Bài 2. GIÁ TRỊ LỚN NHẤT - NHỎ NHẤT CỦA HÀM SỐ

A. LÝ THUYẾT CẦN NHỚ

Cho hàm số y = f(x) xác định trên tập \mathscr{D} . Ta có

 $\int \exists x_0 \in \mathscr{D} : f(x_0) = M.$

Kí hiệu $\max_{x \in \mathcal{D}} f(x) = M$

② n là giá trị nhỏ nhất của hàm số nếu $\int\! f(x) \geq n, \forall x \in \mathscr{D}$

 $\exists x_0 \in \mathscr{D} : f(x_0) = n.$

Kí hiệu $\overline{\min_{x \in \mathscr{D}} f(x) = n}$

- A
- ① Khi yêu cầu tìm max min của hàm số mà không nói rõ xét trên tập nào, thì ta hiểu là tìm max min trên miền xác định của hàm số đó.
- Ta có thể dùng các bất đẳng thức có sẵn để đánh giá biểu thức cần tìm max, min.

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN

- Bài toán tìm max, min của hàm số y=f(x) trên miền ${\mathscr D}$
- Phương pháp giải:
 - ① Tính y'. Giải phương trình y'=0 tìm các nghiệm $x_i\in \mathcal{D}$ và tìm các điểm $x_i\in \mathcal{D}$ mà tại đó y' không xác định.
 - $\ 2$ Lập bảng biến thiên của hàm số trên $\mathcal{D}.$
 - 3 Từ bảng biến thiên, kết luân:
 - \bullet Điểm ở vị trí cao nhất \longrightarrow Kết luận max;
 - ullet Điểm ở vi trí thấp nhất \longrightarrow Kết luân min.
- **Cưu ý:** Nếu \mathscr{D} là đoạn [a;b] và hàm số y=f(x) liên tục trên đoạn [a;b] thì ta có thể làm như sau:
 - ① Giải f'(x) = 0 tìm các nghiệm $x_0 \in (a; b)$;
 - 2 Tìm các điểm $x_i \in (a;b)$ mà tại đó đạo hàm không xác định (nếu có).
 - 3 Tính toán f(a), $f(x_0)$, $f(x_i)$, f(b) (*)
 - $\ \, \oplus \,$ Gọi $M,\,n$ lần lượt là số lớn nhất và số nhỏ nhất của các kết quả tính toán ở bước (\star) thì

$$M = \max_{[a;b]} f(x); \quad n = \min_{[a;b]} f(x)$$

- - Nếu hàm số y = f(x) nghịch biến trên đoạn [a;b] thì $\min_{[a;b]} f(x) = f(b)$ và $\max_{[a;b]} f(x) = f(a)$.

BÀI TẬP TỰ LUẬN

VÍ DỤ 1. Tìm giá trị lớn nhất và nhỏ nhất (nếu có) của hàm số sau trên đoạn đã chỉ ra.

a) $f(x) = -x^3 + 3x^2 + 10$ trên đoạn [-3; 1].

- b) $f(x) = \frac{x^3}{3} 2x^2 + 3x + 1$ trên đoạn [-3; 2].
- c) $f(x) = -2x^4 + 4x^2 + 3$ trên đoạn [0; 2]
- d) $f(x) = \frac{2x+3}{x+1}$ trên đoạn [0; 4].
- e) $f(x) = x + \frac{4}{x}$ trên khoảng $(0; +\infty)$;
- f) $f(x) = 3x + \frac{4}{x^2} \text{ trên } (0; +\infty).$
- g) $f(x) = \frac{2x^2 + 4x + 5}{x^2 + 1}$ trên \mathbb{R} .
- h) $f(x) = \sqrt{-x^2 + 2x}$ trên miền xác định.

VÍ DU 2. Tìm giá trị lớn nhất và nhỏ nhất của hàm số sau trên miền đã chỉ ra.

- a) $y = x \sin 2x$ trên đoạn $\left[-\frac{\pi}{2}; \pi \right]$
- b) $y = e^{x^3 3x + 3}$ trên đoạn [0; 2]
- c) $y = e^x(x^2 3)$ trên đoạn [-2; 2]
- d) $y = \frac{\ln^2 x}{x}$ trên đoạn $\left[1; e^5\right]$

VÍ DU 3. Tìm giá trị lớn nhất và nhỏ nhất (nếu có) của hàm số sau trên miền đã chỉ ra.

