

Advances in Chip-Based Quantum Key Distribution

By

HENRY SEMENENKO

Department of Physics University of Bristol

A dissertation submitted to the University of Bristol in accordance with the requirements of the degree of DOCTOR OF PHILOSOPHY in the Faculty of Science.

SEPTEMBER 2019

Word count: ten thousand and four

ABSTRACT

Free goes the abstract

ACKNOWLEDGEMENTS

There goes the dedication.

AUTHOR'S DECLARATION

declare that the work in this dissertation was carried out in accordance with the
requirements of the University's Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic
award. Except where indicated by specific reference in the text, the work is the
candidate's own work. Work done in collaboration with, or with the assistance of
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED:	DATE:

TABLE OF CONTENTS

						Pa	age
Li	st of	Tables					ix
Li	st of	Figure	S				хi
1	Intr	oductio	on				1
2	Bac	kgroun	.d				3
	2.1	Crypto	graphy				3
		2.1.1	Symmetric Key Encryption				3
		2.1.2	Public Key Cryptography				3
	2.2	Quant	um Theory				3
		2.2.1	Quantum Information				3
		2.2.2	Quantum Photonics				3
	2.3	Quant	um Key Distribution				3
		2.3.1	Protocols				4
		2.3.2	Hacking				4
	2.4	Integra	ated Photonics Devices				4
		2.4.1	Requirements				4
		2.4.2	Indium Phosphide				4
		2.4.3	Silicon on Insulator				4
		2.4.4	Integrated Detectors				4
	2.5	Summ	ary				4
3	Hon	ıg-Ou-M	Iandel Interference Between Integrated Devices				5
	3.1	Source	s and Requirements				5
	3.2	Experi	ment				5
	3.3	Result	s				5
		3.3.1	${\bf Hong\text{-}Ou\text{-}Mandel\ Interference\ Between\ GHZ\ Coherent\ States}$	•			5
		3.3.2	Phase Coherence				5
	3 4	Outloo	k				5

TABLE OF CONTENTS

4	Chi	p-Based Measurement-Device-Independent Quantum Key Distribution	7
	4.1	MDI-QKD Protocol	7
	4.2	Integrated Transmitters	7
	4.3	Results	7
	4.4	Outlook	7
5	Ful	y Integrated Quantum Key Distribution	9
	5.1	QKD Metropolitan Network Requirements	9
	5.2	Receiver Device	9
	5.3	Experimental Setup	9
	5.4	Results	9
	5.5	Outlook	9
6	Las	er Seeding	11
	6.1	QKD Transmitters Requirements	11
	6.2	Test Device	11
	6.3	Results	11
	6.4	Outlook	11
7	Con	clusion	13
Bi	bliog	raphy	15

LIST OF TABLES

TABLE Page

LIST OF FIGURES

FIGURE

CHAPTER

INTRODUCTION

SHAPTER SHAPTER

BACKGROUND

2.1 Cryptography

The idea of obscuring messages from third-party onlookers dates back (as far as we can tell) to ancient Egypt. With the convenience of being able to share thoughts through written methods came with an immediate compromise to security.

2.1.1 Symmetric Key Encryption

2.1.2 Public Key Cryptography

A more practical method of encrypting data is to

2.2 Quantum Theory

2.2.1 Quantum Information

2.2.2 Quantum Photonics

2.3 Quantum Key Distribution

BB84 [1]. Shor [2].

2.3.1 Protocols

Point-to-Point

Device Independence

- 2.3.2 Hacking
- 2.4 Integrated Photonics Devices
- 2.4.1 Requirements
- 2.4.2 Indium Phosphide
- 2.4.3 Silicon on Insulator
- 2.4.4 Integrated Detectors
- 2.5 Summary

HONG-OU-MANDEL INTERFERENCE BETWEEN INTEGRATED DEVICES

Hong-Ou-Mandel (HOM) interference is a fundamental tool in any quantum engineering toolbox. It underpins a range of processes ranging from computing to communication. While it is well understood, generating states for quantum interference at the GHz speeds required for modern telecommunication remains practically challenging.

3.1 Sources and Requirements

Several methods can be conceived to generate weak coherent pulses (WCPs)

- 3.2 Experiment
- 3.3 Results
- 3.3.1 Hong-Ou-Mandel Interference Between GHZ Coherent States
- 3.3.2 Phase Coherence
- 3.4 Outlook

CHAPTER

CHIP-BASED MEASUREMENT-DEVICE-INDEPENDENT QUANTUM KEY DISTRIBUTION

- 4.1 MDI-QKD Protocol
- 4.2 Integrated Transmitters
- 4.3 Results
- 4.4 Outlook

C H A P T E R

FULLY INTEGRATED QUANTUM KEY DISTRIBUTION

- 5.1 QKD Metropolitan Network Requirements
- 5.2 Receiver Device
- 5.3 Experimental Setup
- 5.4 Results
- 5.5 Outlook

C H A P T E R

LASER SEEDING

- **6.1 QKD Transmitters Requirements**
- 6.2 Test Device
- 6.3 Results
- 6.4 Outlook

CHAPTER

CONCLUSION

BIBLIOGRAPHY

[1] C. H. BENNETT AND G. BRASSARD, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, New York, 1985, IEEE, pp. 175–179.

3

[2] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS '94, Washington, DC, USA, 1994, IEEE Computer Society, pp. 124–134.

3