$\begin{array}{c} {\rm MAT3155} \\ {\rm ASSIGNMENT} \ 4 \end{array}$

MOHAMMED CHAMMA - 6379153 NOVEMBER 28 2014

Problem 1. Suppose S_1 and S_2 are surfaces and $f: S_1 \to S_2$ is a diffeomorphism. Let (σ, U, W_1) be an r.s.p. for S_1 , with $\sigma(0,0) = P \in W_1$, and $(f\sigma, U, W_2)$ be an r.s.p for S_2 , with $f(P) \in W_2$. Define maps $J_{\sigma}: \mathbf{R}^2 \to T_P S_1$ and $J_{f\sigma}: \mathbf{R}^2 \to T_{f(P)} S_2$ defined respectively by

$$J_{\sigma}(v) = J(\sigma) \cdot v$$
 and $J_{f\sigma}(v) = J(f\sigma) \cdot v$

Let $T: T_P S_1 \to T_{f(P)} S_2$ denote the tangent map of f at P $T_P f$ defined by $T_P f = \frac{d(f\gamma)}{dt}(0)$ for some curve $\gamma: \mathbf{R} \to S_1$.

a) Show that $T = J_{f\sigma}J_{\sigma}^{-1}$.

Let γ be a curve on S_1 such that $\gamma = \sigma \circ \alpha$ where $\alpha : \mathbf{R} \to U \subset \mathbf{R}^2$ is another curve in U. Pick α so that $\alpha(0) = \sigma^{-1}(P)$. This means $\gamma(0) = \sigma(\alpha(0)) = \sigma(\sigma^{-1}(P)) = P$.

Let $\dot{\gamma}(0) = w$. This vector is a tangent vector at P on S_1 so $w \in T_P S_1$. Take this vector and apply the tangent map T to it

$$T(w) = \frac{d(f \circ \gamma)}{dt}(0) = \frac{d(f \circ \sigma \circ \alpha)}{dt}(0)$$
$$= J(f\sigma)\Big|_{\alpha(0)} \cdot \dot{\alpha}(0)$$

using the chain rule. Note that $J(f\sigma)\big|_{\alpha(0)} = J(f\sigma)\big|_{\sigma^{-1}(P)} = J_{f\sigma}$ since $J(f\sigma)\big|_{\sigma^{-1}(P)} \cdot v$ is a map from $\mathbf{R}^2 \to T_{f(P)}S_2$ for some vector v. This means

$$T(w) = J(f\sigma)\big|_{\alpha(0)} \cdot \dot{\alpha}(0) = J_{f\sigma}(\dot{\alpha}(0))$$

This matrix product makes sense becase $J(f\sigma)$ is a 3x2 matrix (since $f\sigma: \mathbf{R}^2 \to S_2 \subset \mathbf{R}^3$) and $\dot{\alpha}(0)$ is a 2x1 column vector. The product then gives a 3x1 column vector which is the mapped tangent in $T_{f(P)}S_2$ as expected.

Note that $w = \dot{\gamma}(0) = (\sigma \circ \alpha) = J(\sigma)\big|_{\alpha(0)} \cdot \dot{\alpha}(0)$. Similarly, $J(\sigma)\big|_{\alpha(0)} = J(\sigma)\big|_{\sigma^{-1}(P)} = J_{\sigma}$ since $J(\sigma)\big|_{\sigma^{-1}(P)} \cdot v$ is a map from $\mathbf{R}^2 \to T_P S_1$ for some vector v. So $w = J(\sigma)\big|_{\sigma^{-1}(P)} \cdot \dot{\alpha}(0) = J_{\sigma}(\dot{\alpha}(0))$. Assuming the inverse J_{σ}^{-1} exists, whatever it may be, knowing that it isn't matrix multiplication by the inverse matrix of J_{σ} , we at least know then that $J_{\sigma}^{-1}(w) = J_{\sigma}^{-1}(J_{\sigma}(\dot{\alpha}(0))) = \dot{\alpha}(0)$. Substituting this into the previous expression for T(w) we see

$$T(w) = J_{f\sigma}(J_{\sigma}^{-1}(w)) = (J_{f\sigma} \circ J_{\sigma}^{-1})(w)$$

Or, compactly, $T = J_{f\sigma}J_{\sigma}^{-1}$.

b) Prove that f is an isometry iff $Tw_1 \cdot Tw_2 = w_1 \cdot w_2$ for all $w_1, w_2 \in T_PS_1$.

Pick some curve γ on S_1 such that $\gamma = \sigma \circ \alpha$. Similarly, let there be another curve β on S_2 st. $\beta = f \circ \gamma$.

1

The length of γ between endpoints $\gamma(t_0)$ and $\gamma(t_1)$ is

$$\int_{t_0}^{t_1} ||\dot{\gamma}|| dt = \int_{t_0}^{t_1} \sqrt{\dot{\gamma}(t) \cdot \dot{\gamma}(t)} dt$$

The corresponding length of β between the same endpoints is

$$\int_{t_0}^{t_1} \sqrt{\dot{\beta}(t) \cdot \dot{\beta}(t)} dt$$

Since $\beta = f \circ \gamma$, $\dot{\beta}(t) = \frac{d}{dt'}(f \circ \gamma)(t)$ is the tangent map T at $P = \gamma(t) \in S_1$. The integral for the length of β involves constructing the tangent map at the point $\gamma(t)$ for each step of t between t_0 and t_1 , mapping the tangent vector $\dot{\gamma}(t)$, and computing the integrand. That is $\dot{\beta}(t) = T(w) = T(\dot{\gamma}(t))$ and

$$\int_{t_0}^{t_1} \sqrt{\dot{\beta}(t) \cdot \dot{\beta}(t)} dt = \int_{t_0}^{t_1} \sqrt{T \dot{\gamma}(t) \cdot T \dot{\gamma}(t)} dt$$

If we assume $Tw_1 \cdot Tw_2 = w_1 \cdot w_2$ for all $w_1, w_2 \in T_PS_1$, then, noting that $\dot{\gamma}(t) \in T_PS_1$, we have that $T\dot{\gamma} \cdot T\dot{\gamma} = \dot{\gamma} \cdot \dot{\gamma}$ which means

$$= \int_{t_0}^{t_1} \sqrt{T\dot{\gamma}(t) \cdot T\dot{\gamma}(t)} dt = \int_{t_0}^{t_1} \sqrt{\dot{\gamma}(t) \cdot \dot{\gamma}(t)} dt$$

implying that the length of a curve γ in S_1 is preserved by f. This means f is an isometry.

Conversely, assume that f is an isometry and that the integrals are the same. We know that $T\dot{\gamma} \cdot T\dot{\gamma} = \dot{\gamma} \cdot \dot{\gamma}$. Setting $w_1 = \dot{\gamma}$ we've got $Tw_1 \cdot Tw_1 = w_1 \cdot w_1$.

Let $w_2 \in T_P S_1$ be any other tangent vector at P, like w_1 . There could be a different curve δ whose tangent is w_2 , so this means that $Tw_2 \cdot Tw_2 = w_2 \cdot w_2$ as well. We can add these vectors together to make $w_1 + w_2$. There could be another curve whose tangent vector is $w_1 + w_2$ (indeed that curve is $\gamma + \delta$ since $(\gamma + \delta) = \dot{\gamma} + \dot{\delta}$) so we also have $T(w_1 + w_2) \cdot T(w_1 + w_2) = (w_1 + w_2) \cdot (w_1 + w_2)$. Now calculate the dot product of w_1 and w_2 . Expressing it as a quadratic form we get and using the fact that T is linear:

$$w_{1} \cdot w_{2} = \frac{1}{2} \Big((w_{1} + w_{2}) \cdot (w_{1} + w_{2}) - w_{1} \cdot w_{1} - w_{2} \cdot w_{2} \Big)$$

$$w_{1} \cdot w_{2} = \frac{1}{2} \Big(T(w_{1} + w_{2}) \cdot T(w_{1} + w_{2}) - Tw_{1} \cdot Tw_{1} - Tw_{2} \cdot Tw_{2} \Big)$$

$$w_{1} \cdot w_{2} = \frac{1}{2} \Big((Tw_{1} + Tw_{2}) \cdot (Tw_{1} + Tw_{2}) - Tw_{1} \cdot Tw_{1} - Tw_{2} \cdot Tw_{2} \Big)$$

$$w_{1} \cdot w_{2} = Tw_{1} \cdot Tw_{2}$$

Which was what we wanted.

