Wintersemester 2023/24

11. Übung zur Vertiefung Analysis

10. Januar 2024

Abgabe bis spätestens Mittwoch 17. Januar 2024 um 18 Uhr per WueCampus (maximal zu dritt).

Aufgabe 11.1 (Hyperbelfunktion, 9 Punkte) Sei $d \in \{1, 2, 3\}$, R > 0, $1 \le p < \infty$ und $\alpha > 0$. Definiere

$$B_R(d;0) := \{ x \in \mathbb{R}^d \mid ||x|| < R \}, \qquad f : \mathbb{R}^d \to \mathbb{R}, \quad x \mapsto \begin{cases} 0, & x = 0, \\ \frac{1}{||x||^{\alpha}}, & x \neq 0. \end{cases}$$

- (a) Sei zunächst d=1. Für welche α, p ist die Funktion $\chi_{B_R(1;0)}f$ in $L^p(\lambda_1)$? Für welche α, p ist die Funktion $\chi_{\mathbb{R}\backslash B_R(1;0)}f$ in $L^p(\lambda_1)$?
- (b) Welche Bedingungen müssen in den Fällen d=2,3 für α,p gelten, damit $\chi_{B_R(d;0)}f\in L^p(\lambda_d)$ ist?
- (c) Sei $1 . Geben Sie eine Funktion <math>g : \mathbb{R} \to \mathbb{R}$ an mit $g \in L^r(\lambda_1)$, $g \notin L^p(\lambda_1)$, $g \notin L^q(\lambda_1)$.
- (d) Geben Sie ein Beispiel für eine Funktion $g:(0,1)\to\mathbb{R}$ an, sodass $g\in L^p(\lambda_1)$ für alle $p\in[1,\infty)$ gilt, aber $g\notin L^\infty(\lambda_1)$.

Aufgabe 11.2 (L^p -Räume, 6 Punkte) Sei (X, \mathcal{A}, μ) ein Maßraum und $1 \le p < q \le \infty$.

(a) Zeigen Sie, dass $L^p(\mu) \cap L^q(\mu) \subseteq L^r(\mu)$ für alle $r \in (p,q)$ gilt und außerdem

$$||f||_{L^r(\mu)} \le ||f||_{L^p(\mu)}^{\theta} ||f||_{L^q(\mu)}^{1-\theta}$$

für alle $f \in L^p(\mu) \cap L^q(\mu)$ und $\theta \in (0,1)$ mit

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1 - \theta}{q}.$$

(b) Sei der Maßraum (X, \mathcal{A}, μ) nun endlich. Zeigen Sie, dass dann $L^q(\mu) \subseteq L^p(\mu)$ und

$$||f||_{L^p(\mu)} \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_{L^q(\mu)}$$

für alle $f \in L^q(\mu)$ gilt.

Hinweis: Betrachten Sie den Raum $L^r(\mu)$ für $r := \frac{q}{n}$.

Aufgabe 11.3 (Kugelsegment, 5 Punkte) Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch f(x, y, z) := |xyz| und

$$A := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1, \ z \ge \frac{1}{2} \right\}.$$

Bestimmen Sie $\int_A f \, d\lambda_3$.