

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

**THIS PAGE BLANK (USPTO)**

09/691, 915



**PCT**  
**WELTORGANISATION FÜR GEISTIGES EIGENTUM**  
 Internationales Büro  
**INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE**  
**INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (51) Internationale Patentklassifikation 6 :<br><br>C07D 307/54, 307/46, 333/24, 333/22,<br>263/32, 263/10, 261/08, 261/04, 277/30,<br>277/26, 271/06, A01N 43/08, 43/10, 43/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (11) Internationale Veröffentlichungsnummer: <b>WO 96/26200</b><br><br>(43) Internationales Veröffentlichungsdatum: <b>29. August 1996 (29.08.96)</b> |  |
| (21) Internationales Aktenzeichen: <b>PCT/EP96/00593</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | <p>[DE/DE]; Sebastian-Kneipp-Strasse 17, D-67105 Schifferstadt (DE). WALTER, Helmut [DE/DE]; Grünstadter Strasse 82, D-67283 Obrigheim (DE). WESTPHALEN, Karl-Otto [DE/DE]; Mausbergweg 58, D-67346 Speyer (DE). MISSLITZ, Ulf [DE/DE]; Am Herz 40, D-67433 Neustadt (DE).</p> <p>(74) Gemeinsamer Vertreter: <b>BASF AKTIENGESELLSCHAFT</b>; D-67056 Ludwigshafen (DE).</p> <p>(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, EE, FI, GE, HU, JP, KR, LT, LV, MX, NO, NZ, PL, SG, SK, TR, UA, US, UZ, VN, eurasisches Patent (AZ, BY, KG, KZ, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> |                                                                                                                                                       |  |
| (22) Internationales Anmeldedatum: <b>13. Februar 1996 (13.02.96)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| (30) Prioritätsdaten:<br><b>195 06 574.3 24. Februar 1995 (24.02.95) DE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| (71) Anmelder ( <i>für alle Bestimmungsstaaten ausser US</i> ): <b>BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| (72) Erfinder; und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| (75) Erfinder/Anmelder ( <i>nur für US</i> ): <b>VON DEYN, Wolfgang [DE/DE]; Lüderitzstrasse 4, D-67434 Neustadt (DE). HILL, Regina, Luise [DE/DE]; Ziegelofenweg 40, D-67346 Speyer (DE). KARDORFF, Uwe [DE/DE]; D 3,4, D-68159 Mannheim (DE). ENGEL, Stefan [DE/DE]; Friedrich-Ebert-Strasse 13, D-65510 Idstein (DE). OTTEN, Martina [DE/DE]; Gunterstrasse 28, D-67069 Ludwigshafen (DE). VOSSEN, Marcus [DE/DE]; Wilhelm-Wundt-Strasse 7, D-68199 Mannheim (DE). PLATH, Peter [DE/DE]; Hans-Balcke-Strasse 13, D-67227 Frankenthal (DE). RANG, Harald [DE/DE]; Ziegeleistrasse 7, D-67122 Altrip (DE). HARREUS, Albrecht [DE/DE]; Beuthener Strasse 10, D-67063 Ludwigshafen (DE). RÖHL, Franz</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| (54) Title: HERBICIDAL BENZOYL DERIVATIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | <b>Veröffentlicht</b><br><i>Mit internationalem Recherchenbericht.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |  |
| (54) Bezeichnung: HERBIZIDE BENZOYLDERIVATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| (57) Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
| <p>The invention concerns benzoyl derivatives of formula (I) in which the substituents have the following meanings: L and M represent hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>2</sub>-C<sub>6</sub> alkynyl, C<sub>1</sub>-C<sub>4</sub> alkoxy (these groups being optionally substituted by one to five halogen atoms or C<sub>1</sub>-C<sub>4</sub> alkoxy), halogen, cyano, nitro, a -(Y)<sub>n</sub>-S(O)<sub>m</sub>R<sup>7</sup> or -(Y)<sub>n</sub>-CO-R<sup>8</sup> group; Z represents a five to six-membered heterocyclic saturated or unsaturated group containing one to three heteroatoms selected from the group comprising oxygen, sulphur and nitrogen and which can optionally be substituted by halogen, cyano, nitro, a -CO-R<sup>8</sup> group, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkyl halide, C<sub>3</sub>-C<sub>8</sub> cycloalkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> alkoxy halide, C<sub>1</sub>-C<sub>4</sub> alkyl thio, C<sub>1</sub>-C<sub>4</sub> alkyl thio halide, di-C<sub>1</sub>-C<sub>4</sub> alkyl amino, phenyl optionally substituted by halogen, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> alkyl halide, or an oxo group which can be present in the tautomeric form as a hydroxy group, is substituted or, together with a condensation-bound phenyl ring which is optionally substituted by halogen or, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> alkyl halide, with a condensation-bound carbocycle or with a condensation-bound second heterocycle which can optionally be substituted by halogen, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, di-C<sub>1</sub>-C<sub>4</sub> alkyl amino, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> alkoxy halide or a C<sub>1</sub>-C<sub>4</sub> alkyl halide, forms a bicyclic system; Y represents O or NR<sup>9</sup>; n is 0 or 1; m is 0, 1 or 2; R<sup>7</sup> represents C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkyl halide or NR<sup>9</sup>R<sup>10</sup>; R<sup>8</sup> represents C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkyl halide, C<sub>1</sub>-C<sub>4</sub> alkoxy or NR<sup>9</sup>R<sup>10</sup>; R<sup>9</sup> represents hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl; R<sup>10</sup> represents C<sub>1</sub>-C<sub>4</sub> alkyl; Q represents a cyclohexane-1,2-dione ring connected at position 2 and of formula (II) in which R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup> and R<sup>6</sup> represent hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl, R<sup>5</sup> represents hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl or a -COOR<sup>10</sup> group, R<sup>3</sup> represents hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>8</sub> cycloalkyl, these groups optionally including one to three of the following substituents: halogen, C<sub>1</sub>-C<sub>4</sub> alkyl thio, C<sub>1</sub>-C<sub>4</sub> alkoxy, or R<sup>3</sup> represents tetrahydropropenyl-3, tetrahydropropenyl-4 or tetrahydrothiopyranyl-3, or R<sup>3</sup> and R<sup>5</sup> together form a bond or a three to six-membered carbocyclic ring. The invention also concerns standard agricultural salts of compounds of formula (I) usually utilized in agriculture.</p> |  | <br><b>(I)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | <br><b>(II)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | <br><b>(III)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |  |

(57) Zusammenfassung

Benzoylderivate der Formel (I), in der die Substituenten folgende Bedeutungen haben: L, M Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, wobei diese Gruppen gegebenenfalls durch ein bis fünf Halogenatome oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiert sein können, Halogen, Cyano, Nitro, eine Gruppe -(Y)<sub>n</sub>-S(O)<sub>m</sub>R<sup>7</sup> oder eine Gruppe -(Y)<sub>n</sub>-CO-R<sup>8</sup>, ein 5- oder 6-gliedriger heterocyclicischer, gesättigter oder ungesättigter Rest, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, der gegebenenfalls durch Halogen, Cyano, Nitro, eine Gruppe -CO-R<sup>8</sup>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylothio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino, gegebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituiertes Phenyl oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist oder der mit einem ankondensierten, gegebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierten Phenylring, einem ankondensierten Carbocyclus oder einem ankondensierten, gegebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierten zweiten Heterocyclus ein bicyclisches System bildet; Y O, NR<sup>9</sup>; n null oder eins; m null, eins oder zwei; R<sup>7</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder NR<sup>9</sup>R<sup>10</sup>; R<sup>8</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, oder NR<sup>9</sup>R<sup>10</sup>; R<sup>9</sup> Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl; R<sup>10</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl; Q ein in 2-Stellung verknüpfter Cyclohexan-1,3-dionring der Formel (II), in welcher R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup> und R<sup>6</sup> Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl bedeuten, R<sup>5</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder eine Gruppe -COOR<sup>10</sup> bedeutet, R<sup>3</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl bedeutet, wobei diese Gruppen gegebenenfalls einen bis drei der folgenden Substituenten tragen können: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkylothio, oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy, oder R<sup>3</sup> Tetrahydropyran-3, Tetrahydropyran-4 oder Tetrahydrothiopyran-3 bedeutet, oder R<sup>3</sup> und R<sup>5</sup> gemeinsam eine Bindung oder einen drei- bis sechs-gliedrigen carbocyclischen Ring bilden, sowie landwirtschaftlich übliche Salze der Verbindungen (I).

**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                                |    |                                   |    |                                |
|----|--------------------------------|----|-----------------------------------|----|--------------------------------|
| AM | Armenien                       | GB | Vereiniges Königreich             | MX | Mexiko                         |
| AT | Österreich                     | GE | Georgien                          | NE | Niger                          |
| AU | Australien                     | GN | Guinea                            | NL | Niederlande                    |
| BB | Barbados                       | GR | Griechenland                      | NO | Norwegen                       |
| BE | Belgien                        | HU | Ungarn                            | NZ | Neuseeland                     |
| BF | Burkina Faso                   | IE | Irland                            | PL | Polen                          |
| BG | Bulgarien                      | IT | Italien                           | PT | Portugal                       |
| BJ | Benin                          | JP | Japan                             | RO | Rumänien                       |
| BR | Brasilien                      | KE | Kenya                             | RU | Russische Föderation           |
| BY | Belarus                        | KG | Kirgisistan                       | SD | Sudan                          |
| CA | Kanada                         | KP | Demokratische Volksrepublik Korea | SE | Schweden                       |
| CF | Zentrale Afrikanische Republik | KR | Republik Korea                    | SG | Singapur                       |
| CG | Kongo                          | KZ | Kasachstan                        | SI | Slowenien                      |
| CH | Schweiz                        | LI | Liechtenstein                     | SK | Slowakei                       |
| CI | Côte d'Ivoire                  | LK | Sri Lanka                         | SN | Senegal                        |
| CM | Kamerun                        | LR | Liberia                           | SZ | Swasiland                      |
| CN | China                          | LK | Litauen                           | TD | Tschad                         |
| CS | Tschechoslowakei               | LU | Luxemburg                         | TG | Togo                           |
| CZ | Tschechische Republik          | LV | Lettland                          | TJ | Tadschikistan                  |
| DE | Deutschland                    | MC | Monaco                            | TT | Trinidad und Tobago            |
| DK | Dänemark                       | MD | Republik Moldau                   | UA | Ukraine                        |
| EE | Estland                        | MG | Madagaskar                        | UG | Uganda                         |
| ES | Spanien                        | ML | Mali                              | US | Vereinigte Staaten von Amerika |
| FI | Finnland                       | MN | Mongolei                          | UZ | Usbekistan                     |
| FR | Frankreich                     | MR | Mauretanien                       | VN | Vietnam                        |
| GA | Gabon                          | MW | Malawi                            |    |                                |

**Herbizide Benzooylderivate****Beschreibung****5**

Die vorliegende Erfindung betrifft neue Benzooylderivate mit herbizider Wirkung, Verfahren zur Herstellung der Benzooylderivate, Mittel welche diese enthalten sowie die Verwendung dieser Derivate oder sie enthaltender Mittel zur Unkrautbekämpfung.

**10**

Aus der Literatur sind herbizidwirksame 2-Aroylcyclohexandione bekannt, beispielsweise aus EP 90262, EP 135191, EP 186118, EP 186119, EP 186120, EP 319075, WO 9005712, J0 3052862 und J0 3120202.

**15**

Die herbiziden Eigenschaften der bekannten Verbindungen sowie die Verträglichkeit gegenüber Kulturpflanzen können jedoch nur bedingt befriedigen.

**20** Die Aufgabe bestand darin neue 2-Aroylcyclohexandione mit verbesserten Eigenschaften zu finden.

Es wurden nun neue Benzooylderivate der Formel I gefunden

**25**

**30** in der die Substituenten folgende Bedeutungen haben:

L, M Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, wobei diese Gruppen gegebenenfalls durch ein bis fünf Halogenatome oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy substituiert sein können, Halogen, Cyano, Nitro, eine Gruppe -(Y)<sub>n</sub>-S(O)<sub>m</sub>-R<sup>7</sup> oder eine Gruppe -(Y)<sub>n</sub>-CO-R<sup>8</sup>,

**35**

Z ein 5- oder 6-gliedriger heterocyclischer, gesättigter oder ungesättigter Rest, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, der gegebenenfalls durch Halogen, Cyano, Nitro, eine Gruppe -CO-R<sup>8</sup>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino oder gegebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituiertes Phenyl oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist oder der mit einem

## 2

ankondensierten durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierten Phenylring, einem ankondensierten Carbocyclus oder einem ankondensierten, gegebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl,  
 5 Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierten zweiten Heterocyclus ein bicyclisches System bildet,

Y O, NR<sup>9</sup>,  
 10 n null oder eins,  
 m null, eins oder zwei,  
 R<sup>7</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder NR<sup>9</sup>R<sup>10</sup>,  
 R<sup>8</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, oder NR<sup>9</sup>R<sup>10</sup>,  
 R<sup>9</sup> Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl,  
 15 R<sup>10</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl,  
 Q ein in 2-Stellung verknüpfter Cyclohexan-1,3-dionring der Formel II,



25 in welcher

R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup> und R<sup>6</sup> Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl bedeuten,  
 R<sup>3</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder eine Gruppe -COOR<sup>10</sup> bedeutet,  
 R<sup>5</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl bedeutet, wobei  
 30 diese Gruppen gegebenenfalls einen bis drei der folgenden Substituenten tragen können: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy,

oder

35 R<sup>3</sup> Tetrahydropyranyl-3, Tetrahydropyranyl-4 oder Tetrahydrothiopyranyl-3 bedeutet,

oder

40 R<sup>3</sup> und R<sup>5</sup> gemeinsam eine Bindung oder einen drei- bis sechsgliedrigen carbocyclischen Ring bilden,

sowie landwirtschaftlich übliche Salze der Verbindungen I.

45

## 3

Bevorzugt sind Benzooylderivate der Formel Ia

5



Ia

in der L für C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl,  
**10** C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogen-  
 alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen,  
 Nitro oder Cyano und M für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl,  
 C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio,  
 C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio,  
**15** C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro oder Cyano steht und Q und Z  
 die oben angegebenen Bedeutungen haben.

Bevorzugt sind auch Benzooylderivate der Formel Ib

20



Ib

25

in der L und M für C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl,  
 C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogen-  
 alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen,  
 Nitro oder Cyano stehen und Q und Z die in Anspruch 1 angegebenen  
**30** Bedeutungen haben.

Verbindungen der Formel Ic erhält man dadurch, daß man

Verbindungen der Formel II mit einem Benzoësäurederivat der For-

mel III umsetzt und zu Benzooylderivaten der Formel Ic umlagert:

35

40

45

4

### Schema 1



**25** In den oben genannten Formeln hat T die Bedeutung Halogen und L, M und Z die oben angegebene Bedeutung.

Der erste Schritt der Reaktionsabfolge, die Acylierung, erfolgt in allgemein bekannter Weise, z. B. durch Zugabe eines Säurechlorids der Formel III ( $T=Cl$ ) zur Lösung oder Suspension eines Cyclohexan-1,3-dions II in Gegenwart einer Hilfsbase. Die Reaktanden und die Hilfsbase werden dabei zweckmäßig in äquimolaren Mengen eingesetzt. Ein geringer Überschuß, z.B. 1,2 bis 1,5-Mol-äquivalente, bezogen auf II, der Hilfsbase kann u.U. vorteilhaft sein.

Als Hilfsbase eignen sich tertiäre Alkylamine, Pyridin oder Alkalicarbonate. Als Lösungsmittel können z.B. Methylenchlorid, Diethylether, Toluol oder Essigsäureethylester verwendet werden.

40 Während der Zugabe des Säurechlorids wird die Reaktionsmischung vorzugsweise auf 0 bis 10°C gekühlt, danach wird bei einer Temperatur von 20 bis 100°C, insbesondere 25 bis 50°C gerührt, bis die Umsetzung beendet ist. Die Aufarbeitung erfolgt in üblicher Weise, z.B. wird das Reaktionsgemisch in Wasser gegossen und das Wertprodukt extrahiert, z.B. mit Methylchlorid. Nach Trocknen der organischen Phase und Entfernung des Lösungsmittels kann der

45

## 5

rohe Enolester ohne weitere Reinigung zur Umlagerung eingesetzt werden. Herstellungsbeispiele für Benzoyl-enolester von Cyclohexan-1,3-dione findet man z. B. in EP-A 186 118 oder US 4,780,127.

## 5

Die Umlagerung der Enolester zu den Verbindungen der Formel Ic erfolgt zweckmäßig bei Temperaturen von 20°C bis 40°C in einem Lösungsmittel und in Gegenwart einer Hilfsbase sowie mit Hilfe einer Cyanoverbindung als Katalysator.

## 10

Als Lösungsmittel kann z.B. Acetonitril, Methylenechlorid, 1,2-Dichlorethan, Essigsäureethylester oder Toluol verwendet werden. Bevorzugtes Lösungsmittel ist Acetonitril. Als Hilfsbase eignen sich tertiäre Alkylamine, Pyridin oder Alkalicarbonate, die vorzugsweise in äquimolarer Menge oder bis zu vierfachem Überschuß, bezogen auf den Benzoylenolester, eingesetzt werden. Bevorzugte Hilfsbase ist Triethylamin in doppelter Menge.

## 15

Als Katalysator eignen sich z.B. Kaliumcyanid oder Acetoncyanhydrin, vorzugsweise in einer Menge von 1 bis 50 Molprozent, bezogen auf den Enolester. Bevorzugt setzt man Acetoncyanhydrin zu, z.B. in der Menge von 5 bis 15, insbesondere 10 Molprozent. Beispiele zur cyanidkatalysierten Umlagerung von Enolestern der Cyclohexan-1,3-dione findet man z.B. in EP-A 186 118 oder

## 25

US 4,780,127.

## 20

Die Aufarbeitung erfolgt in an sich bekannter Weise. Z.B. wird das Reaktionsgemisch mit verdünnten Mineralsäuren wie 5 %iger Salzsäure oder Schwefelsäure angesäuert und mit einem organischen Lösungsmittel wie Methylenchlorid oder Essigsäureethylester extrahiert. Zur Reinigung wird der Extrakt mit kalter 5 bis 10 %iger Alkalicarbonatlösung extrahiert, wobei das Endprodukt in die wäßrige Phase übergeht. Durch Ansäuern der wäßrigen Lösung wird das Produkt der Formel IC ausgefällt oder erneut mit Methylenchlorid extrahiert, getrocknet und anschließend vom Lösungsmittel befreit.

## 30

Die als Ausgangsmaterial verwendeten 1,3-Diketone der Formeln II sind bekannt und können nach an sich bekannten Verfahren hergestellt werden (vgl. EP-A 71 707, EP-A 142 741, EP-A 243 313, US 4 249 937 und WO 92/13821). Cyclohexandion-1,3 und Dimedon sind käufliche Verbindungen.

## 35

Benzoësäurederivate der Formel III lassen sich folgendermaßen herstellen:

## 6

Benzoylhalogenide wie beispielsweise Benzoylchloride der Formel III (T = Cl) werden in an sich bekannter Weise durch Umsetzung der Benzoësäuren der Formel III (T = OH) mit Thionylchlorid hergestellt.

## 5

Die Benzoësäuren der Formel III (T = OH) können in bekannter Weise durch saure oder basische Hydrolyse aus den entsprechenden Estern der Formel III (T = C<sub>1</sub>-C<sub>4</sub>-Alkoxy) hergestellt werden.

10 Die Zwischenprodukte der Formel III lassen sich z.B. gemäß Schema 2 und 3 auf den im folgenden beschriebenen Wegen darstellen.

Schema 2

## 15



## 20

T            C<sub>1</sub>-C<sub>4</sub>-Alkoxy,  
 X           Cl, Br, J, -OS(O)<sub>2</sub>CF<sub>3</sub>, -OS(O)<sub>2</sub>F  
 A<sup>-</sup>       Sn(C<sub>1</sub>-C<sub>4</sub>-Alkyl)<sub>3</sub>, B(OH)<sub>2</sub>, ZnHal, wobei Hal für Cl oder Br  
 25           steht  
 L, M, Z   wie oben definiert.

Danach lassen sich die Arylhalogenverbindungen oder Arylsulfonate IV in an sich bekannter Weise mit Heteroarylstannaten (Stille-Kupplungen), Heteroaryl-Borverbindungen (Suzuki-Kupplungen) oder Heteroaryl-Zinkverbindungen (Negishi-Reaktion) V (vgl. z.B. Synthesis 1987, 51-53, Synthesis 1992, 413) in Gegenwart eines Palladium- oder Nickel-Übergangsmetallkatalysators und gegebenenfalls einer Base zu den neuen Verbindungen der allgemeinen Formel III umsetzen.

Die Benzoësäurederivate der Formel III können auch erhalten werden, indem man entsprechende brom- oder iodsubstituierte Verbindungen der Formel VI

## 40

## 45

### Schema 3



**10**      Z<sup>1</sup>      Z oder CN  
          T      OH, C<sub>1</sub>-C<sub>4</sub>-Alkoxy

in der L und M die obengenannte Bedeutung haben, in Gegenwart  
15 eines Palladium-, Nickel-, Cobalt- oder Rhodium-Übergangsmetall-  
katalysators und einer Base mit Kohlenmonoxid und Wasser unter  
erhöhtem Druck umsetzt.

Bevorzugt im Rahmen der vorliegenden Erfindung sind Benzoylderivate der Formel IIIa



in der T, L, M und Z die folgende Bedeutung haben:

**30 T** Chlor, OH oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy  
**L** C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro  
 oder Cyano

**35 M** C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro  
 oder Cyano

**Z** wie oben angegeben.

40

45

8

Bevorzugt sind auch Benzoylederivate der Formel IIIb



in der T,L,M und Z die folgende Bedeutung haben:

**10 T** Chlor, OH oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy  
**L,M** C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro  
 oder Cyano

**15 Z** wie oben angegeben.

Die Katalysatoren Nickel, Cobalt, Rhodium und insbesondere Palladium können metallisch oder in Form üblicher Salze wie in Form von Halogenverbindungen, z.B.  $PdCl_2$ ,  $RhCl_3 \cdot H_2O$ , Acetaten,

**20** z.B.  $\text{Pd}(\text{OAc})_2$ , Cyaniden usw. in den bekannten Wertigkeitsstufen vorliegen. Ferner können Metallkomplexe mit tertiären Phosphinen, Metallalkylcarbonyle, Metallcarbonyle, z.B.  $\text{CO}_2(\text{CO})_8$ ,  $\text{Ni}(\text{CO})_4$ , Metallcarbonyl-Komplexe mit tertiären Phosphinen, z.B.  $(\text{PPh}_3)_2\text{Ni}(\text{CO})_2$ , oder mit tertiären Phosphinen komplexierte Übergangsmetallsalze vorliegen. Die letztgenannte Ausführungsform ist insbesondere im Fall von Palladium als Katalysator bevorzugt. Dabei ist die Art der Phosphinliganden breit variabel. Beispielsweise lassen sie sich durch folgende Formeln wiedergeben:



wobei n die Zahlen 1, 2, 3 oder 4 bedeutet und die Reste R<sup>1</sup> bis R<sup>4</sup> für niedermolekulares Alkyl, z.B. C<sub>1</sub>-C<sub>6</sub>-Alkyl, Aryl,

35 C<sub>1</sub>-C<sub>6</sub>-Alkylaryl, z.B. Benzyl, Phenethyl oder Aryloxy stehen. Aryl ist z.B. Naphthyl, Anthryl und vorzugsweise gegebenenfalls substituiertes Phenyl, wobei man hinsichtlich der Substituenten nur auf deren Inertheit gegenüber der Carboxylierungsreaktion zu achten hat, ansonsten können sie breit variiert werden und umfassen

40 alle inerten C-organischen Reste wie C<sub>1</sub>-C<sub>6</sub>-Alkylreste, z.B. Methyl, Carboxylreste wie COOH, COOM (M ist z.B. ein Alkali-, Erdalkalimetall oder Ammoniumsalz), oder C-organische Reste über Sauerstoff gebunden wie C<sub>1</sub>-C<sub>6</sub>-Alkoxyreste.

45 Die Herstellung der Phosphinkomplexe kann in an sich bekannter Weise, z.B. wie in den eingangs genannten Dokumenten beschrieben, erfolgen. Beispielsweise geht man von üblichen kommerziell

## 9

erwerblichen Metallsalzen wie  $PdCl_2$  oder  $Pd(OCOCH_3)_2$  aus und fügt das Phosphin z.B.  $P(C_6H_5)_3$ ,  $P(n-C_4H_9)_3$ ,  $PCH_3(C_6H_5)_2$ , 1,2-Bis(diphenylphosphino)ethan hinzu.

