San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Nondeterministic Finite Automata (Part 2)

Lecture 10 Day 10/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 10

- About Midterm 1
- Feedback and Solution of Quiz 3
- Summary of Lecture 09
- Lecture 10: Teaching ...
 - Nondeterministic Finite Automata (Part 2)

About Midterm 1

Midterm #1 (aka Quiz+)

Date: Thursday 09/26

- Value: 10%

Topics: Everything covered from the beginning of the semester

Type: Closed y ∈ Material

Material = {Book, Notes, Electronic Devices, Chat, ... }

The cutoff for this midterm is the end of lecture 09.

Study Guide

 I've given you a study guide about the type and number of questions via Canvas.

Solution and Feedback of Quiz 3 (Out of 22)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	17.65	22	13
02 (TR 4:30 PM)	17.31	22	11
03 (TR 6:00 PM)	19.21	22	14

Summary of Lecture 09: We learned ...

NFAs

- Two violations in DFAs were introduced...
- Violation #1
 During a timeframe, the machine has no (zero) transition.
 - The transition function is partial function.
- Violation #2
 During a timeframe, the machine has more than one transition.
 - The transition function is a multifunction.

- We relaxed DFAs constraint and introduced a new class:
 - Nondeterministic Finite Automata
- The same building blocks
- Simpler transition graphs
- Their behavior are similar to DFAs except for those two violations.
- 1. When NFAs have zero transition, ...
 - ... they halt.
- 2. When there are more than one transition, ...
 - ... they start parallel processing.

Any question?

Summary of Lecture 09: We learned ...

NFAs

- NFAs halt when ...
 - All input symbols are consumed. ≡ cOR
 - They have zero transition. ≡ z

$$(c \lor z) \leftrightarrow h$$

- A string is accepted iff ...
 - ... at least one process accepts it.
- A string is rejected iff ...
 - ... all processes reject it.

 Logical statement of accepting a string for one process ...

$$(h \land c \land f) \leftrightarrow a$$

- Recall that for DFAs, we changed
 (h ∧ c ∧ f) ↔ a to (c ∧ f) ↔ a
 because h and c have the same value.
- But for NFAs, h and c might have different values.
- Logical statement of rejecting a string for one process ...

$$(\sim h \lor \sim c \lor \sim f) \leftrightarrow \sim a$$

Any question?

1. Why do We Need a New Class?

We introduced NFAs because their transition graphs are simpler.

Example 7

Design a DFA and an NFA for $L = \{a\}$ over $\Sigma = \{a\}$

Example 8: Empty Language

$$L = \{ \} \text{ over } \Sigma = \{a, b\}$$

Example 9: Empty String Language

$$L = \{\lambda\} \text{ over } \Sigma = \{a, b\}$$

NFA

Associated Language to NFAs

Example 10

• What is the associated language to the following automaton over $\Sigma = \{a, b\}$?

Design a DFA to accept L.

A Special Transition

Introduction

- We are going to introduce a special kind of transitions.
- They are strictly prohibited in DFAs ...
- But allowed in NFAs.

Let's Shine our Knowledge

Question

• In the following transition, if the machine is in q_9 , then what is the "condition" for transition to q_{21} ?

Answer

 If the machine is in q₉ AND the next input symbol is 'a', then the machine transits to q₂₁.

Conclusion

The transition from q₉ to q₂₁ is "conditional".

Let's Remove the Condition

What if we remove the condition?

- Then we've created a "short-circuit".
- A "short-circuit" is an edge with no symbol.

What is the Meaning of Short-Circuit?

If there is no symbol, then there is NO condition for transition!

Consequently, the machine can transit unconditionally!

In other words, if the machine is in q₉,
 it can unconditionally transit to q₂₁.

The Symbol of Short-Circuit

The symbol "λ" was chosen to represent "short-circuit".

 Because of this symbol, this type of transitions are called "lambda transition" or "λ-transition".

It has an important role in automata theory.

Meaning of λ From Different Angle

- We've already used λ to represent "empty string".
- As we said before, λ means "NO symbol" (or zero symbol).
- A short-circuit has "no symbol" too.
- That's why the short-circuit is represented by λ.
- Be careful:
 - Using λ as "empty string" and the symbol of "short-circuit" can be confusing but you'll get used to it!
- But what is the meaning and consequence of this?

λ-Transition Definition

Definition

- λ-transition in automata theory is a transition that the machine can unconditionally transit.
- This is a general definition for all types of automata.
 - The concept of λ-transition changes our view about sub-rules of transition function.

Let's take an example.

