${\bf Mathe~II-Formel sammlung}$

Sallar Ahmadi-Pour

$WiSe\ 2013/14$

Inhaltsverzeichnis

1	Mer	ngenlehre
	1.1	Allgemeines
	1.2	Teilmenge
	1.3	Nullmenge
	1.4	Potenzmenge
	1.5	Anzahl der Elemente einer Menge
	1.6	Komplementärmenge
	1.7	Vereinugungsmenge
	1.8	Paarmenge / Produktmenge
	1.9	Rechenregeln
	1.10	
		Anzahl der Elemente einer unendlichen Menge
2	Voll	ständige Induktion
	2.1	Allgemeines
	2.2	Beispiele
3	Gru	ppen, Ringe und Körper
	3.1	Gruppe
	3.2	Ring
	3.3	Körper

1 Mengenlehre

1.1 Allgemeines

$$\begin{aligned} M_E &= \{a \mid a \text{ mit Eigenschaft } E\} \\ M_A &= \{a_1, a_2, a_3, \dots, a_n\} \\ M &= \{a_1, a_2, a_3, \dots\} \end{aligned} & \text{Aufzählend, abzählbar Endlich} \\ M &= \{a_1, a_2, a_3, \dots\} \\ & \text{abzählbar Unendlich} \\ M_A E &= \{1, 2, 3, \dots\} = \{n \mid n \in \mathbb{N}\} \\ & a \in M \\ & a \notin M \end{aligned} & \text{a Elemnt aus der Menge M} \\ & a \notin M \end{aligned}$$

1.2 Teilmenge

 $A \subset B \to A$ Teilmenge von B oder $B \supset A$. A = B wenn $A \subset B$ und $B \subset A$.

$$x \in A \Leftrightarrow x \in B$$

1.3 Nullmenge

$$M = \{\} = \emptyset$$

1.4 Potenzmenge

Menge aller Teilmengen. $A = \{1, 2\}$; $P(A) = \{\{1\}, \{2\}, \{1, 2\}, \emptyset\}$

1.5 Anzahl der Elemente einer Menge

$$\#A = |A| = 2 \text{ und } |P(A)| = 4.$$

$$|P(M)| = 2^{|M|}$$

1.6 Komplementärmenge

Sei $A\subset M$, dann ist \bar{A} die Komplementärmenge. $\bar{A}=\{x\mid x\in M\land x\notin A\}$ $\bar{M}=\emptyset$ und $\bar{\emptyset}=M$ $A\backslash M=\bar{A}$

1.7 Vereinugungsmenge

 $A \cup B := \{x \mid x \in A \lor x \in B\}$ Man sagt auch: A vereinigt B.

1.8 Paarmenge / Produktmenge

$$A\times B:=\{(a,b)\ |\ a\in A,b\in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Man sagt auch A und B.

Ist $B \subset A$ so heißt $A \setminus B$ Komplement \bar{B} oder B^c .

1.9 Rechenregeln

Seien A, B, C Mengen und M das Einselement:

- a) $A \cup B = B \cup A$ Kommutativ
- b) $A \cap B = B \cap A$ Kommutativ
- c) $(A \cup B) \cup C = A \cup (B \cup C)$ Assoziativ
- d) $(A \cap B) \cap C = A \cap (B \cap C)$ Assoziativ
- e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributiv
- f) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributiv
- g) $A \cap (A \cup C) = A$ Verschmelzung
- h) $B \cup (B \cap C) = B$ Verschmelzung
- i) $A \cup \emptyset = A$ aber $A \cap \emptyset = \emptyset$
- j) $A \cap M = A$ aber $A \cup M = M$
- k) $A \cup \bar{A}$ und $A \cap \bar{A} = \emptyset$ Komplement-Eigenschaft
- 1) $\bar{\bar{A}} = A$
- m) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ DeMorgansche Regel
- n) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ DeMorgansche Regel

1.10 Abbildungen

Eine Abbildung ist SURJEKTIV: $\forall b \in B \exists a \in A, f(a) = b$.

Eine Abbildung ist injektiv: $\forall a, a' \in Aa \neq a' \Rightarrow f(a) \neq f(a')$.

Eine Abbildung ist BIJEKTIV wenn sie surjektiv und injektiv ist.

1.11 Anzahl der Elemente einer unendlichen Menge

abzählbare Unendlichkeit Sei M eine Menge. M heißt unendlich, falls es eine echte Teilmenge $N \subset M$ gibt, die sich bijektiv auf M abbilden lässt. Eine Menge heißt endlich, wenn sie nicht unendlich ist.

Abzählbarkeit Eine Menge heißt abzählbar unendlich, wenn eine Bijektion zwischen M und N existiert. $|\mathbb{N}|=\infty$

2 Vollständige Induktion

2.1 Allgemeines

Ein Beweis mit vollständiger Induktion (z.B. einer Summenformel bzw. deren nicht iterativer Formel) besteht immer aus:

- <u>Induktionsbehauptung</u>: hier wird die zu beweisende Gleichung niedergeschrieben. Dies ist unsere Induktionsannahme.
- Dann folgt der Induktionsanfang, hier wird ein (möglichst einfacher) Fall für z.B. n=1 durchgerechnet.
- Sollte der Induktionsanfang korrekt sein, kann man nun den <u>Induktionsschritt</u> vollziehen. Hierbei muss die Induktionsbehauptung verwendet werden. Durch geschicktes Umformen gelangt man nun zu einer aussage, welcher für n+1 gilt. Somit sei eine Behauptung mit vollständiger Induktion bewiesen.
- Als letztes kommt der <u>Induktionsschluss</u>. Hier wird die Formel erneut niedergeschrieben, jedoch mit zugehörigem Definitionsbereich (z.B. für alle $n \ge 1$).

