

A rational mechanics course where everything is made with Python code

Bettachini, Víctor A.; Real, Mariano A.; Palazzo, Edgardo

New Media Pedagogy 23

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

Classroom and practice: an excercise on transcription

 \bullet Professor: lessons $\xrightarrow{by\ heart}$ blackboard/slides

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

Classroom and practice: an excercise on transcription

- Professor: lessons $\xrightarrow{by heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

ullet Professor: ideas o new code/notes in repository

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

- ullet Professor: ideas o new code/notes in repository
- ullet Student: course repository o its own modifiable one

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

- ullet Professor: ideas o new code/notes in repository
- ullet Student: course repository o its own modifiable one
- Use code to solve problems = **recycle** professor's code

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

- ullet Professor: ideas o new code/notes in repository
- ullet Student: course repository o its own modifiable one
- ullet Use code to solve problems = recycle professor's code
- Modifiying it solves different problems

The course setup: Google Colaboratory

- It runs Jupyter notebooks online, and it's free.
- Students can collaborate remotely, working on the same notebook.
- Teachers can edit and comment the work of students.

3 / 20

The course setup: GitHub

- Course material, accesible in a clear way, and easy to keep updated.
- Google Colaboratory loads Jupyter Notebooks directly from GitHub.

Class 1: Concise Mathematical Notation

• Latex typesetting, standard for the American Mathematical Society

Considero que el potencial V es nulo en el origen de coordenadas, es decir que donde se encuentra su mínimo $\varphi=0, V(\varphi=0)=-mg\ell'$ y por tanto

$$V(\varphi) = mg(-\ell\cos\varphi) = -mg\ell\cos\varphi,$$

Como vemos la aproximación funciona bastante bien. Conformes con ella calculamos la fuerza

$$\vec{F} = -\vec{\nabla}V = -\left(\frac{\partial}{\partial r}, \frac{1}{r}\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial z}\right)V(\varphi)$$

Pero solo nos interesa expresar la 2.a lev de Newton para lo que pasa en $\hat{\varphi}$

$$m\ddot{\vec{r}} \cdot \hat{\varphi} = -\frac{1}{r} \frac{\partial}{\partial \varphi} V(\varphi)$$

En el lado izquierdo de la expresión de la aceleración en cilindricas $\ddot{r} = (\ddot{r} - r\dot{\varphi}^2)\hat{r} + (\dot{r}\dot{\varphi}^2 + r\ddot{\varphi})\hat{\varphi} + \ddot{z}\hat{z}$, nos quedamos solo con la componente en $\hat{\phi}$.

$$\ddot{\vec{r}} \cdot \hat{\varphi} = \dot{r}\dot{\varphi}^2 + r\ddot{\varphi}$$

y como el hilo del péndulo es rígido e inextensible $r \equiv \ell$ solo queda de esto $\ddot{}$

$$\ddot{\vec{r}} \cdot \hat{\varphi} = \ell \ddot{\varphi}$$

En el lado derecho la derivada del potencial respecto a φ es

$$\frac{\partial}{\partial \varphi} V(\varphi) = mg\ell \sin(\varphi)$$

Class 1: precise and reproducible graphics

• The use of Python code for producing graphics is explicit, making the students play with it.

```
# graficación
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(tiempos, phi(tiempos), 'o-')
ax.set xlabel('Tiempo [s]')
ax.set vlabel(r'$\varphi$ [rad]')
Text(0, 0.5, '$\\varphi$ [rad]')
     0.15
     0.10
     0.05
φ [rad]
     0.00
    -0.05
    -0.10
    -0.15
                                                                                                        10
                                                      Tiempo [s]
```

Class 3: symbolic calculations

 These students have completed courses in Calculus and Algebra, now it's time to focus on applying the tools acquired in those courses.

```
[8]: m2 v cuadrado = m2 v.dot(m2 v)
        m2 v cuadrado
       \ell^2 \sin^2(\alpha) \dot{\alpha}^2 + (\ell \cos(\alpha) \dot{\alpha} + \dot{x})^2
        Con esto la energía cinética queda
                                                 T(\dot{x}_1, \varphi, \dot{\varphi}) = \frac{m_1}{2} (\dot{\vec{r}}_1)^2 + \frac{m_2}{2} (\dot{\vec{r}}_2)^2
                                                                  = \frac{m_1}{2}\dot{x}^2 + \frac{m_2}{2}(\dot{x}^2 + 2\dot{x}\ell\cos\varphi\dot{\varphi} + l^2\dot{\varphi}^2)
[9]: # Energía cinética
       unMedio = sym.Rational(1.2) # Rational: fracción de enteros, alternativamente podría haberse usado θ.5
        m1 T = unMedio* m1* m1 v cuadrado
        m2 T = unMedio* m2* m2 v cuadrado
        T = sym.Eq(sym.Symbol('T'), (m1 T + m2 T) ) # simplify: simplifica usando factor común y otras operaciones
       T = \frac{m_1 \dot{x}^2}{2} + \frac{m_2 \left(\ell^2 \sin^2 (\varphi) \dot{\varphi}^2 + (\ell \cos (\varphi) \dot{\varphi} + \dot{x})^2\right)}{2}
```


