

نمارين: الاتصال

.01

أدرس اتصال الدالة f في x_0 ؛ (وذلك في النقطة x_0 إذا كان ذلك ممكنا و إذا لم يكن ممكن على اليمين أو اليسار) .

$$X_{0} = 1 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{1}{x-1} - \frac{2}{x^{2}-1} ; x \in \mathbb{R} \setminus \{-1,1\} \atop f(1) = -\frac{1}{2} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \atop f(2) = 5 \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_{0} = 2 \underbrace{\sum_{x=1}^{x} \left\{ f(x) = \frac{(x-2)(x^{2}+1)}{x^{2}-3x+2} ; x \in \mathbb{R} \setminus \{1,2\} \right\}}_{\text{A}} \cdot X_$$

$$x_{0} = -1 \begin{cases} f(x) = \frac{1}{x-1} - \frac{2}{x^{2}-1} ; x \in \mathbb{R} \setminus \{-1,1\} \\ f(1) = -\frac{1}{2} \end{cases} , x \in \mathbb{R} \setminus \{-1,1\}$$

$$x_{0} = \pi \underset{\text{sin } x}{\overset{\text{f}}{=}} \left\{ f(x) = \frac{1 + \cos x}{\sin x} \; ; \; x \in] - \pi, \pi [\\ f(x) = x + \frac{\sqrt{x^{2} - \pi^{2}}}{x} \; ; \; x \in] - \infty, -\pi] \cup [\pi, +\infty[\right\}$$

$$x_{0} = \pi \underset{\text{sin } x}{\overset{\text{f}}{=}} \left\{ f(x) = \frac{\sin(x^{2} - 1)}{\sqrt{x}} \; ; \; x > 1 \right\}$$

$$f(x) = \frac{2\sin(x - 1)}{x - 1} \; ; \; x < 1 \underset{\text{sin } x}{\overset{\text{obs}}{=}} \left\{ f(x) = \frac{\sin(x^{2} - 1)}{\sqrt{x}} \; ; \; x < 1 \right\}$$

<u>. 02</u>

- **1** و b لكي تكون f متصلة في 0 و 1 .
 - $\lim_{x\to\infty}f(x)$ و $\lim_{x\to+\infty}f(x)$

<u>. 03</u>

. X_0 هل يمكن تمديد بالاتصال الدوال التالية في النقطة

.
$$x_0 = 0$$
 في $f(x) = \frac{\sqrt{4+x} - \sqrt{4-x}}{x}$. $x_0 = -\frac{1}{2}$ في $f(x) = \frac{2x^2 - x - 1}{2x + 1}$

x	ď	0 –5	0	1	3	10	+∞
f(x)	1		3		3		$+\infty$
()		>	7	/	7	7	7
		-5		-10		2	

لنعتبر الدالة $\mathbb{R} o \mathbb{R}$ متصلة و جدول تغيراتها كالتالى :

15:59 2015-09-25

درس رقم

تمارين: الاتـــصــال

. $x \in \mathbb{R} / f(x) = 0$: ما هو عدد حلول المعادلة 0

 $x \in [0,10]/f(x) = 2$: عدد حلول المعادلة 0.2

. $x \in \mathbb{R} / f(x) = -10$: محدد حل المعادلة 0.3

 $0,+\infty$ [و [3;10] و [1;3[و $[5,\infty]$ و $[-\infty,0]$ و $[-\infty,0]$ و $[-\infty,0]$ و $[-\infty,\infty]$ و $[-\infty,\infty]$

[1,3] هل الدالة f تقبل دالة عكسية من المجال I إلى f إلى f .

. 05

لتكن $_1$ دالة عددية معرفة على $\left[-0,5;14
ight]$ و الشكل التالي يمثل منحنها .

11. أعط نص أو منطوق مبرهنة القيم الوسيطية.

22. أوجد مجالين حيث يمكن تطبيق مبرهنة القيم الوسيطية مع توضيح ذلك .

