Directional Derivatives & Gradient Vectors

Devika S

Department of Mathematics BITS Pilani, K K Birla Goa Campus

October 21, 2024

ANNOUNCEMENT:

An additional class will be held this **Saturday (26**October 2024) from 12:00 PM to 1:00 PM in LT3.

Recall - Directional derivative

Definition

The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is the number

$$(D_{\mathbf{u}}f)_{P_0} = \left(\frac{df}{ds}\right)_{\mathbf{u},P_0} := \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

provided the limit exists.

Recall - Directional derivative

Definition

The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is the number

$$(D_{\boldsymbol{u}}f)_{P_0} = \left(\frac{df}{ds}\right)_{\boldsymbol{u},P_0} := \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

provided the limit exists.

- ullet $f_x(x_0,y_0)$ directional derivative of f at P_0 in the direction of $oldsymbol{i}$
- ullet $f_y(x_0,y_0)$ directional derivative of f at P_0 in the direction of $oldsymbol{j}$
- directional derivative $(D_{{\boldsymbol u}}f)_{P_0}$ rate of change of f at P_0 in the direction of ${\boldsymbol u}$

Recall - Directional derivative

Definition

The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is the number

$$(D_{\boldsymbol{u}}f)_{P_0} = \left(\frac{df}{ds}\right)_{\boldsymbol{u},P_0} := \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

provided the limit exists.

- ullet $f_x(x_0,y_0)$ directional derivative of f at P_0 in the direction of $oldsymbol{i}$
- ullet $f_y(x_0,y_0)$ directional derivative of f at P_0 in the direction of $oldsymbol{j}$
- directional derivative $(D_{{\boldsymbol u}}f)_{P_0}$ rate of change of f at P_0 in the direction of ${\boldsymbol u}$
- For an angle θ measured from the positive x-axis, $u = \cos \theta i + \sin \theta j$.

Let f(x,y) be a differentiable function and $g(s) := f(x_0 + u_1 s, y_0 + u_2 s)$.

Let f(x,y) be a differentiable function and $g(s):=f(x_0+u_1s,y_0+u_2s).$ Then,

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

Let f(x,y) be a differentiable function and $g(s):=f(x_0+u_1s,y_0+u_2s)$. Then,

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s} = (D_{\boldsymbol{u}} f)_{P_0}.$$

Let f(x,y) be a differentiable function and $g(s):=f(x_0+u_1s,y_0+u_2s)$. Then,

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s} = (D_{\boldsymbol{u}} f)_{P_0}.$$

Also, g = f(x, y), where $x = x_0 + u_1 s = x(s)$ and $y = y_0 + u_2 s = y(s)$.

Let f(x,y) be a differentiable function and $g(s):=f(x_0+u_1s,y_0+u_2s)$. Then,

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s} = (D_{\boldsymbol{u}} f)_{P_0}.$$

Also, g=f(x,y), where $x=x_0+u_1s=x(s)$ and $y=y_0+u_2s=y(s)$. By chain rule,

$$g'(s) = \frac{dg}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = f_x(x,y)u_1 + f_y(x,y)u_2.$$

Let f(x,y) be a differentiable function and $g(s):=f(x_0+u_1s,y_0+u_2s)$. Then,

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s} = (D_{\boldsymbol{u}} f)_{P_0}.$$

Also, g=f(x,y), where $x=x_0+u_1s=x(s)$ and $y=y_0+u_2s=y(s)$. By chain rule,

$$g'(s) = \frac{dg}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = f_x(x, y)u_1 + f_y(x, y)u_2.$$

Now, choose s=0. Then $x=x_0$, $y=y_0$ and

$$g'(0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2 = (f_x|_{P_0}, f_y|_{P_0}) \cdot (u_1, u_2).$$

Let f(x,y) be a differentiable function and $g(s):=f(x_0+u_1s,y_0+u_2s)$. Then,

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s} = (D_{\boldsymbol{u}} f)_{P_0}.$$

