MIS772 Predictive Analytics

Time Series Analysis and Forecasting

Refer to your textbook by Vijay Kotu and Bala Deshpande, *Data Science: Concepts and Practice*, 2nd ed, Elsevier, 2018.

Time Series Analysis and Forecasting

- Fundamental concepts
- Model-based time series analysis
- Stationarity and auto-correlation
- Forecasting
- Multi-horizon forecasting
- Multi-variate time series

So far nm the unit...

- Predictive models on cross-sectional data
 - A set of predictors or independent variables
 - To predict the class or dependent variable (different from the predictors)
 - Regardless of the time dimension

What if...

- There is a time dimension (data are timestamped)
- Aim: To predict the value/s of an attribute that is/are changing over time

THE LANCET Planetary Health

- "...ambulance callouts, emergency department presentations, and data on hospital admissions for **Nov 21**, **2016**, as well as leading up to and following the event were collected..."
- "...At 1800 AEDT, a gust front crossed Melbourne, plunging temperatures 10°C, raising humidity above 70%, and concentrating particulate matter. Within 30 h, there were 3365 (672%) excess respiratory-related presentations to emergency departments, and 476 (992%) excess asthma-related admissions to hospital"

Source: Thien, F. et al. (2018), Vol 2, Issue 6, E255-E263

Mini case study: Demand forecasting

- An emergency hospital wants to estimate their staff requirements (doctors, specialists, nurses, support staff)
 - Considerations...
- Weather seasons: spike in demand because of climatic conditions, different activities people engage in
- Recent years: overall demand has grown as a result of growth in region
- These all mean: there is seasonality and trend in the demand for the emergency services
 - Aim: The hospital would like to...
- forecast the demand for different staff requirements (weekly, monthly, annually)
- plan for required resources (rostering, on call)

Terminology

- Time periods
 - Refers to any time interval that is of interest
 - E.g., seconds, minutes, weeks, months, years, etc.
- Horizon
 - The time period for which forecasting is done
 - E.g., next week, three weeks from now, or two years from now
- Forecast error
 - Is the difference between the predicted value of the attribute and its actual value at any time
 - Calculated as: $e_t = y_t F_t$

Data components

- Time series data are called nonstationary if the data exhibits...
 - Seasonality: The data have regular and predictable changes that recur over time, with a (relatively) fixed period. This is called cyclicality when the data have regular changes that recur over time, but with a non-fixed period.
 - **Trend:** The data have a pattern of gradual change over time.

- Random noise: The data have some normal fluctuations even after the seasonality and trend components have been taken out.
- The above characteristics will result in different means and variances over time.

A real-estate agency in Ames (USA) would like to determine if the housing market is going to increase in volume in the next quarter and if the prices are likely to go up or down. They are also interested in the time periods that are best for selling or buying property and if the auctions give best results on weekends or weekdays.

