### Systems of Linear Equations

Exercise 7

# Solving a Linear System with LU Decomposition

Author Cesare De Cal Professor
Annie Cuyt
Assistant Professor
Ferre Knaepkens

#### 1 Introduction

This exercise asks to build a tridiagonal matrix using the following rules with the values -1 on the adjacent upper diagonal, the entries +1 on the adjacent lower diagonal, and the values  $b_i$ , with  $i = 1, \ldots, n$  given by

$$b_i = \frac{2(i+1)}{3}, \quad i+1=3,6,9,\dots$$
  
 $b_i = 1, \quad i+1=2,4,5,7,8,\dots$ 

on the main diagonal. This matrix should then be used as the coefficients matrix in the  $A\vec{x}=\vec{y}$  linear system. The exercise asks to solve the system using GEPP (Gaussian Elimination with Partial Pivoting) and then give  $x_1$ , which should be an approximation of the e-2 value.

As we've seen in class, there are multiple ways of solving a linear system AX = B. Assume A is a  $n \times n$  square matrix, B is a "constant" term matrix  $n \times h$ , and X is a  $n \times h$  unknown matrix. To solve for X, we could compute the inverse of A and find  $x = A^{-1}y$ . We've seen that this approach, however, requires more computations than necessary and returns a less accurate result.

In this exercise I am going to use solve a linear system using LU decomposition. This technique, used to represent the matrix A in the form of simpler matrices, L and U (lower triangular and upper triangular matrices, respectively), uses forward substitution (solving for Y from LY = B) and backward substitution (solving for X from UX = Y). As seen in class, this method is numerically stable (as in, there will be no extra truncation errors). I'll also be calculating the condition number and the error.

#### 2 Tools

The following programming language and libraries have been used in this exercise:

- C
- GSL (GNU Scientific Library)

The following double-precision GSL data types have been used in the exercise:

- gsl\_vector
- gsl\_matrix
- gsl\_permutation

The following GSL methods have been used in the exercise:

- gsl\_matrix\_alloc(size1, size2)
- gsl\_matrix\_set\_zero(matrix)
- gsl\_matrix\_set(matrix, row, column, value)
- gsl\_matrix\_get(matrix, row, column)
- gsl\_vector\_alloc(size)
- gsl\_vector\_set\_zero(vector)
- gsl\_vector\_set(vector, index, value)
- gsl\_vector\_get(vector, index)
- gsl\_matrix\_memcpy(matrixToCopyFrom, matrix)
- gsl\_linalg\_SV\_decomp(A, V, S, workspaceVector)
- gsl\_vector\_minmax(vector, minInVector, maxInVector)

In order to factorize a matrix into the LU decomposition, and then solve the square system Ax = y using the decomposition of A, I've used the following methods:

- gsl\_linalg\_LU\_decomp(A, permutation, signum)
- gsl\_linalg\_LU\_solve(LU, permutation, b, x)
- gsl\_permutation\_alloc(size)

#### 3 Solving the Linear System

By looking closely at the first rule, we see that the i+1 are all multiples of 3 (i+1=3\*k, for some k). Hence the i are of the form i=3\*k-1, for some k. For n=5, for example, this is what the coefficient matrix looks like:

```
1.0000000000e + 00
                                                                                     0.000000000e + 00
                    -1.000000000e + 00
                                          0.000000000e + 00
                                                                0.000000000e + 00
1.0000000000e + 00
                    2.0000000000e + 00
                                         -1.000000000e + 00
                                                               0.000000000e + 00
                                                                                     0.000000000e + 00
                                                                                     0.0000000000e + 00
0.000000000e + 00
                    1.0000000000e + 00
                                          1.000000000e + 00
                                                               -1.0000000000e + 00
0.000000000e + 00
                    0.000000000e + 00
                                          1.000000000e + 00
                                                                1.000000000e + 00
                                                                                     -1.000000000e + 00
0.0000000000e + 00
                                                                                     4.0000000000e + 00
                    0.000000000e + 00
                                          0.000000000e + 00
                                                                1.000000000e + 00
```

The coefficients matrix A is first allocated by using the gsl\_matrix\_alloc method, then I set all the elements to zero with gsl\_matrix\_set\_zero and finally nested for loops fill the diagonal values by checking the indexes. The coefficients reported above on the diagonal have 5 significant digits for improve the readability of this report.

