PROJECT REPORT

Team Members:-

- 1.Darshana Ajit Deshmukh
- 2. Sanika Manikasha Bhosale
- 3. Akanksha Vijay Koparde

1. INTRODUCTION

1.1Project Overview

This project is about predicting plant growth stages using environment and management data with Power BI. Plants grow in different stages, like seedling, vegetative, flowering, and maturity. Their growth depends on factors such as temperature, humidity, soil moisture, rainfall, and farming practices (like watering, fertilizing, and pesticide use).

With Power BI, we will:

- Collect and analyze data on plant growth and environmental conditions.
- Find patterns that affect plant growth.
- Create visual reports and dashboards to help farmers and researchers make better decisions.

1.2 Purpose

The purpose of this project is to predict how plants grow using weather and farming data with Power BI. Plant growth depends on things like temperature, rainfall, soil moisture, and how farmers take care of the plants.

This project will help to:

- by predicting plant growth stages.
- Help Make farming easier farmers and researchers make better decisions.
- Increase crop production by using data.
- Save resources like water and fertilizers by using them at the right time.

2. IDEATION PHASE

2.1 Problem Statement

Farmers and researchers struggle to track and predict plant growth because of changing weather and farming methods. Factors like temperature, rainfall, soil moisture, and fertilizers affect plant growth, but without proper data, it is hard to make the right decisions.

Right now, many farmers use traditional methods or manual observation, which can be slow and less accurate. They need a better way to use data to understand how plants grow.

This project will solve this problem by using Power BI to:

- Analyze weather and farming data to understand plant growth
- Predict plant growth stages based on patterns in the data.
- Create easy-to-read dashboards for better decision-making.

2.2 Empathy Map Canvas

2.2Brainstorming

crop regions

based on data

change on

plant growth

impact on crop yield

through

prediction

3 REQUIREMENT ANALYSIS

3.1Customer Journey map

Customer Problem Statement Template

3.2 Solution Requirement

3.2.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR	Functional	Requirement	Sub	Requiremen	t (Story	Sub-
No.	(Epic)	Task)				
FR-1	User Registration		- Regis	tration through F	Form	
			- Regis	tration through C	Gmail	
			- Regis	tration through L	LinkedIn	
FR-2	User Confirmation		- Confi	rmation via Ema	il	
			- Confi	rmation via OTP		
FR-3	Data Integration		- Impoi	rt Environmental	Data	
			- Impor	rt Management D	D ata	
			- Data (Cleaning and Tra	ansformation	
FR-4	Data Visualization		- Create	e Dashboards in	Power BI	
			- Displa	ay Trends and Co	orrelations	
			- Gener	rate Customized	Reports	
FR-5	Prediction System		- Devel	lop Machine Lea	rning Models	
			-	Predict	Plant	Growth
			StagesI	Recommendation	ıs	

3.2.2 Non-Functional Requirements

NFR	Non-Functional	Description
No.	Requirement	
NFR-1	Usability	The solution must have an intuitive and user-friendly
		interface.
NFR-2	Security	Ensure secure data storage and user authentication.
NFR-3	Reliability	The system should be highly dependable and provide
		accurate predictions.
NFR-4	Performance	Maintain fast processing and data visualization even with
		large datasets.

3.2Data Flow Diagram

3.4 Technology Stack

Table 1: Application Components

S.No	Component	Description	Technology
1	User Interface	User interfaces like Web UI or Mobile	HTML, CSS,
		Apps to interact with the Power BI	JavaScript, ReactJS
		dashboards	
2	Application Logic-	Data ingestion logic to extract	Python
	1	environmental and management data from	
		various sources	
3	Application Logic-	Speech-to-text logic for audio input (e.g.,	IBM Watson STT
	2	voice commands for querying plant growth	service
		stages)	
4	Application Logic-	Virtual assistant to answer user queries	IBM Watson Assistant
	3	related to plant growth predictions	

5	Database	Stores raw and transformed data, including	MySQL, NoSQL	
		historical plant growth and environmental		
		factors		
6	Cloud Database	Centralized storage of large-scale data for	IBM Cloudant	
		scalability		
7	File Storage	Storage for large environmental datasets	IBM Block Storage or	
		and model output	Cloud-based storage	
8	External API-1	Provides real-time environmental data	IBM Weather API	
		(e.g., weather conditions)		
9	External API-2	xternal API-2 Identity verification for restricted access		
		(if required)		
10	Machine Learning	Predicts plant growth stages based on input	Custom ML Model	
	Model	data	(developed in Python)	
11	Infrastructure	Deployment of application on a cloud	Kubernetes on IBM	
	(Server/Cloud)	platform for scalability and availability	Cloud	

