FVM PRACTICAL ASSIGNMENT 1

Solve 1D Poison problem with boundary conditions

LUU GIANG NAM

Email: luugiangnam96@gmail.com

University of Science, Ho Chi Minh City

31st March 2017

Contents

List of Figures iii					
1	Diri	chlet boundary condition	1		
	1.1	Regular grid and the control point is the mid point of each control volum	ıe		
		$x_i = \frac{x_{i - \frac{1}{2}} + x_{i + \frac{1}{2}}}{2}$			
			1		
	1.2	Regular grid and the control point is $1/3$ from the left of each control volume	ıe		
		$x_i = \frac{2}{3}x_{i-\frac{1}{2}} + \frac{1}{3}x_{i+\frac{1}{3}}$			
			8		
	1.3	Approximate the mean-value of f over T_i	4		
		1.3.1 Trapezoidal rule	4		
		1.3.2 Simpson's rule	6		
		1.3.3 Simpson's rule $\frac{3}{8}$	8		
	1.4	Case of only singular grid, not uniform grid	21		
2	Neu	mann boundary condition 2	24		
	2.1	Introduction	24		
	2.2	Mesh	24		
	2.3	Scheme	25		
	2.4	Numerical experiments	25		
		2.4.1 Case of regular grid	26		
		2.4.2. Case of singular grid	0		

List of Figures

1	Error of Problem 1 - Question 1a	4
2	Approximate solution of Problem 1 - Question 1a	5
3	Error of Problem 2 - Question 1a	6
4	Approximate solution of Problem 2 - Question 1a	7
5	Error of Problem 1 - Question 1b	10
6	Approximate solution of Problem 1 - Question 1b	11
7	Error of Problem 2 - Question 1b	12
8	Approximate solution of Problem 2 - Question 1b	13
9	Error for Trapezoidal rule	14
10	Approximate solution for Trapezoidal rule	15
11	Error for Simpson's rule	16
12	Approximate solution for Simpson's rule	17
13	Error for Simpson's rule $\frac{3}{8}$	18
14	Approximate solution for Simpson's rule $\frac{3}{8}$	19
15	Error of Problem 1 - Question 1d	22
16	Approximate solution of Problem 1 - Question 1d	23
17	Error for Neumann boundary condition - Regular grid	27
18	Approximate solution for Neumann boundary condition - Regular grid	28
19	Error for Neumann boundary condition - Singular grid	31
20	Approximate solution - Singular grid	32

Problem 1

Dirichlet boundary condition

Introduction

We use FVM to solve this equation

$$u_{rr}''(x) = f(x), \quad x \in \Omega(x)$$
 (Eq1.1)

with initial condition:

$$u(0) = a$$
 (Condition 1)

$$u(1) = b$$
 (Condition 2)

We have 2 situations for solving:

1.1. Regular grid and the control point is the mid point of each control volume

$$x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}$$

Let us choose N+1 points $\{x_{i+\frac{1}{2}}\}_{i=\overline{0,N}}$ in [0,1] such that:

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N + \frac{1}{2}} = 1$$

We set $T_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], |T_i| = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \forall i \in \overline{1, N}, h = \max_{i \in \overline{1, N}} \{|T_i|\}$ and

$$\begin{cases} x_0 = 0, x_{N+1} = 1, \\ x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2} \end{cases}$$

From equation Eq1.1 we have:

$$\frac{1}{|T_i|} \int_{T_i} -u_{xx} dx = \frac{1}{|T_i|} \int_{T_i} f(x) dx$$
 (Eq1.2)

Because of Green's formula we obtain:

$$\frac{1}{|T_i|} \int_{T_i} -u_{xx} dx = \frac{-u_{x_{i+\frac{1}{2}}} + u(x_{i-\frac{1}{2}})}{|T_i|}$$
 (Eq1.3)

And let

$$f_i = \frac{1}{|T_i|} \int_{T_i} f(x) dx \tag{Eq1.4}$$

From Eq1.2, (Eq1.3) and (Eq1.4) we obtain:

$$\frac{-u(x_{i+\frac{1}{2}}) + u(x_{i-\frac{1}{2}})}{|T_i|} = f_i$$
 (Eq1.5)

