Finding Many Stable Molecular Arrangements

Conformational Searching with Genetic Algorithms

Evan Curtin

November 30, 2016

University of Illinois at Urbana-Champaign

Outline

- 1. Background Information
- 2. The Genetic Algorithm
- 3. Finding Low Energy Conformers of Dipeptides
- 4. Concluding Remarks

Background Information

Computational methods require knowledge of molecular structure

Computational methods require knowledge of molecular structure

 $\Rightarrow\,$ We need to find the lowest energy structure

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

⇒ We can't tell for sure if we've found the global minimum

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

⇒ We can't tell for sure if we've found the **global** minimum

We may need information about one or more low-energy conformations

Computational methods require knowledge of molecular structure

 $\Rightarrow\,$ We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

⇒ We can't tell for sure if we've found the global minimum

We may need information about one or more low-energy conformations

 \Rightarrow Ok, let's find them all!

Possible Solutions

Many techniques are well established

Method	Implented in
grid-based	CEASAR, Open Babel, Confab,
	MacroModel, MOE
rule-based	ALFA, CONFECT, CORINA,
	ROTATE, COSMOS , OMEGA
population-based	Balloon, Cyndi
basin-hopping	ASE, GMIN, TINKER SCAN

Possible Solutions

•	Many techniques	are
	well established	

• None are perfect

Method	Implented in
grid-based	CEASAR, Open Babel, Confab,
	MacroModel, MOE
rule-based	ALFA, CONFECT, CORINA,
	ROTATE, COSMOS , OMEGA
population-based	Balloon, Cyndi
basin-hopping	ASE, GMIN, TINKER SCAN

What Algorithmic Properties do we want for conformer search?

1. Accurate energies & Structures, ab initio or DFT

- 1. Accurate energies & Structures, ab initio or DFT
- 2. Minimize number of geometry optimizations

- 1. Accurate energies & Structures, ab initio or DFT
- 2. Minimize number of geometry optimizations
- 3. Find the entire low energy population of conformations

- 1. Accurate energies & Structures, ab initio or DFT
- 2. Minimize number of geometry optimizations
- 3. Find the entire low energy population of conformations
- 4. Minimal human input

- 1. Accurate energies & Structures, ab initio or DFT
- 2. Minimize number of geometry optimizations
- 3. Find the entire low energy population of conformations
- 4. Minimal human input
- 5. Parallel-Scalable

The Genetic Algorithm

Outline

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest
- Requirements:
 - Represent individuals as vector
 - Fitness function
- $V = (x_1 y_1 z_1 x_2 y_2 z_2 \cdots x_N y_N z_N)$
- $F = \frac{E_{max} E}{E_{max} E_{min}}$

- Several Ways to Define Structure
 - Cartesian
 - Internal Coordinates (bond
 - length, angle ...)
 - SMILES, InChI

Representations of (3Z)-3,4-Dimethyl-3-hexene¹

- 1. Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.
- 2. http://www.chemspider.com/Chemical-Structure.2298795.html

 Several Ways to Define Structure

Cartesian
Internal Coordinates (bond length, angle ...)
SMILES, InChI

• InChI [Ref. 2]= 1S/C8H16/c1-5-7(3)8(4)6-2/h5-6H2,1-4H3/b8-7-

Representations of (3Z)-3,4-Dimethyl-3-hexene¹

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.

 Several Ways to Define Structure

Cartesian
Internal Coordinates (bond length, angle ...)
SMILES, InChI

- InChI [Ref. 2]= 1S/C8H16/c1-5-7(3)8(4)6-2/h5-6H2,1-4H3/b8-7-
- Equivalent in theory

Representations of (3Z)-3,4-Dimethyl-3-hexene¹

- 1. Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.
- 2. http://www.chemspider.com/Chemical-Structure.2298795.html

 Several Ways to Define Structure

Cartesian
Internal Coordinates (bond length, angle ...)
SMILES, InChI

- InChI [Ref. 2]= 1S/C8H16/c1-5-7(3)8(4)6-2/h5-6H2,1-4H3/b8-7-
- Equivalent in theory

Representations of (3Z)-3,4-Dimethyl-3-hexene¹

- 1. Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.
- 2. http://www.chemspider.com/Chemical-Structure.2298795.html

2D

3D

2. http://www.chemspider.com/Chemical-Structure.2298795.html

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.

2. http://www.chemspider.com/Chemical-Structure.2298795.html

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.

2D

3D

7

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348. 2. http://www.chemspider.com/Chemical-Structure.2298795.html

• Several methods are common

- Several methods are common
- Reinforce good characteristics

- Several methods are common
- Reinforce good characteristics
- Still give losers a chance

- Several methods are common
- Reinforce good characteristics
- Still give losers a chance
- 'Breed' pairs of winners

- Several methods are common
- Reinforce good characteristics
- Still give losers a chance
- 'Breed' pairs of winners
- 'Roulette Wheel' Method

- Several methods are common
- Reinforce good characteristics
- Still give losers a chance
- 'Breed' pairs of winners
- 'Roulette Wheel' Method

- Several methods are common
- Reinforce good characteristics
- Still give losers a chance
- 'Breed' pairs of winners
- 'Roulette Wheel' Method

The Next Generation

The Next Generation

Crossover distinguishes this from Monte Carlo

The Whole Algorithm

1. Generate N random, sensible geometries

The Whole Algorithm

- 1. Generate N random, sensible geometries
- 2. Add each to blacklist

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- Crossover & Mutate into sensible geometry

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- Crossover & Mutate into sensible geometry
- 6. Add Children to population

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- 5. Crossover & Mutate into sensible geometry
- 6. Add Children to population
- 7. Remove High energy individuals

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- Crossover & Mutate into sensible geometry
- 6. Add Children to population
- 7. Remove High energy individuals
- 8. If converged:

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- 5. Crossover & Mutate into sensible geometry
- 6. Add Children to population
- 7. Remove High energy individuals
- 8. If converged:
 - Done!

