Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

7145573347

Listing of Claims:

(previously presented) A method comprising: 1.

forming a resist including a baseline material added by a highly absorbing material selected from fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), antimony (Sb), a fluoropolymer, a metallocence polymer, an alkoxide chelate polymer, and a carboxylate chelate polymer;

thinning the resist to a pre-determined thickness used as an imaging layer; and improving efficiency of a photoactive acid generator (PAG) to capture secondary electrons produced by an ionizing radiation in the resist.

- (previously presented) The method of claim 1 wherein forming the resist 2. comprises:
- forming the resist using the baseline material being polyhydroxystyrene.
- (previously presented) The method of claim 1 wherein forming the resist 3. comprises:

adding a percentage in volume at least one of the fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), and antimony (Sb) into the baseline material, the percentage ranging from 10% to 20%.

(previously presented) The method of claim 1 wherein forming the resist 4. comprises:

adding a percentage in volume at least one of the fluoropolymer, the metallocence polymer, the alkoxide chelate polymer, and the carboxylate chelate polymer, the percentage ranging from 10% to 20%.

- 5. (original) The method of claim I wherein thinning comprises: thinning the resist to a thickness below 100 nm.
- (original) The method of claim I wherein improving comprises: 6.

TVN/tn Docket No: 042390,P16691 Page 2 of 14

increasing a PAG concentration in the resist.

- 7. (original) The method of claim 1 wherein improving comprises: controlling moieties proximal to a cleavable bond in the PAG.
- (original) The method of claim 1 further comprising:
 exposing the resist with a radiation being one of an extreme ultraviolet (EUV), X-ray,
 electron beam, and ion beam.
 - 9. (previously presented) A method comprising:

forming an imaging layer from a resist made of a baseline material added by a highly absorbing material selected from fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), antimony (Sb), a fluoropolymer, a metallocence polymer, an alkoxide chelate polymer, and a carboxylate chelate polymer, the layer being thinned to a pre-determined thickness, the layer having improved efficiency of a photoactive acid generator (PAG) to capture secondary electrons produced by an ionizing radiation; and

forming an etch resistant layer below the imaging layer for pattern transfer from the imaging layer.

- 10. (previously presented) The method of claim 9 wherein the baseline material is polyhydroxystyrene.
- 11. (previously presented) The method of claim 9 wherein forming the imaging layer comprises:

adding to the baseline material by a percentage in volume at least one of the fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), and antimony (Sb), the percentage ranging from 10% to 20%.

12. (previously presented) The method of claim 9 wherein forming the imaging layer comprises adding to the baseline material by a percentage in volume at least one of the fluoropolymer, the metallocence polymer, the alkoxide chelate polymer, and the carboxylate chelate polymer, the percentage ranging from 10% to 20%.

Docket No: 042390.P16691

Page 3 of 14

TVN/tn

> (original) The method of claim 9 wherein the thickness is below 100 nm. 13.

7145573347

- (original) The method of claim 9 wherein the imaging layer has an increased 14. PAG concentration.
- (original) The method of claim 9 wherein the imaging layer has controlled 15. moieties proximal to a cleavable bond in the PAG.
- (original) The method of claim 11 further comprising: 16. exposing the imaging layer to a radiation being one of an extreme ultraviolet (EUV), Xray, electron beam, and ion beam.
 - 17. (previously presented) A device comprising:

an imaging layer made of a baseline material added by a highly absorbing material selected from fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), antimony (Sb), a fluoropolymer, a metallocence polymer, an alkoxide chelate polymer, and a carboxylate chelate polymer, the layer being thinned to a pre-determined thickness, the layer having improved efficiency of a photoactive acid generator (PAG) to capture secondary electrons produced by an ionizing radiation: and

an etch resistant layer below the imaging layer for pattern transfer from the imaging layer.

- 18. (previously presented) The device of claim 17 wherein the baseline material is polyhydroxystyrene.
- (previously presented) The device of claim 17 wherein the imaging layer 19. comprises:
- a percentage in volume of at least one of the fluorine (F), tin (Sn), bismuth (Bi), cesium (Cs), and antimony (Sb), the percentage ranging from 10% to 20%.
- (currently amended) The device of claim 17 wherein the imaging layer comprises 20. a percentage in volume of at least one of a fluoropolymer, a metallocence polymer, an alkoxide chelate polymer, and a carboxylate chelate polymer, the percentage ranging from 10% to 20%.

Docket No: 042390.P16691

- 21. (original) The device of claim 11 wherein the thickness is below 100 nm.
- 22. (original) The device of claim 11 wherein the imaging layer has an increased PAG concentration.
- 23. (original) The device of claim 11 wherein the imaging layer has controlled moieties proximal to a cleavable bond in the PAG.
- 24. (original) The device of claim 18 wherein the imaging layer is exposed with the radiation being one of an extreme ultraviolet (EUV), X-ray, electron beam, and ion beam.
- 25. (new) The method of claim 1 wherein the thickness is balanced with dosage of radiation exposure to have an overall transmission of approximately 50%.
- 26. (new) The method of claim 9 wherein the thickness is balanced with dosage of radiation exposure to have an overall transmission of approximately 50%.
- 27. (new) The device of claim 17 wherein the thickness is balanced with dosage of radiation exposure to have an overall transmission of approximately 50%.