Primeiras Redes Neurais

Aluizio Fausto Ribeiro Araújo
Universidade Federal de Pernambuco
Centro de Informática

Conteúdo

- 1. Modelo de McCullough and Pitts
- 2. Teoria de Hebb
- 3. O Perceptron
- 4. Exemplos

Modelo de McCullough and Pitts

• Modelo proposto pelo neufisiologista americano Warren Sturgis McCulloch (16/11/1898-24/09/1969) e um "logístico" Walter Pitts (23/04/1923-14/05/1969) em 1943 que foi publicado como um modelo eletrônico de como neurônios atuariam.

Modelo de McCullough and Pitts

- Hipóteses do Modelo:
 - O neurônio é bi-estável (saída 0 ou 1);
 - Há um número fixo de sinapses excitatórias que precisam receber estímulos para ativar o neurônio;
 - O atraso devido à sinapse é o único significativo;
 - Ativação de uma sinapse inibitória impede (inibe) ativação de um neurônio;
 - A estrutura do neurônio não muda com o tempo.

Modelo de McCullough and Pitts

- Proposta de cálculo lógico para descrever neurônios e redes, onde:
 - Todas as sinapses excitatórias têm o mesmo peso.
 - Todo neurônio é ativado por número fixo de sinapses.
 - Todo neurônio computa função lógica da entrada (função limiar).

• A rede pode ser construída para computar qualquer função

Teoria de Hebb

Modelo teórico de como os neurônios atuam foi proposto no livro de Hebb (1949), *The Organization of Behavior*.

Donald Olding Hebb 1904-1985

 Crescimento das Sinapses: mudanças nos valores das conexões.

"Quando o axônio de uma célula A está próximo o suficiente para excitar uma célula B e repetida e insistentemente toma parte na emissão de sinal elétrico da célula B, algum processo de crescimento ou mudança metabólica acontece em ambas células tal que a eficiência de A, para fazer a célula B disparar, é aumentada".

• Frank Rosenblatt (11/07/1928-1971), um neuro-cientista americano que estava vinculado à Cornell quando pesquisava sobre a operação do olho de uma mosca que realiza a maior parte do processamento que determina para onde a mosca deve fugir.

- Em 1957, o Perceptron, foi proposto durante esta pesquisa e foi implementado em hardware, tornando-se o primeiro modelo de rede neural artificial.
- Um Perceptron de camada única foi proposto como classificador de conjunto de padrões com valores contínuos em uma de duas classes.

• A arquitetura de mapeamento de padrões chamada Perceptron objetiva aprender classificações de padrões através de treinamento supervisionado.

- As entradas x_i , i = 1, 2, ..., n são binárias;
- Os pesos w_{ii} podem ser positivos ou negativos;
- Regra de propagação:

$$net_{j} = \sum_{i=1}^{n} w_{ji}.x_{i}$$

• A saída binária é determinada pela regra de ativação:

$$y_{j} = \begin{cases} 1 & \text{se } net_{j} \ge T_{j} \\ 0 & \text{se } net_{j} < T_{j} \end{cases}$$

- Nesta parte discute-se como treinar a rede. Isto é, discute-se como construir um mecanismo que vai absorver o conhecimento dentro da rede. Duas são as considerações básicas:
 - Em termos cognitivos existe uma tendência de se aprender o comportamento recompensado e se esquecer o comportamento penalizado.
 - Em termos "microscópios" ou de "microcognição" é necessário incluir o conceito de aprendizagem no mecanismo da rede.

- O paradigma de aprendizagem pode ser descrito da seguinte maneira:
 - Considere valores de pesos e limiares (thresholds) iniciais;
 - Apresente uma entrada;
 - Calcule o efeito da entrada na saída;
 - Altere pesos para saídas indesejáveis;
- O Teorema da Convergência dos Perceptrons (Rosenblatt, 1958; Block, 1962; Novikoff, 1963) limita o número de erros que o algoritmo do perceptron pode cometer:
- "Seja $(x_1, y_1), ..., (x_n, y_n)$ uma seqüência de exemplos rotulados com $x_i \in \Re^n, \|x_i\| \le R$ e $y_i \in \{-1,1\}, \forall i$. Seja $u \in \Re^n, \varepsilon > 0$, tal que $y_i(u \cdot x_i) \ge \varepsilon, \forall i$. Então o perceptron comete no máximo $\left(R^2 \|u\|^2\right) / \varepsilon^2$ erros nesta sequência de exemplos.

