ITGS301: TUTORIAL
Mai Elbaabaa

REVIEW

- · Master theorem method
- · Recurrence tree method
- Kruscl Vs Prime's Algorithms
- 2 Questions from midterm

MASTER THEOREM

- The Master Method is used for solving the following types of recurrence
- T(n) = a T(n/b) + f(n)
- Where a=>1, b>1, and f is a function, f(n)>0.
 - *Idea:* compare f(n) with $n^{\log_b a}$
- Case 1: $T(n) = \Theta(n^{\log_b a})$ if $f(n) < n^{\log_b a}$
- Case 2: $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = n^{\log_b a}$
- Case 3: $T(n) = \Theta(f(n))$ if $f(n) > n^{\log_b a}$

$$T(n) = 3T(n/2) + n^2$$

Here,

$$a = 3$$

$$n/b = n/2$$

$$f(n) = n^2$$

$$logb \ a = log_2 \ 3 \approx 1.58 < 2$$

ie.
$$f(n) < n^{\log b} a$$
.

Case 3 implies here.

Thus,
$$T(n) = f(n) = \Theta(n^2)$$

$$y = \log_b x \quad \Rightarrow \quad b^y = x$$

$$b^{\log_b x} = x$$

The master theorem cannot be used if:

T(n) is not monotone. eg. T(n) = $\sin n$ f(n) is not a polynomial. eg. f(n) = 2^n a is not a constant. eg. a = 2^n a < 1

$$T(n) = a T(\frac{n}{b}) + \theta (n^k \log^p n)$$

Master's Theorem

- Here, $a \ge 1$, $b \ge 1$, $k \ge 0$ and p is a real number.
- $T(n) = 6T(n/3) + n^2 \log n$
- a = 6, b = 3, k = 2, P = 1
- b^k
- 3^2
- 6 < 9 ,case 3 $p \ge 0$
- $T(n) = \Theta(n^2 \log n)$ (Case 3)

1. if $a > b^k$, then $T(n) = \theta(n^{\log_b a})$

2. if $a = b^k$, then

(a) if p > -1, then $T(n) = \theta(n^{\log_b a} \log^{p+1} n)$

(b) if p = -1, then $T(n) = \theta(n^{\log_b a} \log \log n)$

(c) if p < -1, then $T(n) = \theta(n^{\log_b a})$

3. if $a < b^k$, then

(a) if $p \ge 0$, then $T(n) = \theta(n^k \log^p n)$

(b) if p < 0, then $T(n) = \theta(n^k)$

Master's Theorem can only be used for recurrence relations of the form:

•T(n) T(n) = aT(n/b) + f(n), where $f(n) = \theta(n^k \log^p n)$ (Dividing Recurrence Relation)

MASTER THEOREM EXAMPLES

- $T(n) = 16T(n/4) + n! \implies T(n) = \Theta(n!)$ (Case 3)
- $T(n) = \sqrt{2}T(n/2) + \log n \Longrightarrow T(n) = \Theta(\sqrt{n})$ (Case 1)
- 3. $T(n) = 3T(n/2) + n \implies T(n) = \Theta(n^{1}g 3)$ (Case 1)
- 4. $T(n) = 3T(n/3) + \sqrt{n} \Longrightarrow T(n) = \Theta(n)$ (Case 1)
- 5. $T(n) = 2T(n/2) + n/\log n \implies Does not apply (f(n)) \implies -n\log n$ egative

RECURRENCE TREE METHOD T(1) = cT(n)The local TC at the node Problem size cn) = a*T(n/b)+T(n/b)c(n/b) c(n/b) c(n/b) Number of subproblems => Size of a subproblem => $c(n/b^2)$ Number of children of a node Affects the number of recursive in the recursion tree. => calls (frame stack max height and Affects the number of nodes tree height) per level. At level i there will Recursion stops at level p for which be ainodes. the pb size is 1 (the node is labelled Affects the level TC. $T(1)) => n/b^p = 1 =>$ T(n/bp) Last level, p, will be: $p = log_b n$ C (assuming the base case is for T(1)).

TC = time complexity

PRIM'S AND KRUSKAL'S ALGORITHMS-

QUESTION FROM MIDTERM

- Big oh of f(n) = 4 + 8 + 12 + ... + 4n
- F(n)= 4(1+2+3+4.....+n)
- F(n)= 4n(n+1)/2
- $F(n) = 2n^2 + 2$
- $O(f(n))=O(n^2)$

• Arithmetic series: $\sum_{k=1}^{n} k = 1 + 2 + ... + n = \frac{n(n+1)}{2}$

QUESTION FROM MIDTERM

· asymptotic notations

•
$$F(n) = 6n^4 + 4n^2 + \log n$$

• $T(n) = \Omega(n^2)$ lower bound

•
$$T(n) = O(n^4)$$

•
$$T(n) = \Theta(n^4)$$

• $T(n)=O(n^2)$ upper bound worst case false

Big Oh Notation, O

This implies that f(n) does not grow faster than g(n), or g(n) is an upper bound on the function f(n).

Omega Notation, Ω

It is used to bound the growth of running time for large input size. f(n) is on the order of g(n))

Assume $T(n)=c1n^2+c2n$ for c1 and c2>0. Then,

$$C1 n^2 + c2 n \ge c1 n2$$

for all n>1. So, $T(n) \ge cn2$ for c=c1 and n0=1. Therefore, T(n) is in $\Omega(n2)$ by the definition.

It is also true that the equation of the example above is in $\Omega(n)$.