Chapter 3. Integration

3.1 Indefinite Integral

Integration can be considered as the antithesis of differentiation, and they are subtly linked by the **Fun**damental Theorem of Calculus. We first introduce indefinite integration as an "inverse" of differentiation.

3.1.1 Antiderivatives

A (differentiable) function F(x) is an antiderivative of a function f(x) if

$$F'(x) = f(x)$$

for all x in the domain of f.

The set of all antiderivatives of f is

the indefinite integral of f with respect to x, de-

noted by

$$\int f(x) \, dx.$$

Terminology:

f: integrand of the integral x: variable of integra-

tion

3.1.2 Constant of Integration

Any constant function has zero derivative. Hence the antiderivatives of the zero function are all the constant functions.

If
$$F'(x) = f(x) = G'(x)$$
, then $G(x) = F(x) + C$,

where C is some constant. So

$$\int f(x)dx = F(x) + C.$$

C here is called the constant of integration or an $arbitrary\ constant$. Thus,

$$\int f(x) \, dx = F(x) + C$$

means the same as

$$\frac{d}{dx}F(x) = f(x).$$

In words,

indefinite integral and antiderivative (of a func-

tion) differ by an arbitrary constant.

3.1.3 Integral formulas

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1, \text{ } n \text{ rational}$$

$$\int 1 dx = \int dx = x + C \quad \text{(Special case, } n = 0\text{)}$$

$$2. \int \sin kx \, dx = -\frac{\cos kx}{k} + C$$

$$3. \int \cos kx \, dx = \frac{\sin kx}{k} + C$$

$$4. \int \sec^2 x \, dx = \tan x + C$$

$$5. \int \csc^2 x \, dx = -\cot x + C$$

6.
$$\int \sec x \tan x \, dx = \sec x + C$$

7.
$$\int \csc x \cot x \, dx = -\csc x + C$$

3.1.4 Rules for indefinite integration

$$1. \int kf(x) \, dx = k \int f(x) \, dx,$$

k = constant (independent of x)

$$2. \int -f(x) \, dx = -\int f(x) \, dx$$

(Rule 1 with k = -1)

3. $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$

3.1.5 Example

Find the curve in the xy-plane which passes through the point (9,4) and whose slope at each point (x,y)is $3\sqrt{x}$. Solution. The curve is given by y = y(x), satisfying

(i)
$$\frac{dy}{dx} = 3\sqrt{x}$$
 and (ii) $y(9) = 4$.

Solving (i), we get

$$y = \int 3\sqrt{x} \, dx = 3\frac{x^{3/2}}{3/2} + C = 2x^{3/2} + C.$$

By (ii),
$$4 = (2)9^{3/2} + C = (2)27 + C$$
,

$$C = 4 - 54 = -50.$$

Hence
$$y = 2x^{3/2} - 50$$
.

3.2 Riemann Integrals

3.2.1 Area under a curve

Let f = f(x) be a non-negative continuous function

f = f(x) on an interval [a, b].

Partition [a, b] into n consecutive sub-intervals $[x_{i-1}, x_i]$ (i = 1, 2, ..., n) each of length $\Delta x = \frac{b-a}{n}$, where we set $a = x_0, b = x_n, \text{ and } x_1, x_2, \dots, x_{n-1}$ to be successive points between a and b with $x_k - x_{k-1} =$ Δx .

Let c_k be any intermediate point in the sub-interval

 $[x_{k-1},x_k].$

Then the sum

$$S = \sum_{k=1}^{n} f(c_k) \Delta x$$

gives an approximate area under the curve of y =

f(x) from x = a to x = b.

The exact area A under the curve of y = f(x) is achieved by letting the partition of the interval [a, b] tends to infinity:

$$A = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x.$$

3.2.2 Riemann sums

Let $f: [a, b] \longrightarrow \mathbb{R}$ be a continuous function, not necessarily nonnegative. Partition [a, b] as in the previous section.

