

THESIS

Jeffrey S. Davis, Captain, USAF

AFIT/GSO/ENY/00M-01

20000803 146

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC QUALITY INSPECTED 4

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the United States Air Force, Department of Defense, or the U.S. Government.
the Office States Air Porce, Department of Defense, of the O.S. Government.
\cdot

THESIS

Presented to the Faculty of the School of Engineering and Management of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Space Operations

Jeffrey S. Davis, B.S.

Captain, USAF

March 2000

Approved for public release; distribution unlimited

Jeffrey S. Davis, B.S. Captain, USAF

Approved:

Dr. William Wiesel, Ph. D. (Chairman)

67an 00

date

Captain Gregory Agnes, Ph. D. date

Dr. Steven Tragesser, Ph. D. date

Acknowledgments

I would like to express my gratitude and appreciation to Dr. William Wiesel for his outstanding support over the duration of this effort. His assistance with my computer programs and understanding of the problem proved invaluable. However, I'm mostly thankful for never having left his office in despair. I would also like to thank Capt Greg Agnes and Dr. Steven Tragesser for their insights as well.

My heartfelt thanks and love belong to my wife Kelly, daughter Brooke and son

Austin. Their understanding, support and willingness to make sacrifices over the past 18

months have made this a positive experience in our lives.

Jeffrey S. Davis

AFIT/GSO/ENY00/M-01

Abstract

The relative position determination of a cluster of satellites in near circular orbit was investigated in previous thesis work. The purpose of this thesis is to extend the concept to cover absolute position determination. A Bayes filter is used for the estimator with dynamics based on the two-body problem extended to account for J₂ perturbations. Measurements consist of combining Global Positioning System (GPS) data for each satellite and range data between the satellites. Simulations were conducted investigating the accuracy obtainable when combining the measurements for input into the filter. Performance results consist of comparing the magnitude of the true error to the filter covariance as a function of time. True errors are also compared to minimum accuracy requirements for a space-based radar. The filter encountered numerical difficulties due to the extreme accuracy requirements and proved unsuccessful in providing usable estimates. The results suggest separating the absolute and relative problems.

Table of Contents

Page
Acknowledgments iv
Abstract
List of Figures
I. Introduction
Background
II. Methodology
Satellite Orbits Selection
III. Performance Analysis
IV. Conclusions
Appendix A. Satellite Precision Requirement
Appendix B. Computer Program Source Code
Appendix C. Selected Raw Data Products
Bibliography
Vita

List of Figures

Figure	
1.	Techsat 21 Missions
2.	Spacing Criteria for Different Modes
3.	Comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, given perfect data
4.	Comparison of $ e_i $ and (σ_i) versus time for satellite 1
5.	Comparison of $ e_i $ and (σ_i) versus time for satellite 2
6.	Satellite 1 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data
7.	Satellite 1 position (y) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data
8.	Satellite 1 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data
9.	Satellite 2 position (x) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data
10.	Satellite 2 position (y) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data

Figu	re Pag	e
11.	Satellite 2 position (z) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data	4
12.	Satellite 1 position (x) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data	5
13.	Satellite 1 position (y) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data	6
14.	Satellite 1 position (z) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data	6
15.	Satellite 2 position (x) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data	27
16.	Satellite 2 position (z) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data	7
17.	Satellite 1 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data	.8
18.	Satellite 1 position (y) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data	28

Figure		Page
19.	Satellite 1 position (z) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data	29
20.	Satellite 2 position (y) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data	29
21.	Satellite 2 position (z) comparison of true error (e _i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data	30

I. Introduction

Background

As the development of space-based radar technologies permits shifting missions such as Airborne Warning and Control System (AWACS) and Joint Surveillance and Targeting Attack Radar System (Joint-STARS) surveillance functions to the arena of space, the navigation and control of satellite clusters has become a prime area of interest. The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL) is one agency currently studying how a cluster of satellites each acting as an element of a radar antenna might perform such a mission. The TechSat 21 project envisions a cluster of satellites working together as a single virtual satellite while performing various functions, such as a space-based radar (Figure 1). Research is needed to determine how to fly the cluster in formation, so it acts like a single satellite. Before they can perform formation flying, the positions of the satellites relative to one another must be known with some degree of accuracy. Furthermore, in order to perform a variety of spaced-based radar applications, the positions should be known to within one tenth of a wavelength of the radar frequency being used; potentially to 1 centimeter (cm). The determination of this value can be found in Appendix A.

Figure 1. Techsat 21 Missions (13: n. pag.)

Using the Global Positioning System (GPS) to determine the position of the satellites with respect to each other offers a possible solution. Spaced-based GPS receivers may achieve improvement over the accuracy obtained from terrestrial receivers. The GPS constellation of 24 satellites orbits the earth at approximately 20,000 km providing 100 percent coverage for a satellite cluster operating at typical space-based radar altitudes. This may enhance performance of the receivers due to improved satellite viewing geometry. The absence of tropospheric delays offers an additional improvement in performance. Results of postprocessed experiments using differential GPS showed baseline accuracies of approximately 5-10 cm (5:249). Although this level of accuracy may not be achievable with stand-alone spaceborne processing, accurate modeling and a

well designed filter should make 1 meter (m) level accuracies possible (5:249). Although real time accuracy for authorized users of Precise Positioning Service (PPS) signals is currently about 5 - 10 meters (8:D-2), this study will assume 1 - 3 meter accuracy will be available for GPS data. However, even at 1 m level accuracy, performance does not meet the required centimeter level of accuracy for some radar applications.

Several previous Air Force Institute of Technology theses studied the concept of using a recursive filter for relative position determination among a cluster of satellites without the use of GPS (4; 9; 14). They used a U-D covariance factorization Kalman filter that operated on range data between the satellites determined from synchronized clock pulses. The relative position error approached a value of approximately 3 cm. The position is relative because only the distance between the satellites is known, not the direction.

Combining the centimeter level accuracy of the range data with the meter level accuracy of GPS may provide a solution for the absolute positions of the satellites to the required accuracy. Applying estimation techniques, in the form of a Bayes filter, to this approach is the focus of this investigation.

Objectives

The purpose, and primary objective, of this investigation was to determine the possible accuracies for position determination among a cluster of satellites using a Bayes Filter.

Several other objectives were accomplished in order to achieve the primary objective.

First, simulating the orbits of the satellite cluster was necessary. Although future analysis should be accomplished for a full cluster (8 - 16 satellites), only two were used in this study. This was done under the assumption that what could be performed with two

could be extended to many. The orbits were determined using the two-body equations of motion expanded to include the effects of the nonspherical earth.

Next, a truth model was built to output the true state as well as the measurement data over selected time intervals for input into the filter. The truth model outputs consisted of the range data between satellites, and the GPS determined positions for each of the satellites.

Finally, a Bayes filter was written to output an estimated state. The critical elements of the estimated state were compared to the true state to determine the filter's level of performance.

