Informatica Teorica 2022/2023 - Esercitazione 2

15 Marzo 2023

melissa.antonelli2@unibo.it

1 Esercizi

Nozioni Richieste. Mapping-Reduction.

Siano L e L' linguaggi su un dato alfabeto Σ , diciamo che L mapping-riduce a L', $L \leq L'$, se esiste una TM che computa la funzione $f: \Sigma^* \to \Sigma^*$ tale che:

$$x \in L$$
 sse $f(x) \in L'$.

Problema 1. Mostra che \leq é una relazione transitiva.

Soluzione 1. Assumi $L \leq L'$ e $L' \leq L''$. Allora, per definizione di *mapping-reduction*, esistono due funzioni f e g tali che:

$$x \in L$$
 sse $f(x) \in L'$
 $y \in L'$ sse $g(y) \in L''$.

Consideriamo la composizione h(x) = g(f(x)). Costruiamo una TM che computa h come segue:

- 1. Simula una macchina che computa f su input x e chiama l'output y (tale macchina esiste perché f é computabile per ipotesi e Df. di mapping-reduction)
- 2. Simula una TM che computa g su y (anche questa macchina esiste perché f é computabile per ipotesi e Df. di mapping-reduction).

L'output é h(x) = g(f(x)). Dunque h é una funzione computabile. Inoltre,

$$x \in L$$
 sse $h(x) \in L''$

e quindi $L \leq L''$ tramite funzione di riduzione h.

Soluzione 1 (in classe). Devo dimostrare che \leq é transitiva, cioé per ogni L'', L', L, se $L'' \leq L'$ e $L' \leq L$, allora $L'' \leq L$.

- (H1) Esiste una TM tale che M computa f tale che per ogni $x \in \Sigma^*, x \in L''$ sse $f(x) \in L'$.
- (H2) Esiste una TM tale che M' computa g tale che per ogni $x \in L'$ sse $g(x) \in L$.

Considero dunque $h(x) = g \circ f = g(f(x))$. Osservo che $x \in L'$ sse $f(x) \in L'$ (H1) sse $g(f(x)) \in L$ (H2), e cioé $g(f(x)) \in L$.

Nozioni Richieste. Mapping-Reduction; Linguaggio Decidibile.

Una TM M decide un linguaggio L quando: se $x \in L$, allora M accetta x; se $x \notin L$, allora M rigetta x. Un linguaggio L si dice decidibile quando c'é una TM in grado di decidere L.

Problema 2. Dimostra che se $L \leq L'$ e L' é decidibile, allora L é decidibile.

Soluzione 2. Per ipotesi L' é decidibile dunque, per Df. di linguaggio decidibile, esiste una TM, diciamo M', che decide L'. Per ipotesi $L \leq L'$ e Df. di mapping-reduction esiste una funzione computabile f tale che

$$x \in L$$
 sse $f(x) \in L'$.

Consideriamo una TM M costruita come segue. Per ogni input x (nell'alfabeto di L e L'):

- 1. M computa f(x) (f é computabile per Df. di mapping-reduction).
- 2. M esegue M' su input f(x) e restituisce in output ció che M' restituisce in output.

Per Df. di mapping-reduction, se $x \in L$, allora $f(x) \in L'$. Inoltre, se $x \in L$ M' deve accettare f(x). Conseguentemente M accetta x. Analogamente, se $x \notin L$, allora $f(x) \notin L'$ e, se $f(x) \notin L'$ M' deve rigettare f(x). Conseguentemente M rigetta x. Ma allora, M decide L e, per Df. di linguaggio decidible, L é provato decidible.

Soluzione 2 (in classe). Sappiamo che (i) $L \leq L'$ e (ii) L' é decidibile. Devo dimostrare che L é decidibile.

- (1) Esiste una TM M che computa f tale per cui per ogni $x \in L$ sse $f(x) \in L'$ (per (i) e Df. di m-reduction).
- (2) Esiste $M_{L'}$ tale che per ogni $x \in \Sigma^*$, se $x \in L'$ allora $M_{L'}$ accetta x; se $x \notin L'$ allora $M_{L'}$ rigetta x.

Costruiamo M_L tale che, su input x:

- 1. M_L esegue x (dove M é la TM citata in (1)), ottenendo f(x)
- 2. M_L esegue $M_{L'}$ su f(x).

