

010687759

WPI Acc No: 1996-184715/199619

XRAM Acc No: C96-058497

Therapeutic against cytomegalovirus anti-genaemia - contg anti cytomegalovirus human monoclonal antibody recognising envelope glyco-protein, used for treating interstitial pneumonia, etc.

Patent Assignee: TEIJIN LTD (TEIJ)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 8059509	A	19960305	JP 94192421	A	19940816	199619 B

Priority Applications (No Type Date): JP 94192421 A 19940816

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 8059509	A	6	A61K-039/42	

Abstract (Basic): JP 8059509 A

Therapeutic agents against cytomegalovirus (CMV) anti-genaemia contain an anti-CMV human monoclonal antibody recognising the envelope glycoprotein of CMV and neutralising CMV. Pref the glycoprotein is Glycoprotein B. Pref the antibody is IgG1, esp. "legavyl mab (sic)".

Also claimed are therapeutic agents against infection by the virus contg the antibody.

The antibody is produced by a mouse-human hybridoma formed by fusion of an antibody-producing cell sensitiser with CMV or its glycoprotein with the myeloma cell of mice in vitro in the presence of mitogen.

USE/ADVANTAGE - The infection is interstitial pneumonia, CMV hepatitis, or CMV nephritis. The agents control infection and are safe with few side effects.

In an example, a soln contg a human monoclonal antibody obtd by the method described in International Patent No 87-03602, 0.2 pt wt "legavyl mab (sic)", 2 pts wt amino acetic acid, 0.2 pts wt human serum albumin, 0.9 pts wt sodium chloride and 96.7 pts wt of distilled water was prep'd and sterilised, poured in glass vials in an amt of 20 ml per vial under sterile conditions and freeze dried to obtain a prod of "legavyl mab (sic)" in an amt of 40 mg per vial.

Dwg.0/0

Title Terms: THERAPEUTIC; CYTOMEGALOVIRUS; ANTI; CONTAIN; ANTI; CYTOMEGALOVIRUS; HUMAN; MONOCLONAL; ANTIBODY; RECOGNISE; ENVELOPE; GLYCO; PROTEIN; TREAT; INTERSTITIAL; PNEUMONIA

Derwent Class: B04; D16

International Patent Class (Main): A61K-039/42

International Patent Class (Additional): A61K-039/395; C12P-021/08

File Segment: CPI

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-53500

(43)公開日 平成8年(1996)2月27日

(51)Int.Cl.*	識別記号	府内整理番号	F I	技術表示箇所
C 0 7 K 19/00		8318-4H		
C 1 2 N 1/19		8828-4B		
15/09	Z N A			
C 1 2 P 21/02	C 9282-4B 9281-4B	C 1 2 N 15/ 00	Z N A A	審査請求 未請求 請求項の数20 FD (全 24 頁) 最終頁に続く

(21)出願番号	特願平6-209368	(71)出願人	000000044 旭硝子株式会社 東京都千代田区丸の内2丁目1番2号
(22)出願日	平成6年(1994)8月11日	(72)発明者	東田 英毅 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内
		(72)発明者	村上 喜美子 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内
		(72)発明者	浜 祐子 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内
		(74)代理人	弁理士 長谷川 洋子 (外2名) 最終頁に続く

(54)【発明の名称】融合タンパク質および該タンパク質をコードする遺伝子

(57)【要約】

【目的】ヒト血清アルブミンタンパク質の立体構造を破壊することなく、しかも生理活性を十分に発揮し得る生理活性を有する融合タンパク質を遺伝子工学的に作製し、提供する。

【構成】ヒト血清アルブミンのポリペプチド鎖の少なくとも1つ以上の所置の位置に、望ましくは、アミノ末端、カルボキシル末端、第1～2ドメイン間あるいは第2～3ドメイン間に、生理活性を有するペプチドを導入した融合タンパク質およびこれをコードする遺伝子、並びに、該遺伝子を用いて上記融合タンパク質を遺伝子組換え手法によって製造する方法。

【特許請求の範囲】

【請求項1】 ヒト血清アルブミンのポリペプチド鎖の少なくとも1つ以上の所望の位置に生理活性を有するペプチドを導入してなる融合タンパク質。

【請求項2】 生理活性を有するペプチドの導入位置が、ヒト血清アルブミンのポリペプチド鎖のアミノ末端、カルボキシル末端、第1～2ドメイン間あるいは第2～3ドメイン間のうちのいずれか1箇所若しくはこれらの任意の組み合わせの位置である、請求項1に記載の融合タンパク質。

【請求項3】 生理活性を有するペプチドが配列番号1のアミノ酸配列で表される、請求項1または2に記載の融合タンパク質。

【請求項4】 請求項1～3のいずれかに記載の融合タンパク質をコードする遺伝子。

【請求項5】 生理活性を有するペプチドの導入位置がヒト血清アルブミンのポリペプチド鎖のアミノ末端である、配列番号2のアミノ酸配列で表される、請求項1～3のいずれかに記載の融合タンパク質。

【請求項6】 配列番号3の塩基配列で表される、請求項5に記載の融合タンパク質をコードする遺伝子。

【請求項7】 生理活性を有するペプチドの導入位置がヒト血清アルブミンのポリペプチド鎖の第1～2ドメイン間である、配列番号4のアミノ酸配列で表される、請求項1～3のいずれかに記載の融合タンパク質。

【請求項8】 配列番号5の塩基配列で表される、請求項7に記載の融合タンパク質をコードする遺伝子。

【請求項9】 生理活性を有するペプチドの導入位置がヒト血清アルブミンのポリペプチド鎖の第2～3ドメイン間である、配列番号6のアミノ酸配列で表される、請求項1～3のいずれかに記載の融合タンパク質。

【請求項10】 配列番号7の塩基配列で表される、請求項9に記載の融合タンパク質をコードする遺伝子。

【請求項11】 生理活性を有するペプチドの導入位置がヒト血清アルブミンのポリペプチド鎖のカルボキシル末端である、配列番号8のアミノ酸配列で表される、請求項1～3のいずれかに記載の融合タンパク質。

【請求項12】 配列番号9の塩基配列で表される、請求項11に記載の融合タンパク質をコードする遺伝子。

【請求項13】 請求項6、8、10および12のいずれかに記載の遺伝子を含有する組換えベクター。

【請求項14】 前記組換えベクターがプラスミドpTL2BmI-1000である、請求項13に記載の組換えベクター。

【請求項15】 前記ベクターがプラスミドpTL2BmI-0100である、請求項13に記載の組換えベクター。

【請求項16】 前記ベクターがプラスミドpTL2BmI-0010である、請求項13に記載の組換えベクター。

1

2

【請求項17】 前記ベクターがプラスミドpTL2BmI-0001である、請求項13に記載の組換えベクター。

【請求項18】 請求項13～17のいずれかに記載の組換えベクターで宿主細胞を形質転換してなる、融合タンパク質を產生し得る形質転換体。

【請求項19】 宿主細胞が分裂酵母シソサッカロミセス・ポンベ (*Schizosaccharomyces pombe*) である、請求項18に記載の形質転換体。

【請求項20】 請求項18または19に記載の形質転換体を培養し、培養物中に產生された融合タンパク質を単離し、所望により精製することからなる該融合タンパク質の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、生理活性、特に癌細胞活性を有する融合タンパク質およびこれをコードする遺伝子、該遺伝子を含有する組換えベクター、該組換えベクターによって形質転換された宿主細胞の形質転換体並びに該形質転換体を用いる融合タンパク質の製造方法に関する。

【0002】

【從来の技術】 癌の治療には主として外科的療法、放射線療法および化学療法が行われているが、癌の再発や転移の防止という点ではいまだ満足すべき治療効果が挙げられていない。

【0003】 現在用いられている多くの制癌剤は、核酸あるいはタンパク質の生合成系を阻害し、癌細胞を死に至らしめるものである。しかしながらこれらの制癌剤では、癌細胞と正常細胞との区別が困難なため、その効果には、特に副作用の面で大きな問題が存在している。またこれららの制癌剤は原発巣を縮小させることによって治療するものがあるが、癌の治療で常に問題になるのは癌細胞が原発巣から離れ、他の臓器に転移し、そこで増殖し致命的な結果を招くことである。したがって癌の根本的治療のためには、癌細胞の増殖抑制とともに、転移に対する有効な抑制効果を示す制癌剤の開発が望まれている。

【0004】 癌転移の機構の解明には多くの研究がなされ、転移の抑制に関する物質の検索も広く行なわれてきた。癌細胞は原発巣から遊離した後、血管中に侵入する。そして血管壁に接着後、血管内皮細胞層の下に潜り込み細胞外基質を破壊し、標的臓器の実質中に浸潤侵入する。このような各ステップを経て癌細胞は他の臓器に転移すると考えられている (L.A. Lioi et al.: Lab. Invest., 49, 636-649(1983))。よって癌転移阻害剤開発のために上記の各ステップのいずれかを抑制するものが開発されればよいと考えられる。例えば、癌細胞が細胞外基質と接着するのを阻害するもの(例えば、N.J. Humphries et al.: Science, 223, 467-470 (198

6))、中皮細胞層や血管内皮細胞層などの下層への浸潤を阻害する物質（例えば、A. Isoai et al.: Jpn. J. Cancer Res., 81, 909-914 (1990)）、細胞外基質の分解を阻害する物質（例えば、R.M. Schultz et al.: Cancer Res., 48, 5539-5545 (1988)）等が挙げられる。

【0 0 0 5】本発明者は従前に、癌転移阻害活性を有するペプチドと生体高分子との複合体を化学的結合法により作製している。すなわち、配列表の配列番号1のアミノ酸で表される癌阻害活性を有するペプチド（特開平3-34993号公報、A. Isoai et al.: Jpn. J. Cancer Res., 81, 909-914 (1990) および A. Isoai et al.: Cancer Res., 52, 1422-1426 (1992)）と、血清アルブミンなどの生体高分子とを水溶性カルボジミドで結合させた形態において、優れた癌細胞浸潤阻害活性並びに癌転移抑制活性をもつということを確認している（特開平4-254000号、同4-300899号、同4-300900号公報および Biochem. Biophys. Res. Commun., 192, 7-14 (1993)）。

【0 0 0 6】このように有用な癌転移阻害活性を有する複合体（融合タンパク質）は、通常化学的タンパク質結合法によって作製される。しかしながらその方法はステップ数が多く、また不純物である不完全合成産物の分離を行なわなければならない。通常これらの方は煩雑であり、また効率よく大量生産することが難しく、特に609アミノ酸残基を有する該融合タンパク質では、従来の化学的タンパク質ペプチド結合法によることは、コスト的に設備的に必ずしも満足できるものではなかった。

