اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۱۷ آبان ۱۳۹۹ جلسه چهاردهم

Normalized Cuts for Image Segmentation

Jianbo Shi and Jitendra Malik

Normalized cuts and image segmentation

Pattern Analysis and Machine Intelligence (PAMI), 2000

Segmentation by Graph Partitioning

Nodes: All pixels of the image

Edges: Between every pair of

nodes

Weights: Representing

similarity between two nodes

Segmentation by Graph Partitioning

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Measuring Affinity

- Suppose we represent each pixel by a feature vector x, and define a distance function appropriate for this feature representation
- Then we can convert the distance between two feature vectors into an affinity with the help of a generalized Gaussian kernel:

$$e^{\frac{-dist(x_i,x_j)^2}{2\sigma^2}}$$

Graph Cut

- Cut: Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation
 - What is a "good" graph cut and how do we find one?

Minimum Cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum Cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum Cut Algorithm

$$Cut(A,B) = \sum_{u \in A, v \in B} W(u,v)$$

Cut(A,B) is a measure of similarity between the two groups.

The advantage of Min Cut: Well-studied problem and efficient algorithms

The disadvantage of Min Cut: Favors cutting small sets of isolated nodes in the graph

- Graph: G = (V, E)
 - Nodes: All pixels of the image
 - Edges: Between every pair of nodes
 - Weights: Representing similarity between two nodes
- Objective:
 - Partition V into two disjoint sets A and B.
 - Minimize similarity between two sets:

$$Cut(A,B) = \sum_{u \in A, v \in B} W(u,v)$$

– Maximize similarity within each set:

$$Assoc(A, A) = \sum_{u \in A, v \in A} W(u, v)$$

Normalized Cut

$$Cut(A,B) = \sum_{u \in A, v \in B} W(u,v)$$

$$Assoc(A, A) = \sum_{u \in A, v \in A} W(u, v)$$

$$Ncut(A, B) = \frac{Cut(A, B)}{Assoc(A, V)} + \frac{Cut(A, B)}{Assoc(B, V)}$$

$$Nassoc(A, B) = \frac{Assoc(A, A)}{Assoc(A, V)} + \frac{Assoc(B, B)}{Assoc(B, V)}$$

Objective: Find A and B so that simultaneously Ncut(A, B) is minimized and Nassoc(A, B) is maximized.

$$Ncut(A,B) + Nassoc(A,B) = \frac{Cut(A,B) + Assoc(A,A)}{Assoc(A,V)} + \frac{Cut(A,B) + Assoc(B,B)}{Assoc(B,V)} = 2$$

$$Ncut(A,B) = \frac{Cut(A,B)}{Assoc(A,V)} + \frac{Cut(A,B)}{Assoc(B,V)}$$

NP-complete

Generalized Rayleigh Quotient

 $y(i) \in \{1,-b\}$
 $y^tD\mathbf{1} = \mathbf{0}$

$$W(i,j) = w_{i,j}$$
 $D(i,i) = \sum_{j} w(i,j)$ $d_i = D(i,i)$ $k = \frac{\sum_{x_i > 0} d_i}{\sum_{i} d_i}$ $b = \frac{k}{1-k}$ $y = (1+x) - b(1-x)$

Rayleigh Quotient:

$$\frac{x^t A x}{x^t x} \longrightarrow \min\left(\frac{x^t A x}{x^t x}\right) = \min_{x^t x = 1} x^t A x \longrightarrow \min(x^t A x) = \lambda_{min}$$

$$A x_{min} = \lambda_{min} x_{min}$$

Generalized Rayleigh Quotient:

$$\frac{x^{t}Ax}{x^{t}Bx} = \frac{x^{t}Ax}{x^{t}LL^{t}x} = \frac{x^{t}LL^{-1}AL^{-t}L^{t}x}{(L^{t}x)^{t}(L^{t}x)} = \frac{(L^{t}x)^{t}(L^{-1}AL^{-t})(L^{t}x)}{(L^{t}x)^{t}(L^{t}x)} = \frac{y^{t}Cy}{y^{t}y}$$
Cholesky

$$\min\left(\frac{x^t A x}{x^t B x}\right) = \min\left(\frac{y^t C y}{y^t y}\right) = \min_{y^t y = 1} y^t C y = \min_{x^t y = 1} y^t C y =$$

