МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразования КС-грамматик.»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №2

Преобразования КС-грамматик. Вариант 8

Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Задание:

- 1. $T \rightarrow abETP$
- 2. $T \rightarrow aDE$
- $3. T \rightarrow D$
- 4. $D \rightarrow DTAb$
- 5. $D \rightarrow b$
- 6. $E \rightarrow \varepsilon$
- 7. $P \rightarrow BCa$
- 8. $P \rightarrow Cb$
- 9. $C \rightarrow abC$
- 10. $A \rightarrow Bbb$
- 11. $B \rightarrow aECb$
- 12. $B \rightarrow D$
 - 1. Преобразовать исходную грамматику G в грамматику G_1 без лишних символов. **Модификации:** в ходе выполнения лабораторной работы обнаружено, что в грамматике не будет недостижимых символов. Поэтому добавим правило:

13.
$$S \rightarrow ab$$

Найдём в исходной грамматике бесплодные нетерминалы.

Для начала найдём продуктивные нетерминалы.

В множество продуктивных нетерминалов Р включаем нетерминал D (правило 5) нетерминал E (правило 6) и нетерминал S (правило 13). Получаем = $\{D, E, S\}$. Повторяем проверку и включаем нетерминал T (правило 2) и нетерминал B (правило 12). Получаем $P = \{D, E, S, T, B\}$

Повторяем проверку и включаем A (правило 10). Получаем $P = \{D, E, S, T, B, A\}$ Множество P больше увеличить не можем.

Из множества нетерминалов исключаем продуктивные нетерминалы и получаем $\{P,C\}$ - множество бесплодных нетерминалов.

Исключаем правила 1, 7, 8, 9, 11 так как они содержат бесплодные нетерминалы. Получаем грамматику:

- 2. $T \rightarrow aDE$
- 3. $T \rightarrow D$
- 4. $D \rightarrow DTAb$

5.
$$D \rightarrow b$$

6.
$$E \rightarrow \varepsilon$$

10.
$$A \rightarrow Bbb$$

12.
$$B \rightarrow D$$

13.
$$S \rightarrow ab$$

Найдём достижимые символы.

Положим $P = \{T\}$, где T - начальный нетерминал.

Включим в список a, D, E (правило 2). $P = \{T, a, D, E\}$.

Включим в список b, A (правило 4), ε . $P = \{T, a, D, E, \varepsilon, b, A\}$.

Включим в список B (правило 10). $P = \{T, a, D, E, \varepsilon, b, A, B\}.$

Множество Р больше увеличить не можем.

Из множества терминалов и нетерминалов исключаем достижимые терминалы и нетерминалы и получаем $\{S\}$ - множество недостижимых нетерминалов и терминалов.

Исключаем из грамматики правило 13, так как оно содержит недостижимый символ.

Искомая грамматика G_1 :

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \to \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

2. Преобразовать грамматику G_1 в грамматику G_2 без ε -правил.

Выберем правило 5. Иключаем из правой части каждого правила исходной грамматики всеми возможными способами вхождение нетерминала Е. Полученные правила добавляем в множество правил грамматики.

1_1.
$$T \rightarrow aDE$$

1 2.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Исключаем из списка правил правило 5.

1 1.
$$T \rightarrow aDE$$

$$1^{-}2. T \rightarrow aD$$

$$2.T \rightarrow D$$

$$3. D \rightarrow DTAb$$

- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Исключим из правил непродуктивные символы:

- 1 2. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

В полученной грамматике G_2 нет правил вида $A \to A$, одинаковых правил и ε -правил.

3. Преобразовать грамматику G_1 в грамматику G_3 без цепных правил.

Применим замену края:

Исходная грамматика:

- 1. $T \rightarrow aDE$
- 2. $\mathbf{T} \rightarrow \mathbf{D}$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Шаг 1:

- $1. T \rightarrow aDE$
- 2 1. $T \rightarrow DTAb$
- $2^{-}2. T \rightarrow b$
- $3.D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $\mathbf{B} \rightarrow \mathbf{D}$

Шаг 2:

- 1. $T \rightarrow aDE$
- 2 1. $T \rightarrow DTAb$
- 2_2. $T \rightarrow b$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7 1. $B \rightarrow DTAb$
- $7^{-}2. B \rightarrow b$

Цепных правил не осталось. Получили искомую грамматику G_3 .

Альтернативный вариант:

Исключим из грамматики все нецепные правила. Это правила 1, 3, 4, 5, 6.

