

MARCH 18, 2021 | DATA MINING PRINCIPLES

WINEREVIEWS & PREDICTION

Anna Willman, Chenchen Shentu, Fan Yang, Olivia Yang, Wilson McDermott

Presentation Summary

Business Case & Value

Data Source

Exploratory Data Analysis

Model Methodology & Results:

Sentiment Analysis, Price & Point Prediction, Recommendation System

Challenges

Future Extensions

Team Bio

Business Case

GOAL

Make business decisions easier by predicting sentiment, price, and point rating of a specific wine, then build a recommendation system to suggest similar wines

APPROACH

Use a wine deep learning dataset from Kaggle to execute a price & point prediction, sentiment analysis, and recommendation system based on each wine's attributes

Business Value

Wine Distributor Use Case

Should we carry this wine?

Run a **sentiment analysis** to decide if
distributor should
purchase a new wine
based on the sentiment
extracted from its
review

How should we price this wine?

prediction analysis to determine an appropriate price to sell the wine for based on similar wines

When do we recommend this wine?

recommendation
system to provide
similar suggestions
based on client flavor or
grape preferences

Data Source

Wine Review Dataset (Kaggle): Scraped from WineEnthusiast magazine

Original Dataset

Records: 280K

Attributes: 14

cleaning

- Dropped attributes with majority null entries
- Dropped duplicate records
- Removed geo attributes that were too broad or specific
- Removed price outliers

Final Dataset

Records: 152K

Attributes: 7

Final Dataset

Description	Designation	Points	Price	Province	Variety	Winery
Teh aromas bring notes of herb, sweet tobacco and ash. The plum flavors are tart and full in fell, with the tannins giving a (quite) chalky squeeze.	NAN	87	16.0	Idaho	Cabernet Sauvignon	Sawtooth
Full-bodied, rich and unctuous, this is an exotic, flamboyant white Châteauneuf-du-Pape for drinking over the next year. Grilled pineapple is drizzled with caramel and cinnamon, wrapping up long and lush.	Vieilles Vignes	94	66.0	Rhōne Valley	Rhōne- style White Blend	Tardieu- Laurent
You might mistake this for a young coastal Pinot. It's crisp, light-bodied and silky, with cherry, cola, herb tea and spicy, smoky flavors. If only the wine were dry.	Castelleto	94	22.0	California	Sanglovese	Mount- Palomar
Produced in one of the estates belonging to the Lapalu family, this wine is soft, rounded and ready to drink now. Gentle tannins give shape and structure to the black currant-fruit that finish on a fresh, crisp note.	NaN	86	19.0	Bordeaux	Bordeaux- style Rad Blend	Château Lacombe Noaillac
The bouquet of cassis, blackberry and controlled oak is welcoming, while the palate shows a spot of piercing acidity along with snappy black berry, cassis and light olive flavors. This is quintessential Chilean Cab with a hint of herbal character	Las Vascos	89	20.0	Colchagua Valley	Cabernet Sauvignony	Domaines Barons de Rothschild (Lafite)

Exploratory Data Analysis

DISTRIBUTION OF POINTS:

30,000 20,000 10,000 80 82 84 88 90 92 96 98 94 100

Average Points: 88

Median Points: 88

DISTRIBUTION OF PRICES:

Average Price: \$30

Median Price: \$25

Top 3: US, Italy, and France

COUNTRIES WITH HIGHEST AVERAGE POINTS:

Country	Points	Price
England	91.8	52.6
Austria	90.0	31.6
India	89.3	14.4
Germany	89.3	40.4
Canada	89.1	35.5

Top 3:

England, Austria, & India

COUNTRIES WITH HIGHEST AVERAGE PRICES:

Country	Points	Price
Switzerland	88.1	65.1
England	91.8	52.6
US-France	88.0	50.0
Hungary	88.4	43.3
France	88.7	42.9

Top 3:

Switzerland, England, & US-France

Most Common Words in Description

Model Methodology & Results

Model Summary

Sentiment Analysis

Use BERT to predict sentiment of review

Price Prediction

Price prediction of wine based on sentiment, points, variety, and province

Recommendation System

Wine & Grape recommendations based on key words in descriptions

GOAL

Predict sentiment towards each wine based on description

APPROACH

Use Transfer Learning from BERT to build Sentiment Classifier model using the Transformers library

SENTIMENT SUMMARY

POINTS HISTOGRAM

SENTIMENT COUNTS

Data is **imbalanced**:

- Downsampling decreased model performance
- Upsampling & SMOTE increased process time and not enough memory to run models

Negative

"Too sweet and sugary. The relatively low alcohol (13.7%) seems to have been accomplished at the cost of residual sugar, making the cherry and blackberry fruit taste like a dessert wine."

