- 90(1) (i) $\sin \theta \cos \theta = \frac{1}{\sqrt{2}}$
 - (ii) $\cos^{-1} x \sin^{-1} x = \frac{\pi}{6}$
 - (iii) $\sin x \cdot \cos x 6\sin x + 6\cos x + 6 = 0$ සමීකරණ විසඳුන්න.
 - ullet) $a.\cos heta+b.\sin heta=c$ ආකාරයේ සමීකරණවල විසඳුම් ullet) $rac{n\pi}{6}$ කෝණ සඳහා වෘත්ත ශිතවල අගයන් ullet) වාාකලන සූතු
 - ullet) $\sin heta = \sin lpha$ හි සාධාරණ විසඳුම් ullet) පුතිලෝම තිකෝණමිතික ශිත ullet) ආදේශක ආශුයෙන් සුළුකිරීම්
 - ullet ullet ullet ullet කෝණවල තිකෝණමිතික සම්බන්ධතා ullet) $\cos heta = \cos lpha$ හි සාධාරණ විසඳුම් ullet) ද්විත්ව කෝණ සූතු
 - ullet) තිකෝණමිතික පුකාශණයක සාධක සෙවීම ullet) මූලික තිකෝණමිතික ශිුත ullet) $\cos 2x$ හා $\tan x$ අතර සම්බන්ධය
 - •) a^2-b^2 •) $\tan\theta=\tan\alpha$ හි සාධාරණ විසඳුම් •) $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ •) විවේචකය භාවිතයෙන් මූලවල ස්වභාවය
 - ullet) සමීකරණවල පරිණාමනය ullet) වර්ගජ සමීකරණයක මූල ullet) $\cos heta=\coslpha$ හි විසඳුම් පැවතීමට අවශාතාව

$$\sin \theta - \cos \theta = \frac{1}{\sqrt{2}} \qquad \Rightarrow \frac{1}{\sqrt{2}} \sin \theta - \frac{1}{\sqrt{2}} \cos \theta = \frac{1}{2} \qquad \Rightarrow \sin \theta \cdot \cos \left(\frac{\pi}{4}\right) - \cos \theta \cdot \sin \left(\frac{\pi}{4}\right) = \frac{1}{2}$$
$$\Rightarrow \sin \left(\theta - \frac{\pi}{4}\right) = \frac{1}{2} \qquad \Rightarrow \sin \left(\theta - \frac{\pi}{4}\right) = \sin \left(\frac{\pi}{6}\right)$$

- # $\sin \theta = \sin \alpha$ හි සාධාරණ විසඳුම් භාවිතයෙන් අවසන් පිළිතුර වෙත එළඹෙමු
 - $\Rightarrow \theta \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{6} \qquad \qquad \Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{6} + \frac{\pi}{4} \quad \text{; sol} \quad n \in \mathbb{Z}$
- # පුථමයෙන් ලබාදී ඇති පුකාශණයේ පුතිලෝම ශිුතවලට ආදේශක යොදා, අදාළ සමීකරණය එම ආදේශක ඇසුරෙන් දක්වමු
 - $\cos^{-1}x=\alpha$, $\sin^{-1}(x)=\beta$ ලෙස ගනිමු $\cos^{-1}x-\sin^{-1}x=\frac{\pi}{6}\qquad \Rightarrow \alpha-\beta=\frac{\pi}{6} \to (1)$
- lpha , eta පද දෙක එකිනෙකට වෙනස් පුතිලෝම තිකෝණමිතික ශිත වලට අයත් බැවින්, ඉහත යොදාගත් ආදේශක භාවිතයෙන් lpha , eta පද අතර තවත් සම්බන්ධයක් ගොඩනඟමු

$$\cos^{-1} x = \alpha$$
 $\Rightarrow x = \cos \alpha \rightarrow (2)$

$$\sin^{-1} x = \beta$$
 $\Rightarrow x = \sin \beta \rightarrow (3)$

(2),(3)න් $\Rightarrow \cos \alpha = \sin \beta$

(ii)

