```
In [ ]:
        import sys
        !{sys.executable} -m pip install --user scikit-allel
In [1]:
        import numpy as np
        import scipy
        import pandas
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        sns.set_style('white')
        sns.set_style('ticks')
        sns.set_context('notebook')
        import h5py
        import allel; print('scikit-allel', allel.__version__)
```

scikit-allel 1.3.8

VCF to HDF5

In [3]: allel.vcf_to_hdf5('/users/mcevoysu/scratch/output/vcf_filtering/Pabies/ra

Get data

```
In [4]: callset_var_fn = '/users/mcevoysu/scratch/output/scikit-allel/Pabies/raw_callset_var = h5py.File(callset_var_fn, mode='r')
In [5]: calldata_var = callset_var['calldata']
list(calldata_var)
Out[5]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'SB']
In [6]: list(callset_var['variants'])
```

```
Out[6]:
         ['AC',
          'AF',
          'ALT',
          'AN',
          'BaseQRankSum',
          'CHROM',
          'DP',
          'END',
          'ExcessHet',
          'FILTER_LowQual',
          'FILTER_PASS',
          'FS',
          'ID',
          'InbreedingCoeff',
          'MLEAC',
          'MLEAF',
          'MQ',
           'MQRankSum',
          'POS',
          'QD',
           'QUAL',
          'RAW_MQandDP',
          'REF',
          'ReadPosRankSum',
          'SOR',
          'altlen',
          'is snp',
          'numalt'l
```

Make datasets

```
In [7]: variants = allel.VariantChunkedTable(callset_var['variants'])
    variants
```

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END	E
0	[2 -1 -1]	[0.002481 nan nan]	[b'C' b'' b'']	798	-1.068	b'MA_20601'	4893	-1	
1	[3 -1 -1]	[0.003722 nan nan]	[b'C' b'' b'']	798	-0.967	b'MA_20601'	4892	-1	
2	[2 -1 -1]	[0.003722 nan nan]	[b'G' b'' b'']	798	-0.621	b'MA_20601'	4895	-1	
•••									
477985	[45 -1 -1]	[0.057 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1743	-1	
477986	[16 -1 -1]	[0.02 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1705	-1	
477987	[20 -1 -1]	[0.025 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1704	-1	

```
In [8]: variants_np = variants[:]
    rawsnps = variants_np.query('(is_snp == True)')
    rawsnps
```

Out [8]: <VariantTable shape=(327389,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END	E
0	[2 -1 -1]	[0.002481 nan nan]	[b'C' b'' b'']	798	-1.068	b'MA_20601'	4893	-1	
1	[3 -1 -1]	[0.003722 nan nan]	[b'C' b'' b'']	798	-0.967	b'MA_20601'	4892	-1	
2	[2 -1 -1]	[0.003722 nan nan]	[b'G' b'' b'']	798	-0.621	b'MA_20601'	4895	-1	
•••									
327386	[45 -1 -1]	[0.057 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1743	-1	
327387	[16 -1 -1]	[0.02 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1705	-1	
327388	[20 -1 -1]	[0.025 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1704	-1	

In [9]: notsnp = variants_np.query('(is_snp != True)')
notsnp

Out [9]: <VariantTable shape=(150599,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END
0	[452 3 -1]	[0.566 0.003722 nan]	[b'A' b'*' b'']	798	0.043	b'MA_20601'	4583	-1
1	[443 3 9]	[0.555 0.003722 0.011]	[b'T' b'*' b'A']	798	0.224	b'MA_20601'	4565	-1
2	[2 -1 -1]	[0.002481 nan nan]	[b'*' b'' b'']	798	-0.921	b'MA_20601'	4196	-1
•••								
150596	[51 307 9]	[0.063 0.386 0.011]	[b'A' b'C' b'*']	798	0.0	b'MA_3821795'	23493	-1
150597	[2 96 36]	[0.003722 0.12 0.045]	[b'*' b'T' b'G']	798	0.0	b'MA_3821795'	10924	-1
150598	[762 2 -1]	[0.954 0.003722 nan]	[b'G' b'*' b'']	798	0.0	b'MA_3821795'	11088	-1

