Package 'R2ROC'

June 26, 2023

Title AUC Statistics
Version 0.0.0.9000
Description AUC statistic for significance test. Variance and covariance of AUC values used to assess the 95% CI and p-value of the AUC difference for both nested and non-nested model.
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a license
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Depends R (>= 2.10)
LazyData true
R topics documented:
auc_diff
auc_var
dat1
dat2
olkin_auc1

2 3 4

6

7

7

8

auc_diff auc_diff function

 olkin_auc12
 ...

 olkin_auc12_1
 ...

 olkin_auc12_13
 ...

 olkin_auc12_3
 ...

Description

Index

This function estimates $var(AUC(y\sim x[,v1]) - AUC(y\sim x[,v2]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

2 auc_var

Usage

```
auc_diff(dat, v1, v2, nv, kv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size
kv	Population prevalence

Value

This function will estimate significant difference between two PRS (either dependent or independent and joint or single). To get the test statistics for the difference between $AUC(y\sim x[,v1])$ and $AUC(y\sim x[,v2])$. (here we define $AUC1=AUC(y\sim x[,v1])$) and $AUC2=AUC(y\sim x[,v2])$)). The outputs are listed as follows.

mean_diff	AUC differences between AUC1 and AUC2
var	Variances of AUC differences
upper_diff	Upper value of the differences
lower_diff	Upper value of the differences
р	two tailed P-value for significant difference between AUC1 and AUC2
p_one_tail	one tailed P-value for significant difference
heller_p	P-value based on Heller's test for significant difference
heller_upper_	_diff
	Upper limit of 95% CI for the difference basedon Heller's test
heller_lower_	_diff
	Lower limit of 95% CI for the difference basedon Heller's test

auc_var auc_var function

Description

This function estimates $var(AUC(y\sim x[,v1]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_var(dat, v1, nv, kv)
```

dat1 3

Arguments

dat N by (M+1) matrix having variables in the order of cbind(y,x)

v1 This can be set as v1=c(1), v1=c(1,2) or possibly with more values

nv Sample size

kv Population prevalence

Value

This function will test the null hypothesis for AUC. To get the test statistics for AUC($y\sim x[,v1]$). The outputs are listed as follows.

auc AUC

var Variance of AUC

upper_auc Upper limit of 95% CI for AUC

lower_auc Lower limit of 95% CI for AUC

dat1 Raw phenotypes and 2 sets of discovery PGSs

Description

A dataset containing phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat1

Format

A data frame with 10000 rows and 3 variables:

V1 Phenotype, raw case-caontrol data

V2 PGS1, for discovery population 1

V3 PGS2, for discovery population 2

4 olkin_auc1

dat2

Pre-adjusted phenotypes and 2 sets of discovery PGSs

Description

A dataset containing phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat2

Format

A data frame with 10000 rows and 3 variables:

V1 Phenotype, preadjustde case-caontrol data

V2 PGS1, for discovery population 1

V3 PGS2, for discovery population 2

olkin_auc1

olkin_auc1 function

Description

olkin_auc1 function

Usage

```
olkin_auc1(omat, nv, kv)
```

Arguments

omat

3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv

Sample size

Value

olkin_auc12 5

olkin_auc12

olkin_auc12 function

Description

olkin_auc12 function

Usage

```
olkin_auc12(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin_auc12_1 olkin_auc12_1 function

Description

```
olkin_auc12_1 function
```

Usage

```
olkin_auc12_1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

6 olkin_auc12_3

olkin_auc12_13

olkin_auc12_13 function

Description

```
olkin_auc12_13 function
```

Usage

```
olkin_auc12_13(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin_auc12_3 *olkin_auc12_3 function*

Description

```
olkin_auc12_3 function
```

Usage

```
olkin_auc12_3(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

olkin_auc12_34 7

olkin_auc12_34

olkin_auc12_34 function

Description

olkin_auc12_34 function

Usage

```
olkin_auc12_34(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin_auc1_2 olkin_auc1_2 function

Description

```
olkin_auc1_2 function
```

Usage

```
olkin_auc1_2(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

Index

```
*Topic R2
   auc\_diff, 1
   auc_var, 2
*Topic datasets
   dat1,3
   dat2, 4
*Topic information
   \mathtt{auc\_diff}, 1
   auc_var, 2
*Topic matrix
   auc\_diff, 1
   auc_var, 2
*Topic source
   olkin_auc1,4
   olkin_auc12,5
   olkin_auc12_1,5
   olkin_auc12_13,6
   olkin_auc12_3, 6
   olkin_auc12_34,7
   olkin_auc1_2,7
*Topic variance
   auc\_diff, 1
   auc_var, 2
auc_diff, 1
auc_var, 2
dat1, 3
dat2,4
olkin_auc1,4
olkin_auc12,5
olkin_auc12_1,5
olkin_auc12_13,6
olkin_auc12_3,6
olkin_auc12_34,7
olkin_auc1_2,7
```