Hispanic, Latino/a, Latinx: Panethnic Adoption in California

Reuben Perez
Department of Sociology
UC Berkeley

Data Collection & Analysis

- Institute of Governmental Studies (IGS) Poll January 2020 (N=6845)
 - Stratified random sample from the California State Department's registered voter database
 - Latinx subset of sample (N=1532)

- Completed data cleaning, analysis and visualization in R
 - More packages for statistical analysis and better for creating visualizations
 - Binomial logistic regression predicting panethnic adoption

Constructing the Analysis

```
# Create binary variable for use of Latinx/Hispanic Label.
Latinx_Panethnic <- character (0)

#Fill in values for Latinx/Hispanic Label
Latinx_Panethnic[Latinx$Q24a %in% c("1","2","3") | Latinx$Q24b %in% c("1","2","3")
| Latinx$Q24c %in% c("1","2","3") ] <- 1
Latinx_Panethnic[Latinx$Q24a %in% "4" | Latinx$Q24b %in% "4" | Latinx$Q24c %in%
"4"] <- 0</pre>
```

```
#Create age cohort variables
Latinx %<>%

mutate(gen_boomer = ifelse(AGE > "54", "1", "0")) %>%

mutate(gen_x = ifelse(AGE >= "38" & AGE < "55", "1", "0")) %>%

mutate(gen_millenial = ifelse(AGE <= "37" & AGE >= "26", "1", "0")) %>%

mutate(gen_z = ifelse(AGE < "26", "1", "0"))
```

Constructing the Analysis

Subsetting

 Used the select function to subset independent and dependent variables into new dataset

```
'data.frame': 6845 obs. of 8 variables:
$ Latinx_Panethnic : Factor w/ 2 levels "0","1": NA NA NA NA NA NA NA NA 1 NA ...
$ Immigrant_Generation: Factor w/ 3 levels "First Generation",..: 3 3 3 1 3 3 3 1 2 3 ...
$ Education : Factor w/ 5 levels "Less than HS",..: 3 1 NA 3 3 3 4 4 3 4 ...
$ cohorts : Factor w/ 4 levels "boomers","genx",..: 1 2 3 1 1 3 2 3 3 3 ...
$ HouseholdIncome : num 5 7 6 5 6 6 6 6 4 4 ...
$ Political_leanings : Factor w/ 3 levels "Conservative",..: 1 1 3 1 2 3 1 3 3 3 ...
$ Ethnicity : Factor w/ 4 levels "Mexican","Central American",..: NA NA NA NA NA NA NA NA 1 NA ...
$ gender : Factor w/ 2 levels "0","1": 1 2 1 1 2 1 2 2 2 1 ...
```

Results: Visualizations & Binomial Logit Regression

- Visualizations
 - ggplot function to create bar graphs
 - Graph 2: Use of panethnic label by ethnicity
 - Graph 3: Use of pathethnic label by generation
 - Graph 1: Use of panethnic label by cohort
- Binomial Logit Regression
 - o glm () function to predict for panethnic adoption

```
model <- glm(Latinx_Panethnic ~ cohorts + Ethnicity + Education + gender + HouseholdIncome +
Immigrant_Generation + Political_leanings, data = Latinx_subset, family = binomial)</pre>
```

Use of Panethnic Labels by Ethnicity

Use of Panethnic Labels by Immigrant Generation

Use of Panethnic Labels by Age Cohorts

	Latinx Panethnic (2) (3) (4)			
Gen X	. 19: 15:	77		0.457** (0.206)
Millennials	0.219 (0.160)	0.320* (0.191)	0.259 (0.198)	0.274 (0.242)
Gen Z	0.748*** (0.159)	0.955*** (0.200)	0.683*** (0.214)	0.753*** (0.245)
Second Generation		-0.377** (0.162)	-0.379** (0.168)	-0.463** (0.202)
Third Generation		-0.814*** (0.162)	-0.669*** (0.180)	-0.678*** (0.214)
Gender		-0.096 (0.121)	-0.066 (0.124)	-0.082 (0.143)
Central American			0.216 (0.182)	0.436** (0.205)
South American			-0.484** (0.240)	-0.257 (0.292)
0ther			-0.252 (0.188)	-0.339 (0.224)
Income			-0.136*** (0.036)	-0.122*** (0.043)

-0.953*** -0.640*** -0.026

(0.116) (0.152)

0.577*

(0.340)

0.303 (0.332)

0.298 (0.340)

0.251 (0.186)

0.090 (0.192)

-0.624*

(0.370)

(0.213)

*p<0.1; **p<0.05; ***p<0.01

1,532 1,290 1,261 960 -968.864 -804.203 -775.278 -588.721

1,945.727 1,622.406 1,572.555 1,209.442

Panethnic Adoption

High School

Bachelors

Moderate

Liberal

Constant

Note:

Observations Log Likelihood

Akaike Inf. Crit.

Some College/Associates

Challenges and Next Steps

- Challenges
 - Creating visualizations
 - Selecting a dataset
 - Some datasets didn't have all the variables I needed

- Next Steps
 - Field survey in Florida and NY
 - Interviews
 - "When" does panethnic adoption happen