Exam 3 CHEM 1142 Fall 2008

Name:										
Multiple choice	. Circle the be	st response. [3	pts. each]							
-	following sligh	_		y-produc	constants, which salt would be					
a) AgCl: $K_{sp} =$ c) AgI: $K_{sp} = 8$		b) Ag d) Au	Br: $K_{\rm sp} = 5.0 \times 10^{-15}$ Cl: $K_{\rm sp} = 2.0 \times 10^{-13}$							
Q2. What is th	e correct expre	ession for the s	olubility produ	ict consta	ant for calcium phosphate?					
a) $K_{sp} = [Ca^{2+}][$ c) $K_{sp} = [Ca^{2+}]^2$	$PO_4^{3-}]$ $[PO_4^{3-}]^2$	b) $K_{sp} = [Ca^2]$ d) $K_{sp} = [Ca^2]$	†] ² [PO ₄ ³⁻] ² †] ³ [PO ₄ ³⁻] ² e) T	he correc	ct response is not given.					
Q3. Calculate t formic acid in	-				odium formate and 0.05 mol of 10^{-4}]					
a) 1.8 x 10 ⁻⁴	10 ⁻⁴ b) 3.44		5 d) 5	.31	e) none of these					
					acid (HOCl, $K_a = 3.5 \times 10^{-8}$). or hypochlorite ion?					
a) 3.5 x 10 ⁻²² d) 2.9 x 10 ⁷	b) 3.5 e) 4.7		c) 2	$.9 \times 10^{-7}$						
Q5. A buffer c	an be prepared	d by mixing:								
a) a strong acidc) a weak acide) all responses	and its conjuga	ite base.	b) a strong base and its conjugate acid. d) a weak acid and a strong acid.							
Q6. The <i>iodide</i> iodide?	concentration	n of a saturated	solution of Pl	oI ₂ is 2.4	$\times 10^{-3}$ M. What is the $K_{\rm sp}$ for lead					
a) 2.4 x 10 ⁻³ d) 6.9 x 10 ⁻⁹		x 10 ⁻⁶ x 10 ⁻⁹	c) 1.4 x 10 ⁻⁸							
Q7. Identify th	e conjugate ba	use of HPO ₄ ²⁻ is	n the following	g reaction	:					
HCO ₃	+ HPO ₄ ²⁻ =	\longrightarrow H ₂ CO ₃ + 1	PO ₄ ³⁻							
a) H ₂ O	b) HCO ₃	c) H ₂ CO ₃	d) PO ₄ ³⁻	e) No	one of these.					

Q8. The $\mathrm{OH^-}$ concentration in a 1.0 x 10^{-3} M Ba($\mathrm{OH})_2$ solution is a) $0.50 \times 10^{-3} \text{ M}$ b) $1.0 \times 10^{-3} \text{ M}$ c) $2.0 \times 10^{-3} \text{ M}$ d) 0.01 M e) 0.020 M. Q9. Calculate the pH of a beer in which the hydrogen ion concentration is 6.3×10^{-5} M. b) 4.82 c) 5.63 d) 9.83 e) 14.04 Q10. Calculate the pH of a $6.71 \times 10^{-2} M$ NaOH solution. b) 2.17 c) 11.82 d) 6.71 a) 12.83 e) 1.17 Q11. Which one of the following salts will form an acidic solution upon dissolving in water? a) KBr b) NaF c) NH₄I d) KOH e) NaCN Short Response. Show all work to receive credit. Q12. [5 pts.] What is the pOH of a 0.025 M solution of HCl(aq) at 25 °C? Q13. [8 pts.] A 0.065 M aqueous solution of pyruvic acid (HC₃H₃O₃, a weak monoprotic acid) has a pH of 3.10 at 25 °C. What is K_a for pyruvic acid? Q14. [6 pts.] Consider the chemical reaction: $HC_2H_3O_2 + HClO_4 \longrightarrow H_2C_2H_3O_2^+ + ClO_4^-$

Identify (and label as acid/base) both conjugate acid-base pairs.

Q19. [12 pts.] What is the pH of the solution obtained from mixing 35 mL of 0.10 M acetic acid, $HC_2H_3O_2(aq)$ with 55 mL of 0.15 M sodium acetate, $NaC_2H_3O_2(aq)$? $K_a(HC_2H_3O_2) = 1.7 \times 10^{-5}$.

Q20. [12 pts.] Calculate the pH of a solution obtained by mixing 10.0 mL of 0.150 M KOH(aq) with 35.0 mL of 0.135 M acetic acid, $HC_2H_3O_2(aq)$. $K_a(HC_2H_3O_2) = 1.7 \times 10^{-5}$.

BONUS Questions:

A) Given the thermochemical equation: $C_4H_8O_2(s) + 5O_2(g) \rightarrow 4CO_2(g) + 4H_2O(l); \Delta H^o = 3370 \text{ kJ mol}^{-1}$

How much heat is absorbed/released when 34.2~g of $C_4H_8O_2$ reacts? Is the process exothermic or endothermic?

B) Calculate the osmotic pressure of a solution of $0.0350~\mathrm{M}$ CaCl₂(aq) at a temperature of 24 °C. State any assumptions you are making.

Useful Information:

$$\begin{split} K_{\rm w} &= [{\rm H_3O^+}][{\rm OH^-}] = 1.0 \times 10^{-14} \ {\rm at} \ 25 \ ^{\circ}{\rm C}. \\ p{\rm H} &= -{\rm log}[{\rm H_3O^+}] \\ K_{\rm a}K_{\rm b} &= K_{\rm w} \\ p{\rm H} &= pK_{\rm a} + \log \frac{{\rm Base}}{{\rm [Acid]}} \\ M_{\rm 1}V_{\rm 1} &= M_{\rm 2}V_{\rm 2} \end{split}$$

$$p{\rm H} + p{\rm OH} = 14.00 \ ({\rm at} \ 25 \ ^{\circ}{\rm C}) \\ R &= 8.3145 \ {\rm J/mol} \cdot {\rm K} = 0.08206 \ {\rm L} \cdot {\rm atm/mol} \cdot {\rm K} \\ \Pi &= iMRT \end{split}$$

Periodic Table of the Elements

IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1 H																	2 He
1.00794																	4.002602
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.998403	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.989770	24.3050											26.981538	28.0855	30.973762	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.95591	47.867	50.9415	51.9961	54.938049	55.845	58.9332	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
85.4678	87.62	88.90585	91.224	92.90638	95.94	[98]	101.07	102.9055	106.42	107.8682	112.411	114.818	118.71	121.76	127.60	126.90447	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.90545	137.327	174.967	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
			# 0	=0	**					2.5					=0	1	
	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb		
		138.9055	140.116	140.90765	144.24	[145]	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	l	
	4.4	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0381	231.03588	238.0289	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		