Assignment 1

Q1. The first order (- $r_A = kC_A$,) reaction $A \rightarrow B$ is carried out in a tubular reactor in which $F_{Ao}=8$ mol/min. The volumetric flow rate, v, is constant. i.e. $v = v_0$ Determine the reactor volume necessary to reduce the exiting concentration to 80% of the entering concentration when the volumetric flow rate is 8 dm³/min (i.e. litre/min) and the specific reaction rate k is 0.13 min⁻¹. Calculate the volume of a CSTR for the conditions used to figure the plug-flow reactor volume. Which volume is larger the PFR or the CSTR? Explain why.

Q2 The reaction is to be carried out isothermally in a continuous-flow reactor. Calculate both the CSTR and PFR reactor volumes necessary to obtain a conversion of 90% when the entering molar flow rate is 10 mol/h, assuming the reaction rate -r_A is:

(a) $-r_A$, = k with k = 0.01 molh⁻¹ dm⁻³

(b) $-r_A = kC_A$, with $k = 0.1h^{-1}$

(c) $-r_A = kC_A^2$: with $k = 1 \text{ dm}^3 \text{mole}^{-1} h^{-1}$

The entering volumetric flow rate is 5 dm³/hr

(d) Repeat (a), (b), and (c) to calculate the time necessary to consume 99.9% of species A in a 800 dm 3 constant volume batch reactor with $C_{A0} = 2 \text{ mol/dm}^3$.

Q3 A gas phase reaction in a constant volume batch reactor at 20 atm is carried out isothermally at 127°c with a mixture of 80% A and 20% B inert.

A→ Product

Volume of reactor = 100 dm³ Pressure = 20 atm Temperature = 127°C

- a. Assuming that the ideal gas law is valid, how many moles of A are in the reactor initially? What is the initial concentration of A?
- b. If the reaction is first order calculate the time necessary to consume 99.9% of A. (k=0.2min⁻¹)
- c. If the reaction is second order calculate the time to consume 90% of A. Also calculate the pressure in the reactor at this time if the temperature is 227°C. (k=0.7 dm³/mol⁻¹min⁻¹)

Q4 Two stirred tank reactors are available at a chemical plant, one of volume 100 m³ and the other of volume 40 m³. It is suggested that these tanks be used as a two stage CSTR for carrying out an irreversible liquid phase reaction,

$$A + B \rightarrow Products$$

The two reactants only will be present in the feed stream in equimolar amounts, $C_{Ao} = C_{Bo} = 2.5$ gmol/lit. The volumetric feed rate will be 20 lit/min. The reaction is first order with respect to each of the reactants A and B i.e., second order overall. The rate constant is 0.02 lit/(gmol.min). Which tank should be used as the first stage for higher overall conversion? With this arrangement, calculate the overall conversion obtainable under steady state conditions.