# Predicting Sentiments from Tweets

Tweets related to 2020 US Election

#### Motivation & Project Overview

#### **Motivation:**

Genuine interest to learn how the public options before the election day align with the actual outcome of the election

#### **Project Overview:**

This project explores public opinions about 2020 US election from the tweets posted by the users of Twitter and seeks to fully/partially answer the following questions.

- What are the main topics of discussion
- Can we detect any possible October surprises
- Can we detect whether a tweet is negative or positive

#### Project Objective

The <u>main objective</u> of this project is going to be to set up a <u>data science pipeline</u> that facilitates:

- Collection and creation of raw text data
- 2. Preprocessing and categorizing unlabeled text data
- Training and evaluating deep learning models in Keras.

## Approach



Twitter Streaming

Store data in CSV

Data wrangling

Visualize

Categorize
unlabeled text
data w/
Unsupervised
learning
algorithm

Prediction w/ Deep learning model

#### Data

#### Tweets from Twitter using Tweepy



Tweepy

#### 32 columns

|   | created_at                              | id                  | id_str              | text                                                    | ource                                                                   | truncated | in_reply_to_status_id | in_re |
|---|-----------------------------------------|---------------------|---------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-----------|-----------------------|-------|
| 0 | Fri Oct 16<br>05:01:51<br>+0000<br>2020 | 1316967569660776450 | 1316967569660776450 | RT<br>@RudyGiuliani:<br>The competing<br>Town Halls wer | <a <br="" href="https://mobile.twitter.com">el="nofo</a>                | False     | NaN                   | NaN   |
| 1 | Fri Oct 16<br>05:01:51<br>+0000<br>2020 | 1316967569648222211 | 1316967569648222211 | RT @rachelv12:<br>Trump and<br>machismo<br>https://t.c  | <a <br="" href="https://mobile.twitter.com">el="nofo</a>                | False     | NaN                   | NaN   |
| 2 | Fri Oct 16<br>05:01:51<br>+0000<br>2020 | 1316967569652371456 | 1316967569652371456 | RT<br>@briantylercohen:<br>Biden is like an<br>encyclop | <a<br>ref="http://twitter.com/download/iphone"<br/></a<br>              | False     | NaN                   | NaN   |
| 3 | Fri Oct 16<br>05:01:51<br>+0000<br>2020 | 1316967569652371458 | 1316967569652371458 | RT<br>@BradleyWhitford:<br>Yo SemitesIII<br>QAnon doesn | <a<br>nref="http://twitter.com/download/iphone"<br/></a<br>             | False     | NaN                   | NaN   |
| 4 | Fri Oct 16<br>05:01:51<br>+0000<br>2020 | 1316967569794977792 | 1316967569794977792 | RT @ACTBrigitte:<br>Retweet if<br>President Trump<br>wo | <pre><a <="" pre="" ref="http://twitter.com/download/iphone"></a></pre> | False     | NaN                   | NaN   |

440,000 rows

#### Data Wrangling

- Select only "English" tweets
- Drop duplicates
- Drop missing values
- Lowercase
- Remove punctuations
- Remove URLs, other acronyms
- Tokenize
- Remove stopwords





#### **Exploratory Data Analysis**







# Unigrams - Top 20









## Bigrams - Top 20









# Trigrams - Top 20









#### Wordcloud

```
bradleywhitfordriantylercohen
```





# Categorizing the unlabeled data



## Deep learning architectures



Activation function: tanh

Optimizer: Adam

Loss function: binary\_crossentropy

Metric: accuracy

Train/Test ratio: 70% / 30%





#### Deep learning architectures



Activation function: tanh

Optimizer: Adam

Loss function: binary\_crossentropy

Metric: accuracy

Train/Test ratio: 70% / 30%





#### Modeling - SimpleRNN

| Layer (type)             | Output Shape   | Param # |
|--------------------------|----------------|---------|
| embedding_2 (Embedding)  | (None, 14, 32) | 2084032 |
| simple_rnn_4 (SimpleRNN) | (None, 14, 32) | 2080    |
| dropout_3 (Dropout)      | (None, 14, 32) | 0       |
| simple_rnn_5 (SimpleRNN) | (None, 14, 32) | 2080    |
| dropout_4 (Dropout)      | (None, 14, 32) | 0       |
| simple_rnn_6 (SimpleRNN) | (None, 32)     | 2080    |
| dense_2 (Dense)          | (None, 2)      | 66      |

