Zpětné hrany

Definice (AGCAGCTT)

Závislost počtu zpětných hran na K(k = 5...10)

Závislost počtu zpětných hran na K (k = 5..10)

Heuristika (AGCAGCTT)

Závislost počtu zpětných hran na K (k = 5..10), heuristika

Závislost počtu zpětných hran na K (k = 5..10), heuristika

Graph Assembly

Referenční sekvence

ACGCTCCGAC ACGCTCCGAC ACGCTCCGAC ACGCTCCGAC ACGCTCCGAC ACGCTCCGAC

Vrcholy značící počátek a konec sekvence

Přidávání čtení (readů)

- W = počet čtení procházejících danou hranou
- L = délka hrany
- M = Maximální povolený počet průchodů (pouze pro hrany referenční sekvence)
- P = pravděpodobnost přechodu

Čtení

- Načítána z formátu SAM
- Načtena všechna povinná pole (11)
- Zatím se využívá jen POS a SEQ
- Jaké hodnoty QUAL (MAPQ) jsou špatné?
- Co je "reverse complemeted"?

Optimalizace grafu

- Odstranění hran, kterými neprochází dostatečný počet čtení
 - ∽ Pouze pro hrany přidané některým ze čtení
 - (asi jsem zkoušel regiony s malým počtem čtení)
- Kontrakce sekvenců vrchoů se vstupním a výstupním stupňem = 1
 - ∽ Pouze pro účely zobrazování

Pravděpodobnost přechodu

- $P_i = In((w_i + 1) / (w_1 + w_2 + ... + w_n + n))$
- n výstupní stupeň vrcolu
- w_i počet čtení procházejících i-tou hranou

Hledání nejlepších tahů

- Co nejvyšší součet P_i
 Dobře se ořezává (čím delší tím menší součet)
- Délka odpovídající délce aktivního regionu
 Nedává moc dobré výsledky (možná špatné SWA)
 Vyzkouším povlit mírně pohyblivou délku
- Vybírá se N nalezených nejlepších
- Prohledávání do hloubky
- Omezení počtu průchodů hranami
 - Omezení je dáno tím, kolikrát danou hranou prošla referenční sekvence