Row No.	PID	SalePrice	MS_SubClass	MS_Zoning	Lot_Frontage	Lot_Area	Street	Alley	Lot_Shape	Land_Contour	Utilities	Lot_Config	Land_Slope	Neighborhood	Condition_1	Condition_
1	526301100	215000	20	RL	141	31770	Pave	NA	IR1	LvI	AllPub	Corner	GtI	NAmes	Norm	Norm
2	526350040	105000	20	RH	80	11622	Pave	NA	Reg	LvI	AllPub	Inside	GtI	NAmes	Feedr	Norm
3	526351010	172000	20	RL	81	14267	Pave	NA	IR1	LvI	AllPub	Corner	GtI	NAmes	Norm	Norm
4	526353030	244000	20	RL	93	11160	Pave	NA	Reg	LvI	AllPub	Corner	GtI	NAmes	Norm	Norm
5	527105010	189900	60	RL	74	13830	Pave	NA	IR1	LvI	AllPub	Inside	GtI	Gilbert	Norm	Norm
6	527105030	195500	60	RL	78	9978	Pave	NA	IR1	LvI	AllPub	Inside	GtI	Gilbert	Norm	Norm
7	527127150	213500	120	RL	41	4920	Pave	NA	Reg	LvI	AllPub	Inside	GtI	StoneBr	Norm	Norm
8	527145080	191500	120	RL	43	5005	Pave	NA	IR1	HLS	AllPub	Inside	GtI	StoneBr	Norm	Norm
9	527146030	236500	120	RL	39	5389	Pave	NA	IR1	LvI	AllPub	Inside	GtI	StoneBr	Norm	Norm
10	527162130	189000	60	RL	60	7500	Pave	NA	Reg	Lvl	AllPub	Inside	GtI	Gilbert	Norm	Norm
11	527163010	175900	60	RL	75	10000	Pave	NA	IR1	LvI	AllPub	Corner	GtI	Gilbert	Norm	Norm
12	527165230	185000	20	RL	?	7980	Pave	NA	IR1	Lvl	AllPub	Inside	GtI	Gilbert	Norm	Norm
13	527166040	180400	60	RL	63	8402	Pave	NA	IR1	LvI	AllPub	Inside	GtI	Gilbert	Norm	Norm
14	527180040	171500	20	RL	85	10176	Pave	NA	Reg	LvI	AllPub	Inside	GtI	Gilbert	Norm	Norm
15	527182190	212000	120	RL	?	6820	Pave	NA	IR1	LvI	AllPub	Corner	GtI	StoneBr	Norm	Norm
16	527216070	538000	60	RL	47	53504	Pave	NA	IR2	HLS	AllPub	CulDSac	Mod	StoneBr	Norm	Norm
17	527225035	164000	50	RL	152	12134	Pave	NA	IR1	Bnk	AllPub	Inside	Mod	Gilbert	Norm	Norm
18	527258010	394432	20	RL	88	11394	Pave	NA	Reg	LvI	AllPub	Corner	GtI	StoneBr	Norm	Norm
19	527276150	141000	20	RL	140	19138	Pave	NA	Reg	LvI	AllPub	Corner	GtI	Gilbert	Norm	Norm
20	527302110	210000	20	RL	85	13175	Pave	NA	Reg	LvI	AllPub	Inside	GtI	NWAmes	Norm	Norm
21	527358140	190000	20	RL	105	11751	Pave	NA	IR1	LvI	AllPub	Inside	GtI	NWAmes	Norm	Norm
22	527358200	170000	85	RL	85	10625	Pave	NA	Reg	LvI	AllPub	Inside	GtI	NWAmes	Norm	Norm
23	527368020	216000	60	FV	?	7500	Pave	NA	Reg	LvI	AllPub	Inside	GtI	Somerst	Norm	Norm
24	527402200	149000	20	RL	?	11241	Pave	NA	IR1	LvI	AllPub	CulDSac	GtI	NAmes	Norm	Norm

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

To answer these questions they need to conduct time series analysis and forecasting.

Order time series by index

Create an "index" for the time series								Time_Month_No	med	median(SalePrice) 176700		count(PID)	There are many specialist	
								121	1767			18	pre-processing e.g. replacemen	
					2		122	1880	188050		24	values or aggre		
PID	Time_Month_No	Yr_Sold	Mo_Sold	SalePrice ↓	Lo	3	ı	123	1495	149500		51		
528351010	133	2017	1	755000	215	4	T	124	1415	141576		10		
528320050	139	2017	7	745000	150	5	+	125	1570	Row No.	Ti	me_Month_No	median(SalePrice)	count(PID)
528320060	127	2016	7	625000	351			126		550 2			?	?
528164060	146	2018	2	615000		0							?	?
					12	,		127	1567	3 ,	1:	23.000	162565.200	43.200
528110020	159	2019	3	610000	130	8		128	1877	4	13	24	158225.200	59
527216080	138	2017	6	591587	519	9		129	1970	5	12	25.000	151965.200	78.600
528360050	125	2016	5	584500	172	10		130	1425	6	13	26	159615.200	77.400
528110090	157	2019	1	582933	138	11		131	2090	7	13	27.000	170700	76.000
527212030	127	2016	7			12		132	1610	8	12	28	167800	70.800
528106020	160	2019	4	555000		431	10		1010	9	12	29	178600	57.600
528176030	158	2019	2	552000		836	10	0		10	13	30	179450	38
						062 60				11	13	31	174400	35.200
527210040	129	2016	9	545224	180					12	13	32.000	166800	32.600

- Smooth a time series (if required) for its exploration
- rocessing for its

 We then need to decide on the time dependent attributes that will be modelled and their values forecast.
 - Ensure that an index if of an appropriate granularity, e.g. years, months, weeks, days, hours, etc.
 - The selected time series attributes may need to be aggregated to the required index granularity.
 - In an univariate case only a single attribute is analysed.
 - In a multivariate case, several time series attributes are being modelled.

