模块四 双曲线与方程

第1节 双曲线的定义、标准方程及简单几何性质 (★★)

内容提要

- 1. 双曲线定义:设 F_1 , F_2 是平面内的两个定点,若平面内的点P满足 $\|PF_1| |PF_2\| = 2a(0 < 2a < |F_1F_2|)$,则点P的轨迹是以 F_1 , F_2 为焦点的双曲线.
- 2. 双曲线的标准方程及简单几何性质

标准方程	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1(a > 0, b > 0)$
焦点坐标	左焦点 $F_1(-c,0)$,右焦点 $F_2(c,0)$	上焦点 $F_1(0,c)$,下焦点 $F_2(0,-c)$
焦距	$ F_1F_2 = 2c$, 其中 c 叫做半焦距,且 $c^2 = a^2 + b^2$	
图形	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
范围	$x \le -a$ 或 $x \ge a$, $y \in \mathbf{R}$	$y \le -a$ 或 $y \ge a$, $x \in \mathbf{R}$
对称性	关于 x 轴、y 轴、原点对称	
实轴端点 (顶点)	$(\pm a,0)$	$(0,\pm a)$
虚轴端点	$(0,\pm b)$	$(\pm b, 0)$
实轴长	2a, 其中 a 叫做实半轴长	
虚轴长	2b, 其中 b 叫做虚半轴长	
渐近线	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$
离心率	$e = \frac{c}{a}(e > 1)$	

3. 双曲线通径公式: 过焦点且与双曲线实轴垂直的弦叫做通径, 通径长为 $\frac{2b^2}{a}$.

典型例题

类型 I: 双曲线定义的运用

【例 1】双曲线 $C: \frac{x^2}{4} - y^2 = 1$ 的左、右焦点分别为 F_1 , F_2 , 点 P 在双曲线上,且 $|PF_1| = 6$,则 $|PF_2| = ____.$

解析: 已知 $|PF_1|$ 求 $|PF_2|$ 用双曲线定义,需注意有绝对值,

由题意, $||PF_1| - |PF_2|| = 4$,所以 $|PF_1| - |PF_2| = \pm 4$,故 $|PF_2| = |PF_1| \pm 4$,结合 $|PF_1| = 6$ 可得 $|PF_2| = 2$ 或 10. 答案:2 或 10

【变式 1】已知双曲线 $C: \frac{x^2}{4} - y^2 = 1$ 的左、右焦点分别为 F_1 , F_2 ,过 F_2 的直线 I 与双曲线 C 的右支交于 A、 B 两点,若 |AB| = 2,则 ΔABF_1 的周长为_____.

解析: 涉及双曲线上的点和左、右焦点, 考虑双曲线的定义,

如图,由双曲线定义, $\begin{cases} |AF_1|-|AF_2|=4\\ |BF_1|-|BF_2|=4 \end{cases}$ 两式相加得: $|AF_1|+|BF_1|-|AF_2|-|BF_2|=|AF_1|+|BF_1|-|AB|=8$,

结合 |AB| = 2 可得 $|AF_1| + |BF_1| = 8 + |AB| = 10$,所以 ΔABF_1 的周长 $L = |AF_1| + |BF_1| + |AB| = 10 + 2 = 12$.

答案: 12

【变式 2】双曲线 $\frac{x^2}{4} - \frac{y^2}{5} = 1$ 的左焦点为 F, A(1,2),P 为双曲线右支上一点,则 |PA| + |PF| 的最小值为_____. 解析:如图,直接分析 |PA| + |PF| 的最小值不易,涉及 |PF|,可考虑用定义转化到右焦点来分析,设双曲线的右焦点为 $F_1(3,0)$,则 $|PF| - |PF_1| = 4$,所以 $|PF| = 4 + |PF_1|$,故 $|PA| + |PF| = |PA| + |PF_1| + 4$ ①,由三角形两边之和大于第三边可得 $|PA| + |PF_1| \ge |AF_1| = \sqrt{(1-3)^2 + (2-0)^2} = 2\sqrt{2}$,当且仅当 P 与图中 P_0 重合时取等号,结合①可得 $|PA| + |PF| \ge 2\sqrt{2} + 4$,故 $(|PA| + |PF|)_{min} = 2\sqrt{2} + 4$. 答案: $2\sqrt{2} + 4$

【反思】可以发现,双曲线定义与椭圆运用思路类似,实际上大部分题目处理思路也相同,故要类比学习.

