

<u>Help</u>

sandipan_dey ~

Discussion <u>Course</u> **Progress** <u>Dates</u> <u>Calendar</u> <u>Notes</u>

☆ Course / Unit 4: Matrices and Linearization / Problem Set B

(1)

Next >

2. Bounce □ Bookmark this page

< Previous</pre>

Problem Set B due Sep 15, 2021 20:30 IST

Practice

Setup

In <u>Recitation 5</u>, you practiced finding an outgoing velocity vector of a particle that bounces off a wall. In this problem, you will generalize this calculation and express the answer using matrices.

The following image depicts the setup:

In the picture, \vec{v} is the velocity of the projectile before it hits the wall, and \vec{w} is the velocity of the projectile after it hits the wall. The vector \vec{n} is a normal vector to the wall. Assume $|\vec{n}| = 1$.

Physics tells us that the angle of incidence equals the angle of reflection – the two marked angles in the picture are equal. It also tells us that if there is no friction, then $|\vec{v}| = |\vec{w}|$. Given \vec{v} and \vec{n} , our goal is to find \vec{w} .

We will break this big problem into several steps. We begin by breaking \vec{v} into a piece parallel to \vec{n} and a piece perpendicular to \vec{n} , as in the following picture.

Find w from a and b

1/1 point (graded)

Find a formula for \vec{w} in terms of \vec{a} and \vec{b} . Write veca and vecb for \vec{a} and \vec{b} .

Solution:

Bouncing off the wall reverses $ec{m{b}}$ and leaves $ec{m{a}}$ the same. Therefore, $ec{m{w}} = ec{m{a}} - ec{m{b}}$.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Find length of b from v and n

1/1 point (graded)

What is the length of the vector \vec{b} ? Enter a formula in terms of \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may write a dot product such as $\vec{u} \cdot \vec{w}$ using vecu * vecw.

$$|ec{b}| = oxed{vecv^*vecn}$$
 $ightharpoonup Answer: vecv^*vecn$

Solution:

By trigonometry we have $|\vec{b}|=|v|\cos\theta$, where θ is the angle between \vec{v} and \vec{b} . Since \vec{b} is parallel to \vec{n} , this θ is also the angle between \vec{v} and \vec{n} . Since $|\vec{n}|=1$, we have $\cos\theta=\frac{\vec{v}\cdot\vec{n}}{|\vec{v}|}$. Substituting this $\cos\theta$ in to the above formula for $|\vec{b}|$ we obtain $|\vec{b}|=\vec{v}\cdot\vec{n}$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Find b from v and n

1/1 point (graded)

Find a formula for \vec{b} in terms of \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using * . To write a scaled vector such as $2\vec{v}$, enter 2*vecv.

$$ec{b} = oxed{(ext{vecv*vecn}) ext{*vecn}}$$
 $extstyle extstyle extsty$

Solution:

Since \vec{b} is parallel to \vec{n} , there exists k such that $\vec{b}=k\vec{n}$. Since $|\vec{n}|=1$, we have $k=|\vec{b}|$, which is $\vec{v}\cdot\vec{n}$. Thus $\vec{b}=(\vec{v}\cdot\vec{n})\cdot\vec{n}$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Find a from v and n

1/1 point (graded)

Find a formula for \vec{a} from \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using * . To write a scaled vector such as $2\vec{v}$, enter 2*vecv.

✓ Answer: vecv-(vecv*vecn)*vecn

Solution:

Since $\vec{v}=\vec{a}+\vec{b}$, we have $\vec{a}=\vec{v}-\vec{b}$. Substituting the value for \vec{b} found in the previous problem, we obtain $\vec{a}=\vec{v}-(v\cdot\vec{n})\,\vec{n}$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Find w from v and n

1/1 point (graded)

Find a formula for \vec{w} from \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using *. To write a scaled vector such as $2\vec{v}$, enter 2*vecv.

Solution:

Since $\vec{w}=\vec{a}-\vec{b}$, and $\vec{v}=a+b$, we have $\vec{w}=\vec{v}-2\vec{b}$. Substituting the value for \vec{b} found in the previous problem, we obtain $\vec{w}=\vec{v}-2\,(v\cdot\vec{n})\cdot\vec{n}$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Find the matrix

1/1 point (graded)

Write
$$ec{v}=inom{v_1}{v_2}$$
 and $ec{n}=inom{n_1}{n_2}$. There is a matrix M such that $ec{w}=Mec{v}$. What is M ?

Enter $[n_1]$ for n_1 and $[n_2]$ for n_2 .

(Enter a matrix using notation such as [[a,b],[c,d]].)

$$M =$$

Answer: [[1 - 2*n_1^2 , -2*n_1*n_2],[-2*n_1*n_2 , 1 - 2*n_2^2]]

Solution:

We found previously that $ec{w}=ec{v}-2\left(ec{v}\cdotec{n}
ight)ec{n}$. Letting $c=ec{v}\cdotec{n}$, we have:

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} v_1 - 2cn_1 \\ v_2 - 2cn_2 \end{pmatrix} \tag{5.217}$$

Substituting the value of c, we have

$$egin{pmatrix} egin{pmatrix} w_1 \ w_2 \end{pmatrix} = egin{pmatrix} v_1 - 2v_1n_1^2 - 2v_2n_2n_1 \ v_2 - 2v_1n_1n_2 - 2v_2n_2^2 \end{pmatrix}$$

To find the matrix, we need to recognize the entries of \vec{w} as "a number times v_1 " plus "a number times v_2 ". We can factor out v_1 and v_2 to obtain:

Therefore, the matrix $oldsymbol{M}$ is given by

$$1 - 2n_1^2 - 2n_1n_2 \tag{5.220}$$

$$-2n_1n_2 \quad 1 - 2n_2^2 \tag{5.221}$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

2. Bounce

Topic: Unit 4: Matrices and Linearization / 2. Bounce

Hide Discussion

Add a Post

1

Show all posts by recent activity

[STAFF] HTML problems
The third and last questions says "Could not format HTML for problem. Contact course staff in the discussion forum for assistance"....

Alternative method: Eigen vectors and Eigen values of M

Previous

Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>