htage Dạng 2. TÌM THAM SỐ ĐỂ HÀM SỐ CÓ CỰC TRỊ, CÓ CỰC TRỊ TẠI x_0

Loại 1. Tìm m để hàm số có cực trị.

a) Điều kiện để hàm số bậc $3y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực trị. Ta có $y' = 3ax^2 + 2bx + c$.

Đồ thị hàm số có 2 điểm cực trị khi phương trình y'=0 có hai nghiệm phân biệt $\Leftrightarrow b^2-3ac>0$.

b) Diều kiện để hàm số $f(x) = ax^4 + bx^2 + c(a \neq 0)$ có cực trị. Ta có $y' = 4ax^3 + 2bx = 2x(2ax^2 + b)$

Trường hợp 1. $ab \ge 0$. Khi đó f'(x) có nghiệm duy nhất x = 0 và f'(x) đổi dấu đúng một lần khi đi qua x = 0. Do đó f(x) chỉ có đúng một điểm cực tri.

Trường hợp 2. ab < 0. Khi đó f'(x) có ba nghiệm phân biệt và f'(x) đổi dấu liên tiếp khi x đi qua ba nghiệm này. Do đó f(x) có ba điểm cực trị.

Loai 2. Tìm m để hàm số đạt cực tri tại x_0 .

<u>Bài toán</u>. Tìm tham số để hàm số y = f(x) đạt cực trị tại điểm $x = x_0$? Phương pháp:

Bước 1. Tìm tập xác định \mathscr{D} . Tính đạo hàm y' và y''.

Bước 2. Dựa vào nội dung định lí 3.

Giả sử y = f(x) có đạo hàm cấp 2 trong khoảng $(x_0 - h; x_0 + h)$, với h > 0.

Nếu $y'(x_0) = 0$, $y''(x_0) > 0$ thì x_0 là điểm cực tiểu.

Nếu $y'(x_0) = 0$, $y''(x_0) < 0$ thì x_0 là điểm cực đại.

Nếu $y'(x_0) = 0$, $y''(x_0) = 0$ thì cần xét dấu y' theo m.

Bước 3. Với m vừa tìm, thế vào hàm số và thử lai.

1. Các ví dụ

VÍ DỤ 1. Tìm tham số m để các hàm số

a)
$$y = x^3 - 3x^2 + (m-1)x + 2$$
 có cực trị.

b)
$$y = \frac{1}{3}(m-1)x^3 + (m-2)x^2 - 4x + 1$$
 không có cực trị.

c)
$$y = -x^4 + 2(2m-1)x^2 + 3$$
 có đúng 1 cực trị.

d)
$$y = x^4 + 2(m^2 - 1)x^2 + 1$$
 có 3 điểm cực trị.

e)
$$y = mx^4 + (m^2 - 9) x^2 + 1$$
 có 2 điểm cực đại và 1 điểm cực tiểu.

f)
$$y = mx^4 + (2m-1)x^2 + m - 2$$
 chỉ có cực đại và không có cực tiểu.

VÍ DỤ 2. Tìm tham số m để các hàm số

a)
$$y = x^3 - (m-1)x + 1$$
 đạt cực tiểu tại $x = 2$.

b)
$$y = \frac{1}{3}x^3 - mx^2 + (m^2 - m + 1)x + 1$$
 đạt cực đại tại $x = 1$.

c)
$$y = \frac{1}{4}(m-1)x^4$$
 đạt cực đại tại $x = 0$.

d)
$$y = -x^4 + 2(m-2)x^2 + m - 3$$
 đạt cực đại tại $x = 0$.

e)
$$y = x^4 - 2mx^2 + 2m + m^4 - 5$$
 đạt cực tiểu tại $x = -1$.

•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	

		٠		•	•	•							•	•	•	•	•			•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

 • • •	 	

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

 • •	 	• • •	 • • • •	

\sim 11	ICK	\mathbf{N}	11
พบ	$I \subset I$		113

2. Các câu hỏi trắc nghiệm

CÂU 1. Hàm số $y = x^3 + mx + 2$ có cả cực đại và cực tiểu khi

B.
$$m > 0$$
.

C.
$$m \ge 0$$
.

D.
$$m < 0$$
.

CÂU 2. Cho hàm số $y = (m-2)x^3 - mx - 2$. Với giá trị nào của m thì hàm số có cực trị?