Also, g=f(x,y), where $x=x_0+u_1s=x(s)$ and $y=y_0+u_2s=y(s)$. By chain rule,

$$g'(s) = \frac{dg}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = f_x(x,y)u_1 + f_y(x,y)u_2.$$

Now, choose s=0. Then $x=x_0$, $y=y_0$ and

$$g'(0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2 = (f_x|_{P_0}, f_y|_{P_0}) \cdot (u_1, u_2).$$

Consequently, $(D_{\boldsymbol{u}}f)_{P_0}=(f_x|_{P_0},f_y|_{P_0})\cdot(u_1,u_2).$

This says that the derivative of a differentiable function f in the direction of u at P_0 is the dot product of u with a special vector $(f_x|_{P_0}, f_y|_{P_0})$.

□ ▶ ◀♬ ▶ ◀ 필 ▶ 《 필 ▶ ♡ 의

Definition

The gradient vector (or gradient) of f(x, y) is the vector

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

Definition

The gradient vector (or gradient) of f(x,y) is the vector

$$\nabla f = \frac{\partial f}{\partial x} \ \mathbf{i} + \frac{\partial f}{\partial y} \ \mathbf{j} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

The value of the gradient vector obtained by evaluating the partial derivatives at a point $P_0(x_0, y_0)$ is written $\nabla f_{|P_0|}$ or $\nabla f(x_0, y_0)$.

Definition

The gradient vector (or gradient) of f(x, y) is the vector

$$\nabla f = \frac{\partial f}{\partial x} \; \boldsymbol{i} + \frac{\partial f}{\partial y} \; \boldsymbol{j} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

The value of the gradient vector obtained by evaluating the partial derivatives at a point $P_0(x_0, y_0)$ is written $\nabla f_{|P_0|}$ or $\nabla f(x_0, y_0)$.

Theorem (The Directional Derivative is a Dot Product)

If f(x,y) is differentiable, then

$$\left(\frac{df}{ds}\right)_{\boldsymbol{u},P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u},$$

the dot product of ∇f at P_0 and u. In brief, $D_u f = \nabla f \cdot u$.

一(日)(御)(臣)(臣) 臣 《

The above theorem says that if a function f is differentiable at $P_0(x_0, y_0)$, then all its directional derivatives exist.

Consider

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Consider

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

This function is not continuous at (0,0) (choose $y=mx^2, m\neq 0$ and show that limit does not exist) and hence is not differentiable at (0,0).

Consider

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

This function is not continuous at (0,0) (choose $y=mx^2, m \neq 0$ and show that limit does not exist) and hence is not differentiable at (0,0). Let $u=(u_1,u_2)$ be a unit vector. Then,

$$(D_{\boldsymbol{u}}f)_{|(0,0)} = \lim_{s \to 0} \frac{f(u_1 s, u_2 s) - f(0,0)}{s} = \lim_{s \to 0} \frac{s^3 u_1^2 u_2}{s(s^4 u_1^4 + s^2 u_2^2)}$$
$$= = \lim_{s \to 0} \frac{u_1^2 u_2}{s^2 u_1^4 + u_2^2} = \begin{cases} \frac{u_1^2}{u_2} & \text{if } u_2 \neq 0, \\ 0 & \text{if } u_2 = 0. \end{cases}$$

This shows that the directional derivatives in all directions at (0,0) exist.

1 Find the derivative of $f(x,y) = 2xy - 3y^2$ at $P_0(5,5)$ in the direction of u = 4i + 3j using gradient.

1 Find the derivative of $f(x,y) = 2xy - 3y^2$ at $P_0(5,5)$ in the direction of u = 4i + 3j using gradient.

Solution:

Recall $m{v} = \frac{4}{5} m{i} + \frac{3}{5} m{j}$ is the unit vector in the direction of $m{u}$.

1 Find the derivative of $f(x,y) = 2xy - 3y^2$ at $P_0(5,5)$ in the direction of u = 4i + 3j using gradient.

Solution:

Recall $\boldsymbol{v} = \frac{4}{5}\boldsymbol{i} + \frac{3}{5}\boldsymbol{j}$ is the unit vector in the direction of \boldsymbol{u} .

