Interpretazione di un sistema lineare, ker e invertibilità #GAL

Notazione: data A ∈Mat(m,n)

denotiamo $A = (C_1, C_2, ..., C_n)$ (vettore riga delle colonne) = $(R_1, R_2, ..., C_n)$

R_n) (vettore colonna delle righe)

dove C_i = colonna i-esima di $A \in Mat(m,1)$ dove R_i = riga i-esima di $A \in Mat(1,n)$

Es:
$$A = 12 = (C_1, C_2) \Rightarrow C_1 = 1 C_2 = 2$$

Proposizione: sia $A = (C_1, C_2, ..., C_n) \in Mat(m,n), \underline{w} = (w_1, w_2, ..., w_n) \in Mat(n,1)$ allora $A^*\underline{w} = (C_1^*w_1, C_2^*w_2, ..., C_n^*w_n) \in Mat(n,1)$ $C_n = colonna$ $w_1 = numero$

moltiplicazione a destra per un vettore colonna <-> combinazione lineare delle colonne della matrice

Sia A = $(C_1, C_2, ..., C_n) \in Mat(m,n)$, $\underline{b} \in \mathbb{R}^m$, $\underline{x} = (x_1, ..., x_n)$ (vettore colonna delle incognite)

Allora
$$A\underline{x} = \underline{b} \Longleftrightarrow x_1C_1, x_2C_2, ..., x_nC_n = \underline{b}$$
 cioè

soluzioni di un sistema lineare <-> scrivere il vettore di <u>b</u> dei termini noti come combinazione lineare della matrice dei coefficienti

Definizione: sia A ∈Mat(m,n)

Il sistema lineare $A\underline{x} = \underline{0}$ è detto il sistema omogeneo associato ad A il suo insieme delle soluzioni si chiama nucleo (o kernel) di A

$$\ker(\mathsf{A}) = \{\underline{x} \in \mathsf{R}^n : \mathsf{A}\underline{x} = \underline{0}\} \subseteq \mathsf{R}^n$$

Osservazione: un sistema omogeneo ha sempre soluzioni (no pivot nei termini noti): abbiamo sempre 0 eker(A)

alternativamente: rk(A) = rk(A|O) => sempre vera, il rango non aumenta

Teorema: sia $A\underline{x} = \underline{b}$ un sistema lineare con insieme delle soluzioni S supponiamo che $S \neq \emptyset$ e sia $v \in S$ (una soluzione particolare) allora: l'insieme delle soluzioni S è strettamente legato al nucleo di A $S = \underline{v} + \ker(A)$

Definizione: $\{\underline{v} + \underline{w} : \underline{w} \in \ker(A)\}$ cioè $\{\text{soluzioni di } A\underline{x} = \underline{b}\} = \text{una}$ traslazione di $\{\text{soluzioni di } A\underline{x} = \underline{0}\}$

Generalizzazione: un oggetto qualsiasi $\in \mathbb{R}^n =>$ una traslazione dell'oggetto passante per l'origine del spazio \mathbb{R}^n

Dimostrazione: dimostrare che, dato un vettore $\underline{u} \in \mathbb{R}^{n}$, abbiamo

 $\underline{u} \in S <=> \underline{u} \in [\underline{v} \text{ è ker}(A)]$ Osservazione: $\underline{u} \in S => A\underline{v} = \underline{b}$

 $\underline{u} \in S \iff A\underline{u} = \underline{b} \iff A\underline{u} = A\underline{v} \iff A\underline{u} - A\underline{v} = \underline{0} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} - \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff \underline{u} + \underline{v} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff A(\underline{u} - \underline{u}) = \underline{0} \iff A(\underline{u} - \underline{v}) = \underline{0} \iff A(\underline{u} - \underline{u}) = \underline{0} \iff A$

ker(A) insieme dei vettori che moltiplicati a destra per A da 0

Denomino $\underline{w} = \underline{u} - \underline{v} \in \ker(A) \iff \underline{u} = \underline{v} + (\underline{u} - \underline{v}) \implies \underline{u} = \underline{v} + \underline{w}$ dove $\underline{w} \in \ker(A) \iff u \in \ker(A)$

Teorema: sia A ∈Mat(n,n)

seguenti condizioni sono equivalenti:

- 1. rk(A) = n
- 2. $A\underline{x} = \underline{b}$ (ha un'unica soluzione)
- 3. $\exists S \in Mat(n,n) \text{ t.c. } SA = I_n$
- 4. $\exists D \in Mat(n,n) \text{ t.c. } AD = I_n$

Osservazione: in questo caso segue che S = D

infatti:
$$S = SI_n = S(AD) = (SA)D = I_nD = D$$

la matrice A è detta invertibile, e $A^{-1} = S = D$ è detta la matrice inversa di A ed è unica

Se la matrice è invertibile $AA^{-1} = A^{-1}A = I_n$

Metodo di Gauss-Jordan per calcolare l'inversa: $(A \mid I_n)$ — $^{Gauss-Jordan}$ — $>(I_n \mid A^{-1})$

Proposizione: siano A,B ∈Mat(n,n) invertibili

- 1. AB è invertibile e $(AB)^{-1} = B^{-1}A^{-1}$ se rk(A) = n, rk(B) = rk(A) = n
- 2. A^{t} è invertibile e $(A^{t})^{-1} = (A^{-1})^{t}$

Dimostrazione:

- 1. $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n => B^{-1}A^{-1}$ è l'inversa di AB
- 2. $AA^{-1} = I_n => (AA^{-1})^t = (I_n)^t => (A^{-1})^t (A^t) = I_n => A^t$ è invertibile $(A^{-1})^t$ è l'inversa cioè $(A^t)^{-1} = (A^{-1})^t$