## Celogentins A-C, New Antimitotic Bicyclic Peptides from the Seeds of Celosia argentea

Jun'ichi Kobayashi,\*,† Hayato Suzuki,† Kazutaka Shimbo,† Koichi Takeya,‡ and Hiroshi Morita†

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and School of Pharmacy, Tokyo University of Pharmacy & Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

jkobay@pharm.hokudai.ac.jp

Received April 2, 2001

Three new bicyclic peptides, celogentins A (1), B (2), and C (3), have been isolated together with a known-related peptide, moroidin (4), from the seeds of Celosia argentea, and their structures including absolute stereochemistry were determined by using extensive NMR methods and chemical means. Celogentins A (1), B (2), and C (3) inhibited the polymerization of tubulin, and celogentin C (3) was four times more potent than moroidin (4) in the inhibitory activity. Structure—activity relationship study using moroidin derivatives 5-7 and analogue 8 as well as celogentins A-C (1-3) and moroidin (4) indicates that the bicyclic ring system including unusual non-peptide connections among  $\beta^s$ -Leu, Trp, and His residues characteristic of celogentins and moroidin, with ring size and conformations suitable for interaction with tubulin would be important for their biological activity.

Microtubules play a pivotal role in mitotic spindle assembly and cell division. 1 These cytoskeletal elements are formed by the self-association of the  $\alpha\beta$  tubulin heterodimers. There are a number of natural compounds that inhibit the microtuble formation and the mitotic arrest of eucaryotic cells.<sup>2</sup> The antimitotic agents have potential applications in drug development. The seeds of Celosia argentea (Amaranthaceae) are Chinese herbal medicines used as a therapeutic drug for eye and hepatic diseases in China and Japan.3 During our search for bioactive compounds from medicinal plants,4 we have found that moroidin (4) obtained from the seeds of C. argentea, which is a unique bicyclic peptide originally isolated from Laportea moroides (Labiatae),<sup>5</sup> remarkably inhibits the tubulin polymerization.<sup>6</sup> Further investigation of the extract of *C. argentea* resulted in the isolation of three new moroidin-type bicyclic peptides, celogentins A (1), B (2), and C (3). In this paper, we describe the

isolation, structure elucidation, and antimitotic activity of 1-3.

1: R=OH 2: R=His8

The seeds of *C. argentea* were extracted with MeOH, and the MeOH extract was in turn partitioned with hexane, EtOAc, and n-BuOH. n-BuOH-soluble materials were subjected to a Diaion HP-20 column (MeOH/H<sub>2</sub>O,  $0:1 \rightarrow 1:0$ ), in which fractions eluted with 60% and 80% MeOH were purified by an amino silica gel column  $(CHCl_3/MeOH/H_2O, 7:3:0.5 \rightarrow 6:4:1)$  followed by  $C_{18}$ HPLC (CH<sub>3</sub>CN/0.1% CF<sub>3</sub>CO<sub>2</sub>H, 22:78) to afford celo-

<sup>†</sup> Hokkaido University

<sup>&</sup>lt;sup>‡</sup> Tokyo University of Pharmacy and Life Sciences. (1) (a) Avila, J. *Life Sci.* **1992**, *50*, 327–334. (b) Hyman, A.; Karsenti, E. J. Cell. Sci. 1998, 111, 2077-2083. (c) Kozielski, F.; Arnak, I.; Wade, R. H. Curr. Biol. 1998, 8, 191-198.

<sup>(2)</sup> For reviews of the antimitotic agents, see: (a) Iwasaki, S. Med. Res. Rev. 1993, 13, 183-198. (b) Hamel, E. Med. Res. Rev. 1996, 16,

<sup>(3)</sup> Hase, K.; Kadota, S.; Basnet, P.; Takahashi, T.; Namba, T. Biol. Pharm. Bull. 1996, 19, 567-572; Hayakawa, Y.; Fujii, H.; Hase, K.; Ohnishi, Y.; Sakukawa, R.; Kadota, S.; Namba, T.; Saiki, I. Biol. Pharm. Bull. 1998, 21, 1154-1159.

<sup>(4)</sup> Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. J. Org. Chem. **2000**, *65*, 6241–6245. Morita, H.; Yoshida, N.; Kobayashi, J. *J. Org. Chem.* **2000**, *65*, 3558–3562. Morita, H.; Yoshida, N.; Kobayashi, J. *J. Org. Chem.* **1999**, *64*, 7208–7212. Kobayashi, J.; Ogiwara, A.; Hosoyama, H.; Shigemori, H.; Yoshida, N.; Sasaki, T.; Li, Y.; Iwasaki, S.; Naito, M.; Tsuruo, T. *Tetrahedron* **1994**, *50*, 7401–7416.

<sup>(5)</sup> Leung, T.-W. C.; Williams, D. H.; Barna, J. C. J.; Foti, S. *Tetrahedron* **1986**, *42*, 3333–3348; *J. Org. Chem.* **1989**, *54*, 1901–1904. Kahn, S. D.; Booth, P. M.; Waltho, J. P.; Williams, D. H. *J. Org. Chem.* **2000**, 65, 8406-8406.

<sup>(6)</sup> Morita, H.; Shimbo, T.; Shigemori, H.; Kobayashi, J. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 469–471.

Table 1. <sup>1</sup>H and <sup>13</sup>C NMR Data of Celogentin A (1) in DMSO-d<sub>6</sub> at 320 K

| $\delta_{\rm H}$ [int mult, $J$ (Hz)]  |                                | $\delta_{ m C}$             |                  | NOE relationship                                                                                             |
|----------------------------------------|--------------------------------|-----------------------------|------------------|--------------------------------------------------------------------------------------------------------------|
| PyroGlu <sup>1</sup>                   |                                |                             |                  | -                                                                                                            |
| α                                      | 4.15 (1H, dd, 3.1, 8.8)        | α                           | 54.89            | PyroGlu <sup>1</sup> : H $\beta$ , H $\gamma$ , NH; $\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH, H $\beta$   |
| $\beta$                                | 2.26 (2H, m)                   | β                           | 28.80            | PyroGlu¹: Hγ                                                                                                 |
| γ                                      | 1.75 and 2.10 (2H, m)          | γ                           | 25.28            | ,                                                                                                            |
| ŃН                                     | 7.78 (1H, s)                   | δ                           | 177.13           |                                                                                                              |
|                                        | = (===, =)                     | C=O                         | 172.28           |                                                                                                              |
| $\beta$ <sup>s</sup> -Leu <sup>2</sup> |                                |                             | 1,2,20           |                                                                                                              |
| α                                      | 5.01 (1H, dd, 9.2, 11.3)       | α                           | 54.81            | $\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH, H $\beta$ , H $\gamma$ , H $\delta$ ; Trp <sup>5</sup> : H4, H5 |
| eta                                    | 3.00 (1H, dd, 3.7, 11.3)       | $\beta$                     | 52.61            | $\beta^{s}$ -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                          |
|                                        | 2.12 (1H, m)                   |                             | 27.07            | $\beta^{s}$ -Leu <sup>2</sup> : NH, H $\delta$ ; Trp <sup>5</sup> : H7                                       |
| $\stackrel{\gamma}{\delta}$            | 0.85 (3H, d, 6.8)              | $\stackrel{\gamma}{\delta}$ | 17.39            | Trp <sup>5</sup> : H7                                                                                        |
|                                        | 0.88 (3H, d, 6.8)              |                             | 21.58            | •                                                                                                            |
| NH                                     | 8.47 (1H, d, 8.6)              | C=O                         | 170.77           |                                                                                                              |
| Leu <sup>3</sup>                       | (, -,,                         |                             |                  |                                                                                                              |
| α                                      | 4.12 (1H, m)                   | α                           | 51.13            | Leu <sup>3</sup> : NH, H $\gamma$ , H $\delta$ ; Val <sup>4</sup> : NH                                       |
| β                                      | 1.33 and 1.42 (1H, m)          | β                           | 43.50            | Leu <sup>3</sup> : NH; Val <sup>4</sup> : NH                                                                 |
| γ                                      | 1.42 (1H, m)                   | γ                           | 23.48            | Leu³: Hδ                                                                                                     |
| δ                                      | 0.74 (3H, d, 6.0)              | δ                           | 20.68            | 204 . 110                                                                                                    |
| 0                                      | 0.79 (3H, d, 6.0)              | O                           | 22.99            |                                                                                                              |
| NH                                     | 8.54 (1H, d, 10.1)             | C=O                         | 172.94           | $\beta^s$ -Leu <sup>2</sup> : H $\alpha$ ; Trp <sup>5</sup> : H4, H5; Val <sup>4</sup> : NH                  |
| Val <sup>4</sup>                       | 0.04 (111, u, 10.1)            | 0                           | 172.04           | ρ-Leu . 11α, 11ρ . 114, 110, ναι . 1111                                                                      |
| α                                      | 4.10 (1H, dd, 4.7, 8.6)        | α                           | 58.56            | Val <sup>4</sup> : H $\beta$ , H $\gamma$ , NH; Trp <sup>5</sup> : NH                                        |
| $\stackrel{\omega}{\beta}$             | 2.42 (1H, m)                   | $\beta$                     | 29.25            | Val <sup>4</sup> : Hγ, NH                                                                                    |
|                                        | 0.94 (3H, d, 6.9)              |                             | 16.62            | Val. 117, 1411<br>Val. NH, Trp <sup>5</sup> : H4, H5                                                         |
| γ                                      | 1.10 (3H, d, 6.9)              | γ                           | 18.93            | vai . 1411, 11p . 114, 115                                                                                   |
| NILI                                   |                                | C-O                         | 169.24           | Tm5. NIL II4 II5                                                                                             |
| NH<br>Tm5                              | 6.53 (1H, d, 8.6)              | C=O                         | 109.24           | Trp <sup>5</sup> : NH, H4, H5                                                                                |
| Trp <sup>5</sup>                       | 4 95 (111 444 1 0 6 9 9 9)     | ~                           | 51.00            | Trop5. NII II4 II4. Angl. NII                                                                                |
| α                                      | 4.85 (1H, ddd, 1.9, 6.2, 8.3)  | α                           | 51.90            | Trp <sup>5</sup> : NH, H4, H $\beta$ ; Arg <sup>6</sup> : NH                                                 |
| eta                                    | 2.86 (1H, d, 13.7)             | $\beta$                     | 25.56            | Arg <sup>6</sup> : NH; His <sup>8</sup> : H4; Trp <sup>5</sup> : H4                                          |
| NII I I                                | 3.28 (1H, dd, 6.2, 13.7)       | C2                          | 121.82           | T5. 117. 111.8. 110. 114                                                                                     |
| NH1                                    | 11.51 (1H, s)                  | C3                          | 103.17           | Trp <sup>5</sup> : H7; His <sup>8</sup> : H2, H4                                                             |
| H4                                     | 7.39 (1H, d, 8.4)              | C4                          | 118.10           |                                                                                                              |
| H5                                     | 7.16 (1H, d, 8.4)              | C5                          | 119.90           |                                                                                                              |
| H7                                     | 6.94 (1H, s)                   | C6                          | 132.08           |                                                                                                              |
| NH                                     | 6.34 (1H, d, 8.3)              | C7                          | 114.36           |                                                                                                              |
|                                        |                                | C8                          | 132.63           |                                                                                                              |
|                                        |                                | C9                          | 125.41           |                                                                                                              |
| A 6                                    |                                | C=O                         | 168.95           |                                                                                                              |
| ${ m Arg^6}$                           |                                |                             | <b></b>          | A P 7 7                                                                                                      |
| α                                      | 4.32 (1H, brdd, 7.1, 9.2)      | α                           | 51.03            | $Arg^6$ : $H\beta$ ; $His^7$ : NH, H2                                                                        |
| eta                                    | 1.39 (1H, m)                   | $\beta$                     | 29.71            | Arg <sup>6</sup> : NH; His <sup>7</sup> : NH                                                                 |
|                                        | 1.53 (1H, m)                   | γ                           | 24.91            |                                                                                                              |
| γ                                      | 1.39 (2H, m)                   | δ                           | 40.14            |                                                                                                              |
| δ                                      | 3.09 (2H, m)                   | $\epsilon$                  | 156.57           |                                                                                                              |
| $\epsilon$ (NH)                        | 7.44 (1H, br t, 5.4)           | C=O                         | 170.27           |                                                                                                              |
| NH                                     | 8.25 (1H, d, 9.2)              |                             |                  | Arg <sup>6</sup> : Hα                                                                                        |
| His <sup>7</sup>                       | •                              |                             |                  | <del>-</del>                                                                                                 |
| α                                      | 4.70 (1H, ddd, 3.2, 9.7, 13.0) | α                           | 51.13            | $His^7$ : $H\beta$                                                                                           |
| $\beta$                                | 2.71 (1H, t, 13.0)             | β                           | 31.03            | His <sup>7</sup> : H2                                                                                        |
| ,                                      | 3.16 (1H, dd, 3.2, 13.0)       | C1                          | 137.49           |                                                                                                              |
|                                        | , , , ,                        |                             |                  |                                                                                                              |
| H2                                     | 7.09 (1H, s)                   | C2                          | 121.17           | Trp <sup>5</sup> : NH                                                                                        |
| H2<br>H4                               | 7.09 (1H, s)<br>8.15 (1H, brs) | C2<br>C4                    | 121.17<br>137.76 | Trp <sup>5</sup> : NH                                                                                        |

