应先读取索引表
 - ■索引表本身占据额外的存储区域/缺点
 - 支持顺序和随机存取;
 - ■支持文件动态增长、插入、删除等

■ 实例: ext系列文件系统(ingde索引节点文件)

g strong to the little
索引表
0002
0005
0007

9.3 磁盘存储空间管理

磁盘存储空间管理

- 磁盘存储空间管理
 - ■管理和记录磁盘空间使用情况。
- 磁盘空闲存储块管理方法
 - ■空闲文件目录
 - ■空闲块链
 - ■位示图

磁盘(灰色块空闲)

磁盘空闲存储块管理方法

- ●空闲文件目录
 - ■空闲文件:连续的空闲存储块组成的特殊文件。
 - ◆存储设备上所有的空闲文件就代表了存储设备上的全部空闲空间。
 - ■空闲文件目录:为所有空闲文件建立的目录
 - ◆记录空闲文件的首块号和存储块数(或其他方式)

空闲文件1	首块A	7
空闲文件2	首块B	2
空闲文件3	首块C	2
空闲文件4	首块D	7
空闲文件5	首块E	3

磁盘空闲存储块管理方法

- ●空闲块链
 - ■把所有空闲存储块用链表链接在一起。
 - ◆当申请空闲块时,从链表头部摘取空闲块
 - ◆当回收存储块时,把空闲块加在链表尾部。

磁盘空闲存储块管理方法

●位示图

■一块特殊内存区域,每一位(bit)对应一个存储块,值 1表示存储块空闲,0表示已占用。

1	1	0	1	0	1	0	0
0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	~	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0

9.4 文件目录

- 文件目录功能
 - ■实现"按名存取":系统根据文件名能找到指定文件。
 - ◆文件目录记录文件的文件名、存放地址以及属性。
- 目录文件
 - 目录文件是文件目录的实现,由文件目录项构成。

	文件目录				文件目录			文件目录		
	文件名	文件长度	首个存储块号		文件名	首个存储块		文件名	索引表	
<u> </u>	TestFile	4	80	\	FileA	0002	\	FileA	0002	
					FileB	0005		FileB	0005	
					FileC	0007		FileC	0007	

文件名

TestFile

- 文件目录项(directory entry)
 - ■描述文件基本信息、使用信息和存取控制信息等。
 - ◆基本信息: 文件名、存储位置(存储块号)等
 - ◆使用信息:属性、大小、建立时间、修改时间等
 - ◆存取控制信息: 文件存取权限

文件目录

文件长度	首个存储块号			
4	80			

文件目录

文件名	首个存储块
FileA	0002
FileB	0005
FileC	0007

文件名	索引表
FileA	0002
FileB	0005
FileC	0007

- 文件目录项(directory entry)
 - ■示例: MS-DOS的文件目录项(FAT文件系统,32B)

8字节	3字节	1字节	10字节	2字节	2字节	2字节	4字节
文件名	扩展名	属性	保留	时间	日期	首块号	大小
文件名	扩展名	属性	保留	时间	日期	首块号	大小
文件名	扩展名	属性	保留	时间	日期	首块号	大小

■属性(1字节)

◆示例1: 0000001 仅读文件

◆示例2: 00000010 隐含文件

- 文件目录项(directory entry)
 - ■示例: i_node索引节点的文件目录项(Minix文件)
 - ◆包含文件名和索引表编号(即索引节点号)
 - □检索文件时根据索引节点号访问索引节点,索引节点中包含文件的**索引表和文件属性**。

文件名	索引节点号
test.c	204901
os.doc	755407

0 - 13 14 15

- 文件目录项(directory entry)
 - ■示例: i_node索引节点的文件目录项(Minix文件)
 - ◆包含文件名和索引表编号(即索引节点号)

```
1 pstruct dir_entry {//Linux 0.11 (Minix文件系统)
2 unsigned short inode;
3 char name[NAME_LEN];
4 };
```