A.
$$0 < m < 2$$
.

B.
$$m < 1$$
.

C.
$$m > 2 \lor m < 0$$
.

D.
$$m > 1$$
.

CÂU 3. Tìm tất cả tham số thực của m để hàm số $y = \frac{1}{3}(m+2)x^3 + x^2 + \frac{1}{3}mx - 2$ có cực đại, cực tiểu.

A.
$$m \in (-3; -2) \cup (-2; 1)$$
.

B.
$$m \in (-3; 1)$$
.

C.
$$m \in (-\infty; -3) \cup (1; +\infty)$$
.

D.
$$m \in (-2; 1)$$
.

CÂU 4. Xác định các giá trị của tham số m để đồ thị hàm số $y=mx^4-m^2x^2+2016$ có 3 điểm cực tri?

A.
$$m < 0$$
.

B.
$$m > 0$$
.

c.
$$\forall m \in \mathbb{R} \setminus \{0\}.$$

D. Không tồn tại giá trị của
$$m$$
.

CÂU 5. Hàm số $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực trị khi

A.
$$y' = 0$$
 vô nghiệm.

B.
$$y' = 0$$
 có duy nhất một nghiệm.

C.
$$y'=0$$
 có nghiệm.

D.
$$y' = 0$$
 có 2 nghiệm phân biệt.

CÂU 6. Hàm số $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực đại, cực tiểu khi

A.
$$y' = 0$$
 vô nghiệm.

B.
$$y' = 0$$
 có duy nhất một nghiệm.

C.
$$y' = 0$$
 có nghiệm.

D.
$$y' = 0$$
 có 2 nghiệm phân biệt.

CÂU 7. Hàm số $y = ax^3 + bx^2 + cx + d$ $(a \neq 0)$ có cực đại, cực tiểu và $x_{\rm CD} < x_{\rm CT}$

A.
$$y' = 0$$
 có nghiệm, $a > 0$.

B.
$$y' = 0$$
 có hai nghiệm phân biệt, $a > 0$.

C.
$$y'=0$$
 có nghiệm, $a<0$.

D.
$$y'=0$$
 có hai nghiệm phân biệt, $a<0$.

CÂU 8. Hàm số $y = ax^3 + bx^2 + cx + d$ $(a \neq 0)$ có cực đại, cực tiểu và $x_{\text{CD}} > x_{\text{CT}}$

A.
$$y'=0$$
 có nghiệm, $a>0$.

B.
$$y' = 0$$
 có hai nghiệm phân biệt, $a > 0$.

C.
$$y'=0$$
 có nghiệm, $a<0$.

D.
$$y' = 0$$
 có hai nghiệm phân biệt, $a < 0$.

CÂU 9. Hàm số $y = ax^4 + bx^2 + c$ $(a \neq 0)$ có 3 điểm cực trị khi và chỉ khi

A.
$$b < 0$$
.

B.
$$ab > 0$$
.

C.
$$ab \leq 0$$
.

D.
$$ab < 0$$
.

CÂU 10. Hàm số $y = ax^4 + bx^2 + c$ $(a \neq 0)$ có 1 điểm cực trị khi và chỉ khi

A.
$$b > 0$$
.

B.
$$ab \ge 0$$
.

c.
$$ab < 0$$
.

D.
$$b \le 0$$
.

CÂU 11. Đồ thị hàm số $y=ax^4+bx^2+c$ có 1 cực đại và 2 cực tiểu khi và chỉ

$$\mathbf{A.} \quad \begin{cases} a < 0 \\ b \neq 0 \end{cases}$$

$$\begin{cases} a \neq 0 \\ b > 0 \end{cases}.$$

A.
$$\begin{cases} a < 0 \\ b \neq 0 \end{cases}$$
 B.
$$\begin{cases} a \neq 0 \\ b > 0 \end{cases}$$
 C.
$$\begin{cases} a > 0 \\ b < 0 \end{cases}$$
 D.
$$\begin{cases} a > 0 \\ b > 0 \end{cases}$$

$$\begin{array}{ll}
\mathbf{D.} & \begin{cases} a > 0 \\ b > 0 \end{cases}
\end{array}$$

