Data Preparation

Big Data Analytics

Pengenalan Data Preparation (1)

- Kenapa data preparation itu dibutuhkan?
 - Untuk mengurangi kesalahan data atau mendeteksi anomali data sedini mungkin.
 - Kesalahan data dan anomali data yang minimal akan meningkatkan correctness dan akurasi hasil pengolahan data.
 - Data preparation juga berarti mempersiapkan alat pengolah data sehingga dapat menghasilkan model dengan lebih baik dan cepat.
 - GIGO (Good Input Good Output) data yang baik merupakan prasyarat untuk menghasilkan model yang efektif.

Pengenalan Data Preparation (2)

- Data preparation juga diperlukan karena:
 - Suatu alat atau aplikasi pengolah data membutuhkan data dalam format tertentu.
 - Tipikal data dari dunia nyata yang mengadung:
 - Data yang tidak lengkap: Adanya nilai kosong, kekurangan atribut yang penting, atau hanya memiliki data agregat.
 - Data yang "ribut": mengandung banyak kesalahan data dan outliers.
 - Data yang tidak konsisten: mengandung perbedaan symbol, nilai dan nama.

Pengenalan Data Preparation (3)

- Tugas-tugas utama pada data preparation:
 - Data discretization
 - Pengurangan fitur data hingga bagian terpenting, khususnya untuk data angka.
 - Data Cleaning
 - Mengisi nilai-nilai yang hilang, membersihkan data-data "noisy", mendeteksi atau menghilangkan outliers, dan mengatasi inkonsistensi data.
 - Data Integration
 - Integrasi data dari berbagai sumber.
 - Data Transformation
 - Normalisasi dan agregasi.
 - Data Reduction
 - Mengambil sample yang mewakili keseluruhan untuk proses analisa data.

Pengenalan Data Preparation (4)Posisi data preparation dalam tahapan

pengolah

Tipe Data (1)

 Tipe-tipe pengukuran dapat dilihat dari ilustrasi berikut:

Discrete or Continuous

Tipe Data (2)

- Contoh-contoh tipe pengukuran:
 - Nominal:
 - ID, Nama
 - Categorical
 - Warna mata, kode pos, propinsi
 - Ordinal
 - Ranking, peringkat, tinggi dalam satuan (tinggi, pendek)
 - Interval
 - Penanggalan, suhu dalam Celsius atau Fahrenheit, Nilai IQ.
 - Ratio
 - Temperature dalam Kelvin, Panjang, Waktu dan hitunga.

Tipe Data (3)

Contoh tipe-tipe pengukuran:

Day	Outlook	Ten	nperature	Humidity W		Wii	nd	PlayTennis?			
1	Sunny		85		85		ht	No			
2	Sunny		80		90	Strong		No			
3	Overcast	+	83		86	Light		Yes			
4	Rain		70		96	Light		Yes			
5	Rain	Day	Outlook		Tempero	iture	H	ımidity	Wir	ıd	PlayTennis?
6	Rain	1	Sunny		Hot		High		Light		No
7	Overcast	2	Sunny		Hot			High	Strong		No
8	Sunny	3	Overcas	t				High	Ligh		Yes
9	Sunny	4	Rain		Mild		High		Ligh		Yes
10	Rain	5	Rain		Cool			Normal		ıt	Yes
11	Sunny	6	Rain		Cool			Normal		ng	No
12	Overcast	7	Overcas	t .	Cool			Normal		ng	Yes
13	Overcast	. 8	Sunny		Mild		High		Ligh		No
14	Rain	9	Sunny		Cool		Normal		Ligh		Yes
		10	Rain		Mild	ı	N	Iormal	Ligh	ıt	Yes
		11	Sunny		Mild	1	N	Iormal	Stro		Yes
		12	Overcast		Mild		High		Stro	ng	Yes
		13	Overcast		Hot		Normal		Ligh	ıt	Yes
		14	Rain		Mild	1		High	Stro		No

Tipe Data (4)

