Databázové systémy

Přednáška 3. Projekce a spojení

Jan Laštovička

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

Obsah

- Projekce
- 2 Spojení
- 3 Přejmenování atributů
- 4 Konstantní relace

Každá podmnožina n-tice je opět n-ticí.

Každá podmnožina n-tice je opět n-ticí.

n-tice:

name	age	street
Anna	3	Kosinova

Každá podmnožina n-tice je opět n-ticí.

n-tice:

name	age	street
Anna	3	Kosinova

Dvouprvková podmnožina:

name	street
Anna	Kosinova

t: n-tice nad A_1, \ldots, A_n

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

t':

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

t':

 $t' \subseteq t$

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \dots, B_m \} \subseteq \{A_1, \dots, A_n\}$

t'

- $t' \subseteq t$
- lacksquare obsahuje právě komponenty n-tice t s atributy B_1,\ldots,B_m

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \dots, B_m \} \subseteq \{A_1, \dots, A_n\}$

t'

- $t' \subseteq t$
- obsahuje právě komponenty n-tice t s atributy B_1, \ldots, B_m
- \blacksquare projektce n-tice t na B_1, \ldots, B_m

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \dots, B_m \} \subseteq \{A_1, \dots, A_n\}$

t'

- $t' \subseteq t$
- obsahuje právě komponenty n-tice t s atributy B_1, \ldots, B_m
- \blacksquare projektce n-tice t na B_1, \ldots, B_m
- lacksquare m-tice nad B_1,\ldots,B_m

t: n-tice nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

t'

- $t' \subseteq t$
- obsahuje právě komponenty n-tice t s atributy B_1, \ldots, B_m
- \blacksquare projektce n-tice t na B_1, \ldots, B_m
- \blacksquare *m*-tice nad B_1, \ldots, B_m

Projekce	name	age	street
1 TOJEKCE	Anna	3	Kosinova

na name a street:

t: n-tice nad A_1, \ldots, A_n B_1,\ldots,B_m :

- m různých atributů
- $\{B_1,\ldots,B_m\}\subseteq\{A_1,\ldots,A_n\}$

- $t' \subseteq t$
- obsahuje právě komponenty n-tice t s atributy B_1, \ldots, B_m
- \blacksquare projektce *n*-tice *t* na B_1, \ldots, B_m
- \blacksquare m-tice nad B_1,\ldots,B_m

ojekce	name	age	street
Ojekce	Anna	3	Kosinova

na name a street:

name	street
Anna	Kosinova

r: relace nad A_1, \ldots, A_n

r: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- lacksquare m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

r: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- lacksquare m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

r':

r: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- lacksquare m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

r'

 \blacksquare relace nad B_1, \ldots, B_m

r: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- lacksquare m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

r':

- \blacksquare relace nad B_1, \ldots, B_m
- lacksquare tělo je tvořeno projekcemi všech n-tic v těle relace r na B_1,\ldots,B_m

$$r$$
: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$

r':

- \blacksquare relace nad B_1, \ldots, B_m
- lacksquare tělo je tvořeno projekcemi všech n-tic v těle relace r na B_1,\ldots,B_m
- \blacksquare projekce r na B_1, \ldots, B_m

$$r$$
: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \dots, B_m \subseteq \{A_1, \dots, A_n\}$

r'

- \blacksquare relace nad B_1, \ldots, B_m
- lacktriangle tělo je tvořeno projekcemi všech n-tic v těle relace r na B_1,\ldots,B_m
- \blacksquare projekce r na B_1, \ldots, B_m

Projekce relace

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

na name a street:

$$r$$
: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- m různých atributů
- $B_1, \ldots, B_m \subseteq \{A_1, \ldots, A_n\}$

r'

- \blacksquare relace nad B_1, \ldots, B_m
- lacktriangle tělo je tvořeno projekcemi všech n-tic v těle relace r na B_1,\ldots,B_m
- \blacksquare projekce r na B_1, \ldots, B_m

Projekce relace

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

na name a street:

name	street
Anna	Kosinova
Bert	Mahlerova
Cyril	Kosinova

v: relační výraz r:

- \blacksquare hodnota v
- \blacksquare relace nad A_1,\ldots,A_n

v: relační výraz r:

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

 B_1,\ldots,B_m :

- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$
- $m \ge 1$

v: relační výraz r:

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

 B_1,\ldots,B_m :

- $B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$
- $m \ge 1$

R: jméno relace (zatím nehraje roli)


```
v: relační výrazr:
```

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

$$B_1,\ldots,B_m$$
:

$$B_1, \ldots, B_m \} \subseteq \{A_1, \ldots, A_n\}$$

$$m \geq 1$$

R: jméno relace (zatím nehraje roli)

```
( SELECT DISTINCT B_1, ..., B_m
FROM v AS R )
... projekce r na B_1, \ldots, B_m
```


#

TABLE child;


```
# TABLE child;
name | age | street
------
Bert | 4 | Mahlerova
Cyril | 4 | Kosinova
Anna | 3 | Kosinova
(3 rows)
```

#


```
# TABLE child;
     | age | street
name
-----
Bert | 4 | Mahlerova
Cyril | 4 | Kosinova
 Anna | 3 | Kosinova
(3 rows)
# SELECT DISTINCT name, street
 FROM ( TABLE child ) AS t;
```



```
# TABLE child;
      | age | street
name
 _____
Bert | 4 | Mahlerova
Cyril | 4 | Kosinova
Anna | 3 | Kosinova
(3 rows)
# SELECT DISTINCT name, street
 FROM ( TABLE child ) AS t;
name | street
Cyril | Kosinova
Anna | Kosinova
Bert | Mahlerova
(3 rows)
```

Kardinalita relace

kardinalita relace = počet n-tic v těle relace

kardinalita relace = počet n-tic v těle relace

Projekce může snížit kardinalitu:

#

kardinalita relace = počet n-tic v těle relace

Projekce může snížit kardinalitu:

```
# SELECT DISTINCT age
FROM ( TABLE child ) AS t;
```


kardinalita relace = počet n-tic v těle relace

Projekce může snížit kardinalitu:

```
# SELECT DISTINCT age
  FROM ( TABLE child ) AS t;
age
----
3
4
(2 rows)
```

Co je hodnotou následujícího výrazu?

child	name	age	street
	Anna	3	Kosinova
	Bert	4	Mahlerova
	Cyril	4	Kosinova

```
SELECT DISTINCT name
FROM ( SELECT DISTINCT name, street
FROM ( TABLE child) AS t ) AS t
```


child1

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

child2

age
4
4
5

child1

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

child2

name	age
Bert	4
Cyril	4
Daniela	5

Sjednocení projekce child1 a child2:

#

child1

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

child2

name	age
Bert	4
Cyril	4
Daniela	5

Sjednocení projekce child1 a child2:

```
# ( SELECT DISTINCT name, age
   FROM ( TABLE child1 ) AS t )
   UNION
  ( TABLE child2 );
```


child1

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

child2

age
4
4
5

Sjednocení projekce child1 a child2:

```
# ( SELECT DISTINCT name, age
   FROM ( TABLE child1 ) AS t )
   UNTON
  ( TABLE child2 );
         age
 name
  ------
Cyril
 Bert
 Anna
 Daniela |
(4 rows)
```

Obsah

- 1 Projekce
- 2 Spojení
- 3 Přejmenování atributů
- 4 Konstantní relace

parent

parent_name	child_name
Pavel	Anna
Monika	Bert
Petr	Bert
Marie	Daniela

child

child_name	child_age
Anna	3
Bert	4
Cyril	4

parent

child_name
Anna
Bert
Bert
Daniela

child

child_name	child_age	
Anna	3	
Bert	4	
Cyril	4	

Který rodič má čtyřleté dítě?

parent

parent_name	child_name	
Pavel	Anna	
Monika	Bert	
Petr	Bert	
Marie	Daniela	

child

child_name	child_age
Anna	3
Bert	4
Cyril	4

Který rodič má čtyřleté dítě?

parent_name	child_name	child_age
Pavel	Anna	3
Monika	Bert	4
Petr	Bert	4

 r_1 : relace nad A_1, \ldots, A_n r_2 : relace nad B_1, \ldots, B_m


```
r_1: relace nad A_1,\ldots,A_n r_2: relace nad B_1,\ldots,B_m \{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}
```



```
r_1: relace nad A_1,\ldots,A_n r_2: relace nad B_1,\ldots,B_m \{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}
```


$$r_1$$
: relace nad A_1,\ldots,A_n
$$r_2$$
: relace nad B_1,\ldots,B_m
$$\{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}$$

r:

 \blacksquare relace nad $A_1, \ldots, A_n, B_{k+1}, \ldots, B_m$


```
r_1: relace nad A_1,\ldots,A_n r_2: relace nad B_1,\ldots,B_m \{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}
```

- \blacksquare relace nad $A_1, \ldots, A_n, B_{k+1}, \ldots, B_m$
- tělo tvoří množina všech *n*-tic *t*:

$$r_1$$
: relace nad A_1,\ldots,A_n
$$r_2$$
: relace nad B_1,\ldots,B_m
$$\{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}$$

- \blacksquare relace nad $A_1, \ldots, A_n, B_{k+1}, \ldots, B_m$
- tělo tvoří množina všech *n*-tic *t*:
- f 1 projekce t na A_1,\ldots,A_n náleží do těla r_1

$$r_1$$
: relace nad A_1,\ldots,A_n
$$r_2$$
: relace nad B_1,\ldots,B_m
$$\{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}$$

- \blacksquare relace nad $A_1, \ldots, A_n, B_{k+1}, \ldots, B_m$
- tělo tvoří množina všech *n*-tic *t*:
 - f 1 projekce t na A_1,\ldots,A_n náleží do těla r_1
 - ${f 2}$ projekce t na B_1,\ldots,B_m náleží do těla r_2

$$r_1$$
: relace nad A_1,\ldots,A_n
$$r_2$$
: relace nad B_1,\ldots,B_m
$$\{A_{(n-k)+1},\ldots,A_n\}=\{B_1,\ldots,B_k\}=\{A_1,\ldots,A_n\}\cap\{B_1,\ldots,B_m\}$$

- \blacksquare relace nad $A_1, \ldots, A_n, B_{k+1}, \ldots, B_m$
- tělo tvoří množina všech *n*-tic *t*:
 - 1 projekce t na A_1, \ldots, A_n náleží do těla r_1
 - f 2 projekce t na B_1,\ldots,B_m náleží do těla r_2
- lacksquare spojení relací r_1 a r_2

r_1	parent_name	child_name	
	Pavel	Anna	
	Monika	Bert	
	Petr	Bert	
	Marie	Daniela	

r_2	child_name	child_age
	Anna	3
	Bert	4
	Cyril	4

r_1	parent_name	child_name
	Pavel	Anna
	Monika	Bert
	Petr	Bert
	Marie	Daniela

r_2	child_name	child_age
	Anna	3
Bert		4
	Cyril	4

spojení r_1 a r_2 :

r_1	parent_name	child_name	
	Pavel	Anna	
Monika		Bert	
Petr		Bert	
	Marie	Daniela	

r_2	child_name	child_age
	Anna	3
	Bert	4
	Cyril	4

spojení r_1 a r_2 :

parent_name	child_name	child_age
Pavel	Anna	3
Monika	Bert	4
Petr	Bert	4

 v_1 , v_2 : relační výrazy

 v_1 , v_2 : relační výrazy

 R_1, R_2 : různá jména relací (zatím nehrají roli)

Ukázka

#

Ukázka


```
# SELECT *
FROM ( TABLE parent ) AS t1
NATURAL JOIN ( TABLE child) AS t2;
```

Ukázka


```
# SELECT
  FROM ( TABLE parent ) AS t1
  NATURAL JOIN ( TABLE child) AS t2;
 child_name | parent_name | child_age
 Anna
            | Pavel
 Bert
            | Monika
 Bert
            | Petr
(3 rows)
```

Který rodič má čtyřleté dítě?

#

Který rodič má čtyřleté dítě?

