Sub-Group: A-7 Experiment 5: Study of 555 Timer IC

Sayan Karmakar 22MS163

1 Aim:

Study of 555 Timer IC as Astable multivibrator with different frequency.

2 Theory:

Pin Functions:

- 1. **Trigger Input:** When it is less than $V_S/3$ it makes the output high V_S . It monitors the discharging of timing capacitor in a table circuit.
- 2. Threshold Input: When it is greater than $2V_S/3$, it makes the output low (0 V). But this only happens if the trigger input is more than $V_S/3$. If the trigger input is low then it forces the output to be high. This input monitors the charging of time capacitor in a table and monostable circuit.
- 3. **Reset Input:** When it is less than 0.7 V, it makes the output low(0 V), overriding other inputs. When it is unnecessary it should be connected to the source voltage.
- 4. Control Input: If there is a need to change the threshold voltage which is normally set to $2V_S/3$, usually this is connected to 0 V with a very low capacitor of 0.01 μ F to avoid electrical noise.
- 5. Discharge Pin:

2.1 555/556 Astable Circuit:

Time period (T) of the square wave is the time for one complete cycle. And frequency (f) of the wave is no. of complete cycles per second.

$$T = 0.7(R_1 + 2R_2)C_1$$
$$f = \frac{1.4}{(R_1 + 2R_2)C_1}$$

Time period can be split into two part, when the output is high, **mark time** (T_m) and when the output is low, **space time** (T_s) .

$$T_m = 0.7(R_1 + R_2)C_1$$
$$T_s = 0.7R_2C_1$$

3 Data and Analysis

Table 1: Experimental and Theoretical Time Constants

$C_1(\mu F)$	R_1	R_2	$f_{\rm theo}({ m kHz})$	$T_m(\mu s)$	$T_s(ps)$	T(ps)	$f_{\text{expt}}(\text{kHz})$ Error(%)
0.001	1	10	6.667×10^{1}	9.5	8.5	1.8×10^{1}	5.556×10^{1} 16.67
0.001	10	100	6.667	8.4×10^{1}	7.4×10^1	1.58×10^{2}	6.329 5.06
0.001	100	1000	6.667×10^{-1}	7.8×10^{2}	7.0×10^{2}	1.480×10^3	6.757×10^{-1} 1.35
0.01	1	10	6.667	7.6×10^{1}	7.0×10^{1}	1.46×10^{2}	6.849 2.74
0.01	10	100	6.667×10^{-1}	8.2×10^{2}	7.8×10^{2}	1.600×10^3	6.250×10^{-1} 6.25
0.01	100	1000	6.667×10^{-2}	8.4×10^{3}	7.6×10^{3}	1.600×10^4	6.250×10^{-2} 6.25
0.1	1	10	6.667×10^{-1}	6.4×10^{2}	6.0×10^{2}	1.280×10^3	7.813×10^{-1} 17.19
0.1	10	100	6.667×10^{-2}	7.2×10^{3}	6.8×10^{3}	1.400×10^4	7.143×10^{-2} 7.14
0.1	100	1000	6.667×10^{-3}	7.4×10^4	7.0×10^{4}	1.440×10^{5}	6.944×10^{-3} 4.16
1	1	10	6.667×10^{-2}	7.0×10^{3}	6.4×10^{3}	1.340×10^4	7.463×10^{-2} 11.94
1	10	100	6.667×10^{-3}	7.2×10^{4}	6.6×10^4	1.380×10^{5}	7.246×10^{-3} 8.69
1	100	1000	6.667×10^{-4}	7.0×10^{5}	6.4×10^{5}	1.340×10^6	7.463×10^{-4} 11.90
10	1	10	6.667×10^{-3}	7.4×10^4	6.8×10^{4}	1.420×10^5	7.042×10^{-3} 5.63
10	10	100	6.667×10^{-4}	8.0×10^{5}	7.2×10^{5}	1.520×10^5	6.579×10^{-4} 1.30
10	100	1000	6.667×10^{-5}	7.5×10^6	6.0×10^{6}	1.350×10^7	7.407×10^{-5} 11.00