Solving optimization problems

Przemysław Szufel https://szufel.pl/

Basics...

Linear optimization

```
using JuMP, HiGHS
m = Model(optimizer with attributes(HiGHS.Optimizer))
Quariable (m, x_1 >= 0)
Quariable (m, x_2 >= 0)
Qobjective (m, Min, 50x_1 + 70x_2)
                 200x_1 + 2000x_2 >= 9000
@constraint(m,
                 100x_1 + 30x_2 >= 300
@constraint(m,
               9x_1 + 11x_2 >= 60
@constraint(m,
optimize! (m)
JuMP.value. ([x_1, x_2])
```

Note – how to type indexes in Julia

- julia> x
- julia> x_
- julia> x_1
- julia> x_1<*TAB>*
- julia> x₁

... and Integer programming

```
using JuMP, HiGHS
m = Model(optimizer with attributes(HiGHS.Optimizer))
@variable(m, x_1 >= 0, Int)
@variable(m, x_2 >= 0)
Objective (m, Min, 50x_1 + 70x_2)
@constraint(m, 200x_1 + 2000x_2 >= 9000)
@constraint(m, 100x_1 + 30x_2 >= 300)
@constraint(m, 9x_1 + 11x_2 >= 60)
optimize! (m)
```

How it works - metaprogramming

```
julia> code = Meta.parse("x=5")
:(x = 5)
julia> dump(code)
Expr
  head: Symbol =
  args: Array{Any}((2,))
    1: Symbol x
    2: Int64 5
julia> eval(code)
julia> x
```

Macros – hello world...

```
macro sayhello(name)
    return : ( println("Hello, ", $name) )
end
julia> macroexpand(Main,:(@sayhello("aa")))
:((Main.println)("Hello, ", "aa"))
julia> @sayhello "world!"
Hello, world!
```

Macro @variable

```
julia > @macroexpand @variable(m, x_1 >= 0)
quote
  (JuMP.validmodel)(m, :m)
  begin
    #1###361 = begin
         let
#1###361 = (JuMP.constructvariable!)(m, getfield(JuMP, Symbol("#_error#107")){Tuple{Symbol,Expr}}((:m, :(x_1 >= 0))), 0, Inf, :Default, (JuMP.string)(:x_1), NaN)
            #1###361
         end
       end
    (JuMP.registervar)(m, :x_1, #1###361)
    x_1 = #1###361
  end
end
```

Some of JuMP Solvers (a total of 50 as of today)

Solver	Julia Package	License	LP	SOCP	MILP	NLP	MINLP	SDP
Artelys Knitro	KNITRO.jI	Comm.				X	X	
<u>BARON</u>	BARON.jl	Comm.				X	X	
Ponmin	AmplNLWriter.jl	EPL	X		Х	Х	X	
<u>Bonmin</u>	CoinOptServices.jl	CPL			^	^		
Cbc	Cbc.jl	EPL			X			
CPLEX	CPLEX.jl	Comm.	X	X	X			
<u>ECOS</u>	ECOS.jl	GPL	X	X				
FICO Xpress	Xpress.jl	Comm.	X	X	X			
HiGHS	<u>HiGHSMathProgInterfa</u>	GPL	X		X			
1110110	<u>ce</u>	GI L						
<u>Gurobi</u>	<u>Gurobi.jl</u>	Comm.	X	X	X			
<u>lpopt</u>	lpopt.jl	EPL	X			X		
MOSEK	Mosek.jl	Comm.	X	X	X	X		Χ
<u>NLopt</u>	NLopt.jl	LGPL				X		
<u>SCS</u>	SCS.jl	MIT	X	X				Χ

Full list: https://jump.dev/JuMP.jl/stable/installation/

JuMP Transportation of good among branches

Use case scenario

The Subway restaurant chain in Las Vegas has a total of 118 restaurants in different parts of the city.

18 restaurants have adjacent huge product warehouses that keep ingredients cool and fresh, moreover fresh vegetables are delivered only to those warehouses (rather than to every restaurant) daily at 3am.

Subway has signed a contract with a transportation agency and is billed by the multiple of the weight of transported goods and the distance.

Knowing the amount of available stock at each warehouse and the expected demand at each restaurant (measured in kg), the company needs to decide how the goods should be distributed among warehouses.

