میکانیك نیوتن

$$\mathbf{v}_2 = \frac{|\mathbf{M}_1 \, \mathbf{M}_3|}{(\mathbf{t}_3 - \mathbf{t}_1)}$$

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

بملاحظة سقوط تفاحة ، اكتشف إسحاق نيوتن مفهوم التجاذب الكوني ، كوني لأنه لايهم فقط كوكب الأرض بل كذلك الكون ككل . و قد توصل كذلك إلى بلورة القوانين الثلاثة التي تنظم حركة الأجسام . اسحاق نيوتن (1642 - 1727)

1) حركة مركز قصور جسم صلب .

1 - 1) تذكير .

نقتصر في الثانوي على دراسة ميكانيك النقطة المادية ، أي دراسة حركة نقطة ذات كتلة m في المكان و الزمان . في أحسن الأحوال نستطيع أن نصف حركة مجموعة من النقط ساكنة فيما بينها و تكون جسما غير قابل للتشويه . المرجع هو جسم صلب ندرس بالنسبة له حركة المجموعة . و هو ضروري بالنسبة للدراسة الميكانيكية ، حيث أن طبيعة حركة النقطة تتعلق بمرجع الدراسة .

نقرن بكل مرجع:

- معلم الفضاء (O;i,j,k)، الذي نختاره بحيث يصف الحركة بطريقة أبسط.
 - معلم الزمن ، حيث أصل التواريخ يوافق بداية الحركة أو طور ا مميز ا

عندما يكون جسم صلب في سقوط حر، توجد هناك نقطة من هذا الجسم لها أبسط حركة من النقط الأخرى: هذه النقطة هي مركز قصور الجسم ، نرمز له بالحرف G.

مركز قصور جسم صلب متجانس منطبق مع مركز تماثله (إذا كان له مركز تماثل).

 $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_N$ كل مجموعة مادية تتكون من مجموعة من الدقائق $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_N$ لها بالتتابع الكتل عرف من مجموعة من الدقائق العلاقة المرجحية :

$$\mathbf{m}_{1} \overrightarrow{\mathbf{G}} \overrightarrow{\mathbf{A}}_{1} + \mathbf{m}_{2} \overrightarrow{\mathbf{G}} \overrightarrow{\mathbf{A}}_{2} + \dots + \mathbf{m}_{N} \overrightarrow{\mathbf{G}} \overrightarrow{\mathbf{A}}_{N} = \overrightarrow{\mathbf{0}}$$

$$\overrightarrow{\mathbf{O}} \overrightarrow{\mathbf{G}} = \frac{\mathbf{m}_{1} \overrightarrow{\mathbf{O}} \overrightarrow{\mathbf{A}}_{1} + \mathbf{m}_{2} \overrightarrow{\mathbf{O}} \overrightarrow{\mathbf{A}}_{2} + \dots + \mathbf{m}_{N} \overrightarrow{\mathbf{O}} \overrightarrow{\mathbf{A}}_{N}}{\mathbf{m}_{1} + \mathbf{m}_{2} + \dots + \mathbf{m}_{N}}$$

1 - 2) متجهة الموضع.

و معلم دیکارتي

يمكن معلمة موضع مركز القصور G لمجموعة في كل لحظة ، بواسطة متجهة الموضع OG

في معلم الفضاء المرتبط بمرجع الدراسة نكتب:

 $\overrightarrow{OG} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$

إذا كان الجسم في حالة حركة ، فإن الإحداثيات y,x و z تتغير . لذا نرمز لهم ب y(t),x(t) و z(t) و تسمى المعادلات الزمنية للحركة .

مجموع المواضع المحتلة بالتتابع من طرف G خلال الزمن تكون مسار هذه النقطة .

معلم فريني

معلم فريني معلم أصله مرتبط بالنقطة المتحركة G, u,n) : G

- $\bar{\bf u}$ متجهة واحدية اتجاهها هو مماس المسار و موجهة في منحى الحركة .
 - n متجهة واحدية اتجاهها منظمي المسار و موجهة نحو تقعره .

خلال حركة مستوية يمكن معلمة موضع G باعتماد أفصولها المنحني:

 $s=\Omega G$ أصل الأفاصيل المنحنية Ω

1 - 3) متجهة السرعة .