c) Prove that f is an equiareal map iff $||Tw_1 \times Tw_2|| = ||w_1 \times w_2||$, for all $w_1, w_2 \in T_PS_1$.

Assume that $||Tw_1 \times Tw_2|| = ||w_1 \times w_2||$, for all $w_1, w_2 \in T_P S_1$. Since $\sigma_u(0,0)$ and $\sigma_v(0,0)$ are basis vectors of $T_P S_1$, they are elements of $T_P S_1$ and we can set $w_1 = \sigma_u(0,0)$ and $w_2 = \sigma_v(0,0)$. The map T will map basis vectors to basis vectors, and the corresponding basis vectors of $T_{f(P)} S_2$ are $(f\sigma)_u(0,0)$ and $(f\sigma)_v(0,0)$, that is, $Tw_1 = T\sigma_u(0,0) = (f\sigma)_u(0,0)$ and $Tw_2 = T\sigma_v(0,0) = (f\sigma)_v(0,0)$.

Letting the point $\sigma^{-1}(P)$ vary over some region $R \subseteq U$ we can construct the tangent space at each point P of $\sigma(R)$ and, using $\sigma_u(u,v)$ and $\sigma_v(u,v)$ as basis vectors of the tangent space $T_{\sigma(u,v)}S_1$, find the area of the region on S_1 given by

$$\mathcal{A}_{\sigma}(R) = \int_{R} ||\sigma_{u} \times \sigma_{v}|| du dv$$

Since the tangent map is defined on each point of $\sigma(R)$, setting $w_1 = \sigma_u(u, v)$ and $w_2 = \sigma_v(u, v)$, we have

$$\mathcal{A}_{\sigma}(R) = \int_{R} ||\sigma_{u} \times \sigma_{v}|| du dv$$

$$= \int_{R} ||T\sigma_{u} \times T\sigma_{v}|| du dv$$

$$= \int_{R} ||(f\sigma)_{u} \times (f\sigma)_{v}|| du dv = \mathcal{A}_{f\sigma}(R)$$

since $(f\sigma)_u(u,v)$ and $(f\sigma)_v(u,v)$ are basis vectors of $T_{f(\sigma(R))}S_2$. Since f preserved the area of the region, it is equiareal.

There's another way to do this by doing

$$w_1 \times w_2 = \lambda_1 \lambda_2 \sigma_u \times \sigma_v \dots$$

Problem 2. (Lambert azimuthal equal-area projection: 1772) Let $H = \{(x, 0, z) | x \leq 0\}$, S the plane with cartesian equation z = -1, and define a map $\ell : \mathbf{S}^2 \setminus H \to S$ by

$$\ell(\cos\theta\sin\varphi,\sin\theta\sin\varphi,\cos\varphi) = \sqrt{2 + 2\cos\varphi} \Big(\cos\theta,\sin\theta, -\frac{1}{\sqrt{2 + 2\cos\varphi}}\Big)$$

prove that the determinant of the first fundamental forms of $S^2 \setminus H$ and S^2 are equal.

