Recitation #15: Infinite Series, Divergence and **Integral Tests**

Problem 1 Suppose $\{a_n\}_{n\geq 1}$ is a sequence and $\sum_{n=1}^{\infty} a_n$ converges to L>0. Let $s_n=\sum_{n=1}^{\infty} a_n$. Circle all of the statements that MUST be true.

$$A. \lim_{n \to \infty} a_n = L$$

$$B. \lim_{n \to \infty} a_n = 0$$

$$C. \lim_{n \to \infty} s_n = 0$$

$$D. \lim_{n \to \infty} s_n = L$$

D.
$$\lim_{n\to\infty} s_n = L$$
 E. $\sum_{n=1}^{\infty} s_n$ MUST diverge. F. $\sum_{n=1}^{\infty} (a_n + 1) = L + 1$

$$F. \sum_{n=1}^{\infty} (a_n + 1) = L + 1$$

G. The divergence test tells us
$$\sum_{n=1}^{\infty} a_n$$
 converges to L.

Solution:

Since $\{a_n\}_{n\geq 1}=L$, $\{a_n\}_{n\geq 1}$ is a convergent series, so $\lim_{n\to\infty}a_n=0$. Since L>0, there is no way that

B. True

If $\lim_{n\to\infty} a_n \neq 0$, the divergence test implies $\sum_{n=1}^{\infty} a_n$ diverges! Anytime a series $\sum_{n=1}^{\infty} a_n$ converges, it MUST be true that $\lim_{n\to\infty} a_n = 0$.

C. False

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \sum_{n=1}^\infty a_n = L > 0$$

D. True

Some essential facts are:

$$-\sum_{n=1}^{\infty} a_n \text{ converges iff } \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k \text{ exists}$$

- When
$$\lim_{n\to\infty} s_n$$
 does exist, $\sum_{n=1}^{\infty} a_n = \lim_{n\to\infty} s_n$.

- The series
$$\sum_{n=1}^{\infty} a_n$$
 likewise diverges iff the $\lim_{n\to\infty} s_n$ does not exist.

Here, we are given $\sum_{n\to\infty} a_n$ converges to L>0, which tells us immediately that $\lim_{n\to\infty} s_n=L$.

E. True

Since
$$\lim_{n\to\infty} s_n = L \neq 0$$
, the divergence test tells us immediately that $\sum_{n=1}^{\infty} s_n$ MUST diverge.

F. False

Since
$$\sum_{n=1}^{\infty} a_n$$
 converges, $\lim_{n\to\infty} a_n = 0$. Thus, $\lim_{n\to\infty} (a_n + 1) = 1$, and the divergence test immediately tells us that $\sum_{n=1}^{\infty} (a_n + 1)$ MUST diverge!

G. False

The divergence test NEVER can be used to conclude that a series converges!

Problem 2 For each of the following, answer True or False, and explain why.

(a) If
$$\sum_{n=0}^{\infty} a_n$$
 converges, then $\sum_{n=0}^{\infty} (a_n + 0.001)$ converges.

(b) Since
$$\int_{1}^{\infty} x \sin(\pi x) dx$$
 diverges then, by the Integral Test, $\sum_{n=0}^{\infty} n \sin(\pi n)$ diverges.

(c) Since
$$\int_1^\infty \frac{1}{x^2} dx = 1$$
 then, by the Integral Test, $\sum_{k=1}^\infty \frac{1}{k^2} = 1$.

Solution:

(a) False

Since
$$\sum_{n=0}^{\infty} a_n$$
 converges, we know that $\lim_{n\to\infty} a_n = 0$. But then

$$\lim_{n \to \infty} (a_n + 0.0001) = 0.0001 \neq 0$$

and so
$$\sum_{n=0}^{\infty} (a_n + 0.001)$$
 diverges by the Divergence Test.

(b) False

The Integral Test only holds for positive, decreasing functions. The function $f(x) = x \sin(\pi x)$ is not always positive, nor is it always decreasing. So the Integral Test does not apply here.

This problem is simpler than that though. Since $\sin(\pi n) = 0$ for all integers n, we have that $\sum_{n=0}^{\infty} n \sin(\pi n) = 0.$

(c) False

The Integral Test tells us that $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, but it does **not** give us the sum (this sum is actually $\frac{\pi^2}{6}$).

Problem 3 Assume $\sum_{k=0}^{\infty} a_k = L$ and $b_k = 8$ for all k.

(a) What is
$$\lim_{k\to\infty} (a_k + b_k)$$
?

