ANALISIS CLUSTER
CURAH HUJAN PROVINSI
JAWA TENGAH BULAN
JANUARI TAHUN
2015 - 2024 DENGAN
ALGORITMA K-MEANS

Rifaldi Achmad Faisal

BBMKG Region II Research Project Supervisor : Ismi Amalia S.Si

DAFTAR ISI

03 LATAR
BELAKANG

1 TUJUAN

05 METODE PENELITIAN

O9 ANALISIS
DATA
EKSPLORATIF

16 K - MEANS CLUSTERING

27 DETAIL TIAP CLUSTER

32 KESIMPULAN

33 DAFTAR PUSTAKA

LATAR BELAKANG

 Indonesia merupakan negara beriklim tropis

 Jawa Tengah salah satu provinsi terluas di Pulau Jawa

 Curah hujan yang beragam di Provinsi Jawa Tengah

 Jawa Tengah memiliki enam stasiun BMKG yang tersebar.

 Terdapat suatu algoritma pengelompokan bernama K-Means Clustering.

• Beberapa daerah di Jawa Tengah dikelompokkan berdasarkan kemiripan tingkat curah hujan menggunakan K-Means Clustering.

TUJUAN

- 1. Menentukan berapa banyak cluster optimal yang terbentuk akibat adanya perbedaan curah hujan di Provinsi Jawa Tengah.
- 2. Mengetahui proses kerja algoritma K-Means Clustering.
- 3. Menentukan cluster pada tiap stasiun di Provinsi Jawa Tengah.
- 4. Mengetahui letak persebaran cluster beserta informasi berdasarkan statistika deskriptif, letak geografis dan topografisnya.

METODE PENELITIAN

APA ITU K-MEANS CLUSTERING?

Artificial Intelligence (AI):

Cabang ilmu komputer yang bertujuan untuk membuat program komputer mampu melakukan tugas yang biasanya membutuhkan kecerdasan manusia.

Machine Learning (ML):

Cabang Artificial Intelligence yang memungkinkan komputer untuk belajar dari data tanpa perlu diprogram secara eksplisit.

Algoritma K-Means Clustering:

Metode yang digunakan untuk mengelompokkan data ke dalam beberapa kelompok berdasarkan kesamaan fitur atau atributnya.

Unsupervised Learning:

Cabang dari Machine Learning di mana komputer belajar dari data tanpa petunjuk atau label yang diberikan.

EUCLIDIAN DISTANCE PADA K-MEANS

$$dist = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 \dots}$$

Keterangan:

dist: Jarak dari titik pada data ke centroid (pusat)

(x₁-x₂): Jarak koordinat x₁ ke x₂

(y₁-y₂): Jarak koordinat y₁ ke y₂

(Z₁-Z₂): Jarak koordinat Z₁ ke Z₂

FLOW CHART ALGORITMA K-MEANS CLUSTERING

ANALISIS

DATA

EKSPLORATIF

MENGENAL DATA

Sumber Data:

Data Curah Hujan (mm) bulanan di enam stasiun di Provinsi Jawa Tengah pada bulan Januari tahun 2015 - 2024

Nama Stasiun:

Stamet Tunggul Wulung

Stageof Banjarnegara

Stamet Maritim Tegal

Staklim Jawa Tengah

Stamet Maritim Tanjung Emas

Stamet Ahmad Yani

▼

IMPORT LIBRARY DAN FILE DATA

```
[1] import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.cluster import KMeans
   from sklearn.decomposition import PCA
   from sklearn.preprocessing import StandardScaler
[3] dff = pd.read_excel('/content/Jawa Tengah - Curah Hujan Januari.xlsx')
   dxx = pd.read excel('/content/Curah Hujan Tahunan.xlsx')
   df = dff.drop(columns=['Stasiun'])
   dxx.set index('Tahun', inplace=True)
   dff.set index('Stasiun', inplace=True)
   dff
```

- Import beberapa library yang dibutuhkan dan juga file excel ke dalam notebook.
- Data utama ada pada '/content/Jawa Tengah - Curah Hujan Januari.xlsx'.

