Resumen de algoritmos para torneos de programación

Andrés Mejía

16 de abril de 2012

Ír	ndice	- 1	5. Programación dinámica	1
			5.1. Longest common subsequence	
1.	Plantilla	2	5.2. Longest increasing subsequence	
_			5.3. Partición de troncos	1.
2.	Teoría de números	2		٠.
	2.1. Big mod	2	6. Strings	10
	2.2. Criba de Eratóstenes	3	6.1. Algoritmo de Knuth-Morris-Pratt (KMP)	
	2.3. Divisores de un número	3	6.2. Algoritmo Z	
	2.4. Propiedades modulares y algunas identidades	4	6.3. Algoritmo de Aho-Corasick	
	2.5. Inverso modular	4	6.4. Suffix array y longest common prefix	
	2.6. Teorema chino del residuo	4	6.5. Hashing dinámico	2
3.	Combinatoria	$_{4}$	7. Geometría	2:
	3.1. Cuadro resumen	4	7.1. Identidades trigonométricas	2
	3.2. Combinaciones, coeficientes binomiales, triángulo de Pascal	5	7.2. Área de un polígono	2
	3.3. Permutaciones con elementos indistinguibles	5	7.3. Centro de masa de un polígono	2
	3.4. Desordenes, desarreglos o permutaciones completas	5	7.4. Convex hull: Graham Scan	2
	, 0 1		7.5. Convex hull: Andrew's monotone chain	
4.	Grafos	5	7.6. Mínima distancia entre un punto y un segmento	2^{i}
	4.1. Algoritmo de Dijkstra	5	7.7. Mínima distancia entre un punto y una recta	
	4.2. Minimum spanning tree: Algoritmo de Prim	6	7.8. Determinar si un polígono es convexo	
	4.3. Minimum spanning tree: Algoritmo de Kruskal $+$ Union-Find	6	7.9. Determinar si un punto está dentro de un polígono convexo	
	4.4. Algoritmo de Floyd-Warshall	7	7.10. Determinar si un punto está dentro de un polígono cualquiera	
	4.5. Algoritmo de Bellman-Ford	7	7.11. Hallar la intersección de dos rectas	
	4.6. Puntos de articulación	8	7.12. Hallar la intersección de dos segmentos de recta	
	4.7. LCA: Lowest Common Ancestor	9	7.13. Determinar si dos segmentos de recta se intersectan o no	
	4.8. Máximo flujo: Método de Ford-Fulkerson, algoritmo de		7.14. Centro del círculo que pasa por 3 puntos	
	Edmonds-Karp	10	7.15. Hallar la intersección de un segmento y una superfice cuádrica	
	4.9. Máximo flujo para grafos dispersos usando Ford-Fulkerson	11	(esfera, cono, elipsoide, hiperboloide o paraboloide)	2
	4.10. Maximum bipartite matching		(· · · · , · · · · · · · · · · · · · ·	
	4.10.1. Teorema de Kőnig		8. Estructuras de datos	30
	4.11. Componentes fuertemente conexas: Algoritmo de Tarjan		8.1. Árboles de Fenwick ó Binary indexed trees	3
	4.12. 2-Satisfiability	- 1	8.2. Segment tree	

9.	Mis	sceláneo	32
	9.1.	Problema de Josephus	32
	9.2.	Trucos con bits	32
		9.2.1. Iterar sobre los subconjuntos de una máscara	32
	9.3.	El parser más rápido del mundo	32
	9.4.	Checklist para corregir un Wrong Answer	33
	9.5.	Redondeo de dobles	33
		9.5.1. Convertir un doble al entero más cercano	34
		9.5.2. Redondear un doble a cierto número de cifras de precisión	35
10	.Jav	a	35
		. Entrada desde entrada estándar	35
	10.2	Entrada desde archivo	35
		. Mapas y sets	36
	10.4	. Colas de prioridad	37
11	.C+	+	38
	11.1	. Entrada desde archivo	38
	11.2	. Strings con caractéres especiales	38
	11.3	. Imprimir un doble con cout con cierto número de cifras de precisión	36
1.	1	Plantilla	
Τ.		Tanonia	
us	ing :	namespace std;	
#i	nclu	de <algorithm></algorithm>	
#i	nclu	de <iostream></iostream>	
#i	nclu	de <iterator></iterator>	
#i	nclu	de <sstream></sstream>	
#i	nclu	de <fstream></fstream>	
		de <cassert></cassert>	
#i	nclu	de <climits></climits>	
#i	nclu	de <cstdlib></cstdlib>	
#i	nclu	de <cstring></cstring>	
#i	nclu	de <string></string>	
#i	nclu	de <cstdio></cstdio>	
#i	nclu	de <vector></vector>	
#i	nclu	de <cmath></cmath>	
#i	nclu	de <queue></queue>	
#i	nclu	de <deque></deque>	
#i	nclu	de <stack></stack>	

#include <list>

#include <map>

```
#include <set>
template <class T> string toStr(const T &x)
{ stringstream s; s << x; return s.str(); }
template <class T> int toInt(const T &x)
{ stringstream s; s << x; int r; s >> r; return r; }
#define For(i, a, b) for (int i=(a); i<(b); ++i)
#define foreach(x, v) for (typeof (v).begin() x = (v).begin(); \
                           x != (v).end(); ++x)
#define D(x) cout << #x " = " << (x) << endl
const double EPS = 1e-9;
int cmp(double x, double y = 0, double tol = EPS){
    return( x \le y + tol) ? (x + tol < y) ? -1 : 0 : 1;
#define INPUT_FILE "problemname"
int main(){
    freopen(INPUT_FILE ".in", "r", stdin); // Read from file
    return 0;
```

2. Teoría de números

2.1. Big mod

```
//retorna (b^p)mod(m)
// 0 <= b,p <= 2147483647
// 1 <= m <= 46340
int bigmod(int b, int p, int m){
  int mask = 1;
  int pow2 = b % m;
  int r = 1;
  while (mask){
   if (p & mask) r = (r * pow2) % m;
   pow2 = (pow2 * pow2) % m;
  mask <<= 1;
}</pre>
```

```
return r;
// Si se cambian los int por long longs los
// valores de entrada deben cumplir:
// 0 <= b,p <= 9223372036854775807
// 1 <= m <= 3037000499
// Si se cambian por unsigned long longs:
// 0 <= b,p <= 18446744073709551615
// 1 <= m <= 4294967295
// Versión recursiva
int bigMod(int b, int p, int m){
  if(p == 0) return 1;
 if (p \% 2 == 0){
   int x = bigMod(b, p / 2, m);
   return (x * x) \% m:
 }
 return ((b % m) * bigMod(b, p-1, m)) % m;
}
```

2.2. Criba de Eratóstenes

Field-testing:

- \blacksquare SPOJ 2912 Super Primes
- Live Archive 3639 Prime Path

Marca los números primos en un arreglo. Algunos tiempos de ejecución:

SIZE	Tiempo (s)
100000	0.007
1000000	0.032
10000000	0.253
100000000	2.749

```
// Complejidad: 0(n)
const int LIMIT = 31622779;
int sieve[LIMIT + 1]; // Inicializar con 0's.
int primes[LIMIT + 1];
```

```
int primeCount = 1;
for (int i = 2; i <= LIMIT; ++i) {
  if (!sieve[i]) {
    primes[primeCount] = i;
    sieve[i] = primeCount;
    primeCount++;
  for (int j = 1; j <= sieve[i] && i * primes[j] <= LIMIT; j++){</pre>
    sieve[ i * primes[j] ] = j;
// primes contiene la lista de primos <= LIMIT, en los índices
// 1 a primeCount.
// ¡El primer primo está en la posición 1 y no 0!
// sieve[i] contiene el índice en el arreglo primes del primo
// más pequeño que divide a i. Con esta información se puede
// saber si un número es primo o descomponerlo en primos si es
// compuesto.
// i es primo si primes[sieve[i]] == i, y compuesto si no.
```

2.3. Divisores de un número

Imprime todos los divisores de un número (en desorden) en $O(\sqrt{n})$. Hasta 4294967295 (máximo unsigned int) responde instantáneamente. Se puede forzar un poco más usando unsigned long long pero más allá de 10^{12} empieza a responder muy lento.

```
for (int i=1; i*i<=n; i++) {
  if (n%i == 0) {
    cout << i << endl;
    if (i*i<n) cout << (n/i) << endl;
  }
}</pre>
```

Si sólo se requiere contar los divisores, usando la criba de Eratóstenes se puede usar esta propiedad:

Si la descomposición prima de n > 1 es

$$n = p_0^{e_0} \times p_1^{e_1} \times \dots \times p_n^{e_n}$$

entonces el número de divisores (positivos) de n es

$$(e_0+1)\times(e_1+1)\times\cdots\times(e_n+1).$$

2.4. Propiedades modulares y algunas identidades

- $a \mid c \wedge b \mid c \wedge gcd(a,b) = 1 \rightarrow ab \mid c$
- Euclid's Lemma: $a \mid bc \land gcd(a,b) = 1 \rightarrow a \mid c$
- $x^n 1 = (x 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$

2.5. Inverso modular

El inverso modular de a mód n es un entero denotado por a^{-1} tal que $a(a^{-1}) \equiv 1 \pmod{n}$. Existe si y sólo si gcd(a,n) == 1.

Si el inverso módulo n existe, la operación de dividir por a mód n se puede definir como multiplicar por el inverso.

```
// Assumes gcd(a, n) == 1 and a > 0.
// Returns v such that a * v == 1 (mod n).
long long mod_inverse(long long a, long long n) {
    long long i = n, v = 0, d = 1;
    while (a > 0) {
        long long t = i / a, x = a;
        a = i % x;
        i = x;
        x = d;
        d = v - t * x;
        v = x;
    }
    v %= n;
    if (v < 0) v += n;
    return v;
}</pre>
```

2.6. Teorema chino del residuo

Sean b_1, b_2, \dots, b_r enteros positivos primos relativos dos a dos. Llamemos $B = b_1 b_2 \dots b_r$. El sistema de congruencias lineales

$$x \equiv a_1 \pmod{b_1}$$

 $x \equiv a_2 \pmod{b_2}$
 \vdots
 $x \equiv a_r \pmod{b_r}$

tiene una solución simultánea que es única módulo N.

La solución está dada por

$$a \equiv (a_1c_1 + a_2c_2 + \dots + a_rc_r) \pmod{N}$$

donde
$$c_i = m_i(m_i^{-1} \mod b_i)$$
 y $m_i = \frac{B}{b_i}$.

3. Combinatoria

3.1. Cuadro resumen

Fórmulas para combinaciones y permutaciones:

Tipo	¿Se permite la repetición?	$F\'{o}rmula$
r-permutaciones	No	$\frac{n!}{(n-r)!}$
r-combinaciones	No	$\frac{n!}{r!(n-r)!}$
r-permutaciones	Sí	n^r
r-combinaciones	Sí	$\frac{(n+r-1)!}{r!(n-1)!}$

Tomado de *Matemática discreta y sus aplicaciones*, Kenneth Rosen, 5^{ta} edición, McGraw-Hill, página 315.

3.2. Combinaciones, coeficientes binomiales, triángulo de Pascal

Complejidad: $O(n^2)$

$$\binom{n}{k} = \begin{cases} 1 & k = 0\\ 1 & n = k\\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{en otro caso} \end{cases}$$

```
const int N = 30;
long long choose[N+1][N+1];
   /* Binomial coefficients */
for (int i=0; i<=N; ++i) choose[i][0] = choose[i][i] = 1;
for (int i=1; i<=N; ++i)
   for (int j=1; j<i; ++j)
        choose[i][j] = choose[i-1][j-1] + choose[i-1][j];</pre>
```

Nota: $\binom{n}{k}$ está indefinido en el código anterior si n > k. ¡La tabla puede estar llena con cualquier basura del compilador!

