ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

DEVKIT Getting Start Guide

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

REVISION HISTORY

Date	Version	Contents Updated		
2018-05-10	0.1	Initial Release		
2018-05-17	0.2	 Update section 3.1.2, 3,2,2 because download tool use method has been updated. Add Figure10 to introduce how to verify AT UART is working Update Figure 12 content Add section 3.4 to introduce how to enable APS UART log info output Split section 3.3 to 3.3.1 and 3.3.2. Add section 3.3.2 to introduce J-link emulator selection 		

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	介绍.			2
	1.1.	文档应	用范围	2
			献	
2.	DEVI	KIT 概要:	介绍	3
3.				
			口连接和使用	
			APS 串口连接	
			通过 APS 串口更新固件	
	3.2.	AT 串口	口连接和使用	3
		3.2.1.	检查 AT 串口	
		3.2.2.	通过 AT 串口更新固件	9
	3.3.	SWD 站	満口	g
		3.3.1.	M3 ICE 端口连接	10
		3.3.2.	J-link 仿真器选择	12
	3.4.	允许和	禁止 APS 串口打印信息	12

LIST OF FIGURES

LIST OF FIGURES

Figure 1: DEVKIT 板组成介绍	3
- Figure 2: 扩展 IO map	
Figure 3: APS 串口接线实例	5
Figure 4: 载入 M3/M0 Bin 文件进行合并操作	6
Figure 5: Patch Bin 文件下载	7
Figure 6: 启动后 APS 串口输出 log 信息	7
Figure 7: DEVKIT AT 串口设备	8
Figure 8: DEVKIT 板 USB 连接和供电	8
Figure 9 检查 AT 串口是否工作	9
Figure 10: DEVKIT 板上 M3 ICE 信号接线图	10
Figure 11: 小转接板 SWD 信号线和实际连接图	10
Figure 12: ICE 接口电路	11
Figure 13: J-link ICE 仿真器正确识别	11
Figure 14: 两种 J-link 仿真器	12

LIST OF TABLES

LIST OF TABLES

Table 1: M3 SWD 信号连接__ ______10

1. 介绍

1.1. 文档应用范围

OPL1000 DEVKIT 用于评估 OPL1000 芯片的功能、开发应用程序。本文介绍了 DEVKIT 的组成,如何使用 DEVKIT 提供的端口进行固件下载和应用程序调试。

1.2. 缩略语

Abbr.	Explanation			
APP	APPlication 应用程序			
APS	Application Sub-system 应用子系统,在本文中亦指 M3 MCU			
AT	Attention 终端命令指令集			
DevKit	Development Kit OPL1000 评估开发板			
EVB	Evaluation Board 评估板			
FW	FirmWare 固件·处理器上运行的嵌入式软件			
ICE	In-Circuit Emulator 在线仿真调试工具			
RX	Receive 接收			
SWD	Serial Wire Debug 串行线调试			
TX	Transmit 发送			

1.3. 参考文献

[1] OPL1000-patch-download-tool-user-guide.pdf

2. DEVKIT 概要介绍

DEVKIT 板包括一个开发母板和 OPL1000 模块子板。母板包括 USB 转 UART 转换芯片·Flash 芯片和电源适配模块。OPL1000 模块子板包括 OPL1000 SOC 芯片和外部晶振。如

Figure 1 所示:

Figure 1: DEVKIT 板组成介绍

Opulinks DEVKIT 提供 mini USB 转串口功能,mini USB 同时提供供电功能。用户可以轻松使用 USB 控制 OPL1000,快速进行功能评估以及完成产品开发。DEVKIT 母板提供了若干扩充 GPIO 管脚,在线开发用的 ICE mode 管脚及 flash 烧录用的 UART Tx 及 Rx 管脚。OPL1000 预置为 Normal function mode,可快速切换为 ICE mode,另外提供 flash 烧录软件。扩展 GPIO 管脚可配置为 GPIO、ADC、SPI、I2C等功能。扩充排针 J2,J3 配置底视图 (Bottom view)如 Figure 2 所示。

Figure 2: 扩展 IO map

		J2				ANT				J3		
ICE Mode	PWM	I2C	ADC	Pin Name	Pin No	AINI	Pin No	Pin Name	ADC	SPI	UART	Flash Prg
				GND	pin 14		pin 14	GND				
	Yes			GPIO22	pin 13		pin 13	+3V3				
M3_CLK				GPIO21	pin 12		pin 12	GND				
M3_DAT				GPIO20	pin 11		pin 11	CHIP_EN				
M0_DAT				GPIO19	pin 10		pin 10	RST_N				
M0_CLK				GPIO18	pin 9		pin 9	GPIO0(REV)				UART_Prg_Tx
					pin 8		pin 8	GPIO1(REV)				UART_Prg_Rx
		SDA	Yes	GPIO11	pin 7		pin 7	GPIO2	Yes	MOSI	TxD	
		SCLK	Yes	GPIO10	pin 6		pin 6	GPIO3	Yes	MISO	RxD	
				GPIO9(REV)	pin 5		pin 5	GPIO4	Yes	CLK		
				GPIO8(REV)	pin 4		pin 4	Ex_5V				
				GPIO7(REV)	pin 3		pin 3	GND				
	Yes			GPIO23	pin 2		pin 2	GPIO5	Yes	CS		
				GND	pin 1	USB	pin 1	GPIO6	Yes			