【例 2】(2020 •浙江卷) 已知点 O(0,0), A(-2,0), B(2,0),设点 P 满足 |PA|-|PB|=2,且 P 为函数 $y=3\sqrt{4-x^2}$ 图象上的点,则 |OP|=()

(A)
$$\frac{\sqrt{22}}{2}$$
 (B) $\frac{4\sqrt{10}}{5}$ (C) $\sqrt{7}$ (D) $\sqrt{10}$

(B)
$$\frac{4\sqrt{10}}{5}$$

(C)
$$\sqrt{7}$$

(D)
$$\sqrt{10}$$

解析: 由 A(-2,0), B(2,0), |PA|-|PB|=2可得点 P 在以 A、B 为焦点的双曲线 $x^2-\frac{y^2}{2}=1$ 的右支上,

要求|OP|,需先求点P,可联立方程求解,双曲线中x和y都是平方项,于是把 $y=3\sqrt{4-x^2}$ 平方,

由
$$y = 3\sqrt{4-x^2}$$
 可得 $y^2 = 9(4-x^2)$, 整理得: $x^2 + \frac{y^2}{9} = 4(y \ge 0)$,

设
$$P(x,y)$$
, 联立
$$\begin{cases} x^2 - \frac{y^2}{3} = 1 \\ x^2 + \frac{y^2}{9} = 4 \end{cases}$$
 解得:
$$\begin{cases} x^2 = \frac{13}{4} \\ y^2 = \frac{27}{4} \end{cases}$$
 所以 $|OP| = \sqrt{x^2 + y^2} = \sqrt{10}$.

答案: D

类型 II: 双曲线的标准方程及简单几何性质

【例 3】若方程 $\frac{x^2}{m} + \frac{y^2}{2-m} = 1$ 表示双曲线,则实数 m 的取值范围为_____.

解析: 双曲线标准方程中 x^2 和 y^2 的系数异号,所以 $\frac{1}{m}\cdot\frac{1}{2-m}<0$,解得: m<0或m>2.

答案: $(-\infty,0) \cup (2,+\infty)$

【反思】对于方程 $\frac{x^2}{m} + \frac{y^2}{n} = 1$,若 $\begin{cases} m > 0 \end{cases}$ 人 如该方程表示椭圆;若mn < 0,则该方程表示双曲线. $m \neq n$

【例 4】双曲线 $\lambda x^2 - y^2 = 1$ 的实轴长是虚轴长的 2 倍,则 $\lambda = ____$.

解析: 先把双曲线化为标准方程, 找到 a 和 b, $\lambda x^2 - y^2 = 1 \Rightarrow \frac{x^2}{1} - y^2 = 1$,

所以 $a^2 = \frac{1}{\lambda}$, $b^2 = 1$, 由题意, $2a = 2 \times 2b$, 故 $a^2 = 4b^2$, 即 $\frac{1}{\lambda} = 4$, 所以 $\lambda = \frac{1}{\lambda}$.

【例 5】已知双曲线 $C: \frac{x^2}{6} - \frac{y^2}{3} = 1$,则 C 的右焦点的坐标为____; 点 (4,0)到其渐近线的距离是____.

解析: 由题意, $a=\sqrt{6}$, $b=\sqrt{3}$, $c=\sqrt{a^2+b^2}=3$,所以双曲线 C 的右焦点的坐标为 (3,0),

渐近线方程为 $y = \pm \frac{\sqrt{2}}{2}x$,即 $x \pm \sqrt{2}y = 0$,故点 (4,0) 到渐近线的距离 $d = \frac{|4|}{\sqrt{1^2 + (\pm \sqrt{2})^2}} = \frac{4\sqrt{3}}{3}$.

答案: (3,0); $\frac{4\sqrt{3}}{2}$

【反思】无论焦点在哪个坐标轴上,双曲线的渐近线都有个统一的求法:把标准方程中的"1"换成"0", 反解出 y 即得渐近线的方程. 例如本题将所给方程变为 $\frac{x^2}{6} - \frac{y^2}{3} = 0$,可反解出渐近线 $y = \pm \frac{\sqrt{2}}{3}x$.

【变式】(2021•新高考II卷) 若双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的离心率为 2,则此双曲线的渐近线方程为_____.

解析:由离心率可找到a和c的比例关系,再利用 $c^2 = a^2 + b^2$ 换算成a和b的关系即可,

由题意, $e=\frac{c}{a}=2$,所以c=2a,故 $\sqrt{a^2+b^2}=2a$,化简得: $\frac{b}{a}=\sqrt{3}$,所以渐近线方程为 $y=\pm\sqrt{3}x$.

