Revision Notes for CO245 Probability and Statistics

Spring 2018

Results in grey are included in the formula sheet.

1 Probability

Sample Spaces and Events

- Sample space S: Range of possible outcomes of a random experiment.
- Event: Subset of sample space.
 - Null event: ∅.
- Events are **mutually exclusive** if $\forall i, j. E_i \cap E_j = \emptyset$.

The σ -algebra A collection \mathfrak{S} of subsets of S is a σ -field or σ -algebra if it satisfies:

- 1. Nonempty: $S \in \mathfrak{S}$.
- 2. Closed under complements: if $E \in \mathfrak{S}$ then $\overline{E} \in \mathfrak{S}$.
- 3. Closed under countable union: if $E_1, E_2, \dots \in \mathfrak{S}$ then $\bigcup_{i=1}^{\infty} E_i \in \mathfrak{S}$.

Axioms:

- 1. For any E in \mathfrak{S} , 0 < P(E) < 1.
- 2. P(S) = 1.
- 3. Countably additive: $P(\cup_i E_i) = \sum_i P(E_i)$.

Properties:

- 1. $P(\overline{E}) = 1 P(E)$.
- 2. $P(\emptyset) = 0$.
- 3. For any events E and F, $P\left(E\cup F\right)=P\left(E\right)+P\left(F\right)-P\left(E\cap F\right)$.

Independence

- Events E and F are independent iff $P(E \cap F) = P(E) P(F)$.
- ullet If E and F are independent, \overline{E} and F are also independent.

Conditional Probability

- 1. $P(E \mid F)$ is called a **conditional** probability.
- 2. $P(E \cap F)$ is called a **joint** probability.
- 3. P(E) is called a **marginal** probability.

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

- Events E_1 and E_2 are **conditionally independent** given F iff $P(E_1 \cap E_2 \mid F) = P(E_1 \mid F) P(E_2 \mid F)$.
- Bayes theorem (easily derived from definition above) states:

$$P(E \mid F) = \frac{P(E) P(F \mid E)}{P(F)}$$

Read the question and **check carefully**. Make sure you know the difference between $P(A \cap B)$ and $P(A \mid B)$!

• For a set of events $\{F_1, F_2, \dots\}$ which form a partition of S, the **partition rule** (derived from $E = E \cap S$) states:

$$P(E) = \sum_{i} P(E \mid F_i) P(F_i)$$

Likelihood and Posterior Probability For parameters θ and evidence X:

- 1. **Likelihood function** is $P(X \mid \theta)$.
- 2. Posterior probability is $P(\theta \mid X)$.
- 3. Prior probability is $P(\theta)$.

By Bayes theorem:

$$P(\theta \mid X) = \frac{P(X \mid \theta) P(\theta)}{P(X)}$$

2 Random Variables

Mapping from sample space to \mathbb{R} (e.g. $X:S \to \mathbb{R}$).

- Probability distribution function $P_X(x) = P(X^{-1}(x))$.
 - Probabilities are between 0 and 1.
 - Sum to 1.
- Cumulative distribution function $F_{X}\left(x\right)=P_{X}\left(X\leq x\right)$.
 - For every real number x, $0 \le F_X(x) \le 1$.
 - F_X is monotonic.
 - $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
- A random variable is **simple** iff it can only take a finite number of possible values.

2.1 Discrete Random Variables

2.1.1 Definition

X is discrete iff range (X) is countable.

$$p\left(x_{i}\right) = F\left(x_{i}\right) - F\left(x_{i-1}\right)$$

$$F(x_i) = \sum_{j=1}^{i} p(x_j)$$

- p_X is the probability mass function.
- \bullet F_x is the cumulative distribution function.

