DIMENSIONALITY REDUCTION

Dimensionality of input

- Number of Observables (e.g. age and income)
- If number of observables is increased
 - More time to compute
 - More memory to store inputs and intermediate results
 - More complicated explanations (knowledge from learning)
 - Regression from 100 vs. 2 parameters
 - No simple visualization
 - 2D vs. 10D graph
 - Need much more data (curse of dimensionality)
 - 1M of 1-d inputs is not equal to 1 input of dimension 1M

Dimensionality reduction

- Some features (dimensions) bear little or nor useful information (e.g. color of hair for a car selection)
 - Can drop some features
 - Have to estimate which features can be dropped from data
- Several features can be combined together without loss or even with gain of information (e.g. income of all family members for loan application)
 - Some features can be combined together
 - Have to estimate which features to combine from data

Feature Selection vs Extraction

- □ Feature selection: Choosing k < d important features, ignoring the remaining d k
 - Subset selection algorithms
- □ Feature extraction: Project the original x_i , i = 1,...,d dimensions to new k < d dimensions, z_i , j = 1,...,k
 - Principal Components Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - Factor Analysis (FA)

Usage

- Have data of dimension d
- □ Reduce dimensionality to k<d</p>
 - Discard unimportant features
 - Combine several features in one
- Use resulting k-dimensional data set for
 - Learning for classification problem (e.g. parameters of probabilities $P(x \mid C)$
 - Learning for regression problem (e.g. parameters for model y=g(x | Thetha)

Subset selection

- Have initial set of features of size d
- □ There are 2[^]d possible subsets
- Need a criteria to decide which subset is the best
- A way to search over the possible subsets
- Can't go over all 2^d possibilities
- Need some heuristics

"Goodness" of feature set

- Supervised
 - Train using selected subset
 - Estimate error on validation data set

- Unsupervised
 - Look at input only(e.g. age, income and savings)
 - Select subset of 2 that bear most of the information about the person

Mutual Information

- Have a 3 random variables(features) X,Y,Z and have to select 2 which gives most information
- If X and Y are "correlated" then much of the information about of Y is already in X
- Make sense to select features which are "uncorrelated"
- Mutual Information (Kullback-Leibler Divergence) is more general measure of "mutual information"
- Can be extended to n variables (information variables x_1 ,... x_n have about variable x_{n+1})

Subset-selection

- Forward search
 - Start from empty set of features
 - Try each of remaining features
 - Estimate classification/regression error for adding specific feature
 - Select feature that gives maximum improvement in validation error
 - Stop when no significant improvement
- Backward search
 - Start with original set of size d
 - Drop features with smallest impact on error

Floating Search

- Forward and backward search are "greedy" algorithms
 - Select best options at single step
 - Do not always achieve optimum value
- Floating search
 - Two types of steps: Add k, remove I
 - More computations

Feature Extraction

- □ Face recognition problem
 - Training data input: pairs of Image + Label(name)
 - Classifier input: Image
 - Classifier output: Label(Name)
- Image: Matrix of 256X256=65536 values in range 0..256
- Each pixels bear little information so can't select
 100 best ones
- Average of pixels around specific positions may give an indication about an eye color.

Projection

 Find a projection matrix w from d-dimensional to kdimensional vectors that keeps error low

$$z = \mathbf{w}^T \mathbf{x}$$

PCA: Motivation

- Assume that d observables are linear combination of k<d vectors
- $z_i = w_{i1}x_{i1} + \dots + w_{ik}x_{id}$
- We would like to work with basis as it has lesser dimension and have all(almost) required information
- What we expect from such basis
 - Uncorrelated or otherwise can be reduced further
 - Have large variance (e.g. w_{i1} have large variation) or otherwise bear no information

PCA: Motivation

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

PCA: Motivation

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance

- Choose directions that are orthogonal
 - Minimize correlation

Choose k<d orthogonal directions which maximize total variance

PCA

- \square Choosing only directions: $\| oldsymbol{w}_1 \| = 1$
- \square $z_1 = \boldsymbol{w}_1^T \boldsymbol{x}$ $Cov(\boldsymbol{x}) = \boldsymbol{\Sigma}, Var(z_1) = \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1$
- Maximize variance subject to a constrain using Lagrange Multipliers

$$\max_{\boldsymbol{w}_1} \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1 - \alpha (\boldsymbol{w}_1^T \boldsymbol{w}_1 - 1)$$