If $f(c_k) > 0$, the product $f(c_k) \Delta x$ is the area of the rectangle between the x-axis and the curve over the interval $[x_{k-1}, x_k]$. If $f(c_k) < 0$, it is the negative of that area. Thus it is the signed area in general.

The sum

$$S = \sum_{k=1}^{n} f(c_k) \, \Delta x$$

is called a **Riemann sum** for f on [a, b].

It is the algebraic (or total signed) area of the rectangles.

Note that the value of S depends on the choice of the partition P and the points c_k .

As the partition becomes finer, the rectangles will approximate the region between the x-axis and f with increasing accuracy.

3.2.3 Riemann Integral

Let us continue with the notation as in the previous section. Suppose we let the number of partition in P tends to infinity.

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \, \Delta x = I.$$

We call I the **Riemann integral** (or **definite**

integral) of f over [a, b] and we write

$$I = \int_{a}^{b} f(x) \, dx.$$

3.2.4 Terminology

$$\int_a^b f(x)dx$$

[a, b]: the interval of integration

a: lower limit of integration

b: upper limit of integration

x: variable of integration

f(x): the integrand

x is a dummy variable, i.e.

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(u) \, du = \int_{a}^{b} f(t) \, dt, \text{ etc.}$$

3.2.5 Rules of algebra for definite integrals

1.
$$\int_{a}^{a} f(x) dx = 0$$

2.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

3.
$$\int_a^b kf(x) dx = k \int_a^b f(x) dx, \quad \text{(any constant } k\text{)}$$

$$\left(\text{In particular, } \int_{a}^{b} -f(x) \, dx = -\int_{a}^{b} f(x) \, dx\right)$$

4.
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5. If $f(x) \ge g(x)$ on [a, b], then

$$\int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx$$

6. If $f(x) \ge 0$ on [a, b], then $\int_{a}^{b} f(x) dx \ge 0$

7. If M and m are maximum and minimum values respectively of f on [a, b],

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

8. If f is continuous on the interval joining a, b and c, then

$$\int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx = \int_{a}^{c} f(x) \, dx$$

Property no. 7

 $m(b-2) \leq \int_{a}^{b} f(x) dx \leq M(b-2)$ C between a and b. First Mean Value Theorem for Integrals

3.2.6 Finding absolute (rather than algebraic) area

When f takes both positive and negative values on

[a,b], we can find its absolute area over [a,b] as fol-

lows:

- 1. Find points where f = 0.
- 2. Use these points to partition [a, b] into sub-intervals.

3. Integrate over each sub-interval.

4. Required area is the sum of the absolute values

of the results found in 3.

3.2.7 Example

Find the area of the region bounded by the curve

 $y = x^3 - 4x$ and the x-axis on the interval [-3, 3].

Solution. $x^3 - 4x = x(x^2 - 4) = x(x - 2)(x + 2)$.

So y is zero when x = -2, 0 and 2. i.e. the curve of the function intersects the x-axis at these points.

Moreover, the curve is below the x-axis on the sub-intervals [-3, -2] and [0, 2]; and is above the x-axis on the sub-intervals [-2, 0] and [2, 3].

Integrating over each sub-interval:

$$\int_{-3}^{-2} x^3 - 4x \, dx = -25/4, \quad \int_{-2}^{0} x^3 - 4x \, dx = 4,$$
$$\int_{0}^{2} x^3 - 4x \, dx = -4, \quad \int_{2}^{3} x^3 - 4x \, dx = 25/4.$$

So the absolute area is

$$\left| -\frac{25}{4} \right| + 4 + \left| -4 \right| + \frac{25}{4} = \frac{41}{2}.$$

