TUNKU ABDUL RAHMAN UNIVERSITY OF MANAGEMENT AND TECHNOLOGY FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

ACADEMIC YEAR 2023/2024

JANUARY EXAMINATION

AACS3064 COMPUTER SYSTEMS ARCHITECTURE

TUESDAY, 16 JANUARY 2024

TIME: 2.00 PM - 4.00 PM (2 HOURS)

DIPLOMA IN COMPUTER SCIENCE
DIPLOMA IN INFORMATION TECHNOLOGY
DIPLOMA IN INFORMATION SYSTEMS

Instructions to Candidates:

Answer ALL questions. All questions carry equal marks.

Question 1

- a) Perform the following number conversions.

 (You are required to show the conversion steps clearly. Specify the reason(s) if the numbering is invalid.)
 - (i) 12.47C₁₆ to octal number

(2 marks)

(ii) 98.75₁₀ to hexadecimal number

(2 marks)

10-1

(iii) 45.36 to decimal number

(2 marks)

(iv) 110.110₂ to hexadecimal

(2 marks)

(v) 48.288 to binary number

(2 marks)

b) (i) Show how the following arithmetic operation is solved using two's complement method by a system that uses an 8-bit binary system to represent a decimal number. (3 marks) (You are required to show the conversion steps clearly.)

$$-55_{10} + (-55_{10})$$

(ii) Then, verify the answer by showing in signed decimal value.

(1 mark)

(iii) Does the answer have a carry and an overflow?

(1 mark)

- c) Given that a system is using the following:
 - Excess-51 notation is applied.
 - o sign bit is used to represent a positive number, and 9 represents a negative number.
 - The implied decimal point is at the beginning of the mantissa.
 - (i) Show how the system converts the SEEMMMMM 94988888 to decimal sign-magnitude notation.

 (4 marks)

 (You are required to show the conversion steps clearly.)
 - (ii) Show how the system adds the following two SEEMMMMM representations. Present the result in decimal sign-magnitude notation. (3 marks) (You are required to show the conversion steps clearly.)

0 50 24680 0 51 08642

d) Convert the following binary number to IEEE754 single precision format. (You are required to show the conversion steps clearly.)

(3 marks)

 $+1010.0101_{2}$

[Total: 25 marks]

Ouestion 2

PC

a) Assuming a Little Man Computer (LMC) model is used. Referring to Figure 1, show the steps and the changes of registers (IR, PC, MAR, MDR and A) when a simple addition of two numbers is executed. Currently, the PC points to the offset address 34. (15 marks)

156 => load content from address 56 257 => add the content from address 57

356 => store result to address 56

instruction interpretation

Figure 1: LMC

RAM

- b) Explain the **FOUR (4)** main features of Reduced Instruction Set Computer (RISC) architecture. (8 marks)
- c) Name the register for each of the following roles:
 - (i) It temporarily holds the actual instruction that is currently being executed by the CPU. (1 mark)
 - (ii) It temporarily holds the address of a memory content (data or instruction). (1 mark)

[Total: 25 marks]

Question 3

a) (i) By using an appropriate DEBUG command, write assembly language instructions starting from code segment address 1234H and offset 100H implementing the following high-level programming code. Assume the numbers are in signed 8-bit format. (3 marks) (Hints: a, mov, div ...)

$$y = 5 / 4$$

- (ii) Name the registers that hold the *quotient* and *remainder* for the program you have written. (2 marks)
- b) (i) Two memory addressing schemes i.e. logical address and physical address are used by the x86 microprocessor. Write a general equation of converting logical address to physical address in the Real-Mode (16-bit) memory. (2 marks)

Question 3 b) (Continued)

(ii) From the following snapshot, calculate the physical addresses of the CS:IP and SS:BP.

(4 marks)

c) Interrupt can suspend a process to gain control of the processor to address an event needing immediate attention. List FOUR (4) uses of interrupt in a computer system. (8 marks)

d) Identify THREE (3) methods to improve a system performance.

(6 marks)

[Total: 25 marks]

Question 4

a) Trace each line of the following assembly language instructions and record the contents of the corresponding registers from Line 5 to Line 9. (6 marks)

Line 1:	MOV	AL, 0ABh	
Line 2:	MOV	BL, 0EFh	
Line 3:	MOV	CL, 63h	
Line 4:	MOV	DL, 24h	;e.g. $DL = 24h$
Line 5:	XCHG	CL, DL	;CL = ?,DL = ?
Line 6:	SUB	BL, AL	BL = ?
Line 7:	DEC	CL	;CL = ?
Line 8:	SHL	DL, 1	;DL = ?
Line 9:	OR	AL, CL	:AL = ?

b) Referring to the following sub-questions, write code snippets (pieces of code) using assembly language to display the corresponding output. See the Figure 2 sample outputs.

