

Онлайн образование

otus.ru

Меня хорошо видно && слышно?

VLAN и маршрутизация между VLAN

Андрей Рукин

Инженер ИТ

arukin@m-pr.tv

Правила вебинара

Активно участвуем

Задаем вопросы в чат

Вопросы вижу в чате, могу ответить не сразу

Условные обозначения

Индивидуально

Время, необходимое на активность

Пишем в чат

Говорим голосом

Документ

Ответьте себе или задайте вопрос

Карта курса

VLAN

Обзор сетей VLAN

Определение сети VLAN

VLAN являются логическими соединениями с другими аналогичными устройствами.

Размещение устройств в различных VLAN имеет следующие характеристики:

- Обеспечивает сегментацию различных групп устройств на одних и тех же коммутаторах
- Обеспечение более управляемой организации
 - Широковещательные, многоадресные и одноадресные передачи изолированы в отдельной **VLAN**
 - Каждая VLAN будет иметь свой уникальный диапазон ІРадресации
 - Меньший размер широковещательных доменов

Обзор сетей VLAN Преимущества сетей

VLAN

		Guest		Guest
Преимущества	Описание	VLAN 30 172.17.20.23/24	PC0	VLAN 3
Меньший размер широковещательных доменов	Разделение локальной сети доменов	уменьшает количество ц	іироковещательных	
Повышенный уровень безопасности.	Только пользова вместе	атели одной и той же сет	и VLAN могут общатьс	Я
Повышение эффективности ИТ- инфраструктуры	•	пировать устройства с а например, преподавателі		
Снижение затрат	Один коммутато	р может поддерживать н	есколько групп или VL	AN
Повышение производительности	·	ещательные домены уме кную способность	еньшают трафик,	
Упрощенное и более безопасное управление	Подобным групг другие сетевые	пам понадобятся аналоги ресурсы	чные приложения и	

Обзор сетей VLAN Типы сетей VLAN

Сеть VLAN по умолчанию

VLAN 1 является следующей:

- The default VLAN, VLAN 1
- Измените VLAN с нетегированным трафиком по умолчанию.
- сеть VLAN управления по умолчанию
- Невозможно удалить или переименовать

```
Switch# show vlan brief
VLAN Name
                       Status
                                 Ports
                                Fa0/1, Fa0/2, Fa0/3, Fa0/4
    default
                       active
                                Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                Gi0/1, Gi0/2
1002 fddi-default
                                       act/unsup
1003 token-ring-default
                                       act/unsup
1004 fddinet-default
                                       act/unsup
1005 trnet-default
                                       act/unsup
```

Обзор сетей VLAN Типы сетей VLAN

Сеть VLAN для данных

- Посвящается пользовательскому трафику
- VLAN 1 является VLAN для данных по умолчанию, так как для этой VLAN назначены все интерфейсы.

VLAN с нетегированным трафиком

- Используется только для магистральных каналов.
- Все кадры помечены на магистральном канале 802.1Q, за исключением тех, которые находятся в собственной VLAN.

Сеть VLAN управления (Management VLAN)

• Это используется для SSH/Telnet VTY трафика и не должно переноситься с трафиком конечного пользователя.

Обзор сетей VLAN

Типы сетей VLAN

Голосовая VLAN

- Отдельная VLAN необходима, так как для голосового трафика требуется:
 - Гарантированная пропускная способность
 - Высокий приоритет QoS
 - Возможность избежать заторов
 - Задержка менее 150 мс от источника к месту назначения
- Вся сеть должна быть спроектирована для поддержки голосовой связи.

3.2. Сети VLAN в среде с несколькими коммутаторами

Сети VLAN в среде с несколькими коммутаторами

Магистрали сетей VLAN

ТРАНК — это канал «точка-точка» между двумя сетевыми устройствами.

По сути транк – это магистраль.

Функции транка:

- Передавать множество VLAN
- Расширение VLAN по всей сети
- По умолчанию передает все VLAN
- Поддержка протокола 802.1Q

Виртуальные локальные сети в среде с несколькими коммутаторами Сети без VLAN

B VLAN одноадресный, многоадресный и широковещательный трафик ограничен VLAN. Без устройства уровня 3 для подключения VLAN устройства в разных VLAN не могут обмениваться данными.

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame only out ports configured for VLAN10.

