

AO4486

100V N-Channel MOSFET

General Description

The AO4486 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

 $\begin{array}{lll} V_{DS} & 100V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 4.2A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & <79 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & <90 m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol Maximum		Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current	T _A =25°C		4.2		
	T _A =70°C	I _D	3.4	A	
Pulsed Drain Current ^C		I _{DM}	31		
Avalanche Current ^C		I _{AS} , I _{AR}	14	A	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	10	mJ	
	T _A =25°C	В	3.1	W	
Power Dissipation ^B	T _A =70°C	$-P_{D}$	2	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	31	40	°C/W			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	59	75	°C/W			
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W			

Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		100			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				1	μА		
						5			
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$		1.6	2.2	2.7	V		
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		31			Α		
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =3A			62.5	79	mΩ		
		T _J i	=125°C		121	151	11122		
		V_{GS} =4.5V, I_D =3A			68.5	90	mΩ		
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =3A			20		S		
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.74	1	V		
Is	Maximum Body-Diode Continuous Current					3.5	Α		
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz		620	778	942	pF		
Coss	Output Capacitance			38	55	81	pF		
C _{rss}	Reverse Transfer Capacitance			13	24	35	pF		
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.7	1.45	2.2	Ω		
SWITCHI	NG PARAMETERS								
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =3.0A		13	16.3	20	nC		
Q _g (4.5V)	Total Gate Charge			6.4	8.1	10	nC		
Q_{gs}	Gate Source Charge			2.2	2.8	3.4	nC		
Q_{gd}	Gate Drain Charge			2.4	4.1	5.8	nC		
t _{D(on)}	Turn-On DelayTime				6		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =16.7 Ω , R_{GEN} =3 Ω			2.5		ns		
t _{D(off)}	Turn-Off DelayTime				21		ns		
t _f	Turn-Off Fall Time				2.4		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =3A, dI/dt=500A/μs		14	21	28	ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =3A, dI/dt=500A/μs		65	94	123	nC		

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initialT₁=25° C.

D. The R_{NJA} is the sum of the thermal impedence from junction to lead R_{NJL} and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with

²oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

 $\label{eq:ldot} {\rm I_D}\left({\rm A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

