Computer Lab 3

Martynas Lukosevicius, Alejo Perez Gomez, Zahra Jalil Pour

Question 1

Power-law distribution cannot be used just by itself because it does not support range from 0 to T_{min} . Because of this, we need to use mixture distribution. To support x from 0 to T_{min} we choose uniform distribution $Unif(0, T_{min})$. As we can see, powerlaw distribution is monotonically decreasing, so T_{min} should be equal to x where target density has maximum value.

Let's find maximum of target density function:

$$\frac{\partial}{\partial x} \frac{ce^{-\frac{c^2}{2x}}x^{-\frac{3}{2}}}{\sqrt{2\pi}} = \frac{ce^{-\frac{c^2}{2x}}\left(c^2 - 3x\right)}{2\sqrt{2\pi}x^{7/2}}$$
$$\frac{c\frac{e^{-c^2}}{2x}\left(c^2 - 3x\right)}{2\sqrt{2\pi}x^{7/2}} = 0$$

$$x = \frac{c^2}{3}$$

$$T_{min} = \frac{c^2}{3}$$

To make a mixture model we need to know the probability of taking uniform distribution and powerlaw distribution probability. That number will be in the range $[0, T_{min}]$:

$$\int_{0}^{T_{min}} cx^{-\frac{3}{2}} e^{-\frac{c^{2}}{2x}} \sqrt{2\pi}^{-1} dx = \frac{\Gamma\left(\frac{1}{2}, \frac{c^{2}}{2T_{min}}\right)}{\sqrt{\pi}}$$

as
$$T_{min} = \frac{c^2}{3} - \frac{\Gamma\left(\frac{1}{2}, \frac{c^2}{2T_{min}}\right)}{\sqrt{\pi}} = \frac{\Gamma\left(\frac{1}{2}, \frac{3}{2}\right)}{\sqrt{\pi}} \sim 0.08326451666$$

As a result, majorising density function is:

$$g(x) = \frac{2 * 0.08326}{c^2} 1_{[0, T_{min}]} + (1 - 0.08326) * \frac{2^{1-a} (a-1) \left(\frac{x}{c^2}\right)^{-a}}{c^2} * 1_{(T_{min}, \infty)}$$

2.

Target density:

$$f(x) = c(\sqrt{2\pi})^{-1}e^{\frac{-c^2}{2x}}x^{\frac{-3}{2}}1_{(0,\infty)}(x)$$

We need to find c_{maj}

$$c_{maj} > 0$$
; $sup_x(f(x)/g(x)) \le c_{maj}$

$$h(x) = \frac{f(x)}{g(x)}$$

 $c_{maj} = h(x_{maj})$

if $x < T_{min}$

$$\frac{\partial}{\partial x} \frac{f(x)}{\frac{0.16652}{c^2}} = \frac{e^{-\frac{c^2}{2x}} \left(1.19788c^5 - 3.59364c^3x\right)}{x^{7/2}}$$

$$\frac{e^{-\frac{c^2}{2x}}\left(1.19788c^5 - 3.59364c^3x\right)}{x^{7/2}} = 0$$

$$x_{maj} = \frac{c^2}{3}$$

 $x \text{ for cmaj} = 0.333333c^2 = T_{min}$

if x> Tmin

$$\frac{\partial}{\partial x} \frac{f(x)}{g(x)} = \frac{3^{a-1} c^3 \frac{e^{-c^2}}{2x} \left(\frac{x}{c^2}\right)^a \left((2a-3)x + c^2\right)}{2\sqrt{2\pi}(a-1)x^{7/2}}$$
$$\frac{3^{a-1} c^3 \frac{e^{-c^2}}{2x} \left(\frac{x}{c^2}\right)^a \left((2a-3)x + c^2\right)}{2\sqrt{2\pi}(a-1)x^{7/2}} = 0$$
$$x_{maj} = \frac{c^2}{3-2a}$$

