

ML for Audio Study Group Session 1:

December 14, 2021, 5 PM CET hf.co/join/discord

Omar Sanseviero

Vaibhav (VB) Srivastav

Suggested readings before this session

- https://nbviewer.org/github/fastaudio/fastaudio/blob/master/docs/Introduction %20to%20Audio.ipynb
- SLP 26.1 to 26.5 https://web.stanford.edu/~jurafsky/slp3/

Introduction

Omar Sanseviero (https://twitter.com/osanseviero)

- ML Engineer at Hugging Face
- Previously
 - SWE at Google Assistant
 - Co-founder Al Learners

Vaibhav Srivastav (https://twitter.com/reach_vb)

- MS student @ Uni Stuttgart/ Working Student@ Deloitte Tax
- Previously
 - Strategy @ Deloitte Consulting

Organisation

Community-led!

- We'll kick off with some basics, but we'll decide collaboratively where we want to focus
- Anyone can participate!
- Members of the HF team and other cool collaborators will join.

Expectation

- Before each session: Read/watch related resources
- During each session, you can
 - Ask question in the forum
 - Present a short (~10-15mins) presentation on the topic (agree beforehand)
 - Participate a bit more passively (that's also ok and you're welcomed!)
- Before/after:
 - Keep discussing/asking questions about the topic
 - Share interesting resources

Timeline

- Dec 14: Kick off session
- Dec 21: ASR Deep Dive
- Jan 4: TTS Deep Dive
- Jan 18 and forward:
 - Paper discussions
 - Invited speakers
 - Deep dive into a specific task

Intro to Audio Data

What is sound?

What is sound?

What is sound?

Waveform

Frequency

Cycles per second of a wave

Frequency

- Cycles per second of a wave
 - Human hearing ranges from 20hz to 20000hz
 - o 500 hz = 500 cycles per second
 - 1 cycle = 16000/500 = 32 samples

Analog to digital conversion

- Sampling: sample at regular points in time
- Quantization: amplitude is represented in bits

Quantization

Sampling rate

- Sample rate = 40,000 Hz
- Bit depth = 16 bits
- ((16*40,000)/(1,048,576*8))*60 = 4.58Mb of data for one minute of audio!

Intensity and Loudness

- Intensity: rate at which energy is transferred
 - Measured in decibels
 - 10x increase in energy of wave results in a 10 dB increase of sound
- Human perception goes from 0dB to 100dB
 - 10,000,000,000x range
- Loudness: subjective perception
 - Depends on many factors (e.g. age)

Returning to sound data

- Many simple sounds
- What can we do with it?

stft

- Many simple sounds
- What can we do with it?
 - We can decompose a signal into a set of waves with short-time Fourier transforms

stft

3 dimensions

- time
- frequency
- intensity

Pitch

- Human perception of frequency
 - Logarithmic:
 - 100->200hz conveys as much info as 10K to 20K hz

Pitch

- Human perception of frequency
 - Logarithmic:
 - 100->200hz conveys as much info as 10K to 20K hz
 - Unit: Mel
 - equal distances in pitch sounded equally distant to the listener

Traditional ML approach vs DL approach

- Traditional
 - Compute manually features out of the spectrogram
 - Amplitude envelope
 - Band energy ratio...
 - Feed those features to a traditional ML model
- Deep Learning approach
 - Feed spectrogram directly

Automatic Speech Recognition

What is ASR?

It's time for lunch!

Why is ASR tough?

eh d eh eh W

Different variations of "eh"

from - stanford CS224S

Different variations of "iy" in context

w iy

r iy

m iy

n iy

Blast from the past

RECOGNITION

Blast from the past

from - stanford CS224S

How do we exactly know which part of X (audio) maps to which part of Y (text)?

Connectionist Temporal Classification (CTC)

- 1. output a single character for every frame of the input
- 2. each input is mapped to an output
- 3. apply a collapsing function that combines identical letters
- 4. resulting in shorter output text sequence

Connectionist Temporal Classification (CTC) | In action

Multiple alignments produce the same transcription

Current SoTA

- <u>Wav2Vec 2.0</u> Convolutional transformer + masked audio modeling
- 2. <u>Conformer</u> Convolutional augmented transformers (models both local and global dependencies)
- 3. <u>ContextNet</u> CNN-RNN transducer network (introduces a squeeze-and-excitation layer)

Next steps

- Next week: 2 short (10-20min presentations + discussion)
 - Presentation 1: TTS Deep Dive (Vaibhav Srivastav)
 - Presentation 2: Open slot (Post your ideas on the Discord channel)
- Recommended resources
 - Intro to Audio Notebook
 - ASR Notebook
 - o SLP Chapter 26.6

Thanks for tuning in!