Отчёт по ЦАГИ – первое приближение

1

При моделировании использованы следующие параметры (г/кубсм, ГПа):

Ортотропный материал: $\rho = 1.6 * m$, упругие модули:

c11	c12	c13	c22	c23	c33	c44	c55	c66
23.3 * m	6.96 * m	6.96 * m	12.0 * m	6.96 * m	12.0 * m	1.67 * m	5.01 * m	5.01 * m

где m=2.5 - параметр, позволяющий регулировать акустический импеданс, не меняя скорость звука. Скорость звука в композите была выбрана согласно отчёту про эксперимент.

Материал призмы (устройство контроля) – рексолит – значения взяты с официального сайта:

$$\lambda = 3.03; \tag{1}$$

$$\mu = 1.39; \tag{2}$$

$$\rho = 1.05;$$
(3)

Диаметр призмы согласно отчёту про эксперимент 6.35мм, высота подобрана для соответствия графиков: 8.9мм. Глубина расслоения бралась по данным эксперимента.

Импульс брался как гаусс с шириной 0.1 мкс. Модулирование синусоидой принципиально не меняет вид графиков, поскольку её период порядка ширины гауссианы, а последняя в итоге и так получается как будто модулированная с такой частотой из-за специфики задания граничных условий. Чтобы получить чёткую гауссиану, нужно либо пускать волну сразу в объёме начальным условием, либо изучать конструкцию прибора — как именно там формируется импульс.

Дополнительные осцилляции на графиках из моделирования обусловлены боковой отражающей границей призмы. Возможно, в приборе это как-то демпфируется, поэтому в эксперименте шума меньше.

В пьезокристаллах возникновение электрического поля обусловлено в первую очередь деформацией, а не приложенной силой. Поэтому измеряется, скорее всего, вертикальная компонента скорости, что и построено на графиках для моделирования (точнее, её модуль).

Поскольку устройство датчика в данный момент не известно:

- геометрия устройства?
- где расположен кристалл в призме?
- какое усиление сигнала в какие отрезки времени применяется?
- есть ли сглаживание или ещё какие-то преобразования сигнала?
- что значат отдельно все параметры: gain, refgain, contour, distance и т.д?
- frequency, delay, range, zero?
- длина линии задержки и другие параметры в начале документа?
- velocity 2733 это скорость звука в композите вдоль направления контроля? выставляется самостоятельно?
- каков реальный контакт датчика с материалом,

указанные параметры вполне могут сильно куда-то сместится, так как здесь легко свалиться в локальный минимум.

2

На графиках из расчёта по оси времени указаны микросекунды, на графиках из эксперимента – половинное расстояние, которое волна проходит за время в композите. Стробы G1 и G2 – это промежутки времени, в которые датчик ожидает появление сигнала, превышающего пороговую амплитуду. Когда и если сигнал пришёл, время его начала фиксируется как время отклика.

Учитывая вышесказанное, графики из эксперимента №1 и №4 не верны: расстояние по оси абсцисс между временами фиксации сигналов G1 и G2 не соответствуют указанному снизу значению. Этим и обусловлено несовпадение с моделированием этих случаев. Можно сравнить с очень близкими случаями №2 и №3 — там всё верно и совпадает.

Рис. 1: Моделирование файл 0

Рис. 2: Эксперимент файл 0

Рис. 3: Моделирование файл 1

Рис. 4: Эксперимент файл 1

Рис. 5: Моделирование файл 2

Рис. 6: Эксперимент файл 2

Рис. 7: Моделирование файл 3

Рис. 8: Эксперимент файл 3

Рис. 9: Моделирование файл 4

Рис. 10: Эксперимент файл 4

Рис. 11: Моделирование файл 5

Рис. 12: Эксперимент файл 5

Рис. 13: Моделирование файл 6

Рис. 14: Эксперимент файл 6

Рис. 15: Моделирование файл 7

Рис. 16: Эксперимент файл 7

Рис. 17: Моделирование файл 8

Рис. 18: Эксперимент файл 8

Рис. 19: Моделирование файл 9

Рис. 20: Эксперимент файл 9

Рис. 21: Моделирование файл 10

Рис. 22: Эксперимент файл 10

Рис. 23: Моделирование файл 11

Рис. 24: Эксперимент файл 11

Рис. 25: Моделирование файл 12

Рис. 26: Эксперимент файл 12

Рис. 27: Моделирование файл 13

Рис. 28: Эксперимент файл 13

Рис. 29: Моделирование файл 14

Рис. 30: Эксперимент файл 14

Рис. 31: Моделирование файл 15

Рис. 32: Эксперимент файл 15

Рис. 33: Моделирование файл 16

Рис. 34: Эксперимент файл 16