

AP2125

General Description

The AP2125 series are 300mA, positive voltage regulator ICs fabricated by CMOS process.

Each of these ICs is equipped with a voltage reference, an error amplifier, a resistor network for setting output voltage, a chip enable circuit, a current limit circuit and OTSD (over temperature shut down) circuit to prevent the IC from over current and over temperature.

The AP2125 series have features of high ripple rejection, low dropout voltage, low noise, high output voltage accuracy and low current consumption which make them ideal for use in various battery-powered apparatus.

The AP2125 have 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.15V and 4.2V fixed voltage versions.

These ICs are available in tiny SC-70-5 and SC-82 packages as well as industry standard SOT-23-3 and SOT-23-5 packages.

Features

- Excellent Ripple Rejection: 70dB Typical (1.8V Version)
- Low Dropout Voltage: 65mV (I_{OUT}=100mA, 3.3V Version)
- Low Standby Current: 0.01μA Typical
- Low Quiescent Current: 60µA Typical
- Extremely Low Noise: 50µVrms Typical
- Maximum Output Current: 300mA (Min.)
- High Output Voltage Accuracy: ±2%
- Compatible with Low ESR Ceramic Capacitor
- Excellent Line/Load Regulation

Applications

- CDMA/GSM Cellular Handsets
- Battery-powered Equipments
- Laptops, Palmtops, Notebook Computers
- Hand-held Instruments
- PCMCIA Cards
- Portable Information Appliances

Figure 1. Package Types of AP2125

AP2125

Pin Configuration

Figure 2. Pin Configuration of AP2125 (Top View)

Pin Description

P	in Number		Pin Name	Function					
SOT-23-3	SOT-23-5/ SC-70-5	SC-82	1 iii Name						
3	1	4	V _{IN}	Input voltage					
1	2	2	GND	Ground					
	3	1	CE	Active high enable input pin. Logic high=enable, logic low=shutdown					
	4		NC	No connection					
2	5	3	V _{OUT}	Regulated output voltage					

AP2125

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2125

AP2125

Ordering Information

Package	Temperature	Part	Number	Mar	king ID	Packing Type
rackage	Range	Lead Free	Green	Lead Free	Green	- Facking Type
		AP2125N-1.8TRE1	AP2125N-1.8TRG1	EJ2	GJ2	Tape & Reel
		AP2125N-2.5TRE1	AP2125N-2.5TRG1	EJ4	GJ4	Tape & Reel
SOT-23-3	40 / 0500	AP2125N-2.8TRE1	AP2125N-2.8TRG1	EJ5	GJ5	Tape & Reel
301-25-3	-40 to 85°C	AP2125N-3.0TRE1	AP2125N-3.0TRG1	EJ6	GJ6	Tape & Reel
		AP2125N-3.3TRE1	AP2125N-3.3TRG1	EJ7	GJ7	Tape & Reel
		AP2125N-4.2TRE1	AP2125N-4.2TRG1	EJ3	GJ3	Tape & Reel
		AP2125K-1.8TRE1	AP2125K-1.8TRG1	ECB	GCB	Tape & Reel
		AP2125K-2.5TRE1	AP2125K-2.5TRG1	ECD	GCD	Tape & Reel
		AP2125K-2.8TRE1	AP2125K-2.8TRG1	ECE	GCE	Tape & Reel
SOT-23-5	-40 to 85°C	AP2125K-3.0TRE1	AP2125K-3.0TRG1	ECF	GCF	Tape & Reel
		AP2125K-3.3TRE1	AP2125K-3.3TRG1	ECG	GCG	Tape & Reel
			AP2125K-4.15TRG1		GCJ	Tape & Reel
		AP2125K-4.2TRE1	AP2125K-4.2TRG1	ECC	GCC	Tape & Reel
		AP2125KS-1.8TRE1	AP2125KS-1.8TRG1	26	В6	Tape & Reel
		AP2125KS-2.5TRE1	AP2125KS-2.5TRG1	35	C5	Tape & Reel
SC-70-5	40 : 0500	AP2125KS-2.8TRE1	AP2125KS-2.8TRG1	27	В7	Tape & Reel
SC-70-3	-40 to 85°C	AP2125KS-3.0TRE1	AP2125KS-3.0TRG1	36	C6	Tape & Reel
		AP2125KS-3.3TRE1	AP2125KS-3.3TRG1	28	B8	Tape & Reel
		AP2125KS-4.2TRE1	AP2125KS-4.2TRG1	34	C4	Tape & Reel
		AP2125KC-1.8TRE1	AP2125KC-1.8TRG1	91	T1	Tape & Reel
		AP2125KC-2.5TRE1	AP2125KC-2.5TRG1	96	T6	Tape & Reel
SC-82	40.4 0500	AP2125KC-2.8TRE1	AP2125KC-2.8TRG1	92	T2	Tape & Reel
SC-82	-40 to 85°C	AP2125KC-3.0TRE1	AP2125KC-3.0TRG1	97	T7	Tape & Reel
		AP2125KC-3.3TRE1	AP2125KC-3.3TRG1	93	Т3	Tape & Reel
		AP2125KC-4.2TRE1	AP2125KC-4.2TRG1	95	T5	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP2125

