STAT 435 HW 2

Pat McCornack

2022-10-14

1. Chapter 3: Question 14 of ISLR Book:

a) What is the form of the linear model y?

The linear model y is of the form $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$ where $\beta_1 = 2$ and $\beta_2 = 0.3$ and the intercept is equal to 2.

```
library(MASS)
set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100) / 10
y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)
```

b) What is the correlation between x1 and x2?

The correlation coefficient between x2 and x2 is r=0.835. This is strong positive corre

```
cor(x1, x2)

## [1] 0.8351212

plot(x1,x2)
```


c) Describe results of least squares regression.

The correlation coefficients for the linear model using x1 and x2 for least squares regression are: $\hat{\beta}_0 = 2.13, \hat{\beta}_1 = 1.44, \hat{\beta}_2 = 1.01$. The intercept is close, but both $\hat{\beta}_1 and \hat{\beta}_2$ are significantly different than the true coefficients of $\beta_1 = 2and\beta_2 = 0.3$.

Since the p-value of $\hat{\beta}_1 = .049$ we can reject the null hypothesis $H_0: \beta_1 = 0$ at a significance level $\alpha = 0.05$. We cannot reject the null hypothesis $\beta_2 = 0$ however.

```
lm.model <- lm(y ~ x1 + x2)
summary(lm.model)</pre>
```

```
##
## Call:
  lm(formula = y \sim x1 + x2)
##
##
## Residuals:
##
       Min
                 1Q Median
                                  3Q
                                         Max
  -2.8311 -0.7273 -0.0537
                             0.6338
                                      2.3359
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  2.1305
                             0.2319
                                       9.188 7.61e-15
                  1.4396
                             0.7212
                                       1.996
                                               0.0487
## x1
## x2
                  1.0097
                             1.1337
                                       0.891
                                               0.3754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
```

Residual standard error: 1.056 on 97 degrees of freedom
Multiple R-squared: 0.2088, Adjusted R-squared: 0.1925
F-statistic: 12.8 on 2 and 97 DF, p-value: 1.164e-05

plot(lm.model)

d) Predict y using only x1

This model has a coefficient of $\hat{\beta}_1 = 1.98$ which is very close to the true value of 2. With a p-value of close to 0, we can reject the null hypothesis $\beta_1 = 0$.

```
x1_{model} \leftarrow lm(y \sim x1)
summary(x1_model)
##
## Call:
##
   lm(formula = y \sim x1)
##
##
  Residuals:
##
        Min
                   1Q
                        Median
                                       3Q
                                               Max
##
   -2.89495 -0.66874 -0.07785 0.59221
                                           2.45560
##
##
   Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                  2.1124
                              0.2307
                                        9.155 8.27e-15 ***
## (Intercept)
                                        4.986 2.66e-06 ***
## x1
                  1.9759
                              0.3963
##
                      '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.055 on 98 degrees of freedom
```

Multiple R-squared: 0.2024, Adjusted R-squared: 0.1942
F-statistic: 24.86 on 1 and 98 DF, p-value: 2.661e-06

e) Predict y using only x2

The coefficient $\hat{\beta}_2$ for this model is even further from the true value than the multivariate model at a value of 2.9 vs. the true value of 0.3, but the p-value **can** be used to reject the null hypothesis $\beta_2 = 0$ at a value of close to 0.

```
x2 \mod 1 \pmod{y \sim x2}
summary(x2 model)
##
## Call:
## lm(formula = y \sim x2)
##
## Residuals:
                        Median
##
        Min
                  1Q
                                     30
                                              Max
   -2.62687 -0.75156 -0.03598
                               0.72383
                                         2.44890
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 2.3899
                             0.1949
                                      12.26 < 2e-16 ***
                 2.8996
                             0.6330
                                       4.58 1.37e-05 ***
## x2
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.072 on 98 degrees of freedom
## Multiple R-squared: 0.1763, Adjusted R-squared: 0.1679
## F-statistic: 20.98 on 1 and 98 DF, p-value: 1.366e-05
```

f) Do these results contradict each other.

