Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang

Chris Doble

May 2024

Contents

I	Fundamental concepts	1
1	Introduction and overview	1
	1.2 Quantum bits	1

Part I

Fundamental concepts

1 Introduction and overview

1.2 Quantum bits

- The special states |0> and |1> form an orthonormal basis and are known as computational basis states.
- \bullet A quantum bit (qubit) is a linear combination of the computational basis states

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

where α and β are complex numbers.

- When we measure a qubit we either get $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$. Thus, $|\alpha|^2 + |\beta|^2 = 1$ and a qubit can be thought of as a unit vector in a two-dimensional complex vector space.
- If a qubit is in the state

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

there's a 50/50 chance of measuring $|0\rangle$ or $|1\rangle$.

• If we let

$$\alpha = e^{i\gamma} \cos \frac{\theta}{2}$$

and

$$\beta = e^{i\gamma} e^{i\varphi} \sin \frac{\theta}{2}$$

then

$$|\alpha|^2 + |\beta|^2 = \alpha^* \alpha + \beta^* \beta$$
$$= \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}$$
$$= 1$$

so the qubit is still normalised and it can be written

$$\left|\psi\right\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}\left|0\right\rangle + e^{i\varphi}\sin\frac{\theta}{2}\left|1\right\rangle\right).$$

It turns out that $e^{i\gamma}$ has no observable effects and we can effectively write

$$|\psi\rangle = \cos\frac{\theta}{2} |0\rangle + e^{i\varphi} \sin\frac{\theta}{2} |1\rangle .$$

This defines a point on a three-dimensional sphere known as the **Bloch** sphere where θ and φ take on their usual roles in a spherical coordinate system.

• Before measurement a qubit is in a linear combination of $|0\rangle$ and $|1\rangle$ but when measured you get one or the other and the state of the system changes to match the measured result.