【0 0 0 7】

【発明が解決しようとする課題】本発明はかかる事情に鑑みてなされたもので、生理活性を有するペプチド、とりわけ配列番号1のアミノ酸配列で表されるペプチド（癌転移阻害ペプチド）と血清アルブミン等の生体高分子との複合体（癌転移阻害融合タンパク質）を、従来の化学的タンパク質ペプチド結合法に代えて、遺伝子組換え技術を用いて、より効率的な遺伝子発現並びに癌転移阻害融合タンパク質の生産をなし得るための技術を提供することにある。

【0 0 0 8】

【課題を解決するための手段】本発明者は上記課題を解決するために脱意研究を重ね、遺伝子組換え技術を用いて生理活性を有する融合タンパク質を生産する新規な系を創出し、該融合タンパク質を生産することに成功した。具体的には、生理活性を有する融合タンパク質をコードする遺伝子を設計・作製し、すでに確立されている異種タンパク質生産用のベクターに該遺伝子を組み込み、得られた組換えベクターを宿主細胞に導入し、形質転換体を作製することにより、生理活性を有する融合タンパク質の生産を達成し得るというものである。

【0 0 0 9】

すなわち本発明によれば、ヒト血清アルブ

ミンのポリペプチド鎖の少なくとも1つ以上の所望の位置に生理活性を有するペプチドを導入してなる融合タンパク質が提供される。

【0 0 1 0】ここで、上記生理活性を有するペプチドの導入位置は、ヒト血清アルブミンのポリペプチド鎖のアミノ末端、カルボキシル末端、第1～2ドメインあるいは第2～3ドメインのうちのいずれか1箇所若しくはこれらの任意の組み合わせの位置であるのが好ましい。

【0 0 1 1】また本発明によれば、上記融合タンパク質をコードする遺伝子が提供される。また本発明によれば、上記遺伝子を含有する組換えベクターが提供される。

【0 0 1 2】また本発明によれば、上記組換えベクターで宿主細胞を形質転換してなる、融合タンパク質を生じ得る形質転換体が提供される。

【0 0 1 3】さらに本発明によれば、上記形質転換体を培養し、培養物中に產生された融合タンパク質を単離し、所望により精製することからなる該融合タンパク質の製造方法が提供される。

【0 0 1 4】以下、本発明について詳述する。なお「生理活性を有するペプチド」については、便宜上、癌転移阻害活性を有するペプチド（癌転移阻害ペプチド）で代表させて説明する。

【0 0 1 5】上述のように、配列番号1のアミノ酸配列で表されるペプチド（癌転移阻害ペプチド）と血清アルブミン等の生体高分子との結合体（複合体）が優れた癌転移阻害活性をもつということが本発明者らによりすでに確認されている。しかしながら、上記複合体は化学的タンパク質結合法により作製されたものであり、また上記癌転移阻害ペプチドと血清アルブミンとの両者の結合関係は、水溶性カルボジミドで結合された状態であるということ以外、明確でない。

【0 0 1 6】本発明者らは、ヒト血清アルブミンタンパク質のポリペプチド鎖の所定の位置に癌転移阻害ペプチドを導入することによって、ヒト血清アルブミンのタンパク質立体構造を破壊することなくしかも癌転移阻害活性を十分に發揮し得る癌転移阻害融合タンパク質を遺伝子工学的に作製することに成功した。

【0 0 1 7】具体的には、まずヒト血清アルブミンをコードする遺伝子と、癌転移阻害ペプチドをコードする遺伝子をそれぞれ作製し、前者のポリペプチド鎖の所定の位置に後者を導入し結合させて、癌転移阻害融合タンパク質をコードする遺伝子を作製する。

【0 0 1 8】ヒト血清アルブミンをコードする遺伝子は、好ましくは癌転移阻害ペプチド遺伝子を導入するのに適するように改変したものが用いるのがよい。この改変ヒト血清アルブミン遺伝子の作製のために用いる天然のヒト血清アルブミン遺伝子は、例えば、ヒト肝臓cDNAライブラリーよりプラスミド p ILMALB5 (国

立予防衛生研究所遺伝子バンク)の制限酵素 Pvu II - Hind III 断片をブロープとしてクローニングすること等により得ることができる。なお、ヒト血清アルブミン遺伝子には、そのアミノ酸配列が互いに若干異なっているという多型が報告されており、上記の方法でクローニングしたヒト血清アルブミン遺伝子もその範囲に入るるものである。本発明における「ヒト血清アルブミン」とは、これらすべての多型のものを含み得る。

【0019】 改変の対象部位である癌転移阻害ペプチド遺伝子導入部位は、ヒト血清アルブミンのポリペプチド鎖中の任意の位置に設定することができるが、活性を十分に発揮させ得ることを考慮すると、タンパク質の表面に位置しており、かつ立体構造を破壊することのない位置であることが好ましい。例えば、アミノ末端 (N 端)あるいはカルボキシル末端 (C 端)など、ヒト血清アルブミンの立体構造の形成に影響を及ぼさないと考えられる位置が望ましい。また、ヒト血清アルブミンの立体構造は X 線結晶解析によって詳細に検討されており (Xiao, M.H., and Carter, D.C. Nature, 358:209-215, 1992)、3 個あるドメインの間、すなわち第 1 ~ 2 ドメイン間あるいは第 2 ~ 3 ドメイン間も、導入部位の候補となり得る。導入する癌転移阻害ペプチドの個数は、必要に応じて、単一の位置、ないしは複数の位置に、単数あるいは複数個導入し得る。

【0020】 ヒト血清アルブミン遺伝子の改変は、例えば上記癌転移阻害ペプチド遺伝子導入部位に、制限酵素切断部位を導入することなどによって行われる。導入する制限酵素切断部位は、既知の制限酵素によって認識されるものであればよい。望ましくは、ヒト血清アルブミン中にほとんど存在しない切断部位であり、かつ切断酵素が容易に入手できるものが望ましい。また、当然天然のアミノ酸配列を一切変更しないこと同時に、塩基配列もできるだけ変更しないことが望ましい。以上の点を鑑みて、アミノ末端およびカルボキシル末端に制限酵素 A f l i I I I 切断部位を、第 1 ~ 2 ドメイン間に制限酵素 H i n d I I I 切断部位を、第 2 ~ 3 ドメイン間に制限酵素 E c o R I 切断部位をそれぞれ導入するのが最も好ましい。なお、制限酵素切断部位導入法としては、当業分野で常用されている PCR 法等が好適に用いられる。

【0021】 そして、癌転移阻害ペプチド遺伝子の導入の際には、上記制限酵素切断部位を各制限酵素にて切断し、ここに同様に制限酵素で消化して末端調節を行った癌転移阻害ペプチド遺伝子を組み込むことによって、癌転移阻害融合タンパク質をコードする遺伝子を作製する。

【0022】 なお、上記の癌転移阻害ペプチド遺伝子の塩基配列は、配列番号 1 のアミノ酸配列で表されるペプチドをコードするものであり、理論的には幾通りもの数多くの配列が考えられるが、望ましくは遺伝子組換え

に用いる宿主細胞のコドン使用頻度に合わせたものがよく、最も多頻度で使用されるコドンを用いて設計するがよい。

【0023】 ここで、用いる宿主細胞としては特に限定されるものではないが、望ましくは培養方法が容易で、低コストで培養できる微生物がよく、例えば大腸菌 (*Escherichia coli*)、各種酵母類、枯草菌、糸状菌等、当業分野で常用されている宿主細胞等が挙げられる。原核生物を宿主細胞として用いる形質転換方法では必ずしも全てのポリペプチドに対して有効ではなく、真核生物由来のタンパク質の複雑な翻訳後修飾あるいは天然体と同じ立体構造を再現することは必ずしも容易ではない。また特有のエンドトキシンが存在する場合は、最終製品の杂质物になる可能性があり、好ましくない。このため好ましくは、エンドトキシンを含まず、培養方法も確立しており、從来より酰胺並びに食品工業で用いられており、人体に関する安全性も確立されている各種酵母類がよい。このなかでも特に、遺伝学的並びに分子生物学的に動物細胞に近い性質をもつとされ、より天然体に近い遺伝子産物が得られることが期待される分裂酵母 *S. pombe* が最も好ましい。この *S. pombe* のシゾサッカロミセス・ポンベの菌株としては、例えば奇跡番号 ATCC 3 8 3 9 9 (leu-32^b) や ATCC 3 8 4 3 6 (ura4-294^b) 等としてアメリカン・タイプ・カルチャー・コレクション (ATCC) に寄託されているものが挙げられ、入手可能である。

【0024】 したがって本発明においては、配列番号 1 で表される癌転移阻害ペプチドをコードする遺伝子は、シゾサッカロミセス・ポンベでの高発現に至適なコドンを用いて設計し、合成したもののが好ましい。シゾサッカロミセス・ポンベの最適コドン使用頻度は、例えば A. Nasim et al.: Molecular Biology of the Fission Yeast, p. 263, Academic Press (1983) 等から知ることができる。本発明者は種々研究を重ねた結果、配列番号 2 の塩基配列で表される遺伝子が最も好適であるとの結論を得、設計・合成した(ただし、配列番号 2 の塩基配列は、翻訳開始シグナル (ATG) および翻訳終了シグナル (TAA) を付加している)。なお、遺伝子の作製(合成)は、トリエヌチル法 (Nuc. Acid. Res. 10, p. 6553, (1982)) やホスホアミダイト法 (Tetrahedron Letters 22, p. 1859, (1981)) などの種々の方法がすでに開発されており、いずれの方法を用いててもよい。また DNA 合成機器 (DNA シンセサイザ) 等が市販されているので、それらを用いててもよい。

【0025】 次に、上記のようにして作製した新規の癌転移阻害融合タンパク質遺伝子をベクターに組み込んで組換ベクターを作製する。用いるベクターは特に限定されるものではないが、宿主細胞内で複製可能な 50 であって、癌転移阻害融合タンパク質合成遺伝子を組み

込み得る挿入部位をもち、さらにこの組み込んだ合造遺伝子を宿主細胞内で発現せしめることを可能とする領域を有する必要がある。このようなベクターとして、例えば本発明者らがすでに創出に成功しているシゾサッカロミセズ・ポンベを宿主とする外来遺伝子発現ベクター pTL 2 M (特願平5-249310号明細書) 等を有利に用いることができ、これらのベクターに上記合造成伝子を容易に組み込む。

[0026] 次いで上記組換えベクターを宿主細胞内に導入し、形質転換体を得る。組換えベクターの宿主細胞内への導入法は、從来慣用的に用いられている方法により行うことができ、コンピテント細胞法、プロトプラスト法、リン酸カルシウム共沈法、エレクトロポレーション法、マイクロインジェクション法、リボソーム融合法、バーティカル・ガム法等、種々のものが挙げられるが、用いる宿主に応じてそれぞれ任意の方法を取り得る。シゾサッカロミセズ・ポンベを宿主とする場合は、例えば酢酸リチウム法 (K. Okazaki et al., Nucleic Acids Res., 18, 6485-6489(1990)) 等によって効率よく形質転換体を得ることができる。

