```
from google.colab import drive
 drive.mount('/content/drive')
Mounted at /content/drive
###Importing...
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 pd.set_option('display.max_colwidth',1000)
 mobile = pd.read_csv('/content/drive/MyDrive/STUDY2/DATA ANALYSIS LAB/LABCYCLE/DATASETS/Mobile phone price_6thQuestion.csv',dtype=str)
 mobile.head(3)
                                   RAM Screen Size (inches)
                                                               Camera (MP) Battery Capacity (mAh)
     Brand
                    Model
                          Storage
                           128 GB
                                                                            3095
0 Apple
            iPhone 13 Pro
                                   6 GB
                                                            12 + 12 + 12
                                                                                                 999
                           256 GB
                                   12 GB
                                                            108 + 10 + 10 + 12
                                                                           5000
                                                                                                 1199
   Samsung
            Galaxy S21 Ultra
                                         6.8
                                   8 GB
                                         6.7
                                                           48 + 50 + 8 + 2
                                                                           4500
                                                                                                 899
   OnePlus
            9 Pro
                           128 GB
 mobile.columns
Index(['Brand', 'Model', 'Storage ', 'RAM ', 'Screen Size (inches)',
        'Camera (MP)', 'Battery Capacity (mAh)', 'Price ($)'],
      dtype='object')
###Cleaning
 mobile['Storage '] = mobile['Storage '].str.replace(' GB', '')
 mobile['Storage '] = mobile['Storage '].str.replace('GB', '')
 mobile['RAM '] = mobile['RAM '].str.replace(' GB','')
 mobile['RAM '] = mobile['RAM '].str.replace('GB','')
 mobile['Price ($)'] = mobile['Price ($)'].str.replace('$','')
 mobile['Price ($)'] = mobile['Price ($)'].str.replace(',','')
 mobile['Price ($)'] = mobile['Price ($)'].str.replace(' ','')
 mobile['Storage '] = pd.to_numeric(mobile['Storage '], errors='coerce')
 mobile['RAM '] = pd.to_numeric(mobile['RAM '], errors='coerce')
 mobile['Battery Capacity (mAh)'] = pd.to_numeric(mobile['Battery Capacity (mAh)'], errors='coerce')
 mobile['Price ($)'] = pd.to_numeric(mobile['Price ($)'], errors='coerce')
 mobile['Screen Size (inches)'] = pd.to_numeric(mobile['Screen Size (inches)'], errors='coerce')
 mobile
<ipython-input-6-b11b8d906581>:5: FutureWarning: The default value of regex will change from True to False in a future version. In addition,
single character regular expressions will *not* be treated as literal strings when regex=True.
  mobile['Price ($)'] = mobile['Price ($)'].str.replace('$','')
        Brand
                         Model
                               Storage RAM Screen Size (inches)
                                                                  Camera (MP) Battery Capacity (mAh)
                                                                                                    Price ($)
     Apple
              iPhone 13 Pro
                               128
                                             6.10
                                                               12 + 12 + 12
                                                                               3095
                                                                                                     999
     Samsung
              Galaxy S21 Ultra
                               256
                                            6.80
                                                               108 + 10 + 10 + 12
                                                                               5000
                                                                                                    1199
     OnePlus
                               128
                                             6.70
                                                               48 + 50 + 8 + 2
                                                                               4500
                                                                                                    899
              Redmi Note 10 Pro
                               128
                                             6.67
                                                               64 + 8 + 5 + 2
                                                                               5020
                                                                                                    279
     Xiaomi
              Pixel 6
                               128
                                            6.40
                                                               50 + 12.2
                                                                               4614
                                                                                                    799
     Google
              Galaxy Note20 5G
402
                                             6.70
                                                               12+64+12
                                                                               4300
                                                                                                    1049
     Samsung
                               128
403
     Xiaomi
               Mi 10 Lite 5G
                               128
                                             6.57
                                                               48+8+2+2
                                                                               4160
                                                                                                    349
404
              iPhone 12 Pro Max
                               128
                                             6.70
                                                               12+12+12
                                                                               3687
                                                                                                    1099
     Apple
405
               Reno3
                               128
                                             6.40
                                                               48+13+8+2
                                                                               4025
                                                                                                    429
     Орро
406
              Galaxy S10 Lite
                                             6.70
                                                               48+12+5
                                                                               4500
                                                                                                    549
     Samsung
                               128
407 rows × 8 columns
 mobile.dtypes
Brand
                             object
Mode 1
                             object
Storage
                              int64
RAM
                              int64
Screen Size (inches)
                            float64
Camera (MP)
                             object
Battery Capacity (mAh)
                              int64
Price ($)
                              int64
dtype: object
###a. Identify the models & the price released by each brand.
```

