Fully Automatic Segmentation of Gross Target Volume and Organs-at-Risk for Radiotherapy Planning of Nasopharyngeal Carcinoma

Mehdi Astaraki, Simone Bendazzoli, Iuliana Toma-Dasu

mehdi.astaraki@ki.se

Problem Definition

- ✓ Nasopharyngeal Carcinoma (NPC) is a type of head&neck cancer.
- ✓ Statistics in 2018: 120079 newly diagnosed case & 72000 associate deaths.
- ✓ Intensity-Modulated Radiotherapy (IMRT) is the most common technique for NPC treatment.
- ✓ Manual delineation of Gross Tumor Volumes (GTVs) and Organs at Risk (OARs) is demanding.

Objective and Dataset

- ✓ Automatically segment 45 OARs (Task1)
- ✓ Automatically segment 2 GTVs; Primary Tumors, and Lymph Nodes (Task2)
- ✓ Bi-modal CT volumes: normal CTs, contract-enhanced CTs (ceCTs)
- ✓ Co-registered images: 120 subjects (training), 20 subjects (validation), 60 subjects (test)

Image Preprocessing

I. Intensity Enhancement:

Windowing Hounsfield range: enhancing the contrast

Task	Clipping Range		
Task	CT	ceCT	
Task 1 (OARs)	-300:800	-400 : 2000	
Task 2 (GTV)	-600:600	-1000 : 1000	

II. Volume Cropping:

Avoiding the computational complexity

Segmentation Model

✓ nnUnet-V1

Parameters	OARs model	GTVs model	
Trainer class	nnUnetTrainerV2	nnUnetTrainerV2	
Objective function	Dice + BCE	Dice + BCE	
Optimizer	SGD	SGD	
Augmentation	True except for the flipping	True	
Patch size	64×192×160	80×192×128	
# of feature maps in the base layer	32	32	
# of pooling per axis	[4,5,5]	[4,5,5]	
# of epochs	2500	700	
# of training batches per epoch	250	250	
# of validation batches per epoch 50		50	
Initial learning rate	0.01	0.01	
Batch size	2	2	
# of folds	5	5	

Results

Model	Training Set (Dice Metric)		
	Mean±std	Median	
GTVs	0.758±0.080	0.776	
OARs	0.851±0.061	0.845	

	Phase	Mean±std		
Model		Dice	Normalized Surface Dice	Ranking
GTVs	Validation	0.790±0.089	0.739±0.119	#2
OARs		0.887 ± 0.076	0.905±0.087	#2
GTVs	Test	0.731±0.128	0.498 ± 0.128	??
OARs		0.854 ± 0.101	0.849 ± 0.132	??

References

- 1 nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation; https://doi.org/10.1038/s41592-020-01008-z
- 2 TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images; https://doi.org/10.1148/ryai.230024