Fisheries data integration: a spatiotemporal SDM framework with the LGNB model

Marie-Christine Rufener

macrufener@gmail.com

Course agenda

- Fisheries data integration
 - Theoretical concepts
 - Developing the LGNB-SDM
 - Case study application

BREAK (10 min?)

- Introduction to Template Model Builder (TMB)
 - Basics of MLE
 - Toy exercise
 - Shifting gears to TMB

BREAK (10 min?)

LGNB-SDM tutorial

Theoretical concepts

How do we know where and how many fish are out there?

Scientific surveys (Fishery-independent)

Commercial fisheries (Fishery-dependent)

How do we know where and how many fish are out there?

Scientific surveys (Fishery-independent)

- <u>Sampling design</u>: systematic and/or stratified random sampling design; standardized fishing gear and fishing effort
- **Spatial coverage**: wide
- <u>Temporal coverage</u>: narrow
- Costs per unit observation: \$\$\$

How do we know where and how many fish are out there?

Commercial fisheries (Fishery-dependent)

- <u>Sampling design</u>: none; multiple fishing gears and fishing efforts
- **Spatial coverage**: narrow
- <u>Temporal coverage</u>: wide
- Costs per unit observation: \$

How do we know where and how many fish are out there?

Métiers

 $A = OTB_DEF_> = 105_1_110$

 $B = OTB_DEF_> = 105_1_120$

 $C = OTB_DEF_90-104_0_0$

 $D = PTB_DEF_> = 105_1_110$

 $E = PTB_DEF_>=105_1_120$

 $F = SDN_DEF_> = 105_1_110$

 $G = SDN_DEF_> = 105_1_120$

H = TVS

How do we know where and how many fish are out there?

How do we know where and how many fish are out there?

How do we know where and how many fish are out there?

How do we know where and how many fish are out there?

Rapid worldwide depletion of predatory fish communities

Ransom A. Myers 2 & Boris Worm

Nature 423, 280–283(2003) | Cite this article

4202 Accesses | 1825 Citations | 207 Altmetric | Metrics

RESEARCH ARTICLE

Impacts of Biodiversity Loss on Ocean Ecosystem Services

Boris Worm^{1,*}, Edward B. Barbier², Nicola Beaumont³, J. Emmett Duffy⁴, Carl Folke^{5,6}, Benjamin S. Halpern⁷, Jeremy ...

+ See all authors and affiliations

Science 03 Nov 2006: Vol. 314, Issue 5800, pp. 787-790 DOI: 10.1126/science.1132294

How do we know where and how many fish are out there?

The Pauly-Hilborn dilemma

Hilborn: https://sustainablefisheries-uw.org/staff/

Pauly: https://europe.oceana.org/en/about-oceana/people-partners/board-directors/drdaniel-pauly

How do we know where and how many fish are out there?

The Pauly-Hilborn dilemma

Hilborn: https://sustainablefisheries-uw.org/staff/

Pauly: https://europe.oceana.org/en/about-oceana/people-partners/board-directors/drdaniel-pauly

$$C = qNE^{\beta}$$

Developing the LGNB model

How can we tackle these differences?

Hierarchical models (point-process models)

How can we tackle these differences?
The LGNB model

Observation process $(Y | \lambda)$

 $Y(s,t) \sim NB(\lambda(s,t), \phi)$

(Log-Gaussian Negative Binomial process – LGNB)

LGNB model can be applied to any type of count data

Nage

Nsize

Cohort(Nage)

How can we tackle these differences? The LGNB model

Survey catch $(Y_{sur} | \lambda)$

Commercial catch $(Y_{com} | \lambda)$

$$log(\mu_i^{SUR}) = log(\lambda(s_i, t_i)) + \sum_{k=1}^{K_{SUR}} \beta_k^{SUR} X_{k,i}^{SUR} + \gamma_i$$

$$log(\mu_i^{COM}) = log(\lambda(s_i, t_i)) + \sum_{k=1}^{K_{COM}} \beta_k^{COM} X_{k,i}^{COM}$$

