

第五章 图的基本概念

图的矩阵表示; 最短路径、关键路径和着色

郝杰

haojie@bupt.edu.cn

北京邮电大学信息安全中心

5.3 图的矩阵表示

- □无向图的关联矩阵
- □有向图的关联矩阵
- □有向图的邻接矩阵
- □有向图的可达矩阵

无向图的关联矩阵

定义 设无向图 $G = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, E = $\{e_1, e_2, ..., e_m\}$, 令 m_{ij} 为 v_i 与 e_i 的关联次数,称 $(m_{ij})_{n\times m}$ 为 G 的关联矩阵,记为 M(G).

$$M(G) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad e_2 \underbrace{ \begin{pmatrix} v_1 & e_2 \\ e_3 \end{pmatrix} }_{v_2}$$

无向图的关联矩阵

■ 性质 (1)每一列恰好有两个1或一个2

(2)
$$\sum_{i=1}^{m} m_{ij} = d(v_i)$$
 (i = 1,2,...,n)

$$(3) \sum_{i,j} m_{ij} = 2m$$

- (4) v_i为孤立点当且仅当第 i行全为0
- (5) 平行边的列相同

■ 例

$$M(G) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

有向图的关联矩阵

定义 设无环有向图 $D = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$, 令

$$m_{ij} = \begin{cases} 1, & v_i \ge e_j \text{ 的始点} \\ 0, & v_i \le e_j \text{ 不关联} \\ -1, & v_i \ge e_j \text{ 的终点} \end{cases}$$

则称 $(m_{ii})_{n\times m}$ 为 D 的关联矩阵,记为 M(D).

有向图的关联矩阵

■ 例如

$$M(D) = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 1 & 0 \end{bmatrix}$$

■ 性质

- (1)每一列恰好有一个1和一个-1;
- (2) 第 i 行 1 的个数等于 $d^+(v_i)$, -1 的个数等于 $d^-(v_i)$;
- (3) 1 的总个数等于 -1 的总个数, 且都等于 m;
- (4) 平行边对应的列相同.

有向图的邻接矩阵

定义 设有向图 $D = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$, 令 $a_{ij}^{(1)}$ 为顶点 v_i 邻接到 v_j 的边的条数,称 $(a_{ij}^{(1)})_{m \times n}$ 为 D 的邻接矩阵,记作 A(D),简记为 A.

■例

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

有向图的邻接矩阵

■ 性质 (1)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), i = 1,2,...,n$$

(2)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{-}(v_{j}), \quad j = 1, 2, ..., n$$

(3)
$$\sum_{i,j} a_{ij}^{(1)} = m - - - D$$
中长度为 1 的通路数

(4) $\sum_{i=1}^{n} a_{ii}^{(1)} - - - D$ 中长度为1的回路数

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

D中的通路及回路数

定理 设 A 为 n 阶有向图 D 的邻接矩阵, 则 $A^l(l \ge 1)$ 中的下列元素

- 1. $a_{ij}^{(l)}$ 为 D 中 v_i 到 v_j 长度为 l 的通路数;
- 2. $a_{ii}^{(l)}$ 为 v_i 到自身长度为l的回路数;
- 3. $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)}$ 为 D 中长度为 l 的通路总数;
- 4. $\sum_{i=1}^{n} a_{ii}^{(l)}$ 为 D 中长度为 l 的回路总数.

D中的通路及回路数

推论 设 $B_l = A + A^2 + ... + A^l \ (l \ge 1)$, 则 B_l 中元素

- 1. $\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{(l)}$ 为 D 中长度小于或等于l 的通路数;
- 2. $\sum_{i=1}^{l-1} b_{ii}^{(l)}$ 为 D 中长度小于或等于l 的回路数.

■ 例 在有向图 *D* 中 长度为1, 2, 3, 4的通路各 有多少条? 其中回路分别 为多少条?

D中的通路及回路数

■例

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

长度	通路	回路
1	8	1
2	11	3
3	14	1
4	17	3
合计	50	8

有向图的可达矩阵

定义 设 $D = \langle V, E \rangle$ 为有向图, $V = \{v_1, v_2, ..., v_n\}$, 令 $p_{ij} = \begin{cases} 1, & v_i \exists \forall v_j, \\ 0, & v_i \exists \forall v_j, \end{cases} i, j = 1, 2, ..., n$

称 $(p_{ij})_{n\times n}$ 为 D 的可达矩阵, 记作 P(D), 简记为 P.

