Экзаменационные вопросы

- 1. Элементы теории множеств. Символы математической логики.
- 2. Функции одной переменной: определение, множество значений, область определения, способы задания.
- 3. Свойства функций одной переменной: чётность, периодичность, монотонность.
- 4. Понятие обратной функции.
- 5. Основные элементарные функции. Их свойства и графики.
- 6. Понятие сложной функции. Примеры сложных функций. Элементарные функции.
- 7. Определение числовой последовательности. Предел числовой последовательности.
- 8. Предел функции в точке. Левосторонний, правосторонний пределы.
- 9. Бесконечно малые и бесконечно большие функции. Свойства и сравнение бесконечно малых функций.
- 10. Основные теоремы о пределах. Первый и второй замечательный пределы.
- 11. Представление о неопределённостях и способах их раскрытия.
- 12. Определение непрерывности. Точки разрыва: классификация и примеры.
- 13. Свойства функций, непрерывных в точке и на отрезке.
- 14. Определение производной, её физический, геометрический и экономический смыслы.
- 15. Связь понятий непрерывности и дифференцируемости. Кривая Коха.
- 16. Свойства операции дифференцирования.
- 17. Производная сложной функции. Логарифмическая производная.
- 18. Производная обратной функции.
- 19. Производная функции, заданной неявно.
- 20. Производные основных элементарных функций. Таблица производных.
- 21. Дифференциал. Свойства дифференциала. Применения в приближенных вычислениях.
- 22. Производные и дифференциалы высших порядков.
- 23. Производная параметрически заданной функции.
- 24. Правило Лопиталя.
- 25. Монотонность. Экстремумы: определение, необходимый и достаточный признаки экстремума.
- 26. Достаточный признак экстремума, использующий вторую производную, а также (при необходимости) производные третьего и высших порядков.
- 27. Выпуклость, вогнутость графика функции. Точки перегиба. Необходимый и достаточный признаки существования точек перегиба.

- 28. Асимптоты графика функции.
- 29. Общая схема исследования функций и построения их графиков (на примерах функций $y = x + \frac{1}{x-1}$ и $y = x e^{-x^2}$).
- 30. Понятие функции нескольких переменных.
- 31. Топология пространства \mathbb{R}^2 : δ -окрестность, область, классификация областей.
- 32. Предел и непрерывность функции двух переменных.
- 33. Частные приращения и частные производные.
- 34. Полное приращение, полный дифференциал. Необходимое и достаточное условие дифференцируемости функции двух переменных.
- 35. Частные производные и полные дифференциалы высших порядков.
- 36. Производные сложных функций двух переменных.
- 37. Производные неявно заданных функций: для случаев функций одной и двух переменных.
- 38. Определения и уравнения касательной плоскости и нормали к поверхности в заданной точке.
- 39. Экстремумы функций двух переменных: определения максимума и минимума, необходимое и достаточное условия существования экстремума.
- 40. Задачи, приводящие к понятию двойного интеграла: масса тонкой пластины.
- 41. Определение двойного интеграла.
- 42. Свойства двойного интеграла.
- 43. Вычисление двойного интеграла в декартовых координатах.
- 44. Двойной интеграл в полярных координатах.
- 45. Приложения двойных интегралов: вычисление площадей плоских фигур, центра масс тонкой пластины, объёмов цилиндрических тел.
- 46. Кривые в \mathbb{R}^3 . Задача, приводящая к понятию криволинейного интеграла 1-го рода: масса нити.
- 47. Определение и свойства криволинейного интеграла 1-го рода.
- 48. Вычисление криволинейного интеграла 1-го рода.
- 49. Задача, приводящая к понятию криволинейного интеграла 2-го рода: работа переменной силы.
- 50. Определение и свойства криволинейного интеграла 2-го рода.
- 51. Вычисление криволинейного интеграла 2-го рода.
- 52. Формула Грина. Условие независимости криволинейного интеграла 2-го рода от пути интегрирования.
- 53. Понятие числового ряда и его суммы. Основные свойства сходящихся числовых рядов.
- 54. Необходимый признак сходимости числового ряда.

