

Bab 5: Otomata (Automata) Hingga

Agenda.

- Otomata (Automata) Hingga
 - Deterministic Finite Automata DFA (Otomata Hingga Deterministik)
 - Equivalen 2 DFA
 - Finite State Machine FSA (Mesin Stata Hingga)
- Non-Deterministic Finite Automata NFA (Otomata Hingga Non-Deterministik)
- NFA to DFA Conversion
- DFA to Grammar Conversion
- Grammar to NFA Conversion
- Ekuivalensi NFA RE (Regular Expression)

Automata Hingga |

3

Otomata (Automata) Hingga

Definisi.

 Otomata Hingga (AH)/Automata Hingga (AH)/Finite Automata (FA) didefinisikan sebagai pasangan 5 tupel: (K, V_T, M, S, Z).

K : himpunan hingga stata,

 V_T : himpunan hingga simbol input (alfabet)

M: fungsi transisi, menggambarkan transisi stata AH akibat

pembacaan simbol input. Fungsi transisi ini biasanya

diberikan dalam bentuk tabel.

 $S \in K$: stata awal

 $Z \subset K$: himpunan stata penerima

- Terdiri dari 2 jenis:
 - 1. Deterministic FA (DFA), dimana transisi stata FS merupakan akibat dari pembacaan sebuah simbol bersifat tertentu; dan
 - 2. Non-Deterministic FA (NFA), dimana transisi stata FS merupakan akibat dari pembacaan sebuah simbol bersifat tak tentu.

Automata Hingga |

5

Otomata (Automata) Hingga

Deterministic Finite Automata (DFA).

• Contoh kasus: Diketahui sebuah DFA sebagai berikut F(K, V_T, M, S, Z), dimana:

$$K = \{q0, q1, q2\}$$

$$V_T = \{a, b\}$$

$$S = \{q0\}$$

$$Z = \{q0, q1\}$$

M diberikan dalam tabel berikut:

	a	b
q0	q0	ql
q1	q0	q2
q2	q2	q2

• Ilustrasi graph untuk DFA F adalah sebagai berikut:

Automata Hingga |

7

Otomata (Automata) Hingga

Contoh kasus lain:

Diketahui table M sebuah DFA Y di samping ini dengan nilai $Z = \{q0 \text{ dan } q2\}$.

Berdasarkan tabel M tersebut, maka tentukan:

- a. pasangan tuple dan
- b. graph otomata untuk DFA tersebut.

	а	b	С
q0	q0	q2	q3
q1	q0	q2	q1
q2	ql	q3	q1
q3	q3	q0	q2

Latihan 1.

Problem 1: Lakukanlah penelusuran menggunakan gambar *graph* sebelumnya untuk menguji apakah string-string berikut diterima DFA Y?

- 1. $a^2b^3c^2$
- 2. abcabcabc
- 3. $a^3b^3c^3$

Automata Hingga |

Otomata (Automata) Hingga

Problem 2: Diketahui sebuah *graph* DFA X sebagai berikut, dimana setiap stata hanya memiliki satu buah nilai input dan tidak ada stata yang disinggahi > 1 kali secara berurutan untuk setiap nilai inputnya!

Berdasarkan gambar *graph* di atas, maka tentukanlah:

- 1. $K, V_T, S, Z, dan tabel M;$
- 2. apakah string-string berikut diterima DFA X?
 - 1. aaabbaaa
 - 2. aabbaabaa

Problem 3: Rancanglah sebuah DFA Y agar dapat menerima string-string berikut, dimana setiap stata hanya memiliki satu buah nilai input dan tidak ada stata yang disinggahi > 1 kali secara berurutan untuk setiap nilai input yang sama!

- 1. abaaba
- 2. abbaabba

Automata Hingga | 11

Otomata (Automata) Hingga

Equivalensi 2 DFA.

- Dua buah DFA dikatakan equivalen jika keduanya dapat menerima bahasa yang sama.
- Misalkan kedua DFA tersebut adalah A dan A' dan bahasa yang diterima adalah bahasa L yang dibangun oleh alfabet $V_T = \{a1,$ a2, a3, ..., an }.
- Untuk menentukan equivalensi 2 buah DFA, maka algoritma yang digunakan adalah sebagai berikut:

- 1. Berikan nama kepada semua stata masing-masing FDA dengan nama berbeda. Misalkan nama-nama tersebut adalah: S, A1, A2, ... untuk FDA A, dan : S', A1', A2', ... untuk FDA A'.
- 2. Buat tabel (n+1) kolom, yaitu kolom-kolom: (v, v'), (v_{a1}, v_{a1}'), ..., (v_{an} , v_{an}'), yaitu pasangan terurut (stata FDA A, stata FDA A').
- 3. Isikan (S, S') pada baris pertama kolom (v, v'), dimana S dan S' masing-masing adalah *stata awal* masing-masing FDA.