For x1: The coefficient $\hat{\beta}_1$ from (d) is closer to the true value than that from (c), but the results aren't necessarily contradictory.

For x2: The results for coefficient $\hat{\beta}_2$ from (c) and (e) are contradictory. In (c) the result for $\hat{\beta}_2$ did not allow us to reject the null hypothesis as it was distant from the true value of β_2 . The result for $\hat{\beta}_2$ from (e) did allow us to reject the null hypothesis despite being more distant from the true value.

g) Refit the model with an additional (mismeasured) observation

For the multivariate model the new observation made the coefficient less close to the true values and flipped the significance of the variables using the p-values. This model has that the null hypothesis can be rejected using the second coefficient but not the first.

In this model the observation is neither an outlier (defined as having a studentized residual > abs(3)) nor a high leverage point (based on Cook's Distance).

```
x1 <- c(x1, 0.1)
x2 <- c(x2, 0.8)
y <- c(y, 6)

lm.model <- lm(y ~ x1 + x2)
summary(lm.model)

##
## Call:
## lm(formula = y ~ x1 + x2)
##</pre>
```

```
## Residuals:
##
        Min
                  1Q
                       Median
                                    ЗQ
                                             Max
   -2.73348 -0.69318 -0.05263 0.66385
                                        2.30619
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 2.2267
                            0.2314
                                     9.624 7.91e-16 ***
                 0.5394
                            0.5922
                                     0.911 0.36458
## x1
## x2
                 2.5146
                            0.8977
                                     2.801 0.00614 **
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.075 on 98 degrees of freedom
## Multiple R-squared: 0.2188, Adjusted R-squared: 0.2029
## F-statistic: 13.72 on 2 and 98 DF, p-value: 5.564e-06
plot(lm.model)
```

Residuals vs Fitted 210 0 \sim 00 0 0 0 0 0 0 o 0 0 0 00 0 Residuals O 0 0 0 00 ₩ 0 0 00 00 0 % **%** 0 7 $^{\circ}$ 0 0 0 0 0 00 0 7 055 820 က 2.0 2.5 3.0 3.5 4.0

Fitted values $Im(y \sim x1 + x2)$

Check for outliers
studentized_resi = studres(lm.model)
plot(studentized_resi)


```
# Check for leverage points
cd = cooks.distance(lm.model)
leverage_indices = which(cd > 4/nrow(lm.model))
leverage_indices
```

integer(0)

In the model using only x1 the new observation made the coefficient more distant from the true value and raised the p-value, although the p-value is still significant enough to reject the null hypothesis.

The new observation is neither an outlier nor a high leverage point in this model either based on studentized residuals and cooks distance.

```
x1_model <- lm(y ~ x1)
summary(x1_model)</pre>
```

```
##
## Call:
##
  lm(formula = y \sim x1)
##
## Residuals:
##
       Min
                                  3Q
                 1Q Median
                                         Max
   -2.8897 -0.6556 -0.0909
                                      3.5665
##
                             0.5682
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                  2.2569
                              0.2390
                                       9.445 1.78e-15 ***
## x1
                  1.7657
                              0.4124
                                       4.282 4.29e-05 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 99 degrees of freedom
## Multiple R-squared: 0.1562, Adjusted R-squared: 0.1477
## F-statistic: 18.33 on 1 and 99 DF, p-value: 4.295e-05
plot(x1_model)
```


Check for outliers
studentized_resi = studres(x1_model)
plot(studentized_resi)


```
outliers = which(studentized_resi > abs(3))
outliers

## 101
## 101
## Check for leverage points
cd = cooks.distance(x1_model)
leverage_indices = which(cd > 4/nrow(x1_model))
leverage_indices
```

integer(0)

