Accretion disks around different objects: In general, the amount of matter falling onto an accretion disk and into the central object varies by several orders of magnitude, but a good approximate value for objects accreting in a binary system is $\dot{M} = 10^{-8} \, M_{\odot}/yr$, and for super-massive black holes is $\dot{M} = M_{\odot}/yr$.

Results:

Obj.	${ m M}~(M_{\odot})$	R	$\dot{M}\left(\frac{M_{\odot}}{yr}\right)$	$T_{max}\left(K\right)$	λ_{peak}	λ range	$F_{\oplus,tidal}$ (dyn)	$\Omega_{kep}\left(\frac{rad}{s}\right)$	$v_{kep}\left(\frac{cm}{s}\right)$
WD	.85	$.0095R_{\odot}$	10^{-8}	7.4×10^{4}	27nm	UV	6×10^{36}	0.6	4×10^{8}
NS	1.4	10 km	10^{-8}	10^{7}	0.2nm	X-ray	3×10^{45}	1.4×10^{4}	1.4×10^{10}
ВН	3	$3R_s$	10^{-8}	6×10^6	0.3nm	X-ray	3×10^{44}	4.6×10^3	1.2×10^{10}
SMBH	10^{8}	$3R_s$	1	10^{5}	18nm	UV	2.8×10^{29}	10^{-4}	1.2×10^{10}
MS*	1	1	10^{-8}	2300	$.85\mu m$	IR	6×10^{30}	6×10^{-4}	4.4×10^{7}

 $F_{\oplus,self\;gravity} \approx 6 \times 10^{30} \text{ dynes}$