(12) INTERNATIONAL-APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 June 2001 (14.06.2001)

PCT

(10) International Publication Number WO 01/42434 A1

(51) International Patent Classification⁷: 9/10, 1/20, 15/00, C07H 21/02, 21/04

C12N 9/00,

Lincoln Avenue, Rahway, NJ 07065-0907 (US). MET-ZKER, Michael, L. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(21) International Application Number: I

PCT/US00/33065

(22) International Filing Date: 7 December 2000 (07.12.2000)

East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(74) Common Representative: MERCK & CO., INC.; 126

(25) Filing Language:

English

(81) Designated States (national): CA, JP, US.

(26) Publication Language:

English

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,

(30) Priority Data:

60/169,970

9 December 1999 (09.12.1999) U

Published:

(71) Applicant (for all designated States except US): MERCK

& CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

With international search report.

NL, PT, SE, TR).

 Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

(72) Inventors; and

(75) Inventors/Applicants (for US only): LIU, Xiaomei [CN/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). BAI, Chang [CN/US]; 126 East

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

TITLE OF THE INVENTION DNA MOLECULES ENCODING HUMAN NHL, A DNA HELICASE

10 CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit, under 35 U.S.C. §119(e), of U.S. provisional application 60/169,970 filed December 9, 1999.

STATEMENT REGARDING FEDERALLY-SPONSORED R&D Not Applicable

REFERENCE TO MICROFICHE APPENDIX Not Applicable

20

25

30

15

FIELD OF THE INVENTION

The present invention relates in part to isolated nucleic acid molecules (polynucleotides) which encode NHL, a putative DNA helicase. The present invention also relates to recombinant vectors and recombinant hosts which contain a DNA fragment encoding NHL, substantially purified forms of associated NHL, associated mutant proteins, and methods associated with identifying compounds which modulate NHL, which will be useful in the treatment of various neoplastic disorders, given that this gene is located at 20q13.3 and immediately adjacent to M68/DcR3, which is involved in tumor growth. Also included within the present invention is a human genomic fragment representing this portion of the human genome, along with three additional genes (M68/DcR3, SCLIP, and ARP).

BACKGROUND OF THE INVENTION

Naumovski et al. (1985, *Mol. Cell Biol.* 5:17-26; Reynolds et al. (1985 *Nucleic Acid Res* 13:2357-2372) and Weber et al. (1990 *EMBO J.* 9:1437-1447) disclose members of the RAD3/ERCC2 gene family of DNA helicases.

It is known that several chemotherapeutic agents inhibit helicases, including actinomycin C1, daunorubicin and nogalamycin (Tuteja, et al., 1997, *Biochem. Biophys. Res. Comm.* 236(3):636-640), and a prostate cancer drug, CI-958 (Lun, et al.,1998, *Cancer Chemother. Pharmacol.* 42(6):447-453). In addition, some topoisomerases have been shown to have anti-cancer activity.

Despite the identification of the aforementioned helicase-encoding genes and chemotherapeutic agents, it would be advantageous to identify additional genes which reside within chromosomal regions associated with a disease state such as cancer as well as a gene which encodes a type of protein which may be associated with that disease. The present invention addresses and meets this need by disclosing a DNA molecule encoding a DNA helicase with a chromosomal location suggestive of association with cancer.

20 SUMMARY OF THE INVENTION

10

15

25

The present invention relates to an isolated or purified nucleic acid molecule (polynucleotide) which encodes a novel mammalian DNA helicase.

The present invention also relates to an isolated nucleic acid molecule (polynucleotide) which encodes mRNA which expresses a novel human DNA helicase, NHL.

A preferred aspect of the present invention relates to an isolated or purified DNA molecule which encodes human NHL, the nucleotide sequence as set forth in Figure 1A-B and SEQ ID NO:1.

The present invention also relates to biologically active fragments or mutants of SEQ ID NO:1 which encode a mRNA molecule expressing a novel DNA helicase, NHL. Any such biologically active fragment and/or mutant will encode either a protein or protein fragment which at least substantially mimics the biological properties of the human NHL protein disclosed herein in Figure 2 and as set forth as SEQ ID NO:2. Any such polynucleotide includes but is not necessarily limited to

nucleotide substitutions, deletions, additions, amino-terminal truncations and carboxy-terminal truncations such that these mutations encode mRNA which express a functional NHL protein in a host cell, so as to be useful for screening for agonists and/or antagonists of NHL activity.

The present invention also relates to recombinant vectors and recombinant hosts, both prokaryotic and eukaryotic, which contain the substantially purified nucleic acid molecules disclosed throughout this specification.

The present invention also relates to a substantially purified form of a human NHL protein which comprises the amino acid sequence disclosed in Figure 2 and set forth as SEQ ID NO:2.

10 -

15

20

25

30

A preferred aspect of this portion of the present invention is a NHL protein which consists of the amino acid sequence disclosed in Figure 2 and set forth as SEQ ID NO:2.

Another preferred aspect of the present invention relates to a substantially purified NHL protein, preferably a human NHL protein, obtained from a recombinant host cell containing a DNA expression vector comprises a nucleotide sequence as set forth in SEQ ID NO:1 and expresses the respective NHL protein. It is especially preferred is that the recombinant host cell be a eukaryotic host cell, such as a mammalian cell line.

The present invention also relates to biologically active fragments and/or mutants of a NHL protein comprising the amino acid sequence as set forth in SEQ ID NO:2, including but not necessarily limited to amino acid substitutions, deletions, additions, amino terminal truncations and carboxy-terminal truncations such that these mutations provide for proteins or protein fragments of diagnostic, therapeutic or prophylactic use and would be useful for screening for selective modulators, including but not limited to agonists and/or antagonists for human NHL pharmacology.

A preferred aspect of the present invention is disclosed in Figure 2 and is set forth as SEQ ID NO:2, a respective amino acid sequence which encodes human NHL. Characterization of one or more of these DNA helicase-like proteins allows for screening methods to identify novel NHL modulators that may be useful in the treatment of human neoplastic disorders. The modulators selected through such screening and selection protocols may be used alone or in conjunction with other cancer therapies. As noted above, heterologous expression of a NHL protein will allow the pharmacological analysis of compounds which modulate NHL activity and

hence may be useful in various cancer therapies. To this end, heterologous cell lines expressing a NHL protein can be used to establish functional or binding assays to identify novel NHL modulators.

The present invention also relates to polyclonal and monoclonal antibodies raised in response to either the NHL or a biologically active fragment of NHL.

The present invention relates to transgenic mice comprising altered genotypes and phenotypes in relation to NHL and its *in vivo* activity.

The present invention also relates to NHL fusion constructs, including but not limited to fusion constructs which express a portion of the NHL protein linked to various markers, including but in no way limited to GFP (Green fluorescent protein), the MYC epitope, and GST. Any such fusion constructs may be expressed in the cell line of interest and used to screen for NHL modulators.

Therefore, the present invention relates to methods of expressing mammalian NHL, and preferably human NHL, biological equivalents disclosed herein, assays employing these gene products, recombinant host cells which comprise DNA constructs which express these proteins, and compounds identified through these assays which act as agonists or antagonists of NHL activity.

15

20

25

30

The present invention also relates to the isolated genomic sequence which comprises SEQ ID NO:1, a 115 kb genomic fragment set forth herein as SEQ ID NO:3. As especially preferred aspect of this portion of the invention is the region of the genomic fragment of SEQ ID NO:3 which comprises the regulatory and coding regions of human NHL, as well as intervening sequences (introns). This 115 kb fragment contains at least the coding region of four genes, NHL, M68/DcR3, SCLIP and ARP. As discussed herein, it has been shown that this region of chromosome 20 is associated with tumor growth. Therefore, an aspect of this invention also comprises the use of one or more regions of this 115 kb genomic sequence to identify compounds which up or downregulate expression of one or more of the genes localized within this 115 kb region, wherein this up or down regulation results in an interference of tumor growth. For example, a transcription element of one of these four genes may be responsible for M68/DcR3 (and/or NHL) overexpression in tumors, and if M68 or NHL overexpression in tumors has a caustic role, blockage of M68/DcR3 or NHL overexpression in tumors by interfering with this transcription site will be useful.

It is an object of the present invention to provide an isolated nucleic acid molecule (e.g., SEQ ID NO:1) which encodes novel form of human NHL, or fragments, mutants or derivatives of human NHL as set forth in Figure 2 and SEQ ID NO:2. Any such polynucleotide includes but is not necessarily limited to nucleotide substitutions, deletions, additions, amino-terminal truncations and carboxy-terminal truncations such that these mutations encode mRNA which express a protein or protein fragment of diagnostic, therapeutic or prophylactic use and would be useful for screening for selective modulators of human NHL activity.

It is a further object of the present invention to provide the mammalian, and especially human, NHL proteins or protein fragments encoded by the nucleic acid molecules referred to in the preceding paragraph.

10

15

20

25

30

It is a further object of the present invention to provide recombinant vectors and recombinant host cells which comprise a nucleic acid sequence encoding mammalian, and especially human, NHL protein and biological equivalent thereof.

It is an object of the present invention to provide a substantially purified form of human NHL, as set forth in Figure 2 and SEQ ID NO:2.

Is another object of the present invention to provide a substantially purified recombinant form of a NHL protein which has been obtained from a recombinant host cell transformed or transfected with a DNA expression vector which comprises and appropriately expresses a complete open reading frame as set forth in SEQ ID NO:1, resulting in a functional, processed form of NHL. It is especially preferred is that the recombinant host cell be a eukaryotic host cell, such as a mammalian cell line.

It is an object of the present invention to provide for biologically active fragments and/or mutants of mammalian, and especially human, NHL, such as set forth in SEQ ID NO:2, including but not necessarily limited to amino acid substitutions, deletions, additions, amino terminal truncations and carboxy-terminal truncations such that these mutations provide for proteins or protein fragments of diagnostic, therapeutic and/or prophylactic use.

It is also an object of the present invention to use NHL proteins or biological equivalent to screen for modulators, preferably selective modulators, of human NHL activity. Any such compound may be useful in screening for and selecting compounds active against human neoplastic disorders.

As used herein, "substantially free from other nucleic acids" means at least 90%, preferably 95%, more preferably 99%, and even more preferably 99.9%, free of

other nucleic acids. Thus, a human NHL DNA preparation that is substantially free from other nucleic acids will contain, as a percent of its total nucleic acid, no more than 10%, preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non-NHL nucleic acids. Whether a given NHL DNA preparation is substantially free from other nucleic acids can be determined by such conventional techniques of assessing nucleic acid purity as, e.g., agarose gel electrophoresis combined with appropriate staining methods, e.g., ethidium bromide staining, or by sequencing.

10

15

20

25

As used herein, "substantially free from other proteins" or "substantially purified" means at least 90%, preferably 95%, more preferably 99%, and even more preferably 99.9%, free of other proteins. Thus, a NHL protein preparation that is substantially free from other proteins will contain, as a percent of its total protein, no more than 10%, preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non-NHL proteins. Whether a given NHL protein preparation is substantially free from other proteins can be determined by such conventional techniques of assessing protein purity as, e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) combined with appropriate detection methods, e.g., silver staining or immunoblotting. As used interchangeably with the terms "substantially free from other proteins" or "substantially purified", the terms "isolated NHL protein" or "purified NHL protein" also refer to NHL protein that has been isolated from a natural source. Use of the term "isolated" or "purified" indicates that NHL protein has been removed from its normal cellular environment. Thus, an isolated NHL protein may be in a cell-free solution or placed in a different cellular environment from that in which it occurs naturally. The term isolated does not imply that an isolated NHL protein is the only protein present, but instead means that an isolated NHL protein is substantially free of other proteins and non-amino acid material (e.g., nucleic acids, lipids, carbohydrates) naturally associated with the NHL protein in vivo. Thus, a NHL protein that is recombinantly expressed in a prokaryotic or eukaryotic cell and substantially purified from this host cell which does not naturally (i.e., without intervention) express this protein is of course "isolated NHL protein" under any circumstances referred to herein. As noted above, a NHL protein preparation that is an isolated or purified NHL protein will be substantially free from other proteins will contain, as a percent of its total protein, no more than 10%,

preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non-NHL proteins.

As used interchangeably herein, "functional equivalent" or "biologically active equivalent" means a protein which does not have exactly the same amino acid sequence as naturally occurring NHL, due to alternative splicing, deletions, mutations, substitutions, or additions, but retains substantially the same biological activity as NHL. Such functional equivalents will have significant amino acid sequence identity with naturally occurring NHL and genes and cDNA encoding such functional equivalents can be detected by reduced stringency hybridization with a DNA sequence encoding naturally occurring NHL. For example, a naturally occurring NHL disclosed herein comprises the amino acid sequence shown as SEQ ID NO:2 and is encoded by SEQ ID NO:1. A nucleic acid encoding a functional equivalent has at least about 50% identity at the nucleotide level to SEQ ID NO:1.

As used herein, "a conservative amino acid substitution" refers to the replacement of one amino acid residue by another, chemically similar, amino acid residue. Examples of such conservative substitutions are: substitution of one hydrophobic residue (isoleucine, leucine, valine, or methionine) for another; substitution of one polar residue for another polar residue of the same charge (e.g., arginine for lysine; glutamic acid for aspartic acid).

As used herein, the term "mammalian" will refer to any mammal, including a human being.

BRIEF DESCRIPTION OF THE DRAWINGS

15

20

25

30

Figure 1A-B shows the nucleotide sequence which comprises the open reading frame which encodes human NHL, the nucleotide sequence set forth as SEQ ID NO:1. The initiating Met residue (ATG) and the stop codon (TAG) are underlined.

Figure 2 shows the amino acid sequence of human NHL as set forth in SEQ ID NO:2.

Figure 3 shows the alignment of amino acid sequences of human NHL to ERCC2/RAD3 gene family members. Rep D (*Dictyosteliem discoideum*); RAD 3 (*S. cerevisiae*); RAD15 (*S. pombe*) and XP_GroupD (*Homo sapien*).

Figure 4 shows Northern analysis of NHL expression in multi-human tissues.

Figure 5A-B show the genomic structure of the NHL gene (Figure 5A) and the entire 115 kb genomic region (Figure 5B) containing the NHL, M68/DcR3, SCLIP

and ARP genes.

10

15

30

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to an isolated or purified nucleic acid molecule (polynucleotide) which encodes a novel mammalian DNA helicase. An especially preferred aspect of this invention relates to an isolated nucleic acid molecule (polynucleotide) which encodes mRNA which expresses a novel human DNA helicase, NHL.

The gene M68/DcR3 is a secreted TNFR member that is overexpressed in a number of human tumors. M68/DcR3 is located at 20q13.3, a known site that is associated with frequent gene amplification in cancer. M68/DcR3 protein binds to FASL and inhibit FAS mediated apoptosis. Thus, genes tightly linked to M68/DcR3 may be coregulated (e.g. co overexpressed and/or amplified in tumors). During the course of cloning the genomic M68/DcR3 fragment and identifying genes that are linked to M68/DcR3 at 20q13.3, three genes, including a novel gene that is similar to the Rad3/ERCC2 helicase family, were identified (termed NHL) in the immediately adjacent (overlapping) region. Given NHL's chromosomal location and the frequent association of DNA helicases with human genetic disorders (mutations in DNA helicases have been found associated with multiple diseases, including xeroderma pigmentosum, Cockayne's syndrome, Bloom's syndrome, and Werner's syndrome), NHL is a candidate for contribution to certain human neoplastic disorders. To this end, the genomic clone for this gene is disclosed and the complete sequence is determined. The transcript was identified through exon prediction using GRAIL2 and sequence alignment to a contiguous 4.5 kilobase region of chromosome 4 (88% sequence identity). The complete exon structure of NHL was subsequently confirmed by RT-PCR analysis. Multiple sequence alignment of NHL to known helicases showed that NHL contains all the seven critical helicase domains. BLAST analysis of the predicted 1,219 amino acid sequence revealed an approximately 26% sequence identity and 48% sequence similarity to the RAD3/ERCC2 gene family of DNA helicases (Naumovski et al., 1985 Mol. Cell Biol. 5:17-26; Reynolds et al., 1985 Nucleic Acid Res 13:2357-72; Weber et al., 1990 EMBO J. 9:1437-1447). The mRNA expression pattern of NHL was also examined in multiple human tissues. Radiation hybrid chromosomal mapping reconfirms that it is linked to M68/DcR3 locus.

A preferred aspect of the present invention relates to an isolated or purified DNA molecule which encodes human NHL, the nucleotide sequence as set forth in Figure 1A-B and SEQ ID NO:1, which is as follows:

```
AGTCAGCCCT GCTGCCAGCC AGTGCCGGGT GCTGGGGACT CAGGGAGGCC CGCCGGGACC
    ACTGCGGGAC AGTGAGCCGA GCAGAAGCTG GAACGCAGGA GAGGAAGGAG AGGGGGCGGT
    CAGGGCTCTC AGGAGCCGGG TCCTGGGCAA GGCGCAGCCG TTTTCAAATT TTCAGGAAAG
    CGGTCGGCTC ACACTCGAGC AGTAAAAAGA TGCCTCTGGG GAGGAGGCCC GTGCAGCTCT
    CCGGGCAATG GTGGTGGCTC GGCCTAGAGA GGCGGTAGTG GAACGCAGAC CCTGGTGGGG
    GAATGACATC AAGGGAGGAG ACGGGCGGGA CCCCAGATTT CTGCCTGTGG GCGATGGAAG
10
    TGAGGTTCAC TGGCCAGCGG AGCCGGACAC AGAACGCGCA AAACGCCGTG TAGGCCTGGA
    GGAGCCGAAG AGCAGGCGGA CCCCCTCCGC GGGGGAACAG TTTCCGCCGG GAGCACAAAG
    CAACGGACCG GAAGTGGGGG GCGGAAGTGC AGTGGGCTCA GCGCCGACTG CGCGCCTCTG
    CCCGCGAAAA CTCTGAGCTG GCTGACAGCT GGGGACGGGT GGCGGCCCTC GACTGGAGTC
    GGTTGAGTTC CTGAGGGACC CCGGTTCTGG AAGGTTCGCC GCGGAGACAA GTGAGCAGTC
    TGTGCCATAG GGATTCTCGA AGAGAACAGC GTTGTGTCCC AGTGCACATG CTCGCATCGC
    TTACCAGGAG TGCCCGAGAC CCTAAGATGT TCGGAGTGGT TTTTTCGCAC AGACCCGAAT
    AGCCTGCCCC TCAGCCACGC TCTGTGCCCT TCTGAGAACA GGCTGATATG CCCAAGATAG
    TCCTGAATGG TGTGACCGTA GACTTCCCTT TCCAGCCCTA CAAATGCCAA CAGGAGTACA
    TGACCAAGGT CCTGGAATGT CTGCAGCAGA AGGTGAATGG CATCCTGGAG AGCCCTACGG
    GTACAGGGAA GACGCTGTGC CTGCTGTGCA CCACGCTGGC CTGGCGAGAA CACCTCCGAG
20
    ACGGCATCTC TGCCCGCAAG ATTGCCGAGA GGGCGCAAGG AGAGCTTTTC CCGGATCGGG
    CCTTGTCATC CTGGGGCAAC GCTGCTGCTG CTGCTGGAGA CCCCATAGCT TGCTACACGG
    ACATCCCAAA GATTATTTAC GCCTCCAGGA CCCACTCGCA ACTCACACAG GTCATCAACG
    AGCTTCGGAA CACCTCCTAC CGGCCTAAGG TGTGTGTGCT GGGCTCCCGG GAGCAGCTGT
    GCATCCATCC TGAGGTGAAG AAACAAGAGA GTAACCATCT ACAGATCCAC TTGTGCCGTA
25
    AGAAGGTGGC AAGTCGCTCC TGTCATTTCT ACAACAACGT AGAAGAAAAA AGCCTGGAGC
    AGGAGCTGGC CAGCCCCATC CTGGACATTG AGGACTTGGT CAAGAGCGGA AGCAAGCACA
    GGGTGTGCCC TTACTACCTG TCCCGGAACC TGAAGCAGCA AGCCGACATC ATATTCATGC
    CGTACAATTA CTTGTTGGAT GCCAAGAGCC GCAGAGCACA CAACATTGAC CTGAAGGGGA
    CAGTCGTGAT CTTTGACGAA GCTCACAACG TGGAGAAGAT GTGTGAAGAA TCGGCATCCT
30
    TTGACCTGAC TCCCCATGAC CTGGCTTCAG GACTGGACGT CATAGACCAG GTGCTGGAGG
    AGCAGACCAA GGCAGCGCAG CAGGGTGAGC CCCACCGGA GTTCAGCGCG GACTCCCCCA
    GCCCAGGGCT GAACATGGAG CTGGAAGACA TTGCAAAGCT GAAGATGATC CTGCTGCGCC
    TGGAGGGGGC CATCGATGCT GTTGAGCTGC CTGGAGACGA CAGCGGTGTC ACCAAGCCAG
```

	GGAGCTACAT	CTTTGAGCTG	TTTGCTGAAG	CCCAGATCAC	GTTTCAGACC	AAGGGCTGCA
	TCCTGGACTC	GCTGGACCAG	ATCATCCAGC	ACCTGGCAGG	ACGTGCTGGA	GTGTTCACCA
•	ACACGGCCGG	ACTGCAGAAG	CTGGCGGACA	TTATCCAGAT	TGTGTTCAGT	GTGGACCCCT
	CCGAGGGCAG	CCCTGGTTCC	CCAGCAGGGC	TGGGGGCCTT	ACAGTCCTAT	AAGGTGCACA
5	TCCATCCTGA	TGCTGGTCAC	CGGAGGACGG	CTCAGCGGTC	TGATGCCTGG	AGCACCACTG
	CAGCCAGAAA	GCGAGGGAAG	GTGCTGAGCT	ACTGGTGCTT	CAGTCCCGGC	CACAGCATGC
	ACGAGCTGGT	CCGCCAGGGC	GTCCGCTCCC	TCATCCTTAC	CAGCGGCACG	CTGGCCCCGG
	TGTCCTCCTT	TGCTCTGGAG	ATGCAGATCC	CTTTCCCAGT	CTGCCTGGAG	AACCCACACA
	TCATCGACAA	GCACCAGATC	TGGGTGGGGG	TCGTCCCCAG	AGGCCCCGAT	GGAGCCCAGT
10	TGAGCTCCGC	GTTTGACAGA	CGGTTTTCCG	AGGAGTGCTT	ATCCTCCCTG	GGGAAGGCTC
	TGGGCAACAT	CGCCCGCGTG	GTGCCCTATG	GGCTCCTGAT	CTTCTTCCCT	TCCTATCCTG
	TCATGGAGAA	GAGCCTGGAG	TTCTGGCGGG	CCCGCGACTT	GGCCAGGAAG	ATGGAGGCGC
	TGAAGCCGCT	GTTTGTGGAG	CCCAGGAGCA	AAGGCAGCTT	CTCCGAGACC	ATCAGTGCTT
	ACTATGCAAG	GGTTGCCGCC	CCTGGGTCCA	CCGGCGCCAC	CTTCCTGGCG	GTCTGCCGGG
15	GCAAGGCCAG	CGAGGGGCTG	GACTTCTCAG	ACACGAATGG	CCGTGGTGTG	ATTGTCACGG
	GCCTCCCGTA	CCCCCCACGC	ATGGACCCCC	GGGTTGTCCT	CAAGATGCAG	TTCCTGGATG
	AGATGAAGGG	CCAGGGTGGG	GCTGGGGGCC	AGTTCCTCTC	TGGGCAGGAG	TGGTACCGGC
	AGCAGGCGTC	CAGGGCTGTG	AACCAGGCCA	TCGGGCGAGT	GATCCGGCAC	CGCCAGGACT
	ACGGAGCTGT	CTTCCTCTGT	GACCACAGGT	TCGCCTTTGC	CGACGCAAGA	GCCCAACTGC
20	CCTCCTGGGT	GCGTCCCCAC	GTCAGGGTGT	ATGACAACTT	TGGCCATGTC	ATCCGAGACG
	TGGCCCAGTT	CTTCCGTGTT	GCCGAGCGAA	CTATGCCAGC	GCCGGCCCCC	CGGGCTACAG
	CACCCAGTGT	GCGTGGAGAA	GATGCTGTCA	GCGAGGCCAA	GTCGCCTGGC	CCCTTCTTCT
	CCACCAGGAA	AGCTAAGAGT	CTGGACCTGC	ATGTCCCCAG	CCTGAAGCAG	AGGTCCTCAG
	GGTCACCAGC	TGCCGGGGAC	CCCGAGAGTA	GCCTGTGTGT	GGAGTATGAG	CAGGAGCCAG
25	TTCCTGCCCG	GCAGAGGCCC	AGGGGGCTGC	TGGCCGCCCT	GGAGCACAGC	GAACAGCGGG
	CGGGGAGCCC	TGGCGAGGAG	CAGGCCCACA	GCTGCTCCAC	CCTGTCCCTC	CTGTCTGAGA
	AGAGGCCGGC	AGAAGAACCG	CGAGGAGGGA	GGAAGAAGAT	CCGGCTGGTC	AGCCACCCGG
	AGGAGCCCGT	GGCTGGTGCA	CAGACGGACA	GGGCCAAGCT	CTTCATGGTG	GCCGTGAAGC
	AGGAGTTGAG	CCAAGCCAAC	TTTGCCACCT	TCACCCAGGC	CCTGCAGGAC	TACAAGGGTT
30	CCGATGACTT	CGCCGCCCTG	GCCGCCTGTC	TCGGCCCCCT	CTTTGCTGAG	GACCCCAAGA
	AGCACAACCT	GCTCCAAGGC	TTCTACCAGT	TTGTGCGGCC	CCACCATAAG	CAGCAGTTTG
	AGGAGGTCTG	TATCCAGCTG	ACAGGACGAG	GCTGTGGCTA	TCGGCCTGAG	CACAGCATTC
	CCCGAAGGCA	GCGGGCACAG	CCGGTCCTGG	ACCCCACTGG	AAGAACGGCG	CCGGATCCCA
	AGCTGACCGT	GTCCACGGCT	GCAGCCCAGC	AGCTGGACCC	CCAAGAGCAC	CTGAACCAGG
						•

GCAGGCCCCA CCTGTCGCCC AGGCCACCCC CAACAGGAGA CCCTGGCAGC CAACCACAGT GGGGGTCTGG AGTGCCCAGA GCAGGGAAGC AGGGCCAGCA CGCCGTGAGC GCCTACCTGG CTGATGCCCG CAGGGCCCTG GGGTCCGCGG GCTGTAGCCA ACTCTTGGCA GCGCTGACAG CCTATAAGCA AGACGACGAC CTCGACAAGG TGCTGGCTGT GTTGGCCGCC CTGACCACTG AGCAGCGCTT CTCACAGACG TGCACAGACC TGACCGGCCG GCCCTACCCG GGCATGGAGC CACCGGGACC CCAGGAGGAG AGGCTTGCCG TGCCTCCTGT GCTTACCCAC AGGGCTCCCC AACCAGGCCC CTCACGGTCC GAGAAGACCG GGAAGACCCA GAGCAAGATC TCGTCCTTCC TTAGACAGAG GCCAGCAGGG ACTGTGGGGG CGGGCGGTGA GGATGCAGGT CCCAGCCAGT CCTCAGGACC TCCCCACGGG CCTGCAGCAT CTGAGTGGGG CCTCTAGGAT GTGCCCAGCC 10 TGCCACACCG CCTCCAGGAA GCAGAGCGTC ATGCAGGTCT TCTGGCCAGA GCCCCAGTGA GTGCCCACGG AGGCCCCCAG CACACCCAAC GTGGCTTGAT CACCTGCCTG TCCAGCTCTG GTGGGCCAAG AACCCACCCA ACAGAATAGG CCAGCCCATG CCAGCCGGCT TGGCCCGCTG CAGGCCTCAG GCAGGCGGGG CCCATGGTTG GTCCCTGCGG TGGGACCGGA TCTGGGCCTG CCTCTGAGAA GCCCTGAGCT ACCTTGGGGT CTGGGGTGGG TTTCTGGGAA AGTGCTTCCC CAGAACTTCC CTGGCTCCTG GCCTGTGAGT GGTGCCACAG GGGCACCCCA GCTGAGCCCC TCACCGGGAA GGAGGAGACC CCCGTGGGCA CGTGTCCACT TTTAATCAGG GGACAGGGCT CTCTAATAAA GCTGCTGGCA GTGCCC (SEQ ID NO:1).

The above-exemplified isolated DNA molecule shown in Figure 1A-B and SEQ ID NO:1 comprise 4946 nucleotides, with an initiating Met at nucleotides 828-830 and a "TAG" termination codon at nucleotides 4585-4587. The initiating Met and TAG termination codon are underlined.

20

25

30

The present invention also relates to biologically active fragments or mutants of SEQ ID NO:1 which encode a mRNA molecule expressing a novel DNA helicase, NHL. Any such biologically active fragment and/or mutant will encode either a protein or protein fragment which at least substantially mimics the biological properties of the human NHL protein disclosed herein in Figure 2 and as set forth as SEQ ID NO:2. Any such polynucleotide includes but is not necessarily limited to nucleotide substitutions, deletions, additions, amino-terminal truncations and carboxy-terminal truncations such that these mutations encode mRNA which express a functional NHL protein in a host cell, so as to be useful for screening for agonists and/or antagonists of NHL activity.

The isolated nucleic acid molecules of the present invention may include a deoxyribonucleic acid molecule (DNA), such as genomic DNA and complementary

DNA (cDNA), which may be single (coding or noncoding strand) or double stranded, as well as synthetic DNA, such as a synthesized, single stranded polynucleotide. The isolated nucleic acid molecule of the present invention may also include a ribonucleic acid molecule (RNA).

The present invention also relates to recombinant vectors and recombinant hosts, both prokaryotic and eukaryotic, which contain the substantially purified nucleic acid molecules disclosed throughout this specification.

The degeneracy of the genetic code is such that, for all but two amino acids, more than a single codon encodes a particular amino acid. This allows for the construction of synthetic DNA that encodes the NHL protein where the nucleotide sequence of the synthetic DNA differs significantly from the nucleotide sequence of SEQ ID NO:1 but still encodes the same NHL protein as SEQ ID NO:2. Such synthetic DNAs are intended to be within the scope of the present invention. If it is desired to express such synthetic DNAs in a particular host cell or organism, the codon usage of such synthetic DNAs can be adjusted to reflect the codon usage of that particular host, thus leading to higher levels of expression of the NHL protein in the host. In other words, this redundancy in the various codons which code for specific amino acids is within the scope of the present invention. Therefore, this invention is also directed to those DNA sequences which encode RNA comprising alternative codons which code for the eventual translation of the identical amino acid, as shown below:

A=Ala=Alanine: codons GCA, GCC, GCG, GCU

C=Cys=Cysteine: codons UGC, UGU

5 ·

10

15

20

D=Asp=Aspartic acid: codons GAC, GAU

E=Glu=Glutamic acid: codons GAA, GAG

F=Phe=Phenylalanine: codons UUC, UUU

G=Gly=Glycine: codons GGA, GGC, GGG, GGU

H=His =Histidine: codons CAC, CAU

I=Ile =Isoleucine: codons AUA, AUC, AUU

K=Lys=Lysine: codons AAA, AAG

L=Leu=Leucine: codons UUA, UUG, CUA, CUC, CUG, CUU

M=Met=Methionine: codon AUG

N=Asp=Asparagine: codons AAC, AAU

P=Pro=Proline: codons CCA; CCC, CCG, CCU

Q=Gln=Glutamine: codons CAA, CAG

R=Arg=Arginine: codons AGA, AGG, CGA, CGC, CGG, CGU S=Ser=Serine: codons AGC, AGU, UCA, UCC, UCG, UCU

T=Thr=Threonine: codons ACA, ACC, ACG, ACU

V=Val=Valine: codons GUA, GUC, GUG, GUU

W=Trp=Tryptophan: codon UGG

10

15

20

25

Y=Tyr=Tyrosine: codons UAC, UAU

Therefore, the present invention discloses codon redundancy which may result in differing DNA molecules expressing an identical protein. For purposes of this specification, a sequence bearing one or more replaced codons will be defined as a degenerate variation. Also included within the scope of this invention are mutations either in the DNA sequence or the translated protein which do not substantially alter the ultimate physical properties of the expressed protein. For example, substitution of valine for leucine, arginine for lysine, or asparagine for glutamine may not cause a change in functionality of the polypeptide.

It is known that DNA sequences coding for a peptide may be altered so as to code for a peptide having properties that are different than those of the naturally occurring peptide. Methods of altering the DNA sequences include but are not limited to site directed mutagenesis. Examples of altered properties include but are not limited to changes in the affinity of an enzyme for a substrate or a receptor for a ligand.

The present invention also relates to recombinant vectors and recombinant hosts, both prokaryotic and eukaryotic, which contain the substantially purified nucleic acid molecules disclosed throughout this specification. The nucleic acid molecules of the present invention encoding a NHL protein, in whole or in part, can be linked with other DNA molecules, i.e, DNA molecules to which the NHL coding sequence are not naturally linked, to form "recombinant DNA molecules" which encode a respective NHL protein. The novel DNA sequences of the present invention can be inserted into vectors which comprise nucleic acids encoding NHL or a functional equivalent. These vectors may be comprised of DNA or RNA; for most cloning purposes DNA vectors are preferred. Typical vectors include plasmids, modified viruses, bacteriophage, cosmids, yeast artificial chromosomes, and other forms of episomal or integrated DNA that can encode a NHL protein. It is well within

the purview of the skilled artisan to determine an appropriate vector for a particular gene transfer or other use.

Included in the present invention are DNA sequences that hybridize to SEQ ID NO:1 under stringent conditions. By way of example, and not limitation, a procedure using conditions of high stringency is as follows: Prehybridization of filters containing DNA is carried out for 2 hours to overnight at 65°C in buffer composed of 6X SSC, 5X Denhardt's solution, and 100 µg/ml denatured salmon sperm DNA. Filters are hybridized for 12 to 48 hrs at 65°C in prehybridization mixture containing 100 µg/ml denatured salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Washing of filters is done at 37°C for 1 hr in a solution containing 2X SSC, 0.1% SDS. This is followed by a wash in 0.1X SSC, 0.1% SDS at 50°C for 45 min. before autoradiography. Other procedures using conditions of high stringency would include either a hybridization step carried out in 5XSSC, 5X Denhardt's solution, 50% formamide at 42°C for 12 to 48 hours or a washing step carried out in 0.2X SSPE, 0.2% SDS at 65°C for 30 to 60 minutes.

Reagents mentioned in the foregoing procedures for carrying out high stringency hybridization are well known in the art. Details of the composition of these reagents can be found in, e.g., Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. In addition to the foregoing, other conditions of high stringency which may be used are well known in the art.

15

20

30

The present invention also relates to a substantially purified form of a human NHL protein which comprises the amino acid sequence (1219 amino acid residues) disclosed in Figure 2 and set forth as SEQ ID NO:2. A preferred aspect of this portion of the present invention is a NHL protein which consists of the amino acid sequence disclosed in Figure 2 and set forth as SEQ ID NO:2, as follows:

MPKIVLNGVT VDFPFQPYKC QQEYMTKVLE CLQQKVNGIL ESPTGTGKTL CLLCTTLAWR EHLRDGISAR KIAERAQGEL FPDRALSSWG NAAAAAGDPI ACYTDIPKII YASRTHSQLT QVINELRNTS YRPKVCVLGS REQLCIHPEV KKQESNHLQI HLCRKKVASR SCHFYNNVEE KSLEQELASP ILDIEDLVKS GSKHRVCPYY LSRNLKQQAD IIFMPYNYLL DAKSRRAHNI DLKGTVVIFD EAHNVEKMCE ESASFDLTPH DLASGLDVID QVLEEQTKAA QQGEPHPEFS ADSPSPGLNM ELEDIAKLKM ILLRLEGAID AVELPGDDSG VTKPGSYIFE LFAEAQITFQ TKGCILDSLD QIIQHLAGRA GVFTNTAGLQ KLADIIQIVF SVDPSEGSPG SPAGLGALQS YKVHIHPDAG HRRTAQRSDA WSTTAARKRG KVLSYWCFSP GHSMHELVRQ GVRSLILTSG

TLAPVSSFAL EMQIPFPVCL ENPHIIDKHQ IWVGVVPRGP DGAQLSSAFD RRFSEECLSS
LGKALGNIAR VVPYGLLIFF PSYPVMEKSL EFWRARDLAR KMEALKPLFV EPRSKGSFSE
TISAYYARVA APGSTGATFL AVCRGKASEG LDFSDTNGRG VIVTGLPYPP RMDPRVVLKM
QFLDEMKGQG GAGGQFLSGQ EWYRQQASRA VNQAIGRVIR HRQDYGAVFL CDHRFAFADA
RAQLPSWVRP HVRVYDNFGH VIRDVAQFFR VAERTMPAPA PRATAPSVRG EDAVSEAKSP
GPFFSTRKAK SLDLHVPSLK QRSSGSPAAG DPESSLCVEY EQEPVPARQR PRGLLAALEH
SEQRAGSPGE EQAHSCSTLS LLSEKRPAEE PRGGRKKIRL VSHPEEPVAG AQTDRAKLFM
VAVKQELSQA NFATFTQALQ DYKGSDDFAA LAACLGPLFA EDPKKHNLLQ GFYQFVRPHH
KQQFEEVCIQ LTGRGCGYRP EHSIPRRQRA QPVLDPTGRT APDPKLTVST AAAQQLDPQE
HLNQGRPHLS PRPPPTGDPG SQPQWGSGVP RAGKQGQHAV SAYLADARRA LGSAGCSQLL
AALTAYKQDD DLDKVLAVLA ALTTAKPEDF PLLHRFSMFV RPHHKQRFSQ TCTDLTGRPY
PGMEPPGPQE ERLAVPPVLT HRAPQPGPSR SEKTGKTQSK ISSFLRQRPA GTVGAGGEDA
GPSQSSGPPH GPAASEWGL* (SEQ ID NO:2).

10

15

20

25

The present invention also relates to biologically active fragments and/or mutants of the human NHL protein comprising the amino acid sequence as set forth in SEQ ID NO:2, including but not necessarily limited to amino acid substitutions, deletions, additions, amino terminal truncations and carboxy-terminal truncations such that these mutations provide for proteins or protein fragments of diagnostic, therapeutic or prophylactic use and would be useful for screening for agonists and/or antagonists of NHL function.

Another preferred aspect of the present invention relates to a substantially purified, fully processed NHL protein obtained from a recombinant host cell containing a DNA expression vector which comprises a nucleotide sequence as set forth in SEQ ID NO:1 and expresses the human NHL protein. It is especially preferred is that the recombinant host cell be a eukaryotic host cell, such as a mammalian cell line.

As with many proteins, it is possible to modify many of the amino acids of NHL protein and still retain substantially the same biological activity as the wild type protein. Thus this invention includes modified NHL polypeptides which have amino acid deletions, additions, or substitutions but that still retain substantially the same biological activity as a respective, corresponding NHL. It is generally accepted that single amino acid substitutions do not usually alter the biological activity of a protein (see, e.g., *Molecular Biology of the Gene*, Watson et al., 1987, Fourth Ed., The Benjamin/Cummings Publishing Co., Inc., page 226; and Cunningham & Wells, 1989,

Science 244:1081-1085). Accordingly, the present invention includes a polypeptide where one amino acid substitution has been made in SEQ ID NO:2 wherein the polypeptide still retains substantially the same biological activity as a corresponding NHL protein. The present invention also includes polypeptides where two or more amino acid substitutions have been made in SEQ ID NO:2 wherein the polypeptide still retains substantially the same biological activity as a corresponding NHL protein. In particular, the present invention includes embodiments where the above-described substitutions are conservative substitutions.

One skilled in the art would also recognize that polypeptides that are functional equivalents of NHL and have changes from the NHL amino acid sequence that are small deletions or insertions of amino acids could also be produced by following the same guidelines, (i.e, minimizing the differences in amino acid sequence between NHL and related proteins. Small deletions or insertions are generally in the range of about 1 to 5 amino acids). The effect of such small deletions or insertions on the biological activity of the modified NHL polypeptide can easily be assayed by producing the polypeptide synthetically or by making the required changes in DNA encoding NHL and then expressing the DNA recombinantly and assaying the protein produced by such recombinant expression.

10

15

20

25

The present invention also includes truncated forms of NHL which contain the region comprising the active site of the enzyme. Such truncated proteins are useful in various assays described herein, for crystallization studies, and for structure-activity-relationship studies.

The present invention also relates to isolated nucleic acid molecules which are fusion constructions expressing fusion proteins useful in assays to identify compounds which modulate wild-type NHL activity, as well as generating antibodies against NHL. One aspect of this portion of the invention includes, but is not limited to, glutathione S-transferase (GST)-NHL fusion constructs. Recombinant GST-NHL fusion proteins may be expressed in various expression systems, including *Spodoptera frugiperda* (Sf21) insect cells (Invitrogen) using a baculovirus expression vector (pAcG2T, Pharmingen). Another aspect involves NHL fusion constructs linked to various markers, including but not limited to GFP (Green fluorescent protein), the MYC epitope, and GST. Again, any such fusion constructs may be expressed in the cell line of interest and used to screen for modulators of one or more of the NHL proteins disclosed herein.

Any of a variety of procedures may be used to clone NHL. These methods include, but are not limited to, (1) a RACE PCR cloning technique (Frohman, et al., 1988, Proc. Natl. Acad. Sci. USA 85: 8998-9002). 5' and/or 3' RACE may be performed to generate a full-length cDNA sequence. This strategy involves using gene-specific oligonucleotide primers for PCR amplification of NHL cDNA. These gene-specific primers are designed through identification of an expressed sequence tag (EST) nucleotide sequence which has been identified by searching any number of publicly available nucleic acid and protein databases; (2) direct functional expression of the NHL cDNA following the construction of a NHL-containing cDNA library in an appropriate expression vector system; (3) screening a NHL-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a labeled degenerate oligonucleotide probe designed from the amino acid sequence of the NHL protein; (4) screening a NHL-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA encoding the NHL protein. This partial cDNA is obtained by the specific PCR amplification of NHL DNA fragments through the design of degenerate oligonucleotide primers from the amino acid sequence known for other kinases which are related to the NHL protein; (5) screening a NHLcontaining cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA or oligonucleotide with homology to a mammalian NHL protein. This strategy may also involve using gene-specific oligonucleotide primers for PCR amplification of NHL cDNA identified as an EST as described above; or (6) designing 5' and 3' gene specific oligonucleotides using SEQ ID NO: 1 as a template so that either the full-length cDNA may be generated by known RACE techniques, or a portion of the coding region may be generated by these same known RACE techniques to generate and isolate a portion of the coding region to use as a probe to screen one of numerous types of cDNA and/or genomic libraries in order to isolate a full-length version of the nucleotide sequence encoding NHL.

20

25

30

It is readily apparent to those skilled in the art that other types of libraries, as well as libraries constructed from other cell types-or species types, may be useful for isolating a NHL-encoding DNA or a NHL homologue. Other types of libraries include, but are not limited to, cDNA libraries derived from other cells.

It is readily apparent to those skilled in the art that suitable cDNA libraries may be prepared from cells or cell lines which have NHL activity. The selection of cells or cell lines for use in preparing a cDNA library to isolate a cDNA encoding

NHL may be done by first measuring cell-associated NHL activity using any known assay available for such a purpose.

Preparation of cDNA libraries can be performed by standard techniques well known in the art. Well known cDNA library construction techniques can be found for example, in Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Complementary DNA libraries may also be obtained from numerous commercial sources, including but not limited to Clontech Laboratories, Inc. and Stratagene.

It is also readily apparent to those skilled in the art that DNA encoding NHL may also be isolated from a suitable genomic DNA library. Construction of genomic DNA libraries can be performed by standard techniques well known in the art. Well known genomic DNA library construction techniques can be found in Sambrook, et al., *supra*. One may prepare genomic libraries, especially in P1 artificial chromosome vectors, from which genomic clones containing the NHL gene can be isolated, using probes based upon the NHL nucleotide sequences disclosed herein. Methods of preparing such libraries are known in the art (Ioannou et al., 1994, *Nature Genet*. 6:84-89).

10

20

25

In order to clone a NHL gene by one of the preferred methods, the amino acid sequence or DNA sequence of a NHL or a homologous protein may be necessary. To accomplish this, a respective NHL protein may be purified and the partial amino acid sequence determined by automated sequenators. It is not necessary to determine the entire amino acid sequence, but the linear sequence of two regions of 6 to 8 amino acids can be determined for the PCR amplification of a partial NHL DNA fragment. Once suitable amino acid sequences have been identified, the DNA sequences capable of encoding them are synthesized. Because the genetic code is degenerate, more than one codon may be used to encode a particular amino acid, and therefore, the amino acid sequence can be encoded by any of a set of similar DNA oligonucleotides. Only one member of the set will be identical to the NHL sequence but others in the set will be capable of hybridizing to NHL DNA even in the presence of DNA oligonucleotides with mismatches. The mismatched DNA oligonucleotides may still sufficiently hybridize to the NHL DNA to permit identification and isolation of NHL encoding DNA. Alternatively, the nucleotide sequence of a region of an expressed sequence may be identified by searching one or more available genomic databases. Gene-specific primers may be used to perform PCR amplification of a cDNA of

interest from either a cDNA library or a population of cDNAs. As noted above, the appropriate nucleotide sequence for use in a PCR-based method may be obtained from SEQ ID NO:1 either for the purpose of isolating overlapping 5' and 3' RACE products for generation of a full-length sequence coding for NHL, or to isolate a portion of the nucleotide sequence coding for NHL for use as a probe to screen one or more cDNA- or genomic-based libraries to isolate a full-length sequence encoding NHL or NHL-like proteins.

This invention also includes vectors containing a NHL gene, host cells containing the vectors, and methods of making substantially pure NHL protein comprising the steps of introducing the NHL gene into a host cell, and cultivating the host cell under appropriate conditions such that NHL is produced. The NHL so produced may be harvested from the host cells in conventional ways. Therefore, the present invention also relates to methods of expressing the NHL protein and biological equivalents disclosed herein, assays employing these gene products, recombinant host cells which comprise DNA constructs which express these proteins, and compounds identified through these assays which act as agonists or antagonists of NHL activity.

10

15

20

25

30

The cloned NHL cDNA obtained through the methods described above may be recombinantly expressed by molecular cloning into an expression vector (such as pcDNA3.neo, pcDNA3.1, pCR2.1, pBlueBacHis2 or pLITMUS28) containing a suitable promoter and other appropriate transcription regulatory elements, and transferred into prokaryotic or eukaryotic host cells to produce recombinant NHL. Expression vectors are defined herein as DNA sequences that are required for the transcription of cloned DNA and the translation of their mRNAs in an appropriate host. Such vectors can be used to express eukaryotic DNA in a variety of hosts such as bacteria, blue green algae, plant cells, insect cells and animal cells. Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast or bacteria-animal cells. An appropriately constructed expression vector should contain: an origin of replication for autonomous replication in host cells, selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and active promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. To determine the NHL cDNA sequence(s) that yields optimal levels of NHL, cDNA molecules including but not

10

15

20

25

30

limited to the following can be constructed: a cDNA fragment containing the fulllength open reading frame for NHL as well as various constructs containing portions of the cDNA encoding only specific domains of the protein or rearranged domains of the protein. All constructs can be designed to contain none, all or portions of the 5' and/or 3' untranslated region of a NHL cDNA. The expression levels and activity of NHL can be determined following the introduction, both singly and in combination, of these constructs into appropriate host cells. Following determination of the NHL cDNA cassette yielding optimal expression in transient assays, this NHL cDNA construct is transferred to a variety of expression vectors (including recombinant viruses), including but not limited to those for mammalian cells, plant cells, insect cells, oocytes, bacteria, and yeast cells. Techniques for such manipulations can be found described in Sambrook, et al., supra, are well known and available to the artisan of ordinary skill in the art. Therefore, another aspect of the present invention includes host cells that have been engineered to contain and/or express DNA sequences encoding the NHL protein. An expression vector containing DNA encoding a NHL-like protein may be used for expression of NHL in a recombinant host cell. Such recombinant host cells can be cultured under suitable conditions to produce NHL or a biologically equivalent form. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses. Commercially available mammalian expression vectors which may be suitable for recombinant NHL expression, include but are not limited to, pcDNA3.neo (Invitrogen), pcDNA3.1 (Invitrogen), pCI-neo (Promega), pLITMUS28, pLITMUS29, pLITMUS38 and pLITMUS39 (New England Bioloabs), pcDNAI, pcDNAIamp (Invitrogen), pcDNA3 (Invitrogen), pMC1neo (Stratagene), pXT1 (Stratagene), pSG5 (Stratagene), EBO-pSV2-neo (ATCC 37593) pBPV-1(8-2) (ATCC 37110), pdBPV-MMTneo(342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), pSV2-dhfr (ATCC 37146), pUCTag (ATCC 37460), and IZD35 (ATCC 37565). Also, a variety of bacterial expression vectors may be used to express recombinant NHL in bacterial cells. Commercially available bacterial expression vectors which may be suitable for recombinant NHL expression include, but are not limited to pCR2.1 (Invitrogen), pET11a (Novagen), lambda gt11 (Invitrogen), and pKK223-3 (Pharmacia). In addition, a variety of fungal cell expression vectors may be used to express recombinant NHL in fungal cells. Commercially available fungal cell expression vectors which may be suitable for

10

20

recombinant NHL expression include but are not limited to pYES2 (Invitrogen) and *Pichia* expression vector (Invitrogen). Also, a variety of insect cell expression vectors may be used to express recombinant protein in insect cells. Commercially available insect cell expression vectors which may be suitable for recombinant expression of NHL include but are not limited to pBlueBacIII and pBlueBacHis2 (Invitrogen), and pAcG2T (Pharmingen).

Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to, bacteria such as *E. coli*, fungal cells such as yeast, mammalian cells including, but not limited to, cell lines of bovine, porcine, monkey and rodent origin; and insect cells including but not limited to *Drosophila* and silkworm derived cell lines. For instance, one insect expression system utilizes *Spodoptera frugiperda* (Sf21) insect cells (Invitrogen) in tandem with a baculovirus expression vector (pAcG2T, Pharmingen). Also, mammalian species which may be suitable and which are commercially available, include but are not limited to, L cells L-M(TK-) (ATCC CCL 1.3), L cells L-M (ATCC CCL 1.2), Saos-2 (ATCC HTB-85), 293 (ATCC CRL 1573), Raji (ATCC CCL 86), CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CRL 1616), BS-C-1 (ATCC CCL 26), MRC-5 (ATCC CCL 171) and CPAE (ATCC CCL 209).

As disclosed in Example section 1, a 115 kb BAC clone (from Genome Systems) was subcloned and subjected to restriction and sequence analysis. Four genes at chromosome location 20q13.3 were identified, including M68/DcR3, NHL, SCLIP and ARP (Figure 5A). The nucleotide sequence of this BAC clone, hbm168, is presented as follows:

TGAAGAGCTT TGACCAAGAG GCTGTGACGA GGCCCTACGA GGACTCTGGC TCTCCTCCTG 60 CTAAGCACAC CCAGGCAGGT GTCCTGGCAG ATGAGGACCA CATGCAGAGC CTCGGCCAGC 120 CCACCAATGC CCGGATATGC AAGTGAGCCC AGCCTGGACC CCCCGGCGAG GCCCAGCAGC 180 ACCAGCCCAG GCCCGAAAAC CTTAAGAAAT GACCAGTGTC TGCTGCTTTA AGCCACCAAG 240 CTCTGCGGTG GTTTGTTAGG CTGCAAGCAT GGCTAATTCA GAAACTGCCA GAAACAAGCA 300 CTGCTGTCCC CAGCCTGGGA CACACAGCAC CGCCTCTGCG TGGGGAGAGG GCACAGGCTA 360 AGGGCACAAA TGCCATCCCA GACCCGGCTC TTGTGTGTGG AAGGGGCCAC TGTGCCATGA 420 GGCAGAGGAA ACCTTGGCAG GACCTTATGC CACAGCAATT TAAAAGAGAA GAAACAGGCT 480 GGGCGTGGTG GCTCATGCCT ATAATCCCAG CACTTTGGGA GGCCAAGGTG GTGGATCACT 540 TGAGGTCAGG AGTTCAAGAC CAGCCTGGCC AATATGGTGA AACCCTGTCT CTACGAAAAA 600

	TACAAAATTT	AGGCAGGCGT	GGTGGCGGGT	GCCTGTAATC	CCTGCTATTC	AGGAGGCTGA	660
•	GGCAAGAGAT	TTACTTGAAC	CCAGGAGGTG	GAGGCTGCTG	CAGTGAGCTG	AGATCATGCC	720
	ACTGCACTCC	AGCCTGTGTG	ACGGAGTGAG	ACTTGGTCTC	ааааааааа	AAGGAAACAC	780
	ATCTGACTAG	TGTGATCTCG	CAAGGAACAT	TCCAGACACA	GTGGAGCTAG	AAGGTTCTTC	840
5.	TCCAAACAAG	GAATCCCCAG	GGGATCAAAT	TGTTTTGCAT	CGGCCAGACA	TGGTGGCTCA	900
	AGCCTGTAAC	CCCAGTGCTT	CGGGAGGCTG	AGGTGGGAGG	ACTGCTTGAG	TCCAGGAGTT	960
	CAAGACTAGC	TTGGGCAACA	CAGTGAGAGC	CCATTAGCCA	GGCGTGGTGG	CACATGCCTG	1020
	CAGTCCCAGC	ACTGTACTAA	AAATCTACAC	GGGGCCGGGC	ATGGTGGCAC	ATGCCTGTAG	1080
	AGTCCCAGCT	ACTCAGGAGG	CTGAGGCAGG	ACGATTCCTT	GAACCCAGGA	GGTCACGGCT	1140
10	GCCATGAGCC	GTGACTGTGC	CACTGCACTC	CAGTCTGTGC	AACAGAACGA	GACTCTGTTT	1200
	CGAAAAACAA	AAAATCATTT	CATGTCTCCA	GTTTCTCCAC	TGGCAAAAGA	CTCTGTCAAG	1260
	GTAAAAAATG	GTTCTGACCC	ACAGAAATCT	AAGAAAGGAA	AAAATATAAA	AAATAGAAAA	1320
	TTTAAAAAAG	AGATGGTCTC	AGAATAAAGA	CCAACCTGGG	CTATGGTTGT	CACTCTTCCC	1380
	TCACACCTTA	GAAAGCTTTC	TGGCCGCATC	TGGCCAAAGG	GCCACCCTGC	CCCATCTTGG	1440
15	ATCAGTGAGG	TGCCTTCGAA	CAAGCCACCT	GCCCTGGAGC	CCGTCCTGTC	TTGTCTGCCA	1500
	CCGCACGCTC	AGTAGGGGAG	GGGAAGTCGC	TAGGTTTTAG	TTCACCAGTC	TCTGGATCAA	1560
	GACGTGCCAT	AACCAAGAAG	CCCCAGCCAC	ACCCAGACCC	GATGTGGCCA	CAAGGGGTGA	1620
	GCTGGGAAGG	CCCAGGAAAA	GGCGGGAGGC	GGACGAATGG	AAATGTCATT	CTGTGGCCAC	1680
	AGAAATGATC	TCAACGTTTT	GTAACTTCCT	ACCAAGAGGC	AGTCTTAGCT	CTGCCCTTGA	1740
20	ACCAGCACTT	GGTGATGTCG	CTTGCGTCAA	TCAAGGCAAC	AGAAGTGAGC	AGGAGGCCCA	1800
	CTTTCCTCTG	CAACTGTGGG	CTTACGGGGC	AAAGAAGTCC	AGGCCTCCAG	GTGGAGGATC	1860
	ACAGACCGGG	CAAAGCAGAG	GAGAGCCACC	CAGCCGAGCC	TACCTGTGCC	TCAGACTGCC	1920
	TCCCTCCAGA	GACCCCTGTG	GCCAAGGCCA	CCCÄGÀCCÀG	CAGGTCCTTG	CCAAGCTGTC	1980
	AGCTGACGAC	AGGGGTTGGT	GAGGCCGGCC	CAGACCAGCA	GAACCACGAA	CCAACCAACA	2040
25	GAATTAAAAA	TAATAACAAC	TATGTCTTGT	CTTAAGCCAC	TAAGTTTTGG	ATGGTTTCTT	2100
	TCTTTCTTTT	TCTTTTTTT	TTTCGGAGAC	GCAGTCTCAC	TCTGTTGCCC	AGGCTGGAGT	2160
	GCAGTGGCGC	AATCTTGGCT	CACTGCAAGC	TCTGCCCCCC	GGATTCACGC	CATTCCCCTG	2220 ⁻
	CCTCAGCCTC	CTGAGTAACT	GGGACTACAG	GTGCCTGCCA	TTGGGTGTTT	TCTTAAACAG	2280
	CAAAAGAAAA	CTGACACAAT	CATAAACAGA	GCAAGCAAGA	GAACTTGGCA	ATTATTTCCT	2340
30	CTCTACTTCT	CACTGTTCTT	CAAAGAGTTA	ACTCAAGCAT	AAGATGTGAG	CAAATTCTTT	2400
	TAACATCCTA	GAAAAAAAGC	TCCTACTCAG	TGTTCATAAA	GCAAAGCTAA	CCTACAGGAG	2460
	CCACCTTCCA	CAGTGACCAC	AGGAAACCAA	GACAGCAAGT	GGGACACCAG	CCTCCAGGGC	2520
	ACTGCGCCAG	CCGTGCGCCT	GTGTCTGCCA	CTGCCCTGGT	CCGTCACTGC	CACCAGCCGG	2580
	CAAGACACCC	ACAGAGGAGA	GCTCTAAGCC	ACAACTGTGT	ACGAAGACAA	CTGTGCAGGA	2640

	ттттаттаст	ACAACATTTT	TGTTTTCTTT	TTTTTTTTT	TTTGAGACTG	AGTCTCGCTC	2700
	TGTCACCCAG	GCTGGAGTGC	AGTGGCACAA	TCTCGGCTCA	CTGTAACCTC	CATCTCCCTG	2760
	GTTCAAGCAA	TTCTCCTGCT	GCAGCCTCCC	AACTGGATTA	CAGGCGCCCG	CCACCACGCC	2820
	TGGCTAATTT	TTGTACTTTT	AGTAGAGATG	GGGTTTCACC	ATGTTGGCCA	GACTGGTCTC	2880
5	AAATTCCTGA	CAAGTGATCC	ACCCACCCTG	GCCTCCCAAA	GTGCTGGGAT	TACAGGTGTG	2940
. ,	AGCCACTGCG	CCTGGCCCAT	TTTTGTTTAT	CAATAAAAAT	GTACTTAATG	TTGAACTCTC	3000
	CACATTTCAA	ATGGGTAACT	CCAGTGTCCT	TGATGCTCCT	GCGACATGTT	CGTGAGACTT	3060
	CTCTTGGGTG	TGAGAGTCTA	GCATGTGGGT	GGTCTGGACA	GGAGGGGGAG	GGAAGAGTGC	3120
	AGAGCCGGGC	AGGGTAAAGA	GACCCCCTAG	GATGTGAAGG	CCGCCCTGCA	TTTGTCAGAC	3180
10	TGGGCAACAC	CCACTCCATC	AGATGGACCC	TGGTATGGGC	GGCAAGCCAC	CTAGGTGCCG	3240
	AGGCAAGAGA	CCGAGGCAC	GAGCTGTTCC	GGTGTAATAA	AATGCATAAA	ATAAGAATAG	3300
	TTATACTAGA	TATAGATCAT	AAATATGATT	ATATATGAAT	ATCATTCATC	ATTAGTTTGT	3360
	AGCAATTACT	CTTTATTCCA	ATATTATAAT	AATCCTTGCC	TAAGCATAAC	CTAGGAAAAA	3420
	CTAGGAAATC	ATAACCTAGG	AAAAACTAGG	CCATACAGAG	ATAGGAGCTG	AGGGGACATA	3480
15	GTGAGAACTG	ACCAGAAGAC	AAGAGTGCGA	GCCTTCTGTT	ATGCCTGGAC	AGGGCCACCA	3540
	GAGGGCTCCT	TGGTCTAGCG	GTAACGCCAG	CATCTGGGAA	GACGCCCGTT	GCCAAGTGGA	3600
	CCGTGGTCTA	GCGGTAGCCT	CAGTGTCAAG	GAAAAACACC	CGCTACTTAG	CAAACCAGGA	3660
	AAGAGAGTCT	CCCTTTCCCC	GGGGGAGTTT	AGAGAAGACT	CTACTCCTCC	ACCTCTTGCG	3720
	GAGGGCCTGA	CATCAGTCAG	GCCCGCCGC	AGTTATCCGG	AGGCCTAACC	GTCTCCCTGT	3780
20	GATGCTGTGC	TTCAGTGGTC	ACGCTCCTAG	TCCGCCTTCA	TGTTCCATCC	TGTGCACCTG	3840
	GCTCTGCCTT	CTAGATAGCA	GCAGCAAATT	AGTGAAAGTA	CTGAAAGTCT	CTGATAAGCA	3900
	GAAATAATGG	CGTAAGCGGT	CTCTCTCTCT	CTCTCCTCTC	TCTCTGCCTC	AGCTGCCAGG	3960
•	AAGGGAAGGG	CCCCCTGGCC	AGTGGGCACG	TGACCCACAT	GACCTTACCT	ATCACTGGAC	4020
	ATGGTTCACA	CTCCTTACCC	TGCCGCTTTG	TCTTGTATCC	AATAAATAGC	GCAACCTGGC	4080
25	ATTCGGGGCC	GCTACCAGTC	TCCGCGTCTT	GGTGGTAGTĠ	GTCCCCCAGG	CCCAGCTGTC	4140
	TTTTTCTTTT	ATCTTTGTCT	TGTGTCTTTA	TTTCTACACT	CTCTCATCTC	CGCATACGAG	4200
	GAGAAAACCC	ACCAACCCTG	TGGGGCTGGT	CCCTACACCC	TGGCTTTGTA	GACTGGAGCC	4260
	TAGGCACGAC	TCAGCTGCTG	TAGTGAATTG	CGATCCTCCA	AACCCAGCAA	GGCACCTGCA	4320
	GGACATCTGG	CCCAGTCTCC	TCGTTGAGCC	AGTTCACGAA	AAAGAGACTT	TTCTGAGTGA	4380
30	CATGCTAATG	GGCAATATGA	GGACTAAATG	GGATGGTCTC	CAACTTGGAC	AAACCAACAG	4440
	TAAAAGCCAC	TTTGCGGGGA	AAGAAACTTT	TCCTTTTTTC	TTTTTTTGA	GACAGGATCT	4500
	CACCCTGTCA	CCCAGGCTGC	AGTGCAGTGG	CATGACCTTG	GCTCACTGCA	GCCTCAACCT	4560
	CTCTCAGGCT	CAAGCAATCC	TCCCGCCTCA	ACCTCCCATG	CAGCTGGGAC	CATAGGTGCA	4620
	TGCCACCACA	CCCAAATAAT	TTTTATATTT	TTTGTAGAGA	CGAGGTTTCA	CTATGTTGCT	4680

	CGGGCTGGTC	TCAACTCCTG	GGCTCAAGCA	ACCCTCCCAC	CTCAGCCTCC	CAAAGTGCTC	4740
	AGATTACAGG	CAGGAGCCAC	CAGGCCTGGC	CAACATAGGA	AGAAATTTAA	ATTTGAATTG	4800
	AATATTAGAA	GAGATGAAAA	TTCATCAACA	TGGAAAGACA	AAGATCATTA	ACTAAAGCCA	4860
	AACCAGAATG	GAAGCTGTGT	GTACAGTGGG	GTCTCATGCT	GGGAACGCGA	GGGGCACGTG	4920
5	CAGGGCTCCA	CGGTGTGGCG	ACGCCCCATG	CTCCCTTTGT	GGGGGTTCAT	CCAGCGGAAC	4980
	ATGAGGACCT	GGGGTGCTTT	TCAACATGTA	CGTGAGTTTA	ATAATAAAAA	GGTTTAAGGA	5040
	AAGAAAAATT	CATATGTTTC	тататаааса	GAACATCTGG	AAAGATCTAT	TCTAAGGTGT	5100
	TGACAGTAGG	AATCTCTAGG	TAGTAGTAAT	ATGGCCTTTT	TGAATTTTTG	CTTATCAGTA	5160
	TTTTCTAATT	TTCTTTTTCT	TTCTAAATAA	TTCTAGCTAT	GAAATAATTT	TCTACCATAT	5220
10	ATATTTTGTA	ATAAAAATGG	TTATATTTAA	TTTTTTAAAG	GCTGTACAAA	CTTCCTGATA	5280
	AAATGGCAAA	TTAGACACAC	ACATGTGGGC	CGGGTACAGT	GGCTCGCGCC	TGTAATTCCA	5340
	GCACTTTGGG	AGGCTGAGGC	AGGCAGATCA	CCTAAGGTCA	GGAGTTTGAG	ACCAGCCTGG	5400
	CCAACATGGT	GAAACCCCGT	CTCTACTAAA	TATACAAAAA	TGAGCTGGAT	GTGGTGGCAC	5460
	ACACCTATAG	TGCCAGCTAC	TTGGGAAGCT	GAGGCAGGAA	AATTGCTTCA	ACCCGGGAGG	5520
15	CAGAGGTTGT	AGTGAGCCGA	GATCATGCCA	CTGCACTCCA	GCCTAGGCAA	CAAGAGCGAG	5580
	ACTCCAACTC	TAAAAAAAA	AAAAATAACA	CACACGTGAA	TAGGCTCCTC	ATGGAAGTCA	5640
	TCACAACAAT	GCAGAGGGAA	GAGCTTCCAA	AGTGTAAACC	CAGAAGCGAG	GAGCAGGAGG	5700
	GTGCGCGCAG	ACGCAGAGAG	CAGCAAGGTG	CAGACTGAGA	GGCGGAGGCT	GGCCGTGGGG	5760
	AGATGACTGA	TGCTCAGTTT	ATACCCCAAA	TCCGTAAATC	TAGAGGCCTG	GCACATCAAC	5820
20	TACCTCTGCC	AGCAGGAATG	AGGGAAAGGA	GGGCAACCAA	AAGATGTCCC	ACCCTCACCC	5880
•	ATCCAGCTAC	CTGCCATCCT	CAGCCCCACT	GGCAGAAGAC	CCTGAGAGGT	GGAGGCAGGC	5940
	CCCTGCCTAC	AGGACCCTGA	GAGCTAGGGG	AAGGCGTTAT	CCTGAACTGT	GTCCCCCGTA	6000
	AAATTCATAT	GTTGAAGGCC	TCATCCCCAG	TGTGACTGTA	TTTAAAGATG	GGGTCTTCAG	6060
	GAGATAATTT	AAATGAGGTC	ATATAAGTTG	GCCCTCATCC	AGTAAGACTT	TGACCTTCTG	6120
25	GTGGTTTTTT	TTTTTTTGGA	GACTGGGTCT	CACTCTATCA	CTCAGGTTGG	AGTACAGTGG	6180
	CACGATCACG	GCTCACTGCT	GTCTCCAACT	CCTGGGCTCA	GGTGATCCTC	CTGCTTCAGC	6240
		•		CCACCGCACC			6300
	TTTTTGTAGA	GATGGGGTTT	TGCCATGTCG	CCCAGGCTGG	TCCTGAACTG	GGCTCAAGTG	6360
	ATCTGTCTCC	CTCGGCCTCC	TGCAGTGCTG	GAATTACAGG	TATGAGCCAC	CGCGCCTGGC	6420
30	CGACCGTGAC	CTTCTAAGAA	GTGAAAGAGA	AAGATCTTTC	TCTCTCCCTC	CCTCTCCATC	6480
	ATGAGGACAC	AGCAAGAAGT	CGGCCATCTG	CAAGGTAGAA	AGCGAGTCCT	CCCAACAGCT	6540
	GAACCTGGCA	GACCCTGATC	TTGGACTTCA	GCCTTCAGAG	CTGTAAGAAA	ATAACTCTCT	6600
	GCTGTTCAGG	CCACGCGGTC	TACGGCAGCC	CGAGCAGACT	AAGACACACG	CCATCTGGGG	6660
	AGTCAGACCA	GATCAGGAAG	AAAGGCCTAG	AGCTCAGGAT	ACTGAAGGTC	CCAACCCGGT	6720

	GCTGGACCAG	ACCACCCCGG	CAGCCGCGGC	ÇACGGAGTCA	CGGCTCGGGT	GAGGTGACCT	6780
	GGACACCATC	CCGGCAGCCG	CGGCCACGGA	GTCACGGCTC	GGGTGAGGTG	ACCTGGACAC	6840
	CATCCCGGCA	GCCGCGGCCA	CGGTGTCACG	GCTCGGATGA	GATGACTCGG	ACACCACCCC	6900
	GGCAGCCGCG	GCCACGGTGT	CAGGGCTCAG	GTGAGGAGAG	TTGGATATGG	GACTGGGCCT	6960
5	ACCCCGAGGC	TGCTTCCACC	CAGACGCCTG	GGTGGGTGAC	ACGAAAGCTG	GGCTCAGTTG	7020
	GGATCAGAGC	AGCCTCTCCC	CAGGTCAGAA	ATGACCCTGG	GCTCCTCACA	GTAGCCCTAG	7080
	GGCACCATGA	GAAAGCTACG	TGGACTTCTC	TGACCAAGGG	TCACTGCTGC	CACACTACTC	7140
	ATTGCAGGCC	ATGTCAGGGC	TCAGCTGAGG	AGACGTGGAC	ACCACCCCAG	CAGCCGCGC	7200
	CACGGCGTCC	CAAGGGAGGG	ACTTGGGCAC	TGCCTCTCTG	GGCAAGAGTG	GGGAGGTGTG	7260
10	GGGTGGGAGA	TGTCTGGAAA	CATCATGGAC	ACATGCCGGG	AAAACACGGA	AGCTGTGCAC	7320
	CAAGGTGCTG	ACAAAGGAAA	AAGGAGAATG	GAGGTGTGAA	CATCCAGCTA	GCAGGTCCCA	7380
	CTCAGAAACT	CCTGCATTTC	CAGACATGGC	CACCAGCTCT	GTGGATGAGA	CAGGGGAGGA	7440
٠	CÄGGGTACCT	CACACCAGGA	ACCCACACAG	GTCCATGTCT	TGCTCTGTGA	TCACACAACA	7500
	GCCTCCACCA	CCCTGACATG	CAGGAGGGAG	GTCAAAGCCT	CGGGTCCAAC	AACAGGCTCC	7560
15	ACAGCAAGGG	AAGAAAGGCA	GGAAGGAACT	CAGGGCCAGG	TCCTCCCAGG	CAGCAGCTGC	7620
	CTGCACGCTG	TCCACCAAGG	GAGGTCTGAC	CTACACCGCA	CAGGGGTTGG	CAGTCTAGAG	7680
	TCGTCCTCTG	TCAAACGGTG	AGAAAGTCAA	AAGCTCATGC	TCAGTGATAT	GCTAGGTCAG	7740
	CATGAAGATG	CCACACATGA	GACACAGCAA	GGATGAGACC	AACGGGAAGA	CTGCCCCAGA	7800
	CCAGAGCCCC	AGAGCCCTCT	GGGGAGGAAG	AATAAGGATG	GCAGCCTGGG	ACTGCCCGGG	7860
20	GCTGACTCTG	CCTTTATTTC	ACCCCAGCAG	AGGCAGGAGT	GACACCGGCT	CACAGCAGGA	7920
	GCAGCTCTGC	CACCTCCTAG	CAGTTCCACC	TACGGGCAGC	AAAACAAAGC	TGGCAGTTTG	7980
	GGCAAATGTT	AGCGTTTTTG	CCAACTAACA	TTTGAATCGG	ACATCTGGTA	CAGAGATGAG	8040
	GAAGAAAACA	CTCACAGTTT	CATGAAGACT	GTCAAGAAAA	TCACTGACTC	TTCACTTCAT	8100
	TTATGAAAGG	CCAGCTCTCT	GACATCCCTA	CCACTCCCTC	TCACATGAGA	AATCACGGCC	8160
25	TTTCAGGACG	TGGAGCCACG	TGGCCATGCA	GGTACGGGAG	GCCTCCCCGC	AGCTGCAGCT	8220
	GGGTCTTCTG	GTCCCCGTGC	CATTTCTGCT	TTTCTTCGCT	CTCTACTTAC	ACACACATTT	8280
	GAGTCCAGTC	TCAGAAGAAC	TGGAACTAGA	AAAATCCTGA	CACTTGTCCC	TTACTACGTT	8340
	AATGCCAGCT	GTGCCAAGGA	CAGCCCAACC	CAAGCCCCCA	TCAGCCCCAA	TGGCACCGAG	8400
	GCCCGAGCTT	ACCCGTGAGG	GGCCAAGTTG	GTCGTCACCA	ACACGGTCTT	CACCCCTCC	8460
30	ACACCACTGC	CGTCCACTGC	AGTGTCCGGA	GTTGTCACAA	CCACCACCTC	CTCCATGTGC	8520
	ACACTCACGT	CGGGAGTCGC	CATGGCTCAG	CGGAAGGGGA	CGCCCAGGCC	AGCAGCGTCA	8580
	GTCCTCCAGG	GTCCCAAGTC	CTGGAGGAAG	CAAGGCAGGG	CACAGGGATG	GAGTCATCTC	8640
	CACATCCACA	CAACATAGCA	CTCACAAAGG	CATCTCTAAT	CAGCTCCAAA	GACCCACCCT	8700
	TGAGTCCCAG	ACTGCTACCT	CCTGACAAAA	ACGAGCGGCA	ACAGAAGGGC	TACTCCAGGC	8760

	TCTGGTTCCG	AGGGCGGTGT	AAGCGCACTC	CACCCGTTTT	TCCCACTGGA	TAAGCCGAAA	8820
	CCCTTGGGTA	GAAAGCACAG	AGCCACTCCC	TCCACGTGGG	GCTCAGAGCA	GGAGGACAGG	8880
	AGGGGCCTGG	AATTCCAAGC	AACTTCCCTG	GACGCAGGCT	CCCGGCTTGC	CAGTTCTTCC	8940
	GTCTCTCCTG	GCCTGAACTC	AAAGCCAGCC	CCAATCCCTG	AACTGAGTTT	CAGGTGCAGA	9000
5	AAGCACTCCA	AGAAGTCCTC	GCTGGTCTGT	GGAACGGGAA	GGGAAACCCA	TTCAAGACAG	9060
	AAAGAGAGGA	GGGAAACGCC	CTGGGTTTTT	TTGGGTTTTT	GGGTTTTTTT	TGAGACGGAG	9120
	TCTCGCTCTG	TCGCCCAGGC	TGGAATGCAG	TGGCACGACC	TCGGCTCACT	GCAAGCTCCA	9180
	CCTCCTGGGT	TCAAGTGATT	CTCCTGCCTC	AGCCTCTCCA	ATTGCTGGGA	TTACAGGTTT	9240
	CACCATGTTG	CCCAGGCTGG	TCTCAAACTC	CTGACCTCAG	GTGATCCACT	CACCTCGGCC	9300
10	TCCCAAAGTG	CTGGGATTGC	AGGTGTGAGG	CACCATGCCT	GGCCTGCCCC	GGGTTTAAAA	9360
	ATTATTATTA	TTTTGTCTTT	CCTGGCTTTG	CCTTCAGCAA	GTCCAACCCC	TGCTAAAACC	9420
	CGGTGATAAT	GGCTGTCCTG	GCCCAAAAAG	CTTGGAGACA	GGGGAATCTT	CCTCCTGACT	9480
	AAAGGAATGG	TGGCCCAAGA	GTGTGGGGGC	TCCCTGTTGC	CCTCTCACTC	TCCATCCCCT	9540
	ACCTAGCACA	GGGAACACAA	AAGCCCCTGG	TTTCCAGCCA	GAGGGCAACG	AGCCTGGAGT	9600
15	CAGAGTGTGG	GGGAGGCGAC	AAGAGGAGAG	GGGAGAAGAG	AGGATGGCAC	ACAGCTGTGT	9660
	GTGAGCGCCT	GGGTCGTCCC	AAGACAGTCT	CTACGTGGTC	CTGACCCTAA	AGGGCAAAGG	9720
	GAAGAAAACT	GACCTACAGG	ATAGGCCACT	GCCCAGGTCT	CAGATGGGCC	CCAGTGGCGC	9780
	ATATGGGACA	GATCCACAGT	GCACTGGAAA	GTCTCTAAAA	TAAACTGGCC	TAAGAACACA	9840
	GACACAGGAA	CGGGGTGCAA	AATTTGCAGC	CTGAACCTAA	CCAGGTCGAT	TTCTTGCTAT	9900
20	GAAAAAAAA	AGTCTACATT	CTCTGTGAAA	CTTAAAACAA	GACCTAGAGT	CCATAGCACA	9960
	GTAGTCAAAG	CATCCAGAAC	ACGATCAAAC	TTCCTGGCAA	AGGGTAGTCT	GGTTGATTCT	10020
	CAAAGGAACA	AATACACAAG	AGAAGCTGGC	TCTTGAACGC	AGAATCCAGA	GACTTTCAGG	10080
	TGCTATCGGA	CCAGCTCCAA	GAGGAAAGCA	AACATTGTCA	ACCAAGTGGA	AAGAAAATCT	10140
	TGGTATAGAA	ACAGGAGTTA	TAACCAAACA	GAAATGTGAA	AATTAAAAAC	GACAACCAAA	10200
25	AGAAAATACA	CAAAGCTGGG	ATAGTCTCAG	CTACTCGGAA	GGCGGGGCTG	GAGGATCGTT	10260
	TGAGCCTAGG	AGATTGAGGC	TGCAATGAGC	TGTGATCACA	CCACCGCACT	CCAGTCTGGG	10320
	CAACAGAGTG	AGAACTCTCT	CAAAAAACGA	AAAAGAAAGA	AAGTAGAACA	GAAGTGACCA	10380
	GGGGCTGGGG	GAGGGAGTAC	AGGGAGTTGT	TCTTTAATGA	GTACAGAATT	TCTGTTTGGG	10440
	ATGATGAAAA	GCTCTGGAAA	TGGACGGCGG	TGATGGCTGC	ACAATCACTG	TGGCTGTTCT	10500
30	GAATGGTGCT	GAACCACACA	TTTAAAAAACA	GTTAAAATGG	GCTGGGCGTG	GTGGCTCACG	10560
	CCTGTAATCC	CAGCACTTTG	GGAGGCGGAT	CGCCTGAGGT	CAGGAGTTCG	AGACCATCCT	10620
	GGCCAACACA	GTGAAATCCT	GTCTTGACTA	AAAATACTAA	AAATTAGCCA	GGCATGGTGG	10680
	CAGGCACCTG	TAGTCCCAGC	TACTTGGGAG	GCTGGGGCAG	GAGACCTGCT	TGAACCCAGG	10740
	AGGCAGAGGT	TGCAGTGAGC	CGAGATCGTG	CCACTGCACT	CCAGCCTGGG	CAACAAGAGC	10800

	GAAACTCCAT	CTCAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAGTTTAAAA	TGGTTAAATT	10860
	TTATGTTATG	TATATTTTAC	CGTAATAAAA	ACACTGTAAT	GCTACTATAA	TAGAATGACT	10920
	CATTAGGATT	AGATATAGAC	TAGAAAGTAC	AGAATATAAA	AACTTTTTAA	ACAAAGAAAA	10980
	ATTTTCATGG	CCAGGCATGG	TGTCACACCT	GTAATCCCAG	GACTTTGGGA	GGCCAAGGCA	11040
5	AGAGGAATGC	TTGAGCTCAG	GGGTTTGAGA	CCAGCCTGGG	CAACACAGCA	ACACCCCATC	11100
	TCTGCTAAAT	AAATAATAAA	AAATAGCCAG	GCATGGTGGT	GTGCACGCCT	GTAGTTGCAG	11160
	CTACTCTGGA	GGCTGAGGCA	GGAGGATCAC	TTAAGCCCAG	GAGGTCAAGG	CTGCAGTGAG	11220
	CCATGGTTGT	GCCACTGCGC	TCCAGCCTGG	GCAACAGATC	AAGACCTTGT	CACAAAAAAA.	11280
	AGAAAGAAAG	AAAAGAAAAA	AGAAAGAAAA	TAAAATCTTC	CAGAACTTTT	AAAATCATCA	11340
10	TTGTTAATAT	AAAAATAACA	TCACCTGCCC	CTAGGACTGT	AACAAACAAG	TGTGTCTAAG	11400
	GACAGGAGTG	GGTCCACCCC	AACCTGGCAC	GCAGTGGTCC	CCTGCGGAGA	GTCTGGCCCT	11460
	GCACTCACTA	AGAGGAGGCA	CTCATAGCCC	AGCCAGGCCT	CTGCAATTAT	GCCTTCAATG	11520
	CCAGAACTAA	CTCACCCAAA	CTGAACAATC	GATCACAAAA	TGTGCCTTCA	GGTCTCAAGG	11580
	TTCTTGCTAA	ATCTTACTCA	ACCGACATTT	TCCAGCATGG	GAACATTTTT	CTGAATGTCT	11640
15	TAGGGAGAGG	AAGTCCGCAA	GAGAACAAAA	GGTCCTCAGG	CCACCCTAGC	TTCTTTTCCT	11700
	CCATTCCACA	GGCTGTCTTT	TGTCTGGGTA	TGCACTGGAC	CAGGGGGCTC	TACTTCTTCC	11760
	TACCTGGGCA	TGGGTCTCCA	CACAACTCCA	AGGTAAAGGG	CCACAGGCAA	GATAAAGGGG	11820
	AGAAAAGAAA	GCTACGATTT	CCTGGGCCAC	CAATCGCAAA	TGGCAGCCAG	TCTCTGAAGT	11880
	AACCCTTGAC	CAGAGATCCA	AGGAACCAAG	AAATGTAGGT	GATCTGAACA	GAGGGGATGG	11940
20	TGGTTAAACA	CCATGAAGGA	AAGACCCATT	CTCAAAGAAA	AGGAAGCAAA	AAGAAACCGT	12000
	GGGGAGCTGG	GTACCACCCG	CAGCAAAGAC	CCCGCACGCG	TTACTGACGC	CAGCCTGGCC	12060
	TGGGAGAGCA	GTGAGTGTGG	CGGACGGTGA	GTGGCGGGGA	GGGCTGTGGT	AGGTTTAGGG	12120
	TAAGAAGGGG	CAGCGCCCAG	AGCCCAGAGA	ACACCAGTGA	GGGCTCCACA	GGAACACTAC	12180
	TCAAAGTATT	CACGGAACAC	ATCTAAACAC	AAGCACTAAG	GACTAAGTGC	GAGGGACAAG	12240
25	AAAATATTCC	CCGTTTCCTG	TTTCAGGAGG	GTATCGAAAA	TGAGTGATGG	AAGGAAAATG	12300
	TATTGTTTAA	ATGAGGAAAA	AAAATTTTTA	CAAATTAAGA	ACATCCTGGA	ACATGATGAG	12360
	CCGTTTACTG	TCACTCAATT	TAAATGGTGG	CCATCTAGGA	CAGAGCGCCT	AAGGGGAAAG	12420
	GGGGCTCACA	GGTGAACCCC	TCCAGCTGCT	GGTGGGCAAT	TTCCCATTAG	GGCATCAGGG	12480
	TCTCTGAAGA	CTGTCTTCAG	ATGCTTTTTA	GCCAGGAAAG	TTACAATGAT	GAATTCGTTT	12540
30	ACACTGGCGG	AATTACTTCG	TATTTCTCAA	ATATAATGTT	TTCACTAGCA	TAACTTTGTT	12600
	GTTGTAGACT	TAGGCTTCAA	AATAAAGAAC	TTTAAACAAA	CATGAATAAA	AAGCCACTTT	12660
	AGGCCGGGCG	CGGTGGCTCA	CACTTGTAAT	CCCAGCACTT	TGGGAGGCCG	CGGCGGGTGG	12720
	ATCATAAGGT	CAGAAGTTCA	AAGACCAGCC	TGATCAATAC	GGTGAAACCC	CGTCTCTACT	12780
	АААААТАСАА	AAATTAGCCG	GGCGCGGTGG	CAGGTGCCTG	TAATCTCAGC	TACTTGGGAG	12840