3.3. Permutaciones con elementos indistinguibles

El número de permutaciones <u>diferentes</u> de n objetos, donde hay n_1 objetos indistinguibles de tipo 1, n_2 objetos indistinguibles de tipo 2, ..., y n_k objetos indistinguibles de tipo k, es

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Ejemplo: Con las letras de la palabra PROGRAMAR se pueden formar $\frac{9!}{2! \cdot 3!} = 30240$ permutaciones <u>diferentes</u>.

3.4. Desordenes, desarreglos o permutaciones completas

Un desarreglo es una permutación donde ningún elemento i está en la posición i-ésima. Por ejemplo, 4213 es un desarreglo de 4 elementos pero 3241 no lo es porque el 2 aparece en la posición 2.

Sea D_n el número de desarreglos de n elementos, entonces:

$$D_n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\ (n-1)(D_{n-1} + D_{n-2}) & n \ge 2 \end{cases}$$

Usando el principio de inclusión-exclusión, también se puede encontrar la fórmula

$$D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right] = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

4. Grafos

4.1. Algoritmo de Dijkstra

El peso de todas las aristas debe ser no negativo.

```
// //Complejidad: O(E log V)
// ¡Si hay ciclos de peso negativo, el algoritmo se queda
// en un ciclo infinito!
// Usar Bellman-Ford en ese caso.
struct edge{
  int to, weight;
  edge() {}
  edge(int t, int w) : to(t), weight(w) {}
  bool operator < (const edge &that) const {</pre>
    return weight > that.weight;
  }
};
vector<edge> g[MAXNODES];
// g[i] es la lista de aristas salientes del nodo i. Cada una
// indica hacia que nodo va (to) y su peso (weight). Para
// aristas bidireccionales se deben crear 2 aristas dirigidas.
// encuentra el camino más corto entre s y todos los demás
// nodos.
int d[MAXNODES]; //d[i] = distancia más corta desde s hasta i
int p[MAXNODES]; //p[i] = predecesor de i en la ruta más corta
int dijkstra(int s, int n){
  //s = nodo inicial, n = número de nodos
  for (int i=0; i<n; ++i){
    d[i] = INT_MAX;
    p[i] = -1;
  priority_queue<edge> q;
  q.push(edge(s, 0));
  while (!q.empty()){
```

```
int node = q.top().to;
  int dist = q.top().weight;
  q.pop();
  if (dist > d[node]) continue;
  if (node == t){
    //dist es la distancia más corta hasta t.
    //Para reconstruir la ruta se pueden seguir
   //los p[i] hasta que sea -1.
    return dist;
  }
  for (int i=0; i<g[node].size(); ++i){</pre>
    int to = g[node][i].to;
    int w_extra = g[node][i].weight;
    if (dist + w_extra < d[to]){</pre>
      d[to] = dist + w_extra;
      p[to] = node;
      q.push(edge(to, d[to]));
   }
  }
return INT_MAX;
```

4.2. Minimum spanning tree: Algoritmo de Prim

```
//Complejidad: O(E log V)
//¡El grafo debe ser no digirido!
typedef string node;
typedef pair<double, node> edge;
//edge.first = peso de la arista, edge.second = nodo al que se
//dirige
typedef map<node, vector<edge> > graph;

double prim(const graph &g){
   double total = 0.0;
   priority_queue<edge, vector<edge>, greater<edge> > q;
   q.push(edge(0.0, g.begin()->first));
   set<node> visited;
```

```
while (q.size()){
    node u = q.top().second;
    double w = q.top().first;
    q.pop(); //!!
    if (visited.count(u)) continue;
    visited.insert(u);
    total += w;
    vector<edge> &vecinos = g[u];
    for (int i=0; i<vecinos.size(); ++i){</pre>
      node v = vecinos[i].second;
      double w_extra = vecinos[i].first;
      if (visited.count(v) == 0){
        q.push(edge(w_extra, v));
    }
  return total; //suma de todas las aristas del MST
4.3. Minimum spanning tree: Algoritmo de Kruskal +
      Union-Find
//Complejidad: O(E log V)
struct edge{
  int start, end, weight;
  bool operator < (const edge &that) const {</pre>
    //Si se desea encontrar el árbol de recubrimiento de
    //máxima suma, cambiar el < por un >
    return weight < that.weight;
  }
```

//Complejidad: O(m log n), donde m es el número de operaciones
//y n es el número de objetos. En la práctica la complejidad

};

//es casi que O(m).

void link(int x, int y){

int p[MAXNODES], rank[MAXNODES];

if (rank[x] > rank[y]) p[y] = x;

void make_set(int x){ p[x] = x, rank[x] = 0; }

```
else{ p[x] = y; if (rank[x] == rank[y]) rank[y]++; }
int find_set(int x){
 return x != p[x] ? p[x] = find_set(p[x]) : p[x];
void merge(int x, int y){ link(find_set(x), find_set(y)); }
//e es un vector con todas las aristas del grafo ¡El grafo
//debe ser no digirido!
long long kruskal(const vector<edge> &e){
 long long total = 0;
 sort(e.begin(), e.end());
 for (int i=0; i<=n; ++i){
   make_set(i);
 }
 for (int i=0; i<e.size(); ++i){
   int u = e[i].start, v = e[i].end, w = e[i].weight;
   if (find set(u) != find set(v)){
     total += w;
     merge(u, v);
   }
 }
 return total;
```

4.4. Algoritmo de Floyd-Warshall

```
//Complejidad: O(V^3)
//No funciona si hay ciclos de peso negativo
// g[i][j] = Distancia entre el nodo i y el j.
unsigned long long g[MAXNODES][MAXNODES];
void floyd(int n){
    //Llenar g antes
    for (int k=0; k<n; ++k){
        for (int i=0; i<n; ++i){
            for (int j=0; j<n; ++j){
                g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
            }
        }
    }
}</pre>
```

```
//Acá se cumple que g[i][j] = Longitud de la ruta más corta
//de i a j.
* Aplicaciones de FW.
* Maxi-min: Encontrar el camino donde la arista más pequeña del
             camino es la más grande (entre las más pequeñas)
             que el sitio más ruidoso sea el más tranquilo
             g[i][j] = max(g[i][j], min(g[i][k], g[k][j]))
* Mini-max: Encontrar el camino donde la arista más grande
             del camino es la más pequeña (entre las más
             grandes) - que el peaje más caro, sea el más
             barato.
             g[i][j] = min(g[i][j], max(g[i][k], g[k][j]))
* Ciclo Neg: Si hay un ciclo negativo, g[i][i] < 0 para algún i
* Safest Path: Maximizar la probabilidad de "sobrevivir" por
               algún camino. Los valores son porcentajes!
               g[i][j] = max(g[i][j], g[i][k] * g[k][j]);
* Clausura Transitiva: Decir si se puede llegar de un nodo
               al otro:
               g[i][j] = g[i][j] \mid | (g[i][k] && g[k][j])
```

4.5. Algoritmo de Bellman-Ford

Si no hay ciclos de coste negativo, encuentra la distancia más corta entre un nodo y todos los demás. Si sí hay, permite saberlo.

El coste de las aristas \underline{si} puede ser negativo (Deberia, si no es así se puede usar Dijsktra o Floyd).

```
//Complejidad: 0(V*E)

const int oo = 1000000000;
struct edge{
  int v, w; edge(){} edge(int v, int w) : v(v), w(w) {}
};
```

```
vector<edge> g[MAXNODES];
int d[MAXNODES]:
int p[MAXNODES];
// Retorna falso si hay un ciclo de costo negativo alcanzable
// desde s. Si retorna verdadero, entonces d[i] contiene la
// distancia más corta para ir de s a i. Si se quiere
// determinar la existencia de un costo negativo que no
// necesariamente sea alcanzable desde s, se crea un nuevo
// nodo A y nuevo nodo B. Para todo nodo original u se crean
// las aristas dirigidas (A, u) con peso 1 y (u, B) con peso
// 1. Luego se corre el algoritmo de Bellman-Ford iniciando en
// A.
bool bellman(int s, int n){
 for (int i=0; i<n; ++i){
   d[i] = oo;
   p[i] = -1;
 }
  d[s] = 0;
 for (int i=0, changed = true; i<n-1 && changed; ++i){
    changed = false;
   for (int u=0; u<n; ++u){
     for (int k=0; k<g[u].size(); ++k){
        int v = g[u][k].v, w = g[u][k].w;
        if (d[u] + w < d[v]){
         d[v] = d[u] + w;
         p[v] = u;
          changed = true;
     }
 for (int u=0; u< n; ++u){
    for (int k=0; k<g[u].size(); ++k){</pre>
      int v = g[u][k].v, w = g[u][k].w;
     if (d[u] + w < d[v]){
       //Negative weight cycle!
        //Finding the actual negative cycle. If not needed
        //return false immediately.
        vector<bool> seen(n, false);
```

```
deque<int> cycle;
      int cur = v;
      for (; !seen[cur]; cur = p[cur]){
        seen[cur] = true;
        cycle.push_front(cur);
      cycle.push_front(cur);
      //there's a negative cycle that goes from
      //cycle.front() until it reaches itself again
      printf("Negative weight cycle reachable from s:\n");
      int i = 0;
      do{
        printf("%d ", cycle[i]);
      }while(cycle[i] != cycle[0]);
      printf("\n");
      // Negative weight cycle found
      return false;
return true;
```

4.6. Puntos de articulación

```
// Complejidad: O(E + V)

typedef string node;
typedef map<node, vector<node> > graph;
typedef char color;
const color WHITE = 0, GRAY = 1, BLACK = 2;
graph g;
map<node, color> colors;
map<node, int> d, low;

set<node> cameras; //contendrá los puntos de articulación
int timeCount;

// Uso: Para cada nodo u:
```

```
// colors[u] = WHITE, g[u] = Aristas salientes de u.
// Funciona para grafos no dirigidos.
void dfs(node v. bool isRoot = true){
  colors[v] = GRAY;
  d[v] = low[v] = ++timeCount;
  const vector<node> &neighbors = g[v];
  int count = 0;
  for (int i=0; i<neighbors.size(); ++i){</pre>
    if (colors[neighbors[i]] == WHITE){
      //(v, neighbors[i]) is a tree edge
      dfs(neighbors[i], false);
      if (!isRoot && low[neighbors[i]] >= d[v]){
        //current node is an articulation point
        cameras.insert(v);
      low[v] = min(low[v], low[neighbors[i]]);
      ++count:
    }else{ // (v, neighbors[i]) is a back edge
     low[v] = min(low[v], d[neighbors[i]]);
    }
  }
  if (isRoot && count > 1){
   //Is root and has two neighbors in the DFS-tree
    cameras.insert(v);
  colors[v] = BLACK;
```

4.7. LCA: Lowest Common Ancestor

Field-testing:

■ Live Archive - 4805 - Ants Colony

```
// Usage:
// Preprocessing in O(n log n):
// - LCA::clear(number_of_nodes);
// - LCA::add_edge(u, v) for every edge
// - LCA::preprocess(number_of_nodes, root);
// Queries in O(log n):
```

```
- LCA::lca(u, v):
// Assumes the tree is connected. If it's not,
// you might want to run the algorithm on every
// component (but remember to check if the two
// nodes of a query are on the same component,
// otherwise there's no LCA).
namespace LCA {
    int tin[MAXN], tout[MAXN];
    vector<int> up[MAXN];
    vector<int> g[MAXN];
    // alternatively, you can use a global graph to save space.
    // This graph is only used inside LCA::dfs below.
    int L, timer;
    void clear(int n) {
        for (int i = 0; i < n; ++i) g[i].clear();
    void add_edge(int u, int v) {
        g[u].push_back(v);
        g[v].push_back(u);
    void dfs(int v, int p = 0) {
        tin[v] = ++timer;
        up[v][0] = p;
        for (int i = 1; i \le L; ++i)
            up[v][i] = up[up[v][i-1]][i-1];
        for (int i = 0; i < g[v].size(); ++i) {
            int to = g[v][i];
            if (to != p) dfs(to, v);
        }
        tout[v] = ++timer;
    inline bool upper(int a, int b) {
        return tin[a] <= tin[b] && tout[b] <= tout[a];</pre>
    }
    int lca(int a, int b) {
        if (upper(a, b)) return a;
        if (upper(b, a)) return b;
        for (int i = L; i >= 0; --i)
            if (!upper(up[a][i], b))
```

```
a = up[a][i];
  return up[a][0];
}
void preprocess(int n, int root) {
    L = 1;
    while ((1 << L) <= n) ++L;
    for (int i = 0; i < n; ++i) up[i].resize(L + 1);
    timer = 0;
    dfs(root);
}
};</pre>
```