CÂU 12. Hàm số $y = ax^4 + bx^2 + c$ $(a \neq 0)$ có 1 cực tiểu và 2 cực đại khi và chỉ

$$\mathbf{A.} \quad \begin{cases} a < 0 \\ b > 0 \end{cases}.$$

B.
$$\begin{cases} a > 0 \\ b \neq 0 \end{cases}$$
 C.
$$\begin{cases} a < 0 \\ b \geq 0 \end{cases}$$
 D.
$$\begin{cases} a > 0 \\ b > 0 \end{cases}$$

CÂU 13. Tìm tập hợp tất cả các giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 + mx^2 - m^2$ $(4+4m)x+m^2$ có cực đại và cực tiểu.

A.
$$(-2; +\infty)$$
.

B.
$$\mathbb{R}$$
.

C.
$$\mathbb{R} \setminus \{-2\}.$$

QUICK NOTE

CÂU 14. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^3 - 3mx^2 + 3mx + 3m$ không có cực trị?

A. 4.

B. (

C. 1.

D. 2.

CÂU 15. Hàm số $y = \frac{1}{3}x^3 + (m-1)x^2 + \left(3m^2 - 4m + 1\right)x$ có hai cực trị khi tham số $m \in (a;b)$ với a,b là các số thực. Tính S = a + b.

A. S = 1.

B. S = -3.

C. S = 5.

D. S = -5.

CÂU 16. Xác định các giá trị của tham số m để đồ thị hàm số $y = mx^4 - m^3x^2 + 2016$ có ba điểm cực trị.

A. m > 0.

B. $m \neq 0$.

C. $\forall m \in \mathbb{R} \setminus \{0\}.$

D. Không tồn tại giá trị của m.

CÂU 17. Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = \frac{1}{2}x^4 - mx^2 + \frac{3}{2}$ có đúng một cực trị.

A. $m \le -1$.

B. m < 0.

C. m > 0.

D. m > 0.

CÂU 18. Tìm m để hàm số $y = x^4 - 2mx^2 + 2m + m^4 - 5$ đạt cực tiểu tại x = -1.

A. m = -1.

B. m = 1.

C. $m \neq -1$.

 $\mathbf{D.} \ m \neq 1.$

CÂU 19. Giá trị của m để hàm số $y = mx^4 + 2x^2 - 1$ có ba điểm cực trị là

A. m < 0.

B. m < 0.

 $\mathbf{C.} \quad m \neq 0.$

D. m > 0.

CÂU 20. Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A. m = -7.

B. m = 5.

C. m = -1.

D. m = 1.

CÂU 21. Hàm số $y = 2x^3 - 3(m+1)x^2 + 6mx$ có cực trị khi

 $A. m \neq 1.$

B. $m \neq 0$.

C. m > 0.

D. m < 1.

CÂU 22. Tìm giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}(m^2 + 1)x^2 + (3m - 2)x + m$ đạt cực đại tại x = 1.

A. m = 2.

B. m = -2.

C. m = 1.

D. m = -1.

CÂU 23. Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - m - 1)x$ đạt cực đại tại x = 1.

A. m = 2.

B. m = 3.

C. $m \in \emptyset$.

D. m = 0.

CÂU 24. Tìm m để hàm số $y = mx^3 - (m^2 + 1) x^2 + 2x - 3$ đạt cực tiểu tại x = 1.

A. $m = \frac{3}{2}$.

B. $m = -\frac{3}{2}$.

C. m = 0.

D. m = -1.

CÂU 25. Tìm tất cả các giá trị thực của tham số m để hàm số $y = x^4 + mx^2$ đạt cực tiểu tại x = 0.

A. m < 0.

B. m = 0.

C. $m \ge 0$.

D. m > 0.

CÂU 26. Hàm số $y=x^3+2ax^2+4bx-2018$ $(a,b\in\mathbb{R})$ đạt cực trị tại x=-1. Khi đó hiêu a-b là

A. −1.

B. $\frac{4}{2}$.

c. $\frac{3}{4}$.