3.3 The Fundamental Theorem of Calculus

3.3.1 Part 1

If f is continuous on [a, b], then the function

$$F(x) = \int_{a}^{x} f(t) dt \tag{1}$$

has a derivative at every point of [a, b], and

$$\frac{d}{dx}F(x) = \frac{d}{dx}\int_{a}^{x} f(t) dt = f(x). \tag{2}$$

$$y = f(x)$$

$$2 \times x \times R$$

$$b \rightarrow x$$

$$F(x) = \int_{a}^{x} f(x) dt$$

$$F'(x) = \lim_{R \to 0} \frac{F(x+R) - F(x)}{R}$$

$$= \lim_{R \to 0} \int_{a}^{x+R} f(x) dx - \int_{a}^{x} f(x) dx$$

$$= \lim_{R \to 0} \int_{x}^{a} f(x) dx + \int_{a}^{x+R} f(x) dx$$

$$= \lim_{R \to 0} \int_{x}^{x+R} f(x) dx$$

$$= \lim_{R \to 0} \int_{x}^{x+R} f(x) dx$$

= lim f(c) & c between R->0 & x and x+R

= lun f(c)

= f(x)

3.3.2 Examples

$$\frac{d}{dx} \int_{-\pi}^{x} \cos t \, dt = \cos x$$

$$\frac{d}{dx} \int_{0}^{x} \frac{dt}{1+t^{2}} = \frac{1}{t+x^{2}}$$

$$\frac{d}{dx} \int_{1}^{x^{2}} \cos t \, dt = \left[\frac{d}{d(x^{2})} \int_{1}^{x^{2}} \cos t \, dt\right] \frac{d(x^{2})}{dx} = (\cos x^{2}) 2x$$

$$= 2x \cos(x^{2})$$

 $\frac{d}{dx} \int_{-\infty}^{\infty} f(t) dt$ $= \frac{d}{dx} \int_{X}^{Q} f(x) dt + \int_{\alpha}^{X} f(x) dt$ $= \frac{d}{dx} \left\{ -\int_{a}^{x} f(x)dt + \int_{a}^{x} f(x)dt \right\}$

 $= -f(x) + 2xf(x^2)$

3.3.3 Part 2

If f is continuous at every point of [a, b] and F is any antiderivative of f on [a, b],

then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

$$G'(x) = f(x)$$

$$F(x) = G(x) + C$$

$$Put x = a \Rightarrow F(a) = G(a) + C$$

$$: F(x) = G(x) + F(a)$$

Put
$$x=b = F(b) = G(b) + F(a)$$

$$\int_{a}^{b} f(t)dt = G(b) = F(b) - F(a)$$

3.3.4 Examples

$$\int_0^\pi \cos x \, dx = \left. \frac{\sin x}{\sigma} \right|_0^\pi = \left. \frac{\sin \pi - \sin \sigma}{\sin \sigma} \right|_0^\pi$$

$$\int_0^2 t^2 \, dt = \frac{1}{3} \, d^3 \Big|_0^2 = \frac{3}{3}$$

$$\int_{-2}^{2} (4 - u^{2}) du = \left[\frac{4u - \frac{1}{3}u^{3}}{2} \right]_{-2}^{2}$$

$$= \left(\frac{8}{3} - \frac{8}{3} \right) - \left(-8 + \frac{8}{3} \right)$$

$$= \frac{32}{3}$$

3.4 Integration by substitution

To evaluate $\int f(g(x))g'(x) dx$ where f and g' are continuous:

- 1. Set u = g(x). Then $g'(x) = \frac{du}{dx}$, the given integral becomes $\int f(u) du$.
- 2. Integrate with respect to u.
- 3. Replace u by g(x) in the result of step 2.

3.4.1 Examples

$$I = \int (x^2 + 2x - 3)^2 (x+1) dx$$

Let
$$U = x^2 + 2x - 3$$

 $du = (2x+2) dx$
 $= 2(x+1) dx$

 $I = \int u^2 du = \frac{1}{2} \int u^2 du$ = +u3+C $= f(x^2+2x-3)^3+C$

I = Sim 4 x conx dx

Let u = Sin xdu = conx dx I = Cu4du =u5+c = = = Smsx + C

3.4.2 Substitution in definite integrals

The limits change accordingly:

$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

Note that in general we require $g' \geq 0$ or $g' \leq 0$ in

[a,b].

