Measure Theory

Felix Chen

Contents

0.1 Convergence in L_p space
Signed measure
.1 Definitions
.2 Hahn decomposition and Jordan decomposition
Hence $(L_p/\sim, \ \cdot\ _p)$ is a normed vector space.
When $p = \infty$, define

$$||f||_{\infty} := \inf\{a \in \mathbb{R} : \mu(|f| > a) = 0\}, \quad L_{\infty} := \{f : ||f||_{\infty} < \infty\}.$$

We call the functions in L_{∞} essentially bounded. Let $\mu(X) < \infty$, then $f \in L_{\infty} \implies f \in L_p$, and $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$: For all $0 < a < ||f||_{\infty}$,

$$a^p \mu(|f| > a) \le \int_X |f|^p \mathbf{I}_{|f| > a} \, \mathrm{d}\mu \le \int_X |f|^p \, \mathrm{d}\mu \le ||f||_\infty^p \mu(X),$$

So taking the exponent $\frac{1}{n}$,

$$a \leftarrow a\mu(|f| > a)^{\frac{1}{p}} \le ||f||_p \le ||f||_{\infty}$$

But when $\mu(X) = \infty$, let $f \equiv 1$, then $f \in L_{\infty}$ but $f \notin L_p$.

Theorem 0.0.1

Let $f, g \in L_{\infty}$,

$$||fg|| \le ||f|| ||g||_{\infty},$$

 $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$

Proof.

$$\int_{X} |fg| \, \mathrm{d}\mu \le \int_{X} |f| \|g\|_{\infty} \, \mathrm{d}\mu = \|f\| \|g\|_{\infty}.$$

Since $|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$, a.e., we get the second inequality.

Similarly we get $(L_{\infty}, \|\cdot\|_{\infty})$ is a normed vector space.

The norm can deduce a distance:

$$\rho(f,g) := \|f - g\|.$$

Theorem 0.0.2 (L_p space is complete)

Let $1 \leq p \leq \infty$. If $\{f_n\} \subset L_p$ satisfying $\lim_{n,m\to\infty} ||f_n - f_m||_p = 0$, then there exist $f \in L_p$ s.t. $\lim_{n\to\infty} ||f - f_n||_p = 0$.

Proof. Take $n_1 < n_2 < \cdots$ such that

$$||f_m - f_n||_p \le \frac{1}{2^k}, \quad \forall n, m \ge n_k.$$

Let $g = \uparrow \lim_{k \to \infty} g_k$, where

$$g_k := |f_{n_1}| + \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}| \in L_p, \quad g_k \ge 0.$$

Since

$$||g_k||_p \le ||f_{n_1}||_p + \sum_{i=1}^k ||f_{n_{i+1}} - f_{n_i}||_p \le ||f_{n_1}||_p + 1.$$

$$\implies ||g||_p = \uparrow \lim_{k \to \infty} ||g_k||_p \le ||f_{n_1}||_p + 1.$$

Here we use the monotone convergence theorem. We can check the above also holds for $p = \infty$. Therefore $g \in L_p \implies g < \infty, a.e.$. We have

$$f := f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i}) = \lim_{k \to \infty} f_k, a.e.$$

the series is absolutely convergent, so f exists a.e. and $|f| \leq g, a.e.$.

Lastly we can check: when $p = \infty$,

$$||f_n - f||_{\infty} < ||f_n - f_n||_{\infty} + ||f_n||_{\infty} + ||f_n||_{\infty}$$

where the both term approach to 0 as $n \to \infty$.

When $p < \infty$, by Fatou's lemma,

$$||f_n - f||_p^p = \int_X |f_n - f|^p d\mu = \int_X \lim_{k \to \infty} |f_n - f_{n_k}|^p d\mu \le \liminf_{k \to \infty} \int_X |f_n - f_{n_k}|^p d\mu \le \varepsilon.$$

Remark 0.0.3 — Using the same technique we can prove that if f_n is Cauchy in measure, then f_n converge to some f in measure:

then
$$f_n$$
 converge to some f in measure:
Let $A_i = \{|f_{n_{i+1}} - f_{n_i}| > 2^{-i}\}$ s.t. $\mu(A_i) < 2^{-i}$.
Define $f = f_{n_1} + \sum_{i \geq 1} (f_{n_{i+1}} - f_{n_i})$ on the set $\bigcup_{k \geq 1} \bigcap_{i \geq k} A_i^c$.