	GCTGAGGCAG	GAGAATCGCT	TGAACCTGGG	CAGCAGAGGT	TGCAGTGAGC	CAAGATCATG	12900
	CCACTGCACT	CAAGCCTGGG	TGACAGAGTG	AGACTCTCTC	TTAAAAAAAA	AAAGCCACTT	12960
	TAAAATTTTA	CTCAGGCCAG	GTGTGGTGGC	TCACGCCCAT	AATCCTAGCA	CTTTGGGAGG	13020
	CCGAGGCGAG	CAGATCACCT	GAGGTCAGGA	GTTAGACCAG	CCTGGCCAAC	ATGGTAAAAC	13080
5	CTTGTCTCTA	CTGAAAACAC	AAAAATTAGC	TGGGCGTGGT	GGTGTGCCCA	TGTAATCCCA	13140
	GCTACTCAGG	AGGCTGAAGT	.GAGAGAACTG	CTTGAACCCG	GGAGGCAGAG	GCTGCAGTGT	13200
	GCCAAGACTG	CACCACTACA	CTTCAGCCTG	GGCGACAGAG	CAAGACCCTG	TCTCAGAAAA	13260
	AAAAAAATT	CAAAAATTTG	GCCAGGCGTG	GTGGCTCACG	CCTGTAATCC	CATCACTTTG	13320
	GAAGGCCGAG	GCGGGTGGAT	CACCTGAGGT	CAGGAATTCA	AGACCAGCCT	GGCCACCATG	13380
10	ATGAAACCCT	GTCTCTACTA	ААААТАСААА	ааааааааа	CAAATTGGCC	GGGCATGGTG	13440
	GCGGGTGCCT	GTAATCCCAC	CTACTTGGGA	GGCTGAGGCA	GGAGAATCTC	TCGAACTCCG	13500
	GAGGCAGAGG	TTGCAGCGAG	CCAAGATTGT	GCCACTGCAC	TCCAGCCTAG	ACAACAGAGC	13560
	GAGACTCTGT	СТСААААААА	AAAAATTAA	AATTAAAAAA	TAAAAATTTC	ATTTAAAATA	13620
	CTACTGATCT	CCCGTGCTGA	CTTCTCGGGG	TTTAACTCTC	ACTGAGGAGA	CGCTGCTTTC	13680
15	ATAAGGGTAA	GCTCAGCAGG	GGCAACTAAA	GTCATTTAAG	CAGAGAGCTG	CAAAGAGGCA	13740
	ACAGCCTCAC	TGCAGGCAGG	GGTCCTCGTC	ACAGCTTCAG	GGCTTTGCAG	AGGATTACGC	13800
	AATGTACACG	CACAAAACTG	AATTCCAGCC	TCTCCATTGG	CAACTGCATA	CATACATATA	13860
	TTCTTTTTTT	GAGACGGAGT	CTCGCTCTGT	AGCCCAGGTT	GGACTGCAGT	GGCCCGATCT	13920
	CGGCTCAATG	CAAGCTCTGC	CTCCCGGGTT	CAAGCGATTC	TCTTGCCTCA	GCCTCCTGAG	13980
20	TAGCTGGGAT	TACAGGCGCC	CACCACCACG	CCCGGCTAAT	TTTTGTATTT	TTAGTAGAGA	14040
	CGGGGTTTCA	CCATGTTGGC	CAGGACAGTC	TCGATCTCCT	GACCTCGTGA	TCCGCCCGCC	14100
	TCTGCCTCCC	AAAGTGCTGG	GATTACAGGC	GTGAGCCACT	GAGCCTGGCC	TCCAATGGCA	14160
	ACTATATTAA	AGGTTCAAAG	CAATATGCAC	AAAAGTTACC	TCACAGAAAA	TAGTGCAAGT	14220
	CCTTGATACA	ATGCTCTTTA	GACACAGAAG	AAGCACTATA	GAATAGAGCA	CCTCGCCCTA	14280
25	TTGCCTTCCC	AAGGGCGAGC	ACCCCCTCCT	CTCTCCACAG	CTCCTTCTTT	GTTTTTTTGA	14340
	GATGGAGTCT	CGCTCTGTCA	CCCAGGCTGG	AGTGCAÄTGG	CAAAATCTTG	GCTCACTGCA	14400
	ACCTCCGCCT	CCCGGGTTGA	AGTGATTCTC	CTGCCTCAGC	CTCCCGAGTA	GCTGGGACTA	14460
	CAGGCACCCA	ACACGCCTAG	CTAATTTTTG	CATTTTTGGT	AGAGACGGGG	TTTCATCATG	14520
	TTGGCCAGGC	TGGTCTCGAA	CTCCTGACCT	CCAGTGATCC	TCCCACCTTG	ACCTCCCATA .	14580
30	GTGCTGGGAT	TATAGGTGTG	AGCCACTACA	CCTGGCCTCT	CCACAGCCCC	TTCTGTGTTG	14640
	AAGCCAAGAC	CCACCCAGCT	TTGATCCCAA	GGCTTGGGTT	CCCCACTAGT	GTGAAGTGAG	14700
	TTTCCAAATT	ATTAGGTAAA	TCAGATATGA	GAAAATATTT	TATTTTACTT	TTTTTTTTT	14760
	GAGACGCAAT	CTTGCTCCGT	CACCCAGGCT	GGAGTGCAAT	GGCACCATCT	CCACTCACTG	14820
	CAACCTCTGC	CTTCTGGGTT	CAAGCAATTC	TCCTGCCTCA	GCCTCCCAAC	TAGCTGGGAT	14880
		•			*		

CCGTGTTAGC CAGGCTGCTC TCAAACTCCT GACCTCATGA TCCGCCCACG TCGGGCTCCC 15000 AAAGTGGTGG GATTACAGGT GTGAGCCATC ACACCTGGCC CAAGAAAATA TTTTTAAACT 15060 AGTATTCTTG ACCGGCACGG TCAACACTGA TGTAATTGAA ACTGTTGTAT TTGAAGTGTT 15120 5 AGCAAAGAAA GAGAATTCTG GTTCAACAGA AAAGTCAGTC ACGACTTTTC AGTCACGCAT 15180 GAATTACACA GTAACCAAAT AGATAACATG CCATGACTGA CGACGGGCCC ACAACAAATC 15240 AGCTCCGACC AACAGGGTCC ACACCACCAT GGGTCTACAC AGATCCAGGT CCCGCCTGTG 15300 AGCCTACAGT GACGCGGCC CCTGTGGGGT GGTCCCTGCA GGTCAGGTCC CTGAGAGTGG 15360 GTCCCAGTGG GGTGATCCCT GCGGGTCGCG TCCCTGCGGT CCCGCCTGT 15420								
AAAGTGGTGG GATTACAGGT GTGAGCCATC ACACCTGGCC CAAGAAAATA TTTTTAAACT 15100 AGTATTCTTG ACCGGCACGG TCAACACTGA TGTAATTGAA ACTGTTGTAT TTGAAGTGTT 15120 AGCAAAGAAA GAGAATTCTG GTTCAACAGA AAAGTCAGTC ACGACTTTTC AGTCACGCAT 15180 GAATTACACA GTAACCAAAT AGATAACATG CCATGACTGA CGACGGGCCC ACAACAAATC 15240 AGCCTACAGT GACCGACACT GGGTCTCACC AGATCCAGGT CCGCCCTGTG 15300 AGCCTACAGT GACCGAGCC CCGTGGGGT GGTCCCTGCA GGTCAGGGCC CCGCGGTGGC 15400 CCCTGCGGGGT GGGGCCC CCGGGGTGCGC TCCCTGCGG GTTCCCTGCA GGTCACGGTC CTGAGAGTG 15400 CCCTGCGGGGT GGGCCCCTGC GGGGTGCCC TCCCTGCGGG TTGGGTCCCT GCGCGGTGC 15400 CCCTGCGGGT GCCCCTGCG ATCCCGTC CCTGCGGGT GCGTCCCTGC GGGTGCCCC 15400 CCCTGCGGGT GCCCCTGCG GTCGCTCC TCGCGGGTGC CCCTGTGGGG TCGCTCCTGC GGGTGCCCC 15400 CCGGGTCGGG TGCCTGCGG GTGGTCCTT TGGGTGCGC CCCCTGGGG TCGCTCCT 15600 CCGGGTCGGT CCTTGTGGGT GCCCCTTGC GGTGCCCC CCCGTGGGG TCGCTCCT 15600 GGGTCCGGT CCTTGTGGGT GCCCCTTGC GGTGCCCCC CCCCTGTGGG TCGCCCCCC GGTCCCCT 15700 GGGTCCGCT CCTGTGGGT GCCCCTTGC GGTGCCCCC CCGCGGTGC CCCTTGTGGG TCGCCCCCC GGTCCCCT 15700 CCCGCGCGCC CCCCTGCGC GTCGCGTCC CTGCGGGTC CCCTTGTGGG TCGCCCCCC GGTGCCCC CCCGCGGCC CCCCGCCCC CCCGCGCCC CCCGCCCCC CCGCGCCCC CCCGCGCCC CCCGCCCCC CCGCGCCCCC CCCGCCCCC CCCGCCCCC CCCCCC								14940
AGTATTCTTG ACCGGCACGG TCAACACTGA TGTAATTGAA ACTGTTGTAT TTGAAGTGT 15180 5 AGCAAAGAAA GAGAATTCTG GTTCAACAGA AAAGTCAGTC ACGACTTTTC AGTCACGACT 15180 GAATTACACA GTAACCAAAT AGATACATG CCATGACTGA CGACGGGCCC ACACACACT GGTTCACAGT CCCGCCTGTG 15300 AGCCTACAGT GACCCACCAT GGGTCACCA AGATCCAGGTC CCCGGGTGGC 15300 GTCCCAGTGG GACCCACCACT GGGTCACCAC AGGCTCACAGT GCCCCTGCA GGTCCCTGCA GCCGGGTGCC CCCGGGTGCC CCCGGGTGCC CCCGGGTGCC CCCGGGTGCC CCCGGGTGCC CCCGGGTGCC CCCGGGTGCC CCCGGGGTGC CCCGGGGTGC CCCGGGGTGC CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCGTGGGG CCCTGGGGG CCCTGGGGG CCCTGGGGG CCCTGGGGG CCCTGGGGGG CCGGGGTGG CCGGGGTGGG CCGGGGTGGG CCGGGGTGGG CCGGGGTGGG AGGACGCCGG CCCGGGCCCG CCGGGGGGGG AGGACGCCGGG CCCCGCCCCGG CC								15000
5 AGGAAAGAAA GAGAATTCTG GTTCAACAGA AAAGTCAGTC ACGCCTTTTC AGTCACGACT 15180 GAATTACACA GTAACCAAAT AGATAACATG CCATGACTGA CGACGGGCCC ACACAAAATC 15240 AGCTCCGACC AACAGGGTCC ACACCACCAT GGGTCACCAG CCCGCGGGCC CCCGCGCGG CCCGCGCGA GGTCAGGGTC CCGGGTGCC 15300 10 CCCTGCGGGT GGGTGCCCT GGGGTGCCC CCTGGGGTC GCGGTGCCCT GCGGTGCCC 1540 10 CCCTGCGGGT GCCCCTGGG AATCGCGTC CTGCGGGTC GCGGTGCCCT 1540 10 CCCTGCGGGT GCCCCTGGG ATCGCGTCC CTGCGGGTG GCGCTCCCC 1540 10 CCGGGTGCG GCCCTGCGG GCGCTGCGG CCCCTGGGG GGGTGCCCC 1540 10 CCTGCGGGT GCCCTGCGG GTGGTCCCT CCGGGGTGG CCCCTGGGG CCCCTGGGG CCCCTGGGGT CCGCTGGGG CCGCTGGGT GGTCCCTGG GGTGGTCCC CCGGGGTGG GGTCGCTGG GGTGGGCCG AGGCGGTGGG GCGCGCCCCC CCGCCGCCCC								15060
GAATTACACA GTAACCAAAT AGATAACATG CCATGACTGA CGACGGCCC ACACAACACAC AGATCCAGGT CCGCCTGTG 15300 AGCCTACAGT GACCTACAGT GACCTACAGT GACCTACAGT GACCTACAGT GACCTACAGT GACCTACAGT GACCTACAGT GACCTACAGT GCGGGGCC CCTGTGGGGT GCGGTGCCT GCGGGTGCC TCCTGCGGGT GCGGGTGCC TCCTGCGGGT GCGGGTGCC CCTGCGGGT CCTGCGGGT CCTGCGGGT CCTGCGGGT CCTGCGGGT GCGGTCCCTGC GGGGTGCCC CTS4880 CCTGCGGGGT GCGGTCCCGC GGGTCCCTGC GGGGTCCCCT GGGGTCCCCT GGGGGTCCC TCGGGGTCC CCCGGGGTCCC CCCGGGGTCCC TCGGGTCCCT TCGGGTCCCT TCGGGTCCCT TCGGGTCCCT GGGTCCCTGC GGTCCCTGCG GGTCCCTGCG GGTCCCTGCG GGTCCCTGCG GGTCCCTGCG GGTCCCTGCG GGTCCCTGCG GGTCCCTGCG GGTCCCTGCC GGTCCCTGCC GGTGCCTGCG GGTCCCCTGC GGTGCCCCC GGGCGCCCC AGATGGAGC AGATGGAGC GCGGCCCCCGC GCCGCCCCCC GCCGCCCCCC CCCGCCCGCC AGATGGAGC AGATGCAGCC GCCGCCCCCC GCCGCCCCCC ACCCCTGCCC </td <td></td> <td>AGTATTCTTG</td> <td>ACCGGCACGG</td> <td>TCAACACTGA</td> <td>TGTAATTGAA</td> <td>ACTGTTGTAT</td> <td>TTGAAGTGTT</td> <td>15120</td>		AGTATTCTTG	ACCGGCACGG	TCAACACTGA	TGTAATTGAA	ACTGTTGTAT	TTGAAGTGTT	15120
AGCTCCGACC AACAGGGTCC ACACCACCAT GGGTCTACAC AGATCCAGGT CCGCCTGTG 15300 AGCCTACAGT GACGGGGCC CCTGTGGGGT GGTCCCTGCA GGTCAGGTCC CTGAGAGTGG 15360 GTCCCAGTGG GGTGATCCCT GCGGGTCGCG TCCCTGCGAG TTGGGTGCCT GCGGGTGGC 15420 CCTGCGGGGT CGGGTGCCTG CGGGGTGCCT CCTGTGGGT CCTTATGGGTC GCGGTGCCC 15540 CCTGCGGGGT GGCCCCTGGG AATCGCGTCC CTGCGGGTGG GGTCCCTGC GGGTGGCCC 15540 TGGGGATCGC GTCCCTGCGG GTCGGGTGCC TCGCGGGTGG CCCCTGTGGGA TCGCGTCCCT 15600 GCGGGTCGGGT TGCCTGCGGG GTGGTCCTTG TGGGTCGCT CCCTGTGGGA TGGCCCCC 15540 GGGTCGCGTC CCTGTGGGGT GGCCCCTGCG GTGCCCTCC GGGTCCCTC GGGTCGCT 15600 GGGTCGCGTC CCTGTGGGGT GGCCCCTGCG GTGCCCTCC GGGTCCCTC GGGTCCCTC 15600 GGGTCGCGTC CCTGTGGGGT GGCCCCTGCG GTCGCGTCG TGGCCCCTCC GGGTCCCTC 15600 TGCGGGTCGCT CCTCTGCGG GTCCCCTCC CGGGATGGG TCCCCTGCG GGTCCCTCC 15700 ACGCCGACCC CCCCCCCCC CCGCGCCCA AGATGGGC AGGCCCTCC GGGTGCCCC 15700 CCCGCCACCG CCCCCCCCC CCCCGCCCA AGATGGGC AGGACCCC GCCGCCCGC 15900 CCCGCCACCC CCCCCCCCC CCCCCCCCA AGATGGGC AGATGGCC CCCGCCCCGC	5	AGCAAAGAAA	GAGAATTCTG	GTTCAACAGA	AAAGTCAGTC	ACGACTTTTC	AGTCACGCAT	15180
## ACCCTACAGT GACGCGGCC CTGTGGGGT GGTCCCTGCA GGTCAGGTCC CTGAGAGTGG 1540 CTCCCAGTGG GGTGATCCCT GCGGGTGGC TCCCTGCGAG TTGGGTGCCT GCCGGGTGGC 1540 CCCTGCGGGGT CGGGTGCCTG CGGGGTGGC CCCTGCGGGT GCCCTGCGGGGT GCCCTGCGGGGT GCCCTGCGGGGT GCCCTGCGGGGT GCCCTGCGGGGT GCCCCTGCGGGT GCCCCTGCGGGTG CTGCGGGTGC CTGCGGGGTG GCCCCTGCGGGT GCCCTGCGGGTG GCCCCTGCGGGTG GCCCCTGCGGGTG GCCCCTGCGGGTG CCCCTGCGGGTG CCCCTGCGGGTG CCCCTGCGGGTG CCCCTGCGGGTG CCCCTGCGGGTG CCCCTGGGGT GCCCCCTGCG GGTCCCCT GGGGTCCCC CCGGGGTCGC CCTGTGGGG TGCCCCTGCG GGTCCCCTG GGTCCCCTG GGGTCCCCT GGGGTCCCC CCTGCGGGTG GGCCCCCTGC GGTCCCCTGC GGTCCCCTGC GGTCCCCTGC GGTCCCCTG GGTCCCCTG GGTCCCCTG GGTCCCCC CCGGGGTGG CCCCCCGGGGTG CCCCCCGGGGTG CCCCCCCGCG GGTCCCCC CCCGCGCGCG		GAATTACACA	GTAACCAAAT	AGATAACATG	CCATGACTGA	CGACGGGCCC	ACAACAAATC	15240
15420 1542		AGCTCCGACC	AACAGGGTCC	ACACCACCAT	GGGTCTACAC	AGATCCAGGT	CCCGCCTGTG	15300
CCCTGCGGGT GGGTGCCTG CGGGTGGTC CCTATGGGTC GCGTCCTGC GGGTCGGGTG 15480 CCTGCGGGGGT GGCCCCTGGG AATCGCGTCC CTGCGGGTGG GGTGCCTGCG GGGTGGCCC 15540 TGGGGATCGC GTCCCTGCGG GTCGGGTGCC TGCGGGGTG CCCTTGGGGA TCGCGTCCCT 15600 GCGGTCCGGT CCTGTGGGGT GCCCCTGCG GTCGCTGTG TGGGTCGCTG CCCTTGTGGGG TGGTCCCTGT 15600 GGGTCGCGTC CCTGTGGGGT GCCCCTGCG GGTCGCTGG TGGCCCCTGC GGGTCGCGTG 15720 CCTGCGGGGT GCTCCCTGTG GGTCCCTGC GGTCGCTGG GGTGCCCTGC GGGTCGGTG 15720 TGCGGGTCGC ACCCCTGCG CGTCGCTCC CCGGGATGGG TCCACCGAGG AGGCCGCTGG 15840 AGGCCGAGCC CGCGCCCGC CGCGCGCA AGATGGAGC AGGAAGGGC CCCGCCCGG 15900 CCGGCCACCG CCCGCGCC CCGCCCTGCC CCGCGTTGC GCCTGACG CCCCCCCG 15900 CCGGCCACCG CCCGCCCCC CCCCCTGCC CCCGCGTAA CGTCCTGACG CCCCCCCGC 15900 CCGCCACCG CCCCCCCC CCCCCCCC CCCGCGTAA CGTCCTGACG CTCCCCAGG 16020 CGGCCGCCCC TCCCCCGGC CCCCCCCC CCCGCGTAA CGTCCTGACG CTCCCCAGG 16020 CGGCCGCCCC TCCCCCGGC CCCCCCCC CCCGCGTAA CGTCCTGACG CTCCCCAGG 16020 GGCTCGCCGC GCCCCTTAC CTGGGGCCG GCGCGGTA CGTCCTGACG CTCCCCAGG 16020 GGCCGCCCC GCCCCTTAC CTGGGGCCG GCCGGGCC CTCCCCCCC GCGCGGGC 16020 GGCCGCCCC GCCCCTTAC CTGGGGCCG GCCGGGCC CTCCCCCCG GGGGCCCG GGGGCCCG GGGCCGCG GCCCGCCG		AGCCTACAGT	GACGCGGCC	CCTGTGGGGT	GGTCCCTGCA	GGTCAGGTCC	CTGAGAGTGG	15360
CCTGCGGGGT GGCCCTGGG AATCGCGTCC CTGCGGGTCG GGTGCCTCG GGGTGGCCCC 15540 TGGGGATCGC GTCCTGCGG GTCGGGTGCC TGCGGGGTGG CCCCTGGGGA TCGCGTCCCT 15600 GCGGTCGCGT CCTGTGGGG GTGGTCCTTG TGGGTCGCT CCCTGTGGGG TGGTCCCTGT 15600 GGGTCGCGTC CCTGTGGGGT GGCCCTGCG GGTCGCGTG TGGCCCCTGC GGGTCGGGTG 15720 TGCGGGGTCGC ACCCTGCG GGTCGCTCC CTGCGGGTCG GGTGCCTGC GGGTGGTCCC 15780 AGGCCGAGCC CGCGCCCGCC CGCGCGCCA AGATGGAGC AGGAACGCG GCCGCCCGC 15900 CCGGCCACCG CCCGCGCC CCCCCTGCC CCCGCGTTC GCCCTGCG GCCCCCCGC 15900 CCGGCCACCG CCCCCGCC CCCCCCCC CCCCCCCCC CCCCCCCC		GTCCCAGTGG	GGTGATCCCT	GCGGGTCGCG	TCCCTGCGAG	TTGGGTGCCT	GCCGGGTGGC	15420
TGGGGATCGC GTCCTGCGG GTCGGGTGCC TGCGGGTGG CCCTGGGGA TCGCGTCCCT 15600 GCGGTCGGGG TGCCTGCGG GTGGTCCTTG TGGGTCGCT CCCTGTGGGG TGGTCCCTG 15600 GGGTCGCGTC CCTGTGGGGT GCCCCTGCG GTCGCGTGC TGGCCCTGCC GGGTCGGTG 15720 15 CCTGCGGGGT GGTCCCTGT GGCCCCTGCC GTCGCGGTCG GTGCCCTGC GGGTGGTCCC 15780 TGCGGGTCGC ACCCCTGCG CGTGGTCCCC CCGGGATGGG TCCACCGAGG AGGCCGCTGG 15840 AGGCCGAGCC CGCGCCCGCC CGCGGCCCA AGATGGAGC AGGAAGCGCC GCCGCCCGC 15900 CCGCCACCG CCCGCGCCC CCGCCTCCC CCCGCGTTGC GCCTGACGC CCCGCCCGC 15900 CGGCCGCCCC TCCCCCGGC CTCCCCTCC CCCGCGTAA CGTCCTGACG CTCCCCAGGG 16020 ACCCCTGACT GGACGGCGC CTCCCCTCC CCCGCGTAA CGTCCTGACG CTCCCAGGG 16020 GGCTCGCCGC CGCCGCCC CTCCCCTCC CCCGCGTAA CGTCCTGACG CTCCCAGGG 16080 GGCTCGCCGG CGCCGCTTAC CTGGGGCCG GCGGGCCGC GTTCCCCTGC GGGGGCCCG GGGGCCCGC 16080 GGCTGGCGGG CGCGCTTAC CTGGGGCCG GCGGGGCCG GCGCGCGG GGGGGCCCG GGGGCCCG GGGGCCGG GGGGCCGG GGGGCCGG GGGGCCGG GGGGCCGG GGGGGCCG GGGGGCCG GGGGGG	10	CCCTGCGGGT	CGGGTGCCTG	CGGGGTGGTC	CCTATGGGTC	GCGTCCCTGC	GGGTCGGGTG	15480
GCGGGTCGGG TGCCTGCGGG GTGGTCCTTG TGGGTCGCGT CCCTGTGGGG TGGTCCCTGT 15660 GGGTCGCGTC CCTGTGGGGT GCCCCTGCG GGTCGCTGC GGTCGCTGC GGGTCGGTC		CCTGCGGGGT	GGCCCCTGGG	AATCGCGTCC	CTGCGGGTCG	GGTGCCTGCG	GGGTGGCCCC	15540
15 CCTGCGGGT GGTCCCTGTG GGTCGCTGC GGTCGGTGG TGGCCCTGC GGGTCGGGTG 15780 15 CCTGCGGGGT GGTCCCTGTG GGTCGCGTCC CTGCGGGTGG GGTGCCTGCG GGTGGTCCC 15780 TGCGGGTCGC ACCCCTGCGG CGTGGTCCCC CCGGGATGGG TCCACCGAGG AGGCCGCTGG 15840 AGGCCGAGCC CGCGCCCGCC CGCGGCGCCA AGATGGAGGC AGGAAGCGCC GCCGCCGCG 15900 CCCGCCACCG CCCGCGCCGC CGCCGTGCC CCGCCGTTGC GCCTGACGCC GCCGCCGCG 15960 CGGCCGCCCC TCCCCCGGCC CTCCCCTCCC CCCGCCGTAA CGTCCTGACG CTCCGCAGGG 16020 ACCCCTGACT GGACGGCGC GCGTGAGCG AGCGAGAGCC CTCCGCAGG 16020 GGCTCGCCGG CGCCGTTAC CTGGGGCCG GCCGGGCGC CTTGCCCGCG GGGGGCCCG 16140 GGCTCGCCGG CGCCGCTTAC CTGGGGCCG GCCGGGCGC GCCGCGGC TTCGCCCTCT 16200 GGCTGGCGGC GGAGCTGCG GGGGGGCGG GGGGGCGCG GGCGGGGC TTCGCTCTT 16200 GTTGGGGATT CGGCGGCGC GGCGGCGGG GCGCGGCGC GGCCGCGGC TTCGCTCTT 16200 GGCCGCCGCAC GCACGGGCC GGGAGGGCC GGCGGCGCC GGCGGGGC TTCGCTCTT 16200 AGCCCCCGCAC GCACGGGCC GGGAGGGCC GCCGGGGCC GGCGGGGC TTCGCTCCTT 16200 AGCTCCTAAC GCCGCAGGT CCTCCTGGTC CCCGAGGCCC CCGGGCGC GGAGGAGGAA 16320 25 GGCGGGGCCG TGAAATAAGG CCCGACGGGC CCCGGGGCC CCGGGCGC GTGCCGGAC GAACATGTC 16380 ACCCCCTCAAC GCCGCAGGT CCTCCTGGTC CCCGAGGCCC CCGGTCGGC GTTGCCTCC 16440 CCGCCGCGGG GGCCG GGCCG AGGACCATG GTCAGTGAC GGACGGCCC AGGAACATGT 16500 GCTGCTGTT GTGAATGGC GCGAGGGGC TCCCCTGAGGA CGGCGCC AGGAGCAGT 16500 GCTGCTGTGT GTGAATGGC GCGAGGGGC TCCCCTGGGG GGCGGCCC AGGACCAGT 16500 GCTGCTGGGG AGGACCTT AGGGTGCGG GACCTCTCAGGG GGCGGCCC GGAACATGCC 16680 CAGCCACGGC GCTCCAAGCG TGGAGGGCCG GACCACCCG GAACATGCCA GAGGCCCC GGAGGCCC GAACATGCCA GAGGCCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GAGGCCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGCCCC AGGCCCC AGGCCCC GGAGGCCC GGAGCCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGGCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCC GAGCCCC GGAGCCC GAGCCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCC GAGCCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCC GGAGCCC GCGCCC GGAGCCC GCGCCCC AACCACCCC AACCACCC AACCACCC ACCCCACCCC AACCACC		TGGGGATCGC	GTCCCTGCGG	GTCGGGTGCC	TGCGGGGTGG	CCCCTGGGGA	TCGCGTCCCT	15600
Tecegeree accepted egrected egrecere creegeree egreceed agecegeree 15840 Tecegeree accepted egrecee egrecee egrecee agecegeree agecegeree egrecee 15940 Agecegagee egrecee egrecee egrecee egrecee egrecee egrecee egrecee 15940 Ceegeeace egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee 15940 Ceegeeace egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee 15940 Ceegeeace egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee 16940 Geetegeege egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee egrecee 16080 Geetegeege egrecee eg		GCGGGTCGGG	TGCCTGCGGG	GTGGTCCTTG	TGGGTCGCGT	CCCTGTGGGG	TGGTCCCTGT	15660
TGCGGGTCGC ACCCCTGCGG CGTGGTCCCC CCGGGATGGG TCCACCGAGG AGGCCGCTGG 15840 AGGCCGAGCC CGCGCCCGCC CGCGGCCCA AGATGGAGCC AGGAAGCGCC GCCGCCCGCG 15900 CCCGCCACCG CCCGCCCGC CCGCCTGACG CCCGCCGTTGC GCCTGACGC GCCGCCCGCG 15960 CGGCCGCCCC TCCCCCGGCC CTCCCCTCCC CCCGCCGTAA CGTCCTGACG CTCCGCAGGG 16020 ACCCCTGACT GGACGGCGC GCGTGAGCGG AGCGAGAGGC CTCGCCGCG GGGGGCCGCG 16080 GGCTCGCCGG CGCCGCTTAC CTGGGGCCG GCCGGCCGG GGGGGCCGC 16140 GGCGGCGCTCG GGAGCTGCG CGCGGCGGG CGCGGGGGC GCCGGGGC CGGGGGCCGC GGGGGCCGC GGGGGCGCG GGCCGCGGC GGCCGCGGC GGCCGCGGC CTTCGCCCGG GGGGGCCGC 16260 GTTGGGGATT CGGCGGCGC GGCGGCGGG GCCGCGGCC GCCGCGGC CGGGGGCCG GGCCGCGCG GGCCGCGCG GGCCGCGCG GGCCGCGCG CGCGCGCGC GGCCGCGCG CGCGCGCGC GGCCGCGCG CGCGCGCGC GGCCGCGCG CGCGCGCGC GGCCGCGCG CGCGCGCGC GGCCGCGCG CGCGCGCGC GGCCGCGCG CGCCGC		GGGTCGCGTC	CCTGTGGGGT	GGCCCCTGCG	GGTCGCGTGG	TGGCCCCTGC	GGGTCGGGTG	15720
AGGCCGAGCC CGCGCCCCC CGCGGCGCA AGATGGAGGC AGGAAGCGCC GCCGCCGCGG 15900 CCCGCCACCG CCCGCGCGCC CCGCCTGACG CCGCCGTTGC GCCTGACGC GCCGCCGCG 15960 CGGCCGCCCC TCCCCCGGCC CTCCCCTCCC CCCGCCGTAA CGTCCTGACG CTCCGCAGGG 16020 ACCCCTGACT GGACGGCGC GCGTGAGCGG AGCGAGAGGC CTCGCCGCGG GGGGCCCGCG 16080 GGCTCGCCGG CGCCGCTTAC CTGGGGCCGC GCCGGGCCTG CTTAGGCACC CGGCGGGGC 16140 GGCGCGCGCTG GGAGCTGCGG CGGCGGCGG CGGCGGCGC GGCCGCGGGC TTCGCTCCTT 16200 GTTGGGGATT CGGCGGCGC GGCGGCGGG GCGCGCGCG GGCCGCGGC TTCGCTCCTT 16200 GGCCGCGCAC GCACGGGGC GGCGCGCGG GCGCGCGCT CCTAGTGACG CAGGCGGCGG 16260 AGCCCCCACG GCACGGGCT GGGAGGGCC GACACTTATT TGGCCCTCC GGAGAGGAA 16320 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCC GTGCCCGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCC CCGGTCGGG GTTGCCTGC 16440 CCGCCGCGGC GGCCGGGCC AGGGACGAT GTCACTGGAC GGACGGCGC GTTGCCTGC 16500 GCCCACGCGC GGCAGGGCG TACCTTCAGG CCTCCAGGTA CGGCGGCGC AGGGAGCAGT 16500 GCCCACGCGC GGCAGGCCG GCGAGGGGAC TCCCCTGCGG GGCGGCCC TGAACACGAG 16620 GCTGCTGTGT GTGAATGGC GCGAGGGGAC TCCCCTGCGG GGCGGCCC TGAACACGAG 16620 GCTGCTGGG GCCGGCCC AGGGTGCCC GCGAGGGCC GGACGACCC TGAACACGAG 16620 CAGCCACGGC GCTCCCAGCG TGGAGGGCCG GACCTCCAGGTA CGGGCGCCC GGAGGCCCC TGAACACGAG 16680 CAGCCACGGC GCCCCAGCCC TGGAGGCCC GGACGCCC GGAGGCCCC GGAGGCCCC TGAACACGAC 16680 ACAGCCGACA CCCCAGCCC AAGCTCCCA CCCAGCCC GGACCGCCC GGAGGCCCC GGAGGCCCC TGAACACGAC 16680 ACAGCCGACA CCCCGATCCC ACCCCAGCCC AACCCACCCC AACCCCCA ACCCCCACCCC AAGCCCCCACCCC AAGCCCCCACCCC ACCCCCACCCC AACCCCCCACCCC AACCCCCC	15	CCTGCGGGGT	GGTCCCTGTG	GGTCGCGTCC	CTGCGGGTCG	GGTGCCTGCG	GGGTGGTCCC	15780
CCCGCCACCG CCCGCGCGC CCGCCTGACG CCGCCGTTC GCCTGACGC GCCGCCGCG 15960 CGGCCGCCCC TCCCCCGGCC CTCCCCTCCC CCCGCCGTAA CGTCCTGACG CTCCGCAGGG 16020 ACCCCTGACT GGACGGCGC GCGTGAGCGG AGCGAGAGGC CTCGCCGCGG GGGGCCGCG 16080 GGCTCGCCGG CGCCGCTTAC CTGGGGCCGC GCCGGGCCT CTTAGGCACC CGGCGGGGCC 16140 GGCGCGCGTC GGAGCTGCG CGGCGGCGG GCGGGCCGC GCGGGCCGC GCGGGCCGC GGCGCGCGC GGCGGGCCG GGCGCGCGC GGCGGGCCG GGCGCGCGC GGCGGGCCG GGCGCGCGC GGCGCGCGC GGCCGCGCG GGCCGCGCG GGCCGCGCG CTTCGCTCTT 16200 GTTGGGGATT CGGCGGCGC GGCGCGCG GCGCGCGCT CCTAGTGACC CAGGCGGCG 16380 GGCCGCGCAC GCACGGGCC GGCAGCGCG GACACTTATT TGGCGCTCGC GGAGAGAGAA 16320 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCC CCGGTCGGC GTTGCCTGC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCC CCGGTCGGC GTTGCCTGC 16440 CCGCGCGGGC GGCCGGGCCG AGGGACGATG GTCAGTGAC GGACGGCCC AGGGACAGT 16500 GCCCACGCGC GGCAGGGCG TACCTTCAGG CCTCCAGGTA CGGCCGCCC AGGGACAGT 16500 GCTGCTGTGT GTGAATGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 GCTGCTGGAG AGGACGCTG AGGGTGCCG GACCTCAGGCG GACCATCCC TCGCCCGGAC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCCG GACCTCCG GGACCGCC GGAGGCCC 16680 GCCACCCCCC AAGCTGTCAC CCCAGGTAC GGGCCCC GGACGCCC GGAGGCCCC 16680 GCCACCCCCC AAGCTGCCC ACCCCAGCCC AACCACCCC ACCCCCACCCC AACCACCCC AACCACC		TGCGGGTCGC	ACCCCTGCGG	CGTGGTCCCC	CCGGGATGGG	TCCACCGAGG	AGGCCGCTGG	15840
CGGCCGCCCC TCCCCCGGCC CTCCCCTCCC CCCGCCGTAA CGTCCTGACG CTCCGCAGGG 16020 ACCCCTGACT GGACGGCGGC GCGTGAGCGG AGCGAGAGGC CTCGCCGCGG GGGGCCCGC 16080 GGCTCGCCGG CGCCGCTTAC CTGGGGCCGC GCCGGGCCTG CTTAGGCACC CGGCGGGGCC 16140 GGCGGCGCTCG GGAGCTGCGG CGCCGGCGG CGGCGGGCCG GGCCGCGGGC TTCGCTCCTT 16200 GTTGGGGATT CGGCGGCGGC GGCGGCGGG GCGCGCGCT CCTAGTGACG CAGGCGGCGG 16260 GGCCGCGCAC GCACGGGGCT GGGAGGGCCG GACACTTATT TGGCGCTCGC GGAGGAGAA 16320 AGCTCCTAAC GCCGAGGGT CCTCCTGGTC CCCGGGGCGC GTGCGCGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGGCC CCGGTCGGC GTTGCCTGCC 16440 CCGCGCGCGGC GGCCGGGCCG AGGGACGATG GTCAGTGGAC GGACGGCGC AGGGAGCAGT 16500 GCCCACGCGC GGCAGGGCCG TACCTTCAGG CCTCCAGGTA CGGCGCGCC TCGCCCGGAC 16680 GCTGCTGTGT GTGAATGGCC GCGAGGGGC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 30 GCTGTGGAGG AGGACGCTGT AGGGTGCGCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCACCC CCGATCCTA TCGCAGTCC 16680 ACAGCCCACCCC AAGCTGTCA CCCCAGTCCCA AACACCAGCA CCCCGATCCTA TCGCAGTCCC 16680 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACACCCC ACCCCCCA ATCCCATAGC 16680		AGGCCGAGCC	CGCGCCCGCC	CGCGGCGCCA	AGATGGAGGC	AGGAAGCGCC	GCCGCCCGCG	15900
ACCCCTGACT GGACGGCGC GCGTGAGCGG AGCGAGAGGC CTCGCCGCGG GGGGCCGCG 16080 GGCTCGCCGG CGCCGCTTAC CTGGGGCCGC GCCGGGCCTG CTTAGGCACC CGGCGGGGGC 16140 GGCGGCGTCG GGAGCTGCGG CGGCGGCGGG CGGCGGCGC GGCCGCGGGC TTCGCTCCTT 16200 GTTGGGGATT CGGCGGCGC GGCGGCGCG GCGCGCGCT CCTAGTGACG CAGGCGCGGG 16260 GGCCGCGCAC GCACGGGCT GGGAGGGCCG GACACTTATT TGGCGCTCCG GGAGGAGGAA 16320 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGAC GTTGCCTGCC 16440 CCGCGCGGGC GGCCGGGCCG AGGGACGATG GTCAGTGGAC GGACGGCGC AGGAGCAGT 16500 GCCCACGCC GGCAGGGCCG TACCTTCAGG CCTCCAGGTA CGGCGCGCC AGGAGCAGT 16500 GCTGCTGTG GTGAATGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 CAGCCACGCC GCTCCCAGCG TGGAGGGGCA GACCTCCCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCC GGAGCGCCC GGAGGGCTC 16680 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACGCAC CCCGATCCTA TCGCCAGTCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACGCAC CCCGATCCTA TCGCCATACC 16800		CCCGCCACCG	CCCGCGCCGC	CCGCCTGACG	CCGCCGTTGC	GCCTGACGCC	GCCGCCGCG	15960
GGCTCGCCGG CGCCGCTTAC CTGGGGCCGC GCCGGGCCTG CTTAGGCACC CGGCGGGGGC 16140 GGCGGCGTCG GGAGCTGCGG CGGCGGCGG CGGCGGGGC GGCCGCGGGC TTCGCTCCTT 16200 GTTGGGGATT CGGCGGCGGC GGCGGCGGG GCGCGCGTT CCTAGTGACG CAGGCGGCGG 16260 GGCCGCGCAC GCACGGGGCT GGGAGGGCCG GACACTTATT TGGCGCTCGC GGAGAGGAA 16320 25 GGCGGGGCCG TGAAATAAGG CCCGACGGGC CCCGGGGCGC GTGCGCGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCTGGTC CCCGAGGCCC CCGGTCGGG GTTGCCTGCC 16440 CCGCGCGGGG GGCCG GGCAGGGCG AGGGACGAT GTCAGTGGAC GGACAGGCGC AGGGAGCAGT 16500 GCCCACGCG GGCAGGGCG TACCTTCAGG CCTCCAGGTA CGGGCGCCC AGGGAGCAGT 16500 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 GCTGCTGGGG AGGACGCTG AGGGTGCCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCC GGAGCGCCC GGAGGGCTCC 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACCAGCAC CCCCGATCCTA TCGCAGTCCC 16800		CGGCCGCCCC	TCCCCCGGCC	CTCCCCTCCC	CCCGCCGTAA	CGTCCTGACG	CTCCGCAGGG	16020
GGCGGCGTCG GGAGCTGCGG CGGCGGCGG CGGCGGGGC GGCCGCGGGC TTCGCTCTT 16200 GTTGGGGATT CGGCGGCGC GGCGGCGGG GCGCGCGTT CCTAGTGACG CAGGCGGCGG 16260 GGCCGCGCAC GCACGGGGCT GGGAGGGCCG GACACTTATT TGGCGCTCGC GGAGGAGGAA 16320 25 GGCGGGGCCG TGAAATAAGG CCCGAACGGC CCCGGGGCCC GTGCGCGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGC GTTGCCTGCC 16440 CCGCGCGGGGC GGCCGGGCCG AGGGACGATG GTCAGTGAC GGACGGCGC AGGGACAGT 16500 GCCCACGCGC GGCAGGGCG TACCTTCAGG CCTCCAGGTA CGGGCGCCC AGGGAGCAGT 16500 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 CAGCCACGCC GCTCCCAGCG TGGAGGGCGA GGCGCATCCG GGAGCGCCC AGGGCTCAGC 16680 CAGCCACGCC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCC GGAGGGCTCC 16740 GTCACCCCTC AAGCTGTCAC CCCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACCAGCA ACCCACCCCA ATCCCATAGC 16800	20	ACCCCTGACT	GGACGGCGGC	GCGTGAGCGG	AGCGAGAGGC	CTCGCCGCGG	GGGGGCCGCG	16080
GTTGGGGATT CGGCGGCGC GGCGGCGCG GCGCGCGTT CCTAGTGACG CAGGCGGCGG 16260 GGCCGCGCAC GCACGGGCT GGGAGGGCC GACACTTATT TGGCGCTCGC GGAGGAGGAA 16320 25 GGCGGGGCCG TGAAATAAGG CCCGACGGGC CCCGGGGCCC GTGCCGGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGC GTTGCCTGCC 16440 CCGCGCGGGCC GGCCGGGCCG AGGGACGATG GTCAGTGGAC GGACGGCGC AGGGAGCAGT 16500 GCCCACGCCC GGCAGGCCG TACCTTCAGG CCTCCAGGTA CGGGCGCCC AGGGACCAGT 16560 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGCGCATCCC GAACATGCCA GAGGCTCAGC 16680 CAGCCACGCC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCC GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACAGCCGC ACCCACCCCA ATCCCATAGC 16860		GGCTCGCCGG	CGCCGCTTAC	CTGGGGCCGC	GCCGGGCCTG	CTTAGGCACC	CGGCGGGGC	16140
GGCCGCGCAC GCACGGGGCT GGGAGGGCCG GACACTTATT TGGCGCTCGC GGAGGAGGAA 16320 25 GGCGGGGCCG TGAAATAAGG CCCGACGGC CCCGGGGCGC GTGCGCGGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGGC GTTGCCTGCC 16440 CCGCGCGGGGC GGCCGGGCCG AGGGACGATG GTCAGTGGAC GGACGGCGC AGGGAGCAGT 16500 GCCCACGCGC GGCAGGGCGG TACCTTCAGG CCTCCAGGTA CGGGCGCCC TCGCCCGGAC 16560 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCC GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACAGCAC ACCCACCCCA ATCCCATAGC 16800		GGCGGCGTCG	GGAGCTGCGG	CGGCGGCGGG	CGGCGGCGGC	GGCCGCGGGC	TTCGCTCCTT	16200
25 GGCGGGGCCG TGAAATAAGG CCCGACGGC CCCGGGGCGC GTGCGCGAC CGACACTGTC 16380 AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGGC GTTGCCTGCC 16440 CCGCGCGGGGC GGCCGGGCCG AGGGACGATG GTCAGTGGAC GGACGGCGCC AGGGAGCAGT 16500 GCCCACGCGC GGCAGGGCGG TACCTTCAGG CCTCCAGGTA CGGGCGCCC TCGCCCGGAC 16560 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGCGCATCCC GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCC GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACAGCAC ACCCACCCCA ATCCCATAGC 16860		GTTGGGGATT	CGGCGGCGGC	GGCGGCGCGG	GCGCGCGCTT	CCTAGTGACG	CAGGCGGCGG	16260
AGCTCCTAAC GCCGCAGGTT CCTCCTGGTC CCCGAGGCCC CCGGTCGGGC GTTGCCTGCC 16440 CCGCGCGGGGC GGCCGGGCCG AGGGACGATG GTCAGTGGAC GGACGGCGCC AGGGAGCAGT 16500 GCCCACGCGC GGCAGGGCGG TACCTTCAGG CCTCCAGGTA CGGGCGCTCC TCGCCCGGAC 16560 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 GCTGTGGAGG AGGACGCTGT AGGGTGCGCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCC GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACCGCG ACCCACCCCA ATCCCATAGC 16860		GGCCGCGCAC	GCACGGGGCT	GGGAGGCCG	GACACTTATT	TGGCGCTCGC	GGAGGAGGAA	16320
CCGCGCGGGC GGCCGGCCC AGGGACGATG GTCAGTGGAC GGACGGCGC AGGGAGCAGT 16500 GCCCACGCGC GGCAGGGCGG TACCTTCAGG CCTCCAGGTA CGGGCGCTCC TCGCCCGGAC 16560 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 GCTGTGGAGG AGGACGCTGT AGGGTGCGCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCG GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACGCGC ACCCACCCCA ATCCCATAGC 16860	25	GGCGGGGCCG	TGAAATAAGG	CCCGACGGGC	CCCGGGGCGC	GTGCGCGGAC	CGACACTGTC	16380
GCCCACGCG GGCAGGGCG TACCTTCAGG CCTCCAGGTA CGGGCGCTCC TCGCCCGGAC 16560 GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 GCTGTGGAGG AGGACGCTGT AGGGTGCGCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGGCCG GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACGCGC ACCCACCCCA ATCCCATAGC 16860		AGCTCCTAAC	GCCGCAGGTT	CCTCCTGGTC	CCCGAGGCCC	CCGGTCGGGC	GTTGCCTGCC	16440
GCTGCTGTGT GTGAATGGGC GCGAGGGGAC TCCCCTGCGG GGCGGACGCC TGAACACGAG 16620 30 GCTGTGGAGG AGGACGCTGT AGGGTGCGCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGGGCCG GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACACCGGC ACCCACCCCA ATCCCATAGC 16860		CCGCGCGGGC	GGCCGGGCCG	AGGGACGATG	GTCAGTGGAC	GGACGGCGCC	AGGGAGCAGT	16500
GCTGTGGAGG AGGACGCTGT AGGGTGCGCG GACTCACGCG GAACATGCCA GAGGCTCAGC 16680 CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGGCCG GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACAGCCGGC ACCCACCCCA ATCCCATAGC 16860		GCCCACGCGC	GGCAGGGCGG	TACCTTCAGG	CCTCCAGGTA	CGGGCGCTCC	TCGCCCGGAC	16560
CAGCCACGGC GCTCCCAGCG TGGAGGGCGA GGGGCATCCG GGAGCGCCG GGAGGGCTCG 16740 GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACAGCCGGC ACCCACCCCA ATCCCATAGC 16860		GCTGCTGTGT	GTGAATGGGC	GCGAGGGGAC	TCCCCTGCGG	GGCGGACGCC	TGAACACGAG	16620
GTCACCCCTC AAGCTGTCAC CCCAGTCCCA CAACCAGCAC CCCGATCCTA TCGCAGTCCC 16800 ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACAGCCGGC ACCCACCCCA ATCCCATAGC 16860	30	GCTGTGGAGG	AGGACGCTGT	AGGGTGCGCG	GACTCACGCG	GAACATGCCA	GAGGCTCAGC	16680
ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACAGCCGGC ACCCACCCCA ATCCCATAGC 16860		CAGCCACGGC	GCTCCCAGCG	TGGAGGGCGA	GGGGCATCCG	GGAGCGGCCG	GGAGGGCTCG	16740
ACAGCCGACA CCCCGATCCC ACCCCTGCCC AACAGCCGGC ACCCACCCCA ATCCCATAGC 16860		GTCACCCCTC	: AAGCTGTCAC	CCCAGTCCCA	CAACCAGCAC	CCCGATCCTA	TCGCAGTCCC	16800
TARCACCCG GICCCACCGC IGICCOMOS GOODING								

	GCTGGCACCC	CGATCCCACC	CCAGCCCAAC	AGCTGGCACC	CACCCCGATC	CCACCGCTGT	16980
	CCCACAGCCG	GCACCCCGAT	CCCACCCCAG	TCCCGCAGCC	GGCACCCCGA	TCCCACAGCC	17040
	GGCACTCACC	CCGATCGCAT	AGCATAGCTG	ATACCCCGAT	CCCACCCCAG	TCCCATAGCC	17100
	AGCACCCCGA	TCCCACCCCA	GTCCCATAGC	CAGCACCTCG	ATCCCATAGA	TGACACCCCG	17160
5	ATCACGCCCC	AGTCCTATAG	CCCGCACCCC	GATCCCACCC	GAGTCCCGCA	GCCGGCACCC	17220
	CATCCCACCC	ATGTCCCACA	GTCGGCACCC	CGATCCCACT	CGGATCCGGC	AGCCAGCTTG	17280
٠	GATCCTGTGG	CCCTCCTCCA	GCCCCCAGGG	CTCATTTATA	TGTTTTATTG	GCAGAGGCTG	17340
	GGGCTGGCTC	TGTTGGCCTC	TGTGCTGGGT	TTCTTCCTCT	GCACCGCAGG	ACTGGCTCTC	17400
	CTGACCTCTC	CAGGTGTCAT	CGAACACCCT	TGTGCTTGCT	GTCACCCGCT	GCCTGTCTGC	17460
10 -	AGGATCCCGG	ATTCCGTATC	AGGGGACCGA	AATTAGTCGG	AAAATAGGAA	GCAGGTGCTC	17520
	GCTTGGATGG	AACCCTGACC	CTGTGCTCAC	ACTTGTAGGA	GGAGGGCTCT	GCAGGCCGCC	17580
	TCCCGGAACG	GGAGGTTCCC	AAGCCACTGC	ACTTCGGAGG	GGCTGTAATT	AGAGTTGCAC	17640
	ATTCATTCAG	TTCCCAGTAA	AGTAGAACGT	GCTCCAGCCA	GTGAGGAÁAA	GGTGTTTTTA	17700
	AAAATTAGAT	TGGCCGAGTG	CGGTGGCTCA	TGCCTTTTAC	CTCAACACTT	TGGGAGACAA	17760
15	AGGTGGGAGG	ATCACCTGTG	GCCAGGAGTT	CAAGACCAGC	CTGGGCAACA	GAGCCTGTCT	17820
	CTGGGGAAGA	АТААААААА	AAATTGAGCC	TTTGTCAGTG	CTACTATTTT	ATTATCTGGT	17880
	AAATATGAGA	GGGTTCACGC	GGTCTATGTG	TGTCATTTAT	CTGAGTTTGC	CTATCGTCAC	17940
	GTTTTGGAAA	TAAATGTCAA	TAAAGTCGAA	GAGGAGTGCT	GAGGGGGCC	TGGGGATGGG	18000
4	AGGGTGGCTA	CATCATGCCT	GTGTGTTGCG	CAAGCCCACC	GAGGTCGGCC	TGGGGTGAGC	18060
20	CCTGGGGCCT	GTTCTGCCTC	CTTCACTCTG	GGGCTCCAAG	AGACAAACTG	GGCAACAAGA	18120
٠.	GAGAAACTCC	АТСТАААААА	AAAGAAAAAT	CACCTCCAAG	ATAACTTAGC	TTTCTTCTGC	18180
	TGGCATAACA	AATTATCTCA	AACTTAGTCG	CTTAAAAATG	CAAATTTAGG	CTGAGTGCGG	18240
	AGGCTCACGC	CCATAATCCT	AGCACTTTGG	GAGGCCAAGG	CAGGATTGCT	TGAGGCCAGG	18300
	AGTTCGAGAC	CAACATGGCC	AGAACTGTCT	CTTTTTAAAA	AATGCAAATG	TGTCCGGCAC	18360
25	GGTGGCTCAC	GCCTATAATC	CCAGCACTTT	GTGAGGCCAA	GGCGGGCAGA	TCACGAGGTC	18420
	AGGAGATAGA	GACCATCCTG	GCTAACACTG	TGAAACCCCC	TCTCTACTAA	AAATACAAAA	18480
	AATTAGCCTG	GCGTGGTGGC	AGGCGCCTGT	AGTCCCAGCT	ACTCGGGAGG	CTGAGGCAGG	18540
•	AGAATGGCGT	GAACCCAGGA	AGCGGAGCTT	GCAGTGAGCC	GAGATGGCGC	CACTGCACTC	18600
	CAGCCTAGGC	AACAGAGCAA	GACTCCGTCT	CAAAAAATAA	ATAAATAAAA	CTGCAAATGT	18660
30	ATTCTCTAAC	TGTTCTGTAG	GTCGGAAGTC	CAGCCCAGCC	TCACTCCGCC	AAAATCAGGG	18720
	TGTCTGCAGG	GCCGATTGCT	TTTGGAGCTC	CAGGGGAGAA	GCTGTTCTGG	CCTTTCCAGT	18780
	TTCTGGAAGO	ACTTGAGCCC	CTTGTCTCGT	GGCCTATCCC	ACACCTGAAA	GCCAGCCAAA	18840
	GCCAGTTGAG	TCCTCACCCT	GTTGGCCCCG	ACACTGATCT	CCTGCCTCCC	TCATCTGCTG	18900
	TCAAGGCCCC	TTGTGATGAC	ATGGGGCCAC	CAGCTGGCCC	AGGGCACCTC	CTGTCAGAGT	18960
			•				

	CCGCCGACCA	GTGACCTTCA	TTCCATCTGT	CGCTGTAATT	CCCCTTTGCT	TGGAACCAAC	19020
	GTTCACAGAT	CCCAGGGGTT	AGGATGTGAA	TATCTTGGGC	AGGGCTGTGG	GGGGGCTATT	19080
	CTTCCTTCTA	AAATATTTAT	CATTTTTGTT	TTGGGGATTT	TTTTGGTTTG	GTTTTTTTTG	19140
	AGACAGAGTC	TCGCTCTGTC	GCCCAGGTTG	GAGTGCAATG	GTGCAATCTC	AGCTCACTGC	19200
5	AACCTCTGCC	TCCGGGCAGA	CGTGAGCCAC	TGCACCAGGC	CTGTTTTTGT	TTTTGTTTGT	19260
	TTTGTTTTGT	TTTTGAGATG	GAGTCTCGGC	CGGGCGCGGT	GGCTCACGCC	TGTAATCCCA	19320
	GCACTTTGGG	AGGCCGAGGC	GGGCGGATCA	CGAGGTCAGG	AGATCGAGAC	CATCCTGGCT	19380
	AACACGGTGA	AACCCCGTCT	СТАСТААААА	TACAAAAAAT	TAGCCGGGCG	TGGTAGCGGG	19440
	CGCCTGTAGT	CCCAGCTACT	CGGGAGGCTG	AGGCAGGAGA	ATGGCGTGAA.	CCCGGGAGGC	19500
10	GGAGCTTGCA	GTGAGCCGAG	ATCGCGCCAC	TGCACTCCAG	CCTGGGCGAC	AGAGCGAGAC	19560
,	TCCGTCTCAA	ААААААААА	ааааааааа	AAAAAAAGAG	ATGGAGTCTC	ACTTTGTCAC	19620
	CCAGGCTGGA	GTGTAGTGGC	GGGATTATAG	GTACGCGCCA	TCATGCCCAG	TTACTTTTTG	19680
	TATTTTTAGT	AGAGACAGGG	TTTTACCATG	TTGGTCAGAC	TGGTCTCAAA	CTCCTGATCT	19740
	CAGGTAATCC	ACCCGCCTCA	GCCTCCCAAA	GTGCTGGGAT	TACAGACGTG	AGCCACCGTG	19800
15	TCTGGCCATA	TTTATTAACT	ACAAAGGGAA	AGATGATAAT	TTTTTTTTT	GAGATGGAGT	19860
	CTCACTCTGT	CACCCAGGCT	GGAGTACAAT	AGCGTGATCT	TGGCTCACTG	AAACCTCTGC	19920
	CTCCCAGGTT	CAAGCGATTC	TCCTGCCTCA	GCCTCCCAAC	TAGCTGGGAT	TACAGGCGCA	19980
	CGCTACCAAG	CCCAGCTAAT	TTTTGTATTT	TTAGTAGAAA	CGGAGTTTCA	CCATGTTGGT	20040
	GAGGCTGGTC	TCGAACTCCT	GACCTTGTGA	TCTGCCCACC	TCGGCCTCCC	AAAGTGCTGG	20100
20	GATTATAGGC	ATGAGCCACT	GCAACCGGCT	GAAAGATGGT	AATTTTAAAG	TAGAGAAACT	20160
-	GGGTTGGCTG	GGCATGGTGG	CTTATGCCTG	TAAGCTCAGC	ACTTTGGAAG	TCCAAGGCAA	20220
	GAGGATCGCT	TGAGTCCAGG	AGTTTGAGAC	CAGCCTGGAC	AATATAGCAA	GACCCCATCT	20280
•	CCGCAAAAGC	TAAAAAGTTA	GCCAGGTGTG	GCGGCACATG	CCTGTAGTCC	CAGCTACTCA	20340
					AGGCTGAAGT		20400
25				•		GTAAAAAAAG	20460
			·		•	GGCGGGCAGA	20520
		•			GTGAAACCCC		20580
1						CTACTTGGGA	20640
			•			CCAAGATCAT	20700
30						CAAAAGAATC	
						ACAGGCAAAG	
	•		•			GGCCGGGGGC	
						TCACAAGGTC	
	AAGAGATCAA	GACCATCCTG	GCTAACATGG	TGAAACCCCG	TCTCTACTAA	AAATACAAAA	21000

	AATTAGCCGG	GCGTGGTGGT	GGGTGCCTGT	AGTCCCAGCT	ACTCGGGAGG	CTGAGGCAGG	21060
	AGAATGGCGT	GAACCCAGGA	GGCGGAGCTT	TCAGTGAGCT	GAGATCGCGC	CTCTGCACTC	21120
	CAGCCTGGGC :	GACAGAGCCT	CGAGACTCCA	TCTCAAAAAA	TAAAAAAAA	TAGCTGGGTG	21180
	TGGTGGCTCA	CACCTGTAAT	CCCAGCTACG	TGGCAGGCTG	AGGCAGGAGA	ATCGCTTGAA	21240
5	CCTGGGAGGC	GGAGGTTGTA	GGGAGCTGAG	ATCGCACCAC	TGCACTCCAG	CCTGGGCAAC	21300
	AGAGCGAGAC	TCTGTCTCAA	AAAAAAAAA	ААААААСААА	AAAACAATAG	TCTCCCAAGT	21360
	AAGTCAGAGT	CACAAGGTGT	TTTGATTCCC	TGTGGAAACT	AAAATATAAC	AGCTTAACAT	21420
	ATGTTCTTGA	GTTATTTTTC	AGAAACTTGG	ACATCCACCA	GGTGGAAAAT	GCTGAGCTAG	21480
	GAACAGTGGC	TATAAȚTTCA	GCCTTTTGAG	AGGCCAAGGT	GGAAGGATCA	CTTGAGGCCA	21540
10	GGAGTTAGAG	ACCAGCCTGG	CCAACATGGT	GAAACCCCGT	CTCTAGTAAA	AATACAAATA	21600
	TTAGCTGGGC	ATGGTGGTGC	AACCTGAAAT	CCCAGCTACT	TGGGAGACCT	AGCTGGGAGG	21660
	ATCGCTTGAA	CCTGGTAGGA	GGAGTTTGCA	GTGAGCTGAA	ATTGTGCCAC	TGCACTCTAG	21720
	CCTGGGCAAC	AGAGTGAGAC	TCTGTCTCAA	AAAATAAATA	AATAAAAAGA	GAAAAAAGTG	21780
	TTGCCTGCAG	GCCGGGCACA	GTGGCTCACG	CCTGTAATCC	CAACACTTTG	GGAGGCCGAG	21840
15	ATGGGCAGAT	CACCTGAGGT	CAGGAGTGCA	AGAACAGCCT	GGCCAACATG	GTGAAACCCC	21900
	ATCTCTACTA	ААААТАСААА	AGTTAGCTGG	GTGTGTACAT	GTAGTCTCAG	CTACTTGGGA	21960
	AGCTGAGGCA	GGAGAATCTC	TTCAACCGGG	GAGGTGGAGG	TTGCGATGAG	CTGAGATCAC	22020
	GCCACCACAC	TCCATCCAGC	CTGGGTGACA	GAGTGAGACT	CCATCTCAAA	GCAAAAAAAG	22080
	AAACATAGGT	GGGACCCTTG	GTGTGTCCTT	AGGGCATGAT	GGTTGAGGTA	TACTGCTGGT	22140
20	CCTGTCATGT	AAAAGAAAAC	GAGCCGACTC	TGTGTCTACT	GGAGAAAGCA	CTGCATATAT	22200
	CAGCCACAGT	CAATACCTCG	CTTCTGCAGG	GACGGTGGCT	GCCAGAGTGG	GAGGCTTTGG	22260
	TAGCACCCAT	GTCGTGGAAT	CACAATGTTG	TCGATAGCTC	TGGGGTCTTG	TACAAAATGC	22320
	CAGATCCTCC	CATTTGGTTT	CCTTATGGGA	AGGATCGCAG	TACTATAATA	CATGGGCTTG	22380
,	TGCAAGGGAT	CATTATACCC	TTTTCTCTTT	TTTTGCTTTT	CTTTGAGACA	GAGTTTCACT	22440
25	CTCGTCACCC	AGGCTGGAGT	GCAATGGCGC	GATCTTGGCT	CACTGCAACC	TCCACCTCCT	22500
	GGGTTCAAGT	GATTTTCCTG	GCTCAGCCTT	CTGAGTAGCT	GGGATTACAC	ATGCCCGCCA	22560
	CCAGGCCTGA	CTTATTTTTG	TATTTTAGT	AGAGACAGGG	TTTCACCAAG	TTGGTCAGGC	22620
	TGGTCTTGAA	CTCCTGACCT	CAGGTGATCC	ACCCACCTCG	GCCTCCCAAA	GTGTTGGGAT	22680
	TTCAGGCATA	AGCCACCAGG	CCCAGCCTTT	CTTTCTTTTT	AAAATTAATC	TTTGTTTAAA	22740
30	AATACTCTCA	TTTTTTTTT	AATTGTAGCA	CTCCTAGATC	CCGAAAGCAG	ATACACTCTT	22800
	GTTATGGGTC	TGATTCTTTT	CATTGCTTCA	CGCCTTAGAG	GATATTGTCC	AATACTGGAT	22860
	AAAAGTTTAC	TCAGGTCTAC	TTCCACTTTA	ACGGGGATGG	CTGAATATCI	CTTCCACTTG	22920
	GCTGTTTGTT	TATAATGAAC	TGACAAACAT	ACAAATTTTC	TTGAGTTCTC	TGAGACATTC	22980
	TAGTAAATCA	TCTAACCTGA	A AGAGCAGGTT	GTGAGAACCC	CTGATTTAGA	AAGCCCAGTG	23040

	GTCATAAATA	TAAGTGGCTC	TGGACTGGCT	CCCGGGGTCT	GAAGTGTGGG	CAGTCGGTTA	23100
	GGATTGAGCC	CTTGTAATTT	GTAGGATCTG	ACACACACTC	CAGGAAGGCA	GTGTCAGAAT	23160
	TTACCTGTAT	TATATTGGAC	ACCCAGTTAG	CGTTTGGAGA	ATTGGTTGCT	GGTATAGAAA	23220
	AATACCAAAT	ATTTTATGTC	AGGGGAGTGA	AAGAAAAAAC	AAAAACCCGG	CCGGGCGCGG	23280
5	TGGCTCACGC	CTGTCATCCC	AGCACTTTGG	GAGGCCGAGA	CGGGCGGATC	ACGAGGTCAG	23340
	GAGATCGAGA	CCATCCTGGC	TAACACGGTG	AAACCCCATC	TCTACTAAAA	ATACAAAAAT	23400
	TAGCCGGGCG	TGGTGGCGCG	CGCCTGTAGT	CCCAGCTACT	CGGGAGGCTG	AGGCAGGAGA	23460
	ATGGCGTGAA	CCCGGGAGGC	GGAGCTTGCA	GTGAGCCCAG	ATCGCGCCAC	CGCACTCCAG	23520
	CCTGGGCGAC	AGAGCGAGAC	TCCGTCTCAA	АААААААА	САААААААА	AAACAAAAA	23580
10	AAAAAACCCA	TACACTTTAA	GGAAAGCAAC	TGACAGCATT	TGTTACCAGT	GATAAAATTT	23640
	GAGCTTTGAA	GTAAGAATAA	CAATTTTGCC	ATTGTGCCCG	GGCCAAGAAA	AAAAAAAGAA	23700
	TTTTGCCATT	GTGAAAGGCT	TCCCAGTACT	TTCTGATGAG	CTTGACGGTG	ATATTAACAA	2376Ò
	ATAACTTTTT	TTTTTTTTT	TTGAGATGGG	GTCTTGCTCT	GTCACCCAGG	CTGGAGTGCA	23820
	GTGGTTCAAT	CTCAGCTCAC	TGCAACCTCC	GCCTCCCAGG	TTCAAGCGAT	TCTCCTGCCT	23880
15	CAACGTCCCA	AGTCGCTGGA	CTACAGGTGT	GCGCCACCAC	GTCCAGATAA	TTTTTGTATT	23940
	TTTAGTAGAG	ATGGGGTTTC	ACCATGTTGC	CCAGACTGGT	CTCAAACTCG	TGACCTCAGG	24000
٠	CGACCCGCCC	ACCTCGGCCT	CCCAAAGGTG	GGAGGCCTTG	CTGGGATTAG	AGGTATGAGC	24060
	CGCTGCACCT	GGCCTCTTGT	CCTTGTGTTT	TGCAGTGATG	CAATGACCAT	GTCTTACATT	24120
	TGCAACCAGA	AAAAAAGGTT	AGTGTAACAA	TGTTTATCCT	GTTTTTCCCA	GAGTAGACAT .	24180
20	TATGAAGATT	AAAAAAATTT	GAAAGTGTTT	TGAATATAAT	AAACTATGCT	ATACACACAA	24240
	CATTTTGGTG	ACTAGAAATA	CAAGTTTATT	GTTTGTTGTT	TGTTGAGACA	GGGCCCTGCT	24300
	CTGTCTCCCA	GGCTGGGTGG	CACAATCATG	GCTCACTACA	GTCTTGAACT	CCTGGGCTTA	24360
,	AGCGATCCTC	CCACCTCAGC	CTCCAGAGTA	GCTGGGACTG	CAAACGAGCA	CCACCACGCC	24420
	TGGCTAATAT	TTGTATTTT	TGTAGAGATG	GGGTTTCACC	ATGTTGCCCA	GACTGGTCTC	24480
25	AAACTCCTGG	GCTCAAGCAA	TGCTCCTGCC	TCGGCCTCCC	AAAGTGCTGG	GATCACAAGT	24540
	ATGAGCCACT	GCACCCGGCT	GAGTTTCTGT	TGTTTTAAGC	CGCTTCATTT	GTGGTACTTC	24600
	TTACAGCAGT	CCCAGGAAAC	TGAGCAACTG	CAGAACATCA	AAATTGTTTT	TCTTCAGCAA	24660
	AAGGAGAAGC	ACTTGTGGTT	GGCACCAGCT	TTTCCTGTGC	TCACTTCTGC	ATGGCCGCAC	24720
	CTTTGCCCGA	CACGAGTGCA	CAGCAGGCTG	TGGGGGAGCA	ACTGGTTGAG	TCAGGCCTCC	24780
30	ACTTGTGCCG	TATCCCCACC	TGCTTTGCTG	GACACĆCCTG	TTTGGGGGGC	ACCCACTGCT	24840
	GCCCCAGACA	. CCAAGCAAGC	ACCAGCTGTG	TCCAAAACTT	ACAGTCACTG	TCTTGGCCCG	24900
	TTTTGTGCTG	CTGTAACAGA	ATGCCACAGA	. CTGGGTAATT	TAATACAGAA	CAGAAATTTA	24960
	TTTCCTCAAA	. GTTTTGGAGG	CTGGGAAGTC	CAAGAGCAAG	GGGCCATCAG	GTCAGGGCCT	25020
	GGTCTCTGCT	'TCCACGATGG	CACCTTGACC	ACCGTGTCCT	CACGTGGTCA	GAGAGAGCCC	25080

					cmcccccmm3.3	00000001101	25140
				CACTGCTGCG			25140
				ATAGCAGTCA	•		25200
	-			GGGCACTGTA		•	25260
	CAGTTTGGGA	GGCCAAGGTG	GGTGGATCAC	CTGAGGTCAG	GAGTTCAAGA	CCAGCCTCAC	25320
5	CAACATGGTG	AAACCCCATC	TCTACTAAAA	ATACAAAATT	AGCCAGGTGG	TGCATGCCTG	25380
	TAATCCCAGC	TACTCGGGAG	GCCGAGGCTG	GAGAATCGCT	TGAATCCAGG	AGGTGGAGGT	25440
	TACAGTGAGT	CGAGATCATG	CCATTGCACT	CCAGCCTGGG	CAACAAGAGC	GAAACTCTGT	25500
	CTCAAAAAAT	AAAATAAAAT	AAAATACATT	CACAAGGCCG	GGCACTGTGG	CTCACGCCTG	25560
	TAATCCCAGC	TACTTGGGAG	ACTGAGGCAG	GAGAATCGCT	TATAACCTGG	GAGGTGGAGG	25620
10	TTGCAGTGAG	CTGAGATCAC	ACCGCTACAC	TCTAGCTTGG	GCAACAAGAG	TGAAACTCCG	25680
	TCTCAAAAAA	GTAAAATAAG	GCCCTGCAGG	CATGGTGGCC	CACACCTGTA	ATCCCAGCAC	25740
	TTTAGGAGGC	CAAGGCGGTC	GGATCACGAG	GTCAGGAGTT	CGAGACCAGC	CTGGCCAACA	25800
	TGATGAAACC	CCGTCTCTAC	TAGCCTAGCC	AACATGGGGA	AACCCTGTCT	СТАСТААААА	25860
	TACAAAAATT	AGCCGGGCAT	GGTGGTGCGT	GCCTGTAATC	CCAGCTACTC	AGGAGGCTGA	25920
15	GGCAGGAGAA	TCGCTTGAAC	CCAGGAAGCA	GAGGGTGCAG	TGAGCCAAGA	TTGCGCCGCT	25980
	GCTCTCTAGC	CTGGGCGACA	GAGCGAGACT	CCATCTCTAA	ATAAATAAAT	AAAATAAGAA	26040
	AATAAAATAT	GTTCACAAAT	CCTTTGACAT	TCCTCACCTC	AAAAGCTGGA	ACCCAACTCC	26100
	CTCCTAAGCA	TGAGTCTTCT	CAGTGACTCA	CTTCTAACAG	CAGAACTTAC	ATGGTTCCCC	26160
	ACACCCAGAG	GACATTGGGT	TCCTCCCAAT	ATCCCCCCAC	CCAGCGACCC	CCACCCAGGT	26220
20	CGCTGGCTTT	GGGTCCCCCA	GAGCCATGTT	TCAAGGACAC	TCAGGCAGCC	CCTGGATGTC	26280
	CATGTGGTAA	GGAATGAAGG	CCTCCTGCCT	GCAGCCTCGG	GAGGGAGCAT	TCTCAGAAGA	26340
	GGATGCCCCA	CCTCCTGCCC	AGCCTTCAGA	TGGCCAGGAC	CTCGTCCAAC	GTCCTGACTG	26400
	CAACATCATG	AGAGACTCCG	AGCCAGAAAC	CCCCAGGTTT	TGTACTCCTG	ACTTATGGGA	26460
	ACTGACAGAT	AATGTTCGTT	GTTAATTAAG	GGGTGACTTG	TCACACACAA	TAGGTCACTA	26520
25	AACAGCTCTG	TCTGGCCTCC	CAGGAGGAGC	CTGCCTTTCC	TTTTCTTCAT	GGGAAAAGTG	26580
	CGATCAGTTT	GTGAAGGAAT	GTCCGCCCCC	ACTTGATGCC	AGAGGCTCCA	CATGGTGACT	26640
	GTCATAAACT	CCATCTGCCC	TCAGTGCCTT	GCCAGCACCC	GGCCTGCGAT	CAGCTTGGTC	26700
	TTGCGGGAGG	CCAAGGCCCA	CGTGTGTTTG	TGTGTGGTGT	CTGTGTCTGC	GTGCCCATGC	26760
	ATGCCCAGGG	TACAGGGATG	CCATATACAA	ATTCTTTCAA	TGTTGTATGT	GGCATGTGTG	26820
30	TGTCTGTATG	CCCAGGATAC	AGGGATGCTA	TATACAAACT	CTGTTTTTTC	GTTTTTTŢTT	26880
	TTTTGAGACA	GAGTCTTGCT	GTTTCGCCCA	GGCCGGACTG	CAGTGGCGCT	ATCTCGGCTC	26940
	ACTGCAAGCT	CCACCTCCCG	GGTTCACGCC	ATCCTCCTGC	CTCAGCCTCC	TGAGTAGCTG	27000
	GAACTACAGG	CGCCCGCCAC	CACACCCGGC	TAATTTTTTG	TATTTTTAGT	AGAGACGGGG	27060
	TTTCACCATG	TTAGCCAGGA	TGGTCTTGAT	CTCCTGACCT	CGTGATCCAC	CCGCCTCAGC	27120
	•				<i>,</i> *		

	CTCCCAAAGT	GCTGGGATTA	CAGGCATGAG	CCACCACGCC	TGGCCTACAA	ACTCTTTCTT	27180
	TTTTTTTTT	TTTTTTTGA	GATGGAGTCT	CACTGTCTTC	CAGGCTGGAG	TGCAGTGATG	27240
	CGATCTCAGC	TCACTGCAAG	CTCCACCTCC	CGGGTTCATG	CCATTCTCCT	GCCTCAGCCT	27300
,	CCCAAGTAGC	TGGGACTACA	GGCACACACC	ACCACGCCCA	GCTAATTTTT	TGTGTTTTTA	27360
5	GCAGAGATGG	GGTTTCACCA	TGTTAGCCAG	GATGGTCTCG	ATCTCCTGAC	CTCGTGATCC	27420
	GCCCGCCTCG	GCCTCCCAAA	GTGCTGGGAT	TACAGGCGTG	AGCCACTGCG	CCCAGCCTGC	27480
	AAACTCTTTC	AATGTCTTTC	TTTTCTCTCT	CCTGCCATCT	TCTCCCTTGC	AGATTTCTTT	27540
	TGTCTCTACG	TCTTCCCCAG	CTGAGTCCGA	GGTCCTGACT	TGCCCACGCT	CCCTGGACTG	27600
	GAGGAGAGGT	GATAGCAAGA	GCTCCTTCAA	GCCCAGGAAT	GCCACCAGGG	CTGCCCCGGG	Ž7660
10	AGAGGAGGAA	GCTGGGTCTC	TCGGGGTTGT	GGGGACCAGA	CACCCTTCTA	AGACATGGAC	27720
	TCAGCACAGA	AAGTCTAGAC	ATCCACTACA	AACACATCTC	CCTCCTAACA	GGGGCCCCT	27780
	GGGCACCCCA	AGTGGCTGTT	TGGTGGGACA	GGCATGTCCA	TCAGTCAGAA	TATCTTTATT	27840
	TTTTATTTT	TATTTTTAT	TTTTGAGAGA	GTTTCACTGG	AGTGCAATGG	CACGATCTCA	27900
	GCTCCCTACA	ACCTCCGCCT	CCCAGGTTCA	AGCGATTCTC	CTGCCTCAGC	CTGCCACGTA	27960
15	GCTGGGATTA	CAGGTGTGAG	CCACCACACC	CAGCTAATTT	TTTTTTTTTT	TTTTTGAGAT	28020
	GGAGTCTCGA	GGCTCTGTCG	CCCAGGCTGG	AGTGCAGAGG	CGCGATCTCA	GCTCACTGAA	28080
	AGCTCCGCCT	CCTGGGTTCA	CGCCATTCTC	CTGCCTCAGC	CTCCCGAGTA	GCTGGGATTA	28140
r.	CAGGCATGAG	CCACCGCGCC	CGGCCAATTT	TGTATTTTA	GTAGAGACAG	GGTTTCACCA	28200
	TGTTGGTCAG	GCTGGTCTTG	AACTCCTGAC	CTCAGGTGAT	CCACCTCCCT	CGGCCTCCCA	28260
20	AAGTGCTGGG	ATTACAGGCC	TGAGCCACCA	CGCCCAGCCC	AGAATGTCTT	CTTACTTTTT	28320
	ATTACTCTGT	CCCCCATCCT	GGGTCCAGAC	CTGTGACCGT	GAACAACCGG	CTGCCCAGGG	28380
	GTGAATGGGG	TGAGTGGGGT	GAGTCCACAG	AACAGTGGGG	TGCAGCCCCA	GGGGTCTCGT	28440
	AGCACCTGCC	CCCAGGTCAG	GAAGTCCCAC	AGCCTAGAGG	CTCCAGCCTC	AGATGCATAC	28500
•	ATATGTAGGC	CCTGCCCTTT	CCTCCTGAGC	GGCGGGCCAC	AGAGTCCTGA	ACAACAGGAA	28560
25	GCCCCTGAGG	AGGGCTCCGC	CCTGAGGGAG	GGCAGGGGAG	CCCCCGCCAG	CCCCACCCAC	28620
	AGCAGCGGGC	CCTGCCACCC	CCCACCCTGA	CACCTCACCC	CTTGGATTCC	AGAGAGGAAA	28680
	GTGGGCTTGT	GTGTAGTTTA	CATGCTCATA	TCTTAAAATC	ACCGTTGTCA	ATAGAACAAT	28740
	TCATAATAAT	GATGATAAAA	TAAGATTTAT	AACCAGCTTC	AGTCTGGAGA	TACACACAGA	28800
	GCAGATCTTC	ACTCCCAGAC	AGGGAGCCCG	CAGCTGCCCC	CGACCCCACA	GGTGCAGGAC	28860
30	ACACACAGAC	AGTTCAACCA	TGTCTTAAAC	ACACAGGTGT	TTATTTAATT	GTTCATTTGA	28920
	TTGAATTTTT	AAGTTCACTT	TACTACGTGG	ATGAGATGGG	TGCATATTAC	AGTAGGCTTT	28980
	CGCTATGAGC	GCTGCCACCA	. TGAGGAATAT	CCCAGCCCTC	AGTTCTGCTT	CCCTTTCTGA	29040
	GTCCCACAAA	AGCCAGATGT	GGACAGCCTT	GGGTTCCCAT	CCCAGCTGGC	TGCTCCTTCT	29100
	GGGGCTGTCT	TGGTGGGGAG	AGGGAGATGG	GGCAGTGGGT	CCCTGCTGAC	CCCTGAGCCC	29160

	TGCAGGGGTC	AGGATCCTCC	CGTGGTCCCT	GGGTGTGGCT	CTGGAAGACA	CTGGCAGTGC	29220
	CCGGCCAAGG	CCTCCCGCAG	GATGGAAGTT	GAGGGCCCTG	GCTCTGGGTC	CTAAGAGAAC	29280
	TCAGCCGCCC	CCTTCACACT	TTACAGCAAG	GGGCCAGGCA	GCAGCTTTGG	GATGGGGCTT	29340
	CCGTGGAGAA	GTGGGGGATG	CTGCAGTGGT	ACAAAGACAG	CCTCCCCCAC	CGCCATCCTC	29400
5	CAGCTGACCG	TCCTCCAAGG	CCAGCACTGG	GCGTCCAAGG	GAAAGAAGGA	ACTCAGCCCA	29460
	GAGGGTGTGG	GCAGGAGAGG	CCTGGAGTCA	GGCCTCCACC	CACAGCCCCC	TETGGGTGCC	29520
	AAGTGGGAAG	GGTGTTGGGG	CTGGCTTGGG	AACCTTACCC	GCTGCCCTTC	CAACACCTGG	29580
	ATCTGTGGGC	AGCGGTCCCA	CAAAATCCCC.	CTTGGGGCTC	CCTGAGGAGG	ACTTGTGGCT	29640
	GCCGCTTCCA	CCAGGGCAGA	GGGCACAGGA	GGGGCCAGCA	CTCCAAAGGG	CTCTAGGGTG	29700
10	GGTCTTTCAA	GGACATCTGC	AAAGCCCTGG	TGGGGAGGGG	CCTGGGCCAG	AGGCTCTTTG	29760
	GAACTCTTGC	ACTTCTGAGT	GGGGGACTGT	CCATGCTGCC	CACAACCTCT	AGACCATGCA	29820
	GCCTGCTCAT	GGGTCCCTGG	CAGAGAATGC	CCACTCCCCA	GCAGACTCAG	GGCAGGCCCC	29880
	CAACTGCAGG	CTTCCAGGAA	GGCCCAGGGT	GTCCACCTCA	CGCCAGGTGG	TCTCAGAGGA	29940
	CCCCTGTGCA	ACCACATTAA	GGAAAGCTGC	AGCCCCCACC	CACCCGCCTG	CCAGTTCAAC	30000
15	AAGCACCGGC	TGCACACGCA	GGCTCCCAGG	CACCATCACC	CCCCTCCCCC	GTCGCCCCTC	30060
	CCTCACGGGG	AGCCCCTTCC	CCCTGGAAAG	ACAGCAGGTA	CTGTAGCCTC	GCCTGCTGGC	30120
	CAGGGGCGCC	GGCTCAGAGG	ACCTGCCCTG	ACCTGCACGT	GCTGACCAGA	CAGCCCAGCG	30180
	TAAGGACCCG	CGATCCCACG	CCACCGCCCT	GGGTTTACCA	CGGTCACCAC	CACCTCTCTC	30240
	ACAGGGCCCC	CGGGGGACCC	AGCCGCGCCC	GGCCTGGTGT	CTGCACCGAG	GGACCGCGTC	30300
20	TCACGCCCGG	CGGCTCCTGC	AGGGGAAGCC	GTGGTCAGCG	ACTCACCACG	AGGACAGGGC	30360
	AGGGCGGCTG	AGTGCGGAAG	AGAAGCATGA	AGCTGGGGGC	GGGGGTGGGG	GAGGAGGAAC	30420
	AAAAGTTGCA	TCTAGACAGA	GGTGAACGAA	ACAAAACCAA	AACCCGAACG	TGTTCCGTCG	30480
		GCCGCCCGTC					30540
		CTCGGCCGCG		•			30600
25		TGGGGCGACT					30660
						GGGGGCGGA	30720
		GGCGCAGAGC				•	30780
	GGCCCCGCTT	CTAGCTCGTA	CCGGAGCCGA	GCTTCCTTCA	GGGCACTTTC	AATATAATGA	30840
	ATTTAGCCAT	CTATTACTGC	GGCTAGTTAC	TGTCCCGCCA	GGACCAGACT	CTGGACCTGC	30900
30	CTCGTGCGCT	GCTGGGGACG	CCCAGTAAAC	ACGGGAGGAG	CCCCCGACCC	CCACCCCAGC	30960
	TCAGCGCCTC	GGAGTCCCCG	GCCCCGCTCT	GCGCCCCTCC	GAGCTCCGCC	CTAGCCCCGC	31020
	CCCCGCCCAG	TGCCCCGCCC	CCTGCCTGCT	GCTAGCCCTG	CCCCCGCCCC	GGCCCCTGCC	31080
•	CGCTCCGAGC	TCCGCCCTGG	CCCCGCCCCG	GCCCCTGCCC	GCTCCGAGCT	CCGCCCTGGC	31140
	cccgcccccc	GCCCAGTGCC	CCGCCCCCTG	CCTGCTGCTA	GCCCTGCCCC	CGCCCCGGCC	31200

	CCTGCCCGCT	CCGAGCTCCG	cccccccc	GCCCGGCCC	CTGCCCGCTC	CGAGCTCCGC	31260
	CCTGGCCCCG	CCCCCGCCCA	GTGCCCCGCC	CCCTGACTGC	TGCTAGCCCT	GCCCCGCCC	31320
	CGGCCCCTGC	CCGCTCCGAG	CTCCGCCCCG	GCCCGCCCC	GGCCCCTGCC	CGCTCCGAGC	31380
	TCCGCCCCGG	cccccccc	GCCCCTGCCC	GCTCCGAGCT	TCGCCCCGGC	CCCGCCCCGG	31440
5	CCCCTGCCCG	CTCCGAGCTC	CGCCCGGCC	CCGCCCCCCC	ACCTTCTCGC	GCAGCCGCTC	31500
	GCGCAGTGCG	GCCAGGTGTG	CCTCGCGGAT	CTCCTTGCTG	AGCTCCATCT	TGTAGTTGAG	31560.
	СТТСТССТСС	GCCTGGCGGC	TGAAGTTGTT	ATTCTCCTCC	AGCGCCTTGT	GCAGCACCTC	31620
	GCGCTCGTGC	TCGCGCCGCT	CCGCCAGCTG	CTTCAGCACC	TGCGCCTCCT	GCGTCTGTGC	31680
	GGGCCGGCG	GGCGCGCGTG	AGCGGCAACC	CCGGGCCCTG	CCCGGCCGGA	CTCCTCCCTG	31740
10	CTCTCCGCCT	CCCGCCCAGC	GCCCGCTCGC	CTCACCTGGC	GCCTCCACCT	GCCCAGGCCT	31800
	CGGTGGGCGC	CGGGACCCCC	GGGCGCTGCC	CTGGGAACCC	TCGCCTGCCA	TCCGGCCTGT	31860
	GGTCGGGGCA	GGGCCAGGGG	GTCGCGATCC	GCCGCCCCG	CCCCCGTCCC	TGCCTCGCGC	31920
	GCGGGTCCCG	CGGTCCTGGC	TGCGCCCAGG	GCCCCGCCA	TACCCTGCCG	CCACTGCACA	31980
	CCCTGCCCTG	CGCGTCTGCC	CCTCCAAGGA	CCAGCAGCAA	GAAACCCTAA	ACTTGTGGGC	32040
15	GGTCTCTGAG	CTTTGTCTCT	TCCTCGGACA	TCCGCCCACT	GAGCAGAGTA	GCTGCTTGTT	32100
	ACACACCGGG	TTCCCAGCTC	CCAATTAGGT	GCCCAGGAGC	GGAGGGTCCC	CAGGGATGCT	32160
	GGGGGAGGGG	CCGGCTGGTG	ACCCCTGGGA	GGAGAGCGGG	GCAGCAGGAC	CCGCACCCAC	32220
	ATGCCAGTCC	CTACTAGTCA	GCCCTGTGAA	CCCTGGTCTC	TGGCCTCACC	GGGAAGGGAA	32280
	CGGAGCCGCT	TCCCCTGCCC	AATGCGTTGG	CCTCCAGGGT	GGCACCCCCA	AAAGGACATT	32340
20	TTTATCTCTG	TTTCAGTCTC	AGAGGGGCTG	GTGGGAGGGG	AGGCTGCAGG	GAGGGGACCT	32400
	GGAGCCCACA	CCCACCTCTC	CCAGGGCCCC	TCCGCCCTCC	AGCAAGCCTC	AGGGTCTTCA	32460
	CACATGAGGC	CCTTCCTCCA	GCTTCCCTGT	CTGGGAGAGG	GATGCCCCAC	CCGACGTCCC	32520
	CAGGGCCCAT	CTGGGGACCA	CCCCCTAGCA	TCCTGCTGGC	CCTGACAAGG	GTGCCTCCCA	32580
	CCCTCACCAG	AGGCTCCTGC	TCCTTCCAGG	TGGCCGCCTC	GGAACCCTTC	CTCCTCTCCA	32640
25	TCCCTTTCTT	TTTTTGTTCT	TGTTTGTTTT	TTGAAATGGA	GTCTCACCCT	GTCGCCCGGG	32700
	CTGAGGAGTG	CAGTGGCGCA	GTCTCGGCTC	ACTGCATCCT	CCACTTCTTG	GGTTCAAGCA	32760
	ATTCCCCTGC	CTCAGACTCC	CTAGTAGGTG	GGATTACAGG	TGTGCACCAC	CACACCTGGC	32820
	TAATTTTGTA	TTTTTAGTAC	AGATGGGGTT	TCACCATGTT	GGCCAGGCTG	ATCTTGAACT	32880
	TCCAACCTCA	AGTGATCTGC	CTGCCTCAGC	TTCCCAAAGT	TCTGGGATTA	CAGGCGTGAG	32940
30	CCACCACACC	CGGCCTCTCC	CCATCCCATT	CTTATCTCTC	AGAAAGAGGC	CCAGGGAGCC	33000
	ACAGCCCCTC	CTGCTCCAGG	CCAAGGCACT	GACCAAGCCT	GTCCGGGAGC	ACCCTGCTTC	33060
	TTGCAGGCCC	TGTCCCCGTG	GGCCGCCTCC	GTTGAAACTC	CTGGGGGGTG	GGGGATGGAG	33120
	GACTCCTTGC	CTTCCTCCGC	TCCTCGGCTG	CCTCCAGCCG	CTTTTGCAGC	TCCTCCAGGG	33180
	AGGTGTCCTT	CTTCTTGGGT	GGGGAGGAGA	GCATAGGGCT	CTCTGGGGAC	AGGTCAGAAG	33240

