

«Applied machine learning» is basically feature engineering. Andrew Ng

Генерация признаков (feature engineering / construction) – процесс придумывания способов описания данных с помощью простых значений, которые должны отражать характеристики объектов исследований, через которые могут выражаться целевые значения.

Изначально объекты могут быть заданы непризнаковым описанием:

- измерения
- веб-страницы
 - файлы
- участники соцсети и т.д.

Важно понимать

Процесс создания признакового пространства зависит от модели, которую будем использовать

ОНЕ-кодирование предпочтительнее для линейных моделей, умное кодирование категорий – для деревьев Выбросы можно не удалять для робастной модели (– и этапы предработки данных тоже!)

Следует использовать:

- контекст (знание предметной области)
 - EDA

Важно понимать

https://www.youtube.com/watch?v=vwiVKm5_nRA

Признаковое описание – всё, что знает модель о данных

Признаки (Features)

Признак – функция на множестве объектов

$$f: X \to A$$

Признак пол Клинты \rightarrow {M, Ж}

Признак доход

Клинты \rightarrow {..., 10 000, 20 000, ..., NA}

Значения признака могут быть не определены это тоже важная информация!

Некоторые значения можно восстановить по другим признакам (например, пол)

Типы числовых признаков

- вещественные
 - значения вещественные числа (измерения или характеристики чего-то), часто выделяют дискретные (discrete) и непрерывные (continuous variables)
 - о интервальные (Interval)
 - о относительные (Ration)
- категориальные (categorical variables)
 - значение переменной принадлежность к одной из категорий (level), множество категорий актуально конечно (часто фиксировано)
 - неупорядоченные категориальные (номинальные Nominal, факторные)
 - о порядковые (Ordinal) или упорядоченные категориальные

отдельно отметим: бинарные

Типы числовых признаков

Тип признака	Операции	Трансформации	Примеры
номинальные	== перестановки mode, entropy, contingency, correlation, X2-test	перестановка	ID, пол, цвет, профессия
порядковые	> median, percentiles, rank correlation, run tests, sign tests	монотонное преобразование	оценка, рейтинг, место в соревновании
интервальные	+, – mean, standard deviation, Pearson's correlation, t and F tests	A*X + B	дата, температура по Цельсию
относительные	*, / geometric mean, harmonic mean, percent variation	A * X	возраст, масса, длина, цена, температура по Кельвину

COLLARS & BANDANAS

SIZE

S

M

NECK

6-12

10-16

14-24

Категориальные

Неупорядоченные

жанры фильмов, имена актёров, категории товаров

Порядковые

APPAREL

WEIGHT	BACK LENGTH	CHEST GIRTH	SIZE
Up to 8 lbs	6-9	10-13	XS
Up to 15 lbs	9-12	13-15	s
Up to 25 lbs	14-18	15-20	M
Up to 40 lbs	20-24	20-25	L
Up to 60 lbs	22-26	25-30	XL
Up to 120 lbs	24-28	30-35	XXL

NRHHM

Часто «кольцевой порядок»:

времена года, дни недели, час

Категориальные

С возможным правильным кодированием группа крови

Простые типы нечисловых признаков

- временные отметки
- множества, наборы (ех: пары координат)
- строки

	дата	пол	образование	сумма	число просрочек	платёжная строка
0	12/01/2017	1	высшее	5000.0	0	0000
1	13/01/2017	1	высшее	2500.0	1	001000
2	13/01/2017	0		13675.0	3	111
3	25/01/2017	0	начальное	NaN	0	0

Признаки

- исходные (raw)
- сгенерированные / производные (derived)

пример: возраст = текущая дата – дата рождения

Совет: даже если есть какой-то признак, сгенерируйте его по другим

(пример с возрастом: есть дата рождения, текущая, возраст)

Дальнейший план

Всё что касается EDA: Контекстные признаки Служебные признаки Утечки

Отдельные виды признаков

Странности в данных

Строковые
Категориальные
Вещественные
Временные
Географические
Деньги, количество, ...

- это признаки, смысл которых явно прописан в постановке задачи или понятен из контекста.

Смысл определяет:

- область значений
- примерное распределение в этой области

	ap_hi	ap_lo	ap_hi_new	ap_lo_new
0	150	1100	150	110
1	11	70	110	70
2	12	80	120	80
3	11	570	115	70
4	1	2080	120	80

Пример: диаметр зрачка

Признак	Гипотеза				
Число кликов	Максимальна в рабочие дни, в дневные часы				
Уровень дохода	Унимодальное распределение, значения положительные				
Температура	Лежит на отрезке [36, 42]				
Признаки «верхн_XXX», «нижн_XXX»	«верхн_ХХХ» ≥ «нижн_ХХХ»				

Почему плохо решать задачи без знания предметной области...

