開鎖問題之規律探討

研究者: 陳縕儂 陳怡樺

指導者:李政貴 老師

壹、緒論

一、研究動機

我們在找題目的時候,找到了這個題目,覺得它還蠻有趣,而且可以衍伸出 很多問題,深入研究。說不定以後能應用在其他地方,比如說商業機密或科技、 工程上,有實用價值。

二、研究目的

英國詹姆十一世時代,某一村莊將所有值錢的東西,都鎖在教堂的一個箱子 裡。箱子用一些鎖鎖著。每個鎖都有個別而不同的鑰匙。為了確保村中任三人都 有足夠鑰匙以打開箱子,但兩個人卻不能打開。到底需要幾個鎖?又需要多少把 鑰匙?(每把鎖的鑰匙數相同)

三、研究問題

- (一)如果你數一個特定的箱子的鎖的數目,你能推衍出在這種制度下,持有鑰 匙的人有多少?
- (二)在附近的另一個村落,採用更多封建制度。每一個村民依重要性分級(1 為最重要的),村長要求安排如下:如果一群人希望打開箱子,那麼現場人 員中,第x等級最少要有x人存在。則此規則為何?

貳、研究設計

- 一、將之特殊化!
- 二、先由小村莊開始。
- 三、先試著要求任兩人可打開,但一人不能的情況下。

參、研究方法

任兩人可打開,但一人不能的情況條件之下,將每把鑰匙編號,計算出其中 之關係。

Ex1:有六個鎖(偶數個),一人四個,任兩人可開(兩人會擁所有的鎖)。

A B C D E F

第一個人的

A B C D

(少E、F)

則下一個人要有 E、F

第二個人的(再任選 ABCD 中兩個,例 CD) CDEF(少 A、B)

則再下一個要有 E、F、A、B

第三個人的

А В

E F

第三個人有E、F、A、B、剛好四個、代表他是最後一個人了。 總共有三人。

總共鑰匙為 2A + 2B + 2C + 2D + 2E + 2F,每個鎖有兩把鑰匙。

Ex2:有五個鎖(奇數個),一人三個,任兩人可開(兩人會擁所有的鎖)。

A B C D E

第一個人的

A B C

(少D·E)

則下一個人要有 D、E

第二個人的(再任選 ABC 中一個,例 C)

C D E (少A·B)

則下一個人要有 D、E、A、B(超過三個不合)

總共有兩人。

總共鑰匙為 A+B+2C+D+E, 有一個鎖有兩把鑰匙,其餘的鎖有一把鑰匙。

肆、研究過程

一、任兩人可打開

條件: $a-1 \ge b \ge a/2$

a-總共有幾個鎖	b——人擁有幾把鑰匙	c-村莊中人數為
d-一個鎖有幾個鑰匙(d=	$=e \div a$)	e-總共鑰匙數(e=b×c)
f_有特別情形之鑰匙數日	(f=e÷a	別情形由此鑰匙有幾押(d+1)

a	b	С	d	е	f
2	1	2	1	2	
3	2	3	2	6	
4	2	2	1	4	
	3	4	3	12	
5	3	2	1	6	1 (2)
	4	5	4	20	
6	3	2	1	6	
	4	3	2	12	
	5	6	5	30	
7	4	2	1	8	1 (2)
	5	3	2	15	1 (3)
	6	7	6	42	
8	4	2	1	8	
	5	2	1	10	2 (2)
	6	4	3	24	
	7	8	7	56	
9	5	2	1	10	1 (2)
	6	3	2	18	
	7	4	3	28	1 (4)
	8	9	8	72	

→由上可發現 d=c-1

先刪除特別的(即每個鎖有不同鑰匙數)來看,如下:

a-總共有幾個鎖	b-一人擁有幾把鑰匙	c-村莊中人數為
d-一個鎖有幾個鑰匙	$(d=e \div a)$	e-總共鑰匙數(e=bxc)

a	ь	С	d	е
2	1	2	1	2
3	2	3	2	6
4	2	2	1	4
	3	4	3	12
5	4	5	4	20
6	3	2	1	6
	4	3	2	12
	5	6	5	30
7	6	7	6	42
8	4	2	1	8
	6	4	3	24
	7	8	7	56
9	6	3	2	18
	8	9	8	72

