TD2:

Sur l'estimations a posteriori en une dimension

Soit $\Omega =]a, b[$ un ouvert borné non vide de \mathbb{R} . Pour une fonction f de $L^2(\Omega)$, on considère l'équation de Laplace

$$\begin{cases} -u'' = f & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$
 (1)

On discrétise ce problème de façon habituelle: on introduit des réels x_i tels que:

$$a = x_0 < x_1 < \ldots < x_i < \ldots < x_N = b,$$

puis on note I_i l'intervalle $]x_{i-1}, x_i[, 1 \le i \le N, \text{ et } h_i \text{ sa longueur. Comme d'habitude,}$ le paramètre h est le maximum des $h_i, 1 \le i \le N$. Un entier $k \ge 1$ étant fixé, on introduit l'espace discret

$$V_h = \left\{ v_h \in \mathcal{C}^0(\bar{\Omega}); v_{h|I_i} \in \mathbb{P}_k(I_i), 1 \le i \le N \right\} \cap H_0^1(\Omega),$$

où $\mathbb{P}_k(I_i)$ est l'espace des polynômes de degré $\leq k$ sur I_i . Le problème discret s'écrit:

$$\begin{cases}
\text{Trouver } u_h \in V_h \text{ tel que} \\
\int_a^b u_h'(x)v_h'(x)dx = \int_a^b f(x)v_h(x)dx, \quad \forall v_h \in V_h
\end{cases} \tag{2}$$

Puis on définit la famille d'indicateurs $(\eta_i)_{1 \le i \le N}$ par

$$\eta_i = h_i \| f_h + u_h'' \|_{L^2(I_i)} \tag{3}$$

où f_h est une approximation de f dont la restriction à chaque I_i appartient à $\mathbb{P}_{\sup\{k-2,0\}}(I_i)$. On note κ_1 et κ_2 les plus petites constantes telles que

$$|u - u_h|_{H^1(\Omega)} \le \kappa_1 \left(\sum_{j=1}^N \eta_i^2 \right)^{\frac{1}{2}} + c||f - f_h||_{L^2(\Omega)},$$

$$\eta_i \le \kappa_2 |u - u_h|_{H^1(I_i)} + c' ||f - f_h||_{L^2(I_i)}.$$

On veut établir une majoration **explicite** de κ_1 et κ_2 .

Question 1. On introduit un opérateur τ_h de $H_0^1(\Omega)$ dans V_h tel que:

$$\forall v \in H_0^1(\Omega), \quad (\tau_h v)(x_i) = v(x_i), \quad 0 \le i \le N \tag{4}$$

Montrer que

$$|u - u_h|_{H^1(\Omega)} \le \sup_{v \in H^1_0(\Omega)} \frac{\sum_{i=1}^N \left(\|f_h + u_h''\|_{L^2(I_i)} + \|f - f_h\|_{L^2(I_i)} \right) \|v - \tau_h v\|_{L^2(I_i)}}{|v|_{H^1(\Omega)}}.$$

Question 2. Dans le cas où k est égal à 1, vérifier que, pour toute fonction v de $H_0^1(\Omega)$, $\tau_h v$ sur chaque I_i est donné par

$$(\tau_h v)(x) = v(x_{i-1})\frac{x_i - x}{h_i} + v(x_i)\frac{x - x_{i-1}}{h_i}.$$

Indication: Utiliser la formule de Taylor usuelle, pour démontrer que

$$v(x) = (\tau_h v)(x) + \frac{x_i - x}{h_i} \int_{x_{i-1}}^x v'(t)dt - \frac{x - x_{i-1}}{h_i} \int_x^{x_i} v'(t)dt.$$

Question 3. En déduire une majoration de $||v - \tau_h v||_{L^2(I_i)}$ en fonction de $|v|_{H^1(I_i)}$ lorsque k est égal à 1.

<u>Indication:</u> Utiliser la formule établie dans la Q. 2 et l'inégalité de Cauchy-Schwarz pour avoir:

$$||v - \tau_h v||_{L^2(I_i)} \le \frac{h_i}{\sqrt{3}} |v|_{H^1(I_i)}$$

Question 4. Dans le cas où k est égal à 1, donner une majoration de κ_1 .

Question 5. Lorsque k est ≥ 2 , on définit l'opérateur τ_h de la façon suivante:

- pour toute fonction v de $H_0^1(\Omega)$, $\tau_h v$ vérifie la propriété (4).
- pour $1 \le i \le N$,

$$\forall \psi \in \mathbb{P}_{k-2}(I_i), \quad \int_{x_{i-1}}^{x_i} (v - \tau_h v)(x) \psi(x) dx = 0.$$

Soit $\hat{I} =]-1,1$ ['intervalle de référence.

