DIÓDA

109. Mi a félvezető anyag, mire használják?

A félvezető anyagok rossz vezetők. Ötvözőanyagok hozzáadásával a vezetési tulajdonságok javulnak. Így félvezető kapcsoló és erősítő eszközök előállítására használhatók.

110. Mi egy félvezető dióda elvi felépítése?

A félvezető dióda például p és n típusú félvezető anyag köztes határán kialakuló réteg egyenirányító tulajdonságát hasznosítja.

111. Mi a diódák gyakori alkalmazási területe?

Egyenirányítás.

112. Mitől függ, hogy egy dióda vezet vagy nem?

A diódára kapcsolt feszültség polaritásától és értékétől.

113. Igaz a következő állítás? A szilíciumdióda nyitófeszültsége kb. 0,1V

Nem, a helyes válasz: kb.0,7V

114. Mi a disszipáció?

A félvezető eszköz által lesugárzott hőenergia

115. Mi a következménye a teljesítmény-egyenirányítókon visszamaradó disszipációs teljesítménynek?

Az egyenirányító dióda felmelegszik, ezért hűteni kell.

116. Mit várunk egy (Zener) Z-diódától?

Hogy záróirányú áramot átbocsátva, az előre megadott értéknek megfelelő feszültség essen rajta, ami csak kis mértékben függ az átfolyó áram nagyságától.

117. Mit várunk egy varikap diódától?

Hogy záróirányban előfeszítve a kapacitása a feszültséggel arányosan változzon.

118. Mi a LED?

Világító félvezető dióda

119. Mit várunk egy LED-től?

Hogy nyitóirányú bekötés és áramgenerátoros meghajtás hatására az eszközre jellemző színű fényt bocsásson ki.

120. Mit várunk egy fotodiódától?

Hogy a rábocsátott fény intenzitásától függően a rajta átfolyó áram változzék.

121. Melyik dióda nyitófeszültsége a nagyobb, a germániumé, vagy a szilíciumé?

A szilíciumé kb. 0,7 V, a germániumé kb. 0,3 V

122. Egy záróirányban előfeszített diódán a feszültséget növelve a diódakapacitás hogyan változik?

A dióda kapacitása csökken.

123. Egy diódán átfolyó áram és a dióda nyitófeszültsége megváltozhat-e a hőmérséklet változásával? Igen, a záróirányú áram és a nyitófeszültség is hőmérsékletfüggő.

TRANZISZTOR

124. Mi a tranzisztor legfontosabb tulajdonsága?

Kis vezérlő energiával szabályozni lehet az eszközön átfolyó áramot (teljesítményerősítés). HG3IPD 19

125. Mit értünk áramerősítési tényezőn a bipoláris tranzisztorok esetében?

Az egységnyi bázisáramváltozáshoz tartozó kollektoráram változást.

126. Hányféle alapkapcsolásba lehet bekötni egy tranzisztort?

Három. Földelt emitteres, földelt bázisú, és "földelt" kollektoros. A földelt kifejezés helyett a "közös" kifejezés is használatos.

127. Egy közös emitteres erősítőfokozat bemeneti impedanciája közel megegyező a kimeneti impedanciával?

Nem, a bemenő közepes, a kimenő nagy impedanciájú.

128. Melyik állítás igaz? Melyik erősítő fokozat nagy bemenő ellenállású? (a földelt emitteres, a földelt kollektoros, a földelt bázisú)

A földelt kollektoros erősítő fokozat nagy bemenő ellenállású.

129. Melyik állítás igaz? Melyik erősítőfokozat nagy erősítésű? (földelt emitteres, földelt kollektoros, földelt bázisú?

A földelt emitteres erősítőfokozat nagy erősítésű.

130. Miben különbözik egy térvezérlésű tranzisztor (FET) egy bipoláris tranzisztortól?

A FET feszültséggel vezérelhető és bemenő impedanciája nagy, a bipoláris tranzisztor a bázisba befolyó árammal vezérelhető és bemenő impedanciája közepes.

131. Egy p-n-p tranzisztor kollektorára milyen polaritású feszültséget kell kötni az emitterhez viszonyítva?

Negatív.

132. Mit értünk áramerősítési tényezőn a bipoláris tranzisztorok esetében?

Az egységnyi bázisáramváltozáshoz tartozó kollektoráram változást.

133. Egy n-p-n tranzisztor nyitófeszültsége milyen polaritású az emitterhez viszonyítva? Pozitív.

134. Mi történik a kollektorárammal egy tranzisztor nyitófeszültségének növelésekor? Növekszik.

135. Mit ad meg az alábbi képlet?

$$B = \frac{\Delta Ic}{\Delta I_{B}}$$

A tranzisztor egyenáramú áramerősítési tényezőjét.

136. Mit jelent ez a kifejezés: Maximális kollektordisszipáció?

A megadott környezeti hőmérsékleten a kollektoron disszipálódó elektromos teljesítmény megengedhető értéke.

