C. Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

1. (Original) A method for manufacturing a minute structure, comprising:

a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as a first positive type photosensitive material layer to be sensitized by an ionizing radiation of a first wavelength range;

a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer obtained by the copolymerization of an ester methacrylate and a methacrylic acid, with the weight average molecular weight of the copolymer of 50,000 to 300,000 and the ratio of the methacrylic acid included in the copolymer of 5 to 30% by weight as a second positive type photosensitive material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer;

a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer as the upper layer by decomposing reaction only in the desired area of the above-mentioned second positive type photosensitive material layer without decomposing reaction of the above-mentioned first positive type photosensitive material layer by directing an ionizing radiation of the above-mentioned second wavelength range via a mask to the substrate surface with the first and second positive type

photosensitive material layers formed, and development using a developing solution, and then;

a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer as the lower layer by decomposing reaction of a predetermined area of at least the above-mentioned first positive type photosensitive material layer by direction an ionizing radiation of the above-mentioned first wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development, successively;

characterized in that a pattern of a convex shape is manufactured in the substrate by executing the above-mentioned steps.

2. (Original) A method for manufacturing a minute structure, comprising:

a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as a first positive type photosensitive material layer to be sensitized by an ionizing radiation of a first wavelength range;

a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer obtained by the copolymerization of an ester methacrylate and a methacrylic anhydride, with the weight average molecular weight of the copolymer of 10,000 to 100,000 and the ratio of the methacrylic anhydride included in the copolymer of 5 to 30% by weight as a second positive type photosensitive

material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer;

a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer as the upper layer by decomposing reaction only in the desired area of the above-mentioned second positive type photosensitive material layer without decomposing reaction of the above-mentioned first positive type photosensitive material layer by directing an ionizing radiation of the above-mentioned second wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development using a developing solution, and then;

a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer as the lower layer by decomposing reaction of a predetermined area of at least the above-mentioned first positive type photosensitive material layer by direction an ionizing radiation of the above-mentioned first wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development, successively;

characterized in that a pattern of a convex shape is manufactured in the substrate by executing the above-mentioned steps.

3. (Currently Amended) The method for manufacturing a minute structure according to claim 1 [[or 2]], wherein the first positive type photosensitive material layer is obtained by forming a first positive type photosensitive material layer by a

solvent coating method, vaporizing the coating solvent in the layer by heating, coating a material for forming the second positive type photosensitive material layer, and vaporizing the coating solvent by applying the heat to the formed coating layer.

4. (Original) A method for manufacturing a liquid discharge head comprising a step of forming a mold pattern with a removable resin in a liquid flow path forming portion on a substrate with a liquid discharge energy generating element formed, applying and hardening a coating resin layer on the above-mentioned substrate so as to coat the mold pattern, and dissolving and removing the above-mentioned mold pattern so as to form a liquid flow pat, characterized in that the above-mentioned step of forming a mold pattern comprises:

a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as the first positive type photosensitive material layer to be sensitized by an ionizing radiation beam of the first wavelength range on the substrate;

a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer obtained by the copolymerization of an ester methacrylate and a methacrylic acid, with the weight average molecular weight of the copolymer of 50,000 to 300,000 and the ratio of the methacrylic acid included in the copolymer of 5 to 30% by weight as a second positive type photosensitive material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer;

a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer as the upper layer by decomposing reaction only in the desired area of the above-mentioned second positive type photosensitive material layer without decomposing reaction of the above-mentioned first positive type photosensitive material layer by directing an ionizing radiation of the above-mentioned second wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development using a developing solution; and

a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer as the lower layer by decomposing reaction of a predetermined area of at least the above-mentioned first positive type photosensitive material layer by direction an ionizing radiation of the above-mentioned first wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development, successively.

5. (Original) A method for manufacturing a liquid discharge head comprising a step of forming a mold pattern with a removable resin in a liquid flow path forming portion on a substrate with a liquid discharge energy generating element formed, applying and hardening a coating resin layer on the above-mentioned substrate so as to coat the mold pattern, and dissolving and removing the above-mentioned mold pattern so as to form a liquid flow pat, characterized in that the above-mentioned step of forming a mold pattern comprises:

a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as the first positive type photosensitive material layer to be sensitized by an ionizing radiation beam of the first wavelength range on the substrate;

a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer obtained by the copolymerization of an ester methacrylate and a methacrylic anhydride, with the weight average molecular weight of the copolymer of 10,000 to 100,000 and the ratio of the methacrylic anhydride included in the copolymer of 5 to 30% by weight as a second positive type photosensitive material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer;

a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer as the upper layer by decomposing reaction only in the desired area of the above-mentioned second positive type photosensitive material layer without decomposing reaction of the above-mentioned first positive type photosensitive material layer by directing an ionizing radiation of the above-mentioned second wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development using a developing solution; and

a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer as the lower layer by decomposing reaction of a predetermined area of at least the above-mentioned first positive type photosensitive material layer by direction an ionizing radiation of the above-mentioned first wavelength

range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development, successively.

