PH 534 Autumn 2024-2025 – Quantum information and computation Practice problems Set 1b

(Dated: August 28, 2024)

- 21. Statistical vs Quantum Randomness: Imagine a Stern-Gerlach setup, however with an inbuilt "demon" that sorts $|0\rangle$ and $|+\rangle$ with probability 2/3 and 1/3 respectively.
 - (a) Write down the density matrix (ρ) for this system.
 - (b) Find the eigenvalues of ρ and prove that it is a valid quantum state.
 - (c) Find the expectation value of the operator σ_z for this state.
 - (d) Compute the purification of the above single qubit state ρ .
 - (e) Perform a Schmidt decomposition of this purified state.
 - (f) Verify that a partial trace over the second subsystem gives you the state ρ that you started with!
- 22. Compute purifications for the following single qubit states:
 - (a) $\rho_1 = \frac{1}{2}\mathbb{I}_2$, where \mathbb{I}_2 is a 2×2 identity matrix. Is the purification unique?
 - (b) $\rho_2 = \frac{1}{2}(|0\rangle\langle 0| + |+\rangle\langle +|)$, where $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$.
 - (c) $\rho_3 = \frac{2}{5}\rho_1 + \frac{3}{5}\rho_2$. This is an example of a mixture of a mixture!
- 23. Find the Schmidt decomposition for the state,
 - (a) $|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A |0\rangle_B + |+\rangle_A |1\rangle_B).$
 - (b) What is the Schmidt rank for the above state? What do you infer about the presence of entanglement?
 - (c) Prove that the Schmidt rank of a separable pure state is always 1.
- 24. Choi-Jamiołkowski isomorphism: Isomorphisms between Maps and States Consider the following maps on a qubit state ρ :
 - (a) Transpose map, i.e., $\Phi(\rho) = \rho^T$.

- (b) Thermal map, i.e., $\Phi(\rho) = \tau = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1|$ for some value of p, $0.5 \le p \le 1$.
- (c) Write the Choi state for the map Φ given in (a) and (b), and find the Kraus operators.
- (d) Find which of these maps are CPTP. Prove your assertion by checking the Choi state and the Kraus operators.

25. Partial trace and expectation values

- (a) Consider the state $|\psi\rangle_{AB} = \cos\theta |00\rangle + \sin\theta |11\rangle$ in the Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$. Find the correlation matrix $\chi_{AB} = \rho_{AB} \rho_A \otimes \rho_B$, where $\rho_{AB} = |\psi\rangle\langle\psi|_{AB}$, and ρ_A and ρ_B are the reduced states.
- (b) Measure the expectation value of σ_z in the Hilbert space \mathcal{H}_A using the full state $|\psi\rangle_{AB}$ and the reduced state ρ_A .