Transportation problem statement

- Variables
 - x_{ij} number of units transported for i-th supplier to j-th requester
 - C_{ii} unit transportation cost between i-th supplier to j-th requester
- Cost function C $C = \sum_{i=1}^m \sum_{i=1}^n c_{ij} x_{ij}$
- Constraints: suppliers have maximum capacity S_i

$$\sum_{i=1}^n x_{ij} \leq S_i$$

demand
$$D_j$$
 must be met
$$\sum_{m=1}^{m} p_m$$

$$\sum_{i=1}^{\infty} x_{ij} \geq D_j$$

Implementation in JuMP

```
m = Model(optimizer_with_attributes(HiGHS.Optimizer));
@variable(m, x[i=1:S, j=1:D])
@objective(m, Min, sum(x[i, j]*distance_mx[i, j] for i=1:S, j=1:D))
@constraint(m, x .>= 0)
for j=1:D
   @constraint(m, sum( x[i, j] for i=1:S) >= demand[j] )
end
for i=1:S
   @constraint(m, sum(x[i, j] for j=1:D) <= supply[i] )
end
optimize!(m)
termination status(m)
```

JuMP Travelling salesman problem

Use case scenario

A tourist in San Francisco and plans to visit all McDonald's restaurant in one day Let's help her or him!

Spatial data OpenStreetMap - https://www.openstreetmap.org

- Open project "Wikipedia for maps"
- Lots, lots of data
 - Roads, Buildings, trees, ...
 - Transportation systems
 - Point-of-interests (POIs) businesses, restaurants, schools, universities...
- Formats: XML, PBF
- Multilayered structure
 - Nodes (points)
 - Ways (lines, shapes)
 - Relations (wider concepts)

```
<osm>
  <bounds minlat="42.3609500" minlon="-71.0914900" maxlat="42.3621500" maxlon="-71.0898000"/>
  <node id="61317286" lat="42.3611637" lon="-71.0927647"/>
  <node id="61317287" lat="42.3607193" lon="-71.0937014"/>
                                                                  111
  <node id="6898815038" lat="42.3608365" lon="-71.0894651">
    <tag k="entrance" v="yes"/>
  </node>
  <way id="17660188">
    <nd ref="182893079"/>
    <nd ref="182893081"/>
    <tag k="addr:city" v="Cambridge"/>
    <tag k="addr:housenumber" v="43"/>
   </way>
 <relation id="1590059">
    <member type="node" ref="9124611329" role=""/>
    <member type="way" ref="426493700" role=""/>
    <member type="way" ref="8605061" role=""/>
    <tag k="network:wikipedia" v="en:Massachusetts Bay Transp</pre>
    <tag k="operator" v="Massachusetts Bay Transportation Aut</pre>
    <tag k="public transport:version" v="2"/>
    <tag k="ref" v="CT2"/>
    <tag k="route" v="bus"/>
    <tag k="to" v="Ruggles Station"/>
    <tag k="type" v="route"/>
  </relation>
```

Libraries for OSM data

OpenStreetMapX.jl – mainly oriented on road system

- Road system extracted as a directed graph (Graphs.jl) along with separate metadata
- Supports routing, road classes, vehicle speeds etc.
- Spatial algebra (ENU, LLA, ECEF), overlap with Geodesy.jl

OpenStreetMapXPlots.jl

Plotting maps with Plots.jl and PyPlot.jl .

OSMtoolset.jl - https://github.com/pszufe/OSMToolset.jl

- Spatial indexes on maps
- Mass extraction of points-of-interests (POIs) from maps
- Tools for slicing/tiling large OSM *.xml files

(developed under grant National Science Centre, Poland 2021/41/B/HS4/03349)

McDonald's in SF

```
In [48]: using DataFrames, OSMToolset
  config = DataFrame(key="brand", values="McDonald's")
  dfpoi = find_poi("SF.osm"; scrape_config=ScrapePOIConfig{NoneMetaPOI}(config))
```