	GGGACTTGAG	GATGACCTCG	AAGCTCTGGC	CTGAGGCCCG	CTTGTCCAGC	TGCTTCACCT	33300
	CCATGTCTGC	AGGGCAAGAC	CAGAGTAGAG	CTTCAGAGGC	CCGGCCAGGG	CATGGCGTGG	33360
	GCTGAGCGGG	ATGCTCCCAG	CACACATCCA	ACCCCAGGGC	TGGGCGAGAG	GGGGTGGCTG	33420
	CTCCCGCAGG	AATCCCAGGC	TTCAGCCCCC	AGGATGGGCC	CCTTCCCCCT	AGAACCTCCC	33480
5	TCTCCAGAGG	CAGCCAGGAC	GGGAGTTCAG	AGAGACTGCC	GGAGGCCGGG	GGAAAAGGTG	33540
	AGGTGGGCAG	GCACCGCAGG	GAAGGGCAGG	CGGCAGCCAG	GCACTCACCC	CCGTACTGGT	33600
	AGACGGTATT	GGGGTGCGGC	TGTGTGTAGA	AGCAGGAGCA	GATGAGCGAC	AGCACCGACA	3,3660
	GCTCCTTCAT	CTTCTCCTTG	TAGGCTGTGG	GCACAAGGCT	GGGCTGAGCA	AGCACCACTG	33720
	GGGCCTGCCC	ACCTGGGCCC	CCGTTTTCCC	TCCCCATGGC	TGCCTCTATC	ATGTCTCTGT	33780
10	GAGACACGGA	GCTGCCCAGC	ACGCTCTCTT	GTGTGTCTCC	ACACCGCCGG	CCCCTTCGTC	33840
	TCTCCAGCTC	TCTCGCTTCC	AGACGTCGGC	ACTGTCTCCG	TGGTGTGTCC	CCTGCCTTCT	33900
	GTCTCTCTCG	CCCTCTGCCT	CTCCCCGCTT	TTCCTCTCTC	TCGGCATTAA	TGTCTGTCTC	33960
	ATCTTCCACA	CTGACTTGTT.	TCTCCATCCT	TCTCCTGCCT	GCTGTGGTCT	GAATGTTTCC	34020
	ATTACCCAAA	ACTCATGTGT	TGAAATCGTA	ACCCCAAGGT	GCCGGTGTGC	GGAGGTGAGG	34080
15	CATTCGGAGG	GAATTAGGCC	ATGAGGATAG	AGCCCTCCTA	AGTGGCCCCA	GAGTGGGGCT	34140
	TCAGAGAACT	CCCTCACCTT	CCATCATGTG	AGGACACAGC	CAGAAGACGC	CACCCGTCTA	34200
	TGTACCAGGA	GGCGAGACCT	CTCCAGGCAC	CGACTCTGCC	GGCACCTTGA	TCCTGGACTT	34260
	TCTGGCCTCC	AGAGCGATGG	GAAATAAGTT	CCTGTCGTCT	ATAAACCACT	CAGTCTCAGG	34320
	TACCTGCCCA	GACTGACAAA	GTGGCTACCC	CTGCCTGTCT	GGGTCTCTGT	TTACCTTCTG	34380
20	TGTGTCTGAC	TCTGTCACTG	TCATTGTATC	TTTCTGTGTC	TCTGGGGGTA	GCCCCTGACT	34440
	CTGTCTTTCT	CCCTGAGTGC	ATCTTTCTGT	GATTCCTTGT	CACTGTGTGT	CTTTCTGACT	34500
	CTTACCTCCC	TCTGTCCCGC	TACTTCTCTC	TCCCCTCCTC	CTCCTTCCCA	CTCCTCGCCA	34560
	GCTCAAGCAG	GCAAGATTTA	CTCATGACGG	GACCAGCACA	GATGCAAACC	CTCTGTGGGC	34620
	AGGACTTTCT	TGGGCTGTAA	ACCTGGATGA	AGCCCTCAGA	CCCTCCTTTT	TCCTTCCCAA	34680
25	TGATTGTGTG	GTCACCTTGA	GATGAAACCA	GGCCCTCTCC	AGGCACATGC	TCTCTGTCTA	34740
	TCTAGGGCTG	GGCTTGGGCC	ACTGATGCCA	CCAAGGAGCA	AGGGAGGGAA	GCTGTCCGTT	34800
,	CAGCACCACA	GCCAGCCCTC	TTGCCCATTC	AGGTCAATCA	AGTGCCCACC	AGCCAGTGTC	34860
	CCTGCTGCCC	AACCCAAACC	AGAAGCAAGC	CGGGCTCCTG	TGGCCCTGTG	CCCTGTCAGG	34920
	GGAAGAGGAA	GGCGCCTGCT	GTCACAGTGA	AAATAATTTA	GCTCTTTTGG	TCTATTCAGG	34980
30	GCGAACCTCA	TTCCTAAGCA	GACACGCTGG	CCCGGTTTCT	CACTAGTGCT	CGATAATCCT	35040
	TTTGGCTGGG	TGCAGTGGCT	CATTTAACTG	TAATCCCAGC	ACTTTGGGAG	GCCAAGGCAG	35100
	GTGGAACACC	TGAGGTCAGG	AGTTTGAGAC	CAGCCTGACC	AACATGGTGA	AACCCGATCT	35160
	СТАСТАААА	TATAAAAATT	AGCCAGGCGT	GGTGGCAGGC	ACCTGTAATC	CTAGCTACTT	35220
	GGGAGGCTGA	GGCAGGAGAA	TCGCTTGAAC	CTGGGAGGCG	GAGGTTGCAG	TGAGCCGAGG	35280

	TCGCGCCATC	GCACTCCAGC	CTGGGTGACA	GTGTGAGACT	CCGTCTCAAA	ACAGAAAGAA	35340
	AAAGAGAGAG	AGGAAGAAAG	GAAGGAGGGA	GGGAGGGAGG	AAAAGAAGAA	AGGAAAGGAA	35400
	AGGAAGACAG	ACAAGGCAGA	AGTAATCAAG	CCTTTCATGG	TGAGCTGGGT	CTTCTGGTGA	35460
	CAGTGCAGAG	AATGGTCTGT	CCTGACTTAA	ATTTCCTGGT	GACCTACACT	TTTCTGGACA	35520
5	GAGCAGCACA	GAGCCCAAGA	GGGTGTAAGG	AGGAGCAGAA	AGGAATCCCA	GGGTGGGCAG	35580
	GCCCGTGCGA	GAGCCTTTGG	GGGAAGGAAT	GAGACTTTGA	GCCGGGAAGC	GAGGCAAAGC	35640
	TACCTGTCTT	GGTCATTGTC	TTCAGGGAGG	GAGATGGAGG	GGGACCAGGT	GGGGGAGCCT	35700
	CACAGGGGAC	TTTGGTCTGA	CTTGTCAAGT	TTTCTTTTTT	TCTTTTTGAG	ATGGAGTCTT	35760
	GCACTGTTGC	CCAGGCTGCA	GTGCAGTGGT	GCGATCTCGG	CTCACCGCAA	GCTCCGCCTC	35820
10	CTGGGTTCAC	ACCATTCTCC	TGCCTCAGCC	TCCCGAGTAG	CTGGGACCAC	AGGCACCGCC	35880
	ACCACACCCA	GCTAATTTTT	TGTATTTTTA	GTAGAGACGG	GGTTTCACTA	TATTAGCCAG	35940
	GATAGTCTCG	ATCTCCTGAC	CTCGTGATCC	GCCCGCCTCG	ACCTCCCAAA	GTGCTGGGAT	36000
	TACAGGTGTG	AGCCACTGTG	CCTGGCCTAC	TTTATTTTTT	AGAAACAGGA	CTGTGCTCTG	36060
	TTGCCCATGC	TGGAGTGTAG	GGTGCAGCTG	TGCGGTTCAC	TGCAGCCTTG	AACTTCTGGG	36120
15	CTTGACGGAT	CCTGCCATCT	TAGCAGCTGG	GACTACAGGT	GCATGCCAGC	ACACCAGTTT	36180
	TCTTTTTTT	TTTATCTCTG	CTCACTGCAA	TTCCGCCTCC	TGGGTTCTAG	CGATTCTCCT	36240
	GCCTCAGCCT	CCCAAGTAGC	AGGGATTACA	CGCACATGCC	ACCACACCCG	GCTAATTTTT	36300
	GTATTTTTAG	TAGAGACAGG	GTTTCACTAT	GTTGGTCAGG	CTGGTCTTGA	GCCACCGCGC	36360
	CCGCCCGGCC	TACACACCAG	CTTAAAAAAA	AGAAAAAAAT	AGCTGGGCGT	GGTGGCTCAT	36420
20	GCCTGTAATC	CCAGCACTTT	GGGAGGCTGA	GGCAGGCAGA	TCACCTGAGG	TCAGGAGTTC	36480
	AAGACCAACC	TGGCCAACAT	GGCGAAACCC	TGTCTCTACT	ACAAATATAA	AAATCAGCCA	36540
	GGCGTGGTGG	CGGGCTCCTC	TAATTCCAGC	TACTTGGGAG	GCTGAGGCAG	GAGAATCACT	36600
	TGAACCCGGG	AGGTGGAGGT	TGAAGTGAGC	CAAGATCGAG	CTACTGCACT	CCAGCCTGGG	36660
				AAATTTGTAG			36720
25						CATGAGGTCA	36780
	•					AATAACAAAA	36840
	ATTAGCCAGG	CATGGTGGCG	GGCACGTGTA	GTCCCAGCTA	CTCGGGAGAC	TGAGACGGGA	36900
	GAATCGCTTG	AACCCAGGAG	GCAGAGGTTG	CAGTGAGCTG	AGATCACGCC	ACTGCACTCC	36960
	AGCCTGGGTG	ACAGAGTGAG	ACTCTGTCTC	AAAAACAAAC	ACAAACAAAC	ATATATATAT	37020
30	ATACATGTAT	ATATATAATA	TATATATACG	TATATATACA	CGTGTATATA	TATAATATAT	37080
	ATACGTATAT	ATACACGTGT	АТАТАТААТА	TATATACGTA	TATATGTATA	TATTAATATA	37140
	TATACGTATA	TATACACGTG	TATATATTAA	TATATATACG	TATATATACA	CGTGTGTATA.	37200
	TATTAATATA	TATACGTATA	TATGTGTGTG	TGTGTATATA	TATATGTATA	TATATATATA	37260
	ТАТАТАСАТА	TATATATACA	GAGAGAGAGA	GAGTAGTGAT	AGGTCTTGCT	GTCTTGTCCA	37320

	GGCTGATCTT	GAACTCCCGG	CCTCAAGAGA	CCCTCCCACC	TCAGCCTCCC	AAAGCACTAG	37380
	GATTATAGGT	GTAAGCCACA	GTACCTAGCC	TAAAAAT	TAATGTTAAA	CAAGAGGATG	37440
	TGATGAGGGA	GTTAGAGGGT	GTGCCAGCCA	TGTGTTCCAC	AGCAGCAGGT	CAGGAGACAT	37500
	TGGGGACATT	TAGAGGAGCT	GAAGAGGTGG	CCAACCCTGT	GCTCAGGAGG	ACGGGGGAGG	37560
5	GAGAGAGCAA	GAGGGAGTTT	GGGCTGGGGC	AGAACGTACC	TGGGTCCTGA	GAGGATAAGA	37620
	AGGTAGGGAC	TTGGCCCCTC	CAGGCCTGAC	TCTGCCAGCA	ACCAGCTCCC	TATCAGCAGA	37680
•	CTCCAGGCCC	CTACCCTTCA	GCTCATCCTT	CCTTATCACA	CATCCAAAAC	TCTGAATGTG	37740
	GCCGGGCGCA	GTGGCTCACG	CCTGTAATCC	CAGAACTTTG	GGAGGCTGAG	GCAGGAGGAT	37800
	CGCTTGAGAA	CAAGAGTTTG	AGACCAGCCT	AGGCAACATG	GTGAAACCCC	ATCTCTACTA	37860
10	AAAATATAAA	AATTAGCTGG	GTGTGGTGGC	ACATGCCTGT	TGCCCCAGCT	ACTCAGGAGG	37920
	CTGAGGCAGG	AGAATCACTT	GAGCCTGGAA	GGCGGAAGTT	GTAGTGAGCA	GAGATTGTGC	37980
	CACTGCGTTC	CAGCCTGGGC	AACACAGCGA	GACTCTGTCT	CAAAAAACAA	AAACTGGAAT	38040
	GTGTTTACCA	TAAAGGCCAG	AAAATGTGAT	TAACAGCTGC	TCAAAGCCCC	TGTCTGCCCT	38100
	AAGCCTGAAA	TTTTCACCGA	AAAAAAGATC	TGTAGGCTCA	TACAGAGGAA	GGACAAACAC	38160
15	CAGGGAGGCT	CTCTTCCAGT	TTGCTTCACC	TCAGCAAGCA	GACGGCTGGC	AGCAATTTGG	38220
	GGGCAGGTGT	GAGCACCTGC	ATCATCAGGA	AAGAAGGGGC	ACGGTGGGGA	CGCAGGTCAG	38280
	ACCTCTCACA	GGTCTTGGCT	CTGCCCAGGA	GACACGTGTC	CAACTGAGAG	GTGAGGAACT	38340
	GGGTTCTGCA	GCTGCAGACA	CAGGTGCGGC	TCAGCATCTG	ATGGCCACGG	AGACCCCCTG	38400
	GCTTGGCTTC	TCCCAGCTGG	TGGCCCATGA	GGAGCTTCTA	TCCCAAGAGA	CTGTCCCTCA	38460
20	AGGAGCAAGT	GGGACCAGGT	ACCCACAGGA	CGGAGCCTGG	GAGTGAGGCC	TGCCCTGTGG	38520
	TCTGGCTACA	GGGAGGAAGG	GCAGATTGGA	GGGGGCAGGA	CAGCAGGTCA	GGAATTGGCC	38580
	AACTCTGGAG	AGAGCAAGCA	AGGGGAAGTC	TGCGCACAGG	GCAGGGCTGG	TCAGGGGCGA	38640
	GGCAGGGCAT	TGGACCAGTA	TTTTCAGAGC	TGGTGAGGCT	TAAAGAGCAT	GTCTACTGCC	38700
	TCTTATTACA	GAGAGAGGAT	GCCGAGGCCC	AGACCCATCC	AGGCCACCTC	TCCACAGACA	38760
25	CAGCTGGTGC	CAGGGAAGCC	CCTCCCAGAG	CCTCAAGGCA	TTGCTCCCTC	TCTCTCTCTC	38820
	TTTTTGTTTT	TTTGGAGACG	GAGTCTCACT	CTGTCTCCCA	GGCTGGAGTG	CAGTGGTACA	38880
	ATCTCGGCTC	ACGGCAAGCT	CCGCCTCCCG	GATTCACGCC	ATTCTCCTGC	CTCAGCCTCC	38940
	CGAATAGCTG	GGACTACAGG	CGCCCGCCAC	CACGCCCAGC	TAATTTTTTG	TATTTTTAGT	39000
	AGAGACGGGG	TTTCACTGTG	TTAGCCAGGA	TGGTCTCGAT	CTCCTGACCT	TGTGATCCGC	39060
30	CCGTCTCAGC	CTCCCAAAGT	GCTGGGATTA	CAGGTGTGAG	CCACCGCGCC	TGGACTTTTT	39120
	TTTTTTTTA	AGACGGGGTC	: TCACTCTGTC	ACCCAGGCTG	GAGTGCAGTG	GCGCGATGTC	39180
	GGCTCACTGC	AACCTCTGCC	TCCCCAGTTC	AAGTGATTCT	CCTGCCTCAG	CCTCCCAAGT	39240
	AGCTAGAATT	ACAGGCACAT	GCCACCATGC	CCAGCTAATT	TTCTGTATTT	TTAGTAGAGA	.39300
	TGAGGTTTCA	CCATGTTGGC	CAGGCTGGTC	TTGAACTCCT	GACCTCCGGT	GATCTGCCCA	39360

	CCTCAGCCTC	CCAAAGTGCT	GGGATGACAG	GCGTGAGCCC	CCGCGCCTGG	CCCCCGCAG	39420
	TGCTGGGATT	ACAGGCGTGA	GCCCCGCGC	CCGGCCCCTC	CCTCTCTTTG	ACTCCCTTCT	39480
	TTCTCACCGC	CCCCTCCCCA	CCATCCTTCC	CCTTCACTGA	CTTCAGGGAG	ТТАААААСАА	39540
	TTCTCGCAGT	GAGCTGGGCT	TGTTTTGTCT	CCCTGCTTCT	CTTTGTACTA	AACATTAGAT	39600
5	ACCGAGGAAA	TGCGGATTGG	CCTTTGGATG	ATTCATGAGC	AGGAGTCAGA	AAAAGGCACC	39660
	AGGTTGGCCT	CAAGCAGCAG	GGTATAGTAG	TGCCCGCTCC	CAGGGTCACA	CCTCACGCCC	39720
	ACCCCTCCCG	CCGTCCAGGT	GGATGGTGCC	CACTCCCAGG	GTCACACCTC	ACGCCCACCC	39780
	CTCCCGCCGT	CCAGGTGGAT	GGTGCCCACT	CCCAGGGTCA	CACCTCACGC	CCACCCCTCC	39840
	CGTCGCCCAG	GTGGATGGTG	CCCACTCCCA	GGGTCACACC	TCACGCCCGC	CCCTCCCACC	39900
10	CACCCGGGTG	GATGGTGCCC	GCTCCCAGGG	TCACACCTGA	CGCCCACCCG	GGTGGATGGT	39960
	GCCCGCTCCC	AGGGTCACAC	CTCACGCCCA	CCCCTCCCGC	CCGCCCGGGT	GGATGGTGCC	40020
	CGCTCCCAGG	GTCACACCTC	ACGCCCACCC	CTCCCGCCGT	CCAGGTGGAT	GGTGCCCACT	40080
	CCCAGGGTCA	CACCTCACGC	CCACCCCTCC	CGCCGCCCAG	GTGGATGGTG	CCCACTCCCA	40140
	GGGTCACACC	TCACACCCAC	CCCTCCCGCC	CACCCGGGTG	GATGCCCTTA	TCAGCTCTCC	40200
15	TTCTCCTTCT	CTTTCGTCTT	CTTCGTCTTC	CTCCTCTTCT	TTCTTCTTTT	TTTTTTTTT	40260
,	TAGAAAGAGT	TTCTACTCTT	GCTGCCCAGG	CTGGAGTGCA	ATGGCACAAT	CTCAGCTCAC	40320
	TGCAACCTCC	CTCTCCCCGG	GTCAAGCAAT	TATCCTGCCT	CAGTCTCCCA	GATTGCTGGG	40380
	ATCACAGGAG	TGTGTCACCA	CACCTGGCTA	ATTTTGTACT	TTTAGCAGAG	AGGGGGGATT	40440
	TCACCATGTT	GGCCAGGCTA	GTCTCGAACT	CTTGACCTCA	GTTTATCCAC	CGGCCTCAGC	40500
20	CTCTCAAAGT	GCTGGGATTA	CAGGCATGAG	CCACCCTATC	TGCCTCACTT	CTACAGAGGA	40560
	GGAATGAAGG	CTCAGAGAGG	GCAAGCATTC	CACCCAGCAT	CACACAGAGT	GCCGGGTGAG	40620
	AGCCCAGTCA	TGAGCCTGGG	CCTGACTGCA	GGCTCCTGTT	GGGAGCTCGC	GGAGGTGGGG	40680
	GATCTGTCCA	GAACTGAGAG	GCCAGGGGAC	CACAGTGGCC	TCTGACCCCT	GGAGGGCCCT	40740
	GGAGGCTGCT	GCCGGCTCCC	CCCGGGGGCA	GATGGAGGTC	ACTGTCACCC	AGGCTGCTTC	40800
25	TCATGGTGCC	AGGAGCACAG	CATGGCAGGA	GCCACCAGCC	GATTTGCCTT	TCCCTGGGCA	40860
	GGAAACTCAG	AAATGTGGCT	ACCACAGTCA	GGCTGCTTGA	CGTGCGGTGA	GCACTCATCT	40920
	CTTAGCAGGC	AAGCGGCCAA	GCACCTTTCC	TGAAATATTG	AGGCCTCAGA	ACAAGCCCCA	40980
	GGAGAGGTGC	CAGCACCGTC	ATCTCTACCC	AGATAAGGAG	ACCCAGGTCC	TGAGAGGTTA	41040
	GGCAGCTCGG	ACAACACCAC	ACAGCTGGAG	GAGGTCAGAC	TCTGGGTTGC	AGAAGGAGAA	41100
30	TGTGAGCAGA	GGCCACAAAA	GAGCGAGGAG	CCAGTGCCCA	GATGCCGAGA	TGCCCTCGCC	41160
	CTCCCAGCTC	AGCCCCAGGA	ACCGAGCCCA	TGGGGAGGGA	CCGTCAGGGA	AAGGCTGTCA	41220
	GGAAGGGCAG	GAGGCGGCCC	TGGAGAGGAC	GGCGCTGCCC	TCAGGGGCAG	GAGGGGAGTC	41280
	CCCTCCGCTG	AGAGCCCCCC	CACCCCCAGT	ATCCCCGGGG	GTGTCCAGGA	GGAGGCGGAG	41340
	GGAGGAAGCG	CAGATGGACA	GGACTCCCAG	ATAGGGTGGG	GAGGTGTGGC	CGGTGACACA	41400

						•	
	CACGGTCCCC	TCCTGGCAGG	TGCTGAAGTC	ACCTGGAGCC	TCCAAGCCCG	TGGGGCCTGA	41460
	GGGGGGGGT	CAGGTCGGGC	ACGCGTGGGT	GGGCGGAGTT	CTGCGCCCCG	GGCCAAGGCG	41520
	CCCGAGTTGA	ACCAGTCAGC	TCGGGAGAGG	GACCGCGGCG	ACCTGTCCCG	GGGGCGTAAG	41580
•	AAAAGGTGGG	AGGGAGTGCG	GCTCGTGAAC	GGGGGCGCG	ATGGGAAGGA	GGTGCGGCCC	41640
5	TTCGTCCTGT	CCTCCCAAAC	GTCGAGTGAA	AAACGAAGCG	GGTTCTGCGG	CCTCGCGGCG	41700
	GAGCAGAGCG	TTTCGGGAAG	GGCGGGCCCA	GCGTCCTCGC	GCCCGAGGTC	GCCCGGCAGC	41760
	TCCCCTGCGT	CCAGAATCCG	CCCCCGCCC	GGGCCTGCGC	CCGCCCCTCC	GCCTGAGCTC	41820
	CGCGCGGGAC	GGGCCGGGAG	GCCGGGGTGG	GCGCTACCTT	CGAAGGCGGT	GGGTCCGCCC	41880
	CGCGGGAGGT	GGAGGGGCGG	GAGGGGGGA	GCCCTCTGGT	CTCCGGAGGG	TTTGGGGATC	41940
10	GCAGTCGCCC	CTCCCCCATC	CAGACCCCGC	GGCGCAAAGG	GCAGTGGCTT	TTCTGGCCAG	42000
	AGCAGGTGGC	GCGGGCGTCG	CAAAGGGTGG	TCCCCGAGGC	CGCAGCGGTG	TGGGGGGAGG	42060
	GCGCGGTCCC	CCTCACTCCG	GGCTCCGCCG	TGTCTGGCCC	GCCCCCTCC	TTCAGCGCCC	42120
	CCTCCAGCCC	CTGTGCTGCA	CTGGCGCGGG	GAGCGCCGGG	TTCCCGGCTG	GGGCTTTGGC	42180
	AGAGGGTCCC	ACCCTCTCCC	CGCCTCCCCA	CGAAGGCTCT	GGCGGACCCA	GATCTCGGGT	42240
15	CGCCGGACGC	CCCAGGGACC	CCGCCCGCAC	ATCGCGAGCG	CGCCCACCCG	GTCGCGAGCC	42300
	CACGCCCGGG	TCTGGGAGCC	ACCCTGCGGC	AGTCGCGCCC	TGCGTGGCAC	GCTGCTCCCC	42360
	CAGGGGCGAG	GCGCCCCGC	CCGACGTCCC	GGTCCCGAGC	GCTCCCCGGC	GCGGCGCCTC	42420
	GCAGCCCAGC	GCCCCACCAG	CCCCGCCGGC	GCCGCAGACC	CCAGCCTCGG	GCGGGTCGGG	42480
	CCCAGGCTTG	CAACGCGCAG	GGTAGGAGAA	GGGAAATTGG	CGTCCGCTGC	CGGCCGCTGC	42540
20	CCCAGGCGAG	GCCAGACGAG	GCCTCTGCTC	AGATCCCGCC	GCCCCACAAA	GCCCGTGGCC	42600
	CCGGAGCCTA	CCGGAAATGG	TGCTGGCCAT	GGTGCTGGCG	GCGGTTGGGC	CTGCGGAGGC	42660
•	TGGAGAGGCG	CAAGTGGCGG	CCGGAGCTGC	AGACGGCTGG	TGCTGCAGTG	CCGGGGAGGG	42720
	GAGGGGAGAG	GAGTGGAGGG	AGCGAGGGCG	GGCGGGAGGC	GGGCGCGGCG	GGAGAGAGAG	42780
. •	AGGGAGGGAG	ACAGAGGGAG	AGAGAGAGAG	GGTTGGGGGA	AGGAGCGGGG	GGAGGAGGGA	42840
25	GGGAGGGTTG	GGGGAAGGAG	AGAGAGAGAG	AGAGAGACTG	CGGGGGGGG	GGAAGGAGGG	42900
	AGGGAGGAAG	GGAGGGAGGA	AGAGAGAGAG	GAGCAAGCGC	CTGGCTGCGG	AAGGGGCCGC	42960
	GGCTCTCAGG	GGGAGAGGC	GGAGGAGGGG	GGCTACCCGA	ACTGCAACAA	GACCCCCCAC	43020
	CCTCCAACCG	CTCACAGCGG	GACAGCTGCT	TCTCCAACTT	GGCTTTGTGA	GGCCTGAGAG	43080
	TGGGGTGGGG	GTGGAGATGA	GCCCCCATTC	CCCAGGGCAG	GCGGGGCAGG	GGCAATGCCG	43140
30	GAGGAGCAGG	TCCCACCCAT	GGGGTGGGGC	CGCAGAGCTC	TTCGCCGCCA	AGGCCGCTGT	43200
	AGGCTGGGCT	GGCGCCAACA	GGGTCCAGGT	CTGTGCCTGC	CATCGGAGAG	GATGCCACAG	43260
	CCACAGGGGT	GGGCGCTGGC	CTGGAGGCCT	CCAAGGGGCA	TCTCCTGTGA	GCCCAGGGGA	43320
	TGGGCAGGAT	CTGAGCGGAG	AAGAGTGAAA	GTGGAGGAGT	GAGGCCAGAA	CAAAGGCTTT	43380
	GCCGTGAAAG	AGGTGGTTTC	CCGCCTGGGC	TCAGACCTTC	ACTCACTGTG	TGGCCCAGGC	43440

	CAAGGGCAAG	CGTCTGACCT	CGCTGGGCCT	TTGTTTCTCA	GGGGTAAGAT	GAAACAATGA	43500
	TGCCCCCAGA	CGATGGAGAG	GAGGGGTGCC	AGGGTTGTGC	GCACTTAGTG	AGTGGGGGC	43560
	AACCTATCCT	GCCTCCCCCT	CTCCTCATAA	CTCCCAAAGG	GAAAGCCTGG	TAGGCAAACG	43620
,	GAGCGTCTTT	GCCATTGCAG	GGATGAAGCC	ACCGAGGCAG	GGAGAAAGT	GCTTTGCCCT	43680
5	ACAAGCAACT	AAGTCATAGG	GCCAGGAGCA	AAACCCTGAA	AACCTCAGGA	GACTTGCAGA	43740
	GCCATGAGGC	TGGCTCAGCA	ACACAAAAGC	CAGGGGCAAG	CCTCAGCTCT	AGCAGTGCGG	43800
	TGGGAGCACC	CAAGGCCAGT	CACATCCTAG	GGTGGCCTGG	AGAGTCCTGA	CCCCTGACGT	43860
	GCAAGCCGGC	ATCATCCCCG	GGACTGTGAG	TCTGGTGGGG	GTGATGCCCA	GGAATGTGAC	43920
	ATTGTGTGGC	CCAGAGGTAC	CCTTAAGACT	GGAGGATCAC	CAGGCGGGCC	CTGACCTCAT	43980
10	CACAGGAGCC	CTTTAAAAGC	AGTTTCCTTT	GCCTGGTTGA	AĞAAATCGGA	GGGATCAAAC	44040
	CAAAGAAGGT	TTTCTGTTGT	TGAGATGAGG	GGGCCACGTG	GCAAGGATCT	GAGAACTGCT	44100
	CCCAGCCAAC	AGCCAGCAAG	ACAACAAGAC	CTTAACTGCA	AGGAAGTGAG	TTCTGCCAAC	44160
	AAGAAGAGAA	TGGGCTTGGA	GGCAGGTTTG	ACCCCAGGGC	CTCCACACAA	GAACTGAGCC	44220
	CAACTGCCCA	CTTGGTTTCA	GCCTTGGGTT	ACTAAGAATT	AGGAGGTAAT	GAATGAGAGT	44280
15	TGTTTTAAGC	TGTTGGTTTT	GTGGTGATTT	GCTATGAAGC	CATATCAAAC	TAATATACAC	44340
	ACAGAGGTGT	TGGCCCCTGG	GCCATTCCTA	GGAAGCCAGC	TCTGCGAAGG	AGGAAGAAGG	44400
	GCAGAGAGGC	ACACAGAGCT	GCCCACCACA	GCAGCTGTGT	CCTCCCTGTT	GGCCACCACA	44460
	GTAGCAGTTG	GGGATGGTCA	GCATCCTTCA	GGCAGACTCC	AGCCCCGGGT	GCTGGAGCTC	44520
	AGGTGCTAGG	GATCAAGAGA	AGTAGCCCTC	TCTGGGACCT	CCAGAGTCTT	CTCATGTGGG	44580
20	TGGGGTAGGA	CCCACCCAGT	CAGGCTCAGA	GCACCGCAAT	GCCTCACACT	CATTGTGACT	44640
	CTGGCCAGGC	CCTCTCTGAG	CCTCTGTGTC	CTCATCTGGA	GCACAGGGAC	CAGGTGTGTG	44700
	GAAGCCCGTG	GCATAGTGCC	AGGAACACAG	TAGATGTGCA	CAGTGTGCAC	TAGCAGGAAC	44760
	ACACAACAGG	GGTACTGACT	GTCAGCACCT	AGGCAGGCAC	ACGCAATGGG	GTACTGACTG	44820
				GGCATACACA			44880
25				TCTCAGTGCA			44940
						CCCCAATATA	45000
		*		TCACCAAGAT			45060
				TAGTGCTAGT			45120
						CAGATCACCT	
30						CCCTAAAAAT	
						GGAGGCTGAA	
						CCCACCACTG	
						TTTTTCATAA	
	AGTGTGACTT	TTATCAGACC	TCTGCATTCT	TGAAATTAAC	TCTGGCTTGG	CTGGGCGTGG	45480

	TGGCCCACAC	CTGTAATCTT	AACACTTTGG	GAGGCTGAGG	TGGGCAGATC	ACGAGGTCAG	45540
	GAGTTCAAGA	CCAGCCTGAC	CAACATGATG	AAACCCCATC	TCTACTAAAA	ATACAAAAAT	45600
	TAGCCGGGCG	TGGTGGCATG	CACCTGTAAT	CCCAGCTACT	CAGGAGGCTG	AGGCAGGAGA	45660
	ATCGCTTGAA	CCCAGGAGGT	GGAGGTTGCA	GGGAGCCGAG	ATCGCACCAC	TCTATTCCAG	45720
5.	CCTGGGCGAC	AGAGCAAGAC	TCTGTCTCAA	ААААААААА	GAAAGAAAGA	AATTAACTCT	45780
	GGCTCCTAGA	AGGAGCCCTA	TATCTCAGCA	GGACACTCAG	TCATTCAACA	GACATCTGTC	45840
	AAGCACCTGC	TGTATGCTGG	AGCTGTGGGT	ACGTCAGCAA	TTAGAGGAAG	AGGGCAGGGG	45900
	TACAGGAGTT	CCTGACCACC	CCAGGCCAGC	ACGCTCCTAT	AGCAGCTGGC	AAGGAGCAGA	45960
•	TGACTCAGAC	TTCAGCTCAG	TCCACAGGAC	AGCCTTTTCT	GGCCACTGCT	CTCAGGAGAT	46020
10	GAGATGTGTG	GCTGCAAAAG	GTAAACTCCT	GGCTCCTGAG	CAGGCTCTGG	GCAATCTGCT	46080
	CAACGCTCTG	TGCCTCACTT	TCTCACCCAG	AAAGTGTGGA	CAATGAGAGG	ACTTATCTGG	46140
	CTGGGCGCGG	TGGCTCACGC	CTGTAATCCC	AGCACTTTGG	GAGGCCGAGG	CGGGTGGATC	46200
	ACCTGAGGTC	AGGAGTTCAA	GACCTGCCTG	GCCAACACGG	TCAAACTCCA	TCTCTACTAA	46260
	AAATATAAAA	AATTAGCCGG	GCTTAGTGGT	GCACACCTGT	AATCCCAGCT	ACTTGAGAGG	46320
15	CTGAGGCAGG	AGAATCACTT	GAACCCAGGA	GGTGGAGGTT	GCAGTGAGCC	AAGATTGTGC	46380
	CACTGCACTC	CAGCCTGGGC	AAAAAGCCAA	AACTCTGTCT	CAAAGAAAAA	AGAATCATGG	46440
	CAGAAGGTGA	AGTCTATGTT	AGTCCCAGTT	CCCAGGTCGT	ACATGGCGGC	AGGAGAAAGA	46500
	GAGAGAGAAG	GGGAAACTGC	CACTTTTAAA	CCATCGGGTC	TCCTGAGCAC	TCACTGTCAG	46560
	AACAGCCTGG	AGGAAACTGA	CCGCATGATC	CAACCACCTC	CCTCCAGGTC	CCTCCCTCCA	46620
20	CACGTGGGGA	TTACAATTCG	AGGTGAGACT	TGGGTGGAGA	CACAGAGCCG	AACCATATCA	46680
	GCATGTATGG	GGGGCACTGA	AACTTGTGCT	TGGTGCCCAT	TCATTCAACG	AGTGTGTGTG	46740
	GCTGGTCTCC	TCATCTTCAA	CTCCCTGCCG	AGTCTCAGAT	AGGCAGCCTG	CAGTTCCTTC	46800
	ACCACAACAG	GCACATGGGG	CTGGGTGCCA	GTGAGTGCTG	GGGCTTCTCC	GAGCACTATC	46860
	TCACACCCAG	GAGCGTGGGC	ACGCATGGCA	TTCGCATGTG	CCGTCAGTGG	ACATTAAACA	46920
25	CAGCCATGAA	GAAGCCACGA	ÄGAAGTGCTG	CCTGCCGGCC	GTGCGCGGTC	ACGCAGCGCC	46980
		TGGGGCCTTC					47040
	•	GACGCTGGGC					47100
		AGCCAGTGCC					47160
		CCGAGCAGAA					47220
30						AAAGCGGTCG	47280
	GCTCACACTC	GAGCAGTAAA	AAGATGCCTC	TGGGGAGGAG	GCCCGTGCAG	CTCTCCGGGC	47340
						GGGGGAATGA	47400
	CATCAAGGGA	GGAGACGGGC	GGGACCCCAG	ATTTCTGCCT	GTGGGCGATG	GAAGTGAGGT	47460
	TCACTGGCCA	GCGGAGCCGG	ACACAGAACG	CGCAAAACGC	CGTGTAGGCC	TGGAGGAGCC	47520

							47500
		CGGACCCCCT					47580
		GGGGGCGGAA					47640
		GCTGGCTGAC					47700
		GACCCCGGTT					47760
5	AGTGACCCTA	CAAGTGGTTC	TTTTACCCGA	GCGGCTCGTA	GGCGCGTTGC	GGTTTTTCGA	47820
	AACTACAGCT	CCCGGCAGGC	CCCAAGCCGC	CCTCGGGGCC	GCGGGTCGGC	GGATTGGCCG	47880
	CGCTGCATTT	TGGGACCTGT	AGTTTCCTGC	GCTCGTGGCG	CTGGCGCCGC	GGCGTTGGCT	47940
	GAGCCCTTGA	CCGGGGCTGG	AGGGAAGGGC	CGACATTCAG	TGTGTCCGCG	TCTGTTCTGT	48000
	TAGTCCCAGT	TCCCGGGCGG	GATTGAGGCT	TAGAGAAGTT	GAGTGATTTG	CTGAGGGCTG	48060
10	CACGGGTTGG	CATCCCGGCA	TGCTCTTTCG	CTACTTTGGC	TGCATCTGGT	TGCCCACCCG	48120
	GGCGGATGGG	GAATGGACTC	CAGCCAGCCA	GGAGGGCAGA	GGGCTGGAGA	GGCAGGGCCG	48180
	GAGGTTCAGA	CCCTCCGCTC	TGACGTTGCG	CCTGGTGAGG	CCGGGAGGGG	TGCCGCTTGC	48240
	CTCTTCAGCC	CTCACGCTCT	TGTGGAAGTC	GCGGAATTAC	TGCAGGCGGA	ACTTGCAGCA	48300
	CTGTGGGCGT	CTTTTCCAGA	GAAGGACGGA	GTTGTGGGGC	GGGAGGATAA	GGCAAGGCCC	48360
15	AGCCACTTCG	CATCTTCGCC	CCGCCAGCTC	CTCGAGATGG	GATATACCAG	GGTTGCTCTC	48420
	CAACCCTCTC	CGCAGGAGGG	ACTGATGGAA	ACGCCTGGGA	AAGTAGCCCG	GTACCCACAA	48480
	AGGCTGTCTA	CAAACAGAGT	CTTACTGTCT	TTCCCAGGTC	TGTGCCATAG	GGATTCTCGA	48540
	AGAGAACAGC	GTTGTGTCCC	AGTGCACATG	CTCGCATCGC	TTACCAGGAG	TGCCCGAGAC	48600
	CCTAAGATGT	TCGGAGTGGT	TTTTTCGCAC	AGACCCGAAT	AGCCTGCCCC	TCAGCCACGC	48660
20	TCTGTGCCCT	TCTGAGAACA	GGCTGATATG	CCCAAGATAG	TCCTGAATGG	TGTGACCGTA	48720
	GACTTCCCTT	TCCAGCCCTA	CAAATGCCAA	CAGGAGTACA	TGACCAAGGT	CCTGGAATGT	48780
	CTGCAGCAGG	TAGAGCACAG	GCCCCGAGGA	AAGGACTGCG	GGTGGGTGGA	GCTTCAGCCA	48840
	GGACGGGGTG	TGCTTCCCTC	TCCCGGCCCA	TTCCAGCCAG	GCCCCTCCGG	GCCAGAGGCA	48900
	GCGTCTGTCA	TAAAAAGGGC	TGGTGTTCCA	GGTGGGGTCA	GAGAGAGGAT	TGACAAGTAA	48960
25 .	AAACGATCGT	CCTTTGAAGG	GGGCCGGCCC	CTCCACACCT	GTGGGTATTT	CTCATCAGGC	49020
	GGGACGAGAG	ACTGAGAAAA	TGAATAAGAC	ACAGAGACAA	AGTATAGAGA	GAAAAGTGGG	49080
	CCCAGGGGAC	CGGCGCTCAG	CATACAGAGG	ACCTGCACCG	GCACCAGTCT	CTGAGTTTCC	49140
	TCAGTATTCA	ттааттаста	TTTTCACTAT	CTCAGCAAGA	GGAATGCGGC	AGGACAGCAA	49200
	GGTGATAGTG	GGGAGAAGGT	CAGCAAGAAA	ACGTGAGCAA	AGGAATCTGG	GTCACAAATA	49260
30	AGTTCAAGGG	AAGGTACTAT	GCCTGGATGT	GCACGTAGGC	TAGTTTTATG	CTTTTCTCCA	49320
	CCCAAACATC	TCGGTGGAGT	' AAAGAGTAAC	AGAGCAGCAT	TGCTGCCAAT	ATGTCTCGCC	49380
	TCCTGCCACA	GGGCGGCTTT	TCTCCTATCT	CAGAATTGAA	CAAATGTACA	ATCGGGTTTT	49440
	ATACCGAAAC	: ATTCAGTTCC	CAGGGGCAGG	CAGGAGACAG	TGGCCTTCCT	CTATCTCGAC	49500
						TGTTGGGCTG	49560
		*	•				

	GGGGACTGTC	AGGTCTTTCC	CATCCCACGA	GGCCATATTT	CAGACTATCA	CATGGAGAGA	49620
	AACCTTGGGC	AATACCCGGC	TTTCCAGGGC	AGAGGTCCCT	GCGGCTTTCC	GCAGTGCATC	49680
	GTGCCCCTGG	TTTATCGAGA	CTGGAGAATG	GCGATGACTT	TTACCAAGCA	TACTGCCTGT	49740
	AAACATATTG	TTAACAAGGC	ATGTTCTGCA	CAGCTCTAGA	TCCCTTAAAC	CTTGATTCCA	49800
5	TACAACACAT	GTTTCTGTGA	GCTCAAGGCT	GGGGCAAAGT	TACAGATTAA	CAGCATCTTA	49860
	GGGCAAAGCA	ATTGTTCAGG	GTACAGGTCA	AAATGGAGTG	TGTTATGTCT	TCCCTTTCTA	49920
	CATAGACACA	GTAACAGTCT	GATCTCTCTT	TTCCCTACAG	TCCTTGAGGG	TGACAGACTT	49980
	AGGAGTGCCT	TGGGGGCCTC	TCTGAGGAGC	AGCTGATATT	CACGGGTCAG	GAGGAAGCAT	50040
	TTCCATTAGA	GGGGCAGCCG	GTGGCCAGCC	TCACTTGGAA	GGTCTTTGAA	CCTCGGGGGT	50100
10	GCAGGGAGGT	GGCAGTGGTG	CAGGTTGCCT	TCTCCTGGGT	TCCTTGAGGT	GCCCTCTTGT	50160
	ACCCGGCTCA	CACCCTTCCC	CTCCCCGAGT	TTCCTGCTCA	GGTTCCCGTC	TGAGAGCTTG	50220
	TATGTAGGAC	GTCAGATAGG	ACAGCATAAA	TGTTTGGATC	CAGAAACGCA	GAACAGTTTC	50280
	CTATTTTGAG	ACTTGACACC	TAATTAGTCA	TCTTACTATT	TAAGCTGAAA	AATAGTGTCG	50340
	TGTTTTGGGT	AACGTTCTGC	AAATCGTTTG	CTAATGGCGG	CTGAGTTGCT	TCACGCCCTT	50400
15	TAGGGCAAGA	GTGGGACTTG	CCTGTGGACT	TCTCCGCGGT	CCCACAGGGC	TCTCGCCACC	50460
	TGGCAGTGGC	CTCTGCATCT	GCAAAGAGCT	GCCCGCTGGC	TGCCGAAGCT	TGTCTCAGGG	50520
	CAGCTTGTGT	GGCCTCGCCT	CTTCCTGGCT	TCCCCGTAAC	CCTTGCTCCG	AACTCCGTTC	50580
	AGAAGGTGAA	TGGCATCCTG	GAGAGCCCTA	CGGGTACAGG	GAAGACGCTG	TGCCTGCTGT	50640
	GCACCACGCT	GGCCTGGCGA	GAACACCTCC	GAGACGCCAT	CTCTGCCCGC	AAGATTGCCG	50700
20	AGAGGGCGCA	AGGAGAGCTT	TTCCCGGATC	GGGCCTTGTC	ATCCTGGGGC	AACGCTGCTG	50760
•	CTGCTGCTGG	AGACCCCATA	GGTGACCCTA	GTTCCCAGGC	CTCTCCTGGC	CTCCTGTGGG	50820
	GATGGTTGGC	AAGGGATGGC	GCTGAGGGTG	GGGTGGGCCC	ATGGGGACTC	CTGCCGTCTC	50880
	TCAAGCAGAA	CTCAAGGAGA	ATTTTTTAGC	TGCTGTATAA	TTTCTCGCCA	TCGTGGGTGT	50940
	AAACCTAGGG	TTGGGCTTTT	TTGCTGAATT	AGGGCACGGC	AGATGCCCAC	TTCACCCATT	51000
25	TTTGATAAAC	CAGTATCTGG	GGTGTCAGAT	TCTTGGCTGT	CTGCAGGGCC	GAGTTAGCCG	51060
	AATGCCACCT	GCCTTTGATA	CGTGAGAACG	TTGTCTGAGA	ACCGTGACTT	CTGTGCTTGC	51120
	TTGTGTCTGG	TCAGCTTGCT	ACACGGACAT	CCCAAAGATT	ATTTACGCCT	CCAGGACCCA	51180
	CTCGCAACTC	ACACAGGTCA	TCAACGAGCT	TCGGAACACC	TCCTACCGGT	GGGTCAGACG	51240
	AGTTTACACC	TGTCTCGGGG	TCCTCAAGAG	AACCAGCTTG	GCATGGTGCT	GAGTCCACAG	51300
30	CCCCATGCTG	TGCTGTGGTG	GAGGGTGGTG	GTCTTTCTAG	ACGCTCCCCC	GAAGTGTGCA	51360
	GAGCGCTGGT	GCCCAGGGGT	GGGGTGCGGC	CTGGGCTGCC	TCCAATGCCC	ATTACTTGTG	51420
	AGGAAGCAGC	TTTGCATCTG	TGTGCTGACC	TTGGGCGGC	GTCCTGAGCT	CCTCGCAGGT	51480
	GCTGTTGTAG	CAGCTGTGCA	GTAGGTCAGG	GCTGGCCCCC	AGTGCAGCTT	TGCACATGAA	51540
	GTAGGAGGAG	GCCCTGCTGC	TTGTCAGAGC	CCAGCAGAGT	CTTGGTGTTC	TGTCGGGTTC	51600

	CTGTGGCCGG	ACCAGTGGCA	GGGTGCTGTG	GAAGCTGTCG	AATCTCCTCC	CTCTGTCCAG	51660
	TACCCCCGCT	CGTCTTCTAG	CTCCCTCCTA	CGCCCGGGCC	ACGTTTCAGT	TATGCTCACT	51720
	TCCTCTGACC	GCCGAGGCTC	CTGCGTGTCT	CCATACAGCT	CACGCTGCAG	GGCCACGCTG	51780
	TGGGTGTTGG	AGACAGCTCC	TCCTCGACCC	ACGGTGCTCT	CTCCCACCAG	GCCTAAGGTG	51840
5	TGTGTGCTGG	GCTCCCGGGA	GCAGCTGTGC	ATCCATCCTG	AGGTGAAGAA	ACAAGAGAGT	51900
·	AACCATCTAC	AGGTAGGCTC	CTGGGCTCCC	GCTCCGGCTC	AGTGTCCGAC	AGGCGAGTGC	51960
	TGCTGGGTGT	CCAGAGCCCC	AGGCTGCGCT	CCCGCTGGGC	TAGGGTTTGA	AGTTCACTGG	52020
	GGGACTGCAG	GGGAGGACCT	GGTGGGGGTG	GGGACTGGCT	TCGGTCCTTT	CTTGGCCGTG	52080
	CTTCAGCTGC	GCACTCTGCC	CTTCCTCCCA	CAGATCCACT	TGTGCCGTAA	GAAGGTGGCA	52140
10	AGTCGCTCCT	GTCATTTCTA	CAACAACGTA	GAAGGTACAA	GCAGCTGGGT	GGGACCAGGG	52200
	TCGGGTTGGA	GTGTGTGCAG	CCTCTCAGGG	TGGAGCTCAG	TGGTGTCACA	GCCTGGTTGT	52260
	GCTTGCCCGG	TGGGGCGGCC	AGTGCGGCCA	TGTACCTGGG	CCCTGTCTTC	TGACTCGGGG	52320
	CCACCCATGT	TAGACTTCTG	TGTGGAAGAG	CTCACACAGT	GGTCTGAGAC	AGCCAGCCGG	52380
	CAAGACTGCC	TCTGGCTGGT	GCCTGGGGCC	TTGGATTTTG	GGAAGGCTCC	CTCCATTTCC	52440
15	TGATGAGAGG	GTCTCCCTGC	ACCTAACCTG	CTGGTGCAAA	CAGTAGGGGT	TTTGCTGAAC	52500
	ACCGGCTTTC	TCTTCGGGGA	CTTTGTTGCT	TGCCCAGCAG	CAGGTGCTCC	AGTGACCGGC	52560
•	CCTCATACCA	TCTTGGGAGG	GTGTCCTGGA	AGCCGTGTCT	GGCCTCCCGC	GACCCTGCCC	52620
	CGTGTGTCTT	TTTCCTGTGC	TGACCTTGCT	GCGGAAAATT	ATGGCCCTGA	GTGTGACTCC	52680
	AGGCTGAGTC	CTGTGGGTCC	AACACGGGAT	GCCTTGGGGC	CTCTTCTGGA	GACGGGATGT	52740
20	GAGTGACAGG	AGCCGGCCGG	GGCAGCTTGC	CCTGTGACTG	CACGTGGCCA	CAGCCTGTGA	52800
	GGGCCGGGGG	TGCTTCTCCA	CCCACGTGGC	TGCCCCTCGG	GTATGTCAAG	GGCTTCTGGG	52860
	GCTCATCACG	GGGTCCTAGA	GACAGTGGCA	GGGTGCACCC	CCGTTGGCTG	CCCTTACAGT	52920
						GTGGGATCAG	52980
				CTCAAGCCTC			53040
25				GCTTTCTGCA			53100
	AGTGTGCCAG	GACTGAGGAC	CCTGAAGCTG	CTCTTGTATT	TAGGGCGGCG	CTCCCCTGGC	53160
	AGAGACTGAG	CCAGGTGGTC	CCGCATGACC	CACTACCAGG	CGTTTCTGGG	CCCTGGCCCT	53220
	TGGAGGGACA	GGGTGGGCGG	AACATGGGCC	TGCAGGGAGG	CTCCCGCTTA	CTGGAGGCAT	53280
	GTGCTGTGTT	GCTGGAGACA	TCCTCTGTGT	TGCTTCTTGT	TCGCTGTGGT	TTTTGGTCTG	53340
30	GTGGCACCAA	GGACCCTCAG	TCATCTTGAT	GTGTGGTTGT	CCAGGCCTTT	TTGTTGGTCC	53400
	TAAGAAGGG	CTCTGCCTTT	GTGCCCCAG	GTTCCCTGAC	AGGAGCTGCC	GGCTCGTCCC	53460
	GGTGATGCCT	GCAGGACGT	ACTCTGGGAC	GGGGGGTTGG	GCAGATGTGC	TGATGGAAAT	53520
	TCTCAAGCAC	GCGTCATTTC	CGAGGTCCTC	CACCTGGATTT	CCAGGACAGG	AGTGCCTGCT	53580
	GGGTGTCCCC	AGTCCCATG	AGCGGGGGT	CTTGGGATAG	CATGGAACGC	TGAGCATGGG	53640

	CCTGGCCGGC	CGTGGTCCTG	GACAAGGGCA	GTGCCCCGGT	GGCTGCTGGG	CCTGGGACCT	53700
	GGTGGGGACG	CTGGGCCTGG	TACCTGGTGG	GGATGCTGGG	CCTGGGACCT	GGTGGGGAGG	53760
	CCTCTGACTG	CCTCCTGGTG	CTGCTTCCGT	CTGTGTTAGG	CCTCTGGGTA	TTGGGGCCCC	53820
	CATCTGTCTC	CTCCTCCAGG	CCTGTGGACT	CAGACCAGGA	AGACACAGGC	CAGCCCCTGC	53880
5	CTGTCCCCCT	TGGCTTGGGC	TCTCACTGCC	CGACCTGGCG	GGAGGTTGCC	TAGCCGTGAA	53940
	CCTTCGCACC	CTGTCTGCCA	CCGGACAGGC	TGTGAGGGGG	TGTCTGCAGC	ACCTGCACCG	54000
	GCCTGAGCAT	CTTCAGAGTG	GGCTGCAGCT	CCTGGAGGGG	TCTGAGAGGA	AGGGAGGCAG	54060
	GTATTTTGGG	CGAATGAGGA	GACAGCTGGA	GAGCTGGCAC	CCTTCCTGGC	CTGCGTCCTG	54120
	TGAGGACTCT	GGTTGGGGAC	AGCAAGCTTG	GGGTCAGCCT	GGGGCAGAGC	CTCTGGGACG	54180
10	GCCCGCCCC	TCGTGCCCCT	TCCCCTCGCA	GCTCCTGTCC	TCGCCCCGCC	CTCAGCTCTC	54240
	CGCCAGGCAA	GGTTTGGCAA	GTGCCGCTGT	GCGGCAGTGC	CTGCTGATTG	GCTGGTCTGT	54300
	TGCTATGGTG	CTGCCCAGGG	GTGTGCTTTT	CCTCCCCTGC	CTTCCCTGCT	ATCCCTGGGA	54360
	GTATCTGGGG	TTGGGTCATC	GCTGGTGTGT	GTGAGTGTGT	GTGTGTGTGT	ATGTGCACGT	54420
	GTGCATATGT	GTGCGCTTCT	GGCCTCTGCA	GCTGAGTCCT	GGCCCTCGGG	GGGCCTGGCA	54480
15	CCTCCTGGGG	ACAGGCACAA	AGCAGCCATG	ATGGAGTCGG	GAGCTGGGGG	AGGCCCCATT	54540
	GCCCCACGTG	GCTGCCCTGT	GACTCTGGGG	TGCTTGTTAG	AAGAGGTATC	TGGTTCTGTC	54600
	TGTGTTTAAG	CAACTCCCTA	AGGAATTCTT	GTGGTTCCAG	TTTGGGGGGC	CTGTACTGTA	54660
	GAGGCAAGGG	AGGGGCAGGA	CATCCCCCAG	ACTCTGACTT	CTGAAGCCTT	TTCTGCCCGG	54720
	GGCCTCTCCG	CCAGTACAGG	CAGTGTCCTT	TGCCAGGGCT	GCCATGCTGC	AGAGGGGAGT	54780
20	GGGCCACTGT	TTAGCCCAGG	AAAACCTGGC	TCTCCCTTAG	CTGGAAGTTC	TGGGCCTGTT	54840
	GTGGTTGGCA	GGGAAGCTGA	GTGACGGTGC	TAATCACAGG	GGCACCTGCA	GGGGTTTGTG	54900
	GGAGATGCCT	CTGTGGGTTG	GGGCGATAGG	CTGAGGGGCT	GTTCTTCCCT	GCCCTGAGGA	54960
	GGGCTGAGTG	TAGCCGCCAC	TCCTGTCCTG	TCTTGGGCTG	TCTCGGAGAG	GATGCGTAGA	55020
				TCCACCCTGA			55080
25						TGAGACCCTC	55140
					•	CCCGCCGTGT	55200
						CCTGAGGGTG	55260
						GGCCAGCCCC	55320
						CCCCTCAGTG	
30						GGCCCGGATA	
						TTCAGTACGA	
						TCCCTGGCCC	
	TCAGCCATCC	CCGGTGGCCA	CCGTGGAGTG	TGGACGGAGC	CCTGCAGGCC	TGTGTCTGTG	55620
	CGGAAGCACG	CGCAGTTTTC	TCTGCACAGA	CTGTCCTGCA	GTTGGCTGTT	TTCACTCAGC	55680

	GTTGTGGGTA	TAGCTTCCCA	TGCTGGTGCT	GGCAGCTCGG	CCTTGTTCTT	TTGAGGACAG	55740
	CAGATGTCTC	CTATGTCTAC	CTCTTACAGC	TTCAGAGATT	CAAGTTATAA	TAAAGCTCTT	55800
	CTTATATTGA	GGGGGAAACC	TCCCTCCCC	TTTTTTTTGA	AACAGGGTCT	CGCTCTGCTA	55860
	CCCAGGCTGC	AGTGCAGTGT	CACAGTCTTG	GCTCACTGCA	GCCTCAGCCT	CCCAGGCTCA	55920
5	AGCGATTTTC	CCACCTCAGC	CTCCCAAGTA	GCCGGGACTG	CAGGCACGCA	CCACCATGCC	55980
	TGGTTAATTT	TTGTATTTTT	TGTACAGACA	GGGTCTCACT	CTGTTGCTCA	GGCCAGTCTC	56040
	CTGAGCTCGA	GAGTTCCACC	TGCCTTGGCC	TCCCAAAGTG	CTGGGATTAC	AGGCGTGAGA	56100
	CCCCATGCCT	GGCCAGCTCT	TTTTTTTTT	TTTTTTTTT	TTGAGACGGA	GTCTCGCTCT	56160
:	GTCGCCCAGG	CTGGAGTGCA	GTGGTGCGAT	CTCGGCTCAC	TGCAAGCTCC	GCCTCCCGAG	56220
10	TTCACGCCAT	TCTCCTGCCT	CAGCCTCCCG	AGTAGCTGGG	ACTACAGGTG	CCCGCCACCA	56280
	CGTCTGGCTA	ATTTTCTGTA	TTTTTAGTAG	AGACGGGGTT	TCACCGTGTT	AGCCAGGATG	56340
	GTCTCGATCT	TCTGACCTTG	TGATCCGCCC	ACCTCGGCCT	CCCAAAGTGC	TGGGATTACA	56400
	GGAGTGAGCC	ACCGCGCCCG	GCCCAGCTCT	GCTTTTTCTT	AGTGGTTCTG	CGTTGTGTTT	56460
	GTTTCTATCC	AGGAATAGGG	TTGGTTTTAC	TTTTCCATCG	AGTTTTTAAA	GAGACGACGA	56520
15	TTTACATGGT	CGGAAACTCA	CGAGGACTCC	CCATCCCTTG	GTCGGAAACT	CACATGGACT	56580
	CCCCATCCCT	TGGTCAGAAA	CTCACGTGGA	CTCCCATCCA	TCCCAGGCAG	CAGCTTCCCA	56640
	CCTGGGCCCT	ACGTGCAGGA	TGAGGGCTCC	TTCCGGGTCA	GAAGACATGG	CGGCCTCGGG	56700
	GCACCGTCCC	CTGCATGGGG	TGCTCACAGG	ATCTTCTCCT	CTCTCCTTCC	CAGGGTGTGC	56760
	CCTTACTACC	TGTCCCGGAA	CCTGAAGCAG	CAAGCCGACA	TCATATTCAT	GCCGTACAAT	56820
20	TACTTGTTGG	ATGCCAAGGT	GGGGGCTCAG	TCCTGTAGCT	GACGACTCCT	GATGTCCAGG	56880
	GGTGTCCCTG	GGCTTGGGAA	CAGCTGTCCG	AGCCTTTGCT	GCTTCAGGGC	CTTAGATCAG	56940
	CAGGCCTGGG	TGGGAGGACT	CACCTCTGTC	ACTGGGCAGG	GGCTCAACCT	GGCCAGACAC	57000
	ACTTGTGAGC	AGCCCCAGGC	CACAGGTCAG	TTTTCTGAGC	AGTCTGGGAG	CGGGCAGGCT	57060
	GGTGGGAGTG	AGGAGAGACC	TCCAGGCTGT	GGTCCATAGG	CCAGTGCCCG	CTCTTGATCC	57120
25	TGACAGCTCA	GGTTCTCTCC	TTCACGTCAG	GCCATGGGAG	GCACCGAGAA	CACAGGAAGC	57180
				CGGCCCCACA			57240
	GTGCCCGGCT	TCACACTCAC	TCCCCTCTTC	CCAGTGCATG	CCCGGCCCCA	CACTCACTCC	57300
				CTCCCCTCCT	•		57360
						ATGTGCCCGG	57420
30						CCTCCCCATG	57480
					•	CGCCACGGGT	57540
	CAATGGTTTG	TGTGTTCACG	TGACGATGGC	GTGGTGACGT	TTCCAGATCC	CGTCGTTGGT	57600
	TCGCTCATTC	TCGGGGTGTA	TATTTATTGA	GAGCTCATCA	TGCTGGGTGC	TATTCCAGGC	57660
	ATAGCAAGAC	TGGCTTCACT	CACATGGAGC	TTTGATTCTA	GTGGTGGGGA	CAGGTGGACA	57720

				CTGAAGGGAA		•	57780
				TGTCGGCGGG			57840
				GCAAGGGAAG		· ·	57900
	GGGGCCGACT	CCTGGGAAGC	TGTAGCAGAA	CCCCACAGAG	AGCTGGTGAG	GTTTGCCGTG	57960
5	GTTGTGGGTG	ACTCGGTGCT	TTGAGCCCTG	GCTGCCCCTG	GGAACCATCT	GGAGAGCTTC	58020
	TAACCCAACC	AGGCCCCTCC	CTGGGACAGT	TATATCACAG.	CTGGTAAGCC	GAGTCTAACA	58080
	CTTTCACGGA	AACGCAGAAG	ATCTAAAACA	GCAAGATGAC	CGTGAAGAAG	AACAGAGCTG	58140
	GAGGACTCAC	CTCGCTGGTT	TCAAGACTCC	TCTAAAGCTG	CAGGAGTGGA	GGTGGAGATG	58200
	GCCCAGCTCA	GGCACAGGCC	TGCAGGCCAT	GGAGAAGGCA	GCAAGCTCAA	GCTGACCCAC	58260
10	ACGCATGTGG	TCATTGTTTT	TTTTTTCAGT	TGGAATCTCA	CTCTGTCACC	CAGGTTGGAG	58320
	TGCAGTGGCA	CCATCTCGGC	TCACTGCAGC	CCCCGCCCCT	AGGTTCTAGC	GATTCTCCCA	58380
	CATCAGCCTC	CCGAGTAGCT	GGGATTACAG	GCGTGCGCCA	CCATGCCTGG	CCCTTGGTGA	58440
	TTGTTTTTTG	ACAAACATGC	CAATTTAATT	GAGAGAGGAA	ATGAAGGTTG	ATTTCTGGTT	58500
	TTCTGAAAAA	ATGGTGCTAA	GAACAGCTGG	ATATCTGTTC	GGAAAACAGT	GAATCTTAAC	58560
15	TCTTGTTTTA	CCCTGTATAA	ACCTAAATGT	AAAAGCTAAA	CTAAAAGTTA	TAGAAAGGAA	58620
	CATGGGGGAG	GTCTTTGCAA	CTTTGGGGTA	GGCAGAGATT	TCTTAGTATG	GATACACAAG	58680
	GCACTAGCCA	TGAAGAAAAA	CATTAAAATT	TAGACTTCAC	CAAAATTTAA	AGCTTCAACT	58740
	CTGTGGAAGA	GTTGAGAAAA	TGAAAAAGCA	GTTAAAGAAA	GGGAGAAAAT	ACTTCTTTCA	58800
	AAGGACTTAA	AAAATTTTTT	CAGCCCTCCT	CTGATTTGAA	AGGACCTTTG	ACCAGAGTAT	58860
20	GTAAAATTCT	CCCATAACTA	AGCAAACAAC	CCACTTAACC	ACTGGGAAGG	GATCTGGACA	58920
	GACGTTTCAC	CAAGATGGGT	GGAATGGCCA	GTTAACCACT	GGGAGAGCAT	CCGGACAGAC	58980
	GTTTCGCCAA	GATGGGTGGA	ATGGCCAGTT	AACCACTGGG	AGAGCATCCG	GACAGACGTT	59040
	TCGCCAAGAT	GGGTGGAATG	GCCAGTTAAC	CACTGGGAGA	GCATCCGGAC	AGACGTTTCG	59100
	CCAAGATGGG	TGGAATGGCC	AGTTAACCAC	TGGGAGAGCA	TCCGGACAGA	CGTTTCGCCA	59160
25	AGATGGGTGG	AATGGCCAGT	TAACCACTGG	GAGAGCATCC	GGACAGACGT	TTCGCCAAGA	59220
	TGGGTGGAAT	GGCCAGTTAA	CCACTGGGAG	AGCATCCGGA	CAGACGTTTC	GCCAAGATGG	59280
	GTGGAATGGC	CAGTTAACCA	CTGGGAGAGC	ATCCGGACAG	ACGTTTCGCC	AAGATGGGTG	59340
	GAATGGCCAG	TTAACCACTO	GGAGAGCATC	CGGACAGACG	TTTCGCCAAG	ATGGGTGGAA	59400
	TGGCCAGTTA	A ACCACTGGGA	GAGCATCCGG	ACAGACGTTT	CGCCAAGATG	GGTGGAATGG	59460
30	CCAGTTAACC	ACTGGGAGAG	CATCCGGACA	GACGTTTCGC	CAAGATGGGT	GGAATGGCCA	59520
•	GTTAACCACT	r GGGAGAGCAT	CCGGACAGAC	GTTTCACCAA	GGTGGATGGA	ATGACCAGTT	59580
	GAGCACATGO	AAAGTCGCCC	AGCATCTCC	GTCATAGGAG	AAGGCAGATT	AAAGCCACGG	59640
	GGAGCCGAC	A CTGTGGTCCC	ÀCTGGCATG	CTGAAATTCA	GAAGCCCTGA	GTGTGGCATG	59700
	AGGATGTGG	A ACAGCTGGAT	CTCATCCAT	GCTGTGAAGT	TGTGTAGCCA	A CTCCACAAAC	59760

	GTGTGGCAAA	CAGCCGAGCC	GGGAGAAGGG	AAGACGTGTT	CAAAGATTCA	TATGTGGCCA	59820
	GGCTCAGTGG	CTCACGCCTG	TAATCCCAGA	ACTTTAGGGG	CCAAGGCTGG	GGGATCGCTT	59880
	AAGCCCAGGA	GTTTGAGACC	AGCCTAGGCA	ACATAGGGAG	ACCCCATCTC	АААААААА	59940
	AAAAAGAAAA	AAGAAAAGAC	TTCAGTGTGC	AGGTTTACCA	GAGTTTTGTT	TGCAGTTGCC	60000
5	AAAACTGGGA	AGCAGCCCGC	GTGAGCCCAT	CCACAGGTGA	ATGGACAGAC	CGTGGTACCC	60060
	GAACACTAAC	AGCAGCCACG	GGCGTGGACT	GTGGTCACAC	AGCAGCAGGG	AGCCGATGAG	60120
	TCTCGGACAT	GCTAACCCAG	AGAGGCCCAT	TGAGGAGGAC	CTACTGTTTT	TTGTGTTTTT	60180
	GTTTTTTGTT	TTGAAATGGA	GTCTCGCTCT	GTGGTGCAGG	CTGGAGTGCA	GTGGTGTGGT	60240
	CTTGGCTCAC	TGCAGCTTCC	GCCTCTTGGG	TTCAAACAGT	TCTCCTGCCT	CAGCCTTCCG	60300
10	AGTAGCTGGG	ACTACAGGCA	CCCGCCACCA	CACCCGGCTA	ATTTTTGTAT	TTTCAGTAGA	60360
	GACGGCAGTT	CGCCATGTTG	GCCAGGCTGG	TCCCAAACTC	CTGACCTTGT	CATCCACTCA	60420
	CTTTGGCCTC	CCAAAGTGCT	GAGGTTGCAG	GCATGAACCA	CCGCACCCGG	CTGGACCTAC	60480
	TGTTTTATTC	CATTTATGTG	ACACTCTATT	AATAGAAAAG	GCAGGGGTGG	GGCTGGTGGT	60540
	TATATGGTGC	ACATAACTGC	CAGAACTCAG	TACACTTAAA	ATGAACATCT	TAATGTGTGA	60600
15	AATTTTTTT	TTTGAGACGG	GGTCTTGCTC	TGTCACCCAG	GCTAGAGTGC	AGTGGTGCGA	60660
	TCTCCACTCA	CTGCAAGCTC	TGCCTCCTGG	GTTCACGCCA	TTCTCCTGCC	TCAGCCTCCC	60720
	GAGTAGCTGG	GACTACAGGC	GCCCGCCACC	ACGCCTGGCT	AATTTTTTTT	TTTTTTTTTTT	60780
	ATTTTTAGTA	GAGACGGGGT	TTCACAGTGT	TCGCCAGGCT	GGTCTCGATC	TCCTGACCTC	60840
	GTGATCCGCC	TGCCTCGGCC	TCCGAAAGTG	CTGGGCTTGC	AGGCGTGAGC	CACCATGCCC	60900
20	GGCCAATGTG	TGAAAATTTA	AAAGTACCAA	AGCTGGACCC	CACCCCAGAT	TGCTCCCATG	60960
	ACACTCTGTG	GGTGGGACCT	GGGAGTTGGG	TTTTGTTTTG	TTTTGTTTTG	TTTTTGAGAT	61020
	GAAGTCTCAC	TCTGTCGCCT	AGGCTGGAGT	GCAGTGACAC	AATCTCGGCT	CACATTAACC	61080
	TCTGCCTCCC	AGATGAAAGC	GATTCTCCTG	CCTCAGCCTT	CTGAGTAGCT	GGGATTACAG	61140
	GCACACACCA	CCACCCCCTG	CTAATTTTTG	TATTTTTAGT	AGAGACGGGG	TTTTACCATG	61200
25	TTGGCCAGGC	TGGTCTTGAA	CTCCTGACCT	CGTGATCCGC	CCGCCTCGGC	CTCCCAAAGT	61260
	GCTGGGATTA	CAGGCGTGAG	CCACCGCGCC	TGGCTGGGAG	TTGGGTTTGT	AAATCTCCCT	61320
	GAGTGGGGCT	GGGGCAGGGA	ACTGCTGGGT	CTGGGTCTTC	CTGGCTCCTC	TGGTCTGTGG	61380
	CTTCCTGACT	GCGGTGGCCG	GGGGCTCCCA	GGGCATCGTG	GCCGTCTGTC	TTGCTGAGCG	61440
	TGGCACGTGC	CTTTCCATGC	TGTGGAGGAG	CGTCTCCCGG	TATGGCGAAC	TGCTGGTTAG	61500
30	GGTGGGGCGG	TGTTGCCAGG	TCATCCAGGT	CTGGCCTCTG	CTCTCGACAT	CGCCGGCGCT	61560
	GTTGCTCATC	TGCGCTTGTG	ATGTTCGATG	CCTGCTGCAC	ATGTCTTGGC	TTCCCTCTTT	61620
	CCCGGCCTCT	GTGAGCTCCA	GCGCTGCGTC	CCTTCTCTTC	CTCCTGTAGA	GCCGCAGAGC	61680
	ACACAACATT	GACCTGAAGG	GGACAGTCGT	GATCTTTGAC	GAAGCTCACA	ACGTGGTGAG	61740
	TCTCCGCTGG	CCTCCTAAAC	ACCTCCTATT	GCTTCTGGCC	TTTTTGTCAA	GAGCCACGCA	61800
	•						

	AACCTTTCTG	GAGGGGCTCT	GGCCAAACTC	CTGAAGCCCT	AGGTGCCCAG	GACTGGGGAC	61860
	TGAGCACACC	AGGAGCTTCT	GCCACCCCCT	CCCGCCCTGA	TCCGATGCCT	CTGCTGGGGC	61920
	TGGAGACTGG	CCAGCTGGGC	CAGGGACCTG	CCCGTCAGGC	GCAGGGCCCC	CACAGGCCGC	61980
	TCACCAGACC	CTTTCCCTCC	AGCCAGCTCG	GGGTCAGCCT	GGGCCAGGGC	TGTCTCCTCT	62040
5	GCCCTCGGCA	GCAGCAGGCT	TGTGGTCTTG	CCTGCAGTGT	CTCTGCCCTT	CCGGCCACAT	62100
	GGCTTGAGAC	TGAGGCAGGA	GAATCGCTTG	AACCTTGGAG	GCAGAGGCTG	CAGTGAGCCA	62160
	GGATCACACC	ACTGCATTCC	AGCCTGGGTG	ACAAAGCGGG	ATTCTGTGTC	AAAAAAAA	62220
	ATGTTGACTG	GGCGCGCTAG	CTCATGCCTA	TAATCCCAGC	ACTTTGGGAG	GCTGAGGTGG	62280
	GCGGATCACG	AGGTCAAGAG	ATCAAGACCA	TCCTGGCCAA	CATAGTGAAA	CACCGTCTCT	62340
10	ACTAAAAATA	CAAAAAAATT	AGCTGGGCGT	GGTGGCGTGT	GCCTATAGTC	CCAGCTACTC	62400
	AGGAGGCTGA	GGCAGGAGAA	TCACTCGAAC	CCAGGAGGTA	GAGGTTGCAA	TGAGCCAAGA	62460
	TCACACCACT	GTACTCCAGC	CTGGTGACAG	AGCAAGACTC	CGTCTCAAAA	AAAATAAAAT	62520
	CAAAAAGAAT	AATTGGCAAT	TCCAGTGAAA	TAATTGTTTG	TTTGTTTGTT	GAGACAGGGT	62580
	CTCCTTCTGT	CGTCCAGGCT	GGAGTTCAGT	GGTATGATCT	TGGCCCACTG	CAACCTCCAC	62640
15	CTCCTGGGCT	CAAGCCATCC	TCCCACCTCA	GCCTCCCGAG	TAGCCGGGAC	TACAGGTGCA	62700
	CACCACCACG	CCCGGCTAAT	TTTTGTATTT	TTTGTAGAGG	CGGGGTTTCC	CAGCGTTGCC	62760
	CAGGCTGGTC	TTGAACCCCT	GAGCTCAAGT	GATCTGCCCA	CCTTGGCCTC	CCAAAGTGCT	62820
	GGGATTACAG	GTGTGAGCCA	CCGCGCCCGG	CCTGAAACAA	TCGTTTCTAA	ATATTGGTGT	62880
	GGGCCACACA	GTCATGTTTG	GACCTACTTG	TGGCCTTTTA	CAGACCCCAG	GCCAAGGCTT	62940
20	TGGGAACTTG	GCTGTCAGCC	TCCTGTGCCT	TCTGCACCCC	CACCCCATTT	CTGCTTTCTG	63000
	GAACCCCCGA	TCCTGTCCTG	TTCTGTGGTG	ATTCGGGTGT	GCTTGGGCTC	TAGGAGAAGA	63060
	TGTGTGAAGA	ATCGGCATCC	TTTGACCTGA	CTCCCCATGA	CCTGGCTTCA	GGACTGGACG	63120
	TCATAGACCA	GGTGCTGGAG	GAGCAGACCA	AGGCAGCGCA	GCAGGGTGAG	CCCCACCCGG.	63180
				CGTTCATAGC			63240
25			•	GAGTTCAGCA			63300
				GCCCGTGCTA			63360
•				TCTATTCAGG			63420
				CTTCAGGGTC			63480
		· ·				GCCAGTATCA	63540
30			•			TTGGGAGCAT	63600
						GCCCCTGCCA	63660
7				•		AGGCCGAAGT	63720
			•	CTTCCGGTGC			63780
	TCCAGCCTGG	GCGGCAGAGT	GAGGCCATCT	СААААААААА	AAAAAGGAAA	ACTAAATATA	63840

	TTCACTGTAA	GGGCATTTTG	CATCTTTAAA	TGACCCACAA	ATCTGGCATG	CATCAGCTGC	63900
	TCTGCCTGTA	GGTTCCTTCC	CAGTGTTTGT	CCAGAGGTGT	ATTTCCACAC	AGCGCTAGTC	63960
	ACGGCATATG	TGGAAAACGT	GGAAACCCTT	CATGGATGTT	GTCAGTTGGT	CTATATTTTC	64020
•	TTTCTTTTTT	TTTTTTTTGA	GATGGAGTTT	CACTTTTGTT	GCCCAGGCTG	GAGTGCAATG	64080
5	GCGCGATCTT	GGCTCACTGC	AACCTCCGCC	TCCTGGGTTC	AAGCAATTCT	CCTGCCTCAG	64140
-	CCTCCCAAGT	AGCTGGGATC	ACAGGCGTGC	ACCACCACGC	CCAGCTAATT	TTGTATTTTT	64200
	AGTAGAGATG	GTTTCTCCGT	GTTGGCCAGG	CTGGTCTCGA	ACTCCTGACC	TCACGTGATC	64260
	CACCCGCTTC	ĠGCCTCCCAA	AGTGCTGGGA	TTACAGGCGT	GAGCCGCCAC	GCCCGGCCTT	64320
	TGTCCATATT	TTCTACATGG	CTTCTGTAAA	CAGCTGACTA	GGAGTCTGTG	TGAATATCTT	64380
10	CATAGGTTCT	GCTGTGACAC	TACTTGCTCG	TGAGCATCTC	CAGGTGTAAA	CAGCATCAGC	64440
	TTCCCCCATT	TTCCTTTAAA	ATCGCACATG	TGGACGGACA	CCACGGGGAC	CCTGGACCCT	64500
	GGGGAGCCCC	GTCCTCACCC	TTCTCACCAG	GATGGCTGCT	TGGTAGAGAG	TGAGTTTGCA	64560
	AAGTTGGCAT	TTGTTTAGTA	CAGAAGTTAT	CAGGTGTTCT	GGCTTTAGAA	TCCCTTTATA	64620
	TATATATATA	TATACATATA	TTTAAGTGAC	AGGGTCTCAC	TCTGTTGCCC	AGGCTGGAAT	64680
15	GTGGTGGTAC	AATCAAAGTT	CCCTGTAGCC	TCGGCCTCCT	GGGCTCATGG	GATCTTCCCG	64740
	TCTCAGCGTC	TTAAAGCGCC	GGGACCACAG	GTGTGCACCA	CTGCCACCGG	CTCTCAAGAT	64800
	TGCCACGCAG	GGAGTTGCAG	TGGGGGAAGG	GGTTCCTGGG	ACTTTGAACG	CTCCACCTCC	64860
	CTCCTCTCCA	CAGTCCCCCA	ACCCCACCTC	TCTAACGGGG	TGGACGGCCG	CCTCTTTCCA	64920
	TCCTTCGCTT	GGCGCAGGGT	GGGGAGAGTG	ACAGGTCTCC	TTCCCTCATC	TCGGCAGCTG	64980
20	CCATTTCATC	GCTTACATAA	CGTGGGAGAA	ACATCCACCC	ACCCCCAGGC	CTGTGTGAAC	65040
	ATCACCACGG	GGCCTTCTCC	ACTCTTCAGT	TTTGTTAGTT	ACTTGATGTG	CAGGGCTTTT	65100
	TGTTGTAACT	AGTGGGGGAC	GTGTGGTGGG	GTGGGCTTCT	GCCATCTCAT	TCAGGACCAG	65160
	AACTTCAGTT	TTCATCCCTA	TCTGTTCCCC	CACCCCTTTG	GAGATGGGGT	CTCACTCTGT	65220
	CACCCAGGCT	GGAGAGCGGT	GGTGCCATCA	CGGCTCACTG	CAGCCTCCAC	CTCCTGCAGC	65280
25	CTCCACCTCT	TGGGCTCAAG	TGATCCTCCT	GCCTCGGCCT	CCCAAGCTCC	TGGGACTACA	65340
	GGCGTGTGCC	ACTGTGCTTG	GCAGGGTCCA	TTCTTTTCCT	CACACTTTAT	TTATTGAAGA	65400
	GCCCAGGCCG	TTTACCCTGC	AGAGTCGGAA	TCTGTACAGG	AGGGGCAGCC	ACACGAGTTC	65460
	CCCGGTTTAC	TCTGAACTTA	GGTGGCTTGA	GGGCCCCAGT	TAGACTGCGG	CCACCGTTTG	65520
	CCGGGCTCCA	GATGGGACGT	CCTTTCTATC	AGAAGGCTCA	CAGTATCTCC	TTTCCCGTTT	65580
30	CTTCCCATGT	GAACATTGTT	GCTGCTGAAC	ACCTGAATAT	GTTAATCACT	GGGGGCTTGC	65640
	AAGATGGCAG	TGTGCTAATT	CCATCATCTA	GTCAGTTAGC	AGGAATAACT	TAGGACCACG	65700
	CCCTGCACCA	TATCAGCTAT	GTGGTGATCC	CATTCACACA	GGAAAGGTGG	GACAAATGCT	65760
	GGGGTGGGC	CGGGTGTGCT	GTCTCACACC	TGTCATCCCA	GCACTTTGGG	AGGCCCAGGC	65820
	AGGCGGATCA	CGAGGTCAGA	GATTGAGACC	ATCCTGGCCA	ACACGGTGAA	ACCCCGTCTC	65880

	TACTAAAAAT	ACAAAAAAAT	TAGCCAGGTG	TGGTGGTGCA	TGCTTGTAAT	CCCAGCTACT	65940
	TGGGAGGCTG	AGGCAGGAGA	ATCACTTGAA	CCCAGGAGGC	GGAGGTTGCA	GTGAGCCGAG	66000
	ATCGCACCAT	TGCACTCCAG	CCTGGCAACA	GAGCGAGACT	CCGTCTCAAA	AATCAATCAG	66060
	TCAATCAAGT	GTCATCACTG	AATGTTTGTG	TGTGAACGTG	GGGATTGGTC	CTGCCCCATG	66120
5	CTCCCTCCTG	AATCTCACTC	CTGACCTCAG	TTGCTGCACC	TTGAGGTGTT	TTCTGTGGGC	66180
	TCTTGTGTCC	TGACCCCGGC	GGTTGTGGCC	TCTGCTGTCT	GGGAGTCAGG	ATTTTTCACA	66240
	CTCATGTCCT	GCTCCAGACC	TGGAATCAGC	CAAGTCTCCA	AGAAGCCCTG	CTTTCTTTTC	66300
	CTGCAAGACG	GTATTTCAAG	ACCCGCCGTG	CGGCAGCGGG	TTGGTCATGG	TTACTGGGTT	66360
	GGTCGTTGTG	ACTGGGTGTT	TTCGTGGAGA	TACAGCCATA	CGCACAGGTG	TGTTCACAAA	66420
10	TGTTAATTCT	AAAGGTCAAA	CACCCGGCCA	GGCATAAGGG	CTCAGCGGTA	ATCCCAGCAC	66480
	TTTGGGAGAC	CAAGACTGGT	GGATCACCTG	AGGTCAGGAG	TTTAAGACCA	GCCTGAGCAA	66540
	CAGGGTGAAA	CCCCATCTCT	ACTAAAAATG	CGAAAATTAG	CCGGGCATGG	TGGCGCACAC	66600
	CTATAGTCCC	AGCTAGTCGG	GAGACAGACA	CGAGAATTGC	TTGAACCTGG	GACATGGAGG	66660
	TTGCAGTGAG	CAGAGATGGC	GCTGCTGCAC	CCCTGCCTGG	GTGACAGAGT	GACACCCTGT	66720
15	CTCAAAAATG	AATAGATAAA	TAAAGATAAA	ACACCTGCTC	CTCTTGGTGT	CTCCAGTTTG	66780
				TGTTGGTGGA			66840
	TGTGGCCTCT	TCCTTCCCCT	GTTGGTGGAT	TTGGCCTGCA	CGGATTCTGT	GTGGCCTCTT	66900
		•		GGATTCTGTG			66960
	TGGTGGATTT	GGCCTGCACG	GATTCTGTGT	GGCCTCTTCC	TTCCCCTGTT	GGTGGATTTG	67020
20				TCCCCTGTTG			67080
				TGGATTTGGC			67140
				CCATGCCAGG			67200
				CCTTTGCTGC			67260
				AAGAGTAAGT			67320
25				AGGTGGGTGA			67380
				GCTGTTGAGC	•		67440
				AGCCAGCCCC			67500
				GGCTGTCACA			67560
						ATCTGGTTGC	67620
30						CCCACGGAAC	67680
						ACTCCCACGA	67740
						CACACCCACG	67800
•						CACACTCCCA	67860
•	CGGAACAGCA	CACTCTCCCA	CGGAACAGCA	CACTCTCCCA	CGGAACAGCA	CACACACTCC	67920

