Optimization Algorithms: HW2

Lo Chun, Chou R13922136

May 21, 2025

1

We're given the following problem:

$$x_{\star} \in \arg\min_{x \in \Delta_d} f(x), \qquad f(x) = -\sum_{i=1}^n w_i \log \langle a_i, x \rangle$$

where:

1.

$$x \in \Delta_d = \{x \in \mathbb{R}^d \mid x[i] \ge 0, \sum_{i=1}^d x[i] = 1\}$$
 (probabilit'y simplex)

2.

$$w_i \in \mathbb{R}, \ w_i > 0, \ \sum_{i=1}^n w_i = 1$$

3.

$$a_i \in \mathbb{R}^d, \ a_i = \begin{bmatrix} a_i[1] \\ a_i[2] \\ \vdots \\ a_i[d] \end{bmatrix},$$
$$a_i[j] \ge 0 \ \forall i = 1, \dots, n, \ j = 1, \dots, d$$
$$a_i \ne 0 \ \forall i = 1, \dots, n$$

We're asked to show that:

f is 1-smooth relative to the log-barrier, which is defined as:

$$h(x) = -\sum_{i=1}^{d} \log x[i]$$

Solution. By the following proposition 1 :

Proposition 1.1. The following conditions are equivalent: (a-i) $f(\cdot)$ is L-smooth relative to $h(\cdot)$; (a-ii) $Lh(\cdot) - f(\cdot)$ is a convex function on Q;

(a-iii) under twice differentiability $\nabla^2 f(x) \preceq L \nabla^2 h(x)$ for any $x \in \text{int } Q$; (a-iv) $\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq L \langle \nabla h(x) - \nabla h(y), x - y \rangle$ for all $x, y \in \text{int } Q$.

we could prove the required condition (which is (a-i), with L=1) by proving its equivalent condition (a-iii, with L=1).

First calculate $\nabla f(x)$:

$$\nabla f(x) = \frac{d}{dx} \left(-\sum_{i=1}^{n} w_i \log \langle a_i, x \rangle \right)$$

$$= -\sum_{i=1}^{n} w_i \cdot \frac{d}{dx} \left(\log \langle a_i, x \rangle \right)$$

$$= -\sum_{i=1}^{n} w_i \cdot \left(\frac{a_i}{\langle a_i, x \rangle} \right)$$

$$= -\sum_{i=1}^{n} w_i \frac{a_i}{\langle a_i, x \rangle}$$

Then the Hessian of f is:

$$\nabla^2 f(x) = \frac{d}{dx} \left(-\sum_{i=1}^n w_i \frac{a_i}{\langle a_i, x \rangle} \right)$$
$$= -\sum_{i=1}^n w_i \cdot \frac{d}{dx} \left(\frac{a_i}{\langle a_i, x \rangle} \right)$$
$$= -\sum_{i=1}^n w_i \cdot \left(\frac{a_i}{\langle a_i, x \rangle^2} a_i^T \right)$$

Expanding the expression and writing in another form, we have:

$$\nabla^2 f(x) = -\sum_{i=1}^n \frac{w_i}{\langle a_i, x \rangle^2} a_i a_i^T \tag{1}$$

¹Relative Smooth Convex Optimization by First-Order Methods, and Applications, MIT Lecture Notes, available at: https://dspace.mit.edu/bitstream/handle/1721.1/120867/ 16m1099546.pdf, accessed: May. 9, 2025, p. 336.

Then we shall do the same to h(x)

$$\nabla h(x) = \frac{d}{dx} \left(-\sum_{i=1}^{d} \log x[i] \right)$$
$$= \begin{bmatrix} -\frac{1}{x[1]} \\ -\frac{1}{x[2]} \\ \vdots \\ -\frac{1}{x[d]} \end{bmatrix}$$