The results for the model based on only x2 are the same. The coefficient was shifted further from its true value and the new observation is not an outlier or high leverage point based on studentized residuals and cooks distance.

```
x2_{model} \leftarrow lm(y \sim x2)
summary(x2_model)
##
## Call:
## lm(formula = y \sim x2)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                         3Q
                                                  Max
## -2.64729 -0.71021 -0.06899 0.72699
                                             2.38074
##
## Coefficients:
```

```
##
              Estimate Std. Error t value Pr(>|t|)
                 2.3451
                            0.1912 12.264 < 2e-16 ***
## (Intercept)
                 3.1190
                            0.6040
                                     5.164 1.25e-06 ***
## x2
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.074 on 99 degrees of freedom
## Multiple R-squared: 0.2122, Adjusted R-squared: 0.2042
## F-statistic: 26.66 on 1 and 99 DF, p-value: 1.253e-06
plot(x2_model)
```


Check for outliers
studentized_resi = studres(lm.model)
plot(studentized_resi)


```
# Check for leverage points
cd = cooks.distance(lm.model)
leverage_indices = which(cd > 4/nrow(lm.model))
leverage_indices
```

integer(0)

$\mathbf{Q2}$

```
set.seed(1)
```

a)

Simulate the training data set.

```
n = 25

x <- rnorm(n,0,1)
eps <- rnorm(n,0,1)
y = exp(x) + eps</pre>
```

b)

Fit four regression models

```
p = 4
y1 \leftarrow lm(y \sim x)
y2 \leftarrow lm(y \sim x + x^2)
y3 \leftarrow lm(y \sim x + x^2 + x^3)
y4 \leftarrow lm(y \sim x + x^2 + x^3 + x^4)
```

c)

Create a training dataset with 500 observations

```
n = 500
x.test <- rnorm(n,0,1)
eps.test <- rnorm(n,0,1)
y.test <- exp(x.test) + eps.test</pre>
```

d)

Compute the test error for each of the four models.

```
MSE = c()

fitted.values <- coef(y1)[1] + x.test * coef(y1)[2]

MSE[1] <- mean((y.test - fitted.values)^2)

fitted.values <- coef(y2)[1] + x.test * coef(y2)[2]

MSE[2] <- mean((y.test - fitted.values)^2)

fitted.values <- coef(y3)[1] + x.test * coef(y3)[2]

MSE[3] <- mean((y.test - fitted.values)^2)

fitted.values <- coef(y4)[1] + x.test * coef(y4)[2]

MSE[4] <- mean((y.test - fitted.values)^2)</pre>
```

e)

Which model is the 'best fit' model?

The model with the lowest MSE value and therefore best fit is the first model $y \sim x$. It's surprising to me that the linear model is the best fit as I would have expected the polynomial function $x + x^2 + x^3$ to be the best fit.

```
which.min(MSE)
```

[1] 1

$\mathbf{Q3}$

Using the Hitters dataset from the ISLR package:

```
library(ISLR)
library(glmnet)
```

```
## Loading required package: Matrix
## Loaded glmnet 4.1-4
```

```
library(dplyr)
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
      select
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
library(tidyverse)
## -- Attaching packages -----
                                          ----- tidyverse 1.3.2 --
## v ggplot2 3.3.6
                    v purrr
                              0.3.4
## v tibble 3.1.8
                   v stringr 1.4.1
## v tidyr
          1.2.0 v forcats 0.5.2
## v readr
           2.1.2
## -- Conflicts ----
                                            ## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x dplyr::select() masks MASS::select()
## x tidyr::unpack() masks Matrix::unpack()
data("Hitters")
attach(Hitters)
```

a.

Split the data into training/testing sets

```
df <- data.frame(filter(Hitters, !is.na(Hitters$Salary))) # Remove NAs
df <- df[,-c(14,15,20)] # remove factor variables for regression

train_n <- ceiling(nrow(df) * 3/4)
test_n <- nrow(df) - train_n

data.train <- df[1:train_n,]
data.test <- df[train_n+1:nrow(df),]</pre>
```

b.

Fit the model using least squares regression and report the test error.

