ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS

Luís Felipe Kiesow de Macedo

Universidade Federal de Pelotas - UFPel

Produto Interno

Módulo de um Vetor

- 3 Ângulo Entre Dois Vetores Vetores Ortogonais Conjunto Ortogonal
- 4 Exercícios

Produto Interno em Espaços Vetoriais

Introdução

Anteriormente estudamos o *produto escalar* (produto interno usual). A partir da generalização do conceito de produto interno serão definidas as noções de comprimento, distância e ângulo em espaços vetoriais genéricos.

Definição

Chama-se produto interno no espaço vetorial V uma função de $V \times V$ em \mathbb{R} que a todo par de vetores $(\vec{u}, \vec{v}) \in V \times V$ associa um número real, indicado por $\vec{u}.\vec{v}$ ou $\langle \vec{u}, \vec{v} \rangle$, tal que os seguintes axiomas sejam verificados.

Axiomas

$$P_1 \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$P_2 \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

$$P_3(\alpha \vec{u}).\vec{v} = \alpha.(\vec{u}).\vec{v}, \forall \alpha \in \mathbb{R}$$

$$P_4$$
 $\vec{u} \cdot \vec{u} \ge 0$ e $\vec{u} \cdot 0 = 0$ se, e somente se, $\vec{u} = 0$

Produto Interno em Espaços Vetoriais

O número real $\vec{u}.\vec{v}$ é chamado produto interno dos vetores \vec{u} e \vec{v} .

Propriedades

Dos quatro axiomas da definição decorrem as seguintes propriedades:

I
$$0.\vec{u} = \vec{u}.0 = 0, \forall \vec{u} \in V$$

$$\mathbf{II} (\vec{u} + \vec{v}) . \vec{w} = \vec{u} . \vec{w} + \vec{v} . \vec{w}$$

III
$$\vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v})$$

IV
$$\vec{u} \cdot (\vec{v}_1 + \vec{v}_2 + \dots + v_n) = \vec{u} \cdot \vec{v}_1 + \vec{u} \cdot \vec{v}_2 + \dots + \vec{u} \cdot v_n$$

Definição: Espaço Vetorial Euclidiano

Um espaço vetorial real, de dimensão finita, no qual esta definido um produto interno, é um *espaço vetorial euclidiano*.

Módulo de um Vetor

Módulo de um Vetor

Dado um vetor \vec{v} de um espaço vetorial euclidiano V, chama-se módulo, norma ou comprimento de \vec{v} o número real não-negativo, indicado por $|\vec{v}|$ definido por

$$|\vec{v}| = \sqrt{\vec{v}.\vec{v}}$$

Seja V um espaço vetorial euclidiano.

Propriedades do Módulo de um Vetor

- i $|\vec{v}| \ge 0$, $\forall \vec{v} \in V$ e $|\vec{v}| = 0$ se, e somente se, $\vec{v} = 0$.
- ii $|\alpha, \vec{v}| = |\alpha| |\vec{v}|, \forall \vec{v} \in V, \forall \alpha \in \mathbb{R}$
- iii $|\vec{u}.\vec{v}| < |\vec{u}|.|\vec{v}|$. $\forall \vec{u}, \vec{v} \in V$ (Desigualdade de Schwarz ou Inequação de Cauchy-Schwarz)
- iv $|\vec{u} + \vec{v}| \leq |\vec{u}| + |\vec{v}|, \forall \vec{u}, \vec{v} \in V$ (Desigualdade triangular)

Distância entre dois Vetores (ou pontos)

Módulo de um Vetor

Sejam \vec{u} e \vec{u} vetores. Então a distância é dada por

$$d\left(\vec{u}, \vec{v}\right) = |\vec{u} - \vec{v}|$$

Vetor Unitário

Todo vetor não nulo $\vec{v} \in V$ pode ser normalizado da seguinte forma:

$$\vec{u} = \frac{\vec{v}}{|\vec{v}|}$$

 \vec{u} vetor unitário.

Ângulo Entre Dois Vetores

O ângulo de dois vetores \vec{u} e \vec{v} é dado por

$$\cos \theta = \frac{\vec{u}.\vec{v}}{|\vec{u}|.|\vec{v}|} \qquad 0 \le \theta \le \pi$$

Vetores Ortogonais

Seja V um espaço vetorial euclidiano. Dizemos que o dois vetores \vec{v} e \vec{u} são ortogonais, e representamos por $\vec{u} \perp \vec{v}$ se, e somente se, $\vec{u} \cdot \vec{v} = 0$.

Conjunto Ortogonal de Vetores

Seja V um espaço vetorial euclidiano. Um conjunto de vetores $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} \subset V$ é **ortogonal** se dois vetores quaisquer, distintos, são ortogonais, isto é, $\vec{v}_i \cdot \vec{v}_i = 0$ para $i \neq j$.

Teorema

Um conjunto ortogonal de vetores não nulos $A = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n} \subset V$ é linearmente independente (L.I.).

Base Ortogonal

Uma base $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} \subset V$ é *ortogonal* se os seus vetores são dois a dois ortogonais.

Base Ortonormal

Uma base $B = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n} \subset V$ é *Ortonormal* se B é ortogonal e todos os seus vetores são unitários, ou seja,

$$\vec{v}_i.\vec{v}_j = \begin{cases} 0 & para & i \neq j \\ 1 & para & i = j \end{cases}$$

Componentes de um Vetor em uma Base Ortogonal

Seja V um espaço vetorial euclidiano e uma base $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ de V. Para $\vec{w} \in V$, tem-se:

$$\vec{w} = a_1 \vec{v}_1 + \ldots + a_i \vec{v}_i + \ldots + a_n \vec{v}_n \qquad a_i = \frac{\vec{w} \cdot \vec{v}_i}{\vec{v}_i \cdot \vec{v}_i}$$

 a_i i-ésima coordenada de \vec{w} em relação à base B.

Conjuntos Ortogonais

Sejam S_1 e S_2 subconjuntos de um espaço vetorial euclidiano V. Então S_1 é ortogonal a S_2 ($S_1 \perp S_2$).

Se qualquer vetor $\vec{v}_1 \in S_1$ é ortogonal a qualquer vetor $\vec{v}_2 \in S_2$

Teorema

Seja V um espaço vetorial euclidiano e $B = \{\vec{v}_1, \dots, \vec{v}_p\}$ uma base de um subespaço S de V, gerado por B. Se um vetor $u \in V$ é ortogonal a todos os vetores da base B, então \vec{u} é ortogonal a qualquer vetor do subespaço S gerado por B. Logo, \vec{u} é ortogonal a S e se representa por $\vec{u} \perp S$.

Processo de Ortogonalização de Gram-Schmidt

Dado um espaço vetorial euclidiano V e uma base $B = {\vec{v}_1, ..., \vec{v}_n}$ desse espaço, é possível, a partir dessa base, determinar uma base ortogonal de V.

Exercícios e demonstrações

EM AULA

Exercícios

Slides estão postados no seguinte site:

http://wp.ufpel.edu.br/kiesow/

Mais informações:

e-mail: felipekiesow@gmail.com

Thanks!