 $models count = mobile.group by (['Brand', 'Model', 'Price \ (\$)']).nunique().reset_index()$ models = pd.pivot_table(mobile, values=['Price (\$)'],

```
index=['Brand','Model'])
models
#print(modelscount[['Brand','Model','Price ($)']])
```

		Price (\$)
Brand	Model	
Apple	iPhone 11	661.500000
	iPhone 11 Pro Max	1099.000000
	iPhone 12	799.000000
	iPhone 12 Mini	699.000000
	iPhone 12 Pro	999.000000
Xiaomi	Redmi Note 10S	245.666667
	Redmi Note 7	159.000000
	Redmi Note 8	179.000000
	Redmi Note 9 Pro Max	279.000000
	Redmi Note 9S	239.000000

239 rows × 1 columns

###b. Identify the correlation between Battery Capacity and price.

```
correlation = mobile['Battery Capacity (mAh)'].corr(mobile['Price ($)'])
print("The correlation between Battery Capacity and Price is ",round(correlation,3))
```

The correlation between Battery Capacity and Price is -0.397

###c. Find how many models are there per each Battery capacity with same price.

```
immodels_per_battery_price = mobile.groupby(['Battery Capacity (mAh)', 'Price ($)'])['Model'].nunique().reset_index()
models_per_battery_price
```

:		Battery Capacity (mAh)	Price (\$)	Model
	0	1821	399	2
	1	1821	449	1
	2	2227	699	1
	3	2227	899	1
	4	2691	699	1
	174	6000	349	1
	175	6000	379	1
	176	6000	999	1
	177	7000	429	1
	178	7000	449	1

179 rows × 3 columns

 $\ensuremath{\#\#\#}\xspace$ d. Count the number of models in each brand with highest storage. Draw the graph

```
max_storage_per_brand = mobile.groupby('Brand')['Storage '].max().reset_index()
merged_df = pd.merge(mobile, max_storage_per_brand, on=['Brand', 'Storage '])
models_count_per_brand = merged_df.groupby(['Brand','Storage '])['Model'].count().reset_index()
print(models_count_per_brand)

plt.figure(figsize=(5, 4))
plt.bar(models_count_per_brand['Brand'], models_count_per_brand['Model'], color='skyblue')
plt.xlabel('Brand')
plt.ylabel('Number of Models with Highest Storage')
plt.title('Number of Models in Each Brand with Highest Storage')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```

```
Brand Storage Model
0
        Apple
                   512
         Asus
   Blackberry
                    64
                           3
                    32
3
         CAT
4
       Google
                   128
                           7
5
       Huawei
                   512
                   256
     Motorola
                   256
                   128
8
       Nokia
9
      OnePlus
                   256
                           5
10
        0рро
                   256
                            8
11
       Realme
                   128
                          25
12
      Samsung
                   512
                           1
13
        Sony
14
         Vivo
                   256
                           3
       Xiaomi
15
                   256
                           3
```


###e. Identify how many models are released by each brand.