5 Die Menge an Phosphin, bezogen auf das Übergangsmetall, beträgt üblicherweise 0 bis 20, insbesondere 0,1 bis 10 Moläquivalente, besonders bevorzugt 1 bis 5 Moläquivalente.

Die Menge an Übergangsmetall ist nicht kritisch. Natürlich wird 10 man aus Kostengründen eher eine geringe Menge, z.B. von 0,1 bis 10 Mol.-%, insbesondere 1 bis 5 Mol.-%, bezogen auf den Ausgangsstoff II bzw. III verwenden.

Zur Herstellung der Benzoesäuren III ( $T = OH$ ) führt man die 15 Umsetzung mit Kohlenmonoxid und mindestens äquimolaren Mengen an Wasser, bezogen auf die Ausgangsstoffe VI durch. Der Reaktionspartner Wasser kann gleichzeitig auch als Lösungsmittel dienen, d.h. die maximale Menge ist nicht kritisch.

20 Es kann aber auch je nach Art der Ausgangsstoffe und der verwendeten Katalysatoren von Vorteil sein, anstelle des Reaktionspartners ein anderes inertes Lösungsmittel oder die für die Carboxylierung verwendete Base als Lösungsmittel zu verwenden.

25 Als inerte Lösungsmittel kommen für Carboxylierungsreaktionen übliche Lösungsmittel wie Kohlenwasserstoffe, z.B. Toluol, Xylol, Hexan, Pentan, Cyclohexan, Ether z.B. Methyl-tert.butylether, Tetrahydrofuran, Dioxan, Dimethoxyethan, substituierte Amide wie Dimethylformamid, persubstituierte Harnstoffe wie 30 Tetra-C<sub>1</sub>-C<sub>4</sub>-alkylharnstoffe oder Nitrile wie Benzonitril oder Acetonitril in Betracht.

In einer bevorzugten Ausführungsform des Verfahrens verwendet man einen der Reaktionspartner, insbesondere die Base, im Überschuß, 35 so daß kein zusätzliches Lösungsmittel erforderlich ist.

Für das Verfahren geeignete Basen sind alle inerten Basen, die bei der Umsetzung freiwerdenden Jodwasserstoff bzw. Bromwasserstoff zu binden vermögen. Beispielsweise sind hier tertiäre 40 Amine wie tert.-Alkylamine, z.B. Trialkylamine wie Triethylamin, cyclische Amine wie N-Methylpiperidin oder N,N'-Dimethyl-piperazin, Pyridin, Alkali- oder -hydrogencarbonate, oder tetra-alkylsubstituierte Harnstoffderivate wie Tetra-C<sub>1</sub>-C<sub>4</sub>-alkyl-harnstoff, z.B. Tetramethylharnstoff, zu nennen.

**10**

Die Menge an Base ist nicht kritisch, üblicherweise werden 1 bis 10, insbesondere 1 bis 5 Mol verwendet. Bei gleichzeitiger Verwendung der Base als Lösungsmittel, wird die Menge in der Regel so bemessen, daß die Reaktionspartner gelöst sind, wobei man aus 5 Praktikabilitätsgründen unnötig hohe Überschüsse vermeidet, um Kosten zu sparen, kleine Reaktionsgefäße einsetzen zu können und den Reaktionspartnern maximalen Kontakt zu gewährleisten.

Während der Umsetzung wird der Kohlenmonoxiddruck so eingestellt, 10 daß immer ein Überschuß an CO, bezogen auf VI vorliegt. Vorzugsweise liegt der Kohlenmonoxiddruck bei Raumtemperatur bei 1 bis 250 bar, insbesondere 5 bis 150 bar CO.

Die Carbonylierung wird in der Regel bei Temperaturen von 20 bis 15 250°C, insbesondere bei 30 bis 150°C kontinuierlich oder diskontinuierlich durchgeführt. Bei diskontinuierlichem Betrieb wird zweckmäßigerweise zur Aufrechterhaltung eines konstanten Druckes kontinuierlich Kohlenmonoxid auf das Umsetzungsgemisch aufgepreßt.

**20**

Die als Ausgangsverbindungen benutzten Arylhalogenverbindungen VI sind bekannt oder können leicht durch geeignete Kombination bekannter Synthesen hergestellt werden.

25 Beispielsweise können die Halogenverbindungen VI durch Sandmeyer-Reaktion aus entsprechenden Anilinen erhalten werden, die ihrerseits durch Reduktion von geeigneten Nitroverbindungen (vgl. z.B. für VI mit  $Z = CN$ : Liebigs Ann. Chem. 1980, 768-778) synthetisiert werden. Die Arylbromide VI können außerdem durch direkte 30 Bromierung geeigneter Ausgangsverbindungen erhalten werden [vgl. z.B. Monatsh. Chem. 99, 815-822 (1968)].

**35**

**40**

**45**

## 11

Schema 4



T            C<sub>1</sub>-C<sub>4</sub>-Alkoxy

25 X        Cl, Br, J, -OS(O)<sub>2</sub>CF<sub>3</sub>, -OS(O)<sub>2</sub>F

L, M, Z      wie oben definiert

R<sup>15</sup>        Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>8</sub>-Cyclo-

alkyl, ggf. subst. Phenyl oder Trimethylsilyl,

R<sup>16</sup>        Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl oder

ggf. subst. Phenyl.

Ausgehend von den Arylhalogenverbindungen oder Arylsulfonaten IV lassen sich in Gegenwart eines Palladium- oder Nickel-Übergangsmetallkatalysators und gegebenenfalls einer Base Arylmethylketone IVa nach literaturbekannten Verfahren durch Umsetzung mit Vinylalkylethern und anschließende Hydrolyse herstellen [vgl. z.B. Tetrahedron Lett. 32, 1753-1756 (1991)].

Die ethinylierten Aromaten IVb können in an sich bekannter Weise durch Umsetzung von Arylhalogenverbindungen oder Arylsulfonaten IV mit substituierten Acetylenen in Gegenwart eines Palladium- oder Nickel-Übergangsmetallkatalysators hergestellt werden (z.B. Heterocycles, 24, 31-32 (1986)). Derivate IVb mit R<sup>15</sup>=H erhält man zweckmäßigerweise aus den Silylverbindungen IVb, R<sup>15</sup>=-Si(CH<sub>3</sub>)<sub>3</sub> [J.Org.Chem. 46, 2280-2286 (1981)].

12

12

Durch Heck-Reaktion von Arylhalogenverbindungen oder Arylsulfonaten IV mit Olefinen in Gegenwart eines Palladiumkatalysators werden die Arylalkene IVC erhalten (vgl. z.B. Heck, Palladium Reagents in Organic Synthesis, Academic Pres, London 1985 bzw. Synthesis 1993, 735-762).

Die als Ausgangsverbindungen benutzten Benzoylderivate IV sind bekannt [ vgl. z.B. Coll. Czech. Chem. Commn. 40, 3009-3019 (1975) ] oder können leicht durch geeignete Kombination bekannter Synthesen hergestellt werden.

Beispielsweise können die Sulfonate IV ( $X = -OS(O)_2CF_3$ ,  $-OS(O)_2F$ ) aus den entsprechenden Phenolen, die ihrerseits bekannt sind (vgl. z.B. EP 195247) oder nach bekannten Methoden hergestellt werden können, erhalten werden (vgl. z.B. Synthesis 1993, 735-762).

Die Halogenverbindungen IV ( $X = Cl$ , Br oder I) können beispielsweise durch Sandmeyer-Reaktion aus entsprechenden Anilinen erhalten werden.

### Schema 5



## 13

T ist C<sub>1</sub>-C<sub>6</sub>-Alkoxy und L, M wie oben definiert.

Isophthalsäurederivate IVf können aus den Aldehyden IVe nach bekannten Verfahren hergestellt werden [ s. J. March Advanced Organic Chemistry 3. Aufl., S. 629ff, Wiley-Interscience Publication (1985) ].

Die Oxime IVg erhält man vorteilhaft dadurch, daß man in an sich bekannter Weise Aldehyde IVe mit Hydroxylamin umsetzt [ s. J. March Advanced Organic Chemistry 3. Aufl., S. 805-806, Wiley-Interscience Publication (1985) ].

Die Umwandlung der Oxime IVg in Nitrile IVh kann ebenfalls nach an sich bekannten Verfahren erfolgen [ s. J. March Advanced Organic Chemistry 3. Aufl., S. 931-932, Wiley-Interscience Publication (1985) ].

Die als Ausgangsverbindungen benötigten Aldehyde IVe sind bekannt oder nach bekannten Methoden herstellbar. Beispielsweise können sie gemäß Schema 6 aus den Methylverbindungen VII synthetisiert werden.

Schema 6



Die Reste T, M und L haben die unter Schema 5 genannte Bedeutung. Die Methylverbindungen VII können nach allgemein bekannten Methoden, beispielsweise mit N-Bromsuccinimid oder 1,3-Dibrom-5,5-dimethylhydantoin, zu den Benzylbromiden VIII umgesetzt werden. Die Umsetzung von Benzylbromiden zu Benzaldehyden IVe ist ebenfalls literaturbekannt [vgl. Synth. Commun. 22 1967-1971 (1992)].

40 Die Vorprodukte IVa bis IVh eignen sich zum Aufbau heterocyclischer Zwischenprodukte III.

Beispielsweise können aus den Acetophenonen IVa über die halogenierte Zwischenstufe IVd 5-Oxazolyl-[ vgl. z.B. J. Heterocyclic Chem., 28, 17-28 (1991) ] oder 4-Thiazolyl-derivate [vgl.

## 14

z.B. Metzger, Thiazoles in: The Chemistry of heterocyclic compounds, Vol.34 S. 175ff (1976)] erhalten werden.

Die Acetylene IVb bzw. die Alkene IVc eignen sich zum Aufbau von 5 4-Isoxazolyl-, 5-Isoxazolyl-, 4,5-Dihydroisoxazol-4-yl-, 4,5-Dihydroisoxazol-5-yl-derivaten [vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. X/3, S. 843ff (1965)].

Aus den Benzoesäuren IVf bzw. den daraus nach Standardverfahren 10 erhältlichen Säurechloriden IVi können beispielsweise nach literaturbekannten Verfahren 2-Oxazolyl-, 1,2,4-Oxadiazol-5-yl-, 1,3,4-Oxadiazol-2-yl-derivate [vgl. z.B. J. Heterocyclic Chem., 28, 17-28 (1991)] oder 2-Pyrrolyl-derivate [vgl. z.B. Heterocycles 26, 3141-3151 (1987)] hergestellt werden.

## 15

1,2,4-Triazol-3-yl-derivate sind aus Benzonitrilen IVh nach bekannten Methoden [vgl. z.B. J. Chem. Soc. 3461-3464 (1954)] herzustellen.

20 Die Benzonitrile IVh können über die Zwischenstufe der Thioamide, Amidoxime oder Amdine IVm in 1,2,4-Oxadiazol-3-yl- [vgl. z.B. J. Heterocyclic Chem., 28, 17-28 (1991)] 2-Thiazolyl-, 4,5-Dihydro-thiazol-2-yl- oder 5,6-Dihydro-4-H-1,3-thiazin-2-yl-derivate [vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, 4.

25 25 Aufl., Bd. E5, S. 1268ff (1985)] umgewandelt werden. Aus den Thioamiden IVm ( $A=S$ ) sind nach literaturbekannten Verfahren auch 1,2,4-Thiadiazol-5-yl-derivate [vgl. z.B. J.Org.Chem. 45 3750-3753 (1980)] oder 1,3,4-Thiadiazol-2-yl-derivate [vgl. z.B. J. Chem.Soc., Perkin Trans. I 1987-1991 (1982)] erhältlich.

## 30

Die Umwandlung von Oximen IVg in 3-Isoxazolyl-derivate kann in an sich bekannter Weise über die Zwischenstufe der Hydroxamsäure-chloride IVk erfolgen [vgl. z.B. Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. X/3, S. 843ff (1965)].

## 35

Im Hinblick auf die bestimmungsgemäße Verwendung der Benzyldervate der allgemeinen Formel I kommen als Substituenten folgende Reste in Betracht:

## 40 L,M Wasserstoff,

C<sub>1</sub>-C<sub>6</sub>-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 45 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl,

## 15

2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-2-methyl-propyl,

5 insbesondere Methyl, Ethyl, 1-Methylethyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl und 1,1-Dimethylpropyl:

C<sub>2</sub>-C<sub>6</sub>-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl,

10 4-Pentenyl, 3-Methyl-2-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-4-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl,

15 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl,

20 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und Ethyl-2-methyl-2-propenyl,

25

insbesondere 1-Methyl-2-propenyl, 1-Methyl-2-butenyl, 1,1-Dimethyl-2-propenyl und 1,1-Dimethyl-2-butenyl;

C<sub>7</sub>-C<sub>6</sub>-Alkinyl wie Propargyl, 2-Butinyl, 3-Butenyl, 2-Pentinyl,

30 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl,

35 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, n-Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy,

insbesondere C<sub>1</sub>-C<sub>3</sub>-Alkoxy wie Methoxy, Ethoxy, i-Propoxy,

## 16

wobei diese Gruppen gegebenenfalls durch ein bis fünf Halogenatome wie Fluor, Chlor, Brom und Iod, vorzugsweise Fluor und Chlor oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt substituiert sein können.

5

Die vorstehend definierte Gruppe -(Y)<sub>n</sub>-S(O)<sub>m</sub>R' steht beispielsweise für

C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie Methylthio, Ethylthio, n-Propylthio, 1-Methyl-10 ethylthio, n-Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio, insbesondere Methylthio;

C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, n-Propylsulfinyl, 1-Methylethylsulfinyl, n-Butylsulfinyl, 1-Methylpropylsulfinyl, 15 2-Methylpropylsulfinyl und 1,1-Dimethylethylsulfinyl, insbesondere Methylsulfinyl;

C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, n-Propylsulfonyl, 1-Methylethylsulfonyl, n-Butylsulfonyl, 1-Methylpropylsulfonyl, 20 2-Methylpropylsulfonyl und 1,1-Dimethylethylsulfonyl, insbesondere Methylsulfonyl;

C<sub>1</sub>-C<sub>4</sub>-Alkoxsulfonyl wie Methoxysulfonyl, Ethoxysulfonyl, n-Propoxy-25 sulfonyl, 1-Methylethoxysulfonyl, n-Butoxysulfonyl, 1-Methylpropoxysulfonyl, 2-Methylpropoxysulfonyl und 1,1-Dimethylethoxy-sulfonyl, insbesondere Methoxysulfonyl;

N-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfamoyl wie N-Methylsulfamoyl, N-Ethylsulfamoyl, N-n-Propylsulfamoyl, N-1-Methylethylsulfamoyl, N-n-Butylsulfamoyl, 30 N-1-Methylpropylsulfamoyl, N-2-Methylpropylsulfamoyl und N-1,1-Dimethylethylsulfamoyl, insbesondere N-Methylsulfamoyl; N-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinamoyl wie N-Methylsulfinamoyl, N-Ethylsulfinamoyl, N-n-Propylsulfinamoyl, N-1-Methylethylsulfinamoyl, N-n-Butylsulfinamoyl, N-1-Methylpropylsulfinamoyl, N-2-Methylpropylsulfinamoyl und 35 N-1,1-Dimethylethylsulfinamoyl, insbesondere N-Methylsulfinamoyl;

Di-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfamoyl wie Dimethylsulfamoyl, Diethylsulfamoyl, Dipropylsulfamoyl, Dibutylsulfamoyl, N-Methyl-N-ethylsulfamoyl, 40 N-Methyl-N-propylsulfamoyl, N-Methyl-N-1-methylethylsulfamoyl, N-Methyl-N-1,1-Dimethylethylsulfamoyl, Di-1-Methylethylsulfamoyl, N-Ethyl-N-1-Methylethylsulfamoyl und N-Ethyl-N-1,1-dimethylethylsulfamoyl; insbesondere Dimethylsulfamoyl;

45 Di-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinamoyl wie Dimethylsulfinamoyl, Diethylsulfinamoyl, Dipropylsulfinamoyl, Dibutylsulfinamoyl, N-Methyl-N-ethylsulfinamoyl, N-Methyl-N-propylsulfinamoyl, N-Methyl-N-1-methyl-

## 17

ethylsulfinamoyl, N-Methyl-N-1,1-Dimethylethylsulfinamoyl,  
Di-1-Methylethylsulfinamoyl, N-Ethyl-N-1-Methylethylsulfinamoyl  
und N-Ethyl-N-1,1-dimethyl ethylsulfinamoyl; insbesondere Dime-  
thylsulfinamoyl,

5

C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyloxy wie Methylsulfinyloxy, Ethylsulfinyloxy,  
n-Propylsulfinyloxy, 1-Methylethylsulfinyloxy, n-Butylsulfiny-  
loxy, 1-Methylpropylsulfinyloxy, 2-Methylpropylsulfinyloxy und  
1,1-Dimethylethylsulfinyloxy, insbesondere Methylsulfinyloxy;

10

C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyloxy wie Methylsulfonyloxy, Ethylsulfonyloxy,  
n-Propylsulfonyloxy, 1-Methylethylsulfonyloxy, n-Butylsulfony-  
loxy, 1-Methylpropylsulfonyloxy, 2-Methylpropylsulfonyloxy und  
1,1-Dimethylethylsulfonyloxy, insbesondere Methylsulfonyloxy;

15

C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinylamino wie Methylsulfinylamino, Ethylsulfinyl-  
amino, n-Propylsulfinylamino, 1-Methylethylsulfinylamino, n-Bu-  
tylsulfinylamino, 1-Methylpropylsulfinylamino, 2-Methylpropylsul-  
finylamino und 1,1-Dimethylethylsulfinylamino, insbesondere Me-  
thylosulfinylamino;

20

C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonylamino wie Methylsulfonylamino, Ethylsulfonyl-  
amino, n-Propylsulfonylamino, 1-Methylethylsulfonylamino, n-Bu-  
tylsulfonylamino, 1-Methylpropylsulfonylamino, 2-Methylpropylsul-  
fonylamino und 1,1-Dimethylethylsulfonylamino, insbesondere  
Methylsulfonylamino;

25

N-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl-N-methyl-amino wie N-Methylsulfinyl-N-me-  
thyl-amino, N-Ethylsulfinyl-N-methyl-amino, N-n-Propylsulfinyl-N-  
methyl-amino, N-1-Methylethylsulfinyl-N-methyl-amino, N-n-Butyl-  
sulfinyl-N-methyl-amino, N-1-Methylpropylsulfinyl-N-methyl-amino,  
N-2-Methylpropylsulfinyl-N-methyl-amino und N-1,1-Dimethylethyl-  
sulfinyl-N-methyl-amino, insbesondere N-Methylsulfinyl-N-methyl-  
amino;

35

N-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl-N-ethyl-amino wie N-Methylsulfinyl-N-ethyl-  
amino, N-Ethylsulfinyl-N-ethyl-amino, N-n-Propylsulfinyl-N-ethyl-  
amino, N-1-Methylethylsulfinyl-N-ethyl-amino, N-n-Butylsulfinyl-  
N-ethyl-amino, N-1-Methylpropylsulfinyl-N-ethyl-amino, N-2-Me-  
thylpropylsulfinyl-N-ethyl-amino und N-1,1-Dimethylethylsulfinyl-  
N-ethyl-amino, insbesondere N-Methylsulfinyl-N-ethyl-amino;

45

N-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl-N-methyl-amino wie N-Methylsulfonyl-N-me-  
thyl-amino, N-Ethylsulfonyl-N-methyl-amino, N-n-Propylsulfonyl-N-  
methyl-amino, N-1-Methylethylsulfonyl-N-methyl-amino, N-n-Butyl-  
sulfonyl-N-methyl-amino, N-1-Methylpropylsulfonyl-N-methyl-amino,  
N-2-Methylpropylsulfonyl-N-methyl-amino und N-1,1-Dimethylethyl-

## 18

sulfonyl-N-methyl-amino, insbesondere N-Methylsulfonyl-N-methyl-amino;

**5** N-C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl-N-ethyl-amino wie N-Methylsulfonyl-N-ethyl-amino, N-Ethylsulfonyl-N-ethyl-amino, N-n-Propylsulfonyl-N-ethyl-amino, N-1-Methylethylsulfonyl-N-ethyl-amino, N-n-Butylsulfonyl-N-ethyl-amino, N-1-Methylpropylsulfonyl-N-ethyl-amino, N-2-Methylpropylsulfonyl-N-ethyl-amino und N-1,1-Dimethylethylsulfonyl-N-ethyl-amino, insbesondere N-Methylsulfonyl-N-ethyl-amino;

**10**

C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio wie Chloromethylthio, Dichloromethylthio, Trichloromethylthio, Fluormethylthio, Difluormethylthio, Trifluoromethylthio, Chlorfluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, **15** 2,2,2-Trifluorethylthio, 2-Chlor-2,2-difluorethylthio, 2,2-Dichlor-2 fluorethylthio, 2,2,2-Trichlorethylthio und Pentafluorethylthio, insbesondere Trifluormethylthio.

Die vorstehend definierte Gruppe -(Y)<sub>r</sub>-CO-R<sup>8</sup> steht beispielsweise **20** für

C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl wie Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, 1-Methylethylcarbonyl, n-Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl und 1,1-Dimethylethylcarbonyl, **25** insbesondere Methylcarbonyl;

**30** C<sub>1</sub>-C<sub>4</sub>-Alkoxy carbonyl wie Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, 1-Methylethoxycarbonyl, n-Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl und 1,1-Dimethylethoxy carbonyl, insbesondere Methoxycarbonyl; -

**35** N-C<sub>1</sub>-C<sub>4</sub>-Alkylcarbamoyl wie N-Methylcarbamoyl, N-Ethylcarbamoyl, N-n-Propylcarbamoyl, N-1-Methylethylcarbamoyl, N-n-Butylcarbamoyl, N-1-Methylpropylcarbamoyl, N-2-Methylpropylcarbamoyl und N-1,1-Dimethylethylcarbamoyl, insbesondere N-Methylcarbamoyl;

**40** Di-C<sub>1</sub>-C<sub>4</sub>-Alkylcarbamoyl wie Dimethylcarbamoyl, Diethylcarbamoyl, Dipropylcarbamoyl, Dibutylcarbamoyl, N-Methyl-N-ethylcarbamoyl, N-Methyl-N-propylcarbamoyl, N-Methyl-N-1-methylethylcarbamoyl, N-Ethyl-N-1,1-Dimethylethylcarbamoyl, Di-1-Methylethylcarbamoyl, N-Ethyl-N-1-Methylethylcarbamoyl und N-Ethyl-N-1,1-dimethyl ethylcarbamoyl; insbesondere Dimethylcarbamoyl;

**45** C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy wie Methylcarbonyloxy, Ethylcarbonyloxy, n-Propylcarbonyloxy, 1-Methylethylcarbonyloxy, n-Butylcarbonyloxy, 1-Methylpropylcarbonyloxy, 2-Methylpropylcarbonyloxy und 1,1-Dimethylethylcarbonyloxy, insbesondere Methylcarbonyloxy;

## 19

C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino wie Methylcarbonylamino, Ethylcarbonylamino, n-Propylcarbonylamino, 1-Methylethylcarbonylamino, n-Butylcarbonylamino, 1-Methylpropylcarbonylamino, 2-Methylpropylcarbonylamino und 1,1-Dimethylethylcarbonylamino, insbesondere Methyl-

5 carbonylamino;

N-C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl-N-methyl-amino wie N-Methylcarbonyl-N-methyl-amino, N-Ethylcarbonyl-N-methyl-amino, N-n-Propylcarbonyl-N-methyl-amino, N-1-Methylethylcarbonyl-N-methyl-amino, N-n-Butyl-

10 carbonyl-N-methyl-amino, N-1-Methylpropylcarbonyl-N-methyl-amino, N-2-Methylpropylcarbonyl-N-methyl-amino und N-1,1-Dimethylethylcarbonyl-N-methyl-amino, insbesondere N-Methylcarbonyl-N-methyl-amino.

