ES-200/250

Environmental Studies: Science and Engineering

Dr. Swatantra Pratap Singh

Environmental Science and Engineering Department

swatantra@iitb.ac.in

Office: 4th Floor, Faculty Lab-11(405), CESE-DESE new building

Typical Water Use Pattern

Municipal Surface Water Treatment: Treatment train

Coagulation – Flocculation – Sedimentation

□ Once sufficiently large flocs are formed, they are allowed to settle by gravity. The process is called as sedimentation or settling.

http://www.ecologixsystems.com/images/chemical-jar-tests.jpg

Disinfection by Chlorination

- > Primary disinfection: To kill any pathogens in the water
- ➤ Secondary (or Residual) disinfection: To prevent pathogen regrowth in the water during the period before use

Free Chlorine Disinfection

$$Cl_{2(aq)} + H_2O \leftrightarrow HOCI + H^+ + Cl^-$$

 $HOCI \leftrightarrow OCl^- + H^+$

HOCI: Hypochlorous acid

OCI : Hypochlorite Ion

Disinfection by-products: Carcinogenic in nature

Typical Water Use Pattern

Municipal Wastewater Collection and Transport

https://www.conshohockensa.com/media/3358/Sewer-System-Diagram.jpg

- Critical for centralized treatment
- ❖Usually sewerage system costs account for about 80% of the total cost, while treatment may account for only 20% of the total cost.
- Gravity flow
- Several meter down when reach to treatment plants

Conventional Municipal Wastewater Treatment

- ☐ Composition of Municipal Wastewater (Sewage)
- Large solid objects (animal/vegetable matter, paper, plastic etc.)
- ❖Inorganic solids (sand, silt, clay): (a) > 0.2mm (Grit), (b) Suspended Solids, (c) Dissolve Solids
- ❖Organic solids: (a) SS, (b) DS (may include nutrients, oil, grease etc)
- ❖ Nutrients
- ❖ Pathogens
- Micropollutants

Conventional Municipal Wastewater Treatment

Conventional Municipal Wastewater Treatment

Tertiary Treatment

- □After Secondary Treatment, WW still contains:
- Dissolved inorganic matter
- ❖Nutrients (N, P)
- Micropollutants
- ❖ Pathogens

Why advance treatment?

Conventional treatment systems failed to remove some emerging pollutants

Major Pollutants in Water

- ☐ Three major category
- ☐ Inorganic Pollutants
- ☐ Organic Pollutants
- ☐ Biological Pollutants

- □ Nutrients: N, P; Heavy Metals, Fluoride etc.
- ☐ Pesticides, PPCPs etc.
- □ Pathogens

Major Pollutants in Water

Organic Pollutants

- **❖** Persistent Organic Pollutants (POPs)
- **❖ Polycyclic Aromatic Hydrocarbons (PAHs)**
- **❖ Emerging Contaminants: Pharmaceutical and Personal Care Products (PPCPs)**

Persistent organic pollutants (POPs)

- □ Persistent organic pollutants (POPs) are organic compounds that are resistant to environmental degradation through **chemical**, **biological**, **and photolytic processes**
- □ Stockholm Convention on Persistent Organic Pollutants in 2001

Major Pollutants in Water

- ☐ Emerging Contaminants: Pharmaceutical and Personal Care Products (PPCPs)
- ❖A unique group of emerging environmental contaminants, due to their inherent ability to induce physiological effects in humans and others organisms at low doses.
- □ Drugs
- ☐ Fire retardants
- □ Disinfectants
- □ Fragrances
- ☐ Insecticides/ Repellants

☐ Emerging Contaminants: Pharmaceutical and Personal Care Products (PPCPs)

Harmful effects?

□ Endocrine disrupting chemicals

- An chemical agent that interferes with synthesis, secretion, transport, metabolism, binding action, or elimination of natural blood-borne hormones that are present in the body and are responsible for homeostasis, reproduction, and developmental process
- ☐ Homeostasis refers to stability, balance, or equilibrium within a cell or the body. It is an organism's ability to keep a constant internal environment.

Ebele et al. (2017)

Endocrine disrupting PPCPs

Steroids

Estrogens

- 17 β estradiol
- estrone
- 17 a ethynylestradiol

Progestogens:

- norenthindrone
- progesterone

Estrogen antagonists

tamoxifen

Androgens and glucocorticoids

- testosterone
- beclometazone
- hydrocortisone

Phytoestrogens

- sequiterpenes
- phytosterols

Veterinary growth hormones

(growth promoters for meat-producing animals)

- zeranol
- trenbolone acetate
- melenogestrol acetate

Personal care products

Disinfectants

Conservation agents

Fragrances

- musk xylol
- musk ketone
- galaxolide
- tonalide
- celestolide

UV screens

- benzophenone-3
- homosalate
- 4-methyl-benzylidene camphor
- octyl-methoxycinnamte
- octyl-dimethyl-PABA

Nonsteroidal pharmaceuticals

Agents used on blood and blood forming organs

- · acetylsalicylic acid
- pentoxyfylline

Agents for treatment of heart and circulatory diseases

clofibric acid

Dermatological drugs

hydrocotisone

Antibiotics

- penicillin
- amoxicyllin
- tetracyclines

Analgesics

paracetamol

Anti-inflamatorics

- ibuprofen
- naproxen
- diclofenac

Agent used in treatment of allergy and asthma

budenoside

Anti-depresants

fluoxetine

How PPCPs (drugs) reach to water?

