

BEST AVAILABLE COPY

INVESTOR IN PEOPLE

EPO - DG 1

10. 01. 2002

(78)

The Patent Office Concept House Cardiff Road Newport South Wales

NP10 8QQ REC'D | 8 JAN 2002

WIPO PCT

the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) f the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the comptroller-General, hereby certify that annexed hereto is a true copy of the documents as riginally filed in connection with the patent application identified therein.

scordance with the Patents (Companies Re-registration) Rules 1982, if a company named s certificate and any accompanying documents has re-registered under the Companies Act with the same name as that with which it was registered immediately before re-ration save for the substitution as, or inclusion as, the last part of the name of the words c limited company" or their equivalents in Welsh, references to the name of the company certificate and any accompanying documents shall be treated as references to the name nich it is so re-registered.

lance with the rules, the words "public limited company" may be replaced by p.l.c., place.

Reation under the Companies Act does not constitute a new legal entity but merely subject company to certain additional company law rules.

> SUBMITTED OR TRANSMITTED BUT NOT IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

Dated 23 February 2009

Patents Act 1977

The **Patent**

(Rule 16)

BEST AVAILABLE CO

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office Cardiff Road Newport Gwent NP9 1RH

1. Your reference

ACC/JLD/BM45378

2. Patent application number (The Patent Office will fill in his part)

26 FEB 1999

9904559.3

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

SmithKline Beecham Biologicals s.a. rue de l'Institut 89, B-1330 Rixensart, Belgium

6570976 eci

Belgium

4. Title of the invention

NOVEL COMPOUNDS

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent

(including the postcode)

5800974003

Patents ADP number (if you know it)

CORPORATE INTELLECTUAL PROPERTY

SMITHKLINE BEECHAM PLC TWO NEW HORIZONS COURT BRENTFORD

MIDDLESEX_TW8 9EP

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or each of these earlier applications and (if you know it) the or each application number

Country

Priority application number Date of filing (day / month / year) (if you know it)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer yes if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is named as an applicant, or
- c) any named applicant is a corporate body See note (d)

10

15

30

BEST AVAILABLE COPY

BASB081

FIELD OF THE INVENTION

This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, the invention relates to polynucleotides and polypeptides of the outer membrane protein family, as well as their variants, hereinafter referred to as "BASB081," "BASB081 polynucleotide(s)," and "BASB081 polypeptide(s)" as the case may be.

BACKGROUND OF THE INVENTION

Moraxella catarrhalis (also named Branhamella catarrhalis) is a Gram negative bacteria frequently isolated from the human upper respiratory tract. It is responsible for several pathologies the main ones being otitis media in infants and children, and pneumonia in elderlies. It is also responsible of sinusitis, nosocomial infections and less frequently of invasive diseases.

Otitis media is an important childhood disease both by the number of cases and its potential sequelae. More than 3.5 millions cases are recorded every year in the United States, and it is estimated that 80 % of the children have experienced at least one episode of otitis before reaching the age of 3 (1). Left untreated, or becoming chronic, this disease may lead to hearing losses that could be temporary (in the case of fluid accumulation in the middle ear) or permanent (if the auditive nerve is damaged). In infants, such hearing losses may be responsible for a delayed speech learning.

20 Three bacterial species are primarily isolated from the middle ear of children with otitis media: Streptococcus pneumoniae, non typeable Haemophilus influenza (NTHi) and M. catarrhalis. They are present in 60 to 90 % of the cases. A review of recent studies shows that S. pneumoniae and NTHi represent both about 30 %, and M. catarrhalis about 15 % of the otitis media cases (2). Other bacteria could be isolated from the middle ear (H. influenza type B, S. pyogenes, ...) but at a much lower frequency (2 % of the cases or less).

Epidemiological data indicate that, for the pathogens found in the middle ear, the colonization of the upper respiratory tract is an absolute prerequisite for the development of an otitis; other are however also required to lead to the disease (3-9). These are important to trigger the migration of the bacteria into the middle ear via the Eustachian tubes, followed by the initiation of an inflammatory process.

These factors are unknown todate. It has been postulated that a transient anomaly of the immune system following a viral infection, for example, could cause an inability to control the colonization of the respiratory tract (5). An alternative explanation is that the exposure to environmental factors

10

15

20

25

30

- 11. Hol, C et al. (1993) Lancet 341:1281
- 12. Jordan, KL et al. (1990) Am.J.Med. 88 (suppl. 5A):28S
- 13. Sethi, S, et al. (1995) Infect.Immun. 63:1516

The frequency of *Moraxella catarrhalis* infections has risen dramatically in the past few decades. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to isolate *Moraxella catarrhalis* strains that are resistant to some or all of the standard antibiotics. This phenomenon has created an unmet medical need and demand for new anti-microbial agents, vaccines, drug screening methods, and diagnostic tests for this organism.

Moreover, the drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics," that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on "positional cloning" and other methods. Functional genomics relies heavily on the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available as well as from other sources. There is a continuing and significant need to identify and characterize further genes and other polynucleotides sequences and their related polypeptides, as targets for drug discovery.

Clearly, there exists a need for polynucleotides and polypeptides, such as the BASB081 embodiments of the invention, that have a present benefit of, among other things, being useful to screen compounds for antimicrobial activity. Such factors are also useful to determine their role in pathogenesis of infection, dysfunction and disease. There is also a need for identification and characterization of such factors and their antagonists and agonists to find ways to prevent, ameliorate or correct such infection, dysfunction and disease.

