LECTURER: TAI LE QUY

INTRODUCTION TO DATA SCIENCE

Introduction to Data Science	1
Data	2
Data Science in Business	3
Statistics	4
Machine Learning	5

UNITS 1-5

REVIEW OF UNITS 1-5

STUDY GOALS

- What is meant by data science?
- Why we need data science?
- Understand the main terms and definitions relating to data science.
- Learn about the 5 Vs of big data.
- Understand the issues concerning data quality.
- Understand what a data science use case is.
- Learn about the machine learning canvas.
- Identify the importance of statistics in data science.
- Know about probability and its relation to the prediction model's outputs.
- Understand the concept of machine learning and how it can be applied.

- How is the term "data science" defined?
- How is the term "data" defined?
- What is a Machine Learning Canvas?
- What is the importance of statistical parameters?
- What is machine learning?
- What are the most useful applications of machine learning?

UNIT 1: INTRODUCTION TO DATA SCIENCE

DATA SCIENCE'S RELATED FIELDS

DATA SCIENCE

Extracts meaningful **insights** from **raw** data.

Unlocking the **real values** and **insights** of the data

Focused on the **ways** that people can **understand** and **use** data.

Enable companies to make **smarter business decisions.**

UNIT 1: INTRODUCTION TO DATA SCIENCE BUSINESS INTELLIGENCE

Business Performance Management

Data Integration **Data Governance**

Data
Warehousing
& Laking

Business Intelligence Program

Data Architecture

UNIT 1: INTRODUCTION TO DATA SCIENCE DATA SCIENCE TERMS

Data Handling

Training Set

The dataset used to learn the desired task.

Testing Set

 Assesses the performance of machine learning model.

Outlier

A data record

Data Cleansing

 The **process** of removing redundant data, etc.

Data Features

Feature

 Measure of the data; height, etc.

Dimensionality Reduction The process of reducing the dataset.

Feature Selection The process of selecting relevant features.

UNIT 1: INTRODUCTION TO DATA SCIENCE DATA SCIENCE TERMS

Model Development

Decision Model

 Assesses the data to recommend a decision.

Regression

 Estimates the dependence between variables.

Cluster Analysis

 A set of data records into clusters.

Classification

Categorizes entities into predefined classes.

Model Performance

Probability

 How likely it is that a certain event occurs.

Standard Deviation

How spread out the data values are.

Type I Error

False positive output.

Type II Error

False **negative** output.

UNIT 1: INTRODUCTION TO DATA SCIENCE DATA SCIENCE ACTIVITIES

Understand the problem Collect enough data Process the raw data Explore the data Analyze the data Communicate the results

DATA

Facts, observations, assumptions, or incidences

Data describe quantity, quality, statistics, symbols, or other units of meaning

Data are processed to return information

Qualitative Data

Describe qualities or characteristics

Cannot be counted

Words, objects, pictures, observations, and symbols

Answer to questions: What characteristics? What property?

Identify conceptual framework in an area of study

Quantitative Data

Can be quantified or expressed as a number

Can be counted

Numbers and statistics

Answer to questions: How much? How often?

Test hypotheses, analyses the connection between cause and effect.

UNIT 2: DATA SHAPES OF DATA

	Structured Data	Unstructured Data	Streaming Data
Characteristics	predefined data modelsusually, text or numericaleasy to search	 no predefined data models can be text, images, audio, or other formats difficult to search 	continuously generatedby sensorslarge amountprocessed incrementally
Applications	inventory controlairline reservation systems	word processingtools for editing media	state monitoringprocess control
Examples	phone numberscustomer namestransaction information	reportsimageryemail/messages	real-time sensor valuesstock updates

UNIT 2: DATA SOURCES OF DATA

UNIT 2: DATA THE 5VS OF BIG DATA

Volume: amount, scale **Variety**: structured/unstructured 2 3 **Velocity**: frequency **Veracity**: quality 4 5 **Validity**: suitability

UNIT 2: DATA DATA ENGINEERING

Data Transformation Methods

Variable scaling

- Scaled values: {0,1} or {-1,1}
- To ensure equal weighting

Variable decomposition

- One variable → multiple variables
- To improve data representation

Variable aggregation

- Some variables → one variable
- To reduce data volume

UNIT 3: DATA SCIENCE IN BUSINESS

IDENTIFICATION OF USE CASES

Important questions have to be answered to identify the suitable data science use cases (**DSUC**) for the business objectives:

What is the value of the **knowledge** gained by applying data science tools to this dataset? What will be **discovered** about the input dataset and its hypothesis? What **value** will be added to the organization through applying data science techniques? What will be the organization's **decision** based on the data science results?