Сети VLAN в среде с несколькими коммутаторами

Тегирование кадров Ethernet для идентификации сети VLAN

- Заголовок IEEE 802.1Q составляет 4 байта
- При создании тега FCS необходимо пересчитать.
- При отправке на конечные устройства этот тег должен быть удален и FCS пересчитан обратно на исходный номер.

Поле тегов VLAN 802.1Q	Функция
Тип	2-байтовое поле с шестнадцатеричным 0x8100Это называется идентификатором протокола тегов (TPID)
Приоритет пользователя	• 3-битное значение, которое поддерживает CoS
Идентификатор канонического формата (CFI)	• 1-битное значение, которое может поддерживать кадры token ring на Ethernet
идентификатор VLAN	• 12-битный идентификатор VLAN, который может поддерживать до 4096 VLAN

Сети VLAN в среде с несколькими коммутаторами

VLAN с нетегированным трафиком и тегирование по протоколу 802.1Q

Основы магистрали 802.1Q:

- Маркировка обычно выполняется на всех VLAN.
- Использование нативного VLAN было разработано для устаревшего использования, как и концентратор, приведенный в примере.
- Если не изменено, VLAN1 является нативным VLAN.
- Оба конца магистрального канала должны быть сконфигурированы с одним и тем же нативным VLAN.
- Каждая магистраль настраивается отдельно, поэтому на отдельных магистралях можно иметь разные нативные VLAN.

3.3 Конфигурация VLAN

Диапазоны VLAN на коммутаторах Catalyst

Коммутаторы Catalyst 2960 и 3560 способны поддерживать более 4000 сетей VLAN.

Swite	Switch# show vlan brief			
VLAN	Name	Status	Ports	
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gi0/1, Gi0/2	
1002	fddi-default		act/unsup	
1003 token-ring-default			act/unsup	
1004	fddinet-default		act/unsup	
1005	trnet-default		act/unsup	

сети VLAN нормального диапазона 1-1005	сети VLAN расширенного диапазона 1006- 4096
Используется в малых и средних предприятиях	Используется поставщиками услуг
1002 — 1005 зарезервированы для старых VLAN	в файле текущей конфигурации Running- Config
1, 1002 — 1005 создаются автоматически и не могут быть удалены	Поддерживают небольшое число функций VLAN
Хранится в файле vlan.dat во флэш-памяти	Требуются конфигурации VTP
VTP может синхронизировать между коммутаторами	

VLAN конфигурация

Команды создания VLAN

Создание VLAN в режиме глобальной конфигурации.

Задача	Команда IOS
Войдите в режим глобальной настройки.	Switch# configure terminal
Создайте сеть VLAN с допустимым номером идентификатора.	Switch(config)# vlan vlan-id
Укажите уникальное имя для идентификации сети VLAN.	Switch(config-vlan)# name vlan-name
Вернитесь в привилегированный режим.	Switch (config-vlan) # end
Войдите в режим глобальной настройки.	Switch# configure terminal

VLAN конфигурация

Команды назначения портов VLAN

После того, как VLAN будет создана, мы можем назначить ее правильным интерфейсам.

Задача	Команда
Войдите в режим глобальной настройки.	Switch# configure terminal
Войдите в режим конфигурации интерфейса.	Switch(config)# interface interface-id
Переведите порт в режим доступа.	Switch(config-if)# switchport mode access
Назначьте порт сети VLAN.	Switch(config-if)# switchport access vlan vlan-id
Вернитесь в привилегированный режим.	Switch(config-if)# end

VLAN конфигурация

Проверьте конфигурацию сети VLAN.

Использование команды **show** vlan Полный синтаксис:

show vlan [brief | id vlan-id | name vlan-name | **summary**]

```
S1# show vlan summary
Number of existing VLANs
Number of existing VTP VLANs
Number of existing extended VLANS
```

```
S1# show interface vlan 20
Vlan20 is up, line protocol is up
 Hardware is EtherSVI, address is 001f.6ddb.3ec1 (bia 001f.6ddb.3ec1)
 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
(Output omitted)
```

Задача	Вариант команды
Отображает имя, состояние и порты VLAN по одной VLAN на строку.	brief
Отображает информацию об отдельной VLAN, определяемой по номеру идентификатора VLAN.	id vlan-id
Отображает информацию об имени одной сети VLAN. <i>Имя VLAN</i> — это код ASCII размером от 1 до 32 символов.	name vlan-name
Отобразите общую информацию о VLAN.	show vlan

Конфигурация VLAN

Изменение членства порта VLAN

Существует несколько способов изменить членство в VLAN:

- повторно использовать команду switchport access vlan vlan-id
- использовать команду no switchport access vlan для возвращения интерфейса обратно в VLAN 1

Используйте команды show vlan brief или show interface fa0/18 switchport для проверки правильности связи VLAN.

```
S1(config) # interface fa0/18
S1(config-if) # no switchport access vlan
S1(config-if)# end
S1#
S1# show vlan brief
VLAN Name
     default
                                  Fa0/1, Fa0/2, Fa0/3, Fa0/4
                        active
                                  Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                  Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                  Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                  Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                  Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                  Gi0/1, Gi0/2
     student
1002 fddi-default
                        act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default
                        act/unsup
1005 trnet-default
                        act/unsup
```

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
```

Конфигурация VLAN

Удаление VLAN

Удалите VLAN с помощью_команды **no vlan** vlan-id .

Внимание! Перед удалением сети VLAN необходимо сначала переназначить все ее порты другой сети VLAN.

- Удалите все VLAN с помощью команды delete flash:vlan.dat или команды delete vlan.dat .
- Перезагрузите коммутатор при удалении всех VLAN.

Примечание. Чтобы восстановить заводское значение по умолчанию — отключите все кабели для передачи данных, удалите начальную конфигурацию и удалите файл vlan.dat, а затем перезагрузите устройство.

3.4 Магистрали сети VLAN

VLAN транки

Команды конфигурации транка

Настройка и проверка магистралей VLAN.

Транки являются уровнем 2 и несут трафик для всех VLAN.

Задача	Команда IOS
Войдите в режим глобальной настройки.	Switch# configure terminal
Войдите в режим конфигурации интерфейса.	Switch(config)# interface interface-id
Установите порт в режим постоянной магистрали.	Switch(config-if)# switchport mode trunk
Установите в качестве VLAN с нетегированным трафиком сеть, отличную от VLAN 1.	Switch(config-if)# switchport trunk native vlan vlan-id
Укажите список сетей VLAN, которым разрешен доступ в магистральный канал.	Switch(config-if)# switchport trunk allowed vlan vlan-list
Вернитесь в привилегированный режим.	Switch(config-if)# end

VLAN транки

Команды конфигурации транка - пример

К каждой VLAN относятся следующие подсети:

- VLAN 10 Faculty/Staff -172.17.10.0/24
- VLAN 20 Students 172.17.20.0/24
- VLAN 30 Guests 172.17.30.0/24
- VLAN 99 Native 172.17.99.0/24

Порт F0/1 на S1 настроен как магистральный порт.

Командная строка	Команда
S1(config)#	Interface fa0/18
S1(config-if)#	Switchport mode trunk
S1(config-if)#	Switchport trunk native vlan 99
S1(config-if)#	Switchport trunk allowed vlan 10,20,30,99
S1(config-if)#	end

Магистрали VLAN

Проверка настроек магистрали

Установите режим магистрали и native vlan.

Обратите внимание на команду **sh int fa0/1** switchport:

- Установлено для транка административно
- Установлено для транка в оперативном порядке (функционирует)
- Инкапсуляция dot1q
- Сеть VLAN с нетегированным трафиком -99
- Все VLAN, созданные на коммутаторе, будут передавать трафик по этой магистрали

```
S1(config) # interface fa0/1
S1(config-if) # switchport mode trunk
S1(config-if) # no switchport trunk native vlan 99
S1(config-if)# end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Frunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

Магистрали VLAN

Сброс магистрали в состояние по умолчанию

- Сброс параметров магистрали по умолчанию с помощью команды по.
 - Bce VLAN, разрешенные для прохождения трафика
 - Native VI AN = VI AN 1
- Проверьте настройки по умолчанию с помощью команды sh int fa0/1 switchport

```
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

```
S1(config) # interface fa0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if) # end
```

Вопросы?

Ставим "+", если вопросы есть

Ставим "-", если вопросов нет

3.5 Динамический протокол транкинга (DTP)

Динамический протокол транкинга Общие сведения о DTP

Протокол динамического транкинга (DTP) — это собственный протокол Cisco.

Характеристики DTP являются следующими:

- Включен по умолчанию на коммутаторах Catalyst 2960 и 2950
- Динамический автоматический используется по умолчанию для коммутаторов 2960 и 2950
- Может быть отключен с помощью команды nonegotiate
- Может быть снова включен, установив интерфейс на dynamic-auto
- Установка коммутатора на статический магистраль или статический доступ позволит избежать проблем согласования с switchport mode trunk или switchport mode access.

