Syntax and Semantics of Type Theory

MetaCoq

Sound and complete type checking for Coq, in Coq

Théo Winterhalter

and the MetaCoq team

1 critical bug every year

Coq ecosystem

Coq ecosystem

Reference manual

Papers + Theses

Reference manual

Papers + Theses

Specified

Shifting trust

Syntax + Rules

~ 500 lines

Guard condition spec Normalisation axiom

Subject reduction

Trusted theory

Trusted core

Proven meta-theory

Confluence Principality PCUIC

Coq kernel

✓ Verified

Syntax + Rules

~ 500 lines

Guard condition spec Normalisation axiom

Proven meta-theory

Principality Confluence Subject reduction

Trusted theory

Trusted core

PCUIC

Coq kernel

PCUIC Syntax + Rules

Syntax + Rules

λ-calculus

 $\lambda (x : A), t : \forall (x : A), B$

Syntax + Rules

Syntax + Rules

match, fix, cofix

Syntax + Rules

Syntax + Rules

Syntax + Rules

Template polymorphism

list nat : Set
list Type : Type

η-equalities

$$\lambda x, f x \equiv f$$

$$(p.1, p.2) \equiv p$$

Modules

Module Module Type Definitional proof irrelevance

SProp

PCUIC Syntax

PCUIC Syntax

```
Inductive term :=
| tRel (n : nat)
| tSort (u : Universe.t)
| tProd (na : name) (A B : term)
| tLambda (na : name) (A t : term)
| tApp (u v : term)
| tInd (ind : inductive) (ui : Instance.t)
| tConstruct (ind : inductive) (n : nat) (ui : Instance.t)
| (* ... *)
```

```
Inductive term :=
| tRel (n : nat)
| tSort (u : Universe.t)
| tProd (na : name) (A B : term)
| tLambda (na : name) (A t : term)
| tApp (u v : term)
| tInd (ind : inductive) (ui : Instance.t)
| tConstruct (ind : inductive) (n : nat) (ui : Instance.t)
| (* ... *)
```

```
\lambda(P : Prop). P
```

becomes

```
tLambda (nNamed "P") (tSort prop) (tRel 0)
```

PCUIC Judgments

Cumulativity
$$\Sigma$$
; $\Gamma \vdash u \leq V$

Typing
$$\Sigma$$
; $\Gamma \vdash t : A$

PCUIC Judgments

Cumulativity

Typing

$$\Sigma$$
; Γ \vdash t : A

Global environment

axioms definitions inductive types universes

Judgments

Cumulativity

Typing

$$\Sigma$$
; Γ \vdash t : A

Global environment

axioms definitions inductive types universes

Local environment

assumptions x: A
definitions x:= u

```
\Sigma ; \Gamma \vdash u \leq_{pb} v
```

```
Inductive cumulSpec0 \Sigma \Gamma pb : term \rightarrow term \rightarrow Type :=
  cumul_Sort : ∀ s s',
      compare_universe pb Σ s s' →
      Σ; Γ ⊢ tSort s ≤<sub>pb</sub> tSort s'
  cumul_beta : ∀ na t b a,
      \Sigma; \Gamma \vdash tApp (tLambda na t b) a \leq_{pb} b \{0 := a\}
  cumul_App : ∀ t t' u u',
     \Sigma ; \Gamma \vdash t \leq_{pb} t' \rightarrow
     \Sigma ; \Gamma \vdash u \leq_{pb} u' \rightarrow
      \Sigma; \Gamma \vdash \text{tApp t } u \leq_{pb} \text{tApp t' } u'
```

```
\Sigma ; \Gamma \vdash u \leq_{pb} \vee
```

```
cumul_Sym : \forall t u, \Sigma \ ; \ \Gamma \vdash u \leq_{Conv} t \rightarrow \Sigma \ ; \ \Gamma \vdash t \leq_{pb} u
```

```
\Sigma ; \Gamma \vdash u \leq_{pb} V
```

```
cumul_Sym : \forall t u, \Sigma ; \Gamma \vdash u \leq_{Conv} t \rightarrow \Sigma ; \Gamma \vdash t \leq_{pb} u
```

```
\Sigma ; \Gamma \vdash u \leq v := \Sigma ; \Gamma \vdash u \leq_{Cumu} V
\Sigma ; \Gamma \vdash u = v := \Sigma ; \Gamma \vdash u \leq_{Conv} V
```

```
\Sigma ; \Gamma \vdash u \leq_{pb} V
```

```
cumul_Sym : \forall t u, \Sigma ; \Gamma \vdash u \leq_{Conv} t \Rightarrow \Sigma ; \Gamma \vdash t \leq_{pb} u
```

```
\Sigma ; \Gamma \vdash u \leq v := \Sigma ; \Gamma \vdash u \leq_{Cumul} v
\Sigma ; \Gamma \vdash u = v := \Sigma ; \Gamma \vdash u \leq_{Conv} v
```