注 1: UART_Prg 串口波特率默认为 100000 bps·其他参数为默认配置。随板子不同波特率有可能在 100kbps 和 110kbps 间变化,可参考 DEVKIT 板子的附随说明进行设置。

注 2: chip Enable (CHIP_EN)和 Reset (RST_N)都可以视为 Reset 功能。

3. 使用 DEVKIT

DEVKIT 提供了三个通信端口:

- 1. AT 串口,用来发送 AT 命令到 DEVKIT 板,同时提供固件 "热更新"功能。
- 2. APS 串口(即第二章所说的 UART_Prg 串口)·当 flash 内部固件不提供"热更新"功能时·使用该串口更新固件。同时可以通过该串口打印输出调试信息·确认程序执行结果。
- 3. OPL1000的 Cortex M3 SWD 调试接口,用于在线调试用户程序。

这三个通信端口随应用程序开发方式不同发挥不同作用。

3.1. APS 串口连接和使用

DEVKIT 板两侧提供了两排扩展接口,其中包含 APS 串口,实现和 M3 MCU 串口通信功能。APS 串口可以输出固件 log 打印功能,同时也支持 ROM CODE 引导装载程序(boot loader)升级固件。DEVKIT 板 flash 为空或者 flash 内固件不提供 AT 串口"热更新"功能时只能通过该串口升级固件。

3.1.1. APS 串口连接

连接 OPL1000 的 APS 串口需要使用 DEVKIT 母板 J3 的 IO0 和 IO1 两根管脚。IO0 是 APS 串口的 TX 输出信号线·接 UART 转接板的 RX 输入信号线。IO1 是 APS 串口 RX 信号线·接 UART 转接板的 TX 信号线。接线如图 Figure 3 所示。

Figure 3: APS 串口接线实例

3.1.2. 通过 APS 串口更新固件

从编译工程到下载固件至 DEVKIT 板有 4 个步骤,以编译下载 hello_world 示例工程为例:

- 使用 keil uVision(建议版本不低于 5.23)软件编译 SDK 的示例工程 hello_world。
 目录: SDK\APS_PATCH\examples\get_started\hello_world。
 编译完成以后·在工程目录 Output\Objects 获得 nl1000_app_m3.bin。
- 2. 选择 APS 串口端口号·波特率默认 100kbps·从 SDK 取得 PatchData.txt (固件合并脚本文件)·将 M0 Bin 文件和刚才编译得到的 nl1000_app_m3.bin 用 load 按钮载入·点击 Pack 按钮。Pack 合并 动作会把 M3 和 M0 的 bin 文件合成为一个完整的固件文件 opl1000.bin·存放在 download tool 同目录下的 Patch 子文件夹。

Figure 4: 载入 M3/M0 Bin 文件进行合并操作

3. 切換到 Download 标签页·Patch Bin 路径已经正确填充了刚才合并好的 opl1000.bin 文件·点击 Download 按钮·并在 5 秒之内复位 DEVKIT 板·download tool 自动识别到 DEVKIT 板复位·然后开始下载 opl1000.bin。进度条到达 100%·表示下载 opl1000.bin 成功。

Pack Download About

WART Setting

UART Port COM10

Baud Rate 110000

Patch Bin ad tooldownload release\Patch\op\1000 bin Load

Progress

Baud Wart port: COM68, COM10, COM87

Please press "Refresh" button to detect AT UART port
Open COM10 @110000 bps successfully.

Download D:\User\Dong\Work\Test_Collection\download_tool\download_release\Patch\op\11000. bin with speed-up mode.
Please press board RESET button to begin download...

Figure 5: Patch Bin 文件下载

4. 下载完成后 · 用串口调试软件打开 APS 串口 · 选择 115200 波特率。复位 DEVKIT 板 · 如果看到下图中的打印信息 · 则表明用户编译的 M3 Bin 文件被正确下载到 Flash 中, 并载入到 RAM 中正确执行。

Figure 6: 启动后 APS 串口输出 log 信息

```
BootMode 10 go to normal path
The init of MW_FIM is done.
[Lib] SDK version info: 1516
[Lib] Compile time: 2018/05/10 17:49:03
[SVN REV] SVN_REVISION:809
wifiMac Task create successful
Supplicant task is created successfully!
controller_queue creates successful!
controller_queue_ble creates successful!
controller_task_create successful!
LE Task create successful
Sw patch is changed successfully.
Hello world 1
Hello world 2
Hello world 3
Hello world 4
Hello world 5
```


注意在 v1.0.1.17(包括此版本)之后,除了复位初始化打印信息外·在 APS 串口不输出固件内部调试信息。如何设置 APS 调试信息输出在 3.4 章节有介绍。