[0027] このようにして得られた形質転換体を培養することにより、培養物中に癌転移阻害融合タンパク質が産生される。これを公知の方法で単離し、場合により精製することにより、目的とする癌転移阻害融合タンパク質が得られる。

[0028] 形質転換体を培養するための培地は公知であり、YPD培地などの栄養培地 (M. D. Rose et al., "Methods in Yeast Genetics", Cold Spring Harbor Laboratory Press(1990)) や、MB培地などの最少培地 (K. Okazaki et al., Nucleic Acids Res., 18, 6485-6489(1990)) 等を用いることができる。形質転換体の培養は、通常 1~6℃、好ましくは 2.5~3.7℃ で、8~16.8 時間、好ましくは 2.4~7.2 時間行う。振盪培養や静置培養のいずれも可能であるが、必要に応じて攪拌や通気を加えてもよい。

[0029] 培養物中に生産した融合タンパク質の単離・精製法としては、公知の塩析または溶媒沈殿法等の溶解度の差を利用する方法、透析、限外濾過またはゲル電気泳動法等の分子量の差を利用する方法、イオン交換クロマトグラフィー等の荷電の差を利用する方法、アフィニティーコロマトグラフィー等の特異的親和性を利用する方法、逆相高速液体クロマトグラフィー等の疎水性の差を利用する方法、等電点電気泳動法等の等電点の差を利用する方法等が挙げられる。

[0030] 単離・精製した融合タンパク質の確認方法としては、公知のウエスタンブロッティング法や活性測定法等が挙げられる。また、精製された融合タンパク質は、アミノ酸分析、アミノ末端分析、一次構造解析などによりその構造を明らかにすることができます。

[0031] なお、本明細書中、配列表の配列番号 2 の

アミノ酸配列で表される融合タンパク質は、ヒト血清アルブミンのポリペプチド鎖の N 末端に配列番号 1 の癌転移阻害ペプチドを導入したものであり；配列番号 4 のアミノ酸配列で表される融合タンパク質は、ヒト血清アルブミンのポリペプチド鎖の第 1 ~ 2 ドメイン間に配列番号 1 の癌転移阻害ペプチドを導入したものであり；配列番号 6 のアミノ酸配列で表される融合タンパク質は、ヒト血清アルブミンのポリペプチド鎖の第 2 ~ 3 ドメイン間に配列番号 1 の癌転移阻害ペプチドを導入したものであり；配列番号 8 のアミノ酸配列で表される融合タンパク質は、ヒト血清アルブミンのポリペプチド鎖のカルボキシル末端に配列番号 1 の癌転移阻害ペプチドを導入したものである。配列番号 3, 5, 7 および 9 の塩基配列は、それぞれ配列番号 2, 4, 6 および 8 の各アミノ酸配列で表される癌転移阻害融合タンパク質をコードする遺伝子である。

[0032]

[実施例] 以下の実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例によりその技術範囲が規定されるものではない。また実施例中の各操作については、特に記載したもの以外は、当業分野で常習されている方法 (例えば J. Sambrook et al.: Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1989.) に従った。

[0033] [実施例 1] 癌転移阻害ペプチドをコードする配列番号 2 の塩基配列で表される遺伝子の作製
配列番号 1 のアミノ酸配列をもとに、シゾサッカロミセズ・ポンベのコドン使用頻度 (Nasim, A. et al.: Molecular Biology of the Fission Yeast, Academic Press, 1989, p263.) に合せて、配列番号 1 および 11 の塩基配列で表される 2 本の一本鎖オリゴ DNA を、DNA 自動合成装置 (Applied Biosystems) を用いて合成した。なお、配列番号 1 および 11 の塩基配列は、5' 末端に制限酵素 BamHI への挿入部位と開始コドン ATG を、3' 末端に終始コドン TAA と制限酵素 HindIII への挿入部位を導入した遺伝子のセンス鎖であり、配列番号 11 の塩基配列はそのアンチセンス鎖である。脱保護、精製後、これら 2 本を 70℃ でアニーリングした。

[0034] 一方、これとは別にプラスミド pUC19 (宝酒造(株) 製) を、制限酵素 BamHI (宝酒造(株) 製) および HindIII (宝酒造(株) 製) で二重消化し、フェノール抽出、エタノール沈澱による精製の後、アガロースゲル電気泳動し、約 26000 塩基対に相当するバンドを切り出し、DNA-PREP (旭硝子(株) 製) を用いたガラスビーズ法で精製した。

[0035] これら両者の断片を、DNA ライゲーションキット (宝酒造(株) 製) を用いてライゲーションした。これを大腸菌 JM109 株 (宝酒造(株) 製) に導入して形質転換した後、アンビシリントラベルを待ち、かつ

X-gal プレート上で白コロニーを提示するポジティブクローンをスクリーニングし、目的のプラスミドすなわち制限酵素 BamH I および Hind III 二重消化時に約 70 塩基対の切断断片を示す p12A を得た。アルカリ-SDS 法に従って p12A を大量調製し、制限酵素地図の作製および塩基配列決定によって、配列番号 25 の塩基配列を持ったプラスミドであることを確認した。

【0036】〔実施例 2〕配列番号 3 の癌転移阻害融合タンパク質遺伝子を含む発現ベクター pTL2Bm1-1000 の作製
ヒト肝臍 cDNA ライブラリーより pUC19 上にクローニングしたヒト血清アルブミン cDNA を鉄型として、配列番号 1-2 および 1-3 の塩基配列で表されるプライマーを用いて PCR 増幅を行ない、次いで制限酵素 Nco I (宝酒造(株)製) および Hind III によって末端調節(部分消化)を行なった。フェノール抽出、エタノール沈殿による精製の後、アガロースゲル電気泳動し、約 1800 塩基対に相当するバンドを切り出し、DNAPREP を用いたガラスピーゼ法で精製し、挿入断片とした。

【0037】さらにこれとは別に、シソサッカロミセス・ボンベ発現ベクター pTL2M を用意した。このベクター pTL2M は、本願発明者らがすでに構築したものである(特願平 5-249310 号明細書)。以下にその作製方法を述べる。

【0038】〔ベクター pRL2M の作製〕まず、公知の方法で調製された pCD4CAT を BamH I で切断し、CAT 遺伝子を除去後ライゲーションし、pCD4 を作製した。pCD4 を BamH I で部分切断し、平滑末端化した後ライゲーションして pCD4B を作製した(特開平 5-15380 号公報)。

【0039】このプラスミド pCD4B を制限酵素 Sac I で消化後、末端を T4 DNA ポリメラーゼで平滑化し、さらに制限酵素 BamH I で消化した後、フェノール抽出およびエタノール沈殿によって精製した。さらにアガロースゲル電気泳動後、ガラスピーゼ法によって約 4500 塩基対に相当する DNA を精製した。

【0040】一方、これは別に、ヒト線維芽細胞由来の岡山一バーグ cDNA ライブラリー(pCDベクター)を公知の方法により調製した。さらに、既に知られているヒトリポコルチン I の遺伝子配列(Nature, 320, 77, (1986))のうち、タンパク質の N 末端側アミノ酸配列をコードする 50 塩基の遺伝子配列を DNA ブロープとして上述のライブラリーからヒトリポコルチン I の遺伝子をコロニーハイブリダイゼーション法により取得し、塩基配列を決定することにより、ヒトリポコルチン I タンパク質全長をコードするものであることを確認した。取得したクローンを pCD1ipo I と名づけた。(特開平 5-15380 号公報)。そしてこのヒトリポコルチン I

遺伝子(cDNA)を含むベクター pCD1ipo I を制限酵素 Xmn I および BamH I で消化した後、フェノール抽出およびエタノール沈殿によって精製した。さらにアガロースゲル電気泳動後、ガラスピーゼ法によって約 1300 塩基対に相当する DNA を精製した。

【0041】両 DNA をライゲーションした後、これを大腸菌 DH5 株(東洋紡(株)製)に導入して形質転換した。得られた形質転換体よりベクターを調製し、目的とするベクター pRL2L (図 5) を持った形質転換体をスクリーニングした。部分塩基配列の確認および制限酵素地図の作製から目的のベクターであることを確認した。

【0042】このリポコルチン I 発現ベクター pRL2L を制限酵素 EcoRI および HindIII で消化し、フェノール抽出、エタノール沈殿の後、アガロースゲル電気泳動により約 5000 塩基対に相当するバンドを切り出し、ガラスピーゼ法で精製した。これとは別に、公知のプラスミド pUC19 を制限酵素 EcoRI および HindIII で消化し、フェノール抽出、エタノール沈殿の後、ポリアクリルアミドゲル電気泳動により約 60 塩基対に相当するバンドを切り出し、ゲルから抽出精製した。

【0043】これら両者の断片をライゲーションの後、大腸菌 DH5 株を形質転換して目的とするベクター pRL2L (図 6) をスクリーニングした。部分塩基配列の確認および制限酵素地図の作製から目的のベクターであることを確認した。

【0044】〔ベクター pTL2M の作製〕上記 pRL2M を鉄型とし、オリゴデオキシリボヌクレオチド 5'-TGTAGCTTTATTAATAGTA-3' およびオリゴデオキシリボヌクレオチド 5'-CTAGATTCCACATGTTGAAAAAGTGTCITTTATC-3' を合成プライマーとして、Taq ポリメラーゼを用いた PCR によって目的断片を増幅した。制限酵素 Spe I および EcoRI で末端調節し、フェノール抽出、エタノール沈殿の後、アガロースゲル電気泳動により約 600 塩基対に相当するバンドを切り出し、ガラスピーゼ法で精製した。

【0045】一方、これは別に、pRL2M を制限酵素 SpeI および EcoRI で消化し、フェノール抽出、エタノール沈殿の後、アガロースゲル電気泳動により約 4500 塩基対に相当するバンドを切り出し、ガラスピーゼ法で精製した。これら両者の断片をライゲーションの後、大腸菌 DH5 株を形質転換して目的とするベクター pTL2M (図 7) をスクリーニングした。部分塩基配列の確認および制限酵素地図の作製から目的のベクターであることを確認した。

【0046】このようにして作製した pTL2M を制限酵素 Af I および HindIII で二重消化し、約 5000 塩基対に相当するバンドを切出した。

【0047】そして上記挿入断片との発現ベクター p

T_L 2 M の上記制限酵素による二重消化物との計 2 本を、DNA ライゲーションキットを用いてライゲーションした。これを大腸菌 DH 5 株（東洋紡（株）製）に導入して形質転換した後、目的のプラスミド p_TL 2 Bm_a を得た。アルカリ-SDS 法に従って p_TL 2 Bm_a を大量調製し、制限酵素地図の作製および塩基配列決定によって、目的の配列を持ったプラスミドであることを確認した。