- Gett в Израиле
- Хакатон Газпромнефти (второе место из Уфы)
- Пример решения Семёнова для бозона Хигса

Почему плохо решать задачи без знания предметной области... Медицинский проект с японцами

異常なし	нет аномалий
異常所見なし	нет аномальных находок
視神経乳頭陥凹拡大疑い(右)	подозрение на увеличение
	выемки головы зрительного
	нерва (справа)
(左)乳頭部出血の疑	(слева) подозрение на
	папиллярное кровоизлияние
(両) 豹紋眼底	(оба) лепидоцеллюлярное дно

+ разный подход к диагностике заболеваний (в Европе и Японии)

японские клинические рекомендации (2016) по сахарному диабету: HbA1c(NGSP値) > 6.5%

другая лабораторная методика (в другом признаке): HbA1c(JDS値) > 6.1%

Диаграмма рассеивания пар контекстных признаков

- аномальные зоны
- концентрации значений

новые признаки

- признак аномальности
- признак частого значения
 - отклонение от регрессионной модели построенной по паре

зачем?

Диаграмма рассеивания пар контекстных признаков

- аномальные зоны
- концентрации значений

новые признаки

- признак аномальности
- признак частого значения
 - отклонение от регрессионной модели построенной по паре

степень

переедания/недоедания пациента

Диаграмма рассеивания пар контекстных признаков

Та же диаграмма, но целевой признак здесь – пол

Можно предположить, что 1 – Мужчины

Служебные признаки

могут не входить в явном виде в признаковую матрицу, но из значения определяются из способа организации данных.

- номер строки (а также производные признаки, например, чётность номера строки)
- номер объекта в какой-то внутренней нумерации (например, id объекта), производные признаки от этого номера
- порция данных (если датасет разбит на несколько частей, например, train / test / valid)
- константный признак
- характеристические признаки (выполняется ли какое-то свойство)
- характеристика особенностей данных (например, число пропусков на объекте)

Казалось бы, логично не рассматривать такие признаки...

Служебные признаки

могут не входить в явном виде в признаковую матрицу, но из значения определяются из способа организации данных.

	Пол	Рост	Bec		in
1	М	170.0	80.0	0	
20	Ж	NaN	70.0	1	
23	М	167.0	75.0	2	
33	М	NaN	NaN	3	
40	Ж	180.0	65.0	4	

	index	Пол	Рост	Вес	#nan	Пол=М
0	1	М	170.0	80.0	0	0
1	20	Ж	NaN	70.0	1	0
2	23	М	167.0	75.0	0	1
3	33	М	NaN	NaN	2	1
4	40	Ж	180.0	65.0	0	0

```
data.reset_index(inplace=True)
data['#nan']=data.isnull().sum(axis=1)
data['Ποπ=M'] = (data['Ποπ'] == 'M').astype(int)
data['PocT2'] = data['PocT'] / 10
data['PocT2'] = data['PocT'] - 10*np.floor(data['PocT2'].values)
```

ДЗ код можно улучшать

Служебные признаки

Когда такие признаки важны:

- особенность значения ← особенность объекта «круглый доход» – не знает точного значения «круглый рост, вес, давление» – не знает точного
 - улучшает качество

«есть ли пропуск в признаке NAME», «сколько пропусков / аномальных значений»

- поиск утечек в данных
- организация эксперимента (разбиение на корзины и т.п.)

Пример: области значений целевого (маленькие, средние, большие) + StratifiedKFold

Утечка в данных

- информация, которая повышает качество решения задачи машинного обучения, но теряет эти свойства при тестировании на независимом и правильно организованном контроле (при эксплуатации алгоритма)

Пол	Рост	Bec	Класс
M	170	80	0
Ж	NA	70	0
M	167	75	0
M	NA	NA	1
Ж	180	65	1

По определению утечка приводит к переобучению

но далеко не единственная причина переобучения (объём данных, сложность модели и т.п.)

