SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (ii) TITLE OF INVENTION: NOVEL HUMAN LYSOSOMAL PROTEIN AND METHODS OF ITS USE
- (iii) NUMBER OF SEQUENCES: 12
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: David A. Jackson, Esq.
 - (B) STREET: 411 Hackensack Ave, Continental Plaza, 4th Floor
 - (C) CITY: Hackensack
 - (D) STATE: New Jersey
 - (E) COUNTRY: USA
 - (F) ZIP: 07601
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Jackson Esq., David A.
 - (B) REGISTRATION NUMBER: 26,742
 - (C) REFERENCE/DOCKET NUMBER: 601-1-077

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 201-487-5800
- (B) TELEFAX: 201-343-1684

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3487 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGCGGAAGGG	CAGAATGGGA	CTCCAAGCCT	GCCTCCTAGG	GCTCTTTGCC	CTCATCCTCT	60
CTGGCAAATG	CAGTTACAGC	CCGGAGCCCG	ACCAGCGGAG	GACGCTGCCC	CCAGGCTGGG	120
TGTCCCTGGG	CCGTGCGGAC	CCTGAGGAAG	AGCTGAGTCT	CACCTTTGCC	CTGAGACAGC	180
AGAATGTGGA	AAGACTCTCG	GAGCTGGTGC	AGGCTGTGTC	GGATCCCAGC	TCTCCTCAAT	240
ACGGAAAATA	CCTGACCCTA	GAGAATGTGG	CTGATCTGGT	GAGGCCATCC	CCACTGACCC	300
TCCACACGGT	GCAAAAATGG	CTCTTGGCAG	CCGGAGCCCA	GAAGTGCCAT	TCTGTGATCA	, 360
CACAGGACTT	TCTGACTTGC	TGGCTGAGCA	TCCGACAAGC	AGAGCTGCTG	CTCCCTGGGG	420
CTGAGTTTCA	TCACTATGTG	GGAGGACCTA	CGGAAACCCA	TGTTGTAAGG	TCCCCACATC	480

CCTACCAGCT	TCCACAGGCC	TTGGCCCCCC	ATGTGGACTT	TGTGGGGGGA	CTGCACCATT	540
TTCCCCCAAC	ATCATCCCTG	AGGCAACGTC	CTGAGCCGCA	GGTGACAGGG	ACTGTAGGCC	600
TGCATCTGGG	GGTAACCCCC	TCTGTGATCC	GTAAGCGATA	CAACTTGACC	TCACAAGACG	660
TGGGCTCTGG	CACCAGCAAT	AACAGCCAAG	CCTGTGCCCA	GTTCCTGGAG	CAGTATTTCC	720
ATGACTCAGA	CCTGGCTCAG	TTCATGCGCC	TCTTCGGTGG	CAACTTTGCA	CATCAGGCAT	780
CAGTAGCCCG	TGTGGTTGGA	CAACAGGGCC	GGGGCCGGGC	CGGGATTGAG	GCCAGTCTAG	840
ATGTGCAGTA	CCTGATGAGT	GCTGGTGCCA	ACATCTCCAC	CTGGGTCTAC	AGTAGCCCTG	900
GCCGGCATGA	GGGACAGGAG	CCCTTCCTGC	AGTGGCTCAT	GCTGCTCAGT	AATGAGTCAG	960
CCCTGCCACA	TGTGCATACT	GTGAGCTATG	GAGATGATGA	GGACTCCCTC	AGCAGCGCCT	1020
ACATCCAGCG	GGTCAACACT	GAGCTCATGA	AGGCTGCTGC	TCGGGGTCTC	ACCCTGCTCT	1080
TCGCCTCAGG	TĢACAGTGGG	GCCGGGTGTT	GGTCTGTCTC	TGGAAGACAC	CAGTTCCGCC	1140
CTACCTTCCC	TGCCTCCAGC	CCCTATGTCA	CCACAGTGGG	AGGCACATCC	TTCCAGGAAC	1200
CTTTCCTCAT	CACAAATGAA	ATTGTTGACT	ATATCAGTGG	TGGTGGCTTC	AGCAATGTGT	1260
TCCCACGGCC	TTCATACCAG	GAGGAAGCTG	TAACGAAGTT	CCTGAGCTCT	AGCCCCCACC	1320
TGCCACCATC	CAGTTACTTC	AATGCCAGTG	GCCGTGCCTA	CCCAGATGTG	GCTGCACTTT	1380
CTGATGGCTA	CTGGGTGGTC	AGCAACAGAG	TGCCCATTCC	ATGGGTGTCC	GGAACCTCGG	1440
CCTCTACTCC	AGTGTTTGGG	GGGATCCTAT	CCTTGATCAA	TGAGCACAGG	ATCCTTAGTG	1500
GCCGCCCCC	TCTTGGCTTT	CTCAACCCAA	GGCTCTACCA	GCAGCATGGG	GCAGGACTCT	1560
TTGATGTAAC	CCGTGGCTGC	CATGAGTCCT	GTCTGGATGA	AGAGGTAGAG	GGCCAGGGTT	1620

