计算机专业课程

计算机网络

河海大学计算机与信息学院

2022年2月18日星期五

物理层

第一节 物理层的基本概念

1 物理层的任务及定义

物理层的主要任务以在两个网络设备之间提供透明的比特流传输。

OSI的物理层定义:物理层提供机械的、电气的、功能的和规程的特性,目的是启动、维护和关闭数据链路实体之间进行比特传输的物理连接。

2 物理层的四个重要特性

- <u>机械特性</u>:指明接口所用接线器的形状和尺寸、引线数目和排列、 固定和锁定装置等等
- <u>电气特性</u>:指明在接口电缆的各条线上出现的电压的范围。即什么 样的电压表示 I 或 0。传输速度、最大传输距离
- <u>功能特性</u>:指明某条线上出现的某一电平的电压表示何种意义, 定义各条物理线路的功能。(数据,控制,接地,定时)
- <u>规程特性</u>:指明对于不同功能的各种可能事件的出现顺序。主要定 义各条物理线路的工作规程和时序关系。

3 物理层协议举例

RS-232C接口标准

1、RS-232C的机械特性: 规定使用一个25芯的标准连接器,并对该连接器的尺寸及针或孔芯的排列位置等都做了详细说明。实际的用户并不一定需要用到RS-232C标准的全集,所以一些生产厂家为RS-232C标准的机械特性做了变通的简化- 使用了一个9芯标

准连接器将不常用的信号线舍弃。

a) DB-25

b) DB-9

2、RS-232C的电气特性: 规定逻辑 "1"的电平为-15至-5伏,逻辑 "0"的电平为+5至+15伏,也即RS-232C采用+15伏和-15伏的负逻辑 电平,+5伏和-5伏之间为过渡区域不做定义。RS-232C电平高达+15 伏和-15伏,较之0 - 5伏的电平来说具有更强的抗干扰能力。

图3.9 RS-232C电器特性

表3.1 RS-232C电器信号表示

	负电平	正电平
逻辑状态	1	0
信号状态	传号	空号
功能状态	0FF(断)	0N(通)

3、RS-232C的功能特性:定义了25芯标准连接器中的20根信号线,其中2根地线、4根数据线、11根控制线、3根定时信号线、剩下的5根线做备用或末定义。

表3.2 RS-232C功能特性					
引脚号	信号线	功能说明	信号线型	连接方向	
1	AA	保护地线(GND)	地线		
2	BA	发送数据(TD)	数据线	→DCE	
3	BB	接收数据(RD)	数据线	→DTE	
4	CA	请求发送(RTS)	控制线	→DCE	
5	CB	清除发送(CTS)	控制线	→DTE	
6	BB	数据设备就绪(DSR)	控制线	→DTE	
7	AB	信号地线(Sig.GND)	地线		
8	CF	载波检测(CD)	控制线	→DTE	
20	CD	数据终端就绪(DTR)	控制线	→DCE	
22	CE	振铃指示(RI)	控制线	→DTE	

4、 RS-232C的规程特性: RS-232C的工作过程是在各根控制信号线有序的 "ON"(逻辑 "0")和 "OFF"(逻辑 "1")状态的配合下进行的。

在DTE—DCE连接的情况下,只有CD(数据终端就绪)和CC(数据设备就绪)均为 "ON"状态时,才具备操作的基本条件,此后,若DTE要发送数据,则须先将CA(请求发送)置为 "ON"状态,等待CB(清除发送)应答信号为 "ON"状态后,才能在BA(发送数据)上发送数据。

