Aerodynamika pojazdów lab. 2: Wpływ bliskości ziemi na właściwości profilu aerodynamicznego

Opis ćwiczenia

Zbadać wpływ bliskości ziemi na opływ profilu.

Siatka umożliwia obliczenia dla następujących odległości między ziemią a profilem: 0.05 m, 0.1 m, 0.15 m, 0.2 m, 0.25 m, 0.75 m. Dla każdego przypadku należy zanotować wartości współczynników siły nośnej i oporu, po czym sporządzić wykresy wpływu bliskości ziemi. Dwa skrajne przypadki (blisko i daleko od ziemi) należy porównać dokonując wizualizacji.

W tunelach aerodynamicznych ok. 10 % przekroju zajmowane jest przez badany profil, są też tunele do badania dużych pojazdów, których górna powierzchnia ma kształt wklęsły (imitujący kształt linii prądu) np. tunel Pininfarina. Są tunele w których samochody stawia się na ruchomych taśmach (rysunek czołgu w notatkach), ale muszą to być specjalne konstrukcje ponieważ taśmy są zasysane (np. przez dyfuzor samochodu). U nas ruch taśmy zostanie odwzorowany nadaniem prędkości na ścianie sąsiadującej z profilem.

Fluent

Zapoznanie się z geometria modelu:

Uruchomić Fluenta w trybie single precision (przy double precision zawiesza się po zmianie warunku brzegowego z "wall" na "interior") i wczytać siatkę "layers.msh"

Obejrzeć siatkę, wg domyślnych ustawień kolor niebieski oznacza warunek wlotowy, czerwony wylotowy, żółty symetrię (warunek nadany górnej poziomej krawędzi) a biały ściany.

Najpierw należy wyświetlić wszystkie krawędzie modelu: Graphics and Animations\Mesh Pod Surfaces zaznaczyć wszystko (ikona w górnym prawym rogu okna – jedna wszystkie odznacza, druga zaznacza) i odznaczyć default-interior (krawędzie siatki).

Zbliżyć widok tak aby powiększyć na cały ekran profil, jednocześnie obejmując fragmenty znajdujących się pod nim krawędzi.

Klikając prawy przycisk myszy na geometrii, w oknie tekstowym drukowana jest jej nazwa. W ten sposób należy sprawdzić jak nazwane są krawędzie profilu oraz kolejne poziome imitujące ziemię. Innym sposobem jest zaznaczenie pod Surfaces krawędzi i odszukanie jej w oknie graficznym.

Ważne aby znać nazwy poziomych linii gdyż będziemy kolejno zmieniać ich własności ze "ścian" na "przezroczystość" symulując zwiększanie odległości profilu od ziemi (początkowo wszystkie mają warunek ścian).

Ustawienia solvera:

- 1. Sprawdzić czy siatka ma właściwą skalę (rzędu kilku metrów):
 - General\Scale: Mesh

W tym przypadku nie trzeba skalować, siatka ma już właściwe wymiary. Badany profil ma długość 1 m, dlatego długość obszaru równa 12m jest odpowiednia.

- 2. Sprawdzić poprawność siatki:
 - General/Check
- 3. Nie zmieniać pozostałych domyślnych ustawień w zakładce General
- 4. Ustawić model turbulencji:
 - Models\Viscous\Spalart-Allmaras
- 5. Zostawić domyślne ustawienia płynu jako powietrze nieściśliwe w Materials
- 6. Warunki brzegowe Boundary Conditions są już zdefiniowane jako:
 - velocity inlet (wlot)
 - pressure outlet (wylot)
 - symmetry (górna krawędź)
 - wall (opływane ciało i kolejne "krawędzie ziemi")

- 7. Ustawić warunki na wlocie:
 - Zakładka Momentum:
 - o Velocity Magnitude: 40 m/s
 - Turbulence/Specification Method/Intensity and Lenght Scale:
 - o Turbulent Intensity: 2 %
 - o Turbulent Lenght Scale: 0.005 m
- 8. Wybrać którąś ze ścian (posiadającą typ warunku brzegowego "wall") np. "dno1".

W zakładce Momentum, pod Wall Motion zaznaczyć Moving Wall, a przy Speed prędkość, taka jak na włocie, czyli 40 m/s.

Teraz należy skopiować te ustawienia dla wszystkich krawędzi zdefiniowanych jako ściany. W Boundary Conditions wybrać Copy. Z lewej strony zaznaczyć "dno1", a z prawej wszystkie pozostałe ściany, kliknięcie przycisku Copy przypisze na nich ustawione przed chwilą parametry. Wejść w edycję którejś ze ścian i sprawdzić, czy kopiowanie ustawień udało się.

<u>Uwaga</u>: Każda z krawędzi zdefiniowanych jako ściana (wall) znajdująca się wewnątrz obszaru obliczeniowego, ma swój odpowiednik z końcówką "shadow" w nazwie, jest to orientacja w przeciwną stronę tej samej ściany.

- 9. Ustawić parametry odniesienia Reference Values:
 - Area: 1 m2 bo długość profilu to 1 m a zakładamy że rozpiętość skrzydła to też 1m
 - Density: 1.225 kg/m³ gęstość powietrza
 - Velocity: 40 m/s prędkość na włocie

Dzięki temu współczynniki sił będą miały poprawne wartości.

