PARTE A

1. La funzione
$$f(x)=\begin{cases} [x] & \text{per } x<1/2\\ \frac{x^2}{2}-\frac{x}{2}+a & \text{per } x\geq 1/2 \end{cases}$$
 è derivabile in $x_0=1/2$ per

A: $a = k\pi$ B: $a \in \mathbb{R}$ C: mai D: N.A. E: a = 1/8

2. Dato $\alpha > 0$ la serie

$$\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n^2}} - e^{-\frac{1}{n^2}}}{n^{\alpha}}$$

converge per

A: N.A. B: $\alpha > 0$ C: $1 < \alpha$ D: $\alpha = 2$ E: $\alpha \le 1$

3. Inf, min, sup e max dell'insieme

$$A = \{1 + \frac{2n}{n^2 + 1} \ n \in \mathbb{N}, \ n \ge 1\}$$

valgono

A: N.A. B: $\{1, N.E., 2, N.E.\}$ C: $\{2, N.E., +\infty, N.E.\}$ D: $\{1, 1, 2, 2\}$ E: $\{1, N.E., 2, 2\}$

4. Sia y la soluzione del problema di Cauchy $y'(x) = \frac{\sin(x)\cos(x)}{y(x)}, \ y(\pi/4) = 1$. Allora $y'(\pi/4)$ vale

A:
$$\frac{\sqrt{3-2\cos^2(x)}}{\sqrt{2}}$$
 B: 0 C: N.A. D: 1/2 E: N.E.

5. L'integrale

$$\int_{1}^{e} \log(x^2) \, dx$$

vale

A:
$$\sqrt{e} - 1$$
 B: $2/e$ C: 2 D: 0 E: N.A.

6. Per $w=1+i\pi$, modulo e argomento del numero complesso $z=\mathrm{e}^w$ valgono

A:
$$(e, \pi)$$
 B: $(e^2, \pi/2)$ C: $(e, \pi/2)$ D: $(1, \pi)$ E: N.A.

7. Il limite $\lim_{n \to +\infty} \int_n^{n+1} \frac{x}{x+1} \, dx$ vale

8. La retta tangente al grafico di $y(x) = x \log(x)$ nel punto $x_0 = 1/e$ vale

A:
$$-\frac{1}{e} + \frac{1}{2}e\left(x - \frac{1}{e}\right)^2$$
 B: $1 + x + x^2$ C: $\frac{1}{e} + \frac{1}{2}e\left(x - \frac{1}{e}\right)^2$ D: $-\frac{1}{e} + \frac{1}{2}e\left(x - \frac{1}{e}\right)$ E: N.A.

9. Il limite

$$\lim_{x \to 0^{-}} \frac{e^{x} - 1 - \sin(x^{3})}{\sin(x)}$$

vale

A: 0 B: N.E. C:
$$+\infty$$
 D: N.A. E: 1

10. Data $f(x) = \log |\sin^3(x)|$. Allora $f'(\pi/4)$ è uguale a

A: N.A. B: 3e C:
$$\log(3\sin^2(\pi/4))$$
 D: $3\tan(1)$ E: 3

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

9 giugno 2014

(Cognome)										_	(Nome)									_	(Numero di matricola)													

CODICE = 661479

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

9 giugno 2014

PARTE B

1. Studiare, l'immagine della funzione

$$f(x) = \frac{\left| e^{x^2 + 1} - 3 \right|}{e^{x^2}}$$

Soluzione: Per prima cosa osserviamo che la funzione f(x) è pari, $f(x) \ge 0$ e f(x) = 0 solo per $x = \pm \sqrt{\log(\frac{3}{e})}$. Inoltre

$$f(x) = \begin{cases} \frac{e^{x^2 + 1} - 3}{e^{x^2}} & \text{per } |x| \ge \sqrt{\log(\frac{3}{e})} \\ -\frac{e^{x^2 + 1} - 3}{e^{x^2}} & \text{per } |x| < \sqrt{\log(\frac{3}{e})} \end{cases}$$

