Cours de bases de données

L'algèbre relationnelle partie II

Par: Kamal BAL

Université AMOB de Bouira Faculté des sciences et des sciences appliquées Département d'informatique

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

Opérations dérivées

- L'intersection
- La division
- Les fonction et les agrégats

Kamal RAI COURS SCRD Universitá Aldi Mahand Oulhadi da Raviga Edwaiar 2015

L'intersection

Définition: L'intersection de deux relations R1 et R2 du **même schéma** et la relation R du même schéma contenant les tuples appartenant à la fois à R1 et R2

Notaion : R1 ∩ R2 ou INTER (R1,R2)

Exemple

	N°	Nom	Prenom
R1	1	SALHI	Mohamed
R1	2	BALLI	Said

	N°	Nom	Prenom
R2	2	BALLI	Said
	4	RAHMI	Lakhdar

R1 ∩ R2

N°	Nom	Prenom
2	BALLI	Said

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

L'algèbre relationnelle
L'intersection(2)

R A B C
a d 1
b e 2
c f 3

T A B C
a d 1
s e 4
c d 3

L'algèbre relationnelle La division (Quotient) (1)

La division (ou quotient) de la relation **R** (A1, A2, ..., An) par la (sous-)relation **S** de schéma S(Ap+1, ..., An) est la relation de schéma T (A1, A2, ..., Ap) formée de tous les tuples qui, concaténés à chaque tuple de S, donnent toujours un tuple de R.

Notation: R / S ou div(R,S)

Représentation graphique:

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

39

Division

- C= A / B
- C(X) est la division de A (X, Y) par B (Y) ssi : C contient tous les tuples (x) tels que

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

Pratique – solution

Soit les relations suivantes :

- Véhicule (N°série, modèle, année, couleur, catégorie)
- Option (N° option, catégorie option)
- □ Vehicule_options (N°série, N°option)
- Requête : Les véhicules de catégorie léger qui ont toutes les options sécurité
- R1 = PROJECT(VEHICULE, categorie = 'leger')
- R2 = R1 **JOINT** Vehicule_options
- R3 = PROJECT (OPTION, categorie_option = 'securité')
- Resultat = R2 / R3

Commentaires

- Dans R1 on va avoir les véhicules 'léger'
- Dans R2 on va avoir les véhicules 'léger' avec toutes leurs options
- □ Dans R3 on va avoir les option de « sécurité »
- Dans Résultat on va avoir les véhicules léger qui ont tt les options de sécurité

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

...

Fonctions et Agrégats

FONCTION

- □ Fonction de calcul en ligne appliquée sur un ou plusieurs attributs
- Exemple: prix_ttc = prixHT*1,17

AGREGAT

Partitionnement horizontal d'une relation selon les valeurs d'un groupe d'attributs (B_i), suivi d'un regroupement par une (ou plusieurs) fonction(s) F_i de calcul en colonne (SUM, MIN, MAX, AVG, COUNT, ...) sur les attributs C_i respectifs

NOTATION : γ

Ensemble des colonnes

Kamal BAI Cours SGBD

Université Akli Mohand Oulhadj de Bouira - Février 2015

Agrégats

Un **agrégat** est un partitionnement horizontal d'une relation selon des valeurs d'attributs, suivi d'un regroupement par une fonction de calcul. Les fonction de calcul usuelles sont :

SUM (somme), COUNT (Compte), AVG (Moyenne), MIN (Minimum), MAX (Maximum)

Représentation graphique:

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

Exemples d'agrégats

Etud	NOM	AGE	VILLE	
•	ANNE	21	VERSAILLES	
	BERNARD	19	PARIS	
	CELINE	19	PARIS	
	DAVID	20	VERSAILLES	

γ_{AVG(AGE)}(ETU)

AVG(AGE) 19.75

VILLE γ_{MAX(AGE)}(ETU)

VILE	MAX(AGE)			
VERSAILLES	21			
PARIS	19			

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2013

Agréga	ats :	Exer	mple				
F	2	A a d c b	B b a b g	C 10 15 5 8	γCOUN	VT(R)	Compte 4
					AVG(C)(R)	Moyenne 9,5
Bγ COUNT(C	(R)	B	Com	pte			
		b a g	2 1 1		B γ SUM(C) (R)	B b a	Somme 15 15
						g	8
Kamal BAL - Co	urs S(GBD i	Université A	kli Moh	and Oulhadj de Bouira - Fé	vrier 2015	47

Agrégats : Exemple								
Coureur	Numéro coureur	Nom Coureur	Code équipe	Code pays				
	8	ULLRICH Jan	TEL	ALL				
	31	JALABERT Laurent	ONC	FRA				
	61	ROMINGER Tony	COF	ALL				
	91	BOARDMAN Chris	GAN	G-B				
Le nombre de coureurs Résultat = γ COUNT (coureur)								
		Le nombre de	e coureu	rs par p	ays			
Résultat =CodePays γ COUNT (coureur)								
Kamal BAL - Cours	s SGBD -	Université Akli Mohano	l Oulhadj d	e Bouira -	Février 2015	48		

