Exploring the Validity of the Paraxial Approximation for Coherent Synchrotron Radiation Wake Fields

David Bizzozero, Erion Gjonaj, Herbert De Gersem

Outline of Talk

- Maxwell's wave equations
 - Effect of slowly-varying envelope approximation on PDEs
- Brief overviews of two methods:
 - CSRDG: Time-domain full Maxwell field solver
 - Paraxial CSR: Frequency-domain impedance code
- Comparisons of CSR wake fields
 - DESY XFEL BC0 fixed-width pipe approximation
 - DESY XFEL BC0 full geometry simulation
- Conclusions and Future Work

Maxwell's Wave Equations

- Beam coordinates (s, x, y) and $\tau = ct$
- Assume electron bunch in straight trajectory (for derivation)

$$\frac{\partial^{2} \mathbf{E}}{\partial s^{2}} + \frac{\partial^{2} \mathbf{E}}{\partial x^{2}} + \frac{\partial^{2} \mathbf{E}}{\partial y^{2}} - \frac{\partial^{2} \mathbf{E}}{\partial \tau^{2}} = Z_{0} \left(\frac{\partial \mathbf{j}}{\partial \tau} + c \nabla \rho \right),$$

$$\frac{\partial^{2} \mathbf{H}}{\partial s^{2}} + \frac{\partial^{2} \mathbf{H}}{\partial x^{2}} + \frac{\partial^{2} \mathbf{H}}{\partial y^{2}} - \frac{\partial^{2} \mathbf{H}}{\partial \tau^{2}} = -\nabla \times \mathbf{j},$$

• Define Fourier transform with respect to $(s - \tau)$

$$\hat{U}(s,x,y,k) = \int_{-\infty}^{\infty} U(s,x,y,\tau)e^{-ik(s-\tau)}d\tau,$$

$$U(s,x,y,\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{U}(s,x,y,k)e^{ik(s-\tau)}dk$$

Derivation of Paraxial Approximation - 2

■ For each field $U(s, x, y, \tau)$ wave equation becomes

$$2ik\frac{\partial \hat{U}}{\partial s} + \frac{\partial^2 \hat{U}}{\partial s^2} + \frac{\partial^2 \hat{U}}{\partial x^2} + \frac{\partial^2 \hat{U}}{\partial y^2} = \hat{S}_U(s, x, y, k)$$

Slowly-varying envelope or paraxial approximation

given by
$$\left|2ik\frac{\partial \hat{U}}{\partial s}\right| \gg \left|\frac{\partial^2 \hat{U}}{\partial s^2}\right|$$
 to drop $\frac{\partial^2}{\partial s^2}$ term

• New adjusted "paraxial" equation with $\hat{S}_V \equiv \hat{S}_U$

$$2ik\frac{\partial \hat{V}}{\partial s} + \frac{\partial^2 \hat{V}}{\partial x^2} + \frac{\partial^2 \hat{V}}{\partial y^2} = \hat{S}_V(s, x, y, k)$$

■ Some freq.-domain methods evolve $\hat{V}(s,x,y,k)$ as IBVP in s

Derivation of Paraxial Approximation - 3

• Inverse FT of paraxial equation for $\hat{V}(s, x, y, k)$ becomes

$$-2\frac{\partial^2 V}{\partial s \partial \tau} + \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} - 2\frac{\partial^2 V}{\partial \tau^2} = S_V(s, x, y, \tau)$$

■ Apply Galilean transformation $z = s - \tau$ to $V(s, x, y, \tau)$

$$2\frac{\partial^2 V}{\partial z \partial \tau} + \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} - 2\frac{\partial^2 V}{\partial \tau^2} = S_V(z + \tau, x, y, \tau)$$

■ Compare to Galilean transformation for $U(s, x, y, \tau)$

$$2\frac{\partial^2 U}{\partial z \partial \tau} + \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} - \frac{\partial^2 U}{\partial \tau^2} = S_U(z + \tau, x, y, \tau)$$

• If
$$2\frac{\partial}{\partial z} - 2\frac{\partial}{\partial \tau} \approx 2\frac{\partial}{\partial z} - \frac{\partial}{\partial \tau}$$
 or $\left\| \frac{\partial}{\partial z} \right\| \gg \left\| \frac{\partial}{\partial \tau} \right\|$ then expect $U \approx V$

Brief Overview of CSRDG Code

- CSRDG MATLAB GPU-enabled Maxwell field solver for modeling CSR with a Discontinuous Galerkin (DG) finite element method ¹
- CSRDG Capabilities and Goals:
 - Compute electromagnetic fields generated by CSR in a given domain such as vacuum chambers
 - Compute wake functions and impedance (by FT of wake)
 - Visualize field and wake evolution throughout a simulation
 - Compare with other CSR methods and establish range of validity for paraxial methods

¹ D. A. Bizzozero, E. Gjonaj, and H. De Gersem "Coherent Synchrotron Radiation and Wake Fields with Discontinuous Galerkin Time Domain Methods", Proceedings of IPAC 17, Copenhagen, Denmark, 2017.

Brief Overview of Paraxial Method

- Frequency-domain method developed by R.
 Warnock and D. Bizzozero ²
- Key idea of method:
 - Starting from paraxial equation for $\hat{V}(s,x,y,k)$
 - Include curvilinear terms dependent on bunch trajectory
 - Add Fourier-series decomposition in y-coordinate (mode p)
 - Evolve $\hat{E}_{yp}(s,x,k)$ and $\hat{H}_{yp}(s,x,k)$ Schrödinger-type 1D PDEs in s for each wavenumber k
 - Longitudinal impedance $\hat{E}_{sp}(s,x,k)$ obtained from $\hat{E}_{yp},\hat{H}_{yp}$
 - Wake field obtained by inverse Fourier transform in $\,k\,$

² R. L. Warnock and D. A. Bizzozero , "Efficient computation of coherent synchrotron radiation in a rectangular chamber", Phys. Rev. Accel. Beams **19**, 090705, September 2016.

CSRDG Comparison for DESY BC0 - 1

DESY XFEL Bunch Compressor 0 Layout (CST)

CSRDG Comparison for DESY BC0 - 2

- DESY XFEL BC0 full geometry model
 - CSR and geometry generates wake
 - Source size: $\sigma_s = 2 \, \mathrm{mm}, \ \sigma_y = 0.1 \, \mathrm{mm}$

DESY XFEL BC0 fixed width model

DESY XFEL BC0 Fixed Width Model

DESY XFEL BC0 Fixed Width Model

DESY XFEL BC0 Fixed Width Model

DESY XFEL BC0 Wake Comparison

DESY XFEL BC0 Wake Comparison

CSRDG Field Comparisons of Models

CSRDG Field Comparisons of Models

Conclusions and Future Work

- Performed wake field comparisons between CSRDG and a paraxial method
- Discrepancy in wake fields due to geometry effects
 - Paraxial methods good for CSR component of wake
 - Paraxial methods cannot handle complex geometry
- CSRDG can localize regions of paraxial validity
- Next steps:
 - Consider paraxial simulation with slowly-varying geometry
 - Further examine time-domain paraxial equation behavior
 - Analyze paraxial solution "paraxial error" as self-check

Thank you for your attention!

Work supported by: TEMF, TU Darmstadt DESY, Hamburg

