KEYPOINT SUMMARY

I. LINEAR ALGEBRA BASICS

- 1. A nonempty set $S \in \mathbb{R}^n$ is a vector subspace if
 - (a) $0 \in \mathcal{S}$, and
 - (b) $v_1 + v_2 \in \mathcal{S}$, $\lambda v_1 \in \mathcal{S}$ for all $v_1, v_2 \in \mathcal{S}$.
- 2. Let S be a vector subspace of \mathbb{R}^n . A group of vectors v_1, v_2, \ldots, v_m are said to span S if every vector in S is a linear combination of v_1, v_2, \ldots, v_m .

A group of vectors are called a **basis** of S if they are *linearly independent* and *span* S.

If S has a basis consisting of k vectors, it is said to be k-dimensional and denoted as dim S=k.

- Any two bases of the same vector contains the same number of vectors.
- Any combination of n linearly independent vectors in \mathbb{R}^n forms a basis for \mathbb{R}^n .
- Let S be a subspace of a finite-dimensional vector space R. If dim S = dim R, then S = R.
- 3. Given an $m \times n$ matrix A. The subspace *spanned* by the columns/rows of A is called the **column/row space** of A.

The dimension of the column/row space of A is called the column/row rank of A.

- The column and row space are not the same if $m \neq n$.
- The column and row rank of a matrix are aways equal.

The solutions of the system Ax = 0 form a vector space called the **null space (kernel)** of A.

4. Fundamental Theorem of Linear Algebra: For any $m \times n$ matrix ${m A}$

$$\dim Ker(\mathbf{A}) + rank(\mathbf{A}) = n$$

- 5. Equivalent conditions for an $n \times n$ matrix \boldsymbol{A} to be invertible:
 - (a) A has n row-leading 1s in reduced row echelon form;
 - (b) The equation Ax = 0 has only trivial solution x = 0;
 - (c) The columns of A are linearly independent;
 - (d) The columns of A form a basis for \mathbb{R}^n ;
 - (e) The rank of \mathbf{A} is n;
 - (f) The kernel of \mathbf{A} has 0 dimension;
 - (g) The eigenvalues of A does not contain 0;
 - (h) The determinant of A is not 0.
- 6. Vectors v₁, ..., vk are orthogonal to each other if vi·vj = 0 for i ≠ j, and are orthonormal to each other if they further satisfies ||v₁|| = ··· = ||vk||.

A matrix O is an **orthogonal** matrix if $O^TO = I$. The columns (or rows) of an orthogonal matrix are orthonormal to each other.

II. EIGENVALUES AND MATRIX DIAGONALIZATION

1. Let A be an $n \times n$ square matrix, if there exists $\lambda \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^n$ such that

$$Av = \lambda v$$

 λ is an eigenvalue of A, and v is an eigenvector of A corresponding to eigenvalue λ .

The eigenvalues of A are the *roots* of the **characteristic polynomial** of A:

$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = 0$$

The set of all eigenvectors corresponding to an eigenvalue λ forms the eigenspace of λ .

- Eigenvalues associated with different eigenvalues are linearly independent.
- Suppose $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. Then,

-
$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}$$
 (trace of \boldsymbol{A});
- $\prod_{i=1}^{n} \lambda_i = |\boldsymbol{A}|$.

- 2. The algebraic multiplicity of an eigenvalue λ_i is its exponent in the characteristic polynomial. The geometric multiplicity
 - of an eigenvalue λ_i is the dimension of its eigenspace. • Geometric multiplicity can *never exceed* the algebraic multiplicity.
 - If for every eigenvalue of matrix A, the geometric multiplicity equals the algebraic multiplicity, then A is diagonalizable.
- 3. A matrix A is diagonalizable if there exist matrices P and D where D is a diagonal matrix such that

$$A = PDP^{-1}$$

- An $n \times n$ matrix A is diagonalizable if and only if the dimension of its eigenspace is equal to n, i.e. the eigenvectors of A form a basis for \mathbb{R}^n .
- Sufficient condition for diagonalization: A is diagonalizable if it has n distinct eigenvalues. However, the converse might be false.
- The kernel of A is the eigenspace corresponding to eigenvalue 0. Thus the rank of of A is the number of its non-zero eigenvalues (counted by multiplicity).

