

Europäisches
PatentamtEuropean
Patent OfficeOffice européen
des brevets

EP 99/5991

Bescheinigung Certificate

Attestation

REC'D 27 OCT 1999

WIPO PCT

EJWV

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

98310694.9

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN
THE HAGUE,
LA HAYE, LE

20/10/99

Europäische
Patentamt

European
Patent Office

Office européen
des brevets

Blatt 2 der Bescheinigung
Sheet 2 of the certificate
Page 2 de l'attestation

Anmeldung Nr.: 98310694.9
Application no.: 98310694.9
Demande n°:

Anmeldetag:
Date of filing:
Date de dépôt: 23/12/98

Anmelder:
Applicant(s):
Demandeur(s):
JANSSEN PHARMACEUTICA N.V.
2340 Beerse
BELGIUM

Bezeichnung der Erfindung:
Title of the invention:
Titre de l'invention:
Drug targets in candida albicans

In Anspruch genommene Priorität(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat: GB	Tag: 14/08/98	Aktenzeichen:	GBA	9817796
State:	Date:	File no.		
Pays:	Date:	Numéro de dépôt:		

Internationale Patentklassifikation:
International Patent classification:
Classification internationale des brevets:

/

Am Anmeldetag benannte Vertragsstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE
Etats contractants désignés lors du dépôt:

Bemerkungen:
Remarks:
Remarques:

- 1 -

19.01.1999

(61)

DRUG TARGETS IN CANDIDA ALBICANS

The present invention is concerned with the identification of genes or functional fragments thereof from *Candida albicans* which are critical for growth and cell division and which genes may be used as selective drug targets to treat *Candida albicans* associated infections. Novel nucleic acid sequences from *Candida albicans* are also provided and which encode the polypeptides which are critical for growth of *Candida albicans*.

Opportunistic infections in immunocompromised hosts represent an increasingly common cause of mortality and morbidity. *Candida* species are among the most commonly identified fungal pathogens associated with such opportunistic infections, with *Candida albicans* being the most common species. Such fungal infections are thus problematical in, for example, AIDS populations in addition to normal healthy women where *Candida albicans* yeasts represent the most common cause of vulvovaginitis.

Although compounds do exist for treating such disorders, such as for example, amphotericin, these drugs are generally limited in their treatment because of their toxicity and side effects. Therefore, there exists a need for new compounds which may be used to treat *Candida* associated infections in addition to compounds which are selective in their action against *Candida albicans*.

Classical approaches for identifying anti-fungal compounds have relied almost exclusively on inhibition of fungal or yeast growth as an endpoint. Libraries of natural products, semi-synthetic, or synthetic chemicals are screened for their ability to kill or arrest growth of the target pathogen or a related

- 2 -

nonpathogenic model organism. These tests are cumbersome and provide no information about a compounds mechanism of action. The promising lead compounds that emerge from such screens must then be
5 tested for possible host-toxicity and detailed mechanism of action studies must subsequently be conducted to identify the affected molecular target.

The present inventors have now identified a range of nucleic acid sequences from *Candida albicans* which
10 encode polypeptides which are critical for its survival and growth. These sequences represent novel targets which can be incorporated into an assay to selectively identify compounds capable of inhibiting expression of such polypeptides and their potential
15 use in alleviating diseases or conditions associated with *Candida albicans* infection.

Therefore, according to a first aspect of the invention there is provided a nucleic acid molecule encoding a polypeptide which is critical for survival
20 and growth of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of nucleotides in Sequence ID Numbers 1 to 3, 5, 6, 8 to 11, 13, 15, 16, 18, 20, 21, 23, 25 to 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61,
25 63, 65, 67, 69 and 71.

A further aspect of the invention comprises a nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida albicans* and which nucleic acid molecule comprises any
30 of the sequences of Sequence ID Numbers 1, 28, 35, 37 and 39 and fragments or derivatives of said nucleic acid molecules.

Also provided by the present invention is a nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida*
35

- 3 -

albicans and which polypeptide has an amino acid sequence according to the sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 5 62, 64, 66, 68, 70 and 72.

Letters utilised in the nucleic acid sequences according to the invention which are not recognisable as letters of the genetic code signify a position in the nucleic acid sequence where one or more of bases 10 A, G, C or T can occupy the nucleotide position.

Representative letters used to identify the range of bases which can be used are as follows:

15	M: A or C
	R: A or G
	W: A or T
	S: C or G
	Y: C or T
	K: G or T
20	V: A or C or G
	H: A or C or T
	D: A or G or T
	B: C or G or T
	N: G or A or T or C

25 In one embodiment of the above identified aspects of the invention the nucleic acid may comprise a mRNA molecule or alternatively a DNA and preferably a cDNA molecule.

30 Also provided by the present invention is a nucleic acid molecule capable of hybridising to the nucleic acid molecules according to the invention under high stringency conditions.

Stringency of hybridisation as used herein refers 35 to conditions under which polynucleic acids are

- 4 -

stable. The stability of hybrids is reflected in the melting temperature (T_m) of the hybrids. T_m can be approximated by the formula:

5

$$81.5^{\circ}\text{C} + 16.6(\log_{10}[\text{Na}^+]) + 0.41 (\% \text{G\&C}) - 6001/l$$

wherein l is the length of the hybrids in nucleotides. T_m decreases approximately by $1-1.5^{\circ}\text{C}$ with every 1% decrease in sequence homology.

10

The nucleic acid capable of hybridising to nucleic acid molecules according to the invention will generally be at least 70%, preferably at least 80 or 90% and more preferably at least 95% homologous to the nucleotide sequences according to the invention.

15

The DNA molecules according to the invention may, advantageously, be included in a suitable expression vector to express polypeptides encoded therefrom in a suitable host.

20

The present invention also comprises within its scope proteins or polypeptides encoded by the nucleic acid molecules according to the invention or a functional equivalent, derivative or bioprecursor thereof.

25

Therefore, according to a further aspect of the invention there is provided a polypeptide having an amino acid sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72. A polypeptide encoded by the nucleic

30

acid molecule according to the invention is also provided, which polypeptide preferably comprises an amino acid sequence of having the sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.

35

- 5 -

An expression vector according to the invention includes a vector having a nucleic acid according to the invention operably linked to regulatory sequences, such as promoter regions, that are capable of effecting expression of said DNA fragments. The term "operably linked" refers to a juxta position wherein the components described are in a relationship permitting them to function in their intended manner. Such vectors may be transformed into a suitable host cell to provide for expression of a polypeptide according to the invention. Thus, in a further aspect, the invention provides a process for preparing polypeptides according to the invention which comprises cultivating a host cell, transformed or transfected with an expression vector as described above under conditions to provide for expression by the vector of a coding sequence encoding the polypeptides, and recovering the expressed polypeptides.

The vectors may be, for example, plasmid, virus or phage vectors provided with an origin of replication, optionally a promoter for the expression of said nucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable markers, such as, for example, ampicillin resistance.

Polynucleotides according to the invention may be inserted into the vectors described in an antisense orientation in order to provide for the production of antisense RNA. Antisense RNA or other antisense nucleic acids may be produced by synthetic means.

In accordance with the present invention, a defined nucleic acid includes not only the identical nucleic acid but also any minor base variations including in particular, substitutions in bases which

- 6 -

result in a synonymous codon (a different codon specifying the same amino acid residue) due to the degenerate code in conservative amino acid substitutions. The term "nucleic acid sequence" also includes the complementary sequence to any single stranded sequence given regarding base variations.

The present invention also advantageously provides nucleic acid sequences of at least approximately 10 contiguous nucleotides of a nucleic acid according to the invention and preferably from 10 to 50 nucleotides. These sequences may, advantageously be used as probes or primers to initiate replication, or the like. Such nucleic acid sequences may be produced according to techniques well known in the art, such as by recombinant or synthetic means. They may also be used in diagnostic kits or the like for detecting the presence of a nucleic acid according to the invention. These tests generally comprise contacting the probe with the sample under hybridising conditions and detecting for the presence of any duplex or triplex formation between the probe and any nucleic acid in the sample.

According to the present invention these probes may be anchored to a solid support. Preferably, they are present on an array so that multiple probes can simultaneously hybridize to a single biological sample. The probes can be spotted onto the array or synthesised *in situ* on the array. (See Lockhart et al., Nature Biotechnology, vol. 14, December 1996 "Expression monitoring by hybridisation to high density oligonucleotide arrays". A single array can contain more than 100, 500 or even 1,000 different probes in discrete locations.

Advantageously, the nucleic acid sequences, according to the invention may be produced using such

- 7 -

recombinant or synthetic means, such as for example using PCR cloning mechanisms which generally involve making a pair of primers, which may be from approximately 10 to 50 nucleotides to a region of the 5 gene which is desired to be cloned, bringing the primers into contact with mRNA, cDNA, or genomic DNA from a human cell, performing a polymerase chain reaction under conditions which bring about amplification of the desired region, isolating the 10 amplified region or fragment and recovering the amplified DNA. Generally, such techniques as defined herein are well known in the art, such as described in Sambrook et al (Molecular Cloning: a Laboratory Manual, 1989).

15 The nucleic acids or oligonucleotides according to the invention may carry a revealing label. Suitable labels include radioisotopes such as ^{32}P or ^{39}S , enzyme labels or other protein labels such as biotin or fluorescent markers. Such labels may be 20 added to the nucleic acids or oligonucleotides of the invention and may be detected using known techniques *per se*.

25 The polypeptide or protein according to the invention includes all possible amino acid variants encoded by the nucleic acid molecule according to the invention including a polypeptide encoded by said molecule and having conservative amino acid changes. Polypeptides according to the invention further include variants of such sequences, including 30 naturally occurring allelic variants which are substantially homologous to said polypeptides. In this context, substantial homology is regarded as a sequence which has at least 70%, preferably 80 or 90% amino acid homology with the polypeptides encoded by 35 the nucleic acid molecules according to the invention.

- 8 -

A nucleic acid which is particularly advantageous is one comprising the sequences of nucleotides illustrated in Figures 1 which is specific to *Candida albicans* with no functionally related sequences in 5 other prokaryotic or eukaryotic organism as yet identified from the respective genomic databases.

Nucleotide sequences according to the invention are particularly advantageous for selective therapeutic targets for treating *Candida albicans* 10 associated infections. For example, an antisense nucleic acid capable of binding to the nucleic acid sequences according to the invention may be used to selectively inhibit expression of the corresponding polypeptides, leading to impaired growth of the 15 *Candida albicans* with reductions of associated illnesses or diseases.

The nucleic acid molecule or the polypeptide according to the invention may be used as a medicament, or in the preparation of a medicament, for 20 treating diseases or conditions associated with *Candida albicans* infection.

Advantageously, the nucleic acid molecule or the polypeptide according to the invention may be provided in a pharmaceutical composition together with a 25 pharmaceutically acceptable carrier, diluent or excipient therefor.

Antibodies to the protein or polypeptide of the present invention may, advantageously, be prepared by techniques which are known in the art. For example, 30 polyclonal antibodies may be prepared by inoculating a host animal, such as a mouse, with the polypeptide according to the invention or an epitope thereof and recovering immune serum. Monoclonal antibodies may be prepared according to known techniques such as 35 described by Kohler R. and Milstein C., Nature (1975)

- 9 -

256, 495-497.

Antibodies according to the invention may also be used in a method of detecting for the presence of a polypeptide according to the invention, which method comprises reacting the antibody with a sample and identifying any protein bound to said antibody. A kit may also be provided for performing said method which comprises an antibody according to the invention and means for reacting the antibody with said sample.

Proteins which interact with the polypeptide of the invention may be identified by investigating protein-protein interactions using the two-hybrid vector system first proposed by Chien et al (1991).

This technique is based on functional reconstitution in vivo of a transcription factor which activates a reporter gene. More particularly the technique comprises providing an appropriate host cell with a DNA construct comprising a reporter gene under the control of a promoter regulated by a transcription factor having a DNA binding domain and an activating domain, expressing in the host cell a first hybrid DNA sequence encoding a first fusion of a fragment or all of a nucleic acid sequence according to the invention and either said DNA binding domain or said activating domain of the transcription factor, expressing in the host at least one second hybrid DNA sequence, such as a library or the like, encoding putative binding proteins to be investigated together with the DNA binding or activating domain of the transcription factor which is not incorporated in the first fusion; detecting any binding of the proteins to be investigated with a protein according to the invention by detecting for the presence of any reporter gene product in the host cell; optionally isolating second hybrid DNA sequences encoding the binding protein.

- 10 -

An example of such a technique utilises the GAL4 protein in yeast. GAL4 is a transcriptional activator of galactose metabolism in yeast and has a separate domain for binding to activators upstream of the 5 galactose metabolising genes as well as a protein binding domain. Nucleotide vectors may be constructed, one of which comprises the nucleotide residues encoding the DNA binding domain of GAL4. These binding domain residues may be fused to a known 10 protein encoding sequence, such as for example the nucleic acids according to the invention. The other vector comprises the residues encoding the protein binding domain of GAL4. These residues are fused to residues encoding a test protein. Any interaction 15 between polypeptides encoded by the nucleic acid according to the invention and the protein to be tested leads to transcriptional activation of a reporter molecule in a GAL-4 transcription deficient yeast cell into which the vectors have been 20 transformed. Preferably, a reporter molecule such as β -galactosidase is activated upon restoration of transcription of the yeast galactose metabolism genes.

Further provided by the present invention is one or more *Candida albicans* cells comprising an induced 25 mutation in the DNA sequence encoding the polypeptide according to the invention.

A further aspect of the invention provides a method of identifying compounds which selectively inhibit or interfere with the expression, or the 30 functionality of polypeptides expressed from the nucleotides sequences according to the invention or the metabolic pathways in which these polypeptides are involved and which are critical for growth and survival of *Candida albicans*, which method comprises 35 (a) contacting a compound to be tested with one or

- 11 -

more *Candida albicans* cells having a mutation in a nucleic acid molecule according to the invention which mutation results in overexpression or underexpression of said polypeptides in addition to one or more wild type *Candida* cells, (b) monitoring the growth and/or activity of said mutated cell compared to said wild type wherein differential growth or activity of said one or more mutated *Candida* cells provides an indication of selective action of said compound on said polypeptide or another polypeptide in the same or a parallel pathway.

Compounds identifiable or identified using the method according to the invention, may advantageously be used as a medicament, or in the preparation of a medicament to treat diseases or conditions associated with *Candida albicans* infection. These compounds may also advantageously be included in a pharmaceutical composition together with a pharmaceutically acceptable carrier, diluent or excipient therefor.

A further aspect of the invention provides a method of identifying DNA sequences from a cell or organism which DNA encodes polypeptides which are critical for growth or survival, which method comprises (a) preparing a cDNA or genomic library from said cell or organism in a suitable expression vector which vector is such that it can either integrate into the genome in said cell or that it permits transcription of antisense RNA from the nucleotide sequences in said cDNA or genomic library, (b) selecting transformants exhibiting impaired growth and determining the nucleotide sequence of the cDNA or genomic sequence from the library included in the vector from said transformant. Preferably, the cell or organism may be any yeast or filamentous fungi, such as, for example, *Saccharomyces cervisiae*,

- 12 -

Saccharomyces pombe or Candida albicans.

A further aspect of the invention provides a pharmaceutical composition comprising a compound according to the invention together with a 5 pharmaceutically acceptable carrier, diluent or excipient therefor.

A further aspect of the invention comprises nucleic acid molecules encoding proteins which are critical for survival and growth of *Candida albicans*, 10 which nucleic acid molecules comprise any of the sequences illustrated in Figures 5 to 29. Polypeptides which are critical for survival and growth of *Candida albicans* are also encompassed within the present invention, and which polypeptides comprise 15 any of the amino acid sequences illustrated in Figures 29 to 39.

The present invention may be more clearly understood with reference to the accompanying example, which is purely exemplary, with reference to the 20 accompanying drawings wherein:

Figure 1: is a diagrammatic representation of plasmid pGAL1PNiST-1.

25 **Figure 2:** is a nucleotide sequence of plasmid pGAL1PNiST-1 of Figure 1.

Figure 3: is a diagrammatic representation of plasmid pGAL1PSiST-1.

30 **Figure 4:** is a nucleotide sequence of plasmid pGAL1PSiST-1 of Figure 3.

Figures 5 to 28: illustrate the nucleotide sequences of oligonucleotides 35

- 13 -

5 encoding polypeptides of
previously unknown function
isolated from *Candida albicans*
which are critical for its
survival and growth, according to
the invention.

5

10

Figures 29 to 39: illustrate the amino acid
sequences of polypeptides from
Candida albicans which are
critical for its survival and
growth, according to the
invention.

15

Example 1

Identification of novel drug targets in *C.*

albicans by anti-sense and disruptive integration

20

The principle of the approach is based on the
fact that when a particular *C. albicans* mRNA is
inhibited by producing the complementary anti-sense
RNA, the corresponding protein will decrease. If this
protein is critical for growth or survival, the cell
producing the anti-sense RNA will grow more slowly or
will die.

25

Since anti-sense inhibition occurs at mRNA level,
the gene copy number is irrelevant, thus allowing
applications of the strategy even in diploid
organisms.

30

Anti-sense RNA is endogenously produced from an
integrative or episomal plasmid with an inducible
promoter; induction of the promoter leads to the
production of a RNA encoded by the insert of the
plasmid. This insert will differ from one plasmid to
another in the library. The inserts will be derived
from genomic DNA fragments or from cDNA to cover-to

35

- 14 -

the extent possible- the entire genome.

The vector is a proprietary vector allowing integration by homologous recombination at either the homologous insert or promoter sequence in the *Candida* genome. After introducing plasmids from cDNA or genomic libraries into *C. albicans*, transformants are screened for impaired growth after promoter (& thus anti-sense) induction in the presence of lithium acetate. Lithium acetate prolongs the G1 phase and thus allows anti-sense to act during a prolonged period of time during the cell cycle. Transformants which show impaired growth in both induced and non-induced media, thus showing a growth defect due to integrative disruption, are selected as well.

Transformants showing impaired growth are supposed to contain plasmids which produce anti-sense RNA to mRNAs critical for growth or survival. Growth is monitored by measuring growth-curves over a period of time in a device (Bioscreen Analyzer, Labsystems) which allows simultaneous measurement of growth-curves of 200 transformants.

Subsequently plasmids can be recovered from the transformants and the sequence of their inserts determined, thus revealing which mRNA they inhibit. In order to be able to recover the genomic or cDNA insert which has integrated into the *Candida* genome, genomic DNA is isolated, cut with an enzyme which cuts only once into the library vector (and estimated approx. every 4096 bp in the genome) and religated. PCR with primers flanking the insert will yield (partial) genomic or cDNA inserts as PCR fragments which can directly be sequenced. This PCR analysis (on ligation reaction) will also show us how many integrations occurred. Alternatively the ligation reaction is transformed to *E. coli* and PCR analysis is performed

- 15 -

on colonies or on plasmid DNA derived thereof.

This method is employed for a genome wide search for novel *C. albicans* genes which are important for growth or survival.

5

Materials & Methods

Construction of pGAL1PNiST-1

The backbone of the pGAL1PNiST-1 vector (integrative anti-sense *SfiI*-*NotI* vector) is pGEM11Zf(+) (Promega Inc.). First, the CaMAL2 EcoRI/*SalI* promoter fragment from pDBV50 (D.H. Brown et al.) was ligated into EcoRI/*SalI*-opened pGEM11Zf(+) resulting in the intermediate construct pGEMMAL2P-1. Into the latter (*MscI/CIP*) the CaURA3 selection marker was cloned as a *Eco47III/XmnI* fragment derived from pRM2. The resulting pGEMMAL2P-2 vector was *NotI/HindIII* opened in order to accept the *NotI*-stuffer-*SfiI* cassette from pPCK1NiSCYCT-1 (*EagI/HindIII* fragment): pMAL2PNiST-1. Finally, the plasmid pGAL1PNiST-1 was constructed by exchanging the *SalI/Ecl136II* MAL2 promoter in pMAL2PNiST-1 by the *XhoI/SmaI* GAL1 promoter fragment derived from pRM2GAL1P.

25

Construction of pGAL1PSiST-1

The vector pGAL1PSiST-1 was created for cloning the small genomic DNA fragments (flanked by *SfiI* sites) behind the GAL1 promoter. The only difference with pGAL1PNiST-1 is that the hIFN β (stuffer fragment) insert fragment in pGAL1PSiST-1 is flanked by two *SfiI* sites instead of a *SfiI* and a *NotI* site as in pGAL1PNiST-1. To construct pGAL1PSiST-1 the EcoRI-HindIII fragment, containing hIFN β flanked by a *SfiI* and a *NotI* site, of pMAL2pHiET-3 (unpublished) was exchanged by the EcoRI-HindIII fragment, containing

- 16 -

hIFN β flanked by two *SfiI* sites, from YCp50S-S (an *E. coli* / *S. cerevisiae* shuttle vector derived from the plasmid YCp50, which is deposited in the ATCC collection (number 37419; Thrash et al., 1985); an 5 *EcoRI-HindIII* fragment, containing the gene hIFN β , which is flanked by two *SfiI* sites, was inserted in YCp50, creating YCp50S-S), resulting into plasmid pMAL2PSIST-1. The *mal2* promoter from pMAL2PSIST-1 (by 10 a *NaeI-FspI* digest) was further replaced by the *gall* promoter from pGAL1PNIST-1 (via a *XhoI-SalI* digest), creating the vector pGAL1PSIST-1.

Candida albicans genomic library

* Preparation of the genomic DNA fragments

15 A *Candida albicans* genomic DNA library with small DNA fragments (400 to 1,000 bp) was prepared. Genomic DNA of *Candida albicans* B2630 was isolated following a modified protocol of Blin and Stafford (1976). The quality of the isolated genomic DNA was checked by gel electrophoresis. Undigested DNA was located on the gel above the marker band of 26,282 bp. A little smear, caused by fragmentation of the DNA, was present. 20 To obtain enrichment for genomic DNA fragments of the desired size, the genomic DNA was partially digested. Several restriction enzymes (*AluI*, *HaeIII* and *RsaI*; 25 all creating blunt ends) were tried out. The appropriate digest conditions have been determined by titration of the enzyme. Enrichment of small DNA fragments was obtained with 70 units of *AluI* on 10 μg of genomic DNA for 20 min. T4 DNA polymerase (Boehringer) and dNTPs (Boehringer) were added to 30 polish the DNA ends. After extraction with phenol-chloroform the digest was size-fractionated on an agarose gel. The genomic DNA fragments with a length of 35 500 to 1,250 bp were eluted from the gel by

- 17 -

centrifugal filtration (Zhu et al., 1985). *SfiI* adaptors (5' GTTGGCCTTT) or (5' AGGCCAAC) were attached to the DNA ends (blunt) to facilitate cloning of the fragments into the vector. Therefore, a 8-mer
5 and 11-mer oligonucleotide (comprising the *SfiI* site) were kinased and annealed. After ligation of these adaptors to the DNA fragments a second size-fractionation was performed on an agarose gel. The DNA fragments of 400 to 1150 bp were eluted from the
10 gel by centrifugal filtration.

* Preparation of the pGAL1PSIST-1 vector fragment

The small genomic DNA fragments were cloned after the GAL1 promoter in the vector pGAL1PSIST-1. Qiagen-purified pGAL1PSIST-1 plasmid DNA was digested with
15 *SfiI* and the largest vector fragment eluted from the gel by centrifugal filtration (Zhu et al., 1985). Ligation with a control DNA fragment, flanked by *SfiI* sites, was performed as a control. The ligation mix was electroporated to MC1061 *E. coli* cells. Plasmid
20 DNA of 24 clones was analyzed. In all cases the control fragment was inserted in the pGAL1PSIST-1 vector fragment.

* Upscaling

25 All genomic DNA fragments (450 ng) were ligated into the pGAL1PSIST-1 vector (20 ng). After electroporation at 2500V, 40 μ F circa 400,000 clones were obtained. These clones were pooled into three groups and stored as glycerol slants. Also Qiagen-purified DNA was prepared from these clones. A clone
30 analysis showed an average insert length of 600 bp and a percentage of 91 for clones with an insert. The size of the library corresponds to 5 times the diploid genome. The genomic DNA inserts are sense or anti-sense orientated in the vector.
35

- 18 -

Candida albicans cDNA library

Total RNA was extracted from *Candida albicans* B2630 grown on respectively minimal (SD) and rich (YPD) medium as described by Chirgwin et al in 5 Sambrook et al. mRNA was prepared from total RNA using the Invitrogen Fast Track procedure.

First strand cDNA is synthesised with the Superscript Reverse Transcriptase (BRL) and with an 10 oligo dT-NotI Primer adapter. After second strand synthesis, cDNA is polished with Klenow enzyme and purified over a Sephadryl S-400 spun column. Phosphorylated *Sfi*I adapters are then ligated to the 15 cDNA, followed by digestion with the *Not*I restriction enzyme. The *Sfi*I/*Not*I cDNA is then purified and sized on a Biogel column A150M.

First fraction contains approximately 38,720 clones by transformation, the second fraction only 1540 clones. Clone analysis:

Fr. I: 22/24 inserts, 16 ≥ 1000 bp, 4 ≥ 2000 bp, 20 average size: 1500 bp.

Fr. II: 9/12 inserts, 3 ≥ 1000 bp, average size: 960 bp cDNA was ligated in a *Not*I/*Sfi*I opened pGAL1PNIST-1 vector (anti-sense)

25 *Candida* transformation

The host strain used for transformation is a *C. albicans* ura3 mutant, CAI-4, which contains a deletion in orotidine-5'-phosphate decarboxylase and was obtained from William Fonzi, Georgetown University 30 (Fonzi and Irwin). CAI-4 was transformed with the above described cDNA library or genomic library using the Pichia spheroplast module (Invitrogen). Resulting transformants were plated on minimal medium supplemented with glucose (SD, 0.67% or 1.34% Yeast 35 Nitrogen base w/o amino acids + 2% glucose) plates

- 19 -

and incubated for 2-3 days at 30°C.

Screening for mutants

Starter cultures were set up by inoculating each colony in 1 ml SD medium and incubating overnight at 30°C and 300 rpm. Cell densities were determined using a Coulter counter (Coulter Z1; Coulter electronics limited). 250.000 cells/ml were inoculated in 1 ml SD medium and cultures were incubated for 24 hours at 30°C and 300 rpm. Cultures were washed in minimal medium without glucose (S) and the pellet resuspended in 650 µl S medium. 8 µl of this culture is used for inoculating 400 µl cultures in a Honeywell-100 plate (Bioscreen analyzer; Labsystems). Each transformant was grown during three days in S medium containing LiAc; pH 6.0, with 2% glucose/2% maltose or 2% galactose/2% maltose respectively while shaking every 3 minutes for 20 seconds. Optical densities were measured every hour during three consecutive days and growth curves were generated (Bioscreen analyzer; Labsystems).

Growth curves of transformants grown in respectively anti-sense non-inducing (glucose/maltose) and inducing (galactose/maltose) medium are compared and those transformants showing impaired growth upon anti-sense induction are selected for further analysis. Transformants showing impaired growth by virtue of integration into a critical gene are also selected.

30

Isolation of genomic or cDNA inserts

Putatively interesting transformants are grown in 1.5 ml SD overnight and genomic DNA is isolated using the Nucleon MI Yeast kit (Clontech). Concentration of genomic DNA is estimated by analyzing a sample on an

- 20 -

agarose gel.

20 ng of genomic DNA is digested for three hours with an enzyme that cuts uniquely in the library vector (SacI for the genomic library; PstI for the 5 cDNA library) and treated with RNase. Samples are phenol/chloroform extracted and precipitated using NaOAc/ethanol.

The resulting pellet is resuspended in 500 μ l ligation mixture (1 x ligation buffer and 4 units of 10 T4 DNA ligase; both from Boehringer) and incubated overnight at 16°C.

After denaturation (20 min 65°C), purification (phenol/chloroform extraction) and precipitation (NaOAc/ethanol) the pellet is resuspended in 10 μ l 15 MilliQ (Millipore) water.

PCR analysis

Inverse PCR is performed on 1 μ l of the precipitated ligation reaction using library vector 20 specific primers (oligo23 5' TGC-AGC-TCG-ACC-TCG-ACT-G 3' and oligo25 5' GCG-TGA-ATG-TAA-GCG-TGA-C 3' for the genomic library; 3pGALNistPCR primer :5'TGAGCAGCTGCCGTGCGC 3' and 5pGALNistPCR primer: 5'GAGTTATACCCTGCAGCTCGAC 3' for the cDNA library; both 25 from Eurogentec) for 30 cycles each consisting of (a) 1 min at 95 °C, (b) 1 min at 57 °C, and (c) 3 min at 72 °C. In the reaction mixture 2.5 units of Taq polymerase (Boehringer) with TaqStart antibody (Clontech) (1:1) were used, and the final 30 concentrations were 0.2 μ M of each primer, 3 mM MgCl₂ (Perkin Elmer Cetus) and 200 μ M dNTPs (Perkin Elmer Cetus). PCR was performed in a Robocycler (Stratagene).

- 21 -

Sequence determination

Resulting PCR products were purified using PCR purification kit (Qiagen) and were quantified by comparison of band intensity on EtBr stained agarose gel with the intensity of DNA marker bands. The amount of PCR product (expressed in ng) used in the sequencing reaction is calculated as the length of the PCR product in basepairs divided by 10. Sequencing reactions were performed using the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit according to the instructions of the manufacturer (PE Applied Biosystems, Foster City, CA) except for the following modifications.

The total reaction volume was reduced to 15 μ l. Reaction volume of individual reagents were changed accordingly. 6.0 μ l Terminator Ready Reaction Mix was replaced by a mixture of 3.0 μ l Terminator Ready Reaction Mix + 3.0 μ l Half Term (GENPAK Limited, Brighton, UK). After cycle sequencing, reaction mixtures were purified over Sephadex G50 columns prepared on Multiscreen HV opaque microtiter plates (Millipore, Molsheim, Fr) and were dried in a speedVac. Reaction products were resuspended in 3 μ l loading buffer. Following denaturation for 2 min at 95°C, 1 μ l of sample was applied on a 5% Long Ranger Gel (36 cm well-to-read) prepared from Singel Packs according to the supplier's instructions (FMC BioProducts, Rockland, ME). Samples were run for 7 hours 2X run on a ABI 377XL DNA sequencer. Data collection version 2.0 and Sequence analysis version 3.0 (for basecalling) software packages are from PE Applied Biosystems. Resulting sequence text files were copied onto a server for further analysis.

- 22 -

Sequence analysis

Nucleotide sequences were imported in the VectorNTI software package (InforMax Inc, North Bethesda, MD, USA), and the vector and insert regions of the sequences were identified. Sequence similarity searches against public and commercial sequence databases were performed with the BLAST software package (Altschul et al., 1990) version 1.4. Both the original nucleotide sequence and the six-frame conceptual translations of the insert region were used as query sequences. The used public databases were the EMBL nucleotide sequence database (Stoesser et al., 1998), the SWISS-PROT protein sequence database and its supplement TrEMBL (Bairoch and Apweiler, 1998), and the ALCES *Candida albicans* sequence database (Stanford University, University of Minnesota). The commercial sequence databases used were the LifeSeq® human and PathoSeq™ microbial genomic databases (Incyte Pharmaceuticals Inc., Palo Alto, CA, USA), and the GENESEQ patent sequence database (Derwent, London, UK). Three major results were obtained on the basis of the sequence similarity searches: function, novelty, and specificity. A putative function was deduced on the basis of the similarity with sequences with a known function, the novelty was based on the absence or presence of the sequences in public databases, and the specificity was based on the similarity with vertebrate homologues.

30 Methods

Blastx of the nucleic acid sequences against the appropriate protein databases: Swiss-Prot for clones of which the complete sequence is present in the public domain, and paorfp (PathoSeq™) for clones of which the complete sequences is not present in the

- 23 -

public domain.

The protein to which the translated nucleic acid sequence corresponds to is used as a starting point. The differences between this protein and our 5 translated nucleic acid sequences are marked with a double line and annotated above the protein sequence. The following symbols are used:

a one-letter amino acid code or the ambiguity code X is used if our translated nucleic acid sequence 10 has another amino acid on a certain position,

the stop codon sign * is used if our translated nucleic acid sequence has a stop codon on a certain position,

15 The letters fs (frame shift) are used if a frame shift occurs in our translated nucleic acid sequence, and another reading frame is used,

20 the words ambiguity or ambiguities are used if a part of our translated nucleic acid sequence is present in the proteins, but not visible in the alignments of the blast results,

The phrase missing sequence is used if the translated nucleic acid sequence does not comprise that part of the protein.

25 Blastx: compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.

Screening for compounds modulating expression of polypeptides critical for growth and survival of C. 30 albicans

The method proposed is based on observations (Sandbaken et al., 1990; Hinnebusch and Liebman 1991; Ribogene PCT WO 95/11969, 1995) suggesting that underexpression or overexpression of any component of 35 a process (e.g. translation) could lead to altered

- 24 -

sensitivity to an inhibitor of a relevant step in that process. Such an inhibitor should be more potent against a cell limited by a deficiency in the macromolecule catalyzing that step and/or less potent 5 against a cell containing an excess of that macromolecule, as compared to the wild type (WT) cell.

Mutant yeast strains, for example, have shown 10 that some steps of translation are sensitive to the stoichiometry of macromolecules involved. (Sandbaken et al.). Such strains are more sensitive to compounds which specifically perturb translation (by acting on a component that participates in translation) but are equally sensitive to compounds with other mechanisms 15 of action.

This method thus not only provides a means to identify whether a test compound perturbs a certain process but also an indication of the site at which it exerts its effect. The component which is present in altered form or amount in a cell whose growth is 20 affected by a test compound is potentially the site of action of the test compound.

The assay to be set up involves measurement of growth of an isogenic strain which has been modified only in a certain specific allele, relative to a wild 25 type (WT) *C. albicans* strain, in the presence of R-compounds. Strains can be ones in which the expression of a specific essential protein is impaired upon induction of anti-sense or strains which carry disruptions in an essential gene. An *in silico* 30 approach to finding novel essential genes in *C. albicans* will be performed. A number of essential genes identified in this way will be disrupted (in one allele) and the resulting strains can be used for comparative growth screening.

35

- 25 -

Assay for High Throughput screening for drugs

35 μ l minimal medium (S medium + 2% galactose + 2% maltose) is transferred in a transparent flat-bottomed 96 well plate using an automated pipetting system (Multidrop, Labsystems). A 96-channel pipettor (Hydra, Robbins Scientific) transfers 2.5 μ l of R-compound at 10^{-3} M in DMSO from a stock plate into the assay plate.

The selected *C. albicans* strains (mutant and parent (CAI-4) strain) are stored as glycerol stocks (15%) at -70°C. The strains are streaked out on selective plates (SD medium) and incubated for two days at 30°C. For the parent strain, CAI-4, the medium is always supplemented with 20 μ g/ml uridine. A single colony is scooped up and resuspended in 1 ml minimal medium (S medium + 2% galactose + 2% maltose). Cells are incubated at 30°C for 8 hours while shaking at 250 rpm. A 10 ml culture is inoculated at 250.000 cells/ml. Cultures are incubated at 30°C for 24 hours while shaking at 250 rpm. Cells are counted in Coulter counter and the final culture (S medium + 2% galactose + 2% maltose) is inoculated at 20.000 to 50.000 cells/ml. Cultures are grown at 30°C while shaking at 250 rpm until a final OD of 0.24 (+/- 0.04) 6nM is reached.

200 μ l of this yeast suspension is added to all wells of MW96 plates containing R-compounds in a 450 μ l total volume. MW96 plates are incubated (static) at 30°C for 48 hours.

Optical densities are measured after 48 hours.

Test growth is expressed as a percentage of positive control growth for both mutant (x) and wild type (y) strains. The ratio (x/y) of these derived variables is calculated.

- 26 -

References

Thrash C., Bankier A. T., Barrell B. G. and Stern glanz R. (1985) *Proc. Natl. Acad. Sci. USA* 82: 4374-4378.

5

Blin N. and Stafford D. W. (1976) *Nucleic Acids Res.* 3: 2303-2308.

Zhu J., Kempenaers W., Van Der Straeten D., Contreras R., and Fiers W. (1985) *Bio/Technology* 3: 1014-1016.

Sambrook J., Fritsch E.F. and Maniatis T. (1989) *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

15

Fonzi W. and Irwin H. (1993) *Genetics* 134:717-728.
Altschul S.F, Gish W., Miller W., Myers E.W., Lipman D.J. (1990) *J. Mol. Biol.* 215(3):403-410.

20

Bairoch A. and Apweiler R. (1998) *Nucleic Acids Res.* 26(1):38-42.

25

Stoesser G., Moseley M.A., Sleep J., McGowran M., Garcia-Pastor M., Sterk P. (1998) *Nucleic Acids Res.* 26(1):8-15.

Chien et al., (1991) *Proc. Natl. Acad. Sci USA* 88, 9578-9582.

30

Sandbaken M.G. Lupisella J.A., DiDomenico B. and Chakraburty K., *J. Biol. Chem.* 265:15838-15844, 1990.

35

Hinnebusch A.G. and Lieberman S.W., in : *The Molecular Biology of the Yeast Saccharomyces*, Broach J.R., Pringle J.R. and Jones E.W., eds., CSH Laboratory

- 27 -

Press; NY 1991.

Patent application RiboGene Inc., PCT WO 95./11969,
1995.

5

Brown, D.H. et al., Molecular General Genetics 251 (1)
75-80, 1996.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

(A) NAME: Janssen Pharmaceutica
 (B) STREET: Turnhoutseweg 30
 (C) CITY: Beerse
 (E) COUNTRY: Belgium
 (F) POSTAL CODE (ZIP): B-2340
 (G) TELEPHONE: +32 (0)14/60.21.11
 (H) TELEFAX: +32 (0) 14/60.28.41

(ii) TITLE OF INVENTION: DRUG TARGETS IN CANDIDA ALBICANS

(iii) NUMBER OF SEQUENCES: 72

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: GB 9817796.7
 (B) FILING DATE: 14-AUG-1998

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 255 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AACGTTCTGTG CAAAAGGCTA TACTGGTGT ATCCACGCAG ATGAAGAGCA AGTTAACATCA	60
ACTCTTGTC AATTAATGCT GTACTTGTGT TCATTTATT TGCTGGCATT TAAAGAATAC	120
CCATAGTTCA GAAAATAAAA TTGAAAAATT TAAAAAAA CGCAATATCA TTCATTTTT	180
TTGTTTTTTT GACAATAATA TTAATATGTA GTTACCAATG TTTTTAGATT TTATATGTTT	240
TGAAAAAATA GTTTG	255

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 648 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

AACCTCTTAT TCGGTTCTAG TGTCTCAATT GGTTATCCAT TAACATCTAT TCCCAACTCC	60
ATCATTATTG GCAATAAATA AATGGGTGTT ATATCTATTG GTAATAACTA AACTGGTGTC	120
AATTCAATTG CAATATGGTC ATGACAATTG AAAGTGTAC TGTTCTGGTT TACATATTCT	180
ACAGGTTACA ACTATTGATT GGTTAGAAGT TTGGTTCAA CATCACCTGT TGCTAAGAAT	240
AAATGTTGGT CATATCAATT GAATCATTG TTGGTGTAT GGTAAGTAAA TGCTGGTTAT	300
ATCTATTATC TACAACCACC AAGTGATAAA TGCTGAACCG TAGTCACCAA CTGTTATGCT	360
GGTTGTATCT ATTGACTAAA ACTACCCCTAG GGATAAAATGC TGAACCGTGG TTACCAAACGT	420
TTATGCTGGT TGTATCTATT AACTGCAACC ACCAAATGAT AAATGCTGAA CCATAATTAC	480
CAACTGTTAC ATTGCTGGTA CTACATTAAG AATAAATGCT GCATCTACAA GTACCACCTG	540
TTGTGTTAAT AAATGCTGCA CCTGCTAGTA CAACTGTTGC TGGTCATGAT AGTTACTACA	600
CATTACACAC CAGACAGTGG CAAACAAGGT TATGTAGAAA CCAACGTT	648

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 904 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

AACTGTCCTG TGAAGACGAA CATCACAAACC ACAATCATGG TCATAACCAA AATCACAATC	60
ATGTTGCTCC TATTCTACA ACAGCTGGAC AATCATTAAA TAATAAAATT GATACATCTA	120
AAAGTACAGC TCTCAACATG GCCAACTCTG CTGACGATCT AGCAAAAGTT TTCAAAAGATT	180
CGACTAAAAA ATATCAAATC AAACCAATTA TCAAATCAGA CAGTGATGAA CAAATGATTA	240
TCAACATTCC ATTTCTTAAT GGTAGTGTCA AATTGTATTG GATAATTCTA CGTACCAATG	300
GGGATTTGTA TTGTCCAAA ACAATAAAAT TATTCAAAAA TGACACATCA ATTGATTTG	360
ATAATGTGGA TTCGAAGAAA CCAATACAGG TGTAACTCA TCCTCAAGTT GGTGTTGCTA	420
ATAATGATAG CGATGATCTT CCAGAGTTT TGGAATCAAA TAACGATGAC GATTTGTCG	480
AACATTATGT GTCTCGACAT AAATTCACTG GGGTAAATCA ATTGACAATA TTTATTGAAG	540
ATATTTATGA TGAAGGAGAA GAAGAGTGTGTC ATTTACATTC AATTGAATTG AGAGGGGAAT	600
TCACTGAATT AAACAAAGAC CCTGTCATTA CATTATATGA ACTGGCTGCT AACCTGCTG	660
ATCATAAGAA TTTAACGATT GTTGAAAATC AAAATCTAGC ATAAAACAAA GAAGTGAAG	720
GTATCAGATA AGCTGGTTAC ATTACAATTG ATCTAATTGAA GAACTCAAG GTATTTAAAT	780
TTGCCGTTT GCGATAATAT AACATGGTCA AGAACGTTGA ATCGATTACG TTAATGGTTT	840
AGCTAATTGA TTTTAGGAT CGAGTATTGAGTGAATAA ACAATAAACCA AGAATGATGA	900
ATTG	904

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 232 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

```

Ser Cys Glu Asp Glu His His Asn His Asn His Gly His Asn Gln Asn
1           5          10          15

His Asn His Val Ala Pro Ile Pro Thr Thr Ala Gly Gln Ser Leu Asn
20          25          30

Asn Lys Ile Asp Thr Ser Lys Val Thr Ala Leu Asn Met Ala Asn Ser
35          40          45

Ala Asp Asp Leu Ala Lys Val Phe Lys Asp Ser Thr Lys Lys Tyr Gln
50          55          60

Ile Lys Pro Ile Ile Lys Ser Asp Ser Asp Glu Gln Met Ile Ile Asn
65          70          75          80

Ile Pro Phe Leu Asn Gly Ser Val Lys Leu Tyr Ser Ile Ile Leu Arg
85          90          95

Thr Asn Gly Asp Leu Tyr Cys Pro Lys Thr Ile Lys Leu Phe Lys Asn
100         105         110

Asp Thr Ser Ile Asp Phe Asp Asn Val Asp Ser Lys Lys Pro Ile Gln
115         120         125

Val Leu Thr His Pro Gln Val Gly Val Ala Asn Asn Asp Ser Asp Asp
130         135         140

Leu Pro Glu Phe Leu Glu Ser Asn Asn Asp Asp Asp Phe Val Glu His
145         150         155         160

Tyr Val Ser Arg His Lys Phe Thr Gly Val Asn Gln Leu Thr Ile Phe
165         170         175

Ile Glu Asp Ile Tyr Asp Glu Gly Glu Glu Cys His Leu His Ser
180         185         190

Ile Glu Leu Arg Gly Glu Phe Thr Glu Leu Asn Lys Asp Pro Val Ile
195         200         205

Thr Leu Tyr Glu Ser Ala Ala Asn Pro Ala Asp His Lys Asn Leu Thr
210         215         220

Ile Val Glu Asn Gln Asn Leu Ala
225         230

```

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 608 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AACCTACAAA AGACTCACAT GTGCTGTACA ATAAATTCT GGATAAGCAT ATAAGTGATG	60
AGCAACTATC ACACTTACTC GACAATCATA AACCCAACTCT AGTGAACCTACC ACAACTTTAA	120
TTGATTCTAT CAAAGAAAGT GAACTGTTAT ATAATACCAT GGACAGTTTG ATGATAAAAT	180
CCATCAATTTC TCCTGCAGCC ATGTACCGAT CAAATGACAA CAATTACCAA TCACCAATCG	240
AGTATTATTC TAACAGAGTA AAATTGCTCA CACAAGAGTT ATACGAAGAT TCAGTCAAAT	300
ATGGCAAGTT TCTACAGAGT GGTAATAATC ATATATATCA ATTACGAAGT AGGATTTAC	360
AGACCTTGA TCAGTTGTCA GAGAGTCACT ATTCTTTAAA TGAACATATAT AATAAAGACA	420
TGTCTTACCC AGAAACATTA CACGGATCTT TCAAGAAATG GGATCAACAA AGAAATAAAG	480
TATTGTCCAA AGTGAATCT ATAAAAAGTG ATACAAGCAA ACATGGAGCC AAATTATTCA	540
CCTTATTAGA TGAAGTTAAT GATGTTGATG ACGAGATCAA ACTTTGGAA GCAAAACTAC	600
AGCAGGTT	608