- a) $f(x) = \frac{5\sin x + 1}{\sin x + 2}$ trên đoạn $\left[0; \frac{\pi}{6}\right]$.
- b) $y = \cos^3 x + 2\sin^2 x + \cos x$ trên miền

BÀI TẬP TRẮC NGHIÊM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1.

Hàm số y = f(x) liên tục trên đoạn [-1;3] và có bảng biến thiên như sau. Gọi M là giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1; 3]. Khẳng đinh nào sau đây là khẳng đinh đúng?

- **(A)** M = f(0). **(B)** M = f(-1).
- $(\mathbf{C}) M = f(3). \quad (\mathbf{D}) M = f(2).$

+ 0 4 y

CÂU 2.

Cho hàm số f(x) liên tục trên đoạn [-1; 5] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên [-1; 5]. Giá trị của M+m bằng

- (**A**) 5.
- **(B)** 6.
- **(C)** 3.

Cho hàm số y = f(x) có đồ thị là đường cong ở hình bên. Tìm giá trị nhỏ nhất m của hàm số y = f(x) trên đoạn [-1; 1].

 $(\mathbf{A}) m = 2.$

(B) m = -2.

(c) m = 1.

 $(\mathbf{D}) m = -1.$

CÂU 4. Cho hàm số y = f(x) có bảng biến thiên trên đoạn [-2; 3] như hình bên dưới.

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [-1;3]. Giá trị của biểu thức M-m là

- \bigcirc 5.
- **B** 7.
- (c) -1.
- \bigcirc 3.

CÂU 5. Giá trị lớn nhất và nhỏ nhất của hàm số $y=x^3-12x+1$ trên đoạn [-2;3] lần lượt là

- (A) 17, -15.
- **(B)** 10, -26.
- (\mathbf{C}) -15, 17.
- (\mathbf{D}) 6, -26.

CÂU 6. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = x^3 + 3x^2 - 9x + 1$ trên [-4; 4]. Tính tổng M + m.

- **(A)** 12.
- **B**) 98.
- **(C)** 17.
- \bigcirc 73.

CÂU 7. Giá trị lớn nhất của hàm số $f(x) = -x^4 + 12x^2 + 1$ trên đoạn [-1;2] bằng

- (A) 33.
- **B**) 37.
- **(c)** 12.
- **D** 1.

CÂU 8. Giá trị lớn nhất của hàm số $y = x^4 - 3x^2 + 2$ trên đoạn [0;3] bằng

- (A) 57.
- **B**) 56.
- **(C)** 54.
- **D** 55.

CÂU 9. Giá trị nhỏ nhất của hàm số $y = \frac{x-1}{x+1}$ trên đoạn [0;3] là

- **B** $\min_{[0;3]} y = -3.$
- $\bigcap_{[0;3]} \min y = 1.$

CÂU 10. Giá trị nhỏ nhất của hàm số $y = \frac{2x+3}{x+1}$ trên đoạn [0;4] là

- \bigcirc 2.
- **B** $\frac{7}{5}$.
- **c** 3.
- **(D)** $\frac{11}{5}$.

CÂU 11. Giá trị lớn nhất của hàm số $y=\frac{x^2-3x+3}{x-1}$ trên đoạn $\left[-2;\frac{1}{2}\right]$ bằng

- **A** 4.
- **B** -3.
- \bigcirc $-\frac{7}{2}$.
- $\bigcirc -\frac{13}{3}$.

CÂU 12. Giá trị lớn nhất của hàm số $y = \sqrt{4-x^2}$ là

- $\bigcirc M = -2.$
- $\bigcirc M = 2.$
- **(c)** M = 4.
- $\widehat{\mathbf{D}} M = 0.$

CÂU 13. Tìm giá trị lớn nhất M của hàm số $y = \sqrt{7 + 6x - x^2}$.

- \bigcirc M=4.
- $\mathbf{B}) M = \sqrt{7}.$
- \bigcirc M=7.
- $(\mathbf{D}) M = 3.$

CÂU 14. Tính giá trị lớn nhất của hàm số $y = x - \ln x$ trên $\left[\frac{1}{2}; e\right]$.