The mean test error of the linear model is -45.84.

```
lm.model <- lm(data.train$Salary ~ ., data = data.train)
lm.fitted <- as.matrix(cbind(1, data.test[-17])) %*% coef(lm.model)</pre>
```

```
test_error <- data.test$Salary - lm.fitted
mean(test_error, na.rm = TRUE)</pre>
```

[1] -45.83773

test_error

##		[,1]
##	-Ron Hassey	-34.97217
##	-Rickey Henderson	851.34713
##	-Reggie Jackson	-1277.27213
##	-Ron Kittle	183.92963
##	-Ray Knight	-99.66930
##		14.03376
##	-Rick Manning	155.65622
##	-Rance Mulliniks	63.03653
##	-Ron Oester	170.21510
##	-Rey Quinones	17.21533
##	-Rafael Ramirez	731.76379
##	-Ronn Reynolds	131.61764
##	-Ron Roenicke	-191.58751
##	-Ryne Sandberg	-330.55230
##	-Rafael Santana	35.64796
##	-Rick Schu	-55.42647
##	-Ruben Sierra	-63.52250
##	-Roy Smalley	309.92911
##	-Robby Thompson	-384.36189
##	-Rob Wilfong	73.43356
##	-Robin Yount	-367.17417
	-Steve Balboni	-520.29508
##	-Scott Bradley	-237.48535
##		-687.11739
##		-51.50404
##		-95.08424
##		-186.22611
##		-49.01759
	-Steve Jeltz	-232.87837
	-Steve Lombardozzi	-326.22622
	-Spike Owen	30.49317
	-Steve Sax	-1000.94415
	-Tony Bernazard	-353.82798
##		-67.88535
##	J	473.28443
	-Tony Fernandez	-390.50857 -231.07392
	-Tim Flannery -Tom Foley	-62.72669
	-Tony Gwynn	-63.72088
	-Terry Harper	204.29391
##	-Tommy Herr	111.48830
##	-Tim Hulett	260.48883
##	-Terry Kennedy	516.41635
##	= = =	149.88776
##	-Tim Laudner	-63.34817
##	-Tom Paciorek	-251.14170
##	-Tony Pena	329.91081
ππ	Tony Tona	020.01001

		77 40000
	-Terry Pendleton	-77.19860
	-Tony Phillips	-178.65899
##	-Terry Puhl	609.59721
##	-Ted Simmons	-407.12015
##	-Tim Teufel	-55.13832
##	-Tim Wallach	367.94431
##	-Vince Coleman	31.62912
##	-Von Hayes	49.81745
##	-Vance Law	134.89628
##	-Wally Backman	-63.20466
	-Wade Boggs	265.00286
	-Will Clark	-504.20045
	-Wally Joyner	-780.19729
	-Willie McGee	240.88200
	-Willie Randolph	
	-Wayne Tolleson	82.78513
	-	-179.09485
	-Willie Wilson	376.70912
	NA	NA
	NA.1	NA
	NA.2	NA
	NA.3	NA
	NA.4	NA
	NA.5	NA
	NA.6	NA
	NA.7	NA
	NA.8	NA
##		NA
##		NA
##		NA
	NA.12	NA
	NA.13	NA
	NA.14	NA
	NA.15	NA
	NA.16	NA NA
	NA.17	NA NA
	NA.18	NA NA
##	NA.19	NA NA
##	NA.20	NA NA
##	NA.21	NA NA
##	NA.22	NA NA
##	NA.23	NA NA
##	NA.24	NA NA
##	NA.25	NA NA
##	NA.26	NA NA
##	NA.27	NA NA
##	NA.28	NA NA
##	NA.29	NA NA
##	NA.30	NA NA
##	NA.31	NA NA
##	NA.32	NA NA
##	NA.33	NA NA
##	NA.34	NA NA
##	NA.35	NA NA
##	MH. OO	IVA

