Excel converter for Jihyun GSA project

December 13, 2015

Contents

1	Intr	oducti	on	2
2	Definition of the mapping from source to target format			2
	2.1	Input	data quality check - Energy Information	3
		2.1.1	Number of missing value	3
		2.1.2	Ranges	4
		2.1.3	Non-negativity	5
	2.2	Input	data quality check - Static info	5
		2.2.1	Missing data in PM file	5
		2.2.2	Duplicate and missing record in EUAM template	6
	2.3 Clean up summary			9
		2.3.1	Retrieving region information summary	10
3	Clea	aned u	p and combined file	10
4	Pro	cessing	g data	10
	4.1	Range	s of data for each meter type	10

1 Introduction

The document records the implementation of the data converter from excel to csv for Jihyn.

2 Definition of the mapping from source to target format

Via the discussion in the first meeting, the mapping from source PM table (containing energy consumption information) to the target EUAS template is depicted in Table 1: As described

Table 1: Excel merging script field mapping table

Source			target	Condition
sheet name		field name		
Propert	ies	State/Province	State	
Propert	ies	Gross Floor Area	GSF	
Propert	ies	Year Built	Year Built	
Propert	ies	Postal Code	Postal Code (first 5 digit)	
Property	y Use	Self-Selected Primary Function	Use Type	
Meter	Consumption	Property Name	Building ID	
Data				
Meter	Consumption	End Date (month)	Month	
Data				
Meter	Consumption	End Date (year)	Year	
Data				
Meter Data	Consumption	(Usage/Quantity, Meter Type)	Elec Amt	if Meter Type = Electric - Grid
		,	Gas Amt	if Meter Type = Natural Gas
			Oil Amt	if Meter Type = Fuel Oil (No. 2)
			Water Amt	if Meter Type = Potable: Mixed In-
				door/Outdoor
Meter Data	Consumption	(Usage/Quantity, Meter Type)	Elec Cost	if Meter Type = Electric - Grid
		V-1 /	Gas Cost	if Meter Type = Natural Gas
			Oil Cost	if Meter Type = Fuel Oil (No. 2)
			Water Cost	if Meter Type = Potable: Mixed In-
				door/Outdoor
Meter Data	Consumption	Portfolio Manager ID	Portfolio Manager ID	
Meter	Consumption	Portfolio Manager Me-	Portfolio Manager Me-	
Data		ter ID	ter ID	

in following sections, this template design of creating several columns (Usage/Quantity, Meter ID, unit, Cost (\$))for each new energy usage type have several draw backs:

- The large number of different energy usage types (19 in total) will result in large number of columns
- The large variety in the number of energy record for each types of energy source will result in a large number of waste space in the table: for example, there are only 12 records for 'Electric Wind' but 111065 records for 'Electric Grid'. For the EUAS template with different columns for different energy source, there will be 111065-12=111053 empty cells in the column of 'Electric Wind'
- If in the future, the new type of energy usage is included, the structure of the table will change (the number of columns), this requires reprocessing the whole table again. If we maintain the way of keeping all energy consumption stacked on top of each other (the way in PM table), we can either append records of the new resource to the end or save it to another table without affecting the already tidied data.

Thus I propose to maintain the structure of the PM in recording energy usage information. Hence the mapping of fields from source to target table would be as the following:

Table 2: Excel merging script field mapping table

Table 2. Enter merama seript nera mapping table			
Source		target	
sheet name	field name		
Properties	State/Province	State	
Properties	Country	Country	
Properties	Gross Floor Area	GSF	
Properties	Year Built	Year Built	
Properties	Postal Code	Postal Code (first 5 digit)	
Property Use	Self-Selected Primary Function	Use Type	
Meter Consumption Data	Property Name	Building ID	
Meter Consumption Data	End Date (month)	Month	
Meter Consumption Data	End Date (year)	Year	
Meter Consumption Data	(Usage/Quantity, Meter Type)	Usage/Quantity	
Meter Consumption Data	(Usage/Quantity, Meter Type)	Cost (\$)	
Meter Consumption Data	Portfolio Manager ID	Portfolio Manager ID	
Meter Consumption Data	Portfolio Manager Meter ID	Portfolio Manager Meter ID	

2.1 Input data quality check - Energy Information

2.1.1 Number of missing value

From the output of the script, one can see there are missing data in the following fields:

• End Date: 39 missing data.