13. أوجد مجال حيث لا يمكن تطبيق مبرهنة القيم الوسيطية مع توضيح ذلك .

وحید $f(\beta) = 6$ مع توضیح ذلك .؟ $f(\beta) = 6$ مع توضیح ذلك .؟ اعط تأطیر ل

<u>. 06</u>

 $f(x) = x^2 \cos^5 x + x \sin x + 1$: بنعتبر الدالة العددية f المعرفة على \mathbb{R} ب

. $\mathbb R$ قبل حل الأقل حل على $\mathbf x^2\cos^5\mathbf x+\mathbf x\sin\mathbf x+\mathbf 1=\mathbf 0$ قبل حل الأقل حل على $\mathbf f\left(\pi
ight)$.

<u>. 07</u>

 $\cdot f(x) = \frac{x-3}{x+2}$: بما يلي الدالة المعرفة على الدالة الدال

f أو بَرْنام آخر مثل + Cabri2) أنشئ منحنى ثم استنتج أن geogebra و باستعمال دروس السنة الماضية أو باستعمال البَرْنام J و باستعمال البَرْنام J نحو J حدده مبيانيا .

 $oldsymbol{0}_{1}$ أنشئ في نفس المعلم منحنى الدالة العكسية $oldsymbol{0}_{1}$.

. f الدالة العكسية ل f^{-1} عدد

. 08

 $f:\mathbb{R}
ightarrow \mathbb{R}$ الدالة المعرفة ب $f:\mathbb{R}
ightarrow \mathbb{R}$

..01

 $\lim_{x\to -\infty} f(x) : \frac{1}{2}$

15:59 2015-09-27

الصفحة تمارين: الاتـــصــال درس رقم

 $I=]-\infty,4$ بين أن : الدالة f تناقصية قطعا على 0

. يتم تحدده g ينعتبر g قصور الدالة f على g على $I=[-\infty,4]$ بين أن g تقابل من g الى مجال g يتم تحدده .

. ${f g}$ للدالة العكسية ${f g}^{-1}$ للدالة ${f Q}$

<u>. 09</u>

نعتبر الدالة العددية f التي منحناها هو:

 $oldsymbol{0}_{\mathrm{f}}$ مجموعة تعريف $oldsymbol{0}_{\mathrm{f}}$ مجموعة تعريف

. $\lim_{x \to -8} f(x)$ و $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$. $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$

ماذا يمكن أن نقول عن نهاية fعند ∞ +.

 $\mathbf{x}_0 = \mathbf{0}$ متصلة على يمين $\mathbf{0}$ ؟ على يسار $\mathbf{0}$: متصلة في $\mathbf{x}_0 = \mathbf{0}$ ؟

.]-4;3] f بغيرات أعظ جدول تغيرات

 $I=\left]-4;0
ight]$ ليكن g قصور الدالة f على المجال 0

 ${f g}^{-1}$ من ${f J}$ مع تحديد ${f G}$ مبيانيا. ${f g}$

 $\underbrace{\mathbf{C}_{\mathbf{g}^{-1}}}_{\mathbf{p}}$ أنشئ $\left(\mathbf{C}_{\mathbf{g}^{-1}}\right)$ منحنى \mathbf{f} في نفس المعلم .

<u>. 10</u>

 $b = \sqrt[3]{54\sqrt{3} - 41\sqrt{5}}$ و $a = \sqrt[3]{41\sqrt{5} + 54\sqrt{3}}$:

 $\cdot \frac{7}{3}$ ؛ $1 : \frac{1}{3}$ هو ab هو الآلة الحاسبة (الآلة الحاسبة) هل عمال المحسبة (الآلة الحاسبة) هل عمال المحسبة (الآلة الحاسبة)