2.2 Beispiele

Sei $\sum_{k=1}^n \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$ unsere Induktionsbehauptung welche zu beweisen gilt, so folgt daraus:

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \tag{1}$$

$$\sum_{k=1}^{1} \frac{k}{2^k} = 2 - \frac{1+2}{2^1} \tag{2}$$

für alle $n \ge 1$ sei die Behauptung richtig

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = \sum_{k=1}^{1} \frac{k}{2^k} + \frac{n+1}{2^{n+1}}$$

$$= 2 - \frac{n+2}{2^n} + \frac{n+1}{2^n}$$

$$= 2 + \frac{-n-2}{2^n} + \frac{n+1}{2^{n+1}}$$

$$= 2 + \frac{-2n-4+n+1}{2^{n+1}}$$

$$= 2 + \frac{-n-3}{2^{n+1}}$$

$$= 2 - \frac{n+3}{2^{n+1}}$$

$$= 2 - \frac{(n+1)+2}{2^{n+1}}$$

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \quad \text{gilt für alle } n \ge 1.$$

$$(4)$$

Bei diesem Beispiel ist Gleichung (1) die Induktionsbehauptung bzw. -annahme, (2) der Induktionsanfang, (3) der Induktionsschritt mit Umformung und (4) der Induktionsschluss. Sei $2^n < n!$ unsere Induktionsbehauptung welche zu beweisen gilt, so folgt daraus:

$$2^{n_0} < n_0!$$
$$2^4 = 16 < 4! = 24$$

für $n \ge 4$ sei $2^n < n!$

$$n \to n+1$$
$$2^n < n! \quad \text{gilt } \forall n \ge 4$$

3 Gruppen, Ringe und Körper

3.1 Gruppe

Ein Paar (M, \circ) (M ist eine Menge und \circ eine zweistellige Verknüpfung), das folgende Eigenschaften besitzt:

- Abgeschlossenheit bzgl. Verknüpfung o (die Anwendung der Verknüpfung hat ein Ergebnis aus der selben Menge)
- Assoziativgesetz: $a \circ (b \circ c) = (a \circ b) \circ c$
- Neutrales Element e: Es gibt ein Element e, genannt neutrales Element, sodass $e \circ a = a \circ e = a$ für alle a.
- inverses Element: Zu jedem a gibt es ein b mit $a \circ b = b \circ a = e$, b heißt das zu a inverse Element.

Beispiele: $(\mathbb{Q},+), (\mathbb{R},+), (\mathbb{Q} \setminus \{0\},\cdot), (\mathbb{R} \setminus \{0\},\cdot)$

Eine Gruppe (G, \circ) heißt abelsch oder kommutativ, wenn $\forall a, b \in G$ die Kommutativität gilt, ansonsten gilt sie als nicht-abelsch bzw. nicht-kommutativ.

• $a \circ b = b \circ a$

Beispiele: $(\mathbb{Z}, +)$

Eine Gruppe heißt *Halbgruppe*, wenn nur die Abgeschlossenheit und die Assoziativität erfüllt sein müssen.

Beispiele: $(\mathbb{N}_0,+), (\mathbb{N},+), (\mathbb{N}_0,\cdot), (\mathbb{N},\cdot)$

3.2 Ring

Ein Ring ist eine Menge M von Elementen zusammen mit zwei Verknüpfungen \circ und \square , für die gelten:

- (M, \circ) ist eine kommutative Guppe
- (M, \square) ist abgeschlossen und assoziativ (Halbgruppe)
- Distributivgesetze:

$$a \circ (b \Box c) = (a \circ b) \Box (a \circ c)$$
$$(a \circ b) \Box c) = (a \Box c) \circ (b \circ c)$$

In einem kommutativen Ring gilt außerdem das Kommutativgesetz: $a \circ b = b \circ a$

Beispiele: $(\mathbb{Z},+,\cdot),\,(\mathbb{Q},+,\circ)$

3.3 Körper

Ein Körper ist eine Menge M von Elementen zusammen mit zwei Verknüpfungen circ und \square , für die gelten:

- (M, \circ) ist eine kommutative Gruppe
- $(M \setminus e_0, \square)$ ist eine Gruppe $(e_0$ ist das neutrale Element bzgl. \circ).
- Distributivgesetze:

$$a \circ (b \square c) = (a \circ b) \square (a \circ c)$$

 $(a \circ b) \square c) = (a \square c) \circ (b \circ c)$

In einem kommutativen Körper gilt außerdem das Kommutativgesetz: $a \circ b = b \circ a$

Beispiele: $(\mathbb{Q}, +, \circ), (\mathbb{R}, +, \circ), (\mathbb{C}, +, \circ)$