How To Represent the Sub-Rule

• What is the value of $\delta(q_3, a) = ?$

- Since the machine can transit unconditionally, it means that ...
 it can stay as well.
- Therefore, the sub-rule for this example is:

$$\delta(q_3, a) = \{q_9, q_{21}\}$$

How To Represent the Sub-Rule: Example

Example 11

• Write the transition function δ of the following transition graph over $\Sigma = \{a, b\}$ by using algebraic notation.

Solution

$$\begin{cases} \delta(q_0, a) = \{q_1, q_2\} \\ \delta(q_0, b) = \{\} \\ \delta(q_1, a) = \{\} \\ \delta(q_1, b) = \{q_0\} \\ \delta(q_2, a) = \{\} \\ \delta(q_2, b) = \{q_0\} \end{cases}$$

$$\begin{cases} \delta(q_0, a) = \{q_1, q_2\} \\ \delta(q_1, b) = \{q_0\} \\ \delta(q_2, b) = \{q_0\} \end{cases}$$

We can eliminate those having empty ranges.

NFAs Behavior

We learned that:

The NFA has multiple choices.

Stay in q_9 , OR transit to q_{21} .

- How should it behave when it has multiple choices?
- It would check all possibilities by "parallel processing".
 - The procedure of creating new processes is the same way that we learned before.

NFAs Behavior

Another situation:

- Note that in this situation, the NFA has only one choice.
- Therefore, it does NOT need to initiate new process.
- As a general rule:
- O All machines initiate new processes when encounter multiple choices.
 - Now, let's see λ-transitions in Action!

Example 12: Starting Configuration

Process #1 (main) starts normally.

Example 12 (cont'd)

- Input tape reads 'a' and sends it to the control unit.
- The control unit makes a decision based on $\delta(q_0, a) = \{q_1, q_2\}$

Example 12 (cont'd)

$$\delta(q_0, a) = \{q_1, q_2\}$$

- It encounters two possibilities: transition to q₁ or q₂.
- So, parallel processing starts!

 $\delta(q_0, a) = \{q_1, q_2\}$

It replicates itself.

Process #2

$$\delta(q_0, a) = \{q_1, q_2\}$$

This process consumes 'a' and transits to q_1 .

Process #2

This process consumes 'a' and transits to q_2 .

This is the end of timeframe 1.

Process #1 is out of symbol and has to halt.

Process #2

Process #2 is out of symbol and has to halt.

Process #1 halts in an accepting state AND all symbols are consumed.

So, process #1 accepts w.

Process #2

Process #2 halts in a non-accepting state.

So, process #2 rejects w.

8

Example 13: Starting Configuration

Process #1 (main) starts normally.

Example 13 (cont'd)

- Input tape reads 'a' and sends it to the control unit.
- The control unit makes a decision based on $\delta(q_0, a) = \{q_1, q_2\}$

Example 13 (cont'd)

$$\delta(q_0, a) = \{q_1, q_2\}$$

- It encounters two possibilities: transition to q₁ or q₂.
- So, parallel processing starts!

$$\delta(q_0, a) = \{q_1, q_2\}$$

It replicates itself.

Process #2

$$\delta(q_0, a) = \{q_1, q_2\}$$

Process #1 consumes 'a' and transits to q_1 .

Process #2

Process #2 consumes 'a' and transits to q_2 .

This is the end of timeframe 1.

The symbol 'b' is read and sent to the control unit.

Process #1 calculates $\delta(q_1, b) = \{q_3\}$.

Process #2

The symbol 'b' is read and sent to the control unit.

Process #2 calculates $\delta(q_2, b) = \{q_3\}.$

35

$$\delta(q_1, b) = \{q_3\}$$

Process #1 consumes 'b' and transits to q_3 .

Process #2

$$\delta(q_2, b) = \{q_3\}$$

Process #2 consumes 'b' and transits to q_3 .

Process #1

Process #1 is out of symbol and has to halt.

Process #2

Process #2 is out of symbol and hast to halt.

a b

Process #1 halts in an accepting state AND all symbols are consumed.

Overall Accepted

So, process #1 accepts w.

Process #2

Process #2 halts in an accepting state AND all symbols are consumed.

So, process #1 accepts w.

5 6

λ-Transitions in Action

Example 14: Starting Configuration

Process #1 (main) starts normally.

λ-Transitions in Action

Example 14 (cont'd)

- Input tape reads 'b' and sends it to the control unit.
- The control unit makes a decision based on $\delta(q_0, b) = \{q_2, q_3\}$

λ-Transitions in Action

Example 14 (cont'd)

$$\delta(q_0, b) = \{q_2, q_3\}$$

- It encounters two possibilities: transition to q₂ or q₃.
- So, parallel processing starts!

Process #1

$$\delta(q_0, b) = \{q_2, q_3\}$$

It replicates itself!