• "Cost\$": 12942 missing data.

For "End Date", we will discard these records with, for "Cost (\$)", we'll first mark the missing data with "-1", and discard it when doing cost related analysis

checking num		_			##
Portfolio Ma				 	-##
non_Null	_				
dtype: int64	l				
##				 	-##
Portfolio Ma	anager	Meter I	D		
non_Null	344509)			
dtype: int64					
##				 	-##
Meter Type					
non_Null		9			
dtype: int64					
##				 	-##
End Date					
non_Null					
Null	. 39	9			
dtype: int64					
## Usage/Quanti				 	-##
non_Null	•)			
dtype: int64		,			
##				 	-##
Usage Units					
non_Null	344509)			
dtype: int64	l				
##				 	-##
Cost (\$)					
non_Null	331567	7			
Null	12942	2			
dtype: int64	<u>l</u>				

2.1.2 Ranges

From the range checking, one can see there are missing values for 'End Date' (marked as 'inf') and illegal values for the 'Usage/Quantity' (negative values)

Portfolio Manager ID	600	4428021
Portfolio Manager Meter ID	519	15550834
End Date	inf	2015-09-01 00:00:00
${\tt Usage/Quantity}$	-1385200.0	513798464.0
Cost (\$)	0.0	7858632.0

Note: when pandas read in date time, it converts missing datetime data to current date by default, which is why it shows up as inf (infinity)

2.1.3 Non-negativity

Checking the number of negative records for each group of energy consumption. From the result, we can see there are 108 records in District Chilled Water and 151 records in District Hot Water with negative energy consumption records, which is identified as illegal records that needs to be removed.

value	Meter Type		
<0	District Chilled Water - Electric	108	
	District Hot Water	151	
>=0	District Chilled Water - Absorption	153	
	District Chilled Water - Electric	528	
	District Chilled Water - Engine	49	
	District Chilled Water - Other	5925	
	District Hot Water	220	
	District Steam	15784	
	Electric - Grid	111065	
	Electric - Solar	1900	
	Electric - Wind	12	
	Fuel Oil (No. 2)	20534	
	Natural Gas	79492	
	Other Indoor	14	
	Other:	580	
	Other: Mixed Indoor/Outdoor	467	
	Potable Indoor	1177	
	Potable: Mixed Indoor/Outdoor	98474	
	Power Distribution Unit (PDU) Input Meter	16	
	Power Distribution Unit (PDU) Output Meter 106		
	Uninterruptible Power Supply (UPS) Output Meter	7754	
dtype:	int64		

After removing 39 missing "End Date" and 259 negative "Usage/Quantity", there are 344211 legal records to be further processed.

2.2 Input data quality check - Static info

2.2.1 Missing data in PM file

There are no missing data for the static information in sheet-0 of the PM file

```
checking numer of missing values for columns ## -----##
Property Name
```

```
non_Null
       850
dtype: int64
## -----##
Portfolio Manager ID
non_Null
       850
dtype: int64
## -----##
State/Province
non_Null
       850
dtype: int64
## -----##
Postal Code
non_Null
       850
dtype: int64
## -----##
Year Built
       850
non_Null
dtype: int64
## -----##
Gross Floor Area
non_Null
       850
dtype: int64
```

2.2.2 Duplicate and missing record in EUAM template

First read in "Building ID" and "Region" columns from EUAM template table, for each ("Building ID", "Region")pair, there are 11 duplicate records.

Per Jiyhun's advice, I should look up the 'Region' field with building id in PM table from the EUAS template, since there are more buildings in EUAS (1065) than in PM(850). However, after reading both tables, I found there are only 120 common buildings in the two files, which means one cannot use EUAS table as a lookup table to retrieve region information for buildings in the PM file.

```
850 buildings in PM
1065 buildings in EUAS
120 common building records between PM and EUAS
```

Jiyhun pointed out the link to the definition of the GSA lookup, and GSA region map.