III. SYMMETRIC MATRICES AND QUADRATIC FORMS

- 1. Matrix A is symmetric if $A = A^T$. For any symmetric matrix A.
 - (a) **A** has only *real* eigenvalues;
 - (b) A's eigenvectors corresponding to distinct eigenvalues are orthogonal;
 - (c) A is diagonalizable with orthogonal matrices, i.e. there exists a *real diagonal* matrix D and an *orthogonal* matrix O such that $A = ODO^{-1}$.

- 2. Suppose v_1, v_2, \ldots, v_k are linearly independent and span vector subspace \mathcal{S} . A set of *orthogonal* vectors w_1, w_2, \ldots, w_k can be found that span the same vector subspace \mathcal{S} following the Gram-Schmidt Orthogonalization Process:
 - $w_1 = v_1$
 - $\bullet \ w_2=v_2-\frac{w_1\cdot v_2}{w_1\cdot w_1}w_1$
 - $ullet w_3 = v_3 rac{w_1 \cdot v_3}{w_1 \cdot w_1} w_1 rac{w_2 \cdot v_3}{w_2 \cdot w_2} w_2,$ and so on.
- 3. Let \boldsymbol{A} be an $n \times n$ symmetric matrix, then \boldsymbol{A} is:
 - (a) positive definite if $x^T A x > 0$ for all $x \neq 0$,
 - (b) negative definite if $x^T A x < 0$ for all $x \neq 0$,
 - (c) positive semidefinite if $x^T A x \ge 0$ for all $x \ne 0$,
 - (d) negative semidefinite if $x^T A x \le 0$ for all $x \ne 0$,
 - (e) indefinite if $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} > 0$ for some \boldsymbol{x} and < 0 for some other \boldsymbol{x}
 - Definiteness of quadratic forms can be defined with non-symmetric matrices, but we do not consider this case. The following theorems only hold for symmetric matrices.
 - If a matrix is positive or negative definite, then it must be *nonsingular*.
- 4. Let A be a symmetric matrix. Then A is:
 - (a) positive definite iff all its eigenvalues are > 0;
 - (b) negative definite iff all its eigenvalues are < 0;
 - (c) positive semidefinite iff all its eigenvalues are ≥ 0 ;
 - (d) negative semidefinite iff all its eigenvalues are ≤ 0 ;
 - (e) indefinite iff ${\bf A}$ has both positive eigenvalues and negative eigenvalues.
- 5. Let \boldsymbol{A} be a symmetric matrix, and D_k be its leading principal minor of order k, Δ_k for any of its principal minors of order k. Then \boldsymbol{A} is:
 - (a) positive definite iff all $D_k > 0$;
 - (b) negative definite iff all $(-1)^k D_k > 0$;
 - (c) positive semidefinite iff all $\Delta_k \geq 0$;
 - (d) negative semidefinite iff all $(-1)^k \Delta_k \geq 0$;
 - (e) indefinite if $D_k \neq 0$ but does not fit into any of the above patterns.
- 6. Let \boldsymbol{A} be a symmetric matrix. The following statements are equivalent:
 - (a) A is positive definite;
 - (b) There exists nonsingular matrix $B: A = B^T B$;
 - (c) There exists nonsingular matrix $Q: Q^T A Q = I$.

IV. SINGULAR VALUE DECOMPOSITION

1. Singular Value Decomposition: Any $m \times n$ matrix \boldsymbol{A} can be decomposed as

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \sum_{m \times n} \mathbf{V}^{T}$$

where Σ is a diagonal matrix, U and V are orthogonal matrices. The diagonal entries of Σ is called the **singular values** of A.