Total params: 2,090,338
Trainable params: 2,090,338
Non-trainable params: 0

```
Train on 154526 samples, validate on 66226 samples
Epoch 1/10
Epoch 4/10
Epoch 5/10
Epoch 9/10
Accuracy: 95.55%
Training duration(minutes): 33.20819400548935
```





#### Modeling - LSTM

| Layer (type)            | Output Shape   | Param # |
|-------------------------|----------------|---------|
| embedding_3 (Embedding) | (None, 14, 32) | 2084032 |
| lstm_7 (LSTM)           | (None, 14, 32) | 8320    |
| dropout_5 (Dropout)     | (None, 14, 32) | 0       |
| lstm_8 (LSTM)           | (None, 14, 32) | 8320    |
| dropout_6 (Dropout)     | (None, 14, 32) | 0       |
| lstm_9 (LSTM)           | (None, 32)     | 8320    |
| dense_3 (Dense)         | (None, 2)      | 66      |

Total params: 2,109,058 Trainable params: 2,109,058 Non-trainable params: 0

```
Train on 154526 samples, validate on 66226 samples
154526/154526 [============= ] - 418s 3ms/step - loss: 0.1038 - acc: 0.9634 - val loss: 0.1088 - val acc: 0.9626
Epoch 2/10
154526/154526 [============= ] - 418s 3ms/step - loss: 0.1030 - acc: 0.9640 - val loss: 0.1112 - val acc: 0.9618
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
154526/154526 [============= ] - 418s 3ms/step - loss: 0.0993 - acc: 0.9655 - val loss: 0.1114 - val acc: 0.9624
Epoch 7/10
154526/154526 [============== ] - 418s 3ms/step - loss: 0.0983 - acc: 0.9658 - val loss: 0.1065 - val acc: 0.9630
Epoch 8/10
154526/154526 [============= ] - 419s 3ms/step - loss: 0.0966 - acc: 0.9664 - val loss: 0.1083 - val acc: 0.9599
Epoch 9/10
154526/154526 [============= ] - 422s 3ms/step - loss: 0.0961 - acc: 0.9664 - val loss: 0.1095 - val acc: 0.9625
Epoch 10/10
154526/154526 [============= ] - 425s 3ms/step - loss: 0.0962 - acc: 0.9662 - val loss: 0.1184 - val acc: 0.9583
Accuracy: 96.07%
Training duration(minutes): 71.24150105714799
```





## Model evaluation - accuracy







#### Model evaluation - loss







#### Conclusion

The accuracies from both SimpleRNN and LSTM appear to be overfitting and the validation accuracies have high variance for the same reason. While the validation accuracy in SimpleRNN starts to increase, it follows a trend in the opposite direction to drop down to lower levels in the LSTM model.

To improve the model performance, the following recommendations are suggested for the next step:

- Find another approach to categorize the unlabeled text data
- Try different RNN architectures
- Perform more advanced hyperparameter tuning of the RNNs
- Perform cross-validation
- Make the data multi-class
- Perform topic modeling with Latent Dirichlet Allocation

## Skills Practiced During This Project

- How to efficiently collect large amount of data from Twitter via Tweepy and Twitter API
- How to efficiently work with large dataset
- How to build deep learning architectures, compile and fit in Keras
- How to apply basic NLP concepts and techniques to a text data

Jupyter notebooks can be found here