Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-223. Вариант 26

- 1. Пусть $z = 2\sqrt{3} + 2i$. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{\frac{3\sqrt{3}}{2} + \frac{3i}{2}}$ имеет аргумент $\frac{17\pi}{12}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-13+8i) + y(-5+9i) = -191 + 163i \\ x(-5+10i) + y(10-4i) = 73 + 185i \end{cases}$$

- 3. Найти корни многочлена $-4x^6+12x^5-64x^4-360x^3-2196x^2-1652x+4264$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-2-3i, x_2=4+5i, x_3=1.$
- 4. Даны 3 комплексных числа: -21+8i, 1-4i, -28-9i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=3, z_2=\frac{3\sqrt{3}}{2}+\frac{3i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+2+2i| < 2\\ |arg(z-4+3i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (4, 4, 0), b = (6, 5, -1), c = (8, 3, -6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(9,-12,11) и плоскость P:32x-6y+36z+422=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(6, 9, 12), $M_1(-3, -8, -10)$, $M_2(11, -1, -10)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -28x - 27y - 5z - 894 = 0\\ -14x - 9y + 13z - 490 = 0 \end{cases} \qquad L_2: \begin{cases} -14x - 18y - 18z - 3780 = 0\\ 7x - 18y - 3z - 1308 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .