GENERAL EQUATIONS FOR AN AIRCRAFT DESIGN

Contents

1	. MODEL STRUCTURE	4
2	MISSION DESIGN	4
	2.1 Takeoff	4
	2.2 Climb	5
	2.3 Cruise flight	5
	2.4 Descend	5
	2.5 Landing	5
	2.6 Load factors.	6
	2.7 Payload	6
3	GEOMETRY DATA	7
	3.1 Fuselage (nacelle)	7
	3.2 Wing (or stabilizer or fin)	8
	3.3 Landing gear	9
4	ENERGY SYSTEM	9
5. WEIGHT BALANCE		
	5.1 Propulsion system weight calculation	10
	5.2 Structures weight calculation	10
	5.2.1 Fuselage weight calculation	10
	5.2.2 Wing weight calculation	10
	5.2.3 Empennage weight calculation	11
	5.2.4 Landing gear weight calculation	11
	5.3 Equipment weight calculation	11
6	. AERODYNAMICS	12
	6.1 Polar coefficient and lift coefficient	12
	6.2 Drag coefficient	12

6.2.1 Fuselage (nacelle) drag	12
6.2.2 Wing (or stabilizer or fin) drag	13
6.3 Zero drag coefficient	14
7. OUTPUTS	14
7.1 Takeoff	14
7.2 Landing	15
7.3 Climb	15
7.4 Descend	16
7.5 Cruise flight	16
8. EXAMPLE (PIAGGIO AVANTI)	16

1. MODEL STRUCTURE

Pic.1 Model structure

2. MISSION DESIGN

Pic.2 Flight plan

2.1 Takeoff

$$V_0 - takeoff \ velocity \ [\frac{m}{s}]$$

$$V_{takeoff} = V_0 * 0.7 - average \ takeoff \ velocity \left[\frac{m}{s}\right]$$

$$f_{friction_{to}} = 0.04 - friction \ coefficient$$

2.2 Climb

 θ_{climb} – climb angle [deg]

$$l_{climb} = \frac{H}{\sin\left(\theta_{climb} * \frac{\pi}{180}\right)} - climb \ diagonal \ distance[m]$$

$$d_{climb} = \frac{H}{tan\left(\theta_{climb} * \frac{\pi}{180}\right)} - climb \; horizontal \; distance[m]$$

2.3 Cruise flight

H-flight altitude [m]

 $P_{hf}\,-\,Flight\,altitude\,pressure\,[Pa]$

 ho_{cruise} — Flight altitude air density [kg/m3]

 V_{cruise} – Cruise speed [m/s]

 M_{cruise} — Cruise Mach number

 $q_{cruise} = 0.5 * ro * V_{cruise}^2 - Cruise dynamic pressure [Pa]$

g = 9.81 - Gravitational acceleration [m/s2]

 μ – kinematic viscosity parameter according to ISA – 76 $\left[\frac{m^2}{s}\right]$

2.4 Descend

 $\theta_{descend} - descend \ angle \ [deg]$

$$l_{descend} = \frac{H}{sin\left(\theta_{descend} * \frac{\pi}{180}\right)} - descend \ diagonal \ distance[m]$$

$$d_{descend} = \frac{H}{tan\left(\theta_{descend} * \frac{\pi}{180}\right)} - descend \ horizontal \ distance[m]$$

2.5 Landing

$$V_{landing} - landing \ velocity \left[\frac{m}{s}\right]$$

```
f_{friction_{land}} = 0.3 - landing friction coefficient
```

2.6 Load factors

 P_{cabin} – Cabin pressure (equal to pressure at 2000 m altitude) [Pa]

 P_{delta} – cabin pressure differential, [Pa]

n = 3 - Limit load factor

 $N_z = 1.5 * limit load factor (3 - 4 for normal category aircraft)$

- ultimate load factor

 $N_l = 1.5 * n_{landing \; gear} - ultimate \; landing \; load \; factor$

2.7 Payload

 N_p – number of personnel onboard (crew and passengers)

