컴퓨터과학기초

인하공업전문대학 컴퓨터정보과

이수정 교수

차례

Ch.4 논리 게이트

- 7. XOR 게이트
- 8. XNOR게이트
- 9. 정논리와 부논리
- 10. 게이트의 전기적 특성

지난주...

- 논리 게이트와 논리 레벨의 기본 개념 이해
- ▶ 논리 게이트의 동작 원리 및 진리표, 게이트 기호의 이해
- NOT, buffer, AND, OR, NAND, NOR

■ XOR 게이트의 기본 개념(2입력)

- 입력 중 홀수 개의 1이 입력된 경우에 출력은 1, 그렇지 않은 경우에는 출력은 0
- 2입력 XOR 게이트의 경우, 두 개의 입력 중 하나가 1이면 출력이 1, 두 개의 입력 모두 가 0이거나 또는 두 개의 입력 모두가 1이라면 출력은 0

진리표	동작 파형	논리식
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$A 0 0 \boxed{1} 1 0$	$F = A \oplus B = \overline{AB} + A\overline{B}$
0 0 0	B = 0 1 0 1 0	논리 기호
$\begin{array}{c cccc} 0 & 1 & 1 \\ \hline 1 & 0 & 1 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
1 1 0		B— F

■ XOR 게이트의 기본 개념

■ XOR 게이트의 기본 개념(3입력)

	동작 파형	논리식
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1	$F = A \oplus B \oplus C$ 본리 기호 $A \longrightarrow F$

예제 4-8

2입력 XOR 게이트의 한 입력 A에 구형파를 인가하였다. 다른 입력인 B에 0을 인가한 경우와 1을 인가한 경우 각각의 개략적인 출력 파형을 그려 보시오.

(a) 입력 *B*에 0을 인가한 경우

(b) 입력 *B*에 1을 인가한 경우

풀이

- (a) AB = 00이면 F = 0, AB = 10이면 F = 1, 그러므로 출력 F는 입력 A와 같은 파형 출력
- (b) AB = 01이면 F = 1, AB = 11이면 F = 0, 그러므로 출력 F는 입력 A의 반전된 파형 출력

(a) B 입력을 0으로 한 경우

(b) B 입력을 1로 한 경우

예제 4-9

2입력 XOR 게이트 2개를 사용하여 3입력 XOR 게이트를 구성하시오.

풀이

	입력	출	력	
A	В	C	1	F
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

■ XNOR 게이트의 기본 개념(2입력)

• 입력 중 짝수 개의 1이 입력될 때 출력이 1이 되고, 그렇지 않은 경우에는 출력은 0이 된다.

• 출력값은 XOR 게이트에 NOT 게이트를 연결한 것이므로 XOR 게이트와 반대이다.

• 2입력 XNOR 게이트의 경우 두 개의 입력이 다를 때 출력이 0이 되고, 두 개의 입력이 같으면 출

력은 1이 된다.

진리표	동작 파형	논리식
A B F 0 0 1 0 1 0 1 0 0 1 1 1	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \\ F & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$	$F = \overline{AB} + AB$ $= \overline{A \oplus B}$ $= A \odot B$
논리 기호	$A \longrightarrow F$ $B \longrightarrow F$	$A \rightarrow F$

■ XNOR 게이트의 기본 개념(3입력)

진리표						
\overline{A}	В	C	F			
0	0	0	1			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	0			
1	0	1	1			
1	1	0	1			
1	1	1	0			

$$C \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

논리식

$$F = \overline{A \oplus B \oplus C}$$
$$= A \odot B \odot C$$

논리 기호

IC 74266 핀 배치도

9. 정논리와 부논리

■ 논리 개념

전압레벨	정논리	부논리
+5V	High=1	High=0
0V	Low=0	Low=1

■ 정논리 AND = 부논리 OR

7	전압레팀	벨	정논리 AND			부논리 OR			
A	В	F	A	В	F		A	В	F
L	L	L	0	0	0		1	1	1
L	H	$\mid L \mid$	0	1	0		1	0	1
H	L	$\mid L \mid$	1	0	0		0	1	1
H	Н	H	1	1	1		00	0	0

9. 정논리와 부논리

■ 정논리 NAND = 부논리 NOR

Շ	선압레팀	벨	정논리 NAND			부논리 NOR			
A	В	$oxed{F}$	A	В	F	A	В	F	
L	L	H	0	0	1	1	1	0	
L	H	H	0	1	1	1	0	0	
H	L	H	1	0	1	0	1	0	
$_H$	Н	$oxedsymbol{L}$	1	1	0	0	0	1	

☞ 표현 방법이 다를 뿐 실제로 정논리와 부논리는 논리적으로는 같다.

