4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 4

1. Berechne mit partieller Integration:

a)
$$\int x \sin x \, dx$$
 b) $\int \frac{\ln^2 x}{x} \, dx$ c) $\int \sin t \cos t \, dt$

b)
$$\int \frac{\ln^2 x}{x} \, dx$$

c)
$$\int \sin t \cos t \, dt$$

$$d$$
) $\int xa^x dx$

$$d$$
) $\int xa^x dx$ e) $\int \frac{\arcsin x}{\sqrt{1-x^2}} dx$

2. Berechne mit einer bekannten Methode:

a)
$$\int \frac{4x^2 - 5}{2x + 3} \, dx$$

a)
$$\int \frac{4x^2 - 5}{2x + 3} dx$$
 b) $\int_0^{\pi/4} \frac{1 - \cos^2 x}{2 \cos^2 x} dx$ c) $\int \frac{\sqrt[3]{t^5} \sqrt{t}}{\sqrt[5]{t^4}} dt$

c)
$$\int \frac{\sqrt[3]{t^5}\sqrt{t}}{\sqrt[5]{t^4}} dt$$

$$d$$
) $\int \cos^3 x \, dx$

$$d$$
) $\int \cos^3 x \, dx$ e) $\int e^y \cosh y \, dy$

3. Sei
$$f(x) = \frac{\ln x^2 - 2c}{x}$$
 mit $c \in \mathbb{R}$.

Bestimme im ersten Quadrant die Fläche zwischen f(x) und der x-Achse und begrenzt von folgenden zwei vertikalen Geraden: eine durch die Nullstelle von f(x) und die zweite durch sein Maximum.

4. Sei
$$y = x - x^2$$
.

Bestimme die Gerade y = mx, welche die eingeschlossene Fläche zwischen der Parabel und der x-Achse halbiert.

5. Sei
$$f(x) = x^2 \cdot 2^{-x}$$
. Bestimme $F(k) = \int_0^k f(x) dx$ und $\lim_{k \to +\infty} F(k)$.

4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 4

1. Berechne mit partieller Integration:

a)
$$\int x \sin x \, dx$$

b)
$$\int \frac{\ln^2 x}{x} \, dx$$

a)
$$\int x \sin x \, dx$$
 b) $\int \frac{\ln^2 x}{x} \, dx$ c) $\int \sin t \cos t \, dt$

$$d$$
) $\int xa^x dx$

$$d$$
) $\int xa^x dx$ e) $\int \frac{\arcsin x}{\sqrt{1-x^2}} dx$

2. Berechne mit einer bekannten Methode:

a)
$$\int \frac{4x^2 - 5}{2x + 3} d$$

a)
$$\int \frac{4x^2 - 5}{2x + 3} dx$$
 b) $\int_0^{\pi/4} \frac{1 - \cos^2 x}{2 \cos^2 x} dx$ c) $\int \frac{\sqrt[3]{t^5} \sqrt{t}}{\sqrt[5]{t^4}} dt$

c)
$$\int \frac{\sqrt[3]{t^5}\sqrt{t}}{\sqrt[5]{t^4}} dt$$

$$d$$
) $\int \cos^3 x \, dx$

d)
$$\int \cos^3 x \, dx$$
 e) $\int e^y \cosh y \, dy$

3. Sei
$$f(x) = \frac{\ln x^2 - 2c}{x}$$
 mit $c \in \mathbb{R}$.

Bestimme im ersten Quadrant die Fläche zwischen f(x) und der x-Achse und begrenzt von folgenden zwei vertikalen Geraden: eine durch die Nullstelle von f(x) und die zweite durch sein Maximum.

4. Sei
$$y = x - x^2$$
.

Bestimme die Gerade y = mx, welche die eingeschlossene Fläche zwischen der Parabel und der x-Achse halbiert.

5. Sei
$$f(x) = x^2 \cdot 2^{-x}$$
. Bestimme $F(k) = \int_0^k f(x) dx$ und $\lim_{k \to +\infty} F(k)$.