

Steel Buildings BMEEOHSA-A1

> Checking the Buckling Stability of a Frame Using the Reduction Method and the General Method

Supervisor: Dr. Viktor Budaházy

Student: Amgalantuul Purevsuren GJOPB2

2021/22 spring semester

#### 1.Initial data:

Span of the main frame:  $l := 14.4 \ m$ 

Corner height of main frame:  $h \coloneqq 5.2 \ \boldsymbol{m}$ 

Slope of the roof:  $\alpha_{inc} = 7 \, \, deg$ 

Cross section of columns: HEA400

IPE500Cross-section of beams:

 $n_p \coloneqq 4$ Number of purlins on one beam:

Number of wall-beams on one column:  $n_w \coloneqq 5$ 

 $p_d \coloneqq 13 \; \frac{kN}{m} \qquad \gamma_G \coloneqq 1.35$ Design load acting on the beams:

 $\gamma_O = 1.5$ 

Characteristic load acting on the beams:

 $\begin{aligned} p_k &\coloneqq \frac{p_d}{\gamma_G} = 9.63 \ \frac{\textbf{kN}}{\textbf{m}} \\ w_{pd} &\coloneqq 2.5 \ \frac{\textbf{kN}}{\textbf{m}} \end{aligned}$ Wind pressure:

Wind suction:  $w_{sd} \coloneqq 1 \; \frac{kN}{m}$ 

Characteristic wind loads on the columns:

$$egin{aligned} & w_{pk}\!\coloneqq\!rac{w_{pd}}{\gamma_Q}\!=\!1.667\;rac{oldsymbol{kN}}{oldsymbol{m}} \ & w_{sk}\!\coloneqq\!rac{w_{sd}}{\gamma_Q}\!=\!0.667\;rac{oldsymbol{kN}}{oldsymbol{m}} \end{aligned}$$

- 2. Data of used materials
- 2.1 Beam section data, section IPE 500:

Height of cross-section:  $h_b = 500 \ mm$ 

Width of a flange: :  $b_b = 200 \ mm$ 

Thickness of web:  $t_{w,b} = 10.2 \ mm$ 

Thickness of flange:  $t_{f,b} \coloneqq 16 \ \boldsymbol{mm}$ Radius of rounding of web:

 $r_b \coloneqq 21 \ \boldsymbol{mm}$ 

 $A_b = 11600 \ mm^2$ Cross-sectional area:

 $I_{y.b} = 48017 \ cm^4$ Inertia around the strong axis:

 $I_{z,b} = 2141 \ cm^4$ Inertia around the weak axis:  $I_{th} = 89.6 \ cm^4$ Torsional inertia:

Warping modulus:

$$I_{w.b}\!:=\!I_{z.b}\! \cdot\! \! rac{\left(h_b\!-\!t_{f.b}
ight)^2}{4} \!=\! \left(1.254\! \cdot\! 10^6
ight)\, {\it cm}^6$$

Plastic cross-sectional modulus around the strong axis:

$$W_{pl.y.b} \coloneqq 2200 \ cm^3$$

Radius of gyration around the strong axis: 
$$i_{y.b} = \sqrt[2]{\left(\frac{I_{y.b}}{A_b}\right)} = 20.346$$
 cm

Radius of gyration around the weak axis: 
$$i_{z.b} = \sqrt[2]{\left(\frac{I_{z.b}}{A_b}\right)} = 4.296$$
 cm

$$\frac{h_b}{b_b}$$
 = 2.5 > 1.2,  $t_{f.b}$  = 16  $mm$  < 40mm

Buckling curve for FB for buckling around the strong axis: curve "a" Buckling curve for FB for buckling around the weak axis: curve "b"

$$\frac{h_b}{b_b}$$
 = 2.5 > 2 Buckling curve for LT buckling: curve "b"

## 2.1 Column section data, section HEA400:

Height of cross-section:  $h_c \coloneqq 390 \ \textit{mm}$  Width of a flange:  $b_c \coloneqq 300 \ \textit{mm}$  Thickness of web:  $t_{w.c} \coloneqq 11 \ \textit{mm}$  Thickness of flange:  $t_{f.c} \coloneqq 19 \ \textit{mm}$  Radius of rounding of web:  $r_c \coloneqq 27 \ \textit{mm}$ 

Cross-sectional area:  $A_c \coloneqq 15900 \; \textit{mm}^2$  Inertia around the strong axis:  $I_{y.c} \coloneqq 45070 \; \textit{cm}^4$  Inertia around the weak axis:  $I_{z.c} \coloneqq 8564 \; \textit{cm}^4$  Torsional inertia:  $I_{t.c} \coloneqq 189 \; \textit{cm}^4$ 