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1497 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GATATCTGCA GAATTCGGCT TCTCTCTCAT CTTCACACAA TGCATTTAC AAGTAGCCTA	60
CTAGCCACCT TGATATGGTT TACATTACCG GTTCAAAGTT TGAATACTGA ATCTAGGACA	120
ACTTCAAATA ACACAATATC AATACTTACA AACCATTTTC AAATACTAAA GGATTGCTA	180
CCATATAGCA AAACCTCTAA ACCGCAAATC AAGGAATCCA GACCGTTGAT TAAAGTTCTG	240
AGAGATGGAG TGCCAATAAA TTTCCACAGG GCTCCGGCTA TAATAATGAA ATCGAACAAA	300
ACAGACGATT TAGTCAGGAA TAGCAATAAA ACAATGGTGC TAACTGAAAT AAAAACGATT	360
ACTGAATTG CAACTACCAC TGTTTCCCCCT ACACAAGAA TTCAAGCACT ACAGATAAAC	420
CTTAACACGT TATCAATAGA GACTTCAACA CCAACATTCC AATCCCATGAA CTTTCCACCG	480
ATTACCATTG AAGACACACC CAAAACACTA GAACCAGAAG AATCGTCAGA TGCTTTGCAG	540
AGGGATGCAT TTGATCAAAT TAAGAAACTA GAAAATTGG TATTGGATTG GAGACTTGAA	600
ATGAAAGAGC AACAAAAGAG TTTCAACGAT CAATTAGTGG ATATATATAC CGCAAGAAGT	660
ATTGTTCCAA TTTATACTAC ACATATCGTC ACTTCGGCGA TTCCATCGTA TGTACCAAAA	720
GAAGAAGTAA TGGTTTCACA TGATACTGCA CCAATTGTA GTCGTCCTAG AACAGATATT	780

CCAGTATCTC AACGAATTGA TACTATCTCA AAACATAAAA TGAATGGAAA AAATATATTG	840
AACAACAATC CTCCGCCCAA TTCAAGTTTA ATAGTTCCCTC AGTTTCAGTT CCATGAAAGA	900
ATGGCCACCA AAACCGAAGT AGCTTATATG AAACCAAAAA TTGTCTGGAC CAACTTCCA	960
ACCACTACTG CAACGTCAAT GTTGACAAT TTTATTTAA AAAATCTTGT TGACGAAACG	1020
GATTCTGAAA TTGATAGTGG TGAAACTGAA TTGTCTGACG ATTATTATTA CTATTATAGT	1080
TACGAAGATG ATGGTAAAGA AGACGATAGT GATGAGATTAA CGGCTCAAAT ACTATTATCC	1140
AATTCAAGAAT TAGGCACGAA GACGCCAAAT TTTGAGGATC CTTTGAAACA AATCAATATT	1200
GAAGACAATA AAGTAATATC TGTTAACATA CCAAAGACAA AGAAACCTAC TACAACAGTA	1260
TTTGGCACCT CTACTAGTGC ATTATCAACT TTTGAAAGTA CAATATTGA AATTCCAAA	1320
TTCTTTATG GTAGCAGAAG AAAACAACGT AGCTCATTCA AAAATAAGAA CAGTACAATC	1380
AAATTTGATG TGTTGATTG GATATTTGAA AGTGGTACTA CCAATGAGAA AGTACATGGA	1440
TTAGTGTGAG TGTCTAGTGG TGTTCTACTA GGAACCTGTC TATTGTTCAT TTTGTAG	1497

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 485 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met	His	Phe	Thr	Ser	Ser	Leu	Leu	Ala	Thr	Leu	Ile	Trp	Phe	Thr	Leu
1						5				10					15
Pro	Val	Gln	Ser	Leu	Asn	Thr	Glu	Ser	Arg	Thr	Thr	Ser	Asn	Asn	Thr
						20			25					30	
Ile	Ser	Ile	Leu	Thr	Asn	His	Phe	Gln	Ile	Leu	Lys	Asp	Leu	Leu	Pro
						35		40				45			
Tyr	Ser	Lys	Thr	Ser	Lys	Pro	Gln	Ile	Lys	Glu	Ser	Arg	Pro	Leu	Ile
						50		55			60				
Lys	Val	Ser	Arg	Asp	Gly	Val	Pro	Ile	Asn	Phe	His	Arg	Ala	Pro	Ala
						65		70			75				80
Ile	Ile	Met	Lys	Ser	Asn	Lys	Thr	Asp	Asp	Leu	Val	Arg	Asn	Ser	Asn
						85			90			95			
Lys	Thr	Met	Val	Leu	Thr	Glu	Ile	Lys	Thr	Ile	Thr	Glu	Phe	Ala	Thr
						100			105				110		
Thr	Thr	Val	Ser	Pro	Thr	Gln	Glu	Phe	Gln	Ala	Leu	Gln	Ile	Asn	Leu
						115		120				125			
Asn	Thr	Leu	Ser	Ile	Glu	Thr	Ser	Thr	Pro	Thr	Phe	Gln	Ser	His	Asp
						130		135			140				
Phe	Pro	Pro	Ile	Thr	Ile	Glu	Asp	Thr	Pro	Lys	Thr	Leu	Glu	Pro	Glu
						145		150			155				160
Glu	Ser	Ser	Asp	Ala	Leu	Gln	Arg	Asp	Ala	Phe	Asp	Gln	Ile	Lys	Lys

165

170

175

Leu Glu Lys Leu Val Leu Asp Leu Arg Leu Glu Met Lys Glu Gln Gln
 180 185 190
 Lys Ser Phe Asn Asp Gln Leu Val Asp Ile Tyr Thr Ala Arg Ser Ile
 195 200 205
 Val Pro Ile Tyr Thr His Ile Val Thr Ser Ala Ile Pro Ser Tyr
 210 215 220
 Val Pro Lys Glu Glu Val Met Val Ser His Asp Thr Ala Pro Ile Val
 225 230 235 240
 Ser Arg Pro Arg Thr Asp Ile Pro Val Ser Gln Arg Ile Asp Thr Ile
 245 250 255
 Ser Lys His Lys Met Asn Gly Lys Asn Ile Leu Asn Asn Pro Pro
 260 265 270
 Pro Asn Ser Val Leu Ile Val Pro Gln Phe Gln Phe His Glu Arg Met
 275 280 285
 Ala Thr Lys Thr Glu Val Ala Tyr Met Lys Pro Lys Ile Val Trp Thr
 290 295 300
 Asn Phe Pro Thr Thr Ala Thr Ser Met Phe Asp Asn Phe Ile Leu
 305 310 315 320
 Lys Asn Leu Val Asp Glu Thr Asp Ser Glu Ile Asp Ser Gly Glu Thr
 325 330 335
 Glu Leu Ser Asp Asp Tyr Tyr Tyr Tyr Ser Tyr Glu Asp Asp Gly
 340 345 350
 Lys Glu Asp Asp Ser Asp Glu Ile Thr Ala Gln Ile Leu Leu Ser Asn
 355 360 365
 Ser Glu Leu Gly Thr Lys Thr Pro Asn Phe Glu Asp Pro Phe Glu Gln
 370 375 380
 Ile Asn Ile Glu Asp Asn Lys Val Ile Ser Val Asn Thr Pro Lys Thr
 385 390 395 400
 Lys Lys Pro Thr Thr Val Phe Gly Thr Ser Thr Ser Ala Leu Ser
 405 410 415
 Thr Phe Glu Ser Thr Ile Phe Glu Ile Pro Lys Phe Phe Tyr Gly Ser
 420 425 430
 Arg Arg Lys Gln Ser Ser Ser Phe Lys Asn Lys Asn Ser Thr Ile Lys
 435 440 445
 Phe Asp Val Phe Asp Trp Ile Phe Glu Ser Gly Thr Thr Asn Glu Lys
 450 455 460
 Val His Gly Leu Val Leu Val Ser Ser Gly Val Leu Leu Gly Thr Cys
 465 470 475 480
 Leu Leu Phe Ile Leu
 485

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAGCTCTTCC AGAGGAAACA AGCGGAAGAA GCACAAACGAA AGAAGGAATT TGAACAAAAG	60
GCCGAATTCA TCAAAGCATC ATTACTGAA ATGCCCGAA GAGAAATAGA GAGGCGGAAA	120
CAGCAAAAGG AAAGGGAAACA AAGACAAAAG GAGCACGAAG CAAAGAGGGA TATCAGGATA	180
CAACAACTTT CAGAGCAGGA TTCACGGAGT AATCAAACTA AAGAAGAAGA GGAAGTGTTC	240
AAGAAGGCCG GGTCTACTAA TTCGGGAGCA GACGAGACTG GTTGATGTC AGATAAAGAG	300
TTTGATGATT CTGCATATTC ACCCGATTAT TTGTTGAG AGAATTGAG GAATAAACCA	360
AATCATCCAG ATACAAATCA TAAAACAAA AAAATATACTG AGAATGTGGT TGAAAATCTA	420
GATTCTCCAC CAAATGATAC ATCTGCGTAC AATTCAAGTT TTCATGATGA AACTAATATT	480
CAAAATGAGA TCCAAATACC AGAAAATGAC GAGTATGTAC CACAGATGAA AGCTACATCC	540
AGTGTCAATA ATACCACCAT CCCTGCACAA AGAAGACATG AGTCACTTTC CACTTCTGAA	600
AACAAAAGAA GGAAATTGAA AACAGCCGAC GTTGGGGTTG ATGGGTTAGA TTCCCCAGTG	660
CGGGCACAAC CAGAAATATC TGGAAATCC AAGTCTCCGA TAATCCCTGA TGTAATACTT	720
TTACTGGACG AAGAGACTGA AACTCCTGAA GCAAATGCTG TGCAGGACAA TAGTACATAT	780
ATTCCTCAGG GGTCTTTAGG ACACGAATTT AGAAATATTT TGGAGAGCA TCCACGTCAA	840
GTAAAGAATA AACAAAATTC TGGTGTGCT TTTGCATTC CGAATGCTTC CAAGAATACC	900
GAAAACAAAC TCCACTCTAA TTTCAAAGAT AAAGATGAAG GAATAATTGA TGTTGAAGCT	960
TACGTACCTG ATGTCAAAGC AGCAACTTCA AACACCACCC CAGCAACAGG ACAAACATCA	1020
GCAAGGTCGG AAAAACTGCC ACCCTTACCT ACTCATATTC CAAATCCATC GACCATGAAT	1080
GAAGCTCGAC CTCATCCAAC AACTCCACAT AAAAGATCAA AAGTCATTTC CGATTTAAAA	1140
GATTTAGAAC AAAAGTTAGG TAATGATATT GAGGATTGAG ATTTTAAGGA TATGTATGAG	1200
AGTTTGCCTG ACCATTCAAG TAAGGCAACA CCTAAAGACG ATATTTAAC CCGTTCTAAA	1260
AGAAGACTTT ATACATATAC CGATGGAACA TCAAAGGCTG AAACGTTATC TACACCAATG	1320
AACAAAATC CTGTTCGTGG ACATAGTACC AAGAAAAAGC TTAGTATGTT GGACATGCAT	1380
GCGTCTCTA AAATTCAAAG TCTTTACCT CCACAAACCGC CACAAATGTC AATTGATCCT	1440
TCTGTTCCA AGCAAGTGTG GGCTAAATAC GTTGATGCAA TCTTGACTTA TCAAAGAGAA	1500
TTTTCAATT ATAAAAAAAGT GATTGTTCAA TACCAAATGG AACGGATAAA CAAAGACCTT	1560
GAACATTGAGACGATATAAA TGATGGTTCA CACACTGAGA ATTTGGATAC TTTCAAGCAT	1620
TGTTTAGAAC AAGATTATTT GGTTAGTTGA C	1651

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 463 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

AACCTGTTGA CGCGTTGTCT TTTCTACCC CACGTTAAC AATCTGCCA GTCAATTAC	60
TAGCCAAATA AACTTAGAC TCACAACCTCT AACACTGACT CGCCCCCCCC TGTTAAACT	120
CTAAATTACT TCACAGAGCC TTTACTACCT TAATTTAAGA TTATCTATTG TTTCTGTTCT	180
TTTGCAATCA CCCTGACTCG TTTTTTTTC AGCCAGTTT TTCGTAAAAT CTGACCAAAA	240
ATTTACAAC TAAATTAAA ACTCTAAATA ACAATTAAAA CTCAAATTCAAG ACAAGTCCTT	300
CTGCTCATTC TGAGTCTTCT CTATTGTCTT TTGACTTTTT GTGTGTGACT ATTTTCATGA	360
TCACCCCCGTT TCTTGCATTT TTTTCAGTCA ACTTTTCTC AAAATCAAGC CAAAAAAACA	420
CATTTAACTG CCTATACAAC GCAAACCTAT TCAAAACAAG GTT	463

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 582 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

AACCTCCCCG TTAACCACCTT CTAGGTATAC CATTTCATCT GACTGAATAA CTGGTTAGTC	60
GATTGTTGT TGAAGAAAAG TGACCACCTA GTTTTTCTG CCAACATTTT TTGCGATGAG	120
CCGTCGACGC GTTGTCTTTT TCTACCCCAC GTTTAACAAAT CTTGCCAGTC AATTCCCTAG	180
CCAAATAAAC TTAGACTCA CAACTCTAAC ACTGACTCGT GCCCCCTGT TTAAACTCTA	240
AATTACTTCA CAGAGCCTTT ACTACCTAA TTTAAGATTA TCTATTGTTT CTGTTTTTT	300
GCAATCACCC TGACTCGTTT TTTTTTCAGC CAGTTTTTC GTAAAATCTG ACCAAAAATT	360
TACAACCTCTA ATTTAAAAC TCAAATAACA ATTTAAACTC AATTCAAGACA AGTCCTCTG	420
CTCATTCTGA GTCTTCTCTA TTGTCTTTG ACTTTTGTG TGTGACTATT TTCATGATCA	480
CCCCGTTCT TGCATTTTT TCAGTCAACT TTTCTCAAA ATCAAGCCAA AAAAACACAC	540
CTTTAACTAC CTATACAACG CAAACCTATT CAAACACAAGG TT	582

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1066 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 183
- (D) OTHER INFORMATION:/note= "W = A or T"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 564
- (D) OTHER INFORMATION:/note= "Y = C or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

AACCATAAAAT ATGCCAAGAT TTAAACAAGT TGATGTATTCA ACCAATGTCA AATATTTGGG	60
TAATCCAGTT GCCGTTATTG ATGATAGTGA TAATTTAACCT ACTCAAGAAA TGCAAAAAAT	120
TGCTCGATGG ACAAAATTTAT CAGAAACAAAC ATTATATATTG ACTCCAAAAT CATCAATTGC	180
TGWTTATAGT ATTAGAATTT TCACCTCTGG TGGGAATGAA TTACCATTTG CTGGTCATCC	240
TACTTTAGGT ACTGCATTTG CATTATTGGA AGATGGTAAA ATAAAACCAA ATGACAATGG	300
ACAAATAATT CAAGAATGTG GTGCTGGATT AGTGAAAATA TCCGTTGAAA AAACACCTAA	360
TAATAATAGT AATGAGTTGC CGTTTTGTT ATCTTTGAA TTACCATATT TCAAATTTCA	420
TGAAATTGAT GACAAAGTAA TCGAGGAATT ACAACATTCA TGGAAATGGAA CCAATATTAT	480
TGGTAAACCG GTACTTATTG ATGCTGGTCC AAAATGGCA GTTTTCCAAC TTGGCTCCGG	540
TAAAGAAGTA TTAGACTTGA ATGYTGATT AGCACAAATT GAGAGATTAA GTTTAGAAAA	600
TGGTTGGACA GGAATTGGTG TCTTTGGAAA ACATAATGAA AATGGTGATT CGGTCGAATT	660
GAGAAATATT GCTCCTGCTG TTGGAGTCGC TGAAGATCCT GCTTGTGGAA GTGGATCAGG	720
TGCTATTGGA GCATATTGG CAAATCACGT TTTCAATGAA AAGGAAAAAT TTACAATTGA	780
TATTTCTCAA GGTAACCAA TTGAAAGAGA TGCTAAGATT CAAGTTAAAG TTAATCGTCT	840
TACCAACAAA AATGGTGATT TATCTATTCA TGTTGGTGGT CATGCCATCA CTTGTTCGA	900
AGGTACTTAT TCTATTAAA ACTTGATATA ATTCTTGAGT TATATCTAAT TTATCTAATT	960
CACTTGTCCC TGGAGTAGTT TGATCTAATT GATGTAATT ATTAAATAAA TCACGTTCTA	1020
AATCAGTTG TTTAGATAAA TCATTTAATA AATCATCTTC AGCATT	1066

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 302 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Pro Arg Phe Lys Gln Val Asp Val Phe Thr Asn Val Lys Tyr Leu			
1	5	10	15

Gly Asn Pro Val Ala Val Ile Tyr Asp Ser Asp Asn Leu Thr Thr Gln

20

25

30

Glu Met Gln Lys Ile Ala Arg Trp Thr Asn Leu Ser Glu Thr Thr Phe
 35 40 45

Ile Leu Thr Pro Lys Ser Ser Ile Ala Xaa Tyr Ser Ile Arg Ile Phe
 50 55 60

Thr Ser Gly Gly Asn Glu Leu Pro Phe Ala Gly His Pro Thr Leu Gly
 65 70 75 80

Thr Ala Phe Ala Leu Leu Glu Asp Gly Lys Ile Lys Pro Asn Asp Asn
 85 90 95

Gly Gln Ile Ile Gln Glu Cys Gly Ala Gly Leu Val Lys Ile Ser Val
 100 105 110

Glu Lys Thr Pro Asn Asn Asn Ser Asn Glu Leu Pro Phe Leu Leu Ser
 115 120 125

Phe Glu Leu Pro Tyr Phe Lys Phe His Glu Ile Asp Asp Lys Val Ile
 130 135 140

Glu Glu Leu Gln His Ser Trp Asn Gly Thr Asn Ile Ile Gly Lys Pro
 145 150 155 160

Val Leu Ile Asp Ala Gly Pro Lys Trp Ala Val Phe Gln Leu Gly Ser
 165 170 175

Gly Lys Glu Val Leu Asp Leu Asn Xaa Asp Leu Ala Gln Ile Glu Arg
 180 185 190

Leu Ser Leu Glu Asn Gly Trp Thr Gly Ile Gly Val Phe Gly Lys His
 195 200 205

Asn Glu Asn Gly Asp Ser Val Glu Leu Arg Asn Ile Ala Pro Ala Val
 210 215 220

Gly Val Ala Glu Asp Pro Ala Cys Gly Ser Gly Ser Gly Ala Ile Gly
 225 230 235 240

Ala Tyr Leu Ala Asn His Val Phe Asn Glu Lys Glu Lys Phe Thr Ile
 245 250 255

Asp Ile Ser Gln Gly Lys Pro Ile Glu Arg Asp Ala Lys Ile Gln Val
 260 265 270

Lys Val Asn Arg Leu Thr Thr Lys Asn Gly Asp Leu Ser Ile His Val
 275 280 285

Gly Gly His Ala Ile Thr Cys Phe Glu Gly Thr Tyr Ser Ile
 290 295 300

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2829 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

ATGACGGAAA CTGTGATAGA AAAGAAAAGA AAGGTTGATT TAAATGCCTC AGGTATTACA

60

AAACAAACCAA AAGCTTCTAA AATCTTCAGT CCATTCAAGAG TTTTAGGGAA TGTTACAGAC	120
TCAACTCCTT TTGCATGGG GACATTAGGT TCAACATTT ATGCTGTCAC TTCTGTTGGC	180
AGATCTTCC AAATTTATGA CTTGGCTACA TTACATTTAT TGTTGTTTC CCAAACCTAA	240
ACTCCTCAA GAATTACAAG TTTGGCTGCA CACCATCACT ATGTCTATGC ATCTTATGGT	300
GATCGTATTG GTATTTTAG ACGTGGTAGA TTAGAGCATG AATTGGTTG TGAAGGGAAC	360
TCTACAGTTA ACCAATTATT AGTATTTGGA GAATACCTTA TTGCTACCAC ATTAGAAGGT	420
GATATTTCG TATTTAGAAA AACTGAAGGA AAGAAATTCC CAACTGAATT ATACACTACA	480
ATCAGAATAA TTAATTCTT AGTTGAAGGA GAAATTGTGG GATTAATTCA TCCACCTACG	540
TATTTAAATA AAGTAATTGT TGCTACTACT CAATCTGTGT TTGTTATAAA TGTGAGAACT	600
GGCAAATTAT TATACAAATC CCGGGAAATTA CAATTCAAG GCGAAAAGAT TTCATCAATC	660
GAAGCTGCTC CAGTTTGGA TGTAATTGCT GTGGTACAT CTAATGGAAA TGTATTTTA	720
TTCAACATTA AAAAGGGGAA AGTGTGGGC CAAAAAATTAA TTACTTCTGG AACTGAATCT	780
TCTTCGAAAG TTGCCTCGAT CTCTTTAGA ACAGATGGAG CACCTCATTT GGTTGCTGGT	840
TTGAATAACG GGGACTTATA TTTCTACGAT TTAGACAAGA AATCACGTGT TCATGTTTG	900
AGAAATGCCC ATAAAGAGAC TCATGGGGGT GTGCACAAACG CCAAATTTT GAATGGTCAA	960
CCAATAGTAT TATCAAATGG TGGTGATAAT CATTGAAAG AATTTGTTT TGATCCTAAT	1020
TTAACCACTT CGAATTTCATC CATTGTTCCCT CCTCCAAGAC ATCTCAGATC TAGAGGTGGG	1080
CATTCAAGCAC CACCAAGTAGC TATTGAATTT CCTCAAGAAG ATAAAACCCA TTTTTTATTG	1140
AGTGCTCTA GAGATAAAAC ATTTGGACA TTCTCTTGA GAAAAGATGC TCAAGCACAG	1200
GAAATGTCTC AAAGATTGCA AAAATCTAAG GATGGTAAAA GACAGGGCTGG ACAAGTTGTT	1260
TCTATGAGAG AGAAATTCCC AGAAATCATT TCCATTTCAT CCTCTTATGC CAGAGAAGGT	1320
GATTGGGAAA ATATCATAAC CGCCCACAAG GATGAAACTT TTGCGAGAAC ATGGGATTCA	1380
AGAAATAAAA GAGTCGGTAG ACATTTGTT AACACTATTG ATGGTGGCAT TGTGAAATCT	1440
GTATGTGTGT CTCAGTGTGG TAATTTGGT TTAGTGGGAT CATCACTGGG TGGTATTGGA	1500
TCATACAAACC TTCAAAGTGG ATTGTTGGT AAAAATATG TTTTACATAA ACAAGCTGTC	1560
ACCGGTTTAG CAATTGATGG AATGAATAGA AAAATGGTTA GTTGTGGTT AGATGGAATT	1620
GTGGGATTCT ATGATTTGG AAAGTCTGTC TATTTAGGCA AATTACAAC TGAAGCACCT	1680
ATAACATCCA TGATATATCA CAAACTGTCT GATCTTGTG CTTGTGCCTT GGATGATTG	1740
TCCATAGTTG TTATTGACGT GACTACTCAA AAAGTCATAA GAATATTATA TGGTCATACC	1800
AACAGAATTG CAGGAATGGA TTTCTCGCCT GATGGGAGAT GGATAGTTTC AGTTGCATTG	1860
GACTCCACTT TGCGAACTTG GGACTTGCCA ACTGGTGGTT GTATTGATGG GGTGATTTA	1920
CCAATTGTGG CAACTGCAGT TAAATTTCT CCTATTGGTG ATATCTTAGC GACAACACAT	1980
GTCTCTGGAA ATGGTGTATC CTTATGGACT AATCGTGCCTT AGTTCAAGCC TGTGTCCACC	2040
AGACACGTAG AAGAAGATGA GTTTCAACT ATTTTATTAC CAAATGCTTC TGGAGATGGC	2100
GGTTCAACAA TGCTAGACGG GTTTTGGAC GAGGATTCTA ATGAAGACGG CACTATTGAT	2160
GAACAGTATA CATCTGCTGC TCAAATTGAT GCATCCTTGA TTACTTTATC ATCAGAGCCA	2220

AGATCAAAAT TCAACACTTT ATTGCATTTG GATACCATT AACAACAAAG CAAACCGAAA	2280
GAAGCACCTA AAAAACAGA AAATGCACCT TTCTTTTAC AATTGACTGG ACAAGCAGTT	2340
GGTGATAGGG CATCGGTTGC TGAAGGCAA ACATTCAGAAC AAACAAATAA CACTGTTGAA	2400
GAAACCAACA GCAAATTGCG TAAATTGGAT ACAAACGGTA ACCACGCATT TGAAAGTGAA	2460
TTCACAAAAC TATTAAGGGA AGCTGGAGAG AGTGGACAAT TTGAAAGATT TTTGACTTAC	2520
TTACTTAACT TATCTCCTGC TGTATTGGAC TTGGAAATTA GATCACTTAA TTCATTGTT	2580
CCATTGACTG AAATGACAAA TTTTATTCAA GCTTTAAATG CTGGTTTGAA ATCAAACGCA	2640
AATTATGAAA TATGGGAAAC TTTATATGCC ATGTTTTCA ACATACATGG TGATGTTATC	2700
CATCAGTTG AAAATGAAAC TAGTCTTCAT GAAGCTTTGG AAGAATACAG ACAGTTAAAT	2760
GATGAAAAGA ATAACAAAAT GGATTCTTTA GTGAAATATT GTGCTAGTAT CGTAAGTTT	2820
ATTAGTTAG	2829

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 942 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Met	Thr	Glu	Thr	Val	Ile	Glu	Lys	Lys	Arg	Lys	Val	Asp	Leu	Asn	Ala
1															15

Ser	Gly	Ile	Thr	Lys	Gln	Pro	Lys	Ala	Ser	Lys	Ile	Phe	Ser	Pro	Phe
20															30

Arg	Val	Leu	Gly	Asn	Val	Thr	Asp	Ser	Thr	Pro	Phe	Ala	Met	Gly	Thr
35															45

Leu	Gly	Ser	Thr	Phe	Tyr	Ala	Val	Thr	Ser	Val	Gly	Arg	Ser	Phe	Gln
50															

Ile	Tyr	Asp	Leu	Ala	Thr	Leu	His	Leu	Leu	Phe	Val	Ser	Gln	Thr	Gln
65															80

Thr	Pro	Ser	Arg	Ile	Thr	Ser	Leu	Ala	Ala	His	His	His	Tyr	Val	Tyr
85															95

Ala	Ser	Tyr	Gly	Asp	Arg	Ile	Gly	Ile	Phe	Arg	Arg	Gly	Arg	Leu	Glu
100															

His	Glu	Leu	Val	Cys	Glu	Gly	Asn	Ser	Thr	Val	Asn	Gln	Leu	Leu	Val
115															125

Phe	Gly	Glu	Tyr	Leu	Ile	Ala	Thr	Thr	Leu	Glu	Gly	Asp	Ile	Phe	Val
130															140

Phe	Arg	Lys	Thr	Glu	Gly	Lys	Phe	Pro	Thr	Glu	Leu	Tyr	Thr	Thr	160
145															

Ile	Arg	Ile	Ile	Asn	Ser	Leu	Val	Glu	Gly	Glu	Ile	Val	Gly	Leu	Ile
165															175

His Pro Pro Thr Tyr Leu Asn Lys Val Ile Val Ala Thr Thr Gln Ser
 180 185 190
 Val Phe Val Ile Asn Val Arg Thr Gly Lys Leu Leu Tyr Lys Ser Arg
 195 200 205
 Glu Leu Gln Phe Glu Gly Glu Lys Ile Ser Ser Ile Glu Ala Ala Pro
 210 215 220
 Val Leu Asp Val Ile Ala Val Gly Thr Ser Asn Gly Asn Val Phe Leu
 225 230 235 240
 Phe Asn Ile Lys Lys Gly Lys Val Leu Gly Gln Lys Ile Ile Thr Ser
 245 250 255
 Gly Thr Glu Ser Ser Ser Lys Val Ala Ser Ile Ser Phe Arg Thr Asp
 260 265 270
 Gly Ala Pro His Leu Val Ala Gly Leu Asn Asn Gly Asp Leu Tyr Phe
 275 280 285
 Tyr Asp Leu Asp Lys Lys Ser Arg Val His Val Leu Arg Asn Ala His
 290 295 300
 Lys Glu Thr His Gly Gly Val Ala Asn Ala Lys Phe Leu Asn Gly Gln
 305 310 315 320
 Pro Ile Val Leu Ser Asn Gly Gly Asp Asn His Leu Lys Glu Phe Val
 325 330 335
 Phe Asp Pro Asn Leu Thr Thr Ser Asn Ser Ser Ile Val Pro Pro Pro
 340 345 350
 Arg His Leu Arg Ser Arg Gly Gly His Ser Ala Pro Pro Val Ala Ile
 355 360 365
 Glu Phe Pro Gln Glu Asp Lys Thr His Phe Leu Leu Ser Ala Ser Arg
 370 375 380
 Asp Lys Thr Phe Trp Thr Phe Ser Leu Arg Lys Asp Ala Gln Ala Gln
 385 390 395 400
 Glu Met Ser Gln Arg Leu Gln Lys Ser Lys Asp Gly Lys Arg Gln Ala
 405 410 415
 Gly Gln Val Val Ser Met Arg Glu Lys Phe Pro Glu Ile Ile Ser Ile
 420 425 430
 Ser Ser Ser Tyr Ala Arg Glu Gly Asp Trp Glu Asn Ile Ile Thr Ala
 435 440 445
 His Lys Asp Glu Thr Phe Ala Arg Thr Trp Asp Ser Arg Asn Lys Arg
 450 455 460
 Val Gly Arg His Leu Leu Asn Thr Ile Asp Gly Gly Ile Val Lys Ser
 465 470 475 480
 Val Cys Val Ser Gln Cys Gly Asn Phe Gly Leu Val Gly Ser Ser Ser
 485 490 495
 Gly Gly Ile Gly Ser Tyr Asn Leu Gln Ser Gly Leu Leu Arg Lys Lys
 500 505 510
 Tyr Val Leu His Lys Gln Ala Val Thr Gly Leu Ala Ile Asp Gly Met
 515 520 525
 Asn Arg Lys Met Val Ser Cys Gly Leu Asp Gly Ile Val Gly Phe Tyr
 530 535 540
 Asp Phe Gly Lys Ser Val Tyr Leu Gly Lys Leu Gln Leu Glu Ala Pro
 545 550 555 560

Ile Thr Ser Met Ile Tyr His Lys Ser Ser Asp Leu Val Ala Cys Ala
 565 570 575
 Leu Asp Asp Leu Ser Ile Val Val Ile Asp Val Thr Thr Gln Lys Val
 580 585 590
 Ile Arg Ile Leu Tyr Gly His Thr Asn Arg Ile Ser Gly Met Asp Phe
 595 600 605
 Ser Pro Asp Gly Arg Trp Ile Val Ser Val Ala Leu Asp Ser Thr Leu
 610 615 620
 Arg Thr Trp Asp Leu Pro Thr Gly Gly Cys Ile Asp Gly Val Ile Leu
 625 630 635 640
 Pro Ile Val Ala Thr Ala Val Lys Phe Ser Pro Ile Gly Asp Ile Leu
 645 650 655
 Ala Thr Thr His Val Ser Gly Asn Gly Val Ser Leu Trp Thr Asn Arg
 660 665 670
 Ala Gln Phe Lys Pro Val Ser Thr Arg His Val Glu Glu Asp Glu Phe
 675 680 685
 Ser Thr Ile Leu Leu Pro Asn Ala Ser Gly Asp Gly Ser Thr Met
 690 695 700
 Leu Asp Gly Phe Leu Asp Glu Asp Ser Asn Glu Asp Gly Thr Ile Asp
 705 710 715 720
 Glu Gln Tyr Thr Ser Ala Ala Gln Ile Asp Ala Ser Leu Ile Thr Leu
 725 730 735
 Ser Ser Glu Pro Arg Ser Lys Phe Asn Thr Leu Leu His Leu Asp Thr
 740 745 750
 Ile Lys Gln Gln Ser Lys Pro Lys Glu Ala Pro Lys Lys Pro Glu Asn
 755 760 765
 Ala Pro Phe Phe Leu Gln Leu Thr Gly Gln Ala Val Gly Asp Arg Ala
 770 775 780
 Ser Val Ala Glu Gly Lys Thr Ser Glu Gln Thr Asn Asn Thr Val Glu
 785 790 795 800
 Glu Thr Asn Ser Lys Leu Arg Lys Leu Asp Thr Asn Gly Asn His Ala
 805 810 815
 Phe Glu Ser Glu Phe Thr Lys Leu Leu Arg Glu Ala Gly Glu Ser Gly
 820 825 830
 Gln Phe Glu Arg Phe Leu Thr Tyr Leu Leu Asn Leu Ser Pro Ala Val
 835 840 845
 Leu Asp Leu Glu Ile Arg Ser Leu Asn Ser Phe Val Pro Leu Thr Glu
 850 855 860
 Met Thr Asn Phe Ile Gln Ala Leu Asn Ala Gly Leu Lys Ser Asn Ala
 865 870 875 880
 Asn Tyr Glu Ile Trp Glu Thr Leu Tyr Ala Met Phe Phe Asn Ile His
 885 890 895
 Gly Asp Val Ile His Gln Phe Glu Asn Glu Thr Ser Leu His Glu Ala
 900 905 910
 Leu Glu Glu Tyr Arg Gln Leu Asn Asp Glu Lys Asn Asn Lys Met Asp
 915 920 925
 Ser Leu Val Lys Tyr Cys Ala Ser Ile Val Ser Phe Ile Ser
 930 935 940

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 725 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

AACCTGGCAA TTAACTGCC	GGCAAGTGAT AGCAGGAGAT AGGTGTGTAT AGATTATAAT	60
GGAACGCCGA TTTTGCAGT	ATCACCGCTA ATAAGGACAG CAGTTGGACA TCGGTACATG	120
AGAGAGCAAT GTAAGTCTTG	ATAGTAATGA GCCGTGTTGA AGTAGTATTT TAATCTAATT	180
TTACTCAAAA AAGGACAATG	GAGATCTGGA GATAACAGCA CACTAACCGG TTCTAGACAT	240
AGACTAAGCC TGAAAGGGGG	TACTACAGCT TGTTTGAAA AGGTTTGCCT TGTATAGGCA	300
GTAAATGTG TGTTTTTTT	GGGTAGAATT TGAGAAAAAG TTGACTGAAA AAAATGCAAG	360
AAACGGGTG ATCATGAAA	TAGACACACA CAAAAAGTC AAAAAACAATG GAAAAGCTTC	420
AGAATAAGCA GTAGGAGGTG	TCTGAATTGA GTTGTATTG TTATTTAGAG TTTAAATTA	480
GAGTTGAAA TTTTGGTA	GAATTTACGA AAAAGTCGA CAAAAAAACG ACAAGTCAGG	540
GTGATTGCAA AAAAACAGAA	ACAATAGATA ATCTTAAATT AAGGTAGTAG AGGCTCTGTG	600
AAGTAATTAA GAGTTAAC	AGGGGGCAC GAGTCAGTGT TAGAGTTGTG AAGTTTATT	660
GGCTAGTGA TTGACTGGCA	AGATTGTTAA ACGTGGGTA GAAAAAGACA ACGCATCGAC	720
AGGTT		725

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1144 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CCATGATATA GAAATTGGTG	GGTCAACGTA CTATCAAATT AACATAAAAC TACCACTTCG	60
GTCATTCAAG ATAAAGAAC	GGTACCTGGA ATTCCAGCAA TTGGTGCTGG ACTTGAGTCG	120
TAATCTAGGC ATTGATAGTC	GAGATTTCC ATATGAATT CCTGGGAAAC GGATCAACTG	180
GCTTAACAAG ACCAGTATTG	TTGAGGAGAG AAAAGTGGGA CTTGCAGAAT TTCTCAATAA	240
CCTCATTCAA GACTAACAC	TTCAGAATGA ACGAGAAGTG TTGTCGTTT TGCAATTGCC	300
GTCTAATTAA AGATTCACCA	AGGATATGTT ACAGAATAAT CGAGCAGACT TGGATTCTGT	360

GCAAAATAAC TGGTACGATG TATATCGTAA GTTGAAACTG GATATACTCA ACGAACCGTC	420
TAGCAGCATT AGTGAACAGA TACATATTG TGATCGCATT AGTCGGGTCT ACCAACCCACG	480
GATTCTCGAC TTGGTCAGGG CTATTGGTAC AGATAAAGAA GAGGCCCTAA AGAAGAAGCA	540
GTTGGTTCC CAATTACAAG AGAGTATAGA TAATTTGTTA GTACAGGAAG TTCCCCGATC	600
AAAGAGGGTG TTGGTGGAG CAGTTAAGGA AACGCCAGAG ACATTACCAT TAAACAATAA	660
AGAACCTCTT CAACACCAAG TACAAATTCA TCAAAACCAA GACAAAGAAC TAGACCAGCT	720
TAGGGTGTAA ATTGCCCGGC AGAAACAGAT TGGCGAGCTA ATTAATGCAG AAGTAGAGGA	780
ACAGAATGAA ATGTTGGATA GGTTTAATGA AGAGGTCGAC TACACGTCCA GCAAAATCAA	840
GCAAGCAAGA CGCAGAGCTA AGAAGATATT ATAGTAATTG GTTCGCTACT TCGATATTAT	900
CTGCCATTGA CGTTATTCTT GCAGGTTGGC CEAATTGTTG GTTGAAAGT TTTTCGAGGT	960
CTTCAGCGTC TAATGCCCTA TCTGAGCTCT CGCCATCGAG TTTCCAAAAC CCGCCGATAT	1020
TTTGAAAGAA TCTTGAATG CCAAACCGTC GTGGCGGGAA CGATCTGCCT GCGTTGGCCA	1080
AGTTGAATAT GCTAGGGTGG TACTGTAAAT AGAAGACAGA TCCAATAAAC GTTCCTATAA	1140
ATGC	1144

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 290 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

His	Asp	Ile	Glu	Ile	Gly	Gly	Ser	Thr	Tyr	Tyr	Gln	Ile	Asn	Ile	Lys
1				5					10				15		

Leu	Pro	Leu	Arg	Ser	Phe	Thr	Ile	Lys	Lys	Arg	Tyr	Ser	Glu	Phe	Gln
							20		25				30		

Gln	Leu	Val	Ser	Asp	Leu	Ser	Arg	Asn	Leu	Gly	Ile	Asp	Ser	Arg	Asp
				35				40				45			

Phe	Pro	Tyr	Glu	Leu	Pro	Gly	Lys	Arg	Ile	Asn	Trp	Leu	Asn	Lys	Thr
				50			55			60					

Ser	Ile	Val	Glu	Glu	Arg	Lys	Val	Gly	Leu	Ala	Glu	Phe	Leu	Asn	Asn
				65			70			75			80		

Leu	Ile	Gln	Asp	Ser	Thr	Leu	Gln	Asn	Glu	Arg	Glu	Val	Leu	Ser	Phe
				85				90			95				

Leu	Gln	Leu	Pro	Ser	Asn	Phe	Arg	Phe	Thr	Lys	Asp	Met	Leu	Gln	Asn
				100				105			110				

Asn	Arg	Ala	Asp	Leu	Asp	Ser	Val	Gln	Asn	Asn	Trp	Tyr	Asp	Val	Tyr
				115				120			125				

Arg	Lys	Leu	Lys	Ser	Asp	Ile	Leu	Asn	Glu	Ser	Ser	Ser	Ile	Ser	
				130				135			140				

Glu Gln Ile His Ile Arg Asp Arg Ile Ser Arg Val Tyr Gln Pro Arg
 145 150 155 160
 Ile Leu Asp Leu Val Arg Ala Ile Gly Thr Asp Lys Glu Glu Ala Leu
 165 170 175
 Lys Lys Lys Gln Leu Val Ser Gln Leu Gln Glu Ser Ile Asp Asn Leu
 180 185 190
 Leu Val Gln Glu Val Pro Arg Ser Lys Arg Val Leu Gly Gly Ala Val
 195 200 205
 Lys Glu Thr Pro Glu Thr Leu Pro Leu Asn Asn Lys Glu Leu Leu Gln
 210 215 220
 His Gln Val Gln Ile His Gln Asn Gln Asp Lys Glu Leu Asp Gln Leu
 225 230 235 240
 Arg Val Leu Ile Ala Arg Gln Lys Gln Ile Gly Glu Leu Ile Asn Ala
 245 250 255
 Glu Val Glu Glu Gln Asn Glu Met Leu Asp Arg Phe Asn Glu Glu Val
 260 265 270
 Asp Tyr Thr Ser Ser Lys Ile Lys Gln Ala Arg Arg Arg Ala Lys Lys
 275 280 285
 Ile Leu
 290

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2736 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:11
 - (D) OTHER INFORMATION:/note= "N = G or A or T or C"

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:2723..2724
 - (D) OTHER INFORMATION:/note= "N = A or T or C or G"

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:2714..2715
 - (D) OTHER INFORMATION:/note= "N = A or T or C or G"

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:2710
 - (D) OTHER INFORMATION:/note= "N = A or T or C or G"

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:2706..2707
 - (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

ATGGAAAAAA NTTTGGCGAG TGTAAAGTTG TACACCGATT TGGAGTGTGT TTTTAATTCA

AACTATCCAA CAAGAATTGT TTGGGGTGC TCTTACAATT TTGGAATTCA ACAGATGATG	120
GCAAACTTG ATCGGTTTC AAAACCACCA GTGGATCCAT CTACAAAATT AGGATTTGG	180
GATAAGTTAA AGTATATCTT ACATGGTAAA TGCCAAATCA GAACTAGGAA AAGTTAGAA	240
GTTGCATTTA AAGGATCAAG AGATCCGTAT GATTTGTTCA CGACTGCAGG CGGGTTGTA	300
TTGTCATTTA GAAAGAATGT TGTCTGGAC ATCAATAAAG ACGATAATTG GAAAAATTAC	360
TTCGATATCA CGGCAGATAA AGTTTCTGG TATATTCAA ACTATTTAGC AGGACCATTA	420
TTGGCTTGGA CAAGAAGTAG TAAAAATTCA ATTTATTTAC CAAATTCAAC AAATGTGGTT	480
AATTCTTGCT TTGCATATTA CCTTCAGAT TTTACTGGAC AAGCTGATT TGATCATGCT	540
GCCCAGTAT TTGAAAGAAA TGTGGTCAAT CTTAGTGGAG GAATTCAATT TCAAGTTGGG	600
TTTCTACTTG AACGTAAGA TACAAATGGT AAGAGAACCG ATGAATTCAA ACCTCATTAC	660
GAAGTGCAGT TGTTGATCC CAAGTATTGT GAGAAAGGAC ATGACTCTTA TGCTGGGTT	720
CGAAGTCAT TTATACATAT GGCTATCTCA TTGGAATCAA CAAACAGTTC AAGTTATAAT	780
ACAATCCATC TTAGTCCTGG TACTTTCAA CAGTTTTCG ATTGGTGGAA GTTATTTGCT	840
AGTAATATGC AGTTACCTAT TAGACGTGGC AAAATGTTG GAGAAGCAAA AGAATCTGTC	900
AGTTTTCCGC AACATTATT CACAAACAAG TTTCTTTCA TGTGAAATC TTTGTTATT	960
GCTCATGTT ATCGAGACGA AATTGTTGAT ATCAATAACG ATAGAATAGA AAGTATTGGT	1020
TTAAGAGCCA AAGTAGATGA TTTTATGGTT GATTTACATC AAAGAAAAGA GCCAGCAACC	1080
CTTTACCATG AAGAATTATC TAAGAATGAG AAGGTGATGA AAATGAATT TGATTTAGGA	1140
GAAGTCGTT TATCAGGAAT AGACTTACGT GTCATGCATG TTTCATTCT CAAAATTAA	1200
TACACTCAAT CACATCCAA TTCAGGTGAC GCTAAATCAA CTTATAATT TTACGACAAT	1260
GATCATCGAT GGTTGATAT TATGGATTC CAAGAGGCAT TTTGACATC AATTAAGGAT	1320
TGTGTCAGGA CAGTTGATAT TTATCCATTG ATGTATTAC AAAGATTCTT TTATGAAAGA	1380
GATACACATG GTGGCAAGTC TGAGGATGAG ACTGCATTG GAAAAGAAGT TATTCAAAA	1440
TGTAATTGG GTGCCATGAA TCCCTGGAA ACAAGATTGA ATGTATTGGT TCAAAAGACTT	1500
AACGCTCTAC AAGAACAAAGT CAAAAAAATTG TCCAAACAT CTGCTCCAGA ACCTGTAGCA	1560
GATTGAAAA AACGAATTCT GTTTTGCAA AAAGAGATTA GCACAACCAA AGCTGGCGTT	1620
AAGTCGAAAA TGCCTCGTAC ATCCACTATA AATGGTATGA ATAATTCTGA AAATTACAC	1680
ATAAGTTTA CTTTCTATAA CATGCTTCTT AAATGGAATT TCAATTGTCG GAATTGACA	1740
TTGAAATACA TACATTTGT GAAATTGAAA TCACAACCTC GAAATTACTT GTCACACAAG	1800
TCCATTGAAA CACTGAAAA AATGATGGAT AGTGTAAATG CATAAACGA TAAGGACGAT	1860
TTGTCATCGA CGTCAGAAAT AATCCGTGCGT TTCAACTGG AAGGGGTTAA ATCACAGACA	1920
TCTACCAGCA AAGATATCAC TTCACAACAG AAACCTGACA ATTTCAACAC AATATTACGA	1980
GAGACCAGAC CAGACGAAAA AGTGGTTGAG GATTATTGA TTGACGTGAT CGCACCTCAA	2040
ATTCAATTAC AAAGTGAGGA TTATCCTGAT TCTGTTGTGC TCATCTCTAC ACCATCTATT	2100
AAAGGTAAAA TTTTGTCCAT TAGGGATTCC AGGAATAATG CAAACCAAAT CTTGTTAGAA	2160
ACTAGGTATG GTATTTACT AAAAGATGCC AATGTTTTG TATTAAACAA AGAGGATATT	2220