Out[48]: 18×7 DataFrame

Ro	W	elemtype	elemid	nodeid	lat	lon	key	value
		Symbol	Int64	Int64	Float64	Float64	String	String
	1	node	358116917	358116917	37.7264	-122.476	brand	McDonald's
	2	node	597382133	597382133	37.7066	-122.415	brand	McDonald's
	3	node	1229920544	1229920544	37.7131	-122.445	brand	McDonald's
	4	node	2365742146	2365742146	37.789	-122.401	brand	McDonald's
	5	node	3455025884	3455025884	37.6522	-122.491	brand	McDonald's
	6	node	4626983989	4626983989	37.7892	-122.408	brand	McDonald's
	7	node	6959355927	6959355927	37.644	-122.404	brand	McDonald's
	8	node	9980865058	9980865058	37.6438	-122.454	brand	McDonald's
	9	node	11338930625	11338930625	37.6747	-122.47	brand	McDonald's
1	10	way	143811393	1573722786	37.669	-122.47	brand	McDonald's
	11	way	159024983	1711296799	37.7236	-122.455	brand	McDonald's
1	12	way	231047897	2394660225	37.752	-122.418	brand	McDonald's
1	13	way	256462436	2621272506	37.7653	-122.408	brand	McDonald's

TSP

$$\min \ \sum_{f=1}^N \sum_{t=1}^N c_{ft} x_{ft}$$

Each restaurant visited once

$$egin{aligned} \sum_{t=1}^N x_{ft} &= 1 \quad orall f \in \{1,\ldots,N\} \ \ \sum_{f=1}^N x_{ft} &= 1 \quad orall t \in \{1,\ldots,N\} \end{aligned}$$

Restaurant cannot visit itself $~x_{ff}=0~~orall f\in\{1,\ldots,N\}$

Avoid two-restaurant cycles

$$x_{ft} + x_{tf} <= 1 \quad orall f, t \in \{1, \ldots, N\}$$

Other cycles:

/dynamically add a constraint whenever a cycle occurs/

ily add a constraint whenever a cycle occurs/

For more details see: http://opensourc.es/blog/mip-tsp

Variables:

- c_{ft} cost of travel from "f" to "t"
- x_{ft} binary variable indicating 1 when agent travels from "f" to "t"

JuMP implementation

```
m = Model(optimizer with attributes(HiGHS.Optimizer));
@variable(m, x[f=1:N, t=1:N], Bin)
@objective(m, Min, sum(x[i, j]*distance mx[i, j] for i=1:N, j=1:N)
@constraint(m, notself[i=1:N], x[i, i] == 0)
@constraint(m, oneout[i=1:N], sum(x[i, 1:N]) == 1)
@constraint(m, onein[j=1:N], sum(x[1:N, j]) == 1)
for f=1:N, t=1:N
    @constraint(m, x[f, t]+x[t, f] <= 1)
end
```

Getting a cycle

```
function getcycle(m, N)
    x val = getvalue(x)
    cycle idx = Vector{Int}()
    push!(cycle idx, 1)
    while true
        v, idx = findmax(x_val[cycle_idx[end], 1:N])
        if idx == cycle idx[1]
            break
        else
            push!(cycle idx, idx)
        end
    end
    cycle_idx
end
```

Adding a constraint...

```
function solved(m, cycle idx, N)
    println("cycle idx: ", cycle idx)
    println("Length: ", length(cycle idx))
    if length(cycle idx) < N
         cc = @constraint(m, sum(x[cycle_idx,cycle_idx])
  <= length(cycle_idx)-1)</pre>
         println("added a constraint")
         return false
    end
    return true
end
```

Iterating over the model

```
while true
    status = solve(m)
    println(status)
    cycle idx = getcycle(m, N)
    if solved(m, cycle idx,N)
        break;
    end
end
```

Gurobi.jl

- Commercial software
- Free for academic use
- Integrates with JuMP via Gurobi.jl

• Supports JuMP Lazy constraints (http://www.juliaopt.org/JuMP.jl/0.18/callbacks.html)

Gurobi callbacks

```
function getcycle(cb, N)
    x val = callback_value.(Ref(cb), x)
    getcycle(x_val)
end
function callbackhandle(cb)
    cycle idx = getcycle(cb, N)
    println("Callback! N= $N cycle_idx: ", cycle_idx)
    println("Length: ", length(cycle_idx))
    if length(cycle_idx) < N</pre>
        con = @build_constraint(sum(x[cycle_idx,cycle_idx]) <= length(cycle_idx)-1)</pre>
        MOI.submit(m, MOI.LazyConstraint(cb), con)
        println("added a lazy constraint")
    end
end
MOI.set(m, MOI.LazyConstraintCallback(), callbackhandle)
```

TravelingSalesmanHeuristics.jl

```
using TravelingSalesmanHeuristics
sol = TravelingSalesmanHeuristics.solve_tsp(
distance_mx,quality_factor =100)
```

More info: http://evanfields.github.io/TravelingSalesmanHeuristics.jl/lat est/heuristics.html

