Azzolini Riccardo 2020-02-20

Proprietà insiemistiche

1 Proprietà elementari degli insiemi

Alcune proprietà elementari delle operazioni sugli insiemi sono:

- Proprietà commutativa:

$$A \cup B = B \cup A$$

$$A\cap B=B\cap A$$

• Idempotenza:

$$A \cup A = A$$

$$A \cap A = A$$

• Proprietà del vuoto:

$$A \cup \varnothing = \varnothing \cup A = A$$

$$A \cap \varnothing = \varnothing \cap A = \varnothing$$

• Assorbimento: se $A' \subseteq A$, allora

$$A \cup A' = A$$

$$A \cap A' = A'$$

Ad esempio:

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

• Se ω è l'intero spazio (cioè tutti gli insiemi su cui si lavora sono considerati sottoinsiemi di ω), allora

$$\omega \cup A = \omega$$

$$\omega \cap A = A$$

$$A \cup A^\mathsf{c} = \omega$$

$$A \cap A^{\mathsf{c}} = \emptyset$$

• Teoremi di De Morgan:

$$A^{c} \cup B^{c} = (A \cap B)^{c}$$

 $A^{c} \cap B^{c} = (A \cup B)^{c}$

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

- Legge distributiva
 - dell'unione rispetto all'intersezione:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- dell'intersezione rispetto all'unione:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Attenzione: Questa proprietà non deve essere confusa con quella associativa. Infatti, in generale,

$$A \cup (B \cap C) \neq (A \cup B) \cap C$$

Ad esempio, con $C = \emptyset$,

$$A \cup (B \cap C) = A \cup (B \cap \varnothing) = A \cup \varnothing = A$$
$$(A \cup B) \cap C = (A \cup B) \cap \varnothing = \varnothing$$

2 Regole definitorie del calcolo delle probabilità

Dalla definizione di spazio di probabilità e dalle proprietà degli insiemi, si ricavano immediatamente varie regole. Ad esempio:

• Se $A \in \mathcal{A}$, allora

$$P(A^{\mathsf{c}}) = 1 - P(A)$$

Dimostrazione: Per le proprietà degli insiemi, valgono

$$\Omega = A^\mathsf{c} \cup A$$

$$A^{\mathsf{c}} \cap A = \emptyset$$

In particolare, la seconda di queste uguaglianze indica che A^c e A sono eventi disgiunti. È allora possibile applicare la regola per il calcolo della probabilità di eventi disgiunti, data dalla definizione di probabilità:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

Si può quindi scrivere

$$P(\Omega) = P(A^{\mathsf{c}} \cup A) = P(A^{\mathsf{c}}) + P(A)$$

e, siccome, ancora per la definizione di probabilità, $P(\Omega) = 1$, si ottiene infine

$$1 = P(A^{\mathsf{c}}) + P(A)$$
$$P(A^{\mathsf{c}}) = 1 - P(A) \quad \Box$$

• Se $A \subseteq B$, allora

$$P(A) \le P(B)$$

Dimostrazione: Innanzitutto, si costruiscono due eventi disgiunti, $A \in B \cap A^{\mathsf{c}}$.

Essi sono disgiunti perché:

$$A \cap (B \cap A^{\mathsf{c}}) = A \cap (A^{\mathsf{c}} \cap B)$$
 (proprietà commutativa)
 $= (A \cap A^{\mathsf{c}}) \cap B$ (proprietà associativa)
 $= \varnothing \cap B$ (intersezione con il complemento)
 $= \varnothing$ (intersezione con l'insieme vuoto)