4.8. Máximo flujo: Método de Ford-Fulkerson, algoritmo de Edmonds-Karp

El algoritmo de Edmonds-Karp es una modificación al método de Ford-Fulkerson. Este último utiliza DFS para hallar un camino de aumentación, pero la sugerencia de Edmonds-Karp es utilizar BFS que lo hace más eficiente en algunos grafos.

```
/*
  cap[i][j] = Capacidad de la arista (i, j).
 prev[i] = Predecesor del nodo i en un camino de aumentación.
 */
int cap[MAXN+1][MAXN+1], prev[MAXN+1];
vector<int> g[MAXN+1]; //Vecinos de cada nodo.
inline void link(int u, int v, int c)
{ cap[u][v] = c; g[u].push_back(v), g[v].push_back(u); }
  Notar que link crea las aristas (u, v) && (v, u) en el grafo
  g. Esto es necesario porque el algoritmo de Edmonds-Karp
 necesita mirar el "back-edge" (j, i) que se crea al bombear
  flujo a través de (i, j). Sin embargo, no modifica
  cap[v][u], porque se asume que el grafo es dirigido. Si es
  no-dirigido, hacer cap[u][v] = cap[v][u] = c.
/*
  Método 1:
```

```
Mantener la red residual, donde residual[i][j] = cuánto
  flujo extra puedo invectar a través de la arista (i, j).
  Si empujo k unidades de i a j, entonces residual[i][j] -= k
  v residual[j][i] += k (Puedo "desempujar" las k unidades de
  jai).
  Se puede modificar para que no utilice extra memoria en la
  tabla residual, sino que modifique directamente la tabla
  cap.
*/
int residual[MAXN+1][MAXN+1];
int fordFulkerson(int n, int s, int t){
  memcpy(residual, cap, sizeof cap);
  int ans = 0;
  while (true){
   fill(prev, prev+n, -1);
    queue<int> q;
   q.push(s);
    while (q.size() \&\& prev[t] == -1){}
      int u = q.front();
      q.pop();
      vector<int> &out = g[u];
      for (int k = 0, m = out.size(); k < m; ++k){
        int v = out[k];
        if (v != s \&\& prev[v] == -1 \&\& residual[u][v] > 0)
          prev[v] = u, q.push(v);
      }
    }
    if (prev[t] == -1) break;
    int bottleneck = INT_MAX;
   for (int v = t, u = prev[v]; u != -1; v = u, u = prev[v]){
      bottleneck = min(bottleneck, residual[u][v]);
   for (int v = t, u = prev[v]; u != -1; v = u, u = prev[v]){
      residual[u][v] -= bottleneck;
      residual[v][u] += bottleneck;
```

```
ans += bottleneck;
 }
 return ans;
}
  Método 2:
  Mantener la red de flujos, donde flow[i][j] = Flujo que,
  err, fluye de i a j. Notar que flow[i][j] puede ser
  negativo. Si esto pasa, es lo equivalente a decir que i
  "absorbe" flujo de j, o lo que es lo mismo, que hay flujo
  positivo de j a i.
  En cualquier momento se cumple la propiedad de skew
  symmetry, es decir, flow[i][j] = -flow[j][i]. El flujo neto
  de i a j es entonces flow[i][j].
*/
int flow[MAXN+1][MAXN+1];
int fordFulkerson(int n, int s, int t){
  //memset(flow, 0, sizeof flow);
 for (int i=0; i<n; ++i) fill(flow[i], flow[i]+n, 0);</pre>
  int ans = 0;
  while (true){
    fill(prev, prev+n, -1);
    queue<int> q;
    q.push(s);
    while (q.size() && prev[t] == -1){
      int u = q.front();
     q.pop();
      vector<int> &out = g[u];
     for (int k = 0, m = out.size(); k < m; ++k){
        int v = out[k];
       if (v != s && prev[v] == -1 && cap[u][v] > flow[u][v])
          prev[v] = u, q.push(v);
      }
    }
    if (prev[t] == -1) break;
```

```
int bottleneck = INT_MAX;
for (int v = t, u = prev[v]; u != -1; v = u, u = prev[v]){
   bottleneck = min(bottleneck, cap[u][v] - flow[u][v]);
}
for (int v = t, u = prev[v]; u != -1; v = u, u = prev[v]){
   flow[u][v] += bottleneck;
   flow[v][u] = -flow[u][v];
}
ans += bottleneck;
}
return ans;
}
```

4.9. Máximo flujo para grafos dispersos usando Ford-Fulkerson

Field-testing:

 \blacksquare UVa - 563 - Crimewave

```
//////// Maximum flow for sparse graphs /////////
Complexity: O(V * E^2) //////////
/*
 Usage:
 Call initialize_max_flow();
 Create graph using add_edge(u, v, c);
 max_flow(source, sink);
 WARNING: The algorithm writes on the cap array. The capacity
 is not the same after having run the algorithm. If you need
 to run the algorithm several times on the same graph, backup
 the cap array.
*/
namespace Flow {
   // Maximum number of nodes
   const int MAXN = 100;
   // Maximum number of edges
   // IMPORTANT: Remember to consider the backedges. For
   // every edge we actually need two! That's why we have
```

```
// to multiply by two at the end.
const int MAXE = MAXN * (MAXN + 1) / 2 * 2;
const int oo = INT_MAX / 4;
int first[MAXN], next[MAXE], adj[MAXE], cap[MAXE];
int current_edge;
/*
  Builds a directed edge (u, v) with capacity c.
 Note that actually two edges are added, the edge
 and its complementary edge for the backflow.
 */
int add_edge(int u, int v, int c){
  adj[current_edge] = v;
  cap[current_edge] = c;
 next[current_edge] = first[u];
 first[u] = current_edge++;
  adj[current_edge] = u;
  cap[current_edge] = 0;
 next[current_edge] = first[v];
 first[v] = current_edge++;
}
void initialize_max_flow(){
  current_edge = 0;
 memset(next, -1, sizeof next);
 memset(first, -1, sizeof first);
}
int q[MAXN];
int incr[MAXN];
int arrived_by[MAXN];
//arrived_by[i] = The last edge used to reach node i
int find_augmenting_path(int src, int snk){
 /*
   Make a BFS to find an augmenting path from the source
   to the sink. Then pump flow through this path, and
   return the amount that was pumped.
 memset(arrived_by, -1, sizeof arrived_by);
 int h = 0, t = 0;
 q[t++] = src;
 arrived_by[src] = -2;
```

```
incr[src] = oo:
      while (h < t && arrived_by[snk] == -1){ //BFS
        int u = q[h++];
        for (int e = first[u]; e != -1; e = next[e]){
          int v = adi[e];
          if (\operatorname{arrived_by}[v] == -1 \&\& \operatorname{cap}[e] > 0)
            arrived_by[v] = e;
            incr[v] = min(incr[u], cap[e]);
            q[t++] = v;
          }
        }
      if (arrived_by[snk] == -1) return 0;
      int cur = snk;
      int neck = incr[snk]:
      while (cur != src){
        //Remove capacity from the edge used to reach
        //node "cur", and add capacity to the backedge
        cap[arrived_by[cur]] -= neck;
        cap[arrived_by[cur] ^ 1] += neck;
        //move backwards in the path
        cur = adj[arrived_by[cur] ^ 1];
      return neck;
    int max_flow(int src, int snk){
      int ans = 0, neck;
      while ((neck = find_augmenting_path(src, snk)) != 0){
        ans += neck;
      }
      return ans;
}
```

4.10. Maximum bipartite matching

```
// Maximum Bipartite Matching
// Complexity: O(VE)
```

```
// Finds a maximum bipartite matching for two sets of
// size L and R.
// How to use:
// Set g[i][j] to true if element i of the Left set can
// be paired with element j of the Right set.
// Fill the table for all 0 \le i \le L and 0 \le j \le R.
// matchL[i] will contain i's match in the Right set
// and matchR[j] will contain j's match in the Left set.
bool g[MAXN][MAXN], seen[MAXN];
int L, R, matchL[MAXN], matchR[MAXN];
bool assign(int i) {
    for (int j = 0; j < R; ++j) if (g[i][j] and !seen[j]) {
        seen[j] = true;
        if ( matchR[j] < 0 or assign(matchR[j]) )</pre>
            return matchL[i] = j, matchR[j] = i, true;
    }
    return false;
}
int maxBipartiteMatching() {
    for (int i = 0; i < L; ++i) matchL[i] = -1;
    for (int j = 0; j < R; ++j) matchR[j] = -1;
    int ans = 0;
    for (int i = 0; i < L; ++i) {
        for (int j = 0; j < R; ++j) seen[j] = false; // or memset</pre>
        if (assign(i)) ans++:
    return ans:
}
```

4.10.1. Teorema de Kőnig

Un **minimum vertex cover** es un subconjunto de vértices lo más pequeño posible tal que cualquier arista del grafo toque algún vértice del subconjunto.

Teorema de Kőnig. En un grafo bipartito, el tamaño del maximum bipartite matching es igual al tamaño del minimum vertex cover.

Para encontrar los nodos que componen el minimum vertex cover, hacer un DFS como el que se usa para encontrar el maximum bipartite matching ¹ pero empezando únicamente en los vértices de L que no tienen pareja en el lado R (empezando en los i tales que matchL[i] == -1). Adicionalmente, marcar cuales nodos fueron visitados tanto en L como en R.

El minimum vertex cover estará formado por los nodos de L que no fueron visitados y los nodos de R que sí fueron visitados.

```
#include <bitset>
int L, R, int matchL[MAXN], matchR[MAXN];
bitset<MAXN> seenL, seenR;
vector<int> g[MAXN];
void dfs(int u) { // u is on L
    if (u == -1 or seenL[u]) return:
    seenL[u] = true;
    foreach(out, g[u]) {
        int v = *out:
        if (!seenR[v]) {
            seenR[v] = true:
            dfs(matchR[v]);
        }
}
// Build the maximum bipartite matching first!
void minimumVertexCover() {
    int size = 0;
    for (int i = 0; i < L; ++i) {
        if (matchL[i] == -1) dfs(i);
        else size++:
    // size == size of the minimum vertex cover.
    // The actual minimum vertex cover is formed by:
          + nodes in L such that seenL[i] == false
          + nodes in R such that seenR[i] == true
}
```

 $^{^1\}mathrm{Es}$ decir, un DFS que usa aristas que no están en el matching cuando va de L a R y aristas que sí están en el matching cuando va de R a L.

