Correction du devoir surveillé 3.

Exercice 1

Partie 1 : Résultats préliminaires

 $\mathbf{1}^{\circ}$) Soit $x \in \mathbb{R}$.

$$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$= \frac{(e^{x})^{2} + 2e^{x}e^{-x} + (e^{-x})^{2}}{4} - \frac{(e^{x})^{2} - 2e^{x}e^{-x} + (e^{-x})^{2}}{4}$$

$$= \frac{2 - (-2)}{4}$$

$$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = 1.$$

- **2°) a)** On sait que chet she sont définies sur \mathbb{R} , et que pour tout $x \in \mathbb{R}$, $\operatorname{ch}(x) \geq 1 > 0$, donc the stebien définie sur \mathbb{R} .
 - b) Par quotient de fonctions dérivables, the st dérivable, et pour tout $x \in \mathbb{R}$,

$$\operatorname{th}'(x) = \frac{\operatorname{sh}'(x)\operatorname{ch}(x) - \operatorname{sh}(x)\operatorname{ch}'(x)}{\operatorname{ch}^2(x)} = \frac{\operatorname{ch}^2(x) - \operatorname{sh}^2(x)}{\operatorname{ch}^2(x)} = \boxed{\frac{1}{\operatorname{ch}^2(x)}}$$

3°)
$$\operatorname{ch}(\ln 3) = \frac{e^{\ln 3} + e^{-\ln 3}}{2} = \frac{3 + \frac{1}{3}}{2} = \frac{10}{3 \times 2} = \left[\frac{5}{3}\right];$$

$$\operatorname{sh}(\ln 3) = \frac{e^{\ln 3} - e^{-\ln 3}}{2} = \frac{3 - \frac{1}{3}}{2} = \frac{8}{3 \times 2} = \left[\frac{4}{3}\right].$$
Donc $\operatorname{th}(\ln 3) = \frac{\frac{4}{3}}{\frac{5}{3}} = \left[\frac{4}{5}\right].$

Partie 2 : Étude d'une première suite

- **4°)** ch est continue et ne s'annule jamais sur \mathbb{R} , donc pour tout $n \in \mathbb{N}$, la fonction $x \mapsto \left(\frac{1}{\operatorname{ch}(x)}\right)^n$ est bien définie et continue sur le segment $[0, \ln 3]$. Donc, pour tout $n \in \mathbb{N}$, u_n existe.
- 5°) $u_0 = \int_0^{\ln 3} 1 \, \mathrm{d}x = [x]_0^{\ln 3} = \boxed{\ln 3}.$

D'après les question 2.b et 3

$$u_2 = \int_0^{\ln 3} \frac{1}{\operatorname{ch}^2(x)} dx = [\operatorname{th}(x)]_0^{\ln 3} = \operatorname{th}(\ln 3) - \operatorname{th}(0) = \boxed{\frac{4}{5}}.$$

(th(0) = 0 car sh(0) = 0).

6°) On a
$$u_1 = \int_0^{\ln 3} \frac{1}{\operatorname{ch}(x)} \, \mathrm{d}x = \int_0^{\ln 3} \frac{\operatorname{ch}(x)}{\operatorname{ch}^2(x)} \, \mathrm{d}x = \int_0^{\ln 3} \frac{\operatorname{ch}(x)}{1 + \operatorname{sh}^2(x)} \, \mathrm{d}x$$
 d'après la question 1.

On pose $t = \operatorname{sh}(x)$; la fonction sh est bien de classe \mathcal{C}^1 sur $[0, \ln 3]$.

On a alors dt = ch(x) dx.

Si x = 0, t = 0, et si $x = \ln 3$, $t = \frac{4}{3}$ d'après la question 3.

Ainsi, par changement de variable

$$u_1 = \int_0^{\frac{4}{3}} \frac{1}{1+t^2} dt = \left[\operatorname{Arctan}(t) \right]_0^{\frac{4}{3}} = \left[\operatorname{Arctan}\left(\frac{4}{3}\right) \right]$$

 7°) Soit $n \in \mathbb{N}$.

$$u_{n+2} = \int_0^{\ln 3} \frac{1}{(\operatorname{ch}(x))^{n+2}} \, \mathrm{d}x = \int_0^{\ln 3} \frac{1}{(\operatorname{ch}(x))^n} \frac{1}{(\operatorname{ch}(x))^2} \, \mathrm{d}x.$$

Posons $f: x \mapsto \frac{1}{(\operatorname{ch}(x))^n} = (\operatorname{ch}(x))^{-n}$ et $g = \operatorname{th}$.