when 1 < a < 1.5

$$c_{maj} = h(x_{maj})$$

As we can see a should be between 1 and 1.5 If a >= 1.5 majorising constant will be negative. We will fix $\alpha = 1.3$. Afterwards, the majorizing constant will ensure it gets above of the target.

```
majDensity <- function(x, c, a){
    Tmin <- (c^2)/3

if(x>Tmin){
    return((1-0.083264) * powerlaw(x, a, Tmin))
    }
    else {return(0.083264 * dunif(x,0,Tmin))}
}

c <- 2
y3 <- sapply(x, majDensity, c = c, a = 1.3)
y1 <- sapply(x, distrib1, c = c)
plot(x,y1, type = "1", ylim = c(0,max(y3,y1)), ylab = "y")
lines(x,y3, col ="blue")
legend("topright", c("target", "proposal, a = 1.3"), fill=c("black", "blue"))</pre>
```


 $\mathbf{2}$

```
library(poweRlaw)
randomnumber <- function(t,a){</pre>
  numb <- runif(1)</pre>
  if(numb<= 0.08326){</pre>
    return(runif(1,0,t))
  }
  else{
    return(rplcon(1,t,a))
}
CompleteDist <- function(c, a, rej){</pre>
  z \leftarrow TRUE
  res <- 0
  Tmin <- (c^2)/3
  xmaj <- (c^2)/(3-2*a)
  cmaj <- distrib1(xmaj,c)/majDensity(xmaj,c, a)</pre>
  while (z == TRUE) {
    y <- randomnumber(Tmin,a)</pre>
    u <- runif(1)
    if(u <= distrib1(y, c) / (cmaj*majDensity(y,c,a))){</pre>
```

```
res <- y
z <- FALSE
}
if(rej){
rejected <<- rejected + 1
}
return(res)
}
rDist <- function(n,c,a ,rej = FALSE){
return(replicate(n, CompleteDist(c, a, rej)))
}</pre>
```

3.

Variance and mean is increase due to ${\bf c}$

From plot we can see that rejection rate does not depend on the constant c of the target density.

Question 2

1.

$$DE(\mu, \alpha) = \frac{\alpha}{2} e^{-\alpha|x-\mu|}$$

- μ location parameter
- b > 0 scale parameter

inverse CDF of DE:

Source - https://en.wikipedia.org/wiki/Laplace_distribution

$$F^{-1}(p) = \mu - bsgn(p - 0.5)ln(1 - 2|p - 0.5|)$$

```
where b = \frac{1}{\alpha}

rLaplace <- function(n, mean = 0, alpha = 1){

b <- 1/alpha

u <- runif(n)

res <- mean - (b*sign(u-0.5) * log(1-(2*abs(u-0.5))))

return(res)

}
```

meaning:

- 1. calculate b.
- 2. take n random variables from uniform distribution [0,1]
- 3. calculate random numbers from inverse CDF of laplace distribution where x is a random variable from uniform distribution

Comparison of rlaplace function from rmutil with our rLaplace

From histogram we can see that inverse CDF method approximated Laplace distribution reasonably, mean and variance similarly, in turn.

2.

```
DE <- function(x, mean = 0,alpha = 1){
    return((0.5*alpha)*exp((-alpha)*abs(x-mean)))
}

genNorm <- function(c, rej){
    z <- TRUE
    res <- 0
    while (z == TRUE) {
        y <- rLaplace(1)
        u <- runif(1)
        if(u <= pnorm(y) / (c*DE(y))){
            res <- y
              z <- FALSE
    }
    if(rej){
        rejected <<- rejected + 1
    }
}</pre>
```

```
return(res)
}

rNorm <- function(n,c,rej = FALSE){
  return(replicate(n, genNorm(c, rej)))
}</pre>
```

algorithm:

- 1. write Laplace probability function
- 2. assign 0 to result value res
- 3. generate random number y from rLaplace function
- 4. generate random number u from uniform distribution
- 5. check if u is less or equal to probability of y in normal distribution / c * probability of y in laplace distribution
 - a) if yes, return y
 - b) repeat steps from 3

$$c > 0; \sup_{x} (f(x)/g(x)) \le c$$

$$h(x) = \frac{f(x)}{g(x)}$$

$$f(x) = N(0,1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$g(x) = \frac{1}{2} e^{-|x|}$$

$$h(x) = \sqrt{\frac{2}{\pi}} e^{|x| - \frac{x^2}{2}}$$

$$\frac{d}{dx} \sqrt{\frac{2}{\pi}} e^{|x| - \frac{x^2}{2}} = \sqrt{\frac{2}{\pi}} x e^{|x| - \frac{x^2}{2}} \left(\frac{1}{|x|} - 1\right)$$

$$\frac{\sqrt{2} e^{x - \frac{x^2}{2}} (x - 1)}{\pi} = 0$$

$$x = \pm 1$$

$$c = h(1) = 1.3154892$$

Comparison of rnorm() with our rNorm()

	mean	variance
rNorm()	0.4032887	1.248962
rnorm()	-0.0219314	1.001522

rejection rate: 0.2019154, expected rejection rate = $1 - \frac{1}{c} = 0.2398265$, difference - -0.0379111 We can see that mean and variance of generated distribution slightly differs.