Use Taylor expression we have:

$$u(x_{i+1}) = u(x_{i+\frac{1}{2}}) + u_x(x_{i+\frac{1}{2}})(x_{i+1} - x_{i+\frac{1}{2}}) + \frac{u_{xx}(x_{i+\frac{1}{2}})}{2!}(x_{i+1} - x_{i+\frac{1}{2}})^2 + O(h^3)$$
 (Eq1.6)

$$u(x_i) = u(x_{i+\frac{1}{2}}) + u_x(x_{i+\frac{1}{2}})(x_i - x_{i+\frac{1}{2}}) + \frac{u_{xx}(x_{i+\frac{1}{2}})}{2!}(x_i - x_{i+\frac{1}{2}})^2 + O(h^3)$$
 (Eq1.7)

Then let (Eq1.6) to subtract (Eq1.7) we have:

$$u(x_{i+1}) - u(x_i) = u_x(x_{i+\frac{1}{2}})(x_{i+1} - x_i) + \left((x_{i+1} - x_{i+\frac{1}{2}})^2 - (x_i - x_{i+\frac{1}{2}}) \frac{u_{xx}(x_{i+\frac{1}{2}})}{2} + O(h^3) \right)$$
(Eq.1.8)

Because of regular grid and $x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}$ we imply that $x_{i+\frac{1}{2}}$ is midpoint of $[x_i, x_{i+1}]$. Then, we have:

$$u(x_{i+1}) - u(x_i) = u_x(x_{i+\frac{1}{2}})(x_{i+1} - x_i) + O(h^3)$$

It means

$$u_x(x_{i+\frac{1}{2}}) = \frac{u(x_{i+1}) - u(x_i)}{x_{i+1} - x_i} + O(h^2)$$

We have the approximate of the term $u_x(x_{i+\frac{1}{2}})$ is:

$$u_x(x_{i+\frac{1}{2}}) = \frac{u(x_{i+1}) - u(x_i)}{|D_{i+\frac{1}{2}}|}$$
 (Eq1.9)

where $D_{i+\frac{1}{2}} = x_{i+1} - x_i$. From (Eq1.5) and (Eq1.9) we have:

$$\frac{-u_{i-1}}{|D_{i-\frac{1}{2}}||T_i|} + \left[\frac{1}{|D_{i+\frac{1}{2}}||T_i|} + \frac{1}{|D_{i-\frac{1}{2}}||T_i|}\right]u_i - \frac{u_{i+1}}{|D_{i+\frac{1}{2}}||T_i|} = f_i$$
 (Eq1.10)

Now we set

$$\alpha_i = \frac{-1}{|D_{i-\frac{1}{2}}||T_i|}$$

$$\beta_i = \frac{1}{|D_{i-\frac{1}{2}}||T_i|} + \frac{1}{|D_{i+\frac{1}{2}}||T_i|}$$
$$\gamma_i = \frac{-1}{|D_{i+\frac{1}{2}}||T_i|}$$

Then (Eq1.10) is changed into:

$$\alpha_i u_{i-1} + \beta_i u_i + \gamma_i u_{i+1} = f_i, \forall i \in \overline{1, N}$$
 (Eq1.11)

Combining with the boundary conditions, we get the scheme for the cell-center finite volume method:

$$\begin{cases} \alpha_{i}u_{i-1} + \beta_{i}u_{i} + \gamma_{i}u_{i+1} = f_{i}, \forall i = \overline{1, N}, \\ u_{0} = 0, \\ u_{N+1} = 1 \end{cases}$$
 (Eq1.12)

