Binary Search Trees Paul Medvedev Paul Medvedev Binary Search Trees Implementation Keep pointers to parent and both children Each NODE has Fifty pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports comparisons)	Algorithms and Data Structures		
Paul Medvedev Binary Search Trees Binary tree: every node has 0, 1 or 2 children BST property: If y is in left subtree of x, then key[y] <= key[x] If y is in right subtree of x, then key[y] >= key[x] If y is in right subtree of x, then key[y] >= key[x] You have the sub	CMPSC 465		
Binary Search Trees • Binary tree: every node has 0, 1 or 2 children • BST property: • If y is in left subtree of x, then key[y] <= key[x] • If y is in right subtree of x, then key[y] >= key[x] **The subtraction of the subtree of x and x figur C transment frame.** Implementation • Keep pointers to parent and both children • Each NODE has • left: pointer to NODE • right: pointer to NODE • p: pointer to NODE • p: pointer to NODE • key: real number (or other type that supports	Binary Search Trees		
Binary Search Trees • Binary tree: every node has 0, 1 or 2 children • BST property: • If y is in left subtree of x, then key[y] <= key[x] • If y is in right subtree of x, then key[y] >= key[x] **If y is in right subtree of x, then key[y] >= key[x] **If y is in right subtree of x, then key[y] >= key[x] **Implementation* • Keep pointers to parent and both children • Each NODE has • left: pointer to NODE • right: pointer to NODE • p: pointer to NODE • key: real number (or other type that supports)			
Binary Search Trees • Binary tree: every node has 0, 1 or 2 children • BST property: > If y is in left subtree of x, then key[y] <= key[x] > If y is in right subtree of x, then key[y] >= key[x] The substantial to the fluidadim. 1 tout E Payme E Literary and E Dataset The substantial to the fluidadim. 2 tout E Payme E Literary and E Dataset The substantial tout of the substan			
Binary Search Trees • Binary tree: every node has 0, 1 or 2 children • BST property: > If y is in left subtree of x, then key[y] <= key[x] > If y is in right subtree of x, then key[y] >= key[x] Implementation	Paul Madyaday		
 Binary tree: every node has 0, 1 or 2 children BST property: If y is in left subtree of x, then key[y] <= key[x] If y is in right subtree of x, then key[y] >= key[x] Implementation Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 		1	
 Binary tree: every node has 0, 1 or 2 children BST property: If y is in left subtree of x, then key[y] <= key[x] If y is in right subtree of x, then key[y] >= key[x] Implementation Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 			
 Binary tree: every node has 0, 1 or 2 children BST property: If y is in left subtree of x, then key[y] <= key[x] If y is in right subtree of x, then key[y] >= key[x] Implementation Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 			
 BST property: If y is in left subtree of x, then key[y] <= key[x] If y is in right subtree of x, then key[y] >= key[x] Implementation Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 			
Implementation • Keep pointers to parent and both children • Each NODE has > left: pointer to NODE > right: pointer to NODE > p: pointer to NODE > key: real number (or other type that supports	 BST property: If y is in left subtree of x, then key[y] <= key[x] 		
Implementation • Keep pointers to parent and both children • Each NODE has • left: pointer to NODE • right: pointer to NODE • p: pointer to NODE • key: real number (or other type that supports			
Implementation • Keep pointers to parent and both children • Each NODE has • left: pointer to NODE • right: pointer to NODE • p: pointer to NODE • key: real number (or other type that supports	1) 8 6) 7)		
 Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 	Based on tildes by S. Rushkodokieva, A. Smith, E. Wayne, C. Leiserson and E. Domaine.	2	
 Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 			
 Keep pointers to parent and both children Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 			
 Each NODE has left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 	Implementation		
 left: pointer to NODE right: pointer to NODE p: pointer to NODE key: real number (or other type that supports 			
▶ p: pointer to NODE▶ key: real number (or other type that supports	> left: pointer to NODE		
	> p: pointer to NODE		

Drawing BST's

- To help you visualize relationships:
 Drop vertical lines to keep nodes in right order
- For example: picture shows the only legal location to insert a node with key 4

Based on slides by S. Raskhodnikova, A. Smith, K. Wayne, C. Leiserson and E. Demaine.

