Minimal rational interpolation for

time-harmonic Maxwell's equations

June 24, 2022 Fabio Matti

Outline

- ► Problem formulation
- ► Finite element method
- ► Minimal rational interpolation
- ► Example applications
- ► Conclusion and outlook

Time-harmonic vector potential $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$.

$$\mathbf{B} = \nabla \times \mathbf{u}$$

$$\boldsymbol{E} = -i\boldsymbol{\omega}\boldsymbol{u}$$

(Electric field)

Time-harmonic vector potential $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$.

$$\mathbf{B} = \nabla \times \mathbf{u}$$
 (Magnetic field)
 $\mathbf{E} = -i\omega \mathbf{u}$ (Electric field)

Maxwell's equation

$$\nabla \times (\mu^{-1}\mathbf{B}) - \vartheta_{\mathsf{t}}(\varepsilon \mathbf{E}) = \mathbf{j}$$

Time-harmonic vector potential $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$.

$$\mathbf{B} = \nabla \times \mathbf{u}$$
 (Magnetic field)
 $\mathbf{E} = -i\omega \mathbf{u}$ (Electric field)

Maxwell's equation

$$\nabla \times (\mu^{-1}\mathbf{B}) - \partial_{\mathsf{t}}(\epsilon \mathbf{E}) = \mathbf{j}$$

Time-harmonic potential equation

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{u}) - \varepsilon \omega^2 \mathbf{u} = \mathbf{j}$$

 $\mathsf{H}_{\mathrm{curl}}(\Omega) = \{ \mathbf{v} : \Omega \to \mathbb{C}^3, \text{ such that } \mathbf{v} \in \mathsf{L}_2(\Omega)^3, \ \nabla \times \mathbf{v} \in \mathsf{L}_2(\Omega)^3 \}$

 $H_{curl}(\Omega) = \{ \boldsymbol{v}: \Omega \to \mathbb{C}^3, \text{ such that } \boldsymbol{v} \in L_2(\Omega)^3, \ \nabla \times \boldsymbol{v} \in L_2(\Omega)^3 \}$

Weak formulation of the time-harmonic potential equation

Find $\mathbf{u} \in \mathsf{H}_{\mathrm{curl}}(\Omega)$, such that

$$\int_{\Omega} \langle \mu^{-1} \nabla \times \mathbf{u}, \nabla \times \mathbf{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \mathbf{u}, \mathbf{v} \rangle = \int_{\Omega} \langle \mathbf{j}, \mathbf{v} \rangle + \int_{\partial \Omega} \langle \mathbf{g}, \mathbf{v} \rangle$$

for all $\mathbf{v} \in \mathsf{H}_{\mathrm{curl}}$, where $\mathbf{g} = (\mu^{-1} \nabla \times \mathbf{u}) \times \mathbf{n}$.

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{u}) - \varepsilon \omega^2 \mathbf{u} = \mathbf{j}$$

Perfectly conducting boundary

$$\mathbf{g} = \mathbf{0}$$
 and $\mathbf{E} \times \mathbf{n} = \mathbf{0}$, on Γ_D

$$\textstyle \int_{\Omega} \langle \mu^{-1} \nabla \times \textbf{u}, \nabla \times \textbf{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \textbf{u}, \textbf{v} \rangle = \int_{\Omega} \langle \textbf{j}, \textbf{v} \rangle + \int_{\partial \Omega} \langle \textbf{g}, \textbf{v} \rangle$$

Perfectly conducting boundary

$$\mathbf{g} = \mathbf{0}$$
 and $\mathbf{E} \times \mathbf{n} = \mathbf{0}$, on Γ_{D}

