Tecnica delle Costruzioni Corso di laurea in ingegneria edile Prof. Ing. Andrea Prota-a.a. 2022/2023

Ivano D'Apice

N41002772

Indice

1	Ass	egno Solaio	2			
2	Analisi dei carichi					
	2.1	Carichi strutturali permanenti $G_1 \ldots \ldots \ldots \ldots$	4			
	2.2	Carichi permanenti non strutturali G_2	4			
	2.3	Condizioni di Carico	4			
3	Sollecitazioni di progetto allo Stato Limite Ultimo					
	3.1	Combinazione di carico n° 1	6			
	3.2	Combinazione di carico n° 2	13			
	3.3	Combinazione di carico n° 3	14			
	3.4	Inviluppo momenti	15			
4	Dor	ninio M-N	16			
	4.1	Punto A	17			
	4.2	Punto B				
	4.3	Punto C				
	4.4	Punto E				
	4.5	Punto D				
	4.6	Diagramma dominio M-N				

Capitolo 1

Assegno Solaio

Geometria

 $L_1 = 0,70 + 0,10 \cdot n$ $L_2 = 4,30 + 0,10 \cdot c$ $L_3 = 4,80 + 0,10 \cdot c - 0,10 \cdot n$

n=n.ro lettere del nome c=n.re lettere del cognome

Figura 1.1

Figura 1.2: Dati numerici in 1 metro di solaio.

Carichi Accidentali^I Matricola pari Sullo Sbalzo \longrightarrow $Q_{k1} = 5,00kN/m^2$ In Campata \longrightarrow $Q_{k2} = 3,50kN/m^2$

Capitolo 2

Analisi dei carichi

Consideriamo due tipi di carico: Q e G. I carichi di tipo Q si dicono **variabili**, mentre quelli di tipo G **permanenti**. Differenziamo poi i carichi G in **permanenti strutturali** G_1 e **permanenti non strutturali** G_2 .

Si ricorda che verrà fatta una verifica rispetto allo **S.L.U** (Stati Limite Ultimo), tenendo conto dello **S.L.E** (Stato Limite di Esercizio) per quanto riguarda il dimensionamento del solaio.

Dati:

$$L_1 = 0,70 + 0,10 \cdot n$$
 = $0,70 + 0,50$ = **1,20m**
 $L_2 = 4,30 + 0,10 \cdot c$ = $4,30 + 0,60$ = **4,90m**
 $L_3 = 4,80 + 0,10 \cdot c - 0,10 \cdot n$ = $4,80 + 0,10$ = **4,90m**

Utilizziamo la luce maggiore ($L_2=L_3$) per calcolare l'altezza del solaio grazie allo S.L.E. Avremo che $\mathbf{H}=\frac{\mathbf{L}}{20}$ e quindi $H=\frac{490cm}{20}=24,50cm\sim$ **25,00cm**.

Come da progetto [1.2] avremo $\mathbf{H}_{sbalzo} = H - 4,00cm = 25,00cm - 4,00cm = \mathbf{21,00cm}$. II

2.1 Carichi strutturali permanenti G₁

Campata	h (m)	L (m)	$\mathbf{P} \; (\mathrm{kN/m^3})$	$\mathbf{G}_1 \; (\mathrm{kN/m})$
Soletta	0,05	1,00	25,00	1,25
Travetti	0,20	0,10.2	25,00	1,00
Laterizi $^{\rm III}$	0,20	$0,\!40.2$	6,00	0,96
Sbalzo	h (m)	L (m)	$\mathbf{P} \; (\mathrm{kN/m^3})$	$\mathbf{G}_1 \; (\mathrm{kN/m})$
Soletta	0,05	1,00	25,00	1,25
Travetti	0,16	0,10.2	25,00	0,80
Laterizi	0,16	$0,\!40.2$	6,00	0,77
$\mathbf{G}_1,\dots,$	$= (1 \ 25 + 1)$	$00 \pm 0.96 kN$	/m = 3.21kN/m	

$$\mathbf{G}_{1campata} = (1, 25 + 1, 00 + 0, 96)kN/m = 3, 21kN/m$$

 $\mathbf{G}_{1sbalzo} = (1, 25 + 0, 80 + 0, 77)kN/m = 2, 82kN/m$

2.2 Carichi permanenti non strutturali G_2

	h (m)	L (m)	$\mathbf{P} \; (\mathrm{kN/m^3})$	$\mathbf{G}_2 \; (\mathrm{kN/m})$
Massetto	0,60	1,00	16,00	0,96
Pavimento	0,01	1,00	16,00	0,18
Intonaco	0,01	1,00	18,00	0,18