15 Z steht beispielsweise für:

5- oder 6-gliedriger heterocyclischer, gesättigter oder ungesättigter Rest, enthaltend ein bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, beispielsweise

20 fünfring Heteroaromaten wie 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Iothiazolyl, 4-Iothiazolyl, 5-Iothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl,

25 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl, 1,2,3-Oxadiazol-4-yl, 1,2,3-Oxadiazol-5-yl, 1,2,5-Oxadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,3,4-Thiadiazol-2-yl, 1,2,3-Thiadiazol-4-yl, 1,2,3-Thiadiazol-5-yl,

30 1,2,5-Thiadiazol-3-yl, 1,2,4-Triazol-3-yl, 1,3,4-Triazol-2-yl, 1,2,3-Triazol-4-yl, 1,2,3-Triazol-5-yl, 1,2,4-Triazol-5-yl, Tetrazol-5-yl, insbesondere 2-Thiazolyl und 3-Isoxazolyl;

35 sechsring Heteroaromaten wie 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-5-yl und 1,2,4-Triazin-3-yl, 1,2,4-Triazin-6-yl, 1,2,4,5-Tetrazin-3-yl;

40 5- bis 6-gliedrige, gesättigte oder teilweise ungesättigte Heterocyclen, enthaltend ein bis drei Stickstoffatome und/oder ein oder zwei Sauerstoff- oder Schwefelatom wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuran, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran-3-yl, Tetrahydrothiopyran-4-yl, 1,3-Dithiolan-2-yl, 1,3-Dithiolan-4-yl, 1-3-Dithian-2-yl, 1,3-Dithian-4-yl, 5,6-Dihydro-4H-1,3-

## 20

thiazin-2-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathian-2-yl,  
 1-Pyrrolidinyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl,  
 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Iothiazolidinyl, 4-Iso-  
 thiazolidinyl, 5-Iothiazolidinyl, 3-Pyrazolidinyl,  
**5** 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl,  
 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl,  
 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxa-  
 diazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazia-  
 zolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,3,4-Oxadia-  
**10** zolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl,  
 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,4-Dihydro-  
 fur-2-yl, 2,4-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydro-  
 thien-3-yl, 2,4-Dihydrothien-2-yl, 2,4-Dihydrothien-3-yl,  
 2,3-Pyrrolin-2-yl, 2,3-Pyrrolin-3-yl, 2,4-Pyrrolin-2-yl,  
**15** 2,4-Pyrrolin-3-yl, 2,3-Isoxazolin-3-yl, 3,4-Isoxazolin-3-yl,  
 4,5-Isoxazolin-3-yl, 2,3-Isoxazolin-4-yl, 3,4-Isoxazolin-4-yl,  
 4,5-Isoxazolin-4-yl, 2,3-Isoxazolin-5-yl, 3,4-Isoxazolin-5-yl,  
 4,5-Isoxazolin-5-yl, 2,3-Iothiazolin-3-yl, 3,4-Iothiazolin-3-yl,  
 4,5-Iothiazolin-3-yl, 2,3-Iothiazolin-4-yl, 3,4-Iothia-  
**20** zolin-4-yl, 4,5-Iothiazolin-4-yl, 2,3-Iothiazolin-5-yl,  
 3,4-Iothiazolin-5-yl, 4,5-Iothiazolin-5-yl, 2,3-Dihydropyra-  
 zol-1-yl, 2,3-Dihydropyrazol-2-yl, 2,3-Dihydropyrazol-3-yl,  
 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 3,4-Dihydropy-  
 razol-1-yl, 3,4-Dihydropyrazol-3-yl, 3,4-Dihydropyrazol-4-yl,  
**25** 3,4-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-1-yl, 4,5-Dihydropy-  
 razol-3-yl, 4,5-Dihydropyrazol-4-yl, 4,5-Dihydropyrazol-5-yl,  
 2,3-Dihydrooxazol-2-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxa-  
 zol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydrooxazol-2-yl, 4,5-Di-  
 hydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl, 1,3-Dioxolan-2-yl,  
**30** 1,3-Dioxolan-4-yl, 1,3-Dioxan-5-yl, 1,4-Dioxan-2-yl,  
 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 3-Tetrahydropyrida-  
 zinyl, 4-Tetrahydropyridazinyl, 2-Tetrahydropyrimidinyl, 4-Tetra-  
 hydropyrimidinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl,  
 1,3,5-Tetrahydro-triazin-2-yl und 1,2,4-Tetrahydrotriazin-3-yl,  
**35** insbesondere 2-Tetrahydrofuranyl, 1,3-Dioxolan-2-yl und  
 1,3-Dioxan-2-yl,

der gegebenenfalls durch

**40** Halogen wie vorstehend genannt, insbesondere Fluor oder Chlor,

Cyano, Nitro,

eine Gruppe -COR<sup>8</sup>, beispielsweise Alkylcarbonyl wie vorstehend ge-  
**45** nannt, Alkoxy carbonyl wie vorstehend genannt, N-Alkylcarbamoyl  
 wie vorstehend genannt, Dialkylcarbamoyl wie vorstehend genannt;

## 21

C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend genannt,

C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl wie beispielsweise Chlormethyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Trichlormethyl, Chlordifluor-  
 5 methyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 1,1,2,2-Tetrafluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-1,1,2-tri-  
 fluorethyl und Pentafluorethyl, Decafluorbutyl, 1,1-Bis-trifluor-  
 methyl-2,2,2-trifluorethyl, bevorzugt Difluormethyl, Trifluor-  
 methyl, Trichlormethyl und Chlordifluormethyl;

10

C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, wie beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, insbesondere Cyclopropyl und Cyclohexyl;

15 C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt,

C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy wie beispielsweise Chlormethoxy, Dichlor-  
 methoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluor-  
 methoxy, Chlordifluormethoxy, Dichlorfluormethoxy, 1-Fluormeth-  
 20 oxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy,  
 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Penta-  
 fluorethoxy, insbesondere C<sub>1</sub>-C<sub>3</sub>-Halogenalkoxy wie 2,2,2-Trifluor-  
 ethoxy und 2-Chlor-2,2-difluorethoxy;

25 C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend genannt,

C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio wie vorstehend genannt,

Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino wie beispielsweise Dimethylamino, Diethyl-  
 30 amino, Dipropylamino, Dibutylamino, N-Methyl-N-ethylamino, N-Me-  
 thyl-N-propylamino, N-Methyl-N-1-methylethylamino, N-Me-  
 thyl-N-1,1-Dimethylethylamino, Di-1-Methylethylamino, N-  
 Ethyl-N-1-methylethylamino und N-Ethyl-N-1,1-dimethyl ethylamino;

35 gegebenenfalls substituiertes Phenyl

oder eine Oxogruppe, die gegebenenfalls auch in der tautomeren Form als Hydroxygruppe vorliegen kann, substituiert ist, beispielsweise Thiazolin-4,5-dion-2-yl, 3-Oxo-3H-1,2,4-dithiazolyl

40 oder 2-Oxo-2H-1,3,4-dithiazolyl.

Benzokondensierte 5- oder 6-Ring-Heteroaromatens sind beispielsweise Benzofuranyl, Benzothienyl, Indolyl, Benzoxazolyl, Benzisoxazolyl, Benzthiazolyl, Benzisothiazolyl, Benzpyrazolyl,  
 45 Indazolyl, 1,2,3-Benzothiadiazolyl, 2,1,3-Benzothiadiazolyl, Benzotriazolyl, Benzofuroxanyl, Chinolinyl, Isochinolinyl, Cinnolinyl, Chinazolinyl, Chinoxalinyl oder Phthalazinyl. Bei-

**22**

spiele für besonders bevorzugte Verbindungen der allgemeinen Formel I sind in den folgenden Tabellen 1 bis 5 zusammengestellt.

**5**

**10**

**15**

**20**

**25**

**30**

**35**

**40**

**45**

Tabelle 1: Verbindungen der Struktur Id



| NR.  | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                        |
|------|----------------|----------------|----------------|---------------------------------|----|--------------------------|
| 1.12 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl                |
| 1.13 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl                |
| 1.14 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                  |
| 1.15 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                  |
| 1.16 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl   |
| 1.17 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl              |
| 1.18 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl              |
| 1.19 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl              |
| 1.20 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isothiazol-5-yl |
| 1.21 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl             |
| 1.22 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-thiazol-2-yl    |
| 1.23 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl                |
| 1.24 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl                |

| Nr.  | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L  | M                              | Z |
|------|----------------|----------------|---------------------------------|----|--------------------------------|---|
| 1.25 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl                      |   |
| 1.26 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-2-pyrrolyl            |   |
| 1.27 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-1,2,4-triazol-5-yl    |   |
| 1.28 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiaazolyl               |   |
| 1.29 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl                   |   |
| 1.30 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methylbenzimidazol-2-yl      |   |
| 1.31 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Oxazolyl                     |   |
| 1.32 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Phenyl-pyrazol-5-yl          |   |
| 1.33 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-3-yl          |   |
| 1.34 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-5-yl          |   |
| 1.35 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethylpyrazol-3-yl       |   |
| 1.36 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Phenyl-pyrazol-3-yl          |   |
| 1.37 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,4-Dimethylpyrazol-5-yl       |   |
| 1.38 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethylpyrazol-4-yl       |   |
| 1.39 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,5-Dimethylpyrazol-4-yl       |   |
| 1.40 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-4-yl          |   |
| 1.41 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethylpyrazol-5-yl       |   |
| 1.42 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl           |   |
| 1.43 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methylthio-thiazol-2-yl      |   |
| 1.44 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methoxy-1-methylpyrazol-5-yl |   |
| 1.45 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Cyclopropylisoxazol-5-yl     |   |

| Nr.  | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                                   |
|------|----------------|----------------|----------------|---------------------------------|----|-------------------------------------|
| 1.46 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isopropylisoxazol-5-yl            |
| 1.47 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | (3-Methyl-phenyl)-thiazol-2-yl      |
| 1.48 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-thiazol-2-yl               |
| 1.49 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Brom-2-thienyl                    |
| 1.50 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-2-thienyl                  |
| 1.51 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-2-thienyl                  |
| 1.52 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-1-thiazol-2-yl             |
| 1.53 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Chlor-thiazol-2-yl                |
| 1.54 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dimethylthiazol-2-yl            |
| 1.55 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Phenyl-thiazol-2-yl               |
| 1.56 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methoxy-thiazol-5-yl              |
| 1.57 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-2-pyridyl                  |
| 1.58 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2-Methoxyethyl)-2-pyridyl        |
| 1.59 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methylthio-2-pyridyl              |
| 1.60 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methoxy-3-pyridyl                 |
| 1.61 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methoxy-2-pyridyl                 |
| 1.62 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methyl-2-pyridyl                  |
| 1.63 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2,2,2-trifluor-ethoxy)-2-pyridyl |
| 1.64 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2,2,2-trifluor-ethoxy)-3-pyridyl |
| 1.65 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidiny                        |
| 1.66 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Dimethylamino-3-pyridyl           |

| NR.  | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L  | N                                      | Z |
|------|----------------|----------------|---------------------------------|----|----------------------------------------|---|
| 1.67 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Thiadiazol-5-yl                  |   |
| 1.68 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |   |
| 1.69 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methylthio-pyrimidin-5-yl            |   |
| 1.70 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyrimidinyl                          |   |
| 1.71 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methylthio-pyrimidin-4-yl            |   |
| 1.72 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methylthio-1,3,4-thiadiazol-2-yl     |   |
| 1.73 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methoxy-1,3,4-thiadiazol-2-yl        |   |
| 1.74 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dihydro-thiazol-2-yl               |   |
| 1.75 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-oxazol-2-yl                   |   |
| 1.76 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-oxazol-2-yl                   |   |
| 1.77 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methyl-oxazol-5-yl                   |   |
| 1.78 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Phenyl-oxazol-5-yl                   |   |
| 1.79 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Phenyl-1,3,4-oxadiazol-5-yl          |   |
| 1.80 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl  |   |
| 1.81 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-1,2,4-oxadiazol-3-yl          |   |
| 1.82 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-1,2,4-oxadiazol-3-yl          |   |
| 1.83 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-isoxazol-3-yl                 |   |
| 1.84 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl  |   |
| 1.85 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Cyano-4,5-dihydro-isoxazol-3-yl      |   |
| 1.86 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5,6-Dihydro-4H-1,3-thiazin-2-yl        |   |
| 1.87 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 |                                        |   |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                              |
|-------|----------------|----------------|----------------|---------------------------------|----|--------------------------------|
| 1.88  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dithiolan-2-y1             |
| 1.89  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dioxolan-2-y1              |
| 1.90  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dithian-2-y1               |
| 1.91  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dioxan-2-y1                |
| 1.92  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Oxathiolan-2-y1            |
| 1.93  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Triazol-1-y1             |
| 1.94  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-1,2,4-thiadiazol-5-y1 |
| 1.95  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Thiadiazol-5-y1          |
| 1.96  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | Thiazolin-4,5-dion-2-y1        |
| 1.97  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Oxo-3-H-1,2,4-dithiazol-5-y1 |
| 1.98  | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Oxo-2-H-1,3,4-dithiazol-5-y1 |
| 1.99  | H              | H              | H              | NO <sub>2</sub>                 | H  | 1-Pyrrolyl                     |
| 1.100 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Pyrrolyl                     |
| 1.101 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1-Pyrrolyl                     |
| 1.102 | H              | H              | H              | NO <sub>2</sub>                 | H  | 3,5-Dimethyl-pyrazol-1-y1      |
| 1.103 | H              | H              | H              | NO <sub>2</sub>                 | C1 | 2-Thienyl                      |
| 1.104 | H              | H              | H              | NO <sub>2</sub>                 | C1 | 3-Thienyl                      |
| 1.105 | H              | H              | H              | NO <sub>2</sub>                 | C1 | 2-Furyl                        |
| 1.106 | H              | H              | H              | NO <sub>2</sub>                 | C1 | 3-Furyl                        |
| 1.107 | H              | H              | H              | NO <sub>2</sub>                 | C1 | 3-Methyl-isoxazol-5-y1         |
| 1.108 | H              | H              | H              | NO <sub>2</sub>                 | C1 | 5-Thiazolyl                    |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>  | L  | M                           | Z |
|-------|----------------|----------------|-----------------|----|-----------------------------|---|
| 1.109 | H              | H              | NO <sub>2</sub> | C1 | 4-Thiazolyl                 |   |
| 1.110 | H              | H              | NO <sub>2</sub> | C1 | 2-Thiazolyl                 |   |
| 1.111 | H              | H              | NO <sub>2</sub> | C1 | 3-Methyl-isothiazol-5-yl    |   |
| 1.112 | H              | H              | NO <sub>2</sub> | C1 | 3-Isoxazolyl                |   |
| 1.113 | H              | H              | NO <sub>2</sub> | C1 | 5-Phenyl-thiazol-2-yl       |   |
| 1.114 | H              | H              | NO <sub>2</sub> | C1 | 2-Pyridyl                   |   |
| 1.115 | H              | H              | NO <sub>2</sub> | C1 | 3-Pyridyl                   |   |
| 1.116 | H              | H              | NO <sub>2</sub> | C1 | 4-Pyridyl                   |   |
| 1.117 | H              | H              | NO <sub>2</sub> | C1 | 1-Methyl-2-pyrrolyl         |   |
| 1.118 | H              | H              | NO <sub>2</sub> | C1 | 1-Methyl-1,2,4-triazol-5-yl |   |
| 1.119 | H              | H              | NO <sub>2</sub> | C1 | 2-Benzthiazolyl             |   |
| 1.120 | H              | H              | NO <sub>2</sub> | C1 | 2-Chinolinyl                |   |
| 1.121 | H              | H              | NO <sub>2</sub> | C1 | 1-Methyl-benzimidazol-2-yl  |   |
| 1.122 | H              | H              | NO <sub>2</sub> | C1 | 2-Oxazolyl                  |   |
| 1.123 | H              | H              | NO <sub>2</sub> | C1 | 1-Phenyl-pyrazol-5-yl       |   |
| 1.124 | H              | H              | NO <sub>2</sub> | C1 | 1-Methyl-pyrazol-3-yl       |   |
| 1.125 | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dimethyl-pyrazol-5-yl   |   |
| 1.126 | H              | H              | NO <sub>2</sub> | C1 | 1-Phenyl-pyrazol-3-yl       |   |
| 1.127 | H              | H              | NO <sub>2</sub> | C1 | 1,4-Dimethyl-pyrazol-5-yl   |   |
| 1.128 | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dimethyl-pyrazol-4-yl   |   |
| 1.129 | H              | H              | NO <sub>2</sub> | C1 |                             |   |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L               | M  | Z                               |
|-------|----------------|----------------|----------------|-----------------|----|---------------------------------|
| 1.130 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,5-Dimethyl-pyrazol-4-y1       |
| 1.131 | H              | H              | H              | NO <sub>2</sub> | C1 | 1-Methyl-pyrazol-4-y1           |
| 1.132 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dimethyl-pyrazol-5-y1       |
| 1.133 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Methyl-oxazol-2-y1            |
| 1.134 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methylthio-thiazol-2-y1       |
| 1.135 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Methoxy-1-methyl-pyrazol-5-y1 |
| 1.136 | H              | H              | H              | NO <sub>2</sub> | C1 | 3-Cyclopropyl-isoxazol-5-y1     |
| 1.137 | H              | H              | H              | NO <sub>2</sub> | C1 | 3-Isopropyl-isoxazol-5-y1       |
| 1.138 | H              | H              | H              | NO <sub>2</sub> | C1 | (3-Methyl-phenyl)-thiazol-2-y1  |
| 1.139 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methyl-thiazol-2-y1           |
| 1.140 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Brom-2-thienyl                |
| 1.141 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methyl-2-thienyl              |
| 1.142 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Methyl-2-thienyl              |
| 1.143 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Methyl-thiazol-2-y1           |
| 1.144 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Chlor-thiazol-2-y1            |
| 1.145 | H              | H              | H              | NO <sub>2</sub> | C1 | 4,5-Dimethyl-thiazol-2-y1       |
| 1.146 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Phenyl-thiazol-2-y1           |
| 1.147 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Methoxy-thiazol-5-y1          |
| 1.148 | H              | H              | H              | NO <sub>2</sub> | C1 | 4-Methyl-2-pyridyl              |
| 1.149 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-(2-Methoxyethyl)-2-pyridyl    |
| 1.150 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-Methylthio-2-pyridyl          |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L               | M  | Z                                      |
|-------|----------------|----------------|----------------|-----------------|----|----------------------------------------|
| 1.151 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-Methoxy-3-pyridyl                    |
| 1.152 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-Methoxy-2-pyridyl                    |
| 1.153 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-Methyl-2-pyridyl                     |
| 1.154 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-(2,2,2-Trifluoroethoxy)-2-pyridyl    |
| 1.155 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-(2,2,2-Trifluoroethoxy)-3-pyridyl    |
| 1.156 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Pyrimidinyl                          |
| 1.157 | H              | H              | H              | NO <sub>2</sub> | C1 | 6-Dimethylamino-3-pyridyl              |
| 1.158 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,2,4-Thiadiazol-5-yl                  |
| 1.159 | H              | H              | H              | NO <sub>2</sub> | C1 | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.160 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Methylthio-pyrimidin-5-yl            |
| 1.161 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Pyrimidinyl                          |
| 1.162 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Methylthio-pyrimidin-4-yl            |
| 1.163 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.164 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.165 | H              | H              | H              | NO <sub>2</sub> | C1 | 4,5-Dihydro-thiazol-2-yl               |
| 1.166 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methyl-oxazol-2-yl                   |
| 1.167 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Phenyl-oxazol-2-yl                   |
| 1.168 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Methyl-oxazol-5-yl                   |
| 1.169 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Phenyl-oxazol-5-yl                   |
| 1.170 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Methyl-1,3,4-oxadiazol-5-yl          |
| 1.171 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Phenyl-1,3,4-oxadiazol-5-yl          |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L               | M  | Z                                     |
|-------|----------------|----------------|----------------|-----------------|----|---------------------------------------|
| 1.172 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Trifluormethyl-1,2,4-Oxadiazol-3-y1 |
| 1.173 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Methyl-1,2,4-oxadiazol-3-y1         |
| 1.174 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Phenyl-1,2,4-oxadiazol-3-y1         |
| 1.175 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Phenyl-isoxazol-3-y1                |
| 1.176 | H              | H              | H              | NO <sub>2</sub> | C1 | 1-(4-Chlorophenyl)-1,2,4-triazol-2-y1 |
| 1.177 | H              | H              | H              | NO <sub>2</sub> | C1 | 5-Cyano-4,5-di-hydro-isoxazol-3-y1    |
| 1.178 | H              | H              | H              | NO <sub>2</sub> | C1 | 5,6-Dihydro-4H-1,3-thiazin-2-y1       |
| 1.179 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dithiolan-2-y1                    |
| 1.180 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dioxolan-2y1                      |
| 1.181 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dithian-2-y1                      |
| 1.182 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,3-Dioxan-2-y1                       |
| 1.183 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,3-Oxathiolan-2-y1                   |
| 1.184 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,2,4-Triazol-1-y1                    |
| 1.185 | H              | H              | H              | NO <sub>2</sub> | C1 | 3-Methyl-1,2,4-thiadiazol-5-y1        |
| 1.186 | H              | H              | H              | NO <sub>2</sub> | C1 | 1,2,4-Thiadiazol-5-y1                 |
| 1.187 | H              | H              | H              | NO <sub>2</sub> | C1 | Thiazolin-4,5-dion-2-y1               |
| 1.188 | H              | H              | H              | NO <sub>2</sub> | C1 | 3-Oxo-3-H-1,2,4-di-thiazol-5-y1       |
| 1.189 | H              | H              | H              | NO <sub>2</sub> | C1 | 2-Oxo-2-H-1,3,4-dithiazol-5-y1        |
| 1.190 | H              | H              | H              | C1              | C1 | 2-Thienyl                             |
| 1.191 | H              | H              | H              | C1              | C1 | 3-Thienyl                             |
| 1.192 | H              | H              | H              | C1              | C1 | 2-Furyl                               |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L  | M                           | Z |
|-------|----------------|----------------|----------------|----|-----------------------------|---|
| 1.193 | H              | H              | C1             | C1 | 3-Furyl                     |   |
| 1.194 | H              | H              | C1             | C1 | 3-Methyl-isoxazol-5-y1      |   |
| 1.195 | H              | H              | C1             | C1 | 5-Thiazolyl                 |   |
| 1.196 | H              | H              | C1             | C1 | 4-Thiazolyl                 |   |
| 1.197 | H              | H              | C1             | C1 | 2-Thiazolyl                 |   |
| 1.198 | H              | H              | C1             | C1 | 3-Methyl-isothiazol-5-y1    |   |
| 1.199 | H              | H              | C1             | C1 | 5-Phenyl-thiazol-2-y1       |   |
| 1.200 | H              | H              | C1             | C1 | 2-Pyridyl                   |   |
| 1.201 | H              | H              | C1             | C1 | 3-Pyridyl                   |   |
| 1.202 | H              | H              | C1             | C1 | 4-Pyridyl                   |   |
| 1.203 | H              | H              | C1             | C1 | 1-Methyl-2-pyrrolyl         |   |
| 1.204 | H              | H              | C1             | C1 | 1-Methyl-1,2,4-triazol-5-y1 |   |
| 1.205 | H              | H              | C1             | C1 | 2-Benzthiazolyl             |   |
| 1.206 | H              | H              | C1             | C1 | 2-Chinolinyl                |   |
| 1.207 | H              | H              | C1             | C1 | 1-Methyl-benzimidazol-2-y1  |   |
| 1.208 | H              | H              | H              | C1 | 2-Oxazolyl                  |   |
| 1.209 | H              | H              | H              | C1 | 1-Phenyl-pyrazol-5-y1       |   |
| 1.210 | H              | H              | H              | C1 | 1-Methyl-pyrazol-3-y1       |   |
| 1.211 | H              | H              | H              | C1 | 1-Methyl-pyrazol-5-y1       |   |
| 1.212 | H              | H              | H              | C1 | 1,3-Dimethyl-pyrazol-3-y1   |   |
| 1.213 | H              | H              | H              | C1 | 1,3-Dimethyl-pyrazol-3-y1   |   |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L  | M  | Z                               |
|-------|----------------|----------------|----------------|----|----|---------------------------------|
| 1.214 | H              | H              | H              | C1 | C1 | 1-Phenyl-pyrazol-3-y1           |
| 1.215 | H              | H              | H              | C1 | C1 | 1,4-Dimethyl-pyrazol-5-y1       |
| 1.216 | H              | H              | H              | C1 | C1 | 1,3-Dimethyl-pyrazol-4-y1       |
| 1.217 | H              | H              | H              | C1 | C1 | 1,5-Dimethyl-pyrazol-4-y1       |
| 1.218 | H              | H              | H              | C1 | C1 | 1-Methyl-pyrazol-4-y1           |
| 1.219 | H              | H              | H              | C1 | C1 | 1,3-Dimethyl-pyrazol-5-y1       |
| 1.220 | H              | H              | H              | C1 | C1 | 4-Methyl-oxazol-2-y1            |
| 1.221 | H              | H              | H              | C1 | C1 | 5-Methylthio-thiazol-2-y1       |
| 1.222 | H              | H              | H              | C1 | C1 | 4-Methoxy-1-methyl-pyrazol-5-y1 |
| 1.223 | H              | H              | H              | C1 | C1 | 3-Cyclopropyl-isoxazol-5-y1     |
| 1.224 | H              | H              | H              | C1 | C1 | 3-Isopropyl-isoxazol-5-y1       |
| 1.225 | H              | H              | H              | C1 | C1 | (3-Methyl-phenyl)-thiazol-2-y1  |
| 1.226 | H              | H              | H              | C1 | C1 | 5-Methyl-thiazol-2-y1           |
| 1.227 | H              | H              | H              | C1 | C1 | 4-Brom-2-thienyl                |
| 1.228 | H              | H              | H              | C1 | C1 | 5-Methyl-2-thienyl              |
| 1.229 | H              | H              | H              | C1 | C1 | 4-Methyl-2-thienyl              |
| 1.230 | H              | H              | H              | C1 | C1 | 4-Methyl-thiazol-2-y1           |
| 1.231 | H              | H              | H              | C1 | C1 | 4-Chlor-thiazol-2-y1            |
| 1.232 | H              | H              | H              | C1 | C1 | 4,5-Dimethyl-thiazol-2-y1       |
| 1.233 | H              | H              | H              | C1 | C1 | 4-Phenyl-thiazol-2-y1           |
| 1.234 | H              | H              | H              | C1 | C1 | 2-Methoxy-thiazol-5-y1          |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L  | M                                      | Z |
|-------|----------------|----------------|----------------|----|----------------------------------------|---|
| 1.235 | H              | H              | C1             | C1 | 4-Methyl-2-pyridyl                     |   |
| 1.236 | H              | H              | C1             | C1 | 6-(2-Methoxyethyl)-2-pyridyl           |   |
| 1.237 | H              | H              | C1             | C1 | 6-Methylthio-2-pyridyl                 |   |
| 1.238 | H              | H              | C1             | C1 | 6-Methoxy-3-pyridyl                    |   |
| 1.239 | H              | H              | C1             | C1 | 6-Methoxy-2-pyridyl                    |   |
| 1.240 | H              | H              | C1             | C1 | 6-Methyl-2-pyridyl                     |   |
| 1.241 | H              | H              | C1             | C1 | 6-(2,2,2-Trifluor-ethoxy)-2-pyridyl    |   |
| 1.242 | H              | H              | C1             | C1 | 6-(2,2,2-Trifluor-ethoxy)-3-pyridyl    |   |
| 1.243 | H              | H              | C1             | C1 | 5-Pyrimidiny1                          |   |
| 1.244 | H              | H              | C1             | C1 | 6-Dimethylamino-3-pyridyl              |   |
| 1.245 | H              | H              | C1             | C1 | 1,2,4-Thiadiazol-5-y1                  |   |
| 1.246 | H              | H              | C1             | C1 | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-y1 |   |
| 1.247 | H              | H              | C1             | C1 | 2-Methylthio-pyrimidin-5-y1            |   |
| 1.248 | H              | H              | C1             | C1 | 2-Pyrimidiny1                          |   |
| 1.249 | H              | H              | C1             | C1 | 2-Methylthio-pyrimidin-4-y1            |   |
| 1.250 | H              | H              | C1             | C1 | 5-Methylthio-1,3,4-thiadiazol-2-y1     |   |
| 1.251 | H              | H              | C1             | C1 | 5-Methoxy-1,3,4-thiadiazol-2-y1        |   |
| 1.252 | H              | H              | C1             | C1 | 4,5-Dihydro-thiazol-2-y1               |   |
| 1.253 | H              | H              | C1             | C1 | 5-Methyl-oxazol-2-y1                   |   |
| 1.254 | H              | H              | C1             | C1 | 5-Phenyl-oxazol-2-y1                   |   |
| 1.255 | H              | H              | C1             | C1 | 2-Methyl-oxazol-5-y1                   |   |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L  | M  | Z                                     |
|-------|----------------|----------------|----------------|----|----|---------------------------------------|
| 1.256 | H              | H              | H              | C1 | C1 | 2-Phenyl-oxazol-5-y1                  |
| 1.257 | H              | H              | H              | C1 | C1 | 2-Methyl-1,3,4-oxa-diazol-5-y1        |
| 1.258 | H              | H              | H              | C1 | C1 | 2-Phenyl-1,3,4-oxa-diazol-5-y1        |
| 1.259 | H              | H              | H              | C1 | C1 | 5-Trifluormethyl-1,2,4-oxadiazol-3-y1 |
| 1.260 | H              | H              | H              | C1 | C1 | 5-Methyl-1,2,4-oxadiazol-3-y1         |
| 1.261 | H              | H              | H              | C1 | C1 | 5-Phenyl-1,2,4-oxadiazol-3-y1         |
| 1.262 | H              | H              | H              | C1 | C1 | 5-Phenyl-isoxazol-3-y1                |
| 1.263 | H              | H              | H              | C1 | C1 | 1-(4-Chlorphenyl)-1,2,4-triazol-2-y1  |
| 1.264 | H              | H              | H              | C1 | C1 | 5-Cyano-4,5-di-hydro-isoxazol-3-y1    |
| 1.265 | H              | H              | H              | C1 | C1 | 5,6-Dihydro-4H-1,3-thiazzin-2-y1      |
| 1.266 | H              | H              | H              | C1 | C1 | 1,3-Dithiolan-2-y1                    |
| 1.267 | H              | H              | H              | C1 | C1 | 1,3-Dioxolan-2-y1                     |
| 1.268 | H              | H              | H              | C1 | C1 | 1,3-Dithian-2-y1                      |
| 1.269 | H              | H              | H              | C1 | C1 | 1,3-Dioxan-2-y1                       |
| 1.270 | H              | H              | H              | C1 | C1 | 1,3-Oxathiolan-2-y1                   |
| 1.271 | H              | H              | H              | C1 | C1 | 1,2,4-Triazol-1-y1                    |
| 1.272 | H              | H              | H              | C1 | C1 | 3-Methyl-1,2,4-thiadiazol-5-y1        |
| 1.273 | H              | H              | H              | C1 | C1 | 1,2,4-Thiadiazol-5-y1                 |
| 1.274 | H              | H              | H              | C1 | C1 | Thiazolin-4,5-dion-2-y1               |
| 1.275 | H              | H              | H              | C1 | C1 | 3-Oxo-3-H-1,2,4-di-thiazol-5-y1       |
| 1.276 | H              | H              | H              | C1 | C1 | 2-Oxo-2-H-1,3,4-dithiazol-5-y1        |

