

Herleitung der Evolutionsprozesse von Arten und Individuen in simulierten Ökosystemen

<u>Gliederung</u>

- Motivation
- 2. Thesen
- 3. Methodik und Herausforderungen
- 4. Herleitung der computergestützten Simulation
- 5. Fehleranalyse
- 6. Konversation

Motivation

- grundlegende Existenzfrage
- → Moderne Technologie und "Urwissenschaft"
- → "HighTech" ermöglicht massive Eingriffe in natürliche Strukturen & Prozesse
 - Unerwartete Konsequenzen
 - Irreparable Schäden
- → Evaluation durch computergestützte Simulationen

<u>Thesen</u>

- → Die Evolutionären Prozesse von Arten und Individuen in Ökosystemen lassen sich durch generelle Verhältnismäßigkeiten beschreiben und darstellen.
- → Es lassen sich allgemeine Verhaltensweisen für die Simulation beschreiben.
- → Die Ergebnisse der Evolution lassen sich grob auf die reale Welt beziehen.

Methodik und Herausforderungen

- theoretische Herleitung einfacher und grundlegender Prinzipien
 - Übersetzung biologischer Konzepte in mathematisch-logische Aussagen
 - ◆ Balance zwischen Komplexität und Abstraktion
 - Übersichtlichkeit

Herleitung der com.-gestützten Simulation

- Existenz des Lebens
- II. Reproduktion (Ex)
- III. Genetische Information
- IV. Konkurrenz (Log)
- V. Übersetzung

Existenz des Lebens

- [1] $N_n = N_{n-1} + B (N_{n-1} * iD)$
- → Gesamtheit (N); Sterbew. (iD); Entstehungsrate (B)
- [2] $N_{Eq} = B / iD$
- → Equilibrium (N_{Eq})

<u>Reproduktion</u>

- [3] $N_n = N_{n-1} + N_{n-1} * (iR iD)$
- → Gesamtheit (N); Sterbew. (iD); Reproduktionsw. (iR)
- → iR > iD → exponentielles Wachstum
- → iR < iD → exponentielle Schrumpfung bis Auslöschung
- \rightarrow iR = iD \rightarrow Stagnation

Genetische Information

- → Gen kodiert Protein → Merkmal; ggf. über multiple Allele
 - Komplexer Prozess
- → Abstraktion
 - Darstellung Gesamtheit Allele als einzelner Gen-Skalarwert
 - Mutationen als Auswirkung auf Skalarwert
- → Adaption an Biotop

Konkurrenz

- [4] $N_n = N_{n-1} + N_{n-1} * (iR iD (N_{n-1} * C))$
- → Gesamtheit (N); Sterbew. (iD); Reproduktionsw. (iR); Stresskoeffizient (C)
- → Je mehr Individuen, desto determinierender Stresskoeffizient
 - Desto mehr Individuen desto knapper Ressourcen

Übersetzung

- → Stresskoeffizient (C) → Bedürfnisse:
 - individuelle Sterbew. (iD) → Verfehlen
- → Bei Reproduktion → Chance auf "Mutation" der Gen-Skalarwerte

<u>Fehleranalyse</u>

- → Stark vereinfachtes Simulationskonzept
 - ungenaue Ausarbeitung des Vererbungsapparates
 - stark vereinfachte Wechselwirkungen
 - unpräzise Selektion
- → Zu verworrene mathematische Konzepte
 - unzureichende Rückbesinnung auf Realität
- → Unvollendeter Aufschnitt evolutionärer Verhaltenskonzepte
 - Egoismus & Altruismus

Konversation