7

Exemples

- Considérons le schéma de base de données suivant :
 - □ Film(<u>numfilm</u>, titre, réalisateur, année, durée)
 - □ Acteur(<u>numacteur</u>, nom, prénom, dateNaissance)
 - <u>Casting(numfilm, numacteur</u>, personnage)
- Quel sont les films (titre, réalisateur) de l'année 2010
- \blacksquare R1 = RESTRICT(Film, annee = 2010)
- RESULTAT = PROJECT(R1, titre, réalisateur)

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

Exemple

- Considérons le schéma de base de données suivant :
 - □ Film(<u>numfilm</u>, titre, réalisateur, année, durée)
 - □ Acteur(<u>numacteur</u>, nom, prénom, dateNaissance)
 - □ <u>Casting(numfilm, numacteur</u>, personnage)
- Quels sont les films (titre, annee) réalisés par Lakhdhar Hamina?
- •
- Quels sont les acteurs (nom, prénom) ayant joué le personnage d'Astérix
- •

Zamal RAI Cours SGRD Universitá Aldi Mahand Outhadi da Ravira Eávriar 2015

Exemple

- Considérons le schéma de base de données suivant :
 - □ Film(numfilm, titre, réalisateur, année, durée)
 - Acteur(<u>numacteur</u>, nom, prénom, dateNaissance)
 - <u>Casting(numfilm, numacteur</u>, personnage)
 - Quels sont les films (titre, annee) réalisés par Lakhdhar Hamina?
- R1 = RESTRICT(film, réalisateur= 'lakhdhar hamina'
- RESULTAT = PROJECT(R1, titre, annee)
- Quels sont les acteurs (nom et prenom) ayant joué le personnage d'Astérix
- R1 = JOIN(Acteur, Casting)
 - (ou explicitement: R1 = JOIN(Acteur, Casting, Acteur.numacteur = Casting.numacteur))
- R2 = RESTRICT(R1, personnage='Astérix')
- RESULTAT = PROJECT(R2, nom, prénom)

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

--

Exemple

- Considérons le schéma de base de données suivant :
 - □ Film(<u>numfilm</u>, titre, réalisateur, année, durée)
 - Acteur(<u>numacteur</u>, nom, prénom, dateNaissance)
 - □ <u>Casting(numfilm, numacteur, personnage)</u>
- Quels sont les acteurs (nom, prénom) né en 1952 ?
- Quels sont les personnages du film réalisé par 'Wayn' en '2010' ?
 - _

Kamal BAL - Cours SGBD

Université Akli Mohand Oulhadj de Bouira - Février 2015

__

Exemple

Considérons le schéma de base de données suivant :

- □ Film(numfilm, titre, réalisateur, année, durée)
- Acteur(<u>numacteur</u>, nom, prénom, dateNaissance)
- □ <u>Casting(numfilm, numacteur</u>, personnage)

• Quels sont les acteurs (nom, prénom) né en 1952 ?

- □ R1 = RESTRICT(Acteur, 01/01/1952<= dateNaissance<= 31/12/1952)
- RESULTAT = PROJECT(R1, nom, prénom)

Quels sont les personnages du film réalisé par 'Wayn' en '2010' ?

- R1 = JOIN(film, Casting)
- R2 = RESTRICT(R1, annee=2010 AND realisateur='Wayn')
- RESULTAT = PROJECT(personnage)

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

53

Exemple

Considérons le schéma de base de données suivant :

- □ Film(<u>numfilm</u>, titre, réalisateur, année, durée)
- □ Acteur(<u>numacteur</u>, nom, prénom, dateNaissance)
- □ <u>Casting(numfilm, numacteur, personnage)</u>

• Quels sont les acteurs (nom, prénom et année de naissance) nés la même année ?

- Supposer que vous disposer d'une fonction : YEAR qui extrait l'année d'une date de naissance
- R1 = JOIN(Acteur A1, Acteur A2, YEAR(A1.dateNaissance = YEAR(A2.dateNaissance AND A1.nom <> A2.nom)
- RESULTAT = PROJECT(R1, A1.nom, A1.prénom, A2.nom, A2.prénom, (A1. YEAR(dateNaissance))

Zamal RAI Cours SGRD Universitá Aldi Mahand Outhadi da Ravira Eávriar 2015

54

Exemple (suite)

- Quels sont les acteurs qui ont joué dans un film réalisé par "Besson" et qui n'ont jamais joué dans un film réalisé par "Benigni" (nom et prénom)?
- R1 = JOIN(Acteur, Casting)
- R2 = RESTRICT(Film, réalisateur = 'Besson')
- R3 = RESTRICT(Film, réalisateur = 'Benigni')
- R4=R2 MINUS R3

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

Langages algébriques et expressions dérivées

- Un langage algébrique peut être dérivé de l'algèbre relationnel pour interroger les bases de données
- Une requête se représente par un arbre d'opérations appelé « arbre algébrique ».
- Cet arbre peut être traduit en SQL, donc un langage opérationnel.

Kamal BAL - Cours SGBD

Université Akli Mohand Oulhadj de Bouira - Février 2015

