CS 561 Artificial Intelligence Lecture # 4-5

Reasoning with uncertainty

Rashmi Dutta Baruah

Department of Computer Science & Engineering

IIT Guwahati

Outline

- Belief Networks
 - Structure and inference

Bayesian networks

- Representing knowledge in uncertain domain
- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions.
- Syntax:
 - a set of nodes, one node per random variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:

$$\mathbf{P}(X_i \mid \text{Parents}(X_i))$$

• In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

• Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- *Toothache* and *X-raySpot* are conditionally independent given *Cavity*

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- i.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions that are associated with the nodes of the network:

$$P(X_1, \ldots, X_n) = \pi_{i=1}^n P(X_i \mid Parents(X_i))$$

e.g.,
$$\mathbf{P}(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

$$= \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \mathbf{P}(a \mid \neg b, \neg e) \mathbf{P}(\neg b) \mathbf{P}(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

Constructing Bayesian networks

• The joint distribution $P(X_1 = x_1, ..., X_n = x_n)$ can be given in terms of conditional probability using product rule:

$$P(x_1, ..., x_n) = P(x_n | x_{n-1}, ...x_1) P(x_{n-1}, ..., x_1)$$

repeating the process, reducing each conjunctive probability to a conditional probability and a smaller conjunction

$$P(x_1, ..., x_n) = P(x_n | x_{n-1}, ..x_1) P(x_{n-1} | x_{n-2}, ..., x_1) ... P(x_2 | x_1) P(x_1)$$

$$P(x_1, ..., x_n) = \pi_{i=1}^n P(x_i | x_{i-1} ..., x_l)$$

Chain Rule

This specification of joint distribution is equivalent to

$$P(X_1, \ldots, X_n) = \pi_{i=1}P(X_i \mid Parents(X_i))$$

provided $Parents(X_i) \subseteq \{X_{i-1}, ..., X_1\}$

Take care of the node ordering while constructing the network.

Constructing Bayesian networks

- Determine the set of variables, choose an ordering of variables X_1, \ldots, X_n (if causes precede effects, this will result in compact network)
- For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that

$$\boldsymbol{P}(X_i \mid Parents(X_i)) = \boldsymbol{P}(X_i \mid X_1, \dots X_{i-1})$$

this choice of parents guarantees:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i \mid X_1, ..., X_{i-1}) \text{ (chain rule)}$$

= $\pi_{i=1}^n P(X_i \mid Parents(X_i)) \text{ (by construction)}$

- for each parent insert a link from parent to X_i
- CPTs: write down the conditional probability table, $_{1}P(X_{i} \mid Parents(X_{i}))$

• Suppose we choose the ordering *M*, *J*, *A*, *B*, *E*

Wrong ordering??

$$\mathbf{P}(J \mid M) = \mathbf{P}(J)$$
?

• Suppose we choose the ordering *M*, *J*, *A*, *B*, *E*

$$\mathbf{P}(J \mid M) = \mathbf{P}(J)$$
?

No

$$\mathbf{P}(A \mid J, M) = \mathbf{P}(A)$$
?

• Suppose we choose the ordering *M*, *J*, *A*, *B*, *E*

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?
No

$$P(A \mid J, M) = P(A)$$
? **No**

$$P(B \mid A, J, M) = P(B \mid A)$$
? **Yes**

$$P(B \mid A, J, M) = P(B)$$
? **No**

$$P(E \mid B, A, J, M) = P(E \mid A)$$
?
$$P(E \mid B, A, J, M) = P(E \mid A, B)$$
?

• Suppose we choose the ordering M, J, A, B, E

Example contd.

- Resulting network has two more links, requires three more probabilities to be specified: Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
- Deciding conditional independence is hard in noncausal directions

- Can we find all the independences of a BN by inspecting its structure (from the graph)?
- Let us first see a three-node network where variables X and Y are connected via third variable Z in four different ways and we will try to understand when an observation regarding a variable X can possibly change our beliefs about Y, in the presence of evidence variable Z.
 - Forward serial connection (Causal trail active iff Z is not observed)

- When Z is not instantiated (its truth value is not known variable is not observed) X can influence Y via Z (having observed X will tell something about Y).
- When Z is instantiated then X cannot influence Y (if we observe Z then knowing about X will not tell anything new about Y).