Který rodič má čtyřleté dítě?


```
# SELECT DISTINCT parent_name
  FROM ( SELECT *
         FROM ( SELECT *
                FROM ( TABLE parent ) AS t1
                NATURAL JOIN ( TABLE child ) AS t2 ) AS t
         WHERE child_age = 4 ) AS t;
 parent_name
Petr
 Monika
(2 rows)
```


Například:

#

Například:

TABLE toy;

Například:

```
# TABLE toy;
toy_name
-----
balon
lopatka
(2 rows)
```


Například:

```
# TABLE toy;
toy_name
-----
balon
lopatka
(2 rows)

# TABLE child;
```


Například:

```
# TABLE toy;
 toy_name
 balon
 lopatka
(2 rows)
# TABLE child;
 child_name
 Anna
 Bert
 Cyril
(3 rows)
```


Například:

```
# TABLE toy;
 toy_name
 balon
lopatka
(2 rows)
# TABLE child;
 child_name
 Anna
 Bert
Cyril
(3 rows)
```

kartézský součin

Ukázka kartézského součinu

Ukázka kartézského součinu


```
# SELECT *
FROM ( TABLE toy) AS t1
NATURAL JOIN ( TABLE child ) AS t2;
```

Ukázka kartézského součinu


```
SELECT
       ( TABLE toy) AS t1
 NATURAL JOIN ( TABLE child ) AS t2;
toy_name | child_name
balon
          | Anna
balon | Bert
balon | Cyril
lopatka | Anna
lopatka
        | Bert
lopatka
        | Cyril
(6 rows)
```


 r_1 , r_2 : relace nad A_1, \ldots, A_n r:

lacksquare spojení r_1 a r_2

- lacksquare spojení r_1 a r_2
- lacksquare r je relace nad A_1,\ldots,A_n

- lacksquare spojení r_1 a r_2
- lacksquare r je relace nad A_1,\ldots,A_n
- tělo relace r bude obsahovat n-tice t:

- lacksquare spojení r_1 a r_2
- lacksquare r je relace nad A_1,\ldots,A_n
- lacktriangle tělo relace r bude obsahovat n-tice t:
 - **1** projekce t na A_1, \ldots, A_n bude v těle r_1

- lacksquare spojení r_1 a r_2
- lacksquare r je relace nad A_1,\ldots,A_n
- tělo relace r bude obsahovat n-tice t:
 - **1** projekce t na A_1, \ldots, A_n bude v těle r_1
 - **2** projekce t na A_1, \ldots, A_n bude v těle r_2

- lacksquare spojení r_1 a r_2
- ightharpoonup r je relace nad A_1, \ldots, A_n
- tělo relace r bude obsahovat n-tice t:
 - **1** projekce t na A_1, \ldots, A_n bude v těle r_1
 - 2 projekce t na A_1, \ldots, A_n bude v těle r_2
- lacksquare projekce t na A_1,\ldots,A_n je rovna t

- lacksquare spojení r_1 a r_2
- ightharpoonup r je relace nad A_1, \ldots, A_n
- tělo relace r bude obsahovat n-tice t:
 - \blacksquare projekce t na A_1, \ldots, A_n bude v těle r_1
 - 2 projekce t na A_1, \ldots, A_n bude v těle r_2
- lacktriangle projekce t na A_1, \ldots, A_n je rovna t
- lacktriangle tělo r bude obsahovat n-tice t, které jsou současně v těle r_1 i v těle r_2

- lacksquare spojení r_1 a r_2
- ightharpoonup r je relace nad A_1, \ldots, A_n
- **•** tělo relace r bude obsahovat n-tice t:
 - **1** projekce t na A_1, \ldots, A_n bude v těle r_1
 - 2 projekce t na A_1, \ldots, A_n bude v těle r_2
- lacksquare projekce t na A_1,\ldots,A_n je rovna t
- lacktriangle tělo r bude obsahovat n-tice t, které jsou současně v těle r_1 i v těle r_2
- lacktriangle tělo r bude průnikem těl r_1 a r_2

- \blacksquare spojení r_1 a r_2
- ightharpoonup r je relace nad A_1, \ldots, A_n
- tělo relace r bude obsahovat n-tice t:
 - **1** projekce t na A_1, \ldots, A_n bude v těle r_1
 - 2 projekce t na A_1, \ldots, A_n bude v těle r_2
- lacktriangle projekce t na A_1,\ldots,A_n je rovna t
- lacktriangle tělo r bude obsahovat n-tice t, které jsou současně v těle r_1 i v těle r_2
- lacktriangle tělo r bude průnikem těl r_1 a r_2
- lacksquare spojení r_1 a $r_2=$ průnik r_1 a r_2

Obsah

- 1 Projekce
- 2 Spojení
- 3 Přejmenování atributů
- 4 Konstantní relace

Motivace

parent

parent_name	child_name
Pavel	Anna
Monika	Bert
Petr	Bert
Marie	Daniela

child

age
3
4
4

Spojení?