	CACGGAACAG	CACACACACC	CACGGAACGG	CACACACTCC	CACGGAACAG	CAGACTCTCC	67980
	CACGGAACAG	CACACACACT	CCCACAGACA	GCACACACAC	ACCCACGGAA	CAGCACACTC	68040
	TCCCACGCGG	GGCCGCTGGG	TTTCCTGCAG	TTTCTCCTCC	TCCAGGCCTT	TCCCTGGACC	68100
	CTGGTCCAGT	CCGTCATTTG	AGCACAGGTG	CCTGTTAGAA	CGAGACCTTC	TTGTTAGGAC	68160
5	GATGAGTGTC	CCAGCCACCA	CCTCTTTTGG	ACTCCGGGAG	GCCTGGAACG	TTCTGAACGC	68220
	TCCGTGGGGC	TCCAGTCTTC	TCCGCAGCCA	GGGCAGCAGG	GTTTGCTGTC	TGTCCTGCAG	68280
	GCAGATGAGG	AGTCAGGGCT	GGGGCCTGTG.	TGGGGGCTCT	CCTGAGCGCG	CAGCCGCCGA	68340
	GGTGGAGCGT	GTTCTGCCTG	AGCGCCGACC	TGGTCGGGGG	AATCCCAGTT	GCTTCCAGGT	68400
	GGAGCCACTG	TCCTCAGCGT	AATGCTCAAG	GCTCTGGCCT	GGCTCCTCGG	CCACCCTGCA	68460
10	CCCTCAGGGT	CCCCTCCTGT	AGCTTCTGCT	GCCCCATCAC	TGTCACTCTC	CAAAGCTTTG	68520
	GGGACTCTGC	CCAGAGCCAC	CGCCTCCCAG	AAGCCCCTGA	CAACCTCTTG	ACGACCCCCT	68580
	AGTGACCCCA	TCCCTCCCCT	CTGACGGCGG	CCCCTGCTCT	GAGGCGGCTT	CTTTTCCTCG	68640
	GTGCTGTTCT	CGTGCTGGCC	AGGCCTCCTC	TCCCCACCTG	GAGGCTCCTG	AGGGCGGAGG	68700
	CCTCTCACCT	CCAATGCTGG	CGTCCCCTGG	AGGGCTGAAT	TTGTTTCCGA	GGGAAGGAAA	68760
15	CTTCCACAGT	TGTTGCCTTC	AGTTCCAAAG	CTGCAGCCTG	ATTTCCCCCT	CCAGGCTCGA	68820
	GCCTGTTTTC	TTCTCGGCAG	CTACATCTTT	GACCAGTGTC	GTCCCCCCTC	AGGCCCGAGC	68880
	CTGCCTTCTT	CTCCTCAGTT	CCCAAAGCTG	CAGTCTGGTC	CCCCCGCCAG	GCTCGAGCCT	68940
	GCCTTCTTCT	CCTCGGCAGC	TACATCTTTG	AGCTGTTTGC	TGAAGCCCAG	ATCACGTTTC	69000
	AGACCAAGGG	CTGCATCCTG	GACTCGCTGG	ACCAGATCAT	CCAGCACCTG	GCAGGACGTG	69060
20	AGTGCTGGCA	CGGGGTCTTT	GGTGCGGGCA	AATGTGGCGT	AGGGGGTGCA	GCAGGCCTCC	69120
	ATCTTGGCAG	TCAGGGCTCC	CCTGGCCGTC	ACCTGGCCGT	CAGCAGGAAC	AGGCCCACAG	69180
	AACCTCATCT	TCTGATCGGG	GCGTGGAGGC	GTTAGTGCCA	CTTGCCAGCT	GCCGTAGAGC	69240
	CTGTCCCAGT	TCTGCAGCTG	GCGGCTTCGT	CCTACAGCCT	CATCCCATTA	TTCTGCTTTT	69300
	GAGAAAGAGC	AGCCCAAGGC	CCTAGCTGGC	TTGTGGGGCC	TCTGGCTTCT	CCACACCACC	69360
25	CCGAGTTCTG	CTTCTCAGAG	TTGTGGGGTC	CAGAGGCTTT	GCCCAGAGGC	GGTGTCCCCA	69420
	TGGGCTGCTC	TGGTTTGAGA	CGCCGGGCCC	AGCGGGGTCT	CTCCTCTGCT	GCGCTCCCGG	69480
	GTGCTGGGGA	GGGTGGCTTT	TGCTGCTTCA	ACCCTTAGGC	GACCATAGAG	CCTCTTTTCA	69540
	AGTCCCACTG	ACCCCCTTGG	AGACTCTGTC	CCTGCCTGGC	TTCTCTCCTG	GCTGCTGGGA	69600
	AGAGCAGGCG	AACTGCCCGC	CCTGAATGGA	TGCTGCGCTC	CACCCTGGGC	CCCCCATTGG	69660
30	GCAGGAGATG	GAGCTTGGCA:	GTCGGGCTGA	GCGGGCTCAT	GCTGGAAGGG	CCGGGGCTGG	69720
	GGTCGGGGCC	TCCCCTGCCT	GCAGTGTGGG	TGTCAGCGCC	CTGCTGCCCT	CCAGGTGCTG	69780
	GAGTGTTCAC	CAACACGGCC	GGACTGCAGA	AGCTGGCGGA	CATTATCCAG	GTGGGGCCTG	69840
	CTCCTCTGTG	GCATCTCCTT	CCCTGATGGA	AGCCGGGCGG	GTGCCTTCTC	CTGCTGTATT	69900
•	AGTTAACTGA	TTCTAGACTT	GGGGATGGGA	GAAAGGCCCC	TACACCACCT	GTTTCTGATT	69960

	GGCAAACTCT	CGGCTCCTTT	CCAGTGCCCT	AAACCCACAC	TGGGCCTCCT	GCAGGGATGG	70020
	GGGAGGACGA	GGTCTGGTGG	CACATGCCCA	GGGTGATGCT	GGTGAGGGAG	GACGCAAAGG	70080
	ACAGTGGGGG	CCGGGGAGCC	GCTCCTGCCC	TGTCCGGGCC	CTCAGGCCAG	GGGGGACCCA	70140
	CTGCTGGCAG	CCCCAGCAGC	CCCAGCTGCA	CGCAGATGAA	GAGCTCTGGA	CACACGCGGC	70200
5	TTCCTGAACA	GCTTCTCCAG	GGACAGACAA	ATGGGGACCC	TGCAGGTTCC	CGGCAGGGGT	70260
,	GTCCCTGGGA	GCCCATGATT	GGGGGTGCGA	CCCTGGCCCC	CTTCTCATTG	GCCCCGTCCT	70320
	GTCCTGCAAT	GCCCGTCCCA	TGTGAGGTCT	GCTTCTGGCT	CCATGCCTAT	GGCAGCACCT	70380
	GCTTTCCCTG	GCGTAGAGGT	GCTTGTCCGG	TTTGTGGAGG	GCACGCCCCA	TTTTGGGTGC	70440
	TCTGGGCACG	TTGCCTCTCC	GGGGCCTCGG	TGGCTTTTTT	AGAAGCAGAC	TCAGAAGTCC	70500
10	CTGACTGGGG	AAGCCAAGGC	ACAGGTGGCT	GTGTGGAGCC	CTGTGAGGCC	TCCTCTGTGC	70560
	TGCCCACGCT	GTACCTGCTG	GCCACACGAG	ATCATGGCAG	GGTTAGGCAG	GGCTGCCCAG	70620
	CGCTATGACA	GCTTCATGAG	TGTCCATCTG	GCCTGTGGGG	TGCTTGAGCT	GGGGGAGGCC	70680
	GCAGAAGAAC	CCTGGGATGC	ATGGCTGGCC	TGTGCATGCT	GCTGGGCATG	GAGCTGCAGA	70740
	TCCCGGAACA	AGCAGGCACT	GCCTTCTCCT	TCACAGACGC	AGCTCTGAGC	GGGGCGAGA	70800
15	CCTGGGCAGG	GACCAGGTGG	GGTGGGCACA	GGGTGGTGGG	GCCCAGGCTC	AGCCCTCCCT	70860
	CCACTGTGGC	CGTCTCTGTG	GCCAGTGACG	CCACAGCCTG	TGTCTTCTCT	GTGCGGTAGC	70920
	TGGGGCTGGA	AGGACAGCAC	TGCCTTGTCC	TCCCAACTCC	TCCCCAAAGG	CACGGTGGGC	70980
	ATCCCAGGCC	CAGACCCCTC	TGTCTGTGGC	TCCTGCCTGC	CAAGGGCTGC	TGTGCTGTCC	71040
	CGCATGGAGT	GTGGTTGGCT	CTTCAAGCAG	GAGGCCGTGC	ACCTATCAGG	CGGACCTGCT	71100
20	TCCATGTCCC	TGATGGGTCA	CTGCAAAGCA	CCTCCAGCAC	ATGGCCAGGC	GAGGTAGCCC	71160
	TGCAGCCCAG	GGCCTGGAGG	GCAGGTGTGA	GCTGGCCCGG	GCCTGTCCCT	CCCTGGAATA	71220
	CAGCTTCCCA	GGCTCCCACT	TATGGAGAAG	TCTCCTCCAC	ACTATGGAAC	TGAATCCTAG	71280
	AATGTGGCTT	CTGAGGTTCC	TACACTCGAA	CTGAATCCTG	GAATGCGGCT	TCCAAGGCTT	71340
	CCAGCTATGG	AGAAGACTCC	ACACTCTGGA	ACCGAATCCT	GGAACGCGGC	CTCCCAGGCC	71400
25	CCCAGCTATG	GAGAAGACTC	CACACTCTGG	AACCGAATCC	TGGAACGCGG	CCTCCCAGGC	71460
	CCCCAGCTAT	GGAGAAGACT	CCACACTCTG	GAACCGGATC	CTGGAACGCG	GCCTCCCAGC	71520
,	CTCCCACTTA	AGGAGAAGTC	TCCACACTCT	GGAACCGGAT	CCTGGAACGT	GGCCTCCCAG	71580
	GCCCCCACTT	AAGGAGAAGA	CTCCACACTC	TGGAACCGAA	TCCTGCACAC	TCCATCGGTT	71640
	TGGAATTTCC	TTTGGCTGCT	GCTCTAAGTA	GCCGCTGGTG	GATGACTCAG	CTTCTGCCAG	71700
30	CCCTCGGGTG	CCTGGAGGAT	GAGGGACTGC	ACACAGTGCT	CACCCGCGTT	GGCTCCTGAG	71760
	CCCCTGCAGG	TGTGGGCGGT	GCCCATAGGG	CTGGTGCTGG	GTTGGGCCTG	CAGCCCTGAG	71820
	TCACAGGTGA	CCCTGGGGGC	AGAGTGGGGC	CAGTGGCCCC	AGGAAGAGGA	TGTGGGATGC	71880
	ACAGCTCAGC	TGGAGGCGAA	CTCCAGGCAG	GGTCAGGCCG	TGTGCTCGGA	AGTCAGGGCT	71940
	TAGCTGGAGG	CAAACTCTGG	GCAGTGCTGG	CCCGTGTTGG	GGAACCAGTT	GCCCCTGGGC	72000

	*			TCTGCCTGAG			72060
				TTGAGAAAGG			72120
	CTGGAGTGCA	GGGGCTTGAT	CACAGCTCAC	TGCAGCCTCA	ACCTCCTGGG	CCCAAGTGAT	72180
	CCTCTTGCCT	CAGCCACCCG	AGGAGCTGTG	AACACAGGTG	TGCACCACCG	CACTCAGCTA	72240
5	ATTTTTAAAA	TTTTTTTGTA	GAGATGAGGT	CTTGCCATGT	TTCCCAGGCT	GGTCTCAAAC	72300
	TCCTGGGCTC	AGGCAGTCTG	CCCGCCTTGG	CCTCCCAAAG	TGCTGGGATT	ACAGGCAAGA	72360
	GCTTCCATGC	CTGCCCAGCA	GAAGGCTTTT	CGAAGGAAGC	TGTTTCCTGA	GGCAGACTCA	72420
	GCCCTGCTCA	TGGCAGCCAC	CAGCGTGGGG	GTGAACTTGT	TCTGTTACTT	CCATCCCCGT	72480
	GGGCCAAATG	CTTTGGTAAA	ACACAAGGCC	CTGTGTTTAG	CTGTCTTGAC	AGTGAAAATG	72540
10	GCTGGGAAGG	AAGGAAGGAA	CGGAAGGAAA	TTTCTCTCTC	CTTCTGTGCG	TACCCAGGCA	72600
	CGTGCACATG	CATGCAGAGT	ACGCACACAC	GCACGCACGC	CTGCACAAAT	CCACGCATGT	72660
	TGCCAAGTCT	CTGTGTTCCA	GCCGTGGTGT	CTGCCCCCCG	GTGTTCTCTA	GTTCGGCTTC	72720
•	TCCGCATTTC	TGTGAATGAT	TCCGGCTTCT	TGGTGTTCCC	AGCAGAACTC	CCTCAAGTCT	72780
	GCGGCGGGC	TCTGACGGCG	GTGGCTTGGC	TGACATGGCC	ACATTGCTGA	GCCTGTTGGG	72840
15	GGCTTTGCGT	TCCTGTTCTG	GCCGTTTTTG	GCTCGTTTTC	CAGGAACGGT	CGTCACGCGC	72900
	TCCTCTCCTA	GTGCAGGCAT	CATTCCTTTC	CCATTGATTT	GCAGGGTTCT	CTGTAAGTTC	72960
	TGAGGATCCC	ATATACATAT	ACTCTCTGTA	AGTTCTGAGG	ATCCCATATA	CATATTCTCT	73020
	CTCTAAGTTC	TGAGGATCCC	ATATACATAT	TCTCTCTCTA	AGTTCTGAGG	ATCCCATGCC	73080
	GACATACATA	TTCTTTCCTT	GTCTCATGCT	GGTCATTTTT	TCCATTTTCA	TGACAGGTTT	73140
20	GGTGAACACA	TGTTTCCTTG	TCAGATTTTT	GTTCTGAGCT	TGTGCCTCCC	GACCAAGATG	73200
	CTAAACCGGG	TCTTGTGTAT	TCTCCAAACT	GCACTGTAGA	GTGACGGAGC	TTTGTGTCTG	73260
	GGCCTCCATG	CCTTCTGACG	TCACCTGTGG	GGGTGTGAAA	GGCAGACTCT	ACCTTGATTT	73320
	TTCCCAGCAC	GCCACACCGG	TGGTTCTGTG	CGCTGACCGA	GCGGCTCGGC	TTCCCCCAAC	73380
	TCCACTGGGC	ACCTGCCACA	CTTTTCCTCA	TGTTTTTGTT	CACTGTGGTT	TTGTCGTAAG	73440
25	TCCTGGTGTT	GGCCTGAACC	AATTTCTTTT	ŤGTTTGTTTT	TGAGACAGAG	TTTTGCTCTT	73500
	GTTGCCCAGG	CTGGAGTGCA	GTGGCGCGAT	CTCGGCTCAC	TGCAAGCTCC	GCCTCCCGGG	73560
	TTCACGCCAT	TCTCCTGCCT	CAGCCTCCCA	AATACCTGGG	ATTATAGGCA	CCTGCCACCA	73620
	CGCCTGGCTA	ATTTTTTGTA	TTTTTAGTAG	AGACGAGGTT	TCACCGTGTT	AGCCAGGATG	73680
	GTCTCGATCT	CCTGACCTCG	TGATCCGCCT	CCCAAAGTGC	TGGGATTACA	GGCATGAGCC	73740
30	ACCGTGCCCA	GCCTGATATT	TTTAGTÄGAA	ATGGGGTTTT	GCCATGTTGG	CCAGGCTGGT	73800
	CTCGAACTCC	TGACCTCAGG	TGATCCTCTC	ACCTTGGCCT	CCCAGAGTGC	TGGGATTACG	73860
-	GGTGTGAGCC	ACCACGCCCG	GCCTCTTGTT	CTTTTGAAAC	CTGCCCTGAC	GTTTTTTCCA	73920
	TAGTGCATCT	TGGAGTCAGC	GTGTCTACTT	CCTGTAAAAA	TCTTACTGTG	ATTTTGACTA	73980
	GAATGTGTTG	AATTCCTGTT	TTTTTTTGA	GTCAGGGTCT	CTCTGTTGCC	CAGGCTGGAG	74040
	*						

	TGCAGTGGGA	CCATCACAGC	TCACTGCAGC	CTCAACCTCC	TGGGCTCAGG	GGATCCTCTC	74100
	AGCTCAACCT	CCCAAGTAGC	TGGGACCACA	GGCACATGCC	ACCATGCCCG	GCTAGGTTTT	74160
	TTTTTTTTT	TTTTTGGTGA	ACACCCTGGG	GTTGCACCAT	GTTGCCCAGG	CTGGTCTCGA	74220
	ACTCCTGGGT	TCGGGCAGTT	TGCTCCTCTC	AGCCTCCCGG	AGTGCTGGGA	TTACAGGCCT	74280
5	GAGCCACTGC	ACTAGGCCAT	GTTGAATTTC	TAGATTAATT	TGGGGCCCTC	AGGGGCACAG	74340
	AGAGGAGGC	TGGGCCAGTT	GGCGGGAGGA	GAGGCCCCTC	GGGCTGCCGC	ATTTTCAGTG	74400
	CATGGAGATG	GCCTATGTTG	GGGGAACACA	GAGCTCACCG	GGGGTCCCTG	CAGGGAGGAG	74460
	AAAGGGTCAG	GCAGGTGCCA	GCTCCTGTCC	ATTGGCCTGG	GGCTGCATGA	TGGCAGGGGC	74520
	CGGTGAACCG	ATGACCCCTG	GGTGTCCTGT	GACCTTCTGT	GTATGCGGCT	GATGCTGCAG	74580
10	AAAGTCGGGT	GGCCTCAGGC	TCCTGACGGG	GCTGCACTTC	CTCTGCCTTT	CAGATTGTGT	74640
	TCAGTGTGGA	CCCCTCCGAG	GGCAGCCCTG	GTTCCCCAGC	AGGGCTGGGG	GCCTTACAGT	74700
	CCTATAAGGT	AGGGCCACC	TCCAGGAGGC	AGGTGGAGGG	CAGCCCTTGT	TCCCCGGCAG	74760
	GGCTGGGGGC	CTTACAGTCC	TATAAGGTGG	GGGCCACCTC	CAGGAGGCAG	GTGGGGCTGG	74820
	GGGTCTTCTG	GTCCTAAAAG	GTAAGGGGCT	GCCCCAGGA	CATGGGCGGG	GCCTCCACAC	74880
15	TCCTGGTCCT	GTCCCCTCCA	GGTGCACATC	CATCCTGATG	CTGGTCACCG	GAGGACGGCT	74940
	CAGCGGTCTG	ATGCCTGGAG	CACCACTGCA	GCCAGAAAGC	GAGGTACAGA	CCTGGGCCCA	75000
	CACGCTCCCC	GCCCGCCCGG	GTGCAGTGCC	CGGCACCACC	ATGCCACAGG	CTAGGCACAT	75060
	GCCCAGCCGT	GGATCTCCTG	CCCCCATGGG	CCTGGCCACC	TTCTCCATAT	CCAGGCCAAT	75120
	CCAGAGCATT	CTCCTCACTG	TCCCTCTGAA	GATTGGAGTT	ACTGAGAGAC	GTAGGAGATG	75180
20	GCCTGATGGC	ACCGTGACCT	GCCCAGAGTC	ACCTGGTTGG	TGGTGGCAGA	GCCACAGCCC	75240
	AGCCAGGCCT	CCCTGCTGGG	ACACGCTCGT	TTATGCCGAG	GCCGTCAGCA	CAGAGCCTCC	75300
	ACAGTGAGGC	ACGGCTCTGC	CTGCTGCCTC	CACGCAGCGC	CTGGCCGGGC	CAAGCCTCAG	75360
	GGTCACATCT	GAAGGGGCC	CGGCTGGCCC	TGTTGTCCGA	AGCCCCTGGT	GCGCTCAGCC	75420
	CCGAGGCCCC	ACGTGCCTTC	TTGGCTTCCT	GTGCTCCGTG	GCGTCTTCGA	GTCGGTGCTG	75480
25	CCGGGGACGC	TGTGTGGATG	GGGTCTGTGA	GTGTGCCCTC	GGCTCCGTGT	CCGGAGCCCT	75540
	GTGGTTCTTG	GGGTGTATCT	GGCCCCACCC	CCACTGCGTG	GTGTCCAGGG	TGGGGCTTCA	75600
	CGGCTGCAGC	TGCGGGAGCT	GCTGCCCCTG	CCTTGTGCTC	CAGTGGGGCC	TTGCCTCTGG	75660
	GCTTGGTTCG	TCCCTCTCTG	GAACATTCTT	TCTCAGCTGC	TGTCCGACCC	ATGGTGGCAT	75720
	GACGTGGCCC	TGGCTGAAGC	AGCCCTTGTG	CGGTTGCTGT	GGTTGGGTCT	GCCTGGCCGA	75780
30	GCCGGAAGGG	AAGGGCTGGG	AGGGCGTCAG	GGTGGCGTGG	CTTGACCCCC	GCTCGGTGAT	75840
	GGŢCCTGCAG	CAAGGCCTCT	CCCAGCAGGA	AGCGTCCATC	CCGGGGGGAG	GCCGGCGCCC	75900
	CTCACGCAGT	TGGGGTTGCG	GGAGGCAGTG	CGTGCCTGAG	GCAGCCGGTG	CACAGATTCC	75960
	AAGGCCTGG	AATCTGTTTG	TTCCATTGAC	CTCTGATGTC	ACTTGACTTC	TCAGAAGCAG	76020
	CCACTCCCTG	CACTGGGCGT	TTGTAGGAAA	TGAGCTCCTG	GAGGAGGGG	TGGGGAAGTT	76080

	CCCCCATTGC	AGGGCACACT	CAGCCCCAGG	AAGGAAACGT	GCCTCGTCCC	TGCTGACTCC	76140
	GAATCGCAGT	CAGAGTCGTT	CTGCTTGTGC	CGTGTTGAAT	TCCCGGCATC	CGGCATCCAG	76200
	ACTCAGCCTC	CTCCCCAGGC	CACGGCCGCC	GTGGCCAGTC	GGTCAAGCCC	TTCTAGGAAC	76260
	TTCCTTTGAG	CTGGCGCCCT	TGTTCACTGC	TGACGCCACT	CAGAGGCTTG	TGCACGTGTC	76320
5	CTGCTTCCAG	GCAGAGCTGG	GAACTCGCAC	CCCGTCTTCT	GCACGCGGCC	GTGGAATGTC	76380
	GGGATGCCGG	CGCTTCCTTC	CCGTGTGCTC	TTGGCGGGGT	GGGCTTCTTG	CCCTGAGCCG	76440
	CATGTCACAG	TTTCTGCAGA	AGTTTAGGGT	TGGAGTGGGC	TGACCTCTCT	GCAGGTGTCC	76500
	CCAGCCTCTG	CCTGGGGTCT	GCCTCCTACT	CCCAGGACCC	CCTGTCCCCC	AGAGGGGCCC	76560
	CAAGCTGGCA	GGCTCACACT	CAGGGCAGCC	TCCTTTGTTC	TGACTTCTGC	ACAGTGGGCC	76620
01	TGGGTGGCTG	CCCGCGGCTC	GCTTGCTTGA	TGCCAGTGGG	TGGAGAGGGT	GATGGGCAGA	76680
	GAGGCAGGTG	GTCAGGCCCC	CAGTCCCGTC	CTCACACTCT	GTGCCCTCTG	CCGCCCCCCG	76740
	CCCCACAGGG	AAGGTGCTGA	GCTACTGGTG	CTTCAGTCCC	GGCCACAGCA	TGCACGAGCT	76800
	GGTCCGCCAG	GGCGTCCGCT	CCCTCATCCT	TACCAGCGGC	ACGCTGGCCC	CGGTGTCCTC	76860
	CTTTGCTCTG	GAGATGCAGA	TGTACGGGCC	ACCCCTGCCA	GGGCCTGAGC	ACCGGTGACA	76920
15	CCTCTGACAT	CAGCGGGGTG	GAAGTGGTGG	GGGTCCCCAT	GAGCCGGGTG	CTGGGGGTCT	76980
	CGGGCCTCGA	GGGCTAAAGG	GGTGCTGGTG	CACTTCCCCA	CTGTCTGCTC	CCTCTGGCCA	77040
	CGCTCAGCCC	TTTCCCAGTC	TGCCTGGAGA	ACCCACACAT	CATCGACAAG	CACCAGATCT	77100
	GGGTGGGGGT	CGTCCCCAGA	GGCCCCGATG	GAGCCCAGTT	GAGCTCCGCG	TTTGACAGAC	77160
	GGTGAGGGCC	TGTCCCTGGG	CCCTGCTGGG	GTGGGAGGTG	GGGGAGCACT	GAGGCCTGAG	77220
20	GCCCTGAGCA	GTGGCCTCTC	CGGCTCTAGG	TTTTCCGAGG	AGTGCTTATC	CTCCCTGGGG	77280
	AAGGCTCTGG	GTGAGTGCCC	TGAATGCCCC	AGCTGTGCGC	ATCCTGGATC	CTGGACCCCT	77340
	GCTCCCAAGA	GCTGGTAGGG	ACCCCTGCAG	ACATCCTGCC	CCTGCCTTGA	CCCCGGCCCC	77400
	TGCACTTCCA	GGCAACATCG	CCCGCGTGGT	GCCCTATGGG	CTCCTGATCT	TCTTCCCTTC	77460
	CTATCCTGTC	ATGGAGAAGA	GCCTGGAGTT	CTGGCGGGTG	CGTCTCCCCT	GTGTTCTGGG	77520
25	CGGGGTGGGT	GAGGGCAGGG	CTGGAGCATG	AAGCAGGCAG	TGGTCACAGC	TCCTGCTTGC	77580
	CCTCATCGGA	TCGGCGGCGT	GACCAGGGCT	GCCGTGTCCC	TGCCTCTTCC	TCCCACAGGC	77640
	CCGCGACTTG	GCCAGGAAGA	TGGAGGCGCT	GAAGCCGCTG	TTTGTGGAGC	CCAGGAGCAA	77700
	AGGCAGCTTC	TCCGAGGTCG	GCACTTGGCC	GGGGCTCTGG	GCCTGCTGCC	CCCTCGTGCC	77760
	TCCCCTGCCT	CTCACAGCTT	CCCCAAGGCT	GACCACTGGC	CCTGACCATG	GGCTCCGGCG	77820
30	GCTCCCGCTG	CCTCTTCAGG	GCTCCTGCGT	TTCCTTCCTG	GCCCTGAGTG	TTGCCTCTTA	77880
	TCTTACAAAG	CCCCCAGCAC	CGGGTGGGTG	TGGTAACAGT	GGCCCTCCTG	TCTGAGTAGC	77940
	CCTAGTCGGC	CACCCTGGCC	CTGGGGTTCC	CCGTGTTTTC	TGGGAAGCAC	TGAGCAGGCG	78000
	TGGGGTCAGC	CTGGGATCCG	TGCCAGGAAG	AAGCTTCCAG	AACCCGATTG	GCCTTCCTGG	78060
	CTAGGACGAT	CCTTCATCTT	GGAGCATGAG	ACCTGGGTCT	CCCTCATGGG	GGAGGAAGGG	78120

			man acceman a	O.3. 3. CITIMM COM	mcca ca cca m	ር እ ርጥር ርጥጥ እ ር	78180
				CAACTTTCCT			
				GGCGCCACCT			78240
				ACCTGGTTGC			78300
				GGCTGCCCGG			78360
5				TCCTGCTCTG			78420
	GAGTTTCCTG	GCCACAAGAG	TTGGAGGTGG	CGTCTGGGAG	CTGTGGACCC	CAAGTGGGGT	78480
	CCTGACCCAC	AGATGGAGCT	TCCTCCCACC	CCTGGTTGGG	GACGGAGCCT	CGGGGAAGGT	78540
	GGCTGGGCTG	GGTGTGGGCA	CCAGGGAGAG	GAGCCCCCAC	GGCCCCAGGC	AGCTCCCTGG	78600
	TGTGTCCCCT	AGGCCAGCGA	GGGGCTGGAC	TTCTCAGACA	CGAATGGCCG	TGGTGTGATT	78660
10	GTCACGGGCC	TCCCGTACCC	CCCACGCATG	GACCCCCGGG	TTGTCCTCAA	GATGCAGTTC	78720
	CTGGATGAGA	TGAAGGCCCA	GGGTGGGGCT	GGGGGCCAGG	TGAGTTACAG	CAGGGTGGGG	78780
	CTGGGGTAAG	GCGGTCTGGT	GACTGAGCCC	CCGCCCCGTG	GCCAAGGGAG	CCCCCGTGAC	78840
	CGAGCCGCCT	CGCCCCACAG	TTCCTCTCTG	GGCAGGAGTG	GTACCGGCAG	CAGGCGTCCA	78900
	GGGCTGTGAA	CCAGGCCATC	GGGCGAGTGA	TCCGGCACCG	CCAGGACTAC	GGAGCTGTCT	78960
15	TCCTCTGTGA	CCACAGGTGC	GTGCAGTCCG	GTGGCAGGCG	CGGCGCCAGG	GGACACGCCC	79020
*	ACACCCCACT	GGGCCCCTGG	ACTCTCCTTC	CCCACATGAG	GCCCCGTCTC	CTCCAGAGCC	79080
	TCTCCGGCTA	CTCGGGGTCA	GCGTGGGGCC	CCTGCAGCAG	ATGAGGGTCT	TCACTTCGGT	79140
	GAACTGAACC	CTTGAAGCGG	CTGTGGGCAG	GGCAGCAGGG	CTATGGCCAC	CCCCCAGGTT	79200
	CGCCTTTGCC	GACGCAAGAG	CCCAACTGCC	CTCCTGGGTG	CGTCCCCACG	TCAGGGTGTA	79260
20	TGACAACTTT	GGCCATGTCA	TCCGAGACGT	GGCCCAGTTC	TTCCGTGTTG	CCGAGCGAAC	79320
	TGTGAGTTCC	TGCCCAGGGA	GGGGATGAGG	GTGTTGTCCC	CAGAGGAGCC	AGAAATGGGT	79380
	CCACCCACCC	CCATGGTTCT	GCAGATGCCA	GCGCCGGCCC	CCCGGGCTAC	AGCACCCAGT	79440
	GTGCGTGGAG	AAGATGCTGT	CAGCGAGGCC	AAGTCGCCTG	GCCCCTTCTT	CTCCACCAGG	79500
	AAAGCTAAGA	GTCTGGACCT	GCATGTCCCC	AGCCTGAAGC	AGAGGTCCTC	AGGTGCGGAC	79560
25	GGGCAGCGCT	GGGTGGGCGG	TGTGGGGGTG	GCGGAGCGGG	CGGCGTGGGG	CGGGCAGCAC	79620
	CAGGCGCCCA	GGGCGGAGGC	GACTCACCTG	GCTTTGTGCG	CTTCCCCTCC	CACCTCCAAA	79680
	GGCTGCCTCT	CCCTCCTAGG	GCAGGGCCCC	CACGGGCTGC	AACCCTCCCC	TACAGGCAGA	79740
	GAACGCCCCA	GGCAAGGATG	CCCCCGAGG	CTGAGACTCC	CCCCAATAGC	AGGGAGGACA	79800.
	CCCACAGGCA	GGACCCCAAG	TGCTGGGACT	CTCCCCCAAG	AGGGGCTTTG	CCACAGGCAG	79860
30	GGACCCCAGC	TGGGGCCCCC	CGTGGGCTTC	ACTGCGCACT	CGGGTGCCCC	TGCAGGGTCA	79920
	CCAGCTGCCG	GGGACCCCGA	GAGTAGCCTG	TGTGTGGAGT	ATGAGCAGGA	GCCAGTTCCT	79980
	GCCCGGCAGA	GGCCCAGGGG	GCTGCTGGCC	GCCCTGGAGC	ACAGCGAACA	GCGGGCGGGG	80040
	AGCCCTGGCG	AGGAGCAGGT	ACAGTTCCAG	GGCCTTGGGA	TGGACACAGA	CCCTCTGTCT	80100
	CCTGAGGCCA	ACCCGACCCC	GCCCATCTGG	CCTCAGGCAC	CTCCCCACAC	ACCCCTGTAA	80160
				•			

	ATCCCCTGCC	TGGCAGGCAG	GCGGGCAAGC	GGGCGGGGA	TCCCAGCTGC	CTGGCTGTCT	80220
	GTGGGTCCTC	CACCCCACCT	CACCCACAGG	CTGCTGGCTC	CCAGGTGGTG	CATGCCCTGG	80280
	CCCTCCGCGG	GTGCCCCCCA	CATCACTTTG	GTTCTCTGGC	GGGTCAGCTT	GGCTCAGTGC	80340
	ACTCAAGGTC	GGGTGCCCCT	GCCACTGGCT	GCGCTTGAGG	CTGGCCTTTC	TCCAGGAATG	80400
5	TGCTGCGGGT	GGAACCCAGG	TTCCTTCTTC	CTTGGGGCCT	TTTGCCCCAG	AAGCCCATAA	80460
	TTCCTCAGGC	CAACCCGAAA	TTTTCTCCCT	GCTTCCTGCT	GGGAGCCATT	CCCCTCTTCC	80520
	TGCCCATCCC	TGCCCTTCAG	GCCCCTGGAG	TGAGCTCCAG	GTGCAGGCAC	CAGGCACCTG	80580
	TGTCCCCTTC	CTGCCAGCCC	CTCGCTGTGG	TCGGACTGTC	TTCCCTGGAC	CTGCTCTTAC	80640
	AAGTCACCAC	CTGCGAGCCT	CATGAGCCGC	TGGTGTGACT	TGGACAGGAC	CAAGTTGTGG	80700
10	CACTGTCACC	GGGGTGTGCT	GTGCCCCCT	CCCCGACCT	CCATCTTGGC	TCAGGGCTCC	80760
	TTGGGACCAT	CTTCCCTGTG	CGTCCAGGTG	CTTTGGGACC	CCAGAGTGTG	TGGTTGGGGT	80820
	CTGTGTGTGG	TTGTGAGCTG	TGTCCTCCTC	AGGCCCACAG	CTGCTCCACC	CTGTCCCTCC	80880
	TGTCTGAGAA	GAGGCCGGCA	GAAGAACCGC	GAGGAGGGAG	GAAGAAGATC	CGGCTGGTCA	80940
	GCCACCCGGT	GCGTGAGCTG	TCCCTGCACC	TGTGCCGACC	ACCATAGACA	CGCATGGGAA	81000
15	CGCAGCCGTG	GGTGCCCCCA	GCCACGGCTG	GTCCCGATGG	GACCAGGGAA	TCCACCCCCA	81060
	GGAGCTGATG	TCCAGGGCAG	CTGTGATGCT	GACGGCCAGG	GGCTCAAGTG	TGTGGTTTCT	81120
	TCTGCAGGGG	GCTCATGAGT	CCCAGCTGGA	ATCAGGCCCC	ACCCTTGGGC	AGGTTTGGCA	81180
	TGGGGCCTGC	AGCACTGGGC	TTGGCCCTGG	CATTTCCCTC	AAGTGTGGAT	GCACACCTGC	81240
	CTCATGTGAG	GGACACAGCC	CATTCCTAGC	CTTGGATCAA	AGAACGGAGT	TATAGCCGGA	81300
20	GCCAGGAAGC	CCCCTGCCTG	CTGGAAAACC	CCAAGTGTGG	CGGCCTTTGT	CCATGTCCCT	81360
	TGGCTTCTGG	GAAGAACTGG	GTGGTGCCCA	GGCAGGGCTG	GTGCCATCAG	GAAGTGGGTG	81420
	GCTGCTGAGG	GGCCTGGGCT	GGCGAGGGCC	TGGGTGGGGA	GTGCCTGGGC	CGCCCCTGCC	81480
	TTGGTTTCCA	CGTTTCCGTG	TTGGTCTGGG	GTGTGTAGAG	AGATGGGCAC	TGCTCATCCG	81540
	GAAGCCCCTC	CTTGTGCGCT	GCCATCCTGG	GAGCCTCAGC	CGCATCCGCT	GTGGGGCAGG	81600
25	GGGCTTGAGG	GAGGAGGAGA	GAGACGGGCC	ATGCAGGACC	CCTGGCTTGA	GGCAGAGCCA	81660
	ATCTACCCTT	TGCCCATTCA	CTGCTCTCAG	TTCCCTGCCA	GCCTCTCACT	GTGTGACCTC	81720
	AGACGGGCCC	AGCCCCACAG	CTTTCTTCCC	GCAGCCCCTC	CCTATGTCCA	TCCAGCCAGC	81780
	CAGTTTCTCA	GGCAGCAGCC	CCACCTCGGC	AGTCACTGTC	CCAGGGAACG	CTCAATGTTC	81840
	CAAGGAAGGC	TCTGCAGCCC	CAGGGACCAG	ATGATGAGGC	TGGCCCTGAT	GGAGCCTCGG	81900
30	GCCTGTGTCC	TGCAGGAGGA	GCCCGTGGCT	GGTGCACAGA	CGGACAGGGC	CAAGCTCTTC	81960
	ATGGTGGCCG	TGAAGCAGGA	GTTGAGCCAA	GCCAACTTTG	CCACCTTCAC	CCAGGCCCTG	82020
	CAGGACTACA	AGGGTTCCGA	TGACTTCGCC	GCCCTGGCCG	CCTGTCTCGG	CCCCCTCTTT	82080
	GCTGAGGACC	CCAAGAAGCA	CAACCTGCTC	CAAGGTGCCC	TGGCTTGCAG	AGGCCACCCA	82140
	CCCTGAGGGC	AGTGCTGCCG	CCGCGTGTGG	GGTGGGGGCC	ATCTGGGTCC	AAGGTGGTCT	82200

	CTGTTCTCTA	GAGAAAAAGG	GGCAGATGGG	GACAGACGCC	CCTTCCTCTA	CAGGCTTCTA	82260
	CCAGTTTGTG	CGGCCCCACC	ATAAGCAGCA	GTTTGAGGAG	GTCTGTATCC	AGCTGACAGG	82320
	ACGAGGCTGT	GGCTATCGGC	CTGAGCACAG	CATTCCCCGA	AGGCAGCGGG	CACAGCCGGT	82380
	CCTGGACCCC	ACTGGTAAAT	GGGCCCCAG	GTGGGACCCT	CAGACTCCTG	CGTGGAAGGC	82440
5	AGTGTGGGCC	AGAGTCCTGG	GCTGCTTGGG	GTGGGCATCC	TCGGGCCCTG	CTTGGCCCCG	82500
	CCTCTCTGTT	CCCCTATGGG	AGTGATGGGG	GCCTCCACCT	CCACCACCAG	CACCAGCAGC	82560
	ACCACCTCCA	CCTTCACCAC	CACCACCTCC	ACCACCACCA	CCTCCACCAC	CTCCACCTCC	82620
	ACCACCTCCA	CCACCTCCAC	CACCTCCACC	ACCACCACCA	CCTCCACCAC	CACCACCACC	82680
	ACCACCTCCA	CCACCACCAC	CACCACCACC	ACCTCCACCT	CCACCACCTC	CACCACCACC	82740
10	TCCACCTCCA	CCACCACCAC	CACCTCCACC	TCCACCACCT	CCACCTCCAC	CTCCACCACC	82800.
	ACCACCTCCA	CCACCACCAC	CACCACCTCC	ACCTCCACCA	GCAGCAGCAT	CACTTGTTGG	82860
	GGAGACCCTG	TGCAACTCCA	TGCACAGCCC	TGTCCCTGCC	ATAGCCCCGA	CCCCTAAGCA	82920
	CAGCCCTGTC	CAACTGCCAC	ACGTCCCCTG	CCTCCCATGC	ATGGTCCTGG	GGGGTCAACT	82980
	GCACACGCCA	GGGTCCTAGG	GTCCTAGACC	CCTGTCCTCC	CTGTTTCTGC	CTCTGTTTGG	83040
15	GGTGGAGTCC	AAGTCTCCAG	AGGCGGAAGC	ATCTGTGTTC	GTGTGTTAAT	GAACAGCCCC	83100
	TACAGAGTTC	CCCTAGTTCA	CCCAGGGGGG	AACCTAGCCT	GTTGGGACGA	CCCCAGATCC	83160
	CTTCTGGGCT	TGGTACTCAC	TGGGATATCC	TCATGCCTGC	ACCCAGCCTA	CGGCTCTGAG	83220
•	CTCCTGAGTG	GGGCTTTGGC	CTGCCCGCCA	CTGTTCCAGC	CCCCATCCAG	CAGGCTGGTG	83280
	TCTCCTCTGA	TGCCCCCAGC	ACCCAGGCGT	GTACCTGCCT	GGGTTTTCCC	GCCCTGGTCT	83340
20	GAGGTGGGTG	AGGCCTGGCC	TCCCTAGCCA	GCCCTGCCCC	CCCACCCCAG	GGAACTTTCC	83400
	AGATGCTCCC	GACCAGCTTT	GTGGCTCTAC	ATCTCTTCAT	CAGGAAGAAC	GGCGCCGGAT	83460
	CCCAAGCTGA	CCGTGTCCAC	GGCTGCAGCC	CAGCAGCTGG	ACCCCCAAGA	GCACCTGAAC	83520
	CAGGGCAGGC	CCCACCTGTC	GCCCAGGCCA	CCCCCAACAG	GTAGCTGACT	CCTGAACCGT	83580
	GTGCAGCCTA	CGACTTGGTG	GGTCCCTCAG	TGGCTTCACG	AGGCTAACTC	TTGAGTGTGG	83640
25	CCGGGGCTGC	CCCTGTGGGG	AGCCATCTCA	TGGTGGGGAC	TGCTCCCGGT	TCTGCACCCC	83700
	GCAGTTGTCC	TGAGCAGCTC	TCCAGGAGTT	CCTGGAGGAA	GGGCGGCAG	GGCGGTGGGA	83760
	CTCTCAGTCC	TCCACCCCAG	CGCCACTCTG	AGCCATGCTA	CTCCCACACC	AGGAGACCCT	8382,0
	GGCAGCCAAC	CACAGTGGGG	GTCTGGAGTG	CCCAGAGCAG	GGAAGCAGGG	CCAGCACGCC	83880
	GTGAGCGCCT	ACCTGGCTGA	TGCCCGCAGG	GCCCTGGGGT	CCGCGGGCTG	TAGCCAACTC	83940
· 30	TTGGCAGCGC	TGACAGCCTA	TAAGCAAGAC	GACGACCTCG	ACAAGGTGCT	GGCTGTGTTG	84000
	GCCGCCCTGA	CCACTGCAAA	GCCAGAGGAC	TTCCCCCTGC	TGCACAGCAA	GTGGCCCTGG	84060
	CGTGGGGAAC	AGCCGGTGGG	GTGGGGGCA	GGGGACAAAA	TGGGGGCTGT	GCCGGGTCTG	84120
	ATTGAAGCTC	CCCGCAGGGT	TCAGCATGTT	TGTGCGTCCA	CACCACAAGC	AGCGCTTCTC	84180
	ACAGACGTGC	ACAGACCTGA	CCGGCCGGCC	CTACCCGGGC	ATGGAGCCAC	CGGGACCCCA	84240

	GGAGGAGAGG	CTTGCCGTGC	CTCCTGTGCT	TACCCACAGG	GCTCCCCAAC	CAGGTAGGGC	84300
**	ACCTGCCTGG	CTGCTCCTGG	CAGCGCCCCA	ACCGCACGCA	GCCCTGGGAG	TGAGCAGCAA	84360
	AGCCCCAGGC	CCCCCTCAGA	CTCAAGTCTC	TGTCTCCAGG	CCCCTCACGG	TCCGAGAAGA	84420
	CCGGGAAGAC	CCAGAGCAAG	ATCTCGTCCT	TCCTTAGACA	GAGGCCAGCA	GGGACTGTGG	84480
5	GGGCGGCGG	TGAGGATGCA	GGTCCCAGCC	AGTCCTCAGG	ACCTCCCCAC	GGGCCTGCAG	84540
	CATCTGAGTG	GGGTGAGCCT	CATGGGAGAG	ACATCGCTGG	GCAGCAGGCC	ACGGGAGCTC	84600
	CGGCCGGCC	CCTCTCAGCA	GGCTGTGTGT	GCCAGGGCTG	TGGGGCAGAG	GACGTGGTGC	84660
	CCTTCCAGTG	CCCTGCCTGT	GACTTCCAGC	GCTGCCAAGC	CTGCTGGCAA	CGGCACCTTC	84720
	AGGTTGGTGC	CTGGCCACTA	CAGTTCCTGC	TGGGTGTAGC	CCCAGGTGAT	GGGCTGAGGG	84780
10	GGAAAGGGCA	GGCCCTTGTC	CTGGTGGCAA	CGCCTGGCAG	ACGTGTGCAG	TGGGCCGGTT	84840
	GTCTCACAGG	CCTCTAGGAT	GTGCCCAGCC	TGCCACACCG	CCTCCAGGAA	GCAGAGCGTC	84900
	ATGCAGGTCT	TCTGGCCAGA	GCCCCAGTGA	GTGCCCACGG	AGGCCCCCAG	CACACCCAAC	84960
	GTGGCTTGAT	CACCTGCCTG	TCCAGCTCTG	GTGGGCCAAG	AACCCACCCA	ACAGAATAGG	85020
	CCAGCCCATG	CCAGCCGGCT	TGGCCCGCTG	CAGGCCTCAG	GCAGGCGGGG	CCCATGGTTG	85080
15	GTCCCTGCGG	TGGGACCGGA	TCTGGGCCTG	CCTCTGAGAA	GCCCTGAGCT	ACCTTGGGGT	85140
	CTGGGGTGGG	TTTCTGGGAA	AGTGCTTCCC	CAGAAÇTTCC	CTGGCTCCTG	GCCTGTGAGT	85200
	GGTGCCACAG	GGGCACCCCA	GCTGAGCCCC	TCACCGGGAA	GGAGGAGACC	CCCGTGGGCA	85260
	CGTGTCCACT	TTTAATCAGG	GGACAGGGCT	CTCTAATAAA	GCTGCTGGCA	GTGCCCAGGA	85320
	CGGTGTCTTC	GTGGCCTGGG	CTTGGTGGTG	GGAGTTGAGG	GACAGGGAGT	TGGCAGAGGC	85380
20 .	CCCTCCCAGC	CTGCCATGTG	ACACTGTACT	TCCTCCACGG	TGGGCTCAGC	CCTGCCCTCA	85440
	TCCTCACAGC	CGCAGCCAAG	CTGCAGTTGG	TAGGGGATCC	ACCGACACAC	CAGGCTGCCT	85500
	GGGCTGGTCT	CTGGGTTGGG	AGCTGCCCCA	GGTGCTGAGG	AGGGCAGCTC	CCTGGCTGGT	85560
	GAGGCCCCTC	CCAGAACCAC	CCTTGGACTG	AGCTCTGGGG	AGGGATGGTA	CCAGGTGGGT	85620
	GAGGGGGCT	GCCTGGGGAG	GGAGGGGTTC	CTATGGGGCG	TGGCGAGGCT	GGCCCAGCCC	85680
25	TCTCCCCGCC	CATATATGTA	GGGCAGCAGC	AGGATGGGCT	TCTGGACTTG	GGCGGCCCCT	85740
	CCGCAGGCGG	ACCGGGGGCA	AAGGAGGTGG	CATGTCGGTC	AGGCACAGCA	GGGTCCTGTG	85800
	TCCGCGCTGA	GCCGCGCTCT	CCCTGCTCCA	GCAAGGACCA	TGAGGGCGCT	GGAGGGGCCA	85860
	GGCCTGTCGC	TGCTGTGCCT	GGTGTTGGCG	CTGCCTGCCC	TGCTGCCGGT	GCCGGCTGTA	85920
	CGCGGAGTGG	CAGAAACACC	CACCTACCCC	TGGCGGGACG	CAGAGACAGG	GGAGCGGCTG	85980
30	GTGTGTGCCC	AGTGCCCCCC	AGGCACCTTT	GTGCAGCGGC	CGTGCCGCCG	AGACAGCCCC	86040
	ACGACGTGTG	GCCCGTGTCC	ACCGCGCCAC	TACACGCAGT	TCTGGAACTA	CCTGGAGCGC	86100
	TGCCGCTACT	GCAACGTCCT	CTGCGGGGAG	CGTGAGGAGG	AGGCACGGGC	TTGCCACGCC	86160
	ACCCACAACC	GCGCCTGCCG	CTGCCGCACC	GGCTTCTTCG	CGCACGCTGG	TTTCTGCTTG	86220
	GAGCACGCAT	CGTGTCCACC	TGGTGCCGGC	GTGATTGCCC	CGGGTGAGAG	CTGGGCGAGG	86280
					,		

	GGAGGGGCCC	CCAGGAGTGG	TGGCCGGAGG	TGTGGCAGGG	GTCAGGTTGC	TGGTCCCAGC	86340
	CTTGCACCCT	GAGCTAGGAC	ACCAGTTCCC	CTGACCCTGT	TCTTCCCTCC	TGGCTGCAGG	86400
	CACCCCCAGC	CAGAACACGC	AGTGCCAGCC	GTGCCCCCA	GGCACCTTCT	CAGCCAGCAG	86460
	TTCCAGCTCA	GAGCAGTGCC	AGCCCCACCG	CAACTGCACG	GCCCTGGGCC	TGGCCCTCAA	86520
5	TGTGCCAGGC	TCTTCCTCCC	ATGACACGCT	GTGCACCAGC	TGCACTGGCT	TCCCCCTCAG	86580
	CACCAGGGTA	CCAGGTGAGC	CAGAGGCCTG	AGGGGCAGC	ACACTGCAGG	CCAGGCCCAC	86640
	TTGTGCCCTC	ACTCCTGCCC	CTGCACGTGC	ATCTAGCCTG	AGGCATGCCA	GCTGGCTCTG	86700
	GGAAGGGGCC	ACAGTGGATT	TGAGGGGTCA	GGGGTCCCTC	CACTAGATCC	CCACCAAGTC	86760
	TGCCCTCTCA	GGGGTGGCTG	AGAATTTGGA	TCTGAGCCAG	GGCACAGCCT	CCCCTGGGGA	86820
10	GCTCTGGGAA	AGTGGGCAGC	AATCTCCTAA	CTGCCCGAGG	GGAAGGTGGC	TGGCTCCTCT	86880
	GACACGGAGA	AACCGAGGCC	TGATGGTAAC	TCTCCTAACT	GCCTGAGAGG	AAGGTGGCTG	86940
	CCTCCTCTGA	CATGGGGAAA	CCGAGGCCCA	ATGTTAACCA	CTGTTGAGAA	GTCACAGGGG	87000
	GAAGTGACCC	CCTTAACATC	AAGTCAGGTC	CGGTCCATCT	GCAGGTCCCA	ACTCGCCCCT	87060
	TCCGATGGCC	CAGGAGCCCC	AAGCCCTTGC	CTGGGCCCCC	TTGCCTCTTG	CAGCCAAGGT	87120
15	CCGAGTGGCC	ACTCCTGCCC	CCTAGGCCTT	TGCTCCAGCT	CTCTGACCGA	AGGCTCCTGC	87180
	CCCTTCTCCA	GTCCCCATCG	TTGCACTGCC	CTCTCCAGCA	CGGCTCACTG	CACAGGGATT	87240
	TCTCTCTCCT	GCAAACCCCC	CGAGTGGGGC	CCAGAAAGCA	GGGTACCTGG	CAGCCCCCGC	87300
	CAGTGTGTGT	GGGTGAAATG	ATCGGACCGC	TGCCTCCCCA	CCCCACTGCA	GGAGCTGAGG	87360
	AGTGTGAGCG	TGCCGTCATC	GACTTTGTGG	CTTTCCAGGA	CATCTCCATC	AAGAGGCTGC	87420
20	AGCGGCTGCT	GCAGGCCCTC	GAGGCCCCGG	AGGGCTGGGG	TCCGACACCA	AGGGCGGCC	87480
	GCGCGGCCTT	GCAGCTGAAG	CTGCGTCGGC	GGCTCACGGA	GCTCCTGGGG	GCGCAGGACG	87540
	GGGCGCTGCT	GGTGCGGCTG	CTGCAGGCGC	TGCGCGTGGC	CAGGATGCCC	GGGCTGGAGC	87600
	GGAGCGTCCG	TGAGCGCTTC	CTCCCTGTGC	ACTGATCCTG	GCCCCCTCTT	ATTTATTCTA	87660
	*****			GGCTTTTTTT			87720
25	TCTTAAAGCT	TATTTTTATA	AAGCTTTTTC	ATAAAACTGG	TTGTAGTTGC	ACAGCTACTG	87.780
	GGAGGGCAGC	CGGGGACACC	TGAGCCGCCC	GCTGTGCCCA	GATCCCTCAG	GCTGCCTGCC	87840
				CTCAGACAGA			87900
				TGGCACGTGG	•		87960
						TCAGGCCAGC	88020
30						CCCAACTCAC	88080
	AGGGGATTTC	CCGAGAGGGG	ACCTGCCAAA	GACCTCCTCC	AGGCCTCCCA	TGCTTCCCGG	88140
						CCCAGAGCAA	
	CCAGGGGGCT	GCACCAGCCA	CTCGCCTCCC	CAGCACGGCC	AGGTTCCCGG	GGCTGGAGGT	88260
	CCCCCCAGG	TCCTGGGAAC	CAACCTGCAG	AACACACACA	GGGTCCCCTG	GAGAGGACGC	88320

	GGGGACTTCC	AGGGCCCGAC	TCCTGTGAGT	CACAGCCCCG	CAGCTGCTGC	GCCACCCCA	88380
	CCCTGACTCA	TGCCCCTTCC	CAGCAGCTCC	TCCCAGGACC	CCATGTCCTT	CCCACATCCG	88440
	CAGGAAGGGA	GTGCCTGGAC	TCTCCAGGCC	CACCTGGGGA	GCCCCTCACC	TGCCCACCAG	88500
	CCCCTGAGCA	GCCCAGTAAC	ACCATCACCG	TGTCCAACAG	CCAGGAGCCT	CCACCCTCCA	88560
5	GGAGGGAAGG	GATGGACAGA	GCCACACTCG	CCGTCTTTAT	TTTGCACTCA	CCCTGGGTGA	88620
	CACTGGGCAG	GCCGCTCCTG	CCCACAGCCA	GACTGAGGAA	GAACACAGCA	CTCGGCAGGC	88680
	CCAGTGGGGT	CCGTGCAGGG	AGGACCCCAG	GACCAGCCTT	ACTCCCGAGC	AGGGGACACA	88740
	GGGCCCCACA	GAGAACCCCT	CCGGGAGGTT	CTCTCCTGGC	TGGGGGAGGG	CTCTGGACCC	88800
	CCACAAACAC	TCCCCAACTT	GCGGGGCTGG	GGCATAAAAA	CAGCCACTCC	CAGCAGGCCC	88860
10	CCTCAGCTTT	TTGCATCAGT	CAGCTCCCTC	CCGGGGGATT	AGGGTGAGGT	GAAGCCAGGC	88920
	CCAGGCGTGG	GGTATAGGTC	TTCCCCCGCA	GGCCTCAGCC	CTGTCCCGAG	GCTGCATCAC	88980
	AATCCAGGGC	CCCCGCTGGC	CTTTGGGAAC	ATGGCCTGGG	TCTTCCTCAA	GGCAAGATCA	89040
	GCCCCAGACC	ACTTCCGGGG	TCACGGGGTC	ACAGGGCAGA	AGCCAGATGG	CAGCCATGGC	89100
	TGACGGGCCT	CCTCCTCGAT	GGGGCGGAGA	CAGCCACGGG	GTCTCCCGAG	GGTCCCACAG	89160
15	GGCTGTCCTC	ATGCAGCCCA	AGCCAGCCTG	AGCACTGGAG	CCCCAATTCC	CAACCAGGTC	89220
	TCCCTCAGAC	CCCCAGAAA	GGGCCTCGAA	AGGCCGCCGC	TGCGCCCTGT	GGAAAGGCTG	89280
	CCGCTGCAGG	GCCTGGGCCA	GCCGGGCTGC	CAGACTCCCC	TCCAAAGCCT	CCGGATGCCT	89340
	ACGCTTTTCC	AGACATAGAG	GAAAGTTTGT	CTTCGAGAAA	ACAAAGTAAA	TAGAAGAACC	89400
	CCAAAGCAAA	GCAAACCCAC	CCCCCAGATC	AGCAGCATGG	GAGCCAACAG	GAGGCCACTC	89460
20	CTCCAGCACC	AGGGGACCAG	CCGTCCCGAC	GGCAGCGCGG	CTGCGCCTAC	GTGATGTCCC	89520
	TCTGCCGCGG	CGGCCGGTGC	ACATTCCGCA	CGACACACTT	CACCATCCAC	TCGATGCCCT	89580
	CGCGCACCCC	TTTGCTGTGA	AGACAGCGGG	TGTGAGGCGG	GGGGTCTCGG	TCCCCAAAGC	89640
-	CCCCGCAGGT	GCAGCCCCCA	CTCACCCTGT	GAGGCCGAG	CAGGCCTGGG	TCAGGCAATC	89700
	GCGCCTGCCG	ATCTTGCTGG	TGCAGTCGCT	GAAGGCCGTC	TTGATGTCAG	GGATTGAGAG	89760
25	GCACGTCTGG	GGGAGGTAAG	GCCGTGAGGA	GCAGCCCCCA	CGTCTGGCCC	TGTCCTGCCT	89820
	GTGGGCCCGG	GACTCTCAGA	AGGGCGTATG	CCCTTCACCC	CAGGGAAACA	GCCAGAGCTC	89880
	CACCAGGGTC	CCAGTGTCTC	CCACAGAGAC	CACAGCAGTG	AGGACCCTGT	GCTCAGCCCG	89940
	AGGCTGAACA	TGGCTGGTAG	TGCCTGAGAC	AAACTAGACG	TCCACACGGC	TCCAAGGAGT	90000
	CCACCCCCA	TCCCCTCCCT	GGGGGACACC	CTGAGCCCCG	AGGTGGGGCG	CTGAGGACTG	90060
30	AGGCCTCCTG	GGCAGTGGCG	GAGGCAGGTC	CCAGGGGCCC	ACACAGCCGG	GGATGATGGA	90120
	GAGGTGGGAG	CCCTGCATCA	GTGATGGGGG	CAGTCTGCAG	TCATGGTGGC	TTCTGCTCAC	90180
	AACCACCTGC	CCAGTCTTCA	AAAAGCAGCC	CTCCCCTCCC	CTTTTCCTCC	GAGGGGAGAC	90240
	CCCTGCCCCG	TACCAGATGT	CCCTCTTGTC	GGCTGAGATT	GTAGGGGAGG	CCAGCCTTAC	90300
	AGGCTGGGGG	CAACAGAGCC	ACCCCAGAGA	AGGCAGGAAG	TGAAGATTCA	CCCGGCCCTC	90360

	TGGACGCCGG	GCTGCTTCTG	TGCAAAGCCA	CTCCAAGAGA	ACAGCTAGAA	CTCAGCGTGG	90420
	CCAGTGCTCC	CGGGGGCAGT	GGCACCTCAG	AGGGGTCTTG	AGGGGCTGCC	CTGGGGGTGG	90480
	GGCTGGCACA	GATGCCACCT	CCAAGGGTAG	CAGGAACAGG	TAAGGGTCAG	AGCTGACTCC	90540
	CACCAGGGCC	CCAGCATCAC	TTCTTTGAGC	TCTGAGTTTC	ACCTGGGTGT	CCCCACAGCT	90600
5	TGGCCACACA	CTCCTGAGAC	ACGGCCGCCC	TCCTGGGGAG	AGGTGCCCTG	CATAGCAGGA	90660
	AGAGGCCTCT	GGGCGCCTGC	CCTGAGGTGG	GAGAACCTCC	AGGGCTGGCA	GCAGCAGGTC	90720
	TGGAGAGGAA	CCAAGCTTGG	GAAGCTGCTG	GGGGCAGGGC	AGGCCTTGAG	AATGGCTCTG	90780
	TACCCCCTGG	GCAGTCACTG	GGCCTGGGGT	GTCTGGGTGC	ACACCTACTC	CCCTTGCTGT	90840
	GGGGGAGGCT	GGGGACTCGG	GAAGCTGCTG	CGGGAGGCAG	GGGTGGGGCT	CACCTCCACA	90900
10	TCCTGCTTGT	TGGCCAGCAC	CAAGACGGGG	ACACCGCACA	GCGCCTCGCT	GGTCACCACC	90960
	TTCTCTGGGG	AGGGCAGGAG	AGGCAGCGCC	TCACACCCAG	CATCCTGCCT	CTGACTGCCC	91020
	AGGGCCCAC	AGGCGTGGAC	ACTGTGACAG	CCACTCCCTC	TGCCCCCCC	CCGTCACCCA	91080
	CTAGGCAGGA	GCACTTCTGA	CCAGACACTG	AGCCTGCCCC	AGGCACAGAG	CTGCCCAAGC	91140
	TGGACCTGCC	CCCACTCACC	ATCCATCCCT	CCCAGAGCAG	CCAGGCCGCA	CTCACCAAAC	91200
15	GCCTGCTTGG	ACTCAGCCAG	CCTCTCCTCG	TCGGTGGAGT	CAATGACGTA	GATGACGCCG	91260
	TGACACTCCG	CATAATACTG	GGAGGAAGCA	CCAGGAGTTG	GGGCTCAGTC	CCCACCCTGC	91320
	CAAGGGCCAG	CAGAGCCAGG	CCTGTGTCAT	GGCCACAGTG	AGGGGCTCAC	ATGAGGAAGG	91380
	GGCAAGAGGG	CAGCCCCCAA	CTGCAAGACC	CTTCTGGGAT	GCATTCTGGG	GTTGCGGGGA	91440
	GATCTGGTGG	AGGTGTCCCC	AGACGCTGCT	CCTGAGAACC	TĠCCGGCAAC	CTTTGGCCTG	91500
20	ATGGTGGCCA	AAGGTGAAAG	ACAGGGATTG	GGCCAGGCGT	GGTGGCTCAC	ACTTATTATC	91560
	CCAACACTTT	GGGAGGCAGA	AGCAGGAGGA	TCACCTGAGC	CCACTTCACG	GCCAACCTGG	91620
	GCAACACAGT	GAGACTCCGT	CTGTACAAAA	GCTTATGGTA	ATGTGCGCCT	GCAGTCCTAG	91680
	CTACTCGGGA	GGCTGAGGTG	GGAGGATGGC	TTGAGCCTGG	GAGGTTGAGG	CTGTAGTGAG	91740
	CTCTGATCAC	ACCACTGCAC	TCCAGCCTGG	GTGAGAATGA	GAGACCCTGT	CTCAAAAAAA	91800
25	AGATAGGGTT	TGGGGGCTGG	AGGAACCTAG	ACCACAGCCT	GGCCCGTTGA	GGGAGTGCAC	91860
	CTGTGGGGCT	CTGTGCCAGC	ACCTCGCACA	GGGAGGGAGT	GTGGCCATGC	GGATAAGACT	91920
2	•		CGAGCCTTCC				91980
	CAGACCTCTG	CAGCCTGGGC	TGGTCAGTCC	TGGGCTCGCT	GGCAACACTC	CTGGGCAAGA	92040
		•				ATGAGTGCAC	
30	CTCTATCTCA	ATCAGAAAAA	AACACAGCAA	ACTCCGCGTC	CACGTGGAGC	AGACAACAGC	92160
	TCACATTTGC	CACTTTGCCT	CCAGGCTGTG	CCAGCTCTCC	TGTCCAGGCA	TGAGTGCCCA	92220
	GAGACCTAGA	ACTGGATGCT	GACCAGGTAG	GACAAGCTGG	TGGTCAGTGT	GTTAAGACAC	92280
	ACACACCCGA	GAGCATGAGA	AGCCAGGAGG	CACAGCCCAA	CTCTCCGAAA	TCCTTAGGGT	92340
	GTCTGAGCAG	GGAGTACCAG	ACAACCCCAT	CCCAGTGCCA	GACAAGCTTG	TGCACCTGCA	92400

	CTTCCCACAG	AGGAGAGAAG	CCTGTGCACC	TGCACTTCCC	ACAGTGGAAA	GGAGGAGGCC	92460
	CAAGGCCAGG	CCCCCCACC	CCCAGGAACT	TCCCACAGTG	GAGAGGAGGC	CCAAGGCCAG	92520
	GCGCCCTCCA	GGGTTCTGCA	GGTAGCGAGG	CCCCCCACC	CCCAGGAACT	TCTCTGGCCT	92580
	ACAGACAGGT	CCCACACAGA	GGCCGCCAAC	CCCTCAAGGG	ACCCTGCAGT	GTGCCGGCTG	92640
5	TCTGCTGCTG	ACACAAGGGA	GCAGGCGGAC	CCTAAGGTGG	AGACCTCTGT	GGCAGGAGGG	92700
	GCGGCTCTGT	GGAGGCTGCA	GCAAGCCCAG	TGAGAGAATC	TCCACGTGGC	TCCTGGGGCT	92760
	TCTGAGCAGG	GTGGCAGAAG	GTTCATGTGC	AACCGGGTCC	TGGACCATGG	GACCACGTGG	92820
	CCAGAGCCAC	CCATCACACC	TACCAGGCAC	AAGGTGCACA	GCCCAGCAGG	GCCGCAGTGG	92880
	ACGGGAGCGA	CACCTCAGGG	CTGAGTGCGG	GCAGGACCCA	GAGCCCCACG	CCCCAGTGGA	92940
10	GGCGTCACAG	CAGTGGTCAT	TGTGGGGTGC	CCCACAAGGA	GGGGGAAGAG	GGAGGTGTCC	93000
	CAGCGTGGCT	CCTGGCTGGC	CAGCTGACCC	CAGTGGAGCA	GTCAGAGGGA	CTGTGGGTCT	93060
	GAGTTTTTCT	CCCCAGCAGC	AATGGGAGCT	CCCCAACTGC	AAAGTGCCAG	CCAGCCTGAG	93120
	AGACTAGTGT	TACAGCAAAG	AACCCAGGAG	CTGAGGTCCT	GGCACATGCC	ACACATGTGG	93180
	ACACCAACCC	AGGGTCCAGC	CCCAGGACGA	GGCCAATTCG	CAATGACGCC	CCTTTCTGTG	93240
15	GTGCTGGCTC	TGCACAAGGA	TGCAGGATAC	AGGAACCAGG	GTGGGAGCAG	GGGCCTCCCT	93300
	TCCGGTCCCT	CCCAGTGACC	TAGGGGGGTC	CCTGCAGCTG	ATCCTCCCAG	CTCTGAGCTC	93360
	AGCAGGGTCA	GGGGTCCCGG	CCACTAGAGC	AGCACATACT	CAGCAGACAC	GCTGAATGAC	93420
	GAGCCACAGC	TGCCTCATGG	GCATGACTTG	CACCTCATGT	CTAGGAGACC	CTGGTGGGCA	93480
	GGAGATGGGG	CTGCCATCCC	ACAGCTGTCC	CACAGCTGGG	GACCCAGGGA	GCCACTGGCC	93540
20	CCACCACGGT	GGTGTCTGGA	GAAGGGCTCA	GACTGCCAGG	AAGTCGCACC	CCAGCAGAAG	93600
	TGGTAGTGAA	TTGGGAGGGC	ACTCAAGGAA	GGGCTGTGCA	GCCCCAAGAC	CAGCAGCAAG	93660
	GATGGGCTAC	AGTGGCCCCC	TTAAGTCTCC	CTCTTCCAGT	TTCGCCTTAA	GAGAGGCCCT	93720
-	CAGGACCTTG	GAGGAACCCC	TCTCCAACGT	GGAAGTGTGG	GTCCACATAG	GGCTGCAGCT	93780
	GTGGCCAGTG	CAGGCATCTC	TGGCCCCACT	GTATTCTTGC	TTCATGTTGG	AGAACACTGC	93840
25	ACCAGCAGAT	GGTCTCATTT	TGGTTTCTGT	GGGACCCACT	TTGGCTGCAA	AGAGCCACAC	93900
	TGCCAGGTCA	CACCTGCCCA	GGGCAGCCCA	CACTGGGGAC	CCACCAGGCC	ATGGTGTGAA	93960
	GTCCCGGCCA	GCCTGGCCCC	ACATGGCACA	GCATAGCCAG	TTCTCCTCCA	GGGCTCCCTG	94020
	CTGGGCCAAC	CACAGCTCTG	CGGATCCTGC	TGCCTGAGTC	GACCTCTCCT	CTCCCGTCCT	94080
	CCCTGCCTTC	CTGGTGCCGA	CCCCCAGTGT	GCATCCTGTA	CCTCGACCTG	TCTCAGCATC	94140
30	TGTGCCTGAG	ACACCGGCCT	GTGACAAGAT	CATCATCATC	TGTGTCACTC	CCCAAGCATG	94200
	CTGCGCACTG	GACACACAGG	CCCTGACTCA	ACTTGTCCTG	TCTGACTTCA	GTGGTCCTAC	94260
	AGGATCTATC	AGAGATCACT	TGGCCATGGG	AGAAATGŢCT	TCTTGGCTAG	AAGTCACAGC	94320
	AGGAGGGGAC	ACTTTGGGGG	CGCCTAGGAA	AGGGGAACTA	GGATCAAAAA	AGAGATCAGG	94380
	ACCTGGGCAC	TCAGCTCTAG	AGATGGCATC.	AGGGCAGCCA	AGGCACTGGG	GACACCCCAC	94440

	ACCCACTGTG	CCAGCCTAGG	GCAGGGAGCC	CGAGGAAGCC	ACAGGCTCTG	CCCTGCTCAG	94500
	TGCTGGACTC	AGTGCCTGGC	CCAGGCTGAG	AAGGAGATAA	ACTGCAGCCT	TGGGGGTGTG	94560
	GGGAAGGGGC	ACCACACTGG	GATCTCAGAA	ATGCCCAAAA	CCTGTGTCAA	AATAGGAGAC	94620
	TGCCGCTGTG	AGACCCTGAG	GAGTCTTCTG	GTGATCATGG	AAGAACAAAT	GTTAAGCTAG	94680
5 .	AACTGAAGGA	ACCTCATCAG	GGGAGAGGCA	GCCATCCTGC	CGTCCCCACA	TCTGGTCTTT	94740
•	GCCATTTCTG	TGTCCTGTGG	TGGTCAGCAG	CAAGGTCTCT	GAGCCGAAAG	GAGGCACTCA	94800
	CTTTGGAGGA	GTGCAGGGTC	CCCAGGTCCC	CACACTTTGT	CTTGTCCTGA	CTGAGAAAGA	94860
	AACAGACTGC	CCTGACCTCT	CTGACTTGGC	CAGCGAGGTT	GCCCTTAGGC	TCAAACCCAA	94920
	GCCAGGGTTT	GAACATTCCC	AGACACTTGT	AAGATGTTTA	GGTTGTTAAC	ATAATGTTCA	94980
10	GGTTTCAAAA	CATTGAAAGA	AACTAGCCCC	AGCCCTGAAC	CCAGATCCCC	CCCGGCTTCA	95040
	GGCATGACCA	GTGAACACGC	CCTTCTCTCA	CTGGTCACCT	GAGGATGCCG	CACTCTGTCA	95100
	ACAGGTTCCC	CTAATACATG	CTCTGATCTG	ATCGCCTTGG	CATTTAGTGA	TTCTTTCCCT	95160
	GGAATTCTCC	ACTGGCCCCA	TCGCAGGGAA	CTCCCAAGTG	GGAAACTCCC	CTACCACCAC	95220
	TTTTGGGGCA	ACTTCAGCTA	AGGGTTCAGC	TGGGACAAAA	CAGGGAGCCA	CTCGGGAACC	95280
15	TGGGACAGGA	CCAGAGAGAA	AACCCGAGGG	ACAGAGTGGG	TAAGGAAAGC	TGCTGAGGAA	95340
	GGGCCCAAAG	GGCACTCTGG	AAAGAAGTGG	CACTGGAGGG	CTGGGGTGGG	GGTGGTCCTG	95400
-	GCCAGGGAGT	CTTACCTTGT	CCCACAAAGA	CTGCAGCTCT	TCCTGCCCTC	CTAAGTCCCA	95460
	GAACATGAGC	CGAGCCTTTC	CCACATCCAC	AGTGCCGACT	GGGGAGAGGA	GGAAACAGGC	95520
	AAGGCTCATG	ACCTTGGTCC	TCGACACACC	CAGTCCCAGC	TCTCCCAGGG	GATGGGGCAA	95580
20	ACCATGCTGG	TĢCCACTCAA	ATGAGACTTG	AGAGGGGCCC	GACAGGGCTG	TGGCCACGGG	95640
	CCAGCTGGAC	TGTGAATATC	ACGGCATCCT	CAAGGCCCCA	AACCCACAGC	CTGCTATTGA	95700
	GACCCTTACT	GTTTAGGCCC	ACGGTGGTGG	TGATTTTGGA	TAGACTCATC	CCCTTGTAGT	95760
	TCTTGTTAAA	TCGGGTTTTC	GACTGCTCCA	GGAAGGTCTG	AGGAGAGAGG	CAGAGGCGAA	95820
	ACACATCAAG	GAGGGGCTAT	ACTGGCTTCC	AAATATCCTT	ACTCAGGTCT	GTTCTTTAAA	95880
25	AGACAGAAAC	AGAAACAGAG	CAACACTCTG	CTCTTCAGGA	GGCTGGTGGT	GACTATCCTG	95940
	CCGTCTCAGG	TGAAATTTGG	CTTCCGTCTG	GGTAGTGAAC	GTGCAGCTGA	CAGCACAAAA	96000
	CCGAAGGGGG	CGCCGCCAGG	CCGTGGGAAA	GGTGCGCGCA	AGGGCGTGGG	CACTCACCGT	960 <u>6</u> 0
	CTTCCCAGCA	TTGTCCAGGC	CCAGGATCAG	GATGCAGTAC	TCGTCCTTCT	GAAACATGTA	96120
	CTTGTACAAG	CCCGACAGCA	GCGTGTACAT	CCTGCCCTGG	GCACCCCAAC	ATAGGTCAGT	96180
30	GTGCAGCCAG	AAAGCACCTC	CCCTCCCCCG	GGCTTCTCCA	CGGTGGTCAG	TGGCGCCCCA	96240
	CGTCCAGCCG	ACCGCTCAGG	ACGAGAGCCT	GGGGGCCATT	CCCGACTCCT	CGTCCCTCTC	96300
	CCACCCCGTC	CCTCTGTAAC	TTCTCCCAGG	TCAGCCGCCA	CTGTGTCCTG	CTCACAGCAA	96360
	TGACTGCGAC	CTCTCCGCAT	ACACATCGGT	TCCGGCCCCT	CCCCTGCTCG	CGGGACTACC	96420
	CAGCCGGGTG	TTCACAGTGA	GCTCAGCCGC	GCTCCCGCCC	TCCCCCGAGG	CTTCGCTCCC	96480

. •	ACGCTTCACG	CGCGCGGAAC	GGGGAACACA	CTCGCTGCAG	CCCCGCCTGG	GCCACGGCAC	96540
	CCTCGAGCGC	CAGCCCCGCG	CCCCACCCGG	GAGCAGCGAG	CCACCGGCGC	GCTCCCCAGG	96600
	AGCCCCTGCA	GGCGCCGGGT	AGGGACGCCC	CATCACCCCA	TTTCTTAAAA	CGGGGACGGC	96660
	CCTGGGGGGA	GCGGACTACA	GGGCGGGTGA	GCAGCGGCGC	GGCTGCTCCT	GGAGTGCACC	96720
5 -	TGGAGGCGGC	GCGCGGCTGG	CAGGGAACGA	CTGCGAAGGA	AGAACCTGGG	TCGCGGCCCC	96780
	CGGCTACGTC	CGCCCCAAGC	CCCCCCCCC	AGGTCTGAGG	CTCCCGACA	AGCAGCCAAA	96840
	GCTGGCTCCT	GTCACACCCG	CGTCCCACCT	CGAGTCCTGG	GCCGCCCTC	GGGCCTCGCG	96900
	CCTCACCGCA	CAGCCTGCGG	CCTACCTGCG	TCCGCCGCGC	CCTCGGAGCC	GCTGCTGCTG	96960
	ACCCCCGCTG	ACCTCCGCTG	ACCCCGCGCT	AACCCCGCGC	GGCGCCTGAC	GGGACGCGGG	97020
10	CCGGCCTCAG	GGAATGAGCT	GAACCGCGTC	CCAGCGGCCT	CCGCGCTCCG	CTTCCCGGCT	97080
	GCCCCGCGC	GCCAAGCACT	TCCGGAAGCG	GCGGCGCTCG	GGAGGAAGTG	CCGATCGGCT	97140
	GCTGGGGCGA	AAAGGGGGCG	CCGGGCCGCT	CTAGCCGGTG	AGGCCGGCGG	GCTCTCTGTG	97200
	GCTGCGGCTG	GGAAACCGCG	CGGAGGAGGT	GCCCGGCCGG	GGACCAGGTG	GCCGCGGTTT	97260
	GCGGGGACGC	GGCCCTGGCC	AGACAGAAGA	GACGCCGGGC	GGGGGGGCGC	GGCCGGCCTG	97320
15	GAAGGCGGCG	GGCGCGGCGG	GTGGGCTCGG	CGGAGGGTGA	GGCGGCGGGG	CGCCCCGCGG	97380
	GGAAGGGGCT	CCGGAGTGAC	GCGGGACCCG	GCTAGCGGCG	AGCCCACGGC	GGCTCGGAAG	97440
	GGAAGCGCGG	AGCCTGAGCG	GGGGTACCCG	GGCTGCGACC	TCTGCGCTGG	GAGCTGTGCC	97500
	TCTGAGCCGG	TGTCTCCCCG	AGGGAAAGGG	GACGTGCCCG	TGCCCGTGCC	CGCCCTCAGG	97560
	CTGTGGGGTC	GGTCCCGAGA	CGCGGGGCTC	AGCTGGCTTC	TCTTCTTGCA	GCCCTGGTCC	97620
20	AGCGCCTCCC	TCTCTCAGCA	TGGACGAGGA	GAGCCTGGAG	TCGGCCTTGC	AGACCTACCG	97680
	TGCGCAGCTG	CAGCAGGTGG	AGCTGGCCTT	GGGCGCCGGC	CTGGATTCGT	CTGAGCAGGC ·	97740
	TGACCTGCGC	CAGCTGCAGG	GGGACCTGAA	GGAGCTCATC	GAGCTCACCG	AGGCCAGCCT	97800
	GGTGTCTGTC	AGGAAGAGCA	GGTTGTTGGC	CGCGCTGGAC	GAAGAGCGCC	CGGGCCGCCA	97860
	GGAAGATGCT	GAGTACCAGG	CTTTCCGGGA	GGCCATCACT	GAGGCGGTGG	AGGCACCAGC	97920
25	AGCGGCCCGT	GGGTCCGGAT	CAGAGACCGT	TCCTAAAGCA	GAGGCGGGGC	CAGAATCTGC	97980
	GGCAGGTGGG	CAGGAGGAGG	AAGAGGGAGA	GGACGAGGAA	GAGCTGAGTG	GGACAAAGGT	98040
	GAGCGCGCCC	TACTACAGCT	CCTGGGGCAC	TCTGGAGTAT	CACAACGCCA	TGGTGGTGGG	98100
	AACGGAAGAG	GCGGAGGATG	GCTCGGCGGG	TGTCCGTGTG	CTTTACCTGT	ACCCCACTCA	98160
	CAAGTCTCTG	AAGCCGTGCC	CGTTCTTCCT	GGAGGGAAAG	TGCCGCTTTA	AGGAGAACTG	98220
30	CAGGTAAAGC	CCTTTGTTGT	CAGATGCCAA	CCTTAGGGGC	GTAAGGGGCA	CGCACACAGG	98280
	GTCGGGTCAG	GATCGGCCCT	CCCTTTGCTT	TGCAGTTTTG	TCTCAGCTTC	CTGGGGCAGG	98340
	CGTGCTTTGA	CAGCTGTGTC	TGTGTTCAGG	CGTCTACGTC	TTCCTTCTGG	GGTGAATCAA	98400
	GAAGCATGGA	AGGAGGCCAG	GCGCGGTGGC	TCACGCCTGT	AATCCCAGCA	CTTTAGGAAG	98460
	CCGAGGCGGG	CAGATCACCT	GAGGTCAGGA	GTTCAAGACC	ACGCTGGTCA	ACATGGTGAA	98520

	ACCCCATCTC	CTTAAAAACA	CAAAAATGAA	CCGGTCGTGG	TGGCGCGCAC	CTGTGGTCCT	98580
	GGCTACTCAG	GAGGCTGAGG	CAGGAGAATT	GGTTGAACCC	AGGAGGCCGA	GTTTGCAGTG	98640
	AGTGGAGATG	CAGCCACTGT	ACTGCAGCCC	GAGCAGCAGT	GCAAGGCTTA	TGTGGAAGAG	98700
	AGTAGGTCTC	CAGCCTATCG	TCAGTTTTTT	TTTGGTGGTT	GTTTTAATTT	TTTTTGAGAC	98760
5	AGGGTCTTAC	TTTGTCAACC	AGGCTGGAGT	GCAGTGGCAT	AGTCCTGGCT	CACTGCAGCC	98820
	TGGACCTCCT	GGGCTCAACC	GATCCTCCTG	CCTCAGCCCC	CCTAGGAGCT	GGGCTACAGA	98880
	CTCACGCTAC	TACACCCAGC	TAATTTTTAT	ATTACTATAA	TTTTTTATCT	TTTTTTTGAG	98940
•	ACGGAGTCTT	GTTCTGTTGC	CCAGGCTGGA	GTGCAGTGGC	GTGATCTCGG	CTCACTGCAA	99000
	GCTCCGCCTC	CCGGGTTCAC	GCCATTCTCC	TGCCTCAGCC	TCCCGAGTAG	CTGGGACTAC	99060
10	AGGCGCCCGC	CACCATGTCT	GGCTAATTTT	CTGTATTTTT	AGTAGAGACG	GGGTTTCACC	99120
	ATGTTAGCCA	GGATGGTCTC	AATCTCCTGA	CCTCGTGATC	CGCCCACCTT	GGCCTCCCAA	99180
	AGTGCTGGGA	TGACAAGCGT	GAGCCACCGC	GCCTGGCCTT	TTTTTTTTGG	AGACAGAGTT	99240
	TCACTCTCCT	CACCCAGGCT	GGAGTGTAGT	GGCGCAATCT	CAGCTTACCG	CAACCTCTGT	99300
	CTCCCGGGTT	GAAGTAATTC	TCTACCTCAG	CGTCCAGAGT	AGCTGGCATT	ACAGGCGCCC	99360
15	GCCACCACAC	TCGGCTAATT	TTTTGTATTT	TTAGTAGAGT	CGGAGATTCA	CCATCTTGGC	99420
	CAGGCTGGTC	TTGAACTCCT	GACCTCGTGA	TCCACCCACC	TTGGCCTCCC	AAAGTGCTGG	99480
	GATCACAGGC	GTGAGCCACT	GCGCCTGGCC	CTGTTGTTAG	TTTTATTCTC	TAGAGTTCAA	99540
	CTTTTAAATT	TTACTTTCAT	GGAGATTTTC	AAACATACCC	CAAATTAGAG	AGTTTAGCAT	99600
	AATCACCGCC	CACGGTCCAT	CATCCAATGT	CGTCATTTAT	TAATATTTC	CCAGTCTCAT	99660
20	TTTGTCTGTT	CTCCCTGCCC	TATTTTTTTC	TTTCCTGGGC	CATTTTAAAG	CAAATTCCAG	99720
	AAGTTACTGG	TTTTTTCCAA	TTATGAATAC	TTCATAGTTG	CATCTCTAAT	CTAACTGATT	99780
	AGGAAATTAC	TTAAAAAGTA	ACTTTTTGGA	AGTCCAAGTC	CGATGTGAGG	ACAAAAAAGA	99840
	GTAACTTCTG	TGTCATAATA	GGTAACACAT	TTAATGGTAA	TACCTCTTCC	ATATTCAAAT	99900
	ATGAACAATT	ATTACTGTAA	TGTCTCTATT	TCCCTAAGCG	CATAGCTTTA	TTTTTCCTCC	99960
25	TTTTTACTTT	TCTCTTAGAA	GAAATATTTA	CCAAGCCTTC	TAGTAGGTAA	TTTTCTTTTT	100020
	TAGCCAATAG	TTCAGGCTGA	CCGTGTAACC	ATCCCTAGTT	CTAGTTCTAG	TTCTTTGAAT	100080
	GTCTTCCTTT	TTTTTTTTT	TTGAAACAGC	GTCTTGCTGC	TCTGTCACCC	AGGCTGGAGT	100140
	GCAGTGGCAC	AATCTCGGCT	CACTGCAATC	TCCGCCTCCC	TGGCCCAAGC	CATCCTCCCA	100200
	CCTCAGCCTC	CCTAATAGCT	GATACTACAA	GTGTGCACTG	CCACGCCCAG	CTAATTTTTG	100260
30	TATTTTTTGT	AGAGACGGGA	TTTCACCATA	TTACCCAGGT	CTCGAATTCC	TGATCCCTTT	100320
	GATGAGAGAT	CTGACACATC	CCTGTGGTGC	TCCCTCTGGA	CCAGGCACTG	CTCCAAGGGT	100380
	TTCATATACT	TTCATTCATC	TGTGCAACAG	CCCTGTAGGT	AGGCCCTGCA	GTCACACCAT	100440
	CTGACAGAGG	AGGAAACAGG	AGTAGAAGAA	CTGAGTGGTC	CAGGGCTTCA	AGGCTCAGAG	100500
	GGCTCCAGTT	GCCCCCAGCC	CTCGTTCCGT	CCCCTGCTCC	ACCCAGTGCT	GCTTGCCATG	100560

