第一章 概率论的基本概念

- § 1.1 随机试验
- § 1. 2 样本空间、随机事件
- § 1.3 频率与概率
- §1.4 等可能概型(古典概型)
 - § 1.5 条件概率
- § 1.6 独立性

§ 1.3 频率与概率

对于一个随机事件A,在一次随机试验中,它是 否会发生,事先不能确定,但我们会问,在一次试 验中事件A发生的可能性有多大?并希望找到一个 合适的数来表示事件在一次试验中发生的可能性 大小. 为此, 首先引入频率的概念, 它是通过实 验结果来说明事件发生的频繁程度,进而引出度 量事件在一次试验中发生的可能性大小的数—— 概率。

一、频率

1. 定义: 若在相同的条件进行n次试验, 其中随机事件A发生的次数为 n_A (A发生的频数),则称 n_A (n为事件A发生的频率,记作 $f_n(A)$,即

$$f_n(A) = \frac{n_A}{n}$$

2. 性质

- $(1) \ 0 \leqslant f_n(A) \leqslant 1$
- (2) $f_n(S)=1$
- (3) 若 $A_1, A_2, ..., A_k$ 是两两不相容的事件,则 $f_n(A_1 \cup A_2 \cup ... \cup A_k) = f_n(A_1) + f_n(A_2) + ... + f_n(A_k)$

由频率的定义可知,频率反映了一个随机事件在大量重复试验中发生的频繁程度.

例 "抛硬币"试验,设A表示"抛掷一枚硬币,其结果出现正面",将一枚硬币抛掷5次、50次、500次,各做4遍的结果如下:

了 个: 实验序号	n=5		n=50		n=500	
	$ n_A $	$f_n(A)$	n_A	$f_n(A)$	n_A	$f_n(A)$
1	2	0.4	22	0.44	251	0.502
2	3	0.6	25	0.50	249	0.498
3	1	0.2	21	0.42	256	0.512

大量实验证实: 当试验次数n逐渐增大时, 事件A发生的频率 $f_n(A)$ 呈现出稳定性, 逐渐稳定于某个确定的常数p ----频率的稳定性. 频率的稳定性的事实说明了刻画随机事件发生可能性大小的数——概率的客观存在性.

二、概率

- 1. 定义 (概率的公理化定义) 设E 是随机试验, 其样本空间S. 对于E的每一事件A 赋于一个实数, 记为P(A), 称为事件A的概率, 如果集合函数 $P(\bullet)$ 满足下列条件:
 - (1) 非负性:对于每一个事件A,有 $P(A) \ge 0$;
 - (2)完备性:对于必然事件S,有 P(S)=1;
 - (3) 可列可加性: 设 $A_1, A_2, ...$ 是两两互不相容的事件,即对于 $i \neq j, A_i A_j = \emptyset, i, j = 1, 2, ...$,则有 $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$

2. 概率的性质

- (1) $P(\emptyset)=0$. 【注】反之不然.
- (2) (有限可加性) 若 $A_1, A_2, ..., A_n$ 是两两互不相容的

事件,则 $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$

(3) 设A, B是两个事件, 若 $A \subset B$, 则有

$$P(B-A)=P(B)-P(A)$$
; $\Rightarrow P(B)\geq P(A)$.

推论: (减法公式) 对任意事件A, B有

$$P(B-A)=P(B)-P(AB)$$
.

- (4) 对于任一事件A,有 P(A)≤1.
- (5) (逆事件的概率) 对任一事件A, $P(\overline{A}) = 1 P(A)$
- (6) (加法公式) 对于任意两事件A,B 有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

推论1:设 A_1, A_2, A_3 为任意三个事件,则有:

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

推论2: 对于任意n个事件 $A_1, A_2, ...A_n$,则有:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j)$$

$$+ \sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \cdots A_n)$$

- 例1 小王参加"智力大冲浪"游戏,他能答出甲、 乙二类问题的概率分别为 0.7和 0.2,两类问题都 能答出的概率为0.1. 求小王
 - (1) 答出甲类而答不出乙类问题的概率;
 - (2) 至少有一类问题能答出的概率;
 - (3) 两类问题都答不出的概率.
- 解 事件A,B分别表示"能答出甲,乙类问题",由题设 P(A)=0.7, P(B)=0.2, P(AB)=0.1,

(1)
$$P(A\overline{B}) = P(A) - P(AB) = 0.7 - 0.1 = 0.6$$

(2)
$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.8$$

(3)
$$P(\overline{A} \ \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 0.2$$