- 55. Достаточные признаки сходимости знакоположительных рядов. Признаки сравнения.
- 56. Достаточные признаки сходимости знакоположительных рядов. Признак Даламбера.
- 57. Достаточные признаки сходимости знакоположительных рядов. Радикальный признак Коши.
- 58. Достаточные признаки сходимости знакоположительных рядов. Интегральный признак Коши.
- 59. Знакочередующиеся числовые ряды. Признак Лейбница. Абсолютная и условная сходимость.
- 60. Понятие степенного ряда. Радиус и интервал сходимости степенного ряда. Дифференцирование и интегрирование степенных рядов.
- 61. Ряды Тейлора и Маклорена. Необходимое и достаточное условие разложения функции в ряд Тейлора.
- 62. Разложение основных элементарных функций в ряд Маклорена.
- 63. Применение степенных рядов к приближённым вычислениям. Привести примеры.

«Математический анализ, 1,2-й семестры»

Примеры экзаменационных задач

1. Вычислить пределы, не используя правило Лопиталя:

a)
$$\lim_{x \to \infty} \frac{3-x^3}{x^3 - 2x^2 + 7}$$
; b) $\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 1}$; c) $\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$; d) $\lim_{x \to 0} \frac{\sin^2(3x)}{x^2}$; e) $\lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^x$; f) $\lim_{x \to 4} \left(\frac{8}{x^2 - 16} - \frac{4}{x - 4}\right)$; g) $\lim_{x \to -\infty} \left(\sqrt{x^2 - 2x} - \sqrt{x^2 + x}\right)$.

2. Найти у':

a)
$$y = x^3 \ln x$$
; b) $y = \frac{x}{\sin x}$; c) $y = \arcsin(\sqrt{1-x})$; d) $y = x e^{-x^2} \cos x$; e) $y = (1+x^2)^{\log x}$.

- 3. Найти y''(0), если $y = e^{-4x} \sin(3x)$.
- 4. Найти dy, если $y = 2^{\sqrt{x}}$.
- 5. Вычислить приближённо arctg(1,05).
- 6. С помощью правила Лопиталя вычислить предел $\lim_{x\to 0} \frac{e^x x 1}{x^2}$.
- 7. Найти промежутки монотонности и экстремумы функции $y = \sqrt{x} \cdot e^{-x}$.
- 8. Найти промежутки выпуклости, вогнутости и точки перегиба графика функции $y=x^3\,(x-2).$
- 9. Исследовать функцию $y = \frac{4x^2}{x+3}$ и построить её график.
- 10. $z=y^2 \ln x$. Найти $z'_x,\,z'_y,\,z''_{xx},\,z''_{xy},\,z''_{yy}$.
- 11. $z=y^2\cdot\sqrt{y-x}$. Найти dz и d^2z .
- 12. $z=\frac{y}{x^2},\,y=\mathrm{e}^{uv},\,x=\frac{u}{v}$. Найти $z_u',\,z_v'$.

