

examensegundaconv2018.pdf

Anónimo

Química

1º Grado en Bioquímica y Ciencias Biomédicas

Facultad de Ciencias Biológicas Universitat de València

Estamos de
Aniversario

De la universidad al mercado laboral:

especialízate con los posgrados de EOI y marca la diferencia.

¡UNA HORA UN TRIDENT MÁS Y YA LO TIENES!

33119-Química Bioquímica y Ciencias Biomédicas (Facultad de Ciencias Biológicas)

Examen final (2ª convocatoria)
18-06-2018 (16:00 pm)
aula: Al-3

Apellidos:	Nombre:
7 (pointage)	

Instrucciones

Escribe tu nombre en todas las hojas que entregues. Muestra claramente el resultado para cada apartado. Debes consultar los datos necesarios en los anexos. Tiempo estimado: 150-180 minutos

P1	P2	P3	P4	P5	total	CALIFIC.
20	10	25	25	15	95	

Datos y constantes: $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$; $R = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$;

 $N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$; $F = 96485 \text{ C} \cdot \text{mol}^{-1}$; 1 atm = 760 mmHg.

El estudiante debe traer al examen las tablas de valores utilizadas durante el curso.

- **P 1.- (20 puntos)** El denominado trifosfato de adenosina (ATP⁴⁻) tiene una estructura molecular que suele dibujarse de manera esquemática del siguiente modo:
- a) Indique la hibridación adoptada por cada uno de los nitrógenos de la estructura. (5 puntos)
- b) Indique el número de pares de electrones solitarios que presenta el átomo de oxígeno anular de la ribosa (5 puntos)
- c) Describa el enlace C=C presente en la adenina, indicando los orbitales implicados en su formación. (5 puntos)

- d) Indique cuál será el valor aproximado del ángulo P-O-P. (5 puntos)
- ${\bf P}$ 2.- (10 puntos) Sobre la base del diagrama de orbitales moleculares del N_2 , conteste a las siguientes preguntas
- a) ¿Cuál es el orden de enlace en la molécula de dinitrógeno? _____ (2 puntos)
 b) ¿Cuantos enlaces de tipo sigma y de tipo pi hay en la molécula? _____ (2 puntos)
 c) De las especies siguientes: N₂, N₂⁺, N₂²⁺, N₂²⁻, indique cuáles serán paramagnéticas y cuáles diamagnéticas: paramagnéticas _____ (4 puntos)
 d) ¿Qué especie, entre N₂⁺ y N₂²⁺, será más facil de disociar? _____ (2 puntos)
- **P 3.- (25 puntos)** Muchas bebidas carbonatadas utilizan una mezcla de NaH₂PO₄ y Na₂HPO₄ para fijar el pH. En un bote que contiene 33 centilitros de dicha bebida se han disuelto 6,5 g de dihidrogenofosfato de sodio y 8,0 g de monohidrogenofosfato de sodio.
- a) Calcule el pH de la disolución. (5 puntos)
- b) Calcule el pH resultante de la adición de 3 mL de una disolución de ácido clorhídrico 1 M. (10 puntos)
- c) Calcule el volumen (en mL) de una disolución de NaOH 1 M que es necesario añadir para aumentar el pH de dicha disolución en 0,05 unidades de pH. (10 puntos)

WUOL4H

P 4.- (25 puntos) Las bacterias nitrificantes utilizan la oxidación de los nitritos como fuente primaria de energía. Los valores de los potenciales redox en condiciones bioquímicas (pH = 7) para las semirreacciones implicadas son:

$$NO_3^- + 2H^+ + 2e^- \rightarrow NO_2^- + H_2O$$
 $E^{o}' = 0,42 \text{ V}$
 $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$ $E^{o}' = 0,82 \text{ V}$

- a) Escriba la ecuación redox global ajustada para la oxidación de los nitritos. (5 puntos)
- b) Calcule el potencial estándar en condiciones bioquímicas de dicha reacción. (5 puntos)
- b) Calcule el potencial estándar en condiciones químicas (pH = 0) de dicha reacción. (5 puntos)
- c) La síntesis de ATP a partir de ADP y P_i es un proceso endergónico, ΔG° (298 K) = 31,4 kJ·mol⁻¹. ¿La obtención de ATP es un proceso espontáneo? Razone la respuesta. (5 puntos)
- d) Calcule cuántos moles de ATP se podrán obtener por la oxidación de un mol de nitrito si la eficiencia del proceso es del 55%. (5 puntos)
- **P 5.- (15 puntos)** La penicilina es hidrolizada por la penicilinasa (un tipo de enzima de la familia de las ß-lactamasas (llamadas asi porque destruyen el anillo betalactámico) inhibiendo la actividad antimicrobiana de la penicilina). Esta enzima está presente en algunas bacterias resistentes a la penicilina como el *Staphylococcus Aureus*. Se estudia la velocidad inicial de hidrólisis de este sustrato ([S]=[penicilina]) cuando se enfrenta a disoluciones que contienen 10⁻⁹ g de penicilinasa, obteniéndose los valores tabulados:

[Penicilina], µM	V₀, nmol·min ⁻¹
1	0,11
3	0,25
5	0,35
10	0,45
30	0,58
50	0,61

Con los datos experimentales, se representa v_o frente a [S] y $1/v_o$ frente a 1/[S] (ver figuras). En este último caso, se ajustan los datos experimentales a la recta cuya ecuación se muestra en la figura.

- a) ¿Podemos afirmar que la hidrólisis de la penicilina sigue una cinética tipo Michaelis-Menten? Razone la respuesta. (5 puntos)
- **b)** Calcule el valor de la v_{max} . Indique las unidades. (5 puntos)

c) Calcule el valor de la K_M. Indique las unidades. (5 puntos)

33119 Química I. BCM