Taking Derivatives

$$2\Sigma w_1 - 2\alpha w_1 = 0 \qquad \Sigma w_1 = \alpha w_1$$

Eigenvector. Since want to maximize $\mathbf{w}_1^T \mathbf{\Sigma} \mathbf{w}_1 = \alpha \mathbf{w}_1^T \mathbf{w}_1 = \alpha$ we should choose an eigenvector with largest eigenvalue

PCA

- d-dimensional feature space
- □ d by d symmetric covariance matrix estimated from samples $Cov(x) = \Sigma$,
- Select k largest eigenvalue of the covariance matrix and associated k eigenvectors
- The first eigenvector will be a direction with largest variance

What PCA does

$$z = \mathbf{W}^{\mathsf{T}}(\mathbf{x} - \mathbf{m})$$

where the columns of **W** are the eigenvectors of \sum , and m is sample mean

Centers the data at the origin and rotates the axes

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

How to choose k?

Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when λ_i are sorted in descending order

- □ Typically, stop at PoV>0.9
- \square Scree graph plots of PoV vs k, stop at "elbow"

PCA

- PCA is unsupervised (does not take into account class information)
- Can take into account classes: Karhuned-Loeve Expansion
 - Estimate Covariance Per Class
 - Take average weighted by prior
- Common Principle Components
 - Assume all classes have same eigenvectors (directions) but different variances

PCA

- Does not try to explain noise
 - Large noise can become new dimension/largest PC

 Interested in resulting uncorrelated variables which explain large portion of total sample variance

 Sometimes interested in explained shared variance (common factors) that affect data

- Assume set of unobservable ("latent") variables
- Goal: Characterize dependency among observables using latent variables
- Suppose group of variables having large correlation among themselves and small correlation with other variables
- □ Single factor?

Assume k input factors (latent unobservable)
 variables generating d observables

 Assume all variations in observable variables are due to latent or noise (with unknown variance)

 Find transformation from unobservable to observables which explain the data

□ Find a small number of factors **z**, which when combined generate **x**:

$$x_i - \mu_i = v_{i1}z_1 + v_{i2}z_2 + ... + v_{ik}z_k + \varepsilon_i$$

where z_i , $i = 1,...,k$ are the latent factors with $E[z_i]=0$, $Var(z_i)=1$, $Cov(z_i, z_i)=0$, $i \neq j$, ε_i are the noise sources

E[ε_i]= ψ_i, Cov(ε_i , ε_j) =0, $i \neq j$, Cov(ε_i , z_j) =0 , and v_{ij} are the factor loadings

$$x - \mu = Vz + \epsilon$$

□ Find V such that $\mathbf{S} = \mathbf{V}\mathbf{V}^T + \mathbf{\Psi}$ where S is estimation of covariance matrix and V loading (explanation by latent variables)

 \square V is d x k matrix (k<d)

Solution using eigenvalue and eigenvectors

$$\mathbf{Z} = \mathbf{X}\mathbf{W} = \mathbf{X}\mathbf{S}^{-1}\mathbf{V}$$

□ In FA, factors z_i are stretched, rotated and translated to generate x

FA Usage

- Speech is a function of position of small number of articulators (lungs, lips, tongue)
- Factor analysis: go from signal space (4000 points)
 for 500ms) to articulation space (20 points)
- Classify speech (assign text label) by 20 points
- Speech Compression: send 20 values

Linear Discriminant Analysis

 Find a low-dimensional space such that when x is projected, classes are well-separated

Means and Scatter after projection

$$m_{1} = \frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} r^{t}}{\sum_{t} r^{t}} = \mathbf{w}^{T} \mathbf{m}_{1}$$

$$m_{2} = \frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} (1 - r^{t})}{\sum_{t} (1 - r^{t})} = \mathbf{w}^{T} \mathbf{m}_{2}$$

$$s_{1}^{2} = \sum_{t} (\mathbf{w}^{T} \mathbf{x}^{t} - m_{1})^{2} r^{t}$$

$$s_{2}^{2} = \sum_{t} (\mathbf{w}^{T} \mathbf{x}^{t} - m_{2})^{2} (1 - r^{t})$$

Good Projection

- Means are far away as possible
- Scatter is small as possible
- Fisher Linear Discriminant

Summary

- Feature selection
 - Supervised: drop features which don't introduce large errors (validation set)
 - Unsupervised: keep only uncorrelated features (drop features that don't add much information)
- Feature extraction
 - Linearly combine feature into smaller set of features
 - Supervised
 - PCA: explain most of the total variability
 - FA: explain most of the common variability
 - Unsupervised
 - LDA: best separate class instances