```
immodels_released_by_each_brand = mobile.groupby('Brand')['Model'].nunique().reset_index()
models_released_by_each_brand
```

: [Brand	Model
0	/	Apple	15
1	/	Asus	3
2	E	Blackberry	3
3	(CAT	1
4	0	Google	4
5	-	Huawei	10
6	l	_G	3
7	1	Motorola	19
8	ľ	Nokia	17
9	0	OnePlus	10
10)	Орро	33
11		Realme	24
12	2 \$	Samsung	42
13	3 5	Sony	1
14	1	Vivo	21
1!	5	Kiaomi	33

###f. Find the RAM capacity of all models of every brand.

		RAM
Brand	Model	
Apple	iPhone 11	4.0
	iPhone 11 Pro Max	4.0
	iPhone 12	4.0
	iPhone 12 Mini	4.0
	iPhone 12 Pro	6.0
•••		:
Xiaomi	Redmi Note 10S	6.0
	Redmi Note 7	4.0
	Redmi Note 8	4.0
	Redmi Note 9 Pro Max	6.0
	Redmi Note 9S	6.0

239 rows × 1 columns

###h. Find how many models are there per each Battery capacity.

	Battery Capacity (mAh)	Model
0	1821	2
1	2227	2
2	2691	1
3	2800	1
4	2815	3
5	2942	1

###i. Calculate average price of each brand.

```
1: avg_price_brand = mobile.groupby('Brand')['Price ($)'].mean().reset_index()
    avg_price_brand
```

	Brand	Price (\$)
0	Apple	745.666667
1	Asus	874.000000
2	Blackberry	499.000000
3	CAT	299.000000
4	Google	699.000000
5	Huawei	783.166667
6	LG	615.666667
7	Motorola	278.130435
8	Nokia	244.714286
9	OnePlus	644.333333
10	Орро	376.142857
11	Realme	206.906977
12	Samsung	480.405063
13	Sony	1299.000000
14	Vivo	323.000000
15	Xiaomi	282.880597

###j. Find which mobile brand has highest price.

```
highest_price = mobile[['Brand','Price ($)']].max()
highest_price
```

Brand Xiaomi Price (\$) 1999 dtype: object

###k. Identify any missing values are there in mobile phone price dataset.

:		Brand	Model	Storage	RAM	Screen Size (inches)	Camera (MP)	Battery Capacity (mAh)	Price (\$)
	88	LG	Wing	256	8	NaN	64MP + 13MP + 12MP	4000	999
	373	Samsung	Galaxy Z Fold2 5G	256	12	NaN	12+12+12	4500	1999

###I. Display all models associated with apple brand.

```
apple_brand = mobile[mobile['Brand'] == 'Apple'][['Model']]
apple_brand
```

: [Model
	0	iPhone 13 Pro
Į	5	iPhone 13
ľ	13	iPhone 12 Mini
[25	iPhone 11
E	32	iPhone SE (2nd Gen)
E	39	iPhone XR
Ŀ	45	iPhone 12 Mini
Į	51	iPhone 11 Pro Max
Į	57	iPhone 13 Pro Max
[62	iPhone SE (2020)
[68	iPhone XR
Ē	74	iPhone 11
Ē	77	iPhone 13
	289	iPhone SE (2020)
	297	iPhone 11 Pro Max
Š	305	iPhone 13

	Model
308	iPhone XR
318	iPhone 12
326	iPhone 11
333	iPhone SE (2020)
338	iPhone XS Max
347	iPhone 8 Plus
355	iPhone XR
362	iPhone 11 Pro Max
369	iPhone 12 mini
379	iPhone SE (2020)
384	iPhone 12 Pro
388	iPhone 11
396	iPhone XR
404	iPhone 12 Pro Max

###m. Find the mobile prices based on Camera (MP).

