Содержание

1	Теория групп.	2
	1.1 Таблица Кэли.	3
	1.2 Группы	3
	1.2.1 Группа S_n	4
2	Теория узлов.	4

1 Теория групп.

Определение 1.1. Группа — множество с одной операцией $*: G \times G \to G$ со следующими свойствами:

- 1. a * (b * c) = (a * b) * c
- 2. $\exists e: a * e = e * a = a$
- 3. $\forall a \ \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$

Пример 1.1. • $(\mathbb{Z}; +)$

- \bullet ($\mathbb{Q};+$)
- $(\mathbb{R};+)$
- $(\mathbb{C};+)$
- (V; +)
- $(\mathbb{R}_+;\cdot)$
- $(\mathbb{R} \setminus \{0\}; \cdot)$
- $(\mathbb{Z}_n;+)$

Определение 1.2. Пусть G — группа, $H \subset G$. Говорим, что H является подгруппой (пишем H < G), если H является группой относительно операции в G. Чтобы проверить, что H является подгруппой, необходимо убедиться, что произведение двух элементов из H принадлежит H, и элементы, обратные κ H, тоже лежат в H.

Теорема 1.1 (Кэли). Любая группа G является подгруппой в группе подстановок, а именно S_G .

Определение 1.3. Абелева группа — группа с коммутативностью.

Определение 1.4. Говорят, что группа G порождается элементами $\{x_i\}$, если любой элемент из G можно представить как произведение нескольких x_i и обратных к ним. Группа называется циклической, если она порождена одним элементом.

Теорема 1.2. Конечная циклическая группа изоморфна $(\mathbb{Z}_n, +)$.

Определение 1.5. Пусть G — группа, H < G. Введем два отношения эквивалентности на G: $x \sim_1 y$ если $xy^{-1} \in H$, $x \sim_2 y$ если $x^{-1}y \in H$.

Утверждение 1.1. $\sim_1 u \sim_2 cosnadaют в абелевой группе.$

Заметка 1.1. Kлассы эквивалентности по отношению \sim_1 называются левыми смежными классами; класс элемента x обозначается xH. Kлассы эквивалентности по \sim_2 — правые смежные классы, обозначаются Hx.

Определение 1.6. Пусть теперь группа G конечна, H < G. Количество классов эквивалентности \sim_1 называется индексом G по H и обозначается [G:H].

Теорема 1.3 (Лагранжа). $|G| = |H| \cdot [G:H]$.

Определение 1.7. Пусть $x \in G$. Порядком элемента x называется наименьшее натуральное число n, такое что $x^n = e$, где e - нейтральный элемент. Обозначение: ord(x). Если такого n не существует, то пишем $ord(x) = +\infty$.

Определение 1.8. Пусть $X,Y \subset G$ — подмножества группы. Их произведением будем называть множество $\{xy|x\in X,y\in Y\}$.

Определение 1.9. Полная линейна группа GL(n,F) — это множество всех квадратных матриц размера $n \times n$ с элементами из поля F, которые являются обратимыми ($\det \neq 0$), вместе с операцией матричного умножения.

Определение 1.10. Специальная линейная группа SL(n,F) — это подгруппа полной линейной группы, состоящая из всех матриц с определителем, равным 1. То есть это множество всех матриц A размера $n \times n$ над полем F, таких что $\det(A) = 1$.

Определение 1.11. Специальная ортогональная группа SO(n,F) — группа из ортогональных матриц. Матрица A называется ортогональной, если $A^T \times A = A \times A^T = E$.

Утверждение 1.2. Пусть X — произвольное множество. Тогда множество всех биекций $f: X \to X$ образуют группу относительно композиции. Эту группу обозначают S_X . Если $X = \{1, 2, ..., n\}$, то S_X обозначают S_n — группа подстановок.

1.1 Таблица Кэли.

Определение 1.12. Пусть G — конечная группа порядка n. $E\ddot{e}$ таблицей Kэли (таблицей умножения) будем называть таблицу $(n+1) \times (n+1)$ (левый столбец и левая строка считаются нулевыми и служат лишь для нумерации). B нулевом столбце и в нулевой строке стоят все элементы группы в одном и том же порядке. На пересечении строки и столбца этой таблицы будем ставить произведение соответствующих элементов в нулевом столбце и в нулевой строке (слева пишется элемент, задающий строку, справа — столбец).

