18MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS - CLA T1 S K THAMILVANAN

DEPARTMENT OF MATHEMATICS DATE OF THE EXAM: 19.05.2021

The respondent's email (r	null) was	recorded of	on submission	of this for	m.
* Required					

1. Email *

ENTER YOUR DETAILS

2. NAME *

3. REGISTERATION NUMBER *

4. BRANCH AND SECTION *

ANSWER ALL THE QUESTIONS

MAX. MARKS: 25 MARKS TIME: 60 MINUTES

The value of the double integral $\int_{a}^{b} \int_{a}^{a} x dx dy$.

- (a) $\frac{a^2b^2}{2}$ (b) $\frac{a^2}{2}(1-b)$ (c) $\frac{a^2}{2}(b-1)$ (d) $\frac{a^2b^2}{3}$

Mark only one oval.

- (a)
- (b)
- (c)
-) (d)

6.

The curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a

- (a) Circle
- (b) hyperbola
- (c) ellipse
- (d) parabola

-) (a)
- (b)
- (c)
- (d)

- (a) $\frac{\pi^3}{2}$
- (b) $\frac{\pi^2}{2}$ (c) $\frac{\pi^3}{3}$ (d) $\frac{\pi^2}{3}$

- (a)
- (b)
-) (c)
- (d)

8.

The area of an ellipse is

- (a) πa^2

- (b) πab (c) $\pi a^2 b$ (d) $\pi a^2 b^2$

- (a)
- (b)
- (c)
- (d)

Evaluate $\iint_{\mathbb{R}} r^3 dr d\theta$ where R is the region between the circles $r = 2\cos\theta$ and $r = 4\cos\theta$.

- (a) $\frac{45\pi}{3}$ (b) $\frac{45}{2}$ (c) $\frac{45\pi}{2}$ (d) $\frac{45}{3}$

Mark only one oval.

- (a)
- (b)

10.

The value of $\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} dx dy dz$ is equal to

- (a) $\frac{a^2b^2c^2}{2}$ (b) \underline{abc} (c) $\frac{abc}{2}$ (d) $(\underline{a+b+c})$

-) (a)

is not a cardioid * 11.

is the curve for cardioids

- (a) $r = (1 + \cos \theta)$
- (b) $r = a\cos\theta$ (c) $r = a(1-\cos\theta)$ (d) $r = (1-\cos\theta)$

Mark only one oval.

-) (a)
- (b)
- (d)

12.

The region of integration of the integral $\int_{a}^{b} \int_{a}^{a} f(x, y) dx dy$ is

- (a) Rectangle
- (b) square
- (c) circle (d) triangle

- (a)

- (d)

The limits of integration in the double integral $\iint_{\mathbb{R}} f(x,y) dx dy$ where R is in the first quadrant bounded by y = x, x = 1 & y = 0 is given by ----.

(a)
$$\iint_{0}^{1} f(x,y) dx dy$$

(b)
$$\iint_{1}^{1} f(x, y) dx dy$$

(c)
$$\iint_{0}^{1} f(x,y) dx dy$$

(a)
$$\iint_{0}^{1} f(x,y) dx dy$$
 (b)
$$\iint_{0}^{1} f(x,y) dx dy$$
 (c)
$$\iint_{0}^{1} f(x,y) dx dy$$
 (d)
$$\iint_{0}^{1} f(x,y) dx dy$$

Mark only one oval.

-) (a)
-) (c)
-) (d)

14.

Change the order of integration in $\int_{0}^{\infty} \int_{0}^{y} f(x, y) dx dy$

(a)
$$\iint_{0}^{\infty} f(x,y) dy dy$$

(b)
$$\iint_{0}^{\infty} f(x,y) dy dx$$

(c)
$$\iint_{\Omega} f(x,y) dy dy$$

(a)
$$\iint_{0}^{\infty} f(x,y) dy dx$$
 (b) $\iint_{0}^{\infty} f(x,y) dy dx$ (c) $\iint_{0}^{\infty} f(x,y) dy dx$ (d) $\iint_{0}^{\infty} \int_{-\infty}^{x} f(x,y) dy dx$

-) (a)
-) (b)

$\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-y}}{y} dx dy \text{ is equal to}$

- (a) 1
- (b) 0
- (c) 1 (d) 2

Mark only one oval.

-) (a)
- (b)
-) (d)

16.

Evaluate
$$\int_{0}^{\pi} \int_{0}^{\pi} d\theta d\phi$$
.

- (a) 1
- (b) 0
- (c) $\frac{\pi}{2}$ (d) π^2

-) (a)
- (b)
- (c)
- (d)

The value of the integral $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \phi \cos \phi d\theta d\phi$.