GTAGGGTGTC CAGATATGTT AAGTATTAGT AATCCATATG GAGCTAAATC TAATTGGCCA 2280
 CCATGGCTAG GAACAGAAAAT AACCCAAAAT GGTAATGGG CTGGAGCCAA CAACTTATTG 2340
 ATTGAAAAGC TTTCTGTTAT GACAATGTGT TATGAAAGTG AAATTTGTC AAGCAAGCTT 2400
 TCTCCAAATG CACAAGATCT GGATCAAGAA GAGCAAGAAA ATTACAATGA TGATAATTG 2460
 AAACAGGCTC CTCTTCGACT TGGTATTGAT ATGCCTCTG TGGTGATTAC ATCTACATCA 2520
 AGTCAAACT TTACCTTATA TGTTATCATA GTGAGCTTGT TGTTTATAG CGAGCCTATG 2580
 AGTAAAGTGA TCCACAAGAA AATCGAAAAG ATGAAGTTT CTATTGATT CGAAGATTG 2640
 GGTGCTCTTA CTAGCAGATT AACGAAAATG CAGCAACATC ATAAATTGTT GAAAGTATTG 2700
 TCTAANNACN AATNNNTTCC CGNNCGGGGG AATTAA 2736

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 911 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Met	Glu	Lys	Xaa	Leu	Ala	Ser	Val	Lys	Leu	Tyr	Thr	Asp	Leu	Glu	Cys
1				5				10					15		
Val	Phe	Asn	Ser	Asn	Tyr	Pro	Thr	Arg	Ile	Val	Trp	Gly	Ala	Ser	Tyr
	20				25				30						
Asn	Phe	Gly	Ile	Gln	Gln	Met	Met	Ala	Asn	Phe	Asp	Arg	Phe	Ser	Lys
	35			35		40			45						
Pro	Pro	Val	Asp	Pro	Ser	Thr	Lys	Leu	Gly	Phe	Trp	Asp	Lys	Leu	Lys
	50			50		55			60						
Tyr	Ile	Leu	His	Gly	Lys	Cys	Gln	Ile	Arg	Thr	Arg	Lys	Ser	Leu	Glu
	65			65		70		75		75			80		
Val	Ala	Phe	Lys	Gly	Ser	Arg	Asp	Pro	Tyr	Asp	Leu	Phe	Thr	Thr	Ala
	85			85		90		90		95					
Gly	Gly	Phe	Val	Leu	Ser	Phe	Arg	Lys	Asn	Val	Val	Trp	Asp	Ile	Asn
	100			100		105			105			110			
Lys	Asp	Asp	Asn	Ser	Lys	Asn	Tyr	Phe	Asp	Ile	Thr	Ala	Asp	Lys	Val
	115			115		120			120		125				
Ser	Trp	Tyr	Ile	Pro	Asn	Tyr	Leu	Ala	Gly	Pro	Leu	Leu	Ala	Trp	Thr
	130			130		135			135		140				
Arg	Ser	Ser	Lys	Asn	Ser	Ile	Tyr	Leu	Pro	Asn	Ser	Pro	Asn	Val	Val
	145			145		150			150		155			160	
Asn	Ser	Cys	Phe	Ala	Tyr	Tyr	Leu	Gln	Asp	Phe	Thr	Gly	Gln	Ala	Asp
	165			165		170			170		175				
Phe	Asp	His	Ala	Ala	Arg	Val	Phe	Glu	Arg	Asn	Val	Val	Asn	Leu	Ser
	180			180		185			185			190			

Gly Gly Ile His Phe Gln Val Gly Phe Leu Leu Glu Arg Lys Asp Thr
 195 200 205
 Asn Gly Lys Arg Thr Asp Glu Phe Lys Pro His Tyr Glu Val Gln Leu
 210 215 220
 Phe Asp Pro Lys Tyr Cys Glu Lys Gly His Asp Ser Tyr Ala Gly Phe
 225 230 235 240
 Arg Ser Gln Phe Ile His Met Ala Ile Ser Leu Glu Ser Thr Asn Ser
 245 250 255
 Ser Ser Tyr Asn Thr Ile His Leu Ser Pro Gly Thr Phe Gln Gln Phe
 260 265 270
 Phe Asp Trp Trp Lys Leu Phe Ala Ser Asn Met Gln Leu Pro Ile Arg
 275 280 285
 Arg Gly Lys Met Phe Gly Glu Ala Lys Glu Ser Val Lys Phe Ser Gln
 290 295 300
 His Leu Phe Thr Asn Lys Phe Ser Phe Met Leu Lys Ser Leu Phe Ile
 305 310 315 320
 Ala His Val Tyr Arg Asp Glu Ile Val Asp Ile Asn Asn Asp Arg Ile
 325 330 335
 Glu Ser Ile Gly Leu Arg Ala Lys Val Asp Asp Phe Met Val Asp Leu
 340 345 350
 His Gln Arg Lys Glu Pro Ala Thr Leu Tyr His Glu Glu Leu Ser Lys
 355 360 365
 Asn Glu Lys Val Met Lys Met Asn Phe Asp Leu Gly Glu Val Val Leu
 370 375 380
 Ser Gly Ile Asp Leu Arg Val Met His Val Ser Phe Leu Gln Asn Leu
 385 390 395 400
 Tyr Thr Gln Ser His Ser Asn Ser Gly Asp Ala Lys Ser Thr Tyr Asn
 405 410 415
 Ile Tyr Asp Asn Asp His Arg Trp Phe Asp Ile Met Asp Phe Gln Glu
 420 425 430
 Ala Phe Leu Thr Ser Ile Lys Asp Cys Val Arg Thr Val Asp Ile Tyr
 435 440 445
 Pro Leu Met Tyr Leu Gln Arg Phe Phe Tyr Glu Arg Asp Thr His Gly
 450 455 460
 Gly Lys Ser Glu Asp Glu Thr Ala Phe Gly Lys Glu Val Ile His Lys
 465 470 475 480
 Cys Asn Leu Gly Ala Met Asn Pro Leu Glu Thr Arg Leu Asn Val Leu
 485 490 495
 Val Gln Arg Leu Asn Ala Leu Gln Glu Gln Val Lys Lys Leu Ser Lys
 500 505 510
 Thr Ser Ala Pro Glu Pro Val Ala Asp Leu Lys Lys Arg Ile Ser Phe
 515 520 525
 Leu Gln Lys Glu Ile Ser Thr Thr Lys Ala Gly Val Lys Ser Lys Met
 530 535 540
 Arg Arg Thr Ser Thr Ile Asn Gly Met Asn Asn Ser Glu Asn Tyr His
 545 550 555 560
 Asn Lys Phe Thr Phe Tyr Asn Met Leu Leu Lys Trp Asn Phe Asn Cys
 565 570 575

Arg Asn Leu Thr Leu Lys Tyr Ile His Phe Val Lys Leu Lys Ser Gln
 580 585 590
 Leu Arg Asn Tyr Leu Ser His Lys Ser Ile Glu Thr Leu Glu Lys Met
 595 600 605
 Met Asp Ser Val Asn Ala Tyr Asn Asp Lys Asp Asp Leu Ser Ser Thr
 610 615 620
 Ser Glu Ile Ile Arg Arg Phe Thr Ser Glu Gly Val Lys Ser Gln Thr
 625 630 635 640
 Ser Thr Ser Lys Asp Ile Thr Ser Gln Gln Lys Leu Asp Asn Phe Asn
 645 650 655
 Thr Ile Leu Arg Glu Thr Arg Pro Asp Glu Lys Val Val Glu Asp Tyr
 660 665 670
 Leu Ile Asp Val Ile Ala Pro Gln Ile Gln Leu Gln Ser Glu Asp Tyr
 675 680 685
 Pro Asp Ser Val Val Leu Ile Ser Thr Pro Ser Ile Lys Gly Lys Ile
 690 695 700
 Leu Ser Ile Arg Asp Ser Arg Asn Asn Ala Asn Gln Ile Leu Leu Glu
 705 710 715 720
 Thr Arg Tyr Gly Ile Leu Leu Lys Asp Ala Asn Val Phe Val Leu Asn
 725 730 735
 Lys Glu Asp Ile Val Gly Cys Pro Asp Met Leu Ser Ile Ser Asn Pro
 740 745 750
 Tyr Gly Ala Lys Ser Asn Trp Pro Pro Trp Leu Gly Thr Glu Ile Thr
 755 760 765
 Gln Asn Gly Lys Trp Ala Gly Ala Asn Asn Leu Leu Ile Glu Lys Leu
 770 775 780
 Ser Val Met Thr Met Cys Tyr Glu Ser Glu Ile Leu Ser Ser Lys Leu
 785 790 795 800
 Ser Pro Asn Ala Gln Asp Ser Asp Gln Glu Glu Gln Glu Asn Tyr Asn
 805 810 815
 Asp Asp Asn Ser Lys Gln Ala Pro Leu Arg Leu Gly Ile Asp Met Pro
 820 825 830
 Ser Val Val Ile Thr Ser Thr Ser Ser Gln Tyr Phe Thr Leu Tyr Val
 835 840 845
 Ile Ile Val Ser Leu Leu Phe Tyr Ser Glu Pro Met Ser Lys Val Ile
 850 855 860
 His Lys Lys Ile Glu Lys Met Lys Phe Ser Ile Asp Phe Glu Asp Leu
 865 870 875 880
 Gly Ala Leu Thr Ser Arg Leu Thr Lys Met Gln Gln His His Lys Leu
 885 890 895
 Leu Lys Val Leu Ser Xaa Xaa Xaa Xaa Phe Pro Xaa Arg Gly Asn
 900 905 910

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 626 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

ATTCTTTGTT	TGTTTGTGA	TTTTGATCT	CTTGTCTAGA	ATCACTCATT	AATATTTGAT	60
TCAGGGTTT	GATTTGCTAA	ATAAGGGTC	TATAGGAGG	ATATTATATA	TAATGTGATG	120
TGGCGAAAAA	AAAAAACAAAG	ATCTACTACT	CTGTTGGATT	TATTTGTGAT	GGCGATTGAA	180
GAGAAAACAC	GTCTTTAA	CCGCTTTTT	TATTTTTGG	AGAAGCAAAT	TTCAAGCAAA	240
GACTCTTATT	GTGTTGCTTT	TGATCCATT	AAATTTGTA	TTACTTTCA	TTAGAACTAT	300
AACTGTTCAT	TATCAATGAC	GTATACATGT	CTGGTTCCCTG	TTATGTATTG	TAATTTAGT	360
TAATTATAAG	CCGTATATTG	GTAGTATTCC	TCTGTA	CAATGGAATT	GGTCTTC	420
CAGCAACAAG	TGTTATTTTC	CCTGAATGTA	GAAAATGAAA	GGTAGTGTTT	ACATATAGTT	480
GGAAATCAAG	CCTCTGAAAT	GAATCACAAAT	ATAATAACAA	TTTAGTAGTTG	CAGAGAAAAA	540
CAATTCAAGT	TGACGGGTAG	TTTTTTTTT	TTCACTGCAT	TTTCAACGA	AAACTAAATA	600
AAATTCGCT	GATATTGATA	AAGTAT				626

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 652 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

ATGGCGTCAA	TTCTGTTCC	AATTGAAAAA	GGATCATTTC	ACGATGGAGA	TGGATTCAAT	60
CAACATCATT	TAGGAGACCC	AGTTATTC	GGACCTCCCT	ATATTATTAA	ATTATTAAC	120
TTACCCGTCA	CAGCTAATGA	TTCATTTGTC	CAAGACTTGT	TTCAAAGCAG	ATTTACCCCA	180
TATGTCAAAT	TTAAAATTGT	AACAGACCCC	GCATCAAATA	TTTGGAGAC	TCATGTCAATT	240
AGACAAGTGG	CTTTGTGGA	ATTGGAATCG	GCCAGTGATA	TGTCAAAAGC	TTTAAATGG	300
CATGATTTGT	ATTATAAGAC	AAATAGAAGA	GTAACGTG	AAGTGGCAGA	TTTTAATGAT	360
TTTCAAAATT	GTATCAAATT	CAATCAAGAA	CATGAACGTG	AAATTATGCA	AATCCAACAA	420
GAATTCAATTG	CTCAGAAACA	ACAACAAACGG	CAACCCAGAC	ATATGGCTCT	TTTAGATGAA	480
TTTGAAAGAA	ACCAGCGCGG	TCCTGGATCA	CCCTTGATC	AAAACCATGA	TCACCCACAAT	540
CCCCACCCAC	AAACACAAACA	ACACCATCAT	TTCAATCCTA	ATTTAAACAG	ACCTTCAGGT	600
AGATCAAGTC	TTCCAATAGA	TGAAACGTCT	CATTCAAGAA	GACTTTCTTT	TG	652

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 217 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Met Ala Ser Ile Ser Val Pro Ile Glu Lys Gly Ser Phe His Asp Gly			
1	5	10	15
Asp Gly Phe Asn Gln His His Leu Gly Asp Pro Val Ile Ser Gly Pro			
20	25	30	
Pro Tyr Ile Ile Lys Leu Leu Asn Leu Pro Val Thr Ala Asn Asp Ser			
35	40	45	
Phe Val Gln Asp Leu Phe Gln Ser Arg Phe Thr Pro Tyr Val Lys Phe			
50	55	60	
Lys Ile Val Thr Asp Pro Ala Ser Asn Ile Leu Glu Thr His Val Ile			
65	70	75	80
Arg Gln Val Ala Phe Val Glu Leu Glu Ser Ala Ser Asp Met Ser Lys			
85	90	95	
Ala Leu Lys Trp His Asp Leu Tyr Tyr Lys Thr Asn Arg Arg Val Thr			
100	105	110	
Val Glu Val Ala Asp Phe Asn Asp Phe Gln Asn Cys Ile Lys Phe Asn			
115	120	125	
Gln Glu His Glu Arg Glu Ile Met Gln Ile Gln Gln Glu Phe Ile Ala			
130	135	140	
Gln Lys Gln Gln Gln Arg Gln Pro Arg His Met Ala Leu Leu Asp Glu			
145	150	155	160
Phe Glu Arg Asn Gln Arg Gly Pro Gly Ser Pro Leu His Gln Asn His			
165	170	175	
Asp His His Asn Pro His Pro Gln Gln Gln His His His Phe Asn			
180	185	190	
Pro Asn Leu Asn Arg Pro Ser Gly Arg Ser Ser Leu Pro Ile Asp Glu			
195	200	205	
Thr Ser His Ser Arg Arg Leu Ser Phe			
210	215		

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1492

(D) OTHER INFORMATION:/note= "N = A or G or C or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GTAGTTGTG AAGAAATTGA ACAATCGGA AAACAACAAT ATCAAACGTGA TGCCCAATAA	60
CACTGTATGT ACCTAGATGG ATTACCAAGA TCTACTACAT AAAATAATAA AGGAGTTCCA	120
CTCACTAAA GAGTCAAAC CATGGGATAG CAGTGTGTTG TATGAGACGT TACTACGATC	180
AGTATTAACG ACTTGATCG AACTTTGGG CATAGACAAT CCACCCAGTT ATCTACACCT	240
CACCAACAA CACGATAGTA TAGGTGATTT GAAAATAAAA TACTATGGAA ATGCATTAAG	300
CAAGTCATC AACGGTCATA GCATGTTGCA ATATCTGAA TCAAAGCATG TATCGATATT	360
ACAGGCCGTG GTTGAGATTA TTAATACGCG ATCATATAGA ATCAAAGAGT CTTATTCTGC	420
TGTTTCAAA GACGTTCTC ATTTATTTGA AAAACTACTA AAGGAAAGAT ATGAAGCTGA	480
ATCTAATCTA GAGGATTATA TATTGCAGTG CTTGATGTAC GAGACCCAAT TTTACCAAGG	540
AATTGTTGAT AATGTTTAA CTGCCGATGA CACCGAAAAA TTGGCTAGTT TTTGGGGAC	600
ACGACTATCT GAAGAAGATT CGATGTTTAG CTATAGGGAT ATAGATTATC CACTAGAGTT	660
AAACATTAAT AATGAATCTC TTGAAAAGAT ATATAAAATT TTCTTAGGAG TCATTGGCAC	720
CAAAGATTC GATATCAAGG AGGTTGCGTC TGCTGTTGTT GGTGTGTATA AACGACACCA	780
GAGAATAGAT CATTGAAA AGTTGGATTC AGATGAGATT TTGGGAAAGT TTTTCAGAAA	840
TATATTGCCA CAACTGTTCC AGAGTGTGAC AAATAAGGTT TTCCGGGAAT TTCACAAAGA	900
GGTAGATGAC CCACCACCG ACCTGCTAGA CCAGCTAGAT AATATTGTTG ATGACTTTAT	960
TGCGGTTGGA ATTGAAGGGG TAGATTGGG CTTTCCGGCT TTGTTCAGAC ACTACATAAA	1020
ATTCAATGAAAC GAAATTTTC CCACTGTTGGT CGAGGATGCT GACCGCGATT TTGTTGCAAG	1080
AATTAATAGT TTAATTGCTC AAGTCTTGGG GTTTAAAGAC GATGAAAAT CCTGTGATAT	1140
CAATCAAGTG GTATCTGAAT TTGTTTCATT ACAAAAGTTG CTACTTAAGA ATAACATATCT	1200
TTCACCACATCT ACATTATTGA TGCGTGCAAG TACTCACGAT TACTATAAA ATTTACAGAT	1260
CGTAAAATA ACCTTTGATG GATGGAATGA GAATTCAAAG AGGATATTGA AATTGGAGAA	1320
CAGCGGCTTT TTACAAAGCA AGACATTGCC AAAGTATTAA AAATTATGGT ACTCAAAAG	1380
TATGAAGTTG AATGAATTAT GTAACCGGGT AGATGAATTT TATAATGGAG AACTTTGTCG	1440
GAAAGTTTG GGCATTGTTG GGAGGGTCAC AACCAAAATG TCTATAAAATC CNCAAAATG	1500
GGAGGGTTGC TGA	1513

(2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 478 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Met Asp Tyr Gln Asp Leu Leu His Lys Ile Ile Lys Glu Phe His Ser
 1 5 10 15

Leu Lys Glu Phe Lys Pro Trp Asp Ser Ser Val Leu Tyr Glu Thr Leu
 20 25 30

Leu Arg Ser Val Leu Thr Thr Leu Ile Glu Leu Leu Gly Ile Asp Asn
 35 40 45

Pro Pro Ser Tyr Leu His Leu Thr Thr Asn Asn Asp Ser Ile Gly Asp
 50 55 60

Leu Lys Ile Lys Tyr Tyr Gly Asn Ala Leu Ser Lys Ser Ile Asn Gly
 65 70 75 80

His Ser Met Leu Gln Tyr Leu Glu Ser Lys His Val Ser Ile Leu Gln
 85 90 95

Ala Val Val Glu Ile Ile Asn Thr Arg Ser Tyr Arg Ile Lys Glu Ser
 100 105 110

Tyr Ser Ala Val Phe Lys Asp Val Ser His Leu Phe Glu Lys Leu Leu
 115 120 125

Lys Glu Arg Tyr Glu Ala Glu Ser Asn Leu Glu Asp Tyr Ile Leu Gln
 130 135 140

Cys Leu Met Tyr Glu Thr Gln Phe Tyr Gln Gly Ile Val Asp Asn Val
 145 150 155 160

Leu Thr Ala Asp Asp Thr Glu Lys Leu Ala Ser Phe Leu Gly Thr Arg
 165 170 175

Leu Ser Glu Glu Asp Ser Met Phe Ser Tyr Arg Asp Ile Asp Tyr Pro
 180 185 190

Leu Glu Leu Asn Ile Asn Asn Glu Ser Leu Glu Lys Ile Tyr Lys Ile
 195 200 205

Phe Leu Gly Val Ile Gly Thr Lys Arg Phe Asp Ile Lys Glu Val Ala
 210 215 220

Ser Ala Val Val Gly Val Tyr Lys Arg His Gln Arg Ile Asp His Phe
 225 230 235 240

Glu Lys Leu Asp Ser Asp Glu Ile Leu Gly Lys Phe Phe Arg Asn Ile
 245 250 255

Leu Pro Gln Ser Phe Gln Ser Val Thr Asn Lys Val Phe Arg Glu Phe
 260 265 270

His Lys Glu Val Asp Asp Pro Pro Ser Asp Val Leu Asp Gln Leu Asp
 275 280 285

Asn Ile Val Asp Asp Phe Ile Ala Val Gly Ile Glu Gly Val Asp Leu
 290 295 300

Gly Phe Pro Ala Leu Phe Arg His Tyr Ile Lys Phe Met Asn Glu Ile
 305 310 315 320

Phe Pro Thr Val Val Glu Asp Ala Asp Arg Asp Phe Val Ala Arg Ile
 325 330 335

Asn Ser Leu Ile Ala Gln Val Leu Glu Phe Lys Asp Asp Glu Lys Ser
 340 345 350

Cys Asp Ile Asn Gln Val Val Ser Glu Phe Val Ser Leu Gln Ser Leu
 355 360 365

Leu Leu Lys Asn Asn Tyr Leu Ser Pro Ser Thr Leu Leu Met Arg Ala

370

375

380

Ser Thr His Asp Tyr Tyr Lys Asn Leu Gln Ile Val Lys Ile Thr Phe
 385 390 395 400

Asp Gly Trp Asn Glu Asn Ser Lys Arg Ile Leu Lys Leu Glu Asn Ser
 405 410 415

Gly Phe Leu Gln Ser Lys Thr Leu Pro Lys Tyr Leu Lys Leu Trp Tyr
 420 425 430

Ser Lys Ser Met Lys Leu Asn Glu Leu Cys Asn Arg Val Asp Glu Phe
 435 440 445

Tyr Asn Gly Glu Leu Cys Arg Lys Val Leu Gly Ile Val Gly Arg Val
 450 455 460

Thr Thr Lys Met Ser Ile Asn Xaa Gln Lys Trp Glu Gly Cys
 465 470 475

(2) INFORMATION FOR SEQ ID NO: 25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 436 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

AGTTATGTCT CATAACATACA ACACAGATGA GGACATGTGT TTAAATGATA AATTGAAATA	60
TTTGTACGAT TTATAATCGC TTTATCGTA CAATTCGAA TACTGGTACT TTCTACTCTA	120
TTTGACAAAA ATTTGCAAAA AATTGGGAA AAAATCCTG TTGCATTTTC GAGACCCTCA	180
GTTGCAACCA ATCTGAATAT ATTTTGACAC TTCAATAAAT CTAGTGAAC TAGTCGTCTA	240
CTTTTTAATT CTAATCATCT CATAGTATAT CAAGCAAAGA CTTACTATGC GTTTATCAA	300
TTTAAGAAAA TGTAGACAGT ACGAAAATAC ACGAGTTCC CAATCTTGA ACTTGAAAAG	360
ATAGTAATAC CGAGATTGGC CAAATCCTAG CCATAGTCCG TTCATACAAA TTCATGAACA	420
ACATCTACAT AAGTAA	436

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 717 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CTTTCTTCG AATTAGATTC AATCTTTCC AATTTGCTT GTACACTTGC TAGTTGAAT	60
---	----

TTACGTTTT CCTCTTTAGG TTGTTTACA ATGGCTGCAC GTTCTTCAA ATTATTCCC	120
TTCTTCTTGG TTGGTCTTAT ATCGTTCTCA TCTTCAGGCT TCCTCTCCTC TTGTAACCCCT	180
TCTTTTCTA ATAGTTGAA ATAGTTCTT CTTAATCTAG CCCTATGGGT TAATGCACGT	240
TTTATATCTT GAGACTTGGC TTCTCGACGA TCTATAAATT TCTTTTTGA TTTAAATGAA	300
TTTTTATTAT TTGGATGCAT TGTTGTGGAG GTGTATTGTA TAGGTTGATA ACTAGAAATA	360
AAAATATGT GAAAAGAACAA AATGCCAATC ACTAAAAAAA ATTTAAGATG AGTATGAAAT	420
CAAAACTTTA CGACATCTT GCGACATGCA CATTATGAGC GACATTTGA TTCGATACCA	480
GAAATAGACA GATTTAGACA GGGTCTATAA CAGAGAAATC ACAATTAAAC TGGTATCAAC	540
CTTAAGAGTTA AAAATGGTCT ATGGCGATAT GAACTGTTGT GATGAAAAAC AATATATTTG	600
GAAATACTTC TTTTCATTTG ACAATTTTT ATAAAATTTT GGCAACAATT TTGTACCTAA	660
AAATTCTTTT GTCTTCAAAA GTGAAATGTA ATATAGAAAT ACTATTACAA CCAAACA	717

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 667 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTTAGTTTA TATTGATGAT GTTTTAAGT GCTTGTAT CATGGTGGAT GGAAATTAGA	60
ATGAGTAAAT TGAATGGAAA ATCACTGCAA CACCAACAAAC AACCACTGGT GGATACGAAA	120
ATTTAGTGTAA CAAATTTCTG CCAAAAAAT ACAATAAAA CCGCTTATAG TCTTCTACTG	180
ACATAACAAAC ACAAGTCAAT AAATCAACAA CTCATAAACAA ATGTAGACTT AATACTATCG	240
CTTAATTATT TAAACTATAA TAAATACCCCT ATAGTATTAT GCCTTTGTCA ATGTGTGTAG	300
AATTTGGTTA TTACATATCC ATGTGTAATA TATATGTTGA TCAAAAAACG CGATCTTCTC	360
TTTGGTGTAG TGTGTTACAC AAAAAATTCA CTAGTCTAGG TCACATGATA ATCACGTGAA	420
AATCAAAAT TTGTTGAAAT TGAATTCCT CAATTTGAA ATTTGTTTG AAATTTTTT	480
TTTGCTTAC AAAAGACTC CATTGTTTT TCCATTCAC AACCAATTAC TTAATTCCCTC	540
TTTTCTAA TTAATAACTA TCATTACTTA CAACTACAAA CAACTACGGAT CATTCTAA	600
GAAAAAGCAA CGAGGGCGAA TTGAGACATT AATCCCTTT ATTTTATCAT CATGCCTTAT	660
ACAGAAC	667

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 165 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

AACTATTGCC AATGGTAAAT ATGCCAGTGA AATCGAGAAT TTTAATAAGT CGGTCCCTCT	60
TAAGGTCCA TTCAAATTCA CTAATGCACA ATTGGATCTT TATGCTGCTA GCACACATAA	120
CCAAGAGCCA ATATCCTAGT AACGACGCAC CATACTAGAC CGAAT	165

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 207 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:120
- (D) OTHER INFORMATION:/note= "N = A or C or G or T"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:129
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:162
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:178
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:194
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:195
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:199
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:203
- (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

ATGAAGATTT CACCAGAGAC AGTAAATAAA CTACAACTGG ATGCATCGTG TATAAGAAC	60
--	----

ATCTGTATTT TAGCACATGT CGACCACGGT AAAACCTCAT TGAGTGACTC ATTATTAGCN	120
ACCAATGGNA TCATTTCCA ACGTATGGCA GGTAAAGTTA GNTATCTTGA TTGAGANGA	180
GATGAACAAT TGANNGGTNT AANCATG	207

(2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 69 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Met Lys Ile Ser Pro Glu Thr Val Asn Lys Leu Gln Ser Asp Ala Ser			
1	5	10	15

Cys Ile Arg Asn Ile Cys Ile Leu Ala His Val Asp His Gly Lys Thr		
20	25	30

Ser Leu Ser Asp Ser Leu Leu Xaa Thr Asn Xaa Ile Ile Ser Gln Arg		
35	40	45

Met Ala Gly Lys Val Xaa Tyr Leu Asp Ser Arg Xaa Asp Glu Gln Leu		
50	55	60

Xaa Gly Xaa Xaa Met	
65	

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2510 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
 (B) LOCATION: 2481
 (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

AAGTCATGCG ATTGCAACAA GGATCACAAG AACCAAGAGT TCACGAACAT TTGATTAATT	60
TGATTGATTC ACCTGGGCAT ATTGACTTTT CGTCTGAAGT GAGTACTTCT TCGAGATTAT	120
GTGATGGTGC AGTTGTTTG GTCGATGTCG TCGAAGGTGT CTGCTCACAA ACAGTCAACG	180
TTCTACGCCA ATGTTGGATT GATAAGTTGA AGCCATTACT AGTTATTAAC AAAATTGATA	240
GGTTAACAC AGAATGGAAA TTGTCTCCCT TGGAGGCATA CCAACACATT TCCAGAATTA	300
TAGAACAAAGT AAACTCTGTG ATTGGGTCAAT TTTTGCTGG TGATAGACTA GAAGATGACT	360
TGAATTGGCG TGAGGCTGGT TCTGTCGGGG AGTTTATCGA GAAGAGTGAT GAAGACTTGT	420

ATTCACACC TGAAAAGAAT AATGTAATAT TTGCCTCGGC AATAGATGGA TGGGCATTT	480
CAGTCAATAAC ATTTGCCAAA ATATACTGA AAAAATTAGG GTTCTCTCAA CAAGCATTGT	540
CAAAAACCTCT CTGGGGAGAC TTTTACTTGG ATATGAAAAA TAAAAAAATC ATCCCTGGTA	600
AAAAATTGAA AAATAATAGT AACAGTTGA AGCCATTATT TGTTTCGTTG ATTTGGACC	660
AGGTTTGGGC TGTTATGAA AACTGTGTTA TTGAAAGAAA TCAAGACAAG TTGGAAAAAA	720
TCAATTGAGAA ATTAGGGGCC AAAATCACCC CTCGTGATT GCGATCCAAA GATTACAAGA	780
ACTTGCTAAA CTTGATTATG TCTCAGTGGA TTCCCTTGAG TCATGCCATA TTGGGGTCAG	840
TGATTGAATA CTTGCCAAGC CCCATTGTTG CTCACCGTGA AAGAATAGAC AAGATTTGG	900
ATGAAACGAT TTATACTGCA GTGGATTCAAG AACTGAGATA AATCCAAACT AGTCGACCC	960
TCATTTGTCA AGGGATGCA GGAATGTGAT AGTCACACC CGGAAACCCA TACAATAGCA	1020
TATGTATCAA AATTGTTGTC AATCCCCAAT GAAGACTTAC CCAAAGCTAG TAATGCCGCT	1080
ACTGGAGGAT TGACGGCCGA TGAAATCCAA GAACCGAGGAA GAATTGCTCG AGAATTAGCC	1140
AAAAAGGCAT CTGAAGCAGC TGCTTGGCA CAAGAAGGTT CCAAAATGA AGATGAGTTT	1200
GCCATTAAC CCAAGAAAAGA TCCATTGAA TGGGAATTG AGGAGGACGA TTTTGAGAAT	1260
GAGGAAGATG AGAGCGATGC AAACGCAGTT GAAGAATCAA CTGAAACCAT AGTGGGTTTC	1320
ACTCGTATTT ATTCTGGATC GTTATCTAGA GGCCAAAAGC TCACGGTAAT TGGACCCAAA	1380
TACGACCCCTT CATTACCTAG AGACCATCAA ACCAACTTTG AACAAATAAC CAATGAAGTT	1440
GAAATTAAG ACTTGTTTT AATCATGGGA CGAGAATTAG TGAGAATGGA AAAAGTCCTG	1500
CGGGTAATAT TGTTGGGTT GTTGGATTGG ATACGCCGTG CTTAAGAATG CCACAATTG	1560
CTCACCGTTA CCTGAAGATA AACCATAACAT TAATTTAGCT TCAACATCAA CCTTGATCCA	1620
CAATAAACCA ATTATGAAAA TAGCAGTTGA ACCAACAAAC CCAATAAAAC TAGAAAATT	1680
GGAACGAGGA TTAGATTAT TGGCCAAAGC CGACCCGGTT TTGGAATGGT ATGTCGACGA	1740
CGAGTCAGGT GAATTGATTG TTTGTGTTGC TGGAGAATTG CATCTAGAAC GATGCTTGAA	1800
AGATTTAGAA GAGAGATTG CTAAGGGTTG TGAAGTTACC GTCAAAGAGC CAGTCATTCC	1860
CTTCAGAGAG GGGTTGGCAG ATGACAAAAT CAGTACCAAC ACCAATAATA ACAACGACGA	1920
CAATGAAGAT CATGAATTAG ATGAAAACGA AGATGAGCTT GCTGATTTAG AGTTGATAT	1980
TTCTCCGTG CCATTAGAAG TGACTCAGTT TTTAATTGAG AATGAAACGA TTATTGCCGA	2040
AATTGTCAAC ACAAGCAAG ATACTCATGA AATTAGAAC GATTTATTG AAAAATTGCA	2100
CACTATTATT GATAATTCTA ATTTGGCTAC ACAATTCCA GACACCAAGT CTTTTATCAA	2160
CAATATAATT TGCTTGGAC CTAACGTGT TGGGCCATAAT ATTTCATG AAGATTATGG	2220
GTAAACAAA TTTAGACATC TACTTGGTGA ATCTGCCACT GAATCTCGAT TTGTTTATGA	2280
GAATAATGTG TTCAATGGGG TTCAATTGGT ATTCAATGGG GGTCCGTTAG CATCAGAGCC	2340
AATGCAAGGT ATTATTGTTA GACTTAAGAA GGCAGAAAAA AGAGAAGTTG ACGAGGATAA	2400
GATAGTCACAC CCTGGTAAAAA TAATCACACAC GACTCGTGAC TTGATTTACA AGCGGTTTT	2460
GCAAAATCA CCACGCTTGT NCCTTGCAAT GTATACGTGT GAAATCCAAG	2510

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 310 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

Val	Met	Arg	Leu	Gln	Gln	Gly	Ser	Gln	Glu	Pro	Glu	Val	His	Glu	His
1				5				10					15		
Leu	Ile	Asn	Leu	Ile	Asp	Ser	Pro	Gly	His	Ile	Asp	Phe	Ser	Ser	Glu
				20				25					30		
Val	Ser	Thr	Ser	Ser	Arg	Leu	Cys	Asp	Gly	Ala	Val	Val	Leu	Val	Asp
	35						40						45		
Val	Val	Glu	Gly	Val	Cys	Ser	Gln	Thr	Val	Asn	Val	Leu	Arg	Gln	Cys
	50				55							60			
Trp	Ile	Asp	Lys	Leu	Lys	Pro	Leu	Leu	Val	Ile	Asn	Lys	Ile	Asp	Arg
	65					70				75			80		
Leu	Ile	Thr	Glu	Trp	Lys	Leu	Ser	Pro	Leu	Glu	Ala	Tyr	Gln	His	Ile
		85							90				95		
Ser	Arg	Ile	Ile	Glu	Gln	Val	Asn	Ser	Val	Ile	Gly	Ser	Phe	Phe	Ala
		100						105					110		
Gly	Asp	Arg	Leu	Glu	Asp	Asp	Leu	Asn	Trp	Arg	Glu	Ala	Gly	Ser	Val
	115						120					125			
Gly	Glu	Phe	Ile	Glu	Lys	Ser	Asp	Glu	Asp	Leu	Tyr	Phe	Thr	Pro	Glu
	130					135					140				
Lys	Asn	Asn	Val	Ile	Phe	Ala	Ser	Ala	Ile	Asp	Gly	Trp	Ala	Phe	Ser
	145						150				155			160	
Val	Asn	Thr	Phe	Ala	Lys	Ile	Tyr	Ser	Lys	Lys	Leu	Gly	Phe	Ser	Gln
		165						170					175		
Gln	Ala	Leu	Ser	Lys	Thr	Leu	Trp	Gly	Asp	Phe	Tyr	Leu	Asp	Met	Lys
		180						185					190		
Asn	Lys	Lys	Ile	Ile	Pro	Gly	Lys	Lys	Leu	Lys	Asn	Asn	Ser	Asn	Ser
		195						200					205		
Leu	Lys	Pro	Leu	Phe	Val	Ser	Leu	Ile	Leu	Asp	Gln	Val	Trp	Ala	Val
		210					215					220			
Tyr	Glu	Asn	Cys	Val	Ile	Glu	Arg	Asn	Gln	Asp	Lys	Leu	Glu	Lys	Ile
	225					230				235			240		
Ile	Glu	Lys	Leu	Gly	Ala	Lys	Ile	Thr	Pro	Arg	Asp	Leu	Arg	Ser	Lys
		245						250					255		
Asp	Tyr	Lys	Asn	Leu	Leu	Asn	Leu	Ile	Met	Ser	Gln	Trp	Ile	Pro	Leu
		260						265					270		
Ser	His	Ala	Ile	Leu	Gly	Ser	Val	Ile	Glu	Tyr	Leu	Pro	Ser	Pro	Ile
		275					280					285			
Val	Ala	Gln	Arg	Glu	Arg	Ile	Asp	Lys	Ile	Leu	Asp	Glu	Thr	Ile	Tyr
		290					295					300			

Ser Ala Val Asp Ser Glu
305 310

(2) INFORMATION FOR SEQ ID NO: 33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 188 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

Asp Lys Ser Lys Leu Val Asp Pro Ser Phe Val Lys Ala Met Gln Glu
1 5 10 15

Cys Asp Ser Ser His Pro Glu Thr His Thr Ile Ala Tyr Val Ser Lys
20 25 30

Leu Leu Ser Ile Pro Asn Glu Asp Leu Pro Lys Ala Ser Asn Ala Ala
35 40 45

Thr Gly Gly Leu Thr Ala Asp Glu Ile Gln Glu Arg Gly Arg Ile Ala
50 55 60

Arg Glu Leu Ala Lys Lys Ala Ser Glu Ala Ala Ala Leu Ala Gln Glu
65 70 75 80

Gly Ser Lys Asn Glu Asp Glu Phe Ala Ile Lys Pro Lys Lys Asp Pro
85 90 95

Phe Glu Trp Glu Phe Glu Asp Asp Phe Glu Asn Glu Glu Asp Glu
100 105 110

Ser Asp Ala Asn Ala Val Glu Glu Ser Thr Glu Thr Ile Val Gly Phe
115 120 125

Thr Arg Ile Tyr Ser Gly Ser Leu Ser Arg Gly Gln Lys Leu Thr Val
130 135 140

Ile Gly Pro Lys Tyr Asp Pro Ser Leu Pro Arg Asp His Gln Thr Asn
145 150 155 160

Phe Glu Gln Ile Thr Asn Glu Val Glu Ile Lys Asp Leu Phe Leu Ile
165 170 175

Met Gly Arg Glu Leu Val Arg Met Glu Lys Val Ser
180 185

(2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 336 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Gly Asn Ile Val Gly Val Val Gly Leu Asp Xaa Ala Val Leu Lys Asn
 1 5 10 15

Ala Thr Ile Cys Ser Pro Leu Pro Glu Asp Lys Pro Tyr Ile Asn Leu
 20 25 30

Ala Ser Thr Ser Thr Leu Ile His Asn Lys Pro Ile Met Lys Ile Ala
 35 40 45

Val Glu Pro Thr Asn Pro Ile Lys Leu Ala Lys Leu Glu Arg Gly Leu
 50 55 60

Asp Leu Leu Ala Lys Ala Asp Pro Val Leu Glu Trp Tyr Val Asp Asp
 65 70 75 80

Glu Ser Gly Glu Leu Ile Val Cys Val Ala Gly Glu Leu His Leu Glu
 85 90 95

Arg Cys Leu Lys Asp Leu Glu Glu Arg Phe Ala Lys Gly Cys Glu Val
 100 105 110

Thr Val Lys Glu Pro Val Ile Pro Phe Arg Glu Gly Leu Ala Asp Asp
 115 120 125

Lys Ile Ser Thr Asn Thr Asn Asn Asn Asp Asp Asn Glu Asp His
 130 135 140

Glu Leu Asp Glu Asn Glu Asp Glu Leu Ala Asp Leu Glu Phe Asp Ile
 145 150 155 160

Ser Pro Leu Pro Leu Glu Val Thr Gln Phe Leu Ile Glu Asn Glu Thr
 165 170 175

Ile Ile Ala Glu Ile Val Asn Asn Lys Gln Asp Thr His Glu Ile Arg
 180 185 190

Asn Asp Phe Ile Glu Lys Phe Ala Thr Ile Ile Asp Asn Ser Asn Leu
 195 200 205

Ala Thr Gln Phe Pro Asp Thr Lys Ser Phe Ile Asn Asn Ile Ile Cys
 210 215 220

Phe Gly Pro Lys Arg Val Gly Pro Asn Ile Phe Ile Glu Asp Tyr Gly
 225 230 235 240

Leu Asn Lys Phe Arg His Leu Leu Gly Glu Ser Ala Thr Glu Ser Arg
 245 250 255

Phe Val Tyr Glu Asn Asn Val Phe Asn Gly Val Gln Leu Val Phe Asn
 260 265 270

Gly Gly Pro Leu Ala Ser Glu Pro Met Gln Gly Ile Ile Val Arg Leu
 275 280 285

Lys Lys Ala Glu Lys Arg Glu Val Asp Glu Asp Lys Ile Val Asn Pro
 290 295 300

Gly Lys Ile Ile Thr Gln Thr Arg Asp Leu Ile Tyr Lys Arg Phe Leu
 305 310 315 320

Gln Lys Ser Pro Arg Leu Xaa Leu Ala Met Tyr Thr Cys Glu Ile Gln
 325 330 335

(2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 841 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

(A) NAME/KEY: misc_feature
 (B) LOCATION:8
 (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(ix) FEATURE:

(A) NAME/KEY: misc_feature
 (B) LOCATION:9
 (D) OTHER INFORMATION:/note= "N = A or T or G or C"

(ix) FEATURE:

(A) NAME/KEY: misc_feature
 (B) LOCATION:18
 (D) OTHER INFORMATION:/note= "N = A or T or C or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CGCGAAGNNNT CAATCATNTC AGAAGAAATG AAAGAAGGTA CTCCGTTCTT TACTATTGTG	60
GCAAGAACATCC CTGTGATTGA GGCATTTGGG TTTTCCGAGG ATATTAGAAA GAAGACATCC	120
GGGGCAGCTA GTCCTCAATT AGTTTTGAT GGGTATGATA TGTTAGATAT CGATCCATT	180
TGGGTTCCAC ATACTGAAGA AGAATTAGAA GAATTGGGTG AATTTGCAGA AAGAGAAAAT	240
GTTGCTAGAA GATATATGAA TAATATCAGA AGAAGAAAAG GGTTATTGT TGATGAGAAA	300
GTCGTCAAAA ATGCTGAAAA GCAAAGAACT TTGAAAAGAG ATTAGATTAT CCAGTAAAAC	360
AGGCAATATG TGTGAAATTG TTACAGAAAA GACAGATACG ATGTGGCCAT TATTTGTTA	420
ATATTCAACA ACAAGTAAAT GTATTGATAT AGATGTATAA TATAGTCAAA TGTTGAGACT	480
ATCCGAATAG ACATAGACAC ACAACTCAGC CTGTCAGGGC TGTTTATTAA GTTGTGATGT	540
ATACTAAAAT CCATCCACAC TTCTCGTAAT TGTAGGGAAG AATTACAAAA AAGATCACAT	600
AAAAATAATA ATTCTATCAC ACTTTGAAAAA TTTGATTGAA GGTGTTACTA GTATTGTTTC	660
AACATTACTC TTTTCAAACA ACGAGATCCA AATACTGCAC AATCTTCAAA CGAACGGAGT	720
TACATCACTA TAGTTTCTA TTGTTGTAAG ATCAATACAG ACAAAAAGAA AGTGTAGCAT	780
AAATAATTGA TTGCAATTG CCAAACTAGA AAACAAAGAG GAAAAAAAGA AAAAAATTTC	840
A	841

(2) INFORMATION FOR SEQ ID NO: 36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 114 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Arg Glu Xaa Ser Ile Xaa Ser Glu Glu Met Lys Glu Gly Thr Pro Phe
 1 5 10 15
 Phe Thr Ile Val Ala Arg Ile Pro Val Ile Glu Ala Phe Gly Phe Ser
 20 25 30
 Glu Asp Ile Arg Lys Lys Thr Ser Gly Ala Ala Ser Pro Gln Leu Val
 35 40 45
 Phe Asp Gly Tyr Asp Met Leu Asp Ile Asp Pro Phe Trp Val Pro His
 50 55 60
 Thr Glu Glu Glu Leu Glu Leu Gly Glu Phe Ala Glu Arg Glu Asn
 65 70 75 80
 Val Ala Arg Arg Tyr Met Asn Asn Ile Arg Arg Arg Lys Gly Leu Phe
 85 90 95
 Val Asp Glu Lys Val Val Lys Asn Ala Glu Lys Gln Arg Thr Leu Lys
 100 105 110
Arg Asp

(2) INFORMATION FOR SEQ ID NO: 37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 564 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