	TCGGCATCAG	GCCTGATCTG	AAAGCTTCCG	GAGCATCTTA	CAGACGTCCA	CCTTGCCACC	100620
	ATTCAGGACT	GATAAGTTCT	CTTGGATTTG	CGTTGGACCT	TTTTTTTTT	TTTAAGATGG	100680
	AGTTTCACTG	TTGTTGCCCA	GGCTAGAGTA	CAATGGCACG	ACCTCCACCT	CCTGGGTTCA	100740
	AGGGATTCTC	CTGCCTCAGC	CTCCCAAGTA	GCTGGGATTA	CAGGCGCCTG	TCACCACGTG	100800
5	GTGCCCAGCT	AATTTTTATA	TTTTTAGTAĞ	AGGCAGGGTT	TCACCGTGTT	GGCCAGGCTG	100860
	GTCTCGAACC	CTTGACCTCA	GGTGATCCCG	CCTTGGTTTC	CCAAAGTGCT	GGGATTACAG	100920
	GCATGAGCCA	CCACACCCGG	CCCAGGATTT	CTTTATATAT	TCTGGATATC	ATCCCTTATG	100980
	AAGTATATAG	TTTGCAGATA	TTTGCTCCCA	TTGTTTGGGT	ŢGTCTTTTCA	CTTGATATAG	101040
	TGTCCTTTGA	TGCACAAACA	TTTTAAATTT	TGATGCAGTG	CAATTTATTG	TTTCTTTATT	101100
10	GCCTATGTTT	TTGTCATCAG	GTTTAAGAAA	CCACCTCATC	CATAGTTATG	AGGATTTTCA	101160
	CCTATGTTTT	CTTCTAAGAG	TTCTGTAGTT	TTAGCTGTTA	AATTTAGGTC	TTTGATCCAT	101220
	TTTGAGTTAA	TTTTTGTATA	TGTTATTAGG	TGAGGGTCCA	CTTTATTCTT	TTGCATGTGG	101280
•	ATTTCCAGTT	TTCCCAGCAC	CATTTGTTTA	AAAGACTGCT	TTTTCTCCAC	TGAATGGTCT	101340
	TGGCACTTTT	GTCCAAAATC	AATTGGCAAT	ATATGTAAGG	GTTTATTTCT	GAGCTCTCTC	101400
15	TCCTGTTCCA	TTGGTGTATA	TGTGCCAGTA	CCACACTGTT	CTGATTATTA	TAGCTTTGTG	101460
	ATAAGTTTTA	AACTCAGGAA	GTGGTAGTTA	TTCACCATTT	GCTCCTCTTT	TTCAAGTTTG	101520
	TTTTGTTTCT	GGATCCTTTG	CAATTTCATA	TGAATTTTAG	GATCGGCTTG	TCCAATTCTG	101580
	CATAAAAGAC	AGTTTGAATT	TTGATATGGA	TTGCATAGAA	TGTGTAGATC	TGTTTGGGGC	101640
	ACATTGTCAT	CTTTACAATA	TTAAGCCTTC	TGGCTGGGTG	TGGTGGCTGA	CGCCTGTAAT	101700
20	CCCAGTACTT	TGGGAGGCTG	AGGCGGGCAT	ATCACTTGAG	GTCAGGAGTT	CAAGACCAGC	101760
	CTGGCCAACG	TGGTGAAACC	CCGTCTCTAC	ТАААААТААА	AAACAAATTA	GTCGGAGGTG	101820
	GTGCACACCT	GTAATCCCAG	CTACAGGAGA	GGGTGAGGCA	GGAGAATCGC	TTGAACCTGG	101880
•	GAGGAGGAGG	TTGCAGTGAG	CTGAGATCAT	GCCACTGCAC	TCCAGCCTGG	GTAACAGAGG	101940
	GAGACTCCAT	CTTAAACAAC	AACAATAACA	GAAGAAAAA	ACAGTATTAA	GTCTTCCAAT	102000
25	TCATGAATGA	AGGATCTGTC	CATTTATTTA	CGTCTTTAAT	TTCTTTCAAC	AGTATTTTGT	102060
	ACTGTTCAAG	TCTTGCACAT	TCTTGGTTAA	ATAAGTATTA	TTTTTGATGC	TTCTCTAAGG	102120
	AATTGTTTTT	CTTTTCCTTT	TTTTTTTGA	GACAGAGTCT	TGCTCTGTCA	CCCAGGCTGG	102180
	AGTGCAGTGG	CACAATCTTG	GCTCACTGCA	ACCTCTGCCT	CCCGGGTTCA	AGCAATTCTT	102240
	CTGCTCAGCC	TCCCAAGTAG	CTGGGATCAC	AGGTGCCTGC	CACCACACCC	AGCTAATTTT	102300
30	TTTTTTTGAG	ATGGAGTCTT	GCTCTGTTGC	CCAGGCTGGA	GTGAAGTGGC	CCAATCTTGG	102360
	CTCACTGCAA	GCTCCACCTC	CCGGGTTCAC	ACCATTCTTC	CGCCTCAGCC	TCCTGAGTCG	102420
	CTGGGAATAC	AGGTGCCTGC	CACCACGCCC	AGCTAATTTT	TTGTATTTTT	AGTAGAGATG	102480
	GGGTTTCACC	ATGTAGCCAG	GATGGTCTCG	AACTCTTGAC	CTCAGGTGAT	CTGCCTGCCT	102540
	CGGCCTCCCA	AAGTGCTGGG	ATTACAGATG	TGAGCCACTG	TGCCCGGCTC	GAGTTGTTTT	102600

	CCTTAGTTAC	ATTTTCAGGC	TGTTTGTTGC	TAGTATATAG	AAATACAAGC	TGGGCACCGT	102660
	GGCTCACGCC	TGTAATCCCA	GCACTTTGGG	AGGCCAAGGC	GGGTGGATCA	CCTGTGGTCA	102720
	GGAGTTCGAG	ACCAGCCTGG	CCAACATGGT	GAAATCCAGC	СТСТАТТААА	AATACAAAAA	102780
	TTAGTCTGGC	ATGGTGGCAG	GTGCCTGTAA	TCCCATCTAC	TCAGGAGGCT	GAGGCAAGAG	102840
5	AATTGCTTGA	ACCTGGGAGG	CGGAGGTTGC	AGTGAGCTGA	GATCGCGCCA	TTGCACTCCA	102900
	GCTTGGGGAA	CAAGAGTGAG	ACTTCATCTC	ааааааааа	AAAAAGAAAT	ACAGTGGATT	102960
	TTTTTATGTT	AATCCTGTAT	TGATTGCTGA	ATTGGTTTAT	TAGTGCTAAT	AGGATTTTTT	103020
	ATGCACTATT	TAGGATTTTC	GATATATACA	ATCATATATA	TTCAATATAT	ACAATTAATA	103080
	TATATGTGAA	TAGAGATAAT	TGTAGTCTTT	GTTTCTAGTT	TGCATGGCAT	TTATTTCTTT	103140
10	TTCTTGCTTA	ACTGCCTTAG	CTAGAACTTC	AAGTACGATG	TTGAATAAAA	GTGACTAGAG	103200
	CGGGCCGGG	GTGGTGGCTC	ACACCTGTGT	TCCCAGCACT	TTGGGAGGTG	GAAGTGGGCA	103260
	GATCACTTGA	GATCAGCAGT	TTGAGACCAG	CCTGGCCAAC	ACGGCGAAAC	CCCATCTCTA	103320
	СТАААААТАС	AAAAATTAGC	TGGGTGAGGT	GATGTGCACC	TGTAGTCCCA	GCTACTTGAG	103380
	AGGGTGAGAC	ATGAGAATTG	CTTGAACCTG	GGGGGCGGAG	GTTGCAGTGA	GCCAAGATCA	103440
15	TGCCACTCCA	CTCCAGCCTG	GACGACAGAG	CAAGAACCCT	GTCTTTAAAA	AAAAAAAAA	103500
	AAAAGTGGCT	AGAACAAACA	TCTTTATCTT	GTTCCTGATC	TTAGGTGGAA	AACTTTTTTG	103560
	TTCCTGATAT	TAGGTGGAAA	ACTTTTAGTC	TTTCACTGTT	GAATATGATG	TTACTTGTAG	103620
		GATTCCCTTT					
		TCATGAAAGG					
20		AGGGCAGTGG					
		CTACTTCATC					•
		TTTAATTTT					
		GGCTCAAGCA					
		ACTGCACCCA					
25		TTTTTTTCCT					
		AATTCCTCAG				•	
		GTAGAGATGA					
		CCTCCTGCCT					
		TTTTTCTTTT					
30		GTGAGTGGCG					
		GCCTCAGCCT					
		TGTGTTTTTA					
		CTCGTGATTC					
	AGCCACCGCA	GCGAGCCTTA	TCTTTTTAAC	AGTTAAAAGT	TTAAGGCCTT	ATCATGTAAT	104640

	AACATTGCTG	GATTTGATTT	GCTGCTGTTT	TGTTGAGAAT	ATTTGCATCT	GTATTGATAA	104700
	GGGATATTGG	TCTGTAGTTT	TCTTTTCTTG	GCATGTCTTT	GTATAGCTTT	GATGCCAGCA	104760
	TAATATTGGC	CTCATAGAAT	GAGTTAGGAA	GTATTCTTTA	TATTATGGGA	AGAGGTAAAA	104820
	AGGGATTGGT	GTTAATTCTT	CTTCAAATGT	TTGATAGAAT	TCAACAGTGA	AGTGATATAT	.104880
5	ACAATCATAT	ATATAGAGAG	AGAGAGAGAG	AGAGATGGAC	TTTTCTTTTG	TTGGAAGTTT	104940
	ATTGACTATT	GATTCAATTT	CCTTATTGAA	ATTGACTTTT	CTTTTTGGAA	GCTAAAATGT	105000
	ATAACTGTAG	TGAAAGTTTC	TGAACTTTTC	TTTCATTGGA	AGTTTTTTGA	CTACTGATTC	105060
	TTTATTTGTT	ATAGGTCTAT	TCAGATTTTC	TGTTTCTTCT	TGAGTCAGTT	TGGTCTCGCT	105120
	CTGTCGCCCA	GGCTGGAGTG	CAGTGGTGCC	ATCTTGGCTC	ACTGCAACTT	CTACCTCCCG	105180
10	AGTTCAAGTG	ATTCTCCCAC	CTCAGCCTCC	CCAGTATCTC	GGACTACAGG	CGCACGCCAG	105240
	CATACCTGGC	TAATTTTTGT	ATTTTTAGTA	GGAACAGCAT	TTCACCATGT	TGGCCAGGCT	105300
	GGTCTCGAAC	TCCTGACCTC	AGGTGATCCA	CCCGCCTCGG	CCTCACAAAG	TGCTGGGACT	105360
•	ACAGACATAA	GCCACCGCGT	CCAGCCTTGA	GTCAGTTTAG	ATAGTTTGCA	TGCATGTTTC	105420
	TAGGAATTTG	TCCATTTTGT	TTATGTTATC	TAATCTGTTA	CCATACAATT	GTTCATAGTA	105480
15	TCCTTTTATA	GCCCTAGTTA	TTTCTGTAAG	ATCAGTAGTA	ATAGCTCCAC	TTTCTCTCTT	105540
	GGTTTTAGCA	ATTTGAGTCA	TCTCTTTTCT	TCTTCTTTTT	TTTTTTTGA	GATGGAGTCT	105600
	CACTGTGTCA	CCCAGGCTGG	AGTGCAGTGG	CATGATCTTG	GCTCACTGCA	ACCCCTGCCT	105660
	CCCAGGTTCA	AGCAATTCTG	CCTTAGCCTC	CTGAGTAGCT	GGGATTACAG	GTGTGAGCCA	105720
	CCACACCCAG	CTAGTTTTGT	TTTGTTTTTT	TGTTTTTGAG	ACGGAGTCTG	TTTCTGTCTC	105780
20	CCAGGCTGGA	GTGCAGTGGT	GCAATCTCAC	TCATTGCAAC	CTCCGACTCC	CAGATTCCAG	105840
	CAATTCTCCT	GCCTCAGCCT	CCCGAGTAGC	TGGAACTATA	GGCGTGCACC	ACCACGCCTG	105900
	GCTGATTTTT	ATATTTTTAG	TAGAGATGGG	ATTTCACCAT	GTTGGCCAGG	CTGGTCTTGG	105960
	ACTCCCTACC	TGAGGTGATC	CGCCCACCTT	GGCCTCCCAA	AGTGCTGGGA	TTATAGGCAT	106020
	GAGCCACCAT	GCCCAGCCAG	TTTTTGTATT	TTTAGTAGAG	ATGGGGTTTC	TCCCTGTCGG	106080
25	CCAGGCTGGT	CTTGAAATCC	TGACCTCAGG	TTATCCACCA	GCCTTGGCCT	CCCAAAGTGC	106140
	TAGGATTACA	GGCATGAGCC	ACCACGCATG	GCCTGTCTTT	TCTTCTTGGT	CATTTTCGCT	106200
				GTTGCTGATC			
	TTTCATTTAT	TTCCATTTTA	ACCTTTGTTT	CCTTTTTTCT	GCTGGTTTGG	GTTTAATTTG	106320
	CTCTTTTTTT	CCCCTAATTT	TTCAAGGTAT	ACAGTTAAGT	TATTGATTTG	AGATCTCTTT	106380
30	TTTCTTTTCT	TTTTTTTTT	TTTTTTTT	TTTGGTTGCT	GTTGAGATGG	AGTCTCCCTC	. 106440
	TGTCACCCAG	ACTGGAGTGC	AGTGGCATGA	TCTCAGCTCA	CTGCAGCCTC	CGCCGCCCAG	106500
	GCGATTCTCC	TGCCTCAGCC	TCCTGAGTAG	ACGTTTCCCG	GCCAAGGTGT	TTCTTTTTGA	106560
	ATGTAAGCAT	TTACAGCTAC	AGATTTCCCT	CTAAACACTG	CTTTCACTGC	ATTCCATAAG	106620
	ATTGTTTTTT	GTTGTTTTTT	GTTGTTGTTT	TGTTGTTTGA	GACACAGTCT	CACTCTGTTG	106680

				TCTGTAGCCT			
				GGACTACAGG			
				AGGCACAGTG			
				CTAAGGTCAG			
5	CGACAGGGAG	AAACCCCATC	TCTACTAAAA	ATACAAAAAT	TAGCTGGGCG	TGGTGGCAGG	106980
	TGCCTGTAAT	CCCAGCTACT	CAGGAGGCTG	AGGCAGGAGA	ATCGCTTGAA	CCTGGGAGGC	107040
	AGAGGTTGCA	GTGAGCCAGG	ATCACACCAT	TGCACTCCAG	CCTGGGTAAC	AAAAGCAAAA	107100
•	CTCCATCTCA	AGAAAAGAAA	AAAAAAGTT	TTTGCAGAGA	CAGGGTATCA	CTTTGTTGCC	107160
	CAGGCTGGTC	TCAAACTCCT	GACTTGAAGG	AGTCCTACTG	CCTCAGCCTC	CCAAAGTGCT	107220
10	GAGATTATGG	GCAAGAGCCA	CCGCACCCTG	CCACTTGGCT	GTTTTGTTCT	GTTGTATTTC	107280
	CATTTTCATT	GATCTCAAGA	CATCCTAATC	TCCCTTTTGT	TTTTTTGTTC	GACTTACTGG	107340
	TTATTCAAGA	GTGTCTTTAT	TTCTGCATAT	TTGTAAATTT	TCCAAAAAAG	TTTTTCTTTC	107400
	TTTTTTTTT	GAGAAAGGGT	CTTGCTCTGT	CGCCCAGGCT	GGAGAATGGT	GGTGCACAAT	107460
	CTTGCCTCAC	TGCAACCTCT	GCCTCCCGGG	TTCAAGTGAT	CCTCCCACCT	CAGCCTTCCC	107520
15	AGTAGCTGGG	ATTACAGGCA	CACACCACCA	CACCTGGCTA	ATTTTTGTAT	TTTAGTCTTA	107580
	ACGTGCTGGT	CAGACTGGTC	TCGAATTCCT	GACCTCAGGT	GATCTGCCCG	CCTTGGCCTC.	107640
	CCAAAGCACT	GGGATTACAG	GCGTGAAACA	CCATGCCCAG	CCCCCAATTT	TTTTTTTTA	107700
	ATAGAGAGAA	GGTCTCACTC	AAGCCCAGGC	TGGTCTTGAA	CTCCTGAGCT	CAAGCTGTCA	107760
	TCCCTCCTCG	GCCTCCCAAG	GTGCTGAGAT	TACAGGTGTG	AGTCACAGTA	CCTGGCCTTC	107820
20	TTTCAAGACT	TTAAAAATGC	CATCTTGGCT	GGGCACGGTG	GCTCACGCCT	GTAATCCCAG	107880
	CACTTTGGGA	GGCCGAGGTG	GGCAGATCAC	GAGGTCAGGA	GATCAAGACC	ACCCTGGCTA	107940
	ACATGGTGAA	ACCCTGTCTC	TACTAAAAAT	ACAAAAAATT	AACCAGGTGT	GGTGGCAGGT	108000
	GCCTGTAGTC	CCAGCTACTC	GGGAAGCTGA	AGCAGGAGAA	TGGCGTGAAC	CCGGGAGGTG	108060
	GAGCTTGCAG	TGAGCTGAGA	TCACACCACT	GTACTCCAGC	CTGGGCAACA	GTGCGAGACT	108120
25	CCGTCTCAAA	AAAAAAAAA	AAAATGTCAT	CTCACTGCCT	TCTGGTCCAA	TAGTTTCTGA	108180
	TGAGAAATTG	GCTGTTAATC	TTATTGAGGA	ACATTTATAT	ATTGACTAGT	CACTTGTCTC	108240
	TTGCTGTTTT	AGGAGATTCT	CTATCTTTGG	GTTTCAGCAG	TTTGATTATA	ATGTATCAGT	108300
	GTGGATCCCT	CAATTTATAA	GCTACTTGGA	GTTCATTGGA	CTTCTTGGAT	GTGTAAATTC	108360
	ATGTCTTTCA	. TTAAATTTGC	AAAGTTTCAG	CTACTATTCT	TTGCATCTTG	AAATACTAGT	108420
30	TTTGTTTCTT	TCTGTCTGTT	TGCCGCTTAT	GGAACTTTAT	GCATACATTG	ATGTGCTTCA	108480
	TGGTGTAGCA	CAGGTCCCTT	GGGCTCTAGG	CATTTTTCTT	TGTTCTTTT	TTCTTTCTGC	108540
	TCCTCATTTT	GGATAAATTC	AGCTGACCTG	TCCTCAAGTT	CACTGTTTCT	TTCTTCTTCC	108600
	TTCTCAAATC	TGCTGTTGAA	ACTTCTGGTG	AAATTTTCAC	TACAGTTACT	GTACTTTTA	108660
	GCTCCAAAGT	TTCTATTTGG	TTTCTTTCTG	TAGTAATTAT	CACTTTACTA	GTATTCTCTA	108720

```
TTTGGTTAGA CATGGTTCTT TTGTTTTCCT TTAGTTCATT ATCCATGGTT TCCTTTATTT 108780
    GTCACCCAGG CTGGCAGGCA ACGTCACAAT CTTGGCTCAC TACAACCTCC GCCTCCTGGG 108900
    TTCAAGTGAT TCTCCTGCCT CAGCCTCCCA AGTAGCTGGG ATTATAGGCA TGTGCCACCA 108960
    CACCCACCTA ATTTTTGGTA TTTTTAGTAG AAACTGGGTT TCACCACATT GGCCAGACTG 109020
    GTCTTAAACT ACTAACCTCA GGTGATCTGT CCGCCTCAGC CTCCCAAAAT GCTGGGATTA 109080
    CAGATGTGAG CCACTGTGCC CAGCCTCTTT TTTTAGTGTA TTTAAGGTAA TTGATTGAAA 109140
    GTTTTTGTCT AGTCATTCAA ATGTCTAGGC TTCCTCAGGA ACAGTTTCTA TTAATTTCTT 109200
    CTAGGCTGGA GTGCAATGGC TTGATCTTGG CTCACTGCAA CCTCTGCCTC CTGGGTTCAA 109320
10
    GCGATTCTCC TGCTTCAGCC TCCTGAGTAG CTGGGACTAT AGGTGCGTGC CACCACTCCT 109380
    GGCTAATTTT TTGTATTTTC AGTAGAGACA TGGTTTTGCC GTGTTAGCCA GGATGGTCTC 109440
    GATCTCGTGA CCTCATGATC CTCCTGCCTC GGCCTCCCAA AGTGCTGGAA TTACAGGTGT 109500
    GAGCCACCGC GCCCAGCCTA TTTTTTATTT TTTGAGACAA AGTCTCCCTC TCTCACCCAG 109560
    GCTGTAGTGC AGTGGCACAA CCCTGGCACA CTGCAGCCTT AACCGTCCAG GCTTAAGTGA 109620
    GTCTCCCACC TTAGTCTCCT GAGTAGCTAG AACTACAAGC ATGTGCCACC ATGCCTGGCT 109680
    GGTTGTGTTG TTACTGTTTT AGACACAGGG TCTTGCTACA TTTCTCTGAC TGGTCTTGAA 109740
    CTCCTGGGCT CAAGCAGTCA TCCCACCTTG GCCTCCCAAG GTGTTGAGAT TACAGGTGTG 109800
    AGCCACCGCA CCCGGCCTGT TAATTTCTTT ATTTCCGGTG AATGGGCCAC ACTTTCTTGT 109860
    TTCTTTGCAT GCCTTGTAAT TTTTTGTTGA AACCTGCACA ATTTGAAGAT GATAATGTGG 109920
20
    TTACTTTGAA AATCAGATCC TCCGCCCTCT GCAGGGTTCA TTGTTGCTGT TTGTTGTGGA 109980
    TTGTCGTTTC TCGTTTGTTT AGTTACTTTC CTGACCTTTT TAAATAAAGA CTATATTCTG 110040
    TCAGGGGTGC TTGTTTCTGT TCTTTTAGGT TAGTGGTTAG CTTGTGCTTT GAAAGAGATT 110100
    TCTTTAAATA TCTAGTGGCA AAAAGGATAA AGAGGCCGGG CGCAGTGGCT CACGCCTGTA 110160
    ATGCTAGGAC TTTGGGAAGT GGAGGCGGGT GGATCACTTG AGGTCAGGAG TTTAAGATCA 110220
25
    GCCTGGCCAG TATGGTGAAA CCCTGTCTCT ACTAAAAATA CAAAAATTAA CCGGGCATGG 110280
    TGGCACCTGC CTGTAGTCCC AGCTACTGGG AAGACTGAGG CAGGAGAATC GCTTCAATCC 110340
    AGGGGGCGGA GGTTGCAGTG AGCTGAGATT GCGCCATTGC ACTCCAGCCT GGGCAACAGA 110400
    GCGAGACTCT GTCTCAAATA AAAAAAAAA AAAAAGGATA AAGAGTGTCT TCCATCCTTT 110460
    CCAGGTTGCC TCTGTACTGG GGCAAGTCCT TCAGTGTCCG CCAGGCTGTT CACGGCTTTT 110520
30
    CCTCAGCCTT TACTTCTCGC TCCCATGGAG CCTAAGGATG AACCAGAGGT GAAAGTTGAG 110580
    GGCCTCCTCA GGTGTTTCTG AGCCCCTGTC TAGCCCCAGC TGTGTGCATG GCCTTCTGGA 110640
    TTTCCAAGCA TGAACAGGAG CTTTCCAAAG CCCTTAGACC TTCATGTAGC TCTTTTCCCA 110700
    GCCTCTTCCT TCCTAGGCTT TTCTGTCAGC TCTTTGCCCA TCTGTTGTTG TCCCTCCCCC 110760
```

```
ACAACTTCAG GTAGTATCTA CCTGTAAATG CCTTCAGGCC AGGCGCGGTG GCTCATACCT 110820
    GTTATCCCAG CACTTTGGGA GGCCGAGGCG GGTGAATTGC TTGAGGTCAG GAGTTCGAGA 110880
    CCAGCCTGGC CAACATGGTG AAGCCCCGTC TCTAGTAAAA ATACAAAAAT TAGCTGGGCG 110940
    TGGTGGGTGC CTGTAATCTC AGCTACTCGG GAGGCTGAAG CAGGAGAATT GCTTGAGCCT 111000
    GGGAGGCGGA GGTTGCAGTG AGCTGAGATC GTGCCATTGC ACTCCAGCCT GGGCGACAGA 111060
    GTGAGACTCC ATCTCGGGGA AAAAAAAAAA AAAAAAATGC CATCAACAGC ACGACCCTGG 111120
    AGGCTGCCCC AGCCCTGAGA GAGTTCGAGG GGGTGAAACA AAGGCAAGCC CTTCAGGGAG 111180
    ACACTAGAAA GATCCAAATG CATAAGCAGG ATTCCTTGAG AAAAGGTCTG TATCATCCCT 111240
    TCTGACACCA GCAAGCCACA TCAGAAATAC AGGTTGCCTT CCCCATGGCT ACATGTGAGC 111300
    TGGTAGTAGT GGCTGAGCAG AAATAGCCCA GCTGTCCTCC TGAAATTTAG CAGGGTCTTA 111360
    CTTCATTGAG CAGTCATCTG GTTCGTAGAC ACCAGAGTTA CAGAAAAGTT TATTGGGAGG 111420
    TTTTGACAGT TTAATAGAAA AAAGTTTATT GTGACAGTTT TGACAGCTGA ATAGAAAAAA 111480
    GTTTACTGTG ACAGTTTTGA CAGCAGAATA GTTGCTTTGC TGGAGAGACG GATCTTTGGA 111540
    GCTGCCAACT CCATCATTTT GGTGATATCC AGCTCTGTTG CTGAATTTTT AGCTATGCTG 111600
    TTTTAAGTTA TTTTCTTAGT GGTTGCTCTA GAGATGACAA TGTGCATCTT TAACTTACCA 111660
15
    CAATGTACTT CAGATTATTA CTAACTTAAC ACTTAAAGTA CAGCATTTTT TTTTTTATGG 111720
    AGTTTCACTC TGTCACCCAG GCTGGAGTGC AATGGTGTGA TCTCGGCTCA CTGCAACCTC 111780
    CGCCTCCCAG GTTCACGCCA TTCTCCTGCC TCAGCCTCCT GAGTAGCTGG GACTACAGGC 111840
    ACCCCCACCA CACCCGGCTA ATTTTGTATT TTTAGTAGAG ATGAGGTTTC ACCATGTTGG 111900
    TCAGGCTGGT CTCGAACTGC TGACCTCAGG TGATCCGCCC ATCTTGGCCT CCCAAAGTGC 111960
20
    TGGGATTACA GGTGTGAGCG ACTGCACTGA GCCTAAGTAT GGCAACGTGT CTATAACATA 112020
    GATCTACTTC CGTTGTACTA TGACATAGTT CCCCCTCCAT TTTCCTATAG CACAGTCCCA 112080
    ACCTCCCTTT TCCTCTGACA TAGTTCCATC CTCCCTCCTC CTATGACGTC CTCCCTTCTC 112140
    CTCTGGCATA GCTCCATCCT CCCTTCTCCT ATGACACAGC TCCATCCTCC CTTCTCCTCT 112200
    GACACAGCTC CATCCTCCCT TCTCCTATGA CACAGCTCCA TCCTCCCTTC TCCTCTGAGA 112260
25
    TAGCTCCATC CTCCCTTCTC CTATGTCATA GCTCCATCCT CCCTTCTCCT CTGACACAGC 112320
    TCCATCCTCC CTTCTCCTCT GGCATAGCTC CATCCTCCCT TCTCCTATGA CACAGCTCCA 112380
    TCCTCCCTTC TCCTATGACA CAGCTCCATC CTCCCTTCTC CTATGACACA GCTCCATCCT 112440
    CCCTTCTCCT ATGACACAGC TCCATCCTCC CTTCTCCTCT GGCATAGCTC CATCCTCCCT 112500
    TCTCCTCTGA CATAGCTCCA TCCTCCCTTC TCCTCTGACA TAGCTCCATC CTCCCTTCTC 112560
30
    CTCTGACATA GCTCCATCCT CCCTTCTCCT CTGACATAGC TCCATCCTCC CTTCTCCTCT 112620
     GACATAGCTC CATCCTCCCT TCTCCTCTGA CATAGTTCCA TCCTCCCTTG TCCTCTGACA 112680
     TAGCTCCATC CTCCCTTCTC CTCTGACATA GCTCCATCCC CTCTTCTCCT TCATGTATTA 112740
     TTGCCATATA TACATTTATG TATGTTATAA CTTCAGCTCT TCAGCGTTAT AATTATTGCT 112800
```

	TCAAAAGTAT	TTTGAAAGAA	GTTGCCTGGA	GGCAGTGGCT	TATGCCTTTA	ACTCCAGCAC	112860
	TTTTGGGGGC	TGAGGTGGGC	AGATCGCCTG	AGCCAGGGAG	TTGGAGACCA	GCCTGGGCAA	112920
	CATGACGAAA	CCCATCTCCA	CCAAAATTAC	AAAAAATTAG	TCTGGCATGG	TGGCACGCGC	112980
	CTGTAGTCCC	AGCTATTTGG	GGGAGGATCC	CAGCTAAGGT	GGGAGGATCA	CTTGAGCCTG	113040
5	GGAAGTCAAG	GCTGCAGTGA	GCTGAGATTG	TGCCACTGCA	CTCCAGCCTG	GGTGCAGATC	113100
	TTATCTCAGA	AGTAAAGGGA	CTAGGAATGG	TGGCTTTTAT	CTCTAATCCC	AGCACTTTGG	113160
	GAGGCTGAGG	TGAGTGGATC	ACCGGAGGTC	AGGAGTTTAA	GACCAGCCTG	GCCAACATGG	113220
	TGAAACCCCG	TCTCTACTAA	АААТАСАААА	AGTAGCCGGG	TGTGGTGGTG	GGTGTCTGTA	113280
	ATCCCAGCTA	CTCGGGAGGC	TGAGGCAAGA	GAATCGCTTG	AACCTGGGAA	GCGGAGGTTG	113340
10	CAGTGAGCAA	GATCGCACCA	CTGCATTACA	GCCTAGATGA	CAGAGCGAGA	CTCTGCCTAA	113400
	АААААААА	AAAAAGAAAA	GAAAAGAAAT	TAAGATCTAG	ACACTGTGGT	TCATGCCTGT	113460
	AATCCCAAAG	CCTTGGGAGG	CCAAGGCAGG	AGGATCACTT	GAGGCCAGGA	GTTCAACACC	113520
	AGCCTGGGCA	ACATAGCGAG	ACTCCATCTC	TATTTAAAAA	AGAAAGAAAT	TCAAAGAGAA	113580
	AAAAGTATA	CTTGTTTTTT	TGTATCATCC	ATATTTTACC	TTTCTTTTTT	TTGCCCCTTT	113640
15	TTCTTTCCTG	TGAATTTGAG	TTACTGTCTA	GTGTCATTTC	CTTTTAGTCT	GAAGAACTTC	113700
	ATTTAGAATT	$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	TTTGAGACAA	AGTCTCACTG	TGTTGCCCAG	GCTGGAGTGC	113760
ha.	AATGGTGCAG	TCTCAGATCA	CTGCAACCTC	TGCCTCCCTG	GTTAGAGTGA	TTTTCCTGCC	113820
	TCAGCCTCCC	AAGTAGCTGA	GACTGCAGGC	ACCTGCCACC	ACCCCCAGCC	AATTTTTTG	113880
	GTATTTTAG	TAGAGACAGG	GTTTCACTAT	GTTGGCCAGG	CTGGTCTCGA	ATTCATGACC	113940
20	TCATGATCTG	CCTGTCCTGG	CCTCCCAAAA	TGCTGGGATT	ACCATGAGCC	ACCACGCCCA	114000
	GCCCATTTAG	AATTTCTTTT	TTTTTTTTT	TTTTGAGATG	GGGTCTCGCT	CTTGTTTCCC	114060
	AGGCTGGAGT	GCAGTGGCAC	GATCTCGGCT	CACTGCGAGC	TCCGCCTCCC	GGGTTCACGC	114120
	CATTCTCCTG	CCTCAGCCTC	CCGAGTAGCT	GGGATTACAG	GCGCCTGCCA	CCACGCCCAC	114180
	CTAATTTTTT	GTATTTTTAG	GAGAGATGGG	GTTTCACCAT	GTTAGCCAGG	ATGGTCTTGA	114240
25	TCTCCTGACC	TCGTGATCCG	CCCGCCTTGG	CCTCCCAAAG	TGCTGGGATT	ACAGGCGTGA	114300
	GCCACCGCGC	CCGGCTAGAA	TTTCTTGTAG	GACAGGCTTG	CTAGCAACCA	ATTCAGTGTT	114360
	TATTTGGGAA	TGTCTTTATT	TCAGCTTCAT	TTTTTGAAGG	ATAGTTTAGC	TGGCTATAGA	114420
				AAAAGTGTCA			
				ATTGTCCCTT			
30	TTTTTCTCTT	GATGTTTTCA	AGATTTTCTC	TTTGTCTTTG	GCCTTTAGTA	GTTTGTGATG	114600

5

10

15

20

30

TATCTAGGTG TGGATCTCTT GGTGTGCATC GTATTTGGGC TTCAGTAAGC CTCTTAGATT 114660
CATAGATTAA TGTTTTGTTT TGTTTTACCA AATTTGGAGA GTTTTACTC ATCATTCAA 114720
CAAATTTTTT TCCTGCCCCT CTCTCATCTC CTTTTGGGAG TACCACTGCA TGTATGTTGG 114780
TGTGCGTTCT CTA (SEQ ID NO:3) 114793

The present invention also relates to a portion of SEQ ID NO:3 which comprises 5' regulatory regions, exons, introns and 3' non-translated regions which comprise the human NHL gene of the present invention. Such regulatory sequence may be found within the various regions of this 115 kb fragment. The 5' portion of SEQ ID NO:1 begins at nucleotide 47095 of SEQ ID NO:3, the initiating ATG of human NHL is from nucleotide 48687-48689 of SEQ ID NO:3, the termination 'TAG' codon is from nucleotide 84855-84857, while the 3' terminus of SEQ ID NO:1 as disclosed herein (GCAGTGCCC) corresponds to nucleotides 85308-85316. To this end, one preferred aspect of the invention is an isolated genomic fragment or fragments which comprise from about nucleotide 470000 to about nucleotide 85500 of SEQ ID NO:3), which comprises the portion of the genomic clone encoding the mRNA transcript responsible for human NHL (see Figure 5A-B). The genomic sequence encoding NHL contains 35 exons (Figure 5A). An especially preferred aspect of the invention is a human genomic fragment or fragments which comprise from about nucleotide 47095 to about nucleotide 85316 of SEQ ID NO:3. As noted in regard to SEQ ID NO:1, the present invention also relates to DNA vectors and recombinant hosts which comprise at least a portion of SEQ ID NO:3. Portions of the 115 kb genomic fragment may be housed in multiple vector/hosts so as to optimize handling of the DNA sequences within SEQ ID NO:3: Therefore, the present invention relates to the isolated genomic sequence which set forth as SEQ ID NO:3, a region of SEQ ID NO:3 which contains the coding and non-coding region of human NHL, as well as cis-acting sequences within SEQ ID NO:3 which effect regulation of transcription of one or more of the genes localized within this 115 kb human genomic fragment, including regulatory regions effecting levels of NHL, M68/DcR3, SCLIP and ARP. As noted above, this region of chromosome 20 (20q13.3) is associated with tumor growth. Therefore, an aspect of this invention also comprises, as one example, the use of one or more regulatory regions of this 115 kb genomic sequence as a target to antagonize the effect of a transcriptional factor(s) which normally upregulate expression of a gene which has a caustic role in tumor growth. Alternatively, compounds may be selected which interacts with a specific cis-acting sequence to upregulate a gene within this region, where upregulation results in a decrease in tumor growth.

The present invention is also directed to methods of screening for compounds

which modulate the expression of DNA or RNA encoding a NHL protein.

Compounds which modulate these activities may be DNA, RNA, peptides, proteins, or non-proteinaceous organic molecules. Compounds may modulate by increasing or attenuating the expression of DNA or RNA encoding NHL, or the function of the

NHL-based protein. Compounds that modulate the expression of DNA or RNA encoding NHL or the biological function thereof may be detected by a variety of assays. The assay may be a simple "yes/no" assay to determine whether there is a change in expression or function. The assay may be made quantitative by comparing the expression or function of a test sample with the levels of expression or function in a standard sample. Kits containing NHL, antibodies to NHL, or modified NHL may be prepared by known methods for such uses.

The DNA molecules, RNA molecules, recombinant protein and antibodies of the present invention may be used to screen and measure levels of NHL. The recombinant proteins, DNA molecules, RNA molecules and antibodies lend themselves to the formulation of kits suitable for the detection and typing of NHL. Such a kit would comprise a compartmentalized carrier suitable to hold in close confinement at least one container. The carrier would further comprise reagents such as recombinant NHL or anti-NHL antibodies suitable for detecting NHL. The carrier may also contain a means for detection such as labeled antigen or enzyme substrates or the like.

15

20

25

30

The assays described above can be carried out with cells that have been transiently or stably transfected with NHL. The expression vector may be introduced into host cells via any one of a number of techniques including but not limited to transformation, transfection, protoplast fusion, and electroporation. Transfection is meant to include any method known in the art for introducing NHL into the test cells. For example, transfection includes calcium phosphate or calcium chloride mediated transfection, lipofection, infection with a retroviral construct containing NHL, and electroporation. The expression vector-containing cells are individually analyzed to determine whether they produce NHL protein. Identification of NHL expressing cells may be done by several means, including but not limited to immunological reactivity with anti-NHL antibodies, labeled ligand binding, the presence of host cell-associated NHL activity.

The specificity of binding of compounds showing affinity for NHL is shown by measuring the affinity of the compounds for recombinant cells expressing NHL.

5

10

15

20

25

30

Expression of human NHL and screening for compounds that bind to NHL or that inhibit the binding of a known, radiolabeled ligand of NHL provides an effective method for the rapid selection of compounds with high affinity for NHL. Such ligands need not necessarily be radiolabeled but can also be nonisotopic compounds that can be used to displace bound radiolabeled compounds or that can be used as activators in functional assays. Compounds identified by the above method are likely to be agonists or antagonists of NHL and may be peptides, proteins, or non-proteinaceous organic molecules.

Accordingly, the present invention is directed to methods for screening for compounds which modulate the expression of DNA or RNA encoding a NHL protein as well as compounds which effect the function of the NHL protein. Methods for identifying agonists and antagonists of other receptors are well known in the art and can be adapted to identify agonists and antagonists of NHL. For example, Cascieri et al. (1992, Molec. Pharmacol. 41:1096-1099) describe a method for identifying substances that inhibit agonist binding to rat neurokinin receptors and thus are potential agonists or antagonists of neurokinin receptors. The method involves transfecting COS cells with expression vectors containing rat neurokinin receptors, allowing the transfected cells to grow for a time sufficient to allow the neurokinin receptors to be expressed, harvesting the transfected cells and resuspending the cells in assay buffer containing a known radioactively labeled agonist of the neurokinin receptors either in the presence or the absence of the substance, and then measuring the binding of the radioactively labeled known agonist of the neurokinin receptor to the neurokinin receptor. If the amount of binding of the known agonist is less in the presence of the substance than in the absence of the substance, then the substance is a potential agonist or antagonist of the neurokinin receptor. Where binding of the substance such as an agonist or antagonist to is measured, such binding can be measured by employing a labeled substance or agonist. The substance or agonist can be labeled in any convenient manner known to the art, e.g., radioactively, fluorescently, enzymatically.

Therefore, the present invention includes assays by which modulators of NHL are identified. As noted above, methods for identifying agonists and antagonists are known in the art and can be adapted to identify compounds which effect *in vivo* levels of NHL. Accordingly, the present invention includes a method for determining whether a substance is a potential modulator of mammalian NHL levels that

comprises:

5

10

15

20

25

(a) providing test cells by transfecting cells with an expression vector that directs the expression of NHL in the cells;

- (b) exposing the test cells to the substance;
- (c) measuring the amount of binding of the substance to NHL;
- (d) comparing the amount of binding of the substance to NHL in the test cells with the amount of binding of the substance to control cells that have not been transfected with NHL or a portion thereof; wherein if the amount of binding of the substance is greater in the test cells as compared to the control cells, the substance is capable of binding to NHL.

The conditions under which step (b) of the method is practiced are conditions that are typically used in the art for the study of protein-ligand interactions: e.g., physiological pH; salt conditions such as those represented by such commonly used buffers as PBS or in tissue culture media; a temperature of about 4°C to about 55°C.

The assays described above can be carried out with cells that have been transiently or stably transfected with NHL. Transfection is meant to include any method known in the art for introducing NHL into the test cells. For example, transfection includes calcium phosphate or calcium chloride mediated transfection, lipofection, infection with a retroviral construct containing NHL, and electroporation.

Where binding of the substance or agonist to NHL is measured, such binding can be measured by employing a labeled substance or agonist. The substance or agonist can be labeled in any convenient manner known to the art, e.g., radioactively, fluorescently, enzymatically.

Therefore, the specificity of binding of compounds having affinity for NHL shown by measuring the affinity of the compounds for recombinant cells expressing the cloned receptor or for membranes from these cells. Expression of the cloned receptor and screening for compounds that bind to NHL or that inhibit the binding of a known, radiolabeled ligand of NHL to these cells provides an effective method for the rapid selection of compounds with high affinity for NHL. Such ligands need not necessarily be radiolabeled but can also be nonisotopic compounds that can be used to displace bound radiolabeled compounds or that can be used as activators in functional assays. It is also possible to construct assays wherein compounds are tested for an ability to modulate helicase activity in an *in vitro*- or *in vivo*- based assay. Compounds identified by the above method again are likely to be agonists or

antagonists of NHL and may be peptides, proteins, or non-proteinaceous organic molecules. As noted elsewhere in this specification, compounds may modulate by increasing or attenuating the expression of DNA or RNA encoding NHL, or by acting as an agonist or antagonist of the NHL receptor protein. Again, these compounds that modulate the expression of DNA or RNA encoding NHL or the biological function thereof may be detected by a variety of assays. The assay may be a simple "yes/no" assay to determine whether there is a change in expression or function. The assay may be made quantitative by comparing the expression or function of a test sample with the levels of expression or function in a standard sample.

Expression of NHL DNA may also be performed using *in vitro* produced synthetic mRNA. Synthetic mRNA can be efficiently translated in various cell-free systems, including but not limited to wheat germ extracts and reticulocyte extracts, as well as efficiently translated in cell based systems, including but not limited to microinjection into frog oocytes, with microinjection into frog oocytes being preferred.

10

15

20

25

30

Following expression of NHL in a host cell, NHL protein may be recovered to provide NHL protein in active form. Several NHL protein purification procedures are available and suitable for use. Recombinant NHL protein may be purified from cell lysates and extracts by various combinations of, or individual application of salt fractionation, ion exchange chromatography, size exclusion chromatography, hydroxylapatite adsorption chromatography and hydrophobic interaction chromatography. In addition, recombinant NHL protein can be separated from other cellular proteins by use of an immunoaffinity column made with monoclonal or polyclonal antibodies specific for full-length NHL protein, or polypeptide fragments of NHL protein.

Polyclonal or monoclonal antibodies may be raised against NHL or a synthetic peptide (usually from about 9 to about 25 amino acids in length) from a portion of NHL disclosed in SEQ ID NO:2. Monospecific antibodies to NHL are purified from mammalian antisera containing antibodies reactive against NHL or are prepared as monoclonal antibodies reactive with NHL using the technique of Kohler and Milstein (1975, Nature 256: 495-497). Monospecific antibody as used herein is defined as a single antibody species or multiple antibody species with homogenous binding characteristics for NHL. Homogenous binding as used herein refers to the ability of the antibody species to bind to a specific antigen or epitope, such as those associated

with NHL, as described above. Human NHL-specific antibodies are raised by immunizing animals such as mice, rats, guinea pigs, rabbits, goats, horses and the like, with an appropriate concentration of NHL protein or a synthetic peptide generated from a portion of NHL with or without an immune adjuvant.

5

10

15

20

25

30

Preimmune serum is collected prior to the first immunization. Each animal receives between about 0.1 mg and about 1000 mg of NHL protein associated with an acceptable immune adjuvant. Such acceptable adjuvants include, but are not limited to, Freund's complete, Freund's incomplete, alum-precipitate, water in oil emulsion containing *Corynebacterium parvum* and tRNA. The initial immunization consists of NHL protein or peptide fragment thereof in, preferably, Freund's complete adjuvant at multiple sites either subcutaneously (SC), intraperitoneally (IP) or both. Each animal is bled at regular intervals, preferably weekly, to determine antibody titer. The animals may or may not receive booster injections following the initial immunization. Those animals receiving booster injections are generally given an equal amount of NHL in Freund's incomplete adjuvant by the same route. Booster injections are given at about three week intervals until maximal titers are obtained. At about 7 days after each booster immunization or about weekly after a single immunization, the animals are bled, the serum collected, and aliquots are stored at about -20°C.

Monoclonal antibodies (mAb) reactive with NHL are prepared by immunizing inbred mice, preferably Balb/c, with NHL protein. The mice are immunized by the IP or SC route with about 1 mg to about 100 mg, preferably about 10 mg, of NHL protein in about 0.5 ml buffer or saline incorporated in an equal volume of an acceptable adjuvant, as discussed above. Freund's complete adjuvant is preferred. The mice receive an initial immunization on day 0 and are rested for about 3 to about 30 weeks. Immunized mice are given one or more booster immunizations of about 1 to about 100 mg of NHL in a buffer solution such as phosphate buffered saline by the intravenous (IV) route. Lymphocytes, from antibody positive mice, preferably splenic lymphocytes, are obtained by removing spleens from immunized mice by standard procedures known in the art. Hybridoma cells are produced by mixing the splenic lymphocytes with an appropriate fusion partner, preferably myeloma cells, under conditions which will allow the formation of stable hybridomas. Fusion partners may include, but are not limited to: mouse myelomas P3/NS1/Ag 4-1; MPC-11; S-194 and Sp 2/0, with Sp 2/0 being preferred. The antibody producing cells and myeloma cells are fused in polyethylene glycol, about 1000 mol. wt., at concentrations from about

10

15

20

25

30

30% to about 50%. Fused hybridoma cells are selected by growth in hypoxanthine, thymidine and aminopterin supplemented Dulbecco's Modified Eagles Medium (DMEM) by procedures known in the art. Supernatant fluids are collected form growth positive wells on about days 14, 18, and 21 and are screened for antibody production by an immunoassay such as solid phase immunoradioassay (SPIRA) using NHL as the antigen. The culture fluids are also tested in the Ouchterlony precipitation assay to determine the isotype of the mAb. Hybridoma cells from antibody positive wells are cloned by a technique such as the soft agar technique of MacPherson, 1973, Soft Agar Techniques, in *Tissue Culture Methods and Applications*, Kruse and Paterson, Eds., Academic Press.

Monoclonal antibodies are produced *in vivo* by injection of pristine primed Balb/c mice, approximately 0.5 ml per mouse, with about 2 x 10⁶ to about 6 x 10⁶ hybridoma cells about 4 days after priming. Ascites fluid is collected at approximately 8-12 days after cell transfer and the monoclonal antibodies are purified by techniques known in the art.

In vitro production of anti- NHL mAb is carried out by growing the hybridoma in DMEM containing about 2% fetal calf serum to obtain sufficient quantities of the specific mAb. The mAb are purified by techniques known in the art.

Antibody titers of ascites or hybridoma culture fluids are determined by various serological or immunological assays which include, but are not limited to, precipitation, passive agglutination, enzyme-linked immunosorbent antibody (ELISA) technique and radioimmunoassay (RIA) techniques. Similar assays are used to detect the presence of NHL in body fluids or tissue and cell extracts.

It is readily apparent to those skilled in the art that the above described methods for producing monospecific antibodies may be utilized to produce antibodies specific for NHL peptide fragments, or a respective full-length NHL.

NHL antibody affinity columns are made, for example, by adding the antibodies to Affigel-10 (Biorad), a gel support which is pre-activated with N-hydroxysuccinimide esters such that the antibodies form covalent linkages with the agarose gel bead support. The antibodies are then coupled to the gel via amide bonds with the spacer arm. The remaining activated esters are then quenched with 1M ethanolamine HCl (pH 8). The column is washed with water followed by 0.23 M glycine HCl (pH 2.6) to remove any non-conjugated antibody or extraneous protein. The column is then equilibrated in phosphate buffered saline (pH 7.3) and the cell

culture supernatants or cell extracts containing full-length NHL or NHL protein fragments are slowly passed through the column. The column is then washed with phosphate buffered saline until the optical density (A₂₈₀) falls to background, then the protein is eluted with 0.23 M glycine-HCl (pH 2.6). The purified NHL protein is then dialyzed against phosphate buffered saline.

Pharmaceutically useful compositions comprising modulators of NHL may be formulated according to known methods such as by the admixture of a pharmaceutically acceptable carrier. Examples of such carriers and methods of formulation may be found in Remington's Pharmaceutical Sciences. To form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of the protein, DNA, RNA, modified NHL, or either NHL agonists or antagonists including tyrosine kinase activators or inhibitors.

10

15

20

25

30

Therapeutic or diagnostic compositions of the invention are administered to an individual in amounts sufficient to treat or diagnose disorders. The effective amount may vary according to a variety of factors such as the individual's condition, weight, sex and age. Other factors include the mode of administration.

The pharmaceutical compositions may be provided to the individual by a variety of routes such as subcutaneous, topical, oral and intramuscular.

The term "chemical derivative" describes a molecule that contains additional chemical moieties which are not normally a part of the base molecule. Such moieties may improve the solubility, half-life, absorption, etc. of the base molecule. Alternatively the moieties may attenuate undesirable side effects of the base molecule or decrease the toxicity of the base molecule. Examples of such moieties are described in a variety of texts, such as Remington's Pharmaceutical Sciences.

Compounds identified according to the methods disclosed herein may be used alone at appropriate dosages. Alternatively, co-administration or sequential administration of other agents may be desirable.

The present invention also has the objective of providing suitable topical, oral, systemic and parenteral pharmaceutical formulations for use in the novel methods of treatment of the present invention. The compositions containing compounds identified according to this invention as the active ingredient can be administered in a wide variety of therapeutic dosage forms in conventional vehicles for administration. For example, the compounds can be administered in such oral dosage forms as tablets,

capsules (each including timed release and sustained release formulations), pills, powders, granules, elixirs, tinctures, solutions, suspensions, syrups and emulsions, or by injection. Likewise, they may also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous, topical with or without occlusion, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts.

Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

10

15

20

25

30

For combination treatment with more than one active agent, where the active agents are in separate dosage formulations, the active agents can be administered concurrently, or they each can be administered at separately staggered times.

The dosage regimen utilizing the compounds of the present invention is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal, hepatic and cardiovascular function of the patient; and the particular compound thereof employed. A physician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentrations of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug.

The present invention also relates to a non-human transgenic animal which is useful for studying the ability of a variety of compounds to act as modulators of NHL, or any alternative functional NHL in vivo by providing cells for culture, in vitro. In reference to the transgenic animals of this invention, reference is made to transgenes and genes. As used herein, a transgene is a genetic construct including a gene. The transgene is integrated into one or more chromosomes in the cells in an animal by

methods known in the art. Once integrated, the transgene is carried in at least one place in the chromosomes of a transgenic animal. Of course, a gene is a nucleotide sequence that encodes a protein, such as one or a combination of the cDNA clones described herein. The gene and/or transgene may also include genetic regulatory elements and/or structural elements known in the art. A type of target cell for transgene introduction is the embryonic stem cell (ES). ES cells can be obtained from pre-implantation embryos cultured in vitro and fused with embryos (Evans et al., 1981, Nature 292:154-156; Bradley et al., 1984, Nature 309:255-258; Gossler et al., 1986, Proc. Natl. Acad. Sci. USA 83:9065-9069; and Robertson et al., 1986 Nature 322:445-448). Transgenes can be efficiently introduced into the ES cells by a variety of standard techniques such as DNA transfection, microinjection, or by retrovirusmediated transduction. The resultant transformed ES cells can thereafter be combined with blastocysts from a non-human animal. The introduced ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (Jaenisch, 1988, Science 240: 1468-1474). It will also be within the purview of the skilled artisan to produce transgenic or knock-out invertebrate animals (e.g., C. elegans) which express the NHL transgene in a wild type background as well in C. elegans mutants knocked out for one or both of the NHL subunits. These organisms will be helpful in further determining the dominant negative effect of NHL as well as selecting from compounds which modulate this effect.

10

15

20

30

The present invention also relates to a non-human transgenic animal which is heterozygous for a functional NHL gene native to that animal. As used herein, functional is used to describe a gene or protein that, when present in a cell or *in vitro* system, performs normally as if in a native or unaltered condition or environment. The animal of this aspect of the invention is useful for the study of the retinal specific expression or activity of NHL in an animal having only one functional copy of the gene. The animal is also useful for studying the ability of a variety of compounds to act as modulators of NHL activity or expression *in vivo* or, by providing cells for culture, *in vitro*. It is reiterated that as used herein, a modulator is a compound that causes a change in the expression or activity of NHL, or causes a change in the effect of the interaction of NHL with its ligand(s), or other protein(s). In an embodiment of this aspect, the animal is used in a method for the preparation of a further animal which lacks a functional native NHL gene. In another embodiment, the animal of this aspect is used in a method to prepare an animal which expresses a non-native NHL

gene in the absence of the expression of a native NHL gene. In particular embodiments the non-human animal is a mouse. In further embodiments the non-native NHL is a wild-type human NHL which is disclosed herein, or any other biologically equivalent form of human NHL gene as also disclosed herein.

5

10

15

20

25

In reference to the transgenic animals of this invention, reference is made to transgenes and genes. As used herein, a transgene is a genetic construct including a gene. The transgene is integrated into one or more chromosomes in the cells in an animal by methods known in the art. Once integrated, the transgene is carried in at least one place in the chromosomes of a transgenic animal. Of course, a gene is a nucleotide sequence that encodes a protein, such as human or mouse NHL. The gene and/or transgene may also include genetic regulatory elements and/or structural elements known in the art.

Another aspect of the invention is a non-human animal embryo deficient for native NHL expression. This embryo is useful in studying the effects of the lack of NHL on the developing animal. In particular embodiments the animal is a mouse. The animal embryo is also useful as a source of cells lacking a functional native NHL gene. The cells are useful in *in vitro* culture studies in the absence of NHL.

An aspect of this invention is a method to obtain an animal in which the cells lack a functional gene NHL native to the animal. The method includes providing a gene for an altered form of the NHL gene native to the animal in the form of a transgene and targeting the transgene into a chromosome of the animal at the place of the native NHL gene. The transgene can be introduced into the embryonic stem cells by a variety of methods known in the art, including electroporation, microinjection, and lipofection. Cells carrying the transgene can then be injected into blastocysts which are then implanted into pseudopregnant animals. In alternate embodiments, the transgene-targeted embryonic stem cells can be coincubated with fertilized eggs or morulae followed by implantation into females. After gestation, the animals obtained are chimeric founder transgenic animals. The founder animals can be used in further embodiments to cross with wild-type animals to produce F1 animals heterozygous for the altered NHL gene. In further embodiments, these heterozygous animals can be interbred to obtain the non-viable transgenic embryos whose somatic and germ cells are homozygous for the altered NHL gene and thereby lack a functional NHL gene. In other embodiments, the heterozygous animals can be used to produce cells lines. In preferred embodiments, the animals are mice.

A further aspect of the present invention is a transgenic non-human animal which expresses a non-native NHL on a native NHL null background. In particular embodiments, the null background is generated by producing an animal with an altered native NHL gene that is non-functional, i.e. a knockout. The animal can be heterozygous (i.e., having a different allelic representation of a gene on each of a pair of chromosomes of a diploid genome) or homozygous (i.e., having the same representation of a gene on each of a pair of chromosomes of a diploid genome) for the altered NHL gene and can be hemizygous (i.e., having a gene represented on only one of a pair of chromosomes of a diploid genome) or homozygous for the non-native NHL gene. In preferred embodiments, the animal is a mouse. In particular embodiments the non-native NHL gene can be a wild-type or mutant allele including those mutant alleles associated with a disease. In further embodiments, the non-native NHL is a human NHL. In a further embodiment the non-native NHL gene is operably linked to a promoter. As used herein, operably linked is used to denote a functional connection between two elements whose orientation relevant to one another can vary. In this particular case, it is understood in the art that a promoter can be operably linked to the coding sequence of a gene to direct the expression of the coding sequence while placed at various distances from the coding sequence in a genetic construct.

10

20

25

30

An aspect of this invention is a method of producing transgenic animals having a transgene including a non-native NHL gene on a native NHL null background. The method includes providing transgenic animals of this invention whose cells are heterozygous for a native gene encoding a functional NHL protein and an altered native NHL gene. These animals are crossed with transgenic animals of this invention that are hemizygous for a transgene including a non-native NHL gene to obtain animals that are both heterozygous for an altered native NHL gene and hemizygous for a non-native NHL gene. The latter animals are interbred to obtain animals that are homozygous or hemizygous for the non-native NHL and are homozygous for the altered native NHL gene. In particular embodiments, cell lines are produced from any of the animals produced in the steps of the method.

The transgenic animals and cells of this invention are useful in the determination of the *in vivo* function of a non-native NHL in the central nervous system and in other tissues of an animal. The animals are also useful in studying the tissue and temporal specific expression patterns of a non-native NHL throughout the

animals. The animals are also useful in determining the ability for various forms of wild-type and mutant alleles of a non-native NHL to rescue the native NHL null deficiency. The animals are also useful for identifying and studying the ability of a variety of compounds to act as modulators of the expression or activity of a non-native NHL in vivo, or by providing cells for culture, for in vitro studies.

As used herein, a "targeted gene" or "Knockout" (KO) is a DNA sequence introduced into the germline of a non-human animal by way of human intervention, including but not limited to, the methods described herein. The targeted genes of the invention include nucleic acid sequences which are designed to specifically alter cognate endogenous alleles. An altered NHL gene should not fully encode the same NHL as native to the host animal, and its expression product can be altered to a minor or great degree, or absent altogether. In cases where it is useful to express a non-native NHL gene in a transgenic animal in the absence of a native NHL gene we prefer that the altered NHL gene induce a null lethal knockout phenotype in the animal. However a more modestly modified NHL gene can also be useful and is within the scope of the present invention.

10

15

25

30

A type of target cell for transgene introduction is the embryonic stem cell (ES). ES cells can be obtained from pre-implantation embryos cultured *in vitro* and fused with embryos (Evans et al., 1981, *Nature* 292:154-156; Bradley et al., 1984, *Nature* 309:255-258; Gossler et al., 1986, *Proc. Natl. Acad. Sci.* USA 83:9065-9069; and Robertson et al., 1986 *Nature* 322:445-448). Transgenes can be efficiently introduced into the ES cells by a variety of standard techniques such as DNA transfection, microinjection, or by retrovirus-mediated transduction. The resultant transformed ES cells can thereafter be combined with blastocysts from a non-human animal. The introduced ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (Jaenisch, 1988, *Science* 240: 1468-1474).

The methods for evaluating the targeted recombination events as well as the resulting knockout mice are readily available and known in the art. Such methods include, but are not limited to DNA (Southern) hybridization to detect the targeted allele, polymerase chain reaction (PCR), polyacrylamide gel electrophoresis (PAGE) and Western blots to detect DNA, RNA and protein.

The following examples are provided to illustrate the present invention without, however, limiting the same hereto.

EXAMPLE 1

Characterization of DNA Molecules Encoding NHL

5

20

25 -

30

M68/DcR3 identification - The human osteoprotegerin (OPG) sequence (Acc. # U94332), which is a member of the TNFR-related family, was used to searched Genbank using the programs TBLASTN and TFASTX3 to identify novel gene family members. Two EST sequences (GenBank Acc. # AA155701 and AA025672) were identified that showed sequence similarities to the cysteine repeats of the OPG sequence. These EST sequences were then used to identify additional EST sequences, which formed a single EST cluster (GenBank Acc. #s aa577603, aa603704, aa613366, aa158406, w67560, aa325843, aa155646, aa025673, aa514270, m91489). Two clones were further characterized, which were derived from colon tumor and germ cell tumor libraries (Research Genetics, Inc). DNA sequence analysis revealed two alternatively spliced forms of the 5'-end UTR of M68/DcR3. The M68/DcR3 open reading frame was confirmed by sequence analysis of clones obtained by PCR cloning from a normal human cDNA library (Clontech).

M68/DcR3 BAC identification and sequencing - To further delineate the gene structure of M68/DcR3, genomic DNA was obtained using a human "Down to the Well" ™ genomic bacterial artificial chromosome (BAC) library (Genome Systems, Inc.) according to the manufacturer's protocol. Two sets of PCR primers, C68.36F: 5'-CACAGGTTCAGCATGTTTGTGCGTC-3' (SEQ ID NO:4) and C68.275R: 5'-CACAGTCCCTGCTGGCCTCTGTCTA-3' (SEQ ID NO:5), and E68.715F: 5'-CAGGACATCTCCATCAAGAGGCTGC-3' (SEQ ID NO:6) and E68.972R: 5'-AATAAGAGGGGGCCAGGATCAGTGC-3' (SEQ ID NO:7), were used to carry out PCR reactions to identify positive wells that contained the full-length M68/DcR3 gene. The PCR conditions used were 94°C for 9min, 35 cycles of (94°C, 30 sec., 68°C 3 min.) followed by 72°C for 10 min. Two positive BAC clones were identified and characterized by restriction digestion and BAC-end sequence analyses, of which hbm168 was selected for shotgun sequencing.

A shot-gun library for BAC hbm168 was constructed using a conventional strategy. Briefly, two 150-ml bacterial cultures were combined and purified using a modified protocol of the plasmid-Maxi kit (QIAGEN) followed by CsCl gradient purification. After butanol extraction and isopropanol precipitation, BAC DNA was nebulized at 10 psi for 60 seconds to generate randomly sheared fragments.

Following ethanol precipitation, the fragments were end-repaired using T4 polymerase (Promega) and BstXI adaptors (Invitrogen) were ligated overnight. Removal of excess, unligated adaptors and size selection was performed using a cDNA sizing column (Life Technologies, Inc.) to generate genomic fragments in the size range of 1500 to 3000 bp. Adaptor ligated fragments were cloned into a modified pBlueScript SK⁺ vector (Stratagene) and transformed in XL2-Blue ultracompentent cells (Stratagene). Approximately 1000 clones were isolated, plasmids were purified using the Turbo miniprep kits (QIAGEN), and both plasmid ends were sequenced with the BigDye terminator kits (Perkin-Elmer). Sequence data were assembled using Phred/Phrap/Consed where single-stranded and gap regions were closed using a directed sequencing strategy.

NHL identification and sequencing – The genomic clone for the NHL gene was obtained and sequenced. The transcript was identified through exon prediction using GRAIL2 and sequence alignment to a contiguous 4.5 kilobase region of chromosome 4 (88% sequence identity). The complete exon structure of NHL was subsequently confirmed by RT-PCR analysis. The exon structure was confirmed by RT-PCR using polyA RNA from a human colorectal adenocarcinoma cell line, SW480 (Clontech). Primers were designed based on the genomic sequence that were predicted to be exons. RT-PCR reaction were carried out with SW480 polyA RNA using standard conditions with TaqGold Enzyme at 94°C for 12min, 35 cycles of (94°C, 30 sec., 60°C, 30 sec., and 68°C 2-6 min.) followed by 68°C for 7 min. Most sequence confrimation was accomplished by RT-PCR, although first junction between exon 1 and 2 was confirmed by 5'RACE and junctions between exon 26-29 were by RCCA. The primers used were as follows:

25	Junction of Exons	Confirmed by Primers
	H01/H02	hdkw (5'RACE)
	H02/H03	hdiy,hdiz
	Н03-Н09	hdid,hdie,hdja,hdjb
	H09-H13	hdja,hdie
30	H13-H18	hdje,hdjf
	H18-H23	hdjg,hdjh
	H23-H26	hdji,hdjj
	. Н26-Н29	hdkv,r543(RCCA)
	H29-H31	hdij,hdmu,hdnd,hdne

10

15

20

H31/H32

hdij,hdmu

H32/H34 hdip,hdil,hdmv,hdik,hdli H34/H35 hdng,hdnh HDID - 5'-GTGAATGGCATCCTGGAGAG-3' (SEQ ID NO:8); HDIE - 5'-GTCTCCAGGCAGCTCAACAG-3' (SEQ ID NO:9); HDIJ - 5'-ACCCTGTCCTCTGTCTGA-3' (SEQ ID NO:10); HDIY - 5'-AGACCCTAAGATGTTCGGAG-3'(SEQ ID NO:11); HDIZ - 5'-GATGACCTGTGTGAGTTGCG-3' (SEQ ID NO:12); HDJA - 5'-CGCAACTCACACAGGTCATC-3' (SEQ ID NO:13); 10 HDJB - 5'-GGAGTCAGGTCAAAGGATGC-3' (SEQ ID NO:14); HDJC - 5'-GCATCCTTTGACCTGACTCC-3' (SEQ ID NO:15); HDJD - 5'-GGTCTGAAACGTGATCTGGG-3'(SEQ ID NO:16); HDJE - 5'-CCCAGATCACGTTTCAGACC-3' (SEQ ID NO:17); HDJF - 5'-CGATGATGTGTGGGTTCTCC-3' (SEQ ID NO:18); HDJG - 5'-GGAGAACCCACACATCATCG-3' (SEQ ID NO:19); HDJH - 5'-CGTGTCTGAGAAGTCCAGCC-3' (SEQ ID NO:20); HDJI - 5'-GGCTGGACTTCTCAGACACG-3' (SEQ ID NO:21); HDJJ - 5'-ACAGCATCTTCTCCACGCAC-3' (SEQ ID NO:22); HFMU - 5'-AGTCCTCTGGCTTTGCAGTG-3'(SEQ ID NO:23); HDKV - 5'-TGTGCGTGGAGAAGATGCTG-3' (SEQ ID NO:24); HDKW - 5'-GGCTGGAAAGGGAAGTCTAC-3' (SEQ ID NO:25); HDND - 5'-TGGTTCAGGTGCTCTTGGGG-3' (SEQ ID NO:26); HDNE - 5'-CGTGAAGCAGGAGTTGAGCC-3' (SEQ ID NO:27); HDIK - 5'-ATCTTGCTCTGGGTCTTCCC-3' (SEQ ID NO:28), HDIL - 5'-CACTGCAAAGCCAGAGGACT-3' (SEQ ID NO:29); HDIP - 5'-ATAAGCAAGACGACGACCTC-3' (SEQ ID NO:30); HDLI - 5'-CTATTCTGTTGGGTGGGTTC-3' (SEQ ID NO:31); HDMV - 5'-CGTGCCTCCTGTGCTTACCC-3' (SEQ ID NO:32); HDNG - 5'-CAGACCCCAAGGTAGCTCAG-3' (SEQ ID NO:33); 30 HDNH - 5'-GGAAGACCCAGAGCAAGATC-3' (SEQ ID NO:34).

Amplified product were subject to direct sequencing after purification from an agarose gel or cloned into a TOPO PCR cloning vector (Invitrogen) for sequencing. Multiple sequence alignment of NHL to known helicases showed that NHL contains all the seven critical helicase domains. BLAST analysis of the predicted 1,219 amino acid sequence (see Figure 2, SEQ ID NO:2) reveal an approximately 26% sequence identity and 48% sequence similarity to the RAD3/ERCC2 gene family of DNA helicases (see Figure 3). Review of this sequence data shows that two partial human cDNA clones (Acc. No. a1080127 and ab029011) are deposited. No. a1080127 covers exon 25-35 while ab029011 covers exons 9-35. Ab029011 starts at amino acid 240 of the full length human NHL protein disclosed herein, but also differs at exon 35 and appears to be a fusion transcript with M68. This cDNA was isolated from brain tissue, which has been known to express rare transcripts.

15

25

10

EXAMPLE 2

Northern Analysis of human NHL Expression

Messenger RNA (mRNA) obtained from human brain, heart, skeletal muscle, colon, thymus, spleen, kidney, liver, small intestine, placenta, lung, and peripheral blood leukocytes. Two µg of polyA+RNA were run on each lane a denaturing formaldehyde 1% agarose gel, and transferred to a charged-modified nylon membrane. The probe was made using a 733 bp fragment derived from 1174-1907 nt of the NHL cDNA. This fragment was labeled via the ³²P dCTP random priming method (Ambion). Hybridization was carried in ExpressHyb (Clontech) according to the manufacturer's protocol except for the final wash, which was at 55°C. Membranes were exposed to X-ray film with intensifying screen at -80°C overnight. The Northern data is presented in Figure 4. Note hybridization of the NHL probe to an approximately 4.4 kb transcript. The 7.5 kb transcript may suggest an alternative splicing of the NHL RNA.

PCT/US00/33065 WO 01/42434

EXAMPLE 3

Chromosomal localization

To map the position of M68/NHL in the human genome, primers C68.36F and C68.275R, were used to carry out PCR reactions to 93 clones of the MIT GeneBridge 4 panel (Research Genetics) and results were submitted to MIT for analysis. M68/DcR3 was mapped to the extreme telomere of chromosome 20, at 20q13.3, 28cR from D20S173 with a lod score of 13. An analogous procedure was also carried out with the 83 clones of the Stanford G3 radiation hybrid panel, with PCR results submitted to the Stanford Genome Center for analysis. Analysis using another pair of PCR primers specific to NHL yielded the same result. For fluorescence in situ (FISH) analysis, the normal human male fibroblast cell line, L136 (Coriell Cell Repository, Camden, NJ) was arrested in mitosis with colcemid (10 µg/ml). A human chromosome 20 α -satellite probe (Vysis, Downers Grove, IL) was directly labeled with Spectrum Orange dUTP and was used to identify chromosome 20. The M68 15 BAC clone was directly labeled with SpectrumGreen dUTP by nick translation (Vysis). Slides were counterstained with DAPI stain and viewed under an Olympus microscope with narrow blue and DAPI/TRITC filters. Fifty metaphase cells were scored to verify that the M68 probe was located on the same chromosome as the 20 Human Chromosome 20 probe. Radiation hybrid chromosomal mapping reconfirms that it is linked to M68 locus, at 20q13.3.

10

30

WHAT IS CLAIMED IS:

- 1. A purified DNA molecule encoding a mammalian NHL protein.
- 2. A purified DNA molecule of claim 1 encoding a human NHL protein which comprises the amino acid sequence MPKIVLNGVT VDFPFQPYKC QQEYMTKVLE CLQQKVNGIL ESPTGTGKTL CLLCTTLAWR EHLRDGISAR KIAERAQGEL FPDRALSSWG NAAAAAGDPI ACYTDIPKII YASRTHSQLT QVINELRNTS YRPKVCVLGS REQLCIHPEV KKQESNHLQI HLCRKKVASR SCHFYNNVEE KSLEQELASP ILDIEDLVKS GSKHRVCPYY LSRNLKQQAD IIFMPYNYLL DAKSRRAHNI DLKGTVVIFD EAHNVEKMCE ESASFDLTPH DLASGLDVID QVLEEQTKAA QQGEPHPEFS 10 ADSPSPGLNM ELEDIAKLKM ILLRLEGAID AVELPGDDSG VTKPGSYIFE LFAEAQITFQ TKGCILDSLD QIIQHLAGRA GVFTNTAGLQ KLADIIQIVF SVDPSEGSPG SPAGLGALQS YKVHIHPDAG HRRTAQRSDA WSTTAARKRG KVLSYWCFSP GHSMHELVRQ GVRSLILTSG TLAPVSSFAL EMQIPFPVCL ENPHIIDKHQ IWVGVVPRGP DGAQLSSAFD RRFSEECLSS LGKALGNIAR VVPYGLLIFF PSYPVMEKSL EFWRARDLAR KMEALKPLFV EPRSKGSFSE 15 TISAYYARVA APGSTGATFL AVCRGKASEG LDFSDTNGRG VIVTGLPYPP RMDPRVVLKM QFLDEMKGQG GAGGQFLSGQ EWYRQQASRA VNQAIGRVIR HRQDYGAVFL CDHRFAFADA RAQLPSWVRP HVRVYDNFGH VIRDVAQFFR VAERTMPAPA PRATAPSVRG EDAVSEAKSP GPFFSTRKAK SLDLHVPSLK QRSSGSPAAG DPESSLCVEY EQEPVPARQR PRGLLAALEH SEQRAGSPGE EQAHSCSTLS LLSEKRPAEE PRGGRKKIRL VSHPEEPVAG AQTDRAKLFM 20 VAVKQELSQA NFATFTQALQ DYKGSDDFAA LAACLGPLFA EDPKKHNLLQ GFYQFVRPHH KQQFEEVCIQ LTGRGCGYRP EHSIPRRQRA QPVLDPTGRT APDPKLTVST AAAQQLDPQE HLNQGRPHLS PRPPPTGDPG SQPQWGSGVP RAGKQGQHAV SAYLADARRA LGSAGCSQLL AALTAYKQDD DLDKVLAVLA ALTTAKPEDF PLLHRFSMFV RPHHKQRFSQ TCTDLTGRPY PGMEPPGPQE ERLAVPPVLT HRAPQPGPSR SEKTGKTQSK ISSFLRQRPA GTVGAGGEDA 25 GPSQSSGPPH GPAASEWGL* (SEQ ID NO:2).
 - 3. An expression vector for expressing a NHL protein in a recombinant host cell wherein said expression vector comprises a DNA molecule of claim 2.
 - 4. A host cell which expresses a recombinant NHL protein wherein said host cell contains the expression vector of claim 3.

5

25

30

6.

consists of the amino acid sequence

- 5. A process for expressing a NHL protein in a recombinant host cell, comprising:
 - (a) transfecting the expression vector of claim 3 into a suitable host cell; and,

A purified DNA molecule encoding a human NHL protein which

- (b) culturing the host cells of step (a) under conditions which allow expression of said NHL protein from said expression vector.
- MPKIVLNGVT VDFPFQPYKC QQEYMTKVLE CLQQKVNGIL ESPTGTGKTL CLLCTTLAWR EHLRDGISAR KIAERAQGEL FPDRALSSWG NAAAAAGDPI ACYTDIPKII YASRTHSQLT QVINELRNTS YRPKVCVLGS REQLCIHPEV KKQESNHLQI HLCRKKVASR SCHFYNNVEE KSLEQELASP ILDIEDLVKS GSKHRVCPYY LSRNLKQQAD IIFMPYNYLL DAKSRRAHNI DLKGTVVIFD EAHNVEKMCE ESASFDLTPH DLASGLDVID QVLEEQTKAA QQGEPHPEFS ADSPSPGLNM ELEDIAKLKM ILLRLEGAID AVELPGDDSG VTKPGSYIFE LFAEAQITFQ 15 TKGCILDSLD QIIQHLAGRA GVFTNTAGLQ KLADIIQIVF SVDPSEGSPG SPAGLGALQS YKVHIHPDAG HRRTAQRSDA WSTTAARKRG KVLSYWCFSP GHSMHELVRQ GVRSLILTSG TLAPVSSFAL EMQIPFPVCL ENPHIIDKHQ IWVGVVPRGP DGAQLSSAFD RRFSEECLSS LGKALGNIAR VVPYGLLIFF PSYPVMEKSL EFWRARDLAR KMEALKPLFV EPRSKGSFSE TISAYYARVA APGSTGATFL AVCRGKASEG LDFSDTNGRG VIVTGLPYPP RMDPRVVLKM 20 QFLDEMKGQG GAGGQFLSGQ EWYRQQASRA VNQAIGRVIR HRQDYGAVFL CDHRFAFADA RAQLPSWVRP HVRVYDNFGH VIRDVAQFFR VAERTMPAPA PRATAPSVRG EDAVSEAKSP GPFFSTRKAK SLDLHVPSLK QRSSGSPAAG DPESSLCVEY EQEPVPARQR PRGLLAALEH
 - HLNQGRPHLS PRPPPTGDPG SQPQWGSGVP RAGKQGQHAV SAYLADARRA LGSAGCSQLL
 AALTAYKQDD DLDKVLAVLA ALTTAKPEDF PLLHRFSMFV RPHHKQRFSQ TCTDLTGRPY
 PGMEPPGPQE ERLAVPPVLT HRAPQPGPSR SEKTGKTQSK ISSFLRQRPA GTVGAGGEDA
 GPSQSSGPPH GPAASEWGL* (SEQ ID NO:2).

SEQRAGSPGE EQAHSCSTLS LLSEKRPAEE PRGGRKKIRL VSHPEEPVAG AQTDRAKLFM VAVKQELSQA NFATFTQALQ DYKGSDDFAA LAACLGPLFA EDPKKHNLLQ GFYQFVRPHH

KQQFEEVCIQ LTGRGCGYRP EHSIPRRQRA QPVLDPTGRT APDPKLTVST AAAQQLDPQE

7. An expression vector for expressing a NHL protein in a recombinant host cell wherein said expression vector comprises a DNA molecule of claim 6.

8. A host cell which expresses a recombinant NHL protein wherein said host cell contains the expression vector of claim 7.

- 9. A process for expressing a NHL protein in a recombinant host cell,5 comprising:
 - (a) transfecting the expression vector of claim 7 into a suitable host cell; and,
 - (b) culturing the host cells of step (a) under conditions which allow expression of said NHL protein from said expression vector.
- 10. A purified DNA molecule which comprises the nucleotide sequence as set forth in SEQ ID NO:1.
 - 11. An expression vector for expressing a NHL protein in a recombinant host cell wherein said expression vector comprises a DNA molecule of claim 10.

12. A host cell which expresses a recombinant NHL protein wherein said host cell contains the expression vector of claim 11.

15

30

- 13. A purified DNA molecule which consists of the nucleotide sequence as set forth in SEQ ID NO:1.
 - 14. An expression vector for expressing a NHL protein in a recombinant host cell wherein said expression vector comprises a DNA molecule of claim 13.
- 25 15. A host cell which expresses a recombinant NHL protein wherein said host cell contains the expression vector of claim 14.
 - 16. A purified DNA molecule of claim 13 which consists of the nucleotide sequence from about nucleotide 828 to about nucleotide 4587, as set forth in SEQ ID NO:1.
 - 17. An expression vector for expressing a NHL protein in a recombinant host cell wherein said expression vector comprises a DNA molecule of claim 16.

18. A host cell which expresses a recombinant NHL protein wherein said host cell contains the expression vector of claim 17.

- 19. A substantially purified NHL protein which comprises the amino acid sequence as set forth in SEQ ID NO:2.
 - 20. A substantially purified NHL protein which consists of the amino acid sequence as set forth in SEQ ID NO:2.
- 10 21. A substantially purified NHL protein which comprises the amino acid sequence as set forth in SEQ ID NO:2, wherein said protein is a product of a DNA expression vector comprising SEQ ID NO:1 and contained within a recombinant host cell.
 - 22. A method of identifying modulators of NHL activity, comprising:

15

25

- (a) combining a test compound with a NHL protein, wherein NHL comprises the amino acid sequence as set forth in SEQ ID NO:2; and,
 - (b) measuring the effect of the test compound on the NHL protein.
- 23. An isolated DNA molecule which comprises the nucleotide sequence as set forth in SEQ ID NO:3.
 - 24. An isolated DNA molecule of claim 20 which comprises from about nucleotide 47000 to about nucleotide 85500 of SEQ ID NO:3.
 - 25. An isolated DNA molecule of claim 23 which comprises from about nucleotide 47095 to about nucleotide 85316 of SEQ ID NO:3.
- 26. A substantially purified NHL protein of claim 21 wherein said protein is a product of a DNA expression vector comprising from about nucleotide 828 to nucleotide 4587, as set forth in SEQ ID NO:1, and contained within a recombinant host cell.

AGTCAGCCCT GCTGCCAGCC AGTGCCGGGT GCTGGGGACT	CAGGGAGGCC CGCCGGGACC ACTGCGGGAC
AGTCAGCCCT GCTGCCAGCC AGTGCCGGGT GCTGGGGAAGGAGAGAGGAGGAGGAGGCCGA GCAGAAGCTG GAACGCAGGA GAGGAAGGAG	AGGGGGGGGT CAGGGCTCTC AGGAGCCGGG
AGTGAGCCGA GCAGAAGCTG GAACGCAGGA GAGGAAGCAC TCCTGGGCAA GGCGCAGCCG TTTTCAAATT TTCAGGAAAG	CGGTCGGCTC ACACTCGAGC AGTAAAAAGA
TCCTGGGCAA GGCGCAGCCG TTTCAAATT TCAGGAACCTGCCTCTGGG GAGGAGGCCC GTGCAGCTCT CCGGGCAATG	GTGGTGGCTC GGCCTAGAGA GGCGGTAGTG
TGCCTCTGGG GAGGAGGCCC GTGCAGCTCT CCGGGCAATC	ACCECCEGGA CCCCAGATTT CTGCCTGTGG
GAACGCAGAC CCTGGTGGGG GAATGACATC AAGGGAGGACAC GCGATGGAAG TGAGGTTCAC TGGCCAGCGG AGCCGGACAC	ACAACGCGCA AAACGCCGTG TAGGCCTGGA
GCGATGGAAG TGAGGTTCAC TGGCCAGCGG AGCCGACACAC GGAGCCGAAG AGCAGGCGGA CCCCCTCCGC GGGGGAACAC	TTTCCCCCG GAGCACAAAG CAACGGACCG
GGAGCCGAAG AGCAGGCGGA CCCCCTCCGC GGGGGAACAC	CCCCCTCTG CCCGGAAAA CTCTGAGCTG
GAAGTGGGG GCGGAAGTGC AGTGGGCTCA GCGCCGACTC	CCTTCACTTC CTGAGGGACC CCGGTTCTGG
GAAGTGGGGG GCGGAAGTGC AGTGGGCTCA GCGCCACTG GCTGACAGCT GGGGACGGGT GGCGGCCCTC GACTGGAGTC AAGGTTCGCC GCGGAGACAA GTGAGCAGTC TGTGCCATA	C CCATTCTCGA AGAGAACAGC GTTGTGTCCC
AAGGTTCGCC GCGGAGACAA GTGAGCAGTC TGTGCCATAA AGTGCACATG CTCGCATCGC TTACCAGGAG TGCCCGAGAA	C CCTAGGATGT TCGGAGTGGT TTTTTCGCAC
AGTGCACATG CTCGCATCGC TTACCAGGAG TGCCCGAGAG AGACCCGAAT AGCCTGCCCC TCAGCCACGC TCTGTGCCC	T TOTGAGAACA GGOTGATATG CCCAAGATAG
AGACCCGAAT AGCCTGCCCC TCAGCCACGC TCTGTGCCC TCCTGAATGG TGTGACCGTA GACTTCCCTT TCCAGCCCT.	A CANATECCAN CAGGAGTACA TGACCAAGGT
TCCTGAATGG TGTGACCGTA GACTICCCTT TCCAGCCCT	C ACCCCTACGG GTACAGGGAA GACGCTGTGC
CCTGGAATGT CTGCAGCAGA AGGTGAATGG CATCCTGGA	C ACCECATOTO TECCOGRAGA ATTGCCGAGA
CTGCTGTGCA CCACGCTGGC CTGGCGAGAA CACCTCCGA	C CTCCCCCAAC CCTCCTCCTG CTGCTGGAGA
CTGCTGTGCA CCACGCTGGC CTGGCGAGAA CACCTCCGA	C CCCCCAGGA CCCACTGGA ACTCACAGAG
GGGCGCAAGG AGAGCTTTC CCGGATCGGG CCTTGTCAT CCCCATAGCT TGCTACACGG ACATCCCAAA GATTATTA	C TOTOTOTOTO GEOCITICOGO GAGCAGCTGT
GTCATCAACG AGCTTCGGAA CACCTCCTAC CGGCCTAAG	T ACACATCCAC TTGTGCCGTA AGAAGGTGGC
GCATCCATCC TGAGGTGAAG AAACAAGAGA GTAACCATC	ACCCTGGAGC AGGAGCTGGC CAGCCCCATC
AAGTCGCTCC TGTCATTTCT ACAACAACGT AGAAGAAAA	A AGCCTGGAGC AGGAGCTGGG GIGGGGAACC
CTGGACATTG AGGACTTGGT CAAGAGCGGA AGCAAGCAC	A CITCITICAT CCCAAGAGCC GCAGAGCACA
TGAAGCAGCA AGCCGACATC ATATTCATGC CGTACAATT	A COTCACAACE TEEAGAAGAT GTGTGAAGAA
CAACATTGAC CTGAAGGGGA CAGTCGTGAT CTTTGACGA	A GUILACAACG IGGAGACAG GIGCIGGAGG
TCGGCATCCT TTGACCTGAC TCCCCATGAC CTGGCTTCA	CTICACCCCC CACTCCCCA GCCAGGGCT
AGCAGACCAA GGCAGCGCAG CAGGGTGAGC CCCACCCGC	TO STOCKED TO TOCKEDGG CATIGATECT
GAACATGGAG CTGGAAGACA TTGCAAAGCT GAAGATGAT	CONCETACAT CTTTCACCTG TTTCCTGAAG
GTTGAGCTGC CTGGAGACGA CAGCGGTGTC ACCAAGCCA	TO COTTOCACCAC ATCATCCACC ACCTGGCAGG
CCCAGATCAC GTTTCAGACC AAGGGCTGCA TCCTGGAC	C GUIGGACLAG ATCATCCAGA TGTGTTCAGT
ACGTGCTGGA GTGTTCAGACC AAAGGCTGGA ACTGCAGA	AG CIGGEGGACA FIATECAGAT TOTOTTOAG
GTGGACCCCT CCGAGGGCAG CCCTGGTTCC CCAGCAGG	TO TOATCOCTOC ACCACCACTO CACCCAGAAA
TCCATCCTGA TGCTGGTCAC CGGAGGACGG CTCAGCGG	TO TIGATIGULITIES ASSAUCACITE CAGCOAGAAA
COCACCOAAC CTCCTCAGCT ACTGGTGCTT CAGTCCCG	GC LACACATEC ACEAGCIGGI CCGCCAGGGC
GTCCGCTCCC TCATCCTTAC CAGCGGCACG CTGGCCCC	GG IGICCICCTI TGCTCTGGAG ATGCAGATCC
CTTTCCCACT CTCCCTCCAC AACCCACACA TCALCGAL	AA GCACCAGAIC IGGGIGGGGG ICGICCCCAG
ACCOCCCAT CCACCCCACT TCACCTCCC GTTTGACA	GA (GG)
CCCAACCCTC TCCCCAACAT CGCCCGCGTG GTGCCCTA	IG GGC ICC I GAT CTTC I TOCTATOCTA
TCATGGAGAA GAGCCTGGAG TTCTGGCGGG CCCGCGAC	TT GGCCAGGAAG AIGGAGGCGC IGAAGCCGCI
GTTTGTGGAG CCCAGGAGCA AAGGCAGCTT CTCCGAGA	CC ATCAGIGCII ACIAIGCAAG GGIIGCCGCC
CCTGGGTCCA CCGGCGCCAC CTTCCTGGCG GTCTGCCG	GG GCAAGGCCAG CGAGGGGCTG GACTTCTCAG
ACACGAATGG CCGTGGTGTG ATTGTCACGG GCCTCCCG	TA CCCCCCACGC ATGGACCCCC GGGTTGTCCT
CAACATOCAC TECCTOGATO AGATGAAGGO CCAGGGTG	GG GCTGGGGGCC AGIICCICIC IGGGCAGGAG
TOTACOCC ACCAGGOGT CAGGGOTGTG AACCAGGO	CA TCGGGCGAGI GAILLGGLAL LGLLAGGALI
ACCOMPANY CTRUCTURED GARCAGAGGT TUGCUTT	GC CGACGCAAGA GCCCAACIGC CCICCIGGGI
COCTOCOCAC CTCAGGGTGT ATGACAACTT TGGCCATG	TC ATCCGAGACG IGGCCCAGII CIICCGIGII
CCCCACCCAA CTATCCCAGC GCCGGCCCCC CGGGCTAC	CAG CACCCAGIGI GUGIGGAGAA GAIGUIGIUA
CCCACCCAA GTCGCCTGGC CCCTTCTTCT CCACCAGG	SAA AGCTAAGAGI CIGGACCIGC AIGICCCCAG
CCTCAACCAC ACCTCCTCAG GGTCACCAGC TGCCGGGG	SAC CCCGAGAGIA GUUTGIGI GGAGIATGAG
CAGGAGCCAG TTCCTGCCCG GCAGAGGCCC AGGGGGCT	GC TGGCCGCCCT GGAGCACAGC GAALAGCGGG

FIG.1A

CGGGGAGCCC TGGCGAGGAG CAGGCCCACA GCTGCTCCAC CCTGTCCCCC CTGTCTGAGA
AGAGGCCGGC AGAAGAACCG CGAGGAGGGA GGAAGAAGAT CCGGCTGGTC AGCCACCCGG
AGAGGCCGGC AGAAGAACCG CGAGGACGACA GGGCCAAGCT CTTCATGGTG GCCGTGAAGC AGGAGCCCGT GGCTGCAC TACAAGGGTT
AGGAGCCCGT GGCTGCA CAGACGGACA GGCCCAGGC CCTGCAGGAC TACAAGGGTT AGGAGTTGAG CCAAGCCAAC TTTGCCACCT TCACCCAGGC CCTGCAGGAC TACAAGGGTT
AGGAGTTGAG CCAAGCCAAC TTGCCACCT TCACCCACCT CTTGCTGAG GACCCCAAGA
CCGATGACTT CGCCGCCCTG GCCGCCTGTC TCGGCCCCCT CTTTGCTGAG GACCCCAAGA
AGCACAACCT GCTCCAAGGC TTCTACCAGT TTGTGCGGCC CCACCATAAG CAGCAGTTTG
AGGAGGTCTG TATCCAGCTG ACAGGACGAG GCTGTGGCTA TCGGCCTGAG CACAGCATTC
CCCGAAGGCA GCGGGCACAG CCGGTCCTGG ACCCCACTGG AAGAACGGCG CCGGATCCCA
AGCTGACCGT GTCCACGGCT GCAGCCCAGC AGCTGGACCC CCAAGAGCAC CTGAACCAGG
ACADOCCCA CCTCTCCCCC AGGCCACCCC (AGCCAGGAGA CCCTGCCACCCACCAGGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACCAGGAGAGA CCCTCCCACAGGAGAGA CCCTCCACAGGAGAGA CCCTCCCACAGGAGAGA CCCTCCCACAGGAGAGA CCCTCCCACAGAGA CCCTCCCACAGAGA CCCTCCACAGAGA CCCCACAGAGA CCCCACAGAGA CCCCACAGAGA CCCACAGAGA CCCACAGA CCACAGAGA CCCACAGA CCACAGAGA CCACAGAGA CACACAGA CCACAGA CCACAGA CACAGAGA CACACAGA CACACAGA CACACAGA CACACAGA CACACAGA CACACAGA CACACAGA CACACAGA CACACAGA CACACACA
COCCUTATION ACTOCOCAGA GOAGGGAAGO AGGGCCAGCA CGCCAGCA GCCTACCTAG
CTOATCOCCO CACCOCCTE GGGTCGCGG GUIGIAGULA AUTUTIGUA GUGCTURORO
ACACCACCAC CTCGACAGG TGCTGGCTGT GTTGGCCGC CTGACCACTG
CAAACCCACA GGACTTCCCC CTGCTGCACA GGTTCAGCAL GILIGIGGG CCACACCACA
ACCACCCCTT CTCACAGACG TGCACAGACC IGACCGGCCG GCCCIACCCG GGCAIGGAGC
CACCOCCACC CCACCACCAC AGGCTTGCCG TGCCTCCTGI GCIIACUCAC AGGGCTCCCC
AACCACCCCC CTCACGGTCC GAGAAGACCG GGAAGACCCA GAGCAAGAIC ICGICCIICC
TACACACAC CCCACCAGGG ACTGTGGGGG CGGGCGG GA GGA GCAGG CCCAGCCAG
CCTCACCACC TCCCCACGG CCTGCAGCAT CTGAGTGGGG CCTCTAGGAT GTGCCCAGCC
TOCCACACOC COTTCAGGAA GOAGAGCGTC ATGCAGGTCT TOTGGCCAGA GCCCCAGTGA
CTCCCACCC ACCCCCCAG CACACCCAAC GTGGCIIGAI CACCIGCUIG ICCAGCICIG
GTGGGCCAAG AACCCACCA ACAGAATAGG CCAGCCCATG CCAGCCGGCT TGGCCCGCTG
CAGGCCTCAG GCAGGCGGGG CCCATGGTTG GTCCCTGCGG TGGGACCGGA TCTGGGCCTG
CCTCTGAGAA GCCCTGAGCT ACCTTGGGGT CTGGGGTGGG TTTCTGGGAA AGTGCTTCCC
CAGAACTTCC CTGGCTCCTG GCCTGTGAGT GGTGCCACAG GGGCACCCCA GCTGAGCCCC
TCACCGGGAA GGAGGAGACC CCCGTGGGCA CGTGTCCACT TTTAATCAGG GGACAGGGCT
TCACCUGUAA GUAGAGACC CCCGCCC (SEO ID NO.1)
CTCTAATAAA GCTGCTGGCA GTGCCC (SEQ ID NO:1).