DATA PREPOCESSING

- Setengah data berupa data harian (setengah sisanya sudah data bulanan)
- Mengubah nilai 8888 ke 0 pada data harian
- Menjumlahkan data harian hingga mendapat data bulanan
- Mengubah kolom Stasiun menjadi index

Stasiun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Stamet Tunggul Wulung	294.0	171.9	371.0	298.1	365.0	157.5	286.2	364.4	139.2	444.3
Stageof Banjarnegara	460.9	258.2	480.4	540.1	765.9	196.5	615.0	244.7	76.6	517.4
Stamet Maritim Tegal	419.0	234.0	396.0	85.0	551.0	524.2	235.7	361.8	260.7	231.3
Staklim Jawa Tengah	238.2	269.0	282.0	348.6	217.0	301.3	272.7	329.3	297.7	303.4
Stamet Maritim Tanjung Emas	215.0	222.0	247.3	268.8	370.0	336.3	300.8	206.0	314.9	319.1
Stamet Ahmad Yani	221.2	284.4	256.4	350.7	234.8	321.1	215.4	266.2	343.5	203.6

STATISIKA DESKRIPTIF

```
[4] summary_stats = dxx.describe()
   summary_stats = summary_stats.drop(['25%', '50%', '75%'])
   summary_stats_int = summary_stats.astype(int)
   summary_stats_int
```

Index	Stamet Tunggul Wulung	Stageof Banjarnegara	Stamet Maritim Tegal	Staklim Jawa Tengah	Stamet Maritim Tanjung Emas	Stamet Ahmad Yani
count	10	10	10	10	10	10
mean	289	415	329	285	280	269
std	103	213	146	39	56	53
min	139	76	85	217	206	203
max	444	765	551	348	370	350

- Count mewakili banyaknya tahun pada tiap stasiun
- Mean adalah rata-rata tiap stasiun
- Std adalah standar deviasi tiap stasiun
- Min adalah nilai terkecil tiap stasiun
- Max adalah nilai terbesar tiap stasiun

PRINCIPAL COMPONENT ANALYSIS

```
[6] # PCA
   pca = PCA(n components=2)
   dataset pca = pca.fit transform(df)
   # Buat DataFrame baru dari hasil PCA
   dfPCA = pd.DataFrame(data=dataset pca, columns=['PC1', 'PC2'])
   # Tampilkan hasil PCA
   print("Data setelah PCA:")
   print(dfPCA)
   # Visualisasi hasil PCA
   plt.figure(figsize=(10, 6))
   plt.scatter(dfPCA['PC1'], dfPCA['PC2'])
   plt.title('Reduksi Menjadi 2 Dimensi')
   plt.xlabel('Principal Component 1 (PC1)')
   plt.ylabel('Principal Component 2 (PC2)')
   plt.show()
```

- Menggunakan principle component analysis (PCA) untuk mereduksi dimensi data menjadi dua dimensi.
- Ini digunakan untuk memudahkan ketika melakukan visualisasi yang berkaitan dengan analisis k-means.

PRINCIPAL COMPONENT ANALYSIS

Stasiun	PC1	PC 2
Stamet Tunggul Wulung	46.140764	-109.451707
Stageof Banjarnegara	607.933335	-36.223451
Stamet Maritim Tegal	-65.123490	389.940428
Staklim Jawa Tengah	-192.736440	-125.908602
Stamet Maritim Tanjung Emas	-129.297340	-24.652412
Stamet Ahmad Yani	-266.916829	-93.704256

Stasiun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Stamet Tunggul Wulung	294.0	171.9	371.0	298.1	365.0	157.5	286.2	364.4	139.2	444.3
Stageof Banjarnegara	460.9	258.2	480.4	540.1	765.9	196.5	615.0	244.7	76.6	517.4
Stamet Maritim Tegal	419.0	234.0	396.0	85.0	551.0	524.2	235.7	361.8	260.7	231.3
Staklim Jawa Tengah	238.2	269.0	282.0	348.6	217.0	301.3	272.7	329.3	297.7	303.4
Stamet Maritim Tanjung Emas	215.0	222.0	247.3	268.8	370.0	336.3	300.8	206.0	314.9	319.1
Stamet Ahmad Yani	221.2	284.4	256.4	350.7	234.8	321.1	215.4	266.2	343.5	203.6

