<151> 1999-02-09

Sequence Listing

```
<110> Botstein, David
   Desnoyers,Luc
   Ferrara, Napoleone
   Fong, Sherman
   Gao, Wei-Qiang
   Goddard, Audrey
   Gurney, Austin L.
   Pan,James
   Roy, Margaret Ann
   Stewart, Timothy A.
   Tumas, Daniel
   Watanabe, Colin K.
   Wood, William I.
<120> Secreted and Transmembrane Polypeptides and Nucleic
   Acids Encoding the Same
<130> P2930R1C2
<150>60/095,325
<151>1998-08-04
<150> 60/112,851
<151> 1998-12-16
<150> 60/113,145
<151> 1998-12-16
<150> 60/113,511
<151> 1998-12-22
<150> 60/115,558
<151> 1999-01-12
<150> 60/115,565
<151> 1999-01-12
<150> 60/115,733
<151> 1999-01-12
<150> 60/119,341
```

<151> 2000-03-03 <150> PCT/US99/12252 <151> 1999-06-02 <150> PCT/US99/28634 <151> 1999-12-01 <150> PCT/US99/28551 <151> 1999-12-02 <150> PCT/US00/03565 <151> 2000-02-11 <150> PCT/US00/04414 <151> 2000-02-22 <150> PCT/US00/05841 <151> 2000 -03-02 <150> PCT/US00/08439 <151> 2000-03-30 <150> PCT/US00/14941 <151> 2000-05-30 <150> PCT/US00/15264 <151> 2000-06-02 <150> PCT/US00/32678 <151> 2000-12-01 <140> US 09/866,034 <141> 2001-05-25 <160> 38 <210> 1 <211> 1283 <212> DNA <213> Homo sapiens <400> 1 cggacgcgtg ggacccatac ttgctggtct gatccatgca caaggcgggg 50 ctgctaggcc tctgtgcccg ggcttggaat tcggtgcgga tggccagctc 100 egggatgace egeegggace egetegeaaa taaggtggee etggtaaegg 150 cotocacega egggategge ttegecateg eeeggegttt ggeecaggae 200 ggggcccatg tggtcgtcag cagccggaag cagcagaatg tggaccaqqc 250 ggtggccacg ctgcaggggg aggggctgag cgtgacgggc accgtgtgcc 300

atgtggggaa ggcggaggac cgggagcggc tggtggccac ggctgtgaag 350

cttcatggag gtatcgatat cctagtctcc aatgctgctg tcaacccttt 400 ctttggaagc ataatggatg tcactgagga ggtgtgggac aagactctgg 450 acattaatgt gaaggcccca gccctgatga caaaggcagt ggtgccagaa 500 atggagaaac gaggaggcgg ctcaqtgqtg atcqtqtctt ccataqcaqc 550 cttcagtcca tctcctggct tcagtcctta caatqtcaqt aaaacaqcct 600 tgctgggcct gaccaagacc ctggccatag agctggcccc aaggaacatt 650 agggtgaact gcctagcacc tggacttatc aagactagct tcagcaggat 700 gctctggatg gacaaggaaa aagaggaaag catgaaagaa accctgcgga 750 taagaaggtt aggcgagcca gaggattgtg ctggcatcgt gtctttcctg 800 tgctctgaag atgccagcta catcactggg gaaacagtgg tggtgggtgg 850 aggaaccccg tecegeetet gaggaccggg agacageeca caggeeaqag 900 ttgggctcta gctcctggtg ctgttcctgc attcacccac tgqcctttcc 950 cacctctgct caccttactg ttcacctcat caaatcagtt ctgccctgtg 1000 aaaagatcca geetteeetg eegteaaggt ggegtettae tegggattee 1050 tgctgttgtt gtggccttgg gtaaaggcct cccctgagaa cacaggacag 1100 gcctgctgac aaggctgagt ctaccttggc aaagaccaag atatttttc 1150 ctgggccact ggtgaatctg aggggtgatg ggagagaagg aacctggagt 1200 ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250 atgcagatga ttgcgcggct ttgaaaaaaa aaa 1283

<210> 2

<211> 278

<212> PRT

<213> Homo sapiens

<400> 2

Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn 1 5 10 15

Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu 20 25 30

Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly
35 40 45

Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60

Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr
65 70 75

```
Leu Gln Gly Glu Gly Leu Ser Val Thr Gly Thr Val Cys His Val
 Gly Lys Ala Glu Asp Arg Glu Arg Leu Val Ala Thr Ala Val Lys
                                     100
 Leu His Gly Gly Ile Asp Ile Leu Val Ser Asn Ala Ala Val Asn
 Pro Phe Phe Gly Ser Ile Met Asp Val Thr Glu Glu Val Trp Asp
 Lys Thr Leu Asp Ile Asn Val Lys Ala Pro Ala Leu Met Thr Lys
Ala Val Val Pro Glu Met Glu Lys Arg Gly Gly Ser Val Val
 Ile Val Ser Ser Ile Ala Ala Phe Ser Pro Ser Pro Gly Phe Ser
                 170
                                     175
 Pro Tyr Asn Val Ser Lys Thr Ala Leu Leu Gly Leu Thr Lys Thr
 Leu Ala Ile Glu Leu Ala Pro Arg Asn Ile Arg Val Asn Cys Leu
                 200
 Ala Pro Gly Leu Ile Lys Thr Ser Phe Ser Arg Met Leu Trp Met
 Asp Lys Glu Lys Glu Glu Ser Met Lys Glu Thr Leu Arg Ile Arg
 Arg Leu Gly Glu Pro Glu Asp Cys Ala Gly Ile Val Ser Phe Leu
 Cys Ser Glu Asp Ala Ser Tyr Ile Thr Gly Glu Thr Val Val Val
                 260
Gly Gly Gly Thr Pro Ser Arg Leu
                 275
<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
gcataatgga tgtcactgag g 21
<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 4
agaacaatcc tgctgaaagc tag 23
<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 5
gaaacgagga ggcggctcag tggtgatcgt gtcttccata gcagcc 46
<210> 6
<211> 3121
<212> DNA
<213> Homo sapiens
<400> 6
gegeeetgag eteegeetee gggeeegata geggeatega gagegeetee 50
 gtcgaggacc aggcggcgca gggggccggc gggcgaaagg aggatgaggg 100
 ggcgcagcag ctgctgaccc tgcagaacca ggtggcgcgg ctggaggagg 150
 agaaccgaga ctttctggct gcgctggagg acgccatgga gcagtacaaa 200
 ctgcagagcg accggctgcg tgagcagcag gaggagatgg tggaactgcg 250
 gctgcggtta gagctggtgc ggccaggctg ggggggcctg cggctcctga 300
 atggcctgcc tcccgggtcc tttgtgcctc gacctcatac agccccctg 350
 gggggtgccc acgcccatgt gctgggcatg gtgccgcctg cctgcctccc 400
 tggagatgaa gttggctctg agcagagggg agagcaggtg acaaatggca 450
 gggaggctgg agctgagttg ctgactgagg tgaacaggct gggaagtggc 500
 tetteagetg etteagagga ggaagaggag gaggaggage egeceaggeg 550
 gaccttacac ctgcgcagaa ataggatcag caactgcagt cagagggcgg 600
 gggcacgccc agggagtctg ccagagagga agggcccaga gctttgcctt 650
 gaggagttgg atgcagccat tccagggtcc agagcagttg gtgggagcaa 700
 ggcccgagtt caggcccgcc aggtcccccc tgccacagcc tcagagtggc 750
 ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800
 atgaaggagg agcttattgg cgagctggtc cgcacaggaa aggcagctca 850
 ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900
```