How can we tackle these differences? The LGNB model

Haul discretization

$$log(\mu_i^{\text{COM}}) = \log(\lambda(s_i, t_i)) + \sum_{k=1}^{K_{\text{COM}}} \beta_k^{\text{COM}} X_{k,i}^{\text{COM}}$$

$$E(Y_j^{COM}|\lambda) = \sum_{i \in I_j} \mu_i^{COM}$$

j = transect

How can we tackle these differences? The LGNB model

$$log(\mu_i^{COM}) = log(\lambda(s_i, t_i)) + \sum_{k=1}^{K_{COM}} \beta_k^{COM} X_{k,i}^{COM}$$

Preferential sampling

$$P(V_i = v_i | \eta) = \frac{\lambda(s_i, t_i)^{\alpha_{f_i}}}{\sum_{s \in G_{f_i}} \lambda(s, t_i)^{\alpha_{f_i}}}$$

v = sampling position

G = spatial grid

f = sampling support area

 $\alpha = 0$: No PS

 $\alpha > 0$: + PS (high density areas)

 α < 0 : - PS (low density areas)

How can we tackle these differences? The LGNB model

$$P(V_i = v_i | \eta) = \frac{\lambda(s_i, t_i)^{\alpha_{f_i}}}{\sum_{s \in G_{f_i}} \lambda(s, t_i)^{\alpha_{f_i}}}$$

Sampling support area (f)

- Cases where no PS occur
 - No α-parameter is estimated (e.g., survey data) -> No sampling support area

- Cases where no PS occur
 - No α-parameter is estimated (e.g., survey data) -> No sampling support area
- Cases where PS occur without temporally varying fishing effort
 - Only one α-parameter is estimated \rightarrow Single sampling support area

- Cases where no PS occur
 - No α-parameter is estimated (e.g., survey data) -> No sampling support area
- Cases where PS occur without temporally varying fishing effort
 - Only one α -parameter is estimated -> Single sampling support area
- Cases where PS occur with temporally varying fishing effort*
 - Multiple α-parameters are estimated -> Multiple sampling support areas

How can we tackle these differences? The LGNB model

Latent process (λ)

(Abundance field)

$$\lambda(s,t) = \exp\left(\sum_{k=1}^{K} \beta_k X_k(s,t) + \xi(s,t)\right)$$

How can we tackle these differences? The LGNB model

$$(\xi(s,t))\sim MVN(\mathbf{0},\boldsymbol{\Sigma})$$

$$\sum = \mathbf{\Sigma}_{S} \otimes \mathbf{\Sigma}_{T} = \begin{pmatrix} s_{11} \mathbf{\Sigma}_{T} & \cdots & s_{1n} \mathbf{\Sigma}_{T} \\ \vdots & \ddots & \vdots \\ s_{n1} \mathbf{\Sigma}_{T} & \cdots & s_{nn} \mathbf{\Sigma}_{T} \end{pmatrix}$$

Separable covariance matrix

How can we tackle these differences? The LGNB model

Temporal correlation (AR1)

$$\Sigma_T(t_1, t_2) = \rho^{|t_1 - t_2|*}$$

How can we tackle these differences? The LGNB model

Spatial correlation (CAR)

$$\mathbf{\Sigma}_{\mathcal{S}} = \mathbf{\Sigma}^{-1} = \mathbf{Q}_{ij} = \begin{cases} -\kappa, & \text{if cell i neighbors cell j} \\ \kappa(m_i + \delta), & \text{if i = j} \\ 0, & \text{otherwise} \end{cases}$$

$$\sigma^2 = \frac{1}{M} tr(\boldsymbol{Q}^{-1}), \qquad H = \frac{h}{\log(1 + \frac{\delta}{2} + \sqrt{\delta + \frac{\delta^2}{4}}}$$

 $\kappa = scale$

 $m_i = No. of neighbors of grid cell$

 $\delta = decorrelation$

M = No. grid cells

 $H = Decorrelation\ range$

h = Grid cell zise

 $\sigma^2 = variance of GRF$

How can we tackle these differences? The LGNB model

Validating the integrated LGNB-SDM

How can we tackle these differences? The LGNB model

Validating the integrated LGNB-SDM

Parameters

1.a Fit the survey model using the L_{SUR} equation and denote the estimates $\hat{\theta}^{(1)}$ and $\hat{\theta}_{SUR}^{(1)}$.

