

UNIVERSIDADE FEDERAL DA BAHIA (UFBA)

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DISCIPLINA: MATA03 - CÁLCULO B

UNIDADE II - LISTA DE EXERCÍCIOS

Coordenadas polares

- (1) (a) Encontre as coordenadas polares possíveis para o ponto P com coordenadas cartesianas $(-2,2\sqrt{3})$.
 - (b) Determine as coordenadas polares, com r > 0 e $0 \le \theta < 2\pi$, para os pontos com coordenadas cartesianas (2,2) e $(-4\sqrt{3},4)$.
- (2) Determine a equação cartesiana para a curva descrita pela equação polar:

(a)
$$r = \frac{4}{2 - \cos \theta}$$

(b)
$$r^2 = \cos \theta$$

(c)
$$r = \frac{4}{1 - \sin \theta}$$

(d)
$$r^2 = \sin 2\theta$$

(3) Determine uma equação polar que represente a curva descrita pela equação cartesiana:

(a)
$$x^2 + y^2 = a^2$$

(c)
$$2xy = 1$$

(b)
$$x + y = 1$$

(d)
$$y^2 = 4(x+1)$$

(4) Estude a simetria das curvas:

(a)
$$C: r = -1 - 3 \operatorname{sen}(2\theta)$$

(c)
$$C: r = 4 + 6\cos\theta$$

(b)
$$C: r = 2$$

(d)
$$C: r = 2\cos\theta + \sin\theta$$

(5) Encontre os pontos de interseção, em coordenadas cartesianas, das curvas descritas pelas equações polares:

1

(a)
$$C_1: r=2 \text{ e } C_2: \theta=\frac{\pi}{4}$$

(b)
$$C_1: r = \cos^2 \theta \in C_2: r = -1, \ \theta \in [0, 2\pi]$$

(c)
$$C_1: r = 2(1 - \cos \theta) \in C_2: r = 2(1 + \cos \theta), \ \theta \in [0, 2\pi]$$

(d) $C_1: r = 2\cos\theta \in C_2: r = 2\sin\theta, \ \theta \in [0, \pi]$

(e)
$$C_1: r = 4 - 6 \operatorname{sen} \theta \in C_2: \theta = -\frac{\pi}{3}$$

(f)
$$C_1: r=2 \operatorname{sen} 3\theta, \, \theta \in [0,\pi], \, \operatorname{e} \, C_2: r=\sqrt{3}$$

(6) Calcule a área da região:

- (a) limitada pela leminiscata $C: r^2 = a^2 \cos 2\theta$
- (b) limitada pela leminiscata $C: r^2 = \sin 2\theta$
- (c) limitada pela rosácea $C: r = 2\cos 3\theta$
- (d) interior à cardióide $C_1: r=1-\operatorname{sen}\theta$ e exterior ao círculo $C_2: r=1$
- (e) interior à leminiscata $C_1: r^2 = 8 \sin 2\theta$ e exterior ao círculo $C_2: r = 2$
- (f) interior aos dois círculos $C_1: r = \cos \theta$ e $C_2: r = \sin \theta$
- (g) interior ao círculo $C_1: r = \operatorname{sen} \theta$ e à rosácea $C_2: r = \operatorname{sen} 2\theta$
- (h) interior ao círculo $C_1: r=3\cos\theta$ e exterior à cardióide $C_2: r=1+\cos\theta$
- (i) exterior ao círculo $C_1: r=3\cos\theta$ e interior à cardióide $C_2: r=1+\cos\theta$
- (j) limitada pelo laço interno da curva $C: r = 1 + 2 \operatorname{sen} \theta$

(7) Determine o comprimento da curva:

(a)
$$C: r = 3, \theta \in [0, \pi]$$

(c)
$$C: r = 2\cos\theta, \, \theta \in [0, \pi]$$

(b)
$$C: r = e^{2\theta}, \ \theta \in [0, 2\pi]$$

(d)
$$C: r = 2(1 + \cos \theta)$$

Limite e continuidade

(1) Determine e represente graficamente o domínio da função:

(a)
$$f(x,y) = \sqrt{9-x^2} + \sqrt{y^2-4}$$

(b)
$$f(x,y) = \sqrt[3]{x^2 + y^2}$$

(c)
$$f(x,y) = \frac{\sqrt{y-x^2}}{1-x^2}$$

(d)
$$f(x,y) = \ln(x + y - 1)$$

(e)
$$f(x,y) = \frac{\ln(x-2)}{1-x^2-y^2}$$

(2) Determine as curvas de nível e as interseções do gráfico da função com os planos yz e xz e faça um esboço do gráfico:

(a)
$$f(x,y) = 1 - x^2$$

(b)
$$f(x,y) = 1 - x^2 - y^2$$

(c)
$$f(x,y) = \frac{1}{x^2 + y^2}$$

(d)
$$f(x,y) = 1 + x^2 + 4y^2$$

(e)
$$f(x,y) = x^2 - y^2$$

(3) Utilize a definição para mostrar que:

(a)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^3}{2x^2 + y^2} = 0$$

(b)
$$\lim_{\substack{x \to 3 \\ y \to -1}} 3x - 8y = 17$$

(4) Determine o limite, se existir, ou mostre que o limite não existe:

(a)
$$\lim_{\substack{x \to 1 \ y \to 0}} \frac{(x-1)^2 y}{(x-1)^4 + y^2}$$

(b)
$$\lim_{\substack{x\to 0\\y\to 0}} x^4 \operatorname{sen}\left(\frac{1}{x^2+|y|}\right)$$

(c)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2 - xy + x - y}{x - y}$$

(d)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 - y^3}{x - y}$$

(e)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^3-y^3}{x^2+y^2}$$

(f)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3}{x^3 + y^2}$$

(g)
$$\lim_{\substack{x \to 0^+ \\ y \to 1^-}} \frac{x+y-1}{\sqrt{x}-\sqrt{1-y}}$$

(h)
$$\lim_{\substack{x \to 2 \\ y \to 0}} \frac{xy - 2y}{x^2 + y^2 - 4x + 4}$$

(i)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$$

(j)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^4-y^4}{x^2+y^2}$$

(5) Determine o conjunto em que a função é contínua:

(a)
$$f(x,y) = \ln\left(\frac{x+y}{x^2-y^2}\right)$$

(b)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 1, & \text{se } (x,y) = (0,0) \end{cases}$$

(d)
$$f(x,y) = \begin{cases} x^2 + 4y^2, & \text{se } x^2 + 4y^2 \le 5\\ 3, & \text{se } x^2 + 4y^2 > 5 \end{cases}$$

Derivadas

(1) Determine a inclinação da reta tangente à curva gerada pela interseção do gráfico da função:

(a)
$$f(x,y) = \frac{x^2}{v^5}$$
 com o plano $x = 4$, no ponto $(4,2)$.

(b)
$$f(x,y) = \ln(y^4) + x^3y + 5x$$
 com o plano $y = 1$, no ponto $(2,1)$.

(2) Considere a função dada por

$$f(x,y) = \begin{cases} \frac{x^3 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

Determine $\frac{\partial f}{\partial x}(0,0)$ e mostre que $\frac{\partial f}{\partial y}(0,0)$ não existe.

(3) Considere a função dada por

$$f(x,y) = \begin{cases} \frac{5xy^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

Calcule

$$f(1,2) - \frac{\partial f}{\partial x}(1,2) + \frac{\partial f}{\partial y}(1,2) - \frac{\partial f}{\partial x}(0,0).$$

(4) Determine as derivadas parciais de segunda ordem da função:

(a)
$$f(x,y) = x^4 - 3x^2y^3$$

(b)
$$f(x,y) = \frac{x}{x+y}$$

(c)
$$f(x,y) = e^{-y} \sin x$$

(5) Verifique que, se $f(x,y) = \arctan\left(\frac{y}{x}\right)$, então

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

(6) Considere a função

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

Prove que:

(a)
$$\frac{\partial f}{\partial x}(0, y) = -y$$
, para $y \neq 0$.

(b)
$$\frac{\partial f}{\partial u}(x,0) = x$$
, para $x \neq 0$.

(c)
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$$
.

(d) as derivadas parciais $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ não são contínuas em (0,0).