2.1.2 Expectation and Probability Generating Function

Mean E(X)

$$E_X\left(X\right) = \sum_{x} x p_X\left(x\right)$$

$$E_X\left(g\left(X\right)\right) = \sum_x g\left(x\right) p_X\left(x\right)$$

$$E_X (aX + b) = aE_X (X) + b$$

Variance Var(X)

$$\operatorname{Var}_{X}(X) = E_{X} \left[(X - E_{X}(X))^{2} \right] = E(X^{2}) - (E(X))^{2}$$

$$Var(aX + b) = a^2 Var(X)$$

Standard Deviation $sd_X(X)$

$$\operatorname{sd}_{X}\left(X\right) = \sqrt{\operatorname{Var}_{X}\left(X\right)}$$

Don't forget the square root!

Skewness γ_1

$$\gamma_1 = \frac{E_X \left[\left(X - E_X \left(X \right) \right)^3 \right]}{\operatorname{sd}_X \left(X \right)^3}$$

Probability Generating Function $G_X(z)$

$$G_X(z) = E_X(z^X) = \sum_x p_X(x) z^x$$

Look out for well-known series results (e.g. Maclaurin series / geometric series).

Moments M_n

- The *n*th **moment** of a random variable X is $M_n = E(X^n)$.
- The nth factorial moment is $M_{n}^{f}=E\left(X\left(X-1\right)...\left(X-n+1\right)\right)=G^{(n)}\left(1\right).$

$$M_0 = M_0^f = G(1) = 1$$
 $M_1 = M_1^f = G'(1)$
 $M_2 = M_2^f + M_1^f = G''(1) + G'(1)$

Sums of Random Variables Where $S_n = \sum_{i=1}^n X_i$ is a sum of random variables, and S_n/n is their average:

$$\begin{split} E\left(S_{n}\right) &= \sum_{i=1}^{n} E\left(X_{i}\right) \qquad E\left(\frac{S_{n}}{n}\right) = \frac{\sum_{i=1}^{n} E\left(X_{i}\right)}{n} \\ \operatorname{Var}\left(S_{n}\right) &= \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \quad \operatorname{Var}\left(\frac{S_{n}}{n}\right) = \frac{\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)}{n^{2}} \quad (X_{i} \text{ are independent}) \\ G_{S_{n}}\left(z\right) &= \prod_{i=1}^{n} G_{X_{i}}\left(z\right) & (X_{i} \text{ are independent}) \end{split}$$

2.1.3 Discrete Distributions

Bernoulli Bernoulli (p)

- $p(x) = p^x (1-p)^{1-x}$ for x = 0, 1.
- $\bullet \ \mu = p.$
- $\sigma^2 = p(1-p)$.

Binomial Binomial (n, p)

- ullet n identical **independent** Bernoulli (p) trials.
- $p(x) = \binom{n}{x} p^x (1-p)^{n-x}$ for x = 1, 2, ..., n. (Remember $\binom{n}{x} = \frac{n!}{x!(n-x)!}$).
- $\bullet \ \mu = np.$
- $\sigma^2 = np(1-p)$.
- $\bullet \ \gamma_1 = \frac{1-2p}{\sqrt{np(1-p)}}.$

Geometric Geometric (p)

- ullet Potentially infinite sequence of **independent** Bernoulli (p) trials.
- $p(x) = p(1-p)^{x-1}$ for x = 1, 2, ...
- $\bullet \ \mu = \frac{1}{p}.$
- $\bullet \ \sigma^2 = \frac{1-p}{p^2}.$
- $\bullet \ \gamma_1 = \frac{2-p}{\sqrt{1-p}}.$

Poisson Poi (λ)

- $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ for x = 0, 1, 2, ...
- $\mu = \sigma^2 = \lambda$.
- $\bullet \ \gamma_1 = \frac{1}{\sqrt{\lambda}}.$
- $\bullet \ G(z) = e^{-\lambda(1-z)}.$
- When p is small and n is large, Binomial (n, p) is approximated by Poi (n, p).