【0048】さらに実施例 1 で作製した p_I 2 A を鉄型として、配列番号 1 9 および 2 0 の塩基配列で表されるプライマーを用いて PCR 増幅を行ない、制限酵素 N_c o I および H_i n d I I I によって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アクリルアミドゲル電気泳動により約 7 0 塩基対に相当するバンドを切り出し、ゲルから溶出して遺伝子断片とした。

【0049】この遺伝子断片と上記 p_TL 2 Bm_a の制限酵素 N_c o I 消化物（部分消化後、約 7 0 0 0 塩基対に相当するバンドを DNA-PREP を用いて精製）との計 2 本を、DNA ライゲーションキットを用いてライゲーションした。これを大腸菌 DH 5 株に導入して形質転換した後、目的のプラスミド p_TL 2 Bm_I-1 0 0 0 を得た。アルカリ-SDS 法に従って p_TL 2 Bm_I-1 0 0 0 を大量調製し、制限酵素地図の作製および塩基配列決定によって、配列番号 3 の塩基配列を持ったプラスミドであることを確認した。

【0050】【実施例 3】配列番号 5 の癌転移阻害融合タンパク質遺伝子を含む発現ベクター p_TL 2 Bm_I-0 1 0 0 の作製

ヒト肝臍 cDNA ライブリーより pUC 1 9 上にクローニングしたヒト血清アルブミン cDNA を鉄型として、配列番号 1 2 および 1 4 の塩基配列で表されるプライマーを用いて PCR 增幅を行ない、次いで制限酵素 N_c o I および H_i n d I I I によって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アガロースゲル電気泳動し、約 5 5 0 塩基対に相当するバンドを切り出し、DNA-PREP を用いたガラスビーズ法で精製し、挿入断片 1 とした。

【0051】一方、これとは別に、同じ cDNA を鉄型として、配列番号 1 5 および 1 3 の塩基配列で表されるプライマーを用いて PCR 增幅を行ない、次いで制限酵素 H_i n d I I I によって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アガロースゲル電気泳動し、約 1 3 5 0 塩基対に相当するバンドを切り出し、DNA-PREP を用いたガラスビーズ法で精製し、挿入断片 2 とした。

【0052】さらにこれとは別に、実施例 2 の場合と同様にして作製したシソサッカロミセズ・ボンベ発現ベクター p_TL 2 M を用意し、このベクター p_TL 2 M を制限酵素 A_f 1 I I I および H_i n d I I I で二重消化し、約 5 0 0 0 塩基対に相当するバンドを切出した。

【0053】そして上記挿入断片 2 本とこの発現ベクター p_TL 2 M の上記制限酵素による二重消化物との計 3 本を、DNA ライゲーションキットを用いてライゲーションした。これを大腸菌 DH 5 株に導入して形質転換した後、目的のプラスミド p_TL 2 Bm_b を得た。アルカリ-SDS 法に従って p_TL 2 Bm_b を大量調製し、制限酵素地図の作製および塩基配列決定によって、目的の塩基配列を持ったプラスミドであることを確認した。

【0054】さらに実施例 1 で作製した p_I 2 A を鉄型として、配列番号 2 1 および 2 2 の塩基配列で表されるプライマーを用いて PCR 增幅を行ない、制限酵素 H_i n d I I I によって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アクリルアミドゲル電気泳動により約 7 0 塩基対に相当するバンドを切り出し、ゲルから溶出して遺伝子断片とした。

【0055】この遺伝子断片と上記 p_TL 2 Bm_b の制限酵素 H_i n d I I I 消化物（部分消化後、約 7 0 0 0 塩基対に相当するバンドを DNA-PREP を用いて精製）との計 2 本を、DNA ライゲーションキットを用いてライゲーションした。これを大腸菌 DH 5 株に導入して形質転換した後、目的のプラスミド p_TL 2 Bm_I-0 1 0 0 を得た。アルカリ-SDS 法に従って p_TL 2 Bm_I-0 1 0 0 を大量調製し、制限酵素地図の作製および塩基配列決定によって、配列番号 5 の塩基配列を持ったプラスミドであることを確認した。

【0056】【実施例 4】配列番号 7 の癌転移阻害融合タンパク質遺伝子を含む発現ベクター p_TL 2 Bm_I-0 0 1 0 の作製

ヒト肝臍 cDNA ライブリーより pUC 1 9 上にクローニングしたヒト血清アルブミン cDNA を鉄型として、配列番号 1 2 および 1 6 の塩基配列で表されるプライマーを用いて PCR 增幅を行ない、次いで制限酵素 N_c o I および E_c o R I （宝酒造（株）製）によって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アガロースゲル電気泳動し、約 1 1 0 0 塩基対に相当するバンドを切り出し、DNA-PREP を用いたガラスビーズ法で精製し、挿入断片 1 とした。

【0057】一方、これとは別に、同じ cDNA を鉄型として、配列番号 1 7 および 1 3 の塩基配列で表されるプライマーを用いて PCR 增幅を行ない、次いで制限酵素 E_c o R I および H_i n d I I I によって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アガロースゲル電気泳動し、約 7 0 0 塩基対に相当するバンドを切り出し、DNA-PREP を用いたガラスビーズ法で精製し、挿入断片 2 とした。

【0058】さらにこれとは別に、実施例 2 の場合と同様にして作製したシソサッカロミセズ・ボンベ発現ベクター p_TL 2 M を用意し、このベクター p_TL 2 M を制限酵素 A_f 1 I I I および H_i n d I I I で二重消化し、約 5 0 0 0 塩基対に相当するバンドを切出した。

【0059】そして上記挿入断片2本とこの発現ベクター-pTL2Mの上記制限酵素による二重消化物との計3本を、DNAライゲーションキットを用いてライゲーションした。これを大腸菌DH5株に導入して形質転換した後、目的のプラスミドpTL2Bmcを得た。アルカリ-SDS法に従ってpTL2Bmbを大量調製し、制限酵素地図の作製および塩基配列決定によって、目的の塩基配列を持ったプラスミドであることを確認した。

【0060】さらに実施例1で作製したpI2Aを削型として、配列番号2.3および2.4の塩基配列で表されるプライマーを用いてPCR増幅を行ない、制限酵素EcoRIによって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アクリルアミドゲル電気泳動により約70塩基対に相当するバンドを切出し、ゲルから溶出して遺伝子断片とした。

【0061】この遺伝子断片と上記pTL2Bmcの制限酵素EcoRI消化物との計2本を、DNAライゲーションキットを用いてライゲーションした。これを大腸菌DH5株に導入して形質転換した後、目的のプラスミドpTL2BmI-0001を得た。アルカリ-SDS法に従ってpTL2BmI-0001を大量調製し、制限酵素地図の作製および塩基配列決定によって、配列番号7の塩基配列を持ったプラスミドであることを確認した。

【0062】【実施例5】配列番号9の癌転移阻害融合タンパク質遺伝子を含む発現ベクター-pTL2BmI-0001の作製

ヒト肝臓cDNAライブラリーよりpUC19上にクローニングしたヒト血清アルブミンcDNAを鉛錠として、配列番号1.2および1.8の塩基配列で表されるプライマーを用いてPCR増幅を行ない、次いで制限酵素NcoIおよびHf111Iによって末端調節を行なった。フェノール抽出、エタノール沈澱による精製の後、アガロースグリル電気泳動し、約18000塩基対に相当するバンドを切り出し、DNA-PREPを用いたガラスビーズ法で精製し、挿入断片とした。

【0063】一方、これとは別に、実施例2の場合と同様にして作製したシソサッカロミセス・ボンベ発現ベクター-pTL2Mを用意し、このベクター-pTL2Mを制限酵素Af111IおよびHindIIIで二重消化し、約5000塩基対に相当するバンドを切出した。

【0064】そして上記挿入断片とこの発現ベクター-pTL2Mの上記制限酵素による二重消化物との計2本を、DNAライゲーションキットを用いてライゲーションした。これを大腸菌DH5株に導入して形質転換した後、目的のプラスミドpTL2Bmdを得た。アルカリ-SDS法に従ってpTL2Bmdを大量調製し、制限酵素地図の作製および塩基配列決定によって、目的の塩基配列を持ったプラスミドであることを確認した。

【0065】さらに実施例1で作製したpI2Aを制限

酵素NcoIおよびHindIIIの二重消化によって末端調節を行ない、フェノール抽出、エタノール沈澱による精製の後、アクリルアミドゲル電気泳動により約70塩基対に相当するバンドを切出し、ゲルから溶出して遺伝子断片とした。

【0066】この遺伝子断片と上記pTL2Bmbの制限酵素Af111I消化物（部分消化後、約7000塩基対に相当するバンドをDNA-PREPを用いて精製）との計2本を、DNAライゲーションキットを用いてライゲーションした。これを大腸菌DH5株に導入して形質転換した後、目的のプラスミドpTL2BmI-0001を得た。アルカリ-SDS法に従ってpTL2BmI-0001を大量調製し、制限酵素地図の作製および塩基配列決定によって、配列番号9の塩基配列を持ったプラスミドであることを確認した。

【0067】ここで作製したpTL2BmI-0001を、以下単にpTL2BmIと記載する。

【0068】【実施例6】発現ベクター-pTL2BmIを用いたシソサッカロミセス・ボンベの形質転換シソサッカロミセス・ボンベのLOX-10³をロイシン含有最少培地MB-Leuで10⁷細胞数/m1になるまで生育させた。達心集菌、水による洗浄後10⁸細胞数/m1になるように100mM酛酸リチウム(pH5.0)に懸濁し、30℃で60分間インキュベートした。その後、上記懸濁液100μlに、制限酵素PstIで消化したpAL7 (K. Okazaki et al.: Nucl. Acids Res. 18, 6485-6489 (1990)) 1μgおよび2μgの発現ベクター-pTL2BmIを10μlのTEバッファーに溶かした溶液を加え、50%PEG4000を290μl加えてよく混合した後、30℃で60分間、43℃で15分間、室温で10分間の順にインキュベートした。次いで達心分離によりPEG4000を除去した後、1mlの培養液1/2YEL-Leuに懸濁した。

【0069】この懸濁液から1000μlを分取し、さらに9000μlの培養液1/2YEL-Leuで希釈して、32℃30分間インキュベートした後、3000μlを最少発芽地MMAにスプレッドした。32℃で3日間インキュベートし、得られた形質転換体をG418を25μg/ml含むYEA培地に移し、さらに32℃で5日間培養し、得られたクローンを目的とする各形質転換体とした。

【0070】一方、これとは別に、癌転移阻害ペプチド遺伝子を持たないプラスミドpTL2M(既述)およびpTL2Bm(特願平5-249310号明細書)についても、同じ方法で形質転換体を作製し、ネガティブコントロールとした。なお、プラスミドpTL2Bmは以下のようにして作製した。

