Pronósticos de inflación en Guatemala: ¿Modelos de series de tiempo o algoritmos de *machine learning*?*

Gabriel A. Fuentes[†]

21 de abril, 2022

Resumen

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nibh ex, mollis nec turpis ac, ultrices mollis quam. Aliquam sed tortor eget dolor dignissim ornare quis in nibh. Duis non nisl convallis, ornare erat et, sagittis mauris. Mauris sit amet sapien vehicula, volutpat mi laoreet, viverra tellus. Aliquam id placerat risus, sed convallis urna. Phasellus varius iaculis tellus ac venenatis. Pellentesque molestie libero orci, in hendrerit dolor semper quis. Nunc sed dolor facilisis, faucibus odio semper, accumsan tellus. Proin pretium felis et urna commodo, in tempor sapien iaculis. Quisque feugiat tincidunt porta. Nulla vestibulum vel nibh non rhoncus. Nunc eu urna velit. In imperdiet magna eget ex auctor, porta aliquam lorem cursus. Nullam et commodo mauris. In ullamcorper egestas erat, quis faucibus lectus. Nullam pellentesque quam eget nibh condimentum, in vestibulum neque posuere. Sed sed lorem vitae lacus laoreet aliquet. Curabitur egestas enim a odio lacinia sodales. Vestibulum fermentum, dui.

Palabras clave: Machine learning, deep learning, series de tiempo, pronósticos, inflación

Clasificación JEL: E31, C22, C45, C53

^{*}Con el propósito de maximizar la reproducibilidad del presente estudio, las bases de datos utilizadas y el código en R se encuentran disponibles en: https://github.com/gafnts/Inflation-forecasting

[†]Séptimo semestre, Teoría y Política Monetaria. Correo electrónico: gafnts@gmail.com

1 Introducción

El artículo número tres de la ley orgánica del Banco de Guatemala establece que su objetivo fundamental consiste en propiciar las condiciones monetarias, cambiarias y crediticias que promuevan la estabilidad en el nivel general de precios. En el 2005, como parte de su esfuerzo por lograr este fin, dicha entidad optó por conducir sus acciones a través de un esquema de metas inflacionarias.

Debido a que naturalmente existe un periodo de tiempo entre el ajuste de las condiciones monetarias y el efecto que este cambio genera en las variables reales del sistema macroeconómico, la autoridad monetaria—bajo un régimen de metas explícitas de inflación—actúa en el presente considerando sus pronósticos sobre el comportamiento de los precios en el futuro.

Concretamente, un cambio en la tasa de interés de política monetaria puede demorar entre 12 y 24 meses en ejercer una influencia en la demanda agregada y, por tanto, en tener un impacto en la evolución del ritmo inflacionario interno. En consecuencia, el banco central deberá pronosticar esta variable durante dicho horizonte temporal y efectuar sus decisiones de política monetaria de modo que pueda estar seguro de que los pronósticos y expectativas de inflación se mantendrán anclados a la meta establecida durante el mediano plazo (Moenjak, 2014).

En este sentido, los pronósticos de variables macroeconómicas pueden llevarse a cabo a través de dos enfoques distintos: Métodos estructurales y métodos no estructurales (Diebold, 1998). Los primeros informan a la especificación de sus modelos a través de una teoría económica específica, mientras que los últimos se valen de las correlaciones en forma reducida que subyacen en las series de tiempo, sin depender explícitamente de una teoría económica (Pratap & Sengupta, 2019).

Este estudio en particular se ocupará del segundo enfoque, que al mismo tiempo puede ser subdividido en dos metodologías diferentes. Por un lado se encuentran los métodos econométricos de series de tiempo (que pueden considerarse como modelos relativamente tradicionales) entre los que sobresalen los modelos univariados autorregresivos integrados de medias móviles (ARIMA) y los modelos multivariados de vectores autorregresivos (VAR).

Por el otro, algoritmos de aprendizaje estadístico¹ (machine learning) comienzan a ser cada vez más populares, principalmente por la creciente disponibilidad de grandes bases de datos y poder de cómputo, así como un mayor acceso a software especializado (Rodríguez-Vargas, 2020), aunque—tal y como mencionan Coulombe et al. (2020)—los métodos de aprendizaje de máquina en realidad tienen una historia dentro de la literatura macroeconométrica que se remonta hacia inicios de la década de los noventas.

En general, los modelos de series de tiempo asumen que las variables empleadas durante la estimación de los parámetros se vinculan entre sí a través de una dinámica intrínseca regida por relaciones lineales que únicamente conducen a soluciones que oscilan periódicamente o que exhiben un comportamiento exponencial, de modo que la totalidad en la conducta irregular del sistema es atribuida únicamente a una entrada que es tanto exógena como estocástica (Kantz & Schreiber, 2004).

