Advanced Product Mapping

Yihao Fang, Ph.D.

December 16th, 2024

Context and Objective

Context:

- Stakeholder manages convenience-store-like markets, receiving weekly supplier shipments.
- Two datasets involved:
 - Internal Product List (stakeholder's)
 - External Product List (suppliers')

Objective:

- Replace slow, manual mapping of product lists with an intelligent, automated system.
- Ensure exact matches based on:
 - Manufacturer
 - Name
 - Size
- Integrate prompt engineering into the solution.

Examples and Challenge

- Examples:
 - Correct Match:
 - External: DIET LIPTON GREEN TEA W/ CITRUS 20 OZ
 - Internal: Lipton Diet Green Tea with Citrus (20oz)
 - Wrong Match:
 - External: Hersheys Almond Milk Choco 1.6 oz
 - Internal: Hersheys Milk Chocolate with Almonds (1.85oz)

- Key Challenge:
 - Designing a robust solution to minimize manual effort while maintaining high accuracy in product mapping.

Comparison of BM25-Llama 3.2 vs. ChatGPT o1-mini Approaches

BM25 Retriever + Llama 3.2 (Open Source)

- Strengths:
 - Cost-efficient solution with no usage-based fees.
 - Combines advanced NLP techniques:
 - BM25 retrieval for candidate selection.
 - Llama 3.2 LLM with few-shot prompting and chainof-thought reasoning for accuracy and interpretability.
 - Employs self-consistency voting for reliable results.
 - Output aggregated using a map-reduce-style framework for structured summaries.
- Weaknesses:
 - Higher setup complexity requiring custom pipelines.

ChatGPT o1-mini (Proprietary)

- Strengths:
 - Simplifies complex tasks with intuitive workflows.
 - Leverages ChatGPT's reasoning and language capabilities:
 - Iterative refinement for accurate and scalable results.
 - Prompt engineering reduces reliance on custom algorithms.
 - Faster deployment with reduced implementation complexity.
- Weaknesses:
 - Higher cost compared to open-source solutions.
 - Limited customizability.

Leveraging SentencePiece, BM25, and LLaMA for Accurate Product Matching

- Techniques Used:
 - SentencePiece Subword Encoding
 - BM25 Retrieval Model
 - LLaMA 3.2 Large Language Model
 - Few-shot Prompting
 - Chain-of-Thought Reasoning
 - Self-Consistency with Majority Voting
- Objective:
 - To accurately map external product names to internal product names using a robust, explainable, and efficient pipeline.

Product Mapping Pipeline: Key Components

Diagram:

- Input Data
 - External and Internal Product Lists
- Tokenization
 - Normalize product names using SentencePiece BPE subword encoding.
- Candidate Retrieval
 - Use BM25 Retrieval Model to rank and retrieve the top-K internal product candidates for each external product.
- Matching via LLaMA
 - Employ the LLaMA 3.2 model with few-shot prompting and chain-of-thought reasoning to evaluate matches.
- Output:
 - Raw Pairwise Mapping (detailed results)
 - Aggregated Mapping (final decisions)

Enhancing Accuracy Through Self-Consistency

• Key Points:

- LLM Probabilistic Nature:
 - Single model generations may produce inconsistent results.
- Self-Consistency with Majority Voting:
 - Generate multiple responses for each input using LLaMA 3.2.
 - Compare responses and select the most frequent (mode) result.

Aggregation Process:

- Map-Reduce Workflow:
 - Raw results recorded in a comprehensive mapping matrix.
 - Aggregated results summarize external-to-internal mappings with final decisions.

Outcome:

 Improved accuracy and reliability at the cost of higher compute.

Results

Outputs:

- Detailed Pairwise Mapping (mapping_raw.csv)
- Aggregated Final Results (mapping_aggr.csv)

External_Product	Internal_Product
CELSIUS PEACH VIBE 12 OZ	Celsius Sparkling Peach Vibe (12oz)
DOVE BAR DARK CHOC 1.44 OZ	Dove Dark Chocolate Bar (1.44oz)
FAIRLIFE 2% STRAWBERRY MILK 14 OZ	Fairlife 2% Ultra Filtered Strawberry Milk (14oz)
HY Hersheys Milk Chocolate w Almonds 1.45oz Each	Hersheys Milk Chocolate with Almonds (1.45oz)
***	•••

Simplifying Real-World Tasks with ChatGPT o1 Family

- Leveraging the reasoning capabilities of ChatGPT o1 models.
- Tackling complex workflows with simplicity and scalability.
- Achieving robust results through iterative and parallel processing.

Breaking Down the Problem

Objective:

 Match external and internal product lists and refine results into a coalesced final table.

Challenges:

- Large datasets with potential inconsistencies.
- Need for accuracy and scalability.

Solution:

- Divide tasks into smaller chunks.
- Use ChatGPT o1-mini for reasoning and decisionmaking via prompt engineering.

Simplified Workflow with ChatGPT

- Step 1: Matching
 - Generate multiple outputs for each chunk using ChatGPT.
 - Use majority voting to determine the most consistent results.
- Step 2: Coalescing
 - Combine intermediate results iteratively.
 - ChatGPT merges results by prioritizing non-NULL values and outputs the final table.
- Parallel Processing:
 - Both steps executed efficiently with multithreading to handle large datasets.

Why ChatGPT o1 Family?

- Simplifies Complexity:
 - Replaces intricate logic with straightforward AI-driven decisions.
 - Clear prompts guide reasoning and output consistency.
- Highly Scalable:
 - Multithreading efficiently processes large datasets.
- Robust and Accurate:
 - Majority voting ensures self-consistency.
 - Coalescing merges results systematically, prioritizing data integrity.
- Flexible and Intuitive:
 - Adaptable to different datasets and tasks with minor adjustments.

Takeaways

- BM25-Llama 3.2: Best for cost-sensitive, customizable applications requiring advanced interpretability.
- ChatGPT o1 family: Ideal for quick, scalable deployment with minimal development effort.