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Val	Unit	
Input Voltage	V _{IN}	6	V	
Enable Input Voltage	V_{CE}	-0.3 to V	7 _{IN} +0.3	V
Output Current	I _{OUT}	45	0	mA
Junction Temperature	T_{J}	15	0	°С
Storage Temperature Range	T _{STG}	-65 to	°С	
Lead Temperature (Soldering, 10sec)	T_{LEAD}	26	°С	
		SOT-23-3	200	
	$\theta_{ m JA}$	SOT-23-5	200	0.0777
Thermal Resistance	OJA	SC-70-5	300	°C/W
		SC-82 300		
ESD (Human Body Model)	ESD	6000		V
ESD (Machine Model)	ESD	40	0	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	$V_{\rm IN}$	V _{OUT} +0.5V	6	V
Operating Ambient Temperature Range	$T_{\mathbf{A}}$	-40	85	°C

AP2125

Electrical Characteristics AP2125-1.8 Electrical Characteristics

 $(V_{IN}\!\!=\!\!2.8V,\,T_A\!\!=\!\!25^oC,\,C_{IN}\!\!=\!\!1\mu F,\,C_{OUT}\!\!=\!\!1\mu F,\,\textbf{Bold}\,\,\text{typeface applies over -40}^oC\!\!\leq\!\!T_J\!\!\leq\!\!85^oC,\,\text{unless otherwise specified.})$

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit	
Output Voltage	V _{OUT}	V_{IN} =2.8V 1mA \leq I _{OUT} \leq 30mA		1.764	1.8	1.836	V	
Input Voltage	V _{IN}					6	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} -V _{OUT} =1V, V	V _{OUT} =1.76V	300	360		mA	
Load Regulation	V _{RLOAD}	V _{IN} =2.8V 1mA≤I _{OUT} ≤300i	mA		6	15	mV	
Line Regulation	V _{RLINE}	$2.8V \le V_{IN} \le 6V$ $I_{OUT} = 30mA$			1	15	mV	
		I _{OUT} =10mA			10	12		
Dropout Voltage	V_{DROP}	I _{OUT} =100mA			100	120	mV	
		I _{OUT} =300mA			300	360	1	
Quiescent Current	I_Q	V _{IN} =2.8V, I _{OUT} =0mA			60	90	μΑ	
Standby Current	I _{STD}	V _{IN} =2.8V V _{CE} in OFF mod	le		0.01	1.0	μА	
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		70		dB	
Rejection Ratio	PSKK	$V_{IN}=2.8V$	f=1KHz		70		dB	
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA	I		±100		ppm/°C	
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kH	Z		50		μVrms	
CE "High" Voltage		CE input voltage	"High"	1.5			V	
CE "Low" Voltage		CE input voltage	"Low"			0.4	V	
Thermal Shutdown					160		°C	
Thermal Shutdown Hysteresis					25		°C	

AP2125

Electrical Characteristics (Continued) AP2125-2.5 Electrical Characteristics

 $(V_{IN}=3.5V, T_A=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F,$ **Bold** typeface applies over -40°C \leq T_J \leq 85°C, unless otherwise specified.)