How can we tackle these differences? The LGNB model

Validating the integrated LGNB-SDM

Parameters

- **1.a** Fit the survey model using the L_{SUR} equation and denote the estimates $\hat{\theta}^{(1)}$ and $\hat{\theta}_{SUR}^{(1)}$.
- **2.a** Fit the integrated model using the L_{BOTH} equation and denote the estimates $\hat{\theta}^{(2)}$, $\hat{\theta}_{SUR}^{(2)}$ and $\hat{\theta}_{COM}^{(2)}$.

How can we tackle these differences? The LGNB model

Validating the integrated LGNB-SDM

Parameters

- **1.a** Fit the survey model using the L_{SUR} equation and denote the estimates $\hat{\theta}^{(1)}$ and $\hat{\theta}_{SUR}^{(1)}$.
- **2.a** Fit the integrated model using the L_{BOTH} equation and denote the estimates $\hat{\theta}^{(2)}$, $\hat{\theta}_{SUR}^{(2)}$ and $\hat{\theta}_{COM}^{(2)}$.
- 3.a Check that the second estimates are within the multivariate confidence region based on the first estimates by reporting the p-value $Pr(X \ge x)$ of the statistic

$$x = 2\left(logL_{SUR}\left(\widehat{\boldsymbol{\theta}}^{(1)}, \widehat{\boldsymbol{\theta}}_{SUR}^{(1)}\right) - logL_{SUR}\left(\widehat{\boldsymbol{\theta}}^{(2)}, \widehat{\boldsymbol{\theta}}_{SUR}^{(2)}\right)\right)$$

How can we tackle these differences? The LGNB model

Validating the integrated LGNB-SDM

Random effects

- Using the parameter estimates from (1a) obtain the most probable random effects $\lambda^{(1)}$ by maximizing the integrand of the L_{SUR} equation.
- 2.b Using the parameter estimates from (2a) obtain the most probable random effects $\hat{\lambda}^{(2)}$ by maximizing the integrand of the L_{BOTH} equation.
- Using the logarithm of the integrand of the L_{COM} , report P of $\hat{\lambda}^{(2)}$ being inside the confidence region of $\hat{\lambda}^{(1)}$ using a χ^2 -distribution with dim(λ) degrees of freedom.

Summary

- Point-process model (state-space model w/ spatial component)
 - Any type of count-related data can be modelled
 - Hidden effects on the catch process can be accounted for through structured and unstructured random effects
 - Different sets of covariates can be included in both observation and latent processes
 - Can be applied to only one data source when the other is missing
 - Preferential sampling can be accounted for

Case study application

Case study – WB cod fishery

Bridging the gap between commercial fisheries and survey data to model the spatiotemporal dynamics of marine species*

Marie-Christine Rufener, Kasper Kristensen, J. Rasmus Nielsen, François Bastardie

(Please do not share any figure related to this manuscript)

Case study – WB cod fishery (trawlers) Background

2005-2016

Survey data

- BITS (1st & 4th Quarters)
- 1808 hauls

Commercial data

- On-board observers
- 432 hauls

Case study – WB cod fishery (trawlers)
Background

Survey data

Integrated data (Survey + commercial data)

With and without PS

Case study – WB cod fishery (trawlers) Background

Latent process

$$\lambda(s,t) = \exp\left(\sum_{k=1}^{K} \beta_k X_k(s,t) + \xi(s,t)\right)$$

Time-period (Year-Quarter)

Catch process

$$log(\mu_i^{SUR}) = log(\lambda(s_i, t_i)) + \sum_{k=1}^{K_{SUR}} \beta_k^{SUR} X_{k,i}^{SUR} + \gamma_i$$

- Time-period (Year-Quarter) Fixed eff.
- Ship (2 levels) Fixed. eff.
- Haul duration (h)

$$log(\mu_i^{COM}) = log(\lambda(s_i, t_i)) + \sum_{k=1}^{K_{COM}} \beta_k^{COM} X_{k,i}^{COM}$$

- Time-period (Year-Quarter) Fixed eff.
- Métier (2 levels) Fixed. eff.
- Vessel (80 levels) Random eff.