REDUKSI MENJADI 2 VARIABEL

K-MEANS CLUSTERING

ELBOW METHOD

```
[7] wcss = [] # WCSS: Within-Cluster Sum of Squares
    for i in range(1,7):
        kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
        kmeans.fit(dfPCA)
        wcss.append(kmeans.inertia_)

[8] plt.figure(figsize=(10, 6))
        sns.lineplot(x=range(1, 7), y=wcss, marker='o', color='blue')
        plt.title('The Elbow Method')
        plt.xlabel('Number of clusters')
        plt.ylabel('Within-Cluster Sum of Squares')
        plt.show()
```

- WCSS (Within Cluster Sum of Squares) digunakan untuk menghitung jarak dari masingmasing data ke centroid lalu dijumlah dan dikuadratkan.
- Jika nilai WCSS terlalu besar, maka centroid baru muncul di tengah data. Begitu seterusnya sampai nilai WCSS berhenti turun secara signifikan.
- WCSS divisualisasikan menggunakan Elbow Method untuk mencari jumlah cluster paling optimal.

ELBOW METHOD

- Cluster paling optimal sebanyak 3
- Jika terlalu banyak akan menyebabkan overfitting
- Jika terlalu sedikit representasinya tidak akan detail

AMBIL SEBARANG CENTROID

Note: Perhitungan manual menggunakan Ms. Excel

Stasiun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Stamet Tunggul Wulung	294.0	171.9	371.0	298.1	365.0	157.5	286.2	364.4	139.2	444.3
Stageof Banjarnegara	460.9	258.2	480.4	540.1	765.9	196.5	615.0	244.7	76.6	517.4
Stamet Maritim Tegal	419.0	234.0	396.0	85.0	551.0	524.2	235.7	361.8	260.7	231.3
Staklim Jawa Tengah	238.2	269.0	282.0	348.6	217.0	301.3	272.7	329.3	297.7	303.4
Stamet Maritim Tanjung Emas	215.0	222.0	247.3	268.8	370.0	336.3	300.8	206.0	314.9	319.1
Stamet Ahmad Yani	221.2	284.4	256.4	350.7	234.8	321.1	215.4	266.2	343.5	203.6

ITERASI KE-1

Note: Perhitungan manual menggunakan Ms. Excel

Stasiun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Stamet Tunggul Wulung	294.0	171.9	371.0	298.1	365.0	157.5	286.2	364.4	139.2	444.3
Stageof Banjarnegara	460.9	258.2	480.4	540.1	765.9	196.5	615.0	244.7	76.6	517.4
Stamet Maritim Tegal	419.0	234.0	396.0	85.0	551.0	524.2	235.7	361.8	260.7	231.3
Staklim Jawa Tengah	238.2	269.0	282.0	348.6	217.0	301.3	272.7	329.3	297.7	303.4
Stamet Maritim Tanjung Emas	215.0	222.0	247.3	268.8	370.0	336.3	300.8	206.0	314.9	319.1
Stamet Ahmad Yani	221.2	284.4	256.4	350.7	234.8	321.1	215.4	266.2	343.5	203.6

$$\sqrt{(294-238.2)^2 + (171.9-222)^2 + \dots + (444.3-444.3)^2}$$

$$\sqrt{(460.9-238.2)^2 + (258.2-222)^2 + \dots + (517.4-444.3)^2}$$

$$\sqrt{(419-238.2)^2 + (234-222)^2 + \dots + (231.3-444.3)^2}$$

$$\sqrt{(238.2-238.2)^2 + (282-222)^2 + \dots + (303.4-444.3)^2}$$

$$\sqrt{(215-238.2)^2 + (222-222)^2 + \dots + (319.1-444.3)^2}$$

$$\sqrt{(221.2-238.2)^2 + (284.4-222)^2 + \dots + (203.6-444.3)^2}$$

Centroid	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
0	238,2	222	282	298,1	365	157,5	286,2	364,4	139,2	444,3
1	460,9	234	371	540,1	551	524,2	235,7	244,7	76,6	517,4
2	221,2	269	396	85	765,9	336,3	272,7	361,8	260,7	231,3

