Exercise:

i) Find the total derivative of
$$u$$
 want 't' when $u=e^x siny$, where $x=\log t$, $y=t^2$ And $\frac{du}{dt}=\sin t^2+2t^2\cos t^2$

a) If $u=c^x \sin(yz)$, where $x=t^2$, $y=t-1$, $z=1$, find $\frac{du}{dt}$ at

t=1. Ans:
$$\frac{du}{dt} = c$$

The second is $\frac{du}{dt} = \frac{1}{2} u = x^2 + y^2 + z^2 = x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$

Thus: $\frac{du}{dt} = 4e^{2t}$

$$\frac{\partial}{\partial x} \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 2(x^2 + y^2) \frac{\partial z}{\partial u}$$

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} + \frac{\partial}{\partial x} \frac{\partial}{\partial y} = 4(x^2 + y^2) \left[\left(\frac{\partial z}{\partial u} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right]$$

4) I z= /(u,v), where u= x2-y2, v= 2xy, p.T.

5) If
$$u = e^{\lambda} \sin y$$
, $v = e^{\lambda} \cos y$ and $w = \int (u, v)$, P.T.

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \left(u^2 + v^2\right) \left(\frac{\partial^2 w}{\partial u^2} + \frac{\partial^2 w}{\partial v^2}\right)$$

6)
$$\exists u = \sqrt{\frac{1-x}{xy}}, \frac{z-x}{xz}, \frac{z-x}{z}$$

7) If
$$u = \int (x, s, t)$$
 and $h = \frac{s}{y}$, $s = \frac{y}{z}$ and $t = \frac{z}{n}$, $s = \frac{y}{n}$

8)
$$\frac{\pi}{2}$$
 $u = x + \frac{y^2}{x}$, $v = \frac{y^2}{x}$, find $\frac{\partial(u, v)}{\partial(x, y)}$ And: $\frac{2y}{x}$

9)
$$\frac{\pi}{2} = \pi \cos \theta$$
, $y = \pi \sin \theta$, $z = z$, find $\frac{\partial(\pi, y, z)}{\partial(\pi, \theta, z)}$
 $\frac{\partial(\pi, \theta, z)}{\partial(\pi, \theta, z)}$ defined above are cylindrical polar coordinates

$$\frac{\partial(u,v,\omega)}{\partial(z,v,z)} = (x-y)(y-z)(z-x)$$

11)
$$I = yz$$
, $V = xz$, $\omega = xy$, $ST = \frac{\partial(u, v, \omega)}{\partial(x, y, z)} = 4$

$$J = \frac{\partial(u, v, \omega)}{\partial(x, y, z)}$$
 and $J' = \frac{\partial(x, y, z)}{\partial(u, v, \omega)}$. Also verify $JJ' = 1$.

13) Debumine the extreme values of following functions
$$f(x,y)$$
:

a) $2xy - 5x^2 - 2y^2 + 4x + 4y - 6$ thu: $\left(\frac{2}{3}, \frac{4}{3}\right)$ is point of maximum and $f\left(\frac{2}{3}, \frac{4}{3}\right) = -2$

b)
$$x^3y^2(1-x-y)$$
 Am: $(0,0)$ and $(\frac{1}{2},\frac{1}{3})$ are critical points, $(\frac{1}{2},\frac{1}{3})$ in point of maximum and $(\frac{1}{2},\frac{1}{3})=\frac{1}{432}$

c)
$$n^3 + y^3 - 3ny$$
 Ans: (0,0) and (1,1) are critical points,
(0,0) is a saddle point, (1,1) is a point of minimum and $f(1,1) = -1$

d>
$$x^4 + 2x^2y - x^2 + 3y^2$$
 Ans: $(0,0)$, $(\frac{\sqrt{3}}{2}, -\frac{1}{4})$, $(-\frac{\sqrt{3}}{2}, -\frac{1}{4})$ are

e) $2x^3 + x^2y + 5x^2 + y^2$ Are: min. value = 0 at (0,0), max. value = $\frac{125}{7}$ at $(-\frac{5}{3}, 0)$ and $(-1, 2), (-1, -2) \rightarrow saddle points$

1) x3+3xy2-15x2-15y2+72x Ans: max. value = 112 at (4,0)

14) A rectangular box without a lid is to be made from 12 m² cardbox. Find the maximum value of such a box using dagrange's method of multipliers

Ans: V(2, 2, 1) = 4 m³

15) Find the extreme values of $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$ Ans: Max. value is $f(0, \pm 1) = 2$,
Min. value $f(\pm 1, 0) = 1$.

16) Find the pointr on the sphere $x^2+y^2+z^2=4$ that are closest to and farthest from the point (3,1,-1).

Ans: Closest point is $(\frac{6}{\sqrt{11}},\frac{2}{\sqrt{11}},\frac{-2}{\sqrt{11}})$, Farthest point

$$\frac{1}{\sqrt{11}} \left(-\frac{6}{\sqrt{11}}, -\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}} \right)$$

17) A rectangular box open at the top is to have volume of 32 cubic feet. Find dimensions of box requiring least material for construction.