4.11. Componentes fuertemente conexas: Algoritmo de Tarjan

```
/* Complexity: O(E + V)
Tarjan's algorithm for finding strongly connected
components.
 *d[i] = Discovery time of node i. (Initialize to -1)
 *low[i] = Lowest discovery time reachable from node
 i. (Doesn't need to be initialized)
 *scc[i] = Strongly connected component of node i. (Doesn't
 need to be initialized)
 *s = Stack used by the algorithm (Initialize to an empty
 *stacked[i] = True if i was pushed into s. (Initialize to
 false)
 *ticks = Clock used for discovery times (Initialize to 0)
 *current_scc = ID of the current_scc being discovered
 (Initialize to 0)
*/
vector<int> g[MAXN];
int d[MAXN], low[MAXN], scc[MAXN];
bool stacked[MAXN];
stack<int> s;
int ticks, current_scc;
void tarjan(int u){
  d[u] = low[u] = ticks++;
  s.push(u);
  stacked[u] = true;
  const vector<int> &out = g[u];
  for (int k=0, m=out.size(); k< m; ++k){
    const int &v = out[k]:
    if (d[v] == -1){
      tarjan(v);
     low[u] = min(low[u], low[v]);
   }else if (stacked[v]){
      low[u] = min(low[u], low[v]);
    }
  if (d[u] == low[u]){
    int v;
    do{
     v = s.top();
```

```
s.pop();
    stacked[v] = false;
    scc[v] = current_scc;
}while (u != v);
    current_scc++;
}
```

4.12. 2-Satisfiability

Dada una ecuación lógica de conjunciones de disyunciones de 2 términos, se pretente decidir si existen valores de verdad que puedan asignarse a las variables para hacer cierta la ecuación.

Por ejemplo, $(b_1 \vee \neg b_2) \wedge (b_2 \vee b_3) \wedge (\neg b_1 \vee \neg b_2)$ es verdadero cuando b_1 y b_3 son verdaderos y b_2 es falso.

Solución: Se sabe que $(p \to q) \leftrightarrow (\neg p \lor q)$. Entonces se traduce cada disyunción en una implicación y se crea un grafo donde los nodos son cada variable y su negación. Cada implicación es una arista en este grafo. Existe solución si nunca se cumple que una variable y su negación están en la misma componente fuertemente conexa (Se usa el algoritmo de Tarjan, 4.11).

5. Programación dinámica

5.1. Longest common subsequence

```
#define MAX(a,b) ((a>b)?(a):(b))
int dp[1001][1001];

int lcs(const string &s, const string &t){
   int m = s.size(), n = t.size();
   if (m == 0 || n == 0) return 0;
   for (int i=0; i<=m; ++i)
      dp[i][0] = 0;
   for (int j=1; j<=n; ++j)
      dp[0][j] = 0;
   for (int i=0; i<m; ++i)
      for (int j=0; j<n; ++j)
      if (s[i] == t[j])

dp[i+1][j+1] = dp[i][j]+1;
      else

dp[i+1][j+1] = MAX(dp[i+1][j], dp[i][j+1]);</pre>
```

```
return dp[m][n];
}
```

5.2. Longest increasing subsequence

```
// Longest Increasing Subsequence.
// O(n log n)
const int INF = 1 \ll 30 - 1;
int main(){
  int n;
  while(scanf("%d", &n) == 1){
    vector<long> S(n);
    vector<long> M(n+1, INF);
    for (int i = 0; i < n; ++i) scanf("%ld", &S[i]);
    M[0] = 0;
    int m = 0:
   for (int i = 0; i < S.size(); ++i){
      int d = upper_bound(M.begin(), M.begin()+n, S[i])-M.begin();
      if (S[i] != M[d-1]){
       M[d] = S[i]:
       m = max(m,d);
        parent[S[i]] = M[d-1];
     }
    }
   printf("%d\n", max(1, m));
  return 0;
```

5.3. Partición de troncos

Este problema es similar al problema de $Matrix\ Chain\ Multiplication$. Se tiene un tronco de longitud n, y m puntos de corte en el tronco. Se puede hacer un corte a la vez, cuyo costo es igual a la longitud del tronco. ¿Cuál es el mínimo costo para partir todo el tronco en pedacitos individuales?

Ejemplo: Se tiene un tronco de longitud 10. Los puntos de corte son 2, 4, y 7.

El mínimo costo para partirlo es 20, y se obtiene así:

- Partir el tronco (0, 10) por 4. Vale 10 y quedan los troncos (0, 4) y (4, 10).
- \blacksquare Partir el tronco (0, 4) por 2. Vale 4 y quedan los troncos (0, 2), (2, 4) y (4, 10).
- No hay que partir el tronco (0, 2).
- No hay que partir el tronco (2, 4).
- Partir el tronco (4, 10) por 7. Vale 6 y quedan los troncos (4, 7) y (7, 10).
- No hay que partir el tronco (4, 7).
- No hay que partir el tronco (7, 10).
- El costo total es 10 + 4 + 6 = 20.

El algoritmo es $O(n^3)$, pero optimizable a $O(n^2)$ con una tabla adicional:

```
/*
 O(n^3)
 dp[i][j] = Minimo costo de partir la cadena entre las
particiones i e j, ambas incluídas.
int dp[1005][1005];
int p[1005];
int cubic(){
  int n, m;
  while (scanf("%d %d", &n, &m)==2){
    ;0 = [0]q
    for (int i=1; i<=m; ++i){
      scanf("%d", &p[i]);
    p[m+1] = n;
    m += 2;
    for (int i=0; i < m; ++i){
      dp[i][i+1] = 0;
    }
    for (int i=m-2; i>=0; --i){
      for (int j=i+2; j < m; ++j){
        dp[i][j] = p[j]-p[i];
        int t = INT_MAX;
        for (int k=i+1; k < j; ++k){
```

```
t = min(t, dp[i][k] + dp[k][j]);
        dp[i][j] += t;
     }
    }
    printf("d\n", dp[0][m-1]);
  return 0;
/*
  0(n^2)
  dp[i][j] = Mínimo costo de partir la cadena entre las
 particiones i e j, ambas incluídas. pivot[i][j] = Índice de
 la partición que usé para lograr dp[i][j].
 */
int dp[1005][1005], pivot[1005][1005];
int p[1005];
int quadratic(){
  int n, m;
  while (scanf("%d %d", &n, &m)==2){
   0 = [0]q
   for (int i=1; i<=m; ++i){
      scanf("%d", &p[i]);
   p[m+1] = n;
   m += 2;
   for (int i=0; i<m-1; ++i){
      dp[i][i+1] = 0;
    for (int i=0; i< m-2; ++i){
      dp[i][i+2] = p[i+2] - p[i];
      pivot[i][i+2] = i+1;
    }
    for (int d=3; d \le m; ++d){ //d = longitud
     for (int j, i=0; (j = i + d) < m; ++i){
        dp[i][j] = p[j] - p[i];
```

```
int t = INT_MAX, s;
    for (int k=pivot[i][j-1]; k<=pivot[i+1][j]; ++k){
        int x = dp[i][k] + dp[k][j];
        if (x < t) t = x, s = k;
    }
    dp[i][j] += t, pivot[i][j] = s;
}

printf("%d\n", dp[0][m-1]);
}
return 0;
}</pre>
```

6. Strings

6.1. Algoritmo de Knuth-Morris-Pratt (KMP)

Computa el arreglo border que contiene la longitud del borde más largo de todos los prefijos de una cadena.

Un borde de una cadena es otra cadena más corta que es a la vez prefijo y sufijo de la original (por ejemplo, *aba* es un border de *abacaba* porque es más corta que *abacaba* y es al mismo tiempo prefijo y sufijo de *abacaba*. *a* también es un borde de *abacaba*. *abac* no es un borde de *abacaba* porque no es un sufijo).

En el código, border[i] contiene el borde más grande del prefijo de needle que termina en la posición i (needle es el patrón que se quiere buscar en la otra cadena). Una ejemplo del arreglo border es:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13
needle	a	b	a	c	a	b	a	С	a	b	a	d	a	b
border	0	0	1	0	1	2	3	4	5	6	7	0	1	2

```
// Knuth-Morris-Pratt algorithm for string matching
// Complexity: O(n + m)

// Reports all occurrences of 'needle' in 'haystack'.
void kmp(const string &needle, const string &haystack) {
    // Precompute border function
    int m = needle.size();
    vector<int> border(m);
    border[0] = 0;
```

```
for (int i = 1; i < m; ++i) {
  border[i] = border[i - 1];
  while (border[i] > 0 and needle[i] != needle[border[i]]) {
     border[i] = border[border[i] - 1];
  }
  if (needle[i] == needle[border[i]]) border[i]++;
// Now the actual matching
int n = haystack.size();
int seen = 0;
for (int i = 0; i < n; ++i){
  while (seen > 0 and haystack[i] != needle[seen]) {
    seen = border[seen - 1];
  if (haystack[i] == needle[seen]) seen++;
  if (seen == m) {
    printf("Needle occurs from %d to %d\n", i - m + 1, i);
    seen = border[m - 1];
 }
}
```

6.2. Algoritmo Z

Z[i] = longitud del prefijo propio más largo de S[i, n) que también es prefijo de S[0, n).

i	0	1	2	3	4	5	6	7	8	9	10	11	12
string	a	b	a	c	a	b	a	c	a	d	a	b	a
z_i	0	0	1	0	5	0	1	0	1	0	3	0	1

```
// Find z function
int n = s.size();
vector<int> z(n);
z[0] = 0;
for (int i = 1, l = 0, r = 0; i < n; ++i) {
    z[i] = 0;
    if (i <= r) z[i] = min(z[i - l], r - i + 1);
    while (i + z[i] < n && s[z[i]] == s[i + z[i]]) ++z[i];</pre>
```

6.3. Algoritmo de Aho-Corasick

Sirve para buscar muchos patrones en una cadena. Por ejemplo, dada la cadena ahishers y los patrones $\{he, she, hers, his\}$, encuentra que his aparece en la posición 1, he aparece en la posición 4, she aparece en la posición 3 y hers aparece en la posición 4.

