롯데정보통신 Vision AI 경진대회

다량의 상품에 대해 각 상품을 특정하는 이미지 분류

Contents

01 Storyline

- 1) Simple classification??
- 2) With label smoothing??

02 Methods

- 1) Image retrieval
- 2) Model architecture
- 3) Loss
- 4) Augmentation
- 5) Learning rate scheduler
- 5) Validation strategy
- 6) TTA

03 Results

Simple classification

Methods

Results

Sample train dataset

간단한 이미지 분류 문제

어성초!!

Simple classification

Storyline M

Methods Results

CNN

Convolution Neural Network

Simple CNN classification??

그저 그런 Validation score

With label smoothing

Storyline Methods Results

CNN

Convolution Neural Network

Subsampling

Subsampling Fully connected

Simple CNN classification??

Convolutions

Methods

Results

With label smoothing

Why label smoothing??

Input

일반적인 이미지 분류는 이미지가 들어오면 해당 클래스를 판단

With label smoothing

Storyline Methods Results

Why label smoothing??

Label smoothing을 도입하게 된다면

Methods

Results

With label smoothing

Why label smoothing??

서로 다른 class 이지만 서로 모양은 유사

Label smoothing으로 인해 다른 class임에도 제품의 모양기반으로 feature를 만들어 낼 수 있을 것이라고 기대

With label smoothing

Storyline Methods Results

CNN

Convolution Neural Network

Simple CNN classification??

Validation score가 높게 나온 반면 Leader board score는 생각보다 낮음

Subsampling Fully connected

With label smoothing

Why??

1. Class별 데이터가 적음(class별 45건)

Methods

Results

Storyline

2. Train에서는 보기 힘든 데이터가 Test dataset에 포함

With label smoothing

Triplet loss

Storyline Methods Results

Few shot learning의 방법 중 하나인 triplet loss를 사용하게 된다면 데이터들의 pair들로 feature들을 생성가능

Methods

Results

With label smoothing

Arcface loss

image retrieval 문제에서 triplet loss 보다 arcface loss가 더 좋은 성능을 보임

Compute similarity and searching

Methods

Results

- 1. Train Dataset들을 CNN을 통해 Feature extract하여 벡터 확보
- 2. Test data가 들어오면 CNN을 이용하여 벡터 확보

Feature extract

3. Test 벡터를 train 벡터들과 유사도 기반으로 class 예측

Model architecture

Storyline

Methods

Results

Backbone network로 NFNet과 efficientNet을 이용 Pooling layer로 GeM Pooling 이용 Extract하는 vector size는 512 Output layer로 Arcface loss를 위한 ArcMargin layer 사용

Results

Loss

Figure 2. Training a DCNN for face recognition supervised by the ArcFace loss. Based on the feature x_i and weight W normalisation, we get the $\cos\theta_j$ (logit) for each class as $W_j^Tx_i$. We calculate the $\arccos\theta_{y_i}$ and get the angle between the feature x_i and the ground truth weight W_{y_i} . In fact, W_j provides a kind of centre for each class. Then, we add an angular margin penalty m on the target (ground truth) angle θ_{y_i} . After that, we calculate $\cos(\theta_{y_i} + m)$ and multiply all logits by the feature scale s. The logits then go through the softmax function and contribute to the cross entropy loss.

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{e^{s(\cos{(\theta_{y_i} + m)})}}{e^{s(\cos{(\theta_{y_i} + m)})} + \sum_{j=1, j \neq y+i}^{n} e^{s\cos{(\theta_{j})}}} \right)$$

02 Methods

Train augmentation

Image Compression

HorizontalFlip

Cutout

Shift Scale Rotate

Storyline

Methods

Results

Train augmentation으로 image compression Cutout Horizontal Flip Shift scale rotate 적용

Methods

Results

Warm-up 스케줄링 + cosine anneling

다양한 스케줄링 방법 중 warm-up scheduling + cosine annealing 기법을 사용

Results

Validation strategy

Validation set으로 class를 stratified하게 추출 NFNet, EfficientNet 각 5개의 fold 생성

Results

TTA

실시간 리더보드

- 실시간 리더보드 순위는 Validation 측정 결과만을 반영한 것으로, 최종 순위와 다를 수 있습니다.
- 최종 순위는 별도의 검증절차를 통해 결정됨을 참고하여 주세요.

순위	이름	스코어	제출날짜
1	skyblue93**	95.436	2021 . 03 . 25 (23 : 25 : 06)
2	hakddal7**	95.150	2021.03.26 (17:52:22)
3	jeong59**	94.985	2021 . 03 . 26 (17 : 44 : 49)

감사합니다.