The surface patch of $\mathbf{S}^2 \backslash H$ is

$$\sigma(\theta, \varphi) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$$

We want to compute the first fundamental forms of both surfaces using the surface patches σ for $S^2\backslash H$ and $\ell\sigma$ for S.

$$\sigma_{\theta} = (-\sin\theta\sin\varphi, \cos\theta\sin\varphi, 0)$$

$$\sigma_{\varphi} = (\cos\theta\cos\varphi, \sin\theta\cos\varphi, -\sin\varphi)$$

$$(\ell\sigma)_{\theta} = \sqrt{2 + 2\cos\varphi}(-\sin\theta, \cos\theta, 0)$$

$$(\ell\sigma)_{\varphi} = \left(\frac{-\cos\theta\sin\varphi}{\sqrt{2 + 2\cos\varphi}}, \frac{-\sin\theta\sin\varphi}{\sqrt{2 + 2\cos\varphi}}, 0\right)$$

$$= \frac{-\sin\varphi}{\sqrt{2 + 2\cos\varphi}}(\cos\theta, \sin\theta, 0)$$

The first fundamental form of $S^2 \setminus H$ is

$$E_1 = ||\sigma_{\theta}|| = \sin^2 \theta \sin^2 \varphi + \cos^2 \theta \sin^2 \varphi = \sin^2 \varphi$$

$$F_1 = \sigma_{\theta} \cdot \sigma_{\varphi} = -\sin \theta \cos \theta \sin \varphi \cos \varphi + \sin \theta \cos \theta \sin \varphi \cos \varphi + 0 = 0$$

$$G_1 = ||\sigma_{\varphi}|| = \cos^2 \theta \cos^2 \varphi + \sin^2 \theta \cos^2 \varphi + \sin^2 \varphi = 1$$

and it's determinant is

$$E_1G_1 - F_1^2 = \sin^2 \varphi$$

The first fundamental form of S is

$$E_{2} = ||(\ell\sigma)_{\theta}|| = 2 + 2\cos\varphi$$

$$F_{2} = (\ell\sigma)_{\theta} \cdot (\ell\sigma)_{\varphi} = \sin\theta\cos\theta\sin\varphi - \sin\theta\cos\theta\sin\varphi = 0$$

$$G_{2} = \frac{\sin^{2}\varphi\cos^{2}\theta + \sin^{2}\varphi\sin^{2}\theta}{2 + 2\cos\varphi} = \frac{\sin^{2}\varphi}{2 + 2\cos\varphi}$$

and it's determinant is

$$E_2G_2 - F_2^2 = \sin^2 \varphi = E_1G_1 - F_1^2$$

If ℓ were a diffeo this would imply that it is equiareal.

Problem 3. A regular curve γ on a surface S is a line of curvature if its tangent is everywhere a principal vector. If N_{σ} is the unit normal of a surface patch σ , show that γ is a line of curvate iff $N_{\sigma} = -\lambda \dot{\gamma}$, for some scalar function λ with the same domain as γ , and that in this case the corresponding principal curvature is λ .

Let $\gamma = \sigma \circ \alpha$ for some curve α in $U \subseteq \mathbb{R}^2$. Let $N_{\sigma} = N \circ \sigma$.

If γ is a line of curvature then $\dot{\gamma}$ is in the principal direction. Since $\dot{\gamma} = J(\sigma) \cdot \dot{\alpha}$, $\dot{\alpha}$ is an eigenvector of $(\mathcal{F}_{II} - \lambda \mathcal{F}_I)\dot{\alpha} = 0$ where \mathcal{F}_I and \mathcal{F}_{II} are the first and second fundamental forms, and we see

$$\mathcal{F}_{II} \cdot \dot{\alpha} = \lambda \mathcal{F}_I \cdot \dot{\alpha}$$

Now, since $\gamma = \sigma \circ \alpha$ we can form the composition $N_{\sigma} = N \circ \sigma \circ \alpha$ which is a function of t and represents the unit normal along the curve γ . Taking the derivative:

$$\dot{N}_{\sigma} = J(N \circ \sigma)\dot{\alpha}
= -J(\sigma)\mathcal{F}_{I}^{-1}\mathcal{F}_{II}\dot{\alpha}$$

