SIA for Model 1 using the Taylor series approach

ODE system

```
mRNA'[t] == -k_1 - k_2 * mRNA[t]

Protein'[t] == k_3 * mRNA[t] - k_4 * Protein[t]

Initial conditions: mRNA[0]==2.5,Protein[0]==6.5

Both states are observed and all parameters are assumed to be unknown
```

First two derivatives for each state for when t = 0

```
mRNA'[0] = -k_1 - 2.5 k_2

mRNA''[0] = -(-k_1 - 2.5 k_2) k_2

Protein'[0] = 2.5 k_3 - 6.5 k_4

Protein''[0] = (-k_1 - 2.5 k_2) k_3 - (2.5 k_3 - 6.5 k_4) k_4
```

Recall that the derivates are assumed to be known and have unique solutions which can be used to assess the SIA of models

Analysis of Taylor series coefficients

- 1. mRNA'[0] can be substituted into mRNA''[0] which leaves k_2 as the only unknown parameter and thus k_2 is identifiable
- 2. Since k_2 is identifiable, k_1 can be identified from mRNA'[0]
- 3. Use Protein'[0] to solve for k_3 : $k_3 -> 2.6$ k4+0.4 Protein'[0]
- 4.Substitute new solution for k_3 into Protein''[0], which leaves k_4 as the only unknown parameter and thus k_4 is now identifiable
- 5. This means that k_3 can now be identified using step 3 and thus all the parameters have been identified and Model 1 is structurally identifiable