Class 4: Dynamics

Ecuaciones de Euler-Lagrange

Para x

$$m_1\ddot{x} + m_2\left(-\ell\sin(\phi)\dot{\phi}^2 + \ell\cos(\phi)\ddot{\phi} + \ddot{x}\right) = 0$$

Esta es una ecuación diferencial lineal de segundo orden homogena. De aquí podría despejarse \ddot{x}

[9]: sym.Eq(x.diff(t,2),

list($sym.solveset(x_EL, x.diff(t,2)$) [0] # solveset devuelve un set, que convertimos a lista) # aceleración = x punto punto [m s-2]

$$\ddot{x} = \frac{\ell m_2 \left(\sin \left(\phi \right) \dot{\phi}^2 - \cos \left(\phi \right) \ddot{\phi} \right)}{m_1 + m_2}$$

Pero queda en función de otra aceleración $\ddot{\phi}$.

Para ϕ

[10]: phi_EL = sym.Eq(L.rhs.diff(phi) - L.rhs.diff(phi.diff(t)).diff(t), 0).simplify() # ecuación igualando a cero
phi_EL

Class 4: Automation of resolutions

- No heavy calculations consuming the energy of the students.
- Their complexity does not limit the mechanical problems that can be tackled.

Class 5: Numerical analysis

Explicit solutions.

```
[22]: # defino una función con el sistema de derivadas
      # t : no se usa en este sistema pero lo dejamos para uso posterior
      # v : lista de estado con [v[θ], v[1], v[2], v[3]]
      # v[0]: x
      # v[1]: x punto
      # v[2]: phi
      # y[3]: phi punto
      # dvdt : lista de derivadas
      def v punto(t, v):
          dydt = [y[1],
                  x pp numpy(y[0], y[1], y[2], y[3]),
                  v[3].
                  phi pp numpy(v[0], v[1], v[2], v[3]),
          return dydt
[23]: # Integración de a pasos en el tiempo
      v ode2 = solve ivp(v punto, (t rango[0], t rango[-1]), v inicial, t eval = t rango)
[25]: v ode2.v[0]
                        . 0.95510744, 0.92131146, 0.89820932, 0.88468059,
[25]: arrav([ 1.
              0.87877042, 0.87745354, 0.87702754, 0.87352768, 0.86357726,
              0.84474673, 0.81565733, 0.77559949, 0.72423163, 0.66166451,
              0.588266 , 0.50468237, 0.41250381, 0.31433661, 0.21366454,
              0.11444308. 0.02023394. -0.06599563. -0.14244216. -0.20809592.
             -0.26250272. -0.30576388. -0.33796804. -0.35953138. -0.37175469.
```

Class 5: analysis of results

```
[26]: solucion = y ode2
      nombreCoordenada = 'x'
      fig. ax = plt.subplots(nrows= 1, ncols= 2, squeeze=False, figsize=(12, 4)) # dos figuras en la misma fila
      fig.suptitle('Integración numérica para $'+ nombreCoordenada + '$', fontsize=16)
      ax[0.0].plot(solucion.t. solucion.v[0]) # posición x
      ax[0,0].set(xlabel='t [s]', ylabel= '$' + nombreCoordenada+ '$ [m]', title='Posición')
      ax[0,1].plot(solucion.t, solucion.y[1]) # velocidad x
      ax[0,1].set(xlabel='t [s]', ylabel='$\dot{' + nombreCoordenada+ '}$ [m/s]', title='Velocidad')
[26]: [Text(0.5, 0, 't [s]').
       Text(0, 0.5, '$\\dot{x}$ [m/s]'),
       Text(0.5, 1.0, 'Velocidad')]
                                              Integración numérica para x
                                                                                    Velocidad
                              Posición
                                                                 0.0
                                                               -0.2
           0
                                                           [s/m] <sub>-0.6</sub>
      E <sup>-1</sup> × −2
          -3
                                                               -0.8
             Python 3 (ipykernel) | Idle
                                                                  Saving completed
                                                                                                                  Mode:
```

Class 7: Adding complexity

- Reuse code from previous classes to study complex situations.
- Similar to real world problems.