3.2. AT 串口连接和使用

DEVKIT 板上的 mini USB 提供供电和 AT 命令通信两个功能·AT 串口所采用的 USB 转串口控制芯片为 CP210X · 正确安装芯片驱动后·连接 DEVKIT 板。在 PC 设备管理器中可以观察到 CP210x 串口设备。 图 Figure 7 给出的例子中 COM87 为 AT 串口·另外一个 CH340 串口设备连接的是 APS 串口。

Figure 7: DEVKIT AT 串口设备

- ∨ ∰ 端口(COM和LPT)
 - Silicon Labs CP210x USB to UART Bridge (COM87)
 - USB-SERIAL CH340 (COM56)

AT 串口提供 AT 命令通信功能,同时支持固件"热更新"功能,即 DEVKIT 板在不需要复位的情况下通过 执行 AT 命令功能更新固件。此时需要注意供电开关默认拨动位置靠右,如 Figure 8 所示。

Figure 8: DEVKIT 板 USB 连接和供电

3.2.1. 检查 AT 串口

用户使用 mini USB 连接 DEVKIT 板 和 PC·打开串口工具·选择 AT 串口号·波特率 115200。正常情况下·键入 ENTER (回车)·出现命令提示符 <·输入 at·得到 OK 的返回·则说明 AT 功能正常。以图 Figure 7 为例·COM87 是 AT 串口。用串口调试工具打开 COM87,输入 at 加回车·发送后 OPL1000返回 OK 字符串。表明 DEVKIT 固件支持 AT 命令·功能正常。如图

Figure 9 所示。

Figure 9 检查 AT 串口是否工作

3.2.2. 通过 AT 串口更新固件

如果烧录在 DEVKIT 板 Flash 中的固件支持 AT 热更新,则可以使用通过 AT 串口直接更新固件。其优点是使用自带的 mini USB 转串口即可完成固件下载功能,不需要额外连接 APS 串口。

如果不确定固件是否支持 AT 热更新,则需要按照 3.1.2 章节所述使用 APS 串口下载固件。

通过 AT 串口更新固件流程和通过 APS 串口过程是相同的,仅在下载固件时略有差别。AT 串口更新不需要 DEVKIT 板复位,直接点击 download 按钮即可完成固件下载。

3.3. SWD 端口

如果需要使用在线调试应用程序,则需要使用 ICE 仿真器,DEVKIT 板支持 M0 和 M3 四线 SWD 调试方式。由于用户 APP 在 M3 上执行,因此实际需要使用 M3 ICE 端口。后续章节将介绍 M3 ICE 端口连接方式以及 J-link 仿真器的选择。

3.3.1. M3 ICE 端口连接

M3 ICE 端口连接如 Figure 10 所示。接线对应关系如表 Table 1 所示。

Figure 10: DEVKIT 板上 M3 ICE 信号接线图

Table 1: M3 SWD 信号连接

编号	SWD 信号	DEVKIT 板 J2 排针	J-Link 仿真器管脚	说明
1	3.3V		1	3.3 V 电源
2	GND	GND	4 - 20	GND
3	SWD_CLK	IO21	9	时钟信号
4	SWD_DAT	IO20	7	数据线

J-link 仿真器和 DEVKIT SWD 信号连接的时候使用需要一个小转接板。小转接板如图 Figure 11 所示。 注意转接板插到 DEVKIT 板 J2 排针上的时候·GND 地线是靠近 J2 排针的最边缘。

Figure 11: 小转接板 SWD 信号线和实际连接图

在小转接板上,SWD_CLK 和 SWD_DAT 信号和地线之间串接了一个 13pF 的电容,电路图如 Figure 12 所示。

Figure 12: ICE 接口电路

按照 Table 1 定义的 SWD 接口连接好 J-Link 仿真器和 DEVKIT 板,在 keil 工程的 debug 界面里面如果检测到 SW Device 的序列号,则说明连接正确,可以正常使用 SWD 开发和调试工程。如图 Figure 13 所示。

Figure 13: J-link ICE 仿真器正确识别

3.3.2. J-link 仿真器选择

市面上常见的 v9.4 版本 J-link 仿真器有两种硬件设计。 如图 Figure 14 所示。其中单芯片方案的 J-link 仿真器可以和 OPL1000 DEVKIT 加转接板正常工作。如果始终无法正常识别连接的 J-link 设备,可以拆开盖板检查硬件版本是否正确。

Figure 14: 两种 J-link 仿真器

可以配合DEVKIT正常工作的J-link仿真器

和DEVKIT配合不能正常工作J-link仿真器

3.4. 允许和禁止 APS 串口打印信息

如 3.1.2 章节介绍从 v1.0.1.17 版本之后 SDK 发布包的 Bin 文件 默认不打印固件内部的调试信息,只保留用户代码内的打印信息。如果需要开放打印固件内部的调试信息,则需要在 APS 串口输入命令:

> tracer level 255 0x07

如果需要关闭固件内部调试信息输出,则需要在 APS 串口输入命令:

> tracer level 255 0x00

固件内部调试信息有助于用户观察固件内部运行状况,如果需要定位和调试固件内部问题,则建议开放打印固件内部调试信息。如果不想让固件内部调试信息干扰用户 APP 的 log 打印信息,则可以关闭它的打印。

CONTACT

sales@Opulinks.com