3.4.3 Example

$$\overline{I} = \int_{0}^{\pi/4} tan x se^{2}x dx$$

$$Let u = tan x$$

$$x = 0 = 0 \quad u = 0$$

$$x = \overline{4} = 0 \quad u = 1$$

$$du = se^{2}x dx$$

$$I = \int_{0}^{1} u du$$

$$= \frac{1}{2}u^{2} \Big|_{0}^{1}$$

$$= \frac{1}{2}$$

3.5 Integration by parts

Integration by parts is a technique for evaluating integrals of the form

$$\int f(x)g(x) \ dx$$

in which f can be differentiated repeatedly and g can be integrated without difficulty.

Recall the product rule

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

In differential form it becomes

$$d(uv) = u \, dv + v \, du$$

or, equivalently,

$$u dv = d(uv) - v du.$$

Thus we have the **Integration-by-parts For-**

mula:

$$\int u \, dv = uv - \int v \, du$$

or,

$$\int u \frac{dv}{dx} \, dx = uv - \int v \frac{du}{dx} \, dx.$$

3.5.1 Example

Evaluate
$$I = \int x \cos x \, dx$$
.

vation. Needs **practice**.)

Solution. (To get workable u and v at first attempt it requires some familiarity of the table of differentiation/integration formulas, plus a keen obser-

Let's look at $\int x \cos x \, dx$. To put it in the form $\int u \, dv$, we have 4 obvious choices:

1. u = 1, $dv = x \cos x \, dx$

 $2. u = x, dv = \cos x dx$

3. $u = x \cos x$, dv = dx

4. $u = \cos x$, dv = x dx

The second choice works:

$$I = \int x \cos x \, dx = \int x \, d(\sin x)$$
$$= x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

3.5.2 Summary

To apply the method of integration by parts, the goal

is to go from
$$\int u \, dv$$
 to $\int v \, du$, which should be

easier to handle.

The method does not always work. (Try choices 1,

3, 4 above.)

3.5.3 Exercise

(a)
$$\int \ln x \, dx$$

$$\int dx dx$$

$$= x \ln x - \int x \frac{1}{x} dx$$

$$= x \ln x - \int dx$$

= x lux - x + C

(b)
$$\int x^2 e^x dx$$

$$\int x^{2}e^{x}dx$$

$$= \int x^{2}d(e^{x})$$

$$= x^{2}e^{x} - 2\int xe^{x}dx$$

$$= x^{2}e^{x} - 2\int x d(e^{x})$$

$$= x^{2}e^{x} - 2xe^{x} + 2\int e^{x}dx$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + C$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + C$$

(d)
$$\int e^x \cos x \, dx$$
 (*Hint:* Consider also $\int e^x \sin x \, dx$.)

To find:
$$A = \int e^{x} \cos x dx$$

Let $B = \int e^{x} \sin x dx$

$$A = \int e^{x} \cos x dx$$

$$= \int e^{x} \sin x dx$$

$$= e^{x} \sin x - \int e^{x} \sin x dx$$

$$A + B = e^{x} \sin x - - D$$

$$B = \int e^{x} \sin x \, dx$$

$$= -\int e^{x} \, d(\cos x)$$

$$= -e^{x} \cos x + \int e^{x} \cos x \, dx$$

$$A - B = e^{x} \cos x - - - 2$$

$$A = \frac{1}{2} (e^{x} \sin x + e^{x} \cos x)$$

$$B = \frac{1}{2} (e^{x} \sin x - e^{x} \cos x)$$

3.6 Area between two curves

If f_1 and f_2 are continuous functions with $f_1(x) \leq$ $f_2(x)$ in the interval $a \leq x \leq b$, then the area of the region between the curves $y = f_1(x)$ and $y = f_2(x)$ from a to b is the integral of $f_2 - f_1$ from a to b, i.e.

Area =
$$\int_{a}^{b} [f_2(x) - f_1(x)] dx$$
. (1)

This is the basic formula.

