Statistics

Adejumo Ridwan Suleiman

June 25 2022

- Introduction to Statistics and Statistical Measures
- Probability and Probability Distributions
- **3** Testing of Statistical Hypothesis
- 4 Regression
- Classifications

Introduction to Statistics and Statistical Measures

What is Statistics?

• Statistics is the collection, organizing and analysing of data.

Is Data Science Statistics in Disguise?

 Unlike Statistics, Data Science is an interdisciplinary field consisting of Mathematics, Statistics, Computer Science and Domain Knowledge.

Types of Data

- Data can be classified into two types
 - Based on Measurement scale
 - Based on Time Period

Based on Measurement Scale

- Qualitative Data
 - Nominal Data e.g sex
 - Ordinal Data e.g temperature level; High, Medium and Low
- Quantitative Data
 - Ratio e.g weight
 - Interval e.g temperature in degreee celsius

Based on Time Period

- Cross-Sectional Data e.g number of viewers for different youtube genres in the year 2021
- Time Series Data e.g number of viewers for Sport channels on youtube from the year 2014-Date.

Figure 1: Types of Data

Rectangular or Structured Data

^	carat ‡	cut ‡	color ‡	clarity [‡]	depth ‡	table ‡	price ‡	x [‡]	у ‡	z ‡
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium	I .	VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good		SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Good	1	VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Good	н	VS1	59.4	61.0	338	4.00	4.05	2.39
11	0.30	Good		SI1	64.0	55.0	339	4.25	4.28	2.73
12	0.23	Ideal	J	VS1	62.8	56.0	340	3.93	3.90	2.46
13	0.22	Premium	F	SI1	60.4	61.0	342	3.88	3.84	2.33
14	0.31	Ideal	J	SI2	62.2	54.0	344	4.35	4.37	2.71
15	0.20	Premium	E	SI2	60.2	62.0	345	3.79	3.75	2.27
16	0.32	Premium	E	11	60.9	58.0	345	4.38	4.42	2.68
17	0.30	Ideal	1	SI2	62.0	54.0	348	4.31	4.34	2.68
18	0.30	Good	J	SI1	63.4	54.0	351	4.23	4.29	2.70

Measures of Central Tendency

Mean

- Sum of all values of observations divided by the number of observations
- Mathematically denoted as:

$$\bar{a} = \frac{\sum_{i=1}^{n} x_i}{n}$$

• Sensitive to extreme or high values

Median

- Center of an ordered observations
- Also known as the middle of the observations.
- Not sensitive to extreme values

Mode

• Observation with the highest number of occurence.

Measures of Variation

Standard Deviation and Variance

- Measures how far an observation is from the mean
- Mathematically defined as:

$$s = \sqrt{\frac{\sum_{i}^{n}(x_{i} - \bar{x})}{n}}$$

• Variance is defined as the square of the standard deviation:

$$Variance = s^2$$

Range

- Difference between the largest and smallest observations.
- Sensitive to extreme values

Percentiles

- Expressing the sorted observations in percentage
- Not sensitive to extreme values

Interquartile Range

• The interquartile range divides the observations into 4 equal part:

• First Quartile: Q1

• Second Quratile: Q2 (median)

• Third Quratile: Q3

Summary Statistics of the Diamond Data Set

```
carat
                                    color
                                                 clarity
                                                                   depth
                        cut
Min.
       :0.2000
                 Fair
                           : 1610
                                    D: 6775
                                                      :13065
                                                               Min.
                                                                      :43.00
                                              SI1
1st Qu.:0.4000
                 Good
                           : 4906
                                    E: 9797
                                              VS2
                                                      :12258
                                                               1st Ou.:61.00
                                                               Median :61.80
Median :0.7000
                 Very Good:12082
                                    F: 9542
                                              SI2
                                                      : 9194
                                             vs1
       :0.7979
                 Premium
                           :13791
                                                      : 8171
Mean
                                    G:11292
                                                               Mean
                                                                      :61.75
3rd Qu.:1.0400
                 Ideal
                           :21551
                                    H: 8304
                                             vvs2
                                                      : 5066
                                                               3rd Ou.:62.50
       :5.0100
                                    T: 5422
                                              vvs1
                                                      : 3655
                                                                      :79.00
Max.
                                                               Max.
                                    J: 2808
                                              (Other): 2531
    table
                    price
                                       X
                                                         У
Min.
       :43.00
                Min.
                          326
                                 Min.
                                        : 0.000
                                                  Min.
                                                          : 0.000
1st Ou.:56.00
                1st Qu.:
                          950
                                 1st Ou.: 4.710
                                                  1st Ou.: 4.720
Median :57.00
                Median: 2401
                                 Median : 5.700
                                                  Median : 5.710
Mean
       :57.46
                Mean
                        : 3933
                                 Mean
                                        : 5.731
                                                  Mean
                                                          : 5.735
3rd Qu.:59.00
                3rd Qu.: 5324
                                 3rd Ou.: 6.540
                                                  3rd Ou.: 6.540
       :95.00
                        :18823
                                        :10.740
                                                          :58.900
Max.
                Max.
                                 Max.
                                                  Max.
Min.
       : 0.000
1st Ou.: 2.910
Median : 3.530
Mean
       : 3.539
3rd Ou.: 4.040
Max.
       :31.800
```