【0071】【プラスミドpTL2Bmの作製】国立予防衛生研究所遺伝子バンクより供与を受けた、ヒト血清

アルブミンcDNAを含むベクターpILMALB5を酵型とし、オリゴデオキシリボヌクレオチド5'-AGACCA TGGATGCCACACAAAGCTGAGGT-3'およびオリゴデオキシリボヌクレオチド5'-CAGGAAACAGCTATGACCAT-3'を合成プライマーとして、Taqポリメラーゼを用いたPCRによって目的断片を増幅した。制限酵素Nco IおよびHindIIIで末端調節し、フェノール抽出、エタノール沈殿の後、アガロースゲル電気泳動により約1800塩基対に相当するバンドを切り出し、ガラスビーズ法で精製した。

[0072] これとは別に、pTL2Mを制限酵素Af111IおよびHindIIIで消化し、フェノール抽出、エタノール沈殿の後、アガロースゲル電気泳動により約5000塩基対に相当するバンドを切り出し、ガラスビーズ法で精製した。

[0073] これら両者の断片をライゲーションの後、大腸菌DH5株を形質転換して目的とするベクターpTL2Bm (R)をスクリーニングした。部分塩基配列の確認および制限酵素地図の作製から目的のベクターであることを確認した。

[0074] [実施例7] 形質転換体の培養および無細胞抽出液の調製

抗生素質G418 (GIBCO BRL) を200μg/mlの濃度で含む50mlのYPD培地 [(2%グルコース (和光純業(株)製)、1%バクトイーストエキス(Difco)、2%バクトベプトン(Difco)]]に、実施例6で作製した形質転換体を植種し、32℃で5日間培養した。その培養液から10⁸個の菌体を集菌し、洗浄後、50mMトリス塩酸緩衝液(pH7.5)で懸濁し、超音波破碎を行った。終濃度が1%になるように10%SDS溶液を加え、80℃で1分間加熱した。遠心分離によって無細胞抽出液(上清)を得た。

[0075] これとは別に、癌転移阻害融合タンパク質遺伝子を持たない上記pTL2MおよびpTL2Bmを導入した形質転換についても、同様の方法で無細胞抽出液を作製し、ネガティブコントロールとした。

[0076] [実施例8] SDS-Pアポアクリルアミドゲル電気泳動による癌転移阻害融合タンパク質の発現解析

SDS-PAGEによって、実施例7で作製した各形質転換体由来の無細胞抽出液について発現解析を行なった。結果を図2に示す。同図から明らかなように、pTL2Bmによる形質転換体は、コントロールであるpTL2Bmによる形質転換体に比較して、分子量69,000のバンド(同図中、*で示す)が、癌転移阻害融合タンパク質を產生していることによって分子量71,000の位置(同図中、**で示す)に移動していくことが検出できた。デンシティメータによって測定したところ、癌転移阻害融合タンパク質の產生量は、全菌体タンパク質の30%程度であった。

[0077] [実施例9] ウエスタンプロッティングによる癌転移阻害融合タンパク質の確認

実施例7で作製した各形質転換体由来の無細胞抽出液について実施例8と同様にしてSDS-PAGEを行なった。得られたゲルをPVDF膜(Bio-Rad)に転写し、癌転移阻害ペプチドに特異的な抗体(A. Isoai et al.: Biochem Biophys Res Commun 192, 7-14 (1993))を用いてウエスタンプロッティングを行い、ECL(アマシャム(株)製)によって検出した。結果を図3に示す。同図から明らかなように、該融合タンパク質を含む配列に相当する分子量71,000附近の位置に唯一の明瞭なバンドが得られたことから、該融合タンパク質に特異的なアミノ酸配列が含まれている融合タンパク質が產生していることが確認された。

[0078] [実施例10] 癌転移阻害融合タンパク質の精製

pTL2Bm1により形質転換された形質転換体を、G418を25μg/mlの濃度で含む50mlのYPD培地で32℃、1日間前培養した後、G418を200μg/ml含む1リットルのYPD培地に1×10⁸/mlの割合で植菌してさらに4日間培養した。集菌後の菌体の4倍量の50mMトリス塩酸緩衝液(pH7.5) [12μMのAPMSF(和光純業(株)製)、2.5μMロイペプチド(和光純業(株)製)、2mMのEDTAを含む]に懸濁し等量のガラスビーズ(ビードピーター)を用いて0℃で破碎した。12,000rpmで20分間遠心分離した沈澱を同じ緩衝液で洗浄した後、6.5Mグアニジン塩酸と10mMのジチオスレートルを含んだ50mMトリス塩酸緩衝液(pH7.5)にて50℃1時間で可溶化した後、12,000rpm、20分間遠心分離した上清を0.1MNaCl、1mM EDTA、2mM還元型グルタチオン、0.2mM酸化型グルタチオンを含んだ50mMトリス塩酸緩衝液(pH7.5)で1000倍(v/v)に4℃で徐々に希釈した。1晚4℃で放置後、限外濾過膜(アミコン)にて濾縮しスーパーロース12カラムにてゲル通過し、各画分についてSDS-PAGEにて解析し分子量71,000の位置に唯一のバンドが見られた画分を集め精製癌転移阻害融合タンパク質とした。

[0079] [実施例11] 精製癌転移阻害融合タンパク質の癌細胞浸潤阻害活性の測定

実施例10で精製した癌転移阻害融合タンパク質について、癌細胞の浸潤抑制効果を調べた。評価方法はAlbinらの方法(Albin et al.: Cancer Res. 47, 3239-3245 (1987))に従って行った。8μmのポアサイズを持つポリカーボネートフィルターを用い、上層と下層に分けられたケモキセル(クラボウ(株)製)のフィルター上面に10μgのマトリゲル(クラボレーティブ(株)製)を塗布し、室温で一晩乾燥させた。使用直前に培養液で膨潤させ、24穴のカルチャープレートにセ

17

ットした。癌細胞はB16メラノーマ由来の高転移性クローンB16FE7を使用した。

【0080】細胞を1.85kBg/mlの[1²⁵I]IUDR(アマシャム(株)製)存在下で2日間培養した。使用直前にトリプシン液で細胞を回収した後、0.1%の牛血清アルブミンを含む培養液に懸滴し細胞数と、取り込まれた[1²⁵I]IUDRの放射能を計測した。ケモタキセルの下層には20μg/mlのヒトフィブロネクチンを入れ、上層には5×10⁴個の細胞を種々の濃度の癌転移阻害融合タンパク質と共に入れ、炭酸ガスインキュベーター中で2時間培養した。

【0081】培養終了後、フィルターの上面に残っている細胞を綿棒でかきとり、フィルターをティッシュソリビライザ(アマシャム(株)製)で下面に移動した細胞と共に溶解した後、放射能を計測した。結果を図4に示す。同図から明らかなように、本癌転移阻害融合タンパク質により、癌細胞の浸潤が有意に阻害されることが示された。

【0082】なお、上記の実施例においては、ヒト血清アルブミンのC末端に癌転移阻害ペプチドを結合させた融合タンパク質を遺伝子工学的に生産せしめ、その生理活性等の確認を行っているが、ヒト血清アルブミンのN*

配列

Ala	Glu	Asp	Gly	Asp	Ala	Lys	Thr	Asp	Gln	Ala	Glu	Lys	Ala	Glu	Gly
1					5				10			15			
Ala	Gly	Asp	Ala	Lys											
20	21														

配列番号：2

配列の長さ：608

配列の型：アミノ酸

*末端、第1～2ドメイン間、第2～3ドメイン間に癌転移阻害ペプチドを結合させた場合においても、上記と同様な効果が得られると考えられる。

【0083】

【発明の効果】以上詳述したように本発明によれば、これまで化学的合成方法および結合方法を組合合わせのみ作製可能であった癌転移阻害融合タンパク質を組換えDNA技術を用いることによって初めて直接的に、しかも高効率に生産することができるという効果が奏される。

【0084】したがって、本発明における形質転換体を用いた大量培養により、目的とする癌転移阻害融合タンパク質の高い生産性が得られ、工業スケールでの生産に使用することができる十分可能である。すなわち医薬品としての癌転移阻害融合タンパク質を安定的に供給することができるようになったといえる。

【0085】

【配列表】

配列番号：1

配列の長さ：21
20 配列の型：アミノ酸
トポロジー：直鎖状
配列の種類：ペプチド

配列

Met	Ala	Glu	Asp	Gly	Asp	Ala	Lys	Thr	Asp	Gln	Ala	Glu	Lys	Ala	Glu
1						5				10			15		
Gly	Ala	Gly	Asp	Ser	Lys	Ala	Asp	Ala	His	Lys	Ser	Glu	Vai	Ala	His
20									25			30			
Arg	Phe	Lys	Asp	Leu	Gly	Glu	Glu	Asn	Phe	Lys	Ala	Leu	Val	Leu	Ile
	35								40			45			
Ala	Phe	Ala	Gin	Tyr	Leu	Gin	Gin	Cys	Pro	Phe	Glu	Asp	His	Val	Lys
50								55			60				
Leu	Val	Asn	Glu	Vai	Thr	Glu	Phe	Ala	Lys	Thr	Cys	Vai	Ala	Asp	Glu
65									70		75		80		
Ser	Ala	Glu	Asn	Cys	Asp	Lys	Ser	Leu	His	Thr	Leu	Phe	Gly	Asp	Lys
85								90			95				
Leu	Cys	Thr	Val	Ala	Thr	Leu	Arg	Glu	Thr	Gly	Glu	Met	Ala	Asp	
100									105			110			
Cys	Cys	Ala	Lys	Gin	Glu	Pro	Glu	Arg	Asn	Glu	Cys	Phe	Leu	Gin	His
115									120			125			
Lys	Asp	Asp	Asn	Pro	Asn	Leu	Pro	Arg	Leu	Val	Arg	Pro	Glu	Val	Asp
130									135			140			
Val	Met	Cys	Thr	Ala	Phe	His	Asp	Asn	Glu	Glu	Thr	Phe	Leu	Lys	Lys

トポロジー：直鎖状

配列の種類：タンパク質

30

(11)