Table 2: Application Characteristics

S.No	Characteristics	Description	Technology
1	Open-Source	Frameworks to build the application	ReactJS, Flask, Django
	Frameworks	frontend or backend	
2	Security	Implements access controls,	SHA-256, IAM Controls,
	Implementations	encryptions, and secure API calls	OWASP Guidelines
3	Scalable	Designed as microservices or a 3-tier	Kubernetes, Docker
	Architecture	architecture for scaling	
4	Availability	Load balancers and distributed	Load Balancers, Distributed
		servers ensure consistent access	Cloud Servers
5	Performance	Performance optimization using	CDN, Redis Cache
		caching and CDNs	

4 PROJECT DESIGN

4.1 Problem Solution Fit

4.2Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement	Clearly define the problem that the solution aims to solve.
2.	Idea / Solution Description	Provide a detailed explanation of the proposed idea or solution.
3.	Novelty / Uniqueness	Highlight the innovative aspects or unique features of the solution.
4.	Social Impact / Customer Satisfaction	Explain how the solution benefits society or improves customer experience.
5.	Business Model (Revenue Model)	Describe the financial sustainability of the solution, including how revenue is generated.
6.	Scalability of the Solution	Outline the potential for scaling the solution to reach larger markets or audiences.

4.3 Solution Architecture

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Product Backlog and Sprint Schedule

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requirement	Story	Description	Points		Members
	(Epic)	Number				
Sprint-	Registration	USN-1	As a user, I can register for	2	High	Assigned
1			the application by			Members
			entering my email,			
			password, and confirming			
			my password.			
Sprint-	Registration	USN-2	As a user, I will receive a	1	High	Assigned
1			confirmation email once I			Members
			have registered for the			
			application.			
Sprint-	Registration	USN-4	As a user, I can register for	2	Medium	Assigned
1			the application through			Members
			Gmail.			
Sprint-	Login	USN-5	As a user, I can log into	1	High	Assigned
1			the application by			Members
			entering email &			
			password.			
Sprint-	Registration	USN-3	As a user, I can register for	2	Low	Assigned
2			the application through			Members
			Facebook.			
Sprint-	Dashboard	To be	Define dashboard-specific	TBD	TBD	Assigned
3		defined	tasks as necessary.			Members

Project Tracker and Velocity

Sprint	Total	Duration	Start	End Date	Story Points	Release Date
	Story	(Days)	Date	(Planned)	Completed	(Actual)
	Points				(Planned)	
Sprint-	20	6	2 feb	7 feb 2025	20	29 Oct 2022
1			2025			
Sprint-	20	6	7 feb	12 feb 2025	20	05 Nov 2022
2			2025			
Sprint-	20	6	12 feb	17 feb 2025	TBD	TBD
3			2025			
Sprint-	20	6	17 feb	22 feb 2025	TBD	TBD
4			2025			

Velocity Calculation

- Velocity = Total Story Points / Total Sprint Duration (in days).
- If the team's average velocity is 20 points per sprint (10-day sprint duration), Average Velocity (AV) = 2 story points per day.

Burndown Chart

A burndown chart illustrates:

- X-axis: Sprint duration (time in days).
- Y-axis: Remaining story points.
- It starts with 20 story points at day 0 and decreases daily based on completed points.