Sin embargo, esta entrada aleatoria puede no ser la fuente exclusiva de irregularidad. Evidencia apunta que tanto series macroeconómicas como datos financieros exhiben interesantes estructuras no-lineales que se originan debido al impacto de perturbaciones durante las fases del ciclo económico (Granger et al., 1993; LeBaron, 1994).

¹A lo largo de la presente investigación los términos "aprendizaje estadístico," "aprendizaje de máquina" y "aprendizaje automático" serán empleados indistintamente.

Dada la naturaleza no-lineal entre la relación de las variables macroeconómicas, existe cada vez un mayor énfasis en la aplicación de modelos de aprendizaje automático, los cuales (a diferencia de sus contrapartes) son particularmente buenos para explotar este tipo de relaciones, así como interacciones de alto orden, durante el proceso de predicción de nuevos valores basados en los valores de sus regresores (Athey & Imbens, 2019). Precisamente, tal es el propósito del presente estudio.

Por medio de una competencia de pronósticos fuera de muestra (pseudo out-of-sample) del ritmo inflacionario en Guatemala entre una amplia gama de modelos que difieren respecto de ciertas características esenciales, esta investigación buscará evaluar si modelos de aprendizaje estadístico tales como bosques aleatorios (random forest), k vecinos más cercanos (KNN), máquinas de vectores de soporte (SVM), redes neuronales multicapa (MLP) y redes neuronales recurrentes de larga memoria de corto plazo (LSTM) son capaces de generar pronósticos más eficientes en distintos horizontes temporales—comparados a través de tres criterios de evaluación (RMSE, sMAPE y MASE)—al contrastarlos con las predicciones de un repertorio de modelos estimados a partir de métodos econométricos tradicionales.

El resto del documento será organizado de la siguiente manera. La siguiente sección hace un repaso de la literatura correspondiente al uso y evaluación de modelos paramétricos y no paramétricos en tareas de predicción para series de tiempo. La sección 3 se ocupa de presentar un resumen estadístico de la base de datos, la configuración computacional de los modelos empleados y la metodología de evaluación para las predicciones de los mismos. Por último, la sección 4 y 5 se enfocan en discutir los resultados y conclusiones del estudio, respectivamente.

2 Revisión de la literatura

Trabajos que comparan series de tiempo con machine learning: Ülke et al. (2018), Moshiri & Cameron (2000)

3 Marco teórico

4 Metodología

5 Resultados

6 Conclusiones

7 Referencias

- Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685–725. https://doi.org/10.1146/annurev-economics-080217-053433
- Coulombe, P. G., Leroux, M., Stevanovic, D., & Surprenant, S. (2020). How is machine learning useful for macroeconomic forecasting? arXiv:2008.12477 [Econ, Stat]. http://arxiv.org/abs/2008.12477
- Diebold, F. X. (1998). The Past, Present, and Future of Macroeconomic Forecasting. *Journal of Economic Perspectives*, 12(2), 175–192. https://doi.org/10.1257/jep.12.2.175
- Granger, C. W., Teräsvirta, T., & Anderson, H. M. (1993). Modeling nonlinearity over the business cycle. Business Cycles, Indicators and Forecasting, NBER Chapters, 311–326.
- Kantz, H., & Schreiber, T. (2004). *Nonlinear time series analysis* (Vol. 7). Cambridge university press.
- LeBaron, B. (1994). Chaos and nonlinear forecastability in economics and finance. *Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences*. https://doi.org/10.1098/rsta.1994.0099
- Moenjak, T. (2014). Central banking: Theory and practice in sustaining monetary and financial stability. John Wiley.
- Moshiri, S., & Cameron, N. (2000). Neural network versus econometric models in forecasting inflation. *Journal of Forecasting*, 19(3), 201–217. https://doi.org/10.1002/(SICI)1099-131X(200004) 19:3%3C201::AID-FOR753%3E3.0.CO;2-4
- Pratap, B., & Sengupta, S. (2019). Macroeconomic Forecasting in India: Does Machine Learning Hold the Key to Better Forecasts? https://doi.org/10.2139/ssrn.3852945
- Rodríguez-Vargas, A. (2020). Forecasting Costa Rican inflation with machine learning methods. Latin American Journal of Central Banking, 1(1), 100012. https://doi.org/10.1016/j.latcb.2020. 100012
- Ülke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. *Neural Computing and Applications*, 30(5), 1519–1527. https://doi.org/10.1007/s00521-016-2766-x