SUMMARY OF THE INVENTION

The present invention relates to BASB081, in particular BASB081 polypeptides and BASB081 polynucleotides, recombinant materials and methods for their production. In another aspect, the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others. In a further aspect, the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagonist compounds. In a still further aspect, the invention relates to

-3'

GAGGTGGATGTCATCATCCATGATTTAGGTGAACCTGTTTATATTGATTATCGAGCGGTG GAGGTACGAGGTGAAGGTGCTGATGATAAAGCATTTACTACCGTGGCGGATGAGGTGCCA AATGCCAGTGCTGAACATGGATATTTTGATGGGCGTTGGCTGGATCGTTCAGTTGATGTA 5 ATTTTGCCAGATAATACCGCTGATGTCAGCTTAATTTATGATACAGGTACGCAGTATCGC GATAAGCTGCCAGTTAAACGAGAATTACTTGAGCAGTTACTCACCGTTAACATGGGAGAG GCTTACAATTTACAGGCGGTGCGTGCACTTTCAAATGATTTGATTGCCACACGGTATTTT AATATGGTGAATACCGAGATTGTCTTTCCAGAGCGTGAACAGATCCAAAACGACCAAGTG 10 AGCTTTGAGCAGTCTTCAAGTAGCCGTACTGAACCAGCACAAGTTGATGAAAGCACACTT GAACCTGTCATTGAAACCGTTGAGCTAACGGATGGGATATTAATGGATATTTCGCCCATC GAATTTAGTGCATCTAATCTGATTCAAGACAAGCTAAATTTGGTGGCTGCCAAGGCTCGC CGCTCTATTTTGGGCAGAATCAGCGATGCCGTATCTGCCGTTGCACGTGCTATTTTACCT 15 GATGAATCTGAAAATGAGGTAATAGATTTGCCCGAGCGTACCGCATTGGCTAATCGCAAG ACCCCTGCTGATGTCTATCAAAGTAAAAAAGTGCCGCTATATGTCTTTGTGGCGAGTGAT AAACCACGAGATGGTCAAATTGGTTTGGGCTGGGGATCGGACACAGGTACCCGCCTAGTC ACAAAATTTGAGCATAATTTGATTAATCGTGATGGCTATCAAGCAGGCGCTGAGCTAAGA CTGTCTGAGGATAAAAAAGGGGTCAAGTTATATGCCACCAAACCGCTTAGCCACCCTCTA 20 AATGATCAGCTAAGAGCAACTTTGGGTTATCAACAAGAAGTTTTTTGGTCACTCTACCAAT GGTTTTGATTTATCCACACGCACCCTAGAGCATGAGATTAGCCGCAGTATTATCCAAAAT GGTGGCTGGAATCGTACTTATTCATTGCGTTATCGTCTTGATAAGCTTAAAACCCAAGCA CCCCCTGAAACATGGCAGGATTTACCAGTGGATTTTGTCAATGGTAAGCCAAGCCAAGAG GCGTTATTGGCAGGTGTTGCTGTGCATAAAACGGTTGCAGATAATTTGGTTAATCCGATG CGTGGCTATCGTCAGCGATATTCTTTAGAGGTTGGCTCAAGCGGTTTGGTATCGGATGCT 25 AATATGGCTATTGCTCGAGCTGGTATTAGTGGCGTGTATAGTTTTTGGGGGATAATGCTTAT GGCAGCAATCGTGCCCATCAGATGACTGGTGGCATACAAGCAGGATACATTTGGTCGGAT AATTTTAATCATGTGCCATATCGTTTGCGTTTTTTTGCTGGTGGCGACCAAAGTATTCGT GGATATGCACATGACAGTTTATCACCTATATCAGATAAGGGTTATCTGACAGGCGGTCAA 30 GTATTGGCGGTTGGTACAGCTGAATATAATTATGAATTTATGAAAGATTTGCGTTTGGCG GTTTTTGGTGATATTGGTAATGCTTATGATAAAGGCTTTACTAATGATACCAAAATTGGT GCAGGTGTCGGTGTTCGCTGGGCATCACCTGTCGGTCAAGTTCGTGTTGATGTGGCAACT

10

15

20

30

polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

The deposit of the deposited strain has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The deposited strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112. A license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.

In one aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the *Moraxella catarrhalis* Catlin strain, which polypeptide is contained in the deposited strain. Further provided by the invention are BASB081 polynucleotide sequences in the deposited strain, such as DNA and RNA, and amino acid sequences encoded thereby. Also provided by the invention are BASB081 polypeptide and polynucleotide sequences isolated from the deposited strain.

Polypeptides

BASB081 polypeptide of the invention is substantially phylogenetically related to other proteins of the outer membrane protein family.

In one aspect of the invention there are provided polypeptides of *Moraxella catarrhalis* referred to herein as "BASB081" and "BASB081 polypeptides" as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

Among the particularly preferred embodiments of the invention are variants of BASB081 polypeptide encoded by naturally occurring alleles of the BASB081 gene.