Виды утечек

- 1) зависимость от служебных признаков, в том числе
 - от порядка (ех: номера строки)
 - от организации данных (от каталога)
- от способа представления (названия файлов, времени его создания и т.п.)
 - от особенностей (наличия пропусков, дубликатов и т.п.)
 - 2) неявное использование информации
 - о целевом векторе
 - из будущего или настоящего
 - 3) содержание ответа в исходных данных как правило, из-за заглядывания в будущее

(пример про номер страницы и число страниц в сессии)

ДЗ Другие примеры утечек

Странности в данных

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
1143	1586	23351	1	150	90.0	150	90	3	2	0	0	1	1
1503	2122	16534	1	164	73.0	164	73	1	1	0	0	1	1
3420	4838	14516	1	100	70.0	100	70	1	1	0	0	1	0
3735	5278	17642	1	120	70.0	120	70	1	1	0	0	1	0
3799	5378	23434	1	150	61.0	150	61	1	3	0	0	1	1
4212	5946	16110	1	120	0.08	120	80	1	1	0	0	1	0
7058	10053	21025	1	140	90.0	140	90	3	1	0	0	1	1
7305	10412	15859	1	120	80.0	120	80	1	1	0	0	1	0

Что странного?

Странности в данных

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
1143	1586	23351	1	150	90.0	150	90	3	2	0	0	1	1
1503	2122	16534	1	164	73.0	164	73	1	1	0	0	1	1
3420	4838	14516	1	100	70.0	100	70	1	1	0	0	1	0
3735	5278	17642	1	120	70.0	120	70	1	1	0	0	1	0
3799	5378	23434	1	150	61.0	150	61	1	3	0	0	1	1
4212	5946	16110	1	120	0.08	120	80	1	1	0	0	1	0
7058	10053	21025	1	140	90.0	140	90	3	1	0	0	1	1
7305	10412	15859	1	120	80.0	120	80	1	1	0	0	1	0

рост = верхнее давление вес = нижнее

Использование EDA для генерации признаков

Использование EDA для генерации признаков

использование обратных признаков повышает качество линейной модели

http://www.feat.engineering/intro-intro.html

Строковые признаки

T	company	client
12C	Shell	Mozilla/5.0 (Macintosh;
		Intel Mac OS X 10_10_4)
		AppleWebKit/537.36
		(KHTML, like Gecko)
		Chrome/53.0.2785.143
		Safari/537.36
14	shel	NA
15	bp	NA
11	B&P	NA
10C	Procter&Gamble	NA

отдельная тема – обработка текстов

Строковые признаки

T	company	browser	ip	os
12	Shell Gas station	Mozilla	53.0.2785.143	Mac
14	Shell Gas station	NA	NA	NA
15	BP Gas station	NA	NA	NA
11	BP Gas station	NA	NA	NA
10	P&G Manufacturer	NA	NA	NA

```
import user_agents
s = 'Mozilla/5.0 ...'
q = user_agents.parse(s)
q.is_mobile
False
q.os.family
'Ubuntu'
```

1. Автоматическое определение категориальности

- если значения строки
- если мало уникальных значений

	city	sex	income
0	Moscow	М	110
1	London	F	200
2	London	М	140
3	Paris	М	120
4	Moscow	F	190

city строка, мало уникальных sex строка, мало уникальных

```
def find cat(data):
11 11 11
найти все признаки,
в которых первое значение - строка
и / или мало вначений
11 11 11
for name in data.columns:
    s = ''
    s += name
    if (type(data[name][0]) == str):
        s += ' строка,'
    if (data[name].nunique() <= 3):</pre>
        s += ' мало уникальных'
    if (s!=name):
        print (s)
```

2. Создание новых категориальных признаков

• конъюнкция признаков

	city	sex	income	city + sex
0	Moscow	М	110	Moscow + M
1	London	F	200	London + F
2	London	М	140	London + M
3	Paris	М	120	Paris + M
4	Moscow	F	190	Moscow + F

- 2. Создание новых категориальных признаков
 - конъюнкция признаков

может быть очень полезно: kNN, линейные алгоритмы

• создание новых признаков по контекстным

Пример: верхние уровни иерархии

- 3. Простейшее кодирование по номеру категории Label Encoding
 - Лексикографический порядок (sklearn)

sklearn.preprocessing.LabelEncoder

• В порядке появления (pandas)

pandas.factorize

Хорошая идея! Можно использовать сортировки по признакам ⇒ по порядку индуцированным каким-то признаком

• Случайное кодирование

dict + map

многократное случайное кодирование иногда хорошо работает с RF

	city	sex	income	city_le	city_fz	city_rnd	sex_le	sex_fz	sex_rnd
0	Moscow	М	110	1	0	0.63	1	0	0.22
1	London	F	200	0	1	0.75	0	1	0.20
2	London	М	140	0	1	0.75	1	0	0.22
3	Paris	М	120	2	2	0.50	1	0	0.22
4	Moscow	F	190	1	0	0.63	0	1	0.20

- 3. Простейшее кодирование по номеру категории Label Encoding
 - не подходит для линейных алгоритмов
 - проблема новых категорий

(средним?)