Complejidad: O(n+m) donde n es la longitud de la cadena en la que hay que buscar y m es la suma de las longitudes de todos los patrones.

```
Aho-Corasick's algorithm, as explained in
          http://dx.doi.org/10.1145/360825.360855
// Max number of states in the matching machine.
// Should be equal to the sum of the length of all keywords.
const int MAXS = 6 * 50 + 10;
// Number of characters in the alphabet.
const int MAXC = 26;
// Output for each state, as a bitwise mask.
// Bit i in this mask is on if the keyword with index i
// appears when the machine enters this state.
int out[MAXS];
// Used internally in the algorithm.
int f[MAXS]; // Failure function
int g[MAXS][MAXC]; // Goto function, or -1 if fail.
// Builds the string matching machine.
// words - Vector of keywords. The index of each keyword is
//
          important:
//
          "out[state] & (1 << i)" is > 0 if we just found
```

```
//
            word[i] in the text.
// lowestChar - The lowest char in the alphabet.
                Defaults to 'a'.
// highestChar - The highest char in the alphabet.
//
                 Defaults to 'z'.
//
                 "highestChar - lowestChar" must be <= MAXC,
                 otherwise we will access the g matrix outside
//
//
                 its bounds and things will go wrong.
// Returns the number of states that the new machine has.
// States are numbered 0 up to the return value - 1, inclusive.
int buildMatchingMachine(const vector<string> &words,
                         char lowestChar = 'a',
                         char highestChar = 'z') {
    memset(out, 0, sizeof out);
    memset(f, -1, sizeof f);
    memset(g, -1, sizeof g);
    int states = 1; // Initially, we just have the 0 state
    for (int i = 0; i < words.size(); ++i) {</pre>
        const string &keyword = words[i];
        int currentState = 0;
        for (int j = 0; j < keyword.size(); ++j) {
            int c = keyword[j] - lowestChar;
            if (g[currentState][c] == -1) {
                // Allocate a new node
                g[currentState][c] = states++;
            currentState = g[currentState][c];
        }
        // There's a match of keywords[i] at node currentState.
        out[currentState] |= (1 << i):</pre>
    }
    // State 0 should have an outgoing edge for all characters.
    for (int c = 0; c < MAXC; ++c) {
        if (g[0][c] == -1) {
            g[0][c] = 0;
        }
    }
    // Now, let's build the failure function
```

```
queue<int> q;
    // Iterate over every possible input
    for (int c = 0; c <= highestChar - lowestChar; ++c) {</pre>
        // All nodes s of depth 1 have f[s] = 0
        if (g[0][c] != -1 \text{ and } g[0][c] != 0) {
            f[g[0][c]] = 0;
            q.push(g[0][c]);
    }
    while (q.size()) {
        int state = q.front();
        q.pop();
        for (int c = 0; c <= highestChar - lowestChar; ++c) {</pre>
            if (g[state][c] != -1) {
                int failure = f[state];
                while (g[failure][c] == -1) {
                    failure = f[failure];
                failure = g[failure][c];
                f[g[state][c]] = failure;
                // Merge out values
                out[g[state][c]] |= out[failure];
                q.push(g[state][c]);
        }
    return states;
// Finds the next state the machine will transition to.
//
// currentState - The current state of the machine. Must be
//
                  between 0 and the number of states - 1,
//
                  inclusive.
// nextInput - The next character that enters into the machine.
//
               Should be between lowestChar and highestChar,
               inclusive.
// lowestChar - Should be the same lowestChar that was passed
                to "buildMatchingMachine".
// Returns the next state the machine will transition to.
```

```
// This is an integer between 0 and the number of states - 1,
// inclusive.
int findNextState(int currentState, char nextInput,
                                     char lowestChar = 'a') {
    int answer = currentState;
    int c = nextInput - lowestChar;
    while (g[answer][c] == -1) answer = f[answer];
    return g[answer][c];
}
// How to use this algorithm:
// 1. Modify the MAXS and MAXC constants as appropriate.
// 2. Call buildMatchingMachine with the set of keywords to
      search for.
// 3. Start at state 0. Call findNextState to incrementally
      transition between states.
// 4. Check the out function to see if a keyword has been
//
     matched.
//
// Example:
//
// Assume keywords is a vector that contains
// {"he", "she", "hers", "his"} and text is a string that
// contains "ahishers".
//
// Consider this program:
// buildMatchingMachine(keywords, 'a', 'z');
// int currentState = 0;
// for (int i = 0; i < text.size(); ++i) {</pre>
      currentState = findNextState(currentState, text[i], 'a');
//
//
     Nothing new, let's move on to the next character.
//
     if (out[currentState] == 0) continue;
//
//
      for (int j = 0; j < keywords.size(); ++j) {
          if (out[currentState] & (1 << j)) {</pre>
//
//
              //Matched keywords[i]
              cout << "Keyword " << keywords[j]</pre>
//
//
                   << " appears from "
                   << i - keywords[j].size() + 1</pre>
//
```

```
//
                 << " to " << i << endl:
//
// }
// }
// The output of this program is:
//
// Keyword his appears from 1 to 3
// Keyword he appears from 4 to 5
// Keyword she appears from 3 to 5
// Keyword hers appears from 4 to 7
End of Aho-Corasick's algorithm
6.4. Suffix array y longest common prefix
// Complexity: O(n log n)
//Usage: Call SuffixArray::compute(s), where s is the
//
        string you want the Suffix Array for.
//
// * * * IMPORTANT: The last character of s must compare less
//
        than any other character (for example, do s = s + '\1';
        before calling this function).
//Output:
// sa = The suffix array. Contains the n suffixes of s sorted
         in lexicographical order. Each suffix is represented
//
//
         as a single integer (the position in the string
         where it starts).
//
// rank = The inverse of the suffix array. rank[i] = the index
//
         of the suffix s[i..n) in the pos array. (In other
//
         words, sa[i] = k \ll rank[k] = i.
         With this array, you can compare two suffixes in O(1):
//
//
         Suffix s[i..n) is smaller than s[j..n) if and
//
         only if rank[i] < rank[j].
// lcp = The length of the longest common prefix between two
//
         consecutive suffixes:
         lcp[i] = lcp(s + sa[i], s + sa[i-1]). lcp[0] = 0.
//
```

```
namespace SuffixArray {
   int t, rank[MAXN], sa[MAXN], lcp[MAXN];
    bool compare(int i, int j){
       return rank[i + t] < rank[j + t];</pre>
   }
   void build(const string &s){
       int n = s.size();
       int bc[256];
       for (int i = 0; i < 256; ++i) bc[i] = 0;
       for (int i = 0; i < n; ++i) ++bc[s[i]];
       for (int i = 1; i < 256; ++i) bc[i] += bc[i-1];
       for (int i = 0; i < n; ++i) sa[--bc[s[i]]] = i;
       for (int i = 0; i < n; ++i) rank[i] = bc[s[i]];
       for (t = 1; t < n; t <<= 1){
           for (int i = 0, j = 1; j < n; i = j++){
               while (j < n \&\& rank[sa[j]] == rank[sa[i]]) j++;
               if (j - i == 1) continue;
               int *start = sa + i, *end = sa + j;
               sort(start, end, compare);
               int first = rank[*start + t], num = i, k;
               for(; start < end; rank[*start++] = num){</pre>
                   k = rank[*start + t];
                   if (k != first and (i > first or k >= j))
                       first = k, num = start - sa;
               }
           }
       // Remove this part if you don't need the LCP
       int size = 0, i, j;
       for(i = 0; i < n; i++) if (rank[i] > 0) {
           j = sa[rank[i] - 1];
           while(s[i + size] == s[j + size]) ++size;
           lcp[rank[i]] = size;
           if (size > 0) --size;
       lcp[0] = 0;
};
```

```
// Applications:
// lcp(x,y) = min(lcp(x,x+1), lcp(x+1, x+2), ..., lcp(y-1, y))
void number_of_different_substrings(){
  // If you have the i-th smaller suffix, Si,
        it's length will be |Si| = n - sa[i]
  // Now, lcp[i] stores the number of
        common letters between Si and Si-1
         (s.substr(sa[i]) and s.substr(sa[i-1]))
  // so, you have |Si| - lcp[i] different strings
        from these two suffixes => n - lcp[i] - sa[i]
  for(int i = 0; i < n; ++i) ans += n - sa[i] - lcp[i];
void number_of_repeated_substrings(){
  // Number of substrings that appear at least twice in the text.
  // The trick is that all 'spare' substrings that can give us
  // Lcp(i - 1, i) can be obtained by Lcp(i - 2, i - 1)
  // due to the ordered nature of our array.
  // And the overall answer is
  // Lcp(0, 1) +
         Sum(max[0, Lcp(i, i - 1) - Lcp(i - 2, i - 1)])
         for 2 \le i \le n
  // File Recover
  int cnt = lcp[1];
  for(int i=2; i < n; ++i){
    cnt += max(0, lcp[i] - lcp[i-1]);
  }
}
void repeated_m_times(int m){
  // Given a string s and an int m, find the size
  // of the biggest substring repeated m times (find the rightmost pos)
  // if a string is repeated m+1 times, then it's repeated m times too
  // The answer is the maximum, over i, of the longest common prefix
  // between suffix i+m-1 in the sorted array.
  int length = 0, position = -1, t;
  for (int i = 0; i \le n-m; ++i){
    if ((t = getLcp(i, i+m-1, n)) > length){
      length = t;
```

```
position = sa[i];
   } else if (t == length) { position = max(position, sa[i]); }
  }
  // Here you'll get the rightmost position
  // (that means, the last time the substring appears)
  for (int i = 0; i < n; ){
    if (sa[i] + length > n) { ++i; continue; }
    int ps = 0, j = i+1;
    while (j < n \&\& lcp[j] >= length){}
     ps = max(ps, sa[j]);
     j++;
    if(j - i \ge m) position = max(position, ps);
  if(length != 0)
    printf("%d %d\n", length, position);
  else
    puts("none");
}
void smallest_rotation(){
  // Reads a string of lenght k. Then just double it (s = s+s)
  // and find the suffix array.
  // The answer is the smallest i for which s.size() - sa[i] >= k
  // If you want the first appearence (and not the string)
  // you'll need the second cycle
  int best = 0;
  for (int i=0; i < n; ++i){
    if (n - sa[i] >= k){
      //Find the first appearence of the string
      while (n - sa[i] >= k){
        if(sa[i] < sa[best] && sa[i] != 0) best = i;
        i++:
     }
      break;
  if (sa[best] == k) puts("0");
  else printf("%d\n", sa[best]);
```

.....

6.5. Hashing dinámico

Usando una modificación de un Fenwick Tree, se puede hacer una estructura de datos que soporta las siguientes operaciones en $O(\lg n)$:

- Encontrar el hash de la subcadena [i..i].
- Modificar el caracter en la posición i.

```
// N = size of the array. It is assumed that elements are
       indexed from 1 to N, inclusive.
// B = the base for the hash. Must be > 0.
// P = The modulo for the hash. Must be > 0. Doesn't need
       to be prime.
int N. B. P:
int tree[MAXN], base[MAXN];
void precomputeBases() {
    base[0] = 1;
    for (int i = 1; i \le N + 1; ++i) {
        base[i] = (1LL * base[i - 1] * B) \% P;
    }
}
inline int mod(long long a) {
    int ans = a % P;
    if (ans < 0) ans += P;
    return ans;
}
// Usually you don't want to use this function directly,
// use 'put' below instead.
void add(int at, int what) {
    what = mod(what);
    int seen = 0;
    for (at++; at \le N + 1; at += at & -at) {
        tree[at] += (1LL * what * base[seen]) % P;
        tree[at] = mod(tree[at]);
        seen += at & -at;
```

```
// Returns the hash for subarray [1..at].
int query(int at) {
    int ans = 0, seen = 0:
    for (at++; at > 0; at -= at & -at) {
        ans += (1LL * tree[at] * base[seen]) % P;
        ans = mod(ans);
        seen += at & -at;
    }
    return ans;
}
// Returns the hash for subarray [i...j]. That hash is:
     a[i]*B^{(j-i+1)} + a[i+1]*B^{(j-i)} + a[i+2]*B^{(j-i-1)} + ...
// + a[j-2]*B^2 + a[j-1]*B^1 + a[j]*B^0 \pmod{P}
int hash(int i, int j) {
    assert(i <= i):
    int ans = query(j) - (1LL * query(i-1) * base[j-i+1]) % P;
    return mod(ans):
}
// Changes the number or char at position 'at' for 'what'.
void put(int at, int what) {
    add(at, -hash(at, at) + what);
}
```

7. Geometría

7.1. Identidades trigonométricas

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

7.2. Área de un polígono

Si P es un polígono simple (no se intersecta a sí mismo) su área está dada por:

$$A(P) = \frac{1}{2} \sum_{i=0}^{n-1} (x_i \cdot y_{i+1} - x_{i+1} \cdot y_i)$$

```
//P es un polígono ordenado anticlockwise.
//Si es clockwise, retorna el area negativa.
//Si no esta ordenado retorna pura mierda.
//P[0] != P[n-1]
double PolygonArea(const vector<point> &p){
  double r = 0.0;
  for (int i=0; i<p.size(); ++i){
    int j = (i+1) % p.size();
    r += p[i].x*p[j].y - p[j].x*p[i].y;
  }
  return r/2.0;
}</pre>
```

7.3. Centro de masa de un polígono

Si P es un polígono simple (no se intersecta a sí mismo) su centro de masa está dado por:

$$\bar{C}_x = \frac{\iint_R x \, dA}{M} = \frac{1}{6M} \sum_{i=1}^n (y_{i+1} - y_i)(x_{i+1}^2 + x_{i+1} \cdot x_i + x_i^2)$$

$$\bar{C}_y = \frac{\iint_R y \, dA}{M} = \frac{1}{6M} \sum_{i=1}^n (x_i - x_{i+1})(y_{i+1}^2 + y_{i+1} \cdot y_i + y_i^2)$$

Donde M es el área del polígono. Otra posible fórmula equivalente:

$$\bar{C}_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i \cdot y_{i+1} - x_{i+1} \cdot y_i)$$

$$\bar{C}_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1}) (x_i \cdot y_{i+1} - x_{i+1} \cdot y_i)$$

