# Body Fat Estimator Using Ensemble Methods

#### E. Mamatha, K. Supriya, S. Ashwitha

Under the esteemed guidance of

Ms. P. Nikitha

Assistant Professor



Bachelor of Technology

Department of Information Technology

BVRIT HYDERABAD College of Engineering for Women

December 4, 2023



## Overview

- Introduction
- 2 Literature Survey
- Problem Statement
- Proposed Method
- Dataset
- Modules
- Results
- 8 Conclusion & Future Scope
- References
- Thank you



#### Introduction

 Obesity or excessive body fat is a critical public health problem that can cause several health issues like mood disorders, cardiovascular diseases, respiratory aliments, and digestive issues.



Courtesy: www.amazon.com

# Literature Survey

| S. | Title of the paper               | Author(s)       | Description                     |  |  |
|----|----------------------------------|-----------------|---------------------------------|--|--|
| No |                                  |                 |                                 |  |  |
| 1  | Body Fat Pre-                    | Nikhil Mahesh,  | In this paper, they compare     |  |  |
|    | diction using                    | Peeta Basa      | the performance of several ma-  |  |  |
|    | Various Regres-                  | Pati, K. Deepa, | chine learning models based on  |  |  |
|    | sion Techniques                  | Suresh Yanan    | Regression, to predict the body |  |  |
|    |                                  | - 2023          | fat percentage.                 |  |  |
| 2  | Classification of Jyothi Parsola |                 | The 3D Scanner techniques       |  |  |
|    | Obesity Using - 2022             |                 | like Computed Tomography        |  |  |
|    | Several Machine                  |                 | and machine learning algo-      |  |  |
|    | Learning Tech-                   |                 | rithms used for determining the |  |  |
|    | niques                           |                 | body fat percentage.            |  |  |

# Literature Survey

| S. | Title of the paper     | Author(s) | Description                       |  |  |
|----|------------------------|-----------|-----------------------------------|--|--|
| No |                        | , ,       |                                   |  |  |
| 3  | Hybrid Machine Learn-  | Solaf A.  | In this paper, they have used     |  |  |
|    | ing Model for Body     | Hussain,  | the data selection technique      |  |  |
|    | Fat Percentage Predic- | Nadire    | the "left-out" approach and in-   |  |  |
|    | tion Based on Sup-     | Cavus,    | tegrated the physical and emo-    |  |  |
|    | port Vector Regression | Boran     | tional characteristics for body   |  |  |
|    | and Emotional Aritifi- | Sekeroglu | fat prediction.                   |  |  |
|    | cial Neural Network    | - 2021    |                                   |  |  |
| 4  | Prediction of Women    | Dr.       | The Naive Baye's Algorithm is     |  |  |
|    | Obesity using Naive    | Naveen    | used and Women dataset is         |  |  |
|    | Baye's Algorithm       | N, Rak-   | collected, based on the risk fac- |  |  |
|    |                        | shitha    | tors the algorithm worked to      |  |  |
|    |                        | Kiran P   | predict the body fat percent-     |  |  |
|    |                        | - 2019    | age.                              |  |  |

## Problem Statement

Body fat estimator using ensemble methods for accurate predictions with basic user inputs like age, gender, weight, measurements and calculate the body mass index for facilitating personalized health management and fitness planning.



Courtesy: https://images.app.goo.gl

# Proposed Method

 Developing a novel machine learning model that integrates SVR(Support Vector Regression), Random Forest and boosting algorithms (AdaBoost, Gradient Boosting Machine, XG-Boost) for precise and cost-effective body fat percentage prediction.



Courtesy: https://images.app.goo.gl

#### Dataset

 The dataset preparation process includes collecting data from diverse sources and performing tasks such as Data Cleaning, Feature Selection, Target Variable Definition, Normalization, Splitting the dataset, Feature Scaling to make it suitable for training.

| Dataset columns | Proposed Algorithms           |  |  |
|-----------------|-------------------------------|--|--|
| Density         | Decison tree                  |  |  |
| Abdomen         | Random forest                 |  |  |
| Chest           | Gradient boosting             |  |  |
| Hip             | Adaptive boosting             |  |  |
| Weight          | Support vector regressor, ANN |  |  |

## Modules

- Support Vector Regression: Support Vector Regression (SVR) is a machine learning algorithm used for regression tasks, to predict a continuous target variable.
- Random Forest: Random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy.
- AdaBoost (Adaptive Boosting): The final prediction is made by a weighted sum of the individual weak learner predictions.
- XGBoost (Extreme Gradient Boosting): It incorporates regularization techniques, parallel processing, and a custom loss function to improve model performance.

