CentraleSupélec - Cursus ingénieur

2ème année

Elément de correction de la composition de Probabilités avancées Mercredi 22 janvier 2020

Exercice 1

Dans l'espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$, soient $(X_n)_{n \in \mathbb{N}^*}$ des variables aléatoires indépendantes telles que

$$\forall n \geq 1, \quad X_n = \begin{cases} -1 & avec \ probabilit\'e \ \frac{1}{2n}, \\ 0 & avec \ probabilit\'e \ 1 - \frac{1}{n}, \\ 1 & avec \ probabilit\'e \ \frac{1}{2n}. \end{cases}$$

On pose $Y_1 = X_1$ et pour tout $n \ge 2$,

$$Y_n = \begin{cases} X_n & \text{si } Y_{n-1} = 0, \\ n Y_{n-1} | X_n | & \text{si } Y_{n-1} \neq 0. \end{cases}$$

- 1) Montrer que $\{Y_n; n \in \mathbb{N}\}$ est une martingale par rapport la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ définie par $\mathcal{F}_n = \sigma(Y_1, Y_2, \dots, Y_n)$ pour tout $n \geq 1$.
- 2) Montrer que Y_n converge en probabilité lorsque n tend vers $+\infty$.
- 3) Pourquoi le théorème de convergence des martingales ne s'applique-t-il pas?
- 4) La variable Y_n converge-t-elle néanmoins presque sûrement?

Correction

1) Pour tout $n \geq 1$, Y_n est \mathcal{F}_n -mesurable et $Y_n \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ (par récurrence, en écrivant $\mathbf{E}[|Y_n|] \leq \mathbf{E}[|X_n|(1+n|Y_{n-1}|)]$ pour $n \geq 2$ et $\mathbf{E}[|Y_1|] < +\infty$). On a de plus $\sigma(Y_1, \ldots, Y_n) = \sigma(X_1, \ldots, X_n)$ pour tout $n \geq 1$. On calcule alors pour tout $n \geq 1$,

$$\mathbf{E}[Y_{n+1} \mid \mathcal{F}_n] = \mathbf{E}\left[X_{n+1}\mathbb{1}_{\{Y_n=0\}} + (n+1)Y_n|X_{n+1}|(1-\mathbb{1}_{\{Y_n=0\}}) \mid \mathcal{F}_n\right]$$
$$= \mathbb{1}_{\{Y_n=0\}} \mathbf{E}[X_{n+1}] + (n+1)Y_n\left(1-\mathbb{1}_{\{Y_n=0\}}\right)\mathbf{E}[|X_{n+1}|],$$

car X_{n+1} est indépendante de \mathcal{F}_n . Or, $\mathbf{E}[X_{n+1}] = 0$ et $\mathbf{E}[|X_{n+1}|] = 1/(n+1)$. On trouve donc $\mathbf{E}[Y_{n+1} \mid \mathcal{F}_n] = Y_n$.

2) On a
$$\mathbf{P}(Y_n = 0) = \mathbf{P}(X_n = 0) = 1 - \frac{1}{n}$$
. Donc pour tout $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P}(|Y_n| > \epsilon) = 0,$$

c'est-à-dire Y_n converge vers 0 en probabilité.

3) Par le même calcul qu'au 1) on a pour tout $n \ge 1$,

$$\mathbf{E}[|Y_{n+1}| \mid \mathcal{F}_n] = \mathbf{E}\left[|X_{n+1}|\mathbb{1}_{\{Y_n=0\}} + (n+1) \mid Y_n| \mid |X_{n+1}|(1-\mathbb{1}_{\{Y_n=0\}}) \mid \mathcal{F}_n\right]$$
$$= \mathbb{1}_{\{Y_n=0\}} \mathbf{E}[|X_{n+1}|] + (n+1)|Y_n| \left(1-\mathbb{1}_{\{Y_n=0\}}\right) \mathbf{E}[|X_{n+1}|].$$

D'où en prenant l'espérance,

$$\mathbf{E}[|Y_{n+1}|] = \mathbf{E}[|X_{n+1}|] \mathbf{P}(Y_n = 0) + (n+1)\mathbf{E}[|X_{n+1}|] \mathbf{E}[|Y_n| (1 - \mathbb{1}_{\{Y_n = 0\}})]$$

$$= \frac{1}{n+1}\mathbf{P}(Y_n = 0) + \mathbf{E}[|Y_n|]$$

$$= \mathbf{E}[|Y_n|] + \frac{1}{n+1} - \frac{1}{n(n+1)},$$

en utilisant $\mathbf{E}[|X_{n+1}|] = 1/(n+1)$, $\mathbf{E}[|Y_n|(1-\mathbb{1}_{\{Y_n=0\}})] = \mathbf{E}[|Y_n|]$ et $\mathbf{P}(Y_n=0) = 1-1/n$.

