Audition MCF 4124

Alexandre Vigny

Universität Bremen, Germany

May 10, 2023

Presentation

Alexandre Vigny

- \rightarrow 31 years old, born in 1992.
- → PhD defense September 2018 (5 years ago).
- → Living in Bremen, Germany.
- → Master in University Paris Diderot, 2015. Logique Mathématique et Fondement de l'Informatique (LMFI).
- → PhD in University Paris Diderot. (3 years) With Arnaud Durand & Luc Segoufin
- → Post-doc in Warsaw. (1 year) With Szymon Toruńczyk & Mikołaj Bojańczyk
- → Post-doc in Bremen. (3 years) With Sebastian Siebertz

Summary

Area of Research

- → Logic
- → Graph theory
- → Distributed computing

Highlights

- → Publication in J.ACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- → Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

REalistic network models

Summary

Area of Research

- \rightarrow Logic
- → Graph theory
- → Distributed computing

Highlights

- → Publication in J.ACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- ightarrow Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

REalistic network models

Teaching

- \rightarrow In Paris (3 years) \sim 180h
- \rightarrow In Bremen (3 years) $\sim 270 \text{h}$

Highlights

- → Creation of syllabuses
- → Responsible for two courses
- → All level bachelor to master
- → Both in French and English

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

 \rightarrow Is G planar?

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?
- \rightarrow Is G connected?

Goal: Efficient algorithms ...

... at least for restricted graph classes and/or simple properties.

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \ \bigwedge_{i < j} (\neg E(x_i, x_j) \land x_i \neq x_j)$
- \rightarrow Cannot express : connectivity, planarity, 2-colorability, ...

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \bigwedge_{i < i} (\neg E(x_i, x_j) \land x_i \neq x_j)$
- \rightarrow Cannot express : connectivity, planarity, 2-colorability, ...

Monadic second-order (MSO) logic

- \rightarrow More general than FO
- → Can express : 3-colorability: $\exists X_1 \exists X_2 \exists X_3 \ (\forall x \bigvee_{i < 3} x \in X_i) \land (\forall x \forall y \ E(x, y) \rightarrow \bigwedge_{i < 3} (x \notin X_i \lor y \notin X_i))$

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

→ Can you decide locally?

Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem:

Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem:

Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Courcelle's Theorem (1990):

for $\varphi \in \mathrm{MSO}$ and treewidth $(G) \leq k$, in time $O(f(\varphi, k) \cdot |G|)$

→ Generalize many known results, ex: Arnborg, Proskurowski 1989: independent sets, dominating sets, graph coloring, Hamiltonian, ... are linear on partial k-tree.

Result overview

Result overview

· ENUMERATION FO QUERIES

-> PODS 2018 SACH 2022

- · ENUMERATION FO QUERIES
 - -> PODS 2018 SACM 2022
- . DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES
 - -> SÍROCCO ZOZI/ZOZZ
 - -> EUR. J. COMB. (TO APPEAR)

Result overview

· ENUMERATION FO QUERIES

-> PODS 2018 SACM 2022

DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES

-> SIROCCO EOZI/ZOZZ

-> EUR. J. COMB.

PARAMETERIZED DISTRIBUTED COMPLEXITY THEORY: A LOGICAL APPROACH

-> ARXIV

Monotone graph classes

GENERALITY

GENERALITY

FO + conn

Schirrmacher, Siebertz, Vigny '21 and Bojanczyk '21

Syntax

 \rightarrow Uses : FO and $conn_k(x, y, z_1, \dots, z_k)$

Meaning

 $\rightarrow x$ and y are connected after the deletion of z_1, \ldots, z_k .

Expressive power of FO + conn

→ connectivity

$$\forall x \forall y \text{ conn}_0(x, y)$$

 \rightarrow cycle

$$\varphi_{\textit{cycle}} := \exists x \exists y \exists z \big(E(x,y) \land E(y,z) \land z \neq x \land \text{conn}_1(z,x,y) \big)$$

→ Not expressible planarity, bipartiteness, Hamiltonicity, . . .