| NR.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                           |
|-------|----------------|----------------|----------------|---------------------------------|-----------------|-----------------------------|
| 1.277 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl                   |
| 1.278 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Thienyl                   |
| 1.279 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl                     |
| 1.280 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Furyl                     |
| 1.281 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isoxazol-5-yl      |
| 1.282 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Thiazolyl                 |
| 1.283 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Thiazolyl                 |
| 1.284 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thiazolyl                 |
| 1.285 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isothiazol-5-yl    |
| 1.286 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isoxazolyl                |
| 1.287 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-thiazol-2-yl       |
| 1.288 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyridyl                   |
| 1.289 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Pyridyl                   |
| 1.290 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Pyridyl                   |
| 1.291 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-2-pyrrolyl         |
| 1.292 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-1,2,4-triazol-5-yl |
| 1.293 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Benzthiazzolyl            |
| 1.294 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Chinolinyl                |
| 1.295 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-benzimidazol-2-yl  |
| 1.296 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Oxazolyl                  |
| 1.297 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Phenyl-pyrazol-5-yl       |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                               |
|-------|----------------|----------------|----------------|---------------------------------|-----------------|---------------------------------|
| 1.298 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-3-y1           |
| 1.299 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-5-y1           |
| 1.300 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-3-y1       |
| 1.301 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Phenyl-pyrazol-3-y1           |
| 1.302 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,4-Dimethyl-pyrazol-5-y1       |
| 1.303 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-4-y1       |
| 1.304 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,5-Dimethyl-pyrazol-4-y1       |
| 1.305 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-4-y1           |
| 1.306 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-5-y1       |
| 1.307 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-oxazol-2-y1            |
| 1.308 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methylthio-thiazol-2-y1       |
| 1.309 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methoxy-1-methyl-pyrazol-5-y1 |
| 1.310 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Cyclopropyl-isoxazol-5-y1     |
| 1.311 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isopropyl-isoxazol-5-y1       |
| 1.312 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | (3-Methyl-phenyl)-thiazol-2-y1  |
| 1.313 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-thiazol-2-y1           |
| 1.314 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Brom-2-thienyl                |
| 1.315 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-2-thienyl              |
| 1.316 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-2-thienyl              |
| 1.317 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-thiazol-2-y1           |
| 1.318 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Chlor-thiazol-2-y1            |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L               | M                                      | Z |
|-------|----------------|----------------|---------------------------------|-----------------|----------------------------------------|---|
| 1.319 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4, 5-Dimethyl-thiazol-2-yl             |   |
| 1.320 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Phenyl-thiazol-2-yl                  |   |
| 1.321 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methoxy-thiazol-5-yl                 |   |
| 1.322 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-2-pyridyl                     |   |
| 1.323 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2-Methoxyethyl)-2-pyridyl           |   |
| 1.324 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methylthio-2-pyridyl                 |   |
| 1.325 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methoxy-3-pyridyl                    |   |
| 1.326 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methoxy-2-pyridyl                    |   |
| 1.327 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methyl-2-pyridyl                     |   |
| 1.328 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2, 2-Trifluor-ethoxy)-2-pyridyl     |   |
| 1.329 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2, 2-Trifluor-ethoxy)-3-pyridyl     |   |
| 1.330 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Pyrimidinyl                          |   |
| 1.331 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Dimethylamino-3-pyridyl              |   |
| 1.332 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1, 2, 4-Thiadiazol-5-yl                |   |
| 1.333 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |   |
| 1.334 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methylthio-pyrimidin-5-yl            |   |
| 1.335 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyrimidinyl                          |   |
| 1.336 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methylthio-pyrimidin-4-yl            |   |
| 1.337 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methylthio-1, 3, 4-thiadiazol-2-yl   |   |
| 1.338 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methoxy-1, 3, 4-thiadiazol-2-yl      |   |
| 1.339 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4, 5-Dihydro-thiazol-2-yl              |   |

| NR.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L               | M                                     | Z |
|-------|----------------|----------------|---------------------------------|-----------------|---------------------------------------|---|
| 1.340 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-oxazol-2-yl                  |   |
| 1.341 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-oxazol-2-yl                  |   |
| 1.342 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methyl-oxazol-5-yl                  |   |
| 1.343 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Phenyl-oxazol-5-yl                  |   |
| 1.344 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methyl-1,3,4-oxa-diazo1-5-yl        |   |
| 1.345 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Phenyl-1,3,4-oxa-diazo1-5-yl        |   |
| 1.346 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl |   |
| 1.347 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-1,2,4-oxadiazol-3-yl         |   |
| 1.348 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-1,2,4-oxadiazol-3-yl         |   |
| 1.349 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-isoxazol-3-yl                |   |
| 1.350 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-(4-Chlorophenyl)-1,2,4-triazo1-2-yl |   |
| 1.351 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Cyano-4,5-di-hydro-isoxazol-3-yl    |   |
| 1.352 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5,6-Dihydro-4H-1,3-thiazo1-2-yl       |   |
| 1.353 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dithiolan-2-yl                    |   |
| 1.354 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dioxolan-2-yl                     |   |
| 1.355 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dithian-2-yl                      |   |
| 1.356 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dioxan-2-yl                       |   |
| 1.357 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Oxathiolan-2-yl                   |   |
| 1.358 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Triazol-1-yl                    |   |
| 1.359 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-1,2,4-thiadiazol-5-yl        |   |
| 1.360 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Thiadiazol-5-yl                 |   |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L                               | M                               | Z            |
|-------|----------------|----------------|---------------------------------|---------------------------------|---------------------------------|--------------|
| 1.361 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>                 | Thiazolin-4,5-dion-2-yl         |              |
| 1.362 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>                 | 3-Oxo-3-H-1,2,4-di-thiazol-5-yl |              |
| 1.363 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>                 | 2-Oxo-2-H-1,3,4-dithiazol-5-yl  |              |
| 1.364 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 2-Thienyl                       |              |
| 1.365 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 3-Thienyl                       |              |
| 1.366 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 2-Furyl                         |              |
| 1.367 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 3-Furyl                         |              |
| 1.368 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 3-Methyl-isoxazol-5-yl          |              |
| 1.369 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 5-Thiazolyl                     |              |
| 1.370 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 4-Thiazolyl                     |              |
| 1.371 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 2-Thiazolyl                     |              |
| 1.372 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 3-Methyl-isothiazol-5-yl        |              |
| 1.373 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 3-Isoxazolyl                    |              |
| 1.374 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 5-Phenyl-thiazol-2-yl           |              |
| 1.375 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 2-Pyridyl                       |              |
| 1.376 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 3-Pyridyl                       |              |
| 1.377 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 4-Pyridyl                       |              |
| 1.378 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 1-Methyl-2-pyrrolyl             |              |
| 1.379 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 1-Methyl-1,2,4-triazol-5-yl     |              |
| 1.380 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 2-Benzthiazolyl                 |              |
| 1.381 | H              | H              | H                               | SO <sub>2</sub> CH <sub>3</sub> | CN                              | 2-Chinolinyl |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L  | M | Z                               |
|-------|----------------|----------------|---------------------------------|----|---|---------------------------------|
| 1.382 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1-Methyl-benzimidazol-2-yl      |
| 1.383 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 2-Oxazoly1                      |
| 1.384 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1-Phenyl-pyrazol-5-yl           |
| 1.385 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1-Methyl-pyrazol-3-yl           |
| 1.386 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1-Methyl-pyrazol-5-yl           |
| 1.387 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,3-Dimethyl-pyrazol-3-yl       |
| 1.388 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1-Phenyl-pyrazol-3-yl           |
| 1.389 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,4-Dimethyl-pyrazol-5-yl       |
| 1.390 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,3-Dimethyl-pyrazol-4-yl       |
| 1.391 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,5-Dimethyl-pyrazol-4-yl       |
| 1.392 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1-Methyl-pyrazol-4-yl           |
| 1.393 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,3-Dimethyl-pyrazol-5-yl       |
| 1.394 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 4-Methyl-oxazol-2-yl            |
| 1.395 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 5-Methylthio-thiazol-2-yl       |
| 1.396 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 4-Methoxy-1-methyl-pyrazol-5-yl |
| 1.397 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 3-Cyclopropyl-isoxazol-5-yl     |
| 1.398 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 3-Isopropyl-isoxazol-5-yl       |
| 1.399 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | (3-Methyl-phenyl)-thiazol-2-yl  |
| 1.400 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 5-Methyl-thiazol-2-yl           |
| 1.401 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 4-Brom-2-thienyl                |
| 1.402 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 5-Methyl-2-thienyl              |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L  | M                                      | Z |
|-------|----------------|----------------|---------------------------------|----|----------------------------------------|---|
| 1.403 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4-Methyl-2-thienyl                     |   |
| 1.404 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4-Methyl-thiazol-2-yl                  |   |
| 1.405 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4-Chlor-thiazol-2-yl                   |   |
| 1.406 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4,5-Dimethyl-thiazol-2-yl              |   |
| 1.407 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4-Phenyl-thiazol-2-yl                  |   |
| 1.408 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Methoxy-thiazol-5-yl                 |   |
| 1.409 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4-Methyl-2-pyridyl                     |   |
| 1.410 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-(2-Methoxyethyl)-2-pyridyl           |   |
| 1.411 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-Methylthio-2-pyridyl                 |   |
| 1.412 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-Methoxy-3-pyridyl                    |   |
| 1.413 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-Methoxy-2-pyridyl                    |   |
| 1.414 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-(2,2,2-Trifluor-ethoxy)-2-pyridyl    |   |
| 1.415 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-(2,2,2-Trifluor-ethoxy)-3-pyridyl    |   |
| 1.416 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Pyrimidiny1                          |   |
| 1.417 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 6-Dimethylamino-3-pyridyl              |   |
| 1.418 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1,2,4-Thiadiazol-5-yl                  |   |
| 1.419 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |   |
| 1.420 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Methylthio-pyrimidin-5-yl            |   |
| 1.421 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Pyrimidiny1                          |   |
| 1.422 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Methylthio-pyrimidin-4-yl            |   |
| 1.423 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |                                        |   |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                                      |
|-------|----------------|----------------|----------------|---------------------------------|----|----------------------------------------|
| 1.424 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.425 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.426 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 4,5-Dihydro-thiazol-2-yl               |
| 1.427 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Methyl-oxazol-2-yl                   |
| 1.428 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Phenyl-oxazol-2-yl                   |
| 1.429 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Methyl-oxazol-5-yl                   |
| 1.430 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Phenyl-oxazol-5-yl                   |
| 1.431 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Methyl-1,3,4-oxa-diazol-5-yl         |
| 1.432 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 2-Phenyl-1,3,4-oxa-diazol-5-yl         |
| 1.433 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Trifluoromethyl-1,2,4-oxadiazol-3-yl |
| 1.434 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Methyl-1,2,4-oxadiazol-3-yl          |
| 1.435 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Phenyl-1,2,4-oxadiazol-3-yl          |
| 1.436 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Phenyl-isoxazol-3-yl                 |
| 1.437 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl  |
| 1.438 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5-Cyano-4,5-di-hydro-isoxazol-3-yl     |
| 1.439 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 5,6-Dihydro-4H-1,3-thiazipin-2-yl      |
| 1.440 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1,3-Dithiolan-2-yl                     |
| 1.441 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1,3-Dioxolan-2-yl                      |
| 1.442 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1,3-Dithian-2-yl                       |
| 1.443 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1,3-Dioxan-2-yl                        |
| 1.444 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN | 1,3-Oxathiolan-2-yl                    |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L  | M | Z                               |
|-------|----------------|----------------|---------------------------------|----|---|---------------------------------|
| 1.445 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,2,4-Triazol-1yl               |
| 1.446 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 3-Methyl-1,2,4-thiadiazol-5-yl  |
| 1.447 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 1,2,4-Thiadiazol-5-yl           |
| 1.448 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | Thiazolin-4,5-dion-2-yl         |
| 1.449 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 3-Oxo-3-H-1,2,4-di-thiazol-5-yl |
| 1.450 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CN |   | 2-Oxo-2-H-1,3,4-dithiazol-5-yl  |
| 1.451 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 2-Thienyl                       |
| 1.452 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 3-Thienyl                       |
| 1.453 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 2-Furyl                         |
| 1.454 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 3-Furyl                         |
| 1.455 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 3-Methyl-isoxazol-5-yl          |
| 1.456 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 5-Thiazolyl                     |
| 1.457 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 4-Thiazolyl                     |
| 1.458 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 2-Thiazolyl                     |
| 1.459 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 3-Methyl-isothiazol-5-yl        |
| 1.460 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 3-Isoxazolyl                    |
| 1.461 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 5-Phenyl-thiazol-2-yl           |
| 1.462 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 2-Pyridyl                       |
| 1.463 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 3-Pyridyl                       |
| 1.464 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 4-Pyridyl                       |
| 1.465 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  |   | 1-Methyl-2-pyrrolyl             |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M | Z                               |
|-------|----------------|----------------|----------------|---------------------------------|---|---------------------------------|
| 1.466 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-1,2,4-triazol-5-yl     |
| 1.467 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Benzthiazolyl                 |
| 1.468 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Chinolinyl                    |
| 1.469 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-benzimidazol-2-yl      |
| 1.470 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Oxazolyl                      |
| 1.471 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Phenyl-pyrazol-5-yl           |
| 1.472 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-pyrazol-3-yl           |
| 1.473 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-pyrazol-5-yl           |
| 1.474 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dimethyl-pyrazol-3-yl       |
| 1.475 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Phenyl-pyrazol-3-yl           |
| 1.476 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,4-Dimethyl-pyrazol-5-yl       |
| 1.477 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dimethyl-pyrazol-4-yl       |
| 1.478 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,5-Dimethyl-pyrazol-4-yl       |
| 1.479 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-pyrazol-4-yl           |
| 1.480 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dimethyl-pyrazol-5-yl       |
| 1.481 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-oxazol-2-yl            |
| 1.482 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methylthio-thiazol-2-yl       |
| 1.483 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methoxy-1-methyl-pyrazol-5-yl |
| 1.484 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Cyclopropyl-isoxazol-5-yl     |
| 1.485 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Isopropyl-isoxazol-5-yl       |
| 1.486 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | (3-Methyl-phenyl)-thiazol-2-yl  |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M | Z                                      |
|-------|----------------|----------------|----------------|---------------------------------|---|----------------------------------------|
| 1.487 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-thiazol-2-yl                  |
| 1.488 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Brom-2-thienyl                       |
| 1.489 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-2-thienyl                     |
| 1.490 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-2-thienyl                     |
| 1.491 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-thiazol-2-yl                  |
| 1.492 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Chlor-thiazol-2-yl                   |
| 1.493 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4,5-Dimethyl-thiazol-2-yl              |
| 1.494 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Phenyl-thiazol-2-yl                  |
| 1.495 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methoxy-thiazol-5-yl                 |
| 1.496 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-2-pyridyl                     |
| 1.497 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2-Methoxyethyl)-2-pyridyl           |
| 1.498 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methylthio-2-pyridyl                 |
| 1.499 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methoxy-3-pyridyl                    |
| 1.500 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methoxy-2-pyridyl                    |
| 1.501 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methyl-2-pyridyl                     |
| 1.502 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2,2,2-Trifluor-ethoxy)-2-pyridyl    |
| 1.503 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2,2,2-Trifluor-ethoxy)-3-pyridyl    |
| 1.504 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Pyrimidinyl                          |
| 1.505 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Dimethylamino-3-pyridyl              |
| 1.506 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,2,4-Thiadiazol-5-yl                  |
| 1.507 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |

| Nr.   | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M | Z                                     |
|-------|----------------|----------------|----------------|---------------------------------|---|---------------------------------------|
| 1.508 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methylthio-o-pyrimidin-5-yl         |
| 1.509 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Pyrimidinyl                         |
| 1.510 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methylthio-o-pyrimidin-4-yl         |
| 1.511 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methylthio-1,3,4-thiadiazol-2-yl    |
| 1.512 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methoxy-1,3,4-thiadiazol-2-yl       |
| 1.513 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4,5-Dihydro-thiazol-2-yl              |
| 1.514 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-oxazol-2-yl                  |
| 1.515 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-oxazol-2-yl                  |
| 1.516 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methyl-oxazol-5-yl                  |
| 1.517 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Phenyl-oxazol-5-yl                  |
| 1.518 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methyl-1,3,4-oxa-diazol-5-yl        |
| 1.519 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Phenyl-1,3,4-oxa-diazol-5-yl        |
| 1.520 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl |
| 1.521 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-1,2,4-oxadiazol-3-yl         |
| 1.522 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-1,2,4-oxadiazol-3-yl         |
| 1.523 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-isoxazol-3-yl                |
| 1.524 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl |
| 1.525 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Cyano-4,5-di-hydro-isoxazol-3-yl    |
| 1.526 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5,6-Dihydro-4H-1,3-thiazin-2-yl       |
| 1.527 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dithiolan-2-yl                    |
| 1.528 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dioxolan-2-yl                     |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup>                  | L | M                                 | Z |
|-------|-----------------|----------------|---------------------------------|---|-----------------------------------|---|
| 1.529 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1, 3-Dithian-2-y1                 |   |
| 1.530 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1, 3-Dioxan-2-y1                  |   |
| 1.531 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1, 3-Oxathiolan-2-y1              |   |
| 1.532 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1, 2, 4-Triazol-1-y1              |   |
| 1.533 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Methyl-1, 2, 4-thiadiazol-5-y1  |   |
| 1.534 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1, 2, 4-Thiadiazol-5-y1           |   |
| 1.535 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | Thiazolin-4, 5-dion-2-y1          |   |
| 1.536 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Oxo-3-H-1, 2, 4-di-thiazol-5-y1 |   |
| 1.537 | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Oxo-2-H-1, 3, 4-dithiazol-5-y1  |   |
| 1.538 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Thienyl                         |   |
| 1.539 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Thienyl                         |   |
| 1.540 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Furyl                           |   |
| 1.541 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Furyl                           |   |
| 1.542 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Methyl-isoxazol-5-y1            |   |
| 1.543 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Thiazoly1                       |   |
| 1.544 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Thiazoly1                       |   |
| 1.545 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Thiazoly1                       |   |
| 1.546 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Methyl-isothiazol-5-y1          |   |
| 1.547 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Isoxazoly1                      |   |
| 1.548 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-thiazol-2-y1             |   |
| 1.549 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Pyridyl                         |   |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup>                  | L | M | Z                               |
|-------|-----------------|----------------|---------------------------------|---|---|---------------------------------|
| 1.550 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 3-Pyridyl                       |
| 1.551 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 4-Pyridyl                       |
| 1.552 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Methyl-2-pyrrolyl             |
| 1.553 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Methyl-1,2,4-triazol-5-yl     |
| 1.554 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 2-Benzthiazolyl                 |
| 1.555 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 2-Chinolinyl                    |
| 1.556 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Methyl-benzimidazol-2-yl      |
| 1.557 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 2-Oxazolyl                      |
| 1.558 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Phenyl-pyrazol-5-yl           |
| 1.559 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Methyl-pyrazol-3-yl           |
| 1.560 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Methyl-pyrazol-5-yl           |
| 1.561 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1,3-Dimethyl-pyrazol-3-yl       |
| 1.562 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Phenyl-pyrazol-3-yl           |
| 1.563 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1,4-Dimethyl-pyrazol-5-yl       |
| 1.564 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1,3-Dimethyl-pyrazol-4-yl       |
| 1.565 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1,5-Dimethyl-pyrazol-4-yl       |
| 1.566 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1-Methyl-pyrazol-4-yl           |
| 1.567 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 1,3-Dimethyl-pyrazol-5-yl       |
| 1.568 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 4-Methyl-oxazol-2-yl            |
| 1.569 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 5-Methylthio-thiazol-2-yl       |
| 1.570 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H |   | 4-Methoxy-1-methyl-pyrazol-5-yl |

