Double layer light-conducting microstructure mfr.

Publication number: DE19612576

Publication date: 1996-10-02

Inventor: MUELLER CLAAS (DE); RUPRECHT ROBERT (DE)

Applicant:

KARLSRUHE FORSCHZENT (DE)

Classification:

- international: G02B6/13; B29C33/38; B29C43/20; B29C43/36;

> B29C51/08; B29D11/00; G02B6/122; B29C51/14; B29K33/04; B29L11/00; G02B6/13; B29C33/38; B29C43/20; B29C43/36; B29C51/08; B29D11/00; G02B6/122; B29C51/14; (IPC1-7): B29C51/14;

B29D11/00; G02B6/10

- European: B29C51/08B2; B29D11/00C6; G02B6/122C

Application number: DE19961012576 19960329

Priority number(s): DE19961012576 19960329; DE19951011862 19950331

Also published as:

WO9630184 (A1) WO9630184 (A1) EP0817713 (A1) EP0817713 (A1) EP0817713 (A0)

more >>

Report a data error here

Abstract of DE19612576

In a process for mfg. a structure with a core layer and one or more facing layers (40), the layers are fused together in a mould cavity. The mould is claimed and comprises a micro-structured die (10) and a single or multilayer punch (20). Also claimed are process for mfr. of optical microstructures for (a) multimode uses with fibres of given dia. and (b) any optical fibre. For multimode uses core and facing (40) layer thicknesses and tool cavity depth are specified and for any fibre core layer, thickness is similar to the fibre core dia. and the height of the structured part of the moulded facing layer equals the cover thickness of the optical fibre.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK

DEUTSCHLAND

Offenlegungsschrift

[®] DE 196 12 576 A 1

(51) Int. Cl.6: B 29 C 51/14 G 02 B 6/10 B 29 D 11/00

DEUTSCHES

PATENTAMT

②1) Aktenzeichen: 196 12 576.6 Anmeldetag: 29. 3.96

Offenlegungstag: 2, 10, 96

3 Innere Priorität: **33** 33 33 31.03.95 DE 195118626

① Anmelder:

Forschungszentrum Karlsruhe GmbH, 76133 Karlsruhe, DE

(4) Vertreter:

A. Jeck & H.-J. Fleck, 71701 Schwieberdingen

(72) Erfinder:

Müller, Claas, 76351 Linkenheim-Hochstetten, DE; Ruprecht, Robert, 75045 Walzbachtal, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (S) Verfahren und Vorrichtung zur Herstellung von zweischichtigen, lichtleitenden Mikrostrukturen durch Abformtechnik
- Die Erfindung befaßt sich mit einem Verfahren zum Herstellen von einer mindestens zwei Schichten aufweisenden Struktur mit mindestens einer Kernschicht und mindestens einer Mantelschicht. Mittels eines Werkzeuges, bestehend aus einer mindestens ein Formnest aufweisenden harten Matrize und einem mindestens einschichtigen, weichen Stempel, wird die Kernschicht in das Formnest eingebracht und mit der Mantelschicht verbunden.

Beschreibung

Die Erfindung betrifft ein Verfahren nach Anspruch 1 und eine Vorrichtung nach Anspruch 23 zur Herstellung von zweischichtigen lichtleitenden Mikrostrukturen durch Abformtechnik.

Mit zunehmendem Fortschritt der Mikrosystemtechnik besteht ein steigender Bedarf an lichtleitenden optischen Mikrostrukturen. Lichtleitende Mikrostrukturen, lichtleitende insbesondere wurden bisher durch lithographische Verfahren hergestellt.