19

145	150	155	160
Tyr	Leu	Tyr	Glu
Ile	Ala	Arg	Arg
His	Pro	Tyr	Phe
		Tyr	Ala
		Pro	Glu
165		170	175
Leu	Leu	Phe	Ala
Lys	Arg	Tyr	Lys
Ala	Ala	Ala	Ala
Cys			Cys
180		185	190
Gin	Ala	Aia	Asp
Lys	Ala	Ala	Cys
Leu	Leu	Pro	Lys
		Leu	Asp
			Glu
195		200	205
Arg	Asp	Glu	Gly
Lys	Ala	Ser	Ser
Ala	Lys	Gin	Arg
		Leu	Lys
210		215	220
Ser	Leu	Gin	Lys
Phe	Gly	Glu	Arg
Ala	Phe	Lys	Ala
		Trp	Ala
225		230	240
Arg	Leu	Ser	Gin
Arg	Phe	Pro	Lys
Ala	Glu	Phe	Ala
		Glu	Val
245		250	255
Leu	Val	Thr	Asp
Thr	Leu	Thr	Lys
		His	Thr
		Glu	Cys
260		265	270
Leu	Leu	Glu	Cys
Ala	Asp	Asp	Asp
Arg	Ala	Asp	Leu
		Ala	Lys
275		280	285
Glu	Asn	Gin	Asp
Ser	Ile	Ser	Ser
Lys	Leu	Lys	Glu
		Cys	Cys
290		295	300
Pro	Leu	Leu	Glu
Lys	Ser	His	Cys
Ile	Ala	Glu	Val
			Glu
305		310	320
Met	Pro	Ala	Asp
Leu	Pro	Ser	Leu
Ala	Ala	Ala	Asp
		Phe	Val
325		330	335
Asp	Val	Cys	Lys
Asn	Tyr	Ala	Glu
Ala	Lys	Asp	Val
		Phe	Leu
340		345	350
Pho	Leu	Tyr	Tyr
Ala	Arg	Arg	Arg
		His	Pro
		Asp	Tyr
355		360	365
Leu	Leu	Arg	Leu
Ala	Lys	Tyr	Glu
		Thr	Thr
		Leu	Glu
370		375	380
Ala	Ala	Ala	Asp
			Pro
		Glu	Cys
385		390	395
Lys	Pro	Leu	Val
Glu	Glu	Pro	Gin
		Asn	Leu
405		410	415
Leu	Phe	Lys	Gin
Gin	Leu	Gly	Glu
		Tyr	Lys
		Phe	Gln
420		425	430
Asn	Tyr	Thr	Lys
		Val	Pro
		Gln	Val
435		440	445
Val	Ser	Arg	Asn
		Leu	Gly
		Lys	Val
450		455	460
Glu	Ala	Lys	Arg
		Met	Pro
		Cys	Ala
465		470	475
Asn	Gin	Leu	Cys
		Val	Leu
		His	Glu
485		490	495
Thr	Lys	Cys	Thr
		Cys	Glu
		Ser	Leu
500		505	510
Ala	Leu	Glu	Val
		Asp	Glu
		Glu	Thr
515		520	525
Thr	Phe	Thr	Phe
		His	Ala
		Asp	Ile
530		535	540
Gin	Ile	Lys	Lys
		Gin	Thr
		Ala	Leu
		Val	Glu
			Leu
			Val
			Lys
			His
			Lys
			Pro

20

21

22

545 550 555 560
 Lys Ala Thr Lys Glu Gin Leu Lys Ala Val Met Asp Asp Phe Ala Ala
 565 570 575
 Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala
 580 585 590
 Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gin Ala Ala Leu Gly Leu
 595 600 605 608

配列番号：3

配列の長さ：1830

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：cDNA to mRNA

配列の特徴：

10 特徴を表す記号：CDS

存在位置：1..1830

特徴を決定した方法：E

配列

ATG CCC GAG GAC GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT GAG 48
 GGT CCC GGT GAC GCC AAG GCC ATG GAT GCA CAC AAG AGT GAG GTT GCT 96
 CAT CGG TTT AAA GAT TTG GGA GAA GAA ATT TTC AAA GCC TTG GTG TTG 144
 ATT GCC TTG CCT CAG TAT CCT CAG TGT CCA TTG GAA GAT CAT GTA 192
 AAA TTA GTG ATT GAA GTA ACT GAA ATT GCA AAA ACA TGT GTA CCT GAT 240
 GAG TCA GCT GAA ATT TGT GAC AAA TCA CTT CAT ACC CCT TTG GGA GAC 288
 AAA TTA TGC ACA GTT GCA ACT CCT CGT GAA ACC TAT GGT GAA ATG GCT 336
 GAC TGC TGT GCA AAA CAA GCA CCT GAG AGA ATT GAA TGC TTC TTG CAA 384
 CAC AAA GAT GAC AAC CCA AAC CTC CCC CGA TTG GTG AGA CCA GAG GTT 432
 GAT GTG ATG TGC ACT GCT TTG CCT GAC ATT GAA GAG ACA ATT TTG AAA 480
 AAA TAC TTA TAT GAA ATT GCC AGA AGA CAT CCT TAC TTG TAT GCC CCG 528
 GAA CTC CTT TTG TTT GCT AAA AGG TAT AAA GCT GCT GCT TTG ACA GAA TGT 576
 TGC CAA GCT GCT GAT AAA GCT GGC TGC CTG TTG CCA AAG CTC GAT GAA 624
 CCT CGG GAT GAA GGG AAA AGC GCT TGC TCT GCC AAA CAG AGA CTC AAA TGT 672
 GCC AGT CTC CAA AAA ATT GGA GAA AGA GCT TTC AAA GCA TGG GCA GTG 720
 GCT GGC CTG ACC CAG AGA TGA TTG CCC AAA GCT GAG TTG GCA GAA TTG TCC 768
 AAG TTA GTG ACA GAT CCT ACC AAA GTC CAC ACG GAA TGC TCC CAT CGA 816
 GAT CTG CTT GAA TGT GCT GAT GAC AGG GCG GAC CTT GCC AAG TAT ATC 864
 TGT GAA ATT CAG GAT TCG ATC TCC AGT AAA CTG AGG GAA TGC TGT GAA 912
 AAA CCT CTG TTG GAA AAA TCC CAC TGC ATT GCC GAA GTG GAA ATT GAT 960
 GAG ATG CCT GCT GAC TTG CCT TCA TTA GCT GCT GAT TTG GAA AGT 1008
 AAG GAT TTG TCC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GGC 1056
 ATG TTG TTG TAT GAA ATT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTG 1104
 CTG CTG CTG AGA ATT GCC AAG ACA ATT GAA ACC ACT CTA GAC AGG TGC 1152
 TGT GCC GCT GCA GAT CCT GAT GAA TGC ATT TAT GCC AAA GTC TTG GAT GAA 1200
 TTT AAA CCT TTG GAA GAG CCT CAG ATT TTA ATC AAA CAA AAC TGT 1248
 GAG CCT TTT AAG CAG CCT GGA GAG TAC AAA TTC CAG ATT GCG CTA TTA 1296
 GTT GCT TAC ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CCT TTA 1344
 GAG GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT 1392
 CCT GAA GCA AAA AGA ATG CCG CCT TGT GCA GAA GAC ATT CTA TCC GTG GTC 1440
 CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACC CCA GTA AGT GAC AGA 1488
 GTC ACA AAA TGC TGC ACA GAG TCC TTG GTG AAC AGG CGA CCA TCC TTT 1536
 TCA GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTG ATT GCT 1584
 GAA ACA ATT TTC ACC CCT CAT GCA GAT ATT TGC ACA ATT TCT GAG AAC GAG 1632
 AGA CAA ATT CAG AAA CAA ACT GCA ATT GTT GAG CTC GTG AAA AAC CAG 1680
 CCC AAG GCA ACA AAA GAA CAA CCT AAA GCT GTT ATG GAT GAT TTC GCA 1728
 GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT 1776

23

GCC GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC 1824
TTA TAA 1830

24

トポロジー：直鎖状

配列の種類：タンパク質

配列番号：4

配列の長さ：631

配列の型：アミノ酸

配列

Met Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly
 1 5 10 15
 Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Glu Tyr Leu
 20 25 30
 Gin Gin Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr
 35 40 45
 Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp
 50 55 60
 Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr
 65 70 75 80
 Leu Arg Glu Thr Tyr Glu Met Ala Asp Cys Cys Ala Lys Gin Glu
 85 90 95
 Pro Glu Arg Asn Glu Cys Phe Leu Gin His Lys Asp Asp Asn Pro Asn
 100 105 110
 Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe
 115 120 125
 His Asp Asn Glu Glu Thr Phe Leu Lys Tyr Leu Tyr Glu Ile Ala
 130 135 140
 Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys
 145 150 155 160
 Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gin Ala Ala Asp Lys Ala
 165 170 175
 Ala Cys Leu Leu Pro Lys Leu Ala Glu Asp Gly Asp Ala Lys Thr Asp
 180 185 190
 Gin Ala Glu Lys Ala Glu Gly Asp Ala Lys Leu Asp Glu Leu
 195 200 205
 Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys Gin Arg Leu Lys Cys Ala
 210 215 220
 Ser Leu Gin Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala
 225 230 235 240
 Arg Leu Ser Glu Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys
 245 250 255
 Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Glu Asp
 260 265 270
 Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys
 275 280 285
 Glu Asn Glu Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys
 290 295 300
 Pro Leu Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu
 305 310 315 320
 Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys
 325 330 335
 Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Glu Met
 340 345 350

25

26

Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu
 355 360 365
 Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys
 370 375 380
 Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe
 385 390 395 400
 Lys Pro Leu Val Glu Glu Pro Gin Asn Leu Ile Lys Gln Asn Cys Glu
 405 410 415
 Leu Phe Lys Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val
 420 425 430
 Arg Tyr Thr Lys Lys Val Pro Gin Val Ser Thr Pro Thr Leu Val Glu
 435 440 445
 Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro
 450 455 460
 Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu
 465 470 475 480
 Asn Gin Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val
 485 490 495
 Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser
 500 505 510
 Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu
 515 520 525
 Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg
 530 535 540
 Gin Ile Lys Lys Glu Thr Ala Leu Val Glu Leu Val Lys His Lys Pro
 545 550 555 560
 Lys Ala Thr Lys Glu Glu Leu Lys Ala Val Met Asp Asp Phe Ala Ala
 565 570 575
 Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala
 580 585 590
 Glu Glu Gly Lys Leu Val Ala Ala Ser Glu Ala Ala Leu Gly Leu
 595 600 605
 Tyr Met Ala Glu Asp Gly Asp Ala Lys Thr Asp Glu Ala Glu Lys Ala
 610 615 620
 Glu Gly Ala Gly Asp Ala Lys
 625 630 631

配列番号：5

配列の種類：cDNA to mRNA

配列の長さ：1827

配列の特徴

配列の型：核酸

特徴を表す記号：CDS

鎖の数：二本鎖

40 存在位置：1.. 1827

トポロジー：直鎖状

特徴を決定した方法：E

配列

ATG GAT GCA CAC AGA AGT GAG GTT CAT CGG TTT AAA GAT TTG GGA	48
GAA GAA ATT TTC AAA GCC TTG GTG ATT GCC TTT GCT CAG TAT CTT	96
CAG CAG TGT CCA TTT GAA GAT CAT GTC AAA TTA GTG ATT GAA GTC ACT	144
GAA TTT GCA AAA ACA TGT GTC GCT GAT GAG TCA GCT GAA ATT TGT GAC	192
AAA TCA CCT CAT ACC CCT TTT GGA GAC AAA TTA TGC ACA GTT GCA ACT	240
CTT CGT GAA ACC TAT GGT GAA ATG GCT GAC TGC TGT GCA AAA CAA GAA	288
CCT GAG AGA AAT GAA TGC TTC TTT CAA CAC AAA GAT GAC AAC CCA AAC	336
CTC CCC CGA TTG GTG AGA CCA GAG GTT GAT GTG ATG TGC ACT GCT TTT	384

