Basic feature engineering

Terence Parr
MSDS program
University of San Francisco

Overview

- Huge topic and, after basic cleaning, this is where you'll spend the most time
- Good features are much more important than the model, assuming you pick good one like RF or gradient boosting

Synthesizing new vars from strings

- Before label encoding, try to derive features from string features
- E.g., Apt data: count words in description or number of features or derive column indicating apt has a doorman, garage, ...

description	features	
Top Top West Village location, beautiful Pre-w	[Laundry In Building, Dishwasher, Hardwood Flo	
Building Amenities - Garage - Garden - fitness	[Hardwood Floors, No Fee]	

Simple string computations

First normalize

```
df['description'] = df['description'].fillna('')
df['description'] = df['description'].str.lower()
df['features'] = df['features'].fillna('')
df['features'] = df['features'].str.lower()
```

• Then, identify key words or subphrases

```
df['doorman'] = df['features'].str.contains('doorman')
...
```

doorman	parking	parking garage	
False	False	False	False
True	False	False	False
False	False	False	True

Deriving numeric columns

• Longer feature list, description, num photos could be predictive

```
df["num_desc_words"] = df["description"].apply(lambda x: len(x.split()))
df["num_features"] = df["features"].apply(lambda x: len(x.split(",")))
df["num_photos"] = df["photos"].apply(lambda x: len(x.split(",")))
```

• Ever have to wait for siblings to take a shower? Maybe there is some predictive power in the ratio of bedrooms to bathrooms

```
df["beds_to_baths"] = df["bedrooms"]/(df["bathrooms"]+1) # avoid div by 0
```

Splitting more complicated strings

 Bulldozers with higher operating capacity get higher prices, according to marginal plot

```
Skid Steer Loader - 2201.0 to 2701.0 Lb Operating Capacity
Wheel Loader - 0.0 to 40.0 Horsepower
Skid Steer Loader - 1751.0 to 2201.0 Lb Operating Capacity
Hydraulic Excavator, Track - 4.0 to 6.0 Metric Tons
Hydraulic Excavator, Track - 2.0 to 3.0 Metric Tons
Skid Steer Loader - 0.0 to 701.0 Lb Operating Capacity
Hydraulic Excavator, Track - 0.0 to 2.0 Metric Tons
Skid Steer Loader - 976.0 to 1251.0 Lb Operating Capacity
Motorgrader - Unidentified
Skid Steer Loader - 1601.0 to 1751.0 Lb Operating Capacity
Skid Steer Loader - 1251.0 to 1351.0 Lb Operating Capacity
Skid Steer Loader - 1351.0 to 1601.0 Lb Operating Capacity
Skid Steer Loader - 101.0 to 976.0 Lb Operating Capacity
Skid Steer Loader - 701.0 to 976.0 Lb Operating Capacity
O 5000 10000
```

Splitting product class description string

 We can make the information more explicit by splitting the description into four pieces (and put into 4 new columns):

- Description is a categorical variable, chosen from a finite set of categories such as "Skip Steer Loader"
- Lower and upper are numerical features
- Units is a category, such as "Horsepower"

Mechanics for splitting strings

- First split into description and spec on '-' char
- Then use regex to extract lower, upper, units

```
Track Type Tractor, Dozer - 20.0 to 75.0 Horsepower

description lower upper units
```

```
df_split = df_raw.fiProductClassDesc.str.split(' - ',expand=True)
df['fiProductClassDesc'] = df_split.values[:,0]
df['fiProductClassSpec'] = df_split[:,1] # temporary column
...
pattern = r'([0-9.\+]*)(?: to ([0-9.\+]*)|\+) ([a-zA-Z ]*)'
df_split = df['fiProductClassSpec'].str.extract(pattern, expand=True)
```

Injecting external data

- Sometimes we can inject data from outside our provided data set to increase model performance
- E.g., if sales for a store are 0, maybe that day was a national holiday or there was a hurricane
- E.g., GPS location is important for rent price, but maybe proximity to cool neighborhood is stronger / more precise?
- E.g., home sales could be affected by many factors external to data set; what is consumer confidence? How many IPOs recently? What is unemployment rate? Emigration rate for area?

Injecting external neighborhood info

- Rent data set has longitude and latitude coordinates, but a more obvious price predictor would be a categorical variable identifying the neighborhood, though, a numeric feature might be more useful
- Use proximity to desirable neighborhoods as a numeric feature
- Forbes magazine has an article with neighborhood names;
 using a mapping website, we can estimate GPS for them
- Compute so-called Manhattan distance (also called L1 distance) from each apartment to each neighborhood center

Injecting L1 proximity mechanics

 Iterate over neighborhoods and use vector math to compute new column per neighborhood

 BTW, dropping longitude and latitude and retraining a model shows a similar OOB score and shallower trees in my tests

Log in, exp out for regression

(Could be considered a part of data cleaning)

- Apt rent: consider distribution of prices clipped to less than \$20,000 and zoomed in
- There's a very long right tail, which skews RF predictions based upon mean of leaf y's and also training based upon MAE/MSE
- Many target y, such as prices, are best compared as ratios and long tail makes MAE/MSE subtraction even more wonky

Transforming the target variable

- Goal: a tighter, more uniform target space
- Optimally, the distribution of prices would be a narrow "bell curve" distribution without tail
- Even restricted to \$1k..\$10k it's still skewed
- Check out what log does to distribution of ALL prices, not just < \$20k! (shrinks large values a lot and smaller values a little)
- Max price drops from millions to 10 without having to think or clip prices
- RF on unclipped prices gets R^2~=0, but RF trained on log(unclipped price) gets R^2~=0.87

- Recall subtraction in log dollars domain is a ratio in dollar domain
- Training with MSE therefore compares squared ratio of y to \hat{y}

Effect on target space

```
y_pred_log = rf.predict(X_test)
y_pred = np.exp(y_pred_log)
```

- Revisit small region of New York City with outliers
- RF on raw prices predicts \$358,575
- RF on log(price) predicts 9.92 (in log \$)
- Transform predicted price back to \$ space with exp => \$20,395
- Average in the log price space is less sensitive to outliers

	bedrooms	bathrooms	street_address	price	log(price)
39939	1	1	west 54 st & 8 ave	2300	7.7407
21711	1	1	300 West 55th Street	2400	7.7832
15352	1	1	300 West 55th Street	3350	8.1167
48274	1	1	300 West 55th Street	3400	8.1315
29665	1	1	333 West 57th Street	1070000	13.8832
30689	1	1	333 West 57th Street	1070000	13.8832