Ce sont des fonctions de classe C^1 sur $[0, \ln 3]$, et pour tout $x \in [0, \ln 3]$,

$$f'(x) = -n \operatorname{sh}(x) (\operatorname{ch}(x))^{-n-1} = \frac{-n \operatorname{sh}(x)}{(\operatorname{ch}(x))^{n+1}} \qquad g'(x) = \frac{1}{(\operatorname{ch}(x))^2}.$$

Par intégration par parties,

$$u_{n+2} = \left[\frac{1}{(\operatorname{ch}(x))^n} \operatorname{th}(x)\right]_0^{\ln 3} - \int_0^{\ln 3} \frac{-n \operatorname{sh}(x)}{(\operatorname{ch}(x))^{n+1}} \operatorname{th}(x) \, \mathrm{d}x$$

$$= \frac{1}{(\operatorname{ch}(\ln 3))^n} \operatorname{th}(\ln 3) - \frac{1}{(\operatorname{ch}(0))^n} \operatorname{th}(0) + n \int_0^{\ln 3} \frac{\operatorname{sh}(x)}{(\operatorname{ch}(x))^{n+1}} \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \, \mathrm{d}x$$

$$= \frac{1}{\left(\frac{5}{3}\right)^n} \frac{4}{5} + n \int_0^{\ln 3} \frac{\operatorname{ch}^2(x) - 1}{(\operatorname{ch}(x))^{n+2}} \, \mathrm{d}x \quad \operatorname{car sh}^2(x) = \operatorname{ch}^2(x) - 1 \text{ par la question } 1$$

$$= \frac{4 \times 3^n}{5^{n+1}} + n \int_0^{\ln 3} \left(\frac{1}{(\operatorname{ch}(x))^n} - \frac{1}{(\operatorname{ch}(x))^{n+2}}\right) \, \mathrm{d}x$$

$$= \frac{4 \times 3^n}{5^{n+1}} + n \int_0^{\ln 3} \frac{1}{(\operatorname{ch}(x))^n} \, \mathrm{d}x - \int_0^{\ln 3} \frac{1}{(\operatorname{ch}(x))^{n+2}} \, \mathrm{d}x$$

$$u_{n+2} = \frac{4 \times 3^n}{5^{n+1}} + n u_n - n u_{n+2}$$

$$(n+1)u_{n+2} = \frac{4 \times 3^n}{5^{n+1}} + n u_n$$

$$u_{n+2} = \frac{4 \times 3^n}{5^{n+1}} + n u_n$$

8°) a) Posons, pour tout $x \in \mathbb{R}$, $f(x) = \operatorname{ch}(x) - 1 - \frac{x^2}{2}$. f est deux fois dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$

$$f'(x) = \text{sh}(x) - x, \quad f''(x) = \text{ch}(x) - 1.$$

On sait que pour tout $x \in \mathbb{R}$, $\operatorname{ch}(x) \geq 1$, et la valeur 1 est atteinte uniquement en 1.

Donc $f'' \ge 0$ et f'' ne s'annule qu'en 0.

On en tire que f' est strictement croissante sur \mathbb{R} .

On remarque que f'(0) = 0, donc on en déduit le signe de f' et les variations de f:

x	$-\infty$	0		$+\infty$
f'(x)	-	0	+	
f				<i>y</i>

Ainsi, f possède un minimum en 0 : pour tout $x \in \mathbb{R}$, $f(x) \ge f(0) = 0$, d'où :

$$\forall x \in \mathbb{R}, \ \operatorname{ch}(x) \ge 1 + \frac{x^2}{2}.$$

b) Méthode 1

Pour n = 0, l'inégalité est évidente (c'est une égalité).

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. $\mathrm{ch}(x) \ge 1 + \frac{x^2}{2} \ge 0$ d'après la question précédente.

Comme $t \mapsto t^n$ est croissante sur \mathbb{R}_+ , on a $(\operatorname{ch}(x))^n \ge \left(1 + \frac{x^2}{2}\right)^n$.

Or, d'après la formule du binôme de Newton, $\left(1+\frac{x^2}{2}\right)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} \left(\frac{x^2}{2}\right)^k$.