Warping modulus: 
$$I_{w.c} \coloneqq I_{z.c} \cdot \frac{\left(h_c - t_{f.c}\right)^2}{4} = \left(2.947 \cdot 10^6\right) \, \textit{cm}^6$$

Plastic cross-sectional modulus around the strong axis:

$$W_{pl.y.c} = 2562 \ cm^3$$

Radius of gyration around the strong axis: 
$$i_{y.c} = \sqrt[2]{\left(\frac{I_{y.c}}{A_c}\right)} = 16.836 \ cm$$

Radius of gyration around the weak axis:  $i_{z.c} = \sqrt[2]{\left(\frac{I_{z.c}}{A_c}\right)} = 7.339 \text{ cm}$ 

$$\frac{h_c}{b_c}\!=\!1.3 \ > 1.2 \text{,} \qquad t_{f.c}\!=\!19 \; \textit{mm} \qquad < 40 \text{mm}$$

Buckling curve for FB for buckling around the strong axis: curve "b" Buckling curve for FB for buckling around the weak axis: curve "c"

$$\frac{h_c}{b_c}$$
 = 1.3 < 2 Buckling curve for LT buckling: curve "a"

|                 |               |       |                                 |                           | Bucklin                          | g curve                          |
|-----------------|---------------|-------|---------------------------------|---------------------------|----------------------------------|----------------------------------|
|                 | Cross section |       | Limits                          | Buckling<br>about<br>axis | S 235<br>S 275<br>S 355<br>S 420 | S 460                            |
|                 | _ ' <u></u>   | 1,2   | $t_{\rm f}\!\leq 40~{\rm mm}$   | y - y<br>z - z            | a<br>b                           | a <sub>0</sub><br>a <sub>0</sub> |
| ections         | n y           | h/b > | $40 \text{ mm} \le t_f \le 100$ | y - y<br>z - z            | b                                | a<br>a                           |
| Rolled sections |               | 1,2   | $t_{\rm f} \le 100~{\rm mm}$    | y-y<br>z-z                | b<br>c                           | a<br>a                           |
|                 | ż             | b/b ≤ | t <sub>f</sub> > 100 mm         | y - y<br>z - z            | d<br>d                           | e<br>e                           |

| Buckling curve | a Imperfection<br>factor |
|----------------|--------------------------|
| a <sub>0</sub> | 0,13                     |
| a              | 0,21                     |
| b              | 0,34                     |
| c              | 0,49<br>0,76             |
| d              | 0,76                     |

Table 10.3. Imperfection factors for buckling curves

| Cross-section type   | restriction              | Buckling curve |
|----------------------|--------------------------|----------------|
| Hot-rolled I-section | $h/b \le 2$<br>h/b > 2   | a<br>b         |
| Welded I-section     | $h/b \le 2$<br>$h/b > 2$ | c<br>d         |
| Other                |                          | d              |

## 2.3 Data of the used steel:

Modulus of elasticity:  $E \coloneqq 210 \; \textbf{GPa}$ Steel grade: S275

 $f_y = 275 \, \textbf{MPa}$   $\lambda_1 = \pi \cdot \sqrt{\frac{E}{f_y}} = 86.815$   $\varepsilon = \sqrt{\frac{235}{f_y}} \, \textbf{MPa} = 0.924$ Slenderness limit:

Partial factor for the resistance:  $\gamma_{m1} = 1$ Poisson ratio of:  $\nu_a = 0.3$ 

 $G \coloneqq \frac{E}{2 \cdot (1 + \nu_a)} = 80.769 \; \mathbf{GPa}$ Shear modulus of steel:

3. Classifications of the cross-sections:

3.1. Beam section, section IPE 500:

Flanges classification:

$$c_{f.b} = \frac{b_b - t_{w.b} - 2 \cdot r_b}{2} = 73.9 \ mm$$

$$\frac{c_{f.b}}{t_{f.b}} = 4.619 < 9 \cdot \varepsilon = 8.32$$

The flange is of class 1

Web classification:

$$c_{w.b} \coloneqq h_b - 2 \cdot t_{f.b} = 468 \ mm$$

$$\frac{c_{w.b}}{t_{w.b}} = 45.882 \quad < \quad 72 \cdot \varepsilon = 66.558$$

The web is of class 1

From this cross-section is of class 1

3.2. Column section, section HEA 400:

Flanges classification:

$$c_{f.c} = \frac{b_c - t_{w.c} - 2 \cdot r_c}{2} = 117.5 \ mm$$

$$\frac{c_{f.c}}{t_{f.c}} = 6.184 < 9 \cdot \varepsilon = 8.32$$

The flange is of class 1

Web classification:

$$c_{w.c} \coloneqq h_c - 2 \cdot t_{f.c} = 352 \ \textbf{mm}$$

$$\frac{c_{w.c}}{t_{w.c}} = 32 \quad < \quad 72 \cdot \varepsilon = 66.558$$

The web is of class 1

From this cross-section is of class 1

- 4. Column stability checks using the reduction factor method:
- 4.1. Flexural buckling check:

$$\begin{aligned} c &\coloneqq min\left(\frac{I_{y.c}}{I_{y.b} \cdot h} \cdot l, 10\right) = 2.599 \\ \alpha &\coloneqq min\left(4 \cdot \frac{I_{y.c}}{l^2 \cdot A_c}, 0.2\right) = 5.468 \cdot 10^{-4} \end{aligned}$$

Buckling length factor (pinned base connection):

$$\nu_y := \sqrt{4 + 1.4 \cdot (c + 6 \cdot \alpha) + 0.02 \cdot (c + 6 \cdot \alpha)^2} = 2.789$$

$$\nu'_z = 1.0$$
 (for hinged)

$$\nu_z = \frac{\nu_z'}{n_w - 1} = 0.25$$

Column slenderness around the strong axis:  $\lambda_y = \frac{\nu_y \cdot h}{i_{y.c}} = 86.143$ 

$$\lambda_y = 86.143 < \lambda_1 = 86.815$$

yielding of the cross-section

Column slenderness around the weak axis:  $\lambda_z = \frac{\nu_z \cdot h}{i_{z,c}} = 17.713$ 

$$\lambda_z = 17.713 \quad < \lambda_1 = 86.815$$

yielding of the cross-section

critical normal force around the strong axis:

$$N_{cr.y} := \boldsymbol{\pi}^2 \cdot E \cdot \frac{A_c}{\lambda_y^2} = (4.441 \cdot 10^3) \ \boldsymbol{kN}$$

critical normal force around the weak axis:

$$N_{cr.z} \coloneqq \boldsymbol{\pi}^2 \cdot E \cdot \frac{A_c}{\lambda_z^2} = (1.05 \cdot 10^5) \ \boldsymbol{kN}$$

Cross-sectional resistance:  $N_{pl.Rk} := A_c \cdot f_y = (4.373 \cdot 10^3) \, kN$ 

Relative slenderness around the strong axis:  $\lambda_y' := \frac{N_{pl.Rk}}{N_{cr,y}} = 0.985$ 

Relative slenderness around the weak axis:  $\lambda_z' = \frac{N_{pl.Rk}}{N_{cr.z}} = 0.042$ 

Imperfection factor around the strong axis (curve a):  $\alpha_y\!\coloneqq\!0.21$ 

$$\phi_y = 0.5 \cdot (1 + \alpha_y \cdot (\lambda'_y - 0.2)) + {\lambda'_y}^2 = 1.552$$

Imperfection factor around the weak axis (curve b):  $\alpha_z = 0.34$ 

$$\phi_z = 0.5 \cdot (1 + \alpha_z \cdot (\lambda'_z - 0.2)) + {\lambda'_z}^2 = 0.475$$

$$\begin{split} \phi_z &\coloneqq 0.5 \bullet \left(1 + \alpha_z \bullet \left(\lambda'_z - 0.2\right)\right) + {\lambda'_z}^2 = 0.475 \\ \text{Reduction factor for buckling around the strong axis:} \end{split}$$

$$\chi_{y} := min\left(\frac{1}{\phi_{y} + \sqrt{{\phi_{y}}^{2} - {\lambda'_{y}}^{2}}}, 1\right) = 0.363$$

Reduction factor for buckling around the weak axis: 
$$\chi_z \coloneqq min\left(\frac{1}{\phi_z + \sqrt{{\phi_z}^2 - {\lambda'_z}^2}}, 1\right) = 1$$

$$\chi \coloneqq min\left(\chi_y, \chi_z\right) = 0.363$$

Design buckling resistance:

$$N_{b.Rd}\!\coloneqq\!\chi\!\cdot\!\frac{N_{pl.Rk}}{\gamma_{m1}}\!=\!1589.28~\textbf{kN}$$

$$N_{Ed}\!\coloneqq\!87.878~\emph{kN}$$
 (from Axis Vm)

Utilisation ratio: 
$$\eta\!\coloneqq\!\frac{N_{Ed}}{N_{b.Rd}}\!=\!0.055$$
 Adequate!