 $\bigoplus_{x \in \left[\frac{1}{2}; e\right]} y = e.$

 $(\mathbf{D}) \max_{x \in \left[\frac{1}{2}; \mathbf{e}\right]} y = \frac{1}{2} + \ln 2.$

CÂU 15. Gọi M,N lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2-4\ln(1-x)$ trên đoạn [-2;0]. Tính M-N.

(A) $M - N = 4 \ln 2$.

(B) M - N = -1.

 $(\mathbf{C}) M - N = 4 \ln 2 - 1.$

 $(\mathbf{D}) M - N = 4 \ln 3 - 4.$

CÂU 16. Cho hàm số f(x) nghịch biến trên \mathbb{R} . Giá trị nhỏ nhất của hàm số $g(x) = e^{3x^2 - 2x^3} - f(x)$ trên đoạn [0;1] bằng

- **(A)** e f(1).
- **(B)** f(1).
- (**c**) f(0).
- $(\mathbf{D}) 1 f(0).$

CÂU 17.

Cho hàm số y = f(x) xác định và liên tục trên đoạn $\left|0;\frac{t}{2}\right|$, có đồ thị của hàm số y=f'(x) như hình vẽ. Hỏi hàm số y=f(x) đạt giá trị nhỏ nhất trên đoạn $\left[0; \frac{7}{2}\right]$ tại điểm x_0 nào dưới đây?

CÂU 18.

Cho hàm số y = f(x), biết hàm số y = f'(x) có đồ thị như hình vẽ dưới đây. Hàm số y=f(x) đạt giá trị nhỏ nhất trên tại điểm nào sau đây?

(A)
$$x = \frac{3}{2}$$
. **(B)** $x = \frac{1}{2}$. **(C)** $x = 1$. **(D)** $x = 0$.

CÂU 19.

Cho hàm số f(x) có đồ thị của hàm số y = f'(x) như hình vẽ. Biết f(0) + f(1) - 2f(2) = f(4) - f(3). Giá trị nhỏ nhất m, giá trị lớn nhất M của hàm số f(x) trên đoạn [0;4] là

(A)
$$m = f(4), M = f(1).$$
 (B) $m = f(4), M = f(2).$

B)
$$m = f(4), M = f(2)$$

©
$$m = f(1), M = f(2)$$

©
$$m = f(1), M = f(2).$$
 D $m = f(0), M = f(2).$

CÂU 20. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = \sin^3 x - 3\sin^2 x + 2$ lần lượt là M, m. Tổng M + m bằng

$$\bigcirc$$
 0.

CÂU 21. Giá trị nhỏ nhất của hàm số f(x) = (x+1)(x+2)(x+3)(x+4) + 2019 là

PHÂN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 22. Cho hàm số y = f(x) là hàm số liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ dưới đây.

x	$-\infty$		-1		0		1		$+\infty$
f'(x)		+	0	-	0	+	0	-	
f(x)	$-\infty$	/	4		` 3 ^	/	4		$-\infty$

Xét tính đúng, sai của các khẳng định sau:

Mệnh đề	Ð	S
a) Cực đại của hàm số là 4.		
b) Cực tiểu của hàm số là 3.		
$\mathbf{c)} \max_{\mathbb{R}} y = 4.$		
$\mathbf{d)} \min_{\mathbb{R}} y = 3.$		

CÂU 23. Hình bên cho biết sự thay đổi của nhiệt độ ở một thành phố trong một ngày. Xét tính đúng, sai của các khẳng định sau:

Mệnh đề	Ð	S
a) Nhiệt độ cao nhất trong ngày là 28° C.		
b) Nhiệt độ thấp nhất trong ngày là 20°C.		
c) Thời điểm có nhiệt độ cao nhất trong ngày là lúc 16 giờ.		
d) Thời điểm có nhiệt độ thấp nhất trong ngày là lúc 4 giờ.		

CÂU 24. Cho hàm số y = f(x) có đạo hàm y = f'(x) liên tục trên \mathbb{R} và đồ thị của hàm số f'(x) trên đoạn [-2;6] như hình vẽ bên. Xét tính đúng, sai của các khẳng định sau:

Mệnh đề	Ð	S
a) $\max_{[-2;6]} f(x) = f(-1)$.		
b) $\max_{[-2;6]} f(x) = f(6).$		
c) $\max_{[-2;6]} f(x) = f(-2)$.		
d) $\max_{[-2;6]} f(x) = \max\{f(-1), f(6)\}.$		

CÂU 25. Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị y = f'(x) được cho như hình vẽ. Biết rằng f(0) + f(3) = f(2) + f(5). Xét tính đúng, sai của các khẳng định sau:

വ	ICK	NO	ч.
ΘU	ICK	NC	41.

