La statistica inferenziale

(Parte I: Stime e intervalli di confidenza)

Obiettivi di apprendimento

- Saper passare da una distribuzione empirica alla quella di popolazione
- Saper comunicare l'incertezza di una statistica
- Saper calcolare e interpretare un intervallo di confidenza

Le fasi della ricerca

Se questa parte vi sembra difficile è perché è difficile.

Potreste doverci spendere un bel po' di tempo prima di riuscire a capirla del tutto: non vi preoccupate, è normale e ci siamo passati tutti!

Dalla campione alla popolazione

Dalla campione alla popolazione

Quanto siamo precisi?

Quanti partner (etero)sessuali le persone in Gran Bretagna riferiscono di aver avuto nella loro vita?

$$n_{
m donne} = 1100 \ n_{
m uomini} = 796$$

	Uomini 35-44	Donne 35-44
Moda	1	1
Range	0-500	0-550
Media	14.3	8.5
SD	24.2	19.7
Mediana	8	5
IQR	4-18	3-10

Ricalcoliamo senza i "valori estremi"

Quanti partner (etero)sessuali gli uomini inglesi, tra i 35 e 44 anni di età, riferiscono di aver avuto nella loro vita?

$$n_{
m uomini} = 760$$

	Uomini 35-44
Moda	1
Range	0-50
Media	11.4
SD	11.2
Mediana	7
IQR	4-16

Quanti partner (etero)sessuali gli uomini inglesi, tra i 35 e 44 anni di età, riferiscono di aver avuto nella loro vita?

$$n_{
m campione}=10$$

$$n_{
m campione} = 50$$

$$n_{
m campione}=100$$

$$n_{
m campione} = 200$$

$$n_{
m campione}=380$$

Esercizio #1

- Al crescere della dimensione del campione
 - a) migliorano le stime dei parametri
 - b) le stime dei parametri diventano più sensibili alle singole osservazioni
 - c) non c'è differenza
 - d) non ho abbastanza elementi per rispondere

Esercizio #1 -- Soluzione

- Al crescere della dimensione del campione
 - a) migliorano le stime dei parametri 🗸
 - b) le stime dei parametri diventano più sensibili alle singole osservazioni
 - c) non c'è differenza
 - d) non ho abbastanza elementi per rispondere

Quanto siamo precisi?

Con questo esempio, abbiamo introdotto due concetti:

- 1. Campioni più grandi stimano meglio i parametri di una popolazione
- 2. Continuare ad estrarre campioni ci da un'idea della variazione attorno al valore "plausibile" del parametro che ci interessa

Quindi come procediamo?

Stima dei parametri e del margine di errore

Come stimo la variazione rispetto al valore reale nella popolazione se quello che sto cercando è proprio il valore reale nella popolazione?

Stima dei parametri e del margine di errore

- 1. Assumendo che la popolazione assomigli al campione
 - \rightarrow via bootstrapping
- 2. Facendo assunzioni matematiche sulla forma della distribuzione nella popolazione
 - \rightarrow via distribuzione campionaria & teorema del limite centrale

Stima dei parametri e del margine di errore

 $N_{
m Bootstrapping}=1000$

L'intervallo di confidenza

Intervallo che contiene il 95% delle medie ottenute via Bootstrapping

L'intervallo di confidenza

Intervallo che contiene il 95% delle medie ottenute via Bootstrapping

L'intervallo di confidenza

Intervallo che contiene il 95% delle medie ottenute via Bootstrapping

$$N_{
m Bootstrapping} = 1000 \ ar{x} = 11.4$$

$n_{ m campione}$	Media	95% CI
10	11.4	(5.0; 19.0)
50	11.4	(8.4; 14.6)
100	11.4	(9.2; 13.5)
200	11.3	(9.9; 12.9)
380	11.3	(10.2; 12.4)
760	11.3	(10.6, 12.1)

Esercizio #2

- ? Al crescere della dimensione del campione
 - a) peggiora la stima dell'incertezza del parametro
 - b) migliora la stima dell'incertezza del parametro
 - c) non c'è differenza
 - d) non ho abbastanza elementi per rispondere

Esercizio #2 -- Soluzione

- Al crescere della dimensione del campione
 - a) peggiora la stima dell'incertezza del parametro
 - b) migliora la stima dell'incertezza del parametro

- c) non c'è differenza
- d) non ho abbastanza elementi per rispondere

Fermiamoci un attimo

Abbiamo introdotto due concetti difficili e importanti:

- 1. esiste una variabilità nella stima dei parametri che dipende dal campione
- 2. la forma della distribuzione delle statistiche non dipende dalla forma della distribuzione originaria e tende alla normale per insiemi grandi

Ora abbiamo le basi per affrontare il secondo approccio per stimare i parametri e l'intervallo di confidenza

La distribuzione campionaria & il teorema del limite centrale

$$\mathcal{N}=(\mu,rac{\sigma^2}{n})$$
 con $\sqrt{rac{\sigma^2}{n}}=rac{\sigma}{\sqrt{n}}$ $ightarrow$ standard error

Mettiamo i pezzi insieme

- La distribuzione campionaria tende alla distribuzione Normale
- In una Normale, 95% delle osservazioni sono a circa $2 \times SD$ dalla media
- Il nostro intervallo di confidenza (95%) è a circa $2 \times SE$ dalla media della distribuzione campionaria

Quindi come si calcola?

