

Course > Week 9... > Proble... > Proble...

Problem Set 9

Problems 1-6 correspond to "Linear Projections"

Problem 1

1/1 point (graded)

In \mathbb{R}^2 , what is the unit vector corresponding to the x_1 -direction?

- (0,0)
- \circ (1, 0)
- (0,1)
- \bigcirc (1, 1)

Submit

1 Answers are displayed within the problem

Problem 2

1/1 point (graded)

What is the unit vector in the same direction as (3, 2, 2, 2, 2)?

\bigcirc (1.5, 1, 1, 1, 1)		
(1, 0.67, 0.67, 0.67, 0.6	57)	
o (0.6, 0.4, 0.4, 0.4, 0.4)		
0.5, 0.33, 0.33, 0.33, 0	0.33)	
✓		
? Hint (1 of 1): To get a un simply divide by $ x $.	it vector in the same direction as x ,	Next Hir
Submit		
Submit		
Submit • Answers are displayed w	vithin the problem	
	vithin the problem	
• Answers are displayed volume of the second		
• Answers are displayed volume of the second	vithin the problem $ \text{vector } (3,5,-9) \text{ onto the direction } (0.6,-0.8,0)? $	
Answers are displayed we have a second of the week to be a second of the we		
Answers are displayed we have a second of the week to be a second of the we	vector $(3,5,-9)$ onto the direction $(0.6,-0.8,0)$?	
Answers are displayed we could be compared to the country of the c	vector $(3,5,-9)$ onto the direction $(0.6,-0.8,0)$?	
Answers are displayed we could be compared to the country of the c	vector $(3, 5, -9)$ onto the direction $(0.6, -0.8, 0)$? Answer: -2.2 Expression of x onto	Next Hi

1 Answers are displayed within the problem

Problem 4

1/1 point (graded)

What is the (unit) direction along which the projection of (4, -3) is largest?

- \circ (0.8, -0.6)
- (-0.6, -0.8)
- (-0.8, 0.6)
- \bigcirc (0.8, 0.6)

Explanation

The projection of x = (4, -3) is going to be largest in the direction of x itself.

Submit

1 Answers are displayed within the problem

Problem 5

1/1 point (graded)

What is the (unit) direction along which the projection of (4, -3) is smallest?

- \bigcirc (0.8, -0.6)
- (-0.6, -0.8)
- \circ (-0.8, 0.6)

2019	Problem Set 9 Problem Set 9 DSE220x Courseware edX
\bigcirc (0.8, 0.6)	
✓	
Franks a still a	
Explanation The projection of <i>x</i>	=(4,-3) will be smallest in the direction opposite to x , that is, the
direction of $-x$.	(·, · · ·) · · · · · · · · · · · · · · ·
Submit	
• Answers are di	isplayed within the problem
Problem 6	
1/1 point (graded)	
=	ector x onto direction u is exactly zero. Which of the following statements
	Select all that apply.
	ll to x.
uis in the onn	osite direction to x .
u is in the opp	osite direction to x.
\vee u is at right an	gles to x .
☐ It is not possib	ole to have a projection of zero.
•	
Submit	
1 Answers are di	isplayed within the problem
Problems 7-8 corres	spond to "Principal component analysis I: one-dimensional projection"

Problem 7

4/4 points (graded)

A three-dimensional data set has covariance matrix

$$\Sigma = \begin{pmatrix} 4 & 2 & -3 \\ 2 & 9 & 0 \\ -3 & 0 & 9 \end{pmatrix}.$$

a) What is the variance of the data in the x_1 -direction?

b) What is the correlation between x_1 and x_3 ?

c) What is the variance in the direction (0,-1,0)?

d) What is the variance in the direction of (1, 1, 0)?

?	Hint (1 of 3): For part (a): the diagonal entry Σ_{ii} is the variance
	of X_i .

Next Hint

Hint (2 of 3): For part (b): the entry Σ_{ij} is the *covariance*

between X_i and X_i . This is not the same as the *correlation*.

Do you remember how to get from one to the other?

Hint (3 of 3): For part (c,d): the variance in direction u, where uis a unit vector, is given by $u^T \Sigma u$.

Submit

1 Answers are displayed within the problem

Problem 8

1/1 point (graded)

Which of the following covariance matrices has the property that the variance is the same in any direction? Select all that apply.

- The all-zeros matrix.
- The all-ones matrix.
- The identity matrix.
- Any diagonal matrix.

Explanation

Let u be any unit vector in d-dimensional space.

If A is the all-zeros matrix, then $u^T A u = 0$, the same for all u.