(7) Verifique se as funções abaixo são diferenciáveis no ponto P. Justifique.

(a)
$$f(x,y) = e^x \cos(xy), P = (0,0).$$

(b)
$$f(x,y) = \arctan(x+2y), P = (1,0).$$

(c)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$
, $P = (0,0)$.

d)
$$f(x,y) = \begin{cases} \frac{x^4}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$
, $P = (0,0)$.

(8) Considere a função

$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen}\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & \operatorname{se}(x,y) \neq (0,0) \\ 0, & \operatorname{se}(x,y) = (0,0) \end{cases}$$

Mostre que:

- (a) as derivadas parciais $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ não são contínuas em (0,0).
- (b) f é diferenciável em (0,0).
- (9) Determine a equação do plano tangente ao gráfico da função no ponto P:

(a)
$$f(x,y) = \sqrt{4 - x^2 - 2y^2}$$
, $P = (1, -1)$.

(b)
$$f(x,y) = \ln(2x+y), P = (-1,3).$$

- (10) Seja $f(x,y) = x^2 + y^2$.
 - (a) Encontre a inclinação da reta tangente à curva de interseção da superfície z = f(x, y) com o plano y = 1, no ponto P = (2, 1).
 - (b) Determine a equação de um plano que é paralelo ao plano z=2x+y e tangente ao gráfico da f(x,y).
- (11) Utilize a diferencial para calcular um valor aproximado para:
 - (a) a variação Δz da função $z=xe^{x^2-y^2}$ quando (x,y)=(1,1) varia para (1,01;1,002)
 - (b) sen[(1,99).ln(1,03)]

c)
$$\sqrt{(0,01)^2 + (3,02)^2 + (3,97)^2}$$

- (12) Uma caixa de forma cilíndrica é feita com um material de espessura 0,03m e suas medidas internas são: altura 2m e raio da base 1m. Utilize a diferencial para calcular um valor aproximado para o volume do material utilizado na caixa, quando
 - (a) a caixa é sem tampa.
 - (b) a caixa é com tampa.

Regra da cadeia e funções implícitas

- (1) Determine as derivadas parciais indicadas:
 - (a) $\frac{dz}{dt}$, para $z = ye^x + xe^y$, com $x = \cos t$ e $y = \sin t$
 - (b) $\frac{dz}{dt}$, para $z = \sqrt{1 + xy}$, com $x = \operatorname{tg} t$ e $y = \operatorname{arctg} t$
 - (c) $\frac{\partial z}{\partial u}$ e $\frac{\partial z}{\partial v}$, para $z = \arcsin(x y)$, com $x = u^2 + v^2$ e y = 1 2uv
 - (d) $\frac{\partial z}{\partial u} e^{\frac{\partial z}{\partial v}}$, para $z = e^{\frac{y}{x}}$, com $x = 2u \cos v e^{\frac{y}{x}} = 4u \sin v$
- (2) Um lado de um triângulo está aumentando em uma taxa de 3cm/s e um segundo lado está decrescendo em uma taxa de 2cm/s. Se a área do triângulo permanece constante, a que taxa varia o ângulo entre os lados quando o primeiro lado tem 20cm de comprimento, o segundo lado tem 30cm de comprimento e o ângulo é $\frac{\pi}{6}$.
- (3) O raio de um cone circular está aumentando em uma taxa de 4,6cm/s enquanto sua altura está descrescendo em uma taxa de 6,5cm/s. Determine a taxa que o volume do cone está variando quando o raio é 300cm e a altura é 350cm?
- (4) Seja z = xf(x y, x + y). Se u = x y e v = x + y, mostre que

$$x\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = z + 2x^2 \frac{\partial f}{\partial y}.$$

- (5) Suponha $f(x,y) = g(x^2y, x^3y^2)$, com f,g diferenciáveis. Se $\frac{\partial f}{\partial x}(2,1) = 16$ e $\frac{\partial f}{\partial y}(2,1) = 8$, determine as derivadas parciais da g em (4,8).
- (6) Supondo que as funções f,g tenham derivadas parciais de segunda ordem contínuas, mostre que qualquer função da forma

$$z = f(x + at) + g(x - at)$$

é solução da equação de onda

$$\frac{\partial^2 z}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}.$$

- (7) Determine $\frac{dy}{dx}$, para y = f(x) definida implicitamente por:
 - (a) $y\cos x = x^2 + y^2$
 - (b) $e^y \operatorname{sen} x = x + xy$
- (8) Determine $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$, para z=f(x,y) definida implicitam
nte por:

(a)
$$x^2 + 2y^2 + 3z^2 = 1$$

(b)
$$yz + x \ln y = z^2$$

(9) Supondo que z = z(x, y) é definida implicitamente por $f\left(\frac{x}{z}, \frac{y}{z}\right) = 0$, mostre que

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z.$$

- (10) Determine o vetor gradiente da função em P e a derivada direcional em P na direção do vetor \vec{v} :
 - (a) $f(x,y) = x^2y xy^3$, P = (2,1) e $\vec{v} = 3\vec{i} + 4\vec{j}$
 - (b) $f(x,y) = \text{sen}(x+2y), P = (4,-2) \text{ e } \vec{v} = -\sqrt{2}\vec{i} + \sqrt{2}\vec{j}$
 - (c) $f(x, y, z) = xy^2 e^{-2z}$, P = (2, 1, 0) e $\vec{v} = 4\vec{i} + 4\vec{j} + 2\vec{k}$
 - (d) $f(x, y, z) = \sqrt{x + yz}$, P = (1, 3, 1) e $\vec{v} = 2\vec{i} + 3\vec{j} + 6\vec{k}$
- (11) Utilize o vetor gradiente para determinar:
 - (a) equação da reta tangente à curva de nível k = 6 da função f(x, y) = xy no ponto (3, 2).
 - (b) equação do plano tangente à superfície $xy^2z^3=8$ no ponto (2,2,1).
- (12) Determine a taxa de variação máxima da função em P e a direção em que isso ocorre.
 - (a) f(x,y) = sen(xy), P = (1,0)
 - (b) $f(x,y) = x^2y$, P = (1,1)
- (13) A temperatura em uma placa de metal é dada por $T(x,y) = 20 4x^2 y^2$, com x,y em centímetros e a temperatura T em °C. Qual a direção de maior crescimento da temperatura a partir do ponto (2,-3)? Determine a taxa de crescimento.

GABARITO

Coordenadas polares

(1) (a)
$$(4, \frac{2\pi}{3} + 2n\pi)$$
 ou $(-4, \frac{5\pi}{3} + 2n\pi)$, (b) $(2\sqrt{2}, \frac{\pi}{4})$ e $(8, \frac{5\pi}{6})$; (2) (a) $3x^2 - 8x + 4y^2 = 16$, (b) $(x^2+y^2)^3 = x^2$, (c) $y = \frac{x^2 - 16}{8}$, (d) $(x^2+y^2)^2 = 2xy$; (3) (a) $r = a$, (b) $r = \frac{1}{\cos\theta + \sin\theta}$, (c) $r^2 \sin 2\theta = 1$, (d) $r = \frac{-2}{1+\cos\theta}$; (4) (a) simétrica em relação ao pólo, (b) possui as três simetrias, (c) simétrica em relação ao eixo polar, (d) não possui simetria; (5) (a) $P_1 = (\sqrt{2}, \sqrt{2})$, $P_2 = (-\sqrt{2}, -\sqrt{2})$ (b) $P_1 = (1, 0)$, $P_2 = (-1, 0)$, (c) $P_1 = (0, 2)$, $P_2 = (0, 0)$, $P_3 = (0, -2)$, (d) $P_1 = (0, 0)$, $P_2 = (1, 1)$, (e) $P_1 = (0, 0)$, $P_2 = (\frac{-4+3\sqrt{3}}{2}, \frac{4\sqrt{3}-9}{2})$, $P_3 = (\frac{4+3\sqrt{3}}{2}, \frac{-4\sqrt{3}-9}{2})$, (f) $P_1 = (\sqrt{3}\cos(\frac{\pi}{9}), \sqrt{3}\sin(\frac{\pi}{9}))$, $P_2 = (\sqrt{3}\cos(\frac{2\pi}{9}), \sqrt{3}\sin(\frac{2\pi}{9}))$, $P_3 = (-\sqrt{3}\cos(\frac{4\pi}{9}), -\sqrt{3}\sin(\frac{4\pi}{9}))$, $P_4 = (-\sqrt{3}\cos(\frac{5\pi}{9}), -\sqrt{3}\sin(\frac{5\pi}{9}))$, $P_5 = (\sqrt{3}\cos(\frac{7\pi}{9}), \sqrt{3}\sin(\frac{7\pi}{9}))$, $P_6 = (\sqrt{3}\cos(\frac{8\pi}{9}), \sqrt{3}\sin(\frac{8\pi}{9}))$; (6) (a) a^2 , (b) 1, (c) π , (d) $(\frac{\pi}{4} + 2)$, (e) $4(\sqrt{3} - \frac{\pi}{3})$, (f) $(\frac{\pi}{8} - \frac{1}{4})$ (g) $(\frac{4\pi - 3\sqrt{3}}{16})$, (h) π , (i) $\frac{\pi}{4}$, (j) $(\pi - \frac{3\sqrt{3}}{2})$; (7)(a) 3π , (b) $(\frac{\sqrt{5}}{2}(e^{4\pi} - 1), (c) 2\pi$, (d) 16.

