

厦门大学《线性代数I》期中试卷

	学院	系	年级	专业
主 老粉 师・		试卷类型:	(A卷)	2020年11月29日

注意: 所有行列式化简和矩阵初等变换必须标出每

	分数	阅卷人	
-	刀奴	风苍八	$ -,(10) $ 计算行列式 $ A =\begin{vmatrix}5&1&3&-4\\&&&1&1\end{vmatrix}$, ————————————————————————————————————
L			
		4+63	3+3 15
	1.6	AI	5 =
	1"	G=263	1370
		Y. + Y2	14 2 0 = (1) (1) 4 2 1 1 1 1 = (1) (1) 3 1
		11110	1+++1 = (A)(A) 5+1
			(-5 -1 Q)
			(-4+10)=6
			A SPACE OF THE PROPERTY OF THE

分数	阅卷人	二、(10) 设 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ 与 $B = [\alpha_1, \beta, \alpha_3, \alpha_4]$ 均 为4阶 方 阵, 且 $ A = 2$, $ B = 1$,求行列式 $ 3A + 2B $
= [30	1, 302,343,	$(304) + [201, 2\beta, 203, 204] = [501, 302+2\beta, 503, 504] $
= to	302,503	5-04] + [SOI, 2 B, 503, 504]
二 5×	3x5x5 To	x1 x2 x3 x4] +5-x2x5x5 [[x1, \beta, \alpha, \alpha, \alpha, \alpha]
= 37.	5x 1A1+25	TOX B = (OVO)

分数	阅卷人	$\begin{bmatrix} 1 & 1 & \lambda^2 & -2 \end{bmatrix}$	
	· ·	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	小。
Y-Z=	ΣΩ Γ I Ì	$\lambda^2 - 27$ $3 + 16 \Gamma \Gamma \Gamma \lambda^2 - 27$	
. ,	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
110 1	3)+0 R((A) > Z = O of => R(A) = Z 義 J -	
$0 = \lambda^2$	+2-2-1	=on=> R(A)=2 歲了~	
U	的人		
		ı	

分数 阅卷人 四、(10)设 A 为3阶可逆矩阵, B 为2阶可逆矩阵, C 为2 \times 3 矩阵。证明:分块矩阵 $D = \begin{bmatrix} O & A \\ B & C \end{bmatrix}$ 是可逆矩阵,并求 D^{-1} 。
MOD [& A] [X W] = [6 &] OD = (-1) A B
$\begin{bmatrix} A \not\in AW \\ B \not\in E \end{cases} = \begin{bmatrix} E & O \\ O & E \end{bmatrix} = [A \mid B]$ $= [A \mid B]$
=> AZ=E Z=A D3(3)
$= \begin{cases} A Z = E & Z = A^{-1} \\ A W = 0 & = \rangle & W = 0 \\ B Z + C Z = 0 & Z = B^{-1} C A^{-1} \\ B Y + C W = E & Y = B^{-1} \end{cases}$
D-1= BCA B
水二 [O A E3 O] YON [EZ B'C D B'] (米分块的车
7年 [0 A E3 0] Y(か) [E2 B ¹ C D B ¹] B C O E2 B X O E3 A O O O E3 A O O O O O O O O O O O O O O O O O O
厅[0 A] 的最简型为[Ez 0] => D3年度校时
$D^{T} = \begin{bmatrix} -B^{T} c A^{T} & B^{T} \\ A^{-1} & Q \end{bmatrix} \qquad (QT \overline{Q} \overline{Q} \overline{Q} \overline{Q} \overline{Q} \overline{Q} \overline{Q} \overline{Q}$

扫描全能王 创建

分数	阅卷人	五、	(10)	若A	=	l	1		,	B =		$ \begin{array}{c} -2 \\ 0 \\ -3 \end{array} $	1	解矩阵方程:
		^{I}AX -	+B =	= X.	(逆	矩阵	必须	i 使 用	初	等变:	负计算	〔		