Inlet, where e.g. ${f B}$ is known along Γ_N

$$\mathbf{g} = (\mu^{-1}\mathbf{B}) \times \mathbf{n}$$
, on $\Gamma_{\mathbf{N}}$

$$\textstyle \int_{\Omega} \langle \mu^{-1} \nabla \times \mathbf{u}, \nabla \times \mathbf{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \mathbf{u}, \mathbf{v} \rangle = \int_{\Omega} \langle \mathbf{j}, \mathbf{v} \rangle + \int_{\partial\Omega} \langle \mathbf{g}, \mathbf{v} \rangle$$

Perfectly conducting boundary

$$\mathbf{g} = \mathbf{0}$$
 and $\mathbf{E} \times \mathbf{n} = \mathbf{0}$, on Γ_{D}

Inlet, where e.g. \boldsymbol{B} is known along Γ_{N}

$$\mathbf{g} = (\mathbf{\mu}^{-1}\mathbf{B}) \times \mathbf{n}$$
, on $\Gamma_{\mathbf{N}}$

Imperfectly conducting boundary [3]

$$\mathbf{g} = i\omega\lambda(\mathbf{n} \times \mathbf{u}) \times \mathbf{n}$$
, on Γ_{I}

$$\int_{\Omega} \langle \mu^{-1} \nabla \times \mathbf{u}, \nabla \times \mathbf{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \mathbf{u}, \mathbf{v} \rangle = \int_{\Omega} \langle \mathbf{j}, \mathbf{v} \rangle + \int_{\partial\Omega} \langle \mathbf{g}, \mathbf{v} \rangle$$

FEniCS [2] is used to obtain FEM solutions of the form

$$\mathbf{u}_{h}(\omega) = \sum_{i=1}^{N_{h}} \mathbf{u}_{i}(\omega) \mathbf{\Phi}_{h}^{(i)} \tag{1}$$

for a basis $\{ \boldsymbol{\varphi}_h^{(i)} \}_{i=1}^{N_h}$ of the finite dimensional subspace $H_{curl,h}(\Omega) \subset H_{curl}(\Omega)$ (Nédélec finite elements of the first kind).

FEniCS [2] is used to obtain FEM solutions of the form

$$\mathbf{u}_{h}(\omega) = \sum_{i=1}^{N_{h}} u_{i}(\omega) \mathbf{\Phi}_{h}^{(i)}$$
 (1)

for a basis $\{ \varphi_h^{(i)} \}_{i=1}^{N_h}$ of the finite dimensional subspace $\mathsf{H}_{curl,h}(\Omega) \subset \mathsf{H}_{curl}(\Omega)$ (Nédélec finite elements of the first kind). From now on

$$\mathbf{u} = (u_1, u_2, \dots, u_{N_h})^T$$

with the $L_2(\Omega)$ inner product in $H_{curl,\,h}(\Omega)$ represented by

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathcal{M}} = \mathbf{u}^{\mathsf{H}} \underline{\mathbf{M}} \mathbf{v}$$

and the norm

$$\|\mathbf{u}\|_{\mathcal{M}} = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle_{\mathcal{M}}}$$

Rational surrogate

$$\tilde{\mathbf{u}}(\omega) = \frac{\mathbf{P}(\omega)}{\mathbf{Q}(\omega)} = \sum_{j=1}^{S} \frac{\mathbf{p}_{j}}{\omega - \omega_{j}} / \sum_{j=1}^{S} \frac{\mathbf{q}_{j}}{\omega - \omega_{j}}$$

in barycentric coordinates with support points $\omega_1, \omega_2, \dots, \omega_S$.

Rational surrogate

$$\tilde{\mathbf{u}}(\omega) = \frac{\mathbf{P}(\omega)}{\mathbf{Q}(\omega)} = \sum_{i=1}^{S} \frac{\mathbf{p}_{i}}{\omega - \omega_{i}} / \sum_{i=1}^{S} \frac{\mathbf{q}_{i}}{\omega - \omega_{i}}$$

in barycentric coordinates with support points $\omega_1, \omega_2, ..., \omega_S$.

