政治学3(計量政治学) 7回目

秦 正樹

京都府立大学公共政策学部 准教授

hatamasaki@kpu.ac.jp

2022/05/31

火 3 コース@一号館視聴覚室

7回目のテーマ

- 🚺 7 回目のテーマ
 - 「統計的検定」の考え方
 - 2 変量(多変量)の関係と「差分」について考える
 - 記述統計から推測統計に進化させよう!
 - 統計的検定の考え方を徹底的に理解する!
 - とにかく「統計的検定」の考え方をしっかりマスターしよう!
- ② 従業準備
 - Online Rstudio はここからアクセスしてください。
 - Teams にレジュメをあげてありますのでご確認を.
 - 資料と online Rstudio を相互に動かしていくので、前回までのコードラインのご準備よろしくお願いします

復習:データの種類

● 変数と尺度

- 量的変数(比例尺度):0 を原点として、間隔と比率に意味があるもの e.g. 体重:100kg は,50kg に比べて2倍重いといえる
- 質的変数(名義尺度):数値とは無関係に、定義的に区別するためにつけられたもの e.g. 性別(1. 男性, 2. 女性, 3. その他)→数字に性別の意味はない
- 量と質の間:順序尺度:数字の大小には意味があるが間隔が等価でないもの e.g. 順位(1位・2位・3位…). 世論調査の多くはこれ?
- 変数から大枠を把握する方法
 - 量的変数:記述統計を見ながら、大きな傾向を把握 e.g. 日本人の平均身長, 平均年齢(あとでやってみる)と分散など
 - 質的変数:平均値に意味はないので、度数分布を見る e.g. あるデータの都道府県平均が 17.2 でした→意味不明…

宿題: 各政党への感情温度

- 宿題: 各政党への感情温度 (q4_1_x) の平均値を確認
 - 無党派層に最も嫌われている政党はどこでしょうか
 - 男女で最も好感度に差がある政党はどこでしょうか
 - √ 20 代とそれ以外の年齢層との間で、最も好感度に差がある政党はどこでしょう
 - → 上の3つを分析して具体的な数値とともに答えを示しておいてください。

性別ごとの無党派率を確認

- 性別と党派性のクロス表
 - 党派性のありなし変数(q11_1 を使って pid.dummy とする変数)を作成
 - → 政党支持の全体では、政党支持率 % v.s. 無党派率 %
 - 党派性のありなし変数 (pid2) を性別とクロス表 table) で示す
- 無党派率の性差の関係
 - 無党派率:男性 % v.s. 女性 %
 - 政党支持率:男性 % v.s. 女性 %
 - 無党派は女性のほうが男性よりも %高い?

この差は偶然?必然?

- 無党派率の性「差」は「意味がある」差なのか?
 - 無党派は女性のほうが男性よりも %高い?
 - これらの好感度「差」が、必然的に生じた意味のある差 (=有意差) なのか、それとも 意味のない差 (=ただの誤差) なのか問題
 - → 統計的検定によって、有意差かどうかを検証できる!

統計的検定の論理的基盤

- 統計的検定の考え方 1:対立仮説と帰無仮説
 - 検証したい仮説 (対立仮説) →「性別と橋下好感度の間には差があるだろう」説
 - → 残念ながら, これを直接に検証する手段がない…そこで逆のパタンを考える!
 - 対立仮説と真逆の仮説 (帰無仮説) → 「性別と橋下好感度の間には差がないだろう」
 - → 帰無仮説(2つの変数は関係を持たず独立している場合)を基準に考える!
- 統計的検定の考え方 2:「敵の敵は味方」理論で考える
 - 帰無仮説の方が正しい確率が超高い場合=対立仮説が間違ってる確率が超高い
 - → 「X と Y には差がない」確率が 99%なら「X と Y に差がある」確率は 1%…
 - 帰無仮説の方が正しい確率が超低い場合=対立仮説が間違ってる確率が超低い
 - → 「X と Y には差がない」確率が 1%なら「X と Y に差がある」確率は 99%!
 - * 敵(帰無仮説)の方が間違ってる確率が高いやんけ!(ということは、自分の仮説(対立 仮説)が正しい確率が高いってことやろ?)という論理

算数でわかる統計的検定の基盤

実測値と期待度数(理論値)を計算・比較

実際の結果 (実測値)

				性別	
		無党派	政党支持者	合計	性別%
	女性	293	327	620	47.7%
	男性	260	420	680	52.3%
	合計	553	747	1300	
	党派性%	42.5%	57. 5%		

差のない場合 (期待度数)

	無党派	政党支持者
女性	263.74	356. 26
男性	289. 26	390. 74

- カイ二乗値を計算: $\chi^2 = \sum (ExpV ObsV)^2 / ExpV$
 - * $\chi^2 = (263.74 293)^2 / 263.74 + (289.26 260)^2 / 289.26... \approx 10.80..$

	無党派	政党支持者
女性	3. 25	2. 40
男性	2. 96	2. 19

- 自由度 (df) を計算: m*n の分割表における df=(m-1)*(n-1)
 - * 今回の例で言えば、2*2 なので df=(2-1)*(2-1)=1

カイ二乗分布にもとづく両側検定

- Y 軸が"p-value(p 値)"と呼ばれ、社会科学では慣例的に 5%棄却域が多い
- カイ二乗分布表 (リンク) から計算可能→ df=1 のときの 5%棄却域の $\chi^2=3.84$
- 近年,アメリカ統計協会の声明があって,p値の基準は今後変化する可能性大
- この分析では、 $\chi^2=10.80$ なので、Y 軸:p=0.001014 となる
- → 帰無仮説が正しい確率はほぼ 0.1%であるので、私の方が 99.9%の部がある