Bekannt sind lichtleitende Mikrostrukturen, hergestellt durch röntgentiefenlithographische Strukturierung eines dreischichtigen Resistsystems. Dazu wird ein 15 Dreischichtsystem, bestehend aus Mantel-, Kern- und Mantelschicht, verschweißt und anschließend durch Röntgentiefenlithographie strukturiert (C. Müller, J. Mohr: A Microspectrometer Fabricated by the LIGA Process; Interdisciplinary Science Review, Vol. 18, No. 3, 20 strukturierter Folienstapel hergestellt, danach erfolgt 1993). Ferner ist in der Veröffentlichung von J. Göttert, J. Mohr, C. Müller, Examples and Potential Applications of LIGA Components in Micro-Optics, B.G. Teubner Verlagsgesellschaft, 1993, insbesondere auf S. 222, eine Abformtechnik von LIGA-Mikrostrukturen beschrieben, wobei ein einschichtiges Material verwendet wird. Schließlich ist dort auf S. 227 ein Verfahren zur Herstellung von lichtleitenden Mikrostrukturen gezeigt und beschrieben, die aus einem dreischichtigen Aufbau bestehen und durch parallele Röntgenstrahlung, wie sie an 30 einem Synchrotron erzeugt wird, strukturiert werden.

Andere Herstellungsverfahren für Spektrometerbausteine (als Beispiel für eine lichtleitende Mikrostruktur) sind durch die Fertigung in Hybridtechnik mit großem Aufwand an Aufbau- und Verbindungstechnik sowie Ju- 35 die Verbindung der Mantelschicht mit der Kernschicht stieraufwand der Einzelkomponenten zueinander (Gitter, Führungsschächte für Einkoppelfaser und Diodenzeile) verbunden, damit auch personalintensiv in der Herstellung und somit teuer.

beispielsweise Gitterspektrometerbausteinen durch Röntgentiefenlithographie (RTL), ist mit erheblichen Kosten durch die Investition einer Röntgenquelle verbunden. Auch die Herstellungszeit für einen Gitterspektrometer ist bei RTL länger als beim Abformen.

Der Erfindung liegt somit die Aufgabe zugrunde, hier Abhilfe zu schaffen.

Die Aufgabe wird erfindungsgemäß durch das in Anspruch 1 beschriebene Verfahren und die in Anspruch 23 beschriebene Vorrichtung gelöst.

Die Lichtleitung erfolgt in der Kernschicht durch Totalreflexion des Lichtes an der Grenzschicht zwischen Kern- und Mantelschicht (B. Anderer, W. Ehrfeld, Grundlagen für die röntgentiefenlithographische Herstellung eines planaren Wellenlängen-Demultiplexers 55 mit selbstfokusierendem Reflexionsgitter, März 1990, Kernforschungszentrum Karlsruhe, KfK-Bericht 4702). Die Kernschicht aus Kunststoff ist von einer Mantelschicht mit kleinerem Brechungsindex, die aus Kunstgene Verfahren wird erreicht, daß lichtleitende Mikrostrukturen im Zweischichtaufbau kostengünstiger aus einer mikrostrukturierten Kernschicht auf einer Mantelschicht, die teilweise strukturiert sein kann, gefertigt werden können. Als Deckschicht dient Luft. Statt Luft 65 kann bei optischen Bauteilen ohne Gehäuse zum Schutz vor Umwelteinflüssen eine weitere Schicht als Deckschicht aufgebracht werden. Das vorgeschlagene Ver-

fahren kann unterschiedlich ausgeführt werden. Diese Ausführungen werden im folgenden Zweischrittwarmumformen, Zweischichtwarmumformen und Reaktionsguß bezeichnet.

Beim Zweischrittwarmumformen wird zuerst eine Kernschicht durch Vakuumwarmumformen mit Hilfe eines Stempels mikrostrukturiert. Dabei wird die zunächst unstrukturierte Kernschicht entweder in der gewünschten Dicke oder entsprechend der Füllmenge, die LIGA-Mikrostrukturen, 10 in das vorgesehene Formnest des Abformwerkzeuges paßt, vorgelegt. Nach dem Vakuumwarmumformen der Kernschicht wird die Mantelschicht an die Kernschicht angeschweißt, indem die Kunststoffe von Kern- und Mantelschicht auf eine Temperatur in der Nähe der Übergangstemperatur (bei amorphen Polymeren = Glasübergangstemperatur) erwärmt und zusammengepreßt werden.

> Bei Zweischichtwarmumformen wird zunächst ein Schichtverbund aus Kern- und Mantelschicht als undas Einstellen der gewünschten Foliendicke und anschließendes Verschweißen der Folien. Schließlich wird der Folienstapel in einer Vakuumwarmumformmaschine so strukturiert, daß zumindest die Kernschicht die gewünschte Mikrostruktur trägt. Das Verschweißen der Mantelschicht mit der Kernschicht kann auch erst während des Warmumformens erfolgen.