 $\{A_1,\ldots,A_n\}$: záhlaví

 $\{A_1,\ldots,A_n\}$: záhlaví B_1,\ldots,B_m :

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

 $m \leq n$

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i ($1 \le i \le m$)
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

t: n-tice nad A_1, \ldots, A_n

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

```
t: n-tice nad A_1, \ldots, A_n
```

t':

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i ($1 \le i \le m$)
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

t: n-tice nad A_1, \ldots, A_n

t':

 \blacksquare *n*-tice nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

t: n-tice nad A_1, \ldots, A_n

t':

- \blacksquare *n*-tice nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$
- lacksquare přiřazuje B_i stejnou hodnotu jako t atributu A_i $(1 \leq i \leq m)$

Přejmenování atributů n-tice

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i ($1 \le i \le m$)
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

t: n-tice nad A_1, \ldots, A_n

t':

- \blacksquare *n*-tice nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$
- přiřazuje B_i stejnou hodnotu jako t atributu A_i $(1 \le i \le m)$
- přiřazuje A_i stejnou hodnotu jako t atributu A_i ($m < i \le n$)

Přejmenování atributů n-tice

$$\{A_1,\ldots,A_n\}$$
: záhlaví B_1,\ldots,B_m :

- $\blacksquare m < n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

t: n-tice nad A_1, \ldots, A_n

t':

- \blacksquare *n*-tice nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$
- přiřazuje B_i stejnou hodnotu jako t atributu A_i $(1 \le i \le m)$
- přiřazuje A_i stejnou hodnotu jako t atributu A_i $(m < i \le n)$
- lacktriangle vznikla přejmenováním atributů A_1,\ldots,A_m n-tice t na B_1,\ldots,B_m

n-tice nad name a age:

name	age
Anna	3

n-tice nad name a age:

name	age
Anna	3

Přejmenování atributu name na child_name:

n-tice nad name a age:

name	age
Anna	3

Přejmenování atributu name na child_name:

child_name	age
Anna	3

n-tice nad name a age:

name	age
Anna	3

Přejmenování atributu name na child_name:

child_name	age
Anna	3

lacktriangledown n-tice nad child_name a age

r: relace nad A_1, \ldots, A_n

r: relace nad A_1, \ldots, A_n

 B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

r: relace nad A_1, \ldots, A_n

 B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

r'

r: relace nad A_1, \ldots, A_n

$$B_1,\ldots,B_m$$
:

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- lacksquare $B_1,\ldots B_m,A_{m+1},\ldots,A_n$ mají po dvou různá jména

r':

 \blacksquare relace nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$

r: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- $m \leq n$
- A_i je stejného typu jako B_i ($1 \le i \le m$)
- $lacksquare B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

r':

- \blacksquare relace nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$
- \blacksquare tělo obsahuje právě ty n-tice, které vzniknou přejmenováním atributů A_1,\dots,A_n na B_1,\dots,B_m nějaké n-tice v těle r

r: relace nad A_1, \ldots, A_n B_1, \ldots, B_m :

- \blacksquare $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- lacksquare $B_1,\ldots B_m,A_{m+1},\ldots,A_n$ mají po dvou různá jména

r':

- \blacksquare relace nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$
- \blacksquare tělo obsahuje právě ty n-tice, které vzniknou přejmenováním atributů A_1,\dots,A_n na B_1,\dots,B_m nějaké n-tice v těle r
- lacktriangle přejmenování atributů A_1,\ldots,A_m v záhlaví relace r na B_1,\ldots,B_m

r.

7.	
name	age
Anna	3
Bert	4
Cyril	4
	_

r:

name	age
Anna	3
Bert	4
Cyril	4

Přejmenování name na child_name v záhlaví relace r:

r:

name	age
Anna	3
Bert	4
Cyril	4

child_name	age
Anna	3
Bert	4
Cyril	4

v: relační výraz r:

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

v: relační výraz r:

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

 B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- lacksquare $B_1,\ldots B_m,A_{m+1},\ldots,A_n$ mají po dvou různá jména

v: relační výraz r:

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

 B_1,\ldots,B_m :

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- lacksquare $B_1,\ldots B_m,A_{m+1},\ldots,A_n$ mají po dvou různá jména