Interpolation property

$$\tilde{\mathbf{u}}(\omega_{\mathbf{i}}) = \mathbf{u}(\omega_{\mathbf{i}}), \ \forall \mathbf{j} \in \{1, 2, \dots, S\}$$

if and only if $p_j = q_j \mathbf{u}(\omega_j), \forall j$.

Given snapshots $\mathbf{u}(\omega_1)$, $\mathbf{u}(\omega_2)$, ..., $\mathbf{u}(\omega_S)$:

1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $G_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle_M$, $i, j \in \{1, 2, ..., S\}$

- 1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $G_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle_{M}, i, j \in \{1, 2, ..., S\}$
- 2. Compute the singular value decomposition $\underline{\mathbf{G}} = \underline{\mathbf{V}} \, \underline{\boldsymbol{\Sigma}} \, \underline{\mathbf{V}}^{\mathsf{H}}$

- 1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $G_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle_M$, $i, j \in \{1, 2, ..., S\}$
- 2. Compute the singular value decomposition $\underline{\mathbf{G}} = \underline{\mathbf{V}} \, \underline{\boldsymbol{\Sigma}} \, \underline{\mathbf{V}}^{\mathsf{H}}$
- 3. Define $\mathbf{q} = (q_1, q_2, \dots, q_S)^T = \underline{\mathbf{V}}[:, S]$

- 1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $G_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle_M$, $i, j \in \{1, 2, ..., S\}$
- 2. Compute the singular value decomposition $G = V \Sigma V^H$
- 3. Define $\mathbf{q} = (q_1, q_2, ..., q_S)^T = \underline{\mathbf{V}}[:, S]$
- 4. Define the minimal rational surrogate $\mathbf{\tilde{u}}(\omega) = \mathbf{P}(\omega)/Q(\omega)$ with

$$\mathbf{P}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{u}(\omega_j)}{\omega - \omega_j} \text{ and } Q(\omega) = \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

1. Build the minimal rational surrogate $\tilde{\mathbf{u}}_2$ with $\mathbf{u}(\omega^{(0)})$ and $\mathbf{u}(\omega^{(1)})$ and remove $\omega^{(0)}, \omega^{(1)}$ from Ω_{test}

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

- 1. Build the minimal rational surrogate $\tilde{\mathbf{u}}_2$ with $\mathbf{u}(\omega^{(0)})$ and $\mathbf{u}(\omega^{(1)})$ and remove $\omega^{(0)}, \omega^{(1)}$ from Ω_{test}
- 2. Starting with t = 2, iteratively take a new support point

$$\omega^{(t+1)} = \operatorname{argmin}_{\omega \in \Omega_{\text{tot}}} |Q^{(t)}(\omega)|$$

from Ω_{test} to build the minimal rational surrogate $\tilde{\mathbf{u}}_{t+1}$ based on $\mathbf{u}(\omega^{(0)}), \mathbf{u}(\omega^{(1)}), \dots, \mathbf{u}(\omega^{(t+1)})$ and increment t

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

- 1. Build the minimal rational surrogate $\tilde{\mathbf{u}}_2$ with $\mathbf{u}(\omega^{(0)})$ and $\mathbf{u}(\omega^{(1)})$ and remove $\omega^{(0)}, \omega^{(1)}$ from Ω_{test}
- 2. Starting with t = 2, iteratively take a new support point

$$\omega^{(t+1)} = \operatorname{argmin}_{\omega \in \Omega_{\text{tot}}} |Q^{(t)}(\omega)|$$

from Ω_{test} to build the minimal rational surrogate $\tilde{\mathbf{u}}_{t+1}$ based on $\mathbf{u}(\omega^{(0)}), \mathbf{u}(\omega^{(1)}), \dots, \mathbf{u}(\omega^{(t+1)})$ and increment t