6. (Original) A method for manufacturing a liquid discharge head comprising a step of forming a mold pattern with a removable resin in a liquid flow path forming portion on a substrate with a liquid discharge energy generating element formed, applying and hardening a coating resin layer on the above-mentioned substrate so as to coat the mold pattern, and dissolving and removing the above-mentioned mold pattern so as to form a liquid flow pat, characterized in comprising at least:

a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as the first positive type photosensitive material layer to be sensitized by an ionizing radiation beam of the first wavelength range on the substrate;

a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer obtained by the copolymerization of an ester methacrylate and a methacrylic acid, with the weight average molecular weight of the copolymer of 50,000 to 300,000 and the ratio of the methacrylic acid included in the copolymer of 5 to 30% by weight as a second positive type photosensitive material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer;

a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer as the upper layer by decomposing reaction only in the desired area of the above-mentioned second positive type photosensitive material layer without decomposing reaction of the above-mentioned first positive type photosensitive material layer by directing an ionizing radiation of the above-mentioned second wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development using a developing solution,

a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer as the lower layer by decomposing reaction of a predetermined area of at least the above-mentioned first positive type photosensitive material layer by direction an ionizing radiation of the above-mentioned first wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development;

a step of forming a pattern including the discharge port by applying a photosensitive coating resin film onto the first and second positive type photosensitive material layers with the above-mentioned desired pattern formed, exposing a pattern including a discharge opening communicating with the above-mentioned liquid flow path, and development;

a step of decomposing the resin components in the pattern comprising the above-mentioned first and second positive type photosensitive material layers by directing an ionizing radiation beam of a wavelength range for the decomposing reaction of both the above-mentioned first and second positive type photosensitive material layers via the above-mentioned photosensitive coating resin film; and

a step of soaking the substrate after having the above-mentioned steps in a predetermined organic solvent for dissolving and removing the pattern comprising the above-mentioned first and second positive type photosensitive material layers.

7. (Original) A method for manufacturing a liquid discharge head comprising a step of forming a mold pattern with a removable resin in a liquid flow path forming portion on a substrate with a liquid discharge energy generating element formed, applying and hardening a coating resin layer on the above-mentioned substrate so as to coat the mold pattern, and dissolving and removing the above-mentioned mold pattern so as to form a liquid flow pat, characterized in comprising at least:

a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as the first positive type photosensitive material layer to be sensitized by an ionizing radiation beam of the first wavelength range on the substrate;

a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer obtained by the copolymerization of an ester methacrylate and a methacrylic anhydride, with the weight average molecular weight of the copolymer of 10,000 to 100,000 and the ratio of the methacrylic anhydride included in the copolymer of 5 to 30% by weight as a second positive type photosensitive material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer;

a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer as the upper layer by decomposing reaction only in the desired area of the above-mentioned second positive type photosensitive material layer without decomposing reaction of the above-mentioned first positive type photosensitive material layer by directing an ionizing radiation of the above-mentioned second wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development using a developing solution;

a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer as the lower layer by decomposing reaction of a predetermined area of at least the above-mentioned first positive type photosensitive material layer by direction an ionizing radiation of the above-mentioned first wavelength range via a mask to the substrate surface with the first and second positive type photosensitive material layers formed, and development;

a step of forming a pattern including the discharge port by applying a photosensitive coating resin film onto the first and second positive type photosensitive material layers with the above-mentioned desired pattern formed, exposing a pattern including a discharge opening communicating with the above-mentioned liquid flow path, and development;

a step of decomposing the resin components in the pattern comprising the above-mentioned first and second positive type photosensitive material layers by directing an ionizing radiation beam of a wavelength range for the decomposing reaction of both the

above-mentioned first and second positive type photosensitive material layers via the above-mentioned photosensitive coating resin film; and

a step of soaking the substrate after having the above-mentioned steps in a predetermined organic solvent for dissolving and removing the pattern comprising the above-mentioned first and second positive type photosensitive material layers.