Neutral

"Apple, melon, saline and buttered popcorn aromas set up a lively palate with snappy acidity. Apple and melon flavors turn a bit stalky and bitter on the finish."

Positive

"From Mia Klein, this is a seriously good Cabernet Sauvignon, even better than the winery's fine 2004. It shows a great balance of ripe tannins and fine acidity, with a judicious application of smoky oak."

COMMON PHRASES BY SENTIMENT

NEGATIVE

Negative reviews focused on wines' finish & flavor and used sensory language around scent & taste to describe wine

POSITIVE

Full-bodied, fruit flavored (ie. black cherry) wines tend to receive more **positive** reviews, especially cabernet sauvignons

DATA PREPROCESSING

WHAT IS BERT?

Bidirectional **E**ncoder **R**epresentations from **T**ransformers

NLP model pre-trained by Google conditioned on both left and right context of text

CONVERT TEXT TO NUMBER TOKENS USING PRE-TRAINED BERTTOKENIZER:

Sentence: A very delicious wine, rich in fruits and spices, and easy to drink for its softness.

Tokens: ['A', 'very', 'delicious', 'wine', ',', 'rich', 'in', 'fruits', 'and', 'spices', ',', 'and', 'easy', 'to', 'drink', 'for', 'its', 'soft', '##ness', '.']

Token IDs: [138, 1304, 13108, 4077, 117, 3987, 1107, 11669, 1105, 25133, 117, 1105, 3123, 1106, 3668, 1111, 1157, 2991, 1757, 119]

STORE TOKENS IN TENSOR, ADD PADDING, & CREATE ATTENTION MASK:

Input ID Tensor:

tensor([101, 138, 1304, 13108, 4077, 117, 3987, 1107, 11669, 1105, 25133, 117, 1105, 3123, 1106, 3668, 1111, 1157, 2991, 1757, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Attention Mask:

MODEL TRAINING & EVALUATION

CLASSIFICATION REPORT

	Precision	Recall	F1-score	Support
Negative	0.74	0.64	0.68	484
Positive	0.82	0.83	0.82	2664
Neutral	0.86	0.87	0.86	4466
			_	
Accuracy			0.84	7614
Macro Avg	0.81	0.78	0.79	7614
Weighted A	vg 0.84	0.84	0.84	7614

CONFUSION MATRIX

Predicted Sentiment

MODEL COMPARISON

Recommendation: BERT model

Compared to other classification models, BERT did the best job accurately determining which descriptions were positive, negative or neutral.

Price & Point Prediction

GOAL

Predict price range and points of wine based on features

APPROACH

1 - Classification of wine as"Expensive", "Mid-Range" or"Cheap"

2 - Regression problem topredict the points of each bottleof wine

SENTIMENT & PRICE:

	Avg Points	Avg Price
Negative:	82	\$18
Neutral:	87	\$24
Positive:	91	\$44

Other Explanatory Features:

- Province
- Variety

PRICE CLASSIFICATION:

Price

Count: 152,261

Upper Quartile: \$40

Mean: \$30

Median: \$25

Lower Quartile: \$16

RESAMPLING OF TRAINING SET:

MODELS & EVALUATION:

RANDOM FOREST CLASSIFICATION REPORT

	Precision	Recall	F1-score	Support
Cheap	0.59	0.74	0.66	7927
Mid-Range	0.61	0.74	0.67	7914
Expensive	0.68	0.51	0.59	14612
Accuracy			0.63	30453
Macro Avg	0.63	0.66	0.64	30453
Weighted A	Avg 0.64	0.63	0.63	30453

CONFUSION MATRIX

Predicted Class

Point Prediction

Is the relationship between province, variety, price, and sentiment strong enough to accurately predict points?

