Modern ZK Crypto

Session 4: Circom 2

Vivek Bhupatiraju Personae / 0xPARC

vivboop

- Graduated from MIT in Spring '22, CS major + math minor
- Cryptography researcher at Personae / 0xPARC
 - Client-side ZK proving
 - Investigating how ZK can change how we express ourselves online (more ownership of personal data, enabling more pseudonymous characters, avoiding misinformation)
- Started through CS-PRIMES at MIT in 2016! Applied cryptography research in the Devadas Lab
- I really like music & decor !

Today's session

- Simple ZK signature scheme
- Simple group signatures scheme
- Merkle trees to enable larger groups
- snarkjs compilation pipeline

<u>Signatures & group signatures</u>

- Normal signature
 - KeyGen → (sk, pk): selects a random secret key sk and corresponding public key pk
 - Sign(m, sk) → s: given a message m and secret key, outputs a signature s
 - Verify(m, s, pk) \rightarrow 1/0: given a message m, a signature s, and a public key pk, verifies if signature is valid
- Should be basically impossible be able to generate valid signature without knowledge of secret key

<u>Signatures & group signatures</u>

- Group signature for group **G**
 - KeyGen → (sk_i, pk_i): selects a random set of secret keys sk_i and corresponding public keys pk_i for each member of group
 - GroupSign(m, sk $_{i}$, G) $_{\rightarrow}$: given a message m and secret key, outputs a signature s
 - GroupVerify(m, s, G) \rightarrow 1/0: given a message m, a signature s, and the group ${\bf G}$, verifies if the signature came from the group
- Bespoke cryptographic solutions are usually fairly complicated