II. Methodology

Satellite Orbit Selection

The first step towards the eventual development of a truth model is selecting the desired orbital parameters for the satellite cluster. The criteria is for the satellites to be approximately 500 meters apart, at their closest, and at an orbital altitude of about 1000 nautical miles (1852 km).

Figure 2. Spacing Criteria for Different Modes. (13:n. pag.)

In order to maintain the cluster integrity, and not drift apart, each of the satellites are required to have the same orbital period. From Kepler's laws, the orbital period of an elliptical orbit is a function of the semi-major axis of the orbit (1:33). Therefore, both of the satellites used in the model had the same semi-major axis. To keep things simple, the two satellites were placed in the same orbital plane of a near circular orbit with different perigee times used to maintain the desired separation. Although safety reasons might prevent placing any of the cluster's satellites this close when within the same along-track

plane, it is not a concern for this study. The velocities of the satellites were calculated using

$$v_{cir} = \sqrt{\frac{\mu}{r}} \tag{1}$$

where

 v_{cir} = orbital velocity (circular)

 $\mu = 3.986005 \times 10^{14} \text{ km}^3/\text{s}^2$ (the earth's gravitational parameter)

r = orbit radius (km)

The time of perigee passage for one of the satellites was then adjusted to create a 500 meter interval. The remaining orbital elements were arbitrarily chosen and entered into an existing program to determine the initial position and velocity vectors for the two satellites.

Propagating the Orbits

With the initial positions and velocities known, the next step was to develop a program to propagate each satellite through its orbit. The orbits were based on two-body orbital dynamics expanded to include the effects of the nonspherical Earth known as J_2 perturbations. Other perturbations, such as atmospheric drag, were neglected in part due to their negligible effects at the altitude of interest, 1852 km, and partly to simplify the equations. The desired output from the orbit propagator program was a state vector for

each satellite which included the position and the velocity vectors as follows

$$X = \begin{pmatrix} x \\ y \\ z \\ \vdots \\ x \\ \vdots \\ y \\ \vdots \\ z \end{pmatrix}$$
 (2)

The x, y, and z positions are with respect to an earth-centered inertial reference frame and defined in terms of distance units (DU), where 1 DU = 1678.135 km, or the radius of the Earth. To obtain the state vector, the equations of motion to describe the orbits were written and integrated. The equations of motion were just the time rate of change of the state vector,

$$\dot{X} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \vdots \\ \dot{x} \\ \vdots \\ \dot{y} \\ \vdots \\ \dot{z} \end{pmatrix}$$
(3)

The equations of motion were derived from the gravitational potential function (1:419):

$$V = -\frac{\mu}{\vec{r}} + \frac{\mu r_e^2 J_2}{2\vec{r}^3} \left(3\frac{z^2}{\vec{r}^2} - 1 \right)$$
 (4)

where

 μ =3.986005X10^14 km³/s² (the earth's gravitational parameter)

r_e=6378.137 km (the earth's radius)

J2=0.00108263

The acceleration terms were found by setting the following equalities:

$$\ddot{x} = -\frac{\partial V}{\partial x} \tag{5}$$

$$\ddot{y} = -\frac{\partial V}{\partial y} \tag{6}$$

$$\ddot{z} = -\frac{\partial V}{\partial z} \tag{7}$$

Solving each of these led to the following acceleration terms (1:421-422):

$$\ddot{x} = -\frac{\mu x}{\bar{r}^3} \left[1 - J_2 \frac{3}{2} \left(\frac{r_e}{\bar{r}} \right)^2 \left(5 \frac{z^2}{\bar{r}^2} - 1 \right) \right]$$
 (8)

$$\ddot{y} = -\frac{\mu y}{\vec{r}^3} \left[1 - J_2 \frac{3}{2} \left(\frac{r_e}{\vec{r}} \right)^2 \left(5 \frac{z^2}{\vec{r}^2} - 1 \right) \right]$$
 (9)

$$\ddot{z} = -\frac{\mu z}{\vec{r}^3} \left[1 + J_2 \frac{3}{2} \left(\frac{r_e}{\vec{r}} \right)^2 \left(3 - 5 \frac{z^2}{\vec{r}^2} \right) \right]$$
 (10)

where

$$\vec{r} = \sqrt{x^2 + y^2 + z^2}$$

Along with the equations of motion, the state transition matrix, Φ , was used to propagate the differentials of the state as a function of time. The Φ matrix satisfies the equation

$$\dot{\Phi}(t,t_0) = A(t) \Phi(t,t_0) \tag{11}$$

where $A(t) = \frac{\partial \dot{X}}{\partial X}$, and was obtained by numerically integrating the equations of variation in parallel with the equations of motion. The equations of variation account for possible variations in the desired orbit and are derived by solving the matrix

$$\frac{\partial \dot{X}}{\partial X} = \begin{bmatrix}
\frac{\partial \dot{V}_{x}}{\partial x} & \frac{\partial \dot{V}_{x}}{\partial y} & \frac{\partial \dot{V}_{x}}{\partial z} & \frac{\partial \dot{V}_{x}}{\partial \dot{x}} & \frac{\partial \dot{V}_{x}}{\partial \dot{y}} & \frac{\partial \dot{V}_{x}}{\partial \dot{z}} \\
\frac{\partial \dot{V}_{y}}{\partial x} & \frac{\partial \dot{V}_{y}}{\partial y} & \frac{\partial \dot{V}_{y}}{\partial z} & \frac{\partial \dot{V}_{y}}{\partial \dot{x}} & \frac{\partial \dot{V}_{y}}{\partial \dot{y}} & \frac{\partial \dot{V}_{y}}{\partial \dot{z}} \\
\frac{\partial \dot{V}_{z}}{\partial x} & \frac{\partial \dot{V}_{z}}{\partial y} & \frac{\partial \dot{V}_{z}}{\partial z} & \frac{\partial \dot{V}_{z}}{\partial \dot{x}} & \frac{\partial \dot{V}_{z}}{\partial \dot{y}} & \frac{\partial \dot{V}_{y}}{\partial \dot{z}} \\
\frac{\partial \dot{\dot{V}}_{x}}{\partial x} & \frac{\partial \dot{\dot{V}}_{x}}{\partial y} & \frac{\partial \dot{\dot{V}}_{x}}{\partial z} & \frac{\partial \dot{\dot{V}}_{x}}{\partial \dot{x}} & \frac{\partial \dot{\dot{V}}_{x}}{\partial \dot{y}} & \frac{\partial \dot{\dot{V}}_{y}}{\partial \dot{z}} \\
\frac{\partial \dot{\dot{V}}_{y}}{\partial x} & \frac{\partial \dot{\dot{V}}_{y}}{\partial y} & \frac{\partial \dot{\dot{V}}_{y}}{\partial z} & \frac{\partial \dot{\dot{V}}_{y}}{\partial z} & \frac{\partial \dot{\dot{V}}_{y}}{\partial \dot{x}} & \frac{\partial \dot{\dot{V}}_{y}}{\partial \dot{y}} & \frac{\partial \dot{\dot{V}}_{y}}{\partial \dot{z}} \\
\frac{\partial \dot{\dot{V}}_{z}}{\partial x} & \frac{\partial \dot{\dot{V}}_{z}}{\partial y} & \frac{\partial \dot{\dot{V}}_{z}}{\partial z} & \frac{\partial \dot{\dot{V}}_{z}}{\partial z} & \frac{\partial \dot{\dot{V}}_{z}}{\partial \dot{x}} & \frac{\partial \dot{\dot{V}}_{z}}{\partial \dot{y}} & \frac{\partial \dot{\dot{V}}_{y}}{\partial \dot{z}} \\
\frac{\partial \dot{\dot{V}}_{z}}{\partial x} & \frac{\partial \dot{\dot{V}}_{z}}{\partial y} & \frac{\partial \dot{\dot{V}}_{z}}{\partial z} & \frac{\partial \dot{\dot{V}}_{z}}{\partial z} & \frac{\partial \dot{\dot{V}}_{z}}{\partial \dot{x}} & \frac{\partial \dot{\dot{V}}_{z}}{\partial \dot{y}} & \frac{\partial \dot{\dot{V}}_{z}}{\partial \dot{z}}
\end{bmatrix} (12)$$

