Dimensionality reduction

Pattern Recognition and Machine Learning - MuMeT 2017

Davide Abati

June 22th, 2017

University of Modena and Reggio Emilia

Agenda

Principal Component Analysis

Eigenfaces

Principal Component Analysis

- Linear dimensionality reduction model
 - Subspace projection is linear
 - Reconstruction is linear
- Projects data in a new space subject to:
 - the variable having highest variance in the original space is projected on the first axis, the one having the second highest variance on the second axis, and so on.
 - axis of the new space are orthogonal (covariance is zero).

PCA: algorithm

- Arrange your data in a n × d matrix X, where n is the number of samples and d is data dimensionality
- ullet Compute the mean μ (d-dimensional vector) of all samples
- Compute convariance matrix

$$\Sigma = (X - \mu)^T (X - \mu)$$

- Pick the first m eigenvectors of Σ (ordered by decreasing eigenvalues), where m is the dimensionality you want your data to be projected to
- Arrange such eigenvectors in a $d \times m$ matrix E
- Compute the projected samples as $P = X \cdot E$
- ullet You can compute the reconstruction as $ilde{X} = P \cdot E^T$

PCA: plotting components

PCA: projecting and reconstructing (2D)

PCA: projecting and reconstructing (1D)

Eigenfaces

Eigenfaces

Famous algorithm for face recognition. Training is as simple as:

 load faces and annotations from the Olivetti dataset (datasets.get_faces_dataset takes care of loading and flattening images)

 Select a number of principal components and fit a PCA on training faces

Eigenfaces

To classify a test image:

- Project the image in the reduced spaces built in the training phase
- Perform nearest neighbor classification:
 - Roughly speaking, <u>choose the class of the nearest training example</u> (in the reduced space)

Eigenfaces: a magic trick to compute eigenvectors

Each Olivetti image is 112×92 . Once flattened, is a vector of 10304 pixels:

- The convariance matrix is 10304×10304
- Computing eigenvectors and eigenvalues is a pain
- Instead, compute the covariance matrix of transposed *X*:

$$\Sigma = (X - \mu)(X - \mu)^T$$

ullet Once selected the principal components \tilde{E} of this weirdo space, you can compute the original eigenvectors just like:

$$E = X^T \cdot \tilde{E}$$

Eigenfaces: some plots

• Mean face:

• Eigenvectors:

Eigenfaces: face space

Eigenfaces: how many dimensions?