السرعة اللحظية $\mathbf{v}(\mathbf{t}_i)$ لنقطة متحركة \mathbf{M} عند اللحظة \mathbf{t}_i تساوي السرعة المتوسطة لهذه النقطة بين اللحظتين \mathbf{t}_{i-1} و \mathbf{t}_{i-1} اللتان تؤطران \mathbf{t}_i و قريبتين أقصى ما يمكن من اللحظة \mathbf{t}_i :

$$v(t_i) = \frac{\widehat{M_{i-1}M_{i+1}}}{t_{i+1} - t_{i-1}}$$

 \overrightarrow{OM} في مرجع معين ، متجهة السرعة \overrightarrow{v} لنقطة متحركة M هي المشتقة بالنسبة للزمن لمتجهة الموضع

$$\vec{v}(t) = \frac{d \, \overrightarrow{OM}(t)}{dt}$$

في مجال زمني صغير جدا ، لدينا:

$$\vec{v}(t_i) \approx \frac{\overrightarrow{M_{i-1}M_{i+1}}}{t_{i+1}-t_{i-1}} = \frac{\overrightarrow{OM_{i+1}}-\overrightarrow{OM_{i-1}}}{t_{i+1}-t_{i-1}} = \frac{\Delta \overrightarrow{OM}(t_i)}{\Delta t}$$

يمكن أن نكتب اذن:

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{OM}(t)}{\Delta t} = \frac{d \overrightarrow{OM}(t)}{dt}$$

و بذلك فإن متجهة السرعة اللحظية محمولة من طرف مماس المسار عند لحظة t و موجهة في منحى الحركة .

* إحداثيات متجهة السرعة:

في معلم فريني	في معلم ديكارتي
$\vec{\mathbf{V}} = \mathbf{V}\vec{\mathbf{u}}$	$\vec{\mathbf{V}}(t) = \mathbf{V}_{\mathbf{x}}(t)\vec{\mathbf{i}} + \mathbf{V}_{\mathbf{y}}(t)\vec{\mathbf{j}} + \mathbf{V}_{\mathbf{z}}(t)\vec{\mathbf{k}}$
مع :	مع :
$\mathbf{V} = \frac{\mathbf{ds}}{\mathbf{dt}} = \dot{\mathbf{s}}$	$V_{x}(t) = \frac{dx}{dt} = \dot{x}$
$egin{aligned} \mathbf{V} & \mathbf{V} $	$\mathbf{V}_{\mathbf{y}}(\mathbf{t}) = \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{t}} = \dot{\mathbf{y}}$
	$V_{z}(t) = \frac{dz}{dt} = \dot{z}$

* ملحوظة:

إحداثيات متجهة قيم جبرية ، لا يجب الخلط بينها و بين مركباتها التي هي متجهات .

1 - 4) متجهة التسارع . * تعريف :

في مرجع معيَّن ، متجهة التسارع a لنقطة متحركة هي المشتقة بالنسبة للزمن لمتجهة السرعة V لهذه النقطة المتحركة :

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt}$$

 $(m.s^{-2})$: في النظام العالمي للوحدات ، قيمة النسارع يعبر عنها بوحدة

$$\begin{bmatrix} \mathbf{a}_{\mathrm{G}} \end{bmatrix} = \begin{bmatrix} \frac{\Delta \mathbf{v}_{\mathrm{G}}}{\Delta \mathbf{t}} \end{bmatrix} = \frac{\mathbf{L} \cdot \mathbf{T}^{-1}}{\mathbf{T}} = \mathbf{L} \cdot \mathbf{T}^{-2}$$

(O,i,j,k) في معلم الموضع \overrightarrow{OM} نعتبر متجهة الموضع

$$\overrightarrow{OM} = x \vec{i} + y \vec{j} + z \vec{k}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \begin{pmatrix} dv_x \\ dt \end{pmatrix} \vec{i} + \begin{pmatrix} dv_y \\ dt \end{pmatrix} \vec{j} + \begin{pmatrix} dv_z \\ dt \end{pmatrix} \vec{k}$$

إحداثيات متجهة التسارع هي مشتقات إحداثيات متجهة السرعة:

$$\vec{a} \qquad a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} = \ddot{x}$$

$$\vec{a} \qquad a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2} = \ddot{y}$$

$$a_z = \frac{dv_z}{dt} = \frac{d^2z}{dt^2} = \ddot{z}$$

* التحديد المبياني:

