ENSAYO N° 12

ENSAYO DE UN VENTILADOR RADIAL.

1.- Objetivo.

Determinar el comportamiento de un ventilador radial.

2.- Trabajo de laboratorio.

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

* P _{e4}	presi	ón diferencial	$[mm_{H2}]$	o]
* nx	velo	cidad del ventilador	[rpm]	
	* t _a	temperatura ambiente		$[^{\circ}C]$
	* t_{d}	temperatura de descarga		$[^{\circ}C]$
	$* W_1, W_2$	Potencia eléctrica, método 2	wat.	[kW]

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, [mm_{Hg}], se mide al inicio del ensayo.

3.- Informe.

El informe incluye el número del ensayo, la fecha, el título, los objetivos, enumeración y características de los instrumentos utilizados y los puntos siguientes.

3.1-Tabla de valores medidos.

VALORES MEDIDOS							
nx	P_{e4}	t_a	$t_{ m d}$	\mathbf{W}_1	\mathbf{W}_2	Patm	
rpm	[mm _{H2O}]	[°C]	[°C]	kW	kW	mm_{Hg}	

3.2 Fórmulas

Caudal.

$$q_{vm} = \alpha * s_5 * (\frac{2*P_{e4}}{\rho_{05}})^{\frac{1}{2}} [\frac{m^3}{s}]$$

DATOS					
D_5	D ₅ /D ₄	α			
[mm]	[-]	[-]			
00	00	0.600			
90	0.15	0.6025			
120	0.2	0.604			
180	0.3	0.611			
300	0.5	0.641			

 P_{e4} en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[\frac{m}{S} \right]$$

$$S_1 = 0.070686 \text{ [m2]}$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 [KW]$$

Potencia hidráulica.

$$N_h = q_{vm} * \Delta P [W]$$

Rendimiento global.

$$N_{gl} = \frac{N_h*100}{N_{elec}} [\%]$$

Corregir los valores respecto a la velocidad

3.3 Tabla de valores calculados.

VALORES CALCULADOS						
$q_{\rm vm}$	ΔΡ	V_1	$ ho_{med}$	Ne	Nh	η_{gl}
m ³ /h	Pa	m/s	kg/m ³	kW	kW	%

3.4 Gráficos.

Trace los siguientes gráficos:

- 3.4.1 Curva ΔP -q_{vm}
- 3.4.1.1.¿Qué tipo de ventilador es? Descríbalo con detalle.
- 3.4.1.2.¿Las curvas tiene la forma esperada para ese tipo de ventilador?
- 3.4.2. Curva de potencia eléctrica vs caudal
- 3.4.2.1.¿Cuál es la potencia máxima consumida?
- 3.4.2.2.¿Cuál es su posible potencia en el eje?
- 3.4.3. Curva de rendimiento vs caudal
- 3.4.3.1. ¿Cuál es el punto de óptimo rendimiento?