FAE-cps - FAE with Continuation-Passing Style

1 INTRODUCTION

FAE-cps is a toy language for the COSE212 course at Korea University. FAE-cps stands for the FAE language with the **continuation-passing style (CPS)**. Since it has the same syntax and semantics as FAE, it supports the following features:

- number (integer) values (0, 1, -1, 2, -2, 3, -3, ...)
- arithmetic operators: addition (+) and multiplication (*)
- immutable variable definitions (val)
- first-class functions (=>)

This document is the specification of FAE-cps. While it has the same syntax and semantics as FAE, Section 2 and Section 3 repeat the concrete and abstract syntax parts for completeness, respectively, with the desugaring rules. Section 4 redefines the same semantics in a small-step operational (reduction) semantics style rather than a big-step style.

2 CONCRETE SYNTAX

The concrete syntax of FAE-cps is written in a variant of the extended Backus-Naur form (EBNF). The notation <nt> denotes a nonterminal, and "t" denotes a terminal. We use ? to denote an optional element and + (or *) to denote one or more (or zero or more) repetitions of the preceding element. We use butnot to denote a set difference to exclude some strings from a producible set of strings. We omit some obvious terminals using the ellipsis (...) notation.

The precedence and associativity of operators are defined as follows:

Operator	Associativity	Precedence
*	left	2
+	left	1

3 ABSTRACT SYNTAX

The abstract syntax of FAE-cps is defined as follows:

Expressions
$$\mathbb{E} \ni e := n$$
 (Num) $\mid e + e \pmod{1}$ $\mid e * e \pmod{1}$ where $\mid x \pmod{1}$ $\mid \lambda x.e \pmod{1}$ Where $\mid \lambda x.e \pmod{1}$ $\mid e(e) \pmod{1}$ (String) $\mid e(e) \pmod{1}$

The semantics of the remaining cases are defined with the following desugaring rules:

$$\mathcal{D}\llbracket \operatorname{val} x = e_1; \ e_2 \rrbracket = (\lambda x. \mathcal{D}\llbracket e_2 \rrbracket) (\mathcal{D}\llbracket e_1 \rrbracket)$$

The omitted cases recursively apply the desugaring rule to sub-expressions.

4 **SEMANTICS**

We use the following notations in the semantics:

The small-step operational (reduction) semantics of FAE-cps is defined as follows:

$$\langle \kappa \mid \mid s \rangle \rightarrow \langle \kappa \mid \mid s \rangle$$

Num
$$\langle (\sigma \vdash n) :: \kappa \mid \mid s \rangle$$
 $\rightarrow \langle \kappa \mid \mid n :: s \rangle$

Add₁ $\langle (\sigma \vdash e_1 + e_2) :: \kappa \mid \mid s \rangle$ $\rightarrow \langle (\sigma \vdash e_1) :: (\sigma \vdash e_2) :: (+) :: \kappa \mid \mid s \rangle$

Add₂ $\langle (+) :: \kappa \mid \mid n_2 :: n_1 :: s \rangle$ $\rightarrow \langle \kappa \mid \mid (n_1 + n_2) :: s \rangle$

Mul₁ $\langle (\sigma \vdash e_1 * e_2) :: \kappa \mid \mid s \rangle$ $\rightarrow \langle \kappa \mid \mid (n_1 \times n_2) :: s \rangle$

Mul₂ $\langle (*) :: \kappa \mid \mid n_2 :: n_1 :: s \rangle$ $\rightarrow \langle \kappa \mid \mid (n_1 \times n_2) :: s \rangle$

Id $\langle (\sigma \vdash x) :: \kappa \mid \mid s \rangle$ $\rightarrow \langle \kappa \mid \mid \sigma(x) :: s \rangle$

Fun $\langle (\sigma \vdash \lambda x.e) :: \kappa \mid \mid s \rangle$ $\rightarrow \langle \kappa \mid \mid \langle \lambda x.e, \sigma \rangle :: s \rangle$

App₁ $\langle (\sigma \vdash e_1(e_2)) :: \kappa \mid \mid s \rangle$ $\rightarrow \langle (\sigma \vdash e_1) :: (\sigma \vdash e_2) :: (@) :: \kappa \mid \mid s \rangle$

App₂ $\langle (@) :: \kappa \mid \mid v_2 :: \langle \lambda x.e, \sigma \rangle :: s \rangle$ $\rightarrow \langle (\sigma[x \mapsto v_2] \vdash e) :: \kappa \mid \mid s \rangle$

where \rightarrow^* is the reflexive-transitive closure of \rightarrow and denotes the repeated reduction:

$$\langle \kappa \mid \mid s \rangle \rightarrow^* \langle \kappa \mid \mid s \rangle$$

$$\frac{\langle \kappa \mid\mid s \rangle \to^* \langle \kappa' \mid\mid s' \rangle \qquad \langle \kappa' \mid\mid s' \rangle \to \langle \kappa'' \mid\mid s'' \rangle}{\langle \kappa \mid\mid s \rangle \to^* \langle \kappa'' \mid\mid s'' \rangle}$$

The evaluation result of an expression e is the value v if

$$\langle (\varnothing \vdash e) :: \Box \mid \mid \blacksquare \rangle \to^* \langle \Box \mid \mid v :: \blacksquare \rangle$$