Then $\nabla^2 h(x)$ is:

$$\nabla^{2}h(x) = \nabla \begin{bmatrix} -\frac{1}{x[1]} \\ -\frac{1}{x[2]} \\ \vdots \\ -\frac{1}{x[d]} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{d}{dx[1]} \left(-\frac{1}{x[1]} \right) & \frac{d}{dx[2]} \left(-\frac{1}{x[1]} \right) & \cdots & \frac{d}{dx[d]} \left(-\frac{1}{x[1]} \right) \\ \frac{d}{dx[1]} \left(-\frac{1}{x[2]} \right) & \frac{d}{dx[2]} \left(-\frac{1}{x[2]} \right) & \cdots & \frac{d}{dx[d]} \left(-\frac{1}{x[2]} \right) \\ \vdots & & \ddots & \vdots \\ \frac{d}{dx[1]} \left(-\frac{1}{x[d]} \right) & \frac{d}{dx[2]} \left(-\frac{1}{x[d]} \right) & \cdots & \frac{d}{dx[d]} \left(-\frac{1}{x[d]} \right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{x[1]^{2}} & 0 & \cdots & 0 \\ 0 & \frac{1}{x[2]^{2}} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x[d]^{2}} \end{bmatrix}$$

$$(2)$$

Observe $\nabla^2 f(x)$ in (1), since we're given $w_i > 0$, $x \in \Delta_d$, $a_i \neq 0$, and with proposition (a-iii) only requires dealing with int Δ_d , we can guarantee x[i] > 0, so the scalar $\frac{w_i}{\langle a_i, x \rangle^2} > 0$.

Also, we knew that for any $a_i \neq 0$, $a_i a_i^T$ is positive semidefinite, thus, each term in the summation is positive semidefinite, by summing up the n terms and adding a negative sign, we have $\nabla^2 f(x) \leq 0$ as follows:

$$\nabla^2 f(x) = -\sum_{i=1}^n \frac{w_i}{\langle a_i, x \rangle^2} a_i a_i^T \le 0$$

Then, since $\nabla^2 h(x)$ is a diagonal matrix, and we're given that $x[i] \geq 0$, same as above, with proposition (a-iii) only requires dealing with int Δ_d , we can guarantee x[i] > 0 (so for each $\frac{1}{x[i]}$), and $\nabla^2 h(x)$ is positive definite.

Therefore, we have:

$$\nabla^2 f(x) \leq 1 \cdot \nabla^2 h(x)$$
 for any $x \in \operatorname{int} \Delta_d$

which means that (a-iii) is proved, and its equivalent condition (a-i) is also proved, and we have:

f is 1-smooth relative to the log-barrier h

Denote the Bregman divergence associated with h as D_h , i.e.,

$$D_h(y,x) = h(y) - [h(x) + \langle \nabla h(x), (y-x) \rangle]$$

Consider solving the optimization problem (1) by the following algorithm:

• Let
$$x_1 = \begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} \in \Delta_d$$

• For every $t \in \mathbb{N}$, compute:

$$x_{t+1} \in \arg\min_{x \in \Delta_d} \left[\langle \nabla f(x_t), x - x_t \rangle + D_h(x, x_t) \right]$$

Note: I use $\begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix}$ to represent the vector $(1/d,\ldots,1/d)$ (which is the notation used in the HW spec) in the following solution.

$\mathbf{2}$

Show that for any $x \in \Delta_d$ and $0 \le \alpha < 1$,

$$f(x_{\alpha}) \le f(x) + \frac{\alpha}{1-\alpha}$$
, where $x_{\alpha} = (1-\alpha)x + \alpha \begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix}$

Solution. From the previous subproblem, we knew that f is 1-smooth relative to the log-barrier, so we have:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + D_h(y, x) \quad \forall x, y \in \text{int } \Delta_d$$

To bound $f(x_{\alpha})$, we first show that $x_{\alpha} \in \operatorname{int} \Delta_d$, and then let $y = x_{\alpha}$, x = x so that we would have:

$$f(x_{\alpha}) \le f(x) + \langle \nabla f(x), x_{\alpha} - x \rangle + D_h(x_{\alpha}, x)$$

By the definition of x_{α} , we knew that it is the convex combination of x and $\begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix}$, where $x \in \Delta_d$ and $\begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} = x_1 \in \Delta_d$ as stated in the algorithm. Also, for

each element in x_{α} , we have:

$$x_{\alpha}[i] = (1 - \alpha)x[i] + \alpha\left(\frac{1}{d}\right) \quad \forall i = 1, \dots, d$$

Since $x[i] \ge 0$ and α is strictly smaller than 1, we have $x_{\alpha}[i] > 0$ for all $i = 1, \ldots, d$, so $x_{\alpha} \in \operatorname{int} \Delta_d$.

