TE201416: SINYAL DAN SISTEM

Mifta Nur Farid miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Februari 26, 2020

Bahan Kajian

- 1. Sinyal sinusoidal waktu kontinu
- 2. Sinyal sinusoidal waktu diskret
- 3. Sinyal sinusoidal saat frekuensinya berbeda
- 4. Sinyal eksponensial riil waktu kontinu
- 5. Sinyal eksponensial riil waktu diskret
- 6. Sinyal eksponensial kompleks waktu kontinu
- 7. Sinyal eksponensial kompleks waktu diskret
- 8. Unit Step & Unit Impulse

$$x(t) = A \cos(\omega_0 t + \phi)$$

• Periodic:

$$x(t) = x(t + T_{o}) \quad \text{period} \stackrel{\triangle}{=} \text{smallest } T_{o}$$

$$A \cos[\omega_{o}t + \phi] = A \cos[\omega_{o}t + \omega_{o}T_{o} + \phi]$$

$$2\pi m$$

$$T_{o} = \frac{2\pi m}{\omega_{o}} = > \text{period} = \frac{2\pi}{\omega_{o}}$$

$$\phi = 0$$
 $x(t) = A \cos \omega_0 t$

Periodic: $x(t) = x(t + T_0)$

Even: x(t) = x(-t)

$$\phi = -\frac{\pi}{2} \qquad \mathbf{x(t)} = \begin{cases} \mathbf{A} \cos \left(\omega_0 \mathbf{t} - \frac{\pi}{2} \right) \\ \mathbf{A} \sin \omega_0 \mathbf{t} \\ \mathbf{A} \cos \left[\omega_0 (\mathbf{t} - \frac{\mathsf{To}}{4}) \right] \end{cases}$$

Periodic: $x(t) = x(t + T_0)$ Odd: x(t) = -x(-t)

A cos
$$[\Omega_o(n + n_o)] = A cos [\Omega_o n + \Omega_o n_o]$$

$$\phi = 0$$
 $x[n] = A \cos \Omega_0 n$

even:
$$x[n] = x[-n]$$

odd: x[n] = -x[-n]

Time Shift => Phase Change

A cos
$$[\Omega_0(n + n_0)]$$
 = A cos $[\Omega_0 n + \Omega_0 n_0]$

A cos
$$[\Omega_0(n+n_0)] \stackrel{?}{=} A cos [\Omega_0n+\phi]$$

$$x[n] = A \cos (\Omega_0 n + \phi)$$

Periodic?

$$x[n] = x[n + N]$$
 smallest integer $N \stackrel{\triangle}{=} period$

A cos
$$\left[\Omega_{o}(n+N) + \phi\right] = A \cos \left[\Omega_{o}n + \Omega_{o}N + \phi\right]$$

integer multiple of 2π ?

Periodic =
$$> \Omega_0$$
N = $2\pi m$
N = $\frac{2\pi m}{\Omega_0}$

N,m must be integers smallest N (if any) = period

A cos(
$$\omega_0 t + \phi$$
)

A
$$cos(\Omega_{\mathbf{O}}n + \phi)$$

Distinct signals for distinct values of $\omega_{\mathbf{O}}$

Identical signals for values of Ω_0 separated by 2π

Periodic for any choice of $\omega_{\mathbf{0}}$

Periodic only if

$$\Omega_{\mathbf{o}} = \frac{2\pi \mathbf{m}}{\mathbf{N}}$$

for some integers N > 0 and m

Continuous time:

$$x_1(t) = A \cos(\omega_1 t + \phi)$$
 If $\omega_2 \neq \omega_1$
 $x_2(t) = A \cos(\omega_2 t + \phi)$ Then $x_2(t) \neq x_1(t)$

Discrete time:

$$x_1[n] = A \cos[\Omega_1 n + \phi]$$
 If $\Omega_2 = \Omega_1 + 2\pi m$
 $x_2[n] = A \cos[\Omega_2 n + \phi]$ Then $x_2[n] = x_1[n]$

$$x[n] = Ce^{\beta n} = C\alpha^n$$

C. α are real numbers

$$x(t) = Ce^{at}$$
C and a are complex numbers
$$C = |C| e^{j\theta}$$

$$a = r + j\omega_{0}$$

$$x(t) = |C| e^{j\theta} e^{(r+j\omega_{0})t}$$

$$= |C| e^{rt} e^{j(\omega_{0}t + \theta)}$$
Euler's Relation: $\cos(\omega_{0}t + \theta) + j\sin(\omega_{0}t + \theta) = e^{j(\omega_{0}t + \theta)}$

$$x(t) = |C| e^{rt} \cos(\omega_{0}t + \theta) + j|C| e^{rt} \sin(\omega_{0}t + \theta)$$

Sinyal eksponensial kompleks waktu kontinu

$$x[n] = C\alpha^n$$

C and α are complex numbers

$$C = |C| e^{j\theta}$$

$$\alpha = |\alpha| e^{j\Omega_0}$$

$$x[n] = |C| e^{j\theta} (|\alpha| e^{j\Omega_O})^n$$

$$= |\mathbf{C}| |\alpha|^{\mathbf{n}} \underbrace{\mathbf{e}^{\mathbf{j}(\Omega_{\mathbf{O}}\mathbf{n} + \theta)}}$$

Euler's Relation: $cos(\Omega_{\mathbf{O}}n + \theta) + j sin(\Omega_{\mathbf{O}}n + \theta)$

$$x[n] = |C| |\alpha|^n \cos(\Omega_O n + \theta) + j |C| |\alpha|^n \sin(\Omega_O n + \theta)$$

|lpha| = 1 => sinusoidal real and imaginary parts

$$Ce^{j\Omega_{O}n}$$
 periodic?

Sinyal eksponensial kompleks waktu diskret

Unit Step & Unit Impulse

UNIT STEP FUNCTION: DISCRETE-TIME

UNIT IMPULSE FUNCTION: DISCRETE-TIME

(Unit Sample)

Unit Impulse Sequence

$$\delta[n] = u[n] - u[n-1]$$

$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

Unit Step Sequence

Unit Impulse Function

$$\delta(t) = \frac{du(t)}{dt}$$

$$\delta_{\triangle}(t) = \frac{du_{\triangle}(t)}{dt}$$

$$\delta(t) = \delta_{\triangle}(t) \text{ as } \triangle \rightarrow 0$$

Unit Impulse Waktu Kontinu

Unit Step Waktu Kontinu

$$\delta(t) = \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