Calculating the partial derivatives will show A(t) to have the following form (15:78):

$$A(t) = \begin{pmatrix} \phi & I \\ A_{21} & \phi \end{pmatrix} \tag{13}$$

where

 $\phi = 3 \times 3$ null matrix

I = identity matrix

The A_{21} elements of A(t) are as follows:

$$\frac{\partial \vec{V}_x}{\partial x} = \mu \left[\frac{3 x^2 - \vec{r}^2}{\vec{r}^5} \right] + \frac{3}{2} J_2 \mu r_e^2 \left[\frac{5 \vec{r}^2 z^2 - 35 x^2 z^2}{\vec{r}^9} - \frac{\vec{r}^2 - 5 x^2}{\vec{r}^7} \right]$$
(14)

$$\frac{\partial \dot{V}_x}{\partial y} = \frac{3\mu xy}{\bar{r}^5} + \frac{15}{2} J_2 \mu r_e^2 \left[\frac{-7xyz^2}{\bar{r}^9} + \frac{xy}{\bar{r}^7} \right]$$
 (15)

$$\frac{\partial \vec{V}_x}{\partial z} = \frac{3\mu xz}{\vec{r}^5} + \frac{15}{2} J_2 \mu r_e^2 \left[\frac{2xz \, \vec{r}^2 - 7x \, z^3}{\vec{r}^9} + \frac{xz}{\vec{r}^7} \right] \tag{16}$$

$$\frac{\partial \vec{V}_{y}}{\partial x} = \frac{3\mu xy}{\vec{r}^{5}} + \frac{15}{2} J_{2} \mu r_{e}^{2} \left[\frac{-7xyz^{2}}{\vec{r}^{9}} + \frac{xy}{\vec{r}^{7}} \right]$$
(17)

$$\frac{\partial \vec{V}_{y}}{\partial y} = \mu \left[\frac{3 \ y^{2} - \vec{r}^{2}}{\vec{r}^{5}} \right] + \frac{3}{2} J_{2} \mu r_{e}^{2} \left[\frac{5 \ z^{2} \vec{r}^{2} - 35 \ y^{2} \ z^{2}}{\vec{r}^{9}} - \frac{\vec{r}^{2} - 5 \ y^{2}}{\vec{r}^{7}} \right]$$
(18)

$$\frac{\partial \dot{V}_{y}}{\partial z} = \frac{3\mu yz}{\vec{r}^{5}} + \frac{15}{2} J_{2} \mu r_{e}^{2} \left[\frac{2yz \, \vec{r}^{2} - 7y \, z^{3}}{\vec{r}^{9}} + \frac{yz}{\vec{r}^{7}} \right]$$
(19)

$$\frac{\partial \dot{V}_z}{\partial x} = \frac{3\mu xz}{\bar{r}^5} + \frac{15}{2} J_2 \mu r_e^2 \left[\frac{2xz \, \bar{r}^2 - 7x \, z^3}{\bar{r}^9} + \frac{xz}{\bar{r}^7} \right] \tag{20}$$

$$\frac{\partial \dot{V}_z}{\partial y} = \frac{3\mu yz}{\bar{r}^5} + \frac{15}{2} J_2 \mu r_e^2 \left[\frac{2yz \, \bar{r}^2 - 7y \, z^3}{\bar{r}^9} + \frac{yz}{\bar{r}^7} \right] \tag{21}$$

$$\frac{\partial \dot{V_z}}{\partial z} = \mu \left[\frac{3 z^2 - \vec{r}^2}{\vec{r}^5} \right] + \frac{1}{2} J_2 \mu r_e^2 \left[\frac{105 z^4 - 75 z^2 \vec{r}^2 - 6 r^4}{\vec{r}^9} - \frac{3r^2 - 15 z^2}{\vec{r}^7} \right]$$
(22)

The routines written to propagate the dynamics consisted of a main program and two subroutines. Changes to existing routines, most significantly the dynamics, were made to fit the scenario for this study. The source code for each routine is listed in Appendix B. The main program, moveit, is a simple dynamics propagator which takes the input state vectors and propagates their orbits from the initial time to the desired end time. It also outputs the state transition matrix, Φ , at the end time as well. The main program makes use of two subroutines, haming and rhs. Haming is an ordinary differential equations integrator. It is a fourth order predictor-corrector algorithm. The subroutine rhs is the routine that actually calculates the equations of motion and the equations of variation. Once the routines were created, they were verified using published scenarios (6:253-256). Once the test satellites were propagated to the proper times, the position and velocity data were input into a program written to output the classical orbital elements given the position and velocity. The J_2 effect, if working correctly, should have produced a

regression of the ascending node as well as a rotation in the argument of perigee. The following equations used for general perturbation theory without numerical integration were used to verify the output (15:81):

$$\Omega = \Omega_0 - \frac{3J_2\sqrt{\mu}}{2a_0^{7/2}(1-e_0^2)^2}\cos i_0(t-T_0)$$
 (23)

$$\omega = \omega_0 - \frac{3J_2\sqrt{\mu}}{2a_0^{7/2}(1-e_0^2)^2} \left(\frac{5}{2}\sin^2 i_0 - 2\right) (t - T_0)$$
 (24)

The amount of nodal regression and argument of perigee rotation shown in the output of the classical elements agreed to several significant digits with the values calculated from the respective equations. The results can be found in Appendix C and were deemed satisfactory for use. The amount of nodal regression was also verified with published data for given inclinations and altitudes and was within reasonable limits (12:262-263).