cagagcaggt gegggeegag etgagtgaag geeagaggea getgegggag 950 ctcgagggca aggagctcca ggatgctggc gagcggtctc ggctccagga 1000 gttccgcagg agggtcgctg cggcccagag ccaggtgcag gtgctqaaqq 1050 agaagaagca ggctacggag cggctggtgt cactgtcggc ccagagtgag 1100 aagegaetge aggagetega geggaaegtg cageteatge ggeageagea 1150 gggacagetg cagaggegge ttegegagga gaeggageag aageggegee 1200 tggaggcaga aatgagcaag cggcagcacc gcgtcaagga gctggagctg 1250 aagcatgagc aacagcagaa gatcctgaag attaagacgg aagagatcgc 1300 ggccttccag aggaagaggc gcagtggcag caacggctct gtggtcagcc 1350 tggaacagca gcagaagatt gaggagcaga agaagtggct ggaccaggag 1400 atggagaagg tgctacagca gcggcgggcg ctggaggagc tggggggggagga 1450 gctccacaag cgggaggcca tcctggccaa gaaggaggcc ctgatgcagg 1500 agaagacggg gctggagagc aagcgcctga gatccagcca ggccctcaac 1550 gaggacatcg tgcgagtgtc cagccggctg gagcacctgg agaaggagct 1600 gtccgagaag agcgggcagc tgcggcaggg cagcgcccag agccagcagc 1650 agateegegg ggagategae ageetgegee aggagaagga etegetgete 1700 aagcagcgcc tggagatcga cggcaagctg aggcagggga gtctgctgtc 1750 ccccgaggag gagcggacgc tgttccagtt ggatgaggcc atcgaggccc 1800 tggatgctgc cattgagtat aagaatgagg ccatcacatg ccgccagcgg 1850 gtgcttcggg cctcagcctc gttgctgtcc cagtgcgaga tgaacctcat 1900 ggccaagctc agctacctct catcctcaga gaccagagcc ctcctctgca 1950 agtattttga caaggtggtg acgctccgag aggagcagca ccagcagcag 2000 attgccttct cggaactgga gatgcagctg gaggagcagc agaggctggt 2050 gtactggctg gaggtggccc tggagcggca gcgcctggag atggaccgcc 2100 agctgaccct gcagcagaag gagcacgagc agaacatgca gctgctcctg 2150 cagcagagtc gagaccacct cggtgaaggg ttagcagaca gcaggaggca 2200 gtatgaggcc cggattcaag ctctggagaa ggaactgggc cgttacatgt 2250 ggataaacca ggaactgaaa cagaagctcg gcggtgtgaa cgctgtaggc 2300 cacagcaggg gtggggagaa gaggagcctg tgctcggagg gcagacaggc 2350

teetggaaat gaagatgage teeacetgge accegagett etetggetgt 2400 ecceeteae tgaggggee eccegeaece gggaggagae gegggaettg 2450 gtecaegete egitaeeett gaeetggaaa egetegagee tgtgtggtga 2500 ggagcagggg teeccegagg aactgaggca gegggaggeg getgageece 2550 tggtggggg ggtgcttcct gtgggtgagg caggcctgcc ctggaacttt 2600 gggcctttqt ccaagcccq gcgggaactg cgacgagcca gcccggggat 2650 gattgatgtc cggaaaaacc ccctgtaagc cctcggggca gaccctgcct 2700 tggagggaga ctccgagcct gctgaaaggg gcagctgcct gttttgcttc 2750 tgtgaagggc agtccttacc gcacacccta aatccaggcc ctcatctgta 2800 ccctcactgg gatcaacaaa tttgggccat ggcccaaaag aactggaccc 2850 tcatttaaca aaataatatg caaattccca ccacttactt ccatgaagct 2900 gtggtaccca attgccgcct tgtgtcttgc tcgaatctca ggacaattct 2950 ggtttcaggc gtaaatggat gtgcttgtag ttcaggggtt tggccaagaa 3000 tcatcacgaa agggtcggtg gcaaccaggt tgtggtttaa atggtcttat 3050 gtatataggg gaaactggga gactttagga tcttaaaaaa ccatttaata 3100 aaaaaaaatc tttgaaggga c 3121

<210> 7 <211> 830 <212> PRT

<213> Homo sapiens

<400> 7

Met Glu Gln Tyr Lys Leu Gln Ser Asp Arg Leu Arg Glu Gln Gln 1 5 10 15

Glu Glu Met Val Glu Leu Arg Leu Arg Leu Glu Leu Val Arg Pro $20 \\ 25 \\ 30$

Gly Trp Gly Gly Leu Arg Leu Leu Asn Gly Leu Pro Pro Gly Ser 35 40 45

Phe Val Pro Arg Pro His Thr Ala Pro Leu Gly Gly Ala His Ala 50 55 60

His Val Leu Gly Met Val Pro Pro Ala Cys Leu Pro Gly Asp Glu 65 70 75

Val Gly Ser Glu Gln Arg Gly Glu Gln Val Thr Asn Gly Arg Glu 80 85 90

Ala Gly Ala Glu Leu Leu Thr Glu Val Asn Arg Leu Gly Ser Gly 95 100 105

Ser Ser	Ala	Ala	Ser 110	Glu	Glu	Glu	Glu	Glu 115	Glu	Glu	Glu	Pro	Pro 120
Arg Arg	Thr	Leu	His 125	Leu	Arg	Arg	Asn	Arg 130	Ile	Ser	Asn	Cys	Ser 135
Gln Arg	Ala	Gly	Ala 140	Arg	Pro	Gly	Ser	Leu 145	Pro	Glu	Arg	Lys	Gly 150
Pro Glu	Leu	Cys	Leu 155	Glu	Glu	Leu	Asp	Ala 160	Ala	Ile	Pro	Gly	Ser 165
Arg Ala	Val	Gly	Gly 170	Ser	Lys	Ala	Arg	Val 175	Gln	Ala	Arg	Gln	Val 180
Pro Pro	Ala	Thr	Ala 185	Ser	Glu	Trp	Arg	Leu 190	Ala	Gln	Ala	Gln	Gln 195
Lys Ile	Arg	Glu	Leu 200	Ala	Ile	Asn	Ile	Arg 205	Met	Lys	Glu	Glu	Leu 210
Ile Gly	Glu	Leu	Val 215	Arg	Thr	Gly	Lys	Ala 220	Ala	Gln	Ala	Leu	Asn 225
Arg Gln	His	Ser	Gln 230	Arg	Ile	Arg	Glu	Leu 235	Glu	Gln	Glu	Ala	Glu 240
Gln Val	Arg	Ala	Glu 245	Leu	Ser	Glu	Gly	Gln 250	Arg	Gln	Leu	Arg	Glu 255
Leu Glu	Gly	Lys	Glu 260	Leu	Gln	Asp	Ala	Gly 265	Glu	Arg	Ser	Arg	Leu 270
Gln Glu	Phe	Arg	Arg 275	Arg	Val	Ala	Ala	Ala 280	Gln	Ser	Gln	Val	Gln 285
Val Leu	Lys	Glu	Lys 290	Lys	Gln	Ala	Thr	Glu 295	Arg	Leu	Val	Ser	Leu 300
Ser Ala	Gln	Ser	Glu 305	Lys	Arg	Leu	Gln	Glu 310	Leu	Glu	Arg	Asn	Val 315
Gln Leu			320					325			_		330
Glu Glu	Thr	Glu	Gln 335	Lys	Arg	Arg	Leu	Glu 340	Ala	Glu	Met	Ser	Lys 345
Arg Gln	His	Arg	Val 350	Lys	Glu	Leu	Glu	Leu 355	Lys	His	Glu	Gln	Gln 360
Gln Lys			365					370					375
Arg Lys	Arg	Arg	Ser 380	Gly	Ser	Asn	Gly	Ser 385	Val	Val	Ser	Leu	Glu 390
Gln Gln	Gln	Lys	Ile	Glu	Glu	Gln	Lys	Lys	Trp	Leu	Asp	Gln	Glu

