Chapter 5

Thermochemistry

Thermochemistry

- □ The study of the energy and heat associated with chemical reactions and/or physical transformations.
- □ A reaction may release or absorb energy, and a phase change may do the same, such as in melting and boiling. Thermochemistry focuses on these energy changes, particularly on the system's energy exchange with its surroundings.

$$Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(l) + 3 CO_2(g)$$

化学热力学:

用热力学原理研究物质体系中的化学现象和规律,根据物质体系的宏观可测性质和热力学函数关系来判断体系的稳定性、变化方向和变化的程度。它是物理化学中较早发展起来的一个学科。

化学热力学的作用:

- 1) 预测反应发生的可能性
- 2) 判断反应进行的方向 (判据)
- 3) 判断反应进行的限度 (平衡问题)

Energy

- **Energy** is the ability to do work or transfer heat.
 - Energy used to cause an object that has mass to move is called work.
 - Energy used to cause the temperature of an object to rise is called heat.

Kinetic Energy

Kinetic energy is energy an object possesses by virtue of its motion:

Decreasing potential energy, increasing kinetic energy

Units of Energy

• The SI unit of energy is the **joule** (*J*):

$$1 J = 1 - \frac{kg m^2}{s^2}$$

 An older, non-SI unit is still in widespread use: the calorie (cal):

$$1 \text{ cal} = 4.184 \text{ J}$$
 $1 \text{ Cal} = 1000 \text{ cal} = 1 \text{ kcal}$

Potential Energy

- Potential energy is energy an object possesses by virtue of its position or chemical composition.
- The most important form of potential energy in molecules is electrostatic potential energy, $E_{\rm el}$:

$$E_{\rm el} = \frac{\kappa Q_1 Q_2}{d}$$

$$K = 8.99 \times 10^9 \text{ J} \cdot \text{m/C}^2$$

Definitions: Work

- Energy used to move an object over some distance is work:
- w = F x d
 where w is work, F
 is the force, and d
 is the distance over which the force is exerted.

Work done by pitcher on ball to make ball move

Heat

- Energy can also be transferred as heat.
- Heat flows from warmer objects to cooler objects.

Thermochemistry

- □ The study of the energy and heat associated with chemical reactions and/or physical transformations.
- □ A reaction may release or absorb energy, and a phase change may do the same, such as in melting and boiling. Thermochemistry focuses on these energy changes, particularly on the system's energy exchange with its surroundings.

$$Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(l) + 3 CO_2(g)$$

Definitions: System and Surroundings

Energy can enter or leave system as heat or as work done on piston

- The system includes the molecules we want to study (here, the hydrogen and oxygen molecules).
- The surroundings are everything else (here, the cylinder and piston).

System = $H_2(g)$ and $O_2(g)$

System

- Open system: energy and matter can be exchanged with the surroundings.
- Closed system: energy but not matter can be exchanged with the surroundings.
- **Isolated system**: neither energy nor matter can be exchanged with the surroundings.

Conversion of Energy

Decreasing potential energy, increasing kinetic energy

- Energy can be converted from one type to another.
- For example, the cyclist in Figure 5.2 has potential energy as she sits on top of the hill.

Conversion of Energy

Decreasing potential energy, increasing kinetic energy

- As she coasts down the hill, her potential energy is converted to kinetic energy.
- At the bottom, all the potential energy she had at the top of the hill is now kinetic energy.

First Law of Thermodynamics

- Energy is neither created nor destroyed.
- In other words, the total energy of the universe is a constant; if the system loses energy, it must be gained by the surroundings, and vice versa.

Internal Energy

The **internal energy** of a system is the sum of all kinetic and potential energies of all components of the system; we call it *E*.

By definition, the change in internal energy, ΔE , is the final energy of the system minus the initial energy of the system:

 $\Delta E = E_{\text{final}} - E_{\text{initial}}$

 $E_{\rm initial}$ greater than $E_{\rm final}$, energy released from system to surroundings during reaction, $\Delta E < 0$

- If $\Delta E < 0$, $E_{\text{final}} < E_{\text{initial}}$
 - Therefore, the system released energy to the surroundings.
 - This energy change is called exergonic.