DSUC Portfolio:

UNIT 3: DATA SCIENCE IN BUSINESS

DATA HANDLING AND ANALYSIS

DSUC

- Define important questions for the business objectives
- Identify the suitable DSUC

Dataset

- Collect data
- Generate data if neccessary
- Label data
- Add comments
- Observe anomalies

Pre-processing techniques

- Correct errors/noises
- Scan redundant or missing data
- Select relevant features

Machine learning methods

- Establish mathematical functions
- Create training & testing set
- Train & test the model

Model Implementation

- Predict unseen data
- Update the model

UNIT 3: DATA SCIENCE IN BUSINESS

MACHINE LEARNING CANVAS

5. Decision How are predictions used to make decisions that provide the proposed value to the end-user(s)?	2. ML Task Input, output to predict, type of problem	1. Value Propositions What are we trying to do for the end- user(s) of the predictive system? What objectives are we serving?	3. Data Sources Which raw data sources can we use (internal and external)?	4. Collecting Data How do we get new data to learn from (inputs and outputs)?
6. Making Prediction When do we make predictions on new inputs? How long do we have to featurize a new input and make a prediction?	9. Offline Evaluation Methods and metrics to evaluate the system before deployment		8. Features Input representations extracted from raw data sources	7. Building Models When do we create/update models with new training data? How long do we have to featurize training inputs and create a model?
	10. Live Evaluation and Monitoring Methods and metrics to evaluate the system after deployment and to quantify value creation			

Evaluation metrics for a classification model

- Potential outcomes of classification: True positive, true negative, false positive, and false negative.
- Evaluation metrics to measure the quality: Precision, accuracy, recall, and F-Score.

Con	Prediction Confusion		
matrix		Positive	Negative
Ground	Positive	True positive	False negative
truth	Negative	False positive	True negative

Evaluation metrics for a regression model

Absolute error	$\varepsilon = d - y $
Relative error	$\varepsilon^* = \left \frac{d - y}{d} \right \cdot 100\%$
Mean absolute percentage error	$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left \frac{d_i - y_i}{d_i} \right \cdot 100\%$
Square error	$\varepsilon^2 = (d - y)^2$
Mean square error	$MSE = \frac{1}{n} \sum_{i=1}^{n} (d_i - y_i)^2$
Mean absolute error	$MAE = \frac{1}{n} \sum_{i=1}^{n} d_i - y_i $
Root mean square error	$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - y_i)^2}$

UNIT 3: DATA SCIENCE IN BUSINESS COGNITIVE BIASES

There are several factors that impact judgments and decisions, and **biases** are an essential influence that might lead to inaccuracy.

The following table represents common cognitive biases and their proposed de-biasing techniques

Cognitive Bias	Description	De-Biasing Technique
Anchoring	Occurs when the estimation of a numerical value is based on an initial value (anchor), which is then insufficiently adjusted .	Remove anchors, have numerous and counter anchors, use various experts using specific anchors.
Confirmation	Occurs when there is a desire to confirm one's belief , leading to unconscious selectivity in the acquisition and use of evidence.	Use multiple experts for assumptions, counterfactual challenging probability assessments, use sample evidence for alternative assumptions.
Desirability	Favoring alternative options due to a bias that leads to underestimating or overestimating consequences.	Use multi-stakeholder studies of different perspectives, use multiple experts with different views, use appropriate transparency rates.
Insensitivity	Sample sizes are ignored , and extremes are considered equally in small and large samples.	Use statistics to determine the likelihood of extreme results in different samples, use the sample data to prove the logical reason behind extreme statistics.

Source of the text: Zöller, 2022.

Important statistical parameters

Maximum – Greatest value

Minimum - Smallest value

Mean - Arithmetic average of values

Median - Located in the middle

Standard deviation - Shows the distribution of values

UNIT 4: STATISTICS

PROBABILITY THEORY

- Probability The likelihood that an event will happen
 - 0 ≤ *P* ≤ *1*
 - P = 0: It is impossible for the event to occur.
 - P = 1: The event will definitely occur.

Probability theory – Core theory for many Data Science techniques

Source of the text: Zöller, 2020.

UNIT 4: STATISTICS

PROBABILITY THEORY

Mutually exclusive events:

events cannot occur at the same time

Multi independent events:

events can occur simultaneously without affecting each other

$$P(A \text{ and } B) = P(A \cap B) = P(A) \cdot P(B);$$

Event B

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Event A

Multi conditional probability:

events are correlated

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

PROBABILITY THEORY

Probability distribution:

- A random variable can take on a given set of values.
- The occurrence of each of these values has a certain probability.