Case study – WB cod fishery (trawlers) Results

Preferential sampling

Age group	Model	PS (a)	NLL	Npar	χ^2	$Pr > \chi^2$
A2	M_A	-	-22570	110	-	-
	M_{B}	-0.08	-22566	111	7.87	0.005
А3	M _A	-	-21587	110	-	-
	M_{B}	-0.07	-21585	111	4.59	0.032
A4+	M _A	-	-20221	110	-	-
	M _B	1.5	-20080	111	281.41	0

 M_A – model <u>without</u> preferential sampling (PS) correction term M_B – model <u>with</u> preferential sampling (PS) correction term

Case study – WB cod fishery (trawlers)

Results

Random Effects (integrated data)

Validation

(w/ PS)

Case study – WB cod fishery (trawlers)

Results

Validation

(no PS)

Case study – WB cod fishery (trawlers)
Results

Case study – WB cod fishery (trawlers)
Results

Age-3

Spatio-temporal abundance dynamics

Case study – WB cod fishery (trawlers)
Results

Seasonal abundance indices

Case study – WB cod fishery (trawlers) Results

Improvement in parameter estimates

Random effects (spatial & temporal corr.)

Fixed effects (Year-Quarter)

Introduction to Template Model Builder (TMB)

Basics of MLE

How do we estimate things?

How do we estimate things?

- 1) Set-up a model that describes the system of interest (i.e., probability distribution)
 - Function to be used for predictions

How do we estimate things?

- 1) Set-up a model that describes the system of interest (i.e., probability distribution)
 - Function to be used for predictions
- 2) Identify plausible values for the unknown parameters

How do we estimate things?

- 1) Set-up a model that describes the system of interest (i.e., probability distribution)
 - Function to be used for predictions
- 2) Identify plausible values for the unknown parameters

Different ways to estimate!

- 3) Access the uncertainty around the estimated parameters
 - Explore the function around plausible parameter values (parameter space)

The MLE approach

• Consists in finding the optimal parameter values (θ) by maximizing the likelihood (L) of the data (D)

$$L(D|\theta) \approx P(D|\theta)$$

The likelihood of the data given parameter(s) is the probability of the data given parameter(s)

- **Likelihood**: Given the data, we estimate the parameters (i.e., related to possible results)
- **Probability**: Given the parameters, we predict the data (i.e., related to hypotheses)

The MLE approach

• When the data consists of *n* observations *i*, the likelihood is the product of the individual likelihoods

$$L(D|\theta) = L(D_1|\theta) L(D_2|\theta) \dots L(D_n|\theta)$$

The MLE approach

- Problem with multiplication when *n*>>
 - log-transformation

$$L(D|\theta) = L(D_1|\theta) L(D_2|\theta) \dots L(D_n|\theta)$$

$$\log(L(D|\theta)) = \log(L(D_1|\theta)) + \log(L(D_2|\theta)) + \dots + L(D_n|\theta)$$

Joint log Likelihood (JLL)

The MLE approach

Choose parameter values that maximize the likelihood of the data

$$\widehat{\theta} = \underset{\theta}{argmax}_{\theta}(L(y|\theta))$$
MLE of parameter(s)

Maximum value for $L(y|\theta)$ that can be achieved for any value of θ

- $argmax_{\theta}$ is conducted with optimization algorithms
 - Computers like to optimize things by finding the *minimum*, rather the *maximum*

$$\hat{\theta} = \underset{\theta}{argmin_{\theta}}(L(y|\theta))$$

The MLE approach

• The curvature of the JNLL provides an estimate of the maximum likelihood estimator

$$\widehat{\text{var}(\widehat{\theta})} = \left(\frac{\partial^2 L(y|\theta)}{\partial \theta^2} \middle| \theta = \widehat{\theta}\right)^{-1}$$
Hessian matrix