Ans: Minimum surface area, represents least material required for construction and dimensions are x = y = 4ft, z = 2ft

Maximum and minimum values (Extreme values) of function. 1) Show that z=xy(a-x-y), a>o is maximum at the point (a, a) det z= f(x,y)= y(ax-x2-xy)= axy-x2y-x2 sd: $p = f_{x} = y(a - 2x - y)$, $g = f_{x} = x(a - x - 2y)$ h= | - 2y , S= | - 2x - 2y , t= | - 2x We shall find points (2, y) such that 1=0 and 1=0 i.e. y(a-2x-y)=0 and x(a-x-2y)=01) y=0, x=0 => (0,0) 2x+ y= a>D 2) y=0, a-x-2y=0 => (a,0) x+2y= a x2 3) $a-2x-y=0, x=0 \Rightarrow (0, a)$ 2x+4y= 20 30 0-2 - a - a - a - y = -a 4) a-2x-y=0, $a-x-2y=0 \Rightarrow (\frac{\alpha}{3}, \frac{\alpha}{3})$ so (0,0), (a,0), (0,a), (a,a) are exitical points. We shall examine these points for maxima and minima (o, o) (a, o)(0, a) $(\underline{a}, \underline{a})$ r=-2y 0 0 -2a<0 -20/3 < D t=-2x 0 -2a -a -a/3 -a S= a-2x-2y $|ht-s^2|$ $-a^2<0$ $-a^2<0$ $-a^2<0$ $|a^2/3>0$ Conclusion Saddle point Saddle pt. | Saddle pt. | Max. point $(\frac{a}{3}, \frac{a}{3})$ is a point of maximum since x < 0 and $xt - s^2 > 0$. Thus f(x, y) is maximum at the point $(\frac{a}{3}, \frac{a}{3})$ The maximum value of f(x, y) is 1 a

(-7, -7) is a point of maximum

(3, 3) is a point of minimum

The maximum value of
$$f(x,y) = f(-7,-7) = 784$$

The minimum value of $f(x,y) = f(3,3) = -216$

3) Examine the function $f(x,y) = x^4 + y^4 - 2(x - y)^2$ for extreme valuer

 $ka: p = \frac{1}{4}x^3 - 4(x - y), q = \frac{1}{4}y = \frac{1}{4}y^4 + \frac{1}{4}(x - y)$
 $k = \frac{1}{4}x = \frac{1}{4}x^2 - \frac{1}{4}$

Consider $f(x,y) = \frac{1}{4}x^3 + \frac{1}{4}(x - y)$
 $f(x,y) = \frac{1}{4}(x - y) = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y) = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}(x - y)^2 = \frac{1}{4}(x - y)^2$
 $f(x,y) = \frac{1}{4}$

Bince $y = -x \Rightarrow y = 0, \mp \sqrt{2}$ thence $(0, 0), (\sqrt{2}, -\sqrt{2}), (-\sqrt{2}, \sqrt{2})$ are set of stationary points. Also $x^2 + y^2 - xy = 0 \Rightarrow x(x-y) + y^2 = 0 \Rightarrow x^4 + y^2 = 0$

which cleary knows that we do not have any real value satisfying the above eq.

The minimum value of
$$f(x,y) = f(\sqrt{2}, -\sqrt{2}) = f(-\sqrt{2}, \sqrt{2}) = -8$$

Sol: Let
$$f(x,y) = sinx + siny + sin(x+y)$$

$$P = \int_{x} = \cos x + \cos (x + y), \quad x = \int_{xx} = -\sin x - \sin (x + y), \quad S = \int_{xy} = -\sin (x + y)$$

Consider
$$\frac{1}{x} = 0$$
 and $\frac{1}{4} = 0$
 $\cos(x+y) = -\cos x$ and $\cos(x+y) = -\cos y$

$$\frac{1}{\sqrt{1+2}} = \frac{1}{\sqrt{1+2}} = \frac{1}$$

$$\mathcal{N}\left(\frac{\pi}{3}, \frac{\pi}{3}\right), \quad \mathcal{N} = \frac{1}{12} = -6 \text{ in } \frac{\pi}{3} = -4 \text{ in } \frac{2\pi}{3} = -\sqrt{3} = -\sqrt{3}$$

At
$$(\pi, \pi)$$
 and $(\pi, -\pi) \Rightarrow q_1 + -s^2 = 0 \Rightarrow q_2 + q_3 > 0$

At (π, π) and $(\pi, -\pi) \Rightarrow q_1 + -s^2 = 0 \Rightarrow q_4 + q_4 = q_4 > 0$

Also $x_1 = -J_3 < 0$

$$\therefore (J_3, J_3) = (J_4 = J_4) = J_4 + J_4 + J_5 = 2J_5 = J_5 = J_4 + J_4 + J_5 = 2J_5 = J_5 = J_5$$