9. 정논리와 부논리

■ 정논리와 부논리간의 게이트 대응

* 버블(bubble): NOT 게이트를 간단하게 표 현하는 동그라미 모양 의 기호

전파지연시간

• 신호가 입력되어서 출력될 때까지의 시간을 말함. 게이트의 동작 속도

전력소모

• 게이트가 동작할 때 소모되는 전력량

잡음여유도

• 최대로 허용된 잡음 마진

팬-아웃

- 한 게이트의 출력으로부터 다른 여러 개의 입력들로 공급되는 전류
- 정상적인 동작으로 하나의 출력이 최대 몇 개의 입력으로 연결되는가를 나타냄

1) 전파지연시간(gate propagation delay time)

• 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작 속도를 나타낸다.

- t_{PLH} : propagation delay time from low to high
- $t_{P\!H\!L}$: propagation delay time from high to low
- t_{PLH} 와 t_{PHL} 은 입력이 50%가 될 때부터 출력이 50%가 될 때까지를 측정

■ 주요 디지털 IC 계열별 특성표

	t _{PHL} (max) [ns]	t _{PLH} (max) [ns]	V _{OH} (min) [V]	$V_{OL} \ ({ m max}) \ [{ m V}]$	V _{IH} (min) [V]	V_{IL} (max) [V]	I _{OH} (max) [mA]	<i>I_{OL}</i> (max) [mA]	I _{IH} (max) [μΑ]	I _{IL} (max) [mA]
7400	22	15	2.4	0.4	2	0.8	-0.4	16	40	-1.6
74S00	4.5	5	2.7	0.5	2	0.8	-1	20	50	-2
74LS00	15	15	2.7	0.4	2	0.8	-0.4	8	20	-0.4
74ALS00	11	8	3	0.4	2	0.8	-0.4	8	20	-0.1
74F00	5	4.3	2.5	0.5	2	0.8	-1	20	20	-0.6
74HC00	23	23	3.84	0.33	3.15	0.9	-4	4		
74AC00	8	6.5	4.4	0.1	3.15	1.35	-75	75		
74ACT00	9	7	4.4	0.1	2	0.8	-75	75		

 t_{PHL} : L에서 H로 변할 때의 전파지연시간

 t_{PLH} : H에서 L로 변할 때의 전파지연시간

 V_{OH} : 논리 레벨 H일 때 출력전압

 $V_{\mathcal{O}_{\mathcal{L}}}$: 논리 레벨 L일 때 출력전압

 $V_{\prime\prime\prime}$: 논리 레벨 H일 때 입력전압

 $V_{\prime\prime}$: 논리 레벨 L일 때 입력전압

I_{OH}, I_{OL}, I_{IH}, I_{IL}: 위와 같을 때 전류

예제 4-11

게이트 X의 t_{PHL} 은 5ns이며, t_{PLH} 는 4.5ns이다. 게이트 Y의 t_{PHL} 는 8ns이며, t_{PLH} 는 7.5ns이다. 각 게이트의 전파지연시간을 계산하고, 어느 게이트가 더 높은 주파수에서 동작하는지 설명하여라.

 \exists 이 게이트 X와 Y의 전파지연시간을 계산하면 다음과 같다.

- 게이트 *X*의 전파지연시간 : 5ns + 4.5ns = 9.5ns
- 게이트 *Y*의 전파지연시간 : 8ns + 7.5ns = 15.5ns

동작 가능한 최대 주파수는 전파지연시간의 역수이므로 게이트 X가 더 높은 주파수에서 동작함을 알 수 있다.

