Resposta do Exercício T14

30/Março/2017

A) Faça a tabela verdade para a configuração 3way original usando duas entradas, A e B. Simplifique a expressão booleana resultante e monte o circuito no logisim (somente a parte até o S, sem a bobina e a lâmpada). Só para lembrar: na configuração qualquer entrada, quando muda, altera o estado da lâmpada. Se ambos estiverem em ZERO a lâmpada deve estar apagada. (resumindo: o que o MagooMestre queria)

		-	
Α	В	S	
0	B 0 1 0	0	S=AB + AB (UM XOR)
0	1	1	
1	0	1	
1	1	0	

B) Faça o mesmo para três interruptores, cada um deles podendo ligar ou desligar a lâmpada (o que é impossível de ser feito apenas com interruptores 3Way, sem circuito adicional). Monte a tabela verdade e o circuito no logisim (após simplificar).

A B C	S1
$\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	00 0 1
$\begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$	$\begin{bmatrix} 0 & & & & & & & & & & & & & & & & & & $
1 0 0	1 1
$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$	
$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	$\begin{cases} 0 \\ 1 \end{cases} S1 = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.B.C + A.\overline{B}.C$

Mas também o S pode ser simplesmente um XOR de A, B e C

Percebe-se isso quando se olha a tabela e ve que o S deixa sempre a quantidade de 1's par, característica do XOR

C) Por fim, considere um circuito com 4 entradas: A, B, C e D e duas lâmpadas (S1 e S2, cada uma podendo ser ligado a sua bobina). O A em 1 acende o S1 e nenhuma outra entrada consegue apagar. Se o A estiver em ZERO, as demais B, C e D controlam o interruptor S1 da forma como no item B (todos em ZERO, S1 em 0). Já S2 acende sempre que apenas duas entradas quaisquer estivem em 1. Faça a tabela verdade, simplifique e monte o circuito usando logisim.

 $A \mid B \mid C$ **BCD** D **S**1 S2A S2B 00 01 11 10 S1 = A + (B xor C xor D)AB $S1 = A + B.C.D + \overline{B}.C.\overline{D} + \overline{B}.\overline{C}.D + B.\overline{C}.\overline{D}$ CD 11 10 00 01 S2A = AB + AC + AD + BC + CD + BDUsando interpretação de quaisquer dois em 1. CD AB 11 10 S₂A ABS₂B