

Aula 2 Filtros, Bordas e Segmentação

Prof.: Ivan Oliveira Tarifa SENAI CIMATEC CV Research Group

Sumário da Aula

- 1. Filtros em Geral
 - a. Blur
 - b. Motion Blur
 - c. Sharpening
 - d. Embossing
 - e. Erosion and Dilation
 - f. Contraste
- 2. Detecção de Bordas
 - a. Sobel
 - b. Canny

- 3. Formas
- 4. Contornos
 - a. Extraindo contornos
 - b. Informações dos contornos
 - c. Identificando uma pizza sem um pedaço
- 5. Segmentação
 - a. O que é?
 - b. Segmentação por Cor
- 6. Para saber mais...
- 7. Exercícios
- 8. Referências

Filtros em Geral

Processando a imagem com um determinado objetivo

1. Convolução

- → Operação Fundamental do processamento de imagens;
 - ♦ Um operador matemático em cada pixel
 - ◆ Comumente chamado de "filtro"
- → Cada kernel (núcleo) executa uma determinada operação
 - ♦ Blur? Edge Detection?

1. Blurring

- → Basicamente, a média entre os pontos da janela
- → Filtro de passa-baixa
 - Permite baixas frequências e trava altas frequências
- → Essa média pode ser vista como uma **normalização**
 - Guarde essa palavra pois ela é importante ;)

1. Motion Blur

- → Parece que a foto foi tirada em movimento
- → Aplica média em um único eixo
 - ♦ Isso simula o movimento

$$M = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

1. Sharpening

- → Enfatiza bordas
- → Bom para destacar regiões de interesse

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -7 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

1. Embossing

- → Manipular direções da iluminação na imagem
 - De forma sintética, pode criar novos pontos de luz (ou enfatizar os existentes)
 - ♦ Comumente apresentada em escala de cinza
 - Pode ser utilizada como máscara para outros processamentos

1. Erosion and Dilation

- → Aumentar (dilation) ou Diminuir (erosion) os objetos de uma imagem
- → Podem ser utilizados para vários motivos
 - Preencher buracos na imagem
 - Enfatizar formas muito maiores que outras
 - Unificar objetos que estejam próximos...

) 🖨 imag

MY HANDWRITTEN FONT! MY HANDWRITTEN FONT! MY HANDWRITTEN FONT! MY HANDWRITTEN FONT! MY HANDWRITTEN FONT!

1. Manipulando Contraste

- → Imagens capturadas em situações de iluminação ruim (pouca luz)
- → Histogram Equalization
 - Pegar todo o espectro de cores da imagem e tentar distribuir de uma forma mais eficiente
 - ◆ Pode ser feito em imagens P&B e Coloridas

Detecção de Bordas

Os contornos da imagem importam

1. Edge Detection - Sobel

→ Busca por mudanças "bruscas" nas cores da imagem

$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad S_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

1. Edge Detection - Canny

- → Canny melhora o resultado
 - Existe um parâmetro que indica o nível de variação que queremos detectar
 - O nome desse parâmetro é threshold
 - Grava que também é importante

Contornos e Formas

Para interpretar uma imagem, precisamos saber o que há nela.

1. Formas

- → Círculos, retângulos, etc.
- → São comumente chamadas de primitivas
- → Quando em conjunto, podem compor objetos mais complexos

1. Extraindo Contornos

- → Cada objeto possui seus contornos
- → Para conseguir calcular informações sobre os objetos (área, perímetro, etc), precisamos encontrar os contornos de cada um
- → Baseado na detecção de bordas

1. Informações do Contorno

- → Encontrei um contorno que tem potencial
 - ♦ É convexo?
 - Quanto tem de área?
 - Quanto tem de perímetro?
 - Qual o seu formato?

Contour n 1	Contour n 5	Contour n 9	Contour n 13
Area: 0	Area: 29.5	Area: 24.5	Area: 102
Perimeter: 425.078	Perimeter: 132.409	Perimeter: 192.894	Perimeter: 2257.92
Convex? No	Convex? No	Convex? No	Convex? No
Contour n 2	Contour n 6	Contour n 10	Contour n 14
Area: 69	Area: 0	Area: 25.5	Area: 19016
Perimeter: 387.588	Perimeter: 0	Perimeter: 198.894	Perimeter: 3086.04
Convex? No	Convex? No	Convex? No	Convex? No
Contour n 3	Contour n 7	Contour n 11	Contour n 15
Area: 15014.5	Area: 27974.5	Area: 34.5	Area: 18848.5
Perimeter: 574.399	Perimeter: 1773.7	Perimeter: 243.865	Perimeter: 547.899
Convex? No	Convex? No	Convex? No	Convex? No
Contour n 4	Contour n 8	Contour n 12	Contour n 16
Area: 14885	Area: 27794	Area: 61.5	Area: 39
Perimeter: 464.274	Perimeter: 629.955	Perimeter: 451.831	Perimeter: 567.103
Convex? No	Convex? No	Convex? No	Convex? No

1. Identificando uma pizza sem um pedaço

- → A pizza forma um círculo
- → Se faltar um pedaço, o círculo se quebra
 - ♦ Se torna côncavo
- → Como identificar a pizza faltando um pedaço, então?

1. O que é segmentação?

- → Segmentar, no significado da palavra, pode ser entendido como separar em partes
- → Segmentação de imagens é, basicamente, separar a imagem em trechos semelhantes entre si
- → Semelhantes como?
 - ◆ Cor
 - Forma
 - Análises Estatísticas
 - Entre inúmeras outras

1. Segmentação por cores

- → Pode ser considerado o exemplo mais básico de segmentação
- → Dado um espectro de cores, escolha um ponto e segmente a imagem
- → Extremamente simples de implementar
- → Muito útil quando o objeto de interesse é muito discrepante do restante da imagem
 - ♦ Um pinguim na neve, por exemplo
 - Uma bola de futebol colorida no campo

Para saber mais...

- → <u>Image Segmentation</u>
- → Watershed based segmentation
- → Contour Features
- → Sobel and Laplacian edge detection
- → Snapchat filters using OpenCV
- → Making your own filters

Exercícios

- → Criar sua versão do Vignette Filter
 - Esse filtro cria um "foco virtual" em um determinado ponto da imagem
 - Esse ponto deve ser passado por parâmetro para o código
 - Descrição Completa
- → Criar o seu segmentador de imagem
 - Segmentador de espectro vermelho
 - O sistema deve aceitar dois casos
 - Inteiro único, representando valor mínimo a ser segmentado
 - Dois inteiros, representando o intervalo onde deve ser segmentado
 - Descrição Completa

Realização

