

Outline

Argo network extension (> 2,000 m)

Formation

Circulation

of deep water masses

50 years: 90 % of heat excess

has been captured by the ocean

0 - 2,000 m: + 0.8 °C since 1950

Scientific questions:

- Penetration of heat excess in the ocean?
- Impact on deep water masses?
- Impact of deep water masses on climate change?

Volume of the ocean

Volume of the ocean

Characteristics

*4000 meters depth

26 \$

\$200 \$CTD cycles

150 in continuous pumping

Youth hydraulic weakness

Grounding management optimisation

2020: 20 2021: 30

deep-Arvor to be deployed

Characteristics

Deep-Arvor **High payload capacity**

Wapiti ADCP Deep-Arvor **ADCP**

3-headed Deep-Arvor SBE41 – SBE61 – RBR

Outline

Scientist: J.-B. SALLÉE

. Descent to parking

Integration of an ADCP:

Altimetry control

Bottom tracking « speed of ground » & direction

1. Descent to ground

ADCP

Nortek Signature ADCP

√ 500 kHz

🔌 180 m

Integration

Results

Results

Outline

Argo dependence on a single supplier (Seabird)

Willingness of Argo community to open up

Need for evaluation first

Deep-Arvor = test platform

Evaluate the RBRconcerto³

Conclude about the SBE41 CTD quality for 4,000m depth applications

SBE61 used as reference

Characteristics

¥4,000 meters depth

1,000 by points by

SCTD cycles

Characteristics

SBE41CP

SBE61CP

RBRconcerto³

Qualified at sea in 2018 and 2019

Two Three-Headed deployments expected

Preliminary Results (from qualifications)

Profiles 0 – 2,000m

Fundings

Deep-Arvor & 3-headed deep-Arvor

Wapiti ADCP Deep-Arvor

Grant agreement 637770

Outline

Conclusion

Deep-Arvor for deep-Argo

High payload capacity: specific applications, BGC

