Apprentissage sous contraintes physiques

Molecule Energy prediction

Hanna Bekkare - Maxime Moshfeghi

June 27, 2025

Problématique

Objectif du projet : prédire l'**énergie d'atomisation** d'une molécule à partir de sa structure géométrique 3D.

Contraintes physiques à respecter (invariances) :

• Invariance par translation :

$$E({\bf r}_i + {\bf t}) = E({\bf r}_i)$$
 pour tout ${\bf t} \in \mathbb{R}^3$

• Invariance par rotation :

$$E(\lbrace R\mathbf{r}_i\rbrace) = E(\lbrace \mathbf{r}_i\rbrace)$$
 pour toute rotation $R \in SO(3)$

• Invariance par permutation des atomes de même nature :

$$E({\bf r}_{\pi(i)}, Z_{\pi(i)}) = E({\bf r}_i, Z_i)$$
 pour toute permutation π

Enjeu : construire des *descripteurs moléculaires* qui respectent naturellement ces invariances pour entraîner un modèle de régression fiable.

Descripteur : Matrice de Coulomb

Définition de la matrice :

$$M_{ij} = egin{cases} 0.5Z_i^{2.4} & ext{si } i=j \ rac{Z_iZ_j}{R_{ij}} & ext{si } i
eq j \end{cases}$$

Visualisation de la matrice de Coulomb :

Matrice de Coulomb d'une molécule

Descripteur : Scattering

Scattering Harmonique 3D : méthode mathématique inspirée de la théorie des ondelettes pour exploiter les caractéristiques des densités électroniques de la molécule. Apport des invariance :

$$\underbrace{\rho_x(u) = \sum_k \gamma_k g(u - r_k)}_{\text{Permutation}} \qquad \underbrace{U[j, l] \rho(u) = \left(\sum_{-l}^{l} |\rho * \psi_{j, l}^m(u)|^2\right)^{1/2}}_{\text{Rotation}} \qquad \underbrace{S\rho[j, l, q] = \int_{\mathbb{R}^3} |U[j, l] \rho(u)|^q du}_{\text{Translation}}$$

Visualisation du scattering :

Analyse du scattering à l'ordre 0 centré de 7 molécules

Results

Regressor	Méthode d'encodage	RMSE Train	RMSE Test
XGBRegressor + SOAP	Coulomb matrix with sorted_12	0.110	0.466
Ridge, $alpha = 0.001$	Scattering, $J = L = 3$, (M, N, O)=(160, 112, 80)	0.108	0.108

Table: Comparaison des performances en RMSE des différents modèles testés

Les meilleurs résultats sont obtenus avec les méthodes contraints par la physique.

Annexe

Formule des ondelettes solides

$$\psi_{\ell}^{m}(u) = \frac{1}{\left(\sqrt{2\pi}\right)^{3}} e^{-|u|^{2}/2} |u|^{\ell} Y_{\ell}^{m} \left(\frac{u}{|u|}\right)$$

Annexe

Autres descripteurs moléculaires

- SOAP (Smooth Overlap of Atomic Positions) encode l'environnement local de chaque atome à l'aide de fonctions de base sphériques et radiales. Il est particulièrement adapté pour capturer les interactions inter-atomiques dans des systèmes chimiques, tout en étant invariant par rotation, translation et permutation des atomes.
- ACSF (Atom-Centered Symmetry Functions) est un descripteur inspiré de la physique, construit à partir de fonctions radiales et angulaires centrées sur chaque atome. Il permet de modéliser les environnements atomiques locaux avec un certain degré de finesse tout en respectant les symétries fondamentales.

References

Michael Eickenberg, Georgios Exarchakis, M. H. S. M. and Thiry, L. (2018). Solid harmonic wavelet scattering for predictions of molecule properties.