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Event Nam e	Com pone nt	Start Time	End Time	ID	Metrics
User Actio n	Repo rt Canv as	2025-03- 13T05:2 2:06.248 Z	-	16a345400c d7d4964506	{'sourceLabel': 'UserAction_StartedMonitoring'}
User Actio n	Repo rt Canv as	2025-03- 13T05:2 2:27.280 Z	-	79ebcc7335 99211c6840	{'sourceLabel': 'UserAction_ChangeSlicer'}
Visua I Cont ainer Lifecy cle	-	2025-03- 13T05:2 2:27.286 Z	2025-03- 13T05:2 2:27.991 Z	cd96dd60a8 77e110b5da - 2bf14c7e7a2 ac106deeb	{'status': 1, 'visualTitle': 'Slicer', 'visualId': 'cd96dd60a877e110b5da', 'visualType': 'slicer'}
Resol ve Para meter s	-	2025-03- 13T05:2 2:27.290 Z	2025-03- 13T05:2 2:27.300 Z	c80ceb69- 2b21-4d94- bb4d- 26fac79c27a b	-
Quer y	-	2025-03- 13T05:2 2:27.300 Z	2025-03- 13T05:2 2:27.910 Z	fc474219- db92-4da3- a9c1- 3ab489175b 91	-
Rend er	-	2025-03- 13T05:2 2:27.909 Z	2025-03- 13T05:2 2:27.991 Z	933e8b6f- 3943-4160- b28f- 72ca2d1580 c5	-
Data View Trans form	-	2025-03- 13T05:2 2:27.955 Z	2025-03- 13T05:2 2:27.955 Z	e5651264- ef3a-4777- 8049- acd849580e 84	-
Visua I Upda te Asyn c	-	2025-03- 13T05:2 2:27.955 Z	2025-03- 13T05:2 2:27.989 Z	57402337- 0221-4d51- 8f07- 43e02f13bd1 9	-
Visua I Upda te	-	2025-03- 13T05:2 2:27.955 Z	2025-03- 13T05:2 2:27.955 Z	b629ed28- f7de-4d2d- 83dd- 9ffcf98a9867	-
Exec ute	DSE	2025-03- 13T05:2	2025-03- 13T05:2	dfa639e9- 0cd7-47e1-	-

	•				
Sema ntic Quer y		2:27.615 Z	2:27.819 Z	8ea5- 8359fdf98c4 8	
Quer y Gene ration	-	2025-03- 13T05:2 2:27.305 Z	2025-03- 13T05:2 2:27.307 Z	8214fdbf- 73c0-45f9- bbd4- 8ce83ff51dc	-
Quer y Gene ration	-	2025-03- 13T05:2 2:27.310 Z	2025-03- 13T05:2 2:27.310 Z	dcbc4201- ca24-4627- a7d3- 50886da5b9 58	-
Quer y Pendi ng	•	2025-03- 13T05:2 2:27.549 Z	2025-03- 13T05:2 2:27.559 Z	14bed712- 4154-4ab8- 96c4- a959699e21 eb	-
Parse Quer y Resul t	-	2025-03- 13T05:2 2:27.908 Z	2025-03- 13T05:2 2:27.908 Z	f9bc9a86- 2115-4508- 8c5d- d466bc3e9f6 f	-
Exec ute DAX Quer y	DSE	2025-03- 13T05:2 2:27.721 Z	2025-03- 13T05:2 2:27.817 Z	c926a6be- 2c0d-4983- 976e- 641fd08009f 3	{'QueryText': "DEFINE\r\n\tVARDS0Core = \r\n\t\tVALUES('plant_growth_data '[Soil_Type])\r\n\r\n\tVARDS0PrimaryWindowed = \r\n\t\tTOPN(101,DS0Core, 'plant_growth_data'[Soil_Type], 1)\r\n\r\nEVALUATE\r\n\t_DS0Pri maryWindowed\r\n\r\nORDER BY\r\n\t'plant_growth_data'[Soil_T ype]", 'RowCount': 3}
Exec ute Quer y	AS	2025-03- 13T05:2 2:27.793 Z	2025-03- 13T05:2 2:27.817 Z	A248292D- E9FB-4474- 89BE- 2802571DD 3CD	-
Serial ize Rows et	AS	2025-03- 13T05:2 2:27.817 Z	2025-03- 13T05:2 2:27.817 Z	86FBCC51- 32DA-4C84- A111- 0C8F66EAE CF2	-
Visua I Cont ainer Lifecy cle	1	2025-03- 13T05:2 2:27.311 Z	2025-03- 13T05:2 2:27.940 Z	7c539d65d4 40ca91be77- 57106ebc97 3970da57ce	{'status': 1, 'visualTitle': 'Card', 'visualId': '7c539d65d440ca91be77', 'visualType': 'card', 'initialLoad': False}
Resol ve Para meter	-	2025-03- 13T05:2 2:27.312 Z	2025-03- 13T05:2 2:27.351 Z	5dad0802- 5531-428b- aa8e- d51fad9334b	-

