0 Amendment

Response to
$$25\%$$
; (-1)

This is my corrective action and (my) letter (to you). (0)

1 Overview

1.1 Goal

Objective: Build / Compare Two Factor-Based L/S Allocation Models (1)

Beta
$$(\beta)$$
 Constraints (2)

First Strategy
$$(S_{\{1\}})$$
: Target Beta $\beta_T \in [-0.5, 0.5]$ (3)

Second Strategy
$$(S_{\{2\}})$$
: Target Beta $\beta_T \in [-2, 2]$ (4)

$$S_{\{1\}} \approx \text{Value-at-Risk Utility (Robust Optimization)}$$
 (5)

$$S_{\{2\}} \Leftarrow \text{Information Ratio}$$
 (6)

Post Optimization: Model Comparative Analysis (Estimator Length Sensitivity)

[Covariance Matrix $\Sigma \wedge \text{Expected Returns } \boldsymbol{\mu}$]: $R_j \forall j \in \{1, 2, ..., M\}$ (8)

1.2 Reallocation

Portfolio Allocation
$$\{P_t\}$$
 \Leftarrow '03-01-2007' \sim '03-31-2024' (9)

$$P_t \quad orall \, t \in \{t_0, t_1, t_2, \dots, t_n\} \quad ext{where} \quad t_0 = ext{03-01-2007}, \quad t_n = ext{03-31-2024} \quad (10)$$

$$t_i = t_{i-1} + 7 \text{ days} \quad \text{for} \quad i = 1, 2, \dots, n$$
 (11)

1.3 Performance Evaluation

Performance / Risk Profiles \Leftarrow Sensitive \Leftarrow Target Beta : $\beta_T \land$ 'Market' (15)

Low Beta
$$\Rightarrow$$
 Decorrelation; (16)

$$High Beta \equiv Antithesis. \tag{17}$$

5/16/24. 9:24 PM fe630-fpr-html-v68

• Annualized Return :
$$\mu_a$$
 (19)

• Historical Vol :
$$\sigma_h$$
 (20)

• Skew:
$$\mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3} = \frac{\kappa_3}{\kappa_2^{3/2}}$$
 (21)

•
$$VaR / ES (CVaR)$$
 (22)

• Sharpe:
$$\frac{\mathbb{E}[R_a - R_b]}{\sigma_a} = \frac{\mathbb{E}[R_a - R_b]}{\sqrt{\mathbb{V}(R_a - R_b)}}$$
(23)

1.4 Simplification

Look-Back
$$\mu$$
 Estimators: (24)

• Long-Term Estimator (LTE) :
$$\hat{LT} \Rightarrow LB \in \{180 \text{ Days}\}\$$
 (25)

• Mid-Term Estimator (MTE) :
$$\hat{\text{MT}} \Rightarrow \text{LB} \in \{90 \text{ Days}\}\$$
 (26)

• Short-Term Estimator (STE) :
$$\hat{ST} \Rightarrow LB \in \{40 \text{ Days}, 60 \text{ Days}\}\$$
 (27)

Term-Structure : Covariance $\Sigma \wedge \text{Expected Return } \mu$. (28)

1.5 Synthesis

Optimal Portfolio
$$\Leftarrow \hat{\Sigma} \mid \hat{\mu}$$
 (29)

$$Variance \Leftarrow Strategic \setminus \& Market \Delta$$
 (31)

 ψ

$$S_{40}^{90} \equiv \mathbf{\hat{\Sigma}} \Rightarrow 40 \text{ Days } \wedge \mathbf{\hat{\mu}} \Rightarrow 90 \text{ Days}$$
 (32)

٠.