This theorem implies that $(L_p, \|\cdot\|_p)$ is a Banach space. So we can try to define an *inner product* on L_p space:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

We can check $\langle \cdot, \cdot \rangle$ is bilinear only if p = 2, so L_2 is actually a Hilbert space.

When 0 , let

$$||f||_p := \int_X |f|^p d\mu, \quad L_p = \{f : ||f||_p < \infty\}.$$

Lemma 0.0.4

Let $0 , <math>C_p = 1$, then

$$|a+b|^p \le C_p(|a|^p + |b|^p), \quad \forall a, b \in \mathbb{R}.$$

So L_p is a vector space.

Theorem 0.0.5 (Minkowski)

Let 0 then

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Remark 0.0.6 — When $||f||_p = (\int_X |f|^p d\mu)^{\frac{1}{p}}$, 0 . then it won't satisfy Minkowski's inequality.

Thus L_p is only a metric space but not a normed vector space. Using the same method we can prove L_p is a complete metric space.

§0.1 Convergence in L_p space

Definition 0.1.1. Let $0 , <math>f, f_1, f_2, \dots \in L_p$. When $||f_n - f||_p \to 0$, then we write $f_n \xrightarrow{L_p} f$, called **average converge of order** p.

Theorem 0.1.2

Let 0 ,

- If $f_n \xrightarrow{L_p} f$, then $f_n \xrightarrow{\mu} f$, and $||f_n||_p \to ||f||_p$.
- If $f_n \to f, a.e.$ or in measure, then $||f_n||_p \to ||f||_p \iff f_n \xrightarrow{L_p} f$.

Proof. When $f_n \xrightarrow{L_p} f$, let $A := \{|f_n - f| > \varepsilon\}$,

$$\mu(A) \le \frac{1}{\varepsilon^p} \int_X |f_n - f|^p \mathbf{I}_A \, \mathrm{d}\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0.$$

and obviously $||f_n||_p \to ||f||_p$

On the other hand, when $f_n \to f$, a.e. and $||f_n||_p \to ||f||_p$, From $|a+b|^p \le C_p(|a|^p + |b|^p)$,

$$g_n := C_p(|f_n|^p + |f|^p) - |f_n - f|^p \ge 0.$$

 $g_n \to 2C_p|f|^p$, a.e., so

$$\int_X 2C_p |f|^p d\mu \le \liminf_{n \to \infty} \int_X g_n d\mu = 2C_p \int_X |f|^p d\mu - \limsup_{n \to \infty} \int_X |f_n - f|^p d\mu.$$

When $f_n \to f$ in measure, for any subsequence there exist its subsequence $f_{n'} \to f, a.e.$, so $||f_{n'} - f||_p \to 0$, hence $||f_n - f||_p \to 0$.

Remark 0.1.3 — This theorem implies for any L_p function f, we can take simple functions $f_1, f_2, \dots \to f$ and $|f_n| \uparrow |f|$, so $f_n \xrightarrow{L_p} f$.

Definition 0.1.4 (Weak convergence). Let $1 , and <math>f_1, f_2 \cdots \in L_p$. If

$$\lim_{n \to \infty} \int_X f_n g \, \mathrm{d}\mu = \int_X f g \, \mathrm{d}\mu, \quad \forall g \in L_q.$$

Then we say f_n weak convergent to f, denoted by $f_n \xrightarrow{(w)L_p} f$.

When p = 1 and (X, \mathcal{F}, μ) is a σ -finite measure space, and the condition also holds, we say $\{f_n\}$ weak convergent to f in L_1 .

Corollary 0.1.5

Let $1 \leq p < \infty$, then

$$f_n \xrightarrow{L_p} f \implies f_n \xrightarrow{(w)L_p} f.$$

Proof. By Holder's inequality,

$$\left| \int_X (f_n - f)g \, d\mu \right| \le \|f_n - f\|_p \|g\|_q \to 0.$$

If $\sup_{t\in T} ||f_t||_p =: M < \infty$, then we say $\{f_t, t\in T\}$ is **bounded in** L_p .

