# Flattening the Curve? On-Demand Delivery Platforms and Demand Dispersion

#### Yixuan Liu

China Europe International Business School

#### Allen Li

Wisconsin School of Business University of Wisconsin-Madison

POMS 2025



The Market will Grow 12% The forecasted market \$483.9B nu market.us size for 2032 in USD:

## Do on-demand delivery platforms benefit restaurants?

## McDonald's and UberEATS Have a Happy Deal Medium



#### Benefits:

- Flexible access to delivery service
- An internet channel to serve customers

Li and Wang (2024), ISR Li and Wang (2024), MS Mayya and Li (2024), ISR Why Food Delivery Companies
May Be Doing More Harm
Than Good, And How
Restaurants Can Fix It



#### Costs:

- Cannibalizing restaurants' own channels (takeout/dine-in)
- Extra costs (delivery/commission fees)



#### **Bucciferro Family McDonald's**

3.5 ★★★★★ (854) ⋅ \$1–10 Fast food restaurant · 💰

Overview Reviews About











**Directions** Save Nearby Send to phone

**Share** 

>

#### **ORDER ONLINE**

- ✓ Dine-in · ✓ Drive-through
- ✓ Delivery

4500 University Ave, Madison, WI 53705



Demand varies over the day

- Lunch hours: long waiting time
- Least busy hours: few visitors

Popular times Fridays ▼



"Flattening the curve" as a public health strategy



## Questions

- How does adding an on-demand delivery option shape customer arrival patterns?
  - Flattening the curve, or the opposite?
  - Under what conditions?



## A Bottleneck Model

Arnott et al. (1988)



## Base Model

Total market size of M homogenous customers

Two channels  $j \in \{I, O\}$ 

• Channel I: dine in

• Channel *O* : ordering delivery

#### Assumptions:

- All customers have the same desired dining time  $t^*$
- First-come, first-served. No discrimination based on arrival channels

## Customer Cost Function

Total cost for a customer joining the queue at time t via channel  $j \in \{I, O\}$  is

$$C_j(t) = \alpha_j W(t) + \beta |deviation from t^*| + \gamma_j$$

Delivery less sensitive to waiting

$$\alpha_I \geq \alpha_O$$

- W(t): Waiting time in queue W(t) = Q(t)/s, i.e., queue length divided by capacity
- $\gamma_I$ : fixed cost associated with dine in (e.g., cost to get to the restaurant)
- $\gamma_0$ : fixed cost associated with delivery (e.g., delivery fee)

#### Decision variables:

- $j \in \{I, O\}$ : dine in or delivery
- ullet t: time to join the queue. For dine in, time of arriving at the restaurant; For delivery, time of placing the order

## Case I: Dine-In Only

$$C_I(t) = \alpha_I W(t) + \beta |deviation from t^*| + \gamma_I$$
  
 $W(t) = Q(t)/s$ 



## Case O: Delivery Only

$$C_j(t) = \alpha_j W(t) + \beta |deviation from t^*| + \gamma_j$$
  
 $W(t) = Q(t)/s$   $\alpha_I > \alpha_O$ 



 More orders arrive earlier



Empirical Analysis

### Panel Data

30,565 restaurants in California from Jan 2018 to Dec 2019 Restaurant characteristics from Yelp

• Price level, rating, cuisines, location, etc.

Restaurant partnership with major food delivery platforms

■ DoorDash, Grubhub & Uber Eats, combined mkt share >95%

Restaurant visits from a mobile tracking company

- 35+ million unique devices, good representative of US population
- # hourly visits to each restaurant location
- Duration of stay
  - $0^{\sim}20$  minutes
  - 20~120 minutes
  - > 4 hours

| Category                              | Number of Restaurants | Number (Percentage) on Platforms | Average Price<br>Level (0-4) | Average Rating |
|---------------------------------------|-----------------------|----------------------------------|------------------------------|----------------|
| Full-Service                          | 15,164                | 6,893 (45.5%)                    | 1.76                         | 4.04           |
| Limited-Service                       | 12,104                | 6,000 (49.6%)                    | 1.22                         | 3.95           |
| Snack & Nonalcoholic<br>Beverage Bars | 3,297                 | 888 (26.9%)                      | 1.02                         | 3.90           |

## Empirical Measures of Dispersion

• For a restaurant on day d, the density of order arrivals at time h is

$$p_{d,h} \triangleq \frac{N_{d,h}}{\sum_{h=\underline{T}}^{\overline{T}} N_{d,h}}$$

