ADS – proofs goal 1 & goal 2

Tim Grimbergen & Timo Post

October 2023

1 Goal 1: No Algorithm can be Constant-Competitive

Consider the Strike problem as outlined by the lecture notes:

$$n, m \in \mathbb{N}$$
 (1.1a)

$$\forall i \in \{1, \dots, m\} : p_i \in \mathbb{N} \land h_i, s_i, f_i \in \mathbb{Z}_{\geq 0}$$
(1.1b)

$$\sum_{i=1}^{m} s_i \ge n \tag{1.1c}$$

$$\sum_{i=1}^{m} f_i = n \tag{1.1d}$$

$$\forall i \in \{1, \dots, m\} : f_i \le s_i \tag{1.1e}$$

Lemma 1. Under the above constraints no online algorithm exists that does not buy the first n available seats.

Assume an online algorithm exists that does not buy all of the first n available seats. Now consider the instance $n=1, m=2, s_1=n, s_2=0$ and $p_1, p_2, h_1, h_2 \in \mathbb{Z}_{\geq 0}$. In this instance the algorithm cannot buy the seat offered at day 1, because this would break our assumption. On the second day the algorithm cannot buy a seat due to constraint 1.1e. As a result of our assumption we thus break constraint 1.1d, proving lemma 1:

$$f_1 + f_2 = 0 + 0 \neq 1$$

2 Goal 2: Algorithms and proofs

2.1 Setting

- 1. $n \in \mathbb{N}, 1$
- $2. \ m \in \mathbb{N},$
- 3. $s_i = n \text{ for all } i \in \{1, \dots, m\},\$
- 4. $p_i \in \{1, 2, ..., p_{\text{max}}\}$ with $p_{\text{max}} \in \mathbb{N}$,
- 5. $h_i = 0$ with for all $i \in \{1, ..., m\}$.
- 6. Every online algorithm ALG knows n, m and p_{max} .

2.2 Algorithm

Consider the following algorithm $ALG_{\sqrt{p_{\text{max}}}}$:

```
Algorithm 1 The \lfloor \sqrt{p_{\text{max}}} \rfloor-threshold algorithm \text{ALG}_{\sqrt{p_{\text{max}}}}
```

```
Q \leftarrow \lfloor \sqrt{p_{\max}} 
floor for i \leftarrow 1 to m do
if (p_i \leq Q \lor i = m) then
Buy n tickets.
end if
end for
```

2.3 Results

Theorem 2. For all $p_{\text{max}} \in \mathbb{N}$ the algorithm $ALG_{\sqrt{p_{\text{max}}}}$ is an optimal deterministic algorithm for the setting described in 2.1.

For the proof of Theorem 2 we will use Lemma 3 below.

Lemma 3. Let $p_{\text{max}} \in \mathbb{N}$. Then write $p_{\text{max}} = k^2 + \ell$ for $k, \ell \in \mathbb{N}$ with $0 \le \ell < 2k + 1$. Then the algorithm $\text{ALG}_{\sqrt{p_{\text{max}}}}$ is

- $|\sqrt{p_{\max}}|$ -competitive if $0 \le \ell \le k$,
- $\frac{k^2+\ell}{k+1}$ -competitive if $k < \ell < 2k+1$.

Proof. Consider an arbitrary instance I satisfying the restrictions above. If m=1, then the problem is trivial since both ALG and OPT buy n tickets on the first day for the same price so the competitive ratio is 1. We then make the observation that both ALG and OPT always buy all tickets on a single day be design. This means that the number of people n is irrelevant for the competitive ratio c since

$$c = \frac{\mathrm{ALG}_{\sqrt{p_{\mathrm{max}}}}(I)}{\mathrm{OPT}(I)} = \frac{p_{\mathrm{ALG}_{\sqrt{p_{\mathrm{max}}}}} \cdot n}{p_{\mathrm{OPT}} \cdot n} = \frac{p_{\mathrm{ALG}_{\sqrt{p_{\mathrm{max}}}}}}{p_{\mathrm{OPT}}},$$

where $p_{ALG_{\sqrt{p_{\max}}}}$ and p_{OPT} are the prices for which $ALG_{\sqrt{p_{\max}}}$ and OPT buy the tickets respectively.