Consideriamo i casi possibili (a partire dalla costruzione di M_L): $x \in L$ e $x \notin L'$.

¹Detto altrimenti, poiché f é computabile, esiste una M_f che computa f. Dunque M esegue M_f con input x, ottenendo in output f(x) (l'output di M_f).

Nozioni Richieste. Mapping-Reduction; Linguaggio Riconoscibile.

Una TM M riconosce un linguaggio L quando: se $x \in L$, allora M termina; se $x \notin L$, allora M non termina. Un linguaggio L si dice riconosce quando c'é una TM in grado di decidere L.

Problema 2 bis. Dimostra che se $L \leq L'$ e L' é riconoscibile, allora anche L é riconoscibile.

Soluzione 2 bis. Per ipotesi L' é riconoscibile, dunque, per Df. di linguaggio riconoscibile, esiste una TM che lo riconosce, diciamo M'. Inoltre, poiché per ipotesi $L \leq L'$, per Df. di m-reduction, esiste una funzione computabile f tale che

$$x \in L$$
 sse $f(x) \in L'$.

Definiamo dunque una TM M che riconosce L nel modo seguente. Per ogni input x (nell'alfabeto desiderato):

- 1. M computa f(x) (computabile per Df. di m-reduction).
- 2. M esegue M' e: se M' termina, M termina; altrimenti, M entra in loop.

Osserva che, anche in questo caso, per Df. di m-reduction, se $x \in L$, allora $f(x) \in L'$, dunque M' termina (Df. linguaggio riconoscibile). Quindi, M termina su x. Altrimenti M entra in loop. Dunque, poiché M riconosce L, M é riconoscibile

²Come ne caso precedente, ció corrisponde a considerare la TM M_f che computa f (che esiste per Df. di m-reduction e funzione computabile) ed eseguire M_f con x in input, ottenendo ovviamente in output l'output di M_f , ovvero f(x).

Problema 3. Considera il seguente linguaggio

$$U = \{y \in \{0, 1\}^* \mid y = \operatorname{code}(M) \& M \text{ ferma su 111}\}.$$

Dimostra che U é indecidibile sfruttando l'indecidibilità di HALT.

Suggerimento. Ricorda che, per il Corollario 1 (Lezione 7), se $L \leq L'$ e L é indecidibile, allora L' é indecidibile.

Soluzione 3. Questo é il linguaggio delle stringhe tali che la stringa é codifica di una TM e questa TM si ferma su 111. U comprende tutti i codici delle macchine che hanno questo comportamento. Notiamo preliminarmente che questa proprietà non é triviale: il linguaggio delle parole di lunghezza dispari si ferma su tale input, quello delle pari no.

Dimostrazione diretta. Sappiamo che HALT é indecidibile, dunque, per il Corollario 1, per dimostrare l'indecidibilità di U é sufficiente ridurre HALT a U, ovvero dimostrare HALT < U. Per Df. di mapping-reduction questo corrisponde a mostrare che esiste una funzione f computabile tale che:

$$\langle y, x \rangle \in HALT$$
 sse $f(\langle y, x \rangle) \in U$.

Costruiamo la funzione di riduzione desiderata come segue:

- 1. $y \neq \text{code}(M), (y \in \{0,1\}^* \text{ non codifica una TM}) \text{ allora sia } f(\langle y,x\rangle) = y.^3$
- 2. $y = \operatorname{code}(M)$, ovvero y é il codice di TM M. Definiamo TM $M_{M,x}$ (ovvero una TM costruita a partire dai parametri M, x) tale che:
 - su input 111, cancella il nastro, $M_{M,x}$ scrive x e simula M su x.
 - su ogni altro input, $M_{M,x}$ entra in loop.

Definiamo dunque $f(\langle y, x \rangle) = \operatorname{code}(M_{M,x}).^4$

Dimostriamo ora che f é computabile e che

$$\langle y, x \rangle \in HALT$$
 sse $f(\langle y, x \rangle) \in U$,

ovvero $HALT \leq U$. Poiché, come dimostrato, HALT é indecidibile, anche U deve essere indecidibile. f é computabile: se $y \neq \mathsf{code}(M)$, standard (cf. lezioni); se $y = \mathsf{code}(M)$ perché codifica di TM che o simula un'altra TM (rimanendo computabile) o entra in loop.