Theorem 0.1.6

Let $1 , <math>\{f_n\} \subset L_p$, there exists M s.t. $||f_n||_p \leq M$, $\forall n$. If $f_n \to f$, a.e. or in measure, then $f \in L_p$ and $f_n \to f$ weakly.

Proof. First $||f||_p \leq M$:

$$\int_X |f|^p d\mu \le \liminf_{n \to \infty} \int_X |f_n|^p d\mu \le M^p.$$

Next we prove the weak convergence: For all $g \in L_q$, recall the bounded convergence theorem in probability, we can view M as a bound of f_n , and $\|g\|_q$ as P.

Let $B = \{|f_n - f| \le \hat{\varepsilon}\}$, consider

$$a := \int_{B} (f_n - f)g \,\mathrm{d}\mu, \quad b := \int_{B^c} (f_n - f)g \,\mathrm{d}\mu.$$

Note that

$$|a| \le \hat{\varepsilon} \int_X |g| \, \mathrm{d}\mu.$$

But $\int_X |g| \, \mathrm{d}\mu$ might be infinity, so let $A_k := \{\frac{1}{k} \le |g|^q \le k\}$, we have

$$\int_{A_k} |g| \, \mathrm{d}\mu \le k^{\frac{1}{q}} \mu(A_k) < \infty.$$

 $(\frac{1}{k}\mu(A_k) < \int_{A_k} |g|^q d\mu < \infty \text{ since } g \in L_q).$ Now we can proceed:

$$a := \int_{A_k B} (f_n - f) g \, \mathrm{d}\mu, \quad b := \int A_k^c \cup B^c(f_n - f) g \, \mathrm{d}\mu.$$

Now $|a| \le \hat{\varepsilon} k^{\frac{1}{q}} \mu(A_k) < \varepsilon$.

$$\left| \int_{X} (f_n - f) g \mathbf{I}_{A_k^c \cup B^c} \, \mathrm{d}\mu \right| \le \|f_n - f\|_p \|g \mathbf{I}_{A_k^c \cup B^c}\|_q \le 2M \left(\int_{A_k^c} |g|^q \, \mathrm{d}\mu + \int_{A_k \setminus B} |g|^q \, \mathrm{d}\mu \right).$$

By LDC (Dominated convergence), $A_k^c \to \{g=0,\infty\},$ so $\int_{A_k^c} |g|^q \,\mathrm{d}\mu < \varepsilon.$

Since $\mu(A_k) < \infty$, $f_n \to f, a.e. \implies f_n \xrightarrow{\mu} f$. By the continuity of integrals, $\mu(A_k \setminus B) \le \mu(B^c) < \delta \implies \int_{A_k \setminus B} |g|^q d\mu < \varepsilon$.

Now we can conclude: $\forall \varepsilon > 0$, first choose k large, then $\hat{\varepsilon}$ small, we get

$$\int_X (f_n - f)g \, \mathrm{d}\mu \le \varepsilon + 4M\varepsilon \implies f_n \xrightarrow{(w)L_p} f.$$

Remark 0.1.7 — The proof is a little complicated, we divide the entire integral to three part, and estimate them respectively.

When p = 1, f_n bounded in L_p cannot imply weak convergence.

Example 0.1.8

Let $X = \mathbb{N}$, $\mu(\{k\}) = 1$, $\forall k$, clearly it's σ -finite. Let $f_n(k) = \mathbf{I}_{k=n}$, then $||f_n|| = \sum_k \mu(k)|f_n(k)| = 1$, and $f_n \to 0$, a.e.. But let $g = 1 \in L_{\infty}$, $\int_X (f_n - f)g \, \mathrm{d}\mu = 1 \not\to 0$.

Proposition 0.1.9

Let $f_1, f_2, \dots \in L_1$, then:

$$||f_n|| \to ||f|| \& f_n \to f, a.e. \implies f_n \xrightarrow{L_1} f \implies f_n \xrightarrow{(w)L_1} f \implies \int_A f_n \,\mathrm{d}\mu \to \int_A f \,\mathrm{d}\mu, \forall A.$$

Proof. For the last part let $g = \mathbf{I}_A$, the rest is trivial.

