Bank Transaction Analysis: Fraud Detection

Anomaly Detection with Isolation Forest

Widya Catur Utami Putri Data Portfolio

Project Overview

Data Preparation: Loading & Feature Engineering

This section focuses on getting the raw bank transaction data into a usable format This step ensures the data is clean, well-structured, and rich enough for effective analysis and modeling.

Exploratory Data Analysis (EDA): Patterns & Insights

Understand the data's inherent characteristics through visualizations and summary statistics. The goal is to uncover typical spending behaviors, customer demographics, and channel usage patterns.

Anomaly Detection: Methodology & Outlier Characteristics

Using machine learning technique (Isolation Forest Model) to pinpoint unusual transactions. Crucially, we'll then analyze the specific traits of the detected outliers.

Recommendations & Next Steps

Translate analytical findings into actionable strategies. This includes concrete recommendations based on the outlier characteristics.

Data Loading & Initial Inspection

#	Column	Non-Null Count	Dtype
0	TransactionID	2512 non-null	object
1	AccountID	2512 non-null	object
2	TransactionAmount	2512 non-null	float6
3	TransactionDate	2512 non-null	object
4	TransactionType	2512 non-null	object
5	Location	2512 non-null	object
6	DeviceID	2512 non-null	object
7	IP Address	2512 non-null	object
8	MerchantID	2512 non-null	object
9	Channel	2512 non-null	object
10	CustomerAge	2512 non-null	int64
11	CustomerOccupation	2512 non-null	object
12	TransactionDuration	2512 non-null	int64
13	LoginAttempts	2512 non-null	int64
14	AccountBalance	2512 non-null	float6
15	PreviousTransactionDate	2512 non-null	object
	es: float64(2), int64(3), ry usage: 314.1+ KB	object(11)	

- Dataset: Kaggle Bank Transaction Dataset for Fraud Detection.
- Initial Inspection:
 - We have 2,512 transactions and 16 columns.
 - The Transaction Date and Previous Transaction

 Date columns were not in the correct datetime

 format, which will be corrected in the next step.
- Next Steps: Clean and prepare the data for analysis.

Feature Engineering

Date/Time Features:

- Converted date columns to the proper datetime format.
- Extracted the TransactionHour and TransactionDay of the week.
- Calculated DaysSinceLastTransaction to identify unusual gaps between transactions.

Encoding:

- Used Label Encoding for ordinal data like TransactionDay and CustomerOccupation.
- Used One-Hot Encoding for nominal data like TransactionType and Channel.

New Ratios & Brackets:

- Created BalanceChangeRatio by dividing the TransactionAmount by the AccountBalance.
- Categorized CustomerAge into AgeBracket groups.

average age of 44.

Key Findings from EDA

- Customer Ages: Range from 18 to 80 years old, with an
- Customer Occupation: Dominated by Students with 657 transactions, followed closely by Doctors and Engineers with 631 and 625 transactions, respectively.

- Transaction Amount: On average, customers spend around \$298 per transaction. The amounts range from as low as \$0.30 to a high of \$1,919.
- Transaction Types: Debit transactions are more frequent and generally have higher values than credit transactions.

Key Findings from EDA

Most customers successfully logged in on their first try. However, a small but notable number of transactions, specifically 32 out of 2,512, required five login attempts, representing approximately 1.3% of the total transactions. A deeper look showed that the Branch channel was the most frequently used channel among these multiple-attempt transactions.

Anomaly Detection: Methodology

```
Contamination=0.01: Detected 26 outliers.
Contamination=0.02: Detected 51 outliers.
Contamination=0.05: Detected 126 outliers.
Contamination=0.1: Detected 252 outliers.
--- Final Anomaly Detection with chosen contamination ---
Total number of outliers detected: 126
```

The Isolation Forest model is used to detect unusual transactions by breaking the data into smaller segments, making it easier to isolate entries that differ from the norm.

It includes a parameter called contamination, which defines the expected proportion of outliers. After testing several values, a contamination level of 5% was chosen, resulting in 126 transactions being flagged as potentially suspicious.

Anomaly Detection: Outlier Characteristics

• Transaction Type:

- o 76.2% Debit vs. 23.8% Credit.
- Debit transactions are disproportionately represented among outliers, aligning with their higher frequency and value in the overall dataset.

• Channel:

- o 37.3% Branch, 36.5% ATM, 26.2% Online.
- In-person channels (Branch, ATM) show a higher concentration of anomalies, suggesting potential vulnerabilities or unique patterns.

Anomaly Detection: Outlier Characteristics

• Age Bracket:

- 46.8% from 15-29 age group.
- Younger customers (and students) are significantly overrepresented in the outlier group.

• Customer Occupation:

- O 42.9% Students, 21.4% Retired, 20.6% Doctors.
- Consistent with age bracket findings, students' transactions are frequently flagged as unusual.

Anomaly Detection: Outlier Characteristics

• Transaction Day:

- 42.1% occurred on Monday.
- A strong temporal pattern, with a high spike in anomalies at the start of the week.

• Location:

- Outliers are widely distributed, with Jacksonville and Los Angeles having slightly higher counts.
- Anomalies are not confined to a specific geographical area.

Recommendations & Next Steps

Based on the analysis, here are actionable recommendations to secure transaction processes:

- **Prioritize Debit Transaction Monitoring:** Implement stricter real-time monitoring and anomaly detection rules specifically for debit transactions, given their high outlier rate.
- Strengthen ATM & Branch Security Protocols: Review and enhance security measures for in-person transactions, particularly at ATMs and branches, considering their higher susceptibility to unusual activity and multiple login attempts.
- Implement Targeted Scrutiny for Younger Demographics: Develop specific alert thresholds or review processes for transactions originating from the 15-29 age bracket and Students, as their transactions are frequently flagged as unusual.
- Investigate Monday Activity Spikes: Conduct deeper forensic analysis into transactions occurring on Mondays to understand the root causes of the elevated anomaly rate on this specific day.
- **Develop a Tiered Alert System**: Create an automated system that generates different alert levels based on a combination of high-risk factors (e.g., a high-value debit transaction from an ATM by a young student on a Monday).

Thank you