- (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{2}$
- (d)0

Mark only one oval.

-) (a)
- (c)
-) (d)

18.

 $r = 2 \sin \theta$ is a circle with center as _____ and radius ____

- (a) C = (1, 0) & R = 2 (b) C = (0, 1) & R = 1
- (c) C = (1, 0) & R = 1 (d) C = (0, 1) & R = 2

-) (a)
-) (b)
- (c)
-) (d)

- (a) $\iiint_V dx dy dz$ (b) $\iiint_V r dr d\theta d\phi$ (c) $\iiint_V xyz dx dy dz$ (d) $\iiint_V dr d\theta d\phi$

-) (a)
-) (b)

20.

Change the order of integration $\lim_{x \to 0} \int_{0}^{a} \int_{0}^{x} dx dy$.

- (a) $\int_{0}^{a} \int_{0}^{x} dxdy$ (b) $\int_{0}^{a} \int_{0}^{x} xdydx$ (c) $\int_{0}^{a} \int_{0}^{y} dxdy$ (d) $\int_{0}^{a} \int_{y}^{a} dxdy$

-) (a)
-) (b)
-) (c)
-) (d)

$$\int_{1}^{b} \int_{1}^{a} \frac{dxdy}{xy}$$
 is equal to

- (a) $\log a$
- (b) log *b*
- (c) $\log a + \log b$ (d) $\log a \log b$

Mark only one oval.

-) (a)

22.

After changing the double integral $\int_{0}^{a} \int_{y}^{a} x dx dy$ into polar coordinates, we have

(a)
$$\int_{0}^{\pi/2} \int_{0}^{a/\cos\theta} r^2 \cos\theta dr d\theta$$
 (b)
$$\int_{0}^{\pi/4} \int_{0}^{a/\cos\theta} r^2 \cos\theta dr d\theta$$
 (c)
$$\int_{0}^{\pi/4} \int_{0}^{a\cos\theta} r^2 \cos\theta dr d\theta$$

(b)
$$\int_{0}^{\pi/4} \int_{0}^{a/\cos\theta} r^2 \cos\theta dr d\theta$$

(c)
$$\int_{0}^{\pi/4} \int_{0}^{a\cos\theta} r^2 \cos\theta dr d\theta$$

(d)
$$\int_{0}^{\pi/2} \int_{0}^{a\cos\theta} r^2 \cos\theta dr d\theta$$

-) (a)

- (a) 6
- (b) 3
- (c) 2
- (d)24

-) (a)
-) (b)
- (d)

24.

. Area in polar coordinates is given by _____

- (a) $\iint\limits_R x dx dy$ (b) $\iint\limits_R r dr d\theta$ (c) $\iint\limits_R dr d\theta$ (d) $\iint\limits_R dx dy$

-) (a)
-) (b)
-) (d)

- (a) 24
- (b) 0
- (c) 12
- (d) 48

-) (a)

- (d)

26.

 $\int\limits_{0}^{\pi}\int\limits_{0}^{\pi/2}\int\limits_{0}^{1}rdrd\theta d\phi \text{ is equal to}$

- (a) $\frac{\pi^2}{2}$ (b) π^2 (c) $\frac{\pi^2}{8}$ (d) $\frac{\pi^2}{4}$

-) (a)

- (d)

Limits to evaluate the volume of the tetrahedron bounded by the coordinate planes and

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 is -----

(a)
$$z = 0$$
 to $\left(1 - \frac{x}{a} - \frac{y}{b}\right)$; $y = 0$ to $\left(1 - \frac{x}{a}\right)$; $x = 0$ to a

(b)
$$z = 0$$
 to $c\left(1 - \frac{x}{a} - \frac{y}{b}\right)$; $y = 0$ to $b\left(1 - \frac{x}{a}\right)$; $x = 0$ to a

(c)
$$z = 0$$
 to $c\left(1 - \frac{x}{a} - \frac{y}{b}\right)$; $y = 0$ to $\left(1 - \frac{x}{a}\right)$; $x = 0$ to a

(d)
$$z = 0$$
 to $c\left(1 - \frac{x}{a} - \frac{y}{c}\right)$; $y = 0$ to $b\left(1 - \frac{x}{a}\right)$; $x = 0$ to a

- (a)
- (b)
- (c)
- (d)

The name of the curve $r^2 = a^2 \cos 2\theta$ is

- (a) cardioid
- (b) cycloid
- (c) circle
- (d) lemniscate

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

29.

The curve $y^2 = 4x$ is a

- (a) parabola
- (b) hyperbola
- (c) straight line

(d) ellipse

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

This content is neither created nor endorsed by Google.