

Lesson 3: Latent Space Rules Everything Around Me

- 3.1 Representing Images as Tensors
- 3.2 Desiderata for Computer Vision
- 3.3 Features of Convolutional Neural Networks
- 3.4 Working with Images in Python
- 3.5 The FashionMNIST Dataset
- 3.6 Convolutional Neural Networks in PyTorch
- 3.7 Components of a Latent Variable Model (LVM)
- 3.8 The Humble Autoencoder
- 3.9 Defining an Autoencoder with PyTorch

Lesson 3: Latent Space Rules Everything Around Me

- 3.10 Setting up a Training Loop
- 3.11 Inference with an Autoencoder
- 3.12 Look Ma, No Features!
- 3.13 Adding Probability to Autoencoders (VAE)
- 3.14 Variational Inference: Not Just for Autoencoders
- 3.15 Transforming an Autoencoder into a VAE
- 3.16 Training a VAE with PyTorch
- 3.17 Exploring Latent Space
- 3.18 Latent Space Interpolation and Attribute Vectors

3.1

Representing Images as Tensors

How Machines Create

Representing Greyscale Images

245	238	222	255
233	0	17	254
255	6	3	223
250	9	11	242
251	247	245	232

Representing Greyscale Images

Image dtypes

dtype	Range	
uint8	0 to 255	
float	(-1 to 1) or (0 to 1)	
int8	-128 to 127	
int32	-2 ³¹ to (-2 ³¹ - 1)	

Representing Greyscale Images

245	238	222	255
233	0	17	254
255	6	3	223
250	9	11	242
251	247	245	232

Representing Color Images

Representing Color Images

3.2

Desiderata for Computer Vision

How can we design a neural network that exhibits translation invariance and locality when modeling images?

Locality

Locality

Locality

3.3

Features of Convolutional Neural Networks

- Local Receptive Fields
- Shared Weights
- Pooling

Convolutional "arithmetic"

Stride Length

Stride 2

Stride Length

Stride 2

Stride Length

Stride 2

Padding

0	0	0	0	0	0	0	0	0	0	0	0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0	0	0	0	0	0	0	0	0	0	0	0

Padding

0	0	0	0	0	0	0	0	0	0	0	0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0											0
0	0	0	0	0	0	0	0	0	0	0	0

Working with Images in Python

Live Coding

The FashionMNIST Dataset

Live Coding

Convolutional Neural Networks in PyTorch

Live Coding

Components of a Latent Variable Model (LVM)

Generative Models

Generative Models

Generative Models

Components of a Latent Variable Model (LVM)

- Encoding
- Latent Representation
- Decoding

Components of a Latent Variable Model (LVM)

Variational Autoencoder

Diffusion Model

Transformer

The Humble Autoencoder

input

Defining an Autoencoder with PyTorch

Live Coding

Setting up a Training Loop

Live Coding

Inference with an Autoencoder

Live Coding

Look Ma, No Features!

Natural Image Manifold

Adding Probability to Autoencoders (VAE)

Autoencoders

Variational Autoencoders (VAE)

Variational Autoencoders (VAE)

Generation

Generation

Variational Inference: Not Just for Autoencoders

Live Lecture

Transforming an Autoencoder into a VAE

Live Coding

Training a VAE with PyTorch

Live Coding

Exploring Latent Space

Live Coding

Latent Space Interpolation and Attribute Vectors

Live Coding