```
#mobile['Camera (sum)'] = mobile['Camera (MP)'].str.extractall('(\d+)').astype(float).groupby(level=0).sum()
camera_price_sum = mobile.groupby('Camera (MP)', as_index=False)['Price ($)'].mean()
camera_price_sum['Price ($)'] = camera_price_sum['Price ($)'].round(2)
camera_price_sum
```

	Camera (MP)	Price (\$)
0	108 + 10 + 10 + 12	1199.00
1	108 + 8 + 5 + 2	279.00
2	108+10+10+12	1199.00
3	108+12+12	1299.00
4	108+13+5	649.00
138	64MP + 8MP + 5MP	325.67
139	64MP + 8MP + 5MP + 2MP	296.50
140	64MP + 8MP + 5MP + 5MP	274.00
141	8MP	99.00
142	8MP + 2MP	107.57

143 rows × 2 columns

###n. List the models along with brands which have highest storage.

```
brands_with_highstorage = mobile.groupby('Brand')['Model','Storage '].max()
brands_with_highstorage
```

!: <ipython-input-133-b4bf9ff77405>:1: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use
a list instead.
 brands_with_highstorage = mobile.groupby('Brand')['Model','Storage '].max()

]:		Model	Storage
	Brand		
Αı	pple	iPhone XS Max	512
A:	sus	Zenfone 8 Flip	256
ВІ	ackberry	KEY2 LE	64
C,	AT	S42	32
G	oogle	Pixel 6	128
H	uawei	Y7p	512
LC	3	Wing	256
М	lotorola	Moto G9 Power Lite	256
N	okia	XR20	128
O	nePlus	Nord N10 5G	256
O	ppo	Reno6 Z 5G	256
Re	ealme	Narzo 50i	128
Sa	amsung	Galaxy Z Fold2 5G	512
Sc	ony	Xperia 5 III	128
Vi	vo	Y72 5G	256
Xi	aomi	Redmi Note 9S	256

###o. How many models in each brand having RAM>6.

```
ram_6 = mobile[mobile['RAM ']>6]
models_count_per_brand = ram_6.groupby('Brand')['Model'].count().reset_index()
models_count_per_brand
```

:		Brand	Model
	0	Asus	3
	1	Google	5

	Brand	Model	
2	Huawei	10	
3	LG	1	
4	Motorola	1	
5	Nokia	2	
6	OnePlus	12	
7	Орро	25	
8	Realme	11	
9	Samsung	19	
10	Sony	1	
11	Vivo	21	
12	Xiaomi	10	

###p. List the models having price >600 and Storage between 100 and 200.

```
price_storage = mobile[(mobile['Price ($)']>600) & (mobile['Storage '].between(100,200))]
price_storage[['Model','Storage ','Price ($)']]
```

:	Model	Storage	Price (\$)
0	iPhone 13 Pro	128	999
2	9 Pro	128	899
4	Pixel 6	128	799
5	iPhone 13	128	799
8	Reno6 Pro+5G	128	699
16	Galaxy S21	128	799
23	9	128	729
60	Reno6 Pro 5G	128	659
77	iPhone 13	128	799
78	Galaxy S21	128	799
80	Pixel 6	128	699
87	Xperia 5 III	128	1299
99	Zenfone 8	128	699
102	Galaxy Z Flip 3	128	999
108	Galaxy S20 FE 5G	128	699
112	ROG Phone 5	128	999
123	Zenfone 8 Flip	128	899
291	Pixel 5	128	699
301	Nova 8 Pro 5G	128	699
305	iPhone 13	128	799
315	Pixel 4	128	799
318	iPhone 12	128	799
322	Galaxy S10 Lite	128	649
332	Pixel 5	128	699
343	Galaxy S20 FE 5G	128	699
371	9	128	729
377	Galaxy S20 FE 5G	128	699
384	iPhone 12 Pro	128	999
387	Galaxy S21	128	799
388	iPhone 11	128	749
390	Pixel 5	128	699
392	Galaxy S20 Ultra 5G	128	1199
393	8T	128	749
402	Galaxy Note20 5G	128	1049
404	iPhone 12 Pro Max	128	1099
406	Galaxy S10 Lite	128	649