Определение 1.13. Напомним, что перестановкой мы будем называть биекцию $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$. Умножение перестановок — композиция биекций. Перестановки записываются в две строчки: в первой — числа от 1 до n (как правило, в порядке возрастания, но не обязательно), а во второй строчке под числом k стоит число f(k).

1.2 Группы.

Теорема 1.4. $G - \mathit{группа}; \ H < G.$ Равносильно:

- 1. $\forall x \ xH = Hx$
- 2. $\forall x \ xH \subset Hx$
- 3. $\forall x \ xH \supset Hx$
- 4. $\forall x \ xHx^{-1} = H$
- 5. $\forall x \ xHx^{-1} \subset H$
- 6. $\forall x \ xHx^{-1} \supset H$
- 7. $\forall x \in G \ \forall h \in H \ x^{-1}hx \in H$

Определение 1.14. Такая H называется нормальной подгруппой. Обозначается $H \lhd G$.

Определение 1.15. xhx^{-1} называется сопряженным элементом h.

Утверждение 1.3. $h \sim x^{-1}hx$ — отношение эквивалентности.

Определение 1.16. $H \triangleleft G$. *Класс смежности по* H *можно перемножать*.

Определение 1.17. Множество классов смежности образуют группу. Это называется фактор-группой G по H. G/H.

Определение 1.18. Простая группа — группа без нетривиальных нормальных подгрупп.

1.2.1 Группа S_n .

Определение 1.19. Перестановкой конечного множества M называется биекция $\pi: M \to M$. Множество всех перестановок множества M обозначается символом S(M). Произведением перестановок π и σ называется перестановка $\sigma \cdot \pi$, соответствующая биекции $x \mapsto \sigma(\pi(x))$.

Определение 1.20. Пусть $\pi \in S(M)$. Орбитой элемента $a \in M$ называется множество $orb_{\pi}(a) = \{a, \pi(a), \pi^{2}(a), \dots\}$. Порядком элемента а называется мощность его орбиты: ord(a) = |orb(a)|.

Определение 1.21. В предыдущей серии показано, что любая перестановка является произведением циклов. Количество циклов в перестановке обозначается $cycl(\pi)$. Если перестановка разбивается на циклы, длины которых $-l_1, \ldots, l_m$, то (l_1, \ldots, l_m) называется цикленным типом перестановки π . Перестановка, у которой цикленный тип $(2, 1, 1, \ldots, 1)$, называется транспозицией.

Определение 1.22. Перестановка π называется четной или нечетной в зависимости от четности числа $n + cycl(\pi)$. Знаком перестановки называется число $sign(\pi) = (-1)^{n+cycl(\pi)}$.

Определение 1.23. Хотим \forall перестановки называть ее четной или нечетной: YY = Y, HH = Y, YH = H, HY = H $u \exists Y u HY$ перестановки.

Определение 1.24. Инверсия: $\alpha = \begin{pmatrix} 1 & 2 & \dots & i & \dots & j & \dots & n \\ a_1 & a_2 & \dots & a_i & \dots & a_j & \dots & n \end{pmatrix}$. Пара (i,j) называется инверсией, если i < j и $a_i > a_j$.

Определение 1.25. Перестановка с четным количеством инверсий — четная, с нечетным — нечетная.

Заметка 1.2. \forall перестановка — произведение транспозиций. Четное количество транспозиций \Leftrightarrow четная перестановка.

Определение 1.26. Четная перестановка = $(n + \kappa o \lambda u + \epsilon c m s o \mu u \kappa \lambda o s) \mod 2$.

Теорема 1.5. Перестановки сопряжены \Leftrightarrow совпадает их циклический тип.

2 Теория узлов.

Определение 2.1. Узел — замкнутая, несамопересекающаяся кривая (ломаная с конечным числом звеньев/гладкая кривая) в \mathbb{R}^3 .

Определение 2.2. Кривая Пеано $-f:[0,1] \to [0,1] \times [0,1];$ непрерывная и сюр π ективная.

Определение 2.3. Эквивалентные узлы — узлы, которые переходят из одного в другой с помощью следующих преобразований (преобразования Рейдемейчстера): избавиться от петли, растащить две дуги, перетащить нижнюю дугу, через точку пересечения двух других, на верх.

Заметка 2.1. Открытые проблемы:

- #(n) количество точек с n двойных узлов в минимальной конфигурации. Экспериментально функция не растет. Но не доказано.
- c(K) количество двойных точек в минимальной конфигурации. Гипотеза: $c(K_1 \# K_2) = c(K_1) + c(K_2)$.