- Konversi Data
 - Diperlukan bila suatu data dibutuhkan oleh aplikasi yang berbeda dalam tipe pengukuran yang berbeda.
 - Contoh, aplikasi A membutuhkan data C dalam bentuk numeric, aplikasi B membutuhkan data C dalam bentuk ordinal.
 - Diperlukan bila suatu data ordinal akan dikomparasi satu data dengan data yang lain. Contoh perbandingan nilai A lebih besar di banding nilai B, dst.
 - A dikonversi jadi 4.0
 - A- dikonversi jadi 3.7
 - B+ dikonversi jadi 3.3
 - B dikonversi jadi 3.0

Outliers (1)

- Outliers adalah nilai-nilai yang berada di luar range data.
 - Outliers adalah sebuah data yang berada jauh dari kelompok data sehingga menimbulkan kecurigaan bahwa data tersebut berasal dari metode atau sumber data yang berbeda.
- Outlier bisa dideteksi dengan cara:
 - Membuat standardisasi observasi dan memberikan label kepada nilai yang berada di luar batas yang sudah ditentukan sebagai outliers.
- Deteksi outliers bisa digunakan untuk mendeteksi penipuan atau untuk teknik data cleaning.

Outliers (2)

- Solusi untuk mengatasi outliers adalah:
 - Tidak melakukan apa-apa.
 - Menerapkan batas atas dan batas bawah nilai dari suatu observasi.
 - Mengatasi dengan teknik binning.
 - Teknik binning adalah teknik mengubah data yang continuous menjadi data diskrit.

Outliers (3)

- Cara mendeteksi outliers:
 - Univariate
 - Hitung mean dan standard deviation dari sekumpulan data. Untuk k=2 dan 3, data x adalah outlier bila berada di luar batas (asumsi distribusi normal).

Outliers (4)

• Ilustrasi deteksi *outlier* dengan data Univariate

Outliers (5)

- Mendeteksi outlier untuk data Multivariate:
 - Menggunakan teknik *clustering*, dimana *cluster* dengan jumlah data yang kecil adalah *outliers*.

Grafik dengan cluster outlier

Outliers (5)

- Mendeteksi outlier untuk data Multivariate:
 - Menggunakan teknik berdasarkan jarak.
 - Sebuah data dengan sedikit data di sekitarnya (dalam himpunan D) dikategorikan sebagai outliers.

Transformasi Data (1)

- Transformasi data yang paling umum adalah normalisasi.
- Pada metode berbasis jarak (distance-based method), normalisasi mencegah atribut dengan rentang yang besar menyebabkan atribut dengan rentang kecil menjadi tidak "terlihat".
- Metode normalisasi:
 - Min-max normalization
 - Z-score normalization
 - Normalization dengan decimal scaling

Transformasi Data (2)

- Formula normalisasi untuk:
 - Min-max normalization:

$$v' = \frac{v - min_v}{max_v - min_v} (new_max_v - new_min_v) + new_min_v$$

Z-score normalization:

$$v' = \frac{v - \bar{v}}{\sigma_v}$$

• Normalisasi dengan decimal scaling:

$$v' = \frac{v}{10^j}$$

Di mana j adalah integer terkecil sehingga Max(|v'|) < 1

Transformasi Data (3)

Contoh normalisasi

Age	min-max (0-1)	z-score	dec. scaling					
44	0.421	0.450	0.44					
35	0.184	-0.450	0.35					
34	0.158	-0.550	0.34					
34	0.158	-0.550	0.34					
39	0.289	-0.050	0.39					
41	0.342	0.150	0.41					
42	0.368	0.250	0.42					
31	0.079	-0.849	0.31					
28	0.000	-1.149	0.28					
30	0.053	-0.949	0.3					
38	0.263	-0.150	0.38					
36	0.211	-0.350	0.36					
42	0.368	0.250	0.42					
35	0.184	-0.450	0.35					
33	0.132	-0.649	0.33					
45	0.447	0.550	0.45					
34	0.158	-0.550	0.34					
65	0.974	2.548	0.65					
66	1.000	2.648	0.66					
38	0.263	-0.150	0.38					
28	minimun							
66	maximum							
39.50	avgerage							
10.01 standard deviation								