(b) What is
$$\lim_{k\to\infty} \sum_{n=0}^k (a_n + b_n)$$
?

(c) What is
$$\lim_{k \to \infty} \sum_{n=0}^{k} (a_{n+1} - a_n)$$
?

Solution: (a) Since $\sum_{k=0}^{\infty} a_k$ converges, we know that $\lim_{k\to\infty} a_k = 0$. Therefore,

$$\lim_{k \to \infty} (a_k + b_k) = 0 + 8 = \boxed{8}$$

(b) Since $\lim_{n\to\infty} (a_n+b_n) = 8$, the series $\sum_{n=0}^{\infty} (a_n+b_n)$ diverges by the Divergence Test. But $\lim_{k\to\infty} \sum_{n=0}^k (a_n+b_n) = \infty$

$$\sum_{n=0}^{\infty} (a_n + b_n).$$
 Thus

$$\lim_{k \to \infty} \sum_{n=0}^{k} (a_n + b_n) = \sum_{n=0}^{\infty} (a_n + b_n) = \boxed{\infty}.$$

(c) Let $S_k = \sum_{n=0}^k (a_{n+1} - a_n)$ (and recall that $\{S_k\}$ is the sequence of partial sums). Then

$$S_k = \sum_{n=0}^k (a_{n+1} - a_n)$$

$$= (a_1 - a_0) + (a_2 - a_1) + (a_3 - a_2) + \dots + (a_k - a_{k-1}) + (a_{k+1} - a_k)$$

$$= a_{k+1} - a_0.$$

Thus,

$$\lim_{k \to \infty} \sum_{n=0}^{k} (a_{n+1} - a_n) = \lim_{k \to \infty} S_k = \lim_{k \to \infty} a_{k+1} - a_0 = \boxed{-a_0}.$$

Problem 4 Determine if the following series converge or diverge. If they converge, find the sum.

(a)
$$\sum_{k=0}^{99} 2^k + \sum_{k=100}^{\infty} \frac{1}{2^k}$$

Solution: Let us analyze the two different summands in this problem:

(i)
$$\sum_{k=0}^{99} 2^k$$

This is a finite sum from a geometric sequence, and so its sum is

$$\frac{a(1-r^n)}{1-r}$$

Thus,

$$\sum_{k=0}^{99} 2^k = \frac{1(1-2^{100})}{1-2} = 2^{100} - 1.$$

(ii)
$$\sum_{k=100}^{\infty} \frac{1}{2^k} = \sum_{k=100}^{\infty} \left(\frac{1}{2}\right)^k.$$

This is a geometric series with $a = \frac{1}{2^{100}}$ and $r = \frac{1}{2}$. So

$$\sum_{k=100}^{\infty} \frac{1}{2^k} = \frac{\frac{1}{2^{100}}}{1 - \frac{1}{2}} = \frac{1}{2^{99}}.$$

Therefore, combining parts (i) and (ii) we have that

$$\sum_{k=0}^{99} 2^k + \sum_{k=100}^{\infty} \frac{1}{2^k} = 2^{100} - 1 + \frac{1}{2^{99}}.$$

(b)
$$\sum_{k=4}^{\infty} \frac{5 \cdot 4^{k+3}}{7^{k-2}}$$

Solution: Let us first reindex this series. Let $\ell = k - 4$. Then $k = \ell + 4$, and when k = 4, $\ell = 0$. We then have that

$$\begin{split} \sum_{k=4}^{\infty} \frac{5 \cdot 4^{k+3}}{7^{k-2}} &= \sum_{\ell=0}^{\infty} \frac{5 \cdot 4^{\ell+4+3}}{7^{\ell+4-2}} \\ &= \sum_{\ell=0}^{\infty} \frac{5 \cdot 4^{\ell+7}}{7^{\ell+2}} \\ &= \sum_{\ell=0}^{\infty} \frac{5 \cdot 4^7 \cdot 4^{\ell}}{7^2 \cdot 7^{\ell}} \\ &= \frac{5 \cdot 4^7}{7^2} \sum_{\ell=0}^{\infty} \left(\frac{4}{7}\right)^{\ell} \quad \text{assuming this series converges} \\ &= \frac{5 \cdot 4^7}{7^2} \cdot \frac{1}{1 - \frac{4}{7}} \quad \text{geometric series with } a = 1, r = \frac{4}{7} \\ &= \frac{5 \cdot 4^7}{3 \cdot 7}. \end{split}$$

Therefore, this series converges to $\frac{5 \cdot 4^7}{3 \cdot 7}$.