QUICK NOTE Mệnh đề	Ð	S
a) Hàm số nghịch biến trên khoảng $(-\infty; 0)$.		
b) Hàm số nghịch biến trên khoảng (0; 2).		
c) $\min_{[0;5]} f(x) = f(0)$ và $\max_{[0;5]} f(x) = f(5)$.		
d) $\min_{[0;5]} f(x) = f(2)$ và $\max_{[0;5]} f(x) = f(5)$.		
Bài toán max, min có chứa tham số m		
BÀI TẬP TỰ LUẬN		
VÍ DỤ 1. Tìm tất cả giá trị của tham số m để		
a) giá trị lớn nhất của hàm số $f(x) = -x^3 - 3x^2 + m$ trên $[-1; 1]$ l	bằng 0.	
b) giá trị nhỏ nhất của hàm số $f(x) = \frac{x+5m}{x-3}$ trên [1;2] bằng 4.		
BÀI TẬP TRẮC NGHIỆM		
CÂU 1. Cho hàm số $f(x) = 2x^3 - 3x^2 + m$ thoả mãn $\min_{[0;5]} f(x) = 5$.	Khi đó giá tr	į của <i>m</i>
bằng		
A 10. B 5. C 6.	7.	
	2(m-10) tr	ên đoạn
[1;3] bằng -5 .		
) m = -8.	
CÂU 3. Tìm m để giá trị nhỏ nhất của hàm số $f(x) = \frac{x - m^2 + m}{x + 1}$	trôn đoạn [O:	1] bằng
$\frac{1}{x+1}$	tien doạn [0,	1] Dang
	m = -1	
	m=2 .	
CÂU 4. Hàm số $y=\frac{x-m}{x+2}$ thỏa mãn $\min_{x\in[0,3]}y+\max_{x\in[0,3]}y=\frac{7}{6}$. Hỏi gia	á tri m thuộc	khoảng
$x+2 \qquad x\in [0;3] \qquad x\in [0;3] \qquad 6$ nào trong các khoảng dưới đây?		
$oxed{\mathbf{A}}$ (2; $+\infty$). $oxed{\mathbf{B}}$ (0; 2). $oxed{\mathbf{C}}$ ($-\infty$; -1).	(-1:0).	
		3
CÂU 5. Cho hàm số $y=\frac{x+m}{x+1}$ (m là tham số thực) thỏa mãn $\min_{[1;2]}y$	$+\max_{[1;2]} y = \frac{1}{3}$	Mệnh
đề nào dưới đây đúng?		
(A) $m > 4$. (B) $m \le 0$. (C) $0 < m \le 2$.		
	$\lim_{x \to 1} f(x) = 3.$ N	Mệnh đề
nào dưới đây đúng ?	, -,	
	m > 4.	
CÂU 7. Gọi S là tổng giá trị của m để hàm số $f(x) = \frac{x - m^2 - m}{x + 1}$ có	o giá trị nhỏ n	hất trên
x+1 [0;1] bằng -2 . Mệnh đề nào sau đây đúng?	•	
(A) S = -1. $(B) S = 1.$ $(C) S = -2.$	S = -3.	
		.) _ 14
CÂU 8. Cho hàm số $f(x) = x^3 + mx^2 - m^2x + 2$ với tham số $m > 0$. Explicitly the state of t	$[-m;m]$ $\int (x)^{n}$	$j=\frac{1}{27}$
······ Mệnh đề nào dưới đây đúng		

CÂU 9. Có tất cả bao nhiều giá trị nguyên của tham số m để giá trị nhỏ nhất của hàm số $y = x^3 + (m^2 - m + 1) x + m^3 - 4m^2 + m + 2025$ trên đoạn [0; 2] bằng 2019?

- (\mathbf{A}) 0.
- \bigcirc 1
- (\mathbf{C}) 2.
- **D**) 3.

CÂU 10. Gọi S là tập tất cả các giá trị của m sao cho giá trị nhỏ nhất của hàm số $y = (x^3 - 3x + m)^2$ trên đoạn [-1; 1] bằng 4. Tính tổng các phần tử của S.

