SECOND MEETUP

DiSCo

BGU's Data Science Community

MEET • TEAM UP • KAGGLE HAVE FUN!

BEN-GURION UNIVERSITY OF THE NEGEV

8 APRIL 2018

DOORS OPEN AT 18:30

- > Data Preprocessing
- > Feature transformation and feature engineering
- > Improving performance of regression model

 by feature selection

House Prices Competition

Problem Statement

Features of individual houses

What factors can you think of right now which can influence house prices?

Simple Linear regression

Express-highway of best fit

Houses size

Linear regression: Introduction

In <u>supervised learning</u>, we have examples of lots of input and the desired output

value.

This is called the **dataset**:

- A matrix of feature vectors X.
- A vector of target values Y.

- Area of House
- How old is the house
- Location of the house
- If terrace is available
- If car parking is available
- If security is available

Linear model

 W_1 = It is the change in y for a unit change in x along the line.

3d visualization of multiple regression

Linear regression: Mean Squared Error

Euclidean distance between the target and predicted.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$E(W) = \frac{1}{2} \sum_{i=0}^{n} (W.X_i^T - Y_i)^2$$

MSE(Mean Squared Error) and Error Function

Linear regression: gradient descent

$$E(W) = \frac{1}{2} \sum_{i=0}^{n} (W.X_i^T - Y_i)^2$$

The least squared loss of a linear model is a convex function ("bowl-shaped")

One simple way to find its minimum is by **following the slope of the error**.

$$W \leftarrow W + \alpha \frac{\delta E}{\delta W}$$

Gradient Descent by Andrew Ng: https://www.youtube.com/watch?v=v=v

https://www.youtube.com/watch?v=yFPLyDwVifc

15、 E[≪] w1 w0

Batch and stochastic gradient descent: https://tinyurl.com/y8vrt6qo

Illustration: Tom Mitchell, McGraw-Hill

Data Exploration

Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub
2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub
3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub
4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub
5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub

Statistical Analysis

- 1. **Univariate Analysis** Examples: histogram, density plot, etc.
- 2. **Bivariate Analysis** Examples: bar chart, line chart, area chart, etc.
- 3. **Multivariate Analysis** Examples: stacked bar chart, dodged bar chart, etc.

Univariate Analysis - Plot the missing values count for features

Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	AllPub
2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub
3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub
4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub
5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub

Univariate Analysis - Transformation of 'Target Variable' - Sales Prices

- Skewness: A measure of assymetry in the distribution
- SalesPrices distribution is concentrated to the left

Positively Skewed distribution

Normal Distribution

Bivariate Analysis - Correlation heatmap of Salesprice with all other features

ML workflow

House IDs

Introduction to neural networks

Introduction to neural networks

Introduction to activation functions

A function that helps neuron to decide whether to fire or not

Or

A function used to transform the activation level of neuron (weighted sum of inputs) to an output signal.

Activation Functions

XGBoost (extreme gradient boosting)

XGBoost is a for Gradient boosting trees model

What's happened during this evolution?

XGBoost (extreme gradient boosting)

XGBoost is an implementation of gradient boosted decision trees designed for speed and performance.

XGBoost library implements the gradient boosting decision tree algorithm.

Features: Three main forms of gradient boosting are supported:

- 1. **Gradient Boosting** algorithm also called gradient boosting machine including the learning rate.
- 2. **Stochastic Gradient Boosting** with sub-sampling at the row, column and column per split levels.
- 3. **Regularized Gradient Boosting** with both L1 and L2 regularization.

Ref: https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/

Trevor Hastie https://youtu.be/wPqtzj5VZus

https://www.quora.com/What-is-the-difference-between-the-R-gbm-gradient-boosting-machine-and-xgboost-extreme-gradient-boosting

Ok! Let's get our hands dirty

From Week 1

https://tinyurl.com/disco-git

https://tinyurl.com/disco-kernel1

https://tinyurl.com/disco-facebook

For Week 2

https://tinyurl.com/kernal-week2

https://tinyurl.com/week2-resources

Acknowledgement

Course Creation and people responsible

Github page, kernal for week 2 - Minesh Jethva

Administration - Moran Sharon

Statistical help - Ruth Hashkes

Week 2 presentation - Rahul Veettil

Team DiSCo

Rahul Veettil

Minesh Jethya

Ruth Hashkes

Moran Sharon

https://www.bengis.org/disco https://discobgu.github.io/Preprocessing/ Contact : disco.bgu@gmail.com Thank you