Дьяконов А.Г. (Москва, МГУ)

Категориальные признаки

4. Dummy-кодирование / One-hot-encoding

	city	sex	income	city=Moscow	city=London	city=Paris	sex=M	sex=F
0	Moscow	М	110	1	0	0	1	0
1	London	F	200	0	1	0	0	1
2	London	М	140	0	1	0	1	0
3	Paris	М	120	0	0	1	1	0
4	Moscow	F	190	1	0	0	0	1

Мнение: OHE → m, dummy → m – 1 drop_first=True в get_dummies (теперь False)

OneHotEncoder (по умолчанию sparse, раньше –только с числами)

```
from sklearn import preprocessing
ohe = preprocessing.OneHotEncoder(sparse=False)
tmp = ohe.fit transform(data[cols]).astype(int)
tmp = pd.DataFrame(tmp,
                   columns=['OHE ' + str(i) for i in range(tmp.shape[1])])
data = pd.concat([data, tmp], axis=1)
                             Ручное решение
def code myohe(data, feature):
    11 11 11
    ручной способ ОНЕ
    11 11 11
    for i in data[feature].unique():
        data[feature + '=' + i] = (data[feature] == i).astype(int)
```

code_myohe(data, name)

Самый простой способ

```
pd.get_dummies(data)
```

for name in cols:

OHE

- Хороши для линейных алгоритмов можно кодировать N-1 категорию
- Все признаки в одной шкале (на [0, 1]) но есть тонкость, что категории разной мощности
- Большое число категорий → сильно разреженные матрицы часто используют sparse-формат
 - Плохо, что после ОНЕ значительная часть признаков бинарные описывают категориальные зависимости некоторые алгоритмы (RF) могут терять качество
- Плохо, что значительная часть признаки с большим числом категорий

Проблема мелких и новых категорий

- возникает почти для всех способов кодирования

Часто: мелкие категории → в одну Здесь: можно не кодировать!

простая и понятная интерпретация

5. По значениям вещественного признака

	city	sex	income	city_mean_income	sex_mean_income
0	Moscow	М	110	150	123.3
1	London	F	200	170	195.0
2	London	М	140	170	123.3
3	Paris	М	120	120	123.3
4	Moscow	F	190	150	195.0

```
def code_mean(data, cat_feature, real_feature):
    """"
    кодирование средним значением
    """"
    mn = data.groupby(cat_feature)[real_feature].mean()
    return data[cat_feature].map(mn)

for name in cols:
    data[name + '_mean_income'] = code_mean(data, name, 'income')
```

- 5. По значениям вещественного признака
 - Естественная интерпретация: товары какой категории дороже
- можно использовать другие статистики они не всегда логичны и лучше интерпретируются
 - можно кодировать по разным признакам

Ниже отдельно рассмотрим случай кодирования по целевому признаку

- 6. По значениям категориального признака
 - просто по мощности Count Encoding
 - по частоте Frequency Encoding

	city	sex	income	city_vc	sex_vc	city_vcn	sex_vcn
0	Moscow	М	110	2	3	0.4	0.6
1	London	F	200	2	2	0.4	0.4
2	London	М	140	2	3	0.4	0.6
3	Paris	М	120	1	3	0.2	0.6
4	Moscow	F	190	2	2	0.4	0.4

Недостатки Count Encoding

- коллизии (несколько категорий один код)
 добавляем шум (не всегда это проблема)
- проблема шума (мелкие категории) мелкие категории объединяем в одну, и новые!
 - проблема новых категорий

см. выше

• проблема утечки информации

честно: без заглядывания в будущее это не страшная утечка (допустима в соревнованиях)