gentins A (1, 0.0002% yield), B (2, 0.0001%), and C (3: 0.001%) as colorless solids together with moroidin (4, 0.02%).6

FABMS data of  $\mathbf{1}[[\alpha]^{23}_D$   $-43^{\circ}$  (c 0.3, 50% MeOH)] showed the pseudomolecular ion at m/z 930 (M + H)<sup>+</sup>, and the molecular formula, C<sub>45</sub>H<sub>63</sub>N<sub>13</sub>O<sub>9</sub>, was established by HRFABMS [m/z 930.4991, (M + H)<sup>+</sup>,  $\Delta$  +4.1 mmu]. IR absorptions implied the presence of amide carbonyl group (1660 cm<sup>-1</sup>), while the UV absorption at 283 nm indicated the presence of aromatic chromophore.

Though the peptide nature of celogentin A (1) was readily inferred from its <sup>1</sup>H and <sup>13</sup>C NMR spectral features, 1 was negative to ninhydrin, implying blockade of the N-terminus or a cyclic peptide. Standard amino acid analysis of the hydrolysates of 1 showed the presence of 1 mol each of glutamic acid (Glu), leucine (Leu), valine (Val), arginine (Arg), and histidine (His). The <sup>1</sup>H NMR (Table 1) spectrum of 1 in DMSO- $d_6$  at 320K contained

58 proton resonances, nine of which were assigned as either OH or NH groups. Seven proton resonances ( $\delta$ 4.10-5.01) were indicative of  $\alpha$ -protons of amino acid residues. These data combined with observation of seven carbonyl signals ( $\delta$  168.95–172.28) in the <sup>13</sup>C NMR spectrum suggested that 1 was a heptapeptide. Additional <sup>13</sup>C NMR data showed the presence of six methyl groups, eight methylenes, 11 methines, five olefins, and a carbonyl carbon (δ 177.13) assignable to PyroGlu<sup>1</sup>.

Detailed analysis of <sup>1</sup>H-<sup>1</sup>H COSY, HOHAHA, HMQC, and HMBC data of celogentin A (1) in DMSO-d<sub>6</sub> showed the presence of five amino acid residues, PyroGlu, Leu, Val, Arg, and His, in addition to two unusual amino acids,  $\beta$ -substituted Leu ( $\beta$ <sup>s</sup>-Leu) and 2,6-substituted Trp (Trp). The connection between C $\beta$  of  $\beta$ <sup>s</sup>-Leu and C-6 of Trp was deduced from HMBC correlations (Figure 1) of H $\beta$  of  $\beta$ <sup>s</sup>-Leu to C-6 of Trp and H $\gamma$  of  $\beta$ s-Leu to C-6 of Trp. NOESY correlations (Figure 2) of H-5 of Trp/H $\alpha$  of  $\beta$ s-Leu and

Figure 1. Selected 2D NMR correlations of celogentin A (1).



**Figure 2.** Rotamer for  $\beta^s$ -Leu²-C $\alpha$ - $\beta^s$ -Leu²-C $\beta$  of **1**. Configuration and conformation of  $\beta^s$ -Leu² on the basis of  ${}^3J\alpha\beta$  and key NOESY correlations.

H-7 of Trp/H $\beta$  of  $\beta^s$ -Leu also corroborated the  $\beta^s$ -Leu²-(C $\beta$ )-Trp⁵(C-6) connection. The connection between C-2 of Trp and N-3 of His was suggested by NOESY correlations (Figure 1) of H-4 of His/NH-1 and H<sub>2</sub> $\beta$  of Trp, and H-2 of His/NH-1 of Trp, indicating that the indole and imidazole rings were not coplanar.

The sequence of PyroGlu¹- $\beta$ s-Leu²-Leu³-Val⁴ in **1** was elucidated by HMBC correlations from the amide proton to the carbonyl carbon of each adjacent amino acid residue and from the  $\alpha$ -proton to carbonyl carbon of each one. The HMBC correlation of H $\alpha$  of Arg to the carbonyl carbon of Trp⁵ ( $\delta$  171.7) provided the sequence of Trp⁵-Arg⁶. Furthermore, the NOESY correlation of amide NH of Trp⁵/ H $\alpha$  of Val⁴ allowed the sequence to be extended to PyroGlu¹- $\beta$ s-Leu²-Leu³-Val⁴-Trp⁵-Arg⁶. The remaining amino acid, His, was connected to Arg⁶ from the NOESY correlation of NH of His²/ H $\alpha$  of Arg⁶ to complete the whole sequence of **1**. The remaining NOESY correlations (Table 1) observed for **1** also supported the proposed sequence.

The absolute configurations of the PyroGlu¹, Leu³, Val⁴, Arg⁶, and His⁶ residues in celogentin A (1) were assigned as all L-configurations by chiral HPLC analysis of the hydrolysates of 1. The Trp⁵ residue was transformed into Asp by treatment of 1 with O₃/AcOH and then H₂O₂ followed by acid hydrolysis. Thiral HPLC analysis of the Asp in the degradation products revealed it to be L-form, indicating S-configuration at Cα of the Trp⁵ residue. Since the large vicinal coupling (11.3 Hz) between Hα and Hβ of β⁵-Leu² established an antiperiplanar arrangement of these two protons consistent with the observation of almost the same NOESY correlations (Hα of β⁵-Leu²/

NH of Leu³, H $\beta$  of  $\beta$ s-Leu²/H-7 of Trp⁵, H $\beta$  of  $\beta$ s-Leu²/NH of  $\beta$ s-Leu², NH of  $\beta$ s-Leu²/H $\gamma$  of  $\beta$ s-Leu², and NH of Leu³/H-4 and H-5 of Trp⁵) around  $\beta$ s-Leu² residue of 1 as those of moroidin (4),⁵ the absolute configurations at C $\alpha$  and C $\beta$  of the  $\beta$ s-Leu² residue were elucidated to be S and R, respectively (Figure 2).