To apply the above theorem, we need to check the differentiability of f at (5,5).

1 Find the derivative of $f(x,y) = 2xy - 3y^2$ at $P_0(5,5)$ in the direction of $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$ using gradient.

Solution:

Recall $\boldsymbol{v} = \frac{4}{5}\boldsymbol{i} + \frac{3}{5}\boldsymbol{j}$ is the unit vector in the direction of \boldsymbol{u} .

To apply the above theorem, we need to check the differentiability of f at (5,5). We have $f_x=2y$ and $f_y=2x-6y$. The partial derivatives f_x and f_y exists, and also f_x and f_y are everywhere continuous (Why?).

1 Find the derivative of $f(x,y) = 2xy - 3y^2$ at $P_0(5,5)$ in the direction of $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$ using gradient.

Solution:

Recall $\mathbf{v} = \frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$ is the unit vector in the direction of \mathbf{u} . To apply the above theorem, we need to check the differentiability of f at (5,5). We have $f_x = 2y$ and $f_y = 2x - 6y$. The partial derivatives f_x and f_y exists, and also f_x and f_y are everywhere continuous (Why?). Hence, f is differentiable at (5,5).

1 Find the derivative of $f(x,y) = 2xy - 3y^2$ at $P_0(5,5)$ in the direction of $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$ using gradient.

Solution:

Recall $v = \frac{4}{5}i + \frac{3}{5}j$ is the unit vector in the direction of u.

To apply the above theorem, we need to check the differentiability of f at (5,5). We have $f_x=2y$ and $f_y=2x-6y$. The partial derivatives f_x and f_y exists, and also f_x and f_y are everywhere continuous (Why?). Hence, f is differentiable at (5,5).

$$(D_{\boldsymbol{v}}f)_{P_0} = \nabla f_{|P_0} \cdot \boldsymbol{v} = (f_x, f_y)_{|P_0} \cdot \boldsymbol{v}$$

= $(10, -20) \cdot \left(\frac{4}{5}, \frac{3}{5}\right) = 10 \left(\frac{4}{5}\right) - 20 \left(\frac{4}{5}\right) = -4.$

Examples (Using Gradient)

- 2 Find the derivative of f(x,y,z)=xy+yz+zx at $P_0(1,-1,2)$ in the direction of $\boldsymbol{u}=3\boldsymbol{i}+6\boldsymbol{j}-2\boldsymbol{k}$. (Ans: 3)
- 3 Find the derivative of $g(x,y) = \frac{x-y}{xy+2}$ at $P_0(1,-1)$ in the direction of u = 12i + 5j. (Ans: -4)
- 4 Find the derivative of $h(x,y)=\tan^{-1}(y/x)+\sqrt{3}\sin^{-1}(xy/2)$ at $P_0(1,1)$ in the direction of $\boldsymbol{u}=3\boldsymbol{i}-2\boldsymbol{j}$. (Ans: $3/(2\sqrt{13})$)
- **6** Find the derivative of $g(x,y,z)=3e^x\cos(yz)$ at $P_0(0,0,0)$ in the direction of $\boldsymbol{u}=2\boldsymbol{i}+\boldsymbol{j}-2\boldsymbol{k}$. (Ans: 2)

Examples (Using Gradient)

- 2 Find the derivative of f(x,y,z)=xy+yz+zx at $P_0(1,-1,2)$ in the direction of $\boldsymbol{u}=3\boldsymbol{i}+6\boldsymbol{j}-2\boldsymbol{k}$. (Ans: 3)
- 3 Find the derivative of $g(x,y) = \frac{x-y}{xy+2}$ at $P_0(1,-1)$ in the direction of u = 12i + 5j. (Ans: -4)
- **4** Find the derivative of $h(x,y)=\tan^{-1}(y/x)+\sqrt{3}\sin^{-1}(xy/2)$ at $P_0(1,1)$ in the direction of $\boldsymbol{u}=3\boldsymbol{i}-2\boldsymbol{j}$. (Ans: $3/(2\sqrt{13})$)
- **5** Find the derivative of $g(x,y,z)=3e^x\cos(yz)$ at $P_0(0,0,0)$ in the direction of $\boldsymbol{u}=2\boldsymbol{i}+\boldsymbol{j}-2\boldsymbol{k}$. (Ans: 2)