Uniform U $(\{1, 2, ..., n\})$

- $p(x) = \frac{1}{n}$ for x = 1, 2, ..., n.
- $\mu = \frac{n+1}{2}$.
- $\sigma^2 = \frac{n^2 1}{12}$.
- $\gamma_1 = 0$.

2.2 Continuous Random Variables

2.2.1 Definition

X is a **continuous random variable** if $\exists f_X : \mathbb{R} \to \mathbb{R}$ s.t.

$$P_X(B) = \int_{x \in B} f_X(x) \, \mathrm{d}x$$

- ullet f_X is the probability density function.
- The cumulative distribution function is

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

• Note that $f_X(x) = F'_Y(x)$.

Properties of a pdf

- 1. For all $x \in \mathbb{R}$, $f_X(x) \ge 0$.
- $2. \int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$

Transformed Random Variables E.g. Y = g(X) for some $g : \mathbb{R} \to \mathbb{R}$ where g is **continuous** and **strictly monotonic** (so it has an inverse).

- $F_Y(y) = P(Y \le y) = P(g(X) \le Y) = P(X \le g^{-1}(Y)) = F_X(g^{-1}(y)).$
- By the chain rule, we get $f_{Y}\left(y\right)=F_{Y}'\left(y\right)=f_{X}\left(g^{-1}\left(y\right)\right)\left|g^{-1'}\left(y\right)\right|$

2.2.2 Mean, Variance and Quantiles

Mean E(X)

$$E_X(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E_{X}\left(g\left(X\right)\right) = \int_{-\infty}^{\infty} g\left(x\right) f_{X}\left(x\right) dx$$

Properties:

- 1. Linearity: E(aX + b) = aE(X) + b.
- 2. **Additivity**: E(g(X) + h(X)) = E(g(X)) + E(h(X)).

Variance Var(X)

$$\begin{aligned} \operatorname{Var}_{X}\left(X\right) &= E\left(\left(X - \mu_{X}\right)^{2}\right) \\ &= \int_{-\infty}^{\infty} \left(x - \mu_{X}\right)^{2} f_{X}\left(x\right) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} x^{2} f_{X}\left(x\right) \mathrm{d}x - \mu_{X}^{2} \\ &= E\left(X^{2}\right) - \left(E\left(X\right)\right)^{2} \end{aligned}$$

 $\bullet \ \operatorname{Var}\left(aX+b\right)=a^{2}\operatorname{Var}\left(X\right).$

Moment Generating Function $M_{X}\left(t\right)$

$$M_{X}\left(t\right)=E\left(e^{tX}\right)=\int_{-\infty}^{\infty}e^{tx}f_{X}\left(x\right)\mathrm{d}x$$

- Might not exist (for some t).
- The nth moment is $M_n = \frac{\mathrm{d}^n M_X(t)}{\mathrm{d} t^n} \Big|_{t=0}.$

Characteristic Function $\phi_{X}\left(t\right)$

$$\phi_{X}\left(t\right)=E\left(e^{itX}\right)=\int_{-\infty}^{\infty}e^{itx}f_{X}\left(x\right)\mathrm{d}x$$

- Always exists (Fourier transform of pdf).
- The *n*th moment is $M_n = (-i)^n \frac{d^n \phi_X(t)}{dt^n}\Big|_{t=0}$.

Probability Generating Functions

$$M\left(t\right) = G\left(e^{t}\right) \text{ and } \phi\left(t\right) = G\left(e^{it}\right)$$

Sum of Random Variables For independent random variables X_1, X_2, \dots, X_n , and $S_n = \sum_{j=1}^n X_j$:

$$\phi_{S_{n}}\left(t
ight)=\prod_{j=1}^{n}\phi_{X_{j}}\left(t
ight) ext{ and } M_{S_{n}}\left(t
ight)=\prod_{j=1}^{n}M_{X_{j}}\left(t
ight)$$

Quantiles

$$Q_X\left(\alpha\right) = F_X^{-1}\left(\alpha\right)$$

E.g. **median** is $F_X^{-1}\left(\frac{1}{2}\right)$. I.e. the solution to $F_X\left(x\right)=\frac{1}{2}$.