7.4. Convex hull: Graham Scan

```
Complejidad: O(n \log_2 n)
//Graham scan: Complexity: O(n log n)
struct point{
  int x,y;
 point() {}
  point(int X, int Y) : x(X), y(Y) {}
};
point pivot;
inline int distsqr(const point &a, const point &b){
 return (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y);
}
inline double dist(const point &a, const point &b){
 return sqrt(distsqr(a, b));
}
//retorna > 0 si c esta a la izquierda del segmento AB
//retorna < 0 si c esta a la derecha del segmento AB
//retorna == 0 si c es colineal con el segmento AB
inline
int cross(const point &a, const point &b, const point &c){
  return (b.x-a.x)*(c.y-a.y) - (c.x-a.x)*(b.y-a.y);
}
//Self < that si esta a la derecha del segmento Pivot-That
bool angleCmp(const point &self, const point &that){
  int t = cross(pivot, that, self);
  if (t < 0) return true:
  if (t == 0){
    //Self < that si está más cerquita
    return (distsqr(pivot, self) < distsqr(pivot, that));</pre>
 }
  return false;
vector<point> graham(vector<point> p){
  //Metemos el más abajo más a la izquierda en la posición 0
 for (int i=1; i<p.size(); ++i){</pre>
    if (p[i].y < p[0].y | |
```

```
(p[i].y == p[0].y \&\& p[i].x < p[0].x))
      swap(p[0], p[i]);
 }
  pivot = p[0];
  sort(p.begin(), p.end(), angleCmp);
  //Ordenar por ángulo y eliminar repetidos.
  //Si varios puntos tienen el mismo angulo el más lejano
  //queda después en la lista
  vector<point> chull(p.begin(), p.begin()+3);
  //Ahora sí!!!
  for (int i=3; i<p.size(); ++i){</pre>
    while (chull.size() >= 2 &&
           cross(chull[chull.size()-2],
                 chull[chull.size()-1],
                 p[i]) <=0){
      chull.erase(chull.end() - 1);
    chull.push_back(p[i]);
  //chull contiene los puntos del convex hull ordenados
  //anti-clockwise. No contiene ningún punto repetido. El
  //primer punto no es el mismo que el último, i.e, la última
 //arista va de chull[chull.size()-1] a chull[0]
  return chull;
7.5. Convex hull: Andrew's monotone chain
  Complejidad: O(n \log_2 n)
// Convex Hull: Andrew's Monotone Chain Convex Hull
// Complexity: O(n log n) (But lower constant than Graham Scan)
typedef long long CoordType;
struct Point {
  CoordType x, y;
  bool operator <(const Point &p) const {</pre>
   return x < p.x | | (x == p.x && y < p.y);
```

```
}
};
// 2D cross product. Returns a positive value, if OAB makes a
// counter-clockwise turn, negative for clockwise turn, and zero
// if the points are collinear.
CoordType cross(const Point &O, const Point &A, const Point &B){
  return (A.x - 0.x) * (B.y - 0.y) - (A.y - 0.y) * (B.x - 0.x);
// Returns a list of points on the convex hull in
// counter-clockwise order. Note: the last point in the returned
// list is the same as the first one.
vector<Point> convexHull(vector<Point> P){
  int n = P.size(), k = 0;
  vector<Point> H(2*n);
  // Sort points lexicographically
  sort(P.begin(), P.end());
  // Build lower hull
 for (int i = 0; i < n; i++) {
    while (k \ge 2 \&\& cross(H[k-2], H[k-1], P[i]) \le 0) k--;
    H[k++] = P[i];
  // Build upper hull
 for (int i = n-2, t = k+1; i >= 0; i--) {
    while (k \ge t \&\& cross(H[k-2], H[k-1], P[i]) \le 0) k--;
    H[k++] = P[i];
  H.resize(k);
 return H;
```

7.6. Mínima distancia entre un punto y un segmento

```
/*
   Returns the closest distance between point pnt and the segment
   that goes from point a to b
   Idea by:
   http://local.wasp.uwa.edu.au/~pbourke/geometry/pointline/
   */
double distance_point_to_segment(const point &a,const point &b,
```

```
const point &pnt){
double u =
    ((pnt.x - a.x)*(b.x - a.x) + (pnt.y - a.y)*(b.y - a.y))
    /distsqr(a, b);
point intersection;
intersection.x = a.x + u*(b.x - a.x);
intersection.y = a.y + u*(b.y - a.y);
if (u < 0.0 || u > 1.0){
    return min(dist(a, pnt), dist(b, pnt));
}
return dist(pnt, intersection);
}
```

7.7. Mínima distancia entre un punto y una recta

7.8. Determinar si un polígono es convexo

```
/*
  Returns positive if a-b-c makes a left turn.
  Returns negative if a-b-c makes a right turn.
  Returns 0.0 if a-b-c are colineal.
*/
```

```
double turn(const point &a, const point &b, const point &c){
  double z = (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);
  if (fabs(z) < 1e-9) return 0.0:
 return z:
}
  Returns true if polygon p is convex.
  False if it's concave or it can't be determined
  (For example, if all points are colineal we can't
 make a choice).
 */
bool isConvexPolygon(const vector<point> &p){
  int mask = 0;
 int n = p.size();
 for (int i=0; i<n; ++i){
    int j=(i+1)%n;
   int k=(i+2)%n;
    double z = turn(p[i], p[j], p[k]);
   if (z < 0.0){
     mask |= 1:
   else if (z > 0.0){
     mask |= 2;
    if (mask == 3) return false;
  return mask != 0;
```

7.9. Determinar si un punto está dentro de un polígono convexo

```
/*
  Returns true if point a is inside convex polygon p. Note
  that if point a lies on the border of p it is considered
  outside.

We assume p is convex! The result is useless if p is
  concave.
  */
bool insideConvexPolygon(const vector<point> &p,
```

```
const point &a){
int mask = 0;
int n = p.size();
for (int i=0; i<n; ++i){
  int j = (i+1)%n;
  double z = turn(p[i], p[j], a);
  if (z < 0.0){
    mask |= 1;
  }else if (z > 0.0){
    mask |= 2;
  }else if (z == 0.0) return false;
  if (mask == 3) return false;
}
return mask != 0;
}
```

7.10. Determinar si un punto está dentro de un polígono cualquiera

Field-testing:

- TopCoder SRM 187 Division 2 Hard PointInPolygon
- \blacksquare UVa 11665 Chinese Ink

```
//Point
//Choose one of these two:
struct P {
  double x, y; P(){}; P(double q, double w) : x(q), y(w){}
}:
struct P {
  int x, y; P()\{\}; P(int q, int w) : x(q), y(w)\{\}
};
// Polar angle
// Returns an angle in the range [0, 2*Pi) of a given
// Cartesian point. If the point is (0,0), -1.0 is returned.
// REQUIRES:
// include math.h
// define EPS 0.000000001, or your choice
// P has members x and y.
double polarAngle( P p )
```

```
if(fabs(p.x) <= EPS && fabs(p.y) <= EPS) return -1.0;
  if(fabs(p.x) \le EPS) return (p.y > EPS ? 1.0 : 3.0) * acos(0);
  double theta = atan(1.0 * p.y / p.x);
  if(p.x > EPS)
   return (p.y \ge -EPS ? theta : (4*acos(0) + theta));
  else
    return(2 * acos(0) + theta);
}
//Point inside polygon
// Returns true iff p is inside poly.
// PRE: The vertices of poly are ordered (either clockwise or
        counter-clockwise.
// POST: Modify code inside to handle the special case of "on
// an edge".
// REQUIRES:
// polarAngle()
// include math.h
// include vector
// define EPS 0.000000001, or your choice
bool pointInPoly( P p, vector< P > &poly )
{
 int n = poly.size();
  double ang = 0.0;
  for(int i = n - 1, j = 0; j < n; i = j++){
    P v(poly[i].x - p.x, poly[i].y - p.y);
    P w( poly[j].x - p.x, poly[j].y - p.y );
    double va = polarAngle(v);
    double wa = polarAngle(w);
    double xx = wa - va;
    if(va < -0.5 \mid | wa < -0.5 \mid | fabs(fabs(xx)-2*acos(0)) < EPS){
        // POINT IS ON THE EDGE
        assert( false );
        ang += 2 * acos(0);
        continue;
     }
    if (xx < -2 * acos(0)) ang += xx + 4 * acos(0);
    else if( xx > 2 * acos(0) ) ang += xx - 4 * acos(0);
    else ang += xx;
  }
  return( ang * ang > 1.0);
```

.....

7.11. Hallar la intersección de dos rectas

```
Finds the intersection between two lines (Not segments!
  Infinite lines)
 Line 1 passes through points (x0, y0) and (x1, y1).
 Line 2 passes through points (x2, y2) and (x3, y3).
  Handles the case when the 2 lines are the same (infinite
  intersections),
 parallel (no intersection) or only one intersection.
*/
void line_line_intersection(double x0, double y0,
                            double x1, double y1,
                            double x2, double y2,
                            double x3, double y3){
#ifndef EPS
#define EPS 1e-9
#endif
  double t0 = (y3-y2)*(x0-x2)-(x3-x2)*(y0-y2);
  double t1 = (x1-x0)*(y2-y0)-(y1-y0)*(x2-x0);
  double det = (y1-y0)*(x3-x2)-(y3-y2)*(x1-x0);
  if (fabs(det) < EPS){
   //parallel
    if (fabs(t0) < EPS || fabs(t1) < EPS){
      //same line
      printf("LINE\n");
   }else{
      //just parallel
      printf("NONE\n");
   }
  }else{
    t0 /= det;
    t1 /= det;
    double x = x0 + t0*(x1-x0);
    double y = y0 + t0*(y1-y0);
   //intersection is point (x, y)
    printf("POINT %.21f %.21f\n", x, y);
```

```
}
7.12. Hallar la intersección de dos segmentos de recta
 Field-testing:
  ■ UVa - 11665 - Chinese Ink
/*
  Returns true if point (x, y) lies inside (or in the border)
  of box defined by points (x0, y0) and (x1, y1).
bool point_in_box(double x, double y,
                  double x0, double y0,
                  double x1, double y1){
  return
    min(x0, x1) \le x \&\& x \le max(x0, x1) \&\&
    min(y0, y1) \le y \&\& y \le max(y0, y1);
}
/*
  Finds the intersection between two segments (Not infinite
  lines!)
  Segment 1 goes from point (x0, y0) to (x1, y1).
  Segment 2 goes from point (x2, y2) to (x3, y3).
  (Can be modified to find the intersection between a segment
  and a line)
  Handles the case when the 2 segments are:
  *Parallel but don't lie on the same line (No intersection)
  *Parallel and both lie on the same line (Infinite
  *intersections or no intersections)
  *Not parallel (One intersection or no intersections)
  Returns true if the segments do intersect in any case.
*/
bool segment_segment_intersection(double x0, double y0,
                                  double x1, double y1,
```

```
#ifndef EPS
#define EPS 1e-9
#endif
  double t0 = (y3-y2)*(x0-x2)-(x3-x2)*(y0-y2);
  double t1 = (x1-x0)*(y2-y0)-(y1-y0)*(x2-x0);
  double det = (y1-y0)*(x3-x2)-(y3-y2)*(x1-x0);
  if (fabs(det) < EPS){
    //parallel
    if (fabs(t0) < EPS \mid | fabs(t1) < EPS){
      //they lie on same line, but they may or may not intersect.
      return (point_in_box(x0, y0, x2, y2, x3, y3) ||
              point_in_box(x1, y1, x2, y2, x3, y3) ||
              point_in_box(x2, y2, x0, y0, x1, y1) ||
              point_in_box(x3, y3, x0, y0, x1, y1));
    }else{
      //just parallel, no intersection
      return false:
    }
  }else{
    t0 /= det:
    t1 /= det;
      0 <= t0 <= 1 iff the intersection point lies in segment 1.
      0 <= t1 <= 1 iff the intersection point lies in segment 2.
    */
    if (0.0 <= t0 && t0 <= 1.0 && 0.0 <= t1 && t1 <= 1.0){
      double x = x0 + t0*(x1-x0);
      double y = y0 + t0*(y1-y0);
      //intersection is point (x, y)
      return true:
    //the intersection points doesn't lie on both segments.
    return false;
  }
}
```

