BÁO CÁO

Môn: An toàn và Bảo mật thông tin **Chủ đề:** Chữ ký số trong file PDF **Giảng viên:** ThS. Đỗ Duy Cốp

Sinh viên thực hiện: Nguyễn Tiến Thắng

Lóp: 58KTPM

Thời điểm nộp: 31/10/2025

I. MÔ TẢ CHUNG

Báo cáo phân tích và hiện thực việc nhúng, lưu trữ và xác thực chữ ký số trong file PDF. Mục tiêu: trình bày cấu trúc PDF liên quan chữ ký, các vị trí lưu thông tin thời gian ký, trình tự kỹ thuật để tạo/chèn chữ ký PKCS#7 vào PDF (đã có private RSA), và quy trình xác thực chữ ký trên PDF đã ký. Úng dụng tham chiếu: PDF 1.7 / PDF 2.0 (ISO 32000-2) và PAdES (ETSI EN 319 142).

Công cụ thực thi đề xuất: OpenSSL (CA/PKI), iText7 hoặc BouncyCastle (Java/.NET), PyPDF2/pikepdf/reportlab (Python) để thao tác PDF, và openssl/rfc3161token để lấy timestamp.

II. PHÂN TÍCH KỸ THUẬT

1) Cấu trúc PDF liên quan chữ ký (tóm tắt)

Catalog: điểm vào tài liệu. Thông qua /AcroForm có thể truy cập các trường chữ ký.

Pages tree: cây trang. Mỗi **Page object** chứa /Resources, /Contents (content stream) và thông tin vị trí.

Resources: fonts, XObject, v.v.

Content streams: luồng hiển thị nội dung trang.

AcroForm: chứa form-level fields; chữ ký thường là SigField (field type /Sig).

Signature field (widget): object trong AcroForm đại diện cho vị trí hiển thị chữ ký; liên kết tới Signature dictionary.

Signature dictionary (/**Sig**): chứa các khóa quan trọng như /Type, /Filter, /SubFilter, /Contents, /ByteRange, /M, /Name.

/ByteRange: chỉ định các offset trong file PDF để tính băm (loại trừ phần /Contents đã dành sẵn).

/Contents: vùng lưu blob chữ ký PKCS#7 (DER, thường encode hex hoặc binary), kích thước cố định (ví dụ reserve 8192 bytes).

Incremental updates: cơ chế viết thêm (append) ghi chữ ký mà không làm thay đổi nội dung byte gốc trước đó — quan trọng để phát hiện sửa đổi.

DSS (Document Security Store) trong PAdES: vùng lưu chứng chỉ, OCSP/CRL, VRI để hỗ trợ LTV (Long Term Validation).

So đồ object (minh họa)

```
Catalog → Pages → Page → /Contents
Catalog → /AcroForm → SigField → SigDict (/Contents, /ByteRange, /M)
```

Các object refs quan trọng: Catalog (entry point), AcroForm (form-level), SigField (widget), SigDict (signature metadata), ByteRange (hash boundaries), Contents (PKCS#7 blob), DSS (PAdES store).

2) Thời gian ký được lưu ở đâu?

/M trong Signature dictionary: trường text chứa thời điểm ký (ví dụ D:20251024...Z). Không có giá trị pháp lý mạnh vì dễ bị chỉnh sửa (nằm trong phần khả dĩ bị appended nếu attacker tự thêm incremental update).

Timestamp token (RFC 3161): nằm trong PKCS#7 như attribute timeStampToken. Đây là bằng chứng của bên thứ ba (TSA) và mang tính pháp lý hơn vì do TSA đóng dấu bằng khóa riêng của họ.

Document timestamp object (PAdES): PAdES định nghĩa cách nhúng document-level timestamp để chứng thực trạng thái tài liệu tại một thời điểm.

DSS (Document Security Store): có thể lưu timestamp và dữ liệu xác minh kèm OCSP/CRL để hỗ trợ LTV.

Khác biệt chính: /M là metadata nằm trong PDF, có thể bị giả mạo; token RFC3161 là bằng chứng độc lập do TSA ký, khó giả mạo nếu TSA được tin tưởng.

III. QUY TRÌNH TẠO VÀ LƯU CHỮ KÝ TRONG PDF (KHI ĐÃ CÓ PRIVATE RSA)

Mục tiêu: Tạo chữ ký PKCS#7 (detached/CAdES), nhúng vào /Contents bằng incremental update, tuân thủ PAdES nếu cần LTV.

Tóm tắt bước kỹ thuật (phiên bản thực thi)

Chuẩn bị file PDF gốc — original.pdf (không thay đổi nội dung gốc sau khi bắt đầu).

Tạo Signature field (AcroForm) — thêm field widget và reserve vùng trong /Contents (ví dụ 8192 bytes): viết </Contents <0000...>> kích thước cố định.

