8.0 Boundary Scan Test Interface

The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan Architecture (please refer to this standard for an explanation of the terms used in this section and for a description of the TAP controller states.)

8.1 Overview

The boundary-scan interface provides a means of testing the core of the device when it is fitted to a circuit board, and a means of driving and sampling all the external pins of the device irrespective of the core state. This latter function permits testing of both the device's electrical connections to the circuit board, and (in conjunction with other devices on the circuit board having a similar interface) testing the integrity of the circuit board connections between devices. The interface intercepts all external connections within the device, and each such "cell" is then connected together to form a serial register (the boundary scan register). The whole interface is controlled via 5 dedicated pins: TDI, TMS, TCK, nTRST and TDO. Figure 32: Test Access Port (TAP) Controller Sate Transitions shows the state transitions that occur in the TAP controller.

Figure 32: Test Access Port (TAP) Controller Sate Transitions

ARM60 Data Sheet

8.2 Reset

The boundary-scan interface includes a state-machine controller (the TAP controller). In order to force the TAP controller into the correct state after power-up of the device, a reset pulse must be applied to the **nTRST** pin. If the boundary scan interface is to be used, then **nTRST** must be driven LOW, and then HIGH again. If the boundary scan interface is not to be used, then the **nTRST** pin may be tied permanently LOW. Note that a clock on **TCK** is not necessary to reset the device.

The action of reset (either a pulse or a DC level) is as follows:

System mode is selected (i.e. the boundary scan chain does NOT intercept any of the signals passing between the pads and the core).

IDcode mode is selected. If **TCK** is pulsed, the contents of the ID register will be clocked out of **TDO**.

8.3 Pullup Resistors

The IEEE 1149.1 standard effectively requires that **TDI**, **TMS**, and **nTRST** should have internal pullup resistors. In order to allow ARM60 to consume zero static current, these resistors are NOT fitted to this device. Accordingly, the 4 inputs to the test interface (the above 3 signals plus **TCK**) must all be driven to good logic levels to achieve normal circuit operation.

8.4 Instruction Register

The instruction register is 4 bits in length.

There is no parity bit. The fixed value loaded into the instruction register during the CAPTURE-IR controller state is: 0001.

8.5 Public Instructions

The following public instructions are supported:

Instruction	Binary Code		
EXTEST	0000		
SAMPLE/PRELOAD	0011		
CLAMP	0101		
HIGHZ	0111		
CLAMPZ	1001		
INTEST	1100		
IDCODE	1110		
BYPASS	1111		

In the descriptions that follow, **TDI** and **TMS** are sampled on the rising edge of **TCK** and all output transitions on **TDO** occur as a result of the falling edge of **TCK**.

Boundary Scan Test Interface

8.5.1 EXTEST (0000)

The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.

The EXTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the boundary-scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the boundary-scan output cells to the system pins are captured by the boundary-scan cells. In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the **TDO** pin, whilst new test data is shifted in via the **TDI** pin to the BS register parallel input latch. In the UPDATE-DR state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied immediately to the system logic and system pins. The first EXTEST vector should be clocked into the boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure that known data is applied to the system logic.

8.5.2 SAMPLE/PRELOAD (0011)

The BS (boundary-scan) register is placed in normal (system) mode by the SAMPLE/PRELOAD instruction.

The SAMPLE/PRELOAD instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all the boundary-scan cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is taken on the rising edge of **TCK**. Normal system operation is unaffected. In the SHIFT-DR state, the sampled test data is shifted out of the BS register via the **TDO** pin, whilst new data is shifted in via the **TDI** pin to preload the BS register parallel input latch. In the UPDATE-DR state, the preloaded data is transferred into the BS register parallel output latch. Note that this data is not applied to the system logic or system pins while the SAMPLE/PRELOAD instruction is active. This instruction should be used to preload the boundary-scan register with known data prior to selecting the INTEST or EXTEST instructions (see the table below for appropriate guard values to be used for each boundary-scan cell).

8.5.3 CLAMP (0101)

The CLAMP instruction connects a 1 bit shift register (the BYPASS register) between **TDI** and **TDO**.

When the CLAMP instruction is loaded into the instruction register, the state of all output signals is defined by the values previously loaded into the boundary-scan register. A guarding pattern (specified for this device at the end of this section) should be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the CLAMP instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

ARM60 Data Sheet

8.5.4 HIGHZ (0111)

The HIGHZ instruction connects a 1 bit shift register (the BYPASS register) between **TDI** and **TDO**.