- 例2 (1) 已知 P(AB)=0, 求 P(ABC);
 - (2) 已知 P(A)=0.4, P(B)=0.3, $P(A \cup B)=0.6$, 求 P(AB);
 - (3) 已知 $P(\overline{AB})=P(AB), P(A)=p, 求 P(B).$
 - 解: (1) 因为 $ABC \subset AB$,由性质3知 $0 \le P(ABC) \le P(ABC) = 0$,所以 P(ABC) = 0
 - (2) $P(A\overline{B})=P(A)-P(AB)=P(A\cup B)-P(B)=0.3$
 - (3) $P(AB)=P(\overline{A} \ \overline{B})=P(\overline{A} \cup \overline{B})=1-P(A \cup B)$ =1-P(A)-P(B)+P(AB)

$$\Rightarrow P(B)=1-P(A)=1-p$$

例3 某地发行〈〈儿童文学〉〉、〈〈少年文艺〉〉、〈〈故事会〉〉等三种读物,在这个地区的儿童中,订〈〈儿童文学〉〉的占45%、订〈〈少年文艺〉〉的占35%、订〈〈故事会〉〉的占30%,同时订〈〈儿童文学〉〉和〈〈少年文艺〉〉的占10%、同时订〈〈儿童文学〉〉及〈〈故事会〉〉的占5%,同时订〈〈儿童文学〉〉、〈〈少年文艺〉〉和〈〈故事会〉〉的占5%,同时订〈〈儿童文学〉〉、〈〈少年文艺〉〉和〈〈故事会〉〉的占3%. 试求下列事件的概率

 D_{ε} "至少订购一种读物"; D_{ε} "三种读物都不订购"; D_{ε} "只订〈〈儿童文学〉〉"; D_{ε} "只订购一种读物".

解:设A="订购<<儿童文学>>",

B="订购<<少年文艺>>",

C="订购<<故事会>>".

则由已知得:

$$P(A)=0.45$$
, $P(B)=0.35$, $P(C)=0.30$,

$$P(B)=0.35$$

$$P(C)=0.30$$

$$P(AB)=0.10$$
, $P(AC)=0.08$, $P(BC)=0.05$,

$$P(AC)=0.08$$

$$P(BC)=0.05$$

$$P(ABC) = 0.03$$

答案

(1) 0.9

(2) 0.1

(3) 0.3

(4) 0.73

练1 设
$$P(\overline{A}) = 0.5, P(\overline{A}B) = 0.2, P(B) = 0.4$$
, 求 (1) $P(AB)$; (2) $P(A-B)$; (3) $P(A \cup B)$; (4) $P(\overline{A}B)$

练2 设
$$P(A) = 0.2, P(\overline{B}) = 0.6, P(A \cup B) = 0.5$$
 求: $P(AB) = ?$ $P(A\overline{B}) = ?$

练3 设A, B为两个事件,如果 $AB=\emptyset$, 但 $A\neq\emptyset$, $B\neq\emptyset$ 则一下哪个等式成立:

$$(1)P(AB) = P(A)P(B);$$

$$\sqrt{(2)P(A \cup B)} = P(A) + P(B);$$

$$(3)P(A - B) = P(A) - P(B).$$

小结

1. 频率

1°
$$0 \le f_n(A) \le 1$$
;

$$2^{\circ} f_n(S) = 1;$$

3° 若 A_1,A_2,\cdots,A_k 是两两互不相容的事件,则

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_k) = f_n(A_1) + f_n(A_2) + \cdots + f_n(A_k).$$

2. 概率

- 1° 非负性: 对于每一个事件,有 $P(A) \ge 0$;
- 2° 规范性: 对于必然事件S,有P(S)=1;
- 3° 可列可加性: 设 A_1, A_2, \cdots 是两两互不相容的事件, 即对于 $A_i A_j = \emptyset$, $i \neq j$, $i, j = 1, 2, \cdots$, 有 $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$.

§1.4 等可能概型(古典概型)

- 1. 定义: 设E是试验,S是E的样本空间,若
 - (1) 试验的样本空间的元素只有有限个;
 - (2) 试验中每个基本事件发生的可能性相同. 这种试验称为等可能概型或古典概型.