Comme $\sum_{n\geq 1}\frac{1}{n}=+\infty$ et $\sum_{n\geq 1}\frac{1}{n(n+1)}<+\infty$, on a $\sup_{n\in\mathbb{N}^*}\mathbf{E}[|Y_n|]=+\infty$. Donc les hypothèses des théorèmes de convergence de martingales ne sont pas vérifiées.

4) On a $\sum_{n\in\mathbb{N}^*} \mathbf{P}(X_n \neq 0) = +\infty$, donc le deuxième point du lemme de Borel-Cantelli (les X_n sont indépendants) entraîne

$$\mathbf{P}\underbrace{\left(\limsup_{n\to\infty} \left\{Y_n \neq 0\right\}\right)}_{\bigcap_n \bigcup_{k>n} \left\{Y_k \neq 0\right\}} = 1.$$

Donc, Y_n ne peut pas converger presque sûrement vers 0.

Exercice 2

Dans $(\Omega, \mathcal{F}, \mathbf{P})$, soit $(U_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi à valeurs dans l'ensemble $E = \{-1, 0, 1\}$ telles que

$$P(U_n = 1) = p$$
, $P(U_n = -1) = q$, $P(U_n = 0) = r$,

où p,q,r sont des réels strictement positifs vérifiant p+q+r=1. Soit X_0 une variable aléatoire à valeurs dans E indépendantes des U_n .

Pour tout $n \geq 1$, on définit $X_n = X_0 \prod_{k=1}^n U_k$.

- 1) (a) Montrer que $\{X_n; n \in \mathbb{N}\}$ est une chaîne de Markov. Préciser sa loi initiale μ et sa matrice de transition Q.
 - (b) Exprimer la quantité $\mathbf{P}(X_0 = x_0, X_1 = x_1, \dots, X_n = x_n)$ en fonction de la loi initiale μ et de Q.
 - (c) Exprimer $\mathbf{P}(X_0 = x_0, X_n = y)$ puis $\mathbf{P}(X_n = y)$.
- 2) (a) La chaîne de Markov $\{X_n; n \in \mathbb{N}\}$ est-elle irréductible?

- (b) Déterminer les classes de récurrence de $\{X_n; n \in \mathbb{N}\}$. Existe-t-il des éléments transients?
- 3) Déterminer les mesures invariantes de la chaîne de Markov (on distinguera les cas r=0 et $r \neq 0$).
- 4) On se place dans le cas où $r \neq 0$ et on considère $T_0 = \inf\{n \geq 1 : X_n = 0\}$.
 - (a) Rappeler la définition de la chaîne canonique sur $(\mathbb{N}^*)^{\mathbb{N}}$. Quelle est sa filtration naturelle?
 - (b) Comment est définie \mathbf{P}_x pour $x \in E$? Que désigne la notation \mathbf{P}_{μ} , pour une mesure de probabilité μ sur E?
 - (c) Montrer que pour $x = \pm 1$, on a $\mathbf{P}_x(T_0 \le n) = 1 (1 r)^n$.
 - (d) En déduire la limite $\lim_{n\to\infty}Q^n(x,y)$ pour tous $x,y\in E$. On note Π la matrice limite de Q^n .
 - (e) Quelle est la loi limite de X_n si la loi de X_0 est la mesure de probabilité définie par $\mu = (\alpha, \beta, \gamma)$, i.e. $\mu(\{-1\}) = \alpha, \mu(\{0\}) = \beta, \mu(\{1\}) = \gamma$?
- 5) On se place dans le cas où r = 0.
 - (a) Etudier la chaîne de Markov restreinte à l'ensemble $F = \{-1, +1\}$. Est-elle irréductible? Quels sont ses états récurrents?
 - (b) Montrer qu'elle admet une unique mesure de probabilité invariante ν qu'on déterminera.
 - (c) On admet que pour tous $x, y \in F$, $\lim_{n\to\infty} \mathbf{P}_x(X_n = y) = \nu(\{y\})$. Déterminer $\lim_{n\to\infty} Q^n(x,y)$ pour $x,y\in F$, puis pour $x,y\in E$. En supposant que la loi de X_0 est la mesure de probabilité définie par $\mu=(\alpha,\beta,\gamma)$, retrouver le résultat de la question 3).

Correction

1) (a) En utilisant l'indépendance des variables $(U_n)_n$ et X_0 , on obtient pour tout $n \in \mathbb{N}$

$$\mathbf{P}(X_{n+1} = j \mid X_0 = x_0, \dots, X_n = i) = \mathbf{P}(X_{n+1} = j \mid X_n = i) = \mathbf{P}(i \cdot U_{n+1} = j).$$

Ainsi, $(X_n)_{n\in\mathbb{N}}$ est bien une chaîne de Markov de loi initiale P_{X_0} et de matrice de transition

$$Q = \begin{pmatrix} p & r & q \\ 0 & 1 & 0 \\ q & r & p \end{pmatrix}.$$

- (b) Question de cours.
- (c) Idem.
- 2) (a) Non, d'après la forme de la matrice de transition, l'état {0} ne communique pas avec les autres états.
 - (b) La chaîne $(X_n)_{n\in\mathbb{N}}$ possède deux classes $\{0\}$ et $\{-1,1\}$. De manière évidente, l'état 0 est récurrent $(P_0(X_n=0)=1$ pour tout $n\in\mathbb{N})$. De plus, la classe $\{-1,1\}$ est close si et seulement si r=0. Donc d'après le cours, les états -1 et 1 sont récurrents si et seulement si r=0; Dans le cas contraire, ils sont transients.

- 3) On résout l'équation $\mu = \mu Q$. Dans le cas $r \neq 0$, on trouve que toutes les mesures de la forme $\mu = (0, \mu_0, 0)$ conviennent. Dans le cas r = 0, les solutions sont de la forme $\mu = (\mu_1, \mu_0, \mu_1)$.
- 4) (a) Question de cours.
 - (b) Idem.
 - (c) Pour tour $n \ge 1$, on a

$$\mathbf{P}_x(T_0 \le n) = \mathbf{P}_x\left(\bigcup_{k=1}^n \{U_k = 0\}\right) = 1 - \mathbf{P}_x\left(\bigcap_{k=1}^n \{U_k \ne 0\}\right) = 1 - (1 - r)^n,$$

en utilisant l'indépendance des variables $(U_k)_{k\in\mathbb{N}}$.

(d) Étant donné que $Q^n(x,y) = \mathbf{P}_x(X_n = y)$, si x = 0 on a alors $Q^n(0,0) = 1$ et $Q^n(0,\pm 1) = 0$. De plus, si $x = \pm 1$, $\mathbf{P}_x(X_n = 0) = \mathbf{P}_x(T_0 \le n) \to_n 1$. Donc la matrice limite de Q^n est de la forme

$$\Pi = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (e) La loi limite de X_n est donnée par $\mu\Pi$, soit (0,1,0).
- 5) (a) La chaîne de Markov restreinte à $\{-1,1\}$ a pour matrice de transition

$$\widetilde{Q} = \begin{pmatrix} p & q \\ q & p \end{pmatrix}.$$

Elle est donc irréductible et récurrente (p, q > 0).

- (b) On vérifie facilement que l'unique mesure de probabilité vérifiant $\nu=\nu Q$ est $\nu=(\frac{1}{2},\frac{1}{2}).$
- (c) De manière similaire à la question 3)d), on trouve que $\lim_{n\to\infty} Q^n(x,y) = \frac{1}{2}$ pour $x,y\in F$. De plus, étant donné que $Q^n(0,x) = Q^n(x,0) = 0$, on en déduit que la limite de Q^n est de la forme

$$\Pi = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}.$$

Ainsi, la loi limite de X_n correspond à $\mu\Pi$, soit $(\frac{1}{2}(1-\beta), \beta, \frac{1}{2}(1-\beta))$.