Limite e continuidade

(4) (a) Não existe, (b) 0, (c) 1, (d) 0; (e) 0, (f) Não existe, (g) 0, (h) Não existe, (i) Não existe, (j) 0; **(5)** (a) $\{(x,y) \in \mathbb{R}^2; x > y, x \neq -y\}$, (b) $\mathbb{R}^2 \setminus \{(0,0)\}$, (c) $\mathbb{R}^2 \setminus \{(0,0)\}$, (d) $\{(x,y) \in \mathbb{R}^2; x^2 + 4y^2 \neq 5\}$.

Derivadas

(1) (a)
$$\frac{-5}{4}$$
, (b) 17; (2) $\frac{\partial f}{\partial x}(0,0) = 1$; (3) $\frac{12}{5}$ (9) (a) $x - 2y + z = 4$, (b) $2x + y - z = 1$; (10) (a) 4, (b) $z = 2x + y - \frac{5}{4}$; (11) (a) 0,026, (b) 0,06, (c) 4,988; (12) (a) 0,15 πm^3 , (b) 0,18 πm^3 .

Regra da cadeia e funções implícitas

(2)
$$-\frac{\sqrt{3}}{36}$$
 rad/s; (3) $127x10^3\pi cm^3/s$; (5) $\frac{\partial g}{\partial u}(4,8) = 10$ e $\frac{\partial g}{\partial v}(4,8) = -2$;
(7) (a) $\frac{dy}{dx} = \frac{y \sec x + 2x}{\cos x - 2y}$, (b) $\frac{dy}{dx} = \frac{1 + y - e^y \cos x}{e^y \sec x - x}$; (8) (a) $\frac{\partial z}{\partial x} = \frac{-x}{3z}$ e $\frac{\partial z}{\partial y} = \frac{-2y}{3z}$, (b) $\frac{\partial z}{\partial x} = \frac{\ln y}{2z - y}$ e $\frac{\partial z}{\partial y} = \frac{x + zy}{y(2z - y)}$; (10) (a) $\nabla f(2,1) = (3,-2)$ e $D_u f(2,1) = \frac{1}{5}$, (b) $\nabla f(4,-2) = (1,2)$ e $D_u f(4,-2) = \frac{\sqrt{2}}{2}$, (c) $\nabla f(2,1,0) = (4,4,-4)$ e $D_u f(2,1,0) = 4$, (d) $\nabla f(1,3,1) = (\frac{2}{7}, \frac{3}{7}, \frac{6}{7})$ e $D_u f(1,3,1) = \frac{23}{28}$; (11) (a) $2x + 3y = 12$, (b) $x + 2y + 6z = 12$; (12) (a) Taxa: 1, direção: (0,1) (b) Taxa: $\sqrt{5}$, direção: (2,1); (13) Taxa: $2\sqrt{73}$, direção: (-16,6).

Última atualização: 06/08/2019