Les deux premiers termes de cette somme (on a $n \ge 1$) sont :

$$\binom{n}{0}\left(\frac{x^2}{2}\right)^0 = 1 \text{ et } \binom{n}{1}\frac{x^2}{2} = n\frac{x^2}{2}.$$

Les autres termes éventuels sont positifs, donc $\sum_{k=0}^{n} \binom{n}{k} 1^{n-k} \left(\frac{x^2}{2}\right)^k \ge 1 + n\frac{x^2}{2}$.

Ainsi, on a bien $\left| \operatorname{ch}^{n}(x) \ge 1 + n \frac{x^{2}}{2} \right|$

 $M\'{e}thode$ 2

Fixons $x \in \mathbb{R}$. Posons, pour tout $n \in \mathbb{N}$, $\mathcal{P}_n : \operatorname{ch}^n(x) \ge 1 + n\frac{x^2}{2}$.

- Pour n = 0, (ch(x))⁰ = 1 et 1 + n x²/2 = 1, donc P₀ est vraie.
 Supposons P_n vraie pour un n ∈ N fixé.

On a donc $\operatorname{ch}^n(x) \ge 1 + n\frac{x^2}{2}$, et d'après la question précédente, $\operatorname{ch}(x) \ge 1 + \frac{x^2}{2}$. Puisque tout est positif, on peut multiplier ces inégalités

$$\operatorname{ch}^{n}(x)\operatorname{ch}(x) \geq \left(1 + n\frac{x^{2}}{2}\right)\left(1 + \frac{x^{2}}{2}\right) = 1 + n\frac{x^{2}}{2} + \frac{x^{2}}{2} + \frac{x^{4}}{4}$$
 d'où
$$\operatorname{ch}^{n+1}(x) \geq 1 + (n+1)\frac{x^{2}}{2}\operatorname{car}\frac{x^{4}}{4} \geq 0$$

- Ainsi \mathcal{P}_{n+1} est vraie. Conclusion : pour tout $n \in \mathbb{N}$, $\operatorname{ch}^n(x) \ge 1 + n\frac{x^2}{2}$, ceci pour tout $x \in \mathbb{R}$
- c) Soit $n \in \mathbb{N}^*$.

Pour tout
$$x \in [0, \ln 3]$$
, on a $\operatorname{ch}^n(x) \ge 1 + n \frac{x^2}{2} > 0$, donc $0 \le \frac{1}{\operatorname{ch}^n(x)} \le \frac{1}{1 + n \frac{x^2}{2}}$.

3

Par croissance de l'intégrale sur $[0, \ln 3]$:

$$0 \le \int_0^{\ln 3} \frac{1}{\operatorname{ch}^n(x)} \, \mathrm{d}x \le \int_0^{\ln 3} \frac{1}{1 + n \frac{x^2}{2}} \, \mathrm{d}x$$

$$\operatorname{Or} \int_0^{\ln 3} \frac{1}{1 + n \frac{x^2}{2}} \, \mathrm{d}x = \int_0^{\ln 3} \frac{1}{1 + \left(\frac{\sqrt{n}x}{\sqrt{2}}\right)^2} \, \mathrm{d}x = \left[\frac{\sqrt{2}}{\sqrt{n}} \operatorname{Arctan}\left(\frac{\sqrt{n}x}{\sqrt{2}}\right)\right]_0^{\ln 3} = \sqrt{\frac{2}{n}} \operatorname{Arctan}\left(\sqrt{\frac{n}{2}} \ln 3\right).$$

On a donc bien, pour tout $n \in \mathbb{N}^*$

$$0 \le u_n \le \sqrt{\frac{2}{n}} \operatorname{Arctan}\left(\sqrt{\frac{n}{2}} \ln 3\right).$$

d) Pour tout
$$n \in \mathbb{N}^*$$
, on a $\leq \operatorname{Arctan}\left(\sqrt{\frac{n}{2}}\ln 3\right) \leq \frac{\pi}{2}$.

Donc, comme $\sqrt{\frac{2}{n}} \geq 0$, $\sqrt{\frac{2}{n}}\operatorname{Arctan}\left(\sqrt{\frac{n}{2}}\ln 3\right) \leq \sqrt{\frac{2}{n}}\frac{\pi}{2}$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $0 \leq u_n \leq \frac{\pi}{\sqrt{2n}}$.

