Variable metric methods

$$x^{+} = x - tH^{-1}\nabla f(x)$$

 $H \succ 0$ is approximation of the Hessian at x, chosen to:

- avoid calculation of second derivatives
- simplify computation of search direction

'Variable metric' interpretation (EE236B, lecture 10, page 11)

$$\Delta x = -H^{-1}\nabla f(x)$$

is steepest descent direction at \boldsymbol{x} for quadratic norm

$$||z||_H = \left(z^T H z\right)^{1/2}$$

Quasi-Newton methods

given starting point $x^{(0)} \in \text{dom } f, H_0 \succ 0$

- 1. compute quasi-Newton direction $\Delta x = -H_{k-1}^{-1} \nabla f(x^{(k-1)})$
- 2. determine step size t (e.g., by backtracking line search)
- 3. compute $x^{(k)} = x^{(k-1)} + t\Delta x$
- 4. compute H_k

- different methods use different rules for updating H in step 4
- \bullet can also propagate H_k^{-1} to simplify calculation of Δx

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

BFGS update

$$H_k = H_{k-1} + \frac{yy^T}{y^Ts} - \frac{H_{k-1}ss^T H_{k-1}}{s^T H_{k-1}s}$$

where

$$s = x^{(k)} - x^{(k-1)}, \qquad y = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$$

Inverse update

$$H_k^{-1} = \left(I - \frac{sy^T}{y^T s}\right) H_{k-1}^{-1} \left(I - \frac{ys^T}{y^T s}\right) + \frac{ss^T}{y^T s}$$

- note that $y^T s > 0$ for strictly convex f; see page 1-9
- cost of update or inverse update is $O(n^2)$ operations

Positive definiteness

if $y^Ts>0$, BFGS update preserves positive definitess of ${\cal H}_k$

Proof: from inverse update formula,

$$v^{T}H_{k}^{-1}v = \left(v - \frac{s^{T}v}{s^{T}y}y\right)^{T}H_{k-1}^{-1}\left(v - \frac{s^{T}v}{s^{T}y}y\right) + \frac{(s^{T}v)^{2}}{y^{T}s}$$

- if $H_{k-1} \succ 0$, both terms are nonnegative for all v
- ullet second term is zero only if $s^Tv=0$; then first term is zero only if v=0

this ensures that $\Delta x = -H_k^{-1} \nabla f(x^k)$ is a descent direction

Secant condition

the BFGS update satisfies the secant condition $H_k s = y$, i.e.,

$$H_k(x^{(k)} - x^{(k-1)}) = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$$

Interpretation: define second-order approximation at $x^{(k)}$

$$f_{\text{quad}}(z) = f(x^{(k)}) + \nabla f(x^{(k)})^T (z - x^{(k)}) + \frac{1}{2} (z - x^{(k)})^T H_k(z - x^{(k)})$$

secant condition implies that gradient of f_{quad} agrees with f at $x^{(k-1)}$:

$$\nabla f_{\text{quad}}(x^{(k-1)}) = \nabla f(x^{(k)}) + H_k(x^{(k-1)} - x^{(k)})$$
$$= \nabla f(x^{(k-1)})$$

Secant method

for $f: \mathbf{R} \to \mathbf{R}$, BFGS with unit step size gives the secant method

$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{H_k}, \qquad H_k = \frac{f'(x^{(k)}) - f'(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$$

Convergence

Global result

if f is strongly convex, BFGS with backtracking line search (EE236B, lecture 10-6) converges from any $x^{(0)}$, $H_0 > 0$

Local convergence

if f is strongly convex and $\nabla^2 f(x)$ is Lipschitz continuous, local convergence is *superlinear*: for sufficiently large k,

$$||x^{(k+1)} - x^*||_2 \le c_k ||x^{(k)} - x^*||_2 \to 0$$

where $c_k \to 0$

(cf., quadratic local convergence of Newton method)

Example

minimize
$$c^T x - \sum_{i=1}^m \log(b_i - a_i^T x)$$

$$n = 100, m = 500$$

- cost per Newton iteration: $O(n^3)$ plus computing $\nabla^2 f(x)$
- cost per BFGS iteration: $O(n^2)$

Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store H_k or H_k^{-1}

Limited-memory BFGS (L-BFGS): do not store H_k^{-1} explicitly

• instead we store the m (e.g., m=30) most recent values of

$$s_j = x^{(j)} - x^{(j-1)}, y_j = \nabla f(x^{(j)}) - \nabla f(x^{(j-1)})$$

• we evaluate $\Delta x = H_k^{-1} \nabla f(x^{(k)})$ recursively, using

$$H_j^{-1} = \left(I - \frac{s_j y_j^T}{y_j^T s_j}\right) H_{j-1}^{-1} \left(I - \frac{y_j s_j^T}{y_j^T s_j}\right) + \frac{s_j s_j^T}{y_j^T s_j}$$

for $j=k,k-1,\ldots,k-m+1$, assuming, for example, $H_{k-m}^{-1}=I$

ullet cost per iteration is O(nm); storage is O(nm)