Graphical Repreentations of Data

- Bar Plot
- Histogram
- Density Plot
- Box Plot
- Scatter Plot

Bar Plot

Figure 4: Prices of Various cuts of diamonds

Histogram

Figure 5: Histogram showing the various cut of diamonds

Density Plot

Figure 6: Density Plot of various diamond cut

Box Plot

Figure 7: Box plot of various diamond cut

Scatter Plot

Figure 8: Scatter plot showing the relationship between carat and price

Challenge

Reference

Probability and Probability Distributions

What is probability

- It is simply the study of uncertainty.
- Example the possibility of raining, tossing a coin or rolling a die.
- It is the measuring of how likely an event will occur.
- Mathematically defined as:

 $Probability = \frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$

Terms in Probability

- Experiment: An uncertain situation e.g tossing a coin
- Outcome: Result of a trial in an experiment.
- Event: One or more outcome from a experiment
- Sample Space: The collection of possible outcomes of an experiment.

Random Variable

- Outcome of an event expressed in numbers
- For example in the coin toss experiment we can either have a head or tail which can be numerically expressed as 1 or 0 respectively.
- Let's call a set containing these two numbers X where; X = {1,0}.
- X represents the Random Variable
- What's the random variable of a sixed face die?

The Two Coin Toss Experiment

- $S = \{HH,HT,TH,TT\}$ Probability = $\frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$
- Number of possible outcomes = 4
- Probability of getting a head in both coins is: $= \frac{\text{Number of Required outcomes(HH)}}{\text{Number of Possible outcomes(HH,HT,TH,TT)}} = \frac{1}{4}$
- Probability of getting a head in the first coin and a tail in the second coin:
 - $= \frac{\text{Number of Required outcomes(HT)}}{\text{Number of Possible outcomes(HH,HT,TH,TT)}} = \frac{1}{4}$
- Probability of getting a head and a tail in both coins.
 - $= \frac{\text{Number of Required outcomes(HT,TH)}}{\text{Number of Possible outcomes(HH,HT,TH,TT)}} = \frac{2}{4}$

The Two Die Experiment

		White Die								
		1	2	3	4	5	6			
	1	(1,1)	(2, <mark>1</mark>)	(3, <mark>1</mark>)	(4, <mark>1</mark>)	(5, <mark>1</mark>)	(6, <mark>1</mark>)			
Red	2	(1, <mark>2</mark>)	(2, <mark>2</mark>)	(3, <mark>2</mark>)	(4, <mark>2</mark>)	(5, <mark>2</mark>)	(6, <mark>2</mark>)			
Die	3	(1,3)	(2,3)	(3, <mark>3</mark>)	(4, <mark>3</mark>)	(5, <mark>3</mark>)	(6, <mark>3</mark>)			
	4	(1,4)	(2, <mark>4</mark>)	(3, <mark>4</mark>)	(4, <mark>4</mark>)	(5, <mark>4</mark>)	(6, <mark>4</mark>)			
	5	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)			
	6	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)			

Figure 9: Tabular representation of the sample space of rolling two die

The Two Die Experiment

- $S = \{(1,1),(1,2),(1,3),\dots,(6,6)\}$ $Probability = \frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$
- Number of possible outcomes = 36
- Probability of getting a one in both die: $= \frac{\text{Number of Required outcomes}(1,1)}{\text{Number of Possible outcomes}} = \frac{1}{36}$ • Probability of getting a one in the first die and a two in the second
- die: = $\frac{\text{Number of Required outcomes}(1,2)}{\text{Number of Possible outcomes}} = \frac{1}{36}$ Probability of getting a one and a two:
- - Number of Required outcomes(1,2) or $(2,1) = \frac{2}{1}$ Number of Possible outcomes

The Two Die Experiment

Bernoulli Distribution

- A single trial with only two possible outcomes is called as binomial distribution.
- Example is a coin tossed once or a fight between me and Mayowa(DevNet) where the probability of I winning is 0.9 and him losing is 0.1.

Distribution of a Bernoulli Experiment

Figure 11: Distribution of a Bernoulli experiment

Binomial Distribution

- Unlike the Bernoulli Distribution, the binomial distribution has n number of trials.
- A distribution is said to be Binomial if the following are satisfied;
 - A trial with two outcomes and repeated n number of trials
 - Each trial is independent
 - A total numbers of n trials are conducted
 - The probability of success and failure is same for all trials.

Distribution of a Binomial Experiment

Figure 12: Distribution of a Binomial experiment

Normal Distribution

- A distribution is said to be normally distributed if it satisfies the following conditions;
 - The mean, median and mode of the distribution are the same.
 - The curve of the distribution is bell shaped
 - Half of the value are left of the center and the other half at the right.

Central Limit Theorem

 Regardless of the distribution of a variable's population, if we have a sufficiently large sample size, the mean and standard deviation of that variable will be normally distributed.

Challenge

References

Testing of Statistical Hypothesis

Regression

Classifications