> Beim Reaktionsguß wird die Kernschicht durch Polymerisation eines Monomer-Polymergemisches im Formnest hergestellt. Dadurch wird eine vollständige Füllung des Formnestes erreicht. Anschließend erfolgt das Verschweißen der Kernschicht mit der Mantel-

Eine weitere Alternative im Herstellungsprozeß ist nicht durch Verschweißen, sondern durch einen Reaktionsguß der Mantelschicht direkt auf der Kernschicht (unstrukturiert oder strukturiert) zu realisieren. Im Falle von PMMA (Polymethymethacrylat) als Mantelschicht Die Herstellung von lichtleitenden Mikrostrukturen, 40 und PMMA-Copolymer als Kernschicht erfolgt jedoch während der Polymerisation der Mantelschicht auf der Kernschicht ein Eindiffundieren von Monomer des Mantelmaterials in die Kernschicht, so daß sich an der Grenzschicht die optischen und mechanischen Eigen-45 schaften der Kernschicht ändern. Dies hat beispielsweise eine Spannungsrißbildung in der Kernschicht zur Folge, die die optischen Mikrostrukturen unbrauchbar macht. Somit ist eine Polymerisation der Mantelschicht auf die Kernschicht nur dann möglich, wenn Materialpaarungen verwendet werden, die ein Eindiffundieren von Mantelmaterial unter Beeinträchtigung des Kernmaterials verhindern. Weitere mögliche Werkstoffe sind grundsätzlich alle transparenten Kunststoffe, insbesondere Polycarbonate (PC) und deren Copolymere sowie Copolymer der Prolyolefine (COC).

> Weitere zweckmäßige und vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.

Ein Ausführungsbeispiel der Erfindung ist in der stoff bzw. Luft besteht, umgeben. Durch das vorgeschla- 60 Zeichnungen schematisch dargestellt und wird im folgenden näher erläutert. Es zeigen

> Fig. 1 eine Vorrichtung bestehend aus einer Matrize mit Zubehör,

> Fig. 2 eine Vorrichtung mit einer Matrize, einem Stempel und einer dazwischen eingelegten Kernschicht,

Fig. 3 den Zustand der Kernschicht nach dem Warm-

Fig. 4 die in den Formnestern eingebrachte Kern-

schicht sowie die Matrize und den Stempel, zwischen die die Mantelschicht eingelegt ist,

Fig. 5 den Verfahrenszustand nach dem Verschwei-Ben der Mantelschicht auf die Kernschicht und

Fig. 6 eine lichtleitende Struktur nach dem Abformen. Anhand der Fig. 1 bis 6 werde das Verfahren und die Vorrichtung genauer erläutert. Als Beispiel für eine lichtleitende Mikrostruktur wurde ein Gitterspektrometerbaustein ausgewählt, der mit LIGA-Formeinsätzen als Matrizen 10 abgeformt wird.

