lab9.R

stonehuang

2022-11-09

```
#Q1. The presence/absence of Brown Creepers does not vary between the
interior and edge of forest stands.
#Q2. Brown Creepers show a significant habitat preference because the p-value
is lower than 0.05.
```

```
#Q3
fit_species = lm(formula = body_mass_g ~ species, data = penguins)
fit_sex = lm(formula = body_mass_g ~ sex, data = penguins)
fit_both = lm(formula = body_mass_g ~ sex*species, data = penguins)
#Q6
```

Boxplot for the fit_species model

#Q7
boxplot(body_mass_g ~ sex, data = penguins, main = "Boxplot for the fit_sex
model")

Boxplot for the fit_sex model

#Q8

boxplot(body_mass_g ~ sex*species, data = penguins, las = 3, names =
c("female \n Adelie", "male \n Adelie", "female \n Chinstrap", "male \n
Chinstrap", "female \n Gentoo", "male \n Gentoo"), ylab = "body mass (g)",
xlab = "", main = "Boxplot for the fit both model")

Boxplot for the fit_both model

#09 #fit_species model may have problems fulfilling the homogeneity assumption because the boxes have very different width. #Q10. The null hypothesis of the Bartlett test is that the variances are the same among groups. #Q11. 0.0501 bartlett.test(body_mass_g ~ species, data = penguins) ## ## Bartlett test of homogeneity of variances ## ## data: body_mass_g by species ## Bartlett's K-squared = 5.9895, df = 2, p-value = 0.05005 #Q12. 0.0319 bartlett.test(body_mass_g ~ sex, data = penguins) ## ## Bartlett test of homogeneity of variances ## ## Bartlett test of homogeneity of variances

```
#013. 0.1741
#Q14
#The fit_sex model has issues with heterogeneity. The p-value is lower than
0.05, so we reject the null hypothesis that the variances are the same among
groups.
#Q15
```

barplot(table(dat_fl\$ProbabilityofFailure), ylab = "Counts of trees", xlab =
"Probability of failure class", main = "Barplot of counts of trees
 in each probability of failure class")

Barplot of counts of trees in each probability of failure class

Probability of failure class

Barplot of the counts of trees in each of the failure classes

hist(dat fl\$DBH in, xlab = "DBH", main = "Histogram of DBH")

Histogram of DBH

plot(dat_fl\$HeighttoTop_ft ~ dat_fl\$DBH_in, ylab = "Tree height", xlab =
"DBH", main = "Scatterplot of DBH and tree height", cex = 0.1)

Scatterplot of DBH and tree height

#Q16. The null hypothesis for the Kolmogorov-Smirnov test is that there is no difference in DBH between whole-tree failures and intact trees.
#Q17. 0.02125. The distribution of DBH is not the same for the two groups.
The p-value is lower than 0.05 so we reject the null hypothesis.
whole = subset(dat_fl, Failure_Standardized == "whole")
none = subset(dat_fl, Failure_Standardized == "none")
ks.test(whole\$DBH_in, none\$DBH_in)

Warning in ks.test(whole\$DBH_in, none\$DBH_in): p-value will be approximate in
the presence of ties

##
Two-sample Kolmogorov-Smirnov test
##
data: whole\$DBH_in and none\$DBH_in
D = 0.10643, p-value = 0.02125
alternative hypothesis: two-sided

#Q18. Tree height increases with increasing DBH. The relationship is curved and monotonic.
#Q19. Spearman
cor.test(
dat fl\$DBH in.

```
#Q20. p-value < 2.2e-16.I conclude that the two variables are significantly
correlated.
#Q21. X-squared = 202.65, p-value < 2.2e-16
#Q22. -136
```

3 -71 71 ## 4 -38 38

#Q23. There were fewer tree failures than expected by chance in failure probability category #1.

#Q24. There more tree failures than expected by chance in failure probability category #4.

#Q25. I conclude that the probability of failure rating system is effective! There were more tree failures than expected in higher failure probability categories.