- The present invention further provides for an isolated polypeptide which: (a) comprises or consists of an amino acid sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, most preferably at least 97-99% or exact identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2;
 - (b) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO:1 over the entire length of SEQ ID NO:1; (c) a

10

15

20

25

30

A fragment is a variant polypeptide having an amino acid sequence that is entirely the same as part but not all of any amino acid sequence of any polypeptide of the invention. As with BASB081 polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region in a single larger polypeptide.

Preferred fragments include, for example, truncation polypeptides having a portion of an amino acid sequence of Table 1 [SEQ ID NO:2], or of variants thereof, such as a continuous series of residues that includes an amino- and/or carboxyl-terminal amino acid sequence. Degradation forms of the polypeptides of the invention produced by or in a host cell, particularly a *Moraxella catarrhalis*, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Further preferred fragments include an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NO:2, or an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids truncated or deleted from the amino acid sequence of SEQ ID NO:2.

Also preferred are biologically active fragments that are those fragments that mediate activities of BASB081, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of *Moraxella catarrhalis* or the ability to initiate, or maintain cause Disease in an individual, particularly a human.

Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.

10

15

20

25

30

some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent hybridization conditions. By sequencing the individual clones thus identified by hybridization with sequencing primers designed from the original polypeptide or polynucleotide sequence it is then possible to extend the polynucleotide sequence in both directions to determine a full length gene sequence. Conveniently, such sequencing is performed, for example, using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Direct genomic DNA sequencing may also be performed to obtain a full length gene sequence. Illustrative of the invention, each polynucleotide set out in Table 1 [SEQ ID NO:1] was discovered in a DNA library derived from Moraxella catarrhalis Catlin.

Moreover, each DNA sequence set out in Table 1 [SEQ ID NO:1] contains an open reading frame encoding a protein having about the number of amino acid residues set forth in Table 1 [SEQ ID NO:2] with a deduced molecular weight that can be calculated using amino acid residue molecular weight values well known to those skilled in the art. The polynucleotide of SEQ ID NO:1, between nucleotide number 1 and the stop codon which begins at nucleotide number 2758 of SEQ ID NO:1, encodes the polypeptide of SEQ ID NO:2.

In a further aspect, the present invention provides for an isolated polynucleotide comprising or consisting of: (a) a polynucleotide sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO:1 over the entire length of SEQ ID NO:1; (b) a polynucleotide sequence encoding a polypeptide which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, even more preferably at least 97-99% or 100% exact, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.

A polynucleotide encoding a polypeptide of the present invention, including homologs and orthologs from species other than *Moraxella catarrhalis*, may be obtained by a process which comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled or detectable probe consisting of or comprising the sequence of SEQ ID NO:1 or a

10

15

20

25

30

a nucleic acid sequence selected from Table 1 or a modified nucleic acid sequence thereof. In the polynucleotide formula above, R₂ is oriented so that its 5' end nucleic acid residue is at the left, bound to R₁, and its 3' end nucleic acid residue is at the right, bound to R₃. Any stretch of nucleic acid residues denoted by either R₁ and/or R₂, where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. Where, in a preferred embodiment, X and Y together define a covalent bond, the polynucleotide of the above formula is a closed, circular polynucleotide, which can be a double-stranded polynucleotide wherein the formula shows a first strand to which the second strand is complementary. In another preferred embodiment m and/or n is an integer between 1 and 1000. Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.

It is most preferred that a polynucleotide of the invention is derived from *Moraxella* catarrhalis, however, it may preferably be obtained from other organisms of the same taxonomic genus. A polynucleotide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.

The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the *Moraxella catarrhalis* BASB081 having an amino acid sequence set out in Table 1 [SEQ ID NO:2]. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, polynucleotides interrupted by integrated phage, an integrated insertion sequence, an integrated vector sequence, an integrated transposon sequence, or due to RNA editing or genomic DNA reorganization) together with additional regions, that also may contain coding and/or non-coding sequences.

The invention further relates to variants of the polynucleotides described herein that encode variants of a polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NO:2]. Fragments of polynucleotides of the invention may be used, for example, to synthesize full-length polynucleotides of the invention.

Further particularly preferred embodiments are polynucleotides encoding BASB081 variants, that have the amino acid sequence of BASB081 polypeptide of Table 1 [SEQ ID NO:2] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified,

10

15

20

25

30

The invention also provides a polynucleotide consisting of or comprising a polynucleotide sequence obtained by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in SEQ ID NO:1 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in SEQ ID NO:1 or a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers fully described elsewhere herein.

As discussed elsewhere herein regarding polynucleotide assays of the invention, for instance, the polynucleotides of the invention, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding BASB081 and to isolate cDNA and genomic clones of other genes that have a high identity, particularly high sequence identity, to the BASB081 gene. Such probes generally will comprise at least 15 nucleotide residues or base pairs. Preferably, such probes will have at least 30 nucleotide residues or base pairs and may have at least 50 nucleotide residues or base pairs. Particularly preferred probes will have at least 20 nucleotide residues or base pairs and will have lee than 30 nucleotide residues or base pairs.

A coding region of a BASB081 gene may be isolated by screening using a DNA sequence provided in Table 1 [SEQ ID NO:1] to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.

There are several methods available and well known to those skilled in the art to obtain full-length DNAs, or extend short DNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman, et al., PNAS USA 85: 8998-9002, 1988). Recent modifications of the technique, exemplified by the MarathonTM technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the MarathonTM technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the DNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific

10

15

20

25

30

In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Vectors, Host Cells, Expression Systems

The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.