				395					400					405
Met	Glu	Lys	Val	Leu 410	Gln	Gln	Arg	Arg	Ala 415	Leu	Glu	Glu	Leu	Gly 420
Glu	Glu	Leu	His	Lys 425	Arg	Glu	Ala	Ile	Leu 430	Ala	Lys	Lys	Glu	Ala 435
Leu	Met	Gln	Glu	Lys 440	Thr	Gly	Leu	Glu	Ser 445	Lys	Arg	Leu	Arg	Ser 450
Ser	Gln	Ala	Leu	Asn 455	Glu	Asp	Ile	Val	Arg 460	Val	Ser	Ser	Arg	Leu 465
Glu	His	Leu	Glu	Lys 470	Glu	Leu	Ser	Glu	Lys 475	Ser	Gly	Gln	Leu	Arg 480
Gln	Gly	Ser	Ala	Gln 485	Ser	Gln	Gln	Gln	Ile 490	Arg	Gly	Glu	Ile	Asp 495
Ser	Leu	Arg	Gln	Glu 500	Lys	Asp	Ser	Leu	Leu 505	Lys	Gln	Arg	Leu	Glu 510
Ile	Asp	Gly	Lys	Leu 515	Arg	Gln	Gly	Ser	Leu 520	Leu	Ser	Pro	Glu	Glu 525
Glu	Arg	Thr	Leu	Phe 530	Gln	Leu	Asp	Glu	Ala 535	Ile	Glu	Ala	Leu	Asp 540
Ala	Ala	Ile	Glu	Tyr 545	Lys	Asn	Glu	Ala	Ile 550	Thr	Cys	Arg	Gln	Arg 555
Val	Leu	Arg	Ala	Ser 560	Ala	Ser	Leu	Leu	Ser 565	Gln	Cys	Glu	Met	Asn 570
Leu	Met	Ala	Lys	Leu 575	Ser	Tyr	Leu	Ser	Ser 580	Ser	Glu	Thr	Arg	Ala 585
Leu	Leu	Суз	Lys	Tyr 590	Phe	Asp	Lys	Val	Val 595	Thr	Leu	Arg	Glu	Glu 600
Gln	His	Gln	Gln	Gln 605	Ile	Ala	Phe	Ser	Glu 610	Leu	Glu	Met	Gln	Leu 615
Glu	Glu	Gln	Gln	Arg 620	Leu	Val	Tyr	Trp	Leu 625	Glu	Val	Ala	Leu	Glu 630
Arg	Gln	Arg	Leu	Glu 635	Met	Asp	Arg	Gln	Leu 640	Thr	Leu	Gln	Gln	Lys 645
Glu	His	Glu	Gln	Asn 650	Met	Gln	Leu	Leu	Leu 655	Gln	Gln	Ser	Arg	Asp 660
His	Leu	Gly	Glu	Gly 665	Leu	Ala	Asp	Ser	Arg 670	Arg	Gln	Tyr	Glu	Ala 675
Arg	Ile	Gln	Ala	Leu 680	Glu	Lys	Glu	Leu	Gly 685	Arg	Tyr	Met	Trp	Ile

830

<210> 8 <211> 662 <212> DNA

<213> Homo sapiens

<400> 8

attetectag ageatettig gaageatgag geeaegatge tigeatettigg 50 ctettigtetig etiggataaca gietteetee teeagiigtee aaaaaggaaeet 100 acagaegete etigitiggetee aggaetigtigg etigitigeeage egacaeeeag 150 gigitigggaae aagatetaca accetteaga geagiigetigi tatigatigatig 200 eeateettate etiaaaaggag accegeeget gigigeteeae etigeaeette 250 tiggeeetiget tiggageteig etigitigee eeageagaa 300 gittiettigig aagitigaggi tietigggiat gaagiteteag tigteaeetta 350 etieeeateet eeggagetigi accaggaaea gaageaegt eetigtaeeea 400 taaaaaeeee aggeteeaet gigeagaeggi agaagaaeggi agaagaaeggi aageeggig acateggaga etiaeagtiga actieeggaga gaageaaett 500 gaetteeagag ggatiggetea atgaeatage tittiggagaggi ageeeagetig 550

gggatggcca gacttcaggg gaagaatgcc ttcctgcttc atcccctttc 600 cagctcccct tcccgctgag agccactttc atcggcaata aaatccccca 650 catttaccat ct 662

<210> 9

<211> 125

<212> PRT

<213> Homo sapiens

<400> 9

Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr 1 5 10 15

Val Phe Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val 20 25 30

Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn 35 40 45

Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile
50 55 60

Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe
65 70 75

Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln 80 85 90

Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln 95 100 105

Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg

His Val Leu Tyr Pro 125

<210> 10

<211> 1942

<212> DNA

<213> Homo sapiens

<400> 10

ttagtggtec geeccaegeg ggtegeegge eggeecagga tgggegetgg 400 caacceggge cegegeeege egetgetace cetgegeeeg etgegageee 450 ggcgtccggc ccgcgccctg cgctcatgga cggcggctcc cggctggcgg 500 cggcgcgccc ccgggctgtg aatgcgactc gcccctcggc cgcgctcccc 550 gecegeeege eegeegggae gtggtagggg atgeeeaget eeaetgegat 600 ggcagttggc gcgctctcca gttccctcct ggtcacctgc tgcctgatgg 650 tggctctgtg cagtccgagc atcccgctgg agaagctggc ccaggcacca 700 gagcagccgg gccaggagaa gcgtgagcac gccactcggg acggcccggg 750 gegggtgaac gageteggge geeeggegag ggaegaggge ggeageggee 800 gggactggaa gagcaagagc ggccgtgggc tcgccggccg tgagccgtgg 850 agcaagctga agcaggcctg ggtctcccag ggcgggggcg ccaaggccgg 900 ggatctgcag gtccggcccc gcggggacac cccgcaggcg gaagccctgg 950 cegeageege ceaggaegeg attggeeegg aactegegee caegeeegag 1000 ccaccegagg agtacgtgta cccggactac cgtggcaagg gctgcgtgga 1050 cgagagcggc ttcgtgtacg cgatcgggga gaagttcgcg ccgggcccct 1100 eggeetgeec gtgeetgtge acegaggagg ggeegetgtg egegeageec 1150 gagtgcccga ggctgcaccc gcgctgcatc cacgtcgaca cgagccagtg 1200 ctgcccgcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250 cetateagae tttggaggag ttegtggtgt etecatgega gaggtgtege 1300 tgtgaagcca acggtgaggt gctatgcaca gtgtcagcgt gtccccagac 1350 ggagtgtgtg gaccctgtgt acgagcctga tcagtgctgt cccatctgca 1400 aaaatggtcc aaactgcttt gcagaaaccg cggtgatccc tgctggcaga 1450 gaagtgaaga ctgacgagtg caccatatgc cactgtactt atgaggaagg 1500 cacatggaga atcgagcggc aggccatgtg cacgagacat gaatgcaggc 1550 aaatgtagac getteecaga acacaaacte tgaettttte tagaacattt 1600 tactgatgtg aacattctag atgactctgg gaactatcag tcaaagaaga 1650 cttttgatga ggaataatgg aaaattgttg gtacttttcc ttttcttgat 1700 aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750 aactttgggc ataaaatcct tctctaaata aatgtgctat tttcacagta 1800 <210> 11