文件名	索引节点号
test.c	204901
os.doc	755407

13 14 15

- 文件目录项(directory entry)
 - ■示例: i_node索引节点的文件目录项(ext2文件系统)
 - ◆包含文件名和索引表编号(即索引节点号)

文化	文件名	索引节点号	表引节点号
tes	test.c	204901	204901
os.	os.doc	755407	755407

- 文件目录项(directory entry)
 - ■示例: i_node索引节点的文件目录项(ext2)
 - ◆包含文件名和索引表编号(即索引节点)

- ●目录结构
 - ■单级目录
 - ■二级目录
 - ■多级目录(树型目录)
- 文件全名

●单级目录

■最简单的目录结构,全部文件都登记在同一目录中。

- ■特点
 - ◆简单、易于理解和实现
- ■缺点
 - ◆查找速度慢 | 不允许重名 | 不便于文件共享

- ●二级目录
 - ■第一级称为主目录(MFD),第二级称为子目录或用户目(UFD)。
 - ◆每个用户有一个子目录(用户目录)
 - ■优点
 - ◆解决文件重名的问题,不同用户可以使用相同名字。

- ●二级目录
 - ■第一级称为主目录(MFD),第二级称为子目录或用户目(UFD)。
 - ◆每个用户有一个子目录(用户目录)
 - ■优点
 - ◆解决文件重名的问题,不同用户可以使用相同名字。

●树形目录

- ■多级目录结构,二级目录结构的扩充
- ■目录结构如同倒置的树,树根是主目录(根目录),枝结点是子目录,树叶描述文件。

- ●树形目录
 - ■示例: Linux目录结构

- 文件全名
 - ■从根目录到文件为止整个通路上所有目录、子目录和文件的名字用"/"顺序连接构成的字符串称为文件全名。
 - ◆路径名:文件全名中由目录和子目录组成的部分。
 - □每个文件都有惟一的路径名。
 - ◆路径名的表达形式
 - □绝对路径名: 从根目录直到文件的路径
 - □相对路径名: 从指定目录到文件的路径

- 文件属性
 - ■指定文件的类型、操作特性和存取保护等信息。

- 文件属性
 - ■指定文件的类型、操作特性和存取保护等信息。

● 文件属性

- ■指定文件的类型、操作特性和存取保护等信息。
- ■文件的属性一般存放在文件的(目录/文件)中。
- ■示例: MS-DOS的文件目录项,文件属性(特指读写/隐藏等属性)占1个字节
 - □00000001: 文件仅读
 - □00000010: 隐含文件

8字节	3字节	1字节	10字节	2字节	2字节	2字节	4字节
文件名	扩展名	属性	保留	时间	日期	首块号	大小

9.3 文件和目录的操作

文件和目录的读写

- 文件操作
 - ■创建文件
 - ■写文件
 - ■读文件
 - ■文件定位
 - ■删除文件
 - ■截短文件
 - ■属性设置和读取
- 目录操作
 - ■创建目录
 - ■删除目录

Create

Delete

Rename

File_attribute

Open

Close

Write

Read

DIR_read

DISK_space

Link

Unlink

File_date

文件的保护

- 对文件的访问系统首先要检查访问权限
 - ■仅允许执行(E)。
 - ■仅允许读 (R)。
 - ■仅允许写(W)
 - ■仅允许在文件尾写(A)
 - ■仅允许对文件进行修改(U)
 - ■允许改变文件的存取枚限(C)
 - ■允许取消文件(D)
 - □权限可进行组合

文件读写示例

```
//打开文件
    FILE *pFile=fopen("MyTestFile.txt", "rb");
 3
    char *pBuf;
 4
 5
    fseek (pFile, 0, SEEK END);
 6
    int len=ftell(pFile);
 8
    pBuf=new char[len];
 9
    rewind(pFile);// = fseek(pFile,0,SEEK SET);
10
11
12
    fread(pBuf,1,len,pFile);
13
    fclose(pFile);
```