Recombinant polypeptides of the present invention may be prepared by processes well known in those skilled in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems that comprise a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems, and to the production of polypeptides of the invention by recombinant techniques.

For recombinant production of the polypeptides of the invention, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis, et al., BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.

Representative examples of appropriate hosts include bacterial cells, such as cells of streptococci, staphylococci, enterococci, *E. coli*, streptomyces, cyanobacteria, *Bacillus subtilis*, and *Moraxella catarrhalis*; fungal cells, such as cells of a yeast, *Kluveromyces*, *Saccharomyces*, a basidiomycete, *Candida albicans* and *Aspergillus*; insect cells such as cells of *Drosophila* S2 and *Spodoptera* Sf9;

10

15

20

25

30

suspected to be infected with an organism comprising the BASB081 gene or protein, may be detected at the nucleic acid or amino acid level by a variety of well known techniques as well as by methods provided herein.

Polypeptides and polynucleotides for prognosis, diagnosis or other analysis may be obtained from a putatively infected and/or infected individual's bodily materials. Polynucleotides from any of these sources, particularly DNA or RNA, may be used directly for detection or may be amplified enzymatically by using PCR or any other amplification technique prior to analysis. RNA, particularly mRNA, cDNA and genomic DNA may also be used in the same ways. Using amplification, characterization of the species and strain of infectious or resident organism present in an individual, may be made by an analysis of the genotype of a selected polynucleotide of the organism. Deletions and insertions can be detected by a change in size of the amplified product in comparison to a genotype of a reference sequence selected from a related organism, preferably a different species of the same genus or a different strain of the same species. Point mutations can be identified by hybridizing amplified DNA to labeled BASB081 polynucleotide sequences. Perfectly or significantly matched sequences can be distinguished from imperfectly or more significantly mismatched duplexes by DNase or RNase digestion, for DNA or RNA respectively, or by detecting differences in melting temperatures or renaturation kinetics. Polynucleotide sequence differences may also be detected by alterations in the electrophoretic mobility of polynucleotide fragments in gels as compared to a reference sequence. This may be carried out with or without denaturing agents. Polynucleotide differences may also be detected by direct DNA or RNA sequencing. See, for example, Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase, V1 and S1 protection assay or a chemical cleavage method. See, for example, Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985).

In another embodiment, an array of oligonucleotides probes comprising BASB081 nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of, for example, genetic mutations, serotype, taxonomic classification or identification. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability (see, for example, Chee et al., Science, 274: 610 (1996)).

Thus in another aspect, the present invention relates to a diagnostic kit which comprises:

10

15

20

25

30

phenotype but not in any organisms possessing the second phenotype, then the mutation is likely to be the causative agent of the first phenotype.

Cells from an organism carrying mutations or polymorphisms (allelic variations) in a polynucleotide and/or polypeptide of the invention may also be detected at the polynucleotide or polypeptide level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations in the RNA. It is particularly preferred to use RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA, cDNA or genomic DNA may also be used for the same purpose, PCR. As an example, PCR primers complementary to a polynucleotide encoding BASB081 polypeptide can be used to identify and analyze mutations.

These primers may be used for, among other things, amplifying BASB081 DNA and/or RNA isolated from a sample derived from an individual, such as a bodily material. The primers may be used to amplify a polynucleotide isolated from an infected individual, such that the polynucleotide may then be subject to various techniques for elucidation of the polynucleotide sequence. In this way, mutations in the polynucleotide sequence may be detected and used to diagnose and/or prognose the infection or its stage or course, or to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections caused by *Moraxella catarrhalis*, comprising determining from a sample derived from an individual, such as a bodily material, an increased level of expression of polynucleotide having a sequence of Table 1 [SEQ ID NO:1]. Increased or decreased expression of a BASB081 polynucleotide can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting, spectrometry and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting over-expression of BASB081 polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a BASB081 polypeptide, in a sample derived from a host, such as a bodily material, are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis, antibody sandwich assays, antibody detection and ELISA assays.

10

15

20

25

30

screens for antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimized by finding those conditions which give a maximum amount of *Moraxella catarrhalis* 16S ribosomal RNA as detected by probing Northerns with a suitably labeled sequence specific oligonucleotide probe. Typically a 5' dye labeled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

Gridding and Polynucleotide Subtraction

Methods have been described for obtaining information about gene expression and identity using so called "high density DNA arrays" or grids. See, e.g., M. Chee et al., Science, 274:610-614 (1996) and other references cited therein. Such gridding assays have been employed to identify certain novel gene sequences, referred to as Expressed Sequence Tags (EST) (Adams et a., Science, 252:1651-1656 (1991)). A variety of techniques have also been described for identifying particular gene sequences on the basis of their gene products. For example, see International Patent Application No. WO91/07087, published May 30, 1991. In addition, methods have been described for the amplification of desired sequences. For example, see International Patent Application No. WO91/17271, published November 14, 1991.