compare_universe Cumul Σ s s'

all valuations satisfying the constraints of Σ verify $s \leq s$?

```
\Sigma ; \Gamma \vdash u \leq_{pb} V
```

```
cumul_Sym : \forall t u, 
 \Sigma ; \Gamma \vdash u \leq_{Conv} t \Rightarrow 
 \Sigma ; \Gamma \vdash t \leq_{pb} u
```

```
\Sigma ; \Gamma \vdash u \leq v := \Sigma ; \Gamma \vdash u \leq_{Cumul} v
\Sigma ; \Gamma \vdash u = v := \Sigma ; \Gamma \vdash u \leq_{Conv} v
```

compare_universe Cumul Σ s s'

all valuations satisfying the constraints of Σ verify $s \leq s$?

 Σ ; Γ \vdash t : A

 Σ ; $\Gamma \vdash u \leq_{pb} V$

Syntax + Rules

~ 500 lines

Guard condition spec
Normalisation axiom

Proven meta-theory

Confluence Principality

Subject reduction

Trusted theory

$$\Sigma$$
; Γ \vdash t : A

$$\Sigma$$
 ; Γ \vdash u \leq_{pb} V

Syntax + Rules

~ 500 lines

Guard condition spec

Normalisation axiom

Proven meta-theory

Confluence Principality

→ Subject reduction

Trusted theory

PCUIC

 Σ ; Γ \vdash $u \rightarrow v$

$$\Sigma$$
; Γ \vdash t : A

$$\Sigma$$
 ; Γ \vdash u \leq_{pb} V

 \cong

$$\Sigma$$
; $\Gamma \vdash u \rightarrow u'$, Λ
 Σ ; $\Gamma \vdash v \rightarrow v'$, Λ
 compare_term pb Σ u' v'

$$\Sigma$$
 ; Γ \vdash $u \rightarrow v$

Syntax + Rules

~ 500 lines

Guard condition spec

Normalisation axiom

Proven meta-theory

Confluence Principality

Subject reduction

Trusted theory

$$\Sigma$$
; Γ \vdash t : A

$$\Sigma$$
 ; Γ \vdash u \leq_{pb} V

 \cong

$$\Sigma$$
; $\Gamma \vdash u \rightarrow u'$ Λ

$$\Sigma$$
; $\Gamma \vdash v \rightarrow v'$ Λ
compare_term pb Σ u' v'

$$\Sigma$$
 ; Γ \vdash $u \rightarrow v$

Syntax + Rules

~ 500 lines

Guard condition spec

Normalisation axiom

Proven meta-theory

Confluence Principality

→ Subject reduction

Trusted theory

PCUIC

Specified

Subject Reduction

If
$$\Sigma$$
 ; $\Gamma \vdash u \rightarrow v$ and Σ ; $\Gamma \vdash u$: A then Σ ; $\Gamma \vdash v$: A

PCUIC Meta-theory

PCUIC Meta-theory

Parellel reduction

Following Tait, Martin-Löf and Takahashi

$$\rightarrow$$
 \subset \Rightarrow \subset \rightarrow^*

Can reduce all immediate reducts in one step

Parellel reduction

Following Tait, Martin-Löf and Takahashi

$$\rightarrow$$
 \subset \Rightarrow \subset \rightarrow^*

Can reduce all immediate reducts in one step

$$(S a) + ((\lambda x. x + b) 0) \Rightarrow S (a + (0 + b))$$

Parellel reduction

Following Tait, Martin-Löf and Takahashi

$$\rightarrow$$
 \subset \Rightarrow \subset \rightarrow^*

Can reduce all immediate reducts in one step

$$(S a) + ((\lambda x. x + b) 0) \Rightarrow S (a + (0 + b))$$

but also

$$(S a) + ((\lambda x. x + b) 0) \Rightarrow (S a) + (0 + b)$$

Optimal one-step parallel reduction

Accounting for local definitions

Syntax + Rules

~ 500 lines

Guard condition spec Normalisation axiom

Trusted theory

Proven meta-theory

Confluence Principality Subject reduction

PCUIC

Specified

oracles such that

Σ; Γ⊢ _ ← _

is well-founded for well-typed terms

Syntax + Rules

~ 500 lines

Guard condition spec
Normalisation axiom

Trusted theory

Proven meta-theory

Confluence Principality

Subject reduction

oracles such that

is well-founded for well-typed terms

```
Axiom normalisation:
   \forall \Sigma \Gamma t,
      wf_ext \Sigma \rightarrow
      welltyped \Sigma \Gamma t \rightarrow
      Acc (cored \Sigma \Gamma) t.
```