From (Eq1.12) have have a linear system for the scheme:

$$\begin{cases} i = 1 : \alpha_{1}u_{0} + \beta_{1}u_{1} + \gamma_{1}u_{2} & = f_{1} \\ i = 2 : & \alpha_{2}u_{1} + \beta_{2}u_{2} + \gamma_{2}u_{3} & = f_{1} \\ & \vdots & \vdots & \vdots & \vdots \\ i = N - 1 : & \alpha_{N-1}u_{N-2} + \beta_{N-1}u_{N-1} + \gamma_{N-1}u_{N} & = f_{N-1} \\ i = N : & \alpha_{N}u_{N-1} + \beta_{N}u_{N} + \gamma_{N}u_{N+1} = f_{N} \end{cases}$$

Replace initial condition into linear system we have matrix form

$$AU = F$$

where $A \in \mathbb{R}^N \times \mathbb{R}^N$, $U, F \in \mathbb{R}^N$ satisfy:

$$\begin{bmatrix} \beta_1 & \gamma_1 & 0 & \dots & 0 & 0 & 0 \\ \alpha_2 & \beta_2 & \gamma_2 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\ 0 & 0 & 0 & \dots & 0 & \alpha_N & \beta_N \end{bmatrix}$$
 (Matrix A.1)

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix}$$
 (cellU.1)

$$F = \begin{bmatrix} f_1 - a\alpha_1 \\ f_2 \\ \vdots \\ f_{N-1} \\ f_N - \beta\gamma_N \end{bmatrix}$$
 (cellF.1)

We can prove that (Matrix A.1) is invertible matrix so there is only one roof $(u_i)_{i=\overline{1.N}}$.

Now we see graphics of exact and approximate solution with two problems

Problem 1:

We set up with following exact solution u and function f

$$\begin{cases} u(x) = x^4 + 2x^3 - 10x^2 + 2\\ f(x) = -(12x^2 + 12x - 20) \end{cases}$$

Figure 1: Error of Problem 1 - Question 1a

Figure 2: Approximate solution of Problem 1 - Question 1a.

Problem 2:

We set up with following exact solution \boldsymbol{u} and function \boldsymbol{f}

$$\begin{cases} u(x) = \sin(x^3) \\ f(x) = 9x^4 \sin(x^3) - 6x \cos(x^3) \end{cases}$$

Figure 3: Error of Problem 2 - Question 1a

Figure 4: Approximate solution of Problem 2 - Question 1a.

1.2. Regular grid and the control point is 1/3 from the left of each control volume

$$x_i = \frac{2}{3}x_{i-\frac{1}{2}} + \frac{1}{3}x_{i+\frac{1}{3}}$$

We also create a grid similarly to Problem 1.1,

Let us choose N+1 points $\{x_{i+\frac{1}{2}}\}_{i=\overline{0,N}}$ in [0,1] such that:

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N + \frac{1}{2}} = 1$$

We set $T_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], |T_i| = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \forall i \in \overline{1, N}, h = \max_{i \in \overline{1, N}} \{|T_i|\}$ and

$$\begin{cases} x_0 = 0, x_{N+1} = 1, \\ x_i = \frac{2}{3} x_{i-\frac{1}{2}} + \frac{1}{3} x_{i+\frac{1}{3}} \end{cases}$$

Continue similar process, we have result:

$$u(x_{i+1}) - u(x_i) = u_x(x_{i+\frac{1}{2}})(x_{i+1} - x_i) + \left((x_{i+1} - x_{i+\frac{1}{2}})^2 - (x_i - x_{i+\frac{1}{2}}) \frac{u_{xx}(x_{i+\frac{1}{2}})}{2} + O(h^3) \right)$$
(Eq1.13)

Because $x_{i+\frac{1}{2}}$ is not midpoint of $[x_i, x_{i+1}]$ then

$$u_x(x_{i+\frac{1}{2}}) = \frac{u(x_{i+1}) - u(x_i)}{x_{i+1} - x_i} + O(h)$$

We also have the approximate of the term $u_x(x_{i+\frac{1}{2}})$ is:

$$u_x(x_{i+\frac{1}{2}}) = \frac{u(x_{i+1}) - u(x_i)}{|D_{i+\frac{1}{2}}|}$$
 (Eq1.14)

where $D_{i+\frac{1}{2}} = x_{i+1} - x_i$.

