UTN FRBA FÍSICA 2 PRIMER PARCIAL 22/08/2017 - CURSO Z2052

Ejercicio 1: Un calorímetro de equivalente en agua 25 g se encuentra en equilibrio térmico con su contenido de 160 g de agua a 60°C y a presión normal. Se le introduce un trozo de hielo a – 20 °C.

- a) Determine la masa del trozo de hielo si el equilibrio térmico se produce a 25 °C.
- b) Calcule cuál sería la masa del calorímetro si fuera de aluminio.

<u>**Datos**</u>: Calor especifico del hielo $c_h = 0.5$ cal/(g·°C), Calor especifico del agua $c_a = 1$ cal/(g·°C) y calor latente de fusión del hielo $L_F = 80$ cal/g, calor específico del aluminio $c_{A\ell} = 0.22$ cal/(g·°c).

$$T=259$$
 m_{Aqua}= 1609 mh= \times $T_{02}=-20^{\circ}$ C
 $T_{02}=60^{\circ}$ C
 $T_{F}=25^{\circ}$ C

$$mh = -\frac{(\pi + magua) co (TF - To 1)}{[-Ch To 2 + LF + ca TF]} = -\frac{(259 + 1609) \cdot 16l}{9°C} (25°C - 60°C) = \frac{68,1579}{9°C} = \frac{-0,5}{9°C} \cdot 20°C + \frac{8000}{9°C} + \frac{160}{9°C} = \frac{68,1579}{9°C}$$

$$Q(u)' = -875uol - T.CAl(25-60)°C = -875uol - T = -875uol - T = -875uol - Cal(25-60)°C$$

$$= 71 = -875 \text{ (al)} = 113,639$$

$$0,22 \frac{\text{val}}{90} (-35)^{\circ} C = 113,639$$

Ejercicio 2: Una máquina frigorífica de Carnot trabaja entre dos fuentes térmicas a 400 K y 500 K. En cada ciclo cede 90 J de calor a la fuente caliente. Calcule:

a) La eficiencia térmica de la máquina.

Ejercicio 4: Un hilo muy largo y recto está cargado uniformemente con una densidad lineal $\lambda = 50 \times 10^{-6}$ C/m. La distancia desde el alambre hasta el punto A es $r_A = 0.5$ m y hasta el punto B es $r_B = 1.5$ m. Calcule el trabajo que habría que hacer en contra del campo del hilo si se trasladara una carga puntual $q_0 = -3 \mu C$ desde el punto A hasta el B sin variar su energía cinética. (Considere que el hilo es infinito) $\varepsilon_0 = 8.85 \times 10^{-12} \left[\text{C}^2/\text{N} \cdot \text{m}^2 \right] ; 1 \,\mu\text{C} = 10^{-6} \,\text{C}$ $dq = \lambda . dl \quad dq = \lambda dx$ $\vec{E} = K_0 \lambda \left(- \int_{-\infty}^{\frac{\chi}{2}} \frac{dx}{(x^2 + b^2)^{3/2}} \right) b \int_{-\infty}^{\frac{\chi}{2}} \frac{dx}{(x^2 + b^2)^{3/2}} d\vec{E} = K_0 \lambda \left(- \frac{\chi dx}{(x^2 + b^2)^{3/2}} \right) d\vec{E} = K_0 \lambda \left(- \frac{\chi dx}{(x^2 + b^2)^{3/2}} \right)$ $\vec{dE} = K_0 \cdot \frac{dq^4}{|\vec{r} - \vec{r}'|^3} (\vec{r} - \vec{r}')$ $(\vec{r} - \vec{r}') = (x^2 + b^2)^{\frac{1}{2}}$ $\int_{X} \frac{x \, dx}{(x^2 + b^2)^{\frac{3}{2}} z} = -\frac{1}{\sqrt{x^2 + b^2}} \bigg|_{X_1}^{X_2} = -\left[\frac{1}{\sqrt{x_2^2 + b^2}} - \frac{1}{\sqrt{x_1^2 + b^2}} \right]$ $\vec{r} = (0,b)$ $\vec{dE} = K_0 \cdot \frac{\lambda dx}{(x^2 + b^2)^{3/2}} \cdot (-x,b)$ $\vec{r} = (x,0)$ $\vec{dE} = K_0 \cdot \lambda \left(-\frac{x dx}{(x^2 + b^2)^{3/2}} \cdot \frac{b dx}{(x^2 + b^2)^{3/2}} \right)$ $\int_{X_{1}}^{X_{2}} \frac{dx}{(x^{2}+b^{2})^{\frac{3}{2}}} = \frac{x}{b^{2}\sqrt{x^{2}+b^{2}}} \Big|_{X_{1}}^{X_{2}} = \frac{1}{b^{2}} \left[\frac{x}{\sqrt{x^{2}+b^{2}}} - \frac{x}{\sqrt{x^{2}+b^{2}}} \right]$ $\overline{E} = \kappa_0 \lambda \left| \left(\frac{1}{\sqrt{\chi_{\lambda}^2 + b^2}} - \frac{1}{\sqrt{\chi_{\lambda}^2 + b^2}} \right) \cdot \lambda \cdot \frac{1}{b^2} \left(\frac{\kappa_2}{\sqrt{\kappa_{\lambda}^2 + b^2}} - \frac{\kappa_1}{\sqrt{\kappa_{\lambda}^2 + b^2}} \right) \right|$ 1) Distribución de carga finita y P ubicado en la mediatriz $\begin{cases} P & \chi_1 = -\chi_2 \\ Y & \chi_2 = \frac{L}{2} \end{cases} \chi_1 = -\frac{L}{2}$ $\vec{E} = \mathcal{K}_{o} \lambda \left[\left(\frac{1}{\sqrt{\frac{L^{2}}{4} + b^{2}}} - \frac{1}{\sqrt{\frac{L^{2}}{4} + b^{2}}} \right) \cdot \frac{1}{b} \left(\frac{\frac{L}{2}}{\sqrt{\frac{L^{2}}{4} + b^{2}}} + \frac{\frac{L}{2}}{\sqrt{\frac{L^{2}}{4} + b^{2}}} \right) \right]$ $\vec{E} = K_0 \lambda \left(0, \frac{1}{6}, \frac{\lambda}{\sqrt{\frac{k^2}{4} + b^2}}\right)$ $\vec{E} = K_0 \frac{\lambda L}{6\sqrt{\frac{k^2}{4} + b^2}} \left(0, 1\right)$ $\frac{dq}{dq}$ $\frac{2}{\sqrt{2}} \text{ Hilo } \infty (\angle >> 6) \stackrel{?}{E} = K_0 \lambda \left[\left(\frac{1}{\sqrt{\chi_{\nu}^2 + b^2}} - \frac{1}{\sqrt{\chi_{\nu}^2 + b^2}} \right) , K \cdot \frac{1}{b^2} \left(\frac{\chi_2}{\sqrt{\chi_{\nu}^2 + b^2}} - \frac{\chi_1}{\sqrt{\chi_{\nu}^2 + b^2}} \right) \right]$ $\text{Aplico line } \lim_{\chi_1 \to -\infty} \lim_{\chi_2 \to +\infty} \lim_{\chi_1 \to -\infty} \lim_{\chi_2 \to +\infty} \lim_{\chi_1 \to -\infty} \lim_{\chi_2 \to +\infty} \chi_1 \to -\infty$ $\vec{E} = K_0 \lambda \left(0; \frac{1}{b} 2\right) \quad \left(\vec{E} = K_0 \frac{2\lambda}{b} \left(0; 1\right)\right)$ Who = - W Ab 1,5m $\sqrt{3}$ $\sqrt{3$ dl = dr (5) = -3 x10 6 C. 9 X10 Nm² · 2 · 50x10 $\frac{c}{m}$ ln($\frac{1}{0.5}$) = -2,966 J = W AB = 2,9665