Comme $\frac{\pi}{\sqrt{2n}} \underset{n \to +\infty}{\longrightarrow} 0$, d'après le théorème des gendarmes, $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

Partie 3 : Étude d'une seconde suite

9°) Soit
$$q \in \mathbb{R}_+$$
 et $n \in \mathbb{N}$. $\sum_{k=0}^{n} (-1)^k q^k = \sum_{k=0}^{n} (-q)^k = \frac{1 - (-q)^{n+1}}{1 - (-q)}$ car $-q \neq 1$ puisque $q \in \mathbb{R}_+$. Donc, $\sum_{k=0}^{n} (-1)^k q^k = \frac{1 - (-q)^{n+1}}{1 + q} = \frac{1 + (-1)^n q^{n+1}}{1 + q}$ car n et $n + 2$ ont même parité.

10°) Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Par ce qui précède (on a bien $\frac{1}{\operatorname{ch}(x)} \in \mathbb{R}_+$),

$$\sum_{k=0}^{n} \frac{(-1)^k}{\operatorname{ch}^k(x)} = \sum_{k=0}^{n} (-1)^k \left(\frac{1}{\operatorname{ch}(x)}\right)^k = \frac{1 + (-1)^n \left(\frac{1}{\operatorname{ch}(x)}\right)^{n+1}}{1 + \frac{1}{\operatorname{ch}(x)}} = \frac{\operatorname{ch}(x)}{\operatorname{ch}^{n+1}(x)} \frac{\operatorname{ch}^{n+1}(x) + (-1)^n}{\operatorname{ch}(x) + 1}.$$
Ainsi,
$$\sum_{k=0}^{n} \frac{(-1)^k}{\operatorname{ch}^k(x)} = \frac{\operatorname{ch}^{n+1}(x) + (-1)^n}{\operatorname{ch}^n(x)(\operatorname{ch}(x) + 1)}.$$

11°) Soit $n \in \mathbb{N}$.

$$I_{n} = \sum_{k=0}^{n} (-1)^{k} u_{k} = \sum_{k=0}^{n} (-1)^{k} \int_{0}^{\ln 3} \frac{1}{\operatorname{ch}^{k}(x)} dx$$

$$= \int_{0}^{\ln 3} \sum_{k=0}^{n} \frac{(-1)^{k}}{\operatorname{ch}^{k}(x)} dx \quad \text{par linéarité de l'intégrale}$$

$$= \int_{0}^{\ln 3} \frac{\operatorname{ch}^{n+1}(x) + (-1)^{n}}{\operatorname{ch}^{n}(x)(\operatorname{ch}(x) + 1)} dx \quad \text{par la question précédente}$$

$$= \int_{0}^{\ln 3} \frac{\operatorname{ch}(x)}{\operatorname{ch}(x) + 1} dx + (-1)^{n} \int_{0}^{\ln 3} \frac{1}{\operatorname{ch}^{n}(x)(\operatorname{ch}(x) + 1)} dx$$

$$I_{n} = v_{0} + (-1)^{n} v_{n+1}.$$

12°) Soit $n \in \mathbb{N}$. $\forall x \in [0, \ln 3], \ 1 + \operatorname{ch}(x) \ge \operatorname{ch} x \text{ et } \operatorname{ch}^{n-1}(x) \ge 0 \text{ Donc } \operatorname{ch}^{n-1}(x)(\operatorname{ch} x + 1) \ge \operatorname{ch}^n x.$ Comme les termes sont strictement positifs, il vient : $0 \le \frac{1}{\operatorname{ch}^{n-1}(x)(\operatorname{ch} x + 1)} \le \frac{1}{\operatorname{ch}^n x}.$ Par croissance de l'intégrale, $0 \le \int_0^{\ln 3} \frac{1}{\operatorname{ch}^{n-1}(x)(\operatorname{ch} x + 1)} \, \mathrm{d}x \le \int_0^{\ln 3} \frac{1}{\operatorname{ch}^n x} \, \mathrm{d}x.$

Ainsi,
$$0 \le v_n \le u_n$$

Or par la question 8d, (u_n) converge vers 0.

Donc, par le théorème d'encadrement, la suite (v_n) converge vers 0.