6. По значениям ДРУГОГО категориального признака

	city	sex	income	city_svd	sex_svd	<pre>pd.crosstab(data['city'],</pre>
0	Moscow	М	110	-0.66	-0.79	sex F M
1	London	F	200	-0.66	-0.62	city
2	London	М	140	-0.66	-0.79	London 1 1
3	Paris	М	120	-0.37	-0.79	Moscow 1 1
4	Moscow	F	190	-0.66	-0.62	Paris 0 1

from numpy.linalg import svd

```
def code_factor(data, cat_feature, cat_feature2):
    """

кодирование на основе другого категориального
    """

ct = pd.crosstab(data[cat_feature], data[cat_feature2])
    u, _, _ = svd(ct.values)
    coder = dict(zip(ct.index, u[:,0])) # е. кодировать первой компонентой return (data[cat_feature].map(coder))
```

6. По значениям ДРУГОГО категориального признака

$$\begin{aligned} \text{data['city_svd']} &= \text{code_factor(data, 'city', 'sex')} \\ \text{data['sex_svd']} &= \text{code_factor(data, 'sex', 'city')} \end{aligned}$$

$$X = \mid\mid x_{ij} \mid\mid = U \Lambda V^{\text{T}}$$

$$\Lambda' = \text{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0)$$

$$U \Lambda' V^{\text{T}} = \sum_{i=1}^r \lambda_i u_i v_i^{\text{T}} \equiv X'$$

\mathcal{X}_{ij} – сколько і-я категория встречается с ј-й

Дьяконов А. Г. Методы решения задач классификации с категориальными признаками // Прикладная математика и информатика. Труды факультета Вычислительной математики и кибернетики МГУ имени М.В. Ломоносова. — 2014. — № 46. — С. 103–127.

Полезный инструмент – функция crosstab

ct = pd.crosstab([data.city, data.degree], data['class'])
ct.plot(kind='bar')

	city	class	degree	income
0	Moscow	Α	1	10.2
1	London	В	1	11.6
2	London	Α	2	8.8
3	Kiev	Α	2	9.0
4	Moscow	В	3	6.6
5	Moscow	В	3	10.0
6	Kiev	Α	1	9.0
7	Moscow	Α	1	7.2

	class	Α	В
city	degree		
Kiev	1	1	0
Riev	2	1	0
London	1	0	1
London	2	1	0
Moscow	1	2	0
WOSCOW	3	0	2

01 ноября 2018 года

8. Хэш-кодирование

- средство против сильно разреженных данных
- могут быть коллизии (можно выполнять разные хэш-кодирования)

	city	sex	income	city_0	city_1	sex_0	sex_1
0	Moscow	М	110	1.0	-1.0	1.0	0.0
1	London	F	200	-2.0	2.0	-1.0	0.0
2	London	М	140	-2.0	2.0	1.0	0.0
3	Paris	М	120	1.0	-2.0	1.0	0.0
4	Moscow	F	190	1.0	-1.0	-1.0	0.0

```
from sklearn.feature_extraction import FeatureHasher
fh = FeatureHasher(n_features=2, input_type='string')
for name in cols:
    tmp = fh.fit_transform(data[name]).toarray()
    tmp = pd.DataFrame(tmp, columns=[name + '_' + str(i) for i in
range(tmp.shape[1])])
    data = pd.concat([data, tmp], axis=1)
```

9. По значению целевого – Target Encoding

- Mean Target Encoding
 - Std Target Encoding

•

	city	sex	income	city_mt	sex_mt	target
0	Moscow	М	110	0.5	0.67	1
1	London	F	200	0.5	0.50	1
2	London	М	140	0.5	0.67	0
3	Paris	М	120	1.0	0.67	1
4	Moscow	F	190	0.5	0.50	0

- это форма стэкинга (по одной переменной)
- подходит для любых алгоритмов (если правильно сделана)

9. По значению целевого – Target Encoding

Почему хорошая идея – упорядочивание категорий исходя из смысла задачи

из текущей задачи (25% скважин)

Многие кодировки «случайны», а кодирование по значению целевого «логично»

Категориальные признаки: Target Encoding

наверное главная проблема:

неадекватная кодировка мелких категорий + слияние этих категорий

Категориальные признаки: Target Encoding

Нельзя допустить утечки значений целевого!

особенно проблемно для мелких категорий способы борьбы аналогичны стекингу

- кодирование по отложенной выборке
- сокращаем выборку для обучения **Хороший пример:** кодирование по куску испорченных данных

• k-fold-кодировка

Идея: не использовать метку объекта при кодировании разбиваем на фолды и кодируем LOO-кодировка – проблемы утечки остаются

- кодирование по случайным подвыборкам
- кодирование по предыдущим объектам (CatBoost)

Категориальные признаки: сглаживание

добавляем среднее значение целевого с весом

$$mean = \frac{k_1 + \alpha \frac{m_1}{m}}{k + \alpha}$$

+ борьба с редкими категориями на них оценка ненадёжна

тонкий вопрос: как кодировать на обучении, как на тесте обычно на тесте пересчитывают (по всему обучению)...