If B is the all-ones matrix, then $u^TBu = \sum_{ij} u_i u_j = (\sum_i u_i)^2$, which is not the same for all

With the identity matrix: $u^T I u = u^T u = 1$, the same for all u.

Let D be the diagonal matrix where $D_{11}=1$ and all other diagonal entries are zero. Then $u^T D u = u_1^2$, not the same for all u.

Submit

1 Answers are displayed within the problem

Problems 9-11 correspond to "Principal component analysis II: the top k directions"

Problem 9

8/8 points (graded)

Let $u_1, u_2 \in \mathbb{R}^d$ be two vectors with $||u_1|| = ||u_2|| = 1$ and $u_1 \cdot u_2 = 0$. Define U to be the matrix whose columns are u_1 and u_2 .

What are the dimensions of the following matrices?

b) $oldsymbol{U}^T$

2

of Rows =

2 Answer: 2

Answer: 2

# of Columns	
d	✓ Answer: d
c) UU^T	
# of Rows =	
d	✓ Answer: d
# of Columns =	
d	✓ Answer: d
d) $u_1 u_1^T$	
# of Rows =	
d	✓ Answer d

of Columns =

✓ Answer: d d

Submit

1 Answers are displayed within the problem

Problem 10

1/1 point (graded)

Continuing from the previous problem, let $u_1,u_2\in\mathbb{R}^d$ be two vectors with $||u_1|| = ||u_2|| = 1$ and $u_1 \cdot u_2 = 0$, and define U to be the matrix whose columns are u_1 and u_2 .

Which of the following linear transformations sends points $x \in \mathbb{R}^d$ to their (twodimensional) projections onto directions u_1 and u_2 ? Select all that apply.

- $\bigvee x \mapsto (u_1 \cdot x, u_2 \cdot x)$
- $\square x \mapsto (u_1 \cdot x) u_1 + (u_2 \cdot x) u_2$
- $\bigvee x \mapsto U^T x$
- $\bigcap x \mapsto UU^Tx$

Explanation

The first and third maps send 4-d to 2-d. The second and fourth maps send 4-d to 4-d.

Submit

1 Answers are displayed within the problem

Problem 11

2/2 points (graded)

For a particular four-dimensional data set, the top two eigenvectors of the covariance matrix are:

$$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$$

a) What is the PCA projection of point (2, 4, 2, 6) into two dimensions? Write it in the form (a,b).

- (2,2)
- (2,3)
- **o** (7, 3)
- (4,6)

b) What is the reconstruction, from this projection, to a point in the original four-dimensional space? Write it in the form (a, b, c, d)

- \circ (2, 5, 2, 5)
- \bigcirc (2, 1, 2, 2)
- \bigcirc (4, 2, 2, 2)
- \bigcirc (2, 6, 2, 4)

Submit

1 Answers are displayed within the problem

Problems 12-14 correspond to "Linear algebra V: eigenvalues and eigenvectors"

Problem 12

2/2 points (graded)

Consider the 2×2 matrix $M = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}$.

6

a) One of its eigenvectors is $\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$. What is the corresponding eigenvalue?
--	---

b) Its other eigenvector is $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$. What is the corresponding eigenvalue?

Submit

1 Answers are displayed within the problem

Problem 13

6/6 points (graded)

A 2×2 matrix M has eigenvalues 10 and 5.

a) What are the eigenvalues of 2M (that is, each entry of M is multiplied by 2)?

Larger eigenvalue =

Smaller eigenvalue =

10

b) What are the eigenvalues of M+3I, where I is the 2×2 identity matrix?

Larger eigenvalue =

13 **✓ Answer:** 13 13

Smaller eigenvalue =

c) What are the eigenvalues of $M^2 = MM$?

Larger eigenvalue =

Smaller eigenvalue =

Explanation

Suppose (u, λ) is an (eigenvector, eigenvalue) pair for M, that is, $Mu = \lambda u$.

Part (a): for any constant c, we have $(cM)u = M(cu) = c\lambda u$. Thus $(u, c\lambda)$ is an (eigenvector, eigenvalue) pair for cM.

Part (b): for any constant c, we have $(M+cI)u=Mu+cu=(\lambda+c)u$. Thus $(u,\lambda+c)$ is an (eigenvector, eigenvalue) pair for M + cI.

Part (c): For any positive integer c, we have $M^c u = \lambda^c u$, and thus (u, λ^c) is an (eigenvector, eigenvalue) pair for M^c .

? Hint (1 of 3): For part (a): if $Mu = \lambda u$, what do we know about (2M) u = M (2u)?