- 性质
 - (1) P(D)主对角线上的元素全为1.
 - (2) D强连通当且仅当 P(D) 的元素全为1.

有向图的可达矩阵

■例

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

5.4 最短路径, 关键路径与着色

- □帯权图
- □最短路径与Dijkstra标号法
- □项目网络图与关键路径
- □着色问题

最短路径

- 口 带权图 $G = \langle V, E, w \rangle$, 其中 $w: E \to R$.
 - > 对于 ∀e∈E, w(e) 称作 e 的权.
 - \triangleright $e=(v_i, v_j)$, 记 $w(e)=w_{ij}$. 若 v_i , v_j 不相邻, 记 $w_{ij}=\infty$.
- 口 通路 L 的权: L 的所有边的权之和, 记作w(L).
- □ u 和 v 之间的最短路径: u 和 v 之间权最小的通路.

■ 例

$$L_1 = v_0 v_1 v_3 v_5$$
, $w(L_1) = 10$

$$L_2 = v_0 v_1 v_4 v_5$$
, $w(L_2) = 12$

标号法 (E.W.Dijkstra, 1959)

- 设带权图 $G=\langle V, E, w \rangle$, 其中 $\forall e \in E, w(e) \geq 0$.
 - $> l_j : v_1$ 到 v_j 的最短距离;
 - $P_j: v_1$ 到 v_j 最短路径上 v_j 的前一个顶点;
 - P: 已求得最短路径的顶点;
 - ightharpoonup T = V P: 还未求得最短路径的顶点.

标号法 (E.W.Dijkstra, 1959)

- 设带权图 $G=\langle V, E, w \rangle$, 其中 $\forall e \in E, w(e) \geq 0$.
- \triangleright 设 $V = \{v_1, v_2, ..., v_n\}$, 求 v_1 到其余各顶点的最短路径
 - 1. $\diamondsuit l_1 \leftarrow 0, p_1 \leftarrow \lambda, l_j \leftarrow +\infty, p_j \leftarrow \lambda, j = 2, 3, ..., n,$ $P = \{v_1\}, T = V - \{v_1\}, k \leftarrow 1, t \leftarrow 1.$ // λ 表示空
 - 2. 对所有的 $v_j \in T$ 且 $(v_k, v_j) \in E$ 令 $l \leftarrow \min\{l_j, l_k + w_{kj}\},$ 若 $l = l_k + w_{kj},$ 则令 $l_j \leftarrow l, p_j \leftarrow v_k$.
 - 3. $\Re l_i = \min\{l_j | v_j \in T_t\}$. $\Leftrightarrow P \leftarrow P \cup \{v_i\}, T \leftarrow T - \{v_i\}, k \leftarrow i$.
 - 4. 令 *t* ← *t* + 1, 若 *t* < *n*, 则转 2.

标号法 (E.W.Dijkstra, 1959)

■ 例 求v₀到v₅的最短路径

解: v_0 到 v_5 的最短路径为:

- $> v_0 v_1 v_2 v_4 v_3 v_5$
- $> d(v_0, v_5) = 9$

$ \mid t \mid $	v_0	v_1	v_2	v_3	v_4	v_5
1	$(0,\lambda)^*$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
2		$(1,v_0)^*$	$(4,v_0)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
3			$(3,v_1)^*$	$(8,v_1)$	$(6,v_1)$	$(+\infty,\lambda)$
4				$(8,v_1)$	$(4,v_2)^*$	$(+\infty,\lambda)$
5				$(7,v_4)^*$		$(10,v_4)$
6						$(9,v_3)*$

项目网络图

□ 项目网络图:表示项目的活动之间的前后顺序的带权有向图.边表示活动,边的权是活动的完成时间,顶点表示事项(项目的开始和结束、活动的开始和结束).

■ 要求:

- (1) 有一个始点 (入度为 0) 和一个终点 (出度为 0).
- (2) 任意两点之间只能有一条边.