(c)
$$\sum_{k=0}^{\infty} e^{5-2k}$$

Solution:

$$\begin{split} \sum_{k=0}^{\infty} e^{5-2k} &= \sum_{k=0}^{\infty} \left[e^5 \cdot \left(e^{-2} \right)^k \right] \\ &= e^5 \sum_{k=0}^{\infty} \left(e^{-2} \right)^k \quad \text{assuming the series converges} \\ &= e^5 \cdot \frac{1}{1-e^{-2}} \quad \text{geometric series with } a = 1, r = e^{-2} < 1 \end{split}$$

Therefore, this series converges to $\frac{e^5}{1-e^{-2}}$.

(d)
$$\sum_{i=1}^{\infty} \left(\frac{2}{i^2+2i}\right)$$
 Hint: $\frac{2}{i^2+2i} = \frac{1}{i} - \frac{1}{i+2}$ by partial fractions

Solution: This is a telescoping series. Let

$$S_n = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+2}\right).$$

Then,

$$S_n = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+2}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \left(\frac{1}{5} - \frac{1}{7}\right)$$

$$+ \dots + \left(\frac{1}{n-2} - \frac{1}{n}\right) + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+2}\right)$$

$$= 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}.$$

Note that the last equality above is because all of the non-red terms cancel (convince yourself of this). Then

$$\sum_{i=1}^{\infty} \left(\frac{1}{i} - \frac{1}{i+2} \right) = \lim_{n \to \infty} S_n$$

$$= \lim_{n \to \infty} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]$$

$$= 1 + \frac{1}{2} = \frac{3}{2}.$$

Problem 5 Determine if the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^2 + 1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

Solution: (a) Divergence Test

Notice that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{3n^2 + 1} = \frac{1}{3}.$$

Therefore, since $\lim_{n\to\infty} a_n \neq 0$, by the Divergence Test this series diverges

(b) Integral Test

First, notice that $f(x) = \frac{1}{x(\ln x)^2}$ is a decreasing and positive function on $[2, \infty)$. Then

$$\int_{2}^{\infty} f(x) dx = \int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx$$

$$= \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{2}} dx$$

$$= \lim_{b \to \infty} \int_{\ln 2}^{\ln b} u^{-2} du \quad u = \ln x, du = \frac{1}{x} dx$$

$$= \lim_{b \to \infty} \left[\frac{-1}{u} \right]_{\ln 2}^{\ln b}$$

$$= \lim_{b \to \infty} \left(\frac{-1}{\ln b} + \frac{1}{\ln 2} \right)$$

$$= 0 + \frac{1}{\ln 2} = \frac{1}{\ln 2}.$$

Therefore, since the above integral converges, the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ [converges] by the Integral Test.

Problem 6 For a sequence $\{a_n\}_{n\geq 1}$ let $s_n=\sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n=\frac{4n^2+9}{1-2n}$.

- (a) Find $a_1 + a_2 + a_3$.
- (b) Find $a_8 + a_9 + a_{10}$.
- (c) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- (d) Determine whether $\sum_{k=1}^{\infty} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.

Solution: (a) Note by definition that $a_1 + a_2 + a_3 = s_3$. Using the formula given for s_n with n = 3 gives:

$$a_1 + a_2 + a_3 = \frac{4(3)^2 + 9}{1 - 2(3)} = \boxed{-9}.$$

(b) Note that by definition:

$$s_{10} = a_1 + \dots + a_7 + a_8 + a_9 + a_{10}$$

 $s_7 = a_1 + \dots + a_7$

6

so $a_8 + a_9 + a_{10} = s_{10} - s_7$. Using the formula for s_n , we have:

$$s_1 0 = \frac{4(10)^2 + 9}{1 - 2(10)} = -\frac{409}{19}, \qquad s_7 = \frac{4(7)^2 + 9}{1 - 2(7)} = -\frac{205}{13}$$

Thus,
$$a_8 + a_9 + a_{10} = -\frac{409}{19} + \frac{205}{13}$$
.

(c) To determine this, we note that:

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{4n^2+9}{1-2n} = -\infty.$$

Since $\lim_{n\to\infty} s_n$ does not exist, $\sum_{k=1}^{\infty} a_k$ diverges by the Divergence Test.

(d) We showed that $\lim_{n\to\infty} s_n = -\infty$, so $\sum_{k=1}^{\infty} s_k$ diverges by the Divergence Test.