Totale in campata e sullo sbalzo:

$$G_2 = (0,96+0,18+0,18)kN/m = 1,32kN/m$$

2.3 Condizioni di Carico

Dobbiamo usare i coefficienti parziali per le azioni nelle verifiche agli S.L.U per calcolare i carichi distribuiti da applicare al solaio.

$G_{1campata}$	$3,21kN/m\cdot\gamma_{G1}$	=	4,17kN/m
$G_{1sbalzo}$	$2,82kN/m\cdot\gamma_{G1}$	=	3,67kN/m
G_2	$1,32kN/m\cdot\gamma_{G2}$	=	1,98kN/m
Q_{k1}	$5,00kN/m \cdot \gamma_{Q_{k1}}$ IV	=	7,50kN/m
Q_{k2}	$3,50kN/m\cdot\gamma_{Qk2}$	=	5,25kN/m

Capitolo 3

Sollecitazioni di progetto allo Stato Limite Ultimo

I carichi permanenti G_1, G_2 e variabili Q_k , devono essere combinati tenendo conto dei coefficienti di sicurezza parziali (γ_G e γ_{Qk}) in modo da ottenere le sollecitazioni più gravose allo S.L.U. Le condizioni di carico da considerare sono tre:

- 1. Entrambe le campate caricate con carichi permanenti e variabili, rispettivamente moltiplicati per i coefficienti parziali 1,30 e 1,50. Sullo sbalzo va considerato solo il carico permanente moltiplicato per il coefficiente parziale 1,30.
- 2. Carichi permanenti su tutta la trave moltiplicati per il coefficiente parziale 1,30. Carichi variabili sulla prima campata e sullo sbalzo moltiplicati per il coefficiente parziale 1,50.
- **3.** Carichi permanenti su tutta la trave moltiplicati per il coefficiente parziale 1,30. Carichi variabili solo sulla seconda campata, moltiplicati per il coefficiente parziale 1,50.

3.1 Combinazione di carico n° 1

Figura 3.1

Addizioniamo i carichi agenti sulle uguali campate.

Figura 3.2

Metodo degli spostamenti:

 \boxtimes Come primo passaggio, possiamo semplificare lo sbalzo come un momento applicato all'estremo del vincolo in B.

Figura 3.3

α) FASE A NODI BLOCCATI.

 \boxtimes Aggiungiamo un vincolo fittizio (morsetto) in mezzeria.

Figura 3.4

Figura 3.5: Tratto BC.

$$M_c^{sx}(M_b) = -2,04kNm$$

Figura 3.6: Tratto BC.

$$M_c^{sx}(q) = 34,21kNm$$

Figura 3.7: Tratto CD.

$$M_c^{dx}(q) = -34,21kNm$$

β) ATTIVAZIONE DEGLI SPOSTAMENTI NODALI.

Figura 3.8: Flessione dei tronchi indotta dagli spostamenti.

Figura 3.9: Tratto BC.

$$M_c^{sx}(\varphi_c) = \frac{3EI}{4,90m}\varphi_c$$

Figura 3.10: Tratto CD.

$$M_c^{dx}(\varphi_c) = \frac{3EI}{4,90m}\varphi_c$$

$\gamma)$ SCRITTURA DELL'EQUAZIONE DI EQUILIBRIO AL NODO.

$$M_{csx} + M_{cdx} - M_{est} = 0$$

$$\begin{cases}
M_c^{sx}(M_b) + M_c^{sx}(q) + M_c^{sx}(\varphi_c) + M_c^{dx}(q) + M_c^{dx}(\varphi_c) &= 0 \\
-2,04kNm + 34,21kNm + \frac{3EI}{4,90m}\varphi_c - 34,21kNm + \frac{3EI}{4,90m}\varphi_c &= 0
\end{cases} (3.1)$$

$$\begin{cases} \varphi_c &= \frac{10,00kNm^2}{6EI} \\ M_c^{sx} = M_c^{dx}(\varphi_c) = \frac{3EI}{4,90m} \cdot \frac{10,00kNm^2}{6EI} = \frac{10,00kNm^2}{4,90m} \frac{3EI}{6EI} = 1,02kNm \end{cases}$$
(3.2)

$$\begin{cases}
M_{CB} = 2,04kNm - 34,21kNm - 1,02kNm & = -33,19kNm \\
M_{CD} = -34,21kNm + 1,02kNm & = -33,19kNm
\end{cases}$$
(3.3)

δ) REAZIONI VINCOLARI.