Truth Model

The truth model needs to output the true state x and the measurements z_t . The measurements are used by the estimation filter to output an estimated state \hat{x} . The true state information, for each time step, is already available from the previous routines propagating the orbits. Additionally, the range data between the two satellites is desired and is computed using

$$range(\rho) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (25)

The measurement data consists of the position vectors of the two satellites along with the range between them. The resulting observation function, $G(\mathbf{x},t)$, takes the form

$$z_{perfect} = \begin{cases} \rho \\ x_{sat1} \\ y_{sat1} \\ z_{sat1} \\ x_{sat2} \\ y_{sat2} \\ z_{sat2} \end{cases} = \begin{cases} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \\ x_1 \\ y_1 \\ z_1 \\ x_2 \\ y_2 \\ z_2 \end{cases}$$
(26)

In order to represent the errors associated with obtaining the respective measurements,

Gaussian noise is added to corrupt the perfect data captured above resulting in

$$z_{corrupt} = z_{perfect} + \sigma_{noise}$$
 (27)

The $z_{corrupt}$ data is used to form the inputs to the estimator. The σ_{noise} is the Gaussian noise with an associated instrument covariance of Q. The noise is the representation for errors in computing the range measurements from clock pulses and the positions using a GPS receiver. The noise consists of random numbers created from a uniformly distributed random number generator manipulated to meet the proper covariances. The observation data vector, \mathbf{z}_i , is output for each observation time-step t_i .

Bayes Filter

Now that the truth model can represent *real world* measurements, the estimation filter can be developed. Typically the choice between using a Bayes or Kalman filter is determined by inspecting the rank of the state vs. the rank of the measurement data. If the rank of the state is greater, as in this case, then the Kalman filter is the proper choice.

However, due to the very accurate data supplied by the instruments in use, the Kalman filter provides poor response (15:107). Although there are methods to correct the response, it is simpler and more efficient to attempt the use of a Bayes filter for this study.

The Bayes algorithm that follows is adapted from Modern Methods of Orbit Determination (15:96-97). The Bayes algorithm is initiated by bringing in a previous estimate of the state, $\bar{x}(-)$, and its' covariance, $P^{-1}(-)$, at the new epoch. The previous estimate becomes the reference by setting

$$\chi_{ref} = \overline{\chi}(-) \tag{28}$$

for each new observation time t_i . Next, the state vectors and Φ matrices are propagated to time t_i . The residual vector, \mathbf{r}_i , linearization matrix, H_i , and the observation matrix, T_i are calculated and

$$r_i = z_i - G \tag{29}$$

As shown, the residuals are just the observed data supplied to the filter minus the predicted values calculated using equation (26). The H matrix is derived from taking the partials of G(x,t) with respect to the partials of the state X, where X is now

$$\boldsymbol{X}^{T} = (x_{1}, y_{1}, z_{1}, \dot{x}_{1}, \dot{y}_{1}, \dot{z}_{1}, x_{2}, y_{2}, z_{2}, \dot{x}_{2}, \dot{y}_{2}, \dot{z}_{2})$$
(30)

The H matrix is

The observation matrix is found by setting

$$T_i = H_i \Phi \left(t_i, t_0 \right) \tag{32}$$

The observation covariance matrix is also required. The diagonal entries contain the error values of the instruments and the off-diagonal entries are zero. The zero values imply that the measurements are independent. This is probably not a valid assumption but is adequate for this study. The observation covariance matrix is

$$Q = \begin{bmatrix} \sigma_{range}^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{GPS}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{GPS}^{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{GPS}^{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{GPS}^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{GPS}^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{GPS}^{2} & 0 \end{bmatrix}$$

$$(33)$$

Continuing with the algorithm, sum additional terms

$$\sum_{i} T_i^T Q_i^{-1} T_i \tag{34}$$

$$\sum_{i} T_i^T Q_i^{-1} \overline{r}_i \tag{35}$$

Next, obtain the new covariance of the state correction:

$$P^{-1}(+) = P^{-1}(-) + \sum_{i=1}^{N} T_i^T Q_i^{-1} T_i$$
(36)

Also obtain the estimate of the state correction:

$$\delta \overline{x}(t_0) = P(+) \left(P^{-1}(-)(\overline{x}(-) - x_{ref}) + \sum_{i=1}^{N} T_i^T Q_i^{-1} r_{zi} \right)$$
(37)

Finally, correct the reference solution and check for convergence:

$$x_{ref+1}(t_0) = x_{ref}(t_0) + \delta \overline{x}(t_0)$$
(38)

If the algorithm fails to converge, the process repeats itself starting with the propagation of the state and Φ matrix. If the process converged, then x_{ref+1} is the estimate with covariance P(+).

III. Performance Analysis

The truth model and the Bayes filter have been developed. The necessary information for an initial assessment of the filter's performance can be obtained through multiple runs of the models. The information of interest is the true state x_t , the estimated state \hat{x} , and the covariance P. The remaining task is to convert the information into a useful output.

The analysis will plot the true errors $|e_i|$ and covariances $\sqrt{P_{ii}}$ of the x, y, and z position estimates for each satellite over a period of 5 orbits. In addition, the magnitude of the true error for each satellite is plotted against the standard deviation of the covariance to get a feel for the overall position error. The magnitude of the true error is given by

$$e_{true} = \sqrt{e_x^2 + e_y^2 + e_z^2} \tag{39}$$

where e_i is the difference between the Δx , Δy , and Δz components of the true state and the estimated state. The estimates' covariance, or standard deviation, is found by taking the square root of the sum of the squares of the eigenvalues associated with the position components of the estimated state, specifically

$$\sigma = \sqrt{eigenvalue_x^2 + eigenvalue_y^2 + eigenvalue_z^2}$$
 (40)

The purpose of the first test was to determine if the filter was stable and could provide a near perfect estimate if supplied with perfect data. The filter was initialized with the true state of the two satellites along with $P^{-1}(-) = 0$. This eliminates the need for initial run of least squares to provide an input estimate (15:106). Next, the filter was fed perfect

data from the truth model. Figure 3 shows the results. Only satellite 1's x position results are shown because they were all identical. The covariance remained stable and the true errors were for all purposes zero, as the raw data, in DU's, agreed to within 11 - 13 significant digits. The raw data for this case are included in Appendix C.

Figure 3. Comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, given perfect data.

