

Diseases of the Heart: Heart Failure

MEDI2101 Week 11

Image from heartfailure.com.au

Learning outcomes

- **LO11.1 Define heart failure**
- LO11.2 Describe types of heart failure
- LO11.3 Understand common causes and symptoms of heart failure
- LO11.4 Describe the pathophysiology of heart failure
- LO11.5 Understand the impact of heart failure on exercise capacity
- LO11.6 Identify and describe the diagnostic tests and treatments for heart failure

What ISNT'T heart failure?

Heart failure is not:

- Heart has stopped working altogether
- Heart attack
- Cardiac arrest

Heart attack

Triggered by blocked coronary artery preventing adequate oxygen supply to part of the heart, leading to heart muscle damage

Cardiac arrest

Triggered by arrhythmia (e.g. ventricular fibrillation) leading to heart being unable to pump blood

What IS heart failure? (LO11.1)

Heart failure

Heart fails to pump blood effectively around the body to meet its metabolic demands

- Can affect either side or both sides of the heart
- Can be that the heart isn't able to pump out enough blood (systolic dysfunction), or fill with enough blood (diastolic dysfunction), or both

Types of heart failure (LO11.2)

- Acute and chronic
- Right-sided, left-sided, or both
- Left-sided heart failure can be further categorised as:
 - Heart failure with reduced ejection fraction (HFrEF)
 - Ejection fraction < 40%
 - Heart failure with *mildly* reduced ejection fraction (HFmrEF)
 - Ejection fraction 41-49%
 - Heart failure with preserved ejection fraction (HFpEF)
 - Ejection fraction ≥ 50%

Ejection fraction (EF)

Ratio of stroke volume to left ventricular end diastolic blood volume (LVEDV), expressed as a percentage i.e. EF = SV/LVEDV*100%

Common causes of heart failure (LO11.3)

Ischaemic heart disease (coronary artery disease)	Leads to damaged heart muscle
Myocardial infarction	Leads to damaged heart muscle
Hypertension	Leads to left ventricular hypertrophy (enlargement of the left ventricle)
Cardiomyopathy	Leads to stiffening, thickening or enlargement of left ventricle
Valvular disease	Leads to regurgitation of blood

All of these conditions would lead to a decrease in cardiac output. Why?

Symptoms of heart failure (LO11.3)

Breathlessness / Shortness of breath (dyspnoea)

Breathlessness whilst laying flat (orthopnoea)

Images from heartfailure.com.au

Severity of heart failure

New York Heart Association Functional Classification

Class I	No limitation of ordinary physical activity
Class II	Slight limitation of ordinary physical activity No symptoms at rest
Class III	Marked limitation of ordinary physical activity No symptoms at rest
Class IV	Symptoms on any physical activity or at rest

National Heart Foundation (2018), National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Guidelines for the Prevention, Detection, and Management of Heart Failure in Australia 2018

Pathophysiology of heart failure (LO11.4)

Initial compensatory response to onset of heart failure

The body's compensatory response to a drop in cardiac output:

Initial compensatory response to onset of heart failure

The body's compensatory response to a drop in cardiac output (cont'd)

Progressive changes of CO due to compensatory response to onset of heart failure

Effects of prolonged compensatory response to heart failure: sympathetic activation

Jackson G et al. (2000) BMJ 320;167-170.

Effects of prolonged compensatory response to heart failure: sympathetic activation

Effects of prolonged compensatory response to heart failure: RAS activation

Jackson G et al. (2000) BMJ 320;167-170.

Effects of prolonged compensatory response to heart failure: RAS activation

Effects of prolonged compensatory response to heart failure: RAS activation

Non-cardiac abnormalities in heart failure: pulmonary and peripheral oedema

Non-cardiac abnormalities in heart failure: vasculature

Non-cardiac abnormalities in heart failure: skeletal muscle

Effects of heart failure on skeletal muscle

- Skeletal muscle changes have been observed in heart failure patients, including reduction of muscle mass, as well as structural and functional abnormalities (muscle wastage)
- Metabolic function of skeletal muscle can also be affected

Non-cardiac abnormalities in heart failure: skeletal muscle

Electron micrographs of mitochondria in a patient with severe heart failure (left) and in a normal subject (right). Black represents oxidative activity in the mitochondria. Drexler *et al* (1992) *Circulation* 85(5);1751-1759

Symptoms of heart failure

What leads to these symptoms?

Breathlessness / Shortness of breath (dyspnoea)

Breathlessness whilst laying flat (orthopnoea)

Images from heartfailure.com.au

Effect of heart failure on exercise capacity (LO 11.5)

In heart failure patients, cardiac reserve is greatly reduced

Cardiac reserve

The maximum percentage cardiac output can increase above normal resting state

- In a normal, healthy individual, cardiac reserve can be up to 400%, and it is even higher in trained athletes
- This means during exercise, cardiac output can increase adequately to meet the increased metabolic demands
- In heart failure patients, low cardiac reserve means their exercise tolerance is reduced

Effect of heart failure on exercise capacity

Guyton and Hall Textbook of Medical Physiology p. 278

- When cardiac reserve is low, cardiac output cannot increase adequately, resulting in:
 - Immediate breathlessness
 - Extreme muscle fatigue
 - Excessive increase in heart rate and blood pressure

Diagnosing heart failure (LO11.6)

There is no single definitive test that can diagnose heart failure, but a combination of the below tests can help a clinician diagnose heart failure:

Test	Purpose
ECG	Arrhythmia, thickened ventricular wall, signs of previous or current heart attack
Chest X-ray	Enlargement of heart, fluid in lungs
Blood test	Presence of brain natriuretic peptide (also known as B-type natriuretic peptide)
Echocardiography	Structure of the heart, blood flow in the heart, ejection fraction
Stress test	Exercise test, often in combination with ECG and/or echocardiography

Treatment of heart failure (LO11.6)

Non-pharmacological treatment

Low salt diet

Quit smoking

Reduce alcohol intake

Exercise

Cardiac rehab program

Treatment of heart failure

Pharmacological treatment

Drug class	Mechanism
Angiotensin converting enzyme (ACE) inhibitors	First line therapy, prevents formation of angiotensin II, thus reduce effects of vasoconstriction, salt and water retention, release of aldosterone
Beta blockers	Reduces sympathetic activity
Diuretics	Reduces salt and water retention
Digitalis	Increases contractile strength of the heart

Treatment of heart failure

Other treatment

Other treatments for heart failure patients may require:

- Implantable cardioverter defibrillator
 - reduces risk of sudden death and all-cause mortality in patients with class II-III heart failure
- Cardiac resynchronization therapy
 - Recommended for patients with prolonged QRS duration
- Left ventricular assist device
 - For advanced heart failure patients that require mechanical support

A little summary...