The MLE approach

Profile likelihood

The MLE approach

Profile likelihood & confidence interval

Toy exercise

Simulate data (e.g., CPUE)


```
## Simulate a log-normal distribution

set.seed(123)
nsim <- 1000 #No of observations
mu_log <- 5
sd_log <- 1

df <- data.frame(cpue=rlnorm( n=nsim, mean=mu_log, sd=sd_log))</pre>
```


Likelihood of individual observations

Likelihood of the whole dataset

Profile likelihood

Profile likelihood

Estimate average CPUE

Method 1: Linear model with standard R function

```
# Standard R functions
#~~~~~~~~~~

LM = lm( df$cpue ~ 1 )
summary(LM)
```

Estimation method: Ordinary Least Squares

```
Call:
                                           \mu = 248
lm(formula = df$cpue ~ 1)
                                           \sigma = 313
                                         SE = 9.901
Residuals:
  Min
          10 Median 30 Max
-239.2 -168.9 -98.3 40.4 3545.4
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 248.100 9.902 25.06 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.'
0.1 ' 1
Residual standard error: 313.1 on 999 degrees of
freedom
```


Estimate average CPUE

Method 2: R optimization function

• Steps:

- − 1) Define the joint-negative log-likelihood (JNLL) function
- − 2) Optimize the JNLL function
- 3) Analyze results

Estimate average CPUE

Method 2: R optimization function

1) Define the joint-negative log-likelihood (JNLL) function

```
#### Define JNLL function
JNLL <- function(data, parameters){</pre>
  mu <- parameters[1]</pre>
  sd <- parameters[2]</pre>
  jnll <- 0
  vector_of_likelihoods <- dnorm(data, mu, exp(sd), log=TRUE)</pre>
  jnll <- -1*sum(vector_of_likelihoods)</pre>
  return(jnll)
```

Estimate average CPUE

- Method 2: R optimization function
- 2) Optimize the JNLL function

Estimate average CPUE

Method 2: R optimization function

3) Analyze results

```
> names(Opt_r) #What is contained in the Opt object?
[1] "par" "value" "counts" "convergence" "message" "hessian"
```

```
> Opt_r$par
mu log_sd
248.816195 5.746172
```

```
> Opt_r$value
[1] 7165.047
```


Estimate average CPUE

Method 2: R optimization function

3) Analyze results

```
> Opt_r$hessian

mu log_sd

mu 0.01020817 -0.01461558

log_sd -0.01461558 1999.74940665
```

```
> print(se_optim_r <- sqrt(diag(solve(Opt_r$hessian))))
    mu log_sd
9.8975649 0.0223622</pre>
```


Estimate average CPUE

- Method 2: R optimization function
- 3) Analyze results let's compare with the lm() estimates and raw data

Estimate average CPUE

Method 2: R optimization function

Shifting gears to TMB

After all...what is TMB?

• R-package to fit statistical Latent Variable Models (LVMs)

Kasper Kristensen (DTU)

Anders Nielsen (DTU)

Casper Berg (DTU)

Hans Skaug (UiB)

Brad Bell (UW)

After all...what is TMB?

- Programming language based in R that calculates the likelihood of complex statistical models with the computational speed of **C++**.
- Highly inspired on the Automatic Differentiation Model Builder (ADMB) Rpackage
- Uses **CppAD** (and other libraries) to evaluate 1st and 2nd (and possibly 3rd) order derivatives of an objective function written in **C++**.
- Uses Laplace approximation to integrate out random effects

Why use TMB?

- Rapid computational time
 - Based on C++ language
 - Minimization algorithm uses analytical derivatives

Why use TMB?

- Rapid computational time
 - Based on C++ language
 - Minimization algorithm uses analytical derivatives
- No need to supply the derivatives to be minimized with regards to the parameters
 - Computed automatically using the reverse mode autodifferentiation

Why use TMB?

