Schematics to Breadboards

Sept-2019

What's a Schematic?

A diagram showing electrical components and their connections

Drawn from logical/signal flow point of view

Power Supply

Schematic Usually has a BOM

Part	Value	Note
-	-	Breadboard
U1	74C14	Hex Schmitt Trigger Inverter
C1	100μF	Polarized capacitor
R1	10 kΩ	Standard Resistor
R2	470 Ω	Standard Resistor
LED	-	Standard output light-emitting diode

Typical Schematic/BOM Issues

Practicality of Breadboarding

Resistors

Capacitors

Polarity:

- Stripe
- Lead Length (short is negative)
- Other marking

Diodes (Always Polarized)

Polarity:

- Band
- Lead Length
- Flat Edge

ICs (Always Polarized)

Dot or Round Depression Semicircle Depression

Other Common Schematic Symbols

What's a Schematic <u>ISN'T</u>: Physical Implementation

Prototyping Techniques

Using a Solderless Breadboard

Power Supply Buses

Circuit Connections

Things You Need for Breadboarding

Breadboard

Jumper Wire Kit

Power supply(ies)

Let's Build a Circuit

Let's Build a Circuit

Build an Oscillating Blinker

$$C_1 = 1\mu F$$

 $D_1 = LED$
 $R_1 = 120k\Omega$
 $R_{2,3,4} = 47k\Omega$
 $R_5 = 200\Omega$
 $U_1 = MCP6002$

$$f \approx \frac{1}{2R_1C_1}$$

Set Up Power Supply Rails

10μF cap where supply enters

0.1μF capacitors near integrated circuits

Tie alike colored supply rails together

Build an Oscillating Blinker

$$C_1 = 1\mu F$$

$$D_1 = LED$$

$$R_1 = 120k\Omega$$

$$R_{2,3,4} = 47k\Omega$$

$$R_5 = 200\Omega$$

$$U_1 = MCP6002$$

$$f \approx \frac{1}{2R_1C_1}$$

Build a x3 Amplifier

More Hints and Tips

- Power Supplies
 - Watch power supply polarity!
 - Connect the two power rails to each other
 - Add a large (10F) bypass where power comes in
 - Add 0.1μF bypass to each rail, near supply pins
- Trim component leads so they don't short into each other
- Dupont wires make cheap, long jumpers
- Drop an LED and resistor on the board to use as a logic probe