The polynucleotides of the invention may be used as components of polynucleotide arrays, preferably high density arrays or grids. These high density arrays are particularly useful for diagnostic and prognostic purposes. For example, a set of spots each comprising a different gene, and further comprising a polynucleotide or polynucleotides of the invention, may be used for probing, such as using hybridization or nucleic acid amplification, using a probes obtained or derived from a bodily sample, to determine the presence of a particular polynucleotide sequence or related sequence in an individual. Such a presence may indicate the presence of a pathogen, particularly *Moraxella catarrhalis*, and may be useful in diagnosing and/or

10

15

20

25

30

Thus, among others, antibodies against BASB081-polypeptide or BASB081-polynucleotide may be employed to treat infections, particularly bacterial infections.

Polypeptide variants include antigenically, epitopically or immunologically equivalent variants form a particular aspect of this invention.

A polypeptide or polynucleotide of the invention, such as an antigenically or immunologically equivalent derivative or a fusion protein of the polypeptide is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin, keyhole limpet haemocyanin or tetanus toxoid. Alternatively, a multiple antigenic polypeptide comprising multiple copies of the polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

Preferably, the antibody or variant thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized," where the complimentarity determining region or regions of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones *et al.* (1986), *Nature* 321, 522-525 or Tempest *et al.*, (1991) *Biotechnology* 9, 266-273.

In accordance with an aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants of BASB081 polynucleotides and polypeptides encoded thereby.

The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum Mol Genet (1992) 1: 363, Manthorpe et al., Hum. Gene Ther. (1983) 4: 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem. (1989) 264: 16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, PNAS USA, (1986) 83: 9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science (1989) 243: 375), particle bombardment (Tang et al., Nature (1992) 356:152, Eisenbraun et al., DNA Cell Biol (1993) 12: 791) and in vivo infection using cloned retroviral vectors (Seeger et al., PNAS USA (1984) 81: 5849).

Antagonists and Agonists - Assays and Molecules

10

15

20

25

30

solution containing a polypeptide or polynucleotide of the present invention, to form a mixture, measuring BASB081 polypeptide and/or polynucleotide activity in the mixture, and comparing the BASB081 polypeptide and/or polynucleotide activity of the mixture to a standard. Fusion proteins, such as those made from Fc portion and BASB081 polypeptide, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists of the polypeptide of the present invention, as well as of phylogenetically and and/or functionally related polypeptides (see D. Bennett *et al.*, J Mol Recognition, 8:52-58 (1995); and K. Johanson *et al.*, J Biol Chem, 270(16):9459-9471 (1995)).

The polynucleotides, polypeptides and antibodies that bind to and/or interact with a polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and/or polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents which may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of BASB081 polypeptides or polynucleotides, particularly those compounds that are bacteristatic and/or bactericidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising BASB081 polypeptide and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be a BASB081 agonist or antagonist. The ability of the candidate molecule to agonize or antagonize the BASB081 polypeptide is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of BASB081 polypeptide are most likely to be good antagonists. Molecules that bind well and, as the case may be, increase the rate of product production from substrate, increase signal transduction, or increase chemical channel activity are agonists. Detection of the rate or level of, as the case may be, production of product from substrate, signal transduction, or chemical channel activity may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric, labeled substrate converted into product, a

10

15

20

25

30

detected in real-time by monitoring the change in resonance angle caused by a change in local refractive index. This technique can be used to characterize the effect of small molecules on kinetic rates and equilibrium binding constants for BASB081 polypeptide self-association as well as an association of BASB081 polypeptide and another polypeptide or small molecule.

A scintillation proximity assay may be used to characterize the interaction between an association of BASB081 polypeptide with another BASB081 polypeptide or a different polypeptide. BASB081 polypeptide can be coupled to a scintillation-filled bead. Addition of radio-labeled BASB081 polypeptide results in binding where the radioactive source molecule is in close proximity to the scintillation fluid. Thus, signal is emitted upon BASB081 polypeptide binding and compounds that prevent BASB081 polypeptide self-association or an association of BASB081 polypeptide and another polypeptide or small molecule will diminish signal.

ICS biosensors have been described by AMBRI (Australian Membrane Biotechnology Research Institute). They couple the self-association of macromolecules to the closing of gramacidin-facilitated ion channels in suspended membrane bilayers and hence to a measurable change in the admittance (similar to impedance) of the biosensor. This approach is linear over six decades of admittance change and is ideally suited for large scale, high through-put screening of small molecule combinatorial libraries.

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity or expression of a polypeptide and/or polynucleotide of the invention comprising: contacting a polypeptide and/or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide and/or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction preferably being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide and/or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity or expression of the polypeptide and/or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide and/or polynucleotide.

Another example of an assay for BASB081 agonists is a competitive assay that combines BASB081 and a potential agonist with BASB081-binding molecules, recombinant BASB081 binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate

that of SEQ ID NO:1.

5

10

15

20

25

30

mimetics may be used as expression cassettes to express each mimetic polypeptide. It is preferred that these cassettes comprise 5' and 3' restriction sites to allow for a convenient means to ligate the cassettes together when desired. It is further preferred that these cassettes comprise gene expression signals known in the art or described elsewhere herein.