分数	阅卷人	六、(10) 已知 R^3 的两个基为 $\alpha_1 = [1,1,1]^T$, $\alpha_2 = [1,-1,-1]^T$,
		$\alpha_3 = [-1, 1, -1]^T$; $\beta_1 = [1, 0, 1]^T$, $\beta_2 = [1, 3, 1]^T$, $\beta_3 = [1, 0, 0]^T$,
	,	求由基 $lpha_1,lpha_2,lpha_3$ 到基 eta_1,eta_2,eta_3 的过渡矩阵

$$C = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$$

$$(\frac{1}{4} =) \begin{bmatrix} A \\ E \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 - Y_1} \begin{bmatrix} 1 & 2 & 2 & -1 & 1 & 0 \\ 0 & 2 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{Y_2 \times (-\frac{1}{2})} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

$$C = A^{T}B = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

分数	阅卷人

七、(15) 求向量组的秩和一个最大线性无关组,并将其余向量用该最大无关组线性表出:

$$\alpha_{1} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 4 \end{bmatrix}, \quad \alpha_{2} = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix}, \quad \alpha_{3} = \begin{bmatrix} 3 \\ 0 \\ 7 \\ 14 \end{bmatrix}, \quad \alpha_{4} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \quad \alpha_{5} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} \alpha_{1} & \alpha_{2} & \alpha_{5} & \alpha_{4} & \alpha_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 7 & 2 & 5 \\ 2 & 2 & 1 & 7 & 2 & 5 \end{bmatrix}$$

$$Y_{2} + Y_{1} \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & 4 & 8 \end{bmatrix}$$

$$Y_{2} + Y_{1} \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 & 4 & 8 \end{bmatrix}$$

$$Y_{2} + Y_{1} \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

$$Y_{3} - Y_{1}$$

$$Y_{3} \times Y_{4} - Y_{2}$$

$$Y_{1} - Y_{3} \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R(A) = 3 \quad \alpha_{1} \quad \alpha_{2} \times \alpha_{4} \times \alpha_{5} \times \alpha_{4} \times \alpha_{5} = -\frac{1}{2} \alpha_{1} + \alpha_{2} + \frac{1}{2} \alpha_{4} \times \alpha_{5}$$

$$\alpha_{3} = 3 \alpha_{1} + \alpha_{2} \times \alpha_{5} + \frac{1}{2} \alpha_{4} \times \alpha_{5} \times \alpha_{5}$$

$$\alpha_{3} = 3 \alpha_{1} + \alpha_{2} \times \alpha_{5} + \frac{1}{2} \alpha_{4} \times \alpha_{5} \times \alpha_{5}$$

$$\alpha_{3} = 3 \alpha_{1} + \alpha_{2} \times \alpha_{5} \times \alpha_$$

分数 阅卷人 八、(15) 讨论a,b取何值时,线性方程组 无解,有唯一解,或有无穷多解?在无穷多解时,求其通解 \overline{M} : $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \end{vmatrix}$ $\frac{Y_2 - Y_1}{Y_5 - Y_1} \begin{vmatrix} a & 1 & 1 \\ 1 - a & b + 0 \end{vmatrix} = (1-a)b$ 0 b = 0 Q a = 1 RIA)=RIA, B) = 3 = n => of 1-20 ② b=0 [A, β]= [α | 1 | 4] $\frac{r_1 \leftrightarrow r_3}{r_2-r_1}$ [0 | 3] $\frac{3}{r_2-r_1}$ [0 | 1 | 4 | $\frac{3}{r_1}$ [0 | 1 | 4 | $\frac{3}{r_2}$ $r_2 \leftarrow r_3 = r_4 + r_3 = r_4 + r_4 + r_4 = r_4 + r_4$ i)2b+=0 即b+= =>2R(A)<R(A,B)=3元級 (ii) 2b-1=0 $(A, \beta)=\begin{bmatrix} 1 & 1 & 4 \\ 0 & -\frac{1}{2} & 0 & -1 \end{bmatrix} \xrightarrow{Y_{1} \times Y_{2}} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ R(A)=R(A, B)=2c3 =)无谷的 $\begin{cases} x_1 = -x_3 + 2 \\ x_2 = z \end{cases}$ 好物为如「豆」 导出处落础的的 「豆」号 $\frac{Y_2 - Y_1}{Y_3 - a Y_1} \begin{bmatrix} 1 & b & 1 & 3 \\ 0 & b & 0 & 1 \\ 0 & 1 + a & 4 + 2a \end{bmatrix} \xrightarrow{Y_3 + a \cdot Y_2} \begin{bmatrix} 1 & b & 1 & 3 \\ 0 & b & 0 & 1 \\ 0 & 1 & 1 + a & 4 + 2a \end{bmatrix} \xrightarrow{Y_2 \leftarrow Y_2} \begin{bmatrix} 1 & b & 1 & 3 \\ 0 & b & 0 & 1 \\ 0 & b & 0 & 1 \end{bmatrix}$ 13-b/2 [0 1 1-a 4-24] 0 0 (a+1)6 20to-46t] 八、(15) 讨论a,b取何值时,线性方程组 $\begin{cases} ax_1 + x_2 + x_3 = 4\\ x_1 + bx_2 + x_3 = 3\\ x_1 + 2bx_2 + x_3 = 4 \end{cases}$