## 4.2 Lateral torsional buckling check:

$$M_{ed} = 194.607 \ kN \cdot m$$

| Statical system                    | Ψ | k   | C <sub>1</sub> | $C_2$ | C <sub>3</sub> |
|------------------------------------|---|-----|----------------|-------|----------------|
| M <sub>max</sub> ψM <sub>max</sub> |   | 1,0 | 1,879          |       | 0,939          |
| /                                  | 0 | 0,7 | 2,092          | -     | 1,473          |
|                                    |   | 0,5 | 2,150          |       | 2,150          |

$$\psi := 0$$
  $C_1 := 1.879$   $C_2 := 0$   $C_3 := 0.939$   $L := h$ 

$$k \coloneqq 1 \qquad k_w \coloneqq 1 \qquad z_j \coloneqq 0 \ \textit{mm} \qquad \text{(double symmetric cross section)}$$
 
$$M_{cr} \coloneqq C_1 \cdot \frac{\pi^2 \cdot E \cdot I_{z.c}}{(k \cdot L)^2} \cdot \left( \sqrt{\left(\frac{k}{k_w}\right)^2 \cdot \frac{I_{w.c}}{I_{z.c}}} + \frac{(k \cdot L)^2 \cdot G \cdot I_{t.c}}{\pi^2 \cdot E \cdot I_{z.c}} + \left(0 - C_3 \cdot z_j\right)^2 - \left(0 - C_3 \cdot z_j\right) \right)$$

$$M_{cr} = (2.962 \cdot 10^3) \ kN \cdot m$$

Non-dimensional slenderness:  $\lambda'_{LT} \coloneqq \sqrt{W_{pl.y.c} \cdot \frac{f_y}{M_{cr}}} = 0.488$ 

$$M_{pl.y.Rk}\!\coloneqq\!W_{pl.y.c}\!\cdot\!f_y\!=\!704.55~\textbf{kN}\cdot\!\textbf{m}$$

reduction factor of curve A:  $\chi_{LT} = 0.927852$ 

Design resistance for LT buckling:  $M_{b.Rd} := \chi_{LT} \cdot \frac{M_{pl.y.Rk}}{\gamma_{m1}} = 653.718 \text{ kN} \cdot \text{m}$ 

Utilization ratio:  $\eta \coloneqq \frac{M_{ed}}{M_{b,p,d}} = 0.298$  Adequate!

## 4.3. FB and LT buckling interaction check:

The member is adequate for flexural buckling and for LTB

5.. Beam stability checks using the reduction factor method:

$$\begin{split} l_{beam} &\coloneqq \frac{l}{\cos\left(\alpha_{inc}\right)} \!=\! 14.508 \,\, \boldsymbol{m} \\ \frac{l_{beam}}{6} \!=\! 2.418 \,\, \boldsymbol{m} \end{split}$$

$$\nu_{\nu} \coloneqq 1$$

$$\nu'_{z} = 1.0$$

$$\nu_z \coloneqq \frac{\nu'_z}{n_p + 2} = 0.167$$

Column slenderness around the strong axis:

$$\lambda_y \coloneqq \nu_y \cdot \frac{l_{beam}}{i_{y.b}} = 71.309$$

 $\lambda_y < \lambda_1$ 

Column slenderness around the weak axis:

$$\lambda_z \coloneqq \nu_z \cdot \frac{l_{beam}}{i_{z.b}} = 56.284$$

$$\lambda_z < \lambda_1$$

$$N_{cr.y} := \pi^2 \cdot E \cdot \frac{A_b}{\lambda_y^2} = (4.728 \cdot 10^3) \ kN$$

$$N_{cr.z} = \pi^2 \cdot E \cdot \frac{A_b}{\lambda_z^2} = (7.59 \cdot 10^3) \text{ kN}$$

$$N_{pl.Rk} := A_b \cdot f_y = (3.19 \cdot 10^3) \ kN$$

Relative slenderness around the strong axis:  $\lambda_y' \coloneqq \frac{N_{pl.Rk}}{N_{cr.y}} = 0.675$ 

Relative slenderness around the weak axis:  $\lambda_z' \coloneqq \frac{N_{pl.Rk}}{N_{cr.z}} = 0.42$ 

Imperfection factor around the strong axis (curve a):  $\alpha_y\!\coloneqq\!0.21$ 

$$\phi_y = 0.5 \cdot (1 + \alpha_y \cdot (\lambda'_y - 0.2)) + {\lambda'_y}^2 = 1.005$$

