

TRIGONOMETRY

Chapter 2

LEVEL

Razones trigonométricas de ángulos notables

TRIGONOMETRY

indice

01. MotivatingStrategy >

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop

 \bigcirc

Video: ¿Cómo es el triángulo notable de 45° y 45°?

MOTIVATING STRATEGY

¿ CÓMO ES EL TRIÁNGULO RECTÁNGULO NOTABLE DE 45° y 45° ?

Resumen

HELICO THEORY

¿ CÓMO OBTENEMOS LAS RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS NOTABLES?

Las obtenemos a partir de triángulos rectángulos notables básicos (cuando k = 1); los cuales poseen proporciones fijas y muy conocidas entre las longitudes de sus lados con respecto a sus ángulos agudos interiores.

Luego aplicamos las definiciones de las razones trigonométricas del ángulo agudo.

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\csc 60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

	sen	cos	tan	cot	sec	CSC
30°	1 2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	3 5	4 5	3 4	4 3	5 4	5 3
53°	4 5	3 5	$\frac{4}{3}$	3 4	5 3	5 4

 \bigcirc

Problema 01

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Calcule

$$E = (sen30^{\circ} + cos60^{\circ})$$
. $tan37^{\circ}$

RECORDEMOS

$$E = (sen30^{\circ} + cos60^{\circ}). tan37^{\circ}$$

$$E = \left(\frac{1}{2} + \frac{1}{2} \right) \cdot \frac{3}{4}$$

$$\mathbf{E} = \left(\frac{2}{2}\right) \cdot \frac{3}{4}$$

Respuesta

$$E = \frac{3}{4}$$

Calcule cotθ

Por lo tanto:

$$x + 3 = 2x + 1$$

$$\mathbf{x} = \mathbf{2}$$

Calculando cot0

$$\cot\theta = \frac{5x - 3}{x + 3}$$

$$\cot \theta = \frac{5(2) - 3}{(2) + 3}$$

Respuesta

Del gráfico, calcule: tanβ

Del gráfico, por ⊾ notable 45°:

Calculando $tan \beta$

$$\therefore \tan \beta = \frac{1}{4}$$

Diego desea comprar un terreno forma rectangular cuyas dimensiones son A y B (en metros). Si se sabe que el metro cuadrado cuesta \$100.

Determine el precio del terreno.

$$A = 4(sec37^{\circ} + sen^{2}60^{\circ})$$

 $B = 2tan45^{\circ} + 5cos53^{\circ}$

Calculando las dimensiones del terreno:

$$A = 4(\sec 37^{\circ} + \sec^2 60^{\circ})$$

$$\mathbf{A} = \mathbf{4} \left[\frac{\mathbf{5}}{\mathbf{4}} + \left(\frac{\sqrt{3}}{2} \right)^2 \right]$$

$$A = 4\left[\frac{5}{4} + \frac{3}{4}\right] = A\left[\frac{8}{4}\right]$$

$$A = 8 metros$$

$B = 2 \cdot tan45^{\circ} + 5 \cdot cos53^{\circ}$

$$B = 2(1) + 5\left(\frac{3}{5}\right)$$

$$B = 2 + 3$$

$$B = 5 metros$$

Calculando el área del terreno:

8 m.

$$S = b \times h$$

$$S = (8 \text{ m}) \times (5 \text{ m})$$

$$S = 40m^2$$

Calculando el precio del terreno:

Precio =
$$40(\$100)$$

$$: S = $4000$$

Pedro decide dibujar un triángulo equilátero con condición que la altura sea $2\sqrt{3}$. Dé como respuesta el valor del lado de dicho triángulo.

Graficamos:

Del ⊾ ABH:

$$k\sqrt{3} = 2\sqrt{3}$$
$$k = 2$$

$$k = 2$$

Respuesta

: Lado del triangulo equilátero = 4