For two vectors \boldsymbol{v} and \boldsymbol{w} ,

$$\boldsymbol{v} \cdot \boldsymbol{w} = |\boldsymbol{v}||\boldsymbol{w}|\cos\theta,$$

where $0 \le \theta \le \pi$ is the angle between \boldsymbol{v} and \boldsymbol{w} .

1 The function f increases most rapidly when $\cos\theta=1$ or when $\theta=0$ and \boldsymbol{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is $D_{\boldsymbol{u}}f=|\nabla f|\cos 0=|\nabla f|$.

- 1 The function f increases most rapidly when $\cos\theta=1$ or when $\theta=0$ and \boldsymbol{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is $D_{\boldsymbol{u}}f=|\nabla f|\cos 0=|\nabla f|$.
- 2 f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is $D_{\boldsymbol{u}}f = |\nabla f|\cos \pi = -|\nabla f|$.

- 1 The function f increases most rapidly when $\cos\theta=1$ or when $\theta=0$ and \boldsymbol{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is $D_{\boldsymbol{u}}f=|\nabla f|\cos 0=|\nabla f|$.
- 2 f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is $D_{\boldsymbol{u}}f = |\nabla f|\cos \pi = -|\nabla f|$.
- 3 Any direction \boldsymbol{u} orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because θ then equals to $\pi/2$ and $D_{\boldsymbol{u}}f = |\nabla f|\cos(\pi/2) = 0$.

- 1 The function f increases most rapidly when $\cos\theta=1$ or when $\theta=0$ and \boldsymbol{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is $D_{\boldsymbol{u}}f=|\nabla f|\cos 0=|\nabla f|$.
- 2 f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is $D_{\boldsymbol{u}}f = |\nabla f|\cos \pi = -|\nabla f|$.
- 3 Any direction \boldsymbol{u} orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because θ then equals to $\pi/2$ and $D_{\boldsymbol{u}}f = |\nabla f|\cos(\pi/2) = 0$.

Hence,

$$D_{\boldsymbol{u}}f \in [-|\nabla f|, |\nabla f|].$$

 $D_{\boldsymbol{u}}f$ is maximum when $\theta=0$ and minimum when $\theta=\pi$.

Figure for $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$

• Find the directions in which $f(x,y) = x^2y + e^{xy}\sin y$ increase and decrease most rapidly at $P_0(1,0)$. Then find the derivatives of f in these directions.

• Find the directions in which $f(x,y) = x^2y + e^{xy}\sin y$ increase and decrease most rapidly at $P_0(1,0)$. Then find the derivatives of f in these directions.

Solution:

The function f increases most rapidly in the direction of ∇f at (1,0). The gradient at (1,0) is

$$\nabla f_{|(1,0)} = (2xy + ye^{xy}\sin y)\mathbf{i} + (x^2 + xe^{xy}\sin y + e^{xy}\cos y)\mathbf{j}_{|(1,0)} = 2\mathbf{j}.$$

• Find the directions in which $f(x,y) = x^2y + e^{xy}\sin y$ increase and decrease most rapidly at $P_0(1,0)$. Then find the derivatives of f in these directions.

Solution:

The function f increases most rapidly in the direction of ∇f at (1,0). The gradient at (1,0) is

$$\nabla f_{|(1,0)} = (2xy + ye^{xy}\sin y)\mathbf{i} + (x^2 + xe^{xy}\sin y + e^{xy}\cos y)\mathbf{j}_{|(1,0)} = 2\mathbf{j}.$$

Its direction is

$$u = \frac{2j}{|2j|} = j.$$

f increases most rapidly in the direction u = j. The derivative of f in this direction is $D_u(f) = |\nabla f| = 2$.

