

Deep Learning

Convolutional Neural Networks

Technische Hochschule Rosenheim Sommer 2023 Prof. Dr. Jochen Schmidt

Overview

- Linear Filtering & Convolution
- Convolutional Neural Networks
- Architectures

Example: Typical MLP-Structure for Images

Recognition of Image Parts

- many patterns are smaller than the complete image
- for small regions: less parameters required

Similar Patterns

- similar patterns can be found in different image locations
- Idea: Train many small detectors that
 - move over the image
 - share parameters

- hence: CNN Convolutional Neuronal Network
- consists of (linear) convolution filters
- the filter masks are learned during training
- first used with backpropagation in LeNet (1989-1998): LeCun, Bottou, Bengio, Haffner. Gradient-Based Learning Applied to Document Recognition. Proc. of the IEEE 86(11): 2278-2324, 1998.

Linear Filters & Convolution

2D-Convolution (Faltung)

original image f

+ filter mask
$$g$$

$$\begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$
 Convolution

- mirror filter mask horizontally and vertically,
- move filter mask over image,
- compute weighted sum mask/underlying gray value
 → new value for central pixel

These will be three-dimensional in a CNN!

filtered image f'

$$f'(x,y) = f * g = \sum_{i=-r}^{r} \sum_{j=-r}^{r} f(x-i,y-j) g(i,j)$$
 filtered image filter mass

Filter mask:

- Size $(2r + 1) \times (2r + 1)$
- (i, j) coordinate system, (0, 0) in mask center,
- *i* right, *j* down (as in image)

Low-pass Filter

- removes high frequencies
- reduces image noise
- results in smoothing of image

3x3 Mean
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Low-pass Filter

Influence of Filter Size

Mean filter, Sizes: 3x3, 5x5, 11x11, 21x21

Original

High-pass Filter

- removes low frequencies
- edge detection
- widely used:
 - Sobel
 - based on computing the first order partial derivatives
 - result: two edge images (horizontal and vertical direction)
 - edges = large values (maxima of derivative)
 - Laplace
 - based on computing the second order derivatives (the Laplace operator)
 - edges = zero crossings
 - more subjective to noise compared to Sobel

first order partial derivatives

$$f_{x} = \frac{\partial f(x, y)}{\partial x} \qquad \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad f_{y} = \frac{\partial f(x, y)}{\partial y} \qquad \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

gradient strength:

$$s = \sqrt{f_x^2 + f_y^2}$$

gradient direction:

$$\theta = \arctan\left(\frac{f_y}{f_x}\right)$$
 Note: use atan2(y, x)

Range?

High-pass Filter – Sobel

horizontal

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

vertical

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

combined (gradient strength image)

(images converted to gray-scale range & inverted)

Caution with Color Images!

- Low-pass
 - filter each RGB-channel separately
 - but: RGB is unsuitable for linear interpolation
 - better: use CIELUV or CIELAB color space
 - but: Conversion from RGB is computationally expensive (non-linear)
 - combine all channels using tensors (→ CNN)
 - does not really solve the RGB-problem (linear operation)
 - but results in single value combining all channels (no color image)
- High-pass filter
 - filtering channels separately does not really make sense
 - combine all channels using tensors (→ CNN)

Gaussian 11x11, $\sigma = 5$

Remarks

- Filter masks typically have odd size $(3x3, 5x5, ...) \rightarrow$ symmetric about the current pixel
- they are not necessarily square
- Design of special-purpose filters is possible
- filters can be concatenated, resulting a single new linear filter mask (cf. convolution equation)
- in image processing, convolution is usually computed in image space
- convolution using FFT makes sense with large filter sizes only

CNN

Convolution and activation are now repeated several times Idea: Combine low-level features, combine again etc.

Convolution = Feature Extraktion

k Feature Maps

Hyperparameter – Stride

the filter mask can be moved by more than one pixel (stride) this differs from the "normal" convolution operation

Example: 7x7 image with 3x3 filter

х	X	X	х	х	
х	х	X	Х	х	
Х	X	X	X	х	
X	X	X	X	х	
X	X	X	X	х	

Stride 1

Output: 5x5

Stride 2

Output: 3x3

X		X	
X		X	

Stride 3 asymmetric border – stride does not match

Hyperparameter – Stride

NΙ

	IV						
				F			
N		F					
	-		-	-			

Stride *S*

Size of output:
$$\frac{N-F}{S}+1$$

If result is integer: Stride and filter size match

Example
$$N = 7, F = 3$$
:

$$S = 1: \frac{7-3}{1} + 1 = 5$$

$$S = 2: \frac{7-3}{2} + 1 = 3$$

$$S = 2: \frac{7^{-3}}{2} + 1 = 3$$
$$S = 3: \frac{7^{-3}}{3} + 1 = 2,33$$

Hyperparameter – Pad

- Problem: Input size for a layer is getting smaller and smaller
- Solution: Padding of border
 - with zeros (Zero-Padding)
 - with copies of the border pixels

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

For filter size $F \times F$ $\frac{F-1}{2}$ values are lost at the border

Examples:

F = 3: Padding with 1

F = 5: Padding with 2

F = 7: Padding with 3

Number of parameters for this layer:

each filter has $5 \cdot 5 \cdot 3 + 1 = 76$ parameters (+1 because of bias)

10 filters, total: $76 \cdot 10 = 760$ parameters

Number of parameters for this layer: each filter has $5 \cdot 5 \cdot 10 + 1 = 251$ parameters (+1 because of bias) 16 filters, total: $251 \cdot 16 = 4016$ parameters

Hyperparameters – Convolution

- Number K and size F of filters
- Stride *S*
- Size of padding P
- typical values:
 - K = power of 2, e.g. 32, 64, 128, 512
 - F = 3, S = 1, P = 1
 - F = 5, S = 1, P = 2
 - F = 5, S = 2, P = matching
 - F = 1, S = 1, P = 0
- transforms a layer of size $W \times H \times D$ into a layer of size $W' \times H' \times D'$:

$$W' = \frac{W - F + 2P}{S} + 1$$
, $H' = \frac{H - F + 2P}{S} + 1$, $D' = K$

• Number of weights: $(F \cdot F \cdot D) \cdot K + K$

Pooling

- scaling does not change the object
- objective: smaller-sized layers

each activation map is processed separately

Pooling

MAX-Pooling: Use the largest element within a windows of size $F \times F$

Average-Pooling: Use the mean value of all elements within a windows of size

Example: MAX-Pooling using 2x2 windows and stride S=2

2	1	2	4			
7	3	1	5	Pool	7	5
6	7	1	8		9	8
9	3	4	2			

Hyperparameters – Pooling

- Size *F* of windows
- Stride *S*
- Typical values:

•
$$F = 2$$
, $S = 2$

•
$$F = 3$$
, $S = 2$

• transforms a layer of size $W \times H \times D$ into a layer of size $W' \times H' \times D'$: $W' = \frac{W-F}{S} + 1$, $H' = \frac{H-F}{S} + 1$, D' = D

Number of weights: none

Fully Connected Layers / Flatten

- at the end: fully connected layers as before (MLP)
 - → Flattening

Typical Standard Architecture

- *n* ca. 3, up to ca. 5
- *m* large
- $0 \le k \le 2$
- General tendency:
 - use smaller filter sizes and deeper architecture
 - away from pooling/fully connected layers towards pure convolutional layers

Alexnet

ImageNet Classification Challenge 2012

- 1000 classes
- 1.2 million training images
- 50,000 validation images
- 150,000 test images

Network:

- 650,000 neurons
- 60 million parameters
- used CNN with ReLU on GPU for the first time

Pre-Processing:

- Scale/Crop images to 256 x 256
 (training uses random crops of size 224x224 from these)
- Subtract mean RGB image

Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 60(6):84-90, 2017.

VGGNet

- 8 layers (AlexNet) → 16-19 layers (VGG16/19)
- 3x3 convolution only, stride 1, pad 1; 2x2 max-pool stride 2
- a series of three 3x3 convolution layers has the same effective receptive field as a single 7x7 filter layer
 - but: three 3x3 is deeper, with more non-linearities
 - and has less parameters:
 - one 7x7 layer with depth d has $49d^2 + d$ weights
 - three 3x3 layers only $27d^2 + d$

VGG16: 138 million parameters

VGG19: 144 million parameters

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 256		
3x3 conv, 384		
Pool		
3x3 conv, 384		
Pool		
5x5 conv, 256		
11x11 conv, 96		
Input		

FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

K. Simonyan, A, Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". International Conference on Learning Representations, 2015. https://arxiv.org/abs/1409.1556

AlexNet

VGG16

FC 1000

VGG19

FC 1000

FC 4096

FC 4096

So, more and more Layers?

What happens when we use more layers and deeper networks?

The model with 56 layers is obviously worse – in training as well as test

- The deeper network is worse. But this is not caused by overfitting.
- Conjecture: the optimization problem is harder for deeper networks

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition, 2015. https://arxiv.org/abs/1512.03385

ResNet – Residual Neural Network

- Connections can be skipped
- No sequence of fully connected layers at the end
- Batch Normalization

Idea: A deeper network should be at least as good as a flat one.

Problem:

- when there is no change from one block to the next, we'd just need an identity mapping
- in a standard CNN this is cumbersome: has to be created by training weights

Solution in ResNet:

Copy trained layers from flat model, set additional layers to identity mapping.

Result:

- shortcuts without additional parameters
- when identity is required: just set weights to zero

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition, 2015. https://arxiv.org/abs/1512.03385

Classification, Localization, Detection, Segmentation

More on that: **Computer Vision** class winter term

images: Li, Karpathy, Johnson, CS231n, lecture 8, Winter 15/16, Stanford

Sources

- Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2017.
 http://www.deeplearningbook.org/
- Li, Johnson, Yeung: CS231n: Convolutional Neural Networks for Visual Recognition.
 Vorlesung Stanford University, 2018.
 http://cs231n.stanford.edu/
- Li: Deep Learning and Its Applications. Lecture University of Waterloo, 2017. https://cs.uwaterloo.ca/~mli/cs898-2017.html
- Original research articles as stated on the slides