##	NA.36	NA
##	NA.37	NA
##	NA.38	NA
##	NA.39	NA
##	NA.40	NA
##	NA.41	NA
##	NA.42	NA
##	NA.43	NA
##	NA.44	NA
##	NA.45	NA
##	NA.46	NA
##	NA.47	NA
##	NA.48	NA
##	NA.49	NA
##	NA.50	NA
##	NA.51	NA
##	NA.52	NA
##	NA.53	NA
##	NA.54	NA
##	NA.55	NA
##	NA.56	NA
##	NA.57	NA
##	NA.58	NA
##	NA.59	NA
##	NA.60	NA
##	NA.61	NA
##	NA.62	NA
##	NA.63	NA
##	NA.64	NA
##	NA.65	NA
##	NA.66	NA
##	NA.67	NA
##	NA.68	NA
##	NA.69	NA
##	NA.70	NA
##	NA.71	NA
##	NA.72	NA
##	NA.73	NA
##	NA.74	NA
##	NA.75	NA
##	NA.76	NA
##	NA.77	NA
##	NA.78	NA
##	NA.79	NA
##	NA.80	NA
##	NA.81	NA
##	NA.82	NA
##	NA.83	NA
##	NA.84	NA
##	NA.85	NA
##	NA.86	NA
##	NA.87	NA
##	NA.88	NA
##	NA.89	NA

##	NA.90	NA
##	NA.91	NA
##	NA.92	NA
##	NA.93	NA
##	NA.94	NA
##	NA.95	NA
##	NA.96	NA
##	NA.97	NA
##	NA.98	NA
##	NA.99	NA
##	NA.100	NA
##	NA.101	NA
##	NA.102	NA
##	NA.103	NA
##	NA.104	NA
##	NA.105	NA
##	NA.106	NA
##	NA.107	NA
##	NA.108	NA
##	NA.109	NA
##	NA.110	NA
##	NA.111	NA
##	NA.112	NA
##	NA.113	NA
##	NA.114	NA
##	NA.115	NA
##	NA.116	NA
##	NA.117	NA
##	NA.118	NA
##	NA.119	NA
##	NA.120	NA
##	NA.121	NA
##	NA.122	NA
##	NA.123	NA
##	NA.124	NA
##	NA.125	NA
##	NA.126	NA
##	NA.127	NA
##	NA.128	NA
##	NA.129	NA
##	NA.130	NA
##	NA.131	NA
##	NA.132	NA
##	NA.133	NA
##	NA.134	NA
##	NA.135	NA
##	NA.136	NA
##	NA.137	NA
##	NA.138	NA
##	NA.139	NA
##		NA
##	NA.141	NA
##	NA.142	NA
##	NA.143	NA

##	NA.144	NA
##	NA.145	NA
##	NA.146	NA
##	NA.147	NA
##	NA.148	NA
##	NA.149	NA
##	NA.150	NA
##	NA.151	NA
##	NA.152	NA
##	NA.153	NA
##	NA.154	NA
##	NA.155	NA
##	NA.156	NA
##	NA.157	NA
##	NA.158	NA
##	NA.159	NA
##	NA.160	NA
##	NA.161	NA
##	NA.162	NA
##	NA.163	NA
##	NA.164	NA
##	NA.165	NA
##	NA.166	NA
##	NA.167	NA
##	NA.168	NA
##	NA.169	NA
##	NA.170	NA
##	NA.171	NA
##	NA.172	NA
##	NA.173	NA
##	NA.174	NA
##	NA.175	NA
##	NA.176	NA
##	NA.177	NA
##	NA.178	NA
##	NA.179	NA
##	NA.180	NA
##	NA.181	NA
##	NA.182	NA
##	NA.183 NA.184	NA NA
##	NA.185	NA NA
	NA.185	NA NA
##	NA.186	NA NA
##	NA.188	NA NA
##	NA.189	NA NA
##	NA.109	NA NA
##	NA.190 NA.191	NA NA
##	NA.191 NA.192	NA NA
##	NA.192	NA NA
##	NA.193	NA NA
##	NA.194	NA NA
##	NA.196	NA
##	NA.197	NA
mm'	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IVA

c.

Fit a ridge regression model on the training set, with λ chosen by cross-validation. Report test error obtained.