13°) **a)** *Méthode 1* :

$$\forall t \in \mathbb{R} \setminus \{-1, 0\}, \frac{t^2 + 1}{t(t+1)^2} = \frac{(t^2 + 2t + 1) - 2t}{t(t+1)^2} = \frac{(t+1)^2 - 2t}{t(t+1)^2} = \frac{1}{t} - \frac{2}{(t+1)^2}.$$

$$\boxed{\text{On pose } a = 1 \text{ et } b = -2}. \text{ Alors,} \boxed{\text{pour } t \in \mathbb{R} \setminus \{-1, 0\}, \frac{t^2 + 1}{t(t+1)^2} = \frac{a}{t} + \frac{b}{(t+1)^2}}$$

 $M\'{e}thode~2:$

Soit $t \in \mathbb{R} \setminus \{-1, 0\}$. Soit a et b des réels.

$$\frac{a}{t} + \frac{b}{(t+1)^2} = \frac{a(t+1)^2 + bt}{t(t+1)^2} = \frac{at^2 + t(2a+b) + a}{t(t+1)^2}.$$

Pour que
$$\frac{a}{t} + \frac{b}{(t+1)^2} = \frac{t^2+1}{t(t+1)^2}$$
, il suffit que $\begin{cases} a=1\\ 2a+b=0 \end{cases}$ i.e. $a=1$ et $b=-2$. $a=1$

b)

$$v_0 = \int_0^{\ln 3} \frac{\operatorname{ch} x}{\operatorname{ch} x + 1} \, \mathrm{d}x$$

$$= \int_0^{\ln 3} \frac{\frac{e^x + e^{-x}}{2}}{\frac{e^x + e^{-x}}{2} + 1} \, \mathrm{d}x$$

$$= \int_0^{\ln 3} \frac{e^x + e^{-x}}{e^x + e^{-x} + 2} \, \mathrm{d}x$$

$$= \int_0^{\ln 3} \frac{e^{2x} + 1}{e^{2x} + 1 + 2e^x} \, \mathrm{d}x$$

$$= \int_0^{\ln 3} \frac{e^{2x} + 1}{(e^x + 1)^2} \, \mathrm{d}x$$

$$= \int_0^{\ln 3} \frac{e^{2x} + 1}{e^x (e^x + 1)^2} e^x \, \mathrm{d}x$$

On pose $t = e^x$, $x \mapsto e^x$ est de classe C^1 sur $[0, \ln 3]$.

On note : $dt = e^x dx$.

Si x = 0 alors t = 1

Si $x = \ln 3$ alors t = 3.

Par le théorème du changement de variables, $v_0 = \int_1^3 \frac{t^2 + 1}{t(t+1)^2} dt$.

Par la question précédente, $v_0 = \int_1^{\ln 3} \left(\frac{1}{t} - \frac{2}{(t+1)^2}\right) dt = \left[\ln|t|\right]_1^3 + 2\left[\frac{1}{t+1}\right]_1^3$.

Donc, $v_0 = \ln 3 + 2\left(\frac{1}{4} - \frac{1}{2}\right)$.

Finalement, $v_0 = \ln 3 - \frac{1}{2}$

14°) $\forall n \in \mathbb{N}, I_n = v_0 + (-1)^n v_{n+1} \text{ par } 11.$

 (v_n) converge vers 0 donc la suite (v_{n+1}) converge vers 0.

De plus, pour tout $n \in \mathbb{N}$, $-1 \le (-1)^n \le 1$ et $v_{n+1} \ge 0$, donc $-v_{n+1} \le (-1)^n v_{n+1} \le v_{n+1}$. Par le théorème d'encadrement, la suite $((-1)^n v_{n+1})$ converge vers 0.

Finalement, par somme, (I_n) converge vers v_0 i.e. (I_n) converge vers $\ln 3 - \frac{1}{2}$.

Exercice 2

Notons I=]-1,1[et $(E):(1-x^2)y'(x)+xy(x)=x^2-1.$ Pour tout $x\in I,\, 1-x^2\neq 0,\, \text{donc sur }I,\, (E)\Longleftrightarrow y'(x)+\frac{x}{1-x^2}y(x)=-1.$ C'est une équation différentielle linéaire d'ordre 1.

• Résolution de l'équation homogène $(H): y'(x) + \frac{x}{1-x^2}y(x) = 0:$ Pour tout $x \in I$, $\frac{x}{1-x^2} = \frac{-1}{2}\frac{-2x}{1-x^2}.$

Donc une primitive sur I de $x \mapsto \frac{x}{1-x^2}$ est $x \mapsto -\frac{1}{2} \ln \left(|1-x^2| \right)$ i.e. $x \mapsto -\frac{1}{2} \ln \left(1-x^2 \right)$.