- 게이트 *X*의 최대 동작 주파수 : 1 / 9.5ns = 105.26MHz
- 게이트 *Y*의 최대 동작 주파수: 1 / 15.5ns = 64.52MHz

2) 전력소모(power dissipation)

• 게이트가 동작할 때 소모되는 전력

$$P_{CC} = V_{CC} \times I_{CC}$$

3) 잡음여유도(noise margin)

• 디지털 회로에서 데이터의 값에 변경을 주지 않는 범위 내에서 최대로 허용된 Noise Margin을 의미

<입출력 전압 범위>

- 4) 팬-인(fan-in)과 팬-아웃(fan-out)
 - 팬-인: 1개의 게이트에 입력으로 접속할 수 있는 단수
 - 팬-아웃: 1개의 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력단의 수

7) IC 계열별 특징

- 디지털 IC: TTL (Transistor-Transistor Logic),
 CMOS (Complementary Metal Oxide Semiconductor)
- TTL: BJT와 Diode로 구성
- CMOS: NMOS와 PMOS FET로 구성
 - CMOS의 장점: TTL에 비해 소비전력이 적고 사용 전압 범위가 넓다.
 - CMOS의 단점: TTL에 비해서 속도가 떨어진다.
 - 고속의 CMOS IC가 개발되어 TTL과 비슷한 보급 성향을 보이고 있다.

■ TTL과 CMOS 특성 비교

구분	TTL	CMOS
전원전압	4.75~5.25V	종래형 : 3~8V, 고속형 : 2~6V
논리레벨 전압(Low)	0~0.8V	1~1/3 <i>V</i> _{DD}
논리레벨 전압(High)	2.4~5.0V	2/3~V _{DD}
팬-아웃	10개	50개
소비전력	10mW	10μW
최대 동작주파수	LS형: 45MHz, ALS형: 100MHz	종래형 : 2MHz, 고속형 : 45MHz
형태	74LSxx, 74ALSxx, 74Fxx, 74ASxx	40xxx, 14xxx, 74HCxxx
잡음 여유도(V)	2.4V	3V
장단점	 전파지연시간이 짧다. 소비전력이 크다. 잡음 여유도가 작다. 온도에 따라 threshold 전압이 크게 변한다. 	 소비전력이 작다. 낮은 전압에서 동작한다. 잡음 여유도가 크다. 구조가 간단하여 집적화가 쉽다. 전원 전압 범위가 넓다. 정전 파괴가 쉽다.

■ TTL/CMOS Family 이름 규칙

제조회사

SN: Texas Instrument

MC: Motorola

DM: National Semiconductor

IM : Intersil N : Signetics

MM: Monolithic Memories

P : Intel

H : Harries

F : Fairchild

AM: Advanced Micro Devices

CD:RCA

HD : Hitach

DN/MN : Mitsubishi

MB : Fujitsu

TC: Toshiba

HY: Hyundai

GD : GoldStar

K-: Samsung

시리즈명

MC74F00N XXAA9321

74 : TTL

40 : CMOS

회로타입

패키지 외형 N : Plastic DIP J : Ceramic DIP

W: Flat Pack

기능에 따른 고유번호

S: High Speed Schottky

L: Low Power

LS : Low Power Schottky

H: High Spees

F : Fast

HC: High Speed CMOS(CMOS compatible)

HCT: High Speed CMOS TTL(LS TTL compatible)

AC: Advanced

AS: Advanced Schottky

ALS: Advanced Low Power Schottky

차례

Ch.5 불 대수

- 1. 논리식의 기본 표현
- 2. 불대수법칙
- 3. 논리회로의 논리식 변환
- 4. 논리식의 회로 구성

1. 기본 논리식의 표현

- 기본적인 불 대수(Boolean Algebra)식은 AND, OR, NOT을 이용하여 표현
- AND식은 곱셈의 형식으로 표현하고, OR 식은 덧셈의 형식으로 표현
- NOT식은 A 또는 A'로 표현
- 완전한 논리식은 입력 항목들의 상태에 따른 출력을 결정하는 식

A=0 and B=1 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{A}B$$

A=0 or B=1 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{A} + B$$

(A=0 and B=1) or (A=1 and B=0) 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{A}B + A\overline{B}$$