HRFABMS data  $[m/z \ 1067.5590, (M+H)^+, \Delta +5.0]$ mmul of celogentin B (2) indicated the molecular formula,  $C_{51}H_{70}N_{16}O_{10}$ . The IR absorption (1660 cm<sup>-1</sup>) implied the presence of amide carbonyl functionality. Amino acid analysis of the hydrolysates of 2 showed the presence of 1 mol each of Glu, Leu, Val, and Arg, and 2 mol of His. The <sup>1</sup>H and <sup>13</sup>C NMR (Table 2) spectra of **2** revealed signals due to 9 carbonyl carbons, 12 sp<sup>3</sup> methines, 9 methylenes, and 6 methyl, implying that 2 was an octapeptide. Detailed analyses of 2D NMR (1H-1H COSY, HOHAHA, HMQC, and HMBC) spectra of 2 and comparison of the <sup>13</sup>C chemical shifts of the bicyclic part with those of 1 indicated the presence of the same bicyclic skeleton from PyroGlu<sup>1</sup> to His<sup>7</sup> for 2. The remaining His residue was suggested to be connected to His<sup>7</sup> from NOESY correlations of  $H\alpha$  of  $His^7$ /amide NH of  $His^8$  and  $H_2\beta$  of  $His^7$ /amide NH of  $His^8$  (Figure 3).

The absolute configurations of the PyroGlu¹, Leu³, Val⁴, Arg⁶, His⁷, and His՞ residues in  $\bf 2$  were assigned as all L-configurations by chiral HPLC analysis of the hydrolysates of  $\bf 2$ . The Trp⁵ residue was transformed into Asp by treatment of  $\bf 2$  with O₃/AcOH and then H₂O₂ followed by acid hydrolysis.⊓ Chiral HPLC analysis of the Asp in the degradation products revealed it to be L-form, indicating S-configuration at Cα of the Trp⁵ residue. Treatment of celogentin A ( $\bf 1$ ) with His, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC), and 1-hydroxy-7-azabenzotriazole (HOAt)³ yielded an octapeptide, of which spectral data were identical with those of natural celogentin B ( $\bf 2$ ). Thus, the structure of celogentin B ( $\bf 2$ ) was concluded to be as shown in Figure.

HRFABMS data  $[m/z \ 1027.5450, (M + H)^+, \Delta -2.7]$ mmul of celogentin C (3) revealed the molecular formula, C<sub>50</sub>H<sub>70</sub>N<sub>14</sub>O<sub>10</sub>. Amino acid analysis of the hydrolysates of 3 showed the presence of 1 mol each of Glu, Leu, Val, Arg, His, and proline (Pro). The <sup>1</sup>H and <sup>13</sup>C NMR (Table 3) spectra of **3** revealed the presence of nine carbonyl carbons, 12 sp<sup>3</sup> methines, 11 methylenes, and six methyls. The structure of 3 was elucidated by 2D NMR (1H-1H COSY, HOHAHA, HMQC, and HMBC) data. NOESY correlations indicating its sequence were shown in computer-generated 3D drawing (Figure 4). Almost the same NOESY correlations as those of 1 and 2 were observed for the left-hand part of the molecule. However, intrinsic NOESY correlations of  $H\alpha$  of  $Trp^5/H_2\delta$  of Pro, Hα of Pro/NH of Arg, and Hα of Arg/NH of His were observed, indicating the partial sequence of Trp-Pro-Arg-His. In addition, NOESY correlations of H-2 of His/NH-1 of Trp and H-4 of His/ H<sub>2</sub>β of Trp strongly supported the connection between C-2 of Trp and N-3 of His. Further evidence supporting the proposed structure of 3 was provided by tandem mass spectrometry through examination of the collision-induced dissociation (CID) mass spectrum of the (M–H)<sup>-</sup> ions.<sup>9</sup> Negative ion FABMS/MS spectra of **3** showed characteristic patterns for chargeremote fragmentation, 10 probably due to the presence of

<sup>(8)</sup> Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397–4398.
(9) Eckart, K.; Schwarz, H.; Tomer, K. B.; Gross, M. L. J. Am. Chem. Soc. 1985, 107, 6765–6769.

Table 2. <sup>1</sup>H and <sup>13</sup>C NMR Data of Celogentin B (2) in DMSO-d<sub>6</sub> at 310 K