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V_{IN} =3.5V 1mA \leq I _{OUT} \leq 30mA		2.45	2.5	2.55	V
Input Voltage	V _{IN}					6	V
Maximum Output Current	I _{OUT(MAX)}	V_{IN} - V_{OUT} =1V, V	V _{IN} -V _{OUT} =1V, V _{OUT} =2.45V		360		mA
Load Regulation	V_{RLOAD}	V_{IN} =3.5V 1mA \leq I _{OUT} \leq 300	mA		10	15	mV
Line Regulation	V _{RLINE}	$3.5V \le V_{IN} \le 6V$ $I_{OUT} = 30 \text{mA}$			1	15	mV
		I _{OUT} =10mA			6.5	10	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA			65	100	mV
		I _{OUT} =300mA			200	300	
Quiescent Current	I_Q	V _{IN} =3.5V, I _{OUT} =0mA			60	90	μА
Standby Current	I _{STD}	V _{IN} =3.5V V _{CE} in OFF mod	le		0.01	1.0	μА
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB
Rejection Ratio	PSKK	$V_{IN}=3.5V$	f=1KHz		65		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA	l		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kH	Z		50		μVrms
CE "High" Voltage		CE input voltage "High"		1.5			V
CE "Low" Voltage		CE input voltage	"Low"			0.4	V
Thermal Shutdown					160		°C
Thermal Shutdown Hysteresis					25		°C

AP2125

Electrical Characteristics (Continued) AP2125-2.8 Electrical Characteristics

 $(V_{IN}=3.8V, T_A=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F,$ **Bold** typeface applies over -40°C \leq T_J \leq 85°C, unless otherwise specified.)

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit	
Output Voltage	V _{OUT}	V _{IN} =3.8V 1mA≤I _{OUT} ≤30m	V_{IN} =3.8V 1mA \leq I $_{OUT}$ \leq 30mA		2.8	2.856	V	
Input Voltage	V _{IN}					6	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} -V _{OUT} =1V, V _{OUT} =2.74V		300	360		mA	
Load Regulation	V _{RLOAD}	V_{IN} =3.8V 1mA \leq I _{OUT} \leq 300	mA		11	15	mV	
Line Regulation	V _{RLINE}	$3.8V \le V_{IN} \le 6V$ $I_{OUT} = 30 \text{mA}$	3.8V≤V _{IN} ≤6V		1	15	mV	
		I _{OUT} =10mA			6.5	10		
Dropout Voltage	V_{DROP}	I _{OUT} =100mA			65	100	mV	
		I _{OUT} =300mA			200	300	1	
Quiescent Current	I_Q	V _{IN} =3.8V, I _{OUT} =0mA			60	90	μА	
Standby Current	I _{STD}	V _{IN} =3.8V V _{CE} in OFF mod	le		0.01	1.0	μА	
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB	
Rejection Ratio	PSKK	$V_{IN}=3.8V$	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA	1		±100		ppm/°C	
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kHz	Z		50		μVrms	
CE "High" Voltage		CE input voltage "High"		1.5			V	
CE "Low" Voltage		CE input voltage	"Low"			0.4	V	
Thermal Shutdown					160		°C	
Thermal Shutdown Hysteresis					25		°C	

AP2125

Electrical Characteristics (Continued) AP2125-3.0 Electrical Characteristics

 $(V_{IN}=4.0V, T_A=25^{\circ}C, C_{IN}=1\mu F, C_{OUT}=1\mu F,$ **Bold** typeface applies over $-40^{\circ}C \le T_{J} \le 85^{\circ}C$, unless otherwise specified.)

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =4.0V 1mA≤I _{OUT} ≤30mA		2.94	3.0	3.06	V
Input Voltage	V _{IN}					6	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} -V _{OUT} =1V,	V _{OUT} =2.94V	300	360		mA
Load Regulation	V _{RLOAD}	V _{IN} =4.0V 1mA≤I _{OUT} ≤300	mA		12	15	mV
Line Regulation	V _{RLINE}	$\begin{array}{c} 4.0\text{V} \leq \text{V}_{\text{IN}} \leq 6\text{V} \\ \text{I}_{\text{OUT}} = 30\text{mA} \end{array}$			1	15	mV
		I _{OUT} =10mA			6.5	10	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA			65	100	mV
		I _{OUT} =300mA			200 300		
Quiescent Current	I_Q	V _{IN} =4.0V, I _{OUT} =0mA			60	90	μΑ
Standby Current	I _{STD}	V _{IN} =4.0V V _{CE} in OFF mod	le		0.01	1.0	μΑ
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB
Rejection Ratio	PSKK	V _{IN} =4.0V	f=1KHz		65		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA			±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kH	Z		50		μVrms
CE "High" Voltage		CE input voltage	"High"	1.5			V
CE "Low" Voltage		CE input voltage	"Low"			0.4	V
Thermal Shutdown					160		°C
Thermal Shutdown Hysteresis					25		°C