- 13. $z = \frac{y}{\sqrt{x}}, y = 2^{\cos t}, x = \frac{1}{t}$. Найти $\frac{dz}{dt}$.
- 14. $z = \arctan(1-x-y), y = \ln(3x-1)$. Найти $\frac{dz}{dx}$.
- 15. Найти уравнения касательной плоскости и нормали к поверхности, заданной уравнением $x^3 + y^3 + z^3 + xyz 6 = 0$ в точке $M_0(1; 2; -1)$.
- 16. $3x^2y y\sin(xy) = y^2x$. Найти y'.
- 17. $z \operatorname{tg}(x-3y) y \sin(xz) = z^3 4\sqrt{y-3x}$. Найти z_x', z_y'
- 18. Исследовать на экстремум функцию: $z = 3x^2 4xy + 2y^2 4x + 2y 11$.
- 19. Вычислить двойной интеграл:
 - а) $\iint_D (x+y) \, dx dy$, если область D ограничена линиями $y=0, \, x=4, \, xy=1, \, y=\sqrt{x};$
 - **b)** $\iint_D xy^2 dx dy$, если область D ограничена линиями $y^2 = 2x$, x = 2;
 - c) $\iint_{D} \sqrt{x^2 + y^2} dx dy$, если область D ограничена линией $y^2 + x^2 = 2y$.
- 20. С помощью двойного интеграла найти площадь области D, если $D:y>x^2,$ $y<4-3x^2.$
- 21. С помощью двойного интеграла найти координаты центра тяжести однородной пластины D, если D: y > x, $0 < 1 x^2 y^2$.
- 22. Вычислить криволинейные интегралы 1-го рода:
 - а) $\int_L xydl$, если L отрезок прямой x-y=1 между точками (0;-1) и (1;0).
 - **b)** $\int\limits_L xdl$ вдоль линии $L:\begin{cases} x=t^2/2\\ y=\frac{1}{3}\left(2t+1\right)^{3/2} \end{cases}$ между точками t=0 и t=1.
 - c) $\int_L \frac{ydl}{\sqrt{x+1}}$ вдоль линии $L: x = \frac{y^2}{2} y$ между точками (-1/2;1) и (0;0).
- 23. Вычислить криволинейные интегралы 2-го рода:
 - а) $\int\limits_L xydy-ydx,$ если L отрезок прямой x-y=0 от точки (0;0) до точки (1;1).
 - **b)** $\int\limits_{L} dx \frac{2x}{y^2} dy$ вдоль линии $L: y = \frac{1}{x-1}$ от точки (2;1) до точки (3;1/2).
 - c) $\int\limits_L x dx + x dy$ вдоль линии $L:\begin{cases} x = \sin t \\ y = -\cos t \sin t \end{cases}$ от точки t=0 до точки $t=\pi.$
 - $\mathbf{d)} \int_{(1;e)}^{(2;1)} \ln y dx + \frac{x}{y} dy.$
- 24. Исследовать на сходимость числовые ряды:

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$$
; b) $\sum_{n=1}^{\infty} \frac{n}{3n-1}$; c) $\sum_{n=1}^{\infty} \frac{n!}{4^n}$; d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$; e) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$; f) $\sum_{n=1}^{\infty} \left(\frac{n+1}{3n}\right)^n$.

- 25. Найти интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(x+5)^n}{2^n(n^2+1)}$. Исследовать сходимость на концах интервала.
- 26. Используя степенной ряд, вычислить приближённо $\cos(1)$ с абсолютной погрешностью $\delta=0{,}001.$
- 27. Используя степенной ряд, вычислить приближённо $\int_0^{1/2} \frac{(x-\sin x)}{x^3} dx$ с абсолютной погрешностью $\delta = 0{,}001$.
- 28. Записать пять первых, отличных от нуля, членов разложения в степенной ряд решения дифференциального уравнения при заданных начальных условиях:

a)
$$y' = e^y + xy$$
, $y(0) = 0$; b) $y'' = x + y^2$, $y(0) = 0$, $y'(0) = 1$.

«Математический анализ, 1,2-й семестры»

Пример экзаменационного билета

Билет №31

- 1. Асимптоты графика функции. (8 баллов)
- 2. Формула Грина. (8 баллов)
- 3. Вычислить двойной интеграл $\iint\limits_D \left(2x-y\right) dx dy$, если область D ограничена линиями $y=0, 2x=1+y^2, y=\sqrt{x}$. (8 баллов)
- 4. Вычислить y', если $y = \sqrt{x^3 + x^2 x}$. (8 баллов)
- 5. Используя степенной ряд, вычислить приближённо $\sin^2(1/2)$ с абсолютной погрешностью $\delta=0{,}001$. (8 баллов)

«Математический анализ, 1,2-й семестры»

Список литературы

Теоретическая часть.

- 1. Письменный Д. Т. Конспект лекций по высшей математике: [в 2 ч.]. Ч. 1. М.: Айриспресс, 2010.-288 с.
- 2. Письменный Д. Т. Конспект лекций по высшей математике: [в 2 ч.]. Ч. 2. М.: Айриспресс, 2009. 256 с.

Практическая часть.

- 1. Журбенко Л. Н., Никонова Г.А. и др. Математика в примерах и задачах. М.: ИНФРА- М, 2009. 373 с.
- 2. Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах. Ч. І,ІІ. М.: Высшая школа. 1997.