- If $\Delta E > 0$, $E_{\text{final}} > E_{\text{initial}}$
 - Therefore, the system absorbed energy from the surroundings.
 - This energy change is called **endergonic**.

System is interior of vault

- When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).
- That is, $\Delta E = q + w$.

ΔE , q, w, and Their Signs

TABLE 5.1 • Sign Conventions for q, w, and ΔE

For *q* + means system *gains* heat

– means system *loses* heat

For w + means work done on system

– means work done *by* system

+ means *net gain* of energy by system

— means *net loss* of energy by system

© 2012 Pearson Education, Inc.

For ΔE

Exchange of Heat between System and Surroundings

• When heat is absorbed by the system from the surroundings, the process is **endothermic**.

 $Ba(OH)_2 \cdot 8H_2O$

NH₄SCN

System: reactants + products

Surroundings: solvent, initially at room temperature

Heat flows from surroundings into system (endothermic reaction), temperature of surroundings drops, thermometer reads temperature well below room temperature

Exchange of Heat between System and Surroundings

- When heat is absorbed by the system from the surroundings, the process is **endothermic**.
- When heat is released by the system into the surroundings, the process is **exothermic**.

Al + Fe₂O₃ System: reactants
Surroundings:
air around reactants

Usually we have no way of knowing the internal energy of a system; finding that value is simply too complex a problem.

- However, we do know that the internal energy of a system is independent of the path by which the system achieved that state.
 - In the system depicted in Figure 5.9, the water could have reached room temperature from either direction.

- Therefore, internal energy is a state function.
- It depends only on the present state of the system, not on the path by which the system arrived at that state.
- And so, ΔE depends only on E_{initial} and E_{final} .

- However, q and w are not state functions.
- Whether the battery is shorted out or is discharged by running the fan, its ΔE is the same.
 - But q and w are different in the two cases.

Usually in an open container the only work done is by a gas pushing on the surroundings (or by the surroundings pushing on the gas).

P (Pressure) = F (Force) /A (Area); F = P×A

$$\Delta V$$
 (volume) = A× Δh (distance)
 $W = -F \times \Delta h = -P \times A \times \Delta h = -P \times \Delta V$

Work

We can measure the work done by the gas if the reaction is done in a vessel that has been fitted with a piston:

$$w = -P\Delta V$$

Chemistry, The Central Sci Theodore L. Brown; H. Eug

© 2012 Pearson Education, Inc.

 $Zn(s) + 2 H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$

12 Pearson Education, Inc.

[en-thal-pee, en-thal-] /' ϵ n θ ælpi, ϵ n' θ æl-/

Enthalpy

- If a process takes place at constant pressure (as the majority of processes we study do) and the only work done is this pressure—volume work, we can account for heat flow during the process by measuring the *enthalpy* of the system.
- Enthalpy is the internal energy plus the product of pressure and volume:

$$H = E + PV$$

Enthalpy

• When the system changes at constant pressure, the change in enthalpy, ΔH , is

$$\Delta H = \Delta (E + PV)$$

This can be written

$$\Delta H = \Delta E + P\Delta V$$

Enthalpy

• Since $\Delta E = q + w$ and $w = -P\Delta V$, we can substitute these into the enthalpy expression:

$$\Delta H = \Delta E + P\Delta V$$

$$\Delta H = (q + w) - w$$

$$\Delta H = q$$

• So, at constant pressure, the change in enthalpy *is* the heat gained or lost.

Endothermicity and Exothermicity

• A process is endothermic when ΔH is positive.

 ΔH is amount of heat that flows into or out of system under constant pressure

Endothermicity and Exothermicity

- A process is endothermic when ΔH is positive.
- A process is exothermic when ΔH is negative.

