

IN THE CLAIMS

Please cancel Claims 24 and 25 without prejudice or disclaimer.

Please amend Claims 3, 4, 5, 6, 8, and 31 as follows.

For the Examiner's convenience, all pending claims are listed below. Attached hereto is a marked-up version of the changes made to the claims by the current amendment. The attached page is captioned "VERSION WITH MARKINGS TO SHOW CHANGES MADE."

3. (Twice Amended) An isolated polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NO:1.

4. (Twice Amended) The isolated polynucleotide of claim 3 comprising the polynucleotide sequence of SEQ ID NO:9.

5. (Once Amended) A recombinant polynucleotide comprising a promoter sequence operably linked to the polynucleotide of claim 3.

6. (Once Amended) A cell transformed with the recombinant polynucleotide of claim 5.

8. (Twice Amended) A method for producing the polypeptide encoded by the polynucleotide of claim 3, the method comprising:

- a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to the polynucleotide of claim 3, and
- b) recovering the polypeptide so expressed.

10. (As Once Amended) An isolated polynucleotide selected from the group consisting of:

- a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-16,
- b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 70% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-16,
- c) a polynucleotide completely complementary to a polynucleotide of a),
- d) a polynucleotide completely complementary to a polynucleotide of b), and
- e) an RNA equivalent of a)-d).

11. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 10.

12. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:

- a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and
- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

13. A method of claim 12, wherein the probe comprises at least 30 contiguous nucleotides.

14. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.

23. (As Once Amended) A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 4, the method comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
- b) detecting altered expression of the target polynucleotide, and
- c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

26. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

27. A method of assessing toxicity of a test compound, the method comprising:

- a) treating a biological sample containing nucleic acids with the test compound,
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 10 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 10 or fragment thereof,
- c) quantifying the amount of hybridization complex, and
- d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

28. (As Once Amended) A microarray wherein at least one element of the microarray is a polynucleotide of claim 11.

29. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising:

- a) labeling the polynucleotides of the sample,
- b) contacting the elements of the microarray of claim 28 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and
- c) quantifying the expression of the polynucleotides in the sample.

30. (As Once Amended) An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises an oligonucleotide or polynucleotide sequence completely complementary to at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 10.

31. (Once Amended) An isolated polynucleotide selected from the group consisting of:

- a) a polynucleotide comprising the polynucleotide sequence of SEQ ID NO:9,
- b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 80% identical to the polynucleotide sequence of SEQ ID NO:9 over the entire length of SEQ ID NO:9,
- c) a polynucleotide completely complementary to a polynucleotide of a),
- d) a polynucleotide completely complementary to a polynucleotide of b), and
- e) an RNA equivalent of a)-d).

32. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 31, the method comprising:

- a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample,

and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and

- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

33. A method of claim 32, wherein the probe comprises at least 30 contiguous nucleotides.

34. A method of claim 32, wherein the probe comprises at least 60 contiguous nucleotides.

35. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 31, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

36. A method of assessing toxicity of a test compound, the method comprising:

- a) treating a biological sample containing nucleic acids with the test compound,
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 31 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 31,
- c) quantifying the amount of hybridization complex, and
- d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample,

Docket No.: PF-0678 US

wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.