```
S1(config-if) # switchport mode trunk
S1(config-if) # switchport nonegotiate

S1(config-if) # switchport mode dynamic auto
```

Динамический протокол транкинга

Режимы интерфейса для согласования

Команда **switchport mode** имеет дополнительные параметры.

Используйте команду конфигурации интерфейса switchport nonegotiate, чтобы остановить согласование DTP.

Параметр	Описание
access	Режим постоянного доступа и согласовывает преобразование соседнего канала в канал доступа
dynamic auto	Будет становиться интерфейсом магистрали, если соседний интерфейс установлен в транк или режим desirable
dynamic desirable	Активно стремится стать магистралью путем переговоров с другими auto или desirable интерфейсами
trunk	режим постоянного транкинга и согласовывает преобразование соседнего канала в

Динамический протокол транкинга (DTP)

Результаты настройки DTP

Варианты конфигурации DTP являются следующими:

	Dynamic Auto	Dynamic Desirable	Trunk	Access
Dynamic Auto	Access	Trunk	Trunk	Access
Dynamic Desirable	Trunk	Trunk	Trunk	Access
Trunk	Trunk	Trunk	Trunk	Ограниченные возможности подключения
Access	Access	Access	Ограниченные возможности подключения	Access

Маршрутизация VLAN

4.1. Процесс маршрутизации между сетями VLAN

Процесс маршрутизации между сетями VLAN Что такое маршрутизация между сетями VLAN?

VLAN используются для сегментации коммутируемых сетей уровня 2 по разным причинам. Независимо от причины, хосты в одной VLAN не могут взаимодействовать с хостами в другой VLAN, если нет маршрутизатора или коммутатора уровня 3 для предоставления услуг маршрутизации.

Маршрутизация между сетями VLAN — это процесс переадресации сетевого трафика из одной сети VLAN в другую с помощью маршрутизатора.

Существуют три варианта маршрутизации между VLAN.

- Старый метод маршрутизации между VLAN это устаревшее решение. Плохо масштабируется
- Router-on-a-Stick это приемлемое решение для сети малых и средних размеров.
- Коммутатор уровня 3 с использованием коммутируемых виртуальных интерфейсов (SVI) — это наиболее масштабируемое решение для средних и крупных организаций.

Устаревший метод маршрутизации между сетями VLAN

- Первое решение маршрутизации между VLAN основывалось на использовании маршрутизатора с несколькими интерфейсами Ethernet. Каждый интерфейс маршрутизатора был подключен к порту коммутатора в разных VLAN.
 Интерфейсы маршрутизатора служат шлюзами по умолчанию для локальных узлов в подсети VLAN.
- Устаревший метод маршрутизации между VLAN, использующий физические интерфейсы, имеет большие ограничения. Он не является достаточно масштабируемым, поскольку маршрутизаторы имеют ограниченное количество физических интерфейсов. По мере возрастания количества VLAN в сети, требующих по одному физическому интерфейсу на каждую VLAN, количество свободных интерфейсов маршрутизатора быстро уменьшается.
- Этот метод маршрутизации между VLAN больше не реализован в коммутируемых сетях и включен только для пояснений.

Маршрутизация между сетями VLAN с помощью метода Router-on-a-Stick

Для маршрутизации трафика между несколькими сетями VLAN в сети требуется только один физический интерфейс Ethernet.

- Интерфейс Ethernet маршрутизатора Cisco IOS настроен как магистраль 802.1Q и подключен к магистральному порту коммутатора уровня 2. В частности, интерфейс маршрутизатора настраивается с использованием субинтерфейсов для идентификации маршрутизируемых VLAN.
- Настроенные субинтерфейсы являются программными виртуальными интерфейсами. Каждый из них связан с одним физическим интерфейсом Ethernet. Каждому подинтерфейсу отдельно назначаются IP-адрес и длина префикса. Подынтерфейсы настроены для разных подсетей, которые соответствуют назначенным им VLAN.
- Когда трафик с тегом VLAN входит в интерфейс маршрутизатора, он перенаправляется на субинтерфейс VLAN. После принятия решения о маршрутизации на основе IP-адреса назначения маршрутизатор определяет интерфейс выхода для трафика.
- **Примечание.** Маршрутизация между VLAN с использованием метода router-on-astick не масштабируется при работе более 50 сетей VLAN.