| $\frac{\delta_{\mathrm{H}}\left[\mathrm{int\ mult},J\left(\mathrm{Hz}\right)\right]}{\mathrm{PyroGlu^{1}}}$ $\alpha$ $\beta$ $\gamma$ $\mathrm{NH}$ $\beta^{s}\cdot\mathrm{Leu^{2}}$ $\alpha$ $\beta$ $\gamma$ $\delta$ $\mathrm{NH}$ $\mathrm{Leu^{3}}$ $\alpha$ $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.14 (1H, dd, 2.0, 8.6)<br>2.09 (2H, m)<br>1.72 and 2.26 (each 1H, m)<br>7.83 (1H, s)<br>5.00 (1H, t, 10.0)<br>2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)<br>8.55 (1H, d, 8.7) | $\begin{array}{c} \delta_{\rm C} \\ \alpha \\ \beta \\ \gamma \\ \delta \\ {\rm C=O} \\ \\ \alpha \\ \beta \\ \gamma \\ \delta \\ {\rm C=O} \end{array}$ | 54.84<br>28.80<br>25.31<br>177.13<br>172.30<br>54.72<br>52.51<br>26.99 | NOE relationship  PyroGlu <sup>1</sup> : $H\beta$ , $H\gamma$ , $NH$ ; $\beta$ <sup>s</sup> -Leu <sup>2</sup> : $NH$ , $H\alpha$ , $H\beta$ PyroGlu <sup>1</sup> : $H\gamma$ $\beta$ <sup>s</sup> -Leu <sup>2</sup> : $NH$ $\beta$ <sup>s</sup> -Leu <sup>2</sup> : $NH$ , $H\beta$ , $H\gamma$ , $H\delta$ ; $Trp^5$ : $H4$ , $H5$ $\beta$ <sup>s</sup> -Leu <sup>2</sup> : $NH$ , $H\delta$ , $H\gamma$ ; $Trp^5$ : $H7$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\alpha$ $\beta$ $\gamma$ NH $\beta$ <sup>s</sup> -Leu <sup>2</sup> $\alpha$ $\beta$ $\gamma$ $\delta$ NH  Leu <sup>3</sup> $\alpha$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.09 (2H, m)<br>1.72 and 2.26 (each 1H, m)<br>7.83 (1H, s)<br>5.00 (1H, t, 10.0)<br>2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                 | $\beta$ $\gamma$ $\delta$ $C=O$ $\alpha$ $\beta$ $\gamma$ $\delta$                                                                                       | 28.80<br>25.31<br>177.13<br>172.30<br>54.72<br>52.51<br>26.99          | PyroGlu <sup>1</sup> : H $\gamma$<br>$\beta^s$ -Leu <sup>2</sup> : NH<br>$\beta^s$ -Leu <sup>2</sup> : NH, H $\beta$ , H $\gamma$ , H $\delta$ ; Trp <sup>5</sup> : H4, H5<br>$\beta^s$ -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                                                                                                                                                            |
| $eta \ \gamma \ \mathrm{NH}$ $eta^s$ -Leu $^2$ $lpha \ eta \ \gamma \ \delta$ $\mathrm{NH}$ $\mathrm{Leu}^3$ $lpha \ eta \ eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.09 (2H, m)<br>1.72 and 2.26 (each 1H, m)<br>7.83 (1H, s)<br>5.00 (1H, t, 10.0)<br>2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                 | $\beta$ $\gamma$ $\delta$ $C=O$ $\alpha$ $\beta$ $\gamma$ $\delta$                                                                                       | 28.80<br>25.31<br>177.13<br>172.30<br>54.72<br>52.51<br>26.99          | PyroGlu <sup>1</sup> : H $\gamma$<br>$\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH<br>$\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH, H $\beta$ , H $\gamma$ , H $\delta$ ; Trp <sup>5</sup> : H4, H5<br>$\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                                                                                                                           |
| $\gamma \ \mathrm{NH}$ $\beta^s$ -Leu $^2$ $\alpha$ $\beta$ $\gamma$ $\delta$ $NH$ Leu $^3$ $\alpha$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.72 and 2.26 (each 1H, m)<br>7.83 (1H, s)<br>5.00 (1H, t, 10.0)<br>2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                                 | $ \gamma $ $ \delta $ $ C=0 $ $ \alpha $ $ \beta $ $ \gamma $ $ \delta $                                                                                 | 25.31<br>177.13<br>172.30<br>54.72<br>52.51<br>26.99                   | $\beta^s$ -Leu <sup>2</sup> : NH $\beta^s$ -Leu <sup>2</sup> : NH, H $\beta$ , H $\gamma$ , H $\delta$ ; Trp <sup>5</sup> : H4, H5 $\beta^s$ -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                                                                                                                                                                                                       |
| $egin{array}{c} { m NH} \\ eta^s\text{-Leu}^2 \\ lpha \\ eta \\ \gamma \\ \delta \\ \end{array} \\ egin{array}{c} { m NH} \\ { m Leu}^3 \\ lpha \\ eta \\ eta \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.83 (1H, s)  5.00 (1H, t, 10.0) 2.99 (1H, dd, 2.9, 11.3) 2.11 (1H, m) 0.83 (3H, d, 6.6) 0.86 (3H, d, 6.6)                                                                                                             | $ \delta \\ C=O $ $ \alpha \\ \beta \\ \gamma \\ \delta $                                                                                                | 177.13<br>172.30<br>54.72<br>52.51<br>26.99                            | β <sup>s</sup> ·Leu <sup>2</sup> : NH, H $β$ , H $γ$ , H $δ$ ; Trp <sup>5</sup> : H4, H5 $β$ <sup>s</sup> ·Leu <sup>2</sup> : NH, H $δ$ , H $γ$ ; Trp <sup>5</sup> : H7                                                                                                                                                                                                                                                    |
| $eta^{s	ext{-}	ext{Leu}^2}$ $lpha$ $eta$ $\gamma$ $\delta$ NH $	ext{Leu}^3$ $lpha$ $eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00 (1H, t, 10.0)<br>2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                                                                               | C=O $ \alpha \\ \beta \\ \gamma \\ \delta $                                                                                                              | 172.30<br>54.72<br>52.51<br>26.99                                      | β <sup>s</sup> ·Leu <sup>2</sup> : NH, H $β$ , H $γ$ , H $δ$ ; Trp <sup>5</sup> : H4, H5 $β$ <sup>s</sup> ·Leu <sup>2</sup> : NH, H $δ$ , H $γ$ ; Trp <sup>5</sup> : H7                                                                                                                                                                                                                                                    |
| $\alpha$ $\beta$ $\gamma$ $\delta$ NH $2 \text{Leu}^3$ $\alpha$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                                                                                                     | $egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$                                                                                                | 54.72<br>52.51<br>26.99                                                | $\beta^s$ -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                                                                                                                                                                                                                                                                                                                                          |
| $eta \ eta \ \ eta \ eta \ eta \ \ eta \ \ eta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | 2.99 (1H, dd, 2.9, 11.3)<br>2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                                                                                                     | $eta \ eta \ \delta$                                                                                                                                     | 52.51<br>26.99                                                         | $\beta^{s}$ -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                                                                                                                                                                                                                                                                                                                                        |
| $egin{array}{c} \gamma & \delta & & & \\ & \mathbf{NH} & & & \\ \mathbf{Leu^3} & & & & \\ & \alpha & & & & \\ & \beta & & & & \\ & & & & & \\ & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.11 (1H, m)<br>0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                                                                                                                                 | $\delta^{\gamma}$                                                                                                                                        | 26.99                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\gamma \ \delta$ $NH$ $Leu^3 \ \alpha \ \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.83 (3H, d, 6.6)<br>0.86 (3H, d, 6.6)                                                                                                                                                                                 | $\delta^{\gamma}$                                                                                                                                        |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} \text{NH} \\ \text{Leu}^3 \\ \alpha \\ \beta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86 (3H, d, 6.6)                                                                                                                                                                                                      | δ                                                                                                                                                        | 1791                                                                   | $\beta^{s}$ -Leu <sup>2</sup> : NH, H $\delta$ ; Trp <sup>5</sup> : H7                                                                                                                                                                                                                                                                                                                                                     |
| ${f Leu^3} \ lpha \ eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , , , , , , ,                                                                                                                                                                                                          | C=0                                                                                                                                                      | 17.31                                                                  | Trp <sup>5</sup> : H7                                                                                                                                                                                                                                                                                                                                                                                                      |
| $rac{\Delta}{lpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.55 (1H, d, 8.7)                                                                                                                                                                                                      | C-O                                                                                                                                                      | 21.58                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $egin{array}{c} lpha \ eta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        | C-0                                                                                                                                                      | 170.27                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.12 (1H, m)                                                                                                                                                                                                           | α                                                                                                                                                        | 51.11                                                                  | Leu <sup>3</sup> : NH, H $\beta$ , H $\gamma$ , H $\delta$ ; Val <sup>4</sup> : NH                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.32 and 1.40 (each 1H, m)                                                                                                                                                                                             | $\beta$                                                                                                                                                  | 43.46                                                                  | Leu <sup>3</sup> : NH; Val <sup>4</sup> : NH                                                                                                                                                                                                                                                                                                                                                                               |
| γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.41 (1H, m)                                                                                                                                                                                                           | γ                                                                                                                                                        | 23.44                                                                  | Leu <sup>3</sup> : Hδ                                                                                                                                                                                                                                                                                                                                                                                                      |
| δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.73 (3H, d, 5.3)                                                                                                                                                                                                      | δ                                                                                                                                                        | 20.61                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.78 (3H, d, 5.3)                                                                                                                                                                                                      |                                                                                                                                                          | 23.01                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.58 (1H, d, 9.9)                                                                                                                                                                                                      | C=O                                                                                                                                                      | 173.00                                                                 | $\beta^{s}$ -Leu <sup>2</sup> : H $\alpha$ ; Trp <sup>5</sup> : H4, H5; Val <sup>4</sup> : NH                                                                                                                                                                                                                                                                                                                              |
| Val <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.09 (1H, dd, 4.8, 8.4)                                                                                                                                                                                                | α                                                                                                                                                        | 58.55                                                                  | Val <sup>4</sup> : H $\beta$ , H $\gamma$ , NH; Trp <sup>5</sup> : NH                                                                                                                                                                                                                                                                                                                                                      |
| eta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.41 (1H, m)                                                                                                                                                                                                           | $\beta$                                                                                                                                                  | 29.22                                                                  | Val <sup>4</sup> : Hγ, NH                                                                                                                                                                                                                                                                                                                                                                                                  |
| γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.93 (3H, d, 6.8)                                                                                                                                                                                                      | γ                                                                                                                                                        | 16.54                                                                  | Val <sup>4</sup> : NH, Trp <sup>5</sup> : H4                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.09 (3H, d, 6.8)                                                                                                                                                                                                      |                                                                                                                                                          | 18.91                                                                  | _ 5 0                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.54 (1H, d, 8.4)                                                                                                                                                                                                      | C=O                                                                                                                                                      | 169.24                                                                 | Trp <sup>5</sup> : NH, H4, H5; $\beta$ <sup>s</sup> -Leu <sup>2</sup> : H $\alpha$                                                                                                                                                                                                                                                                                                                                         |
| $\mathrm{Trp}^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                        | _ 5 0                                                                                                                                                                                                                                                                                                                                                                                                                      |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.85 (1H, br s)                                                                                                                                                                                                        | α                                                                                                                                                        | 51.86                                                                  | Trp <sup>5</sup> : NH, H4, H $\beta$ ; Arg <sup>6</sup> : NH, H $\beta$                                                                                                                                                                                                                                                                                                                                                    |
| $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.86 (1H, d, 14.1)                                                                                                                                                                                                     | $\beta$                                                                                                                                                  | 25.56                                                                  | Arg <sup>6</sup> : NH; Trp <sup>5</sup> : NH, H4                                                                                                                                                                                                                                                                                                                                                                           |
| 31114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.29 (1H, dd, 5.4, 14.1)                                                                                                                                                                                               | C2                                                                                                                                                       | 121.44                                                                 | T 5 117 11 7 110 0c1 9 110                                                                                                                                                                                                                                                                                                                                                                                                 |
| NH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.65 (1H, s)                                                                                                                                                                                                          | C3                                                                                                                                                       | 103.37                                                                 | Trp <sup>5</sup> : H7; His <sup>7</sup> : H2; $\beta$ <sup>s</sup> -Leu <sup>2</sup> : H $\beta$                                                                                                                                                                                                                                                                                                                           |
| H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.39 (1H, d, 8.4)                                                                                                                                                                                                      | C4                                                                                                                                                       | 118.12                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.16 (1H, d, 8.4)                                                                                                                                                                                                      | C5                                                                                                                                                       | 119.99                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.94 (1H, s)                                                                                                                                                                                                           | C6                                                                                                                                                       | 132.13                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.33 (1H, d, 8.2)                                                                                                                                                                                                      | C7                                                                                                                                                       | 114.39                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        | C8                                                                                                                                                       | 132.64                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        | C9                                                                                                                                                       | 125.28                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ${ m Arg^6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | C=O                                                                                                                                                      | 168.99                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.35 (1H, m)                                                                                                                                                                                                           | α                                                                                                                                                        | 51.05                                                                  | Arg <sup>6</sup> : NH, H $\beta$ , H $\delta$ ; His <sup>7</sup> : NH                                                                                                                                                                                                                                                                                                                                                      |
| $egin{array}{c} lpha \ eta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40 (1H, m)                                                                                                                                                                                                           | $egin{array}{c} lpha \ eta \end{array}$                                                                                                                  | 29.69                                                                  | $Arg^6$ : NH, H $\gamma$ , H $\delta$ ; His <sup>7</sup> : NH                                                                                                                                                                                                                                                                                                                                                              |
| ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.40 (111, m)<br>1.50 (1H, m)                                                                                                                                                                                          |                                                                                                                                                          | 24.85                                                                  | $Arg^6$ : $H\delta$                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.38 (2H, m)                                                                                                                                                                                                           | $\stackrel{\gamma}{\delta}$                                                                                                                              | 40.11                                                                  | $Arg^6$ : $H\epsilon$                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\stackrel{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.04 (2H, m)                                                                                                                                                                                                           | $\epsilon$                                                                                                                                               | 156.60                                                                 | rug . ric                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\epsilon$ (NH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.60 (1H, br s)                                                                                                                                                                                                        | C=O                                                                                                                                                      | 170.18                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.29 (1H, d, 8.9)                                                                                                                                                                                                      | 0 0                                                                                                                                                      | 170.10                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| His <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20 (111, u, 0.0)                                                                                                                                                                                                     |                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.73 (1H, br t, 9.8)                                                                                                                                                                                                   | α                                                                                                                                                        | 51.76                                                                  | $His^7$ : NH, $H\beta$ ; $His^8$ : NH, $H\beta$                                                                                                                                                                                                                                                                                                                                                                            |
| $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.62 (1H, t, 12.6)                                                                                                                                                                                                     | $\beta$                                                                                                                                                  | 30.08                                                                  | His <sup>7</sup> : NH, H2; His <sup>8</sup> : NH                                                                                                                                                                                                                                                                                                                                                                           |
| Ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.09 (1H, m)                                                                                                                                                                                                           | C1                                                                                                                                                       | 129.31                                                                 | 1110 . 1111, 1110 . 1111                                                                                                                                                                                                                                                                                                                                                                                                   |
| H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.14 (1H, br s)                                                                                                                                                                                                        | C2                                                                                                                                                       | 121.44                                                                 | His8: NH                                                                                                                                                                                                                                                                                                                                                                                                                   |
| H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.45 (1H, br s)                                                                                                                                                                                                        | C4                                                                                                                                                       | 137.49                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.32 (1H, d, 9.4)                                                                                                                                                                                                      | C=O                                                                                                                                                      | 171.54                                                                 | His <sup>8</sup> : NH                                                                                                                                                                                                                                                                                                                                                                                                      |
| His <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,,,                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.60 (1H, m)                                                                                                                                                                                                           | α                                                                                                                                                        | 51.15                                                                  | His <sup>8</sup> : NH, H $\beta$                                                                                                                                                                                                                                                                                                                                                                                           |
| $\overset{\sim}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.21 (1H, dd, 5.1, 15.3)                                                                                                                                                                                               | $\beta$                                                                                                                                                  | 25.91                                                                  | His <sup>8</sup> : NH                                                                                                                                                                                                                                                                                                                                                                                                      |
| r <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.06 (1H, m)                                                                                                                                                                                                           | C1                                                                                                                                                       | 127.28                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.38 (1H, s)                                                                                                                                                                                                           | C2                                                                                                                                                       | 116.73                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.97 (1H, brs)                                                                                                                                                                                                         | C4                                                                                                                                                       | 133.71                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.47 (1H, d, 7.7)                                                                                                                                                                                                      | C=O                                                                                                                                                      | 171.08                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |

the carboxylate group at His. Product ion peaks generated by fissions at peptide bonds or cleavage of a carbonnitrogen connection between Trp and His residues were prominently observed (Figure 5). Thus, celogentin C (3) was elucidated to possess the sequence, in which was a Pro residue was inserted between the Trp and Arg residues of celogentin A (1). The absolute configuration of each amino acid in 3 was assigned as all L-configurations by chiral HPLC analysis of the hydrolysates of 3. Therefore, the structure of 3 was assigned as shown in Figure.

Generally antimitotic agents bind to either colchicine binding site or vinca alkaloid binding site. In the previous study, moroidin (4) has been found to inhibit the polymerization of tubulin.6 In this study, such inhibitory activity was examined for celogentins A-C (1-3) (Figure 6). Celogentins A (1) and B (2), lacking the Gly residue of moroidin (4), showed less potent (IC<sub>50</sub>, 1, 20  $\mu$ M; 2, 30  $\mu$ M) than moroidin (4, 3.0  $\mu$ M) in inhibition of the tubulin polymerization. The presence of additional His8 residue in 2 seems not to influence severely the inhibitory activity of celogentin A (1), judging from the inhibitory activity of 1 and 2. Celogentin C (3) was more potent (IC<sub>50</sub> 0.8  $\mu$ M) than moroidin (4). On the other hand, the methyl

<sup>(10)</sup> Naoki, H. LC/MS no Jissai; Harada, K., Oka, H., Eds.; Kodansha: Tokyo, 1996; pp 225-252.

ester (5) and the pyrimidine derivative (6) of moroidin (4), which was prepared by treatment of 4 with 2,4pentanedione, were found to be 2 times less potent ( $IC_{50}$ , 7.0  $\mu$ M and 6.0  $\mu$ M, respectively) than moroidin (4), indicating that the charges of Arg and His are not so important for the activity. Whereas, a monocyclic analogue (7) of 4 produced by treatment of 4 with  $\alpha$ -chymotrypsin showed less inhibitory activity (IC<sub>50</sub> 20.0  $\mu$ M).<sup>11</sup> Stephanotic acid (8),12 corresponding to the left-hand part of celogentins (1-3) and moroidin (4), did not show such inhibition. These results suggest that the bicyclic ring system including unusual non-peptide connections among  $\beta$ s-Leu, Trp, and His residues characteristic of celogentins and moroidin, with ring size and conformations suitable for interaction with tubulin would be important for their biological activity.

(11) The fact that NOESY correlations of **7** are similar to those observed for moroidin (**4**) suggests that **7** adopts a conformation similar to moroidin (**4**).

8

**Figure 3.** Selected NOESY correlations of Arg<sup>6</sup>-His<sup>7</sup>-His<sup>8</sup> moiety of celogentin B (2).

Celogentins A (1)—C (3) are a new type bicyclic peptides related to moroidin (4) with different ring size of right-hand backbone skeleton.  $^{13}$  The right-hand 17-membered ring of celogentin C (3) and moroidin (4) may be important for the biological activity in addition of the left-hand 17-membered ring as common structural element of celogentins A — C (1 — 3) and moroidin (4). Celogentins might be useful as a tool for investigating the interaction with tubulin.

## **Experimental Section**

General Procedures. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in DMSO-d<sub>6</sub> on a 600 MHz spectrometer (Bruker AMX600) equipped with an X32 computer and an Eurotherm temperature control unit. 1D NMR spectra were measured at 300–330 K, which were multiplied by a Gaussian filter and zero filled to 32K data points before Fourier transformation. 2D NMR spectra were measured at 300-330 K. NOESY and HOHAHA spectra in the phase sensitive mode were recorded using the TPPI method. HOHAHA spectra were recorded by spin-lock field preceded and followed by 2.5 ms trim pulses. NOESY spectra were measured with mixing times of 400, 600, and 800 ms. Since NOESY spectra gave no indications of spin diffusion at 600 ms, NOE intensities at this mixing time were used in the calculations. Typically, 256 FIDs of 2K data points, and 32 scans each were employed. Chemical shifts were presented using residual DMSO- $d_6$  ( $\delta_{\rm H}$  2.50 and  $\delta_{\rm C}$  39.5) as internal standards. Standard pulse sequences were employed for 2D NMR experiments. HMBC spectra were recorded using a 50 ms delay time for long-range C-H coupling with *Z*-axis PFG.

MS Experiments. FABMS was measured on a JEOL JMS-HX110 by using glycerol as matrix. FABMS/MS spectra were recorded on a JEOL JMS-700TZ tandem mass spectrometer equipped with a CCD array detector using magic bullet as matrix. The mass spectrometer was operated at an accelerating voltage of 10 kV xenon beam and in the negative mode.

**Material.** The seeds of *C. argentea* were purchased from Uchida Wakannyaku Co. in 1996. The botanical identification was made by Mr. N. Yoshida, Graduate School of Pharmaceutical Sciences, Hokkaido University. A voucher specimen has been deposited in the herbarium of Hokkaido University.

**Isolation.** The seeds (13.5 kg) of *C. argentea* were crushed and extracted with MeOH (18 L  $\times$  3), and the MeOH extract was in turn partitioned with hexane, EtOAc, and *n*-BuOH. The

<sup>(12)</sup> Yoshikawa, K.; Tao, S.; Arihara, S. *J. Nat. Prod.* **2000**, *63*, 540–542.

<sup>(13)</sup> Celogentins A–C (1–3) and moroidin (4) were elucidated to adopt only a single solution conformation in DMSO- $d_6$  solution. The proline amide bond of 3 was shown to be trans by the chemical shifts ( $\delta$  29.11 and 25.02, respectively) of  $\beta$  and  $\gamma$  carbons of Pro<sup>6</sup> residue, <sup>14</sup> and the triplet signal of H $\alpha$  of Pro<sup>6</sup>. <sup>15</sup> The temperature coefficients ( $\Delta\delta/\Delta T$ )<sup>16</sup> of Arg<sup>7</sup> (0.8) and Gly<sup>7</sup> (–0.4) of 3 and 4 indicated that these NHs were involved in intramolecular hydrogen bonds. These observations suggest that the right-hand portions of 3 and 4 take a similar backbone conformation to each other regardless of different sequence.

Table 3. <sup>1</sup>H and <sup>13</sup>C NMR Data of Celogentin C (3) in DMSO-d<sub>6</sub> at 300 K