Note:

Karena perhitungan jarak ke setiap centroid sama, maka yang dipakai dalam perhitungan ini hanya jarak masing-masing titik ke centroid 0. Dengan tujuan untuk mewakili perhitungan jarak ke centroid 1 dan centroid 2.

HASIL ITERASI KE-1

Note: Perhitungan manual menggunakan Ms. Excel

Stasiun	C0	C1	C2	Jarak Min	Cluster
Stamet Tunggul Wulung	116,3814848	534,3048007	560,1565585	116,3814848	0
Stageof Banjarnegara	665,4126539	556,7690634	733,4738305	556,7690634	4
Stamet Maritim Tegal	568,325083	582,1984627	351,0089173	351,0089173	2
Staklim Jawa Tengah	306,1552057	599,8844222	626,8251989	306,1552057	0
Stamet Maritim Tanjung Emas	326,2583486	565,1805729	500,5877645	326,2583486	0
Stamet Ahmad Yani	407,0045946	648,7019423	626,6305451	407,0045946	0

- Nilai C0, C1, dan C2 merupakan hasil perhitungan jarak euclidean.
- Kolom "Jarak Minimum" mengambil nilai jarak terkecil dari ketiga centroid.
- Kolom "Cluster" memberi label cluster sesuai jarak minimum.

CENTROID BARU

Note: Perhitungan manual menggunakan Ms. Excel

Stasiun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Cluster
Stamet Tunggul Wulung	294	171,9	371	298,1	365	157,5	286,2	364,4	139,2	444,3	0
Stageof Banjarnegara	460,9	258,2	480,4	540,1	765,9	196,5	615	244,7	76,6	517,4	1
Stamet Maritim Tegal	419	234	396	85	551	524,2	235,7	361,8	260,7	231,3	2
Staklim Jawa Tengah	238,2	269	282	348,6	217	301,3	272,7	329,3	297,7	303,4	0
Stamet Maritim Tanjung Emas	215	222	247,3	268,8	370	336,3	300,8	206	314,9	319,1	0
Stamet Ahmad Yani	221,2	284,4	256,4	350,7	234,8	321,1	215,4	266,2	343,5	203,6	0
Rata-Rata	242,1	236,825	289,175	316,55	296,7	279,05	268,775	291,475	273,825	317,6	200

- Di kotak merah merupakan data yang termasuk cluster 0.
- Data cluster 0 tersebut dihitung rata-rata tiap kolom.
- Hasil rata-rata dijadikan cluster 0 yang baru.

ITERASI KE-2

Note: Perhitungan manual menggunakan Ms. Excel

Stasiun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Stamet Tunggul Wulung	294.0	171.9	371.0	298.1	365.0	157.5	286.2	364.4	139.2	444.3
Stageof Banjarnegara	460.9	258.2	480.4	540.1	765.9	196.5	615.0	244.7	76.6	517.4
Stamet Maritim Tegal	419.0	234.0	396.0	85.0	551.0	524.2	235.7	361.8	260.7	231.3
Staklim Jawa Tengah	238.2	269.0	282.0	348.6	217.0	301.3	272.7	329.3	297.7	303.4
Stamet Maritim Tanjung Emas	215.0	222.0	247.3	268.8	370.0	336.3	300.8	206.0	314.9	319.1
Stamet Ahmad Yani	221.2	284.4	256.4	350.7	234.8	321.1	215.4	266.2	343.5	203.6

Centroid	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
0	242,1	236,825	289,175	316,55	296,7	279,05	268,775	291,475	273,825	317,6
1	460,9	258,2	480,4	540,1	765,9	196,5	615	244,7	76,6	517,4
2	419	234	396	85	551	524,2	235,7	361,8	260,7	231,3