AACCTAAAAA TGGCTAACAGTT CATCAAATCT GGTAAGTTG CTATTGTTGT AAGAGGTCGT	60
TACGCTGGTA AAAAAGTAGT CATTGTGAAA CCACATGATG AAGGTACCAA ATCTCACCCA	120
TTCCCCACATG CCATTGTCGC TGGTATTGAA AGAGCTCCAT TGAAGGTTAC CAAGAAGATG	180
GATGCTAAAA AAGTTACCAA AAGAACTAAA GTCAAGCCAT TTGTTAAATT AGTAAACTAC	240
AACCATTAA TGCCAACCTAG ATACTCATTG GATGTTGAAT CATTCAAATC TGCTGTCACT	300
TCTGAAGCTT TAGAAGAACC ATCTCAAAGA GAAGAAGCTA AAAAAAGTTGT CAAGAAGGCT	360
TTTGAAGAAA AACATCAAGC TGGTAAGAAC AAATGGTTCT TCCAAAAATT ACACHTTAA	420
GAAAGGAACC ACCTTTATTG GAATGTTGT AATATAGGTT GAATCAGAGA GACAAAGTAG	480
AAGAAAATAC AAAAAAGAGA GTATATCTGT ATAGTATAAT TTAATGGGGG TCTAATTAC	540
TTACCACTTT ATTCTGTGCAT TATT	564

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 136 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Met Ala Lys Phe Ile Lys Ser Gly Lys Val Ala Ile Val Val Arg Gly
 1 5 10 15

Arg Tyr Ala Gly Lys Lys Val Val Ile Val Lys Pro His Asp Glu Gly
 20 25 30

Thr Lys Ser His Pro Phe Pro His Ala Ile Val Ala Gly Ile Glu Arg
 35 40 45

Ala Pro Leu Lys Val Thr Lys Lys Met Asp Ala Lys Lys Val Thr Lys
 50 55 60

Arg Thr Lys Val Lys Pro Phe Val Lys Leu Val Asn Tyr Asn His Leu
 65 70 75 80

Met Pro Thr Arg Tyr Ser Leu Asp Val Glu Ser Phe Lys Ser Ala Val
 85 90 95

Thr Ser Glu Ala Leu Glu Glu Pro Ser Gln Arg Glu Glu Ala Lys Lys
 100 105 110

Val Val Lys Lys Ala Phe Glu Glu Lys His Gln Ala Gly Lys Asn Lys
 115 120 125

Trp Phe Phe Gln Lys Leu His Phe
 130 135

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1192 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

TTTGAAACGA TTAAGTCCAA TCAAACAATC TTATTCAAAA GTACTCGCAA TACGTACAAT	60
GTCAATTCCA TCTACTCAGT ACGGATTTTT TTATAATAAA GCTAGTGGTC TTAATTGAA	120
AAAAGACTTG CCGGTTAACCA AGCCAGGTGC TGGTCAATTG CTTTTAAAGG TTGATGCAGT	180
TGGCCTTGT CATTCAAGATT TACATGTTCT CTATGAAGGT TTGGATTGTG GTGATAATT	240
TGTGATGGC CACGAAATTG CTGGGACTGT TGCTGAACTA GGTGAAGAGG TGAGTGAGTT	300
TGCAGTTGGA GATCGTGTG CTTGTGTCGG CCCCAATGGA TGTGGTCTTT GTAAACACTG	360
TCTTACTGGT AACGATAATG TTTGTACCAA GTCGTTTTG GATTGGTTG GATTGGTTA	420
CAATGGAGGT TACGAGCAAT TTTGTTAGT CAAGAGACCA AGAAAATTGG TCAAGATCCC	480
TGACAATGTT ACTTCCGAGG AAGCTGCAGC TATTACGGAT GCCGTATTGA CTCCTTACCA	540
TGCTATCAAG TCTGCAGGTG TTGGTCCAGC AAGTAATATA TTAATTATCG GAGCTGGTGG	600
ATTAGGAGGT AACGCTATTG AAGTTGCAAA AGCATTTGGT GCGAAGGTTA CTGTTTGGA	660

TAAAAAGGAT AAGGCAAGAG ACCAAGCTAA GGCCCTTGGA GCTGACCAAGG TTTACAGTGA	720
ATTACCAAGAC AGCGTTTAC CTGGGTCTT CAGTGCTTGT TTTGATTTG TTTCGGTTCA	780
GGCAACATAC GATTGTGTC AAAAGTATTG TGAGCCAAG GGTACTATTG TTCCCGTAGG	840
TCTAGGTGCA ACTTCGCTTA ACATAAATCT TGCTGATTTA GATCTCGTG AAATTACCGT	900
CAAGGGCTCA TTCTGGGTA CCCTGATGGA TTTAAGAGAA GCATTTGAAT TGGCTGCACA	960
GGGAAAGGTC AAACCAAATG TTGCTCATGC TCCATTGTCA GAATTGCCA AGTATATGGA	1020
GAAGTTGAGA GCCGGTGGTT ATGAAGGAAG AGTCGTGTTT AATCCATAAT ACTGAAAAGT	1080
GAAGAAACCA TCAATAATAG CTTGGTGAGT ATGTATGGGA AATATTCAATT TATGTATGTA	1140
GGTCATTTAT ATGTGTGTA TGATTTCTAA TCTGAATTTC GTACAATTCT TT	1192

(2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 336 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

```

Met Ser Ile Pro Ser Thr Gln Tyr Gly Phe Phe Tyr Asn Lys Ala Ser
1           5           10          15
Gly Leu Asn Leu Lys Lys Asp Leu Pro Val Asn Lys Pro Gly Ala Gly
20          25          30
Gln Leu Leu Leu Lys Val Asp Ala Val Gly Leu Cys His Ser Asp Leu
35          40          45
His Val Leu Tyr Glu Gly Leu Asp Cys Gly Asp Asn Tyr Val Met Gly
50          55          60
His Glu Ile Ala Gly Thr Val Ala Glu Leu Gly Glu Glu Val Ser Glu
65          70          75          80
Phe Ala Val Gly Asp Arg Val Ala Cys Val Gly Pro Asn Gly Cys Gly
85          90          95
Leu Cys Lys His Cys Leu Thr Gly Asn Asp Asn Val Cys Thr Lys Ser
100         105         110
Phe Leu Asp Trp Phe Gly Leu Gly Tyr Asn Gly Gly Tyr Glu Gln Phe
115         120         125
Leu Leu Val Lys Arg Pro Arg Asn Leu Val Lys Ile Pro Asp Asn Val
130         135         140
Thr Ser Glu Glu Ala Ala Ala Ile Thr Asp Ala Val Leu Thr Pro Tyr
145         150         155         160
His Ala Ile Lys Ser Ala Gly Val Gly Pro Ala Ser Asn Ile Leu Ile
165         170         175
Ile Gly Ala Gly Gly Leu Gly Gly Asn Ala Ile Gln Val Ala Lys Ala
180         185         190
Phe Gly Ala Lys Val Thr Val Leu Asp Lys Lys Asp Lys Ala Arg Asp

```

195

200

205

Gln Ala Lys Ala Phe Gly Ala Asp Gln Val Tyr Ser Glu Leu Pro Asp
 210 215 220

Ser Val Leu Pro Gly Ser Phe Ser Ala Cys Phe Asp Phe Val Ser Val
 225 230 235 240

Gln Ala Thr Tyr Asp Leu Cys Gln Lys Tyr Cys Glu Pro Lys Gly Thr
 245 250 255

Ile Val Pro Val Gly Leu Gly Ala Thr Ser Leu Asn Ile Asn Leu Ala
 260 265 270

Asp Leu Asp Leu Arg Glu Ile Thr Val Lys Gly Ser Phe Trp Gly Thr
 275 280 285

Ser Met Asp Leu Arg Glu Ala Phe Glu Leu Ala Ala Gln Gly Lys Val
 290 295 300

Lys Pro Asn Val Ala His Ala Pro Leu Ser Glu Leu Pro Lys Tyr Met
 305 310 315 320

Glu Lys Leu Arg Ala Gly Gly Tyr Glu Gly Arg Val Val Phe Asn Pro
 325 330 335

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2021 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:1270
- (D) OTHER INFORMATION:/note= "R = A or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:1395
- (D) OTHER INFORMATION:/note= "R = A or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

ATGGAAAAAA TTGACATTAA TACAAATTCA AACAAAATCC AACAGCATA CGATAAAGTT	60
GTTAGAGGAG ACCCAAATGC AACATTGTC GTTTATTCTG TTGACAAAAA CGCCACTATG	120
GACGTCACTG AAACAGGGGA CGGATCATTA GAGGATTTG TTGAACATTT TACTGATGGA	180
CAAGTTCAAT TTGGTTTAGC CAGGGTTACT GTTCCAGGAT CTGACGTTTC CAAAAACATC	240
TTGTTAGGAT GGTGCTCTGA CAGTGCTCCA GCAAAATTGA GATTGTCATT TGCCAATAAT	300
TTTGCTGATG TGTCCAGAGT ATTGAGCGGA TACCATGTGC AAATTACTGC AAGGGATCAA	360
GATGATTTAG ACGTGAATGA ATTCTTGAAT AGAGTTGGTG CTGCTGCTGG TGCAAGATAT	420
TCCACTCAAA CTTCCGGACT CAAAAAACCA TCCCCTGCTG CACCTAAACC TACTCAAAA	480
CCTGTTGTTG CTAAATCTAG TTCTGCTTCA AAACCTTCAT TTGTACCCAA ATCTACTGGG	540
AAGCCTGTTG CTCCAGCTAA GCCAAAACCA AAGAACATCA CCAAGGATGC TGGTTGGGGT	600

GATGCTGAAG ACGTTGAGGA AAGAGACTTT GACAAGAAC CTTGGATAA CGTCCATCG 660
 GCATATAAAC CAACAAAGGT TAACATTGAC GAATTGAGAA AACAAAAATC AGATACAAC 720
 AGCTCAACTC CTAAAACATT CAAATCTGAA CCACAAGAAG AAAAGAATGA CGATGATGGG 780
 CAATCCAAAC CTTTATCGGA AAGGATGAA GCCTATGATC AACCATCAAG TAGTGATGGA 840
 AGATTGACTT CTTTACCAAA ACCAAAGATT GGACATTCTG TTGCCGATAA ATATAAGCT 900
 AGTGCATCTG GGAATGGTGC TGCTCCTGCG TTTGGTGCTA AACCAGCATT TGGTACACAA 960
 TCAGTTGATT CAAGAAAGGA TAAATTGGTA GGTGGTTGT CGAGAGATT TGGTGTGAA 1020
 AATGGAAAAA CTCCGGCACA AATTGGGCT GAAAAAAGGG GAAAATACAA AACAGTGGCC 1080
 TCCGATGAGA AAGAAAATCA CTCAGTGAA AAAGTTGATG AGCCAGAGGA ACATCATGCT 1140
 GCCGACTTGG CCAAAAAATT TGAAGAAAAG GCAAATATTG CTGGCGATAC TCCTCCTTG 1200
 CCAAATAGAA ACTTACCAACC AGCACCAAGA GCACGAGAAA CCGCAATTCC ATCTAACGAA 1260
 AAAGACAAAR AAGAAAAGGA AGAGGAAGAA CAAGCTCCAG CACCATCTT GCCTACTAGA 1320
 AACTTACAC CACCGTCACA AAGACAACCT GAGCCCGAAC CAGAACCCAGA AGAAGAGGAG 1380
 GAAGAAGAAG AAGARGAGGC TCCTGCTCCA AGCTTACCAAG CAAGAAATCT CCCACCAGCA 1440
 CCAAAAGCAG AAGCAGAAGA ATCAAAAAAA CAGTCACCA CAGCCACCGC AGAGTATGAT 1500
 TACGAAAAGG ACAGAAGATAA TGAAATTGGA TTCTCCGAAG GTGACTTGAT TATTGATATT 1560
 GAATTGTGG ATGACGATTG GTGGCAAGGT AAACATGCTA AAACGGTGA AGTTGGTTTG 1620
 TTTCCTGCCA CTTATGTGTC ATTAAATGAA AAAGCTGCTG ACAAAAGAAGA GGAAGCCCCA 1680
 GCTCCAGCTC CAGCGCCATC ATTACCTTCT AGAGAAGAAA CACAAGCAGC ACCAGCATT 1740
 CCAAGTAGAT CAGAGCAAAA ACCAGAATCA AAAACTGCTA CAGCTGAATA CGATTACGAA 1800
 AAGGACGAAG ACAATGAAAT TGGTTTTCA GAAGGTGATT TGATTGTTGA AATCGAATT 1860
 GTTGACGATG ATTGGTGGCA AGGAAACAT TCCAAGACAG GAGAAGTCGG ATTGTTCCCT 1920
 GCTAACTATG TTGTCTTGAA TGAGTAGATT TAGTATAAAC AATATTGGT TTTTTTTAT 1980
 ATGAATCTAT AATATAAAATA CAAAGAAAAG ATAATTGGT G 2021

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 648 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

Met	Glu	Lys	Ile	Asp	Ile	Asn	Thr	Asn	Ser	Asn	Lys	Ile	Gln	Gln	Ala
1															15

Tyr	Asp	Lys	Val	Val	Arg	Gly	Asp	Pro	Asn	Ala	Thr	Phe	Val	Val	Tyr
20															30

Ser Val Asp Lys Asn Ala Thr Met Asp Val Thr Glu Thr Gly Asp Gly
 35 40 45
 Ser Leu Glu Asp Phe Val Glu His Phe Thr Asp Gly Gln Val Gln Phe
 50 55 60
 Gly Leu Ala Arg Val Thr Val Pro Gly Ser Asp Val Ser Lys Asn Ile
 65 70 75 80
 Leu Leu Gly Trp Cys Pro Asp Ser Ala Pro Ala Lys Leu Arg Leu Ser
 85 90 95
 Phe Ala Asn Asn Phe Ala Asp Val Ser Arg Val Leu Ser Gly Tyr His
 100 105 110
 Val Gln Ile Thr Ala Arg Asp Gln Asp Asp Leu Asp Val Asn Glu Phe
 115 120 125
 Leu Asn Arg Val Gly Ala Ala Gly Ala Arg Tyr Ser Thr Gln Thr
 130 135 140
 Ser Gly Leu Lys Lys Pro Ser Pro Ala Ala Pro Lys Pro Thr Ser Lys
 145 150 155 160
 Pro Val Val Ala Lys Ser Ser Ser Ala Ser Lys Pro Ser Phe Val Pro
 165 170 175
 Lys Ser Thr Gly Lys Pro Val Ala Pro Ala Lys Pro Lys Pro Lys Asn
 180 185 190
 Ile Thr Lys Asp Ala Gly Trp Gly Asp Ala Glu Asp Val Glu Glu Arg
 195 200 205
 Asp Phe Asp Lys Lys Pro Leu Asp Asn Val Pro Ser Ala Tyr Lys Pro
 210 215 220
 Thr Lys Val Asn Ile Asp Glu Leu Arg Lys Gln Lys Ser Asp Thr Thr
 225 230 235 240
 Ser Ser Thr Pro Lys Thr Phe Lys Ser Glu Pro Gln Glu Glu Lys Asn
 245 250 255
 Asp Asp Asp Gly Gln Ser Lys Pro Leu Ser Glu Arg Met Lys Ala Tyr
 260 265 270
 Asp Gln Pro Ser Ser Ser Asp Gly Arg Leu Thr Ser Leu Pro Lys Pro
 275 280 285
 Lys Ile Gly His Ser Val Ala Asp Lys Tyr Lys Ala Ser Ala Ser Gly
 290 295 300
 Asn Gly Ala Ala Pro Ala Phe Gly Ala Lys Pro Ala Phe Gly Thr Gln
 305 310 315 320
 Ser Val Asp Ser Arg Lys Asp Lys Leu Val Gly Gly Leu Ser Arg Asp
 325 330 335
 Phe Gly Ala Glu Asn Gly Lys Thr Pro Ala Gln Ile Trp Ala Glu Lys
 340 345 350
 Arg Gly Lys Tyr Lys Thr Val Ala Ser Asp Glu Lys Glu Thr Asn Ser
 355 360 365
 Ser Glu Lys Val Asp Glu Pro Glu Glu His His Ala Ala Asp Leu Ala
 370 375 380
 Lys Lys Phe Glu Glu Lys Ala Asn Ile Ala Gly Asp Thr Pro Ser Leu
 385 390 395 400
 Pro Thr Arg Asn Leu Pro Pro Ala Pro Pro Ala Arg Glu Thr Ala Ile
 405 410 415

Pro Ser Asn Glu Lys Asp Lys Xaa Glu Lys Glu Glu Glu Glu Gln Ala
 420 425 430
 Pro Ala Pro Ser Leu Pro Thr Arg Asn Leu Pro Pro Pro Ser Gln Arg
 435 440 445
 Gln Pro Glu Pro Glu Pro Glu Pro Glu Glu Glu Glu Glu Glu Glu Glu
 450 455 460
 Xaa Glu Ala Pro Ala Pro Ser Leu Pro Ala Arg Asn Leu Pro Pro Ala
 465 470 475 480
 Pro Lys Ala Glu Ala Glu Glu Ser Lys Lys Gln Ser Thr Thr Ala Thr
 485 490 495
 Ala Glu Tyr Asp Tyr Glu Lys Asp Glu Asp Asn Glu Ile Gly Phe Ser
 500 505 510
 Glu Gly Asp Leu Ile Ile Asp Ile Glu Phe Val Asp Asp Asp Trp Trp
 515 520 525
 Gln Gly Lys His Ala Lys Thr Gly Glu Val Gly Leu Phe Pro Ala Thr
 530 535 540
 Tyr Val Ser Leu Asn Glu Lys Ala Ala Asp Lys Glu Glu Glu Ala Pro
 545 550 555 560
 Ala Pro Ala Pro Ala Pro Ser Leu Pro Ser Arg Glu Glu Thr Gln Ala
 565 570 575
 Ala Pro Ala Leu Pro Ser Arg Ser Glu Gln Lys Pro Glu Ser Lys Thr
 580 585 590
 Ala Thr Ala Glu Tyr Asp Tyr Glu Lys Asp Glu Asp Asn Glu Ile Gly
 595 600 605
 Phe Ser Glu Gly Asp Leu Ile Val Glu Ile Glu Phe Val Asp Asp Asp
 610 615 620
 Trp Trp Gln Gly Lys His Ser Lys Thr Gly Glu Val Gly Leu Phe Pro
 625 630 635 640
 Ala Asn Tyr Val Val Leu Asn Glu
 645

(2) INFORMATION FOR SEQ ID NO: 43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

ATGTGTGACG TCGTATTAGG ATCTCAATGG GGGGATGAAG GTAAAGGTAATTAGTCGAT	60
TTATTATGTG ATGATATCGA TGTTTGCC AGGTGTCAAG GTGGTAACAA TGCTGGCAC	120
ACAATTGTTG TTGGTAAAGT CAAAGTATGAC TTCCACATGT TACCTTCTGG TTTGGTCAAT	180
CCTAAATGTC AAAACTTAGT TGGATCTGGT GTTGTATCC ACGTTCCCTTC CTTCTTGCT	240
GAATTGGAAA ACTTGGAACG AAAAGGGTTA GATTGTCGTG ATAGATTGTT TGTTTCATCT	300

AGAGCTCATT TGGTCTTGAA CTTCCATCAA CGTACTGATA AATTGAAAGA AGCTGAATTA	360
TCAACCAATA AGAAATCAAT AGGTACTACC GGTAAGGTA TTGGTCCAAC TTACTCAACC	420
AAGGCAAGTA GATCAGGTAT CAGAGTCCAC CATTTAGTCA ACCCTGATCC AGAAGCTTGG	480
GAAGAATTCA AAACTAGATA TTGAGAGATA GTCGAGAGTA GACAAAAAAG ATACGGTGAA	540
TTTGAATATG ATCCTAAGGA AGAATTGGCA AGATTGAAA AATACCGTGA AACCTTGAGA	600
CCATTCTCGTCG TCGACTCCGT CAACTTCATG CACGAAGCTA TTGCTGCCAA TAAAAAAATC	660
TTGGTTGAAG GTGCTAATGC GTTAATGTTG GATATTGATT TCGGTACTTA TCCATACGTC	720
ACTTCTTCAT CAACTGGTAT TGGTGGTGT TTGACTGGGT TGGGTATTCC TCCAAGAACCC	780
ATCAGAAATG TCTATGGTGT TGTTAAAGCC TACACCACTA GAGTTGGTGA GGGTCCATTG	840
CCAACAGAAC AATTGAACAA GGTAGGTGAA ACTTTGCAAG ATGTTGGTGC CGAATATGGT	900
GTTACTACTG GAAGAAAAAG AAGATGTGGT TGGTTGGATT TGGTTGTGTT GAAATATTCC	960
AACCTGATCA ACGGATACAC TTCTTGAAAC ATCACCAAAT TGGATGTTT GGATAAAATC	1020
AAGGAAATTG AAGTTGGTGT TGCTTATAAA TTGAATGGAA AAGAGTTGCC AAGTTCCCT	1080
GAAGATTTGA TTGATTTAGC TAAAGTCGAG GTTGTGTATA AGAAATTCCC AGGTTGGGAA	1140
CAAGATATCA CCGGTATCAA GAAATATGAA GACTTGCCAG AAAACGCTAA GAACTATCTT	1200
AAATTCTATTG AAGATTACTT GCAAGTTCCA ATCCAATGGG TAGGTACCCG TCCAGCTAGA	1260
GATTCTATGT TAGAAAAGAA GATTTAGTTG TACACATGCT ACGGAAGACG ATTAGATTG	1320
TTTTATTAGA TTAATAACCT	1340

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 428 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

Met	Cys	Asp	Val	Val	Leu	Gly	Ser	Gln	Trp	Gly	Asp	Glu	Gly	Lys	Gly
1															15

Lys	Leu	Val	Asp	Leu	Leu	Cys	Asp	Asp	Ile	Asp	Val	Cys	Ala	Arg	Cys
															20 25 30

Gln	Gly	Gly	Asn	Asn	Ala	Gly	His	Thr	Ile	Val	Val	Gly	Lys	Val	Lys
															35 40 45

Tyr	Asp	Phe	His	Met	Leu	Pro	Ser	Gly	Leu	Val	Asn	Pro	Lys	Cys	Gln
															50 55 60

Asn	Leu	Val	Gly	Ser	Gly	Val	Val	Ile	His	Val	Pro	Ser	Phe	Phe	Ala
															65 70 75 80

Glu	Leu	Glu	Asn	Leu	Glu	Ala	Lys	Gly	Leu	Asp	Cys	Arg	Asp	Arg	Leu
															85 90 95

Phe	Val	Ser	Ser	Arg	Ala	His	Leu	Val	Phe	Asp	Phe	His	Gln	Arg	Thr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

100	105	110
Asp Lys Leu Lys Glu Ala Glu Leu Ser Thr Asn Lys Lys Ser Ile Gly		
115	120	125
Thr Thr Gly Lys Gly Ile Gly Pro Thr Tyr Ser Thr Lys Ala Ser Arg		
130	135	140
Ser Gly Ile Arg Val His His Leu Val Asn Pro Asp Pro Glu Ala Trp		
145	150	155
160		
Glu Glu Phe Lys Thr Arg Tyr Leu Arg Leu Val Glu Ser Arg Gln Lys		
165	170	175
Arg Tyr Gly Glu Phe Glu Tyr Asp Pro Lys Glu Glu Leu Ala Arg Phe		
180	185	190
Glu Lys Tyr Arg Glu Thr Leu Arg Pro Phe Val Val Asp Ser Val Asn		
195	200	205
Phe Met His Glu Ala Ile Ala Ala Asn Lys Lys Ile Leu Val Glu Gly		
210	215	220
Ala Asn Ala Leu Met Leu Asp Ile Asp Phe Gly Thr Tyr Pro Tyr Val		
225	230	235
240		
Thr Ser Ser Ser Thr Gly Ile Gly Gly Val Leu Thr Gly Leu Gly Ile		
245	250	255
Pro Pro Arg Thr Ile Arg Asn Val Tyr Gly Val Val Lys Ala Tyr Thr		
260	265	270
Thr Arg Val Gly Glu Gly Pro Phe Pro Thr Glu Gln Leu Asn Lys Val		
275	280	285
Gly Glu Thr Leu Gln Asp Val Gly Ala Glu Tyr Gly Val Thr Thr Gly		
290	295	300
Arg Lys Arg Arg Cys Gly Trp Leu Asp Leu Val Val Leu Lys Tyr Ser		
305	310	315
320		
Asn Ser Ile Asn Gly Tyr Thr Ser Leu Asn Ile Thr Lys Leu Asp Val		
325	330	335
Leu Asp Lys Phe Lys Glu Ile Glu Val Gly Val Ala Tyr Lys Leu Asn		
340	345	350
Gly Lys Glu Leu Pro Ser Phe Pro Glu Asp Leu Ile Asp Leu Ala Lys		
355	360	365
Val Glu Val Val Tyr Lys Lys Phe Pro Gly Trp Glu Gln Asp Ile Thr		
370	375	380
Gly Ile Lys Lys Tyr Glu Asp Leu Pro Glu Asn Ala Lys Asn Tyr Leu		
385	390	395
400		
Lys Phe Ile Glu Asp Tyr Leu Gln Val Pro Ile Gln Trp Val Gly Thr		
405	410	415
Gly Pro Ala Arg Asp Ser Met Leu Glu Lys Lys Ile		
420	425	

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2481 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

ATGACTGGTG AAGAAGATAA AAAACAACAT TTTGATGCTT CTGGTGCTTC TGCTGTAGAT	60
GATAAAAACAG CAACTGCAAT TTTAAGAAGA AAAAAGAAAG ATAATGCCTT GGTCGTTGAT	120
GACGCCACCA ACGATGACAA TTCTGTCTA ACCATGTCGT CAAACACAAT GGAATTGTTA	180
CAATTATTCC GTGGTGATAC AGTCTGGTG AAAGGTAAGA AGAGAAAGGA CACAGTGTG	240
ATCGTTTAG CTGATGATGA TATGCCTGAT GGCGTTGCTA GAGTTAACAG ATGTGTTCGT	300
AACAATTGTC GTGTCAGATT GGGAGATATC GTTACTGTCC ATCCATGTCC TGATATTAAA	360
TATGCCAACAA GAATCTCAGT ATTGCCAATT GCTGATACTG TTGAAGGTAT TAATGGTTCC	420
TTATTGACC TTTACTTGAA GCCATATTTT GTTGAAGCCT ATAGACCAGT GAGAAAAGGT	480
GATTTATTCA CTGTGAGGGG TGGTATGAGA CAAGTAGAAT TCAAAGTTGT TGAAGTTGAC	540
CCTGAAGAAA TTGCAATTGT TGCTCAAGAT ACCATTATTC ATTGTGAAGG AGAACCTATT	600
AATCGTGAAG ATGAAGAAAA TAGCTTGAAT GAAGTGGGTT ACGACGATAT TGGAGGTTGT	660
AAGAAACAAA TGGCCAAAT TAGAGAATTG GTTGAATTGC CTTTAAGACA TCCACAATT	720
TTCAAATCGA TTGGTATTAA GCCACCAAAG GGTATTTGA TGTATGGTCC ACCTGGTACC	780
GGTAAAACCA TTATGGCAAG AGCAGTGGCC AATGAAACAG GTGCCCTCCTT TTTCTTAATA	840
AATGGTCCAG AAATTATGTC TAAAATGGCT GGTGAGTCTG AATCCAATT AAGAAAAGCT	900
TTTGAAGAGG CTGAAAAGAA TTCTCCTTCC ATTATTTCA TTGATGAGAT TGACTCTATT	960
GCCCCAAAGA GAGACAAAAC TAATGGTGAA GTAGAAAAGAA GAGTTGTTTC TCAATTGTTA	1020
ACCCATTATGG ATGGTATGAA GGCCAGATCT AATGTAGTTG TTATTGCTGC TACTAACAGA	1080
CCAAATTCTA TTGATCCTGC TTTGAGAAGA TTTGGAAGAT TCGACAGAGA AGTTGACATT	1140
GGTGTTCGG ATGCTGAAGG ACGTTAGAG ATTTGAGAA TCCACACAAA GAATATGAAA	1200
TTGGCTGATG ATGTTGACTT GGAAGCCATC GCTTCTGAAA CACATGGTTT CGTTGGTGCT	1260
GATATTGCTT CATTATGTTA AGAAGCTGCT ATGCAACAAA TCCGTGAAA GATGGATCTT	1320
ATCGACTTGG AAGAAGAAC CATTGATACT GAAGTGTGA ACTCTTGAG TGTCACTCAA	1380
GACAACCTCA GATTGCTCT CGGAAACTCC AACCCATCTG CCTTGCCTGA AACTGTTGTT	1440
GAAAATGTTA ATGTCACITG GGATGATATT GGTGGTTGG ACAACATTAA GAATGAATT	1500
AAAGAAACCG TGGAGTATCC TGTTTACAT CCAGATCAAT ACCAAAAATT CGGATTGGCA	1560
CCAACAAAAG GTGTTTGTGTT CTTTGGTCCA CCAGGTAUTG GTAAGACACT TTTGCCAAG	1620
GCTGTTGCTA CTGAAGTTTC TGCTAATTTC ATTTCTGTCA AAGGTCCAGA ATTGTTGAGT	1680
ATGTGGTATG GTGAATCTGA GTCTAATATC CGTGATATAT TTGACAAGGC CAGAGCTGCT	1740
GCTCCTACTG TGGTGTGTTT GGATGAATTG GACTCCATTG CCAAAGCTAG AGGTGGTTCT	1800
CACGGTGATG CTGGTGGTGC CTCCGACAGA GTGGTCAATC AATTGTTGAC TGAAATGGAC	1860
GGTATGAATG CTAAGAAGAA TGTGTTGTC ATTGGTGCCA CTAACAGACC AGATCAAATT	1920
GATCCTGCAT TATTGAGACC AGGTAGATTG GATCAATTAA TTTATGTCCC ATTGCCAGAT	1980

GAGCCAGCTA GATTGTCTAT TTTACAAGCT CAATTGAGAA ACACTCCATT AGAACCTGGT 2040
 TTGGACTTGA ACGAAATTGC CAAGATCACT CACGGTTTCT CGGGTGCAGA TTTGTCTTAT 2100
 ATTGTTCAAA GATCTGCTAA ATTTGCTATT AAAGACTCTA TTGAAGCCCA AGTAAAGATT 2160
 AACAAAGATTA AAGAAGAAAA AGAAAAGGTG AAAACTGAAG ATGTTGATAT GAAGGTAGAT 2220
 GAAGTTGAAG AAGAAGACCC TGTGCCTTAC ATTACCAAGAG CTCACTTGA AGAGGCTATG 2280
 AAGACCGCAA AAAGATCTGT TTCAGACGCT GAATTACGTC GTTATGAGTC TTACGCTCAA 2340
 CAATTGCAAG CCTCAAGAGG TCAATTCTC AGCTTAGAT TCAATGAAAA TGCTGGTGCC 2400
 ACTGATAATG GTTCAGCAGC AGGTGCCAAC TCAGGTGCAG CTTTCGGAAA CGTTGAAGAG 2460
 GAAGACGATT TGTACAGTTG A 2481

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 826 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

Met Thr Gly Glu Glu Asp Lys Lys Gln His Phe Asp Ala Ser Gly Ala
 1 5 10 15

Ser Ala Val Asp Asp Lys Thr Ala Thr Ala Ile Leu Arg Arg Lys Lys
 20 25 30

Lys Asp Asn Ala Leu Val Val Asp Asp Ala Thr Asn Asp Asp Asn Ser
 35 40 45

Val Ile Thr Met Ser Ser Asn Thr Met Glu Leu Leu Gln Leu Phe Arg
 50 55 60

Gly Asp Thr Val Leu Val Lys Gly Lys Lys Arg Lys Asp Thr Val Leu
 65 70 75 80

Ile Val Leu Ala Asp Asp Asp Met Pro Asp Gly Val Ala Arg Val Asn
 85 90 95

Arg Cys Val Arg Asn Asn Leu Arg Val Arg Leu Gly Asp Ile Val Thr
 100 105 110

Val His Pro Cys Pro Asp Ile Lys Tyr Ala Asn Arg Ile Ser Val Leu
 115 120 125

Pro Ile Ala Asp Thr Val Glu Gly Ile Asn Gly Ser Leu Phe Asp Leu
 130 135 140

Tyr Leu Lys Pro Tyr Phe Val Glu Ala Tyr Arg Pro Val Arg Lys Gly
 145 150 155 160

Asp Leu Phe Thr Val Arg Gly Gly Met Arg Gln Val Glu Phe Lys Val
 165 170 175

Val Glu Val Asp Pro Glu Glu Ile Ala Ile Val Ala Gln Asp Thr Ile
 180 185 190

Ile His Cys Glu Gly Glu Pro Ile Asn Arg Glu Asp Glu Glu Asn Ser
 195 200 205
 Leu Asn Glu Val Gly Tyr Asp Asp Ile Gly Gly Cys Lys Lys Gln Met
 210 215 220
 Ala Gln Ile Arg Glu Leu Val Glu Leu Pro Leu Arg His Pro Gln Leu
 225 230 235 240
 Phe Lys Ser Ile Gly Ile Lys Pro Pro Lys Gly Ile Leu Met Tyr Gly
 245 250 255
 Pro Pro Gly Thr Gly Lys Thr Ile Met Ala Arg Ala Val Ala Asn Glu
 260 265 270
 Thr Gly Ala Phe Phe Leu Ile Asn Gly Pro Glu Ile Met Ser Lys
 275 280 285
 Met Ala Gly Glu Ser Glu Ser Asn Leu Arg Lys Ala Phe Glu Glu Ala
 290 295 300
 Glu Lys Asn Ser Pro Ser Ile Ile Phe Ile Asp Glu Ile Asp Ser Ile
 305 310 315 320
 Ala Pro Lys Arg Asp Lys Thr Asn Gly Glu Val Glu Arg Arg Val Val
 325 330 335
 Ser Gln Leu Leu Thr Leu Met Asp Gly Met Lys Ala Arg Ser Asn Val
 340 345 350
 Val Val Ile Ala Ala Thr Asn Arg Pro Asn Ser Ile Asp Pro Ala Leu
 355 360 365
 Arg Arg Phe Gly Arg Phe Asp Arg Glu Val Asp Ile Gly Val Pro Asp
 370 375 380
 Ala Glu Gly Arg Leu Glu Ile Leu Arg Ile His Thr Lys Asn Met Lys
 385 390 395 400
 Leu Ala Asp Asp Val Asp Leu Glu Ala Ile Ala Ser Glu Thr His Gly
 405 410 415
 Phe Val Gly Ala Asp Ile Ala Ser Leu Cys Ser Glu Ala Ala Met Gln
 420 425 430
 Gln Ile Arg Glu Lys Met Asp Leu Ile Asp Leu Glu Glu Glu Thr Ile
 435 440 445
 Asp Thr Glu Val Leu Asn Ser Leu Gly Val Thr Gln Asp Asn Phe Arg
 450 455 460
 Phe Ala Leu Gly Asn Ser Asn Pro Ser Ala Leu Arg Glu Thr Val Val
 465 470 475 480
 Glu Asn Val Asn Val Thr Trp Asp Asp Ile Gly Gly Leu Asp Asn Ile
 485 490 495
 Lys Asn Glu Leu Lys Glu Thr Val Glu Tyr Pro Val Leu His Pro Asp
 500 505 510
 Gln Tyr Gln Lys Phe Gly Leu Ala Pro Thr Lys Gly Val Leu Phe Phe
 515 520 525
 Gly Pro Pro Gly Thr Gly Lys Thr Leu Leu Ala Lys Ala Val Ala Thr
 530 535 540
 Glu Val Ser Ala Asn Phe Ile Ser Val Lys Gly Pro Glu Leu Leu Ser
 545 550 555 560
 Met Trp Tyr Gly Glu Ser Glu Ser Asn Ile Arg Asp Ile Phe Asp Lys
 565 570 575

Ala Arg Ala Ala Ala Pro Thr Val Val Phe Leu Asp Glu Leu Asp Ser
 580 585 590
 Ile Ala Lys Ala Arg Gly Gly Ser His Gly Asp Ala Gly Gly Ala Ser
 595 600 605
 Asp Arg Val Val Asn Gln Leu Leu Thr Glu Met Asp Gly Met Asn Ala
 610 615 620
 Lys Lys Asn Val Phe Val Ile Gly Ala Thr Asn Arg Pro Asp Gln Ile
 625 630 635 640
 Asp Pro Ala Leu Leu Arg Pro Gly Arg Leu Asp Gln Leu Ile Tyr Val
 645 650 655
 Pro Leu Pro Asp Glu Pro Ala Arg Leu Ser Ile Leu Gln Ala Gln Leu
 660 665 670
 Arg Asn Thr Pro Leu Glu Pro Gly Leu Asp Leu Asn Glu Ile Ala Lys
 675 680 685
 Ile Thr His Gly Phe Ser Gly Ala Asp Leu Ser Tyr Ile Val Gln Arg
 690 695 700
 Ser Ala Lys Phe Ala Ile Lys Asp Ser Ile Glu Ala Gln Val Lys Ile
 705 710 715 720
 Asn Lys Ile Lys Glu Glu Lys Glu Lys Val Lys Thr Glu Asp Val Asp
 725 730 735
 Met Lys Val Asp Glu Val Glu Glu Asp Pro Val Pro Tyr Ile Thr
 740 745 750
 Arg Ala His Phe Glu Glu Ala Met Lys Thr Ala Lys Arg Ser Val Ser
 755 760 765
 Asp Ala Glu Leu Arg Arg Tyr Glu Ser Tyr Ala Gln Gln Leu Gln Ala
 770 775 780
 Ser Arg Gly Gln Phe Ser Ser Phe Arg Phe Asn Glu Asn Ala Gly Ala
 785 790 795 800
 Thr Asp Asn Gly Ser Ala Ala Gly Ala Asn Ser Gly Ala Ala Phe Gly
 805 810 815
 Asn Val Glu Glu Asp Asp Leu Tyr Ser
 820 825

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1918 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TTTTTTTTTC TCCCTCTCTC TCGTTCAGAT TCTGTAGAAT TGATTGGTTG AGAGTAAAG	60
TCAGACTTTT TTTTTGCTC TCCATCTAGT GGGACAAATA AGAAGTTAA CAAAGAACGA	120
CAAAAAATCC TCACCAGAAG AAAAAAAAAT CAATTTCAC AGGTAAAGTT GTACGGACAG	180
CACGACAGAC ACAAAACTAA AGTAAATCCA TGAGGAAAAA AGTAAAAAAA AAAAAATTGT	240

TCACCAACAAC TTCAAGAGCC ATTAAAACCA AAAATTTGGA ATATAAATTG CAACTGATT	300
CTTGCTGGAT TTTTTGTAT ATATTTGCAA TTGATTCCT TTTACTTTT TTTTTCCAT	360
TTCTTCTTT CCTTTTCCA TCTTTAAGT TTCTTTAGA ATATAGTATA TTTATCAAAC	420
AATGTCTGCA TTCAGATCAA TTCAACGTC AACCAACGTA GCCAAGAGCA CTTCAAAAA	480
CAGCATCAGA ACATATGCTT CTGCTGAACC AGTATGTATT CACTTTTG AGGATCCGGG	540
CAATGTGCTT GGGATTTAC TTTAACGTA TATACAAAGA TAATTTACTA ACTTGCTTTC	600
TTAGACCTTA AAACAAAGAT TGGAAGAAAT CTTGCCAGCC AAAGCTGAAG AAGTTAAACA	660
ATTCAAAAAA GAACACGGTA AAACGTCA TGGTGAAGTT TTATTAGAAC AAGCTTACGG	720
TGGTATGAGA GGTATCAAAG GTTTAGTTG GGAAGGTTCT GTTTGGACC CAATTGAAGG	780
TATCCGTTTC AGAGGAAGAA CCATCCCAGA CATTCAAAA GAATTGCCAA AAGCACCAAGG	840
TGGTGAAGAA CCATTACCAAG AAGCTCTTT CTGGTTGTTG TTGACTGGTG AAGTCCAAC	900
TGACGCCCAA ACTAAGGCTT TATCGAAGA ATTTGCTGCT AGATCAGCAT TACCAAAGCA	960
CGITGAAGAA TTGATCGACA GATCTCCATC TCACTTGCAC CCAATGGCTC AATTCTCCAT	1020
TGCCGTTACT GCTTGGAAAT CTGAATCCCA ATTTGCCAA GCTTATGCTA AAGGTGCCAA	1080
CAAATCCGAA TACTGGAAAT ACACTTACGA AGATTCCATC GATTTGTTAG CTAAATTGCC	1140
AACCATTGCT GCTAAGATT ACAGAAACGT TTTCCACGAT GGTAAATTGC CAGCTGCCAT	1200
TGACTCCAAA TTGGATTACG GTGCTAACCTT GGCCAGTTG TTAGGTTTG GTGACAACAA	1260
GGAATTGTT GAATTAATGA GATTGTACCT TACCATCCAC TCTGACCACG AAGGTGGTAA	1320
CGTCTCTGCA CACACCACCC ACTTGGTTGG TTCCGCTTTA TCTTCCCCAT TCTTGTCAATT	1380
AGCTGCTGGT TTGAATGGTT TAGCTGGTCC ATTACACGGT AGAGCTAACC AAGAAGTTT	1440
GGAATGGTT TTCAAATTAA GAGAAGAATT AAACGGTGAC TACTCCAAGG AAGCCATTGA	1500
AAAATACTTG TGGGAAACCT TGAACCTCCGG TAGAGTTGTC CCAGGTTACG GTCACGCTGT	1560
CTTGAGAAAG ACCGATCCAA GATACACTGC TCAAAGAGAA TTTGCTCTTA AACATATGCC	1620
AGACTACGAA TTGTTCAAAT TGGTTCAAA CATTACGAA GTCGCTCCAG GTGTTTAAC	1680
CAAACACGGT AAGACCAAGA ACCCATGGCC AAATGTGGAC TCCCACCTTG GTGCTTGT	1740
ACAATACTAC GGTTGACTG AACAAATCTT CTACACTGTC TTGTTGGTG TTTCCAGAGC	1800
CTTGGGTGTC TTGCCACAAT TGATCTTGGA CCGTGGTATC GGTATGCCAA TTGAAAGACC	1860
AAAATCTTTC TCCACTGAAA AATACATTGA ATTGGTCAA AACATCAACA AAGCTTAA	1918

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 466 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

Met Ser Ala Phe Arg Ser Ile Gln Arg Ser Thr Asn Val Ala Lys Ser
 1 5 10 15

Thr Phe Lys Asn Ser Ile Arg Thr Tyr Ala Ser Ala Glu Pro Thr Leu
 20 25 30

Lys Gln Arg Leu Glu Glu Ile Leu Pro Ala Lys Ala Glu Glu Val Lys
 35 40 45

Gln Phe Lys Lys Glu His Gly Lys Thr Val Ile Gly Glu Val Leu Leu
 50 55 60

Glu Gln Ala Tyr Gly Gly Met Arg Gly Ile Lys Gly Leu Val Trp Glu
 65 70 75 80

Gly Ser Val Leu Asp Pro Ile Glu Gly Ile Arg Phe Arg Gly Arg Thr
 85 90 95

Ile Pro Asp Ile Gln Lys Glu Leu Pro Lys Ala Pro Gly Gly Glu Glu
 100 105 110

Pro Leu Pro Glu Ala Leu Phe Trp Leu Leu Leu Thr Gly Glu Val Pro
 115 120 125

Thr Asp Ala Gln Thr Lys Ala Leu Ser Glu Glu Phe Ala Ala Arg Ser
 130 135 140

Ala Leu Pro Lys His Val Glu Glu Leu Ile Asp Arg Ser Pro Ser His
 145 150 155 160

Leu His Pro Met Ala Gln Phe Ser Ile Ala Val Thr Ala Leu Glu Ser
 165 170 175

Glu Ser Gln Phe Ala Gln Ala Tyr Ala Lys Gly Ala Asn Lys Ser Glu
 180 185 190

Tyr Trp Lys Tyr Thr Tyr Glu Asp Ser Ile Asp Leu Leu Ala Lys Leu
 195 200 205

Pro Thr Ile Ala Ala Lys Ile Tyr Arg Asn Val Phe His Asp Gly Lys
 210 215 220

Leu Pro Ala Ala Ile Asp Ser Lys Leu Asp Tyr Gly Ala Asn Leu Ala
 225 230 235 240

Ser Leu Leu Gly Phe Gly Asp Asn Lys Glu Phe Val Glu Leu Met Arg
 245 250 255

Leu Tyr Leu Thr Ile His Ser Asp His Glu Gly Gly Asn Val Ser Ala
 260 265 270

His Thr Thr His Leu Val Gly Ser Ala Leu Ser Ser Pro Phe Leu Ser
 275 280 285

Leu Ala Ala Gly Leu Asn Gly Leu Ala Gly Pro Leu His Gly Arg Ala
 290 295 300

Asn Gln Glu Val Leu Glu Trp Leu Phe Lys Leu Arg Glu Glu Leu Asn
 305 310 315 320

Gly Asp Tyr Ser Lys Glu Ala Ile Glu Lys Tyr Leu Trp Glu Thr Leu
 325 330 335

Asn Ser Gly Arg Val Val Pro Gly Tyr Gly His Ala Val Leu Arg Lys
 340 345 350

Thr Asp Pro Arg Tyr Thr Ala Gln Arg Glu Phe Ala Leu Lys His Met
 355 360 365

Pro Asp Tyr Glu Leu Phe Lys Leu Val Ser Asn Ile Tyr Glu Val Ala

370

375

380

Pro Gly Val Leu Thr Lys His Gly Lys Thr Lys Asn Pro Trp Pro Asn
 385 390 395 400

Val Asp Ser His Ser Gly Val Leu Leu Gln Tyr Tyr Gly Leu Thr Glu
 405 410 415

Gln Ser Phe Tyr Thr Val Leu Phe Gly Val Ser Arg Ala Phe Gly Val
 420 425 430

Leu Pro Gln Leu Ile Leu Asp Arg Gly Ile Gly Met Pro Ile Glu Arg
 435 440 445

Pro Lys Ser Phe Ser Thr Glu Lys Tyr Ile Glu Leu Val Lys Asn Ile
 450 455 460

Asn Lys
 465

(2) INFORMATION FOR SEQ ID NO: 49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 678 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