When the HIGHZ instruction is loaded into the instruction register, all outputs are placed in an inactive drive state.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

8.5.5 CLAMPZ (1001)

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the CLAMPZ instruction is loaded into the instruction register, all outputs are placed in an inactive drive state, but the data supplied to the disabled output drivers is derived from the boundary-scan cells. The purpose of this instruction is to ensure, during production testing, that each output driver can be disabled when its data input is either a 0 or a 1.

A guarding pattern (specified for this device at the end of this section) should be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the CLAMPZ instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

8.5.6 INTEST (1100)

The BS (boundary-scan) register is placed in test mode by the INTEST instruction.

The INTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the boundary-scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, the complement of the data supplied to the core logic from input boundary-scan cells is captured, while the true value of the data that is output from the core logic to output boundary-scan cells is captured. Note that CAPTURE-DR captures the complemented value of the input cells for testability reasons.

In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the **TDO** pin, whilst new test data is shifted in via the **TDI** pin to the BS register parallel input latch. In the UPDATE-DR state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied immediately to the system logic and system pins. The first INTEST vector should be clocked into the boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure that known data is applied to the system logic.

Single-step operation is possible using the INTEST instruction.

Boundary Scan Test Interface

8.5.7 IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) between **TDI** and **TDO**. The ID register is a 32-bit register that allows the manufacturer, part number and version of a component to be determined through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the boundary-scan cells are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code (specified at the end of this section) is captured by the ID register. In the SHIFT-DR state, the previously captured device identification code is shifted out of the ID register via the **TDO** pin, whilst data is shifted in via the **TDI** pin into the ID register. In the UPDATE-DR state, the ID register is unaffected.

8.5.8 BYPASS (1111)

The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between **TDI** and **TDO**.

When the BYPASS instruction is loaded into the instruction register, all the boundary-scan cells are placed in their normal (system) mode of operation. This instruction has no effect on the system pins.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

8.6 Test Data Registers

Figure 33: Boundary Scan Block Diagram illustrates the structure of the boundary scan logic.

Figure 33: Boundary Scan Block Diagram

8.6.1 Bypass Register

Purpose: This is a single bit register which can be selected as the path between **TDI** and **TDO** to allow the device to be bypassed during boundary-scan testing.

Length: 1 bit

Operating Mode: When the BYPASS instruction is the current instruction in the instruction register, serial data is transferred from **TDI** to **TDO** in the SHIFT-DR state with a delay of one **TCK** cycle.

Boundary Scan Test Interface

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR state.

8.6.2 ARM60 Device Identification (ID) Code Register

Purpose: This register is used to read the 32-bit device identification code. No programmable supplementary identification code is provided.

Length: 32 bits

The format of the ID register is as follows:

Please contact your supplier for the correct Device Identification Code.

Operating Mode: When the IDCODE instruction is current, the ID register is selected as the serial path between **TDI** and **TDO**.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel inputs during the CAPTURE-DR state.

8.6.3 ARM60 Boundary Scan (BS) Register

Purpose: The BS register consists of a serially connected set of cells around the periphery of the device, at the interface between the core logic and the system input/output pads. This register can be used to isolate the core logic from the pins and then apply tests to the core logic, or conversely to isolate the pins from the core logic and then drive or monitor the system pins.

Operating modes: The BS register is selected as the register to be connected between **TDI** and **TDO** only during the SAMPLE/PRELOAD, EXTEST and INTEST instructions. Values in the BS register are used, but are not changed, during the CLAMP and CLAMPZ instructions.

In the normal (system) mode of operation, straight-through connections between the core logic and pins are maintained and normal system operation is unaffected.

In TEST mode (i.e. when either EXTEST or INTEST is the currently selected instruction), values can be applied to the core logic or output pins independently of the actual values on the input pins and core logic outputs respectively. On the ARM60 all of the boundary scan cells include an update register and thus all of the pins can be controlled in the above manner. Additional boundary-scan cells are interposed in the scan chain in order to control the enabling of tristateable buses.

ARM60 Data Sheet

The correspondence between boundary-scan cells and system pins, system direction controls and system output enables is as shown in *Table 25: Boundary Scan Signals & Pins*. The cells are listed in the order in which they are connected in the boundary-scan register, starting with the cell closest to **TDI**. All boundary-scan register cells at input pins can apply tests to the on-chip core logic.