| NR.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M | Z                                   |
|-------|-----------------|----------------|----------------|---------------------------------|---|-------------------------------------|
| 1.571 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Cyclopropyl-isoxazol-5-yl         |
| 1.572 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Isopropyl-isoxazol-5-yl           |
| 1.573 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | (3-Methyl-phenyl)-thiazol-2-yl      |
| 1.574 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-thiazol-2-yl               |
| 1.575 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Brom-2-thienyl                    |
| 1.576 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-2-thienyl                  |
| 1.577 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-2-thienyl                  |
| 1.578 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-thiazol-2-yl               |
| 1.579 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Chlor-thiazol-2-yl                |
| 1.580 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4,5-Dimethyl-thiazol-2-yl           |
| 1.581 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Phenyl-thiazol-2-yl               |
| 1.582 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methoxy-thiazol-5-yl              |
| 1.583 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-2-pyridyl                  |
| 1.584 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2-Methoxyethyl)-2-pyridyl        |
| 1.585 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methylthio-2-pyridyl              |
| 1.586 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methoxy-3-pyridyl                 |
| 1.587 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methyl-2-pyridyl                  |
| 1.588 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2,2,2-trifluor-ethoxy)-2-pyridyl |
| 1.589 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2,2,2-trifluor-ethoxy)-3-pyridyl |
| 1.590 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Pyrimidinyl                       |
| 1.591 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H |                                     |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M | Z                                      |
|-------|-----------------|----------------|----------------|---------------------------------|---|----------------------------------------|
| 1.592 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Dimethylamino-3-pyridyl              |
| 1.593 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,2,4-Thiadiazol-5-yl                  |
| 1.594 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.595 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methylthio-pyrimidin-5-yl            |
| 1.596 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Pyrimidinyl                          |
| 1.597 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methylthio-pyrimidin-4-yl            |
| 1.598 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyldiazo-1,3,4-thiadiazol-2-yl    |
| 1.599 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.600 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4,5-Dihydro-thiazol-2-yl               |
| 1.601 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-oxazol-2-yl                   |
| 1.602 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-oxazol-2-yl                   |
| 1.603 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methyl-oxazol-5-yl                   |
| 1.604 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Phenyl-oxazol-5-yl                   |
| 1.605 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methyl-1,3,4-oxa-diazo-1-5-yl        |
| 1.606 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Phenyl-1,3,4-oxa-diazo-1-5-yl        |
| 1.607 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl  |
| 1.608 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-1,2,4-oxadiazol-3-yl          |
| 1.609 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-1,2,4-oxadiazol-3-yl          |
| 1.610 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-isoxazol-3-yl                 |
| 1.611 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl  |
| 1.612 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Cyano-4,5-di-hydro-isoxazol-3-yl     |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                                 |
|-------|-----------------|----------------|----------------|---------------------------------|----|-----------------------------------|
| 1.613 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 5, 6-Dihydro-4H-1, 3-thiazin-2-yl |
| 1.614 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 3-Dithiolan-2-yl               |
| 1.615 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 3-Dioxolan-2-yl                |
| 1.616 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 3-Dithian-2-yl                 |
| 1.617 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 3-Dioxan-2-yl                  |
| 1.618 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 3-Oxathiolan-2-yl              |
| 1.619 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 2, 4-Triazol-1-yl              |
| 1.620 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Methyl-1, 2, 4-thiadiazol-5-yl  |
| 1.621 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1, 2, 4-Thiadiazol-5-yl           |
| 1.622 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | Thiazolin-4, 5-dion-2-yl          |
| 1.623 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Oxo-3-H-1, 2, 4-di-thiazol-5-yl |
| 1.624 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Oxo-2-H-1, 3, 4-dithiazol-5-yl  |
| 1.625 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl                         |
| 1.626 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl                         |
| 1.627 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                           |
| 1.628 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                           |
| 1.629 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl            |
| 1.630 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl                       |
| 1.631 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl                       |
| 1.632 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl                       |
| 1.633 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isothiazol-5-yl          |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                           |
|-------|-----------------|----------------|----------------|---------------------------------|----|-----------------------------|
| 1.634 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl                |
| 1.635 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-thiazol-2-yl       |
| 1.636 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl                   |
| 1.637 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl                   |
| 1.638 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl                   |
| 1.639 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-2-pyrrolyl         |
| 1.640 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-1,2,4-triazol-5-yl |
| 1.641 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl             |
| 1.642 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl                |
| 1.643 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-benzimidazol-2-yl  |
| 1.644 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Oxazolyl                  |
| 1.645 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Phenyl-pyrazol-5-yl       |
| 1.646 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-3-yl       |
| 1.647 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-5-yl       |
| 1.648 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethyl-pyrazol-3-yl   |
| 1.649 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Phenyl-pyrazol-3-yl       |
| 1.650 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,4-Dimethyl-pyrazol-5-yl   |
| 1.651 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethyl-pyrazol-4-yl   |
| 1.652 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,5-Dimethyl-pyrazol-4-yl   |
| 1.653 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-4-yl       |
| 1.654 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethyl-pyrazol-5-yl   |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                               |
|-------|-----------------|----------------|----------------|---------------------------------|----|---------------------------------|
| 1.655 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl            |
| 1.656 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methylthio-thiazol-2-yl       |
| 1.657 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methoxy-1-methyl-pyrazol-5-yl |
| 1.658 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Cyclopropyl-isoxazol-5-yl     |
| 1.659 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isopropyl-isoxazol-5-yl       |
| 1.660 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | (3-Methyl-phenyl)-thiazol-2-yl  |
| 1.661 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-thiazol-2-yl           |
| 1.662 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Brom-2-thienyl                |
| 1.663 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-2-thienyl              |
| 1.664 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-2-thienyl              |
| 1.665 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Chlor-thiazol-2-yl            |
| 1.666 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dimethyl-thiazol-2-yl       |
| 1.667 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Phenyl-thiazol-2-yl           |
| 1.668 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methoxy-thiazol-5-yl          |
| 1.669 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-2-pyridyl              |
| 1.670 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2-Methoxyethyl)-2-pyridyl    |
| 1.671 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methylthio-2-pyridyl          |
| 1.672 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methoxy-3-pyridyl             |
| 1.673 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methoxy-2-pyridyl             |
| 1.674 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methyl-2-pyridyl              |
| 1.675 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 |                                 |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M  | Z                                      |
|-------|-----------------|----------------|----------------|---------------------------------|----|----------------------------------------|
| 1.676 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2,2,2-Trifluor-ethoxy)-2-pyridyl    |
| 1.677 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2,2,2-Trifluor-ethoxy)-3-pyridyl    |
| 1.678 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl                          |
| 1.679 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Dimethylamino-3-pyridyl              |
| 1.680 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Thiadiazol-5-yl                  |
| 1.681 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.682 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methylthio-pyrimidin-5-yl            |
| 1.683 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyrimidinyl                          |
| 1.684 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methylthio-pyrimidin-4-yl            |
| 1.685 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.686 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.687 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dihydro-thiazol-2-yl               |
| 1.688 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-oxazol-2-yl                   |
| 1.689 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-oxazol-2-yl                   |
| 1.690 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methyl-oxazol-5-yl                   |
| 1.691 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Phenyl-oxazol-5-yl                   |
| 1.692 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methyl-1,3,4-oxa-diazo1-5-yl         |
| 1.693 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Phenyl-1,3,4-oxa-diazo1-5-yl         |
| 1.694 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl  |
| 1.695 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-1,2,4-oxadiazol-3-yl          |
| 1.696 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-1,2,4-oxadiazol-3-yl          |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                                    |
|-------|-----------------|----------------|----------------|---------------------------------|-----------------|--------------------------------------|
| 1.697 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Phenyl-isoxazol-3-yl               |
| 1.698 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1-(4-Chlorphenyl)-1,2,4-triazol-2-yl |
| 1.699 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Cyano-4,5-di-hydro-isoxazol-3-yl   |
| 1.700 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 5,6-Dihydro-4H-1,3-thiazin-2-yl      |
| 1.701 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,3-Dithiolan-2-yl                   |
| 1.702 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,3-Dioxolan-2-yl                    |
| 1.703 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,3-Dithian-2-yl                     |
| 1.704 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,3-Dioxan-2-yl                      |
| 1.705 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,3-Oxathiolan-2-yl                  |
| 1.706 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,2,4-Triazol-1-yl                   |
| 1.707 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 3-Methyl-1,2,4-thiadiazol-5-yl       |
| 1.708 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 1,2,4-Thiadiazol-5-yl                |
| 1.709 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | Thiazolin-4,5-dion-2-yl              |
| 1.710 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 3-Oxo-3-H-1,2,4-di-thiazol-5-yl      |
| 1.711 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | C1              | 2-Oxo-2-H-1,3,4-dithiazol-5-yl       |
| 1.712 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl                            |
| 1.713 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Thienyl                            |
| 1.714 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl                              |
| 1.715 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Furyl                              |
| 1.716 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isoxazol-5-yl               |
| 1.717 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Thiazolyl                          |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                           |
|-------|-----------------|----------------|----------------|---------------------------------|-----------------|-----------------------------|
| 1.718 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Thiazolyl                 |
| 1.719 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thiazolyl                 |
| 1.720 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isothiazol-5-yl    |
| 1.721 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isoxazolyl                |
| 1.722 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-thiazol-2-yl       |
| 1.723 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyridyl                   |
| 1.724 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Pyridyl                   |
| 1.725 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Pyridyl                   |
| 1.726 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-2-pyrrolyl         |
| 1.727 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-1,2,4-triazol-5-yl |
| 1.728 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Benzthiazolyl             |
| 1.729 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Chinolinyl                |
| 1.730 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-benzimidazol-2-yl  |
| 1.731 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Oxazolyl                  |
| 1.732 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Phenyl-pyrazol-5-yl       |
| 1.733 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-3-yl       |
| 1.734 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-5-yl       |
| 1.735 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-3-yl   |
| 1.736 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Phenyl-pyrazol-3-yl       |
| 1.737 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,4-Dimethyl-pyrazol-5-yl   |
| 1.738 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-4-yl   |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                               |
|-------|-----------------|----------------|----------------|---------------------------------|-----------------|---------------------------------|
| 1.739 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1, 5-Dimethyl-pyrazol-4-y1      |
| 1.740 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-4-y1           |
| 1.741 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1, 3-Dimethyl-pyrazol-5-y1      |
| 1.742 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-oxazol-2-y1            |
| 1.743 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methylthio-thiazol-2-y1       |
| 1.744 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methoxy-1-methyl-pyrazol-5-y1 |
| 1.745 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Cyclopropyl-isoxazol-5-y1     |
| 1.746 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isopropyl-isoxazol-5-y1       |
| 1.747 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | (3-Methyl-phenyl)-thiazol-2-y1  |
| 1.748 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-thiazol-2-y1           |
| 1.749 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Brom-2-thienyl                |
| 1.750 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-2-thienyl              |
| 1.751 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-2-thienyl              |
| 1.752 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-1-thiazol-2-y1         |
| 1.753 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Chlor-thiazol-2-y1            |
| 1.754 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4, 5-Dimethyl-thiazol-2-y1      |
| 1.755 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Phenyl-thiazol-2-y1           |
| 1.756 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methoxy-thiazol-5-y1          |
| 1.757 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-2-pyridyl              |
| 1.758 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2-Methoxyethyl)-2-pyridyl    |
| 1.759 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methylthio-2-pyridyl          |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                                      |
|-------|-----------------|----------------|----------------|---------------------------------|-----------------|----------------------------------------|
| 1.760 | CH <sub>3</sub> | H              |                | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methoxy-3-pyridyl                    |
| 1.761 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methoxy-2-pyridyl                    |
| 1.762 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methyl-2-pyridyl                     |
| 1.763 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2,2,2-trifluor-ethoxy)-2-pyridyl    |
| 1.764 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2,2,2-trifluor-ethoxy)-3-pyridyl    |
| 1.765 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Pyrimidinyl                          |
| 1.766 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Dimethylamino-3-pyridyl              |
| 1.767 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Thiadiazol-5-yl                  |
| 1.768 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.769 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methylthio-pyrimidin-5-yl            |
| 1.770 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyrimidinyl                          |
| 1.771 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methylthio-pyrimidin-4-yl            |
| 1.772 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.773 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.774 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4,5-Dihydro-thiiazol-2-yl              |
| 1.775 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-oxazol-2-yl                   |
| 1.776 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-oxazol-2-yl                   |
| 1.777 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methyl-oxazol-5-yl                   |
| 1.778 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Phenyl-oxazol-5-yl                   |
| 1.779 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methyl-1,3,4-oxa-diazol-5-yl         |
| 1.780 | CH <sub>3</sub> | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Phenyl-1,3,4-oxa-diazol-5-yl         |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup>                  | L               | M                                     | Z |
|-------|-----------------|-----------------|---------------------------------|-----------------|---------------------------------------|---|
| 1.781 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl |   |
| 1.782 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-1,2,4-oxadiazol-3-yl         |   |
| 1.783 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-1,2,4-oxadiazol-3-yl         |   |
| 1.784 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-isoxazol-3-yl                |   |
| 1.785 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl |   |
| 1.786 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Cyano-4,5-di-hydro-isoxazol-3-yl    |   |
| 1.787 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5,6-Dihydro-4H-1,3-thiazin-2-yl       |   |
| 1.788 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dithiolan-2-yl                    |   |
| 1.789 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dioxolan-2-yl                     |   |
| 1.790 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dithian-2-yl                      |   |
| 1.791 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dioxan-2-yl                       |   |
| 1.792 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Oxathiolan-2-yl                   |   |
| 1.793 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Triazol-1-yl                    |   |
| 1.794 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-1,2,4-thiadiazol-5-yl        |   |
| 1.795 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Thiadiazol-5-yl                 |   |
| 1.796 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Thiazolin-4,5-dion-2-yl               |   |
| 1.797 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Oxo-3-H-1,2,4-di-thiazol-5-yl       |   |
| 1.798 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Oxo-2-H-1,3,4-dithiazol-5-yl        |   |
| 1.799 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl                             |   |
| 1.800 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Thienyl                             |   |
| 1.801 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl                               |   |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M               | Z                           |
|-------|-----------------|-----------------|----------------|---------------------------------|-----------------|-----------------------------|
| 1.802 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Furyl                     |
| 1.803 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isoxazol-5-yl      |
| 1.804 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Thiazolyl                 |
| 1.805 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Thiazolyl                 |
| 1.806 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Thiazolyl                 |
| 1.807 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thiazolyl                 |
| 1.808 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isothiazol-5-yl    |
| 1.809 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isoxazolyl                |
| 1.810 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-thiazol-2-yl       |
| 1.811 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyridyl                   |
| 1.812 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Pyridyl                   |
| 1.813 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Pyridyl                   |
| 1.814 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-2-pyrrolyl         |
| 1.815 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-1,2,4-triazol-5-yl |
| 1.816 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Benzthiazolyl             |
| 1.817 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Chinolinyl                |
| 1.818 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-benzimidazol-2-yl  |
| 1.819 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Oxazolyl                  |
| 1.820 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Phenyl-pyrazol-5-yl       |
| 1.821 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-3-yl       |
| 1.822 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-5-yl       |
|       |                 |                 |                |                                 |                 | 1,3-Dimethyl-pyrazol-3-yl   |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M               | Z                               |
|--------|-----------------|-----------------|----------------|---------------------------------|-----------------|---------------------------------|
| 1. 823 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Phenyl-pyrazol-3-yl           |
| 1. 824 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,4-Dimethyl-pyrazol-5-yl       |
| 1. 825 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-4-yl       |
| 1. 826 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,5-Dimethyl-pyrazol-4-yl       |
| 1. 827 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-Methyl-pyrazol-4-yl           |
| 1. 828 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dimethyl-pyrazol-5-yl       |
| 1. 829 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-oxazol-2-yl            |
| 1. 830 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methylthio-thiazol-2-yl       |
| 1. 831 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methoxy-1-methyl-pyrazol-5-yl |
| 1. 832 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Cyclopropyl-isoxazol-5-yl     |
| 1. 833 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isopropyl-isoxazol-5-yl       |
| 1. 834 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | (3-Methyl-phenyl)-thiazol-2-yl  |
| 1. 835 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-thiazol-2-yl           |
| 1. 836 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Brom-2-thienyl                |
| 1. 837 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-2-thienyl              |
| 1. 838 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-thiazol-2-yl           |
| 1. 839 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Chlor-thiazol-2-yl            |
| 1. 840 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4,5-Dimethyl-thiazol-2-yl       |
| 1. 841 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Phenyl-thiazol-2-yl           |
| 1. 842 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methoxy-thiazol-5-yl          |
| 1. 843 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |                                 |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M               | Z                                      |
|-------|-----------------|-----------------|----------------|---------------------------------|-----------------|----------------------------------------|
| 1.844 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-2-pyridyl                     |
| 1.845 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2-Methoxyethyl)-2-pyridyl           |
| 1.846 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methylthio-2-pyridyl                 |
| 1.847 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methoxy-3-pyridyl                    |
| 1.848 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methoxy-2-pyridyl                    |
| 1.849 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Methyl-2-pyridyl                     |
| 1.850 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2,2,2-Trifluor-ethoxy)-2-pyridyl    |
| 1.851 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-(2,2,2-Trifluor-ethoxy)-3-pyridyl    |
| 1.852 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Pyrimidinyl                          |
| 1.853 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 6-Dimethylamino-3-pyridyl              |
| 1.854 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Thiadiazol-5-yl                  |
| 1.855 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.856 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methylthio-pyrimidin-5-yl            |
| 1.857 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyrimidinyl                          |
| 1.858 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methylthio-pyrimidin-4-yl            |
| 1.859 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.860 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.861 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4,5-Dihydro-thiazol-2-yl               |
| 1.862 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-oxazol-2-yl                   |
| 1.863 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-oxazol-2-yl                   |
| 1.864 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methyl-oxazol-5-yl                   |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M               | Z                                     |
|-------|-----------------|-----------------|----------------|---------------------------------|-----------------|---------------------------------------|
| 1.865 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Phenyl-oxazol-5-yl                  |
| 1.866 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Methyl-1,3,4-oxa-diazol-5-yl        |
| 1.867 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Phenyl-1,3,4-oxa-diazol-5-yl        |
| 1.868 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Trifluormethyl-1,2,4-oxadiazol-3-yl |
| 1.869 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Methyl-1,2,4-oxadiazol-3-yl         |
| 1.870 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Phenyl-1,2,4-oxadiazol-3-yl         |
| 1.871 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl |
| 1.872 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Cyano-4,5-di-hydro-isoxazol-3-yl    |
| 1.873 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5,6-Dihydro-4H-1,3-thiazin-2-yl       |
| 1.874 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dithiolan-2-yl                    |
| 1.875 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dioxolan-2-yl                     |
| 1.876 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Oxathiolan-2-yl                   |
| 1.877 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dithian-2-yl                      |
| 1.878 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Dioxan-2-yl                       |
| 1.879 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,3-Oxathiolan-2-yl                   |
| 1.880 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Triazol-1-yl                    |
| 1.881 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-1,2,4-thiadiazol-5-yl        |
| 1.882 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 1,2,4-Thiadiazol-5-yl                 |
| 1.883 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Thiazolin-4,5-dion-2-yl               |
| 1.884 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Oxo-3-H-1,2,4-di-thiazzol-5-yl      |
| 1.885 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Oxo-2-H-1,3,4-dithiazzol-5-yl       |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z                           |
|--------|-----------------|-----------------|----------------|---------------------------------|----|-----------------------------|
| 1. 886 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl                   |
| 1. 887 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl                   |
| 1. 888 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                     |
| 1. 889 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                     |
| 1. 890 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl      |
| 1. 891 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl                 |
| 1. 892 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl                 |
| 1. 893 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl                 |
| 1. 894 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isothiazol-5-yl    |
| 1. 895 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl                |
| 1. 896 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-thiazol-2-yl       |
| 1. 897 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl                   |
| 1. 898 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl                   |
| 1. 899 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl                   |
| 1. 900 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-2-pyrrolyl         |
| 1. 901 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-1,2,4-triazol-5-yl |
| 1. 902 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl             |
| 1. 903 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl                |
| 1. 904 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-benzimidazol-2-yl  |
| 1. 905 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Oxazolyl                  |
| 1. 906 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Phenyl-pyrazol-5-yl       |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z                               |
|-------|-----------------|-----------------|----------------|---------------------------------|----|---------------------------------|
| 1.907 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-3-yl           |
| 1.908 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-5-yl           |
| 1.909 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethyl-pyrazol-3-yl       |
| 1.910 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Phenyl-pyrazol-3-yl           |
| 1.911 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,4-Dimethyl-pyrazol-5-yl       |
| 1.912 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethyl-pyrazol-4-yl       |
| 1.913 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,5-Dimethyl-pyrazol-4-yl       |
| 1.914 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-Methyl-pyrazol-4-yl           |
| 1.915 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dimethyl-pyrazol-5-yl       |
| 1.916 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl            |
| 1.917 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methylthio-thiazol-2-yl       |
| 1.918 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methoxy-1-methyl-pyrazol-5-yl |
| 1.919 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Cyclopropyl-isoxazol-5-yl     |
| 1.920 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isopropyl-isoxazol-5-yl       |
| 1.921 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | (3-Methyl-phenyl)-thiazol-2-yl  |
| 1.922 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-thiazol-2-yl           |
| 1.923 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Brom-2-thienyl                |
| 1.924 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-2-thienyl              |
| 1.925 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-2-thienyl              |
| 1.926 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-thiazol-2-yl           |
| 1.927 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Chlor-thiazol-2-yl            |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z                                      |
|-------|-----------------|-----------------|----------------|---------------------------------|----|----------------------------------------|
| 1.928 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dimethyl-thiazol-2-yl              |
| 1.929 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Phenyl-thiazol-2-yl                  |
| 1.930 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methoxy-thiazol-5-yl                 |
| 1.931 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-2-pyridyl                     |
| 1.932 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2-Methoxyethyl)-2-pyridyl           |
| 1.933 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methylthio-2-pyridyl                 |
| 1.934 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methoxy-3-pyridyl                    |
| 1.935 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methoxy-2-pyridyl                    |
| 1.936 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Methyl-2-pyridyl                     |
| 1.937 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2,2,2-Trifluor-ethoxy)-2-pyridyl    |
| 1.938 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-(2,2,2-Trifluor-ethoxy)-3-pyridyl    |
| 1.939 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl                          |
| 1.940 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 6-Dimethylamino-3-pyridyl              |
| 1.941 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Thiadiazol-5-yl                  |
| 1.942 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.943 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methylthio-pyrimidin-5-yl            |
| 1.944 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyrimidinyl                          |
| 1.945 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methylthio-pyrimidin-4-yl            |
| 1.946 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.947 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.948 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dihydro-thiazol-2-yl               |