§0.2 Integrals in probability space

We can also consider L_p space in probability space (Ω, \mathcal{F}, P) .

Theorem 0.2.1

Let $0 < s < t < \infty$. Then $L_t \subset L_s$. If $s \ge 1$, we have $||f||_s \le ||f||_t$, with equality f constant.

CONTENTS Measure Theory

Proof. When $f \in L_t$, let $p = \frac{t}{s}$, $q = \frac{t}{t-s}$.

$$\int_{\Omega} |f|^{s} \cdot 1 \, dP \le \||f|^{s}\|_{p} \|1\|_{q} = (E|f|^{sp})^{\frac{1}{p}} = (E|f|^{t})^{\frac{1}{p}}.$$

So $f \in L_s \implies L_t \subset L_s$. When $s \ge 1$,

$$||f||_s^s \le (||f||_t)^{\frac{t}{p}} = ||f||_t^s \implies ||f||_s \le ||f||_t.$$

From this we know $L_{\infty} \subset L_p$, and $||f||_p \uparrow ||f||_{\infty}$.

Remark 0.2.2 — This theorem does not hold for general space. Let $X = \mathbb{N}$, $\mu(\{n\}) = 1$, $f(n) = \frac{1}{n}$, then $f \in L_2 \setminus L_1$.

The expectation Ef^k is called k-order moment of random variable f.

Definition 0.2.3 (Uniformly integrable). Let $\{f_t, t \in T\}$ be r.v.'s, if $\forall \varepsilon > 0, \exists \lambda > 0$, such that

$$E|f_t|\mathbf{I}_{\{|f_t|>\lambda\}}<\varepsilon, \quad \forall t\in T,$$

then we say $\{f_t, t \in T\}$ uniformly integrable.

If $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t } \forall A \in \mathscr{F},$

$$P(A) < \delta \implies E|f_t|\mathbf{I}_A < \varepsilon, \forall t \in T,$$

we say $\{f_t\}$ is uniformly absolutely continuous, which is abbreviated as absolutely continuous.

Theorem 0.2.4

Uniformly integrable \iff absolute continuity and bounded in L_1 .

Proof. Firstly when $\{f_t\}$ uniformly integrable, $\forall A \in \mathscr{F}, \lambda > 0$,

$$E|f_t|\mathbf{I}_A = E|f_t|\mathbf{I}_{A\cap\{|f_t| \le \lambda\}} + E|f_t|\mathbf{I}_{A\cap\{|f_t| > \lambda\}}$$

$$\leq \lambda P(A) + E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}}$$

Let A = X we know $E|f_t| \leq \lambda + \frac{\varepsilon}{2}, \forall t \in T$. Now let $\delta = \frac{\varepsilon}{2\lambda}$ we get AC property. On the other hand,

$$\lambda P(|f_t| > \lambda) \le E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}} \le E|f_t| \le M, \forall t \in T.$$

So when $\lambda > \frac{M}{\delta}$, $P(|f_t| > \lambda) < \delta$, hence $E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}} \le \varepsilon$, $\forall t \in T$.

Theorem 0.2.5

Let $0 , and <math>f_n \to f$ in probability. TFAE:

- (1) $\{|f_n|^p\}$ uniformly integrable; (2) $f_n \xrightarrow{L_p} f$;
- (3) $f \in L_p$ and $||f_n||_p \to ||f||_p$.

Proof. (1) \Longrightarrow (2): Take subsequence $f_{n'} \to f, a.s.$,

$$E|f|^p \le \liminf_{n \to \infty} E|f_n|^p < \infty,$$

since $\{|f_n|^p\}$ is bounded in L_1 . This means $f \in L_p$.

Let $A_n = \{|f_n - f| > \varepsilon\}$, now we compute

$$E|f_n - f|^p \le \varepsilon^p + E|f_n - f|^p \mathbf{I}_{A_n} \le \varepsilon^p + C_p E|f_n|^p \mathbf{I}_{A_n} + C_p E|f|^p \mathbf{I}_{A_n}$$

Since $P(A_n) \to 0$ and $\{|f_n|^p\}$ absolutely continuous (also note $E|f|^p \mathbf{I}_{A_n} \to 0$), RHS converges to 0. Therefore $f_n \xrightarrow{L_p} f$.