- **A** 0.
- (\mathbf{B}) 6.
- (c) -5.
- **(D**) 3.

3

Bài toán vận dụng, thực tiễn có liên quan đến max min

Dài toán chuyển động:

- Gọi s(t) là hàm quãng đường; v(t) là hàm vận tốc; a(t) là hàm giá tốc;
- Khi đó s'(t) = v(t); v'(t) = a(t).

Bài toán thực tế – tối ưu:

- Biểu diễn dữ kiện cần đạt max min qua một hàm f(t).
- Khảo sát hàm f(t) trên miền điều kiện của hàm và suy ra kết quả.

BÀI TẬP TỰ LUẬN

VÍ DỤ 1. Một chất điểm chuyển động có vận tốc tức thời v(t) phụ thuộc vào thời gian t theo hàm số $v(t)=-t^4+24t^2+500$ (m/s). Trong khoảng thời gian từ t=0 (s) đến t=5 (s) chất điểm đạt vận tốc lớn nhất tại thời điểm nào?

VÍ DU 2.

Sự phân huỷ của rác thải hữu cơ có trong nước sẽ làm tiêu hao oxygen hoà tan trong nước. Nồng độ oxygen (mg/l) trong một hồ nước sau t giờ ($t \geq 0$) khi một lượng rác thải hữu cơ bị xả vào hồ được xấp xỉ bởi hàm số (có đồ thị như đường màu đỏ ở hình bên)

 $y(t) = 5 - \frac{15t}{9t^2 + 1}.$

Vào các thời điểm nào nồng độ oxygen trong nước cao nhất và thấp nhất?

VÍ DU 3.

Tính diện tích lớn nhất $S_{\rm max}$ của một hình chữ nhật nội tiếp trong nửa đường tròn bán kính R=6 cm nếu một cạnh của hình chữ nhật nằm dọc theo đường kính của hình tròn mà hình chữ nhât đó nôi tiếp.

VÍ DU 4.

Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 dm³. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/ m². Nếu người đó biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi người đó trả chi phí thấp nhất để thuê nhân công xây dựng bể đó là bao nhiêu?

VÍ DŲ 5.

Một nhà sản xuất cần làm ra những chiếc bình có dạng hình trụ với dung tích $1000~\rm{cm^3}$. Mặt trên và mặt dưới của bình được làm bằng vật liệu có giá 1,2 nghìn đồng/cm², trong khi mặt bên của bình được làm bằng vật liệu có giá 0,75 nghìn đồng/cm². Tìm các kích thước của bình để chi phí vật liệu sản xuất mỗi chiếc bình là nhỏ nhất.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•											•	•	•	•	•	•											