- (3) 没有回路.
- (4) 每一条边始点的编号小于终点的编号.

项目网络图

■ 实例

活动	\boldsymbol{A}	B	\boldsymbol{C}	D	$\boldsymbol{\mathit{E}}$	$\boldsymbol{\mathit{F}}$	\boldsymbol{G}	H	I	\boldsymbol{J}	K	\boldsymbol{L}
紧前活动	_	_	_	\boldsymbol{A}	\boldsymbol{A}	A,B	A,B	A,B	C,H	D ,F	E,I	G,K
时间(天)	1	2	3	4	3	4	4	2	4	6	1	1

- □ 关键路径: 项目网络图中从始点到终点的最长路径.
- □ 关键活动: 关键路径上的活动.
- 设 $D = \langle V, E, W \rangle$, $V = \{1, 2, ..., n\}$, 1是始点, n是终点.
- (1)事项i的最早完成时间 $ES(v_i):i$ 最早可能开始的时间,即从始点到i的最长路径的长度.

$$ES(1) = 0;$$

$$ES(i) = \max\{ES(j) + w_{ii} | < j, i > \in E\}, i = 2, 3, ..., n.$$

(2)事项 i 的最晚完成时间 LF(i): 在不影响项目工期的条件下,事项 i 最晚必须完成的时间.

$$LF(n) = ES(n)$$

$$LF(i) = \min\{LF(j) - w_{ij} \mid \langle i, j \rangle \in E\}, \quad i = n-1, n-2, ..., 1.$$

- (3) 活动 $\langle i,j \rangle$ 的最早开始时间 ES(i,j): $\langle i,j \rangle$ 最早可能开始时间.
- (4) 活动 $\langle i,j \rangle$ 的最早完成时间 EF(i,j): $\langle i,j \rangle$ 最早可能完成时间.
- (5) 活动<i,j>的最晚开始时间 LS(i,j): 在不影响项目工期的条件下,<i,j>最晚必须开始的时间.
- (6) 活动< i, j > 的最晚完成时间 LF(i, j): 在不影响项目工期的条件下, < i, j > 最晚必须完成的时间.
- (7) 活动<*i*, *j*>的缓冲时间 *SL*(*i*,*j*):

$$SL(i,j) = LS(i,j) - ES(i,j) = LF(i,j) - EF(i,j).$$

显然,
$$ES(i,j) = ES(i)$$
, $EF(i,j) = ES(i) + w_{ij}$, $LF(i,j) = LF(j)$, $LS(i,j) = LF(j) - w_{ij}$.

例 各事项的最早开始时间:

1.
$$ES(1) = 0$$

5.
$$ES(5) = \max\{1+3, 4+4\} = 8$$

2.
$$ES(2) = \max\{0+1\} = 1$$

2.
$$ES(2) = \max\{0+1\} = 1$$
 6. $ES(6) = \max\{2+4, 8+1\} = 9$

3.
$$ES(3) = \max\{0+2, 1+0\} = 2$$
 7. $ES(7) = \max\{1+4, 2+4\} = 6$

7.
$$ES(7) = \max\{1+4, 2+4\} = 6$$

4.
$$ES(4) = \max\{0+3, 2+2\} = 4$$

4.
$$ES(4) = \max\{0+3, 2+2\} = 4$$
 8. $ES(8) = \max\{9+1, 6+6\} = 12$

■ 例 各事项的最晚完成时间:

1.
$$LF(8) = 12$$

2.
$$LF(7) = \min\{12-6\}=6$$

3.
$$LF(6) = \min\{12-1\}=11$$

4.
$$LF(5) = \min\{11-1\}=10$$

5.
$$LF(4)=\min\{10-4\}=6$$

6.
$$LF(3)=\min\{6-2,11-4,6-4\}=2$$

7.
$$LF(2)=\min\{2-0,10-3,6-4\}=2$$

8.
$$LF(1)=\min\{2-1,2-2,6-3\}=0$$

活动	A	B	C	D	E	$\boldsymbol{\mathit{F}}$	G	H	I	$oldsymbol{J}$	K	\boldsymbol{L}
ES	0	0	0	1			2			6	8	9
EF	1	2	3	5	4	6	6	4	8	12	9	10
LS	1	0	3	2	7	2	7	4	6	6	10	11
LF	2	2	6	6	10	6	11	6	10	12	11	12
SL	1	0	3	1	6	0	5	2	2	0	2	2

- ▶ 总工期:12天
- > 关键路径: v₁v₃v₇v₈
- ▶ 关键活动: B, F, J

着色

- □ 定义 设无向图 G 无环,对 G 的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色,称为图 G 的一种点着色,简称着色. 若能用k种颜色给G的顶点着色,则称G是k-可着色的.
- □ 图的着色问题: 用尽可能少的颜色给图着色.