Ejercicio 5: El circuito de la figura se encuentra en régimen estacionario.

Ejercicio 5: El circuito de la figura se encuentra en regimen estacionario. Halle:

a) La intensidad y el sentido de la corriente que circula en cada rama.
b) La energía almacenada en el capacitor de placas planas y paralelas, sabiendo que el área de las mismas es $S = 0.1 \text{ m}^2$, que su separación es d = 0.885 mm y que tiene un dieléctrico de constante dieléctrica relativa $\varepsilon_R = 6$ que ocupa todo que tiene un dieléctrico de constante dieléctrica relativa $\varepsilon_R = 6$ que ocupa todo el espacio entre las citadas placas.

	una	mez	o 1: U	hielo	y agi	ua, a (<u>ος</u>	y pi	resid	ón n	orma	al, de	e un	a fu	ente	tér	mica	a ci	erta	tem	perat	tura	desc	ono	cida	a(T)	وحر	Tz	2				
	mei	ncion	re que ada p e fusi	ared.	Al al	canza	ar el	rég	ime	n es	tacio	onari	o, s	e fu	nde	n 1:	50 g																
	Tate	ente d	e rusi	on de	i mer	s es L	.f - 2	534 1	KJ/K	$\widetilde{+}$	-		_	-	atur	a 1.					2	ζ5 [']	<u>-</u>	25	5 · (60.	<u>ا</u>	- 1	150	0 <u>)</u>	7		
Nh=	. 1	50	9 = 0	2,15	Ya								•																-	+			
-			J -	/1/	\sim			Q	- (-b	' - Y	nh	=	.)	33	34	k.	7	· 0,	15	sk	හු .	<i>=</i> 5	50 ₇ :	Ι,	ĸŢ	7						
		ϕ_0	ઉ. =	8	Q) _		K	8		_								_5					
				d-	t		5	(er	MB.	كوا	Con	noz	lv	1	ሳ	<u> </u>	ϓ Τͻ)Q	= _	<u>()</u> 	-	∌ /	ØQ.	=	5	0/	1 x	ΙŎ	<u>)</u> :	= 3	33,1	J W	
		D _A	dl	F	חיום.'	n ()		1	β_{-}		λ	\leq	T ₂	_t	1		١٧	T.	n –	(·/>	<i>(</i> -	>	1	T,	1	<i>)</i> (00	עי				
		ð	W	-1-6	ານທີ່		•	/	R			J .	<u> </u>	y .			>	-	ر - 		$\lambda \leq$)		+	11			ره					
				> T;	շ =	3	23	уп	J.	0,	15	$\mathcal{N}_{\mathbf{j}}$		+	2	73	k	>	2	9	3) E	57:	5 K										
					2=	ď	2,3	No.) • c	9/8	3 m	م)	2		<u> </u>	75	. 6	C									
	Ejer	cicio	<i>3:</i> Jus				-	-	ļ '	-		-		-	S	Di	48	-	ш	_	_	+	_	┯	calie	ente							
8			otra f													de 6	503	exti	aiga	a 260		de c											
				C	Λ		C					_				_	-																
					uel																												
				di	be o	ump	lin	જ	G																								
(۲ /	Uv		TE	+		=		2	7	3 k		١٥	+	-	ع ا	112	25)													
			-	PC	-1F	-			5)·	ÞΚ		,T 5	K,						1	6	rec		><	ه ۲ ر	الرج	υ=	=)	N	0	و <u>م</u> د ۱ ۱			
(٤٦	lal		Q	FF	=	=	_	2	60	0	<i>t</i>		l	1,5	2 C	173	5)									ſ	บองเ	پلار	Q		
				W					-6	0	5 =	5			•													ρ	te				
	C	cuasie	icio 4 estátic evolu	a entr	sisten e los	na for estad	rmac os A	do p x y E	or <i>n</i> 3 en	mo la q	oles ue (e	de u	ın ga 120	as ic 00 J	leal de	(<i>c_v</i> calo	= 3 r. Ca	R/2) alcul	des e el	crib trab	e una ajo q	ev Jue l	oluc 1ace	ión el si	isol ster	páric na e					= R		
		II CII C			<i>b</i> =	12	D.6) T				<u> </u>	T	٧ 3	<u> </u>	_	5	2	n	٨	ΓΛ V2							(n 4	= B + 3 B=	_ 5	k
					<i>1</i> 5 −																								P -		ヹ゙	2	
																		\propto_{I}	↑ 6	, _	′	υ /	4 B										
			Dl	/—P	, =	CV	- 1	1 4	7 1	Αß	, =		<u>ا</u> ک	ጎ []	ט	IA	3																
											-	5	X	(=	3	<u>}</u>	وعد	 	ζ :	-	6 1 C	_	<u>+</u> ;	3									
				٦	(C)			ક		. ,	n v		\ +	4.0		\ \ \	1	2 /		+ ₄	2												
			-	5	\propto	≯Β -	- -	5	\ \frac{1}{2}	3	(^)) k	۱۱ د	ΉB	7		2 *	1 /)	Ľ) <i>(</i>	-B	1											
											3	(\mathfrak{I})	V V	_	N	Τ.)	L	Ų	AB	\\1 .			3	1/2	م ()	<u>,</u> ~		72	(J_	7		
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		10		_	-		5	+ ×	- 10	U C	3 K	<i>ب</i>	1+ C) - 		ノ!	∖ענ	+13	= ==	· `	12	, 0 (-					
			$-\Lambda$	1 K/6	5=	てん	00	40	\ -	+	20	۔ ر	-	1 C	9	Ψ													+	+			

UTN FRBA FÍSICA 2 PRIMER PARCIAL 24/08/2017 - CURSO Z2032

UTN FRBA FÍSICA 2 PRIMER PARCIAL 24/08/2017 - CURSO Z2051

Ejercicio 1: La pared de un homo está formada por dos capas de materiales diferentes. La conductividad térmica de la capa interior es $\lambda_1 = 0.42$ W/(m·K), y la de la capa exterior es $\lambda_2 = 1.26$ W/(m·K). La superficie interior y la exterior del horno se mantienen (400°) y a 70°C respectivamente. Si la densidad de flujo de calor a través de la pared del horno, una vez establecido el régimen estacionario, es de 1680 W/m² y la temperatura en la unión de las capas es de 200°C, calcule el espesor de cada una de las capas.

de la pared del horno, una vez) establecido el regimen estacionario, es de 1680 W/m² y la temperatura en la unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Ty= 473° .

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Unión de las capas es de 200° 0, calcule el espesor de cada una de las capas.

Ejercicio 2: Un mol de gas ideal ($c_V = 3R/2$) se enfría a presión constante de 831 kPa, desde 400 K hasta 300 K (evolución AB). Luego se comprime isotérmicamente hasta una presión de 1662 kPa (evolución BC). Suponga que ambos procesos son reversibles. [$R = 8,31 \text{ J/(mol \cdot K)}$]

- a) Dibuje las evoluciones en los planos p-V y V-T.
- b) Calcule la cantidad de calor que intercambia el sistema en la evolución AC.

