確率・統計特論 期末試験

担当: 来嶋 秀治 (Shuji Kijima)

注意事項

- ・書籍, ノート, メモ, 演習解答持ち込み可. 電子機器 (電子書籍, 電卓を含む) 使用不可.
- ・解答欄が足りない場合は、解答用紙裏面を使用して良い。
- ・問題は全部で3問ある. 合計点が100点を超える場合でも100点満点とする.
- ・持ち込み資料、筆記用具等の試験中の貸し借りを一切禁ず、

問題 1 [50 点]

I. 中心極限定理を記述せよ. [5]

II. n 個の標本 a_1, \ldots, a_n は,期待値 μ 分散 σ^2 の独立同一分布に従うものとする.ただし, μ および σ^2 の値は未知とする.以下の各問いに答えよ.

(II-1) 標本平均 $\overline{a} := \frac{1}{n} \sum_{i=1}^n a_i$ は期待値 μ の不偏推定量といえるか?[10]

III. A 社ではボールを作成している. このボールを使う協会の規定では、ボールの重さは 450[g]、分散は $100.0[g^2]$ 以下と規格が定められている. A 社の製品 50 個を抜き取り検査を行ったところ、標本平均 434.3[g]、不偏分散 $183.6[g^2]$ であった. 以下の各問いに答えよ.

(III-1) A 社のボールの重さの母平均と母分散を推定せよ. [5]

(III-2) A 社のボールの重さの平均は規格から外れているか? 有意水準 5%で議論せよ. ただし、自由度 50 の t 分布の両側 5%点が 2.01、標準正規分布の両側 5%点が 1.96 であることを用いてよい. [10] (III-3) A 社のボールの重さの分散は規格から外れているか? 有意水準 5%で議論せよ. 下記のカイ二乗分布表を用いて良い. [10]

χ^2 分布表

74 11 24				
自由度	40	45	50	60
右側 5%点	55.8	61.7	67.5	79.1

問題 2 [60点]

I. 確率変数 X は二項分布 B(n,p) $(n \in \mathbb{Z}_{>0}, 0 に従うとする. ただし, 二項分布 <math>B(n,p)$ の確率関数は

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 $(x = 0, 1, ..., n)$

で与えられる.

- (I-1) X の期待値 E[X], 分散 Var[X] をそれぞれ求めよ. [10]
- (I-2) 確率変数 X_1, \ldots, X_m は独立に同一の分布 B(n,p) に従うものとする. (X_1, \ldots, X_m) の従う同時分布の確率関数 $f(x_1, \ldots, x_m) = \prod_{i=1}^m f(x_i)$ を記述せよ. [5]
- II. 確率変数 X_1, \ldots, X_{10} は独立に同一の二項分布 B(144,p) に従うものとし, p は未知パラメータとする. いま,以下の 10 個の標本を得た.

試行番号	1	2	3	4	5	6	. 7	8	9.	10
標本値 x	89	75	73	64	74	76	88	67	73	78

- (II-1) パラメータp に対する対数尤度関数 $\log L(p)$ を求めよ、ただし、対数の底はeとする. [5]
- (II-2) パラメータ p の最尤推定量を求めよ. [10]
- (II-3) (II-2) で求めた推定量はパラメータ p の不偏推定量といえるか? [10]
- III. ベイズの定理を記述せよ. [10]
- IV. 確率変数 X は二項分布 B(n,p) に従うものとし、パラメータ p の値は未知とする. いま、n=82 に対して X=51 の標本を得た. 事前分布を Be(758,684) として、事後分布を最大にする p を求めよ. ただし、ベータ分布 $Be(\alpha,\beta)$ ($\alpha>0$, $\beta>0$) の密度関数は

$$f(x) := \frac{1}{C(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \qquad (0 \le x \le 1)$$

で与えられ, $C(\alpha,\beta):=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}\mathrm{d}t$ は正規化定数である. [10]

問題 3 [20点]

ある構造に、負荷 x (50 $\leq x \leq$ 150) が与えられた時の応答値 y を知りたい. 8 回の試行を行ったところ、下記のデータを得た.

試行番号	1	2	3	4	5	6	7	8
負荷水	56	78	94	86	123	146	113	104
応答値 y	197.2	209.6	180.8	202.3	133.4	111.8	175.5	152.4

(1) いま, $y=ax+b+\mathcal{E}$ が成り立つと仮定する. ただし、誤差項 \mathcal{E} は正規分布 $N(0,\sigma^2)$ に従う確率変数を表す. このとき a と b に対する最小二乗推定量を求めよ. ただし、以下の数値を用いてよい. [10]

$$\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_i = 100, \qquad \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i = 170,$$

$$\overline{x^2} := \frac{1}{n} \sum_{i=1}^{n} x_i^2 = 10700, \qquad \overline{x \cdot y} := \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i = 16300,$$

(2) 負荷 x=100 をかけたときの応答値 y の推定値について、95%信頼区間を求めよ、ただし誤差項 \mathcal{E} の分散は $\sigma^2=400$ と仮定できるものとする、必要であれば、以下の t 分布表を用いてよい. [10]

t 分布表

-	, , , , , , , , , , , , , , , , , , , ,									
	自由度	1	2	3	4	5	6	7	8	∞
-	両側 5%点	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306	1.960