

Masterclass

Technologies enabling Energy Transition: ESS Applications for Grid Modernization

Speaker: Dr. Rahul Walawalkar

President & MD, Customized Energy Solutions (India)
President, India Energy Storage Alliance (IESA) &
Chair, Global Energy Storage Alliance (GESA)

Role of Energy Storage in Modern Grid

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

Energy storage can play a key enabling role in every aspect of modern grids including Generation, Transmission, Distribution and at Customer Premise (including electric vehicles).

Expected India Net Load Curve 2022 (with 100 GW of Solar Generation)

Storage Stationary Applications

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

Load Levelling

Solar + Storage is Perfect Opportunity

 AES signed a PPA for solar + Storage in Hawaii for ~8 Rs/kWh in Jan 2017

- NextEra has now signed a PPA for lower than 3 Rs/kWH for similar project in Arizona in June 2017.
- Recent SECI tender saw prices of less than 5 Rs / kWH for RE+ storage firm power for 1st project of the kind.
- With scaling up of such projects, and domestic capability building, IESA expects RE+ storage to be lower than 4 Rs/ kWh

Energy Solutions

Evolution of Frequency Grid Band & DSM charges

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

Period	Operational Frequency Band	Ceiling Rate (paise/kWh)	Benchmarking of Ceiling Rate	Slope (paise/kWh)	Step size	
1 st July 2002 – 31 st March 2004	49.0 Hz – 50.5 Hz	420	DG set	5.6		
1 st April 2004 – 30 th Sept 2004	49.0 Hz – 50.5 Hz	600	DG set	8	0.02 Hz	
1 st October 2004 – 29 th April 2007	49.0 Hz – 50.5 Hz	570	DG set	9		
30 th April 2007- 6 th Jan 2008	49.0 Hz – 50.5 Hz	745	Domestic Naphtha (Liquid Fuel)	6 (50.5-49.8) 9 (49.8-49.5) 16 (49.5-49.0)		
7 th Jan 2008 – 31 st March 2009	49.0 Hz – 50.5 Hz	1000	Combined cycle plants -Naphtha/RLNG	8 (50.5-49.8) 18 (49.8-49.0)		
1 st April 2009 – 2 nd May 2010	49.2 Hz – 50.3 Hz	735	RLNG based generating station with variation in fuel prices of around 5%	12 (50.3-49.8) 17 (49.8-49.2)		
3 rd May 2010 to 16 th Sep 2012	49.5 Hz – 50.2 Hz	873	Gas/liquid fuel based thermal generating stations of NTPC & NEEPCO	15.5(50.2-49.7) 47 (49.7-49.5)		
17 th Sep 2012 to 16 th Feb 2014	49.7 Hz – 50.2 Hz	900	Highest cost of generation is 896.02 Paise/kWh @Auraiya CCGT Station	16.5 (50.2-50.0) 28.5 (50.0-49.8) 28.12 (49.8-49.5)		
17th Feb 2014 onwards	49.90 Hz - 50.05 Hz	824	Highest cost of generation is 8.24 Rs/kWh @ Auraiya Gas Power Station	20.84 (49.70 - 50.00) 35.60 (50.01 - 50.05)	0.01 Hz	

Particulars	Volume Limit % of schedule MW		Applicable DSM, Additional Charge for DSM for Buyer			
			<49.85 Hz	>=49.85 Hz to <50.05Hz	>= 50.05 Hz	
Over-drawal (by Buyer)	<=12%	<=X	No Over-drawal permitted	DSM Charges Payable by Buyer		
	>12% to <=15%	>X to <=X+10	Additional DSM shall be	DSM +20% of DSM payable by Buyer	Zero DSM Charges payable	
	>15% to<= 20%	>X+10 to <= X+20	specified by the Commission	DSM +20% of DSM+40% DSM payable by Buyer		
	>20%	>X+20	considering behaviour of Buyers	DSM +20% of DSM+40% DSM+100% DSM payable by Buyer		

D 1	Volume Limit % of MW		Applicable DSM, Additional Charge for DSM for Buyer			
Particulars			<49.85 Hz	>=49.85 Hz to <50.05Hz	>= 50.05 Hz	
Under- drawal (by Buyer)	<=12%	<=X	DSM Charges receivable to Buyer	DSM Charges receivable to Buyer	No Under- drawal permitted	
	>12% to <=15%	>X to <=X+10	Applicable DSM charges	Zero DSM Charges	Zero DSM Charges + ADSM at ACP (P) payable by Buyer	
	>15% to<= 20%	>X+10 to <= X+20	Zero for electricity	applicable for electricity above X		
	>20%	>X+20	above X			

Grid Frequency Pattern and need for DSM ISGF & Ancillary Services

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

Balancing Variable Renewable Resources **ISG** Technology choice: Environmental Impact

Conventional Grid

- Manage renewable variation by fossil generators varying output
 - Decreases efficiency
 - Increases fuel consumption
 - Requires more maintenance
 - Increases emissions

- Store energy when supply exceeds load; inject energy when load exceeds supply
 - High round trip efficiency
 - Low operating cost
 - Near instantaneous response
 - Zero direct emissions
 - Frees up generation capacity

