Chair of Communication Networks Prof. Dr. Tobias Hoßfeld

Towards Understanding the Global IPX Network from an MVNO Perspective

Viktoria Vomhoff, Stefan Geißler, Tobias Hoßfeld

informatik.uni-wuerzburg.de/comnet

Dataset Overview

No.	Data	Type	Location
DT1	User Plane Traces	L2-4, MCC/MNC	Device – PGW – Server

DT1 – Delay Measurements

Dataset Overview

No.	Data	Туре	Location
DT1	User Plane Traces	L2-4, MCC/MNC	Device – PGW – Server
DT2	IPX Delay Measurements	Response Times	SGW – PGW

Dataset Overview

No.	Data	Туре	Location
DT1	User Plane Traces	L2-4, MCC/MNC	Device – PGW – Server
DT2	IPX Delay Measurements	Response Times	SGW – PGW
DT3	IPX Routing Information	AS Paths	IPX Network
DT4	Roaming Database	IR.21	IPX Network

DT1: Germany

DT1: Germany

		1% Quantile (ms)	99% Quantile (ms)	Mean (ms)	Median (ms)
e 높	C	47.41	378.37	83.96	71.41
Mobile Network	D	40.30	732.91	108.37	60.28
ΣÃ	E	60.15	868.33	147.26	98.47
et	C	0.24	118.61	20.57	0.82
Internet	D	0.013	176.17	22.83	10.91
=	E	0.087	186.57	27.35	19.48

DT1: Germany

		1% Quantile (ms)	99% Quantile (ms)	Mean (ms)	Median (ms)
e 논	С	47.41	378.37	83.96	71.41
Mobile Network	D	40.30	732.91	108.37	60.28
ΣÃ	Ε	60.15	868.33	147.26	98.47
et	C	0.24	118.61	20.57	0.82
Internet	D	0.013	176.17	22.83	10.91
=	Ε	0.087	186.57	27.35	19.48

DT1 & DT2

- TCP Handshake
- Split in *Internet* und *Mobile Network* part
- No significant differences in Internet part

- Active measurements
- GTP Echo Requests
- Response time dependent of AS Path

DT3

MNO

Lutu, Andra, et al. "A first look at the ip exchange ecosystem." *ACM SIGCOMM Computer Communication Review* 50.4 (2020): 25-34.

- ► BGP routing information
- Number of traversed Autonomous Systems (AS)

MVNO

DT3 & DT4

Combining Datasets

- ▶ DT1: Device → PGW RTT
- DT2: SGW → PGW RTT
- DT2: SGW → PGW RTT
- ► DT3: AS Path

Device → SGSN

Delay of AS Path

Is it possible to identify QoS metrics for specific AS?

Conclusion

Goal: Understand source of QoS impairments in mobile roaming

No.	Data	Туре
DT1	User Plane Traces	L2-4, MCC/MNC
DT2	IPX Delay Measurements	Response Times
DT3	IPX Routing Information	AS Paths
DT4	Roaming Database	IR.21

► Future Work

- Combine Datasets
- Analysis of further user plane & IPX delay measurements
- Model to optimize quality
- Mechanism to predict optimal route based on application server location
- Analyze applications (VoD, web conferencing)

