

HY57V561620C(L)T(P) 4 Banks x 4M x 16Bit Synchronous DRAM

DESCRIPTION

The HY57V561620C(L)T(P) Series is a 268,435,456bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and high bandwidth. HY57V561620C(L)T(P) Series is organized as 4banks of 4,194,304x16.

HY57V561620C(L)T(P) Series is offering fully synchronous operation referenced to a positive edge of the clock. All inputs and outputs are synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All input and output voltage levels are compatible with LVTTL.

Programmable options include the length of pipeline (Read latency of 2 or 3), the number of consecutive read or write cycles initiated by a single control command (Burst length of 1,2,4,8 or full page), and the burst count sequence (sequential or interleave). A burst of read or write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst read or write command on any cycle. (This pipelined design is not restricted by a `2N` rule.)

FEATURES

- Single 3.3±0.3V power supply
- All device pins are compatible with LVTTL interface
- JEDEC standard 400mil 54pin TSOP-II with 0.8mm of pin pitch (Leaded Package or Lead Free Package)
- All inputs and outputs referenced to positive edge of system clock
- Data mask function by UDQM, LDQM
- Internal four banks operation

- Auto refresh and self refresh
- 8192 refresh cycles / 64ms
- Programmable Burst Length and Burst Type
 - 1, 2, 4, 8 or Full page for Sequential Burst
 - 1, 2, 4 or 8 for Interleave Burst
- Programmable CAS Latency; 2, 3 Clocks

ORDERING INFORMATION

Part No.	Clock Frequency	Power	Organization	Interface	400mil 54pin TSOP II
HY57V561620C(L)T(P)-6	166MHz				
HY57V561620C(L)T(P)-7	143MHz	1			
HY57V561620C(L)T(P)-K	133MHz	(Normal)			(Leaded)
HY57V561620C(L)T(P)-H	133MHz	` / ´	4Banks x 4Mbits x16	LVTTL	, ,
HY57V561620C(L)T(P)-8	125MHz	Low Power			Lead Free
HY57V561620C(L)T(P)-P	100MHz	1			
HY57V561620C(L)T(P)-S	100MHz				

Note:

1. HY57V561620CT Series : Nomal power & Leaded 54Pin TSOP II

2. HY57V561620CLT Series : Low power & Leaded 54Pin TSOP II

3. HY57V561620CTP Series : Nomal power & Lead Free 54Pin TSOP II

4. HY57V561620CLTP Series: Low power & Lead Free 54Pin TSOP II

This document is a general product description and is subject to change without notice. Hynix Semiconductor Inc. does not assume any responsibility for use of circuits described. No patent licenses are implied.

Rev. 0.5 / June 2004

PIN CONFIGURATION

PIN DESCRIPTION

PIN	PIN NAME	DESCRIPTION
CLK	Clock	The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh
CS	Chip Select	Enables or disables all inputs except CLK, CKE, UDQM and LDQM
BA0, BA1	Bank Address	Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity
A0 ~ A12	Address	Row Address : RA0 ~ RA12, Column Address : CA0 ~ CA8 Auto-precharge flag : A10
RAS, CAS, WE	Row Address Strobe, Column Address Strobe, Write Enable	RAS, CAS and WE define the operation Refer function truth table for details
UDQM, LDQM	Data Input/Output Mask	Controls output buffers in read mode and masks input data in write mode
DQ0 ~ DQ15	Data Input/Output	Multiplexed data input / output pin
VDD/VSS	Power Supply/Ground	Power supply for internal circuits and input buffers
VDDQ/VSSQ	Data Output Power/Ground	Power supply for output buffers
NC	No Connection	No connection

FUNCTIONAL BLOCK DIAGRAM

4Mbit x 4banks x 16 I/O Synchronous DRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Ambient Temperature	TA	0 ~ 70	°C
Storage Temperature	TSTG	-55 ~ 125	°C
Voltage on Any Pin relative to VSS	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD relative to VSS	VDD, VDDQ	-1.0 ~ 4.6	V
Short Circuit Output Current	IOS	50	mA
Power Dissipation	PD	1	W
Soldering Temperature · Time	TSOLDER	260 · 10	°C · Sec

Note: Operation at above absolute maximum rating can adversely affect device reliability

DC OPERATING CONDITION (TA=0 to 70°C)

Parameter	Symbol	Min	Тур.	Max	Unit	Note
Power Supply Voltage	VDD, VDDQ	3.0	3.3	3.6	V	1
Input High Voltage	VIH	2.0	3.0	VDDQ + 0.3	V	1,2
Input Low Voltage	VIL	- 0.3	0	0.8	V	1,3