R: jméno relace


```
v: relační výraz r:
```

- \blacksquare hodnota v
- \blacksquare relace nad A_1, \ldots, A_n

$$B_1,\ldots,B_m$$
:

- $m \leq n$
- A_i je stejného typu jako B_i $(1 \le i \le m)$
- lacksquare $B_1, \dots B_m, A_{m+1}, \dots, A_n$ mají po dvou různá jména

R: jméno relace

```
( SELECT A_1 AS B_1, ..., A_m AS B_m, A_{m+1}, ..., A_n FROM v AS R )
```

 \ldots přejmenování atributů A_1,\ldots,A_m na B_1,\ldots,B_m v záhlaví relace r

#

SELECT name AS child_name, age
FROM (TABLE child) AS t;

parent

parent_name	child_name
Pavel	Anna
Monika	Bert
Petr	Bert
Marie	Daniela

 ${\tt child}$

name	age
Anna	3
Bert	4
Cyril	4

Spojení?

#


```
# SELECT *
FROM ( TABLE parent) AS t1
NATURAL JOIN ( SELECT name AS child_name, age
FROM ( TABLE child ) AS t ) AS t2;
```



```
# SELECT *
 FROM (TABLE parent) AS t1
 NATURAL JOIN ( SELECT name AS child_name, age
             FROM ( TABLE child ) AS t ) AS t2;
child_name | parent_name | age
 -----+----
Anna | Pavel | 3
Bert | Monika
Bert | Petr
(3 rows)
```

Komu přísluší atribut age?

#

Komu přísluší atribut age?

Komu přísluší atribut age?


```
# SELECT
 FROM (TABLE parent) AS t1
 NATURAL JOIN ( SELECT name AS child_name, age AS child_age
               FROM ( TABLE child ) AS t ) AS t2;
child_name | parent_name | child_age
Anna | Pavel
Bert | Monika
Bert | Petr
(3 rows)
```

Obsah

- 1 Projekce
- 2 Spojení
- 3 Přejmenování atributů
- 4 Konstantní relace

Konstantní relace

Konstantní relace

r: neprázdná relace nad A_1, \ldots, A_n

r: neprázdná relace nad A_1,\ldots,A_n $\{t_1,\ldots,t_m\}$: tělo r

r: neprázdná relace nad A_1,\dots,A_n $\{t_1,\dots,t_m\}$: tělo r v_{ij} : hodnota přiřazená n-ticí t_j atributu A_i (1 $\leq i \leq n$, 1 $\leq j \leq m$)


```
r: neprázdná relace nad A_1,\ldots,A_n \{t_1,\ldots,t_m\}: tělo r v_{ij}: hodnota přiřazená n-ticí t_j atributu A_i (1 \leq i \leq n, 1 \leq j \leq m) R: jméno relace (zatím nehraje roli)
```



```
r: neprázdná relace nad A_1, \ldots, A_n
\{t_1,\ldots,t_m\}: tělo r
v_{ij}: hodnota přiřazená n-ticí t_i atributu A_i (1 \le i \le n, 1 \le j \le m)
R: iméno relace (zatím nehraje roli)
    SELECT *
    FROM ( VALUES ( v_{11}, ..., v_{1n} ),
                       (v_{m1}, \ldots, v_{mn}) AS R (A_1, \ldots, A_n)
\dots relace r
```


#


```
# SELECT *
 FROM ( VALUES ( 'Anna', 3 ),
               ('Bert', 4),
               ( 'Cyril', 4 ) ) AS child ( name, age );
 name
       age
 Anna | 3
 Bert | 4
 Cyril |
(3 rows)
```

Jeden atribut a jedna n-tice

#

Jeden atribut a jedna n-tice


```
# SELECT *
FROM ( VALUES ( 1 ) ) AS t ( num );
```

Jeden atribut a jedna n-tice


```
# SELECT *
   FROM ( VALUES ( 1 ) ) AS t ( num );

num
-----
   1
   (1 row)
```


v: relační výraz s hodnotou r nad A_1, \ldots, A_n

v: relační výraz s hodnotou r nad A_1,\ldots,A_n

 A_{n+1} : nový atribut typu T_{n+1}

v: relační výraz s hodnotou r nad A_1,\ldots,A_n

 A_{n+1} : nový atribut typu T_{n+1}

h: hodnota typu T_{n+1}


```
v: relační výraz s hodnotou r nad A_1,\dots,A_n A_{n+1}: nový atribut typu T_{n+1} h: hodnota typu T_{n+1}
```


v: relační výraz s hodnotou r nad A_1,\dots,A_n A_{n+1} : nový atribut typu T_{n+1} h: hodnota typu T_{n+1}

r':