3. Stop when relative error

$$\|\mathbf{u}(\boldsymbol{\omega}_{t+1}) - \mathbf{\tilde{u}}_t(\boldsymbol{\omega}_{t+1})\|_{M} / \|\mathbf{u}(\boldsymbol{\omega}_{t+1})\|_{M}$$

is small enough

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)]^T$.

$$\underline{\mathbf{U}} = \mathbf{Q} \; \underline{\mathbf{R}}$$

the Gramian matrix can be expressed as

$$\underline{G} = \underline{R}^{\mathsf{H}}\underline{R}$$

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)]^\mathsf{T}$.

$$\underline{\mathbf{U}} = \mathbf{Q} \; \underline{\mathbf{R}}$$

the Gramian matrix can be expressed as

$$\underline{G} = \underline{R}^H \underline{R}$$

▶ \underline{G} and \underline{R} have the same right-singular vector (exactly what is needed for MRI)

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)]^\mathsf{T}$.

$$\underline{\mathbf{U}} = \mathbf{Q} \; \underline{\mathbf{R}}$$

the Gramian matrix can be expressed as

$$\underline{\mathbf{G}} = \underline{\mathbf{R}}^{\mathsf{H}}\underline{\mathbf{R}}$$

- ▶ \underline{G} and \underline{R} have the same right-singular vector (exactly what is needed for MRI)
- ► Improved conditioning of SVD with $\underline{\mathbf{R}}$

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)]^\mathsf{T}$.

$$\underline{\mathbf{U}} = \mathbf{Q} \; \underline{\mathbf{R}}$$

the Gramian matrix can be expressed as

$$\underline{\mathbf{G}} = \underline{\mathbf{R}}^{\mathsf{H}}\underline{\mathbf{R}}$$

- ▶ \underline{G} and \underline{R} have the same right-singular vector (exactly what is needed for MRI)
- ► Improved conditioning of SVD with $\underline{\mathbf{R}}$
- ▶ <u>R</u> can be built sequentially (modified Householder triangularization for gMRI [5])

Efficient way of storing the surrogate (e_j canonical basis vector)

$$\mathring{\mathbf{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{e}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

$$\boldsymbol{\tilde{u}}(\omega) = \frac{\boldsymbol{P}(\omega)}{Q(\omega)} = \sum_{j=1}^{S} \frac{q_{j}\boldsymbol{u}(\omega_{j})}{\omega - \omega_{j}} / \sum_{j=1}^{S} \frac{q_{j}}{\omega - \omega_{j}}$$

Efficient way of storing the surrogate (e_j canonical basis vector)

$$\mathring{\mathbf{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{e}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

The original surrogate can be recovered with

$$\tilde{\mathbf{u}}(\omega) = \mathbf{U}\dot{\tilde{\mathbf{u}}}(\omega)$$

$$\boldsymbol{\tilde{u}}(\omega) = \frac{P(\omega)}{Q(\omega)} = \sum_{j=1}^{S} \frac{q_j \boldsymbol{u}(\omega_j)}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Neat helper quantity $(\mathbf{r}_j = \underline{\mathbf{R}}[:,j]$ from QR-decomposition)

$$\mathbf{\hat{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j r_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Neat helper quantity $(\mathbf{r}_j = \underline{\mathbf{R}}[:,j]$ from QR-decomposition)

$$\mathbf{\hat{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j r_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

The original surrogate can be recovered with

$$\tilde{\mathbf{u}}(\omega) = \underline{\mathbf{Q}}\hat{\mathbf{u}}(\omega)$$

Neat helper quantity ($\mathbf{r}_j = \underline{\mathbf{R}}[:,j]$ from QR-decomposition)

$$\mathbf{\hat{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j r_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