- The two facts below are used to compute an SVD:
- $A^T A = V \Sigma^T \Sigma V^T$
- $AV = U\Sigma$
- 2. Suppose $m \times n$ matrix \boldsymbol{A} has SVD of $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$:

Then the following properties hold:

- (a) $rank(\mathbf{A}) = rank(\mathbf{\Sigma}) = r;$
- (b) First r columns of U are a basis of the column space;
- (c) First r columns of V are a basis of the row space;
- (d) Last n r columns of V are a basis of $\mathcal{N}(A)$;
- (e) Last ast m-r columns of U are a basis of $\mathcal{N}(A^T)$.

V. COMPACT SETS AND EXTREME VALUE THEOREM

- 1. A subset $S \subset \mathbb{R}^n$ is an **open set** if for every $x \in S$, there exists an open ball with $\epsilon > 0$ such that $B(x, \epsilon) \subset S$. A subset $C \subset \mathbb{R}^n$ is a **closed set** if the complement of C is open.
 - All balls $B(\boldsymbol{x}, \epsilon)$ are open sets.
 - \emptyset and \mathbb{R}^n are both open and closed.
- 2. A closed and bounded subset of \mathbb{R}^n is a compact set.
- 3. Extreme Value Theorem: Any *continuous* function defined on a *compact set* has a maximum and a minimum.

VI. CALCULUS OF MULTIPLE VARIABLES

1. A vector-to-vector function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is defined as:

$$f(x) = (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$$

It is a bundle of m functions from \mathbb{R}^n to \mathbb{R} .

2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$, and $x^* \in \mathbb{R}^n$. f is differentiable at x^* if there exists a Jacobian matrix $J_{m \times n}$ such that

$$f(x^* + h) - f(x^*) = Jh + r(h)$$

where $\boldsymbol{h} \in \mathbb{R}^n$ and $\lim_{\|\boldsymbol{h}\| \to 0} \frac{\|\boldsymbol{r}(\boldsymbol{h})\|}{\|\boldsymbol{h}\|} = 0$.

 ${\pmb J}$ is the derivative of ${\pmb f}$ at ${\pmb x}^*$ and denoted as $D{\pmb f}({\pmb x}^*).$ Suppose function ${\pmb f}$ takes the form

$$f(x) = (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$$

Then the Jocabian matrix of f is calculated as

$$D\boldsymbol{f}(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

3. The **gradient** of function $f(x_1, \ldots, x_n)$ is defined as

$$\nabla f(\boldsymbol{x}) = \left[\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \dots \frac{\partial f}{\partial x_n} \right]$$

The directional derivative of f along v is defined as

$$D_v f(\boldsymbol{x}) = (\nabla f(\boldsymbol{x})) \cdot \boldsymbol{v}$$

where \boldsymbol{v} is a unit vector.

- $\nabla f(x)$ is a vector while $D_v f(x)$ is a scalar.
- The vector ∇f points to the direction along which f increases most rapidly.
- D_vf(x) represents the instantaneous rate of change of f moving through x with a velocity specified by v.
- 4. Let A be a constant matrix, a be a constant vector. Let u, v be vector functions and u = u(x), v = v(x).

VII. IMPLICIT FUNCTION THEOREM

1. Implicit Function Theorem I: Let $h(x_1, \ldots, x_k, y)$ be a \mathcal{C}^1 function around the point $\boldsymbol{x}^* = (x_1^*, \ldots, x_k^*, y^*)$. Suppose $h(\boldsymbol{x}^*, y^*) = c$. If it satisfies

$$\frac{\partial h}{\partial y}(x_1^*,\dots,x_k^*,y^*) \neq 0$$

Then there exits a \mathcal{C}^1 function $y=g(\boldsymbol{x})$ defined on an open ball $B(\boldsymbol{x}^*,\epsilon)$ so that:

- (a) $y^* = g(x^*);$
- (b) $g(\boldsymbol{x}, g(\boldsymbol{x})) = c$ for all $(\boldsymbol{x}) \in B(\boldsymbol{x}^*, \epsilon)$;

(c)
$$\frac{\partial y}{\partial x_i}\Big|_{\boldsymbol{x}^*} = -\frac{\frac{\partial G}{\partial x_i}}{\frac{\partial G}{\partial y}}\Big|_{(\boldsymbol{x}^*, y^*)}$$

2. Implicit Function Theorem II: Let $f: \mathbb{R}^{m+n} \to \mathbb{R}^m$ be \mathcal{C}^1 where $f(y, x) = (f_1(y, x), \dots, f_m(y, x))$.