 \blacksquare relace nad A_1, \ldots, A_{n+1}

v: relační výraz s hodnotou r nad A_1,\dots,A_n A_{n+1} : nový atribut typu T_{n+1} h: hodnota typu T_{n+1}

- \blacksquare relace nad A_1, \ldots, A_{n+1}
- lacktriangle tělo obsahuje právě ty n-tice t:

v: relační výraz s hodnotou r nad A_1,\dots,A_n A_{n+1} : nový atribut typu T_{n+1} h: hodnota typu T_{n+1}

- \blacksquare relace nad A_1, \ldots, A_{n+1}
- lacktriangle tělo obsahuje právě ty n-tice t:
 - lacksquare projekce t na A_1,\ldots,A_n je v těle r

v: relační výraz s hodnotou r nad A_1,\dots,A_n A_{n+1} : nový atribut typu T_{n+1} h: hodnota typu T_{n+1}

- \blacksquare relace nad A_1, \ldots, A_{n+1}
- tělo obsahuje právě ty *n*-tice *t*:
 - f 1 projekce t na A_1,\ldots,A_n je v těle r
 - ${\bf 2} \ t$ přiřazuje atributu A_{n+1} hodnotu h


```
v: relační výraz s hodnotou r nad A_1, \ldots, A_n
A_{n+1}: nový atribut typu T_{n+1}
h: hodnota typu T_{n+1}
r':
 \blacksquare relace nad A_1, \ldots, A_{n+1}
```

- tělo obsahuje právě ty *n*-tice *t*:
 - 1 projekce t na A_1, \ldots, A_n je v těle r
 - 2 t přiřazuje atributu A_{n+1} hodnotu h

```
SELECT
FROM (v) AS t1
NATURAL JOIN ( SELECT *
               FROM ( VALUES ( h ) ) AS t ( A_{n+1} ) ) AS t2
```

 \dots relace r'

child

name	age
Anna	3
Bert	4
Cyril	4

#

child

name	age
Anna	3
Bert	4
Cyril	4

```
# SELECT *
FROM ( TABLE child ) AS t1
NATURAL JOIN ( SELECT *
FROM ( VALUES ( 4 ) ) AS t ( cons ) ) AS t2;
```


child	name	age
	Anna	3
	Bert	4
	Cyril	4

```
# SELECT
 FROM ( TABLE child ) AS t1
 NATURAL JOIN ( SELECT *
               FROM ( VALUES ( 4 ) ) AS t ( cons ) ) AS t2;
name
      | age | cons
Anna | 3 | 4
Bert | 4 | 4
Cyril | 4 |
(3 rows)
```

Restrikce na rovnost hodnot atributů

Restrikce na rovnost hodnot atributů

Restrikce na rovnost hodnot atributů


```
# SELECT *
 FROM (
        SELECT *
        FROM ( TABLE child ) AS t1
        NATURAL JOIN ( SELECT *
                      FROM ( VALUES ( 4 ) ) AS t ( cons ) ) AS t2
      ) AS t
 WHERE age = cons;
name
      | age | cons
 -----+----
Bert | 4 | 4
Cyril | 4 | 4
(2 rows)
```

Odstranění pomocného atributu


```
# SELECT DISTINCT name, age
  FROM (
         SELECT *
         FROM (
                SELECT *
                FROM ( TABLE child ) AS t1
                NATURAL JOIN (
                                SELECT *
                                FROM ( VALUES ( 4 ) ) AS t ( cons )
                              ) AS t2
              ) AS t
         WHERE age = cons
       ) AS t;
```

Hodnota předchozího výrazu

■ konstantní relace s atributem age

■ konstantní relace s atributem age

#

■ konstantní relace s atributem age

```
# SELECT * FROM ( TABLE child ) AS t1
NATURAL JOIN ( SELECT * FROM ( VALUES ( 4 ) ) AS t ( age ) ) AS t2;
```


■ konstantní relace s atributem age