Plot function

```
In [10]:
         def plot_hist(f, dsubset='', bins=30, ):
             if dsubset == 'var':
                  x = variants[f][:]
                  l = 'Variant'
             elif dsubset == 'snp':
                  x = rawsnps[f][:]
                  l = 'Raw SNP'
             elif dsubset == 'notsnp':
                  x = notsnp[f][:]
                  l = 'Raw Not SNP'
             elif dsubset == 'biallelic':
                  x = biallelic np[f][:]
                  l = 'Biallelic SNP'
             elif dsubset == 'varsel':
                  x = var_selection[f][:]
                  l = 'Filtered Variants'
             elif dsubset == 'snpsel':
                  x = snp_selection[f][:]
                  l = 'Filtered SNP'
```

```
else:
    x = bi_selection[f][:]
    l = 'Biallelic SNP'
fig, ax = plt.subplots(figsize=(10, 5))
sns.despine(ax=ax, offset=10)
ax.hist(x, bins=bins)
ax.set_xlabel(f)
ax.set_ylabel('No. variants')
ax.set_title('%s %s distribution' % (l, f))
```

Find Biallelic SNPS

Out[14]: <VariantTable shape=(312376,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END	E
0	[2 -1 -1]	[0.002481 nan nan]	[b'C' b'' b'']	798	-1.068	b'MA_20601'	4893	-1	
1	[3 -1 -1]	[0.003722 nan nan]	[b'C' b'' b'']	798	-0.967	b'MA_20601'	4892	-1	
2	[2 -1 -1]	[0.003722 nan nan]	[b'G' b'' b'']	798	-0.621	b'MA_20601'	4895	-1	
•••									
312373	[45 -1 -1]	[0.057 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1743	-1	
312374	[16 -1 -1]	[0.02 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1705	-1	
312375	[20 -1 -1]	[0.025 nan nan]	[b'T' b'' b'']	798	0.0	b'MA_3821795'	1704	-1	

MQ - RMS mapping quality

In [15]: plot_hist('MQ','var') # RMS mapping quality


```
In [17]: filter_expression = '(MQ < 55)'
bi_selection = biallelic_np.query(filter_expression)[:]
#np.count_nonzero(var_selection)</pre>
```

In [18]: plot_hist('MQ')


```
In [19]: filter_expression = '(MQ < 40)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```


In [21]: plot_hist('MQ','notsnp')

QD - Variant Confidence/Quality by Depth

plot_hist('QD','biallelic') # Variant Confidence/Quality by Depth

In [26]: plot_hist('QD','notsnp') # Variant Confidence/Quality by Depth

SOR - Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

plot_hist('SOR','biallelic') # Symmetric Odds Ratio of 2x2 contingency ta

In [29]: filter_expression = '(SOR > 3)'
bi_selection = biallelic_np.query(filter_expression)[:]

In [30]: plot_hist('SOR') # Symmetric Odds Ratio of 2x2 contingency table to detec

In [31]: plot_hist('SOR','notsnp') # Symmetric Odds Ratio of 2x2 contingency table

MQRankSum - Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities

In [33]: plot_hist('MQRankSum','biallelic') # Z-score From Wilcoxon rank sum test

In [35]: plot_hist('MQRankSum') # Z-score From Wilcoxon rank sum test of Alt vs. R

In [36]: plot_hist('MQRankSum', 'notsnp') # Z-score From Wilcoxon rank sum test of

ReadPosRankSum - Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias

In [38]: plot_hist('ReadPosRankSum','biallelic') # Z-score from Wilcoxon rank sum

In [39]: plot_hist('ReadPosRankSum', 'notsnp') # Z-score from Wilcoxon rank sum tes

DP - Approximate read depth

In [40]: plot_hist('DP','var')


```
In [42]: filter_expression = '(DP > 20000) & (DP < 40000)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```

In [43]: plot_hist('DP')

AN - Total number of alleles in called genotypes

In [45]: plot_hist('AN','var') # Total number of alleles in called genotypes

In [46]: plot_hist('AN','biallelic') # Total number of alleles in called genotypes

In [47]: plot_hist('AN', 'notsnp') # Total number of alleles in called genotypes

Selected filter

```
In [48]: # QD: Variant Confidence/Quality by Depth
# AN: Total number of alleles in called genotypes
filter_expression = '(QD >= 2) & (MQ >= 40) & (MQRankSum >= -12.5) & (is_
variant_selection = variants_np.eval(filter_expression)[:]
np.count_nonzero(variant_selection)
```

