

Empowering Agriculture: Enhanced GHG Emissions Modeling

Team Introduction

Leveraging data science for a greener future

Team member

- He Ma
- Hancheng Qin
- Yi Han

Mentor

Simon Goring

Partner

- LiteFarm/UBC
 - > Dr. Khanh Dao Duc

Climate Change and GHG Emissions

Agriculture as a significant player

Climate Change and GHG Emissions

Agriculture as a significant player

Sustainable Farming with LiteFarm

Calculating GHG Emissions: Our Critical Contribution

Sustainable Farming with LiteFarm

Main objective: Empowering farmers, researchers and policy-makers

Objectives

GHG Emissions Modeling

 Confront existing models with high quality global scale data

Enhance GHG Emission Modeling

Objectives

GHG Emissions Modeling

- Confront existing models with high quality global scale data
 - Soil
 - Climate
 - Crops
- Enhance GHG Emission Modeling

Objectives

GHG Emissions Modeling

Confront existing models with high quality global scale data

Enhance GHG Emission Modeling

- Investigating influencing parameters
- Improving accuracy and robustness

LiteFarm Data

Farm Data

124 farms across Canada

- Farm id
- Location: lat/lon
- Area
- Crop types
- ...

LiteFarm Database

Soil Data

Soil texture Great group

. . .

Climate Data

Precipitation Evaporation

..

Created by WiStudio from Noun Project

GHG Estimation

Crop Data

Moisture content of product Nitrogen contents Lifecycle

• •

Sources of External Data

Soil data: FAO Harmonized World Soil Database

Soil data: The Soil Landscapes of Canada (SLC)

Climate data: NASA POWER Project database

Crop data: Peer-reviewed articles and government reports

Enhanced GHG Emissions Modeling

Identify and resolve discrepancies **Existing Models** vs **Python Implementation**

Hard coding → Adaptable datasets
Improve accuracy / Influencing parameters

Method and techniques

GHG Model

- Validating the current model
- Developing and modularizing GHG calculation

Sensitivity Analysis

☐ Multiple runs across farms / years, to identify key drivers of farm GHG emission

Dashboard Design

Two new tabs: Farmer tab for farm-specific emission data; Scientist tab for result from sensitivity analysis

Success criteria

Success criteria

- ☐ Achieve a more precise GHG estimation model
- Allowing range input to provide more flexible calculation
- ☐ Provide output with uncertainty
- Establish Farmer and Scientist tabs on dashboard
- Implement new features with the results of sensitivity analysis and visualize influential variables for the GHG calculation

Timeline

Q&A

Team member

- He Ma
- Hancheng Qin
- Yi Han

Mentor

Simon Goring

Partner

- LiteFarm/UBC
 - Dr. Khanh Dao Duc