- Les solutions de (H) sur I sont les $x \mapsto \lambda e^{\frac{1}{2}\ln(1-x^2)}$, i.e. les $x \mapsto \lambda \sqrt{1-x^2}$, où $\lambda \in \mathbb{R}$.
- Recherche d'une solution particulière par la méthode de variation de la constante : On pose $y_p: x \mapsto \lambda(x)\sqrt{1-x^2}$, avec $\lambda: I \to \mathbb{R}$ dérivable. Sur $I, x \mapsto 1-x^2$ est dérivable et à valeurs dans \mathbb{R}_+^* . Comme $t \mapsto \sqrt{t}$ est dérivable sur \mathbb{R}_+^* , par composition et par produit, y_p est dérivable sur I, et pour tout $x \in I$,

$$y_p'(x) = \lambda'(x)\sqrt{1-x^2} + \lambda(x)\frac{-2x}{2\sqrt{1-x^2}} = \lambda'(x)\sqrt{1-x^2} - \frac{x\lambda(x)}{\sqrt{1-x^2}}$$

On résout :

 $y_p \text{ solution de } (E) \text{ sur } I \iff \forall \, x \in I, \, \lambda'(x) \sqrt{1-x^2} - \frac{x\lambda(x)}{\sqrt{1-x^2}} + \frac{x}{1-x^2} \lambda(x) \sqrt{1-x^2} = -1$ $\iff \forall \, x \in I, \quad \lambda'(x) \sqrt{1-x^2} = -1$ $\iff \forall \, x \in I, \quad \lambda'(x) = \frac{-1}{\sqrt{1-x^2}} \text{ car } x \mapsto 1-x^2 \text{ ne s'annule pas sur } I$

Prenons $\lambda: x \mapsto \operatorname{Arccos}(x)$; alors $y_p: x \mapsto \operatorname{Arccos}(x)\sqrt{1-x^2}$ est une solution particulière de (E) sur I.

• Conclusion:

Les solutions de (E) sur I sont les fonctions de la forme :

$$x \mapsto (\lambda + \operatorname{Arccos}(x)) \sqrt{1 - x^2}$$
, où $\lambda \in \mathbb{R}$.

Exercice 3

Question préliminaire :

La fonction $f: x \mapsto \frac{1 - \ln x}{x^2}$ est bien définie et continue sur l'intervalle \mathbb{R}_+^* , donc $F: x \mapsto \int_1^x f(t) dt$ sera une primitive de f sur \mathbb{R}_+^* .

Fixons $x \in \mathbb{R}_+^*$ et calculons $F(x) = \int_1^x \frac{-1}{t^2} (\ln t - 1) dt$.

Les fonctions $u: t \mapsto \ln t - 1$ et $v: t \mapsto \frac{1}{t}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* , et pour tout $t \in \mathbb{R}_+^*$, $u'(t) = \frac{1}{t}$ et $v'(t) = \frac{-1}{t^2}$.

6

Par intégration par parties :

$$F(x) = \left[\frac{1}{t}(\ln t - 1)\right]_{1}^{x} - \int_{1}^{x} \frac{1}{t} \frac{1}{t} dt$$

$$= \frac{1}{x}(\ln x - 1) + 1 + \int_{1}^{x} \frac{-1}{t^{2}} dt$$

$$= \frac{\ln x}{x} - \frac{1}{x} + 1 + \left[\frac{1}{t}\right]_{1}^{x}$$

$$= \frac{\ln x}{x} - \frac{1}{x} + 1 + \frac{1}{x} - 1$$

$$= \frac{\ln x}{x}$$

Ainsi $x \mapsto \frac{\ln x}{x}$ est une primitive de $x \mapsto \frac{1 - \ln x}{x^2}$ sur \mathbb{R}_+^* .