- Rapid computational time
 - Based on C++ language
 - Minimization algorithm uses analytical derivatives
- No need to supply the derivatives to be minimized with regards to the parameters
 - Computed automatically using the reverse mode autodifferentiation
- Flexibility to implement complex and non-standard models
 - Complex covariance structure
 - Non-linear relationship for parameters
 - Ease to reparametrize parameters
 - Multiple sources of observations, each described by different likelihoods....

TMB workflow

TMB workflow

C++-side

- Set-up data, parameters and derived parameters
- Specify the model
- Define objective function that will be minimized

R-side

- Compile the C++ file
- Define data and parameter inputs
- Link the compiled C++ file to the optimizer
- · Run the model
- Analyze model results

Toy exercise (cont.)

Estimate average CPUE

Method 3: TMB

C++-side:

```
LM.cpp
#include <TMB.hpp>
template<class Type>
                                                  Mandatory for
Type objective_function<Type>::operator() ()
 // Data
 DATA_VECTOR(y_i);
                           Define input data & parameters
 // Parameters
 PARAMETER(mu);
 PARAMETER(log_sd);
 // Objective function & parameter transf.
 Type sd = exp(log sd);
 Type jnll = ∅;
 int n data = y i.size();
 // Probability of data conditional on fixed effect values
 for( int i=0; i<n_data; i++){</pre>
                                                                 Calculate
    inll -= dnorm( y i(i), mu,sd, true );
                                                                the INLL
 // Reporting
  return jnll;
```

TMB hints

• C++-side:

Data macros*	Parameter macros*
DATA_ARRAY()	PARAMETER()
DATA_FACTOR()	PARAMETER_VECTOR()
DATA_MATRIX()	PARAMETER_MATRIX()
DATA_INTEGER()	PARAMETER_ARRAY()
DATA_SCALAR()	
DATA_VECTOR()	
DATA_STRING()	

TMB hints

• C++-side:

```
R code
                           C++/TMB code
Comments
                                                  // Comment symbol
           3.4
                           Type(3.4);
                                                  // Explicit casting recommended in TMB
Constants
Scalar
     x = 5.2
                           Type x = Type(5.2);
                                                  // Variables must have type
                                                  // C++ code here does NOT initialize to 0
                           vector<Type> x(10);
Arrays
           x = numeric(10)
                    x(0)+x(9);
Indexing x[1]+x[10]
                                                  // C++ indexing is zero-based
      // Integer i must be declared in C++
Loops
                                                  // += -= *= /= incremental operators in C++
Increments
          x[1] = x[1] + 3 x(0) += 3.0;
```


TMB workflow

C++-side

- Set-up data, parameters and derived parameters
- Specify the model
- Define objective function that will be minimized

R-side

- Compile the C++ file
- Define data and parameter inputs
- Link the compiled C++ file to the optimizer
- Run the model
- Analyze model results

Estimate average CPUE

Method 3: TMB

TMB_intro.R

• R-side:

```
#### Compile and load the C++ model
compile("LM.cpp")
dyn.load(dynlib("LM"))
#### Create Data and Parameter list
Data <- list("y i" = df$cpue)
Parameters <- list("mu" = ∅, "log_sd"=∅) #set starting values for parameters
#### Construct objective function
Obj <- MakeADFun(data=Data, parameters=Parameters, DLL="LM")</pre>
#### Optimize objective function
Opt tmb = nlminb(start=Obj$par, objective=Obj$fn, gradient=Obj$gr)
```


Estimate average CPUE

Method 3: TMB

Results

TMB_intro.R

```
> Opt_tmb$objective #JNLL
[1] 7165.044
```

Estimate average CPUE

Method 3: TMB

Results

TMB_intro.R

Computation time

Additional stuff

- Additional examples in TMB_intro.R (lm with covariates, and LMM)
- Comprehensive TMB documentation: <u>http://kaskr.github.io/adcomp/_book/Introduction.html</u>

3

LGNB-SDM tutorial

LGNB tutorial

Structure

- LGNB.cpp
- LGNB_Rmodel.R
- Validation_and_Residuals.R
- utilities.R