TCTGCTCTGG	TCCTGGCTGG	GATCCTGTAA	CAGGCTGGGG	AACACCCAAC	TTCCCAGCTT	1680
TGCTGAAGAC	TCTACTCAAC	CCCTGACCCT	TTCCTATCAG	GAGAGATGGC	TTGTCCCCTG	1740
CCCTGAAGCT	GGCAGTTCAG	TCCCTTATTC	TGCCCTGTTG	GAAGCCCTGC	TGAACCCTCA	1800
ACTATTGACT	GCTGCAGACA	GCTTATCTCC	CTAACCCTGA	AATGCTGTGA	GCTTGACTTG	1860
ACTCCCAACC	CTACCATGCT	CCATCATACT	CAGGTCTCCC	TACTCCTGCC	TTAGATTCCT	1920
CAATAAGATG	CTGTAACTAG	CATTTTTGA	ATGCCTCTCC	CTCCGCATCT	CATCTTTCTC	1980
TTTTCAATCA	GGCTTTTCCA	AAGGGTTGTA	TACAGACTCT	GTGCACTATT	TCACTTGATA	2040
TTCATTCCCC	AATTCACTGC	AAGGAGACCT	CTACTGTCAC	CGTTTACTCT	TTCCTACCCT	2100
GACATCCAGA	AACAATGGCC	TCCAGTGCAT	ACTTCTCAAT	CTTTGCTTTA	TGGCCTTTCC	2160
ATCATAGTTG	CCCACTCCCT	CTCCTTACTT	AGCTTCCAGG	TCTTAACTTC	TCTGACTACT	2220
CTTGTCTTCC	TCTCTCATCA	ATTTCTGCTT	CTTCATGGAA	TGCTGACCTT	CATTGCTCCA	2280
TTTGTAGATT	TTTGCTCTTC	TCAGTTTACT	CATTGTCCCC	TGGAACAAAT	CACTGACATC	2340
TACAACCATT	ACCATCTCAC	TAAATAAGAC	TTTCTATCCA	ATAATGATTG	ATACCTCAAA	2400
TGTAAGATGC	GTGATACTCA	ACATTTCATC	GTCCACCTTC	CCAACCCCAA	ACAATTCCAT	2460
CTCGTTTCTT	CTTGGTAAAT	GATGCTATGC	TTTTTCCAAC	CAAGCCAGAA	ACCTGTGTCA	2520
TCTTTTCACC	CCACCTTCAA	TCAACAAGTC	CTCAATCAAC	AAGTCCTACT	GACTGCACAT	2580
СТТАААТАТА	TCTTTATCAG	TCCACAAGTC	CTTCCAATTA	TATTTCCCAA	GTATATCTAG	2640
AACTTATCCA	CTTATATCCC	CACTGCTACT	ACCTTAGTTT	AGGGCTATAT	TCTCTTGAAA	2700
AAAAGTGTCC	TTACTTCCTG	CCAATCCCCA	AGTCATCTTC	CAGAGTAAAA	TGCAAATCCC	2760

