Index Compression

Dr. Subrat Kumar Nayak

Associate Professor

Dept. of CSE, ITER, SOADU

What to be Discussed?

- Collection statistics in more detail (with RCV1)
 - How big will the dictionary and postings be?
- Dictionary compression
- Postings compression

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Why compression for inverted indexes?

- Dictionary
 - Make it small enough to keep in main memory
 - Make it so small that you can keep some postings lists in main memory too
- Postings file(s)
 - Reduce disk space needed
 - Decrease time needed to read postings lists from disk
 - Large search engines keep a significant part of the postings in memory.
 - Compression lets you keep more in memory
- We will devise various IR-specific compression schemes

Recall Reuters RCV1

```
symbol statistic
                       value
                       800,000
     documents
     avg. # tokens per doc 200
M
     terms (= word types) ~400,000
        avg. # bytes per token 6
               (incl. spaces/punct.)
        avg. # bytes per token 4.5
         (without spaces/punct.)
        avg. # bytes per term7.5
        non-positional postings 100,000,000
```

Index parameters vs. what we index

size of	word types (terms)			non-positional postings			positional postings		
	dictionary			non-positional index			positional index		
	Size (K)	$\Delta\%$	cumul %	Size (K)	Δ %	cumul %	Size (K)	Δ %	cumul %
Unfiltered	484			109,971			197,879		
No numbers	474	-2	-2	100,680	-8	-8	179,158	-9	-9
Case folding	392	-17	-19	96,969	-3	-12	179,158	0	-9
30 stopwords	391	-0	-19	83,390	-14	-24	121,858	-31	-38
150 stopwords	391	-0	-19	67,002	-30	-39	94,517	-47	-52
stemming	322	-17	-33	63,812	-4	-42	94,517	0	-52

Lossless vs. lossy compression

- Lossless compression: All information is preserved.
 - What we mostly do in IR.
- Lossy compression: Discard some information
- Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- Chap/Lecture 7: Prune postings entries that are unlikely to turn up in the top k list for any query.
 - Almost no loss quality for top k list.

Vocabulary vs. collection size

- How big is the term vocabulary?
 - That is, how many distinct words are there?
- Can we assume an upper bound?
 - Not really: At least $70^{20} = 10^{37}$ different words of length 20
- In practice, the vocabulary will keep growing with the collection size
 - Especially with Unicode ©

Vocabulary vs. collection size

- Heaps' law: M = kTb
- M is the size of the vocabulary, T is the number of tokens in the collection
- Typical values: $30 \le k \le 100$ and $b \approx 0.5$
- In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ½
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding ("empirical law")

Heaps' Law

- For RCV1, the dashed line
- $log_{10}M = 0.49 log_{10}T + 1.64$ is the best least squares fit.
- Thus, $M = 10^{1.64}T^{0.49}$ so $k = 10^{1.64} \approx 44$ and b = 0.49.
- Good empirical fit for Reuters RCV1!
- For first 1,000,020 tokens,
- law predicts 38,323 terms;
- actually, 38,365 terms

Fig 5.1 p81

Zipf's law

- Heaps' law gives the vocabulary size in collections.
- We also study the relative frequencies of terms.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- ightharpoonup cf_i $\propto 1/i = K/i$ where K is a normalizing constant
- cf_i is <u>collection frequency</u>: the number of occurrences of the term t_i in the collection.

Zipf consequences

- If the most frequent term (the) occurs cf₁ times
 - then the second most frequent term (of) occurs cf₁/2 times
 - the third most frequent term (and) occurs cf₁/3 times ...
- Equivalent: $cf_i = ci \land k$, so
 - $\log cf_i = \log c + k\log i = \log c \log i$
 - Linear relationship between log cf_i and log i
- Another power law relationship

Zipf's law for Reuters RCV1

Compression

- Now, we will consider compressing the space for the dictionary and postings
 - Basic Boolean index only
 - No study of positional indexes, etc.
 - We will consider compression schemes

Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Dictionary storage - first cut

- Array of fixed-width entries
 - ~400,000 terms; 28 bytes/term = 11.2 MB.

Fixed-width terms are wasteful

- Most of the bytes in the Term column are wasted we allot 20 bytes for 1 letter terms.
 - And we still can't handle supercalifragilistic expialidocious or hydrochlorofluorocarbons.
- Written English averages ~4.5 characters/word.
 - Exercise: Why is/isn't this the number to use for estimating the dictionary size?
- Ave. dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list: Dictionary-as-a-String

- Store dictionary as a (long) string of characters:
 - Pointer to next word shows end of current word
 - ■Hope to save up to 60% of dictionary space.

Space for dictionary as a string

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- Now avg. 11 bytes/term, not 20.

- 3 bytes per term pointer
- Avg. 8 bytes per term in term string
- → 400K terms x 19 ⇒ 7.6 MB (against 11.2MB for fixed width)

Blocking

- Store pointers to every kth term string.
 - \blacksquare Example below: k=4.
- Need to store term lengths (1 extra byte)

Freq. Postings ptr. Term ptr.

33

29

Save 9 bytes
on 3
pointers.

7

Net

- Example for block size k = 4
- Where we used 3 bytes/pointer without blocking
 - \rightarrow 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another \sim 0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger k.

Why not go with larger *k*?

Exercise

Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k = 4, 8 and 16.

Dictionary search without blocking

Assuming each dictionary term equally likely in query (not really so in practice!), average number of comparisons = (1+2*2+4*3+4)/8 ~2.6

Exercise: what if the frequencies of query terms were non-uniform but known, how would you structure the dictionary search tree?

Dictionary search with blocking

- Binary search down to 4-term block;
 - Then linear search through terms in block.
- Blocks of 4 (binary tree), avg. = $(1+2\cdot2+2\cdot3+2\cdot4+5)/8 = 3$ compares

Exercise

Estimate the impact on search performance (and slowdown compared to k=1) with blocking, for block sizes of k=4, 8 and 16.

Front coding

- Front-coding:
 - Sorted words commonly have long common prefix store differences only
 - \blacksquare (for last k-1 in a block of k)

8automata8automate9automatic10automation

Begins to resemble general string compression. 26

RCV1 dictionary compression summary

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