The original surrogate can be recovered with

$$\boldsymbol{\tilde{u}}(\omega) = \boldsymbol{Q}\boldsymbol{\hat{u}}(\omega)$$

Proposed way of approximating relative error in gMRI

$$\frac{\|\textbf{u}(\boldsymbol{\omega}_{t+1}) - \boldsymbol{\tilde{u}}_t(\boldsymbol{\omega}_{t+1})\|_M}{\|\textbf{u}(\boldsymbol{\omega}_{t+1})\|_M} \approx \frac{\|\textbf{r}_{t+1} - \boldsymbol{\hat{u}}_t(\boldsymbol{\omega}_{t+1})\|}{\|\boldsymbol{\hat{u}}_t(\boldsymbol{\omega}_{t+1})\|}$$

Dual-mode circular waveguide filter

► Easy to implement

Conclusion and outlook

- ► Easy to implement
- ► Robust and fast for finding resonant frequencies

- ► Easy to implement
- ► Robust and fast for finding resonant frequencies
- ► Problem with highly symmetric meshes

- ► Easy to implement
- ► Robust and fast for finding resonant frequencies
- ► Problem with highly symmetric meshes
- Exact dimensions and reference needed for DMCWF

- [1] F. Bonzzoni, D. Pradovera, and M. Ruggeri. Rational-based model order reduction of helmholtz frequency response problems with adaptive finite element snapshots. 2021. doi: 10.48550/arXiv.2112.04302.
- [2] H. P. Langtangen and A. Logg. *Solving PDEs in Python: The FEniCS Tutorial I.* Springer, 2016. ISBN 978-3-319-52461-0. doi: 10.1007/978-3-319-52462-7.
- [3] P. Monk. *Finite Element Methods for Maxwell's Equations*. Oxford Science Publications, 2003. ISBN 0-19-850888-3.
- [4] D. Pradovera and F. Nobile. Frequency-domain non-intrusive greedy model order reduction based on minimal rational approximation. pages 159–167, 2021. doi: 10.1007/978-3-030-84238-3 16.
- [5] L. N. Trefethen. Householder triangularization of a quasimatrix. *IMA Journal of Numerical Analysis*, 30(4): 887–897, 2010. doi: 10.1093/imanum/drp018.

Find w, such that

$$0 = Q(\omega) = \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Equivalent eigenvalue problem

$$\mathbf{A}\mathbf{w} = \omega \mathbf{B}\mathbf{w}$$

with

$$\underline{\mathbf{A}} = \begin{pmatrix} 0 & q_1 & q_2 & \dots & q_S \\ 1 & \omega_1 & & & & \\ 1 & & \omega_2 & & & \\ \vdots & & & \ddots & & \\ 1 & & & & \omega_S \end{pmatrix} \text{ and } \underline{\mathbf{B}} = \begin{pmatrix} 0 & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix}$$

Resonant cavity	Imperfect conductor	Waveguide

	eigsh		gMRI	
DOF	$ar{\Delta}$	t	$ar{\Delta}$	t
713	1.950 ×10 ⁻²	$25.9\pm1.1~\mathrm{ms}$	1.950 ×10 ⁻²	$61.9 \pm 3.6 \text{ ms}$
7412	1.826×10^{-3}	$199.0 \pm 9.9 \text{ ms}$	1.827×10^{-3}	$410.0\pm16.8~\text{ms}$
74722	1.817×10^{-4}	$3.5\pm0.1~\mathrm{s}$	1.820×10^{-4}	$5.2\pm0.2~\mathrm{s}$
745513	1.811×10^{-5}	$75.0\pm1.6~\mathrm{s}$	1.846×10^{-5}	$104.0\pm1.1~\text{s}$

	eigs	gMRI		
DOF	t	t		
713	$57.8 \pm 2.35 \mathrm{ms}$	$62.8 \pm 0.8 \text{ ms}$		
7412	$861.0 \pm 42.4 \text{ ms}$	$498.0 \pm 11.7 \mathrm{ms}$		
74722	$21.8\pm1.1~\mathrm{s}$	$5.9 \pm 0.3 \mathrm{s}$		