Exercice 3

Soit $(U_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans \mathbb{N} , indépendantes et de même loi μ . On note alors $\mu(x) = \mathbf{P}(U_1 = x)$ pour tout $x \in \mathbb{N}$.

Soit ν une loi quelconque sur \mathbb{N} .

On définit une suite de variables aléatoires $\{X_n; n \in \mathbb{N}\}$ par :

- X_0 suit la loi ν et est indépendante des variables $(U_n)_{n\geq 1}$;
- Pour tout $n \geq 0$,

$$X_{n+1} = \begin{cases} U_{n+1} & \text{si } X_n = 0 \\ X_n - 1 & \text{sinon.} \end{cases}$$

Pour tout $k \in \mathbb{N}$, on pose $H_k = \inf\{n \ge 1 : X_n = k\}$.

- 1) (a) Montrer que $\{X_n; n \in \mathbb{N}\}$ est une chaîne de Markov homogène, dont la matrice de transition Q est donnée par Q(x+1,x)=1 et $Q(0,x)=\mu(x)$ pour tout $x \in \mathbb{N}$.
 - (b) La chaîne de Markov $\{X_n; n \in \mathbb{N}\}$ est-elle irréductible? Est-elle apériodique?

Dans la suite de l'exercice, on supposera qu'on se place dans l'espace canonique et que $\{X_n; n \in \mathbb{N}\}$ est la chaîne de Markov canonique.

- 2) La chaîne de Markov $\{X_n; n \in \mathbb{N}\}$ est-elle transiente? Est-elle récurrente?
- 3) Montrer que

$$\forall k \in \mathbb{N}, \quad \mathbf{P}_{\nu}(X_1 = k) = \nu(k+1) + \nu(0)\mu(k).$$

- 4) Montrer que si $\nu(0) = 0$, alors la chaîne de Markov $\{X_n; n \in \mathbb{N}\}$ n'est pas stationnaire.
- 5) Montrer que sous P_0 , H_0 et $1 + X_1$ ont la même loi.
- 6) En utilisant les questions précédentes, montrer que si la chaîne de Markov $\{X_n; n \in \mathbb{N}\}$ admet une mesure invariante, alors μ admet un moment d'ordre 1 et on a la relation $\nu(0) = \frac{1}{1 + \mathbf{E}[X_1]}.$
- 7) Réciproquement, montrer que si μ admet un moment d'ordre 1, alors la chaîne de Markov $\{X_n; n \in \mathbb{N}\}$ admet une mesure invariante.

(Indication : On pourra considérer la mesure ν définie par $\nu(k) = \frac{\mathbf{P}(X_1 \ge k)}{1 + \mathbf{E}[X_1]}$ pour tout $k \in \mathbb{N}$.)

Correction

- 1) (a)
 - (b)
- 2)
- 3)
- 4)
- 5)
- 6)
- 7)

Exercice 4

Soit $B = \{B_t; t \in \mathbb{R}_+\}$ un mouvement brownien et U une variable aléatoire de loi normale $\mathcal{N}(0,1)$ indépendante de B.

Pour tout $t \in \mathbb{R}_+$, on pose $X_t = B_t + t^2 \mathbb{1}_{\{U=t\}}$.

- 1) (a) Donner une définition du mouvement brownien.
 - (b) Montrer que le processus $\{B_n; n \in \mathbb{N}\}$ est une martingale.
 - (c) On pose $T = \inf\{n \in \mathbb{N} : B_n \geq 1\}$. Montrer que T définit un temps d'arrêt non borné. (Indication : on pourra étudier $\mathbf{E}[B_T]$.)
 - (d) Déterminer la loi du processus $\{X_t; t \in \mathbb{R}_+\}$?
 - (e) Que peut-on dire de la continuité de X?
- 2) En notant W le bruit blanc de \mathbb{R} , on définit $X_0 = 0$ et pour tout t > 0,

$$X_t = \int_{\mathbb{R}} e^{-t|\xi|}. \mathbb{W}(d\xi).$$

- (a) Justifier la définition de X_t et déterminer la loi du processus $\{X_t; t \in \mathbb{R}_+\}$.
- (b) Montrer que $\{X_t; t \in \mathbb{R}_+\}$ est auto-similaire, c'est-à-dire que qu'il existe un réel α tel que les processus $\{X_{at}; t \in \mathbb{R}_+\}$ et $\{a^{\alpha}X_t; t \in \mathbb{R}_+\}$ ont la même loi, quel que soit le réel a > 0.
- (c) Le processus $\{X_t; t \in \mathbb{R}_+\}$ est-il à accroissements stationnaires?