There is a Canada state from the PM file, the following output shows the number of buildings in each state/Country in the PM file:

		5	
Canada		British Columbia	1
United	States		12
		Alaska	10
		Arizona	16
		Arkansas	9
		California	44
		Colorado	43
		Connecticut	6
		Delaware	1
		District of Columbia (D.C.)	44
		Florida	25
		Georgia	27
		Hawaii	3
		Idaho	4
		Illinois	23
		Indiana	10
		Iowa	6
		Kansas	4
		Kentucky	11
		Louisiana	14
		Maine	24
		Maryland	35
		Massachusetts	16
		Michigan	19
		Minnesota	14
		Mississippi	9
		Missouri	11
		Montana	10
		Nebraska	5
		Nevada	6
		New Hampshire	5
		New Jersey	11
		New Mexico	14
		New York	48
		North Carolina	14
		North Dakota	15
		Ohio	21
		Oklahoma	7
		Oregon	11
		Pennsylvania	15
		Puerto Rico	4
		Rhode Island	2
		South Carolina	14
		South Dakota	5
		Tennessee	12

Texas	80
Utah	9
Vermont	24
Virgin Islands of the U.S.	2
Virginia	17
Washington	34
West Virginia	12
Wisconsin	6
Wyoming	6

The non-U.S. state should be dropped in the analysis, because it is not in the definition of GSA region.

2.3 Clean up summary

- PM sheet-0, static information
 - Turn 'Property Name' from 'XXXXXXXX XXXXXXXXX' to just the string before '-'
 - Keep only 5 digit for zip code
 - Drop non-U.S. state
- PM sheet-5, energy information
 - Drop missing data for 'End Date'
 - Mark missing cost data as '-1'
 - Drop negative energy consumption record
 - Drop non-U.S. state

The cleaned up energy information

Checking non-negativity after initial clean				
>=0	344211			
dtype:	int64			
is_nn	Meter Type			
>=0	District Chilled Water - Absorption	153		
	District Chilled Water - Electric	528		
	District Chilled Water - Engine	49		
	District Chilled Water - Other	5925		
	District Hot Water	220		
	District Steam	15784		
	Electric - Grid	111065		
	Electric - Solar	1900		
	Electric - Wind	12		
	Fuel Oil (No. 2)	20495		
	Natural Gas	79492		
	Other Indoor	14		
	Other:	580		
	Other: Mixed Indoor/Outdoor	467		
	Potable Indoor	1177		
	Potable: Mixed Indoor/Outdoor	98474		
	Power Distribution Unit (PDU) Input Meter	16		
	Power Distribution Unit (PDU) Output Meter	106		
	Uninterruptible Power Supply (UPS) Output Meter	7754		

Ranges of columns

Portfolio Manager ID 600 4428021

15550834	519	Portfolio Manager Meter ID
2015-09-01 00:00:00	1998-06-30 00:00:00	End Date
513798464.0	0.0	${\tt Usage/Quantity}$
7858632.0	-1.0	Cost (\$)

2.3.1 Retrieving region information summary

I digitized the GSA region in into a table from GSA lookup and combined it with the data frame with the static information. State abbreviation table is retrieved from http://www.stateabbreviations.us/

Attention should be paid for U.S. owned island, since they don't appear in GSA region map.

3 Cleaned up and combined file

After cleaning the static and the energy information, retrieving region information and merging these three tables: static, energy and region, there are 344118 records in the cleaned up table.

Data columns (total 16 columns):

Portfolio Manager ID	344118 non-null int64
Portfolio Manager Meter ID	344118 non-null int64
Meter Type	344118 non-null object
End Date	344118 non-null object
Usage/Quantity	344118 non-null float64
Usage Units	344118 non-null object
Cost (\$)	344118 non-null float64
Year	344118 non-null int64
Month	344118 non-null int64
Building ID	344118 non-null object
State	344118 non-null object
Postal Code	344118 non-null int64
Country	344118 non-null object
Year Built	344118 non-null int64
GSF	344118 non-null int64
Region	344118 non-null int64