ATCAGGCCAC TTGGATGAAA ACCCTTCAAG GATTACTGGA TAGAATTCAG GCTTTCCCCT 2820 CCASCCCCA ATCATAGCTC ACAAACCTTC CTTGCTATTT GTTCTTAAGT AAAAAATCAT 2880 TTTTCCTCCT CCCTCCCCAA ACCCCAAGGA ACTCTCACTC TTGCTCAAGC TGTTCCGTCC 2940 CCTTACCACC CCTGATACAA CTGCCAGGTT AATTTCCAGA ATTCTTGCAA GACTCAGTTC 3000 AGAAGTCACC TTCTTTCGTG AATGTTTTGA TTCCCTGAGG CTACTTTATT TTGGTATGGC 3060 TGAAAAATCC TAGATTTTCT AAACAAAACC TGTTTGAATC TTGGTTCTGA TATGGACTAG 3120 GAGAGAGACT GGGTCAAGTA AGCTTATCTC CCTGAGGCTG TTTCCTCGTC TGTTAAGTGT 3180 GAATATCAAT ACCTGCCTTT CATAATCACC AGGGAATAAA GTGGAATAAT GTTGATAACA 3240 GTGCTTGGCA CCTGGAAGTA GGTGGCAGAT GTTAACGCCC TTCCTCCCTT GCACTGCGCC 3300 CCCTGTGCCT ACCTCTAGCA TTGTAACGAC CACATAGTAT TGAAATGGCC AGTTTACTTG 3360 TCTGCCTTCC TTTCCAAGAC CGTTGGTGCC TAGAGGACTA GAATCGTGTC CTATTTAACT 3420 TTGTGTTCCC AGGTCCTAGC TCAGGAGTTG GCAAATAAGA ATTAAATGTC TGCTACACCG 3480 AAACAAA 3487

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2520 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGCGGAAGGG	CAGAATGGGA	CTCCAAGCCT	GCCTCCTAGG	GCTCTTTGCC	CTCATCCTCT	60
CTGGCAAATG	CAGTTACAGC	CCGGAGCCCG	ACCAGCGGAG	GACGCTGCCC	CCAGGCTGGG	120
TGTCCCTGGG	CCGTGCGGAC	CCTGAGGAAG	AGCTGAGTCT	CACCTTTGCC	CTGAGACAGC	180
AGAATGTGGA	AAGACTCTCG	GAGCTGGTGC	AGGCTGTGTC	GGATCCCAGC	TCTCCTCAAT	240
ACGGAAAATA	CCTGACCCTA	GAGAATGTGG	CTGATCTGGT	GAGGCCATCC	CCACTGACCC	300
TCCACACGGT	GCAAAAATGG	CTCTTGGCAG	CCGGAGCCCA	GAAGTGCCAT	TCTGTGATCA	360
CACAGGACTT	TCTGACTTGC	TGGCTGAGCA	TCCGACAAGC	AGAGCTGCTG	CTCCCTGGGG	420
CTGAGTTTCA	TCACTATGTG	GGAGGACCTA	CGGAAACCCA	TGTTGTAAGG	TCCCCACATC	480
CCTACCAGCT	TCCACAGGCC	TTGGCCCCCC	ATGTGGACTT	TGTGGGGGGA	CTGCACCATT	540
TTCCCCCAAC	ATCATCCCTG	AGGCAACGTC	CTGAGCCGCA	GGTGACAGGG	ACTGTAGGCC	600
TGCATCTGGG	GGTAACCCCC	TCTGTGATCC	GTAAGCGATA	CAACTTGACC	TCACAAGACG	660
TGGGCTCTGG	CACCAGCAAT	AACAGCCAAG	CCTGTGCCCA	GTTCCTGGAG	CAGTATTTCC	720
ATGACTCAGA	CCTGGCTCAG	TTCATGCGCC	TCTTCGGTGG	CAACTTTGCA	CATCAGGCAT	780
CAGTAGCCCG	TGTGGTTGGA	CAACAGGGCC	GGGGCCGGGC	CGGGATTGAG	GCCAGTCTAG	840
ATGTGCAGTA	CCTGATGAGT	GCTGGTGCCA	ACATCTCCAC	CTGGGTCTAC	AGTAGCCCTG	900
GCCGGCATGA	GGGACAGGAG	CCCTTCCTGC	AGTGGCTCAT	GCTGCTCAGT	AATGAGTCAG	960