Next, the filter was adjusted for various values to explore the range of possible measured range errors versus GPS errors. The values were adjusted by varying the diagonal elements of the observation covariance matrix Q, defined in the previous chapter. Although the range measurement errors were approximately two to three times less than the achieved relative error of 3 cm (9:48), a conservative range measurement

error was arbitrarily defined as 3 cm. The initial case was set up to reflect the expected performance from GPS and the anticipated range measurement error, 1 m and 3 cm, respectively. The performance of the filter was unanticipated, as the filter failed to converge. Although the filter was fine given perfect data, the filter never met the original convergence criteria when supplied with corrupted data. The original criteria was set at

$$\Delta_{dx} < 0.01 \sqrt{P_{ii}} \tag{41}$$

where Δ_{dx} represented the difference between a given component of the estimate and the observed component and $\sqrt{P_{ii}}$ was that component's covariance. The 0.01 factor was removed and the process was repeated. This time the filter met the criteria until the 3rd orbit. Upon inspection, following the first two orbits the changes to the components of the state remained at the same order of magnitude as the values for $\sqrt{P_{ii}}$. In order to get an output for what the filter was doing with the estimates for subsequent orbits, the converging criteria was changed to

$$\Delta_{dx} < 12\sqrt{P_{ii}} \tag{42}$$

The value 12 was determined from experimentation to see the approximate lowest value that could be entered which would allow the filter to converge. This indicates a change in the twelve sigma range. Figures 4 - 11 show the various results. The validity of the output as time progresses is questionable at best, but it lends insight into what is happening within the filter. The covariances remain steady while the estimates continue to worsen, and even when a very poor estimate of the state is entered after orbit 4, the covariance still indicates the data can be trusted. Orbit 5's true error is off the charts. At

that point the filter would not converge before the maximum number of iterations had been exceeded. The value plotted was the last best guess estimate the filter had prior to termination.

Figure 4. Comparison of $|e_i|$ and (σ_i) versus time for satellite 1.

Figure 5. Comparison of $\left|e_i\right|$ and $\left(\sigma_i\right)$ versus time for satellite 2.

Figure 6. Satellite 1 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data.

Figure 7. Satellite 1 position (y) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data.

Figure 8. Satellite 1 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data.

Figure 9. Satellite 2 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data.

Figure 10. Satellite 2 position (y) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data.

Figure 11. Satellite 2 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 1 meter for GPS and 3 centimeters for range data.

It appears that the Bayes filter may be experiencing problems similar to those that the Kalman filter has been known to experience when processing very accurate data. With the data in terms of DU's, estimates are striving to be accurate on the order of 10^{-7} to 10^{-9} , within meters to centimeters, respectively. The P values ranged from 10^{-11} to 10^{-16} , which not only represent P approaching zero but approach the limits of double precision capabilities as well. The problem arises when the initial residuals are small and $P \to 0$, and then as the residuals increase the filter ignores them. As $P^{-1}(-)$ becomes very large, equation (36) shows that the $\sum_{i=1}^{N} T_i^T Q_i^{-1} T_i$ term becomes negligible and $P^{-1}(+) = P^{-1}(-)$. Next, in equation (37), $P(+) \to 0$, thereby eliminating any correction to the previous state.

Prior to the failure of the filter, several other cases of interest were to be investigated as well. The cases of interest were when the accuracy provided by the range instruments weren't much better than the data provided by the GPS receiver, and the case where GPS estimates approached the accuracies obtained by post-processing, approximately 10 cm. Because each of these cases presented data within the same order of magnitude, they were run through the filter to see if the results were any different. Also, over short durations, maybe an orbit or so, the output still gives an indication of what accuracies might be obtainable if the filter was made to work. The results are shown in figures 12 - 21. As expected, the filter's performance resembles that of the previous data, although it doesn't diverge as quickly.

Figure 12. Satellite 1 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data.

Figure 13. Satellite 1 position (y) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data.

Figure 14. Satellite 1 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data.

Figure 15. Satellite 2 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data.

Figure 16. Satellite 2 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 3 meters for GPS and 1 meter for range data.

Figure 17. Satellite 1 position (x) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data.

Figure 18. Satellite 1 position (y) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data.

Figure 19. Satellite 1 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data.

Figure 20. Satellite 2 position (y) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data.

Figure 21. Satellite 2 position (z) comparison of true error (e_i) and covariance $\sqrt{P_{ii}}$ versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range data.

IV. Conclusion

The Bayes algorithm as tested proved to be incapable of handling the accurate data simulated by the truth model. The covariances of the state were so small that the filter ignored any residuals, even as they increased in magnitude. Attempting to determine the absolute positions to such a small scale probably contributed to the failure. Trying to estimate positions to the accuracy of centimeters on such a large scale, ≈1850 km, not only tested the filter but stretched the limits of double precision computing as well.

Investigating methods used with the Kalman filter to account for similar limitations might be the next step. However, with respect to the double precision limits, it is recommended to look at the problem in terms of the satellite cluster's world. The problem might be split up between the absolute position of the cluster as a whole, and the relative position of the satellites within the cluster. For a cluster spread out over 1 - 2 km, centimeter accuracy would be to less significant digits. Also, depending on the application, the absolute position of the cluster would probably only require sub-kilometer accuracy.

Solid conclusions cannot be drawn about the ability of the filter to meet the required accuracies of a space-based radar. However, if the early orbits can be used as a measure, estimates in the tens of centimeters were obtained, which still fell short for some applications. Also, the data was for a single trial, and performing multiple trials is necessary to get statistical data for achievable accuracies.

Appendix A: Satellite Precision Requirement

This appendix describes the process used to determine the accuracy requirements for the Bayes filter. When functioning as a space-based radar, the requirements are based on many variables, most notably the type of application and the resolution desired. Several items to consider are described below, beginning with the methodology used in the previous thesis work.

In order to form a cohesive image, the relative position of each satellite needs to be known to at least one-quarter wavelength (7:443). However, at this limit fogginess and loss of contrast can prevent finer resolutions. Therefore precision requirements were reduced to one tenth of a wavelength. The maximum wavelength is a function of the size of the antenna and was determined to be approximately 216.23 meters for a cluster at an altitude of 1000km (4:57). Therefore, the accuracy required by the filter is 21.6 meters.

A pulsed Synthetic Aperture Radar (SAR) has much more stringent requirements. SAR is a technique that the cluster would implement for various applications, such as performing the role of Joint-STARS as discussed in the introduction. SAR requires that the positions and velocities between the elements are known such that the returns can be assigned with an accuracy that is better than the instrumental resolution for range and Doppler, typically 30 centimeters (8:16).

If the cluster is tasked to perform as a phased array radar, other concerns arise which can affect the required precision. Large corporate-fed phased array antennas can

experience decreased performance due to structural distortions caused by the thermal and natural radiation environments. Distortions to the plane of the array cause random phase errors, decreasing antenna gain, when the error correlation interval is large with respect to a wavelength. To prevent significant losses, the planar distortion of the elements must be held to less than one tenth of a wavelength (2:495). For a radar operating at a wavelength of 10 cm, the plane of the array must remain within 1 cm to prevent distortion. Although the elements in a satellite cluster aren't physically connected, this distortion may still apply when the *virtual plane* is in effect distorted by inaccurate position determination.

Obviously, there are many precision requirements dependent upon the application desired. In order to cover all bases, the precision requirements for this study will be set at 1 cm.

Appendix B: Computer Source Code

This appendix provides the Visual Basic source code used for the truth model and the Bayes filter. The framework for the routines was converted from FORTRAN source code provided by Dr. William Wiesel. Note, because the code was manipulated for different scenarios, such as during the tuning process, the code as printed may not produce all/any of the results presented in the analysis section.