1. 기본 논리식의 표현

■1입력 논리식, 2입력 논리식, 3입력 논리식

1입력	논리식	2	입력 논	-리식		l식		
입력	출력	입	력	출력		입력		출력
A	F	A	В	F	A	В	C	F
0	$F = \overline{A}$	0	0	$F = \overline{A}\overline{B}$	0	0	0	$F = \overline{A} \overline{B} \overline{C}$
1	F = A	0	1	$F = \overline{A}B$	0	0	1	$F = \overline{A} \overline{B} C$
		1	0	$F = A\overline{B}$	0	1	0	$F = \overline{A}B\overline{C}$
		1	1	F = AB	0	1	1	$F = \overline{A}BC$
					1	0	0	$F = A\overline{B}\overline{C}$
					1	0	1	$F = A\overline{B}C$
					1	1	0	$F = AB\overline{C}$
					1	1	1	F = ABC

- 2입력 논리식 예

- 3입력 논리식 예

입	력	출력
A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

A=0 또는 B=0일 때, 1을 출력하는 논리식

A=1이거나 (B=0이고 C=1)일때,

1을 출력하는 논리식

 $F = A + \overline{B} C$

 $F = \overline{A} + \overline{B}$

Λ.			
	_		
		п	
001		и	
	L.		
		ч	
-		я	
~			
	_		
	ĸ.		
000	,		
	۲.	1	
		я	
~			
4.1			
	_		
	_		
		я	
		л	
	L.		
	×		
	B	9	
w	ıβ	10	
-			
m.			
	•		
ات	0		
	т.		
000			
0000	0	19	
	L.		
6.1			
	г.,		
-			
	, a	л	
ο.			
	_		
-	ы.		
•			
	6		
_			
	~		
о.			
	м		
	•		
~	v.		
	•		
	ш		
	ø		
10.7			
•			
0000	81		
	ΠÜ		
	ш		
0	ø		
	rii)		
- 1	и		
	ø		
10			
000			
-			
10.7			
•			
w			

	입력						출력
A	В	C	A=1	\overline{B}	C	$\overline{B} C$	$A + \overline{B}C$
0	0	0		1			0
0	0	1		1	1	1	1
0	1	0					0
0	1	1			1		0
1	0	0	1	1			1
1	0	1	1	1	1	1	1
1	1	0	1				1
1	1	1	1		1		1

물 대수 공리(Boolean Algebra Axioms)

• 불 대수의 모든 항은 0 또는 1을 가짐

P1	A = 0 or A = 1
P2	$0 \cdot 0 = 0$
P3	$1 \cdot 1 = 1$
P4	0 + 0 = 0
P5	1 + 1 = 1
P6	$1 \cdot 0 = 0 \cdot 1 = 0$
P7	1 + 0 = 0 + 1 = 1

■불 대수 법칙

기본법칙

1. A+0=0+A=A	2. $A \cdot 1 = 1 \cdot A = A$	3. <i>A</i> +1=1+ <i>A</i> =1
4. $A \cdot 0 = 0 \cdot A = 0$	5. <i>A</i> + <i>A</i> = <i>A</i>	$6. A \cdot A = A$
$\overline{7}$. $A + \overline{A} = 1$	$8. A \cdot \overline{A} = 0$	= $A = A$

교환법칙(commutative law)

10.
$$A+B=B+A$$

11. AB=BA

결합법칙(associate law)

12.
$$(A + B) + C = A + (B + C)$$

13.
$$(AB) C = A (BC)$$

분배법칙(distributive law)

14.
$$A(B+C) = AB + AC$$

15.
$$A + BC = (A+B)(A+C)$$

드모르간의 정리(De Morgan's theorem)

1	A .	n	4 D
In	$A \perp$	κ –	AR
10.	/ 1	D-	I L D

$$17.\overline{AB} = \overline{A} + \overline{B}$$

흡수 법칙(absorptive law)