- As with any data set, time series needs some pre-processing for its effective use.
- Time series must have an "index", which can be date, time, time-stamp, or some quantity to be considered as sequencing your data set.
- A series can be defined over non-time entities and events, e.g. vehicle manoeuvres along the length of the road, shape of a landscape in a photograph, or a DNA sequence.
- Time series needs to be sorted by its index, usually in an increasing order.

- A time dimension often implies seasonality in data
- Seasonality may not be obvious unless correct aggregation and smoothing of data is applied first
- Once a seasonal component is identified it is also possible to see the trend in the time series
- A seasonal component is common in business datasets involving time, e.g. sales, supply/demand forecasts
- The distribution of a Stationary time series does not change when shifted in time

The elusive seasons

Data aggregation sometimes reveals seasonal effect – if they exist

Smoothing by moving (rolling) averages Highlights seasonal features

rend by Seri smoothing or P Decompositi

Forecasting based on the functional and seasonal time series components Original **Original Times Times** Series **Forecast Series Trend** Noise Retrieve Houses Generate Time Apply Forecast) inp res Select Numeric A.. **Function and Seasonal Component Forecast** Sort Aggregate I A ori

Forecasting on decomposed time series is simple: forecast values can be calculated from the trend function and adding a seasonal component.

Non-stationary time-series can be transformed to make them stationary, e.g. by using a Log transformation

Alternatively, you can apply seasonal differencing, i.e. subtract from a given value, the value from the previous season Replace Missing .. Set Role Classic Decompo... dec exa 📄 exa 📗 res pre res (

There are two ways of decomposing the time series, i.e. Classical which finds a trend by smoothing, or LTS which uses non-parametric **LOESS** interpolation

- Forecasting (normally) makes it is possible to decompose the series into its components, I.e. trend (by smoothing), seasonal (by removing the trend and averaging), and noise (remainder obtained by subtracting the trend and seasonal components).
- Two modes of operation are possible, i.e. additive ts = trend + seasonal + noise, when seasonal and noise components do not depend on trend, and multiplicative ts = trend x seasonal x noise, otherwise.
- The additive model is preferred when the seasonal variation is relatively constant over time. The multiplicative model is better when the seasonal variation increases over time.

Autoregressive forecasting

- Makes use of the autocorrelation concept; the values of one attribute are correlated with the values of the same attribute in the past
 - The variable is regressed on its own lagged (prior) values; because of the correlation
 - The lag can be any number of time periods (depending on the data)
 - Can be determined from experience/intuition
 - Can be determined through application of several lag sizes

lag=6 months

the values are autocorrelated (values in the different columns are strongly correlated)

- Autoregressive models assume that future time-series values are a linear combination of the past p values.
- Non-stationary time-series can be made stationary by differencing, i.e. subtracting the previous TS value from the current.
- First-order differencing subtracts the consecutive data points.
- If the time-series is still non-stationary, this process can be repeated leading to second-order differencing, third-order, ..., d-order, etc.
- Seasonal differencing can also be applied, by subtracting values from the same period of the consecutive seasons.

- Autoregressive models are trained over the time-series. At each step they generate some error. The error itself can also be expressed as a linear combination of the past errors, viewed as a moving average of past q errors.
- ARIMA (Autoregressive Integrated Moving Average) combines all of the above elements.
- ARIMA(p,d,q): AR (p) indicates that the time-series is regressed on its past p data points. MA (q) suggests that the forecast error is a linear combination of its past q errors. I (d) shows that the time-series can be made stationary by d-degree differencing.

- Traditional statistical methods of forecasting from multi-variate data are extremely complex
- They are based on linear models and require that all time-series are tested for stationarity and cointegration
- This could not always be achieved
- However, we deployed deep LSTM (Long-Short Term Memory) neural network, which can be used to analyse time-series with non-linear features
- Deep learning model proved very simple, was easy to train and its results were superior to those obtained from the traditional models

- Provide recent examples of time series data used in media
- Provide examples of forecasting used in media
- What data pre-processing is needed for time-series analysis?
- What is a time series index?
- Can time series analysis be applied to non-time data?
- What is the difference between univariate and multivariate time series?
- What is time series smoothing, what is it used for, and how can it be done?
- What is time series decomposition?
- What is a time series trend?
- What is seasonality?

- How can time series decomposition be used in forecasting?
- What is a window and horizon in autoregressive forecasting?
- How is time series forecasting different from multi-variate forecasting?
- How can anomalies be detected in time series?

