Funktionalanalysis - Übungsblatt 11

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 19. Januar 2024, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 11.1

4 Punkte

[1+1.5+1.5 Punkte]

Sei $(X, \|\cdot\|)$ ein normierter \mathbb{K} -Vektorraum.

(a) Sei $(x_n)_{n\in\mathbb{N}}\subset X$ eine schwach konvergente Folge mit $x_n\to x$. Zeigen Sie, dass $\|x\|\leq \liminf_{n\to\infty}\|x_n\|$.

Es sei nun $A \subset X$ eine abgeschlossen und konvexe Menge. Zeigen Sie die folgenden Aussagen:

- b) A ist schwach folgenabgeschlossen, d.h. für jede in X schwach konvergente Folge $x_k \rightharpoonup x$ mit $x_k \in A$ ist auch $x \in A$.
- c) Sei nun $(X, \|\cdot\|)$ ein reflexiver Banachraum und zusätzlich A nicht-leer. Dann gibt es zu jedem $x \in X$ ein $y \in A$ mit

$$||x - y|| = \inf_{a \in A} ||x - a||.$$

Aufgabe 11.2

4 Punkte

[1+1+2 Punkte]

Ein normierter Raum $(X, \|\cdot\|)$ heißt **gleichmäßig konvex**, falls es für jedes $\varepsilon \in (0, 2)$ ein $\delta > 0$ gibt, sodass

$$\|x\| = \|y\| = 1 \text{ und } \left\| \frac{x+y}{2} \right\| > 1 - \delta \quad \Rightarrow \quad \|x-y\| < \varepsilon.$$

- (a) Zeigen Sie, dass Prähilberträume $(V, \langle \cdot, \cdot \rangle)$ gleichmäßig konvex sind.
- (b) Zeigen Sie, dass der Raum $(\ell_{\infty}^{\mathbb{K}}, \|\cdot\|_{\ell_{\infty}})$ nicht gleichmäßig konvex ist.
- (c) Sei $(X, \|\cdot\|)$ ein gleichmäßig konvexer Banachraum und $x, x_n \in X$ für alle $n \in \mathbb{N}$. Zeigen Sie die Äquivalenz der beiden Aussagen
 - (i) $x_n \to x$ in X für $n \to \infty$.
 - (ii) $x_n \rightharpoonup x$ und $||x_n|| \rightarrow ||x||$ für $n \rightarrow \infty$.

Aufgabe 11.3

4 Punkte

[2.5 + 1.5 Punkte]

Es sei 1 .

(a) Sei $\psi \in C_c(\mathbb{R}^n)$ mit supp $\psi \subset B_1(0)$ und $\|\psi\|_{L_p(\mathbb{R}^n)} = 1$ (Hierbei bezeichnet supp $\psi = \{x \in \mathbb{R}^n \mid \psi(x) \neq 0\}$ den Träger der Funktion ψ). Wir definieren für $k \in \mathbb{N}$

$$f_k: B_1(0) \to \mathbb{R}, \quad x \mapsto k^{n/p} \psi(kx).$$

Zeigen Sie, dass $||f_k||_{L_p(B_1(0))} = ||\psi||_{L_p(\mathbb{R}^n)} = 1, f_k(x) \to 0$ für $x \neq 0$ und $f_k \to 0$ in $L_p(B_1(0))$ für $k \to \infty$. Bitte wenden!

(b) Sei $\Omega=(0,1)\subset\mathbb{R},\ \mu>0$ und $h:\mathbb{R}\to\mathbb{R}$ μ -periodisch, d.h. $h(x+\mu)=h(x)$ für alle $x\in\mathbb{R}$ mit $\|h\|_{L_{\infty}(\mathbb{R}_+)}<\infty$. Wir definieren $g_k(x)=h(kx)$. Zeigen Sie, dass $\|g_k\|_{L_p(\Omega)}\leq \|h\|_{L_{\infty}(\mathbb{R}_+)}$ und

$$g_k \rightharpoonup \overline{h} := \frac{1}{\mu} \int_0^\mu h \, \mathrm{d}\lambda \quad \text{in} \quad L_p(\Omega).$$

Hinweis. Betrachten Sie zunächst $\overline{h} = 0$ und verwenden Sie, dass Treppenfunktionen dicht liegen in $L_p(\Omega)$.

Aufgabe 11.4 4 Punkte

[1.5+1+0.5+1 Punkte]

Seien X, Y ein Banachräume. Dann gilt

- a) Ist $\Phi: X \to Y$ ein Isomorphismus, dann ist X reflexiv genau dann wenn Y reflexiv ist
- b) X ist reflexiv $\Rightarrow X'$ ist reflexiv.
- c) X' ist reflexiv ⇒ X ist reflexiv. Hinweis: Sie können ohne Beweis annehmen, dass abgeschlossene Teilräume eines reflexiven Banachraums selbst reflexiv sind (siehe Schritt (III) im Beweis von Satz 4.23).
- d) X ist reflexiv und separabel $\Leftrightarrow X'$ ist reflexiv und separabel. Hinweis: Verwenden Sie Aufgabe 9.3.