27

28

CAT GAC AAT GAA GAG ACA TTT TTG AAA AAA TAC TTA TAT GAA ATT GCC	432
AGA AGA CAT CCT TAC TTT TAT GCC CCG GAA CTC CTT TTC TTT GCT AAA	480
AGG TAT AAA GCT GCT TTT ACA GAA TGT TGC CAA GCT GCT GAT AAA GCT	528
GCC TGC CTG TTG CCA AAG CTT GCC GAG GAC GGT GAC GCC AAG ACC GAC	576
CAA GCT GAG AAG GCT GAG GGT GCC GGT GAC GCC AAG CTT GAT GAA CTT	624
CGG GAT GAA GGG AAG GCT TCG TCT GCC AAA CAG AGA CTC AAA TGT GCC	672
AGT CTC CAA AAA TTT GGA GAA AGA GCT TTC AAA GCA TGA GCA GTG GCT	720
GGC CTG AGC CAG AGA TTT CCC AAA GCT GAG TTT GCA GAA GTT TCC AAG	768
TTA GTG ACA GAT CTT ACC AAA GTC CAC ACT GAA TGC TGC CAT GGA GAT	816
CTG CTT GAA TGT GCT GAT GAC AGG GCG GAC CTT GCC AAG TAT ATC TGT	864
GAA AAT CAG GAT TGT ATC TCC AGT AAA CTC AAG GAA TGC TGT GAA AAA	912
CCT CTG TTG GAA AAA TCC CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG	960
ATG CCT GCT GAC TTG CCT TCA TTA GCT GCT GAT TTT GTT GAA AGT AAG	1008
GAT GTT TGC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG	1056
TTT TTG TAT GAA TAT GCA AGA AGC CAT CCT GAT TAC TCT GTC GTG CTG	1104
CTG CTG AGA CTT GCC AAG ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT	1152
GCC GCT GCA GAT CCT CAT GAA TGC TAT GCC AAA GTG TTG TTC GAT GAA TTT	1200
AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAC TGT GAG	1248
CTT TTT AAC CAG CTT GGA GAG TAC AAA TTC CAG AAT GCG CTA TTA GTT	1296
GGT TAC ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG	1344
GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT	1392
GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTG GTC CTG	1440
AAC CAG TTA TGT GTG CTT CAT GAG AAA AGC CCA GTC AGT GAC AGA GTC	1488
ACA AAA TGC TGC ACA GAG TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA	1536
GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA	1584
ACA TTG ACC TTC CAT GCA GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA	1632
CAA ATC AAG AAA CAA CCT GCA CTT GTT GAG CTC GTG AAA CAC AAG CCC	1680
AAG GCA ACA AAA GAG CAA CCTG AAA GCT GTT ATG GAT GAT TTC GCA GCT	1728
TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAC GAG ACC TGC TTT GCC	1776
GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA	1824
TAA	1827

配列番号：6

トボロジー：直鎖状

配列の長さ：632

配列の種類：タンパク質

配列の型：アミノ酸

配列

Met Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly	
1 5 10 15	
Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Glu Tyr Leu	
20 25 30	
Gln Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr	
35 40 45	
Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp	
50 55 60	
Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr	
65 70 75 80	
Leu Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Glu Glu	
85 90 95	
Pro Glu Arg Asn Glu Cys Phe Leu Glu His Lys Asp Asp Asn Pro Asn	
100 105 110	
Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe	

29

30

115	120	125
His Asp Asn Glu Glu Thr Phe Leu Lys Tyr Leu Tyr Glu Ile Ala		
130	135	140
Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys		
145	150	155
Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Glu Ala Ala Asp Lys Ala		
165	170	175
Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala		
180	185	190
Ser Ser Ala Lys Glu Arg Leu Lys Cys Ala Ser Leu Glu Lys Phe Glu		
195	200	205
Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Glu Arg Phe		
210	215	220
Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr		
225	230	235
Lys Val His Thr Glu Cys Cys His Glu Asp Leu Leu Glu Cys Ala Asp		
245	250	255
Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Glu Asp Ser Ile		
260	265	270
Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser		
275	280	285
His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro		
290	295	300
Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr		
305	310	315
Ala Glu Ala Lys Asp Val Phe Leu Glu Met Phe Leu Tyr Glu Tyr Ala		
325	330	335
Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys		
340	345	350
Thr Tyr Glu Thr Thr Leu Glu Lys Cys Ala Ala Ala Asp Pro His		
355	360	365
Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Ala Glu Asp Gly Asp Ala		
370	375	380
Lys Thr Asp Gin Ala Glu Lys Ala Glu Gly Ala Gly Asp Ala Lys Glu		
385	390	395
Phe Lys Pro Leu Val Glu Glu Pro Glu Asn Leu Ile Lys Glu Asn Cys		
405	410	415
Glu Leu Phe Lys Glu Leu Gly Glu Tyr Lys Phe Glu Asn Ala Leu Leu		
420	425	430
Val Arg Tyr Thr Lys Lys Val Pro Glu Val Ser Thr Pro Thr Leu Val		
435	440	445
Glu Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His		
450	455	460
Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val		
465	470	475
Leu Asn Gin Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg		
485	490	495
Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe		
500	505	510
Ser Ala Ley Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala		

31

32

515	520	525
Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu		
530	535	540
Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val His Lys		
545	550	555
Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala		560
565	570	575
Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe		
580	585	590
Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly		
595	600	605
Leu Tyr Met Ala Glu Asp Gly Asp Ala Lys Thr Asp Gin Ala Glu Lys		
610	615	620
Ala Glu Gly Ala Gly Asp Ala Lys		
625	630	632

配列番号：7

配列の種類：cDNA to mRNA

配列の長さ：1830

配列の特徴

配列の型：核酸

特徴を表す記号：CDS

鎖の数：二本鎖

存在位置：1.. 1830

トポロジー：直鎖状

2D 特徴を決定した方法：E

配列

ATG GAT GCA CAC AAG AGT GAG GTT GCT CAT CGG TTT AAA GAT TTG GGA	48
GAA GAA ATT TTC AAA GCC TTG GTG TTG ATT GCC TTT GCT CAG TAT CTT	96
CAG CAG TGT CCA TTT GAA GAT CAT GTA AAA TTA TTG ATT GAA GTA ACT	144
GAA TTT GCA AAA ACA TGT GTA GCT GAT GAG TCA GCT GAA ATT TTG GAC	192
AAA TCA CCT CAT ACC CCT TTG GGA GAC AAA TTA TGC ACA GTT GCA ACT	240
CTT CTG GAA ACC ATT TTG GAA ATG GCT GAC TGC TTG GCA AAA CAA GAA	288
CTT GAG AGA ATT GAA TGC TTG TTG CAA CAC AAA GAT GAC AAC CCA AAC	336
CTC CCC CGA TTG TTG AGA CCA GAG GTT GAT GTG ATG TGC ACT GCT TTT	384
CAT GAC ATT GAA GAG ACA ATT TTG AAA AAA TAC TTA TAT GAA ATT GCC	432
AGA AGA CAT CCT TAC ATT ATT GCC CCG GAA CTC CTT TTG TTT GCT AAA	480
AGG ATT AAA CCT GCT ATT ACA GAA TTG TGC CAA GCT GCT GAT AAA GCT	528
GCC TGC CTG TTG CCA AAG CTC GAT GAA ATT CGG GAT GAA GGG AAG GCT	576
TGG TCT GCC AAA CAG AGA CTC AAA TTG GCC AGT CTC CAA AAA ATT GGA	624
GAA AGA CCT TTC AAA GCA TGC GCA TTG GCT CCG CCT AGC CAG AGA ATT	672
CCC AAA CCT GAG ATT GCA GAA GTT TCC AAC ATT TTA GTC ACA GAT CCT ACC	720
AAA GTC CAC ACC GAA TGC TGC CAT GGA GAT CTG CTT GAA TTG GCT GAT	768
GAC AGG GGG GAC CCT GCC AAC ATT ATC TTG GAA ATT CAG GAT TCG ATC	816
TCC AGT AAA CTG AAG GAA TGC TTG GAA AAA CCT CTG TTG GAA AAA TCC	864
CAC TGC ATT CCT GCA GAG TTG GAA ATT GAT GAG ATG CCT GCT GAC TTG CCT	912
TCA TTA CCT GCT GAT ATT TTG GAA AGT AAG GAT GTT TTG AAA AAC ATT	960
GCT GAG GCA AAG GAT GTC TTG CTG GGC ATG ATT TTG ATT GAA ATT GCA	1008
AGA AGG CCT CCT GAT TAC CCT GTC TTG CTG CTG AGA ATT GCC AAG	1056
ACA ATT GAA ACC ACT CCT GAA AGG TGC TTG CCT GCA GAT CCT CAT	1104
GAA TGC ATT CCT AAA TTG CCT GAT GAA TTG CCT GGC GAG GAC GGT GAC GCC	1152
AAG ACC GAC CAA CCT GAG AAG CCT GAG GGT GCC GGT GAC GCC AAG GAA	1200
TTC AAA CCT CCT TTG GAA GAG CCT CAG ATT ATT AAA CAA AAC CCT	1248
GAG CCT TTG AAG CCT GAG CCT GAG TAC AAA TTC CAG ATT GCG CTA TTA	1296
GTT CCT TAC ACC AAC AAA GTA CCC CAA TTG TCA ACT CCT GAT CCT TTG	1344
GAG GTC TCA AGA AAC CCT GGA AAA TTG GGC AGC AAA CCT TTG GAT AAA CCT	1392

33

34

CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTG GTC	1440
CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACC CCA GTA AGT GAC AGA	1488
GTC ACA AAA TCC TGC AAC GAG TCC TTG GTG AAC AGG CGC CCA TGC TTT	1536
TCA GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT ATT GCT	1584
GAA ACA TTC ACC TCT CAT GCA GAT ATA TCC ACA CCA CCT TCT GAG AAC GAG	1632
AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG CTC GTGA AAC AC AAG	1680
CCC AAG GCA ACA AAA GAG CAA CTC AAA GCT GTT ATG GAT GAT TTC GCA	1728
GCT TTT GTA GAG AAG TCC TGC AAC GCT GAC GAT AAG GAG ACC TGC TTT	1776
GCC GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC	1824
TIA TAA	1830

