

<u>Help</u>

konainniaz 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u>

□ Bookmark this page

G

✓ Previous
Quiz 3

1/1 point (graded)

What is the dimension of A^T , where A is the $1 \times n$ "row vector" [1, 2, 3, ..., (n-1), n]?

- O 1 × 1
- \bigcirc 1 × n
- \bullet $n \times 1$
- \bigcap $n \times n$
- ~

Submit

Problem 2

1/1 point (graded)

True or false: $((A^T)^T)^T = A^T$

- True
- False

Submit

Problem 3

1/1 point (graded)

Let $M = \begin{pmatrix} 1 & 5 \\ 2 & 2 \end{pmatrix}$ and let $N = \begin{pmatrix} 0 & 2 \\ 5 & 5 \end{pmatrix}$, what is M + N?

- $M + N = \begin{pmatrix} 1 & 7 \\ 7 & 7 \end{pmatrix}$
- $M + N = \begin{pmatrix} 0 & 10 \\ 10 & 10 \end{pmatrix}$
- $M + N = \begin{pmatrix} 3 & 10 \\ 2 & 7 \end{pmatrix}$
- $M + N = \begin{pmatrix} 3 & 5 \\ 6 & 7 \end{pmatrix}$

1/1 point (graded)

Give the transpose of $M = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 8 \\ 4 & 4 & 4 \end{pmatrix}$

$$M^{T} = \begin{pmatrix} 2 & 8 & 4 \\ 1 & 1 & 4 \\ 3 & 2 & 4 \end{pmatrix}$$

$$M^{T} = \begin{pmatrix} 4 & 4 & 4 \\ 2 & 1 & 8 \\ 3 & 1 & 2 \end{pmatrix}$$

$$M^{T} = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 1 & 4 \\ 2 & 8 & 4 \end{pmatrix}$$

$$M^{T} = \begin{pmatrix} 4 & 8 & 2 \\ 4 & 1 & 1 \\ 4 & 2 & 3 \end{pmatrix}$$

~

Submit

Problem 5

1/1 point (graded)

Given $\mathbf{x} = \begin{pmatrix} 1 & 4 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, what is $\mathbf{x} - \mathbf{y}^{\mathbf{T}}$?

$$\bigcirc x - y^T = \begin{pmatrix} 3 & -3 \end{pmatrix}$$

Su	hr	nit
Ou	w	IIIL

1/1 point (graded)

If the dot product of two vectors, a'b, is equal to 0, what must be true? Select all that apply.

a equals b

 $bar{b}a = 0$

 \Box either a = 0 or b = 0

✓ a is orthogonal to b

Submit

Problem 7

1/1 point (graded)

Given a vector, $\mathbf{x} \in \mathbb{R}^{d \times 1}$, the product $\mathbf{x} \mathbf{x}^T$ is equal to which of the following:

[Math Processing Error]

0 1

 \bigcirc The identity matrix, I_d

 \bullet a $d \times d$ matrix

Submit

Problem 8

1/1 point (graded)

The following line is given by the equation $\mathbf{w}^*\mathbf{x} = c$, where c = 8. What are the vectors \mathbf{x} and \mathbf{w} ?

$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	$\mathbf{w} = \begin{pmatrix} 8 & -8 \end{pmatrix}$
$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	$\mathbf{w} = \begin{pmatrix} -4 & 1 \end{pmatrix}$
$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	$, \mathbf{w} = \begin{pmatrix} -1 & 8 \end{pmatrix}$
$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	$\mathbf{w} = \begin{pmatrix} 2 & 1 \end{pmatrix}$
Submit	
Problem 9 1/1 point (graded Indicate which	d) n of the following properties apply to matrix multiplication:
Associat	ive property (that is, $ABC = (AB)C = A(BC)$)
Commut	ative property (that is, $AB = BA$)
Existenc	e of an identity matrix
Submit	
Problem 10)
1/1 point (graded Given two mat	trices, $A \in \mathbb{R}^{j \times k}$ and $B \in \mathbb{R}^{k \times l}$, what is $(AB)^T$?
$\bigcirc AB^T$	
$\bigcirc A^T B^T$	
$\bigcirc BA^T$	
~	
Submit	

1/1 point (graded)

True or false: Given two square matrices, $A \in \mathbb{R}^{d \times d}$ and $B \in \mathbb{R}^{d \times d}$, if $AB = BA = I_d$, then $B = A^{-1}$.

True

False

Submit

Problem 12

1/1 point (graded)

Which of the following are true about singular matrices?

Singular matrices cannot also be diagonal matrices

lacksquare Singular matrices have a determinant of 0

✓ Singular matrices are not invertible

Singular matrices include the identity matrix

Submit

Problem 13

1/1 point (graded)

Given the 2 × 2 matrix, $M = \begin{pmatrix} 1 & 5 \\ 1 & 4 \end{pmatrix}$, determine which of the following is the inverse matrix of M.