2.2.3 Continuous Distributions

Uniform U(a,b)

•
$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

•
$$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 0 & x \ge b \end{cases}$$

- $\bullet \ \mu = \frac{a+b}{2}.$
- $\sigma^2 = \frac{(b-a)^2}{12}$.

Exponential Exp (λ)

- $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.
- $F(x) = 1 e^{-\lambda x}$ for $x \ge 0$.
- $\bullet \ \mu = \frac{1}{\lambda}.$
- $\bullet \ \sigma^2 = \frac{1}{\lambda^2}.$
- $\bullet \ \ \text{Memoryless:} \ P\left(X>x\right)=e^{-\lambda x} \ \text{and} \ P\left(X>x+s \mid X>s\right)=e^{-\lambda x}.$
- If the number of events is distributed by $N \sim \operatorname{Poi}\left(\lambda\right)$ then the time between consecutive events is distributed by $T \sim \operatorname{Exp}\left(\lambda\right)$.

Normal N $\left(\mu,\sigma^2\right)$

- $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
- $F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$.

Standard Normal:

- $Z \sim N(0,1)$.
- f(z) is written as $\phi(z)$ and F(z) as $\Phi(z)$.
- $\phi(-z) = \phi(z)$ and $\Phi(z) = 1 \Phi(-z)$.

Standardising Normal RVs:

• $X \sim N(\mu, \sigma^2) \implies \frac{X-\mu}{\sigma} \sim N(0, 1)$.

Central Limit Theorem:

- For $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ where X_1, X_2, \dots, X_n are independent and identically distributed random variables, $\lim_{n \to \infty} \frac{\overline{X} \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$.
- ullet I.e. for large n, $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$.
- For large n, Binomial $(n, p) \approx N(np, np(1-p))$

Log-Normal Distribution:

• Y is said to follow a log-normal distribution if $Y = e^X$ and $X \sim N(\mu, \sigma^2)$.

2.3 Joint Random Variables

Definitions Has joint cdf:

$$F_{XY}(x,y) = P_{XY}((-\infty,x],(-\infty,y])$$

We can recover marginal cdfs:

$$F_X(x) = F_{XY}(x, \infty)$$

$$F_Y(y) = F_{XY}(\infty, y)$$

Has joint pmf:

$$p_{XY}(x,y) = P_{XY}(X = x, Y = y)$$

We can recover marginal pmfs:

$$p_X\left(x\right) = \sum_{y} p_{XY}\left(x, y\right)$$

$$p_Y(y) = \sum_{x} p_{XY}(x, y)$$

Definitions for Jointly Continuous Variables Has joint cdf:

$$F_{XY}(x,y) = \int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f_{XY}(s,t) \, ds dt$$

Has joint pdf:

$$f_{XY}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

We can recover marginal pdfs:

$$f_X(x) = \int_{y=-\infty}^{\infty} f_{XY}(x, y) dy$$

$$f_Y(y) = \int_{x=-\infty}^{\infty} f_{XY}(x,y) dx$$

Take care with integration. E.g. don't ignore constants!

Conditional Distributions

$$p_{Y|X}(y \mid x) = \frac{p_{XY}(x, y)}{p_X(x)}$$

Finding Probability of X < Y

$$\begin{split} P\left(X < Y\right) &= \int_{y=-\infty}^{\infty} F_{X\mid Y}\left(y\mid y\right) f_{Y}\left(y\right) \mathrm{d}y \\ &= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{y} f_{XY}\left(x,y\right) \mathrm{d}x \mathrm{d}y \end{split}$$

Expectation

$$E_{XY}\left(g\left(x,y\right)\right) = \sum_{y} \sum_{x} g\left(x,y\right) p_{XY}\left(x,y\right)$$

$$E_{XY}\left(g\left(x,y\right)\right) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g\left(x,y\right) p_{XY}\left(x,y\right) \mathrm{d}x \mathrm{d}y$$