Out[48]: 250162

Genotype

```
In [49]: calldata_var = callset_var['calldata']
list(calldata_var)

Out[49]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
B']

In [50]: genotypes_var = allel.GenotypeChunkedArray(calldata_var['GT'])
genotypes_var
```

Out [50]: <GenotypeChunkedArray shape=(477988, 399, 2) dtype=int8 chunks=(65536, 64, 2) nbytes=363.8M cbytes=15.0M cratio=24.3 compression=gzip compression_opts=1 values=h5py._hl.dataset.Dataset>

	0							395			
0	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
•••	0/0 0/0 0/0 0/0 0.0 0/0 0										
477985	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/1	0/0
477986	0/0	0/0	0/1	0/0	0/0		0/0	0/1	0/0	0/0	0/0
477985 477986 477987	0/0	0/0	0/1	0/0	0/0		0/0	0/1	0/0	0/0	0/0

```
In [51]: # using the selected filters set above
gt_filtered_snps = genotypes_var.subset(variant_selection)
gt_filtered_snps
```

Out[51]: <GenotypeChunkedArray shape=(250162, 399, 2) dtype=int8 chunks=(1955, 399, 2)
nbytes=190.4M cbytes=14.9M cratio=12.7 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0						394				
0 1 2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••											
250159	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
250160	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
250161	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0

```
In [52]: # grab the allele counts for the populations
ac = gt_filtered_snps.count_alleles()
ac
```

Out[52]: <AlleleCountsChunkedArray shape=(250162, 4) dtype=int32 chunks=(31271, 4)
 nbytes=3.8M cbytes=706.1K cratio=5.5 compression=blosc compression_opts=
 {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1	2	3
0	796	2	0	0
1	795	3	0	0
2	796	2	0	0
•••				
250159	796 794	2	0	0
250160	794	4	0	0
250161	794	4	0	0

```
In [53]: ac[:]
```

Out [53]: <AlleleCountsArray shape=(250162, 4) dtype=int32>

	0	1	2	3
0	796			
1	795			
2	796	2	0	0
•••				
250159	796 794	2	0	0
250160				
250161	794	4	0	0

```
In [54]: # Which ones are biallelic?
  is_biallelic_01 = ac.is_biallelic_01()[:]
  ac1 = ac.compress(is_biallelic_01, axis=0)[:, :2]
  ac1
  ##this part of the code is only for graphing the SFS, is not useful for f
```

```
In [55]: # plot the sfs of the derived allele
s = allel.sfs_folded(ac1)
allel.plot_sfs(s, yscale="linear", n=ac1.sum(axis=1).max())
```

Out[55]: <Axes: xlabel='derived allele frequency', ylabel='site frequency'>


```
In [56]: biallelic = (ac.max_allele() == 1)
###This is the filter expression for biallelic sites
biallelic
```

```
In [57]: # select only the biallelic variants
   gt_biallelic = gt_filtered_snps.compress(biallelic)
   gt_biallelic
```

out[57]: <GenotypeChunkedArray shape=(236210, 399, 2) dtype=int8 chunks=(1846, 399, 2)
nbytes=179.8M cbytes=13.4M cratio=13.4 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

								395			
0	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••	0/0 0										
236207	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
236208	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
236207 236208 236209	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0

```
In [58]: n_variants = len(gt_biallelic)
n_variants

Out[58]: 236210

In [59]: pc_missing = gt_biallelic.count_missing(axis=0)[:] * 100 / n_variants
pc_het = gt_biallelic.count_het(axis=0)[:] * 100 / n_variants
```