 ΔH is amount of heat that flows into or out of system under constant pressure

Enthalpy of Reaction

The *change* in enthalpy of reaction, ΔH , is the enthalpy of the products minus the enthalpy of the reactants:

$$\Delta H = H_{\text{products}} - H_{\text{reactants}}$$

Enthalpy of Reaction

This quantity, ΔH , or ΔH_{rxn} , is called the **enthalpy** of reaction, or the heat of reaction.

Chemistry, The Centi $2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g)$ Theodore L. Brown; F © 2012 Pearson Education, Inc.

The Truth about Enthalpy

- 1. Enthalpy is an extensive property.
- 2. ΔH for a reaction in the forward direction is equal in size, but opposite in sign, to ΔH for the reverse reaction.
- 3. ΔH for a reaction depends on the state of the products and the state of the reactants.

Calorimetry (method) – calorimeter (device)

Since we cannot know the exact enthalpy of the reactants and products, we measure ΔH through calorimetry, the measurement of heat flow.

The amount of energy required to raise the temperature of a substance by 1 K (1°C) is its **heat capacity**.

We define **specific heat capacity** (or simply **specific heat**) as the amount of energy required to raise the temperature of 1 g of a substance by 1 K (or 1 °C).

We define **specific** heat capacity (or simply specific heat) as the amount of energy required to raise the temperature of 1 g of a substance by 1 K (or 1 °C).

TABLE 5.2 • \$	pecific Heats of Some Substances at 298 K
-----------------------	---

Elements		Compounds			
Substance	Specific Heat (J/g-K)	Substance	Specific Heat (J/g-K)		
$N_2(g)$	1.04	$H_2O(l)$	4.18		
Al(s)	0.90	$CH_4(g)$	2.20		
Fe(s)	0.45	$CO_2(g)$	0.84		
Hg(l)	0.14	$CaCO_3(s)$	0.82		

© 2012 Pearson Education, Inc.

Specific heat, then, is

$$C_s = \frac{q}{m \times \Delta T}$$

Constant Pressure (heat versus ΔH) Calorimetry

By carrying out a reaction in aqueous solution in a simple calorimeter such as this one, one can indirectly measure the heat change for the system by measuring the heat change for the water in the calorimeter.

Constant Pressure Calorimetry

Because the specific heat for water is well known (4.184 J/g-K), we can measure ΔH for the reaction with this equation:

$$q = m \times C_s \times \Delta T$$

Specific heat

Bomb Calorimetry (fixed volume but not pressure)

- Reactions can be carried out in a sealed "bomb" such as this one.
- The heat absorbed (or released) by the water is a very good approximation of the enthalpy change for the reaction.

Bomb Calorimetry

- Because the <u>volume</u> in the bomb calorimeter is <u>constant</u>, what is measured is really the change in internal energy, ΔE , not ΔH .
- For most reactions, the difference is very small.

Bomb Calorimetry

$$\Delta E = q + w$$

If P-V work is the only work that can be done,

$$\Delta E = q - P\Delta V$$

When the reaction is carried out in a constant-volume container ($\Delta V = 0$),

$$\Delta E = q_v$$

Most reactions are run under constant pressure,

$$\Delta E = q_P - P\Delta V$$

$$\Delta E + P \Delta V = q_P$$

$$\Delta(E + PV) = q_P H = E + PV$$
 (a new state function)

$$\Delta H = q_P$$

Enthalpies of Formation

An enthalpy of formation, ΔH_f , is defined as the enthalpy change for the reaction in which a compound is made from its constituent elements in their elemental forms.

Standard Enthalpies of Formation

Standard enthalpies of formation, ΔH_f° , are measured under standard conditions (25 °C and 1.00 atm pressure).

TABLE 5.3 ● Standard Enthalpies of Formation, ∆H ^o _f , at 298 K					
Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	ΔH_f° (kJ/mol)
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	$CH_3OH(l)$	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9
Ethanol	$C_2H_5OH(l)$	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

© 2012 Pearson Education, Inc.

Standard Enthalpies of Formation

By definition, the standard enthalpy of formation of the most stable form of any element is zero because there is no formation reaction needed when the element is already in its standard state.

