

UNIVERSIDAD DE GUADALAJARA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Seminario De Problemas De Programación De Sistemas Reconfigurables.

Decodificador BCD A Nombre

Alumno: Meneses López Arisai Ricardo. Docente: María Patricia Ventura Núñez.

12 de septiembre de 2019

${\rm \acute{I}ndice}$

1.	Objetivo Del Proyecto	1
2.	Marco Teórico	1
3.	Desarrollo3.1. Planteamiento Del Problema3.2. Métodos De Diseño3.3. Obtención De Ecuaciones3.4. Simulación3.5. Protoboard	3 3 4 5 5
4.	Resultados	6
5 .	Conclusiones	9
6.	Bibliografía	g

Materiales

Componentes.

- \cdot Protoboard.
- · Cable Para Proto.
- · Pinzas De Corte/Agarre.
- · Display 7 Segmentos
- · Fuente De Voltaje $(5\mathbf{V})$.
- · Resistencias 1k Ω y 220 Ω .

Circuitos Integrados.

- · TTL 7408 (AND).
- · TTL 7432 (OR).
- · TTL 7404 (NOT).
- · TTL 7486 (XOR).

Software.

- · Boole-Deusto.
- \cdot Proteus Design Suite.

1. Objetivo Del Proyecto

· El uso y aplicación de la Compuerta OR exclusiva y de etiquetas en Proteus.

2. Marco Teórico

Tabla 1: Compuerta NOT - Tabla De Verdad

A	В	\mathbf{S}
0	0	0
0	1	0
1	0	0
1	1	1

Tabla 2: Compuerta AND - Tabla De Verdad

A	В	\mathbf{S}
0	0	0
0	1	1
1	0	1
1	1	1

Tabla 3: Compuerta OR - Tabla De Verdad

Α	В	\mathbf{S}
0	0	0
0	1	1
1	0	1
1	1	0

Tabla 4: Compuerta XOR - Tabla De Verdad

Figura 1: Configuración Display Cátodo Común y Ánodo Común

3. Desarrollo

3.1. Planteamiento Del Problema

El Diagrama BCD se compone de 4 entradas y 7 salidas que a su vez van a cada segmento del Display.

Trabajaremos con mintérminos, así que el Display a usar será el Cátodo Común que se activa con unos.

Se usarán las primeras diez combinaciones (0-9) del sistema binario para expresar el Nombre en el Display, las demás combinaciones (10-15) se tomarán como indefinidas.

3.2. Métodos De Diseño

A	B	C	D	$\mid a \mid$	b	c	d	e	f	g	Name
0	0	0	0	1	1	1	0	1	1	1	A
0	0	0	1	0	0	0	0	1	0	1	r
0	0	1	0	0	0	1	0	0	0	0	i
0	0	1	1	1	0	1	1	0	1	1	\mathbf{S}
0	1	0	0	1	1	1	0	1	1	1	A
0	1	0	1	0	0	1	0	0	0	0	i
0	1	1	0	0	0	0	0	1	0	1	r
0	1	1	1	0	0	1	0	0	0	0	i
1	0	0	0	1	0	0	1	1	1	0	\mathbf{C}
1	0	0	1	0	1	1	0	1	1	1	Η
1	0	1	0	X	X	\mathbf{x}	\mathbf{x}	X	X	X	?
1	0	1	1	x	x	X	\mathbf{x}	X	X	X	?
1	1	0	0	X	X	\mathbf{x}	\mathbf{x}	X	X	X	?
1	1	0	1	X	X	\mathbf{x}	\mathbf{x}	X	X	X	?
1	1	1	0	X	X	\mathbf{x}	\mathbf{x}	X	X	X	?
1	1	1	1	X	\mathbf{x}	\mathbf{x}	\mathbf{x}	X	\mathbf{X}	X	?

Tabla 5: BCD A Nombre - Tabla De Verdad.

3.3. Obtención De Ecuaciones

 \cdot Para obtener las ecuaciones se dió uso al programa "Boole Deusto"

$$a = \overline{CD} + \overline{B}CD \tag{1}$$

$$b = \overline{ACD} + AD \tag{2}$$

$$c = AD + CD + B\overline{C} + \overline{A}\overline{B}\overline{D} \tag{3}$$

$$d = \overline{B}CD + A\overline{D} \tag{4}$$

$$e = \overline{BC} + B\overline{D} \tag{5}$$

$$f = \overline{CD} + \overline{B}CD + A \tag{6}$$

$$g = B\overline{D} + \overline{B}D + \overline{A}B\overline{C} \tag{7}$$

3.4. Simulación

Figura 2: Simulacion Decodificador BCD A Nombre.

3.5. Protoboard

A Diferencia de los demás proyectos anteriores, este fue la excepción en la implementación del diagrama en Protoboard debido a su amplio uso de compuertas físicas.

4. Resultados

Figura 3: Letra S - Simulación

Figura 4: Letra C - Simulación

Figura 5: Letra H - Simulación

5. Conclusiones

· El uso de las etiquetas hace mucho más práctico la elaboración del circuito simulado.

6. Bibliografía

1- José Escamilla, [6-03-2018], DISEÑO E IMPLEMENTACIÓN DE UN DECODIFICADOR BCD A 7 SEGMENTOS, available on: https://www.studocu.com/es-mx/document/instituto-tecnologico-de-leon/electronica-digital/practica/diseno-e-implementacion-de-un-decodificador-bcd-a-7-segmentos/3115812/view