[4.4] Internal Creavity Waves : I GW'

Assume Bousinesq, f-plane flow, but with continuous stratification.

> vertically-propagating internal waves, or higher vertical mode numbers.

(Note: we will allow non-hydrostodic solutions)

Consider a fluid with $e^{-\rho + \overline{\rho}(z) + \rho'(x,t)}$ } getential

and [p] << [p] << po so these are small

penturbations away from a mean stratification

(e.g. atm. internal waves with vertical motions

small compared to the scale height.)

Scaling of mass & De + V. y = 0

Flow is boussinesq 180 J. y=0 > W= YH

But it is also stratified so we make use of of =0

=> 6+ + m65 + n. d6, =0

Wiel Wie'l

⇒ 2 << 1)

because [f'] << [P]

so Pt + wfz=0 | call this [P]

means: variation of the background stratification.

We decompose the pressure as $p = \bar{p}(z) + p'(x,t)$ and define p by: Pz= - (lo+F)g (*)

The linear, Boussinesq, f-plane momentum equations are

X mon Ut - for = - to PX

Wok: Px = Py=0

Tymon Ut + fu= - to Py __cancel by (*)

 $= -\frac{1}{\rho} \cdot p_{z} - \frac{1}{\rho} \cdot p_{z} - \frac{3(6+\bar{\rho})}{\rho} - \frac{3e'}{\rho}$

=) [3 man] Wt = -to Pt - 2t

can be by drostatic

and mail J. y = 0

P+ wFz =0

or non-hydrostatic 5 equations in u, v, w, p', p'

The procedure to form a single PDE in w
is similar to how we got loinconé waves
[see Gill 8.4 for details]
One step is that we take the curb: [yman] x - [x man]
which gives Gt= fw= which is an expression
of PV emservation for continuous stratification
of PV emservation for continuous stratification [we used the property from mass $w_z = -(u_x + v_y)$]
The end result is one equation in w: (see Appendix!
(\(\frac{1}{2} \omega \) tt + f \(\frac{2}{w} \) tt + f \(\omega \) \(\omega \) (\(\omega \) \) (\(\omega \) (\omega \) (\(\omega \) (\(\omega \) (\omega \) (\(\omega \) (\(\omega \) (\(\omega \) (\(\omega \) (\omega \) (\omega \) (\(\omega \) (\(\omega \) (\(\omega \) (\omega \) (\(\omega \) (\(\omega \) (\(\omega \) (\omega \) (\(\omega \) (\(\omega \) (\omega \) (\omega \) (\(\omega \) (\omega \) (\(\omega \) (\omega \) (\omega \) (\(\omega \) (\(\omega \) (\omega \)
for wave solutions of the form $N=\sqrt{-\frac{2}{60}}\frac{\partial \bar{e}}{\partial z}$
w = Re { wo expi(kx + by + m = - wor)} vertical wave number "m'
agging this into (#) gives the dispersion relation:
$D^{2} = \frac{\int_{-\infty}^{\infty} f^{2} M^{2} + N^{2} K_{H}^{2}}{M^{2} + K_{H}^{2}} (**) \text{where} K_{H}^{2} = K^{2} + L^{2}$
M² + KH²

(i) K_H << m² ⇒ ω → f (f-surface) ~ flat == Wave solutions have ω between f + N! **

to vertical stretching causes changes in G

Then forming

It [2 mm] = Wet = - to Piet + bt

substitute in from [P] bt - - w N²

and take $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ of the result

$$= \int \left[\left(w_{xx} + w_{yy} \right)_{tt} = -\frac{1}{e_0} \left(p'_{xxzt} + p'_{yyzt} \right) - \left(w_{xx} + w_{yy} \right) N^2 \right]$$

We are working toward a single equation in w, so let try to get rid of the 1' terms in equation (**). To do two, form the horizontal divergence equation \(\times \mathbb{m}\) and \(\times \mathbb{m}\) and \(\times \mathbb{m}\)

or - Wet - fh = - to (pxx + 1/47) and take it

rewrite the 9 term, giving - Webt - f2 Wz = -to (pxx+p'yn)t

and take of

- Wester - f'wzz = - fo (P'xxze + P'yyze)

then substituting this into (***) we get the

desired result

(Wxx + Wyy) tt + Wzztt + f wzz + N'(wxx + Wyy) = 0

which is the result from page 3 of this lecture.

There is a nice discussion in Holton 7.4 of the derivation expressed in atmospheric terms such as potential temperature. The derivation here closely follows Gill 8.4, and expressions for the other parts of the solution, such as u, v and p' are found in Gill 8.5.