• Backward serial connection (evidential trail- active iff Z is not observed)

- When Z is not instantiated Y can influence X via Z (knowing about Y will tell something about X).
- When Z is instantiated then Y cannot influence X (if we observe Z then knowing about Y will not tell anything new about X).

• Diverging connection (Common cause- active iff Z is not observed)

- Similar to previous two cases: X can influence Y via Z if and only if Z is not observed.
- In other words, if we know Z (or observe Z), then knowing about X will not give us any additional information about Y.

• Converging connection (Common effect- active iff either Z or one of Z's descendants is observed)

- X can influence Y only if Z or descendant of Z is instantiated.
- Without observing Z, knowing X does not tell anything about Y.
- When either node Z is instantiated, or one of its descendants is, then we know something about whether Z, and in that case information does propagate through from X to Y.

Serial connections and diverging connections are essentially the same.

- **General case:** Considering longer trail $X_1 \rightleftharpoons ... \rightleftharpoons X_n$, for influence to "flow" from X_1 to X_n , it needs to flow through every single node on the trail.
- When multiple trails are there between two nodes then one node can influence another if there is any trail along which influence can flow.

- d-separation (d-dependence): provides a notion of separation between nodes in a directed graph.
- Variables X and Y are d-separated iff for every trail between them, there is an intermediate variable Z such that either
 - Z is in a serial or diverging connection and Z is known (observed).
 - Z is in converging connection and neither Z not any of Z's descendants are known.
- Two variable X and Y are d-connected if they are not d-separated.
- If variables X and Y are d-separated by Z then, X and Y are conditionally independent given Z.
- **Definition:** Let X,Y,Z be three sets of nodes in G (BN structure). We say that X and Y are d-separated given Z, denoted dsep(X;Y|Z), if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.
- Let I(G) denote the set of independencies that correspond to d-separation:

$$I(G) = \{X \perp Y | Z) : dsep(X; Y | Z)\}$$

This set is also called the set of global Markov independencies.

Conditional Independence relations

- Each node is conditionally independent of its non-descendants, given its parents.
- Each node is conditionally independent of all others given its Markov blanket: parents+children+children's parents

- **Example:** One morning Tracey leaves her house and realise that her grass is wet. Is it due to overnight rain or did she forget to turn off the sprinkler last night?
- Next she notices that the grass of her neighbour, Jack, is also wet.
- This **explains away** to some extent the possibility that her sprinkler was left on, and she concludes therefore that it is probably been raining (it decreases her belief that the sprinkler is on).
- Using the following four propositional random variables, construct the BN and determine if S is d-separated from J when T is known.
 - R: Rain $\in \{0,1\}$ (Rain = 1 means that it has been raining, and 0 otherwise)
 - S: Sprinkler $\in \{0,1\}$
 - J: Jack's grass wet $\in \{0,1\}$
 - T: Tracy's Grass wet

- Four propositional random variables are:
 - R: Rain $\in \{0,1\}$ (Rain = 1 means that it has been raining, and 0 otherwise)
 - S: Sprinkler $\in \{0,1\}$
 - J: Jack's grass wet $\in \{0,1\}$
 - T: Tracy's Grass wet

- The trail between S and J: S-T-R-J
- S-T-R converging connection and T is known so influence flows from S to R.
- T-R-J diverging connection and R is not known so influence flows from T to J.
- So, S and J are not d-separated given T

Conditional Independence relations

- The node JohnCalls independent of Burglary, Earthquake, and MaryCalls given the value of Alarm.
- The node Burglary is independent of JohnCalls and MaryCalls, given Alarm and Earthquake.

Inference in Bayesian Networks

- Given a Bayesian network, what queries one might ask?
 - Simple query: compute posterior probability i.e. $P(X_i | E=e)$
- X denotes query variable, E is set of evidence variables, E_1 , ... E_m , and e is particular observed event, Y denotes non-query, non-evidence variables (called hidden variables).
- Example: P(Burglary | JohnCalls = true, MaryCalls = true)
 - $X = Bruglary, E = \{JohnCalls, MaryCalls\}, Y = \{Alarm, Earthquake\}$

Inference in Bayesian Networks

Inference by Enumeration

• $P(X | e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$: Sum over the variables not involved in the query.

$$P(B|j,m) = \alpha P(B,j,m) = \alpha \sum \sum P(B,j,m,e,a)$$

Using Bayesian network semantics we can get the expression in terms of CPTs.

