

Department of Civil Engineering CEL 222 Engg. Geology and Soil Meehanies Major Test - (part - soil)

Assume suitable value of missing data if necessary to solve questions. Write units clearly

May 7th, 2007 10:30am - 12:30noon Maximum Marks: 100

Answer all questions

Four equations are given below. Write the meaning and units of each parameter. Q 1. Also write when would you like to use these equations.

$$\rho = \frac{\Delta e}{1 + e_0} D \qquad (1) \qquad \rho = \left(\frac{a_v}{1 + e_0}\right) ... \Delta \sigma' \qquad (2)$$

$$\rho = C_c \log \left(\frac{\sigma' + \Delta \sigma'}{\sigma'} \right) \frac{D}{1 + e_0}$$
 (3)
$$\rho = m_{v_0} D. \ \Delta \sigma'$$
 (4)

Q 2. For a constant head permeability test on a sand (e = 0.46), the values are given:

Length of specimen = 25 cm

Diameter of specimen = 6.25cm

Head difference = 45 cm

water collected in 20 min = 5 cm^3

Show in the diagram above values and giving the equations, and units determine

(i) Permeability

(ii) Discharge velocity

(iii) Seepage velocity

(40)

Q 3. The results of two drained triaxial shear tests on saturated clay follow:

Specimen .	℧ ვ kg/cm²	$(\Delta\sigma_{ m d})_{ m f}$
l	1.0	2.5
2	1.5	3.4

Determine the shear strength parameters c, ϕ, c', ϕ'

- From among the ranges of numerical values given, select the range valid for the Q 4. following parameters:
 - a Water content, w in %

(i)
$$w \le 0$$
 (ii) $0 < w < 100$

(iii)
$$0 \le w \le 100$$
 (iv) $0 \le w$

b Liquid limit for clayey soil

(i)
$$LL < 100$$
 (ii) $LL > 0$

$$(ii) \Pi > 0$$

(iii)
$$LL = 0$$

(iv)
$$0 < LL < 100$$

c Pore water pressure **u** in a consolidation test at the end of consolidation

(i)
$$u = 0$$

(ii)
$$\boldsymbol{u} > 0$$

(i)
$$\boldsymbol{u} = 0$$
 (ii) $\boldsymbol{u} > 0$ (iii) $\boldsymbol{u} < 0$ (iv) $\boldsymbol{u} = \text{Cell pressure}$