Категориальные признаки: добавление шума

Чаще мультипликативный шум...

```
def add_noise(series, noise_level):
    return series * (1 + noise_level * np.random.randn(len(series)))
```

Категориальные признаки: почему плохо LOO-кодировать

	sex	target	sex_loo
0	М	1	0.2
1	М	1	0.2
2	М	0	0.4
3	М	0	0.4
4	М	0	0.4

В явном виде утечка...

Ещё и упорядочивание неестественное!

Категориальные признаки: Кодирование по предыдущим объектам (CatBoost)

sex	sex_cb	target
М	NaN	1
F	NaN	1
М	1.0	0
М	0.5	1
F	1.0	0
	M F M	F NaN M 1.0 M 0.5

есть в CatBoost

там аналогичный приём и для вычисления градиента

- одна категория в обучении кодируется поразному, а на контроле фиксировано
 - нет гиперпараметров

(хотя напрашивается ввести)

- можно использовать разные порядки
 - ~ при построении разных деревьев случайно сортировать порядки, индуцированные признаками

Категориальные признаки: Кодирование по предыдущим объектам (CatBoost)

Категориальные признаки: Target Encoding

Примеры кодирования по другим статистикам для бинарного целевого вектора:

$$(y_1,...,y_k)$$
 , $k_1 = y_1 + ... + y_k$, $k_0 = k - k_1$

$$mean = \frac{k_1}{k}$$

$$diff = k_1 - k_0$$

$$difflog = \frac{\log k_1}{\log k_0}$$

$$normdiff = \frac{k_1 - k_0}{k}$$

Использование статистик напрямую не связанных со значением целевого признака (не среднее значений целевых, а дисперсию) уменьшает утечку!

Категориальные признаки: Target Encoding

На практике хороша смесь подходов!

10. Экспертное кодирование

Если признак порядковый, то есть естественная нумерация Но хороша для деревьев

см. также кодирование названий географических регионов

11. Вложение категориальных признаков в маломерное пространство (Category Embedding)

отдельная тема

Категориальные признаки: пропуски

- создание отдельной категории ("нет значения")
 - игнорирование пропусков

(например, в dummy-кодировке сопоставить им нулевую строку, т.е. соответствующие объекты не принадлежат ни одной категории)

• стандартные методы обработки пропусков

(при плотном кодировании, например, по целевому вектору)

Категориальные признаки: пример кода

http://contrib.scikit-learn.org/categorical-encoding/

https://www.kaggle.com/mlisovyi/9-ways-to-treat-categorical-features-updated# https://www.kaggle.com/ogrellier/python-target-encoding-for-categorical-features# https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study#

ДЗ сделать исследование по эффективности различных способов кодирования категориальных признаков (хорошее и большое!)

Вещественные признаки

были способы генерации признаков (в обработке данных):

- дискретизация (binning / quantization)
 - о округление (rounding)
- деформация (функция над признаком)
 - сглаживание
- нормировка (специальный вид деформации)
- новые признаки (функции над несколькими)

Продажа	родажа Продажа Пр		Общие
планшетов	телефонов	ноутбуков	продажи
10	30	1	32
12	42	2	56
10	20	1	31
15	31	2	48
5	15	0	20

Вещественные признаки: новые признаки

- суммы групп признаков
 - мономы
- расстояние (ядро) до какого-то объекта

fg
$$f^2$$
 fg g^2 01.00.01.00.00.012.02.04.04.04.023.01.09.03.01.034.01.016.04.01.0

Вещественные признаки

как искать взаимодействия

- использование предметной области
- перебор операций из словаря пример генерации признаков для сигналов
- анализ взаимодействий признаков в моделях например, последовательные сплиты в деревьях

train_d[:5]

	ID	Office_PIN	Application_Receipt_Date	Applicant_City_PIN	Applicant_Gender	Applicant_BirthDate	Applicant_Marital_Status
0	FIN1000001	842001	4/16/2007	844120	М	12/19/1971	М
1	FIN1000002	842001	4/16/2007	844111	М	2/17/1983	s
2	FIN1000003	800001	4/16/2007	844101	М	1/16/1966	М
3	FIN1000004	814112	4/16/2007	814112	М	2/3/1988	S
4	FIN1000005	814112	4/16/2007	815351	М	7/4/1985	М

1. Преобразование признаков

data[name] = pd.to_datetime(data[name], errors='coerce')
м.б. преобразование в вещественный признак

2. Генерация новых признаков

Каких?