Syntax + Rules

~ 500 lines

Guard condition spec Normalisation axiom

Trusted theory

Proven meta-theory

Confluence Principality Subject reduction

PCUIC

Specified

Syntax + Rules

~ 500 lines

Guard condition spec Normalisation axiom

Proven meta-theory

Confluence Principality Subject reduction

Trusted theory

Trusted core

PCUIC

✓ Verified

Coq kernel

Syntax + Rules

~ 500 lines

Guard condition spec Normalisation axiom

Proven meta-theory

Confluence Principality Subject reduction

Trusted theory

Type Checker

Trusted core

PCUIC

Specified

Coq kernel

✓ Verified

check : $\forall \ \Sigma \ \Gamma \ t \ A$, dec $\mathbb{I} \ \Sigma \ ; \ \Gamma \ \vdash \ t \ : \ A \ \mathbb{I}$

Verified
Type Checker

dec A := A + ¬ A

Inference

infer:
$$\forall \Sigma \Gamma t$$
, dec $(\Sigma A, || \Sigma; \Gamma \vdash t : A ||)$

check :
$$\forall \ \Sigma \ \Gamma \ t \ A$$
, dec $\| \ \Sigma \ ; \ \Gamma \ \vdash \ t \ : \ A \ \|$

Verified
Type Checker

 $dec A := A + \neg A$

Cumulativity checking

Inference

infer: $\forall \Sigma \Gamma t$, dec $(\Sigma A, || \Sigma; \Gamma \vdash t : A ||)$

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ v, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

```
check: \forall \Sigma \Gamma t A, dec \parallel \Sigma; \Gamma \vdash t : A \parallel
```

Verified
Type Checker

dec A := A + \neg A

Cumulativity checking

Inference

```
infer: \forall \Sigma \Gamma t, dec (\Sigma A, || \Sigma; \Gamma \vdash t : A ||)
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ v, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

check : $\forall \ \Sigma \ \Gamma \ t \ A$, dec $\| \ \Sigma \ ; \ \Gamma \ \vdash \ t \ : \ A \ \|$

Check t: A

Cumulativity checking

```
Inference
```

```
infer: \forall \Sigma \Gamma t, dec (\Sigma A, || \Sigma; \Gamma \vdash t : A ||)
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ v, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

check : $\forall \ \Sigma \ \Gamma \ t \ A$, dec $\| \ \Sigma \ ; \ \Gamma \ \vdash \ t \ : \ A \ \|$

Infer t Check t: A

Cumulativity checking

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ v, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

Inference

infer: $\forall \Sigma \Gamma t$, dec $(\Sigma A, || \Sigma; \Gamma \vdash t : A ||)$

check : $\forall \ \Sigma \ \Gamma \ t \ A$, dec $\| \ \Sigma \ ; \ \Gamma \ \vdash \ t \ : \ A \ \|$

Infer t: B

Check t: A

Cumulativity checking

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ v, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

Inference

infer: $\forall \Sigma \Gamma t$, dec $(\Sigma A, || \Sigma; \Gamma \vdash t : A ||)$

check : $\forall \ \Sigma \ \Gamma \ t \ A$, dec $\lVert \ \Sigma \ ; \ \Gamma \ \vdash \ t \ : \ A \ \rVert$

check: $\forall \Sigma \Gamma t A, dec \square \Sigma; \Gamma \vdash t : A \square$

Cumulativity checking

```
iscumul:
    \forall pb \Sigma \Gamma u \vee,
        welltyped \Sigma \Gamma u \rightarrow
        welltyped \Sigma \Gamma V \rightarrow
        dec \parallel \Sigma; \Gamma \vdash u \leq_{pb} V \parallel
```

```
Inference
```

```
infer: \forall \Sigma \Gamma t, dec (\Sigma A, || \Sigma; \Gamma \vdash t : A ||)
```