Imperfection factor around the weak axis (curve b):  $\alpha_z = 0.34$ 

$$\phi_z = 0.5 \cdot (1 + \alpha_z \cdot (\lambda_z' - 0.2)) + {\lambda_z'}^2 = 0.714$$

Reduction factor for buckling around the strong axis:

$$\chi_{y} := min\left(\frac{1}{\phi_{y} + \sqrt{{\phi_{y}}^{2} - {\lambda'_{y}}^{2}}}, 1\right) = 0.571$$

Reduction factor for buckling around the weak axis:

$$\chi_z := min\left(\frac{1}{\phi_z + \sqrt{{\phi_z}^2 - {\lambda'_z}^2}}, 1\right) = 0.774$$

$$\chi \coloneqq min\left(\chi_y, \chi_z\right) = 0.571$$

Design buckling resistance:

$$N_{b.Rd} := \chi \cdot \frac{N_{pl.Rk}}{\gamma_{m1}} = 1822.898 \ \textit{kN}$$

$$N_{Ed} = 87.878 \text{ kN} \text{ (from Axis Vm)}$$

Utilisation ratio: 
$$\eta \coloneqq \frac{N_{Ed}}{N_{h_{Rd}}} = 0.048$$
 Adequate!

Suggestions for efficient design (100% utilisation):

- 1. Decreasing the size of the elements. The steel grade can be decreased to utilize 100%.
- 2. Installing knee bars, especially for the wall beams.
- 3. Changing the inclination of the roof. A more inclined roof may result in a buckling mode for the beams with a buckling length equal to half of the length of the roof..
- 4. Changing the number of the lateral supports.

## 5.2 Lateral torsional buckling check

$$M_{cr} \coloneqq \boldsymbol{C}_1 \boldsymbol{\cdot} \frac{\boldsymbol{\pi}^2 \boldsymbol{\cdot} \boldsymbol{E} \boldsymbol{\cdot} \boldsymbol{I}_{z.b}}{\left(\boldsymbol{k} \boldsymbol{\cdot} \boldsymbol{L}\right)^2} \boldsymbol{\cdot} \left( \sqrt{\left(\frac{\boldsymbol{k}}{\boldsymbol{k}_w}\right)^2 \boldsymbol{\cdot} \frac{\boldsymbol{I}_{w.b}}{\boldsymbol{I}_{z.b}}} + \frac{\left(\boldsymbol{k} \boldsymbol{\cdot} \boldsymbol{L}\right)^2 \boldsymbol{\cdot} \boldsymbol{G} \boldsymbol{\cdot} \boldsymbol{I}_{t.b}}{\boldsymbol{\pi}^2 \boldsymbol{\cdot} \boldsymbol{E} \boldsymbol{\cdot} \boldsymbol{I}_{z.b}} + \left(0 - \boldsymbol{C}_3 \boldsymbol{\cdot} \boldsymbol{z}_j\right)^2 - \left(0 - \boldsymbol{C}_3 \boldsymbol{\cdot} \boldsymbol{z}_j\right) \right)$$

$$L \coloneqq 2 \cdot \frac{l_{beam}}{\left(n_p + 2\right)} = 4.836 \ \boldsymbol{m}$$

$$k = 1$$

$$k_w \coloneqq 1$$

$$\stackrel{\circ}{M_{ed.2}} := -105.848 \text{ kN} \cdot \text{m}$$
  $M_{ed} := 194.607 \text{ kN} \cdot \text{m}$ 

$$M_{ed} = 194.607 \ \mathbf{kN \cdot m}$$

$$\psi\!\coloneqq\!\frac{M_{ed.2}}{M_{ed}}\!=\!-0.544$$

$$C_1 = 2.806$$

$$C_2 = 0$$

$$C_3 = 0.864$$

$$M_{cr} = 988.011 \ kN \cdot m$$

Non-dimensional slenderness:

$$\lambda'_{LT} \coloneqq \sqrt{W_{pl.y.b} \cdot \frac{f_y}{M_{cr}}} = 0.783$$

$$M_{pl.y.Rk}\!\coloneqq\!W_{pl.y.b}\!\cdot\!f_y\!=\!605~\textbf{kN}\!\cdot\!\textbf{m}$$

reduction factor of curve B:

$$\chi_{LT} = 0.735$$

Design resistance for LT buckling:

$$M_{b.Rd} \coloneqq \chi_{LT} \cdot \frac{M_{pl.y.Rk}}{\gamma_{m1}} = 444.675 \ \textbf{kN} \cdot \textbf{m}$$

Utilization ratio:

$$\eta \coloneqq \frac{M_{ed}}{M_{h,Rd}} = 0.438$$
 Adequate!