Orbit Propagator Routine

'This program will propagate the orbit of a satellite

Public x As Double

Public x1 As Double

Public x2 As Double

Public y(42, 4) As Double

Public y1(42, 4) As Double

Public y2(42, 4) As Double

Public f(42, 4) As Double

Public f1(42, 4) As Double

Public f2(42, 4) As Double

Public errest(42) As Double

Public errest1(42) As Double

Public errest2(42) As Double

Public h As Double

Public n As Integer

Public mode As Integer

Public isw As Integer

Public isw1 As Integer

Public isw2 As Integer

Public jsw As Integer

Public jsw1 As Integer

Public jsw2 As Integer

Public q1(7, 7) As Double

Public zpred(7) As Double

Public zpredn(7) As Double

Public hm(7, 12) As Double

Sub Moveit()

'Moveit is a simple dynamics propagator.
'It takes input state vector y and propagates 'it from t0 to tf. The phi matrix is calculated 'and output at tf.

'Declare local variables Dim t0 As Double Dim tf As Double

```
Dim TU2min As Double
Dim phi1(6, 6) As Double
Dim phi2(6, 6) As Double
Dim n3 As Double
```

TU2min = 13.44686457 'conversion factor for TUs into minutes

'Read input

```
Open "C:\Test_move_in.txt" For Input As #1
Input #1, y1(1, 1), y1(2, 1), y1(3, 1)
                                          'satellite 1 initial position
Input #1, y1(4, 1), y1(5, 1), y1(6, 1)
                                          'satellite 1 initial velocity
                                         'satellite 2 initial position
Input #1, y2(1, 1), y2(2, 1), y2(3, 1)
Input #1, y2(4, 1), y2(5, 1), y2(6, 1)
                                          'satellite 2 initial velocity
Input #1, yr1, mon1, day1, hr1, min1, sec1
                                                'start time
t0 = julday(yr1, mon1, day1, hr1, min1, sec1) 'convert to modified julian day
t0 = t0 * (1440 # / TU2min) 'convert from julian day to TU
Input #1, yr2, mon2, day2, hr2, min2, sec2
                                                'finish time
tf = julday(yr2, mon2, day2, hr2, min2, sec2) 'convert to modified julian day
tf = tf * (1440 # / TU2min)
Input #1, mode, nstp 'mode and number of steps for integration
```

'Write input to output file

```
Open "C:\Test_move_out.txt" For Output As #2
Print #2, "initial time:"; Tab(5); t0
Print #2, "final time:"; Tab(5); tf
Print #2, "initial state vector for satellite 1:"
Print #2, y1(1, 1); Tab(5); y1(2, 1); Tab(5); y1(3, 1)
Print #2, y1(4, 1); Tab(5); y1(5, 1); Tab(5); y1(6, 1)
Print #2, "initial state vector for satellite 2:"
Print #2, y2(1, 1); Tab(5); y2(2, 1); Tab(5); y2(3, 1)
Print #2, y2(4, 1); Tab(5); y2(5, 1); Tab(5); y2(6, 1)
```

Open "C:\Observations.txt" For Output As #3 'Open "C:\Truedata.txt" For Output As #4

'Setup haming initialization

'number of ODEs

If mode = 1 Then n = 42Else n = 6End If

'initialize phi1(t0) & phi2(t0) if necessary

If mode = 1 Then For i = 7 To 42 y1(i, 1) = 0#y2(i, 1) = 0#

```
Next
  For i = 7 To 42 Step 7
    y1(i, 1) = 1#
   y2(i, 1) = 1#
 Next
End If
'Timestep setup - also prevents plotting more than
'100 points if plotting routine is added/called
If nstp <= 100 Then
 n1 = nstp
Else
 n1 = 100
End If
n2 = 1 + nstp / n1
n3 = n1 * n2
h = (tf - t0) / n3
x1 = t0
x^2 = t^0
nxt1 = 0
nxt2 = 0
'Print time interval (h) to observation file for use by filter
Print #3, h
'initialize haming
' setup haming for satellite 1
x = x1
nxt = nxt1
For i = 1 To 42
 For j = 1 To 4
    y(i,j) = y1(i,j)
 Next
Next
Call Haming(nxt)
'Retain settings for satellite 1
x1 = x
For i = 1 To 42
 For j = 1 To 4
    y1(i, j) = y(i, j)
 Next
Next
For i = 1 To 42
 For j = 1 To 4
    f1(i, j) = f(i, j)
 Next
Next
```

```
For i = 1 To 42
   errest1(i) = errest(i)
Next
nxt1 = nxt
isw1 = isw
jsw1 = jsw
'setup haming for satellite 2
x = x2
nxt = nxt2
For i = 1 To 42
 For j = 1 To 4
   y(i, j) = y2(i, j)
 Next
Next
Call Haming(nxt)
'Retain settings for satellite 2
x2 = x
For i = 1 To 42
 For j = 1 To 4
   y2(i, j) = y(i, j)
 Next
Next
For i = 1 To 42
 For j = 1 To 4
   f2(i, j) = f(i, j)
 Next
Next
For i = 1 To 42
   errest2(i) = errest(i)
Next
nxt2 = nxt
isw2 = isw
jsw2 = jsw
'Numerical Integration Loop - one timestep per call
For i = 1 To n1
 For j = 1 To n2
    ' setup haming for satellite 1
   x = x1
   nxt = nxt1
   isw = isw1
   jsw = jsw1
   For s = 1 To 42
     For t = 1 To 4
       y(s, t) = y1(s, t)
     Next
   Next
   For s = 1 To 42
```

```
For t = 1 To 4
    f(s, t) = f1(s, t)
  Next
Next
For s = 1 To 42
  errest(s) = errest1(s)
Next
Call Haming(nxt)
'Retain settings for satellite 1
x1 = x
For s = 1 To 42
 For t = 1 To 4
    y1(s, t) = y(s, t)
  Next
Next
For s = 1 To 42
  For t = 1 To 4
   f1(s, t) = f(s, t)
 Next
Next
For s = 1 To 42
    errest1(s) = errest(s)
Next
nxt1 = nxt
isw1 = isw
jsw1 = jsw
'setup haming for satellite 2
x = x2
nxt = nxt2
isw = isw2
jsw = jsw2
For s = 1 To 42
 For t = 1 To 4
   y(s, t) = y2(s, t)
 Next
Next
For s = 1 To 42
 For t = 1 To 4
    f(s, t) = f2(s, t)
 Next
Next
For s = 1 To 42
  errest(s) = errest2(s)
Next
Call Haming(nxt)
'Retain settings for satellite 2
x^2 = x
For s = 1 To 42
```

```
For t = 1 To 4
        y2(s, t) = y(s, t)
     Next
   Next
   For s = 1 To 42
     For t = 1 To 4
        f2(s, t) = f(s, t)
     Next
   Next
   For s = 1 To 42
        errest2(s) = errest(s)
   Next
   nxt2 = nxt
   isw2 = isw
   jsw2 = jsw
   tob = x2
 Next
  Call Obser(nxt)
  'Introduce gaussian noise
 For iii = 1 To 7
   zpredn(iii) = zpred(iii) + randg / Sqr(q1(iii, iii))
  'Print observation data
 Print #3, tob; zpredn(1)
 Print #3, zpredn(2); zpredn(3); zpredn(4)
 Print #3, zpredn(5); zpredn(6); zpredn(7)
  'Print truth data
  'Print #4, tob; zpred(1)
  'Print #4, zpred(2); zpred(3); zpred(4)
  'Print #4, zpred(5); zpred(6); zpred(7)
Next
'Write final state vector to output file
Print #2, "Satellite 1 state vector at tf:"
Print #2, y1(1, 1); Tab(5); y1(2, 1); Tab(5); y1(3, 1)
Print #2, y1(4, 1); Tab(5); y1(5, 1); Tab(5); y1(6, 1)
'Do we print phi also??
If mode = 0 Then
 Exit Sub
Else
 For irow = 1 \text{ To } 6
```

```
For jcol = 1 To 6
       phi1(irow, jcol) = y1(6 * jcol + irow, nxt)
       Print #2, phi1(irow, jcol);
     Next
   Print #2, " "
   Next
 End If
 Print #2, "Satellite 2 state vector at tf:"
  Print #2, y2(1, 1); Tab(5); y2(2, 1); Tab(5); y2(3, 1)
 Print #2, y2(4, 1); Tab(5); y2(5, 1); Tab(5); y2(6, 1)
  'Do we print phi also??
 If mode = 0 Then
   Exit Sub
 Else
   For irow = 1 \text{ To } 6
     For jcol = 1 To 6
       phi2(irow, jcol) = y2(6 * jcol + irow, nxt)
       Print #2, phi2(irow, jcol);
     Next
   Print #2, " "
   Next
 End If
 Close #1
 Close #2
 Close #3
  'Close #4
End Sub
```