Cumulativity checking

```
\forall pb \Sigma \Gamma u \vee,
    welltyped \Sigma \Gamma u \rightarrow
    welltyped \Sigma \Gamma V \rightarrow
    dec \parallel \Sigma; \Gamma \vdash u \leq_{pb} V \parallel
```

iscumul:

Inference

infer: $\forall \Sigma \Gamma t$, dec $(\Sigma A, || \Sigma; \Gamma \vdash t : A ||)$

check: $\forall \Sigma \Gamma t A, dec \square \Sigma; \Gamma \vdash t : A \square$

Cumulativity checking

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ v, welltyped \ \Sigma \ \Gamma \ u \ \rightarrow welltyped \ \Sigma \ \Gamma \ v \ \rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```


Compare heads and proceed recursively

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \rightarrow welltyped \ \Sigma \ \Gamma \ v \ \rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```



```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \rightarrow welltyped \ \Sigma \ \Gamma \ v \ \rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```



```
iscumul:

∀ pb Σ Γ u ∨,

welltyped Σ Γ u →

welltyped Σ Γ v →

dec ∥ Σ ; Γ ⊢ u ≤<sub>pb</sub> ∨ ∥
```



```
iscumul:

∀ pb Σ Γ u ∨,

welltyped Σ Γ u →

welltyped Σ Γ v →

dec ∥ Σ ; Γ ⊢ u ≤<sub>pb</sub> ∨ ∥
```



```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \rightarrow welltyped \ \Sigma \ \Gamma \ \lor \rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ \lor \ \|
```

```
whnf
whnf
whnf
whnf

match u', v' with

| tProd A₀ B₀, tProd A₁ B₁ ⇒
iscumul pb Σ Γ A₀ A₁ _ _ ;
iscumul pb Σ (Γ,A₀) B₀ B₁ _ _
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ \lor \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ \lor \ \|
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

```
Whnf whnf V
match u', v' with
tProd A_0 B_0, tProd A_1 B_1 \Rightarrow
  iscumul pb \Sigma \Gamma A_0 A_1 _ = ;
  iscumul pb \Sigma/(\Gamma, A_0) B_0 B_1 _ _
(* ... *)
end
    Termination
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \rightarrow welltyped \ \Sigma \ \Gamma \ v \ \rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

```
U whnf
              whnf / V
match u', v' with
tProd A_0 B_0, tProd A_1 B_1 \Rightarrow
  iscumul pb Σ Γ A<sub>0</sub> A<sub>1</sub> _ ;
  iscumul pb \Sigma/(\Gamma,A_0) B_0/B_1 _ _
(* ... *)
end
                          Typing
     Termination
```

```
iscumul:

∀ pb Σ Γ u ∨,

welltyped Σ Γ u →

welltyped Σ Γ v →

dec ∥ Σ ; Γ ⊢ u ≤<sub>pb</sub> ∨ ∥
```

```
U whnf
              whnf / V
match u', v' with
tProd A_0 B_0, tProd A_1 B_1 \Rightarrow
  iscumul pb Σ Γ A<sub>0</sub> A<sub>1</sub> _ ;
  iscumul pb \Sigma/(\Gamma, A_0) B_0/B_1 _
(* ... *)
end
                          Typing
     Termination
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, \\ welltyped \ \Sigma \ \Gamma \ u \ \rightarrow \\ welltyped \ \Sigma \ \Gamma \ \lor \rightarrow \\ dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ \lor \ \|
```

Compare heads and proceed recursively

```
U whnf
              whnf / V
match u', v' with
tProd A_0 B_0, tProd A_1 B_1 \Rightarrow
 •iscumul pb Σ Γ, A<sub>0</sub> A<sub>1</sub> _ ;
  iscumul pb \Sigma/(\Gamma, A_0) B_0/B_1 _ _
(* ... *)
end
                          Typing
     Termination
```

Soundness + Completeness

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \vee, \\ welltyped \ \Sigma \ \Gamma \ u \ \Rightarrow \\ welltyped \ \Sigma \ \Gamma \ v \ \Rightarrow \\ dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

```
Soundness + Completeness
A_0 \neq A_1 \rightarrow \text{tProd } A_0 \ B_0 \neq \text{tProd } A_1 \ B_1
```

```
U whnf
              whnf / V
match u', v' with
tProd A_0 B_0, tProd A_1 B_1 \Rightarrow
 •iscumul pb Σ Γ, A<sub>0</sub> A<sub>1</sub> _ ;
  iscumul pb \Sigma/(\Gamma, A_0) B_0/B_1 _ _
(* ... *)
end
                          Typing
     Termination
```

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, \\ welltyped \ \Sigma \ \Gamma \ u \ \rightarrow \\ welltyped \ \Sigma \ \Gamma \ v \ \rightarrow \\ dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ v \ \|
```

