M4R Oral Presentation

Pre-trained Language Models in NLP (M4R)

Jiacheng Xu Supervised by: Dr. Prasun Ray

Imperial College London

Outline

- Basic definitions
 - What is NLP?
 - Pre-training Fine-tuning
- BERT
 - ELMo, GPT and BERT
 - BERT in details
- 3 Improvements on Training Objectives
 - Initiative
 - Deficiencies of Original BERT
 - Improvements
- Results

Deifinition

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

Deifinition

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

Deifinition

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

Some common NLP tasks:

Parsing

Deifinition

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

- Parsing
- Named entity recognition

Deifinition

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

- Parsing
- Named entity recognition
- Question answering

Deifinition

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

- Parsing
- Named entity recognition
- Question answering
- Text classification

Definition

'Pre-training - Fine-tuning' is an approach of model training and application in the field of artificial intelligence, which is composed of 'pre-training' and 'fine-tuning' stages.

Definition

'Pre-training - Fine-tuning' is an approach of model training and application in the field of artificial intelligence, which is composed of 'pre-training' and 'fine-tuning' stages.

Pre-training:

Definition

'Pre-training - Fine-tuning' is an approach of model training and application in the field of artificial intelligence, which is composed of 'pre-training' and 'fine-tuning' stages.

Pre-training: self-supervised training

Definition

'Pre-training - Fine-tuning' is an approach of model training and application in the field of artificial intelligence, which is composed of 'pre-training' and 'fine-tuning' stages.

Pre-training: self-supervised training

Fine-tuning:

Definition

'Pre-training - Fine-tuning' is an approach of model training and application in the field of artificial intelligence, which is composed of 'pre-training' and 'fine-tuning' stages.

Pre-training: self-supervised training

Fine-tuning: supervised training, downstream tasks

Figure: Display of the three pre-trained model architectures

Figure: Display of the three pre-trained model architectures

Long short-term memory (LSTM)

Figure: Display of the three pre-trained model architectures

Long short-term memory (LSTM) Transformer:

Figure: Display of the three pre-trained model architectures

Long short-term memory (LSTM)

Transformer: Self-attention

Input representations

Figure: Input representations of BERT

Input sentence: My dog is hairy.

Input sentence: My dog is hairy.
Masking: My dog is [MASK].

Input sentence: My dog is hairy.
Masking: My dog is [MASK].

• 80% of the time: Replace the word with the [MASK] token, my dog is [MASK].

Input sentence: My dog is hairy.
Masking: My dog is [MASK].

- 80% of the time: Replace the word with the [MASK] token, my dog is [MASK].
- 10% of the time: Replace the word with a random word, my dog is apple.

Input sentence: My dog is hairy.
Masking: My dog is [MASK].

- 80% of the time: Replace the word with the [MASK] token, my dog is [MASK].
- 10% of the time: Replace the word with a random word, my dog is apple.
- 10% of the time: Keep the word unchanged, my dog is hairy.
 The purpose of this is to bias the representation towards the actual observed word.

Next Sentence Prediction

```
Input = [CLS] the man went to [MASK] store [SEP]he bought a
gallon [MASK] milk [SEP]
Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]penguin
[MASK] are flight less birds[SEP]
Label = NotNext
```

Initiative

Table 2: Knowledge-infused methods based on training objective design

Model name	Knowledge resource	Training objectives for knowledge infusion		
ERNIE[26]	Chinese word segmentation, entity words	Improved BERT MLM masking strategy: Full word masking, Entity word masking		
MacBERT[27]	Synonym list	Improved BERT MLM masking strategy: Synonym masking		
ERNIE2.0[28]	Grammar rules, search logs	Improved BERT NSP training objectives: Rhetoric relationship prediction, Retrieval relationship prediction		
SentiLR[29]	SentiWordNet	Improved MLM training objectives: Sentiment word masking prediction		
KEPLER[30]	Wikidata; Wikipedia	Knowledge representation learning		
WKLM[31]	Wikidata;Wikipedia	Entity replacement prediction, Entity boundary prediction		
KnowBert[32]	WordNet;Wikipedia	Entity alignment		
EMBERT[33]	Entity Triples	Entity replacement prediction, Entity segmentation prediction		
K-Adapter[34]	Wikipedia;Wikidata;	Entity relationship classification		
K-Adapter[54]	Standford Parser	Dependency relationship classification		
LIBERT[35]	WordNet;	Grammatical relationship		
	Roget's Thesaurus	classification		
SenseBERT[36]	WordNet	Word sense prediction		

Mask LM

Mask LM

 Masking individual words is not conducive to the learning of complete word semantic features.

