TASK 1: Implement a sentence transformer model using any deep learning framework of your choice. This model should be able to encode input sentences into fixed-length embeddings. Test your implementation with a few sample sentences and showcase the obtained embeddings. Describe any choices you had to make regarding the model architecture *outside of the transformer backbone*.

Explanation of Choices

1. Model Choice:

- Model: sentence-transformers/paraphrase-mpnet-base-v2 is chosen for its efficiency and accuracy in generating sentence embeddings. This model is fine-tuned for semantic textual similarity tasks, making it suitable for encoding sentences into meaningful embeddings.
- Library: Hugging Face Transformers library provides an easy-to-use interface and a variety of pre-trained models, allowing for quick and efficient implementation.

• Tokenization:

• Sentences are tokenized using the model's tokenizer with padding and truncation to ensure all input sequences are of equal length, necessary for batch processing.

• Embedding Extraction:

• **Mean Pooling:** The last hidden state of the model's output is averaged across the sequence length to obtain a fixed length embedding for each sentence. This approach is simple and effective for generating sentence-level embeddings.

Task 2

Expand the sentence transformer to handle a multi-task learning setting.

- 1. Task A: Sentence Classification Classify sentences into classes.
- 2. Task B: Perform Sentiment Analysis

Architectural Changes for Multi-Task Learning

1. Shared Encoder:

 Used a pre-trained transformer model as a shared encoder to generate embeddings for input sentences.

2. Task-Specific Heads:

- Add a classification head for Task A.
- Add a sentiment analysis head for Task B.

3. Multi-Task Loss:

Combine the losses from both tasks to perform joint training.

Explanation of the Changes

1. Custom Model Definition:

- **MultiTaskModel:** Inherits from nn.Module.
- **Encoder:** Shared transformer encoder (AutoModel).
- **Task-Specific Heads:** Separate linear layers (classifier_task_a and classifier_task_b) for each task.

2. Forward Method:

- Encodes the input sentences using the shared transformer encoder.
- Applies mean pooling on the output to get fixed-length embeddings.
- Feeds the embeddings to the task-specific heads to get logits for each task.

3. Loss Calculation:

- Uses cross-entropy loss for both tasks.
- Combines the losses from both tasks to compute the total loss.

4. Training Step:

• A simple training step is demonstrated, including forward pass, loss computation, backward pass, and optimization.

Task 3: Training Considerations

Discuss the implications and advantages of each scenario and explain your rationale as to how the model should be trained given the following:

- 1. If the entire network should be frozen.
- 2. If only the transformer backbone should be frozen.
- 3. If only one of the task-specific heads (either for Task A or Task B) should be frozen.

Training Considerations for Multi-Task Learning

When deciding how to train a multi-task model, there are several considerations to take into account regarding which parts of the model to freeze or unfreeze.

1. If the entire network should be frozen:

Implications:

- The model will not learn or adapt to the specific tasks.
- The pre-trained model's embeddings will be used as fixed features.

Advantages:

- Reduces computational requirements since no gradients need to be calculated.
- Prevents overfitting on small datasets.
- Useful when the pre-trained embeddings are expected to be highly relevant.

2. If only the transformer backbone should be frozen:

Implications:

- The pre-trained embeddings will be used as fixed features.
- The task-specific heads will adapt to the new tasks.

Advantages:

- Leverages the rich pre-trained features while allowing customization for specific tasks.
- Reduces the risk of overfitting compared to training the entire network.
- Efficient in terms of computational resources.

Scenario:

 This is useful when the downstream tasks are somewhat related to the pretraining tasks but still require some adaptation, and the dataset size is moderate.

3. If only one of the task-specific heads should be frozen:

Implications:

 The model can adapt to one task while keeping the learned parameters for the other task fixed.

Advantages:

- Allows focusing training resources on the task that requires more adaptation.
- Prevents catastrophic forgetting for the frozen task.