Main result

Theorem: Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny

- ightarrow Model-checking for properties in FO + conn over graph classes excluding a topological minor is solvable in time FPT.
- → Model-checking is not FPT for more general graph classes. Under complexity assumptions

Research project

First (short term) goal: new logics

Beyond FO + conn

- → What can be added?
- → What do we want to express?
- ightarrow Example: a path of even length, using only blue nodes, ...

Keeping in mind algorithmic applications

DENSITY

Distributed computing & Certification

Local computing

- → Other notion of efficient
- → Still looking for meta theorems

Complexity classes

- → Hard problems may be not equally hard
- ightarrow Define complexity classes through logic

Compact certification

- → Feuilloley, Bousquet, Pierron What Can Be Certified Compactly? Compact local certification of MSO properties in tree-like graphs. In PODC'22
- → Fraigniaud, Montealegre, Rapaport, Todinca A Meta-Theorem for Distributed Certification. In SIROCCO'22

Integration 1

Combinatoire et Algorithmique

- → M. Bonamy, A. Casteigts, C. Gavoille
- → Labelling scheme (recent work of M. Bonamy C. Gavoille)
- ightarrow Combining Graph and Logic
- → Parametrized complexity for distributed problems

Integration 2

Méthodes et Modèles Formels

- → J. Ochremiak, D. Figueira
- \rightarrow Stay connected to research in Logics
- → Connection Logic Query language
- → Dagstuhl on Finite Model Theory
- → Highlights conferences

Past teaching in Paris

Around 180h

- → Mainly Bachelor level
- → Similar to topics in ENSEIRB-MATMECA

Subject	Years	Level	Activity
Initiation à la Programmation	2015-2016	L1	TP
Langages et Automates	2015-2016	L2	TD
Éléments d'Algorithmique	2016-2017	L2	TD
Base de données	2016-2017 2017-2018	L3 M1	TP & TD

Past teaching in Bremen

Around 250h

- → Master level
- → Creation of syllabuses
- → Fully in charge of a lecture

Subject	Years	Level	Activity
Finite Model Theory	2019-2020	Master	TD
Sparsity	2019-2020	Master	TD
Parametrized Complexity	2019-2020	Master	TD
Set and Model Theory	2020-2021	Master	TD
Databases, Graphs, Algorithms	2020-2021 2021-2022	Master	Cours & TD
Set and Model Theory	2021-2022	Master	Cours & TD

Highlight

Various settings

- → In French, in English
- → All levels
- → Physical and remote

Various responsibilities

- \rightarrow In charge of grading
- → Creation of the content

Takeaway

- → Polls
- → Online white boards

Future 1

Ready to start now	With some preparation	
Algorithmique et mathématique 1 & 2	Programmation et environnement informatique 1 & 2	
Initiation à l'algorithmique	Environnement de travail	
Structures arborescentes	Structure des ordinateurs	
Logique et preuve	Programmation impérative 1 & 2	
Algorithmique de graphes	Programmation fonctionnelle	
Automates finis et applications		

Future 2

Ready to start now	With some preparation
Systèmes de Gestion	Algorithmique Distribuée
de Bases de Données	Algoritimique Distribuee
	Programmation Orientée Objets
	Programmation C++

Informatique Fondamentale / Algorithmes et Méthodes Formelles (AMF).

Future 2

Ready to start now	With some preparation
Systèmes de Gestion de Bases de Données	Algorithmique Distribuée
	Programmation Orientée Objets
	Programmation C++

Informatique Fondamentale / Algorithmes et Méthodes Formelles (AMF).

Responsibilities

- → Responsable d'années
- → Stages
- \rightarrow . . .

Teaching

Thank you!

- → 2019-2023: Postdoc, University of Bremen. With Sebastian Siebertz
- → 2018-2019: Postdoc, University of Warsaw. With Szymon Toruńczyk & Mikołaj Bojańczyk
- ightarrow 2015-2018: Thesis, University Paris Diderot. With Arnaud Durand & Luc Segoufin

Info:

- ightarrow 1 Journal: J.ACM (TOCL & Eur. J. Comb. to appear)
- ightarrow 9 Conferences: ICDT, PODS, MFCSx2, SIROCCOx2, ISSAC, CSL, ICALP.
- → 1 Workshop (co-organizer): https://podc-dare.github.io/.
- → 1 Popularization: La gazette du GDR-IM.

tinyurl.com/short-polls