Height of a BST can be...

- ... as little as log(n)full balanced tree
- ... as much as *n*-1 ➤ unbalanced tree

Based on slides by S. Raskhodnikova, A. Smith, K. Wayne, C. Leiserson and E. Demaine.

Searching a BST

TREE-SEARCH(x,k)

if x == NIL or k == key[x]

return x

if k < x.key

return TREE-SEARCH(x.left, k)

else return TREE-SEARCH(x.right, k)

Initial call is TREE-SEARCH(T.root, k).

• Running time: Θ(height)

Insertion

```
TREE-INSERT (T, z)

y = \text{NIL}

x = T.root

while x \neq \text{NIL}

y = x

if z, key < x, key

x = x. left

else x = x. right

z, p = y

if y = \text{NIL}

T.root = z

elsei Tz, key < y, key

y. left = z

else y. right = z
```

- Find location of insertion, keep track of parent during search
- Running time: Θ(height)

Based on slides by S. Raskhodníkova, A. Smith, K. Wayne, C. Leiserson and E. Demaine.

/

Tree Min and Max

TREE-MINIMUM(x)

while x. left \neq NIL x = x. left

return xTREE-MAXIMUM(x)

while x. right \neq NIL

x = x.right

 $\mathbf{return}\ x$

• Running time: Θ(height)

8

Deletion

 $\begin{aligned} & \text{TRANSPLANT}(T, u, v) \\ & \text{if } u, p = \text{NIL} \\ & T. root = v \\ & \text{elseff } u = \text{u.p.left} \\ & u.p.left = v \\ & \text{else } u.p.ripht = v \\ & \text{if } v \neq \text{NIL} \\ & v.p = u.p \end{aligned}$

 Running time: Θ(height)

```
TREE-DELETE(T, z)

if z.lefl = NIL

TRANSPLANT(T, z, z.right)  // z has no left child

elseft z.right = NIL

TRANSPLANT(T, z, z.left)  // z has just a left child

else // z has two children.

y = TREE-MINIMUM(z.right)  // y is z's successor

if y, p \neq z.

// y lies within z's right subtree but is not the root of this subtree.

TRANSPLANT(T, y, y, right)

y.right = z.right

y.right = z.left

y.left = z.left

y.left = z.left

y.left = y.
```

zsed on slides by S. Raskhodnikova, A. Smith, K. Wayne, C. Leiserson and E. Demain

.

T	C	_
ı ree	Successo	11

```
TREE-SUCCESSOR(x)

if x.right \neq NIL

return TREE-MINIMUM(x.right)

y = x.p

while y \neq NIL and x == y.right

x = y

y = y.p

return y
```

• Running time: Θ(height)

sed on slides by S. Raskhodnikova, A. Smith, K. Wayne, C. Leiserson and E. Demaine.

10

Traversals (not just for BSTs)

- Traversal: an algorithm that visits every node in the tree to perform some operation, e.g.,
 - > Printing the keys
 - > Updating some part of the structure
- 3 basic traversals for trees
 - > Inorder
 - > Preorder
 - > Postorder

ed on slides by S. Raskhodnikova, A. Smith, K. Wayne, C. Leiserson and E. Demaine.

11

Inorder traversal

INORDER-TREE-WALK (x)if $x \neq \text{NIL}$ INORDER-TREE-WALK (x.left)print key[x]INORDER-TREE-WALK (x.right)

• Running time: $\Theta(n)$

ed on slides by S. Raskhodnikova, A. Smith, K. Wayne, C. Leiserson and E. Dema.

12

Postorder traversal	
Write pseudocode that computes	13
Preorder Traversal	
 Recall that insertion order affects the shape of a BST insertion in sorted order: height n-1 random order: height O(log n) with high probability (we leave out proof) Write pseudocode that prints the elements of a binary search tree in a plausible insertion order that is, an insertion order that would produce this particular shape (print nodes in a preorder traversal) 	14
Exercise on insertion order	
Exercise: Write pseudocode that takes a sorted list and produces a "good" insertion order (that would produce a balanced tree)	
Resed on thides by S. Rashholakirou, A. Smith, E. Wayne, C. Leiserson and E. Domaine.	15