 $W_{payload} - Payload weight [kg]$

 $P_{delta}-cabin\ pressure\ differential,[Pa]$

3. GEOMETRY DATA

Pic.3 Aircraft and its geometry parameters

3.1 Fuselage (nacelle)

 $V_{pr}-volume\ of\ pressurized\ section,[m^3]$

 S_f – fuselage wetted area, $[m^2]$

 L_t – tail length, [m]

 L_{nose} – nose part length [m]

 $L-fuse lage\ structural\ length,[m]$

 $D-fuse lage\ structural\ depth,[m]$

W – total fuselage structural width, [m]

$$S_{fus} = W^2 * \frac{pi}{4} - crossectional area [m2]$$

$$r_{relative} = \frac{nose\ radius}{fuselage\ radius} - nose\ relative\ radius$$

 φ – nose semipart angle [rad]

$$D_{fus} = sqrt\left(4*\frac{S_{fus}}{pi}\right) - fuselage equivalent diametr[m]$$

$$AR_{fus} = \frac{L}{W} - fuselage \ aspect \ ratio$$

$$AR_{nose} = \frac{L_{nose}}{W} - nose \ part \ aspect \ ratio$$

$$AR_{aft} = \frac{L_{aft}}{W} - rear \ part \ aspect \ ratio$$

3.2 Wing (or stabilizer or fin)

 $k_{A_{wing}}$

- airfoil type coefficient (supercritical (0.97) or conventional (0.88))

$$B_w$$
 – wing span, $[m]$

$$TR_w = \frac{tip\ chord}{root\ chord} - wing\ taper\ ratio$$

$$AR_w = \frac{B_w^2}{S_w} - wing \ aspect \ ratio$$

$$t/c - thickness - to - chord - ratio$$

$$S_w - trapezoidal wing area, [m^2]$$

 $\Lambda-wing$ sweep at 25% MAC

$$mac = \frac{S_w}{B_w} - Mean \ aerodynamic \ chord \ [m]$$

 $S_{wf} = W * mac - wing area intersected with fuselage [m^2]$

$$\frac{H_t}{H_v} = 0$$
 if tail is conventional, 1 if tail is T – shaped

3.3 Landing gear

 W_l – landing design gross weight, [kg]

 L_m – extended lentgh of main landing gear, [m]

 L_n – extended lentgh of nose landing gear, [m]

4. ENERGY SYSTEM

Conventional propulsion (piston or turboprop engine)

$$PW \approx 150 - 350 - power - to - weight ratio, \left[\frac{Wt}{kg}\right]$$

 N_{en} – number of engines

 η_{prop} – propeller efficiency (~0.8 for cruise flight and ~0.6 – 0.7 for takeoff and landing)

 N_t – number of fuel tanks

 W_{fw} – weight of fuel in wing, [kg]

 $W_{fuel} - fuel weight, [kg]$

 $V_t - total fuel volume, [m^3]$

 V_i – intergral tanks volume, $[m^3]$

5. WEIGHT BALANCE

5.1 Propulsion system weight calculation

 $W_{installed\ engine\ (total)} = 2.421*W_{en}^{0.922}*N_{en}$

$$W_{en} = 0.5638 * P_{en \, max}^{0.91}$$

 W_{en} – engine weight [kg]

 $P_{en max}$ – engine takeoff power [kW]

5.2 Structures weight calculation

5.2.1 Fuselage weight calculation

$$W_{fuselage} = 0.23 * S_f^{1.086} * (N_z * W_{dg})^{0.177} * L_t^{-0.051} * (L/D)^{-0.072} * q^{0.241} + W_{press}$$

$$W_{press} = 1.2926 * (V_{pr} * P_{delta})^{0.271}$$

 W_{press} – weight penalty due to pressurization, [kg]

 W_{dg} – flight design gross weight, [kg]

5.2.2 Wing weight calculation

$$\begin{split} W_{wing} &= 0.13817 * S_w^{0.758} * W_{fw}^{0.0035} * \left(\frac{AR_w}{cos^2\Lambda}\right)^{0.6} * q^{0.006} * TR_w^{0.04} \\ &* \left(\frac{100t/c}{cos\Lambda}\right)^{-0.3} * \left(N_z * W_{dg}\right)^{0.49} \end{split}$$