<211> 325

<212> PRT

<213> Homo sapiens

<400> 11

Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser 1 10 15

Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser 20 25 30

Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln
35 40 45

Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60

Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75

Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp 80 85 90

Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys 95 100 105

Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala 110 115 120

Glu Ala Leu Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu 125 130 135

Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150

Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile 155 160 165

Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys 170 175 180

Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu 185 190 195

His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln 200 205 210

Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr 215 220 225

Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

				230					235					240
Cys (Glu	Ala	Asn	Gly 245	Glu	Val	Leu	Cys	Thr 250	Val	Ser	Ala	Cys	Pro 255
Gln '	Thr	Glu	Cys	Val 260	Asp	Pro	Val	Tyr	Glu 265	Pro	Asp	Gln	Cys	Cys 270
Pro :	Ile	Cys	Lys	Asn 275	Gly	Pro	Asn	Cys	Phe 280	Ala	Glu	Thr	Ala	Val 285
Ile	Pro	Ala	Gly	Arg 290	Glu	Val	Lys	Thr	Asp 295	Glu	Cys	Thr	Ile	Cys 300
His	Cys	Thr	Tyr	Glu 305	Glu	Gly	Thr	Trp	Arg 310	Ile	Glu	Arg	Gln	Ala 315
Met (Cys	Thr	Arg	His 320	Glu	Cys	Arg	Gln	Met 325					
<210> 12 <211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400> 12 gaggtgtcgc tgtgaagcca acgg 24														
<211><212>	<210> 13 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223>	Syr	nthet	cic (Oligo	onuc:	leot:	ide 1	Prob∈	3					
<400> cgct		ctc t	ccai	tgtg	ec ti	tcc :	24							
<210><211><212><213>	45 DN2		cial	Seq	uence	Э								
<220> <223>	Syr	nthet	cic (Oligo	onuc!	leot	ide 1	Probe	e					
<400> gacge		tgt g	gtgga	accct	tg t	gtac	gagc	c tga	atcag	gtgc	tgt	cc 4!	5	
<211> <212>	gacggagtgt gtggaccctg tgtacgagcc tgatcagtgc tgtcc 45 <210> 15 <211> 1587 <212> DNA <213> Homo sapiens													

<	400> 15					
	cagccacaga	cgggtcatga	gcgcggtatt	actgctggcc	ctcctggggt	50
	tcatcctccc	actgccagga	gtgcaggcgc	tgctctgcca	gtttgggaca	100
	gttcagcatg	tgtggaaggt	gtccgaccta	ccccggcaat	ggacccctaa	150
	gaacaccage	tgcgacagcg	gcttggggtg	ccaggacacg	ttgatgctca	200
	ttgagagcgg	accccaagtg	agcctggtgc	tctccaaggg	ctgcacggag	250
	gccaaggacc	aggagccccg	cgtcactgag	caccggatgg	gccccggcct	300
	ctccctgatc	tcctacacct	tegtgtgeeg	ccaggaggac	ttctgcaaca	350
	acctcgttaa	ctccctcccg	ctttgggccc	cacagecece	agcagaccca	400
	ggatccttga	ggtgcccagt	ctgcttgtct	atggaaggct	gtctggaggg	450
	gacaacagaa	gagatetgee	ccaaggggac	cacacactgt	tatgatggcc	500
	tcctcaggct	caggggagga	ggcatcttct	ccaatctgag	agtccaggga	550
	tgcatgcccc	agccaggttg	caacctgctc	aatgggacac	aggaaattgg	600
	gcccgtgggt	atgactgaga	actgcaatag	gaaagatttt	ctgacctgtc	650
	atcgggggac	caccattatg	acacacggaa	acttggctca	agaacccact	700
	gattggacca	catcgaatac	cgagatgtgc	gaggtggggc	aggtgtgtca	750
	ggagacgctg	ctgctcatag	atgtaggact	cacatcaacc	ctggtgggga	800
	caaaaggctg	cagcactgtt	ggggctcaaa	attcccagaa	gaccaccatc	850
	cactcagccc	ctcctggggt	gcttgtggcc	tcctataccc	acttctgctc	900
	ctcggacctg	tgcaatagtg	ccagcagcag	cagcgttctg	ctgaactccc	950
	tecetectea	agctgcccct	gtcccaggag	accggcagtg	tcctacctgt	1000
	gtgcagcccc	ttggaacctg	ttcaagtggc	tccccccgaa	tgacctgccc	1050
	caggggcgcc	actcattgtt	atgatgggta	cattcatctc	tcaggaggtg	1100
	ggctgtccac	caaaatgagc	attcagggct	gcgtggccca	accttccagc	1150
	ttcttgttga	accacaccag	acaaatcggg	atcttctctg	cgcgtgagaa	1200
	gcgtgatgtg	cagcctcctg	cctctcagca	tgagggaggt	ggggctgagg	1250
	gcctggagtc	tctcacttgg	ggggtggggc	tggcactggc	cccagcgctg	1300
	tggtggggag	tggtttgccc	ttcctgctaa	ctctattacc	cccacgattc	1350
	ttcaccgctg	ctgaccaccc	acactcaacc	tccctctgac	ctcataacct	1400
	aatggccttg	gacaccagat	tctttcccat	tctgtccatg	aatcatcttc	1450

cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500 gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550 gctgcatgta tctgataata cagaccetgt ccttca 1587

<210> 16

<211> 437

<212> PRT

<213> Homo sapiens

<400> 16

Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro

1 5 10 15

Leu Pro Gly Val Gln Ala Leu Cys Gln Phe Gly Thr Val Gln
20 25 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
50 55 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
80 85 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg 95 100 105

Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val 125 130 135

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile 140 145 150

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu 155 160 165

Arg Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met 170 175 180

Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195

Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr 200 205 210

Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln 215 220 225

Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val

230 235 240 Gly Gln Val Cys Gln Glu Thr Leu Leu Ile Asp Val Gly Leu 245 250 Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala 260 Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn Ser Ala Ser Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln 305 310 315 Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro 335 340 Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly 350 355 Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln 365 Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe 380 385 Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His 395 400 Glu Gly Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val 410 Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro 430

Ser Cys

<210> 17

<211> 2387

<212> DNA

<213> Homo sapiens

<400> 17

cgacgatget acgcgccc ggctgcctcc tccggacctc cgtagcgcct 50 gccgcggccc tggctgcgc gctgctctcg tcgcttgcgc gctgctctct 100 tctagagccg agggacccgg tggcctcgtc gctcagcccc tatttcggca 150 ccaagactcg ctacgaggat gtcaaccccg tgctattgtc gggccccgag 200

gctccgtggc gggaccctga gctgctggag gggacctgca ccccggtgca 250 gctggtcgcc etcattcgcc acggcacccg ctaccccacg gtcaaacaga 300 teegeaaget gaggeagetg eaegggttge tgeaggeeeg egggteeagg 350 gatggcgggg ctagtagtac cggcagccgc gacctgggtg cagcgctggc 400 cgactggcct ttgtggtacg cggactggat ggacgggcag ctagtagaga 450 agggacggca ggatatgcga cagctggcgc tgcgtctggc ctcgctcttc 500 ccggcccttt tcagccgtga gaactacggc cgcctgcggc tcatcaccag 550 ttccaagcac cgctgcatgg atagcagcgc cgccttcctg caggggctgt 600 ggcagcacta ccaccetgge ttgccgccgc cggacgtcgc agatatggag 650 tttggacctc caacagttaa tgataaacta atgagatttt ttgatcactg 700 tgagaagttt ttaactgaag tagaaaaaaa tgctacagct ctttatcacg 750 tggaagcctt caaaactgga ccagaaatgc agaacatttt aaaaaaagtt 800 gcagctactt tgcaagtgcc agtaaatgat ttaaatgcag atttaattca 850 agtagccttt ttcacctgtt catttgacct ggcaattaaa ggtgttaaat 900 ctccttggtg tgatgttttt gacatagatg atgcaaaggt attagaatat 950 ttaaatgatc tgaaacaata ttggaaaaga ggatatgggt atactattaa 1000 cagtegatee agetgeacet tgttteagga tatettteag caettggaca 1050 aagcagttga acagaaacaa aggtctcagc caatttcttc tccagtcatc 1100 ctccagtttg gtcatgcaga gactcttctt ccactgcttt ctctcatggg 1150 ctacttcaaa gacaaggaac ccctaacagc gtacaattac aaaaaacaaa 1200 tgcatcggaa gttccgaagt ggtctcattg taccttatgc ctcgaacctg 1250 atatttgtgc tttaccactg tgaaaatgct aagactccta aagaacaatt 1300 ccgagtgcag atgttattaa atgaaaaggt gttacctttg gcttactcac 1350 aagaaactgt ttcattttat gaagatctga agaaccacta caaggacatc 1400 cttcagagtt gtcaaaccag tgaagaatgt gaattagcaa gggctaacag 1450 tacatctgat gaactatgag taactgaaga acatttttaa ttctttagga 1500 atctgcaatg agtgattaca tgcttgtaat aggtaggcaa ttccttgatt 1550 acaggaaget tttatattae ttgagtattt etgtetttte acagaaaaac 1600 attgggtttc tctctgggtt tggacatgaa atgtaagaaa agatttttca 1650

