Euler's Theorem

Question: How can you generalize the little Fermat theorem to the case where the modulus is composite?

Idea: The key point of the proof of Fermat's theorem was that if p is prime, $\{1, 2, ..., p-1\}$ are relatively prime to p.

This suggests that in the general case, it might be useful to look at the numbers less than the modulus n which are relatively prime to n. This motivates the following definition.

Definition. The Euler ϕ -function is the function on positive integers defined by

 $\phi(n) =$ (the number of integers in $\{1, 2, \dots, n-1\}$ which are relatively prime to n).

Example. $\phi(24) = 8$, because there are eight positive integers less than 24 which are relatively prime to 24:

On the other hand, $\phi(11) = 10$, because all of the numbers in $\{1, \ldots, 10\}$ are relatively prime to 11. Here is *Mathematica* computing $\phi(20!)$:

EulerPhi[20!]

416084687585280000

Next, I had Mathematica plot $(n, \phi(n))$ for $1 \le n \le 5000$.

ListPlot[Table[EulerPhi[n], {n, 1, 5000}]]

You can see that the function jumps around a little, but the data points are bounded above by the line y = x. A point will be nearly on this line whenever n is prime, and since there are infinitely many primes, there will always be points near it.

Later, I'll derive a formula for computing $\phi(n)$ in terms of the prime factorization of n. \square

Remarks.

1. If p is prime, $\phi(p) = p - 1$.

This is clear, because all of the numbers $\{1, \ldots, p-1\}$ are relatively prime to p.

2. $\phi(n)$ counts the elements in $\{1, 2, \ldots, n-1\}$ which are invertible mod n.

For (a, n) = 1 if and only if $ax = 1 \pmod{n}$ for some x. (For people who know some abstract algebra, $\phi(n)$ is the order of the group of units \mathbb{Z}_n^* .)

Definition. A reduced residue system mod n is a set of numbers

$$a_1, a_2, \ldots, a_{\phi(n)}$$

such that:

- (a) If $i \neq j$, then $a_i \neq a_j \pmod{n}$. That is, the a's are distinct mod n.
- (b) For each i, $(a_i, n) = 1$. That is, all the a's are relatively prime to n.

Thus, a reduced residue system contains exactly one representative for each number relatively prime to n. Compare this to a **complete residue system mod** n, which contains exactly one representative to every number mod n.

Example. $\{1,5,7,11\}$ is a reduced residue system mod 12. So if $\{-11,17,31,-1\}$.

On the other hand, $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ is a complete residue system mod 12. \square

Lemma. Let $\phi(n) = k$, and let $\{a_1, \ldots, a_k\}$ be a reduced residue system mod n.

- (a) For all m, $\{a_1 + mn, \ldots, a_k + mn\}$ is a reduced residue system mod n.
- (b) If (m, n) = 1, $\{ma_1, \ldots, ma_k\}$ is a reduced residue system mod n.

Proof. (a) This is clear, since $a_i = a_i + mn \pmod{n}$ for all i.

(b) Since (m,n) = 1, I may find x such that $mx = 1 \pmod{n}$. Since $(a_i,n) = 1$, so I may find b_i such that $a_ib_i = 1 \pmod{n}$. Then $(xb_i)(am_i) = (mx)(a_ib_i) = 1 \pmod{n}$, which proves that am_i is invertible mod n. Hence, $(am_i,n) = 1$ —the ma's are relatively prime to n.

Now if $ma_i = ma_j \pmod{n}$, then $xma_i = xma_j \pmod{n}$, or $a_i = a_j \pmod{n}$. Since the a's were distinct mod n, this is only possible of i = j. Hence, the ma's are also distinct mod n.

Therefore, $\{ma_1, \ldots, ma_k\}$ is a reduced residue system mod n. \square

Corollary. Let $\phi(n) = k$, and let $\{a_1, \ldots, a_k\}$ be a reduced residue system mod n. Suppose (s, n) = 1, and let t be any integer. Then

$$\{sa_1+tn,sa_2+tn,\ldots,sa_k+tn\}$$

is a reduced residue system mod n. \square

Example. $\{1,5\}$ is a reduced residue system mod 6. Adding $12 = 2 \cdot 6$ to each number, I get $\{13,17\}$, another reduced residue system mod 6.

Since (6,25) = 1, I may multiply the original system by 25 to obtain $\{25,125\}$, another reduced residue system.

Finally, $\{25 + 12, 125 + 12\} = \{37, 137\}$ is yet another reduced residue system mod 12. \square

Theorem. (Euler) Let n > 0, (a, n) = 1. Then

$$a^{\phi(n)} = 1 \pmod{n}.$$

Remark. If n is prime, then $\phi(n) = n - 1$, and Euler's theorem says $a^{n-1} = 1 \pmod{n}$: the little Fermat theorem.

Proof. Let $\phi(n) = k$, and let $\{a_1, \ldots, a_k\}$ be a reduced residue system mod n. I may assume that the a_i 's lie in the range $\{1, \ldots, n-1\}$.

Since (a, n) = 1, $\{aa_1, \ldots, aa_k\}$ is another reduced residue system mod n. Since this is the same set of numbers mod n as the original system, the two systems must have the same product mod n:

$$(aa_1)\cdots(aa_k)=a_1\cdots a_k\pmod{n}$$
, $a^k(a_1\cdots a_k)=a_1\cdots a_k\pmod{n}$.

Now each a_i is invertible mod n, so multiplying both sides by $a_1^{-1} \cdots a_k^{-1}$, I get

$$a^k = 1 \pmod{n}$$
, or $a^{\phi(n)} = 1 \pmod{n}$. \square

Example. $\phi(40) = 16$, and (9, 40) = 1. Hence, $9^{16} = 1 \pmod{40}$ — surely not an obvious fact! Likewise, $21^{16} = 1 \pmod{40}$.

You can also use Euler's theorem to compute modular powers. Suppose I want to find $33^{100} \pmod{40}$. *Mathematica* tells me that 33^{100} is

39769472510693096283702513561865297732677687859060633131423168

375418697393542687445968001

I probably don't want to do this by hand!

Euler's theorem says that $33^{16} = 1 \pmod{40}$. So

$$33^{100} = 33^{96} \cdot 33^4 = (33^{16})^6 \cdot 1089^2 = 9^2 = 81 = 1 \pmod{40}$$
. \square

Example. Solve $15x = 7 \pmod{32}$.

Note that (15,32) = 1 and $\phi(32) = 16$. Therefore, $15^{16} = 1 \pmod{32}$. Multiply the equation by 15^{15} :

$$x = 7 \cdot 15^{15} \pmod{32}$$
.

Now

$$7 \cdot 15^{15} = 105 \cdot 15^{14} = 105 \cdot (15^2)^7 = 105 \cdot 225^7 = 9 \cdot 1^7 = 9 \pmod{32}.$$

So the solution is $x = 9 \pmod{32}$. \square