## Analysis by Amgalantuul Purevsuren

AxisVM X6 R2b · Registered to Amgalantuul Purevsuren Model 5.axs

Report

Educational Version

| ltem                                                         | Page |
|--------------------------------------------------------------|------|
| Materials                                                    | 3    |
| Cross-sections                                               | 3    |
| Spring characteristics                                       | 4    |
| References                                                   | 4    |
| Nodes                                                        | 4    |
| ST2, Front view                                              | 5    |
| bending, Front view                                          | 5    |
| [I], Linear, (Auto) Critical, My, Filled diagram, Front view | 6    |
| [1] Fine n (Auto) Drittell AXI Filled diagram Dronte inv     | m 6  |
|                                                              | "ט ט |

Analysis by Amgalantuul Purevsuren

Model: **Model 5.axs** 5/15/2022 Page 3

#### Materials

|   | Name  | Туре                | Nat                | tional desig   | n cod | code Materi        |                | Material code ▼ |                       | Model           | E <sub>x</sub> [N | I/mm²]          | E <sub>y</sub> [ | N/mm²           | 2]         | ν                  | α <sub>τ</sub> [1/°C] | ρ [kg/m³] |
|---|-------|---------------------|--------------------|----------------|-------|--------------------|----------------|-----------------|-----------------------|-----------------|-------------------|-----------------|------------------|-----------------|------------|--------------------|-----------------------|-----------|
| 1 | S 275 | Steel               | Eur                | ocode-H        |       | 10025-             |                | 10025-2         |                       | Linear          | 1                 | 210000          |                  | 21000           |            | 00 0.30 1.2E-5     |                       | 7850      |
|   | Name  | Materi<br>coloi     | -                  | color lextur   |       | ure P <sub>1</sub> |                |                 | 7                     | P <sub>2</sub>  |                   |                 |                  | P               | 3          |                    |                       |           |
| 1 | S 275 |                     |                    |                |       | Stee               |                | J.W.            | g m(I)                | 127500          | )   \{\}          |                 | <b>S</b> 480     | ))qp(]          | $f_y^*[N]$ | /mm <sup>2</sup> ] | = 255.00              |           |
|   |       |                     |                    |                |       |                    |                |                 |                       |                 |                   |                 |                  |                 | 1          |                    |                       |           |
|   | Name  |                     | $P_4$              | P <sub>4</sub> |       | P <sub>6</sub>     | P <sub>7</sub> | P <sub>8</sub>  | <b>P</b> <sub>9</sub> | P <sub>10</sub> | P <sub>11</sub>   | P <sub>12</sub> | P <sub>13</sub>  | P <sub>14</sub> |            |                    |                       |           |
| 1 | S 275 | f <sub>u</sub> [N/m | m <sup>2</sup> ] = | 410.00         |       |                    |                |                 |                       |                 |                   |                 |                  |                 |            |                    |                       |           |

Name: Material name; Type: Type of material; Model: Material model; E<sub>x</sub>: Young's modulus of elasticity in local x direction; E<sub>y</sub>: Young's modulus of elasticity in local y direction; v: Poisson's ratio; α<sub>T</sub>: Thermal expansion coefficient; ρ: Density; Contour color: Material outline color; P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, P<sub>4</sub>, P<sub>5</sub>, P<sub>6</sub>, P<sub>7</sub>, P<sub>8</sub>, P<sub>9</sub>, P<sub>10</sub>, P<sub>11</sub>, P<sub>12</sub>, P<sub>13</sub>, P<sub>14</sub>: Design parameter;

#### Cross-sections

|   | Name     | Drawing | Process | Shape | h<br>[mm] | b<br>[mm] | tw<br>[mm] | tf<br>[mm] | r <sub>1</sub><br>[mm] | r <sub>2</sub><br>[mm] | r <sub>3</sub><br>[mm] |
|---|----------|---------|---------|-------|-----------|-----------|------------|------------|------------------------|------------------------|------------------------|
| 1 | IPE 500  |         | Rolled  | I     | 500.0     | 200.0     | 10.2       | 16.0       | 21.0                   | 0                      | 0                      |
| 2 | HE 400 A |         | Rolled  | I     | 390.0     | 300.0     | 11.0       | 19.0       | 27.0                   | 0                      | 0                      |