由 d=c-1 可推斷⇒假設村中有 n 個人,則每個鎖都必有(n-1)把鑰匙。

$$d = \frac{e}{a} \cdot e = bxc$$

$$\Rightarrow$$
 (c-1) = (bxc) \div a \Rightarrow (1- $\frac{1}{c}$) = $\frac{b}{a}$

$$\Rightarrow$$
 $(c-1) = \frac{bc}{a} \Rightarrow a (c-1) = bxc \Rightarrow a (c-1) = e$

此為最大推衍限度,即為須知道 $a \cdot b \cdot c$ 其中任兩個數才能推斷其中關係。 而 c 必為 a 之因數,故 c 會有一種以上的可能性。 c 之可能數為 a 所有因數(1除外)。

<目的一>如果知道箱子上鎖的個數,能夠推演出此制度下,持有鑰匙的人有多少?

計算 c 之可能的數量:

設 a=p^mxqⁿxr^o(僅用三個質因數為例)

a 所有的因數之數量為 $(m+1) \times (n+1) \times (o+1) -1$ 【扣除 c=1 的狀

二、任三人可打開

a - 總共有幾個鎖 b - 一人擁有幾把鑰匙 c - 村莊中人數為 d - 一個鎖有幾個鑰匙 (d = e÷a) e - 總共鑰匙數 (e = bxc)

f-有特別情形之鑰匙數目(f=e÷a之餘數) ()-表特別情形中此鑰匙有幾把

a	b	С	d	e	f
3	1	3	1	3	
4	2	3	1	6	1 (3)
5	2	3	1	6	1 (2)
	3	3	1	9	2 (3)
6	2	3	1	6	
	3	4	2	12	
	4	3	1	12	3 (3)
7	3	3	1	9	2 (2)
	4	4	2	16	1 (4)
	5	3	1	15	4 (3)
8	3	3	1	9	1 (2)
	4	4	2	16	
	5	4	2	20	2 (4)
	6	3	1	18	5 (3)
9	3	3	1	9	
	4	3	1	12	3 (2)
	5	4	2	20	2 (3)
	6	4	2	28	3 (4)
	7	3	1	21	6 (3)
10	4	3	1	12	2 (2)
	5	4	2	20	
	6	5	3	30	
	7	4	2	28	4 (4)
	8	3	1	24	7 (3)

[⇒]由上可發現 d=c-2⇒假設村中有 n 個人,則每個鎖都必有(n-2)把鑰匙。

(-) b = a - 2

a-總共有幾個鎖 b--人擁有幾把鑰匙 c-村莊中人數為

d-一個鎖有幾個鑰匙(d=e÷a)

e-總共鑰匙數(e=bxc)

f-有特別情形之鑰匙數目(f=e÷a之餘數) ()-表特別情形中此鑰匙有幾把

a	b	С	d	е	f
3	1	3	1	3	
4	2	3	1	6	1 (3)
5	3	3	1	9	2 (3)
6	4	3	1	12	3 (3)
7	5	3	1	15	4 (3)
8	6	3	1	18	5 (3)
9	7	3	1	21	6 (3)
10	8	3	1	24	7 (3)

上表中,c 皆為 3,d 皆為 1,e 為等差數列 (差值為 3),而 f 也為一自然數列,() 中皆為 3。

b=a-2, c=3, d=1, e=3xb=3a-6, f=a-3, () =3

說明:當 c=3 時,無討論意義,因為任三人能開,而總共只有三人,即無意義。 將原表消去 b=a-2 此類。

$(\Box) b = a - 3$

a-總共有幾個鎖 b-一人擁有幾把鑰匙 c-村莊中人數為 d-一個鎖有幾個鑰匙(d=e+a) e-總共鑰匙數(e=bxc) f-有特別情形之鑰匙數目(f=e+a之餘數)()-表特別情形中此鑰匙有幾把

a	b	С	d	е	f
6	3	4	2	12	0
7	4	4	2	16	1 (4)
8	5	4	2	20	2 (4)
9	6	4	2	24	3 (4)
10	7	4	2	28	4 (4)

