Cahier des Charges

Système de Surveillance Intelligente de la Qualité de l'Air Intérieur (Indoor AQI)

Auteur : Votre Nom Date : 22 septembre 2025

Table des matières

1	Pré	entation du projet	3
	1.1	Contexte général	3
	1.2	Problématique identifiée	3
	1.3	Besoin identifié	3
2	Obj	ectifs stratégiques	3
	2.1	Objectif principal	3
	2.2	Objectifs spécifiques	3
3	Pér	mètre et marchés cibles	4
	3.1	Marchés primaires	4
	3.2	Marchés secondaires	4
4	Spé	cifications fonctionnelles	4
	4.1	Architecture système globale	4
		4.1.1 Couche Capteurs (Edge Layer)	4
		4.1.2 Couche Communication	4
		4.1.3 Couche Backend Cloud	5
		4.1.4 Couche Intelligence Artificielle (MLOps)	5
		4.1.5 Interface Utilisateur (PWA)	5
	4.2	Fonctionnalités détaillées	5
5	Spé	cifications techniques	6
	5.1	Contraintes technologiques	6
	5.2	Performances et scalabilité	6
6	Exi	ences non fonctionnelles	6
7	Mo	èle économique	6
	7.1	Stratégie de monétisation	6
	7.2	Services SaaS	6
	7.3	Projection financière (3 ans)	7
8	Pla	ning et livrables	7

9	Crit	tères de succès	7
	9.1	KPIs techniques	7
	9.2	KPIs business	8
	9.3	Impact sociétal	8
10	Risc	ques et mitigation	8
	10.1	Risques techniques	8
	10.2	Risques marché	8
	10.3	Risques opérationnels	8

1 Présentation du projet

1.1 Contexte général

La qualité de l'air intérieur (QAI) constitue un enjeu majeur de santé publique, les individus passant en moyenne 90% de leur temps dans des environnements clos. L'Organisation Mondiale de la Santé (OMS) identifie la pollution de l'air intérieur comme l'un des principaux facteurs de risque environnementaux, responsable de nombreuses pathologies respiratoires et cardiovasculaires.

1.2 Problématique identifiée

Les espaces intérieurs présentent des concentrations de polluants souvent supérieures à celles des environnements extérieurs, avec des impacts sanitaires significatifs :

- Particules fines (PM2.5/PM10) : pénétration profonde dans les voies respiratoires, exacerbation de l'asthme et des allergies
- **Dioxyde de carbone (CO)** : indicateur de confinement, provoquant fatigue, maux de tête et baisse de productivité au-delà de 1000 ppm
- Composés Organiques Volatils (COV) : émissions de matériaux, mobilier et produits chimiques, causant irritations et troubles respiratoires
- Paramètres thermo hygrométriques : influence directe sur le confort, la prolifération microbienne et la qualité de l'air perçue

1.3 Besoin identifié

Absence de solutions accessibles et complètes permettant une surveillance continue, une analyse intelligente et des recommandations personnalisées pour l'amélioration de la qualité de l'air intérieur.

2 Objectifs stratégiques

2.1 Objectif principal

Développer un écosystème technologique complet de surveillance, d'analyse et d'amélioration de la qualité de l'air intérieur, intégrant capteurs IoT, intelligence artificielle et interface utilisateur intuitive.

2.2 Objectifs spécifiques

- Mesurer en continu les principaux indicateurs de qualité d'air intérieur
- Fournir des alertes préventives et recommandations personnalisées
- Constituer une base de données longitudinale pour analyses prédictives
- Développer une interface PWA ergonomique et accessible

— Implémenter des modèles d'IA pour la détection d'anomalies et la prédiction

3 Périmètre et marchés cibles

3.1 Marchés primaires

- Secteur résidentiel : foyers avec personnes à risque (asthmatiques, allergiques, enfants en bas âge, personnes âgées)
- Établissements d'enseignement : écoles primaires, collèges, crèches
- Secteur tertiaire : bureaux, espaces de coworking, salles de réunion

3.2 Marchés secondaires

- Établissements de santé : cabinets médicaux, salles d'attente, EHPAD
- Secteur hôtelier : hôtels, résidences de tourisme
- Espaces culturels : bibliothèques, musées, centres culturels

4 Spécifications fonctionnelles

4.1 Architecture système globale

4.1.1 Couche Capteurs (Edge Layer)

Capteurs intégrés :

- PMS5003/SDS011 : Mesure particules fines PM2.5 et PM10 (précision $\pm 10 \ \mu g/m^3$)
- MH-Z19B : Mesure CO (gamme 400-5000 ppm, précision ± 50 ppm)
- MQ-135 : Détection COV, NH, fumées (sensibilité qualitative)
- DHT22: Température (-40°C à +80°C, ± 0.5 °C) et humidité relative (0-100%, ± 2 %)

Gateway local (Raspberry Pi 4):

- Collecte des données via interfaces UART/I2C/GPIO
- Préprocessing et validation des données
- Transmission sécurisée vers le cloud
- Mode dégradé en cas de perte de connectivité

4.1.2 Couche Communication

- Protocole primaire : MQTT over TLS pour la remontée des données
- Protocole temps réel : WebSocket pour les alertes instantanées
- Fréquence d'acquisition : 1 mesure/minute (paramétrable)
- Sécurité: Chiffrement end-to-end, authentification par certificats

4.1.3 Couche Backend Cloud

API REST (Jakarta EE 10):