Zunächst werden die Kernschicht 30 und Mantelschicht 40 getrennt als Folie polymerisiert bzw. Folien geprägt oder aus Granulat extrudiert und spritzgegossen. Zur Vorbereitung der Abformung werden die Fo-Herstellung eines Gitterspektrometerbausteins beträgt die Dicke der Kernschicht 30 vor der Abformung 5 bis 2000 µm und die Dicke der Mantelschicht 40 von 7 bis 5000 µm. Zur Ankopplung des Gitterspektrometerbausteins an Multimodefasern sind Kernschichtdicken von 20 50 bis 110 μm , vorzugsweise 80 μm , und Mantelschichtdicken, vorzugsweise 400 bis 1000 µm, einzustellen. Die Kernschicht 30 besteht aus PMMA (Polymethylmethacrylat), die aus MMA und einem Initiator hergestellt wird. Die Mantelschicht 40 besteht aus 70-80% MMA 25 mit 20-30% TFPMA-Copolymer, ein fluoriertes Copolymer des PMMA, und einem Initiator. Der Initiator sorgt für die Polymerisation des Materials. Grundsätzlich können für die Kernschicht 30 und Mantelschicht 40 auch andere Materialien eingesetzt werden, beispielsweise transparente Kunststoffe, insbesondere Polycarbonate (PC) oder Copolymere oder Copolymere der Polyolefine (COC), es muß jedoch ein Unterschied im Brechungsindex zwischen der Kernschicht 30, bzw. geprägte Kernschicht 35 und der Mantelschicht 40, bzw. geprägten Mantelschicht 45 bestehen, daß sich beim Fügen eine Grenzschicht 50 ausbildet, an der das Licht, das in der geprägten Kernschicht 35 mit höherem Brechungsindex geführt wird, reflektiert wird. Für die Kernschicht 30 bzw. geprägten Kernschicht 35 ergibt 40 sich ein Brechungsindex von n = 1,49 bei einer Wellenlänge von 590 nm, für die Mantelschicht 40, bzw. geprägten Mantelschicht 45 ein n = 1.467. Nach der Folienbearbeitung durch Polierfräsen bzw. Warmprägen wird die Kernschicht 30 durch Vakuumwarmumformen 45 mikrostrukturiert. Zum Vakuumwarmumformen werden eine Vorrichtung, bestehend aus mindestens einer Matrize 10, die Mikrostrukturen aufweist, und einem Stempel 20, der Mikrostrukturen aufweisen kann, verwendet. Die Matrize 10 wird häufig auch als Werkzeug- 50 platte mit Formeinsätzen 10 ausgeführt. Im Falle eines Gitterspektrometerbausteins werden harte Matrizen 10 bzw. Formeinsätze 10 aus Nickel oder Nickellegierungen, die beispielsweise galvanisch hergestellt wurden, verwendet.

Die Härte der Nickelformeinsätze weist mindestens 200 HV (0,1), die Härte vor der ersten Abformung bei Nickel 350 HV (0,1) bei Nickellegierungen mindestens 400 HV (0,1) auf. Diese Matrizen 10 bzw. Formeinsätze 10 werden durch das LIGA-Verfahren hergestellt. Es 60 sind jedoch auch mechanisch gefertigte Formeinsätze aus Messing oder Aluminiumlegierungen einsetzbar. Die Formeinsätze 10 weisen ein oder mehrere Formnester 15 auf, die vorteilhaft scharfe Kanten zur Formeinsatzstirnfläche aufweisen. Die Ebenheit der Formeinsätze ist besser als 50 µm Wölbung.

Als Stempel 20 wurden bevorzugt weiche Stempel 20 eingesetzt, die aus weichgeglühtem Aluminium oder

Aluminiumlegierungen bestehen und eine Vickershärte von 15 bis 45 HV (0,1) aufweisen. Ebenfalls eignen sich Stempel 20 aus Elastomer, beispielsweise EPDM (Ethylen-Propylen-Dien-Elastomer) und weiche Stempel 20 aus Silikon, Kautschuk oder Silikon-Kautschuk. Eine weitere vorteilhafte Ausgestaltung des Stempels 20 ist die Verwendung einer Polyimidfolie (Kapton) oder Folie aus Fluorkunststoffen als Ersatz oder zusätzliche Deckschicht bzw. Beschichtung zu den aufgeführten Stempelmaterialien. Somit ergibt sich, abhängig von der abzuformenden Struktur, ein Stempel bestehend aus einem Elastomer oder aus einem Stapelaufbau, der unten mit einem Metallstempel beginnt, dann beispielsweise eine obere Platte 21 aus einer Aluminiumlegielien 30 und 40 auf ihre Sollmaße bearbeitet. Für die 15 rung oder Silikonkautschuk folgt und schließlich die Stempeloberfläche 25 mit einer Polyimidfolie oder Teflonbeschichtung abschließt. Als Ersatz für den Silikonkautschuk ist bei bestimmten Strukturen eine obere Platte 21 aus Silikon, Kautschuk oder EPDM-Elastomer einsetzbar. Entscheidend für die Strukturierung von Kern- und Mantelschicht ist jedoch, daß sie mit den Folien und Beschichtungen aus Polyimiden oder Fluorkunststoffen keine Verbindung eingehen. Damit im Falle eines metallischen Stempels die Kanten am Formeinsatz nicht frühzeitig stumpf werden, sollte die Dicke der Folie bzw. der Beschichtung dicker sein als die Differenz zwischen Tiefe des Formnestes 15 und der geprägten Kernschichtdicke 35.