Then, we have:

$$f(x_{\alpha}) \le f(x) + \langle \nabla f(x), x_{\alpha} - x \rangle + LD_h(x_{\alpha}, x)$$

To further simplify, we have:

$$x_{\alpha} - x = \left[(1 - \alpha)x + \alpha \begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} \right] - x = \alpha \begin{bmatrix} \begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} - x \end{bmatrix}$$

So we could expand the following expressions:

$$\langle \nabla f(x), x_{\alpha} - x \rangle = \langle -\sum_{i=1}^{n} w_{i} \frac{a_{i}}{\langle a_{i}, x \rangle}, \alpha \left(\begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} - x \right) \rangle$$

$$= -\frac{\alpha}{d} \sum_{i=1}^{n} \frac{w_{i}}{\langle a_{i}, x \rangle} [a_{i}[1] \cdots a_{i}[d]] \begin{bmatrix} 1 - x[1] \\ \vdots \\ 1 - x[d] \end{bmatrix}$$

$$= -\frac{\alpha}{d} \sum_{i=1}^{n} \frac{w_{i}}{\langle a_{i}, x \rangle} \left(\sum_{j=1}^{d} a_{i}[j] - \sum_{j=1}^{d} a_{i}[j] x[j] \right)$$

$$= -\frac{\alpha}{d} \sum_{i=1}^{n} \frac{w_{i}}{\sum_{k=1}^{d} a_{i}[k] x[k]} \left(\sum_{j=1}^{d} a_{i}[j] - \sum_{j=1}^{d} a_{i}[j] x[j] \right)$$

$$= -\frac{\alpha}{d} \sum_{i=1}^{n} \frac{w_{i} \sum_{j=1}^{d} a_{i}[j]}{\sum_{k=1}^{d} a_{i}[k] x[k]} + \frac{\alpha}{d} \sum_{i=1}^{n} w_{i}$$

$$= \frac{\alpha}{d} \left(1 - \sum_{i=1}^{n} w_{i} \sum_{j=1}^{d} \frac{a_{i}[j]}{a_{i}[j] x[j]} \right)$$

$$= \frac{\alpha}{d} \left(1 - \sum_{i=1}^{n} w_{i} \sum_{j=1}^{d} \frac{1}{x[j]} \right)$$

$$(1)$$

By the definition of D_h , we have:

$$D_{h}(x_{\alpha}, x) = h(x_{\alpha}) - (h(x) + \langle \nabla h(x), (x_{\alpha} - x) \rangle)$$

$$= h(x_{\alpha}) - \left(h(x) + \langle \begin{bmatrix} -\frac{1}{x[1]} \\ -\frac{1}{x[2]} \\ \vdots \\ -\frac{1}{x[d]} \end{bmatrix}, \alpha \begin{pmatrix} \begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} - x \end{pmatrix} \rangle \right)$$

$$= -\sum_{i=1}^{d} \log x_{\alpha}[i] - \left(-\sum_{i=1}^{d} \log x[i] + \langle \begin{bmatrix} -\frac{1}{x[1]} \\ -\frac{1}{x[2]} \\ \vdots \\ -\frac{1}{x[d]} \end{bmatrix}, \alpha \begin{pmatrix} \begin{bmatrix} \frac{1}{d} \\ \vdots \\ \frac{1}{d} \end{bmatrix} - x \end{pmatrix} \rangle \right)$$

$$= -\sum_{i=1}^{d} \log x_{\alpha}[i] + \sum_{i=1}^{d} \log x[i] + \alpha \left[-\frac{1}{x[1]} \cdots - \frac{1}{x[d]} \right] \begin{bmatrix} \frac{1-dx[1]}{d} \\ \vdots \\ \frac{1-dx[d]}{d} \end{bmatrix}$$

$$= \sum_{i=1}^{d} (\log x[i] - \log x_{\alpha}[i]) - \sum_{i=1}^{d} \frac{\alpha}{dx[i]} + \alpha d$$

$$(2)$$

Combining (1) and (2), we have:

$$\langle \nabla f(x), x_{\alpha} - x \rangle + D_h(x_{\alpha}, x)$$

$$= \frac{\alpha}{d} \left(1 - \sum_{i=1}^n w_i \sum_{j=1}^d \frac{1}{x[j]} \right) + \sum_{i=1}^d (\log x[i] - \log x_{\alpha}[i]) - \sum_{i=1}^d \frac{\alpha}{dx[i]} + \alpha d$$

7