Probability distribution function

maps outcomes with their respective probability

- X-axis: possible values of the variable
- Y-axis: probability of each value

PROBABILITY DISTRIBUTIONS

Normal distribution

- has a bell-shaped curve
- has a symmetrical distribution around the mean value
 - $1\sigma \sim 68\%$
 - $2\sigma \sim 95\%$
 - $1\sigma \sim 99,7\%$

Example: Performance assessment of an organization's employees

The Normal Distribution

Binomial distribution

The probability distribution of the **number of successes** in a sequence of independent trials that each can be described by a **binary random** variable.

Example: tossing a coin twice

Possible Outcomes of Tossing a Coin			
Outcome	1 st toss	2 nd toss	
1	Heads	Heads	
2	Heads	Tails	
3	Tails	Heads	
4	Tails	Tails	

Poisson distribution

The probability of a given number of independent events occurring in a fixed time interval

$$P(x) = \frac{e^{-\mu}\mu^x}{x!}$$

Where:

 μ – the mean number of occurrences

x – the required number of occurrences

Example: The probability that a call center will receive exactly *n* calls on a given day.

Bayerian statistics interprets probabilities **as expectation of belief.**

Conditional probability **equation**:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Where:

P(A|B) is the **posterior** belief of the event A after observing the **evidence** B.

Example: Drug test analysis

Machine learning concepts

- Traditional programming constructs an explicit processing of input variables into desired outputs via a set of code instructions.
- ML algorithms build models based on sample data, in order to make predictions or decisions without being explicitly programmed to do so.

Traditional programming

Machine learning

APPLICATIONS OF MACHINE LEARNING

Classification

- Objective: Develop a ML model to map the inputs to the outputs and predict the classes of new inputs.
- Accuracy can be presented in a confusion matrix.
- Evaluation metrics:

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$F_{Score} = \frac{2 \cdot (Precision \cdot Recall)}{Precision + Recall}$$

Dog and Cat classification

Confusion matrix

UNIT 5: MACHINE LEARNING APPLICATIONS OF MACHINE LEARNING

Regression

- **Objective**: Develop a ML model to **relate** the inputs x to the outputs y and **predict** the output **values** \hat{y} for new inputs
- Evaluation metrics:
 - Mean Square Error: $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Root Mean Square Error: $RMSE = \sqrt{MSE}$
 - Mean Absolute Error: $\mathbf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$

UNIT 5: MACHINE LEARNING MACHINE LEARNING PARADIGMS

Supervised Learning

- Dataset: a collection of labeled samples,
 containing both inputs (independent variables) and outputs (dependent variable)
- Objective: develop a ML model to relate the inputs to the outputs of in the training set and predict the outputs for new inputs

Unsupervised Learning

- Dataset: a collection of unlabeled samples, containing only inputs (independent variables) while outputs (dependent variable) are unknown.
- Objective: develop a ML model to discover the salient patterns and structures within the training set.

Semi-Supervised Learning

- Dataset: a collection of both labeled samples (a small portion of data), and unlabeled samples (lots of data)
- Objective: mix of supervised and unsupervised learning to combine the properties of both.

─ 2 steps:

- Supervised learning is performed on few labeled data
- Unsupervised learning is performed on large unlabeled data

Semi-Supervised Learning Structure

Reinforcement Learning

- Objective: To find an action policy that achieves a given goal by trial-and-error interactions with the environment.
- "Cause and effect" method: An action is performed to achieve a maximum reward.
- Reward function acts as feedback to the agent.

Reinforcement Learning Structure

EXAM: ORAL ASSIGMENT - ONLINE PRESENTATION

Choice: There are different topic options to choose from for the oral assignment. Please select **only one** to cover in your presentation.

Goal: to determine your ability to present a research topic in the field of Data Science in an understandable way.

Basis: Coursebook.

Further materials: Self-identified literature.

Note on copyright

IU Internationale Hochschule GmbH holds the **copyright** to the examination tasks.

IU expressly **objects** to the publication of tasks on **third-party** platforms.

In the event of a **violation**, IU Internationale Hochschule is entitled to **injunctive relief**.

EVALUATION OF THE ORAL ASSIGNMENT

The following criteria are included in the evaluation with the respective percentage indicated:

Criteria	Explanation	Percentage
Introductory remarks	Lead into the topic	5 %
Text	 Structural outline of the presentation logic of the outline appropriate emphasis timed sections 	20 %
Argument	Quality of reasoning and research	30 %
Conclusion	ConclusionSummaryconcise summary of the results	15 %
Rhetoric	 General quality of delivery performance Comprehensibility Intonation use of pause appropriate use of tone use of non-verbal effects 	15 %
Visual Layout	 General quality of slide presentation clarity and number of slides adequate font size use of graphic effects 	15 %

TUTORIAL SUPPORT

Several **options** are available for support with presentations. The **student** is **responsible** for making use of these resources.

