Sprawozdanie

1. Wstęp

Wskaźnik **MACD** (skrót od ang. *Moving Average Convergence/Divergence*) dosłownie oznacza to średnią kroczącą konwergencję/dywergencję, to narzędzie analizy technicznej, wykorzystywane do identyfikowania trendów rynkowych i sygnałów kupna lub sprzedaży. Jest jednym z najpopularniejszych narzędzi w analizie technicznej instrumentów finansowych. Polega na obserwacji dynamiki cen - różnicy między średnią krótkoterminową a długoterminową - co pozwala na wykrycie momentów, w których ruch cenowy zyskuje na sile lub spadnie.

2. Dane testowe

Dane, które zostały wykorzystane w analizie, pochodzą z historycznych notowań indeksu WIG20, obejmujących około 1100 notowań w okresie od 2020-10-01 do 2025-03-12. Indeks WIG20 jest jednym z najważniejszych wskaźników giełdowych w Polsce, reprezentującym 20 największych i najbardziej płynnych spółek na warszawskiej giełdzie. Dane obejmują zmiany cen zamknięcia, wartości indeksu oraz inne istotne parametry, takie jak wolumen obrotu i zmienność rynkowa, które mogą być wykorzystane do analizy trendów rynkowych, badania zmienności, czy też testowania różnych strategii inwestycyjnych.

Tabela zawiera przykładowe dane notowań indeksu WIG20.

Data	Otwarcie	Najwyzszy	Najnizszy	Zamkniecie	Wolumen
2020-10-01	1719.55	1723.85	1697.54	1694.18	22310007
2020-10-02	1690.04	1704.58	1675.2	1697.39	18298699

3. Konstrukcja wskaźnika MACD

Wskaźnik MACD obliczany przy użyciu wykładniczej średniej kroczącej **EMA** (skrót od ang. *Exponentail Moving Avarage*) obliczanej według wzoru:

$$EMA_N(i) = \alpha \cdot x_i + (1 - \alpha) \cdot EMA_N(i - 1) \tag{1}$$

gdzie:

- x_i cena zamknięcia w i-tym okresie
- N liczba okresów
- lpha współczynnik wygładzający: $lpha=rac{2}{N+1}$

Równanie (1) można przekształcić do postaci jawnej:

$$EMA_N(i) = \frac{x_1 + (1 - \alpha)x_{i-1} + (1 - \alpha)^2 x_{i-2} + \dots + (1 - \alpha)^N x_{i-N}}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots + (1 - \alpha)^N}$$
(2)

Jest to forma średniej ważonej, w której wagi dla wcześniejszych cen zmniejszają się w sposób wykładniczy. Tego rodzaju średnia szybciej reaguje na zmiany cen aktywa, uwzględniając jednocześnie wszystkie wcześniejsze ceny, przy jednoczesnym stopniowym osłabianiu ich wpływu.

Z obu przedstawionych równań wynika, że wartość **EMA** dla i-tego okresu zależy zarówno od bieżącej ceny zamknięcia x_i jak i od wszystkich wcześniejszych cen. W obliczeniach **EMA** pojawia się problem ustalenia wartości początkowej. Z równania (2) wynika, że 26-dniową EMA można obliczyć już po drugiej cenie, co nie odpowiada intuicyjnemu rozumieniu średniej 26-dniowej, ponieważ pomija pierwsze dni. Przy założeniu, że $EMA_N(0) = x_0$ obliczenia mogą

prowadzić do oscylacji, które źle odwzorowują zmienność cen. Aby poprawić dokładność początkowych wartości, obliczenia zaczyna się od i=N+1, gdzie wartość $EMA_N(N)$ to średnia z pierwszych N cen. Należy zaznaczyć, że bez względu na metodę, wyniki **EMA** dla kolejnych okresów będą zbieżne, a stabilizacja następuje zazwyczaj po N-tym, choć preferowane jest 2N-tym okresie.

Krzywa MACD

Krzywa **MACD** wyznaczana jest przez różnicę między szybką a wolną średnią kroczącą. W popularnym podejściu średnie przyjmują wartość:

- EMA_{12} 12-okresowa wykładnicza średnia krocząca,
- EMA26 26-okresowa wykładnicza średnia krocząca.

Wówczas krzywą MACD można obliczyć według wzoru:

$$MACD = EMA_{12} - EMA_{26} \tag{3}$$

Krzywa SIGNAL

W wyżej wspomnianym podejściu krzywa **SIGNAL** wyznaczana jest jako 9-okresowa wykładnicza średnia krocząca obliczana na podstawie wartości **MACD**.

Krzywą można obliczyć według wzoru:

$$SIGNAL = EMA_9(MACD) \tag{4}$$