配列番号：8

トポロジー：直鎖状

配列の長さ : 609

配列の種類：タンパク質

配列の型：アミノ酸

配列

35

Bis Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro
 290 295 300
 Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr
 305 310 315 320
 Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala
 325 330 335
 Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys
 340 345 350
 Thr Tyr Glu Thr Thr Leu Gln Cys Cys Ala Ala Ala Asp Pro His
 355 360 365
 Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu
 370 375 380
 Pro Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Lys Gln Leu Gly
 385 390 395 400
 Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Val
 405 410 415
 Pro Gln Val Ser Thr Pro Thr Leu Val Gln Val Ser Arg Asn Leu Gly
 420 425 430
 Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro
 Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu
 450 455 460
 His Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu
 465 470 475 480
 Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu
 485 490 495
 Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr His Ala
 500 505 510
 Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr
 515 520 525
 Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln
 530 535 540
 Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys
 545 550 555 560
 Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu
 565 570 575
 Val Ala Ala Ser Gln Ala Ala Leu Glu Leu Tyr Met Ala Glu Asp Gly
 580 585 590
 Asp Ala Lys Thr Asp Gln Ala Glu Lys Ala Glu Gly Ala Gly Asp Ala
 595 600 605
 Lys
 609

36

配列の種類: c DNA to mRNA

配列の特徴

特徴を表す記号: CDS

存在位置: 1.. 1830

特徴を決定した方法: E

配列番号: 9

配列の長さ: 1830

配列の型: 核酸

鎖の数: 二本鎖

トポロジー: 直鎖状

配列

ATG GAT GCA CAC AAG AGT GAG GTT GCT CAT CGG TTT AAA GAT TTG GGA	48
GAA GAA AAT TTC AAA GCC TTG GTG TTG ATT GCC TTT GCT CAG TAT CCT	96
CAG CAG TGT CCA TTT GAA GAT CAT GTA AAA TTA GTG AAT GAA GTA ACT	144

37

38

GAA TTT GCA AAA ACA TGT GTA GCT GAT GAG TCA GCT GAA AAT TGT GAC 192
 AAA TCA CTC CAT ACC CTT TTT GGA GAC AAA TTA TGC ACA GTT GCA ACT 240
 CCT CGT GAA ACC TAT GGT GAA ATG GCT GAC TGC TGT GCA AAA CAA GAA 288
 OCT GAG AGA AAT GAA TGC TTC TTG CAA CAC AAA GAT GAC AAC CCA AAC 336
 CTC CCC CGA TTG GTG AGA CCA GAG GTT GAT GTG ATG TGC ACT GCT TTT 384
 CAT GAC AAAT GAA GAG ACA TTT TTG AAA AAA TAC TTA TAT GAA ATT GCC 432
 AGA AGA-CAT CCT TAC TTT TAT GCC CGG GAA CTC CTT TTG TTT GCT AAA 480
 AGG TAT AAA GCT GCT TTT ACA GAA TGT TGC CAA GCT GCT GAT AAA GCT 528
 GCC TGC CTG TTG CCA AAG CTC GAT GAA CCT CGG GAT GAA GGG AGG GCT 576
 TCG TCT CGC AAA CAG AGA CTC AAA TGT GCC AGT CTC CAA AAA TTT GGA 624
 GAA AGA GCT TTC AAA GCA TGC GCA GTG GCT CGC CTG ACC CAG AGA TTT 672
 CCC AAA GCT GAG TTT GCA GAA GTT TCC ANG TTA GTG ACA GAT CTT ACC 720
 AAA GTC CAC ACC GAA TGC TGC CAT GGA GAT CTC CTT GAA TGT GCT GAT 768
 GAC AGG CGC GAC CTT GGC AAC GAT ATC TGT GAA AAT CAG GAT TCC ATC 816
 TCC ACT AAA CTG AGG GAA TGC TGT GAA AAA CCT CTG TTG GAA AAA TCC 864
 CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG ATG CCT GCT GAC TTG CCT 912
 TCA TTA GCT GCT GAT TTT GTT GAA AGT AMG GAT GTT TGC AAA AAC TAT 960
 GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG TTT TTG TAT GAA TAT GCA 1008
 AGA AGG CAT CCT GAT TAC TCT GTC GTG CTG CTG CTG AGA CCT GGC AGG 1056
 ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT GCC GCT GCA GAT CCT CAT 1104
 GAA TGC TAT GCC AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG 1152
 CCT CAG AAT TTA ATC AAA CAA AAC TGT GAG CTT TTT AAG CAG CCT GGA 1200
 GAG TAC AAA TTC CAG AAT GCG CTA TTA GTT GCT TAC ACC AAG AAA GTA 1248
 CCC CAA GTG TCA ACT CCA ACT CTT GTC GAG GTC TCA AGA AAC CTA GGA 1296
 AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT, GAA GCA AAA AGA ATG CCC 1344
 TGT GCA GAA GAC TAT CTA TCC GTG GTC CTG AAC CAG CTA TGT GTG TTG 1392
 CAT GAG AAA ACC CCA GTA AGT GAC AGA GTC ACA AAA TGC TGC ACA GAG 1440
 TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG GAA GTC GAT GAA 1488
 ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA 1536
 GAT ATA TGC ACA CTT TCT GAG AAG AGA CAA ATC AAG AAA CAA ACT 1584
 GCA CCT TGT GAT CTT GTG AAA AAC CAC AGG GCA ACA AAA GAG CAA 1632
 CTG AAA CCT GTT ATG GAT GAT TTC GCA GCT TTT GTA GAG AAG TGC TGC 1680
 AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG GGT AAA AAA CTT 1728
 GTT GCT GCA AGT CAA GCT GCC TTA GCC TTA TAC ATG GCC GAG GAC GGT 1776
 GAC GGC AAG ACC GAC CAA CCT GAG AAG GCT GAG GGT GGC GGT GAC GGC 1824
 AAG TAA 1830

配列番号：1 0

配列の長さ：7 3

配列の型：核酸

* 鎮の数：一本鎮

トポロジー：直鎮状

* 配列の種類：他の核酸 合成DNA

配列

GATCC ATG GCC GAG GAC GGT GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT	50
GAG GGT GCC GGT GAC GCC AAG TA	73

配列番号：1 1

配列の長さ：7 3

配列の型：核酸

鎮の数：一本鎮

※ トポロジー：直鎮状

配列の種類：他の核酸 合成DNA

アンチセンス：Y es

※

配列

AGCTTAA CTT GGC GTC ACC GGC ACC CTC AGC CTT CTC AGC TTG GTC GGT CTT	51
GGC GTC ACC GTC CTC GGC CAT G	73

50 配列の長さ：2 8

配列番号：1 2

39

40

配列の型：核酸
鎖の数：一本鎖

* トポロジー：直鎖状
★ 配列の種類：他の核酸 合成DNA

配列

AGACCATGGA TCCACACAAG AGTGAGGT

28

配列番号：1 3

※鎖の数：一本鎖

配列の長さ：2 0

トポロジー：直鎖状

配列の型：核酸

※ 配列の種類：他の核酸 合成DNA

配列

AATAAGCTTT TGATCTTCAT

20

配列番号：1 4

10★鎖の数：一本鎖

配列の長さ：2 0

トポロジー：直鎖状

配列の型：核酸

★ 配列の種類：他の核酸 合成DNA

配列

AGCAGCTTT GGCAACAGGC

20

配列番号：1 5

☆鎖の数：一本鎖

配列の長さ：2 9

トポロジー：直鎖状

配列の型：核酸

☆ 配列の種類：他の核酸 合成DNA

配列

ACCAAGCTTG ATGAACTTCG GGATGAAGG

29

配列番号：1 6

20◆鎖の数：一本鎖

配列の長さ：2 4

トポロジー：直鎖状

配列の型：核酸

◆ 配列の種類：他の核酸 合成DNA

配列

ACCGAATTCA TCGAACACTT TTGC

24

配列番号：1 7

*鎖の数：一本鎖

配列の長さ：2 9

トポロジー：直鎖状

配列の型：核酸

*

配列

AGCGAATTCA AACCTCTTGT GGAGAGGCC

29

配列番号：1 8

30※鎖の数：一本鎖

配列の長さ：4 0

トポロジー：直鎖状

配列の型：核酸

※ 配列の種類：他の核酸 合成DNA

配列

AAGAACCTTG AATTCACATG TATAAGCCTA AGGCAGCTTG

40

配列番号：1 9

★鎖の数：一本鎖

配列の長さ：2 5

トポロジー：直鎖状

配列の型：核酸

★ 配列の種類：他の核酸 合成DNA

配列

AGCCCATGGC CGAGGACGGT GACCC

25

配列番号：2 0

40☆鎖の数：一本鎖

配列の長さ：2 9

トポロジー：直鎖状

配列の型：核酸

☆ 配列の種類：他の核酸 合成DNA

配列

AGCCCATGGC TTGGCGACAC CGGGACCCCT

29

配列番号：2 1

◆鎖の数：一本鎖

配列の長さ：2 9

トポロジー：直鎖状

配列の型：核酸

◆ 配列の種類：他の核酸 合成DNA

配列

AGCAAGCTTG CCGAGGACGG TGACGCCAA

29

配列番号：2 2

50 配列の長さ：2 6

41

配列の型：核酸
鎖の数：一本鎖

配列
AGCAAGCTTG GGACACCCGG CACCTT

配列番号：2 3
配列の長さ：2 9
配列の型：核酸

配列
AGCGAATTTCG CGCAGGACGG TGACCCAA

配列番号：2 4
配列の長さ：2 9
配列の型：核酸

配列
AGCGAATTC TTGGCGACAC CGGCACCTT

配列番号：2 5
配列の長さ：7 1
配列の型：核酸

配列
CC ATG GCC GAG GAC GGT GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT GAG 50
GGT GCC GGT GAC GCC AAG TAA 71

【図面の簡単な説明】

【図1】発現ベクターp TL 2 BmIの構成図である。

【図2】SDS-PAGE観察図である。

【図3】ウエスタンプロット観察図である。

【図4】癌細胞浸潤阻害活性測定結果を示すグラフである

42

* トポロジー：直鎖状
* 配列の種類：他の核酸 合成DNA

※鎖の数：一本鎖

トポロジー：直鎖状

※ 配列の種類：他の核酸 合成DNA

10★鎖の数：一本鎖

トポロジー：直鎖状

★ 配列の種類：他の核酸 合成DNA

☆鎖の数：二本鎖

トポロジー：直鎖状

☆ 配列の種類：他の核酸 合成DNA

る。

【図5】発現ベクターp RL 2 Lの構成図である。

【図6】発現ベクターp RL 2 Mの構成図である。

【図7】発現ベクターp TL 2 Mの構成図である。

【図8】発現ベクターp TL 2 Brmの構成図である。

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

フロントページの続き

(51) Int. Cl. ⁶	識別記号	庁内整理番号	F I	技術表示箇所
//(C 1 2 N 1/19				
C 1 2 R 1:645)				
(C 1 2 P 21/02				
C 1 2 R 1:645)				

(72)発明者 塚本 洋子
神奈川県横浜市神奈川区羽沢町1150番地
旭硝子株式会社中央研究所内

(72)発明者 磯合 敏
神奈川県横浜市神奈川区羽沢町1150番地
旭硝子株式会社中央研究所内
(72)発明者 熊谷 博道
神奈川県横浜市神奈川区羽沢町1150番地
旭硝子株式会社中央研究所内