double x2, double y2,
double x3, double v3){

7.13. Determinar si dos segmentos de recta se intersectan o no

Si sólo se necesita determinar si dos segmentos se intersectan, pero no hallar el punto de intersección, se puede usar este código que es más corto que 7.12. La función point_in_box es la misma que en 7.12.

```
/*
  Returns the cross product of the segment that goes from
  (x1, y1) to (x3, y3) with the segment that goes from
 (x1, y1) to (x2, y2)
*/
int direction(int x1, int y1, int x2, int y2, int x3, int y3) {
    return (x3 - x1) * (y2 - y1) - (y3 - y1) * (x2 - x1);
}
/*
 Finds the intersection between two segments (Not infinite
  lines!)
  Segment 1 goes from point (x0, y0) to (x1, y1).
  Segment 2 goes from point (x2, y2) to (x3, y3).
  (Can be modified to find the intersection between a segment
  and a line)
  Handles the case when the 2 segments are:
  *Parallel but don't lie on the same line (No intersection)
  *Parallel and both lie on the same line (Infinite
  *intersections or no intersections)
  *Not parallel (One intersection or no intersections)
  Returns true if the segments do intersect in any case.
*/
bool segment_segment_intersection(int x1, int y1,
                                 int x2, int y2,
                                 int x3, int y3,
                                 int x4, int y4){
    int d1 = direction(x3, y3,
                                x4, y4, x1, y1);
    int d2 = direction(x3, y3,
                               x4, y4, x2, y2);
    int d3 = direction(x1, y1,
                               x2, y2, x3, y3);
    int d4 = direction(x1, v1, x2, v2, x4, v4);
```

```
bool b1 = d1 > 0 and d2 < 0 or d1 < 0 and d2 > 0;
    bool b2 = d3 > 0 and d4 < 0 or d3 < 0 and d4 > 0;
    if (b1 and b2) return true;
    /* point_in_box is on segment_segmet_intersection */
    if (d1 == 0 \text{ and point_in_box}(x1, y1,
                                                x3, y3, x4, y4))
        return true;
    if (d2 == 0 \text{ and point_in_box}(x2, y2,
                                                x3, y3, x4, y4))
        return true;
    if (d3 == 0 \text{ and point_in_box}(x3, y3,
                                                x1, y1, x2, y2)
        return true;
    if (d4 == 0 \text{ and point_in_box}(x4, y4,
                                                x1, y1, x2, y2)
        return true;
    return false:
}
```

7.14. Centro del círculo que pasa por 3 puntos

Field-testing:

■ Live Archive - 4807 - Cocircular Points

```
point center(const point &p, const point &q, const point &r) {
    double ax = q.x - p.x;
    double ay = q.y - p.y;
    double bx = r.x - p.x;
    double by = r.y - p.y;
    double d = ax*by - bx*ay;

if (cmp(d, 0) == 0) {
        printf("Points are collinear!\n");
        assert(false);
    }

    double cx = (q.x + p.x) / 2;
    double cy = (q.y + p.y) / 2;
    double dx = (r.x + p.x) / 2;
    double dy = (r.y + p.y) / 2;
```

```
double t1 = bx*dx + by*dy;
double t2 = ax*cx + ay*cy;

double x = (by*t2 - ay*t1) / d;
double y = (ax*t1 - bx*t2) / d;

return point(x, y);
}
```

7.15. Hallar la intersección de un segmento y una superfice cuádrica (esfera, cono, elipsoide, hiperboloide o paraboloide)

Field-testing:

■ UVa - 11334 - Antenna in the Cinoc Mountains

La ecuación genérica para describir una superficie cuádrica es

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + qx + hy + iz + j = 0$$

Se tiene un segmento de P a Q y se quiere hallar la intersección (si existe):

Estas son las ecuaciones de las cónicas más comunes:

■ Elipsoide:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

 $a,\,b$ y cson los "radios" en cada dirección (cuando a=b=c se tiene una esfera).

lacktriangleq Paraboloide el 'iptico:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0.$$

(Cuando a = b se tiene un paraboloide circular).

■ Paraboloide hiperbólico (silla de montar o papa Pringles):

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0.$$

■ Hiperboloide de una hoja:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

■ Hiperboloide de dos hojas:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

■ Cono:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

(Cuando a = b se tiene un cono circular).

Para mover el cono se puede usar la ecuación

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} - \frac{(z-z_0)^2}{c^2} = 0$$

aunque generalmente es más fácil trasladar todos los objetos tal que el ápice del cono quede en el origen. Para cambiar el eje en el que se abre el cono, se cambia el signo menos en la ecuación y se pone en frente del eje sobre el que se quiere abrir. Para un cono que se abre en $\mathcal Z$ y que tiene radio r a la altura h (como en Antenna in the Cinoc Mountains) se usa la ecuación $x^2 + y^2 = (\frac{r}{h}z)^2$.

■ Cilindro elíptico:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(Cuando a = b se tiene un cilindro circular).

■ Planos que se intersectan:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0.$$

Estructuras de datos 8.

Árboles de Fenwick ó Binary indexed trees

Se tiene un arreglo $\{a_0, a_1, \cdots, a_{n-1}\}$. Los árboles de Fenwick permiten encontrar $\sum_{k=1}^{n} a_k$ en orden $O(\log_2 n)$ para parejas de (i,j) con $i \leq j$. De la misma

```
manera, permiten sumarle una cantidad a un a_i también en tiempo O(log_2n).
class FenwickTree{
  vector<long long> v;
  int maxSize;
public:
  FenwickTree(int _maxSize) : maxSize(_maxSize+1) {
    v = vector<long long>(maxSize, OLL);
  void add(int where, long long what){
    for (where++; where <= maxSize; where += where & -where){</pre>
      v[where] += what:
    }
  long long query(int where){
    long long sum = v[0];
    for (where++; where > 0; where -= where & -where){
      sum += v[where];
    return sum;
  long long query(int from, int to){
    return query(to) - query(from-1);
};
```

Segment tree 8.2.

```
class SegmentTree{
public:
  vector<int> arr, tree;
  int n;
  SegmentTree(){}
  SegmentTree(const vector<int> &arr) : arr(arr) {
    initialize();
```

```
}
  //must be called after assigning a new arr.
  void initialize(){
    n = arr.size();
    tree.resize(4*n + 1);
   initialize(0, 0, n-1);
  int query(int query_left, int query_right) const{
    return query(0, 0, n-1, query_left, query_right);
  void update(int where, int what){
    update(0, 0, n-1, where, what);
  }
private:
  int initialize(int node, int node_left, int node_right);
  int query(int node, int node_left, int node_right,
            int query_left, int query_right) const;
  void update(int node, int node_left, int node_right,
              int where, int what);
};
int SegmentTree::initialize(int node,
                            int node_left, int node_right){
  if (node_left == node_right){
    tree[node] = node_left;
    return tree[node];
  }
  int half = (node_left + node_right) / 2;
  int ans_left = initialize(2*node+1, node_left, half);
  int ans_right = initialize(2*node+2, half+1, node_right);
  if (arr[ans_left] <= arr[ans_right]){</pre>
    tree[node] = ans_left;
  }else{
    tree[node] = ans_right;
  return tree[node];
```

```
int SegmentTree::query(int node, int node_left, int node_right,
                        int query_left, int query_right) const{
  if (node_right < query_left || query_right < node_left)</pre>
    return -1:
  if (query_left <= node_left && node_right <= query_right)</pre>
    return tree[node];
  int half = (node_left + node_right) / 2;
  int ans_left = query(2*node+1, node_left, half,
                        query_left, query_right);
  int ans_right = query(2*node+2, half+1, node_right,
                         query_left, query_right);
  if (ans_left == -1) return ans_right;
  if (ans_right == -1) return ans_left;
  return(arr[ans_left] <= arr[ans_right] ? ans_left : ans_right);</pre>
}
void SegmentTree::update(int node, int node_left, int node_right,
                          int where, int what){
  if (where < node_left || node_right < where) return;</pre>
  if (node_left == where && where == node_right){
    arr[where] = what;
    tree[node] = where;
    return;
  int half = (node_left + node_right) / 2;
  if (where <= half){</pre>
    update(2*node+1, node_left, half, where, what);
  }else{
    update(2*node+2, half+1, node_right, where, what);
  if (arr[tree[2*node+1]] <= arr[tree[2*node+2]]){</pre>
    tree[node] = tree[2*node+1];
  }else{
    tree[node] = tree[2*node+2];
}
```

9. Misceláneo

9.1. Problema de Josephus

Hay n personas enumeradas de 0 a n-1 paradas en un círculo. Un verdugo empieza a contar personas en sentido horario, empezando en la persona 0. Cuando la cuenta llega a k, el verdugo mata a la última persona contada y vuelve a empezar a contar a partir siguiente persona. ¿Quién es el sobreviviente?

Por ejemplo, si n=7 y k=3, el orden en que se eliminan las personas es 2, 5, 1, 6, 4, 0 y 3. El sobreviviente es 3.

```
// Recursivo:
// n <= 2500
// Es O(n), pero mejor usar la versión iterativa
// para evitar stack overflows.
int joseph(int n, int k) {
    assert(n >= 1):
    if (n == 1) return 0;
   return (joseph(n - 1, k) + k) % n;
}
// Iterativo:
// n <= 10^6, k <= 2^31 - 1
int joseph(int n, int k) {
    int ans = 0;
    for (int i = 2; i \le n; ++i) {
        ans = (ans + k) \% i;
    }
    return ans;
}
// Más rápido:
// n <= 10^18, k <= 2500
// Posiblemente se puede incrementar k un poco más
// si se cambia la línea marcada con *** por la versión
// iterativa, para evitar stack overflows.
long long joseph(long long n, int k) {
    assert(n >= 1);
    if (n == 1) return OLL;
    if (k == 1) return n - 1;
    if (n < k) return (joseph(n - 1, k) + k) % n; // ***
    long long w = joseph(n - n / k, k) - n % k;
    if (w < 0) return w + n;
    return w + w / (k - 1);
```

```
.....
```

9.2. Trucos con bits

9.2.1. Iterar sobre los subconjuntos de una máscara

```
for(int m = mask; m > 0; m = (m-1) & mask){
    // m tiene un subconjunto de mask
}
```

9.3. El parser más rápido del mundo

- Cada no-terminal: un método
- Cada lado derecho:
 - invocar los métodos de los no-terminales o
 - Cada terminal: invocar proceso match
- Alternativas en una producción: se hace un if

No funciona con gramáticas recursivas por izquierda ó en las que en algún momento haya varias posibles escogencias que empiezan por el mismo caracter (En ambos casos la gramática se puede factorizar).

Ejemplo: Para la gramática:

$$A \longrightarrow (A)A$$

$$A \longrightarrow \epsilon$$

```
//A -> (A)A | Epsilon
#include <iostream>
#include <string>
using namespace std;
bool ok;
char sgte;
int i;
string s;
```

```
bool match(char c){
 if (sgte != c){
    ok = false;
  sgte = s[++i];
void A(){
  if (sgte == '('){
    match('(');
    A(); match(')'); A();
  }else if (sgte == '$' || sgte == ')'){
    //nada
 }else{
    ok = false;
}
int main(){
  while(getline(cin, s) && s != ""){
    ok = true;
    s += '$':
    sgte = s[(i = 0)];
    A();
    if (i < s.length()-1) ok=false; //No consumí toda la cadena
    if (ok){
      cout << "Accepted\n";</pre>
    }else{
      cout << "Not accepted\n";</pre>
    }
```

9.4. Checklist para corregir un Wrong Answer

Consideraciones que podrían ser causa de un Wrong Answer:

- Overflow.
- El programa termina anticipadamente por la condición en el ciclo de lectura. Por ejemplo, se tiene while (cin >> n >> k && n && k) y un caso válido de entrada es n=1 y k=0.