> In einer besonderen Ausführungsform des Verfahrens, dem Zweischichtwarmumformen, bei dem die Kern- und Mantelschichten bereits gefügt sind oder nur lose aufeinander liegen, ist die Mantelschicht 40 identisch mit dem Stempel 20 für die Warmumformung der Kernschicht 30. Hier wird keine Folie oder Beschichtung auf die Mantelschicht 40 als Stempel 20 aufgebracht, damit die Mantelschicht 40 sich spätestens beim Umformen mit der Kernschicht 30 verbindet.

> Die Umformung der Kernschicht 30 aus PMMA wird mit Umformkräften zwischen 5 und 100 kN bei Umformtemperaturen zwischen 105 und 260°C durchgeführt. Für den Spektrometerbaustein beträgt die optimale Umformkraft 45 kN bei 176°C, ist jedoch maschinenabhängig. Besonders gute Ergebnisse zur Formfüllung erhält man beim Umformen unter Vakuum. Bei diesen Prozeßparametern wird mit Hilfe eines weichen Stempels 20, der beim Warmumformen gegen die Formeinsatzstirnfläche gedrückt wird, die Kernschicht in die Formnester geprägt und eine minimale Restschichtdikke erreicht, die als unstrukturierte Schicht in einer Dicke von 0 bis ca. 50 um an der Werkzeugstirnfläche verbleibt. Vorteilhaft ist der Einsatz eines weichgeglühten Reinaluminiumstempels 20 der Härte 30 HV (0,1) mit einer 75 µm dicken Kaptonfolie aus Polyimid (Kapton) als Stempeloberfläche 25 mit der Funktion einer Trennschicht. Werden die Umformparameter richtig gewählt, so ergibt sich an den Kanten der Formnester eine geringe Restschichtdicke und damit geringe Lichtverluste beim Ankoppeln von Lichtleitfasern an die abgeformten optischen Mikrostrukturen. Insbesondere bei Mikrostrukturen mit vergleichsweise großen Formnestern wird eine Restschichtdicke von ca. 0 µm dadurch erreicht, daß die Kernschicht 30 in Form einer Unterteilung in Stücke mit ihrer Schichtdicke und lateralen Ma-Ben an das Volumen der zu füllenden Formnester 15 des Formeinsatzes 10 angepaßt wird. Bei Mikrostrukturen allgemeiner Art wird eine geringe Restschichtdicke dadurch erreicht, daß die Dicke der Kernschicht 30 kleiner ist als die Tiefe der Formnester 15 im Formeinsatz 10.

Zur Anwendung sind denkbar Kernschicht und Formnesttiefe zwischen 5 und 200 µm bei Mantelschichtdikken von 7 bis 5000 μm. Für optische Mikrostrukturen für den Multimode-Einsatz haben sich Kernschichtdikken von 50 bis 100 μm, Formnesttiefen von 80 bis 5 120 µm und Mantelschichtdicken bis 490 µm bewährt.

Nach dem Warmumformen der Kernschicht 30 verbleibt die geprägte Kernschicht 35 zunächst in den Formnestern des Formeinsatzes und es wird die Mantelschicht 40 auf die geprägte Kernschicht 35 verschweißt. 10 Das Verschweißen erfolgt ebenfalls unter Vakuum, wobei die geprägte Kernschicht 35 und Mantelschicht 40 bis auf eine Temperatur von 80 bis 230°C erwärmt und bei Umformkräften von 0,1 bis 50 kN verschweißt werden. Im Falle des Gitterspektrometers ist ein günstiger 15 Parametersatz für das Verschweißen 138°C und 450 N. Anschließend wird der Gitterspektrometerbaustein im zweischichtigen Aufbau - bestehend aus einer geprägten Kernschicht 35 und einer geprägten Mantelschicht 45 - aus dem Formeinsatz 10 entfernt. Analog dazu 20 können andere lichtleitende Mikrostrukturen abgeformt werden. Es müssen jedoch die Abform- und Verweißparameter an die jeweilige Geometrie der Mikrostruktur angepaßt werden.