|   | Name     | Ax<br>[mm²] | Ay<br>[mm²] | Az<br>[mm²] | lx<br>[mm <sup>4</sup> ] | ly<br>[mm⁴] | lz<br>[mm <sup>4</sup> ] | lyz<br>[mm <sup>4</sup> ] | I <sub>1</sub><br>[mm⁴] | l <sub>2</sub><br>[mm <sup>4</sup> ] | α<br>[°] |
|---|----------|-------------|-------------|-------------|--------------------------|-------------|--------------------------|---------------------------|-------------------------|--------------------------------------|----------|
| 1 | IPE 500  | 11553.92    | 5887.51     | 4968.85     | 903296.5                 | 4.8208E+8   | 2.1417E+7                | 0                         | 4.8208E+8               | 2.1417E+7                            | 0        |
| 2 | HE 400 A | 15900.68    | 10298.69    | 4201.46     | 1953265.0                | 4.5077E+8   | 8.5639E+7                | 0                         | 4.5077E+8               | 8.5639E+7                            | 0        |

|   | Name     | lω<br>[mm <sup>6</sup> ] | W <sub>1,el,t</sub><br>[mm <sup>3</sup> ] | W <sub>1,el,b</sub><br>[mm <sup>3</sup> ] | W <sub>2,el,t</sub><br>[mm³] | W <sub>2,el,b</sub><br>[mm <sup>3</sup> ] | W <sub>1,pl</sub><br>[mm <sup>3</sup> ] | W <sub>2,pl</sub><br>[mm <sup>3</sup> ] | i <sub>y</sub><br>[mm] | i <sub>z</sub><br>[mm] |
|---|----------|--------------------------|-------------------------------------------|-------------------------------------------|------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------|------------------------|
| 1 | IPE 500  | 1.2346E+12               | 1928302.0                                 | 1928302.0                                 | 214172.4                     | 214172.4                                  | 2194516.0                               | 335901.4                                | 204.3                  | 43.1                   |
| 2 | HE 400 A | 2.8902E+12               | 2311663.0                                 | 2311663.0                                 | 570927.7                     | 570927.7                                  | 2562282.0                               | 872908.3                                | 168.4                  | 73.4                   |

|   | Name     | Hy<br>[mm] | Hz<br>[mm] | y <sub>G</sub><br>[mm] | z <sub>G</sub><br>[mm] | y <sub>s</sub><br>[mm] | z <sub>s</sub><br>[mm] | β <sub>y</sub><br>[mm] | β <sub>z</sub><br>[mm] | β <sub>w</sub> | S.p. |
|---|----------|------------|------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------|------|
| 1 | IPE 500  | 200.0      | 500.0      | 100.0                  | 250.0                  | 0                      | 0                      | 0                      | 0                      | 0              | 9    |
| 2 | HE 400 A | 300.0      | 390.0      | 150.0                  | 195.0                  | 0                      | 0                      | 0                      | 0                      | 0              | 9    |

Name: Cross-section name; **Process**: Manufacturing process; **h**: Cross-section height; **b**: Cross-section width; **tw**: Web thickness; **tf**: Flange thickness;  $\mathbf{r_1}$ ,  $\mathbf{r_2}$ ,  $\mathbf{r_3}$ : Rounding radius; **Ax**: Cross-section area; **Ay**, **Az**: Shear area; **Ix**: Torsional inertia; **Iy**, **Iz**: Flexural inertia; **Iyz**: Centrifugal inertia; **I**, **I**<sub>2</sub>: Principal flexural inertia; **c**: Principal directions; **lo**: Warping constant; **W**<sub>1,el,t</sub>, **W**<sub>2,el,t</sub>, **W**<sub>2,el,t</sub>. Elastic section modulus; **W**<sub>1,pl</sub>, **W**<sub>2,pl</sub>: Plastic section modulus; **i**<sub>y</sub>, **i**<sub>z</sub>: Radius of inertia; **Hy**: Dimension in local y direction; **Hz**: Dimension in local y direction; **y**<sub>6</sub>: y coordinate of the center of gravity; **z**<sub>6</sub>: z coordinate of the center of gravity; **z**<sub>8</sub>: y coordinate of the shear (torsion) center relative to the center of gravity; **y**<sub>8</sub>, **p**<sub>8</sub>, **w**: Wagner's coefficient; **S.p.**: Stress calculation points;