• Find the directions in which $f(x,y) = x^2y + e^{xy}\sin y$ increase and decrease most rapidly at $P_0(1,0)$. Then find the derivatives of f in these directions.

Solution:

The function f increases most rapidly in the direction of ∇f at (1,0). The gradient at (1,0) is

$$\nabla f_{|(1,0)} = (2xy + ye^{xy}\sin y)\mathbf{i} + (x^2 + xe^{xy}\sin y + e^{xy}\cos y)\mathbf{j}_{|(1,0)} = 2\mathbf{j}.$$

Its direction is

$$u = \frac{2j}{|2j|} = j.$$

f increases most rapidly in the direction u = j. The derivative of f in this direction is $D_u(f) = |\nabla f| = 2$.

f decreases most rapidly in the direction -u = -j and the derivative of f in this direction is $D_{-u}(f) = -2$.

2 Find the directions in which $g(x,y,z)=xe^y+z^2$, increase and decrease most rapidly at $P_0(1,\ln 2,1/2)$. Then find the derivatives of g in these directions. (Ans: 3,-3)

- 2 Find the directions in which $g(x,y,z)=xe^y+z^2$, increase and decrease most rapidly at $P_0(1,\ln 2,1/2)$. Then find the derivatives of g in these directions. (Ans. 3, -3)
- 3 In what direction is the derivative of $f(x,y)=xy+y^2$ at P(3,2) is zero? (Ans: $\frac{7}{\sqrt{53}}\pmb{i}-\frac{2}{\sqrt{53}}\pmb{j},\frac{-7}{\sqrt{53}}\pmb{i}+\frac{2}{\sqrt{53}}\pmb{j})$

- 2 Find the directions in which $g(x,y,z)=xe^y+z^2$, increase and decrease most rapidly at $P_0(1,\ln 2,1/2)$. Then find the derivatives of g in these directions. (Ans: 3,-3)
- 3 In what direction is the derivative of $f(x,y)=xy+y^2$ at P(3,2) is zero? (Ans: $\frac{7}{\sqrt{53}}\pmb{i}-\frac{2}{\sqrt{53}}\pmb{j},\frac{-7}{\sqrt{53}}\pmb{i}+\frac{2}{\sqrt{53}}\pmb{j}$)
- 4 Is there a direction ${\boldsymbol u}$ in which the rate of change of the temperature function T(x,y,z)=2xy-yz (temperature in degrees Celsius, distance in feet) at P(1,-1,1) is -3°C/ft? Give reasons for your answer.

- 2 Find the directions in which $g(x,y,z)=xe^y+z^2$, increase and decrease most rapidly at $P_0(1,\ln 2,1/2)$. Then find the derivatives of g in these directions. (Ans. 3, -3)
- 3 In what direction is the derivative of $f(x,y)=xy+y^2$ at P(3,2) is zero? (Ans: $\frac{7}{\sqrt{53}}\pmb{i}-\frac{2}{\sqrt{53}}\pmb{j},\frac{-7}{\sqrt{53}}\pmb{i}+\frac{2}{\sqrt{53}}\pmb{j})$
- 4 Is there a direction ${\boldsymbol u}$ in which the rate of change of the temperature function T(x,y,z)=2xy-yz (temperature in degrees Celsius, distance in feet) at P(1,-1,1) is -3°C/ft? Give reasons for your answer. (No Compute max. and min. of $D_{\boldsymbol u}f$.)
- **6** The derivative of f(x,y) at $P_0(1,2)$ in the direction of $\boldsymbol{i}+\boldsymbol{j}$ is $2\sqrt{2}$ and in the direction of $-2\boldsymbol{j}$ is -3. What is the derivative of f in the direction of $-\boldsymbol{i}-2\boldsymbol{j}$?