Compare heads and proceed recursively

Soundness + Completeness $A_0 \neq A_1 \Rightarrow \text{tProd } A_0 \mid B_0 \neq \text{tProd } A_1 \mid B_1$

```
U whnf
               whnf / V
match u', v' with
 tProd A_0 B_0, tProd A_1 B_1 \Rightarrow
  •iscumul pb Σ Γ, A<sub>0</sub> A<sub>1</sub> _ ;
   iscumul pb \Sigma/(\Gamma, A_0) B_0/B_1
 (* ... *)
end
                          Typing
     Termination
```

```
iscumul:
   \forall pb Σ Γ u \lor,
      welltyped \Sigma \Gamma u \rightarrow
      welltyped \Sigma \Gamma \lor \rightarrow
      dec ∥ Σ ; Γ ⊢ u ≤<sub>pb</sub> v ∥
```

Compare heads and proceed recursively

```
Soundness
                        Completeness
        A_0 \neq A_1 \rightarrow tProd A_0 B_0 \neq tProd A_1 B_1
```


SN

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, welltyped \ \Sigma \ \Gamma \ u \ \rightarrow welltyped \ \Sigma \ \Gamma \ \lor \rightarrow dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ \lor \ \|
```

Compare heads and proceed recursively

Soundness + Completeness $A_0 \neq A_1 \rightarrow \text{tProd } A_0 \quad B_0 \neq \text{tProd } A_1 \quad B_1$

Termination Typing

SN SR + context conversion

Need algo sucht that: u' ← u u' whnf

```
iscumul: \forall \ pb \ \Sigma \ \Gamma \ u \ \lor, \\ welltyped \ \Sigma \ \Gamma \ u \ \rightarrow \\ welltyped \ \Sigma \ \Gamma \ \lor \rightarrow \\ dec \ \| \ \Sigma \ ; \ \Gamma \ \vdash \ u \ \leq_{pb} \ \lor \ \|
```

Compare heads and proceed recursively

Soundness + Completeness

 $A_0 \neq A_1 \rightarrow tProd A_0 B_0 \neq tProd A_1 B_1$

Termination

Typing

SN

SR + context conversion

Weak head reduction Goal


```
weak_head_reduce : \forall (u : term), \Sigma (v : term), u \rightarrow v
```

Example

Input Output v u → v

Example

Input U Output V U → V

Definition foo := $\lambda(x:nat)$. x.

Example

Input Output V u → V

```
Definition foo := \lambda(x:nat). x.
```

foo 0

Example

Input Output v u → v

Definition foo := $\lambda(x:nat)$. x.

foo 0

Example

Input Output V U → V

Definition foo := $\lambda(x:nat)$. x.

foo 0

foo \longrightarrow $\lambda(x:nat).x$

Example

Input Output V u → V

Definition foo := $\lambda(x:nat)$. x.

λ(x:nat).x 0

foo \longrightarrow $\lambda(x:nat).x$

Example

Input Output V u → V

Definition foo :=
$$\lambda(x:nat)$$
. x.

0

foo
$$\longrightarrow$$
 $\lambda(x:nat).x$

Example

Input Output v u → v

Definition foo := $\lambda(x:nat)$. x.

0

foo $0 \longrightarrow (\lambda(x:nat).x) 0 \longrightarrow 0$

Termination

p.1

Termination

p

Termination

p.1

p

Termination

o.1

p

p.1
$$\supset$$
 p
but p.1 \neq p

Lexicographic order of ← and □

Termination

Lexicographic order of ← and □

Termination

fix f (n:nat). t end n

Termination

fix f (n:nat). t end n

Termination

fix f (n:nat). t end n


```
fix f (n:nat). t end n
fix f (n:nat). t end n
     Lexicographic order of ← and □
```

```
fix f (n:nat). t end n

fix f (n:nat). t end n
```


Termination

Termination

Termination

Termination


```
\langle u \pi_1, stack_pos u \pi_1 \rangle > \langle v \pi_2, stack_pos v \pi_2 \rangle
```


Termination

pos $(u \pi_1)$

Dependent lexicographic order of — and an order on positions

pos $(V \pi_2)$

Conclusion and perspectives

Incompleteness found in the implementation!