Jarak ke centroid 0:

$$\sqrt{(294 - 242.1)^2 + (171.9 - 236.8)^2 + \dots + (444.3 - 317.6)^2}$$

$$\sqrt{(460.9 - 242.1)^2 + (258.2 - 236.8)^2 + \dots + (517.4 - 317.6)^2}$$

$$\sqrt{(419 - 242.1)^2 + (234 - 236.8)^2 + \dots + (231.3 - 317.6)^2}$$

$$\sqrt{(238.2 - 242.1)^2 + (282 - 236.8)^2 + \dots + (303.4 - 317.6)^2}$$

$$\sqrt{(215 - 242.1)^2 + (222 - 236.8)^2 + \dots + (319.1 - 317.6)^2}$$

$$\sqrt{(221.2 - 242.1)^2 + (284.4 - 236.8)^2 + \dots + (203.6 - 317.6)^2}$$

Note:

Karena perhitungan jarak ke setiap centroid sama, maka yang dipakai dalam perhitungan ini hanya jarak masing-masing titik ke centroid 0. Dengan tujuan untuk mewakili perhitungan jarak ke centroid 1 dan centroid 2.

HASIL ITERASI KE-2

Note: Perhitungan manual menggunakan Ms. Excel

Stasiun	C0	C1	C2	Jarak Min	Cluster	
Stamet Tunggul Wulung	270,5223801	632,2795031	545,2257973	270,5223801	0	SAMA
Stageof Banjarnegara	750,141632	0	802,1700817	0	1	SAMA
Stamet Maritim Tegal	484,5153281	802,1700817	0	0	2	SAMA
Staklim Jawa Tengah	105,8020233	810,573038	535,3761948	105,8020233	0	SAMA
Stamet Maritim Tanjung Emas	153,815484	749,8843311	452,6363551	153,815484	0	SAMA
Stamet Ahmad Yani	178,5462073	878,4257055	538,6615635	178,5462073	Ø	SAMA

- Nilai C0, C1, dan C2 merupakan hasil perhitungan jarak euclidean.
- Kolom "Jarak Minimum" mengambil nilai jarak terkecil dari ketiga centroid.
- Kolom "Cluster" memberi label cluster sesuai jarak minimum.
- Karena semua label cluster sama seperti sebelumnya maka iterasi konvergen.

K-MEANS CLUSTERING VISUALIZATION

```
[9] # Fitting K-Means to the dataset
   kmeans = KMeans(n_clusters = 3, init = 'k-means++', random_state = 42)
   y kmeans = kmeans.fit predict(dfPCA)
[10] plt.figure(figsize=(6, 4))
   sns.scatterplot(x=dfPCA.loc[y kmeans == 0, dfPCA.columns[0]], y=dfPCA.loc[y kmeans == 0,
                   dfPCA.columns[1]], color='red', label='Cluster 0', s=120)
   sns.scatterplot(x=dfPCA.loc[y_kmeans == 1, dfPCA.columns[0]], y=dfPCA.loc[y_kmeans == 1,
                   dfPCA.columns[1]], color='green', label='Cluster 1', s=120)
   sns.scatterplot(x=dfPCA.loc[y kmeans == 2, dfPCA.columns[0]], y=dfPCA.loc[y kmeans == 2,
                   dfPCA.columns[1]], color='blue', label='Cluster 2', s=120)
   sns.scatterplot(x=kmeans.cluster_centers_[:, 0], y=kmeans.cluster_centers_[:, 1],
                   color='black', label='Centroids', s=25, marker=',')
   plt.grid(False)
   plt.title('K-Means Clustering pada Data')
   plt.xlabel('')
   plt.ylabel('')
   plt.legend()
   plt.show()
```

K-MEANS CLUSTERING VISUALIZATION

- Menetapkan cluster sebanyak tiga cluster.
- Memvisualisasikan tiap titik data dan cluster center pada scatter plot.
- Memberi warna tiap titik data berdasarkan masing-masing cluster.