TTTTCTGATT ATCATGTTAT TTGGTTAGCT AACCGGAATA ATGGGATAAT GGAAGCTGAA	60
TATCGATTAT ATTTTATTAGT TATCACTTTA ATCATTTCAC CCGTAGGGTT AATTATGTTT	120
GGTGTGGTG CCGCTAGAGA ATGCCATGG CAAGTGATTT ATGTTGGATT AGGTTTCATT	180
GGGTTGGTT GGGGATCAAT TGGTGATACT TCAATGTCTT ATTAATGGA TGCTTATCCT	240
GATATTGTCA TTCAAGGAAT GGTGGGAGTA AGTATTATTA ATAATACTTT GGCTTGTATT	300
TTCACTTTG CTTGTTCTTA TTGGTTAGAT GGATCAGGAA CACAAAACAC ATATATTGCC	360
TTGTCATTAA TTGATTTGC TACCATAGCA TTGGTTTCC CCTTTTATA TTATGGTAAA	420
ACATTTAGAA GGAAAACCAA AAGACTTTAT GTTCAATGG TTGAATTGAC TCAAGGGATG	480
GGATAAGAGA GTGAGTGGTA AAAGAATTTT ATTAATGATA CATTATTAT TAGAATTACT	540
ACTATGGAAA TCCGAGTCTG TGTTTTTTT AGAAGTATAT TTTAGACGTA TTTAGAGTTG	600
TTTTCTCCT TTGTACTTTA TTTAGCATT TATAATATAT TAATTCAAGT TGCATTAATA	660
TATATAAAATA AAAAAACT	678

(2) INFORMATION FOR SEQ ID NO: 50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 159 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

Ser Asp Tyr His Val Ile Trp Leu Ala Lys Arg Asn Asn Gly Ile Met
 1 5 10 15

Glu Ala Glu Tyr Arg Leu Tyr Leu Leu Val Ile Thr Leu Ile Ile Ser
 20 25 30

Pro Val Gly Leu Ile Met Phe Gly Val Gly Ala Ala Arg Glu Trp Pro
 35 40 45

Trp Gln Val Ile Tyr Val Gly Leu Gly Phe Ile Gly Phe Gly Trp Gly
 50 55 60

Ser Ile Gly Asp Thr Ser Met Ser Tyr Leu Met Asp Ala Tyr Pro Asp
 65 70 75 80

Ile Val Ile Gln Gly Met Val Gly Val Ser Ile Ile Asn Asn Thr Leu
 85 90 95

Ala Cys Ile Phe Thr Phe Ala Cys Ser Tyr Trp Leu Asp Gly Ser Gly
 100 105 110

Thr Gln Asn Thr Tyr Ile Ala Leu Ser Ile Ile Asp Phe Ala Thr Ile
 115 120 125

Ala Leu Val Phe Pro Phe Leu Tyr Tyr Gly Lys Thr Phe Arg Arg Lys
 130 135 140

Thr Lys Arg Leu Tyr Val Ser Met Val Glu Leu Thr Gln Gly Met
 145 150 155

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1480 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1060
- (D) OTHER INFORMATION:/note= "R = A or G"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1063
- (D) OTHER INFORMATION:/note= "Y = C or T"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1123
- (D) OTHER INFORMATION:/note= "Y = C or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

TTGGGATTTT CAATTACAAG ATATTTGCA TCATGTTGAA AGCAAATGGT TTGGTGGGTT	60
TATTCAGGT ATTTCACTA ATGACAATGA CGTTGAAAAT GAATCCAAGA ACGTGTTCA	120
TAAATTCAAA CAAGATTTAA TGAAAATTTT GAAAGATTGT TTAACCGTAA GTGACGATAA	180

ATCGAATATA GAGAGGTTTC TTCAGTTAA TGAATTATT TATTACTGCT TTTACTCAAT	240
GGAGGAATAT AATTATGAAT TGGTTGATGA TTTGATAAAA TTTATAACTA TAAATATGAA	300
TTCTCATGGC AGAATAGTTA ATTTGGCAC TAATGTTAAA ATTAATAAT TACACGAATT	360
AATTAAGAAT TTGATTGATA AAGTTAATAA AAACAAACAA AATGTGACTA GCAACAACAA	420
AAACAACAAAC ACAACAAACA GCAACAACAA CAGCAACAGC ACAATTCCC AACATATTGT	480
TTTGATACCT AATGCCAATCT GTTCCAATT CCCATGGAA TCGATGGAAT TTCTTCGTAG	540
TAAATCAATT TCAAGAATGC CATCAATTCA TATGTTACTT GATCTAGTCA AATCAAACAC	600
CAATAACAAG ACAAGTTAA TGTTGTTGA TAAATCTAAT TTGTATTATT TGATTAATCC	660
CAGTGGTGAT TTAATTCGAT CAGAAAATCG ATTCAAAAAA CTATTTGAAT CAAATCATT	720
ATGGGAGAGGG GAAATTGGAA AATTATCAAG TAATGAACAT GAAGATTATC AAGATTCAAT	780
ATTATGTGAA ATCTTGAAAA GTCATTTATT TGTTTATATT GGTCAATGGTG GTTGTGATCA	840
ATATATTAAA GTATCAAAAT TATTTAAAAA ATGTGGCAAT AATCAAGATT TACTGAATAA	900
ATTACCTCCT AGTTTATTGT TAGGTTGTTTC ATCAGTTAAA TTAGATAATT GTAATTATAA	960
CTATAATTCC AGTATGTTAC AACCACTGGG TAATATTAT AATTGGTTGA ACTGTAAATC	1020
GTCAATGATA CTCGGGAATC TATGGGATGT TACTGATAAR GAYATTGATA TTTTACACT	1080
TTCATTACTA CAAAAATGGG GGTAAATAGA TGATTATAAT GGYAGTGGCC ATGATTATGG	1140
TATGAAGAAA TTGGATTGTA CTAATTGTGT TGTTCAAAGT CGAAGTAAAT GTACTTTGAA	1200
ATACTTGAAT GGATCAGCAC CTGTGGTTA TGGTCTACCA ATGTATTTAA AATAGACATT	1260
CTGTTTGCAT ATAAGTTAT ATATTTAAAT AATAAGAAAA AGAGCATAAT TTGGATCTTG	1320
ATTTGTATT GTTGGTTTG TTATGAACAA ATTTGCACC CAATCACTAT CGAACCTTCT	1380
TTTTAAACA GAGAACATT AATCAACATT TATGTTACAT TTAAGCGTTT AAATACATAT	1440
TTGTGTTAGA TAGTTATATA ATGTTTGATG CAAACATACA	1480

(2) INFORMATION FOR SEQ ID NO: 52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 417 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

Leu Asp Phe Gln Leu Gln Asp Ile Leu His His Val Glu Ser Lys Trp			
1	5	10	15

Phe Gly Gly Phe Ile Ser Gly Ile Phe Thr Asn Asp Asn Asp Val Glu		
20	25	30

Asn Glu Ser Lys Asn Val Phe His Lys Phe Lys Gln Asp Leu Met Lys		
35	40	45

Ile Leu Lys Asp Cys Leu Thr Val Ser Asp Asp Lys Ser Asn Ile Glu	
---	--

50

55

60

Arg Phe Leu Gln Phe Asn Glu Phe Ile Tyr Tyr Cys Phe Tyr Ser Met
 65 70 75 80
 Glu Glu Tyr Asn Tyr Glu Leu Val Asp Asp Leu Ile Lys Phe Ile Thr
 85 90 95
 Ile Asn Met Asn Ser His Gly Arg Ile Val Asn Phe Gly Thr Asn Val
 100 105 110
 Lys Ile Asn Lys Leu His Glu Leu Ile Lys Asn Leu Ile Asp Lys Val
 115 120 125
 Asn Lys Asn Lys Gln Asn Val Thr Ser Asn Asn Lys Asn Asn Asn Asn
 130 135 140
 Asn Asn Ser Asn Asn Asn Ser Asn Asn Ser Gln His Ile Val
 145 150 155 160
 Leu Ile Pro Asn Ala Asn Cys Ser Asn Phe Pro Trp Glu Ser Met Glu
 165 170 175
 Phe Leu Arg Ser Lys Ser Ile Ser Arg Met Pro Ser Ile His Met Leu
 180 185 190
 Leu Asp Leu Val Lys Ser Asn Thr Asn Asn Lys Asn Lys Leu Met Phe
 195 200 205
 Val Asp Lys Ser Asn Leu Tyr Tyr Leu Ile Asn Pro Ser Gly Asp Leu
 210 215 220
 Ile Arg Ser Glu Asn Arg Phe Lys Lys Leu Phe Glu Ser Asn His Leu
 225 230 235 240
 Trp Arg Gly Glu Ile Gly Lys Leu Ser Ser Asn Glu His Glu Asp Tyr
 245 250 255
 Gln Asp Ser Ile Leu Cys Glu Ile Leu Lys Ser His Leu Phe Val Tyr
 260 265 270
 Ile Gly His Gly Gly Cys Asp Gln Tyr Ile Lys Val Ser Lys Leu Phe
 275 280 285
 Lys Lys Cys Gly Asn Asn Gln Asp Leu Ser Asn Lys Leu Pro Pro Ser
 290 295 300
 Leu Leu Leu Gly Cys Ser Ser Val Lys Leu Asp Asn Cys Asn Tyr Asn
 305 310 315 320
 Tyr Asn Ser Ser Met Leu Gln Pro Ser Gly Asn Ile Tyr Asn Trp Leu
 325 330 335
 Asn Cys Lys Ser Ser Met Ile Leu Gly Asn Leu Trp Asp Val Thr Asp
 340 345 350
 Xaa Xaa Ile Asp Ile Phe Thr Leu Ser Leu Leu Gln Lys Trp Gly Leu
 355 360 365
 Ile Asp Asp Tyr Asn Xaa Ser Gly His Asp Tyr Gly Met Lys Lys Leu
 370 375 380
 Asp Leu Thr Asn Cys Val Val Gln Ser Arg Ser Lys Cys Thr Leu Lys
 385 390 395 400
 Tyr Leu Asn Gly Ser Ala Pro Val Val Tyr Gly Leu Pro Met Tyr Leu
 405 410 415
 Lys

(2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1443 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

CTTCTTTAG AGACAATGCA GTGGTTTCT TACCAAGATGC ATGACCCCCA CCCAATAAAA	60
CTATAATCGA TCTATTCA CA GTATTTGATG CCATTTGAT GGTGATGAAT GATGTGATGT	120
GATGCTCATC TTATTGGGAG TTTCAAAAAA AAAAGTTACA CTCGAAAAAA AAAAAATAGC	180
ATTATAAATA GAAGCTTTAC TATCTTATAG AACAAAACAA AAAACACTAT CTTCTAATTA	240
ATAATGGATG ATTTGATAG AGATTTAGAT AATGAGTTGG AATTTAGTCA TAAATCAACG	300
AAAGGAATAA AGGTTCATCG CACTTTGAA AGTATGAATT TGAAACCTGA TCTTTGAAA	360
GGAATATATG CCTATGGATT TGAAGCACCA TCTGCTATT C AATCTAGGGC TATTATGCAG	420
ATCATCAGTG GTAGAGACAC AATAGCACAG GCACAACTG GAACTGGTAA AACTGCTACT	480
TTTTCTATTG GTATGCTTGA GGTTATAGAT ACTAAATCAA AAGAGTGTCA AGCACTTATC	540
TTGTCTCCTA CTAGAGAGTT GGCAATTCAA ATACAAAATG TGGTCATGCA TTTAGGAGAT	600
TATATGAACA TTCACACCCA TGCCTGTATT GGTGGGAAAA ATGTCGGTGA GGATGTTAAG	660
AAATTGCAGC AAGGGCAACA AATAGTTAGT GGGACACCAG GTAGAGTGTAT GATGTGATA	720
AAAAGAAGAA ATCTACAAAC TAGAAATATC AAGGTTCTTA TTTAGATGA AGCTGATGAA	780
CTTTTACAA AAGGGTTAA AGAACAGATC TACGAAATCT ACAAAACATT ACCACCTCG	840
GTTCAAGTAG TAGTTGTTAG TGCCACTTTG CCACGTGAAG TATTGGAGAT GACAAGTAAG	900
TTTACCACTG ATCCAGTGAA AATCTGGTG AAGAGGGATG AGATTCGCT TCTGGGAATC	960
AAACAATATT ATGTTCAATG TGAACGTGAA GATTGGAAGT TTGATACACT ATGTGATTG	1020
TATGACAACC TTACAATAAC TCAAGCAGTG ATATTTGTA ATACCAAATT GAAGGTGAAT	1080
TGGCTTGCTG ATCAAATGAA AAAGCAAAAC TTTACTGTTG TGGCAATGCA TGGTGTATG	1140
AAACAAGATG AACGAGATTC ATTATGAAC GATTTAGAA GGGGAATT C AAGAGTATTA	1200
ATATCTACAG ATGTTGGGC AAGAGGTATT GATGTCCAAC AAGTCTCGTT GGTAATAAAT	1260
TATGATTTGC CCACCGATAA GGGAAACTAT ATTCA TAGAA TTGGACGATC AGGTAGATT	1320
GGTAGAAAGG GAACAGCTAT AAACCTGATA ACTAAAGATG ATGTGGTCAC TTTAAAAGAA	1380
TTGGAGAAAT ATTATTCAAC GAAAATTAAG GAAATGCCAA TGAATATTAA TGATATAATG	1440
TAA	1443

(2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 399 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

Met	Asp	Asp	Phe	Asp	Arg	Asp	Leu	Asp	Asn	Glu	Leu	Glu	Phe	Ser	His
1															15

Lys	Ser	Thr	Lys	Gly	Ile	Lys	Val	His	Arg	Thr	Phe	Glu	Ser	Met	Asn
															30
20															

Leu	Lys	Pro	Asp	Leu	Leu	Lys	Gly	Ile	Tyr	Ala	Tyr	Gly	Phe	Glu	Ala
															45
35															

Pro	Ser	Ala	Ile	Gln	Ser	Arg	Ala	Ile	Met	Gln	Ile	Ile	Ser	Gly	Arg
															60
50															

Asp	Thr	Ile	Ala	Gln	Ala	Gln	Ser	Gly	Thr	Gly	Lys	Thr	Ala	Thr	Phe
															80
65															

Ser	Ile	Gly	-Met	Leu	Glu	Val	Ide	Asp	Thr	Lys	Ser	Lys	Glu	Cys	Gln
															95
85															

Ala	Leu	Ile	Leu	Ser	Pro	Thr	Arg	Glu	Leu	Ala	Ile	Gln	Ile	Gln	Asn
															110
100															

Val	Val	Met	His	Leu	Gly	Asp	Tyr	Met	Asn	Ile	His	Thr	His	Ala	Cys
															125
115															

Ile	Gly	Gly	Lys	Asn	Val	Gly	Glu	Asp	Val	Lys	Lys	Leu	Gln	Gln	Gly
															140
130															

Gln	Gln	Ile	Val	Ser	Gly	Thr	Pro	Gly	Arg	Val	Ile	Asp	Val	Ile	Lys
															160
145															

Arg	Arg	Asn	Leu	Gln	Thr	Arg	Asn	Ile	Lys	Val	Leu	Ile	Leu	Asp	Glu
															175
165															

Ala	Asp	Glu	Leu	Phe	Thr	Lys	Gly	Phe	Lys	Glu	Gln	Ile	Tyr	Glu	Ile
															190
180															

Tyr	Lys	His	Leu	Pro	Pro	Ser	Val	Gln	Val	Val	Val	Ser	Ala	Thr	
															205
195															

Leu	Pro	Arg	Glu	Val	Leu	Glu	Met	Thr	Ser	Lys	Phe	Thr	Thr	Asp	Pro
															220
210															

Val	Lys	Ile	Leu	Val	Lys	Arg	Asp	Glu	Ile	Ser	Leu	Ser	Gly	Ile	Lys
															240
225															

Gln	Tyr	Tyr	Val	Gln	Cys	Glu	Arg	Glu	Asp	Trp	Lys	Phe	Asp	Thr	Leu
															255
245															

Cys	Asp	Leu	Tyr	Asp	Asn	Leu	Thr	Ile	Thr	Gln	Ala	Val	Ile	Phe	Cys
															270
260															

Asn	Thr	Lys	Leu	Lys	Val	Asn	Trp	Leu	Ala	Asp	Gln	Met	Lys	Lys	Gln
															285
275															

Asn	Phe	Thr	Val	Val	Ala	Met	His	Gly	Asp	Met	Lys	Gln	Asp	Glu	Arg
															300
290															

Asp	Ser	Ile	Met	Asn	Asp	Phe	Arg	Arg	Gly	Asn	Ser	Arg	Val	Leu	Ile
															320
305															

Ser Thr Asp Val Trp Ala Arg Gly Ile Asp Val Gln Gln Val Ser Leu

325

330

335

Val Ile Asn Tyr Asp Leu Pro Thr Asp Lys Glu Asn Tyr Ile His Arg
 340 345 350

Ile Gly Arg Ser Gly Arg Phe Gly Arg Lys Gly Thr Ala Ile Asn Leu
 355 360 365

Ile Thr Lys Asp Asp Val Val Thr Leu Lys Glu Leu Glu Lys Tyr Tyr
 370 375 380

Ser Thr Lys Ile Lys Glu Met Pro Met Asn Ile Asn Asp Ile Met
 385 390 395

(2) INFORMATION FOR SEQ ID NO: 55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1020 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

AACGTTGGCC	TGGCCCAGTT	AATTCCGTTT	CCAAGCAAAT	GAATGTCGAT	ACCGACATCA	60
TCACGTTGAC	CCGTTTTATT	TTACAAGAAC	AGCAAACGTG	TGCTCCCACC	GCCACCGGTG	120
AGTTGTCGTT	GTTGTTGAAT	GCGCTTCAAT	TTGCATTCAA	GTTTATTGCC	CACAAATATCA	180
GAAGAGCTGA	GTTGGTCAAC	CTTATTGGTG	TTTCTGGCTC	TGCCAACTCT	ACCGGTGATG	240
TTCAGAAGAA	ATTGGATGTG	ATTGGTGATG	AGATCTTAT	CAATGCCATG	AGATCTTCCA	300
ACAACGTCAA	GGTTTGGTT	TCTGAAGAGC	AAGAAGACCT	TATTGTGTT	CCAGGTGGTG	360
GCACATATGC	TGTTTGTACT	GATCCAATTG	ATGGGTGTC	CAATATCGAT	GCTGGTGT	420
CTGTTGGTAC	GATTTTGTT	GTGTACAAGT	TGCAAGAGGG	GTCTACTGGT	GGCATCAGCG	480
ATGTCTTGC	TCCTGGTAAG	GAGATGGTCG	CTGGGGGTA	CACCATGTAC	GGTGCATCTG	540
CCCATTGGC	ATTGACTACA	GGTCACGGTG	TCAATCTTT	TACTTGGAT	ACTCAGTTGG	600
GTGAATTAT	CTTGACCCAT	CCAAACTTGA	AGTTGCCAGA	TACTAAGAAC	ATCTACTCGT	660
TGAATGAAGG	GTACTCGAAC	AAATTCCCAG	AATACGTTCA	AGATTATCTG	AAGGACATTA	720
AAAAGGAAGG	GTACAGTTG	AGATAACATTG	GACTGATGGT	TGCTGATGTC	CATCGTACTC	780
TTTTGTATGG	TGGTATTTT	GCTTACCTA	CATTAAGTT	GAGAGTGTG	TATGAATGTT	840
TCCCCATGGC	CTTGGTGTG	GAACAAGCAG	GCGGTTCTGC	TGTCACCAC	AAGGGTGAGA	900
GGATCTTGGA	TATCTTGCCA	AAAGGTATAC	ACGACAAGAG	TTCTATTGTG	TTGGGATCCA	960
AGGGTGAAGT	TGAAAAGTAT	TTAAAGCATG	TACCAAAATA	GATTATGTAG	AAAATTTATG	1020

(2) INFORMATION FOR SEQ ID NO: 56:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 320 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

Met Asn Val Asp Thr Asp Ile Ile Thr Leu Thr Arg Phe Ile Leu Gln
1 5 10 15

Glu Gln Gln Thr Val Ala Pro Thr Ala Thr Gly Glu Leu Ser Leu Leu
20 25 30

Leu Asn Ala Leu Gln Phe Ala Phe Lys Phe Ile Ala His Asn Ile Arg
35 40 45

Arg Ala Glu Leu Val Asn Leu Ile Gly Val Ser Gly Ser Ala Asn Ser
50 55 60

Thr Gly Asp Val Gln Lys Lys Leu Asp Val Ile Gly Asp Glu Ile Phe
65 70 75 80

Ile Asn Ala Met Arg Ser Ser Asn Asn Val Lys Val Leu Val Ser Glu
85 90 95

Glu Gln Glu Asp Leu Ile Val Phe Pro Gly Gly Thr Tyr Ala Val
100 105 110

Cys Thr Asp Pro Ile Asp Gly Ser Ser Asn Ile Asp Ala Gly Val Ser
115 120 125

Val Gly Thr Ile Phe Gly Val Tyr Lys Leu Gln Glu Gly Ser Thr Gly
130 135 140

Gly Ile Ser Asp Val Leu Arg Pro Gly Lys Glu Met Val Ala Ala Gly
145 150 155 160

Tyr Thr Met Tyr Gly Ala Ser Ala His Leu Ala Leu Thr Thr Gly His
165 170 175

Gly Val Asn Leu Phe Thr Leu Asp Thr Gln Leu Gly Glu Phe Ile Leu
180 185 190

Thr His Pro Asn Leu Lys Leu Pro Asp Thr Lys Asn Ile Tyr Ser Leu
195 200 205

Asn Glu Gly Tyr Ser Asn Lys Phe Pro Glu Tyr Val Gln Asp Tyr Ser
210 215 220

Lys Asp Ile Lys Lys Glu Gly Tyr Ser Leu Arg Tyr Ile Gly Ser Met
225 230 235 240

Val Ala Asp Val His Arg Thr Leu Leu Tyr Gly Gly Ile Phe Ala Tyr
245 250 255

Pro Thr Leu Lys Leu Arg Val Leu Tyr Glu Cys Phe Pro Met Ala Leu
260 265 270

Leu Met Glu Gln Ala Gly Gly Ser Ala Val Thr Ile Lys Gly Glu Arg
275 280 285

Ile Leu Asp Ile Leu Pro Lys Gly Ile His Asp Lys Ser Ser Ile Val
290 295 300

Leu Gly Ser Lys Gly Glu Val Glu Lys Tyr Leu Lys His Val Pro Lys
305 310 315 320

(2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 825 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

AACCCCACCT TCAAAGACAA AGAAGATTC GTCAAGCAAA CGAATGTCAG ACCAGAAAAG	60
AACCAAGAAC TAATCAAATT TGCCC GTGAC AACCTTAACC ATTTACCATT CACCGAAAAAA	120
GACGGAGGTG CATGGAAAAA CTATGAACGA ATGATCAGTG GTATGCTCTA CAACTGTTTA	180
CAAAAAGAAT TGGAAACAAAC ACGTATGTCT TGCAGAGACT ACATGTTGGA CTACGGCAGT	240
TTCAGAACTA GAGATTATAA ACAAACCCAA GAATTCTTG ATGAAAATA CAAACATTAA	300
GAAAGTTCA TTGGACATGT TGGCAAAAT GCATTATGG AATATCCAAT CTATTTGAT	360
TATGGGTTTA ACACTTATTT GGGTGATAAT TTCTATTCCA ATTACAATT GACAATTTG	420
GATGTTCCA TAGTCAGAAT TGGTAATAAT GTCAAGTGTG GTCCCAATGT ATCTATCCTT	480
ACCCCAACAC ACCCAGTGGA TCCCACTTG CGCTATGATC AATTGGAAAA TGCCTTGCC	540
GTGACGGTGG GTAACGGGGT CTGGTTGTGT GGAAGCTGTA CCATTCTTGG TGGGGTGACA	600
GTAGGTGATG GCAGCATTGT GGCTGCTGGT GCAGTTGTCA ACAAGGACGT TCCACCAAC	660
ACTGTAGTTG CGGGAGTTCC TGCTAGGGTA GTTAAGCAGC TAGAACCTAG AGACCTAAC	720
TTTGACACTA TGGCAGTTTT GAAACAATAT GGTATGGTT ATATAGATTA GTAATTAGAT	780
TTGATGTAAT GTACACGACT ACACATTTG CTGGTGTCTG TTTTT	825

(2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 206 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

Met Ile Ser Gly Met Leu Tyr Asn Cys Leu Gln Lys Glu Leu Glu Thr			
1	5	10	15
Thr Arg Met Ser Cys Arg Asp Tyr Met Leu Asp Tyr Gly Ser Phe Arg			
20	25	30	
Thr Arg Asp Tyr Lys Thr Thr Gln Glu Phe Leu Asp Ala Lys Tyr Lys			
35	40	45	
His Leu Glu Ser Phe Ile Gly His Val Gly Lys Asn Ala Phe Met Glu			

50

55

60

Tyr Pro Ile Tyr Phe Asp Tyr Gly Phe Asn Thr Tyr Leu Gly Asp Asn
 65 70 75 80

Phe Tyr Ser Asn Tyr Asn Leu Thr Ile Leu Asp Val Ser Ile Val Arg
 85 90 95

Ile Gly Asn Asn Val Lys Cys Gly Pro Asn Val Ser Ile Leu Thr Pro
 100 105 110

Thr His Pro Val Asp Pro Thr Leu Arg Tyr Asp Gln Leu Glu Asn Ala
 115 120 125

Leu Pro Val Thr Val Gly Asn Gly Val Trp Leu Cys Gly Ser Cys Thr
 130 135 140

Ile Leu Gly Gly Val Thr Val Gly Asp Gly Ser Ile Val Ala Ala Gly
 145 150 155 160

Ala Val Val Asn Lys Asp Val Pro Pro Asn Thr Val Val Ala Gly Val
 165 170 175

Pro Ala Arg Val Val Lys Gln Leu Glu Pro Arg Asp Pro Asn Phe Asp
 180 185 190

Thr Met Ala Val Leu Lys Gln Tyr Gly Met Gly Tyr Ile Asp
 195 200 205

(2) INFORMATION FOR SEQ ID NO: 59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1380 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

AATTACAATC TGGTTTGT	TA CTACCATATC CCATTAGTGT	TATTGTCATT GTAGATATTG	60
ATAATGGTTA AAGGATTGGT	TTTCATTTTT TGTGTAATGA	ATGAGCCAAA ATAAAAAAATC	120
AATTCGATGC GATGCAATGA	AGTTAACATAA AATTTTTTTT	TTCTTTATT TCTTTAATC	180
AACCCATCAA TCATTAATT	GAATCAATAC CTACCAATTAA	CATACTTCTA TATACATATA	240
TATATATAAC AAAATATCAT	GGGGAAAGATA ACAACTAGTG	ATACTAAAC AAAACAAACGT	300
CATAATCCAT TATTAAGA	TATTCATCC CAAGGTGGGA	ATTTAAGAAC CGTTCCAAGA	360
TCATCATCAT CATCATCATC	ACAAAAGAAG AAATCATCAA	AGAAACAAAG ACATAACGAT	420
GAAGACGACG AAGAAAATGG	TGGCGGTGAA GGATTTTAG	ATGCTTCTAG TTCAAGAAAG	480
ATTTTACAAT TGGCAAAAGA	ACAACAAGAT GAACTTGAAC	AAGAAGATGTA AATACAAAAT	540
AAACCTTCAT TTGCTCAATC	ATTTAAAAAT CAACAAATAG	ATAGTGAAGA AGAAGAAGAG	600
GAAGATGAGT ATTCAGATTT	TGAAGAAGAA GAAGAAGTTG	AAGAGATAGT ATATGATGAA	660
GAAGATGCAG AAGTTGATCC	CAAAGATGCA GAATTATTTA	ATAAAATATT CCAATCCAAC	720
GGTGAAGCTA ATAATAATGA	TGATGATAAT TCATTTCAAC	CAACAATAAA TTTAGCTGAT	780

AAAATCTTAG CCAAAATTCA AGAAAAAGAA TCCCAACAAC ACAACAACA ACAAAGCTCT	840
CCAGATAATA GTAATGAAGA TGCGTATTG TTACCACCAA AAGTCATTT AGCTTATGAA	900
AAAATTGGTC AAATTTATC AACTTAACT CATGGAAAT TACCTAAATT ATTTAAAATT	960
TTACCAAGTT TAAAAAATTG GCAAGATGTA TTATACGTGA CAAATCCAAA TAGTTGGACT	1020
CCTCATGCCA CATATGAAGC AACTAAATTA TTTGTGTCGA ATTTATCAAG TAATGAAGCT	1080
ACAGTTTCA TTGAAACTAT CTTGTTGCCA CGATTCCGTG ATTCTATTGA AAATTCCGAT	1140
GATCATTCA TAAATTATCA TATTATCGA GCATTAaaaa AATCATTATA TAAACCAGGA	1200
GCTTTTTCA AAGGGTTCTT GTTACCTTTA GTCGATGGTT ATTGTTCTGT ACGTGAAGCC	1260
ACTATTGCTG CTTCAGTGTGTT AACTAAAGTT TCTGTCCCTG TTTTACATTC ATGTCAATTAT	1320
TGTGGCGTAC TGATGAATAA AAAACGAGAA TCACCTGTAT TTGTCCCTACG GCGAATATAA	1380

(2) INFORMATION FOR SEQ ID NO: 60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 373 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

Met	Gly	Lys	Ile	Thr	Thr	Ser	Asp	Thr	Lys	Thr	Lys	Gln	Arg	His	Asn
1									5		10			15	

Pro	Leu	Leu	Lys	Asp	Ile	Ser	Ser	Gln	Gly	Gly	Asn	Leu	Arg	Thr	Val
								20		25			30		

Pro	Arg	Ser	Ser	Ser	Ser	Ser	Ser	Gln	Lys	Lys	Ser	Ser	Lys		
								35		40			45		

Lys	Gln	Arg	His	Asn	Asp	Glu	Asp	Asp	Glu	Glu	Asn	Gly	Gly	Glu	
						50		55		60					

Gly	Phe	Leu	Asp	Ala	Ser	Ser	Arg	Lys	Ile	Leu	Gln	Leu	Ala	Lys	
								65		70			75		80

Glu	Gln	Gln	Asp	Glu	Leu	Glu	Gln	Glu	Asp	Glu	Ile	Gln	Asn	Lys	Pro
								85		90			95		

Ser	Phe	Ala	Gln	Ser	Phe	Lys	Asn	Gln	Gln	Ile	Asp	Ser	Glu	Glu	
								100		105			110		

Glu	Glu	Glu	Asp	Glu	Tyr	Ser	Asp	Phe	Glu	Glu	Glu	Glu	Val	Glu	
								115		120			125		

Glu	Ile	Val	Tyr	Asp	Glu	Glu	Asp	Ala	Glu	Val	Asp	Pro	Lys	Asp	Ala
								130		135			140		

Glu	Leu	Phe	Asn	Lys	Tyr	Phe	Gln	Ser	Asn	Gly	Glu	Ala	Asn	Asn	
								145		150			155		160

Asp	Asp	Asp	Asn	Ser	Phe	Gln	Pro	Thr	Ile	Asn	Leu	Ala	Asp	Lys	Ile
								165		170			175		

Leu	Ala	Lys	Ile	Gln	Glu	Lys	Glu	Ser	Gln	Gln	Gln	Gln	Gln	Gln	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

180

185

190

Ser Ser Pro Asp Asn Ser Asn Glu Asp Ala Val Leu Leu Pro Pro Lys
 195 200 205

Val Ile Leu Ala Tyr Glu Lys Ile Gly Gln Ile Leu Ser Thr Tyr Thr
 210 215 220

His Gly Lys Leu Pro Lys Leu Phe Lys Ile Leu Pro Ser Leu Lys Asn
 225 230 235 240

Trp Gln Asp Val Leu Tyr Val Thr Asn Pro Asn Ser Trp Thr Pro His
 245 250 255

Ala Thr Tyr Glu Ala Thr Lys Leu Phe Val Ser Asn Leu Ser Ser Asn
 260 265 270

Glu Ala Thr Val Phe Ile Glu Thr Ile Leu Leu Pro Arg Phe Arg Asp
 275 280 285

Ser Ile Glu Asn Ser Asp Asp His Ser Leu Asn Tyr His Ile Tyr Arg
 290 295 300

Ala Leu Lys Lys Ser Leu Tyr Lys Pro Gly Ala Phe Phe Lys Gly Phe
 305 310 315 320

Leu Leu Pro Leu Val Asp Gly Tyr Cys Ser Val Arg Glu Ala Thr Ile
 325 330 335

Ala Ala Ser Val Leu Thr Lys Val Ser Val Pro Val Leu His Ser Cys
 340 345 350

His Tyr Cys Gly Val Ser Met Asn Lys Lys Arg Glu Ser Pro Val Phe
 355 360 365

Val Leu Arg Arg Ile
 370

(2) INFORMATION FOR SEQ ID NO: 61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 823 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

AACCAACAAT GAGTCAAGTC GCTCCAAAGT GGTACCAATC AGAAGACGTT CCAGCTCCAA	60
AACAAACCG AGAACACTGCT CGTCCACAAA ATTACGTGC CTCTTTAGTC CCAGGTACCG	120
TTTTAATTTC ATTGGCCGGT AGATTCAAGAG GTAAAAGAGT TGTTTACTTG AAGAACTTGG	180
AAGACAAACAC CTTATTGGTT TCTGGTCCAT TCAAAGTCAA TGGTGTCCA TTGAGAAGAG	240
TTAACCGCTAG ATACGTTATC GCCACCTCCA CCAAAGTCAA CGTTTCTGGT GTTGATGTTT	300
CTAAATTCAA CGTCGAATAC TTTGCTAGAG AAAATCTTC TAAATCTAAA AAATCCGAAG	360
CTGAATTCTT CAATGAATCT CAACCAAAGA AAGAAATCAA AGCTGAAAGA GTTGCTGACC	420
AAAAATCTGT CGATGCTGCT TTATTAAGTG AAATCAAAAA GACCCCATTA TTGAAACAAT	480
ACTTGGCCGC TTCATTCTCT TTGAAGAACG GTGACAGACC ACACTTGTTA AAATTTAAT	540

TTAGGTGAAA TTAATATTTT GCAAACATGT TCATGATAAA TAACAATGTG GCTTTAAAG	600
CAATGGATGG GATATGGTTA AGAGGATGTC TTTATATTTT GAGTTTATA TATGGGTACT	660
TTGTTAATA ATGGAAGGTA TTGGCTCAGA TGAACCTCAA AATGGAGATT ACTTTTTCT	720
TTTACTTTA CAATATTTTC GTCTATTGC TGTTTAAGCT GCAAAACAA ATTAAATAC	780
GGTGTATCTT AACTCTTATT CATTGTAT ATTAAATACA TAT	823

(2) INFORMATION FOR SEQ ID NO: 62:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 176 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

Met Ser Gln Val Ala Pro Lys Trp Tyr Gln Ser Glu Asp Val Pro Ala			
1	5	10	15

Pro Lys Gln Thr Arg Lys Thr Ala Arg Pro Gln Lys Leu Arg Ala Ser		
20	25	30

Leu Val Pro Gly Thr Val Leu Ile Leu Leu Ala Gly Arg Phe Arg Gly		
35	40	45

Lys Arg Val Val Tyr Leu Lys Asn Leu Glu Asp Asn Thr Leu Leu Val		
50	55	60

Ser Gly Pro Phe Lys Val Asn Gly Val Pro Leu Arg Arg Val Asn Ala			
65	70	75	80

Arg Tyr Val Ile Ala Thr Ser Thr Lys Val Asn Val Ser Gly Val Asp		
85	90	95

Val Ser Lys Phe Asn Val Glu Tyr Phe Ala Arg Glu Lys Ser Ser Lys		
100	105	110

Ser Lys Lys Ser Glu Ala Glu Phe Phe Asn Glu Ser Gln Pro Lys Lys		
115	120	125

Glu Ile Lys Ala Glu Arg Val Ala Asp Gln Lys Ser Val Asp Ala Ala		
130	135	140

Leu Leu Ser Glu Ile Lys Lys Thr Pro Leu Leu Lys Gln Tyr Leu Ala			
145	150	155	160

Ala Ser Phe Ser Leu Lys Asn Gly Asp Arg Pro His Leu Leu Lys Phe		
165	170	175

(2) INFORMATION FOR SEQ ID NO: 63:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 415 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

AACATTAAG CAAGATGGAA AACGATAAAG GTCAATTAGT TGAATTATAC GTCCCAAGAA	60
AATGTTCTGC TACCAACAGA ATCATTAAAG CCAAAGATCA CGCTTCTGTT CAAATCTCAA	120
TTGCTAAAGT TGATGAAGAC GGTAGAGCTA TTGCTGGTGA AAACATCACT TACGCTTAA	180
GTGGTTACGT TAGAGGTAGA GGTGAAGCTG ATGACTCATT AAACAGATTG GCTCAACAAG	240
ACGGTTTATT GAAGAACGTC TGGTCTTA CTCGTTAAGA GAATAGAAGA ATAGACAAAA	300
TTGATAATTG GGTATTTAA GAAATTACTT TTTTATATT GCAAATTAAT TTTAATCTTT	360
CTTCTGTGTA TATTAATGT CTTAACATAA TAAAAAAAAA GAATAGAAAT GGT	415

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 87 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

Met Glu Asn Asp Lys Gly Gln Leu Val Glu Leu Tyr Val Pro Arg Lys			
1	5	10	15

Cys Ser Ala Thr Asn Arg Ile Ile Lys Ala Lys Asp His Ala Ser Val		
20	25	30

Gln Ile Ser Ile Ala Lys Val Asp Glu Asp Gly Arg Ala Ile Ala Gly		
35	40	45

Glu Asn Ile Thr Tyr Ala Leu Ser Gly Tyr Val Arg Gly Arg Gly Glu		
50	55	60

Ala Asp Asp Ser Leu Asn Arg Leu Ala Gln Gln Asp Gly Leu Leu Lys			
65	70	75	80

Asn Val Trp Ser Tyr Ser Arg	
85	

(2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1519 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 749

(D) OTHER INFORMATION:/note= "N = A or T or C or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

ACCATGTGTC AAATTGCTTG GTCGTGTCTT	TTCACCCACAC ATTTTTTGG ATTAAATTTC	60
TCGCACGCTC AAAAATGAC TTGACAAAAA AGCAATGCCA CTCTTCCCTAC	AATTAATTCC	120
CTCCGCCCTC TCCTTTCAT ATACTATCTC CCTTCCTCTC	TCCTTCTCCTT TTTATTTTT	180
CAATTATTAC AATCTTATGT CATTAAAGG ATTCAAAAAG GGTGTCTTA	GGGCCCCACA	240
GACAATGCGT CAGAAATTCA ACATGGGAGA AATCACCCAA GATGCTGTTT	ATCTCGATGC	300
TGAAAGAAGA TTCAAAGAAA TCGAAACGGA AACAAAAAG TTGAGTGAAG AATCCAAGAA	360	
ATATTCAAT GCTGTCAATG GGATGTTAGA TGAACAAATT GATTTGCCA AAGCCGTGGC	420	
TGAGATTAT AAACCAATCA GTGGTAGATT ATCGGACCCC AGTGTACGG TACCAAGA	480	
TAACCCACAA GGTATTGAAG CATCGGAAC GTACCAAGCA GTGGTTAAAG ATCTCAAAGA	540	
TACCTTAAAA CCCGATTGG AATTGATTGA AAAAGAATT GTTGAACCAAG CACAAGAATT	600	
ATTGAAGATT ATACAAGCTA TAAGGAAAAT GTCAGTGAAA AGAGACCATA AACAAATTGGA	660	
TTGGATCGT CATAAGAGAA ATTTTCTAA ATATGAACTG AAGAAAGAAA GAACTGTTAA	720	
AGATGAAGAA AAAATGTTCA GTGCTCAANC AGAAGTAGAA ATTGCTAAC AAGAGTACGA	780	
TTATTATAAT GATTTGTTAA AGAATGAATT GCCAGTTTG TTTCAAATGC AAAGTGATTT	840	
TATCAAACCA TTGTTGTTT CATTCTATTA CATGCAGTTG AATATTTCT ACACATTATA	900	
CACTAGAAATG GAAGAGTTGA AAATTCCATA TTTGATTTG TCTACTGATA TTGTCGAAGC	960	
TTATACTGCC AAGAAGGGGA ACATTGAGGA ACAAAACCGAT GCTATTGGAA TCACTCATT	1020	
CAAAGTCGGG CATGCCAAAT CCAAATTGGA AGCCACTAAA AGAAGACATG CTGCTATGAA	1080	
TAGTCCACCT CCTACCGGTG CCAGCTCTAT TGCATCTACA GGTACTGGTG GTGAATTACC	1140	
TGCATACTCC CCAGGAGGTT ACAACCAACC ATATGGTATG AGCAAGTATC AACCAACCATC	1200	
TTCTCCAGCA ACATACCAAT CTCCAGTAGT AGCAGCCACT GCTCAATCTC CAGCTACTTA	1260	
TCAATGCCA GTGGCTACTG GACAACCTCC ATCATATTAA CCACAAACTC CAGCCAGTGC	1320	
TCCACCACCA CAAGTTGGTA GTGGCCTTCC AACATGCACG GCTTATACG ATTATACTGC	1380	
ACAAGCCAG GGTGACTTGA CTTTCCCTGC AGGAGCTGTT ATTGAAATTA TACAAAGAAC	1440	
CGAAGATGCC AACGGATGGT GGACTGGTAA ATACAATGGT CAAACCGGTG TGTTCCCTGG	1500	
TAATTATGTG CAATTATAG	1519	

(2) INFORMATION FOR SEQ ID NO: 66:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 440 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

Met Ser Phe Lys Gly Phe Lys Lys Gly Val Leu Arg Ala Pro Gln Thr
 1 5 10 15

Met Arg Gln Lys Phe Asn Met Gly Glu Ile Thr Gln Asp Ala Val Tyr
 20 25 30

Leu Asp Ala Glu Arg Arg Phe Lys Glu Ile Glu Thr Glu Thr Lys Lys
 35 40 45

Leu Ser Glu Glu Ser Lys Lys Tyr Phe Asn Ala Val Asn Gly Met Leu
 50 55 60

Asp Glu Gln Ile Asp Phe Ala Lys Ala Val Ala Glu Ile Tyr Lys Pro
 65 70 75 80

Ile Ser Gly Arg Leu Ser Asp Pro Ser Ala Thr Val Pro Glu Asp Asn
 85 90 95

Pro Gln Gly Ile Glu Ala Ser Glu Ser Tyr Gln Ala Val Val Lys Asp
 100 105 110

Leu Lys Asp Thr Leu Lys Pro Asp Leu Glu Leu Ile Glu Lys Arg Ile
 115 120 125

Val Glu Pro Ala Gln Glu Leu Leu Lys Ile Ile Gln Ala Ile Arg Lys
 130 135 140

Met Ser Val Lys Arg Asp His Lys Gln Leu Asp Leu Asp Arg His Lys
 145 150 155 160

Arg Asn Phe Ser Lys Tyr Glu Ser Lys Lys Glu Arg Thr Val Lys Asp
 165 170 175

Glu Glu Lys Met Phe Ser Ala Gln Xaa Glu Val Glu Ile Ala Gln Gln
 180 185 190

Glu Tyr Asp Tyr Tyr Asn Asp Leu Leu Lys Asn Glu Leu Pro Val Leu
 195 200 205

Phe Gln Met Gln Ser Asp Phe Ile Lys Pro Leu Phe Val Ser Phe Tyr
 210 215 220

Tyr Met Gln Leu Asn Ile Phe Tyr Thr Leu Tyr Thr Arg Met Glu Glu
 225 230 235 240

Leu Lys Ile Pro Tyr Phe Asp Leu Ser Thr Asp Ile Val Glu Ala Tyr
 245 250 255

Thr Ala Lys Lys Gly Asn Ile Glu Glu Gln Thr Asp Ala Ile Gly Ile
 260 265 270

Thr His Phe Lys Val Gly His Ala Lys Ser Lys Leu Glu Ala Thr Lys
 275 280 285

Arg Arg His Ala Ala Met Asn Ser Pro Pro Pro Thr Gly Ala Ser Ser
 290 295 300

Ile Ala Ser Thr Gly Thr Gly Glu Leu Pro Ala Tyr Ser Pro Gly
 305 310 315 320

Gly Tyr Asn Gln Pro Tyr Gly Asp Ser Lys Tyr Gln Pro Pro Ser Ser
 325 330 335

Pro Ala Thr Tyr Gln Ser Pro Val Val Ala Ala Thr Ala Gln Ser Pro
 340 345 350

Ala Thr Tyr Gln Ser Pro Val Ala Thr Gly Gln Pro Pro Ser Tyr Leu
 355 360 365

Pro Gln Thr Pro Ala Ser Ala Pro Pro Pro Gln Val Gly Ser Gly Leu

370

375

380

Pro Thr Cys Thr Ala Leu Tyr Asp Tyr Thr Ala Gln Ala Gln Gly Asp
 385 390 395 400

Leu Thr Phe Pro Ala Gly Ala Val Ile Glu Ile Ile Gln Arg Thr Glu
 405 410 415

Asp Ala Asn Gly Trp Trp Thr Gly Lys Tyr Asn Gly Gln Thr Gly Val
 420 425 430

Phe Pro Gly Asn Tyr Val Gln Leu
 435 440

(2) INFORMATION FOR SEQ ID NO: 67:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 855 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