20% of the CO2 emission reduction and up 100% of the NOX emission reduction expected from wind and solar power may be lost because of ramping fossil plants

Campus Microgrids could drive growth of Distributed RE + Storage in Maharashtra

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

Customized

Typical ESS System Configuration for Identified Applications

Segments / Applications	Sub Segments	Power Rating	Duration	DOD	Type of cycles	No of cycles / Year
Renewable Energy Integration	Wind Smoothening	10 MW- 200 MW	15 min - 1 h	<60%	Shallow	<18,000
	Wind Firming	10 MW-200 MW	4-6 h	>80%	Deep	<500
	Solar	10 MW-200 MW	3-6 h	>80%	Deep	<350
Load shifting or energy arbitrage	Commercial	10 KW - 20 MW	2-4 h	>80%	Mix	<400
	Industrial	500 KW - 50 MW	2-4 h	>80%	Mix	<400
Off grid applications	Rural Microgrid	1KW - 100 kW	2-8 h	>80%	Mix	<400
	Rural Schools / Hospitals	5 KW - 50 kW	2-8 h	>80%	Mix	<400
Replacement of DG	Telecom Towers	2 KW - 5 kW	2-4 h	>80%	Mix	<700
	Commercial	10 KW - 10 MW	2-4 h	>80%	Mix	<400
	Industrial	500 KW - 50 MW	2-4 h	>80%	Mix	<400
Transmission or Distribution						
Deferral		10-100 MW	4-8 h	>80%	Mix	<100
Ancillary Services	Frequency Regulation / Spinning / Ramp control	10 MW- 200 MW	15 min – 1 h	<60%	Shallow	<18,000
Reactive Power Management	Utility / C&I	3 KW - 10 MW	15 min – 1 h	N.A.	N.A.	N.A.

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

Energy Storage: Diverse Asset Class

Electro-Chemical

(Lead Acid / Lithium Ion / Flow batteries / Sodium / Metal Air batteries)

Thermal

(Ice / Molten Salt)

Mechanical

(Flywheel)

Chemical

(Hydrogen / Fuel Cells)

Bulk Mechanical

(Compressed Air)

Electrical

Ultra Capacitors

Gravitational

(Pumped Hydro)

Power Electronics

Bidirectional inverters
/ Charging
Infrastructure
11

Global Adoption of Energy Storage

Utility Scale ESS projects in India-Public and Private Sector Initiatives

The Evolving Policy Framework For **Adoption Of Energy Storage**

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

2013:

MOP and CEA taskforce on Integration of Large Scale renewables in India

SHAKTI SUSTANABLE ENERG

2014

Creation of MNRE Standing Committee on **Energy Storage to** develop Energy Storage Roadmap

Dec 2014

IESA releases report on the role of energy storage for providing ancillary services in India

Oct 2015

CERC Ancillary Services Regulation (August 2015) Roadmap operationalize Reserves in the country

Jan 2017 **CERC Staff Paper on ESS**

May 2018 **MNRE National Wind** Solar Hybrid Policy

Jan 2019 **CERC & CEA Regulations** inclusion of Storage

National Energy Mission and Storage

National **Transformative Mobility**

Mar 2019

ENERGY STORAGE TECHNOLOGIES

FOR ANCILLARY SERVICES IN INDIA

Improving Power Quality and

PUBLISHED BY AUTHORITY NEW DELHI, WEDNESDAY, AUGUST 19, 2015

CENTRAL ELECTRICITY REGULATORY COMMISSION

No. 18/1/2013/Reg. Aff.(AS Regul.)/CERC

NO. 281

Stationary Energy Storage Market 2019 – 2026

IESA Projects the cumulative market to be market could be between 265-350 GWh

March 03 - 07, 2020 | The Lalit Hotel, New Delhi, India

*Source: IESA India Stationary Energy Storage Market Overview Report 2019

Challenges for Growth of RE and Energy Storage

- ☐ Lack of clear Policy Framework
 - ✓ Recognizing energy storage as a separate asset class
 - ✓ Net metering, demand response, grid reliability standards etc.
 - ✓ Generation based incentives vs hybrid solutions
 - ✓ Energy efficiency policies at equipment level vs efficiency at systemic level
 - ✓ Enforcement of existing power quality and reliability standards
- ☐ Distortion of price signals due to subsidies or lack of transparent pricing signals
- □ Excessive focus on capital costs vs life cycle costs for selection of public funded projects
- □ Lack of awareness about technology evolution and new business models
- □ Need for financing mechanisms.

Energy Solutions

Conclusion

ENERGY STORAGE & EV MARKETS

YOUR GATEWAY TO

SUJATA

SEMCO GROUP

QUANZEN (

Join our Growing Network Today!!!

Explore more @ www.indiaesa.info

Presented By: Dr. Rahul Walawalkar

Designation: President

Mail: rahul@ces-ltd.com

Contact us:

India Energy Storage Alliance

C/o Customized Energy Solutions A-501, GO Square, Aundh Hinjewadi Link Road, Wakad Pune -411057, Maharashtra, India

Phone: 91-20-32407682

Mail: contact@indiaesa.info Website: www.indiaesa.info