Eigenvalue Problem: $Ax = \lambda x$

Generalized Eigenvalue Problem: $Ax = \lambda Bx$

$$Ax_{min} = \lambda_{min} Bx_{min}$$

 $Ax_{min} = \lambda_{min} L L^t x_{min}$

$$Ncut(A,B) = \frac{Cut(A,B)}{Assoc(A,V)} + \frac{Cut(A,B)}{Assoc(B,V)}$$

NP-complete

$$argmin \frac{y^t(D-W)y}{y^tDy}$$
 $y^tD\mathbf{1} = \mathbf{0}$

NP-complete

Generalized Rayleigh Quotient

Generalized Eigenvalue Problem $(D-W)y = \lambda Dy$

$$W(i,j) = w_{i,j}$$
 $D(i,i) = \sum_{j} w(i,j)$ $d_i = D(i,i)$ $k = \frac{\sum_{x_i > 0} d_i}{\sum_{i} d_i}$ $b = \frac{k}{1-k}$ $y = (1+x) - b(1-x)$

$$(D - W)y = \lambda Dy$$
$$y^t D \mathbf{1} = 0$$

$$z \leftarrow D^{\frac{1}{2}}y$$

$$D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}z = \lambda z$$

$$z^{t}D^{\frac{1}{2}}\mathbf{1} = 0$$

$$z_0 = D^{\frac{1}{2}} \mathbf{1} \quad \lambda_0 = 0$$

$$D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}D^{\frac{1}{2}}\mathbf{1} = D^{-\frac{1}{2}}(D-W)\mathbf{1} = \mathbf{0}$$

$$\lambda_0 = eigenvalue$$
 $z_0 = eigenvector$

$$(D-W)$$
 Positive Semidefinite

Symmetric Positive Semidefinite

 $\lambda_0 = 0$ is the smallest eigenvalue &, eigenvectors are perpendicular

$$\lambda_0 = \lambda_{min} = 0$$
$$z_0 = z_{min}$$

$$\mathbf{1}^t D \mathbf{1} \neq 0$$

$$z_{opt}^t z_{min} = 0$$

Let *A* be a real symmetric matrix.

Let x be orthogonal to n-1 smallest eigenvectors of A.

Quotient $\frac{x^t A x}{x^t x}$ is minimized by the *n*-th smallest eigenvector

and, the minimum value is the corresponding eigenvalue.

The answer of segmentation: Second smallest eigenvector of $(D - W)y = \lambda Dy$

Efficient method to obtain the n-th eigenvector: Lanczos Method

Example

Affinity Matrix

5 Smallest Eigenvalues & Eigenvectors

Eigenvalues

0	
0.3555	
0.5330	
0.6028	
0.6160	20

Result

Example

$$W(i,j) = \exp\left(-\frac{\|F_i - F_j\|_2^2}{s_I}\right) \cdot \exp\left(-\frac{\|X_i - X_j\|_2^2}{s_X}\right) \qquad if \quad \|X_i - X_j\|_2^2 < r$$

Affinity Matrix

Smallest Eigenvalues

Smallest Eigenvalues & Eigenvectors

1st Segment

2nd Segment

3rd Segment

4th Segment

5th Segment

References

- Ncuts
 Szeliski, Section 5.4
- Paper:

Jianbo Shi and Jitendra Malik

Normalized cuts and image segmentation

Pattern Analysis and Machine Intelligence (PAMI), 2000

Graph Cuts for Image Segmentation

object (foreground)

Combinatorial Optimization

32

Yuri Boykov and Marie-Pierre Jolly, *Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images*, ICCV 2001.

Weights

Edge	Weight (Cost)	for
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in N$
	$\lambda R_p("obj")$	$p \in P, p \notin O \cup B$
{ <i>p</i> , <i>S</i> }	K	$p \in O$
	0	$p \in B$
	$\lambda R_p("bkg")$	$p \in P, p \notin O \cup B$
{ <i>p</i> , <i>T</i> }	0	$p \in O$
	K	$p \in B$

$$K = 1 + \max_{p \in P} \sum_{q:\{p,q\} \in N} B_{\{p,q\}}$$

Boundary Term / Smoothness Term

Edge	Weight (Cost)	for
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in N$

Boundary Term / Smoothness Term

Edge	Weight (Cost)	for
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in N$

 $B_{\{p,q\}}$ = discontinuity penalty.

$$B_{\{p,q\}}$$
 is large when pixel p and q are similar. $B_{\{p,q\}}$ is close to zero when the two are very different. $B_{\{p,q\}} \propto \exp\left(-\frac{\left(I_p-I_q\right)^2}{2\sigma^2}\right).\frac{1}{dist(p,q)}$

Boundary Term / Smoothness Term

Edge	Weight (Cost)	for
$\{p,q\}$	$oxedsymbol{B_{\{p,q\}}}$	$\{p,q\}\in N$

 $B_{\{p,q\}}$ = discontinuity penalty.

 $B_{\{p,q\}}$ is large when pixel p and q are similar.