- 10. Upewnić się że obliczenia prowadzone dla równań pędu pierwszego rzędu:
 - Solution Methods\Momentum\First Order Upwind
- 11. Zmniejszyć wielkość błędu rozwiązania:
 - Solution\Monitors\Residuals w kolumnie Absolute Criteria z domyślnego 1e-3 wprowadzić 1e-4
- 12. Dodać Monitor współczynnika siły nośnej i oporu:
 - Solution\Monitors\Drag a potem Lift

W oknie Drag Monitor zaznaczyć Plot (kreślenie wykresu na ekranie) a pod Wall Zones "bottom" i "top" (dolna i górna krawędź profilu). To samo powtórzyć w Lift Monitor. Podzielić ekran graficzny na trzy części (w czasie obliczeń będą kreślone wykresy błędu, współczynnika siły nośnej i oporu):

- View\Graphics Window Layout i wybrać ikonkę z podziałem na 3 okna
- 13. Zainicjalizowanie rozwiązania(przypisanie na siatce początkowych wartości, których użyjemy do rozpoczęcia obliczeń) Solution Initialization:
 - Initialization Method\Standard Initialization
 - o Compute from\wlot

W tym momencie wczytane zostaną parametry na wlocie, aby przypisać je na całej siatce należy kliknąć Initialize

- 14. Rozpocząć obliczenia:
 - Run Calculation\ Calculate

Najpierw trzeba jednak ustawić liczbę iteracji pod Number of Iterations na ok. 600 Obliczenia powinny trwać do momentu osiągnięcia poziomu zbieżności (błąd poniżej 1e-4). Jednocześnie możemy zobaczyć jak w trakcie obliczeń zmieniają się współczynniki sił. Po wykonaniu kilkunastu iteracji następuję gwałtowna zmiana wartości współczynników sił, wykresy stają się nieczytelne i należy je wyczyścić, w tym celu trzeba wrócić do okien monitorów Solution\Monitors\Drag oraz Lift i kliknąć przycisk Clear.

Jeżeli po osiągnięciu kryterium zbieżności, współczynniki ustaliły się na stałym poziomie, oznacza to iż nie musimy kontynuować obliczeń.

Analiza wyników:

- 1. Kontury ciśnienia statycznego w obszarze obliczeniowym:
 - Graphics and Animations\Contours: Pressure\Static Pressure
 - o Surfaces: wszystko odznaczone

Zaznaczyć Draw Mesh pod Options, w wyświetlaniu siatki pod Surfaces wybrać wszystkie ściany

- 2. Kontury prędkości w obszarze obliczeniowym:
 - Graphics and Animations\Contours: Velocity\Velocity Magnitude
 - o Surfaces: wszystko odznaczone

- 3. Wektory prędkości w obszarze obliczeniowym:
 - Graphics and Animations\Vectors
 - o Surfaces: wszystko odznaczone

Dostosować parametry Skip i Scale aby rysunek był możliwie najczytelniejszy

- 4. Linie prądu wychodzące z profilu i pomocniczej powierzchni tuż przed profilem:
 - Surface\Iso-Surface
 - o Surface of Constant: Mesh
 - X-Coordinate: Iso-Value = -0.5

Nadać nazwę i potwierdzić Create.

5. Graphics and Animations\Path Lines

• Release from Surfaces: krawędzie profilu(top i bottom) oraz dodana powierzchnia

Sprawdzić jak będą wyglądały linie prądu puszczone tylko z wlotu.

6. Sprawdzenie współczynników siły nośnej i oporu na profilu:

• Results\Reports\Forces

o Options: Forces

o Direction Vector: X = 1 (siła oporu) Y = 1 (siła nośna)

o Wall Zones: krawędzie profilu

Po kliknięciu Print, w oknie tekstowym zostaną wydrukowane wartości sił i współczynników sił, odnaleźć tabelę z wydrukiem po zadanym wektorze i pozycję Coefficients Total z sumą wartości na profilu. Zanotować wartości współczynników siły nośnej i oporu.

у	Сх	Cz	Cz/Cx
0,05			
0,10			
0,15			
0,20			
0,25			
0,75			

7. Wykonanie wykresu ciśnienia statycznego na profilu:

• Results\Plots\XY Plot

Pozostawić ustawienia pod Plot Direction (wykonujemy wykres wzdłuż osi X, dlatego x = 1), oraz pod Y Axis Function Pressure\Static Pressure.

Pod Surfaces wybrać krawędzie profilu, aby wyświetlić wykres Plot, aby zapisać serię danych do pliku z lewej strony pod Options zaznaczyć Write to File, teraz przycisk Plot zmienił się na Write, plik najlepiej zapisać z rozszerzeniem *.xy.

Aby zmieniać styl wyświetlania linii/punktów wejść w Curves, wybrać odpowiedni styl linii oraz marker punktów, aby zmodyfikować kolejną serię danych należy ustawić kolejny numer pod Curve #.

Aby wczytać dane z pliku wybrać w oknie wykresu Load File, po wykonaniu obliczeń dla przypadków blisko i daleko od ziemi, porównać wyniki na jednym wykresie.

Dla każdego badanego przypadku należy zanotować wartości współczynnika siły nośnej i oporu, a następnie wykonać wykres zależności współczynników od odległości od ziemi.

Wykresy współczynników siły oporu (Cx), docisku (Cy) i doskonałości (Cz/Cx)

Obserwacje

Wyniki obliczeń pozwalają na pokazanie charakteru zmian sił działających na profil przy zmianie jego odległości od ziemi.

Sprawozdanie

Zestawienie wizualizacji dla skrajnych przypadków. Wykresy wpływu ziemi na profil.