Advance Treatment Technologies

- Advance Oxidation Processes (AOP's)
 - > Photooxidation
 - > Ozonation
 - > Fenton process
 - > Electrooxidation
- **❖ Membrane Processes**
- Photobioreactors

Background: membrane technology

□ A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles

Background: membrane technology

- ❖Started ~1960 for water & wastewater treatment.
- Challenges due to high energy requirement and lack of membrane materials.
- Extensive use after 1990, materials innovation, energy recovery units and strict water quality discharge.
- ❖ Water reuse annual growth rate is 14%, and desalination is 8%. [1,2,3]
- ❖Annual growth rate for membrane filtration is ~17%. [1,2]
- Lower footprint(area)

Membrane Filtration

Membrane Filtration

☐ Reverse osmosis

Osmosis

Reverse Osmosis

Municipal Surface Water Treatment: Treatment train

Municipal wastewater Treatment: Treatment train

Membrane bioreactor (MBR)

❖ Membrane bioreactor (MBR) is the combination of a membrane process like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process.

Membrane Bioreactor (MBR)

- □Integrated model ASP & membrane separation process
- ☐ High effluent quality
- **□Small footprint**
- □Low-pressure membranes (UF/MF) used
- ☐Side stream and submerged configuration
 - ☐ Each have their own advantages and disadvantages
 - ☐ Submerged is the most common due to less energy consumption, compact design

Arrangements in MBR, (a) Side-stream membrane, (b) Submerged membrane

Membrane Bioreactor (MBR)

☐ Problems in MBR

- Cannot remove poorly biodegradable micropollutants.
 - > Less removal efficiency achieved for pharmaceutical compounds.
- Higher energy consumption due to membrane fouling

- ☐ Hybrid processes like MBR-NF/RO, osmotic membrane bioreactor (OMBR), Membrane distillation bioreactor (MDBR) significantly decrease the quantity of micropollutants from wastewater (Luo et al., 2017; Chon et al., 2011)
- Limitations: Membrane fouling

Arrangements in MBR, (a) Side-stream membrane, (b) Submerged membrane

https://www.sciencedirect.com/science/article/pii/S004896971834703X (Bing Wu)

Current status: Membrane-based wastewater Treatment

- ❖ Well recognized as an alternative water resource for non-potable or potable use.
- Membrane-based techniques with superior treated water quality.
- The membrane-based processes:
 - Membrane filtration, hybrid membrane systems, and resource recovery oriented membrane based systems for wastewater treatment (non-potable and potable use).
 - ➤ Resource recovery is limited, however the concentrated retentate form MBR or membrane filtration can be used.
- ❖ Hybrid membrane systems such as UF-NF; UF-RO; MBR-NF have shown their potential.

Summery: Cost Estimation of Membrane-based Greywater Treatment

- (a) A summary of cost estimation of membrane-based greywater treatment processes reported in previous studies; (b) Cost of MBR-based greywater treatment at different treatment capabilities, data are adopted from **Atanasova et al. (2017)**
- Future research: Nutrients removal and recovery, micropollutants removal, and life cycle assessment in membrane based greywater treatment needed to be systematically investigated

Adopted from https://www.sciencedirect.com/science/article/pii/S004896971834703X (Bing Wu, 2019)

Algae Based Treatment Systems

- Algae produce oxygen during photosynthesis which can meet the aeration requirements in conventional treatment.
- ❖Symbiotic relation between aerobic bacteria and algae could contribute in organic carbon as well as nutrients removal.
- ❖Algae also have potential to uptake various micropollutants.
- The generated algal biomass has huge commercial value.

http://www.valuefood.info/wp-content/uploads/2013/12/health-benefits-of-chlorella-670x337.jpg

Municipal wastewater Treatment: Treatment train

Algae Based Treatment Systems

Photobioreactor

http://www.variconaqua.com/wp-content/uploads/2016/08/index2.jpg

Algae Based Treatment Systems

Photobioreactor

http://www.archinspace.com/Ver3/files/attach/images//252/004/04d13aa0e8821fad6cd8b74404cc28f9.jpg

http://www.internethaber.com/images/other/yosun-bina-1.jpg

Wastewater Treatment in Space

- \Box 1 liter bottle of water: ~ \$22,000(~17.5 Lacs) in International Space Station(ISS).
- ☐ Supporting a crew of six astronauts on the ISS requires about 6,800 liters of water to be launched per year at a cost of almost \$150 million!
- ☐ 100% recycling of water ISS(USA-NASA)
- ☐ Only 74% efficiency
- ☐ Need to Improve for long mission (Mars and beyond)
- □ISRO also looking for better technology for the long mission

ES-200 Questions

□ Treatment train for conventional surface water treatment.
□ Treatment train for conventional municipal wastewater treatment.
□ Reasons for membrane technology higher growth rate.
□ Activated sludge process vs. MBR.
□ Why is RO technology not suitable for homes in India?
□ Advantages with Algal Photobioreactor.
□ Why are space agencies looking for high efficiency for wastewater recycling?

Thank you