@ Il 95% CI è a circa $2 imes \mathrm{SE}$ dalla media della distribuzione campionaria

- 1. Calcoliamo lo SE
- 2. Calcoliamo $2 \times SE$, *i.e.*, 95% Margine di Errore (ME)
- 3. Calcoliamo il 95% CI come $(\bar{x}-\mathrm{ME}~;~\bar{x}+\mathrm{ME})$

Esercizio #3

? In media, Quanti partner (etero)sessuali gli uomini inglesi, tra i 35 e 44 anni di età, riferiscono di aver avuto nella loro vita?

Qual è il 95% CI?

$$n_{
m uomini} = 760$$

$$\bar{x}=11.4$$

$$s = 11.2$$

$$SE = \sigma/\sqrt{n} = ?$$

Esercizio #3 -- Soluzione

? In media, Quanti partner (etero)sessuali gli uomini inglesi, tra i 35 e 44 anni di età, riferiscono di aver avuto nella loro vita?

$$n_{
m uomini} = 760 \ ar{x} = 11.4 \ s = 11.2$$

$$\mathrm{SE} = \sigma/\sqrt{n} =~?
ightarrow ~\mathrm{\hat{SE}} = s/\sqrt{n} = rac{11.2}{\sqrt{7}60} = 0.41$$

Esercizio #3 -- Soluzione

? In media, Quanti partner (etero)sessuali gli uomini inglesi, tra i 35 e 44 anni di età, riferiscono di aver avuto nella loro vita?

$$n_{
m uomini}=760 \ ar{x}=11.4 \ s=11.2$$

$$ext{SE} = \sigma/\sqrt{n} = ? o ext{SE} = s/\sqrt{n} = rac{11.2}{\sqrt{7}60} = 0.41$$
 $95\% ext{CI} = (ar{x} - 2 imes \hat{ ext{SE}}; ar{x} + 2 imes \hat{ ext{SE}}) =$
 $= (11.4 - 2 imes 0.41; 11.4 + 2 imes 0.41) =$
 $= (11.4 - 0.82; 11.4 + 0.82) =$
 $= (10.68; 12.22)$

Esercizio #3 -- Soluzione

? In media, Quanti partner (etero)sessuali gli uomini inglesi, tra i 35 e 44 anni di età, riferiscono di aver avuto nella loro vita?

$$n_{
m uomini}=760 \ ar{x}=11.4 \ s=11.2$$

$$ext{SE} = \sigma/\sqrt{n} = ? o ext{SE} = s/\sqrt{n} = rac{11.2}{\sqrt{7}60} = 0.41 \ 95\% ext{CI} = (10.68; 12.22)$$

via Bootstrapping $ightarrow 95\% {
m CI} = (10.6; 12.1)$

Ma come si interpreta?

Se facessimo 100 campionamenti, 95 stimerebbero un intervallo di confidenza che contiene il vero valore del parametro

Popolazione: Donne italiane dai25 ai 74 anni

 $\mu=123~\mathrm{mmHg}$

Esercizio #4

- Pa un sondaggio, risulta che lo stipendio mensile medio di un neolaureato è 1.400€, con un 95% CI = (1.200€; 1.600€).
 Come interpreto questo risultato?
 - a) gli stipendi dei neolaureati sono compresi tra i 1.200 ai 1.600€
 - b) il 95% dei neolaureati riceve tra 1.200 ai 1.600€
 - c) la media degli stipendi dei neolaureati nella popolazione ha una probabilità del 95% di essere compresa tra 1.200 ai 1.600€
 - d) nessuna delle precedenti

Esercizio #4 -- Soluzione

- Pa un sondaggio, risulta che lo stipendio mensile medio di un neolaureato è 1.400€, con un 95% CI = (1.200€; 1.600€).
 Come interpreto questo risultato?
 - a) gli stipendi dei neolaureati sono compresi tra i 1.200 ai 1.600€
 - b) il 95% dei neolaureati riceve tra 1.200 ai 1.600€
 - c) la media degli stipendi dei neolaureati nella popolazione ha una probabilità del 95% di essere compresa tra 1.200 ai 1.600€ ✓
 - d) nessuna delle precedenti