بالاعتماد على تسجيل لمواضع نقطة متحركة خلال مدد متتالية و متساوية 7 ، يمكن تحديد متجهة التسارع في موضع ما بتطبيق علاقة

$$\Delta t = 2 au$$
 مع $\vec{a} = rac{\Delta \vec{V}}{\Delta t}$: التأطير

عند اللحظة t توجد النقطة المتحركة عند الموضع M مثلا:

$$\vec{a}(t) = \frac{\vec{V}(t+\tau) - \vec{V}(t-\tau)}{2\tau}$$

الأستاذ: عزيز العطور

* المركبة المنظمية و المركبة المماسية:

: عيث نکتب
$$V \frac{d\vec{u}}{dt} = \frac{V^2}{\rho} \vec{n}$$
 غي معلم فريني $\vec{a} = \frac{d\vec{V}}{dt} = \frac{dV}{dt} \vec{u} + V \frac{d\vec{u}}{dt}$ عيث نکتب
$$\vec{a} = \frac{dV}{dt} \vec{u} + \frac{V^2}{\rho} \vec{n} = \vec{a}_t + \vec{a}_n$$

مع : ρ شعاع انحناء المسار عند النقطة المعنية . إذا كان المسار دائريا فإن شعاع الانحناء هو شعاع الدائرة .

المركبة المنظمية للتسارع المركبة المنظمية للتسارع
$$\vec{a} = (\vec{a}_t) + (\vec{a}_n)$$

مع

$$a_t = \frac{dv}{dt}$$

$$a_n = \frac{v^2}{\rho}$$

قيمة a_n دائما موجبة ، متجهة التسارع دائما موجه نحو تقعر المسار

$$\mathbf{a} = \|\vec{\mathbf{a}}\| = \sqrt{\mathbf{a}_{\mathrm{x}}^2 + \mathbf{a}_{\mathrm{y}}^2 + \mathbf{a}_{\mathrm{z}}^2} = \sqrt{\mathbf{a}_{\mathrm{n}}^2 + \mathbf{a}_{\mathrm{t}}^2}$$
 : منظم متجهة التسارع

* منحى متجهة التسارع و طبيعة الحركة:

يمكن للإحداثي المماسي a_t أن يكون موجبا ، في هذه الحالة يكون منحى المتجهة \vec{a}_t هو منحى السرعة \vec{v} (منحى الحركة) . و بالتالى يكون الجداء السلمى \vec{v} . \vec{d} موجبا (أي \vec{v} . \vec{d}) .

 $\vec{V}.\vec{a}_t$ كما يمكن للإحداثي \vec{a}_t أن يكون سالبا ، و في هذه الحالة يكون منحى \vec{a}_t و منحى \vec{v} متعاكسان ، و بالتالي يكون الجداء السلمي \vec{v} سالبا (أي : $\vec{V}.\vec{a}_t < 0$) .

و بما أن الإحداثي \mathbf{a}_n دائما موجب ، نستنتج من هذه الملاحظات أن إشارة الجداء السلمي $\mathbf{V}.\mathbf{a}_t$ تحدد طبيعة الحركة . و ذلك لأن :

$$\vec{\mathbf{V}}.\vec{\mathbf{a}} = \vec{\mathbf{V}}.(\vec{\mathbf{a}}_t + \vec{\mathbf{a}}_n) = \vec{\mathbf{V}}.\vec{\mathbf{a}}_t + \vec{\mathbf{V}}.\vec{\mathbf{a}}_n = \vec{\mathbf{V}}.\vec{\mathbf{a}}_t + \mathbf{0}$$

فإذا كان $ec{v}.\dot{a}>0$ فإن الحركة متسارعة و إذا كان $ec{v}.\dot{a}>0$ فإن الحركة متباطئة . أما إذا كان $ec{v}.\dot{a}=0$ فإن الحركة منتظمة

2) قوانين نيوتن:

2 - 1) القانون الأول: مبدأ القصور.

في معلم غاليلي ، إذا كان المجموع المتجهي للقوى الخارجية المطبقة على جسم صلب مجموع منعدم (جسم صلب شبه معزول) ، فإن متجهة سرعة مركز قصوره متجهة ثابتة ، و العكس صحيح .

$$\sum \overrightarrow{F_{\text{ext}}} = \overrightarrow{0} \Leftrightarrow \overrightarrow{v_{\text{G}}} = \overrightarrow{\text{Cste}}$$

مركز قصور جسم صلب خاضع لقوى متوازنة ، إما أن يكون ساكنا $(\vec{V}_G = \vec{0})$ ، أو أن يكون له حركة حركة مستقيمية منتظمة $(\vec{V}_G = \vec{Cte} \neq \vec{0})$.

