

Moodle UFSC

EEL510226-41000056DO/ME (20201) -Instrumentação Biomédica

Dashboard ► Courses ► EEL510226-41000056DO/ME (20201) ► Primeira Atividade Avaliativa - 29th October 2020,... ► Conteúdos Teóricos ► Your response

Your response

Respondent: Gustavo Simas da Silva (16101076) Submitted on: Thursday, 29 October 2020, 2:57 PM

Conteúdos Teóricos

1 * Liste

Liste os métodos utilizados para medir o fluxo sanguíneo separando-os em diretos e indiretos.

Em geral, as formas de medição de fluxo sanguíneo são indiretas, utilizando de certas correlações entre parâmetros como pressão, concentração de nutrientes, para obter o valor resultante de fluxo.

Dentre elas podemos citar:

Formas diretas

- Sensores extravasculares, por meio de sensores na extremidade de cateteres
- Sensores intravasculares, por meio de sensores ópticos/fotodetectores

No entanto, observa-se que formas diretas invasivas podem ser mais complexas e causar a formação de coágulos.

Formas indiretas

- Concentração de O2/Sp02 e outros nutrientes nas células por meio de oxímetro de pulso
- Aferição de Pressão sanguínea por meio de esfigmomanômetro ou Método auscultatório automatizado;
- Eletrocardiograma (ECG) com correlação/derivação de pressão sanguínea e, consequentemente, fluxo
- Há também métodos como método ultrassônico (com uso de sensores ultrassônicos) ou oscilométricos
- 2 * Defina o cardioversor e compare com o desfibrilador.

Em casos de emergência, onde pacientes apresentam problemas cardíacos, arritmias ou condições relacionadas, há a necessidade de cardioversão ou desfibrilação. O cardioversor é um equipamento que aplica uma diferença de potencial elétrico na parte toráxica do paciente de forma sincronizada à frequência cardíaca (mais especificamente em relação à onda/complexo QRS).

Podemos diferenciar:

- Cardioversor:
- Corrente elétrica sincronizada com a frequência cardíaca;

- Utilizado mais em condições de tarquicardias instáveis ou fibrilações atriais (geralmente onde há maior tempo disponível para manobra)
- Desfibrilador:
- Corrente elétrica assíncrona à frequência cardíaca
- Utilizado para condições de fibrilação ventricular ou taquicardia ventricular.
- O que é biotelemetria? Faça um diagrama em blocos de um sistema de biotelemetria?

Biotelemetria é uma tecnologia onde dados captados por um ser vivo são enviados remotamente para outros operadores/analisadores de forma a se ter controle e gerenciamento sobre sinais vitais de tal ser. Cada vez mais se utiliza em sistemas de Saúde Ubíqua, Telemedicina, com advento de Indústria 4.0, Inteligência Artificial, Internet das Coisas, Big Data e conceitos relacionados.

Diagrama de blocos

A Num sistema alimentado com bateria a corrente da bateria (I_{Bat}) precisa ser medida. Como mostrado nas Figuras abaixo, isto pode ser feito amplificando a queda de tensão V_{sense} , sobre o resistor R_{sense} (=10Ω). Obs: o mesmo AMPOP é usado em ambos os circuitos.

- (a) Assumindo um AMPOP ideal e que a resistência **R** não é bem definida, com qual circuito se obtém a maior precisão na medição da corrente I_{Bat}? Justifique a sua escolha.
- **(b)** Agora assumindo que o valor de **R** é bem definido e que é muito maior que **R**_{sense}. Que diferença isto faz para a precisão da medida de **I**_{Bat} em relação as duas topologias?
- (c) Suponha que o AMPOP tem uma tensão de offset de entrada de 10mV. Como isto impacta V_{out} para as duas topologias? O que acontece à medida que o ganho de tensão de malha fechada do amplificador aumenta? Suporte sua resposta com cálculos.
- a) O circuito 1 (configuração não-inversor). Isto pois, com valor R não bem definido, supondo que seja muito elevado (ou muito maior que Rsense) R>> 10ohms, então sua influência será mais significativa quanto à queda de tensão e potencial ruído ou distorções adicionadas ao sistema no 2° circuito. Considerando, ainda, não-idealidades do ampop, teríamos tensão e corrente de offset, impedância de entrada finita, entre outros fatores que reduzem a precisão do sistema.
- b) Como afirmado anteriormente, com R>>Rsense, sua influência será mais significativa quanto à queda de tensão e potencial ruído ou distorções adicionadas ao sistema no 2° circuito. Já no 1° circuito temos apenas os valores de resistência R e 2R como referenciadores para o cálculo do ganho (1 + 2R/R) = 3 V/V
- c) Com uma tensão de offset Voff = 10mV teremos:

Vout = G*Vin = G*(Vsense + Voff) = (1 + 2R/R)*(Vsense + Voff) = 3Vsense + 3VOff = 3*Vsense + 30mV.

Assim, de acordo com o valor da corrente da bateria (consequentemente a queda de tensão no resistor Rsense, ou seja, Vsense), é possível que o sinal de offset seja mais proeminente do que o que se deseja analisar. Á medida que o ganho de tensão de malha fechada do amplificador aumenta, temos valores mais elevados na saída quanto ao componente offset.