Il caso $y \neq \operatorname{\mathsf{code}}(M)$ é triviale (se $y \neq \operatorname{\mathsf{code}}(M)$, allora $f(\langle y, x \rangle) \notin U$, indipendentemente da $M_{M,x}$). Consideriamo il caso $y = \operatorname{\mathsf{code}}(M)$:

$$\langle y,x \rangle \in HALT$$

$$\updownarrow$$

$$y = \mathsf{code}(M) \ \& \ M \ ferma \ su \ x$$

$$\updownarrow$$

³Per ipotesi di questo caso y non é codice di TM, quindi $y \notin U$.

⁴Dunque la TM si comporta in modo diverso in base all'input: se l'input é 111, allora si comporta come si comporterebbe M su x; se l'input non é 111, allora la macchina cicla.

$$M_{M,x}\ ferma\ su\ 111\ (\&\ f(\langle y,x\rangle)=\operatorname{code}(M_{M,x}))$$

$$\updownarrow$$

$$f(\langle y,x\rangle)\in U$$
 ovvero,^5
$$\langle y,x\rangle\in HALT\quad \text{sse}\quad f(\langle y,x\rangle)\in U.$$

 $[\]overline{^5 M_{M,x}}$ ferma su 111 sse M ferma su x. Le due TM hanno lo stesso comportamento quando $M_{M,x}$ riceve y come input (quando non riceve y non importa cosa faccia $M_{M,x}$)

 $y = \mathsf{code}(M) \ \& \ M \ \textit{ferma su } x \quad \Leftrightarrow \quad M_{M,x} \ \textit{ferma su } \mathsf{111}.$

Nozioni Richieste. Proprietá di Linguaggio; Proprietá Triviale.

Il linguaggio della TM M é definito come

$$L_M = \{x \in \{0,1\}^* \mid M \ accetta \ x\}.$$

Una proprietá di TM-linguaggio é una funzione da insieme di TM a $\{0,1\}$, tale che $L_M = L_{M'}$ implica P(M) = P(M'). Let TM che soddisfano P sono indicate come:

$$\{y \in \Sigma^* \mid y = \mathsf{code}(M) \ \& \ P(M) = 1\}.$$

Una proprietá di TM-linguaggio é non triviale se esiste una TM M tale che P(M)=1 e una TM M' tale che P(M')=0

Problema 4. Quali delle seguenti sono proprietà di linguaggio triviali? Quali no?

- a. $\{y \mid y = \mathsf{code}(M) \& \epsilon \in L_M\}$
- b. $\{y \mid y = \mathsf{code}(M) \& M \text{ ha almeno uno stato}\}$
- c. $\{y \mid y = \mathsf{code}(M) \& L_M \text{ contiene tutte le stringhe di lunghezza pari}\}$
- d. $\{y \mid y = code(M) \& M \text{ ha 3 stati}\}.$

Soluzione 4.

- a. É una proprietá non triviale. (Per es. é proprietá del linguaggio delle stringhe di lunghezza pari ma non delle stringhe di lunghezza dispari.)
- b. É una proprietá triviale.
- c. É una proprietá non-triviale. (Analogo a caso a.)
- d. Non é una proprietá di un linguaggio, ma una proprietá della TM. (Macchine diverse possono definire lo stesso linguaggio indipendentemente dal fatto di avere questa proprietá.)

Nozioni Richieste. Teorema di Rice.

Se P é una proprietá non-triviale, allora "il problema M ha la proprietá P?" é indecidibile.

Problema 5. Enuncia il teorema di Rice. Puoi applicarlo per dimostrare l'indecidibilitá di

$$INF = \{ code(M) \mid M \mid TM \mid tale \mid che \mid L(M) \mid linguaggio \mid infinito \} ?$$

Soluzione 5. INF é un linguaggio di descrizioni di TM. Soddisfa le condizioni richieste dal teorema di Rice:

- 1. Non é triviale: alcune TM hanno linguaggi infiniti altre no
- 2. Dipende solo dal linguaggio: se due TM riconoscono ll stesso linguaggio o entrambe hanno descrizioni in INF o nessuna delle due ne ha.

Quindi, per il teorema di Rice, INF é indecidibile.