القانون الأول يخص فقط مركز قصور جسم صلب ، و لا يهم النقط الأخرى .

لا يطبق مبدأ القصور إلا في المعالم الغاليلية . قبل حل أي مسألة في الميكانيك يجب التأكد من أن المعلم المختار لدراسة حركة مركز القصور معلم غاليلي . مثلا المعلم المركزي الشمسي (معلم كوبرنيك) المعلم المركزي الأرضي أو المعلم الأرضي معالم غاليلية بتقريب (حركات ذات مدة قصيرة) . * مثال :

في المرجع الأرضي ، نعتبر متزلج كتلته $m=60 {
m kg}$ ينزل مستوى مائل بالزاوية $\alpha=25^\circ$ بالنسبة للمستوى الأفقي . المتزلج له حركة مستقيمية منتظمة . $g=9,8 {
m N.kg}^{-1}$ أحسب شدة قوة الاحتكاك و شدة القوة المنظمية المطبقة من طرف السطح المائل على المتزلج . نأخذ $g=9,8 {
m N.kg}^{-1}$

نعتبر أن المرجع الأرضي مرجعا غاليليا الجسم المدروس هو المتزلج جرد القوى:

P الوزن

R القوة المنظمية المطبقة من طرف السطح على المتزلج

f قوة الاحتكاك

الحركة مستقيمية منتظمة ، و حسب القانون الأول لنيوتن :

$$\vec{P} + \vec{R} + \vec{f} = \vec{0}$$

اختيار معلم للإسقاط $(0,\vec{i},\vec{j})$.

في هذا المعلم:

$$\vec{P} + \vec{R} + \vec{f} = \vec{0} \Leftrightarrow \begin{cases} P_x + R_x + f_x = 0 \\ P_y + R_y + f_y = 0 \end{cases}$$

إحداثيات المتجهات في هذا المعلم:

$$\vec{R} \begin{vmatrix} R_x = 0 \\ R_y = R \end{vmatrix}; \vec{f} \begin{vmatrix} f_x = -f \\ f_y = 0 \end{vmatrix}; \vec{P} \begin{vmatrix} P_x = P.\sin\alpha \\ P_y = -P.\cos\alpha \end{vmatrix}$$

 $P.\sin\alpha + 0 - f = 0 \implies f = P.\sin\alpha$

 $-P.\cos\alpha + R + 0 = 0 \implies R = P.\cos\alpha$

 $R = m.g.\cos\alpha = 530N$ و $f = m.g.\sin\alpha = 249N$ فإن P = m.g

2 - 2) القانون الثالث: مبدأ التأثيرات البينية.

نعتبر جسمین
$$A$$
 و B في تأثیر بیني . القوة المطبقة من طرف A علی B : $\overline{F_{A/B}}$ و القوة المطبقة من طرف B علی B : $\overline{F_{B/A}}$. كيفما كانت حالة حركة أو سكون الجسمین ، فإن القوتین يحققان المتساوية :

$$\overrightarrow{\mathbf{F}_{\mathbf{A}/\mathbf{B}}} = -\overrightarrow{\mathbf{F}_{\mathbf{B}/\mathbf{A}}}$$

*ملحوظة: القانون الثالث يبقى صالحا كيفما كان المرجع غاليليا أو غير غاليليا.

* مثال: التأثير بيني الحاصل بين صاروخ و الغاز المحترق. القوتان المتبادلتان متعاكستان

2 - 3) القانون الثاني: مبرهنة مركز القصور (العلاقة الأساسية للديناميك) .

في مرجع غاليلي يساوي مجموع متجهات القوى الخارجية المطبقة على جسم صلب ، جذاء كتلته و متجهة تسارع مركز قصوره في كل لحظة . $\overline{F_{\rm ext}} = m \times \overline{a_{\rm G}}$

كالقانون الأول لنيوتن ، القانون الثاني لنيوتن لا يطبق إلا بالنسبة لحركة مركز القصور ؛ و العلاقة التي ينص عليها غير صالحة إلا في المعالم الغاليلية .

* ملحوظة : متجهة تسارع مركز القصور \vec{a}_G و متجهة حصيلة القوى الخارجية \sum_{fext} يوجدان في نفس المستقيم و لهما نفس المنحى .

* مثال : حامل ذاتى مجرور على منضدة تحت تأثير القوة المطبقة من طرف خيط.