Ordinary Differential Equations Integrator

```
Static Sub Haming(nxt)
  'Haming is an ordinary differential equations integrator.
  'It is a fourth order predictor-corrector algorithm,
  'which means that it carries along the last four
  'values of the state vector, and extrapolates these
  'values to obtain the next value (the prediction step).
  'It then evaluates the equations of motion at the predicted point
  'and then corrects the extrapolated value to find a
  'new value for the state vector(the correction step).
  The value nxt in the call specifies which of the 4 values
  'of the state vector is the "next", or current, one.
  'nxt is updated by haming automatically, and must be zero on
  the first call.
  The user must supply a main program
  'and the external routine rhs(nxt) which
  'evaluates the equations of motion.
  'Declare variables
 'Dim y(42, 4) As Double 'state vector (4 copies of it) with nxt pointing at next one
 'Dim f(42, 4) As Double 'equations of motion (4 copies)
 'Dim errest(42) As Double
 'Dim x As Double
                          'independent variable (often time)
 Dim xo As Double
 'Dim h As Double
                          'time step
 Dim hh As Double
                           '0 for just EOM, 1 for EOM and EOV
 ' Dim mode As Integer
                         'number of equations being integrated (6 or 42)
 'Dim n As Integer
 tol = 0.000000000001
  'Check if this is the first call
 If nxt = 0 Then
   "This is a forwards Picard iteration (slow and expensive)
   'to step forwards in time three steps to get the 3 next points.
   'A successful startup returns nxt=1, and time has not been incremented.
   'If startup fails, nxt will be returned as zero.
   xo = x
   hh = h / 2#
   Call rhs(1)
   For 1 = 2 To 4
     x = x + hh
     For i = 1 To n
       y(i, 1) = y(i, 1-1) + hh * f(i, 1-1)
     Next
     Call rhs(l)
```

```
x = x + hh
  For i = 1 To n
    y(i, 1) = y(i, 1 - 1) + h * f(i, 1)
  Next
  Call rhs(l)
Next
isw = -10
isw = 1
For i = 1 To n
  hh = y(i, 1) + h * (9# * f(i, 1) + 19# * f(i, 2) - 5# * f(i, 3) + f(i, 4)) / 24#
  If (Abs(hh - y(i, 2)) < tol) Then
    isw = isw
  Else
    isw = 0
  End If
  y(i, 2) = hh
  hh = y(i, 1) + h * (f(i, 1) + 4# * f(i, 2) + f(i, 3)) / 3#
  If (Abs(hh - y(i, 3)) < tol) Then
    isw = isw
  Else
    isw = 0
  End If
  y(i, 3) = hh
  hh = y(i, 1) + h * (3# * f(i, 1) + 9# * f(i, 2) + 9# * f(i, 3) + 3# * f(i, 4)) / 8#
  If (Abs(hh - y(i, 4)) < tol) Then
    isw = isw
  Else
    isw = 0
  End If
  y(i, 4) = hh
Next
x = xo
For 1 = 2 To 4
  x = x + h
  Call rhs(l)
Next
'If something was out of tolerance, perform more, up to 10, iterations
Do While isw \leq 0 And isw \leq 0
  jsw = jsw + 1
  isw = 1
  For i = 1 To n
    hh = y(i, 1) + h * (9# * f(i, 1) + 19# * f(i, 2) - 5# * f(i, 3) + f(i, 4)) / 24#
    If (Abs(hh - y(i, 2)) < tol) Then
      isw = isw
    Else
      isw = 0
    End If
    y(i, 2) = hh
    hh = y(i, 1) + h * (f(i, 1) + 4# * f(i, 2) + f(i, 3)) / 3#
    If (Abs(hh - y(i, 3)) < tol) Then
      isw = isw
```

```
Else
       isw = 0
     End If
     y(i, 3) = hh
     hh = y(i, 1) + h * (3# * f(i, 1) + 9# * f(i, 2) + 9# * f(i, 3) + 3# * f(i, 4)) / 8#
     If (Abs(hh - y(i, 4)) < tol) Then
       isw = isw
     Else
       isw = 0
     End If
     y(i, 4) = hh
   Next
   x = xo
   For 1 = 2 To 4
     x = x + h
     Call rhs(1)
   Next
 Loop
  'If in tolerance, exit
 If isw \leq 0 Then
   Exit Sub
  'Otherwise provide error estimate
 Else
   x = xo
   isw = 1
   jsw = 1
   For i = 1 To n
     errest(i) = 0#
   Next
   nxt = 1
   Exit Sub
 End If
'Normal propagation Loop
Else
'A call to haming with nxt=-nxt, after a successful startup, will
'will turn off the second evaluation of the equations of motion following the corrector step.
'This can save on run time
 If nxt < 1 Then
   jsw = 2
   nxt = Abs(nxt)
 Else
   jsw = 1
 End If
```

'This is the predictor corrector algorithm...