 W_{fw} – weight of fuel in wing, [kg]

5.2.3 Empennage weight calculation

$$W_{ht} = 0.01917 * (N_z * W_{dg})^{0.414} * q^{0.168} * S_{ht}^{0.896} * (\frac{100t/c}{cos\Lambda_{ht}})^{-0.12}$$

$$* (\frac{AR_{ht}}{cos^2\Lambda_{ht}})^{0.043} * TR_{ht}^{-0.02}$$

$$W_{vt} = 0.12 * (1 + 0.02 * \frac{H_t}{H_v}) * (N_z * W_{dg})^{0.376} * q^{0.122} * S_{vt}^{0.873}$$

$$* (\frac{100t/c}{cos\Lambda_{ht}})^{-0.49} * (\frac{AR_{vt}}{cos^2\Lambda_{ht}})^{0.357} * TR_{vt}^{0.039}$$

5.2.4 Landing gear weight calculation

$$W_{main\ landing\ gear} = 0.12855 * (N_l * W_l)^{0.768} * (L_m)^{0.409}$$

$$W_{nose\ landing\ gear} = 0.242 * (N_l * W_l)^{0.566} * (L_n)^{0.845}$$

5.3 Equipment weight calculation

$$W_{fuel\,system} = 64.7374 * V_t^{0.726} * \left(\frac{1}{1 + V_i/V_t}\right)^{0.363} * N_t^{0.242} * N_{en}^{0.157}$$

$$W_{flight\;controls} = 0.43613*L^{1.536}*B_w^{0.371}*\left(N_z*W_{dg}*10^{-4}\right)^{0.8}$$

$$W_{hydraulics} = 1.1734 * K_h * W^{0.8} * M^{0.5}$$

 $K_h - 0.05$ (low subsonic), 0.11 (medium subsonic), 0.12 (high subsonic)

$$W_{electrical} = 8.533 * (W_{fuel \, system} + W_{avionics})^{0.51}$$

$$W_{avionics} = 2 * W_{uav}^{0.933}$$

 W_{uav} – uninstalled avionics weight (350 – 650 kg), [kg]

$$W_{air\ conditioning\ and\ anti-ice} = 0.2074*W_{dg}^{0.52}*N_p^{0.68}*W_{avionics}^{0.17}*M^{0.08}$$

$$W_{furnishings} = 0.0582 * W_{dg} - 29.48$$

6. AERODYNAMICS

6.1 Polar coefficient and lift coefficient

$$e = \frac{1}{1 + 0.025 * AR_w} - Oswald \ coefficient$$

$$A = \frac{1}{pi * AR_w * e} - polar \ coefficient$$

$$C_{Lcruise} = 0.71 * sqrt(pi * AR_w * C_{D0}) - optimal lift coefficient$$

6.2 Drag coefficient

$$C_D = C_{D0} + A * C_L^2 - optimal C_lcruise$$

 $K_{int} \sim 0.2 - 0.25 - interference coefficient (depends on position of wing)$

$$v_{\mu} = -0.04 * M^2 - 0.03 * M + 1 - flow compressibility coefficient$$

6.2.1 Fuselage (nacelle) drag

$$Re_{fus} = V_{cruise} * \frac{L}{\mu} - Reynolds number$$

$$C_{f_{fus}} = 0.0454 * Re_{fus}^{-0.189} - flat \ plate \ friction \ coefficient$$

$$v_{lambda_{fus}} = 1.7564 * AR_{fus}^{-0.225} - fuselage shape coefficient$$

$$C_{D0_{fus_{friction}}} = 2 * C_{f_{fus}} * \nu_{\mu} * \nu_{lambda_{fus}} * \frac{S_f}{2 * S_{fus}} - friction drag coefficient$$

