La capa de enlace R

Programación y administración de redes - Semana 8

Grado en Ingeniería Informática

Departamento de Informática. Universidad de Jaén

Objetivos

General

Conocer la funcionalidad ofrecida por la capa de enlace en términos generales, cómo operan los dispositivos en esa capa y sus protocolos

Específicos

- Identificar la interación entre la capa de enlace y las demás
- Conocer el funcionamiento de los dispositivos a este nivel (switches)
- Saber cómo se encapsulan los datagramas en tramas Wifi/Ethernet
- Conocer la traducción de direcciones IP a LAN y viceversa con los protocolos ARP y RARP
- Analizar el procedimiento de envío de datagramas entre redes LAN

La capa de enlace

Finalidad

Proporcionar una comunicación lógica entre equipos conectados en una LAN, actuando directamente sobre la capa física que es la encargada de transmitir los impulsos eléctricos, ópticos o electromagnéticos

Cómo funciona

- La capa de enlace se sitúa debajo de la capa de de red, por lo que ofrece a esta sus servicios
- La implementación de funcionalidad depende del tipo de enlace (Wifi, Ethernet, otro) y se encuentra en la propia interfaz de red
- Encapsula el datagrama IP en una trama, agregando la información necesaria para transferirlo de un punto a otro
- Identifica cada host conectado en la red local con una dirección MAC o dirección física

Protocolos de la capa de enlace

Finalidad

Establecer el mecanismo que permita asociar cada dirección IP de una interfaz de red con su correspondiente dirección MAC

Detalles

- Dos protocolos básicos
 - ARP: encargado de obtener la dirección MAC que corresponde a una IP
 - RARP: efectúa la traducción inversa
- Concepto de enrutamiento
 - La dirección IP de destino del datagrama puede corresponder a un host que no se encuentra en la LAN
 - 1. La tabla de enrutamiento (a estudiar la próxima semana) determinará a qué equipo intermedio hay que enviar el datagrama
 - 2. Se usa como destino de la trama la dirección MAC de ese equipo intermedio
- NDP
 - Se usa con IPv6 para obtener información de configuración de la red local

ARP
Address Resolution Protocol

RARP Reverse ARP

NDP
Neighbor Discover Protocol

Reenvio de tramas en la capa de enlace Switches

Switches - Fundamentos

Introducción

Representan la infraestructura básica de comunicación para equipos conectados localmente, en una LAN

Características

- Operan al nivel de la capa de enlace (nivel 2) sobre tramas
- Almacenan la trama recibida y la reenvían a su destino
- Elige la línea de salida según una tabla interna
- Funciona de manera transparente para los host
- En general, los *switches* no necesitan ser configurados
- Pueden encadenarse para ampliar el número de host interconectados

Switches - Funcionamiento

Resumen

Los switches trabajan con una tabla interna que asocia cada dirección MAC a un puerto/conector

Fases

- **Identificación**: el *switch* sabe qué equipo tiene conectado en cada uno de sus puertos
- Reenvío: la tabla de asociaciones establece para cada puerto el host que hay conectado (su dirección MAC) y la temporización para alcanzarlo
- Aprendizaje: el switch tiene un algoritmo de aprendizaje autónomo. En principio la tabla está vacía. Cuando llega un paquete por un puerto/interfaz se guardar la dirección de origen

MAC addr	Interface	TTL	
Α	1	60	

Switches - Encapsulamiento de datagramas

Resumen

El datagrama IP se encapsula en el campo de datos (payload) de una trama de la capa de enlace (Ethernet o WiFi) y se envía al switch, que examina la cabecera de la trama y la reenvía al destino

Trama Ethernet

7	1	6	6	2	46-1500	4
Preámbulo	D	Dirección	Dirección	Ló	Datos	C.R.C.
		del destino	del origen	T		

Trama WiFi

2	2	6	6	6	2	6	0 - 2312	4
frame control	duration	address 1	address 2	address 3	seq control	address 4	payload	CRC

Actividad - Características de mi switch

Cuál es la configuración de tu switch

Examina el equipo de interconexión que te permite conectarte a Internet desde tu casa y trata de responder las siguientes cuestiones:

- ¿Cómo se conectan tus dispositivos (ordenador, tableta, etc.) al equipo de interconexión: **Ethernet**, **WiFi**, otro medio?
- ¿Cuántos puertos/interfaces de red tiene el equipo de interconexión y de qué tipo?
- ¿Es tu equipo de interconexión un router, un switch u otro tipo de dispositivo?
 Razona la respuesta
- ¿Cuál es la dirección IP de tu equipo de interconexión? ¿Y su dirección MAC?