Thus, in another aspect, the present invention relates to a screening kit for identifying agonists, antagonists, ligands, receptors, substrates, enzymes, etc. for a polypeptide and/or polynucleotide of the present invention; or compounds which decrease or enhance the production of such polypeptides and/or polynucleotides, which comprises: (a) a polypeptide and/or a polynucleotide of the present invention; (b) a recombinant cell expressing a polypeptide and/or polynucleotide of the present invention; (c) a cell membrane expressing a polypeptide and/or polynucleotide of the present invention; or (d) antibody to a polypeptide and/or polynucleotide of the present invention; which polypeptide is preferably that of SEQ ID NO:2, and which polynucleotide is preferably

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

It will be readily appreciated by the skilled artisan that a polypeptide and/or polynucleotide of the present invention may also be used in a method for the structure-based design of an agonist, antagonist or inhibitor of the polypeptide and/or polynucleotide, by: (a) determining in the first instance the three-dimensional structure of the polypeptide and/or polynucleotide, or complexes thereof; (b) deducing the three-dimensional structure for the likely reactive site(s), binding site(s) or motif(s) of an agonist, antagonist or inhibitor; (c) synthesizing candidate compounds that are predicted to bind to or react with the deduced binding site(s), reactive site(s), and/or motif(s); and

(d) testing whether the candidate compounds are indeed agonists, antagonists or inhibitors. It will be further appreciated that this will normally be an iterative process, and this iterative process may be performed using automated and computer-controlled steps.

In a further aspect, the present invention provides methods of treating abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of BASB081 polypeptide and/or polynucleotide.

10

15

20

25

30

Each of the polynucleotide sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the polynucleotide sequences encoding the amino terminal regions of the encoded protein or Shine-Delgamo or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide, agonist or antagonist of the invention to interfere with the initial physical interaction between a pathogen or pathogens and a eukaryotic, preferably mammalian, host responsible for sequelae of infection. In particular, the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive and/or gram negative bacteria, to eukaryotic, preferably mammalian, extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block bacterial adhesion between eukaryotic, preferably mammalian, extracellular matrix proteins and bacterial BASB081 proteins that mediate tissue damage and/or; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

In accordance with yet another aspect of the invention, there are provided BASB081 agonists and antagonists, preferably bacteristatic or bactericidal agonists and antagonists.

The antagonists and agonists of the invention may be employed, for instance, to prevent, inhibit and/or treat diseases.

Helicobacter pylori (herein "H. pylori") bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France, http://www.uicc.ch/ecp/ecp2904.htm). Moreover, the International Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention (agonists and antagonists of BASB081 polypeptides and/or polynucleotides) found using screens provided by the invention, or known in the art, particularly narrow-spectrum antibiotics, should be useful in the treatment of H. pylori infection. Such treatment should decrease the advent of H. pylori-induced cancers, such as gastrointestinal carcinoma. Such treatment should also prevent, inhibit and/or cure gastric ulcers and gastritis.

10

15

20

25

30

A BASB081 polypeptide or a fragment thereof may be fused with co-protein or chemical moiety which may or may not by itself produce antibodies, but which is capable of stabilizing the first protein and producing a fused or modified protein which will have antigenic and/or immunogenic properties, and preferably protective properties. Thus fused recombinant protein, preferably further comprises an antigenic co-protein, such as lipoprotein D from *Hemophilus influenzae*, Glutathione-S-transferase (GST) or beta-galactosidase, or any other relatively large co-protein which solubilizes the protein and facilitates production and purification thereof. Moreover, the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system of the organism receiving the protein. The co-protein may be attached to either the amino- or carboxy-terminus of the first protein.

Provided by this invention are compositions, particularly vaccine compositions, and methods comprising the polypeptides and/or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. *et al.* Science 273: 352 (1996).

Also, provided by this invention are methods using the described polynucleotide or particular fragments thereof, which have been shown to encode non-variable regions of bacterial cell surface proteins, in polynucleotide constructs used in such genetic immunization experiments in animal models of infection with *Moraxella catarrhalis*. Such experiments will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value, derived from the requisite organ of the animal successfully resisting or clearing infection, for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly *Moraxella catarrhalis* infection, in mammals, particularly humans.

A polypeptide of the invention may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused, for example, by mechanical, chemical, thermal or radiation damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, throat, mammary glands, urethra or vagina.

The invention also includes a vaccine formulation which comprises an immunogenic recombinant polypeptide and/or polynucleotide of the invention together with a suitable carrier,

10

15

20

25

30

pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.

Polypeptides, polynucleotides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

In a further aspect, the present invention provides for pharmaceutical compositions comprising a therapeutically effective amount of a polypeptide and/or polynucleotide, such as the soluble form of a polypeptide and/or polynucleotide of the present invention, agonist or antagonist peptide or small molecule compound, in combination with a pharmaceutically acceptable carrier or excipient. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention. Polypeptides, polynucleotides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The composition will be adapted to the route of administration, for instance by a systemic or an oral route. Preferred forms of systemic administration include injection, typically by intravenous injection. Other injection routes, such as subcutaneous, intramuscular, or intraperitoneal, can be used. Alternative means for systemic administration include transmucosal and transdermal administration using penetrants such as bile salts or fusidic acids or other

10

15

20

25

30

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals.

Sequence Databases, Sequences in a Tangible Medium, and Algorithms

Polynucleotide and polypeptide sequences form a valuable information resource with which to determine their 2- and 3-dimensional structures as well as to identify further sequences of similar homology. These approaches are most easily facilitated by storing the sequence in a computer readable medium and then using the stored data in a known macromolecular structure program or to search a sequence database using well known searching tools, such as GCC.

