Notes of CS 839: Advanced Nonlinear Optimization Instructor: Jelena Diakonikolas

YI WEI

Sep 2024

Contents

1	Vec	tor Space]
		Cartesian Product of Vector Space	6
	1.2	Linear Transformation	
	1.3	The Dual Space	•
	1.4	Adjoint Transformation	4
2	Ext	ended Real-Valued Functions	4
	2.1	Closed Functions	ļ
	2.2	Related Concepts	(
	2.3	Operations preserving closedness	(
	2.4	Closedness vs Continuity	(
1	V	ector Space	
$[\mathbf{Y}]$	W : [ΓODO: Notes of Sep 4.]	

[Date: Sep 6, 2024]

1. Induced matrix norms $A \in \mathbb{R}^{m \times n}$ Let $\|\cdot\|_a$ be any norm in $\mathbb{R}^n, \|\cdot\|_b$ be any Example 1.1. norm in $R^m,\; \|A\|_{a,b} = \max_{x \in \mathbb{R}^n: \|x\|_a \leqslant 1} \|Ax\|_b$ In particular, if $\|\cdot\|_a$ and $\|\cdot\|_b$ are l_p norms:

- (a) $a = b = 2 \rightarrow \text{operator/spectral norm}$
- (b) a = b = 1:

$$||A||_{1,1} = \max_{x \in \mathbb{R}^n, ||x||_1 \le 1} ||Ax||_1 \tag{1}$$

$$= \max_{1 \leqslant j \leqslant n} \sum_{i=1}^{n} |A_{ij}| \tag{2}$$

It's called "max abs column sum"

(c) $a = b = \infty$:

$$||A||_{\infty,\infty} = \max_{x \in \mathbb{R}^n, ||x||_{\infty} \le 1} ||Ax||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |A_{ij}|$$

It's called "max abs row sum norm".

(d) $a = 1, b = \infty$:

$$||A||_{1,\infty} = \max_{x \in \mathbb{R}^n, ||x||_1 \le 1} ||Ax||_{\infty} = \max_{1 \le i \le m, 1 \le j \le n} |A_{ij}|$$

where
$$||Ax||_{\infty} = \begin{bmatrix} A_1x \\ A_2x \\ \vdots \\ A_nx \end{bmatrix}$$

1.1 Cartesian Product of Vector Space

Given $m \ge 2$ vector spaces $\mathbb{E}_1, \dots, \mathbb{E}_m$ equipped w/ inner products $\langle \cdot, \cdot \rangle, \dots, \langle \cdot, \cdot \rangle$, their Cartesian product is the vector space $\mathbb{E} = \mathbb{E}_1 \times \dots \times \mathbb{E}_n$ containing all m-tuples $(\mathbf{v}_1, \dots, \mathbf{v}_m)$ for which basic operations are defined as:

- 1. Addition: $(\mathbf{v}_1, \dots, \mathbf{v}_m) + (\mathbf{w}_1, \dots, \mathbf{w}_m) =$
- 2. Scaler multiplication: $\alpha \in \mathbb{R}, \alpha(\mathbf{v}_1, \dots, \mathbf{v}_m) = (\alpha \mathbf{v}_1, \dots, \alpha \mathbf{v}_m)$

The inner product on \mathbb{E} is defined by:

$$\langle (\mathbf{v}_1, \dots, \mathbf{v}_m), (\mathbf{w}_1, \dots, \mathbf{w}_m) \rangle = \sum_{i=1}^m \langle v_i, w_i \rangle_{\mathbb{E}_i}$$

If $\mathbb{E}_i, i \in \{1, \dots, m\}$ are endowed w/ norms $\|\|_{E_i}$ there a different ways of choosing a norm on \mathbb{E}

Example 1.2.

$$\|(\mathbf{v}_1, \dots, \mathbf{v}_m)\| = \left(\sum_{i=1}^m \|v_i\|_{\mathbb{E}_i}^p\right)^{\frac{1}{p}}$$
$$\|(\mathbf{v}_1, \dots, \mathbf{v}_m)\| = \left(\sum_{i=1}^m w_i \|v_i\|_{\mathbb{E}_i}^2\right)$$

1.2 Linear Transformation

Definition 1.1. Given two vector spaces \mathbb{E} , \mathbb{V} , $f : \mathbb{E} \to \mathbb{V}$ is a linear transformation if

$$\forall x, y \in \mathbb{E}, \forall \alpha, \beta \in \mathbb{R}$$
:

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

Example 1.3. 1. All linear transformations from $\mathbb{R}^n \to \mathbb{R}^m$ are of the from

$$A(x) = Ax$$
 for some matrix $A \in \mathbb{R}^{m \times n}$

2. All linear transformations from $\mathbb{R}^{n \times n} \to \mathbb{R}^k$ are of the form:

$$A(X) = \begin{bmatrix} \operatorname{trace}(A_1^{\top} X) \\ \operatorname{trace}(A_2^{\top} X) \\ \vdots \\ \operatorname{trace}(A_n^{\top} X) \end{bmatrix} \quad \forall \ X \in \mathbb{R}^{m \times n}$$

some matrices $A_1, \ldots, A_k \in \mathbb{R}^{m \times n}$

3. The identity transformation $\mathcal{I}: \mathbb{E} \to \mathbb{E}$ is defined by $\mathcal{I}(x) = x$

1.3 The Dual Space

Definition 1.2. The dual space of a vector space \mathbb{E} is the space of all linear functionals on \mathbb{E}

For inner product spaces, (Riez Representation) for any linear functional f, $\exists v \in \mathbb{E}$ s.t $f(x) = \langle \mathbf{v}, \mathbf{x} \rangle \quad \forall \mathbf{x} \in \mathbb{E}$.

We write $\mathbf{v} \in \mathbb{E}^*$ (notation).

Elements of \mathbb{E}^* and \mathbb{E} are the same if \mathbb{E} we use a norm $\|\cdot\|$, then in \mathbb{E}^* we use the norm dual to it, defined by (dual norm)

$$\forall \mathbf{y} \in \mathbb{E}^* : \|\mathbf{y}\|_* := \max_{\mathbf{x} \in \mathbb{E}: \|\mathbf{x}\| \leq 1} \langle \mathbf{y}, \mathbf{x} \rangle$$

Theorem 1.1. Generalized Cauchy-Schwarz:

$$\forall \mathbf{x} \in \mathbb{E}, \forall \mathbf{y} \in \mathbb{E}^* : \|\langle \mathbf{x}, \mathbf{y} \rangle\| \leqslant \|\mathbf{x}\| \|\mathbf{y}\|_*$$

Theorem 1.2. Euclidean norms are self-dual. We say that Euclidean space "self-dual" and write $\mathbb{E} = \mathbb{E}^*$

Example 1.4. 1. In \mathbb{R}^d , with $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y}$

- (a) The norm dual to l_p norm for p > 1 is the norm l_p^* where $\frac{1}{p} + \frac{1}{p^*} = 1$. l_1 and l_{∞} are dual to each other.
- (b) The norm dual to $\|\cdot\|_Q$ for Q symmetric, positive definite is $\|\cdot\|_{Q^{-1}}$

$$\|\mathbf{x}\|_{Q^{-1}} = \left(\mathbf{x}^{\top} Q^{-1} x\right)^{\frac{1}{2}}$$

If $Q = \operatorname{diag}(w_1, \dots, w_d)$ for positive w_1, \dots, w_d , then $\|\mathbf{x}\|_{Q^{-1}} = \left(\sum_{i=1}^d \frac{1}{w_i} \mathbf{x}_i^2\right)^{\frac{1}{2}}$

2. $E = E_1 \times \cdots \times E_m$, with $\|\cdot\|_{E_1}, \dots, \|\cdot\|_{E_m}$

$$\|(\mathbf{v}_{1}, \dots, \mathbf{v}_{m})\|_{\mathbb{E}} = \left(\sum_{i=1}^{m} w_{i} \|\mathbf{v}_{i}\|_{\mathbb{E}_{i}}^{2}\right)^{\frac{1}{2}}$$
$$\|(\mathbf{w}_{1}, \dots, \mathbf{w}_{m})\|_{\mathbb{E}^{*}} = \left(\sum_{i=1}^{m} \frac{1}{w_{i}} \|\mathbf{u}_{i}\|_{\mathbb{E}_{i}^{*}}^{2}\right)^{\frac{1}{2}}$$

Theorem 1.3. Bidual space = dual space to \mathbb{E}^* .

In finite vector space, $\mathbb{E}^{**} = \mathbb{E}$

Theorem 1.4. $\langle A\mathbf{x}, \mathbf{y} \rangle \leq ||A||_{a,b} ||\mathbf{x}||_a ||\mathbf{y}||_b$ if $||\cdot||_a$ and $||\cdot||_b$ are dual to each other.

1.4 Adjoint Transformation

Definition 1.3. Given vector space \mathbb{E} and \mathbb{V} , and a linear transformation $A : \mathbb{E} \to \mathbb{V}$, the adjoint transformation $A^{\top} : \mathbb{V}^* \to \mathbb{E}^*$ is defined by

$$\langle \mathbf{y}, A(x) \rangle = \langle A^{\top}(y), \mathbf{x} \rangle$$

Example 1.5. In particular,

1. If $\mathbb{E} = \mathbb{R}^n$, $\mathbb{V} = \mathbb{R}^m$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y}$, then, A(x) = Ax for some $A \in \mathbb{R}^{m \times n}$ and $A^\top(y) = A^\top \mathbf{y}$

2. $\mathbb{E} = \mathbb{R}^{m \times n}, \mathbb{V} = \mathbb{R}^k$

[Date: Sep 13, 2024] Given $A : \mathbb{E} \to \mathbb{V}$, $\|\cdot\|_{\mathbb{E}}$, we define the norm $\|A\| = \sup_{x \in \mathbb{E}, \|x\|_{\mathbb{E}} \leqslant 1} \|A(x)\|_{\mathbb{V}}$

2 Extended Real-Valued Functions

Definition 2.1. functions that map some real vector space $(\mathbb{E}, \langle \cdot, \cdot \rangle), \| \cdot \|$ to the extended real line -either $\mathbb{R}[| (-\infty, +\infty)] = (-\infty, +\infty]$ or $\mathbb{R}[| (+\infty)] = (-\infty, +\infty]$

$$\min_{x \in \mathbb{E}} \quad f(x)$$

Consider this problem, why do we even want to include $+\infty$

1. f is not everywhere defined on \mathbb{E} , I can assign it to $+\infty$ at points where it's not defined. So when it becomes well-defined on all \mathbb{E} .

Here we define the domain = effective domain:

$$dom(f) = \{x \in \mathbb{E} : f(x) < +\infty\}$$

2. We can think of all optimization problems whether constrained or unconstrained, as unconstrained optimization problem.

$$\min_{x \in \mathcal{X}} f(x) \iff \min_{x \in \mathbb{E}} f(x) + \delta_{\mathcal{X}}(x)$$
where $\delta(x) = \begin{cases} 0, & for x \in \mathcal{X} \\ +\infty, & o.w. \end{cases}$

where
$$\delta(x) = \begin{cases} 0, & for x \in \mathcal{X} \\ +\infty, & o.w. \end{cases}$$

"Rules" for dealing with $\pm \infty$ and $a \in \mathbb{R}$:

- 1. $a + \infty = +\infty + a = +\infty$
- 2. $a-\infty=-\infty+a=-\infty$
- 3.

$$a \cdot \infty = \begin{cases} \infty, & \text{if } a > 0 \\ -\infty, & \text{if } a < 0 \end{cases}$$

- 4. $0 \cdot \pm \infty = 0$
- 5. $-\infty < a < \infty \quad \forall a \in \mathbb{R}$

Closed Functions 2.1

Definition 2.2. $epi(f) := \{(x, y) : x \in \mathbb{E}, y \in \mathbb{R}, f(x) \leq y\}$

Definition 2.3. A function $f: \mathbb{E} \to [-\infty, \infty]$ is said to be closed if epi(f) is closed.

Proposition 2.1. For $C \subseteq \mathbb{E}$, $\sigma_C(x)$ is closed $\iff C$ is closed.

Proof.
$$epi(C) = C \times \mathbb{R}_+$$

Remark. f is closed $\iff dom(f)$ is closed.

Example 2.1.

$$f(x) = \begin{cases} \frac{1}{x}, & x > 0\\ \infty, & x \le 0 \end{cases}$$

Then $dom(f) = (0, \infty)$ is open. And we see that:

$$epi(f) = \{(x, y) \in \mathbb{R}^2 : x > 0, \frac{1}{x} \le y\}$$

2.2 Related Concepts

1. Lower Semicontinuity:

Definition 2.4. $f: \mathbb{E} \to [-\infty, +\infty]$ is l.s.c. at $x \in \mathbb{E}$ if

$$f(x) \leqslant \liminf_{n \to \infty} f(x_n)$$

for any sequence $\{x_n\}_{n\geqslant 1}\in\mathbb{E}$ s.t. $x_n\to x$ as $n\to\infty$.

f is said to be l.s.c. if it is l.s.c. at all $x \in \mathbb{E}$.

2. Level set: defined for $\alpha \in \mathbb{R}, f : \mathbb{E} \to [-\infty, +\infty]$.

$$Lev(f, \alpha) = \{x \in \mathbb{E} : f(x) \le \alpha\}$$

Theorem 2.2. If $f: \mathbb{E} \to [-\infty, +\infty]$. Then all of the following statements are equivalent:

- 1. *f* is l.s.c.
- 2. f is closed.
- 3. $Lev(f, \alpha)$ is closed, $\forall \alpha \in \mathbb{R}$

2.3 Operations preserving closedness

1. If $f: \mathbb{V} \to [-\infty, +\infty]$ is closed, $A: \mathbb{E} \to \mathbb{V}$ is a linear transformation and $b \in \mathbb{V}$, then

$$g(x) = f(A(x) + b)$$
 is closed.

2. If $f_1, \ldots, f_m : \mathbb{E} \to (-\infty, +\infty]$ are closed and $\alpha_1, \ldots, \alpha_m \in \mathbb{R}_+$, then

$$f(x) = \sum_{i=1}^{n} \alpha_i f_i(x)$$
 is closed

3. Given an index set I and functions $f_i : \mathbb{E} \to (-\infty, \infty], i \in I$, that are closed, the function

$$f(x) = \sup_{i \in I} f_i(x)$$
 is closed.

2.4 Closedness vs Continuity

Bottom line: If f has closed domain + continuous over the domain \Longrightarrow closed.

But closed \iff continuous over the domain.

Theorem 2.3. Let $f : \mathbb{E} \to (-\infty, +\infty]$ be continuous over its domain and suppose dom(f) is closed \Longrightarrow f is closed.

Proof. Argue that epi(f) is closed.

Take any sequence $\{(x_n, y_n)\}_{n \ge 1} \in epi(f)$ that converges to some (x_*, y_*) as $n \longrightarrow \infty$

To argue: $(x_*, y_*) \in epi(f)$: we know that $x_n \in dom(f), x_n \longrightarrow x_*, dom(f)$ is closed $\Longrightarrow x_* \in dom(f)$

By the definition of epi(f):

$$f(x_n) \leqslant y_n$$

Since f is continuous over dom(f) and $\{x_n\}_n, x_* \in dom(f)$ we can take the limit $n \longrightarrow \infty$

$$f(x_*) \leqslant y_*$$

$$\Longrightarrow (x_*, y_*) \in epi(f)$$

Example 2.2 (closed \Longrightarrow continuous on its domain).

$$f_{\alpha}(x) = \begin{cases} \alpha, & x = 0 \\ x, & 0 < x \le 1 \\ \infty, & elsewhere \end{cases}$$
 (3)

When $\alpha < 0$, then it's l.s.c., i.e., closed, but it's not continuous. l_0 "norm"

$$f(x) = \|\mathbf{x}\|_0 = |\{i : \mathbf{x}_i \neq 0\}|$$

f is not continuous but it's closed.

$$f(x) = \sum_{i=1}^{d} I(\mathbf{x}_i)$$

where

$$I(y) = \begin{cases} 0, & y = 0 \\ 1, & y \neq 0 \end{cases}$$

We know

$$Lev(I,\alpha) = \begin{cases} \emptyset, & \alpha < 0 \\ \{0\}, & 0 \le \alpha < 1 \\ \mathbb{R}, & \alpha \ge 1 \end{cases}$$

Then I is closed. \Longrightarrow the sum of them is closed.