- $2. T \rightarrow D$
- $7. B \rightarrow D$

Примем множества $M^T=\{T\}$. Включим нетерминал D в множество M^T , так как есть правило 2 $T\to D$. $M^T=\{T,D\}$. Больше в M^T ничего добавить не можем. Исключаем T: $M^T=\{D\}$.

Примем множества $M^B=\{B\}$. Включим нетерминал D в множество M^T , так как есть правило 7 $B\to D$. $M^B=\{B,D\}$. Больше в M^T ничего добавить не можем. Исключаем B: $M^B=\{D\}$.

Исключаем из грамматики G_1 все цепные правила:

- 1. $T \rightarrow aDE$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- $6. A \rightarrow Bbb$

Для правила 3 добавим правило 3_1. $T \to DTAb$, так как D принадлежит $M^T = \{D\}$.

Для правила 3 добавим правило 3_2. $B \to DTAb$, так как D принадлежит $M^B = \{D\}$.

Для правила 4 добавим правило 4_1. $T \to b$, так как D принадлежит $M^T = \{D\}$. Для правила 4 добавим правило 4_2. $B \to b$, так как D принадлежит $M^B = \{D\}$.

Искомая грамматика G_3 :

- 1. $T \rightarrow aDE$
- 3. $D \rightarrow DTAb$
- 3 1. $T \rightarrow DTAb$
- 3_2. $B \rightarrow DTAb$
- $4.D \rightarrow b$
- 4_1. $T \rightarrow b$
- $4_2. B \rightarrow b$
- $5.E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 4. Преобразовать грамматику G_1 в грамматику G_4 без левой рекурсии.

Алгоритм применим, если грамматика не имеет циклов (цепных правил) и ε -правил. Для получения грамматики без ε -правил воспользуемся грамматикой G_2 .

- 1. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- $4. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

Преобразуем эту грамматику так, чтобы в ней не было цепных правил.

Исходная грамматика:

- $1. T \rightarrow aD$
- 2. $\mathbf{T} \rightarrow \mathbf{D}$
- 3. $D \rightarrow DTAb$
- $4. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Выполним замену края:

- 1. $T \rightarrow aD$
- 2 1. $T \rightarrow DTAb$
- $2^{-}2. T \rightarrow b$
- $3. D \rightarrow DTAb$
- 4. $D \rightarrow b$
- $6. A \rightarrow Bbb$
- 7. $\mathbf{B} \to \mathbf{D}$

Выполним замену края:

- 1. $T \rightarrow aD$
- $2_1. T \rightarrow DTAb$
- 2_2. $T \rightarrow b$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7_1. $B \rightarrow DTAb$
- 7_2. $B \rightarrow b$

Получили грамматику G_3' без лишних символов, ε -правил и цепных правил:

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DTAb$
- $5. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow DTAb$
- 8. $B \rightarrow b$

Обозначим нетерминалы грамматики: T, D, A, B как A_1, A_2, A_3, A_4 соответственно.

- $1. A_1 \rightarrow aA_2$
- $2. A_1 \rightarrow A_2 A_1 A_3 b$
- $3. A_1 \rightarrow b$
- 4. $A_2 \rightarrow A_2 A_1 A_3 b$
- $5. A_2 \rightarrow b$
- 6. $A_3 \rightarrow A_4bb$
- 7. $A_4 \rightarrow A_2 A_1 A_3 b$
- $8. A_4 \rightarrow b$

Рассмотрим нетерминал A_1 .

Правил вида $A_1 \to A_0 a$ не существует, следовательно замену края выполнять не будем.

Самолеворекурсивных правил для A_1 также нет.

Рассмотрим нетерминал A_2 .

Правил вида $A_2 \to A_1 a$ не существует, следовательно замену края выполнять не будем.

Для A_2 существует самолеворекурсивное правило 4. Также существует несаморекурсивное правило 5. Заменим эти правила:

- $1. A_1 \rightarrow aA_2$
- 2. $A_1 \rightarrow A_2 A_1 A_3 b$
- $3. A_1 \rightarrow b$
- 9. $A_2 \rightarrow bB_1$
- 10. $B_1 \to A_1 A_3 b B_1$
- 11. $B_1 \to \varepsilon$
- 6. $A_3 \rightarrow A_4bb$
- 7. $A_4 \rightarrow A_2 A_1 A_3 b$
- $8. A_4 \rightarrow b$

Рассмотрим нетерминал A_3 .