ATAATTTCA GAAAGAGACT AGATTCTGAT AGAAATATAG ACGCATCACT ATATTTGGA	60
AATATAGATC CACAAGTTAC GGAGTTGTTA ATGTATGAGT TGTTCATCCA ATTTGGTCCC	120
GTCAAATCAA TCAATATGCC AAAGGATCGT ATATTGAAAA CACACCAGGG GTATGGATT	180
GTCGAATTAA AAAACTCAGC AGATGCCAAA TATACTATGG AAATACTACG AGGAATAAGA	240
CTTTATGGAA AAGCATTGAA ATTGAAACGA ATTGATGCCA AGTCTCAGTC ATCAACAAAC	300
AACCCAAATA ATCAAACAAT AGGAACATT GTACAATCAG ATTTGATCAA TCCAAATTAC	360
ATAGATGTTG GAGCTAAACT ATTTATCAAC AATCTTAATC CATTGGTCGA TGAATCCTTT	420
TTAATGGATA CGTTTAGTAA GTTTGGAACC CTTATAAGAA ACCCAATAAT TAGACGTGAT	480
TCAGAGGGAC ACTCTTGAGG ATACGGATT CTTACGTACG ATGACTTTGA AAGTAGTGAT	540
TTATGCATAC AAAAAATGAA CAACACGATT TTGATGAATA ACAAAATTGC TATCAGTTAT	600
GCATTCAAGG ATCTGAGTGT TGATGGGAAG AAATCCCGGC ATGGAGATCA AGTGGAGCGG	660
AAATTGGCTG AAAGTGCCAA AAAGAATAAT TTGTTGGTAA CGAAAACCTTC TAAGGCAGGT	720
ACGACGAAGG GAAATAAAAG GAAGAATAAA CCACATAAAG TGACCAAACC GTGAGACAAT	780
GAGTTAGCTC CCCCTTCAA AATAAGTAGA GTATCACCAT AGTTTATGAA ACAATTGATA	840
TATTAAGCTT CTCTG	855

(2) INFORMATION FOR SEQ ID NO: 68:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 257 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

Ile Ile Phe Arg Lys Arg Leu Asp Ser Asp Arg Asn Ile Asp Ala Ser
 1 5 10 15

Leu Tyr Phe Gly Asn Ile Asp Pro Gln Val Thr Glu Leu Leu Met Tyr
 20 25 30

Glu Leu Phe Ile Gln Phe Gly Pro Val Lys Ser Ile Asn Met Pro Lys
 35 40 45

Asp Arg Ile Leu Lys Thr His Gln Gly Tyr Gly Phe Val Glu Phe Lys
 50 55 60

Asn Ser Ala Asp Ala Lys Tyr Thr Met Glu Ile Leu Arg Gly Ile Arg
 65 70 75 80

Leu Tyr Gly Lys Ala Leu Lys Leu Lys Arg Ile Asp Ala Lys Ser Gln
 85 90 95

Ser Ser Thr Asn Asn Pro Asn Asn Gln Thr Ile Gly Thr Phe Val Gln
 100 105 110

Ser Asp Leu Ile Asn Pro Asn Tyr Ile Asp Val Gly Ala Lys Leu Phe
 115 120 125

Ile Asn Asn Leu Asn Pro Leu Val Asp Glu Ser Phe Leu Met Asp Thr
 130 135 140

Phe Ser Lys Phe Gly Thr Leu Ile Arg Asn Pro Ile Ile Arg Arg Asp
 145 150 155 160

Ser Glu Gly His Ser Leu Gly Tyr Gly Phe Leu Thr Tyr Asp Asp Phe
 165 170 175

Glu Ser Ser Asp Leu Cys Ile Gln Lys Met Asn Asn Thr Ile Leu Met
 180 185 190

Asn Asn Lys Ile Ala Ile Ser Tyr Ala Phe Lys Asp Ser Ser Val Asp
 195 200 205

Gly Lys Lys Ser Arg His Gly Asp Gln Val Glu Arg Lys Leu Ala Glu
 210 215 220

Ser Ala Lys Lys Asn Asn Leu Leu Val Thr Lys Thr Ser Lys Ala Gly
 225 230 235 240

Thr Thr Lys Gly Asn Lys Arg Lys Asn Lys Pro His Lys Val Thr Lys
 245 250 255

Pro

(2) INFORMATION FOR SEQ ID NO: 69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1685 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

CTGTTTATTA AATGGATATA TGTTAACCCA TGAACCTCGG TTTATCAGAA AAATTGGTGC	60
TGGTACCTAT GGTTTGATTT ACCTTGTGGA AAATATCTAC ACTAAACAAC AATTTGCTGC	120
TAAAATGGTT CTTGAACAGC CATTACTCAA ACAAAAGCAA CAACAACAAC AAAGTCATCA	180
TGGACATAAA GGAGAATCTA GTATGAACAA ACAAAATAATA CTGCAAGAAT TTTATCAATA	240
TTTTTTAAC AATAGTATGC CACAACCACG AAATTGGAC TTGAATTACC TTCGAGACAA	300
CGGACATGAT TGCCCCTTT TGACTGAAAT CTCATTACAT TTAAAAGTAC ATCAACACCC	360
AAACATAGCG ACTATTCATC AAGTATTAAA CATTGAAGAT TTTGCCATAA TAATATTGAT	420
GGATCATTTC GAGCAAGGAG ATTTGTCAC TAATATCATT GATAGACAAA TATTCACCAA	480
TAATAGTCAT AGAAAAGTTC CAAGAACAGA TTTGAAACC CAATTATTAA TGAAGAATGC	540
CATGTTACAA TTGATAGAAG CCATTGAATA TTGTCACGAA ATAATATT ACCATTGTGA	600
TTTAAAACCA GAAAACATTA TGGTAGATA TAATCCATAC TATGTTCGTC CAACTATCAA	660
TAACAATAAT AACAAATGGAG AAGATGATT ATGCTATGCC AACAGTATTAA TTGACTATAA	720
TGAATTACAC CTCGTGTTGA TTGATTTGG TTTAGCTATG GACTCTGCTA CCATTGTTG	780
TAATTCATGT CGTGGATCGT CATTTCACAT GGCACCAAGAA AGAACCCACCA ATTATAACAC	840
CCATCGTTA ATCAACCAAT TAATTGATAT GAATCAATAT GAGTCATTG AAATCAATGG	900
GACAAACAGTG ACAAAATCAA ACTGTAAATAA TTTACCTACA TTGGCTGGGG ATATTGGTC	960
ATTGGGAGTA TTGTTCATTA ATATCACTTG TTCAAGAAAC CCATGGCCCA TTGCATCATT	1020
TGATAATAAT CAAAATAATG AAGTGTAA GAATTATATG TTGAATAATA ACAAGGCTGT	1080
TTTGAGCAAATCTTACCCA TTTCCTCACA ATTTAATCGC TTATTAGATA GAATTTCAA	1140
ATTGAATCCT AATGATAGAA TAGATTACCA AACTTATAC AAAGAAGTTA TTCGTTGTGA	1200
TTTCTCAAA GATGATCATT ACTACTATGC CCAACATCAA CATCATCACA ATCACAATCA	1260
AATCAATAAT GCTTACAATC ACTATCAGAA ACAACCTAAT CAAGCAAGAC CTACTGCAA	1320
CCAACAATTG TATACACCAC CGGAAACCAC CACTTATAAT TCATACGCTA GTGATATGGA	1380
AGAAGATGAA ATTAGTGATG ATGAGTTTA TTCTGATGAA GAAGATGAAG ATATTGAAGA	1440
CTATGAAGAG GAAGAGGAAG AGTATTTGG TAATGAGCAA CAACAACAAC AGCAAGTCAC	1500
AACAGTGAAT GGTAATTTG GTCAAGTTAA AGGTACCTGT TATTACGATA CAAAACCAA	1560
AACAACATACA TATATAAAAC CACCAAGCTGC ATATACTTTA GAGACGCCTA GTCAAAGTGT	1620
TGAATACTGT TAAGTTGTAC ACATAAATAA TTAATGACAA TTAATAATAA CGATTAATAA	1680
TATAG	1685

(2) INFORMATION FOR SEQ ID NO: 70:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 537 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

Met Leu Asn His Glu Leu Arg Phe Ile Arg Lys Ile Gly Ala Gly Thr
 1 5 10 15

Tyr Gly Leu Ile Tyr Leu Val Glu Asn Ile Tyr Thr Lys Gln Gln Phe
 20 25 30

Ala Ala Lys Met Val Leu Glu Gln Pro Leu Leu Lys Gln Lys Gln Gln
 35 40 45

Gln Gln Gln Ser His His Gly His Lys Gly Glu Ser Ser Met Asn Lys
 50 55 60

Gln Ile Ile Ser Gln Glu Phe Tyr Gln Tyr Phe Leu Asn Asn Ser Met
 65 70 75 80

Pro Gln Pro Arg Asn Leu Asp Leu Asn Tyr Leu Arg Asp Asn Gly His
 85 90 95

Asp Cys Pro Phe Leu Thr Glu Ile Ser Leu His Leu Lys Val His Gln
 100 105 110

His Pro Asn Ile Ala Thr Ile His Gln Val Leu Asn Ile Glu Asp Phe
 115 120 125

Ala Ile Ile Ile Leu Met Asp His Phe Glu Gln Gly Asp Leu Phe Thr
 130 135 140

Asn Ile Ile Asp Arg Gln Ile Phe Thr Asn Asn Ser His Arg Lys Val
 145 150 155 160

Pro Arg Thr Asp Phe Glu Thr Gln Leu Leu Met Lys Asn Ala Met Leu
 165 170 175

Gln Leu Ile Glu Ala Ile Glu Tyr Cys His Glu Asn Asn Ile Tyr His
 180 185 190

Cys Asp Leu Lys Pro Glu Asn Ile Met Val Arg Tyr Asn Pro Tyr Tyr
 195 200 205

Val Arg Pro Thr Ile Asn Asn Asn Asn Asn Gly Glu Asp Asp Leu
 210 215 220

Cys Tyr Ala Asn Ser Ile Ile Asp Tyr Asn Glu Leu His Leu Val Leu
 225 230 235 240

Ile Asp Phe Gly Leu Ala Met Asp Ser Ala Thr Ile Cys Cys Asn Ser
 245 250 255

Cys Arg Gly Ser Ser Phe Tyr Met Ala Pro Glu Arg Thr Thr Asn Tyr
 260 265 270

Asn Thr His Arg Leu Ile Asn Gln Leu Ile Asp Met Asn Gln Tyr Glu
 275 280 285

Ser Ile Glu Ile Asn Gly Thr Thr Val Thr Lys Ser Asn Cys Lys Tyr
 290 295 300

Leu Pro Thr Leu Ala Gly Asp Ile Trp Ser Leu Gly Val Leu Phe Ile
 305 310 315 320

Asn Ile Thr Cys Ser Arg Asn Pro Trp Pro Ile Ala Ser Phe Asp Asn
 325 330 335

Asn Gln Asn Asn Glu Val Phe Lys Asn Tyr Met Leu Asn Asn Asn Lys
 340 345 350

Ala Val Leu Ser Lys Ile Leu Pro Ile Ser Ser Gln Phe Asn Arg Leu

355

360

365

Leu Asp Arg Ile Phe Lys Leu Asn Pro Asn Asp Arg Ile Asp Leu Pro
 370 375 380
 Thr Leu Tyr Lys Glu Val Ile Arg Cys Asp Phe Phe Lys Asp Asp His
 385 390 395 400
 Tyr Tyr Tyr Ala Gln His Gln His His Asn His Asn Gln Ile Asn
 405 410 415
 Asn Ala Tyr Asn His Tyr Gln Lys Gln Pro Asn Gln Ala Arg Pro Thr
 420 425 430
 Ala Asn Gln Gln Leu Tyr Thr Pro Pro Glu Thr Thr Tyr Asn Ser
 435 440 445
 Tyr Ala Ser Asp Met Glu Glu Asp Glu Ile Ser Asp Asp Glu Phe Tyr
 450 455 460
 Ser Asp Glu Glu Asp Glu Asp Ile Glu Asp Tyr Glu Glu Glu Glu Glu
 465 470 475 480
 Glu Tyr Phe Gly Asn Glu Gln Gln Gln Gln Val Thr Thr Val
 485 490 495
 Asn Gly Asn Phe Gly Gln Val Lys Gly Thr Cys Tyr Tyr Asp Thr Lys
 500 505 510
 Thr Lys Thr Thr Tyr Ile Lys Pro Pro Ala Ala Tyr Thr Leu Glu
 515 520 525
 Thr Pro Ser Gln Ser Val Glu Tyr Cys
 530 535

(2) INFORMATION FOR SEQ ID NO: 71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 848 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

AACCAATTTC	AGAAACAATG	GCTCGTCAAT	TTTCGTAGG	TGGTAACCTC	AAAGCTAACG	60
GTACCAAACA	ACAAATCACT	TCAATCATCG	ACAACCTGAA	CAAGGCTGAT	TTACCAAAGG	120
ATGTCGAAGT	TGTCATTGTC	CCACCCGCC	TTTACCTTGG	TTTAGCTGTA	GAGCAAAACA	180
AACAACCAAC	TGTTGCCATT	GGTGCTAAA	ATGTTTTGA	CAAGTCATGT	GGTGTTC	240
CTGGTGAAAC	CTGTGCTTCT	CAAATCTTGG	ATGTTGGTC	CAGCTGGACT	TTAACTGGTC	300
ACAGTGAAAG	AAGAACATT	ATCAAAGAAT	CCGATGAATT	CATTGCTGAA	AAAACCAAGT	360
TTGCCTTGG	CACTGGTGT	AAAGTTATT	TATGTATTGG	TGAAACCTTA	GAGGAAAGAA	420
AAGGTGGTGT	CACTTGGAT	GTTGTGCCA	GACAATTGGA	TGCTGTTCC	AAGATTGTT	480
CTGATTGGTC	AAACATTGTT	GTTGCTTACG	AACCTGTTG	GGCAATTGGT	ACTGGTTAG	540
CCGCTACCCC	AGAAGATGCT	GAAGAAACCC	ACAAAGGTAT	TAGAGCTCAT	TTGGCCAAGA	600

CCATTGGTGC CGAACAAAGCT GAAAAAACCA GAATCTTGT	660
AGAACGCTAA GGATTTCAA GACAAAGCAA ATGTTGATGG TTTCTTAGTC	720
CATTAAAAACC AGAATTTGTT GATATCATCA AATCTAGATT ATAAACAGTA TATTAAAAAC	780
TATATGCC	840
TAGAATTTAG CATGTTGTTG TGAATTTGTA ATGAATCTAT AAAAATGTGC	
TCATGAAC	848

(2) INFORMATION FOR SEQ ID NO: 72:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 248 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr	
1 5 10 15	

Lys Gln Gln Ile Thr Ser Ile Ile Asp Asn Leu Asn Lys Ala Asp Leu	
20 25 30	

Pro Lys Asp Val Glu Val Val Ile Cys Pro Pro Ala Leu Tyr Leu Gly	
35 40 45	

Leu Ala Val Glu Gln Asn Lys Gln Pro Thr Val Ala Ile Gly Ala Gln	
50 55 60	

Asn Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala	
65 70 75 80	

Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser	
85 90 95	

Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys	
100 105 110	

Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly	
115 120 125	

Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala	
130 135 140	

Arg Gln Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile	
145 150 155 160	

Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala	
165 170 175	

Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu	
180 185 190	

Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr	
195 200 205	

Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala	
210 215 220	

Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	
225 230 235 240	

23:12-1998

EP98310694:9

DESC

Val Asp Ile Ile Lys Ser Arg Leu
245

- 100 -

Claims

1. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth
5 of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of nucleotides in Sequence ID Numbers 1 to 3, 5, 6, 8 to 11, 13, 15, 16, 18, 20, 21, 23, 25 to 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69 and
10 71.

2. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth
15 of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of nucleotides in Sequence ID Numbers 28, 35, 37 and 39 and fragments or derivatives of said nucleic acid molecules.

3. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth
20 of the yeast *Candida albicans* and which polypeptide has an amino acid sequence according to the sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50,
25 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.

4. A nucleic acid molecule according to any of claims 1 to 3 which is mRNA.

30 5. A nucleic acid molecule according to any of claims 1 to 3 which is DNA.

6. A nucleic acid molecule according to claim 5 which is cDNA.

- 101 -

7. A nucleic acid molecule capable of hybridising to the molecules according to any of claims 1 to 5 under high stringency conditions.

5 8. A polypeptide having the amino acid sequences of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.

10 9. A polypeptide encoded by the nucleic acid molecule according to any of claims 1 to 6.

15 10. A polypeptide according to claim 9 having an amino acid sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.

20 11. An expression vector comprising a nucleic acid molecule according to claim 5 or 6.

12. An expression vector according to claim 11 which comprises an inducible promoter.

25 13. An expression vector according to claim 11 or 12 which comprises a sequence encoding a reporter molecule.

30 14. A nucleic acid molecule according to any of claims 1 to 7 for use as a medicament.

35 15. Use of a nucleic acid molecule according to any of claims 1 to 7 in the preparation of a medicament for treating *Candida albicans* associated diseases.

- 102 -

16. A polypeptide according to any of claims 8 or 10 for use as a medicament.

5 17. Use of a polypeptide according to any of claims 8 to 10 in the preparation of a medicament for treating *Candida albicans* associated infections.

10 18. A pharmaceutical composition comprising a nucleic acid molecule according to any of claims 1 to 7 or a polypeptide according to any of claims 8 to 10 together with a pharmaceutically acceptable carrier diluent or excipient therefor.

15 19. A *Candida albicans* cell comprising an induced mutation in the DNA sequence encoding the polypeptide according to any of claims 8 to 10.

20 20. A method of identifying compounds which selectively modulate expression of polypeptides which are crucial for growth and survival of *Candida albicans*, which method comprises:

- 25 (a) contacting a compound to be tested with one or more *Candida albicans* cells having a mutation in a nucleic acid molecule according to any of claims 1 to 6 which mutation results in overexpression or underexpression of said polypeptides in addition to contacting one or more wild type *Candida albicans* cells with said compound,
- 30 (b) monitoring the growth and/or activity of said mutated cell compared to said wild type; wherein differential growth or activity of said one or more mutated *Candida* cells is indicative of selective action of said compound on a polypeptide or another

- 103 -

polypeptide in the same or a parallel pathway.

21. A compound identifiable according to the
5 method of claim 20.

22. A compound according to claim 21 for use as
a medicament.

10 23. Use of a compound according to claim 21 in
the preparation of a medicament for treating *Candida*
albicans associated diseases.

15 24. A pharmaceutical composition comprising a
compound according to claim 21 together with a
pharmaceutically acceptable carrier, diluent or
excipient therefor.

20 25. A method of identifying DNA sequences from a
cell or organism which DNA encodes polypeptides which
are critical for growth or survival of said cell or
organism, which method comprises:

- (a) preparing a cDNA or genomic library from
said cell or organism in a suitable
expression vector which vector is such that
it can either integrate into the genome in
said cell or that it permits transcription
of antisense RNA from the nucleotide
sequences in said cDNA or genomic library,
30 (b) selecting transformants exhibiting impaired
growth and determining the nucleotide
sequence of the cDNA or genomic sequence
from the library included in the vector from
said transformant.

- 104 -

26. A method according to claim 25 wherein said cell or organism is a yeast or filamentous fungi.

5 27. A method according to claim 25 or 26 wherein said cell or organism is any of *Saccharomyces cervisiae*, *Saccharomyces pombe* or *Candida albicans*.

10 28. Plasmid pGAL1PSiST-1 having the sequence of nucleotides illustrated in Figure 2.

15 29. Plasmid pGAL1PNiST-1 having the sequence of nucleotides illustrated in Figure 4.

30 30. An antibody capable of binding to a polypeptide according to any of claims 8 or 10.

20 31. An oligonucleotide comprising a fragment of from 10 to 50 contiguous nucleic acid sequences of a nucleic acid molecule according to any of claims 1 to 7.

25 32. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida albicans*, said nucleic acid molecule comprising the sequences of any of the nucleotide sequences illustrated in Figures 5 to 28.

30 33. A polypeptide which is critical for survival and growth of the yeast *Candida albicans*, said polypeptide comprising the amino acid sequences of any of the sequences illustrated in Figures 29 to 39.

Figure 1

HindIII

1 AGCTTGAGTA TTCTATAGTG TCACCTAAAT AGCTTGGCGT AATCATGGTC
 TCGAACTCAT AAGATATCAC AGTGGATTAA TCGAACCGCA TTAGTACCAAG

51 ATAGCTGTTT CCTGTGTGAA ATTGTTATCC GCTCACAAATT CCACACAAACA
 TATCGACAAA GGACACACTT TAACAATAGG CGAGTGTAA GGTGTGTTGT

101 TACGAGCCGG AAGCATAAAAG TGTAAGGCCT GGGGTGCCCTA ATGAGTGAGC
 ATGCTCGGCC TTCGTATTC ACATTCGGA CCCCCACGGAT TACTCACTCG

151 TAACTCACAT TAATTGCGTT GCGCTCACTG CCCGCTTTC AGTCGGGAAA
 ATTGAGTGTAA ATTAACGCAA CGCGAGTGAC GGGCGAAAGG TCAGCCCTTT

201 CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACCGCGCG GGGAGAGGCG
 GGACAGCAGC GTCGACGTAA TTACTTAGCC GGTTGCGCGC CCCCTCTCCGC

251 GTTTGCGTAT TGGGCGCTCT TCCGCTTCC CGCTCACTGA CTCGCTGCC
 CAAACGCATA ACCCGCGAGA AGGCGAAGGA GCGAGTGACT GAGCGACGCG

301 TCGGTCGTTTC GGCTGCGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAAT
 AGCCAGCAAG CCGACGCCGC TCGCCATAGT CGAGTGTAGTT TCCGCCATTAA

351 ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA
 TGCCAATAGG TGTCTTAGTC CCCTATTGCG TCCTTTCTTG TACACTCGTT

401 AAGGCCAGCA AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT
 TTCCGGTCGT TTTCCGGTCC TTGGCATTTT TCCGGCGAA CGACCGCAAA

451 TTCCATAGGC TCCGGCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG
 AAGGTATCCG AGGGGGGGGG ACTGCTCGTA GTGTTTTAG CTGGAGTTTC

501 TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC
 AGTCTCCACC GCTTGGGCT GTCCTGATAT TTCTATGGTC CGCAAAGGGG

551 CTGGAAGCTC CCTCGTGCCTC TCTCCTGTT CGACCCCTGCC GCTTACCGGA
 GACCTTCGAG GGAGCACGCG AGAGGACAAG GCTGGACGG CGAATGGCCT

601 TACCTGTCCG CCTTCTCTCCC TTGGGAAAGC GTGGCGTTT CTCATAGCTC
 ATGGACAGGC CGAAAGAGGG AAGCCCTTCG CACCGCAGAA GAGTATCGAG

651 ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTGCTCC AAGCTGGGCT
 TCGCACATCC ATAGAGTCAA GCCACATCCA GCAAGCGAGG TTGACCCGA

ApaLI

701 GTGTGCACGA ACCCCCCCGTT CAGCCCGACC GCTGCCCTT ATCCGGTAAC
 CACACGTGCT TGGGGGCAA GTCGGGCTGG CGACCGGAA TAGGCCATTG

751 TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC
 ATAGCAGAAC TCAGGTTGGG CCATTCTGTG CTGAATAGCG GTGACCGTCC

801 AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG
 TCGGTGACCA TTGTCCTAAT CGTCTCGCTC CATAACATCCG CCACGATGTC

851 AGTTCTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAC GACAGTATT
 TCAAGAACTT CACCAACCGGA TTGATGCCGA TGTGATCTTC CTGTCATAAAA

901 GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTGGAAAAAA GAGTTGGTAG
 CCATAGACGC GAGACGACTT CGGTCAATGG AAGCCCTTTT CTCAACCAC

Fig.2

951 CTCTTGATCC GGCAAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTGTT
 GAGAACTAGG CCGTTTGTGTT GGTGGCGACC ATGCCACCA AAAAAACAAA

 1001 GCAAGCAGCA GATTACCGCGC AGAAAAAAAAG GATCTCAAGA AGATCCTTG
 CGTTCGTCGT CTAATGCGCG TCTTTTTTCCTAGAGTTCT TCTAGGAAAC

 1051 ATCTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAAC CACGTTAAGG
 TAGAAAAGAT GCCCCAGACT GCGAGTCACC TTGCTTTGA GTGCAATTCC

 1101 GATTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTAA
 CTAAAACCAG TACTCTAATA GTTTTCCTA GAAGTGGATC TAGAAAATT

 1151 ATAAAAAAATG AAGTTTAAA TCAATCTAAA GTATATATGA GTAAACCTGG
 TAATTTTAC TTCAAAATT AGTTAGATT CATATATACT CATTGAAACC

 1201 TCTGACAGTT ACCAATGCTT AATCACTGAG GCACCTATCT CAGCGATCTG
 AGACTGTCAA TGGTACGAA TTAGTCACTC CGTGGATAGA GTCGCTAGAC

 1251 TCTATTCGT TCATCCATAG TTGCCTGACT CCCCCTCGTG TAGATAACTA
 AGATAAAAGCA AGTAGGTATC AACGGACTGA GGGGCAGCAC ATCTATTGAT

 1301 CGATACGGGA GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA
 GCTATGCCCT CCCGAATGGT AGACCGGGGT CACGACGTTA CTATGGCGCT

 1351 GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACCG AGCCAGCCGG
 CTGGGTGCGA GTGGCCGAGG TCTAAATAGT CGTTATTGG TCGGTCGGCC

 1401 AAGGGCCGAG CGCAGAAGTG GTCTGCAAC TTTATCCGCC TCCATCCAGT
 TTCCCGGCTC GCGTCTCAC CAGGACGTTG AAATAGGCGG AGGTAGGTCA

 1451 CTATTAATTG TTGCGGGGAA GCTAGAGTAA GTAGTTGCC AGTTAATAGT
 GATAATTAAAC AACGGCCCTT CGATCTCATT CATCAAGCGG TCAATTATCA

 1501 TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACCGCTCGTC
 AACCGCGTTGC ACAACGGTA ACGATGTCCG TAGCACCACA GTCGGAGCAG

 1551 GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGGGAGTTA
 CAAACCATAC CGAAGTAAGT CGAGGCCAAG GGTTGCTAGT TCCGCTCAAT

 1601 CATGATCCCC CATGTTGTC AAAAAAGCGG TTAGCTCCCT CGGTCTCCG
 GTACTAGGGG GTACAACACG TTTTTCGCC AATCGAGGAA GCCAGGAGGC

 1651 ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA TGGTTATGGC
 TAGAACAGT CTTCAATTCAA CGGGCGTCAC AATAGTGAAGT ACCAACATCCG

 1701 AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTCTG
 TCGTGACGTA TTAAGAGAA GACAGTACGG TAGGCATTCT ACGAAAAGAC

 1751 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGGGA
 ACTGACCACT CATGAGTTGG TTCAGTAAGA CTCTTATCAC ATACCGCGCT

 1801 CCGAGTTGCT CTTGCCCCGC GTCAATACCG GATAATACCG CGCCACATAG
 GGCTCAACGA GAACGGGCCG CAGTTATGCC CTATTATGGC GCGGTGTATC

 1851 CAGAACTTTA AAAGTGTCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC
 GTCTTGAAAT TTTCACGGAGT AGTAACCTTT TGCAAGAAGC CCCGCTTTG

ApaLI

1901 TCTCAAGGAT CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT
AGAGTCCCTA GAATGGCGAC AACTCTAGGT CAAGCTACAT TGGGTGAGCA

ApaLI

1951 GCACCCAACT GATCPTCAGC ATCTTTACT TTCACCAGCG TTTCTGGGTG
CGTGGGTTGA CTAGAAAGTCG TAGAAAATGA AAGTGGTCGC AAAGACCCAC

2001 ACCAAAAAAC GGAAGGCCAA ATGCCGCAA AAAGGGATA AGGGCGACAC
TCGTTTTGT CCTTCCGTT TACGGCGTT TTTCCCTTAT TCCCGCTGTG

2051 GGAAATGTTG AATACTCATA CTCTTCCTTT TTCAATATTA TTGAAGCATT
CCTTTACAAC TTATGAGTAT GAGAAGGAA AAGTTATAAT AACTTCGTA

2101 TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA
ATAGTCCAA TAACAGAGTA CTCGCCTATG TATAAACTTA CATAAATCTT

2151 AAATAAACAA ATAGGGGTT CGCGCACATT TCCCCGAAAA GTGCCACCTG
TTTATTGTT TATCCCCAAG GCGCGTGTAA AGGGCTTT CACGGTGGAC

2201 ACGTCTAAGA AACCAATTATT ATCATGACAT TAACCTATAA AAATAGGCCT
TGCAGATTCT TTGGTAATAA TAGTACTGTA ATTGGATATT TTTATCCGA

2251 ATCACGAGGC CCTTTCGTCT CGCGCGTTTC GGTGATGACG GTGAAAACCT
TAGTGCTCCG GGAAAGCAGA GCGCGAAAG CCAACTACTGC CACTTTGGA

2301 CTGACACATG CAGCTCCCAG AGACGGTCAC AGCTTGTCTG TAAGCGGATG
GACTGTGTAC GTCGAGGGCC TCTGCCAGTG TCGAACAGAC ATTGCCTAC

2351 CCGGGGAGCAG ACAAGCCCCGT CAGGGCCCGT CAGGGGGTGT TGGGGGTGT
GCCCTCGTC TGTTGGGCA GTCCCGCGCA GTGCCCCACA ACCGCCACAA

ApaLI

2401 CGGGGCTGGC TTAACTATGC GGCATCAGAG CAGATTGTAC TGAGAGTGCA
GCCCGACCG AATTGATACG CCGTAGTCTC GTCTAACATG ACTCTCACGT

ApaLI

2451 CCATATGCGG TGTGAAATAC CGCACAGATG CGTAAGGAGA AAATACCGCA
GGTATACGCC ACACCTTATG GCGTGTCTAC GCATTCTCT TTTATGGCGT

2501 TCAGGGAAA TTGAAACGT TAATATTTG TAAATTCG CGTTAAATAT
AGTCCGCTTT AACATTTGCA ATTATAAAAC AATTAAAGC GCAATTATA

2551 TTGTTAAATC AGTCATTT TTAACCAATA GGCGAAATC GGCAAAATCC
AACAAATTAG TCGAGTAAA AATTGGTTAT CCGGCTTTAG CCGTTTTAGG

2601 CTTATAAAATC AAAAGAATAG ACCGAGATAG GTTGAGTGT TTGTTCCAGTT
GAATATTTAG TTTCTTATC TGGCTCTATC CCAACTCACA ACAAGGTCAA

2651 TGGAAACAAGA GTCCACTATT AAAGAACGTG GACTCCAACG TCAAAGGGCG
ACCTTGTCTC CAGGTGATAA TTTCTTGAC CTGAGGGTGC AGTTTCCCGC

2701 AAAAACCGTC TATCAGGGCG ATGGCCCACT ACGTGAACCA TCACCCAAAT
TTTTGGCAG ATAGTCCCGC TACCGGGTGA TGCACTTGGT AGTGGGTTA

2751 CAAAGTTTTT GCGGTGAGG TGCGTAAAG CTCTAAATCG GAACCCCTAA
GTTCAAAAAA CGCCAGCTCC ACGGCATTTC GAGATTAGC CTTGGGATT

2801 GGGAGCCCCC GATTTAGAGC TTGACGGGG AAGCCGGCGA ACGTGGCGAG
CCCTCGGGGG CTAAATCTCG AACTGCCCT TTCGGCCGCT TGACCGCTC
.....
2851 AAAGGAAGGG AAGAAAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG
TTCCCTTCCC TTCTTCGCT TTCCCTCGCC GCGATCCCGC GACC GTTCAC
.....
2901 TAGCGGTAC GCTGCCCGTA ACCACCAACAC CCGCCCGCGCT TAATGCCCG
ATCGCCAGTG CGACGCCAT TGGTGGTGTG GGCGGGCGA ATTACGCCGC
.....
2951 CTACAGGGCG CGTCCATTGCG CCATTCAAGGC TGCGCAACTG TTGGGAAGGG
GATGTCCCCG GCAGGTAAGC GGTAAAGTCCG ACGCGTTGAC AACCCCTTCCC
.....
3001 CGATCGGTGC GGGCCTCTTC GCTATTACGC CAGCTGGCGA AAGGGGGATG
GCTAGCCACCG CCCGGAGAAG CGATAATGCCG GTCGACCGCT TTCCCCCTAC
.....
3051 TGCTGCAAGG CGATTAAGTT GGGTAACGCC AGGGTTTCC CAGTCACGAC
ACGACGTTCC GCTAATTCAA CCCATTGCCG TCCC AAAAGG GTCA GTGCTG
.....
3101 GTTGTAAAAC GACGGCCAGT GAATTGTAAT ACGACTCACT ATAGGGCGAA
CACACATTG CTGCCGGTCA CTTAACATTA TGCTGAGTGA TATCCCGCTT
.....
3151 TTGGTTTTCC AATGATGAGC ACTTTAAAG TTCTGCTATG TGCGCGGTA
AACCAAAAGG TTACTACTCG TGAAAATTTC AAGACGATAAC ACCGCGCCAT
.....
3201 TTATCCCGTG TTGACGCCGG GCAAGAGCAA CTCGGTCGCC GCATACACTA
AATAGGGCAC AACTGCCGG CGTTCTCGTT GAGCCAGCGG CGTATGTGAT
.....
3251 TTCTCAGAAT GACTGGTTG AGTACTAATA GGAATTGATT TGATGGTAT
AAGAGTCTTA CTGAAACCAAC TCATGATTAT CCTTAACCAA ACCTACCATA
.....
3301 AAACGGAAAC AAAAAAAAGA GCTGGTACTA CTTCTTTAA AATTATTTA
TTTGCCTTTG TTTTTTTCT CGACCATGAT GAAAGAAATT TTAATAAAAT
.....
3351 TTATTTGATT TTATTTAATA GTATATATTA TATTTGAAAC GTAGATTATT
AATAAACTAA AATAAATTAT CATATATAAT ATAAAACTTG CATCTAATAA
.....
3401 TTGTTGAAAG TTGCTGTAGT GCCATTGATT CGTAACACTA ATTCTGTATT
AACAACTTTC AACGACATCA CGGTAACAA GCATTGTGAT TAAGACATAA
.....
3451 AGTCATTCCCT CTTGTTGAT AGTATCCAA AAAACGGCTA TTTTTTGCA
TCAGTAAGGA GAACAAACTA TCATAGTTT TTTTGCCGAT AAAAAACGT
.....
3501 ATCTTATTC CTGCATATTA TACAGATAAC ATAATGAAAG AAAAAATCTT
TAGAATAAAG GACGTATAAT ATGTCTATTG TATTACTTTC TTTTTAGAA
.....
3551 TTTTTTGTT CTTCAATGAT GATTCAACCC ATTCTTTAA ACATTGATCA
AAAAAAACAA GAAGTTACTA CTAAAGTTGG TAAGAAAATT TGTAACCTAGT
.....
3601 ATCCCTGAGC ACAACCCCA TACACACTGG TTTATATACC GCCCTTTA
TAAGGACTCG TTGTTGGGT ATGTGTGACC AAATATATGG CGGGGAAAT
.....
3651 CAGTTGAGA AAGAAATAGA ATAGAAATA GCAAACAAAA GATATGACAG
GTCAACTTCT TTCTTTATCT TTATCTTAT CGTTTGTGTTT CTATACTGTC
.....
3701 TCAACACTAA GACCTATAGT GAGAGAGCAG AACTCATGC CTCACCGAG
AGTTGTGATT CTGGATATCA CTCTCTCGTC TTTGAGTACG GAGTGGTCAT
.....
3751 GCACAGCGAT TTTTCGATT ATGGAACGTG AAGAAAACCA ATTTATGTGC
CGTGTGCTA ATAAAGCTAA TTACCTTGAC TTCTTTGGT TAAATACACG

