Vysoká škola báňská – Technická univerzita Ostrava Katedra informatiky Fakulta elektrotechniky a informatiky

Grafické rozhraní pro pasivní radiolokaci

Matouš Valeš

4

Otázky

2 3

Cíl práce

- Radiolokátor
- Požadovaná funkcionalita

Řešení

- Návrh aplikace
- Komunikační protokol
- Datové úložiště

Zhodnocení provedení

- Vizualizační části
- Datová část

Cíl práce

RADIOLOKÁTOR

POŽADOVANÁ FUNKCIONALITA

Radiolokátor

Zaměřuje úhel příchodu rádiového signálu

Pasivní radiolokace

Pseudo-Dopplerova anténa

Triangulace polohy

Cíl práce

RADIOLOKÁTOR

POŽADOVANÁ FUNKCIONALITA

Datové úložiště

Rychlé

Nenáročné na výpočetní výkon

Flexibilní

S možností importu/exportu dat

Řešení

RADIOLOCATOR

KOMUNIKAČNÍ PROTOKOL

DATOVÉ ÚLOŽIŠTĚ

Radiolokační aplikace

RadioLocator

Klíčové funkce

RadioLocator je aplikace pro Android verze 5.0+, umožňující vizualizaci a katalogizaci měření prováděných pasivním radiolokátorem. Provádí zaměření vysílače použitím naměřených hodnot jako datové vrstvy Google mapy a vytvořením průsečíku přímek nad mapou. Měření získává v reálném čase, popřípadě možností importu přímo v uživatelském rozhraní.

Google Maps Radiolokace vysílače s využitím Google Maps API

Vizualizace Zobrazení měřených dat v reálném čase

SQLite Plnohodnotná databáze měření

Android Material Design pro snadné používání

latitude>47.644548</latitude>

<time>22:58:43 6.6.2016</time>

<angle>4.46</angle>

</Datapoint>

Řešení

RADIOLOCATOR

KOMUNIKAČNÍ PROTOKOL

DATOVÉ ÚLOŽIŠTĚ

citude>

.2016</time>

<latitude>47.644548</latitude

<time>22:58:43 6.6.2016</time>

<angle>4.46</angle>

</Datapoint>

</longitude> <longitude>-122.326897</longitude> <longitude>-122.326897</longitude>

Radiolokátor

Zaznamenání úhlu (Angle of Arrival), zeměpisné šířky a délky, času a data měření

Naformátování naměřených dat do XML struktury Datapoint

Odesílání XML v textovém streamu pomocí v 15 vteřinových intervalech

Řešení

RADIOLOCATOR

KOMUNIKAČNÍ PROTOKOL

DATOVÉ ÚLOŽIŠTĚ

6

SQLite

Rychlá, se snadným importem a exportem dat

Možnost migrace na databázový server

Mapování dat na objekty pomocí Lazy loadingu

Zhodnocení provedení

VIZUALIZAČNÍ ČÁST

DATOVÁ ČÁST

Vizualizace

Přímky vytvořeny spojením Markerů (s nastavitelným parametrem)

Výkonově nenáročná vizualizace v reálném čase

Horší kompenzace nepřesností v měření ovlivněném prostředím

Zhodnocení provedení

VIZUALIZAČNÍ ČÁST

DATOVÁ ČÁST

Datová část

Snadný import a export

Šetření zdroji – Lazy loading, v paměti uchovávány jen ty modely, které aplikace aktuálně zobrazuje

Možná rozšiřitelnost/migrace do budoucna

8

Děkuji za pozornost

Obhajoba

OTÁZKA VEDOUCÍHO

OTÁZKA OPONENTA

Vizualizace s pomocí bitmap

Namísto přímek zakreslených do mapy bychom kreslili nad mapou

Souřadnice vs pixelová pozice (umístění v Mercatorovo projekci násobená úrovní přiblížení)

Různé způsoby vykreslování

Obhajoba

OTÁZKA VEDOUCÍHO

OTÁZKA OPONENTA

Portable Direction Finder

Rohde & Schwarz DDF007

START

+0:30s Zjištění obecného směru

+1:30s Algoritmus vytváří gradient v závislosti na četnosti směrů

11

Obhajoba

OTÁZKA VEDOUCÍHO

OTÁZKA OPONENTA

Alternativní komunikace

UDP nevyhovuje – data potřebujeme kompletní

Object stream vs textový stream

Inspirace .gpx formátem

XML není závislé na platformě