D. $-\frac{3}{4}$.

CÂU 27. Biết điểm M(0;4) là điểm cực đại của đồ thị hàm số $f(x) = x^3 + ax^2 + bx + a^2$. Tính f(3).

A. f(3) = 17.

B. f(3) = 49.

C. f(3) = 34.

D. f(3) = 13.

CÂU 28. Giả a, b, c là các số thực thỏa mãn đồ thị hàm số $y = x^3 + ax^2 + bx + c$ đi qua điểm (1;0) và có điểm cực trị (-2;0). Tính giá trị biểu thức $T = a^2 + b^2 + c^2$.

A. 25

B. -1.

C. 7

D. 14

CÂU 29. Có tất cả bao nhiêu giá trị nguyên của m để hàm số $y = x^8 + (m-2)x^5 - (m^2 - 4)x^4 + 1$ đạt cực tiểu tại x = 0?

A 3

B. 5.

C. 4.

D. Vô số.

_						
\cap	ш	ICI	/ N	ur.	•	15
6	u		V II	w	-	Е

CÂU 30. Cho hàm số $y = \frac{1}{3}\sin 3x + m\sin x$. Tìm tất cả các giá trị của m để hàm số đạt cực đại tại điểm $x = \frac{\pi}{3}$

A.
$$m = 0$$
.

B.
$$m > 0$$
.

c.
$$m = \frac{1}{2}$$
.

D.
$$m = 2$$
.

CÂU 31. Cho hàm số $f(x) = x + m + \frac{n}{x+1}$ (với m, n là các tham số thực). Tìm m, n để hàm số đạt cực đại tại x = -2 và f(-2) = -2.

A. Không tồn tại giá trị của m, n.

B. m = -1; n = 1.

C.
$$m = n = 1$$
.

D.
$$m = n = -2$$
.

CÂU 32. Biết đồ thị hàm số $y = x^4 + bx^2 + c$ chỉ có một điểm cực trị là điểm có tọa độ (0; -1) thì b, c thỏa mãn điều kiện nào?

A.
$$b \ge 0$$
 và $c = -1$.

B.
$$b < 0$$
 và $c = -1$.

c.
$$b \ge 0 \text{ và } c > 0.$$

D.
$$b > 0$$
 và c tùy ý.

CÂU 33. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x + m$. Với giá trị nào của m hàm số đạt cực đại tại x=2?

A.
$$m = 1$$
.

B.
$$m = 1 \text{ hoăc } m = 3.$$

C.
$$m = 3$$
.

D.
$$m = 0$$

CÂU 34. Hàm số $y = \frac{x^2 + mx + 1}{x + m}$ đạt cực đại tại x = 2 khi giá trị của m bằng **A.** -1. **C.** 1. **D.** -3.

A.
$$-1$$
.

B.
$$3^{-}$$

D.
$$-3$$
.

CÂU 35. Hàm số $y = x^3 - 3x^2 + mx$ đạt cực tiểu tại x = 2 khi

A.
$$m = 0$$
.

$$\mathbf{B.} \quad m \neq 0.$$

C.
$$m > 0$$
.

D.
$$m < 0$$
.

CÂU 36. Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx^3 + x^2 + x^2$ $(m^2-6)x+1$ đạt cực tiểu tại x=1.

A.
$$m = 1$$
.

B.
$$m = -4$$
.

C.
$$m = -2$$
.

D.
$$m = 2$$
.

CÂU 37. Tìm m để hàm số $y = x^5 + mx + m^2$ đạt cực tiểu tại x = 0.

A.
$$m = 1$$
.

B.
$$m = 0$$
.

C.
$$m = -1$$
.

D. Không tồn tại
$$m$$
.

CÂU 38. Xác định các giá trị của tham số m để đồ thị hàm số $y = mx^4 - m^3x^2 + 2016$ có 3 điểm cực tri?

A.
$$m = 0$$
.

B.
$$m > 0$$
.

c.
$$\forall m \in \mathbb{R} \setminus \{0\}.$$

CÂU 39. Cho hàm số $y = x^3 - 2x^2 + ax + b$ $(a, b \in \mathbb{R})$ có đồ thị (C). Biết đồ thị (C) có điểm cực trị là A(1;3). Tính giá trị P=4a-b.