无解,有唯一解,或有无穷多解?在无穷多解时,求其通解。 增广矩阵作行变换(4分,也可用克莱默法则计算系数行列式)

$$[A, \beta] \to \begin{bmatrix} 1 & b & 1 & 3 \\ 0 & 1 & 1 - a & 4 - 2a \\ 0 & 0 & (a - 1)b & 1 - 4b + 2ab \end{bmatrix}$$

当 $a \neq 1$ 且 $b \neq 0$ 时,有 $R(A) = R(A, \beta) = 3$,因此有唯一解(2分);

当b = 0时,有 $R(A) < R(A, \beta)$,因此无解(2分);

当 $a = 1, b \neq \frac{1}{2}$ 时,有 $R(A) < R(A, \beta)$,因此无解(2分);

当
$$a=1,b=\frac{1}{2}$$
时,有 $R(A)=R(A,\beta)=2$,因此有无穷多解(2分)。继续化简得
$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (1分),因此通解为(2分)

 $x = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad c \in R$

九、(10)设实矩阵A满足 $A^2 = AA^T$,证明A为对称矩阵。最快方法是利用矩阵的迹的性质,然而我们对迹不作学习要求。因此请按照下面路线完成证明。

(提示:使用线性方程组解的结构的相关知识,以及结论: $R(C) = R(C^TC)$ 对任意实矩阵C成立。)

- (1) 证明方程组 $A^{T}x = 0$ 与 $AA^{T}x = 0$ 同解;
- (2) 证明方程组Ax = 0与 $A^2x = 0$ 同解;
- (3) 利用前两步结论和题目条件证明 $A^TA = (A^T)^2$:
- (4) 证明 $A A^T = O$

(1)由 $R(A^T) = R(AA^T)$ 可知方程组 $A^Tx = 0$ 与 $AA^Tx = 0$ 的基础解系有相同数量的向量 (1分); $\nabla A^Tx = 0$ 的解必然是 $AA^Tx = 0$ 的解(1分),因此 $A^Tx = 0$ 的基础解系也是 $AA^Tx = 0$ 的基础解系,于是同解(1分);(也可以采用课本例题方法)

- (2)由 $R(A) = R(A^T) = R(AA^T) = R(A^2)$ (1分), 类似 (1) 可得结论 (1分);
- (3)由 $A^2 = AA^T$ 可知 $A(A A^T) = O$,即 $A A^T$ 的列向量都是方程组Ax = 0的解 (1分); 由前两步结论可知Ax = 0与 $A^Tx = 0$ 同解 (1分),于是 $A - A^T$ 的列向量也是 $A^Tx = 0$ 的解,所以 $A^T(A - A^T) = O$,即 $A^TA = (A^T)^2$ (1分);