As for $(3) \implies (1)$, we'll prove a lemma:

Lemma 0.2.6

If $f_n \xrightarrow{P} f$, then $\forall 0 ,$

$$|f_n|^p \mathbf{I}_{\{|f_n| \le \lambda\}} \xrightarrow{P} |f|^p \mathbf{I}_{\{|f| \le \lambda\}}, \quad \forall \lambda \in C(F_{|f|}).$$

By lemma and bounded convergence theorem, their expectation also converges. Note that $||f_n||_p \to ||f||_p$, so

$$E|f_n|^p \mathbf{I}_{\{|f_n|>\lambda\}} \to E|f|^p \mathbf{I}_{\{|f|>\lambda\}},$$

thus $\forall \varepsilon > 0, \exists \lambda_0 \in C(F_{|f|})$, s.t. $E[f]^p \mathbf{I}_{\{|f| > \lambda_0\}} < \frac{\varepsilon}{2}$, thus

$$\exists N, \quad E|f_n|^p \mathbf{I}_{\{|f_n|>\lambda_0\}} < \varepsilon, \quad \forall n > N.$$

Now we can take $\lambda > \lambda_0$ such that $\max_{n \leq N} E|f_n|^p \mathbf{I}_{\{|f_n|^p > \lambda\}} < \varepsilon$, and we're done.

Proof of the lemma. Since $|f_n| \to |f|$ in probability, WLOG $f_n, f \ge 0$. Define

$$A_n := (\{f_n \le \lambda\} \Delta \{f \le \lambda\}) \cap \{|f_n^p - f^p| > \varepsilon\}$$

$$B_n := \{ f_n, f < \lambda, |f_n^p - f^p| > \varepsilon \}.$$

Since x^p is uniformly continuous in $[0,\lambda]$, $B_n \subset \{|f_n-f| > \kappa_{\varepsilon,\lambda}\}$, $P(B_n) \to 0$.

Also $P(A_n) \to 0$ as

$$A_n \subset \{\lambda - \delta < f \le \lambda + \delta\} \cup \{|f_n - f| > \delta\},\$$

and $F_{|f|}$ continuous at λ .

§1 Signed measure

§1.1 Definitions

Let (X, \mathcal{F}, μ) be a measure space, consider

$$\varphi(A) := \int_A f \, \mathrm{d}\mu, \quad \forall A \in \mathscr{F}.$$

If the integral of f exists, then φ has countable additivity. Also note $\varphi(\emptyset) = 0$, so φ looks like a measure, except it can take negative values.

In fact, denote
$$X^{+} = \{f \geq 0\}, X^{-} = \{f < 0\}, \text{ then } \varphi(A) = \varphi(AX^{+}) + \varphi(AX^{-}).$$

Definition 1.1.1 (Signed measure). If a set function $\varphi : \mathscr{F} \to \overline{\mathbb{R}}$ which satisfies countable additivity and $\varphi(\emptyset) = 0$, then we call φ a **signed measure**.

If $|\varphi(A)| < \infty, \forall A \in \mathscr{F}$, then φ is **finite**; Similarly we define σ -finite.

Since $\int_A f \, \mathrm{d}\mu$ can't reach both $\pm \infty$ (otherwise the integral doesn't exist), so

Proposition 1.1.2

Let φ be a signed measure, then:

$$\varphi(A)<\infty, \quad \forall A\in \mathscr{F}, \quad or \quad \varphi(A)>-\infty, \quad \forall A\in \mathscr{F}.$$

Proof. Assume that $\varphi(A) = \infty, \varphi(B) = -\infty$, then:

$$\varphi(A \cup B) = \varphi(A) + \varphi(A \setminus B) = +\infty,$$

and similarly $\varphi(A \cup B) = -\infty$, contradiction!

Remark 1.1.3 — From now on we may assmue $\varphi(A) > -\infty$.

Proposition 1.1.4

If $A \supseteq B$, and $|\varphi(A)| < \infty$, then $|\varphi(B)| < \infty$.

Proof. Trivial, same as above proposition.