- El grafo no es conexo.
- Puede haber varias aristas entre el mismo par de nodos.
- Las aristas pueden tener costos negativos.
- El grafo tiene un sólo nodo.
- La cadena puede ser vacía.
- Las líneas pueden tener espacios en blanco al principio o al final (Cuidado al usar getline o fgets).
- El arreglo no se limpia entre caso y caso.
- Estás imprimiendo una línea en blanco con un espacio (printf(" \n") en vez de printf("\n") ó puts(" ") en vez de puts("")).
- Hay pérdida de precisión al leer variables como double y convertirlas a enteros. Por ejemplo, en C++, floor(0.29 * 100) == 28.
- La rana se puede quedar quieta.
- El producto cruz está invertido. Realmente es

$$|\langle a_x, a_y \rangle \times \langle b_x, b_y \rangle| = a_x \mathbf{b_y} - a_y \mathbf{b_x} \neq a_x \mathbf{b_x} - a_y \mathbf{b_y}.$$

9.5. Redondeo de dobles

Para redondear un doble a k cifras, usar:

$$\frac{\lfloor 10^k \cdot x + 0.5 \rfloor}{10^k}$$

Ejemplo:

```
double d = 1.2345;

d = floor(1000 * d + 0.5) / 1000;
```

Al final, d es 1.235.

9.5.1. Convertir un doble al entero más cercano

			$C\'odigo$		
int	k	=	floor(d	+	0.5);

	Valores originales (d)	Nuevos valores (k)
;	0.0	0
	0.1	0
	0.5	1
	0.499999999999999	0
	cos(1e-7) * 0.5 =	
	0.499999999999975	0
	0.9	1
	1.0	1
	1.4	1
	1.5	2
	1.6	2
	1.9	2
	2.0	2
	2.1	2
	-0.0	0
	-0.1	0
	-0.5	0
	-0.499999999999999	0
	-cos(1e-7) * 0.5 =	
	-0.499999999999975	0
	-0.9	-1
	-1.0	-1
	-1.4	-1
	-1.5	-1
	-1.6	-2
	-1.9	-2
	-2.0	-2
	-2.1	-2

$C\'odigo$	Valores originales (d)	Nuevos valores (k)
int k = floor(d + 0.5 + EPS);	0.0	0
(con EPS = 1e-9)	0.1	0
	0.5	1
	0.499999999999999	1
	cos(1e-7) * 0.5 =	
	0.499999999999975	1
	0.9	1
	1.0	1
	1.4	1
	1.5	2
	1.6	2
	1.9	2
	2.0	2
	2.1	2
	-0.0	0
	-0.1	0
	-0.5	0
	-0.499999999999999	0
	-cos(1e-7) * 0.5 =	
	-0.499999999999975	0
	-0.9	-1
	-1.0	-1
	-1.4	-1
	-1.5	-1
	-1.6	-2
	-1.9	-2
	-2.0	-2
	-2.1	-2

9.5.2. Redondear un doble a cierto número de cifras de precisión

10. Java

import java.io.*;

10.1. Entrada desde entrada estándar

Este primer método es muy fácil pero es mucho más ineficiente porque utiliza Scanner en vez de BufferedReader:

```
import java.util.*;
class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        while (sc.hasNextLine()){
            String s= sc.nextLine();
            System.out.println("Leí: " + s);
        }
    }
}
 Este segundo es más rápido:
import java.util.*;
import java.io.*;
import java.math.*;
class Main {
    public static void main(String[] args) throws IOException {
      BufferedReader reader =
        new BufferedReader(new InputStreamReader(System.in));
      String line = reader.readLine();
      StringTokenizer tokenizer = new StringTokenizer(line);
      int N = Integer.valueOf(tokenizer.nextToken());
      while (N-- > 0){
        String a, b;
        a = reader.readLine();
        b = reader.readLine();
        int A = a.length(), B = b.length();
        if (B > A){
```

```
System.out.println("0");
}else{
  BigInteger dp[][] = new BigInteger[2][A];
  /*
    dp[i][j] = cantidad de maneras diferentes
    en que puedo distribuir las primeras i
    letras de la subsecuencia (b) terminando
    en la letra j de la secuencia original (a)
  if (a.charAt(0) == b.charAt(0)){
    dp[0][0] = BigInteger.ONE;
  }else{
    dp[0][0] = BigInteger.ZERO;
  for (int j=1; j<A; ++j){
    dp[0][j] = dp[0][j-1];
    if (a.charAt(j) == b.charAt(0)){
      dp[0][j] = dp[0][j].add(BigInteger.ONE);
    }
  }
  for (int i=1; i<B; ++i){
    dp[i%2][0] = BigInteger.ZERO;
   for (int j=1; j<A; ++j){
      dp[i\%2][j] = dp[i\%2][j-1];
      if (a.charAt(j) == b.charAt(i)){
        dp[i\%2][j] = dp[i\%2][j].add(dp[(i+1)\%2][j-1]);
    }
  System.out.println(dp[(B-1)%2][A-1].toString());
```

10.2. Entrada desde archivo

```
import java.io.*;
import java.util.*;
```

}

```
public class BooleanTree {
  public static void main(String[] args)
    throws FileNotFoundException {
    System.setIn(new FileInputStream("tree.in"));
    System.setOut(new PrintStream("tree.out"));

    Scanner reader = new Scanner(System.in);
    N = reader.nextInt();
    for (int c = 1; c <= N; ++c) {
        int res = 100;
        if (res < 1000)
            System.out.println("Case #" + c + ": " + res);
        else
            System.out.println("Case #" + c + ": IMPOSSIBLE");
    }
}
</pre>
```

10.3. Mapas y sets

```
Programa de ejemplo:
import java.util. *;
public class Ejemplo {
 public static void main(String[] args) {
    /*
     * Mapas
     * Tanto el HashMap como el TreeMap funcionan,
     * pero tienen diferentes detalles
     * y difieren en algunos métodos (Ver API).
     */
    System.out.println("Maps");
    //TreeMap<String,Integer> m = new TreeMap<String,Integer>();
    HashMap<String, Integer> m = new HashMap<String, Integer>();
    m.put("Hola", new Integer(465));
    System.out.println("m.size() = " + m.size());
    if (m.containsKey("Hola")) {
      System.out.println(m.get("Hola"));
    }
```

```
System.out.println(m.get("Objeto inexistente"));
    /*
     * Sets
     * La misma diferencia entre TreeSet y HashSet.
    System.out.println("\nSets");
     * *OJO: El HashSet no está en orden, el TreeSet sí.
    //HashSet<Integer> s = new HashSet<Integer>();
    TreeSet < Integer > s = new TreeSet < Integer > ();
    s.add(3576);
    s.add(new Integer("54"));
    s.add(new Integer(100000007));
    if (s.contains(54)) {
      System.out.println("54 presente.");
    }
    if (s.isEmpty() == false) {
      System.out.println("s.size() = " + s.size());
      Iterator < Integer > i = s.iterator();
      while (i.hasNext()) {
        System.out.println(i.next());
        i.remove();
      System.out.println("s.size() = " + s.size());
  }
}
La salida de este programa es:
```

```
Maps
m.size() = 1
465
null

Sets
54 presente.
s.size() = 3
54
3576
1000000007
s.size() = 0
```

Si quiere usarse una clase propia como llave del mapa o como elemento del set, la clase debe implementar algunos métodos especiales: Si va a usarse un TreeMap ó TreeSet hay que implementar los métodos compareTo y equals de la interfaz Comparable como en la sección 10.4. Si va a usarse un HashMap ó HashSet hay más complicaciones.

Sugerencia: Inventar una manera de codificar y decodificar la clase en una String o un Integer y meter esa representación en el mapa o set: esas clases ya tienen los métodos implementados.

10.4. Colas de prioridad

Hay que implementar unos métodos. Veamos un ejemplo:

```
import java.util.*;

class Item implements Comparable<Item>{
   int destino, peso;

   Item(int destino, int peso){
      this.peso = peso;
      this.destino = destino;
   }
   /*
   * Implementamos toda la javazofia.
   */
   public int compareTo(Item otro){
      // Return < 0 si this < otro
      // Return      0 si this == otro</pre>
```

```
// Return > 0 si this > otro
        /* Un nodo es menor que otro si tiene menos peso */
        return peso - otro.peso;
    public boolean equals(Object otro){
        if (otro instanceof Item) {
            Item ese = (Item)otro;
            return destino == ese.destino && peso == ese.peso;
        }
        return false;
    }
    public String toString(){
        return "peso = " + peso + ", destino = " + destino;
    }
}
class Ejemplo {
    public static void main(String[] args) {
        PriorityQueue<Item> q = new PriorityQueue<Item>();
        q.add(new Item(12, 0));
        q.add(new Item(4, 1876));
        q.add(new Item(13, 0));
        q.add(new Item(8, 0));
        q.add(new Item(7, 3));
        while (!q.isEmpty()){
            System.out.println(q.poll());
 La salida de este programa es:
```

```
peso = 0, destino = 12

peso = 0, destino = 8

peso = 0, destino = 13

peso = 3, destino = 7

peso = 1876, destino = 4
```

Vemos que la función de comparación que definimos no tiene en cuenta destino, por eso no desempata cuando dos Items tienen el mismo peso si no que escoge cualquiera de manera arbitraria.

11. C++

11.1. Entrada desde archivo

```
#include <iostream>
#include <fstream>
using namespace std;
int _main(){
  freopen("entrada.in", "r", stdin);
 freopen("entrada.out", "w", stdout);
  string s;
  while (cin >> s){
    cout << "Lei " << s << endl;
 }
  return 0;
int main(){
  ifstream fin("entrada.in");
  ofstream fout("entrada.out");
  string s;
  while (fin >> s){
   fout << "Leí " << s << endl;
 }
 return 0;
```

11.2. Strings con caractéres especiales

```
#include <iostream>
#include <cassert>
#include <stdio.h>
#include <assert.h>
#include <wchar.h>
#include <wctype.h>
#include <locale.h>
```

```
using namespace std;
int main(){
  assert(setlocale(LC_ALL, "en_US.UTF-8") != NULL);
  wchar_t c;
  wstring s;
  while (getline(wcin, s)){
    wcout << L"Lei : " << s << endl;
    for (int i=0; i<s.size(); ++i){
      c = s[i];
      wprintf(L"%lc %lc\n", towlower(s[i]), towupper(s[i]));
  }
  return 0;
  Nota: Como alternativa a la función getline, se pueden utilizar las funciones
fgetws y fputws, y más adelante swscanf y wprintf:
#include <iostream>
#include <cassert>
#include <stdio.h>
#include <assert.h>
#include <wchar.h>
#include <wctype.h>
#include <locale.h>
using namespace std;
int main(){
  assert(setlocale(LC_ALL, "en_US.UTF-8") != NULL);
  wchar_t in_buf[512], out_buf[512];
  swprintf(out_buf, 512,
           L"; Podrías escribir un número?, Por ejemplo %d. "
           ";Gracias, pingüino español!\n", 3);
  fputws(out_buf, stdout);
  fgetws(in_buf, 512, stdin);
  int n;
  swscanf(in_buf, L"%d", &n);
  swprintf(out_buf, 512,
           L"Escribiste %d, yo escribo ;ÔÏàÚÑ~\n", n);
```

<pre>fputws(out_buf, stdout); return 0;</pre>
}
11.3. Imprimir un doble con cout con cierto número de cifras de precisión
Tener cuidado con números negativos, porque el comportamiento es diferente.
<pre>#include <iomanip></iomanip></pre>
<pre>cout << fixed << setprecision(3) << 1.1225 << endl;</pre>