|                                       | Table 3. $^{1}$ H and $^{13}$ C NMR Data of Celogentin C (3) in DMSO- $d_{6}$ at 300 K |                             |        |                                                                                                            |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|--------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\delta_{\rm H}$ [int mult, $J$ (Hz)] |                                                                                        | $\delta_{\mathrm{C}}$       |        | NOE relationship                                                                                           |  |  |  |  |  |
| PyroGlu <sup>1</sup>                  |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |
| α                                     | 4.11 (1H, brd, 8.1)                                                                    | α                           | 55.24  | PyroGlu <sup>1</sup> : H $\beta$ , H $\gamma$ , NH; $\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH, H $\beta$ |  |  |  |  |  |
| eta                                   | 2.09 (2H, m)                                                                           | $\beta$                     | 29.11  | PyroGlu <sup>1</sup> : H $\gamma$ ; $\beta$ <sup>s</sup> -Leu <sup>2</sup> : NH                            |  |  |  |  |  |
| γ                                     | 1.70 and 2.24 (each 1H, m)                                                             | γ                           | 25.61  | , .                                                                                                        |  |  |  |  |  |
| ŃН                                    | 7.89 (1H, s)                                                                           | δ                           | 177.68 | $\beta^s$ -Leu <sup>2</sup> : NH                                                                           |  |  |  |  |  |
|                                       |                                                                                        | C=O                         | 171.59 | ,                                                                                                          |  |  |  |  |  |
| $eta^s$ -Leu $^2$                     |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |
| α                                     | 4.84 (1H, t, 10.3)                                                                     | α                           | 54.92  | $\beta^{s}$ -Leu <sup>2</sup> : NH, H $\beta$ , H $\gamma$ , H $\delta$ ; Trp <sup>5</sup> : H4, H5        |  |  |  |  |  |
| $\beta$                               | 3.07 (1H, m)                                                                           | $\beta$                     | 51.53  | $\beta^{s}$ -Leu <sup>2</sup> : NH, H $\delta$ , H $\gamma$ ; Trp <sup>5</sup> : H7                        |  |  |  |  |  |
|                                       | 2.16 (1H, m)                                                                           | γ                           | 26.76  | $\beta^s$ -Leu <sup>2</sup> : NH, H $\delta$ ; Trp <sup>5</sup> : H7                                       |  |  |  |  |  |
| $\stackrel{\gamma}{\delta}$           | 0.73 (3H, d, 6.2)                                                                      | $\delta$                    | 17.16  | Trp <sup>5</sup> : H7                                                                                      |  |  |  |  |  |
|                                       | 0.84 (3H, d, 6.2)                                                                      |                             | 21.82  | •                                                                                                          |  |  |  |  |  |
| NH                                    | 8.53 (1H, d, 8.7)                                                                      | C=O                         | 171.24 |                                                                                                            |  |  |  |  |  |
| $Leu^3$                               |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |
| α                                     | 3.98 (1H, m)                                                                           | α                           | 52.23  | Leu <sup>3</sup> : NH, H $\beta$ , H $\delta$ ; Val <sup>4</sup> : NH                                      |  |  |  |  |  |
| $\beta$                               | 1.18 and 1.45 (each 1H, m)                                                             | $\beta$                     | 41.68  | Leu <sup>3</sup> : NH; Val <sup>4</sup> : NH                                                               |  |  |  |  |  |
|                                       | 1.41 (1H, m)                                                                           | γ                           | 24.02  | Leu³: Hδ                                                                                                   |  |  |  |  |  |
| $\stackrel{\gamma}{\delta}$           | 0.67 (3H, d, 6.0)                                                                      | δ                           | 20.97  |                                                                                                            |  |  |  |  |  |
|                                       | 0.77 (3H, d, 6.0)                                                                      |                             | 23.12  |                                                                                                            |  |  |  |  |  |
| NH                                    | 8.33 (1H, d, 9.3)                                                                      | C=O                         | 172.28 | $\beta^{s}$ -Leu <sup>2</sup> : H $\alpha$ ; Trp <sup>5</sup> : H4, H5; Val <sup>4</sup> : NH              |  |  |  |  |  |
| Val <sup>4</sup>                      | , , ,                                                                                  |                             |        | 1                                                                                                          |  |  |  |  |  |
| α                                     | 3.62 (1H, t, 7.3)                                                                      | α                           | 57.42  | Val <sup>4</sup> : H $\beta$ , H $\gamma$ , NH; Trp <sup>5</sup> : NH                                      |  |  |  |  |  |
| eta                                   | 1.82 (1H, m)                                                                           | $\beta$                     | 31.13  | Val <sup>4</sup> : Hγ, NH                                                                                  |  |  |  |  |  |
| γ                                     | 0.71 (3H, d, 6.1)                                                                      | γ                           | 18.35  | Val <sup>4</sup> : NH, Trp <sup>5</sup> : H4, H5                                                           |  |  |  |  |  |
| ,                                     | 0.72 (3H, d, 6.1)                                                                      | ,                           | 18.57  | 1                                                                                                          |  |  |  |  |  |
| NH                                    | 6.96 (1H, d, 7.9)                                                                      | C=O                         | 169.52 | Trp <sup>5</sup> : NH, H4                                                                                  |  |  |  |  |  |
| ${ m Trp^5}$                          | , , ,                                                                                  |                             |        |                                                                                                            |  |  |  |  |  |
| ά                                     | 5.63 (1H, m)                                                                           | α                           | 47.26  | Trp <sup>5</sup> : NH, H4, H5, H $\beta$ ; Pro <sup>6</sup> : H $\delta$ , H $\gamma$                      |  |  |  |  |  |
| $\beta$                               | 2.60 (1H, t, 13.0)                                                                     | $\beta$                     | 25.52  | Pro <sup>6</sup> : H $\delta$ ; Arg <sup>7</sup> : NH; His <sup>8</sup> : H2; Trp <sup>5</sup> : H4        |  |  |  |  |  |
| •                                     | 3.34 (1H, dd, 5.8, 15.0)                                                               | C2                          | 126.67 | 1                                                                                                          |  |  |  |  |  |
| NH1                                   | 11.89 (1H, s)                                                                          | C3                          | 103.46 | Trp <sup>5</sup> : H7; His <sup>8</sup> : H2, H4                                                           |  |  |  |  |  |
| H4                                    | 7.57 (1H, d, 8.3)                                                                      | C4                          | 120.07 | •                                                                                                          |  |  |  |  |  |
| H5                                    | 7.03 (1H, d, 8.3)                                                                      | C5                          | 119.90 |                                                                                                            |  |  |  |  |  |
| H7                                    | 6.96 (1H, s)                                                                           | C6                          | 133.08 |                                                                                                            |  |  |  |  |  |
| NH                                    | 8.14 (1H, d, 8.5)                                                                      | C7                          | 114.37 |                                                                                                            |  |  |  |  |  |
|                                       |                                                                                        | C8                          | 132.40 |                                                                                                            |  |  |  |  |  |
|                                       |                                                                                        | C9                          | 124.87 |                                                                                                            |  |  |  |  |  |
|                                       |                                                                                        | C=O                         | 169.15 |                                                                                                            |  |  |  |  |  |
| $Pro^6$                               |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |
| α                                     | 4.14 (1H, t, 6.6)                                                                      | α                           | 61.61  | Pro <sup>6</sup> : H $\beta$ , H $\gamma$ ; Arg <sup>7</sup> : NH                                          |  |  |  |  |  |
| $\beta$                               | 1.84 (1H, m)                                                                           | $\beta$                     | 29.11  | Pro <sup>6</sup> : Hδ                                                                                      |  |  |  |  |  |
|                                       | 2.23 (1H, m)                                                                           |                             | 25.02  | Pro <sup>6</sup> : Hδ                                                                                      |  |  |  |  |  |
| γ                                     | 2.01 (2H, m)                                                                           | $\stackrel{\gamma}{\delta}$ | 46.99  |                                                                                                            |  |  |  |  |  |
| $\stackrel{\gamma}{\delta}$           | 3.80 (1H, m)                                                                           | C=O                         | 171.22 |                                                                                                            |  |  |  |  |  |
|                                       | 3.99 (1H, m)                                                                           |                             |        |                                                                                                            |  |  |  |  |  |
| ${ m Arg^7}$                          |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |
| α                                     | 4.22 (1H, m)                                                                           | α                           | 52.05  | Arg <sup>7</sup> : H $\beta$ , H $\gamma$ ; Arg <sup>7</sup> : NH; His <sup>8</sup> : NH                   |  |  |  |  |  |
| eta                                   | 1.62 (1H, m)                                                                           | $\beta$                     | 29.94  | Arg <sup>7</sup> : Hδ                                                                                      |  |  |  |  |  |
|                                       | 1.76 (1H, m)                                                                           |                             | 24.19  | Arg <sup>7</sup> : Hδ                                                                                      |  |  |  |  |  |
| γ                                     | 1.47 (2H, m)                                                                           | $\stackrel{\gamma}{\delta}$ | 40.55  | $Arg^7$ : $H_{\epsilon}(NH)$                                                                               |  |  |  |  |  |
| $\stackrel{\gamma}{\delta}$           | 3.08 (2H, m)                                                                           | $\epsilon$                  | 156.94 |                                                                                                            |  |  |  |  |  |
| $\epsilon$ (NH)                       | 7.70 (1H, br s)                                                                        | C=O                         | 171.50 |                                                                                                            |  |  |  |  |  |
| NH                                    | 6.83 (1H, d, 5.9)                                                                      |                             |        | His <sup>8</sup> : NH                                                                                      |  |  |  |  |  |
| His <sup>8</sup>                      |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |
| α                                     | 4.92 (1H, t, 10.3)                                                                     | α                           | 50.19  | His <sup>8</sup> : NH, H $\beta$ , H2                                                                      |  |  |  |  |  |
| $\beta$                               | 2.96 (1H, t, 13.5)                                                                     | $\beta$                     | 28.19  | -                                                                                                          |  |  |  |  |  |
| •                                     | 3.43 (1H, d, 15.8)                                                                     | C1                          | 131.56 |                                                                                                            |  |  |  |  |  |
| H2                                    | 7.79 (1H, brs)                                                                         | C2                          | 120.07 | His8: NH                                                                                                   |  |  |  |  |  |
| H4                                    | 9.41 (1H, brs)                                                                         | C4                          | 136.80 |                                                                                                            |  |  |  |  |  |
| NH                                    | 8.85 (1H, d, 8.6)                                                                      | C=O                         | 171.35 |                                                                                                            |  |  |  |  |  |
|                                       |                                                                                        |                             |        |                                                                                                            |  |  |  |  |  |

n-BuOH-soluble materials were subjected to a Diaion HP-20 column (MeOH/H $_2$ O, 0:1  $\rightarrow$  1:0), in which a fraction eluted with 60% MeOH was purified by an amino silica gel column (CHCl<sub>3</sub>/ MeOH/H<sub>2</sub>O, 7:3:0.5  $\rightarrow$  6:4:1) followed by C<sub>18</sub> HPLC (CH<sub>3</sub>CN/ 0.1% CF<sub>3</sub>CO<sub>2</sub>H, 22:78) to afford celogentin A (1, 0.0002% yield) and moroidin (4, 0.02%) as a colorless solid. The fraction eluted with 80% MeOH through the Diaion HP-20 column was purified by the same methods as described above to afford celogentins B (2, 0.0001%) and C (3, 0.001%) as colorless solid.