上表中,a=6 時無例外,故先不討論。而 c 皆為 4,d 皆為 2,e 為等差數列(差值為 4),而 f 也為一自然數列,()中皆為 4。

b=a-3, c=4, d=2, e=3xb=4a-12, f=a-6, () =4

說明:若()中的數=c時,即代表至少有一個鎖是每個人都能開的,代表總共只有(a-f)個鎖,一人有(b-f)把鑰匙 $\rightarrow a'=(a-f)$,b'=(b-f)。 消去 b=a-3 此類。

$(\Xi) b = a - 4$

a - 總共有幾個鎖 b - - 人擁有幾把鑰匙 c - 村莊中人數為 d - - 個鎖有幾個鑰匙 $(d=e\dot{-}a)$ e - 總共鑰匙數 (e=bxc)

f-有特別情形之鑰匙數目(f=e÷a之餘數) ()-表特別情形中此鑰匙有幾把

a	Ъ	С	d	е	f
6	2	3	1	6	
7	3	3	1	9	2 (2)
8	4	4	2	16	
9	5	4	2	20	2 (3)
10	6	5	3	30	
11	7	5	3	35	2 (4)
12	8	6	4	48	
13	9	6	4	54	2 (5)
14	10	7	5	70	
15	11	7	5	77	2 (6)
16	12	8	6	96	

此表格符合特定規則,如下:

當 a=2n (偶數)【已知 b=a-4】

$$\Rightarrow$$
 c= $\frac{a}{2}$, e=bxc= $(a-4)(\frac{a}{2}) = \frac{a(a-4)}{2}$, d= $\frac{e}{a} = \frac{(a-4)}{2}$

當 a=2n+1 (奇數)【已知 b=a-4】

$$\Rightarrow$$
 c= $\frac{(a-1)}{2}$, e=bxc= $\frac{(a-1)(a-4)}{2}$, d= $\frac{(a-5)}{2}$, f=2,() = $\frac{(a-3)}{2}$

當 a=6,7 時,c=3,即為上述所說無意義的情形,刪去不討論→則 $a \ge 8$ 。 * a 為奇數時,有 f 和 (),與「每把鎖有相同鑰匙」條件不合。故刪去不看,即得以下結論。

結論(n 為偶數):假設有 n 個鎖,每一把鎖都必須有 $\frac{(n-4)}{2}$ 把鑰匙,有 $\frac{n}{2}$ 個人, 共 $\frac{n(n-4)}{2}$ 把鑰匙。

(四)將原表粗體的分開來看(即 $n \neq 3$ 也無例外者,a=3不算在內)

 a-總共有幾個鎖
 b-一人擁有幾把鑰匙
 c-村莊中人數為

 d-一個鎖有幾個鑰匙(d=e÷a)
 e-總共鑰匙數(e=bxc)

a	b	С	d	e
3	1	3	1	3
6	3	4	2	12
10	6	5	3	30

由 d=c-2 可推斷⇒假設村中有 n 個人,則每個鎖都必有(n-2)把鑰匙。

又發現
$$a = (b+c-1) \cdot d = \frac{e}{a} \cdot e = b \times c$$

$$\Rightarrow (c-2) = \frac{bc}{a} \Rightarrow (1-\frac{2}{c}) = \frac{b}{a} \dots [1]$$

$$(c-2) = \frac{bc}{a} \Rightarrow a (c-2) = bc \Rightarrow a (c-2) = e$$

$$a = (b+c-1) \Rightarrow b = (a-c+1)$$
 代人 $[1] \Rightarrow (1-\frac{2}{c}) = \frac{a-c+1}{a}$

$$\Rightarrow (1-\frac{2}{c}) = 1 - \frac{c-1}{a} \Rightarrow \frac{2}{c} = \frac{c-1}{a} \Rightarrow 2a = c2 - c$$

$$\Rightarrow a = \frac{c(c-1)}{2} \Rightarrow e = \frac{c(c-1)(c-2)}{2}$$

觀察上表,發現此類的 a 數值的差值,會呈現自然數排列:3、4…,即 a 數值為一階差數列。故我們推測下一個此類的數為 a=15。代入上面推導之公式 \rightarrow a= 15、b=10、c=6、d=4、e=60,列舉出來後發現結果相符,故推測正確。

$$\Rightarrow$$
 a_n = 3 + $\sum_{k=0}^{n-2} k + 3$, **b**_n = $\sum_{k=0}^{n-2} k + 2$