Suppose f(y, x) = c, or be written as

$$f_1(y_1, \dots, y_m, x_1, \dots, x_n) = c_1$$

$$\vdots$$

$$f_m(y_1, \dots, y_m, x_1, \dots, x_n) = c_m$$

If the Jacobian matrix of $\frac{\partial f}{\partial y}$ is *nonsingular*, i.e.

$$\left| \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}} \right| = \begin{vmatrix} \frac{\partial f_1}{\partial y_1} & \dots & \frac{\partial f_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1} & \dots & \frac{\partial f_m}{\partial y_m} \end{vmatrix} \neq 0$$

Then there exists a \mathcal{C}^1 function $\pmb{y}=\pmb{g}(\pmb{x})$ defined on an open ball $B(\pmb{x}^*,\epsilon)$ such that:

- (a) $y^* = g(x^*);$
- (b) f(g(x), x) = c for all $x \in B$;
- (c) $\frac{\partial \boldsymbol{y}}{\partial x_k}\Big|_{(\boldsymbol{y^*}, \boldsymbol{x^*})}$ can be computed as below:

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_k} \\ \vdots \\ \frac{\partial y_m}{\partial x_k} \end{bmatrix} = - \begin{bmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1} & \cdots & \frac{\partial f_m}{\partial y_m} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial f_1}{\partial x_k} \\ \vdots \\ \frac{\partial f_m}{\partial x_k} \end{bmatrix}$$

3. Inverse Function Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}^n$ (In order for a smooth map from \mathbb{R}^n to \mathbb{R}^m to be invertible, it is required m=n) be a \mathcal{C}^1 function with $f(\boldsymbol{x}^*)=\boldsymbol{y}^*$. If $Df(\boldsymbol{x}^*)$ is nonsingular, then there exists an open ball $B(\boldsymbol{x}^*,\epsilon)$ and an open set \mathcal{R} about \boldsymbol{y}^* such that f is a one-to-one onto map: $\mathcal{B} \to \mathcal{R}$, and the inverse map $f^{-1}: \mathcal{R} \to \mathcal{B}$ is also \mathcal{C}^1 and further

$$(D\boldsymbol{f}^{-1})(\boldsymbol{y}^*) = (D\boldsymbol{f}(\boldsymbol{x}^*))^{-1}$$

VIII. CONVEXITY AND CONCAVITY

- 1. A set S is called a **convex set** if for all $x, y \in S$ and $t \in [0, 1]$, $ty + (1-t)x \in S$.
 - The whole space \mathbb{R}^n is convex.
 - Every vector subspace is also convex.
 - The intersection of convex sets is also a convex set.
 - The set $\{ \boldsymbol{x} \in \mathbb{R}^n : g_i(\boldsymbol{x}) \leq 0 \text{ for } i = 1, 2, \dots, n \}$ is convex if g_i is quasiconvex.
 - The set $\{ \boldsymbol{x} \in \mathbb{R}^n : h_i(\boldsymbol{x}) = 0 \text{ for } i = 1, 2, \dots, n \}$ is convex if h_i is affine.
- 2. Let f be a function defined on a convex set \mathcal{S} . $\forall x, y \in \mathcal{S}$ and $t \in [0, 1]$,

f is convex if $f(t\boldsymbol{x}+(1-t)\boldsymbol{y}) \leq tf(\boldsymbol{x})+(1-t)f(\boldsymbol{y});$ f is concave if $f(t\boldsymbol{x}+(1-t)\boldsymbol{y}) \geq tf(\boldsymbol{x})+(1-t)f(\boldsymbol{y}).$ f is strictly convex/concave if the strict inequalities hold whenever $\boldsymbol{x} \neq \boldsymbol{y}$ and $t \in (0,1).$

