

Identifying Spirals and Elliptical Galaxies in SDSS using Machine Learning

A and-now-for-something-completely-different Talk

Michael Mommert | Lowell Observatory

Motivation

Motivation

Motivation

Approach

• **Goal:** distinguish between stars/ellipticals/spirals from only a few photometric properties

Approach

 Goal: distinguish between stars/ellipticals/spirals from only a few photometric properties

- Training data:
- 250k spiral/elliptical classifications from galaxyzoo.org
- + 180k stars
- = 430k sets of photometric properties from SDSS:
 - flavors: PSF, Petrosian, de Vaucouleurs, exponential
 - metrics: magnitudes, radii, axis ratios

Approach

 Goal: distinguish between stars/ellipticals/spirals from only a few photometric properties

Training data: 430k photometric data sets from SDSS

Method:

- Tried different supervised learning techniques
- Cross validation across entire training set
- Winner: a simple Decision Tree

What's a Decision Tree?

Results

- 96.4% overall accuracy but this is misleading
- Confusion matrix:

- Stars: 100%

- Spirals: 95.6%

- Elliptical: 90%

- Confusion among galaxies
- Stars are unambiguous

Retrieve SDSS image and photometric properties

Rejecting unreliable detections and faint sources

Predict target type based on learned properties

Conclusions

- Simple toy model
- Room for improvements
- Don't be afraid of machine learning!
- Notebook available: <u>github.com/mommermi/</u> <u>sdss stars galaxies</u>