Automata Hingga | 13

Otomata (Automata) Hingga

- 4. Jika terdapat *edge* dari S ke A1 dengan label a1 dan jika terdapat edge dari S' ke A1' juga dengan label a1, isikan pasangan terurut (A1, A1') sebagai pada baris pertama kolom (v_{a1}, v_{a1}'). Lakukan hal yang sama untuk kolom-kolom berikutnya.
- 5. Perhatikan nilai-nilai pasangan terurut pada baris pertama. Jika terdapat nilaipasangan terurut pada kolom (v_{a1}, v_{a1}') s/d (v_{an}, v an') yang tidak sama dengan nilai pasangan terurut (v, v'), tempatkan nilai tersebut pada kolom (v, v') baris-baris berikutnya. Lakukan hal yang sama seperti yang dilakukan pada langkah (4). Lanjutkan dengan langkah (5).

- 6. Jika selama proses di atas dihasilkan sebuah nilai pada kolom (v, v'), dengan komponen v merupakan stata penerima sedangkan komponen v' bukan, atau sebaliknya, maka kedua DFA tersebut tidak ekuivalen. Proses dihentikan.
- 7. Jika kondisi (6) tidak dipenuhi dan jika tidak ada lagi pasangan terurut baru yang harus ditempatkan pada kolom (v, v') maka proses dihentikan dan kedua DFA tersebut ekuivalen.

Automata Hingga |

Otomata (Automata) Hingga

Contoh kasus: Periksalah equivalensi kedua DFA berikut.

Latihan 2.

Problem 1: Periksalah equivalensi kedua DFA berikut.

Otomata (Automata) Hingga

Problem 2: Gambarkan dua buah DFA Q dan Q' yang ekuivalen dan buktikan ekuivalen kedua DFA tersebut dalam sebuah tabel jika input yang diberikan adalah a dan b dan setiap DFA memiliki minimum 3 state!

Finite State Machine (FSM).

- Varian automata hingga yang memiliki output.
- FSM didefinisikan sebagai pasangan 6 tupel F(K, V_T, S, Z, f, g) dimana:

: Himpunan hingga state K

 V_T : Himpunan hingga simbol/terminal input

 $S \in K$: State awal

: Himpunan hingga simbol/terminal output

f : Fungsi input : Fungsi output g

Automata Hingga | 19

Otomata (Automata) Hingga

Contoh kasus: Diketahui sebuah FSM memiliki 2 simbol input, 3 state, dan 3 simbol output sebagai berikut:

$$\begin{array}{lll} K & = \{q0, q1, q2\} & \underline{Fungsi \ f:} \\ S & = q0 & f(q0,a) = q1 & f(q0,b) = q2 \\ V_T & = \{a,b\} & f(q1,a) = q2 & f(q1,b) = q1 \\ Z & = \{x,y,z\} & f(q2,a) = q0 & f(q2,b) = q1 \end{array}$$

Problem: Sajikan FSM tersebut dalam bentuk graph dan tabel!

Fungsi g: f(q0,a) = x f(q0,b) = y $f(q_{1,a}) = x$ $f(q_{1,b}) = z$ f(q2,a) = z f(q2,b) = y

Latihan 3.

Problem 1: Tentukan pasangan tupel FSM berikut.

Automata Hingga |

Otomata (Automata) Hingga

Problem 2: Perhatikan tabel berikut, kemudian gambarkan graph FSM otomata dan tuliskan pasangan 6 tuple berdasarkan tabel FSM tersebut.

	а	b	С
q0	q1, x	q2, y	q0, z
q1	q4, y	q2, x	q3, y
q2	q3, x	q4, z	q0, z
q3	q1, y	q0, z	q2, x

Finite State Machine (FSM) Binary Adder.

- Sifat penjumlahan biner bergantung pada statusnya: carry atau not carry.
- Pada status *not carry* berlaku:

$$0 + 0 = 0$$
, $1 + 0 = 0 + 1 = 1$, $1 + 1 = 0$

Pada status *carry* berlaku:

$$0 + 0 = 1$$
, $1 + 0 = 0 + 1 = 0$, $1 + 1 = 1$

Pada status not carry menjadi blank (b), sedangkan pada status carry menjadi 1.