We now distinguish two more cases in which m > 1:

 $^{^1\}mathrm{In}$ this research $\mathbb N$ is the set of all strictly positive integers $1,2,\ldots$

• i) $\forall i \in \{1, ..., m\}, p_i > \lfloor \sqrt{p_{\max}} \rfloor$: In this case we have that $p_{\text{ALG}_{\sqrt{p_{\max}}}}, p_{\text{OPT}} \geq \lfloor \sqrt{p_{\max}} \rfloor + 1$. The competitive ratio c is then maximal if $p_{\text{ALG}_{\sqrt{p_{\max}}}}$ is as large as possible and p_{OPT} as small as possible, so

$$c = \frac{p_{\text{ALG}_{\sqrt{p_{\text{max}}}}}}{p_{\text{OPT}}} \le \frac{p_{\text{max}}}{\lfloor \sqrt{p_{\text{max}}} \rfloor + 1}.$$

• ii) $\exists i \in \{1, ..., m\}, p_i \leq \lfloor \sqrt{p_{\text{max}}} \rfloor$: In this case we have that $p_{\text{ALG}_{\sqrt{p_{\text{max}}}}}, p_{\text{OPT}} \leq \lfloor \sqrt{p_{\text{max}}} \rfloor$. Maximizing the competitive ratio yields

$$c = \frac{p_{\text{ALG}_{\sqrt{p_{\text{max}}}}}}{p_{\text{OPT}}} \leq \frac{\lfloor \sqrt{p_{\text{max}}} \rfloor}{1} = \lfloor \sqrt{p_{\text{max}}} \rfloor.$$

Now we write $p_{\max} = k^2 + \ell$ with $k, \ell \in \mathbb{N}$ and $0 \le \ell < 2k + 1$. If $0 \le \ell < k$ then notice that

$$\begin{split} k > \ell &\implies k^2 + k > k^2 + \ell \implies k(k+1) > k^2 + \ell \\ &\implies k > \frac{k^2 + \ell}{k+1} \implies \lfloor \sqrt{p_{\max}} \rfloor > \frac{p_{\max}}{\lfloor \sqrt{p_{\max}} \rfloor + 1}. \end{split}$$

So, in this case, the competitive ratio is determined by the value k. We have that the analysis is tight if we consider the instance $I^1 = (p_1^1, p_2^1) = (k, 1)$.

If $k \leq \ell < 2k+1$ then by analogous reasoning we find $\lfloor \sqrt{p_{\text{max}}} \rfloor \leq \frac{p_{\text{max}}}{\lfloor \sqrt{p_{\text{max}}} \rfloor + 1}$. So, in this case, the competitive ratio is determined by the value $\frac{k^2 + \ell}{k+1}$. We have that the analysis is tight if we consider the instance $I^1 = (p_1^1, p_2^1) = (k+1, k^2 + \ell)$.

Thus we conclude that we have indeed found the competitive ratios as stated in the Lemma. \Box

We can now prove Theorem 2.

Proof of Theorem 2. Let $p_{\text{max}} \in \mathbb{N}$. We distinguish three cases.