18.
$$A + AB = A$$

19.
$$A(A+B) = A$$

합의의 정리(consensus theorem)

$$20. AB + BC + \overline{AC} = AB + \overline{AC}$$

21.
$$(A+B)(B+C)(\overline{A}+C) = (A+B)(\overline{A}+C)$$

• 쌍대성(duality) : 불 대수 공리나 기본 법칙에서 좌우 한 쌍에서 0과 1을 서로 바꾸고 동시에 '•' 과 '+'를 서로 바꾸면 다른 한 쪽이 얻어지는 성질

■ 진리표를 이용한 분배 법칙 A+BC=(A+B)(A+C)의 증명

A B C	좌측식		우측식		
n b c	$B \cdot C$	$A+B\cdot C$	A+B	A+C	(A+B)(A+C)
0 0 0	0	0	0	0	0
0 0 1	0	0	0	1	0
0 1 0	0	0	1	0	0
0 1 1	1	1	1	1	1
1 0 0	0	1	1	1	1
1 0 1	0	1	1	1	1
1 1 0	0	1	1	1	1
1 1 1	1	1	1	1	1
		^			<u> </u>

-동일한결과

■ 진리표를 이용한 드모르간의 정리 증명

A	В	A+B	좌측식		우측식
11	D	7112	$\overline{A+B}$	A B	$\overline{A} \cdot \overline{B}$
0	0	0	1	1 1	1
0	1	1	0	1 0	0
1	0	1	0	0 1	0
1	1	1	0	0 0	0

■ 드모르간 정리의 일반식

3항 드모르간 정리	$\overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$ $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$
4항 드모르간 정리	$\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ $\overline{A \cdot B \cdot C \cdot D} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$
일반식	$\overline{A_1 + A_2 + A_3 + \dots + A_n} = \overline{A_1} \overline{A_2} \overline{A_3} \dots \overline{A_n}$ $\overline{A_1} \overline{A_2} \overline{A_3} \dots \overline{A_n} = \overline{A_1} + \overline{A_2} + \overline{A_3} + \dots + \overline{A_n}$

■ 드모르간의 정리 예제

$$\overline{\overline{A+B}+C} = \overline{\overline{(A+B)}}\overline{C} = (A+B)\overline{C} = A\overline{C} + B\overline{C}$$

$$\overline{\overline{\overline{A} + B} + \overline{C \cdot D}} = \overline{\overline{\overline{A} + B}} \cdot \overline{\overline{C \cdot D}} = (\overline{A} + B)CD = \overline{A}CD + BCD$$

$$\overline{(A+B)\cdot \overline{C}\cdot \overline{D} + E + \overline{F}} = \overline{(A+B)\cdot \overline{C}\cdot \overline{D}}\cdot \overline{E}\cdot \overline{F} = (\overline{A+B} + \overline{C} + \overline{D})\cdot \overline{E}\cdot F$$
$$= (\overline{A}\cdot \overline{B} + C + D)\cdot \overline{E}\cdot F = \overline{A}\overline{B}\overline{E}F + C\overline{E}F + D\overline{E}F$$

$$\overline{\overline{AB}(CD + \overline{E}F)(\overline{AB} + \overline{CD})} = \overline{\overline{AB}} + \overline{(CD + \overline{E}F)} + \overline{(\overline{AB} + \overline{CD})}$$

$$= AB + (\overline{CD}\overline{\overline{E}F}) + \overline{\overline{AB}CD}$$

$$= AB + (\overline{C} + \overline{D})(E + \overline{F}) + ABCD$$

$$= AB + \overline{C}E + \overline{C}\overline{F} + \overline{D}E + \overline{D}\overline{F} + ABCD$$

3. 논리회로의 논리식 변환

●원래의 회로에 게이트를 거칠 때마다 게이트의 출력을 적어 주면서 한 단계씩 출력 쪽으로 나아가면 된다.

3. 논리회로의 논리식 변환

4. 논리식의 회로 구성

■ AND, OR, NOT을 이용하여 논리식으로부터 회로를 구성 (AND-OR로 구성된 회로)

$$F = \bar{A}B + A\bar{B} + BC$$

NOT 게이트 사용

4. 논리식의 회로 구성

▶ 논리식의 2가지 기본 형태

4. 논리식의 회로 구성

