Elliptic curves: homework 9

Mastermath / DIAMANT, Spring 2019 Martin Bright and Marco Streng

Deadline: 9 April

Hand in exercises 2 and 4.

1. Let $\zeta \in \mathbb{F}_4$ denote a primitive 3rd root of unity. Let E be the elliptic curve over \mathbb{F}_4 defined by the equation

$$Y^2 + Y = X^3.$$

Let $f: E \to E$ be given by $f(x,y) = (\zeta x,y)$ and let $g: E \to E$ be given by $g(x,y) = (x+1,y+x+\zeta)$. Show that f and g are automorphisms of E and show that they do not commute. Therefore the ring End E is not commutative in this case.

- **2.** Let E be the elliptic curve over \mathbb{Q} given by $Y^2 + Y = X^3$ and let Q denote the point (0,0). Let $\tau \colon E \to E$ denote translation by Q. In other words, $\tau(P) = P + Q$ for P a point on E.
 - (a) Show that τ is a *curve automorphism* of E of order 3, but not an elliptic curve automorphism.
 - (b) Give a formula for the point $\tau(P)$ in terms of the coordinates x and y of P = (x, y). Also give a formula for $\tau^2(P)$.
 - (c) Let H be the subgroup generated by Q and let E' denote the elliptic curve over \mathbb{Q} given by $Y^2 + 3Y = X^3 9$. Show that

$$\phi(x,y) = \left(x + \frac{1}{x^2}, y - 1 - \frac{2y+1}{x^3}\right)$$

defines an isogeny $\phi \colon E \to E'$ whose kernel is H. (You may use a computer for part (c).)

- **3.** (Silverman, 3.9) Let E/k be an elliptic curve given by a homogeneous Weierstrass equation $F(X_0, X_1, X_2) = 0$. Let $P \in E$. Assume that $\operatorname{char}(k) \neq 2, 3$.
 - (a) Show that [3]P = O if and only if the tangent line to E at P intersects E only at P.
 - (b) Show that [3]P = O if and only if the Hessian matrix

$$((\partial^2 F/\partial X_i \partial X_j)(P))_{0 \le i,j \le 2}$$

has determinant 0.

- (c) Show that E[3] consists of 9 points.
- **4.** Let E be the elliptic curve over \mathbb{Q} given by the Weierstrass equation $Y^2+Y=X^3$. Compute the coordinates of its 2-torsion points and of its 3-torsion points in $E(\overline{\mathbb{Q}})$.

5. (Silverman, Exercise 3.30) Let A be an abelian group and $r \geq 0$ and $N \geq 1$ integers. Suppose that $\#A[d] = d^r$ for all $d \mid N$, where A[d] denotes the subgroup of elements of order dividing d. Show $A[N] \cong (\mathbb{Z}/N\mathbb{Z})^r$.