JuMP Non-Linear Programming

Simple scenario

Estimate parameters of a quadratic form

$$\mathbf{y}(\mathbf{x}_i) = \mathbf{x}_i^T \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \mathbf{x}_i$$
, where $\mathbf{x}_i = \begin{bmatrix} x_i^1 \\ x_i^2 \end{bmatrix}$

for a vector of observed values \mathbf{y} to minimize the observed error function

$$\sum_{i=1}^{N} (y(\mathbf{x}_i) - y_i)^2$$

Nonlinear optimization Julia

```
m = Model(optimizer with attributes(Ipopt.Optimizer));
@variable(m, aa[1:2,1:2])
function errs(aa)
   sum((y .- (x * aa ) .* x * [1;1]) .^ 2)
end
@objective(m, Min, errs(aa))
optimize!(m)
```

Use case scenario

(source: Hart et al, Pyomo-optimization modeling in python, 2017)

Simulate dynamics of disease outbreak in a small community of 300 individuals (e.g. children at school)

Three possible states of a patient:

- susceptible (S)
- infected (I)
- recovered (R)

<u>Infection spread model:</u>

- *N* population size
- α , β model parameters

$$I_i = \frac{\beta I_{i-1}^{\alpha} S_{i-1}}{N}$$

$$S_i = S_{i-1} - I_i$$

Optimization problem for finding parameters α and β

S - susceptible

I- infected

N – population size

 α , β – model parameters

SI - time indices {1,2,3,...}

 C_i - known input (the actual number of infected patients)

$$\min \sum_{i \in SI} \left(\varepsilon_i^I \right)^2$$

$$I_i = \frac{\beta I_{i-1}^{\alpha} S_{i-1}}{N} \quad \forall \quad i \in SI \setminus \{1\}$$

$$S_i = S_{i-1} - I_i \ \forall \ i \in SI \setminus \{1\}$$

$$C_i = I_i + \varepsilon_i^I$$

$$0 \le I_i, Si \le N$$

$$0.5 \le \beta \le 70$$

$$0.5 \le \alpha \le 1.5$$

Model implementation in JuMP

Input data (disease dynamics)

```
obs_cases = vcat(1,2,4,8,15,27,44,58,55,32,12,3,1,zeros(13))
```

Full model specification in JuMP

```
m = Model(optimizer_with_attributes(Ipopt.Optimizer));
@variable(m, 0.5 <= \alpha <= 1.5)
@variable(m, 0.05 <= \beta <= 70)
@variable(m, 0 <= I [1:SI max] <= N)</pre>
@variable(m, 0 <= S[1:SI_max] <= N)</pre>
@variable(m, ε[1:SI max])
@constraint(m, ε .== I .- obs cases )
@constraint(m, I [1] == 1)
for i=2:SI max
   @NLconstraint(m, I_{[i]} == \beta*(I_{[i-1]}^{\alpha})*S[i-1]/N)
end
@constraint(m, S[1] == N)
for i=2:SI max
   @constraint(m, S[i] == S[i-1]-I [i])
end
@NLobjective(m, Min, sum(\epsilon[i]^2 for i in 1:SI_max))
```

JuMP Non-Linear Programming for estimation of model parameters

Simple scenario

Estimate parameters of a quadratic form

$$\mathbf{y}(\mathbf{x}_i) = \mathbf{x}_i^T \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \mathbf{x}_i$$
, where $\mathbf{x}_i = \begin{bmatrix} x_i^1 \\ x_i^2 \end{bmatrix}$

for a vector of observed values \mathbf{y} to minimize the observed error function

$$\sum_{i=1}^{N} (y(\mathbf{x}_i) - y_i)^2$$

Nonlinear optimization Julia

```
m = Model(optimizer with attributes(Ipopt.Optimizer));
@variable(m, aa[1:2,1:2])
function errs(aa)
   sum((y .- (x * aa ) .* x * [1;1]) .^ 2)
end
@objective(m, Min, errs(aa))
optimize!(m)
```

Use case scenario

(source: Hart et al, Pyomo-optimization modeling in python, 2017)

Simulate dynamics of disease outbreak in a small community of 300 individuals (e.g. children at school)

Three possible states of a patient:

- susceptible (S)
- infected (*I*)
- recovered (R)