If the curves only cross at one or both end points of [a,b], we apply (1) once to find the area. If the curves cross within the interval [a,b], we need to apply (1) more than once. Thus, to find the area of the region between two curves

- (i) Sketch the curves and determine the crossing points.
- (ii) Evaluate the area(s) using (1). **Or**, integrate $|f_2 f_1|$ over [a, b].

3.6.1 Example

Find area enclosed by the parabola $y = 2 - x^2$ and

the line y = -x.

$$y = 2 - z^2, \quad y = -x$$

Points of intersection: Set
$$2-x^2=-x$$

$$x^2 - x - 2 = 0$$

$$(x+1)(x-2) = 0$$

,'.
$$x = -1$$
, $x = 2$.

$$y = 2 - x^{2}$$

$$y = -x$$

$$y = -x$$

$$y = -x$$

Area =
$$\int_{-1}^{2} \{(2-x^{2}) - (-x)\} dx$$
=
$$\int_{-3}^{2} (2-x^{2} + x) dx$$
=
$$\left[2x - \frac{1}{3}x^{3} + \frac{1}{2}x^{2}\right]_{-1}^{2}$$
=
$$\left(4 - \frac{8}{3} + 2\right) - \left(-2 + \frac{1}{3} + \frac{1}{2}\right)$$
=
$$\frac{9}{2}$$

3.6.3 Remark.

Sometimes we may like to view the curve as x = g(y)

(instead of y = f(x)) when evaluating area.

The area will be
$$A = \int_c^d [g_2(y) - g_1(y)] dy$$
.

3.6.2 Example

Find area of the region in the first quadrant bounded

by
$$y = \sqrt{x}$$
 and $y = x - 2$.

View the curve as x=9(4) ie. x=y2

Area =
$$\begin{cases} 2 (y+2) - (y^2)^2 dy \\ 0 (y+2) - \frac{1}{3}y^3 \end{cases}^2$$

= $\left[\frac{1}{2}y^2 + 2y - \frac{1}{3}y^3 \right]_0^2$

$$=\frac{10}{3}$$

3.7 Volume of solids of revolution

In general, solids of revolutions are solids which are generated by revolving plane regions about x- or y-axis.

3.7.1 Revolution about x-axis

The volume of a solid generated by revolving *about* the x-axis the region between the graph of a continuous function y=f(x) and the x-axis from x=a to x=b is

Volume =
$$\int_{a}^{b} \pi [f(x)]^{2} dx.$$

3.7.2 Example

The region between $y = \sqrt{x}$, $0 \le x \le 4$, and the x-axis is revolved about the x-axis. Find the volume of the solid generated.

$$Vol = \int_0^4 \pi(\sqrt{x})^2 dx$$

$$= \pi \int_0^4 x dx$$

$$= \pi \int_0^4 x dx$$

$$= \pi \int_0^4 x^2 \Big|_0^4$$

$$= \frac{8\pi}{4\pi}$$

3.7.3 Example

Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1and x = 4 about the line y = 1.

$$Vol. = \int_{1}^{4} \pi (\sqrt{x} - 1)^{2} dx$$

$$= \int_{1}^{4} \pi (x - 2\sqrt{x} + 1) dx$$

$$= \pi \left[\frac{1}{2} x^{2} - \frac{4}{3} x^{\frac{3}{2}} + x \right]_{1}^{4}$$

$$= \frac{7}{6} \pi$$

3.7.4 Revolution about y-axis

The volume of a solid generated by revolving about the y-axis the region between the graph of x=g(y)and the y-axis from y=c to y=d is

Volume =
$$\int_{c}^{d} \pi [g(y)]^{2} dy.$$

3.7.5 Example

The region between the curve $x = \frac{2}{y}$, $1 \le y \le 4$ and

the y-axis is revolved about the y-axis to generate a

solid. Find its volume.

$$Vol. = \int_{1}^{4} \pi \left(\frac{2}{9}\right)^{2} dy$$

$$= \int_{1}^{4} \pi \left(\frac{4}{9}\right)^{2} dy$$

$$=4\pi(\frac{3}{4})$$