Aestusy

27th July 2024

Topics: Trignometry, Functions.

"It is impossible for a man to learn what he thinks he already knows". —Epictetus

- 1. Shift the graph of the function $y=\sin(-x)$ to the right by $\frac{\pi}{3}$ units. The analytical expression of the resulting function graph is ______. Shift the graph of the function $y=\cos(-2x)$ to the left by $\frac{\pi}{6}$ units. The analytical expression of the resulting function graph is ______.
 - 2. The domain of the function $y = \sqrt{\cos x 2\cos^2 x}$ is ______, and the range is ______.
 - 3. The minimum positive period of the function $y = \sin x \left(1 + \tan \frac{x}{2}\right)$ is ______.
 - 4. Given $f(x) = a \sin^3(x) + b \sqrt[3]{x} \cos^3(x) + 4(a, b \in \mathbb{R})$, and $f(\sin 10^\circ) = 5$, then $f(\cos 100^\circ) = 6$
 - 5. The domain of the function $f(x) = \sqrt{\sin 2x + \sqrt{3}\cos 2x 1}$ is ______.
 - 6. The axis of symmetry of the graph of the function $y = \sin\left(2x + \frac{\pi}{3}\right)$ is ______.
 - 7. The center of symmetry of the graph of the function $y = \tan\left(\frac{1}{2}x + \frac{\pi}{6}\right)$ is ______.
- 8. Given the function $f(x)=\sin(\omega x+\varphi)$ $(\omega>0,|\varphi|<\frac{\pi}{2})$. Use any two of the judgments as conditions and consider the other two judgments as conclusions. The two correct conclusions are
 - a. Its graph is symmetric about the line $x = \frac{\pi}{12}$;
 - b. Its graph is symmetric about the point $(\frac{\pi}{3},0)$;
 - c. Its smallest positive period is π ;
 - d. It is an increasing function in the interval $\left[-\frac{\pi}{6},0\right]$.
 - 9. There are four functions:
 - a. $y = \sin^2 x$;
 - b. $y = \sin |x|$;
 - c. $y = \tan \frac{x}{2} \cot \frac{x}{2}$;
 - $\mathsf{d.}\ y = |\sin x|.$

The function with period π and increasing in the interval $(0, \frac{\pi}{2})$ is ______

- 10. The equation $\sin x = \frac{x}{100}$ has _____ real roots.
- 11. Given real numbers x and y satisfying $x^2 + 2\cos y = 1$, the range of values of $x \cos y$ is
- 12. For all positive integers n satisfying $\frac{1}{4} < \sin \frac{\pi}{n} < \frac{1}{3}$, the sum of n is ______.
- 13. Given $\alpha, \beta \in [0, \pi]$, the maximum value of $(\sin \alpha + \sin(\alpha + \beta)) \cdot \sin \beta$ is ______.
- 14. Given the function $y = \sin x + a \cos x$ is symmetric about the line $x = \frac{5\pi}{3}$, then the equation of the axis of symmetry for the function $y = a \sin x + \cos x$ is ______.
- 15. Plot the function $y = \sqrt{3}\sin 2x \cos 2x 1$ over one period, and indicate its relationship with the graph of $y = \sin x$.
 - 16. Given $f(x) = 2\sin\left(x + \frac{\theta}{2}\right)\cos\left(x + \frac{\theta}{2}\right) + 2\sqrt{3}\cos^2\left(x + \frac{\theta}{2}\right) \sqrt{3}$:
 - i. Simplify the expression of f(x);
 - ii. If $0 \le \theta \le \pi$, find the value of θ such that the function f(x) is an even function;
 - iii. Under the condition in ii., find the set of x in $[-\pi, \pi]$ that satisfies f(x) = 1.
- 17. Given that $x \in [0,1]$, the inequality $x^2 \cos \theta x(1-x) + (1-x)^2 \sin \theta \ge 0$ always holds. Find the range of θ .
- 18. Given the function $f(x)=\sin(\omega x+\varphi)$ $(\omega>0,0\leq\varphi\leq\pi)$, which is an even function on $\mathbb R$, its graph is symmetric about the point $M\left(\frac{3\pi}{4},0\right)$, and it is increasing in the interval $\left[0,\frac{\pi}{2}\right]$. Find the values of φ and ω .
- 19. Given real numbers α, β, a, b satisfying $\alpha < \beta$, $\alpha + \beta < \pi$, $a + b < \pi$ and $\frac{\sin a}{\sin b} \le \frac{\sin \alpha}{\sin \beta}$, prove that a < b.
 - 20. Given $f(x) = \frac{\sqrt{2}\sin x}{\sqrt{1+\cos 2x}}$:
 - i. Find the domain, range, and smallest positive period of the function f(x);
 - ii. Determine whether the function f(x) is odd.
 - 21. If the equation $\sin^2 x + \cos x + a = 0$ has a solution, find the range of the real number a.
 - 22. Determine whether there exists a real number x that makes $\tan x + \sqrt{3}$ and $\cot x + \sqrt{3}$ real.

23.

- i. Find the maximum value of $f(\theta) = \cos \frac{\theta}{2} \sin \theta$, where $\theta \in \left(0, \frac{\pi}{2}\right)$;
- ii. Find the maximum value of $g(\theta) = \sin \frac{\theta}{2} \cos \theta$, where $\theta \in (0, \frac{\pi}{2})$.
- 24. A classroom wall has a blackboard with its top and bottom edges at a meters and b meters above the students' horizontal line of sight, respectively. At what distance from the wall will the students' viewing angle of the blackboard be maximized?
- 25. Given the function $f(x)=\tan x$, where $x\in \left(0,\frac{\pi}{2}\right)$, if $x_1,x_2\in \left(0,\frac{\pi}{2}\right)$ and $x_1\neq x_2$, prove that $\frac{1}{2}[f(x_1)+f(x_2)]>f\left(\frac{x_1+x_2}{2}\right)$.
- 26. Find the positive integer k such that $f(x) = \sin kx \cdot \sin^k x + \cos kx \cdot \cos^k x \cos^k 2x$ does not depend on x.