Правил вида $A_3 \to A_2 a$ не существует, следовательно замену края выполнять не будем.

Самолеворекурсивных правил для A_3 также нет.

Рассмотрим нетерминал A_4 .

Существует правило 7. $A_4 \to A_2 A_1 A_3 b$, выполним замену края:

- $1. A_1 \rightarrow aA_2$
- $2. A_1 \rightarrow A_2 A_1 A_3 b$
- 3. $A_1 \rightarrow b$
- 9. $A_2 \rightarrow bB_1$
- 10. $B_1 \to A_1 A_3 b B_1$
- 11. $B_1 \to \varepsilon$
- 6. $A_3 \rightarrow A_4bb$
- 12. $A_4 \rightarrow bB_1A_1A_3b$

8.
$$A_4 \rightarrow b$$

Искомая грамматика G_4 :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- 6. $B_1 \rightarrow \varepsilon$
- 7. $A \rightarrow Bbb$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$

5. Преобразовать грамматику G_1 в грамматику G_5 без несаморекурсивных нетерминалов.

Искходная грамматика:

- 1. $T \rightarrow aDE$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Нетерминал Е несаморекурсивный.

Исключаем правило 5:

5.
$$E \rightarrow \varepsilon$$

Выбираем вхождение символа Е в правиле 1 и выполняем замену на правую часть правила 5:

- 1 1. $T \rightarrow aD$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- $6. A \rightarrow Bbb$
- 7. $B \rightarrow D$

Нетерминал Т несаморекурсивный.

Исключаем правила 1_1, 2:

- $1_1. T \rightarrow aD$
- $2.T \rightarrow D$

Выбираем вхождение символа T в правиле 3 и выполняем замену на правую часть правил 1_1 , 2:

- 3 1. $D \rightarrow DaDAb$
- $\overline{3}$ 2. $D \rightarrow DDAb$

4.
$$D \rightarrow b$$

$$6. A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Нетерминал В несаморекурсивный.

Исключаем правило 7:

7.
$$B \rightarrow D$$

Выбираем вхождение символа В в правиле 6 и выполняем замену на правую часть правила 7:

$$3$$
 1. $D \rightarrow DaDAb$

$$\overline{3}$$
 2. $D \rightarrow DDAb$

4.
$$D \rightarrow b$$

$$6_1. A \rightarrow Dbb$$

Нетерминал А несаморекурсивный.

Исключаем правило 6 1:

6 1.
$$A \rightarrow Db\bar{b}$$

Выбираем вхождение символа А в правилах 3_1, 3_2 и выполняем замену на правую часть правила 6_1:

$$3_1_1. D \rightarrow DaDDbbb$$

$$3\ 2\ 2.\ D \rightarrow DDDbbb$$

$$4. D \rightarrow b$$

Искомая грамматика G_5 :

$$1. D \rightarrow DaDDbbb$$

2.
$$D \rightarrow DDDbbb$$

$$3. D \rightarrow b$$

6. Получить грамматику G_6 , эквивалентную грамматике G_1 , в которой правая часть каждого правила состоит либо из одного терминала, либо двух нетерминалов.

Для получения грамматики G_6 необходимо привести грамматику G_1 к нормальной форме Хомского.

Воспользуемся грамматикой G_3' , в которой нет цепных правил, ε -правил и цепных правил.

Исходная грамматика:

1.
$$T \rightarrow aD$$

2.
$$T \rightarrow DTAb$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow DTAb$$

5.
$$D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow DTAb$$

8.
$$B \rightarrow b$$

Выполним пункт 1 алгоритма (преобразование правил вида $A \to Xa$):

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow TAb$
- 1. $T \rightarrow aD$
- 2. $T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow TAb$
- 10. $N_2 \rightarrow bb$
- 1. $T \rightarrow aD$
- $2. T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow N_3 b$
- 10. $N_2 \rightarrow bb$
- 11. $N_3 \rightarrow TA$

Выполним пункт 2 алгоритма (преобразование правил вида $A \to tB$):

- 1. $T \rightarrow N_4D$
- 2. $T \rightarrow DN_1$
- 3. $T \rightarrow b$
- $4. D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow N_3 b$
- 10. $N_2 \rightarrow bb$

11.
$$N_3 \rightarrow TA$$

12.
$$N_4 \rightarrow a$$

Выполним пункт 3 алгоритма (преобразование правил вида $A \to Bt$):