ccctgcaaat gtttacagaa atgaaacaaat ctatttagag aaacagctgg 1700 ccctgcaaat gtttacagaa atgaaatct tcctacttat ataagaaatc 1750 tcaccactgag atagaattgt gatttcataa taacacttga aaagtgctgg 1800 agtaacaaaa tatctcagtt ggaccatcct taacttgatt gaactgtcta 1850 ggaactttac agattgtct gcagttctct ctcttttcc tcaggtagga 1900 cagctctagc attttcttaa tcaggaatat tgtggtaagc tgggagtatc 1950 actctggaag aaagtaacat ctccagatga gaatttgaaa caagaaacag 2000 agtgttgtaa aaggacacct tcactgaagc aggtcggaaa gtacaatgaa 2050 aataaatatt tttggtatt atttatgaaa tatttgaaca tttttcaat 2100 aattccttt tacttctagg aagtccaaa agaccatctt aaattattat 2150 atgtttgac aattagcaac aagtcagata gtacaatga 2200 aatccattgc ttagctaact ttttcattct gtcacttggc ttcgatttt 2250 atattttcct attatagaa atgtatcttt tggttgttg atttttctt 2300 ctttctttgt aaatagtct gagttcttaa aaaaaaa 2387

<210> 18

<211> 487

<212> PRT

<213> Homo sapiens

<400> 18

Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro 1 5 10 15

Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro 35 40 45

Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60

Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu 65 70 70

Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly 80 85 90

Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu 95 100 105

His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Gly Ala Ser

				110					115					120
Ser	Thr	Gly	Ser	Arg 125	Asp	Leu	Gly	Ala	Ala 130	Leu	Ala	Asp	Trp	Pro 135
Leu	Trp	Tyr	Ala	Asp 140	Trp	Met	Asp	Gly	Gln 145	Leu	Val	Glu	Lys	Gly 150
Arg	Gln	Asp	Met	Arg 155	Gln	Leu	Ala	Leu	Arg 160	Leu	Ala	Ser	Leu	Phe 165
Pro	Ala	Leu	Phe	Ser 170	Arg	Glu	Asn	Tyr	Gly 175	Arg	Leu	Arg	Leu	Ile 180
Thr	Ser	Ser	Lys	His 185	Arg	Cys	Met	Asp	Ser 190	Ser	Ala	Ala	Phe	Leu 195
Gln	Gly	Leu	Trp	Gln 200	His	Tyr	His	Pro	Gly 205	Leu	Pro	Pro	Pro	Asp 210
Val	Ala	Asp	Met	Glu 215	Phe	Gly	Pro	Pro	Thr 220	Val	Asn	Asp	Lys	Leu 225
Met	Arg	Phe	Phe	Asp 230	His	Cys	Glu	Lys	Phe 235	Leu	Thr	Glu	Val	Glu 240
Lys	Asn	Ala	Thr	Ala 245	Leu	Tyr	His	Val	Glu 250	Ala	Phe	Lys	Thr	Gly 255
Pro	Glu	Met	Gln	Asn 260	Ile	Leu	Lys	Lys	Val 265	Ala	Ala	Thr	Leu	Gln 270
Val	Pro	Val	Asn	Asp 275	Leu	Asn	Ala	Asp	Leu 280	Ile	Gln	Val	Ala	Phe 285
Phe	Thr	Cys	Ser	Phe 290	Asp	Leu	Ala	Ile	Lys 295	Gly	Val	Lys	Ser	Pro 300
Trp	Суз	Asp	Val	Phe 305	Asp	Ile	Asp	Asp	Ala 310	Lys	Val	Leu	Glu	Tyr 315
Leu	Asn	Asp	Leu	Lys 320	Gln	Tyr	Trp	Lys	Arg 325	Gly	Tyr	Gly	Tyr	Thr 330
Ile	Asn	Ser	Arg	Ser 335	Ser	Cys	Thr	Leu	Phe 340	Gln	Asp	Ile	Phe	Gln 345
His	Leu	Asp	Lys	Ala 350	Val	Glu	Gln	Lys	Gln 355	Arg	Ser	Gln	Pro	Ile 360
Ser	Ser	Pro	Val	Ile 365	Leu	Gln	Phe	Gly	His 370	Ala	Glu	Thr	Leu	Leu 375
Pro	Leu	Leu	Ser	Leu 380	Met	Gly	Tyr	Phe	Lys 385	Asp	Lys	Glu	Pro	Leu 390
Thr	Ala	Tyr	Asn	Tyr 395		Lys	Gln	Met	His 400	Arg	Lys	Phe	Arg	Ser 405

```
Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr 410

His Cys Glu Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln 435

Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu 440

Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile 465

Leu Gln Ser Cys Gln Thr Ser Glu Glu Cys Glu Leu Ala Arg Ala 470
```

Asn Ser Thr Ser Asp Glu Leu 485

<210> 19 <211> 3554 <212> DNA <213> Homo sapiens

<400> 19 gggactacaa geogegeege getgeegetg geeecteage aaccetegae 50 atggcqctqa qqcqqccacc qcqactccgq ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatetgga atgtgacaeg gagagaetea gecetttate getgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 coggecteae tacagetggt ategeaatga tgtaceaetg cecaeggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcactt tqqtqttcac tqctqttcac aaggacgact ctgggcagta 700 ctactgcatt gettccaatg acgcaggetc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800

gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850

cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagegeaca gagegeacgt geacatacet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagegaaa etgggtgegt teaetgagtt gggtteetaa tetgtttetg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagegeat eeeggeggga acceagaaaa ggettettae acageageet 1450 tacttcateg geceacagae accaeegeag tttettetta aaggetetge 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gestetteet gagatgasta ggasagtetg tacccagagg csacccagaa 2150 geceteagat gtacatacae agatgeeagt eageteetgg ggttgegeea 2200 ggegeeeeeg etetagetea etgttgeete getgtetgee aggaggeeet 2250 gecatecttg ggecetggea gtggetgtgt cecagtgage tttactcacg 2300

```
tggcccttgc ttcatccagc acagetetca ggtgggcact gcagggacac 2350
tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400
ttttggttat ggatggetca caaaataggg cececaatge tattttttt 2450
ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700
tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750
atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tragaageet gtgttettea agageaggtg tteteageet caeatgeeet 2850
geogtgetgg acteaggact gaagtgetgt aaagcaagga getgetgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950
ctttcagctt ccagtgtctt gggtttttta tactttgaca gcttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050
tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100
getecetggt gtetgetgea tggeateetg gatgettage atgeaagtte 3150
cetecateat tgecacettg gtagagaggg atggeteece acceteageg 3200
ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250
gccttattgc ccctcttct tataccctaa aaccttctac actagtgcca 3300
tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400
aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550
```

ccca 3554

<210> 20 <211> 310

<212> PRT

<213> Homo sapiens

<400> 20

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Glu Glu Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala Gly Ser Ala Arg Cys Glu Glu Glu Glu Met Glu Val Tyr Asp Leu 235 Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro 275 Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Gly Gly 290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile

<210> 21

<211> 3437

<212> DNA

<213> Homo sapiens

<400> 21

caggaccagg tettectacg etggagcage ggggagacag ecaccatgca 50 catcctcgtg gtccatgcca tggtgatcct gctgacgctg ggcccgcctc 100 gagecgaega cagegagtte caggegetge tggaeatetg gttteeggag 150 gagaagccac tgcccaccgc cttcctggtg gacacatcgg aggaggcgct 200 gctgcttcct gactggctga agctgcgcat gatccgttct gaggtgctcc 250 gcctggtgga cgccgccctg caggacctgg agccgcaqca qctqctqctq 300 ttcgtgcagt cgtttggcat ccccgtgtcc agcatgagca aactcctcca 350 gttcctggac caggcagtgg cccacgaccc ccagactctg gagcagaaca 400 tcatggacaa gaattacatg geceaeetgg tggaggteea geatgagege 450 ggcgcctccg gaggccagac tttccactcc ttgctcacag cctccctgcc 500 geccegeega gacageacag aggeacecaa accaaagage ageceagage 550 agcccatagg ccagggccgg attcgggtgg ggacccagct ccgggtgctg 600 ggccctgagg acgacctggc tggcatgttc ctccagattt tcccgctcag 650 eceggaceet eggtggeaga getecagtee eegeeeegtg geeetegeee 700 tgcagcaggc cctgggccag gagctggccc gcgtcgtcca gggcagcccc 750 gaggtgccgg gcatcacggt gcgtgtcctg caggccctcg ccaccctgct 800 cagctcccca cacggcggtg ccctggtgat gtccatgcac cgtagccact 850 tectggeetg eccgetgetg egecagetet gecagtacea gegetgtgtg 900 ccacaggaca ccggcttete etegetette etgaaggtge teetgeagat 950 gctgcagtgg ctggacagcc ctggcgtgga gggcgggccc ctgcggqcac 1000 agctcaggat gcttgccagc caggcctcag ccgggcgcag gctcagtgat 1050 gtgcgagggg ggctcctgcg cctggccgag gccctggcct tccgtcagga 1100 cctggaggtg gtcagetcca ccgtccgtgc cgtcatcgcc accctgaggt 1150 ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtcctccag 1200

gggctgatcg aggtgaggtc cccccacctg gaggagctgc tgactgcatt 1250 cttctctgcc actgcggatg ctgcctcccc gtttccagcc tgtaagcccg 1300 ttgtggtggt gageteeetg etgetgeagg aggaggagee eetggetggg 1350 gggaagccgg gtgcggacgg tggcagcctg gaggccgtgc ggctggggcc 1400 ctcgtcaggc ctcctagtgg actggctgga aatgctggac cccgaggtgg 1450 tragcagety corregarety cagetragge typetettete coggaggaag 1500 ggcaaaggtc aggcccaggt gccctcgttc cgtccctacc tcctgaccct 1550 cttcacgcat cagtccagct ggcccacact gcaccagtgc atccgagtcc 1600 tgctgggcaa gagccgggaa cagaggttcg acccctctgc ctctctggac 1650 ttcctctggg cctgcatcca tgttcctcgc atctggcagg ggcgggacca 1700 gcgcaccccg cagaagegge gggaggaget ggtgctgcgg gtccagggec 1750 eggageteat cageetggtg gagetgatee tggeegagge ggagaegegg 1800 agccaggacg gggacacagc cgcctgcagc ctcatccagg cccggctgcc 1850 cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaaggtga 1900 cggagcacct gtcaggctgc atccagcagt ggggagacag cgtgctggga 1950 aggegetgee gagacettet cetgeagete tacetacage ggeeggaget 2000 gegggtgeee gtgeetgagg teetaetgea eagegaaggg getgeeagea 2050 gcagcgtctg caagctggac ggactcatcc accgcttcat cacgctcctt 2100 gcggacacca gcgactcccg ggcgttggag aaccgagggg cggatgccag 2150 catggcctgc cggaagctgg cggtggegca cccgctgctg ctgctcaggc 2200 acctgcccat gatcgcggcg ctcctgcacg gccgcaccca cctcaacttc 2250 caggagttee ggeageagaa ceaeetgage tgetteetge aegtgetggg 2300 cctgctggag ctgctgcagc cgcacgtgtt ccgcagcgag caccaggggg 2350 cgctgtggga ctgccttctg tccttcatcc gcctgctgct gaattacagg 2400 aagteeteee gecatetgge tgeetteate aacaagtttg tgeagtteat 2450 ccataagtac attacctaca atgccccagc agccatctcc ttcctgcaga 2500 agcacgccga cccgctccac gacctgtcct tcgacaacag tgacctggtg 2550 atgctgaaat ccctccttgc agggctcagc ctgcccagca gggacgacag 2600 gaccgaccga ggcctggacg aagagggcga ggaggagagc tcagccggct 2650

cettgeecet ggteagegte teeetgttea eccetetgae egeggeegag 2700 atggcccct acatgaaacg gctttcccgg ggccaaacgg tggaggatct 2750 gctggaggtt ctgagtgaca tagacgagat gtcccqqcqq aqacccqaqa 2800 tectgagett ettetegace aacetgeage ggetgatgag eteggeegag 2850 gagtgttgcc gcaacctcgc cttcagcctg gccctgcgct ccatgcagaa 2900 cagceccage attgcagecg etttectgce caegtteatg tactgcetgq 2950 gcagccagga ctttgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000 tacgetetee tgtgecaaga geaegegget gtgetgetee accgggeett 3050 cctggtgggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100 ccctgaggat cctgcatatg gaggccgtga tgtgagcctg tggcagccga 3150 cocceteca agecceggee egtecegtee eeggggatee tegaggeaaa 3200 gcccaggaag cgtgggcgtt gctggtctgt ccgaqqaqqt qaqqqcqccq 3250 agecetgagg ceaggeagge ecaggageaa tacteeqage cetggggtgg 3300 ctccgggccg gccgctggca tcaggggccg tccagcaagc cctcattcac 3350 ettetgggee acagecetge egeggagegg eggateeece egggeatgge 3400 ctgggctggt tttgaatgaa acgacctgaa ctgtcaa 3437

<210> 22

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 22

Met His Ile Leu Val Val His Ala Met Val Ile Leu Leu Thr Leu 1 5 10 15

Gly Pro Pro Arg Ala Asp Asp Ser Glu Phe Gln Ala Leu Leu Asp 20 25 30

Ile Trp Phe Pro Glu Glu Lys Pro Leu Pro Thr Ala Phe Leu Val

Asp Thr Ser Glu Glu Ala Leu Leu Leu Pro Asp Trp Leu Lys Leu
50 55 60

Arg Met Ile Arg Ser Glu Val Leu Arg Leu Val Asp Ala Ala Leu
65 70 75

Gln Asp Leu Glu Pro Gln Gln Leu Leu Phe Val Gln Ser Phe

Gly Ile Pro Val Ser Ser Met Ser Lys Leu Leu Gln Phe Leu Asp 95 100 105 Gln Ala Val Ala His Asp Pro Gln Thr Leu Glu Gln Asn Ile Met 110 115 Asp Lys Asn Tyr Met Ala His Leu Val Glu Val Gln His Glu Arq Gly Ala Ser Gly Gly Gln Thr Phe His Ser Leu Leu Thr Ala Ser Leu Pro Pro Arg Arg Asp Ser Thr Glu Ala Pro Lys Pro Lys Ser Ser Pro Glu Gln Pro Ile Gly Gln Gly Arg Ile Arg Val Gly Thr Gln Leu Arg Val Leu Gly Pro Glu Asp Asp Leu Ala Gly Met Phe Leu Gln Ile Phe Pro Leu Ser Pro Asp Pro Arg Trp Gln Ser Ser 205 Ser Pro Arg Pro Val Ala Leu Ala Leu Gln Gln Ala Leu Gly Gln Glu Leu Ala Arg Val Val Gln Gly Ser Pro Glu Val Pro Gly Ile 230 Thr Val Arg Val Leu Gln Ala Leu Ala Thr Leu Leu Ser Ser Pro His Gly Gly Ala Leu Val Met Ser Met His Arg Ser His Phe Leu Ala Cys Pro Leu Leu Arg Gln Leu Cys Gln Tyr Gln Arg Cys Val Pro Gln Asp Thr Gly Phe Ser Ser Leu Phe Leu Lys Val Leu Leu 290 Gln Met Leu Gln Trp Leu Asp Ser Pro Gly Val Glu Gly Gly Pro Leu Arg Ala Gln Leu Arg Met Leu Ala Ser Gln Ala Ser Ala Gly 320 Arg Arg Leu Ser Asp Val Arg Gly Gly Leu Leu Arg Leu Ala Glu Ala Leu Ala Phe Arg Gln Asp Leu Glu Val Val Ser Ser Thr Val 350 355 Arg Ala Val Ile Ala Thr Leu Arg Ser Gly Glu Gln Cys Ser Val Glu Pro Asp Leu Ile Ser Lys Val Leu Gln Gly Leu Ile Glu Val 380 385 Arg Ser Pro His Leu Glu Glu Leu Leu Thr Ala Phe Phe Ser Ala

