Math 591 Lecture 10

Thomas Cohn

9/23/20

Review: Partial Derivatives

Given $p \in U \subseteq M$ and $\phi: U \to \mathbb{R}^n$, a coordinate chart, we can write $\phi = (x^1, \dots, x^n)$ where each $x^i: U \to \mathbb{R}$. Then we defined

$$\frac{\partial f}{\partial x}^{i}(p) = \frac{\partial f_{\phi}}{\partial r^{i}}(\phi(p))$$

where $f_{\phi} = f \circ \phi^{-1}$, and r^i is simply the coordinate in \mathbb{R}^n .

Ex: Take $M \subseteq \mathbb{R}^3$ defined as the graph of $G: A \to \mathbb{R}$ where A is an open subset of \mathbb{R}^2 and G is C^{∞} . Then we can write $M = \{(r^1, r^2, G(r^1, r^2)) \mid (r^1, r^2) \in A\}$. There is one chart: U = M, ϕ is projection onto the (r^1, r^2) plane. $\phi^{-1}(r^1, r^2) = (r^1, r^2, G(r^1, r^2))$.

Let $f: M \to \mathbb{R}$ be the restriction of some $\tilde{f}: \mathbb{R}^3 \to \mathbb{R}$ C^{∞} . Then

$$f_{\phi}(^{1}, r^{2}) = (f \circ \phi^{-1})(r^{1}, r^{2}) = \tilde{f}(\underbrace{r^{1}, r^{2}, G(r^{1}, r^{2})}_{p \in M})$$

Compute:

$$\frac{\partial f}{\partial x^1}(p) = \frac{\partial \tilde{f}}{\partial r^1}(p) + \frac{\partial G}{\partial r^1}(r^1, r^2) \frac{\partial \tilde{f}}{\partial r^3}(p)$$

Observe: $\frac{\partial f}{\partial x^1}(p) = \nabla \tilde{f} \cdot \dot{\gamma}$, for $\gamma(t) = (r^1 + t, r^2, G(r^1 + t, r^2)) \in M$, so $\dot{\gamma}(t)|_{t=0} = (1, 0, \frac{\partial g}{\partial r^1}(r^1, r^2))$.

Now, back to the theorem from last time:

Thm: If $p \in U \stackrel{\text{open}}{\subseteq} M$, $\phi: U \to \mathbb{R}^n$ is a chart, and $\phi = (x^1, \dots, x^n)$, then $\forall D \in T_pM$, one has

$$D = \sum_{j=1}^{n} D([x^{i}]) \left. \frac{\partial}{\partial x^{i}} \right|_{p}, \quad [x^{i}] \in C_{p}^{\infty}(M)$$

Proof: It's based on the following observations:

- The set of derivations, T_pM , is an \mathbb{R} -vector space.
- For any constant function k, $\forall D \in T_pM$, D[k] = 0. Proof: $D([1]) = D([1^2]) = 2D([1])$ by the product rule, so D([1]) = 0. Then linearity implies D[k] = 0.
- $\forall D \in T_p M$, if [f](p) = [g](p) = 0, then D([f][g]) = 0.

We'll start with what we had last time.

$$f_{\phi}(r) = f(p) + \sum_{i=1}^{n} (r^{i} - r_{0}^{i}) \frac{\partial f_{\phi}}{\partial r^{i}}(r_{0}) + \frac{1}{2} \sum_{i,j=1}^{n} (r^{i} - r_{0}^{i})(r^{j} - r_{0}^{j}) \cdot g_{ij}(r)$$

Composing with ϕ yields

$$f(r) = f(p) + \sum_{i=1}^{n} (x^{i} - x_{0}^{i}) \frac{\partial f}{\partial x^{i}}(p) + \frac{1}{2} \sum_{i,j=1}^{n} (x^{i} - x_{0}^{i})(x^{j} - x_{0}^{j}) \cdot g_{ij}(x)$$

Apply D. Well, f(p) is constant, so it vanishes. And the last term is second order, so based on the above observation, it vanishes as well. We're left with

$$D([f]) = \sum_{i=1}^{n} D([x^i - x_0^i]) \frac{\partial f}{\partial x}^i(p) = \sum_{i=1}^{n} D([x^i]) \frac{\partial f}{\partial x^i}(p)$$

Thus,

$$D = \sum_{i=1}^{n} D([x^{i}]) \left. \frac{\partial}{\partial x^{i}} \right|_{p}$$

Cor: It's easy to check that $\frac{\partial x^i}{\partial x^j} = \delta_{ij}$, so $\left\{ \frac{\partial}{\partial x^i} \Big|_{n} \right\}_{n=1}^{\kappa}$ is a basis of T_pM over \mathbb{R} .

In summary,

- We are defining tangent vectors by T_pM , which is the set of derivations at p. We'll be changing our notation: $u, v, w, \ldots \in$
- Representation of vectors in coordinates:

$$v = \sum_{i=1}^{n} v_i \left. \frac{\partial}{\partial x^i} \right|_p \qquad (v_1, \dots, v_n) \in \mathbb{R}^n$$

- Also, $v = \dot{\gamma}$ for some $\gamma : (t_0 \varepsilon, t_0 + \varepsilon) \to M$ C^{∞} , with $\gamma(t_0) = p$. Note for later: $p \neq q \Rightarrow T_pM \cap T_qM = \emptyset$.

Lemma: $\dot{\gamma}(t_0) = \sum_{i=1}^n \frac{\partial x^i}{\partial t}(t_0) \frac{\partial}{\partial x}\Big|_{x} \text{ if } \gamma(t) = (x^1(t), \dots, x^n(t)) \in \mathbb{R}^n.$

Differentials of Functions

Defn: Let $p \in U \subseteq M$, $f: U \to \mathbb{R}$ C^{∞} . Then we define

$$df_p: T_pM \to \mathbb{R}$$

 $v \mapsto v[f]$

Notation: we say $T_{\nu}U \stackrel{\text{def}}{=} T_{\nu}M$.

Note: $df_p \in (T_pM)^*$, the dual of the tangent space.

Defn: $T_p^*M = (T_pM)^*$ is called the <u>cotangent space</u> of M at p. $df_p \in T_p^*M$.

Note: $df_p(v) = v[f]$.

In coordinates, we saw that if $\phi = (x^1, \dots, x^n)$ and $\phi(p) = (x_0^1, \dots, x_0^n) \in \mathbb{R}^n$, then

$$f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - x_{0}^{i}) + O(2)$$

(With O(2) denoting something that vanishes in the second order at p.) Then

$$v[f] = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} v([x^{i}])$$

By definition, $v[x^i] = dx^i(v)$. We conclude that

$$df_p = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}(p) dx_p^i$$

This is just like it was in Calc III!

Note that, in some ways, it makes more sense to first define T_p^*M , and then obtain T_pM as its dual.

Defn: $I_p = \{[f] \in C_p^{\infty}(M) \mid [f](p) = 0\}$, an ideal in the ring of germs.

$$I_p^2 = \left\{ \sum_{i,j} [f_i][g_j] : [f_i], [g_j] \in I_p \right\}$$

is the set of "O(2) germs". We claim that $T_p^*M\cong I_p/I_p^2$. Then df is the class of $[f-f(p)]\in I_p/I_p^2$.