Algoritmo de aprendizagem:

Inicialize pesos e limiares:

Atribua valores aleatórios para ω_{ji} , $(0 \le i \le n)$ e T_{j} , Como j = 1, índice some.

Apresente as entradas e as saídas desejadas:

Represente binariamente os vetores de entrada e saída;

Apresente a entrada $(x_0, x_1, ..., x_n)$ e a saída alvo [t(t)]

Calcule a saída pela Função de Heaviside em t:

$$y(t) = f_h \left[\sum_{i=1}^n w_i x_i(t) \right]$$

Recalcule os Pesos:
$$y(t) = 0, t(t) = 1 \Rightarrow w_{ji} = w_{ji} + x_i$$

$$y(t) = 1, t(t) = 0 \Rightarrow w_{ii} = w_{ii} - x_i$$

$$y(t) = t(t) \Rightarrow w_{ji} = w_{ji}$$

- A primeira modificação consiste de atenuar as modificações nos pesos no período de treinamento. Isto é conseguida através da introdução de fator multiplicativo da variação do peso.
 - Substitua o passo de ajustar pesos:

$$y(t) = 0, t(t) = 1 \Rightarrow w_{ji} = w_{ji} + \eta x_i$$

$$y(t) = 1, t(t) = 0 \Rightarrow w_{ji} = w_{ji} - \eta x_i$$

$$y(t) = t(t) \Rightarrow w_{ji} = w_{ji}, \quad 0 < \eta \le 1.$$

• Widrow e Hoff (1960) modificaram a regra acima de maneira que as variações nos pesos fossem proporcionais às diferenças entre a saída real e a desejada. Os pesquisadores propuseram se calcular a diferença entre as saídas mencionadas acima e chamá-la de ERRO.

• Em 1959, Bernard Widrow (24/12/1929) e Marcian Edward "Ted" Hoff, Jr. (28/10/1937), de Stanford, desenvolveram modelos chamados ADALINE e MADALINE que receberam seus nomes devido ao uso de elementos lineares e adaptativos múltiplos (*Multiple ADAptive LINear Elements*). MADALINE foi a primeira RN usada em um problema do mundo real: filtro adaptativo para eliminar ecos em linhas telefônicas.

• Adaline foi uma versão modificada do Perceptron, cuja regra de propagação de Adaline é:

$$net_{j} = \sum_{i=1}^{n} w_{i} x_{i}$$

•A regra de ativação (para uma representação binária) é:

$$y(t) = f_h \left[\sum_{i=0}^n w_i x_i(t) \right]$$

• Algoritmo de treinamento proposto por Widrow-Hoff atualiza os pesos com base em um erro entre a saída desejada e a obtida.

- Algoritmo de treinamento proposto por Widrow-Hoff:
- Seja x_p um padrão com saída desejada e obtida t_p e y_p . Define-se o erro:

$$\delta_p = t_p - y_p$$

- Os pesos são ajustados para minimizar o erro $E_p = \frac{1}{2} \|\delta_p\|^2$
- •Este erro varia com relação a cada um dos pesos:

$$\frac{\partial E_p}{\partial w_i} = \frac{\partial}{\partial w_i} (y_p - t_p) = \delta_i \cdot x_i$$

• A regra de Widrow-Hoff ou regra Delta ou regra Least-Means-Square (LMS): $\partial E_p(t)$

$$w_i = w_i + \eta \frac{\partial E_p(t)}{\partial \omega_i(t)} : w_i = w_i + \eta \delta_i x_i$$

- Variações do modelo ADALINE:
 - HARDWARE: implementada no computador analógico.
 - SOFTWARE: simulações num IBM 1620 até 1000 pesos.
- MADALINE: Conjunto de ADALINES que lançam suas respostas em uma ADALINE fixa.
 - •A ADALINE fixa atua com voto de maioria: Se mais que a metade das saídas das ADALINEs são +1 a saída da MADALINE também o é.
 - Pode resolver problemas complexos, mas não se provou convergência.

• Pode-se entender o procedimento de aprendizagem do Perceptron observando a evolução do vetor peso no tempo.

Comportamento do vetor de pesos no espaço de padrões

Evolução da "Linha de Classificação" ()

- Separabilidade linear: Separação linear de dois conjuntos de padrões pertencentes a classe diferentes.
- Limitação do perceptron com respeito à separabilidade linear.

Marvin Lee *Minsky* (09/08/1927)

Seymour Papert (29/02/1928)

• O perceptron não pode aprender exemplos que não sejam linearmente separáveis tais como a porta XOR.