Analysis by Amgalantuul Purevsuren

Model: **Model 5.axs** 5/15/2022 Page 4

## Spring characteristics

|   | Name                  | Туре                 | Degree of freedom | Model                | К             | $K_V$         | P <sub>1</sub> |
|---|-----------------------|----------------------|-------------------|----------------------|---------------|---------------|----------------|
| 1 | Soft - Translational  | N-N                  | Translational     | Linear               | 1E+0 kN/m     | 1E+0 kN/m     |                |
| 2 | Rigid - Translational | N-N                  | Translational     | Linear               | 1E+10 kN/m    | 1E+10 kN/m    | _              |
| 3 | Soft - Rotational     | N-N                  | Rotational        | Linear               | 1E+0 kNm/rad  | 1E+0 kNm/rad  | _              |
| 4 | Rigid - Rotational    | N-N                  | Rotational        | Linear               | 1E+10 kNm/rad | 1E+10 kNm/rad | _              |
| 5 | Complete - inverse    | Warping transmission | Warping   1       | L <del>j</del> near_ | · —           | _             | WF = -1        |
| 6 | Complete - direct     | Warping transmission | Watchio Na        | Wi@r ?               | \$10h -       | _             | WF = 1         |
| 7 | Rigid                 | Warping transmission | Warping           | Linear               | _             | _             | WF = 0         |

Name: Name of the spring characteristics; Model: Material model; K: Initial stiffness; Ky: Vibration stiffness; P1: Parameter;

#### References

|   | Name | Туре | X <sub>1</sub> [m] | Y <sub>1</sub> [m] | Z <sub>1</sub> [m] | X <sub>2</sub> [m] | Y <sub>2</sub> [m] | Z <sub>2</sub> [m] | X <sub>3</sub> [m] | Y <sub>3</sub> [m] | Z <sub>3</sub> [m] |
|---|------|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1 | R1   | B    | 7.00               |                    |                    |                    |                    |                    |                    |                    |                    |

Name: Reference name; Type: Type of %s;

#### Nodes

|    | X [m]  | Y [m] ▼ | Z [m] | $e_X$ | $e_{\gamma}$ | $e_Z$ | $\theta_X$ | $\theta_Y$ | $\theta_Z$ |
|----|--------|---------|-------|-------|--------------|-------|------------|------------|------------|
| 1  | 0      | 0       | 0     | f     | Con          | f     | Con        | f          | Con        |
| 2  | 14.400 | 0       | 0     | f     | Con          | f     | Con        | f          | Con        |
| 3  | 0      | 0       | 5.200 | f     | f            | f     | f          | f          | f          |
| 4  | 14.400 | 0       | 5.200 | f     | f            | f     | f          | f          | f          |
| 5  | 7.200  | 0       | 6.084 | f     | f            | f     | f          | f          | f          |
| 6  | 0      | 0       | 1.300 | f     | f            | f     | f          | f          | f          |
| 7  | 0      | 0       | 2.600 | f     | f            | f     | f          | f          | f          |
| 8  | 0      | 0       | 3.900 | f     | f            | f     | f          | f          | f          |
| 9  | 14.400 | 0       | 3.900 | f     | Con          | f     | Con        | f          | Con        |
| 10 | 14.400 | 0       | 2.600 | f     | f            | f     | f          | f          | f          |
| 11 | 14.400 | 0       | 1.300 | f     | f            | f     | f          | f          | f          |
| 12 | 1.440  | 0       | 5.377 | f     | Con          | f     | Con        | f          | Con        |
| 13 | 2.880  | 0       | 5.554 | f     | Con          | f     | Con        | f          | Con        |
| 14 | 4.320  | 0       | 5.730 | f     | Con          | f     | Con        | f          | Con        |
| 15 | 5.760  | 0       | 5.907 | f     | Con          | f     | Con        | f          | Con        |
| 16 | 8.640  | 0       | 5.907 | f     | Con          | f     | Con        | f          | Con        |
| 17 | 10.080 | 0       | 5.730 | f     | f            | f     | f          | f          | f          |
| 18 | 11.520 | 0       | 5.554 | f     | f            | f     | f          | f          | f          |
| 19 | 12.960 | 0       | 5.377 | f     | Con          | f     | Con        | f          | Con        |

e<sub>X</sub>: Nodal DOF (translation constraint X); e<sub>Y</sub>: Nodal DOF (translation constraint Y); e<sub>Z</sub>: Nodal DOF (translation constraint Z); θ<sub>X</sub>: Nodal DOF (rotation constraint about X-Axis);

 $\theta_{Y}$ : Nodal DOF (rotation constraint about Y-Axis);  $\theta_{Z}$ : Nodal DOF (rotation constraint about Z-Axis);

Analysis by Amgalantuul Purevsuren

Model: **Model 5.axs** 5/15/2022 Page 5



ST2, Front view



bending, Front view

Analysis by Amgalantuul Purevsuren

Model: **Model 5.axs** 5/15/2022 Page 6



[I], Linear, (Auto) Critical, My, Filled diagram, Front view



[I], Linear, (Auto) Critical, Nx, Filled diagram, Front view