Kekosongan Data (1)

- Data tidak selalu tersedia.
 - Contoh, data pelanggan yang tidak mencantumkan data gaji pelanggan.
- Kekosongan data bisa disebabkan oleh:
 - Kesalahan alat
 - Tidak konsisten dengan data yang lain sehingga terhapus saat proses penyimpanan.
 - Data tidak dimasukkan karena salah pemahaman.
 - Beberapa data dianggap tidak penting saat proses pemasukan data.
 - Terjadi perubahan pada data.

Kekosongan Data (2)

- Kekosongan data harus diantisipasi.
- Bagi beberapa metode big data, ada yang mengabaikan kekosongan data, ada juga yang menggunakan metric untuk mengganti nilai data yang kosong.
- Di lain pihak, kekosongan data bisa memberi informasi tertentu.
 - Contohnya kekosongan data pada aplikasi kartu kredit memberi informasi bagian mana saja yang belum dilengkapi oleh pengaju kartu kredit.

Kekosongan Data (3)

- Cara menangani kekosongan data:
 - Mengabaikan data yang kosong
 - Tidak efektif di saat persentase data yang hilang pada setiap atribut memiliki variasi yang besar sehingga bisa mengarah kepada ketidakcukupan data atau pengambilan sampel yang bias.
 - Mengabaikan atribut yang mengandung data kosong
 - Atribut yang memiliki data kosong sama sekali tidak digunakan dalam algoritma big data.
 - Perlu diantisipasi kalau ternyata atribut yang mengandung data kosong merupakan atribut yang penting.
 - Mengisi secara manual data yang kosong
 - Tidak layak digunakan bila jumlah data yang kosong

Kekosongan Data (4)

- Menggunakan konstanta untuk mengisi data kosong
 - Contohnya konstanta "unknown"
 - Cara ini bisa membuat kategori data yang baru.
- Menggunakan nilai tengah dari suatu atribut untuk mengisi data kosong
 - Cara ini memiliki efek negatif yang minimum untuk nilai rata-rata keseluruhan data yang ada.
- Menggunakan nilai tengah dari semua sampel data yang berada dalam satu kelas data

Kekosongan Data (5)

- Menggunakan most probable value untuk mengisi kekosongan data.
 - Menggunakan teknik inference-based seperti formula Bayesian atau decision tree
 - Identifikasi hubungan diantara variabel
 - Teknik Linear regression, multiple linear regression, dan nonlinear regression.
 - Teknik estimasi Nearest-Neighbour
 - Cari k-nearest neighbor hingga titik tertentu dan isi data kosong dengan nilai yang paling sering muncul atau menggunakan nilai rata-rata.
 - Mencari k-nearest neighbor dari sebuah big data akan memakan waktu yang lama.

Kekosongan Data (6)

- Langkah-langkah menangani kekosongan data perlu memperhatikan:
 - Hindari pengisian data kosong yang menyebabkan penambahan bias atau distorsi bagi data yang sudah ada.

Redudansi Data

- Redudansi data bisa terjadi di saat integrase database
 - Attribut yang sama bisa memiliki nama yang berbeda di database yang berbeda.
 - Satu atribut merupakan atribut yang didapat dari hasil komputasi atribut yang lain. Contohnya: perhitungan gaji bulanan.
- Redudansi data untuk atribut numeric bisa dideteksi menggunakan analisis korelasi.

$$r_{xy} = \frac{\frac{1}{N-1} \cdot \sum_{n=1}^{N} (x_n - \bar{x}) \cdot (y_n - \bar{y})}{\sqrt{\frac{1}{N-1} \cdot \sum_{n=1}^{N} (x_n - \bar{x})^2} \cdot \sqrt{\frac{1}{N-1} \cdot \sum_{n=1}^{N} (y_n - \bar{y})^2}} \quad (-1 \le r_{xy} \le 1)$$