1 10-04-18

1.1 Algebraic axioms for real numbers

Two binary operations, + addition and \cdot multiplication on \mathbb{R} are defined and have the following propoerties for all $x, y, z \in \mathbb{R}$:

- 1. x + (y + z) = (x + y) + z. Associative law for addition.
- 2. $\exists 0$ such that x + 0 = 0 + x = x. Existence of additive identity.
- 3. There exist an element $-x \in \mathbb{R}$ such that x + (-x) = (-x) + x = 0. Existence of additive inverse.
- 4. x + y = y + x. Commutative law for addition.
- 5. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$. Associative law for multiplication.
- 6. $\exists 1 \neq 0$ such that $x \cdot 1 = 1 \cdot x = x$. Existence of multiplicative identity.
- 7. If $x \neq 0$, then there exist an element $x^{-1} \in \mathbb{R}$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. Existence of multiplicative inverse.
- 8. $x \cdot y = y \cdot x$. Commutative law for multiplication.
- 9. $x \cdot (y+z) = x \cdot y + x \cdot z$. Distributive law.

In the language of algebra, axioms above state that \mathbb{R} with addition and multiplication is a field.

1.2 The order axioms for real number

A binary relation \leq on \mathbb{R} is defined and satisfies the following properties for all $x, y, z \in \mathbb{R}$.

- 1. $x \leq x$. Reflexivity.
- 2. If $x \leq y$, $y \leq x$ then x = y. Antisymmetry.
- 3. If $x \le y$, $y \le z$ then $x \le z$. Transitivity.
- 4. Either $x \leq y$ or $y \leq x$. Totality.
- 5. If $x \leq y$, then $x + y \leq y + z$
- 6. If $0 \le x$ and $0 \le y$, then $0 \le x \cdot y$.

2 17-04-18

2.1 Real Number

 $\mathbb{Q}=\{\frac{n}{m}|n,m\in\mathbb{Z},m\neq 0\}.$ We have $p,q\in\mathbb{Q},$ then

$$p+q=\frac{n}{m}+\frac{k}{l}=\frac{kn+ml}{mk};\ pq=\frac{nl}{mk};\ p\geq q\Leftrightarrow p-q\geq 0$$

For $+, \times, \geq$ satisfy A1-A15.

Remark 1. \mathbb{Q} is incomplete in the following sense. There is no $r \in \mathbb{Q}$ such that $r^2 = 2$. Remember Phytagoras theorem, $a^2 + b^2 = c^2$. Pict: $:: if c \in \mathbb{Q}$, then $c = \frac{n}{m}$ $(n, m \in \mathbb{Z}, m \neq 0)$. We may assume that either m or n is odd.

$$c^2 = 2 \to \left(\frac{n}{m}\right)^2 = 2 \to n^2 = 2m^2$$

 $case 1 : n is odd \Rightarrow odd = even (impossible)$

 $case \ 2: n \ is \ even \Rightarrow m \ is \ odd \ (from \ assumtion) \Rightarrow n^2 \ can \ be \ devided \ by \ 4 \ but \ 2m^2 \ can \ not \ devided \ by \ 4 \ (contradiction)$

Question: How to fill the gap of \mathbb{Q} ? Answer: Idea of Weirstrass (supreme axioms)

Definition 1. $A \subset \mathbb{R}$.

- A is bounded from above $\Leftrightarrow \exists b \in \mathbb{R} \text{ such that } a \leq b \ (\forall a \in A). \text{ such } b \text{ is called upper bound of } A.$
- A is bounded from below $\Rightarrow \exists b' \in \mathbb{R}$ such that $a \geq b' \ (\forall a \in A)$. Such b' is called lower bound of A
- $\alpha = supA$
 - \Leftrightarrow the minimum of the set of upper bound
 - \Leftrightarrow 1. α is an upper bound of A; 2. if b is an upper bound of A, then $\alpha \leq b$.
- $\beta = infA \Leftrightarrow the \ maximum \ of \ the \ set \ of \ lower \ bounds \ of \ A.$

Remark 2. supA(infA) is uniquely determined if it exist. For example, $sup\mathbb{Q}(inf\mathbb{Q})$ does not exist. \mathbb{C} is not bounded from above (below)

Remark 3. Completeness axioms. Every nonempty subset of \mathbb{R} which is bounded from above (below) has a supremum (infimum) in \mathbb{R}

2.2 Real sequence

Definition 2. For $x \in \mathbb{R}$, $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x \le 0 \end{cases}$

Remark 4. • $|x| \ge 0$, $|x| = 0 \Leftrightarrow x = 0$

- \bullet |xy| = |x||y|
- $|x + y| \le |x| + |y|$ (triangle inequality)

An infinite sequence of $\mathbb{R} \Leftrightarrow a : \mathbb{N} \to \mathbb{R}$ usually we write $a_n = a(n), n \in \mathbb{N}$ or $\{a_n\}_{n \in \mathbb{N}}$ or a_1, a_2, \ldots

Question: Limiting behavior of a_n as n increases?