A.
$$P = 3$$
.

B.
$$P = 2$$
.

C.
$$P = 4$$
.

D.
$$P = 1$$
.

CÂU 40. Hàm số $y = x^3 - 2mx^2 + m^2x - 2$ đạt cực tiểu tại x = 1 khi

$$\Delta$$
, $m=2$

B.
$$m = 1$$
.

C.
$$m = -1$$
.

D.
$$m = -2$$

CÂU 41. Hàm số $y = x^4 - 2mx^2 + m - 1$ có đúng một cực trị khi và chỉ khi

$$A. m \leq 0.$$

B.
$$m > 0$$
.

C.
$$m$$
 tùy ý.

$$\mathbf{D.} \ m \in \varnothing.$$

CÂU 42. Cho hàm số $f(x) = x^3 + ax^2 + bx + c$ và giả sử A, B là hai điểm cực trị của đồ thị hàm số. Giả sử đường thẳng AB đi qua gốc tọa độ, tìm giá trị nhỏ nhất của P = abc + ab + c.

A.
$$-\frac{16}{25}$$

D.
$$-\frac{25}{9}$$

\blacktriangleright Dạng 3. Xác định tham số m để hàm số có cực trị thỏa điều kiện cho trước

Bài toán 1. Cho hàm số $y = f(x, m) = ax^3 + bx^2 + cx + d$. Tìm tham số m để đồ thị hàm số có 2 điểm cực trị x_1 , x_2 thỏa mãn điều kiện K cho trước?

- **Bước 1.** Tập xác định $\mathcal{D} = \mathbb{R}$. Tính đạo hàm: $y' = 3ax^2 + 2bx + c$.
- **Bước 2.** Hàm số có 2 điểm cực trị $\Leftrightarrow y'=0$ có 2 nghiệm phân biệt $\Leftrightarrow \begin{cases} a \neq 0 \\ \Delta' = b^2 - 3ac > 0 \end{cases}$ và giải hệ này sẽ tìm được $m \in D_1$.
- **Bước 3.** Gọi x_1, x_2 là 2 nghiệm của phương trình y' = 0. Theo định lý Viète, ta có $S = x_1 + x_2 = -\frac{2b}{3a}$ và $P = x_1x_2 = \frac{c}{3a}$.
- **Bước 4.** Biến đổi điều kiện K về dạng S và P. Từ đó giải ra tìm được $m \in D_2$.
- **Bước 5.** Kết luận các giá trị m thỏa mãn: $m = D_1 \cap D_2$.

Bài toán 2. Hàm số bậc bốn trùng phương $y = f(x, m) = ax^4 + bx^2 + c$ có 3 điểm cực trị thỏa điều kiện K.

- **Buốc 1.** $y' = 4ax^3 + 2bx = 0 \Leftrightarrow \begin{cases} x = 0 \\ q(x) = 2ax^2 + b = 0. \end{cases}$
- **Bước 2.** Hàm số có 3 điểm cực trị $\Leftrightarrow ab < 0 \Rightarrow m \in D_1$.
- **Bước 3.** Giải $g(x) = 0 \Leftrightarrow x_{1,2} = \pm \sqrt{-\frac{b}{2a}} \Rightarrow y_1 = y_2 = f\left(\sqrt{-\frac{b}{2a}}\right)$. Do đó tọa độ ba điểm cực trị sẽ là $A(0;c), B(x_1;y_1), C(x_2;y_2)$ và do tính đối xứng nên tam giác ABC luôn cân tai A.
- **Bước 4.** Dựa vào điều kiện đề bài cho để tìm $m \in D_2 \Rightarrow m = D_1 \cap D_2$.