 $B_{\{p,q\}}$ is close to zero when the two are very different.

$$B_{\{p,q\}} \propto \exp\left(-\frac{\left(I_p - I_q\right)^2}{2\sigma^2}\right) \cdot \frac{1}{dist(p,q)}$$

Defining a segmentation:

$$A = \left(A_1, \dots, A_p, \dots, A_{|P|}\right)$$

Binary vector

Boundary property term:

$$B(A) = \sum_{\{p,q\} \in N} B_{\{p,q\}} \, \delta(A_p, A_q)$$

$$\delta(A_p, A_q) = \begin{cases} 1 & A_p \neq A_q \\ 0 & A_p = A_q \end{cases}$$

Weights

Edge	Weight (Cost)	for
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in N$
$\{p,S\}$	$\lambda R_p("obj")$	$p \in P, p \notin O \cup B$
	K	$p \in O$
	0	$p \in B$
$\{p,T\}$	$\lambda R_p("bkg")$	$p \in P, p \notin O \cup B$
	0	$p \in O$
	K	$p \in B$

$$K = 1 + \max_{p \in P} \sum_{q:\{p,q\} \in N} B_{\{p,q\}}$$

 $R_p(A_p)$ = Individual penalties for assigning pixel p to "object" and "background".

 $R_p(A_p)$ may reflect on how the intensity of pixel p fits into a known intensity model (histogram) of object and background.

 $R_p(A_p)$ = Individual penalties for assigning pixel p to "object" and "background".

 $R_p(A_p)$ may reflect on how the intensity of pixel p fits into a known intensity model (histogram) of object and background.

Similarity to foreground (object):

$$R_p("obj") = -\ln(\Pr(I_p|"bkg"))$$

Similarity to background:

$$R_p("bkg") = -\ln(\Pr(I_p|"obj"))$$

 $R_p(A_p) =$ Individual penalties for assigning pixel p to "object" and "background".

 $R_p(A_p)$ may reflect on how the intensity of pixel p fits into a known intensity model (histogram) of object and background.

Similarity to foreground (object):

$$R_p("obj") = -\ln(\Pr(I_p|"bkg"))$$

Similarity to background:

$$R_p("bkg") = -\ln(\Pr(I_p|"obj"))$$

Region property term:

$$R(A) = \sum_{p \in P} R_p(I_p)$$

Defining a segmentation: $A = \left(A_1, \dots, A_p, \dots, A_{|P|}\right)$ Binary vector

Cost Function

$$E(A) = \lambda R(A) + B(A)$$

Defining a segmentation: $A = \left(A_1, \dots, A_p, \dots, A_{|P|}\right)$ Binary vector

Cost Function

Defining a segmentation:

$$A = (A_1, \dots, A_p, \dots, A_{|P|})$$

Binary vector

Cost Function

$$E(A) = \lambda R(A) + B(A)$$

Boundary properties term

Region properties term

Coefficient : relative importance

$$R(A) = \sum_{p \in P} R_p(I_p)$$

$$B(A) = \sum_{\{p,q\} \in N} B_{\{p,q\}} \, \delta(A_p, A_q)$$

$$\delta(A_p, A_q) = \begin{cases} 1 & A_p \neq A_q \\ 0 & A_p = A_q \end{cases}$$

- Put one edge between each pixel and both F & B
- Weight of edge: $R(A) = \sum_{p \in P} R_p(I_p)$
 - Don't forget huge weight for hard constraints

Boundary Term / Smoothness Term

- Add an edge between each neighbor pair
- Weight = smoothness term

$$B(A) = \sum_{\{p,q\} \in N} B_{\{p,q\}} \, \delta(A_p, A_q)$$

$$\delta(A_p, A_q) = \begin{cases} 1 & A_p \neq A_q \\ 0 & A_p = A_q \end{cases}$$

Min Cut

- Energy optimization equivalent to graph min cut
- Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weight

 $E(A) = \lambda R(A) + B(A)$

A well-known combinatorial optimization fact:

A globally minimum cut of a graph with two terminals can be computed efficiently in low order polynomial time.

Result min cut/max flow algorithm

Overview

- Interactive image segmentation using graph cut
- Binary label: foreground vs. background
- User labels some pixels (hard constraints)
- Exploit
 - Statistics of known Fg & Bg
 - Smoothness of label
- Turn into discrete graph optimization
 - Graph cut (min cut / max flow)

Defining a segmentation: Minimizing cost function $A = (A_1, \dots, A_p, \dots, A_{|P|})$ $E(A) = \lambda R(A) + B(A)$

FFE	3
-----	---

Binary vector

Energy Function: $E(A) = \lambda R(A) + B(A)$

- Labeling: one value per pixel, F or B
- Energy (labeling) = data + smoothness
 - Very general situation
 - Will be minimized
- Data: for each pixel
 - Probability that this color belongs to F (resp. B)
- Smoothness (aka regularization): per neighboring pixel pair
 - Penalty for having different labels
 - Penalty is downweighted if the two pixel colors are very different
 - Similar in spirit to bilateral filter

One labeling (ok, not best)

Data

B F B B F B B B В

Smoothness

What is easy or hard about these cases for graphcut-based segmentation?

Easier examples

More difficult Examples

Camouflage & Low Contrast

Fine structure

Harder Case

Initial Rectangle

Initial Result

Using graph cuts for recognition

