Ontologies and text mining

Textual components of ontologies

Learning objectives

- Learn applications of the textual component of ontologies
- Learn text mining basics
- Get familiarized with popular text mining methods and their applications

Popular applications

- Generate cross references: Manually/Automatically
- Retrieve information from literature in text form
- Generate annotations
- Align/expand ontologies

How to compare/find AND link text?

- Exactly?
 - Brain tumor
 - o Brain tumour
- Approximately?
 - O How?

Exact match

Dictionaries

Human Phenotype Ontology

Breast cancer → HP:003002 Breast Carcinoma → HP:003002

Disease Ontology

Breast cancer → DOID:1612 breast tumor → DOID:1612 malignant neoplasm of breast → DOID:1612 malignant tumor of breast → DOID:1612

Exact match

- Dictionaries
- Example of applications:
 - Mapping entities from different sources

Human Phenotype Ontology

Breast cancer → HP:003002 Breast Carcinoma → HP:003002

Disease Ontology

Breast cancer → DOID:1612 breast tumor → DOID:1612 malignant neoplasm of breast → DOID:1612 malignant tumor of breast → DOID:1612

Exact match

- Dictionaries
- Example of applications:
 - Mapping entities from different sources
 - Finding mentions in literature and their co-occurings

Human Phenotype Ontology

Breast cancer → HP:003002 Breast Carcinoma → HP:003002 Breast cancer is more prevalent in females, however, males can also develop breast cancer.

Birth control can increase risk of breast cancer in females.

Any ideas?

Brain tumor was found in a patient.

There are any forms of <u>brain tumour</u>.

Approximate comparison of text

- Exclude unimportant information
- Stemming
 - Remove affixes
 - Cancers → cancer
 - Hyperpigmentation → hyperpig
 - Different stems
 - Novel words cannot be stemmed

Approximate comparison of text

- Exclude unimportant information
- Stemming
 - Remove affixes
 - Cancers → cancer
 - Hyperpigmentation → hyperpig
 - Different stems
 - Novel words cannot be stemmed
- Numerical representation
 - Numerical methods
 - O How?

Numerical representation and analysis of text

Popular methods:

- Word2Vec
- BERT

Both methods use embeddings to represent text

What is an embedding?

- An embedding Y is a representation of an instance X in a different space that preserves X's structure
- This is done by an embedding function f
- **f** preserves some property (structure-preserving)

Why embeddings?

- Perform functions on instances that were not possible in their original form
- Represent instances in a compact dimension
- Visualize instances and their relations

- How is text represented numerically?
- Units of text are assigned IDs to create a vocabulary
 - Characters (letters)
 - N-grams (words)
 - Sentences
- How can we make this useful for comparison?

- How is text represented numerically?
- Units of text are assigned IDs to create a vocabulary
 - Characters (letters)
 - Words
 - N-grams
 - Sentences
- How can we make this useful for comparison?

- How is text represented numerically?
- Units of text are assigned IDs to create a vocabulary
 - Characters (letters)
 - Words
 - N-grams
 - Sentences
- How can we make this useful for comparison?

be bad $\rightarrow 250214$

	0
a	1
b	2
С	3
d	4
е	5
f	6
g	7
h	8
i	9

- How is text represented numerically?
- Units of text are assigned IDs to create a vocabulary
 - Characters (letters)
 - Words
 - N-grams
 - Sentences
- How can we make this useful for comparison?

	0
be	1
bad	2
good	3
well	4

- Well-known method
- Generates embeddings that capture co-occurrences based on a corpus
- Embeddings are in the form of n-dimensional vectors

Breast cancer is more prevalent in females, however, males can also develop breast cancer.

Birth control can increase risk of breast cancer in females.

Word2Vec captures co-occurrences

Given a word:

 Capture the words it frequently co-occurred within the given corpus

PROJECTION

OUTPUT

INPUT

Skip-gram

Figure from the original paper: Efficient Estimation of Word Representations in Vector Space, Mikolov et al.

Word2Vec captures co-occurrences

Given a word:

- Capture the words it frequently co-occurred within the given corpus
- Minimize the cross-entropy loss

PROJECTION

OUTPUT

INPUT

Skip-gram

Figure from the original paper: Efficient Estimation of Word Representations in Vector Space, Mikolov et al.

You can this of it as a factorization of a Pointwise Mutual Information (PMI) matrix

	Cancer	Benign	Malignant	Tumor	Breast
Cancer	0	2	1	1	4
Benign	2	0	1	1	2
Malignant	1	1	0	2	2
Tumor	1	1	2	0	3
Breast	4	2	2	3	0

pmi(x; y)	=	log	$\frac{p(x,y)}{p(x)p(y)}$

You can this of it as a factorization of a Pointwise Mutual Information (PMI) matrix

Neural Word Embedding as Implicit Matrix Factorization by Levy Omer and Goldberg Yoav

Words → embeddings

Breast cancer is more prevalent in females, however, males can also develop breast cancer.

•••

Birth control can increase risk <u>of breast</u> cancer <u>in</u> females.