Per le proprietà degli insiemi, l'unione $A \cup (B \cap A^{c})$ di tali eventi è $A \cup B$,

$$A \cup (B \cap A^{\mathsf{c}}) = (A \cup B) \cap (A \cup A^{\mathsf{c}})$$
 (proprietà distributiva)
= $(A \cup B) \cap \Omega$ (unione con il complemento)
= $A \cup B$ (intersezione con lo spazio totale)

e, per l'ipotesi $A \subseteq B$, applicando l'assorbimento si ha che

$$A \cup B = B$$

Allora,

$$P(B) = P(A \cup B)$$

$$= P(A \cup (B \cap A^{c}))$$

$$= P(A) + P(B \cap A^{c})$$

per la regola della probabilità di eventi disgiunti. Infine, siccome $B \cap A^{\mathsf{c}}$ è un insieme non necessariamente vuoto, e siccome, per la definizione di $P : \mathcal{A} \to [0,1]$, deve essere $P(B \cap A^{\mathsf{c}}) = c \in [0,1]$, vale

$$P(B) = P(A) + c$$

ovvero

$$P(B) \ge P(A)$$

• Dalla dimostrazione della proprietà precedente, si ricava che la probabilità di due eventi non necessariamente disgiunti è:

$$P(A \cup B) = P(A) + P(B \cap A^{c})$$

Un altro modo per scrivere tale probabilità è

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

perché, in modo intuitivo, nel caso in cui A e B non siano disgiunti, ¹ la probabilità di A comprende anche quella di $A \cap B$, e lo stesso vale per la probabilità di B, quindi la probabilità di $A \cap B$ viene "contata due volte". Per "correggere" il risultato, è quindi sufficiente sottrarre una volta $P(A \cap B)$.

¹Nel caso in cui A e B siano invece disgiunti, la formula vale comunque: siccome $A \cap B = \emptyset$, e $P(\emptyset) = 0$, essa si semplifica infatti a $P(A \cup B) = P(A) + P(B)$, che è appunto la regola per il calcolo della probabilità dell'unione di eventi disgiunti.

• Da De Morgan,

$$P\left[\bigcap_{n=1}^{\infty} A_n^{\mathsf{c}}\right] = P\left[\left(\bigcup_{n=1}^{\infty} A_n\right)^{\mathsf{c}}\right] = 1 - P\left[\bigcup_{n=1}^{\infty} A_n\right]$$

cioè, a livello intuitivo, la probabilità che non si verifichi nessuno degli eventi A_n è uguale a 1 meno la probabilità che si verifichi almeno uno di essi.

• Sia $\{A_n\}_{n=1,\infty}$ una successione monotona crescente di eventi $A_n \in \mathcal{A}$,

$$A_1 \subset A_n \subset A_{n+1} \subset \cdots$$

e sia $A \in \mathcal{A}$ l'unione di tutti gli infiniti eventi della successione:

Allora,

$$\lim_{n \to \infty} P(A_n) = P(A)$$

Dimostrazione: Dalla successione $\{A_n\}$, si ricava un'altra successione $\{B_n\}$ di eventi disgiunti,

$$B_1 = A_1$$

$$B_n = A_n \setminus A_{n-1} \quad \text{per } n > 1$$

$$B_n \cap B_m = \emptyset \quad \text{se } n \neq m$$

che corrispondono agli "anelli" del diagramma di Venn riportato sopra. Allora, valgono

$$\bigcup_{i=1}^{n} B_i = A_n$$

$$\bigcup_{i=1}^{\infty} B_i = A$$

e, quindi:

$$\lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} P\left(\bigcup_{i=1}^n B_i\right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^n P(B_i) \qquad \text{(probabilità di eventi disgiunti)}$$

$$= \sum_{i=1}^{\infty} P(B_i)$$

$$= P\left(\bigcup_{i=1}^{\infty} B_i\right) \qquad \text{(probabilità di eventi disgiunti)}$$

$$= P(A) \qquad \square$$

Nota: Non è ammesso il passaggio diretto

$$\lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} B_i\right) = P\left(\bigcup_{i=1}^{\infty} B_i\right)$$

perché esso sarebbe un'applicazione di questa stessa proprietà che si sta cercando di dimostrare (e, ovviamente, non è ammesso dimostrare una proprietà sfruttando la proprietà stessa, altrimenti qualsiasi proprietà, anche non valida, sarebbe dimostrabile).