2. 古典概型中事件A的概率的计算公式

设试验E的样本空间 $S=\{e_1,e_2,...,e_n\}$,且每个基本事件发生的可能性相同,若A包含k个基本事件,即 $A=\{e_{i_1}\}\cup\{e_{i_2}\}\cup\cdots\cup\{e_{i_k}\}$ $(1\leq i_1 < i_2 < \cdots < i_k \leq n)$

则有

$$P(A) = \sum_{j=1}^{k} P(\{e_{i_j}\}) = \frac{k}{n} = \frac{A \text{ logn barshy}}{S \text{ parameter } F}$$

古典概率的计算

排列组合是计算古典概率的重要工具。

1、乘法原理

乘法原理: 若完成一件事情要经过两个步骤,其中第一步中有 n_1 种不同的方法,第二步骤中有 n_2 种不同的方法,则完成这件事情共有 $n_1 \times n_2$ 种方法。

2、排列

排列:从n个不同的元素中按顺序取r个($0 < r \le n$)排成一列称为一个排列。所有可能的排列数记为 A_n^r ,则由乘法原理得 $A_n^r = n(n-1)(n-2)\cdots(n-r+1)$

特别地,当n=r时,称该排列为一个全排列,其个数为

$$A_n^n = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1 = n!$$

3、组合

组合:从n个不同的元素中任取r个元素($0 < r \le n$)组成一组称为一个组合。所有可能的组合数记为 C_n^r 或 $\binom{n}{r}$ 。

由乘法原理,从n个元素中取r个生成的排列可分两步进行,首先从n个元素中取r个组成一组,共有 C_n^r 种方法,然后再在取出的r个元素中进行全排列共有r!种方法,从而

$$A_n^r = C_n^r \cdot r!$$

所以从n个元素中取r个元素组成的组合数为

$$C_n^r = \frac{A_n^r}{r!} = \frac{n(n-1)\cdots(n-r+1)}{r!} = \frac{n!}{(n-r)!\cdot r!}$$

特别, $C_n^r = C_n^{n-r}$ 而且, 当n = r时 $C_n^n = 1$

[注] 要计算事件A的概率,必须清楚<u>样本空间所包</u> <u>含的基本事件总数以及A所包含的基本事件数</u>.

✓ 例1 为了减少比赛场次,把20个球队分成两组,每组10个队进行比赛,求最强的两个队分在不同组内的概率.

解:把20个球队分为两组,每组10队,共有 C_{20}^{10} 种分法。所以,基本事件总数为 C_{20}^{10} .

设A="最强的两个队分在不同组内",

若事件A发生,即把最强的两队拿出,将其余18个队分成两组,再将两个强队分别分在两组内,故事件A所包含的基本事件数为 $C_2^1 \cdot C_{18}^9$.

所以
$$P(A) = \frac{C_2^{1} \cdot C_{18}^{9}}{C_{20}^{10}} = 0.526$$

✓例2 在一批n个产品中,有m个次品,从这批产品中 任取 k个产品,求其恰有l个($l \le m$)次品的概率.

解: An个产品中任取k个产品,共有 C_n^k 种取法.

故基本事件总数为 C_n^k .

设A="取出 k 个产品中恰有 l 个次品"

若事件A发生,即从m个次品中取l个次品,从n-m个正品中取k-l个正品,故事件A所包含的基本事件数为 $C_m^l \cdot C_{n-m}^{k-l}$

所以
$$P(A) = \frac{C_m^l \cdot C_{n-m}^{k-l}}{C_n^k}$$

———超几何分布公式

- ✓例3 一袋中有10只球,其中4个红球,6个白球,从袋中取3次,每次取一只.按两种取法: (a)放回抽样; (b)不放回抽样取球,求
 - (1)取到的3个球都是白球的概率;
 - (2)取到的3个球中有2个红球,1个白球的概率.

 $\mathbf{m}(a)$ 放回抽样 $n=10^3$

$$P(A) = \frac{6^3}{10^3} = 0.216$$
 $P(B) = \frac{C_3^1 \times 4^2 \times 6}{10^3} = 0.288$

(b)不放回抽样 $n=10\times9\times8$

$$P(A) = \frac{6 \times 5 \times 4}{10 \times 9 \times 8} = 0.167$$
 $P(B) = \frac{C_3^1 \times 6 \times 4 \times 3}{10 \times 9 \times 8} = 0.3$