Word2Vec

```
[0.50929456, 0.6771953 , 0.91371871, 0.48265797, 0.18390237]
[0.9146623 , 0.7340195 , 0.78049964, 0.54384624, 0.01162719]
[0.22451245, 0.97085067, 0.79003223, 0.74382914, 0.26143969]
[0.11487895, 0.43190008, 0.86119749, 0.96533036, 0.56099287]
[0.77668599, 0.52129723, 0.71529702, 0.82580858, 0.40596435]
```

- Embeddings capture co-occurrences
- Words that appear together frequently have similar vectors
- Language semantics?
- Distance measure can be used:
 - Edit distance
- Limitations?
 - Fixed representations
 - Context
 - Beyond co-occurrences

Word2Vec applications

- Linking of ontology concept mentions to class IDs
 - Cho, H., Choi, W. & Lee, H. A method for named entity normalization in biomedical articles: application to diseases and plants. BMC Bioinformatics

Word2Vec embeddings are generated Cosine similarity is used to rank candidate class IDs

Word2Vec applications

- Linking of ontology concept mentions to class IDs
 - Cho, H., Choi, W. & Lee, H. A method for named entity normalization in biomedical articles: application to diseases and plants. BMC Bioinformatics
- Relation extraction between entities from text
 - Thien Huu Nguyen and Ralph Grishman. 2015. Rela-tion extraction: Perspective from convolutional neu-ral networks.
 InProceedings of NAACL-HLT.

Word2Vec embeddings are generated Neural convolutional models are trained to predict relations

Word2Vec applications

- Linking of ontology concept mentions to class IDs
 - Cho, H., Choi, W. & Lee, H. A method for named entity normalization in biomedical articles: application to diseases and plants. BMC Bioinformatics
- Relation extraction between entities from text
 - Thien Huu Nguyen and Ralph Grishman. 2015. Rela-tion extraction: Perspective from convolutional neu-ral networks.
 InProceedings of NAACL-HLT.
- Matching concepts between ontologies
 - Liao, J., Huang, Y., Wang, H., Li, M. (2021). Matching Ontologies with Word2Vec Model Based on Cosine Similarity. In: , et al.
 Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021)

Word2Vec embeddings are generated Concepts from two ontologies are aligned based on cosine similarity

Word2Vec shortcomings

Static representations

Context agnostic representations

Bidirectional Encoder Representations from Transformers

Figure from the original paper: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al.

Masked Language Model (MLM)

Figure from the original paper: Attention Is All You Need, Vaswani et al.

- Dynamic
- Context-aware
- Word/sentence embeddings

BERT applications

- Finding and linking concept mentions from text to ontology IDs
 - Ling Luo, Shankai Yan, Po-Ting Lai, Daniel Veltri, Andrew Oler, Sandhya Xirasagar, Rajarshi Ghosh, Morgan Similuk, Peter N Robinson, Zhiyong Lu. PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using Human Phenotype Ontology. Bioinformatics, Volume 37, Issue 13, 1 July 2021, Pages 1884–1890.

BERT is fine-tuned:

Labels and synonyms → positives Negatives are randomly sampled from some corpus

BERT applications

- Finding and linking concept mentions from text to ontology IDs
 - Ling Luo, Shankai Yan, Po-Ting Lai, Daniel Veltri, Andrew Oler, Sandhya Xirasagar, Rajarshi Ghosh, Morgan Similuk, Peter N Robinson, Zhiyong Lu. PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using Human Phenotype Ontology. Bioinformatics, Volume 37, Issue 13, 1 July 2021, Pages 1884–1890.
- Relation extraction between entities from text
 - Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, Jaewoo Kang, BioBERT: a pre-trained biomedical language representation model for biomedical text mining, Bioinformatics, Volume 36, Issue 4, 15 February 2020.

BERT is trained on Biomedical corpora BERT is then fine-tuned using curated tuples

BERT applications

- Finding and linking concept mentions from text to ontology IDs
 - Ling Luo, Shankai Yan, Po-Ting Lai, Daniel Veltri, Andrew Oler, Sandhya Xirasagar, Rajarshi Ghosh, Morgan Similuk, Peter N Robinson, Zhiyong Lu. PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using Human Phenotype Ontology. Bioinformatics, Volume 37, Issue 13, 1 July 2021, Pages 1884–1890.
- Relation extraction between entities from text
 - Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, Jaewoo Kang, BioBERT: a pre-trained biomedical language representation model for biomedical text mining, Bioinformatics, Volume 36, Issue 4, 15 February 2020.
- Matching concepts between ontologies
 - He, Y., Chen, J., Antonyrajah, D., & Horrocks, I. (2022). BERTMap: A BERT-based ontology alignment system. Proceedings of the . AAAI Conference on Artificial Intelligence

Take home messages

- Textual components of ontologies can help
 - Extract knowledge from literature
 - Transfer knowledge from one source to another
- Methods to represent text
 - Word2Vec
 - BERT
- Important aspects of text:
 - Word meaning
 - Context