1. Các ví du

VÍ DU 1. Tìm tham số m để các hàm số

- a) $y = \frac{2}{3}x^3 mx^2 2(3m^2 1)x + \frac{2}{3}$ có hai điểm cực trị x_1, x_2 thỏa mãn $x_1x_2 + \frac{2}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_2 + \frac{2}{3}x_1 + \frac{2}{3}x_1 + \frac{2}{3}x_1 + \frac{2}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3$
- b) $y = x^3 3mx + 1$ với đồ thị (C) có hai điểm cực trị B và C sao cho tam giác ABC cân tai A(2;3).
- c) $y = 2x^3 3(m+1)x^2 + 6mx$ với đồ thị (C) có hai điểm cực trị A và B sao cho $AB \perp d$, với d: y = x + 2.
- d) $y = x^3 3mx^2 + 3m^3$ với đồ thị (C) có hai điểm cực trị A và B sao cho
- e) $y = x^4 2(m+1)x^2 + m^2$ có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác vuông
- f) $y = x^4 2mx^2$ có ba điểm cực trị tạo thành tam giác có diện tích nhỏ hơn 1.

VÍ DỤ 2. Tìm m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 + m - 1)x + 1$ đạt cực trị tại 2điểm $x_1; x_2$ thỏa mãn $|x_1 + x_2| = 4$.

A. m = 2.

C. m = -2.

QUI	СК	NO	ΤE
αυ.		110	-

QUICK NOTE

2. Câu hỏi trắc nghiệm

CÂU 1. Cho hàm số $y=-x^3+(2m+1)x^2-\left(m^2-3m+2\right)x-4$. Tìm m để hàm số có cực đại, cực tiểu nằm 2 phía trục tung

A. $m \in (1, 2)$.

B. $m \in [1; 2]$.

C. $m \in (-\infty; 1) \cup (2; +\infty)$.

D. $m \in (-\infty; 1] \cup [2; +\infty)$.

CÂU 2. Tìm tất cả các giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}(m+5)x^2 + mx$ có điểm cực đại, cực tiểu và $|x_{\text{CD}} - x_{\text{CT}}| = 5$.

A. m = 0.

B. $m = \{-6, 0\}$. **C.** m = 6.

D. $m = \{6, 0\}.$

CÂU 3. Gọi x_1, x_2 là hai điểm cực trị của hàm số $y = x^3 - 3mx^2 + 3\left(m^2 - 1\right)x - m^3 + m$. Tìm tất cả các giá trị của tham số thực m để $x_1^2 + x_2^2 - x_1x_2 = 7$. **A.** $m = \pm 1$. **B.** $m = \pm 2$. **C.** m = 0. **D.** $m = \pm \sqrt{2}$.

CÂU 4. Đồ thị hàm số $y = x^3 - (3m+1)x^2 + (m^2 + 3m + 2)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:

B. -2 < m < -1. **C.** 2 < m < 3.

CÂU 5. Với giá trị nào của m thì đồ thị hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x$ có hai điểm cực trị nằm về phía bên phải trục tung?

B. 0 < m < 2. **C.** m < 2.

CÂU 6. Tìm m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x - 1$ có hai điểm cực trị trong khoảng $(0; +\infty)$?

A. $(-\infty; 2]$.

B. $(2; +\infty)$.

C. (-2;4).

D. $[2; +\infty)$.

CÂU 7. Tìm tất cả các giá trị thực của tham số a sao cho hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{2}x^3 + \frac{1}{3}x^3 - \frac{1}{2}x^3 + \frac{1}{3}x^3 - \frac{1}{3}x^3 + \frac{1}{3}x^$ ax+1 đạt cực trị tại điểm x_1,x_2 thỏa mãn: $\left(x_1^2+x_2+2a\right)\left(x_2^2+x_1+2a\right)=9$

C. a = -3.

CÂU 8. Cho hàm số $y = \frac{2}{3}x^3 + (m+1)x^2 + (m^2 + 4m + 3)x - 3$, (m là tham số)thực). Tìm điều kiện của m để hàm số có cực đại cực tiểu và các điểm cực trị của đồ thị hàm số nằm bên phải của trục tung.

A.
$$-5 < m < -1$$
. **B.** $-5 < m < -3$. **C.** $-3 < m < -1$. **D.** $\begin{bmatrix} m > -1 \\ m < -5 \end{bmatrix}$.

CÂU 9. Cho hàm số $y = x^3 - 3x^2 + mx - 1$, tìm giá trị của tham số m để hàm số có hai cực trị x_1 , x_2 thỏa $x_1^2 + x_2^2 = 3$.