Samples

```
In [60]: samples_var = callset_var['samples']
    samples_var = list(samples_var)
    samples_var
```

```
[b'AUT00032-101',
Out[60]:
           b'AUT00032-102',
           b'AUT00032-103'
           b'AUT00032-104'
           b'AUT00032-105',
           b'AUT00032-106',
           b'AUT00032-107'
           b'AUT00032-108',
           b'AUT00032-109',
           b'AUT00032-110',
           b'AUT00032-111'
           b'AUT00032-112',
           b'AUT00032-113',
           b'AUT00032-114'
           b'AUT00032-115'
           b'AUT00032-116',
           b'AUT00032-117'
           b'AUT00032-118'
           b'AUT00032-119',
           b'AUT00032-120',
           b'AUT00032-121'
           b'AUT00032-122'
           b'AUT00032-123',
           b'AUT00032-124'.
           b'AUT00032-125'
           b'BIH00016-001'
           b'BIH00016-002',
           b'BIH00016-003',
           b'BIH00016-004'
           b'BIH00016-005',
           b'BIH00016-006',
           b'BIH00016-007'
           b'BIH00016-008'
           b'BIH00016-009',
           b'BIH00016-010',
           b'BIH00016-011'
           b'BIH00016-012',
           b'BIH00016-013',
           b'BIH00016-014'
           b'BIH00016-015'
           b'BIH00016-016',
           b'BIH00016-017',
           b'BIH00016-018'
           b'BIH00016-019',
           b'BIH00016-020',
           b'BIH00016-021'
           b'BIH00016-022'
           b'BIH00016-023'
           b'BIH00016-024',
           b'BIH00016-025',
           b'DEU00103-001'
           b'DEU00103-002',
           b'DEU00103-003'
           b'DEU00103-004'
           b'DEU00103-005'
           b'DEU00103-006',
           b'DEU00103-007',
           b'DEU00103-008'
           b'DEU00103-009'
           b'DEU00103-010',
```

```
b'DEU00103-011'.
b'DEU00103-012'
b'DEU00103-013',
b'DEU00103-014',
b'DEU00103-015',
b'DEU00103-016'
b'DEU00103-017'
b'DEU00103-018',
b'DEU00103-019',
b'DEU00103-020',
b'DEU00103-021',
b'DEU00103-022'.
b'DEU00103-023'
b'DEU00103-024'
b'DEU00103-025',
b'DEU00152-001',
b'DEU00152-002'
b'DEU00152-003'
b'DEU00152-004',
b'DEU00152-005'
b'DEU00152-006'
b'DEU00152-007',
b'DEU00152-008',
b'DEU00152-009',
b'DEU00152-010',
b'DEU00152-011',
b'DEU00152-012',
b'DEU00152-013'
b'DEU00152-014'
b'DEU00152-015',
b'DEU00152-016',
b'DEU00152-017'
b'DEU00152-018',
b'DEU00152-019',
b'DEU00152-020',
b'DEU00152-021'
b'DEU00152-022',
b'DEU00152-023'
b'DEU00152-024'
b'DEU00152-025'
b'FIN00010-001',
b'FIN00010-002'
b'FIN00010-003'
b'FIN00010-004',
b'FIN00010-005',
b'FIN00010-006'
b'FIN00010-007'
b'FIN00010-008',
b'FIN00010-009'
b'FIN00010-010'
b'FIN00010-011'
b'FIN00010-012',
b'FIN00010-013'
b'FIN00010-014'
b'FIN00010-015',
b'FIN00010-016',
b'FIN00010-017'
b'FIN00010-018'
b'FIN00010-019',
b'FIN00010-020',
```

```
b'FIN00010-021'.
b'FIN00010-022'
b'FIN00010-023'
b'FIN00010-024',
b'FIN00010-025',
b'FIN00045-001'
b'FIN00045-002'
b'FIN00045-003',
b'FIN00045-004',
b'FIN00045-005'
b'FIN00045-006',
b'FIN00045-007'.
b'FIN00045-008'
b'FIN00045-009'
b'FIN00045-010',
b'FIN00045-011',
b'FIN00045-012'
b'FIN00045-013',
b'FIN00045-014',
b'FIN00045-015'
b'FIN00045-016'
b'FIN00045-017',
b'FIN00045-018',
b'FIN00045-019',
b'FIN00045-020'.
b'FIN00045-021',
b'FIN00045-022'.
b'FIN00045-023'
b'FIN00045-024'
b'FIN00045-025',
b'FRA00083-001'
b'FRA00083-002'
b'FRA00083-003',
b'FRA00083-004',
b'FRA00083-005'
b'FRA00083-006'
b'FRA00083-007'
b'FRA00083-008'
b'FRA00083-009'
b'FRA00083-010',
b'FRA00083-011',
b'FRA00083-012'
b'FRA00083-013'
b'FRA00083-014',
b'FRA00083-015',
b'FRA00083-016'
b'FRA00083-017'
b'FRA00083-018',
b'FRA00083-019'
b'FRA00083-020'
b'FRA00083-021'
b'FRA00083-022',
b'FRA00083-023'
b'FRA00083-024'
b'FRA00083-025'
b'FRA00092-001',
b'FRA00092-002'
b'FRA00092-003'
b'FRA00092-004',
b'FRA00092-005',
```

```
b'FRA00092-006'.
b'FRA00092-007'
