D&P Exercise V.1.6b

Peter Mao

March 22, 2021

Prove that if $x \otimes y = u \otimes v$, then for some $a \in \mathbb{R}$, x = au and ay = v.

Proof. Let $\{b_i, i = 1 \dots m\}$ be a basis for vector space X and $\{c_j, j = 1 \dots n\}$ be a basis for vector space Y. Let $x, y \in X$ and $y, v \in Y$ such that $x \otimes y = u \otimes v$.

In the given bases, the given relationship between the vectors is the Einstein double sum

$$x^i y^j \boldsymbol{b}_i \otimes \boldsymbol{c}_j = u^i v^j \boldsymbol{b}_i \otimes \boldsymbol{c}_j.$$

Without loss of generality, let us assume that $x^1y^1 \neq 0$, so $u^1v^1 \neq 0$; therefore, there is a nonzero scalar $a \in \mathbb{R}$ such that $x^1 = au^1$, which then forces the relationship $ay^1 = v^1$. In fact, for every $j = 1 \dots n$, we know that $ay^j = v^j$.

Similarly, $ay^1 = v^1 \Rightarrow x^i = au^i$ for all $i = 1 \dots m$.

Thus, x = au and ay = v.