Answer: $a_n \to l$, $n \to \infty \Leftrightarrow$ as n become larger and larger, the value a_n become arbitrarily close to l.

Definition 3. $\epsilon - N$ definition of the limit. $\{a_n\}$ converges to $l \in \mathbb{R} \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } |a_n - l| < \epsilon, \forall n \geq N$. We write $\lim_{n \to \infty} a_n = l$.

Definition 4. • $a_n \to +\infty \Leftrightarrow \forall M > 0$. $\exists N \in \mathbb{N}$ such that $a_n > M$ $(\forall n \ge N)$

• $a_n \to -\infty \Leftrightarrow \forall M > 0$. $\exists N \in \mathbb{N} \text{ such that } a_n < -M \ (\forall n \ge N)$

Remark 5. A convergent sequence has a unique limit.

$$\vdots \qquad \epsilon = \frac{1}{2}|l - l'| > 0$$

$$\exists N \in \mathbb{N} \text{ such that } |a_n - l| < \epsilon, \ (\forall n \ge N)$$

$$\exists N' \in \mathbb{N} \text{ such that } |a_n - l'| < \epsilon, \ (\forall n \ge N')$$

Set $\tilde{N} = \max\{N, N'\} \in \mathbb{N}$. For $n \geq \tilde{N} \Rightarrow |a_n - l| < \epsilon$, $|a_n - l'| < \epsilon$ is impossible.

REPORT 1

Afifah Maya Iknaningrum (1715011053)

1. Problem: Let $\{a_n\}, \{b_n\}, \{c_n\}$ be a real sequence. Suppose that for every $n \in \mathbb{N}$, we have

$$b_n \le a_n \le c_n$$

and also suppose that

$$\lim_{n \to \infty} b_n = l = \lim_{n \to \infty} c_n$$

for some $l \in \mathbb{R}$. Then

$$\lim_{n \to \infty} a_n = l.$$

Answer: By definition of limit, $\forall \epsilon > 0, \exists N_1, N_2 \in \mathbb{N}$ such that for $l \in \mathbb{R}$

$$|b_n - l| < \epsilon, \ \forall n \ge N_1,$$

$$|c_n - l| < \epsilon, \ \forall n \ge N_2.$$

Then we can obtain

$$|b_n - l| < \epsilon \Leftrightarrow -\epsilon < b_n - l < \epsilon \Leftrightarrow l - \epsilon < b_n < l + \epsilon,$$

$$|c_n - l| < \epsilon \Leftrightarrow -\epsilon < c_n - l < \epsilon \Leftrightarrow l - \epsilon < c_n < l + \epsilon.$$

Take $N = max\{N_1, N_2\}$, then $\forall n > N$

$$b_n \le a_n \le c_n$$

$$\Leftrightarrow l - \epsilon < b_n \le a_n \le c_n < l + \epsilon$$

$$\Leftrightarrow l - \epsilon < a_n < l + \epsilon$$

$$\Leftrightarrow -\epsilon < a_n - l < \epsilon$$

$$\Leftrightarrow |a_n - l| < \epsilon.$$

It is proved that $\forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that for $l \in \mathbb{R}$

$$|a_n - l| < \epsilon, \ \forall n \ge N$$

or we can write

$$\lim_{n \to \infty} a_n = l.$$

2. (a) Problem: If a sequence of real numbers converges, then it is bounded.

Answer: Let $\{x_n\}$ be a sequence in real number. Suppose $\{x_n\}$ is converge to $a \in \mathbb{R}$ as $n \to \infty$. Then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n > N$,

$$|x_n - a| < \epsilon$$
.

From triangle inequality we obtain

$$|x_n - a| < \epsilon$$

$$|x_n| - |a| < \epsilon$$

$$|x_n| < \epsilon + |a|.$$

Takes $M = max\{\epsilon + |a|, x_1, x_2, \dots, x_N\}$, we obtain

$$|x_n| \leq M$$
.

It shows that $\forall \epsilon > 0, \exists M > 0$ such that $|x_n| \leq M, \forall n$ or it is proved that $\{x_n\}$ is bounded.

(b) <u>Problem</u>: If a sequence of real numbers converge, then it is a Cauchy sequence.

Answer: Let $\{x_n\}, \{x_m\}$ be a sequence in real number. Suppose $\{x_n\}, \{x_m\}$ is converge to $a \in \mathbb{R}$ as $n \to \infty$. Then $\forall \epsilon > 0, \exists N_1, N_2 \in \mathbb{N}$ such that $\forall n > N_1$,

$$|x_n - a| < \frac{\epsilon}{2}$$

and $\forall m > N_2$,

$$|x_m - a| < \frac{\epsilon}{2}.$$

Takes $N = max\{N_1, N_2\}$ then $\forall n, m > N$

$$|x_n - x_m| \leq |x_n - a + a - x_m|$$

$$\leq |x_n - a| + |x_m - a|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$< \epsilon.$$

Then, it is proved that $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ such that for } n, m > N$

$$|x_n - x_m| < \epsilon$$

or it is Cauchy sequence.