※a 與 b 皆為階差數列,又 $b_n = a_n - 1$ 。 c 與 d 為等差數列。

下表為符合此規則的完整結果:

a	ь	С	d	e
3	1	3	1	3
6	3	4	2	12
10	6	5	3	30
15	10	6	4	60
21	15	7	5	105
28	21	8	6	168
36	28	9	7	252
45	36	10	8	360

說明:假設村中有 n 人,每一把鎖都必須有(n-2)把鑰匙,否則會導致有某三人來仍然無法打開,又任兩人都會有一把打不開的鎖,這把鎖與其他任兩人組合的鎖皆不同(否則此三或四人仍然無法開啟),故需要 $\frac{n(n-1)}{2}$ 把鎖,共 $\frac{n(n-1)(n-2)}{2}$ 把鑰匙。

結論:假設村中有 n 人,每一把鎖都必須有(n-2)把鑰匙,有 $\frac{n(n-1)}{2}$ 把鎖,共 $\frac{n(n-1)(n-2)}{2}$ 把鑰匙。

三、任四人可打開

※分類	(n≠4 也無例外者	, a = 47	下笪在内)
/•\ /J		u i	

a	b	С	d	е
4	1	4	1	4
10	5	6	3	30
14	8	7	4	56
24	16	9	6	144
30	21	10	7	210
44	33	12	9	396
52	40	13	10	520
70	56	15	12	840

由 d=c-3 可推斷⇒假設村中有 n 個人,則每個鎖都必有(n-3)把鑰匙。

又發現
$$a = (b+c-1) \cdot d = \frac{e}{a} \cdot e = b \times c$$

$$\Rightarrow (c-3) = \frac{bc}{a} \Rightarrow (1-\frac{3}{c}) = \frac{b}{a} \dots$$

$$(c-3) = \frac{bc}{a} \Rightarrow a (c-3) = bc \Rightarrow a (c-3) = e$$

$$a = (b+c-1) \Rightarrow b = (a-c+1)$$

$$\Rightarrow (1-\frac{3}{c}) = 1 - \frac{c-1}{a} \Rightarrow \frac{3}{c} = \frac{c-1}{a} \Rightarrow 3a = c^2 - c$$

$$\Rightarrow a = \frac{c(c-1)}{3} \Rightarrow e = \frac{c(c-1)(c-3)}{3}$$

※觀察上表,將表格分兩部分看,如下表(一)及(二):

(一) 2n-1項

第幾項	a	Ъ	С	d	е
1	4	1	4	1	4
3	14	8	7	4	56
5	30	21	10	7	210
7	52	40	13	10	520

發現此類的 a 數值的差值,會呈現一等差數列: $10 \times 16 \cdots$,即 a 數值為一階差數列。故我們可推測下一個此類的數為 80×2 發現此類的 b 數值的差值,會呈現一等差數列,即 $7 \times 13 \cdots$,故我們可推測下一個此類的數為 $65 \times 13 \cdots$ 代入上面推導之公式 $3 \times 13 \times 13 \cdots$ 之 $3 \times 13 \cdots$ 。 $3 \times 13 \cdots$

$$\Rightarrow$$
 $a_{2n-1} = \sum_{k=0}^{n-1} 6k + 4$, $b_{2n-1} = \sum_{k=0}^{n-1} 6k + 1$

※a 與 b 皆為階差數列的現象。 c 與 d 為等差數列 (差值為 3)。

(二) 2n 項

第幾項	a	b	С	d	e
2	10	5	6	3	30
4	24	16	9	6	144
6	44	33	12	9	396
8	70	56	15	12	840

發現此類的 a 數值的差值,會呈現一等差數列: $14 \times 20 \cdots$,即 a 數值為一階差數列。故我們可推測下一個此類的數為 $102 \cdot$ 又發現此類的 b 數值的差值,會呈現一等差數列,即 $11 \times 17 \cdots$,故我們可推測下一個此類的數為 $85 \cdot$ 代入上面推導之公式 $\rightarrow a=102 \times b=85 \times c=18 \times d=15 \times e=1530$ 合,正確。

$$\Rightarrow$$
 a_{2n}=2+ $\sum_{k=0}^{n-1}6k+8$, **b**_{2n}= $\sum_{k=0}^{n-1}6k+5$