Sample Output 1:	Sample Output 2:	Sample Output 3:
Enter an option (1 or 2): 1	Enter an option (1 or 2): 2	Enter an option (1 or 2): a
0123456789	ABCDEFGHIJ	Wrong option

Figure 2: Sample Outputs

If the option is 1, display the 10 numbers starting from 0 to 9. (Hints: $ASCII \ 30h \Rightarrow '0'$) If the option is 2, display the first 10 characters starting from A to J. (Hints: $ASCII \ 41h \Rightarrow 'A'$) Other than 1 and 2, display the error message "Wrong option".

(i) Declare all the necessary messages in the data segment.

(2 marks)

(ii) Initialise the data segment.

(1 mark)

Question 4 b) (Continued)

(iii)	Display the message "Enter an option (1 or 2):".	(1 mark)
(iv)	Receive or read a single input e.g. 1.	(1 mark)
(v)	Insert a new line.	(1 mark)
(vi)	Validate or check the input option (e.g. 1 or 2, or others).	(3 marks)
(vii)	Display 10 numbers if option 1 is detected. Note that the numbers CANNOT be message string. (Hints: loop, CX)	encoded in a (4 marks)
(viii)	Display 10 characters if option 2 is detected. Note that the characters CANNO in a message string (<i>Hints: loop, CX</i>)	T be encoded (4 marks)
(ix)	Display the error message "Wrong option" if an invalid option is detected.	(1 mark)
(x)	Terminate the program.	(1 mark)

[Total: 25 marks]

AACS3064 COMPUTER SYSTEMS ARCHITECTURE

Appendix: ASCII Character Set

00		20		40	@	60	42	80	Ç	A0	á	C0	L	E0	α
01	©	21	!	41	A	61	a	81	ü	A1	í	C1	\perp	E1	В
02	•	22	44	42	В	62	ь	82	é	A2	ó	C2	т	E2	Γ
03	٧	23	#	43	C	63	С	83	â	A3	ú	СЗ	ŀ	E3	π
04	•	24	\$	44	D	64	d	84	ä	A4	ñ	C4	_	E4	Σ
05	•	25	%	45	E	65	e	85	à	A5	Ñ	C5	+	E5	σ
06	•	26	&	46	F	66	\mathbf{f}	86	å	A6	a	C6	F	E6	μ
07	•	27	363	47	G	67	g	87	ç	A7	o	C7	⊩	E7	τ
80	0	28	(48	H	68	h	88	ê	A8	ሪ	C8	L	E8	Φ
09	0	29)	49	I	69	i	89	ë	A9	-	C9	ſĒ	E9	Θ
)A	1	2A	*	4A	J	6A	j	8A	è	AA	7	CA	┸	EA	Ω
βB	♂ਂ	2B	+	4B	K	6B	k	8B	ï	AB	1/2	СВ	1	EB	Δ
C	\$	2C	*	4C	L	6C	1	8C	î	AC	1/4	CC	۱Ļ	EC	œ
D	\$	2D		4D	M	6D	m	8D	ì	AD	i	CD	=	ED	φ
)E	S	2E	<u></u>	4E	N	6E	n	8E	Ä	AE	«	CE	作	EE	ε
F	☼	2F	1	4F	О	6F	0	8F	Å	AF	>>	CF	±	EF	\cap
0	•	30	0	50	P	70	p	90	É	В0		D0	1	FO	≡
1	◀	31	1	51	Q	71	q	91	æ	В1		D1	+	F1	<u> 1</u> .
2	\$	32	2	52	R	72	r	92	Æ	B2		D2	π	F2	≥
3	!!	33	3	53	S	73	S	93	ô	В3	1	D3	L	F3	≤
4	1	34	4	54	T	74	t	94	ö	B4	4	D4	F	F4	ſ
5	§	35	5	55	U	75	u	95	ò	B5	4	D5	F	F5	J
6	_	36	6	56	V	76	v	96	û	В6	\dashv	D6	ır	F6	÷
7	‡	37	7	57	\mathbf{w}	77	w	97	ù	В7	71	D7	#	F7	≈
8	1	38	8	58	X	78	X	98	ÿ	В8	٦	D8	#	F8	٥
9	1	39	9	59	Y	79	у	99	Ö	B9	뷔	D9	٦	F9	*8
A	→	3A		5A	Z	7A	Z	9A.	Ü	BA	I	DA	Γ	FA	*
В	←	3B	3	5B	[7B	{	9B	¢	вв	П	DB		FB	V
C	L	3C	<	5C	X	7C	I	9C	£	вс	J	DC		FC	n
D	\leftrightarrow	3D	=	5D	1	7D	}	9D	¥	BD	Ш	DD	1	FD	2
E	•	3E	>	5E	٨	7E	~	9E	Pts	BE	Ŧ	DE		FE	
F	\blacksquare	3F	?	5F	-	7F	Δ	9F	f	BF	٦	DF		FF	