MATH/MTHE 477/877 – Winter 2022

Homework 3

due Monday, March 7

1. Suppose the source random variable X has the two-sided exponential (Laplace) pdf $f(x) = \frac{1}{2}e^{-|x|}$, $x \in \mathbb{R}$. Let b > a > 0 and define the three-level quantizer Q by

$$Q(x) = \begin{cases} b & \text{if } x > a \\ 0 & \text{if } -a \le x \le a \\ -b & \text{if } x < -a. \end{cases}$$

- (a) Considering the mean squared distortion, find an expression for b as a function of a so that the centroid condition is met.
- (b) Find a such that the resulting quantizer Q (with b as above) is a Lloyd-Max quantizer. Calculate the resulting mean squared error.
- 2. Consider the rth power distortion measure $d(x,y) = |x-y|^r$, where $r \ge 2$ is an integer. Let the pdf f(x) be positive and *constant* on the bounded interval (a,b). Show that the centroid of the cell (a,b) with respect to f and d is the midpoint (a+b)/2. (Hint: make use the fact that the function $|x|^r$ is differentiable everywhere.)
- 3. Write a MATLAB program that implements the training-set version of the Lloyd design algorithm for MSE distortion. First your program should generate (say) M=5,000 random samples from the standard normal distribution. Then the program uses this training set to design MSE-optimized quantizers of rates R=1,2, and 3 bits/sample. You can set the stopping threshold as $\epsilon=0.001$. Report on the resulting three quantizers and their distortions. For the R=1, how close is your quantizer to the Lloyd-Max quantizer obtained on slides 24-25?
- 4. Let X be a random variable with finite variance, Q an MSE optimal N-level quantizer for X, let Y = aX + b, where $a \neq 0$ and b are real constants, and \hat{Q} an MSE optimal N-level quantizer for Y.
 - (a) Let f denote the pdf of X and g the pdf of Y. Assume that N is large enough so that the distortion of Q is well approximated by the high-rate formula $D_N = (1/12)N^{-2}\|f\|_{1/3}$. By finding $\|g\|_{1/3}$ in terms of $\|f\|_{1/3}$, express the high-rate approximation for the distortion $E[(Y-\hat{Q}(Y))^2]$ in terms of $E[(X-Q(X))^2]$.
 - (b) Here we don't assume that N is large and X has a pdf. Assuming Q is unique, describe \hat{Q} in terms of the code points and decision levels of Q. What is the relation between $E[(X-Q(X))^2]$ and $E[(Y-\hat{Q}(Y))^2]$? Does this reinforce the answer to part (a)?
- 5. Let X be a random variable with "smooth" pdf f(x) which vanishes outside a finite interval [a,b]. Let Q_N be the N-level uniform quantizer over [a,b]. Assume that N is large and find (approximately) the distortion of Q_N if the rth power distortion measure $d(x,y) = |x-y|^r$ (r>0) is used.