Programming with MicroBit

Overview on Hardware Features
Sensors and Actuators

Micro:bit as a System

inputs

both
Input / output

outputs

Basic Descriptions

- LED (Light Emitting Diode)
 - Allow you to display text, numbers and images
- Buttons (button A and button B)
 - Allow you to trigger codes on the device by detecting when these buttons are pressed or not.

Pins

 Allow you to read a sensor (as input) or control an actuator (as output) by connecting them to the pins

Basic Descriptions

Light sensor

 By reversing the LEDs, they can be used to detect ambient light

Temperature sensor

 To detect the current ambient temperature, in degrees Celsius

Accelerometer

- To measure the acceleration of your micro:bit;
- It can sense when the micro:bit is accelerating or detect other actions, e.g. shake, tilt, and free-fall.

Basic Descriptions

Compass / Magnetometer

- It detects the earth's magnetic field, and hence can detect which direction the micro:bit is facing.
- The compass needs to be calibrated before use.

Radio

Allow wireless communications between micro:bits

Bluetooth

Allow the micro:bit communicating with a phone

USB Interface

- To power up the micro:bit and download programs onto micro:bit
- Allow wired communication with PCs

Micro:Bit Build-in Sensors

Sensors of a System

 Sensor – a device used to measure a physical property and respond with feedback

Sensors in Micro:Bit

Front

Push button switch B

Processor M0 (temperature sensor)

Compass (magnetometer)

accelerometer

https://microbit.org/guide/features/ https://www.youtube.com/watch?v=7kTxukIcLd4

Back

micro:bit-

Accelerometer

- Accelerometer measures the static acceleration of gravity in tilt-sensing applications as well as dynamic acceleration resulting from motion, shock, or vibration.
- Widely used in mobile phone/tablet, robot, ...

Mobile Sensors

- 1. Accelerometer
- 2. Gyroscope
- 3. Digital Compass
- 4. Proximity
- 5. Finger Print
- 6. Barometer

Accelerometer

accelerometer

- Micro:bit on-board accelerometer
- Model: <u>Freescale MMA8653FC</u>
- 3 axis (3-dimensional) accelerometer
 - X acceleration: left and right direction.
 - Y acceleration: forward and backward direction.
 - Z acceleration: up and down direction

Application Example: Padometer

Accelerometer values change when we walk.

Figure from

Another Usage for Accelerometer

- Measure tilt angle with accelerometer
- Application example: Segway senses the tilt angle, and then goes forward / backward or turns left/right

Magnetometer

- Magnetometer sense the magnetic field strength
- Micro:bit onboard sensor: Freescale MAG3110
- The library converts the reading and uses it as a digital compass

Returned value (integer): 0 - 359

On-Board Light Sensor

- Micro:bit has a 5x5 LED screen
- LEDs can also be used to measure light (i.e. as light sensor). It is because a reverse-biased LED can act as photo sensor.

Forward-biased: LED on

Reverse-biased: LED off

- Get the reading from the light sensor:
- Range (integer): 0 (dark) 255 (bright)

Micro:Bit External Sensors

Other Possible Sensors

- Photoresistor (light sensor)
- Force Sensor
- Monolithic Temperature Sensor
- Air Humidity Sensing Module
- Soil Humidity Sensing Module
- Ultrasonic Distance Module

Output voltage
 Voltage output

 (analog and digital)
 Voltage output
 (timing)

MicroBit input/output pins

•P0: GPIO, analog, touch, PWM, UART

•P1: GPIO, analog, touch, PWM, UART

•P2: GPIO, analog, touch, PWM, UART

•P8: GPIO, PWM, UART

•**P13** ~ **P16**: GPIO, PWM, UART

GPIO: General Purpose Input/Output

Touch: Touch sensing

PWM: Pulse width modulation

UART: Universal asynchronous

receiver/transmitter

Analog: Analog input

Basic Connection and Programming

- Using I/O pin to connect an external device (eg. Sensor)
- Use analog read/digital read (Unit 3B)
- Store in a variable

Measure the voltage Connect to the pin.

External Light Sensor

- Photoresistor (or light dependent resistor LDR) are often used to measure the light intensity. (eg. PGM5399)
- when the LDR sensor is exposed to light, the resistance changes according to the light intensity (eg. dark -> $1M\Omega$; bright -> a few $K\Omega$).
- LDRs have a sensitivity that varies with the wavelength of the light applied and are nonlinear devices.

Light intensity \uparrow Resistance \downarrow

Force Sensor (Force Sensing Resistor)

- Transform the stress exerted on sensitive area into two-line resistance variation;
- the more the stress is, the lower the sensor output resistance

Force ↑ Resistance ↓

How to Use LDR/Force Sensor as Input?

- Micro:bit (same for all other controllers) only considers voltage as input; not resistance!
- To convert resistance to voltage, we can use a voltage divider
- Sensor o/p = $V_{dd} \frac{R1}{(R+R1)}$
- When R increases (decreases),
 - sensor o/p decreases (increases).

Other Consideration

- Problem with internal impedance of the ADC [There is a small sampling cap Cs, in pF, which needs to be charged up for ADC operation]
- If R and R1 are large, current goes to charge Cs is too small, introducing errors to ADC output
- Solution: Add a capacitor C (eg. 0.1uF) as a charge reservoir
 - error can be reduced
 - But may reduce the sampling frequency

Ultrasonic Echolocation

Echolocation can sense nearby objects: By emitting a certain frequency and seeing how long it returns back, we can determine the location and even the speed of an object.

Ultrasonic Distance Module (HC-SR04)

• Principle:

- Give HIGH pulse with width ≥10 µs to Trig pin
- The module will send out eight 40KHz square wave pulses, then check whether there is any echo signal received
- When signal is echoed back, the Echo pin will output a square pulse, for which its width equals to the time taken for the sent-out signal returns back (so, proportional to the distance)

Details

Note: Minimum 10us, can be longer

Measure t=(T2-T1) to indicate the distance

T1: P1 from 0 to 1 T2: P1 from 1 to 0

Calculation:

 $D = t \times 340 \text{ms}^{-1} / 2$

t is the time with high; D is the distance.

25

Ultrasonic Distance Module (HC-SR04)

- Vcc : 5V DC
- Signal level: HIGH = Vcc; LOW = 0V
- Sensing angle ≤ 15 degree
- Measuring distance: 2cm to 400 cm
- Pin assignment
 - Vcc (5V)
 - Trig (input)
 - Echo (output)
 - GND

Ultrasonic Distance Sensor with Micro:Bit

Lab I: Ultrasonic Ruler at Week 7

Demonstration – driving a LED

from microbit import *

pwm = pin0

while True:

pwm.write_analog(1023) # LED on sleep(100) # wait 1000ms pwm.write_analog(0) # LED off sleep(500) # wait 1000ms