Proposition 1.1.5

Let A_1, A_2, \ldots be pairwise disjoint sets, and $|\varphi(\sum_{n=1}^{\infty} A_n)| < \infty$, then

$$\sum_{n=1}^{\infty} |\varphi(A_n)| < \infty.$$

Proof. Let $I = \{n : \varphi(A_n) > 0\}, J = \{n : \varphi(A_n) < 0\},\$

$$B = \sum_{n \in I} A_n, \quad C = \sum_{n \in J} A_n,$$

since $B,C\subset \sum_{n=1}^\infty A_n$, thus $\varphi(B),\varphi(C)\in\mathbb{R}$. Note that $\sum_{n\in I}|\varphi(A_n)|=|\varphi(B)|,\,\sum_{n\in J}\varphi(A_n)=|\varphi(C)|$, and we're done.

§1.2 Hahn decomposition and Jordan decomposition

Let's look at the indefinite integral again, notice that

$$\varphi(A) = \int_{A \cap \{f > 0\}} f \, \mathrm{d}\mu + \int_{A \cap \{f < 0\}} f \, \mathrm{d}\mu = \int_A f^+ \, \mathrm{d}\mu - \int_A f^- \, \mathrm{d}\mu.$$

It turns out that this property holds for any signed measure.

Definition 1.2.1 (Hahn decomposition). If a patition $\{X^+, X^-\}$ of X satisfies:

$$\varphi(A) \ge 0, \forall A \subset X^+, \quad \varphi(A) \le 0, \forall A \subset X^-,$$

then $\{X^+, X^-\}$ is called a **Hahn decomposition** of φ .

Definition 1.2.2 (Jordan decomposition). Let $\varphi^{\pm} = \int_A f^{\pm} d\mu$ be measures, if

$$\varphi = \varphi^+ - \varphi^-,$$

then it's called a **Jordan decomposition** of φ .

We're going to find X^+ , or equivalently, find φ^+ . Let $\varphi^*(A) := \sup \{ \varphi(B) : B \subseteq A \}$.

It's clear that φ^* is non-negative, monotone, and $\varphi^*(\emptyset) = 0$.

Consider $\mathscr{F}^- = \{A : \varphi^*(A) = 0\}$. Intuitively, this is all the subsets of X^- , unioned with "null sets" in X^+ .

Theorem 1.2.3 (Hahn decomposition)

Let X^- be a set with maximum $|\varphi|$ in \mathscr{F}^- , (since $\varphi > -\infty$, X^- must exist) and $X^+ = X \setminus X^-$ doesn't contain any set A with $\varphi(A) < 0$.

Furthermore, the Hahn decomposition is unique:

$$\varphi(A) = 0, \quad \forall A \in X_1^+ \Delta X_2^+ = X_1^- \Delta X_2^-.$$

The critical part of this theorem is:

Lemma 1.2.4

If $\varphi(A) < 0$, then we can find $A_0 \subset A$ s.t. $\varphi^*(A_0) = 0$, $\varphi(A_0) < 0$.

To prove this lemma, we need another lemma:

Lemma 1.2.5

If $\varphi(A) < \infty$, then $\forall \varepsilon > 0$, $\exists A_{\varepsilon} \subset A$ s.t.

$$\varphi(A_{\varepsilon}) \ge 0, \quad \varphi^*(A \backslash A_{\varepsilon}) \le \varepsilon.$$

Proof. Assume by contradiction that $\exists \varepsilon_0 \geq 0$ s.t. $\forall A_0 \subset A, \ \varphi(A_0) < 0$ or $\varphi^*(A \setminus A_0) > \varepsilon_0$, this means,

$$\varphi(A_0) \ge 0 \implies \varphi^*(A \backslash A_0) > \varepsilon_0.$$

This will clearly yield a contradiction:

Take any $\varphi(A_0) \geq 0$ (say $A_0 = \emptyset$), then exists $A_1 \subset A \setminus A_0$ s.t. $\varphi(A_1) > \varepsilon_0$, and $\varphi(A_0 \cup A_1) \geq 0$, continuing this process we can get infinitely many pairwise disjoint sets A_1, A_2, \ldots , with $\varphi(A_n) > \varepsilon_0$, so $\varphi(\sum_{i=1}^{\infty} A_i) = \infty \implies \varphi(A) = \infty$, contradiction!