Automata Hingga | 23

Otomata (Automata) Hingga

Contoh kasus: Diketahui nilai setiap tupel untuk FSM ini adalah:

$$K = N \text{ (not carry)}, C \text{ (carry)}, dan S \text{ (stop)}$$

$$S = N$$

$$V_T = \{00, 01, 10, 11, b\}$$

$$Z = \{0, 1, b\}$$

M diberikan dalam tabel berikut:

	00	01	10	11	р
N	N, 0	N, 1	N, 1	C, 0	S, b
С	N, 1	C, 0	C, 0	C, 1	S, 1

Contoh kasus: Hitunglah 1101011 + 0111011

Jawab:

Input = pasangan digit kedua bilangan, mulai dari LSB

11, 11, 00, 11, 01, 11, 10, b

0, 1, 1, 0, 0, 1, 0, 1 (tulis dari kanan \rightarrow kiri) Output

Stata C, C, N, C, C, C, S (tulis dari kanan \rightarrow kiri)

Periksa 1101011

> $0\ 1\ 1\ 1\ 0\ 1\ 1\ +$ 10100110

S CCC CNCC

(baca dari kiri → kanan)

Automata Hingga

Otomata (Automata) Hingga

Latihan 4.

Problem 1:

Menggunakan mesin FSM binary adder, maka hitunglah:

- (a) 10010110 + 01010111
- (b) 10111010 + 11110100

Non-Deterministic Finite Automata (NFA).

- Non-Deterministik Finite Automata (NFA)/Automata Hingga Non-Deterministik (AHN) adalah sebauh mesin automata yang memiliki > 1 stata yang dituju apabila menerima sebuah nilali input
- NFA merupakan varian mesin automata yang ambigu sehingga perlu dikonversikan ke mesin automata deterministik (DFA)

Automata Hingga | 27

Otomata (Automata) Hingga

NFA to DFA Conversion

Contoh kasus: Diketahui sebuah NFA sebagai berikut F(K, V_T , M, S, Z), dimana: M diberikan dalam tabel berikut:

$$K = \{A, B, C\}$$

$$V_T = \{a, b\}$$

$$S = A$$

$$Z = \{C\}$$

	a	b
Α	{A,B}	{C}
В	Α	В
С	В	{A,B}

Algoritma konversi:

- 1. Tetapkan: $S' = S \operatorname{dan} V_T' = V_T$, kemudian salinkan tabel DFA Fsebagai tabel DFA F', seĥingga $\hat{K}' = K \operatorname{dan} M' = M$.
- 2. Setiap stata q yang merupakan *nilai* (atau *peta*) dari fungsi dan $q \notin K$, ditetapkan sebagai elemen baru dari K'. Tempatkan q tersebut pada kolom stata M', lakukan pemetaan berdasarkan fungsi M.
- 3. Ulangi langkah (3) sampai tidak diperoleh stata baru.
- 4. Elemen **Z**' adalah semua stata yang mengandung stata elemen **Z**.

Automata Hingga | 29

Otomata (Automata) Hingga

Latihan 5.

Problem 1: Konversikan NFA berikut menjadi DFA jika diketahui sebuah NFA sebagai berikut F(K, V_T, M, S, Z), dimana:

$$K = \{q0, q1, q2\}$$

$$V_T = \{a, b, c\}$$

$$S = \{q0\}$$

$$Z = \{q2\}$$

M diberikan dalam tabel berikut:

	а	b	С
q0	{q0,q1}	{q0,q2}	{q0}
q1	{q1,q2}	{q2}	{q1}
q2	{q1}	{q0,q1}	{q2}

Problem 2: Konversikan NFA berikut menjadi DFA jika diketahui sebuah NFA sebagai berikut F(K, V_T, M, S, Z), dimana:

$$K = \{q0, q1, q2, q3, q4\}$$

 $V_T = \{a, b, c\}$

 $S = \{q0\}$

 $Z = \{q4\}$

M diberikan dalam tabel berikut:

	а	b	С
q0	{q0,q1}	{q0,q2}	{q0,q3}
q1	{q1,q4}	{q1}	{q1}
q2	{q2}	{q2,q4}	{q2}
q3	{q3}	{q3}	{q3,q4}
q4	Ø	Ø	Ø

Automata Hingga |

Otomata (Automata) Hingga

Problem 3: Telusurilah, apakah kalimat-kalimat berikut diterima NFA: ab dan abc

Latihan 6.