				395					400					405
Thr	Ala	Asp	Ala	Ala 410	Ser	Pro	Phe	Pro	Ala 415	Cys	Lys	Pro	Val	Val 420
Val	Val	Ser	Ser	Leu 425	Leu	Leu	Gln	Glu	Glu 430	Glu	Pro	Leu	Ala	Gly 435
Gly	Lys	Pro	Gly	Ala 440	Asp	Gly	Gly	Ser	Leu 445	Glu	Ala	Val	Arg	Leu 450
Gly	Pro	Ser	Ser	Gly 455	Leu	Leu	Val	Asp	Trp 460	Leu	Glu	Met	Leu	Asp 465
Pro	Glu	Val	Val	Ser 470	Ser	Cys	Pro	Asp	Leu 475	Gln	Leu	Arg	Leu	Leu 480
Phe	Ser	Arg	Arg	Lys 485	Gly	Lys	Gly	Gln	Ala 490	Gln	Val	Pro	Ser	Phe 495
Arg	Pro	Tyr	Leu	Leu 500	Thr	Leu	Phe	Thr	His 505	Gln	Ser	Ser	Trp	Pro 510
Thr	Leu	His	Gln	Cys 515	Ile	Arg	Val	Leu	Leu 520	Gly	Lys	Ser	Arg	Glu 525
Gln	Arg	Phe	Asp	Pro 530	Ser	Ala	Ser	Leu	Asp 535	Phe	Leu	Trp	Ala	Cys 540
Ile	His	Val	Pro	Arg 545	Ile	Trp	Gln	Gly	Arg 550	Asp	Gln	Arg	Thr	Pro 555
Gln	Lys	Arg	Arg	Glu 560	Glu	Leu	Val	Leu	Arg 565	Val	Gln	Gly	Pro	Glu 570
Leu	Ile	Ser	Leu	Val 575	Glu	Leu	Ile	Leu	Ala 580	Glu	Ala	Glu	Thr	Arg 585
Ser	Gln	Asp	Gly	Asp 590	Thr	Ala	Ala	Cys	Ser 595	Leu	Ile	Gln	Ala	Arg 600
Leu	Pro	Leu		Leu 605	Ser	Cys	Cys	Cys	Gly 610	Asp	Asp	Glu	Ser	Val 615
Arg	Lys	Val	Thr	Glu 620	His	Leu	Ser	Gly	Cys 625	Ile	Gln	Gln	Trp	Gly 630
Asp	Ser	Val	Leu	Gly 635	Arg	Arg	Cys	Arg	Asp 640	Leu	Leu	Leu	Gln	Leu 645
Tyr	Leu	Gln	Arg	Pro 650	Glu	Leu	Arg	Val	Pro 655	Val	Pro	Glu	Val	Leu 660
Leu	His	Ser	Glu	Gly 665	Ala	Ala	Ser	Ser	Ser 670	Val	Cys	Lys	Leu	Asp 675
Gly	Leu	Ile	His	Arg 680	Phe	Ile	Thr	Leu	Leu 685	Ala	Asp	Thr	Ser	Asp 690

Ser Arg Ala Leu Glu Asn Arg Gly Ala Asp Ala Ser Met Ala Cys 695 Arg Lys Leu Ala Val Ala His Pro Leu Leu Leu Arg His Leu Pro Met Ile Ala Ala Leu Leu His Gly Arg Thr His Leu Asn Phe Gln Glu Phe Arg Gln Gln Asn His Leu Ser Cys Phe Leu His Val Leu Gly Leu Leu Glu Leu Leu Gln Pro His Val Phe Arg Ser Glu His Gln Gly Ala Leu Trp Asp Cys Leu Leu Ser Phe Ile Arg Leu Leu Leu Asn Tyr Arg Lys Ser Ser Arg His Leu Ala Ala Phe Ile Asn Lys Phe Val Gln Phe Ile His Lys Tyr Ile Thr Tyr Asn Ala Pro Ala Ala Ile Ser Phe Leu Gln Lys His Ala Asp Pro Leu His Asp Leu Ser Phe Asp Asn Ser Asp Leu Val Met Leu Lys Ser Leu Leu Ala Gly Leu Ser Leu Pro Ser Arg Asp Asp Arg Thr Asp Arg 850 Gly Leu Asp Glu Glu Glu Glu Glu Ser Ser Ala Gly Ser Leu Pro Leu Val Ser Val Ser Leu Phe Thr Pro Leu Thr Ala Ala Glu Met Ala Pro Tyr Met Lys Arg Leu Ser Arg Gly Gln Thr Val Glu Asp Leu Glu Val Leu Ser Asp Ile Asp Glu Met Ser Arg Arg Arg Pro Glu Ile Leu Ser Phe Phe Ser Thr Asn Leu Gln Arg Leu Met Ser Ser Ala Glu Glu Cys Cys Arg Asn Leu Ala Phe Ser Leu Ala Leu Arg Ser Met Gln Asn Ser Pro Ser Ile Ala Ala Ala Phe 955 Leu Pro Thr Phe Met Tyr Cys Leu Gly Ser Gln Asp Phe Glu Val 970 Val Gln Thr Ala Leu Arg Asn Leu Pro Glu Tyr Ala Leu Leu Cys