Process #2

Process #1

$$\delta(q_0, b) = \{q_2, q_3\}$$

Process #1 consumes 'b' and transits to q_2 .

Process #2

Process #2 consumes 'b' and transits to q_3 .

The symbol 'a' is read and sent to the control unit.

It calculates $\delta(q_2, a) = \{q_2\}$

The symbol 'a' is read and sent to the control unit.

It calculates $\delta(q_3, a) = \{ \}$

Process #1 consumes 'a' and transits to q_2 .

It is out of symbol.

Process #2 has no choice for 'a'.

It has to halt.

Process #1 halts in an accepting state AND all symbols are consumed.

So, process #1 accepts w.

Process #2 halts in an accepting state BUT all symbols are not consumed.

So, process #2 rejects w.

Homework

- Which of the following strings are accepted by this NFA over $\Sigma = \{a, b\}$?
- Draw all processes.

$$w = b$$

$$w = bb$$

$$w = baa$$

6. Definitions

NFAs Transition Function

 We've learned that the range of NFAs can be zero, one, or more states ...

- e.g.:
$$\delta(q_0, a) = \{ \}, \delta(q_1, b) = \{q_5\}, \delta(q_2, a) = \{q_2, q_5\}$$

- Now the question is:
- How to change DFAs' transition function δ to be suitable for NFAs?
 - Recall that DFAs' transition function is defined as:

$$\delta \colon Q \times \Sigma \to Q$$

- We already know that 2^Q is the power set of Q and it contains all subsets of Q.
- Therefore, we change the range from Q to 2Q.

$$\delta \colon Q \times \Sigma \to 2^Q$$

Transition Function: DFAs vs NFAs

Class	Transition	Sub-Rule Example Transition Function
DFAs	q_1 a q_2	$\delta(\mathbf{q}_1, \mathbf{a}) = \mathbf{q}_2$ $\delta : \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$
NFAs	q_1 b q_2 λ q_3	$\delta(q_1, b) = \{q_2, q_3\}$ $\delta(q_2, a) = \{\}$ $\delta : Q \times \Sigma \rightarrow 2^Q$

6. Formal Definition of NFAs

• An NFA M is defined by the quintuple (5-tuple):

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Where:
 - Q is a finite and nonempty set of states of the transition graph.
 - $-\Sigma$ is a finite and nonempty set of symbols called input alphabet.
 - δ is called transition function and is defined as:

$$\delta: Q \times \Sigma \to 2^Q$$

 δ is total function.

- $-q_0 \in Q$ is the initial state of the transition graph.
- $F \subseteq Q$ is the set of accepting states of the transition graph.
- Except δ, the rest items are the same as DFAs'.

Why δ is Total Function?

The following example demonstrates why!

Example 15

• Write the algebraic notation of the NFA's δ .

Solution

$$\begin{cases} \delta(q_0, a) = \{q_0\} \\ \delta(q_0, b) = \{q_1, q_2\} \\ \delta(q_1, a) = \{q_2\} \\ \delta(q_1, b) = \{q_2\} \\ \delta(q_2, a) = \{\} \\ \delta(q_2, b) = \{\} \end{cases}$$

- Draw the Venn diagram of δ.
- Isn't it total function?

6. Formal Definitions: NFAs vs DFAs

	NFAs	DFAs
Transition function	$\delta: Q \times \Sigma \to 2^Q$	$\delta: Q \times \Sigma \to Q$
Examples	$\delta(q_1, a) = \{q_2, q_5, q_3\}$ $\delta(q_1, b) = \{q_1, q_3\}$ $\delta(q_2, a) = \{\}$	$\delta(q_1, a) = q_2$
Type of function	Total	Total
Type of processing	Parallel processing	Single processing

Associated Language to NFAs Examples

Example 16

• What is the associated language to the following NFA?

Solution

• L(M) = {a, aa}

Associated Language to NFAs Examples

Example 17

What is the associated language to the following NFA?

Solution

```
    L = {ab, abab, ababab, ... }
    = {(ab)<sup>n</sup> : n ≥ 1}
```

NFA Design Example

Example 18

• Design a DFA and an NFA with 3 states for the following language over $\Sigma = \{a, b\}$.

"The set of all strings that ends with aa."

Homework

Let L = {aⁿb : n ≥ 0}, and L' = L (L ∪ {λ}) over Σ = {a , b}.
 Design an NFA with 3 states for accepting L'.

- 2. Design an NFA for each of the following languages.
 - a. $L = \{a^n b^m a^k : n, m \ge 0, k \ge 1\}$ with 3 states over $\Sigma = \{a, b\}$
 - b. $L = \{(ab)^n (abc)^m : n \ge 0, m \ge 0\} \text{ over } \Sigma = \{a, b, c\}$

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790