Substituting $\mathcal{F}_{II} \cdot \dot{\alpha} = \lambda \mathcal{F}_I \cdot \dot{\alpha}$ we get

$$\dot{N}_{\sigma} = -J(\sigma)\mathcal{F}_{I}^{-1}\lambda\mathcal{F}_{I} \cdot \dot{\alpha}
= -\lambda J(\sigma)\mathcal{F}_{I}^{-1}\mathcal{F}_{I} \cdot \dot{\alpha}
= -\lambda J(\sigma) \cdot \dot{\alpha}
\dot{N}_{\sigma} = -\lambda \dot{\gamma}$$

Conversely, assuming simply that $\dot{N}_{\sigma} = -\lambda \dot{\gamma}$, we have

$$\dot{N}_{\sigma} = -\lambda \dot{\gamma}
-J(\sigma) \mathcal{F}_{I}^{-1} \mathcal{F}_{II} \dot{\alpha} = -\lambda J(\sigma) \cdot \dot{\alpha}$$

Multiplication by $J(\sigma)$ is injective so we can drop it from both sides:

$$\mathcal{F}_{I}^{-1}\mathcal{F}_{II}\dot{\alpha} = \lambda\dot{\alpha}$$

$$\mathcal{F}_{II}\dot{\alpha} = \lambda\mathcal{F}_{I}\dot{\alpha}$$

$$\Longrightarrow (\mathcal{F}_{II} - \lambda\mathcal{F}_{I})\dot{\alpha} = 0$$

This means that $J(\sigma)\dot{\alpha} = \dot{\gamma}$ is a principal direction at P.

Problem 4. Suppose S is smooth oriented surface and that $N: S \to \mathbf{S}^2$ is the smooth unit normal.

a) Show that $T_P S = T_{N(P)} \mathbf{S}^2$

For a smooth oriented surface we have a regular surface patch σ . For every point $P \in S$ there is a smooth unit normal N_{σ} that is perpendicular to the tangent plane at P on S, T_PS . The map N takes the unit normal N_{σ} and places it's tail at the origin of the sphere \mathbf{S}^2 . Thus, $N(P) \in \mathbf{S}^2$ is parallel to $N_{\sigma} \in S$. For every point $Q = N(P) \in \mathbf{S}^2$, the tangent plane goes through the origin and the normal is Q, which is parallel to N_{σ} . Since these are both unit normals these are infact the same vectors: $N_{\sigma} = N(P) = Q$. Since a plane is uniquely determined by it's normal, and the tangent plane at Q on \mathbf{S}^2 ($T_Q\mathbf{S}^2$) shares the same normal as the tangent plane at P on S (T_PS), they are the same plane.

$$T_P S = T_Q \mathbf{S}^2 = T_{N(P)} \mathbf{S}^2$$

This means that the tangent map for N is a map from $T_PS \to T_PS$.

b) By (a), the tangent map $G = T_P N$ for N satisfies $G : T_P S \to T_P S$. Show that $\det G$ is the Gaussian curvature at P.

$$\frac{d(N \circ \gamma)}{dt}(0) = \frac{d(N \circ \sigma \circ \alpha)}{dt}(0)$$

$$= J(N \circ \sigma)\dot{\alpha}$$

$$= -J(\sigma)\mathcal{F}_I^{-1}\mathcal{F}_{II}\dot{\alpha}$$

The G map is the matrix $-\mathcal{F}_I^{-1}\mathcal{F}_{II}$, and the determinant is

$$\det G = \det -\mathcal{F}_I^{-1}\mathcal{F}_{II} = (-1)^2 \det \mathcal{F}_I^{-1}\mathcal{F}_{II} = \det \mathcal{F}_I^{-1}\mathcal{F}_{II}$$

which is the Gaussian curvature at P.

This would be more convincing if I could write the last line as

$$-J(\sigma)\mathcal{F}_{I}^{-1}\mathcal{F}_{II}\dot{\alpha} = -\mathcal{F}_{I}^{-1}\mathcal{F}_{II}J(\sigma)\dot{\alpha} = -\mathcal{F}_{I}^{-1}\mathcal{F}_{II}\dot{\gamma} = -\mathcal{F}_{I}^{-1}\mathcal{F}_{II}w$$

where w is the argument of the map G.