1.
$$T \rightarrow N_4D$$

$$2. T \rightarrow DN_1$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow DN_1$$

$$5. D \rightarrow b$$

6.
$$A \rightarrow BN_2$$

7.
$$B \rightarrow DN_1$$

8.
$$B \rightarrow b$$

9.
$$N_1 \rightarrow N_3 T$$

10.
$$N_2 \rightarrow bb$$

11.
$$N_3 \rightarrow TA$$

12.
$$N_4 \rightarrow a$$

Выполним пункт 4 алгоритма (преобразование правил вида $A \to tt$):

1.
$$T \rightarrow N_4D$$

$$2. T \rightarrow DN_1$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow DN_1$$

5.
$$D \rightarrow b$$

6.
$$A \rightarrow BN_2$$

7.
$$B \rightarrow DN_1$$

8.
$$B \rightarrow b$$

9.
$$N_1 \rightarrow N_3 T$$

10.
$$N_2 \rightarrow TT$$

11.
$$N_3 \to TA$$

12.
$$N_4 \rightarrow a$$

Искомая грамматика G_6 :

1.
$$T \rightarrow N_4D$$

$$2. T \rightarrow DN_1$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow DN_1$$

5.
$$D \rightarrow b$$

6.
$$A \rightarrow BN_2$$

7.
$$B \rightarrow DN_1$$

8.
$$B \rightarrow b$$

9.
$$N_1 \rightarrow N_3 T$$

10.
$$N_2 \rightarrow TT$$

11.
$$N_3 \rightarrow TA$$

12.
$$N_4 \rightarrow a$$

7. Получить грамматику G_7 , эквивалентную грамматике G_1 , в которой правая часть каждого правила начинается терминалом.

Для получения грамматики G_7 необходимо привести грамматику G_1 к нормальной форме Грейбах.

Используем преобразованную грамматику G_1 без левой рекурсии G_4 :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- 6. $B_1 \rightarrow \varepsilon$
- 7. $A \rightarrow Bbb$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$

Упорядочим грамматику:

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- 7. $A \rightarrow Bbb$
- 6. $B_1 \rightarrow \varepsilon$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$
- 3. $T \rightarrow b$

Выполнение замены края:

- $1. T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- $7_1. A \rightarrow bB_1TAbbb$
- $7\overline{}2. A \rightarrow bbb$
- 6. $B_1 \rightarrow \varepsilon$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$
- $3. T \rightarrow b$
- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 4. $D \rightarrow bB_1$
- $5_1. B_1 \rightarrow bAbB_1$

7 1.
$$A \rightarrow bB_1TAbbb$$

7 2.
$$A \rightarrow bbb$$

6.
$$B_1 \rightarrow \varepsilon$$

8.
$$B \rightarrow bB_1TAb$$

9.
$$B \rightarrow b$$

3.
$$T \rightarrow b$$

$$1. T \rightarrow aD$$

2 1.
$$T \rightarrow bB_1TAb$$

$$4. D \rightarrow bB_1$$

5 1.
$$B_1 \rightarrow bAbB_1$$

7 1.
$$A \rightarrow bB_1TAbbb$$

$$7^-2. A \rightarrow bbb$$

6.
$$B_1 \to \varepsilon$$

8.
$$B \rightarrow bB_1TAb$$

9.
$$B \rightarrow b$$

3.
$$T \rightarrow b$$

Введём правило $N \to b$ и выполним замену, где необходимо:

1.
$$T \rightarrow aD$$

$$2_1. T \rightarrow bB_1TAN$$

4.
$$D \rightarrow bB_1$$

5 1.
$$B_1 \rightarrow bANB_1$$

$$7_1. A \rightarrow bB_1TANNN$$

$$7 2. A \rightarrow bNN$$

$$6.B_1 \rightarrow \varepsilon$$

8.
$$B \rightarrow bB_1TAN$$

9.
$$B \rightarrow b$$

3.
$$T \rightarrow b$$

10.
$$N \rightarrow b$$

Искомая грамматика G_7 :

1.
$$T \rightarrow aD$$

2.
$$T \rightarrow bB_1TAN$$

3.
$$D \rightarrow bB_1$$

4.
$$B_1 \rightarrow bANB_1$$

5.
$$A \rightarrow bB_1TANNN$$

6.
$$A \rightarrow bNN$$

7.
$$B_1 \to \varepsilon$$

8.
$$B \rightarrow bB_1TAN$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$N \rightarrow b$$

каждого не ε -правила начинается терминалом и любые два правила с одинаковой левой частью различаются первым символом в правой части.

