Conditional Expectation

 $\chi(s+u)$ $\Lambda = C(0,\infty) \qquad \text{influtte collection of rv's}$ $P(\chi(s+u) \in A \mid \chi(r) : 0 \le r \le s)$

Calculus - based probability:

$$E[y|\vec{Z} = \vec{z}] = \int_{-\infty}^{\infty} y \, f_{y|\vec{z}}(y|\vec{z}) \, dy$$

$$= \int_{-\infty}^{\infty} \frac{f_{y,\vec{z}}(y,\vec{z})}{f_{\vec{z}}(\vec{z})} \, dy$$
joint involved in infinite v.v.
$$= \int_{-\infty}^{\infty} \frac{f_{y,\vec{z}}(y,\vec{z})}{f_{\vec{z}}(\vec{z})} \, dy$$

ey. W_1, W_2, \dots i.i.d. $f_W(\cdot)$, $W \in \mathbb{Z}_{0,1}$]

claims joint $\widetilde{\mathbb{M}} f_W(w_1) = 0$

claims joint
$$\frac{\pi}{n} \int_{-\infty}^{\infty} du \int_{-\infty}^$$

$$\log \left(\prod_{i=1}^{n} f(u_{i}) \right) \approx \min \left\{ \log f(u) \rightarrow -\infty \text{ a.s. as } n \rightarrow \infty \right\}$$

Prediction Theory

Prob space supporting y, $\frac{2}{2}$ Given: observation of $\frac{2}{2}$ product y $y = h(\frac{2}{2})$ deterministic \hat{y} 'close to' y : minimize $||\hat{y} - y||_p$

W, EIWIP =
$$\infty$$
, $p \ge 1$

IT WIP = $(E|W|P)^{\frac{1}{p}}$

*arm" on $L^p = \{8, E|2|^p < \infty\}$

- II C WIP

- II C WIP

- IWI + WI II = IWI II + IIWI IIP

- detance by We and We

Find a v.v.
$$\hat{y} = \int_{-\infty}^{+\infty} (\hat{z})$$
 which minimizes
$$\|y - g(\hat{z})\|_{p}$$
 over all deterministic $f(\cdot)$ set. $E[|\hat{z}||^{p} < \infty]$ Lie. $f(\hat{z}) \in L^{p}$)

Find
$$f = g^{*(2)}$$
 minimiting
$$(E(\gamma - g(2))^{2})^{\frac{1}{2}} = ||\gamma - g(2)||_{1}$$
over all deterministic $f(\cdot)$ set. $E||2||^{2} < \infty$ (i.e. $f(2) \in L^{2}$)

Into Geometry

where
$$L^2$$
 L^2
 L^2

$$\langle y, \hat{y}, w \rangle = 0$$

Define 1

$$E[\gamma] = \hat{\gamma}$$
 $E[\gamma^2] = \hat{\gamma}$
 $E[\gamma^2] = \infty$
 $E[\gamma] = \infty$