AP2125

Electrical Characteristics (Continued) AP2125-3.3 Electrical Characteristics

 $(V_{IN}=4.3V, T_A=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F,$ **Bold** typeface applies over $-40^{o}C \le T_{J} \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit	
Output Voltage	V _{OUT}	V _{IN} =4.3V 1mA≤I _{OUT} ≤30m	V _{IN} =4.3V 1mA≤I _{OUT} ≤30mA		3.3	3.366	V	
Input Voltage	V _{IN}					6	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} -V _{OUT} =1V, V _{OUT} =3.23V		300	360		mA	
Load Regulation	V _{RLOAD}	V _{IN} =4.3V 1mA≤I _{OUT} ≤300r	mA		13	15	mV	
Line Regulation	V _{RLINE}	4.3V≤V _{IN} ≤6V I _{OUT} =30mA			1	15	mV	
		I _{OUT} =10mA			6.5	10		
Dropout Voltage	V_{DROP}	I _{OUT} =100mA			65	100	mV	
		I _{OUT} =300mA			200	300		
Quiescent Current	I_Q	V _{IN} =4.3V, I _{OUT} =0mA			60	90	μА	
Standby Current	I _{STD}	V _{IN} =4.3V V _{CE} in OFF mod	le		0.01	1.0	μΑ	
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB	
Rejection Ratio	PSKK	V _{IN} =4.3V	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA	1		±100		ppm/°C	
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kHz	Z		50		μVrms	
CE "High" Voltage		CE input voltage "High"		1.5			V	
CE "Low" Voltage		CE input voltage	e "Low"			0.4	V	
Thermal Shutdown					160		°C	
Thermal Shutdown Hysteresis					25		°C	

AP2125

Electrical Characteristics (Continued) AP2125-4.15 Electrical Characteristics

 $(V_{IN}\!\!=\!\!5.15V\!,\,T_A\!\!=\!\!25^oC\!,\,C_{IN}\!\!=\!\!1\mu F\!,\,C_{OUT}\!\!=\!\!1\mu F\!,\,\textbf{Bold} \text{ typeface applies over -40}^oC\!\!\leq\!\!T_J\!\!\leq\!\!85^oC\!,\,unless \text{ otherwise specified.})$

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V_{IN} =5.15V 1mA \leq I _{OUT} \leq 30m	ıA	4.067	4.15	4.233	V
Input Voltage	V _{IN}					6	V
Maximum Output Current	I _{OUT(MAX)}	V_{IN} - V_{OUT} =1 V , V	V _{OUT} =4.06V	300	360		mA
Load Regulation	V _{RLOAD}	V _{IN} =5.15V 1mA≤I _{OUT} ≤300	mA		13	15	mV
Line Regulation	V _{RLINE}	$5.15V \le V_{IN} \le 6V$ $I_{OUT} = 30mA$			1	15	mV
		I _{OUT} =10mA			6.5	10	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA			65	100	mV
		I _{OUT} =300mA			200	300	
Quiescent Current	I_Q	V _{IN} =5.15V, I _{OU}	V _{IN} =5.15V, I _{OUT} =0mA		60	90	μА
Standby Current	I_{STD}	V _{IN} =5.15V V _{CE} in OFF mod	le		0.01	1.0	μА
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB
Rejection Ratio	PSKK	$V_{IN} = 5.15V$	f=1KHz		65		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA	l		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kH	Z		50		μVrms
CE "High" Voltage		CE input voltage	CE input voltage "High"				V
CE "Low" Voltage		CE input voltage	"Low"			0.4	V
Thermal Shutdown					160		°С
Thermal Shutdown Hysteresis					25		°С

AP2125

Electrical Characteristics (Continued) AP2125-4.2 Electrical Characteristics

 $(V_{IN}\!=\!5.2V,\,T_A\!=\!25^oC,\,C_{IN}\!=\!1\mu\text{F},\,C_{OUT}\!=\!1\mu\text{F},\,\textbf{Bold}\,\,\text{typeface applies over}\,\textbf{-}40^oC\!\leq\!T_J\!\leq\!85^oC,\,\text{unless otherwise specified.})$

