Medidas de Posição e Dispersão para Dados Agrupados com Intervalos de Classe

Matemática II

Processo Longo

i	ESTATURAS (cm)	f_i	
1	150 ⊢ 154	4	
2	154 ⊢ 158	9	
3	158 ⊢ 162	11	
4	162 ⊢ 166	8	
5	166 ⊢ 170	5	
6	170 ⊢ 174	3	
- 6		$\Sigma = 40$	

$$\overline{X} = \frac{\sum PM_i \cdot f_i}{\sum f_i}$$

Processo Longo

i	ESTATURAS (cm)	f_i	PM_i	PM_if_i
1	150 ⊢ 154	4	152	608
2	154 ⊢ 158	9	156	1404
3	158 ⊢ 162	11	160	1760
4	162 ⊢ 166	8	164	1312
5	166 ⊢ 170	5	168	840
6	170 ⊢ 174	3	172	516
		$\sum = 40$		$\sum = 6440$

$$\overline{X} = \frac{\sum PM_i \cdot f_i}{\sum f_i}$$

$$\overline{X} = \frac{6440}{40} = 161$$

$$\overline{X} = 161 \, cm$$

- Processo Breve
 - Baseia-se em uma mudança de variável PM_i por outra y_i

$$y_i = \frac{PM_i - PM_0}{h}$$

- Onde PM_o é o ponto médio da classe com maior frequência.
- Com essa mudança de variável a fórmula resulta em

$$\overline{X} = PM_0 + \frac{\left(\sum y_i \cdot f_i\right) \cdot h}{\sum f_i}$$

- Processo Breve
 - Na tabela do exemplo anterior $PM_0 = 160 \text{ e } h = 4.$

$$y_i = \frac{PM_i - PM_0}{h}$$

$$y_1 = \frac{152 - 160}{4} = \frac{-8}{4} = -2$$

$$y_2 = \frac{156 - 160}{4} = \frac{-4}{4} = -1$$

$$y_3 = \frac{160 - 160}{4} = \frac{0}{4} = 0$$

$$y_4 = \frac{164 - 160}{4} = \frac{4}{4} = 1$$

$$y_5 = \frac{168 - 160}{4} = \frac{8}{4} = 2$$

$$y_6 = \frac{172 - 160}{4} = \frac{12}{4} = 3$$

Processo Breve

$$\overline{X} = PM_0 + \frac{\left(\sum y_i \cdot f_i\right) \cdot h}{\sum f_i}$$

	i	ESTATURAS (cm)	f_i	PM_i	y_i	$y_i f_i$
	1	150 ⊢ 154	4	152	-2	-8
	2	154 ⊢ 158	9	156	-1	-9
•	3	158 ⊢ 162	11	160	0	0
	4	162 ⊢ 166	8	164	1	8
	5	166 ⊢ 170	5	168	2	10
	6	170 ⊢ 174	3	172	3	9
			\sum = 40	ě		$\sum = 10$

$$\overline{X} = 160 + \frac{10 \cdot 4}{40}$$

$$=160 + \frac{40}{40} = 160 + 1$$

$$\overline{X} = 161 \, cm$$

Moda

 A classe que apresenta a maior frequência é denominada classe modal.

$$Mo = l_{MO} + \frac{f_{Mo} - f_{Mo}ant}{2f_{Mo} - (f_{Mo}ant + f_{Mo}post)} \cdot h$$

- l_{MO} é o limite inferior da classe modal
- h é a amplitude da classe modal
- f_{MO} é a frequência simples da classe modal
- $f_{MO}ant$ é a frequência simples da classe anterior à classe modal
- $f_{MO}post$ é a frequência simples da classe posterior à classe modal