Appendix

```
knitr::opts_chunk$set(echo = TRUE)

distrib1 <- function(x,c){
   if(x>0){
      return(c*(sqrt(2*pi)^(-1))*(exp(-(c^2)/(2*x))) * (x^(-3/2)))
   }
   else return(0)
}

powerlaw <- function(x,a,t){
   if(x>t){
    return(((a-1)/t) * ((x/t)^(-a)))
   }
}
```

```
else return(0)
}
x < - seq(0,50, by=0.01)
c < -1.6
y1 <- sapply(x, distrib1, c=c)
y2 \leftarrow sapply(x, powerlaw, a = 2, t = 3)
ymax <- max(y1,y2)
b \leftarrow \min(c(y1,y2))
e \leftarrow \max(c(y1,y2))
ax <- seq(b,e,by=(e-b)/200)
plot(x,y1, type="l", col = "blue", ylim = c(0,ymax))
lines(x,y2, col = "red")
legend("topright", c("target density", "powerlaw"), fill=c("blue", "red"))
majDensity <- function(x, c, a){</pre>
  Tmin <- (c^2)/3
  if(x>Tmin){
    return((1-0.083264) * powerlaw(x, a, Tmin))
  else {return(0.083264 * dunif(x,0,Tmin))}
}
c <- 2
y3 \leftarrow sapply(x, majDensity, c = c, a = 1.3)
y1 \leftarrow sapply(x, distrib1, c = c)
plot(x,y1, type = "l", ylim = c(0,max(y3,y1)), ylab = "y")
lines(x,y3, col ="blue")
legend("topright", c("target", "proposal, a = 1.3"), fill=c("black", "blue"))
library(poweRlaw)
randomnumber <- function(t,a){</pre>
  numb <- runif(1)</pre>
  if(numb \le 0.08326){
    return(runif(1,0,t))
  }
  else{
    return(rplcon(1,t,a))
  }
}
CompleteDist <- function(c, a, rej){</pre>
  z <- TRUE
  res <- 0
  Tmin <- (c^2)/3
  xmaj <- (c^2)/(3-2*a)
  cmaj <- distrib1(xmaj,c)/majDensity(xmaj,c, a)</pre>
  while (z == TRUE) {
```

```
y <- randomnumber(Tmin,a)</pre>
    u <- runif(1)
    if(u <= distrib1(y, c) / (cmaj*majDensity(y,c,a))){</pre>
      res <- y
      z <- FALSE
    if(rej){
    rejected <<- rejected + 1
  return(res)
rDist <- function(n,c,a ,rej = FALSE){</pre>
return(replicate(n, CompleteDist(c, a, rej)))
}
rejected <- 0
par(mfrow=c(1,3))
datarDist1 <- rDist(2000, 2, 1.3, TRUE)</pre>
datarDist12 <- datarDist1[datarDist1 < 200]</pre>
rejected1 <- rejected</pre>
rejected <- 0
datarDist2 <- rDist(2000, 9, 1.3, TRUE)
datarDist22 <- datarDist2[datarDist2 < 200]</pre>
rejected2 <- rejected
rejected <- 0
datarDist3 <- rDist(2000, 15, 1.3, TRUE)</pre>
datarDist32 <- datarDist3[datarDist3 < 200]</pre>
rejected3 <- rejected</pre>
hist(datarDist12, breaks = 30, main = "c = 2", xlab = "data")
hist(datarDist22, breaks = 30, main = "c = 9", xlab = "data")
hist(datarDist32, breaks = 30, main = "c = 15", xlab = "data")
results <- matrix(c(mean(datarDist1), var(datarDist1), mean(datarDist2), var(datarDist2), mean(datarDist2)
colnames(results) <- c("c=2", "c=9", "c=15")</pre>
row.names(results) <- c("mean", "variance")</pre>
knitr::kable(results)
resrejected <- numeric()</pre>
c \leftarrow seq(1.1,20, by = 0.1)
for (ci in c) {
  rejected <- 0
  rDist(2000, ci, 1.12, TRUE)
```

```
RR <- (rejected / 2000)
 resrejected <- append(resrejected ,1-(1/RR))
plot(c,resrejected, type="l", ylab= "rejection rate")
rLaplace <- function(n, mean = 0, alpha = 1){</pre>
 b <- 1/alpha
 u <- runif(n)
  res <- mean - (b*sign(u-0.5) * log(1-(2*abs(u-0.5))))
  return(res)
}
library(rmutil)
c1 <- rgb(173,216,230,max = 255, alpha = 80, names = "lt.blue")
c2 <- rgb(255,192,203, max = 255, alpha = 80, names = "lt.pink")
hist(rlaplace(10000, 2,1), 100,
     col = c1,
     main = "Comparison of rlaplace function from rmutil with our rLaplace",
     xlab = "values")
hist(rLaplace(10000, 2,1), 100, col = c2, add = TRUE)
legend("topright", c("rLaplace", "rlaplace"), fill=c(c2, c1))
DE <- function(x, mean = 0,alpha = 1){</pre>
 return((0.5*alpha)*exp((-alpha)*abs(x-mean)))
}
genNorm <- function(c, rej){</pre>
  z <- TRUE
  res <- 0
  while (z == TRUE)  {
    y <- rLaplace(1)
    u <- runif(1)
    if(u <= pnorm(y) / (c*DE(y))){</pre>
      res <- y
      z <- FALSE
    }
    if(rej){
    rejected <<- rejected + 1
    }
  }
  return(res)
rNorm <- function(n,c,rej = FALSE){</pre>
return(replicate(n, genNorm(c, rej)))
}
\# x \leftarrow seq(-5,5, by=0.1)
# test <- function(x){ return((dnorm(x)/DE(x)))}</pre>
# cde \leftarrow sapply(x, test)
# cnorm <- dnorm(x)</pre>
#c <- max(cnorm/cde)
## why it calculates 1,35 ???
```

```
c <- 1.3154892
rejected <- 0
datarNorm <- rNorm(2000, c, TRUE)</pre>
datarnorm <- rnorm(2000)</pre>
b <- min(c(datarNorm,datarnorm))</pre>
e <- max(c(datarNorm,datarnorm))</pre>
ax <- seq(b,e,by=(e-b)/50)
hist(datarNorm, breaks = ax,
     col = c1,
     main = "Comparison of rnorm() with our rNorm()",
     xlab = "values",
     xlim = range(datarNorm,datarnorm))
hist(datarnorm, breaks = ax, col = c2, xlim = range(datarNorm,datarnorm), ylim = c(0,250), add = TRUE
legend("topright", c("rnorm", "rNorm"), fill=c(c2, c1))
compare <- matrix(c(mean(datarNorm), var(datarNorm), mean(datarnorm), var(datarnorm)), nrow = 2, byrow =</pre>
row.names(compare) <- c("rNorm()", "rnorm()")</pre>
colnames(compare) <- c("mean", "variance")</pre>
knitr::kable(compare)
RR <- (rejected / 2000)
```