

Problématique mondiale

• Impacts des feux de forêt

- Tous les écosystèmes terrestres (hormis désert et neige)
- Superficie brulée, ≈ 400 millions ha / an
- Forêt amazonienne, +77 % de feux entre 2018-2019

• Coût estimé

- Un feu en Indonésie (2015), \approx 16 milliards de US\$
- Un an aux USA, 70-350 milliards de US\$

Problématique mondiale

• Impacts des feux de forêt

- Tous les écosystèmes terrestres (hormis désert et neige)
- Superficie brulée, ≈ 400 millions ha / an
- Forêt amazonienne, +77 % de feux entre 2018-2019

• Coût estimé

- Un feu en Indonésie (2015), \approx 16 milliards de US\$
- Un an aux USA, 70-350 milliards de US\$

Nombre de feux détectés par jour dans le monde par le satellite NOAA-20. Un chiffre de 0 signifie une absence de données relevées pour ce jour

Le triangle du feu

- 1. **Energie**Foudre, Allumettes, flammèche
- 2. Combustible
 Essence, bois, feuilles mortes, paille
- 3. Comburant Oxygène

Le triangle du feu

La combustion requiert ces trois conditions, un mécanisme multi-échelle

Le triangle du feu

↗ périodes de sécheresse, combustibilité, vitesse du vent

La combustion requiert ces trois conditions, amplifiées avec le changement climatique

Le transfert thermique (1000 - 1500 °C)

La combustion requiert trois types de transfert thermique (convection, conduction et rayonnement)

Le transfert thermique (1000 - 1500 °C)

La combustion requiert trois types de transfert thermique (convection, conduction et rayonnement)

Types de feux de forêts

- Feux de surface (+)
 - litière, herbacées
- Feux de sol (++)
 - graines, bourgeons, racines
- Feux de couronnes (+++)
 - arbres et forêt
- Feux de sous-sols (++++)
- Tempêtes de feux (+++++)

- Effets directs
 - Evaporation de l'eau
 - Emission de composés organiques volatiles (Cov)
 - Pyrolyse

Le temps nécessaire pour tuer un tissu végétal à 60 °C peut varier de 1s à 60 min.

- Effets directs
 - Evaporation de l'eau
 - Emission de composés organiques volatiles (Cov)
 - Pyrolyse
- Effets indirects
 - Nécroses des systèmes de conduction

Le temps nécessaire pour tuer un tissu végétal à 60 °C peut varier de 1s à 60 min.

Effets immédiats

- La combustion brûle les tissus
 - bourgeons, feuilles, ...
- La convection et le rayonnement tuent les tissus

Effets différés

- Attaque de parasites
- Résistance faible à l'aridité
- Résistance biomécanique
- Mortalité de la banque de graines

La mortalité des arbres est un processus très lent qui intervient bien après le passage du feu

Effets immédiats

- La combustion brûle les tissus
 - bourgeons, feuilles, ...
- La convection et le rayonnement tuent les tissus

Effets différés

- Attaque de parasites
- Résistance faible à l'aridité
- Résistance biomécanique
- Mortalité de la banque de graines

Olivier, 2500 ans, lle de Eubée (Grèce), 08/08/2021

Les feux en Calédonie

Un terrain favorable

- Végétation toutes catégories
 - herbacées, maquis, forêts
- Climat très favorable
 - saison sèche
- Paysage de montagnes
- Proximité Forêt-Habitation
- Année 2019
 - 1423 incendies d'origine humaine
 - ≈ 49 000 ha incendiés
 - ≈ 77 milliards de francs CFP
 - 68 % de la déforestation

Feu de la coulée, 01/12/2019

Les feux extrêmes (AFF, Firestorms) sont favorisés par sécheresse + topographie (talweg)

Les feux en Calédonie

Un terrain favorable

- Végétation toutes catégories
 - herbacées, maquis, forêts
- Climat très favorable
 - saison sèche
- Paysage de montagnes
- Proximité Forêt-Habitation

Une forêt menacée

- Distribution des Plantes
 - micro-endémisme et agrégation
- Pas de plantes pyrophiles
- Densité extrême

Source MODIS 2001-2017

Les feux extrêmes (AFF, Firestorms) sont favorisés par sécheresse + topographie (talweg)

Les feux en Calédonie

Un terrain favorable

- Végétation toutes catégories
- Climat très favorable
- Paysage de montagnes
- Proximité Forêt-Habitation

Une forêt menacée

- Distribution des Plantes
- Pas de plantes pyrophiles
- Densité extrême
- Fragmentation intense

La fragmentation consiste au découpage et à l'isolement de morceaux de forêts originellement connectés

La forêt de lisière

Growth/biomass response

La forêt de lisière est la porte d'entrée principale des menaces dont le feu

Fragmentation et forêt de lisière

La forêt de lisière est hautement combustible (feuilles mortes et herbacées notamment)

Fragmentation et forêt de lisière

Fragmentation et forêt de lisière

La fragmentation induit la déforestation

 D_{moyen} 2014 = 1132 m

Déforestation, 2000-2020

≈ 55 000 ha entre 2000-2020

2050

Forêt

Déforestation 2020-2050

- ≈ <u>3 millions</u> d'arbres tués chaque année
- ≈ 300 000 ha en 2100 (au même taux)

2100 Forêt Déforestation 2020-2100

La fragmentation représente la 1ère cause de la déforestation (6x supérieur aux autres paramètres)

En 2100, la déforestation est intense dans certaines communes de la province Nord

Une déforestation inégale

En 2100, les feux de forêt ne seront plus un problème pour les communes sans forêt!

Impacts du feu Immédiats Réduction des superficies boisées Potentielle disparition des espèces micro-endémiques Différés Augmentation de la fragmentation Réduction des échanges (pollinisation, dispersion) Augmentation des risques de déforestation (feux, cerfs,...) Réduction de la biodiversité Réduction des services écosystémiques