## Results

| S. | Model              | R2 Score | RMSE     | rRMSE     |
|----|--------------------|----------|----------|-----------|
| No |                    |          |          |           |
| 0  | Decision Tree      | 0.946860 | 1.994615 | 0.114983. |
| 1  | Random Forest      | 0.983676 | 1.105510 | 0.063729  |
| 2  | AdaBoost           | 0.973841 | 1.399452 | 0.080674  |
| 3  | Gradient Boosting  | 0.992671 | 0.740730 | 0.042701  |
| 4  | Support Vector Re- | 0.370609 | 6.864490 | 0.395715  |
|    | gressor            |          |          |           |
| 5  | Neural Network     | 0.262621 | 7.430079 | 0.428319  |

Table: Performance metrics of different models

| S. | Model <sub>N</sub> ame | Best <sub>S</sub> core |  |  |
|----|------------------------|------------------------|--|--|
| No |                        |                        |  |  |
| 0  | Random Forest          | -5.367842              |  |  |
| 1  | Decision Tree          | -8.268757              |  |  |
| 2  | SVM                    | -29.416049             |  |  |
| 3  | AdaBoost               | -2.396577              |  |  |
| 4  | GradientBoosting       | -1.665798              |  |  |
| 5  | Neural Network         | -26.015821             |  |  |

Table: Best Scores of various machine learning algorithms

| S.  | Density | Abdomen | Chest | Hip   | Weight | Actual | Predicted  |
|-----|---------|---------|-------|-------|--------|--------|------------|
| No  |         |         |       |       |        |        | Result     |
| 0   | 1.0708  | 85.2    | 93.1  | 94.5  | 154.25 | 12.3   | 12.300483. |
| 1   | 1.0853  | 83.0    | 93.6  | 98.7  | 173.25 | 6.1    | 6.099918   |
| 2   | 1.0414  | 87.9    | 95.8  | 99.2  | 154.00 | 25.3   | 25.295529  |
| 3   | 1.0751  | 86.4    | 101.8 | 101.2 | 184.75 | 10.4   | 10.399574  |
| 4   | 1.0340  | 100.0   | 97.3  | 101.9 | 184.25 | 28.7   | 28.699710  |
| 247 | 1.0736  | 83.6    | 89.2  | 88.8  | 134.25 | 11.0   | 11.035981  |
| 248 | 1.0236  | 105.0   | 108.5 | 104.5 | 201.00 | 33.6   | 33.600074  |
| 249 | 1.0328  | 111.5   | 111.1 | 101.7 | 186.75 | 29.3   | 29.450171  |
| 250 | 1.0399  | 101.3   | 108.3 | 97.8  | 190.75 | 26.0   | 26.135649  |
| 251 | 1.0271  | 108.5   | 112.4 | 107.1 | 207.50 | 31.9   | 31.899727  |

Table: Gradient Boosting Models Evaluation Results



Figure: Body Fat Percentage Output

# Conclusion & Future Scope

- Conclusion: Using Ensemble methods for body fat estimation can provide the improved results and robustness, with potential applications in fitness, healthcare, and feature importance analysis. Careful data preprocessing and model selection are key to their success.
- **Future Scope**: Future the prediction of body fat percentage using the proposed model includes assessing the optical data-based model's performance, investigation of gender effects on BFP, and testing its efficiency for predicting body fat percentage in obese children.

## References

 Nikhil Mahesh, Peeta Basa Pati, K. Deepa, Suresh Yanan "Body Fat Prediction using Various Regression Techniques", in IEEE International Conference on Advances in Computing, Communication and Applied Informatics(ACCAI), Aug 2023.

DOI: 10.1109/ACCAI58221.2023.10200647 https://ieeexplore.ieee.org/document/10200647

 Jyoti Parsola "Classification of Obesity Using Several Machine Learning Techniques", in International Journal of Mechanical Engineering Vol. 7 No. 2 February, 2022, DOI: https://doi.org/10.56452/7-2 550 https://kalaharijournals.com/resources

### References

- Solaf A. Hussain, Nadire Cavus, Boran Sekeroglu "Hybrid Machine Learning Model for Body Fat Percentage Prediction Based on Support Vector Regression and Emotional Artificial Neural Networks", Volume 11, https://doi.org/10.3390/app11219797 https://www.mdpi.com/20763417/11/21/9797
- Dr. Naveen N, Rakshitha Kiran P "Prediction of Women Obesity using Naive Baye's Algorithm", Volume 6, Issue 2, 2019, PP 12-17, DOI: http://dx.doi.org/10.20431/2349-4859.0602002 https://www.arcjournals.org/pdfs/ijrscse/v6-i2/2.

# Thankyou