

OBJECTIVES OF THE PROJECT.

- Develop a GAN for sampling points from a function.
- Develop a GAN to generate images from MNIST handwritten digit dataset.

ARCHITECTURE OF GANS

Discriminator

Architecture Binar

Input

Output

Binary Classifier

Real and fake samples

Probability that a

sample is real

Generator

Multi Layer Perceptron

Random noise

Fake samples

TRAINING THE DISCRIMINATOR

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

COST FUNCTION-

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

TRAINING THE GENERATOR

COST FUNCTION-

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right)$$

DEVELOPING A UNIVARIATE GAN

- We experimented with 2 functions $y=\sin(x)$ and $y=\sin(x)$ to see whether GAN is able to generate data from these functions.
- Plot of the functions used :

DISCRIMINATOR MODEL

GENERATOR MODEL

dense_1: Dense	input:	(None, 2)
delise_1. Delise	output:	(None, 25)
	•	
dense_2: Dense	input:	(None, 25)

- <--- input layer--->
- <- hidden layer1->

- <- hidden layer1->
- <-- output layer-->

danca 1: Danca	input:	(None, 5)
dense_1: Dense	output:	(None, 15)
		12
	•	
dense_2: Dense	input:	(None, 15)

Training Process for Sin Function.

Training Process for Sinc Function.

MNIST HANDWRITTEN DIGIT DATASET

Contains handwritten single digits between 0 and 9 of size (28 x 28).

```
000000000000000
111111111111111
222222222222
444444444444
555555555555555
6666666666666
ファチィマファファファファファ
88888888888888888
9999999999999
```

DISCRIMINATOR MODEL

GENERATOR MODEL

OUTPUT OF GAN

Result after 10 epochs.

Result after 100 epochs

References

[1] . Ian J Goodfellow et.al. Generative Adversarial Nets.