Proof of Lemma 1.2.4. Applying above lemma repeatedly and take a limit:

Take $C_1 \subset A$ s.t. $\varphi(C_1) \geq 0$ and $\varphi^*(A \setminus C_1) \leq 1$. Let $A_1 = A \setminus C_1$, $\varphi(A_1) < 0$. Again take

$$C_{k+1} \subset A_k, A_{k+1} = A_k \setminus C_{k+1} \implies \varphi^*(A_{k+1}) \le \frac{1}{k+1}, \varphi(A_{k+1}) < 0.$$

Since
$$A_k \downarrow$$
, let $A_0 = \lim_{k \to \infty} A_k$, note $\varphi^*(A_k) \downarrow 0$, we must have $\varphi^*(A_0) = 0$.
Also $\varphi(\sum C_k) = \sum \varphi(C_k) \geq 0$, so $\varphi(A_0) < 0$.

Proof of Theorem 1.2.3. First we prove that \mathscr{F}^- is a σ -ring: $\emptyset \in \mathscr{F}^-$, if $A_1, A_2 \in \mathscr{F}^-$,

$$0 \le \varphi^*(A_1 \backslash A_2) \le \varphi(A_1) = 0.$$

Thus $A_1 \backslash A_2 \in \mathscr{F}^-$.

If $A_1, A_2, \dots \in \mathscr{F}^-$ pairwise disjoint,

$$\varphi(B) = \sum_{n=1}^{\infty} \varphi(B \cap A_n) \le 0, \quad \forall B \subset \sum_{n=1}^{\infty} A_n.$$

Hence $\sum_{n=1}^{\infty} A_n \in \mathscr{F}^-$.

Next we'll prove Hahn decomposition exists:

Let $\alpha := \inf \{ \varphi(A) : A \in \mathscr{F}^- \}, \ \alpha \leq 0.$

Let $\{A_n\} \in \mathscr{F}^-$ s.t. $\varphi(A_n) \to \alpha$, then $X^- := \bigcup_{n=1}^{\infty} A_n \in \mathscr{F}^-$.

$$\varphi(X^{-}) = \varphi(A_n) + \varphi(X^{-} \backslash A_n) \le \varphi(A_n) + \varphi^*(X^{-} \backslash A_n) = \varphi(A_n) \to \alpha.$$

Therefore $-\infty < \varphi(X^-) = \alpha$.

Hence $\forall A, \varphi(AX^-) \leq \varphi^*(X^-) = 0$. By Lemma 1.2.4 we get $\forall A, \varphi(AX^+) \geq 0$, otherwise $\exists A_0 \subset A \text{ s.t. } \varphi^*(A_0) = 0, \varphi(A_0) < 0$. Then $\varphi(X^- \cup A_0) = \alpha + \varphi(A_0) < \alpha$, contradiction!

At last we'll prove the uniqueness:

If X_1^{\pm}, X_2^{\pm} are both Hahn decompositions, then $A \in X_1^+ \cap X_2^- + X_1^- \cap X_2^+$, it's clear $\varphi(A) = 0$.

Theorem 1.2.6 (Jordan decomposition)

The Jordan decomposition exists and is unique:

$$\varphi = \varphi^+ - \varphi^-, \quad \varphi^+ = \varphi^*, \varphi^- = (-\varphi)^*.$$

Proof. Let φ^{\pm} be measures with $\varphi^{\pm} = \pm \varphi(A \cap X^{\pm})$. It's clear that this is a Jordan decomposition. Now given any Jordan decomposition φ^{\pm} .

$$\forall B \subset A, \varphi(B) \leq \varphi^+(B) \leq \varphi^+(A),$$

so $\varphi^* \leq \varphi^+$. But $A \cap X^+ \subset A$, so $\varphi^* \geq \varphi^+$, which proves the result. Similarly $\varphi^- = (-\varphi)^*$, so it is unique.

Remark 1.2.7 — The support of φ^{\pm} are disjoint, but if $\phi \neq 0$, then the support of $\varphi^{\pm} + \phi$ intersects. φ^{\pm} are called the **upper variation** and **lower variation**, respectively, and $|\varphi| = \varphi^{+} + \varphi^{-}$ is called the **total variation**.