EcoRI

3801 ATCAATTGAC GTTGATACCA CTAAGGAATT CCTTGAATTA ATTGATAAAT
 TAGTTAACTG CAACTATGGT GATTCCCTAA GGAACCTTAAT TAACTATTTA

 3851 TAGGTCCCTTA TGTATGCTTA ATCAAGACTC ATATTGATAT AATCAATGAT
 ATCCAGGAAT ACATACGAAT TAGTTCTGAG TATAACTATA TTAGTTACTA

 3901 TTTTCCTATG AATCCACTAT TGAACCATTAA TTAGAACCTTT CACGTAAACA
 AAAAGGATAC TTAGGTGATA ACTTGGTAAT AATCTTGAAA GTGCATTGT

 3951 TCAATTATG ATTTTGAAAG ATAGAAAATT TGCTGATATT GGTAATAACCG
 AGTTAAATAC TAAAAACTTC TATCTTTAA ACGACTATAA CCATTATGGC

 4001 TAAAGAAAACA ATATATTGGT GGAGTTTATA AAATTAGTAG TTGGGCAGAT
 ATTTCTTGT TATATAACCA CCTCAAATAT TTTAATCATC AACCCGTCTA

 4051 ATTACCAATG CTCATGGTGT CACTGGGAAT GGAGTGGTTG AAGGATTAAA
 TAATGGTTAC GAGTACCAACA GTGACCCCTTA CCTCACCAAC TTCCTTAATT

 4101 ACAGGGGAGCT AAAGAAACCA CCACCAACCA AGAGCCAAGA GGGTTATTGA
 TGTCCCCTCGA TTTCTTTGGT GGTGGTTGGT TCTCGGTTCT CCCAATAACT

 4151 TGTTAGCTGA ATTATCATCA GTGGGATCAT TAGCATATGG AGAATATTCT
 ACAATCGACT TAATAGTAGT CACCCCTAGTA ATCGTATAACC TCTTATAAGA

 4201 CAAAAAAACTG TTGAAATTGC TAAATCCGAT AAGGAATTG TTATTGGATT
 GTTTTTTGAC AACTTTAACG ATTTAGGCTA TTCCCTTAAAC AATAACCTAA

 4251 TATTGCCCAA CGTGATATGG GTGGCCAAGA AGAAGGATTT GATTGGCTTA
 ATAACGGGTT GCACATACCC CACCGGTTCT TCTTCCTAAA CTAACCGAAT

 4301 TTATGACACC TGGAGTTGGA TTAGATGATA AAGGTGATGG ATTAGGACAA
 AATACTGTGG ACCTCAACCT AATCTACTAT TTCCACTACC TAATCCTGTT

 4351 CAATATAGAA CTGTTGATGA AGTTGTTAGC ACTGGAACCTG ATATTATCAT
 GTTATATCTT GACAACACT TCAACAATCG TGACCTTGAC TATAATAGA

 4401 TGTTGGTAGA GGATTGTTTG GTAAAGGAAG AGATCCAGAT ATTGAAGGTA
 ACAACCACATCT CCTAACAAAC CATTCCCTTC TCTAGGTCTA TAACTTCCAT

 4451 AAAGGTATAG AAATGCTGGT TGGAAATGCTT ATTTGAAAAA GACTGGCCAA
 TTTCCATATC TTTACGACCA ACCTTACGAA TAAACTTTT CTGACCGGTT

 4501 TTATAAAATGT GAAGGGGGAG ATTTTCACCTT TATTAGATTT GTATATATGT
 AATATTTACA CTTCCCCCTC TAAAAGTGAAT ATAATCTAAA CATATATACA

 4551 AGAATAAATA AATAAATAAG TTAAATAAAAT AATTAATAAA GGGTGGTAAT
 TCTTATTATAT TTATTATTC AATTTATTAA TTAATTATT CCCACCATTAA

 4601 TATTACTATT TACAATCAAA GGTGGTCCCTT CTAGCTGTAA TCCGGGCAGC
 ATAATGATAA ATGTTAGTTT CCACCAAGGAA GATCGACATT AGGCCCGTCG

 4651 GCAACCGAAC ATTACATCAGT GTAAAAATGG AATCAATAAA GCCCTGCGCA
 CGTTGCCTTG TAAGTAGTCA CATTTCACCC TTAGTTATTT CGGGACGGT

 4701 GCGCGCAGGG TCAGCCTGAA TACGCGTTA ATGACCAGCA CAGTCGTGAT
 CGCGCGTCCC AGTGGACTT ATGCGCAAAT TACTGGTCGT GTCAGCACTA

4751 GGCAAGGTCA GAATAGCCCC AGTCGGCCGA GGGGCCCTGTA CAGTGAGGGA
CCGTTCCAGT CTTATCGGGT TCAGCCGGCT CCCCGGACAT GTCACTCCCT

4801 AGATCTGATA TTGACGAAGA GGAACCAATG TAACGTTACA CTGAAGAAAA
TCTAGACTAT AACTGCTTCT CCTTGGTTAC ATTGCAATGT GACTTCCTTT

4851 CACACAATAA ACGGGAAGAA ACGGTGTAAA AGTGTGAAAA TAATTTTGAA
GTGTGTTATT TGCCCTTCTT TGCCACATT TCACACTTTT ATTAaaaaACT

4901 ATATCATTTC CCTTGGTTTA ATTCCAAACG AAACGTGTTT TTTTAGAGA
TATAGTAAAG GGAACCAAAT TAAGGTTGC TTTGCACAAA AAAAATCTCT

EcoRI

ApaLI

4951 ATGGGAATTTC TTATTGGATG TCTAGATTGT TTGTTTACTC CAGACTGTGC
TACCCCTTAAG AATAACCTAC AGATCTAACAA AACAAATGAG GTCTGACACG

ApaLI

5001 ACAAAAACGT TTGGATGGAT GATCAGAAGA TATTTTGTAGG CTTAGCTCTA
TGTGTTTGCA AACCTACCTA CTAGTCTTCT ATAAAAATCC GAATCGAGAT

5051 AATATAAGAA ATGATGCTTG AAAAACAGA CAGAAATTGA GTTCAAAAAA
TTATATTCTT TACTACGAAC TTTTGGTCT GTCTTTAATC CAAAGTTTT

5101 TTGGTAATGT GAGGTATTAG TCAACTAACCC AAATAACAAAT GCAAACCGGT
AACCAATTACA CTCCATAATC AGTTGATTGG TTTATTGTTA CGTTTGGCCA

5151 TGATACATTT CATTITGAAA ATAATGAAAC TGGAAATTGA TGACCAGCAC
ACTATGTAAA GTAAAACCTT TATTACTTTG ACCTTAACCT ACTGGTCGTG

5201 ACAAACACAT AAAGTAATTA TGGGAATTAG AAGCGAACAT AGAGGAGTAC
TGTGTTGTGA TTTCATTAAT ACCCTTAATC TTGCTTGTGA TCTCCTCATG

5251 TTGGCCACGA ACAGAATACA AGTGGGAACA CTATTTCTC CATTGTTTA
AACCGGTGCT TGTCTTATGT TCACCCCTGT GATAAAAGAG GTAACAAAAT

5301 GTTCTGTTT TTTGTCAGCC TAGTTTGTG CTATGTGAA AAAATATTGC
CAAGACAAA AAACAGTCGG ATCAAAACAC GATACACATT TTTTATAACG

HindIII

5351 CAAGAAAAAA AGCTTGTGTTT GTGCCAGTG TCCGAAAAAA ATTTTGGGGA
GTTCTTTTT TCGAACAAAA CACCGGTAC AGGCTTTT TAAAACCCCT

5401 ATCTTCGGAT TAATTTATGT TTTCATTCCA TCGGGGAAAG TGGGGGGAA
TAGAACGCTA ATTAAATACA AAAGTAAGGT AGCCCCTTTC ACCCCCCCTT

5451 AAAATTTAA GCAGTTACAA AAACCTTCCA AAAAATATAT GGACAAAGAT
TTTAAAATT CGTCAAGTGT TTGGAAGGT TTTTATATA CCTGTTCTA

5501 GATTGTATTT TCCCGACACC AAAATCATAA TTAATTATGA GAAAGTTAAA
CTAACATAAA AGGGCTGTGG TTTAGTATT AATTAATACT CTTCAATT

5551 TGTAACGTTA CAATTTATGT TTATTGAAAG GTGAAAGCG ATTATGATT
ACATTGCAAT GTTAAATACA AATAAACTTC CACTTTCGC TAAATACTAA

5601 TTTCCGAAAT GAAAATTTT TTTAGGTTA TTTTTTTGT CGGGCAAAGA
AAAGGCTTTA CTTTAAAAA AAATCCAAAT AAAAACA GCCCGTTCT

EcoRI

5651 AAAACTGAAC AAGGATTATT AAAATTTTG GTGTTGTTT GTGTCTGGAG
TTTGACTTG TTCTAATAA TTTAAAAAC CACAAACAAA CACAGACCTC

EcoRI

5701 AATTCAATTCC TCTCTCATCT TCACACAATG TTTAGACATC TGACACGATT
TTAAGTAAGG AGAGAGTAGA AGTGTGTTAC AAATCTGTAG ACTGTGCTAA

5751 CATGATAGTT CGGTTTCCGG GGTTGGTGT TAGTTTCGT TTTCTTTT
GTACTATCAA GCCAAGGCC CCAACCACAA ATCAAAGCA AAAAGAAAAA

5801 TTTGGAAAG AATGTTTAG CTCATTGGTT TTCTTCTTC ATTCAATAGT
AAAACCTTTC TTACAAAATC GAGTAACCAA AAGAAAGAAG TAAGTTATCA

5851 TTTGAAAGAA TTGCCCCACT TGTTATTACA ATCATATAAA ATAAACTTT
AAACTTTCTT AAACGGGTGA ACAATAATGT TAGTATATTT TAATTTGAAA

5901 GATATAAAAT AGAGTTGAA AGTTTCCCAG ATCCCTTTTG ATTTCTTTGT
CTATATTTA TCTCAAACCTT TCAAAGGGTC TAGGAAAAAC TAAAGAAACA

5951 AAATTTTTTT TTCTCCACA TATACACACA TACAAACCGA TTTTTATAAG
TTTAAAAAAA AAGAGGGTGT ATATGTGTT ATGTTGGCT AAAATATTC

PstI AvaI BamHI

6001 AAAGAGTTAT ACCCTGCAGC TCGACCTCGA CGGATCCGGG CCCTCTAGAT
TTTCTCAATA TGGGACGTG AGCTGGAGCT CCCTAGGCC GGGAGATCTA

AvaI

6051 GCGGCCGCTA GGCTCGAGG GACTTTGCA CCAAAATAA TTTATTTCC
CGCCGGCGAT CCGGAGCTCC CTGAAAACGT GGTTTTATT AAATAAAAGG

6101 AAAATAAAAT TTAATAAAAT AAAATAACT CATAATTAA TAAAAATTTC
TTTATTTA AATTATTTA TTTTATTGA GTATTAATT ATTTTAAAG

6151 AAAATCTCT AGTGCCTTT CATATGCAGT ACATTAGCCA TCAGTCACTT
TTTAGAAGA TCACAGAAA GTATACGTCA TGTAATCGGT AGTCAGTGAA

6201 AACAGCATC TGCTGGTTGA AGAATGTTG AAGCAATTGT CCAGTCCAG
TTTGTGTTAG ACGACCAACT TCTTACGAAC TTCGTTAACCA GGTCAGGGTC

6251 AGGCACAGGC TAGGAGATCT TCAGTTTCGG AGGTAAACCTG TAAGTCTGTT
TCCGTGTCGG ATCCTCTAGA AGTCAAAGCC TCCATTGGAC ATTCAAGACAA

6301 AATGAAGTAA AAGTCCCTA GGATTTCCAC TCTGACTATG GTCCAGGCC
TTACTTCATT TTCAAGGAAT CCTAAGGTG AGACTGATAAC CAGGTCCGTG

6351 AGTGAAGTGA CTCCCTGGCC TTCAGGTAAT GCAGAATCCT CCCATAATAT
TCACTGACAT GAGGAACCGG AAGTCCATTA CGTCTTAGGA GGGTATTATA

6401 CTTTCAGGT GCAGACTGCT CATGAGTTTT CCCCTGGTGA AATCTCTTT
GAAAAGTCCA CGTCTGACGA GTACTAAAA GGGGACCACT TTAGAAGAAA

6451 CTCCAGTTT TCTTCAGGA CTGTCTTCAG ATGGTTTATC TGATGATAGA
GAGGTCAAAA AGAAGGTCTT GACAGAAGTC TACCAAATAG ACTACTATCT

6501 CATTAGCCAG GAGGTCTCA ACAATAGTCT CATTCCAGCC AGTGTAGAT
GTAATCGGTGTC CTCCAAGAGT GTTATCAGA GTAAGGTGG TCACGATCTA

6551 GAATCTTGTC TGAAAATAGC AAAGATGTTG TGGAGCATCT CATAGATGGT
CTTAGAACAG ACTTTATCG TTTCTACAAG ACCTCGTAGA GTATCTACCA

PstI

6601 CAATCGGGCG TCCTCCCTCT GGAACGTGCTG CAGCTGCTTA ATCTCCTCAG
GTACGCCGC AGGAGGAAGA CCTTGACGAC GTCGACGAAT TAGAGGAGTC

6651 GGATGTCAAA GTTCATCCIG TCCTTGAGGC AGTATTCAAG CCTCCCATTG
CCTACAGTTT CAAGTAGGAC AGGAACTCCG TCATAAGTTC GGAGGGTAAG

6701 AATTGCCACA GGAGCTCTG ACACTGAAAA TTGCTGCTTC TTGTTAGGAA
TTAACGGTGT CCTCGAAGAC TGTGACTTTT AACGACGAAG AACATCCTT

6751 TCCAAGCAAG TTGTTAGCTCA TGGAAAGAGC TGTAGTGGAG AAGCACAACA
AGGTTCTTC AACATCGAGT ACCTTTCTCG ACATCACCTC TTCGTGTTGT

AvaI

6801 GGAGAGCAAT TTGGAGGAGA CACTTGTGTC CGAGGCCTTT
CCTCTCGTTA AACCTCCCTCT GTGAACAACC AGTACAAGGA GCTCCGGAAA

BamHI

6851 TTGGCCAGCT GGGCCCTGCT GCGCGACGGC GAGCTGCTCA CCACCCAGGA
AACC GGTCGA CGCGGACGA CGCGCTGCCG CTCGACGAGT GGTGGGTCT

BamHI

6901 TCCGTCCCCC TTTTCCCTTTC TCGATATCAT GTAATTAGTT ATGTCACGCT
AGGCAGGGGG AAAAGGAAAC AGCTATAGTA CATTAATCAA TACAGTGCAG

6951 TACATTCAAG CCCCTCCCCC ACATCCGCTC TAACCGAAAA GGAAGGAGTT
ATGTAAGTGC GGGAGGGGG TGTTAGGCAG ATTGGCTTT CCTTCCTCAA

7001 AGACAACCTG AAGTCTAGGT CCCTATTAT TTTTTTATAG TTATGTTAGT
TCTGTTGGAC TTCAGATCCA GGGATAATA AAAAAATATC AATACAATCA

7051 ATTAAGAACG TTATTTATA TTCAAATTTT TCTTTTTTT CTGTACAGAC
TAATTCTTGC AATAAAATATA AAGTTAAAAA AGAAAAAAA GACATGTCTG

7101 GCGTGTACGC ATGTAACATT ATACTGAAAA CCTTGCTTGA GAAGGTTTG
CGCACATGCG TACATTGTAA TATGACTTTT GGAACGAAC TTTCCAAAAC

HindIII

7151 GGACGCTCGA AGGCTTTAAT TTGCA
CCTGCGAGCT TCCGAAATTAA AACGT

Fig 3

1 TTCCATCGGG GAAAGTGGGG GGGAAAAAAT TTTAAGCACT TCACAAAACC
AAGGTAGCCC CTTTCACCCC CCCTTTTTA AAATTGCTCA AGTGTGTTGG

51 TTCCAAAAAA TATATGGACA AAGATGATTG TATTTTCCCG ACACCAAAAT
AAGGTTTTT ATATACTCTGT TTCTACTAAC ATAAAAGGGC TGTGGTTTA

101 CATAATTAAT TATGAGAAAG TAAATGTAA CGTTACAATT TATGTTTATT
GTATTAATTA ATACTCTTC AATTACATT GCAATGTTAA ATACAAATAA

151 TGAAGGTGAA AAGCGATTTA TGATTTTCC GAAATGAAAA TTTTTTTAG
ACTTCCACTT TCGCTAAAT ACTAAAAAGG CTTTACTTTT AAAAAAAATC

201 GTTTATTTT TTTGTCGGGC AAAGAAAAAC TGAACAAGGA TTATTTAAAT
CAAATAAAA AAACAGCCCCG TTTCTTTTG ACTTGTCCCT AATAATTTA

EcoRI

251 TTTGGTGTT TGTTTGTGTC TGGAGAATTG ATTCCCTCTCT CATCTTCACA
AAAACCACAA ACAAACACAG ACCTCTTAAG TAAGGAGAGA GTAGAAGTGT

301 CAATGTTTAG ACATCTGACA CGATTCTATGA TAGTTGGTT TCCGGGGTTG
GTTACAAATC TGTAGACTGT GCTAAGTACT ATCAAGCCAA AGGCCCCAAC

351 GTGTTTAGTT TCGTTTTTC TTTTTTTTG GAAAGAATGT TTTAGCTCAT
CACAAATCAA AAGCAAAAAG AAAAAAAAC CTTTCTTACA AAATCGAGTA

401 TGGTTTTCTT TCTTCATTCATCA ATAGTTTGAA AAGAATTGTC CCACTTGTAA
ACCAAAACAA AGAAGTAAGT TATCAAAACT TTCTTAAACG GGTAACAAAT

451 TTACAATCAT ATAAAATTAA ACTTTGATAT AAAATAGAGT TTGAAAGTTT
AATGTTAGTA TATTTTAATT TGAAACTATA TTTTATCTCA AACTTTCAAA

501 CCCAGATCCT TTTGATTTC TTTGAAATT TTTTTTCTC CCACATATAC
GGGTCTAGGA AAAACTAAAG AACATTTAA AAAAAAGAG GGTGTATATG

PstI

551 ACACATACAA ACCGATTTT ATAAGAAAGA GTTATACCT GCAGCTCGAC
TGTGTATGTT TGGCTAAAAA TATTCTTCT CAATATGGGA CGTCGAGCTG

PstI

HindIII

AvaI

601 CTCGACTGTT TAAACCTGCA CCCATGCAAG CTTGGCCAAA AAGGCCTCGA
GAGCTGACAA ATTTGGACGT CCGTACGTTG GAACCGGTTT TTCCGGAGCT

AvaI

651 GGAACATGAC CAACAAGTGT CTCCCTCCAAA TTGCTCTCCT GTTGTGCTTC
CCTTGTACTG GTTGTTCACA GAGGAGGTTT AACGAGAGGA CAACACGAAG

701 TCCACTACAG CTCTTCCAT GAGCTACAC TTGCTTGGAT TCCTACAAAG
AGGTGATGTC GAGAAAGGTG CTGGATGTTG AACGAACCTA AGGATGTTTC

751 AAGCAGCAAT TTTCAGTGTGCA AGAAGCTCCT GTGGCAATTG AATGGGAGGC
TTCGTCGTTA AAAGTCACAG TCTTCGAGGA CACCGTTAAC TTACCCCTCCG

801 TTGAATACTG CCTCAAGGAC AGGATGAAC TTGACATCCC TGAGGAGATT
AACTTATGAC GGAGTTCTG TCCTACTTGA AACTGTAGGG ACTCCTCTAA

Fg 4

PstI

851 AAGCAGCTGC AGCAGTTCCA GAAGGAGGAC GCCGCATTGA CCATCTATGA
TTCGTGGACG TCGTCAAGGT CTTCCCTCTG CGCGCTAAGT GGTAGATACT

901 GATGCTCCAG AACATCTTIG CTATTTTCAG ACAAGATTCA TCTAGCACTG
CTACGAGGTC TTGTAGAAC GATAAAAGTC TGTCTAAGT AGATCGTGAC

951 GCTGGAATGA GACTATTGTT GAGAACCTCC TGGCTTAATGT CTATCATCAG
CGACCTTACT CTGATAACAA CTCTGGAGG ACCGATTACA GATAGTAGTC

1001 ATAAAACCATC TGAAGACAGT CCTGGAAGAA AAACCTGGAGA AAGAAGATTT
TATTTGGTAG ACTTCTGTCA GGACCTTCTT TTTGACCTCT TTCTTCTAAA

1051 CACCAAGGGGA AAACATCATGA GCAGTCTGCA CCTGAAAAAGA TATTATGGGA
GTGGTCCCCT TTTGAGTACT CGTCAGACGT GGACTTTCT ATAATACCCCT

1101 GGATTCTGCA TTACCTGAAG GCCAAGGAGT ACAGTCACTG TGCCCTGGACC
CCTAAGACGT AATGGACTTC CGGTTCTCA TGTCAGTGAC ACGGACCTGG

1151 ATAGTCAGAG TGGAAATCCT AAGGAACCTTT TACTTCATTA ACAGACTTAC
TATCAGTCTC ACCTTTAGGA TTCCCTTGAAA ATGAAGTAAT TGTCTGAATG

1201 AGGTTACCTC CGAAACTGAA GATCTCCTAG CCTGTGCCTC TGGGACTGGAG
TCCAATGGAG GCTTTGACTT CTAGAGGATC GGACACCGGAG ACCCTGACCT

1251 CAATTGCTTC AAGCATTCTT CAACCAGCAG ATGCTGTTA AGTGAETGAT
GTTAACGAAAG TTCGTAAGAA GTTGGTCGTC TACGACAAAT TCACTGACTA

1301 GGCTAATGTA CTGCATATGA AAGGACACTA GAAGATTTTG AAATTTTTAT
CCGATTACAT GACGTATACT TTCCCTGTGAT CTTCTAAAAC TTTAAAATA

1351 TAAATTATGA GTTATTTTTA TTTATTTAAA TTTTATTTTG GAAAATAAAT
ATTTAATACT CAATAAAAT AAATAAATTT AAAATAAAAC CTTTTATTTA

XmaI

SmaI

BamHI

AvaI

1401 TATTTTGTT GCAAAAGTCC CTCGAGGCCT AGCGGCCGCC TAGAGGATCC
ATAAAAACCA CGTTTCAGG GAGCTCCGGG TCGCCGGCGG ATCTCCTAGG

1451 CCGGGCGCTA GGCGGCCGCT AGGCCTTTT GGCCAAGCTC GAATTCGAG
GGCCCGCGAT CGCCGGCGA TCCGGAAAAA CGGGTTCGAG CTTAAAGCTC

1501 GAATTGGAGC TCGGTACCCG GGGGATCGAT CCGTCCCCCT TTTCCCTTGT
CTTAAGCTCG AGCCATGGCC CCCCTAGCTA GGCAGGGGAA AAAGGAAACA

1551 CGATATCATG TAATTAGTTA TGTACCGCTT ACATTCACGC CCTCCCCCA
GCTATAGTAC ATTAATCAAT ACAGTGCAGA TGTAAGTGC GGAGGGGGT

1601 CATCCGCTCT AACCGAAAAG GAAGGAGTTA GACAACCTGA AGTCTAGGTC
GTAGGGAGA TTGGCTTTTC CTTCTCAAT CTGTTGGACT TCAGATCCAG

1651 CCTATTTATT TTTTTATAGT TATGTTAGTA TTAAGAACGT TATTTATATT
GGATAAATAA AAAAATATCA ATACAATCAT AATTCTTGCA ATAATATAA

1701 TCAAATTTT CTTTTTTTC TGTACAGACG CGTGTACGCA TGTAACATTA
AGTTAAAAAA GAAAAAAAAG ACATGTCTGC GCACATGCGT ACATTGTAAT

1751 TACTGAAAAC CTTGCTTGAG AAGGTTTGG GACGCTCGAA GGCTTTAATT
ATGACTTTG GAACGAACTC TTCCAAAACC CTGCGAGCTT CCGAAATTAA

1801 TGCAAGCTAG CTTGGCGTAA TCATGGTCAT AGCTGTTTCC TGTGTGAAAT
ACGTCGATC GAACCGCATT AGTACCAAGTA TCGACAAAGG ACACACTTTA

1851 TGTATCCGC TCACAATTCC ACACAACATA CGAGCCGGAA GCATAAAGTG
ACAATAGGCG AGTGTTAAGG TGTGTTGTAT GCTCGGCCCT CGTATTCAC

1901 TAAAGCCTGG GGTGCCTAAT GAGTGAGCTA ACTCACATTA ATTGCGTTGC
ATTTCGGACC CCACGGATTA CTCACTCGAT TGAGTGTAAAT TAACGCAACG

1951 GCTCACTGCC CGCTTTCCAG TCGGGAAACC TGTCGTGCCA GAGATCTCG
CGAGTGACGG GCGAAAGGTC AGCCCTTGG ACAGCACGGT CTCTAGAGAC

2001 CATTAAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGCG
GTAATTACTT AGCCGGTTGC GCGCCCTCT CGGCCAAACG CATAACCCGC

2051 CTCTTCCGCT TCCTCGCTCA CTGACTCGCT CGCGCTGGTC GTTCGGCTGC
GAGAAGGCGA AGGAGCGAGT GACTGAGCGA CGCGAGCCAG CAAGCCGACG

ClaI

2101 GGGGAGCCGGT ATCAGATCGA TCTCACTCAA AGGCGGTAAAT ACGGTTATCC
CCGCTGCCA TAGTCTAGCT AGAGTGAGTT TCCGCCATTA TGCCAATAGG

2151 ACAGAACATCG AGGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA
TGTCTTAGTC CCCTATTGCG TCCTTCTTG TACACTCGTT TTCCGGTCGT

2201 AAAGGCCAGG AACCGTAAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC
TTTCGGTCC TTGGCATTTC TCCGGCGCAA CGACCGCAAA AAGGTATCCG

2251 TCCGGCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG
AGGCGGGGGG ACTGCTCGTA GTGTTTTAG CTGCGAGTTA AGTCTCCACC

2301 CGAAACCCGA CAGGACTATA AAGATAACCG GCGTTTCCCC CTGGAAGCTC
GCTTTGGCT GTCCCTGATAT TTCTATGGTC CGCAAAGGGG GACCTTCGAG

2351 CCTCGTGCCTC TCTCCTGTTT CGACCCCTGCC GCTTACCGGA TACCTGTCCG
GGAGCACCGC AGAGGACAAG GCTGGACGG CGAATGGCCT ATGGACAGGC

2401 CCTTTCTCCC TTGGGAAAGC GTGGCGCTTT CTCATAGCTC ACGCTGTAGG
GGAAAGAGGG AAGCCCTTCG CACCGCGAAA GAGTATCGAG TGCGACATCC

ApaLI

2451 TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGCT GTGTGCACGA
ATAGAGTCAA GCCACATCCA GCAAGCGAGG TTCCGACCCGA CACACGTGCT

2501 ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG
 TGGGGGGCAA GTCGGCTGG CGACGCGGAA TAGGCCATTG ATAGCAGAAC

 2551 AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT
 TCAGGTTGGG CCATTCTGTG CTGAATAGCG GTGACCGTCG TCGGTGACCA

 2601 AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTTGAA
 TTGTCTTAAT CGTCTCGCTC CATAACATCCG CCACGATGTC TCAAGAACTT

 2651 GTGGTGGCCT AACTACGGCT ACACAGAAG GACAGTATTT GGTATCTGCG
 CACCAACCGGA TTGATGCCGA TGTGATCTTC CTGTCACTAA CCATAGACGC

 2701 CTCTGCTGAA GCCAGTTACC TTGGGAAAAA GAGTTGGTAG CTCTTGATCC
 GAGACGACTT CGGTCAATGG AAGCCTTTT CTCAACCATC GAGAACTAGG

 2751 GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTGTTT GCAAGCAGCA
 CCGTTGTTT GGTGGCGACC ATGCCACCA AAAAAACAAA CGTTCGTCGT

 2801 GATTACCGCG AGAAAAAAAG GATCTCAAGA AGATCCTTG ATCTTTCTA
 CTAATGCCCG TCTTTTTTC CTAGAGTTCT TCTAGGAAAC TAGAAAAGAT

 2851 CGGGGTCTGA CGCTCAGTGG AACGAAAAC TACGTTAAGG GATTTTGGTC
 GCCCCAGACT GCGAGTCACC TTGCTTTGA GTGCAATTCC CTAAACCCAG

 2901 ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTAA ATTAAAAATG
 TACTCTAATA GTTTTCCTA GAAGTGGATC TAGGAAAATT TAATTTTAC

 2951 AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT
 TTCAAAATT AGTTAGATT CATATATACT CATTGAACC AGACTGTCAA

 3001 ACCAATGCTT AATCACTGAG GCACCTATCT CAGCGATCTG TCTATTTCTG
 TGGTTACGAA TTAGTCACTC CGTGGATAGA GTCGCTAGAC AGATAAAGCA

 3051 TCATCCATAG TTGCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA
 AGTAGGTATC AACGGACTGA GGGGCAGCAC ATCTATTGAT GCTATGCCCT

 3101 GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCA GACCCACGCT
 CCCGAATGGT AGACCGGGGT CACGACGTTA CTATGGCGCT CTGGGTGCGA

 3151 CACCGGCTCC AGATTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG
 GTGGCCGAGG TCTAAATAGT CGTTATTG TGCGTCGGCC TTCCCGGCTC

 3201 CGCAGAAGTG GTCTGCAAC TTTATCCGCC TCCATCCAGT CTATTAATG
 CGGTCTTCAC CAGGACGTTG AAATAGGCGG AGGTAGGTCA GATAATTAAC

 3251 TTGCCGGGAA GCTAGAGTAA GTAGTTGCC AGTTAATAGT TTGCGCAACG
 AACGGCCCTT CGATTCATT CATCAAGCGG TCAATTATCA AACGCGTTGC

 3301 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG
 ACAACGGTA ACGATGTCCG TAGCACCACA GTGCGAGCAG CAAACCACAC

 3351 GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGGAGTTA CATGATCCCC
 CGAAGTAAGT CGAGGCCAAG GGTTGCTAGT TCCGCTCAAT GTACTAGGGG

 3401 CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCTCCG ATCGTTGTCA
 GTACAACACG TTTTTCGCC AATCGAGGAA GCCAGGAGGC TAGCAACAGT

 3451 GAAGTAAGTT GGCCGCGAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT
 CTTCATTCAA CGGGCGTCAC AATAGTGAGT ACCAATACCG TCGTGACGTA

3501 AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTCTG TGACTGGTGA
TTAAGAGAAT GACAGTACGG TAGGCATTCT ACGAAAAGAC ACTGACCACT
.....
3551 GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGCGA CCGAGTTGCT
CATGAGTTGG TTCAGTAAGA CTCTTATCAC ATACGCCGCT GGCTCAACGA
.....
3601 CTTGCCCGGC GTCAATAACGG GATAATACCG CGCCACATAG CAGAACCTTA
GAACGGGCCG CAGTTATGCC CTATTATGGC GCGGTGTATC GTCTTGAAAT
.....
3651 AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT
TTTCACGAGT AGTAACCTTT TGCAAGAAC CCCGCTTTG AGAGTTCCCTA
.....

ApaLI

3701 CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT
GAATGGCGAC AACTCTAGGT CAAGCTACAT TGGGTGAGCA CGTGGGTTGA
.....
3751 GATCTTCAGC ATCTTTACT TTCACCAGCG TTTCTGGGTG AGCAAAAACA
CTAGAAAGTCG TAGAAAATGA AAGTGGTCGC AAAGACCCAC TCGTTTTGTT
.....
3801 CGAAGGCCAAA ATGCCGAAA AAAGGGAATA AGGGCGACAC GGAAATGTTG
CCTTCGTTT TACGGCTTT TTTCCCTTAT TCCCCTGTG CCTTTACAC
.....
3851 AATACTCATA CTCTTCCTT TTCAATATTA TTGAAGCATT TATCAGGGTT
TTATGAGTAT GAGAAGGAAA AAGTTATAAT AACTTCGAA ATAGTCCCAA
.....
3901 ATTGTCTCAT GACCGGATAC ATATTTGAAT GTATTTAGAA AAATAAAACAA
TAACAGAGTA CTCGCCTATG TATAAACTTA CATAAAATCTT TTTATTTGTT
.....
3951 ATAGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG ACGTCTAAGA
TATCCCCAAG CGCGTGTAA AGGGGCTTTT CACGGTGGAC TGCAGATTCT
.....
4001 AACCAATTATT ATCATGACAT TAACCTATAA AAATAGGCAT ATCACGAGGC
TTGGTAATAA TAGTACTGTA ATTGGATATT TTTATCCGCA TAGTGGCTCCG
.....
4051 CCTTCGTTCT CGCGCGTTTC GGTGATGACG GTGAAAACCT CTGACACATG
GGAAAGCAGA CGCGCAAAG CCACTACTGC CACTTTGGA GACTGTGTAC
.....
4101 CAGCTCCCGG AGACGGTCAC AGCTTGTCTG TAAGCGGATG CCGGGAGCAG
GTCGAGGGCC TCTGCCAGTG TCGAACAGAC ATTGCTAC GGCCTCGTC
.....
4151 ACAAGCCCGT CAGGGCCCGT CAGCGGGTGT TGGCGGGTGT CGGGGCTGGC
TGTTCGGGCA GTCCCGCGCA GTCGCCCACA ACCGCCACA GCCCCGACCG
.....

ApaLI

4201 TTAACTATGC GGCATCAGAG CAGATTGTAC TGAGAGTGCA CCATATCGAC
AATTGATACG CCGTAGTCTC GTCTAACATG ACTCTCACGT GGTATAGCTG
.....
4251 GCTCTCCCTT ATGCGACTCC TGCATTAGGA AGCAGCCCAG TAGTAGGTTG
CGAGAGGGAA TACGCTGAGG ACCTAACCTT TCGTCGGTC ATCATCCAAC
.....
4301 AGGCCGTTGA GCACCGCCGC CGCAAGGAAT GGTGCATGCA AGGAGATGGC
TCCGGCAACT CGTGGCGGC GCGTTCTTA CCACGTACGT TCCTCTACCG
.....
4351 GCCAACAGT CCCCCGGCCA CGGGGCTGC CACCATACCC ACCCGAAAC
CGGGTTGTCA GGGGGCCGGT GCCCCGGACG GTGGTATGGG TGGCGTTTG
.....
4401 AAGCACTAAT AGGAATTGAT TTGGATGGTA TAAACGGAAA CAAAAAAAG
TTCGTGATTA TCCTTAACCA ACCCTACCAT ATTGCTCTT GTTTTTTTTC
.....

4451 AGCTGGTACT ACTTTCTTTA AAATTATTTT ATTATTTGAT TTTATTTAAT
 TCGACCATGA TGAAAGAAC TTTAATAAAA TAATAAACTA AAATAAAATT

 4501 AGTATATATT ATATTTGAA CGTAGATTAT TTTGTTGAAA GTTGCTGTAG
 TCATATATAA TATAAAACTT GCATCTAATA AAACAACCTT CAACGACATC

 4551 TGCCATTGAT TCGTAACACT AATTCTGTAT TAGTCATTCC TCTTGTGTTGA
 ACGGTAACCA AGCATTGTGA TTAAGACATA ATCAGTAAGG AGAACAAACT

 4601 TAGTATCCAA AAAAACGGCT ATTTTTTGCG AATCTTATTT CCTGCATATT
 ATCATAGGTT TTTTGCCGA TAAAAAAACG TTAGAATAAA GGACGTATAA

 4651 ATACAGATAA CATAATGAAA GAAAAAAATCT TTTTTTTGAT TCTTCATAGA
 TATGTCTATT GTATTACTTT CTTTTTTAGA AAAAAAAACA AGAAGTTACT

 4701 TGATTTCAAC CATTCTTTA AACATTGATC AATTCCGTAG CAACAAACCC
 ACTAAAGTTG GTAAGAAAAT TTGTAACTAG TTAAGGACTC GTTGTGTTGG

 4751 ATACACACTG GTTTATATAC CGCCCCCTTT ACAGTTGAAG AAAGAAATAG
 TATGTGTGAC CAAATATATG GCGGGGAAAA TGTCAACTTC TTTCTTTATC

 4801 AAATAGAAAT AGCAAACAAA AGATATGACA GTCAACACTA AGACCTATAG
 TTTATCTTTA TCGTTGTTT TCTATACTGT CAGTTGTGAT TCTGGATATC

 4851 TGAGAGAGCA GAAACTCATG CCTCACCAAGT AGCACAGCGA TTATTTCGAT
 ACTCTCTCGT CTTGAGTAC GGAGTGGTCA TCGTGTGCT AATAAAGCTA

 4901 TAATGGAACCT GAAGAAAACC AATTATGTG CATCAATTGA CGTTGATACC
 ATTACCTTGA CTTCTTTGG TAAATACAC GTAGTTAATC GCAACTATGG

AvaI

4951 ACTAAGGAGT TCCTCGAGTT AATTGATAAA TTAGGTCCCTT ATGTATGCTT
 TGATTCTCA AGGAGCTCAA TAACTATTT AATCCAGGAA TACATACGAA

 5001 AATCAAGACT CATATTGATA TAATCAATGA TTTTCCTAT GAATCCACTA
 TTAGTTCTGA GTATAACTAT ATTAGTTACT AAAAGGATA CTTAGGTGAT

 5051 TTGAACCATT ATTAGAACCTT TCACGTAAAC ATCAATTAT GATTTTTGAA
 AACTGGTAA TAATCTTGA AGTGCATTG TAGTAAATA CTAAAAACTT

 5101 GATAGAAAAT TTGCTGATAT TGGTAATACC GTAAAGAAC AATATATTGG
 CTATCTTTA AACGACTATA ACCATTATGG CATTCTTIG TTATATAACC

 5151 TGGAGTTTAT AAAATTAGTA GTGGGCAGA TATTACCAAT GCTCATGGTG
 ACCTCAAATA TTTTAATCAT CAACCCGTCT ATAATGGTTA CGAGTACCAAC

 5201 TCACTGGGAA TGGAGTGGTT GAAGGATTAA AACAGGGAGC TAAAGAAC
 AGTGACCCCTT ACCTCACCA CTTCTTAATT TTGTCCTCG ATTCTTTGG

 5251 ACCACCAACC AAGAGCCAAG AGGGTTATIG ATGTTAGCTG AATTATCATIC
 TGGTGGTTGG TTCTCGGTTTC TCCCAATAAC TACAATCGAC TAAATAGTAG

 5301 AGTGGGATCA TTAGCATATG GAGAATATTTC TCAAAAAACT GTTGAATTTG
 TCACCCCTAGT AATCGTATAC CTCTTATAAG AGTTTTTGAA CAACTTTAAC

 5351 CTAAATCCGA TAAGGAATTG GTTATTGGAT TTATTGCCA ACGTGATATG
 GATTAGGCT ATTCCCTAAAC CAAATAACCTA AATAACGGGT TGCACTATAC

5401 GGTGGCCAAG AAGAAGGATT TGATGGCTT ATTATGACAC CTGGAGTTGG
CCACCGGTTC TTCTTCCTAA ACTAACCGAA TAATACTGTG GACCTCAACC

5451 ATTAGATGAT AAAGGTGATG GATTAGGACA ACAATATAGA ACTGTTGATG
TAATCTACTA TTCCACTAC CTAATCCTGT TGTTATATCT TGACAACATAC

5501 AAGTTGTTAG CACTGGAACt GATATTATCA TTGTTGGTAG AGGATTGTTT
TTCAACAAATC GTGACCTTGA CTATAATAGT AACAAACCATC TCCTAACAAA

5551 GGTAAAGGAA GAGATCCAGA TATTGAAGGT AAAAGGTATA GAAATGCTGG
CCATTTCCCTT CTCTAGGTCT ATAACCTCCA TTTTCCATAT CTTTACGACC

5601 TTGGAATGCT TATTGAAAAA AGACTGGCCA ATTATAATG TGAAGGGGG
AACCTTACGA ATAAACCTTT TCTGACCGGT TAATATTTAC ACTTCCCCCT

5651 GATTTCACT TTATTAGATT TGTATATATG TAGAATAAAT AAATAAATAA
CTAAAAGTGA AATAATCTAA ACATATATAC ATCTTATTAA TTTATTTATT

5701 GTTAAATAAA TAATTAATAA AGGGTGGTAA TTATTACTAT TTACAATCAA
CAATTATATT ATTAAATTAT TCCCACCATT AATAATGATA AATGTTAGTT

5751 AGGTGGTCCT TCTAGCTGTA ATCCGGGCAG CGCAACGGAA CATTTCATCAG
TCCACCAGGA AGATCGACAT TAGGCCCGTC GCGTTGCCCTT GTAAGTAGTC

5801 TGTAAGGAAAGT GAATCAATAA AGCCCTGCGC TCATGAGCCC GAAGTGGCGA
ACATTTTAC CTTAGTTATT TCAGGACGCG AGTACTCGGG CTTCACCGCT

5851 GCCCGATCTT CCCCATCGGT GATGTCGGCG ATATAGGCGC CAGCAACCGC
CGGGCTAGAA GGGGTAGCCA CTACAGCCGC TATATCCCGC GTCGTTGGCG

5901 ACCTGTGGCG CCGCAGCGCG CAGGGTCAGC CTGAATAACGC GTTTAATGAC
TGGACACCGC GGCGTCCGGC GTCCCAGTCG GACTTATGCG CAAATTACTG

5951 CAGCACAGTC GTGATGGCAA GGTCAGAATA GCCAAGTCG GCGGAGGGGC
GTCGTGTCAG CACTACCGTT CCAGTCTTAT CGGGTTTCAGC CGGCTCCCCG

6001 CTGTACAGTG AGGGAAGATC TGATATTGAC GAAGAGGAAC CAATGTAACG
GACATGTCAC TCCCTCTAG ACTATAACTG CTTCTCCTTG GTTACATTGC

6051 TTACACTGAA GAAAACACAC AATAAACGGG AAGAAACGGT GTAAAAGTGT
AATGTGACTT CTTTGTGTG TTATTTGCC CTTCTTGCACA CATTTCACA

6101 GAAAATAATT TTTGAATATC ATTCCCTTG GTTTAATTCC AAACGAAACG
CTTTTATTA AAACTTATAG TAAAGGAAAC CAAATTAAGG TTGCTTIGC

EcoRI

6151 TGTGTGTGT AGAGAATGGG AATTCTTATT GGATGTCTAG ATTGTTGTT
ACAAAAAAAC TCTCTTACCC TTAAGAATAA CCTACAGATC TAACAAACAA

ApalI

6201 TACTCCAGAC TGTGCACAAA AACGTTGGGA TGGATGATCA GAAGATATTT
ATGAGGTCTG ACACGTGTTT TTGCAAACCT ACCTACTAGT CTTCTATAAA

6251 TTAGGCTTAG CTCTAAATAT AAGAAATGAT GCTTGAAAAA CCAGACAGAA
AATCCGAATC GAGATTATA TTCTTACTA CGAACTTTTT GGTCTGTCTT

6301 ATTGAGTTTC AAAAATTGGT AATGTGAGGT ATTAGTCAAC TAACCAAATA
TAACTCAAAG TTTTAACCA TTACACTCCA TAATCAGTTG ATTGGTTAT

6351 ACAATGCAAA CCGGTGATA CATTTCATTG TGAAAATAAT GAAACTGGAA
TGTTACGTTT GGCCAACATAT GTAAAGTAAA ACTTTTATTA CTTTGACCTT

6401 TTGGATGACC AGCACACAAA CACATAAAGT AATTATGGGA ATTAGAACCG
AACCTACTGG TCGTGTGTTT GTGTATTTCA TTAATACCCCT TAATCTTCGC

6451 AACATAGAGG AGTACTTGGC CACGAACAGA ATACAAGTGG GAACACTATT
TTGTATCTCC TCATGAACCG GTGCTTGTCT TATGTTCAC CTTGTGATAA

6501 TTCTCCATTG TTTTAGTTCT GTTTTTTTGT CAGCCTAGTT TTGTGCTATG
AAGAGGTAAC AAAATCAAGA CAAAAAAACA GTCGGATCAA AACACGATAC

HindIII

6551 TGTAaaaaat ATTGCCAAGA AAAAAGCTT GTTTGTGGC CAGTGTCCGA
ACATTTTTTA TAACGGTTCT TTTTTTCGAA CAAAACACCG GTCACAGGCT

6601 AAAAATTTT GGGGAATCTT CGGATTAATT TATGTTTC
TTTTTAAAAA CCCCTTAGAA GCCTAATTAA ATACAAAAGT

Sequences with unknown function, C. albicans sequence NOT present in the public domain
(ALCES/EMBL)

>328c2 1803bp in-house: 1123-1803 public: 1-436/468-1021 PathoSeq:
437-467/1022-1122

ATGTCTATTACAGTTACATTCCGAAATCTCCATCTACGAAAAAACGTGCACCG
GCATTGGATTGAGTTGGAGTTAG
TCAMCAAGSCAGTAGCGATGGTGTATAAGAGAAAAGCGGCATTGGCAGTCCT
GTGTTAGCGTTGACAACCAAGACTWT
GTATTKATAAGAGAYCWTGCCAAGTACTGGGCTACCCCTCATCGTATCAATT
GATTGTCAAGTTGGTCAAATGTGCTAA
CATTGAAAAGTCGCAAATCTAAAGACCGATAAGGATTGAATAGAGAGTTGT
TTGAGTTGGATTGATTGAAGAAGCAG
ATACAAAGATTGATCTTTTATATTTCGTTACCCCTGGTCTATTCAAGAATAGA
AAATAAGAAGGTTTTATGTTCTG
CGTGAACCAGAACAGCCAAGGTGTCGAAAGCMCCAACACAAGAGAAACCAG
CAAGTGTGGTGCTGCAGAAGAAGATGA
CGATAATCTAGATGATGATGAGGAGGACGAAGTGGATGAAGACATGGATGAA
GATAATGATAATAGGGATTGTCTA
AAGGATAACAAGCACATGCACAAGGACATCCAAAGTATATAATGACGATAG
GGTTACTATTGGACAAGTGTTCATCAA
TACGGACTTGACCCCTCGACACCATTAAACCCATTCACTTTCAATAGTATCAAC
TCAATGTCGAAGCTAACTATTACAA
GAATTGGAGTTCAAGGTTACCGATTCTCCAAACAGCAAGTTATCTTATGC
AGAACGAGAATTGGTGTGAATGCCA
ACAACATACAATGATATGCACATTAAACGAAAAGACAGAATCCAAGCCGAAAAA
GAGTTCCGTAAACCCATTGGAAAGTCA
AAGAAACATAACTTGAGATTGATCCGAACCTCCATAGATTAAAGCGAGTCAGT
GATTCCGGACAAGGGTTATACCTGA
CTTGTATCCACCTATCTTGCAAAGTCCCTAATTATTATGTGACATCAACCC
ACCAAGTCTCCGCTGCGTTCAAC
ACAAAGAATCTTAATGCAACTTCGAACCTTCGTATTGTTAATGATAATGTC
AAGATAAAAGTCAAAAGTATTCAAGAA
GTWSGTGTTAACAGCGATACCGATAATTACCATCACACAAAGTATTCTACA
CCAAAACCTACCGTGGTCCAGGGTCGG
GGAATTACAAGGATGGTCATTGATGAACAAAATCAACAAGATAACATCTTCC
AGTAATAAAAAGCCGCCACAAGAGA
AAGGTGTCGAACAATAACAGGTACAACAAGAGTTAAAGGGGTTAGTCCACG
AAAAGTTGACAAGAACTTGTGAGTA
CTTGCTTCTGAGCAACGCAAGTATACCGAGGACTATTCCAATCTGAAATT
ACACAATAGCTTACAGTTAATGTT
TTTGAATACGTATCGTGGTGTGCCAAGAGACATGGAATAACTACTACAAG
TTTAAATTGATTGATTGAAACAATTG
AAGGCTTGCATGGAGGCAAATGAGCTTGAGGAGAGAAAATTGGATGCTG
CTAGACACCAACAGTGGCGGAAGAAGA
GAAGCTTNCCAAGAAAGATTGCGTTAGTATTGAAGATGAACGGACGAGTT
TGAGCAATTGCAAAGCGAGTTGGTCA

Fig 5

GAGAAAGAAGGATTGGAAGAGAAATTGCCTGCCGTCACTANANGCATCTT
 TGANTGATAGTTTGAACTTGATAGCG
 AAAATGACNATGAATCTTGACTTGNCCAAANTNAACAAGACTT

Fig 5 (cont'd)

>113g4 844bp in-house 1-844
 ATAGAACTGTTGATATACTAACTATCTCACTCCCATTGTGACTTGAATAATAATAACCTATCACCTAGTAATCTTT
 ATCTAACGTAATCTCTGCAAAGCACAACTCAATGTATAAAAGCATAAAAGATAAAATCTTGGTGAGGTTAAGTTCTATAAT
 TATAATGAACAAACAATTACTAAAAGGGATGGTATCAACAAATTATAGGCTAGGTAGAACCATAGTGGCTGTTGGGAGTT
 CGGGTAGTTGGGAAGGTTGGGAAGGTTGGATAGTTGAGAAGGTTCCGTGGCTGATTCTAAATTAAACAGAGAACGATAT
 AATGTACAAAAAAACATTCAAGAATTTAAACACCTTTATATATATATATAAAAGCTCTTGTCTCAACTTGCCATTGC
 TGTTGATGATGCTTCTGTTAAATATACCTTTAAGAACCGAGATTCACTATCTCAACTAAATTTAACCCCTTATACTTTTT
 GTTTGACATTCCATAATGACACAAAAGATTGTGAAATATTTAGCCTCAAGGGGATTCTACTCATTCCATCTCAAACA
 CACATTCTTGTATCACCAATACCTTTGCTAACAGAGGAACAAAAAAATTGACACGGCATGTCAATTACCCATAGCACTA
 TCACTACAAATCAAAGGATTCAAAAGTGGGATTGTCAATCTGTTATATTAAACACATTACACATATTAACTTCA
 GGTACATAATCTCAATATCTAAACTCAAAATGGTACTGTACCTTAAACTTCTCCATGTCTAGTTGAATATTAT
 ACTTGCTAATGTCAAAATCATGTCCTCACACATTCCAGGTTGT

Fig 6

>15c1 977bp in-house 1-977 bp
TTTTTTTACAAATATAGTTAGATCTCTTTTAAAATTGAAACACAAAAAACAAAAAGTAACACTACTATCACCACCA
CCACCAACCAAAACATCATAGTGGAACTTAAATTGAAAGAATATAATTAAACCATTAATTATAATAACATAC
TAGGAGTAAACCTTTATGTAAATTAAATTAAATAGCAAAAAAAGGAAAGATTTCAACAAATCTTGTA
ATTAAATTAATTTCATTCACTTTCTGAAAGTGAATAGTCCTAATAGCAGTAATATTAGCAAATATTAAATAAAAC
TTTAAATAACAAATTAAATAATTAGTAATAAAACGAATTAAACAAACAAAAAAGGGCGGGAAAGACAACGAATAT
AGAAGAAGAAAAACAAACAGACGGGTAGTAGATATACTGGCTTAAACCAATATCTAAAGTACAGCAACACATAAT
GCAGCAAGACAACCCATTAAACAAGAATCATTACCTCCAGAACGTGGTTGTGTACATACATAGTTGTTGTGTTG
TTGTTGTTGATAATATCCACCAACACCACCTGCTGTTGTTGATAATATCCACCTTGTTGAGGTGGTGGTCCATTAAGCAT
TATATCCCTGTTGTTGATAGTGGCA.GACCACCAACACCACCAACTAAACATCCCTCGATCTTGTGTTGAGAA
TAATTGGTTGTTGATTGGTACATAACTTGTGTTGTTGTTGATTGGGTGATTATTATAATTGGTGGTGGAC
ACTGGTTTACCGAAATATTCTCTTTCGACATTGTTATATTATAAGTGTGTTGAAATTGGTGGTGTGGTTGCTAA
GATTGAGTATATAAGAAGTGGAAAAATTAAATAACATTAATCTAAACTTGTATAAGATGGATTAGCAATGATAATGAAG
AAAGTAAGTTGAATGTG

Fig. 7

1 QQSYVPQSCP NYSQQTCJRG HFSGGGGJHG HYQQQQGYNA YGPPPFUGGY

S1 YYGQGPGGGGG YYOG~~2~~OCQC? YYAQQDPRSG GNDSCIHGCI AAI^CCTLD

131 MLF

>207g4 769bp in-house 1-7:9
GCAAGATCTAAACTCCAGTTTTGGTGTATGTTACACAAGC>>A>>ATATCGAAAAAGCCCCAAATAATTCT
CTTCTACAAATTACGAAAAATGTTTACATGTATGAAAAGCTTTATCTATACTATTCTCCTCCAACCTCTAGCAGTGAG
AATGATACTGATATCTCTTATTAGGATAACGTTATCTATTATAAGTATAATAATCATGGAGATAAAATATATATTAAA
TCGATGGAGTTAACGAGAAAAACAAATACAA>>CCCATTGAGC>>ATGAGACATTICACAGAAAAAAACAAAGAAAAG
ACAATTACTCCATTCAAAATAATTCCACAAATAAAAAATAACAAAGAACAAACGTAACAAACAAACATCACTAATTICA
CTTTGAAAATCTTACATACAACTCTAAGATTAATAATAAGCGATGCATATTCACTCAGAATTAGTGTATACAATA
TGCAGGTGATTATGAGCCAGGTGA>>ACA>>TCCTTACTAAAAATCTAGGAGTTGTTATATACAGTATTGCTAAAC
CTGTCCTAACGTATACAAAGATAAGATTTGTATCGGTTAGAATAACAAAGAACGGTGTGGTTGTGGACTTGGTGGTGGTGG
CAAATTGAAATGATATATTGTTATCTCAAGTATAGC>>ATACAAAGGGCAAAGGCTGCAACAAAACAAGAACCTGGATT
GTCGCAATTCTCTCACCTTCAAGAATGTCTCGTGTATGTGATCAAT

