CMSC 660 HW III

Joe Asercion

9/19/18

1 Chapter 4, Problem 11

Given the following information:

- $\frac{1}{2}\delta_x^2 u = f(x)$ for 0 < x < 1
- Boundary Conditions: u(0) = u(1) = 0
- Discretized interval: [0,1] in a uniform grid of points $x_j = j\Delta x$ with $n\Delta x = 1$
- n-1 unknowns U_j are approximations to $u(x_j),\ j=1,...,n-1$
- Second order approximation: $\frac{1}{2} \frac{1}{\Delta x^2} (U_{j+1} 2U_j + U_{j-1}) = f(x_j) = F_j$
- These linear equations can be written as AU = F

1.1 a. Calculation

Check that there are n-1 distinct eigenvectors of A having the form $r_{kj}=\sin(k\pi x_j)$ where r_{kj} is the j component of the eigenvector r_k .

1.1.1 Answer

We are given the expression AU = F and are told the form of both F and U. Therefore we can calculate the form the matrix A must be in:

Where A has dimensions of $(n-1) \times (n-1)$.

Let R_k be the kth vector consisting of elements $r_{kj} = sin(k\pi x_j)$. If R_k is an eigenvector of matrix A then it satisfies

$$AR_k = \lambda_k R_k$$

Where λ_k is the eigenvalue associated with the k^{th} eigenvector. Starting with the k=1 case we can plug in values and expand this expression:

Noting that $r_{k,j+1} = \sin(k\pi(x+\Delta x))$, and that $n\Delta x = 1$, we can rewrite the above expression as

Which gives equations of the form

$$\begin{split} &\frac{1}{2}\frac{1}{\Delta x^2}(-2\sin(\pi x_1)+\sin(\pi(x_1+\Delta x))) = \lambda_1\sin(\pi x_1) \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi x_1)-2\sin(\pi(x_1+\Delta x))+\sin(\pi(x_1+2\Delta x))) = \lambda_1\sin(\pi x_1+\Delta x) \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi x_1+\Delta x)-2\sin(\pi x_1+2\Delta x)+\sin(\pi(x_1+3\Delta x))) = \lambda_1\sin(\pi(x_1+2\Delta x)) \\ &\dots \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi(x_1+(n-4)\Delta x))-2\sin(\pi(x_1+(n-3)\Delta x))+\sin(\pi(x_1+(n-2)\Delta x))) \\ &=\lambda_1\sin(\pi(x_1+(n-3)\Delta x)) \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi(x_1+(n-3)\Delta x))-2\sin(\pi(x_1+(n-2)\Delta x))) \\ &=\lambda_1\sin(\pi(x_1+(n-2)\Delta x)) \end{split}$$

Using the given fact that $n\Delta x = 1$, the generated equations can be simplified:

$$\begin{split} &\frac{1}{2}\frac{1}{\Delta x^2}(-2\sin(\pi x_1) + \sin(\pi(x_1 + \Delta x))) = \lambda_1\sin(\pi x_1) \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi x_1) - 2\sin(\pi(x_1 + \Delta x)) + \sin(\pi(x_1 + 2\Delta x))) = \lambda_1\sin(\pi x_1 + \Delta x) \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi x_1 + \Delta x) - 2\sin(\pi x_1 + 2\Delta x) + \sin(\pi(x_1 + 3\Delta x))) = \lambda_1\sin(\pi(x_1 + 2\Delta x)) \\ &\dots \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi(x_1 + 1 - 4\Delta x)) - 2\sin(\pi(x_1 + 1 - 3\Delta x)) + \sin(\pi(x_1 + 1 - 2\Delta x))) \\ &= \lambda_1\sin(\pi(x_1 + 1 - 3\Delta x)) \\ &\frac{1}{2}\frac{1}{\Delta x^2}(\sin(\pi(x_1 + 1 - 3\Delta x)) - 2\sin(\pi(x_1 + 1 - 2\Delta x))) \\ &= \lambda_1\sin(\pi(x_1 + 1 - 2\Delta x)) \end{split}$$

Applying $x_j = j\Delta x...$

$$\frac{1}{2} \frac{1}{\Delta x^2} (-2\sin(\pi \Delta x) + \sin(2\pi \Delta x)) = \lambda_1 \sin(\pi \Delta x)$$

$$\frac{1}{2} \frac{1}{\Delta x^2} (\sin(\pi \Delta x) - 2\sin(2\pi \Delta x) + \sin(3\pi \Delta x)) = \lambda_1 \sin(2\pi \Delta x)$$

$$\frac{1}{2} \frac{1}{\Delta x^2} (\sin(2\pi \Delta x) - 2\sin(3\pi \Delta x) + \sin(4\pi \Delta x)) = \lambda_1 \sin(3\pi \Delta x)$$
...
$$\frac{1}{2} \frac{1}{\Delta x^2} (\sin(\pi (1 - 3\Delta x)) - 2\sin(\pi (1 - 2\Delta x)) + \sin(\pi (1 - \Delta x))) = \lambda_1 \sin(\pi (1 - 2\Delta x))$$

$$\frac{1}{2} \frac{1}{\Delta x^2} (\sin(\pi (1 - 2\Delta x)) - 2\sin(\pi (1 - \Delta x))) = \lambda_1 \sin(\pi (1 - \Delta x))$$

Applying a bit of algebra and the identities of trigonometric functions allows us to isolate the λ_1 eigenvalue:

$$\frac{\cos(\pi\Delta x) - 1}{\Delta x^2} = \lambda_1$$

Generalizing this for all k yields:

$$\frac{\cos(k\pi\Delta x) - 1}{\Delta x^2} = \lambda_k \tag{1}$$

Since (1) is a scalar value solely dependent on the step size Δx and the index k, it shows that the vector R_k is in fact an eigenvector of matrix A. As noted in [1](pg. 77), the $(n-1)\times(n-1)$ matrix A may have up to n-1 eigenvectors. We see that (1) implies that iterating the value of k generates a distinct eigenvalue, therefore the set of eigenvectors associated with the eigenvalues defined by (1) are linearly independent and form a basis for \mathbb{C}^{n-1} [1](pg. 77). Therefore, there must be n-1 eigenvectors of A in the form of R_k .

