A számításelmélet alapja 2.

7. gyakorlat

Példa 1.

Adott a következő Turing-gép.

 $M = < \{0,1,2,igen,nem\}, \{a,b\}, \{a,b,\ddot{u}\}, \delta, 0, igen,nem>$

δ	a	b	ü	
0	nem a –	$1 \text{ b} \rightarrow$	nem ü –	
1	1 a →	$1 \text{ b} \rightarrow$	2 ü ←	
2	igen a –	nem b –	nem ü –	

M megadása átmenetdiagrammal:

Kérdések:

a) Mutassa meg az **0baa** kezdő konfigurációból indulva, hogy a gép elfogadja az "**baa**" szót! *Megoldás:*

0baa | b1aa | ba1a | baa1ü | ba2a | igen

b) Elfogadja-e az "b" szót? (Indoklás.)

c) Milyen nyelvet ismer fel az adott Turing-gép?

Megoldás: L={ bua | $u \in \{a,b\}^*$ }

Példa 2.

Adott a következő Turing-gép.

 $M = <\{0,1,igen,nem\}, \{a,b\}, \{a,b,\ddot{u}\}, \delta, 0, igen, nem>$

δ	a	Ъ	ü	
0	1 a →	nem	nem	
1	0 a ←	$0 \text{ b} \rightarrow$	igen	

Kérdések:

- a) Mutassa meg az 0aba kezdő konfigurációból indulva, hogy a gép elfogadja az "aba" szót!
- b) Elfogadja-e az "aa" szót? (Indoklás.) Nem, mert végtelen ciklusba esik a gép.
- c) Milyen nyelvet ismer fel az adott Turing-gép? Megoldás: A nyelv szavait leíró reguláris kifejezés: (ab)*a.
- d) Mi a futási ideje?

Nincs időkorlátja gépnek, mert van olyan szó, amire nem áll meg, egyébként a futási idő O(n).

Vizsgáljuk meg a következő címen szereplő szimulátor programmal! https://turingmachinesimulator.com/

A számításelmélet alapja 2. 7. gyakorlat

Feladat: Készítsen olyan Turing-gépet, amely az $L=\{a^nb^n \mid n>0\}$ nyelvet fogadja el!

Ötlet: Írjuk át 'x'-re az első 'a'-t, majd menjünk a végére és visszafordulva írjuk át x-re az utolsó 'b'-t. Menjünk a szó elejére, amíg lehet (x-ig) ismét "töröljünk" egy 'a'-t a szó elejéről majd egy 'b'-t a végéről. Az a jó, ha egyszerre fogynak el a szó eleji 'a'-k és a szó végi 'b'-k.

Megoldás:

 $M = <\{0,1,2,3,igen,nem\}, \{a,b\}, \{a,b,x,\ddot{u}\}, \delta, 0,igen,nem>$

δ	a	Ъ	X	ü
0	$1 x \rightarrow$	nem	igen	nem
1	1 a →	1 b →	2 x ←	2 ü ←
2	nem	3 x ←	nem	nem
3	3 a ←	3 b ←	0 x →	nem

Feladat: Készítsen 2 szalagos Turing-gépet, amely az $L=\{a^n b^n c^n \mid n>0\}$ nyelvet ismeri fel!

Ötlet: Miközben elolvassuk az 'a'-kat, azalatt írjunk 'a'-kat a második szalagra.

Ha 'b' jön, akkor fordítsuk vissza a második olvasó fejet.

Amíg 'b'-ken haladunk jobbra addig kell, hogy haladhassunk a második szalagon balra miközbe 'a'-kat olvasunk.

Ha 'c'-k jönnek, akkor ismét meg kell fordítanunk az irányt a második szalagon és mindkét fejnek jobbra kell haladnia.

Megoldás:

 $M = <\{0,1,2,3,igen,nem\}, \{a,b\}, \{a,b, \ddot{u}\}, \delta, 0,igen,nem>$

δ	a,ü	b,ü	b,a	c,ü	c,a	ü,ü	egyéb
0	0 a →	1 b –	nem	nem	nem	nem	nem
	$a \rightarrow$	ü←					
1	nem	nem	1 b →	2 c –	nem	nem	nem
			a ←	ü→			
2	nem	nem	nem	nem	2 c →	igen	nem
					$a \rightarrow$		

M megadása átmenetdiagrammal:

Minden további lehetséges input, ami nincs berajzolva az ábrába, az elutasító (nem) állapotba vezet.