137. Milyen eszköz kivezetéseit jelölik a G, D, S betűkkel?

A térvezérlésű (FET) tranzisztorét

138. Mi a műveleti erősítő?

Analóg integrált áramkör, melynek átviteli tulajdonságai a hozzákapcsolt külső elemekkel nagymértékben befolyásolhatók.

139. Milyen területen lehet számítani a műveleti erősítők használatára az amatőr gyakorlat során?

Erősítők, aktív szűrők, határolók, stabilizátorok, HF oszcillátorok.

ALKATRÉSZEK KOMBINÁLÁSA

140. Mit jelent az, hogy soros kapcsolás?

Azt jelenti, hogy a sorba kapcsolt alkatrészeken az áramkörre kapcsolt feszültség hatására átfolyó áram azonos értékű.

141. Mit jelent az, hogy párhuzamos kapcsolás?

Azt jelenti, hogy a párhuzamosan kapcsolt alkatrészeken az átfolyó áram következtében létrejövő feszültségesés azonos értékű.

142. Mit jelent az, hogy vegyes kapcsolás?

A vegyes kapcsolásban egyaránt megtalálhatók sorba és párhuzamosan kapcsolt alkatrészek.

143. Mit állapít meg Kirchoff első törvénye?

A csomóponti törvényt, mely szerint egy áramkör bármely csomópontjában a csomópontba befolyó és az onnan elfolyó áramok algebrai összege 0.

144. Mit állapít meg Kirchhoff második törvénye?

A huroktörvényt, mely szerint a zárt áramkörben a részfeszültségek algebrai összege nulla.

145. Hogyan számítható ki egy ellenállásokból álló soros áramkör eredő ellenállása?

$$R_{e} = R_{1} + R_{2} + \dots + R_{n}$$

146. Mire szolgál az alábbi képlet? 1/Re = 1/R1 + 1/R2 + ... + 1/Rn

Eredő ellenállás meghatározására, ha az ellenálláok párhuzamosan vannak kötve.

147. Hogyan számítható ki egy ellenállásokból álló párhuzamos áramkör eredő ellenállása?

148. Hogyan számítható ki két párhuzamosan kapcsolt ellenállás eredője?

$$1/Re = 1/R1 + 1/R2$$
 vagy mégjobb a

$$R_{e} = \frac{R_{1} * R_{2}}{R_{1} + R_{2}}$$

149. Mi a Thevenin tétel?

Tetszőlegesen bonyolult hálózat egy kiválasztott ágára nézve az egész hálózat helyettesíthető egyetlen U, belső feszültségű, és R, belső ellenállású generátorral.

150. Ha egy ellenállás egyik kivezetését összekapcsoljuk egy tekercs kivezetésével és az ellenállás másik kivezetését ugyanennek a tekercsnek a másik kivezetésével, a kapott elrendezés milyen kapcsolás?

Párhuzamos áramkör.

151. Ha négy ellenállást sorba kapcsolunk, melyeknek ellenállásértékei 1, 2, 4, 8 arányúak, az áramkörre kapcsolt 15 V egyenfeszültség milyen módon oszlik meg rajtuk?

152. Mekkora a főágban folyó áram, ha U = 15 V?

0.1 V

153. Mekkora az A és B pontok között mérhető ellenállás?

- 3.3 kΩ, viszont a felsorolásban....
- 154. Egy párhuzamos rezgőkörrel párhuzamosan kapcsolt ellenállás a rezgőkör Q-ját hogyan változtatja?

Csökkenti.

155. Az A-B pontokat összekötve R_x milyen értéke mellett nem folyik áram, ha $R_1 = R_3$?

$$R_y = R2$$

156. Hogyan számítható ki a párhuzamosan kapcsolt kondenzátorok eredő kapacitása?

A kapacitások összege adja az eredő kapacitást: $C_e = C_1 + C_2 + ... + C_n$

157. Hogyan számítható ki a sorosan kapcsolt kondenzátorok eredő kapacitása?

$$\frac{1}{C_{e}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots \frac{1}{C_{n}}$$

158. Mikor szükséges az energiaforrások soros kapcsolása?

Energiaforrásokat akkor szükséges sorba kapcsolni, ha egy forrás feszültsége nem elegendő. Soros kapcsolás esetén a forrásfeszültségek összegződnek.

159. Mikor szükséges az energiaforrások párhuzamos kapcsolása?

Energiaforrásokat akkor szükséges párhuzamosan kapcsolni, ha az egy forrásból nyerhető áramerősség nem elegendő. A párhuzamos kapcsolásnál a forrásáramok összegződnek. Csak azonos forrásfeszültségek esetén szabad az energiaforrásokat párhuzamosan kapcsolni.

160. Hogyan számítható egy ellenállás és egy tekercs soros kapcsolásának impedanciája?

$$Z = R + i(2*\pi*f*L)$$
 vagy egyszerűen $Z = R + i\omega L$