第五章 半导体存储电路

主要内容:

- 各种半导体存储电路的结构,原理和使用方法。
- 基本存储单元
- 寄存器
- 随机存储器和只读存储器

5.3.2 脉冲触发的触发器

主从SR触发器

一、电路结构与工作原理

提高可靠性,要求每 个CLK周期输出状态 只能改变1次

一、电路结构与工作原理

1. 主从SR触发器

(1)CLK = 1时, "主"按S, R翻转, "从"保持(2)CLK下降沿到达时, "主" 保持, "从"根据"主"的状 态翻转 所以每个 CLK周期,输出状态只 能改变一次

CLK	S	R	Q	$oldsymbol{Q}^*$
X	X	X	X	Q
<u>↓</u>	0	0	0	0
<u>√</u>	0	0	1	1
Ţ	1	0	0	1 1
Ţ	1	0	1	1
Ţ	0	1	0	0
<u></u>	0	1	1	0
Ţ	1	1	0	1*
Ţ	1	1	1	1*

输入信号还需 要遵守约束条 件SR=0吗?

练习:已知脉冲SR触发器的时钟信号和输入信号如图所示,试画出Q端的波形,设触发器的初态为Q=0。

CLK=1期间,如果SR变化,通常就需要先画出 主触发器的状态, 然后再画从触发器的状态。

条件:要求CLK 有效期间SR是稳定的, 不能发生改变

二、主从JK触发器

JK触发器

同步RS触发器特性表 主从JK触发器特性表

S	R	Q	Q^*
X	X	X	Q
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	1*
1	1	1	1*
	X 0 0 1 1 0 0	X X 0 0 0 0 1 0 1 0 0 1 0 1 1 1	X X X 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0

K

 Q^*

0

简化JK触发器特性表

\boldsymbol{J}	K	Q^*
0	0	Q
0	1	0
1	0	1
1	1	Q'

计数 状态

区别是解除了约束条件 SR=0

三、主从结构触发器的动作特点(书223)

5.3.3 边沿触发器

为了提高触发器的抗干扰能力,希望触发器的次态仅仅取决于 CLK 作用沿到达时刻,输入信号的状态。这样的触发器称为边沿触发器。

这里,重点介绍利用 CMOS 传输门构成的 边沿D触发器.

利用CMOS传输门的边沿触发器

列	列出真值表				
CLK	D	Q	Q *		
X	X	X	Q		
<u></u>	0	X	0		
<u></u>	1	X	1		

动作特点

- Q*变化发生在CLK的上 升沿(或下降沿),
- Q*仅取决于上升沿到达时 输入的状态,而与此前 、后的状态无关

有异步置1,置0端的D触发器。 异步置1端 高电平有效 C' C'C'

 TG_4

C

 TG_2

 $R_{\rm D}$

异步置**0**端 高电平有效 边沿触发 器的特征

同步SR触发器

带置位端的同步SR触发器

主从SR触发器

二、边沿触发器的动作特点

二、边沿触发器的动作特点

5.3.4 触发器的逻辑功能及描述方法

触发器按逻辑功能分类

- 1. SR触发器
- 2. JK触发器
- 3. D触发器
- 4. T触发器

一、SR触发器

1. SR触发器特性表

S	R	Q	Q *
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	1*
1	1	1	1*

简化特性表

S	R	o^*
0	0	$ec{Q}$
0	1	0
1	0	1
_1	1	不定

不变

2. 特性方程

$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

3. 状态转换图

二、JK触发器

1.特性表

$oldsymbol{J}$	K	Q	Q *
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	1
1	1	1	0

简化JK触发器特性表

\boldsymbol{J}	K	Q^*
0	0	Q
0	1	0
1	0	1
1	1	Q

2.特性方程

$$Q*=JQ'+K'Q$$

3.状态转换图

4. 符号

三、D触发器

2.特性方程

1、D触发器的特性表

D	Q	Q *
0	0	0
0	1	0
1	0	1
1	1	1

Q* = D

3.状态转换图

4. 符号

四、T触发器

1、T触发器的特性表

2.特性方程

T	Q	Q *
0	0	0
0	1	1
1	0	1
1	1	0

$$Q* = TQ' + T'Q$$

3.状态转换图

4. 符号

5.6 不同类型触发器之间的转换

转换方法:

对比两种触发器的特性方程式,得到转换电路的逻辑表达式,进而可画出转换电路。

1、将D触发器转换为JK触发器

写出D触发器和JK触发器的特性方程,并进行变换。

$$D$$
触发器: $Q^* = D$

$$JK$$
触发器: $Q^* = JQ' + K'Q$ =((JQ'+K'Q)')'=((JQ')' (K'Q)')'

2、将JK触发器转换为D触发器

写出D触发器和JK触发器的特性方程,并进行变换。

$$JK$$
触发器: $Q^* = JQ' + K'Q$
 D 触发器: $Q^* = D =$

比较得:

$$J = D$$
 $K = D'$

3. JK触发器转换为T触发器

JK触发器: $Q^* = JQ' + K'Q$

T触发器: $Q^* = TQ' + T'Q$

比较得: J=K=T

因此将JK触发器的J、K端连接在一起形成T触发器。

4. D触发器→T触发器

D触发器: $Q^* = D$ $T 触发器: Q^* = TQ'+T'Q = ((TQ'+R'Q)')'=((TQ')' (T'Q)')'$

总结: 不同类型触发器之间的转换

转换方法:

利用已有触发器和待求触发器的特性方程相等的原则,求出转换逻辑式。

转换步骤:

- (1) 写出已有触发器和待求触发器的特性方程。
- (2) 变换待求触发器的特性方程,使之形式与已有触 发器的特性方程一致。
- (3) 根据两个方程相等的原则求出转换逻辑式。
- (4) 根据转换逻辑式, 画出电路图。

讨论 已知边沿JK触发器各输入端的电压波形如图所示, 试画出Q端对应的电压波形。

用卡诺图化简逻辑函数,并用或非门画出F的逻辑电路图。

$$F(A,B,C,D) = m(0,1,4,6,9,13) + d(2,3,5,7,11,15)$$

分析图所示的双4选1数据选择器逻辑电路, 写出输出端Y的逻辑表达式(要求写出分析过程)。

两片4一1数据选择器组成的电路,如图所示。

- 1. 写出F的最小项表达式;
- 2. 写出F的最简与或式;
- 3. 试用一片四选一数据选择器(不加门电路)实现该电路。

5.4 寄存器

• 寄存器(Register):存储1组二值代码

- (1)用于寄存N位二值代码,n位寄存器由n个触发器组成。
- (2)要求每个触发器都可置1或置0,电平,脉冲,边沿均可组成寄存器。
- (3)每个触发器的输入输出可直接和周围电路连接,快速的进行数据交换。

4位寄存器 74 LS 75

4位寄存器 74 LS 175

5.5 存储器

主要要求:

- □ 了解存储器的分类及每类存储器的特点及工作原理。
- 掌握存储器的扩展方法。
- 掌握存储器设计组合逻辑电路的方法。

分类:

- 1、从存/取功能分:
 - ①只读存储器 (ROM) (Read-Only-Memory)
 - ②随机读/写 (RAM) (Random-Access-Memory)
- 2、从工艺上分:
 - ①双极型
 - ②MOS型

5.5.1 只读存储器ROM

只读存储器在工作时其存储内容是<mark>固定不变的,因此,只能读出,不能随时写入,所以称为只读存储器。</mark>

固定ROM

可编程ROM: PROM

可擦写可编程: EPROM, E2PROM, FLASH

只读存储器ROM (Read-Only Memory)