Conditional Expectation

$$E_{Y|X}(Y|X=x) = \sum_{y} y p_{Y|X}(y|x)$$

$$E_{Y|X}\left(Y|X=x\right) = \int_{y=-\infty}^{\infty} y \, f_{Y|X}\left(y|x\right) \mathrm{d}y$$

Tower Rule

$$E_Y(Y) = E_X \left(E_{Y|X} \left(Y \mid X \right) \right)$$

Covariance Measures how two RVs change in tandem with one another.

$$\sigma_{XY} = E_{XY} \left((X - \mu_X) \left(Y - \mu_Y \right) \right)$$

Correlation Invariant to scale of the RVs X and Y.

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

3 Estimation

For $\underline{X} = (X_1, \dots, X_n)$ representing n iid data samples from a population with distribution P_X , we observe $\underline{x} = (x_1, \dots, x_n)$.

Statistic A random variable:

$$T = T(X_1, \dots, X_n) = T(\underline{X})$$

Observed statistic is $t = t(\underline{x})$.

Estimator A statistic $T(\underline{X})$ when used to approximate parameters of the distribution $P_{X|\theta}(x \mid \theta)$. An **estimate** is the realised value for the estimator for a particular sample t(x).

Bias Of an estimator T for a parameter θ :

bias
$$(T) = E(T \mid \theta) - \theta$$

- Unbiased if bias is 0.
- Sample mean \overline{x} is an unbiased estimate for population mean μ .
- Biased-corrected sample variance $S_{n-1}^2 = \frac{n}{n-1}S^2$ is an unbiased estimate for σ^2 .

Efficiency For two unbiased estimators, \hat{T} and \tilde{T} , \hat{T} is more efficient than \tilde{T} if:

- 1. For all θ , $\mathsf{Var}_{\hat{T}\mid\theta}\left(\hat{T}\mid\theta\right)\leq\mathsf{Var}_{\tilde{T}\mid\theta}\left(\tilde{T}\mid\theta\right)$, and
- $\text{2. There is some } \theta \text{ with } \mathsf{Var}_{\hat{T}\mid\theta}\left(\hat{T}\mid\theta\right) < \mathsf{Var}_{\tilde{T}\mid\theta}\left(\tilde{T}\mid\theta\right).$

 \hat{T} is **efficient** if it is more efficient that any other possible estimator.

Consistency An estimator T is **consistent** if

$$\forall \epsilon > 0$$
 $P(|T - \theta| > \epsilon) \to 0 \text{ as } n \to \infty$

If T is unbiased and $\lim_{n\to\infty} \text{Var}(T) = 0$ then T is consistent.

3.1 Maximum Likelihood Estimation

1. Find the likelihood function $L(\theta)$ where:

$$L(\theta \mid \underline{x}) = \prod_{i=1}^{n} p_{X|\theta}(x_i) \text{ or } \prod_{i=1}^{n} f_{X|\theta}(x_i)$$

2. Take the natural log of the likelihood $l(\theta \mid \underline{x})$, and collect terms involving θ :

$$l\left(\theta \mid \underline{x}\right) = \sum_{i=1}^{n} \log \left(p_{X\mid\theta}\left(x_{i}\right)\right) \text{ or } \sum_{i=1}^{n} \log \left(f_{X\mid\theta}\left(x_{i}\right)\right)$$

3. Find the value of θ for which log-likelihood is maximised: usually find the $\hat{\theta}$ that solves

$$\frac{\delta}{\delta\theta}l\left(\hat{\theta}\right) = \frac{\delta}{\delta\theta}\log\left(L\left(\hat{\theta}\right)\right) = 0$$

4. Ensure that the estimate $\hat{\theta}$ corresponds to a maximum by checking that the second derivative satisfies

$$\frac{\partial^2}{\partial \theta^2} l\left(\hat{\theta}\right) < 0$$

The MLE is not necessarily unbiased, but it is consistent and efficient, if an efficient estimator exists.