Montrer qu'il existe un unique opérateur $\hat{\tau}$ à valeurs dans $\mathbb{P}_k(\hat{I})$, tel que, si F_i désigne l'application affine qui envoie \hat{I} sur I_i , on ait

$$\forall v \in H_0^1(\Omega), \quad \hat{\tau}(v \circ F_i) = (\tau_h v)_{|I_i} \circ F_i, \quad 1 \le i \le N.$$

<u>Indication</u>: Observer qu'un tel opérateur $\hat{\tau}$ possède les propriétés suivantes: pour toute fonction \hat{v} de $H^1(\hat{I})$, $\hat{\tau}\hat{v}$ appartient à $\mathbb{P}_k(\hat{I})$ et satisfait

$$(\hat{\tau}\hat{v})(\pm 1) = \hat{v}(\pm 1)$$
 et $\forall \hat{\psi} \in \mathbb{P}_{k-2}(\hat{I}), \int_{-1}^{1} (\hat{v} - \hat{\tau}\hat{v})(t)\hat{\psi}(t)dt = 0$

Question 6. En déduire une majoration de κ_1 en fonction de la plus petite constante $\hat{\lambda}$ telle que

$$\forall \hat{v} \in H^1(\hat{I}), \quad \|\hat{v} - \hat{\tau}\hat{v}\|_{L^2(\hat{I})} \le \hat{\lambda} \|\hat{v}'\|_{L^2(\hat{I})}$$

Question 7. Pour majorer $\hat{\lambda}$, on introduit la famille $(L_n)_{n\geq 0}$ des polynômes de Legendre sur \hat{I} . Pour $n\geq 1$, montrer que le polynôme $((1-t^2)L'_n)'$ est un multiple de $L_n(t)$.

Question 8. Nous rappelons que les polynômes $L_n, n \geq 0$, forment une base hilbertienne de $L^2(-1,1)$. Montrer qu'une fonction \hat{w} de $H_0^1(\hat{I})$ s'écrit

$$\hat{w}(t) = \left(1 - t^2\right) \sum_{n=1}^{+\infty} \alpha_n L'_n(t)$$

pour des coefficients α_n réels.

Question 9. En déduire que ¹

$$\|\hat{w} - \hat{\tau}\hat{w}\|_{L^2(\hat{I})} \le \frac{1}{\sqrt{k(k+1)}} \|\hat{w}'\|_{L^2(\hat{I})}$$

Question 10. Vérifier que l'opérateur $\hat{\tau}$ est égal à l'identité sur les polynômes de $\mathbb{P}_k(\hat{I})$.

Question 11. Donner une majoration de κ_1 lorsque k est ≥ 2 .

Question 12. Montrer que pour toute fonction w de $H_0^1(I_i)$,

$$\int_{x_{i-1}}^{x_i} (f_h + u_h'')(x)w(x)dx = \int_{x_{i-1}}^{x_i} (u - u_h)'(x)w'(x)dx - \int_{x_{i-1}}^{x_i} (f - f_h)(x)w(x)dx.$$

En déduire une majoration de $\left\| \left(f_h + u_h'' \right) \left(x - x_{i-1} \right)^{\frac{1}{2}} \left(x_i - x \right)^{\frac{1}{2}} \right\|_{L^2(I_i)}$.

Question 13. On admet (mais on est autorisé à démontrer) que le rapport

$$||L'_n||_{L^2(-1,1)} / ||L_n||_{L^2(-1,1)} = \sqrt{n(n+1)\left(n+\frac{1}{2}\right)}$$

Prouver que, pour tout polynôme φ de $\mathbb{P}_m(\hat{I})$,

$$\|\varphi\|_{L^2(-1,1)} \le \sqrt{\frac{(m+1)(m+3)}{2}} \|\varphi(1-t^2)^{\frac{1}{2}}\|_{L^2(-1,1)}$$

et que

$$\left\| \left(\varphi \left(1 - t^2 \right) \right)' \right\|_{L^2(-1,1)} \le \sqrt{(m+1)(m+2)} \left\| \varphi \left(1 - t^2 \right)^{\frac{1}{2}} \right\|_{L^2(-1,1)}$$

Question 14. Donner une majoration de κ_2 et du produit $\kappa_1\kappa_2$.

¹on calculera chacune de ces normes en fonction des α_n