b'FRA00092-008'
b'FRA00092-009',
b'FRA00092-010',
b'FRA00092-011'
b'FRA00092-012'
b'FRA00092-013',
b'FRA00092-014',
b'FRA00092-015'
b'FRA00092-016',
b'FRA00092-017'.
b'FRA00092-018'
b'FRA00092-019'
b'FRA00092-020',
b'FRA00092-021',
b'FRA00092-022'
b'FRA00092-023'
b'FRA00092-024',
b'ITA00014-001'
b'ITA00014-002'
b'ITA00014-003',
b'ITA00014-004',
b'ITA00014-005'
b'ITA00014-006',
b'ITA00014-007',
b'ITA00014-008'.
b'ITA00014-009'
b'ITA00014-010'
b'ITA00014-011',
b'ITA00014-012'
b'ITA00014-013'
b'ITA00014-014',
b'ITA00014-015',
b'ITA00014-016'
b'ITA00014-017'
b'ITA00014-018',
b'ITA00014-019'
b'ITA00014-020'
b'ITA00014-021'
b'ITA00014-022',
b'ITA00014-023'
b'ITA00014-024'
b'ITA00014-025',
b'ITA00050-001',
b'ITA00050-002'
b'ITA00050-003'
b'ITA00050-004',
b'ITA00050-005'
b'ITA00050-006'
b'ITA00050-007'
b'ITA00050-008',
b'ITA00050-009'
b'ITA00050-010',
b'ITA00050-011',
b'ITA00050-012',
b'ITA00050-013'
b'ITA00050-014'
b'ITA00050-015',
b'ITA00050-016',
```

```
b'ITA00050-017'.
b'ITA00050-018'
b'ITA00050-019',
b'ITA00050-020',
b'ITA00050-021',
b'ITA00050-022'
b'ITA00050-023'
b'ITA00050-024',
b'ITA00050-025',
b'ITA00260-101',
b'ITA00260-102',
b'ITA00260-103'.
b'ITA00260-104',
b'ITA00260-105'
b'ITA00260-106',
b'ITA00260-107',
b'ITA00260-108'
b'ITA00260-109',
b'ITA00260-110',
b'ITA00260-111'
b'ITA00260-112'
b'ITA00260-113',
b'ITA00260-114',
b'ITA00260-115'
b'ITA00260-116',
b'ITA00260-117',
b'ITA00260-118',
b'ITA00260-119'
b'ITA00260-120'
b'ITA00260-121',
b'ITA00260-122'
b'ITA00260-123'
b'ITA00260-124',
b'ITA00260-125',
b'LTU00120-001'
b'LTU00120-002'
b'LTU00120-003',
b'LTU00120-004'
b'LTU00120-005'
b'LTU00120-006',
b'LTU00120-007',
b'LTU00120-008'
b'LTU00120-009'
b'LTU00120-010',
b'LTU00120-011',
b'LTU00120-012'
b'LTU00120-013',
b'LTU00120-014',
b'LTU00120-015'
b'LTU00120-016'
b'LTU00120-017'
b'LTU00120-018',
b'LTU00120-019',
b'LTU00120-020',
b'LTU00120-021',
b'LTU00120-022',
b'LTU00120-023'
b'LTU00120-024'
b'LTU00120-025',
b'R0U00058-001',
```

```
b'R0U00058-002'.
b'R0U00058-003',
b'R0U00058-004',
b'R0U00058-005',
b'R0U00058-006',
b'R0U00058-007'
b'R0U00058-008'
b'R0U00058-009',
b'R0U00058-010',
b'R0U00058-011',
b'R0U00058-012',
b'R0U00058-013'.
b'R0U00058-014'
b'R0U00058-015'
b'R0U00058-016',
b'R0U00058-017',
b'R0U00058-018'
b'R0U00058-019'
b'R0U00058-020',
b'R0U00058-021'
b'R0U00058-022'
b'R0U00058-023',
b'R0U00058-024',
b'R0U00058-025',
b'R0U00415-101',
b'R0U00415-102',
b'R0U00415-103',
b'R0U00415-104'
b'R0U00415-105'
b'R0U00415-106',
b'R0U00415-107'
b'R0U00415-108',
b'R0U00415-109',
b'R0U00415-110',
b'R0U00415-111'
b'R0U00415-112'
b'R0U00415-113',
b'R0U00415-114'
b'R0U00415-115'
b'R0U00415-116',
b'R0U00415-117',
b'R0U00415-118'
b'R0U00415-119'
b'R0U00415-120',
b'R0U00415-121',
b'R0U00415-122'
b'R0U00415-123'
b'R0U00415-124',
b'R0U00415-125'
b'SVN00002-001'
b'SVN00002-002'
b'SVN00002-003',
b'SVN00002-004'
b'SVN00002-005'
b'SVN00002-006',
b'SVN00002-007'
b'SVN00002-008'
b'SVN00002-009',
b'SVN00002-010',
b'SVN00002-011',
```

```
b'SVN00002-012'.
b'SVN00002-013',
b'SVN00002-014'.
b'SVN00002-015',
b'SVN00002-016',
b'SVN00002-017'
b'SVN00002-018'
b'SVN00002-019',
b'SVN00002-020',
b'SVN00002-021'
b'SVN00002-022',
b'SVN00002-023'.
b'SVN00002-024',
b'SVN00002-025'
b'SVN00024-001',
b'SVN00024-002',
b'SVN00024-003'
b'SVN00024-004',
b'SVN00024-005',
b'SVN00024-006'.
b'SVN00024-007'
b'SVN00024-008',
b'SVN00024-009',
b'SVN00024-010',
b'SVN00024-011',
b'SVN00024-012',
b'SVN00024-013'.
b'SVN00024-014',
b'SVN00024-015'
b'SVN00024-016',
b'SVN00024-017',
b'SVN00024-018'
b'SVN00024-019',
b'SVN00024-020',
b'SVN00024-021'
b'SVN00024-022'
b'SVN00024-023',
b'SVN00024-024'
b'SVN00024-025']
```

```
In [65]: samples_fn = '~/scratch/data/Pabies/Picea_abies_sample_list_scikit-allel.
    samples = pandas.read_csv(samples_fn, sep='\t')
    samples
```

```
Out [65]:
                         ID Population
            0 AUT00032-101 AUT00032
             AUT00032-102 AUT00032
            2 AUT00032-103 AUT00032
              AUT00032-104 AUT00032
              AUT00032-105 AUT00032
         394
              SVN00024-021 SVN00024
         395 SVN00024-022
                            SVN00024
         396 SVN00024-023
                            SVN00024
         397 SVN00024-024
                            SVN00024
         398 SVN00024-025 SVN00024
        399 rows × 2 columns
In [66]: samples.Population.value_counts()
Out[66]:
         Population
         AUT00032
                     25
                     25
         BIH00016
         DEU00103
                     25
         DEU00152
                     25
         FIN00010
                     25
         FIN00045
                     25
                     25
         FRA00083
         ITA00014
                     25
                     25
         R0U00058
         ITA00050
                     25
         ITA00260
                     25
                     25
         LTU00120
         SVN00002
                     25
                     25
         R0U00415
         SVN00024
                     25
                     24
         FRA00092
         Name: count, dtype: int64
         populations = samples.Population.unique()
In [67]:
         populations
         ###This identifiers come from the metadata file
Out[67]: array(['AUT00032', 'BIH00016', 'DEU00103', 'DEU00152', 'FIN00010',
                 'FIN00045', 'FRA00083', 'FRA00092', 'ITA00014', 'ITA00050',
                 'ITA00260', 'LTU00120', 'ROU00058', 'ROU00415', 'SVN00002',
                 'SVN00024'], dtype=object)
         Gt frequency function
```

```
In [68]: def plot_genotype_frequency(pc, title):
    fig, ax = plt.subplots(figsize=(24, 5))
```

```
sns.despine(ax=ax, offset=24)
left = np.arange(len(pc))
palette = sns.color_palette("hls", 16)
pop2color = {'AUT00032': palette[0],
              'BIH00016': palette[8],
              'DEU00103': palette[1],
              'DEU00152': palette[9],
              'FIN00010': palette[2],
              'FIN00045': palette[10],
              'FRA00083': palette[3],
              'FRA00092': palette[11],
              'ITA00014': palette[4],
              'ITA00050': palette[12],
              'ITA00260': palette[5],
              'LTU00120': palette[13],
              'ROU00058': palette[6],
              'R0U00415': palette[14],
              'SVN00002': palette[7],
             'SVN00024': palette[15]}
colors = [pop2color[p] for p in samples.Population]
ax.bar(left, pc, color=colors)
ax.set_xlim(0, len(pc))
ax.set_xlabel('Sample index')
ax.set ylabel('Percent calls')
ax.set title(title)
handles = [mpl.patches.Patch(color=palette[0]),
           mpl.patches.Patch(color=palette[8]),
           mpl.patches.Patch(color=palette[1]),
           mpl.patches.Patch(color=palette[9]),
           mpl.patches.Patch(color=palette[2]),
           mpl.patches.Patch(color=palette[10]),
           mpl.patches.Patch(color=palette[3]),
           mpl.patches.Patch(color=palette[11]),
           mpl.patches.Patch(color=palette[4]),
           mpl.patches.Patch(color=palette[12]),
           mpl.patches.Patch(color=palette[5]),
           mpl.patches.Patch(color=palette[13]),
           mpl.patches.Patch(color=palette[6]),
           mpl.patches.Patch(color=palette[14]),
           mpl.patches.Patch(color=palette[7]),
          mpl.patches.Patch(color=palette[15])]
ax.legend(handles=handles, labels=['AUT00032', 'BIH00016', 'DEU00103'
   'FIN00045', 'FRA00083', 'FRA00092', 'ITA00014', 'ITA00050', 'ITA00260', 'LTU00120', 'ROU00058', 'ROU00415', 'SVN00002',
   'SVN00024'], title='Population',
          bbox_to_anchor=(1, 1), loc='upper left')
```