Moda

 Calcule a moda da distribuição

i	ESTATURAS (cm)	f_i
1	150 ⊢ 154	4
2	154 ⊢ 158	9
3	158 ⊢ 162	11
4	162 ⊢ 166	8
5	166 ⊢ 170	5
6	170 ⊢ 174	3
		\sum = 40

$$Mo = l_{MO} + \frac{f_{Mo} - f_{Mo}ant}{2f_{Mo} - (f_{Mo}ant + f_{Mo}post)} \cdot h$$

$$Mo = 158 + \frac{11 - 9}{(11 - 9) + (11 - 8)} \cdot 4$$

$$=158 + \frac{8}{5} = 158 + 1,6 = 159,6$$

$$Mo = 159,6$$

Mediana

 Determinar a classe na qual se acha a mediana, que será a correspondente à frequência acumulada crescente imediatamente superior a

$$\frac{\sum f_i}{2}$$

E aplicamos a fórmula:

$$Md = l_{Md} + \frac{\left[\frac{\sum f_i}{2} - fac_{Md}(ant)\right].h}{f_{Md}}$$

Mediana

• Calculando a mediana para o exemplo das alturas temos: $\frac{\sum f_i}{2} = \frac{40}{2} = 20$

i ESTATURAS
$$f_i$$
 fac_i

1 150 \vdash 154 4 4
2 154 \vdash 158 9 13
3 158 \vdash 162 11 24
4 162 \vdash 166 8 32
5 166 \vdash 170 5 37
6 170 \vdash 174 3 40
$$\sum = 40$$

$$Md = l_{Md} + \frac{\left[\frac{\sum f_i}{2} - fac_{Md}(ant)\right]h}{f_{Md}}$$

$$Md = 158 + \frac{\left[20 - 13\right] \cdot 4}{11} = 158 + \frac{7 \cdot 4}{11}$$

$$= 158 + \frac{28}{11} = 158 + 2,54 = 160,54$$

$$Md = 160,54$$

Mediana

• No caso de existir uma frequência acumulada exatamente igual a, $\frac{\sum f_i}{2}$ a mediana será o limite superior da classe correspondente.

i	CLASSES	f_{i}	fac_i
1	0 ⊢ 10	1	1
2	10 ⊢ 20	3	4
3	20 ⊢ 30	9	13
4	30 ⊢ 40	7	20
5	40 ⊢ 50	4	24
6	50 ⊢ 60	2	26
		$\sum = 26$	

$$\frac{\sum f_i}{2} = \frac{26}{2} = 13$$

$$Md = L_{Md} = 30$$

$$S = \sqrt{\frac{\sum f_i \cdot PM_i^2}{\sum f_i} - \left(\frac{\sum f_i \cdot PM_i}{\sum f_i}\right)^2}$$

i	ESTATURAS (cm)	f_{i}	PM_i	$f_i PM_i$	PM_i^2	$f_i PM_i^2$
1	150 ⊢ 154	4	152	608	23104	92416
2	154 ⊢ 158	9	156	1404	24336	219024
3	158 ⊢ 162	11	160	1760	25600	281600
4	162 ⊢ 166	8	164	1312	26896	215168
5	166 ⊢ 170	5	168	840	28224	141120
6	170 ⊢ 174	3	172	516	29584	88752
		$\sum = 40$		$\sum = 6440$		$\sum = 1.038.080$

$$s = \sqrt{\frac{1.038.080}{40} - \left(\frac{6440}{40}\right)^2} = \sqrt{25.952 - 25.921} = \sqrt{31} = 5,567$$

Desvio Padrão

- Processo Breve
 - Baseia-se em uma mudança de variável PM_i por outra y_i

$$y_i = \frac{PM_i - PM_0}{h}$$

$$s = h\sqrt{\frac{\sum f_i \cdot y_i^2}{\sum f_i} - \left(\frac{\sum f_i \cdot y_i}{\sum f_i}\right)^2}$$

 Abrem-se as colunas correspondentes para o uso da fórmula.

	i	ESTATURAS (cm)	f_{i}	PM_i	y_i	$y_i f_i$	$f_i y_i^2$
	1 2	150 ⊢ 154	4	152 156	-2 -1	-8 -9	16 9
	3	154 ⊢ 158 158 ⊢ 162	11	160	0	0	0
	4 5 6	162 ⊢ 166 166 ⊢ 170 170 ⊢ 174	8 5 3	164 168 172	1 2 3	8 10 9	8 20 27
			\sum = 40			$\sum = 10$	$\sum = 80$

$$s = 4\sqrt{\frac{80}{40} - \left(\frac{10}{40}\right)^2} = 4\sqrt{2 - 0.0625} = 4\sqrt{1.9375} = 4 \cdot 1.3919 = 5.5676$$