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z                                      |
|-------|-----------------|-----------------|----------------|---------------------------------|----|----------------------------------------|
| 1.949 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-oxazol-2-yl                   |
| 1.950 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-oxazol-2-yl                   |
| 1.951 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methyl-oxazol-5-yl                   |
| 1.952 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Phenyl-oxazol-5-yl                   |
| 1.953 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Methyl-1,3,4-oxadiazol-5-yl          |
| 1.954 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Phenyl-1,3,4-oxadiazol-5-yl          |
| 1.955 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Trifluoromethyl-1,2,4-oxadiazol-3-yl |
| 1.956 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-1,2,4-oxadiazol-3-yl          |
| 1.957 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-1,2,4-oxadiazol-3-yl          |
| 1.958 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Phenyl-isoxazol-3-yl                 |
| 1.959 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl  |
| 1.960 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Cyano-4,5-di-hydro-isoxazol-3-yl     |
| 1.961 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5,6-Dihydro-4H-1,3-thiazin-2-yl        |
| 1.962 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dithiolan-2-yl                     |
| 1.963 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dioxolan-2-yl                      |
| 1.964 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Dithian-2-yl                       |
| 1.965 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,3-Oxathiolan-2-yl                    |
| 1.966 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Triazol-1-yl                     |
| 1.967 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-1,2,4-thiadiazol-5-yl         |
| 1.968 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 1,2,4-Thiadiazol-5-yl                  |
| 1.969 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 |                                        |

| NR.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z                               |
|-------|-----------------|-----------------|----------------|---------------------------------|----|---------------------------------|
| 1.970 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | Thiazolin-4,5-dion-2-yl         |
| 1.971 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Oxo-3-H-1,2,4-di-thiazol-5-yl |
| 1.972 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Oxo-2-H-1,3,4-dithiazol-5-yl  |
| 1.973 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Thienyl                       |
| 1.974 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Thienyl                       |
| 1.975 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Furyl                         |
| 1.976 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Furyl                         |
| 1.977 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Methyl-isoxazol-5-yl          |
| 1.978 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 5-Thiazolyl                     |
| 1.979 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 4-Thiazolyl                     |
| 1.980 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Thiazolyl                     |
| 1.981 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Methyl-isothiazol-5-yl        |
| 1.982 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Isoxazolyl                    |
| 1.983 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 5-Phenyl-thiazol-2-yl           |
| 1.984 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Pyridyl                       |
| 1.985 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Pyridyl                       |
| 1.986 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 4-Pyridyl                       |
| 1.987 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1-Methyl-2-pyrrolyl             |
| 1.988 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1-Methyl-1,2,4-triazol-5-yl     |
| 1.989 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Benzthiazolyl                 |
| 1.990 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Chinolinyl                    |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M | Z                               |
|--------|-----------------|-----------------|----------------|---------------------------------|---|---------------------------------|
| 1.991  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-benzimidazol-2-yl      |
| 1.992  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Oxazolyl                      |
| 1.993  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Phenyl-pyrazol-5-yl           |
| 1.994  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-pyrazol-3-yl           |
| 1.995  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-pyrazol-5-yl           |
| 1.996  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dimethyl-pyrazol-3-yl       |
| 1.997  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Phenyl-pyrazol-3-yl           |
| 1.998  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,4-Dimethyl-pyrazol-5-yl       |
| 1.999  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dimethyl-pyrazol-4-yl       |
| 1.1000 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,5-Dimethyl-pyrazol-4-yl       |
| 1.1001 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-Methyl-pyrazol-4-yl           |
| 1.1002 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dimethyl-pyrazol-5-yl       |
| 1.1003 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-oxazol-2-yl            |
| 1.1004 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methylthio-thiazol-2-yl       |
| 1.1005 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methoxy-1-methyl-pyrazol-5-yl |
| 1.1006 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Cyclopropyl-isoxazol-5-yl     |
| 1.1007 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | (3-Methyl-phenyl)-thiazol-2-yl  |
| 1.1008 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Isopropyl-isoxazol-5-yl       |
| 1.1009 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-thiazol-2-yl           |
| 1.1010 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Brom-2-thienyl                |
| 1.1011 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-2-thienyl              |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M | Z                                      |
|--------|-----------------|-----------------|----------------|---------------------------------|---|----------------------------------------|
| 1.1012 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-2-thienyl                     |
| 1.1013 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-thiazol-2-yl                  |
| 1.1014 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Chlor-thiazol-2-yl                   |
| 1.1015 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4,5-Dimethyl-thiazol-2-yl              |
| 1.1016 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Phenyl-thiazol-2-yl                  |
| 1.1017 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methoxy-thiazol-5-yl                 |
| 1.1018 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4-Methyl-2-pyridyl                     |
| 1.1019 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2-Methoxyethyl)-2-pyridyl           |
| 1.1020 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methylthio-2-pyridyl                 |
| 1.1021 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methoxy-3-pyridyl                    |
| 1.1022 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methoxy-2-pyridyl                    |
| 1.1023 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Methyl-2-pyridyl                     |
| 1.1024 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2,2-Trifluor-ethoxy)-2-pyridyl      |
| 1.1025 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-(2,2-Trifluor-ethoxy)-3-pyridyl      |
| 1.1026 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Pyrimidinyl                          |
| 1.1027 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 6-Dimethylamino-3-pyridyl              |
| 1.1028 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,2,4-Thiadiazol-5-yl                  |
| 1.1029 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 3-Ethoxycarbonyl-1-methyl-pyrazol-5-yl |
| 1.1030 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methylthio-pyrimidin-5-yl            |
| 1.1031 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Pyrimidinyl                          |
| 1.1032 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methylthio-pyrimidin-4-yl            |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M | Z                                      |
|--------|-----------------|-----------------|----------------|---------------------------------|---|----------------------------------------|
| 1.1033 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methylthio-1,3,4-thiadiazol-2-yl     |
| 1.1034 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methoxy-1,3,4-thiadiazol-2-yl        |
| 1.1035 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 4,5-Dihydro-thiazol-2-yl               |
| 1.1036 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-oxazol-2-yl                   |
| 1.1037 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-oxazol-2-yl                   |
| 1.1038 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methyl-oxazol-5-yl                   |
| 1.1039 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Phenyl-oxazol-5-yl                   |
| 1.1040 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Methyl-1,3,4-oxa-diazol-5-yl         |
| 1.1041 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 2-Phenyl-1,3,4-oxa-diazol-5-yl         |
| 1.1042 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Trifluoromethyl-1,2,4-oxadiazol-3-yl |
| 1.1043 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Methyl-1,2,4-oxadiazol-3-yl          |
| 1.1044 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-1,2,4-oxadiazol-3-yl          |
| 1.1045 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Phenyl-isoxazol-3-yl                 |
| 1.1046 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1-(4-Chlorophenyl)-1,2,4-triazol-2-yl  |
| 1.1047 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5-Cyano-4,5-di-hydro-isoxazol-3-yl     |
| 1.1048 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 5,6-Dihydro-4H-1,3-thiazin-2-yl        |
| 1.1049 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dithiolan-2-yl                     |
| 1.1050 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dioxolan-2-yl                      |
| 1.1051 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dithian-2-yl                       |
| 1.1052 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Dioxan-2-yl                        |
| 1.1053 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H | 1,3-Oxathiolan-2-yl                    |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z                               |
|--------|-----------------|-----------------|----------------|---------------------------------|----|---------------------------------|
| 1.1054 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1,2,4-Triazol-1-yl              |
| 1.1055 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Methyl-1,2,4-thiadiazol-5-yl  |
| 1.1056 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 1,2,4-Thiadiazol-5-yl           |
| 1.1057 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | Thiazolin-4,5-dion-2-yl         |
| 1.1058 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Oxo-3-H-1,2,4-di-thiazol-5-yl |
| 1.1059 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | H  | 2-Oxo-2-H-1,3,4-dithiazol-5-yl  |
| 1.1060 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 2-Thienyl                       |
| 1.1061 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 3-Thienyl                       |
| 1.1062 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 2-Furyl                         |
| 1.1063 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 3-Furyl                         |
| 1.1064 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 3-Methyl-isoxazol-5-yl          |
| 1.1065 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 5-Thiazioly1                    |
| 1.1066 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 4-Thiazioly1                    |
| 1.1067 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 2-Thiazioly1                    |
| 1.1068 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 3-Isoxazoly1                    |
| 1.1069 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 2-Pyridyl                       |
| 1.1070 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 3-Pyridyl                       |
| 1.1071 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 4-Pyridyl                       |
| 1.1072 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 2-Benzthiazioly1                |
| 1.1073 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 2-Chinolinyl                    |
| 1.1074 | H               | H               | H              | CF <sub>3</sub>                 | C1 | 4-Methyl-oxazol-2-yl            |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                | M  | Z                      |
|--------|----------------|----------------|----------------|------------------|----|------------------------|
| 1.1075 | H              | H              | H              | CF <sub>3</sub>  | C1 | 5-Pyrimidinyl          |
| 1.1076 | H              | H              | H              | OCH <sub>3</sub> | C1 | 2-Thienyl              |
| 1.1077 | H              | H              | H              | OCH <sub>3</sub> | C1 | 3-Thienyl              |
| 1.1078 | H              | H              | H              | OCH <sub>3</sub> | C1 | 2-Furyl                |
| 1.1079 | H              | H              | H              | OCH <sub>3</sub> | C1 | 3-Furyl                |
| 1.1080 | H              | H              | H              | OCH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1081 | H              | H              | H              | OCH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 1.1082 | H              | H              | H              | OCH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 1.1083 | H              | H              | H              | OCH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 1.1084 | H              | H              | H              | OCH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 1.1085 | H              | H              | H              | OCH <sub>3</sub> | C1 | 2-Pyridyl              |
| 1.1086 | H              | H              | H              | OCH <sub>3</sub> | C1 | 3-Pyridyl              |
| 1.1087 | H              | H              | H              | OCH <sub>3</sub> | C1 | 4-Pyridyl              |
| 1.1088 | H              | H              | H              | OCH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 1.1089 | H              | H              | H              | OCH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 1.1090 | H              | H              | H              | OCH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 1.1091 | H              | H              | H              | OCH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 1.1092 | H              | H              | H              | OCF <sub>3</sub> | C1 | 2-Thienyl              |
| 1.1093 | H              | H              | H              | OCF <sub>3</sub> | C1 | 3-Thienyl              |
| 1.1094 | H              | H              | H              | OCF <sub>3</sub> | C1 | 2-Furyl                |
| 1.1095 | H              | H              | H              | OCF <sub>3</sub> | C1 | 3-Furyl                |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                                 | M  | Z                      |
|--------|----------------|----------------|----------------|-----------------------------------|----|------------------------|
| 1.1096 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1097 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 5-Thiazolyl            |
| 1.1098 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 4-Thiazolyl            |
| 1.1099 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 2-Thiazolyl            |
| 1.1100 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 3-Isoxazolyl           |
| 1.1101 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 2-Pyridyl              |
| 1.1102 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 3-Pyridyl              |
| 1.1103 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 4-Pyridyl              |
| 1.1104 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 2-Benzthiazolyl        |
| 1.1105 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 2-Chinolinyl           |
| 1.1106 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 4-Methyl-oxazol-2-yl   |
| 1.1107 | H              | H              | H              | OCF <sub>3</sub>                  | C1 | 5-Pyrimidinyl          |
| 1.1108 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 2-Thienyl              |
| 1.1109 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 3-Thienyl              |
| 1.1110 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 2-Furyl                |
| 1.1111 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 3-Furyl                |
| 1.1112 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1113 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 1.1114 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 1.1115 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 1.1116 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 3-Isoxazolyl           |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                                 | M  | Z                      |
|--------|----------------|----------------|----------------|-----------------------------------|----|------------------------|
| 1.1117 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 2-Pyridyl              |
| 1.1118 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 3-Pyridyl              |
| 1.1119 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 4-Pyridyl              |
| 1.1120 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 1.1121 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 1.1122 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 1.1123 | H              | H              | H              | SO <sub>2</sub> NHCH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 1.1124 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 1.1125 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 1.1126 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 1.1127 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 1.1128 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1129 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 1.1130 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 1.1131 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 1.1132 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 1.1133 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 1.1134 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 1.1135 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 1.1136 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 1.1137 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                                 | M  | Z                      |
|--------|----------------|----------------|----------------|-----------------------------------|----|------------------------|
| 1.1138 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 1.1139 | H              | H              | H              | NHSO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 1.1140 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 2-Thienyl              |
| 1.1141 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 3-Thienyl              |
| 1.1142 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 2-Furyl                |
| 1.1143 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 3-Furyl                |
| 1.1144 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1145 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 5-Thiazolyl            |
| 1.1146 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 4-Thiazolyl            |
| 1.1147 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 2-Thiazolyl            |
| 1.1148 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 3-Isoxazolyl           |
| 1.1149 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 2-Pyridyl              |
| 1.1150 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 3-Pyridyl              |
| 1.1151 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 4-Pyridyl              |
| 1.1152 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 2-Benzothiazolyl       |
| 1.1153 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 2-Chinolinyl           |
| 1.1154 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 4-Methyl-oxazol-2-yl   |
| 1.1155 | H              | H              | H              | OSO <sub>2</sub> CH <sub>3</sub>  | C1 | 5-Pyrimidinyl          |
| 1.1156 | H              | H              | H              | OCOCH <sub>3</sub>                | C1 | 2-Thienyl              |
| 1.1157 | H              | H              | H              | OCOCH <sub>3</sub>                | C1 | 3-Thienyl              |
| 1.1158 | H              | H              | H              | OCOCH <sub>3</sub>                | C1 | 2-Furyl                |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                  | L                | M                      | Z           |
|--------|----------------|----------------|---------------------------------|------------------|------------------------|-------------|
| 1.1159 | H              | H              | OCOCH <sub>3</sub>              | C1               | 3-Furyl                |             |
| 1.1160 | H              | H              | OCOCH <sub>3</sub>              | C1               | 3-Methyl-isoxazol-5-yl |             |
| 1.1161 | H              | H              | OCOCH <sub>3</sub>              | C1               | 5-Thiazolyl            |             |
| 1.1162 | H              | H              | OCOCH <sub>3</sub>              | -                | C1                     | 4-Thiazolyl |
| 1.1163 | H              | H              | OCOCH <sub>3</sub>              | C1               | 2-Thiazolyl            |             |
| 1.1164 | H              | H              | OCOCH <sub>3</sub>              | C1               | 3-Isoxazolyl           |             |
| 1.1165 | H              | H              | OCOCH <sub>3</sub>              | C1               | 2-Pyridyl              |             |
| 1.1166 | H              | H              | OCOCH <sub>3</sub>              | C1               | 3-Pyridyl              |             |
| 1.1167 | H              | H              | OCOCH <sub>3</sub>              | C1               | 4-Pyridyl              |             |
| 1.1168 | H              | H              | OCOCH <sub>3</sub>              | C1               | 2-Benzthiazolyl        |             |
| 1.1169 | H              | H              | OCOCH <sub>3</sub>              | C1               | 2-Chinoliny            |             |
| 1.1170 | H              | H              | OCOCH <sub>3</sub>              | C1               | 4-Methyl-oxazol-2-yl   |             |
| 1.1171 | H              | H              | OCOCH <sub>3</sub>              | C1               | 5-Pyrimidinyl          |             |
| 1.1172 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 2-Thienyl              |             |
| 1.1173 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 3-Thienyl              |             |
| 1.1174 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 2-Furyl                |             |
| 1.1175 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 3-Furyl                |             |
| 1.1176 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 3-Methyl-isoxazol-5-yl |             |
| 1.1177 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 5-Thiazolyl            |             |
| 1.1178 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 4-Thiazolyl            |             |
| 1.1179 | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 2-Thiazolyl            |             |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M                | Z                      |
|--------|----------------|----------------|----------------|---------------------------------|------------------|------------------------|
| 1.1180 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 3-Isoxazolyl           |
| 1.1181 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 2-Pyridyl              |
| 1.1182 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 3-Pyridyl              |
| 1.1183 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 4-Pyridyl              |
| 1.1184 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 2-Benzthiazolyl        |
| 1.1185 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 2-Chinolinyl           |
| 1.1186 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 4-Methyl-oxazol-2-yl   |
| 1.1187 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub> | 5-Pyrimidinyl          |
| 1.1188 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 2-Thienyl              |
| 1.1189 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 3-Thienyl              |
| 1.1190 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 2-Furyl                |
| 1.1191 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 3-Furyl                |
| 1.1192 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 3-Methyl-isoxazol-5-yl |
| 1.1193 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 5-Thiazolyl            |
| 1.1194 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 4-Thiazolyl            |
| 1.1195 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 2-Thiazolyl            |
| 1.1196 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 3-Isoxazolyl           |
| 1.1197 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 2-Pyridyl              |
| 1.1198 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 3-Pyridyl              |
| 1.1199 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 4-Pyridyl              |
| 1.1200 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>  | 2-Benzthiazolyl        |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                               | M               | Z                      |
|--------|----------------|----------------|----------------|---------------------------------|-----------------|------------------------|
| 1.1201 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub> | 2-Chinolinyl           |
| 1.1202 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub> | 4-Methyl-oxazol-2-yl   |
| 1.1203 | H              | H              | H              | SO <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub> | 5-Pyrimidinyl          |
| 1.1204 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 2-Thienyl              |
| 1.1205 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 3-Thienyl              |
| 1.1206 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 2-Furyl                |
| 1.1207 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 3-Furyl                |
| 1.1208 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 3-Methyl-isoxazol-5-yl |
| 1.1209 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 5-Thiazolyl            |
| 1.1210 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 4-Thiazolyl            |
| 1.1211 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 2-Thiazolyl            |
| 1.1212 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 3-Isoxazolyl           |
| 1.1213 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 2-Pyridyl              |
| 1.1214 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 3-Pyridyl              |
| 1.1215 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 4-Pyridyl              |
| 1.1216 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 2-Benzthiazolyl        |
| 1.1217 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 2-Chinolinyl           |
| 1.1218 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 4-Methyl-oxazol-2-yl   |
| 1.1219 | H              | H              | H              | SOCH <sub>3</sub>               | C1              | 5-Pyrimidinyl          |
| 1.1220 | H              | H              | H              | SCH <sub>3</sub>                | C1              | 2-Thienyl              |
| 1.1221 | H              | H              | H              | SCH <sub>3</sub>                | C1              | 3-Thienyl              |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | L                                             | M  | Z                      |
|--------|----------------|----------------|----------------|-----------------------------------------------|----|------------------------|
| 1.1222 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 2-Furyl                |
| 1.1223 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 3-Furyl                |
| 1.1224 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1225 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 5-Thiazolyl            |
| 1.1226 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 4-Thiazolyl            |
| 1.1227 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 2-Thiazolyl            |
| 1.1228 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 3-Isoxazolyl           |
| 1.1229 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 2-Pyridyl              |
| 1.1230 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 3-Pyridyl              |
| 1.1231 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 4-Pyridyl              |
| 1.1232 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 2-Benzthiazolyl        |
| 1.1233 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 2-Chinolinyl           |
| 1.1234 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 4-Methyl-oxazol-2-yl   |
| 1.1235 | H              | H              | H              | SCH <sub>3</sub>                              | C1 | 5-Pyrimidinyl          |
| 1.1236 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 2-Thienyl              |
| 1.1237 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 3-Thienyl              |
| 1.1238 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 2-Furyl                |
| 1.1239 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 3-Furyl                |
| 1.1240 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 1.1241 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 5-Thiazolyl            |
| 1.1242 | H              | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1 | 4-Thiazolyl            |

| Nr.    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                                | L                               | M                      | Z |
|--------|----------------|----------------|-----------------------------------------------|---------------------------------|------------------------|---|
| 1.1243 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Thiazolyl            |   |
| 1.1244 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Isoxazolyl           |   |
| 1.1245 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Pyridyl              |   |
| 1.1246 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Pyridyl              |   |
| 1.1247 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 4-Pyridyl              |   |
| 1.1248 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Benzthiazolyl        |   |
| 1.1249 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Chinolinyl           |   |
| 1.1250 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 4-Methyl-oxazol-2-yl   |   |
| 1.1251 | H              | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 5-Pyrimidinyl          |   |
| 1.1252 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 2-Thienyl              |   |
| 1.1253 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 3-Thienyl              |   |
| 1.1254 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 2-Furyl                |   |
| 1.1255 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 3-Furyl                |   |
| 1.1256 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 3-Methyl-isoxazol-5-yl |   |
| 1.1257 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 5-Thiazolyl            |   |
| 1.1258 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 4-Thiazolyl            |   |
| 1.1259 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 2-Thiazolyl            |   |
| 1.1260 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 3-Isoxazolyl           |   |
| 1.1261 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 2-Pyridyl              |   |
| 1.1262 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 3-Pyridyl              |   |
| 1.1263 | H              | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 4-Pyridyl              |   |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                                             | M                               | Z                      |
|--------|-----------------|-----------------|----------------|-----------------------------------------------|---------------------------------|------------------------|
| 1.1264 | H               | H               | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 2-Benzthiazolyl        |
| 1.1265 | H               | H               | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 2-Chinolinyl           |
| 1.1266 | H               | H               | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 4-Methyl-oxazol-2-yl   |
| 1.1267 | H               | H               | H              | C1                                            | SO <sub>2</sub> CH <sub>3</sub> | 5-Pyrimidinyl          |
| 1.1268 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Thienyl              |
| 1.1269 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Thienyl              |
| 1.1270 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Furyl                |
| 1.1271 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Furyl                |
| 1.1272 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Methyl-isoxazol-5-yl |
| 1.1273 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 5-Thiazolyl            |
| 1.1274 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 4-Thiazolyl            |
| 1.1275 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Thiazolyl            |
| 1.1276 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Isoxazolyl           |
| 1.1277 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Pyridyl              |
| 1.1278 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 3-Pyridyl              |
| 1.1279 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 4-Pyridyl              |
| 1.1280 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Benzthiazolyl        |
| 1.1281 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 2-Chinolinyl           |
| 1.1282 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 4-Methyl-oxazol-2-yl   |
| 1.1283 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C1                              | 5-Pyrimidinyl          |
| 1.1284 | H               | H               | H              | SO <sub>2</sub> CH <sub>3</sub>               | C1                              | 5-Oxazolyl             |

| Nr.    | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                               | M  | Z          |
|--------|-----------------|-----------------|----------------|---------------------------------|----|------------|
| 1.1285 | CH <sub>3</sub> | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Oxazoly1 |
| 1.1286 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Oxazoly1 |

Tabelle 2: Verbindungen der Struktur Ie



| NR.  | R <sup>1</sup>  | R <sup>2</sup>  | R <sup>5</sup> | L                               | M  | Z                      |
|------|-----------------|-----------------|----------------|---------------------------------|----|------------------------|
| 2.1  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 2.2  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 2.3  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 2.4  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 2.5  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 2.6  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazoly1            |
| 2.7  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazoly1            |
| 2.8  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazoly1            |
| 2.9  | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazoly1           |
| 2.10 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 2.11 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 2.12 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 2.13 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazoly1        |

| Nr.  | R1              | R <sup>2</sup>  | R <sup>5</sup> | L                               | M  | Z                      |
|------|-----------------|-----------------|----------------|---------------------------------|----|------------------------|
| 2.14 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 2.15 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 2.16 | CH <sub>3</sub> | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 2.17 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 2.18 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 2.19 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 2.20 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 2.21 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 2.22 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiaazoly1           |
| 2.23 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiaazoly1           |
| 2.24 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiaazoly1           |
| 2.25 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazoly1           |
| 2.26 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 2.27 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 2.28 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 2.29 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazoly1        |
| 2.30 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 2.31 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 2.32 | CH <sub>3</sub> | CH <sub>3</sub> | Br             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 2.33 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 2.34 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |

| Nr.  | R <sup>1</sup>  | R <sup>2</sup>  | R <sup>5</sup> | L                               | M  | Z                      |
|------|-----------------|-----------------|----------------|---------------------------------|----|------------------------|
| 2.35 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 2.36 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 2.37 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-y1 |
| 2.38 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 2.39 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 2.40 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 2.41 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 2.42 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 2.43 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 2.44 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 2.45 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 2.46 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 2.47 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-y1   |
| 2.48 | CH <sub>3</sub> | CH <sub>3</sub> | C1             | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |

If



Tabelle 3: Verbindungen der Struktur If

| Nr.  | L                               | M  | Z                      |
|------|---------------------------------|----|------------------------|
| 3.1  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 3.2  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 3.3  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 3.4  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 3.5  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 3.6  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 3.7  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 3.8  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 3.9  | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 3.10 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 3.11 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 3.12 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 3.13 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 3.14 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |

| Nr.  | L                               | M               | Z                      |
|------|---------------------------------|-----------------|------------------------|
| 3.15 | SO <sub>2</sub> CH <sub>3</sub> | C1              | 4-Methyl-oxazol-2-yl   |
| 3.16 | SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Pyrimidinyl          |
| 3.17 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl              |
| 3.18 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Thienyl              |
| 3.19 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl                |
| 3.20 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Furyl                |
| 3.21 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Methyl-isoxazol-5-yl |
| 3.22 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Thiazolyl            |
| 3.23 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Thiazolyl            |
| 3.24 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thiazolyl            |
| 3.25 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Isoxazolyl           |
| 3.26 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Pyridyl              |
| 3.27 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 3-Pyridyl              |
| 3.28 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Pyridyl              |
| 3.29 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Benzothiazolyl       |
| 3.30 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Chinolinyl           |
| 3.31 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 4-Methyl-oxazol-2-yl   |
| 3.32 | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 5-Pyrimidinyl          |

90

Ig



Tabelle 4: Verbindungen der Struktur Ig

| Nr.  | R <sup>3</sup>    | L                               | M  | Z                      |
|------|-------------------|---------------------------------|----|------------------------|
| 4.1  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 4.2  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 4.3  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 4.4  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 4.5  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 4.6  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 4.7  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 4.8  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 4.9  | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 4.10 | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 4.11 | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 4.12 | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 4.13 | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 4.14 | 2-Ethylthiopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |

| Nr.  | R <sup>3</sup>      | L                               | M  | Z                      |
|------|---------------------|---------------------------------|----|------------------------|
| 4.15 | 2-Ethylthiopropyl   | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 4.16 | 2-Ethylthiopropyl   | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 4.17 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 4.18 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 4.19 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 4.20 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 4.21 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 4.22 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 4.23 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 4.24 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 4.25 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 4.26 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 4.27 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 4.28 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 4.29 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 4.30 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 4.31 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 4.32 | Tetrahydropyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 4.33 | Tetrahydropyranyl-4 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 4.34 | Tetrahydropyranyl-4 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 4.35 | Tetrahydropyranyl-4 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |

| Nr.  | R <sup>3</sup>           | L                               | M  | Z                      |
|------|--------------------------|---------------------------------|----|------------------------|
| 4.36 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 4.37 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-y1 |
| 4.38 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 4.39 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 4.40 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 4.41 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 4.42 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 4.43 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 4.44 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 4.45 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 4.46 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 4.47 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-y1   |
| 4.48 | Tetrahydropyranyl-4      | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidiny1          |
| 4.49 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 4.50 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 4.51 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 4.52 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 4.53 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-y1 |
| 4.54 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 4.55 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 4.56 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |

| Nr.  | R <sup>3</sup>           | L                               | M  | Z                      |
|------|--------------------------|---------------------------------|----|------------------------|
| 4.57 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 4.58 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 4.59 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 4.60 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 4.61 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 4.62 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 4.63 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 4.64 | Tetrahydro-thiopyranyl-3 | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 4.65 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 4.66 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 4.67 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 4.68 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 4.69 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 4.70 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 4.71 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 4.72 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 4.73 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 4.74 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 4.75 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 4.76 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 4.77 | 1-Methylthio-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |

| Nr.  | R <sup>J</sup>             | L                               | M  | Z                      |
|------|----------------------------|---------------------------------|----|------------------------|
| 4.78 | 1-Methylthio-o-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 4.79 | 1-Methylthio-o-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 4.80 | 1-Methylthio-o-cyclopropyl | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 4.81 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thienyl              |
| 4.82 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 4.83 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Furyl                |
| 4.84 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 4.85 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 4.86 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Thiazolyl            |
| 4.87 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Thiazolyl            |
| 4.88 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 4.89 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl           |
| 4.90 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 4.91 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 4.92 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 4.93 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 4.94 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Chinolinyl           |
| 4.95 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Methyl-oxazol-2-yl   |
| 4.96 | (Dimethoxy)methyl          | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |

Tabelle 5: Verbindungen der Struktur I<sup>h</sup>

| Nr.  | R <sup>3</sup>  | R <sup>4</sup> | L                               | M  | Z                      |
|------|-----------------|----------------|---------------------------------|----|------------------------|
| 5.1  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 5.2  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 5.3  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 5.4  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 5.5  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 5.6  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 5.7  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 5.8  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 5.9  | H               | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 5.10 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 5.11 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 5.12 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 5.13 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl            |
| 5.14 | CH <sub>3</sub> | H              | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |

| Nr.  | R <sup>3</sup>  | R <sup>4</sup>  | L                               | M  | Z                      |
|------|-----------------|-----------------|---------------------------------|----|------------------------|
| 5.15 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 5.16 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 5.17 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 5.18 | CH <sub>3</sub> | H               | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |
| 5.19 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Thienyl              |
| 5.20 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Furyl                |
| 5.21 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Methyl-isoxazol-5-yl |
| 5.22 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazzolyl           |
| 5.23 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Pyridyl              |
| 5.24 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Pyridyl              |
| 5.25 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 4-Pyridyl              |
| 5.26 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Benzthiazolyl        |
| 5.27 | CH <sub>3</sub> | CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Pyrimidinyl          |

Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden 5 Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

10

Unter Berücksichtigung der Vielseitigkeit der Applikationsmethoden können die Verbindungen I bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen bei- 15 spielsweise folgende Kulturen:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spp. altissima, Beta vulgaris spp. rapa, Brassica napus var. napus, Brassica napus var. 20 napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, 25 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spp., Manihot esculenta, Medicago sativa, Musa spp., Nicotiana tabacum 30 (N. rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spp., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, 35 Vitis vinifera, Zea mays.

Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die 40 Wirkung von Herbiziden tolerant sind, verwandt werden.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauf lauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so 45 können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit

nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

5 Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten 10 durch versprühen, vernebeln, verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

15 Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohle- teeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z. B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, alkylierte Benzole oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon oder stark polare Lösungsmittel, wie N-Methylpyrrolidon oder Wasser in Be- tracht.

25 Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Sub- 30 strate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, 35 die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe (Adjuvantien) kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z. B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, 40 sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kofldensationsprodukte des Naphthalins 45 bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Poly- oxyethylen- octylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonyl- phenol, Alkylphenyl-, Tributylphenylpolyglykolether,

Alkyaryl- polyetheralkohole, Isotridecylalkohol, Fettalkohol- ethylen- oxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxy- ethylenalkylether oder Polyoxypropylenalkylether, Laurylalkohol- polyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder 5 Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

10

Granulate, z. B. Umhüllungs-, Imprägnierungs- und Homogen- granulate können durch Bindung der Wirkstoffe an feste Träger- stoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalk- 15 stein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunst- stoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreide- mehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder 20 andere feste Trägerstoffe.

Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%, vor- 25 zugsweise 0,01 bis 95 Gew. %, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie 30 folgt formuliert werden:

- I        20 Gewichtsteile der Verbindung Nr. 1.1232 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungssproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
  
- II       20 Gewichtsteile der Verbindung Nr. 1.1232 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungs- produktes von 7 Mol Ethylenoxid an 1 Mol

## 100

Isooctylphenyl und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.

5

III 20 Gewichtsteile des Wirkstoffs Nr. 1.1232 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfaktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.

10

IV 20 Gewichtsteile des Wirkstoffs Nr. 1.1232 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin- $\alpha$ -sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew. % des Wirkstoffs enthält.

15

V 3 Gewichtsteile des Wirkstoffs Nr. 1.1232 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew. % des Wirkstoffs enthält.

20

VI 20 Gewichtsteile des Wirkstoffs Nr. 1.1232 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfosäure, 8 Gewichtsteilen Fettalkoholpolyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion

25

VII 1 Gewichtsteil der Verbindung Nr. 1.1232 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.

30

35

40

45

## 101

VIII 1 Gewichtsteil der Verbindung Nr. 1.1232 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Emulphor EL besteht. Man erhält ein stabiles Emulsionskonzentrat.

5

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Benzoylderivate I mit zahlreichen Vertretern anderer herbizider oder wachstums-regulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Bei-

10 spielsweise kommen als Mischungspartner Diazine, 4H-3, 1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamaate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuran-derivate, Cyclohexan-1,3-dionederivate, die in 2-Stellung z. B. 15 eine Carboxy- oder Carbimino-Gruppe tragen, Chinolincarbonsäure-derivate, Imidazolinone, Sulfonamide, Sulfonylharnstoffe, Aryl-oxy-, Heteroaryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

20 Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner 25 die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, 30 Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0, vor-zugsweise 0.01 bis 1.0 kg/ha aktive Substanz (a.S.).

**Anwendungsbeispiele**

35 Die herbizide Wirkung der Benzoylderivate der Formel I ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden 40 nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteiler Düs en aufgebracht. Die Gefäße wurden leicht beregnet, um 45 Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Test-

102

pflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachauflaufbehandlung werden die Testpflanzen je 5 nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen werden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie werden erst als Keimpflanzen getrennt angezogen und einige 10 Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung beträgt 0.125 bzw. 0.0625 kg/ha a.S.

die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C 15 bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

20 Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

25 Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

|    | Lateinischer Name      | Deutscher Name                | Englischer Name  |
|----|------------------------|-------------------------------|------------------|
| 30 | Abutilon theophrasti   | Chinesischer Hanf             | velvet leaf      |
|    | Amaranthus retroflexus | zurückgekrümpter Fuchsschwanz | redroot pigweed  |
|    | Echinochloa crus-galli | Hühnerhirse                   | barnyardgrass    |
| 35 | Solanum nigrum         | Schwarzer Nachtschatten       | black nightshade |
|    | Zea mays               | Mais                          | Indian corn      |

Selektive herbizide Aktivität bei Nachauflaufanwendung im Gewächshaus

40

45

103

Tabelle 6

5



10

Bsp.-Nr. 1.1232

|    |                              |                 |        |
|----|------------------------------|-----------------|--------|
|    | Aufwandmenge<br>(kg/ha a.S.) | 0,125           | 0,0625 |
| 15 | Testpflanzen                 | Schädigung in % |        |
|    | ZEAMX                        | 10              | 0      |
|    | ABUTH                        | 100             | 95     |
|    | AMARE                        | 100             | 100    |
| 20 | ECHCG                        | 98              | 95     |
|    | SOLNI                        | 100             | 100    |

Tabelle 7  
Herbizide sAktivität bei Nachauflaufanwendung im Gewächshaus  
25

30



|    |                              |                 |        |
|----|------------------------------|-----------------|--------|
|    | Aufwandmenge<br>(kg/ha a.S.) | 0,125           | 0,0625 |
| 35 | Testpflanzen                 | Schädigung in % |        |
|    | ZEAMX                        | 10              | 0      |
|    | ECHCG                        | 95              | 95     |
| 40 | CHEAL                        | 95              | 95     |
|    | SINAL                        | 90              | 90     |
|    | SOLNI                        | 100             | 100    |

45

Tabelle 8

Herbizide Aktivität bei Nachauflaufanwendung im Gewächshaus

5



10

15

|                              |                 |        |
|------------------------------|-----------------|--------|
| Aufwandmenge<br>(kg/ha a.S.) | 0,125           | 0,0625 |
| Testpflanzen                 | Schädigung in % |        |
| ZEAMX                        | 10              | 0      |
| ECHCG                        | 95              | 95     |
| CHEAL                        | 95              | 95     |

## 20 Herstellungsbeispiele

## A) Herstellung der Ausgangsstoffe

## 1. 2-Chlor-3-formyl-4-methylsulfonylbenzoesäuremethylester

25

a. Zu einer Suspension von 286 g (2.14 mol) Aluminiumtrichlorid in 420 ml 1,2-Dichlorethan wurde bei 15-20°C eine Lösung von 157 g (2 mol) Acetylchlorid in 420 ml 1,2-Dichlorethan getropft. Anschließend wurde eine Lösung von 346 g (2 mol) 2-Chlor-6-methylthio-toluol in 1 l 1,2-Dichlorethan zugetropft. Nach 12 Stunden Nachröhren wurde das Reaktionsgemisch in eine Mischung aus 3 l Eis und 1 l konz. HCl gegossen. Es wurde mit Methylenchlorid extrahiert, die organische Phase mit Wasser gewaschen, mit Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde im Vakuum destilliert.

Man erhielt 256 g (60 % d.Th.) 2-Chlor-3-methyl-4-methylthio-acetophenon,

40

Fp.: 46°C

45

b. 163 g (0.76 mol) 2-Chlor-3-methyl-4-methylthio-acetophenon wurden in 1,5 l Eisessig gelöst, mit 18,6 g Natriumwolframat versetzt und unter Kühlung 173,3 g 30 %ige Wasserstoffperoxidlösung zugetropft. Es wurde 2 Tage nachgerührt und anschließend mit Wasser verdünnt. Der

## 105

ausgefallene Feststoff wurde abgesaugt, mit Wasser gewaschen und getrocknet.

5 Man erhielt 164 g (88% d. Th.) 2-Chlor-3-methyl-4-methylsulfonyl-acetophenon, Fp.: 110-111°C

10 c. 82 g (0.33 mol) 2-Chlor-3-methyl-4-methylsulfonyl-acetophenon wurden in 700 ml Dioxan gelöst und bei Raumtemperatur mit 1 l einer 12,5 %igen Natriumhypochloritlösung versetzt. Anschließend wurde 1 Stunde bei 80°C nachgerührt. Nach dem Abkühlen bildeten sich zwei Phasen, von denen die untere mit Wasser verdünnt und schwach angesäuert wurde. Der ausgefallene Feststoff wurde mit Wasser nachgewaschen und getrocknet.

15 15 Man erhielt 60 g (73 % d.Th) 2-Chlor-3-methyl-4-methylsulfonyl-benzoësäure, Fp.: 230-231°C.

20 d. 100 g (0.4 mol) 2-Chlor-3-methyl-4-methylsulfonyl-benzoësäure wurden in 1 l Methanol gelöst und bei Rückflußtemperatur 5 Stunden mit HCl begast. Anschließend wird eingeeengt.

25 Man erhielt 88.5 g (84 % d.Th.)  
2-Chlor-3-methyl-4-methylsulfonyl-benzoësäuremethylester,  
Fp.: 107-108°C

30 e. 82 g (0.31 mol) 2-Chlor-3-methyl-4-methylsulfonyl-benzoësäuremethylester werden in 2 l Tetrachlormethan gelöst und unter Belichtung portionsweise mit 56 g (0.31 mol) N-Bromsuccinimid versetzt. Das Reaktionsgemisch wurde filtriert, das Filtrat eingeeengt und der Rückstand in 200 ml Methyl-tert.-butylether aufgenommen. Die Lösung wird mit Petrolether versetzt, der ausgefallene Feststoff abgesaugt und getrocknet.

35 Man erhielt 74.5 g (70 % d.Th)  
3-Brommethyl-2-chlor-4-methylsulfonyl-benzoësäuremethylester, Fp.: 74-75°C.

40 f. Eine Lösung von 41 g (0.12 mol) 3-Brommethyl-2-chlor-4-methylsulfonyl-benzoësäuremethylester in 250 ml Acetonitril wurde mit 42.1 g (0.36 mol) N-Methylmorpholin-N-oxid versetzt. Der Ansatz wurde 12 Stunden bei Raumtemperatur nachgerührt, anschließend eingeeengt und der Rückstand in Essigester aufgenommen. Die Lösung wurde mit

## 106

Wasser extrahiert, mit Natriumsulfat getrocknet und eingeeengt.

Man erhielt 31,2 g (94 % d.Th.) 2-Chlor-3-formyl-4-methylsulfonyl-benzoësäuremethylester, Fp.: 98-105°C

5 2. 2-Chlor-4-methylsulfonyl-3-(trifluormethylsulfonyl)oxy-benzoësäure-methylester

10 a. 101 g (0.41 mol) 2-Chlor-3-hydroxy-4-methylsulfonyl-benzoësäure werden in 1,31 Methanol gelöst und unter Rückfluß 4 Stunden mit HCl begast. Die Lösung wurde eingeeengt, der Rückstand mit Dichlormethan aufgenommen und mit K<sub>2</sub>CO<sub>3</sub>-Lösung extrahiert. Die wäßrige Phase wurde mit verdünnter Salzsäure auf pH 7 eingestellt und mit Dichlormethan gewaschen. Anschließend wurde auf pH 1 angesäuert und das Produkt mit Dichlormethan extrahiert.

15 Man erhielt 76,2 g (71 % d.Th.) 2-Chlor-3-hydroxy-4-methylsulfonyl-benzoësäuremethylester.

20 b. Eine Lösung aus 76 g (0,29 mol) 2-Chlor-3-hydroxy-4-methylsulfonyl-benzoësäuremethylester und 68 g Pyridin in 700 ml Dichlormethan wurde bei -20°C mit 89 g (0.32 mol) Trifluormethansulfansäureanhydrid versetzt. Die Lösung wurde 12 Stunden bei Raumtemperatur nachgerührt, mit Dichlormethan verdünnt und mit Wasser extrahiert. Die organische Phase wurde über Magnesiumsulphat getrocknet und eingeeengt.

25 30 Man erhielt 94 g (82 % d.Th) 2-Chlor-4-methylsulfonyl-3-(trifluormethylsulfonyl)oxy-benzoësäure-methylester, Fp.: 69°C.

35 B) Herstellung der Zwischenprodukte

1. 3-(3-Isopropylisoxazol-5-yl)-4-methylsulfonyl-benzoësäure-methylester

40 a. 30 g (102 mmol) 3-Brom-4-methylsulfonyl-benzoësäure-methylester, 90 mg Palladiumdichlorid und 240 mg Tri-phenylphosphin in 200 ml Diethylamin und 60 ml Dimethylformamid werden mit 10 g (102 mmol) (Trimethylsilyl)-acetylen und 180 mg Kupfer-I-jodid versetzt und 4,5 Stunden bei 40°C gerührt. Anschließend wurde noch 12 Stunden bei Raumtemperatur nachgerührt. Das Reaktionsgemisch wurde

## 107

filtriert, das Filtrat eingeengt und der Rückstand über Kieselgel mit Toluol als Laufmittel chromatographiert.

5 Man erhielt 17,3 g (55% d.Th.) 4-Methylsulfonyl-3-(trimethylsilyl)ethinyl-benzoësäuremethylester als Öl.

10 b. 25 g 4-Methylsulfonyl-3-(trimethylsilyl)ethinyl-benzoësäuremethylester werden mit 100 ml Methanol und 0,9 g Kaliumkarbonat 18 Stunden bei Raumtemperatur gerührt. Anschließend wurde vom Feststoff abgesaugt, eingeengt und mit Essigester/Wasser extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet und eingeengt.

15 Man erhielt 15 g (79 % d.Th.) 4-Methylsulfonyl-3-ethinylbenzoësäure-methylester, Fp.: 95-98°C.

20 c. 13,5 g (57 mmol) 4-Methylsulfonyl-3-ethinyl-benzoësäure-methylester werden in 50 ml Dichlormethan gelöst, mit 5,2 g (60 mmol) Isobutyraldehydoxim versetzt und 41 g einer 12,5 %igen Natriumhypochloritlösung zugetropft. Anschließend wurde 24 Stunden bei Raumtemperatur nachgerührt. Der Reaktionsansatz wurde anschließend mit Dichlormethan/Wasser extrahiert, die organische Phase eingeengt und der Rückstand über Kieselgel mit Toluol/Essigester als Laufmittel chromatographiert.

25 Man erhielt 8,8 g (48 % d.Th) 3-(3-Isopropyl-isoxazol-5-yl)-4-methylsulfonyl-benzoësäuremethylester, Fp.: 102-104°C.

30 2. 2-Chlor-3-(isoxazol-3-yl)-4-methylsulfonyl-benzoësäure-methylester

35 a. 15 g ( 54 mmol) 2-Chlor-3-formyl-4-methylsulfonyl-benzoësäuremethylester (Beisp. A.1.) und 4,2 g ( 60 mmol) Hydroxylaminhydrochlorid werden mit 300 ml Methanol gerührt und eine Lösung von 3,18 g (30 mmol) Natriumcarbonat in 80 ml Wasser zugetropft. Die Reaktionsmischung wird über Nacht bei Raumtemperatur gerührt, anschließend wird das Methanol abdestilliert und der Ansatz mit Ether/Wasser extrahiert. Die Etherphase wird mit Natriumsulfat getrocknet und eingeengt.

40 45 Man erhält 14,4 g (91% d.Th.) 2-Chlor-3-hydroxyimino-methyl-4-methylsulfonyl-benzoësäuremethylester, Fp.: 126-128 °C.

## 108

b. 5,3 g (18 mmol) 2-Chlor-3-hydroxyiminomethyl-4-methylsulfonyl-benzoësäuremethylester werden in 50 ml Dichlormethan gelöst und bei 0-5°C 30 Minuten lang Acetylen eingeleitet. Anschließend wird mit einer Spatelspitze Natriumacetat versetzt und 15ml einer 10%igen Natriumhypochlorit-Lösung bei 10°C unter weiterer Acetylen-Einleitung zutropft. Nach beendeter Zugabe wird für weitere 15 Minuten Acetylen bei 10°C eingeleitet und anschließend 12 Stunden nachgerührt. Danach werden die Phasen getrennt, die organische Phase mit Wasser gewaschen, mit Natriumsulfat getrocknet und eingeengt.

Man erhält 4,8 g (84 % d.Th.)  
2-Chlor-3-(isoxazol-3-yl)-4-methylsulfonyl-benzoësäuremethylester, Fp.: 145-147°C.

3. 2-Chlor-3-(thiazol-2-yl)-4-methylsulfonyl-benzoësäuremethylester  
20 33 g (88 mmol) 2-(Tributylstanny1)-thiazol, 17,5 g (44 mmol) 2-Chlor-4-methylsulfonyl-3-(trifluormethylsulfonyl)oxy-benzoësäure-methylester (Beisp. A.2.), 5,8 g Lithiumchlorid, 1 g Tetrakis-(triphenylphosphin)-palladium-(0), eine Spatelspitze 2,6-Di-tert.-butyl-4-methyl-phenol und 200 ml 1,4-Dioxan werden in einem Autoklaven 3 Stunden bei 140°C unter Eigendruck gerührt. Nach dem Abkühlen wird die Reaktionsmischung über eine Kieselgelschicht abfiltriert, mit Methyl-tert.-butyl-ether nachgewaschen und eingeengt. Der Rückstand wird über Kieselgel mit Toluol/Essigester als Laufmittel chromatographiert.

Man erhält 9,1 g (62,6% d.Th.)  
2-Chlor-3-(thiazol-2-yl)-4-methylsulfonyl-benzoësäuremethylester, Fp.: 135-138°C.

35 4. 2-Chlor-3-(oxazol-5-yl)-4-methylsulfonylbenzoësäuremethylester

40 25 g (0,09 mol) 2-Chlor-3-formyl-4-methylsulfonyl-benzoësäuremethylester (Beispiel A.1), 17,6 g (0,09 mol) Tosylmethylenisocyanid und 6,2 g (0,045 mol) fein gepulvertes Kaliumkarbonat werden mit 450 ml Methanol 5 Stunden bei Rückflußtemperatur gerührt. Anschließend wird das Lösungsmittel abgezogen, der Rückstand in Essigester aufgenommen und mit Wasser extrahiert. Die Essigesterphase wird mit Natriumsulfat getrocknet und eingeengt.

