Perfect subsets of divisor multisets

Isaac Grosof

December 13, 2021

1 Result

We define a divisor multiset S of size n to be a multiset of positive integers such that |S| = n, and such that for all $s \in S$, s divides n.

For instance, if n = 6, then S = [1, 1, 1, 2, 2, 3] is a divisor multiset.

Let's define a perfect subset S' of a divisor multiset S with |S| = n to be a subset $S' \subset S$ such that the sum of the elements of S' is exactly n.

For instance, for the divisor multiset S = [1, 1, 1, 2, 2, 3], the subset S' = [1, 1, 1, 3] is a perfect subset. Two more perfect subsets of S are [1, 1, 2, 2] and [1, 2, 3].

Now, we are ready to state our main theorem:

Theorem 1. Each divisor multiset S has a perfect subset S'.

Proof. We will proceed via strong induction on n, the size of the divisor multiset. As a base case, the only size-1 divisor multiset is [1]. It is a perfect subset of itself.

We must prove that if each divisor multiset of size < n has a perfect subset, then each divisor multiset of size n has a perfect subset as well.

We will split into 3 cases:

- S contains at least n/6 1s,
- n is of the form $2^{i}3^{j}$ for integers i, j and S contains < n/6 1s, or
- n has a prime factor $k \ge 5$ and S contains < n/6 1s.

2 At least n/6 1s

First, we will consider the case where S contains many copies of 1. Specifically, assume that the multiplicity of 1 in S, which we write $\#\{1 \in S\}$, is at least n/6.

In this case, we can directly construct the perfect subset S' via a simple algorithm.

Order the elements of S from largest to smallest, so that

$$S(1) \ge S(2) \ge \ldots \ge S(n)$$
.

Construct the sequence P_i of initial subsets of the ordering:

$$P_i := \{ S(j) \mid j \le i \}$$

Let i^* be the greatest index such that $sum(P_{i^*}) \le n$. Note that $sum(S) \ge |S| = n$, so $i^* = n$ only if sum(S) = n. We will show that $sum(P_{i^*}) \ge 5n/6$.

Because $\#\{1 \in S\} \ge n/6$, we may construct a perfect subset by combining P_{i^*} with $n - \text{sum}(P_{i^*})$ copies of 1.

Note that if P_{i^*} contains a 1, then its last element is a 1, so sum $(P_{i^*}) = n$. Therefore, this construction does not double-count any 1s.

To prove that $sum(P_{i^*}) \geq 5n/6$, note that

$$n - \operatorname{sum}(P_{i^*}) < S(i^* + 1) \le S(i^*).$$

Therefore, to prove that $n-\text{sum}(P_{i^*}) \leq n/6$, we need only consider sequences of the i^* largest elements of S in which all elements are greater than n/6. We need only consider elements n, n/2, n/3, n/4, n/5.

We enumerate all such sequences here. We list i^* elements if $sum(P_{i^*}) = n$, and $i^* + 1$ elements otherwise. We write g_{i^*} as a shorthand for $n - sum(P_{i^*})$.

Sequence	g_{i^*}	Sequence	g_{i^*}
n	0	n/2, n/2	0
n/2, n/3, n/3	n/6	n/2, n/4, n/4	0
n/2, n/4, n/5, n/5	n/20	n/2, n/5, n/5, n/5	n/10
n/3, n/3, n/3	0	n/3, n/3, n/4, n/4	n/12
n/3, n/3, n/5, n/5	2n/15	n/3, n/4, n/4, n/4	n/6
n/3, n/4, n/5, n/5, n/5	n/60	n/3, n/5, n/5, n/5, n/5	n/15
n/4, n/4, n/4, n/4	0	n/4, n/4, n/4, n/5, n/5	n/20
n/4, n/4, n/5, n/5, n/5	n/10	n/4, n/5, n/5, n/5, n/5	3/20
n/5, n/5, n/5, n/5, n/5	0		

In all cases, $n - \text{sum}(P_{i^*}) \ge n/6$. As a result, if $\#\{1 \in S\} \ge n/6$, a perfect subset of the form P_{i^*} plus 1s must exist.

3 n of the form $2^i 3^j$

Suppose that n is of the form $2^i 3^j$, for some integers i and j, and that $\#\{1 \in S\} < n/6$.

Let S_2 be the set of even integers in S:

$$S_2 := \{ s \mid s \in S, s \text{ is even} \}$$

Let S_r be the remaining integers in S:

$$S_r := \{ s \mid s \in S, s \text{ is odd}, s > 1 \}$$

Note that because 2 and 3 are the only prime factors of n, all elements of S_r are divisible by 3.

Because S is disjointly partitioned into 1s, S_2 and S_r , and $\#\{1 \in S\} < n/6$, $|S_2| + |S_r| > 5n/6$. As a result, it must be the case that either $|S_2| \ge n/2$, or $|S_r| \ge n/3$.

In the case that $|S_2| \ge n/2$, consider the set $S_2/2$:

$$S_2/2 := \{s/2 \mid s \in S, s \text{ is even}\}\$$

Every element of $S_2/2$ is a factor of n/2, and $|S_2/2| \ge n/2$. Thus, within $S_2/2$ is a divisor multiset of size n/2. By the inductive hypothesis, this divisor multiset has a perfect subset summing to n/2. Multiplying each element by 2, we get a perfect subset of S itself.

If $|S_r| \geq n/3$, we can similarly construct $S_r/3$ and apply the inductive hypothesis to get a perfect subset of S.

4 n has a prime factor $k \ge 5$

Finally, suppose that n has a prime factor $k \geq 5$, and S contains < n/6 1s.

Let us form the set S_k consisting of the elements of S which are multiples of k, and S_r consisting of the elements of S which are neither 1 nor multiples of k.

As in Section 3, if $|S_k| \ge n/k$, we can apply the inductive hypothesis to S_k/k to find a perfect subset of S.

If $|S_k| < n/k \le n/5$, then

$$|S_r| = n - \#\{1 \in S\} - |S_k| \ge n - n/6 - n/5 = 19n/30.$$

Note that all elements of S_r are divisors of n/k, because they are divisors of n which are not multiples of k.

Because $19n/30 > n/5 \ge n/k$, we can apply the inductive hypothesis to a size-n/k subset of S_r , finding a perfect subset R_1 with sum n/k. Note that all elements of S_r have value at least 2, so $|R_1| \le n/2k$.

Let us create the set $S_r^1 := S_r \setminus R_1$, where the superset indicates how many subsets have been removed.

We can apply this construction again to create $R_2, R_3, \ldots R_k$, all with sum n/k, as long as $S_r^1, S_r^2, \ldots, S_r^{k-1}$ have at least n/k elements. Because we remove at most n/2k elements per iteration, we can lower bound the sizes of these sets

$$|S_r^i| \ge \frac{19n}{30} - i\frac{n}{2k}$$

In particular, we can lower bound the size of the final set:

$$|S_r^{k-1}| \ge \frac{19n}{30} - \frac{(k-1)n}{2k} = \frac{19n}{30} - \frac{n}{2} + \frac{n}{2k} = \frac{2n}{15} + \frac{n}{2k}$$

To prove that $|S_r^{k-1}| \ge n/k$, we just need to show that $2n/15 \ge n/2k$. But $k \ge 5$, so $2n/15 > n/10 \ge n/2k$.

Thus, we can always extract k disjoint perfect subsets of sum n/k from S_r using the inductive hypothesis. Combining these subsets, we form a perfect subset of S.