**Celogentin A (1):** colorless solid;  $[\alpha]^{23}D - 43^{\circ}$  (*c* 0.3, 50%) MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 283 (3.8) and 226 (4.3) nm; IR (KBr)  $\nu_{\text{max}}$  3400, 2960, 1660, and 1545 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); FABMS m/z 930 (M + H)<sup>+</sup>; HRFABMS m/z930.4991 (M + H; calcd for  $C_{45}H_{64}N_{13}O_9$ , 930.4950).

**Celogentin B (2):** colorless solid;  $[\alpha]^{23}D - 32^{\circ}$  (c 0.5, 50%) MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 282 (3.6) and 225 (4.2) nm; IR (KBr)  $v_{\text{max}}$  3390, 2930, 1660, and 1380 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Table 2); FABMS m/z 1067 (M + H)<sup>+</sup>; HRFABMS m/z1067.5590 (M  $^{+}$  H; calcd for  $C_{51}H_{71}N_{16}O_{10},\ 1067.5585).$ 

**Celogentin C (3):** colorless solid;  $[\alpha]^{23}D - 54^{\circ}$  (c 0.5, 50%) MeOH); UV (MeOH)  $\lambda_{\text{max}}$  (log  $\epsilon$ ) 283 (3.7) and 226 (4.2) nm; IR (KBr)  $\nu_{max}$  3280, 2960, 1660, 1530, and 1200 cm $^{-1}$ ;  $^{1}H$  and  $^{13}C$  NMR (Table 3); FABMS m/z 1027 (M + H) $^{+}$ ; HRFABMS m/z 1027.5450 (M + H; calcd for  $C_{50}H_{71}N_{14}O_{10}$ , 1027.5477).

Amino Acid Analysis of 1-3. Each solution of 1-3 (0.1 mg each) in 6 N HCl was heated at 110 °C for 24 h in a sealed tube. After cooling, each solution was concentrated to dryness.



**Figure 4.** Selected NOESY correlations (dotted arrows) for celogentin C (3). Right-hand part consists of a 17-membered ring. To clarify the backbone structure, the left-hand part was omitted.



**Figure 5.** Fragmentation patterns observed in negative-ion FABMS/MS spectrum of celogentin C (3) (precursor ion m/z 1025.5)

The hydrolysates were dissolved in 0.02 N HCl and were subjected to amino acid analyzer.

**Absolute Configuration of Amino Acids.** Each solution of **1–3** (each 0.1 mg) in 6 N HCl (0.2 mL) was heated at 110° for 24 h. The solution was concentrated to dryness. The residue was dissolved in  $H_2O$  (50  $\mu$ L), and chiral HPLC analyses were carried out using a SUMICHIRAL OA-5000 column (Sumitomo Chemical Industry; 150 mm; 25 °C, detection at 254 nm). Retention times (min) of authentic amino acids were as follows: L-Glu (19.2), D-Glu (24.2), L-Val (6.1), D-Val (9.0), L-Arg (2.2), D-Arg (2.4), L-His (9.4), D-His (7.8), L-Leu (13.6), and D-Leu (20.2) [eluent: MeOH/ $H_2O$  (15:85) containing 2.0 mM CuSO<sub>4</sub>, flow rate 1.0 mL/min]. Retention times of the hydrolysates of **1–3** were as follows: **1**, L-Glu (19.1), L-Val (6.1), L-Arg (2.2), L-His (9.4), and L-Leu (13.6); **2**, L-Glu (19.1), L-Val (6.1), L-Arg (2.2), L-His (9.4), and L-Leu (13.6); **3**, L-Glu (19.1), L-Val (6.1), L-Arg (2.2), L-His (9.4), and L-Leu (13.6); **3**, L-Glu (19.1), L-Val (6.1), L-Arg (2.2), L-His (9.4), and L-Leu (13.6).

**Absolute Configuration of Trp.** Each celogentin A–C (each 0.1 mg) in AcOH (0.2 mL) was treated with ozone at -78 °C for 1 min. After removal of excess ozone by a stream of nitrogen, the mixture was treated with 30% H<sub>2</sub>O<sub>2</sub> (200  $\mu$ L) at room temperature for 3 h. The reaction mixture was concentrated and was hydrolyzed with 6 N HCl (100  $\mu$ L) at 110 °C for 6 h. The hydrolysate was subjected to chiral HPLC analyses [SUMICHIRAL OA-5000, 4 × 150 mm; 40 °C, flow rate, 1.0 mL/min; eluent; MeOH/H<sub>2</sub>O (15:85) containing 2.0 mM CuSO<sub>4</sub>]. The retention times of authentic L- and D-Asp were found to be 12.9 and 17.0 min, respectively. The retention time of Asp in the degradation products of 1–3 was found to be 12.9 min (L-Asp).

Conversion of Celogentin A (1) to Celogentin B (2). Coupling reaction was carried out by preparing a solution of 1.29  $\mu$ mol of histidine hydrochloride (0.2 mg), 2.21  $\mu$ mol of





**Figure 6.** Inhibitory effects of celogentins A (1), B (2), and C (3), moroidin (4), moroidin methylate (5), pyrimidine derivative of moroidin (6), moroidin hydrolysate (7), stephanotic acid (8), and vincristine on the in vitro polymerization of microtubule protein. Various concentrations of compounds were mixed with microtubule protein (1.0 mg/mL) at 0 °C and incubated at 37 °C.

HOAt (0.3 mg), and 0.86  $\mu$ mol of celogentin A (1, 0.8 mg) in 20  $\mu$ L of DMF. The mixture was cooled in an ice bath and treated with 1.56  $\mu$ mol of WSC (0.3 mg). After 20 h, solvent was removed under reduced pressure and the residue was dissolved in MeOH and purified by C<sub>18</sub> HPLC (CH<sub>3</sub>CN/0.1% CF<sub>3</sub>CO<sub>2</sub>H, 22:78) to afford a peptide (0.1 mg), whose spectral data were identical with those of natural celogentin B (2).

**Methylation of Moroidin (4).** Trimethylsilyldiazomethane (2.0 M hexane solution, 100  $\mu$ L) was added to a stirred solution of moroidin (4, 1 mg) in methanol (0.5 mL) at room temperature. The mixture was stirred at room temperature for 5 min, and concentrated in vacuo. The residue was subjected to an amino silica gel column chromatography to give the methyl derivative (5) as colorless solid; IR (KBr)  $\nu_{\text{max}}$  3420, 1730, 1680, 1435 cm<sup>-1</sup>; <sup>1</sup>H NMR (600 MHz in DMSO- $d_6$ , 320 K)  $\delta$  0.71 and 0.79 (each 3H, d, 6.0, Leu<sup>3</sup>-H $\delta$ ), 0.79 and 0.86 (each 3H, d, 6.0,  $\beta^s\text{-Leu}^2\text{-H}\delta),~0.83$  and 0.86 (each 3H, d, 6.0, Val^4  $-\text{H}\gamma),~1.73$ and 2.10 (each 1H, m, PyroGlu<sup>1</sup>-H $\gamma$ ), 2.03 (1H, m, Val-H $\beta$ ), 2.16 (1H, m,  $\beta$ s-Leu<sup>2</sup>-H $\gamma$ ), 2.26 (2H, m, PyroGlu<sup>1</sup>-H $\beta$ ), 2.70  $(1H, dd, 7.7, 15.1, Trp^5-H\beta), 2.93 (1H, dd, 9.9, 15.6, His^8-H\beta),$ 3.02 (1H, dd, 3.4, 11.8,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-H $\beta$ ), 3.06 (1H, dd, 1.0, 7.2,  $His^8-H\beta$ ), 3.34 (1H, m,  $Trp^5-H\beta$ ), 3.62 (1H, dd, 5.2, 16.0,  $Gly^7$ -H $\alpha$ ), 3.69 (3H, s, OCH<sub>3</sub>), 3.73 (1H, dd, 3.4, 16.0,  $Gly^7$ -Hα), 3.87 (1H, m, Val<sup>4</sup>-Hα), 4.04 (1H, m, Leu<sup>3</sup>-Hα), 4.13 (1H, dd, 3.3, 8.9, PyroGlu¹-Hα), 4.26 (1H, m, Arg⁶-Hα), 4.69 (1H,

m, His<sup>8</sup>-Hα), 4.88 (1H, m,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-Hα), 5.28 (1H, m, Trp<sup>5</sup>-Hα), 6.80 (1H, br s, Val<sup>4</sup>-NH), 6.89 (1H, s, Trp<sup>5</sup>-H7), 7.04 (1H, d, 8.4, Trp<sup>5</sup>-H5), 7.38 (1H, br s, Trp<sup>5</sup>-NH), 7.47 (1H, d, 8.4, Trp<sup>5</sup>-H4), 7.73 (1H, br s, His<sup>8</sup>-H2), 7.77 (1H, s, PyroGlu<sup>1</sup>-NH), 7.91 (1H, br s, Gly<sup>7</sup>-NH), 8.35 (1H, br s, Leu<sup>3</sup>-NH), 8.38 (1H, br s, Arg<sup>6</sup>-NH), 8.39 (1H, br s,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-NH), 8.40 (1H, br s, His<sup>8</sup>-NH), 11.41 (1H, s, Trp<sup>5</sup>-NH1); FABMS m/z 1001 (M + H)<sup>+</sup>; HRFABMS m/z 1001.5310 (M + H; calcd for  $C_{48}H_{69}N_{14}O_{10}$ , 1001.5321).

