MGTST-Outline

Nate Olson 2016-10-26

Objectives

- \bullet Provide a detailed description of the dataset and qa/qc methods used to validate assumptions regarding the sample composition
- Demonstrate how the dataset is used to evaluate pipeline performance and differential abundance methods
- Provide an R package to facilitate using the dataset for evaluating normalization and differential abundance detection methods

Abstract

Background

Methods

Experimental design

- two sample titration
- sample selection
- PCR, library prep, multiple laboratories

Sequencing

- PCR region
- barcode
- sequencing
- library prep qc

Mixture QC

- 16S qPCR
- ERCC qPCR

Sequence processing

- Pipelines
 - Mothur
 - QIIME
 - DADA2
 - POP

- Pipeline summaries
 - dataset characterizations

Data analysis

- Normalization Methods
- Differential Abundance Methods

Evalution Metrics

- Normalization bais and variance
 - Variance negative binomial
 - Bias difference expected value based on unmixed samples and observed value
- Differential abundance bias and variance
 - Variance estimated by differential abundance methods
 - Bias using pre and post specific OTUs

Results

Seq results summary table

- Seg dataset characterization number of reads per sample ect.
- Seq Pipeline summary otus, alpha and beta diversity of unmixed samples
 - provides a general characterization of unmixed samples
- Figure MA plot color Pre and post specific OTUs, grey other OTUs, facet by pipeline
 - Pre and Post unique OTUs

Titration Validation

- Use of ERCC spike-ins to validate the pre and post samples were mixed as expected
- Bacterial abundance qPCR used to validate that bacterial DNA concentration is equivalent between unmixed pre and post samples

Sequence processing summary

- Table summarizing Total and per sample OTUs and sequences
- Figure or Table? Summary of Pre vs. Post specific OTUs used in unmixed sample abundance free logFC ratio estimates
 - * abundance and taxonomy
 - * only OTUs not present in all four PCR replicates

Normalization

- section objective used PCR replicate variance values to validate normalization methods
- Technical replicate variance distributions for different pipelines and normalization methods
- Bias for different pipelines and normalization methods

Differential Abundance

- section objective demonstrate how the dataset can be used to evaluate the limit of differential abundance detection
- Differential abundance dectection between unmixed and tritrated samples
 - Pre and post specific OTUs
 - All OTUs

Discussion

- Validation of two sample titrations using qPCR
- Differences between pipelines
 - General statements
- Normalization methods
- Differential abundance methods

Acknowladgements

References

Supplemental

Sample Selection

wetlab QC

• sample concentration results summary

Seq data QA

- number of reads
- read length distributions
- PhiX error rate analysis
- base quality summary

Pipeline

- Seq budget summarize fate of sequences, number successful merged read pairs, chimera filtered, alignment?, ect.
 - Table pipeline sequence budget
 - * number of reads filtered due to low quality
 - * number of reads merged
 - * number of chimeras

Characterizing Sources of variability

Response Variance

- Experimental replicate variance how is the variance correlated with different types of technical replicates, how does the variance differ for pipelines
 - section objective characterize count variance between PCR replicates
 - * is the variance correlated with experimental values e.g. biological sample, PCR plate, well, sequencing depth, or observed count value
 - Figure relationship between count and PCR replicate variance

Response linearity

- section objective demonstrate how the dataset is used to characterize relative abundance estimates and identify potential sources of bias
- Figure observed vs expected plots
- Figure representative OTUs showing different types of response linearity
- Differentiating between high and low linearity OTUs