Nach dem Warmumformen und Verscheißen liegt ei- 25 ne lichtleitende Struktur vor, die eine Stufe aufweist. Die Stufe wird erzeugt zwischen dem strukturierten Bereich und dem unstrukturierten Bereich. Im strukturierten Bereich befindet sich die Kernschicht und je nach Verfahrensdurchführung ggf. auch ein Teil der Mantel- 30 schicht. Die Höhe der Stufe wird entsprechend an das Maß des Innendurchmessers bzw. an das Maß aus der Summe des Innendurchmessers und der einfachen Wandstärke der Lichtleitfasern angepaßt. So mündet im besten Falle die Kernschicht in den Innendurchmesser 35 (Kern) der Lichtleitfaser und der strukturierte Bereich von der Mantelschicht wird von der Wandstärke der Lichtleitfaser überdeckt. Damit dies gelingt, ist die Tiefe des Formnestes 15 kleiner oder gleich der geprägten Kernschicht 35.

Patentansprüche

- 1. Verfahren zum Herstellen einer mindestens zwei Schichten aufweisendem Struktur mit mindestens 45 einer Kernschicht (30) und mindestens einer Mantelschicht (40), dadurch gekennzeichnet, daß mittels eines Werkzeuges, bestehend aus einer mindestens ein Formnest (15) aufweisenden Matrize (10) und einem Stempel (20), die Kernschicht (30) in das 50 Formnest (15) eingebracht und mit der Mantelschicht (40) verbunden wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
 - a) daß zuerst eine Kernschicht (30) auf den 55 Stempel (20) gelegt wird, daß daraufhin die Matrize (10), die Kernschicht (30) und der Stempel (20) auf ihre jeweilige, spezifische Umformtemperatur gebracht werden, daß im weiteren Schritt die Kernschicht (30) durch 60 den Stempel (20) in das Formnest bzw. die Formnester (15) der Matrize (10) eingedrückt wird bzw. werden und hierbei der Stempel (20) so verformt wird, daß die Kernschicht (30) vollständig auf den Boden des Formnesters 65 (15) gedrückt wird und dabei die Kernschicht (30) zur geprägten Kernschicht (35) strukturiert wird, daß daraufhin die Mantelschicht (40)

eingelegt wird und die geprägte Kernschicht (35), die Mantelschicht (40), die Matrize (10) und der Stempel (20) auf ihre jeweilige spezifische Verschweißtemperatur gebracht werden und daß schließlich die Schichten (35, 40) zusammengepreßt werden, so daß zumindest die geprägte Kernschicht (35) die Struktur als Abbild der Formnester (15) der Matrize (10) trägt,

b) daß ein Schichtverbund aus Kernschicht (30) und Mantelschicht (40) als unstrukturierter Schichtstapel (30, 40) hergestellt und danach der Schichtstapel (30, 40) mit Matrize (10) und Stempel (20) so strukturiert wird, wobei zumindest die geprägte Kernschicht (35) die gewünschte Struktur als Abbild der Formnester (15) der Matrize (10) trägt, oder

c) daß die geprägte Kernschicht (35) durch chemische Reaktion im Formnest hergestellt und anschließend das Verschweißen der geprägten Kernschicht (35) mit der Mantelschicht (40) so erfolgt, daß zumindest die geprägte Kernschicht (35) die gewünschte Struktur als Abbild der Formnester (15) der Matrize (10) trägt, oder

d) daß die geprägte Kernschicht (35) strukturiert wird und anschließend die Mantelschicht (40) durch chemische Reaktionen erzeugt und/ oder auf die Kernschicht so aufgebracht wird, daß zumindest die geprägte Kernschicht (35) die gewünschte Struktur als Abbild der Formnester (15) der Matrize (10) trägt.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Mikrostruktur, insbesondere eine LIGA-Mikrostruktur, mit optischen bzw. lichtleitenden Eigenschaften im Vakuum hergestellt wird.