- Endpoints RESTful pour CRUD opérations
- Authentification JWT avec refresh tokens
- Rate limiting et monitoring des API calls
- Documentation OpenAPI 3.0

Base de données NoSQL (MongoDB) :

- Collections optimisées pour les séries temporelles
- Indexation sur timestamps et device id
- Sharding horizontal pour la scalabilité
- Retention policy configurable

4.1.4 Couche Intelligence Artificielle (MLOps)

- Détection d'anomalies : DBSCAN et Z-score adaptatif
- Prédiction court terme : ARIMA/LSTM (1-6h)
- Classification qualité air : Random Forest pour scoring AQI personnalisé
- Orchestration: MLflow pour versioning et monitoring

4.1.5 Interface Utilisateur (PWA)

- Dashboard temps réel : visualisation multi-paramètres, graphiques interactifs, indicateurs KPI
- Système d'alertes : push notifications natives, seuils personnalisables, historique

4.2 Fonctionnalités détaillées

- Acquisition multi-paramètre synchronisée
- Calibration automatique et détection de dérive
- Validation croisée entre capteurs redondants
- Gestion des valeurs aberrantes et données manquantes
- Calcul d'indices composites (AQI personnalisé)
- Analyse de corrélations entre paramètres
- Détection de patterns temporels (cycles jour/nuit, saisonniers)
- Benchmarking avec standards nationaux/internationaux
- Système d'alertes intelligentes et recommandations personnalisées

5 Spécifications techniques

5.1 Contraintes technologiques

— **Stack technologique**: Jakarta EE 10, WildFly, MongoDB 6.0+, Eclipse Mosquitto, PWA (HTML5/CSS3/JS), Python 3.9+ pour ML

— **Infrastructure**: Docker, Kubernetes, Azure Cloud

5.2 Performances et scalabilité

— Latence API : $< 100 \mathrm{ms}$

— Débit ingestion : 10,000 messages/sec

— Disponibilité : 99.5%

— Architecture microservices, auto-scaling et sharding pour 1M+ devices

6 Exigences non fonctionnelles

— Uptime: 99.5%, MTTR < 30 min

— Backup automatisé : RTO < 4h, RPO < 15 min

— Latence bout-en-bout < 5s

— Capacité simultanée : 10,000 utilisateurs

— Optimisation PWA < 1MB, offline-first

— Documentation technique et CI/CD automatisé

— Interface responsive et accessible WCAG 2.1 AA

7 Modèle économique

7.1 Stratégie de monétisation

Type	Description	Prix
Kit Basic	1 capteur + gateway +	149€
	configuration	Kit Advanced
Multi-capteurs +	299€	Déploiement
fonctionnalités	Kit Enterprise	multi-zones + API
étendues		management
499€		

7.2 Services SaaS

Plan Description I	Prix
--------------------	------

Freemium	Monitoring basique, 7 jours	0€/mois
	d'historique	Premium
Historique illimité, IA	9.99€/mois	Multi-sites, reporting
prédictive, alertes	Professional	avancé, API business
avancées		
29.99€/mois	SLA dédié, support prioritaire,	Sur devis
Enterprise	customisation	

7.3 Projection financière (3 ans)

— Année 1 : 500 kits, 50 abonnements Premium \rightarrow CA 120K \oplus

— Année 2 : 2,500 kits, 400 abonnements \rightarrow CA 650K \oplus

— Année 3 : 8,000 kits, 1,500 abonnements \rightarrow CA 2.1M€

8 Planning et livrables

Mois	Activités	Livrables
1	Planification et conception (CD,	Cahier des charges finalisé,
	architecture, maquettes,	schéma d'architecture,
	géolocalisation)	maquettes UI/UX, spécifications
		géolocalisation
		2
Développement	Prototype backend, première	Intégration et tests, alertes AQI
backend, PWA,	version PWA, module	
collecte données,	géolocalisation, données simulées	
module	3	
géolocalisation		
Version Beta	Optimisation, déploiement pilote	Version stable système,
intégrée, carte		déploiement pilote, feedback
interactive		utilisateurs, rapport final et
avancée, rapport		roadmap V2
de tests		
4		

9 Critères de succès

9.1 KPIs techniques

 $\begin{array}{lll} - & \text{Précision mesures}: \pm 10\% \\ - & \text{Uptime système}: > 99.5\% \\ - & \text{User satisfaction}: > 4.5/5 \end{array}$

— Time to value : < 24h post-installation

9.2 KPIs business

- Taux d'adoption Premium : > 15%
- Customer retention : > 80% après 12 mois
- NPS: > 50
- ROI client documenté : réduction 20% incidents respiratoires

9.3 Impact sociétal

- Sensibilisation QAI: 10,000+ utilisateurs
- Prévention sanitaire : réduction épisodes asthmatiques
- Standards industrie: contribution normalisation IoT

10 Risques et mitigation

10.1 Risques techniques

- Dérive capteurs \rightarrow calibration automatique + maintenance préventive
- Scalabilité cloud → architecture microservices + monitoring
- Sécurité IoT \rightarrow Security by design + audits réguliers

10.2 Risques marché

- Concurrence BigTech \rightarrow différenciation par expertise + partenariats
- Adoption lente → stratégie freemium + ROI démontrable
- Réglementation \rightarrow veille normative + compliance proactive

10.3 Risques opérationnels

- Supply chain hardware \rightarrow multi-sourcing + stock sécurité
- Expertise rare \rightarrow formation équipe + partenariats techniques
- Cash-flow \rightarrow levée fonds + revenus SaaS récurrents