The best lambda value ends up being .001 selected using cross validation. The mean test error of the ridge regression model is -46.2 and the vector of test errors are as follows:

```
# Cross-validation for lambda
lam \leftarrow seq(0.001, 2, length.out = 100)
k = 5
ncv = ceiling(nrow(data.train)/k)
cv.ind = rep(1:k, ncv)
cv.ind.rand = sample(cv.ind, nrow(data.train), replace = F)
cv.error <- c(); MSE.cv <- c()
for(i in 1:100){
    for(j in 1:k){
      1.train <- data.train[cv.ind.rand != j, ]</pre>
      y.train <- data.train$Salary</pre>
      ridge.model <- glmnet(data.train[-17], y.train, lambda = lam[i], alpha = 0)
      1.test <- data.train[cv.ind.rand == j, ]</pre>
      1.test.values <- 1.test$Salary</pre>
      test.response <- as.matrix(cbind(1, l.test[-17])) %*% coef(ridge.model, s = lam[i])
      MSE.cv[j] = mean((1.test.values - test.response)^2)
    }
  cv.error[i] = mean(MSE.cv)
lam_index = which.min(cv.error)
ridge.model <- glmnet(data.train[-17], data.train$Salary, lambda = lam[lam_index], alpha = 0)
ridge.fitted <- as.matrix(cbind(1, data.test[-17])) %*% coef(ridge.model, s = lam[lam_index])</pre>
test_error <- data.test$Salary - as.numeric(ridge.fitted)</pre>
mean(test_error, na.rm = TRUE)
## [1] -46.19122
test_error
##
     [1]
           -36.79078
                        851.24480 -1278.96748
                                                 184.54370
                                                             -100.06800
                                                                            13.41332
##
     [7]
           161.75241
                         60.24510
                                     167.24070
                                                  16.03406
                                                              730.21029
                                                                           130.90995
##
                                                                           311.96959
    [13]
          -192.41663
                       -329.50197
                                      31.78446
                                                 -55.79786
                                                              -63.33625
##
   [19]
          -387.19654
                         73.55683
                                   -360.22149
                                                -520.10163
                                                             -236.81900
                                                                          -686.47443
##
   [25]
           -52.80200
                        -97.42345
                                   -186.83451
                                                 -52.70070
                                                             -234.61467
                                                                          -329.86623
##
    [31]
            30.62521
                       -999.40037
                                    -352.31646
                                                 -63.52127
                                                              473.31713
                                                                          -393.40336
   [37]
##
          -232.17255
                        -63.14417
                                     -67.41617
                                                 203.55431
                                                              114.75830
                                                                           257.59755
##
   [43]
           517.53392
                        147.76785
                                     -61.84191
                                                -254.86225
                                                              328.94896
                                                                           -77.68033
   [49]
          -179.32041
##
                        608.56397
                                    -408.76122
                                                 -56.24395
                                                              366.05661
                                                                            30.61383
##
    [55]
            54.01019
                        134.83320
                                     -65.19952
                                                 258.77512
                                                             -503.86038
                                                                          -777.69172
           241.47031
                                      82.24028
                                                -177.88565
##
  [61]
                        -28.11561
                                                              378.76999
                                                                                  NA
##
  Г671
                   NA
                               NA
                                            NA
                                                         NA
                                                                      NA
                                                                                  NA
## [73]
                   NA
                               NA
                                            NA
                                                         NA
                                                                      NA
                                                                                  NA
##
   [79]
                   NA
                               NA
                                            NA
                                                         NA
                                                                      NA
                                                                                  NA
##
  [85]
                   NA
                               NA
                                            NA
                                                         NA
                                                                      NA
                                                                                  NA
##
   [91]
                   NA
                               NA
                                            NA
                                                         NA
                                                                      NA
                                                                                  NA
```