Direccionamiento en la capa de enlace Direcciones LAN/MAC

Direccionamiento al nivel de LAN

Introducción

El esquema de direccionamiento usado en Internet se compone de varias partes complementarias entre sí, usándose cada una de ellas según la capa en que se esté operando

Niveles de direccionamiento

- Al nivel de la capa de transporte las direcciones son los números de puerto TCP/UDP que conectan los procesos
- Al nivel de la capa de red usamos las direcciones IP para identificar cada interfaz de red de cada dispositivo
- Al nivel de la capa de enlace, con dispositivos conectados de forma directa o a través de un switch, se usan las direcciones LAN/MAC

Direcciones LAN

- **Dirección LAN:** dirección del adaptador (tarjeta u otro dispositivo) de red que envía físicamente los datos al medio de transmisión. Recordad: se usan en las tramas LAN
 - También se le conoce como dirección física, dirección Ethernet o dirección MAC (Media Access Control)
- Longitud: suelen tener constar de 6 bytes que se expresan en notación hexadecimal (1 byte = 2 dígitos hexadecimales)
 - P.e.: A5-BF-56-C4-34-2A
- Unicidad: no hay en el mundo dos adaptadores con la misma dirección, de esto se encarga el IEEE que las reparte a los fabricantes
- Estructura: la estructura de estas direcciones es plana, no como en IP, y están físicamente asociadas a la tarjeta (no cambia con la red)
- Configuración: no se precisa configuración, como en el caso de IP, cada interfaz de red tiene su propia dirección LAN y los switches las aprenden
- Multidifusión: dirección FF-FF-FF-FF-FF

Asociación de direcciones - Protocolo ARP

Introducción

Los datagramas, cuando se entregan a la capa de enlace, llevan en su cabecera direcciones IP que es necesario asociar con direcciones LAN

Funcionamiento

- Los datagramas IP cuando salen del emisor se envía a través de LAN
- Hay que introducir el datagrama IP en una trama LAN, lo cual conlleva conocer la asociación entre direcciones IP y MAC
- El protocolo ARP (Address Resolution Protocol) es el encargado de facilitar la dirección LAN correspondiente a cada dirección IP

Protocolo ARP - Address Resolution Protocol

- Misión: traducir direcciones IP a direcciones MAC
 - Necesario cuando la capa de enlace tiene que enviar una trama a un destino del que conocemos su dirección IP (incluida en la cabecera del datagrama IP)
 - Esta traducción se realiza dentro de una LAN determinada. No es válida fuera de ella
- Funcionamiento: un host A desea conocer la dirección física de B, host del que conoce su IP (IPB)
 - A manda un paquete multidifusión a todos preguntando quién tiene IPB
 - El poseedor de esa dirección responde a A con su dirección física (MAC)
 - Para no estar continuamente utilizando este procedimiento los host suelen tener una caché o tabla ARP donde almacenan las direcciones que aprenden
 - El datagrama IP se encapsula en la trama, cuya cabecera contiene las direcciones MAC, y se envía
- Características: este protocolo es del tipo conectar y funcionar, es decir, los administradores no suelen tocar estas tablas
- RARP (Reverse ARP): obtiene una dirección IP a partir de una dirección física. Utilizado históricamente cuando un equipo se iniciaba para obtener su dirección IP. En desuso

Actividad - Direcciones LAN en mi red

Qué direcciones LAN/MAC tienen tus dispositivos

Intenta obtener las direcciones LAN correspondientes a las interfaces de red de tu ordenador, tableta, móvil, etc., así como de tus equipos de interconexión:

- Puedes usar el comando arp para consultar la caché local de asociaciones IP-MAC en tu ordenador, ya sea en Windows, macOS o GNU/Linux
- En esa caché solo aparecerán entradas para los equipos con los que tu ordenador haya intercambiado paquetes
- En el caso de los equipos de interconexión, como son los *router*, también puedes acceder a la consola o **interfaz de administración** para conocer su dirección MAC
- Dibuja un mapa de tu red actualizado en el que se incluyan host, equipos de interconexión y sus direcciones tanto IP como MAC

Ejemplo paso a paso del envío de un datagrama entre equipos de una red local

Configuración de la red

- Envío de un datagrama IP desde el host A al B a través del equipo de interconexión R
- El host A conoce la dirección IP de B y la incluye en la cabecera del datagrama

Paso 1. Envío del datagrama IP hacia el router

• Se incluye en la cabecera del datagrama la IP de destino: 222.222.222.222

Paso 2. Obtención de la MAC del *router*

• El host A no puede obtener la MAC correspondiente a la IP 222.222.222.222 porque no está en su red local, por lo que obtiene la del router y la incluye en la trama

• El *router* recibe la trama (capa de enlace) y extrae de ella el datagrama para obtener la IP de destino

• El *router* recibe la trama (capa de enlace) y extrae de ella el datagrama para obtener la IP de destino

• El *router* prepara la trama para enviarla hacia la segunda LAN, para lo cual precisa conocer la dirección MAC del equipo de destino 222.222.222.222

• En la nueva trama se introduce la MAC del host **B** y también se cambia la dirección MAC de origen, que ahora una correspondiente al router

Paso 4. Envío del paquete hacia su destino

El router envía la nueva trama hacia su destino: el host B

Paso 4. Envío del paquete hacia su destino

El router envía la nueva trama hacia su destino: el host B

Paso 5. Extracción del datagrama en el destino

• El equipo de destino extrae de la trama el datagrama IP y obtiene su contenido

Cuestiones clave

Qué deberías saber

Al inicio de este tema se planteaban unos objetivos específicos que deberían permitirte **responder a las siguientes cuestiones** clave

Cuestiones

- ¿A qué nivel opera un switch y con qué tipo de direcciones?
- ¿Cómo aprende un switch las direcciones de los equipos que tiene conectados?
- ¿Cuál es el formato de una trama y cómo encapsula un datagrama IP?
- ¿Qué protocolos hay implicados en la traducción de direcciones IP/MAC y cómo funcionan?
- ¿Cuál es el proceso que se sigue para enviar un datagrama IP entre equipos que no están directamente conectados?

Material adicional

Descripción

Para ampliar tus conocimientos sobre los contenidos de esta semana te recomendamos que consultes los recursos indicados a continuación.

Recursos

- Capítulo 6 La capa de enlace y las redes de área local, del libro Redes de computadoras 7ED disponible en <u>formato digital</u> en la BUJA (recuerda identificarte para poder acceder a leerlo desde tu navegador), concretamente las secciones 6.1 y 6.3
- TCP/IP Network Interface en el recurso electrónico The TCP/IP Guide, donde encontrarás información sobre los protocolos ARP y RARP
- IP datagram delivery and routing en el recurso electrónico <u>The TCP/IP Guide</u> para conocer en detalle el proceso de reenvío de datagramas IP en conexiones directas e indirectas

Ejercicios para la tutoría colectiva

Ejercicios

Prepara con antelación los ejercicios indicados para la sesión de tutoría colectiva de esta semana

- Funcionamiento de TCP en la **semana 5** (diapositiva 16), dibujar cronograma para:
 - Qué ocurre si el primer envío con sec=92 se pierde pero el segundo con sec=100 es recibido correctamente
- Actividades propuestas en la semana 6:
 - Cuestiones sobre direccionamiento IP (diapositiva 26)
 - División de una red en múltiples subredes (diapositiva 27)
 - Cuestiones sobre IPv6 (diapositiva 33)

Preparación test

Estudia los aspectos clave del material de estas cuatro últimas semanas para prepararte para el test de evaluación de esta tutoría colectiva