c				5	
S		2025 02	2025 02		_
Quer y	-	2025-03- 13T05:2 2:27.351 Z	2025-03- 13T05:2 2:27.904 Z	9a39064e- 7fac-4f1e- 9ce1- 6159fbfb1ad a	-
Rend er	-	2025-03- 13T05:2 2:27.904 Z	2025-03- 13T05:2 2:27.940 Z	b77950df- 9047-417b- 9e4e- e27f6a5abf6 9	-
Data View Trans form	-	2025-03- 13T05:2 2:27.928 Z	2025-03- 13T05:2 2:27.929 Z	6cee971f- 3030-4290- a9ca- 22e9f559f16 0	-
Exec ute Sema ntic Quer y	DSE	2025-03- 13T05:2 2:27.615 Z	2025-03- 13T05:2 2:27.819 Z	47b53657- fba5-43d2- 9dba- 69678f04ad9 9	-
Quer y Gene ration	-	2025-03- 13T05:2 2:27.364 Z	2025-03- 13T05:2 2:27.365 Z	f914a96d- 34e5-4666- a2f7- 64898989ae d1	-
Quer y Pendi ng	-	2025-03- 13T05:2 2:27.550 Z	2025-03- 13T05:2 2:27.561 Z	b9ff6e11- ac9d-4fb1- 9b6a- 013c1cfd3dd e	-
Parse Quer y Resul t	-	2025-03- 13T05:2 2:27.903 Z	2025-03- 13T05:2 2:27.903 Z	53f34d73- 213a-43a1- 973f- bdbec487f05 4	-
Exec ute DAX Quer y	DSE	2025-03- 13T05:2 2:27.723 Z	2025-03- 13T05:2 2:27.810 Z	24d2ae62- fd6b-4ba0- 89a7- 8dc058b88a 88	{'QueryText': 'EVALUATE\r\n\tROW(\r\n\t\"Aver ageHumidity", CALCULATE(AVERAGE(\'plant_g rowth_data\'[Humidity]))\r\n\t)', 'RowCount': 1}
Exec ute Quer y	AS	2025-03- 13T05:2 2:27.793 Z	2025-03- 13T05:2 2:27.803 Z	181DCA49- F61E-45E8- A50C- 12A7C7B6F 10A	-
Serial ize Rows et	AS	2025-03- 13T05:2 2:27.803 Z	2025-03- 13T05:2 2:27.803 Z	5D18CA1B- 9FC4-4A66- 9610- 5DBEFD877 D7B	-
Visua I	-	2025-03- 13T05:2	2025-03- 13T05:2	1e10db5c91 30db6e288d	{'status': 1, 'visualTitle': 'Card', 'visualId':

		1 a a = - : :	· ·	Т	[], , , , , , , , , , , , , , , , , , ,
Cont ainer Lifecy cle		2:27.314 Z	2:27.944 Z	- 6cf610a74ac 805142e40	'1e10db5c9130db6e288d', 'visualType': 'card', 'initialLoad': False}
Resol ve Para meter s	-	2025-03- 13T05:2 2:27.315 Z	2025-03- 13T05:2 2:27.352 Z	644bcab7- 2833-4370- a59a- f2917fdf1b76	-
Quer y	-	2025-03- 13T05:2 2:27.352 Z	2025-03- 13T05:2 2:27.901 Z	06050895- 268d-41e8- a80e- ba61548d50 64	-
Rend er	-	2025-03- 13T05:2 2:27.901 Z	2025-03- 13T05:2 2:27.944 Z	2e944e90- 1dd0-4e20- 8f88- 7bc051ff199 e	-
Data View Trans form	-	2025-03- 13T05:2 2:27.941 Z	2025-03- 13T05:2 2:27.942 Z	556513a1- c560-4417- acc1- e8fcdabbdb7 f	-
Exec ute Sema ntic Quer y	DSE	2025-03- 13T05:2 2:27.615 Z	2025-03- 13T05:2 2:27.819 Z	381a1b93- 5e5d-433b- 82b8- f0dabafe7a5 7	-
Quer y Gene ration	-	2025-03- 13T05:2 2:27.366 Z	2025-03- 13T05:2 2:27.367 Z	31c4beb1- 7264-4422- 85bb- d11996b73a 49	-
Quer y Pendi ng	-	2025-03- 13T05:2 2:27.550 Z	2025-03- 13T05:2 2:27.561 Z	91f41889- 4080-4244- 9008- 39d473c8f1c f	-
Parse Quer y Resul t	-	2025-03- 13T05:2 2:27.900 Z	2025-03- 13T05:2 2:27.901 Z	a592188c- c585-42e3- 820f- 68885cdcca 0e	-
Exec ute DAX Quer y	DSE	2025-03- 13T05:2 2:27.722 Z	2025-03- 13T05:2 2:27.810 Z	2d3594e7- 2614-4bff- b82b- b463fb93a77 5	{'QueryText': 'EVALUATE\r\n\tROW(\r\n\t\t"Sum Growth_Milestone", CALCULATE(SUM(\'plant_growth _data\'[Growth_Milestone]))\r\n\t)', 'RowCount': 1}
Exec ute Quer y	AS	2025-03- 13T05:2 2:27.793 Z	2025-03- 13T05:2 2:27.803 Z	E1EBC465- 6C10-4B8F- B10F- 08D24019B2	-