•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

QUICK NOTE	bình mỗi giếng dầu	chiết xuất được 133 thù	ng dầu mỗi ngày. Công	ı vực được chỉ định. Trung g ty có thể khai thác nhiều dầu mỗi giếng chiết xuất
	được hằng ngày sẽ hợp với tài chính, h	giảm 4 thùng. Để công t	cy có thể quyết định s	đầu môi giếng chiết xuất ố giếng cần thêm cho phù êm để sản lượng dầu chiết
	xuất đạt lớn nhất.			
				ng quá 500 sản phẩm. Nếu
	sản nhẩm đó là $F(c)$	$(r) - r^3 = 1000r^2 \pm 1001$	000x + 250000dầng	nhận được khi bán hết số trong khi chi phí sản xuất
	bình quân cho một	sản phẩm là $G(x) = x +$	$-1000 + \frac{250000}{1000}$ (đồn	ng). Doanh nghiệp cần sản
	xuất bao nhiêu sản	phẩm để lợi nhuận thu	x dược là lớn nhất?	0 .1
		BÁI TẬP T	RẮC NGHIỆM	
	PHẦN I Câu ti	rắc nghiệm nhiều như	ơng án lưa chọn M	lỗi câu hỏi học sinh chỉ
	chọn một phươn		ong an ida chòn: w	or caa nor nọc sinh chi
	•	2		
				i công thức $s(t) = 6t^2 - t^3$, vận tốc tức thời của chất
		n nhất tại thời điểm t (gi		vận tốc tực thời của chat
	$(\mathbf{A}) t = 3 \text{ s.}$	B) t = 4 s.	- /	\bigcirc $t=6 \text{ s.}$
	CÂU 2. Trong 3 gi	<u> </u>	<u> </u>	phương trình $s(t) = -t^3 +$
	$6t^2+t+5$, trong d	ố t tính bằng giây và s tí	nh bằng mét. Chất đi	ểm có vận tốc tức thời lớn
		êu trong 3 giây đầu tiên	_	
	A 13 m/s.	B) 10 m/s.	© 9 m/s.	D 12 m/s.
				thức $G(x) = 0.025x^2(30 - \frac{1}{2})$
				được tính bằng miligam). p được giảm nhanh nhất?
	(A) 24 mg.	B) 20 mg.	© 15 mg.	(\mathbf{D}) 10 mg.
	CÂU 4. Trong thí	9	_	o môi trường dinh dưỡng.
	Bằng thực nghiệm		_	ổi theo thời gian bởi công
	thức	M(I) 1000	100t	
		N(t) = 1000	$+\frac{100t}{100+t^2}(con).$	
		rian tính bằng giây. Tính nôi trường dinh dưỡng.	số lượng vi khuẩn lớn	n nhất kể từ khi thực hiện
	A 1 008 con.	B 1012 con.	\bigcirc 1 005 con.	D 1020 con.
		vuông có cạnh huyền bằ	ng $5~\mathrm{cm}$ có thể có diệ	ện tích lớn nhất bằng bao
	nhiêu?	a 125	G 625	
	(A) 25 cm^2 .	B $\frac{125}{4}$ cm ² .	© $\frac{628}{4}$ cm ² .	(D) 125cm^2 .
				$16~\mathrm{cm}.$ Người ta cắt bỏ 4
				h một hình hộp chữ nhật
	miếng tôn bị cắt be	· -	o ion imat tin do dai	cạnh hình vuông của các
	(A) 3 m.	B) 4 m.	© 5 m.	D 2 m.
				bể cá bằng kính có dạng
				c mối ghép có kích thước
		sể cá có dung tích lớn n	hất bằng bao nhiều	(làm tròn đến hàng phần
	trăm)?	1.17 3	a 1 r 1 3	1 40 3
	\mathbf{A} 1,01 m ³ .	_	\bullet 1,51 m ³ .	D 1,40 m ³ .
				t khối hộp chữ nhật không
		0		có chiều dài gấp đôi chiều
	rộng và giá thuê th thuê nhân công là	ợ xây là 700.000 đồng/m	4. Đệ chi phí thuệ nhậ	ân công ít nhất thì chi phí
	A 120 triệu đồn	ıg. (B) 105 triên đồng.	C 115 triệu đồng.	(D) 110 triệu đồng.
		J		· · · · · · · · · · · · · · · · · · ·

CÂU 9. Từ một tấm bìa hình chữ nhật có chiều rộng 30 cm và chiều dài 80 cm (Hình a), người ta cắt ở bốn góc bốn hình vuông có canh x(cm) với 5 < x < 10 và gấp lai để tao thành chiếc hộp có dang hình hộp chữ nhật không nắp như Hình b. Tìm x để thể tích chiếc hộp là lớn nhất (kết quả làm tròn đến hàng phần trăm).

(A)
$$x = \frac{20}{3}$$
 cm.

B
$$x = \frac{20}{7}$$
 cm. **C** $x = \frac{25}{3}$ cm.

(c)
$$x = \frac{25}{2}$$
 cm

D
$$x = \frac{25}{7}$$
 cm.

CÂU 10. Một sợi dây có chiều dài là 6 m, được chia thành 2 phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu để tổng diện tích 2 hình thu được là nhỏ nhất?

$$\bigcirc$$
 $\frac{12}{4+\sqrt{2}}$ m

B
$$\frac{18\sqrt{3}}{4+\sqrt{3}}$$
 m

$$\bigcirc$$
 $\frac{36\sqrt{3}}{4+\sqrt{3}}$ m

(A)
$$\frac{12}{4+\sqrt{3}}$$
 m. (B) $\frac{18\sqrt{3}}{4+\sqrt{3}}$ m. (C) $\frac{36\sqrt{3}}{4+\sqrt{3}}$ m. (D) $\frac{18}{9+4\sqrt{3}}$ m.