It is the only difference of two problem 1.1 and 1.2, we imply to the same the result:

$$AU = F$$

where $A \in \mathbb{R}^N \times \mathbb{R}^N$, $U, F \in \mathbb{R}^N$ satisfy:

$$\begin{bmatrix} \beta_{1} & \gamma_{1} & 0 & \dots & 0 & 0 & 0 \\ \alpha_{2} & \beta_{2} & \gamma_{2} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\ 0 & 0 & 0 & \dots & 0 & \alpha_{N} & \beta_{N} \end{bmatrix}$$
 (Matrix A.2)

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \ddots u_{N-1} \\ u_N \end{bmatrix}$$
 (cellU.2)

$$F = \begin{bmatrix} f_1 - a\alpha_1 \\ f_2 \\ \ddots f_{N-1} \\ f_N - \beta\gamma_N \end{bmatrix}$$
 (cellF.2)

We can prove that (Matrix A.2) is invertible matrix so there is only one roof $(u_i)_{i=\overline{1,N}}$.

Now we see graphics of exact and approximate solution with two problems

Problem 1:

We set up with following exact solution u and function f

$$\begin{cases} u(x) = x^4 + 2x^3 - 10x^2 + 2\\ f(x) = -(12x^2 + 12x - 20) \end{cases}$$

Figure 5: Error of Problem 1 - Question 1b.

Figure 6: Approximate solution of Problem 1 - Question 1b.

Problem 2:

We set up with following exact solution \boldsymbol{u} and function \boldsymbol{f}

$$\begin{cases} u(x) = \sin(x^3) \\ f(x) = 9x^4 \sin(x^3) - 6x \cos(x^3) \end{cases}$$

Figure 7: Error of Problem 2 - Question 1b.

Figure 8: Approximate solution of Problem 2 - Question 1b.

1.3. Approximate the mean-value of f over T_i

1.3.1. Trapezoidal rule

The 2-point formula

$$\int_{T_i} f(x)dx \approx \frac{1}{2} |T_i| (f(x_{i-\frac{1}{2}}) + f(x_{i+\frac{1}{2}}))$$

Then f_i can approximate by:

$$f_i = \frac{1}{|T_i|} \int_{T_i} f(x) dx \approx \frac{1}{2} (f(x_{i-\frac{1}{2}}) + f(x_{i+\frac{1}{2}}))$$

Now we use problem 1 of 1.a:

We set up with following exact solution u and function f

$$\begin{cases} u(x) = x^4 + 2x^3 - 10x^2 + 2\\ f(x) = -(12x^2 + 12x - 20) \end{cases}$$

we have graphics of Error and Discrete Solution:

Figure 9: Error for Trapezoidal rule.

Figure 10: Approximate solution for Trapezoidal rule.

1.3.2. Simpson's rule

The 3-point formula

$$\int_{T_i} f(x)dx \approx \frac{1}{6} |T_i| (f(x_{i-\frac{1}{2}}) + 4f(\frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}) + f(x_{i+\frac{1}{2}}))$$

Then f_i can approximate by:

$$f_i = \frac{1}{|T_i|} \int_{T_i} f(x) dx \approx \frac{1}{6} (f(x_{i-\frac{1}{2}}) + 4f\left(\frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}\right) + f(x_{i+\frac{1}{2}}))$$

Now we use problem 1 of 1.a:

We set up with following exact solution u and function f

$$\begin{cases} u(x) = x^4 + 2x^3 - 10x^2 + 2\\ f(x) = -(12x^2 + 12x - 20) \end{cases}$$

we have graphics of Error and Discrete Solution:

Figure 11: Error for Simpson's rule.

Figure 12: Approximate solution for Simpson's rule.