The polynucleotide and polypeptide sequences of the invention are particularly useful as components in databases useful for search analyses as well as in sequence analysis algorithms. As used in this section entitled "Sequence Databases, Sequences in a Tangible Medium, and Algorithms," and in claims related to this section, the terms "polynucleotide of the invention" and "polynucleotide sequence of the invention" mean any detectable chemical or physical characteristic of a polynucleotide of the invention that is or may be reduced to or stored in a tangible medium, preferably a computer readable form. For example, chromatographic scan data or peak data, photographic data or scan data therefrom, called bases, and mass spectrographic data. As used in this section entitled Databases and Algorithms and in claims related thereto, the terms "polypeptide of the invention" and "polypeptide sequence of the invention" mean any detectable chemical or physical characteristic of a polypeptide of the invention that is or may be reduced to or stored in a tangible medium, preferably a computer readable form. For example, chromatographic scan data or peak data, photographic data or scan data therefrom, and mass spectrographic data.

The invention provides a computer readable medium having stored thereon polypeptide sequences of the invention and/or polynucleotide sequences of the invention. For example, a computer readable medium is provided comprising and having stored thereon a member selected from the group consisting of: a polynucleotide comprising the sequence of a polynucleotide of the invention; a polypeptide comprising the sequence of a polypeptide sequence of the invention; a set of polynucleotide sequences wherein at least one of the sequences comprises the sequence of

10

15

20

25

30

A computer based method is still further provided for polynucleotide assembly, said method comprising the steps of: providing a first polynucleotide sequence comprising the sequence of a polynucleotide of the invention in a computer readable medium; and screening for at least one overlapping region between said first polynucleotide sequence and at least one second polynucleotide or polypeptide sequence.

A computer based method is still further provided for polynucleotide assembly, said method comprising the steps of: providing a first polypeptide sequence comprising a polypeptide of the invention in a computer readable medium; and screening for at least one overlapping region between said first polypeptide sequence and at least one second polynucleotide or polypeptide sequence.

Preferred embodiments of the assemble methods of the invention use the assembly method set forth in United States Patent Number 5,618,672.

In another preferred embodiment of the invention there is provided a computer readable medium having stored thereon a member selected from the group consisting of: a polynucleotide comprising the sequence of SEQ ID NO:1; a polypeptide comprising the sequence of SEQ ID NO:2; a set of polynucleotide sequences wherein at least one of said sequences comprises the sequence of SEQ ID NO:1; a set of polypeptide sequences wherein at least one of said sequences comprises the sequence of SEQ ID NO:2; a data set representing a polynucleotide sequence comprising the sequence of SEQ ID NO:1; a data set representing a polynucleotide sequence encoding a polypeptide sequence comprising the sequence of SEQ ID NO:2; a polynucleotide comprising the sequence of SEQ ID NO:1; a polypeptide comprising the sequence of SEQ ID NO:2; a set of polynucleotide sequences wherein at least one of said sequences comprises the sequence of SEQ ID NO:1; a set of polypeptide sequences wherein at least one of said sequences comprises the sequence of SEQ ID NO:2; a data set representing a polynucleotide sequence comprising the sequence of SEQ ID NO:1; a data set representing a polynucleotide sequence encoding a polypeptide sequence comprising the sequence of SEQ ID NO:2. A further preferred embodiment of the invention provides a computer based method for performing homology identification, said method comprising the steps of providing a polynucleotide sequence comprising the sequence of SEQ ID NO:1 in a computer readable medium; and comparing said polynucleotide sequence to at least one polynucleotide or polypeptide sequence to identify homology.

10

15

20

25

30

invention, interferes with the immediate physical interaction between pathogen and mammalian host.

"Bispecific antibody(ies)" means an antibody comprising at least two antigen binding domains, each domain directed against a different epitope.

"Bodily material(s) means any material derived from an individual or from an organism infecting, infesting or inhabiting an individual, including but not limited to, cells, tissues and waste, such as, bone, blood, serum, cerebrospinal fluid, semen, saliva, muscle, cartilage, organ tissue, skin, urine, stool or autopsy materials..

"Disease(s)" means any disease caused by or related to infection by a bacteria, including, for example, otitis media in infants and children, pneumonia in elderlies, sinusitis, nosocomial infections and invasive diseases, chronic otitis media with hearing loss, fluid accumulation in the middle ear, auditive nerve is damage, delayed speech learning, infection of the upper respiratory tract, inflammation of the middle ear.

"Fusion protein(s)" refers to a protein encoded by two, often unrelated, fused genes or fragments thereof. In one example, EP-A-0464 discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties [see, e.g., EP-A 0232262]. On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified.

"Host cell(s)" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.

"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as the case may be, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" can be readily calculated by known methods, including but not limited to those described in (*Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data*, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; *Sequence Analysis in*

10

15

20

25

30

be identical to the reference sequence of SEQ ID NO:1 or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO:1 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of nucleotides in SEQ ID NO:1, or:

$$n_n \le x_n - (x_n \bullet y),$$

wherein n_n is the number of nucleotide alterations, x_n is the total number of nucleotides in SEQ ID NO:1, y is 0.50 for 50%, 0.60 for 60%, 0.70 for 70%, 0.80 for 80%, 0.85 for 85%, 0.90 for 90%, 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and • is the symbol for the multiplication operator, and wherein any non-integer product of x_n and y is rounded down to the nearest integer prior to subtracting it from x_n . Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.