CCCTGCCACA TGTGCATACT GTGAGCTATG GAGATGATGA GGACTCCCTC AGCAGCGCCT 1020 ACATCCAGCG GGTCAACACT GAGCTCATGA AGGCTGCTGC TCGGGGGTCTC ACCCTGCTCT 1080 TCGCCTCAGG TGACAGTGGG GCCGGGTGTT GGTCTGTCTC TGGAAGACAC CAGTTCCGCC 1140 CTACCTTCCC TGCCTCCAGC CCCTATGTCA CCACAGTGGG AGGCACATCC TTCCAGGAAC CTTTCCTCAT CACAAATGAA ATTGTTGACT ATATCAGTGG TGGTGGCTTC AGCAATGTGT 1260 TCCCACGGCC TTCATACCAG GAGGAAGCTG TAACGAAGTT CCTGAGCTCT AGCCCCCACC 1320 TGCCACCATC CAGTTACTTC AATGCCAGTG GCCGTGCCTA CCCAGATGTG GCTGCACTTT 1380 CTGATGGCTA CTGGGTGGTC AGCAACAGAG TGCCCATTCC ATGGGTGTCC GGAACCTCGG 1440 CCTCTACTCC AGTGTTTGGG GGGATCCTAT CCTTGATCAA TGAGCACAGG ATCCTTAGTG 1500 GCCGCCCCC TCTTGGCTTT CTCAACCCAA GGCTCTACCA GCAGCATGGG GCAGGACTCT 1560 TTGATGTAAC CCGTGGCTGC CATGAGTCCT GTCTGGATGA AGAGGTAGAG GGCCAGGGTT 1620 TCTGCTCTGG TCCTGGCTGG GATCCTGTAA CAGGCTGGGG AACACCCAAC TTCCCAGCTT 1680 TGCTGAAGAC TCTACTCAAC CCCTGACCCT TTCCTATCAG GAGAGATGGC TTGTCCCCTG 1740 CCCTGAAGCT GGCAGTTCAG TCCCTTATTC TGCCCTGTTG GAAGCCCTGC TGAACCCTCA 1800 ACTATTGACT GCTGCAGACA GCTTATCTCC CTAACCCTGA AATGCTGTGA GCTTGACTTG 1860 ACTCCCAACC CTACCATGCT CCATCATACT CAGGTCTCCC TACTCCTGCC TTAGATTCCT 1920 CAATAAGATG CTGTAACTAG CATTTTTTGA ATGCCTCTCC CTCCGCATCT CATCTTTCTC 1980 TTTTCAATCA GGCTTTTCCA AAGGGTTGTA TACAGACTCT GTGCACTATT TCACTTGATA 2040 TTCATTCCCC AATTCACTGC AAGGAGACCT CTACTGTCAC CGTTTACTCT TTCCTACCCT 2100

GACATCCAGA	AACAATGGCC	TCCAGTGCAT	ACTTCTCAAT	CTTTGCTTTA	TGGCCTTTCC	2160
ATCATAGTTG	CCCACTCCCT	CTCCTTACTT	AGCTTCCAGG	TCTTAACTTC	TCTGACTACT	2220
CTTGTCTTCC	TCTCTCATCA	ATTTCTGCTT	CTTCATGGAA	TGCTGACCTT	CATTGCTCCA	2280
TTTGTAGATT	TTTGCTCTTC	TCAGTTTACT	CATTGTCCCC	TGGAACAAAT	CACTGACATC	2340
TACAACCATT	ACCATCTCAC	TAAATAAGAC	TTTCTATCCA	ATAATGATTG	ATACCTCAAA	2400
TGTAAGATGC	GTGATACTCA	ACATTTCATC	GTCCACCTTC	CCAACCCCAA	ACAATTCCAT	2460
CTCGTTTCTT	CTTGGTAAAT	GATGCTATGC	TTTTTCCAAC	СААААААА	АААААААА	2520

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 567 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Arg Lys Gly Arg Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala 1 5 10 15