答案: $y = \pm \sqrt{3}x$

【反思】离心率和渐近线斜率由a、b、c的比值决定,故在求它们的过程中,可对a、b、c按比例赋值, 不会影响结果. 例如,本题也可由c=2a直接令a=1,c=2,于是 $b=\sqrt{c^2-a^2}=\sqrt{3}$,也得出 $\frac{b}{-}=\sqrt{3}$.

【例 6】双曲线 C 与双曲线 $\frac{x^2}{2} - y^2 = 1$ 有相同的渐近线,且过点 (2,2),则双曲线 C 的方程为____. 解析: 不知道焦点在哪个坐标轴, 讨论当然可以, 但较为繁琐, 可用共渐近线的双曲线的统一设法, 设双曲线 $C: \frac{x^2}{2} - y^2 = \lambda(\lambda \neq 0)$,因为双曲线 C 过点 (2,2),所以 $\frac{2^2}{2} - 2^2 = \lambda$,解得: $\lambda = -2$, 故双曲线 C 的方程为 $\frac{y^2}{2} - \frac{x^2}{4} = 1$.

答案: $\frac{y^2}{2} - \frac{x^2}{4} = 1$

【反思】与双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 共渐近线的双曲线可设为 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \lambda(\lambda \neq 0)$.

强化训练

- 1. (★) 双曲线 $\frac{x^2}{2} y^2 = 1$ 的左、右焦点分别为 F_1 , F_2 , P 在双曲线上,且 $|PF_2| = 4\sqrt{2}$,则 $|PF_1| = ____.$
- 2. (2021•全国甲卷•★)点(3,0)到双曲线 $\frac{x^2}{16} \frac{y^2}{9} = 1$ 的一条渐近线的距离为()
- (A) $\frac{9}{5}$ (B) $\frac{8}{5}$ (C) $\frac{6}{5}$ (D) $\frac{4}{5}$

- 3. (2021 •全国乙卷 •★) 已知双曲线 $C: \frac{x^2}{m} y^2 = 1(m > 0)$ 的一条渐近线为 $\sqrt{3}x + my = 0$,则 C 的焦距为_____.
- 4. (★) 若方程 $\frac{x^2}{m+1} + \frac{y^2}{m-2} = 1$ 表示焦点在 x 轴上的双曲线,则实数 m 的取值范围为_____.

- (A) $\frac{x^2}{36} \frac{y^2}{64} = 1$ (B) $\frac{x^2}{64} \frac{y^2}{36} = 1$ (C) $\frac{x^2}{36} \frac{y^2}{64} = 1(x \ge 6)$ (D) $\frac{x^2}{64} \frac{y^2}{36} = 1(x \ge 8)$
- 6. (2023・全国甲卷・★★★) 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为√5, 其中一条渐近线与圆
- (A) $\frac{1}{5}$ (B) $\frac{\sqrt{5}}{5}$ (C) $\frac{2\sqrt{5}}{5}$ (D) $\frac{4\sqrt{5}}{5}$

- 7. $(2022 \cdot 佛山二模 \cdot \star \star \star \star)$ 已知双曲线 $E: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 以正方形 *ABCD* 的两个顶点为焦点, 且经过该正方形的另外两个顶点. 若正方形 ABCD 的边长为 2,则 E 的实轴长为 (
- (A) $2\sqrt{2}-2$ (B) $2\sqrt{2}+2$ (C) $\sqrt{2}-1$ (D) $\sqrt{2}+1$

- 8. (2020 新高考 I 卷 ★★★) (多选) 已知曲线 C: mx² + ny² = 1. ()
 - (A) 若m>n>0,则C是椭圆,其焦点在y轴上
 - (B) 若m=n>0,则C是圆,其半径为 \sqrt{n}
 - (C) 若 mn < 0,则 C 是双曲线,其渐近线方程为 $y = \pm \sqrt{-\frac{m}{n}}x$
 - (D) 若m=0, n>0, 则C是两条直线
- 9. (★★★)双曲线 $\frac{x^2}{3} \frac{y^2}{6} = 1$ 的左、右焦点分别为 F_1 、 F_2 ,点 A(3,1),P 为双曲线右支上一动点,则 $|PA| |PF_1|$ 的最大值为____

答案: 1-2√3

- 10. (2022・鹰潭二模・★★★) 已知双曲线 $\frac{x^2}{m} \frac{y^2}{5} = 1(m > 0)$ 的一条渐近线方程为 $\sqrt{5}x + 2y = 0$,左焦点为 F,点 P 在双曲线右支上运动,点 Q 在圆 $C: x^2 + (y-4)^2 = 1$ 上运动,则|PQ| + |PF|的最小值为()
- (A) $2\sqrt{2}+4$ (B) 8 (C) $2\sqrt{2}+5$ (D) 9