2 Strategy

Theory \& Math

2.1 Strategic Formulation

Consider two strategies:

$$\text{(Strategy I)} \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \, \rho^T \omega - \lambda \sqrt{\omega^T \Sigma \omega} \\ \\ -0.5 \leq \sum_{i=1}^n \beta_i^m \omega_i \leq 0.5 \\ \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \leq \omega_i \leq 2, \end{cases}$$
 (37)

and

$$\text{(Strategy II)} \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \frac{\rho^T \omega}{\text{TEV}(\omega)} - \lambda \sqrt{\omega^T \Sigma \omega} \\ -2 \leq \sum_{i=1}^n \beta_i^m \omega_i \leq 2 \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \leq \omega_i \leq 2, \end{cases}$$
 (38)

- $\Sigma \equiv \text{covariance matrix between security returns (FF3FM)};$
- $eta_i^m = rac{\mathrm{Cov}(r_i, r_M)}{\sigma^2(r_M)} \equiv \mathrm{Beta} \ \mathrm{of} \ \mathrm{security} \ S_i \ (\mathrm{CAPM}) \ \mathrm{s.t.}$ $eta_P^m = \sum_{i=1}^n eta_i^m \omega_i \equiv \mathrm{Porfolio} \ \mathrm{Beta};$
- TEV(ω) = $\sigma(r_P(\omega) r_{SPY})$ = Tracking Error Volatility; (non)trivial derivation (reader exercise):

$$\sigma(r_P(\omega) - r_{\mathrm{SPY}}) = \sqrt{\omega^{\mathsf{T}} \Sigma \omega - 2\omega^{\mathsf{T}} \mathrm{Cov}(r, r_{\mathrm{SPY}}) + \sigma_{\mathrm{SPY}}^2}.$$
 (39)

2.2 Fama-French Three-Factor Model (FF3FM)

Definition:
$$(40)$$

$$r_i = r_f + \beta_i^3 (r_M - r_f) + b_i^s r_{\text{SMB}} + b_i^v r_{\text{HML}} + \alpha_i + \epsilon_i$$

$$\tag{41}$$

 $\mathbb{E}[\epsilon_i] = 0;$ \therefore

$$\rho_i = r_f + \beta_i^3 (\rho_M - r_f) + b_i^s \rho_{\text{SMB}} + b_i^v \rho_{\text{HML}} + \alpha_i$$
(42)

5/16/24, 9:24 PM fe630-fpr-html-v68

Estimated Coefficient Vector: (43)

$$(\hat{\boldsymbol{\beta}}_i^3, \hat{\boldsymbol{b}}_i^s, \hat{\boldsymbol{b}}_i^v)^{\mathsf{T}} \Leftarrow y_i = \rho_i - r_f \tag{44}$$

$$= \hat{\beta}_i^3(\rho_M - r_f) + \hat{\beta}_i^s r_{\text{SMB}} + \hat{b}_i^v \rho_{\text{HML}} + \epsilon_i$$
 (46)

$$\beta_i^m \neq \beta_i^3$$
 | estimated via separate regression / computed directly. (47)

2.3 Executive Summary Formulation

$$(In)numerate:$$
 (48)

Strategy I
$$(49)$$

1. Objective
$$\equiv$$
 Maximize Returns w/Risk. (50)

- The portfolio's beta must be between -0.5 and 0.5. (52)
- The sum of the weights assigned to each asset in the portfolio must equal 1.
- Each individual weight can range from -2 to 2. (54)

Strategy II (55)

1. Objective \equiv Maximize Returns Relative to Tracking Error Volatility (TEV).

- The portfolio's beta must be between -2 and 2. (58)
- The sum of the weights assigned to each asset in the portfolio must equal 1.
- Each individual weight can range from -2 to 2. (60)

3 Assumptions

3.1 Setup

1. Reallocation: '03-01-2007' \sim '03-31-2024' (61)

• LT LB Period :
$$n_{\rm LT} = 120 \mid \Sigma_s \wedge \mu_s \mid {\rm LT} \equiv S_{120}$$
 (63)

• MT LB Period :
$$n_{\rm LT} = 90 \mid \Sigma_s \wedge \mu_s \mid {\rm MT} \equiv S_{90}$$
 (64)

• ST LB Period :
$$n_{\rm LT} = 40 \mid \Sigma_s \wedge \mu_s \mid {\rm MT} \equiv S_{40}$$
 (65)