Note

1.All voltages are referenced to VSS = 0V

2.VIH (max) is acceptable 5.6V AC pulse width with ≤3ns of duration

3.VIL (min) is acceptable -2.0V AC pulse width with ≤3ns of duration

AC OPERATING CONDITION (TA=0 to 70°C, VDD=3.3 ± 0.3V, VSS=0V)

Parameter	Symbol	Value	Unit	Note
AC Input High / Low Level Voltage	VIH / VIL	2.4/0.4	V	
Input Timing Measurement Reference Level Voltage	Vtrip	1.4	V	
Input Rise / Fall Time	tR / tF	1	ns	
Output Timing Measurement Reference Level	Voutref	1.4	V	
Output Load Capacitance for Access Time Measurement	CL	50	pF	1

Note:

Output load to measure access time is equivalent to two TTL gates and one capacitor (50pF)
 For details, refer to AC/DC output circuit

Rev. 0.5 / June 2004

CAPACITANCE (TA=25°C, f=1MHz)

Parameter	Pin	Symbol	-6/7	/K/H	-8/	P/S	Unit
rarameter		Cymbol	Min	Max	Min	Max	J
Input capacitance	CLK	CI1	2.5	3.5	2.5	4.0	pF
	A0 ~ A12, BA0, BA1, CKE, CS, RAS, CAS, WE, UDQM, LDQM	Cl2	2.5	3.8	2.5	5.0	pF
Data input / output capacitance	DQ0 ~ DQ15	CI/O	4.0	6.5	4.0	6.5	pF

OUTPUT LOAD CIRCUIT

DC Output Load Circuit

AC Output Load Circuit

DC CHARACTERISTICS I (TA=0 to 70°C, VDD=3.3±0.3V)

Parameter	Symbol	Min.	Max	Unit	Note
Input Leakage Current	ILI	-1	1	uA	1
Output Leakage Current	ILO	-1	1	uA	2
Output High Voltage	VOH	2.4	-	V	IOH = -4mA
Output Low Voltage	VOL	-	0.4	V	IOL = +4mA

Note

1.VIN = 0 to 3.6V, All other pins are not tested under VIN = 0V

2.DOUT is disabled, VOUT=0 to 3.6V

DC CHARACTERISTICS II (TA=0 to 70°C, VDD=3.3±0.3V, VSS=0V)

Parameter	Symbol	Test Condition				Speed				Unit	Note
i arameter	Symbol	rest condition	-6	-7	-K	K -H -8 -P -S		Oiiit	Note		
Operating Current	IDD1	Burst length=1, One bank active 130 110 110 100 1						mA	1		
Precharge Standby Current	IDD2P	CKE ≤ VIL(max), tCK = 15ns 2							mA		
in Power Down Mode	IDD2PS	$CKE \le VIL(max)$, $tCK = \infty$				1				IIIA	
Precharge Standby Current in Non Power Down Mode	IDD2N	CKE \geq VIH(min), $\overline{\text{CS}} \geq$ VIH(min), tCK = 15ns Input signals are changed one time during 30ns. All other pins \geq VDD-0.2V or \leq 0.2V	put signals are changed one time during 20					mA			
III NOITI OWEI DOWN Wode	IDD2NS	$KE \ge VIH(min), tCK = \infty$ put signals are stable.									
Active Standby Current	IDD3P	CKE ≤ VIL(max), tCK = 15ns 3						mA			
in Power Down Mode	IDD3PS	$CKE \le VIL(max)$, $tCK = \infty$				3				111/4	
Active Standby Current in Non Power Down Mode	IDD3N	CKE \geq VIH(min), $\overline{\text{CS}} \geq$ VIH(min), tCK = 15ns Input signals are changed one time during 30ns. All other pins \geq VDD-0.2V or \leq 0.2V				30				mA	
III Non Fower Down Mode	IDD3NS	CKE \geq VIH(min), tCK = ∞ Input signals are stable.				25					
Burst Mode Operating Current	IDD4	tCK ≥ tCK(min), IOL=0mA All banks active	150	130	130	130	130	110	110	mA	1
Auto Refresh Current	IDD5	tRRC ≥ tRRC(min), All banks active	220	220	220	220	200	200	200	mA	2
Self Refresh Current	IDD6	CKE < 0.2V				3			mA	3	
Common Curron	.550	J J J J J J J				1.5				mA	4