- 2 Find the directions in which $g(x,y,z)=xe^y+z^2$, increase and decrease most rapidly at $P_0(1,\ln 2,1/2)$. Then find the derivatives of g in these directions. (Ans. 3, -3)
- 3 In what direction is the derivative of $f(x,y)=xy+y^2$ at P(3,2) is zero? (Ans: $\frac{7}{\sqrt{53}}\pmb{i}-\frac{2}{\sqrt{53}}\pmb{j},\frac{-7}{\sqrt{53}}\pmb{i}+\frac{2}{\sqrt{53}}\pmb{j})$
- 4 Is there a direction ${\boldsymbol u}$ in which the rate of change of the temperature function T(x,y,z)=2xy-yz (temperature in degrees Celsius, distance in feet) at P(1,-1,1) is -3°C/ft? Give reasons for your answer. (No Compute max. and min. of $D_{\boldsymbol u}f$.)
- **5** The derivative of f(x,y) at $P_0(1,2)$ in the direction of $\boldsymbol{i}+\boldsymbol{j}$ is $2\sqrt{2}$ and in the direction of $-2\boldsymbol{j}$ is -3. What is the derivative of f in the direction of $-\boldsymbol{i}-2\boldsymbol{j}$? (Ans: $\frac{-7}{\sqrt{5}}$)

Algebra Rules for Gradients

- Sum Rule: $\nabla(f+g) = \nabla f + \nabla g$.
- Difference Rule: $\nabla (f g) = \nabla f \nabla g$.
- Constant Multiple Rule: $\nabla(kf) = k\nabla(f)$ for any constant k
- Product Rule: $\nabla(fg) = f\nabla(g) + g\nabla(f)$.
- Quotient Rule: $\nabla \left(\frac{f}{g} \right) = \frac{g \nabla f f \nabla g}{g^2}$

For functions of three variables we can define directional derivatives in a similar manner.

For functions of three variables we can define directional derivatives in a similar manner.

The derivative of f(x, y, z) at $P_0(x_0, y_0, z_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ is the number

$$(D_{\mathbf{u}}f)_{P_0} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s, z_0 + u_3 s) - f(x_0, y_0, z_0)}{s}$$

provided the limit exists.

For functions of three variables we can define directional derivatives in a similar manner.

The derivative of f(x,y,z) at $P_0(x_0,y_0,z_0)$ in the direction of the unit vector $\boldsymbol{u}=u_1\boldsymbol{i}+u_2\boldsymbol{j}+u_3\boldsymbol{k}$ is the number

$$(D_{\boldsymbol{u}}f)_{P_0} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s, z_0 + u_3 s) - f(x_0, y_0, z_0)}{s}$$

provided the limit exists. If f is differentiable, then

$$(D_{\boldsymbol{u}}f)_{P_0} = \nabla f \cdot \boldsymbol{u}$$
, where $\nabla f = (f_x, f_y, f_z)$.

For functions of three variables we can define directional derivatives in a similar manner.

The derivative of f(x,y,z) at $P_0(x_0,y_0,z_0)$ in the direction of the unit vector $\mathbf{u}=u_1\mathbf{i}+u_2\mathbf{j}+u_3\mathbf{k}$ is the number

$$(D_{\boldsymbol{u}}f)_{P_0} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s, z_0 + u_3 s) - f(x_0, y_0, z_0)}{s}$$

provided the limit exists. If f is differentiable, then

$$(D_{\boldsymbol{u}}f)_{P_0} = \nabla f \cdot \boldsymbol{u}$$
, where $\nabla f = (f_x, f_y, f_z)$.

At any given point, f increases most rapidly in the direction of ∇f and decreases most rapidly in the direction of $-\nabla f$. In any direction orthogonal to ∇f , the derivative is zero.