FIG.1B

MPKIVLNGVT VDFPFQPYKC QQEYMTKVLE CLQQKVNGIL ESPTGTGKTL CLLCTTLAWR EHLRDGISAR KIAERAQGEL FPDRALSSWG NAAAAAGDPI ACYTDIPKII YASRTHSQLT QVINELRNTS YRPKVCVLGS REQLCIHPEV KKQESNHLQI HLCRKKVASR SCHFYNNVEE KSLEQELASP ILDIEDLVKS GSKHRVCPYY LSRNLKQQAD IIFMPYNYLL DAKSRRAHNI DLKGTVVIFD EAHNVEKMCE ESASFDLTPH DLASGLDVID QVLEEQTKAA QQGEPHPEFS ADSPSPGLNM ELEDIAKLKM ILLRLEGAID AVELPGDDSG VTKPGSYIFE LFAEAQITFQ TKGCILDSLD QIIQHLAGRA GVFTNTAGLQ KLADIIQIVF SVDPSEGSPG SPAGLGALQS YKVHIHPDAG HRRTAQRSDA WSTTAARKRG KVLSYWCFSP GHSMHELVRQ GVRSLILTSG TLAPVSSFAL EMQIPFPVCL ENPHIIDKHQ IWVGVVPRGP DGAQLSSAFD RRFSEECLSS LGKALGNIAR VVPYGLLIFF PSYPVMEKSL EFWRARDLAR KMEALKPLFV EPRSKGSFSE TISAYYARVA APGSTGATFL AVCRGKASEG LDFSDTNGRG VIVTGLPYPP RMDPRVVLKM QFLDEMKGQG GAGGQFLSGQ EWYRQQASRA VNQAIGRVIR HRQDYGAVFL CDHRFAFADA RAQLPSWVRP HVRVYDNFGH VIRDVAQFFR VAERTMPAPA PRATAPSVRG EDAVSEAKSP GPFFSTRKAK SLDLHVPSLK QRSSGSPAAG DPESSLCVEY EQEPVPARQR PRGLLAALEH SEQRAGSPGE EQAHSCSTLS LLSEKRPAEE PRGGRKKIRL VSHPEEPVAG AQTDRAKLFM VAVKQELSQA NFATFTQALQ DYKGSDDFAA LAACLGPLFA EDPKKHNLLQ GFYQFVRPHH KQQFEEVCIQ LTGRGCGYRP EHSIPRRQRA QPVLDPTGRT APDPKLTVST AAAQQLDPQE HLNQGRPHLS PRPPPTGDPG SQPQWGSGVP RAGKQGQHAV SAYLADARRA LGSAGCSQLL AALTAYKODD DLDKVLAVLA ALTTAKPEDF PLLHRFSMFV RPHHKQRFSQ TCTDLTGRPY PGMEPPGPQE ERLAVPPVLT HRAPQPGPSR SEKTGKTQSK ISSFLRQRPA GTVGAGGEDA GPSQSSGPPH GPAASEWGL* (SEQ ID NO:2).

FIG.2

NI RRAEHF VSF RRAEHF ITBOEEPFVETPV RRL VEGLRE ASAAREH QRL VNGLARSGSTRA-QKLVRGLQDANAAN EKLVQCLHSAD I[]] XP_GroupD RAD15

RepD RAD3

F16.3C

8/12 SKEEOLGKSLWSLEH . ASDQEC|I|SWWSLDD DPKDQEGMSVWSYED SPGPFFSTRIMAKS[]DLHVPSLKQRSSGSPAAGDPESSLCVEYEQEPVPARQRPRGI VEROSTSKPPQQQNSA[]NSTITTSTTTTTTSTISETHLT (SEQ ID NO:35) |KHQNS——RKDQGGF|I|ENENKEGEQDEDEDEDIEMQ (SEQ ID NO:36) (SEQ ID NO:37) (SEQ ID NO:38) ---KAL図SAAIIEQSKHEDEMDIDVVET -SDADILINL STDMA I SN1 GRS RAD15 RAD15 RAD3 REPD REPD RAD3

FIG. 3E

9/12

AAL EHSEQRAGSPGEEQAHSCSTL SLL SEKRPAEEPRGGRKK I RL VSHPEEPVAGAQTDR /RPHHKQQFEEVC1QLTGRGCGYRPEHS1PRRQRAQPVLDPTGRTAPDPKLTVSTAAAQQ DPQEHLNQGRPHLSPRPPTGDPGSQPQWGSGVPRAGKQGQHAVSAYLADARRALGSAG AKL FMVAVKQEL SQANF ATF TQALQDYKGSDDF AAL AACLGPLF AEDPKKHNL LQGF YQF SSQL L AAL TAYKQDDDL DKVL AVLAAL TTAKPEDF PLLHRF SMF VRPHHKQRF SQTCTDI 'GRPYPCMEPPGPQEERLAVPPVLTHRAPQPGPSRSEKTGKTQSKI (SEQ ID

FIG. 3F

SUBSTITUTE SHEET (RULE 26).

11/12

SUBSTITUTE SHEET (RULE 26)

12/12

SEQUENCE LISTING

	<110> APPLICAN	T: Merck & Co.,	, Inc.									
<120> TITLE: DNA MOLECULES ENCODING HUMAN NHL, A DNA HELICASE												
	<130> DOCKET/F	ILE REFERENCE:	20585 PCT									
<160> NUMBER OF SEQUENCES: 38												
	<170> SOFTWARE	: FastSEQ for W	Windows Version	4.0								
	<210> SEQ ID N <211> LENGTH: <212> TYPE: DN <213> ORGANISM	4946 A										
	<220> FEATURE: <221> NAME/KEY <222> LOCATION	: CDS : (828)(4487	7)									
	actgcgggac agt cagggctctc agg cggtcggctc aca ccgggcaatg gtg gaatgacatc aag tgaggttcac tgg ggagccgaag agc caacggaccg gaa cccgcgaaaa ctc ggttgagttc ctg tgtgccatag gga ttaccaggag tgc	gccagcc agtgccg gagccga gcagaag agccggg tcctggg ctcgagc agtaaaa gtggctc ggcctag ggaggag acgggcg aggcgga ccccctc gtggggg gcggaag tgagctg gctgaca agggacc ccggttc ttctcga agagaaa	getg gaacgeagga geaa ggegeageeg aaga tgeetetggg gaga ggeggtagtg ggga ecceagattt acac agaacgegea ecge gggggaacag gtge agtgggetea aget ggggaegggt ectgg aaggttegee ectgg gttgttgteee eage gttgtgteee	cagggaggcc cgccgggacc gaggaaggag agggggcggt ttttcaaatt ttcaggaaag gaggaggccc gtgcagctct gaacgcagac cctggtggg ctgcctgtgg gcgatggaag aaacgccgtg taggcctgga tttccgccgg gagcacaaag gcgccgactc gactggagtc gcggagacaa gtgagcagtc gcggagacaa gtgagcagtc agtgcacatg ctctcgatgcattttcgcac agacccgaat ggctgat atg ccc aag Met Pro Lys	60 120 180 240 300 360 420 480 540 660 720 780 836							
	ata gtc ctg aa Ile Val Leu As 5	t ggt gtg acc on Gly Val Thr V	gta gac ttc cct Val Asp Phe Pro	ttc cag ccc tac aaa Phe Gln Pro Tyr Lys 15	884							
	tgc caa cag ga Cys Gln Gln Gl 20	g tac atg acc a u Tyr Met Thr I 25	aag gtc ctg gaa Lys Val Leu Glu 30	tgt ctg cag cag aag Cys Leu Gln Gln Lys 35	932							
	gtg aat ggc at Val Asn Gly Il	c ctg gag agc o e Leu Glu Ser I 40	cct acg ggt aca Pro Thr Gly Thr 45	ggg aag acg ctg tgc Gly Lys Thr Leu Cys 50	980							
	Leu Leu Cys Th	c acg ctg gcc tr Thr Leu Ala 7	tgg cga gaa cac Trp Arg Glu His 60	ctc cga gac ggc atc Leu Arg Asp Gly Ile 65	1028							
				gag ctt ttc ccg gat Glu Leu Phe Pro Asp	1076							

	-				tgg Trp			-								1124
					gac Asp 105											1172
	_				cag Gln	-			-							1220
					gtg Val											1268
					caa Gln											1316
					agt Ser											1364
gaa Glu 180	aaa Lys	agc Ser	ctg Leu	gag Glu	cag Gln 185	gag Glu	ctg Leu	gcc Ala	agc Ser	ccc Pro 190	atc Ile	ctg Leu	gac Asp	att Ile	gag Glu 195	1412
					gga Gly											1460
					cag Gln											1508
					aag Lys											1556
					ttt Phe											1604
					ttt Phe 265											1652
ctg Leu	gac Asp	gtc Val	ata Ile	gac Asp 280	cag Gln	gtg Val	ctg Leu	gag Glu	gag Glu 285	cag Gln	acc Thr	aag Lys	gca Ala	gcg Ala 290	cag Gln	1700
cag Gln	ggt Gly	gag Glu	ccc Pro 295	cac His	ccg Pro	gag Glu	ttc Phe	agc Ser 300	gcg Ala	gac Asp	tcc Ser	ccc Pro	agc Ser 305	cca Pro	G]À aaa	1748
ctg Leu	aac Asn	atg Met 310	gag Glu	ctg Leu	gaa Glu	gac Asp	att Ile 315	gca Ala	aag Lys	ctg Leu	aag Lys	atg Met 320	atc Ile	ctg Leu	ctg Leu	1796

								gtt Val								1844
								atc Ile							gcc Ala 355	1892
								tgc Cys								1940
atc Ile	atc Ile	cag Gln	cac His 375	ctg Leu	gca Ala	gga Gly	cgt Arg	gct Ala 380	gga Gly	gtg Val	ttc Phe	acc Thr	aac Asn 385	acg Thr	gcc Ala	1988
gga Gly	ctg Leu	cag Gln 390	aag Lys	ctg Leu	gcg Ala	gac Asp	att Ile 395	atc Ile	cag Gln	att Ile	gtg Val	ttc Phe 400	agt Ser	gtg Val	gac Asp	2036
								cca Pro								2084
tcc Ser 420	tat Tyr	aag Lys	gtg Val	cac His	atc Ile 425	cat His	cct Pro	gat Asp	gct Ala	ggt Gly 430	cac His	cgg Arg	agg Arg	acg Thr	gct Ala 435	2132
cag Gln	cgg Arg	tct Ser	gat Asp	gcc Ala 440	tgg Trp	agc Ser	acc Thr	act Thr	gca Ala 445	gcc Ala	aga Arg	aag Lys	cga Arg	ggg Gly 450	aag Lys	2180
gtg Val	ctg Leu	agc Ser	tac Tyr 455	tgg Trp	tgc Cys	ttc Phe	agt Ser	ccc Pro 460	ggc Gly	cac His	agc	atg Met	cac His 465	gag Glu	ctg Leu	2228
								atc Ile								2276
ccg Pro	gtg Val 485	tcc Ser	tcc Ser	ttt Phe	gct Ala	ctg Leu 490	gag Glu	atg Met	cag Gln	atc Ile	cct Pro 495	ttc Phe	cca Pro	gtc Val	tgc Cys	2324
ctg Leu 500	gag Glu	aac Asn	cca Pro	cac His	atc Ile 505	atc Ile	gac Asp	aag Lys	cac His	cag Gln 510	atc Ile	tgg Trp	gtg Val	Gly	gtc Val 515	2372
gtc Val	ccc Pro	aga Arg	ggc Gly	ccc Pro 520	gat Asp	gga Gly	gcc Ala	cag Gln	ttg Leu 525	agc Ser	tcc Ser	gcg Ala	ttt Phe	gac Asp 530	aga Arg	2420
cgg Arg	ttt Phe	tcc Ser	gag Glu 535	gag Glu	tgc Cys	tta Leu	tcc Ser	tcc Ser 540	ctg Leu	ggg ggg	aag Lys	gct Ala	ctg Leu 545	ggc Gly	aac Asn	2468
atc Ile	gcc Ala	cgc Arg 550	gtg Val	gtg Val	ccc Pro	tat Tyr	ggg Gly 555	ctc Leu	ctg Leu	atc Ile	ttc Phe	ttc Phe 560	cct Pro	tcc Ser	tat Tyr	2516

				aag Lys												2564
				gcg Ala												2612
				gag Glu 600												2660
				Gly ggc	-			_	-							2708
				gac Asp												2756
				tac Tyr												2804
				gat Asp												2852
				cag Gln 680												2900
aac Asn	cag Gln	gcc Ala	atc Ile 695	Glà aaa	cga Arg	gtg Val	atc Ile	cgg Arg 700	cac His	cgc Arg	cag Gln	gac Asp	tac Tyr 705	gga Gly	gct Ala	2948
gtc Val	ttc Phe	ctc Leu 710	tgt Cys	gac Asp	cac His	agg Arg	ttc Phe 715	gcc Ala	ttt Phe	gcc Ala	gac Asp	gca Ala 720	aga Arg	gcc Ala	caa Gln	2996
_				gtg Val	-											3044
				gac Asp												3092
				gcc Ala 760												3140
gat Asp	gct Ala	gtc Val	agc Ser 775	gag Glu	gcc Ala	aag Lys	tcg Ser	cct Pro 780	ggc Gly	ccc Pro	ttc Phe	ttc Phe	tcc Ser 785	acc Thr	agg Arg	3188
				ctg Leu												3236

tca Ser	ggg Gly 805	tca Ser	cca Pro	gct Ala	gcc Ala	ggg Gly 810	gac Asp	ccc Pro	gag Glu	agt Ser	agc Ser 815	ctg Leu	tgt Cys	gtg Val	gag Glu	3284
tat Tyr 820	gag Glu	cag Gln	gag Glu	cca Pro	gtt Val 825	cct Pro	gcc Ala	cgg Arg	cag Gln	agg Arg 830	ccc Pro	agg Arg	GJÀ âââ	ctg Leu	ctg Leu 835	3332
gcc Ala	gcc Ala	ctg Leu	gag Glu	cac His 840	agc Ser	gaa Glu	cag Gln	cgg Arg	gcg Ala 845	ggg Gly	agc Ser	cct Pro	ggc Gly	gag Glu 850	gag Glu	3380
cag Gln	gcc Ala	cac His	agc Ser 855	tgc Cys	tcc Ser	acc Thr	ctg Leu	tcc Ser 860	ctc Leu	ctg Leu	tct Ser	gag Glu	aag Lys 865	agg Arg	ccg Pro	3428
gca Ala	gaa Glu	gaa Glu 870	ccg Pro	cga Arg	gga Gly	ggg Gly	agg Arg 875	aag Lys	aag Lys	atc Ile	cgg Arg	ctg Leu 880	gtc Val	agc Ser	cac His	3476
ccg Pro	gag Glu 885	gag Glu	ccc Pro	gtg Val	gct Ala	ggt Gly 890	gca Ala	cag Gln	acg Thr	gac Asp	agg Arg 895	gcc Ala	aag Lys	ctc Leu	ttc Phe	3524
atg Met 900	gtg Val	gcc Ala	gtg Val	aag Lys	cag Gln 905	gag Glu	ttg Leu	agc Ser	caa Gln	gcc Ala 910	aac Asn	ttt Phe	gcc Ala	acc Thr	ttc Phe 915	3572
acc Thr	cag Gln	gcc Ala	ctg Leu	cag Gln 920	gac Asp	tac Tyr	aag Lys	ggt Gly	tcc Ser 925	gat Asp	gac Asp	ttc Phe	gcc Ala	gcc Ala 930	ctg Leu	3620
gcc Ala	gcc Ala	tgt Cys	ctc Leu 935	ggc Gly	ccc Pro	ctc Leu	ttt Phe	gct Ala 940	gag Glu	gac Asp	ccc Pro	aag Lys	aag Lys 945	cac His	aac Asn	3668
ctg Leu	Leu	caa Gln 950	ggc Gly	ttc Phe	tac Tyr	cag Gln	ttt Phe 955	gtg Val	cgg Arg	ccc Pro	cac His	cat His 960	aag Lys	cag Gln	cag Gln	3716
ttt Phe	gag Glu 965	gag Glu	gtc Val	tgt Cys	atc Ile	cag Gln 970	ctg Leu	aca Thr	gga Gly	cga Arg	ggc Gly 975	tgt Cys	ggc Gly	tat Tyr	cgg Arg	3764
cct Pro 98	Glu	cac His	agc Ser	att Ile	Pro 98	Arg	agg Arg	cag Gln	cgg Arg	gca Ala 99	cag Gln O	ccg Pro	gtc Val	ctg Leu	gac Asp 995	3812
ccc Pro	act Thr	gga Gly	aga Arg	acg Thr 100	Ala	ccg Pro	gat Asp	ccc Pro	aag Lys 100	Leu	acc Thr	gtg Val	tcc Ser	acg Thr 101	Ala	3860
gca Ala	gcc Ala	cag Gln	cag Gln 101	Leu	gac Asp	ccc Pro	caa Gln	gag Glu 102	His	ctg Leu	aac Asn	cag Gln	ggc Gly 102	Arg	ccc Pro	3908
			Pro					Thr			cct Pro		Ser			3956

cag tgg ggg tct gga gtg ccc aga gca ggg aag	g cag ggc cag cac gcc 4004
Gln Trp Gly Ser Gly Val Pro Arg Ala Gly Lys	Gln Gly Gln His Ala
1045 1050	1055
gtg agc gcc tac ctg gct gat gcc cgc agg gcc Val Ser Ala Tyr Leu Ala Asp Ala Arg Arg Ala 1060 1065 107	Leu Gly Ser Ala Gly
tgt agc caa ctc ttg gca gcg ctg aca gcc tat	aag caa gac gac 4100
Cys Ser Gln Leu Leu Ala Ala Leu Thr Ala Tyr	Lys Gln Asp Asp
1080 1085	1090
ctc gac aag gtg ctg gct gtg ttg gcc gcc ctg	g acc act gca aag cca 4148
Leu Asp Lys Val Leu Ala Val Leu Ala Ala Leu	1 Thr Thr Ala Lys Pro
1095 1100	1105
gag gac ttc ccc ctg ctg cac agg ttc agc atg	g tit gtg cgt cca cac 4196
Glu Asp Phe Pro Leu Leu His Arg Phe Ser Met	Phe Val Arg Pro His
1110 1115	1120
cac aag cag cgc ttc tca cag acg tgc aca gac	c ctg acc ggc cgg ccc 4244
His Lys Gln Arg Phe Ser Gln Thr Cys Thr Asg	D Leu Thr Gly Arg Pro
1125 1130	1135
tac ccg ggc atg gag cca ccg gga ccc cag gag Tyr Pro Gly Met Glu Pro Pro Gly Pro Gln Glu 1140 1145 115	ı Glu Arg Leu Ala Val
cct cct gtg ctt acc cac agg gct ccc caa cca	a ggc ccc tca cgg tcc 4340
Pro Pro Val Leu Thr His Arg Ala Pro Gln Pro	o Gly Pro Ser Arg Ser
1160 1165	1170
gag aag acc ggg aag acc cag agc aag atc tcg	g tee tte ett aga cag 4388
Glu Lys Thr Gly Lys Thr Gln Ser Lys Ile Ser	r Ser Phe Leu Arg Gln
1175 1180	1185
agg cca gca ggg act gtg ggg gcg ggc ggt gag	g gat gca ggt ccc agc 4436
Arg Pro Ala Gly Thr Val Gly Ala Gly Gly Glo	u Asp Ala Gly Pro Ser
1190 1195	1200
cag tcc tca gga cct ccc cac ggg cct gca gca	a tot gag tgg ggo oto 4484
Gln Ser Ser Gly Pro Pro His Gly Pro Ala Ala	a Ser Glu Trp Gly Leu
1205 1210	1215
tag gatgtgccca gcctgccaca ccgcctccag gaagca *	agagc gtcatgcagg 4537
tettetggee agageeeag tgagtgeeea eggaggeeeagateacetge etgteeaget etggtgggee aagaaceeagatgeeaggeegggeeggggggggggggggg	c ccaacagaat aggccagccc 4657 g gggcccatgg ttggtccctg 4717 a gctaccttgg ggtctggggt 4777 c ctggcctgtg agtggtgcca 4837 g acccccgtgg gcacgtgtcc 4897

<210> SEQ ID NO:2

<211> LENGTH: 1219 <212> TYPE: PRT <213> ORGANISM: Homo sapien <400> SEQ ID NO:2 Met Pro Lys Ile Val Leu Asn Gly Val Thr Val Asp Phe Pro Phe Gln Pro Tyr Lys Cys Gln Gln Glu Tyr Met Thr Lys Val Leu Glu Cys Leu 25 Gln Gln Lys Val Asn Gly Ile Leu Glu Ser Pro Thr Gly Thr Gly Lys 40 Thr Leu Cys Leu Leu Cys Thr Thr Leu Ala Trp Arg Glu His Leu Arg 55 60 Asp Gly Ile Ser Ala Arg Lys Ile Ala Glu Arg Ala Gln Gly Glu Leu 70 75 Phe Pro Asp Arg Ala Leu Ser Ser Trp Gly Asn Ala Ala Ala Ala Ala 90 85 Gly Asp Pro Ile Ala Cys Tyr Thr Asp Ile Pro Lys Ile Ile Tyr Ala 100 - 105 Ser Arg Thr His Ser Gln Leu Thr Gln Val Ile Asn Glu Leu Arg Asn 120 Thr Ser Tyr Arg Pro Lys Val Cys Val Leu Gly Ser Arg Glu Gln Leu 140 135 Cys Ile His Pro Glu Val Lys Lys Gln Glu Ser Asn His Leu Gln Ile 150 155 His Leu Cys Arg Lys Lys Val Ala Ser Arg Ser Cys His Phe Tyr Asn 165 170 Asn Val Glu Glu Lys Ser Leu Glu Gln Glu Leu Ala Ser Pro Ile Leu 185 180 Asp Ile Glu Asp Leu Val Lys Ser Gly Ser Lys His Arg Val Cys Pro 200 195 Tyr Tyr Leu Ser Arg Asn Leu Lys Gln Gln Ala Asp Ile Ile Phe Met 215 Pro Tyr Asn Tyr Leu Leu Asp Ala Lys Ser Arg Arg Ala His Asn Ile 230 235 Asp Leu Lys Gly Thr Val Val Ile Phe Asp Glu Ala His Asn Val Glu 245 250 Lys Met Cys Glu Glu Ser Ala Ser Phe Asp Leu Thr Pro His Asp Leu 265 260 Ala Ser Gly Leu Asp Val Ile Asp Gln Val Leu Glu Glu Gln Thr Lys 275 280 Ala Ala Gln Gln Gly Glu Pro His Pro Glu Phe Ser Ala Asp Ser Pro 295 Ser Pro Gly Leu Asn Met Glu Leu Glu Asp Ile Ala Lys Leu Lys Met 310 315 Ile Leu Leu Arg Leu Glu Gly Ala Ile Asp Ala Val Glu Leu Pro Gly 330 Asp Asp Ser Gly Val Thr Lys Pro Gly Ser Tyr Ile Phe Glu Leu Phe 340 345 Ala Glu Ala Gln Ile Thr Phe Gln Thr Lys Gly Cys Ile Leu Asp Ser 365 360 Leu Asp Gln Ile Ile Gln His Leu Ala Gly Arg Ala Gly Val Phe Thr 375 Asn Thr Ala Gly Leu Gln Lys Leu Ala Asp Ile Ile Gln Ile Val Phe 395 390 Ser Val Asp Pro Ser Glu Gly Ser Pro Gly Ser Pro Ala Gly Leu Gly 410 405 Ala Leu Gln Ser Tyr Lys Val His Ile His Pro Asp Ala Gly His Arg 420

```
Arg Thr Ala Gln Arg Ser Asp Ala Trp Ser Thr Thr Ala Ala Arg Lys
                            440
Arg Gly Lys Val Leu Ser Tyr Trp Cys Phe Ser Pro Gly His Ser Met
                        455
His Glu Leu Val Arg Gln Gly Val Arg Ser Leu Ile Leu Thr Ser Gly
                   470
                                        475
Thr Leu Ala Pro Val Ser Ser Phe Ala Leu Glu Met Gln Ile Pro Phe
               485
                                    490
Pro Val Cys Leu Glu Asn Pro His Ile Ile Asp Lys His Gln Ile Trp
                               505
Val Gly Val Val Pro Arg Gly Pro Asp Gly Ala Gln Leu Ser Ser Ala
                           520
Phe Asp Arg Arg Phe Ser Glu Glu Cys Leu Ser Ser Leu Gly Lys Ala
                       535
                                           540
Leu Gly Asn Ile Ala Arg Val Val Pro Tyr Gly Leu Leu Ile Phe Phe
                                        555
                   550
Pro Ser Tyr Pro Val Met Glu Lys Ser Leu Glu Phe Trp Arg Ala Arg
                                    570
               565
Asp Leu Ala Arg Lys Met Glu Ala Leu Lys Pro Leu Phe Val Glu Pro
           580
                                585
Arg Ser Lys Gly Ser Phe Ser Glu Thr Ile Ser Ala Tyr Tyr Ala Arg
                            600
Val Ala Ala Pro Gly Ser Thr Gly Ala Thr Phe Leu Ala Val Cys Arg
                        615
                                            620
Gly Lys Ala Ser Glu Gly Leu Asp Phe Ser Asp Thr Asn Gly Arg Gly
                                        635
                   630
Val Ile Val Thr Gly Leu Pro Tyr Pro Pro Arg Met Asp Pro Arg Val
                                    650
               645
Val Leu Lys Met Gln Phe Leu Asp Glu Met Lys Gly Gln Gly Gly Ala
           660
                               665
Gly Gly Gln Phe Leu Ser Gly Gln Glu Trp Tyr Arg Gln Gln Ala Ser
                            680
Arg Ala Val Asn Gln Ala Ile Gly Arg Val Ile Arg His Arg Gln Asp
                                            700
                       695
Tyr Gly Ala Val Phe Leu Cys Asp His Arg Phe Ala Phe Ala Asp Ala
                   710
                                       715
Arg Ala Gln Leu Pro Ser Trp Val Arg Pro His Val Arg Val Tyr Asp
                                   730
               725
Asn Phe Gly His Val Ile Arg Asp Val Ala Gln Phe Phe Arg Val Ala
                                745
            740
Glu Arg Thr Met Pro Ala Pro Ala Pro Arg Ala Thr Ala Pro Ser Val
                            760
Arg Gly Glu Asp Ala Val Ser Glu Ala Lys Ser Pro Gly Pro Phe Phe
                        775
                                            780
Ser Thr Arg Lys Ala Lys Ser Leu Asp Leu His Val Pro Ser Leu Lys
                   790
                                        795
Gln Arg Ser Ser Gly Ser Pro Ala Ala Gly Asp Pro Glu Ser Ser Leu
                                    810
Cys Val Glu Tyr Glu Gln Glu Pro Val Pro Ala Arg Gln Arg Pro Arg
                                825
            820
Gly Leu Leu Ala Ala Leu Glu His Ser Glu Gln Arg Ala Gly Ser Pro
                            840
        835
Gly Glu Glu Gln Ala His Ser Cys Ser Thr Leu Ser Leu Leu Ser Glu
                                            860
                        855
Lys Arg Pro Ala Glu Glu Pro Arg Gly Gly Arg Lys Lys Ile Arg Leu
                                        875
                    870
Val Ser His Pro Glu Glu Pro Val Ala Gly Ala Gln Thr Asp Arg Ala
                                    890
                885
Lys Leu Phe Met Val Ala Val Lys Gln Glu Leu Ser Gln Ala Asn Phe
```

Ala Thr Phe Thr Gln Ala Leu Gln Asp Tyr Lys Gly Ser Asp Asp Phe

```
925
       915
                           920
Ala Ala Leu Ala Ala Cys Leu Gly Pro Leu Phe Ala Glu Asp Pro Lys
                                          940
   930
                       935
Lys His Asn Leu Leu Gln Gly Phe Tyr Gln Phe Val Arg Pro His His
                                      955
945
                   950
Lys Gln Gln Phe Glu Glu Val Cys Ile Gln Leu Thr Gly Arg Gly Cys
                                                    . 975
               965
                                  970
Gly Tyr Arg Pro Glu His Ser Ile Pro Arg Arg Gln Arg Ala Gln Pro
                              985
           980
Val Leu Asp Pro Thr Gly Arg Thr Ala Pro Asp Pro Lys Leu Thr Val
                           1000
                                              1005
Ser Thr Ala Ala Ala Gln Gln Leu Asp Pro Gln Glu His Leu Asn Gln
                       1015
                                          1020
Gly Arg Pro His Leu Ser Pro Arg Pro Pro Pro Thr Gly Asp Pro Gly
                                      1035
                   1030
Ser Gln Pro Gln Trp Gly Ser Gly Val Pro Arg Ala Gly Lys Gln Gly
                                  1050 -
                                                     1055
               1045
Gln His Ala Val Ser Ala Tyr Leu Ala Asp Ala Arg Arg Ala Leu Gly
                             1065
                                                  1070
           1060
Ser Ala Gly Cys Ser Gln Leu Leu Ala Ala Leu Thr Ala Tyr Lys Gln
                          1080
                                              1085
       1075
Asp Asp Asp Leu Asp Lys Val Leu Ala Val Leu Ala Ala Leu Thr Thr
                      1095
                                          1100
   1090
Ala Lys Pro Glu Asp Phe Pro Leu Leu His Arg Phe Ser Met Phe Val
                                      1115
                  1110
Arg Pro His His Lys Gln Arg Phe Ser Gln Thr Cys Thr Asp Leu Thr
                                  1130
                                                      1135
               1125
Gly Arg Pro Tyr Pro Gly Met Glu Pro Pro Gly Pro Gln Glu Glu Arg
                                                  1150
           1140
                              1145
Leu Ala Val Pro Pro Val Leu Thr His Arg Ala Pro Gln Pro Gly Pro
                                              1165
                          1160
       1155
Ser Arg Ser Glu Lys Thr Gly Lys Thr Gln Ser Lys Ile Ser Ser Phe
                                          1180
   1170
                      1175
Leu Arg Gln Arg Pro Ala Gly Thr Val Gly Ala Gly Gly Glu Asp Ala
                                      1195
               1190
Gly Pro Ser Gln Ser Ser Gly Pro Pro His Gly Pro Ala Ala Ser Glu
                                  1210
               1205
Trp Gly Leu
<210> SEQ ID NO:3
<211> LENGTH: 114793
<212> TYPE: DNA
<213> ORGANISM: Homo sapien
<400> SEQ ID NO:3
                                                                     60
tgaagagett tgaccaagag getgtgacga ggccctacga ggactetgge tetecteetg
ctaagcacac ccaggcaggt gtcctggcag atgaggacca catgcagagc ctcggccagc
                                                                    120
ccaccaatgc ccggatatgc aagtgagccc agcctggacc ccccggcgag gcccagcagc
                                                                    180
accageceag geoegaaaac ettaagaaat gaccagtgte tgetgettta agecaccaag
                                                                    240
ctctgcggtg gtttgttagg ctgcaagcat ggctaattca gaaactgcca gaaacaagca
                                                                    300
                                                                    360
ctgctgtccc cagcctggga cacacagcac cgcctctgcg tggggagagg gcacaggcta
agggcacaaa tgccatccca gacccggctc ttgtgtgtgg aaggggccac tgtgccatga
                                                                    420
ggcagaggaa accttggcag gaccttatgc cacagcaatt taaaagagaa gaaacaggct
                                                                    480
gggcgtggtg gctcatgcct ataatcccag cactttggga ggccaaggtg gtggatcact
                                                                    540
                                                                    600
tgaggtcagg agttcaagac cagcctggcc aatatggtga aaccctgtct ctacgaaaaa
tacaaaattt aggcaggcgt ggtggcgggt gcctgtaatc cctgctattc aggaggctga
                                                                    660
                                                                    720
ggcaagagat ttacttgaac ccaggaggtg gaggctgctg cagtgagctg agatcatgcc
780
```

-						
atctgactag	tgtgatctcg	caaggaacat	tccagacaca	gtggagctag	aaggttcttc	840
tccaaacaag	gaatccccag	gggatcaaat	tgttttgcat	cggccagaca	tggtggctca	900
agcctgtaac	cccagtgctt	cgggaggctg	aggtgggagg	actgcttgag	tccaggagtt.	960
caagactagc	ttgggcaaca	cagtgagagc	ccattagcca	ggcgtggtgg	cacatgcctg	1020
cagtcccagc	actgtactaa	aaatctacac	ggggccgggc	atggtggcac	atgcctgtag	1080
agtcccagct	actcaggagg	ctgaggcagg	acgattcctt	gaacccagga	ggtcacggct	1140
				aacagaacga		1200
-				tggcaaaaga		1260
gtaaaaaatg	gttctgaccc	acagaaatct	aagaaaggaa	aaaatataaa	aaatagaaaa	1320
				ctatggttgt		1380
-				gccaccctgc		1440
				ccgtcctgtc		1500
				ttcaccagtc		1560
				gatgtggcca		1620
				aaatgtcatt		1680
				agtcttagct		1740
				agaagtgagc		1800
				aggcctccag		1860
				tacctgtgcc		1920
				caggtccttg		1980
				gaaccacgaa		2040
				taagttttgg		2100
				tetgttgece		2160
				ggattcacgc		2220
				ttgggtgttt		2280
				gaacttggca		2340
				aagatgtgag		2400
				gcaaagctaa		2460
				gggacaccag		2520
				ccgtcactgc		2580
				acgaagacaa		2640
				tttgagactg		2700
				ctgtaacctc		2760
				caggcgcccg		2820
				atgttggcca		2880
				gtgctgggat		2940
				gtacttaatg		3000
				gcgacatgtt		3060
				ggaggggag		3120
		-		ccgccctgca		3180
					ctaggtgccg.	3240
					ataagaatag	3300
				atcattcatc		3360
				taagcataac		3420
				ataggagctg		3480
				atgcctggac		3540
				gacgcccgtt		3600
				cgctacttag		3660
				ctactcctcc		3720
				aggcctaacc		3780
				tgttccatcc		3840
				ctgaaagtct		3900
				tctctgcctc		3960
				gaccttacct		4020
				aataaatagc		4080
				gtccccagg		4140
				ctctcatctc		4200
				tggctttgta		4260
				aacccagcaa		4320
				aaagagactt		4380
				caacttggac		4440
	23				-	

WO 01/42434

	tttaaaaaa		FOOTETEE	+++++++	gagaggatet	4500
				tttttttga		
				gctcactgca		4560
ctctcaggct	caagcaatcc	tcccgcctca	acctcccatg	cagctgggac	cataggtgca	4620
				cgaggtttca		4680
				ctcagcctcc		4740
202552	cagagggag	caccetace	caacatagga	agaaatttaa	atttgaattg	4800
				aagatcatta		4860
aaccagaatg	gaagctgtgt	gtacagtggg	gtctcatgct	gggaacgcga	ggggcacgtg	4920
cagggctcca	cggtgtggcg	acgccccatg	ctccctttgt	gggggttcat	ccagcggaac	4980
atgaggacct	gagatacttt	tcaacatgta	cataaattta	ataataaaaa	ggtttaagga	5040
aagaaaaatt	catatotttc	tatataaaca	gaacatctgg	aaagatctat	totaaggtgt	5100
tasasatsaa	aatchataaa	tagtagtaat	atacactttt	tgaatttttg	cttatcacta	5160
						5220
				gaaataattt		
				gctgtacaaa		5280
aaatggcaaa	ttagacacac	acatgtgggc	cgggtacagt	ggctcgcgcc	tgtaattcca	5340
				ggagtttgag		5400
ccaacatggt	gaaaccccgt	ctctactaaa	tatacaaaaa	tgagctggat	gtggtggcac	5460
				aattgcttca		5520
						5580
				gcctaggcaa		
actccaactc	aaaaaaaat	aaaaataaca	cacacgtgaa	taggctcctc	acggaagtca	5640
tcacaacaat	gcagagggaa	gagcttccaa	agtgtaaacc	cagaagcgag	gagcaggagg	5700
gtgcgcgcag	acgcagagag	cagcaaggtg	cagactgaga	ggcggaggct	ggccgtgggg	5760
agatgactga	toctcaottt	ataccccaaa	tccgtaaatc	tagaggcctg	gcacatcaac	5820
tacctctqcc	agcaggaatg	agggaaagga	gggcaaccaa	aagatgtccc	acceteacce	5880
atccagetac	ctaccatact	caccccact	dacadaadac	cctgagaggt	adaddcaddc	5940
acceagerac	ctyccatctt	cageceeace	ggcagaagac	cctgagaggt	ggaggcaggc	6000
ccctgcctac	aggaccctga	gagccagggg	aaggcgctac	cctgaactgt	geeeeegea	
aaattcatat	gttgaaggcc	tcatccccag	tgtgactgta	tttaaagatg	gggtcttcag	6060
gagataattt	aaatgaggtc	atataagttg	gccctcatcc	agtaagactt	tgaccttctg	6120
gtggttttt	tttttttgga	gactgggtct	cactctatca	ctcaggttgg	agtacagtgg	6180
cacgatcacg	gctcactgct	gtctccaact	cctgggctca	ggtgatcctc	ctgcttcagc	6240
ctcctgagta	getgggaeta	caggractta	ccaccgcacc	cagctggtgg	tocattotot	6300
tttttataa	getgggatta	taccatata	cccaaactaa	tcctgaactg	aactcaaata	6360
cttttgtaga	gatggggttt	tyccatytty	cccaggeegg	tateagaactg	saccatage	6420
atctgtctcc	ctcggcctcc	tgeagtgetg	gaactacagg	tatgagccac	cycyccigyc	
cgaccgtgac	cttctaagaa	gtgaaagaga	aagatctttc	tctctccctc	cctctccatc	6480
atgaggacac	agcaagaagt	cggccatctg	caaggtagaa	agcgagtcct	cccaacagct	6540
gaacctggca	gaccctgatc	ttggacttca	gccttcagag	ctgtaagaaa	ataactctct	6600
actattcaga	ccacacaatc	tacqqcaqcc	cgagcagact	aagacacacg	ccatctgggg	6660
agtcagacca	gatcaggaag	aaaggcctag	agctcaggat	actgaaggtc	ccaacccggt	6720
				cggctcgggt		6780
						6840
ggacaccatc	ccggcagccg	eggecaegga	greacygere	gggtgaggtg	acciggacac	
catcccggca	gccgcggcca	cggtgtcacg	gctcggatga	gatgactcgg	acaccacccc	6900
ggcagccgcg	gccacggtgt	cagggctcag	gtgaggagag	ttggatatgg	gactgggcct	6960
accccgaggc	tgcttccacc	cagacgcctg	ggtgggtgac	acgaaagctg	ggctcagttg	7020
ggatcagagc	agcctctccc	caggtcagaa	atgaccctgg	gctcctcaca	gtagccctag	7080
ggcaccatga	gaaagctacg	tggacttctc	tgaccaaggg	tcactgctgc	cacactactc	7140
attacaaacc	atatcadaac	tcagctgagg	agacgtggac	accaccccag	cageegege	7200
accycagycc	acgccagggc	ccagccgagg	tacatatata	ggcaagagtg	aggegegge	7260
cacggegeee	caagggaggg	accugggcac	cyceccec	ggcaagagcg	gggaggcgcg	7320
gggcgggaga	tgtctggaaa	catcatggac	acatgeeggg	aaaacacgga	agetgtgeae	
caaggtgctg	acaaaggaaa	aaggagaatg	gaggtgtgaa	catccagcta	gcaggtccca	7380
ctcagaaact	cctgcatttc	cagacatggc	caccagctct	gtggatgaga	caggggagga	7440
				tgctctgtga		7500
				cgggtccaac		7560
303000000	3303330003	ggaaggaact	cadddccadd	tcctcccagg	carcarcter	7620
					cagtctagag	
				tcagtgatat		7740
catgaagatg	ccacacatga	gacacagcaa	ggatgagacc	aacgggaaga	ctgccccaga	7800
				gcagcctggg		7860
				gacaccggct		7920
				aaaacaaagc		7980
						8040
				acatctggta		8100
gaagaaaaca	ctcacagttt	catyaagact	yccaagaaaa	tcactgactc	ECCACTECAT	9100

ttatgaaagg	ccagctctct	gacatcccta	ccactccctc	tcacatgaga	aatcacggcc	8160
			ggtacgggag			8220
gggtcttctg	gtccccgtgc	catttctgct	tttcttcgct	ctctacttac	acacacattt	8280
gagtccagtc	tcagaagaac	tggaactaga	aaaatcctga	cacttgtccc	ttactacgtt	8340
aatgccagct	gtgccaagga	cagcccaacc	caagccccca	tcagccccaa	tggcaccgag	8400
			gtcgtcacca			8460
			gttgtcacaa			8520
			cggaagggga			8580
			caaggcaggg			8640
			catctctaat			8700
			acgagcggca			8760
			cacccgtttt			8820
			tccacgtggg			8880
			gacgcaggct			8940
atctctccta	acctaaacta	aaaaccaacc	ccaatccctg	aactgagttt	caggtgcaga	9000
aagcactcca	agaagteete	actactat	ggaacgggaa	gggaaaccca	ttcaagacag	9060
aagcacccca	agaageeeee	ctaggttttt	ttgggttttt	gggtttttt	tgagacggag	9120
tetegeteta	tegeceage	tagaatacaa	tggcacgacc	traactcact	gcaageteca	9180
cctcctcccg	tcaactcatt	ctcctccctc	agcctctcca	attoctogga	tracaggett	9240
ceceetggge	cccagcgatt	teteaaacte	ctgacctcag	grantcact	cacctcggcc	9300
taccatgity	ctcaggctgg	aggtgtgagg	caccatgcct	gagatacaca	gggtttaaaa	9360
attattatta	ttttatatat	agginging	cattaggee	gtccaacccc	toctasaacc	9420
actactacta	gastatasta	accesses	ccttcagcaa cttggagaca	gaccaatctt	cctcctgact	9480
cygtyataat	tagagagaga	gcccaaaaag	tccctgttgc	cctctcactc	tccatcccct	9540
adayyaatgy	cggcccaaga	gracegagge	trtccaccca	gagggaaagg	agectggagt	9600
acctagcaca	gggaacacaa	aagcccccgg	tttccagcca	agggcaacg	ageceggage	9660
cagagigigg	gggaggcgac	aayayyayay	gggagaagag	ctgaccctaa	acageegege	9720
grgagegeer	gggtegteec	aayacaytct	ctacgtggtc	cagategge	ccantancac	9780
gaagaaaact	gacctacagg	acagyccacc	gcccaggtct	taaactggcc	taagaagaga	9840
atatgggaca	gatecacage	gcactygaaa	gtctctaaaa	caaactggcc	ttetteetat	9900
			ctgaacctaa			9960
gaaaaaaaa	agtetacatt	ccctytyaaa	cttaaaacaa	gacctagage	ccatagcaca	10020
gtagtcaaag	catccagaac	acyatcadac	ttcctggcaa	agggtagtct	ggetgaetee	10020
caaaggaaca	aatacacaag	agaagetgge	tcttgaacgc	agaatttaga	gacticagg	10140
tgctatcgga	ccagctccaa	gaggaaagca	aacattgtca	accaagegga	aayaaaattt	10200
tggtatagaa	acaggagtta	taaccaaaca	gaaatgtgaa	aaccaaaaac	gacaaccaaa	10260
agaaaataca	caaagccggg	atageeccag	ctactcggaa	ggcggggccg	gaggaccgcc	10200
tgagcctagg	agattgaggc	tgcaatgagc	tgtgatcaca	ccaccgcact	gaagtgagg	10320
caacagagtg	agaactctct	caaaaaacya	aaaagaaaga	adytayaata	tatatttaaa	10380
ggggctgggg	gagggagtac	agggagttgt	tctttaatga	gracagaarr	tagatattat	10500
atgatgaaaa	getetggaaa	tggacggcgg	tgatggctgc	acaaccaccy	ataataaa	10560
gaatggtgtt	gaaccacaca	tttaaaaata	gttaaaatgg	gergggegeg	graggereacy	10620
cctgtaatcc	cagcactttg	ggaggcggaL	cgcctgaggt	cayyayııcy	agactatte	10680
ggccaacaca	gtgaaateet	gictigacia	aaaatactaa	aaactaycca	tassecesara	10740
caggcacctg	tagtcccagc	caccegggag	gctggggcag	gagacctgct	caacacaag	10800
			ccactgcact			10860
gaaactccat	ctcaaaaaaa	aaaaaaaaa	aaaaaaaaa	adytttadaa	tagaatgagt	10920
ccatgctatg	tatattttac	cytaataaaa	acactgtaat	gccaccacaa	agaacgacc	10980
cattaggatt	agatatagac	tagaaagtac	agaatataaa	addittitaa	acadagadaa	11040
attttcatgg	ccaggcatgg	tgtcacacct	gtaatcccag	gactttggga	ggccaaggca	11100
agaggaatgc	ttgagctcag	gggtttgaga	ccagcctggg	caacacagca	acaccccate	11160
tetgetaaat	aaataataaa	aaacagccag	gcatggtggt	gtgtatgtt	gtagttgcag	11220
ctactctgga	ggctgaggca	ggaggatcac	ttaagcccag	gaggtcaagg	ctgcagtgag	
ccatggttgt	gccactgcgc	ccagcctgg	gcaacagatc	aayaccttgt	cacaaaaaaa	11280
agaaagaaag	aaaagaaaaa	agaaagaaaa	taaaatcttc	cagaacttt	aaaatcatca	11340
ttgttaatat	aaaaataaca	tcacctgccc	ctaggactgt	aacaaacaag	tgtgtctaag	11400
gacaggagtg	ggtccacccc	aacctggcac	gcagtggtcc	cctgcggaga	gtctggccct	11460
gcactcacta	agaggaggca	ctcatagccc	agccaggcct	ctgcaattat	gccttcaatg	11520
			gatcacaaaa			11580
ttcttgctaa	atcttactca	accgacattt	tccagcatgg	gaacatttt	ctgaatgtct	11640
tagggagagg	aagtccgcaa	gagaacaaaa	ggtcctcagg	ccaccctagc	ttetttteet	11700
ccattccaca	ggctgtcttt	tgtctgggta	tgcactggac	cagggggctc	tacttcttcc	11760

tacctgggca	tgggtctcca	cacaactcca	aggtaaaggg	ccacaggcaa	gataaagggg	11820
		cctgggccac				11880
		aggaaccaag				11940
		aagacccatt				12000
					cagcctggcc	12060
		cggacggtga				12120
	•					12120
		agcccagaga				12240
		atctaaacac				
		tttcaggagg				12300
		aaaattttta				12360
-		taaatggtgg				12420
					ggcatcaggg	
		atgcttttta				12540
		tatttctcaa				12600
		aataaagaac				12660
		cacttgtaat				12720
		aagaccagcc				12780
aaaaatacaa	aaattagccg	ggcgcggtgg	caggtgcctg	taatctcagc	tacttgggag	12840
		tgaacctggg				12900
		tgacagagtg				12960
taaaatttta	ctcaggccag	gtgtggtggc	tcacgcccat	aatcctagca	ctttgggagg	13020
ccgaggcgag	cagatcacct	gaggtcagga	gttagaccag	cctggccaac	atggtaaaac	
cttgtctcta	ctgaaaacac	aaaaattagc	tgggcgtggt	ggtgtgccca	tgtaatccca	13140
gctactcagg	aggctgaagt	gagagaactg	cttgaacccg	ggaggcagag	gctgcagtgt	13200
gccaagactg	caccactaca	cttcagcctg	ggcgacagag	caagaccctg	tctcagaaaa	13260
aaaaaaaatt	caaaaatttg	gccaggcgtg	gtggctcacg	cctgtaatcc	catcactttg	13320
gaaggccgag	gcgggtggat	cacctgaggt	caggaattca	agaccagcct	ggccaccatg	13380
		aaaatacaaa				13440
gcgggtgcct	gtaatcccac	ctacttggga	ggctgaggca	ggagaatctc	tcgaactccg	13500
		ccaagattgt				13560
		aaaaaattaa				13620
		cttctcgggg				13680
		ggcaactaaa				13740
		ggtcctcgtc				13800
		aattccagcc				13860
		ctcgctctgt				13920
		ctcccgggtt				13980
		caccaccacg				14040
		caggacagtc				14100
		gattacaggc				14160
		caatatgcac				14220
		gacacagaag				14280
		acccctcct				14340
		cccaggctgg				14400
		agtgattctc				14460
caggcaccca	acacgcctag	ctaatttttg	catttttggt	agagacgggg	tttcatcatg	14520
ttggccaggc	tggtctcgaa	ctcctgacct	ccagtgatcc	tcccaccttg	acctcccata	14580
		agccactaca				14640
		ttgatcccaa				14700
		tcagatatga				14760
gagacgcaat	cttactccat	cacccagget	ggagtgcaat	ggcaccatct	ccactcactg	
		caagcaattc				14880
		cccggctaac				14940
		tcaaactcct				15000
		gtgagccatc				15060
						15120
		tcaacactga				15120
		gttcaacaga agataacatg				15240
						15300
		acaccaccat				15360
		cctgtggggt				15420
greecagrag	ggtgatccct	gcgggtcgcg	ccccigcgag	Legggegeet	geegggegge	13420

ccctgcgggt	cgggtgcctg	cggggtggtc	cctatgggtc	gcgtccctgc	gggtcgggtg	15480
				ggtgcctgcg		15540
tggggatcgc	gtccctgcgg	gtcgggtgcc	tgcggggtgg	cccctgggga	tcgcgtccct	15600
gcgggtcggg	tgcctgcggg	gtggtccttg	tgggtcgcgt	ccctgtgggg	tggtccctgt	15660
gggtcgcgtc	cctgtggggt	ggcccctgcg	ggtcgcgtgg	tggcccctgc	gggtcgggtg	15720
cctgcggggt	ggtccctgtg	ggtcgcgtcc	ctgcgggtcg	ggtgcctgcg	gggtggtccc	15780
tgcgggtcgc	acccctgcgg	cgtggtcccc	ccgggatggg	tccaccgagg	aggccgctgg	15840
				aggaagcgcc		15900
				gcctgacgcc		15960
				cgtcctgacg		16020
				ctcgccgcgg		16080
				cttaggcacc		16140
				ggccgcgggc		16200
				cctagtgacg		16260
				tggcgctcgc		16320
				gtgcgcggac		16380
				ccggtcgggc		16440
				ggacggcgcc		16500
				cgggcgctcc		16560
				ggcggacgcc		16620
				gaacatgcca		16680
				ggagcggccg		16740
				cccgatccta		16800
				acccacccca		16860
taacaccccg	gtcccaccgc	tgtcccacgg	ccggcacccc	gatcccaccc	cagtcccgca	16920
gctggcaccc	cgatcccacc	ccagcccaac	agctggcacc	caccccgatc	ccaccgctgt	16980
cccacagccg	gcaccccgat	cccaccccag	tcccgcagcc	ggcaccccga	tcccacagcc	17040
ggcactcacc	ccgatcgcat	agcatagctg	ataccccgat	cccaccccag	tcccatagcc	17100
agcaccccga	tcccacccca	gtcccatagc	cagcacctcg	atcccataga	tgacaccccg	17160
				gagtcccgca		17220
				cggatccggc		17280
				tgttttattg		17340
gggctggctc	tgttggcctc	tgtgctgggt	ttcttcctct	gcaccgcagg	actggctctc	17400
ctgacctctc	caggtgtcat	cgaacaccct	tgtgcttgct	gtcacccgct	gcctgtctgc	17460
				aaaataggaa		17520
				ggagggctct		17580
				ggctgtaatt		17640
				gtgaggaaaa		17700
aaaattagat	tggccgagtg	cggtggctca	tgccttttac	ctcaacactt	tgggagacaa	17760
aggtgggagg	atcacctgtg	gccaggagtt	caagaccagc	ctgggcaaca	gagcctgtct	17820
				ctactatttt		17880
				ctgagtttgc		17940
	_	_		gaggggggcc		18000
				gaggtcggcc		18060
				agacaaactg		18120
				ataacttagc		18180
				caaatttagg		18240
					tgaggccagg	18300
				aatgcaaatg		18360
				ggcgggcaga		18420
				tctctactaa		18480
				actcgggagg		18540
				gagatggcgc		18600
				ataaataaaa		18660
				tcactccgcc		18720
				gctgttctgg		18780
				acacctgaaa		18840
				cctgcctccc	_	18900
				agggcacctc		18960
				ccctttgct		19020
gctcacagat	cccaggggtt	ayyargtgaa	Latettggge	agggctgtgg	ggggctatt	19080

cttccttcta	aaatatttat	catttttgtt	ttggggattt	ttttggtttg	gttttttttg	19140
				gtgcaatctc		19200
				ctgtttttgt		19260
tttgttttgt	ttttgagatg	gagtctcggc	cgggcgcggt	ggctcacgcc	tgtaatccca	19320
gcactttggg	aggccgaggc	gggcggatca	cgaggtcagg	agatcgagac	catcctggct	19380
aacacggtga	aaccccgtct	ctactaaaaa	tacaaaaaat	tagccgggcg	tggtagcggg	19440
cgcctgtagt	cccagctact	cgggaggctg	aggcaggaga	atggcgtgaa	cccgggaggc	19500
ggagcttgca	gtgagccgag	atcgcgccac	tgcactccag	cctgggcgac	agagcgagac	19560
tccgtctcaa	aaaaaaaaa	aaaaaaaaa	aaaaaagag	atggagtctc	actttgtcac	. 19620
ccaggctgga	gtgtagtggc	gggattatag	gtacgcgcca	tcatgcccag	ttactttttg	19680
				tggtctcaaa		19740
caggtaatcc	acccgcctca	gcctcccaaa	gtgctgggat	tacagacgtg	agccaccgtg	19800
tctggccata	tttattaact	acaaagggaa	agatgataat	tttttttt	gagatggagt	19860
				tggctcactg		19920
				tagctgggat		19980
				cggagtttca		20040
gaggctggtc	tcgaactcct	gaccttgtga	tetgcccacc	teggeetece	aaagtgctgg	20100
gattataggc	atgagccact	gcaaccggct	gaaagatggt	aattttaaag	tagagaaact	20160
gggttggctg	ggcatggtgg	cttatgcctg	taagctcagc	actttggaag	tccaaggcaa	20220
gaggatcgct	tgagtccagg	agtttgagac	cagcctggac	aatatagcaa	gaccccatct	20280
				cctgtagtcc		20340
				aggctgaagt		20400
				gtctccaaag		20460
				gggaggccga		20520
ttcgttgagg	tcaggagttc	aaaacgagcc	tggctaaatg	gtgaaacccc	gtctctacta	20580
aaaatacaaa	aaaattagcc	aggcatggtg	acgggcgcct	gtaatctcag	ctacttggga	20640
				ttgcagcgag		20700
gccactgcac	ttcagcctgg	gcgacagagc	aagactgtct	caaaacaaaa	caaaagaatc	20760
ttgagtcctg	agttcctcta	agggaaattc	caggcacctc	gccacccttg	acaggcaaag	20820
gaacaatctg	atgaggaaga	agatagaaac	agcttaaaca	atagtctccc	ggccgggggc	20880
agtggctcac	gcctgtaatc	tgagcacttt	gggaggccga	ggcgggtgga	tcacaaggtc	20940 21000
aagagatcaa	gaccatcctg	gctaacatgg	egaaacccccg	tctctactaa	adalacada	21060
aattagccgg	gcgtggtggt	gggtgcctgt	agteceaget	actcgggagg	ctgaggcagg	21120
agaatggcgt	gaacccagga	ggcggagctt	teagtgaget	gagatcgcgc	taggtaggta	21120
cageetggge	gacagageet	cgagactcca	tagangata	aaaaaaaaat	atcacttasa	21240
				aggcaggaga		21300
cetgggagge	ggaggitgia	gggagetgag	accycaccac	tgcactccag aaaacaatag	teteceaact	21360
				aaaatataac		21420
addicagage	cataaggtgt	agaaacttgg	acatccacca	ggtggaaaat	actaaactaa	21480
daacactccc	tataatttca	agatactegg	aggccaaggt	ggaaggatca	cttgaggcca	21540
gaacagegge	accadected	ccaacatggt	gaaaccccgt	ctctagtaaa	aatacaaata	21600
ttagctggg	ataataataa	aacctgaaat	cccagctact	tgggagacct	agctgggagg	21660
atcocttgaa	cctggtagga	ggagtttgca	gtgagctgaa	attgtgccac	tgcactctag	21720
cctgggcaac	agagtgagac	tctgtctcaa	aaaataaata	aataaaaga	gaaaaaagtg	21780
				caacactttg		21840
atgggcagat	cacctgaggt	caggagtgca	agaacagcct	ggccaacatg	gtgaaacccc	21900
atctctacta	aaaatacaaa	agttagctgg	gtgtgtacat	gtagtctcag	ctacttggga	21960
agctgaggca	ggagaatctc	ttcaaccggg	gaggtggagg	ttgcgatgag	ctgagatcac	22020
gccaccacac	tccatccagc	ctgggtgaca	gagtgagact	ccatctcaaa	gcaaaaaaag	22080
				ggttgaggta		22140
cctgtcatgt	aaaagaaaac	gagccgactc	tgtgtctact	ggagaaagca	ctgcatatat	22200
cagccacagt	caatacctcg	cttctgcagg	gacggtggct	gccagagtgg	gaggctttgg	22260
				tggggtcttg		22320
				tactataata		22380
				ctttgagaca		22440
ctcgtcaccc	aggctggagt	gcaatggcgc	gatcttggct	cactgcaacc	tccacctcct	22500
				gggattacac		22560
ccaggcctga	cttatttttg	tatttttagt	agagacaggg	tttcaccaag	ttggtcaggc	22620
tggtcttgaa	ctcctgacct	caggtgatcc	acccacctcg	gcctcccaaa	gtgttgggat	22680
ttcaggcata	agccaccagg	cccagccttt	ctttcttttt	aaaattaatc	tttgtttaaa	22740

aatactctca	ttttttattt	aattgtagca	ctcctagatc	ccgaaagcag	atacactctt	22800
gttatgggtc	tgattctttt	cattgcttca	cgccttagag	gatattgtcc	aatactggat	22860
aaaagtttac	tcaggtctac	ttccacttta	acggggatgg	ctgaatatct	cttccacttg	22920
gctgtttgtt	tataatgaac	tgacaaacat	acaaattttc	ttgagttctg	tgagacattc	22980
	tctaacctga					23040
	taagtggctc					23100
	cttgtaattt					23160
	tatattggac					23220
	attttatgtc					23280
						23340
	ctgtcatccc					23400
	ccatcctggc					
	tggtggcgcg					23460
	cccgggaggc					23520
	agagcgagac					23580
	tacactttaa					23640
gagctttgaa	gtaagaataa	caattttgcc	attgtgcccg	ggccaagaaa	aaaaaaagaa	23700
ttttgccatt	gtgaaaggct	tcccagtact	ttctgatgag	cttgacggtg	atattaacaa	23760
ataactttt	tttttttt	ttgagatggg	gtcttgctct	gtcacccagg	ctggagtgca	23820
	ctcagctcac					23880
	agtcgctgga					23940
	atggggtttc					24000
	acctcggcct					24060
	ggcctcttgt					24120
	aaaaaaggtt					24180
	aaaaaaattt					24240
	actagaaata					24300
	ggctgggtgg					24360
						24420
	ccacctcagc					24480
	ttgtatttt					
	gctcaagcaa					24540
	gcacccggct					24600
	cccaggaaac					24660
	acttgtggtt					24720
	cacgagtgca					24780
acttgtgccg	tatccccacc	tgctttgctg	gacacccctg	tttggggggc	acccactgct	24840
gccccagaca	ccaagcaagc	accagctgtg	tccaaaactt	acagtcactg	tcttggcccg	24900
ttttgtgctg	ctgtaacaga	atgccacaga	ctgggtaatt	taatacagaa	cagaaattta	24960
tttcctcaaa	gttttggagg	ctgggaagtc	caagagcaag	gggccatcag	gtcagggcct	25020
ggtctctgct	tccacgatgg	caccttgacc	accgtgtcct	cacgtggtca	gagagagccc	25080
	gcccttttaa					25140
	ggaggtgaca					25200
	aatacgttca					25260
	ggccaaggtg					25320
	aaaccccatc					25380
	tactcgggag					25440
	cgagatcatg					25500
	aaaataaaat					25560
	tacttgggag					25620
	ctgagatcac					25680
	gtaaaataag					25740
						25800
	caaggcggtc					25860
	ccgtctctac					
	agccgggcat					25920
	tcgcttgaac					25980
	ctgggcgaca					26040
	gttcacaaat					26100
ctcctaagca	tgagtcttct	cagtgactca	cttctaacag	cagaacttac	atggttcccc	26160
acacccagag	gacattgggt	tcctcccaat	atcccccac	ccagcgaccc	ccacccaggt	26220
cgctggcttt	gggtccccca	gagccatgtt	tcaaggacac	tcaggcagcc	cctggatgtc	26280
catgtggtaa	ggaatgaagg	cctcctgcct	gcagcctcgg	gagggagcat	tctcagaaga	26340
	cctcctgccc					26400
-			*			

caacatcatg	agagactccg	agccagaaac	ccccaggttt	tgtactcctg	acttatggga	26460
	aatgttcgtt					26520
aacagctctg	tetggcctcc	caggaggagc	ctgcctttcc	ttttcttcat	gggaaaagtg	26580
	gtgaaggaat					26640
	ccatctgccc					26700
ttgcgggagg	ccaaggccca	catatatta	tatataatat	ctgtgtctgc	gtgcccatgc	26760
	tacagggatg					26820
tatctatata	cccaggatac	agggatgcta	tatacaaact	ctattttttc	attttttt	26880
ttttgagaca	gagtcttgct	gtttcgccca	ggccggactg	cagtggcgct	atctcggctc	26940
actocaaget	ccacctcccg	gattcacacc	atcotcotgo	ctcagcctcc	tgagtagctg	27000
gaactacagg	cgcccgccac	cacacccaac	taattttttg	tatttttagt	agagacgggg	27060
tttcaccata	ttagccagga	taatcttaat	ctcctgacct	cgtgatccac	ccacctcaac	27120
ctccaccacg	gctgggatta	caggeetgae	ccaccacaca	tggcctacaa	acretttett	27180
tttttt	tttttttga	gatggatgag	cactetete	caggetagaa	tacaataata	27240
ccatctcccc	tcactgcaag	ctccacctcc	caattcata	ccartctcct	acctcaacct	27300
cgattttage	tgggactaca	cccaccicc	accacaccaca.	cctaattttt	tatattttta	27360
cccaagtage	ggtttcacca	tattagggag	gatgateteg	arctcctcac	ctcataatcc	27420
						27480
	gcctcccaaa					27540
aaactctttc	aatgtctttc		cctgccatct	tagaaragat	agattttttt	27600
tgtctctacg	tcttccccag	etgagteega	ggteetgact	gcccacgcc	ctacagacta	27660
gaggagaggt	gatagcaaga	gctccttcaa	gcccaggaac	gccaccaggg	ctgccccggg	27720
agaggaggaa	gctgggtctc	teggggttgt	ggggaccaga	caccetteta	agacatggac	
tcagcacaga	aagtctagac	atccactaca	aacacatctc	ccccctaaca	gggggccccc	27780
gggcacccca	agtggctgtt	tggtgggaca	ggcatgtcca	tcagtcagaa	tatetttatt	27840
ttttatttt	tatttttat	ttttgagaga	gtttcactgg	agtgcaatgg	cacgatetea	27900
	acctccgcct					27960
gctgggatta	caggtgtgag	ccaccacacc	cagctaattt		tttttgagat	28020
ggagtctcga	ggctctgtcg	cccaggctgg	agtgcagagg	cgcgatctca	gctcactgaa	28080
agctccgcct	cctgggttca	cgccattctc	ctgcctcagc	ctcccgagta	gctgggatta	28140
caggcatgag	ccaccgcgcc	cggccaattt	tgtattttta	gtagagacag	ggtttcacca	28200
tgttggtcag	gctggtcttg	aactcctgac	ctcaggtgat	ccacctccct	cggcctccca	28260
aagtgctggg	attacaggcc	tgagccacca	cgcccagccc	agaatgtctt	cttactttt	28320
	ccccatcct					28380
gtgaatgggg	tgagtggggt	gagtccacag	aacagtgggg	tgcagcccca	ggggtctcgt	28440
agcacctgcc	cccaggtcag	gaagtcccac	agcctagagg	ctccagcctc	agatgcatac	28500
atatgtaggc	cctgcccttt	cctcctgagc	ggcgggccac	agagtcctga	acaacaggaa	28560
gcccctgagg	agggctccgc	cctgagggag	ggcaggggag	cccccgccag	ccccacccac	28620
agcagcgggc	cctgccaccc	cccaccctga	cacctcaccc	cttggattcc	agagaggaaa	28680
gtgggcttgt	gtgtagttta	catgctcata	tcttaaaatc	accgttgtca	atagaacaat	28740
tcataataat	gatgataaaa	taagatttat	aaccagcttc	agtctggaga	tacacacaga	28800
gcagatette	actcccagac	agggagcccg	cagctgcccc	cgaccccaca	ggtgcaggac	28860
acacacagac	agttcaacca	tgtcttaaac	acacaggtgt	ttatttaatt	gttcatttga	28920
ttgaattttt	aagttcactt	tactacgtgg	atgagatggg	tgcatattac	agtaggcttt	28980
cgctatgagc	gctgccacca	tgaggaatat	cccagccctc	agttctgctt	ccctttctga	29040
gtcccacaaa	agccagatgt	ggacagcctt	gggttcccat	cccagctggc	tgctccttct	29100
ggggctgtct	tggtggggag	agggagatgg	ggcagtgggt	ccctgctgac	ccctgagccc	29160
tgcaggggtc	aggatcctcc	cgtggtccct	gggtgtggct	ctggaagaca	ctggcagtgc	29220
ccggccaagg	cctcccgcag	gatggaagtt	gagggccctg	gctctgggtc	ctaagagaac	29280
tcagccgccc	ccttcacact	ttacagcaag	gggccaggca	gcagctttgg	gatggggctt	29340
	gtgggggatg					29400
	tcctccaagg					29460
	gcaggagagg					29520
	ggtgttgggg					29580
	agcggtccca					29640
	ccagggcaga					29700
	ggacatctgc					29760
	acttctgagt					29820
	gggtccctgg					29880
	cttccaggaa					29940
	accacattaa					30000
				cccctcccc		30060
aagcaccocc	EGCACACGCA	addeceann				

cctcacgggg	agccccttcc	ccctggaaag	acagcaggta	ctgtagcctc	gcctgctggc	30120
caggggggc	ggctcagagg	acctgccctg	acctgcacgt	gctgaccaga	cagcccagcg	30180
taaggacccg	cgatcccacg	ccaccgccct	gggtttacca	cggtcaccac	cacctctctc	30240
acagggcccc	cgggggaccc	agccgcgccc	ggcctggtgt	ctgcaccgag	ggaccgcgtc	30300
tcacgcccgg	caactcctac	aggggaagcc	gtggtcagcg	actcaccacg	aggacagggc	30360
aggacageta	agtgcggaag	agaagcatga	agctggggg	aggagtaggg	gaggaggaac	30420
aaaaattaca	tctagacaga	ggtgaacgaa	acaaaaccaa	aacccgaacg	tattccatca	30480
caccateges	accacccatc	ccgggccctt	agcccgacat	ctcttctcgc	tactccttat	30540
taggacgggc	cteaccaca	tgcagctcct	acadacada	adacadagaa	acctaaaaac	30600
ccccgcgcac	transparent	ccgggaaccc	geaggaeagg	aggegggggg	accetaacec	30660
gggggcggct	tggggcgact	tessettess	ccaggcgcgc	aggeegegge	accedace	30720
ccgcccggcc	teateeggge	tggccttcgg	caygaccccg	actyagetga	gggggcggga	30780
gcaccgggga	ggcgcagagc	aaggccaggg	accaaggacg	ggccccctgg	gagetggetg	30840
ggccccgctt	ctagctcgta	ccggagccga	getteettea	gggcacttte	aatataatya	30900
atttagccat	ctattactgc	ggctagttac	tgtcccgcca	ggaccagact	ceggaceege	
ctcgtgcgct	gctggggacg	cccagtaaac	acgggaggag	cccccgaccc	ccaccccagc	30960
tcagcgcctc	ggagtccccg	gccccgctct	gegeeeetee	gageteegee	ctagccccgc	31020
ccccgcccag	tgccccgccc	cctgcctgct	gctagccctg	ccccgcccc	ggcccctgcc	31080
cgctccgagc	tccgccctgg	ccccgccccg	gcccctgccc	gctccgagct	ccgccctggc	31140
cccgcccccc	gcccagtgcc	ccgccccctg	cctgctgcta	gccctgcccc	cgccccggcc	31200
cctgcccgct	ccgagctccg	cccggcccc	gccccggccc	ctgcccgctc	cgageteege	31260
cctggccccg	ccccgccca	gtgccccgcc	ccctgactgc	tgctagccct	gcccccgccc	31320
cggcccctgc	ccgctccgag	ctccgccccg	gccccgcccc	ggcccctgcc	cgctccgagc	31380
teegeeeegg	ccccgccccg	gccctgccc	gctccgagct	tcgccccggc	cccgccccgg	31440
cccctqcccq	ctccgagctc	cgccccggcc	ccgccccgc	accttctcgc	gcagccgctc	31500
gcgcagtgcg	gccaggtgtg	cctcgcggat	ctccttgctg	agctccatct	tgtagttgag	31560
cttctcctcc	acctaacaac	tgaagttgtt	attctcctcc	agcgccttgt	gcagcacctc	31620
acactcatac	tcacaccact	ccgccagctg	cttcagcacc	tgcgcctcct	gcgtctgtgc	31680
addaccaaca	aacacacata	agcggcaacc	ccaaacccta	cccggccgga	ctcctccctg	31740
ctctccacct	cccacccaac	gcccgctcgc	ctcacctggc	gcctccacct	gcccaggcct	31800
caataaacac	cadaccccc	gggcgctgcc	ctgggaaccc	tcacctacca	tccaacctat	31860
agteagage	adaccadada	gtcgcgatcc	accacccca	ccccatccc	tacctcacac	31920
ggccggggca	gggccagggg	tgcgcccagg	acceccacca	taccetgeeg	ccactgcaca	31980
gegggeeeeg	casatetase	cctccaagga	ccaccaccaa	gaaaccctaa	acttgtgggc	32040
ecetyceety	chtatatat	tcctcggaca	tecaccact	gaggagagta	actacttatt	32100
ggtetetgag	ttagggggt	ccaattaggt	accestage	gagaagagaa	cagggatget	32160
acacaccggg	ccccayctc	acccctggga	geceaggage	ggagggcccc	ccccacccac	32220
gggggagggg	ceggerggrg	acccctggga	ggagageggg	taaceteace	addagaaaaa	32280
atgecagtee	ctactagtca	gccctgtgaa	ccccggcccc	ggccccacc	aaaddacatt	32340
eggageeget	teeeetgeee	aatgcgttgg	atacasaca	aggataceaag	gagggacact	32400
tttatetetg	tttcagtctc	agaggggctg	graggagggg	aggetgeagg	agggggacce	32460
ggagcccaca	cccacctctc	ccagggcccc	ceegececee	agtaagtett	egggtette	32520
cacatgaggc	ccttcctcca	gcttccctgt	ccgggagagg	gatgeceeac	ctgatgtttt	32580
cagggcccat	ctggggacca	cccctagca	tectgetgge	cccgacaagg	gracerecea	32640
ccctcaccag	aggctcctgc	tccttccagg	tggccgcctc	ggaacccttc	ccccccca	32700
tccctttctt	tttttgttct	tgtttgtttt	ttgaaatgga	gtetcaecet	geegeeeggg	32760
ctgaggagtg	cagtggcgca	gtctcggctc	actgcatcct	ccacttcttg	ggttcaagca	
attcccctgc	ctcagactcc	ctagtaggtg	ggattacagg	tgtgcaccac	cacacctggc	32820
taattttgta	tttttagtac	agatggggtt	tcaccatgtt	ggccaggctg	atcttgaact	32880
tccaacctca	agtgatctgc	ctgcctcagc	ttcccaaagt	tctgggatta	caggcgtgag	32940
ccaccacacc	cggcctctcc	ccatcccatt	cttatctctc	agaaagaggc	ccagggagcc	33000
acagcccctc	ctgctccagg	ccaaggcact	gaccaagcct	gtccgggagc	accetgette	33060
ttgcaggccc	tgtccccgtg	ggccgcctcc	gttgaaactc	ctggggggtg	ggggatggag	33120
gactccttgc	cttcctccgc	tcctcggctg	cctccagccg	cttttgcagc	tcctccaggg	33180
aggtgtcctt	cttcttgggt	ggggaggaga	gcatagggct	ctctggggac	aggtcagaag	33240
gggacttgag	gatgacctcg	aagctctggc	ctgaggcccg	cttgtccagc	tgcttcacct	33300
ccatgtctgc	agggcaagac	cagagtagag	cttcagaggc	ccggccaggg	catggcgtgg	33360
gctgagcggg	atgctcccag	cacacatcca	accccagggc	tgggcgagag	ggggtggctg	33420
ctcccccaga	aatcccaggc	ttcagccccc	aggatgggcc	ccttccccct	agaacctccc	33480
tctccagagg	cagccaggac	gggagttcag	agagactgcc	ggaggccggg	ggaaaaggtg	33540
aggtggggag	gcaccgcagg	gaagggcagg	cggcagccag	gcactcaccc	ccgtactggt	33600
agacggtatf	aggatacaac	tgtgtgtaga	agcaggagca	gatgagcgac	agcaccgaca	33660
actecttest	cttctcctta	taggctgtgg	gcacaaggct	gggctgagca	agcaccactg	33720
3					_	

•						22200
	acctgggccc					33780
gagacacgga	gctgcccagc	acgctctctt	gtgtgtctcc	acaccgccgg	ccccttcgtc	33840
	tctcgcttcc					33900
	ccctctgcct					33960
						34020
	ctgacttgtt					
	actcatgtgt					34080
cattcggagg	gaattaggcc	atgaggatag	agccctccta	agtggcccca	gagtggggct	34140
tcagagaact	ccctcacctt	ccatcatgtg	aggacacagc	cagaagacgc	cacccgtcta	34200
	ggcgagacct					34260
	agagcgatgg					34320
						34380
	gactgacaaa					
	tctgtcactg					34440
	ccctgagtgc					34500
cttacctccc	tctgtcccgc	tacttctctc	tcccctcctc	ctccttccca	ctcctcgcca	34560
gctcaagcag	gcaagattta	ctcatgacgg	gaccagcaca	gatgcaaacc	ctctgtgggc	34620
	tgggctgtaa					34680
	gtcaccttga					34740
						34800
cecagggetg	ggcttgggcc	accyatycca	ccaaggagca	agggagggaa	geegeegee	
cagcaccaca	gccagccctc	ttgcccattc	aggicaatca	agtgcccacc	agecagegee	34860
cctgctgccc	aacccaaacc	agaagcaagc	cgggctcctg	tggccctgtg	ccctgtcagg	34920
ggaagaggaa	ggcgcctgct	gtcacagtga	aaataattta	gctcttttgg	tctattcagg	34980
gcgaacctca	ttcctaagca	gacacgctgg	cccggtttct	cactagtgct	cgataatcct	35040
tttaactaaa	tgcagtggct	catttaactg	taatcccagc	actttgggag	gccaaggcag	35100
	tgaggtcagg					35160
						35220
	tataaaaatt					
	ggcaggagaa					35280
	gcactccagc					35340
aaagagagag	aggaagaaag	gaaggaggga	gggagggagg	aaaagaagaa	aggaaaggaa	35400
aggaagacag	acaaggcaga	agtaatcaag	cctttcatgg	tgagctgggt	cttctggtga	35460
	aatggtctgt					35520
	gagcccaaga					35580
						35640
	gagcctttgg					35700
	ggtcattgtc					
	tttggtctga					35760
	ccaggctgca					35820
ctgggttcac	accattcťcc	tgcctcagcc	tcccgagtag	ctgggaccac	aggcaccgcc	35880
	gctaatttt					35940
	atctcctgac					36000
	agccactgtg					36060
						36120
	tggagtgtag					
	cctgccatct					36180
	tttatctctg					36240
gcctcagcct	cccaagtagc	agggattaca	cgcacatgcc	accacacccg	gctaattttt	36300
gtattttag	tagagacagg	gtttcactat	gttggtcagg	ctggtcttga	gccaccgcgc	36360
	tacacaccag					36420
	ccagcacttt					36480
	tggccaacat					36540
	cgggctcctc					36600
						36660
tgaacccggg						
	aggtggaggt	tgaagtgagc	caagaccgag	ctactgcact	ccagcctggg	
	ccgtctcaaa	aaaaaaaaa	aaatttgtag	tggtatggag	gccgggcatg	36720
	aggtggaggt ccgtctcaaa cctgtaatcc	aaaaaaaaa	aaatttgtag	tggtatggag	gccgggcatg	
gtggctcacg	ccgtctcaaa cctgtaatcc	aaaaaaaaaa cagaactttg	aaatttgtag aggggccaag	tggtatggag gcgggcagat	gccgggcatg catgaggtca	36720
gtggctcacg ggagttcgag	ccgtctcaaa cctgtaatcc accagcctga	aaaaaaaaa cagaactttg ccaacatgat	aaatttgtag aggggccaag gaaaccctgt	tggtatggag gcgggcagat ctctactaaa	gccgggcatg catgaggtca aataacaaaa	36720 36780
gtggctcacg ggagttcgag attagccagg	ccgtctcaaa cctgtaatcc accagcctga catggtggcg	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta	aaatttgtag aggggccaag gaaaccctgt gtcccagcta	tggtatggag gcgggcagat ctctactaaa ctcgggagac	gccgggcatg catgaggtca aataacaaaa tgagacggga	36720 36780 36840 36900
gtggctcacg ggagttcgag attagccagg gaatcgcttg	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc	36720 36780 36840 36900 36960
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat	36720 36780 36840 36900 36960 37020
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg atacatgtat	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag atatataata	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc tatatatacg	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac tatatataca	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac cgtgtatata	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat tataatatat	36720 36780 36840 36900 36960 37020 37080
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg atacatgtat atacgtatat	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag atatataata atacacgtgt	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc tatatatacg atatataata	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac tatataca tatatacgta	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac cgtgtatata tatatgtata	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat tataatatat	36720 36780 36840 36900 36960 37020 37080 37140
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg atacatgtat atacgtatat tatacgtata	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag atatataata atacacgtgt	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc tatatatacg atatataata tatatataa	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac tatataca tatatacgta tatatacg	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac cgtgtatata tatatgtata tatatataca	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat tataatatat tattaatata cgtgtgtata	36720 36780 36840 36900 36960 37020 37080 37140 37200
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg atacatgtat atacgtatat tatacgtata tattaatata	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag atatataata atacacgtgt tatacacgtg tatacgtata	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc tatatatacg atatataata tatatattaa tatgtgtgtg	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac tatataca tatatacgta tatatacg tgtgtatata	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac cgtgtatata tatatgtata tatatataca tatatgtata	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat tataatatat tattaatata cgtgtgtata tatatata	36720 36780 36840 36900 36960 37020 37080 37140 37200 37260
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg atacatgtat atacgtatat tatacgtata tattaatata	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag atatataata atacacgtgt	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc tatatatacg atatataata tatatattaa tatgtgtgtg	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac tatataca tatatacgta tatatacg tgtgtatata	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac cgtgtatata tatatgtata tatatataca tatatgtata	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat tataatatat tattaatata cgtgtgtata tatatata	36720 36780 36840 36900 36960 37020 37080 37140 37200
gtggctcacg ggagttcgag attagccagg gaatcgcttg agcctgggtg atacatgtat atacgtatat tatacgtata tattaatata	ccgtctcaaa cctgtaatcc accagcctga catggtggcg aacccaggag acagagtgag atatataata atacacgtgt tatacacgtg tatacgtata	aaaaaaaaaa cagaactttg ccaacatgat ggcacgtgta gcagaggttg actctgtctc tatatatacg atatataata tatattaa tatgtgtgtg gagagaga	aaatttgtag aggggccaag gaaaccctgt gtcccagcta cagtgagctg aaaaacaaac tatatataca tatatacgta tatatatacg tgtgtatata gagtagtgat	tggtatggag gcgggcagat ctctactaaa ctcgggagac agatcacgcc acaaacaaac cgtgtatata tatatgtata tatatgtata tatatgtata aggtcttgct	gccgggcatg catgaggtca aataacaaaa tgagacggga actgcactcc atatatatat tataatatat tattaatata cgtgtgtata tatatatata gtcttgtcca	36720 36780 36840 36900 36960 37020 37080 37140 37200 37260