Маршрутизациямежду VLAN на коммутаторе уровня 3

Современный способ выполнения маршрутизации между VLAN заключается в использовании коммутаторов уровня 3 и коммутируемых виртуальных интерфейсов (SVI). Как показано на рисунке, SVI — это виртуальный интерфейс, настраиваемый в многоуровневом коммутаторе.

Примечание. Коммутатор уровня 3 также называется многослойным коммутатором, поскольку он работает на уровнях 2 и 3. Однако в этом курсе мы используем термин «Коммутатор уровня 3».

Маршрутизация между VLAN на коммутаторе уровня 3

Ниже приведены преимущества использования коммутаторов уровня 3 для маршрутизации между VLAN:

- Это более быстрая маршрутизация, чем конфигурация router-on-stick, поскольку и коммутация, и маршрутизация выполняются аппаратно
- для маршрутизации не требуются внешние каналы от коммутатора к маршрутизатору.
- Они не ограничиваются одним каналом, поскольку EtherChannels уровня 2 можно использовать в качестве магистральных каналов между коммутаторами для увеличения пропускной способности.
- Задержка намного короче, поскольку для маршрутизации в другую сеть данным не нужно покидать коммутатор.
- Они чаще развертываются в локальной сети кампуса, чем маршрутизаторы.
- Единственным недостатком является то, что коммутаторы уровня 3 дороже.

4.2. Маршрутизация между сетями VLAN с помощью метода Router-on-a-Stick

Маршрутизация между сетями VLAN с помощью метода Router-on-a-Stick

Маршрутизация между сетями VLAN с помощью метода Router-on-a-Stick - Сценарий

- На рисунке интерфейс R1 GigabitEthernet 0/0/1 подключен к порту S1 FastEthernet 0/5. Порт S1 FastEthernet 0/1 подключен к порту S2 FastEthernet 0/1. Это магистральные каналы, которые необходимы для пересылки трафика внутри VLAN и между ними.
- Для маршрутизации между VLAN интерфейс R1 GigabitEthernet 0/0/1 логически разделен на три субинтерфейса, как показано в таблице. В таблице также показаны три VLAN, которые будут настроены на коммутаторах.
- Предположим, что R1, S1 и S2 имеют начальные базовые конфигурации. В настоящее время РС1 и РС2 не могут выполнять эхо-запрос друг с другом, поскольку они находятся в разных сетях. Только S1 и S2 могут пинговать друг друга, но они недоступны РС1 или РС2. потому что они также находятся в разных сетях.
- Чтобы устройства могли выполнять эхо-запрос друг с другом, коммутаторы должны быть настроены с помощью VLAN и магистрали, а маршрутизатор должен быть настроен для маршрутизации между VLAN.

Подинтерфей с	VLAN	ІР-адрес
G0/0/1.10	10	192.168.10.1/24
G0/0/1.20	20	192.168.20.1/24
G0/0/1.30	99	192.168.99.1/24

Маршрутизация между сетями VLAN с помощью метода Router-on-a-Stick

Настройка на R1 подинтерфейсов

Для использования метода Router-on-a-Stick требуется настроить подинтерфейсы для каждой маршрутизируемой сети VLAN. Субинтерфейс создается с помощью команды режима глобальной конфигурации **interface** *interface_id* subinterface_id. Синтаксис для подинтерфейсов следующий: сначала указывается физический интерфейс, в данном случае g0/0, затем точка и номер подинтерфейса. Хотя это не требуется, обычно сопоставляют номер подинтерфейса с номером VLAN.

Затем каждый субинтерфейс настраивается с помощью следующих двух команд:

- encapsulation dot1q vlanid [native] Эта команда настраивает подинтерфейс для ответа на инкапсулированный трафик 802.1Q из указанного идентификатора vlan-id. Параметр native ключевого слова добавляется только для установки собственной VLAN на что-то отличное от VLAN 1.
- **ip address** *ip-address subnet-mask* Эта команда настраивает IPv4-адрес подинтерфейса. Этот адрес обычно служит шлюзом по умолчанию для идентифицированных VLAN.

Повторите процесс для каждой маршрутизируемой. Наконец, включите виртуальный интерфейс с помощью команды конфигурации интерфейса **no shutdown**. Если отключить физический интерфейс, то все подчиненные интерфейсы также отключаются.

Маршрутизация между сетями VLAN с помощью метода Router-on-a-Stick

Настройка на R1 подинтерфейсов

В конфигурации подинтерфейсы R1 G0/0/1 настроены для VLAN 10, 20 и 99.