pertanto

$$f'(x) = \begin{cases} 2ex - 2e^{-x^2} \left(-3 + e^{x^2 + 1} \right) x & \text{per } |x| > \sqrt{\log(\frac{3}{e})} \\ -2ex + 2e^{-x^2} \left(-3 + e^{x^2 + 1} \right) x & \text{per } |x| < \sqrt{\log(\frac{3}{e})} \end{cases}$$

f'(x)=0 se e solo se x=0. Inoltre la funzione non risulta derivabile in $x=\pm\sqrt{\log(\frac{3}{e})}$. Inoltre la funzione risulta essere decrescente per $0< x<\sqrt{\log(\frac{3}{e})}$ e crescente per $x>\sqrt{\log(\frac{3}{e})}$. Si ha pertanto un punto massimo locale per x=0, dove f(0)=3-e, mentre si hanno due punti di minimo assoluto per $x=\pm\sqrt{\log(\frac{3}{e})}$, dove la funzione si annulla ma non è derivabile. L'estremo superiore della funzione (ma non massimo assoluto) si ha agli estremi del dominio, e

$$e = \lim_{x \to \pm \infty} \frac{\left| e^{x^2 + 1} - 3 \right|}{e^{x^2}}$$

2. Trovare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{\sin^2(x)\cos(x)}{y(x)} \\ y(\pi/4) = 1 \end{cases}$$

Figura 1: Grafico di $f(x) = \frac{\left|\mathrm{e}^{x^2+1}-3\right|}{\mathrm{e}^{x^2}}$

Soluzione: Con separazione delle variabili si ottiene direttamente $\int y dy = \int \sin^2(x) \cos(x) dx$, da cui

$$y^2 = \frac{2}{3}\sin^3(x) + c.$$

Dato che $y(\pi/4) = \frac{\sqrt{2}}{2} > 0$, solo la soluzione positiva della radice ha significato e imponendo la condizione iniziale si trova subito

$$y(x) = \frac{\sqrt{4\sin^3(x) - \sqrt{2} + 6}}{\sqrt{6}}$$

3. Studiare il limite

$$\lim_{z \to +\infty} \frac{1}{z} \int_z^{z^2} \frac{x+1}{x^2+1}$$

Soluzione: Con calcoli espliciti (dato che l'integrando è una funzione razionale)

$$\frac{1}{z} \int_{z}^{z^{2}} \frac{x+1}{x^{2}+1} = \frac{\log(z^{4}+1) - \log(z^{2}+1) + 2\arctan(z^{2}) - 2\arctan(z)}{2z},$$

e pertanto, con i limiti notevoli, dato che il logaritmo cresce meno di ogni potenza di z, per $z\to +\infty$

$$\lim_{z\to +\infty}\frac{\log\left(z^4+1\right)-\log\left(z^2+1\right)+2\arctan\left(z^2\right)-2\arctan(z)}{2z}=0.$$

4. Dimostrare che se f''(x) < 0 per ogni $x \in [a, b]$ e se f(a) < 0 e f(b) > 0, allora esiste uno e uno solo $x_0 \in]a, b[$, tale che $f(x_0) = 0$.

Soluzione: Se per assurdo esistessero $a < x_1 < x_2 < b$ tali che $f(x_1) = f(x_2) = 0$, allora per il teorema di Rolle esisterebbe $x_1 < \xi < x_2$ tale the $f'(\xi) = 0$. Essendo la funzione concava il punto ξ sarebbe di massimo assoluto e inoltre f'(x) < 0 in tutto l'intervallo ξ . Quindi la funzione sarebbe strettamente descrescente a destra di ξ ed essendo $f(x_2) = 0$ si avrebbe l'assurdo che

$$0 = f(x_2) > f(b) > 0.$$