•						
gattataggt	gtaagccaca	gtacctagcc	tattaaaaat	taatgttaaa	caagaggatg	37440
	gttagagggt					37500
tggggacatt	tagaggagct	gaagaggtgg	ccaaccctgt	gctcaggagg	acgggggagg	37560
	gagggagttt					37620
	ttggcccctc					37680
	ctaccettca					37740
	gtggctcacg					37800
						37860
	caagagtttg					
	aattagctgg					37920
•	agaatcactt					37980
cactgcgttc	cagcctgggc	aacacagcga	gactctgtct	caaaaaacaa	aaactggaat	38040
gtgtttacca	taaaggccag	aaaatgtgat	taacagctgc	tcaaagcccc	tgtctgccct	38100
aagcctgaaa	ttttcaccga	aaaaaagatc	tgtaggctca	tacagaggaa	ggacaaacac	38160
cagggaggct	ctcttccagt	ttgcttcacc	tcagcaagca	gacggctggc	agcaatttgg	38220
gggcaggtgt	gagcacctgc	atcatcagga	aagaaggggc	acggtgggga	cgcaggtcag	38280
	ggtcttggct					38340
	gctgcagaca					38400
	tcccagctgg					38460
	gggaccaggt					
	gggaggaagg					38580
	agagcaagca					38640
						38700
	tggaccagta					38760
	gagagaggat					
	cagggaagcc					38820
	tttggagacg					38880
	acggcaagct					38940
	ggactacagg					39000
agagacgggg	tttcactgtg	ttagccagga	tggtctcgat	ctcctgacct	tgtgatccgc	39060
ccgtctcagc	ctcccaaagt	gctgggatta	caggtgtgag	ccaccgcgcc	tggacttttt	39120
tttttttta	agacggggtc	tcactctgtc	acccaggctg	gagtgcagtg	gcgcgatgtc	39180
	aacctctgcc					39240
	acaggcacat					39300
	ccatgttggc					39360
	ccaaagtgct					39420
	acaggcgtga					39480
	cccctcccca					39540
	gagctgggct					39600
	tgcggattgg					39660
	caagcagcag					39720
						39780
	ccgtccaggt					
	ccaggtggat					39840
	gtggatggtg					39900
	gatggtgccc					39960
	agggtcacac					40020
	gtcacacctc					40080
	cacctcacgc					40140
	tcacacccac					40200
	ctttcgtctt					40260
tagaaagagt	ttctactctt	gctgcccagg	ctggagtgca	atggcacaat	ctcagctcac	40320
tgcaacctcc	ctctccccgg	gtcaagcaat	tatcctgcct	cagtctccca	gattgctggg	40380
atcacaggag	tgtgtcacca	cacctggcta	attttgtact	tttagcagag	aggggggatt	40440
	ggccaggcta					40500
	gctgggatta					40560
	ctcagagagg					40620
	tgagcctggg					40680
	gaactgagag					40740
	_					40800
	gccggctccc					40860
	aggagcacag					
	aaatgtggct					40920
	aagcggccaa					40980
ggagaggtgc	cagcaccgtc	acctctaccc	agataaggag	acccaggtcc	tgagaggtta	41040

ggcagctcgg	acaacaccac	acagctggag	gaggtcagac	tctgggttgc	agaaggagaa	41100
tgtgagcaga	ggccacaaaa	gagcgaggag	ccagtgccca	gatgccgaga	tgccctcgcc	41160
ctcccagctc	agccccagga	accgagccca	tggggaggga	ccgtcaggga	aaggctgtca	41220
ggaagggcag	gaggcggccc	tggagaggac	ggcgctgccc	tcaggggcag	gaggggagtc	41280
ccctccgctg	agagcccccc	caccccagt	atccccgggg	gtgtccagga	ggaggcggag	41340
ggaggaagcg	cagatggaca	ggactcccag	atagggtggg	gaggtgtggc	cggtgacaca	41400
cacggtcccc	tcctggcagg	tgctgaagtc	acctggagcc	tccaagcccg	tggggcctga	41460
gagacagaat	caggtcgggc	acgcgtgggt	gggcggagtt	ctgcgccccg	ggccaaggcg	41520
cccgagttga	accagtcagc	tcgggagagg	gaccgcggcg	acctgtcccg	ggggcgtaag	41580
aaaaggtggg	agggagtgcg	gctcgtgaac	gggggcggcg	atgggaagga	ggtgcggccc	41640
ttcgtcctgt	cctcccaaac	gtcgagtgaa	aaacgaagcg	ggttctgcgg	cctcgcggcg	41700
gagcagagcg	tttcgggaag	ggcgggccca	gcgtcctcgc	gcccgaggtc	gcccggcagc	41760
tcccctqcqt	ccagaatccg	cccccgccc	gggcctgcgc	ccgcccctcc	gcctgagctc	41820
cqcqcqqqac	gggccgggag	gccggggtgg	gcgctacctt	cgaaggcggt	gggtccgccc	41880
cacaaaaaat	qqaqqqqqq	gagggggga	gccctctggt	ctccggaggg	tttggggatc	41940
gcagtcgccc	ctccccatc	cagaccccgc	ggcgcaaagg	gcagtggctt	ttctggccag	42000
agcaggtggc	acaaacatca	caaaqqqtqq	tccccgaggc	cgcagcggtg	tggggggagg	42060
acacaatece	cctcactccq	gactccacca	tgtctggccc	gccccctcc	ttcagcgccc	42120
cctccagccc	ctgtgctgca	ctaacacaaa	gagcgccggg	ttcccggctg	gggctttggc	42180
agagggtccc	accetetece	cgcctcccca	cgaaggctct	ggcggaccca	gatctcgggt	42240
caccadacac	cccagggacc	ccqcccqcac	atcgcgagcg	cgcccacccg	gtcgcgagcc	42300
cacqcccqqq	tctqqqaqcc	accetgegge	agtcgcgccc	tgcgtggcac	gctgctcccc	42360
caggggggag	acaccccac	ccgacgtccc	ggtcccgagc	gctcccggc	gcggcgcctc	42420
gcagcccagc	gccccaccag	ccccaccaac	gccgcagacc	ccagcctcgg	gcgggtcggg	42480
cccaggettg	caacgcgcag	ggtaggagaa	gggaaattgg	cgtccgctgc	cggccgctgc	42540
cccaggcgag	gccagacgag	acctctactc	agatcccgcc	gccccacaaa	gcccgtggcc	42600
ccggagccta	ccggaaatgg	tgctggccat	ggtgctggcg	gcggttgggc	ctgcggaggc	42660
tagagagaga	caagtggcgg	ccggagetge	agacggctgg	tgctgcagtg	ccggggaggg	42720
gaggggagag	gagtggaggg	agcgaggggg	ggcgggaggc	gggcgcggcg	ggagagagag	42780
agggaggag	acagaggag	agagagag	ggttggggga	aggagcgggg	ggaggaggga	42840
gggaggttg	ggggaaggag	agagagagag	agagagactg	cgggggcggg	ggaaggaggg	42900
agggaggaag	ggaggagga	agagagagag	gagcaagcgc	ctggctgcgg	aaggggccgc	42960
ggctctcagg	gggagagggc	ggaggagggg	ggctacccga	actgcaacaa	gacccccac	43020
cctccaaccq	ctcacagcgg	gacagetget	tctccaactt	ggctttgtga	ggcctgagag	43080
tagaatagaa	gtggagatga	gcccccattc	cccagggcag	gcggggcagg	ggcaatgccg	43140
gaggagcagg	tcccacccat	ggggtggggc	cgcagagctc	ttcgccgcca	aggccgctgt	43200
aggctgggct	ggcgccaaca	gggtccaggt	ctgtgcctgc	catcggagag	gatgccacag	43260
ccacaggggt	gggcgctggc	ctggaggcct	ccaaggggca	tctcctgtga	gcccagggga	43320
tgggcaggat	ctgagcggag	aagagtgaaa	gtggaggagt	gaggccagaa	caaaggcttt	43380
gccgtgaaag	aggtggtttc	ccgcctgggc	tcagaccttc	actcactgtg	tggcccaggc	43440
caagggcaag	cgtctgacct	cgctgggcct	ttgtttctca	ggggtaagat	gaaacaatga	43500
tgcccccaga	cgatggagag	gaggggtgcc	agggttgtgc	gcacttagtg	agtggggggc	43560
				gaaagcctgg		43620
gagcgtcttt	gccattgcag	ggatgaagcc	accgaggcag	ggagaaaagt	gctttgccct	43680
acaagcaact	aagtcatagg	gccaggagca	aaaccctgaa	aacctcagga	gacttgcaga	43740
gccatgaggc	tggctcagca	acacaaaagc	caggggcaag	cctcagctct	agcagtgcgg	43800
tgggagcacc	caaggccagt	cacatcctag	ggtggcctgg	agagtcctga	cccctgacgt	43860
gcaagccggc	atcatccccg	ggactgtgag	tctggtgggg	gtgatgccca	ggaatgtgac	43920
attgtgtggc	ccagaggtac	ccttaagact	ggaggatcac	caggcgggcc	ctgacctcat	43980
cacaggagcc	ctttaaaagc	agtttccttt	gcctggttga	agaaatcgga	gggatcaaac	44040
caaagaaggt	tttctgttgt	tgagatgagg	gggccacgtg	gcaaggatct	gagaactgct	44100
cccagccaac	agccagcaag	acaacaagac	cttaactgca	aggaagtgag	ttctgccaac	44160
aagaagagaa	tgggcttgga	ggcaggtttg	accccagggc	ctccacacaa	gaactgagcc	44220
caactgccca	cttggtttca	gccttgggtt	actaagaatt	aggaggtaat	gaatgagagt	44280
tgttttaagc	tgttggtttt	gtggtgattt	gctatgaagc	catatcaaac	taatatacac	44340
acagaggtgt	tggcccctgg	gccattccta	ggaagccagc	tctgcgaagg	aggaagaagg	44400
gcagagaggc	acacagagct	gcccaccaca	gcagctgtgt	cctccctgtt	ggccaccaca	44460
gtagcagttg	gggatggtca	gcatccttca	ggcagactcc	· agccccgggt	gctggagctc	44520
aggtgctagg	gatcaagaga	agtagccctc	tctgggacct	ccagagtctt	ctcatgtggg	4.4580
tggggtagga	cccacccagt	caggctcaga	gcaccgcaat	gcctcacact	cattgtgact	44640
				gcacagggac		44700

*						
gaagcccgtg	gcatagtgcc	aggaacacag	tagatgtgca	cagtgtgcac	tagcaggaac	44760
acacaacagg	ggtactgact	gtcagcacct	aggcaggcac	acgcaatggg	gtactgactg	44820
tcagccatac	tgactgtcag	cgtgctagca	ggcatacaca	acagctgtac	tgacagcaca	44880
ctagcaggca	catgccatag	gtgtactgac	tctcagtgca	ctggcaggca	cacgcaatag	44940
gagtaatgac	agcatgctgg	caggcacaca	atagctgtac	tgactgtttg	ccccaatata	45000
gtgccaggtc	ttggagcaga	ttttgacttc	tcaccaagat	caaatgcaga	aagtgcacga	45060
gcatttcaaa	gatgttttc	acatgcacat	tagtgctagt	taaaaaaatg	ttttgactgg	45120
gtgcagtggc	tcacaactgt	aatcccaaca	ctttgggggg	ccgaggtggg	cagatcacct	45180
gaggtcagga	gtttgagacc	agectggeea	acatggtgaa	accccatcta	ccctaaaaat	45240
acaaaaatta	gccaggtgtg	ataacaaata	cctgtaatct	cagctacttt	ggaggctgaa	45300
caaaaaaaa	cacttgaatc	caddaddcad	aggttgcagt	gagccgagat	cccaccactg	45360
geaggagaac	tgggcaacaa	tatcaacact	ccacctcaaa	aaaaaaaatg	tttttcataa	45420
caccccagcc	ttatcagacc	tetecattet	tgaaattaac	tctaacttaa	ctanacataa	45480
agrgrgactt	ctgtaatctt	aacactttcc	gadattaaa	taggeous	acqaqqtcaq	45540
tggtttacat	ccagcctgac	aacactctgg	aaaccccatc	tctactaaaa	atacaaaaat	45600
gageteaaga	ccaycctyac	caacacyacy	agaccccacc	caccacca	addcaddada	45660
tagccgggcg	tggtggcatg	cacciglaat	cccagccacc	caggaggeeg	tetattecae	45720
accgcttgaa	cccaggaggt	ggaggttgca	gggageegag	accycaccac	aattaactct	45780
cctgggcgac	agagcaagac	tetgteteaa	adadadada	gaaayaaaya	aactaactcc	45840
ggctcctaga	aggagcccta	tatctcagca	ggacactcag	tcattcaaca	gacatetgte	45900
aagcacctgc	tgtatgctgg	agctgtgggt	acgtcagcaa	ttagaggaag	agggcagggg	45960
tacaggagtt	cctgaccacc	ccaggccagc	acgctcctat	agcagctggc	aaggagcaga	46020
tgactcagac	ttcagctcag	tccacaggac	agccttttct	ggccactgct	ctcaggagat	
gagatgtgtg	gctgcaaaag	gtaaactcct	ggctcctgag	caggctctgg	gcaatctgct	46080
caacgctctg	tgcctcactt	tctcacccag	aaagtgtgga	caatgagagg	acttatctgg	46140
ctgggcgcgg	tggctcacgc	ctgtaatccc	agcactttgg	gaggccgagg	cgggtggatc	46200
acctgaggtc	aggagttcaa	gacctgcctg	gccaacacgg	tcaaactcca	tctctactaa	46260
aaatataaaa	aattagccgg	gcttagtggt	gcacacctgt	aatcccagct	acttgagagg	46320
ctgaggcagg	agaatcactt	gaacccagga	ggtggaggtt	gcagtgagcc	aagattgtgc	46380
cactgcactc	cagcctgggc	aaaaagccaa	aactctgtct	caaagaaaaa	agaatcatgg	46440
cagaaggtga	agtctatgtt	agtcccagtt	cccaggtcgt	acatggcggc	aggagaaaga	46500
gagagagaag	gggaaactgc	cacttttaaa	ccatcgggtc	tcctgagcac	tcactgtcag	46560
aacagcctgg	aggaaactga	ccgcatgatc	caaccacctc	cctccaggtc	cctccctcca	46620
cacgtgggga	ttacaattcg	aggtgagact	tgggtggaga	cacagagccg	aaccatatca	46680
gcatgtatgg	ggggcactga	aacttgtgct	tggtgcccat	tcattcaacg	agtgtgtgtg	46740
gctggtctcc	tcatcttcaa	ctccctgccg	agtctcagat	aggcagcctg	cagttccttc	46800
accacaacag	gcacatgggg	ctgggtgcca	gtgagtgctg	gggcttctcc	gagcactatc	46860
tcacacccag	gagcgtgggc	acgcatggca	ttcgcatgtg	ccgtcagtgg	acattaaaca	46920
cagccatgaa	gaagccacga	agaagtgctg	cctgccggcc	gtgcgcggtc	acgcagcgcc	46980
aactccctcc	tggggccttc	tggggccttc	tggggcatgg	gagctggggc	cgcctgagac	47040
aaacatccgt	gacgctgggc	tgaccccaca	gaacggtgcg	ggcctcgctc	ttggagtcag	47100
ccctgctgcc	agccagtgcc	gggtgctggg	gactcaggga	ggcccgccgg	gaccactgcg	47160
ggacagtgag	ccgagcagaa	gctggaacgc	aggagaggaa	ggagaggggg	cggtcagggc	47220
tctcaggagc	cgggtcctgg	gcaaggcgca	gccgttttca	aattttcagg	aaagcggtcg	47280
gctcacactc	gagcagtaaa	aagatgcctc	tggggaggag	gcccgtgcag	ctctccgggc	47340
aatggtggtg	gctcggccta	gagaggcggt	agtggaacgc	agaccctggt	gggggaatga	47400
catcaaggga	ggagacgggc	gggaccccag	atttctgcct	gtgggcgatg	gaagtgaggt	47460
tcactggcca	gcggagccgg	acacagaacg	cgcaaaacgc	cgtgtaggcc	tggaggagcc	47520
gaagagcagg	cggaccccct	ccgcggggga	acagtttccg	ccgggagcac	aaagcaacgg	47580
accggaagtg	gggggcggaa	gtgcagtggg	ctcagcgccg	actgcgcgcc	tctgcccgcg	47640
aaaactctga	gctggctgac	agctggggac	gggtggcggc	cctcgactgg	agtcggttga	47700
gttcctgagg	gaccccggtt	ctggaaggtt	cgccgcggag	acaagtgagc	agtgagtcgc	47760
agtgacccta	caagtggttc	ttttacccga	gcggctcgta	ggcgcgttgc	ggtttttcga	47820
aactacagct	cccggcaggc	cccaagccgc	cctcggggcc	gegggtegge	ggattggccg	47880
cactacattt	tgggacctgt	agtttcctgc	gctcgtggcg	ctggcgccgc	ggcgttggct	47940
gagcccttga	ccggggctgg	agggaaggg	cgacattcag	tgtgtccgcg	tctgttctgt	48000
tagtcccagt	fcccaaacaa	gattgaggct	tagagaagtt	gagtgatttq	ctgagggctg	48060
					tgcccacccg	48120
aacaaataaa	gaatggactc	cagccagcca	ggagggcaga	gggctggaga	ggcagggccg	48180
					tgccgcttgc	48240
					acttgcagca	48300
					ggcaaggccc	48360
3-333-3-			22-9559	Jag-33	23: 33	

agccacttcg	catcttcgcc	ccgccagctc	ctcgagatgg	gatataccag	ggttgctctc	48420
caaccctctc	cgcaggaggg	actgatggaa	acgcctggga	aagtagcccg	gtacccacaa	48480
aggctgtcta	caaacagagt	cttactgtct	ttcccaggtc	tgtgccatag	ggattctcga	48540
	gttgtgtccc					48600
	tcggagtggt					48660
	tctgagaaca					48720
						48780
	tccagcccta					
	tagagcacag					48840
	tgcttccctc					48900
	taaaaagggc					48960
aaacgatcgt	cctttgaagg	gggccggccc	ctccacacct	gtgggtattt	ctcatcaggc	49020
gggacgagag	actgagaaaa	tgaataagac	acagagacaa	agtatagaga	gaaaagtggg	49080
	cggcgctcag					49140
	ttaattacta					49200
	gggagaaggt					49260
	aaggtactat					49320
	tcggtggagt					49380
						49440
	gggcggcttt					49500
	attcagttcc					
	tttcctcttt					49560
	aggtctttcc					49620
	aatacccggc					49680
	tttatcgaga					49740
aaacatattg	ttaacaaggc	atgttctgca	cagctctaga	tcccttaaac	cttgattcca	49800
	gtttctgtga					49860
	attgttcagg					49920
	gtaacagtct					49980
	tgggggcctc					50040
	ggggcagccg					50100
	ggcagtggtg					50160
						50220
	caccettece					50280
	gtcagatagg					50340
	acttgacacc					
	aacgttctgc					50400
	gtgggacttg					50460
	ctctgcatct					50520
	ggcctcgcct					50580
	tggcatcctg					50640
gcaccacgct	ggcctggcga	gaacacctcc	gagacggcat	ctctgcccgc	aagattgccg	50700
agagggcgca	aggagagctt	ttcccggatc	gggccttgtc	atcctggggc	aacgctgctg	50760
	agaccccata					50820
	aagggatggc					50880
tcaagcagaa	ctcaaggaga	attttttagc	tgctgtataa	tttctcgcca	togtgggtgt	50940
	ttgggctttt					51000
	cagtatctgg					51060
	gcctttgata					51120
	tcagcttgct					51180
					gggtcagacg	
						51300
	tgtctcgggg					
	tgctgtggtg					51360
	gcccaggggt					51420
	tttgcatctg					51480
	cagctgtgca					51540
	gccctgctgc					51600
	accagtggca					51660
	cgtcttctag					51720
	gccgaggctc					51780
	agacagetee					51840
	gctcccggga					51900
	aggtaggctc					51960
	ccagageeee					52020
-2333-3-	Jeagageeee	-5550900	55556			22020

					•		
	gggactgcag	gggaggacct	ggtgggggtg	gggactggct	tcggtccttt	cttggccgtg	52080
	cttcagctgc	gcactctgcc	cttcctccca	cagatccact	tgtgccgtaa	gaaggtggca	52140
					gcagctgggt		52200
	tcgggttgga	gtgtgtgcag	cctctcaggg	tggagctcag	tggtgtcaca	gcctggttgt	52260
					ccctgtcttc		52320
	ccacccatgt	tagacttctg	tgtggaagag	ctcacacagt	ggtctgagac	agccagccgg	52380
					ggaaggctcc		52440
					cagtaggggt		52500
					caggtgctcc		52560
					ggcctcccgc		52620
					atggccctga		52680
					ctcttctgga		52740
					cacgtggcca		52800
					gtatgtcaag		52860
					ccgttggctg		52920
	ttctgtgacc	tgagggtggc	atctgtgcag	tcggcgcggt	ctgtgcttct	gtgggatcag	52980
	ggttccctct	gtttcctgcc	tcagttgggg	ctcaagcctc	aggtgaggtg	gccccggagc	53040
	actcagaagg	catcggcggt	cctgtgggct	gctttctgca	ctcacgtttg	ctgagtgctc	53100
	agtgtgccag	gactgaggac	cctgaagctg	ctcttgtatt	tagggcggcg	ctcccctggc	53160
	agagactgag	ccaggtggtc	ccgcatgacc	cactaccagg	cgtttctggg	ccctggccct	53220
	tggagggaca	gggtgggcgg	aacatgggcc	tgcagggagg	ctcccgctta	ctggaggcat	53280
	gtgctgtgtt	gctggagaca	tcctctgtgt	tgcttcttgt	tcgctgtggt	ttttggtctg	53340
	gtggcaccaa	ggaccctcag	tcatcttgat	gtgtggttgt	ccaggccttt	ttgttggtcc	53400
	taagaagggg	ctctgccttt	gtgcccccag	gttccctgac	aggagctgcc	ggctcgtccc	53460
	ggtgatgcct	gcaggacgtg	actctgggac	ggggggttgg	gcagatgtgc	tgatggaaat	53520
	tctcaagcag	gcgtcatttc	cgaggtcctc	acctggattt	ccaggacagg	agtgcctgct	53580
	gggtgtcccc	agtcccatgc	agcgggggtc	cttgggatag	catggaacgc	tgagcatggg	53640
	cctggccggc	cgtggtcctg	gacaagggca	gtgccccggt	ggctgctggg	cctgggacct	53700
	ggtggggacg	ctgggcctgg	tacctggtgg	ggatgctggg	cctgggacct	ggtggggagg	53760
	cctctgactg	cctcctggtg	ctgcttccgt	ctgtgttagg	cctctgggta	ttggggcccc	53820
•	catctgtctc	ctcctccagg	cctgtggact	cagaccagga	agacacaggc	cagcccctgc	53880
	ctgtccccct	tggcttgggc	tctcactgcc	cgacctggcg	ggaggttgcc	tagccgtgaa	53940
	ccttcgcacc	ctgtctgcca	ccggacaggc	tgtgaggggg	tgtctgcagc	acctgcaccg	54000
	gcctgagcat	cttcagagtg	ggctgcagct	cctggagggg	tctgagagga	agggaggcag	54060
					ccttcctggc		54120
	tgaggactct	ggttggggac	agcaagcttg	gggtcagcct	ggggcagagc	ctctgggacg	54180
	gccccgcccc	tcgtgcccct	tcccctcgca	gctcctgtcc	tegeceegee	ctcagctctc	54240
	cgccaggcaa	ggtttggcaa	gtgccgctgt	gcggcagtgc	ctgctgattg	gctggtctgt	54300
	tgctatggtg	ctgcccaggg	gtgtgctttt	cctcccctgc	cttccctgct	atccctggga	54360
					gtgtgtgtgt		54420
	gtgcatatgt	gtgcgcttct	ggcctctgca	gctgagtcct	ggccctcggg	gggcctggca	54480
	cctcctgggg	acaggcacaa	agcagccatg	atggagtcgg	gagctggggg	aggccccatt	54540
	gccccacgtg	gctgccctgt	gactctgggg	tgcttgttag	aagaggtatc	tggttctgtc	54600
	tgtgtttaag	caactcccta	aggaattett	gtggttccag	tttggggggc	ctgtactgta	54660 54720
	gaggcaaggg	aggggcagga	catcccccag	actetgactt	ctgaagcctt	ttetgeeegg	54720
	ggcctctccg	ccagtacagg	cagtgtcctt	tgccagggct	gccatgctgc	agaggggagt	54840
	gggccactgt	ttagcccagg	aaaacctggc	teteeettag	ctggaagttc	egggeetget	54900
	gtggttggca	gggaagctga	gtgacggtgc	taatcacagg	ggcacctgca	ggggccgcg	54960
	ggagatgcct	ctgtgggttg	gggcgatagg	ccgaggggcc	gttcttccct	gecetgagga	55020
	gggctgagtg	tageegeeae	teetgteetg	tettgggetg	tctcggagag	gatgegtaga	55080
	acceteggga	tectgetgge	eccegtetgg	recaccetya	acctcaggcc	teetggggge	55140
	agaggaggat	tccctcagga	teactegggt	gggggccccc	cttgggcacc	ccccccc	55200
	agegggtget	ctgtggcgcg	categority	taatataaa	cccagccctg	cctgagggta	55260
					cttagtggac		55320
					agcaggagct		55380
					acaggtgaga		55440
					gacctgtgga		55500
					ctaaccacca gtctccctct		55560
					cctgcaggcc		55620
					gttggctgtt		55680
	cygaaycacy	Jeagerry			2 ccaaccacc	2222222	

gttgtgggta	tagcttccca	tgctggtgct	ggcagctcgg	ccttgttctt	ttgaggacag	55740
cagatgtctc	ctatgtctac	ctcttacagc	ttcagagatt	caagttataa	taaagctctt	55800
cttatattga	gggggaaacc	tccctcccc	tttttttga	aacagggtct	cgctctgcta	55860
cccaggctgc	agtgcagtgt	cacagtcttg	gctcactgca	gcctcagcct	cccaggctca	55920
agcgattttc	ccacctcagc	ctcccaagta	gccgggactg	caggcacgca	ccaccatgcc	55980
tggttaattt	ttgtattttt	tgtacagaca	gggtctcact	ctgttgctca	ggccagtctc	56040
ctgagctcga	gagttccacc	tgccttggcc	tcccaaagtg	ctgggattac	aggcgtgaga	56100
ccccatgcct	ggccagctct	tttttttt	tttttttt	ttgagacgga	gtctcgctct	56160
gtcgcccagg	ctggagtgca	gtggtgcgat	ctcggctcac	tgcaagctcc	gcctcccgag	56220
ttcacgccat	tctcctgcct	cagcctcccg	agtagctggg	actacaggtg	cccgccacca	56280
cgtctggcta	attttctgta	tttttagtag	agacggggtt	tcaccgtgtt	agccaggatg	56340
gtctcgatct	tctgaccttg	tgatccgccc	acctcggcct	cccaaagtgc	tgggattaca	56400
ggagtgagcc	accgcgcccg	gcccagctct	gctttttctt	agtggttctg	cgttgtgttt	56460
gtttctatcc	aggaataggg	ttggttttac	ttttccatcg	agtttttaaa	gagacgacga	56520
tttacatggt	cggaaactca	cgaggactcc	ccatcccttg	gtcggaaact	cacatggact	56580
cccatccct	tggtcagaaa	ctcacgtgga	ctcccatcca	tcccaggcag	cagcttccca	56640
cctgggccct	acgtgcagga	tgagggctcc	ttccgggtca	gaagacatgg	cggcctcggg	56700
gcaccgtccc	ctgcatgggg	tgctcacagg	atcttctcct	ctctccttcc	cagggtgtgc	56760
ccttactacc	totcccogaa	cctgaagcag	caagccgaca	tcatattcat	gccgtacaat	56820
tacttqttqq	atgccaaggt	gggggctcag	tcctgtagct	gacgactcct	gatgtccagg	56880
agtateceta	ggcttgggaa	cagctgtccg	agcctttgct	gcttcagggc	cttagatcag	56940
caggectggg	tgggaggact	cacctctgtc	actgggcagg	ggctcaacct	ggccagacaċ	57000
acttotoage	agccccaggc	cacaggtcag	ttttctgagc	agtctgggag	cgggcaggct	57060
agtaggagta	aggagagacc	tccaggctgt	ggtccatagg	ccagtgcccg	ctcttgatcc	57120
tgacagetca	gattetetee	ttcacgtcag	gccatgggag	gcaccgagaa	cacaggaagc	57180
ccactgactc	ccctcttccc	agcgcgtgcc	cggccccaca	ctcactcccc	ctcccagcat	57240
atacccaact	tcacactcac	tcccctcttc	ccagtgcatg	cccggcccca	cactcactcc	57300
cccacagca	tatacccaac	ctgacactca	ctccctcct	cccagtgtgt	gcccagcccc	57360
actcccttcc	acccatata	cccagcccca	cgctcactcc	ccccgccagc	atgtgcccgg	57420
cccacactc	aactcccctc	ctcccagtgt	gtgcccggcc	ctgctgccct	cctccccatg	57480
taccctactt	ttgtgcccca	cactttttac	ttagtgcagg	tgggatcaca	cgccacgggt	57540
caatggtttg	tatattcaca	tgacgatggc	gtggtgacgt	ttccagatcc	cgtcgttggt	57600
tcgctcattc	toggggtgta	tatttattga	gagctcatca	tgctgggtgc	tattccaggc	57660
atagcaagac	tggcttcact	cacatggagc	tttgattcta	gtggtgggga	caggtggaca	57720
gcaaaagagt	aagcacgtga	gctgacgata	ctgaagggaa	atagagcaga	gggaggaggc	57780
ggagaccgag	ccaagcgggc	ccaagtgcga	tgtcggcggg	aggtggggaa	tgctggtġgg	57840
tctgaggga	gcctcagcag	gtgcagcaga	gcaagggaag	aggtgagtgg	gggcggctgg	57900
ggggcgact	cctgggaagc	tgtagcagaa	ccccacagag	agctggtgag	gtttgccgtg	57960
attatagata	actcggtgct	ttgagccctg	gctgcccctg	ggaaccatct	ggagagcttc	58020
taacccaacc	aggcccctcc	ctgggacagt	tatatcacag	ctggtaagcc	gagtctaaca	58080
ctttcacqqa	aacgcagaag	atctaaaaca	gcaagatgac	cgtgaagaag	aacagagctg	58140
gaggactcac	ctcgctggtt	tcaagactcc	tctaaagctg	caggagtgga	ggtggagatg	58200
				gcaagctcaa		58260
acgcatgtgg	tcattgtttt	ttttttcagt	tggaatctca	ctctgtcacc	caggttggag	58320
tgcagtggca	ccatctcggc	tcactgcagc	ccccgcccct	aggttctagc	gattctccca	58380
catcagcctc	ccgagtagct	gggattacag	gcgtgcgcca	ccatgcctgg	cccttggtga	58440
ttgttttttg	acaaacatgc	caatttaatt	gagagaggaa	atgaaggttg	atttctggtt	58500
ttctgaaaaa	atggtgctaa	gaacagctgg	atatctgttc	ggaaaacagt	gaatcttaac	58560
tcttgtttta	ccctgtataa	acctaaatgt	aaaagctaaa	ctaaaagtta	tagaaaggaa	58620
catgggggag	gtctttgcaa	ctttggggta	ggcagagatt	tcttagtatg	gatacacaag	58680
gcactagcca	tgaagaaaaa	cattaaaatt	tagacttcac	caaaatttaa	agcttcaact	58740
ctgtggaaga	gttgagaaaa	tgaaaaagca	gttaaagaaa	gggagaaaat	acttctttca	58800
aaggacttaa	aaaattttt	cagccctcct	ctgatttgaa	aggacctttg	accagagtat	58860
gtaaaattct	cccataacta	agcaaacaac	ccacttaacc	actgggaagg	gatctggaca	58920
gacgtttcac	caagatgggt	ggaatggcca	gttaaccact	gggagagcat	ccggacagac	58980
gtttcgccaa	gatgggtgga	atggccagtt	aaccactggg	agagcatccg	gacagacgtt	59040
tegecaagat	gggtggaatq	gccagttaac	cactgggaga	gcatccggac	agacgtttcg	59100
ccaagatggg	tggaatggcc	agttaaccac	tgggagagca	tccggacaga	cgtttcgcca	59160
agatgagtag	aatggccagt	taaccactgg	gagagcatcc	ggacagacgt	ttcgccaaga	59220
tagatagaat	ggccaqttaa	ccactgggag	agcatccgga	cagacgtttc	gccaagatgg	59280
gtggaatggc	cagttaacca	ctgggagagc	atccggacag	acgtttcgcc	aagatgggtg	59340
	-		•			

gaatggccag	ttaaccactg	ggagagcatc	cggacagacg	tttcgccaag	atgggtggaa	59400
tggccagtta	accactggga	gagcatccgg	acagacgttt	cgccaagatg	ggtggaatgg	59460
ccagttaacc	actgggagag	catccggaca	gacgtttcgc	caagatgggt	ggaatggcca	59520
gttaaccact	gggagagcat	ccggacagac	gtttcaccaa	ggtggatgga	atgaccagtt	59580
gagcacatgg	aaagtcgccc	agcatctcca	gtcataggag	aaggcagatt	aaagccacgg	59640
ggagccgaca	ctgtggtccc	actggcatgg	ctgaaattca	gaagccctga	gtgtggcatg	59700
aggatgtgga	acagetggat	ctcatccatc	gctgtgaagt	tgtgtagcca	ctccacaaac	59760
gtgtggcaaa	cageegagee	gggagaaggg	aagacgtgtt	caaagattca	tatgtggcca	59820
ggctcagtgg	ctcacqcctq	taatcccaga	actttagggg	ccaaggctgg	gggatcgctt	59880
aagcccagga	gtttgagacc	agcctaggca	acatagggag	accccatctc	aaaaaaaaa	59940
aaaaagaaaa	aagaaaagac	ttcagtgtgc	aggtttacca	gagttttgtt	tgcagttgcc	60000
aaaactggga	agcagcccgc	gtgagcccat	ccacaggtga	atggacagac	cgtggtaccc	60060
gaacactaac	agcagccacg	agcatagact	gtggtcacac	agcagcaggg	agccgatgag	60120
tctcggacat	gctaacccag	agaggcccat	tgaggaggac	ctactgtttt	ttgtgttttt	60180
atttttatt	ttgaaatgga	atctcactct	gtggtgcagg	ctggagtgca	gtggtgtggt	60240
cttggctcac	tgcagcttcc	acctcttaga	ttcaaacagt	tctcctgcct	cagccttccg	60300
agtagctggg	actacaggca	cccacca	cacccggcta	atttttgtat	tttcagtaga	60360
gacggcagtt	coccatotto	accagactag	tcccaaactc	ctgaccttgt	catccactca	60420
ctttggcctc	ccaaagtgct	gaggttgcag	gcatgaacca	ccgcacccgg	ctggacctac	60480
tottttattc	catttatgtg	acactctatt	aatagaaaag	gcaggggtgg	ggctggtggt	60540
tatatogtoc	acataactgc	cagaactcag	tacacttaaa	atgaacatct	taatgtgtga	60600
aattttttt	tttgagacgg	gatettacte	tgtcacccag	gctagagtgc	agtggtgcga	60660
tctccactca	ctgcaagctc	tacctcctaa	gttcacgcca	ttctcctgcc	tcagcctccc	60720
gagtagctgg	gactacaggc	gcccgccacc	acgcctggct	aattttttt	tttttttgt	60780
atttttagta	gagacggggt	ttcacagtgt	tegecagget	ggtctcgatc	tcctgacctc	60840
gtgatccgcc	tacctcaacc	tccgaaagtg	ctgggcttgc	aggcgtgagc	caccatgccc	60900
ggccaatgtg	tgaaaattta	aaagtaccaa	agctggaccc	caccccagat	tgctcccatg	60960
acactctgtg	ggtgggacct	gggagttggg	ttttgttttg	ttttgttttg	tttttgagat	61020
gaagteteac	tctqtcqcct	aggctggagt	gcagtgacac	aatctcggct	cacattaacc	61080
totgootcoo	agatgaaagc	gattctcctg	cctcagcctt	ctgagtagct	gggattacag	61140
gcacacacca	ccaccccctq	ctaatttttg	tatttttagt	agagacgggg	ttttaccatg	61200
ttggccaggc	tggtcttgaa	ctcctgacct	cgtgatccgc	ccgcctcggc	ctcccaaagt	61260
gctgggatta	caggcgtgag	ccaccgcgcc	tggctgggag	ttgggtttgt	aaatctccct	61320
gagtggggct	ggggcaggga	actgctgggt	ctgggtcttc	ctggctcctc	tggtctgtgg	61380
cttcctgact	gcggtggccg	ggggctccca	gggcatcgtg	gccgtctgtc	ttgctgagcg	61440
tggcacgtgc	ctttccatgc	tgtggaggag	cgtctcccgg	tatggcgaac	tgctggttag	61500
ggtggggcgg	tgttgccagg	tcatccaggt	ctggcctctg	ctctcgacat	cgccggcgct	61560
gttgctcatc	tgcgcttgtg	atgttcgatg	cctgctgcac	atgtcttggc	ttccctctt	61620
cccggcctct	gtgagctcca	gcgctgcgtc	ccttctcttc	ctcctgtaga	gccgcagagc	61680
acacaacatt	gacctgaagg	ggacagtcgt	gatctttgac	gaagctcaca	acgtggtgag	61740
tctccgctgg	cctcctaaac	acctcctatt	gcttctggcc	tttttgtcaa	gagccacgca	61800
aacctttctg	gaggggctct	ggccaaactc	ctgaagccct	aggtgcccag	gactggggac	61860
			cccgccctga			61920
tggagactgg	ccagctgggc	cagggacctg	cccgtcaggc	gcagggcccc	cacaggccgc	61980
tcaccagacc	ctttccctcc	agccagctcg	gggtcagcct	gggccagggc	tgtctcctct	62040
gccctcggca	gcagcaggct	tgtggtcttg	cctgcagtgt	ctctgccctt	ccggccacat	62100
ggcttgagac	tgaggcagga	gaatcgcttg	aaccttggag	gcagaggctg	cagtgagcca	62160
ggatcacacc	actgcattcc	agcctgggtg	acaaagcggg	attctgtgtc	aaaaaaaaa	62220
atgttgactg	ggcgcgctag	ctcatgccta	taatcccagc	actttgggag	gctgaggtgg	62280
gcggatcacg	aggtcaagag	atcaagacca	tcctggccaa	catagtgaaa	caccgtctct	62340
actaaaaata	caaaaaaatt	agctgggcgt	ggtggcgtgt	gcctatagtc	ccagctactc	62400
			ccaggaggta			62460
			agcaagactc			62520
caaaaagaat	aattggcaat	tccagtgaaa	taattgtttg	tttgtttgtt	gagacagggt	62580
			ggtatgatct			62640
			gcctcccgag			62700
					cagcgttgcc	62760
caggctggtc	ttgaacccct	gagctcaagt	gatctgccca	ccttggcctc	ccaaagtgct	62820
gggattacag	gtgtgagcca	ccgcgcccgg	cctgaaacaa	tcgtttctaa	atattggtgt	62880
gggccacaca	gtcatgtttg	gacctacttg	tggcctttta	cagaccccag	gccaaggctt	62940
tgggaacttg	gctgtcagcc	tcctgtgcct	tctgcacccc	caccccattt	ctgctttctg	63000

gaacccccga	tcctgtcctg	ttctgtggtg	attcgggtgt	gcttgggctc	taggagaaga	63060
				cctggcttca		63120
				gcagggtgag		63180
agttcagcgc	ggactccccc	agcccaggtg	cgttcatagc	cagactgctt	ggtcctgagg	63240
cctgcgctgc	tgcagggtga	gccccacccg	gagttcagca	cggactcccc	cagcccaggt	63300
gcgttcatag	ccaggctgct	tggtcctgag	gcccgtgcta	ctgcagtggg	cagcctgccc	63360
tgtggctgtg	tgtggtcggc	ctgggcacca	tctattcagg	ctggcactgc	agggcatccg	63420
				ctgtagcctg		63480
ggtattgttc	agtagttctg	gtattttcca	aagacctatg	tcttctccca	gccagtatca	63540
acttggcctc	tactgtgtaa	aactggaaaa	ctctactttg	tgaagctgag	ttgggagcat	63600
cgcttgaggc	caggagtttg	agaccagcct	gggcaacatg	gcggaacctc	gcccctgcca	63660
aaaaattagc	caggtgtggt	ggtgtgctcc	tgtggtccaa	gcttttctgg	aggccgaagt	63720
				cccagatgac		63780
				aaaaaggaaa		63840
ttcactgtaa	gggcattttg	catctttaaa	tgacccacaa	atctggcatg	catcagctgc	63900
tctgcctgta	ggttccttcc	cagtgtttgt	ccagaggtgt	atttccacac	agcgctagtc	63960
acggcatatg	tggaaaacgt	ggaaaccctt	catggatgtt	gtcagttggt	ctatattttc	64020
tttcttttt	tttttttga	gatggagttt	cacttttgtt	gcccaggctg	gagtgcaatg	64080
				aagcaattct		64140
cctcccaagt	agctgggatc	acaggcgtgc	accaccacgc	ccagctaatt	ttgtatttt	64200
				actcctgacc		64260
				gagccgccac		64320
tgtccatatt	ttctacatgg	cttctgtaaa	cagctgacta	ggagtctgtg	tgaatatctt	64380
cataggttct	gctgtgacac	tacttgctcg	tgagcatctc	caggtgtaaa	cagcatcagc	64440
ttcccccatt	ttcctttaaa	atcgcacatg	tggacggaca	ccacggggac	cctggaccct	64500
ggggagcccc	gtcctcaccc	ttctcaccag	gatggctgct	tggtagagag	tgagtttgca	64560
aagttggcat	ttgtttagta	cagaagttat	caggtgttct	ggctttagaa	tccctttata	64620
tatatatata	tatacatata	tttaagtgac	agggtctcac	tctgttgccc	aggctggaat	64680
gtggtggtac	aatcaaagtt	ccctgtagcc	teggeeteet	gggctcatgg	gatetteeeg	64740
tctcagcgtc	ttaaagcgcc	gggaccacag	gtgtgcacca	ctgccaccgg	ctctcaagat	64800
tgccacgcag	ggagttgcag	tgggggaagg	ggttcctggg	actttgaacg	ctccacctcc	64860 64920
ctcctctcca	cagtececca	accecacete	cccaacgggg	tggacggccg	teggeagetg	64980
tecttegett	ggcgcagggt	ggggagagtg	acaggiciec	ttccctcatc	ctgtgtgagetg	65040
ccatttcatt	gettacataa	cytyyyayaa	tttattaatt	acccccaggc	caggggggaac	65100
tattatasat	agtagagas	attataataa	atagacttct	acttgatgtg gccatctcat	traggactet	65160
agetteaget	ttcatcccta	tetetteeee	cacccctttc	gagatggggt	ctcactctgt	65220
cacceaget	ggagaggggt	ggtgccatca	caccccctg	cagcctccac	ctcctgcagc	65280
				cccaagetcc		65340
agentatace	actotoctto	acadanteca	ttcttttcct	cacactttat	ttattgaaga	65400
accesaacca	tttaccctgc	agagtcggaa	tctgtacagg	aggggcagcc	acacgagttc	65460
cccaatttac	totgaactta	ggtggcttga	agaccccagt	tagactgcgg	ccaccattta	65520
ccgggctcca	gatgggacgt	cctttctatc	agaaggetea	cagtatctcc	tttcccattt	65580
cttcccatgt	gaacattgtt	gctgctgaac	acctgaatat	gttaatcact	gggggcttgc	65640
aagatggcag	totoctaatt	ccatcatcta	gtcagttagc	aggaataact	taggaccacg	65700
ccctgcacca	tatcagctat	gtggtgatcc	cattcacaca	ggaaaggtgg	gacaaatgct	65760
gagagtagac	cagatatact	gtctcacacc	tgtcatccca	gcactttggg	aggcccaggc	65820
aggcggatca	cgaggtcaga	gattgagacc	atcctggcca	acacggtgaa	accccgtctc	65880
tactaaaaat	acaaaaaaat	tagccaggtg	tggtggtgca	tgcttgtaat	cccagctact	65940
tgggaggctg	aggcaggaga	atcacttgaa	cccaggaggc	ggaggttgca	gtgagccgag	66000
atcgcaccat	tgcactccag	cctggcaaca	gagcgagact	ccgtctcaaa	aatcaatcag	66060
tcaatcaagt	gtcatcactg	aatgtttgtg	tgtgaacgtg	gggattggtc	ctgccccatg	66120
ctccctcctg	aatctcactc	ctgacctcag	ttgctgcacc	ttgaggtgtt	ttctgtgggc	66180
tcttgtgtcc	tgaccccggc	ggttgtggcc	tctgctgtct	gggagtcagg	atttttcaca	66240
ctcatgtcct	gctccagacc	tggaatcagc	caagtctcca	agaagccctg	ctttctttc	66300
ctgcaagacg	gtatttcaag	acccgccgtg	cggcagcggg	ttggtcatgg	ttactgggtt	66360
ggtcgttgtg	actgggtgtt	ttcgtggaga	tacagccata	cgcacaggtg	tgttcacaaa	66420
tgttaattct	aaaggtcaaa	cacccggcca	ggcataaggg	ctcagcggta	atcccagcac	66480
tttgggagac	caagactggt	ggatcacctg	aggtcaggag	tttaagacca	gcctgagcaa	66540
cagggtgaaa	ccccatctct	actaaaaatg	cgaaaattag	ccgggcatgg	tggcgcacac	66600
ctatagtccc	agctagtcgg	gagacagaca	cgagaattgc	ttgaacctgg	gacatggagg	66660

ttgcagtgag	cagagatggc	gctgctgcac	ccctgcctgg	gtgacagagt	gacaccctgt	66720
ctcaaaaatg	aatagataaa	taaagataaa	acacctgctc	ctcttggtgt	ctccagtttg	66780
gatttggcct	gtgtagcctc	ttccttcgcc	tgttggtgga	tttggcctgc	acggattctg	66840
tgtggcctct	tccttcccct	gttggtggat	ttggcctgca	cggattctgt	gtggcctctt	66900
ccttcccctg	ttggtggatt	tggcctgcac	ggattctgtg	tggcctcttc	cttcccctgt	66960
tggtggattt	ggcctgcacg	gattctgtgt	ggcctcttcc	ttcccctgtt	ggtggatttg	67020
gcctgcacgg	attctgtgtg	gcctcttcct	tcccctgttg	gtggatttgg	cctgcacgga	67080
ttctgtgtgg	cctcttcctt	cccatgttgg	tggatttggc	ctgcatggat	tctgtgtggc	67140
ctcttccttt	ccatgttggt	gtccttttt	ccatgccagg	aatcctggtt	ctcaagggcg	67200
gggttgttgg	cacgagcgtg	atgcagactg	cctttgctgc	etttetettg	eccagggetg	67260
aacatggagc	tggaagacat	tgcaaagctg	aagagtaagt	gttgeeetee	eegeeceecc	67320 67380
gcagctgggt	ggggcctcct	ccttgcgagg	aggrgggrga	tagatagaga	acceatagey	67440
atcetgetge	gcctggaggg	ggccatcgat	getgitgage	ttcactgcaga	acceaaccta	67500
gccaccaagc	cagggaggtg	agaggcgggg	agctatcaca	tcaccactaa	gcctatttt	67560
gagetagaaa	cgggccatgg ttcccttttt	ragagetere	aggaggagg	acttacata	atctoottoo	67620
taggettytt	agaggagcag	cacacactcc	caccacacac	cacacaccc	cccacqqaac	67680
gggacgttg	cccatggaac	agcacacacaca	ctcccacgaa	caccacacac	actcccacga	67740
acadeacaca	cactcccacg	gaacagcaca	cacacccacq	gaacggcaca	cacacccacq.	67800
gaacagcaca	cacactccca	cagaacagca	cacacaccca	cqqaacqqca	cacactccca	67860
cggaacagca	cactctccca	cggaacagca	cactctccca	cggaacagca	cacacactcc	67920
cacggaacag	cacacacacc	cacqqaacqq	cacacactcc	cacggaacag	cagactctcc	67980
cacqqaacaq	cacacacact	cccacagaca	gcacacacac	acccacggaa	cagcacactc	68040
tcccacgcgg	ggccgctggg	tttcctgcag	tttctcctcc	tccaggcctt	tccctggacc	68100
ctggtccagt	ccgtcatttg	agcacaggtg	cctgttagaa	cgagaccttc	ttgttaggac	68160
gatgagtgtc	ccagccacca	cctcttttgg	actccgggag	gcctggaacg	ttctgaacgc	68220
tccgtggggc	tccagtcttc	tccgcagcca	gggcagcagg	gtttgctgtc	tgtcctgcag	68280
gcagatgagg	agtcagggct	ggggcctgtg	tgggggctct	cctgagcgcg	cagccgccga	68340
ggtggagcgt	gttctgcctg	agcgccgacc	tggtcggggg	aatcccagtt	gcttccaggt	68400
ggagccactg	tcctcagcgt	aatgctcaag	gctctggcct	ggctcctcgg	ccaccctgca	68460
ccctcagggt	cccctcctgt	agcttctgct	gccccatcac	tgtcactctc	caaagctttg	68520
gggactctgc	ccagagccac	cgcctcccag	aagcccctga	caacctcttg	acgaccccct	68580
agtgacccca	teceteceet	ctgacggcgg	cccctgctct	gaggcggctt	cttttcctcg	68640
gtgctgttct	cgtgctggcc	aggeeteete	tccccacctg	gaggeteetg	agggcggagg	68700 68760
cctctcacct	ccaatgctgg	egteeeetgg	agggetgaat	atttcccct	gggaaggaaa	68820
cttccacagt	tgttgccttc	agttccaaag	ctgcagcctg	attracted	aggerega	68880
gcctgttttc	ttctcggcag ctcctcagtt	ccacaccccc	gaccagugue	cccccccc	aggeeegage	68940
acettettet	cctcggcagc	tacatcttt	agetettee	tgaagcccag	atcacqtttc	69000
agaccaacca	ctgcatcctg	gactcgctgg	accadatcat	ccaccacctc	gcaggacgtg	69060
agtactaaggg	cggggtcttt	gatacagaca	aatgtggcgt	agggggtgca	gcaggcctcc	69120
atcttggcag	tcagggctcc	cctggccgtc	acctggccgt	cagcaggaac	aggcccacag	69180
aacctcatct	tctgatcggg	gcgtggaggc	gttagtgcca	cttgccagct	gccgtagagc	69240
ctgtcccagt	tctgcagctg	gcggcttcgt	cctacagcct	catcccatta	ttctgctttt	69300
gagaaagagc	agcccaaggc	cctagctggc	ttgtggggcc	tctggcttct	ccacaccacc	69360
ccgagttctg	cttctcagag	ttgtggggtc	cagaggcttt	gcccagaggc	ggtgtcccca	69420
tgggctgctc	tggtttgaga	cgccgggccc	agcggggtct	ctcctctgct	gcgctcccgg	69480
gtgctgggga	gggtggcttt	tgctgcttca	acccttaggc	gaccatagag	cctcttttca	69540
agtcccactg	acccccttgg	agactctgtc	cctgcctggc	ttctctcctg	gctgctggga	69600
agagcaggcg	aactgcccgc	cctgaatgga	tgctgcgctc	caccctgggc	ccccattgg	69660
gcaggagatg	gagcttggca	gtcgggctga	gcgggctcat	gctggaaggg	ccggggctgg	69720
ggtcggggcc	tcccctgcct	gcagtgtggg	tgtcagcgcc	ctgctgccct	ccaggtgctg	69780
	caacacggcc					69840
ctcctctgtg	gcatctcctt	ccctgatgga	agccgggcgg	gtgccttctc	ctgctgtatt	69900
agttaactga	ttctagactt	ggggatggga	gaaaggcccc	tacaccacct	gtttctgatt	69960
ggcaaactct	cggctccttt	ccagtgccct	aaacccacac	tgggcctcct	gcagggatgg	70020
gggaggacga	ggtctggtgg	cacatgccca	gggtgatgct	ggtgagggag	gacgcaaagg	70080 70140
	ccggggagcc					70140
ctgctggcag	ccccagcagc	cccagctgca	cycayatyaa	tacacattac	racacycyyc	70260
ttcccgaaca	gcttctccag	ggacagacaa	coctaggeee	cttctcattc	acceatect	70200
greeerggga	gcccatgatt	gggggtgcga	cectygeede	culculating	geeegeee	, 0520

gtcctgcaat	gcccgtccca	tgtgaggtct	gcttctggct	ccatgcctat	ggcagcacct	70380
gctttccctg	gcgtagaggt	gcttgtccgg	tttgtggagg	gcacgcccca	ttttgggtgc	70440
tctgggcacg	ttgcctctcc	ggggcctcgg	tggcttttt	agaagcagac	tcagaagtcc	70500
ctgactgggg	aagccaaggc	acaggtggct	gtgtggagcc	ctgtgaggcc	tcctctgtgc	70560
tacccacact	gtacctgctg	gccacacgag	atcatggcag	ggttaggcag	ggctgcccag	70620
coctatoaca	gcttcatgag	tgtccatctg	gcctgtgggg	tgcttgagct	gggggaggcc	70680
gcagaagaac	cctgggatgc	atggctggcc	tgtgcatgct	gctgggcatg	gagctgcaga	70740
tcccggaaca	agcaggcact	gccttctcct	tcacagacgc	agctctgagc	gggggcgaga	70800
cctgggcagg	gaccaggtgg	ggtgggcaca	gggtggtggg	gcccaggctc	agccctccct	70860
ccactgtgg	cgtctctgtg	gccagtgacg	ccacagcctg	tgtcttctct	gtgcggtagc	70920
tagaactaga	aggacagcac	tgccttgtcc	tcccaactcc	tccccaaagg	cacggtgggc	70980
atcccaggc	cagacccctc	tatctatage	tcctgcctgc	caagggctgc	tgtgctgtcc	71040
cocatogaot	gtggttggct	cttcaagcag	gaggccgtgc	acctatcagg	cggacctgct	71100
tccatgtcc	: tgatgggtca	ctgcaaagca	cctccagcac	atggccaggc	gaggtagccc	71160
tgcagcccag	ggcctggagg	gcaggtgtga	gctggcccgg	gcctgtccct	ccctggaata	71220
cagcttccca	ggctcccact	tatggagaag	tctcctccac	actatggaac	tgaatcctag	71280
aatgtggctt	ctgaggttcc	tacactcgaa	ctgaatcctg	gaatgcggct	tccaaggctt	71340
ccagctatg	gagagactcc	acactctgga	accgaatcct	ggaacgcggc	ctcccaggcc	71400
cccagctate	gagaagactc	cacactctgg	aaccgaatcc	tggaacgcgg	cctcccaggc	71460
cccagctat	ggagaagact	ccacactctg	gaaccggatc	ctggaacgcg	gcctcccagc	71520
ctcccactta	aggagaagtc	tccacactct	ggaaccggat	cctggaacgt	ggcctcccag	71580
gccccactt	aaggagaaga	ctccacactc	tggaaccgaa	tcctgcacac	tccatcggtt	71640
togaatttc	tttggctgct	gctctaagta	gccgctggtg	gatgactcag	cttctgccag	71700
ccctcaaat	cctggaggat	gagggactgc	acacagtgct	cacccgcgtt	ggctcctgag	71760
cccctgcag	tgtgggcggt	gcccataggg	ctggtgctgg	gttgggcctg	cagccctgag	71820
tcacaggtg	a ccctgggggc	agagtggggC	cagtggcccc	aggaagagga	tgtgggatgc	71880
acageteag	tggaggcgaa	ctccaggcag	ggtcaggccg	tgtgctcgga	agtcagggct	71940
tagctggag	g caaactctgg	gcagtgctgg	cccgtgttgg	ggaaccagtt	gcccctgggc	72000
ccccataaa	a ctgctgggtc	ctcatccctc	tctgcctgag	gccggagctg	ccctgggctg	72060
aggcacaggg	ggatttgtgg	tggtgttttt	ttgagaaagg	gtctcgcttt	gtcaccccgg	72120
ctggagtgc	a ggggcttgat	cacageteae	tgcagcctca	acctcctggg	cccaagtgat	72180
cctcttgcc	cagccacccg	aggagctgtg	aacacaggtg	tgcaccaccg	cactcagcta	72240
atttttaaaa	a tttttttgta	gagatgaggt	cttgccatgt	ttcccaggct	ggtctcaaac	72300
tectagaet	aggcagtctg	cccgccttgg	cctcccaaag	tgctgggatt	acaggcaaga	72360
gcttccatg	c ctgcccagca	gaaggctttt	cgaaggaagc	tgtttcctga	ggcagactca	72420
gccctgctc	a tggcagccac	cagcgtgggg	gtgaacttgt	tctgttactt	ccatccccgt	72480
gggccaaat	g ctttggtaaa	acacaaggcc	ctgtgtttag	ctgtcttgac	agtgaaaatg	72540
gctgggaag	g aaggaaggaa	cggaaggaaa	tttctctctc	cttctgtgcg	tacccaggca	72600
cgtgcacat	g catgcagagt	acgcacacac	gcacgcacgc	ctgcacaaat	ccacgcatgt	72660
toccaagto	t ctgtgttcca	gccgtggtgt	ctgccccccg	gtgttctcta	gttcggcttc	72720
tccgcattt	c tgtgaatgat	tccggcttct	tggtgttccc	agcagaactc	cctcaagtct	72780
acaacaaaa	c tctgacggcg	gtggcttggc	tgacatggcc	acattgctga	gcctgttggg	72840
gactttaca	t tcctgttctg	gccgtttttg	gctcgttttc	caggaacggt	cgtcacgcgc	72900
tcctctcct	a gtgcaggcat	cattcctttc	ccattgattt	gcagggttct	ctgtaagttc	72960
tgaggatcc	c atatacatat	actctctgta	agttctgagg	atcccatata	catattctct	73020
ctctaagtt	c tgaggatccc	atatacatat	tctctctcta	agttctgagg	atcccatgcc	73080
gacatacat	a ttctttcctt	gtctcatgct	ggtcatttt	tccattttca	tgacaggttt	73140
ggtgaacac	a tgtttccttg	tcagattttt	gttctgagct	tgtgcctccc	gaccaagatg	73200
ctaaaccgg	g tcttgtgtat	tctccaaact	gcactgtaga	gtgacggagc	tttgtgtctg	73260
ggcctccat	g ccttctgacg	tcacctgtgg	gggtgtgaaa	ggcagactct	accttgattt	73320
ttcccagca	c gccacaccgg	tggttctgtg	cgctgaccga	gcggctcggc	ttcccccaac	73380
tccactggg	c acctgccaca	cttttcctca	tgtttttgtt	cactgtggtt	ttgtcgtaag	73440
tcctggtgt	t ggcctgaacc	aatttcttt	tgtttgttt	tgagacagag	ttttgctctt	73500
gttgcccag	g ctggagtgca	gtggcgcgat	ctcggctcac	rgcaagetee	gcctcccggg	73560
ttcacgcca	t totoctgoot	: cagcctccca	aatacctggg	attataggca	cctgccacca	73620
cgcctggct	a attttttgta	tttttagtag	, agacgaggtt	tcaccgtgtt	agccaggatg	73680
gtctcgatc	t cctgacctcg	tgatccgcct	. cccaaagtgc	tgggattaca	ggcatgagcc	73740
accgtgccc	a gcctgatatt	: tttagtagaa	atggggttt	gccatgttgg	ccaggctggt	73800 73860
ctcgaactc	c tgacctcagg	tgatectete	accttggcct	cccagagtgo	: cgggattacg	73920
ggtgtgagd	c accacgcccg	geetettett	cttttgaaac	ctgccctgac	gttttttcca	73980
tagtgcato	t tggagtcago	grgretaett	. cctgtaaaaa	cettaetgtg	acciegacea	13300

						74040
gaatgtgttg	aattcctgtt	tttttttga	gtcagggtct	ctctgttgcc	caggctggag	74040
racagtagga	ccatcacage	tcactgcagc	ctcaacctcc	tgggctcagg	ggatcctctc	74100
				200155	actagattt	74160
ageteaacet	cccaagcagc	tgggaccaca	ggcacacycc	accatgcccg	gccaggcccc	
tttttttt	tttttggtga	acaccctggg	gttgcaccat	gttgcccagg	ctggtctcga	74220
				agtgctggga		74280
				tggggccctc		74340
agaggagggc	tgggccagtt	ggcgggagga	gaggcccctc	gggctgccgc	attttcagtg	74400
catogagato	acctatatta	ggggaacaca	gageteaceg	ggggtccctg	cagggaggag	74460
a a a g g g g g g g g	gcaggtgcca	actactates	attoocctoo	ggctgcatga	tagcaggggc	74520
aaayyyccay	gcaggcgcca	geceegeee	accygoody	9900900090		74580
cggtgaaccg	atgacccctg	ggtgtcctgt	gaccttctgt	gtatgcggct	gatgctgcag	
aaagtcgggt	ggcctcaggc	tcctgacggg	gctgcacttc	ctctgccttt	cagattgtgt	74640
trantatana	cccctccgag	ggcagccctg	gttccccagc	agggctgggg	gccttacagt	74700
ccagegegga	ccccccgug	ggcagccocg			taaaaaaaaa	74760
cctataaggt	aggggccacc	tccaggaggc	aggcggaggg	cagcccttgt	cccccggcag	
ggctgggggc	cttacagtcc	tataaggtgg	gggccacctc	caggaggcag	gtggggctgg	74820
gggtcttctg	greetaaaag	gtaaggggct	gccccagga	catgggcggg	gcctccacac	74880
99900000	atacastas.	actacacata	catcotgatg	ctaatcacca	gaggacggct	74940
teetggteet	giccccicca	ggtgtatatt	catttigatg	ctggtcaccg	gaggacggcc	
cagcggtctg	atgcctggag	caccactgca	gccagaaagc	gaggtacaga	cctgggccca	75000
cacqctcccc	acccacccaa	gtgcagtgcc	cggcaccacc	atgccacagg	ctaggcacat	. 75060
accesaceat	ggatctcctg	ccccataaa	cctaaccacc	ttctccatat	ccaggccaat	75120
gcccagccgc	ggacccccg	ccccatggg			~ + - ~ ~	75180
ccagagcatt	ctcctcactg	tccctctgaa	gattggagtt	actgagagac	graggagarg	
gcctgatggc	accgtgacct	gcccagagtc	acctggttgg	tggtggcaga	gccacagccc	75240
agccaggcct	ccctactaga	acacgctcgt	ttatoccoag	gccgtcagca	cagageetee	75300
		chactacta	cacacacac	ctaaccaaac	caadcctcad	75360
acagigagge	acggererge	Ctyctycctc	cacycagege	ctggccgggc	caageeeeag	
ggtcacatct	gaagggggcc	cggctggccc	tgttgtccga	agcccctggt	gcgctcagcc	75420
ccgaggcccc	acqtqccttc	ttggcttcct	gtgctccgtg	gcgtcttcga	gtcggtgctg	75480
ccaaaascac	tatataasta	acatetatas	atataccete	ggctccgtgt	ccggagccct	75540
ccggggacgc	cacacaaaca	99900090		252222323	taggagattas	75600
gtggttcttg	gggtgtatct	ggccccaccc	ccactgcgtg	gtgtccaggg	tggggcttca	
cggctgcagc	tgcgggagct	gctgcccctg	ccttgtgctc	cagtggggcc	ttgcctctgg	75660
acttaattca	teceteteta	gaacattctt	tctcaqctqc	tgtccgaccc	atggtggcat	75720
goodgaoog	taactaaaac	accettata	caattactat	ggttgggtct	acctaaccaa	75780
gacgrggccc	cggccgaagc	ageceety	cggctgctgc	ggeegggeee	gcccggccga	
gccggaaggg	aagggctggg	agggcgtcag	ggtggcgtgg	cttgaccccc	gctcggtgat	75840
ggtcctgcag	caaggcctct	cccaqcagga	agcgtccatc	ccggggggag	gccggcgccc	75900
ctcacacact	tagaattaca	agagggagta	catacctaaa	gcagccggtg	cacagattcc	75960
		9949944949	eretestate	acttoactto	tcacaacac	76020
aagggcctgg	aacctgtttg	ttccattgac	ccctgatgtc	acttgacttc	ccayaaycay	
ccactccctg	cactgggcgt	ttgtaggaaa	tgagctcctg	gaggagggg	tggggaagtt	76080
ccccattac	agggcacact	cagccccagg	aaggaaacgt	gcctcgtccc	tgctgactcc	76140
gaategeagt	cagagecatt	ctacttatac	catattaaat	tcccggcatc	coocatccao	76200
gaattytagt	cagagecyce	Cogcoogc			ttataggaaa	76260
actcagcctc	ctccccaggc	cacggccgcc	grggccagrc	ggtcaagccc	ccccayyaac	
ttcctttgag	ctggcgccct	tgttcactgc	tgacgccact	cagaggcttg	tgcacgtgtc	76320
ctacttccaa	gcagagetgg	gaactcgcac	cccqtcttct	gcacgcggcc	gtggaatgtc	76380
agastagaa	contracts	ceatatacte	ttaacaaaat	agacttetta	ccctgagccg	76440
gggacgeegg	egetteette	ccgcgcgccc	ccggcggggc	gggcttcttg		
catgtcacag	tttctgcaga	agtttagggt	tggagtgggc	tgacctctct	gcaggtgtcc	76500
ccagcctctg	cctggggtct	gcctcctact	cccaggaccc	cctgtccccc	agaggggccc	76560
caagetggca	ggctcacact	caggggaggg	tectttatte	tgacttctgc	acagtgggc	76620
	990000000		taccaataaa	tagagaggt	datadacada	76680
rgggrggcrg	cccgcggctc	gettgettga	Lyccaglygy	tggagagggt	gacgggcaga	
gaggcaggtg	gtcaggcccc	cagtcccgtc	ctcacactct	gtgccctctg	ccgcccccg	76740
ccccacaggg	aaggtgctga	gctactggtg	cttcagtccc	ggccacagca	tgcacgagct	76800
gatagagaa	ggggtgggt	ccctcatcct	taccagegge	acgctggccc	caatateete	76860
ggcccgccag	ggcgcccgcc			~~~~		76920
ctttgctctg	gagatgcaga	tgtacgggcc	acccctgcca	gggcctgagc	accoggicyaca	
cctctgacat	cagcggggtg	gaagtggtgg	gggtccccat	gagccgggtg	ctgggggtct	76980
caaacctcaa	gggctaaagg	aatactaata	cacttcccca	ctgtctgctc	cctctqqcca	77040
						77100
				catcgacaag		
gggtgggggt	cgtccccaga	ggccccgatg	gagcccagtt	gagctccgcg	rrrgacagac	77160
ggtgagggcc	tgtccctggg	ccctgctggg	gtgggaggtg	ggggagcact	gaggcctgag	77220
				agtgcttatc		77280
gecergagea	gragation.			-9-9	ataanaaa	77340
				atcctggatc		
gctcccaaga	gctggtaggg	acccctgcag	acatcctgcc	cctgccttga	ccccggcccc	77400
				ctcctgatct		77460
						77520
				cgtctcccct		
				tggtcacagc		77580
cctcatcgga	tcggcggcgt	gaccagggct	gccgtgtccc	tgcctcttcc	tcccacaggc	77640

ccacaactta	gccaggaaga	tagaaaacact	gaageegetg	tttgtggagc	ccaggagcaa	77700
	tccgaggtcg					77760
	ctcacagctt					77820
acteceacta	cctcttcagg	actectacat	ttccttccta	accetaaata	traccretta	77880
tottacasag	ccccagcac	caratagata	tratagrant	gaccatagag	tctgagtagc	77940
cctactagag	caccctggcc	ctagaattcc	ccatattttc	taggaaggag	taaacaaaca	78000
tagagteage	ctgggatccg	taccaaaaa	aagetteeag	aacccgattg	accttcctaa	78060
cygyyttayt	cottoatet	rgccayyaay	acctedatet	ccctcatccc	adaddaaadd	78120
ctaygacgac	ccttcatctt	ggagcatgag	accegggeet	tecaeaceat	cactacttac	78180
gergggggg	ggctccaggc	taggeereae	gagagagaga	tectagecat	ctaccaaaaa	78240
cacycaayyy	ttgccgcccc	etataccata	accteattee	ctattcccta	ataataatt	78300
aaggryager	ctccagggcc	acceptage	acctggttgt	tegetteett	gegggegeee	78360
acggereece	agcagactct	gggccccggg	tactactata	acctacaca	gggccccacg	78420
agagegaetg	ctggccctgc	tygyagcyty	catatagasa	statagassa	caaggacgg	78480
gagttteetg	gccacaagag	teggaggegg	cgtctgggag	cegeggacce	caagtggggt	78540
cctgacccac	agatggagct	teeteecace	catggttggg	gacggagccc	agetecetag	78600
ggetgggetg	ggtgtgggca	ccagggagag	tteteagaga	ggccccaggc	tagtatastt	78660
tgtgtcccct	aggccagcga	ggggctggac	cicicayaca	ttataataa	ratocastto	78720
gtcacgggcc	tcccgtaccc	cccacgcatg	gacccccggg	tracttacae	gatgtagttt	78720
	tgaagggcca					78840
	gcggtctggt					78900
cgagccgcct	cgcccacag		ggcaggagtg	graceggrag	caggegeeea	78960
gggctgtgaa	ccaggccatc	gggcgagcya	cocygeaccy	ccaggactac	ggagetgtet	79020
	ccacaggtgc					79080
	gggcccctgg					79140
tctccggcta	ctcggggtca	gcgtggggcc	cetgeageag	atgagggtet	ccaccicggi	79200
gaactgaacc	cttgaagcgg	etgtgggeag	ggcagcaggg	ctatggccac	tabagatata	79260
	gacgcaagag					79320
tgacaacttt	ggccatgtca	teegagaegt	ggcccagccc	cccgcgccg	ccgagcgaac	79380
tgtgagttcc	tgcccaggga	ggggatgagg	gtgttgteee	cagaggagee	agaaatgggt	79440
ccacccaccc	ccatggttct	gcagatgcca	gegeeggeee	gagattat	aycacccagi	79500
gtgcgtggag	aagatgctgt	cagegaggee	aagtegeetg	gcccccccc	agetagaag	79560
aaagctaaga	gtctggacct	geatgreece	agectgaage	agaggttttt	aggracagaa	79620
gggcagcgct	gggtgggcgg	tgtgggggtg	geggageggg	cggcgtgggg	coggicagicac	79680
caggcgccca	gggcggaggc	gaeteacetg	getttgtgtg	angetees	tacacacaca	79740
ggetgeetet	ccctcctagg	geagggeeee	cacyggetge	aaccccccc	cacaggcaga	79800
gaacgcccca	ggcaaggatg	ececegagg	ctgagactcc	aggggtttg	agggaggaca	79860
	ggaccccaag					79920
ggaccccagc	tggggcccc	egreggerre	tatataaaat	atasaasaas	cgcagggcca	79980
ccagctgccg	gggaccccga	gagtageetg	cgcgcggagc	acgagcagga	gccagccccc	80040
	ggcccagggg					80100
ageeetggeg	aggagcaggt	acayctccag	ggccccggga	ctoccoccoc	acceptates	80160
cctgaggcca	acccgacccc	geeeatetgg	ccccaggcac	tecesactee	ctggctgtct	80220
accecetgee	tggcaggcag	gegggeaage	gggcggggga	ccagarage	catacactaa	80280
	caccccacct					80340
eccucegegg	gtgccccca gggtgcccct	geeleteget	gecettagge	ctaacctttc	tccaccastc	80400
acceaaggce	ggaacccagg	tteettette	cttagaaact	tttaccccaa	aacccataa	80460
						80520
transplan	caacccgaaa tgcccttcag	gecetagea	tgageteeag	gragecace	cagggaggtg	80580
tgeceatee	change	gcccccggag	tegagetetate	ttccctccac	ctactattac	80640
ractorease	etgecageee	catgagege	tagtataect	tagacaggac	ctgctcttac	80700
aagtcaccac	ctgcgagcct	ataccacac	cccccacct	ccatcttage	traggette	80760
	ggggtgtgct					80820
	cttccctgtg ttgtgagctg					80880
						80940
	gaggccggca					81000
	gcgtgagctg					81060
	ggtgccccca					81120
ggagctgatg	tccagggcag	ccycyacycc	atcaccase	ggcccaagcg	agetttees	81120
	gctcatgagt					81240
cygygeetge	agcactgggc ggacacagcc	cattootage	cttccatcas	adaggggggg	tataccons	81300
cccacycyag	ggacacagee	Lactetage	·	~guacygagt	Lucugeeyga	21200

gccaggaagc	cccctgcctg	ctggaaaacc	ccaagtgtgg	cggcctttgt	ccatgtccct	81360
	gaagaactgg					81420
	ggcctgggct					81480
	cgtttccgtg					81540
	cttgtgcgct					81600
	gaggaggaga					81660
	tgcccattca					81720
	agccccacag					81780
cagtttctca	ggcagcagcc	ccacctcqqc	agtcactgtc	ccagggaacg	ctcaatgttc	81840
caaggaaggc	tctgcagccc	cagggaccag	atgatgaggc	tggccctgat	ggagcctcgg	81900.
acctatatcc	tgcaggagga	acccataact	ggtgcacaga	cggacagggc	caagctcttc	81960
	tgaagcagga					82020
	agggttccga					82080
	ccaagaagca					82140
ccctgagggc	agtgctgccg	ccacatataa	ggtggggcc	atctgggtcc	aaggtggtct	82200
ctgttctcta	gagaaaaagg	ggcagatggg	gacagacgcc	ccttcctcta	caggetteta	82260
ccagtttgtg	cggccccacc	ataagcagca	gtttgaggag	gtctgtatcc	agctgacagg	82320
acgaggetgt	ggctatcggc	ctgagcacag	cattccccga	aggcagcggg	cacageeggt	82380
cctggacccc	actggtaaat	addacccad	gtgggaccct	cagactcctg	cgtggaaggc	82440
agtgtgggcc	agagtcctgg	actacttaaa	gtgggcatcc	tegggeeetg	cttggccccg	82500
cctctctatt	cccctatggg	agtgatgggg	gcctccacct	ccaccaccag	caccagcagc	82560
accacctcca	ccttcaccac	caccacctcc	accaccacca	cctccaccac	ctccacctcc	82620
accacctcca	ccacctccac	cacctccacc	accaccacca	cctccaccac	caccaccacc	82680
	ccaccaccac					82740
	ccaccaccac					82800
	ccaccaccac					82860
	tgcaactcca					82920
	caactgccac					82980
gcacacgcca	gggtcctagg	gtcctagacc	cctgtcctcc	ctgtttctgc	ctctgtttgg	83040
ggtggagtcc	aagtctccag	aggcggaagc	atctgtgttc	gtgtgttaat	gaacagcccc	83100
tacagagttc	ccctagttca	cccaggggg	aacctagcct	gttgggacga	ccccagatcc	83160
cttctagact	tggtactcac	toggatatee	tcatgcctgc	acccagccta	cggctctgag	83220
ctcctgagtg	gggctttggc	ctgcccgcca	ctgttccagc	ccccatccag	caggctggtg	83280
tctcctctga	tgccccagc	acccaggcgt	gtacctgcct	gggttttccc	gccctggtct	83340
gaggtgggtg	aggcctggcc	tccctagcca	gccctgcccc	cccaccccag	ggaactttcc	83400
agatgeteee	gaccagcttt	gtggctctac	atctcttcat	caggaagaac	ggcgccggat	83460
cccaaqctqa	ccgtgtccac	ggctgcagcc	cagcagctgg	acccccaaga	gcacctgaac	83520
cagggcaggc	cccacctgtc	gcccaggcca	ccccaacag	gtagctgact	cctgaaccgt	83580
gtgcagccta	cgacttggtg	ggtccctcag	tggcttcacg	aggctaactc	ttgagtgtgg	83640
ccaaaactac	ccctgtgggg	agccatctca	tggtggggac	tgctcccggt	tctgcacccc	83700
	tgagcagctc					83760
ctctcagtcc	tccaccccag	cgccactctg	agccatgcta	ctcccacacc	aggagaccct	83820
ggcagccaac	cacagtgggg	gtctggagtg	cccagagcag	ggaagcaggg	ccagcacgcc '	83880
gtgagcgcct	acctggctga	tgcccgcagg	gccctggggt	ccgcgggctg	tagccaactc	83940
ttggcagcgc	tgacagccta	taagcaagac	gacgacctcg	acaaggtgct	ggctgtgttg	84000
gccgccctga	ccactgcaaa	gccagaggac	ttccccctgc	tgcacagcaa	gtggccctgg	84060
cgtggggaac	agccggtggg	gtggggggca	ggggacaaaa	tgggggctgt	gccgggtctg	84120
attgaagctc	cccgcagggt	tcagcatgtt	tgtgcgtcca	caccacaagc	agcgcttctc	84180
acagacgtgc	acagacctga	ccggccggcc	ctacccgggc	atggagccac	cgggacccca	84240
ggaggagagg	cttgccgtgc	ctcctgtgct	tacccacagg	gctccccaac	caggtagggc	84300
acctgcctgg	ctgctcctgg	cagcgcccca	accgcacgca	gccctgggag	tgagcagcaa	84360
agccccaggc	cccctcaga	ctcaagtctc	tgtctccagg	cccctcacgg	tccgagaaga	84420
ccgggaagac	ccagagcaag	atctcgtcct	tccttagaca	gaggccagca	gggactgtgg	84480
gggcgggcgg	tgaggatgca	ggtcccagcc	agtcctcagg	acctccccac	gggcctgcag	84540
catctgagtg	gggtgagcct	catgggagag	acatcgctgg	gcagcaggcc	acgggagctc	84600
cgggcgggcc	cctctcagca	ggctgtgtgt	gccagggctg	tggggcagag	gacgtggtgc	84660
ccttccagtq	ccctgcctgt	gacttccagc	gctgccaagc	ctgctggcaa	cggcaccttc	84720
	ctggccacta					84780
	ggcccttgtc					84840
gtctcacagg	cctctaggat	gtgcccagcc	tgccacaccg	cctccaggaa	gcagagcgtc	84900
	tctggccaga					84960

	gtggcttgat	cacctgcctg	tecagetetg	gtgggccaag	aacccaccca	acagaatagg	85020
	ccagcccatg	ccagccggct	tggcccgctg	caggcctcag	gcaggcgggg	cccatggttg	85080
	gtccctgcgg	tgggaccgga	tctgggcctg	cctctgagaa	gccctgagct	accttggggt	85140
	ctggggtggg	tttctgggaa	agtgcttccc	cagaacttcc	ctggctcctg	gcctgtgagt	85200
				tcaccgggaa			85260
	cgtgtccact	tttaatcagg	ggacagggct	ctctaataaa	gctgctggca	gtgcccagga	85320
	cggtgtcttc	gtggcctggg	cttggtggtg	ggagttgagg	gacagggagt	tggcagaggc	85380
				tcctccacgg			85440
				taggggatcc			85500
	gggctggtct	ctgggttggg	agctgcccca	ggtgctgagg	agggcagctc	cctggctggt	85560
	gaggcccctc	ccagaaccac	ccttggactg	agctctgggg	agggatggta	ccaggtgggt	85620
	gaggggggct	gcctggggag	ggagggttc	ctatggggcg	tggcgaggct	ggcccagece	85680 85740
	tctccccgcc	catatatgta	gggcagcagc	aggatgggct	tetggaettg	ggeggeeeee	85800
	ccgcaggcgg	accgggggca	aaggaggtgg	catgtcggtc	aggeaeagea	gggccccgcg	85860
	teegegetga	geegegetet	gatattagaa	gcaaggacca	tactaccaat	ggaggggcca	85920
	ggeetgtege	coccocc	ggtgttggtg	ctgcctgccc tggcgggacg	cadadacadd	gaaacaacta	85980
	cgcggagtgg	agtaccccc	aggaggttt	gtgcagcggc	cataccacca	agacagccc	86040
	acqacqtqtq	agrigation	aggeaceeee	tacacgcagt	totogaacta	cctggagcgc	86100
				cgtgaggagg			86160
	acccacaacc	acacctacca	ctoccocacc	ggcttcttcg	cacacactaa	tttctqcttq	86220
	gagcacgcat	catatccacc	tagtaccaac	gtgattgccc	cgggtgagag	ctgggcgagg	86280
•	ggaggggccc	ccaggagtgg	tggccggagg	tgtggcaggg	gtcaggttgc	tggtcccagc	86340
	cttgcaccct	gagctaggac	accagttccc	ctgaccctgt	tcttccctcc	tggctgcagg	86400
	cacccccagc	cagaacacgc	agtgccagcc	gtgcccccca	ggcaccttct	cagccagcag	86460
	ttccagctca	gagcagtgcc	agccccaccg	caactgcacg	gccctgggcc	tggccctcaa	86520
	tgtgccaggc	tcttcctccc	atgacacgct	gtgcaccagc	tgcactggct	tccccctcag	86580
	caccagggta	ccaggtgagc	cagaggcctg	agggggcagc	acactgcagg	ccaggcccac	86640
	ttgtgccctc	actcctgccc	ctgcacgtgc	atctagcctg	aggcatgcca	gctggctctg	86700
	ggaaggggcc	acagtggatt	tgaggggtca	ggggtccctc	cactagatco	caccaagtc	86760
	tgccctctca	ggggtggctg	agaatttgga	tctgagccag	ggcacagcct	cccctgggga	86820
	gctctgggaa	agtgggcagc	aatctcctaa	ctgcccgagg	ggaaggtggc	tggctcctct	86880 86940
	gacacggaga	aaccgaggcc	tgatggtaac	tctcctaact	gcctgagagg	aaggtggctg	87000
	cctcctctga	catggggaaa	ccgaggccca	atgttaacca	ccacatacca	actoroccet	87060
	gaagtgaccc	ccttaacatc	aagtcaggtc	cggtccatct ctgggccccc	tracetetta	canchaannt	87120
	ccaactagcc	actectacee	cctacccctt	tgctccagct	ctctgaccga	aggeteetge	87180
	cccttctcca	attcccatca	ttgcactgcc	ctctccagca	coactcacta	cacagggatt	87240
	tetetetet	gcccccaccg	caaataaaac	ccagaaagca	gggtacctgg	cagcccccgc	87300
	cagtgtgtgt	gggtgaaatg	atcggaccgc	tgcctcccca	cccactgca	ggagctgagg	87360
	agtgtgagcg	tgccgtcatc	gactttgtgg	ctttccagga	catctccatc	aagaggctgc	87420
	agcggctgct	gcaggccctc	gaggccccgg	agggctgggg	tccgacacca	agggcgggcc	87480
	gcgcggcctt	gcagctgaag.	ctgcgtcggc	ggctcacgga	gctcctgggg	gcgcaggacg	87540
	gggcgctgct	ggtgcggctg	ctgcaggcgc	tgcgcgtggc	caggatgccc	gggctggagc	87600
	ggagcgtccg	tgagcgcttc	ctccctgtgc	actgatcctg	gccccctctt	atttattcta	87660
	catccttggc	accccacttg	cactgaaaga	ggctttttt	taaatagaag	aaatgaggtt	87720
	tcttaaagct	tatttttata	aagctttttc	ataaaactgg	ttgtagttgc	acagctactg	87780
	ggagggcagc	cggggacacc	tgagccgccc	gctgtgccca	gatccctcag	gctgcctgcc	87840
	atcagaactg	ctgcccgggg	cttcccctac	ctcagacaga	ccctccctgg	gaggatcagt	87900
	ggggagtgcc	acctctgccc	ccagtggctg	tggcacgtgg	caggggcccc	tgaageteag	87960 88020
	cgagggtcag	ggcctgggag	ggtatcattg	ctggaagaac	aggarggggc	ccaggecage	88080
	cctagtcgcc	ggggcccaca	ctaaccccc	acttatgaat	aggestees	tacttaccac	88140
	aggggatttc	ccgagagggg	accugacaaa	gacctcctcc	toccastacs	cccadadcae	88200
	gaagtgaagc	TEGEGGGGG	ctogggggagg	ctctgaagcc cagcacggcc	aggttcccag	aactaaaaat	88260
	ccccccacc	tectagase	caacctgcag	aacacacaca	agateceeta	gagaggacgc	88320
	agggacttcc	adddcccaac	tectargage	cacagccccg	cagctgctgc	gccaccccca	88380
	ccctgactca	tacceettee	cagcagctcc	tcccaggacc	ccatgtcctt	cccacatcco	88440
	caggaagga	gtgcctggac	tctccaggcc	cacctgggga	gcccctcacc	tgcccaccag	88500
	ccctgagca	gcccagtaac	accatcaccq	tgtccaacag	ccaggagcct	ccaccctcca	88560
	ggagggaagg	gatggacaga	gccacactcg	ccgtctttat	tttgcactca	ccctgggtga	88620

cactgggcag	gccgctcctg	cccacagcca	gactgaggaa	gaacacagca	ctcggcaggc	88680
ccagtggggt	ccgtgcaggg	aggaccccag	gaccagcctt	actcccgagc	aggggacaca	88740
gggccccaca	gagaacccct	ccgggaggtt	ctctcctggc	tgggggaggg	ctctggaccc	88800
ccacaaacac	tccccaactt	gcggggctgg	ggcataaaaa	cagccactcc	cagcaggccc	88860
cctcagcttt	ttgcatcagt	cagctccctc	ccgggggatt	agggtgaggt	gaagccaggc	88920
ccaggcgtgg	ggtataggtc	ttcccccgca	ggcctcagcc	ctgtcccgag	gctgcatcac	88980
aatccagggc	ccccgctggc	ctttgggaac	atggcctggg	tcttcctcaa	ggcaagatca	89040
gccccagacc	acttccgggg	tcacggggtc	acagggcaga	agccagatgg	cagccatggc	89100
tgacgggcct	cctcctcgat	ggggcggaga	cagccacggg	gtctcccgag	ggtcccacag	89160
ggctgtcctc	atgcagccca	agccagcctg	agcactggag	ccccaattcc	caaccaggtc	89220
tccctcagac	ccccagaaa	gggcctcgaa	aggccgccgc	tgcgccctgt	ggaaaggctg.	89280
ccqctqcaqq	gcctgggcca	gccgggctgc	cagactcccc	tccaaagcct	ccggatgcct	89340 ⁻
acgettttce	agacatagag	gaaagtttgt	cttcgagaaa	acaaagtaaa	tagaagaacc	89400
ccaaaqcaaa	qcaaacccac	ccccagatc	agcagcatgg	gagccaacag	gaggccactc	89460
ctccagcacc	aggggaccag	ccgtcccgac	ggcagcgcgg	ctgcgcctac	gtgatgtccc	89520
tctaccacaa	caaccaatac	acattccgca	cgacacactt	caccatccac	tcgatgccct	89580
cacacaccc	tttqctqtqa	agacagcggg	tgtgaggcgg	ggggtctcgg	tccccaaagc	89640
ccccacaaat	gcagccccca	ctcaccctgt	gagggccgag	caggcctggg	tcaggcaatc	89700
acacctacca	atcttqctqq	tgcagtcgct	gaaggccgtc	ttgatgtcag	ggattgagag	89760
gcacgtctgg	gggaggtaag	gccgtgagga	gcagccccca	cgtctggccc	tgtcctgcct	89820
ataaacccaa	gactctcaga	agggcgtatg	cccttcaccc	cagggaaaca	gccagagctc	89880
caccagggtc	ccagtgtctc	ccacagagac	cacagcagtg	aggaccctgt	gctcagcccg	89940
aggetgaaca	tagctagtag	tgcctgagac	aaactagacg	tccacacggc	tccaaggagt	90000
ccacccccca	tcccctccct	qqqqqacacc	ctgagccccg	aggtggggcg	ctgaggactg	90060
aggeeteetg	ggcagtggcg	qaggcaggtc	ccaggggccc	acacagccgg	ggatgatgga	90120
gaggtggag	ccctgcatca	gtgatggggg	cagtctgcag	tcatggtggc	ttctgctcac	90180
aaccacctgc	ccagtcttca	aaaagcagcc	ctcccctccc	cttttcctcc	gaggggagac	90240
ccctacccca	taccagatgt	ccctcttgtc	ggctgagatt	gtaggggagg	ccagccttac	90300
aggetggggg	caacagagcc	accccagaga	aggcaggaag	tgaagattca	cccggccctc	90360
tggacgccgg	gctgcttctg	tgcaaagcca	ctccaagaga	acagctagaa	ctcagcgtgg	90420
ccagtgctcc	cgggggcagt	ggcacctcag	aggggtcttg	aggggctgcc	ctgggggtgg	90480
ggctggcaca	gatgccacct	ccaagggtag	caggaacagg	taagggtcag	agctgactcc	90540
caccagggcc	ccagcatcac	ttctttgagc	tctgagtttc	acctgggtgt	ccccacagct	90600
tggccacaca	ctcctgagac	acggccgccc	tcctggggag	aggtgccctg	catagcagga	90660
agaggcctct	gggcgcctgc	cctgaggtgg	gagaacctcc	agggctggca	gcagcaggtc	90720
tggagaggaa	ccaagcttgg	gaagctgctg	ggggcagggc	aggccttgag	aatggctctg	90780
taccccctgg	gcagtcactg	ggcctggggt	gtctgggtgc	acacctactc	cccttgctgt	90840
gggggaggct	ggggactcgg	gaagctgctg	cgggaggcag	gggtggggct	cacctccaca	90900
tcctgcttgt	tggccagcac	caagacgggg	acaccgcaca	gcgcctcgct	ggtcaccacc	90960
ttctctgggg	agggcaggag	aggcagcgcc	tcacacccag	catcctgcct	ctgactgccc	91020
aggggcccac	aggcgtggac	actgtgacag	ccactccctc	tgccccccc	ccgtcaccca	91080
ctaggcagga	gcacttctga	ccagacactg	agcctgcccc	aggcacagag	ctgcccaagc	91140
			cccagagcag			91200
gcctgcttgg	actcagccag	cctctcctcg	tcggtggagt	caatgacgta	gatgacgccg	91260
tgacactccg	cataatactg	ggaggaagca	ccaggagttg	gggctcagtc	cccaccctgc	91320
caagggccag	cagagccagg	cctgtgtcat	ggccacagtg	aggggctcac	atgaggaagg	91380
ggcaagaggg	cagcccccaa	ctgcaagacc	cttctgggat	gcattctggg	gttgcgggga	91440
gatctggtgg	aggtgtcccc	agacgctgct	cctgagaacc	tgccggcaac	ctttggcctg	91500
atggtggcca	aaggtgaaag	acagggattg	ggccaggcgt	ggtggctcac	acttattatc	91560
ccaacacttt	gggaggcaga	agcaggagga	tcacctgagc	ccacttcacg	gccaacctgg	91620
gcaacacagt	gagactccgt	ctgtacaaaa	gcttatggta	atgtgcgcct	gcagtcctag	91680
ctactcggga	ggctgaggtg	ggaggatggc	ttgagcctgg	gaggttgagg	ctgtagtgag	91740
ctctgatcac	accactgcac	tccagcctgg	gtgagaatga	gagaccctgt	ctcaaaaaaa	91800
			accacagect			91860
ctgtggggct	ctgtgccagc	acctcgcaca	gggagggagt	gtggccatgc	ggataagact	91920
gaccagcacc	atctacgaag	cgagccttcc	ctgccaggac	agggccagag	tcactgagct	91980
cagacctctg	cagcctgggc	tggtcagtcc	tgggctcgct	ggcaacactc	ctgggcaaga	92040
cagggcacag	cccctgcagc	ctcaggtaca	agtgctgagc	cctggaccag	atgagtgcac	92100
ctctatctca	atcagaaaaa	aacacagcaa	actccgcgtc	cacgtggagc	agacaacagc	92160
tcacatttgc	cactttgcct	ccaggctgtg	ccagctctcc	tgtccaggca	tgagtgccca	92220
gagacctaga	actggatgct	gaccaggtag	gacaagctgg	tggtcagtgt	gttaagacac	92280