1°) a) Soit $\alpha \in \mathbb{R}$. On pose $y: x \mapsto x^{\alpha}$. y est deux fois dérivable sur \mathbb{R}_{+}^{*} et, pour tout $x \in \mathbb{R}_{+}^{*}$, $y'(x) = \alpha x^{\alpha-1}$ et $y''(x) = \alpha(\alpha-1)x^{\alpha-2}$.

$$y$$
 solution de (H) sur \mathbb{R}_+^* \iff $\forall x \in \mathbb{R}_+^*$, $x^2\alpha(\alpha - 1)x^{\alpha - 2} - x\alpha x^{\alpha - 1} + x^{\alpha} = 0$
 \iff $\forall x \in \mathbb{R}_+^*$, $(\alpha(\alpha - 1) - \alpha + 1)x^{\alpha} = 0$
 \iff $\alpha^2 - 2\alpha + 1 = 0$ car pour tout $x \in \mathbb{R}_+^*$, $x^{\alpha} \neq 0$
 \iff $(\alpha - 1)^2 = 0$
 \iff $\alpha = 1$

Ainsi $\alpha = 1$ est la seule valeur pour laquelle $x \mapsto x^{\alpha}$ soit solution de l'équation (H).

b) On a donc, pour tout $x \in \mathbb{R}_+^*$, $z(x) = \frac{y(x)}{x}$. Comme y et $x \mapsto x$ sont deux fois dérivables sur \mathbb{R}_+^* , par quotient, z est deux fois dérivable sur \mathbb{R}_+^* . Pour tout $x \in \mathbb{R}_+^*$:

$$y(x) = xz(x),$$
 $y'(x) = xz'(x) + z(x),$ $y''(x) = xz''(x) + 2z'(x).$

y solution de (E) sur \mathbb{R}_+^*

$$\iff \forall x \in \mathbb{R}_+^*, \ x^2 y''(x) - x y'(x) + y(x) = 1 - \ln(x)$$

$$\iff \forall x \in \mathbb{R}_+^*, \ x^3 z''(x) + 2x^2 z'(x) - x^2 z'(x) - x z(x) + x z(x) = 1 - \ln x$$

$$\iff \boxed{\forall x \in \mathbb{R}_+^*, \ z''(x) + \frac{1}{x} z'(x) = \frac{1 - \ln x}{x^3}}$$

Ainsi y vérifie (E) si et seulement si z vérifie $(E'):z''(x)+\frac{1}{x}z'(x)=\frac{1-\ln x}{x^3}$

- c) (E_1) est une équation différentielle linéaire du premier ordre.
 - Une primitive de $x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^* est ln, donc les solutions de l'équation homogène associée sont les

$$x \mapsto \lambda \exp(-\ln x), \ \lambda \in \mathbb{R}$$
 i.e. $x \mapsto \frac{\lambda}{x}, \ \lambda \in \mathbb{R}$

• On recherche une solution particulière par la méthode de la variation de la constante : On pose : $Z_p: x \mapsto \lambda(x) \frac{1}{x}$ où $\lambda: \mathbb{R}_+^* \to \mathbb{R}$ est une fonction dérivable. Z_p est dérivable sur \mathbb{R}_+^* par produit, et pour tout $x \in \mathbb{R}_+^*$, $Z_p'(x) = \lambda'(x) \frac{1}{x} - \lambda(x) \frac{1}{x^2}$. On résout :

$$Z_p$$
 est solution de $(E_1) \iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x)\frac{1}{x} - \lambda(x)\frac{1}{x^2} + \frac{1}{x}\lambda(x)\frac{1}{x} = \frac{1 - \ln x}{x^3}$

$$\iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x) = \frac{1 - \ln x}{x^2}$$

$$\iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x) = \frac{1 - \ln x}{x^2}$$

Prenons $\lambda: x \mapsto \frac{\ln x}{x}$; c'est alors une primitive de $x \mapsto \frac{1 - \ln x}{x^2}$ d'après la question préliminaire, donc $Z_p: x \mapsto \frac{\ln x}{x^2}$ est une solution particulière de (E_1) .

- Les solutions de (E_1) sont donc les : $x \mapsto \frac{\lambda}{x} + \frac{\ln x}{x^2}$ avec $\lambda \in \mathbb{R}$
- d) Pour $y: \mathbb{R}_+^* \to \mathbb{R}$ deux fois dérivable, en reprenant les notations de la question b :

y solution de
$$(E)$$
 sur \mathbb{R}_{+}^{*} \iff z' solution de (E_{1}) sur \mathbb{R}_{+}^{*} \iff $\exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}_{+}^{*}, \ z'(x) = \frac{\lambda}{x} + \frac{\ln x}{x^{2}}$ \iff $\exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}_{+}^{*}, \ z'(x) = \frac{\lambda}{x} - \frac{1 - \ln x}{x^{2}} + \frac{1}{x^{2}}$ \iff $\exists (\lambda, \mu) \in \mathbb{R}^{2}, \ \forall x \in \mathbb{R}_{+}^{*}, \ z(x) = \lambda \ln x - \frac{\ln x}{x} - \frac{1}{x} + \mu$ car \mathbb{R}_{+}^{*} est un intervalle et grâce à la question préliminaire \iff $\exists (\lambda, \mu) \in \mathbb{R}^{2}, \ \forall x \in \mathbb{R}_{+}^{*}, \ y(x) = \lambda x \ln x - \ln x - 1 + \mu x$