40

4. Verfahren nach einem der Ansprüche 1 bis 3 zur Herstellung von Bauteilen für die Multimode-Technik bzw. Gitterspektrometerbausteine.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Struktur mit einer Schutzschicht oder einem Gehäuse versehen wird.

Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Dicke der Kernschicht (30) kleiner oder gleich ist als oder wie die der Tiefe der Formnester (15).

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Volumen der Formnester (15) mindestens dem Volumen der Kernschicht (30) entspricht bzw. größer ist.

8. Verfahren nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, daß die Kernschicht (30) in mindestens einem Stück in mindestens ein Formnest (15) eingebracht wird.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Kernschicht (30) eine Dicke und die Formnester (15) eine Tiefe von 5 bis 2000 µm aufweisen, während die Mantelschicht (40) eine Dicke von 7 bis 5000 µm aufweist.

10. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß bei optischen Mikrostrukturen

a) für Multimode-Anwendungen mit Multimodefasern mit ca. 125 µm Durchmesser die Kernschicht (30) eine Dicke von 50 bis 110 μm , die Formnester (15) eine Tiefe von 80 bis 120 µm und die Mantelschicht (40) eine Dicke

von 10 bis 490 µm aufweisen, bzw. b) für beliebige optische Fasern die Dicke der geprägten Kernschicht (35) mit dem Kerndurchmesser von optischen Fasern und die Höhe des strukturierten Bereichs (41) der geprägten Mantelschicht (45) mit der Manteldik-

ke von optischen Fasern vergleichbar ist.

11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Kernschicht (30) bei einer Umformkraft von 5 bis 100 kN und Tem- 10 peraturen zwischen Glasübergangstemperatur und maximaler Spritzgießtemperatur - für PMMA zwischen 105 und 260 Grad Celsius - und die Mantelschicht (40) bei einer Verschweißkraft von 0,1 bis 50 kN und Temperaturen zwischen Erweichungs- 15 temperatur und üblicher Spritzgießtemperatur bei PMMA-Copolymer zwischen 80 und 230°C umgeformt werden.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß bei optischen Mikro- 20 strukturen für Multimode-Anwendung die Kernschicht (30) bei einer Umformkraft von 20 bis 100 kN und Temperaturen zwischen 160 und 180°C und die Mantelschicht (40) bei einer Verschweißkraft von 0,1 bis 20 kN und Temperaturen zwischen 130 25 und 150°C umgeformt werden.

13. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Kernschicht (30) aus PMMA (Polymethylmethacrylat) und die Mantelschicht (40) aus einem 30 fluorierten Copolymer, erzeugt aus 70 bis 80 % MMA und 20 bis 30% TFPMA-Copolymer, hergestellt wird.

14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Kernschicht (30) 35 und die Mantelschicht (40) aus transparenten Kunststoffen, insbesondere Polycarbonaten und/ oder ihren Copolymeren und/oder den Copolymeren der Polyolefine hergestellt werden.

15. Verfahren nach einem der Ansprüche 1 bis 14, 40 dadurch gekennzeichnet, daß die Matrize (10) aus Nickel bzw. Nickellegierungen besteht, das/die eine Vickershärte von mindestens 200 HV (0,1) aufweist bzw. aufweisen.

16. Verfahren nach einem der Ansprüche 1 bis 15, 45 dadurch gekennzeichnet, daß die Matrize (10) scharfe Kanten zu den Formnestern (15) aufweist. 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß ein Stempel (20) oder die obere Platte (21) des Stempels (20) aus weichge- 50 glühtem Aluminium bzw. Aluminiumlegierung verwendet wird, das bzw. die eine Vickershärte 15 bis 45 HV (0,1) aufweist bzw. aufweisen.

18. Verfahren nach Ansprüche 1 bis 17, dadurch gekennzeichnet, daß ein Stempel (20) oder seine 55 obere Platte (21) des Stempels aus Elastomer, EPDM (Ethylen-Propylen-Dien-Elastomer), Silikon, Kautschuk bzw. Silikonkautschuk verwendet wird, der/die sich mit der geprägten Kern- und Mantelschicht (35, 45) nicht verbindet.