5 Comente sobre as principais características do Amplificador Operacional (AMPOP): estrutura, características ideais e reais, limitações, circuitos básicos com AMPOP, erros CC e AC em circuitos com AMPOP, etc...

Um amplificador operacional AMPOP é um dispositivo eletrônico que pode realizar a amplificação (ou atenuação) de sinais, tão como comparação, integração, derivação, dentre outras operações matemáticas fundamentais com sinais elétricos.

Um amplificador operacional ideal apresenta:

- Ganho infinito
- Impedância de entrada infinita
- Impedância de saída nula
- Largura de banda infinita
- Linearidade/não-distorção de sinais

Contudo, devido à características reais, apresenta limitações como:

- Ganho finito (reduzido com o aumento da frequência, em geral)
- Impedância de entrada finita (elevada, em geral, porém não infinita)
- Impedância de saída maior que zero

	Tensão e corrente de offset na entradaCapacitância de entrada
	Dentre as configurações possíveis podemos ter amplificadores diferenciais, inversores, não-inversores, amplificadores de saída (de potência), integradores de Miller, etc. Em instrumentação biomédica são amplamente utilizados os amplficadores de instrumentação (acrônimo INA)
6 *	Assinale TODAS aquelas sentenças que são VERDADEIRAS.
	 ☑ Uma boa impedância de eletrodo deve ser geralmente superior a 5 kilohms. ☑ A impedância entre um par de eletrodos também deve ser balanceada ou a diferença entre eles deve ser inferior a 2 kilohms. ☑ Os pré-amplificadores de EEG são geralmente projetados para ter um valor muito alto de impedância de entrada para minimizar os efeitos da alta impedância dos eletrodos. ☑ Circuitos condicionadores de sinal são de grande importância no sistema de medição e registro, pois determinam o alcance, a precisão e a resolução do sistema. ☑ O condicionamento de sinal inclui rotinas de linearização baseadas em hardware ou software para este
_ *	propósito.
7 *	Assinale TODAS as alternativas VERDADEIRAS.
	 O strain gauge é usado para medir deslocamento. Ao aplicar pressão ao cristal piezoelétrico, eletricidade não é gerada. O princípio por trás do strain gauge o é resistência variável. Ao aplicar eletricidade ao material piezoelétrico, ocorre deformação mecânica no material.
8 *	O regitro e análise do eletromiograma é útil para fazer o estudo da
	 função cardiovascular função neuromuscular função nervosa função imunológica
9 *	Quase todas as aplicações de medição e registro de sinais fisiológicos estão sujeitas a algum nível de ruído de 60 Hz captado da rede elétrica ou equipamentos operando nas imediações. Portanto, a maioria dos condicionadores de sinal inclui filtro passa-baixos projetado especificamente para fornecer rejeição máxima de ruídos. O filtro usado para rejeitar o ruído de 60 Hz captado da rede elétrica ou equipamentos é chamado?
	Rejeita faixaBloqueia faixa

	NotchRejeita all
10 *	O equipamento para registro do eletromiograma deve ser capaz de processar sinais com conteúdo de frequência que se estende até
	 1 kHz 5 kHz 10 kHz 15 kHz
11 *	O aterramento inadequado do sistema é uma das causas mais comuns de problemas de medição e ruído. Os condicionadores de sinal com isolamento podem evitar esses problemas. Os dispositivos de isolamento passam o sinal de sua fonte para o dispositivo de medição e registro sem uma conexão física ou galvânica. Qual das seguintes técnicas não é empregada em dispositivos de isolamento?
	ResistênciaÓpticaIndutânciaCapacitância
12 *	Além de interromper os <i>loops</i> de aterramento, o isolamento bloqueia os surtos de alta tensão e rejeita as altas tensões de modo comum.
	VerdadeiroFalso
13 *	Strain gauges são dispositivos de resistência em uma configuração em ponte de Wheatstone
	 que não requer elementos de circuito para completar a ponte e uma fonte de excitação. que requer elementos de circuito para completar a ponte e uma fonte de excitação. que não requer elementos de circuito para completar a ponte nem uma fonte de excitação. que requer elementos de circuito para completar a ponte, mas não uma fonte de excitação.
14 *	Considerando o eletrocardiograma, qual é a faixa de frequência normalmente empregada para o diagnóstico clínico?
	 0,025 a 0,05 Hz 0,05 a 150 Hz 150 a 200 Hz 0,05 a 150 MHz
15 *	Num sistema de aquisição de sinais fisiológicos o que, geralmente, é projetado para ter um valor muito alto de impedância de entrada para minimizar os efeitos da alta impedância dos eletrodos?
	 Circuito da perna direita (Drive Right Leg) Eletrodos Pré-amplificadores Filtros
16 *	Qual é a faixa de frequência típica dos equipamentos de eletroencefalografia padrão?
	 0,025 a 0,05 Hz 0,05 a 0,1 Hz 0,1 a 70 Hz 70 a 140 Hz
17 *	Quais medidas são importantes para o controle mioelétrico de dispositivos protéticos?
	○ VCG ○ ECG

You are logged in as Gustavo Simas da Silva (16101076) (Log out) EEL510226-41000056DO/ME (20201) Get the mobile app