例4 设袋中装有a只白球,b只红球,k个人依次在袋中取一只球,(1)作放回抽样,(2)作不放回抽样,求第i(i=1,2,...,k)个人取到白球的概率。($k \le a + b$)

$$\mathbf{P}(a)$$
放回抽样 $P(A) = \frac{a}{a+b}$

(b)不放回抽样 各人取一只球,共有 \mathbf{A}_{a+b}^k 个基本事件:

$$A_{a+b}^{k} = (a+b)(a+b-1)\cdots(a+b-k+1),$$

当事件B发生时,第i人取的应是白球有a种取法. 其余被取的k-1只球可以是其余a+b-1只球中中的任意k-1只,共有 A_{a+b-1}^{k-1} 种取法:

$$A_{a+b-1}^{k-1} = (a+b-1)(a+b-2)\cdots[a+b-1-(k-1)+1].$$

于是B中包含 $a \cdot A_{a+b-1}^{k-1}$ 个基本事件,由计算公式得

$$P(B) = \frac{a \cdot A_{a+b-1}^{k-1} / A_{a+b}^{k}}{a+b} = \frac{a}{a+b} \cdot$$
与上问结果

结果分析: P(B)与i无关,即k个人取球,尽管取球的先后次序不同,各人取到白球的概率是一样的.

(例如在购买福利彩票时,各人得奖的机会相同).

▼ 例5 设每人的生日在一年365天中的任一天是等可能的,任意选取n个人(n≤365),求至少有两人生日相同的概率.

解每个人取365天中的一天作生日,基本事件总数为 365^n . 设A="至少有两人生日相同", $\overline{A}=$ "n个人的生日各不相同" 的种数为: A_{365}^n

所以
$$P(\overline{A}) = \frac{A_{365}^n}{(365)^n}$$
 于是 $P(A) = 1 - \frac{A_{365}^n}{(365)^n}$

将n 只球随机地放入 $N(N \ge n)$ 个盒子中去,试求每个盒子至多有一只球的概率。

$$p = \frac{N(N-1)\cdots(N-n+1)}{N^n} = \frac{A_N^n}{N^n}$$

例6 设有n个男生,m个女生($m \le n+1$),随机排成一列,A="任意两个女生都不相邻",求P(A).

解: 把n+m个学生随意排成一列,共有(m+n)! 种排法,而事件A发生的排列: 先把 n 个男生排成一列,共有 n! 种排法. 在每两个相邻的男生之间有一个位置,共 (n-1) 个位置,加上头尾共(n+1)个位置.

从这n+1个位置中任意插入m个女生,共有 A_{n+1}^m 种排法 故事件A所包含的基本事件数为 $n!A_{n+1}^m$. 所以

$$P(A) = \frac{n! A_{n+1}^m}{(m+n)!} = \frac{C_{n+1}^m}{C_{n+m}^m}.$$

$$C_n^k = \frac{A_n^k}{k!}$$

✓ 例7 从0,1,2,3 这四个数字中任取三个进行排列, 求 "取得的三个数字排成的数是三位数且为偶数"的概率.

解:设A表示"排列的数字是三位数且为偶数" A_0 表示"排列的数字是三位数且末位为0" A_2 表示"排列的数字是三位数且末位为2" 则 $A=A_0\cup A_2$ 。由于三位数的首位数不能为零,

所以 $P(A_0) = \frac{3 \times 2 \times 1}{4 \times 3 \times 2}$ $P(A_2) = \frac{2 \times 2 \times 1}{4 \times 3 \times 2}$

显然, A_0 , A_2 互斥, 由性质得:

$$P(A)=P(A_0 \cup A_2)=P(A_0)+P(A_2)=\frac{5}{12}$$

例8 在1~2000的整数中随机地取一个数, 问取到的整数既不能被6整除,又不能被8整除的概率是多少?

解: 设A为事件"取到的数能被6整除", B为事件"取到的数能被8整除",则所求概率为 $P(\overline{AB}) = P(A \cup B) = 1 - P(A \cup B)$

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

由于 333 <
$$\frac{2000}{6}$$
 < 334 , 故得 $P(A) = \frac{333}{2000}$

由于
$$\frac{2000}{8} = 250$$
 , 故得 $P(B) = \frac{250}{2000}$

又由于一个数同时能被6与8整除,就相当于能被24整除,因此,

曲
$$83 < \frac{2000}{24} < 84$$
 得 $P(AB) = \frac{83}{2000}$

于是所求概率为
$$P = 1 - \{\frac{333}{2000} + \frac{250}{2000} - \frac{83}{2000}\} = \frac{3}{4}$$

例9 将15名新生随机地平均分配到三个班级中去,这15名新生中有3名是优秀生.问(i)每一个班级各分配到一名优秀生的概率是多少?(ii)3名优秀生分配在同一班级的概率是多少?