By way of example, a polynucleotide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:1, that is it may be 100% identical, or it may include up to a certain integer number of nucleic acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity. Such alterations are selected from the group consisting of at least one nucleic acid deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleic acids in the reference sequence or in one or more contiguous groups within the reference sequence. The number of nucleic acid alterations for a given percent identity is determined by multiplying the total number of nucleic acids in SEQ ID

By way of example, a polypeptide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:2, that is it may be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity. Such alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. The number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ ID NO:2, or:

$$\mathbf{n}_{a} \leq \mathbf{x}_{a} - (\mathbf{x}_{a} \bullet \mathbf{y}),$$

15

10

5

wherein $\mathbf{n_a}$ is the number of amino acid alterations, $\mathbf{x_a}$ is the total number of amino acids in SEQ ID NO:2, \mathbf{y} is, for instance 0.70 for 70%, 0.80 for 80%, 0.85 for 85% etc., and • is the symbol for the multiplication operator, and wherein any non-integer product of $\mathbf{x_a}$ and \mathbf{y} is rounded down to the nearest integer prior to subtracting it from $\mathbf{x_a}$.

20

"Immunologically equivalent derivative(s)" as used herein encompasses a polypeptide, polynucleotide, or the equivalent of either which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.

25

"Immunospecific" means that characteristic of an antibody whereby it possesses substantially greater affinity for the polypeptides of the invention or the polynucleotides of the invention than its affinity for other related polypeptides or polynucleotides respectively, particularly those polypeptides and polynucleotides in the prior art.

"Individual(s)" means a multicellular eukaryote, including, but not limited to a metazoan, a mammal, an ovid, a bovid, a simian, a primate, and a human.

30

"Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a

10

15

20

25

30

"Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxyribonucleotide. which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include. without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and doublestranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).

"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of

10

15

20

25

30

variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. The present invention also includes include variants of each of the polypeptides of the invention, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics. Typical such substitutions are among Ala, Val, Leu and Ile; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gln; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.

EXAMPLES

The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention.

Example 1 Strain selection, Library Production and Sequencing

The polynucleotide having a DNA sequence given in Table 1 [SEQ ID NO:1] was obtained from a library of clones of chromosomal DNA of *Moraxella catarrhalis* in *E. coli*. The sequencing data from two or more clones containing overlapping *Moraxella catarrhalis* DNAs was used to construct the contiguous DNA sequence in SEQ ID NO:1. Libraries may be prepared by routine methods, for example:

Methods 1 and 2 below.

Total cellular DNA is isolated from *Moraxella catarrhalis* Catlin according to standard procedures and size-fractionated by either of two methods.

Method 1

Total cellular DNA is mechanically sheared by passage through a needle in order to sizefractionate according to standard procedures. DNA fragments of up to 11kbp in size are rendered

25

What is claimed is:

- 1. An isolated polypeptide comprising an amino acid sequence which has at least 70% identity to the amino acid sequence of SEQ ID NO:2 over the entire length of SEQ ID NO:2.
 - 2. An isolated polypeptide as claimed in claim 1 in which the amino acid sequence has at least 95% identity.
- 10 3. The polypeptide as claimed in claim 1 comprising the amino acid sequence of SEQ ID NO:2.
 - 4. The isolated polypeptide of SEQ ID NO:2.
- 5. An isolated polynucleotide comprising a nucleotide sequence encoding a polypeptide that has at least 70% identity to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2; or a nucleotide sequence complementary to said isolated polynucleotide.
 - 6. An isolated polynucleotide comprising a nucleotide sequence that has at least 70% identity to a nucleotide sequence encoding a polypeptide of SEQ ID NO:2, over the entire coding region; or a nucleotide sequence complementary to said isolated polynucleotide.
 - 7. An isolated polynucleotide which comprises a nucleotide sequence which has at least 70% identity to that of SEQ ID NO:1 over the entire length of SEQ ID NO:1; or a nucleotide sequence complementary to said isolated polynucleotide.
 - 8. The isolated polynucleotide as claimed in any one of claims 5 to 7 in which the identity is at least 95%.
 - 9. An isolated polynucleotide selected from:
- 30 (a) a polynucleotide comprising a nucleotide sequence encoding the polypeptide of SEQ ID NO:2;
 - (b) the polynucleotide of SEQ ID NO:1; and

- 15. An agonist or antagonist to the polypeptide of claims 1 to 4.
- 16. A compound which is:
- 5 (a) an agonist or antagonist to the polypeptide of claims 1 to 4;
 - (b) isolated polynucleotide of claims 5 to 9; or
 - (c) a nucleic acid molecule that modulates the expression of the nucleotide sequence encoding the polypeptide of claim 1;

for use in therapy.

10

- 17. A process for diagnosing a disease or a susceptibility to a disease in an individual related to expression or activity of the polypeptide of claim 1 in an individual comprising:
- (a) determining the presence or absence of a mutation in the nucleotide sequence encoding said polypeptide in the genome of said individual; and/or
- 15 (b) analyzing for the presence or amount of said polypeptide expression in a sample derived from said individual.