$$C_{D0_{par}} = (1.0699 * M^3 - 2.2393 * M^2 + 1.6016 * M - 0.3859) - 0.01$$

 $* (AR_{nose} - 2) - parabolic nose drag coefficient$

$$\begin{aligned} delta_{C_{D_{dump}}} = \ 1.6667*M^3 - 2.1786*M^2 + 0.8512*M - 0.0386 \\ - \ dumping \ coefficient \end{aligned}$$

$$\begin{split} \mathcal{C}_{D0_{nose}} &= \ \mathcal{C}_{D0_{par}} \\ &* \left(1 - r_{relative}^2 * \left(cos(\varphi)\right)^2 \right. \\ &* \left(3.1 - 1.4 * r_{relative} * cos(\varphi) - 0.7 * r_{relative}^2 * \left(cos(\varphi)\right)^2\right) \right) \\ &+ delta_{\mathcal{C}_{D_{dumn}}} * \ r_{relative}^2 - nose \ drag \ coefficient \end{split}$$

$$C_{D0_{aft}} = (0.5455 * M^2 - 0.6764 * M + 0.2698) - 0.013 * (AR_{aft} - 2) - aft \ part \ drag \ coefficient$$

$$C_{D0_{fus_{pressure}}} = C_{D0_{nose}} + C_{D0_{aft}} - pressure drag coefficient$$

$$C_{D0_{fuselage}} = C_{D0_{fus_{friction}}} + C_{D0_{fus_{pressure}}} - fuselage drag coefficient$$

6.2.2 Wing (or stabilizer or fin) drag

$$K1 = 2 - \frac{S_{with_{eng}}}{S_w} - wing - nacelles interference coefficient$$

$$v_{c_{wing}} = 1 + 1.5 * t/c - airfoil\ thickness\ coefficient$$

$$Re_{wing} = V_{cruise} * \frac{mac}{\mu} - Reynolds number$$

$$C_{f_{wing}} = 0.0454 * Re_{wing}.^{-0.189} - flat plate friction coefficient$$

$$C_{D0_{form_{wing}}} = 0.925 * K1.* C_{f_{wing}} * \nu_{\mu} * \nu_{c_{wing}} - form \ drag \ coefficient$$

$$M_{DD_{wing}} = \frac{k_{A_{wing}} - W_{total} * \frac{\frac{g}{q_{cruise} * S_w}}{10 * (cos(\Lambda))^2} - \frac{t/c}{cos(\Lambda)}}{cos(\Lambda)}$$

- drag divergence Mach number

$$M_{cr_{wing}} = M_{DD_{wing}} - 0.108 - critical Mach number$$

$$C_{D0_{wave_{wing}}} = 20 * (M - M_{cr_{wing}}).^4 - wave drag coefficient$$

$$C_{D0_{prime_{wing}}} = C_{D0_{form_{wing}}} + C_{D0_{wave_{wing}}} - clean wing drag coefficient$$

$$C_{D0_{wing}} = C_{D0_{prime_{wing}}} + K_{int} \cdot * C_{D0_{form_{wing}}} \cdot * \frac{S_{wf}}{S_w} - wing \ drag \ coefficient$$

6.3 Zero drag coefficient

$$\begin{split} C_{D0} = \ 1 * \left(C_{D0_{fuselage}} . * \frac{S_{fus}}{S_{w}} + \ C_{D0_{wing}} + \ C_{D0_{ht1}} * \frac{S_{ht1}}{S_{w}} + \ C_{D0_{ht2}} * \frac{S_{ht2}}{S_{w}} + \ C_{D0_{vt}} \\ * \frac{S_{vt}}{S_{w}} + \ n_{eng} * C_{D0_{nacelle}} * \frac{S_{nac}}{S_{w}} \right) - zero \ drag \ coefficient \end{split}$$

