Name: MAT 1	
	relevant work, where appropriate, answers without support may receive little
	credit.
	Total: 100 points + 20 points Extra Credits
1.	Devise a logical statement that has the truth values shown in the table. (5 pts) $ \begin{array}{c c} p & q & \text{Statement} \\ \hline T & T & \hline T \\ \hline T & F & T \\ \hline F & F & \hline \end{array} $
2.	Symbolize each of the following quantified statements. Then form the negation, so that no negation appears to the left of a quantifier. Finally, express the negation in simple English. Use the letter appearing in bold to symbolize the embedded simple statement. (18 points) a) Some drivers do not obey the posted speed limits.
	Statement: $3d-0(d)$ Negation: $4d o(d)$
	Negation in English: All drivers obey the posted speed Limits.
	b) All foreign movies are subtitled.
	Statement: $\forall f \ s(f)$ Negation: $\exists f \ \neg s(f)$
	Negation in English: Some foreign movies are not subtitled $\exists x \ k(x)$ c) No one can keep a secret.
	Statement: $\forall x \ \neg k(x)$ Negation: $\exists x \ k(x)$
	Negation in English: Some one can keep a secret.
3.	Determine the truth value of the following statements. Justify your answers (i.e. if false, provide a counter-example; if true, show or explain why). (5 points each) a) $\forall n \in \mathbb{Z} \exists m \in \mathbb{Z} \ (n < m)$ $\uparrow \qquad \bigcap \qquad \bigcap \qquad \uparrow + $
	b) $\exists n \in \mathbb{Z} \ \forall m \in \mathbb{Z} \ (n < m)$ F No integer n is smaller than all of the integers. m M=n-1

c)
$$\forall x \in \mathbb{Z} [x \neq 0 \rightarrow \exists y \in \mathbb{Q}^+(xy = 2)]$$

 $\forall x \in \mathbb{Z} [x \neq 0 \rightarrow \exists y \in \mathbb{Q}^+(xy = 2)]$

4. (5 points) True or False. (Explanations are not required)

The set $A = \{ \{1,2,3\}, \{4,5\}, \{6,7,8\} \}$

(b)
$$\{6,7,8\} \in A$$

(c)
$$\{\{4,5\}\}\subseteq A$$

(d)
$$\{1,2,3\} \subseteq A$$

(e)
$$\emptyset \subseteq A$$

(f)
$$\emptyset \in P(A)$$

- 5. For each of the following, answer true, false or can't be determined. (6 points)
 - a) If $\neg(\neg p \leftrightarrow q)$ and \vec{p} are premises, (premises means that the statement has to be true.), then what is the truth value of $q \vee k$?

$$p=T$$

$$\tau(\tau p \leftrightarrow 2) = \tau(F \leftrightarrow 2) = T$$

$$= T \quad Tvk = Tme$$

b) If
$$\neg(\neg w \to a)$$
 is a premise, then what is the truth value of $p \to a$

$$\neg(\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg(\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

$$\neg (\neg w \to a) = \neg \qquad \alpha = F$$

6. Determine whether $(p \to q) \land (\neg p \to q) \equiv q$. (Do NOT use the truth table) (10 points)

Conditional eq
$$(P \rightarrow Q) \wedge (P \rightarrow Q)$$

Conditional eq $(P \vee Q) \wedge (P \vee Q)$

Distributive $(P \wedge P) \vee Q$

Negation $= F \vee Q$

Identity $= Q$

- Prove or disprove the following conjectures. (Choose 4 questions to answer, circle the questions that you wish to grade. You can use the rest of the two questions as the extra credits. 10 points each.)
 - a) The difference of a rational number and an irrational number is irrational.

b) if n is an integer, then
$$n^2 + 5$$
 is odd if and only if n is even.

The seven by def y is play contrapositive, if n is odd, then $n^2 + 5$ is even by def y is retional #

Let $n = 2k + 1$, $k \in \mathcal{E}$

$$n^{2}+5=(2k+1)^{2}+5$$

$$=4k^{2}+4k+1+5$$

$$=4k^{2}+4k+6=2(2k^{2}+2k+3)$$
 $|et-2k^{2}+2k+3=M, M\in\mathbb{Z}$

$$|et-2k^{2}+2k+3=M, M\in\mathbb{Z}$$

← if n is even, then n²+5 is odd

let
$$n=2k$$
, $|c| \in \mathbb{Z}$
 $n^2+5=(2k)^2+5$
 $=4k^2+5$
 $=4k^2+4+1$
 $=2(2k^2+2)+1$

c) Prove or disprove for every nonnegative integer n that $2^n + 6^n$ is an even integer.

$$2^{n}+6^{n}$$

$$= 2^{n}+2^{n}\cdot 3^{n}$$

$$= 2^{n}\cdot (1+3^{n})$$

$$= 2\cdot 2^{n-1}(1+3^{n})$$

(ase 1
$$n = 0$$
) $2^{n} + 6^{n} = 2$

he can let 2" (1+3") = M & Z

(a)c 2 h
$$\geq 1$$

$$2^{n+1}6^{n} = 2 \cdot 2^{n-1}(H3^{n})$$
b)c $n \geq 1$

$$2^{n-1} \text{ will be an Meger}$$
and $(H3^{n})$ is an Meger

2"+6" = 2M

d) Let m and n be integers. If $m^3 + n^3$ is odd, then m is odd or n is odd.

let
$$m=2k$$
, $n=2p$
 $m^3+n^3=(2ke)^3+(2p)^3$
 $=8k^3+8p^3$
 $=2(4k^3+4p^3)$
let $4k^3+4p^3=M\in\mathbb{Z}$
 m^2+n^3 is even

e) Let x and y be positive real numbers. If
$$x \neq y$$
, then $\frac{x}{y} + \frac{y}{x} > 2$.

Backward reasoning:
$$\frac{x}{y} + \frac{y}{x} > 2$$

$$x^2 + y^2 > 2 \times y$$

$$x^2 - 2 \times y + y^2 > 0$$

$$(x - y)^2 > 0$$

$$x \neq y$$

If
$$sh(e x \neq y)$$
, $(x-y)^{2} > 0$
 $x^{2}-2xy+y^{2} > 0$
 $x^{2}+y^{2} > 2xy$
 $\frac{x}{y} + \frac{y}{x} > 2$.

f)
$$\forall m \in \mathbb{Z} \exists n \in \mathbb{Z} \left[m \text{ odd } \rightarrow m^2 = 8n + 1 \right]$$

let
$$m = 2k+1$$
, $k \in \mathbb{Z}$
 $m^2 = (2k+1)^2$
 $= 4k^2 + 4k + 1$
 $= 4k(k+1) + 1$

Since $k \in \mathbb{Z}$ then k(|k+1|) is even because they are conscentive integers let $k(|k+1|) = 2 \cancel{n}$, $h(-\mathbb{Z})$

$$m^2 = 4.2m + 1 = 8n + 1$$