<u>. 11</u>

.
$$\frac{2}{\sqrt[3]{9}+\sqrt[3]{3}+1}:$$
 اجعل المقام عدد جذري: و $\frac{\left(\sqrt[5]{\sqrt[3]{9}}\right)^2\times 3^{\frac{1}{2}}\sqrt{27}\times 3^{\frac{5}{2}}}{\sqrt[6]{3}\times\sqrt{3}}=\sqrt{3}$ و $\sqrt[3]{3}+\sqrt[3]{3}+1$ اجعل المقام عدد جذري: $\sqrt[3]{3}+\sqrt[3]{3}+1$ اجعل المقام عدد جذري: $\sqrt[3]{3}+\sqrt[3]{3}+1$

<u>. 12</u>

.
$$f(x) = \sqrt[6]{9-x^2} - \sqrt[7]{x+1}$$
 ' $f(x) = \sqrt[3]{(x-1)(x+3)}$ ' $f(x) = \sqrt{x^2-3}$ یا دد مجموعة تعریف الدوال التالیة:

<u>. 13</u>

(E) . خد مجموعة تعريف المعادلة (E) :
$$\sqrt[3]{(x+2)^2} - \sqrt[3]{x+2} + 3 = 0$$
. ثم حل المعادلة (E). ثم حل المعادلة (E).

15:59 2015-09-27

. 14

حسب النهايات التالية:

$$\lim_{x\to +\infty} \sqrt[3]{x^3+x+1} - \sqrt[4]{x^5+1} : \lim_{x\to +\infty} \frac{\sqrt[3]{x^3+1}-1}{\sqrt{x^2+1}-1} : \lim_{x\to 1^+} \frac{x}{\sqrt[3]{x-1}} : \lim_{x\to 4^-} \frac{\sqrt[6]{4-x}}{x} : \lim_{x\to -\infty} \sqrt[5]{x^4+1} : \lim_{x\to +\infty} \sqrt[3]{x^3+x+1} = 0$$

$$\lim_{x \to (-1)^+} \frac{\sqrt[4]{x^5 + 1}}{x + 1} \cdot \lim_{x \to +\infty} \frac{\sqrt[3]{x^3 + 1} - 1}{\sqrt{x^2 + 1} - 1} \cdot \lim_{x \to 0} \frac{\sqrt[4]{x + 2} - \sqrt[4]{3x - 2}}{x} \cdot \lim_{x \to 0} \frac{\sqrt[3]{1 + x^2} - 1}{x^2} \cdot \lim_{x \to +\infty} \sqrt[3]{x^3 + x + 1} - x \cdot \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x - 1} \cdot \lim_{x \to 0} \frac{\sqrt[3]{x} - 1}{x - 1} \cdot$$

. 15

$$f(x) = \sqrt[3]{1-x}$$
 ; $x < 0$ نتكن f الدالة العددية للمتغير الحقيقي x المعرفة ب: $f(x) = \frac{1}{1+\sqrt{x}}$; $x \ge 0$

النتيجة وأول مبيانيا النتيجة $\lim_{x\to\infty} f(x)$

. $\mathbf{x}_0 = \mathbf{0}$ أدرس اتصال \mathbf{f} في النقطة أ

<u>. 16</u>

. $f(x) = \frac{x}{\sqrt[3]{x^2 + 1}}$: لتكن f(x) الدالة العددية المعرفة كما يلي

 $oldsymbol{0}_{ ext{f}}$ حدد $oldsymbol{D}_{ ext{f}}$ مجموعة تعريف الدالة

 $\mathbf{D}_{\mathbf{f}}$ ادرس زوجية الدالة \mathbf{f} على ا

. اعط تأويلا هندسيا للنتيجة المحصل عليها . $\lim_{x \to +\infty} \frac{f(x)}{x}$ و $\lim_{x \to +\infty} f(x)$: اعط أحسب النتيجة المحصل عليها .

ا عليها . $\lim_{x \to 0^+} \frac{f(x)}{x}$ ا أعط تأويلا هندسيا للنتيجة المحصل عليها .