Leu Ile Leu Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg
20 25 30

- Arg Thr Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu 35 40 45
- Glu Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg 50 55 60
- Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln Tyr 65 70 75 80
- Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg Pro Ser 85 90 95
- Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala Ala Gly Ala 100 105 110
- Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu Thr Cys Trp Leu 115 120 125
- Ser Ile Arg Gln Ala Glu Leu Leu Pro Gly Ala Glu Phe His His 130 135 140
- Tyr Val Gly Gly Pro Thr Glu Thr His Val Val Arg Ser Pro His Pro 145 150 155 160
- Tyr Gln Leu Pro Gln Ala Leu Ala Pro His Val Asp Phe Val Gly Gly
 165 170 175
- Leu His His Phe Pro Pro Thr Ser Ser Leu Arg Gln Arg Pro Glu Pro 180 185 190
- Gln Val Thr Gly Thr Val Gly Leu His Leu Gly Val Thr Pro Ser Val
 195 200 205
- Ile Arg Lys Arg Tyr Asn Leu Thr Ser Gln Asp Val Gly Ser Gly Thr 210 215 220
- Ser Asn Asn Ser Gln Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His

225					230					235					240
Asp	Ser	Asp	Leu	Ala 245	Gln	Phe	Met	Arg	Leu 250	Phe	Gly	Gly	Asn	Phe 255	Ala
His	Gln	Ala	Ser 260	Val	Ala	Arg	Val	Val 265	Gly	Gln	Gln	Gly	Arg 270	Gly	Arg
Ala	Gly	Ile 275	Glu	Ala	Ser	Leu	Asp 280	Val	Gln	Tyr	Leu	Met 285	Ser	Ala	Gly
Ala	Asn 290	Ile	Ser	Thr	Trp	Val 295	Tyr	Ser	Ser	Pro	Gly 300	Arg	His	Glu	Gly
Gln 305	Glu	Pro	Phe	Leu	Gln 310	Trp	Leu	Met	Leu	Leu 315	Ser	Asn	Glu	Ser	Ala 320
Leu	Pro	His	Val	His	Thr	Val	Ser	Tyr	Gly 330	Asp	Asp	Glu	Asp	Ser 335	Leu
Ser	Ser	Ala	Tyr 340	Ile	Gln	Arg	Val	Asn 345	Thr	Glu	Leu	Met	Lys 350	Ala	Ala
Ala	Arg	Gly 355	Leu	Thr	Leu	Leu	Phe 360	Ala	Ser	Gly	Asp	Ser 365	Gly	Ala	Gly
Cys	Trp 370	Ser	Val	Ser	Gly	Arg 375	His	Gln	Phe	Arg	Pro 380	Thr	Phe	Pro	Ala
Ser 385	Ser	Pro	Tyr	Val	Thr 390	Thr	Val	Gly	Gly	Thr 395	Ser	Phe	Gln	Glu	Pro 400
Phe	Leu	Ile	Thr	Asn 405	Glu	Ile	Val	Asp	Tyr 410	Ile	Ser	Gly	Gly	Gly 415	Phe
Ser	Asn	Val	Phe	Pro	Arg	Pro	Ser	Tyr	Gln	Glu	Glu	Ala	Val	Thr	Lys

Phe Leu Ser Ser Pro His Leu Pro Pro Ser Ser Tyr Phe Asn Ala 435 440 445

Ser Gly Arg Ala Tyr Pro Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp 450 455 460

Val Val Ser Asn Arg Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala 465 470 475 480

Ser Thr Pro Val Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg
485
490
495

Ile Leu Ser Gly Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr
500 505 510

Gln Gln His Gly Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu 515 520 525

Ser Cys Leu Asp Glu Glu Val Glu Gly Gln Gly Phe Cys Ser Gly Pro 530 535 540

Gly Trp Asp Pro Val Thr Gly Trp Gly Thr Pro Asn Phe Pro Ala Leu 545 550 555 560

Leu Lys Thr Leu Leu Asn Pro 565

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 587 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO:4:

Met Lys Ser Ser Ala Ala Lys Gln Thr Val Leu Cys Leu Asn Arg Tyr

1 5 10 15

Ala Val Val Ala Leu Pro Leu Ala Ile Ala Ser Phe Ala Ala Phe Gly
20 25 30

Ala Ser Pro Ala Ser Thr Leu Trp Ala Pro Thr Asp Thr Lys Ala Phe 35 40 45

Val Thr Pro Ala Gln Val Glu Ala Arg Ser Ala Ala Pro Leu Glu
50 55 60

Leu Ala Ala Gly Glu Thr Ala His Ile Val Val Ser Leu Lys Leu Arg
65 70 75 80

Asp Glu Ala Gln Leu Lys Gln Leu Ala Gln Ala Val Asn Gln Pro Gly
85 90 95

Asn Ala Gln Phe Gly Lys Phe Leu Lys Arg Arg Gln Phe Leu Ser Gln
100 105 110

Phe Ala Pro Thr Glu Ala Gln Val Gln Ala Val Val Ala His Leu Arg 115 120 125

Lys Asn Gly Phe Val Asn Ile His Val Val Pro Asn Arg Leu Leu Ile 130 135 140

Ser Ala Asp Gly Ser Ala Gly Ala Val Lys Ala Ala Phe Asn Thr Pro 145 150 155 160

Leu	Val	Arg	Tyr	Gln	Leu	Asn	Gly	Lys	Ala	Gly	Tyr	Ala	Asn	Thr	Ala
				165					170					175	

- Pro Ala Gln Val Pro Gln Asp Leu Gly Glu Ile Val Gly Ser Val Leu 180 185 190
- Gly Leu Gln Asn Val Thr Arg Ala His Pro Met Leu Lys Val Gly Glu 195 200 205
- Arg Ser Ala Ala Lys Thr Leu Ala Ala Gly Thr Ala Lys Gly His Asn 210 215 220
- Pro Thr Glu Phe Pro Thr Ile Tyr Asp Ala Ser Ser Ala Pro Thr Ala 225 230 235 240
- Ala Asn Thr Thr Val Gly Ile Ile Thr Ile Gly Gly Val Ser Gln Thr
 245 250 255
- Leu Gln Asp Leu Gln Gln Phe Thr Ser Ala Asn Gly Leu Ala Ser Val
 260 265 270
- Asn Thr Gln Thr Ile Gln Thr Gly Ser Ser Asn Gly Asp Tyr Ser Asp 275 280 285
- Asp Gln Gln Gly Gln Gly Glu Trp Asp Leu Asp Ser Gln Ser Ile Val 290 295 300
- Gly Ser Ala Gly Gly Ala Val Gln Gln Leu Leu Phe Tyr Met Ala Asp 305 310 315 320
- Gln Ser Ala Ser Gly Asn Thr Gly Leu Thr Gln Ala Phe Asn Gln Ala
 325 330 335
- Val Ser Asp Asn Val Ala Lys Val Ile Asn Val Ser Leu Gly Trp Cys
 340 345 350
- Glu Ala Asp Ala Asn Ala Asp Gly Thr Leu Gln Ala Glu Asp Arg Ile

