CLAIMS

I claim:

2
3

1. Device for the fabrication of a tire reinforcement, said device being designed to fabricate a reinforcement made from a cord, said device comprising a frame and being designed for use in cooperation with an essentially toroidal form which is mounted on the frame and able to rotate about a rotation axis and on which said reinforcement is progressively built up by laying arcs of said cord along a trajectory desired for said cord on the surface of said form, said device comprising:

a cord laying element through which the cord can slide;

an actuation mechanism mounted on the frame, to transport said cord laying element in a cyclic, back and forth movement, bringing it in successive cycles close to each of the ends desired for the cord in said trajectory, the actuation mechanism comprising at least one main arm and two auxiliary arms, namely a front auxiliary arm and a rear auxiliary arm, each auxiliary arm being articulated on a geometrical rotation axis, the respective geometrical rotation axes being essentially parallel to one another and a distance apart; and

pressing elements near each end of said trajectory, to apply the cord onto the form at least at said ends;

wherein the main arm is mounted on one of the auxiliary arms via a rotation axis parallel to said geometrical rotation axes forming an articulation between the main arm and the auxiliary arm considered, and is mounted on the other auxiliary arm by means of a cam follower which cooperates with an orifice.

2. Device according to Claim 1, in which the actuation mechanism is such that the movement of the auxiliary arms is synchronous and can be adjusted to different amplitudes.

- 1 3. Device according to Claim 1, in which the actuation mechanism is such that the
- 2 movement of the auxiliary arms is synchronous and is controlled by different
- 3 motors.

3

- 1 4. Device according to Claim 1, in which the slot is formed in the main arm.
- Device according to Claim 4, in which the slot is located on the side of the articulation opposite to the cord laying element.
- Device according to Claim 1, in which the main arm directly supports the cord laying element.
- 1 7. Device according to Claim 1, in which the cord laying element is an eyelet.
- Device according to Claim 1, used with a motorization system which controls in synchronism the rotation of the form, the actuation mechanism and the pressing elements, in which the actuation mechanism is mounted on a support which itself moves relative to the rotation axis of the form, this movement itself being controlled in synchronism with the rotation of the form by the motorization system..
- 9. Device according to Claim 8, in which the support is moved parallel to the axis of the form.