Scenario:

 This approach is beneficial when one task is already well learned and needs to be preserved while the other task requires further tuning. Consider a scenario where transfer learning can be beneficial. Explain how you would approach the transfer learning process, including:

- 1. The choice of a pre-trained model.
- 2. The layers you would freeze/unfreeze.
- 3. The rationale behind these choices.

Transfer Learning Approach

Scenario:

- Tasks:
 - o Task A: Sentence Classification
 - o Task B: Sentiment Analysis

• Pre-trained Model:

A transformer model like sentence-transformers/paraphrase-mpnet-base-v2 which
is pre-trained on a diverse set of sentence pairs for tasks such as paraphrase
identification, sentence similarity, etc.

Steps:

1. Load Pre-trained Model:

• Use a pre-trained transformer model that is relevant to the downstream tasks.

2. Freeze/Unfreeze Layers:

- Initial Phase:
 - Freeze the transformer backbone to leverage the pre-trained features.
 - Train only the task-specific heads.

Fine-Tuning Phase:

- Gradually unfreeze the transformer layers, starting from the top (closer to the output).
- Use a lower learning rate for the transformer backbone compared to the task-specific heads.

Rationale:

• Choice of Pre-trained Model:

 Models like sentence-transformers/paraphrase-mpnet-base-v2 are chosen because they are pre-trained on tasks that involve understanding sentence-level semantics, making them suitable for tasks like sentence classification and sentiment analysis.

• Freezing Strategy:

Initial Phase:

• Freezing the backbone allows the model to leverage the robust, generalized features learned during pre-training, ensuring that the model does not deviate drastically from these useful representations.

Fine-Tuning Phase:

- Gradually unfreezing layers allows the model to adapt these pre-trained features to the specific nuances of the new tasks without losing the valuable knowledge embedded in the earlier layers.
- Using a lower learning rate for the backbone helps to make fine-tuned adjustments without overfitting or destabilizing the pre-trained weights.

Summary

- **Freezing the entire network:** Useful when leveraging pre-trained embeddings as fixed features and preventing overfitting on small datasets.
- Freezing only the transformer backbone: Allows leveraging pre-trained features while adapting to specific tasks, balancing between overfitting and learning new task-specific information.
- **Freezing one task-specific head:** Useful for preserving performance on one task while adapting to another, preventing catastrophic forgetting.
- Transfer Learning Strategy:
 - o Initial freezing of the transformer backbone to retain pre-trained features.
 - Gradual unfreezing with differential learning rates to adapt pre-trained features to new tasks effectively, minimizing the risk of overfitting and ensuring stable training.

TASK 4

Rationale for Specific Learning Rates

- **Base Learning Rate:** The base learning rate (base_lr) is set to a value like 1e-4, which is typical for fine-tuning pre-trained models.
- **Learning Rate Decay:** The decay factor (lr_decay) is set to 0.95. This means that each successive layer has a learning rate that is 95% of the previous layer's learning rate. This gradual decay ensures that earlier layers (which capture more general features) are updated more conservatively, while later layers (which capture more task-specific features) are updated more aggressively.

Benefits of Layer-Wise Learning Rates

1. Better Fine-Tuning:

 Allows the model to retain the general features learned in earlier layers while adapting more specific features in later layers to the new tasks.

2. Reduced Overfitting:

O By updating earlier layers less aggressively, the model is less likely to overfit to the specific dataset, particularly if the dataset is small.

3. Improved Convergence:

o Different learning rates for different layers can lead to faster and more stable convergence during training.

Multi-Task Setting Benefits

- **Shared Features:** In a multi-task setting, layer-wise learning rates help ensure that shared features across tasks (captured in earlier layers) are preserved, while task-specific adaptations (captured in later layers) are fine-tuned more aggressively.
- **Balanced Training:** This approach balances the need to learn task-specific features while maintaining the integrity of the general features useful for multiple tasks, leading to better overall performance on both tasks.

By implementing layer-wise learning rates, the model can achieve more effective and efficient fine-tuning, particularly in complex scenarios like multi-task learning.