ඉහත පුතිඵලයෙන් $\cos\theta = \cos\alpha$ ආකාරයේ පුකාශණයක් ගොඩනඟා එමඟින් α , β පද අතර සම්බන්ධයක් ලබාගැනීමට, $\sin\beta$ පදය $\left(\frac{n\pi}{2}\pm\theta\right)$ කෝණවල තිුකෝණමිතික සම්බන්ධතා භාවිතයෙන් \cos ශිූතයක් ලෙස දක්වා සුළුකරමු

$$\cos \alpha = \sin \beta$$
 $\Rightarrow \cos \alpha = \cos \left(\frac{\pi}{2} - \beta\right)$ $\Rightarrow \alpha = \frac{\pi}{2} - \beta$ $\Rightarrow \alpha + \beta = \frac{\pi}{2} \rightarrow (4)$

ඉහත (1),(4) පුතිඵල සමගාමීව විසඳීමෙන් α (හෝ eta) අගයමු

$$(1) + (4) \quad \Rightarrow 2\alpha = \frac{\pi}{2} + \frac{\pi}{6} \qquad \Rightarrow 2\alpha = \frac{4\pi}{6} \qquad \Rightarrow \alpha = \frac{\pi}{3}$$

ලබාදී ඇති සමීකරණය x සඳහා විසඳිය යුතු බැවින්, ඉහත ලබාගත් α අගය (2) සමීකරණයේ ආදේශ කොට $\frac{n\pi}{6}$ කෝණ සඳහා වෘත්ත ශුිතවල අගයන් භාවිතයෙන් සුළුකරමු

(2)හි
$$\alpha = \frac{\pi}{3}$$
 ආදේශයෙන් $\Rightarrow x = \cos\left(\frac{\pi}{3}\right)$ $\Rightarrow x = \frac{1}{2}$

(iii)

පුථමයෙන් ලබාදී ඇති සමීකරණයෙන් $\cos\left(\frac{x}{2}\right)$ පදයක් පොදු සාධකයක් ලෙස ඉවතට ගෙන අදාළ සමීකරණය සුළුකල හැකි පරිදි, එහි ඇතුළත් $\sin x$, $\cos x$ පද ද්විත්ව කෝණ සූතු භාවිතයෙන් සුදුසු ලෙස විහිදුවමු

 $\sin x \cdot \cos x - 6 \cdot \sin x + 6 \cdot \cos x + 6 = 0$

$$\Rightarrow \left[2\sin\left(\frac{x}{2}\right).\cos\left(\frac{x}{2}\right)\right]\cos x - 6\left[2\sin\left(\frac{x}{2}\right).\cos\left(\frac{x}{2}\right)\right] + 6\left[2\cos^2\left(\frac{x}{2}\right) - 1\right] + 6 = 0$$

$$\Rightarrow 2\sin\left(\frac{x}{2}\right).\cos\left(\frac{x}{2}\right).\cos x - 12\sin\left(\frac{x}{2}\right).\cos\left(\frac{x}{2}\right) + 12\cos^2\left(\frac{x}{2}\right) - 6 + 6 = 0$$

$$\Rightarrow 2\cos\left(\frac{x}{2}\right)\left[\sin\left(\frac{x}{2}\right).\cos x - 6.\sin\left(\frac{x}{2}\right) + 6.\cos\left(\frac{x}{2}\right)\right] = 0$$

$$\Rightarrow \cos\left(\frac{x}{2}\right) = 0 \quad \to \text{ (1)} \qquad \text{ odd} \qquad \sin\left(\frac{x}{2}\right) \cdot \cos x - 6 \cdot \sin\left(\frac{x}{2}\right) + 6 \cdot \cos\left(\frac{x}{2}\right) = 0 \quad \to \text{ (2)}$$

$\frac{n\pi}{6}$ කෝණ සඳහා වෘත්ත ශිුතවල අගයන් හා $\cos \theta = \cos \alpha$ හි සාධාරණ විසඳුම් භාවිතයෙන් ඉහත (1) සමීකරණය සුළුකරමු

