第三章习题

Karry

30. 解: 初始状态如下图所示:

资源	Max		Allocation			Need			Available			
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P0	7	5	3	0	1	0	7	4	3	2	3	0
P1	3	2	2	3	0	2	0	2	0			
P2	9	0	2	3	0	2	6	0	0			
P3	2	2	2	2	1	1	0	1	1	资	源总	数
P4	4	3	3	0	0	2	4	3	1	10	5	7

如果 P_0 发出的请求向量由 $Request_0(0,2,0)$ 改为 $Request_0(0,1,0)$,系 统按银行家算法进行检查:

- \circ Request₀(0,1,0) < need₀(7,4,3)
- $\\ \circ \quad Request_0(0,1,0) < Available_0(2,3,0) \\$

因此系统暂时假定可为 P_0 分配资源,并修改有关数据:

~ 资源	Max		Allocation			Need			Available			
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P0	7	5	3	0	2	0	7	3	3	2	2	0
P1	3	2	2	3	0	2	0	2	0			
P2	9	0	2	3	0	2	6	0	0			
P3	2	2	2	2	1	1	0	1	1	资	源总	数
P4	4	3	3	0	0	2	4	3	1	10	5	7

进行安全性检测后发现 Available(2,2,0) 满足 $Need_1(0,2,0)$ 依照银行家算法可以成功构建以下一种安全执行顺序:

资源 Work		k	Need			Allocation			Work+ Allocation			Finish	
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С	
P1	2	2	0	0	2	0	3	0	2	5	2	2	true
P3	5	2	2	0	1	1	2	1	1	7	3	3	true
P0	7	3	3	7	3	3	0	2	0	7	5	3	true
P2	7	5	3	6	0	0	3	0	2	10	5	5	true
P2	10	5	2	4	3	1	0	0	2	10	5	7	true

(1) 安全。可以给出以下一种安全执行顺序:

Process	Work	Need	Allocation	Work+Allocation	Finish
P1	1 6 2 2	0 0 1 2	0 0 3 2	1 6 5 4	true
Р3	1 6 5 4	0 6 5 2	0 3 3 2	1 9 8 6	true
P1	1 9 8 6	1 7 5 0	1 0 0 0	2 9 8 6	true
P2	2 9 8 6	2 3 5 6	1 3 5 4	3 12 13 10	true
P4	3 12 13 10	0 6 5 6	0 0 1 4	3 12 14 14	true

(2) 系统按银行家算法进行检查:

- \circ Request₂(1, 2, 2, 2) <= Need₂(1, 7, 5, 0)
- $\circ \quad Request_2(1,2,2,2) <= Available(1,6,2,2)$

系统暂时先假定可为 P2 分配资源,并修改有关数据,进行安全性检查,Available(0,4,0,0) 已不能满足任何进程的需要,故系统进入不安全状态。

因此系统不能将资源分配给他