Review Test 3 Math 142

Name Section

 Id

Use exactly one page for each of the five numbered questions (use the back of the page if necessary).

Put your name and the question number on each page.

Put a box around the final answer to a question.

You must show your work in order to get possible credits.

- 1. Find the limit of the sequence
 - a) $\lim_{n\to\infty} n \tan \frac{1}{n}$
 - b) $\lim_{n\to\infty} \frac{\ln(3n+5)}{n}$
 - c) $\lim_{n\to\infty} \frac{2n^2}{(n+1)^2}$
 - d) $\lim_{n\to\infty} \frac{e^n}{e^{2n}-1}$
 - e) $\lim_{n\to-\infty}\frac{e^n}{e^{2n}-1}$
- 2. Determine whether the limit of the following sequence exists as $n \to +\infty$, if so, find the limit:
 - a) $\frac{(-1)^n}{n!}$
 - b) $\frac{\sin(3n)}{\sqrt{n\pi}}$
 - c) $(-1)^n + 100$
 - d^*) (optional) $\tan(n-\pi)$

3. Evaluate the limit a.
$$\lim_{n\to\infty} \frac{n^{5/2}+7n^2+9}{-n^{5/2}+3n^2-3n-11} = 0$$
b.
$$\lim_{n\to\infty} \frac{5n^5-7n^3+10}{5n^4+6n^2+9} = 0$$

b.
$$\lim_{n \to \infty} \frac{5n^5 - 7n^3 + 10}{5n^4 + 6n^2 + 9} =$$

Fill in the blanks or parenthesis in Problems 4 to 8.

- 4. n^{th} -term test: Let $\{a_n\}$ be an arbitrary sequence.
- (a) If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum a_n$
- (b) If $\sum_{n} a_n$ converges, then $\lim a_n = \underline{\hspace{1cm}}$
- 5. Integral Test: $a_n > 0$. Let $f: [1, \infty) \to \mathbf{R}$ be so that
 - $a_n = f()$ for each $n \in \mathbb{N}$

 - ullet f is a ______ function ullet f is a ______ function
 - \bullet f is a _____ function .

Then $\sum a_n$ converges if and only if _____ converges.

- 6. (a) Comparison Test: $a_n > 0$
 - If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ ______,
 - then $\sum a_n$ ______. If $0 \le b_n \le a_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ _______, then $\sum a_n$ _____.
- (b). Limit Comparison Test: $a_n > 0$

Let $b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$. If ______ < L < _____, then $\sum a_n$ converges if and only if $\sum b_n$

7. (a) **Ratio Test:** $a_n > 0$

Let $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

(b) Root Test: $a_n > 0$ Let $\rho = \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$.

8*. (Optional) Alternating Series Test: $a_n > 0$. If

• $a_n = a_{n+1}$ for each $n \in \mathbb{N}$

• $\lim_{n\to\infty} a_n = \underline{\hspace{1cm}}$

then $\sum (-1)^n a_n$

9. Determine whether the series converges. If it does, find the value of the sum.

$$(a) \quad \sum_{n=1}^{\infty} \left(\frac{-2}{3}\right)^n$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 2k - 3}$$

10. Determine the convergence/divergence of the series below. A correctly checked box without appropriate explanation will receive 0 or 1 point.

absolutely convergent $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$ conditionally convergent divergent

(Hint: Conditional convergent means $\sum a_n$ is convergent but $\sum |a_n|$ divergent)

11. Let $a_n = \frac{n^3 (n!)}{(2n)!}$ Find a_{n+1}/a_n . Simplify your answer so that no factorial sign (i.e., !) appears.

answer: $\frac{a_{n+1}}{a_n} =$

absolutely convergent

 $\sum_{n=2}^{\infty} (-1)^n \frac{n^3 (n!)}{(2n)!}$ conditionally convergent

divergent

12. Consider the formal power series

$$\sum_{n=1}^{\infty} \frac{(x+7)^n}{n^2} \ .$$

In the box below draw a diagram indicating for which x's this series is: absolutely convergent, conditionally convergent, and divergent. Of course, indicate your reasoning.

(Hint: use ratio/root test to determine the radius of convergence, interval of convergence)

13. Find the Taylor or Maclaurin series of y = f(x)

$$f(x) = e^{2x}$$

about x = 1

(b)

$$f(x) = \frac{1}{1+x}$$

about x = 0.

14. Geometric Series

a. If |r| < 1, then

$$\sum_{n=0}^{\infty} r^n =$$

(Hint for part (b), if |r| < 1, then $\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + r^4 + \dots$.)

b. Find the sum of the below series. (Note that the sum begins at n=10 instead of n=0.)

$$\sum_{n=10}^{\infty} 2\left(\frac{1}{5}\right)^{n-2} =$$

absolutely convergent

c. $\sum_{n=1}^{\infty} (-1)^n \left(\frac{\pi}{e}\right)^n$ conditionally convergent

Hint: $\frac{\pi}{e} \approx \frac{3.14159}{2.71828} \approx 1.16$.