# EE230: Analog Circuits Lab Lab - 6

Abhineet Agarwal, 22B1219

February 14, 2024

# 1 Measurement of offset voltage and bias currents

## 1.1 Measurement of $V_{os}$

### 1.1.1 Aim of the experiment

The aim of this experiment was to measure the input offset voltage  $V_{os}$  of the given OpAmp IC (LM741 IC).

### 1.1.2 Design

The circuit to calculate the input offset voltage is shown in the figure below.



 $R_1 = 10\Omega$ 

$$R_2 = 10 \text{k}\Omega$$
  
Supply voltages of the Op-Amp =  $\pm 15 \text{V}$ 

### 1.1.3 Experimental results

(i) The equivalent circuit, considering the OpAmp non-idealities is shown below:



the output of this circuit is given by:

$$V_o = V_{OS}(1 + \frac{R_2}{R_1}) + R_2 I_B^-$$

(ii) For a dominating value of  $V_{OS}$  with negligible  $I_B^-$ , we can write the above equation as

$$V_{OS} = \frac{V_o}{(1 + \frac{R_2}{R_1})} \approx \frac{V_o}{R_2/R_1}$$

(iii) The values of the resistors used are tabulated below:

|             | $R_1$        | $R_2$         |
|-------------|--------------|---------------|
| theoretical | $10\Omega$   | $10k\Omega$   |
| measured    | $10.2\Omega$ | $9.80k\Omega$ |

(iv) Measured output of the circuit  $V_o = 1.66V$ Thus, using the above formula, offset voltage  $V_{OS}$ 

$$V_{OS} = 1.66mV$$

thus, the measured and the typical datasheet values of the offset voltage are tabulated below:

### 1.1.4 Conclusion and Inference

Thus, we measured successfully the offset voltage of the given OpAmp LM741 IC.

### 1.1.5 Experiment completion status

All parts of this experiment were successfully completed in the lab.

# 1.2 Measurement of bias current $I_B^-$

### 1.2.1 Aim of the experiment

The aim of this experiment was to measure the input bias current in the inverting input  $I_B^-$  of the given OpAmp IC (LM741 IC).

### 1.2.2 Design

The circuit to calculate the input bias current  $I_B^-$  is shown in the figure below.

$$R = 10 \mathrm{M}\Omega$$

Supply voltages of the Op-Amp =  $\pm 15$ V



## 1.2.3 Experimental results

(i) The equivalent circuit, considering the OpAmp non-idealities is shown below:



the output of this circuit is given by:

$$V_o = V_{OS} + I_B^- R$$

(ii) As the  $V_{OS}$  term is very small compared to the value of  $I_B^-R$ , where  $R=10\mathrm{M}\Omega$ , therefore we get

$$I_B^- = \frac{V_o}{R}$$

(iii) The values of the resistor used tabulated below:

|             | R                       |
|-------------|-------------------------|
| theoretical | $10\mathrm{M}\Omega$    |
| measured    | $10.1 \mathrm{M}\Omega$ |

(iv) Measured output of the circuit  $V_o = 2.34V$ Thus, using the above formula, offset voltage  $I_B^-$ 

$$I_B^- = 234nA$$

thus, the measured and the typical datasheet values of the input bias current are tabulated below:

|           | $I_B^-$      |
|-----------|--------------|
| datasheet | 80 - 500  nA |
| measured  | 234 nA       |

### 1.2.4 Conclusion and Inference

Thus, we measured successfully the input bias current in the inverting terminal of the given OpAmp LM741 IC.

### 1.2.5 Experiment completion status

All parts of this experiment were successfully completed in the lab.

# 1.3 Measurement of bias current $I_B^+$

#### 1.3.1 Aim of the experiment

The aim of this experiment was to measure the input bias current in the non-inverting input  $I_B^+$  of the given OpAmp IC (LM741 IC).

### 1.3.2 Design

The circuit to calculate the input bias current  $I_B^+$  is shown in the figure below.

$$R = 10 \mathrm{M}\Omega$$

Supply voltages of the Op-Amp =  $\pm 15$ V



### 1.3.3 Experimental results

(i) The equivalent circuit, considering the OpAmp non-idealities is shown below:



the output of this circuit is given by:

$$V_o = V_{OS} + I_B^+ R$$

(ii) As the  $V_{OS}$  term is very small compared to the value of  $I_B^+R$ , where  $R=10\mathrm{M}\Omega,$  therefore we get

$$I_B^+ = \frac{|V_o|}{R}$$

(iii) The values of the resistor used tabulated below:

|             | R                       |
|-------------|-------------------------|
| theoretical | $10\mathrm{M}\Omega$    |
| measured    | $10.1 \mathrm{M}\Omega$ |

Measured output of the circuit  $V_o = 0.99V$ Thus, using the above formula, offset voltage  $I_B^+$ 

$$I_B^+ = 99nA$$

Thus, the measured and the typical datasheet values of the input bias current are tabulated below:

$$\begin{array}{c|c} & I_B^+ \\ \hline \text{datasheet} & 20-200 \text{ nA} \\ \hline \text{measured} & 99 \text{ nA} \\ \end{array}$$

#### 1.3.4 Conclusion and Inference

Thus, we measured successfully the input bias current in the non-inverting terminal of the given OpAmp LM741 IC.

### 1.3.5 Experiment completion status

All parts of this experiment were successfully completed in the lab.

# 2 Measurement of Open-loop gain

# 2.1 Aim of the experiment

The aim of this experiment was to measure the open-loop gain of the given OpAmp LM741 IC, and to analyse it's frequency response.