 $M^{-1} = \begin{pmatrix} -4 & 5 \\ 1 & -1 \end{pmatrix}$

 $M^{-1} = \begin{pmatrix} 1 & \frac{1}{5} \\ 1 & \frac{1}{4} \end{pmatrix}$

 $M^{-1} = \begin{pmatrix} 1 & -1 \\ -5 & 4 \end{pmatrix}$

O Does not have an inverse

Sı	ıhı	mit

1/1 point (graded)

Which of the following matrices are singular?

 $\begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$

 $\begin{pmatrix}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$

 $\begin{pmatrix} \frac{1}{3} & 1 \\ 1 & 3 \end{pmatrix}$

~

Submit

Problem 15

1/1 point (graded)

Given the matrix, $M = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$, and the vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, what expression below is equivalent to $\mathbf{x}^T M \mathbf{x}$?

 $0 3x_1 + 10x_2$

~

Submit

each position along the diagonal. Which of the following can we conclude? Select all that apply.
The features are uncorrelated
The contour lines for the distribution are axis aligned
The contour lines for the distribution are in concentric spheres
$lacksquare$ Any point that is a fixed distance away from the mean μ has the same density
Submit
Problem 17
1/1 point (graded) True or false: the only two parameters needed to define a multivariate Gaussian distribution are the mean, μ , and the covariance matrix, Σ .
True
○ False
Submit
Problem 18
1/1 point (graded) For a spherical Gaussian distribution, defined by $\mu \in \mathbb{R}^d$ and $\Sigma = \sigma^2 I_d$, what is the determinant of the covariance matrix, $ \Sigma $?
\bigcirc σ^2
\odot σ^{2d}
\bigcirc σ^d
Ο σ
✓
Submit
Droblers 10

Suppose a Gaussian distribution has a covariance matrix that is diagonal, with the same value in

Problem 19

1/1 point (graded)

1/1 point (graded)

Given the following 4 data points in \mathbb{R}^3 , computer the mean, $\mu \in \mathbb{R}^3$.

$\mu - (100)$	5, 2.5, 3)
$\bullet \mu = (1,$	2,2)
$\bigcirc \mu = (1.3)$	33, 2.66, 2.66)
$O_{\mu} = (4,$	8,8)
~	
Submit	
Problem 2	20
/1 point (grad	
rue or false	the covariance matrix of any data set is necessarily symmetric.
True	
O False	
<u> </u>	
Submit	
Problem 2	
/1 point (grade rue or false:	ed) : In a binary classification setting, where each class is modeled by a multivariate
aussian, a d	data point, x , will always be classified as label 1 instead of label 2 if the distance from x
t ₁ is less tha	n the distance from x to μ_2 .
True	
False	
~	
Submit	
Submit	
Submit Problem 2	22
Problem 2 /1 point (grade	ed)
Problem 2 /1 point (grade f a Gaussian	
Problem 2 /1 point (grade f a Gaussian s linear, whic	$^{ m ed}$) generative model is used for classification, and the decision boundary for the k classe

\bigcirc The means, μ_{i} , are equidistant from this decision boundary		
• The covariance matrices, Σ	\mathbf{E}_{i} , must be equal	
Submit		
Problem 23 1/1 point (graded) f a test error is 0%, what does th	his indicate about the model?	
None of the data in the tes	st set was misclassified	
The model will perfectly class	assify every new data point	
The data in the test set is r	not a good representation of all classes	
0% test error is not achieva	able	
and B . If the decision boundary i	model is used for a binary classification problem with two classes, A is linear and the class probability $\pi_A>\pi_B$, would you expect the	
ooundary to be closer to μ_A or μ_B		
The boundary will be close	er to μ_B	
The boundary will be equic	distant to μ_A and μ_B	
This cannot be determined.	d without the respective covariance matrices	
Submit		
Problem 25		
I/1 point (graded) True or false: a Gamma distributi specific interval.	ion is useful for modeling features which are constrained to a	
○ True		

False		
✓		
Submit		
Problem 26		
1/1 point (graded) Using the Naive Bayes classifier, which of the following are necessarily true?		
Each coordinate of the data is modeled by the same distribution		
Each coordinate of the data is taken to be independent of the others		
Provides a very inaccurate model for classification		
Each pairwise set of coordinates are modeled together		
•		
Submit		
Problem 27		
1/1 point (graded) Which distribution would be useful for specifying the distribution over first names in a phone book for some random city?		
O Gamma Distribution		
O Beta Distribution		
O Poisson Distribution		
Categorical Distribution		
✓		
Submit		

Previous Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