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- 5. Crossover & Mutate into sensible geometry
- 6. Add Children to population
- 7. Remove High energy individuals
- 8. If converged:
 - Done!

Otherwise:

- Generate N random, sensible geometries
- 2. Add each to blacklist
- 3. Optimize each geometry
- 4. Select Parents
- Crossover & Mutate into sensible geometry
- 6. Add Children to population
- 7. Remove High energy individuals
- 8. If converged:
 - Done!

Otherwise:

• Go to 2

sensible

utter nonsense

Finding Low Energy Conformers

of Dipeptides

Dipeptide Structures

 $\frac{\mathsf{Red}}{} = \mathsf{Rotatable} \ \mathsf{bonds}$ $\implies = \mathsf{Cis}/\mathsf{Trans} \ \mathsf{Bonds}$

Combinatorics

- GA beats other methods if space is large
- Space gets large fast

amino acid dipeptide	abbr	no. of atoms	no. of rotatable bonds + no. of cis/ trans bonds	no. of conformers (below 0.4 eV \approx 38.6 kJ/mol)
glycine	Gly	19	2 + 2	15 (15)
alanine	Ala	22	2 + 2	28 (17)
phenylalanine	Phe	32	4 + 2	64 (37)
valine	Val	28	3 + 2	60 (40)
tryptophan	Trp	36	4 + 2	141 (77)
leucine	Leu	31	4 + 2	183 (103)
isoleucine	Ile	31	4 + 2	176 (107)

- Smaller systems are reliably sampled
- As # of conformers increases, miss more and more
- Is there a pattern to what is missed?

Proportion of conformers found with incrasing runs of the GA

 Most misses are very high energy

- New Found by GA
- In Reference & GA

- Most misses are very high energy
- Algorithm favors low energy areas of the space

- Missed by the GA
- New Found by GA
- In Reference & GA

- Most misses are very high energy
- Algorithm favors low energy areas of the space
- Features low in energy are favored and recombined

- Missed by the GA
- New Found by GA
- In Reference & GA

Energy Cutoff

Mycophenolic Acid

Energy Cutoff

Mycophenolic Acid

 GA is more sensitive to energy cutoff

Energy Cutoff

Mycophenolic Acid

- GA is more sensitive to energy cutoff
- For finding low energy ensemble, GA outperforms purely stochastic/deterministic method

• Finding all the low energy conformers for a molecule is hard

- Finding all the low energy conformers for a molecule is hard
- In order to get accurate energies/structures, computationally expensive methods should be employed

- Finding all the low energy conformers for a molecule is hard
- In order to get accurate energies/structures, computationally expensive methods should be employed
- These take time, so we want to minimize how many of these we do

- Finding all the low energy conformers for a molecule is hard
- In order to get accurate energies/structures, computationally expensive methods should be employed
- These take time, so we want to minimize how many of these we do
- The Genetic Algorithm provides a framework for a refined global search

- Finding all the low energy conformers for a molecule is hard
- In order to get accurate energies/structures, computationally expensive methods should be employed
- These take time, so we want to minimize how many of these we do
- The Genetic Algorithm provides a framework for a refined global search
- It shines when asked to find a host of low energy solutions

- Finding all the low energy conformers for a molecule is hard
- In order to get accurate energies/structures, computationally expensive methods should be employed
- These take time, so we want to minimize how many of these we do
- The Genetic Algorithm provides a framework for a refined global search
- It shines when asked to find a host of low energy solutions
- GA wrapper can be interfaced with a variety of electronic structure packages(NWChem, ORCA) and is available under the GNU Lesser General Public License at

https://github.com/adrianasupady/fafoom

Backup slide

 Geometry optimization step makes the algorithm more Lamarckian (Jean Baptiste Larmarck, [1744-1829])

Genetic Algorithm Parameters

Geometry Optimization: DFT PBE + VdW, tier1 basis in FHI-aims¹. Convergence at 0.005 eV / Å

	parameter	value
molecule	SMILES	CC(=O)N[C@H](C(=O)NC)[C@H](CC)C
	distance_cutoff_1	1.2 Å
	distance_cutoff_2	2.0 Å
	rmsd_cutoff_uniq	0.2 Å
	chiral	true
run settings	max_iter	10
	iter_limit_conv	10
	energy_diff_conv	0.001 eV
GA settings	popsize	5
	energy_var	0.001 eV
	selection	roulette wheel
	fitness_sum_limit	1.2
	prob_for_crossing	0.95
	cross_trial	20
	prob_for_mut_cistrans	0.5
	prob_for_mut_rot	0.5
	max_mutations_cistrans	1
	max_mutations_torsions	2
	mut trial	100

GA Parameters for Isoleucine Dipeptide²

⁽¹⁾ Blum, V. et. al., M. Comput. Phys. Commun. 2009, 180 (11), 21752196. (2) Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.