3/9/25, 9:09 PM KBиз №3

Квиз №3

* Indicates required question					
1.	Email *				
2.	Ваше имя и фамилия *				
3.	Какие из этих слоев можно увидеть и в полносвязной, и в сверточной, и * 1 point в рекуррентной нейросети? Check all that apply. nn.Linear nn.Dropout nn.Conv1d nn.MaxPool1d nn.RNN				
4.	Чем однослойная нейросеть отличается от многослойной? * 1 point Mark only one oval.				
	Существенных различий нет Однослойная нейросеть не будет содержать нелинейность Однослойная нейросеть не будет работать Однослойная нейросеть может содержать больше параметров				

3/9/25, 9:09 PM Kвиз №3

5.	что представляет из себя скрытое состояние рекуррентной * 1 poin нейросети?						
	Mark only one oval.						
	Вектор, содержащий информацию, передающуюся от одного шага обучения к другому						
	Простое число, являющееся "памятью" нейросети						
	Пабор нейронов, обрабатывающий информацию, приходящую из входного слоя, и передающий ее на выходной слой						
6.	Как относятся друг к другу обратное распространение ошибки * 1 point						
•	(backpropagation) и градиентный спуск?						
	Mark only one oval.						
	Градиентный спуск происходит во время обратного распространения ошибки						
	Обратное распространение ошибки является частью градиентного спуска						
	Эти понятия не связаны						
	Эти понятия означают одно и то же						
7.	Какие утверждения об обучении базовых моделей (пре-трейне) * 1 point						
	верны?						
	Check all that apply.						
	Это вычислительно недорогой этап, позволяющий модели запоминать простейшие инструкции						
	Этот этап включает в себя обучение модели на огромных объемах данных						
	На этом этапе модель обучается предсказывать следующий токен в последовательности						
	Этот этап рекомендуется повторять при дообучении модели						

3/9/25, 9:09 РМ Квиз №3

8. Что за нейросеть представлена на картинке? *

1 point

```
1 class Model(nn.Module):
       def __init__(self, vocab_size, embedding size):
3
           super().__init__()
4
           self.hidden layer = nn.Embedding(vocab size, embedding size)
5
           self.output_layer = nn.Linear(embedding_size, vocab size, bias=False)
7
       def forward(self, input):
8
           hidden = self.hidden layer(inputs)
9
           output probabilities = self.output layer(hidden)
10
           return output probabilities
```

Mark only one oval.

- Это сверточная нейросеть для классификации изображений
- Это рекуррентная нейросеть для перевода
- 💮 Это полносвязная нейросеть для обучения эмбеддингов
- 9. Где в данном примере ошибка? *

1 point

```
for step in range(100):
 2
       # выбираем случайный пример для обучения на этом этапе
 3
       ind = random.randint(0, inputs.size()[0]-1)
 4
       current input = inputs[ind ]
 5
       current target = targets[ind ]
 6
 7
       outputs = model(current input)
 8
 9
       current loss = loss(outputs, current target.to(torch.long))
10
11
       optimizer.step()
12
       optimizer.zero grad()
```

Mark only one oval.

- ____ Не хватает одного этапа backward pass
- Выполнены лишние действия с оптимизатором
- () Видимых ошибок нет
- Входные данные неправильно передаются в модель

2 points

10. Где в данном примере ошибка? *

11.

```
class SampleNN(nn.Module):
               init (self, input dim, hidden dim, output dim):
 2
 3
             super(SampleNN, self). init ()
 4
             self.fc1 = nn.Linear(input dim, hidden dim)
 5
             self.fc2 = nn.Linear(hidden dim, output dim)
 6
             self.relu1 = nn.ReLU()
 7
 8
        def forward(self, x):
             x = self.fcl(x)
 9
             x = self.relu1(x)
10
11
             x = self.fc2(x)
12
             return x
Mark only one oval.
    Ошибки нет, если далее будет подобрана правильная лосс-функция
    Функция активации использована слишком рано
    Недостаточно скрытых слоёв
    Ошибки нет в любом случае
В чем преимущества использования механизма внимания? *
                                                                 1 point
Check all that apply.
   Интерпретируемость
   Возможность на каждом шаге генерации посмотреть на всё входное
предложение и определить наиболее важные на данный момент элементы
   Работа с текстами любой длины без риска "забывания" моделью начала текста
   Возможность применения teacher forcing
   Возможность не пользоваться жадным поиском лучшего слова на каждом
```

этапе генерации, а отслеживать ограниченное количество возможных выходных

последовательностей на каждом шаге

3/9/25, 9:09 PM Kвиз №3

2.	Сопоставьте семейство трансформеров и задачу, которую ими наиболее удобно решать:				* 3 points		
	Mark only	one oval per row.					
		Анализ тональности	Генерация диалога	Автоматическое реферирование	_		
	BERT				_		
	GPT				_		
	BART						
					_		
3.	Отметьте	е все верные у	тверждения	о нейросетях-тра	нсформерах: *	2 points	
	Check all that apply.						
	ВычиНа касловоSelf-a	 Энкодер и декодер обмениваются информацией только в одном месте Вычисления внутри трансформера могут происходить только последовательно На каждом шаге модели известно, на какой позиции в предложении находится слово Self-attention декодера может "смотреть вперед", но только на этапе обучения Модель не может состоять только из энкодера или только из декодера 					
•		и сложностями ме RLHF?	вы можете	столкнуться при о	бучении в	* 1 point	
	Check all t	that apply.					
	Понадобится очень много аннотированных данных						
	Модель-агент может научиться обманывать модель вознаграждения						
	☐ Обучение модели вознаграждения очень дорогое☐ Модель обучится просто имитировать "идеальные" ответы						

3/9/25, 9:09 PM Kвиз №3

15	Зачем нужны специальные токены начала и конца предложения в * 1 роі sequence-to-sequence-нейросетях?					
	Mark only one oval.					
	Чтобы знать, когда начинать и заканчивать генерацию					
	С их помощью осуществляется padding					
	Для инициализации скрытого состояния декодера					
	Чтобы знать, когда обрезать слишком длинное предложение					
16	. Какие нейросети обычно применяют для энкодеров и декодеров в seq2seq-нейросетях?	* 1 point				
	Check all that apply.					
	☐ Обычные RNN☐ LSTM☐ Полносвязные нейросети☐ Сверточные нейросети					

This content is neither created nor endorsed by Google.

Google Forms