##	[07]	NA	NA	NA	NA	NA	NA
##	[97]						
##	[103]	NA	NA	NA	NA	NA	NA
##	[109]	NA	NA	NA	NA	NA	NA
##	[115]	NA	NA	NA	NA	NA	NΑ
##	[121]	NA	NA	NA	NA	NA	NA
##	[127]	NA	NA	NA	NA	NA	NA
##	[133]	NA	NA	NA	NA	NA	NA
##	[139]	NA	NA	NA	NA	NA	NA
##	[145]	NA	NA	NA	NA	NA	NA
##	[151]	NA	NA	NA	NA	NA	NA
##	[157]	NA	NA	NA	NA	NA	NA
##	[163]	NA	NA	NA	NA	NA	NA
##	[169]	NA	NA	NA	NA	NA	NA
##	[175]	NA	NA	NA	NA	NA	NA
##	[181]	NA	NA	NA	NA	NA	NA
##	[187]	NA	NA	NA	NA	NA	NA
##	[193]	NA	NA	NA	NA	NA	NA
##	[199]	NA	NA	NA	NA	NA	NA
##	[205]	NA	NA	NA	NA	NA	NA
##	[211]	NA	NA	NA	NA	NA	NA
##	[217]	NA	NA	NA	NA	NA	NA
##	[223]	NA	NA	NA	NA	NA	NA
##	[229]	NA	NA	NA	NA	NA	NA
##	[235]	NA	NA	NA	NA	NA	NA
##	[241]	NA	NA	NA	NA	NA	NA
##	[247]	NA	NA	NA	NA	NA	NA
##	[253]	NA	NA	NA	NA	NA	NA
##	[259]	NA	NA	NA	NA	NA	

\mathbf{d} .

Fit the lasso model and report the test erro along with the number of non-zero coefficients.