Mask LM

- Masking individual words is not conducive to the learning of complete word semantic features.
- Domain-specific terms are more densely distributed in scientific field corpora.

Mask LM

- Masking individual words is not conducive to the learning of complete word semantic features.
- Domain-specific terms are more densely distributed in scientific field corpora.

NSP

Mask LM

- Masking individual words is not conducive to the learning of complete word semantic features.
- Domain-specific terms are more densely distributed in scientific field corpora.

NSP

 Abstracts of scientific papers have a clear structure of rhetorical steps.

Mask LM

- Masking individual words is not conducive to the learning of complete word semantic features.
- Domain-specific terms are more densely distributed in scientific field corpora.

NSP

- Abstracts of scientific papers have a clear structure of rhetorical steps.
- The order of rhetorical steps conveys a certain logical relationship.

Input sentence: Exploring the causes of pneumonia

Input sentence: Exploring the causes of pneumonia

Masking: Exploring the causes of [MASK]

Input sentence: Exploring the causes of pneumonia Masking: Exploring the causes of [MASK] In tokens: [Exploring] [the] [causes] [of] [pneu] [monia]

Input sentence: Exploring the causes of pneumonia Masking: Exploring the causes of [MASK] In tokens: [Exploring] [the] [causes] [of] [pneu] [monia]

 In 80% of cases, the token is replaced with [MASK]. If this token is part of a scientific term, other tokens belonging to this term are also masked: Exploring the causes of [MASK]

Input sentence: Exploring the causes of pneumonia Masking: Exploring the causes of [MASK] In tokens: [Exploring] [the] [causes] [of] [pneu] [monia]

- In 80% of cases, the token is replaced with [MASK]. If this token is part of a scientific term, other tokens belonging to this term are also masked: Exploring the causes of [MASK]
- 10% of cases, the token is replaced with a random word: Exploring the causes of apple##monia

Input sentence: Exploring the causes of pneumonia Masking: Exploring the causes of [MASK] In tokens: [Exploring] [the] [causes] [of] [pneu] [monia]

- In 80% of cases, the token is replaced with [MASK]. If this token is part of a scientific term, other tokens belonging to this term are also masked: Exploring the causes of [MASK]
- 10% of cases, the token is replaced with a random word: Exploring the causes of apple##monia
- 10% of cases, keep the token unchanged: Exploring the causes of pneumonia

Move-Sentence Order Prediction (M-SOP)

Directly inputs two adjacent sentences, though their order may be shuffled. For the input sample, the model needs to make judgments in the following four situations for classification:

Move-Sentence Order Prediction (M-SOP)

Directly inputs two adjacent sentences, though their order may be shuffled. For the input sample, the model needs to make judgments in the following four situations for classification:

- The sentence pair is in correct order and in the same move.
- The sentence pair is in correct order but in different moves.
- The sentence pair is in incorrect order but in the same move.
- The sentence pair is in incorrect order and in different moves.

Results

		Classification Task		Sequence Task	Tagging	Non-scientific Pa- per Dataset	
	N	MOVE	CLC	AKE	NER	chip-ctc	ccks
Baseline Model	BERT-base	93.9	82.55	83.89	69.77	85.46	78.76
Model in This Study	CsciMedBERT	95.3	85.3	88.87	74.87	85.82	79.03
	MacBERT	94.16	83.66	84.43	69.95	85.83	78.9
Other Models	Medbert	93.84	84.46	84.62	71.38	86.11	78.68
	MC-BERT	93.99	83.44	84.43	70.53	85.98	79.36