Note:

 ${\it 1.IDD1} \ and \ {\it IDD4} \ depend \ \underline{on \ o} utput \ loading \ and \ cycle \ rates. \ Specified \ values \ are \ measured \ with \ the \ output \ open$

2.Min. of tRRC (Refresh RAS cycle time) is shown at AC CHARACTERISTICS II

^{3.}HY57V561620CT(P)-6/7/K/H/8/P/S

^{4.}HY57V561620CLT(P)-6/7/K/H/8/P/S

AC CHARACTERISTICS I (AC operating conditions unless otherwise noted)

Parameter		Symbol	-	6	=	7	-1	K	-1	Н	-	8	-	P	-	s	Unit	Note
Fala	Parameter		Min	Max	Onit	Note												
System Clock	CAS Latency = 3	tCK3	6	1000	7	1000	7.5	1000	7.5	1000	8	1000	10	1000	10	1000	ns	
Cycle Time	CAS Latency = 2	tCK2	7.5	1000	10	1000	7.5	1000	10	1000	10	1000	10	1000	12	1000	ns	
Clock High Pulse	Width	tCHW	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Clock Low Pulse V	Vidth	tCLW	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Access Time	CAS Latency = 3	tAC3	-	5.4	-	5.4	-	5.4	-	5.4	-	6	-	6	-	6	ns	
From Clock	CAS Latency = 2	tAC2	-	6	-	6	-	5.4	-	6	-	6	-	6	-	6	ns	2
Data-Out Hold Tim	ne	tOH	2.7	-	2.7	-	2.7	-	2.7	-	3	-	3	-	3	-	ns	
Data-Input Setup	Гime	tDS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Data-Input Hold Ti	me	tDH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
Address Setup Tin	ne	tAS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Address Hold Time	Э	tAH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
CKE Setup Time		tCKS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
CKE Hold Time		tCKH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
Command Setup	Гime	tCS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Command Hold Ti	me	tCH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
CLK to Data Outpo	ut in Low-Z Time	tOLZ	1	-	1	-	1	-	1	-	1	-	1	-	1	-	ns	
CLK to Data	CAS Latency = 3	tOHZ3	2.7	5.4	2.7	5.4	2.7	5.4	2.7	5.4	3	6	3	6	3	6	ns	
Output in High-Z Time	CAS Latency = 2	tOHZ2	2.7	5.4	2.7	5.4	2.7	5.4	3	6	3	6	3	6	3	6	ns	

Note

^{1.}Assume tR / tF (input rise and fall time) is 1ns $\,$

^{2.}Access times to be measured with input signals of 1v/ns edge rate

AC CHARACTERISTICS II

Poro	Parameter		-	6		7	-	к	-1	Н	-	8	-	Р	-	s	Unit	Note
Faia			Min	Max	Oilit	Note												
RAS Cycle Time	Operation	tRC	60	-	60	-	60	-	65	-	68	-	70	-	70	-	ns	
KAS Cycle Time	Auto Refresh	tRRC	60	-	60	-	60	-	65	-	68	-	70	-	70	-	ns	
RAS to CAS Delay	/	tRCD	18	-	18	-	15	-	20	-	20	-	20	-	20	-	ns	
RAS Active Time		tRAS	42	100K	42	100K	45	100K	45	100K	48	100K	50	100K	50	100K	ns	
RAS Precharge Til	me	tRP	18	-	18	-	15	-	20	-	20	-	20	-	20	-	ns	
RAS to RAS Bank	Active Delay	tRRD	12	-	14	-	15	-	15	-	16	-	20	-	20	-	ns	
CAS to CAS Delay	/	tCCD	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Write Command to	Data-In Delay	tWTL	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
Write Recovery Tir	me	tWR	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Data-In to Active C	Command	tDAL	5	-	5	-	5	-	5	-	5	-	5	-	5	-	CLK	
DQM to Data-Out	Hi-Z	tDQZ	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
DQM to Data-In M	ask	tDQM	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
MRS to New Comi	mand	tMRD	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Precharge to Data	CAS Latency = 3	tPROZ3	3	-	3	-	3	-	3	-	3	-	3	-	3	-	CLK	
Output Hi-Z	CAS Latency = 2	tPROZ2	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Power Down Exit	Time	tPDE	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Self Refresh Exit T	lime	tSRE	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	1
Refresh Time		tREF	-	64	-	64	-	64	-	64	-	64	-	64	-	64	ms	

Note:

1. A new command can be given tRRC after self refresh exit

IBIS SPECIFICATION

ІОН Characteristics (Pull-up)

Voltage	100MHz (Min)	100MHz (Max)	66MHz (Min)
(V)	I(mA)	I(mA)	I(mA)
3.45		-2.4	
3.3		-27.3	
3.0	0	-74.1	-0.7
2.6	-21.1	-129.2	-7.5
2.4	-34.1	-153.3	-13.3
2.0	-58.7	-197	-27.5
1.8	-67.3	-226.2	-35.5
1.65	-73	-248	-41.1
1.5	-77.9	-269.7	-47.9
1.4	-80.8	-284.3	-52.4
1.0	-88.6	-344.5	-72.5
0	-93	-502.4	-93

IOL Characteristics (Pull-down)

Voltage	100MHz (Min)	100MHz (Max)	66MHz (Min)
(V)	I(mA)	I(mA)	I(mA)
0	0	0	0
0.4	27.5	70.2	17.7
0.65	41.8	107.5	26.9
0.85	51.6	133.8	33.3
1.0	58.0	151.2	37.6
1.4	70.7	187.7	46.6
1.5	72.9	194.4	48.0
1.65	75.4	202.5	49.5
1.8	77.0	208.6	50.7
1.95	77.6	212.0	51.5
3.0	80.3	219.6	54.2
3.45	81.4	222.6	54.9

66MHz and 100MHz Pull-down

DEVICE OPERATING OPTION TABLE

HY57V561620C(L)T(P)-6

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
166MHz(6ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.4ns	2.7ns
143MHz(7ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133MHz(7.5ns)	2CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns

HY57V561620C(L)T(P)-7

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
143MHz(7ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133MHz(7.5ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns

HY57V561620C(L)T(P)-K

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
133MHz(7.5ns)	2CLKs	2CLKs	6CLKs	8CLKs	2CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns

HY57V561620C(L)T(P)-H

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
133MHz(7.5ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns

HY57V561620C(L)T-8

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

HY57V561620C(L)T(P)-P

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
66MHz(15ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

HY57V561620C(L)T(P)-S

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
100MHz(10ns)	3CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
66MHz(15ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

Rev. 0.5 / June 2004

COMMAND TRUTH TABLE

Comma	nd	CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	ADDR	A10/ AP	ВА	Note		
Mode Register Se	et	Н	Х	L	L	L	L	Х	OP code					
		Н	,,	Н	Х	Х	Х			.,				
No Operation	No Operation		Х	L	Н	Н	Н	- X		X				
Bank Active		Н	Х	L	L	Н	Н	Х	R	.A	V			
Read		- Н	Х	L	Н	L	Н	Х	CA	L	V			
Read with Autopr	echarge	1 "	^	L		_		_ ^	CA	Н	V			
Write		- Н	Х	L	Н	L		Х	CA	L				
Write with Autopr	echarge	1 "	^	L		_	L	_ ^	CA	Н	V			
Precharge All Ba	Precharge All Banks		Х	L	L		- L	V	x x	Н	Х			
Precharge select	Precharge selected Bank		^	L	_	п		_ ^		L	V			
Burst Stop		Н	Х	L	Н	Н	L	Х	Х					
DQM	DQM				Х			V	Х					
Auto Refresh		Н	Н	L	L	L	Н	Х		Х				
Burst-Read-Singl	e-WRITE	Н	Х	L	L	L	Н	Х		A9 Pin Higl er Pins OP				
	Entry	Н	L	L	L	L	Н	Х						
Self Refresh ¹	Exit	L		1	Н	Н	Х	Х	Х	- X		Χ		
	LXII		11	L	Н	Н	Н	^						
	Entry	н	L	Н	Х	Х	Х	X						
Precharge	Entry		_	L	Н	Н	Н		X					
power down	Exit	L	Н	Н	Х	Х	Х	X		^				
	EXIL		"	L	Н	Н	Н] ^						
	Enter:	Н		Н	Х	Х	Х	Х						
Clock Suspend	Entry	"	L	L	V	V	V	7	X					
·	Exit	L	Н			X	•	Х						

Note

^{1.} Exiting Self Refresh occurs by asynchronously bringing CKE from low to high

^{2.} X = Don't care, H = Logic High, L = Logic Low. BA =Bank Address, RA = Row Address, CA = Column Address, Opcode = Operand Code, NOP = No Operation

PACKAGE INFORMATION

400mil 54pin Thin Small Outline Package

