

Mining Streams

Shantanu Jain

Data Streams

- In many data mining situations, we do not know what data will arrive in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- Can think of streams as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We often represent elements as tuples
- The system cannot store the entire stream
- Q: How do you make calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

- Common Types of Queries:
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Filtering a data stream
 - Select elements with property
 x from the stream
 - Counting distinct elements
 - Number of distinct elements in last k elements of the stream
 - Estimating moments
 - Estimating frequency/surprise

Applications (1)

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
 - Wikipedia wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - E.g., look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Mining Streams

Shantanu Jain

Sampling from Streams

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample (i.e. a random subset of elements)
- Two different approaches:
 - 1. Sample a fixed fraction of elements (say 1 in 10)
 - 2. Maintain a random sample of fixed size over a potentially infinite stream
 - At "any time" k we would like a random sample of s elements
 - For all time steps k, each of k elements so far should have an equal probability of being included in the s elements

Approach 1: Sampling a Fixed Proportion

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How many queries from a typical user in past 30 days are repeat queries.
 - Have space to store 1/10th of query stream
- Naïve solution: Random subsampling
 - Generate a random number u ~ Uniform([0, 1))
 - Store the query if u < 0.1, discard if $u \ge 0.1$

Problem with Naïve Approach

- Suppose each user issues x number of queries once and d number of queries twice (total of x+2d queries)
 - True Fraction of Duplicates (unknown): d / (x+d)
- Naive Estimate: Keep 10% of the queries
 - Sample will contain x / 10 of the singleton queries and 2d / 10 of the duplicate queries at least once
 - But only d / 100 pairs of duplicates
 d/100 = 1/10 · 1/10 · d
 - Of *d* "duplicates" 18d / 100 appear exactly once $18d / 100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$

Fraction in Sample
$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$$

Problem with Naïve Approach

- Suppose each user issues n_x number of queries once and n_d number of queries twice (total of $n_x + 2n_d$ queries)
 - True Fraction of Duplicates (unknown): $n_d/(n_x + n_d)$
- Naive Estimate: Keep 10% of the queries
 - Sample will contain $n_x/10$ of the singleton queries and $2n_d/10$ of the duplicate queries at least once
 - But only $n_d/100$ pairs of duplicates $n_d/100 = 1/10 \cdot 1/10 \cdot n_d$
 - Of d "duplicates" $18n_d$ / 100 appear exactly once $18n_d$ / $100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot n_d$

Fraction in Sample
$$\frac{\frac{n_d}{100}}{\frac{n_x}{10} + \frac{n_d}{100} + \frac{18n_d}{100}} = \frac{n_d}{10n_x + 19n_d}$$

Better Solution: Sample Keys

- Assume tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of a / b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**. **How to generate a 30% sample?**

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Approach 2: Fixed-size Sample

- Suppose we want to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
 - Why? May not know length of stream in advance
- Goal: Ensure equal probability of inclusion
 - Suppose at time *n* we have seen *n* items
 - Each item should occur in the sample S
 with probability s / n

Approach 2: Fixed-size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s / n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s / n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1
 the sample maintains the property
 - Sample contains each element so far with prob s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s / n
- Inductive step: When element n+1 arrives, the probability for retention of each of the first n elements is

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right) \left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$

Element **n+1** discarded

Element **n+1** *not* discarded

Element in *S* not replaced

The probability for retention after n+1 steps is

First
$$n$$
 $\left(\frac{s}{n}\right)\left(\frac{n}{n+1}\right) = \frac{s}{n+1}$ New Element $\frac{s}{n+1}$

Retained Retained in after *n* steps step *n*+1

Element **n+1**not discarded

Mining Streams

Shantanu Jain

Counting with Exponetially Decaying Windows

Sliding Windows

 One model for stream processing is to apply queries to a window of N most recent elements

Future ----

Sliding Windows

- Difficult case: Window size N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, such as finding frequent items that were sold more than s times

Exponentially Decaying Windows

Sliding window: Count occurrences in last N elements

$$\sigma_t^{\text{SW}}(x) = \sum_{i=t-N}^t I[a_i = x] \qquad I[a_i = x] = \begin{cases} 1 & a_i = x, \\ 0 & a_i \neq x. \end{cases}$$
 "Indicator" function: returns 1 when query matches, 0 when not

 Exponentially decaying window: Give lower "weight" to occurences that are farther back in time

$$\sigma_t^{\text{SDW}}(x) = \sum_{i=1}^t I[a_i = x](1-c)^{t-i}$$

c is a small constant (e.g. 0.001) such that (1-c) is close to 1, but (1-c)^{t-i} decays to 0 when $t \gg i$

Exponentially Decaying Windows

 Convenient Property: Can compute sum at time t from sum at time t-1

$$\begin{split} \sigma_t^{\text{EDW}}(x) &= \sum_{i=1}^t I[a_i = x] (1-c)^{t-i} \\ &= I[a_t = x] + \sum_{i=1}^{t-1} I[a_i = x] (1-c)^{t-i} \\ &= I[a_t = x] + \sum_{i=1}^{t-1} I[a_i = x] (1-c)^{t-i} \\ &= I[a_t = x] + (1-c) \, \sigma_{t-1}^{\text{EDW}}(x) \end{split}$$

Don't need to keep items $a_1, ..., a_t$ in memory, just need to keep track of running weights $\sigma(x)$

Counting Items with Decaying Windows

$$\sigma_t^{\text{EDW}}(x) = I[a_t = x] + (1 - c) \, \sigma_{t-1}^{\text{EDW}}(x)$$

- Initialization: Set $\sigma(x) = 0$ for all items x in some set X
- For each new item a
 - Apply decay factor to weights $\sigma(x) = (1-c) \sigma(x)$
 - Increment weight for current item $\sigma[a] = \sigma[a] + 1$

Sliding vs Exponential Windows

Sliding and Exponential windows compute a weighted sum

$$\sigma_t(x) = \sum_{i=1}^t I[a_i = x] w_i$$

What differs is the definition of the weights

Sliding
$$w_i = \begin{cases} 1 & i > t - N, \\ 0 & i \le t - N. \end{cases}$$
 Exponential Decaying $w_i = (1 - c)^{t - i}$

Sliding vs Exponential Windows

Sliding and Exponential windows compute a weighted sum

$$\sigma_t(x) = \sum_{i=1}^t I[a_i = x] w_i$$

- In a sliding window, the sum of the weights is N
- In a exponentially window, the sum is a *geometric series*

$$\lim_{t \to \infty} \sum_{i=1}^{t} w_i = \lim_{t \to \infty} \sum_{i=1}^{t} (1-c)^{t-i} = \frac{1}{1-(1-c)} = \frac{1}{c}$$

We can think of 1/c as the "effective window size"