The mean error for the lasso regression model is -46.19. However, I believe there's a mistake in the cross-validation code for lambda as the lasso error should not be the same as the ridge error. I cannot figure out where the error is. All variables are non-zero with the chosen lambda, which is likely not to be the case.

```
# Cross-validation for lambda

lam <- seq(0.001, 2, length.out = 100)
k = 5
ncv = ceiling(nrow(data.train)/k)
cv.ind = rep(1:k, ncv)
cv.ind.rand = sample(cv.ind, nrow(data.train), replace = F)

cv.error <- c(); MSE.cv <- c()
for(i in 1:100){
    for(j in 1:k){
        l.train <- data.train[cv.ind.rand != j, ]
        y.train <- data.train$Salary
        lasso.model <- glmnet(data.train[-17], y.train, lambda = lam[i], alpha = 1)

        l.test <- data.train[cv.ind.rand == j, ]
        l.test.values <- l.test$Salary
        test.response <- as.matrix(cbind(1, l.test[-17])) %*% coef(lasso.model, s = lam[i])</pre>
```

```
MSE.cv[j] = mean((1.test.values - test.response)^2)
    }
  cv.error[i] = mean(MSE.cv)
lam_index = which.min(cv.error) # which value of lambda
lasso.model <- glmnet(data.train[-17], data.train$Salary, lambda = lam[lam_index], alpha = 1)</pre>
lasso.fitted <- as.matrix(cbind(1, data.test[-17])) %*% coef(lasso.model, s = lam[lam_index])</pre>
test_error <- data.test$Salary - as.numeric(lasso.fitted)</pre>
mean(test_error, na.rm = TRUE)
## [1] -46.19173
test_error
##
     [1]
            -36.79955
                         851.23784 -1278.95716
                                                    184.54736
                                                                -100.07141
                                                                                13.41706
##
     [7]
            161.75804
                          60.24214
                                      167.22721
                                                     16.02155
                                                                 730.17474
                                                                               130.90619
##
    [13]
                                                                               311.95799
           -192.40581
                        -329.46812
                                        31.77112
                                                    -55.80791
                                                                 -63.34646
##
    [19]
           -387.20906
                          73.57332
                                     -360.19466
                                                   -520.09559
                                                                -236.81069
                                                                              -686.45748
    [25]
##
            -52.81484
                         -97.43921
                                     -186.83005
                                                    -52.71564
                                                                -234.60490
                                                                              -329.87339
##
    [31]
             30.62946
                        -999.39629
                                     -352.30814
                                                    -63.50388
                                                                 473.30693
                                                                              -393.41548
##
    [37]
           -232.16825
                         -63.14119
                                      -67.45451
                                                    203.55331
                                                                 114.80419
                                                                               257.57301
##
    [43]
            517.53739
                         147.76996
                                      -61.83148
                                                   -254.86133
                                                                 328.93473
                                                                               -77.67423
##
    [49]
           -179.31176
                                                    -56.24795
                         608.55263
                                     -408.78901
                                                                 366.04420
                                                                               30.59123
    [55]
             54.03272
                         134.84826
                                       -65.20677
                                                    258.74488
                                                                -503.87019
                                                                              -777.67355
##
##
    [61]
            241.46705
                         -28.08873
                                       82.24204
                                                   -177.86735
                                                                 378.78292
                                                                                      NA
##
    [67]
                   NA
                                 NA
                                              NA
                                                           NA
                                                                         NA
                                                                                      NA
##
    [73]
                                              NA
                                                            NA
                                                                                      NA
                   NA
                                 NA
                                                                         NA
##
    [79]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
##
   [85]
                   NA
                                 NA
                                                            NA
                                                                         NA
                                                                                      NA
                                              ΝA
##
   [91]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
   [97]
##
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [103]
                                 NA
                                              NA
                                                                         NA
                                                                                      NA
                   NA
                                                            NA
## [109]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [115]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [121]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [127]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [133]
                                                                         NA
                   NA
                                 NA
                                              NA
                                                            NA
                                                                                      NA
## [139]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [145]
                   NA
                                              NA
                                                                         NA
                                                                                      NA
                                 NA
                                                            NA
## [151]
                                 NA
                                                                         NA
                                                                                      NA
                   NA
                                              NA
                                                            NA
## [157]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [163]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [169]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [175]
                   NA
                                 NA
                                                            NA
                                                                         NA
                                                                                      NA
                                              NA
## [181]
                   NA
                                 NA
                                              NA
                                                                         NA
                                                                                      NA
                                                            NA
## [187]
                   NA
                                 NA
                                              ΝA
                                                            ΝA
                                                                         NA
                                                                                      NA
## [193]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [199]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [205]
                                                                         NA
                                                                                      NA
                   NA
                                 NA
                                              NA
                                                            NA
## [211]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [217]
                                 NA
                                                                         NA
                                                                                      NA
                   NA
                                              NA
                                                            NA
## [223]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                      NA
## [229]
                   NA
                                 NA
                                              NA
                                                                         NA
                                                                                      NA
                                                            NA
```

```
## [235]
                    NA
                                 NA
                                               NA
                                                            NA
                                                                         NA
                                                                                       NA
## [241]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                       NA
## [247]
                   NA
                                 NA
                                              NA
                                                            NA
                                                                         NA
                                                                                       NA
## [253]
                                 NA
                                                                         NA
                                                                                       NA
                    NA
                                              NA
                                                            NA
## [259]
                    NA
                                 NA
                                               NA
                                                            NA
                                                                         NA
coef(lasso.model, s = lam[lam_index])
```

```
## 17 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 120.0626842
## AtBat
                -3.0760596
## Hits
                 10.9313223
## HmRun
                 -3.8202376
## Runs
                 -2.4366967
## RBI
                  0.7222072
## Walks
                  6.6604145
## Years
                  1.0011724
## CAtBat
                 -0.1547079
## CHits
                 -0.1705178
## CHmRun
                  0.9420960
## CRuns
                  1.6651054
## CRBI
                  0.8621874
## CWalks
                 -0.8744750
## PutOuts
                  0.4108652
## Assists
                  0.7001926
## Errors
                 -4.9637317
```

 \mathbf{e}

Comment on the obtained results.

The test error, with a mean of approximately -46, is fairly low given the scale of the numbers we're working with. The can pretty accurately predict salary using the various observations. The difference in test error between the linear and lasso/ridge regression was marginal.