				B2	
Serial ize Rows et	AS	2025-03- 13T05:2 2:27.803 Z	2025-03- 13T05:2 2:27.803 Z	7E57501E- F9D6-40B2- AC41- 2CFD9CD9 C9C9	-
Visua I Cont ainer Lifecy cle	-	2025-03- 13T05:2 2:27.315 Z	2025-03- 13T05:2 2:27.947 Z	74e7da7505 04ce7c8053- 2ee300df88b ddc0e0616	{'status': 1, 'visualTitle': 'Card', 'visualId': '74e7da750504ce7c8053', 'visualType': 'card', 'initialLoad': False}
Resol ve Para meter s	-	2025-03- 13T05:2 2:27.316 Z	2025-03- 13T05:2 2:27.352 Z	ab46e5b7- e3e9-4f49- a8b1- e2261c476c 70	-
Quer y	-	2025-03- 13T05:2 2:27.352 Z	2025-03- 13T05:2 2:27.898 Z	3f6768fb- acd2-4948- ba29- 13c98189edf 6	-
Rend er	-	2025-03- 13T05:2 2:27.898 Z	2025-03- 13T05:2 2:27.947 Z	cfa84584- 674c-44b6- 9b85- 0840404aa9 42	-
Data View Trans form	-	2025-03- 13T05:2 2:27.945 Z	2025-03- 13T05:2 2:27.946 Z	77d35fee- 5c3b-4898- ac84- ac3ce5a0dd 08	-
Exec ute Sema ntic Quer y	DSE	2025-03- 13T05:2 2:27.615 Z	2025-03- 13T05:2 2:27.819 Z	4156ac15- 1dcf-4c2f- a3fd- 956f37ac318 c	-
Quer y Gene ration	-	2025-03- 13T05:2 2:27.368 Z	2025-03- 13T05:2 2:27.369 Z	81e3d082- 3e94-4b1f- b3a9- e3d15be21fa e	-
Quer y Pendi ng	-	2025-03- 13T05:2 2:27.551 Z	2025-03- 13T05:2 2:27.560 Z	9978867e- 8cbb-41cc- 800d- 057a7c597b 39	-
Parse Quer y Resul t	-	2025-03- 13T05:2 2:27.897 Z	2025-03- 13T05:2 2:27.898 Z	d07e2963- 56ec-4e76- 8311- 7e75202297 cb	-

7. RESULTS

7.1 Screenshots of Report and observation

7.2 Screenshot of Dashboard and observation

8. ADVANTAGES & DISADVANTAGES

Advantages

- Helps farmers and researchers make data-driven decisions about irrigation, fertilization, and harvesting.
- 2. Predicting plant growth stages allows farmers to apply the right resources at the right time (e.g., water, fertilizers, pesticides)
- 3. Real-time environmental adaptation improves outcomes.

Disadvantages

- 1. If data is incomplete or inaccurate, predictions may not be reliable.
- 2. Farmers with limited technical knowledge may find it difficult to use Power BI dashboards.

9. CONCLUSION

This project shows how Power BI can help predict plant growth stages by using weather and farming data. Factors like temperature, rainfall, soil moisture, and fertilizers affect plant growth, and with data visualization, farmers and researchers can make better decisions.

With easy-to-understand dashboards, users can:

- See how plants grow over time.
- Use water, fertilizers, and pesticides at the right time.
- Find problems early and fix them.
- Improve crop health and yield.

10. FUTURE SCOPE

This project can be improved in many ways to make plant growth prediction even better. In the future, we can:

- 1. Use AI for Better Predictions
 - Add smart technology to make growth predictions more accurate.
- 2. Get Live Data from Sensors
 - o Connect weather sensors to get real-time updates on temperature, soil, and rain.