1.3.3. Simpson's rule $\frac{3}{8}$

The 4-point formula

$$\int_{T_i} f(x)dx \approx \frac{1}{8} |T_i| (f(x_{i-\frac{1}{2}}) + 3\left(\frac{2x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{3}\right) + 3f\left(\frac{x_{i-\frac{1}{2}} + 2x_{i+\frac{1}{2}}}{3}\right) + f(x_{i+\frac{1}{2}}))$$

Then f_i can approximate by:

$$f_i = \frac{1}{|T_i|} \int_{T_i} f(x) dx \approx \frac{1}{8} \left(f(x_{i-\frac{1}{2}}) + 3\left(\frac{2x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{3}\right) + 3f\left(\frac{x_{i-\frac{1}{2}} + 2x_{i+\frac{1}{2}}}{3}\right) + f(x_{i+\frac{1}{2}}) \right)$$

Now we use problem 1 of 1.a:

We set up with following exact solution u and function f

$$\begin{cases} u(x) = x^4 + 2x^3 - 10x^2 + 2\\ f(x) = -(12x^2 + 12x - 20) \end{cases}$$

we have graphics of Error and Discrete Solution:

Figure 13: Error for Simpson's rule $\frac{3}{8}$.

Figure 14: Approximate solution for Simpson's rule $\frac{3}{8}$.

Compare some ways approximation

By looking the graphics of Errors we can remark that the fastest convergence is Simpson's rule $\frac{3}{8}$ and the lowest convergence is Trapezoidal rule.

We can explain this result to be if we use more point to approximate a function or in this case is approximate integral of function in a interval, the error will be smaller.

However, the differences are not large and Trapezoidal rule is the easiest way to approximate. So it is the reason why we use Trapezoidal first.

1.4. Case of only singular grid, not uniform grid

We also create a grid similarly to Problem 1.1,

Let us choose N+1 points $\{x_{i+\frac{1}{2}}\}_{i=\overline{0,N}}$ in [0,1] such that:

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N + \frac{1}{2}} = 1$$

We set $T_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], |T_i| = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \forall i \in \overline{1, N}, h = \max_{i \in \overline{1, N}} \{|T_i|\}$ and

$$\begin{cases} x_0 = 0, x_{N+1} = 1, \\ x_i = \frac{2}{3} x_{i-\frac{1}{2}} + \frac{1}{3} x_{i+\frac{1}{3}} \end{cases}$$

Continue similar process, we have result:

$$u(x_{i+1}) - u(x_i) = u_x(x_{i+\frac{1}{2}})(x_{i+1} - x_i) + \left((x_{i+1} - x_{i+\frac{1}{2}})^2 - (x_i - x_{i+\frac{1}{2}}) \frac{u_{xx}(x_{i+\frac{1}{2}})}{2} + O(h^3) \right)$$
(Eq1.13)

Because $x_{i+\frac{1}{2}}$ is not midpoint of $[x_i, x_{i+1}]$ then

$$u_x(x_{i+\frac{1}{2}}) = \frac{u(x_{i+1}) - u(x_i)}{x_{i+1} - x_i} + O(h)$$

We also have the approximate of the term $u_x(x_{i+\frac{1}{2}})$ is:

$$u_x(x_{i+\frac{1}{2}}) = \frac{u(x_{i+1}) - u(x_i)}{|D_{i+\frac{1}{2}}|}$$
 (Eq1.14)

where $D_{i+\frac{1}{2}} = x_{i+1} - x_i$.

It is the only difference of two problem 1.1 and 1.2, we imply to the same the result:

$$AU = F$$

where $A \in \mathbb{R}^N \times \mathbb{R}^N$, $U, F \in \mathbb{R}^N$ satisfy:

$$\begin{bmatrix} \beta_{1} & \gamma_{1} & 0 & \dots & 0 & 0 & 0 \\ \alpha_{2} & \beta_{2} & \gamma_{2} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\ 0 & 0 & 0 & \dots & 0 & \alpha_{N} & \beta_{N} \end{bmatrix}$$
 (Matrix A.2)

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix}$$
 (cellU.2)

$$F = \begin{bmatrix} f_1 - a\alpha_1 \\ f_2 \\ \ddots f_{N-1} \\ f_N - \beta\gamma_N \end{bmatrix}$$
 (cellF.2)

We can prove that (Matrix A.2) is invertible matrix so there is only one roof $(u_i)_{i=\overline{1,N}}$.