355	360	365

Phe Ala Thr Ala Ala Ala Gln Gly Gln Thr Phe Ser Val Ser Ser Gly 370 375 380

Asp Glu Gly Val Tyr Glu Cys Asn Asn Arg Gly Tyr Pro Asp Gly Ser 385 390 395 400

Thr Tyr Ser Val Ser Trp Pro Ala Ser Ser Pro Asn Val Ile Ala Val
405 410 415

Gly Gly Thr Thr Leu Tyr Thr Thr Ser Ala Gly Ala Tyr Ser Asn Glu 420 425 430

Thr Val Trp Asn Glu Gly Leu Asp Ser Asn Gly Lys Leu Trp Ala Thr
435 440 445

Gly Gly Tyr Ser Val Tyr Glu Ser Lys Pro Ser Trp Gln Ser Val 450 455 460

Val Ser Gly Thr Pro Gly Arg Arg Leu Leu Pro Asp Ile Ser Phe Asp 465 470 475 480

Ala Ala Gln Gly Thr Gly Ala Leu Ile Tyr Asn Tyr Gly Gln Leu Gln
485 490 495

Gln Ile Gly Gly Thr Ser Leu Ala Ser Pro Ile Phe Val Gly Leu Trp 500 505 510

Ala Arg Leu Gln Ser Ala Asn Ser Asn Ser Leu Gly Phe Pro Ala Ala 515 520 525

Ser Phe Tyr Ser Ala Ile Ser Ser Thr Pro Ser Leu Val His Asp Val 530 540

Lys Ser Gly Asn Asn Gly Tyr Gly Gly Tyr Gly Tyr Asn Ala Gly Thr 545 550 555 560 Gly Trp Asp Tyr Pro Thr Gly Trp Gly Ser Leu Asp Ile Ala Lys Leu
565 570 575

Ser Ala Tyr Ile Arg Ser Asn Gly Phe Gly His 580 585

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 635 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Lys Ile Glu Lys Thr Ala Leu Thr Val Ala Ile Ala Leu Ala Met

1 5 10 15

Ser Ser Leu Ser Ala His Ala Glu Asp Ala Trp Val Ser Thr His Thr
20 25 30

Gln Ala Ala Met Ser Pro Pro Ala Ser Thr Gln Val Leu Ala Ala Ser 35 40 45

Ser Thr Ser Ala Thr Thr Gly Asn Ala Tyr Thr Leu Asn Met Thr
50 55 60

Gly Ser Pro Arg Ile Asp Gly Ala Ala Val Thr Ala Leu Glu Ala Asp
65 70 75 80

His	Pro	Leu	His	Val	Glu	Val	Ala	Leu	Lys	Leu	Arg	Asn	Pro	Asp	Ala
				85					90					95	

- Leu Gln Thr Phe Leu Ala Gly Val Thr Thr Pro Gly Ser Ala Leu Phe 100 105 110
- Gly Lys Phe Leu Thr Pro Ser Gln Phe Thr Glu Arg Phe Gly Pro Thr
 115 120 125
- Gln Ser Gln Val Asp Ala Val Val Ala His Leu Gln Gln Ala Gly Phe 130 135 140
- Thr Asn Ile Glu Val Ala Pro Asn Arg Leu Leu Ile Ser Ala Asp Gly
 145 150 155 160
- Thr Ala Gly Ala Ala Thr Asn Gly Phe Arg Thr Ser Ile Lys Arg Phe
 165 170 175
- Ser Ala Asn Gly Arg Glu Phe Phe Ala Asn Asp Ala Pro Ala Leu Val 180 185 190
- Pro Ala Ser Leu Gly Asp Ser Val Asn Ala Val Leu Gly Leu Gln Asn 195 200 205
- Val Ser Val Lys His Thr Leu His His Val Tyr His Pro Glu Asp Val 210 215 220
- Thr Val Pro Gly Pro Asn Val Gly Thr Gln Ala Ala Ala Ala Val Ala 225 230 235 240
- Ala His His Pro Gln Asp Phe Ala Ala Ile Tyr Gly Gly Ser Ser Leu 245 250 255
- Pro Ala Ala Thr Asn Thr Ala Val Gly Ile Ile Thr Trp Gly Ser Ile
 260 265 270
- Thr Gln Thr Val Thr Asp Leu Asn Ser Phe Thr Ser Gly Ala Gly Leu