# 2.2 Design

The OpAmp configuration used to measure the open-loop gain is shown below.

$$R_{in} = R_{fb} = 5k\Omega$$

$$R_1 = 100k\Omega$$

$$R_2 = 100\Omega$$

 $10k\Omega$  pot. was used for offset voltage nullification

Supply voltages of the Op-Amp =  $\pm 15$ V

# 2.3 Experimental results

(i) The values of the resistors used in the given circuit are tabulated below:

|          | theoretical  | measured      |
|----------|--------------|---------------|
| $R_{in}$ | $5k\Omega$   | $5k\Omega$    |
| $R_{fb}$ | $5k\Omega$   | $5k\Omega$    |
| $R_1$    | $100k\Omega$ | $99.7k\Omega$ |
| $R_2$    | $100\Omega$  | $99.8\Omega$  |

(ii) Connecting the 10k pot. across the offset null pins, and connecting the variable leg of the pot. to  $V_{EE}$ , we adjust the pot. appropriately so that output  $V_o = 0V$  for  $V_{in} = 0V$ .

The value of  $V_o$  after nullifying the offset = 0.01V

- (iii) For  $V_{in} = 1V$ , the observed  $V_o = -1.010V$ . As the measured value is almost same as the expected output  $V_o = -1V$ , thus this verifies that the offset has been nullified and that the circuit is connected properly.
- (iv) For  $V_{in} = 15V_{pp}$ , the measured peak-to-peak  $V_R$  and  $V_o$ , and the calculated gain  $A_{OL}$  is given by:

$$|A_{OL}| = \frac{|V_o|}{|V_R|} \frac{R_1 + R_2}{R_2}$$

Tabulated measurements of the same are given below:

| f                 | $V_{o(pp)}$ | $V_{R(pp)}$       | $A_{OL}$ |
|-------------------|-------------|-------------------|----------|
| 10 kHz            | 880 mV      | 7.28 V            | 120.9    |
| $1~\mathrm{kHz}$  | 6.48 V      | 6.72 V            | 964.2    |
| $500~\mathrm{Hz}$ | 10.4 V      | $5.52~\mathrm{V}$ | 1884.1   |
| $100~\mathrm{Hz}$ | 14.8 V      | 1.64 V            | 9024.3   |
| $20~\mathrm{Hz}$  | 15.0 V      | 336  mV           | 44642.8  |
| $10~\mathrm{Hz}$  | 15.2 V      | 180 mV            | 84444.4  |
| 9  Hz             | 15.2 V      | 172  mV           | 88372.09 |
| $8~\mathrm{Hz}$   | 15.2 V      | 140 mV            | 108571.4 |
| $7~\mathrm{Hz}$   | 15.2 V      | 124  mV           | 122580.6 |
| $6~\mathrm{Hz}$   | 15.2 V      | $164 \mathrm{mV}$ | 92682.9  |
| $5~\mathrm{Hz}$   | 15.2 V      | 88 mV             | 172727   |
| $4~\mathrm{Hz}$   | 15.2 V      | 72  mV            | 211111   |
| 3  Hz             | 15.2 V      | 60  mV            | 253333   |
| 2  Hz             | 15.2 V      | $44 \mathrm{mV}$  | 345454   |
| $1~\mathrm{Hz}$   | 15.2 V      | 36  mV            | 506666   |

Table. Open-Loop Gain

(v) Now,

From the tabulated values, the maximum gain  $A_{OL(max)} = 506666$  Now.

 $\frac{1}{\sqrt{2}}$  (approximately 70.7%) of this maximum gain  $A_{OL(max)} \approx 358266.96$ 

This value of gain occurs around 2 Hz

Thus, the 3-dB frequency (Bandwidth of the OpAmp)  $\approx 2 \text{ Hz}$ 

(vi) Roll-off slope = gain at 10kHz - gain at 1kHz (in dB) Hence,

Roll-off slope = -29.3 dB/decade

Observed from the table, the given system has 1 pole, with a pole frequency  $\approx$  4Hz.

(vii) Thus, the measured and the typical datasheet values of the open-loop gain  $A_{OL}$  and 3-db frequency are tabulated below:

|           | $A_{OL}$                | 3-db freq.              |
|-----------|-------------------------|-------------------------|
| datasheet | $2 \times 10^{5}$       | 7.5Hz                   |
| measured  | $\approx 5 \times 10^5$ | $\approx 2 \mathrm{Hz}$ |

(viii) Magnitude frequency response of  $A_{OL}$  (Bode Plot) is given below:



### 2.4 Conclusion and Inference

Thus, we measured the open-loop gain of the given OpAmp IC successfully and analysed it's frequency response.

### 2.5 Experiment completion status

All parts of this experiment were successfully completed in the lab.

# Parameters of the LM741 IC

The comparison between the measured and typical datasheet values of the parameters of the LM741 IC is tabulated below:

|                     | datasheet       | measured                |
|---------------------|-----------------|-------------------------|
| $V_{OS}$            | 1-6 mV          | 1.66 mV                 |
| $I_B^-$             | 80-500 nA       | 234 nA                  |
| $\overline{I_B^+}$  | 20-200 nA       | 99 nA                   |
| $\overline{A_{OL}}$ | $2 \times 10^5$ | $\approx 5 \times 10^5$ |
| $f_{3dB}$           | 7.5 Hz          | $\approx 2 \text{ Hz}$  |