Mathematik E-Phase Funktionen

Elias Peeters

November 19, 2017

Danksagung

Contents

1 Fur		unktionsuntersuchung		4
	1.1	Nullestellenberechnung ganzrationaler Funktionen		4
		1.1.1	Lineare Funktion	4
		1.1.2	Quadratische Funktionen	4
		1.1.3	Höhergradige Funktionen	5
	1.2	Der G	rad einer Funktion	7

1 Funktionsuntersuchung

1.1 Nullestellenberechnung ganzrationaler Funktionen

1.1.1 Lineare Funktion

$$f(x) = 3x - 7$$

f(x) mit Null gleichsetzen.

$$0 = 3x - 7$$

$$7 = 3x$$

$$x_0 = \frac{7}{3}$$

 $(\frac{7}{3}|0)$ Schnittpunkt mit der x-Achse

1.1.2 Quadratische Funktionen

$$g(x) = 4x^2 + 7x - 3$$

g(x) mit Null gleichsetzen.

$$0 = 4x^2 + 7x - 3$$

Um die Nullstelle einer Quadratischen Funktionzuberechen, wird die p-q-Formel angewendet. Dafür darf das x^2 nie einen zweiten Faktor haben.

$$0 = x^2 + \frac{7}{4}x - \frac{3}{4}$$

Die Allgemeine p-q-Formel aufschreiben.

$$x_{01|02} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Gleichung in die p-q-Formel einsetzen.

$$x_{01|02} = -\frac{8}{7} \pm \sqrt{\frac{49}{64} + \frac{3}{4}}$$

$$x_{01} = -\frac{3}{4}$$

$$x_{02} = -1$$

Bemerkung: Quadratische Funktionen knnen eine, zwei oder keine Nullstellen haben.

1.1.3 Höhergradige Funktionen

Variante 1: Substitution

Eine höhergradige Funktion kann nur substituiert werden, wenn sie dieser Form entspricht:

$$f(x) = ax^{2\alpha} + bx^{\alpha} + c$$

$$f(x) = x^4 + 2x^2 - 1$$

Substitution: $x^2 = z = \xi x^4 = z^2$

f(x) mit Null einsetzen und x mit z ersetzen.

$$0 = z^2 + 2z - 1$$

Anwenden der p-q-Formel.

$$x_{01|02} = -\frac{2}{2} \pm \sqrt{\frac{4}{4} + 1}$$

$$x_{01} = -1 + \sqrt{2} \approx 0.41$$

$$x_{02} = -1\sqrt{2} \approx -2,41$$

Rücksubstitution:

$$0.41 = x^2$$

$$x_{01} = \sqrt{0.41}$$

$$x_{02} = -\sqrt{0.41}$$

$$-2,41 = x^2$$

$$x_{03} = \sqrt{-2.41}$$
 (nicht möglich)

$$x_{04} = -\sqrt{-2,41}$$
 (nicht möglich)

Die Funktion f(x) hat nur zwei Nullstellen, da der Inhalt einer Wurzel nicht negativ sein darf.

Variante 2: Linearfaktoren

$$f(x) = \frac{1}{2}(x+3)^3(x-1)^2(x+9)x$$

Ein Produkt ist genau null, wenn einer der Faktoren null ist.

$$x_{01} = 0$$

$$x_{02} = -9$$

$$x_{03} = 1$$

$$x_{04} = -3$$

Man versucht, dass ein Produkt der Funktion 0 ist und damit die ganze Gleichung 0 ist. Sind die Nullstellen einer ganz-Rationalen-Funktion bekannt, so kann man sie in Form von Linearfaktoren angeben.

1.2 Der Grad einer Funktion

Der Grad einer Funktion ist die höchste Potenz, die die Funktion hat. Bei der Funktion $f(x)=x^2$ ist der Grad 2. Bei der Funktion $g(x)=x^2+x^3$ ist der Grad drei, da zwei kleiner ist als drei. Die Funktion $f(x)=x^2*x^3$ hat jedoch den Grad 5, da die einzelnen Potenzen hier addiert werden.