※a 與 b 皆為階差數列的現象。 c 與 d 為等差數列(差值為 3)。

下表為符合此規則的完整結果:

a	b	С	d	е
4	1	4	1	4
10	5	6	3	30
14	8	7	4	56
24	16	9	6	144
30	21	10	7	210
44	33	12	9	396
52	40	13	10	520
70	56	15	12	840
80	65	16	13	1040

說明:假設村中有 n 人,每一把鎖都必須有(n-3)把鑰匙,否則會導致有某三人來仍然無法打開,又任兩人都會有一把打不開的鎖,這把鎖與其他任兩人組合的鎖皆不同(否則此四或五人仍然無法開啟),故需要 $\frac{n(n-1)}{3}$ 把鎖,共 $\frac{n(n-1)(n-3)}{3}$ 把鑰匙。

結論:假設村中有 n 人,每一把鎖都必須有(n-3)把鑰匙,有 $\frac{n(n-1)}{3}$ 把鎖,共 $\frac{n(n-1)(n-3)}{3}$ 把鑰匙。

四、任x人可打開

a-總共有幾個鎖	b-一人擁有幾把鑰匙	c-村莊中人數為
d-一個鎖有幾個鑰匙(d	$= e \div a$)	e-總共鑰匙數(e=bxc)

a	b	С	d	e
X	1	X	1	X
4x - 6	2x - 3	2x-2	x-1	$4x^2 - 10x + 6$
4x-2	2x	2x - 1	X	$4x^2-2x$
9x - 12	6x - 8	3x - 3	2x - 2	$18x^2 - 42x + 24$
9x-6	6x - 3	3x - 2	2x - 1	$18x^2 - 21x + 6$
16x - 20	12x - 15	4x - 4	3x - 3	$48x^2 - 108x + 60$
16x — 12	12x - 8	4x - 3	3x - 2	$48x^2 - 68x + 24$
25x - 30	20x - 24	5x-5	4x - 4	$100x^2 - 220x + 120$
25x - 20	20x - 15	5x - 4	4x - 3	$100x^2 - 155x + 60$

說明:假設村中有 n 人,每一把鎖都必須有 (n-x+1) 把鑰匙,否則會導致有某 x 人來仍然無法打開,又任 (x-1) 人都會有一把打不開的鎖,這把鎖與其 他任 (x-1) 人組合的鎖皆不同 (否則此 x 或 (x+1) 人仍然無法開啟),故需要 $\frac{n(n-1)}{(x-1)}$ 鎖,共 $\frac{n(n-1)(n-x+1)}{(x-1)}$ 鑰匙。

(一) 2n-1項

$$\Rightarrow a_{2n-1} = \sum_{k=0}^{n-1} [2(x-1)]k + x \cdot b_{2n-1} = \sum_{k=0}^{n-1} [2(x-1)]k + 1$$

**a 與 b 皆為階差數列的現象。c 與 d 為等差數列 (差值為 <math>x-1)。

(二) 2n 項

$$\Rightarrow a_{2n} = (x-2) + \sum_{k=0}^{n-1} [2(x-1)]k + 3(x-2) + 2 \cdot b_{2n} = \sum_{k=0}^{n-1} [2(x-1)]k + 2(x-2) + 1$$

%a 與 b 皆為階差數列的現象。 c 與 d 為等差數列 (差值為 x-1)。

五、討論數列關係

(一)回到任兩人能開討論關係

a	b	С	d	е
2	1	2	1	2
6	4	3	2	12
12	9	4	3	36
20	16	5	4	80
30	25	6	5	150
42	36	7	6	252

發現此類b數值均為一完全平方數,開根出來為一自然數列。

(二)回到任四人能開討論關係

a	ь	С	d	е
4	$1=1^2-0$	4	1	4
10	$5=2^2+1$	6	3	30
14	$8=3^2-1^2$	7	4	56
24	$16=4^2+0$	9	6	144
30	$21 = 5^2 - 2^2$	10	7	210
44	$33=6^2-3$	12	9	396