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =5.2V 1mA≤I _{OUT} ≤30mA		4.116	4.2	4.284	V
Input Voltage	V _{IN}					6	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} -V _{OUT} =1V,	V _{OUT} =4.12V	300	360		mA
Load Regulation	V _{RLOAD}	V _{IN} =5.2V 1mA≤I _{OUT} ≤300	mA		13	15	mV
Line Regulation	V _{RLINE}	5.2V≤V _{IN} ≤6V I _{OUT} =30mA			1	15	mV
		I _{OUT} =10mA			6.5	10	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA	I _{OUT} =100mA		65	100	mV
		I _{OUT} =300mA			200	300	
Quiescent Current	I_Q	V _{IN} =5.2V, I _{OUT} =	V _{IN} =5.2V, I _{OUT} =0mA		60	90	μА
Standby Current	I _{STD}	V _{IN} =5.2V V _{CE} in OFF mod	le		0.01	1.0	μΑ
Power Supply	DCDD	Ripple 0.5Vp-p	f=100Hz		65		dB
Rejection Ratio	PSRR	$V_{IN}=5.2V$	f=1KHz		65		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA	l		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	10Hz ≤f≤100kH	Z		50		μVrms
CE "High" Voltage		CE input voltage	"High"	1.5			V
CE "Low" Voltage		CE input voltage	"Low"			0.4	V
Thermal Shutdown					160		°C
Thermal Shutdown Hysteresis					25		°C

Typical Performance Characteristics

Figure 4. Output Voltage vs. Output Current

Figure 5. Output Voltage vs. Output Current

Figure 7. Dropout Voltage vs. Output Current

Figure 8. Dropout Voltage vs. Case Temperature

Figure 9. Dropout Voltage vs. Case Temperature

Figure 10. Current Limit

Figure 11. Current Limit

Figure 12. Current Limit

Figure 13. Current Limit

Figure 14. Output Voltage vs. Input Voltage

Figure 15. Output Voltage vs. Input Voltage

Figure 16. Output Voltage vs. Input Voltage

Figure 17. Output Voltage vs. Input Voltage

Figure 18. Output Voltage vs. Case Temperature

Figure 19. Output Voltage vs. Case Temperature

Figure 20. Supply Current vs. Input Voltage

Figure 21. Supply Current vs. Input Voltage

Figure 22. Supply Current vs. Case Temperature

Figure 23. Supply Current vs. Case Temperature

130 120 110 Supply Current (μA) 100 90 80 70 60 - T_c=25°C 50 40 T_=85°C 30 AP2125-3 3 20 V_{IN}=4.3V 10 100 200 Output Current (mA)

Figure 24. Supply Current vs. Output Current

Figure 25. Supply Current vs. Output Current

Figure 26. Supply Current vs. Output Current

Figure 27. Supply Current vs. Output Current

 $\label{eq:figure 28. Line Transient}$ (Conditions: I_OUT=30mA, C_OUT=1µF, V_IN=2.8 to 3.8V)

 $\label{eq:conditions} Figure 29. \ Line Transient \\ (Conditions: I_{OUT}=30mA, \ C_{OUT}=1\mu F, \ V_{IN}=4 \ to \ 5V)$

 $\label{eq:figure 30. Load Transient} \text{(Conditions: I}_{OUT} = 10 \text{ to } 100\text{mA, C}_{IN} = 1 \mu\text{F,} \\ C_{OUT} = 1 \mu\text{F, V}_{IN} = 2.8 \text{ V)}$

 $\label{eq:conditions} Figure 31. \ Load Transient \\ \ (Conditions: I_{OUT} = 10 \ to \ 100 mA, \ C_{IN} = 1 \mu F, \\ \ C_{OUT} = 1 \mu F, \ V_{IN} = 4.3 \ V)$

Figure 32. Enable Input Response and Auto-discharge (Conditions: V_{CE} =0 to 3V, C_{IN} =1 μ F, C_{OUT} =1 μ F, V_{IN} =3V, no load)

Figure 33. ESR vs. Output Current

Figure 34. PSRR

Figure 35. PSRR

AP2125

Figure 36. Power Dissipation vs. Ambient Temperature

Figure 37. Power Dissipation vs. Ambient Temperature

AP2125

300mA HIGH SPEED, EXTREMELY LOW NOISE CMOS LDO REGULATOR

Typical Application

Figure 38. Typical Application of AP2125

AP2125

Mechanical Dimensions

SOT-23-3 Unit: mm(inch)

AP2125

Mechanical Dimensions (Continued)

SOT-23-5 Unit: mm(inch)

AP2125

Mechanical Dimensions (Continued)

SC-70-5 Unit: mm(inch)

AP2125

Mechanical Dimensions (Continued)

SC-82 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788