Next Hint

Hint (2 of 3): For part (b): Note that (M + 3I)u = Mu + 3u

Hint (3 of 3): For part (c): $M^2u = M(Mu)$

Submit

1 Answers are displayed within the problem

Problem 14

7/7 points (graded)

A certain three-dimensional data set has covariance matrix

$$\begin{pmatrix}
5 & -3 & 0 \\
-3 & 5 & 0 \\
0 & 0 & 4
\end{pmatrix}$$

a) Consider the direction $u = (1, 1, 1) / \sqrt{3}$. What is variance of the projection of the data onto direction *u*?

2.67

✓ Answer: 8/3

2.67

b) Which of the following are eigenvectors of the covariance matrix? Select all that apply.

- c) Find the eigenvalues of the covariance matrix. List them in decreasing order.
- **✓ Answer:** 8 8
- ✓ Answer: 4 4
- ✓ Answer: 2 2

d) Suppose we used principal component analysis (PCA) to project points into two dimensions. What would be the resulting two-dimensional projection of the point $x = (\sqrt{2}, -3\sqrt{2}, 2)$?

- \bigcirc (1,0)
- **o** (4, 2)
- \bigcirc (1,4)
- (4,1)

e) Now suppose we use the projection in (d) to reconstruct a point \hat{x} in the original threedimensional space. What is the Euclidean distance between x and \hat{x} , that is, $||x - \hat{x}||$?

2

✓ Answer: 2

2

? Hint (1 of 5): Part (a): If Σ is the covariance matrix of a data set, then the projection of the data into the direction given by unit vector u has variance $u^T \Sigma u$.

Next Hint

Hint (2 of 5): Part (b): To check if v is an eigenvector of matrix M, just check whether Mv is a multiple of v, that is, of the form λv .

Hint (3 of 5): Part (c): Given that v is an eigenvector of matrix M, the corresponding eigenvalue is the number λ such that $Mv = \lambda v$.

Hint (4 of 5): Part (d): PCA will project data points x onto the top two eigenvectors (that is, the eigenvectors with the two largest eigenvalues). If these are u_1 and u_2 then the projection of x is $(x \cdot u_1, x \cdot u_2)$.

Hint (5 of 5): Part (e): The reconstruction from the projection of x is $(x \cdot u_1) u_1 + (x \cdot u_2) u_2$.

Submit

1 Answers are displayed within the problem

Problems 15-17 correspond to "Linear algebra VI: spectral decomposition"

Problem 15

1/1 point (graded)

M is a 2×2 real-valued symmetric matrix with eigenvalues $\lambda_1 = 6$, $\lambda_2 = 1$ and corresponding eigenvectors

$$u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

What is M?

$\bigcirc \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$				
0 (4	2)				

 $\begin{pmatrix} 2 & 1 \end{pmatrix}$

? Hint (1 of 1): This is a direct application of the spectral decomposition theorem. We went through an example just like this in lecture.

Next Hint

Submit

1 Answers are displayed within the problem

Problem 16

1/1 point (graded)

For a certain data set in d-dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where k < d). What can we conclude from this? Select all that apply.

- ullet The data can be perfectly reconstructed from their PCA projection onto k dimensions.

$lue{lue}$ Each data point can be expressed as a linear combination of the top k eigenvector	s.			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
? Hint (1 of 1): Intuitively, the data lies in a k -dimensional subspace, but this subspace need not be aligned with the coordinate axes.	Hint			
Submit				
Answers are displayed within the problem				
Problem 17				
1/1 point (graded) A data set in \mathbb{R}^d has a covariance matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$. Under work the following conditions is PCA most likely to be effective as a form of dimensionality reduction? Select all that apply.	vhich			
$lacksquare$ When the λ_i are approximately equal.				
$lacksquare$ When most of the λ_i are close to zero.				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
\checkmark When the sequence $\lambda_1, \lambda_2, \ldots$ is rapidly decreasing.				
✓				
Explanation				

The overall variance in the data is $\lambda_1 + \lambda_2 + \cdots + \lambda_d$. When PCA is used to reduce the dimension to k, the amount of variance in the projected points is $\lambda_1 + \lambda_2 + \cdots + \lambda_k$. PCA is most effective when this second quantity is not too much smaller than the first, in other words, when the fraction of variance lost, $(\lambda_{k+1} + \cdots + \lambda_d)/(\lambda_1 + \cdots + \lambda_d)$, is small.

Submit

1 Answers are displayed within the problem

© All Rights Reserved