Dr. Andrey Soldatenkov

Übungen zur Einführung in die komplexe Analysis – Blatt 10

Aufgabe 60. (Automorphismen der Einheitskreisscheibe, 3 Punkte) Sei $\mathbb{D} := D_1(0)$. Man zeige, dass für alle $w \in \mathbb{D}$

$$g_w \colon \mathbb{D} \to \mathbb{D}, \ z \mapsto \frac{z - w}{\bar{w}z - 1}$$

eine involutive (also $g_w^2=\mathrm{id}$) und biholomorphe Abbildung $\mathbb{D}\stackrel{\sim}{\to}\mathbb{D}$ definiert. Man vergleiche dazu auch Aufgabe 54.

Aufgabe 61. (Riemannscher Abbildungssatz via Möbiustransformationen, 2+2+2+2+2 Punk-

Man explizit finde biholomorphe Abbildungen $U \stackrel{\sim}{\to} \mathbb{D}$ für folgende offenen Mengen:

(i)
$$U = \{z \in \mathbb{H} \mid \operatorname{Re}(z) > 0\}$$
; (ii) $U = \mathbb{D} \cap \mathbb{H}$; (iii) $U = \mathbb{D} \setminus \mathbb{R}_{\geq 0}$;

(iv)
$$U_{\theta} = \{z \in \mathbb{D} \mid -\theta < \arg(z) < \theta\}$$
, wobei $\theta \in (0, \pi)$; (v) $D_1(e^{\pi i/6}) \cap D_1(e^{-\pi i/6})$.

Aufgabe 62. (Zeta Funktion, 2+2 Punkte)

Man beweise für $s \in \mathbb{C}$, Re(s) > 1, die folgenden Formeln:

$$\prod_{p \text{ PZ}} \left(\frac{1}{1+p^{-s}} \right) = \frac{\zeta(2s)}{\zeta(s)} \text{ und } \prod_{p \text{ PZ}} \left(\frac{p^s+1}{p^s-1} \right) = \frac{\zeta(s)^2}{\zeta(2s)}.$$

Aufgabe 63. (Partitionen, 3 Punkte + 3 Extra Punkte) Man beweise, dass $\prod_{n=1}^{\infty} (1-z^n)^{-1}$ für |z| < 1 lokal gleichmäßig konvergiert. Das unendliche Produkt kann auch als Reihe $\sum_{n=0}^{\infty} p(n)z^n$ (formal) umgeschrieben werden. Hierbei stellen sich der Koeffizient p(n) als Anzahl der Partitionen von n heraus, was kombinatorisch etwas aufwendig zu beweisen ist. Also

$$\prod_{n=1}^{\infty} (1 - z^n)^{-1} = \sum_{n=0}^{\infty} p(n)z^n.$$

Aufgabe 64. (Transitivität der Automorphismengruppe, 2 Punkte)

Sei $U \subset \mathbb{C}$ eine einfach zusammenhängende offene Menge und $z_1, z_2 \in U$. Man zeige, dass dann eine biholomorphe Abbildung $f: U \xrightarrow{\sim} U$ mit $f(z_1) = z_2$ existiert.

Aufgabe 65. (Ableitungen von Automorphismen, 3 Punkte)

Sei $U \subset \mathbb{C}$ ein einfach-zusammenhängendes Gebiet, $U \neq \mathbb{C}$ und $z_0 \in U$. Man beweise, dass die Abbildung

$$\operatorname{Aut}_{z_0}(U) := \{ f \colon U \xrightarrow{\sim} U \text{ biholomorph, } f(z_0) = z_0 \} \to \mathbb{C}, \ f \mapsto f'(z_0) \}$$

einen Isomorphismus von Gruppen $\operatorname{Aut}_{z_0}(U) \stackrel{\sim}{\to} S^1$ definiert. *Hinweis:* Siehe Aufgabe 30.

Abgabe: Freitag 29.6. vor(!) der Vorlesung.