

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. M. Wolf Dr. M. Prähofer

Mathematik für Physiker 3 (Analysis 2)

Sommersemester 2013 Probeklausur

http://www-m5.ma.tum.de/Allgemeines/MA9203_2013S

(25.06.2011)

- Schreiben Sie bitte Name, Matrikelnummer und die Tutorgruppe für die Rückgabe auf jeden Bearbeitungsbogen.
- Nummerieren Sie die Lösungen der Aufgaben deutlich.
- Bei Kästchen- und Multiple-Choice-Aufgaben zählt nur das Ergebnis.

Aufgaben

1. Stetige Urbilder abgeschlossener Mengen sind abgeschlossen

Sei X ein metrischer Raum.

- (a) Charakterisieren Sie die Eigenschaft, dass $A\subseteq X$ eine abgeschlossene Menge ist mit Hilfe konvergenter Folgen.
- (b) Sei Y ein weiterer metrischer Raum, $f: X \to Y$ eine stetige Abbildung und $B \subseteq Y$ eine abgeschlossene Menge. Zeigen Sie, dass $f^{-1}(B)$ abgeschlossen ist.

2. Differenzierbarkeit

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} x \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$$

- (a) Wie lauten die partiellen Ableitungen $\partial_x f(0,0)$ und $\partial_y f(0,0)$?
- (b) Wie lautet die Richtungsableitung $\partial_v f(0,0)$ in Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ im Ursprung?
- (c) Ist f differenzierbar im Ursprung? Begründen Sie kurz.
- (d) Zeigen Sie, dass f eine stetige Funktion ist.

3. Taylorentwicklung

Sei $f \in C^3(\mathbb{R}^2, \mathbb{R})$ mit einem stationären Punkt bei $(0, \frac{\pi}{2})$ und $\partial_1^2 f(0, \frac{\pi}{2}) = 1$, $\partial_1 \partial_2 f(0, \frac{\pi}{2}) = \partial_2^2 f(0, \frac{\pi}{2}) = -1$.

- (a) Der Punkt $(0, \frac{\pi}{2})$ ist für f ein
 - \Box lokales Maximum \Box Sattelpunkt \Box lokales Minimum
- (b) Sei nun $h(\phi) = f(\phi \cos \phi, \phi \sin \phi)$. Wie lautet die Taylorentwicklung von h im Punkt $\phi = \frac{\pi}{2}$ bis zur zweiten Ordnung?

$$h(\phi) = +\mathcal{O}\left((\phi - \frac{\pi}{2})^3\right)$$

- (c) $\frac{\pi}{2}$ ist für h ein
 - \square lokales Maximum \square Sattelpunkt \square lokales Minimum.

4. Kurvenintegral

Sei $F \in C(\mathbb{R}^3, \mathbb{R}^3)$ ein Kraftfeld und $\gamma \in C^2([t_0, t_1], \mathbb{R}^3)$, $t \mapsto \gamma(t)$, die Bahn eines Teilchens der Masse m=1, welches sich gemäß des 2. Newtonschen Gesetzes $F(\gamma(t))=m\,\ddot{\gamma}(t)$ im Zeitintervall $[t_0, t_1]$ von $\gamma(t_0)=(0,0,0)$ nach $\gamma(t_1)=(1,1,1)$ bewege und bei $\gamma(t_0)$ die Geschwindigkeit $\dot{\gamma}(t_0)=0$ und bei $\gamma(t_1)$ den Geschwindigkeitsbetrag $\|\dot{\gamma}(t_1)\|=2$ besitze. Berechnen sie die von F geleistete Arbeit, d.h., das Kurvenintegral von F entlang der Teilchenbahn γ .

5. Lokale Extrema

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(u,v) := u^3 + v^3 + u^2 + v^2$$

und die folgenden Punkte in \mathbb{R}^2 ,

$$x_1 = (0,0), \quad x_2 = (0,2/3), \quad x_3 = (-2/3,0), \quad x_4 = (-1,0), \quad x_5 = (-2/3,-2/3).$$

Welche Aussagen sind richtig?

(a)	fbesitzt einen kritischen Punkt in	x_1	x_2	x_3	x_4	x_5
(b)	f besitzt eine lokales Maximum in	x_1	x_2	x_3	x_4	x_5
(c)	\boldsymbol{f} besitzt eine lokales Minimum in	x_1	x_2	x_3	x_4	x_5
(d)	f besitzt einen Sattelpunkt in	x_1	x_2	x_3	x_4	x_5

6. Implizit definierte Funktionen

Gegeben sind die Gleichungen

$$x + y + \sin z = 0,$$

$$3\sin x - 2\tan y - z = 0.$$

- (a) Zeigen Sie, dass man dieses Gleichungssystem im Ursprung lokal gleichzeitig nach y und z auflösen kann und berechnen Sie die erste Ableitung der so implizit definierten Funktion $x \mapsto g(x)$ im Punkt x = 0.
- (b) Die Lösungsmenge dieses Gleichungssystems werde im Ursprung lokal als Kurve im \mathbb{R}^3 durch x parametrisiert. Geben Sie mit Hilfe von (a) den Einheitstangentialvektor an diese Kurve im Ursprung an.

$7. \ Lagrange multiplikator$

Es sei $P = (x_0, y_0, z_0) \in \mathbb{R}^3$ ein regulärer Punkt von $f \in C^1(\mathbb{R}^3, \mathbb{R})$ mit f(P) = 0. Wir nehmen an, dass die Gleichungen $f_1(x, y, z) = 0$ lokal in P nach z aufgelöst werden kann, was die implizit definierte Funktion $\tilde{z}(x, y)$ ergibt.

- (a) Wie lautet der Gradient von \tilde{z} im Punkt (x_0, y_0) ?
- (b) Sei nun $h \in C^1(\mathbb{R}^3, \mathbb{R})$, so dass die in einer Umgebung von (x_0, y_0) definierte Funktion $\tilde{h}(x, y) = h(x, y, \tilde{z}(x, y))$ einen stationären Punkt in (x_0, y_0) hat. Zeigen Sie, dass dann $\nabla h(P) = \lambda \nabla f(P)$ gilt und bestimmen Sie $\lambda \in \mathbb{R}$.