EE360C: Algorithms
The University of Texas at Austin
Dr. Christine Julien, Dr. Vallath Nandakumar

Quiz #11 April 26, 2018 (in class)

Name: EID:

Quiz #11

Problem 1: Polynomial Time Algorithms

Assume you are given an algorithm A that does some polynomial time work and makes some calls to subroutines B_i , each of which does some polynomial time work.

1. Show that if A makes a constant number of calls to subroutines (i.e., it calls each of B_1, B_2, \ldots, B_c once, where c is a constant), then A runs in polynomial time overall.

Solution

Assume that algorithm A runs in polynomial time, not counting calls to subroutines. That is to say A has worst case asymptotic complexity $O(n^k)$ for some k, again, not counting calls to subroutines. A makes a constant numbrer c of calls to polynomial time B_1, B_2, \ldots, B_c , each of which has worst-case asymptotic complexity $O(n^s)$, for some constant s. The size of the outputs of the subroutines must be polynomial in the size of the inputs (otherwise the subroutines wouldn't run in polynomial time); in fact, the size of the outputs of the subroutines is $O(n^s)$. Assume A is run with an input of size n. It then runs subroutine B_1 , with an input size n_1 . How large can n_1 be? Since A runs in $O(n^k)$ time, it follows that n_1 must also be $O(n^k)$. Assume that n_1 is exactly n^k . How long does B_1 take? It takes $O(n_1^s)$ time. Since B_1 runs in $O(n_1^s)$, the size of its output is at most n_1^s . By similar reasoning, B_2 takes time $O(n_2^s)$. We continue this for c steps. How long does this take in total? It takes the time for A pus the time for each of the subroutines. This is $O(n^k) + O(n_1^s) + \cdots + O(n_c^s)$. Since each $n_i = O(n_{i-1}^k)$, the total time is $O((((n^k)^s)^s)^s)) = O(n^{ks^c})$ because there are at most c of the c exponents. This is polynomial in c because c is a constant.

2. Show that if A makes a polynomial number of calls to subroutines (i.e., c in the above is not a constant but is some polynomial function of n), then A does not run in polynomial time overall.

Solution

Taking the above argument and replacing c with n^m shows that A might take exponential time if it makes a polynomial number of calls to polynomial time subroutines.

To better explain, here is a simple example:

```
def B(a):
b = 0
for i in range(a * 2):
b += 1
return b
def A(x):
a = 1
for i in range(x):
a = B(a)
```