Stasiun	Sumbu x	Sumbu y	Cluster
Stamet Tunggul Wulung	46.140764	-109.451707	0
Stageof Banjarnegara	607.933335	-36.223451	1
Stamet Maritim Tegal	-65.123490	389.940428	2
Staklim Jawa Tengah	-192.736440	-125.908602	0
Stamet Maritim Tanjung Emas	-129.297340	-24.652412	0
Stamet Ahmad Yani	-266.916829	-93.704256	0

DETAIL

TIAP CLUSTER

PETA PERSEBARAN STASIUN

PETA PERSEBARAN CLUSTER O

Stasiun	Count	Mean	Std	Min	Max	Range
Stamet Tunggul Wulung	10	289	103	139	444	305
Staklim Jawa Tengah	10	285	39	217	348	131
Stamet Maritim Tanjung Emas	10	280	56	206	370	164
Stamet Ahmad Yani	10	269	53	203	350	147

- Nilai rata-rata cenderung mirip.
- Nilai standar deviasi mewakili sebaran curah hujan tiap tahun.
- Jarak antara nilai minimum dan maksimum cenderung kecil.

PETA PERSEBARAN CLUSTER 2

Stamet Maritim Tegal

Count 10
Mean 329
Std 146
Min 85
Max 551
Range 466

- Nilai rata-rata lebih besar dari cluster 0 dan lebih kecil dari cluster 1
- Nilai standar deviasi lebih besar dari cluster 0 dan lebih kecil dari cluster 1.
- Jarak antara nilai minimum dan maksimum cukup besar.

PETA PERSEBARAN CLUSTER 1

Stageof Banjarnegara

Count	10
Mean	415
Std	213
Min	76
Max	765
Range	689

- Nilai rata-rata lebih besar dari cluster 0 dan cluster 2.
- Nilai standar deviasi lebih besar dari cluster 0 dan cluster 2.
- Jarak antara nilai minimum dan maksimum besar.

KESIMPULAN

- 1. Dari hasil algoritma K-Means didapat **tiga jenis cluster optimal berdasarkan tingkat curah hujan** bulan Januari tahun 2015-2024 di Provinsi Jawa Tengah. Cluster 0 memiliki intensitas curah hujan yang lebih kecil dari Cluster 2 dan Cluster 1, Cluster 2 memiliki intensitas curah hujan yang lebih besar dari Cluster 0 dan lebih kecil dari Cluster 1, dan Cluster 1 memiliki intensitas curah hujan yang lebih tinggi dari Cluster 0 dan Cluster 2.
- 2. Tiap cluster memiliki perbedaan statistika deskriptif berupa **nilai rata-rata dan standar deviasi**. Cluster 0 memiliki nilai rata-rata dan standar deviasi curah hujan yang relatif kecil, Cluster 2 memiliki nilai rata-rata dan standar deviasi nilai curah hujan yang relatif sedang. Cluster 1 memiliki nilai rata-rata dan standar deviasi curah hujan yang relatif besar.
- 3. Perbedaan cluster curah hujan bulan Januari tahun 2015-2024 di Provinsi Jawa Tengah juga dipengaruhi oleh kondisi geografis dan topografis masing masing daerah.

DAFTAR PUSTAKA

Hasanah, Nur, Ugiarto, Muh. dan Puspitasar, Novianti.2017. Sistem Pengelompokan Curah Hujan Menggunakan Metode K-Means di Wilayah Kalimantan Timur. Samarinda: Universitas Mulawarman

Izmi Asal, dan Pramono Hadi M. 2016. Efisiensi Jumlah Staisun Hujan untuk Analisis Hujan Tahubab di Provinsi Jawa Tengah dan Daerah Istimewa Yogyakarta. Daerah Istimewa Yogyakarta: Core

Data Online Pusat Database - BMKG. Diakses pada 5 Februari 2024 dari https://dataonline.bmkg.go.id/data_iklim

TERIMA KASIH