# Systemidentifikation und Regelung in der Medizin

# 8. Vorlesung

8. Einführung in die System Identification Toolbox anhand von Beispielen

Sommersemester 2020

8. Juni 2020

Thomas Schauer

Technische Universität Berlin Fachgebiet Regelungssysteme

# Identification of the Electrically Stimulated Quadriceps Muscle Group

- System: pulse width input u, angle output y
- Pre-test to find operating regime and to normalise inputs and outputs
- Normalised output: y = 0: rest angle, y = 1: knee full extended
- Normalised Input: u = 0: threshold pulsewidth, u = 1: saturation pulsewidth
- Design of a PRB signal: prbs (own routine) or idinput (System Identification Toolbox)
- System Identification test

*Hint*: For Identification Toolbox:  $na = \deg A$ , but  $nb = \deg B + 1$ 

Hint: For Identification Toolbox and BJ-Modell: A = F

• Extract model for controller design



# Design PRBS - Matlab Script

```
%N - order
N=5;
%Ts - Sampling time
Ts=0.05;
%p - frequency divider (integer)
p=25;
%n - number of repetitions
n=2;
Mean=0.2;
Amp=0.1;
[t,u]=prbs(N,p,n,Ts,Mean,Amp);
```





#### Preprocess data 1st data set (mean u = 0.2)

```
First split data set into estimation (training) (10 \le t \le 40 \,\mathrm{s}) and validation (testing) part
(45 < t < 80 \,\mathrm{s})
%load data
load data.mat
%
           Chose estimation and validation data set
h=slide_figure;
plot(t,y,t,u);
xlabel time
ylabel output
Ts=0.05; %sample time
index_est=find((t>=10)&(t<=40));
index_val=find((t>=45)&(t<=80));
```

### Remove offsets, normalize I/O data, create training and testing data set

```
% Remove offsets and normalize to standard deviation of 1
slide_figure;
u_mean=(max(u(index_est))+min(u(index_est)))/2;
y_mean=mean(y(index_est));
y_std=std(y(index_est));
u_std=std(u(index_est));
y_norm_est=(y(index_est)-y_mean)/y_std;
u_norm_est=(u(index_est)-u_mean)/u_std;
y_norm_val=(y(index_val)-y_mean)/y_std;
u_norm_val=(u(index_val)-u_mean)/u_std;
% create training and testing data set
Z_est=iddata(y_norm_est,u_norm_est,Ts);%estimation (train) data
Z_val=iddata(v_norm_val,u_norm_val,Ts); %validation (test) data
```

#### Guess time delay $n_k$ from finite impulse response

```
Estimate impulse response (FIR) to find n_k
slide_figure;
sys = impulseest(Z_est)
h=impulseplot(sys);
sd = 3;
showConfidence(h,sd);
xlabel 'Time kT_s [s]';
ylabel 'h(kT_s)';
title 'Impulse Response';
grid on;
```





Guess for time delay:  $n_k = 4$ 

## Stairs plot to estimate time delay $n_k$

```
slide_figure;
stairs(t(index_est),[u_norm_est,y_norm_est]);
xlabel('Time [s]');
ylabel('Normalised u and y')
legend('norm. u','norm. y');
```



Guess for time delay:  $n_k = 4$ 

#### Estimate ARX models

```
Choose ARX model
 Identify different arx models and use cross validation to select
 the best model having the best 100-step prediction fit
%test 10 arx models with n_k=4
%na nb nk
struc=[1 2 4
    2 3 4
    3 4 4
    4 5 4
    5 6 4
    6 7 4
    7 8 4
    8 9 4
    10 11 4
    11 12 4];
```

```
Opt = arxOptions;
Opt.InitialCondition='auto';
Opt.Focus='prediction';
for i=1:10,
        [m(i).arxmodel]=arx(Z_est,struc(i,:),'Ts',Ts,...
        'initialstate','estimate','name',strcat('ARX',mat2str(struc(i,:))));
end
slide_figure;
compare(Z_val,m.arxmodel,100);
```

## Cross validation to find right model order

Select model with best fit for 100-step prediction using the validation data set.



Best ARX model: na=10,nb=11,nk=4 (10th order model)

### Try BJ-Model with lower order G instead

$$y(k) = \frac{\mathsf{B}(q^{-1})}{\mathsf{F}(q^{-1})} u(k - n_k) + \frac{\mathsf{C}(q^{-1})}{\mathsf{D}(q^{-1})} e(k)$$

```
%ARX: na nb nc
[arx_m_10114] = arx(Z_est,[10 11 4],'Ts',Ts,'initialstate','estimate');
[arx_m_234] = arx(Z_est,[2 3 4],'Ts',Ts,'initialstate','estimate');
%BJ: nb nc nd nf nk
[bj_m] = bj(Z_est,[3 2 4 2 4],'Ts',Ts,'initialstate','estimate');
slide_figure;
compare(Z_val,arx_m_234,arx_m_10114,bj_m,1); %1step
slide_figure;
compare(Z_val,arx_m_234,arx_m_10114,bj_m,inf); %simulation
```

Comparison 1-step prediction



## Comparison simulation



### Prediction error analysis

# Prediction error analysis (ARX 234)



# Prediction error analysis (ARX 10114)



## Prediction error analysis (BJ)



#### PZ maps

```
%
         PZMAPS
slide_figure
h=iopzplot(bj_m);legend('bj nf=2 nb=2 nk=4');
sd=2;
showConfidence(h,sd);
slide_figure
h=iopzplot(arx_m_234);legend('arx 234');
sd=2;
showConfidence(h,sd);
slide_figure
h=iopzplot(arx_m_10114);legend('arx 10114');
sd=2;
showConfidence(h,sd);
```

PZ map (ARX 234)



# PZ map (ARX 10114)



PZ map (BJ)



# Conversion of idmodel to LTI model for controller design using polydata

Generic **idmodel** structure for transfer function models (time delay is absorbed in  $B(q^{-1})$ ):

$$A(q^{-1})y(k) = \frac{B(q^{-1})}{F(q^{-1})}u(k) + \frac{C(q^{-1})}{D(q^{-1})}e(k)$$

```
%%%
% Convert to lti model in q^-1 for controller design
%%%
[A,B,C,D,F]=polydata(bj_m);
T_s=0.05;
H=tf(C,conv(D,A),T_s,'variable','z^-1');
G=tf(B,conv(F,A),T_s,'variable','z^-1');
%%%
% Convert to z
%%%
set(H,'variable','z');
set(G,'variable','z');
```

# **Conclusions**

- BJ model with low order G does a better job than a ARX model!
- High order for ARX describes noise and disturbances but not deterministic system parts.
- G of BJ model would be the best for controller design
- Identification strategy: 1st: FIR  $(n_k)$ , 2nd: ARX, 3rd: BJ,OE (then ARX ist not good) or procedure outline in lecture

## Live GUI Tutorial – Identification of the Wrist Extensor Muscle



- System: pulse width input u, force output y
- Sample period: 50ms
- Data set: data\_io.mat contains 4 experiments
- Identify model using the graphical user interface of the Identification Toolbox: start with ident



Ident-Tool