## 109

Man erhält 24,7 g (87 % d.Th.) 2-Chlor-3-(oxazol-5-yl)-4-methylsulfon-benzoësäuremethylester,  $^1\text{H-NMR}$  ( $\text{CDCl}_3$ )

δ: 8,24 (d, 1H), 8,15 (s, 1H), 8,01 (d, 1H), 7,40 (s, 1H), 4,0 (s, 3H), 2,96 (s, 3H)

In analoger Weise werden die in der nachfolgenden Tabelle aufgeführten Zwischenprodukte erhalten:

10 Tabelle 9

15



20

25

30

35

40

45

| Nr.  | T       | L                                | M               | Z                    | Phys. Daten<br>FP [°C]                                                                                                                              |
|------|---------|----------------------------------|-----------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.1  | Methoxy | -SO <sub>2</sub> Me              | Cl              | 3-Furyl              | $^1\text{H-NMR}$ ( $\text{CDCl}_3$ ) δ:<br>8,24 (d, 1H), 7,82 (d, 1H),<br>7,64 (m, 2H), 6,55 (s, 1H)<br>3,99 (s, 3H), 2,80 (s, 3H)                  |
| 9.2  | Methoxy | -SO <sub>2</sub> Me              | H               | 2-Thiazolyl          | 95 - 98                                                                                                                                             |
| 9.3  | Ethoxy  | -SO <sub>2</sub> Et              | Cl              | 2-Thiazolyl          | $^1\text{H-NMR}$ ( $\text{CDCl}_3$ ) δ:<br>8,18 (d, 1H), 7,97 (m, 2H),<br>7,71 (d, 1H), 4,47 (q, 2H)<br>3,36 (q, 2H), 1,42 (t, 3H),<br>1,24 (t, 3H) |
| 9.4  | OH      | -SO <sub>2</sub> CH <sub>3</sub> | Cl              | 2-Thiazolyl          | 288-290                                                                                                                                             |
| 9.5  | OH      | -SO <sub>2</sub> CH <sub>3</sub> | Cl              | 2-Thienyl            | 177-180                                                                                                                                             |
| 9.6  | OH      | -SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl            | 175-178                                                                                                                                             |
| 9.7  | OH      | -SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl              | 167-171                                                                                                                                             |
| 9.8  | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl            | 91-95                                                                                                                                               |
| 9.9  | OH      | -SO <sub>2</sub> CH <sub>3</sub> | H               | 2-Furyl              | 219-223                                                                                                                                             |
| 9.10 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl              | 103-106                                                                                                                                             |
| 9.11 | OH      | -SO <sub>2</sub> CH <sub>3</sub> | H               | 2-Thienyl            | 222-224                                                                                                                                             |
| 9.12 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl              | 3-Isoxazoly          | $^1\text{H-NMR}$ ( $\text{CDCl}_3$ ) δ:<br>8,62 (1H);<br>8,18 (1H); 6,58 (1H);<br>3,98 (3H); 3,22 (3H)                                              |
| 9.13 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl              | 5-Phenyl-oxazol-2-yl | 115-118                                                                                                                                             |
| 9.14 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl              | 5-Oxazolyl           | $^1\text{H-NMR}$ ( $\text{CDCl}_3$ ) δ:<br>8,76 (1H); 8,22 (1H);<br>8,10 (1H); 7,63 (1H);<br>4,04 (3H); 3,08 (3H)                                   |

## 110

|    |      |         |                                  |    |                                |                                                                                                                                         |
|----|------|---------|----------------------------------|----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 5  | 9.15 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 5-Cyclopropyl-isoxazol-5-yl    | <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) δ:<br>8,20 (1H);<br>7,95 (1H); 6,12 (1H);<br>3,98 (3H); 3,22 (3H);<br>2,15 (1H); 1,03-1,09 (4H) |
| 10 | 9.16 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 4,5-Dihydroisoxazol-3-yl       | <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) δ:<br>8,12 (1H);<br>7,98 (1H); 4,60 (1H);<br>3,98 (3H); 3,42 (2H);<br>3,25 (3H)                 |
| 15 | 9.17 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 5-Methyl-1,2,4-oxadiazol-3-yl  | 102-105                                                                                                                                 |
| 20 | 9.18 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 4,5-Dihydrooxazol-2-yl         | <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) δ:<br>8,08 (1H);<br>7,98 (1H); 4,57 (2H);<br>4,12 (2H); 3,98 (3H);                              |
| 25 | 9.19 | OH      | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 3-Furyl                        | <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) δ:<br>13,29 (1H);<br>8,02 (1H); 7,67 (2H);<br>6,59 (1H); 2,83 (3H);                             |
| 30 | 9.20 | Methoxy | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 3-Thienyl                      | <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) δ:<br>8,23 (1H);<br>7,84 (1H); 7,49 (2H);<br>7,13 (1H); 3,98 (3H);<br>2,62 (3H)                 |
|    | 9.21 | OH      | -SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Furyl                        | 200-202                                                                                                                                 |
|    | 9.22 | OH      | -SO <sub>2</sub> CH <sub>3</sub> | Cl | 5-Methyl-4-phenyl-thiazol-2-yl | 200-204                                                                                                                                 |

## C) Herstellung der Endprodukte

1. 2-[3-(3-Isopropylisoxazol-5-yl)-4-methylsulfonyl-benzoyl]-cyclohexan-1,3-dior (Bsp.-Nr. 1.1232)

35

a. 8 g (25 mmol) 3-(3-Isopropylisoxazol-5-yl)-4-methylsulfonyl-benzoësäuremethylester (Beisp. B.1.) werden in 50 ml Methanol gelöst und mit 1,5 g (37 mmol) NaOH versetzt. Die Lösung wird 12 Stunden bei Raumtemperatur gerührt. Anschließend wird das Reaktionsgemisch eingeeengt, der Rückstand in Wasser aufgenommen und mit Salzsäure angesäuert. Nach längerem Rühren bilden sich hellgelbe Kristalle. Der Feststoff wird abgesaugt und getrocknet.

45

## 111

Man erhält 6,6 g (86% d.Th.) 3-(3-Isopropyl-isoxazol-5-yl)-4-methylsulfonyl-benzoësäure.  
Fp.: 176-178 °C.

5 b. 6 g (19 mmol) 3-(3-Isopropylisoxazol-5-yl)-4-methylsulfonyl-benzoësäure werden in 60 ml Toluol gelöst, mit einem Tropfen Dimethylformamid versetzt und 3,2 g (27 mmol) Thionylchlorid zugegeben. Nach 4 Stunden Refluxieren wird das Reaktionsgemisch eingeengt.

10 Man erhält 6,3 g (99 % d.Th.) 3-(3-Isopropyl-isoxazol-5-yl)-4-methylsulfonyl-benzoësäurechlorid, Fp.: 102-105°C.

15 c. Zu einer Suspension von 0,5 g (4,6 mmol) Cyclohexadion-1,3 in 30 ml Dichlormethan gibt man 0,56 g (5,5 mmol) Triethylamin und tropft anschließend bei 25°C eine Lösung von 1,5 g (4,6 mmol) 3-(3-Isopropylisoxazol-5-yl)-4-methylsulfonyl-benzoësäurechlorid in 20 ml Dichlormethan zu. Anschließend wird 12 Stunden bei 40°C gerührt. Nach dem Abkühlen wird mit Wasser verdünnt, die Dichlormethanphase abgetrennt über Magnesiumsulfat getrocknet und eingeengt. Der verbleibende Rückstand wird in 30 ml Acetonitril gelöst, mit 2,8 g Triethylamin und dann mit 0,15 g Acetoncyanhydrin versetzt und 12 Stunden bei Raumtemperatur gerührt. Anschließend wird der Reaktionsansatz eingeengt, der Rückstand in Essigester aufgenommen und mit verdünnter Salzsäure extrahiert. Nach zweimaligem Waschen mit Wasser wird die organische Phase mit 5%iger Kaliumcarbonatlösung extrahiert. Die wäßrige Phase wird auf pH 6 eingestellt und mit Essigester rückextrahiert. Nach Trocknen und Einengen erhält man 0,51 g (28 % d.Th.) 2-[3-(3-Isopropylisoxazol-5-yl)-4-methylsulfonyl-benzoyl]-cylohexan-1,3-dion, Fp.: 95-98 °C.

In analoger Weise werden die in den nachfolgenden Tabellen aufgeführten Verbindungen erhalten:

40

45

Tabelle 10



Id

| Nr.   | R <sup>3</sup>     | R <sup>4</sup>  | R <sup>5</sup> | L                                | M  | Z                       | FP [°C] |
|-------|--------------------|-----------------|----------------|----------------------------------|----|-------------------------|---------|
| 10.1  | H                  | H               | H              | -SO <sub>2</sub> Me              | H  | 3-Isopropylisoxazol-5yl | 95-98   |
| 10.2  | Methyl             | Methyl          | H              | -SO <sub>2</sub> Et              | C1 | 2-Thiazolyl             | 103-105 |
| 10.3  | H                  | H               | H              | -SO <sub>2</sub> Et              | C1 | 2-Thiazolyl             | 112-115 |
| 10.4  | H                  | H               | H              | -SO <sub>2</sub> Me              | C1 | 2-Thiazolyl             | 177     |
| 10.5  | H                  | H               | H              | -SO <sub>2</sub> Me              | C1 | 3-Isoxazolyl            | 86-98   |
| 10.11 | Methyl             | H               | H              | -SO <sub>2</sub> Me              | C1 | 3-Isoxazolyl            | 186     |
| 10.12 | H                  | H               | H              | -SO <sub>2</sub> Me              | C1 | 5-Oxazolyl              | 89-91   |
| 10.13 | Methyl             | H               | H              | -SO <sub>2</sub> Me              | C1 | 5-Oxazolyl              | 95-96   |
| 10.14 | Methyl             | Methyl          | H              | -SO <sub>2</sub> Me              | C1 | 5-Oxazolyl              | 101-106 |
| 10.15 | CH <sub>3</sub>    | CH <sub>3</sub> | H              | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl             | 172     |
| 10.16 | CH <sub>3</sub>    | H               | H              | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl             | 180     |
| 10.17 | (Dimethoxy)-methyl | H               | H              | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl             | 84-86   |

112

113

| Nr.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup>                   | L                                | M               | Z                            | FP [°C] |
|-------|-----------------|-----------------|----------------------------------|----------------------------------|-----------------|------------------------------|---------|
| 10.18 | H               | H               | -SO <sub>2</sub> CH <sub>3</sub> | C1                               | 2-Thienyl       |                              | 110     |
| 10.19 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 2-Thienyl                    | 104     |
| 10.20 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | H               | 2-Furyl                      | 79-82   |
| 10.21 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Thienyl                    | 77-80   |
| 10.22 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | 2-Furyl                      | 75-79   |
| 10.23 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 4-Methylthiazol-2-yl         | 110     |
| 10.24 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Chlor-4-methylthiazol-2-yl | 102-104 |
| 10.25 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 3-Isoxazoly                  | 102-105 |
| 10.26 | H               | H               | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 4,5-Dihydroisoxazol-3-yl     | 230     |
| 10.27 | H               | H               | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Cyclopropylisoxazol-3-yl   | 175-180 |
| 10.28 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Cyclopropylisoxazol-3-yl   | 162-172 |
| 10.29 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 4,5-Dihydroisoxazol-3-yl     | 204-205 |
| 10.30 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 4,5-Dihydroisoxazol-3-yl     | 115-120 |
| 10.31 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 5-Cyclopropylisoxazol-3-yl   | 100-110 |
| 10.32 | iso-Propyl      | H               | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 3-Isoxazoly                  | 127-130 |
| 10.33 | iso-Propyl      | H               | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 4,5-Dihydroisoxazol-3-yl     | 178-180 |
| 10.34 | H               | H               | H                                | -SO <sub>2</sub> CH <sub>3</sub> | H               | 2-Furyl                      | 65-68   |
| 10.35 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | H               | 2-Thienyl                    | 81-84   |
| 10.36 | H               | H               | H                                | -SO <sub>2</sub> CH <sub>3</sub> | H               | 2-Thienyl                    | 157-161 |
| 10.37 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 3-Furyl                      | 149-153 |
| 10.38 | CH <sub>3</sub> | CH <sub>3</sub> | H                                | -SO <sub>2</sub> CH <sub>3</sub> | C1              | 3-Thienyl                    | 73-77   |

| NR.   | R <sup>3</sup>  | R <sup>4</sup>  | R <sup>5</sup> | L                                | M  | Z                             | FP [°C] |
|-------|-----------------|-----------------|----------------|----------------------------------|----|-------------------------------|---------|
| 10.39 | CH <sub>3</sub> | CH <sub>3</sub> | H              | -SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Furyl                       | 100-104 |
| 10.40 | H               | H               | H              | -SO <sub>2</sub> CH <sub>3</sub> | H  | 3-Furyl                       | 64-68   |
| 10.41 | CH <sub>3</sub> | CH <sub>3</sub> | H              | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 5-Methyl-4-phenylthiazol-2-y1 | 173     |

Tabelle 11



| Nr.  | R <sup>1</sup>  | R <sup>2</sup>  | $\delta$                         | L                                | M  | Z                     | FP [OC]<br>DZW.<br>NMR | <sup>1</sup> H- |
|------|-----------------|-----------------|----------------------------------|----------------------------------|----|-----------------------|------------------------|-----------------|
| 11.1 | CH <sub>3</sub> | CH <sub>3</sub> | CH=CH                            | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl           | 82                     |                 |
| 11.2 | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>3</sub> | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 2-Thiazolyl           | 254-256                |                 |
| 11.3 | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>3</sub> | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 4,5-Dihydroxazol-3-yl | 161-163                |                 |
| 11.4 | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>3</sub> | -SO <sub>2</sub> CH <sub>3</sub> | C1 | 3-Isoxazolyl          | 125-130                |                 |

## Patentansprüche

## 1. Benzoyllderivate der Formel I

5

10



in der die Substituenten folgende Bedeutungen haben:

15      L, M Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl,  
ein bis fünf Halogenatome oder C<sub>1</sub>-C<sub>2</sub>-Alkoxy substituiert  
sein können, Halogen, Cyano, Nitro, eine Gruppe  
-(Y)-S(O)-R<sup>1</sup> oder eine Gruppe -(Y)-CO-R<sup>2</sup>:

20      Z ein 5- oder 6-gliedriger heterocyclischer, gesättigter  
oder ungesättigter Rest, enthaltend ein bis drei Hetero-  
atome, ausgewählt aus der Gruppe Sauerstoff, Schwefel  
oder Stickstoff, der gegebenenfalls durch Halogen, Cyano,  
Nitro, eine Gruppe -CO-R<sup>3</sup>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogen-  
alkyl, C<sub>1</sub>-C<sub>4</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogen-  
alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio,  
Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino, gegebenenfalls durch Halogen, Cyano,  
Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituiertes  
Phenyl oder eine Oxogruppe, die gegebenenfalls auch in  
der tautomeren Form als Hydroxygruppe vorliegen kann,  
substituiert ist oder der mit einem ankondensierten, ge-  
gebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl  
oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierten Phenylring, einem  
ankondensierten Carbocyclus oder einem ankondensierten,  
gegebenenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl,  
Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy,  
oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierten zweiten Hetero-  
cyclus ein bicyclisches System bildet;

35      Y O, NR<sup>3</sup>;  
n null oder eins;  
m null, eins oder zwei;  
R<sup>1</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder NR<sup>9</sup>R<sup>10</sup>;  
R<sup>2</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, oder NR<sup>9</sup>R<sup>10</sup>;  
40      R<sup>3</sup> Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl;  
R<sup>10</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl;

## 117

Q ein in 2-Stellung verknüpfter Cyclohexan-1,3-dionring der Formel II



10 in welcher

R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup> und R<sup>6</sup> Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl bedeuten,  
R<sup>3</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder eine Gruppe -COOR<sup>3</sup> bedeutet  
R<sup>5</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl bedeutet, wobei  
15 diese Gruppen gegebenenfalls einen bis drei der folgenden Substituenten tragen können: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy,

oder

20 R<sup>1</sup> Tetrahydropyranyl-3, Tetrahydropyranyl-4 oder Tetrahydro-thiopyranyl-3 bedeutet

oder

25 R<sup>2</sup> und R<sup>3</sup> gemeinsam eine Bindung oder einen drei- bis sechs-gliedrigen carbocyclischen Ring bilden

sowie landwirtschaftlich übliche Salze der Verbindungen I.

30 2. Benzoylederivate der Formel Ia

35



Ia

in der L für C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro oder Cyano und M für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro

## 118

oder Cyano steht und Q und Z die in Anspruch 1 angegebenen Bedeutungen haben.

## 3. Benzooylderivate der Formel Ib

5

10



in der L und M für C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro oder Cyano stehen und Q und Z die in Anspruch 1 angegebenen Bedeutungen haben.

4. Benzooylderivate der Formel I gemäß Anspruch 1 in der die Reste L bzw. M für Wasserstoff, Methyl, Methoxy, Methylthio, Chlor, Cyano, Methylsulfonyl, Nitro oder Trifluormethyl stehen.

5. Verfahren zur Herstellung der Verbindungen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man die jeweiligen Ausgangsstoffe der Formel II



mit einem Benzoesäurederivat der Formel III

35

40



wobei T = Halogen bedeutet und L, M und Z die in Anspruch 1 genannte Bedeutung haben, acyliert und das Acylierungsprodukt in Gegenwart eines Katalysators zu den Verbindungen I umlagert.

## 119

6. Herbizides Mittel, enthaltend mindestens ein Benzoylelderivat der Formel I gemäß Anspruch 1 und übliche inerte Zusatzstoffe.

5 7. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge eines Benzoylederivates der Formel I gemäß Anspruch 1 auf die Pflanzen oder deren Lebensraum einwirken läßt.

10 8. Benzoesäureederivate der Formel III

15



III

in der T die folgende Bedeutung hat:

20 T Halogen, OH oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy

und L, M und Z die in Anspruch 1 angegebene Bedeutung haben.

9. Benzoylederivate der Formel IIIa  
25

30



IIIa

in der T, L, M und Z die folgende Bedeutung haben:

T Chlor, OH oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy  
35 L C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro oder Cyano  
40 M C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen, Nitro oder Cyano  
Z wie in Anspruch 1 angegeben.

45

120

## 10. Benzoylderivate der Formel IIIb

5



10

in der T, L, M und Z die folgende Bedeutung haben:

T Chlor, OH oder C<sub>1</sub>-C<sub>4</sub>-AlkoxyL, M C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy,  
C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy,  
C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Halogen,

15

Nitro oder Cyano

Z wie in Anspruch 1 angegeben.

11. Benzoylderivate der Formel I gemäß Anspruch 1, in der Z ein  
5- oder 6-gliedriger Heteroaromat bedeutet, enthaltend ein  
20 bis drei Heteroatome, ausgewählt aus der Gruppe Sauerstoff,  
Schwefel oder Stickstoff, der gegebenenfalls durch Halogen,  
Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>8</sub>-Cyclo-  
alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio,  
25 C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, Di-C<sub>1</sub>-C<sub>4</sub>-Alkylamino, gegebenenfalls  
durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogen-  
alkyl substituiertes Phenyl substituiert ist oder ein gegebe-  
nenfalls durch Halogen, Cyano, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder  
C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl substituierter benzokondensierter 5- oder  
6-Ring-Heteroaromat;  
30 und L, M und Q die in Anspruch 1 genannte Bedeutung haben.

35

40

45

## INTERNATIONAL SEARCH REPORT

Inte nai Application No

PCT/EP 96/00593

## A. CLASSIFICATION OF SUBJECT MATTER

|                  |            |            |            |            |
|------------------|------------|------------|------------|------------|
| IPC 6 C07D307/54 | C07D307/46 | C07D333/24 | C07D333/22 | C07D263/32 |
| C07D263/10       | C07D261/08 | C07D261/04 | C07D277/30 | C07D277/26 |
| C07D271/06       | A01N43/08  | A01N43/10  | A01N43/28  |            |

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                               | Relevant to claim No. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A        | EP,A,0 319 075 (NIPPON SODA CO) 7 June<br>1989<br>cited in the application<br>see abstract; claims<br>see page 15, line 6; examples<br>----      | 1-11                  |
| A        | WO,A,90 05712 (ICI AMERICA INC) 31 May<br>1990<br>cited in the application<br>see abstract; claims<br>see page 31; example 21; table 14<br>----- | 1-11                  |

 Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

## \* Special categories of cited documents :

- \*'A' document defining the general state of the art which is not considered to be of particular relevance
- \*'E' earlier document but published on or after the international filing date
- \*'L' document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*'O' document referring to an oral disclosure, use, exhibition or other means
- \*'P' document published prior to the international filing date but later than the priority date claimed

- \*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- \*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- \*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art
- \*'&' document member of the same patent family

Date of the actual completion of the international search

6 June 1996

Date of mailing of the international search report

14.06.96

## Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,  
 Fax (+ 31-70) 340-3016

## Authorized officer

Paisdor, B

**INTERNATIONAL SEARCH REPORT**

|                                                 |  |
|-------------------------------------------------|--|
| International Application No<br>PCT/EP 96/00593 |  |
|-------------------------------------------------|--|

| Patent document cited in search report | Publication date | Patent family member(s)                                                                                                                                                                                                                | Publication date                                                                                                                                                     |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP-A-0319075                           | 07-06-89         | AT-T- 108764<br>CA-A- 1337818<br>DE-D- 3850749<br>JP-A- 2000726<br>US-A- 5110343                                                                                                                                                       | 15-08-94<br>26-12-95<br>25-08-94<br>05-01-90<br>05-05-92                                                                                                             |
| WO-A-9005712                           | 31-05-90         | US-A- 4957538<br>AT-T- 123752<br>AU-B- 635725<br>AU-B- 4743390<br>CA-A- 2003172<br>CN-B- 1024187<br>DE-D- 68923088<br>DE-T- 68923088<br>EP-A- 0444152<br>ES-T- 2073561<br>IL-A- 92341<br>JP-T- 4501726<br>RU-C- 2045512<br>TR-A- 24909 | 18-09-90<br>15-06-95<br>01-04-93<br>12-06-90<br>18-05-90<br>13-04-94<br>20-07-95<br>26-10-95<br>04-09-91<br>16-08-95<br>21-10-94<br>26-03-92<br>10-10-95<br>01-07-92 |

# INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen

PCT/EP 96/00593

| A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES |            |            |            |            |            |
|----------------------------------------------|------------|------------|------------|------------|------------|
| IPK 6                                        | C07D307/54 | C07D307/46 | C07D333/24 | C07D333/22 | C07D263/32 |
|                                              | C07D263/10 | C07D261/08 | C07D261/04 | C07D277/30 | C07D277/26 |
|                                              | C07D271/06 | A01N43/08  | A01N43/10  | A01N43/28  |            |

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)

IPK 6 C07D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

## C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                 | Betr. Anspruch Nr. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A          | EP,A,0 319 075 (NIPPON SODA CO) 7.Juni<br>1989<br>in der Anmeldung erwähnt<br>siehe Zusammenfassung; Ansprüche<br>siehe Seite 15, Zeile 6; Beispiele<br>---        | 1-11               |
| A          | WO,A,90 05712 (ICI AMERICA INC) 31.Mai<br>1990<br>in der Anmeldung erwähnt<br>siehe Zusammenfassung; Ansprüche<br>siehe Seite 31; Beispiel 21; Tabelle 14<br>----- | 1-11               |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

\* Besondere Kategorien von angegebenen Veröffentlichungen :

'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden

'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

'A' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

6.Juni 1996

14. 06. 96

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Paisdor, B

# INTERNATIONALER RECHERCHENBERICHT

**late** **oder Altenzeichen**

PCT/EP 96/00593

| Im Recherchenbericht<br>angeführtes Patentdokument | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie |          | Datum der<br>Veröffentlichung |
|----------------------------------------------------|-------------------------------|-----------------------------------|----------|-------------------------------|
| EP-A-0319075                                       | 07-06-89                      | AT-T-                             | 108764   | 15-08-94                      |
|                                                    |                               | CA-A-                             | 1337818  | 26-12-95                      |
|                                                    |                               | DE-D-                             | 3850749  | 25-08-94                      |
|                                                    |                               | JP-A-                             | 2000726  | 05-01-90                      |
|                                                    |                               | US-A-                             | 5110343  | 05-05-92                      |
| -----                                              | -----                         | -----                             | -----    | -----                         |
| WO-A-9005712                                       | 31-05-90                      | US-A-                             | 4957538  | 18-09-90                      |
|                                                    |                               | AT-T-                             | 123752   | 15-06-95                      |
|                                                    |                               | AU-B-                             | 635725   | 01-04-93                      |
|                                                    |                               | AU-B-                             | 4743390  | 12-06-90                      |
|                                                    |                               | CA-A-                             | 2003172  | 18-05-90                      |
|                                                    |                               | CN-B-                             | 1024187  | 13-04-94                      |
|                                                    |                               | DE-D-                             | 68923088 | 20-07-95                      |
|                                                    |                               | DE-T-                             | 68923088 | 26-10-95                      |
|                                                    |                               | EP-A-                             | 0444152  | 04-09-91                      |
|                                                    |                               | ES-T-                             | 2073561  | 16-08-95                      |
|                                                    |                               | IL-A-                             | 92341    | 21-10-94                      |
|                                                    |                               | JP-T-                             | 4501726  | 26-03-92                      |
|                                                    |                               | RU-C-                             | 2045512  | 10-10-95                      |
|                                                    |                               | TR-A-                             | 24909    | 01-07-92                      |
| -----                                              | -----                         | -----                             | -----    | -----                         |