Optimal Binary Search Trees

- We are given a sequence $K = \langle k_1, k_2, ... k_n \rangle$ of n distinct keys in sorted order so that $k_1 < k_2 < ... k_n$. We wish to build a BST from these keys.
- For each key k_i we have a probability p_i that a search will be for k_i . Some searches may be for values not in K, and so we have n + 1 "dummy keys" $d_0, d_1, d_2, \ldots d_n$ representing values not in K.
- In particular, d_0 represents all values less than k_1 , d_n represents all values greater than k_n , and for i = 1, 2, ..., n 1, the dummy key d_i represents all values between k_i and k_{i+1} .
- For each dummy key d_i , we have a probability q_i that a search will correspond to d_i . (Refer to Slide #13). Each key k_i is an internal node, and each dummy key d_i is a leaf.
- Every search is either successful (finding some key k_i) or unsuccessful (finding some dummy key d_i) and so we have $(p_1 + p_2 + ... + p_n) + (q_0 + q_1 + q_2 + ... + q_n) = 1$
- Because we have probabilities of searches for each key and each dummy key, we can determine the expected cost of a search in a given binary search tree *T*.
- Let us assume that the actual cost of a search is the number of nodes examined, i.e., the depth of the node found by the search in *T*, plus 1. Then the expected cost of a search in *T* is

E[search cost in
$$T$$
] = $\sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) * p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) * q_{i}$
= $(p_{1} + p_{2} + \dots + p_{n}) + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) * p_{i} + \sum_{i=1}^{n} \operatorname{depth}_{T}(d_{i}) * q_{i}$
= $(q_{0} + q_{1} + q_{2} + \dots + q_{n}) + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) * q_{i}$
= $1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) * p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) * q_{i}$ (1)

where depth_T denotes a node's depth in the tree T.

- For a given set of probabilities, our goal is to construct a BST whose expected search cost is smallest. We call such a tree an *optimal binary search tree*.
- As with matrix –chain multiplication, exhaustive search of all possibilities fails to yield an efficient algorithm. This is because, the number of binary trees with n nodes is $\Omega(4^n/n^{3/2})$ and so there are exponential number of binary search trees that we would have to examine in an exhaustive search. So we will solve this problem with dynamic programming.

- Consider any subtree of a BST. It must contain the keys in contiguous order $k_i, \ldots k_j$ for some $1 \le i \le j \le n$. In addition, a subtree that contains keys $k_i, \ldots k_j$ must also have as its leaves the dummy keys $d_{i-1}, \ldots d_j$
- Here is the optima substructure: if an optimal BST has a subtree T' containing keys $k_i, \ldots k_j$, then this subtree T' **must** be optimal as well for the subproblem with keys $k_i, \ldots k_j$ and dummy keys $d_{i-1}, \ldots d_j$.
- We need to use the optimal substructure to show that we can construct an optimal solution to the problem from optimal solutions to subproblems.
- Given keys k_i , ... k_j , one of these keys say k_r ($i \le r \le j$), will be the root of an optimal subtree containing these keys.
 - O The left subtree of the root k_r will contain the keys k_i , k_{i+1} ,... k_{r-1} (and dummy keys $d_{i-1}, d_i, \ldots d_{r-1}$)
 - \circ The right subtree will contain the keys $k_{r+1}, \ldots k_i$ (and dummy keys $d_r, d_{r+1}, \ldots d_i$).
- As long as we examine all the candidate roots k_r where $i \le r \le j$, and we determine all optimal binary search trees containing $k_i, \ldots k_{r-1}$ and those containing $k_{r+1}, \ldots k_j$, we are guaranteed that we will find an optimal BST.
- Now we are ready to define the value of an optimal solution recursively. We pick our subproblem domain as finding the optimal BST containing the keys k_i , ... k_j where $i \ge 1$, $j \le n$, and $j \ge i 1$. Note that when j = i 1, there are no actual keys; we have just the dummy key d_{i-1}
- Define e[i, j] as the expected cost of searching an optimal BST containing the keys $k_i, \ldots k_j$.

• We wish to compute e[1,n]

- The easy case occurs when j = i 1. Then we have just the dummy key d_{i-1} and the expected cost is $e[i, i-1] = q_{i-1}$
- When $j \ge i$, we need to select a root k_r , from among k_i , ... k_j , and then make an optimal BST with keys k_i , ... k_{r-1} as its left subtree and an optimal BST with keys k_{r+1} , ... k_j as its right subtree.
- What is the expected search cost of a subtree when it becomes a subtree of a node?
 The depth of each node in the subtree increases by 1.
- o By (1), the expected search cost of this subtree increases by sum of all probabilities in the subtree.

 \circ For a subtree with keys $k_i, \ldots k_j$, let us denote this sum of probabilities as:

$$w(i, j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$

O Thus if k_r is the root of an optimal subtree containing the keys k_i , ... k_j , we have

$$e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$$

- O Note that $w(i, j) = w(i, r 1) + p_r + w(r+1, j)$
- So we can rewrite e[i, j] as e[i, j] = e[i, r-1] + e[r+1, j] + w(i, j) (2)
- \circ (2) assumes that we know which node k_r to use as the root. We choose the root that gives the lowest expected search cost, giving us our final recursive formulation:

$$e[i,j] = q_{i-1}$$
 if $j = i-1$
 $min \{ e[i, r-1] + e[r+1, j] + w(i, j) \}$ if $i \le j$
 $i \le r \le j$

Example: Construct an optimal BST with keys k_1 , k_2 , k_3 , k_4 and k_5 and $k_1 < k_2 < k_3 < k_4 < k_5$ with the following probabilities: $(p_1, p_2, p_3, p_4, p_5) = (0.15, 0.10, 0.05, 0.10, 0.20)$

$$(q_0, q_1, q_2, q_3, q_4, q_5) = (0.05, 0.10, 0.05, 0.05, 0.05, 0.10)$$

Table with values for w

Table with values for e

 $i \rightarrow$

Root table