The sum of convex/concave functions are also convex/concave

- In maximization problems, if the objective function is convex *in its parameters*, the value function is also convex.
- In minimization problems, if the objective function is concave *in its parameters*, the value function is also concave.
- If f is a C^2 function, let **H** be its Hessian matrix, then:
 - f is convex $\Leftrightarrow \mathbf{H}$ is positive semidefinite for $\forall x$;
 - f is concave $\Leftrightarrow \mathbf{H}$ is negative semidefinite for $\forall x$;
 - **H** is positive definite for $\forall x \Rightarrow f$ is strictly convex;
 - **H** is negative definite for $\forall x \Rightarrow f$ is strictly concave.
- 3. Let f be a function defined on a convex set $\mathcal{S}.~\forall \pmb{x},\pmb{y}\in\mathcal{S}$ and $t\in[0,1],$

f is quasiconvex if $f(t\boldsymbol{x}+(1-t)\boldsymbol{y}) \leq \max\{f(\boldsymbol{x}),f(\boldsymbol{y})\};$ f is quasiconcave if $f(t\boldsymbol{x}+(1-t)\boldsymbol{y}) \geq \min\{f(\boldsymbol{x}),f(\boldsymbol{y})\}.$ f is strictly quasiconvex/quasiconcave if the strict inequality hold whenever $\boldsymbol{x} \neq \boldsymbol{y}$ and $t \in (0,1).$

- A (strictly) convex/concave function is also (strictly) quasiconvex/quasiconcave.
- If f is (strictly) quasiconvex/quasiconcave, and g is strictly increasing, then $g \circ f$ is also (strictly) quasiconvex/quasiconcave.
- Convex sets and quasiconvex/quasiconcave functions:
 - Upper level set: $C_a^+ = \{ \boldsymbol{x} \in \mathcal{S} : f(\boldsymbol{x}) \geq a \}$
 - Lower level set: $C_a^- = \{ \boldsymbol{x} \in \mathcal{S} : f(\boldsymbol{x}) \leq a \}$
 - f is quasiconcave if every upper level set of f is convex;
 - f is quasiconvex if *every* lower level set of f is convex.
- If f is a C^2 function, let **H** be the Hessian for all \boldsymbol{x} , then
- f is quasiconvex \Rightarrow **H** is positive semidefinite on $\mathcal{N}(\nabla f)$;
- f is quasiconcave \Rightarrow **H** is negative semidefinite on $\mathcal{N}(\nabla f)$;
- **H** is positive definite on $\mathcal{N}(\nabla f) \Rightarrow f$ is quasiconvex;
- **H** is negative definite on $\mathcal{N}(\nabla f) \Rightarrow f$ is quasiconcave;
- In practice, let W be a matrix whose columns are the basis of $\mathcal{N}(\nabla f)$. Then \mathbf{H} is negative (semi) definite on $\mathcal{N}(\nabla f)$ if and only if $\mathbf{W}^T\mathbf{H}\mathbf{W}$ is a negative (semi) definite matrix.
- If f is a \mathcal{C}^2 function, define the r-th order Bordered Hessian of f as:

$$\bar{\mathbf{H}} = \begin{bmatrix} 0 & f_1 & f_2 & \dots & f_r \\ f_1 & f_{11} & f_{12} & \dots & f_{1r} \\ f_2 & f_{21} & f_{22} & \dots & f_{2r} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_r & f_{r1} & f_{r2} & \dots & f_{rr} \end{bmatrix}$$

Let \mathcal{D}_r be the determinant of its r-th order bordered Hessian, then

- f is quasiconvex $\Rightarrow D_k \leq 0$ for $\forall x \in \mathcal{S}$;
- f is quasiconcave $\Rightarrow (-1)^k D_k \ge 0$ for $\forall x \in \mathcal{S}$;
- $D_k < 0$ for $\forall \boldsymbol{x} \in \mathcal{S} \Rightarrow f$ is quasiconvex;
- $(-1)^k D_k > 0$ for $\forall \boldsymbol{x} \in \mathcal{S} \Rightarrow f$ is quasiconcave.