3.
$$\beta_T \in \{0, 1\}$$
 (66)

$$4. \ \lambda \in \{0.10, 0.50\} \tag{67}$$

3.2 Period Analysis

• Period
$$1 \equiv \text{Pre-Subprime}$$
 (69)

• Period
$$2 \equiv \text{Subprime}$$
 (70)

• Period
$$3 \equiv \text{Post-Subprime}$$
 (71)

• Period
$$4 \equiv \text{COVID}$$
 (72)

$$\bullet \qquad \qquad \text{Period 5 } \equiv \text{Post-Covid} \tag{73}$$

3.3 BackTesting

Definition: Historical Data
$$\Rightarrow$$
 Performance (74)

• BackTest
$$\neq$$
 Forecasts \Rightarrow Snooping Bias / P-Hacking (76)

•
$$\{t_i\}_{i=1}^n$$
: (78)

For the initial date t_1 , use the prior 60 days of historical data to estimate input

Store the portfolio weights: ω_{t_1} .

For each subsequent date t_{i+1} , roll the historical data window by 5 days, re-est

Store the new portfolio weights: $\omega_{t_{i+1}}$.

Repeat this process until the target date t_n is reached.

$4~{\rm ToolKit}|{\bf Arsenal}$

	$Strat \ I \Rightarrow \texttt{CVXPY} \mid Strat \ II \Rightarrow \texttt{Nonlinear Optimizer}$	(80)		
	$\operatorname{Data}\left(\operatorname{ETFs}\right)$: $\operatorname{\mathtt{yfinance}}$	(81)		
•	$1.~\mathrm{FXE}$	(82)		
•	$2.~\mathrm{EWJ}$	(83)		
•	$3.~\mathrm{GLD}$	(84)		
•	$4.~\mathrm{QQQ}$	(85)		
•	5. SPY	(86)		
•	6. SHV	(87)		
•	7. DBA	(88)		
•	8. USO	(89)		
•	9. XBI	(90)		
•	10. ILF	(91)		
•	11. EPP	(92)		
•	$12.~\mathrm{FEZ}$	(93)		
	To Do:	(94)		
•	$Task 1: \texttt{`download}_\texttt{data}(\texttt{start}_\texttt{date}, \texttt{end}_\texttt{date}) \texttt{`, `c}$	ompute_dail		
•	Task 2: 'factor_model()'.	(96)		
•	Task 3: 'optimize_model()'			
•	Task 4: 'backtest()'			
•	${ m Task}\ 5: { t `analyze()'}$	(99)		
•	Task 6: 'summarize()'	(100)		
4		•		

5 Performance + Risk Reporting 4 Strats

KPIs: (101)

- Cumulative PnL / Return (102)
- Average Daily Arithmetic / Geometric Return | Daily Min Return (103)
- 10 Day Max Drawdown | Sharpe (104)
- Vol, Skew, (Excess) Kurt, (Modified) VaR, Expected Shortfall (CVar) (10)

Tabular Formulation: (106)

	$S_{40}(eta_T=0)$	$S_{90}(eta_T=1)$	$S_{120}(eta_T=0)$	SPY
Mean Return			12	
:			:	
Max DD			8	

Furthermore: (107)

- 1. Evolution Plot : Cumulative Daily PnL $\mid P_0 = \$100, \text{SPY}_0 = \$100.$ (108)
 - 2. Plot + Analyze (Daily) Return Distribution. (109)

6 Deliverables

- 1 ≡ Report : Findings, Conclusions, Estimator Impact on Strats (When? Why?) Crisis Periods (Subprime, COVID);
- $2 \equiv {
 m Axes}: {
 m Estimator\ Term\mbox{-}Structure\ Sensitivity\ (ST, MT, LT)\ for\ oldsymbol{\Sigma}\ \land\ oldsymbol{\mu}\ |\ {
 m Ta}$
 - - $4\equiv {\tt Code.} \tag{113}$