Les solutions de (E) sur \mathbb{R}_+^* sont donc les $x \mapsto \lambda x \ln x - (\ln x + 1) + \mu x$ avec $(\lambda, \mu) \in \mathbb{R}^2$

2°) a) La fonction w est deux fois dérivable sur \mathbb{R} comme composée de fonctions deux fois dérivables. On a, pour tout $t \in \mathbb{R}$:

$$w(t) = y(e^t),$$
 $w'(t) = e^t \cdot y'(e^t),$ $w''(t) = (e^t)^2 y''(e^t) + e^t y'(e^t).$

y solution de (E) sur \mathbb{R}_+^*

$$\iff \forall x \in \mathbb{R}_+^*, \ x^2 y''(x) - x y'(x) + y(x) = 1 - \ln(x)$$

$$\iff \forall t \in \mathbb{R}, \ (e^t)^2 y''(e^t) - e^t y'(e^t) + y(e^t) = 1 - \ln(e^t)$$
 car exp est une bijection de \mathbb{R} sur \mathbb{R}_+^*

$$\iff \forall t \in \mathbb{R}, \ (e^t)^2 y''(e^t) + e^t y'(e^t) - 2e^t y'(e^t) + y(e^t) = 1 - t$$

$$\iff \forall t \in \mathbb{R}, \ w''(t) - 2w'(t) + w(t) = 1 - t$$

- $\iff w \text{ solution de } (E_2) \text{ sur } \mathbb{R}$
- b) (E_2) est une équation différentielle linéaire d'ordre 2 à coefficients constants.
 - Son équation caractéristique est $r^2 2r + 1 = 0$, dont l'unique solution est 1. Donc les solutions de l'équation homogène associée à (E_2) sont les $t \mapsto (\lambda t + \mu)e^t$ où $(\lambda, \mu) \in \mathbb{R}^2$.
 - Posons maintenant $w_p: t \mapsto at + b$ avec $(a, b) \in \mathbb{R}^2$. Alors w_p est deux fois dérivable sur \mathbb{R} , et pour tout $t \in \mathbb{R}$, $w_p'(t) = a$, $w_p''(t) = 0$. On résout :

$$w_p$$
 solution de (E_2) \iff $\forall t \in \mathbb{R}, 0 - 2a + at + b = 1 - t$ \iff $\begin{cases} a = -1 \\ b - 2a = 1 \end{cases}$ par unicité des coefficients d'un polynôme \iff $\begin{cases} a = -1 \\ b = -1 \end{cases}$

- Les solutions de (E_2) sont donc les $t \mapsto (\lambda t + \mu)e^t t 1$ où $(\lambda, \mu) \in \mathbb{R}^2$
- c) Pour $y: \mathbb{R}_+^* \to \mathbb{R}$ deux fois dérivable, en reprenant les notations de la question b :

y solution de
$$(E)$$
 sur $\mathbb{R}_{+}^{*} \iff \exists (\lambda, \mu) \in \mathbb{R}^{2}, \ \forall t \in \mathbb{R}, \ w(t) = (\lambda t + \mu)e^{t} - t - 1$

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^{2}, \ \forall x \in \mathbb{R}_{+}^{*}, \ w(\ln x) = (\lambda \ln x + \mu)e^{\ln x} - \ln x - 1$$
car ln est une bijection de \mathbb{R}_{+}^{*} dans \mathbb{R}

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^{2}, \ \forall x \in \mathbb{R}_{+}^{*}, \ y(x) = \lambda x \ln x + \mu x - \ln x - 1$$

On retrouve que les solutions de (E) sur \mathbb{R}_+^* sont les $x \mapsto \lambda x \ln x - (\ln x + 1) + \mu x$ avec $(\lambda, \mu) \in \mathbb{R}^2$