CÂU 11. Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung vào chiến lược kinh doanh xe X với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá 31 triệu đồng. Với giá bán này, số lượng xe mà khách hàng đã mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang bán chạy này, doanh nghiệp dự định giảm giá bán. Bộ phận nghiên cứu thị trường ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm 200 chiếc. Hỏi theo đó, giá bán mới là bao nhiêu thì lợi nhuận thu được cao nhất?

(A) 30 triệu đồng.

(B) 30, 5 triệu đồng. **(C)** 29, 5 triệu đồng. **(D)** 32 triệu đồng.

PHÂN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 12. Người ta bơm xăng vào bình xăng của một xe ô tô. Biết rằng thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức

$$V(t) = 300(t^2 - t^3) + 4$$
 với $0 \le t \le 0.5$.

Gọi V'(t) là tốc độ tăng thể tích tại thời điểm t với $0 \le t \le 0.5$.

Mệnh đề	Đ	S
a) Lượng xăng trong bình ban đầu là 1 lít.		
b) Lượng xăng lớn nhất bơm vào bình xăng là 41,5 lít.		
c) $V'(t) = 300(2t - 3t^2) + 4$, với $0 \le t \le 0.5$.		
d) Xăng chảy vào bình xăng vào thời điểm ở giây thứ 30 có tốc độ tăng thể tích là lớn nhất.		

CÂU 13. Tại một xí nghiệp chuyên sản xuất vật liệu xây dựng, nếu trong một ngày xí nghiệp sản xuất x (m³) sản phẩm thì phải bỏ ra các khoản chi phí bao gồm: 4 triệu đồng chi phí cố định; 0.2 triệu đồng chi phí cho mỗi mét khối sản phẩm và $0.001x^2$ triệu đồng chi phí bảo dưỡng máy móc. Biết rằng, mỗi ngày xí nghiệp sản xuất được tối đa 100 m³ sản phẩm.

QUICK NOTE
GOIOR NOIL

Goi C(x) là tổng chi phí để xí nghiệp sản xuất x (m³) sản phẩm trong một ngày và \overline{C} là chi phí trung bình trên mỗi mét khối sản phẩm.

Mệnh đề	Đ	S
a) $C = 0.2x + 0.001x^2$ với $0 \le x \le 100$.		
b) Tổng chi phí khi sản xuất 100 m³ sản phẩm là 34 triệu đồng.		
c) $\overline{C} = 0.001x + \frac{4}{x} + 0.2$ với $0 < x \le 100$.		
d) \overline{C} có giá trị thấp nhất bằng 0,326 triệu đồng (<i>kết quả làm tròn 3 chữ số thập phân</i>).		

CÂU 14. Nhà máy A chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy B. Hai nhà máy thoả thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 tấn sản phẩm). Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là $P(x) = 45 - 0{,}001x^2$ (triệu đồng). Chi phí để A sản xuất x tấn sản phẩm trong một tháng là C(x) = 100 + 30x (triệu đồng) (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi tấn sản phẩm).

Mệnh đề	Ð	\mathbf{S}
a) Chi phí để A sản xuất 10 tấn sảm phẩm trong một tháng là 400 triệu đồng.		
b) Số tiền A thu được khi bán 10 tấn sản phẩm cho B là 600 triệu đồng.		
c) Lợi nhuận mà A thu được khi bán x tấn sản phẩm $(0 \le x \le 100)$ cho B là $-0.001x^3 + 15x - 100$.		
d) A bán cho B khoảng 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất.		

PHẨN III. Câu trắc nghiệm trả lời ngắn.

CÂU 15. Một nhà máy sản xuất xe đạp cho thị trường châu Âu theo đơn giá 120 euro. Chi phí mỗi ngày của nhà máy được cho bởi hàm số $K(x) = 0.02x^3 - 3x^2 + 172x + 2400$, trong đó x là số lượng xe đạp sản xuất được trong ngày hôm đó. Mỗi ngày có thể sản xuất tối đa 130 xe đạp. Giả sử số xe đạp sản xuất được trong mỗi ngày đều được bán hết vào cuối ngày đó. Gọi G(x) là hàm số biểu diễn lợi nhuận hàng ngày của nhà máy. Hỏi số lượng xe mỗi ngày cần sản xuất là bao nhiêu để nhà máy có lợi nhuận lớn nhất?