- 1. $p_{\text{max}} = k^2$ for $k \in \mathbb{N}$: In this case, we have $c_{\sqrt{p_{\text{max}}}} = \sqrt{p_{\text{max}}} = k$ (by Lemma 3). Now assume that $c_{\text{ALG}} < k$. Consider the instances $I^1 = (p_1^1, p_2^1) = (k, 1)$ and $I^2 = (p_1^1, p_2^1) = (k, k^2)$ with n = 1 and m = 2. Since $c_{\text{ALG}} < k$, it is not allowed to buy the ticket on the first day because this would result in a competitive ratio of k in I^1 . However, for I^2 it would then have to buy the tickets on the last day which still results in a competitive ratio of k. Thus we have reached a contradiction.
- 2. $p_{\max} = k^2 + \ell$ for $k, \ell \in \mathbb{N}$ with $1 \leq \ell \leq k$: In this case, we have $c_{\sqrt{p_{\max}}} = \sqrt{p_{\max}} = \lfloor \sqrt{p_{\max}} \rfloor = k$ (by Lemma 3). Now assume that $c_{\text{ALG}} < k$. Consider the instances $I^1 = (p_1^1, p_2^1) = (k, 1)$ and $I^2 = (p_1^1, p_2^1) = (k, k^2 + \ell)$ with n = 1 and m = 2. So ALG is not allowed to buy the ticket on the first day in instance I^1 because this would result in a competitive ratio of k. But again, if ALG buys the ticket on the second day then this results in a competitive ratio of $\frac{k^2 + \ell}{k} > k$ for instance I^2 . Thus we again reach a contradiction.
- 3. $p_{\max} = k^2 + \ell$ for $k, \ell \in \mathbb{N}$ with $k < \ell < 2k+1$: In this case, we have $c_{\sqrt{p_{\max}}} = \frac{p_{\max}}{\lfloor \sqrt{p_{\max}} \rfloor + 1} = \frac{k^2 + \ell}{k+1}$ (by Lemma 3). Assume that $c_{\text{ALG}} < \frac{k^2 + \ell}{k+1}$. Consider the instances $I^1 = (p_1^1, p_2^1) = (k+1, 1)$ and $I^2 = (p_1^1, p_2^1) = (k+1, k^2 + \ell)$ with n=1 and m=2. Now if ALG waits on day 1 with buying the tickets, then in I^2 this would lead to a competitive ratio of $\frac{k^2 + \ell}{k+1} = c_{\text{ALG}\sqrt{p_{\max}}}$. So it should buy the ticket on day 1 for a competitive ratio of k+1. But notice that since $\ell < 2k+1$ we have

$$(k+1)^2 = k^2 + 2k + 1 > k^2 + \ell \implies k+1 > \frac{k+\ell}{k+1},$$

thus we again reach a contradiction.

Hence, we can conclude that for all $p_{\text{max}} \in \mathbb{N}$ every feasible online algorithm ALG has competitive ratio $c_{\text{ALG}} > c_{\text{ALG}_{\sqrt{p_{\text{max}}}}}$.

Proof of Theorem 2. The fact that $ALG_{\sqrt{p_{\max}}}$ is an optimal algorithm for all possible $p_{\max} \in \mathbb{N}$ now follows from Lemmas 3 and ??. First of all, no online deterministic algorithm can be better than $\sqrt{p_{\max}}$ -competitive, which is proven in Lemma ??. Together with the fact that $ALG_{\sqrt{p_{\max}}}$ is $\sqrt{p_{\max}}$ -competitive, which is proven in Lemma 3, this implies that $ALG_{\sqrt{p_{\max}}}$ is indeed an optimal deterministic algorithm.

2.4 Setting 3

- 1. $n, m \in \mathbb{N}$,
- 2. $s_i = n \text{ for all } i \in \{1, ..., m\},\$
- 3. $p_i \in \{1, 2, \dots, p_{\text{max}}\}$ with $p_{\text{max}} \in \mathbb{N}$,
- 4. $h_i \in \mathbb{N}_0$.
- 5. Every online algorithm ALG knows n, m, p_{max} .

2.5 Algorithm

Consider the following algorithm.

Algorithm 2 The double threshold algorithm ALG₂

```
\begin{array}{l} Q \leftarrow \lfloor \sqrt{p_{\max}} \rfloor \\ H \leftarrow \lceil \sqrt{p_{\max}} \rceil - 1 \\ \textbf{for } i \leftarrow 1 \ to \ m \ \textbf{do} \\ \textbf{if } \left( i = m \lor p_i + \sum_{j=1}^{i-1} h_j \le Q \lor \sum_{j=1}^i h_j \ge H \right) \ \textbf{then} \\ \text{Buy } n \ \text{tickets.} \\ \textbf{end if} \\ \textbf{end for} \end{array}
```

2.6 Results

Theorem 4. The algorithm ALG_2 is at most $\left(\sqrt{p_{\max}} + 1 - \frac{1}{\sqrt{p_{\max}}}\right)$ -competitive.