1

Estacionaridade

Prof. Renzo Flores-Ortiz

Estacionaridade

- Uma série temporal é considerada estacionária quando suas propriedades estatísticas (como a média e a variância) permanecem constantes ao longo do tempo.
- Em outras palavras, as propriedades estatísticas de um segmento da série são muito semelhantes às propriedades estatísticas de outros segmentos da série, indicando estabilidade ao longo do tempo.

Por que a estacionaridade é importante?

- Muitos métodos e modelos clássicos de séries temporais (como os modelos ARMA e ARIMA) assumem que os dados são estacionários.
- Quando essa suposição não é satisfeita, os modelos podem produzir previsões e estimativas estatísticas pouco confiáveis.
- Por isso, ao trabalhar com séries não estacionárias, é necessário aplicar transformações (como a diferenciação) para torná-las estacionárias antes da modelagem.

Condições para classificar uma série temporal como estacionária

- **Média constante**: O valor médio da série não varia ao longo do tempo.
- 2. Variância constante: A dispersão dos dados em torno da média permanece constante ao longo do tempo.
- 3. Autocovariância depende apenas da defasagem (lag): a relação entre dois pontos depende apenas da distância temporal entre eles (lag), e não do momento específico no tempo. Em outras palavras, a autocovariância entre dois pontos com a mesma defasagem é a mesma, independentemente de quando ocorre.

• Esse é um exemplo de série temporal estacionária. Trata-se de um ruído branco, caracterizado por média constante ao longo do tempo, variância constante (a amplitude das oscilações não muda) e ausência de tendência ou sazonalidade.

Série temporal com sazonalidade

- É uma série em que há um **padrão que se repete em intervalos regulares de tempo** ou seja, uma variação **periódica e sistemática** que ocorre em intervalos **fixos e conhecidos**.
- Exemplos de séries com sazonalidade:
 - Vendas de sorvete: aumentam no verão e caem no inverno.
 - Consumo de energia: sobe no verão (uso de ar-condicionado) e/ou inverno (uso de aquecimento).
- Observação: Sazonalidade ≠ Ciclicidade
 - Sazonalidade: ocorre com período fixo conhecido (ex.: a cada 12 meses).
 - Ciclicidade: envolve flutuações irregulares, geralmente ligadas à economia ou a fenômenos mais complexos, sem periodicidade fixa.

- A média varia de forma periódica, e a autocovariância entre os pontos da série depende não apenas da defasagem (lag), mas também do momento específico no tempo em que os pontos ocorrem.
- Por exemplo, os valores observados em janeiros sucessivos tendem a ser semelhantes entre si, mas diferem significativamente de meses como julho.
- Isso indica que as propriedades estatísticas da série mudam ao longo do tempo, o que significa que ela não é estacionária.

Como verificar se uma série temporal é estacionária?

Análise visual

Se a série apresenta **tendência** (valores aumentam ou diminuem com o tempo), **sazonalidade** (padrões repetitivos) ou **variação na variância** (flutuações se tornam maiores ou menores ao longo do tempo), provavelmente não é estacionária.

Teste de Dickey-Fuller Aumentado (ADF)

- Hipótese nula: A série não é estacionária.
- Se o p-valor for menor que um nível de significância (ex.: 0,05), rejeitamos a hipótese nula e consideramos a série estacionária.

Teste KPSS (Kwiatkowski-Phillips-Schmidt-Shin)

- Hipótese nula: A série é estacionária.
- Se o p-valor for pequeno, rejeitamos a hipótese e concluímos que a série não é estacionária.
- Decomposição de série temporal: separar uma série em partes tendência, sazonalidade e ruído
 para entender melhor os dados e facilitar a modelagem.

Normalmente, uma série é decomposta em 3 partes:

Tendência (Trend)

Reflete o comportamento de longo prazo no valor médio da série. Pode ser crescente, decrescente ou constante ao longo do tempo.

Sazonalidade (Seasonality)

Corresponde a variações sistemáticas e periódicas que se repetem em intervalos regulares, geralmente associadas a fatores como clima, calendário ou eventos recorrentes. Exemplo: aumento nas vendas em dezembro todos os anos.

Resíduo ou Ruído (Residual / Noise)

Representa a variação aleatória e imprevisível nos dados, que não pode ser explicada pela tendência ou pela sazonalidade. Esse componente reflete o efeito de fatores inesperados ou de natureza estocástica.

Modelos de decomposição

10

 Modelo aditivo: Usado quando os efeitos da tendência e da sazonalidade são constantes ao longo do tempo.

$$Y_t = T_t + S_t + R_t$$

 Modelo multiplicativo: Usado quando os efeitos da tendência e da sazonalidade crescem ou diminuem proporcionalmente com o tempo.

$$Y_t = T_t \times S_t \times R_t$$

 A escolha entre o modelo aditivo e o modelo multiplicativo depende do comportamento sazonal da série. Quando a amplitude da variação sazonal é constante ao longo do tempo, normalmente utiliza-se o modelo aditivo. Já quando a amplitude da sazonalidade aumenta ou diminui conforme a tendência muda, costuma-se utilizar o modelo multiplicativo.

- **Série Aditiva (acima):** a variação sazonal e o ruído são somados à tendência. A amplitude das oscilações permanece constante ao longo do tempo.
- **Série Multiplicativa (abaixo):** a sazonalidade e o ruído são proporcionais à tendência, ou seja, a amplitude aumenta conforme o valor da série cresce.

Série Observada = Tendência + Sazonalidade + Ruído

1. Observed (observado)

Esse é o gráfico da série temporal original (a soma dos componentes abaixo).

Ele mostra variações ao longo do tempo que incluem a tendência de crescimento, padrões sazonais e flutuações aleatórias.

2. Trend (tendência)

Representa o **comportamento de longo prazo** da série. Neste caso, vemos uma tendência crescente — indicando que, ao longo do tempo, os valores médios da série estão subindo.

3. Seasonal (sazonalidade)

 Mostra um padrão que se repete com regularidade — neste caso, com formato de onda que se repete periodicamente.
 O fato de essa linha ser constante ao longo do tempo (mesmo padrão se repetindo) é característico da decomposição aditiva.

→ Isso indica que a amplitude da sazonalidade **não varia com o tempo**, sendo somada à tendência.

4. Random (resíduo/ruído)

 Esse componente capta a variação aleatória que não é explicada pela tendência ou pela sazonalidade. Idealmente, ele deve parecer um "ruído branco" — sem padrão aparente e com média próxima de zero.

Decomposition of multiplicative time series

 $S\'{e}rie\ Observada = Tend\^encia \times Sazonalidade \times Ru\'ido$

1. Observed (observado)

 Mostra a série original, cuja amplitude cresce ao longo do tempo — ou seja, os ciclos sazonais ficam maiores à medida que o valor médio da série aumenta.

Esse é o comportamento típico de uma série **multiplicativa**, onde os efeitos sazonais se intensificam junto com a tendência.

2. Trend (tendência)

 Indica o comportamento de longo prazo da série, que aqui é claramente crescente.
 Serve como a base sobre a qual os outros componentes se multiplicam.

3. Seasonal (sazonalidade)

- Diferente da decomposição aditiva, a sazonalidade aqui oscila em torno de 1 (e não de zero).
- → Isso ocorre porque, no modelo multiplicativo, a sazonalidade representa **proporções ou multiplicadores** por exemplo, 1,1 significa aumento de 10%, enquanto 0,9 indica uma redução de 10%.
- Note que, embora o padrão se repita, a intensidade do efeito sazonal aumenta com a tendência, o que não acontece no modelo aditivo.

4. Random (resíduo/ruído)

 Mostra os desvios não explicados pelos componentes de tendência e sazonalidade.

Assim como no caso aditivo, o ideal é que pareça um ruído aleatório, sem padrão aparente. Aqui, ele também gira em torno de 1, não de zero, por causa do modelo multiplicativo.

Revisitando a pergunta: <u>Como verificar se uma série temporal é estacionária?</u>

- Antes de responder a essa pergunta, é importante entender que, do ponto de vista estatístico, verificar se uma série temporal é estacionária vai além de uma simples análise visual.
- Ao avaliar se uma série temporal é estacionária, o objetivo real é investigar se o processo estocástico que gerou os dados observados possui propriedades estatísticas que permanecem constantes ao longo do tempo.
- Ou seja, a análise da estacionariedade dos dados observados serve como um meio para inferir as características do processo que os originou.

- <u>Processo estocástico (aleatório)</u>: é uma coleção de variáveis aleatórias $\{Y_t\}$, indexadas no tempo.
- Cada variável aleatória Y_t possui uma **distribuição de probabilidade** que descreve os possíveis valores que ela pode assumir e a probabilidade associada a cada valor.
- Quando se observa uma sequência de valores específicos $\{y_t\}$, correspondentes aos valores assumidos pelas variáveis aleatórias Y_t para um mesmo elemento ω do espaço amostral, tem-se uma realização (ou trajetória) do processo estocástico. Essa realização é o que se chama de série temporal observada uma sequência ordenada de dados coletados ao longo do tempo.
- Na prática, o processo estocástico funciona como um modelo teórico (ou uma "máquina" teórica)
 que gera os dados observados: a cada tempo t, é sorteado um valor y_t, como uma realização de Y_t,
 de acordo com sua distribuição de probabilidade.

Quais propriedades estatísticas devem ser constantes para uma série temporal ser considerada estacionária?

- Depende do tipo de estacionaridade.
- Existem dois tipos de estacionaridade, cada tipo requer um conjunto de propriedades estatísticas.
- Tipos de estacionaridade que existem:
 - 1. Estacionaridade forte
 - 2. Estacionaridade fraca

Estacionaridade forte ou estrita

• Uma série temporal $\{Y_t\}$ é fortemente estacionária se a distribuição conjunta de probabilidade de quaisquer subconjuntos de variáveis aleatórias da série não depende do tempo — isto é, as propriedades estatísticas são invariantes a deslocamentos no tempo.

$$(Y_{t_1}, Y_{t_2}, \dots, Y_{t_k}) \stackrel{d}{=} (Y_{t_1+h}, Y_{t_2+h}, \dots, Y_{t_k+h})$$

• Essa condição é mais rigorosa e difícil de verificar na prática, pois exige que todas as propriedades estatísticas da distribuição (média, variância, autocovariância, forma da distribuição, assimetria, curtose, etc.) sejam invariantes no tempo.

Estacionaridade fraca ou de segunda ordem

- Uma série temporal $\{Y_t\}$ é dita fracamente estacionária se satisfaz as seguintes condições:
- 1. $E[Y_t] = \mu$, para todo t.
- Isto é, a **média** da série é constante ao longo do tempo.
- 2. $Var[Y_t] = \sigma^2$, para todo t.
- Isto é, a variância (dispersão dos dados em torno da média) é constante ao longo do tempo.
- 3. A autocovariância entre quaisquer dois pontos depende apenas da defasagem (lag) entre eles, e não do tempo absoluto Em outras palavras, a relação entre quaisquer dois pontos com a mesma defasagem (lag) é a mesma.