Tutors are available for subject **consultation** on the **choice** of topic as well as for specific and **general questions** on academic work.

There is **no provision** for the tutor to confirm acceptable **outlines**, parts of the **content**, or presentation **drafts** since independent preparation is part of the examination.

Hints may be given to facilitate the creation of academic work.

STUDY GOALS

- What is meant by data science?
- Why we need data science?
- Understand the main terms and definitions relating to data science.
- Learn about the 5 Vs of big data.
- Understand the issues concerning data quality.
- Understand what a data science use case is.
- Learn about the machine learning canvas.
- Identify the importance of statistics in data science.
- Know about probability and its relation to the prediction model's outputs.
- Understand the concept of machine learning and how it can be applied.

SESSION 6

TRANSFER TASK

- **Task 1:** Choose **one** of the following topics to present: **CRISP-DM** or Microsoft **TDSP**.
- **Task 2:** Present the topic **of Machine Learning Canvas**.
- Task 3: Choose one of the following topics to present: Linear Regression, Decision Tree Learing, or K-Means Clustering.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

GUIDELINES

Task 1: Choose CRISP-DM or Microsoft TDSP to present

- 1. Argue if and why process models are useful in the context of data science activities.
- 2. **Introduce** and **describe** either one of the aforementioned process models. You are free to choose which model you want to **focus** on.
- **3. Summarize** how the model you selected for description in 2, addresses the **goals** and **benefits** of process models outlined in 1.

Recommended Literature:

Smart Vision Europe. (2022). What is the CRISP-DM methodology? https://www.sv-europe.com/crisp-dm-methodology/Microsoft. (2022). What is the Team Data Science Process? https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/

GUIDELINES

Task 2: Machine Learning Canvas

- 1. Give an exposition of the design **goals** underlying the creation of the ML Canvas.
- 2. Describe and explain the **structure** of the ML Canvas and its constituent **parts**.
- 3. Summarize the most salient **benefits** of the ML Canvas for setting up and documenting Data Science projects.

Recommended Literature:

Dorard, L. (2019). Machine learning canvas. https://www.machinelearningcanvas.com/

GUIDELINES

Task 3: Machine Learning

Choose Linear Regression, Decision Tree Learing, or K-Means Clustering to present

- 1. Briefly **introduce** the different machine learning **paradigms** (supervised, unsupervised, semi-supervised) and describe to **which** paradigm your chosen algorithm belongs and **why**.
- 2. Conceptually describe **how** your method of choice works.
- 3. Give an **example** of a real-world analytical problem that could be addressed by your chosen method.

Recommended Literature:

Shalev-Shwartz, S. (2014). *Understanding machine learning: From theory to algorithms*. Cambridge University Press. https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

LIST OF SOURCES

Text:

Dorard, L. (2017). The machine learning canvas. https://www.louisdorard.com/machine-learning-canvas

Fernandez, J. (2020). Introduction to regression analysis. https://towardsdatascience.com/introduction-to-regression-analysis-9151d8ac14b3

Jason, B. (2021). Regression metrics for machine learning. https://machinelearningmastery.com/regression-metrics-for-machine-learning/

Microsoft. (2022). What is the Team Data Science Process? https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/

Pollock, N. J., Healey, G. K., Jong, M., Valcour, J. E., & Mulay, S. (2018). Tracking progress in suicide prevention in Indigenous communities: A challenge for public health surveillance in Canada. *BMC Public Health*, 18(1320). Retrieved from https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-018-6224-9

Saleh, B., Abe, K., Arora, R. S., & Elgammal, A. (2014). Toward automated discovery of artistic influence. *Multimedia Tools and Applications*, 75, 3565—3591.

Shalev-Shwartz, S. (2014). *Understanding machine learning: From theory to algorithms*. Cambridge University Press. https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

Smart Vision Europe. (2022). What is the CRISP-DM methodology? https://www.sv-europe.com/crisp-dm-methodology/

Zöller, T. (2020). Course Book – Introduction to data science. IU International University of Applied Sciences.

<u>Images</u>

Amatulic. (2007). File:Normdist_regression.png. Wikimedia Commons. https://en.wikipedia.org/wiki/Regression_analysis

Sasaki, T. (n.d.). Dog and Cat Classification.png [Open source]. Kaggle. https://www.kaggle.com/code/sasakitetsuya/dog-and-cat-classification-by-mobilenet

