

Relations & Functions: Level 3 - Tutorial Problems

- 1. Consider the map $f: \mathbb{Q} \to \mathbb{R}$ defined by
 - (a) f(0) = 0
 - (b) $f(r) = \frac{p}{10^q}$ where $r = \frac{p}{q}$ with $p \in \mathbb{Z}, q \in \mathbb{N}$ and gcd(p, q) = 1

Then the map f is

- (a) one-to-one and onto
- (b) not one-to-one, but onto
- (c) onto, but not one-to-one
- (d) neither one-to-one nor onto
- 2. Let \mathbb{Z} denote the set of integers and $\mathbb{Z}_{\geq 0}$ denote the set $\{0, 1, 2, 3, \dots\}$. Consider the map $f : \mathbb{Z}_{\geq 0} \times \mathbb{Z} \to \mathbb{Z}$ given by $f(m, n) = 2^m \cdot (2n + 1)$. Then the map is
 - (1) onto (surjective) but not one-one (injective)
 - (2) one-one (injective) but not onto (surjective)
 - (3) both oen-one and onto
 - (4) neither one-one nor onto
- 3. The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by f(x) = (x-1)(x-2)(x-3)
 - (1) one-one but not onto
 - (2) onto but not one-one
 - (3) one-one and onto
 - (4) neither one-one nor onto
- 4. If $f(x) = cos([\pi^2]x) + cos([-\pi^2]x)$. Then
 - (1) $f(\frac{\pi}{2}) = -1$
 - $(2) \ f(\bar{\pi}) = 1$
 - (3) $f(\frac{\pi}{2}) = 0$
 - (4) $f(\frac{\pi}{4}) = 0$
- 5. If f(x) is satisfying $f(x)f(\frac{1}{x}) = f(x) + f(\frac{1}{x})$ and if f(3)=28, then f(4) is
 - (1) 63
 - (2) 65
 - (3) 17
 - (4) None of these
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying f(x+y) = f(x)f(y), $\forall x, y \in \mathbb{R}$ and $\lim_{x\to 0} f(x) = 1$. Which of the following are necessarily true? [D-2017]
 - (1) f is strictly increasing
 - (2) f is either constant or bounded.
 - (3) $f(rx) = f(x)^r$ for every rational $r \in \mathbb{Q}$
 - (4) $f(x) \ge 0, \ \forall x \in \mathbb{R}$

- 7. The number of real roots of $x^9 + x^7 + x^5 + x^3 + x + 1$ is
 - (1) 9
 - (2) 5
 - $(3) \ 3$
 - (4) 1
- 8. Using the fact that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log 2, \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$ is
 - $(1) 1 2 \log 2$
 - $(2) (\log 2)^3$
 - $(3) 1 + \log 2$
 - $(4) (1 \log 2)^2$
- 9. If $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, then $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$ is [J-2012]

 - $\begin{array}{l}
 (1) \ \frac{\pi^2}{12} \\
 (2) \ \frac{\pi^2}{12} 1 \\
 (3) \ \frac{\pi^2}{8} \\
 (4) \ \frac{\pi^2}{8} 1
 \end{array}$
- 10. Given that there are real constants a, b, c, d such that the identity $\lambda x^2 + 2xy + y^2 = (ax + by)^2 + (cx + dy)^2$ holds for all $x, y \in \mathbb{R}$. This implies
 - (1) $\lambda = -5$
 - (2) $\lambda \geq 1$
 - (3) $0 < \lambda < 1$
 - (4) there is no such $\lambda \in \mathbb{R}$
- 11. Let $f(x) = x^5 5x + 2$. Then [J-2018]
 - (1) f has no real root
 - (2) f has exactly one real root
 - (3) f has exactly three real roots
 - (4) all roots of f are real
- 12. Let p(x) be a polynomial function in one variable of odd degree and g be a continuous function from \mathbb{R} to \mathbb{R} . Then which of the following statements are true.
 - A. \exists a point $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$
 - B. If g is a polynomial function then there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$
 - C. If g is a bounded function there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$
 - D. There is a unique point $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$