A. $m = \frac{3}{2}$.

B. m = 1.

C. m = -2. **D.** $m = \frac{1}{2}$.

CÂU 10. Cho hàm số $y = 3x^4 - 2mx^2 + 2m + m^4$. Tìm tất cả các giá trị của mđể đồ thị hàm số đã cho có ba điểm cực trị tạo thành tam giác có diện tích bằng 3.

B. m = 3.

C. m = 4.

CÂU 11. Tìm m để hàm số $y = x^3 - 3x^2 + mx - m^3$ có hai điểm cực trị x_1 ; x_2 thỏa

B. m = -3. **C.** m = 3. **D.** $m = \frac{3}{2}$.

CÂU 12. Cho hàm số $y = \frac{1}{3}x^3 - (m+2)x^2 + (m^2 + 4m + 3) + 5m^3 + 1(1)$. Gọi mlà số thực để hàm số (1) đạt cực đại tại x_1 , đạt cực tiểu tại x_2 sao cho $x_1^2 = x_2$. Khi đó khẳng định nào sau đây đúng.

A. $m \in (-3; 3)$.

B. m > 6.

C. $m \in (3; 6)$.

D. m < -1.

CÂU 13. Tìm tất cả giá trị của tham số m để đồ thị hàm số $y=-x^4+2mx^2$ có ba điểm cực trị tạo thành một tam giác đều.

A. m > 0.

B. $m = \sqrt[3]{3}$.

C. $m = \pm \sqrt[3]{3}$.

D. m = 1.

CÂU 14. Gọi m_0 là giá trị thực của tham số m để đồ thị hàm số $y = x^4 + 2mx^2 + 4$ có 3 điểm cực trị nằm trên các trục tọa độ. Mệnh đề nào sau đây là đúng?

A.
$$m_0 \in (-5; -3)$$
.

B.
$$m_0 \in \left(-\frac{3}{2}; 0\right)$$
.

c.
$$m_0 \in \left(-3; -\frac{3}{2}\right)$$
.

D.
$$m_0 \in (1;3)$$
.

CÂU 15. Cho hàm số $y = -\frac{1}{3}x^3 + x^2 + mx + 1$. Tìm tập hợp các giá trị của m để hàm số đạt cực trị tại các điểm x_1, x_2 thỏa mãn $x_1^2 + x_2^2 = 6$.

B.
$$(-1; +\infty)$$
.

CÂU 16. Cho đồ thị hàm số $y = -x^3 + 3mx + 1$ có hai điểm cực trị A, B thỏa mãn tam giác OAB vuông tại O (O là gốc tọa độ). Khẳng định nào dưới đây đúng?

A.
$$-1 < m < \frac{1}{3}$$
. **B.** $1 < m < 3$. **C.** $-\frac{1}{2} < m < 1$. **D.** $-2 < m < 0$.

B.
$$1 < m < 3$$
.

c.
$$-\frac{1}{2} < m < 1$$
.

D.
$$-2 < m < 0$$
.

CÂU 17. Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = $x^4 - 2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.

A.
$$m < 1$$
.

B.
$$0 < m < 1$$
.

C.
$$0 < m < \sqrt[3]{4}$$
.

D.
$$m > 0$$
.

CÂU 18. Điểm M(3;-1) thuộc đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thị hàm số $y = x^3 - x + m$ khi m bằng

C.
$$-1$$

CÂU 19. Giả sử đồ thị của hàm số $y = x^3 - 3mx^2 + m$ có hai điểm cực trị A, B. Tìm tất cả các giá trị thực của tham số m để đường thẳng AB song song với đường thẳng d: y = 1 - 2x?

A.
$$m = 1$$
.

B.
$$m = -1$$
.

C.
$$m=1$$
; $m=-1$.

D.
$$m = 1$$
. $m = -2$.

CÂU 20. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = x^3 3mx^2 + 4m^3$ có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4 với O là gốc tọa độ.

A.
$$m = -\frac{1}{\sqrt{2}}; m = \frac{1}{\sqrt{2}}.$$

B.
$$m = -1$$
; $m = 1$.

C.
$$m = 1$$
.

$$\mathbf{D.} \ m \neq 0.$$

QUICK NOTE
• • • • • • • • • • • • • • • • • • • •

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•