IX. OPTIMIZATION

- 1. Existence of Solution: Consider the optimization problem: $\max f(x)$ s.t. $g_i(x) \le 0$, $h_i(x) = 0$. The solution *exists* if:
 - (a) The feasible set is non-empty;
 - (b) The objective function is continuous;
 - (c) The constraint functions are continuous;
 - (d) The constraints are all weak inequalities;
 - (e) The feasible set is bounded.

Sometimes solution still exists even if the feasible set is not bounded if it can be proved that unbounded values are not optimal.

- 2. Uniqueness of Solution: Let $f: \mathcal{S} \to \mathbb{R}$. If
 - (a) S is a convex set, and
 - (b) *f* is strictly quasiconcave;

Then the *global maximum* of f on S (if exists) is unique.

3. Unconstrained Optimization:

Let f be a C^2 function. Consider the problem:

$$\max_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

• Necessary conditions for interior optimum:

$$\nabla f(\boldsymbol{x}^*) = 0$$

- Sufficient conditions for local optimum: Let H be the Hessian matrix of f at x*.
 - x^* is a local maximizer $\Rightarrow \mathbf{H}(x^*)$ is negative semidefinite;
 - $\mathbf{H}(x^*)$ is negative definite $\Rightarrow x^*$ is a local maximizer;
- Sufficient conditions for global optimum:
 - f is $concave \Rightarrow x^*$ is a global maximizer.
- 4. Constrained Optimization with Equality Constraints:

Let f, h_1, \ldots, h_k be \mathcal{C}^2 functions on \mathbb{R}^n . Consider the problem:

$$\max_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) \text{ s.t. } h_j(\boldsymbol{x}) = c_j$$

Let
$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\mu}) = f(\boldsymbol{x}) - \sum_{j=1}^{k} \mu_j (h_j(\boldsymbol{x}) - c_j).$$

· Necessary conditions for interior optimum:

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\mu}^*) = 0$$

$$\forall j, \ h_i(\boldsymbol{x}^*) = c_i$$

- Constraint Qualification: The rows of the Jacobian $m{h}'(m{x}^*)$ are linearly independent.
- Sufficient conditions for local optimum: Let $\mathcal{H}_{x}(x^*, \mu^*)$ be the Hessian of $\mathcal L$ with respect to x at (x^*, μ^*) .
 - x^* is a local maximizer $\Rightarrow \mathcal{H}_x$ is negative semidefinite on $\mathcal{N}(h'(x^*))$;
- $\mathcal{H}_{m{x}}$ is negative definite on $\mathcal{N}(m{h}'(m{x}^*)) \Rightarrow m{x}^*$ is a local maximizer.

- Border the $n \times n$ Hessian $\mathcal{H}_{x}(x^*, \mu^*)$ with the $k \times n$ matrix $h'(x^*)$:

$$\begin{bmatrix} 0 & \cdots & 0 & | & \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \ddots & \vdots & | & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & | & \frac{\partial h_k}{\partial x_1} & \cdots & \frac{\partial h_k}{\partial x_n} \\ -- & -- & -- & -- & -- & -- \\ \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_k}{\partial x_1} & | & \frac{\partial^2 \mathcal{L}}{\partial x_1^2} & \cdots & \frac{\partial^2 \mathcal{L}}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots & | & \vdots & \ddots & \vdots \\ \frac{\partial h_1}{\partial x_n} & \cdots & \frac{\partial h_k}{\partial x_n} & | & \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 \mathcal{L}}{\partial x_2^2} \end{bmatrix}$$

Let D_i be the *i*-th leading principal minor. If $(-1)^{k+i}D_i > 0$, then $\mathcal{H}_{\boldsymbol{x}}(\boldsymbol{x}^*, \boldsymbol{\mu}^*)$ is negative definite on $\mathcal{N}(\boldsymbol{h}'(\boldsymbol{x}^*))$.