2 Esercizi Supplementari

Problema 6. Descrivi (in linguaggio naturale) una TM M che decide il linguaggio delle stringhe con uguale numero di 0 e 1. (Alfabeto $\{0,1\}$)

Soluzione 6. Per ogni stringa in input x, la TM M:

- 1. Scorre il nastro e segna il primo 0 che non sia stato segnato:
 - se non trova 0 non-segnato, va al passo 4.
 - altrimenti, muove la testina indietro.
- 2. Scorre il nastro e segna il primo 1 non-segnato; se non trova un 1 non-segnato, M rigetta.
- 3. Muove la testina indietro nel nastro e va al passo 1.
- 4. Muove la testina indietro nel nastro e scorre il nastro per vedere se resta qualche 1 non-segnato:
 - se non ve ne sono, M accetta x;
 - altrimenti, M rigetta x.

Problema 7. Supponi che L sia riconoscibile e il suo complemento L^- non sia riconoscibile. Considera il linguaggio

$$L' = \{0x \mid x \in L\} \cup \{1x \mid x \notin L\}.$$

(a.) Il linguaggio L' é decidibile? riconoscibile? non-riconoscibile? (b.) L'^- é decidibile? riconoscibile? non-riconoscibile? Dimostra per contraddizione.

Soluzione 7. (a.) L' non é riconoscibile. La prova é per contraddizione. Assumi L' sia riconoscibile. Allora possiamo costruire una TM M che riconosca L^- nel modo seguente. Per ogni input x:

- 1. M cambia il suo input in 1x
- 2. simula l'ipotetica TM per L' su tale input:
 - se tale TM accetta, allora $x \in L^-$, quindi M dovrebbe accettare.
 - se tale TM per L' non accetta mai, allora nemmeno M accetta.

Quindi, M accetta esattamente L^- e ció contraddice l'assunzione che L^- non sia riconoscibile. Concludiamo che L' é non riconoscibile (quindi neppure decidibile).

- (b.) Anche L'^- non é riconoscibile. Ancora, la prova é per contraddizione. Assumiamo L'^- sia riconoscibile. Allora, possiamo ideare una TM M che riconosce L' come segue. Dato l'input x:
 - \bullet se l'input é vuoto, M rigetta
 - se l'input é 0x, eseguiamo l'ipotetica TM per L'^- su 1x. Se tale TM accetta, allora $1x \in L'^-$, quindi $x \in L$. Conseguentemente, $0x \in L'$ e accetta.
 - se l'input é 1x, eseguiamo l'ipotetica TM per L'^- su 0x e accetta se tale macchina accetta.

Abbiamo dunque costruito una TM che riconosce L', contraddicendo la prova precedente che L' non sia riconoscibile. Dunque, L'^- deve é non-riconoscibile (quindi nemmeno decidibile).

Problema 8. Considera il problema decisionale

e il linguaggio corrispondente

$$L = \{ \mathsf{code}(x) \mathsf{code}(M) : TM \ M \ ferma \ su \ x \ in \ 100 \ passi \}.$$

L é decidibile? riconoscibile? non-riconoscibile?

Soluzione 8. L é decidibile. Su input code(x)code(M) usiamo una UTM per simulare M su input x, modificata in modo che:

- 1. conta il numero di passi simulati sul nastro
- 2. la macchina:
 - accetta se la simulazione termina prima che il 100-esimo passo sia raggiunto
 - si ferma e rigetta, se l'esecuzione raggiunge il 100-esimo passo senza fermarsi.

Questa macchina chiaramente riconosce il linguaggio e ferma sempre, quindi L é decidibile.

Problema 9. Quali delle seguenti sono proprietá di linguaggi? Quali sono triviali?

- a. $\{y \mid y = \operatorname{code}(M) \& L_M = L^- \text{ per qualche } L \text{ finito}\}$
- b. $\{y \mid y = \mathsf{code}(M) \& \text{ ferma su qualche input}\}$
- c. $\{y \mid y = \mathsf{code}(M) \& M \text{ non torna allo stato iniziale}\}$
- d. $\{y \mid y = \mathsf{code}(M) \& ab \in L_M\}$
- e. $\{y \mid y = \mathsf{code}(M) \& L_M \text{ riconoscibile}\}$

Soluzione 9. (a.) É non-triviale, (b.) É non-triviale, (c.) É non triviale ma non é una proprietá di linguaggio (possiamo avere TM tale che non restituisce mai (o restituisce sempre) lo stato iniziale pur accettando il linguaggio espresso dalla proprietá. (d.) É non-triviale. (e.) É triviale.