PROVINCE / VARIETY & POINTS:

PROVINCES WITH HIGHEST AVERAGE POINTS:

VARIETIES WITH HIGHEST AVERAGE POINTS:

Province	Points
Südburgenland	94.0
Martinborough Terrace	93.0
Mittelrhein	92.3
England	91.8
Santa Cruz	91.5

Variety	Points
Gelber Traminer	95.0
Tinta del Pais	95.0
Riesling-Chardonnay	94.0
Blauburgunder (Pinot Noir)	93.0
Garnacha-Cariñena	93.0

Top 3:

Südburgenland, Martinborough Terrace, & Mittelrhein

Top 3:

Gelber Traminer, Tinta del Pais, & Riesling-Chardonnay

MODELS & EVALUATION:

Best Model: Gradient Boosting Regressor

Accuracy (r-squared): 80.4%

Test set RMSE: 1.35
Train Set RMSE: 1.36

Recommendation System

GOAL

Recommend similar wines or grapes based on key words in descriptions

APPROACH

- Wine Title (Doc2Vec)
- Variety (Content-based recommendation system)

WINE RECOMMENDATION BASED ON DESCRIPTION

I want wine with tropical fruit, broom, brimstone and dried herb aroma without overly expressive palate. I also like unripened apple, citrus and dried sage alongside brisk acidity.

WINE RECOMMENDATION: MODEL PREPARATION

- 1. Extract key words and remove stop words: Rake
- 2. Tag words and keep n. & adj. words only: nltk.pos_tag
- 3. Use vector to represent sentence: Doc2Vec
- 4. Train the model using all descriptions
- 5. Give Recommendations based on user's description

WINE RECOMMENDATION: RESULTS

Input test sentence:

Aromas include tropical fruit, broom brimstone and dried herb. The palate is not overly expressive, offering unripened apple, citrus and dried sage alongside brisk acidity

Top 3 similar description:

- Grass, herb and passion-fruit aromas are followed by citrus and tropical flavors. It's pleasant but the concentration seems lacking. (similarity score: 0.445)
- Light aromas of pineapple and other tropical fruit are accented by herb, floral and citrus flavors. The concentration is very light. (similarity score: 0.436)
- It resembles it in many ways, offering concentrated tropical and citrus fruit flavors, highlighted by brisk acidity and wrapped into a creamy texture. (similarity score: 0.409)

14 Hands The Reserve Sauvignon Blanc (2014)
Washington Hills Sauvignon Blanc (2015)

Talbott Logan Chardonnay (2011)

WINE RECOMMENDATION BASED ON CONTENT

I usually drink Red
Blend wines, but I would
like to try something new.
Could you recommend me
some wines with similar
taste?

WINE RECOMMENDATION: SETTING UP

of Descriptions **Variety** Pinot Noir 15503 Group 1: Chardonnay 14439 Variety that have >1 descriptions Cabernet Sauvignon 12269 (589 elements) Red Blend 10317 Sauvignon Blanc 6549 **Group 2:** Variety that have =1 description Roditis-Moschofilero (146 elements) Centesimino

Variety

Common Words in Description

Pinot Noir pinot noir, black cherry, cherry fruit...

Chardonnay buttered toast, tropical fruit, fruit flavors...

Cabernet Sauvignon black berry, black current...

Red Blend cabernet sauvignon, black berry...

Sauvignon Blanc passion fruit, tropical fruit...

Common Words

WINE RECOMMENDATION: RESULTS

Input (grape variety): Red Blend

Output (Top 5 recommended grape varieties):

Recommended Grape Varieties	Similarity Score	Top Common Words
Sangiovese	0.833785	black cherry, lead nose, grained tannins, blue flower
Barbera	0.804758	black cherry, barbera alba, fruit flavors, skinned berry
Aglianico	0.778970	black cherry, black fruit, blue flower, black pepper
Cabernet Sauvignon-Merlot	0.775810	cabernet sauvignon, sauvignon merlot, black cherry, merlot blend
Cabernet Franc	0.757077	cabernet franc, black cherry, fruit flavors, cherry flavors

Recommend **Top 5 types of wines** the customer may want to try most based on his/her current favorite grape variety

Challenges

Processing Time (Complex Models) / Large Data Set

Unbalanced Data (Sentiment & Price Tiers)

Limited / Redundant Features

Future Extensions

Incorporate more features into models (such as cost of wine)

Build dashboard incorporating predictions & recommendations to easily analyze new wines

Team Bio

THE PEOPLE BEHIND THIS

Anna Willman

Chenchen Shentu

Fan Yang

Olivia Yang

Wilson McDermott

THANK YOU!

Questions?