Assignment Set: 1, 2, 3, 4, 6, 8 from pages 148 - 149

1)

Mark each statement as true or false. Justify each answer.

a. A set S is compact iff every open cover of S contains a finite subcover.

True.

The original definition is:

A set $S \subset \mathbb{R}$ is said to be compact if every open cover has a finite subcover.

 \longrightarrow (every open cover \Rightarrow compact)

Let: $S \subset \mathbb{R}$ be a set st every open cover has a finite subcover.

Then, by definition, S is compact.

 \leftarrow (every open cover \Leftarrow compact)

Let: $S \subset \mathbb{R}$ be compact

Then, by definition, S is a set st every open cover has a finite subcover.

Hence, result.

b. Every finite set is compact.

True.

Let: S be a finite set

So, $|S| = n \in \mathbb{N}$

Let: $G = S \cup \emptyset$

Notice that \emptyset is open and that G covers S.

Notice also that G = S.

Since every open cover of S has to contain S, every open cover of S contains G, a finite subcover of S.

Hence, result.

c. No infinite set is compact.

Not true.

If S = (0, 1), there are infinite values between 0 and 1.

However, (0, 1) is compact.

d. If a set is compact, then it has a maximum and a minimum.

Not true.

If S = (0, 1), then S is compact, but the upper and lower bounds of S are not members of S, so S has no maximum and minimum.

e. If a set has a maximum and a minimum, then it is compact.

Let: $G = S \cup \emptyset$

Notice that \emptyset is open and that G covers S.

Notice also that G = S.

Since every open cover of S has to contain S, every open cover of S contains G, a finite subcover of S.

Hence, result.

2)

Mark each statement as true or false. Justify each answer.

a. Some unbounded sets are compact.

False. By Heine-Borel, S is compact only if closed and bounded.

b. If $S \subset \mathbb{R}$ is compact, then $\exists x \in \mathbb{R}$ st $s \in S'$

False. The empty set is compact and contains no elements.

c. If S is compact and $s \in S'$, then $s \in S$.

True. By Heine-Borel, if S is compact, then S is closed and bounded. If S is closed, then S = int S. By Theorem 3.4.17, if S is closed, then $S' \subset S$. Since $s \in S'$, $s \in S$.

d. If S is unbounded, then S has at least one accumulation point.

False. \mathbb{N} is a counter example.

e. Let: $F = \{A_i, i \in \mathbb{N} \}$. Suppose that the intersection of any finite subfamily of F is nonempty. If \cap $F = \emptyset$, then, for some $k \in \mathbb{N}$, A_k is not compact.

3)

Show that each subset of \mathbb{R} is not compact by describing an open cover for it that has no finite subcover.

- a. '[1, 3) {n $\in \mathbb{N} : \bigcup_{i=1}^{n} (0, 2 + \sum_{k=1}^{i} \frac{1}{2^k})$ }
- b. '[1,2) {n $\in \mathbb{N} : \bigcup_{i=1}^n ((2 \sum_{i=1}^n \frac{1}{2^i}), (3 + \sum_{i=1}^n \frac{1}{2^i}))}$
- c. $\mathbb{N} \{ n \in \mathbb{N} : \bigcup_{i=1}^{n+1} (0, n) \}$
- d. $\{\frac{1}{n}: n \in \mathbb{N} \ \} \ \{ \ n \in \mathbb{N}: \ \bigcup_{i=1}^n \ (0, \ \sum_{k=1}^i \ \frac{1}{2^k} \) \}$
- e. $\{x\in\mathbb{Q}:\,0\leq x\leq 2\}$ but wait, isn't this a closed and bounded set?

4)

Prove that the intersection of any collection of compact sets is compact.

Let: S be $\bigcap_{\alpha \in I} G_{\alpha}$ where I is an index set

Let: $\bigcap_{\alpha \in I} G_{\alpha}$ be nonempty (since if it's empty, then it's compact anyhow)

By Heine-Borel, G_{α} is both closed and bounded $\forall \alpha$.

Let: U be the set of all least upper bounds $\forall G_{\alpha}$'s, and L be the set of all greatest lower bounds $\forall G_{\alpha}$'s Since G_{α} is closed $\forall G_{\alpha}$, each element in U is a max, and each element in L is a min.

Since $\bigcap_{\alpha \in I} G_{\alpha}$ is an intersection, its minimum will be max L, and its maximum will be min U, which we know exists because $\bigcap_{\alpha \in I} G_{\alpha} \neq \emptyset$

Since $\bigcap_{\alpha \in I} G_{\alpha}$ has a min and a max, and is the intersection of compact sets, it is both closed and bounded, and is therefore compact.

6)

Show that compactedness is necessary in Corollary 3.5.8. That is, find a family of intervals $\{A_n : n \in \mathbb{N} \}$ with $A_{n+1} \subset A_n \ \forall \ n, \ \bigcup_{n=1}^{\infty} A_n = \emptyset$, and such that:

- a. The sets A_n are all closed. $\{n \in \mathbb{N} : \emptyset \}$
- b. The sets A_n are all bounded. $\{n \in \mathbb{N} : (0, 0)\}$

8)

If $S \subset \mathbb{R}$ is compact and $T \subset S$ is closed, then T is compact.

- a. Prove this using the definition of compactness.
- b. Prove this using the Heine-Borel theorem.