- 8. (Currently Amended) The method for manufacturing a liquid discharge head according to any of claims 4 to 7 claim 4, wherein the first positive type photosensitive material layer is obtained by forming a first positive type photosensitive material layer by a solvent coating method, vaporizing the coating solvent in the layer by heating, coating a material for forming the second positive type photosensitive material layer, and vaporizing the coating solvent by applying the heat to the formed coating layer.
- 9. (Currently Amended) The method for manufacturing a liquid discharge head according to any of claims 4 to 7 claim 4, wherein the first wavelength range for sensitizing the first positive type photosensitive material layer is a 270 nm to 350 nm range, and the second wavelength range for sensitizing the second positive type photosensitive material layer is a 230 nm to 260 nm range.
- 10. (Currently Amended) A liquid discharge head manufactured by the method for manufacturing a liquid discharge head according to any of claims 4 to 9 claim

4, wherein the height of the liquid flow path is provided relatively lower at a point adjacent to the bubble generating chamber on the liquid discharge energy generating element.

- 11. (Original) The liquid discharge head according to claim 10, wherein the cross-sectional shape of the bubble generating chamber on the liquid discharge energy generating element is a convex shape.
- 12. (New) The method for manufacturing a minute structure according to claim 2, wherein the first positive type photosensitive material layer is obtained by forming a first positive type photosensitive material layer by a solvent coating method, vaporizing the coating solvent in the layer by heating, coating a material for forming the second positive type photosensitive material layer, and vaporizing the coating solvent by applying the heat to the formed coating layer.
- 13. (New) The method for manufacturing a liquid discharge head according to claim 5, wherein the first positive type photosensitive material layer is obtained by forming a first positive type photosensitive material layer by a solvent coating method, vaporizing the coating solvent in the layer by heating, coating a material for forming the second positive type photosensitive material layer, and vaporizing the coating solvent by applying the heat to the formed coating layer.

- 14. (New) The method for manufacturing a liquid discharge head according to claim 6, wherein the first positive type photosensitive material layer is obtained by forming a first positive type photosensitive material layer by a solvent coating method, vaporizing the coating solvent in the layer by heating, coating a material for forming the second positive type photosensitive material layer, and vaporizing the coating solvent by applying the heat to the formed coating layer.
- 15. (New) The method for manufacturing a liquid discharge head according to claim 7, wherein the first positive type photosensitive material layer is obtained by forming a first positive type photosensitive material layer by a solvent coating method, vaporizing the coating solvent in the layer by heating, coating a material for forming the second positive type photosensitive material layer, and vaporizing the coating solvent by applying the heat to the formed coating layer.
- 16. (New) The method for manufacturing a liquid discharge head according to claim 5, wherein the first wavelength range for sensitizing the first positive type photosensitive material layer is a 270 nm to 350 nm range, and the second wavelength range for sensitizing the second positive type photosensitive material layer is a 230 nm to 260 nm range.
- 17. (New) The method for manufacturing a liquid discharge head according to claim 6, wherein the first wavelength range for sensitizing the first positive

type photosensitive material layer is a 270 nm to 350 nm range, and the second wavelength range for sensitizing the second positive type photosensitive material layer is a 230 nm to 260 nm range.

- 18. (New) The method for manufacturing a liquid discharge head according to claim 7, wherein the first wavelength range for sensitizing the first positive type photosensitive material layer is a 270 nm to 350 nm range, and the second wavelength range for sensitizing the second positive type photosensitive material layer is a 230 nm to 260 nm range.
- 19. (New) A liquid discharge head manufactured by the method for manufacturing a liquid discharge head according to claim 5, wherein the height of the liquid flow path is provided relatively lower at a point adjacent to the bubble generating chamber on the liquid discharge energy generating element.
- 20. (New) The liquid discharge head according to claim 19, wherein the cross-sectional shape of the bubble generating chamber on the liquid discharge energy generating element is a convex shape.
- 21. (New) A liquid discharge head manufactured by the method for manufacturing a liquid discharge head according to claim 6, wherein the height of the

liquid flow path is provided relatively lower at a point adjacent to the bubble generating chamber on the liquid discharge energy generating element.

- 22. (New) The liquid discharge head according to claim 21, wherein the cross-sectional shape of the bubble generating chamber on the liquid discharge energy generating element is a convex shape.
- 23. (New) A liquid discharge head manufactured by the method for manufacturing a liquid discharge head according to claim 7, wherein the height of the liquid flow path is provided relatively lower at a point adjacent to the bubble generating chamber on the liquid discharge energy generating element.
- 24. (New) The liquid discharge head according to claim 23, wherein the cross-sectional shape of the bubble generating chamber on the liquid discharge energy generating element is a convex shape.