\mathbf{X}_1				
1 [†]	Y	X_2	X_1	
•/-	0	0	0	
	1	1	0	
The second second	1	0	1	
-1	0	1	1	
/	X ₂	= X ₁ ⊕	Y =	
1				
0 → X2				
_ L 2				

- **EXEMPLO 1:**
 - Um Perceptron deve ser treinado para reconhecer a porta lógica OR.
 - As condições iniciais de treinamento são: $w_1 = 0$; $w_2 = 0$; $w_3 = 0$; T = 1
- > As amostras e as saídas da porta lógica OR são

AMOSTRA	X_1	X_2	T	SAÍDA DESEJADA
1	0	0	1	0
2	0	1	1	1
3	1	0	1	1
4	1	1	1	1

> Sequência de treinamento:

ESTÁG	INST. DE	ENTD ADAC (V	PESOS	SU	SAÍDAS	
IO	TEMPO	ENTRADAS (X_1, X_2, T)	(W_1, W_2, W_3)	M	REA L	DE S.
Ι	1	(0 0 1)	$(0\ 0\ 0)$	0	0	0
	2 3	(0 1 1)	$(0\ 0\ 0)$	0	0	1
	3	(0 1 1)	$(0\ 0\ 0)$	2	1	1
			+ (0 1 1)			
II	4	(0 0 1)	(0 1 1)	1	1	0
	5	(0 0 1)	(0 1 1)	0	0	0
			$-(0\ 0\ 1)$			
III	6	(0 0 1)	(0 1 0)	0	0	0
	7	(0 1 1)	$(0\ 1\ 0)$	1	1	1
	8	$(1\ 0\ 1)$	$(0\ 1\ 0)$	0	0	1
	9	$(1\ 0\ 1)$	$(0\ 1\ 0)$	2	1	1
			+ (1 0 1)			
IV	10	(0 0 1)	(1 1 1)	1	1	0
	11	$(0\ 0\ 1)$	$(1\ 1\ 1)$	0	0	0
	12	(0 1 1)	- (0 0 1)	1	1	1
	13	(1 0 1)	(1 1 0)	1	1	1
	14	(1 1 1)	(1 1 0)	2	1	1
-	Centro de Ini	formática	(1 1 0)			

22

- **EXEMPLO 1:**
 - Variação dos pesos durante o treinamento:

EXEMPLO 2:

- Reconhecimento de dígitos comumente usados em displays digitais. Tais dígitos são resultado de uma combinação apropriada de segmentos como em sete possibilidades como mostrada na figura ao lado.
- Um sistema de visualização identifica os estados de ativação dos segmentos e estes estados são entradas para um perceptron como na figura ao lado.

Representação das entradas:

$\mathbf{X_0}$	$\mathbf{X_1}$	$\mathbf{X_2}$	X_3	$\mathbf{X_4}$	\mathbf{X}_{5}	X_6	Dígito
0	1	1	1	1	1	1	0
1	1	1	1	1	0	1	9
1	1	1	1	1	1	1	8
0	0	1	1	1	0	0	7
1	1	1	0	1	1	1	6
1	1	1	0	1	1	0	5
1	1	0	1	1	1	0	4
1	0	1	1	1	1	0	3
1	0	1	1	0	1	1	2
=0	0	0	1	1	0	0	1
5 3 (0)	Centro de Informática						

EXEMPLO 2:

- Cada um dos dígitos é reconhecido pela "rede". Logo, para treinar um Perceptron reconhecedor de dígitos 1, só a última linha produziria saída 1, enquanto todas as demais produziriam saída 0.
- Para identificar o número 0 (zero) só duas mudanças são necessárias.

Entrada	Pesos	Som	Saída	Resposta Correta
$(0\ 1\ 1\ 1\ 1\ 1\ 1)$	$(0\ 0\ 0\ 0\ 0\ 0\ 0\ 0)$	0	0	1
$(0\ 1\ 1\ 1\ 1\ 1\ 1)$	$(0\ 1\ 1\ 1\ 1\ 1\ 1)$	7	1	1
$(1\ 1\ 1\ 1\ 1\ 0\ 1\ 1)$	$(0\ 1\ 1\ 1\ 1\ 1\ 1)$	7	1	0
$(0\ 1\ 1\ 1\ 1\ 1\ 1)$	$(-1\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	1	1	1

- − Com dois seguimentos (0 inativo e 6 ativo) o zero é identificado.
- São observadas 65 mudanças para identificar o dígito 8, resultando nos pesos (3 3 0 6 –1 –7 4 –7).