I used the  $gsl\_vector\_alloc$  method to create an instance of the vector. All of its elements were set to zero by using  $gsl\_vector\_set\_zero(vector)$ . The exercise asks us to set the first element of the y vector to one, so I used  $gsl\_vector\_set(vector, 0, 1)$  to assign the value 1 to index 0. For n = 5, we have:

$$\vec{y} = \begin{bmatrix} 1.000000000e + 00 \\ 0.000000000e + 00 \\ 0.000000000e + 00 \\ 0.000000000e + 00 \\ 0.000000000e + 00 \end{bmatrix}$$

Given the Ax = y system, my goal is now to find the vector of the unknowns x. To do so, I first factorize A into its LU decomposition by allocating a new matrix (so that the matrix which represents A doesn't get overridden) using  $gsl_matrix_memcpy$  and then by calling  $gsl_linalg_LU_decomp$ . This method utilizes Gaussian Elimination with partial pivoting to compute the decomposition. The following is the LU matrix for n=5:

```
\lceil 1.0000000000e + 00 \rceil
                    -1.000000000e + 00
                                                                                       0.000000000e + 00
                                           0.000000000e + 00
                                                                 0.000000000e + 00
1.000000000e + 00
                     3.0000000000e + 00
                                           -1.000000000e + 00
                                                                 0.000000000e + 00
                                                                                       0.000000000e + 00
0.000000000e + 00
                     3.333333333e - 01
                                           1.333333333e + 00
                                                                 -1.000000000e + 00
                                                                                       0.000000000e + 00
0.0000000000e + 00
                                                                                       -1.000000000e + 00
                     0.000000000e + 00
                                           7.5000000000e - 01
                                                                 1.750000000e + 00
0.0000000000e + 00
                     0.000000000e + 00
                                           0.000000000e + 00
                                                                 5.714285714e - 01
                                                                                       4.571428571e + 00
```

I can now use the LU matrix to solve the system by passing LU, x, a permutation structure  $gsl\_permutation$  (it contains the order of the indexes of the equations in the system to keep track of swapping) and y to  $gsl\_linalg\_LU\_solve$ . This method uses forward and back-substitution to modify the contents of the x vector given in input, which now looks like this (for n = 5):

$$\vec{x} = \begin{bmatrix} 7.187500000e - 01 \\ -2.812500000e - 01 \\ 1.562500000e - 01 \\ -1.250000000e - 01 \\ 3.125000000e - 02 \end{bmatrix}$$

Then, I calculate the condition number of the matrix A of order n which will give me a better idea if this is a well-conditioned or an ill-conditioned linear system. In GSL there is no direct function that calculates the condition number, but it's possible to use the ratio of the largest singular value of matrix A,  $\sigma_n(A)$ , to the smallest  $\sigma_1(A)$ :

$$\kappa(A) := \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{\|A\|}{\|A^{-1}\|^{-1}}$$

I proceed to factorize A into its singular value decomposition SVD using the  ${\tt gsl\_linalg\_SV\_decomp}$  method, and then use  ${\tt gsl\_vector\_minmax}$  to extract the minimum and maximum singular values out of the vector S that contains the diagonal elements of the singular value matrix.

For n = 5, the condition number is

$$\kappa(A) = \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{4.205100611e + 00}{1.142643287e + 00} = 3.680151678e + 00$$

I calculate the error by subtracting the computed solution  $x_1^*$  from the exact mathematical solution  $\widetilde{x}$  (which can be obtained by using the M\_E GSL constant minus 2).

