Gandaki University

Manju Subedi

Bachelor of Information Technology (BIT) **BSM** 101

Exercise on Matrix Operations and Solving the System of Equations

In [1-7] perform the operation as indicated:

1. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 5 \\ 7 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix}$,

- (b) Show that AB = AC.
- (c) Show that |AB| = |A||B|

2. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, with I is the 2×2 identity matrix, and $A^2 = A \times A$, then show that $A^2 - 3I = 2A$,

3. Given that
$$A = \begin{bmatrix} 2 & -3 \\ 5 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 1 \\ 5 & 7 \end{bmatrix}$, verify that $AB \neq BA$.

4.
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$,

- (a) Find |A| and |B|
- (b) Verify that $AB \neq BA$.

5. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ -1 & 4 \end{bmatrix}$. Show that $A(BC) = (AB)C$.

1

6. Find the product of

a.
$$\begin{bmatrix} 3 & 4 \\ 4 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 3 & 2 \\ 1 & 2 & 3 & 0 \end{bmatrix}.$$
b.
$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ 2 & -3 & 0 \end{bmatrix}.$$

7. Find the inverse matrix for each matrix that has exist an inverse. a.
$$\begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 5 & 6 \\ -1 & 3 & 3 \end{bmatrix}$ c. $\begin{bmatrix} 1 & 3 & 5 \\ -1 & -1 & 2 \\ 1 & 5 & 12 \end{bmatrix}$

d.
$$\begin{bmatrix} 1 & -1 & 4 \\ -1 & 0 & -2 \\ -1 & -3 & 4 \end{bmatrix}$$
 e. $\begin{bmatrix} 1 & 2 & 4 \\ 1 & -1 & -3 \\ 2 & 1 & 1 \end{bmatrix}$ f. $\begin{bmatrix} 3 & 4 & -1 \\ 4 & 2 & 2 \\ 2 & 6 & -4 \end{bmatrix}$

e.
$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & -1 & -3 \\ 2 & 1 & 1 \end{bmatrix}$$

$$f. \left[\begin{array}{rrr} 3 & 4 & -1 \\ 4 & 2 & 2 \\ 2 & 6 & -4 \end{array} \right]$$

8. Given that
$$A = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 11 \\ 5 \end{bmatrix}$ and $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. If $X = AB$, find x_1, x_2 and x_3 .

9. Solve the following systems of equations by using inverse of matrix and Cramer's rule.

(a)
$$x + 3y = 4$$
$$2x + 5y = 9$$

(b)
$$x - 3y - 5$$

 $3x - y = -1$

(c)
$$3x - \frac{4}{y} - 10$$

 $-2x + \frac{3}{y} = -1$

(d)
$$x - 2y + 3z = -1$$

 $x - y + 2z = 0$
 $2x + 2y + z = -3$

(e)
$$2x - 3y - z = 4$$

 $x - 2y - z = 1$
 $x - y + 2z = 9$

(f)
$$x + 2y - z = -5$$

 $2x - y + z = 6$
 $x - y - 3z = -3$

10. Use row operations on augmented matrices to solve the given systems of linear equations.

a.
$$\begin{cases} x+y-z=0\\ x+2y+3z=-5\\ 2x-y-13z=17 \end{cases}$$
b.
$$\begin{cases} x+2y-z=3\\ 2x+5y-2z=7\\ -x+y+5z=-12 \end{cases}$$

c.
$$\begin{cases} 2x - 6y - 12z = 6\\ 3x - 10y - 20z = 5\\ 2x - 17z = -4 \end{cases}$$
d.
$$\begin{cases} -3x + 6y - 9z = 3\\ x - y - 2z = 0\\ 5x + 5y - 7z = 63 \end{cases}$$

11. Solve the following system of equation by using Gaussian elimination method.

(a)
$$2x - 2y + z = 3$$

 $3x + y - z = 7$
 $x - 3y + 2z = 0$

(b)
$$3x + y - 2z = 2$$

 $x - 2y + z = 3$
 $2x - y - 3z = 3$

(c)
$$2x_1 - 4x_2 + x_3 = -4$$

 $4x_1 - 8x_2 + 7x_3 = 2$
 $-2x_1 + 4x_2 - 3x_3 = 5$

(d)
$$2x_1 - 4x_2 - x_3 = -8$$

 $4x_1 - 8x_2 + 3x_3 = 4$
 $-2x_1 + 4x_2 + x_3 = 11$

12. Use inverse matrices to find the solution of the systems of equations.

a.
$$\begin{cases} x + y + z = 3 \\ 2x + y + z = 4 \\ 2x + 2y + z = 5 \end{cases}$$

Use inverse matrices to
$$a.\begin{cases} x+y+z=3\\ 2x+y+z=4\\ 2x+2y+z=5 \end{cases}$$

$$b.\begin{cases} 2x-y-2z=2\\ 3x-y+z=-3\\ x+y-z=7 \end{cases}$$

$$c.\begin{cases} x+y+2z=8\\ 2x+y+z=7\\ 2x+2y+z=10 \end{cases}$$

$$d.\begin{cases} x-2y+z=0\\ 2x+y-2z=2\\ 3x+2y-3z=2 \end{cases}$$

c.
$$\begin{cases} x + y + 2z = 8 \\ 2x + y + z = 7 \\ 2x + 2y + z = 10 \end{cases}$$

d.
$$\begin{cases} x - 2y + z = 0 \\ 2x + y - 2z = 2 \\ 3x + 2y - 3z = 2 \end{cases}$$