Let us write this for *Burglary*= *true*

$$P(b|j,m) =$$

$$\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)$$

$$= \alpha P(b) \sum_{a} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$$

We know: $P(X_1, ..., X_n) = \pi_{i=1} P(X_i \mid Parents(X_i))$

Inference by Enumeration

Proceed top down, multiplying values along each path and summing at the "+" nodes. Note repetition of the paths for j and m (repeated computation). For large networks takes long time.

Inference by Variable elimination

- Eliminates repeated calculations
- Variable elimination:
 - expression is evaluated from right-to-left order
 - intermediate results are stored
 - summations over each variable are done only for those portions of the expression that depend on the variable.

$$P(B|j,m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$$

$$f_{1}(B) \qquad f_{2}(E) f_{3}(A,B,E) \qquad f_{4}(A) \qquad f_{5}(A) \longleftarrow \qquad factor$$

$$= \alpha f_{1}(B) \times \sum_{e} f_{2}(E) \times \sum_{a} f_{3}(A,B,E) \times f_{4}(A) \times f_{5}(A)$$

$$E_{g.} f_4(A) = \binom{P(j|a)}{P(j|\sim a)} = \binom{0.90}{0.05}$$

- Each factor is a matrix indexed by the values of its arguments
- × operator is point-wise product operation

Inference by variable elimination

Sum out variables (right-to-left) from point-wise products of factors to produce new factors, eventually yielding a factor that is the solution.

$$\mathbf{P}(B \mid j, m) = \alpha f_1(B) \times \sum f_2(E) \times \sum f_3(A, B, E) \times f_4(A) \times f_5(A)$$

• sum out A from the product f_3 , f_4 , and f_5 giving f_6

$$f_6(B,E) = \sum_{a} f_3(A,B,E) \times f_4(A) \times f_5(A)$$

= $(f_3(a,B,E) \times f_4(a) \times f_5(a)) + (f_3(\sim a,B,E) \times f_4(\sim a) \times f_5(\sim a))$

Now we are left with expression

$$P(B | j,m) = \alpha f_1(B) \times \sum_{e} f_2(E) \times f_6(B,E)$$

• sum out *E* from the product of f_2 and f_6

$$f_7(B) = \sum_{e} f_2(E) \times f_6(B, E) = f_2(e) \times f_6(B, e) + f_2(\sim e) \times f_6(B, \sim e)$$

Now the expression becomes

$$P(B \mid j,m) = \alpha f_1(B) \times f_7(B)$$

Inference by variable elimination

- Basic operations
 - Point-wise product
 - two factors f_1 and f_2 yields a new factor f whose variables are the union of the variables in f_1 and f_2
 - *f's* elements are given by product of the corresponding elements in the two factors
 - Example:
 - given two factors $f_1(A,B)$ and $f_2(B,C)$, the pointwise product $f_1 \times f_2 = f_3$ (A,B,C) has 2^{1+1+1} entries (table in next slide)
 - Summing out variable
 - It is done by adding up the submatrices formed by fixing the variable to each of its value in turn.

Inference by variable elimination

A	В	f ₁ (A,B)	В	C	f ₂ (B,C)	A	В	C	f ₃ (A,B,C)
T	T	0.3	T	T	0.2	T	T	T	$0.3 \times 0.2 = 0.06$
T	F	0.7	T	F	0.8	T	T	F	$0.3 \times 0.8 = 0.24$
F	T	0.9	F	T	0.6	T	F	T	$0.7 \times 0.6 = 0.42$
F	F	0.1	F	F	0.4	T	F	F	$0.7 \times 0.4 = 0.28$
						F	T	T	$0.9 \times 0.2 = 0.18$
						F	T	F	$0.9 \times 0.8 = 0.72$
						F	F	T	$0.1 \times 0.6 = 0.06$
						F	F	F	$0.1 \times 0.4 = 0.04$

• To sum out A from $f_3(A,B,C)$, we write

•
$$f(B,C) = \sum_{a} f_3(A,B,C) = f_3(a,B,C) + f_3(\sim a,B,C)$$

= $\binom{.06}{.42} \cdot \binom{.24}{.28} + \binom{.18}{.06} \cdot \binom{.72}{.04} = \binom{.24}{.48} \cdot \binom{.96}{.32}$

What did we discuss in L4-L5?

- How Bayesian Networks can be used to represent knowledge under uncertainty?
- How to construct a Bayesian network and how to infer from it?