Python DeCal

Week 7

Announcements

- 5th HW just due
- Final Projects
 - Thank you for completing the quiz and we will be assigning groups by Thursday night.
 - Let us know ASAP if you changed your mind.
 - Final Project Proposal due: 28th October
- Attendance: https://tinyurl.com/your-shower-thoughts

Recap

- What is the difference between import scipy.integrate as integrate and from scipy.integrate import ...
- What do you do when you are stuck with debugging or having a problem/question while coding?

Library for Astronomers: ASTROPY!

- A library designed to make astronomy researches easier .
- Lots of packages within:

```
import astropy.blah_blah as ...
from astropy.blah_blah import ...
```

You may have to install it by running pip install astropy in terminal

Units with Astropy!

import astropy.units as u

- You can assign units to variables and astropy will just keep track of them.
- E.g. >>> length1 = 1*u.m
 - >>> length2 = 2*u.cm
 - >>> L =length1 + length2
 - >>> L

<Quantity 1.02m>

https://docs.astropy.org/en/stable/units/

earthMass	Earth mass	$5.9721679 \times 10^{24} \mathrm{kg}$	M_earth , Mearth	No
earthRad	Earth radius	6378100 m	R_earth , Rearth	No
electron	Number of electrons			No
jupiterMass	Jupiter mass	$1.8981246 \times 10^{27} \mathrm{kg}$	M_jup , Mjup , M_jupiter , Mjupiter	No
jupiterRad	Jupiter radius	71492000 m	R_jup , Rjup , R_jupiter , Rjupiter	No
Ју	Jansky: spectral flux density	$1 \times 10^{-26} \frac{\text{W}}{\text{Hz m}^2}$	Jansky , jansky	Yes
littleh	Reduced/"dimensionless" Hubble constant			No
lyr	Light year	$9.4607305 \times 10^{15} \text{ m}$	lightyear	Yes
M_e	Electron mass	$9.1093837 \times 10^{-31} \mathrm{kg}$		No
М_р	Proton mass	$1.6726219 \times 10^{-27} \mathrm{kg}$		No
pc	parsec: approximate- ly 3.26 light-years.	$3.0856776 \times 10^{16} \mathrm{m}$	parsec	Yes
ph	photon (ph)		photon	Yes
pix	pixel (pix)		pixel	Yes
R	Rayleigh: photon flux	$7.9577472 \times 10^8 \frac{\text{ph}}{\text{s sr m}^2}$	Rayleigh , rayleigh	Yes
Ry	Rydberg: Energy of a photon whose wavenumber is the Rydberg constant	13.605693 eV	rydberg	Yes
solLum	Solar luminance	$3.828 \times 10^{26} \mathrm{W}$	L_sun , Lsun	No
solMass	Solar mass	$1.9884099 \times 10^{30} \mathrm{kg}$	M_sun , Msun	No
solRad	Solar radius	$6.957 \times 10^8 \mathrm{m}$	R_sun , Rsun	No

Units with Astropy!

 You may also assign units to an entire numpy array

$$arr = np.array([1,2,3])*u.m$$

You can get extract the magnitudes by doing

arr.value

- You can do unit conversion by doing

https://docs.astropy.org/en/stable/units/

earthMass	Earth mass	$5.9721679 \times 10^{24} \mathrm{kg}$	M_earth , Mearth	No
earthRad	Earth radius	6378100 m	R_earth , Rearth	No
electron	Number of electrons			No
jupiterMass	Jupiter mass	$1.8981246 \times 10^{27} \mathrm{kg}$	M_jup , Mjup , M_jupiter , Mjupiter	No
jupiterRad	Jupiter radius	71492000 m	R_jup , Rjup , R_jupiter , Rjupiter	No
Jу	Jansky: spectral flux density	$1 \times 10^{-26} \frac{W}{Hz m^2}$	Jansky , jansky	Yes
littleh	Reduced/"dimensionless" Hubble constant			No
lyr	Light year	$9.4607305 \times 10^{15} \mathrm{m}$	lightyear	Yes
M_e	Electron mass	$9.1093837 \times 10^{-31} \mathrm{kg}$		No
M_p	Proton mass	$1.6726219 \times 10^{-27} \mathrm{kg}$		No
pc	parsec: approximate- ly 3.26 light-years.	$3.0856776 \times 10^{16} \mathrm{m}$	parsec	Yes
ph	photon (ph)		photon	Yes
pix	pixel (pix)		pixel	Yes
R	Rayleigh: photon flux	$7.9577472 \times 10^8 \frac{\text{ph}}{\text{s sr m}^2}$	Rayleigh , rayleigh	Yes
Ry	Rydberg: Energy of a photon whose wavenumber is the Rydberg constant	13.605693 eV	rydberg	Yes
solLum	Solar luminance	$3.828 \times 10^{26} \mathrm{W}$	L_sun , Lsun	No
solMass	Solar mass	$1.9884099 \times 10^{30} \mathrm{kg}$	M_sun , Msun	No
solRad	Solar radius	$6.957 \times 10^8 \mathrm{m}$	R_sun , Rsun	No

Fundamental Constants with Astropy!

import astropy.constants as con

$$G = 6.67430(15) \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$$
 σ = 5.670 374 419... × 10⁻⁸ W·m⁻²·K⁻⁴

- They come with units!!!!