2.1. Характеристика момента времени:

- час, минута, секунда (=0)
- время суток
- день, день недели, день года
- неделя, месяц
- время года, год
- праздник / выходной / особый день

(первый понедельник месяца, начало Олимпиады)

<pre>data[name + '_day'] =</pre>
data[name].dt.day
<pre>data[name + '_dayofweek'] =</pre>
data[name].dt.dayofweek
<pre>data[name + '_dayofyear'] =</pre>
data[name].dt.dayofyear
<pre>data[name + '_month'] =</pre>
data[name].dt.month

	date	date_day	date_dayofweek	date_dayofyear	date_month
0	2017-12-10	10	6	344	12
1	2016-11-13	13	6	318	11
2	2008-01-01	1	1	1	1
3	2017-05-06	6	5	126	5

Кодирование циклических признаков


```
t = np.linspace(0, 2*np.pi, 8)
```

x = np.cos(t)

y = np.sin(t)

2.2. Взаимодействие пары признаков

- разница времён
- в один ли день недели/год и т.п.

м.б. другое время задано неявно:

- близость к дедлайну (T_{max} T_{день рождения})
 - возраст (Т Т_{день рождения})
- сколько после/до праздника / большой покупки / регистрации
 + нормировать на некоторые шаблоны (тах разность)

2.3. Использование для других признаков

- устаревание в весовых схемах
- что за последний промежуток T (операции по карте за последний месяц)
- формирование разбиения обучение / тест

2.4. Использовать для генерации других признаков сколько транзакций в этот день число транзакций клиента в день / число всех транзакций какой по счёту закрыл сделку перед концом торгов

2.4. Использование для уточнения задачи, генерации признаков Регулярность медицинских исследований:

Идея: использовать признак «ежегодный визит»

Пример признака

День сделки / когда менеджер начал работать Разница – опыт менеджера

Временные признаки 2.3. Взаимодействие с другими признаками Можно смотреть на стабильность признаков!

		train-1		train-2		test	
		size	mean	size	mean	size	mean
-1.1	нулевая цель	67	0.000000	19	0.000000	44	0.000000
Associate / Fellow of Institute of Chartered Accountans of India			0.333333	NaN	NaN	2	1.000000
Associate/Fellow of Institute of Company Secretories of India			0.000000	NaN	NaN	NaN	NaN
Associate/Fellow of Insurance Institute of India	редкие признаки	1	1.000000	NaN	NaN	NaN	NaN
Class X	нестабильность: по частотам и	221	0.294118	4	0.250000	19	0.842105
Class XII		5318	0.322114	488	0.409836	1357	0.677966
Graduate	– по цели	1829	0.374522	1367	0.373811	3375	0.715852
Masters of Business Administration		33	0.333333	41	0.390244	71	0.760563
Others			0.535714	76	0.407895	171	0.824561
Associate/Fellow of Acturial Society of India		NaN	NaN	1	0.000000	NaN	NaN
Certified Associateship of Indian Institute of Bankers			NaN	1	1.000000	NaN	NaN
Professional Qualification in Marketing			NaN	1	1.000000	5	0.600000
Associate/Fellow of Institute of Institute of Costs and Works	s Accountants of India	NaN	NaN	NaN	NaN	1	0.000000

Временные признакиКак часто встречаются такие значения признаков

Временные признаки

Как меняется средне значение целевой переменной

Временные признаки

2.3. Смотрим, как меняются другие признаки во времени...

Временные признаки

2.3. Смотрим, как меняются другие признаки во времени...

Это позволяет:

- выявить стабильные признаки
- правильно сформировать разбиения обучение / тест

Приём: по старой истории кодировать признаки, по новой обучать!

