FACULTAD:	Tecnología l	Informática					
CARRERA:							
ALUMNO/A:							
SEDE:			LOCALIZACIÓN:	Buer	os Aires		
ASIGNATURA:	Sistemas de Computación II						
COMISIÓN:			TURNO:				
PROFESOR:			FECHA:				
TIEMPO DE RES	OLUCIÓN:	120 min	EXAMEN PARCIA	L N°:	2 (dos)		
MODALIDAD DE RESOLUCIÓN:			A Distancia Sincrónico - Escrito				
CALIFICACIÓN:							
RESULTADOS DE APRENDIZAJE ESPERADO: Asegurar la comprensión de Interrupciones, manejo de la pila y programación en Assembler.							

Dado el siguiente estado de la UCP (los registros que no aparecen no son usados por el programa que se está ejecutando):

AX, IP, RE, SP, CS, DS, SS (tomar los valores de la planilla provista por el profesor)

Alumno	АХ	IP	RE	SP	CS	DS	SS	CALL	INT	Vec: IP	Vec: CS
--------	----	----	----	----	----	----	----	------	-----	------------	------------

PUNTO 1:

Si la siguiente instrucción a ejecutar es CALL nnnn que ocupa 3 bytes, indicar:

- **1.a** Mediante las componentes XXXX:YYYY de la memoria, en qué dirección de memoria está la instrucción CALL nnnn y cuál es la dirección que aparecerá en el bus de direcciones al buscar esa instrucción.
- **1.b** Qué movimientos de información ocurren durante la ejecución de CALL nnnn y con qué valores quedan los registros involucrados.
- 1.c Cómo queda la pila luego de la ejecución de CALL nnnn.

PUNTO 2:

Si la subrutina empieza con PUSH AX, indicar:

- **2.a** Mediante las componentes XXXX:YYYY, donde se encuentra la instrucción PUSH AX y cual es la dirección que aparecerá en el bus de direcciones al buscarse la instrucción PUSH AX.
- **2.b** Qué movimientos de información ocurren durante la ejecución de PUSH AX y con qué valores quedan los registros involucrados.
- 2.c Cómo queda la pila luego de la ejecución de PUSH AX

PUNTO 3:

Si a PUSH AX (de un byte de longitud) sigue la instrucción INT nn (de dos bytes de longitud), cuyo vector de interrupciones contiene las componentes CS=CSIN e IP=IPIN, **indicar:**

- **3.a** Mediante las componentes XXXX:YYYY, en que posición de memoria se encuentra INT66 y cómo aparecerá la misma en el bus de direcciones.
- **3.b** Qué movimientos de información se realizan durante su ejecución para poder resguardar información en la Pila.
- **3.c** Cómo queda la pila luego de los movimientos de información que dispara la ejecución de INT64.
- **3.d** Cuáles son las acciones que faltan realizar para concluir con la ejecución de INT nn en relación con el flag I y la localización de la subrutina del SO que atiende INTnn. Describir la ubicación del vector de interrupción dentro de la Tabla de vectores.
- **3.e** Con qué instrucción termina esta rutina que atiende la Interrupción por software, y qué movimientos de información genera su ejecución.
- 3.f Cómo queda la pila cuando finaliza la ejecución de esta subrutina del SO.
- **3.g** Se puede enmascarar este tipo de interrupciones?

PUNTO 4:

Puesto que la subrutina empezó con PUSH AX e INTnn, indicar:

- **4.a** Con qué instrucciones debe terminar.
- **4.b** Qué movimientos ocurren cuando se ejecuta cada una, y cómo queda la pila luego de cada ejecución.

PUNTO 5:

Realizar un esquema de la memoria, graficando el proceso llevado a cabo entre los Puntos 1 y 4 de este examen, arrancando en la posición de memoria donde se encuentra el llamado a subrutina del Punto 1, y mostrando qué recorrido realiza el procesador buscando instrucciones en la memoria, hasta volver a ese mismo punto.

PUNTO 6:

Realizar un programa en lenguaje ensamblador, que tome como dato un vector de números NATURALES/ENTEROS de 8/16 bits cuya cantidad de elementos se proporciona en la planilla (elem). El vector dato inicia en (Orig). A cada elemento se le deben sumar (sumar), para formar un vector resultado que se guarda a partir de la dirección (Dest). En caso de que la operación de error se deberá interrumpir la operación y guardar el Código de error en la dirección de error.

Tomar los datos de este programa de la planilla provista por el profesor

							Codigo	
Alumno	Vec:Orig	Vec:Dest	Elem	bits	TIPO	Sumar	Error	Dir Error