The Cross Product

For vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 , we define the *cross product* of \mathbf{u} and \mathbf{v} using 3-by-3 determinants:

$$\mathbf{u} \times \mathbf{b} := \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \hat{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \hat{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \hat{k}$$
$$= (u_2v_3 - u_3v_2)\mathbf{i} - (u_1v_3 - u_3v_1)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}.$$

Notes:

• It is the case that $(\mathbf{u} \times \mathbf{v})$ is orthogonal to both \mathbf{u} and \mathbf{v} . More specifically,

Fact: For vectors \mathbf{u} , \mathbf{v} in \mathbb{R}^3 ,

$$\mathbf{u} \times \mathbf{v} := (\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta) \,\mathbf{n},$$

where \mathbf{n} is a **unit vector** orthogonal to the plane containing \mathbf{u} , \mathbf{v} , and for which the vector triple $(\mathbf{u}, \mathbf{v}, \mathbf{n})$ form a right-hand system.

- If the angle θ between \mathbf{u} , \mathbf{v} is zero (i.e., \mathbf{u} , \mathbf{v} are parallel), $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- Properties
 - 1. $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$, given any two vectors \mathbf{u} , \mathbf{v} in \mathbb{R}^3
 - 2. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$, for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^3
 - 3. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
 - 4. $(r\mathbf{u}) \times (s\mathbf{v}) = (rs)(\mathbf{u} \times \mathbf{v})$, for all vectors \mathbf{u} , \mathbf{v} in \mathbb{R}^3 , all numbers r, s
 - 5. $\mathbf{u} \times \mathbf{0} = \mathbf{0}$, for any vector \mathbf{u} in \mathbb{R}^3
 - 6. $\mathbf{u} \times \mathbf{u} = \mathbf{0}$, for any vector \mathbf{u} in \mathbb{R}^3
 - 7. $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$, for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^3
- The cross product is not associative! This means that, in general, it is *not* true that

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$$
 and $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$

are equal.

Applications

- $\mathbf{r} \times \mathbf{F}$ is the *torque* vector resulting from a force \mathbf{F} applied at the end of a lever arm \mathbf{r} .
- $\|\mathbf{u} \times \mathbf{v}\|$ (the length of the cross product $\mathbf{u} \times \mathbf{v}$) is the area of a parallelogram determined by \mathbf{u} and \mathbf{v} .
- $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ (the absolute value of the scalar $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$) is the volume of the parallelepiped determined by \mathbf{u} , \mathbf{v} and \mathbf{w} .
- Finding normal vectors to planes.

Example: The vectors $\mathbf{u} = \langle 1, 2, -1 \rangle$ and $\mathbf{v} = \langle -2, 3, 1 \rangle$

- o are not parallel,
- o so they determine a family of parallel planes.

Find a unit vector that is normal to all of these planes.

Answer: Both $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ are normal/perpendicular to all of these planes. The requirement that we produce a unit vector means there are only two correct answers, $\mathbf{n} = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{5\sqrt{3}}, \frac{7}{5\sqrt{3}} \right\rangle$ or $(-\mathbf{n})$.