Random Forest y Boosting

Rafael Zambrano rafazamb@gmail.com

Random Forest

- Los árboles de decisión son fáciles de construir, usar e interpretar, pero son imprecisos y tienden a causar overfitting
- Random Forest combina la simplicidad de los árboles de decisión y mejora la precisión

Random Forest

Funcionamiento

- 1) A partir de los datos originales, crea nuevos datos, escogiendo filas aleatorias con repetición
- 2) Crea un árbol de decisión para cada nuevo conjunto de datos, escogiendo columnas aleatorias para cada nodo del árbol

Edad	Trabaja	Hipoteca	Ingresos	
32	SÍ	SÍ	Altos	
25	SÍ	SÍ	Altos	
48	NO	NO	Bajos	ı
67	NO	SÍ	Bajos	
18	SÍ	NO	Bajos	
	32 25 48 67	32 SÍ 25 SÍ 48 NO 67 NO	32 SÍ SÍ 25 SÍ SÍ 48 NO NO 67 NO SÍ	32 SÍ SÍ Altos 25 SÍ SÍ Altos 48 NO NO Bajos 67 NO SÍ Bajos

Cliente	Edad	Trabaja	Hipoteca	Ingresos
Α	32	SÍ	SÍ	Altos
В	25	SÍ	SÍ	Altos
Α	32	SÍ	SÍ	Altos
В	25	SÍ	SÍ	Altos
D	67	NO	SÍ	Bajos

Random Forest

Uso

- Para predecir con nuevos datos, cada árbol va a dar un resultado diferente
- Se escoge la opción más votada

Cliente	Edad	Trabaja	Hipoteca	Ingresos
Z	46	SÍ	NO	

Árbol #	Predicción
1	Altos
2	Altos
3	Bajos

Ingresos	Ingresos
Altos	Bajos
90 árboles	10 árboles

El proceso de crear nuevos datos (Bootsrapping) y agregarlos para tomar una decisión se conoce como **Bagging**

Boosting

 Estos algoritmos son similares a Random Forest, pero en lugar de crear árboles aleatorios, cada nuevo árbol mejora al anterior

Cliente	Edad	Trabaja	Hipoteca	Ingresos	Error
А	32	SÍ	SÍ	90	40
В	25	SÍ	SÍ	50	0
С	48	NO	NO	25	12.5
D	67	NO	SÍ	35	0
E	18	SÍ	NO	10	-40

Boosting

- Estos algoritmos son similares a Random Forest, pero en lugar de crear árboles aleatorios, cada nuevo árbol mejora al anterior
- Por ejemplo, si cada nuevo árbol intenta predecir el error cometido por el árbol anterior

Error

medio

18,5

17

Cliente	Edad	Trabaja	Hipoteca	Ingresos	Error 1	Error 2
А	32	SÍ	SÍ	90	40	22.5
В	25	SÍ	SÍ	50	0	17.5
С	48	NO	NO	25	12.5	-5
D	67	NO	SÍ	35	0	-17.5
Е	18	SÍ	NO	10	-40	-22.5

Boosting

- El algoritmo más conocido de Boosting es el XGBoost (eXtreme Gradient Boosting)
- Hoy en día, son las mejores técnicas de Machine Learning en modelos predictivos (sin considerar Deep Learning)

Algoritmos de Boosting

Adaboost

Gradient Boosting

XGBoost

Light GBM

Cat Boost

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import GradientBoostingRegressor

import xgboost as xgb

import lightgbm as lgb

from catboost import CatBoostRegressor

https://medium.com/@divyagera2402/boosting-algorithms-adaboost-gradient-boosting-xgb-light-gbm-and-catboost-e7d2dbc4e4ca

¡Gracias!

Contacto: Rafael Zambrano

rafazamb@gmail.com