2022-2023 MP2I

18. Polynômes

Exercice 1. (c) Déterminer tous les polynômes $P, Q \in \mathbb{K}[X]$ tels que $P^2 = XQ^2$.

Exercice 2. (m) Quels sont les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = (X^2 + 1)P(X)$?

Exercice 3. (m) Déterminer les $P \in \mathbb{R}[X]$ tels que $P'(X)^2 = 4XP(X)$.

Exercice 4. (m) Déterminer $a, b \in \mathbb{R}$ tels que $X^2 + 2$ divise $X^4 + X^3 + aX^2 + bX + 2$.

Exercice 5. (m) Calculer le reste de la division euclidienne de $X^4 + X + 1$ par $X^2 + 1$. En déduire les $n \in \mathbb{N}$ tels que $n^2 + 1$ divise $n^4 + n + 1$.

Exercice 6. (m) Détermination du reste de la division euclidienne par un polynôme de degré 2.

- 1) Déterminer le reste de la division euclidienne de X^n par $A(X) = X^2 5X + 4$.
- 2) Même question avec $A(X) = X^2 + 1$, puis avec $A(X) = X^2 2X + 1$.

Exercice 7. (m) Trouver le reste de la division de $X^{1000} - 3X^3 + 4X^2 - 5X + 6$ par $X^3 + X^2 + X + 1$.

Exercice 8. (m) Trouver tous les polynômes $P \in \mathbb{C}[X]$ tels que (X+1)P(X) = XP(X+2).

Exercice 9. (m) Trouver tous les polynômes $P \in \mathbb{C}[X]$ tels que (X+3)P(X) = XP(X+1).

Exercice 10. (c) Le polynôme $P = X^5 - X - 1$ admet-il des racines (au moins) doubles?

Exercice 11. © Démontrer que le polynôme $P = \sum_{k=0}^{n} \frac{X^k}{k!}$ n'a que des racines simples dans \mathbb{C} .

Exercice 12. (m) Montrer qu'il n'existe pas de polynôme $P \in \mathbb{R}[X]$ tel que $\forall k \in \mathbb{N}^*, \ P(k) = \sqrt{k^2 + 1}$.

Exercice 13. (i) Montrer qu'il n'existe pas de polynôme $P \in \mathbb{C}[X]$ tel que $\forall z \in \mathbb{C}, \ P(z) = \overline{z}$.

Exercice 14. (m) Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que $\forall k \in [1, n+1]$, $P(k) = \frac{1}{k}$ et déterminer son degré et son coefficient dominant. En déduire $\lim_{x \to +\infty} P(x)$.

Exercice 15. (i) Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que :

- 1) $P: \mathbb{C} \to \mathbb{C}$ est surjectif.
- 2) $P: \mathbb{C} \to \mathbb{C}$ est injectif.

Exercice 16. (m) Soit $P \in \mathbb{R}[X]$ de degré n. On suppose que P admet n racines réelles distinctes.

- 1) Montrer que P' a également toutes ses racines réelles distinctes.
- 2) En déduire que P n'a pas deux coefficients consécutifs nuls.
- 3) On suppose à présent que P admet n racines réelles pas forcément distinctes. Montrer que P' a encore toutes ses racines réelles.

Exercice 17. (m) Résoudre le système $\begin{cases} x+y+z=1\\ xyz=-4\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \end{cases}.$

Exercice 18. © Soient x_1, x_2, x_3 les trois racines complexes du polynôme $X^3 + pX + q$.

- 1) Donner la forme développée du polynôme unitaire de degré 3 dont les racines sont $x_1 + x_2$, $x_2 + x_3$ et $x_1 + x_3$.
- 2) Idem pour le polynôme unitaire du troisième degré dont les racines sont x_1x_2 , x_2x_3 et x_1x_3 .

Exercice 19. $\boxed{\mathbf{m}}$ Résoudre $x^3 - 8x^2 + 23x - 28 = 0$ sachant que la somme de deux des racines égale la troisième.

Exercice 20. (i) Soit $n \in \mathbb{N}$. Montrer qu'il y a un nombre fini de polynômes unitaires de degré n à coefficients entiers ayant toutes leurs racines de module inférieur ou égal à 1.

Exercice 21. (i) Soient x, y, z trois complexes non nuls tels que $x + y + z = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$. Montrer que |x| = |y| = |z|.

Exercice 22. © Décomposer les polynômes suivants en produits de polynômes irréductibles sur $\mathbb{R}[X]$:

- 1) $P_1 = X^4 + X^2 + 1$.
- 2) $P_2 = X^5 X^4 + X 1$.
- 3) $P_3 = X^8 + X^4 + 1$

Exercice 23. © Montrer que pour $n \ge 1$, $nX^{n+1} - (n+1)X^n + 1$ est divisible par $(X-1)^2$.

Exercice 24. (m) On pose pour $n \in \mathbb{N}$, $P_n(X) = (X+1)^{6n+1} - X^{6n+1} - 1$. $P_n(X)$ est-il divisible par $Q(X) = (X^2 + X + 1)^2$?

Exercice 25. (m) Factoriser $X^{2n} - 2\cos(\alpha)X^n + 1$ dans $\mathbb{R}[X]$.

Exercice 26. (m) Soit $n \in \mathbb{N}^*$ et $P(X) = (X+1)^n - (X-1)^n$.

- 1) Préciser le degré de P et son coefficient dominant, puis factoriser P dans $\mathbb{C}[X]$.
- 2) Montrer que $\forall p \in \mathbb{N}^*$, $\prod_{k=1}^p \tan\left(\frac{k\pi}{2p+1}\right) = \sqrt{2p+1}$.

Exercice 27. (m) Polynômes de Hermite.

- 1) Montrer qu'il existe une unique suite de polynômes réels $(H_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}$, la fonction $g:x\mapsto e^{-x^2}$ soit de dérivée n-ième $g^{(n)}:x\mapsto H_n(x)e^{-x^2}$. On exprimera H_{n+1} en fonction de H_n .
- 2) Pour $n \in \mathbb{N}$, déterminer le degré, le coefficient dominant et la parité de H_n .
- 3) Montrer que $\forall n \in \mathbb{N}, \ H'_{n+1} = -2(n+1)H_n$.
- 4) En déduire la valeur de $g^{(n)}(0)$ pour $n \in \mathbb{N}$.

Exercice 28. (*) Trouver les polynômes de $\mathbb{R}[X]$ tels que $P(X^2) = P(X)P(X+1)$.