Figura 3.11: Tratto BC.

$$\Sigma Y = 0 \qquad R_b + R_c^{sx} - 55,86kN = 0$$

$$\Sigma M_b = 0 \qquad \frac{55,86kN \cdot 4,90m}{2} - R_c^{sx} \cdot 4,90m + 33,19kNm - 4,07kNm = 0$$

$$R_c^{sx}\cdot\ 4,90m=136,86kNm+29,12kNm$$

$$R_c^{sx} = \frac{165,98kNm}{4,90m} = 33,87kN$$

$$R_b = 55,86kN - 33,87kN = 21,99kN$$

Figura 3.12: Tratto CD.

$$\begin{split} \Sigma Y &= 0 & R_c^{dx} + R_d - 55,86kN &= 0 \\ \Sigma M_c &= 0 & 136,86kNm - R_d \cdot 4,90m - 33,19kNm = 0 \end{split}$$

$$R_d \cdot 4,90m = 103,67kNm$$

$$R_d = \frac{103,67kNm}{4,90m} = 21,16kN$$

$$R_c^{dx} = 55,86kN - 21,16kN = 34,70kN$$

$$\mathbf{R}_b = 21,99kN,$$

$$\mathbf{R}_c^{sx} = 33,87kN,$$

$$\mathbf{R}_c^{dx} = 34,70kN,$$

$$\mathbf{R}_d = 21, 16kN$$

π) EQUAZIONI TAGLIO E MOMENTO.

TRATTO B-C

$$\begin{cases}
T(x) = R_b - q \cdot x \\
M(x) = R_b \cdot x - M_b - \frac{q \cdot x^2}{2}
\end{cases}$$
(3.4)

TRATTO C-D

$$\begin{cases}
T(x) = R_c^{dx} - q \cdot x \\
M(x) = R_c^{dx} \cdot x - M_c - \frac{q \cdot x^2}{2}
\end{cases}$$
(3.5)

TRATTO B-C

$$\begin{cases} T(0) &= \mathbf{21,99kN} \\ M(0) &= \mathbf{-4,07kNm} \\ T(4,90m) &= 21,99kN - 55,86kN = \mathbf{-33,87kN} \\ M(4,90m) &= -4,07kNm + 107,75kNm - 136,86kNm = \mathbf{-33,19kNm} \\ M(2,45m) &= -4,07kNm + 53,88kNm - 34,21kNm = \mathbf{15,60kNm} \\ M(3.6) &= -4,07kNm + 53,88kNm - 34,21kNm = \mathbf{15,60kNm} \\ \end{pmatrix}$$

TRATTO C-D

$$\begin{cases} T(0) &= \mathbf{34,70kN} \\ M(0) &= \mathbf{-33,19kNm} \\ T(4,90m) &= 34,70kN - 55,86kN = \mathbf{-21,16kN} \\ M(4,90m) &= -33,19kNm + 170,03kNm - 136,86kNm = \mathbf{0,0kNm} \\ M(2,45m) &= -33,19kNm + 85,02kNm - 34,21kNm = \mathbf{17,62kNm} \\ \end{cases}$$
(3.7)

Figura 3.13

Figura 3.14

3.2 Combinazione di carico n° 2

3.3 Combinazione di carico n° 3

3.4 Inviluppo momenti

Capitolo 4

Dominio M-N

Nel caso di pressoflessione retta la sollecitazione è individuata da due parametri (N_{sd}, M_{sd}) e, al fine della verifica della sezione, è necessario controllare che essa non induca il raggiungimento dello stato limite ultimo. Dal momento che esistono infinite coppie di valori (N,M) che corrispondono a condizioni di stato limite della sezione (condizioni di rottura), è possibile individuare nel piano N, M una regione, denominata dominio di rottura, la cui frontiera è costituita dai punti per cui si raggiunge la rottura e al cui interno corrispondono i valori di sollecitazione sopportati dalla sezione.