•						00040
acacacccga	gagcatgaga	agccaggagg	cacagcccaa	ctctccgaaa	tccttagggt	92340
gtctgagcag	ggagtaccag	acaaccccat	cccagtgcca	gacaagcttg	tgcacctgca	92400
cttcccacag	aggagagaag	cctgtgcacc	tgcacttccc	acagtggaaa	ggaggaggcc	92460
caaggccagg	ccccccacc	cccaggaact	tcccacagtg	gagaggaggc	ccaaggccag	92520
	gggttctgca					92580
	cccacacaga					92640
tetactacta	acacaaggga	acadacadac	cctaaggtgg	agacctctgt	ggcaggaggg	92700
acaactatat	ggaggctgca	acasaccesa	tgagagatc	tccacatage	tectagaact	92760
geggeeeege	ggaggeegea	attastatas	aaccaaatca	tagaccatag	gaccacgtog	92820
ccigagcagg	gtggcagaag	gittatgige	aaccgggccc	cggaccacgg	accacacacac	92880
ccagagccac	ccatcacacc	caccaggcac	aaggigtata	gcccagcagg	gccgcagcgg	92940
	cacctcaggg					
ggcgtcacag	cagtggtcat	tgtggggtgc	cccacaagga	gggggaagag	ggaggtgtcc	93000
cagcgtggct	cctggctggc	cagctgaccc	cagtggagca	gtcagaggga	ctgtgggtct	93060
gagtttttct	ccccagcagc	aatgggagct	ccccaactgc	aaagtgccag	ccagcctgag	93120
agactagtgt	tacagcaaag	aacccaggag	ctgaggtcct	ggcacatgcc	acacatgtgg	93180
acaccaaccc	agggtccagc	cccaggacga	ggccaattcg	caatgacgcc	cctttctgtg	93240
gtgctggctc	tgcacaagga	tgcaggatac	aggaaccagg	gtgggagcag	gggcctccct	93300
tccaatccct	cccagtgacc	tagggggtc	cctgcagctg	atcctcccag	ctctgagctc	93360
agcagggtca	ggggtcccgg	ccactagage	agcacatact	cagcagacac	gctgaatgac	93420
dadccacadc	tgcctcatgg	gcatgacttg	cacctcatgt	ctaggagacc	ctggtgggca	93480
gagacacaga	ctgccatccc	acacetetee	cacagetaga	gacccaggga	gccactggcc	93540
ggagacgggg	ggtgtctgga	gaaggggtca	gactgccagg	aadtcacacc	ccadcadaad	93600
teattacggt	ggtgtctgga	gaagggccca	gaccyccagg	accessace	cagcaguag	93660
tggtagtgaa	ttgggagggc	acccaayyaa	gggctgtgca	tterestta	cagcagcaag	93720
gatgggctac	agtggccccc	ttaagtetee	cccccagc	cccgccctaa	gagaggcccc	93780
caggaccttg	gaggaacccc	tctccaacgt	ggaagtgtgg	gcccacatag	ggctgcagct	
gtggccagtg	caggcatctc	tggccccact	gtattcttgc	ttcatgttgg	agaacactgc	93840
accagcagat	ggtctcattt	tggtttctgt	gggacccact	ttggctgcaa	agagccacac	93900
tgccaggtca	cacctgccca	gggcagccca	cactggggac	ccaccaggcc	atggtgtgaa	93960
gtcccggcca	gcctggcccc	acatggcaca	gcatagccag	ttctcctcca	gggctccctg	94020
ctgggccaac	cacagctctg	cggatcctgc	tgcctgagtc	gacctctcct	ctcccgtcct	94080
ccctgccttc	ctggtgccga	ccccagtgt	gcatcctgta	cctcgacctg	tctcagcatc	94140
tgtgcctgag	acaccggcct	gtgacaagat	catcatcatc	tgtgtcactc	cccaagcatg	94200
ctgcgcactg	gacacacagg	ccctgactca	acttgtcctg	tctgacttca	gtggtcctac	94260
aggatetate	agagatcact	tagccataga	agaaatgtct	tcttggctag	aagtcacagc	94320
aggaggggac	actttggggg	cocctaggaa	agggaacta	ggatcaaaaa	agagatcagg	94380
acctdddcac	tcagctctag	agatogcato	agggcagcca	aggcactggg	gacaccccac	94440
accegggeac	ccagcctagg	agacggeacc	cdaddaadcc	acaggetetg	ccctactcaa	94500
tactactacta	agtgcctggc	ccacactasa	aaddadataa	actoracect	tagagatata	94560
cyclygactc	agracerage	ccaggetgag	atacccasas	cctatatae	aataggagag	94620
gggaaggggc	accacactgg	yaccccayaa	atgectaaaa	anganganat	attaggagae	94680
tgccgctgtg	agaccctgag	gagcettety	grgarcargg	aayaacaaac	tetestett	
aactgaagga	acctcatcag	gggagaggca	gccatcctgc	cgtccccaca	tetggtettt	94740
gccatttctg	tgtcctgtgg	tggtcagcag	caaggtctct	gagccgaaag	gaggcactca	94800
ctttggagga	gtgcagggtc	cccaggtccc	cacactttgt	cttgtcctga	ctgagaaaga	94860
aacagactgc	cctgacctct	ctgacttggc	cagcgaggtt	gcccttaggc	tcaaacccaa	94920
gccagggttt	gaacattccc	agacacttgt	aagatgttta	ggttgttaac	ataatgttca	94980
ggtttcaaaa	cattgaaaga	aactagcccc	agccctgaac	ccagatcccc	cccggcttca	95040
ggcatgacca	gtgaacacgc	ccttctctca	ctggtcacct	gaggatgccg	cactctgtca	95100
acaggttccc	ctaatacatg	ctctgatctg	atcgccttgg	catttagtga	ttctttccct	95160
ggaattctcc	actggcccca	tcgcagggaa	ctcccaagtg	ggaaactccc	ctaccaccac	95220
ttttggggca	acttcagcta	agggttcagc	tgggacaaaa	cagggagcca	ctcgggaacc	95280
taggacagga	ccagagagaa	aacccgaggg	acagagtggg	taaggaaagc	tgctgaggaa	95340
adaccessa	ggcactctgg	aaadaadtad	cactogaggg	ctaggataga	agtagteeta	95400
gggcccaaag	cttaccttgt	cccacaaaca	ctacaactct	tectaceete	ctaagtccca	95460
gccayyyayt	cacacattta	ccacataga	agtgccct	adddadada	dasacada	95520
yaacacgagc	cgagcctttc	tagener	agraccyact	totoocca-	rateccayyc	95580
aaggctcatg	accttggtcc	ccgacacacc	cagucccage	ananaaaa==	tagaaaaaaa	95640
accatgctgg	tgccactcaa	atgagacttg	agaggggccc	yacagggctg	Lygocacggg	
ccagctggac	tgtgaatatc	acggcatect	caaggcccca	aacccacagc	ctgctattga	95700
gacccttact	gtttaggccc	acggtggtgg	tgattttgga	tagactcatc	cccttgtagt	95760
tcttgttaaa	tcgggttttc	gactgctcca	ggaaggtctg	aggagagagg	cagaggcgaa	95820
acacatcaag	gaggggctat	actggcttcc	aaatatcctt	actcaggtct	gttctttaaa	95880
agacagaaac	agaaacagag	caacactctg	ctcttcagga	ggctggtggt	gactatcctg	95940

•						
ccgtctcagg	tgaaatttgg	cttccgtctg	gġtagtgaac	gtgcagctga	cagcacaaaa	96000
ccgaaggggg	cgccgccagg	ccgtgggaaa	ggtgcgcgca	agggcgtggg	cactcaccgt	96060
cttcccagca	ttgtccaggc	ccaggatcag	gatgcagtac	tcgtccttct	gaaacatgta	96120
			cctgccctgg			96180
			ggcttctcca			96240
						96300
			gggggccatt			
			tcagccgcca			96360
			teeggeeeet			96420
cagccgggtg	ttcacagtga	gctcagccgc	gctcccgccc	tcccccgagg	cttcgctccc	96480
acgetteacg	cgcgcggaac	ggggaacaca	ctcgctgcag	ccccgcctgg	gccacggcac	96540
			gagcagcgag			96600
			catcaccca			96660
catagagaga	ggcgccgggc	agggacgccc	gcagcggcgc	agetactect	adagtacacc	96720
cccggggga	gcggactaca	gggcgggcga	geageggege	ggccgccccc	tagagegeace	96780
cggaggegge	gegeggetgg	cagggaacga	ctgcgaagga	ayaacctggg	tegeggeeee	
			aggtctgagg			96840
			cgagtcctgg			96900
cctcaccgca	cagcctgcgg	cctacctgcg	tccgccgcgc	cctcggagcc	gctgctgctg	96960
			aaccccgcgc			97020
					cttcccggct	97080
			gcggcgctcg			97140
			ctagccggtg			97200
						97260
gctgcggctg	ggaaaccgcg	cggaggaggt	gcccggccgg	ggaccaggig	geegeggeee	
gcggggacgc	ggccctggcc	agacagaaga	gacgccgggc	gggggggcgc	ggccggcctg	97320
gaaggcggcg	ggcgcggcgg	gtgggctcgg	cggagggtga	ggcggcgggg	cgccccgcgg	97380
ggaaggggct	ccggagtgac	gcgggacccg	gctagcggcg	agcccacggc	ggctcggaag	97440
ggaagegegg	agcctgagcg	ggggtacccg	ggctgcgacc	tctgcgctgg	gagctgtgcc	97500
			gacgtgcccg			97560
			agctggcttc			97620
			gagcctggag			97680
tacasasasta	ananaataa	agatagaga	gageeeggag	ctgggtttgt	ctgaggagg	97740
tgcgcagctg	cagcaggtgg	agetggeete	gggcgccggc	coggacocgo	ccgagcaggc	97800
			ggagctcatc			
			cgcgctggac			97860
ggaagatgct	gagtaccagg	ctttccggga	ggccatcact	gaggcggtgg	aggcaccagc	97920
agcggcccgt	gggtccggat	cagagaccgt	tcctaaagca	gaggcggggc	cagaatctgc	97980
			ggacgaggaa			98040
			tctggagtat			98100
			tgtccgtgtg			98160
			ggagggaaag			98220
			ccttaggggc			98280
						98340
			tgcagttttg			
cgtgctttga	cagctgtgtc	tgtgttcagg	cgtctacgtc	ttccttctgg	ggtgaatcaa	98400
gaagcatgga	aggaggccag	gcgcggtggc	tcacgcctgt	aatcccagca	ctttaggaag	98460
ccgaggcggg	cagatcacct	gaggtcagga	gttcaagacc	acgctggtca	acatggtgaa	98520
accccatctc	cttaaaaaca	caaaaatgaa	ccggtcgtgg	tggcgcgcac	ctgtggtcct	98580
ggctactcag	gaggctgagg	caggagaatt	ggttgaaccc	aggaggccga	gtttgcagtg	98640
agtggagatg	cagccactgt	actgcagccc	gagcagcagt	gcaaggctta	tgtggaagag	98700
agraggtete	carcctater	tragttttt	tttggtggtt	gttttaattt	tttttgagac	987.60
agraggeeee	tttataaaa	aggetggagt	gcagtggcat	agtectaget	cactocagec	98820
agggcccac	cccgccaacc	aggerggage	geageggeae	agteetgget	caccacage	98880
			cctcagccc			98940
			attactataa			
acggagtctt	gttctgttgc	ccaggctgga	gtgcagtggc	gtgatctcgg	ctcactgcaa	99000
			tgcctcagcc			99060
aggcgcccgc	caccatgtct	ggctaatttt	ctgtattttt	agtagagacg	gggtttcacc	99120
			cctcgtgatc			99180
agtgctggga	tgacaagcgt	gagccaccgc	gcctggcctt	tttttttaa	agacagagtt	99240
tcactctcct	cacccacact	adadtatadt.	ggcgcaatct	cagettaceg	caacetetet	99300
						99360
			cgtccagagt			99420
			ttagtagagt			
					aaagtgctgg	
			ctgttgttag			99540
cttttaaatt	ttactttcat	ggagattttc	aaacataccc	caaattagag	agtttagcat	99600
				•		

aatcaccgcc	cacggtccat	catccaatgt	cgtcatttat	taatattttc	ccagtctcat	99660
tttgtctgtt	ctccctgccc	tattttttc	tttcctgggc	cattttaaag	caaattccag	99720
	ttttttccaa					99780
	ttaaaaagta					99840
	tgtcataata					99900
	attactgtaa					99960
tttttacttt	tctcttagaa	gaaatattta	ccaagccttc	tagtaggtaa	tttctttt	100020
tagccaatag	ttcaggctga	ccgtgtaacc	atccctagtt	ctagttctag	ttctttgaat	100080
gtcttccttt	tttttttt	ttgaaacagc	gtcttgctgc	tctgtcaccc	aggctggagt	100140
gcagtggcac	aatctcggct	cactgcaatc	teegeeteee	tggcccaagc	catcctccca	100200
cctcaqcctc	cctaatagct	gatactacaa	gtgtgcactg	ccacgcccag	ctaatttttg	100260
tattttttqt	agagacggga	tttcaccata	ttacccaggt	ctcgaattcc	tgatcccttt	100320
gatgagagat	ctgacacatc	cctgtggtgc	tccctctgga	ccaggcactg	ctccaagggt	100380
ttcatatact	ttcattcatc	tgtgcaacag	ccctgtaggt	aggccctgca	gtcacaccat	100440
ctgacagagg	aggaaacagg	agtagaagaa	ctgagtggtc	cagggcttca	aggctcagag	100500
ggctccagtt	gccccagcc	ctcqttccqt	ccctgctcc	acccagtgct	gcttgccatg	100560
teggeateag	gcctgatctg	aaagcttccg	gagcatctta	cagacgtcca	ccttgccacc	100620
attcaggact	gataagttct	cttqqatttq	cgttggacct	tttttttt	tttaagatgg	100680
agtttcactg	ttgttgccca	ggctagagta	caatggcacg	acctccacct	cctgggttca	100740
agggattete	ctgcctcagc	ctcccaagta	gctgggatta	caggcgcctg	tcaccacgtg	100800
gtgcccagct	aatttttata	tttttagtag	aggcagggtt	tcaccgtgtt	ggccaggctg	100860
gtctcgaacc	cttgacctca	ggtgatcccg	ccttggtttc	ccaaagtgct	gggattacag	100920
gcatgagcca.	ccacacccgg	cccaggattt	ctttatatat	tctggatatc	atcccttatg	100980
aagtatatag	tttgcagata	tttgctccca	ttgtttgggt	tgtcttttca	cttgatatag	101040
totcctttga	tgcacaaaca	ttttaaattt	tgatgcagtg	caatttattg	tttctttatt	101100
gcctatgttt	ttgtcatcag	gtttaagaaa	ccacctcatc	catagttatg	aggattttca	101160
cctatotttt	cttctaagag	ttctgtagtt	ttagctgtta	aatttaggtc	tttgatccat	101220
tttgagttaa	tttttgtata	tgttattagg	tgagggtcca	ctttattctt	ttgcatgtgg	101280
atttccagtt	ttcccagcac	catttgttta	aaagactgct	ttttctccac	tgaatggtct	101340
tggcactttt	gtccaaaatc	aattggcaat	atatgtaagg	gtttatttct	gagctctctc	101400
tcctgttcca	ttggtgtata	tgtgccagta	ccacactgtt	ctgattatta	tagctttgtg	101460
ataagtttta	aactcaggaa	gtggtagtta	ttcaccattt	gctcctcttt	ttcaagtttg	101520
ttttgtttct	ggatcctttg	caatttcata	tgaattttag	gatcggcttg	tccaattctg	101580
cataaaagac	agtttgaatt	ttgatatgga	ttgcatagaa	tgtgtagatc	tgtttggggc	101640
acattgtcat	ctttacaata	ttaagccttc	tggctgggtg	tggtggctga	cgcctgtaat	101700
cccagtactt	tgggaggctg	aggcgggcat	atcacttgag	gtcaggagtt	caagaccagc	101760
ctggccaacg	tggtgaaacc	ccgtctctac	taaaaataaa	aaacaaatta	gtcggaggtg	101820
gtgcacacct	gtaatcccag	ctacaggaga	gggtgaggca	ggagaatcgc	ttgaacctgg	101880
gaggaggagg	ttgcagtgag	ctgagatcat	gccactgcac	tccagcctgg	gtaacagagg	101940
gagactccat	cttaaacaac	aacaataaca	gaagaaaaaa	acagtattaa	gtcttccaat	102000
tcatgaatga	aggatctgtc	catttattta	cgtctttaat	ttctttcaac	agtattttgt	102060
actgttcaag	tcttgcacat	tcttggttaa	ataagtatta	tttttgatgc	ttctctaagg	102120
aattgttttt	cttttccttt	tttttttga	gacagagtct	tgctctgtca	cccaggctgg	102180
agtgcagtgg	cacaatcttg	gctcactgca	acctctgcct	cccgggttca	agcaattctt	102240
ctgctcagcc	tcccaagtag	ctgggatcac	aggtgcctgc	caccacaccc	agctaatttt	102300
tttttttgag	atggagtctt	gctctgttgc	ccaggctgga	gtgaagtggc	ccaatcttgg	102360
ctcactgcaa	gctccacctc	ccgggttcac	accattcttc	cgcctcagcc	tcctgagtcg	102420
ctgggaatac	aggtgcctgc	caccacgccc	agctaatttt	ttgtatttt	agtagagatg	102480
gggtttcacc	atgtagccag	gatggtctcg	aactcttgac	ctcaggtgat	ctgcctgcct	102540
cggcctccca	aagtgctggg	attacagatg	tgagccactg	tgcccggctc	gagttgtttt	102600
ccttagttac	attttcaggc	tgtttgttgc	tagtatatag	aaatacaagc	tgggcaccgt	102660
ggctcacgcc	tgtaatccca	gcactttggg	aggccaaggc	gggtggatca	cctgtggtca	102720
ggagttcgag	accagcctgg	ccaacatggt	gaaatccagc	ctctattaaa	aatacaaaaa	102780
ttagtctggc	atggtggcag	gtgcctgtaa	tcccatctac	tcaggaggct	gaggcaagag	102840
aattgcttga	acctgggagg	cggaggttgc	agtgagctga	gatcgcgcca	ttgcactcca	102900
gcttggggaa	caagagtgag	acttcatctc	aaaaaaaaaa	aaaaagaaat	acagtggatt	102960
tttttatgtt	aatcctgtat	tgattgctga	attggtttat	tagtgctaat	aggattttt	103020
atgeactatt	taggattttc	gatatataca	atcatatata	ttcaatatat	acaattaata	103080
tatatgtgaa	tagagataat	tgtagtcttt	gtttctagtt	tgcatggcat	ttatttcttt	103140
ttcttgctta	actgccttag	ctagaacttc	aagtacgatg	ttgaataaaa	gtgactagag	103200
cgggccgggg	gtggtggctc	acacctgtgt	tcccagcact	ttgggaggtg	gaagtgggca	103260

gatcacttga	gatcagcagt	ttgagaccag	cctggccaac	acggcgaaac	cccatctcta	103320
ctaaaaatac	aaaaattagc	tgggtgaggt	gatgtgcacc	tgtagtccca	gctacttgag	103380
agggtgagac	atgagaattg	cttgaacctg	gggggcggag	gttgcagtga	gccaagatca	103440
tgccactcca	ctccagcctg	gacgacagag	caagaaccct	gtctttaaaa	aaaaaaaaa	103500
	agaacaaaca					103560
	taggtggaaa					103620
	gattcccttt					103680
gtattttta	tcatgaaagg	atattaattt	ttttttaaa	gatagggtct	tottototoa	103740
gegeeetea	agggcagtgg	catcatcatc	acteactaca	acctcgatt	cctagactca	103800
cccaggergg	agggcagtgg	catgateatg	gataagacta	carrentes	ccaccataca	103860
	ctacttcatc					103920
cagetaattt	tttaatttt	ctgtagaggt	agggttttgt	estactacas	ttacaggeet	103980
	ggctcaagca					103980
	actgcaccca					
tcatgtgtgg	ttttttcct	ttcattttgt	taatgtggta	cattgatttt	cgtatgttga	104100
accatccttg	aattcctcag	ataaagcacg	catattcatg	gcgtattatc	tetttattat	104160
tatttttt	gtagagatga	gatttcactc	tgttgcccaa	gctggtctca	aactcctggg	104220
ctaaagtgat	cctcctgcct	cagcctccga	aagcgctggg	attataggca	tgagccactt	104280
ggccctatct	tttttcttt	tcttttttt	tttttttga	gacagagtct	cactctgtcg	104340
ccgggctgga	gtgagtggcg	cgatctcggc	tcactgcaac	ctccatctcc	cgggttcaag	104400
caattctcct	gcctcagcct	cctgagtagc	tgggactaca	ggtgcccgcc	actatgccca	104460
gctaatttt	tgtgttttta	gttgagacgg	tgttttgcca	tgttggacag	gctggtcttg	104520
cactcctgac	ctcgtgattc	acccaccttg.	gcctcccgaa	gtgctgggat	tacaggcatg	104580
agccaccgca	gcgagcctta	tctttttaac	agttaaaagt	ttaaggcctt	atcatgtaat	104640
aacattgctg	gatttgattt	gctgctgttt	tgttgagaat	atttgcatct	gtattgataa	104700
gggatattgg	tctgtagttt	tcttttcttg	gcatgtcttt	gtatagcttt	gatgccagca	104760
taatattggc	ctcatagaat	gagttaggaa	gtattcttta	tattatggga	agaggtaaaa	104820
agggattggt	gttaattctt	cttcaaatgt	ttgatagaat	tcaacagtga	agtgatatat	104880
acaatcatat	atatagagag	agagagagag	agagatggac	ttttcttttg	ttggaagttt	104940
attgactatt	gattcaattt	ccttattgaa	attgactttt	ctttttggaa	gctaaaatgt	105000
ataactgtag	tgaaagtttc	tgaacttttc	tttcattgga	agttttttga	ctactgattc	105060
tttatttqtt	ataggtctat	tcagattttc	tgtttcttct	tgagtcagtt	tggtctcgct	105120
ctqtcqccca	ggctggagtg	cagtggtgcc	atcttggctc	actgcaactt	ctacctcccg	105180
agttcaagtg	attctcccac	ctcagcctcc	ccagtatctc	ggactacagg	cgcacgccag	105240
catacctggc	taatttttgt	atttttagta	ggaacagcat	ttcaccatgt	tggccaggct	105300
ggtctcgaac	tcctgacctc	aggtgatcca	cccgcctcgg	cctcacaaag	tgctgggact	105360
acagacataa	gccaccgcgt	ccaqccttga	gtcagtttag	atagtttgca	tgcatgtttc	105420
taggaatttg	tccattttgt	ttatgttatc	taatctgtta	ccatacaatt	gttcatagta	105480
tccttttata	gccctagtta	tttctgtaag	atcagtagta	atagctccac	tttctctctt	105540
ggttttagca	atttgagtca	tctcttttct	tcttctttt	tttttttga	gatggagtct	105600
cactgtgtca	cccaggctgg	agtgcagtgg	catgatettg	gctcactgca	acccctgcct	105660
cccaggttca	agcaattctg	ccttagcctc	ctgagtagct	gggattacag	gtgtgagcca	105720
ccacacccag	ctagttttgt	tttattttt	tgtttttgag	acggagtctg	tttctgtctc	105780
ccaggctgga	gtgcagtggt	gcaatctcac	tcattgcaac	ctccgactcc	cagattccag	105840
caatteteet	gcctcagcct	cccgagtage	tggaactata	ggcgtgcacc	accacgcctg	105900
gctgatttt	atatttttag	tagagatggg	atttcaccat	gttggccagg	ctggtcttgg	105960
actocotaco	tgaggtgatc	cocccacctt	ggcctcccaa	agtgctggga	ttataggcat	106020
gagccaccat	gcccagccag	tttttgtatt	tttagtagag	atggggtttc	tccctgtcgg	106080
ccaggctggt	cttgaaatcc	tgacctcagg	ttatccacca	accttaacct	cccaaagtgc	106140
taggattaca	ggcatgagcc	accacacata	acctatcttt	tcttcttqqt	cattttcgct	106200
aaaggtttgt	caattttgtt	gatcttttt	gttgctgatc	tctattgttt	tcccattctg	106260
tttcatttat	ttccatttta	acctttattt	ccttttttct	actaatttaa	gtttaatttg	106320
ctctttttt	cccctaattt	ttcaaggtat	acagttaagt	tattoattto	agatetett	106380
tttcttttt.	tttttttt	trrrtttr	tttaattact	attaaaataa	agtotocoto	106440
tatasasas	actggagtgc	agragatas	teteagetea	ctacaaccta	Caccaccesa	106500
rgccacccag	taataaaa	tootasatsa	acatttccca	accasagetet	ttcttttta	106560
gcgattctcc	tgcctcagcc	anathtenat	ctasacacta	ctttcactcc	attccataac	106620
atgtaagtat	ttacagctac	ayacttccct	tattattta	dadagaaratat	cactototto	106680
attgttttt	gttgttttt	getgetgett	tatataaaat	tagactage	cactorates	106740
ccgtttggag	agcagcgatg	cyalcatage	gaschageet	tgageteetg	tacacctaac	106800
greeteetge	ctcagcctcc	caagtagctg	gyactacagg	reterence	atastacasa	106860
taatttettt	tataagtttt	.gcagaggcc	aggeacageg	gettacacet	gradicted	106920
cactttggga	ggccaaggtg	ggrggatcac	ccaayyccag	yayıtıcyaya	ccaycciyyc	100720

	aaaccccatc	totactaaaa	atacaaaaat	tagctggggg	taataacaaa	106980
cgacagggag	cccagctact	azaazaata	acceddada	atcocttoaa	cctaggaggc	107040
tgcctgtaat	cccagccacc	caggaggeeg	tagactaga	cctgggtaac	aaaaacaaaa	107100
agaggttgca	gtgagccagg	atcacaccat	tycacccag	cacageata	ctttattacc	107160
ctccatctca	agaaaagaaa	aaaaaaagcc	cctgcagaga	cagggcacca	ccaaactcct	107220
caggctggtc	tcaaactcct	gacttgaagg	agreeracry	cccagcccc	ccaaag t get	107280
gagattatgg	gcaagagcca	ccgcaccccg	ceactigget	getetgeee	geegtactee	107340
cattttcatt	gatctcaaga	catcctaatc	tecettttgt	tttttgtt	gacttactgg	
ttattcaaga	gtgtctttat	ttctgcatat	ttgtaaattt	tccaaaaaag	ELLLCCCCC	107400
tttttttt	gagaaagggt	cttgctctgt	cgcccaggct	ggagaatggt	ggtgcacaat	107460
cttgcctcac	tgcaacctct	gcctcccggg	ttcaagtgat	cctcccacct	cagccttccc	107520
agtagctggg	attacaggca	cacaccacca	cacctggcta	atttttgtat	tttagtctta	107580
acgtgctggt	cagactggtc	tcgaattcct	gacctcaggt	gatctgcccg	ccttggcctc	107640
ccaaagcact	gggattacag	gcgtgaaaca	ccatgcccag	cccccaattt	tttttttta	107700
atagagagaa	ggtctcactc	aagcccaggc	tggtcttgaa	ctcctgagct	caagctgtca	107760
tecetecteg	gcctcccaag	gtgctgagat	tacaggtgtg	agtcacagta	cctggccttc	107820
tttcaagact	ttaaaaatgc	catcttggct	gggcacggtg	gctcacgcct	gtaatcccag	107880
cactttggga	ggccgaggtg	ggcagatcac	gaggtcagga	gatcaagacc	accctggcta	107940
acatggtgaa	accctgtctc	tactaaaaat	acaaaaaatt	aaccaggtgt	ggtggcaggt	108000
gcctgtagtc	ccagctactc	gggaagctga	agcaggagaa.	tggcgtgaac	ccgggaggtg	108060
gagettgeag	tgagctgaga	tcacaccact	gtactccagc	ctgggcaaca	gtgcgagact	108120
ccgtctcaaa	aaaaaaaaa	aaaatgtcat	ctcactgcct	tctggtccaa	tagtttctga	108180
tgagaaattg	gctgttaatc	ttattgagga	acatttatat	attgactagt	cacttgtctc	108240
ttactatttt	aggagattct	ctatctttgg	gtttcagcag	tttgattata	atgtatcagt	108300
gtggatccct	caatttataa	gctacttgga	gttcattgga	cttcttggat	gtgtaaattc	108360
atgtctttca	ttaaatttgc	aaagtttcag	ctactattct	ttgcatcttg	aaatactagt	108420
tttatttctt	tctgtctgtt	tgccgcttat	ggaactttat	gcatacattg	atgtgcttca	108480
tagtatagca	caggtccctt	gggctctagg	catttttctt	tgttctttt	ttctttctgc	108540
tecteattt	ggataaattc	agctgacctg	tcctcaagtt	cactgtttct	ttcttcttcc	108600
trotcaaato	tgctgttgaa	acttctqqtq	aaattttcac	tacagttact	gtacttttta	108660
actccaaagt	ttctatttgg	tttcttctg	tagtaattat	cactttacta	gtattctcta	108720
tttggttaga	catggttctt	ttattttcct	ttagttcatt	atccatggtt	tcctttattt	108780
traaatttct	ttttatttag	ttattaattt	tttttttt	tgaagcgggg	tttcactctt	108840
arcacccada	ctggcaggca	acgtcacaat	cttggctcac	tacaacctcc	gcctcctggg	108900
ttcaactcat	tctcctgcct	cagcotocca	agtagctggg	attataggca	tgtgccacca	108960
caccaccta	atttttggta	tttttagtag	aaactgggtt	tcaccacatt	ggccagactg	109020
cacccaccca	actaacctca	ggtgatctgt	ccacctcaac	ctcccaaaat	gctgggatta	109080
cagatotoao	ccactgtgcc	carcetett	ttttagtgta	tttaaggtaa	ttgattgaaa	109140
cayacycyay	agtcattcaa	atototago	ttcctcagga	acagtttcta	ttaatttctt	109200
tatttttaaa	agecatett	taattttctt	tttttttag	atogagtete	actctatagc	109260
cattettaaa	gtgcaatggc	traatcttaa	creactoraa	cctctacctc	ctgggttcaa	109320
ccayyccyya	tgcttcagcc	tectalatea	ctgggactat	aggtgcgtgc	caccactcct	109380
gegateetee	ttgtattttc	agragagaga	taattttacc	gtgttagcca	ggatggtctc	109440
ggctaatttt	cctcatgatc	ctcctcctc	ggctccgee	agtgctggaa	ttacaggtgt	109500
gatetegtga	gcccagccta	tttttt	tttgagagaa	agtotooto	totcacccag	109560
gagecaeege	agtggcacaa	ccctacca	ctgagacaa	aaccgtccag	gcttaagtga	109620
gccgcagcgc	ttagtctcct	ccctggcaca	aactacaacc	atotoccaco	atacctaact	109680
gcccccacc	ttactgtttt	gagtagttag	tetteetaca	tttctctgac	tagtettaaa	109740
ggttgtgttg	caagcagtca	agacacaggg	ccctgccaca	gtgttgagat	tacaddtata	109800
ctcctgggct	caagcagtca	toctatett	atttccccaag	aatoooccac	actiticity	109860
agccaccgca	cccggcctgt	taatttttt	acceeggeg	atttgggccac	gataatgtgg	109920
ttctttgcat	gccttgtaat	titityttya	aacctycaca	ttattactat	ttattataa	109980
ttactttgaa	aatcagatcc	teegeeetee	gcagggcca	tasatasaga	ctatattctc	110040
ttgtcgtttc	: tcgtttgttt	agttactttc	ccgaccccc	taaataaaya	ccacaccccg	110100
tcaggggtgc	ttgtttctgt	cccccagge	. ragrygriag	cacactect	gaaayayatt	110160
tctttaaata	tctagtggca	aaaaggacaa	agaggccggg	cycaytyyct	thtoorate	110180
atgctaggac	: tttgggaagt	ggaggcgggt	ggatcacttg	aggccaggag	tttaagatca	110220
gcctggccag	r tatggtgaaa	ccctgtctct	actaaaaata	caaaaattaa	ccgggcatgg	
tggcacctgc	ctgtagtccc	agctactggg	aagactgagg	caggagaatc	getteaatee	110340 110400
agggggcgga	ggttgcagtg	agctgagatt	gcgccattgc	actccagcct	gggcaacaga	
gcgagactct	gtctcaaata	aaaaaaaaa	aaaaaggata	aagagtgtct	tccatccttt	110460
ccaggttgcc	: tctgtactgg	ggcaagtcct	tcagtgtccg	ccaggctgtt	cacggctttt	110520
cctcagcctt	tacttctcgc	tcccatggag	cctaaggatg	aaccagaggt	gaaagttgag	110580

ggcctcctca	ggtgtttctg	agcccctgtc	tagccccagc	tgtgtgcatg	gccttctgga	110640
tttccaagca	tgaacaggag	ctttccaaag	cccttagacc	ttcatgtagc	tcttttccca	110700
gcctcttcct	tcctaggctt	ttctgtcagc	tctttgccca	tctgttgttg	tccctcccc	110760
acaacttcag	gtagtatcta	cctgtaaatg	ccttcaggcc	aggcgcggtg	gctcatacct	110820
gttatcccag	cactttggga	ggccgaggcg	ggtgaattgc	ttgaggtcag	gagttcgaga	110880
ccagcctggc	caacatggtg	aagccccgtc	tctagtaaaa	atacaaaaat	tagctgggcg	110940
taataaatac	ctgtaatctc	agctactcgg	gaggctgaag	caggagaatt	gcttgagcct	111000
addaddadda	ggttgcagtg	agctgagatc	gtgccattgc	actccagcct	gggcgacaga	111060
gggaggcgga	atctcgggga	2222222222	aaaaaaatgc	catcaacagc	acgaccctgg	111120
gegagaeeee	agccctgaga	gagttcgagg	addadaaaga	aaggcaaggc	cttcagggag	111180
aggetgeeee	gatccaaatg	cataaccacc	atteetteae	aaaaaatcta	tatcatccct	111240
acactagaaa	gcaagccaca	tcacaagcagg	accectegus	cccataact	acatotoacc	111300
tetgaeacea	ggctgagcag	ccayaaacac	aggingence	trasatttar	cagggtctta	111360
tggtagtagt	ggctgagcag	adataycca	getgetette	cagaaaaaatt	tattaggaaa	111420
cttcattgag	cagtcatctg	gcccgtagac	accayayıca	tagaaaagtt	atacasasa	111480
ttttgacagt	ttaatagaaa	aaagtttatt	gtgacagttt	tgacagetga	acayaaaaaa	111540
gtttactgtg	acagttttga	cagcagaata	gttgctttgc	rggagagacy	gacccctgga	111600
gctgccaact	ccatcatttt	ggtgatatcc	agetetgttg	ccgaaccccc	agetatgetg	
ttttaagtta	ttttcttagt	ggttgctcta	gagatgacaa	tgtgcatctt	taacttacca	111660
caatgtactt	cagattatta	ctaacttaac	acttaaagta	cagcattttt	ttttttatgg	111720
agtttcactc	tgtcacccag	gctggagtgc	aatggtgtga	tctcggctca	ctgcaacctc	111780
cgcctcccag	gttcacgcca	ttctcctgcc	tcagcctcct	gagtagctgg	gactacaggc	111840
acccccacca	cacccggcta	attttgtatt	tttagtagag	atgaggtttc	accatgttgg	111900
tcaggctggt	ctcgaactgc	tgacctcagg	tgatccgccc	atcttggcct	cccaaagtgc	111960
tgggattaca	ggtgtgagcg	actgcactga	gcctaagtat	ggcaacgtgt	ctataacata	112020
gatctacttc	cgttgtacta	tgacatagtt	cccctccat	tttcctatag	cacagtccca	112080
acctcccttt	tcctctgaca	tagttccatc	ctccctcctc	ctatgacgtc	ctcccttctc	112140
ctctggcata	gctccatcct	cccttctcct	atgacacagc	tccatcctcc	cttctcctct	112200
gacacagctc	catcctccct	tctcctatga	cacageteca	tcctcccttc	tcctctgaca	112260
tagctccatc	ctcccttctc	ctatgtcata	gctccatcct	cccttctcct	ctgacacagc	112320
tccatcctcc	cttctcctct	ggcatagctc	catcctccct	tctcctatga	cacagctcca	112380
tcctcccttc	tcctatgaca	cagctccatc	ctcccttctc	ctatgacaca	gctccatcct	112440
cccttctcct	atgacacagc	tccatcctcc	cttctcctct	ggcatagctc	catcctccct	112500
tctcctctga	catageteca	tcctcccttc	tcctctgaca	tagctccatc	ctcccttctc	112560
ctctgacata	gctccatcct	cccttctcct	ctgacatagc	tccatcctcc	cttctcctct	112620
gacatagete	catcctccct	tctcctctga	catagttcca	tcctcccttg	tcctctgaca	112680
tagctccatc	ctcccttctc	ctctgacata	gctccatccc	ctcttctcct	tcatgtatta	112740
ttgccatata	tacatttatg	tatottataa	cttcagctct	tcagcgttat	aattattgct	112800
tcaaaagtat	tttgaaagaa	gttgcctgga	ggcagtggct	tatgccttta	actccagcac	112860
ttttaagaac	tgaggtgggc	agategeetg	agccagggag	ttggagacca	gcctgggcaa	112920
catgacgaaa	cccatctcca	ccaaaattac	aaaaaattag	tctggcatgg	tggcacgcgc	112980
ctataatccc	agctatttgg	gggaggatcc	cagctaaggt	gggaggatca	cttgagcctg	113040
ccgcagcccc	gctgcagtga	gctgagattg	toccactoca	ctccagcctg	ggtgcagatc	113100
trateteada	agtaaaggga	ctaggaatgg	tggcttttat	ctctaatccc	agcactttgg	113160
gaggetgagg	tgagtggatc	accognosts	aggagtttaa	gaccagcctg	gccaacatgg	113220
tanaccca	tctctactaa	aaatacaaaa	agtagccggg	tataataata	ggtgtctgta	113280
atoccaseta	ctcgggaggc	tgagggaaga	gaatcgcttg	aacctgggaa	gcggaggttg	113340
accccagcca	gatcgcacca	ctccattaca	gcctagatga	cagagggaga	ctctgcctaa	113400
cagtgagcaa	aaaaagaaaa	gaaagaaat	taadatctad	acactotoot	tcatgcctgt	113460
aaaaaaaaa	ccttgggagg	gaaaagaaac	aggateactt	gagggagga	attcaacacc	113520
aaccccaaag	acatagcgag	ccaaggcagg	tatttaaaaa	agaacaaat	traaararaa	113580
agectgggca	acatagegag	tetates	atattttacc	tttcttttt	ttaccccttt	113640
aaaaagtata	cttgttttt	tgtattattt	atattttacc	attttaatat	gaagaacttc	113700
ttettteetg	tgaatttgag	tactgtcta	graciatic	tattageet	gaayaacttc	113760
atttagaatt	tttttttt	cttgagacaa	agueteaetg	Lightlycocag	gerggagrac	113780
aatggtgcag	tctcagatca	ctgcaacctc	tgeeteetg	gctagagtga	ceecacegac	113820
tcagcctccc	aagtagctga	gactgcaggc	acctgccacc	acccccagcc	aatttttttg	
gtatttttag	tagagacagg	gtttcactat	gttggccagg	ctggtctcga	attcatgacc	113940 114000
tcatgatctg	cctgtcctgg	cctcccaaaa	tgctgggatt	accatgagcc	accacgccca	-
	aatttcttt					114060
	gcagtggcac					114120
	cctcagcctc					114180
ctaattttt	gtatttttag	gagagatggg	gtttcaccat	gttagccagg	atggtcttga	114240

gccaco tatttg attatt cattgt tttttc tatcta cataga caaatt	agace tegtgateeg agege ceggetagaa aggaa tgtetttatt aatt gateattett attet gatgagaagt atett gatgttttea aggtg tggatetett attaa tgttttgttt attat teetgeeeet attet eta	tttcttgtag tcagcttcat ttcagtgttt catctgtcaa agattttctc ggtgtgcatc tgttttacca	gacaggettg tttttgaagg aaaagtgtca attgtccett tttgtctttg gtatttgggc aatttggaga	ctagcaacca atagtttagc tcatgctacc tgtacttgaa gcctttagta ttcagtaagc gtttttactc	attcagtgtt tggctataga ttctgggttc gaattatctt gtttgtgatg ctcttagatt atcatttcaa	114300 114360 114420 114480 114540 114600 114720 114780 114793
<211> <212>	SEQ ID NO:4 LENGTH: 25 TYPE: DNA ORGANISM:Artific	cial Sequenc	ce			
	FEATURE: OTHER INFORMATION	ON: oligonuo	cleotide			
	SEQ ID NO:4	gcgtc				25
<211> <212>	SEQ ID NO:5 LENGTH: 25 TYPE: DNA ORGANISM:Artific	cial Sequen	ce			
	FEATURE: OTHER INFORMATION	ON: oligonu	cleotide			
	SEQ ID NO:5	gtcta				25
<211> <212>	SEQ ID NO:6 LENGTH: 25 TYPE: DNA ORGANISM:Artific	cial Sequen	ce			
	FEATURE: OTHER INFORMATION	ON: oligonu	cleotide			
	SEQ ID NO:6 catct ccatcaagag	gctgc				25
<211> <212>	SEQ ID NO:7 LENGTH: 25 TYPE: DNA ORGANISM:Artific	cial Sequen	ce			
<220>	FEATURE: OTHER INFORMATION		•		•	
	SEQ ID NO:7	agtgc				25
بصدمطا	2-222 22-6422466	-3-3-				
<210>	SEQ ID NO:8					
	LENGTH: 20					
	TYPE: DNA	•				
	ORGANISM: Artific	cial Sequen	ce			

	·	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:8 aggaa taatggagag	20
<211> <212>	SEQ ID NO:9 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:9 caggc agctcaacag	20
<211> <212>	SEQ ID NO:10 LENGTH: 20 TYPE: DNA OPENISM: Artificial Seguence	
<220>	ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:10 gteec teetgtetga	20
<211> <212>	SEQ ID NO:11 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:11 ctaag atgttcggag	20
<211> <212>	SEQ ID NO:12 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:12 cctgt gtgagttgcg	20
<211> <212>	SEQ ID NO:13 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:13	20

	\cdot	
	SEQ ID NO:14 LENGTH: 20	
	TYPE: DNA	
	ORGANISM: Artificial Sequence	
72107	Oldining Cilidat bedraug	
<220>	FEATURE:	
-,	OTHER INFORMATION: oligonucleotide	
~4437	OTHER INICIAMITON. OTIGORACIESCIAC	
~4:00×	SEQ ID NO:14	
	raggt caaaggatgc	20
ggagtt	agge cadaggaege	20
~210>	SEQ ID NO:15	
	LENGTH: 20	
	TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
-220-	DEACHINE -	
	FEATURE:	
<223>	OTHER INFORMATION: oligonucleotide	
-400-	OEO TD NO.15	
	SEQ ID NO:15	20
gcatco	etttg acctgactcc	20
-210>	CEO ID NO.16	
	SEQ ID NO:16	
	LENGTH: 20	
	TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
-220-	DEL WIDE.	
	FEATURE:	
<223>	OTHER INFORMATION: oligonucleotide	
-100>	SEQ ID NO:16	
		20
ggtet	gaaac gtgatctggg	
<210×	SEQ ID NO:17	
	LENGTH: 20	
	TYPE: DNA	
	ORGANISM:Artificial Sequence	
\213 /	ORGANISM: AICILICIAI Sequence	
~22N>	FEATURE:	
	OTHER INFORMATION: oligonucleotide	
\2237	OTHER INICIAMITOR. OTIGORACIES .	
<400>	SEQ ID NO:17	
	atcac gtttcagacc	20
cccage	rcac gercagace	
<210>	SEQ ID NO:18	
	LENGTH: 20	
	TYPE: DNA	
	ORGANISM:Artificial Sequence	
~6137	ONGANISM.ALCILICIAL Sequence	
-22N-	FEATURE:	
	OTHER INFORMATION: oligonucleotide	
~2437	OTHER INFORMATION. OTIGORNOLEOGIAE	
-100-	SEQ ID NO:18	
		20
cyatyo	atgtg tgggttctcc	~ 0
<210×	SEQ ID NO:19	
	LENGTH: 20	
	TYPE: DNA	
~414>	IIFE. DNA	

	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:19 accca cacatcateg	20
<211> <212>	SEQ ID NO:20 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:20 ctgag aagtccagcc	20
<211> <212>	SEQ ID NO:21 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:21 gactt ctcagacacg	20
<211> <212>	SEQ ID NO:22 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:22 atctt ctccacgcac	20
<211> <212>	SEQ ID NO:23 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:23 tctgg ctttgcagtg	20
<211><212>	SEQ ID NO:24 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
<400>	SEQ ID NO:24	20

<211> <212>	SEQ ID NO:25 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:25 gaaag ggaagtctac	20
<211> <212>	SEQ ID NO:26 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:26 caggt gctcttgggg	20
<211> <212>	SEQ ID NO:27 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:27 agcag gagttgagcc	20
<211><212>	SEQ ID NO:28 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	-
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:28 gctct gggtcttccc	20
<211><212>	SEQ ID NO:29 LENGTH: 20 TYPE: DNA ORGANISM:Artificial Sequence	
	FEATURE: OTHER INFORMATION: oligonucleotide	
	SEQ ID NO:29 gcaaag ccagaggact	20
<211>	SEQ ID NO:30 - LENGTH: 20 - TYPE: DNA	

	FEATURE: OTHER INFORMATION	ON: oligon	ucled	otide	:						
	SEQ ID NO:30 caaga cgacgacctc										20
<211>	SEQ ID NO:31 LENGTH: 20 TYPE: DNA										
<213>	ORGANISM: Artific	cial Seque	nce								
	FEATURE: OTHER INFORMATION	ON: oligon	ucleo	otide	:						
	SEQ ID NO:31										20
	SEQ ID NO:32 LENGTH: 20	•									
	TYPE: DNA ORGANISM:Artific	rial Semue	nce								
~2137	ORGANISM: ALCILLO	ciai ocque									
	FEATURE: OTHER INFORMATION	ON: oligon	ucled	otide	:						
	SEQ ID NO:32 stect gtgettacce							*			20
	SEQ ID NO:33										
	LENGTH: 20										
	TYPE: DNA ORGANISM:Artific	cial Seque	nce								
<220>	FEATURE:										
<223>	OTHER INFORMATION	ON: oligon	ucle	otide	2						
	SEQ ID NO:33 cccaa ggtagctcag										20
	SEQ ID NO:34			•							
	LENGTH: 20 TYPE: DNA										
	ORGANISM: Artifi	cial Seque	nce								
	FEATURE:				-						
<223>	OTHER INFORMATI	ON: oligor	ucle	otide	?						
	SEQ ID NO:34										20
ggaag	accca gagcaagatc										20
	SEQ ID NO:35										
	LENGTH: 780 TYPE: PRT										
	ORGANISM: Dictyo	stelium di	scoi	deum							
<400>	SEQ ID NO:35										
Met L	ys Phe Tyr Ile G	lu Asp Leu	. Leu	Val 10	Tyr	Phe	Pro	Tyr	Ser 15		
1 Ile T	yr Pro Glu Gln T 20	yr Ser Tyr	Met 25		Ala	Leu	Lys	Arg			

```
Asp Asn Gly Gly Pro Cys Ile Leu Glu Met Pro Ser Gly Thr Gly Lys
Thr Val Ser Leu Leu Ser Leu Ile Ser Ser Tyr Gln Val Lys Asn Pro
Ser Ile Lys Leu Ile Tyr Cys Ser Arg Thr Val Pro Glu Ile Glu Gln
Ala Thr Glu Glu Ala Arg Arg Val Leu Gln Tyr Arg Asn Ser Glu Met
                                   90
Gly Glu Glu Ser Pro Lys Thr Leu Cys Met Ser Met Ser Ser Arg Arg
                              105
           100
Asn Leu Cys Ile Gln Pro Arg Val Ser Glu Glu Arg Asp Gly Lys Val
                           120
Val Asp Ala Leu Cys Arg Glu Leu Thr Ser Ser Trp Asn Arg Glu Ser
                                          140
                       135
Pro Thr Ser Glu Lys Cys Lys Phe Phe Glu Asn Phe Glu Ser Asn Gly
                                      155
                  150
Lys Glu Ile Leu Leu Glu Gly Val Tyr Ser Leu Glu Asp Leu Lys Glu
                                  170
               165
Tyr Gly Leu Lys His Gln Met Cys Pro Tyr Phe Leu Ser Arg His Met
                              185
           180
Leu Asn Phe Ala Asn Ile Val Ile Phe Ser Tyr Gln Tyr Leu Leu Asp
                                              205
                           200
Pro Lys Ile Ala Ser Leu Ile Ser Ser Ser Phe Pro Ser Asn Ser Ile
                       215
                                          220
Val Val Phe Asp Glu Ala His Asn Ile Asp Asn Val Cys Ile Asn Ala
                  230
                                       235
Leu Ser Ile Asn Ile Asp Asn Lys Leu Leu Asp Thr Ser Ser Lys Asn
                                   250
               245
Ile Ala Lys Ile Asn Lys Gln Ile Glu Asp Ile Lys Lys Val Asp Glu
Lys Arg Leu Lys Asp Glu Tyr Gln Arg Leu Val Asn Gly Leu Ala Arg
                           280
Ser Gly Ser Thr Arg Ala Asp Glu Thr Thr Ser Asp Pro Val Leu Pro
                                            300
                        295
Asn Asp Val Ile Gln Glu Ala Val Pro Gly Asn Ile Arg Lys Pro Ser
                                       315
                    310
Ile Phe Ile Ser Leu Leu Arg Arg Val Val Asp Tyr Leu Arg Glu Pro
                                   330
               325
Asp Lys Ser Arg Leu Lys Ser Gln Met Leu Leu Ser Glu Ser Pro Leu
                               345
            340 -
Ala Phe Leu Gln Gly Leu Tyr His Ala Thr Gln Ile Ser Ser Arg Thr
                           360
Leu Arg Phe Cys Ser Ser Arg Leu Ser Ser Leu Leu Arg Thr Leu Arg
                                           380
                       375
Ile Asn Asp Val Asn Gln Phe Ser Gly Ile Ser Leu Ile Ala Asp Phe
                                       395 ·
                   390
Ala Thr Leu Val Gly Thr Tyr Asn Asn Gly Phe Leu Ile Ile Glu
                                   410
                405
Pro Tyr Tyr Gln Arg Gln Asn Asn Thr Tyr Asp Gln Ile Phe Gln Phe
                               425
           420
Cys Cys Leu Asp Ala Ser Ile Gly Met Lys Pro Ile Phe Asp Lys Tyr
                           440
Arg Ser Val Val Ile Thr Ser Gly Thr Leu Ser Pro Leu Asp Ile Tyr
                        455 .
                                            460
Thr Lys Met Leu Asn Phe Arg Pro Thr Val Val Glu Arg Leu Thr Met
                470
                                        475
Ser Leu Asn Arg Asn Cys Ile Cys Pro Cys Ile Leu Thr Arg Gly Ser
                                   490
               485
Asp Gln Ile Ser Ile Ser Thr Lys Phe Asp Val Arg Ser Asp Thr Ala
                                505
```

Val Val Arg Asn Tyr Gly Ala Leu Leu Val Glu Val Ser Ala Ile Val
515 520 525
Pro Asp Gly Ile Ile Cys Phe Phe Thr Ser Tyr Ser Tyr Met Glu Gln

```
535.
                                          540
Ile Val Ser Val Trp Asn Glu Met Gly Leu Leu Asn Asn Ile Leu Thr
                  550
                                      555
                                             . 560
Asn Lys Leu Ile Phe Val Glu Thr Ser Asp Pro Ala Glu Ser Ala Leu
                                  570
              565
Ala Leu Gln Asn Tyr Lys Lys Ala Cys Asp Ser Gly Arg Gly Ala Val
          580
                              585
Leu Leu Ser Val Ala Arg Gly Lys Val Ser Glu Gly Ile Asp Phe Asp
                          600
Asn Gln Tyr Gly Arg Cys Val Ile Leu Tyr Gly Ile Pro Tyr Ile Asn
                      615
                                          620
Thr Glu Ser Lys Val Leu Arg Ala Arg Leu Glu Phe Leu Arg Asp Arg
                  630
                                      635
Tyr Gln Ile Arg Glu Asn Glu Phe Leu Thr Phe Asp Ala Met Arg Thr
              645
                                  650
Ala Ser Gln Cys Val Gly Arg Val Ile Arg Gly Lys Ser Asp Tyr Gly
           660
                               665
Ile Met Ile Phe Ala Asp Lys Arg Tyr Asn Arg Leu Asp Lys Arg Asn
                          680
Lys Leu Pro Gln Trp Ile Leu Gln Phe Cys Gln Pro Gln His Leu Asn
                      695
Leu Ser Thr Asp Met Ala Ile Ser Leu Ser Lys Thr Phe Leu Arg Glu
                                      715
                  710
Met Gly Gln Pro Phe Ser Arg Glu Glu Gln Leu Gly Lys Ser Leu Trp
              725
                                  730
Ser Leu Glu His Val Glu Lys Gln Ser Thr Ser Lys Pro Pro Gln Gln
                              745
Gln Asn Ser Ala Ile Asn Ser Thr Ile Thr Thr Ser Thr Thr Thr
                          760
Thr Thr Thr Ser Thr Ile Ser Glu Thr His Leu Thr
                       775
<210> SEQ ID NO:36
<211> LENGTH: 778
<212> TYPE: PRT
<213> ORGANISM:S. cerevisiae
<400> SEQ ID NO:36
Met Lys Phe Tyr Ile Asp Asp Leu Pro Val Leu Phe Pro Tyr Pro Lys
                                   10
Ile Tyr Pro Glu Gln Tyr Asn Tyr Met Cys Asp Ile Lys Lys Thr Leu
                               25
           20
Asp Val Gly Gly Asn Ser Ile Leu Glu Met Pro Ser Gly Thr Gly Lys
                           40
Thr Val Ser Leu Leu Ser Leu Thr Ile Ala Tyr Gln Met His Tyr Pro
                       55
Glu His Arg Lys Ile Ile Tyr Cys Ser Arg Thr Met Ser Glu Ile Glu
                   70
                                       75
Lys Ala Leu Val Glu Leu Glu Asn Leu Met Asp Tyr Arg Thr Lys Glu
                                   90
Leu Gly Tyr Gln Glu Asp Phe Arg Gly Leu Gly Leu Thr Ser Arg Lys
                               105
           100
Asn Leu Cys Leu His Pro Glu Val Ser Lys Glu Arg Lys Gly Thr Val
                         . 120
Val Asp Glu Lys Cys Arg Arg Met Thr Asn Gly Gln Ala Lys Arg Lys
                                         140
                       135
Leu Glu Glu Asp Pro Glu Ala Asn Val Glu Leu Cys Glu Tyr His Glu
```

```
Ile Pro Phe Gln Tyr Thr Glu Ser Arg Ile Leu Lys Ala Arg Leu Glu
                   630
                                       635
Phe Met Arg Glu Asn Tyr Arg Ile Arg Glu Asn Asp Phe Leu Ser Phe
               645
                                   650
Asp Ala Met Arg His Ala Ala Gln Cys Leu Gly Arg Val Leu Arg Gly
                               665
           660
Lys Asp Asp Tyr Gly Val Met Val Leu Ala Asp Arg Arg Phe Ser Arg
                           680
Lys Arg Ser Gln Leu Pro Lys Trp Ile Ala Gln Gly Leu Ser Asp Ala
                       695
Asp Leu Asn Leu Ser Thr Asp Met Ala Ile Ser Asn Thr Lys Gln Phe
                   710
                                       715
Leu Arg Thr Met Ala Gln Pro Thr Asp Pro Lys Asp Gln Glu Gly Val
               725
                                  . 730
Ser Val Trp Ser Tyr Glu Asp Leu Ile Lys His Gln Asn Ser Arg Lys
           740
                               745
Asp Gln Gly Gly Phe Ile Glu Asn Glu Asn Lys Glu Gly Glu Gln Asp
                          760
Glu Asp Glu Asp Glu Asp Ile Glu Met Gln
<210> SEQ ID NO:37
<211> LENGTH: 772
<212> TYPE: PRT
<213> ORGANISM:S. pombe
<400> SEQ ID NO:37
Met Lys Phe Tyr Ile Asp Asp Leu Pro Ile Leu Phe Pro Tyr Pro Arg
                                   10
Ile Tyr Pro Glu Gln Tyr Gln Tyr Met Cys Asp Leu Lys His Ser Leu
                               25
           20
Asp Ala Gly Gly Ile Ala Leu Leu Glu Met Pro Ser Gly Thr Gly Lys
       35
                           40
Thr Ile Ser Leu Leu Ser Leu Ile Val Ser Tyr Gln Gln His Tyr Pro
Glu His Arg Lys Leu Ile Tyr Cys Ser Arg Thr Met Ser Glu Ile Asp
                   70
                                       75
Lys Ala Leu Ala Glu Leu Lys Arg Leu Met Ala Tyr Arg Thr Ser Gln
                                   90
               85
Leu Gly Tyr Glu Glu Pro Phe Leu Gly Leu Gly Leu Thr Ser Arg Lys
                               105
           100
Asn Leu Cys Leu His Pro Ser Val Arg Arg Glu Lys Asn Gly Asn Val
                           120
       115
Val Asp Ala Arg Cys Arg Ser Leu Thr Ala Gly Phe Val Arg Glu Gln
                                           140
                       135
Arg Leu Ala Gly Met Asp Val Pro Thr Cys Glu Phe His Asp Asn Leu
                                       155
                   150
Glu Asp Leu Glu Pro His Ser Leu Ile Ser Asn Gly Val Trp Thr Leu
                                   170 .
Asp Asp Ile Thr Glu Tyr Gly Glu Lys Thr Thr Arg Cys Pro Tyr Phe
                               185
Thr Val Arg Arg Met Leu Pro Phe Cys Asn Val Ile Ile Tyr Ser Tyr
```

220

235

250

195 200 205 His Tyr Leu Leu Asp Pro Lys Ile Ala Glu Arg Val Ser Arg Glu Leu

Ser Lys Asp Cys Ile Val Val Phe Asp Glu Ala His Asn Ile Asp Asn

Val Cys Ile Glu Ser Leu Ser Ile Asp Leu Thr Glu Ser Ser Leu Arg

215

230

245

Lys	Ala	Ser	Lys 260	Ser	Ile	Leu	Ser	Leu 265	Glu	Gln	Lys	Val	Asn 270	Glu	Val
Lys	Gln	Ser 275	Asp	Ser	Lys.		Leu 280	Gln	Asp	Glu	Tyr	Gln 285	Lys	Leu	Val
Arg	Gly 290	Leu	Gln	Asp	Ala	Asn 295	Ala	Ala	Asn	Asp	Glu 300	Asp	Gln	Phe	Met
305				Leu	310					315					320
				Ala 325					330					335	
	_	•	340	Thr				345					350		
		355		Leu			360					365			
	370			Phe		375					380				
385				Leu	390					395					400
				Leu 405					410					415	
			420	Glu				425					430	,	
		435		Leu			440					445			
	450			Val		455					460				
465	•			Met	470					475					480
				Ala 485	Arg	Asn	CA2	Pne	490	PIO	Mec	val	Val	495	Arg
	_	_				-1 -	0	C		Dha	C1	21-	7 ~~		7.00
			500	Val				505	Lys				510	Asn	
Pro	Ser	Val 515	500 Val	Arg	Asn	Tyr	Gly 520	505 Asn	Lys Ile	Ĺeu	Val	Glu 525	510 Phe	Asn Ser	Lys
Pro Ile	Ser Thr 530	Val 515 Pro	500 Val Asp	Arg Gly	Asn Leu	Tyr Val 535	Gly 520 Ala	505 Asn Phe	Lys Ile Phe	Leu Pro	Val Ser 540	Glu 525 Tyr	510 Phe Leu	Asn Ser Tyr	Lys Leu
Pro Ile Glu 545	Ser Thr 530 Ser	Val 515 Pro Ile	500 Val Asp Val	Arg Gly Ser	Asn Leu Ser 550	Tyr Val 535 Trp	Gly 520 Ala Gln	505 Asn Phe Ser	Lys Ile Phe Met	Leu Pro Gly 555	Val Ser 540 Ile	Glu 525 Tyr Leu	510 Phe Leu Asp	Asn Ser Tyr Glu	Lys Leu Val 560
Pro Ile Glu 545 Trp	Ser Thr 530 Ser Lys	Val 515 Pro Ile Tyr	500 Val Asp Val Lys	Arg Gly Ser Leu 565	Asn Leu Ser 550 Ile	Tyr Val 535 Trp Leu	Gly 520 Ala Gln Val	505 Asn Phe Ser Glu	Lys Ile Phe Met Thr 570	Leu Pro Gly 555 Pro	Val Ser 540 Ile Asp	Glu 525 Tyr Leu Pro	510 Phe Leu Asp	Asn Ser Tyr Glu Glu 575	Lys Leu Val 560 Thr
Pro Ile Glu 545 Trp Thr	Ser Thr 530 Ser Lys Leu	Val 515 Pro Ile Tyr Ala	S00 Val Asp Val Lys Leu 580	Arg Gly Ser Leu 565 Glu	Asn Leu Ser 550 Ile Thr	Tyr Val 535 Trp Leu Tyr	Gly 520 Ala Gln Val	505 Asn Phe Ser Glu Ala 585	Lys Ile Phe Met Thr 570 Ala	Leu Pro Gly 555 Pro Cys	Val Ser 540 Ile Asp Ser	Glu 525 Tyr Leu Pro	510 Phe Leu Asp His Gly 590	Asn Ser Tyr Glu Glu 575 Arg	Lys Leu Val 560 Thr
Pro Ile Glu 545 Trp Thr	Ser Thr 530 Ser Lys Leu Val	Val 515 Pro Ile Tyr Ala Leu 595	Asp Val Lys Leu 580 Leu	Arg Gly Ser Leu 565 Glu Ser	Asn Leu Ser 550 Ile Thr	Tyr Val 535 Trp Leu Tyr	Gly 520 Ala Gln Val Arg 600	Ser Glu Ala 585 Gly	Lys Ile Phe Met Thr 570 Ala Lys	Leu Pro Gly 555 Pro Cys Val	Val Ser 540 Ile Asp Ser	Glu 525 Tyr Leu Pro Asn Glu 605	Phe Leu Asp His Gly 590 Gly	Asn Ser Tyr Glu Glu 575 Arg Val	Lys Leu Val 560 Thr Gly Asp
Pro Ile Glu 545 Trp Thr Ala Phe	Ser Thr 530 Ser Lys Leu Val Asp 610	Val 515 Pro Ile Tyr Ala Leu 595 His	S00 Val Asp Val Lys Leu 580 Leu His	Arg Gly Ser Leu 565 Glu Ser Tyr	Asn Leu Ser 550 Ile Thr Val	Tyr Val 535 Trp Leu Tyr Ala Arg 615	Gly 520 Ala Gln Val Arg 600 Ala	Ser Glu Ala 585 Gly Val	Lys Ile Phe Met Thr 570 Ala Lys Ile	Leu Pro Gly 555 Pro Cys Val Met	Val Ser 540 Ile Asp Ser Ser Phe 620	Glu 525 Tyr Leu Pro Asn Glu 605 Gly	Dhe Leu Asp His Gly 590 Gly Ile	Asn Ser Tyr Glu Glu 575 Arg Val	Lys Leu Val 560 Thr Gly Asp
Pro Ile Glu 545 Trp Thr Ala Phe Gln 625	Ser Thr 530 Ser Lys Leu Val Asp 610 Tyr	Val 515 Pro Ile Tyr Ala Leu 595 His	Asp Val Lys Leu 580 Leu His	Arg Gly Ser Leu 565 Glu Ser Tyr	Asn Leu Ser 550 Ile Thr Val Gly Arg 630	Tyr Val 535 Trp Leu Tyr Ala Arg 615 Val	Gly 520 Ala Gln Val Arg 600 Ala Leu	Ser Glu Ala 585 Gly Val	Lys Ile Phe Met Thr 570 Ala Lys Ile Ala	Leu Pro Gly 555 Pro Cys Val Met Arg 635	Val Ser 540 Ile Asp Ser Ser Phe 620 Leu	Glu 525 Tyr Leu Pro Asn Glu 605 Gly	Dhe Leu Asp His Gly S90 Gly Ile Phe	Asn Ser Tyr Glu 575 Arg Val Pro Leu	Lys Leu Val 560 Thr Gly Asp Tyr Arg 640
Pro Ile Glu 545 Trp Thr Ala Phe Gln 625 Asp	Thr 530 Ser Lys Leu Val Asp 610 Tyr	Val 515 Pro Ile Tyr Ala Leu 595 His Thr	S00 Val Asp Val Lys Leu 580 Leu His Glu	Arg Gly Ser Leu 565 Glu Ser Tyr Ser Ile 645	Asn Leu Ser 550 Ile Thr Val Gly Arg 630 Arg	Tyr Val 535 Trp Leu Tyr Ala Arg 615 Val	Gly 520 Ala Gln Val Arg 600 Ala Leu Ala	Ser Glu Ala 585 Gly Val Lys Asp	Lys Ile Phe Met Thr 570 Ala Lys Ile Ala Phe 650	Leu Pro Gly 555 Pro Cys Val Met Arg 635 Leu	Val Ser 540 Ile Asp Ser Phe 620 Leu	Glu 525 Tyr Leu Pro Asn Glu 605 Gly Glu Phe	Find the second	Asn Ser Tyr Glu S75 Arg Val Pro Leu Ala 655	Lys Leu Val 560 Thr Gly Asp Tyr Arg 640 Met
Pro Ile Glu 545 Trp Thr Ala Phe Gln 625 Asp	Ser Thr 530 Ser Lys Leu Val Asp 610 Tyr Thr	Val 515 Pro Ile Tyr Ala Leu 595 His Thr Tyr	S00 Val Asp Val Lys Leu 580 Leu His Glu Gln Ala 660	Arg Gly Ser Leu 565 Glu Ser Tyr Ser Ile 645 Gln	Asn Leu Ser 550 Ile Thr Val Gly Arg 630 Arg	Tyr Val 535 Trp Leu Tyr Ala Arg 615 Val Glu Leu	Gly 520 Ala Gln Val Arg 600 Ala Leu Ala Gly	Sos Asn Phe Ser Glu Ala 585 Gly Val Lys Asp Arg 665	Lys Ile Phe Met Thr 570 Ala Lys Ile Ala Phe 650 Val	Leu Pro Gly 555 Pro Cys Val Met Arg 635 Leu Leu	Val Ser 540 Ile Asp Ser Phe 620 Leu Thr	Glu 525 Tyr Leu Pro Asn Glu 605 Gly Glu Phe	Asp His Gly 590 Gly Ile Phe Asp Lys 670	Asn Ser Tyr Glu 575 Arg Val Pro Leu Ala 655 Asp	Lys Leu Val 560 Thr Gly Asp Tyr Arg 640 Met Asp
Pro Ile Glu 545 Trp Thr Ala Phe Gln 625 Asp Arg	Ser Thr 530 Ser Lys Leu Val Asp 610 Tyr Thr His	Val 515 Pro Ile Tyr Ala Leu 595 His Thr Tyr Ala Ile 675	Asp Val Lys Leu 580 Leu His Glu Gln Ala 660 Met	Arg Gly Ser Leu 565 Glu Ser Tyr Ser Ile 645 Gln Val	Asn Leu Ser 550 Ile Thr Val Gly Arg 630 Arg Cys	Tyr Val 535 Trp Leu Tyr Ala Arg 615 Val Glu Leu Ala	Gly 520 Ala Gln Val Arg 600 Ala Leu Ala Gly Asp 680	Ser Glu Ala 585 Gly Val Lys Asp Arg 665 Lys	Lys Ile Phe Met Thr 570 Ala Lys Ile Ala Phe 650 Val Arg	Leu Pro Gly 555 Pro Cys Val Met Arg 635 Leu Leu Tyr	Val Ser 540 Ile Asp Ser Phe 620 Leu Thr Arg	Glu 525 Tyr Leu Pro Asn Glu 605 Gly Glu Phe Gly Arg 685	Fig. 10 Phe Leu Asp His Gly 590 Gly Ile Phe Asp Lys 670 Ser	Asn Ser Tyr Glu Glu 575 Arg Val Pro Leu Ala 655 Asp	Lys Leu Val 560 Thr Gly Asp Tyr Arg 640 Met Asp
Pro Ile Glu 545 Trp Thr Ala Phe Gln 625 Asp Arg His	Ser Thr 530 Ser Lys Leu Val Asp 610 Tyr Thr His Gly Thr 690	Val 515 Pro Ile Tyr Ala Leu 595 His Thr Tyr Ala Ile 675 Lys	Asp Val Lys Leu 580 Leu His Glu Gln Ala 660 Met	Arg Gly Ser Leu 565 Glu Ser Tyr Ser Ile 645 Gln Val	Asn Leu Ser 550 Ile Thr Val Gly Arg 630 Arg Cys Leu Lys	Tyr Val 535 Trp Leu Tyr Ala Arg 615 Val Glu Leu Ala Trp 695	Gly 520 Ala Gln Val Arg 600 Ala Leu Ala Gly Asp 680 Ile	Sos Asn Phe Ser Glu Ala 585 Gly Val Lys Asp Arg 665 Lys Gln	Lys Ile Phe Met Thr 570 Ala Lys Ile Ala Phe 650 Val Arg Gln	Leu Pro Gly 555 Pro Cys Val Met Arg 635 Leu Tyr Tyr	Val Ser 540 Ile Asp Ser Phe 620 Leu Thr Arg Gly Ile 700	Glu 525 Tyr Leu Pro Asn Glu 605 Gly Glu Phe Gly Arg 685 Thr	Find the second	Asn Ser Tyr Glu Glu 575 Arg Val Pro Leu Ala 655 Asp Asp Gly	Lys Leu Val 560 Thr Gly Asp Tyr Arg 640 Met Asp Lys Ala
Pro Ile Glu 545 Trp Thr Ala Phe Gln 625 Asp Arg His Arg Thr 705	Ser Thr 530 Ser Lys Leu Val Asp 610 Tyr Thr His Gly Thr 690 Asn	Val 515 Pro Ile Tyr Ala Leu 595 His Thr Tyr Ala Ile 675 Lys	Son Val Asp Val Lys Leu S80 Leu His Glu Gln Ala 660 Met Leu Ser	Arg Gly Ser Leu 565 Glu Ser Tyr Ser Ile 645 Gln Val	Asn Leu Ser 550 Ile Thr Val Gly Arg 630 Arg Cys Leu Lys Asp 710	Tyr Val 535 Trp Leu Tyr Ala Arg 615 Val Glu Leu Ala Trp 695 Met	Gly 520 Ala Gln Val Arg 600 Ala Leu Ala Gly Asp 680 Ile Ser	Sos Asn Phe Ser Glu Ala 585 Gly Val Lys Asp Arg 665 Lys Gln Leu	Lys Ile Phe Met Thr 570 Ala Lys Ile Ala Phe 650 Val Arg Gln Ala	Leu Pro Gly 555 Pro Cys Val Met Arg 635 Leu Tyr Tyr Leu 715	Val Ser 540 Ile Asp Ser Phe 620 Leu Thr Arg Gly Ile 700 Ala	Glu 525 Tyr Leu Pro Asn Glu 605 Gly Glu Phe Gly Arg 685 Thr	Sino Phe Leu Asp His Gly 590 Gly Ile Phe Asp Cf0 Ser Glu Lys	Asn Ser Tyr Glu Glu 575 Arg Val Pro Leu Ala 655 Asp Asp Gly Phe	Lys Leu Val 560 Thr Gly Asp Tyr Arg 640 Met Asp Lys Ala Leu 720

Trp Trp Ser Leu Asp Asp Leu Leu Ile His Gln Lys Lys Ala Leu Lys 740 745 Ser Ala Ala Ile Glu Gln Ser Lys His Glu Asp Glu Met Asp Ile Asp 760 Val Val Glu Thr 770 <210> SEQ ID NO:38 <211> LENGTH: 760 <212> TYPE: PRT <213> ORGANISM: Homo sapien <400> SEO ID NO:38 Met Lys Leu Asn Val Asp Gly Leu Leu Val Tyr Phe Pro Tyr Asp Tyr 10 Ile Tyr Pro Glu Gln Phe Ser Tyr Met Arg Glu Leu Lys Arg Thr Leu Asp Ala Lys Gly His Gly Val Leu Glu Met Pro Ser Gly Thr Gly Lys 40 Thr Val Ser Leu Leu Ala Leu Ile Met Ala Tyr Gln Arg Ala Tyr Pro 55 Leu Glu Val Thr Lys Leu Ile Tyr Cys Ser Arg Thr Val Pro Glu Ile 75 70 Glu Lys Val Ile Glu Glu Leu Arg Lys Leu Leu Asn Phe Tyr Glu Lys 90 85 Gln Glu Gly Glu Lys Leu Pro Phe Leu Gly Leu Ala Leu Ser Ser Arg 100 105 Lys Asn Leu Cys Ile His Pro Glu Val Thr Pro Leu Arg Phe Gly Lys 120 125 Asp Val Asp Gly Lys Cys His Ser Leu Thr Ala Ser Tyr Val Arg Ala 135 140 Gln Tyr Gln His Asp Thr Ser Leu Pro His Cys Arg Phe Tyr Glu Glu 155 150 Phe Asp Ala His Gly Arg Glu Val Pro Leu Pro Ala Gly Ile Tyr Asn 170 165 175 Leu Asp Asp Leu Lys Ala Leu Gly Arg Arg Gln Gly Trp Cys Pro Tyr 180 185 Phe Leu Ala Arg Tyr Ser Ile Leu His Ala Asn Val Val Val Tyr Ser 200 205 Tyr His Tyr Leu Leu Asp Pro Lys Ile Ala Asp Leu Val Ser Lys Glu 215 220 Leu Ala Arg Lys Ala Val Val Phe Asp Glu Ala His Asn Ile Asp 230 235 Asn Val Cys Ile Asp Ser Met Ser Val Asn Leu Thr Arg Arg Thr Leu 250 - 245 Asp Arg Cys Gln Gly Asn Leu Glu Thr Leu Gln Lys Thr Val Leu Arg 265 260 Ile Lys Glu Thr Asp Glu Gln Arg Leu Arg Asp Glu Tyr Arg Arg Leu 280 285 275 Val Glu Gly Leu Arg Glu Ala Ser Ala Ala Arg Glu Thr Asp Ala His 295 Leu Ala Asn Pro Val Leu Pro Asp Glu Val Leu Gln Glu Ala Val Pro 315 310 Gly Ser Ile Arg Thr Ala Glu His Phe Leu Gly Phe Leu Arg Arg Leu 330 325 Leu Glu Tyr Val Lys Trp Arg Leu Arg Val Gln His Val Val Gln Glu 345 ~ Ser Pro Pro Ala Phe Leu Ser Gly Leu Ala Gln Arg Val Cys Ile Gln 360 365 Arg Lys Pro Leu Arg Phe Cys Ala Glu Arg Leu Arg Ser Leu Leu His

370 375

380

Thr 385	Leu	Glu	Ile	Thr	Asp 390	Leu	Ala	Asp	Phe	Ser	Pro	Leu	Thr	Leu	Leu 400
	Asn	Phe	Ala	Thr		Val	Ser	Thr	Tyr 410		Lys	Gly	Phe	Thr 415	
Ile	Ile	Glu	Pro 420		Asp	Asp	Arg	Thr 425		Thr	Ile	Ala	Asn 430	Pro	Ile
Leu	His	Phe 435	Ser	Суѕ	Met	Asp	Ala 440	Ser	Leu	Ala	Ile	Lys 445	Pro	Val	Phe
Glu	Arg 450	Phe	Gln	Ser	Val	Ile 455	Ile	Thr	Ser	Gly	Thr 460	Leu	Ser	Pro	Leu
465					470					475		Thr			480
				485					490			Met		495	
			500					505				Glu	510		
		515					520					Leu 525			
	530					535					540	Ser			
545					550					555		Ile			560
				565					570			Asp		575	
			580					585				Glu	590		
		595					600					Ser 605			
Asp	Phe 610	Val	His	His	Tyr	Gly 615	Arg	Ala	Val	Ile	Met 620	Phe	Gly	Val	Pro
625					630					635		Leu			640
				645					650			Thr		655	
			660					665				Arg	670		
		67.5				:	680					Ala 685			
-	690	_	-			695					700	Leu			
705					710					715		Ala			720
				725					730			Gln		735	
Ser	Leu	Leu	Ser 740	Leu	Glu	Gln	Leu	Glu 745	Ser	Glu	Glu	Thr	Leu 750	Lys	Arg
Ile						~ 1	•								

International application No. PCT/US00/33065

A. CLA	SSIFICATION OF SUBJECT MATTER						
• • •	:C12N 9/00, 9/10, 1/20; C12N 15/00; C07H 21/02,	21/04					
	:435/183, 193, 252.3, 320.1, 6; 536/23.1, 23.2 to International Patent Classification (IPC) or to both	national classification and IPC					
	DS SEARCHED						
Minimum d	ocumentation searched (classification system followe	d by classification symbols)					
U.S. :	435/183, 193, 252.3, 320.1, 6; 536/23.1, 23.2						
Documentai	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched				
Electronic o	data base consulted during the international search (na	ame of data base and, where practicable	e, search terms used)				
	FN, Medline, CAPLUS, BIOSIS, JAPIO, PATOSWO tein, mammalian, human, RAD3/ERCC2 gene family		search terms, helicase,				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
х	US 5,843,737 A (CHEN et al) 01 document.	December 1998, see entire	1				
Х, Р	X, P BAI et al, Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in four-gene cluster. Proc. Natl. Acad. Sci. USA. 01 Febuary 2000. Vol 97. No. 3, pages 1230-1235.						
Х	US 5,888,792 A (BANDMAN et al) document.	30 March 1999, see entire	1				
Y, P	ZHOU et al. Pif1p Helicase, a Catalyt Yeast. Science. 04 August 2000. Vol.		1				
		·					
	·						
X Funt	her documents are listed in the continuation of Box C	See patent family annex.					
	secial categories of cited documents:	*T* later document published after the int date and not in conflict with the app the principle or theory underlying the	lication but cited to understand				
	be of particular relevance rlier document published on or after the international filing date	"X" document of particular relevance; the	e claimed invention cannot be				
cit	recument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other ecial reason (as specified)	when the document is taken alone "Y" document of particular relevance; the	·				
O do	neument referring to an oral disclosure, use, exhibition or other eans	considered to involve an inventive combined with one or more other such being obvious to a person skilled in	step when the document is h documents, such combination				
	ocument published prior to the international filing date but later than e priority date claimed	*&* document member of the same pater	it family				
Date of the	actual completion of the international search	Date of mailing of the international se	arch report				
09 MAR	CH 2001	19ADA?	g01 <u>1</u>				
Commission Box PCT	mailing address of the ISA/US oner of Patents and Trademarks on, D.C. 20231	Authorized frices	IRTHY FOR				
	No. (703) 305-3230	Telephone No. (703) 308-0196	1				

Form PCT/ISA/210 (second sheet) (July 1998) *

International application No. PCT/US00/33065

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,466,576 A (SCHULZ et al) 14 November 1995, see entire document.	1-26
		_

International application No. PCT/US00/33065

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box 11 Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
71 170 process assumptions are payment of administration reco.

International application No. PCT/US00/33065

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-22 and 26, drawn to a purified DNA molecule encoding a mammalian NHL protein, vectors and host cells comprising said DNA, methods of expressing said DNA and the NHL protein.

Group II, claim(s) 23-25, drawn to an isolated molecule which comprises the nucleotide sequence as set forth in SEQ ID NO: 3.

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The technical relationship shared between the claims of groups I and II corresponds to a DNA molecule encoding a mammalian NHL (novel helicase-like) protein. Chen et al. (US Patent No: 5,843,737) teach a gene that encodes a multifunctional protein having helicase activity and hence the inventions do not share a special technical feature.