Conversion of Moroidin (4) to Pyrimidine Derivative (6). A solution of moroidin (4, 2 mg) in pyridine (0.4 mL) and 2,4-pentanedione (0.1 mL) was heated at 110 °C for 12 h in a sealed tube. The solution was evaporated in vacuo, and the residue was separated by C<sub>18</sub> HPLC (CH<sub>3</sub>CN/0.1% CF<sub>3</sub>CO<sub>2</sub>H, 1:3) to give **6** (1.5 mg) as a colorless solid: UV (MeOH)  $\lambda_{max}$  $(\log \epsilon)$  292 (3.8), 284 (3.8) and 228 (4.3) nm; IR (KBr)  $\nu_{\text{max}}$  3400, 1650, 1530, and 1440 cm<sup>-1</sup>; <sup>1</sup>H NMR (600 MHz in DMSO-d<sub>6</sub>, 300K)  $\delta$  0.69 and 0.76 (each 3H, d, 6.2, Leu<sup>3</sup>-H $\delta$ ), 0.78 and 0.84 (each 3H, d, 6.0,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-H $\delta$ ), 0.78 (6H, d, 6.0, Val<sup>4</sup> -H $\gamma$ ), 1.42 (1H, m, Leu $^3$ -H $\gamma$ ), 1.70 and 2.09 (each 1H, m, PyroGlu $^1$ -Hγ), 1.89 (1H, m, Val-H $\beta$ ), 2.17 (6H, s, pyrimidine-Me), 2.25 (2H, m, PyroGlu<sup>1</sup>-H $\beta$ ), 2.63 (1H, m, Trp<sup>5</sup>-H $\beta$ ), 2.86 (1H, m, His<sup>8</sup>-H $\beta$ ), 3.03 (1H, br d, 11.2,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-H $\beta$ ), 3.10 (1H, br d, 14.7, His<sup>8</sup>-H $\beta$ ), 3.33 (1H, m, Trp<sup>5</sup>-H $\beta$ ), 3.62 (1H, br d, 14.0, Gly<sup>7</sup>-H $\alpha$ ), 3.69 (1H, br d, 14.0, Gly<sup>7</sup>-H $\alpha$ ), 3.73 (1H, br t, 7.0, Val<sup>4</sup>-H $\alpha$ ), 3.99 (1H, br t, 8.9, Leu<sup>3</sup>-H $\alpha$ ), 4.10 (1H, dd, 2.0, 7.0, PyroGlu¹-Hα), 4.16 (1H, m, Arg<sup>6</sup>-Hα), 4.71 (1H, m, His<sup>8</sup>-Hα), 4.85 (1H, br t, 10.0,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-H $\alpha$ ), 5.39 (1H, m, Trp<sup>5</sup>-H $\alpha$ ), 6.30 (1H, s, pyrimidine-H5), 6.85 (1H, s, Trp<sup>5</sup>-H7), 6.91 (1H, d, 7.6,  $Val^4$ -NH), 6.98 (1H, d, 8.4,  $Trp^5$ -H5), 7.29 (1H,  $br\ s$ ,  $His^8$ -H2), 7.48 (1H, br s, Gly<sup>7</sup>-NH), 7.49 (1H, d, 8.4, Trp<sup>5</sup>-H4), 7.78 (1H, br s, Trp5-NH), 7.86 (1H, s, PyroGlu1-NH), 8.37 (1H, d, 8.9, Leu<sup>3</sup>-NĤ), 8.49 (2H, m, Arg<sup>6</sup>-NH and His<sup>8</sup>-NH), 8.53 (1H, d, 8.8,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-NH), 11.43 (1H, s, Trp<sup>5</sup>-NH1); FABMS m/z 1049

**Enzymatic Hydrolysis of Moroidin (4).** α-Chymotrypsin (0.25 mg dissolved in 50  $\mu$ L of 0.001% HCl, Merck) was added to NH<sub>4</sub>HCO<sub>3</sub> solution (1%, 0.45 mL) of moroidin (4, 0.5 mg) and the digestion was performed at 37 °C with the pH maintained at 8.0 by addition of 0.1 N HCl. After 2 days, the reaction was stopped by adjusting the solution to pH 2.2 with 1 N HCl and the digestion mixture was lyophilized to dryness and subjected to HPLC (Develosil ODS-HG-5 column, 10 mm i.d. × 250 mm, Nomura Chemical, eluted with 17% CHCN<sub>3</sub>/ 0.05%TFA, flow rate 2 mL/min) to give the hydrolysate (7) as an amorphous powder: UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 283 (3.7) and 226 (4.2) nm; IR (KBr)  $\nu_{\rm max}$  3430, 1680, 1435, 1210 cm $^{-1}$ ;  $^{1}$ H NMR (600 MHz in DMSO- $d_6$ , 320K)  $\delta$  0.70 and 0.76 (each 3H, d, 6.5, Leu<sup>3</sup>-H $\delta$ ), 0.77 and 0.85 (each 3H, d, 6.5,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-H $\delta$ ), 0.79 and 0.82 (each 3H, d, 6.6, Val<sup>4</sup>-H $\gamma$ ), 1.43 (1H, m,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>- $H_{\gamma}$ ), 1.77 and 2.25 (each 1H, m, PyroGlu<sup>1</sup>- $H_{\gamma}$ ), 1.87 (1H, m, Val<sup>4</sup>-Hβ), 2.10 (2H, m, PyroGlu<sup>1</sup>-Hβ), 2.94 (1H, m,  $Trp^5$ -Hβ), 2.93 (1H, dd, 9.9, 15.6,  $His^8$ - $H\beta$ ), 3.02 (1H, dd, 3.4, 11.8,  $\beta^{s}$ -Leu<sup>2</sup>-H $\beta$ ), 3.06 (1H, dd, 1.0, 7.2, His<sup>8</sup>-H $\beta$ ), 3.25 (1H, m, Trp<sup>5</sup>-Hβ), 3.62 (1H, d, 11.3, Gly<sup>7</sup>-Hα), 3.73 (1H, dd, 3.4, 16.0, Gly<sup>7</sup>-Hα), 3.75 (1H, t, 7.5,  $Val^4$ -Hα), 4.02 (1H, m,  $Leu^3$ -Hα), 4.14 (1H, dd, 3.8, 8.0, PyroGlu<sup>1</sup>-Hα), 4.20 (1H, m, Arg<sup>6</sup>-Hα), 4.60

(1H, m, His<sup>8</sup>-H $\alpha$ ), 4.82 (1H, t, 10.0,  $\beta$ <sup>s</sup>-Leu<sup>2</sup>-H $\alpha$ ), 5.48 (1H, br s, Trp<sup>5</sup>-Hα), 7.11 (1H, d, 7.5, Val<sup>4</sup>-NH), 6.91 (1H, s, Trp<sup>5</sup>-H7), 6.96 (1H, d, 8.4, Trp<sup>5</sup>-H5), 8.17 (1H, d, 8.6, Trp<sup>5</sup>-NH), 7.56 (1H, d, 8.4, Trp<sup>5</sup>-H4), 7.90 (1H, br s, His<sup>8</sup>-H2), 7.27 (1H, br s, His<sup>8</sup>-H4), 7.80 (1H, s, PyroGlu<sup>1</sup>-NH), 7.42 (1H, d, 7.5, Gly<sup>7</sup>-NH), 8.29 (1H, d, 9.0, Leu $^3$ -NH), 7.99 (1H, d, 6.8,  $Arg^6$ -NH), 8.39(1H, d, 10.0,  $\beta$ s-Leu<sup>2</sup>-NH), 8.65 (1H, d, 7.0, His<sup>8</sup>-NH), 11.50 (1H, s, Trp<sup>5</sup>-NH1); FABMS m/z 1005 (M + H)<sup>+</sup>.

Preparation of Microtubule Protein. Microtubule protein was prepared from porcine brain as described previously. 17 The protein concentrations were determined by the method of Lowry et al.  $^{18}$  using bovine serum albumin as a standard. Microtubule assembly assays were carried out in MES buffer containing 100 mM 2-N-morpholino ethanesulfonic acid (MES), 1 mM ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA), 0.5 mM MgCl<sub>2</sub>, 1 mM 2-mercaptoethanol, and 1 mM guanosine 5"-triphosphate trisodium salt (GTP) (pH 6.5).

Microtubule Assembly Assay. Microtubule assembly was monitored spectroscopically by using a spectrophotometer equipped with a thermostatically regulated liquid circulator. The temperature was held at 37 °C and changes in turbidity were monitored at 400 nm. For the drug-protein studies, 10  $\mu M$  of drug dissolved in DMSO concentration was less than 1%. The turbidity changes were monitored throughout the incubation time.

**Acknowledgment.** We thank Professor S. Arihara and Dr. K. Yoshikawa, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, for supplying the authentic sample of stephanotic acid and Mrs. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of FABMS/MS. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan and a grant from the Hokkaido Foundation for the Promotion of Scientific and Industrial Technology.

**Supporting Information Available: 1D and 2D NMR** spectra for compounds 1-3. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0103423

<sup>(14)</sup> Dorman, D. E.; Bovey, F. A. J. Org. Chem. 1973, 38, 2379-2383.

<sup>(15)</sup> Kopple, K. D.; Schumper, T. J.; Go, A. J. Am. Chem. Soc. 1974, *96*, 2597–2605.

<sup>(16)</sup> Some examples: (a) Kessler, H. *Angew. Chem., Int Ed. Engl.* **1982**, *21*, 512–523. (b) Ravi, A.; Prasad, B. V. V.; Balaram, P. *J. Am. Chem. Soc.*, **1983**, *105*, 105–109. (c) Iqbal, M.; Balaram, P. *Ibid.* **1981**, *103*, 5548–5552. (d) Kopple, K. D.; Ohnishi, M.; Go, A. *Ibid.* **1969**, *91*, 4264-4272.

<sup>(17)</sup> Takahashi, M.; Iwasaki, S.; Kobayashi, H.; Okuda, S.; Murai, T.; Sato, Y.; Haraguchi-Hiraoka, T.; Nagano, H. *J. Antibiot.* **1987**, *40*,

<sup>(18)</sup> Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265-275.