TUTORIAL 3

ROOT FINDING USING NEWTON, SECANT, FALSE POSITION & FIXED POINT METHOD

Numerical Analysis (ENME 602)

Assoc.Prof.Dr. Hesham H. Ibrahim

Eng. Silvana E. Guirguis

Table of Contents

- Root Finding Problems
- Newton's Method and its Extensions.
 - Newton's Method
 - Secant Method.
 - Method of False Position.
- Fixed Point Method.

Root Finding Problem Statement

The Root of an Equation

- The value of x that satisfies f(x) = 0 is called the root (solution) of the equation f(x) = 0 or the zero of the function f.
- Graphically, it is the x-intercept when the graph of f crosses the x-axis.

The Root-finding Problem

is the process of approximating the root of the equation f(x) = 0 (to within a given tolerance).

Newton's Method

- Derived from the Taylor series approximation.
- The Newton's method that starts with an initial approximation p_0 and generates a sequence $\{p_n\}_{n=0}^{\infty}$, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$.

NOTE:

- Newton's method cannot be continued if $f'(p_{n-1}) = 0$ for any n.
- This method is most effective when f' is bounded away from zero near p.

Newton's Method: Solution Steps (f(x) = 0)

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution *p* or message of failure.

Step 1 Set i = 1.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = p_0 - f(p_0)/f'(p_0)$$
. (Compute p_i .)

Step 4 If $|p - p_0| < TOL$ then OUTPUT (p); (The procedure was successful.) STOP.

Step 5 Set i = i + 1.

Step 6 Set $p_0 = p$. (Update p_0 .)

- 4. Use **Newton's** method to find solutions accurate to within 10^{-5} for the following problems:
 - a) $e^x + 2^{-x} + 2\cos x 6 = 0$, for $1 \le x \le 2$

Secant Method

- Derived as an approximation of Newton's Method to avoid computing f'(x) since it needs more arithmetic operations and to avoid the problem of dividing by zero.
- The Secant method that starts with initial approximations of p_0 and p_1 and generates a sequence $\{p_n\}_{n=0}^{\infty}$, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$
 for $n \ge 2$.

Secant Method: Solution Steps (f(x) = 0)

INPUT initial approximations p_0, p_1 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution *p* or message of failure.

Step 1 Set
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute p_i .)

Step 4 If
$$|p-p_1| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set i = i + 1.

Step 6 Set
$$p_0 = p_1$$
; (Update p_0, q_0, p_1, q_1 .)
 $q_0 = q_1$;
 $p_1 = p$;
 $q_1 = f(p)$.

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Numerical Analysis - Spring 2021

- 5. Use **Secant** method to find solutions accurate to within 10^{-5} for the following problems:
 - a) $e^x + 2^{-x} + 2\cos x 6 = 0$, for $1 \le x \le 2$

False Position Method

- Unlike the Bisection method, "root bracketing" is not guaranteed for either Newton's and Secant Methods.
- The method of **False Position** combines the **secant** method together with the **bisection** bracketing method. The method computes the approximations in the same manner of the secant method that starts with initial approximations of p_0 and p_1 and generates a sequence $\{p_n\}_{n=0}^{\infty}$, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})} \qquad p \in [a_n, b_n]$$

• However, the condition of $f(a_n)f(b_n) < 0$ must be satisfied at each iteration.

False Position Method: Solution Steps (f(x) = 0)

الجامعة الألمانية بالقاهرة

INPUT initial approximations p_0, p_1 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3–7.

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_1| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
; $q = f(p)$.

Step 6 If
$$q \cdot q_1 < 0$$
 then set $p_0 = p_1$; $q_0 = q_1$.

Step 7 Set
$$p_1 = p$$
; $q_1 = q$.

0

Secant vs. False Position Methods:

Secant Method

Method of False Position

6. Use **False Position** method to find solutions accurate to within 10^{-5} for the following problems:

a)
$$e^x + 2^{-x} + 2\cos x - 6 = 0$$
, for $1 \le x \le 2$

Fixed Point Method

Given a root-finding problem f(x) = 0; where $a \le x \le b$. we can define function g with a fixed point at p as g(p) = p.

Example:

Find the root of the equation $f(x) = x - \cos(x)$ for $x \in [0,1]$

$$g(x) = x = \cos(x)$$

• The root of $f(x) = x - \cos(x)$ is at the intersection of y = x and $y = \cos(x)$.

Fixed Point Method

• If $x \in [a,b]$, g(x) has at least one fixed point in the interval [a,b]; if $g(a) \in [a,b]$ and $g(b) \in [a,b]$

In order to make sure that only one fixed point exists within the given range,

$$|g'(a)| \le k < 1 \text{ and } |g'(b)| \le k < 1$$

Fixed Point Method: Solution Steps (f(x) = 0)

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
.

Step 2 While
$$i \le N_0$$
 do Steps 3–6.

Step 3 Set
$$p = g(p_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_0| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Fixed Point Method: Different initial conditions

1. Use algebraic manipulation to show that each of the following functions has a fixed point at p precisely when f(p) = 0, where $f(x) = x^4 + 2x^2 - x - 3$.

a)
$$g_1(x) = (3 + x - 2x^2)^{1/4}$$

d)
$$g_4(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$$

An object falling vertically through the air is subjected to viscous resistance as well as to the force of gravity. Assume that an object with mass m is dropped from a height s_0 and that the height of the object after t seconds is

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m}),$$

where $g=32.17~{\rm ft/}s^2$ and k represents the coefficient of air resistance in lbs/ft. Suppose $s_0=300~{\rm ft}, m=0.25~{\rm lb}$ and $k=0.1~{\rm lbs/ft}$. Find, to within $0.01~{\rm s}$, the time it takes this quarter-pounder to hit the ground.