7. OUTPUTS

7.1 Takeoff

$$\begin{aligned} &Cl_{takeoff} = W_{total} * \frac{g}{S_w * 0.5 * 1.225 * V_{takeoff}^2} - Takeoff \ lift \ coefficient \\ &Cd_{takeoff} = C_{D0} + A * Cl_{takeoff}^2 - Takeoff \ drag \ coefficient \\ &X_{takeoff} = Cd_{takeoff} * V_{takeoff}^2 * 1.225 * 0.5 * S_w - Drag \ force \ [N] \\ &R_{takeoff} = P_{en_{max}} * N_{en} * 1000 * 0.0155 - Thrust \ [N] \\ &F_{takeoff} = f_{friction_{to}} * (W_{total} * g - Cl_{takeoff} * V_{takeoff}^2 * 0.5 * 1.225 * S_w) \\ &- Friction \ force \ [N] \end{aligned}$$

$$a_{takeoff} = g * \frac{\frac{R_{takeoff} - X_{takeoff} - F_{takeoff}}{W_{total}}}{10} - Acceleration [m/s2]$$

$$L_{takeoff} = V_0^2 * \frac{0.5}{a_{takeoff}} - Takeoff \ distance \ [m]$$

$$W_{fuel_{takeoff}} = 2 * SFC_{eng} * R_{takeoff} * \frac{L_{takeoff}}{Prop_{eff}}$$

$$- Takeoff \ consumed \ fuel \ [kg]$$

7.2 Landing

$$Cl_{landing} = W_{total} * \frac{g}{S_w * 0.5 * 1.225 * V_{landing}^2} - Landing \ lift \ coefficient$$

$$Cd_{landing} = C_{D0} * 5 + A * Cl_{landing}^2 - Landing \ drag \ coefficient$$

$$a_{landing} = g * \left(2 * \frac{f_{friction_{land}}}{3} + \frac{1}{3} * \frac{Cd_{landing}}{Cl_{landing}}\right) - Acceleration \ [m/s2]$$

$$L_{landing} = V_{landing}^2 * \frac{0.5}{a_{landing}} - Landing \ distance \ [m]$$

$$W_{fuel_{landing}} = 2 * SFC_{eng} * 0.06 * R_{takeoff} * \frac{L_{takeoff}}{Prop_{eff}}$$

$$- Landing \ consumed \ fuel \ [kg]$$

7.3 Climb

$$\begin{split} W_{fuel_{climb}} &= W_{total} \\ &- exp \left(log(W_{total}) - SFC_{eng} * 0.001 * \frac{0.000277}{Prop_{eff}} * g \right. \\ & * \left(\frac{cos(phi_{climb})}{19} + sin(phi_{climb}) \right) * l_{climb} \right) \\ & - Climb \ consumed \ fuel \ weight \ [kg] \end{split}$$

7.4 Descend

$$\begin{split} W_{fuel_{descend}} &= W_{total} \\ &- exp \left(log(W_{total}) - SFC_{eng} * 0.001 * \frac{0.000277}{Prop_{eff}} * g \right. \\ & * \left(\frac{cos(phi_{descend})}{10} - sin(phi_{descend}) \right) * l_{descend} \right) \\ & - Descend \ consumed \ fuel \ weight \ [kg] \end{split}$$

7.5 Cruise flight

$$L_{Dcruise} = g * (W_{total} - m_{fuel_{cruise}}) * q_{cruise}$$

$$* \frac{S_{w}}{C_{D0} * q_{cruise}^{2} * S_{w}^{2} + A * g^{2} * (W_{total} - m_{fuel_{cruise}}).^{2}}$$

$$- Cruise \ lift - to - drag \ ratio$$

$$fL_cruise = Prop_eff * L_D_cruise./(SFC_eng * 0.001 * 0.000277$$

$$* (W_total - m_fuel_cruise) * g);$$

$$L_{cruise} = \int fL_{cruise} * dm_{fuel_{cruise}} - Cruise \ flight \ distance$$

 $Flight_{distance} = L_{cruise} + d_{climb} + d_{descend} - Total \, flight \, distance$

8. EXAMPLE

Reference case - Piaggio Avanti P. 180 aircraft

Pic.4 Piaggio P.180 Avanti

Parameter	P.180	Math.model	Error
Takeoff weight [kg]	5489	5615	2.3%
Flight distance [km]	2592	2321	10.45%
Takeoff distance [m]	972	1066	9.7%
Landing distance [m]	1000	979	2.1%