Geometria różniczkowa

Lista 2

1. Niech $\Sigma \subset \mathbf{R}^3$ jest immersjonowaną powierzchnią i niech $p \in \Sigma$. Pokaż, że istnieje izometria $\psi \colon \mathbf{R}^3 \to \mathbf{R}^3$ taka, że $\psi(p) = 0$, $T_0\psi(\Sigma) = Lin\{\partial x, \partial y\}$ i $\psi(\Sigma)$ w otoczeniu 0 wyraża się wykresem funkcji postaci

$$z = \frac{1}{2}ax^2 + \frac{1}{2}by^2 + o(x^3 + y^3).$$

- 2. Niech n będzie polem wektorów normalnych na $\Sigma \subset \mathbf{R}^3$ i niech $p \in \Sigma$. Definiujemy odwzorowanie kształtu $S \colon T_p\Sigma \to T_p\Sigma$ wzorem $S(X) = -D_X(n), X \in T_p\Sigma$. Pokaż, że:
 - S jest dobrze określone, tzn. $S(X) \in T_p\Sigma$.
 - Jeżeli p=0 i Σ jest reprezentowana jak powyżej, to w bazie $\partial x, \partial y$ macierz odwzorowania S jest diagonalna z wartościami własnymi a oraz b. Wywnioskuj, że K=det(S).
- 3. Zbadaj, czy krzywizna Gaussa powierzchni opisanej parametrycznie $\{(r\cos(z),r\sin(z),z)\mid r,z\in\mathbf{R}\}$ jest zerowa.
- 4. Krzywą $\{(x, f(x), 0)\}$ obracamy w \mathbb{R}^3 wokół osi OX. Policz krzywiznę Gaussa powstałej powierzchni obrotowej. Uzasadnij, że "tworzące" tej powierzchni (krzywe będące obrazami wyjściowej przez obroty) są styczne do jednego z kierunków głównych.
- 5. Podobnie jak w poprzednim zadaniu obracamy krzywą wokół osi OX, ale tym razem parametryzujemy ją długością łuku: $\gamma(t) = (f(t), g(t), 0), f'(t)^2 + g'(t)^2 = 1$. Uzasadnij, że wtedy K = -g''/g. Korzystając z tego wzoru opisz powierzchnie obrotowe o krzywiźnie -1, 0, 1.
- 6. Sprawdź, że powierzchnie $P(s,t) = (s\cos t, s\sin t, \log s)$ i $Q(s,t) = (s\cos t, s\sin t, t)$ mają w P(s,t) i Q(s,t) równe krzywizny Gaussa, mimo że $Q(s,t) \mapsto P(s,t)$ nie jest lokalną izometrią. Postaraj się pokazać, że nie istnieje izometria pomiędzy obrazami P i Q.
- 7. Uzasadnij, że każda zwarta powierzchnia w \mathbb{R}^3 ma punkt o dodatniej krzywiźnie Gaussa.
- 8. Udowodnij, że w \mathbf{R}^3 nie ma zwartych powierzchni o krzywiźnie średniej 0.
- 9. Niech $\gamma \colon (a,b) \to \mathbf{R}^3$ będzie krzywą, taką że $\gamma'(t)$ i $\gamma''(t)$ są dla każdego t liniowo niezależne. Określmy $\Gamma \colon (a,b) \times (\mathbf{R} \setminus \{0\}) \to \mathbf{R}^3$ wzorem $\Gamma(t,s) = \gamma(t) + s\gamma'(t)$ (opisz ten przepis słowami). Pokaż, że Γ jest immersją, a krzywizna Gaussa (obrazu) Γ wynosi 0. Powierzchnie tej postaci nazywamy stycznościowo rozwijalnymi.
- 10. (Lemat Hilberta) Jeśli $k_1(p) > k_2(p)$, przy czym k_1 ma maksimum w p, a k_2 ma minimum w p, to $K(p) \leq 0$.
 - Niech (X,Y) będzie reperem ortonormalnym kierunków głównych na otoczeniu p $(SX = k_1X, SY = k_2Y)$. Niech $\nabla_X Y = aX$, $\nabla_Y X = bY$ dla pewnych funkcji a,b. Wylicz, że $K = -X(b) Y(a) (a^2 + b^2)$. Wsk: theorema egregium.
 - Użyj równań Codazziego i warunków $X_p(X(b)) \ge 0, \ Y_p(Y(a)) \le 0$ by pokazać, że $X_p(b) \ge 0, \ Y_p(a) \ge 0.$
- 11. (Tw. Liebmanna) Spójna zwarta powierzchnia w \mathbb{R}^3 o stałej krzywiźnie Gaussa jest sferą.
- 12. (Tw. Hilberta) Nie ma zupełnych powierzchni $M \le \mathbb{R}^3$ o stałej K = -1.
 - W otoczeniu każdego punktu takiej powierzchni istnieje sieć Czebyszewa: immersja $g: (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \to M$, taka że wszystkie krzywe postaci $x \mapsto g(x,y)$ i $y \mapsto g(x,y)$ są sparametryzowane długością łuku a ich wektory styczne są izotropowe względem drugiej formy podstawowej (X jest izotropowy, jeżeli II(X,X)=0).
 - Istnieje sieć Czebyszewa $g \colon \mathbf{R}^2 \to M$. Tu należy użyć zupełności.
 - Niech $\omega(x,y)$ oznacza kąt między wektorami $Dg(\partial_x),\,Dg(\partial_y)$ w $T_{g(x,y)}M$ (tak więc $\omega\colon\mathbf{R}^2\to(0,\pi)$); wtedy $\frac{\partial^2\omega}{\partial x\,\partial y}=(-K)\sin\omega$.
 - Nie istnieje funkcja $\omega \colon \mathbf{R}^2 \to (0,\pi)$ spełniająca równanie $\frac{\partial^2 \omega}{\partial x \, \partial y} = \sin \omega$.