Now we use problem 1 of 1.a:

We set up with following exact solution u and function f

$$\begin{cases} u(x) = x^4 + 2x^3 - 10x^2 + 2\\ f(x) = -(12x^2 + 12x - 20) \end{cases}$$

And use $u_{i+\frac{1}{2}}=x_i+\left(1-\cos\left(\frac{\pi i}{2N}\right)\right)(x_{i+1}-x_i)$ we have graphics of Error and Discrete Solution:

Figure 15: Error of Problem 1 - Question 1d.

Figure 16: Approximate solution of Problem 1 - Question 1d.

Problem 2

Neumann boundary condition

2.1. Introduction

We use FVM to solve this equation

$$u_{xx}''(x) = f(x), x \in \Omega(x)$$
 (Eq2.1)

with boundary condition:

$$u'(0) = 0 (Condition 1)$$

$$u'(1) = 0 (Condition 2)$$

necessary condition

$$\int_{\Omega} f(x)dx = 0$$
 (necessary)

and condition to determine unique solution

$$\int_{\Omega} f(x)dx = 0$$
 (unique solution)

We only consider case of the control point is the mid point of each control volume $x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}$.

2.2. Mesh

Let us choose N+1 points $\{x_{i+\frac{1}{2}}\}_{i=\overline{0,N}}$ in [0,1] such that:

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \ldots < x_{N+\frac{1}{2}} = 1$$

We set $T_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], |T_i| = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \forall i \in \overline{1, N}, h = \max_{i \in \overline{1, N}} \{|T_i|\}$ and

$$\begin{cases} x_0 = 0, x_{N+1} = 1, \\ x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2} \end{cases}$$

2.3. Scheme

Now, use similar process of Dirichlet condition, we also have the scheme for cell-center finite volume method:

$$\begin{cases} \alpha_{i}u_{i-1} + \beta_{i}u_{i} + \gamma_{i}u_{i+1} = f_{i}, \forall i = \overline{1, N}, \\ u'(0) = 0, \\ u'(1) = 1 \end{cases}$$
 (Eq2.2)

Two below equation can be discretized into:

$$\frac{x_1 - x_0}{\left| D_{\frac{1}{2}} \right|} = 0$$
 and $\frac{x_{N+1} - x_N}{\left| D_{N+\frac{1}{2}} \right|} = 0$

$$\Leftrightarrow x_0 = x_1 \text{ and } x_N = x_{N+1}$$

And condition to determine (unique solution) is discretized into:

$$\sum_{i=1}^{N} |T_i| u_i = 0$$

Now we have:

$$\alpha_i u_{i-1} + \beta_i u_i + \gamma_i u_{i+1} = f_i, \forall i = \overline{1, N}$$
 (Eq2.3)

$$\begin{cases} u_0 = u_1 \\ u_N = u_{N+1} \end{cases}$$
 (Eq2.4)

$$\sum_{i=1}^{N} |T_i| u_i = 0 (Eq2.5)$$

Thus, there are N+3 equations and but only N+2 unknowns. However, the set of equations (Eq2.3) and (Eq2.4) are not independent.

We have:

$$\sum_{i=1}^{N} \left[-\frac{x_{i+1} - u_i}{\left| D - i + \frac{1}{2} \right|} + \frac{x_i - x_{i-1}}{\left| D_{i-\frac{1}{2}} \right|} \right] = \sum_{i=1}^{N} |T_i| f_i$$

$$\frac{x_{N+1} - x_N}{\left| D_{N+\frac{1}{2}} \right|} + \frac{x_1 - x_0}{\left| D_{\frac{1}{2}} \right|} = \sum_{i=1}^N |T_i| \frac{1}{|T_i|} \int_{T_i} f(x) dx$$

It is very to see that two side of above equation is vanished by $a_1 = a_0$, $a_N = a_{N+1}$ and $\int_{\Omega} f(x) dx$. Now we have 2 case:

2.4. Numerical experiments

2.4.1. Case of regular grid

In case of regular grid with control point be the mid point of each control volume $x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}$. It implies that $T_1 = T_2 = \dots = T_N$, so we have:

$$\sum_{i=1}^{N} u_i = 0$$

$$\Rightarrow u_N = -(u_1 + u_2 + \dots + u_{N-1})$$

In conclusion, we have a system of N equations and N unknowns:

$$\begin{cases} i = 1 : -\gamma_1 u_1 + \gamma_1 u_2 & = f_1 \\ i = 2 : \alpha_2 u_1 + \beta_2 u_2 + \gamma_2 u_3 & = f_2 \\ i = 2 : \alpha_3 u_2 + \beta_3 u_3 + \gamma_3 u_4 & = f_2 \\ \vdots & \vdots & \vdots \\ i = N - 1 : \alpha_{N-1} u_{N-2} + \beta_{N-1} u_{N-1} + \gamma_{N-1} u_N = f_{N-1} \\ i = N : \alpha_N u_1 + \alpha_N u_2 + \alpha_N u_3 + \dots + \alpha_N u_{N-2} + 2\alpha_N u_{N-1} & = f_N \end{cases}$$

And we can write under form of matrix:

$$AU = F$$

where $A \in \mathbb{R}^N \times \mathbb{R}^N$, $U, F \in \mathbb{R}^N$ satisfy:

$$\begin{bmatrix} -\gamma_{1} & \gamma_{1} & 0 & 0 & \dots & 0 & 0 & 0 \\ \alpha_{2} & \beta_{2} & \gamma_{2} & 0 & \dots & 0 & 0 & 0 \\ 0 & \alpha_{3} & \beta_{3} & \gamma_{3} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & 0 & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\ \alpha_{N} & \alpha_{N} & \alpha_{N} & \alpha_{N} & \dots & \alpha_{N} & 2\alpha_{N} & 0 \end{bmatrix}$$
(Matrix A.3)

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \\ u_{N+1} \end{bmatrix}$$
 (cellU.3)

$$F = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{N-1} \\ f_N \\ f_{N+1} \end{bmatrix}$$
 (cellF.3)

We can prove that (Matrix A.3) is invertible matrix so there is only one roof $(u_i)_{i=\overline{1.N}}$.

Now we see graphics of exact and approximate solution with a problem

We set up with following exact solution u and function f

$$\begin{cases} u(x) = \frac{-x^3}{3} + \frac{x^2}{2} - \frac{1}{12} \\ f(x) = 2x - 1 \end{cases}$$

Figure 17: Error for Neumann boundary condition - Regular grid

Figure 18: Approximate solution for Neumann boundary condition - Regular grid

2.4.2. Case of singular grid

In case of singular grid with control point be the mid point of each control volume $x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}$. We have a system of N+2 equations:

$$AU = F$$

where $A \in \mathbb{R}^N \times \mathbb{R}^N$, $U, F \in \mathbb{R}^N$ satisfy:

$$\begin{bmatrix} -\gamma_{1} & \gamma_{1} & 0 & \dots & 0 & 0 & 0 & 0 \\ \alpha_{2} & \beta_{2} & \gamma_{2} & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & \alpha_{N} & \beta_{N} & \gamma_{N} \\ T_{1} & T_{2} & T_{3} & \dots & T_{N-2} & T_{N-1} & T_{N} & 0 \end{bmatrix}$$
(Matrix A.3)

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \\ u_{N+1} \end{bmatrix}$$
 (cellU.2)

$$F = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{N-1} \\ f_N \\ f_{N+1} \end{bmatrix}$$
 (cellF.2)

We can prove that (Matrix A.2) is invertible matrix so there is only one roof $(u_i)_{i=\overline{1,N}}$.

Now we see graphics of exact and approximate solution with some problems

We set up with following exact solution u and function f

$$\begin{cases} u(x) = \frac{-x^3}{3} + \frac{x^2}{2} - \frac{1}{12} \\ f(x) = 2x - 1 \end{cases}$$

Figure 19: Error for Neumann boundary condition - Singular grid

Figure 20: Approximate solution - Singular grid