(1)න්
$$\Rightarrow \cos\left(\frac{x}{2}\right) = 0$$
 $\Rightarrow \cos\left(\frac{x}{2}\right) = \cos\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{x}{2} = 2n\pi \pm \frac{\pi}{2}$

$$\Rightarrow$$
 x = 4n π \pm π \Rightarrow x = π (4n \pm 1) ; \odot 08 n \in Z

ඉහත (2) සමීකරණයෙහි $\frac{x}{2}$ හා x කෝණ ඇති බැවින්ද, එහි $\sin x$, $\cos x$ සම්බන්ධය හා වර්ග දෙකක අන්තරය භාවිතයෙන් සුළුකිරීමෙන් $\tan x$ සමීබන්ධය හා වර්ග දෙකක අන්තරය භාවිතයෙන් සුළුකිරීමෙන් $\tan x$ සමීබන්ධය හා වර්ග දෙකක අන්තරය භාවිතයෙන් සුළුකිරීමෙන් $\tan x$

$$(2)$$
න් $\Rightarrow \sin\left(\frac{x}{2}\right).\cos x - 6.\sin\left(\frac{x}{2}\right) + 6.\cos\left(\frac{x}{2}\right) = 0$; මෙහි දෙපස $\cos\left(\frac{x}{2}\right)$ ගෙන් බේදීමෙන්

$$\Rightarrow \tan\left(\frac{x}{2}\right) \cdot \cos x - 6 \cdot \tan\left(\frac{x}{2}\right) + 6 = 0$$
 ; මෙහි $\cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$ ආදේශයෙන්

$$\Rightarrow \tan\left(\frac{x}{2}\right) \left[\frac{1-\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)}\right] - 6\tan\left(\frac{x}{2}\right) + 6 = 0 \quad ; \ \text{මෙහි දෙපස} \left[1+\tan^2\left(\frac{x}{2}\right)\right] \ \text{පදයකින් ගුණකිරීමෙන්}$$

$$\Rightarrow \tan\left(\frac{x}{2}\right)\left[1 - \tan^2\left(\frac{x}{2}\right)\right] - 6 \cdot \tan\left(\frac{x}{2}\right)\left[1 + \tan^2\left(\frac{x}{2}\right)\right] + 6\left[1 + \tan^2\left(\frac{x}{2}\right)\right] = 0$$

$$\Rightarrow \tan\left(\frac{x}{2}\right) \left[1 - \tan^2\left(\frac{x}{2}\right)\right] + 6\left[1 + \tan^2\left(\frac{x}{2}\right)\right] \left[1 - \tan\left(\frac{x}{2}\right)\right] = 0$$

$$\Rightarrow \tan\left(\frac{x}{2}\right)\left[1-\tan\left(\frac{x}{2}\right)\right]\left[1+\tan\left(\frac{x}{2}\right)\right] + 6\left[1+\tan^2\left(\frac{x}{2}\right)\right]\left[1-\tan\left(\frac{x}{2}\right)\right] = 0$$

$$\Rightarrow \left[1 - \tan\left(\frac{x}{2}\right)\right] \left\{ \tan\left(\frac{x}{2}\right) \left[1 + \tan\left(\frac{x}{2}\right)\right] + 6 + 6 \cdot \tan^2\left(\frac{x}{2}\right) \right\} = 0$$

$$\Rightarrow \left[1 - \tan\left(\frac{x}{2}\right)\right] \left\{ \tan\left(\frac{x}{2}\right) + \tan^2\left(\frac{x}{2}\right) + 6 + 6 \cdot \tan^2\left(\frac{x}{2}\right) \right\} = 0$$

$$\Rightarrow \left[1 - \tan\left(\frac{x}{2}\right)\right] \left[7 \cdot \tan^2\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) + 6\right] = 0$$

$$\Rightarrow 1 - \tan\left(\frac{x}{2}\right) = 0 \quad \Rightarrow (3) \qquad \text{and} \qquad 7 \cdot \tan^2\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) + 6 = 0 \quad \Rightarrow (4)$$

$\frac{n\pi}{6}$ කෝණ සඳහා වෘත්ත ශිතවල අගයන් හා an heta = an au හි සාධාරණ විසඳුම් භාවිතයෙන් ඉහත (3)සමීකරණය සුළුකරමු

(3)න්
$$\Rightarrow \tan\left(\frac{x}{2}\right) = 1$$
 $\Rightarrow \tan\left(\frac{x}{2}\right) = \tan\left(\frac{\pi}{4}\right)$ $\Rightarrow \frac{x}{2} = n\pi + \frac{\pi}{4}$ $\Rightarrow x = 2n\pi + \frac{\pi}{2}$ $\Rightarrow x = \frac{\pi}{2}(4n+1)$; මෙහි $n \in \mathbb{Z}$