Xác định /ByteRange — phần offset loại trừ vùng /Contents. Thông thường: /ByteRange [0 < off1> < off2> < off3>].

Tính hash — đọc phần byte theo ByteRange, hash bằng SHA-256 hoặc SHA-512.

Tạo PKCS#7/CMS (detached) hoặc CAdES:

Bao gồm attribute: messageDigest (hash), signingTime, contentType.

Chèn certificate chain (end-entity \rightarrow intermediate \rightarrow ...).

(Tùy chọn) Gửi digest lên TSA để nhận RFC3161 timeStampToken và thêm vào PKCS#7.

Dùng RSA padding: PKCS#1 v1.5 hoặc RSA-PSS (khuyến cáo RSA-PSS nếu hệ thống hỗ trợ).

Chèn blob DER PKCS#7 vào /Contents — đảm bảo kích thước blob ≤ vùng reserve; nếu nhỏ hơn, pad với 6. **Chèn blob DER PKCS#7 vào /Contents** — đảm bảo kích thước blob ≤ vùng reserve; nếu nhỏ hơn, pad với`.

Ghi incremental update — append phần cập nhật vào cuối file PDF, cập nhật xref và trailer mới.

(LTV) Cập nhật DSS — thêm chứng chỉ, OCSP/CRL, và VRI cho phép xác thực dài hạn.

Các thông số quan trọng cần nêu trong báo cáo

Hash alg: SHA-256 hoặc mạnh hơn.

RSA key size: ≥ 2048 -bit (2048, 3072, 4096).

Padding: PKCS#1 v1.5 hoặc RSA-PSS (nêu ưu/nhược).

Vị trí lưu trong PKCS#7: certificate chain trong certs set; messageDigest trong signedAttributes; timeStampToken trong unsignedAttributes (RFC3161 token).

Ví dụ flow OpenSSL (tóm tắt)

Tạo digest file:

openssl dgst -sha256 -binary -out digest.bin data_to_sign.bin

Tạo PKCS#7 (detached signature):

openssl cms -sign -binary -in data_to_sign.bin -signer cert.pem -inkey key.pem -outform DER -nodetach -out sig.der -certfile chain.pem

(TSA) Đặt timestamp (gửi digest tới TSA) và chèn timeStampToken vào unsignedAttributes.

IV. QUY TRÌNH XÁC THỰC CHỮ KÝ TRONG PDF ĐÃ KÝ

Đọc Signature dictionary — trích /Contents (blob PKCS#7) và /ByteRange.

Tách PKCS#7 — kiểm tra cấu trúc DER/PEM, xác định signedAttributes/unsignedAttributes.

Tính hash — tính hash theo ByteRange và so sánh với messageDigest trong signedAttributes.

Verify signature — xác minh chữ ký bằng public key trong chứng chỉ (kiểm tra signedAttributes digest được ký đúng bằng khóa private).

Kiểm tra chain → **root trusted CA** — xây dựng chain từ cert trong PKCS#7; kiểm tra mỗi cert đến root uy tín.

Kiểm tra OCSP/CRL — nếu có OCSP/CRL trong DSS hoặc trong signed data, kiểm tra trạng thái revocation.

Kiếm tra timestamp token (RFC3161) — xác minh token bằng public key của TSA; token chỉ ra thời gian tồn tại chữ ký.

Kiểm tra incremental update — nếu có incremental updates sau chữ ký, xác định thay $\mathring{\text{doi}} \rightarrow \text{báo tampered}$.

Ghi log kiểm thử: cần in ra các bước: ByteRange values, digest hex, messageDigest from PKCS#7, verification result, chain path, OCSP/CRL responses, timestamp token validity.

V. RỦI RO BẢO MẬT & BIỆN PHÁP GIẢM THIỀU

Růi ro chính

Lộ private key: phá võ toàn bộ tính toàn vẹn/không thể phủ nhận.

Padding oracle / side-channel: tấn công vào thuật toán chữ ký (đặc biệt PKCS#1 v1.5).

Replay / timestamp spoofing: sử dụng timestamp giả nếu TSA không tin cậy.

Tampering incremental update: kẻ tấn công thêm nội dung sau chữ ký ở phần incremental update hoặc thay thế xref.

Biện pháp giảm thiểu

Bảo quản private key trên HSM hoặc module an toàn (PKCS#11).

Dùng RSA-PSS nơi khả dụng, giảm rủi ro padding oracle.

Sử dụng RFC3161 TSA đáng tin cậy cho timestamp.

Lưu chứng chỉ & OCSP/CRL vào DSS để hỗ trợ LTV.

Kiểm tra incremental updates trong quá trình verify để phát hiện sửa đổi.