Fig 8

>226c_af1 766bp in-house 1-766bp
AACGTAACTGTTATATTTACCAAGGAAACAGGGGACCTCATTATCATTAGTGTCAATTCAATTACTCCAGAACAAGA
AACACAAGACTTGTTGGTGTGCTATTAAAGATAATATATAATCAGGATAAANGAATTTTGGTAAAGAAAATTAA
CAGGGACGGTAATCATTCCTCCCTATAAACCAAAAATCTTATATGTCCCAGTTAACCTTATTAGAATTCCAAGAATT
ATTTACTTTACAGTGATCATTAAATTTAATTGAAAGCGAGTTAGCTCAATGTCTTCAGACACAACTGCTTTTCAG
GCACCCACCAACAAAGCACCGAAGGCTCATGGATCTGGGTACAAATTCCCAAAAGATCTCCAGGAAGATTGTTTCAAAAG
GTGGATATCATCATCATCATCAAAAGATAAGCCAGTATATGCAGAAAAAGCCCCTCTCAAGAACCAAAACATAGCACCGG
AACCAATAAAATAACTAAACAAACAGTACCGAGCTAAACAAATAGTACATCTGAACTCATCGCGCTCTAAGTGTGGCT
TCGAGTCATGATAATTATGTTTGATTCAAGTGCAGCTCTATATTTCTGATTCTAAAGAAATAGTATGCAAAT
GTTACTCACAGATGATAGAGGACATATTAGAGGACATAGACGATGCTGAGATATACGATGCTGAGAAGGTTACCATAA
CATATATAAGTTCTAAATCATGCTAAACACATTAAATTATTTG

Fig 9

>233c_cpl_full 500bp in-house: 1-500 bp
 GAAAAATCAACAAACAACAAACAGTAAAGCCAAGTGATAGTACCAAAATCTACTTTAGCAAATGATGAAACAAGAAAAAC
 ACTTGATCCTAAAGCGTGGAAAGCACTAACACAGGTGATAAGACACAGTTCATCAGACAAAGCATCTGCCAATTG
 AAGATAAAAGAAAAGTTCAACCATCCCTAGTGGAAAGTCACATCAACACCAAGTGGAACTGATAAAAAAAACATCTCCTAAA
 AAATTAGTTACCAATGCTGTCAATTAAGTTGAAAAATAATGATGATTCTAAAAATTCTATTATGAGGCTGAAAAGGAAGC
 TAAAAAAATCCAATCTGGATTGAAAAAAATTATTTAACAAAGAAGTAGAAGTTGTTAAATTGTTGATATAAATTGATG
 ATTTCCAGTTTTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTGATTCTTGTGTTAATTGCAATA
 CAATATAATGTTATTTTT

Fig 10

>22g3 (5') 535bp in-house: 1-535

AGGTTCCAGTTACCAATTAGGAAGTGTGTTGCAAGCAGGGCTACCAAATATG
 GGTGGCAACACATATGGTAGTAAGTGC
 TACCAATGTGGGTGCAAAAAAATTGCAAGTAATTGTATGGCAATAACAGA
 AGTGTGCGGGATTCAACTGAGGAAT
 CTTGGTGTGTAaaaaaaaAGCAATAGCGACTACGCTACAANAGGCAATCNAT
 TATTATTATAAAAGTGGAAAGTTATATAT
 ATNTTCTCGGGGGGGGGGGGGNTNGNNNTCCCCCCCCCCCCCANNTTT
 TNTCGGCCNCACCNTNCGGCCTTC
 TGGCTCCCCCCCNCGGGCCNNGTAAATNCCTCACCCNGGGANAANGGNA
 AANGGGGAACNANNAAGGGGGGACNNN
 NCACCCNATGGGAGGGAAATCCCNAANNNTTNCCCCCCNCCNGCCNAAN
 CCNCNTGGGNGGGCAAANNNCNGGG
 GCTNCNCNCCCTNCCCCCGCCNTNNCCNNNTNCNNCGANCTCTNNGNG
 GC

Fig 11

>22g3 (3') 426bp in-house: 1-426

CCCCCATATAACGTTGTCATAGCAATACTCTGTCGACCCATAGTGTGCACTT
 CTCGGTGGTATAAAAAAAATTITTC
 TCCCAAAAAAAATCTCTCCTTCCACCACTTTTCTTCTTCTTCCCCATT
 CCCTCCAAATCCCTCATTTTCCC
 CATTTCCCTACCCCTCTGGCCCTGTATTCCAAAATTITCTCGGGGNTACGCC
 CGAAGANAACCTCCCTCCCACCCACC
 CATTTGTCNGGNTTCGACCTTCGGCCTCANGGCTCACCCTGGGNTCTG
 TATATTGTAGACTCCNGGAAAAAAGG
 GAAAAGGGAGGAAGAAGGGGGAAAAAAAANGGAGGGNGAATCCTT
 TTNTTTNCCCCCNCTCAAACCNAAA
 CCCCNTNTGGNGGTCAATTAGGGG

Fig 12

>35gK 1334bp in-house: 146-669 public: 1-145 PathoSeq: 670-1334

ACAAACGTATAATCGACAGTTACTATATCTGCTGACTTCAAAACCAATGCATT
TTCAAGCGTGCTCTGCGATTCTAT
CATAAACATCCACTTTCCGGNGTAATCGGATTACTAAAGCCACAGAATCAAGGT
GAACATCAAGCTTCAACTTCTTCTTG
GTCCACGAATAATTITAATTGGTTMTTSKKGSMAMKGCTTCTACRGTAGGTT
TGAATCTTCCAACATTGTCTTGCA
TAGAAACMGCACCAAGACAAGAACATGTCCACTCGACCATCAACYTSKGGGT
AWWGACAAAGTWAATCTGTCTGGATCCT
TTTCATCCAGTTCCCTGCATKGGAWACAAGTNTGTCCCGCACAGTTAAGACT
GTTTTATTTSKTGGTATTAGACTCA
TCAAGTTCCGAAGGAGAGGCATCATTARGGWATAGACTCCGCTGAGTTAAT
ACTGGATAAATCACTTATTTCAGATT
ACTGACTTGTWCTTCAGTGACCTTATCAAAATCCTCAATGTACTCSGARGCGTW
TTCMCTCMATGTGAAGGCTTTAAAAA
GGGCAACRCTGGTYCA.AAATGCTTCTGCAGTTGTACKTGACAGAAAAAA
TCAAAAAACYTTGAAAGATATACCTCTT

Fig 13

CTAAGCTTTAAATCAATTCTTCTAATTTCATCATATAGCTTATGAC
 TTGGCAAACCCTCCTTACATACCAT
 ATCCATTACAATGCTAGAAATGTCAATCTTCACTGACGATATAAAGGATGGAA
 GAACTTCAAATAATTATAAAACTCAG
 GATTGGCTGGTGTATCTGCTGCAGGAGCTCCAGATTATTGTCCATTGCTCAC
 TCCATGGACATACATTATAACGTCC
 ATCTTTTCCATTCTCAAATTCTCGGTGAAATAAATTGTTGACGRWTTTA
 AACAGACGTACAATGTGAAAGATAA
 GATCATTAGCAGAGAGCAATTGAGACTCTTGCTTGAAGTTGATTGACACG
 TTTGTTGTAACATATTGTAGGTGGCT
 AAAAGATTGACTTWRGTAAAATGRAACTTATTAAACCTGGGCCCTCACATT
 ACATTTCATCTTAAACAAAGKGGTT
 CAAAGKGGAACTTGGTTGGATCCYTTAWTGGAAWATTTCYCAGKRAATACTT
 TCAAAATCAACTCCAGGAGAGCCACAG
 TGATAATTGAATTGGATTAGATAAGCGGTAAACTTCCAATTTCAGTTTAC
 CAAACTCTGGTAAATGAAGGTAAAGT
 TITGTGTCACCACAACAAGTTACTAAAAACAGCCTTGAGCATTGGAGGCA

Fig 13 (cont)

>36g2 (5') 520bp in-house: 1-520

CGTATAGAGAATAATCCGTTGAAATTGATTGTTCAATCATTATTGTATCTTTCC
 CTTTTTTGTCTAACCTATAATGT
 TAGAATAATTAGAAATTGTCTAAATATATATTCACTTAACAAAAACAGAAT
 GCTGCAATAAGATTGATTCTAATT
 ACTAATCGTTAATATTAGTTGGTGGGGTTTATTATCGAAGATGTAGCATT
 ATTGTATCNAATAGATAAAGAAACT
 TGAATTAAATGGCTAATTGTTGCAATAGTAAAAAGAAGAAAAGTGGTAAG
 GAGTGAGTGAAATATTGGCCCCA
 ATTGAGTNGAAATCTTACACCNAAAGTTGGACNAAAAGTTTACTAAA
 ATCTGANAATCTNCCTGAATAGAACCG
 ATCATCCNCATNTCCGATTNTGAGGANAGATAGTGGCCCCACCTCNTGGTG
 ATTAGAAGGAGCNCCATGTTTACAA
 TATCTATATCCAGAATAACNTGTTGTACCTNCNNNG

Fig 14

>36g2 (3') 472bp in-house: 1-472

CTCTATATATAGTGAATATAACATCAAATAATGTACAAAAAGTATAATAAA
 TTGATTAGAAATGAGAAAAAGAAAA
 AACTTGAAGTAGTGAAGATATATTGTTGGCTATCTTCTTGGTATGGCTCAAT
 TCAGCCAATCTTGGATGAAAGGGTGG
 AGTTTAGTTCTGGTTATTGATTGTAAGTACTTCGGGCTAGAAAGTTNA
 CAAACATGATTAATCTTGTATANAT
 ATTGTTAACATTTGGTGCCTCTTAATCNCCAAAAAGTTGGGNACTA
 TCTTCCNCNCNGAAATCTGTATATGT
 TGANTGANCCGNTCCATTCTGTTNANTTCNGANTTAGTTAAAACCTTTG
 TCCCAACCTTTGGGTTAGANTCN
 NCCCCANTGTTGCCNNAAATATTNCNCNCNCCTNCCCTTCCCCNTTTAC
 NAATGCACCAAGTAAGCG

Fig 15

>38g1 1348bp in-house: 183-940 PathoSeq: 1-182 / 941-1348

TCTCTGGTATAACTGCACTACCTCATCGCTACCCCGGATTTTTGGTATGA
TCTACACGTCTCATCGCTACCCCA
GATTTTCTGGTGCACGCCCTCCGGTCCGCACCGAAAACCGGGG
TAATCTCCGTCGGAGATAACATCCG
CGGACACAAAATCAGATGAGTACCAACCGAAAATTCCGAAATTCAAAAAC
AAAATCCCTAAAAACAAACTATCCAGA
NATTATTGCCATGCCCTGAGGATGAGTTAGTTTAATTGAAAAATGTC
CAAAACTGGTTGTGCTGTAGGANG
GGTAAGAATTGCCATTCTGCCCTTGTTGGGTGGTCAGTCNAAAAAGANGTA
TCACTCTGGTCNAACGGGAAACAACN
NAAAATGGGATTAAAMTWATCTCCAGAMCAAACCTAGCTTMWWACACCCAY
TTTAGTTGTACTSGYGRCCMAAMMCMAA
TTTCCATTGTTGGGANGGGATTARACCAAWTTTTTGAAATT
CGCTMAGTGYMAGAMCCSCAAAAG
TCACCTTTTCGTTTCMICYACGGCARARGCYCACCGGTTKYKTGGKGS
MCRGCCMAATTGAWTTGTTGGGTGSGC
ACGKGGAAAAACAGTTKGTAGTGGACACGTTTGCACTGTGAAACTGCGCT
CGGAGGTACTATATGCGAAAGCAGAAA
AGACAATTGCAAGAATAACAGAGAGTTCTCTGGCTANNGCAATGTGTTA
AGGCCAAGTCGACGAGTGGGAGAGTC
TGGAAAGTGTATACACATCACGACCTACTTATACGCTACGTTGGCATGGC
GAGCCACTGTACGGTGGCAAGCCTGAA
CAGTCCCACACCAGATATCTAACGATTCTGTATGGCACTGATGGGATTAG
TGGATTACTAGCTGATAGCAAGTATT
GAAAACAAAACCGACTGGGGTATGCCTGGCAAGTAGCCGGAGTAAAAT
CTGTGACTTGCTGAGTGTAACTCCCT
CCATGGTTGGCGATGTTGACGTGCGCGCAGTTCTGCGTACAGTCGA
CGGACACCACACCGGGAGAATCTAA
GAGGGCTATATGGATGTGGAACGGTTGCTGCTGTGGTAAAACACTGGCGGG
CGAGCCGACGTTCCACGGACACAGCAA
TGTGTTGCAACCAAATAAAACTTGACGGTTGAACGTGTTGGCTGCT
CCTTCCAGTTCTGGCGGGAGAAGCT
TGGGCGCGGGAAAGACCACTACTACGTAGTTATCTGGTTGATCCTGCCAGTAGT
CATATGTTGTCTCA

Fig 16

>60gK 990bp in-house: 445-752 public: 1-140/753-990 PathoSeq: 141-444

ATTACCGATCCGTCGGATTTAAAACCACAAAATTGCCTGCATTAGCAGAGCT
AGATATTTCATAGGGTGCTATATATG
CAAAGATCTATTGAATGCACCCGTGAGGACACAATGTGATCACACGTACTGTT
CACAATGTATAcgaga^ATTTTTACTTC
GAGATAATAGATGTCCGCTTCAAAACAGAGGTTTTGAAAGTGGTCTAAAAA
CGT GATCCATTGTTAGAAGAGATCGTC
ATTAGTTATGCCTCCCTAGGCCTCATTGATTACGATTATTGGAGATTGAAAAG
GTGGAATCGAAGCAAGAGGTAGATCG

Fig 17

TGAGAAATCAGCCAATGAGTCAGCGCTGAATGGTAATAGAAATGTAAACAAAC
GATGTTGACGAAACTGTGCGCGTTAAAG
ATCAACTGAATGCAGATAAAACTAGGTGAAGAAAAAGGGCAAGCTAACATGG
GGAACACAAGTNAAACGAGCAGACTACTGA
AGTTATTCTGTTGCTATCTGATGATGAAGAGAATGGTTCTGATAGCCTAGTAAA
ATGTCCTATTGTTGAGAGAATGG
AATTAGATGTACTACAGGGAAAGCNTATTGACGACTGTCTAAGTGGAAAGAGC
ACGAAGAGGGACGCCTACAGACATTITA
TCCCCAAAAGCCCACGACCGAAGCAAATCACCTCCTTTCCAACCAACAAT
AGATACCANAACNCCTCCCCACCTA
CCAGTTNNGCGTCNACAACCTCCACAGCAACTCCGACAACATATTGAA
AGCAAACGTCTCATCTCCATCCCAAGT
GGCGCAAAGTACAGTAAACAAGGGCAAGCCATTACCTAAACTCGATATCAGCA
GCTTGAGTACTAAAAAAATAAAAGCCA
AGTTGAGTGTATGAAACTACCAACACAGGTAGTAGGAATGAAATGGAAGC
CAGATACTAGCATTACTATGTGATTAT
AATGCCAACCTTGACACCAATCATCCTGTA

Fig 17 (cont)

>64gB 627bp in-house: 1-627

TNCANCCTNCCATNCNCCCAGGCNNNGCCACCCNGCCNNCCCCNTNTTC
 CCCCCCTCCTTNGTNGCCCTCNNGGTG
 GTGTTTGTGGTGTGACNAATAAANATGGTNTATCATTAGAACAGGACATTGCN
 NCGGAAATGACTGTCGACAATAAAGAA
 GCAAATATATAACATGGATTATGAANGTGCTAGGATGGATTGAAAGTTATC
 TGGGTTTATTCCAATGTAAAAATTATT
 TGTAATTGATATGGCTAATTATTTGCTNATATNTATCACAAAAAAATGATTA
 AGTTGAAATGAAATTGGCNTCCATA
 TATAAAATTTCTGACAGGAAGAGAAAATTGACNTGTTGCCNAAAAAAA
 AACTTACCCNCNTCNANTCNTGTNN
 GACTTAACGGGCAAAANAAANANGCTGGGGGGGGNAAAAAAATAGGAGGGGG
 GCCGGNNNGTTTTAAATTTNANNCTT
 GAATATGAACCAANNTTGNNTTCNTTTINCCACNCCCCCTCAAATTNAT
 TCCATGTTCCCAAGANNAGGGNGNG
 GGGGNGGTTCCNNCTTTAAACCNCACCCGGTGGNGGGNCCGTNTTNT
 TTCCGGNGGGCNT

Fig 18

>8c_cp 890bp in-house: 287-890 public: 1-124/154-286 PathoSeq: 125-153

ATGCAATTCTCATCCGGTGTGCTTATCCGCTGTTGCTGGGTCCGCTTGGCTG
 CTTACTCCAACCTCCACTGTTACTGG
 CATTCAAACCACTGTGTACCATCACTTCATGTGAAGAAAACAAATGTCACGG
 AAACCTGGAAGGTTACCACTGGTGTAC
 CACCGTCACTGAAGTTGACACTACGTACACCACCTACTGCCATTGTCAACCAC
 TGAAGCTCCAGCTCCATCTACTGCTA
 CTGATGTTCTACCACCGTTGTACCATCACCTCATGTGAAGAACAAATGTC
 ATGAAACCGCTGTACCAACCGGTGTC

Fig 19

ACCACTGTCACTGAAGGTACTACCATCTACACTACCTACTGCCATTGCCATCT
 ACTGAAGCTCCAGGTCCAGCTCCATC
 TACTGCTGAAGAATCTAACCAAGCTGAATCTTCCCCAGTTCCAACCACCGCTGC
 TGAATCTTCCCCAGCTAAAAGTACTG
 CTGCTGAATCTTCCCCAGCTCAAGAAACCACTCCAAAGACCGTTGCTGCTGAAT
 CTTCTCAGCTGAAACTACTGCTCCA
 GCTGTCTCTACCGCTGAAGCCGGTGCTGCTGCTAACGCTGTCCCAGTTGCTGCT
 GGTTTGTGGCTTGGCTGCTTGT
 TTAAGTTATTAGAGCTAAATCAAATATTACAAACAAAATTTCATTTC
 CCCTTCCCTTCTCATTC
 AAAGGGTTATTACTATTAAATTGATAAAATTATGGTTCATGTTAATTACCTT
 TTCTTATAAACATTGGTATTATA
 TTATCATCATTAGNTTATTATATTCTGTGAGTTTTCGGNTTAATTAAATT
 TTTGGATACATATTAAAAATTAT
 TTGGTACTAG

Fig 19 (cont)

>8533 481bp in-house:1-431
 CTAATATACTCGAGTTCTGGGGCGT:GAAAAAAACGGGTATTTTGGACCAGCAGAAAAAAAGTGGATTGGCGTGCA
 CGACCCGAAAAAGGGAGAATTGGAATGGCGAAATTGGGGTAAGTTGAGAGAGTGTGGAGCAACAATATAAGA
 GAGGGTGACCGCAATTGTAATGGCAGGTGGCAGGCCATTGAAGATGTGTTGCAAAAAGATGGAGTTGTAGCGGTTG
 CTGTGGCTGAGATATTGGCACTTTAAGACCGCATGTTTGGTAGCCCTGGGTAAGACCACTTTTTTGTAA
 GAAGACCGCAGAAAAGAGAGCACACATACAAAATCAAGACCGCAGAAAAGAGAGCACACATTAAAGAGCACATTGGT
 AGCACACACTTTAAGAGCACAGAAAAAGACCACTTATTCTAAGACCGCATGTTGGTAGCACACACTTTAAGACCA
 C

Fig 20

>66g4 579bp in-house: 1-579

CCCCGTTAACCACTCTAGGGTATACCATTCTACTGAATAACTGGTTAG
TCGATTGTTGTTGAAGAAAAGTGAC
CACCTAGTTTCTGCCAACATTTTGCATGAGCCGTCGACCGTTGTCTT
TTCTACCCCACGTTAACAAATCTTG
CCAGTCATTCCCTAGCCAAATAAAACTTAGACTCACAACACTCTAACACTGACTC
GTGCCCCCTGTTAAACTCTAAATT
ACTTCACAGAGCCTTACTACCTTAAATTARGRTTWTSKAKKGTTCTGTTTT
TTGCAAATCACCCCTGACTYGT
TTTCAGCCAGGTTTCTGTTAAATCTGACCAAAAAATTACRACTCCTATWT
TTAAAACTCYAAAWACAATTAAAAC
TCAATTAGACAAGTCCTCTGCTCATCTGAGTCTCTATTGTCTTGTACT
TTTGTGTGACTATTCTCATGAT
CACCCCGTTCTGCATTTCAGTCAACTTTCTCAAAATCAAGCCAAAAA
AACACACCTTAACACCTATACAA
CGCAAACCTATTCAAAACA

Fig 21

>NDI (17c_cp) 807bp in-house: 1-614 PathoSeq: 615-807

AACCTATTCCATAATGTTACTAGATCATTGATTAAAGGTGGTGGCAGACTTGC
TAATCAGATCATTGGTCAACA
CTACTAGTTGGTTAAAAAATCAATTAAAGAAATATTCAACATCAACTCCTC
CTAAGGTTGCCAAATCAAATCTTCG
ACAATTGGTAAAATATICAGATACTTTTACACTGCTGTGATATCGGTATT
GGTTCTGCCGGTTGATCGGTACAA
AATTACGAAGAGTCTCACCTGTTGATCAAGTGAAACAAACACCATTGTTCC
TAATGGTAAAAAAAGAAAATTAG
TTATTGGGTTCTGGTGGGCTATTCAATTGAAAAACTTGGATACCA
CCTTGTATAATGTTGNTATTGTC
CCAAGAAAATATTCCCTTCACCCCATTGTTACCATCTGTTCTACCGGTACTG
TTGAATTGAGATCTATTATTGAACC
TGTCAAGATCAGTCACCAGAAGATGCCCTGGCAAGTTATTACCTTGAAGCAGA
AGCTACAAATATNAACCCCTAAA
ATGAGTTGACACTAACAAAGTACTACTGTCCGTTCTGGTCATTCTGGTAAAAA
TACTTCCTCTTCTAAATCAACTGTTG
CCGAATAACACTGGGGTTGAAGAAATCACTACCACCTTGAATTATGACTATT
GTTGTTGGTGTGGTCTAAACAATN
CTANTTTCGGNAATCCTGGGAGNCNTGAGGAANTCAACCCTTTTGAA
AGAANGNCCAGTGGANGCCNTCTGCN
AATTAGA

Fig 22

>HOL1 (409c5) part2 762bp PathoSeq: 1-762

GATCAGAATAATGAGGGACTTATACCTGGAACACTCAATATCTATTCCCTGGAA
GTTGACTCTGAAGATGAAAACGTGAG
TCATTACGATGCTTCCAGTCGACCAAAAGTGAAAACAAAAGGCAATATAATCC
TCTTCCCACAACCATCGAATTATGCA
ATGATCCATTAAATTGGAGTAAATGGAGAAAGCTAAGTAACCTTTTATTGTCA
TTTTTATTACTGCTTTACAGCAGCT
ACTTCAAATGACGCTGGATCAATTCAAGATTCACTTAATGAAAAATATGGAAT
TAGTTACGACGCAATGAATACAGGGC
AGGCCTTTATTTGGTATTGGATGGGTACTTTCTTTAACACCTGCTTCG
TCGTTATATGGTCGAAAAATAACAT
ACTTTATATGTATCTTCTTGGTTATTAGCGCTGTTGGTTGCCTGGTAA
AAGCACTTCCGACTCAATTGGTCG
CAATTGTTGGTATTAGTGAGAGTTGTGCTGAAGCTCAAGTACAATTAAAGT
TTATCAGAACTTATTTGCCATAA
CCTTGGTCTGTGCTACGTCTATATTGTTGCAACTTCCGTAGGTACTTACTTA
GGACCTTTAATTGCAGCCTTATTG
TTCAAAACATTGGTTTAGATGGGTGGATTGCAGCAATTATTAGGGTG
CATTATTGTTCTGAATTGTTTTGT
TTAGATGAAACCTATTTGATCGAGCAAAGTTACCAAGCCA

Fig 23

>GAL2 (360c6) 1004bp in-house: 625-1004 PathoSeq: 1-624

TCCATTTCCTTTCTTCTACATCATCCTCACANCAATTCAAATATG
TCTCAAGACAACGTCTCATCAACAT
CTACAGCTGAGGCTGAAATAATGAAATCAAAGTCAAAGATGAATTCCACAA
GAAGAACAAAGCTCATACTAGTTAGAA
GATAAACCAGTGAGTCATACATTGGTATCATCATTATGTGTTCTTATTGCC
TTTGGTGGTTTGTGTTCGGTTCGA
TACTGGTACCATTTCTGGTTTATTAATATGTCTGACTTTAGAAAGATTGGT
GGTACTAAAGCTGACGGTACTCTT
ACTTTCCAATGTCAGAACTGGTTAATGATTGGTTGTTAACGCTGGTTGTG
CCATTGGTGMWTTATYCTTGTCTYAAA
GTCGGTGATATGTATGGTAGAAGAGGTGGTATCATGACTGCTATGATTGYCTAT
ATTGTTGGTATTATTGTTCAAATTGC
TTCTAACATGCTGGTATCAAGTCATGATTGGTAGAATTATYACTGGTCTTGC
CGTYGGTATGTTATCAGTTTATGTC

Fig 24

CTTGTTCATTCCGAGGTTCTCAAAACATTGAGAGGTACTTGGTGTGCTG
 TTTCCAATTGATGATTACCTTGGGT
 ATCTTCNTGGGNTATTGGCTACCTATGGTACTAAGAGTTACTCAGACTCTAGAC
 AATGGAGAATTCCATTAGGTTATGT
 TTCGCCTGGGCTTATGTTGGTGCTGGTATGGTTAGAATGCCAGAACCTCCA
 CGTTACCTTGTGGTAAGACAGAAAT
 TGAAGATGCTAAAATGTCACTTGCCAAAACAAACAAGGTTCTCCAGAGGACC
 CAGCATTATACCGTGAACCTCAATTAA
 TCCAAGCTGGTGTGAAAGAGAAAGATTGGCCGGTAAAGCATCTTGGGTACT
 TTATTCAATGGTAAACCAAGAACATT
 GAAAGAGTTATTGTTGGTGTACAGCTTACAACAAATT

Fig 24 (cont)

>KGD2 (98c_cp) 334bp in-house: 139-334 public: 1-138

TTCTAACACAAACATCTTCTGGATCTCAATCAATTCTGATGGTTCTTAAG
 AAAATAACAGCTTCACGACCGTCAA
 CTACTCTGGTCGTAAGTCAATGCTAAGTACATCATTGGTAGAAACGATT
 GTCCGTTAACAGNAATTGGTCTTNT
 TTAAAANTGTGTAAACCAAATACGGNAGTTAANGCATTTTATAATTGGGT
 ACAGTATAATGATCCAATAACACNGNC
 ATTANAAATAGTGAAAGAACCNCCGGTCATATCTTACAAAGTCAATTACNAT
 TTCTGGCTTNTTACNCAAATTANANA
 TTTCCTTTNAATA

Fig 25

>RNR1 (38) 2562bp in-house: 1-2562

ATGTATGTTATAAGAGAGATGGCCGTAAAGAGCCAGTACGTTCGACAAAAT
CACTGCCAGAGTTCAAAGATTATGTTA
CGGTTGAATCCAACCACCGTTGAACCAAGCTTGCTATTACCCAAAAAGTTATATC
AGGTGTTACCAAGGGGGTTACTACTA
TTGAGTTGGACAACCTGGCTGCAGAAATTGCTGCTACAATGACAACAATTCAC
CCAGATTACGCTGCTTAGCCGCTAGA
ATTGCCGTATCAAATTACATAAGCAAACCAACAGTATTCAAAGTGTCA
TAAGGATTATATGAATACTTACATTAAATCC
TAAGACTGGGTACACTCTCCTATGATTCCAAGGAAACCTACGACATCATTAT
GGAACACGAAGATGAATTAAACTCAG

Fig 26

CCATTGTTACGACAGAGATTTAACTACAATTATTTGGGTTCAAGACTTTGG
 AAAGATCATATTGTTACGTATCAAC
 GGTAAAGGGTGTGAAAGACCACAACATTGATCATGAGGGTTGCTGTCGGTAT
 TCACGGTAATGATATAACCAAGGGTCA
 TGAAACCTATAACTGATGTCTCAAAGATTCTCACCCATGGTTCTCCTGTTA
 TTTAACGCTGGTACACCAAGACCAC
 AAAATGTCCTCATGTTCTGCTGCTATGAAGGATGATTCTATTGAAGGTATT
 ACGACACTTGAAATCGTGTGCTTTG
 ATCTCAAAAAGTGTGGAGGAATCGGTTACACATCCACAAACATTGTTCTACC
 GGTGCTTACATTGCTGGTACCAATGG
 TACTTCTAATGGTATTATCCAATGGTAAGAGTATTCAATAACACTGCACGTTA
 TGTCGACCAAGGTGGTAACAAGAGAC
 CTGGTGCCTTGCCCTGTACTTAGAACCATGGCACAGTGACATTITGATTCA
 TTGATATTAGAAAGAACACGGTAAA
 GAAGAAATCAGAGCCAGAGATTGTTCCCAGCTTGTTGGATTCCAGATTGTC
 ATGAAAAGAGTTGAACAAAATGGTGA
 CTGGACTTTATTCTACCAAATGAGGCCAGGCTGGCTGATGTTATGGTGA
 CGAATTGAAAGAATTATAACACCAAAT
 ACGAAAAAGAAAACCGTGGTAGACAGACCATCAAAGCTCAAAAATTGTTGA
 TGCTATTGGAGGCCAAACTGAAACA
 GGTACCCCCATTATGTTATATAAGATTGTAACAACAAATCCAACCAAAA
 GAACTTGGGTATTATCAAATCTTCAA
 CTTGTGTTGAAATTGTTGAATATTGCTCCAGATGAAGTTGCTGTTGAA
 CTTGGCTTCCATTGCTTGCCATCAT
 TTGTTGAAAATGATGAAAAAGTACTTGGTACAACATTGACAAATTACATCAG
 GTCACTAAGGTTGTCACCGTAACCTG
 AACAGAGTTATTGACCGTAACCAATTACCCAGTCCCAGAAGCTGAAAGATCAA
 CATGAGACACAGACCAATTGCTTGGG
 TGTTCAAGGTTGGCTGATGCTTTATGGAATTGAGATTACCATTTGACTCTCA
 AGAAGCTAGAGAATTGAAACATTCAA
 TTTTGAGACTATCTACCATGCTGCTGTTGAAGCTCAATTGAAATTGGCTAAAG
 AAGAAGGTGCCTACGAAACCTATCCA
 GGTTCTCCAGCCTCTCAAGGTTATTACAATTGATTGTTGGAACAGAAAACCA
 ACTGAATTATGGGATTGGGATACATT
 AAAACAAGATTGGCAAACATGGTATGAGAAACTCCTGTTGGTGCACCAA
 TGCCTACTGCTTCCACATCACAAATT
 TGGGTAAACATGAATGTTGAACCATACACTTCTAACATTACTCTAGAAGAG
 TATTAGCTGGAGAATTCAAATTGTC
 AATCCATATTATTGAAGGACTTGGTTGATTGGGTGCTGGAACGACGCTATG
 AAAAGTAGATTATTGCTAACATGG
 TTCTATCCAAGCCTTACCAAACATCCCTGATGAAATCAAGGCATTGTACAAA
 CTGTCGGAAATCTCACAAAAACATA
 TTATCGACATGGCTGCTGATAGAGCAGCATTATTGATCAATCTCAATCATTAA
 ACATTCACATCAAAGATCCAACAAATG
 GGTAAATTAAACCAAGTATGCACTCTACGGTTGGAAGAAAGGTTAAAGACTGG
 TATGTTACTACTTAAGAACACAAGCTGC
 CAGTGCTGCTATTCAATTACCATGATCAAAAGATTGCTGAGACTGCCGGTCA
 TACGGTTGCAAACATTGGACAAATTAA

Fig 26 (cont)

ACATTAAGAAATATGTTAACAAAGGAAGAGTTGAGAGTGAGAATACCAAGTGAT
GCTCCATACAAGTCACCATCAACCGAA
CCAACCTCATTAGAAAGTTCAGTTGCTGATTGAAAATAAAAGATGAAGGTGA
AAAGCCAGCTGAAGACAAAACCATTGA
AGAAACTCGAAAATGACATTATAGTGCCTAAAGTTATCGCATGTGCTATTGATA
ATCCAGAATCTTGTACAATGTGTTCTG
GT

Fig 26 (cont)

>SAM2 (36) 1155bp in-house: 1-1155

ATGACTACTCCAAGGAACTTCCCTTTCACTTCAGAATCCGGTGGTGAAGGT
CACCCAGATAAGATTGTGACCAAGT
CTCCGATGCCATTAGATGCTGTTAGCTGTTGATCCATTGTCAAAAGTTGCT
TGTGAAACTGCTGCCAAAACCGTA
TGATTATGGTTTGGTGAATTACCACTAAAGCTCAATTGGATTATCAAAAAAA
TCATTAGAGACACCATTAAACACATT
GGTACGACGATTCTGAAAAAGGTTTGATTACAAGACTTGTAAACGTCTGGTT
GCAATTGAACAACAATCTCCAGATAT
TGCTCAAGGTTTACATTACGAAAAAGCTTGGAAAGAGTTGGGTGCTGGTGTAC
AAGGTATTATGTTGGTTATGCCACCG
ATGAAACCGATGAAAAATTGCCATTGACCATTATTGGCCCACAAATTGAAT
GCTGCCTGGCTCTGCCAGAACAGATCA
GGTCCTGCCATGGTTGAGACCAGATACCAAAACCCAAGTCACCATCGAGTA
TGAAAAAGATGGTGGTGCAGTTATCCC
AAAAAGAGTCGACACAATTGTTATTCCACTCAACATGCCGAAGAAATCACCA
CCGAAAATTGAGAAAAGAAATTATTG
AACATATCATCAAGCAAGTCATCCAGAACATTTATTAGACGACAAAACATTC
TACCACATTGCCATCAGGCAGATT
GTCATTGGTGGTCCCCAAGGTGATGCTGGTTGACTGGTAGAAAGATCATTGTT
GACACCTATGGTGGTGGGTGCACA
TGGTGGTGGTGCCTTCTCAGGCAAGGATTCTCCAAAGTTGATAGGTCTGCTGC
TTATGCCGCTCGGTGGTTGCTAAGT
CGTTGGTACCGCCGGATTGCCAAAAGGGCCTGGTGCAGTTCTCCTATGCTA
TTGGGGTTGCTGAACCCACCAAGCATT
TATATAGACACCTATGGGACATCTAAATTGAGCACCAGAACGCTTGTAGAAAT
TATCAAGAATAATTGACTTACGCC
TGGCGTAATTGTAAAAGAATTAGATTGGCTCGTCCTATTATTAAAACCGC
TTCTTACGGACATTACTAACCAAG
AAAATTCTGGGAACAACCAAAAAAAATTAAAATT

Fig 27

>135g 859bp in-house:1-859
CGTCCATAATTATCTTAAAACCGTAGATAAGCAAAAATTATCTTATGAAATGGTCAGCGATAAAGAAAGAAAGAACAG
GTACCAAGGAGGTGTTTGAGAAAAACAACTCGTAATTAAATGAAATCTAGTCTCTATACTTGAATAATTGGAGT
TTCTGGAAAAGACACCTGTTCCAGTTCAAAATTAAACAAGAATGTGAAAAGAATAAAATTGATTTATCTAGCCCTGTT
AAATAACTCAGGAAAACCTCAATTTCGTAAATGGCAACTTGTCCGAGTGGTTAAGGAGAAAAGATTAGAAATCTTTGGGCT
TTGCCCGCCGAGGTTCCAGTCCTGCAGTTGTCGTATTTTTGGTTACTCTCTATTTAAATTTAAACTAACTAACTCAA
CTGAAACTGGAGTACCTGCCATGATATGAGTAATAACTTTTGATATTAATAAACTCCCTATTTATTT
TTAATTTAAACCCAGATTTGCCCCAATAATAAGTTTTGGTGAACCTATTGCTTTGATGAACCTGGTTAGTTAATC
TTCCAATTTCATACTCTTATGCCCCACATCAGTGGCTCATTTGAAATAATTCTGATCTTGAAGTGTACCAAGATGTATT
CTGACAAAACCTGCACACGGACCCAGTCATAGCATTATAAGATATTGATTTAAAGTTCACCGAATATACTGAATATCTT
TATTGGCCATCTCATCTCATCTTGCATAAAATTCTTAAACGCTACTTTTCTCAACCTTATTATCCCTCTAGATAC
TCTTCCAAATCTTCAGGTTCAAAATACCTTAAACCATCAATGAACAACTAGGGCAAAAC

Fig 28

15c1

ss s

=

1 CQSYYZQSQQ N?SQQTQURG NFSGGGGGHG HYQQQQGYNA YG????PQGGY

ambiguities

====

X W W NX

= = = ==

51 YQ2QPGGGGG YYQZCQDQZ MCVQQQPSG GQTSCLYGCL AALCVCCTLQ

amb

==

101 MLF

Fig 30

222g9

E

E E

=

= =

1 MRRRETERAK 20XXREQRQK SHEAKRDIRI QQLESEQDSRS NQTKXEEEXVF

51 KXARSTNSGA DETGLMSDKE FDDSAYS?PDY LPZENLWNKP NH PDTNWKTK

101 KYTEXVVENL DEPENDTSAY NSSFHDETNQ QNEIQIPEND EYVPQMKATS

K

D

VR

fs

C

=

=

= =

=

=

151 SVNNTTIPAG RHEESLSTSE NKERRXFETAD VGWAGLDSPX XAQTRNIWKI

P

=

201 QVSNDNPWMVY PFMQXZLET PEGKLLCRDQ

Fig 31

60gK

FIG

1 ITDPSDFKTT KIPLAELDI LKRCYICKDL LNAPVPTQCD HTYCSCIRE

51 FLLRDNRCPPL CKTEVFESGL KRDPLLEZIV ISYASLRPHL LRULEIEKVS

101 SKGEVDRKVS ANESALNGNR NVAINDVDET/ RVKDQLNADK LGEEKGQAQH

G fs

= =

X

=

151 WEQWNEQTCS VILLISDDEE NGSDSLVKC? ICFZRMELDV LQGKHIDDCL

fs

=

Q Q X ambiguities

= = = = = =

201 SGKSTKRTPT DILSPKAXRP XQITSFFKPT ISTKTPSPPT SKASTTPTAC

S Q N I K M

= = = = = *

251 PTTLLKAVV ASPEPVPQST VHKGKPLPKL DFSSLSTQKI KAKLSDLKLP

301 TGGSRNEMEA PVLYYYVIVN ANLDSNHFV

Fig 32

8c GP

ce

-

G

G

fs

D

A

-

=

1 HQFSSAVVLS AVAGSALAAY SNSTVTDIQI TIVTITSCEE NKCHETEVTT

51 GVTFTEVLT TYTTYCPLST TEAPAPSTAT SVSTTWTIT SCEDDKHET

101 AVTGTGTTVT EGTTIYTTC PLPSTEAPGP APSTAEESKP AEESPVPTTA

151 AEESPAPTTA AEESPAGETT PKTVRAESES ASTTAPAVST AEAGAPANLV

201 PVAAGLIALA ALF

Fig 33

17c cd

1 EPPXVAKSXSS TIGKIFRYTF YTAVISVIGS AGLIGYFIYE ESQPVDQVKQ

X

=

51 TPLF2NGEKK KTLVILGSGW GAISLILKNLD TTLYNVVIVS PRNYFLFTPPL

fs	X	fs	fs
----	---	----	----

=	=	=	=
---	---	---	---

101 LPSVPTGTVE LPSIIEPVRS VTRRCPGQVI YLEASATWIN PKTNELTLKQ

R	X
---	---

=	=
---	---

X	X
---	---

=	=
---	---

151 STTVVSGHSG KDTSSSKSTV AEYTGVVEIT TTLNYCYLVV GVGAQTLIF

X	X	XX	XX	X
---	---	----	----	---

- - -	- - -	- - -	- - -	-
-------	-------	-------	-------	---

201 GNPGRPRMRKF NPFPERETSG SHLQTR

Fig 34

409c5 part2

1 DQNNEDFIPG TINIYSLVED SEDENVGHYD ASSRPKVTK GNIIILFPQPS
51 NSCNDEPLNWS KWRKLSNFFI VIFITAAFTAA TSNDAGSIQD SLNEKYGISY
101 DAMNTGACVL FLGICWGTFF LTPASSLYGR KITYFICIFL GLLGAVWFAL
151 VKSTSDSINS QLFVGISESC AEAQVQLSIS ELYFAHNLGS VLTSYIVATS
201 VGTYLEPLIA AFIVQNIGFR WVGVIAAIIS GALLFVIVFC LOETYFDRAK
251 FTKP

Fig 35

36056

1 DNVSSSTSTAE AINNEIKVKD EFPQEEQAHF SLEDKPVSAV IGIIMCPLI
 51 AEGGFVFGFD TGTISGFINX SDFLERFGGT KADGTLYFSN VRTGLMIGLF
 X X X
 = = =
 101 NAGCAIGALF LSKVEDMVGR RVGINTAMIV YIVGIIIVQIA SQHAWYQVMI
 ambiguities
 ==
 X
 =
 151 GRIITGLAVG NLSVLCPLFI SEVSPKHLRG TLVCCFQLMI TLGIFLGYCT
 fs
 =
 201 TYGIRKSYSDS RQWRIPLGLC FAWALCLVAG MVRMPESPRY LVGKDRIEDA
 PR
 ==
 251 KMSLAKTNKV SFEDPALLYRE LQLIQAGVER ERLAGKASWG TLFNGKTKIF
 IV missing sequence
 == -----
 301 ERVVMLGIMLQ ALQGPFWOKN LFPSYLTTSXP N

Fig 36

986 CR

missing sequence
 =====
 1 NAFVSGTITE PLVEDVATVE VGQEIIKYMEE GDAPAGGASA SEA2AKKEEA
 missing sequence
 =====
 51 PSEAKEESEA? AAA?KKEESTK KEEPKKESKP APKKEESKKs TQSTTSAPT?
 missing sequence
 =====
 101 TNFSPNNEERV KMKHEKLRIA ERLKESQNTA ASLTTFNEVD MSNELMDFRKK
 missing sequence
 =====
 151 YKDEFIEKTG IKLGFMCAGS KASALALNEI PAVNAAIENI DCLVFKDYAD
 missing sequence X XX XX NX *
 ===== = == == *** =
 201 ISIAVAT?KG LYT?/RNAE SLSILGIEKE ISNLGKKARD GKLTLEDMTG
 S X XX Z C X X* X F XF X IX
 = = == = = = == = = == = =
 251 GTPTISNGGV FGSILWSTPII NYPPQTAVLGL HGVKER?PTV NGQIVSRPYM
 301 YLALTYD4RV WDGPEAVIFL RCIKELIEDP PKMLL

Fig 37

38

1 XIVYKRDGRK EPIVRFDKITA EVOQRLCYGLN PAKVEPVAIT QKVISGVWQG
 51 VTTIELDNIA AEIAATMOTI HDQYAVLAAAR IAVSNLHKQT TKQYSKVKSD
 101 LYZZINPKTG LHSPMISKET YDILMEHEDDE LNSAIVYDRD FNYNYFCFKT
 151 DERSYLLRIN GIVAERPQHL IMPVAVGING NDIPRVIETY NLMSQRFFTH
 201 GSPCLFXAGT FRPQMSSCFL LAMKDDSIEG IYDTLKSCAL ISKSAGGIGL
 251 HIIHNIRSTGA YIAGTINGTSN GIIPMVRVFN NTARYVDQGG NKRPAGAFALY
 301 LEFWHSDIFD FIDIRRNHGK ZEIRARDLFP ALWIPDLFMK RVEQNGDWTL
 351 FSPNEAPGLA DYGDEPEEL YTKEYKENRG EQTIKAQKLW YAILGAUTET
 401 GTFPMLYKDS CIIJKSNQKNL GIICKSSNLCC EIVEYSAPDE VAVCNLASIA
 451 LPSFVENDEK STWYNFEKLH QVTKVUTRNL NRVIDRNHYP VPEAERSNM
 501 HRPIALGVQG LACAFMEIRL PFDSQEAREL NIQCFETIYH AAVEASIBLA
 551 KEEGAYETYP GSPASQGLLQ FDLNNRKFTB LWDWDTLKQD LAXHGMRSNL
 601 LVAPMPTAST S2ILGNNECF SPYTSNIYSE RVLAGEFQIV NPYILEDLVD
 651 LGVWNDAKES SICAWNGSIQ ALPNIPDEIK ALVKTUWEIS QKHIIDMAAD
 701 RAAFIDQSOS LNINIKDPTW GKLTSMHFYG WKKGLKTGY YRTQAAASAA
 751 IQFTIDQKIA ETAGHTVANL DKLNIKXHYVN KGRVESENTS DAPYKSFSTE
 801 PTSLESSVAC LKIKDEGEKF ADDKTIEZLE NDIVSAKVIACAIENPESCT
 851 MCSC

Fig 38

36

1 MTTSKETPLF TSESVBEGHE DKICDQVSDA ILDACLAVID LSKVACETAA
51 KTGMINT/EGZ IITKAQLDYQ KIIIFDTIKHI GYDDSEKGF D YKTCNVLVAI
101 EQQSPPDIAGG LHYEKALEEL GACCGGIMFG YATDETDEKL PTTILLAHKL
151 NAALASRRRS GSLPWLRPDT KTQVTI~~S~~EYK DGGAVIPKRV CTIVISTQHA
201 EEPPTENIRK EPEHLLIKQV EPEHLLUDKT IYHQPSGRF VIGGFQGDAG
251 LTGRKIIIVDT YGGWIAHGGG AFSGKDFSKV DRSAAYAARW VAKSLVTAGL
301 AKRALVQFSY AIGVAEPTSI YICTYGTISKL STEALVEIIK NNFDLRPGVI
351 VKELDLARPI YFKTASYGHF TNQENSWEQP KKLKF

Fig 39

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record .**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)