يجر حامل ذاتي على منضدة أفقية بدون احتكاك تحت تأثير قوة ثابتة \vec{F} اتجاهها أفقي . ثم نسجل مواضع مركز قصوره G خلال مدد زمنية متتالية و متساوية au=40ms فنحصل على التسجيل التالي :

.....

$$\vec{a}_G = \frac{\Delta \vec{V}}{2\tau} = \vec{Cte}$$
 يمكن التحقق من أن حركة G حركة مستقيمية متسارعة بانتظام أي

و أن هناك تناسب بين حصيلة القوى المطبقة على الحامل الذاتي $\vec{\mathbf{F}}$ و متجهة تسارع مركز القصور $\vec{\mathbf{a}}_{\mathbf{G}}$ و معامل التناسب هو كتلة

$$\frac{\vec{F}}{\vec{a}_G} = m$$
 : m الحامل

3) الحركة المستقيمية المتغيرة بانتظام.

تعریف:

نقول بأن حركة مركز القصور G لجسم صلب حركة مستقيمية متغيرة بانتظام ، عندما يكون مساره مستقيميا و تسارعة تابثا :

$$\vec{a} = \frac{\vec{dV}}{dt} = \vec{Cte}$$

* المعادلة الزمنية:

x = f(t) باستعمال الحساب التكاملي و انطلاقا من العلاقة السابقة ، نحصل على المعادلة الزمنية

$$\mathbf{a} = \frac{\mathbf{dV}}{\mathbf{dt}} \rightarrow \mathbf{V} + t \mathbf{a} \mathbf{v}$$
 کامل $\mathbf{V} = \frac{\mathbf{dx}}{\mathbf{dt}} = \mathbf{at} + \mathbf{V}_0 \rightarrow \mathbf{x} \rightarrow \frac{1}{2} \mathbf{V} t \mathbf{a} \mathbf{x} + \frac{1}{0} \mathbf{v}$

المعادلة الزمنية لحركة مستقيمية متغيرة بانتظام معادلة من الدرجة الثانية بالنسبة للزمن :

$$x = \frac{1}{2}at^2 + V_0t + X_0$$

* خلاصة :

$$x = \frac{1}{2}at^{2} + V_{0}t + x_{0} \xrightarrow{\frac{3}{2} + \frac{1}{2}at^{2}} V = at + V_{0}$$

$$V = at + V_{0} \xrightarrow{\frac{3}{2} + \frac{1}{2}at^{2}} a = \frac{dV}{dt} = Cte$$

* ملحوظة:

تتعلق قيمتا V_0 و V_0 بالشروط البدئية للحركة (الموضع و السرعة في اللحظة t=0)

* خاصيات الحركة المستقيمية المتغيرة بانتظام:

العلاقة المستقلة عن الزمن

نعتبر متحركا في حركة مستقيمية متغيرة بانتظام في موضعين مختلفين \mathbf{G}_2 و \mathbf{G}_2

$$G_{2} \begin{cases} x_{2} = \frac{1}{2}at_{2}^{2} + V_{0}t_{2} + x_{0} & (2) \\ V_{2} = at_{2} + V_{0} & (2') \end{cases} \qquad G_{1} \begin{cases} x_{1} = \frac{1}{2}at_{1}^{2} + V_{0}t_{1} + x_{0} & (1) \\ V_{1} = at_{1} + V_{0} & (1') \end{cases}$$

: من العلاقة (1') نستنتج : $t_1 = \frac{V_1 - V_0}{a}$: من العلاقة (1') نجد :

$$\mathbf{x}_{1} = \frac{1}{2} \mathbf{a} \left(\frac{\mathbf{V}_{1} - \mathbf{V}_{0}}{\mathbf{a}} \right)^{2} + \mathbf{V}_{0} \left(\frac{\mathbf{V}_{1} - \mathbf{V}_{0}}{\mathbf{a}} \right) + \mathbf{x}_{0}$$

$$\mathbf{V}_{1}^{2} - \mathbf{V}_{0}^{2} = 2\mathbf{a} \left(\mathbf{x}_{1} - \mathbf{x}_{0} \right)$$

$$\vdots$$

: من العلاقة (2) نستنتج : $t_2 = \frac{V_2 - V_0}{a}$: من العلاقة (2) نجد كذلك :

(4)
$$V_2^2 - V_0^2 = 2a(x_2 - x_0)$$

بطرح المعادلتين (3) و (4) نحصل على :

$$V_2^2 - V_1^2 = 2a(x_2 - x_1)$$

أمثلة لمخططات الحركة المستقيمية المتغيرة بانتظام