Problem 1: Berdasarkan tabel M pada contoh kasus di atas, telusurilah apakah kalimat-kalimat berikut diterima NFA: aabc, aabb, dan abcabc.

Latihan 7.

Problem 1: Konversikan otomata NFA berikut menjadi otomata DFA!

Automata Hingga

Bab 5: Otomata (Automata) Hingga

Agenda.

- Otomata (Automata) Hingga
 - Deterministic Finite Automata DFA (Otomata Hingga Deterministik)
 - Equivalen 2 DFA
 - Finite State Machine FSA (Mesin Stata Hingga)
- Non-Deterministic Finite Automata NFA (Otomata Hingga Non-Deterministik)
- NFA to DFA Conversion
- DFA to Grammar Conversion
- Grammar to NFA Conversion
- Ekuivalensi NFA RE (Regular Expression)

DFA to Grammar Conversion.

Contoh kasus: Diketahui sebuah DFA sebagai berikut F(K, V_T, M, S, Z), akan dibentuk GR $G = (V_T, V_N, S, Q)$ dimana:

$$K = \{S, A, B, C\}$$

$$V_T = \{0, 1\}$$

$$S = S$$

 $Z = \{S\}$

 $K = \{S, A, B, C\}$ M diberikan dalam tabel berikut:

K	0	1
S	В	Α
Α	C	S
В	S	С
С	Α	В

Automata Hingga |

Otomata (Automata) Hingga

Algoritma konversi:

- 1. Tetapkan: $V_T' = VT$, S' = S, $V_N = K$
- 2. Jika A_n , $A_a \in K$ dan $a \in VT$, maka:

 $M(A_p, a) = A_q$ ekuivalen dengan produksi:

- $A_p \rightarrow aA_q$, jika $A_q \notin Z$ $A_p \rightarrow a$, jika $A_q \in Z$

Latihan 7.

Problem 1: Tentukan himpunan produksi otomata DFA berikut!

Automata Hingga |

Otomata (Automata) Hingga

Problem 2: Tentukan himpunan produk GR X untuk otomata DFA X

berikut!

Problem 3: Tentukan himpunan produk GR Q untuk otomata berikut!

Automata Hingga |

Otomata (Automata) Hingga

Grammar to NFA Conversion.

Algoritma konversi grammar ke AHN:

- 1. Tetapkan V_T ' = V_T , S' = S, $K = V_N$
- 2. Produksi $Ap \rightarrow aAq$ ekuivalen dengan M(Ap, a) = AqProduksi $Ap \rightarrow a$ ekuivalen dengan M(Ap, a) = X, dimana $X \notin V_N$
- 3. $K = K \cup \{X\}$
- 4. $Z = \{X\}$

Contoh kasus:

Diketahui sebuah grammar $G = (V_T, V_N, S, Q)$ akan dibentuk F = (K, V_T', M, S', Z) , dimana $V_T = \{a, b\}, V_N = \{S, A, B\}, S = S$, dan $Q = \{S \rightarrow aS, S \rightarrow bA, A \rightarrow aA, A \rightarrow aB, B \rightarrow b\}$

Latihan 8.

Problem 1: Tentukan $F = (K, V_T', M, S', Z)$, jika diketahui sebuah grammar \rightarrow aS, S \rightarrow bA, A \rightarrow a, A \rightarrow aB, B \rightarrow bS, B \rightarrow bB, B \rightarrow b}

Problem 2: Gambarkan NFA F diatas!

Automata Hingga | 41

Otomata (Automata) Hingga

Ekuivalensi NFA – RE (Regular Expression).

Jenis ER	Simbol ER	NFA
Simbol Hampa	ε	→ (0)
ER Hampa	φ atau {}	\rightarrow q0 q1
ER Umum	r	$r \longrightarrow q_0 \longrightarrow q_1$

Jenis ER	Simbol ER	NFA
Alternation	r1 r2	$\begin{array}{c c} & & & \\ \hline \end{array}$
Concatenation	r1 r2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Kleene Clossure	r*	ε r1 ε q1 ε

Automata Hingga | 43

Otomata (Automata) Hingga

Contoh kasus:

Tentukan NFA untuk ekspresi regular r = 0(1|23)*

Latihan 9.

Problem 1: Tentukan NFA untuk ekspresi regular $r = 0 |1(23)^*!$