980 985 990

Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly
995 1000 1005

Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu 1010 1015 1020

Arg Ile Leu His Met Glu Ala Val Met

<210> 23

<211> 2186

<212> DNA

<213> Homo sapiens

<400> 23

cegggecatg cageetegge eeegegggeg eeegegge aceegaggag 50 atgaggetee geaatggeae etteetgaeg etgetgetet tetgeetgtg 100 egectteete tegetgteet ggtaegegge acteagegge cagaaaggeg 150 acgttgtgga cgtttaccag cgggagttcc tggcgctgcg cgatcggttg 200 cacgcagetg ageaggagag ceteaagege tecaaggage teaacetqqt 250 gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300 gagacggcaa tegcacetgg ggcegcetaa cagaggacee cegattgaag 350 cogtggaacg getcacaccg geacgtgetg cacetgeeca cogtetteea 400 teacetgeea cacetgetgg ecaaggagag cagtetgeag ecegeggtge 450 gcgtgggcca gggccgcacc ggagtgtcgg tggtgatggg catcccgagc 500 gtgcggcgcg aggtgcactc gtacctgact gacactctgc actcgctcat 550 ctccgagctg agcccgcagg agaaggagga ctcggtcatc gtggtgctga 600 tegeegagae tgaeteacag tacaettegg eagtgaeaga gaacateaag 650 gecttgttee ceaeggagat ceattetggg eteetggagg teateteace 700 ctcccccac ttctaccctg acttctcccg cctccgagag tcctttgggg 750 accccaagga gagagtcagg tggaggacca aacagaacct cgattactgc 800 tteeteatga tgtaegegea gteeaaagge atetaetaeg tgeagetqqa 850 ggatgacatc gtggccaagc ccaactacct gagcaccatg aagaactttg 900 cactgcagca gccttcagag gactggatga tcctggagtt ctcccagctg 950 ggcttcattg gtaagatgtt caagtcgctg gacctgagcc tgattgtaga 1000 gttcattctc atgttctacc gggacaagcc catcgactgg ctcctggacc 1050

```
atattetgtg ggtgaaagte tgeaaceeeg agaaggatge gaageactgt 1100
gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctcttcca 1150
gcacgtgggc actcactcct cgctggctgg caagatccag aaactgaagg 1200
acaaagactt tggaaagcag gcgctgcgga aggagcatgt gaacccgcca 1250
gcagaggtga gcacgagcct gaagacatac cagcacttca ccctggagaa 1300
agectacetg egegaggaet tettetggge etteacecet geegegggg 1350
acttcatccg cttccgcttc ttccaacctc taagactgga gcggttcttc 1400
ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450
tgtggaggtg ctgcccttcg acaaccctca gtcagacaag gaggccctgc 1500
aggagggeeg cacegeeace eteeggtace eteggageee egaeggetae 1550
ctccagatcg gctccttcta caagggagtg gcagagggag aggtggaccc 1600
agecttegge cetetggaag caetgegeet etegateeag aeggaeteee 1650
ctgtgtgggt gattctgagc gagatcttcc tgaaaaaggc cgactaagct 1700
gegggettet gagggtacce tgtggecage cetgaageee acatttetgg 1750
gggtgtcgtc actgccgtcc ccggagggcc agatacggcc ccgcccaaag 1800
ggttetgeet ggegteggge ttgggeegge etggggteeg eegetggeee 1850
ggaggcccta ggagctggtg ctgcccccgc ccgccgggcc gcggaggagg 1900
caggeggeec ceacactgtg cetgaggeec ggaacegtte geaceeggee 1950
tgccccagtc aggccgtttt agaaqaqctt ttacttqqqc qcccqccqtc 2000
totggcgcga acactggaat gcatatacta otttatgtgc tgtgtttttt 2050
attettggat acatttgatt ttttcacgta agtecacata tacttetata 2100
aaaaaaaaaa aaaaaaaaaa aaaaaaa 2186
```

```
<210> 24
```

Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly

<211> 548

<212> PRT

<213> Homo sapiens

<400> 24

Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Leu Phe Cys
1 5 10 15

Gln Lys Gly Asp Val Val Asp Val Tyr Gln Arg Glu Phe Leu Ala Leu Arg Asp Arg Leu His Ala Ala Glu Gln Glu Ser Leu Lys Arg Ser Lys Glu Leu Asn Leu Val Leu Asp Glu Ile Lys Arg Ala Val Ser Glu Arg Gln Ala Leu Arg Asp Gly Asp Gly Asn Arg Thr Trp Gly Arg Leu Thr Glu Asp Pro Arg Leu Lys Pro Trp Asn Gly Ser His Arg His Val Leu His Leu Pro Thr Val Phe His His Leu Pro 110 His Leu Leu Ala Lys Glu Ser Ser Leu Gln Pro Ala Val Arq Val Gly Gln Gly Arg Thr Gly Val Ser Val Val Met Gly Ile Pro Ser Val Arg Arg Glu Val His Ser Tyr Leu Thr Asp Thr Leu His Ser 155 Leu Ile Ser Glu Leu Ser Pro Gln Glu Lys Glu Asp Ser Val Ile Val Val Leu Ile Ala Glu Thr Asp Ser Gln Tyr Thr Ser Ala Val Thr Glu Asn Ile Lys Ala Leu Phe Pro Thr Glu Ile His Ser Gly Leu Leu Glu Val Ile Ser Pro Ser Pro His Phe Tyr Pro Asp Phe Ser Arg Leu Arg Glu Ser Phe Gly Asp Pro Lys Glu Arg Val Arg Trp Arg Thr Lys Gln Asn Leu Asp Tyr Cys Phe Leu Met Met Tyr Ala Gln Ser Lys Gly Ile Tyr Tyr Val Gln Leu Glu Asp Asp Ile Val Ala Lys Pro Asn Tyr Leu Ser Thr Met Lys Asn Phe Ala Leu 280 Gln Gln Pro Ser Glu Asp Trp Met Ile Leu Glu Phe Ser Gln Leu Gly Phe Ile Gly Lys Met Phe Lys Ser Leu Asp Leu Ser Leu Ile 305 310 Val Glu Phe Ile Leu Met Phe Tyr Arg Asp Lys Pro Ile Asp Trp

				320					325					330
Leu	Leu	Asp	His	Ile 335	Leu	Trp	Val	Lys	Val 340	Cys	Asn	Pro	Glu	Lys 345
Asp	Ala	Lys	His	Cys 350	Asp	Arg	Gln	Lys	Ala 355	Asn	Leu	Arg	Ile	Arg 360
Phe	Lys	Pro	Ser	Leu 365	Phe	Gln	His	Val	Gly 370	Thr	His	Ser	Ser	Leu 375
Ala	Gly	Lys	Ile	Gln 380	Lys	Leu	Lys	Asp	Lys 385	Asp	Phe	Gly	Lys	Gln 390
Ala	Leu	Arg	Lys	Glu 395	His	Val	Asn	Pro	Pro 400	Ala	Glu	Val	Ser	Thr 405
Ser	Leu	Lys	Thr	Tyr 410	Gln	His	Phe	Thr	Leu 415	Glu	Lys	Ala	Tyr	Leu 420
Arg	Glu	Asp	Phe	Phe 425	Trp	Ala	Phe	Thr	Pro 430	Ala	Ala	Gly	Asp	Phe 435
Ile	Arg	Phe	Arg	Phe 440	Phe	Gln	Pro	Leu	Arg 445	Leu	Glu	Arg	Phe	Phe 450
Phe	Arg	Ser	Gly	Asn 455	Ile	Glu	His	Pro	Glu 460	Asp	Lys	Leu	Phe	Asn 465
Thr	Ser	Val	Glu	Val 470	Leu	Pro	Phe	Asp	Asn 475	Pro	Gln	Ser	Asp	Lys 480
Glu	Ala	Leu	Gln	Glu 485	Gly	Arg	Thr	Ala	Thr 490	Leu	Arg	Tyr	Pro	Arg 495
Ser	Pro	Asp	Gly	Tyr 500	Leu	Gln	Ile	Gly	Ser 505	Phe	Tyr	Lys	Gly	Val 510
Ala	Glu	Gly	Glu	Val 515	Asp	Pro	Ala	Phe	Gly 520	Pro	Leu	Glu	Ala	Leu 525
				Gln 530				Pro	Val 535	Trp	Val	Ile	Leu	Ser 540
Glu	Ile	Phe	Leu	Lys 545	Lys	Ala	Asp							
<210> 25 <211> 43 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400: tgta		cga d	egge	cagti	ia aa	ataga	acct	g caa	attal	ttaa	tct	43		

```
<210> 26
    <211> 41
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic Oligonucleotide Probe
    <400> 26
     caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
    <210> 27
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic Oligonucleotide Probe
    <400> 27
    actcgggatt cctgctgtt 19
    <210> 28
    <211> 23
    <212> DNA
    <213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
    <400> 28
    aggeetttae ecaaggeeae aac 23
H
n.
   <210> 29
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic Oligonucleotide Probe
    <400> 29
    ggcctgtcct gtgttctca 19
    <210> 30
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic Oligonucleotide Probe
    <400> 30
    tcccaccact tacttccatg aa 22
    <210> 31
    <211> 25
    <212> DNA
```

```
The state of the s
```

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 31
ctgtggtacc caattgccgc cttgt 25
<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 32
attgtcctga gattcgagca aga 23
<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 33
gtccagcaag ccctcatt 18
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 34
cttctgggcc acagccctgc 20
<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 35
cagttcaggt cgtttcattc a 21
<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 36
ccagtcaggc cgttttaga 19
<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 37
cgggcgccca agtaaaagct c 21
<210> 38
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 38
cataaagtag tatatgcatt ccagtgtt 28
```