■ 例如

■ 实例

着色

■ 例 学生会下设6个委员会:

第一委员会={张,李,王},第二委员会={李,赵,刘},第三委员会={张,刘,王},第四委员会={赵,刘,孙},第五委员会={张,王},第六委员会={李,刘,王}.

每个月每个委员会都要开一次会,为确保每个人都能参加所在委员会会议,6个会议至少排在几个不同时间段?

解: 至少要4个时段

- 第1时段:一,四;
- 第2时段:二,五;
- 第3时段:三;
- 第4时段:六.

特殊的图

- □ 6.1 二部图
- □ 6.2 欧拉图
- □ 6.3 哈密顿图
- □ 6.4 平面图

二部图

 \square 定义设无向图 G=<V,E>,若能将 V 划分成

 V_1 和 V_2 ,且 $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$,并且对于G中的每条边,

两个端点一个属于 V_1 ,另一个属于 V_2 ,则称 G 为二部图,记为< V_1 , V_2 ,E>.

二部图

■ 例 下述各图是否是二部图?

□定理

无向图 $G = \langle V, E \rangle$ 是二部图当且仅当G 中无长度为奇数的回路.

二部图

- □ 匹配 (边独立集):任2条边均不相邻的边子集.
- □ 极大匹配、最大匹配、完备匹配、完美匹配.

■ 例

完备,不完美

不完备

完美

二部图应用

- □ 低密度校验 (Low-density Parity-check, LDPC) 码是一类 线性码,可以由校验矩阵 H 定义,广泛应用于通信、存储等领域.
- 例如: 2元 [10, 5] LDPC 码

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

欧拉图

- □ 欧拉回路(通路): 图中行遍所有顶点且恰好经过每 条边一次的回路(通路).
- □ 欧拉图:有欧拉回路的图.
- □ 半欧拉图:有欧拉通路,但无欧拉回路的图.

□ 定理 无向图 *G* 为欧拉图当且仅当 *G* 连通且无奇度 顶点. *G*是半欧拉图当且仅当 *G* 连通且恰有两个奇度顶点.

欧拉图

■ 例 哥尼斯堡七桥问题

- ◆解:4个奇度顶点
 - > 不存在欧拉通路;
 - > 更不存在欧拉回路.

哈密顿图

- □ 哈密顿路(通路): 图中行遍所有顶点一次且仅一次的回路(通路).
- □ 哈密顿图:有哈密顿回路的图.
- □ 半哈密顿图:有哈密顿通路,但无哈密顿回路的图.

哈密顿图

哈密顿图

半哈密顿图

不是

平面图

- □ 定义 如果能将图*G*除顶点外边不相交地画在平面上,则称 *G* 是平面图. 这个画出的无边相交的图称作 *G* 的平面嵌入. 没有平面嵌入的图称作非平面图.
- 例如 下图中(1)~(4)是平面图, (2)是(1)的平面嵌入, (4)是(3)的平面嵌入. (5)是非平面图.

平面图

□ 定理(欧拉公式)

设 G 为 n 阶 m 条边 r 个面的连通平面图,则 n-m+r=2.

□ 推论

设 G 是有 p (p≥2) 个连通分支的平面图,则 n-m+r=p+1

平面图

□ 地图着色: 地图对应平面图的每一个面是一个国家.若两个国家有公共边界,则称它们是相邻的. 对每个国家涂一种颜色,使相邻的国家涂不同的颜色,要求用尽可能少的颜色给地图着色.

□ 四色定理: 任何地图都可以用4种颜色着色, 即任何平面图都是4-可着色的.

口作业

- > 5.19
- **>** 5.20
- > 5.22