Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО КУРСОВОЙ РАБОТЕ

Выполнил студенты группы 3630102/70401

Темиргалиев Р.А.

Преподаватель

Баженов А. Н

Санкт-Петербург 2020

Содержание

1	Постановка задачи	3
2	Теория	3
	2.1 Введение	3
	2.2 Шумы	3
	2.3 Выбросы	3
3	Реализация	3
4	Результаты	4
5	Обсуждение	11

Список иллюстраций

1	Параметр threshold = 0.01	4
2	Параметр threshold = 0.21	5
3	Параметр threshold = 0.41	6
4	Параметр threshold = 0.61	7
5	Параметр threshold = 0.81	8
6	Параметр threshold = 0.97	9
7	Параметр threshold = 0.98	10
8	Параметр threshold = 0.99	11

1 Постановка задачи

Есть установка — токамак, маленький термоядерный реактор. В нем проводятся эксперименты — короткие разряды. [1] У каждого разряда токамака — отдельный файл типа «.sht». У разрядов существуют шумы и выбросы. Они «плохие» и мешают работе данными. Имеется алгоритм - реализованный Гареевой М., способный выделять области развития процесса, в которых предполагается наличие полезных сигналов (процессов). Надо проверить насколько устойчиво работает алгоритм.

2 Теория

2.1 Введение

У разрядов токамака существуют артефакты – это отдельные выбросы и шумы.

2.2 Шумы

Шумы — это горизонтальные участки разряда. Они означают, что аппаратура стала «деревянной», на время потеряла чувствительность. Такие участки могут быть только до и после полезного сигнала, на нем они быть не могут.

2.3 Выбросы

Выбросы — это экстремальные значения во входных данных, которые находятся далеко за пределами других наблюдений. Их очень легко увидеть: если точка сильно «улетела» вверх или вниз, то она является выбросом. Это помехи, поскольку реальные сигналы меняются относительно медленно.

3 Реализация

Лабораторная работа выполнена с помощью языка программирования Python. Исходный код лабораторных работ приведён в Githab.

Работа по удалению шумов и сглаживанию выбросов начинается в функции: **def process(timestamp, signal, step=100)**, у которой следующие входные параметры:

- 1. signal весь сигнал;
- 2. step размер шага (окно), с которым мы идем по сигналу.

Сначала нам нужно удалить шумы. Поэтому с помощью построенной гистограммы [2] мы находим границы 2-ух самых больших ее столбцов.

Далее вызывается функция getusefulsignalboundaries(signal, (edges[idx1], edges[idx1 + 1]), step), новые входные параметры которой отвечают за границы самого высокого столбика гистограммы и следующего за ним. По названию можно понять, что после отработки этой функции мы получим левую и правую границы полезного сигнала, то есть избавимся

от шумов.

Что происходит в этой функции? Мы идем по сигналу слева направо, а затем справа налево каким-то окном размера step. То есть мы берем часть сигнала размера step и смотрим, какие значения этой части находятся внутри границ нашего самого большого столбика гистограммы. Если процентное соотношение количества значений больше параметра threshold, то мы нашли участок шума.

Проверим насколько устойчив алгоритм к изменениям параметра $\underline{\text{threshold}}$ Будем его менять начиная с 0.01 до 0.97 с шагом 0.2 и отдельно рассмотрим 0.98 и 0.99 - пороговые значения должны быть интересны.

4 Результаты

Для следующих рисунков: Сигнал 20 и его гистограмма до (два рисунка сверху) и после обработки (рисунки снизу), файл sch38515

Рис. 1: Параметр threshold = 0.01

Рис. 2: Параметр threshold = 0.21

Рис. 3: Параметр threshold = 0.41

Рис. 4: Параметр threshold = 0.61

Рис. 5: Параметр threshold = 0.81

Рис. 6: Параметр threshold = 0.97

Рис. 7: Параметр threshold = 0.98

Рис. 8: Параметр threshold = 0.99

5 Обсуждение

Из рисунков выше можно сделать вывод о том, что при больших значениях параметра $\underline{\text{threshold}}$ - шум начинает считаться полезным сигналом например рисунок 8, при малых значениях - полезная часть считаеся шумом, например в рисунке 1 пик гистограммы наименьший среди всех рисунков. Таким образом при зачениях параметра 0.21-0.81 алгоритм можно считать устойчивым.

Список литературы

- [1] Токамак, маленький термоядерный реактор. http://strana-rosatom.ru/2017/02/28/
- [2] Гистограмма. https://ru.wikipedia.org/wiki/
- [3] Ссылка на репозиторий https://github.com/Brahialis0209/MatStat_labs/tree/master/course_work