The EXTEST guard values specified in *Table 25: Boundary Scan Signals & Pins* should be clocked into the boundary-scan register (using the SAMPLE/PRELOAD instruction) before the EXTEST instruction is selected, to ensure that known data is applied to the core logic during the test. The INTEST guard values shown in the table below should be clocked into the boundary-scan register (using the SAMPLE/PRELOAD instruction) before the INTEST instruction is selected to ensure that all outputs are disabled. These guard values should also be used when new EXTEST or INTEST vectors are clocked into the boundary-scan register.

The values stored in the BS register after power-up are not defined. Similarly, the values previously clocked into the BS register are not guaranteed to be maintained across a Boundary Scan reset (from forcing nTRST LOW or entering the Test Logic Reset state).

8.6.4 Output Enable Boundary-scan Cells

The boundary-scan register cells Nendout, Nabe, Ntbe, and Nmse control the output drivers of tristate outputs as shown in the table below. In the case of OUTEN0 enable cells (Nendout, Ntbe), loading a 1 into the cell will place the associated drivers into the tristate state, while in the case of type INEN1 enable cells (Nabe, Nmse), loading a 0 into the cell will tristate the associated drivers.

To put all ARM60 tristate outputs into their high impedance state, a logic 1 should be clocked into the output enable boundary-scan cells Nendout and Ntbe, and a logic 0 should be clocked into Nabe and Nmse. Alternatively, the HIGHZ instruction can be used.

If the on-chip core logic causes the drivers controlled by Nendout, for example, to be tristate, (i.e. by driving the signal Nendout HIGH), then a 1 will be observed on this cell if the SAMPLE/PRELOAD or INTEST instructions are active.

8.6.5 Single-step Operation

ARM60 is a static design and there is no minimum clock speed. It can therefore be single-stepped while the INTEST instruction is selected. This can be achieved by serialising a parallel stimulus and clocking the resulting serial vectors into the boundary-scan register. When the boundary-scan register is updated, new test stimuli are applied to the core logic inputs; the effect of these stimuli can then be observed on the core logic outputs by capturing them in the boundary-scan register.

8.7 Boundary Scan Interface Signals

Figure 34: Boundary Scan General Timing

Figure 35: Boundary Scan Tri-state Timing

Figure 36: Boundary Scan Reset Timing

Symbol	Parameter	Min	Тур	Max	Units	Notes
Tbscl	TCK low period	50			ns	1
Tbsch	TCK high period	50			ns	1
Tbsis	TDI,TMS setup to [TCr]	10			ns	
Tbsih	TDI,TMS hold from [TCr]	10			ns	
Tbsod	TCf to TDO valid			40	ns	2
Tbsoh	TDO hold time	5			ns	2
Tbsoe	TDO enable time	5			ns	2,3
Tbsod	TDO disable time			40	ns	2,4
Tbsss	I/O signal setup to [TCr]	5			ns	5
Tbssh	I/O signal hold from [TCr]	20			ns	5
Tbsdd	TCf to data output valid			40	ns	
Tbsdh	data output hold time	5			ns	6
Tbsde	data output enable time	5			ns	6,7
Tbsdd	data output disable time			40	ns	6,8
Tbsr	Reset period	30			ns	
Tbsrs	tms setup to [TRr]	10			ns	9
Tbsrh	tms hold from [TRr]	10			ns	9

Table 24: ARM60 Boundary Scan Interface Timing

Notes:

- 1. **TCK** may be stopped indefinitely in either the low or high phase.
- 2. Assumes a 25pF load on **TDO**. Output timing derates at 0.072ns/pF of extra load applied.
- 3. **TDO** enable time applies when the TAP controller enters the Shift-DR or Shift-IR states.
- 4. **TDO** disable time applies when the TAP controller leaves the Shift-DR or Shift-IR states.
- 5. For correct data latching, the I/O signals (from the core and the pads) must be setup and held with respect to the rising edge of **TCK** in the CAPTURE-DR state of the SAMPLE/PRELOAD, INTEST and EXTEST instructions.
- 6. Assumes that the data outputs are loaded with the AC test loads (see AC parameter specification).
- 7. Data output enable time applies when the boundary scan logic is used to enable the output drivers.
- 8. Data output disable time applies when the boundary scan is used to disable the output drivers.
- 9. **TMS** must be held high as **nTRST** is taken high at the end of the boundary-scan reset sequence.