Оглавление

1	Теория групп	2
	1.1 Прямое произведение подгрупп	2

Глава 1

Теория групп

1.1 Прямое произведение подгрупп

Определение 1. G – группа, $H_1,...,H_k$ – нормальные подгруппы G Говорят, что G является (внутренним) прямым произведением $H_1,...,H_k$, если

1. Любой элемент G можно единственным образом представить в виде $g=h_1h_2...h_k,$ где $h_i\in H_i$

2.
$$\forall \underset{h_i \in H_i, \ h_j \in H_j}{i \neq j} \quad h_i h_j = h_j h_i$$

Обозначение. $G = H_1 \times ... \times H_k$

Другое название. G разложена в произведение подгрупп

Лемма 1 (нормальные подгруппы с единичным пересечением). G – группа, $H \triangleleft G, K \triangleleft G, H \cap K = \{e\}$ Тогда элементы

Теорема 1 (прямое произведение нескольких подгрупп). G – группа, $H_1 \triangleleft G, \ldots, H_k \triangleleft G$

$$\forall i \quad H_i \cdot \dots \cdot H_{i-1} \cap H_i = \{e\}$$

$$H_1 H_2 ... H_k = G$$

Тогда $G = H_1 \times ... \times H_k$

Доказательство. Докажем, что $H_i \cap H_j = \{e\}$:

Пусть j < i

 $H_j \subset H_1...H_j...H_{i-1}$, т. к. $h_j = e...eh_je...e$

 $\implies H_j \cap H_i = \{e\} \implies$ элементы H_i и H_j коммутируют

Теорема 2 (разложение циклической группы в прямое произведение двух подгрупп). Пусть G – циклическая, $|G| = m^n$, HOД(m,n) = 1 Тогда G можно разложить в прямое произведение подгрупп, изоморфных \mathbb{Z}_m и \mathbb{Z}_n

Определение 2. Группа называется примарной, если она изоморфна $\mathbb Z$ или $\mathbb Z_{p^n}$, где $p\in\mathbb P$

Замечание. Теорема о линейном предстаавлении НОД верна для нескольких чисел:

$$\forall a_1,...,a_k \quad \exists t_1,...,t_k : t_1a_1 + ... + t_ka_k = \text{HOД}(()a_1,...,a_k)$$