https://docs.astropy.org/en/stable/constants/

Name	Value	Unit	Description
G	6.6743e-11	m3 / (kg s2)	Gravitational constant
N_A	6.02214076e+23	1 / (mol)	Avogadro's number
R	8.31446262	J / (K mol)	Gas constant
Ryd	10973731.6	1 / (m)	Rydberg constant
a0	5.29177211e-11	m	Bohr radius
alpha	0.00729735257		Fine-structure constant
atm	101325	Pa	Standard atmosphere
b_wien	0.00289777196	m K	Wien wavelength displacement law constant
	299792458	m / (s)	Speed of light in vacuum
е	1.60217663e-19	С	Electron charge
eps0	8.85418781e-12	F/m	Vacuum electric permittivity
g0	9.80665	m / s2	Standard acceleration of gravity
h	6.62607015e-34	Js	Planck constant
hbar	1.05457182e-34	Js	Reduced Planck constant
k_B	1.380649e-23	J / (K)	Boltzmann constant
m_e	9.1093837e-31	kg	Electron mass
m_n	1.6749275e-27	kg	Neutron mass
m_p	1.67262192e-27	kg	Proton mass
mu0	1.25663706e-06	N/A2	Vacuum magnetic permeability
muB	9.27401008e-24	Ј/Т	Bohr magneton
sigma_T	6.65245873e-29	m2	Thomson scattering cross-section
sigma_sb	5.67037442e-08	W / (K4 m2)	Stefan-Boltzmann constant

Coordinate Transformation!

from astropy.coordinates import SkyCoord

ICRS (RA-DEC)
International Celestial
Reference System

Galactic Coordinates (I-b)

Coordinate Transformation!

from astropy.coordinates import SkyCoord

icrs = SkyCoord(ra, dec, distance)

Call each component by doing:

icrs.ra, icrs.dec, icrs.distance

You have to include units here:

ra = RA_arr*u.deg

Coordinate Transformation

gal = icrs.transform_to('Galactic')

https://docs.astropy.org/en/stable/coordinates/ https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html

Astropy Tables...

from astropy.table import Table

data = Table.read(your_file_or_array)

Call a column (columns acts like arrays):

data['column_header']

Call the n-th row:

data[n]

data[m:n]

ĺ	idx	а	b	С	d
					m/ s
	0	1	2.0	x	10.0
	1	4	5.0	у	20.0
	2	5	8.5	z	30.0

FRIDAY

Attendance: https://tinyurl.com/done-with-midterms

Announcements

Final Projects!

Groups	Unknowns
Chloe Wang	Riley Clark & Lyla Krock?
Kingsley Ehrich	Sebastian Quiroz
Victoria Brendel & Camden Mah	
Nadia Laswi & Victor Cruz Ramos	
Mey Ocali	
Esther Smith & Geo Garcia	
Catyn Abono & Paige Benson	
Joshua Joo & Emmanuel Hernandez	

Attendance Poll: https://tinyurl.com/done-with-midterms

Final Projects

- You need to do the final project to pass this class! (If you're **auditing** don't worry but we still recommend doing a project)
- Here are some potential ideas for inspiration:
 - N Body Simulations
 - Collision Simulations (pool game?)
 - Analyze some astronomical object(s) (make a lightcurve for a supernova?)
 - Construct an HR Diagram with GAIA data, and analyze it
 - Plot the trajectory of a pendulum (or double pendulum?)
 - Simulate Transit Method between exoplanets and stars
 - Ask us for more ideas if you want another type of project!
 - Animate some fractals

Cool Stuff

Simulation produced by Elliot Cantor in EPS 109

More Cool Stuff

More Cool Stuff

Final Project Proposal

Needs to be in LaTeX(we will teach you how)

DUE OCTOBER 28TH

Breakout Rooms

- If your partner is here discuss what y'all would be interested in doing!
- If they aren't here send them an email and start discussing what y'all want to do.

- If time permits, what is the 3 Most important features of the Astropy Library discussed on Wednesday?

PANDAS

- One of the easiest ways to import data files

Uses a new object called a dataframe

Importing Pandas

import pandas as pd

- This library imports data files with tremendous ease by storing them in a

new data type called a **dataframe**

	count	names	percentage
0	19837	Liam	0.0102
1	18688	Emma	0.0101
2	18267	Noah	0.0097
3	17921	Olivia	0.0095
4	14924	Ava	0.0081

Uses: Reading in Data

- Reading in data from a csv file

```
Data_frame = pd.read_csv('filename.csv')
```

- Reading in data from a excel file

```
Data_frame = pd.read_excel('filename.excel')
```

- Reading in data from a hdf5 file

```
Data_frame = pd.read_hdf('filename.hdf')
```

Uses: DataFrames to Arrays/Lists

- Now how do we extract a column from our data?

```
Column_values = Data_frame['column name']
```

- If you want to make the data values a numpy array:

```
Column_values = Data_frame['column name'].to_numpy()
```

- If you want to make the data values a regular list:

```
Column_values = Data_frame['column name'].to_list()
```

Making Your Own DataFrames

- You have some data lists or arrays:

```
names = ['Jim', 'Dwight', 'Pam', 'Michael', 'Stanley']
birth_count = [9837, 8688, 8267, 1921, 1924]
```

- Lets first construct a dictionary:

Data Conversion

- Now we can convert this data to a DataFrame:

```
>>> df = pd.DataFrame(data) _____
```

- Lastly we can export our DataFrame to a .csv file:

```
>>> df.to_csv('filename.csv')
```

	names	count
0	Jim	9837
1	Dwight	8688
2	Pam	8267
3	Michael	1921
4	Stanley	1924

You're Done!

That's the basics, we can import and export data with only a handful of functions.

If you ever want to see if pandas can do something, google it! This library is

Extremely well documented

CLICK HERE FOR FULL DOCUMENTATION GUIDE