```
R1(config)# interface G0/0/1.10
R1(config-subif)# Description Default Gateway for VLAN 10
Rl(config-subif)# encapsulation dot10 10
R1(config-subif)# ip add 192.168.10.1 255.255.255.0
R1(config-subif)# exit
R1(config)#
R1(config)# interface G0/0/1.20
R1(config-subif)# Description Default Gateway for VLAN 20
R1(config-subif)# encapsulation dot10 20
R1(config-subif)# ip add 192.168.20.1 255.255.255.0
R1(config-subif)# exit
R1(config)#
R1(config)# interface G0/0/1.99
R1(config-subif)# Description Default Gateway for VLAN 99
Rl(config-subif)# encapsulation dot10 99
R1(config-subif)# ip add 192.168.99.1 255.255.255.0
R1(config-subif)# exit
R1(config)#
Rl(config)# interface GO/O/1
Rl(config-if)# Description Trunk link to Sl
Rl(config-if)# no shut
R1(config-if)# end
R1#
*Sep 15 19:08:47.015: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/1, changed state to down
*Sep 15 19:08:50.071: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/1, changed state to up
*Sep 15 19:08:51.071: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/1,
changed state to up
R1#
```

4.3 Маршрутизация между виртуальными локальными сетями с помощью устройств коммутации уровня 3.

Коммутаторы уровня 3 Маршрутизация между VLAN

Возможности коммутатора уровня 3 включают в себя возможность выполнения следующих действий:

- Маршрутизация от одной VLAN к другой с использованием нескольких коммутируемых виртуальных интерфейсов (SVI).
- Преобразовать порт коммутатора уровня 2 в интерфейс уровня 3 (т.е. маршрутизируемый порт).

Сценарий использования коммутатора уровня 3

На рисунке коммутатор уровня 3 D1 подключен к двум узлам в разных VLAN. PC1 находится в VLAN 10, а PC2 — в VLAN 20, как показано на рисунке. Коммутатор уровня 3 будет предоставлять услуги маршрутизации между VLAN на обоих хостах.

Настройка использования коммутатора уровня 3

Выполните следующие шаги для настройки S1 с VLAN и транкингом:

- **Шаг 1**. Создайте сети VLAN. В этом примере используются VLAN 10 и 20.
- **Шаг 2**. Создание интерфейсов VLAN SVI. Настроенный ІР-адрес будет служить шлюзом по умолчанию для узлов в соответствующей VLAN.
- **Шаг 3**. Настройка портов доступа Назначьте соответствующий порт требуемой VLAN.
- **Шаг 4**. Активация IP-маршрутизации. Выполните команду глобальной конфигурации ip routing, чтобы разрешить обмен трафиком между VLAN 10 и 20. Эта команда должна быть настроена для включения маршрутизации между VAN на коммутаторе уровня 3 для протокола IPv4.

Маршрутизация на коммутаторе уровня 3 - сценарий маршрутизации

На рисунке ранее настроенный коммутатор D1 уровня 3 теперь подключен к R1. R1 и D1 находятся в домене протокола маршрутизации OSPF. Предположим, что маршрутизация между VLAN успешно реализована на D1. Интерфейс G0/0/1 R1 также был настроен и включен. Кроме того, R1 использует OSPF для объявления своих двух сетей: 10.10.10.0/24 и 10.20.0/24.

Настройка маршрутизации на коммутаторе уровня 3

Выполните следующие шаги, чтобы настроить D1 для маршрутизации с R1:

- **Шаг 1**. Настройте маршрутизируемый порт. Используйте команду **no switchport** для преобразования порта в маршрутизируемый порт, а затем назначьте IP-адрес и маску подсети. Включите порт.
- **Шаг 2**. Включите маршрутизацию. Для того чтобы активировать маршрутизацию на коммутаторе S1, используйте команду ip-routing **в** режиме глобальной конфигурации
- **Шаг 3**. Настройте маршрутизацию. Используйте соответствующий метод маршрутизации. В этом примере настроена OSPFv2 для одной области
- **Шаг 4**. Проверка маршрутизации. Используйте команду **show ip route.**
- **Шаг 5**. Проверьте подключение. Используйте команду **ping** для проверки достижимости.

Вопросы?

Ставим "+", если вопросы есть

Ставим "-", если вопросов нет

Заполните, пожалуйста, опрос о занятии

Спасибо за внимание!