• Currently they use a pocket calculator after they learnt learning arithmetics at school

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

Papert (1980) "...the best learning takes place when the learner takes charge"

• An expample problem is solved by the professor provided code

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

Papert (1980) "...the best learning takes place when the learner takes charge"

- An expample problem is solved by the professor provided code
- The student modifies it to solve other related problems

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

Papert (1980) "...the best learning takes place when the learner takes charge"

- An expample problem is solved by the professor provided code
- The student modifies it to solve other related problems
- Gradually he becomes autonomous by reusing not the provided but his own code

All course material can be edited on-line

All course material can be edited on-line

On-line programmable notebook: text + equations + code

New theory alongisde its worked examples in programmable notebooks

• On-line 24/7 asynchronical consultations that are public for others to see

Synchronic	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

New theory alongisde its worked examples in programmable notebooks

- On-line 24/7 asynchronical consultations that are public for others to see
- Remote collaboration on multi-user notebooks

Synchronic	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

New theory alongisde its worked examples in programmable notebooks

- On-line 24/7 asynchronical consultations that are public for others to see
- Remote collaboration on multi-user notebooks
- Weekly meetings to synchronically unfinished assignments with TA's assistance

Synchronic	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

New theory alongisde its worked examples in programmable notebooks

- On-line 24/7 asynchronical consultations that are public for others to see
- Remote collaboration on multi-user notebooks
- Weekly meetings to synchronically unfinished assignments with TA's assistance
- On a weekly basis these must be turned-in for scoring

Synchronic	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

Asynchronic corrections and remote assistance

Student's work can be commented and edited in Google Colaboratory

Exams

The exam is just another excercise.

- The students send their notebook.
- Feedback is inserted in between the student's work.
 - []: sym.Eq(flig_rho_rep, flig_rho)
- [119]: $Q_{\rho}(\lambda) = \lambda$

Esta fuerza efectivamente es igual a λ , pero ¿por qué? No das una justificación.

Entonces la fuerza de ligadura Q_{θ} , o lo que es lo mismo, la fuerza que hace la barra rigida esta dada por la ecuacion:

$$\text{[120]:} \ \ Q_{\rho}\left(\theta_1,\dot{\theta}_1,\theta_2,\dot{\theta}_2\right) = -m\left(\ell'\dot{\theta}_2^2 + a\sin\left(\theta_1 - \theta_2\right)\ddot{\theta}_1 + a\cos\left(\theta_1 - \theta_2\right)\dot{\theta}_1^2 + g\cos\left(\theta_2\right)\right)$$

No es la expresión buscada.

Entre las variables hay una que no está marcada en la izquierda de la igualdad, donde decís que la expresas en función de los $heta_i$ y $\dot{ heta}_i$.

Podés ver que te quedó expresado en función de $\ddot{ heta}_1$. Esta puede obtenerse de resolver el sistema con las otras dos ecuaciones de Euler-

Lagrange.

Individualized student follow-up at Microsoft Teams

A course centred on code

• Theory: text + equations + executable cod in digital notebooks.

A course centred on code

- ullet Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

Inverted classroom

• Theory: emphasis on student's autonomus reading

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

- Theory: emphasis on student's autonomus reading
- Consultations: mostly on-line asynchronical and of public access

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

- Theory: emphasis on student's autonomus reading
- Consultations: mostly on-line asynchronical and of public access
- TA personal assisantace when completing assignments in synchronical meetings

2023 Students feedback improved:

• Theory notes and code at repository

- Theory notes and code at repository
- ullet Grading of assignments methodology Evaluating each one of them o higher student's performance

- Theory notes and code at repository
- ullet Grading of assignments methodology Evaluating each one of them o higher student's performance

- Theory notes and code at repository
- ullet Grading of assignments methodology Evaluating each one of them o higher student's performance
- A course on optics and waves will incorporate part of the methodology

- Theory notes and code at repository
- \bullet Grading of assignments methodology Evaluating each one of them \to higher student's performance
- 2024
- A course on optics and waves will incorporate part of the methodology
- Al assistance in code generation employing GitHub Copilot