1.2 b. Calculation

Use te eigenvalue information from part (a) to show that $||A^{-1}|| \to \frac{2}{\pi^2}$ as $n \to \infty$ and $\kappa(A) = \mathcal{O}(n^2)$ as $n \to \infty$. (Use Euclidian Norms).

1.2.1 Answer

From 4.2.7 Theorem 1 [1](pg. 82), if a matrix is self-adjoint the Rayleigh Quotient of an eigenvector is its corresponding eigenvalue. Plugging in the values found in part a we obtain:

$$Q(x) = \lambda_k = \frac{R_k^* A R_k}{R_k^* R_k}$$
$$\frac{\cos(k\pi \Delta x) - 1}{\Delta x^2} = \frac{(\sin(k\pi x_j))^* A \sin(k\pi x_j)}{(\sin(k\pi x_j))^* \sin(k\pi x_j)}$$

From the definition of the Euclidian Norm of a matrix [1](pg. 76), we see that the maximum of Rayleigh Quotient is the Euclidean Norm of the matrix A squared. i.e.

$$||A||_{l^2} = \max\left(\frac{\cos(k\pi\Delta x) - 1}{\Delta x^2}\right) = \max\left(n^2(\cos(k\pi\frac{1}{n}) - 1)\right)$$
 (2)

Taking the limit of (2) as $n \to \infty$ yields

$$\lim_{n \to \infty} n^2(\cos(k\pi \frac{1}{n}) - 1) = -\frac{k^2\pi^2}{2}$$

To find the norm of $||A^{-1}||$ we need to invert this expression:

$$||A^{-1}||_{l^2} = \frac{2}{\pi^2} \tag{3}$$

Informally, $\kappa(A)$ is on the order of $\mathcal{O}(n^2)$ due to the condition number of an eigenvalue problems's dependence on the the norm of $\Delta A[1]$ (pg. 92). In (2) the dominant term as $n \to \infty$ will the the leading n^2 term. Therefore the overall condition number of the Eigenvalue problem will be on the order of n^2 .

1.3 c. Calculation

Given:

- $\tilde{U}_j = u(x_j)$, where u(x) is the exact but unknown solution to the BVP
- $R = A\tilde{U} F$ is defined to be the residual

Show that if u(x) is smooth then the residual satisfies $||R|| = \mathcal{O}(\Delta x^2) = \mathcal{O}(\frac{1}{n^2})$

1.3.1 Answer

From the statement of the problem we know F=AU. Therefore, we can rewrite the residual as

$$R = A\tilde{U} - AU$$

Therefore,

$$||R|| = ||A\tilde{U} - AU|| \le ||A\tilde{U}|| - ||AU|| \le ||A||||\tilde{U}|| - ||A||||U||[1] \text{ (pg. 74)}$$

The Euclidean Norm of a matrix can be calculated as $||A||_2 = \sqrt{Trace(A^TA)}[2]$. A is a symmetric matrix, so $A = A^T$. The Trace of a matrix is simply the sum of the diagonal elements, so only those elements need to be calculated:

Therefore, because A is a $(n-1) \times (n-1)$ square matrix,

$$Trace(A^T A) = ((n-3)*6) + (2*5) = 6n - 8$$

 $\therefore ||A||_{l^2} = \sqrt{6n-8}x$

1.4 d. Calculation

Show that $A(U - \tilde{U}) = R$. Use part (b) to show that $||U - \tilde{U}|| = \mathcal{O}(\Delta x^2)$

1.4.1 Answer

1.5 f. MATLAB

Write a program in MATLAB to solve AU = F for the second order method.

1.5.1 **Answer**

Code attached in appendix.

2 Chapter 4, Problem 12

2.1 a. Calculation

Show that if $\dot{S} = SA$, S(0) = I, then p(t) = p(0)S(t)

2.1.1 Answer

2.2 b. Calculation

Use matrix norms and the fact that $||B^k|| \le ||B||^k$ to show that the infinite sum of matrices converges

2.2.1 **Answer**

2.3 c. Calculation

Show that the fundamental solution is given by $S(t) = e^{tA}$.

2.3.1 **Answer**

2.4 d. Calculation

Show that $e^{tA}=Le^{t\Lambda}R$ and that $e^{t\Lambda}$ is the obvious diagonal matrix

- 2.4.1 Answer
- 2.5 e. MATLAB
- 2.5.1 Answer
- 2.6 f. MATLAB
- 2.6.1 Answer
- 2.7 g. MATLAB
- 2.7.1 Answer
- 2.8 h. MATLAB
- 2.8.1 Answer
- 3 Chapter 4, Problem 13
- 4 a. MATLAB
- 4.1 Answer
- 5 b. MATLAB
- 5.1 Answer

References

- [1] David Bindel and Johnathan Goodman. Principles of Scientific Computing. 2009.
- [2] Wikipedia Page for the Frobenius Norm

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm