The Labyrinth of Multiple Testing: How to avoid the pitfall of false positives

FDR control

12th SISMEC National Congress 2023

Livio Finos and Angela Andreella

Outline

- 1. False Discovery Rate (FDR)
- 1.1 Definition
- 1.2 Methods

2. FDP estimation

3. FWER or FDR?

A contingency table

		Null hypothesis False True		
		False	True	Tot
Test	Rejected	S	V	R
	Rejected Not rejected	$\mid T \mid$	$oldsymbol{U}$	m-R
	Tot	$ m_1 $	m_0	m

False Discovery Proportion:

$$FDP = \begin{cases} V/R & \text{if } R > 0\\ 0 & \text{otherwise,} \end{cases}$$

Defined for every rejected set \mathcal{R} where $\#\mathcal{R} = R$.

FWER and FDR

Familywise error rate

$$|\text{FWER} = \mathbb{P}(V > 0)|$$

A procedure controls it if FWER $\leq \alpha$.

FWER focuses on the probability that the rejected set contains any error.

False discovery rate

$$|FDR = \mathbb{E}(FDP)|$$

A procedure controls it if FDR $\leq \alpha$

FDR looks at the expected proportion of errors among the rejections.

Benjamini and Hochberg (BH) procedure ¹

- **1.** Sort the *p*-values: $p_{(1)}, \ldots, p_{(m)}$
- **2.** Find j', the largest j such that

$$p_{(j)} \le j\alpha/m = c_j^{BH}$$

3. Reject all hypotheses with p-values at most $p_{i'}$

¹Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300.

Benjamini and Hochberg (BH) procedure

Benjamini and Hochberg (BH) procedure

In this procedure

- FDR control is at $\pi_0 \alpha$ (compare Bonferroni), with $\pi_0 = m_0/m$
- controls FDR is valid under independence and positive dependence through stochastic ordering (i.e., non-negatively associated p-values):
 - One-sided tests: as long as test statistics not negatively correlated
 - Two-sided tests: If test statistics are (asymptotically) Normal
- lacktriangle we gain in power with respect to FWER-based methods when m_0 is large

Benjamini & Yekutieli (BY)²

Variant of BH valid for any distribution of p-values

How does it work?

Same as BH, but

$$p_{(j)} \le \frac{j\alpha}{mL} = c_j^{BY}$$

where
$$L = \sum_{j=1}^{m} 1/j$$
 (es $m = 3$: $L = 1/1 + 1/2 + 1/3$)

In practice

- Quite conservative (especially if m_0 is large):
 - $lacksquare c_i^{BY} < c_i^{BH}$
- Not often needed, not often used

²Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 1165-1188.

Benjamini & Yekutieli (BY)

False Discovery Rate Control

BH and BY methods are implemented in R by p.adjust:

- p.adjust(p, "BH")
- p.adjust(p, "BY")

Outline

- 1. False Discovery Rate (FDR)
- 1.1 Definition
- 1.2 Methods

2. FDP estimation

3. FWER or FDR?

FDP estimation

Difference between FDR control and FDP estimation

- FDR control: starts with the choice of α to be controlled and the procedure finds $\mathcal R$
- **FDP** estimation: starts with \mathcal{R} (not necessarily the hypotheses with top p-values) and finds an estimate (or confidence interval) for FDP of that set.

To formulate the point estimation approach:

- $V(t) = \#\{\text{true null } H_i : p_i \leq t\}$
- $\blacksquare \mathcal{R}(t) = \{H_i : p_i \le t\}$

$$\rightarrow FDR(t) = \mathbb{E}(V(t)/\#\mathcal{R}(t))$$
 with $t \in (0,1]$

Storey's FDP estimate

Intuition

By uniformity of p-values under the null

$$FDP(t) = V(t)/R(t) \approx m_0 t/R(t)$$

Estimate of m_0 (again by uniformity)

$$\hat{m}_0 = \frac{\#\{p_i > \lambda\} + 1}{1 - \lambda}$$

where $0 < \lambda < 1$ constant (e.g., $\lambda = 1/2$, $\lambda = \alpha$).

Resulting estimate of FDP

$$F\hat{D}P(t) = \frac{\hat{m}_0 t}{R(t)} = \frac{t}{1-\lambda} \frac{\#\{p_i > \lambda\} + 1}{\#\{p_i \le t\}}$$

Storey's FDP estimate

Storey's estimate is sometimes used as a way to control FDR, rather than as a way to estimate FDP: selecting the highest value of t such that the estimate $\widehat{\text{FDP}} \leq \alpha$.

Close relationship with BH

An alternative way of constructing BH rejected set

- 1. Estimate $\hat{m}_0 = m$ instead of Storey's estimate \rightarrow $F\hat{D}P = mt/(\#\{p_i \le t\})$
- **2.** Take t the largest value such that $\widehat{\text{FDP}} \leq \alpha$

Alternative look at Storey

 $Storey's\ method = adaptive\ BH\ FDR\ control$

Alternative look at BH

Conservative estimates of FDP

Storey's FDP estimate

Method of moments estimate

- lacktriangle Only dependent on means ightarrow unaffected by correlation structure
- Standard errors available for independent *p*-values only
- Variability of estimate can be large if p-values correlated \rightarrow FDP can be (widely) underestimated.

Outline

- 1. False Discovery Rate (FDR)
- 1.1 Definition
- 1.2 Methods

2. FDP estimation

3. FWER or FDR?

Bonferroni-bashing

Often heard

"Never use Bonferroni: it is too conservative"

Is this true?

- Is $m_0 \ll m$?
- Are *p*-values highly superuniform (conservative, i.e., distribution around 1)?
- Are p-values highly positively correlated?

Otherwise

Bonferroni is not conservative, but FWER is strict

Meaning of FDR control

Recall that $\mathbb{E}(FDP) = \mathbb{E}(V/R) \le \pi_0 \alpha$

Therefore, FDR control is affected by FDP variability $\rightarrow R$ is random.

- Variability can be high if *p*-values correlated
- Users of FDR must be aware that control of FDR at α only controls FDP in **expectation** and that the actual FDP can often be \gg than α .
- FDR control is a property of the procedure leading to a rejected set, not of the rejected set itself.

Four flavors of multiple testing

FWER control at 5%

95% of experiments give no type I errors

FDR control at 5%

On average, experiments give no more than 5% FDP

FDP estimation

Get a (conservative) point estimate of FDP in every experiment

FDP confidence 95%

Overstate the FDP at most 5% of the time

FWER or FDR?

Implicit Assumptions in FDR

The hypotheses are exchangeable:

False Rejections compensate True Rejections

FWER or FDR?

Implicit Assumptions in FDR

The hypotheses are exchangeable: False Rejections compensate True Rejections

Problems

- Cheating
- Subsets

Cheating

Adding uninteresting hypotheses to be rejected so that more false rejections are allowed.

³Finner, H., & Roters, M. (2001). On the false discovery rate and expected type I errors. Biometrical Journal, 43(8), 985-1005.

Cheating

Adding uninteresting hypotheses to be rejected so that more false rejections are allowed.

Subsets

FDR is about the set ${\cal R}$, not about individual hypotheses: Control of FDR in R does NOT imply control of the FDR in all subsets

Finner and Roters³

- FDR control on all subsets = FWER control
- FWER control on all subsets = FWER control

³Finner, H., & Roters, M. (2001). On the false discovery rate and expected type I errors. Biometrical Journal, 43(8), 985-1005.

Subsets of Rejected hypotheses

Subsets of Rejected hypotheses

Subsets of Rejected hypotheses

Relationships between FWER and FDR

Dominance

$$\mathbb{P}(V > 0) = \mathbb{E}(\mathbf{1}\{V > 0\}) \ge \mathbb{E}(\text{FDP})$$

Consequence: Control of FWER implies control of FDR

Complete null hypothesis

If all hypotheses true, $FDP = \mathbf{1}\{V > 0\}$

Consequence: If all hypotheses true, FDR = FWER

Single hypothesis

If only one hypothesis, $FDP = \mathbf{1}\{V > 0\}$

Consequence: If only one hypothesis, FDR = FWER = Type I error

FWER vs. FDR: scaling

Scaling

As the size m of the problem grows (complete null not true)

FWER

- Number of rejections remains limited
- Number of errors remains limited

FDR

- \blacksquare Number of rejections grows with m
- \blacksquare Number of errors grows with m

When to use FDR

- If collection of rejections important
- If validation experiments follow
- If hypotheses are exchangeable
- If power is an issue

Take-home message

- Molteplicity control is mandatory in Clinical Trials
- FWER: controlling the probability of at least one error
- **FDR**: controlling the proportion of false rejection (on average)
- FWER is
 - a stronger control
 - usually preferable in Clinical Trials
 - more flexible
- FWER and FDR easy in R
- excellent tutorial: Goeman & Solari (2014) ⁴

⁴JJ Goeman, A Solari (2014) Tutorial in biostatistics: multiple hypothesis testing in genomics. Statistics in medicine, Volume 33, Issue 11