Совет: визуализация id (номер в таблице) – время

Позволяет много чего выявить. Здесь – разрыв, разную скорость заполнения данными

Совет: визуализация id (номер в таблице) – время

Если присмотреться очень внимательно, то вообще видна «утечка»

Совет: визуализация id (номер в таблице) – время

	Application_Receipt_Date	Business_Sourced		Application_Receipt_Date	Business_Sourced
0	2007-04-16	0	79	2007-04-17	1
1	2007-04-16	1	80	2007-04-17	1
2	2007-04-16	0	81	2007-04-17	1
3	2007-04-16	0	82	2007-04-17	1
4	2007-04-16	0	83	2007-04-17	1
5	2007-04-16	1	84	2007-04-17	1
6	2007-04-16	1	85	2007-04-17	1
7	2007-04-16	0	86	2007-04-17	1
8	2007-04-16	1	87	2007-04-17	0
9	2007-04-16	1	88	2007-04-17	0
10	2007-04-16	1	89	2007-04-17	0
11	2007-04-16	1	90	2007-04-17	0
12	2007-04-16	1	91	2007-04-17	0

Это можно не заметить при беглом просмотре таблицы... слева – первые строки, справа – последующие.

Задача для программирования

	date
0	0
1	0
2	0
3	1
4	2
5	2
6	2
7	2
8	2
9	3
10	3
11	3
12	3

Дано: признаковая таблица, записи упорядочены по времени добавления, один из признаков – дата добавления (монотонно неубывает)

Надо: добавить новые признаки. Для каждой записи посчитать порядковый номер в этот день, сколько записей ещё будет сделано в этот день, сколько процентов записей этого дня на момент добавления записи сделано.

Решение

ДЗ Можно ли проще?

Результат

	date	sales_in_day	num_of_sale	invert_num_of_sale	per_of_sale
0	0	3	0	2	0.000000
1	0	3	1	1	0.500000
2	0	3	2	0	1.000000
3	1	1	0	0	0.000000
4	2	5	0	4	0.000000
5	2	5	1	3	0.250000
6	2	5	2	2	0.500000
7	2	5	3	1	0.750000
8	2	5	4	0	1.000000
9	3	4	0	3	0.000000
10	3	4	1	2	0.333333
11	3	4	2	1	0.666667
12	3	4	3	0	1.000000

Географические (пространственные) признаки: Spatial Variables

- отражают локализация в пространстве
 - **GPS-координаты**
 - города
 - страны
 - адреса
- траектории / скорости перемещения и т.п.

Можно сконвертировать в координаты

Географические (пространственные) признаки

Проекции на разные оси

Чтобы реализовывались более сложные «поверхности разделения» Кластеризация

Чтобы выделить отдельные регионы

Идентификация, привязка, характеристики окрестности

В случае точных координат:

- где находится объект
- какие объекты также рядом (плотность объектов)
 - что ещё рядом

Анализ траекторий

если изменение координат во времени

Деанонимизация данных

Часто география «вскрывает» местоположение

Использование контекста и исследование странностей

Телепортации, слишком частые координаты и т.п.

Проекции на разные оси

Географические (пространственные) признаки

Генерация признаков

- расстояния до
- о объектов (дорога, АЗС, метро, банк, город и т.п.)
- о вычисленных объектов (самого дорогого дома, скопления людей)
 - о границ
 - **о кластеров**
- использовать для генерации других признаков средняя цена квартиры в районе, число школ в районе, плотность населения

Пример: анализ трафика и конверсии в различных точках продаж

Пример: анализ трафика и конверсии в различных точках продаж

Данные заказчика

- статистика посещений
 - **О ВИЗИТЫ**
 - о покупки/конверсия
 - 0
- данные магазина
 - о площадь
 - о персонал
 - о категория
 - 0

Наши данные

- Анализ окрестности салона
 - о наличие остановок / метро
 - о конкурентов
 - где находится магазин (ТЦ)
 - о численность населения

Деанонимизация данных
 Достаточно очертаний множества всех координат

01 ноября 2018 года

Деньги, количество и т.п.

- абсолютные суммы \rightarrow относительные ех: стоимость, площадь \rightarrow стоимость кв. м.
 - остатки от деления / округления

	price	f_p
0	12.50	0.50
1	0.99	0.99
2	10.00	0.00
3	18.01	0.01

позволяет отделить точные от приблизительных

• статистики транзакций

Генерация целевого признака

Исследование сдвига

Преобразование целевого признака log(y + offset)

Литература

Серия постов Understanding Feature Engineering

https://towardsdatascience.com/understanding-feature-engineering-part-1-continuous-numeric-data-da4e47099a7b

Книга по генерации признаков

Alice Zheng, Amanda Casari Feature Engineering for Machine Learning, Principles and Techniques for Data Scientists // O'Reilly Media, 2018, pp. 218

Книга по генерации признаков

http://www.feat.engineering

Kypc «How to Win a Data Science Competition: Learn from Top Kagglers»

https://ru.coursera.org/learn/competitive-data-science