Confidence Intervals The $100 (1 - \alpha) \%$ confidence interval for μ is given by:

$$\left[\overline{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$$

- Normal distribution with known variance: confidence interval above is exact.
- Other distributions: confidence interval above is an approximate, by CLT.
- Normal distribution with unknown variance: need to use bias-corrected variance: exact CI is given by $\left[\overline{x}-t_{n-1,1-\frac{\alpha}{2}}\frac{S}{\sqrt{n-1}},\overline{x}+t_{n-1,1-\frac{\alpha}{2}}\frac{S}{\sqrt{n-1}}\right]$.

3.2 Bayesian Estimation

Maximum Likelihood Estimator

- Doesn't take into account any prior information about the MLE.
- Only returns a single and specific value of θ .

Using Prior Information Use Bayes theorem

$$\underbrace{P\left(\theta\mid X\right)}_{\text{posterior}} = \underbrace{P\left(X\mid\theta\right)}_{\text{likelihood}} \times \underbrace{P\left(\theta\right)}_{\text{prior}} \times \underbrace{\frac{1}{P\left(X\right)}}_{\text{evidence}}$$

Maximum a Posteriori Estimator Instead of maximising $\prod_{i=1}^n P\left(X=x_i|\theta\right)$, maximise $\prod_{i=1}^n P\left(\theta\mid X=x_i\right) = \prod_{i=1}^n P\left(X=x_i\mid\theta\right) \times P\left(\theta\right)$.

Prior Distributions Often we use the **beta distribution**: Beta $(\theta; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \times \theta^{\alpha-1} (1-\theta)^{\beta-1}$ with $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ and $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \mathrm{d}x$

4 Hypothesis Testing

4.1 Testing Population Mean

Hypotheses

- $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ is a **two-sided** test.
- $H_0: \theta > \theta_0$ vs. $H_1: \theta < \theta_0$ is a **one-sided** test.

Tests Statistics and Rejection Regions

- Choose a test statistic $T(\underline{X})$ for which we can find the distribution under H_0 .
- Calculate the rejection region R such that $P\left(T \in R \mid H_0\right) = \alpha$ for some small probability α .
- Compute the realised value of the test statistic and conclude appropriately.

Errors and Power

- 1. **Type I Error**: Reject H_0 when it was true.
- 2. **Type II Error**: Not rejecting H_0 when H_1 is true.
- 3. **Power**: Probability of rejecting H_0 when H_1 is true.

Samples from Two Populations Use bias-corrected pooled sample variance:

$$S_{n_1+n_2-2}^2 = \frac{\sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2 + \sum_{i=1}^{n_2} \left(Y_i - \overline{Y} \right)^2}{n_1 + n_2 - 2} = \frac{n_1 - 1}{n_1 + n_2 - 2} S_{n_1}^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_{n_2}^2$$

4.2 Goodness of Fit

Chi-Square Statistic

$$\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

- Approximation is valid only if $\forall j E_j \geq 5$.
- The **rejection region** at the $100\alpha\%$ level is given by

$$R = \left\{ x^2 \mid x^2 > \chi^2_{k-p-1,1-\alpha} \right\}$$

where k is the number of terms summed and p is the number of parameters being estimated.

4.3 Independence Testing

1. Write up a contingency table.

	y_1	 y_l	
x_1	n_{11}	n_{1l}	$n_{1\bullet}$
:			
x_k	n_{k1}	n_{kl}	$n_{k\bullet}$
	$n_{\bullet 1}$	$n_{ullet l}$	n

- 2. The expected value in each cell is $\hat{n}_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$.
- 3. Compute the x^2 statistic.

7

4. Compare against χ^2 dist. with kl-(k-1)-(l-1)-1=(k-1)(l-1) degrees of freedom.