Plot missing

```
In [69]: plot_genotype_frequency(pc_missing, 'Missing')
```


Plot heterozygosity

PCA

```
palette = sns.color palette("hls",16)
pop_colours = {
                 'AUT00032': palette[0],
                  'BIH00016': palette[8],
                  'DEU00103': palette[1],
                  'DEU00152': palette[9],
                  'FIN00010': palette[2],
                  'FIN00045': palette[10],
                  'FRA00083': palette[3],
                  'FRA00092': palette[11],
                  'ITA00014': palette[4],
                  'ITA00050': palette[12],
                  'ITA00260': palette[5],
                  'LTU00120': palette[13],
                  'R0U00058': palette[6],
                  'R0U00415': palette[14],
                  'SVN00002': palette[7],
                 'SVN00024': palette[15]
```

```
def fig_pca(coords, model, title, sample_population=None):
    if sample_population is None:
        sample_population = samples.Population
# plot coords for PCs 1 vs 2, 3 vs 4
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(1, 2, 1)
plot_pca_coords(coords, model, 0, 1, ax, sample_population)
ax = fig.add_subplot(1, 2, 2)
plot_pca_coords(coords, model, 2, 3, ax, sample_population)
ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
fig.suptitle(title, y=1.02)
fig.tight_layout()
```

```
In [74]: ac2 = gt_biallelic.count_alleles()
ac2
```

Out[74]: <AlleleCountsChunkedArray shape=(236210, 2) dtype=int32 chunks=(29527, 2)
 nbytes=1.8M cbytes=530.2K cratio=3.5 compression=blosc compression_opts=
 {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1
0	796	2
1	795	3
2	796	2
•••	•••	
236207	796	2
236208	794	4
236209	794	4

```
In [75]: flt = (ac2[:, :2].min(axis=1) > 1)
   gf = gt_biallelic.compress(flt, axis=0)
   gn = gf.to_n_alt()
   gn
```

```
In [76]: coords1, model1 = allel.pca(gn, n_components=10, scaler='patterson')
```

```
In [77]: fig_pca(coords1, model1, 'Figure 1. Conventional PCA.')
```

Figure 1. Conventional PCA.