Gradients and Tangents to Level Curves

If a differentiable function f(x,y) has a constant value c along a smooth curve ${\bm r}=g(t){\bm i}+h(t){\bm j}$, then f(g(t),h(t))=c. Differentiating both sides of this equation with respect to t leads to

$$\begin{split} \frac{d}{dt}f(g(t),h(t)) &= \frac{d}{dt}(c) \\ \text{Using chain rule, } \frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt} = 0 \implies \nabla f \cdot \frac{d\boldsymbol{r}}{dt} = 0. \end{split}$$

Gradients and Tangents to Level Curves

If a differentiable function f(x,y) has a constant value c along a smooth curve ${\bm r}=g(t){\bm i}+h(t){\bm j}$, then f(g(t),h(t))=c. Differentiating both sides of this equation with respect to t leads to

$$\begin{split} \frac{d}{dt}f(g(t),h(t)) &= \frac{d}{dt}(c) \\ \text{Using chain rule, } \frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt} = 0 \implies \nabla f \cdot \frac{d\boldsymbol{r}}{dt} = 0. \end{split}$$

This says that ∇f is orthogonal to the tangent vector $d\mathbf{r}/dt$, so it is normal to the curve.

At every point (x_0, y_0) in the domain of a differentiable function f(x, y), the gradient of f is normal to the level curve through (x_0, y_0) .

Gradients to Level Curves

FIGURE 14.30 The gradient of a differentiable function of two variables at a point is always normal to the function's level curve through that point.

Tangent lines - lines that are tangent to the level curves ⇒ tangent lines are the lines normal to the gradients. Why?

Tangent lines - lines that are tangent to the level curves ⇒ tangent lines are the lines normal to the gradients. Why?

The line passing through a point $P_0(x_0,y_0)$ normal to the vector ${m N}=A{m i}+B{m j}$ has the equation

$$A(x - x_0) + B(y - y_0) = 0.$$

Tangent lines - lines that are tangent to the level curves ⇒ tangent lines are the lines normal to the gradients. Why?

The line passing through a point $P_0(x_0,y_0)$ normal to the vector $\mathbf{N}=A\mathbf{i}+B\mathbf{j}$ has the equation

$$A(x - x_0) + B(y - y_0) = 0.$$

If $N=\nabla f$, then the equation of the tangent line to level curve f(x,y)=c at $P_0(x_0,y_0)$ is given by

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0.$$

Tangent lines - lines that are tangent to the level curves ⇒ tangent lines are the lines normal to the gradients. Why?

The line passing through a point $P_0(x_0,y_0)$ normal to the vector ${m N}=A{m i}+B{m j}$ has the equation

$$A(x - x_0) + B(y - y_0) = 0.$$

If $N=\nabla f$, then the equation of the tangent line to level curve f(x,y)=c at $P_0(x_0,y_0)$ is given by

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0.$$

• Write an equation for the tangent line $x^2 - xy + y^2 = 7$, $P_0(-1,2)$.

Tangent lines - lines that are tangent to the level curves ⇒ tangent lines are the lines normal to the gradients. Why?

The line passing through a point $P_0(x_0,y_0)$ normal to the vector ${m N}=A{m i}+B{m j}$ has the equation

$$A(x - x_0) + B(y - y_0) = 0.$$

If $N=\nabla f$, then the equation of the tangent line to level curve f(x,y)=c at $P_0(x_0,y_0)$ is given by

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0.$$

• Write an equation for the tangent line $x^2 - xy + y^2 = 7$, $P_0(-1,2)$. (Ans: y=x-4)

Tangent lines - lines that are tangent to the level curves ⇒ tangent lines are the lines normal to the gradients. Why?

The line passing through a point $P_0(x_0,y_0)$ normal to the vector ${m N}=A{m i}+B{m j}$ has the equation

$$A(x - x_0) + B(y - y_0) = 0.$$

If $N=\nabla f$, then the equation of the tangent line to level curve f(x,y)=c at $P_0(x_0,y_0)$ is given by

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0.$$

- Write an equation for the tangent line $x^2 xy + y^2 = 7$, $P_0(-1,2)$. (Ans: y = x 4)
- Write an equation for the tangent line xy = -4, $P_0(2, -2)$. (Ans: -4x + 5y 14 = 0.)