19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß ein Stempel (20) oder eine obere Platte (21) des Stempels (20) (bzw. eine Stempeloberfläche (25) auf dem Stempel) aus Polyimid oder einem Fluorkunststoff (bzw. Polyimid- 65 oder Fluorkunststoffolie oder -beschichtung) verwendet wird, der/die sich mit der Kern- und Mantelschicht nicht verbindet.

20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß der Stempel (20) oder die obere Platte (21) des Stempels zur Umformung der Kernschicht eine Schicht aus Mantelmaterial ist und zur Umformung der Mantelschicht (40) der unteren Teile (22) des Stempels aus einem anderen Material verwendet wird, so daß sich beim Umformen die Mantelschicht (40) mit der geprägten Kernschicht (35) verbindet.

21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß eine Stufe (70) gebildet wird, durch die geprägte Kernschicht (35) bzw. die geprägte Kernschicht (35) und Teile der Mantelschicht (41) einerseits und durch die geprägte Mantelschicht (45) bzw. den Rest (42) der Mantelschicht andererseits, deren Stufenhöhe größer oder gleich ist als der Dicke der geprägten Kernschicht (35) bzw. deren Stufenhöhe der Summe aus Innendurchmesser plus einfache Wandstärke einer Lichtleitfaser entspricht, so daß auf die Stufe (70) der geprägten Mantelschicht (45 bzw. 42) mindestens eine optische Faser angekoppelt wird.

22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß als Stempel (20) zur Umformung der Mantelschicht (40) ein Material verwendet wird, das sich mit der geprägten Mantelschicht (45) verbindet und somit ein Substrat für die lichtleitende Struktur bildet.

23. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 22, gekennzeichnet durch eine mindestens ein Formnest (15) aufweisende Matrize (10) und einen mindestens einschichtigen Stempel (20).

24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß die Dicke der Kernschicht (30) kleiner oder gleich ist als oder wie die Tiefe der Formnester (15).

25. Vorrichtung nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß die Matrize (10) aus Nickel bzw. Nickellegierungen besteht, das/die eine Vikkershärte von mindestens 200 HV (0,1) aufweist bzw. aufweisen, und daß die Matrize (10) scharfe Kanten zu den Formnestern (15) aufweist.

26. Vorrichtung nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, daß der Stempel (20) und die obere Platte (21) des Stempels aus weichgeglühtem Aluminium (bzw. Aluminiumlegierung) besteht, das (die) die Vickershärte 15 bis 45 HV (0,1) aufweist.

27. Vorrichtung nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß der Stempel (20) und die obere Platte (21) des Stempels aus Elastomer, EPDM (Ethylen-Propylen-Dien-Elastomer), Silikon, Kautschuk bzw. Silikonkautschuk besteht, der/die sich mit der geprägten Kern- und der geprägten Mantelschicht (35, 45) nicht verbindet.

28. Vorrichtung nach einem der Ansprüche 23 bis 27, dadurch gekennzeichnet, daß der Stempel (20) und die obere Platte (21) des Stempels (bzw. eine Stempeloberfläche (25) auf dem Stempel) aus Polyimid oder Fluorkunststoff (bzw. aus einer Folie oder Beschichtung aus Polyimid oder Fluorkunst-

stoff) besteht.

29. Vorrichtung nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, daß der Stempel oder die obere Platte (21) des Stempels zur Umformung der geprägten Kernschicht (35) eine Schicht aus Mantelmaterial ist und zur Umformung der Mantelschicht der untere Teil (22) des Stempels aus einem anderen Material besteht, so daß sich beim Umformen die geprägte Mantelschicht (45) mit der Kernschicht verbindet.

30. Vorrichtung nach einem der Ansprüche 23 bis 29, dadurch gekennzeichnet, daß als Stempel (20) zur Umformung der Mantelschicht (40) ein Material verwendet wird, das sich mit der geprägten Mantelschicht (45) verbindet und somit ein Substrat für die lichtleitende Struktur bildet.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: DE 196 12 576 A1 B 29 C 51/14 2. Oktober 1996

602 040/770