Laboratório 6.7.2: Examinando Pacotes ICMP

Diagrama de Topologia

Tabela de Endereçamento

Dispositivo	Interface	Endereço IP Máscara de Sub-Rede		Gateway Padrão
R1-ISP	S0/0/0	10.10.10.6	255.255.255.252	N/A
K 1-13F	Fa0/0	192.168.254.253	255.255.255.0	N/A
R2-Central	S0/0/0	10.10.10.5	255.255.255.252	N/A
RZ-Celitiai	Fa0/0	172.16.255.254	255.255.0.0	N/A
Eagle Server	N/A	192.168.254.254	255.255.255.0	192.168.254.253
Lagie Server	N/A	172.31.24.254	255.255.255.0	N/A
hostPod#A	N/A	172.16. <i>Pod#.</i> 1	255.255.0.0	172.16.255.254
hostPod#B	N/A	172.16.Pod#.2	255.255.0.0	172.16.255.254
S1-Central	N/A	172.16.254.1	255.255.0.0	172.16.255.254

Objetivos

Com a conclusão deste laboratório, você será capaz de:

- Entender o formato de pacotes ICMP.
- Usar o Wireshark para capturar e examinar mensagens ICMP.

Contexto

O Internet Control Message Protocol (ICMP) foi primeiramente definido no RFC 792, setembro de 1981. Os tipos de mensagem ICMP foram posteriormente expandidos no RFC 1700. O ICMP opera na camada de Rede TCP/IP e é usado para trocar informações entre dispositivos.

Os pacotes ICMP têm muitas utilizações nas redes de computador atuais. Quando um roteador não consegue entregar um pacote a uma rede ou a um host de destino, uma mensagem informacional é devolvida à origem. Além disso, os comandos ping e tracert enviam mensagens ICMP aos destinos e os destinos respondem com mensagens ICMP.

Cenário

Usando o Laboratório Eagle 1, serão feitas capturas Wireshark de pacotes ICMP entre dispositivos de rede.

Tarefa 1: Entendendo o Formato de Pacotes ICMP

Pacote ICMP - Informação de Cabeçalho de Mensagem Comum

0 7	8 1	6	24	31
Tipo	Código		Checksum	

Figura 1. Cabeçalho de Mensagem ICMP

Consulte a Figura 1, os campos de cabeçalho ICMP comuns a todos os tipos de mensagem ICMP. Cada mensagem ICMP inicia com um campo de Tipo de 8-bits, um campo de Código de 8-bits e um Checksum de 16-bits. O tipo de mensagem ICMP descreve os campos ICMP restantes. A tabela na Figura 2 mostra tipos de mensagem ICMP do RFC 792:

Valor	Significado				
0	Resposta de Echo				
3	Destino Inalcançável				
4	Source Quench				
5	Redirect				
8	Echo				
11	Tempo Excedido				
12	Problema de Parâmetro				
13	Timestamp				
14 Resposta Timestamp					
15 Solicitação de Informação					
16	Resposta de Informação				

Figura 2. Tipos de Mensagem ICMP

Os códigos fornecem informações adicionais ao campo Tipo. Por exemplo, se o campo Tipo é 3, destino inalcançável, informações adicionais sobre o problema são devolvidas no campo Código. A Tabela na

Figura 3 mostra códigos de mensagem para uma mensagem ICMP de Tipo 3, destino inalcançável, do RFC 1700:

Código Valor	Significado			
0	Rede Inalcançável			
1	Host Inalcançável			
2	Protocolo Inalcançável			
3	Porta Inalcançável			
4	Fragmentação Necessária e Não Fragmentar configurados			
5	Falha da Rota de Origem			
6	Rede de Destino Desconhecida			
7	Host de Destino Desconhecido			
8	Host de Origem Isolado			
9	Comunicação com Rede de Destino Administrativamente Proibida			
10	Comunicação com o Host de Destino é			
	Proibida Administrativamente			
11	Rede de Destino Inalcançável para Tipo de Serviço			
12	Host de Destino Inalcançável para Tipo de Serviço			

Figura 3. Códigos de Mensagem ICMP Tipo 3

Usando a captura de mensagem ICMP a na Figura 4, preencha os campos para a solicitação echo de pacote ICMP. Valores iniciados com 0x são número hexadecimais:

Figura 4. Solicitação Echo de Pacote ICMP

Pacote ICMP - echo						
0	7 8	16	24	31		
DADOS						

Usando a captura de mensagem ICMP a na Figura 5, preencha os campos para a resposta de echo de pacote ICMP:

Internet Control Message Protocol
Type: 0 (Echo (ping) reply)
Code: 0
Checksum: 0x3e5c [correct]
Identifier: 0x0200
Sequence number: 0x1500
Data (32 bytes)

Figura 5. Resposta de Echo de Pacote ICMP

Na camada de Rede TCP/IP, a comunicação entre dispositivos não é garantida. No entanto, o ICMP não fornece verificações mínimas para que uma resposta se equipare à solicitação. A partir das informações fornecidas nas mensagens ICMP acima, como o remetente sabe que a resposta é para um echo específico?

Tarefa 2: Usando o Wireshark para Capturar e Examinar Mensagens ICMP

Figura 6. Site de Download do Wireshark

Se o Wireshark não estiver instalado no computador, você pode fazer o download do Eagle Server.

- 1. Abra um navegador, URL ftp://eagle-server.example.com/pub/eagle_labs/eagle1/chapter6, como mostra a Figura 6.
- Clique com o botão direito do mouse no nome de arquivo Wireshark, clique em Salvar Link Como e salve o arquivo no computador.
- 3. Quando o download do arquivo estiver concluído, abra e instale o Wireshark.

Passo 1: Capturar e avaliar mensagens de echo ICMP ao Eagle Server

Neste passo, o Wireshark será usado para examinar mensagens de echo ICMP.

- 1. Abra um terminal Windows no computador.
- 2. Quando estiver pronto, inicie a captura Wireshark.

```
C:\> ping eagle-server.example.com
Pinging eagle-server.example.com [192.168.254.254] with 32 bytes of
data:
Reply from 192.168.254.254: bytes=32 tempo<1ms TTL=63
Ping statistics for 192.168.254.254:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\ >
```

Figura 7. Respostas de ping com Sucesso do Eagle Server

- 3. Do terminal Windows, faça ping no Eagle Server. Quatro respostas com sucesso devem ser recebidas do Eagle Server, como mostra a Figura 7.
- 4. Pare a captura Wireshark. Deve haver um total de quatro solicitações de echo ICMP e respostas de echo combinadas, similares as da Figura 8.

Figura 8. Captura Wireshark de Solicitações e Respostas ping

Qual dispositivo de rede responde à solicitação de echo ICMP?

- 5. Expanda a janela do meio no Wireshark e expanda o registro do Internet Control Message Protocol até que todos os campos estejam visíveis. A janela inferior também será necessária para examinar o campo de Dados.
- 6. Registre as informações do primeiro pacote de solicitação de echo ao Eagle Server:

Campo	Valor

Tipo	
Código	
Checksum	
Identificador	
Número de	
seqüência	
Dados	

Existem 32 bytes de dados? ____

7. Registre informações do *primeiro* pacote de resposta de echo do Eagle Server:

Campo	Valor
Tipo	
Código	
Checksum	
Identificador	
Número de	
seqüência	
Dados	

Quais	campos.	se houve.	mudaram o	da s	solicitação de echo?	

Pacote	Checksum	Identificador	Número de següência
Solicitação #			Sequencia
2			
Resposta # 2			
Solicitação #			
3			
Resposta # 3			
Solicitação #			
4			
Resposta # 4			

Por que os valores de Checksum mudaram com cada nova solicitação?

Passo 2: Capturar e avaliar mensagens de echo ICMP para 192.168.253.1

Neste passo, os pings serão enviados a uma rede e um host fictícios. Os resultados da captura Wireshark serão avaliados—e poderão ser surpreendentes.

Tente efetuar ping no endereço IP 192.168.253.1.

C:\> ping 192.168.253.1

```
C:\> ping 192.168.253.1
Pinging 192.168.253.1 com 32 bytes de dados:
Resposta de 172.16.255.254: Host de destino não alcançável.
Estatísticas de ping para 192.168.253.1:
    Pacotes: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\ >
```

Figura 9. Resultados do Ping de um Destino Fictício

Veja a Figura 9. Ao invés do tempo limite de uma solicitação, há uma resposta de echo.

Qual dispositivo de rede responde a pings para um destino fictício?

No	Time	Source	Destination	Protocol	Info
1	0.000000	172.16.1.2	192.168.253.1	ICMP	Echo (ping) request
2	0.000816	172.16.255.254	172.16.1.2	ICMP	Destination unreachable (Host unreachable)
3	1.000854	172.16.1.2	192.168.253.1	ICMP	Echo (ping) request
4	1.001686	172.16.255.254	172.16.1.2	ICMP	Destination unreachable (Host unreachable)
5	2.001815	172.16.1.2	192.168.253.1	ICMP	Echo (ping) request
6	2.002547	172.16.255.254	172.16.1.2	ICMP	Destination unreachable (Host unreachable)
7	3.002815	172.16.1.2	192.168.253.1	ICMP	Echo (ping) request
8	3.003588	172.16.255.254	172.16.1.2	ICMP	Destination unreachable (Host unreachable)

Figura 10. Captura Wireshark de um Destino Fictício

Capturas Wireshark a um destino fictício são as na Figura 10. Expanda a janela do Wireshark do meio e o registro do Internet Control Message Protocol record.

Qual tipo de mensagem ICMP é usado para devolver informações ao remetente?

Qual é o código associado ao tipo de mensagem?

Passo 3: Capturar e avaliar mensagens de echo ICMP que excedem o valor TTL

Neste passo, os pings serão enviados com um baixo valor TTL, simulando um destino inalcançável. Faça o ping no Eagle Server e configure o valor TTL para 1:

```
C:\> ping -i 1 192.168.254.254
```

```
C:\> ping -i 1 192.168.254.254
Pinging 192.168.254.254 com 32 bytes de dados:
Resposta de 172.16.255.254: TTL expirou em trânsito.
Ping statistics for 192.168.254.254:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\ >
```

Figura 11. Resultados do Ping para um TTL Excedido

Veja a Figura 11, que mostra respostas ping quando o valor TTL foi excedido.

Qual dispositivo de rede responde a pings que excederam o valor TTL?

No	Time	Source	Destination	Protocol	Info
1	0.000000	172.16.1.2	192.168.254.254	ICMP	Echo (ping) request
2	0.000701	172.16.255.254	172.16.1.2	ICMP	Time-to-live exceeded (Time to live exceeded in transit)
3	1.000003	172.16.1.2	192.168.254.254	ICMP	Echo (ping) request
4	1.000687	172.16.255.254	172.16.1.2	ICMP	Time-to-live exceeded (Time to live exceeded in transit)
5	1.999996	172.16.1.2	192.168.254.254	ICMP	Echo (ping) request
6	2.000761	172.16.255.254	172.16.1.2	ICMP	Time-to-live exceeded (Time to live exceeded in transit)
7	3.000970	172.16.1.2	192.168.254.254	ICMP	Echo (ping) request
8	3.001723	172.16.255.254	172.16.1.2	ICMP	Time-to-live exceeded (Time to live exceeded in transit)

Figura 12. Captura Wireshark de Valor TTL Excedido

Capturas Wireshark a um destino fictício são as na Figura 12. Expanda a janela do Wireshark do meio e o registro do Internet Control Message Protocol record.

Qual tipo de mensagem ICMP é usado para devolver informações ao remetente?

Qual é o código associado ao tipo de mensagem?

Qual dispositivo de rede é responsável por reduzir o valor TTL?

Tarefa 3: Desafio

Use o Wireshark para capturar um sessão tracert ao Eagle Server e então ao 192.168.254.251. Examine a mensagem de TTL excedido ICMP. Isso demonstrará como o comando tracert rastreia o caminho de rede ao destino.

Tarefa 4: Reflexão

O protocolo ICMP é bastante útil para se corrigir problemas de conectividade de rede. Sem as mensagens ICMP, um remetente não tem como dizer por que uma conexão de destino falhou. Usando o comando ping, diferentes valores de tipo de mensagem ICMP foram capturados e avaliados.

Tarefa 5: Limpeza

O Wireshark pode ter sido instalado no computador. Se o programa deve ser removido, clique em **Iniciar** > **Painel de Controle** > **Adicionar ou Remover Programas** e selecione o Wireshark. Clique no nome do arquivo, clique em **Remover** e siga as instruções de desinstalação.

Remova quaisquer arquivos pcap Wireshark que foram criados no computador.

A menos que não solicitado pelo instrutor, desligue os computadores. Remova qualquer coisa que tenha sido trazida ao laboratório e deixe a sala pronta para a próxima aula.