Il coefficiente di attendibilità lpha

Livello di confidenza	α	lpha/2	$z_{lpha/2}$
95%	5%	2.5%	

Il coefficiente di attendibilità α

Livello di confidenza	α	lpha/2	$z_{lpha/2}$
95%	5%	2.5%	

$$100\% - 2.5\% = 97.5\%$$

Il coefficiente di attendibilità α

Livello di confidenza	α	lpha/2	$z_{lpha/2}$
95%	5%	2.5%	

$$100\% - 2.5\% = 97.5\% \rightarrow z = 1.96$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5 36	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6106	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7 23	0.7157	0.7190	0.722
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7154	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8815	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8 770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8 62	0.8980	0.8997	0.901
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9 31	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9106	0.9418	0.9429	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9808	0.9616	0.9625	0.963
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9586	0.9693	0.9699	0.970
1.9	0.0710	0.0710	0.0720	0.0702	0.0700	0.0744	0.9750	0.9756	0.9761	0.976
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Il coefficiente di attendibilità lpha

Livello di confidenza	α	lpha/2	$z_{lpha/2}$
95%	5%	2.5%	1.96
90%	10%	5.0%	1.65
99%	1%	0.5%	2.58

$$egin{array}{ll} 100\% - 2.5\% &= 97.5\%
ightarrow z = 1.96 \ 100\% - 5.0\% &= 95.0\%
ightarrow z = 1.65 \ 100\% - 0.5\% &= 99.5\%
ightarrow z = 2.58 \end{array}$$

- Se l'intervallo di confidenza è largo...
 - a) è più probabile che includa μ
 - b) è meno probabile che includa μ
 - c) non c'è differenza
 - d) non posso rispondere

Esercizio #5 -- Soluzione

Esercizio #5 -- Soluzione

- Se l'intervallo di confidenza è largo...
 - a) è più probabile che includa μ lacksquare
 - b) è meno probabile che includa μ
 - c) non c'è differenza
 - d) non posso rispondere

- Più l'intervallo di confidenza è largo...
 - a) meno siamo precisi
 - b) più siamo precisi
 - c) non c'è differenza
 - d) non posso rispondere

Esercizio #6 -- Soluzione

Esercizio #6 -- Soluzione

Più l'intervallo di confidenza è largo...

- a) meno siamo precisi 🗸
- b) più siamo precisi
- c) non c'è differenza
- d) non posso rispondere

- ? Dato che $\mathcal{N}=(\mu,\frac{\sigma^2}{n})$ con $\sqrt{\frac{\sigma^2}{n}}=\frac{\sigma}{\sqrt{n}} o$ standard error (SE), come posso restringere l'intervallo di confidenza?
 - a) aumentando n
 - b) diminuendo n
 - c) aumentando σ
 - d) diminuendo σ
 - e) nessuna delle precedenti
 - f) non ho abbastanza elementi per rispondere

Esercizio #7 -- Soluzione

Pato che $\mathcal{N}=(\mu,\frac{\sigma^2}{n})$ con $\sqrt{\frac{\sigma^2}{n}}=\frac{\sigma}{\sqrt{n}} o$ standard error (SE), come posso restringere l'intervallo di confidenza?

- a) aumentando n
- b) diminuendo n
- c) aumentando σ
- d) diminuendo σ
- e) nessuna delle precedenti
- f) non ho abbastanza elementi per rispondere

Una regola empirica

 ${\color{red} 60}$ Il margine di errore (in percentuale) è al più $\pm 100/\sqrt{n}$

@ Il margine di errore (in percentuale) è al più $\pm \, 100/\sqrt{n}$

Calcolate il 95% CI per le due affermazioni

05:00

Esercizio #8 -- Soluzione

@ Il margine di errore (in percentuale) è al più $\pm \ 100/\sqrt{n}$

Calcolate il 95% CI per le due affermazioni

$$ext{ME} = 100/\sqrt{31} = 18\%$$

$$95\% \; ext{CI}_{ ext{rughe}} = (17 - 18; 17 + 18) \ = (-1\%, 35\%)$$

$$95\% \; ext{CI}_{ ext{occhi}} = (33 - 18; 33 + 18) \ = (15\%, 51\%)$$

E se il campione è piccolo?

- Non posso approssimare a una normale
- ullet Uso la t di Student

t di Student per campioni piccoli

- Non posso approssimare a una normale
- Uso la t di Student
 - \circ considera i gradi di libertà (df)
 - \circ per un campione di dimensione n o df = n-1

$$95\%~ ext{CI} = (ar{x} - t imes \hat{SE};~ar{x} + t imes \hat{SE})$$

Cosa abbiamo imparato in questa lezione?

- Gli intervalli di confidenza (CI)/margini di errore sono un aspetto importante di come vengono comunicate le statistiche
- La dimensione del campione influenza la larghezza dei CI
- Attraverso il bootstrapping si ricampiona il dataset originale con rimpiazzo, ottenendo distribuzioni che tendono alla normale
- Il teorema del limite centrale ci dice che le distribuzioni campionarie tendono alla normale per campioni grandi, con formule per calcolare i CI
- Un CI del 95% risulta da una procedura che nel 95% dei casi contiene il valore della popolazione
- ullet Per campioni piccoli, la distribuzione campionaria viene approssimata dalla distribuzione t di Student