- Sufficient conditions for global optimum:
 - \mathcal{L} is $concave \Rightarrow x^*$ is a global maximizer s.t. h(x) = c.
 - In particular, f if concave and $\mu_j^*h_j$ is convex $\forall j \Rightarrow x^*$ is a global maximizer s.t. h(x) = c.

5. Constrained Optimization with Inequality Constraints:

Let $f, g_1, \ldots, g_m, h_1, \ldots, h_k$ be C^2 functions on \mathbb{R}^n . Consider the problem:

$$\max_{oldsymbol{x} \in \mathbb{R}^n} f(oldsymbol{x}) ext{ s.t. } g_i(oldsymbol{x}) \leq b_i, \ h_j(oldsymbol{x}) = c_i$$

Define the Lagrangian:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\boldsymbol{x}) - \sum_{i=1}^{m} \lambda_i (g_i(\boldsymbol{x}) - b_i) - \sum_{j=1}^{k} \mu_j (h_j(\boldsymbol{x}) - c_j)$$

• Necessary conditions for interior optimum:

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = 0$$

$$\forall i, \ g_i(\boldsymbol{x}^*) \le b_i, \lambda_i \ge 0, \lambda_i(g_i(\boldsymbol{x}^*) - b_i) = 0$$

$$\forall j, \ h_j(\boldsymbol{x}^*) = c_j$$

• Sufficient conditions for local optimum:

Suppose that g_1, \ldots, g_e are binding at x^* , and g_{e+1}, \ldots, g_m are non-binding. Let $\mathbf{g}_E = (g_1, \ldots, g_e)$. Let $\mathbf{C} = \begin{bmatrix} \mathbf{g}_E'(x^*) \\ \mathbf{h}'(x^*) \end{bmatrix}$.

Let $\mathcal{H}_x(x^*, \lambda^*, \mu^*)$ be the Hessian of $\mathcal L$ with respect to x at (x^*, λ^*, μ^*) .

- x^* is a local maximizer $\Rightarrow \mathcal{H}_x$ is negative semidefinite on $\mathcal{N}(C)$;
- $\mathcal{H}_{m{x}}$ is negative definite on $\mathcal{N}(m{C})\Rightarrow m{x}^*$ is a local maximizer
- Sufficient conditions for global optimum: \boldsymbol{x}^* is a global maximizer if
 - (a) The feasible set is convex;
 - (b) f is concave, or
 - (c) f is quasiconcave and $\nabla f(x^*) \neq 0$.

6. Envelope Theorem (Unconstrained Version):

$$V(\boldsymbol{a}) = \max_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}, \boldsymbol{a})$$

Assume that:

- (a) $x^*(a_0)$ is the *unique* global maximum of $f(x, a_0)$;
- (b) $f(x^*, a)$ is continuously differentiable in a at (x^*, a_0) ;

Then $V(\boldsymbol{a})$ is differentiable at \boldsymbol{a}_0 and

$$\nabla_{\boldsymbol{a}} V(\boldsymbol{a}_0) = \nabla_{\boldsymbol{a}} f(\boldsymbol{x}^*, \boldsymbol{a}_0)$$

- Differentiability of x^* , or differentiability of f with respect to x are not required.
- This theorem also works for constrained optimization problems as long as no constraints depend on parameter a.

Envelope Theorem (Constrained Version):

$$V(m{a}) = \max_{m{x} \in \mathbb{R}^n} f(m{x}, m{a}) ext{ s.t. } g_i(m{x}, m{a}) \leq b_i, h_j(m{x}, m{a}) = c_i$$

Assume that:

- (a) f, g_i, h_j all continuously differentiable with respect to both \boldsymbol{x} and \boldsymbol{a} ;
- (b) $x^*(a_0)$ satisfies the *constraint qualification* and is the *unique* global constrained maximum;
- (c) The set of binding inequalities remain unchanged at optimality for near a₀;

Then V(a) is differentiable at a_0 and

$$\nabla_{\boldsymbol{a}}V(\boldsymbol{a}_0) = \nabla_{\boldsymbol{a}}\mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*, \boldsymbol{a}_0)$$