Shannon index of dispersion is

$$ShannonIndex_{d} = -\sum_{h=T}^{T} p_{d,h} \ln(p_{d,h})$$

• Larger ShannonIndex means a more dispersed (i.e., flatter) distribution

## More Empirical Measures of Demand Dispersion

• Simpson's index of dispersion (Herfindahl-Hirschman Index)

$$SimpsonIndex_d = 1 - \sum_{h=T}^{T} p_{d,h}^2$$

Larger SimpsonIndex means a more dispersed (i.e., flatter) distribution

- Ripley's K and L functions
  - Detect whether points have a random, dispersed or clustered distribution pattern
  - Take into account the temporal sequence of customer orders
  - KS statistics on Ripley's K function

## Model-Free Evidence



## Overall Effects on Dispersion and Total Demand

|                          | Dispersion           |                        |                         | Total Demand         |  |
|--------------------------|----------------------|------------------------|-------------------------|----------------------|--|
|                          | ShannonIndex         | SimpsonIndex           | KSRipley                | Visits               |  |
| OnPlatform               | 0.025***<br>(0.0021) | 0.0043***<br>(0.00057) | -0.0073***<br>(0.00053) | 0.018***<br>(0.0021) |  |
| Restaurant Fixed Effects | Yes                  | Yes                    | Yes                     | Yes                  |  |
| Week Fixed Effects       | Yes                  | Yes                    | Yes                     | Yes                  |  |
| N                        | 2,485,960            | 2,485,960              | 2,485,960               | 2,485,960            |  |
| adj. R-sq                | 0.894                | 0.592                  | 0.899                   | 0.637                |  |

## Impact on Different Types of Restaurants

|                                    | ShannonIndex |
|------------------------------------|--------------|
| On Dlands                          | 0.012***     |
| OnPlatform                         | (0.0033)     |
| OnPlatform                         | 0.025***     |
| × Limited-ServiceRestaurants       | (0.0042)     |
| OnPlatform                         | 0.0066       |
| imes SnackNonalcoholicBeverageBars | (0.0090)     |
| Restaurant Fixed Effects           | Yes          |
| Week Fixed Effects                 | Yes          |
| N                                  | 2,485,960    |
| adj. R-sq                          | 0.894        |

## Moderating Role of Residential and Job Density

• The increase in visits is weaker in higher-density areas. Similarly, the effect of flattening the demand curve is also less predominant for restaurants operating in denser areas.

|                            | Total L               | Demand                | Shanno                | onIndex               | KSR                     | ipley                   |
|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|
| OnPlatform                 | 0.017***<br>(0.0021)  | 0.018***<br>(0.0022)  | 0.024***<br>(0.0021)  | 0.024***<br>(0.0021)  | -0.0069***<br>(0.00052) | -0.0069***<br>(0.00053) |
| $OnPlatform \times RAC$    | -0.020***<br>(0.0018) |                       | -0.033***<br>(0.0030) |                       | 0.0092***<br>(0.00077)  |                         |
| $OnPlatform \times WAC$    |                       | -0.015***<br>(0.0033) |                       | -0.030***<br>(0.0042) |                         | 0.0077***<br>(0.0011)   |
| Restaurant Fixed<br>Effect | Yes                   | Yes                   | Yes                   | Yes                   | Yes                     | Yes                     |
| Week Fixed Effect          | Yes                   | Yes                   | Yes                   | Yes                   | Yes                     | Yes                     |
| N                          | 2,485,650             | 2,485,650             | 2,485,650             | 2,485,650             | 2,485,650               | 2,485,650               |
| adj. R-sq                  | 0.638                 | 0.638                 | 0.894                 | 0.894                 | 0.899                   | 0.899                   |

## Changes in Employee Count

• Platform-driven demand smoothing occurs primarily through the utilization of existing spare capacity rather than through expansion of capacity.

|                          | Workers <sup>120~240</sup> | Workers <sup>&gt;240</sup> |
|--------------------------|----------------------------|----------------------------|
| OnPlatform               | -0.0022<br>(0.031)         | 0.069<br>(0.050)           |
| Restaurant Fixed Effects | Yes                        | Yes                        |
| Week Fixed Effects       | Yes                        | Yes                        |
| N                        | 2,290,234                  | 2,290,234                  |
| adj. R-sq                | 0.697                      | 0.500                      |

## Summary

- Flatten the curve
- Theoretical lens: bottleneck model
- Empirical evidence:
  - the demand curves at limited-service restaurants are more evened
  - the effect of flattening the demand curve is also less predominant for restaurants operating in denser areas
  - no change in employee count

Thank you

Q&A