Для получения такой грамматики можем проводить множественную левую факторизацию и замену в грамматике G_7 .

Модификации: в ходе выполнения задания было получено крайне большое количество вычислений, поэтому из грамматики G_7 были удалены правила: $T \to b$, $T \to bB_1TAN$.

Исходная грамматика:

 $T \to aD$

 $A \rightarrow bNN$

 $A \rightarrow bB_1TANNN$

 $B_1 \rightarrow bANB_1$

 $B_1 \to \varepsilon$

 $B \to b$

 $B \rightarrow bB_1TAN$

 $D \rightarrow bB_1$

 $N \to b$

Выполним левую факторизацию для В:

 $T \to aD$

 $A \to bNN$

 $A \rightarrow bB_1TANNN$

 $B_1 \to bANB_1$

 $B_1 \to \varepsilon$

 $B \to BE_1$

 $D \to bB_1$

 $N \to b$

 $E_1 \to \varepsilon$

 $E_1 \to B_1 TAN$

Выполним замену для E_1 :

 $T \to aD$

 $A \to bNN$

 $A \rightarrow bB_1TANNN$

 $B_1 \to bANB_1$

 $B_1 \to \varepsilon$

 $B \to BE_1$

 $D \to bB_1$

 $N \to b$

 $E_1 \to \varepsilon$

 $E_1 \rightarrow bANB_1TAN$

 $E_1 \rightarrow aDAN$

Искомая грамматика G_8 :

- 1. $T \rightarrow aD$
- 2. $A \rightarrow bNN$
- 3. $A \rightarrow bB_1TANNN$
- 4. $B_1 \rightarrow bANB_1$
- 5. $B_1 \rightarrow \varepsilon$
- 6. $B \rightarrow BE_1$
- 7. $D \rightarrow bB_1$
- 8. $N \rightarrow b$
- 9. $E_1 \rightarrow \varepsilon$
- 10. $E_1 \rightarrow bANB_1TAN$
- 11. $E_1 \rightarrow aDAN$

9. Получить грамматику G_9 , эквивалентную грамматике G_1 , в которой правая часть каждого правила не содержит двух стоящих рядом нетерминала.

Для получения такой грамматики преобразуем грамматику G_7 к операторной КС-грамматике.

Исходная грамматика:

- 1. $T \rightarrow aD$
- 2. $T \rightarrow bB_1TAN$
- 3. $D \rightarrow bB_1$
- 4. $B_1 \rightarrow bANB_1$
- 5. $A \rightarrow bB_1TANNN$
- 6. $A \rightarrow bNN$
- 7. $B_1 \rightarrow \varepsilon$
- 8. $B \rightarrow bB_1TAN$
- 9. $B \rightarrow b$
- 10. $T \rightarrow b$
- 11. $N \rightarrow b$

Выполним замену символа N во всех правилах, при этом N станет недостижимым и его можно будет удалить. 1. $T \to aD$

- 2. $T \rightarrow bB_1TAb$
- $3. D \rightarrow bB_1$
- 4. $B_1 \rightarrow bAbB_1$
- 5. $A \rightarrow bB_1TAbbb$
- 6. $A \rightarrow bbb$
- 7. $B_1 \rightarrow \varepsilon$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$
- 10. $T \rightarrow b$

Рассмотрим правило 2. Добавим правило $N_1 \to B_1 TA$ и выполним замену:

- 1. $T \rightarrow aD$
- 2. $T \rightarrow bN_1b$

```
3. D \rightarrow bB_1
```

4.
$$B_1 \rightarrow bAbB_1$$

5.
$$A \rightarrow bB_1TAbbb$$

6.
$$A \rightarrow bbb$$

7.
$$B_1 \rightarrow \varepsilon$$

8.
$$B \rightarrow bB_1TAb$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$N_1 \rightarrow B_1 T A$$

Рассмотрим правило 8. Заменим B_1TA на N_1 :

1.
$$T \rightarrow aD$$

2.
$$T \rightarrow bN_1b$$

3.
$$D \rightarrow bB_1$$

4.
$$B_1 \rightarrow bAbB_1$$

5.
$$A \rightarrow bB_1TAbbb$$

6.
$$A \rightarrow bbb$$

7.
$$B_1 \rightarrow \varepsilon$$

8.
$$B \rightarrow bN_1b$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$N_1 \rightarrow B_1 T A$$

Вывод: в ходе лабораторной работы изучили основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.