KQ:				
-----	--	--	--	--

CÂU 16. Các nhà tổ chức các buổi hòa nhạc gây quỹ cần phải cân nhắc kỹ lưỡng giữa lợi nhuận và thua lỗ, đặc biệt khi xác định giá vé cho các buổi phát sóng truyền hình tại các rạp chiếu địa phương. Qua việc lưu trữ hồ sơ, một rạp chiếu phim nhận thấy rằng với mức giá vé là 260 nghìn đồng, họ trung bình có 1 000 người tham dự. Với mỗi lần giảm 10 nghìn đồng giá vé, số lượng khách sẽ tăng thêm 50 người. Mỗi khách hàng chi tiêu trung bình 40 nghìn đồng cho các món đồ ăn và thức uống. Vậy rạp chiếu phim nên thu giá vé vào cửa bao nhiêu để tối đa hóa tổng doanh thu (đơn vị nghìn đồng)?

CÂU 17. Vào lúc 12 giờ 7 phút anh Hùng chạy xe xuất phát từ điểm A và đi đến điểm C với vận tốc là $60(\mathrm{km/h})$. Biết rằng 7 phút trước đó anh Quang chạy xe xuất phát từ điểm B với vận tốc là $30(\mathrm{km/h})$ sao cho hai quãng đường của hai xe hợp nhau một góc 60° như hình vẽ dưới đây. Cho biết $AB=42(\mathrm{km})$ và vào lúc a giờ b phút thì anh Quang và anh Hùng ở vị trí có cự li gần nhất để vẫy tay chào nhau $(a,b\in\mathbb{N}^*)$. Tính a+b? Xem như hai xe đều chuyển động đều và không có tác dụng ngoại lực hay yếu tố nào khác.

B

CÂU 18. Hai nhà máy được đặt tại các vị trí A và Bcách nhau 4 km. Nhà máy xử lí nước thải được đặt ở vị trí C trên đường trung trực của đoạn thẳng AB, cách trung điểm M của đoạn thẳng AB một khoảng là 3 km. Người ta muốn làm đường ống dẫn nước thải từ hai nhà máy A, B đến nhà máy xử lí nước thải C gồm các đoạn thẳng AI, BI và IC, với I là vị trí nằm giữa M và C (Hình bên). Cần chọn vị trí điểm I cách điểm M bao nhiều km để tổng độ dài đường ống nhỏ nhất? (kết quả làm tròn đến hàng phần trăm)

KQ:

CÂU 19. Để làm một cái hộp đựng quà tặng bạn, từ một tấm bài hình chữ nhật với kích thước 40 cm \times 20 cm, bạn Hoa cắt bỏ hai hình vuông cạnh là x (cm) và hai hình chữ nhật (phần gạch sọc như hình bên) rồi gấp theo đường nét đứt và dán các mép để được một cái hộp kín có dạng hình hộp chữ nhật. Hỏi có thể tạo được cái hộp có thể tích lớn nhất bằng bao nhiêu? (kết quả tính theo đơn vị cm³ và làm tròn đến hàng đơn vị)

KQ:

CÂU 20. Từ một tấm bìa hình vuông ABCD có cạnh bằng 5 dm, người ta cắt bỏ bốn tam giác bằng nhau là AMB, BNC, CPD và DQA. Với phần còn lại, người ta gấp lên và ghép lại để thành hình chóp tứ giác đều. Hỏi cạnh đáy của khối chóp bằng bao nhiêu dm để thể tích của nó là lớn nhất? (kết quả làm tròn đến hàng phần trăm)

	ς	•		٧	/[V	F	1	Υ	1	a	t	r	١	-	()(9	6	2	20	γ,	4	C	3	3	1	9	•	9
						S)	l			9					١		C)		ŀ									
	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•						=	=
•																														

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•																														

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
																														•			

Bài 2.	GIÁ TRỊ LỚN NHẤT - NHỎ NHẤT CỦA HÀM SỐ	1
A	LÝ THUYẾT CẦN NHỚ	. 1
\mathbf{B}	PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN	. 1
	$ ightharpoonup$ Dạng 1. Bài toán tìm max, min của hàm số $y=f(x)$ trên miền \mathscr{D}	
	ightharpoonup Dạng 2. Bài toán max, min có chứa tham số m	. (
	Dang 3 Rài toán vận dụng thực tiến có liên quan đến may min	-