<u>Infection spread model:</u>

- *N* population size
- α , β model parameters

$$I_i = \frac{\beta I_{i-1}^{\alpha} S_{i-1}}{N}$$

$$S_i = S_{i-1} - I_i$$

Optimization problem for finding parameters α and β

S - susceptible

I- infected

N – population size

 α , β – model parameters

SI - time indices {1,2,3,...}

 C_i - known input (the actual number of infected patients)

$$\min \sum_{i \in SI} \left(\varepsilon_i^I \right)^2$$

$$I_i = \frac{\beta I_{i-1}^{\alpha} S_{i-1}}{N} \quad \forall \quad i \in SI \setminus \{1\}$$

$$S_i = S_{i-1} - I_i \ \forall \ i \in SI \setminus \{1\}$$

$$C_i = I_i + \varepsilon_i^I$$

$$0 \leq I_i, Si \leq N$$

$$0.5 \le \beta \le 70$$

$$0.5 \le \alpha \le 1.5$$

Model implementation in JuMP

Input data (disease dynamics)

```
obs_cases = vcat(1,2,4,8,15,27,44,58,55,32,12,3,1,zeros(13))
```

Full model specification in JuMP

```
m = Model(optimizer_with_attributes(Ipopt.Optimizer));
@variable(m, 0.5 <= \alpha <= 1.5)
@variable(m, 0.05 <= \beta <= 70)
@variable(m, 0 <= I [1:SI max] <= N)</pre>
@variable(m, 0 <= S[1:SI_max] <= N)</pre>
@variable(m, ε[1:SI max])
@constraint(m, ε .== I_ .- obs_cases )
@constraint(m, I [1] == 1)
for i=2:SI max
   @NLconstraint(m, I_{[i]} == \beta*(I_{[i-1]}^{\alpha})*S[i-1]/N)
end
@constraint(m, S[1] == N)
for i=2:SI max
   @constraint(m, S[i] == S[i-1]-I [i])
end
@NLobjective(m, Min, sum(\epsilon[i]^2 for i in 1:SI_max))
```

JuMP Multi-criteria optimization for stock portfolio optimization

[additional material]

Stock portfolio optimization

Estimate the weights vector

$$\vec{x} = [x_1 x_2 \cdots x_n]^T$$

where x_i represents the share of asset i in a portfolio: $\vec{1}^T \vec{x} = 1$

$$\vec{1}^T \vec{x} = 1$$

- maximize the expected return $x_p = \vec{p}^T \vec{x} = \sum_{i=1}^n x_i p_i$
- minimize the risk

• minimize the risk

$$\sigma_p^2 = \vec{x}^T V \vec{x} = \sum_{i=1}^n \sum_{j=1}^n x_i x_j \sigma_{i,j} \quad \text{matrix:} \quad V = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \dots & \sigma_{nn} \end{pmatrix}$$

Source: Duan Y. C. "A multi-objective approach to portfolio optimization." Rose-Hulman Undergraduate Mathematics Journal 8.1 (2007): 12.

Possible approaches

- Maximize the expected return, disregarding risk
- Minimize the expected risk, disregarding return
- Maximize the return for a given level of risk
- Minimize the risk for a given level of return

Maximize the risk AND minimize the return
 multi-criteria optimization

Stock price data

- Top 10 Fortune 500 companies
- 3 years
- Daily opening and closing prices

- Expected return
 - average daily rate of return (for simplicity calculated as a difference between opening and closing price)
- Risk
 - calculate variance-covariance matrix for daily returns

Julia implementation – data processing

Julia MultiJuMP model

```
m = multi model(Ipopt.Optimizer)
@variable(m, 0 <= x[i=1:10] <= 1)
@constraint(m,sum(x) == 1)
@variable(m, risk)
@constraint(m, risk == x'*cov mx*x)
@variable(m, rets)
@constraint(m, rets == avg_rets' * x)
@NLexpression(m, f risk, risk)
@NLexpression(m, f_rets, rets)
```

Solving the model

optimize!(m, method = NBI(false))

```
iv1 = fill(0.1, 10) # Initial guess
obj1 = SingleObjective(f risk, sense = MOI.MIN SENSE,
             iv = Dict{String,Any}("x[$i]" => iv1[i] for i in 1:length(iv1)))
obj2 = SingleObjective(f rets, sense = MOI.MAX SENSE)
md = get multidata(m)
md.objectives = [obj1, obj2]
md.pointsperdim = 20
```

Plotting the Pareto-frontier

Plots.pyplot()
Plots.plot(md)