| n   | $\widetilde{x}_1$                  | $x_1^* - \widetilde{x}_1$ | $\kappa(A_n)$       |
|-----|------------------------------------|---------------------------|---------------------|
| 1   | 1.00000000000e+00                  | -2.817181715e-01          | 1.000000000e+00     |
| 2   | 6.666666667e-01                    | 5.161516179e-02           | 1.767591879e+00     |
| 3   | 7.5000000000e-01                   | -3.171817154e-02          | 2.561552813e+00     |
| 4   | 7.142857143e-01                    | 3.996114173e-03           | 2.258696038e+00     |
| 5   | 7.187500000e-01                    | -4.681715410e-04          | 3.680151678e+00     |
| 6   | 7.179487179e-01                    | 3.331105103e-04           | 3.953864002e+00     |
| 7   | 7.183098592e-01                    | -2.803069588e-05          | 3.847674609e+00     |
| 8   | 7.182795699e-01                    | 2.258566572 e-06          | 5.377037588e+00     |
| 9   | 7.182835821e- $01$                 | -1.753630507e-06          | 5.727581839e+00     |
| 10  | 7.182817183e-01                    | 1.101773268e-07           | 5.498872833e+00     |
| 11  | 7.182818352e-01                    | -6.746947445e-09          | 7.100335770e+00     |
| 12  | 7.182818229e-01                    | 5.515095380e-09           | 7.582164638e+00     |
| 13  | 7.182818287e-01                    | -2.766507023e-10          | 7.195531702e+00     |
| 14  | 7.182818284e-01                    | 1.364375279e-11           | 8.833149892e+00     |
| 15  | 7.182818285e-01                    | -1.153854789e-11          | 9.488074730e+00     |
| 16  | 7.182818285e-01                    | 4.816147481e-13           | 8.911558696e+00     |
| 17  | 7.182818285e-01                    | -1.998401444e-14          | 1.057152285e+01     |
| 18  | 7.182818285e-01                    | 1.709743458e-14           | 1.142018246e+01     |
| 19  | 7.182818285e-01                    | -6.661338148e-16          | 1.063813407e+01     |
| 20  | 7.182818285e-01                    | -1.110223025e-16          | 1.231319966e+01     |
| 21  | 7.182818285e-01                    | -2.220446049e-16          | 1.336883104e+01     |
| 22  | 7.182818285e-01                    | -2.220446049e-16          | 1.237107821e+01     |
| 23  | 7.182818285e-01                    | -2.220446049e-16          | 1.405700479e+01     |
| 24  | 7.182818285e-01                    | -2.220446049e-16          | 1.532862983e+01     |
| 25  | 7.182818285 e-01                   | -2.220446049e-16          | 1.410816377e + 01   |
| 26  | 7.182818285 e-01                   | -2.220446049e-16          | $1.580226249e{+01}$ |
| 27  | $7.182818285 \mathrm{e}\text{-}01$ | -2.220446049e-16          | $1.729630706e{+01}$ |
| 28  | 7.182818285 e-01                   | -2.220446049e-16          | $1.584809348e{+01}$ |
| 29  | 7.182818285e-01                    | -2.220446049e-16          | 1.754855617e + 01   |
| 30  | 7.182818285e-01                    | -2.220446049e-16          | 1.926975724e + 01   |
| 31  | 7.182818285e-01                    | -2.220446049e-16          | 1.759006043e+01     |
| 32  | 7.182818285e-01                    | -2.220446049e-16          | 1.929561485e+01     |
| 33  | 7.182818285e-01                    | -2.220446049e-16          | 2.124756325e+01     |
| 34  | 7.182818285e-01                    | -2.220446049e-16          | 1.933353645e+01     |
| 35  | 7.182818285e-01                    | -2.220446049e-16          | 2.104325456e + 01   |
| 36  | 7.182818285e-01                    | -2.220446049e-16          | 2.322873622e+01     |
| 37  | 7.182818285e-01                    | -2.220446049e-16          | 2.107816128e + 01   |
| 38  | 7.182818285e-01                    | -2.220446049e-16          | 2.279134599e+01     |
| 39  | 7.182818285e-01                    | -2.220446049e-16          | 2.521256520e+01     |
| 40  | 7.182818285e-01                    | -2.220446049e-16          | 2.282368084e+01     |
| 41  | 7.182818285e-01                    | -2.220446049e-16          | 2.453979556e + 01   |
| 42  | 7.182818285e-01                    | -2.220446049e-16          | 2.719852600e+01     |
| 43  | 7.182818285e-01                    | -2.220446049e-16          | 2.456991077e+01     |
| 44  | 7.182818285e-01                    | -2.220446049e-16          | 2.628853390e+01     |
| 45  | 7.182818285e-01                    | -2.220446049e-16          | 2.918622370e+01     |
| 46  | 7.182818285e-01                    | -2.220446049e-16          | 2.631671410e+01     |
| 47  | 7.182818285e-01                    | -2.220446049e-16          | 2.803750846e+01     |
| 48  | 7.182818285e-01                    | -2.220446049e-16          | 3.117535515e+01     |
| 49  | 7.182818285e-01                    | -2.220446049e-16          | 2.806398692e+01     |
| _50 | 7.182818285e-01                    | -2.220446049e-16          | 2.978667872e+01     |

## 4 Plot



#### 5 Observations

The linear system presented in this exercise gets increasingly ill-conditioned as n grows (since  $\kappa(A_n) > 1$  for most n). From the plot, it can be observed that the condition number grows linearly. It can be noticed, however, that a large condition number doesn't necessarily mean that the error will be large in all cases, just that it is possible to have a large error. However, it can be observed that as n increases, the error gets incrementally smaller.

The error that I have calculated represents how well the computed solution  $\tilde{x}_1$  approximates the true solution  $x_1^*$ . It can be noted that the Gaussian elimination with partial pivoting doesn't introduce any additional truncation errors and therefore it is numerically stable.