Домашнее задание № 2

Сергей Миллер 494

16 сентября 2015 г.

Задача 1.

а) Построим автомат прямо по регулярному выражению (вершина серого цвета - начальная, вершины в виде двойного круга - конечные):

$$a^*ba^+ba^*(ba^*+1) (1)$$

Очевидно, что он является ДКА. (Видимо причина *интуштивного* построения этого ДКА в том, что данное регулярное выражение задает однозначный разбор слова на блоки)

б) Сначала построим HKA(с однобуквенными и возможно ε переходами):

$$a(a(ab)^*a(ab)^*)^* + ba \tag{2}$$

После избавимся от единственного ε перехода:

Теперь по известному алгоритму построим ДКА для данного автомата:

0	a	1
0	b	6
1	a	2
6	a	7
2	a	3, 4
3, 4	a	2, 5
3, 4	b	2
2, 5	a	3, 4
2,5	b	4
4	a	2, 5
Ответ:		

Задача 2. Рассмотрим L = L(a+1) и какой нибудь НКА M = M(L), имеющий только с однобуквенные переходы и ровно одно завершающе состояние. Так как язык содержит пустое слово, то $q_0 \in F$. Теперь рассмотрим путь в этом автомате, по которому распознается a. Пусть в автомате $\Delta \supset \langle q_0, a \rangle \mapsto q_0$. Но тогда $L \supset L' = a^*$. Иначе рассмотрим второй случай: $\exists q \neq q_0 \in Q : \langle q_0, s \rangle \mapsto q$, $s \in \Sigma$.(В слуачае отсутствия и этого ребра L = 1). Но тогда для распознования a должен существовать путь из q_0 в q_0 длины 1, чего очевидно не может быть при однобуквенных переходах и отсутствии $\langle q_0, a \rangle \mapsto q_0$.

Задача 3. Ответ: неверно.

Рассмотрим язык $L: \varepsilon \notin L$. Построим произвольный НКА M=M(L). Теперь рассмотрим его завершающие состояния. Очевидно, что $q_0 \notin F$. Тогда проведем следующую процедуру: для каждой конечной вершины $q_f \in M$ создадим копию $q_f^{'}$ с теми же входящими ребрами что и у q_f , кроме ребер вида $\langle q_f,s \rangle \mapsto q_f$. А все $q_f^{'}$ объединим в одну конечную вершину q_F . Также добавим связей: $(\langle q_f, s \rangle \mapsto q_F) \forall s : \exists \langle q_f, s \rangle \mapsto q_f$. (См. рис. после задач) Покажем, что полученный ДКА $M^{'}$ распознает тот же язык. Пусть $w \in L$. Тогда в M найдется путь из q_0 в какой-то q_f . То есть $w=ab,b\in\Sigma,\exists q:\langle q_0,ab\rangle\mapsto\langle q,b\rangle\mapsto\langle q_f,\varepsilon\rangle.$ Но тогда в обоих случаях: q= q_f или $q \neq q_f$ получаем $M': \langle q_0, ab \rangle \mapsto \langle q, b \rangle \mapsto \langle q_F, \varepsilon \rangle$ по построению M'. Следовательно $L(M) \subset L(M')$. Обратно: пусть $w \in L(M')$. Рассмотрим вершину q перед q_F на пути в M', который реализует слово w. Если qэто не копия одной из вершин $q_f \in M$, то в M существует такой же путь $\Rightarrow w \in M$. Иначе, $(\exists \langle q, s \rangle \mapsto q) \forall s : \langle q, s \rangle \mapsto q_F$ по построению M'. Значит $w = as : s \in \Sigma$ и в M слово w реализуется следующим образом: $\langle q_0, as \rangle \mapsto \langle q_f, s \rangle \mapsto \langle q_f, \varepsilon \rangle.$

Задача 4. Ответ: можно.

Построим произвольный НКА M=M(L). Очевидно, что если $\varepsilon\in L$, то $q_0\in F$ (Так как все переходы однобуквенные). Воспользуемся процедурой построения автомата $M^{;}$ из предыдущей задачи $\forall q_f\in F: q_f\neq q_0$. В точности тем же методом можно доказать, что L(M)=L(M'). При этом количество конечных состояний у M' ровно 2. Для языков, не содержащих ε , воспользуемся решением предыдущей задачи и обойдемся одним выходом.

Поясняющий рисунок к 3 задаче

