#### **RF Circuit Design**

#### **Prof. Salvatore Levantino**

Available time: 90 minutes

Jun. 26, 2018

### **Final Test**

## Problem #1

Assume the FETs' threshold voltage  $V_t = 0.4$ V,  $\mu_n C_{ox}/2 = 0.2$ mA/V<sup>2</sup>, and (W/L)<sub>1</sub> = 125. Let  $V_{dd} = 1.2$ V,  $I_1 = 1$ mA,  $R_S = 50\Omega$ . Let  $C_b = 1$ pF,  $R_b = 10$ k $\Omega$  (Consider  $R_B$  only to determine the bias point and assume it to be very large otherwise). Let the bypass capacitances:  $C_{b1} = C_{b2} = 100$ pF. Assume the transformer to be real at DC and ideal at any other frequency.

- a) Derive the expressions of the **input impedance** at port "in" and the **voltage gain**  $(V_{out}/V_{in})$  and set the **value of**  $(W/L)_2$  to ensure input matching at 2.4GHz.
- b) Set the **values of (W/L)<sub>3</sub> and**  $R_F$  to have gain  $(V_{out}/V_{in})$  equal to +20dB and to cancel the thermal noise of **M1** at "out".
- c) Recalculate the value of  $(W/L)_3$  and  $R_F$  to have gain equal to +20dB and to cancel the thermal noise of M2 at "out".



## Sol.:

a)  $Z_{in} = 1/(g_{ml} + 2g_{m2})$ , thus matching:  $g_{m2} = 1/(4R_S)$ . Gain is  $V_{out}/V_{in} = 1 - g_{ml}R_F - 2g_{m2}/g_{m3}$ ;

b) M1 noise gets cancelled if  $v_{out} = v_I[1 - R_{eq}/(R_{eq} + R_F)g_{m2}/g_{m3}] = 0$ , where  $R_{eq} = 2R_S/3$ ; thus,  $g_{m3} = 1/(2R_S + 3R_F)$ . Under that condition,  $V_{out}/V_{in} = -2R_F/R_S$ , thus  $R_F = 250\Omega$ .

# Problem #2

Consider the oscillator in figure and let  $V_{dd} = 1$ V, R = 1k $\Omega$ , L = 2nH, C = 2pF,  $I_0 = 1$ mA. The  $r_0$  of M1 FETs is 1k $\Omega$ . Neglect the  $r_0$  of the tail FET.

- a) Calculate the  $g_m$  of the FETs  $M_1$  for a gain margin of the oscillation startup equal to 2.
- b) Calculate the **differential oscillation amplitude** at *outp*, *outn* in **two cases**: (i) with  $I_N(t) = 0$  and (ii) with  $I_N(t) = 0.5 \text{mA} \cdot \cos(2\omega o t)$ , where  $\omega_0$  is the angular frequency of oscillation.



#### Sol.:

a) Startup:  $2 \cdot (2/g_m) = (2r_0) || \mathbf{R}, g_m = 6 \text{mS};$ 

b) (i)  $A_{\theta} = (2/\pi)I_{\theta} \cdot (2r_{\theta})||\mathbf{R} = 425\text{mV}$ , (ii)  $A_{\theta} = [(2/\pi)I_{\theta} + I_{Np}/\pi] \cdot (2r_{\theta})||\mathbf{R} = 531\text{mV}]$ .