Thus, the values of ΔH_f° for C(graphite), H₂(g), O₂(g), and the standard states of other elements are **zero** by definition.

See **Table 5.3** and **Appendix C** for listed $\Delta H_f^{\,o}$ data.

Hess's Law

- \square ΔH is well known for many reactions, and it is inconvenient to measure ΔH for every reaction in which we are interested.
- However, we can <u>estimate</u> ΔH using published ΔH values and the properties of enthalpy.

from known reactions to unknown reactions

Hess's Law

Hess's law states that "if a reaction is carried out in a series of steps, ΔH for the overall reaction will be equal to the sum of the enthalpy changes for the individual steps."

Hess's Law

Because ΔH is a state function, the total enthalpy change depends only on the initial state of the reactants and the final state of the products.

Calculation of ΔH

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$$

• Imagine this as occurring in three steps:

$$C_3H_8(g) \longrightarrow 3C_{(graphite)} + 4H_2(g)$$

 $3C_{(graphite)} + 3O_2(g) \longrightarrow 3CO_2(g)$
 $4H_2(g) + 2O_2(g) \longrightarrow 4H_2O(I)$

Calculation of ΔH

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$$

• The sum of these equations is

$$C_3H_8(g) \longrightarrow 3C_{(graphite)} + 4H_2(g)$$

 $3C_{(graphite)} + 3O_2(g) \longrightarrow 3CO_2(g)$
 $4H_2(g) + 2O_2(g) \longrightarrow 4H_2O(I)$

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$$

Calculation of ΔH

We can use Hess's law in this way:

$$\Delta H = \sum n \Delta H_f^{o}_{,products} - \sum m \Delta H_f^{o}_{,reactants}$$

where n and m are the stoichiometric coefficients. (k+1) = (k+1) = (k+1)

Standard Enthalpies of Formation

Standard enthalpies of formation, ΔH_f° , are measured under standard conditions (25 °C and 1.00 atm pressure).

TABLE 5.3 ● Standard Enthalpies of Formation, ∆H ^o _f , at 298 K					
Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	ΔH_f° (kJ/mol)
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	$CH_3OH(l)$	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9
Ethanol	$C_2H_5OH(l)$	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

© 2012 Pearson Education, Inc.

Energy in Foods

Most of the fuel in the food we eat comes from carbohydrates and fats.

the second secon			and the second s	
TARIF 5 4	Compositions a	nd Fuel Values	of Some Comi	mon Foods i
IADLE VIT		ila i aci valaco	OI COILLE COILL	HUH I UUUS

	Approximate Composition (% by mass)			Fuel Value	
	Carbohydrate	Fat	Protein	kJ/g	kcal/g (Cal/g)
Carbohydrate	100	1-	_	17	4
Fat	_	100	_	38	9
Protein	_	_	100	17	4
Apples	13	0.5	0.4	2.5	0.59
Beer [†]	1.2	222	0.3	1.8	0.42
Bread	52	3	9	12	2.8
Cheese	4	37	28	20	4.7
Eggs	0.7	10	13	6.0	1.4
Fudge	81	11	2	18	4.4
Green beans	7.0	_	1.9	1.5	0.38
Hamburger	_	30	22	15	3.6
Milk (whole)	5.0	4.0	3.3	3.0	0.74
Peanuts	22	39	26	23	5.5

[†]Beer typically contains 3.5% ethanol, which has fuel value.

Energy in Fuels

The vast majority of the energy consumed in the USA comes from fossil fuels.

	Approximate Elemental Composition (mass %)			
	С	Н	O	Fuel Value (kJ/g)
Wood (pine)	50	6	44	18
Anthracite coal (Pennsylvania)	82	1	2	31
Bituminous coal (Pennsylvania)	77	5	7	32
Charcoal	100	0	0	34
Crude oil (Texas)	85	12	0	45
Gasoline	85	15	0	48
Natural gas	70	23	0	49
Hydrogen	0	100	0	142

RI F 5.5 • Fuel Values and Compositions of Some Common Fuels

2012 Pearson Education, Inc.