Figura 4.1: Sezione in C.A.

b $[mm]$	$h \ [mm]$	A_s	c $[mm]$	$f_{ck} [N/mm^2]$	$f_{yk} [N/mm^2]$
40,00	80,00	$4\phi18$	3,50	25,00	450,00

4.1. Punto A 17

Figura 4.2: Costruzione per via semplificata del dominio di rottura in presso-flessione per sezioni a doppia armatura simmetrica.

4.1 Punto A

Figura 4.3: Sezione con forze agenti per il calcolo del dominio nel punto A.

$$\begin{split} N^a_{rd} &= (A_s + A'_s) \cdot f_{yd}^{\text{VII}} \\ N^a_{rd} &= (1017, 88mm^2 \cdot 2) \cdot 391, 30MPa, \qquad \quad A_s = 4 \cdot \pi \cdot 9^2 = 1017, 88mm^2 \\ N^a_{rd} &= 796592, 89N = 796, 59kN \end{split}$$

4.2. Punto B

4.2 Punto B

Figura 4.4: Sezione con forze agenti per il calcolo del dominio nel punto B.

$$\begin{split} N^b_{rd} &= N^a_{rd} + b \cdot h \cdot \sigma_{cd} \\ N^b_{rd} &= 796592, 89N + 40,00mm \cdot 80,00mm \cdot 14,17N/mm^2 \\ &= 841936,89N = \mathbf{841,94kN} \end{split}$$

4.3 Punto C

Figura 4.5: Sezione con forze agenti per il calcolo del dominio nel punto C.

$$\begin{split} &M^c_{rd} = N^a_{rd} \cdot (h-2 \cdot c) \\ &M^c_{rd} = 398296, 44N \cdot 73mm = 29075640, 12Nmm = \mathbf{29,01kNm} \end{split}$$

4.4. Punto E

4.4 Punto E

Figura 4.6: Sezione con forze agenti per il calcolo del dominio nel punto E.

$$N^e_{rd} = N^b_{rd} - 2F = 45344N = \mathbf{45,34kN}$$

$$M^e_{rd} = M^c_{rd} = \mathbf{29,01kNm}$$

4.5 Punto D

Figura 4.7: Sezione con forze agenti per il calcolo del dominio nel punto D.

$$\begin{split} N^d_{rd} &= \frac{N^b_{rd} - 2F}{2} = 22672N = \mathbf{22,67kN} \\ M^d_{rd} &= M^c_{rd} + \frac{N^b_{rd} - 2F}{2} \cdot \frac{h}{4} = 29529080, 12Nmm = \mathbf{29,53kNm} \end{split}$$

4.6 Diagramma dominio M-N

Figura 4.8: Dominio M-N ottenuto calcolando i punti A,B,C,D,E.

NOTE 21

Note

^II valori di carico accidentale in situazione normale sono $q=4.00kN/m^2$ e $q=2.00kN/m^2$ rispettivamente per lo sbalzo e campata. I valori usati in esercizio sono puramente didattici.

 $^{\rm II} {\rm Considerando}$ che una pignatta non è alta meno di 12 cm, l'altezza minima del solaio è comunque di 17 cm.

 $^{\rm III}$ ll peso specifico dei blocchi di allegerimento in laterizio è stato ricavato dalle tabelle dei pesi specifici di normativa, considerando una percentuale di foratura pari al 67%(18·[1-0,67]) = 5,94 -> 6,00 KN/m³.

^{IV}In realtà bisogna comunque ricordare che essendo Q_k un carico variabile, γ_{Q1} può essere sia pari a 1,5, sia a 0. In questo caso sono stati riportati tutti i casi sfavorevoli.

 ${}^{\rm V}$ Quando abbiamo un incastro-appoggio con una coppia esterna, la coppia opposta andrà dimezzata

 $^{\rm VI}$ La forza F che compare anche nel calcolo di N_{rd} è data da $A_s \cdot f_{yd}$

 $^{\rm VII}$ Il calcolo di f_{yd} deriva dal fatto che si ipotizza in uso un acciaio B450C e che quindi darà $f_{yd}=\frac{450}{1.15}$