ඉහත (4) සමීකරණය $an\left(\frac{x}{2}\right)$ හි වර්ගජ සමීකරණයක් බැවින් $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ භාවිතයෙන් එහි මූල අගයමු

(4)
$$\Rightarrow 7. \tan^2\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) + 6 = 0$$
 $\Rightarrow \tan\left(\frac{x}{2}\right) = \frac{-1 \pm \sqrt{1^2 - 4(7)(6)}}{2(7)}$

$$\Rightarrow an\left(rac{x}{2}
ight) = rac{-1 \pm \sqrt{-167}}{14}$$
 ; මෙහි වර්ගමූලය තුළ කොටස සෘණ බැවිත්

$$\Rightarrow 7. an^2\left(rac{x}{2}
ight) + an\left(rac{x}{2}
ight) + 6 = 0$$
 සමීකරණයට x සඳහා තාත්වික මූල තොමැත.

එබැවින් $\sin x.\cos x-6.\sin x+6.\cos x+6=0$ හි සාධාරණ විසඳුම් $x=\pi\left(4n\pm1\right)$ හා $x=\frac{\pi}{2}(4n+1)$ වේ

*** (iii) කොටස, පහත දැක්වෙන පරිදි සුළුකිරීමෙන්ද පිළිතුර වෙත එළඹිය හැක

$$\sin x \cdot \cos x - 6 \cdot \sin x + 6 \cdot \cos x + 6 = 0$$
 $\Rightarrow \frac{\sin 2x}{2} + 6(\cos x - \sin x) + 6 = 0$

$$\Rightarrow \sin 2x + 12(\cos x - \sin x) + 12 = 0$$
 ; මෙහි $\sin 2x = 1 - (\cos x - \sin x)^2$ ආදේශයෙන්

$$\Rightarrow [1-(\cos x-\sin x)^2]+12(\cos x-\sin x)+12=0$$
 ; මෙහි $(\cos x-\sin x) \to y$ මඟින් පුතිස්ථාපනයෙන්

$$\Rightarrow [1 - y^2] + 12(y) + 12 = 0 \qquad \Rightarrow -y^2 + 12y + 13 = 0$$

$$\Rightarrow y^2 - 12y - 13 = 0 \qquad \Rightarrow (y - 13)(y + 1) = 0$$

$$\Rightarrow$$
 y = 13 හෝ y = -1 ; මෙහි y = $\cos x - \sin x$ යේදීමෙන්

$$\Rightarrow \cos x - \sin x = 13 \rightarrow (1)$$
 මහා $\cos x - \sin x = -1 \rightarrow (2)$

$$(1)$$
න් $\Rightarrow \cos x - \sin x = 13$ $\Rightarrow \frac{1}{\sqrt{2}}.\cos x - \frac{1}{\sqrt{2}}.\sin x = \frac{13}{\sqrt{2}}$ $\Rightarrow \cos\left(\frac{\pi}{4} + x\right) = \frac{13}{\sqrt{2}}$ $\Rightarrow \cos\left(\frac{\pi}{4} + x\right) > 1$ නමුත් ඕනෑම θ අගයක් සඳහා , $-1 \le \cos\theta \le 1$ විය යුතු බැවින් $\Rightarrow y \ne 13$

$$\begin{array}{ll} (2)\text{BS} & \Rightarrow \cos x - \sin x = -1 \\ & \Rightarrow \frac{1}{\sqrt{2}}.\cos x - \frac{1}{\sqrt{2}}.\sin x = \frac{-1}{\sqrt{2}} \\ & \Rightarrow \cos \left(\frac{\pi}{4} + x\right) = \frac{-1}{\sqrt{2}} \\ & \Rightarrow x + \frac{\pi}{4} = 2n\pi \pm \frac{3\pi}{4} \\ & \Rightarrow x = 2n\pi + \frac{3\pi}{4} - \frac{\pi}{4} \\ & \Rightarrow x = 2n\pi - \frac{3\pi}{4} - \frac{\pi}{4} \\ & \Rightarrow x = 2n\pi + \frac{\pi}{2} \text{ , } n \in Z \\ & \text{ and } x = 2n\pi - \pi \text{ , } n \in Z \\ \end{array}$$

$$\Rightarrow$$
 $x=rac{\pi}{2}(4n+1)$, $n\in Z$ ඉහර $x=(2n-1)\pi$, $n\in Z$