Correction

- 1) (a) Question de cours.
 - (b)
 - (c) On remarque que pour tout $t \in \mathbb{R}_+$, $X_t = B_t$ p.s. Ainsi, $(X_t)_{t \in \mathbb{R}_+}$ est une modification de $(B_t)_{t \in \mathbb{R}_+}$ et a même loi : c'est donc également un mouvement brownien.
 - (d) Si X est un mouvement brownien, il est par contre presque sûrement non-continu. En effet, pour tout $\omega \in \Omega$, on sait que la trajectoire $t \mapsto B_t(\omega)$ est continue. Ainsi, la fonction $t \mapsto X_t(\omega)$ est forcément discontinue en $U(\omega)$, étant donné que pour tout $t \neq U(\omega)$, $X_t(\omega) = B_t(\omega)$ et pour $t = U(\omega)$, on a $X_t(\omega) = B_t(\omega) + 1$.
 - (e) $\{Y_t; t \in \mathbb{R}_+\}$ est un processus gaussien. Sa loi est donc déterminée par sa fonction moyenne et sa fonction de covariances.

Par application du théorème de Fubini, on a

$$\forall t \in \mathbb{R}_+, \quad \mathbf{E}[Y_t] = \int_{[0,t]} \mathbf{E}[B_u] \ \lambda(du) = 0$$

et

$$\forall s, t \in \mathbb{R}_+, \quad \operatorname{Cov}(Y_s, Y_t) = \mathbf{E}[Y_s Y_t] = \mathbf{E}\left[\left(\int_{[0, s] \times [0, t]} B_u \ B_v \ \lambda(du)\lambda(dv)\right)\right]$$
$$= \int_{[0, s] \times [0, t]} (u \wedge v) \ \lambda(du)\lambda(dv).$$

2) (a) Pour tout $t \in \mathbb{R}_+^*$, on a $e^{-t|\cdot|} \in L^2(\mathbb{R})$. Ainsi, le processus $(X_t)_{t \in \mathbb{R}_+^*}$ est bien défini. C'est de plus un processus gaussien centré de covariance

$$\mathbf{E}[X_s X_t] = \int_{\mathbb{R}} e^{-|\xi|(s+t)} d\xi = \frac{2}{s+t}.$$

(b) Pour tout $a>0, (X_{at})_{t\in\mathbb{R}_+^*}$ est un processus gaussien centré de covariance

$$\mathbf{E}[X_{as}X_{at}] = \frac{2}{a(s+t)} = a^{-1}\mathbf{E}[X_sX_t] = \mathbf{E}[a^{-1/2}X_sa^{-1/2}X_t].$$

Ainsi, $(X_t)_{t \in \mathbb{R}_+^*}$ est auto-similaire de coefficient $\alpha = -\frac{1}{2}$.

(c) Calculons la variance d'un incrément $X_t - X_s$.

$$\mathbf{E}[(X_t - X_s)^2] = \int_{\mathbb{R}} \left(e^{-t|\xi|} - e^{-s|\xi|} \right)^2 d\xi$$
$$= \int_{\mathbb{R}} \left(e^{-2t|\xi|} + e^{-2s|\xi|} - 2e^{-(s+t)|\xi|} \right) d\xi$$
$$= \frac{1}{t} + \frac{1}{s} - \frac{4}{s+t}.$$

On vérifie facilement qu'il existe des couples (s,t) et (s',t') vérifiant t-s=t'-s' et tels que les variances des incréments respectifs X_t-X_s et $X_{t'}-X_{s'}$ sont différentes, montrant ainsi que le processus $(X_t)_{t\in\mathbb{R}_+^*}$ n'est pas à accroissements stationnaires.