		275					280					285			
Ala	Thr 290		Asn	Ser	Thr	Ile 295		Lys	Val	Gly	Ser 300	Gly	Thr	Phe	Ala
Asn 305	Asp	Pro	Asp	Ser	Asn 310	Gly	Glu	Trp	Ser	Leu 315	Asp	Ser	Gln	Asp	Ile 320
Val	Gly	Ile	Ala	Gly 325	Gly	Val	Lys	Gln	Leu 330	Ile	Phe	Tyr	Thr	Ser	Ala
Asn	Gly	Asp	Ser 340	Ser	Ser	Ser	Gly	Ile 345	Thr	Asp	Ala	Gly	Ile 350	Thr	Ala
Ser	Tyr	Asn 355	Arg	Ala	Val	Thr	Asp 360	Asn	Ile	Ala	Lys	Leu 365	Ile	Asn	Val
Ser	Leu 370	Gly	Glu	Asp	Glu	Thr 375	Ala	Ala	Gln	Gln	Ser 380	Gly	Thr	Gln	Ala
Ala 385	Asp	Asp	Ala	Ile	Phe	Gln	Gln	Ala	Val	Ala 395	Gln	Gly	Gln	Thr	Phe
Ser	Ile	Ala	Ser	Gly 405	Asp	Ala	Gly	Val	Tyr 410	Gln	Trp	Ser	Thr	Asp 415	Pro
Thr	Ser	Gly	Ser 420	Pro	Gly	туг	Val	Ala 425	Asn	Ser	Ala	Gly	Thr 430	Val	Lys
Ile	Asp	Leu 435	Thr	His	Tyr	Ser	Val 440	Ser	Glu	Pro	Ala	Ser 445	Ser	Pro	Tyr
Val	Ile	Gln	Val	Gly	Gly	Thr	Thr	Leu	Ser	Thr	Ser	Glv	Thr	Thr	Trp

Ser Gly Glu Thr Val Trp Asn Glu Gly Leu Ser Ala Ile Ala Pro Ser

: ...

Gln Gly Asp Asn Asn Gln Arg Leu Trp Ala Thr Gly Gly Gly Val Ser
485 490 495

Leu Tyr Glu Ala Ala Pro Ser Trp Gln Ser Ser Val Ser Ser Ser Thr
500 505 510

Lys Arg Val Gly Pro Asp Leu Ala Phe Asp Ala Ala Ser Ser Gly
515 520 525

Ala Leu Ile Val Val Asn Gly Ser Thr Glu Gln Val Gly Gly Thr Ser 530 535 540

Leu Ala Ser Pro Leu Phe Val Gly Ala Phe Ala Arg Ile Glu Ser Ala 545 550 555 560

Ala Asn Asn Ala Ile Gly Phe Pro Ala Ser Lys Phe Tyr Gln Ala Phe
565. 570 575

Pro Thr Gln Thr Ser Leu Leu His Asp Val Thr Ser Gly Asn Asn Gly 580 585 590

Tyr Gln Ser His Gly Tyr Thr Ala Ala Thr Gly Phe Asp Glu Ala Thr
595 600 605

Gly Phe Gly Ser Phe Asp Ile Gly Lys Leu Asn Thr Tyr Ala Gln Ala 610 615 620

Asn Trp Val Thr Gly Gly Gly Gly Gly Ser Thr 625 630 635

(2) INFORMATION FOR SEQ ID NO:6:

-- - . . .

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

	(ii)	MOLECULE TYPE: other nucleic acid	
		(A) DESCRIPTION: /desc = "Oligonucleotides"	
	(iii)	HYPOTHETICAL: NO	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	
GTG/	ATCAC.	AG AATGGCACTT	20
(2)	INFO	RMATION FOR SEQ ID NO:7:	.*
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid	
		(A) DESCRIPTION: /desc = "Oligonucleotides"	
(iii)	HYPOTHETICAL: NO	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:	
AACA	TGGG1	TT TCCGTAGGTC	20
(2)	INFOR	RMATION FOR SEQ ID NO:8:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20 base pairs	
		(B) TYPE: nucleic acid	

(C) SIRANDEDNESS: SINGLE	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid	
(A) DESCRIPTION: /desc = "Oligonucleotides"	
(iii) HYPOTHETICAL: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CTTCCTCAGG GTCCGCACGG	20
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 38 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid	
(A) DESCRIPTION: /desc = "Oligonucleotides"	
(iii) HYPOTHETICAL: NO	
·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
TGTAAAACGA CGGCCAGTCA GACCTTCCAG TAGGGACC	38
(2) INFORMATION FOR SEC ID NO.10.	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CAGGAAACAG CTATGACCCT GTATCCCACA CAAGAGAT

38

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TGTAAAACGA CGGCCAGTTA GATGCCATTG GGGACTGG

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CAGGAAACAG CTATGACCGT CATGGAAATA CTGCTCCA

38

and the second s