發現此類 b 數列的奇數項和偶數項分別有一特定規律,寫出通式如下:

$$b_{2n-1} = \; (2n-1)^{2} - \; (n-1)^{2} = n \; (3n-2)$$

$$b_{2n} = [(2n)^2 + 1] - (n-1)^2 = n (3n+2)$$

(三)回到任五人能開討論關係

a	b	С	d	е
5	$1 = 1^2 + 0$	5	1	5
14	$7 = 2^2 + 3$	8	4	56
18	$10=3^2+1$	9	5	90
33	$22=4^2+6$	12	8	264
39	$27 = 5^2 + 2$	13	9	351
60	$45 = 6^2 + 9$	16	12	720

 $b_{2n-1} = (2n-1)^2 + (n-1) = n (4n-3)$

 $b_{2n} = (2n)^2 + 3n = n (4n+3)$

由此可推斷b數列的一般式為

$$b_{2n-1}=n[(x-1) n-(x-2)]$$

 $b_{2n}=n[(x-1) n+(x-2)]$

肆、目的推論

一、如果知道箱子上鎖的個數,能夠推演出此制度(任三人開)下,持有鑰匙的人有多少?

Sol:此題即為由a推c,設a=x。

$$x = \frac{c(c-1)}{(3-1)} \Rightarrow 2x = c \ (c-1) \Rightarrow c = \frac{1+\sqrt{1+8x}}{2} \ (\text{\ref{a}}$$

條件:1+8x 需為奇數的完全平方數,c 方能為一整數。

二、採用另一種封建規則,每個村民依重要性分級(1 為最重要),村長要求安排如下: 第 x 等級最少要有 x 人存在。則此規則為何?

*以下數值皆用 c (人數)表示關係

$$a = \frac{c(c-1)}{(x-1)}$$
, $b = \frac{(c-1)(c-x+1)}{(x-1)}$, $d = (c-x+1)$, $e = \frac{c(c-1)(c-x+1)}{(x-1)}$

伍、結論

假設村中有 n 人,欲使任 x 人打開;則每一把鎖都必須有 (n-x+1) 把鑰匙,否則會導致有某 x 人來仍然無法打開,又任 (x-1) 人都會有一把打不開的鎖,這把鎖與其他任 (x-1) 人組合的鎖皆不同(否則此 x 或 (x+1) 人仍然無法開

啟),故需要
$$\frac{n(n-1)}{(x-1)}$$
鎖,共 $\frac{n(n-1)(n-x+1)}{(x-1)}$ 鑰匙。

一、2n-1項

$$\Rightarrow a_{2n-1} = \sum_{k=0}^{n-1} [2(x-1)]k + x , b_{2n-1} = \sum_{k=0}^{n-1} [2(x-1)]k + 1$$

※a與b皆為階差數列的現象。

c 與 d 為等差數列 (差值為 x-1)。

二、2n 項

$$\Rightarrow a_{2n} = (x-2) + \sum_{k=0}^{n-1} [2(x-1)]k + 3(x-2) + 2 + b_{2n} = \sum_{k=0}^{n-1} [2(x-1)]k + 2(x-2) + 1$$

**a 與 b 皆為階差數列的現象。c 與 d 為等差數列 (差值為 <math> x-1)。

陸、討論與建議

在一開始完全不了解的情況下,慢慢推斷其中的關係,不斷嘗試與試驗,漸漸發現規律的變化,是一種心情的激動,在鎖與鑰匙中翻騰。從簡而繁,幾乎任何方法都試驗過了,最後找出一個關係公式,能夠把所有問題涵括進去,就是我們的目標,可以從完全沒有頭緒漸漸明朗化,不僅推出公式,也找出最方便最迅速的計算方式,列舉出所有情形也不再困難了。我想專研就是在問題中探索規律,尋覓出一些公式,並從中學得些什麼,才是真正重要的。

柒、參考文獻

數學思考【九章出版社】

捌、謝誌

我要特地感謝陪伴我這一年來的專研老師-阿貴老師,他幾乎兩週就要聽一次我們每一組所做的進度及發展,因為他在數學上的努力,讓我看到了另一面與眾不同的數學思考,我希望能夠循著他教導我們的路徑行走,走出一片我們自己所能夠自己思索的路線,找到一片不同的天空。我衷心的謝謝他!