解:(i) $p_1 = \frac{3!C_{12}^4C_8^4C_4^4}{C_{15}^5C_{10}^5C_5^5} = \frac{25}{91}$

(ii)
$$p_2 = \frac{C_3^1 C_{12}^2 C_{10}^5 C_5^5}{C_{15}^5 C_{10}^5 C_5^5} = \frac{6}{91}$$

✓ 例10 某接待站在某一周曾接待过12次来访,已知 所有这12次来访接待都是在周二和周五进行的,问 是否可以推断接待时间是有规定的.

解假设接待站的接待时间没有规定,而各来访者在一周内 的任一天去接待站是等可能的,那么12次接待来访者都是 在周二和周五进行的概率为 $P = \frac{2^{12}}{12} = 0.0000003$,即千万分 之三.

人们在长期的实践中总结得到的经验是:"概率 很小的事件在一次试验中几乎是不可能发生的"— --实际推断原理.

按实际推断原理,可以推断接待时间是有规定的.

练习题1

10个人中有一对夫妇,他们随意坐在一张圆桌周围,求该对夫妇正好坐在一起的概率.

答: 2/9.

练习题2

有10个同学,分别佩戴1号到10号的纪念章, 任选3人记录其纪念章号码,求

(1)最小号码为5的概率; (2)最大号码为5的概率.

答: 1/12, 1/20.

几何概型

定义 当随机试验的样本空间是某个区域,并且任意一点落在度量(长度、面积、体积)相同的子区域是等可能的,则事件A的概率可定义为

$$P(A) = \frac{S_A}{S}.$$

其中S 是样本空间的度量, S_A 是构成事件A的子区域的度量。这样借助于几何上的度量来合理规定的概率称为几何概型。

说明

当古典概型的试验结果为连续无穷多个时,就归结为几何概型.

蒲丰投针试验

1777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离为a(a>0)的一些平行直线,现向此平面任意投掷一根长为b(b<a)的针,试求针与某一平行直线相交的概率.

解以x表示针投到平面上 a 时,针的中点M到最近的一条平 $\sqrt{\rho}$ x 行直线的距离, ρ 表示针与该平行直线的夹角. 那么针落在平面上的位置可由 (x,ρ) 完全确定.

投针试验的所有可能结果与 矩形区域

$$S = \{(x, \varphi) | 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi\}$$

中的所有点一一对应

由投掷的任意性可知这是一个几何概型问题.

所关心的事件

$$\begin{array}{c|c}
x \\
\hline
a \\
\hline
2 \\
x = \frac{b}{2}\sin\varphi \\
\hline
G
\end{array}$$

 \boldsymbol{a}

 $A = \{ \text{针与某一平行直线相交} \}$ 发生的充分必要条件为S 中的点满足

$$0 \le x \le \frac{b}{2} \sin \varphi , \quad 0 \le \varphi \le \pi .$$

$$P(A) = \frac{\mu(G)}{\mu(S)} = \frac{G的面积}{S的面积}$$

$$= \frac{\int_0^{\pi} \frac{b}{2} \sin \varphi d\varphi}{\frac{a}{2} \times \pi}$$
$$= \frac{b}{\frac{a}{2} \times \pi} = \frac{2b}{a\pi}.$$

蒲丰投针试验的应用及意义

$$P(A) = \frac{2b}{a\pi}$$

根据频率的稳定性,当投针试验次数n很大时,

测出针与平行直线相交的次数m,则频率值 $\frac{m}{n}$ 即可

作为P(A)的近似值代入上式,那么

$$\frac{m}{n} \approx \frac{2b}{a\pi} \implies \pi \approx \frac{2bn}{am}$$
.

利用上式可计算圆周率π的近似值.

历史上一些学者的计算结果(直线距离a=1)

试验者	时间 (年)	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218	3.1554
De Morgan	1860	1.0	600	382	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

利用蒙特卡罗(Monte Carlo)法进行计算机模拟.

取a=1,b=0.85. 单击图形播放/暂停 ESC键退出

小结

定义 设E是随机试验,若E满足下列条件:

- 1°试验的样本空间只包含有限个元素;
- 2° 试验中每个基本事件发生的可能性相同.则称E为等可能概型.

计算公式

$$P(A) = \frac{k}{n} = \frac{A$$
包含的基本事件
 S 中基本事件的总数.

作业

• 第一章习题3、4.(2)、5、8、9、11