'First the indices are permuted

```
x = x + h
np1 = (nxt Mod 4) + 1
If isw <> 2 Then
 If nxt = 1 Then
    nxt = np1
   Exit Sub
 ElseIf nxt = 2 Then
   nxt = np1
   Exit Sub
 ElseIf nxt = 3 Then
   nxt = np1
   Exit Sub
 Else
   isw = 2
   nm2 = (np1 \text{ Mod } 4) + 1
   nm1 = (nm2 Mod 4) + 1
   npo = (nm1 \mod 4) + 1
   '...then the predictor part is run to find an extrapolated value of
    'the state vector at the new time...
   For i = 1 To n
     f(i, nm2) = y(i, np1) + 4# * h * (2# * f(i, npo) - f(i, nm1) + 2# * f(i, nm2)) / 3#
     y(i, np1) = f(i, nm2) - 0.925619835 * errest(i)
   Next
   'the equations of motion are evaluated at the
    'extrapolated value of the state vector...
   Call rhs(np1)
   'and the corrector algorithm is used to add this
   'new information and obtain a better value of the
    'new state vector...
   For i = 1 To n
     y(i, np1) = (9# * y(i, np0) - y(i, nm2) + 3# * h * (f(i, np1) + 2# * f(i, np0) - f(i, nm1))) / 8#
     errest(i) = f(i, nm2) - y(i, np1)
     y(i, np1) = y(i, np1) + 0.0743801653 * errest(i)
   Next
   If jsw = 1 Then
     Call rhs(np1)
     nxt = np1
     Exit Sub
   ElseIf jsw = 2 Then
     nxt = np1
     Exit Sub
   End If
 End If
Else
 nm2 = (np1 Mod 4) + 1
```

```
nm1 = (nm2 Mod 4) + 1
     npo = (nm1 Mod 4) + 1
     '...then the predictor part is run to find an extrapolated value of
     'the state vector at the new time...
     For i = 1 To n
       f(i, nm2) = y(i, np1) + 4# * h * (2# * f(i, npo) - f(i, nm1) + 2# * f(i, nm2)) / 3#
       y(i, np1) = f(i, nm2) - 0.925619835 * errest(i)
     Next
     'the equations of motion are evaluated at the
     'extrapolated value of the state vector...
     Call rhs(np1)
     'and the corrector algorithm is used to add this
     'new information and obtain a better value of the
     'new state vector...
     For i = 1 To n
       y(i, np1) = (9# * y(i, np0) - y(i, nm2) + 3# * h * (f(i, np1) + 2# * f(i, np0) - f(i, nm1))) / 8#
       errest(i) = f(i, nm2) - y(i, np1)
       y(i, np1) = y(i, np1) + 0.0743801653 * errest(i)
     Next
     'finally, the equations of motion are reevaluated
     'at the better value of the state vector...
     'this can be suppressed
     If jsw = 1 Then
       Call rhs(np1)
       nxt = np1
       Exit Sub
     ElseIf jsw = 2 Then
       nxt = np1
       Exit Sub
     End If
   End If
 End If
End Sub
```

Equations of Motion/Variation Calculator

Else

```
Private Sub rhs(nxt)
     'rhs calculates equations of motion and/or not equations of variation
     'The state vector is split out as
     'y(1-3,nxt) are x,y,z components of position vector
     'y(4-6,nxt) are x,y,z components of velocity vector
     'y(7-42),nxt) is the state transition matrix, stored as
     'columns of phi end to end
     'Declaration of variables
     Dim a(6, 6) As Double
     Dim err(42) As Double
     Dim r1 As Double
     Dim r2 As Double
     Dim r3 As Double
     Dim J2 As Double
     r2 = (y(1, nxt) * y(1, nxt) + y(2, nxt) * y(2, nxt) + y(3, nxt) * y(3, nxt))
    r1 = r2 ^0.5
    r3 = r2 ^1.5
     'Constants
     mu = 1# 'DU^3/TU^2
     re = 1# 'DU
     J2 = 1082.64 * 10 ^ -6
     'Equations of motion
     'position dot = velocity vector
     f(1, nxt) = y(4, nxt)
     f(2, nxt) = y(5, nxt)
     f(3, nxt) = y(6, nxt)
     'velocity dot = gravity acceleration including J2 effects
     f(4, nxt) = (-mu * y(1, nxt) / r3) * (1# - J2 * 1.5 * ((re / r1) ^ 2#) * (5# * ((y(3, nxt) * y(3, nxt)) / r2) - 1#))
     f(5, nxt) = (-mu * y(2, nxt) / r3) * (1# - J2 * 1.5 * ((re / r1) ^ 2#) * (5# * ((y(3, nxt) * y(3, nxt)) / r2) - 1#))
     f(6, nxt) = (-mu * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / r1) ^ 2#) * (3# - (5# * (y(3, nxt) *
r2))))
     'check to see if only interested in eom
     If mode = 0 Then
         Exit Sub
```

```
mode = mode 'benign command to null loop
             End If
              'equations of variation
              'calculate a matrix
            For i = 1 To 6
                         For i = 1 To 6
                                        a(i, j) = 0#
                                                                                                                                                  'Fill matrix with zeros
                         Next
             Next
             a(1, 4) = 1#
                                                                                                                                              'create identity matrix in upper right 3X3
             a(2, 5) = 1#
             a(3, 6) = 1#
             'diagonal terms in lower left 3X3
            nxt) * y(3, nxt) * (r2 ^3.5) - 105# * J2 * mu * (re ^2#) * y(3, nxt) * y(3, nxt) * y(1, nxt) * y(1, nxt) * y(1, nxt) * (r2 ^n
(2.5)) / (2# * (r2 ^7#)) - (3# * J2 * mu * (re ^2#) * (r2 ^2.5) - 15# * J2 * mu * (re ^2#) * y(1, nxt) * y(1, 
nxt) * r3) / (2# * (r2 ^ 5))
            a(5, 2) = (-mu * r^3 + 3\# * mu * y(2, nxt) * y(2, nxt) * r^1) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) + (15\# * J^2 * mu * (re ^ 2\#) * y(3, nxt) * r^2) / (r^2 ^ 3\#) 
nxt) * y(3, nxt) * (r2 ^ 3.5) - 105# * J2 * mu * (re ^ 2#) * y(3, nxt) * y(3, nxt) * y(2, nxt) * y(2, nxt) * (r2 ^ 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.
(2.5)) / (2# * (r2 ^7#)) - (3# * J2 * mu * (re ^2#) * (r2 ^2.5) - 15# * J2 * mu * (re ^2#) * y(2, nxt) * y(2, 
nxt) * r3) / (2# * (r2 ^ 5))
            a(6, 3) = (-mu * r3 + 3# * mu * y(3, nxt) * y(3, nxt) * r1) / (r2 ^ 3#) - (6# * mu * J2 * (re ^ 2#) * (r2 ^ 2#)
-75# * mu * J2 * (re ^ 2#) * y(3, nxt) * y(3, nxt) * r2 + 105# * mu * J2 * (re ^ 2#) * y(3, nxt) * y(3, nxt) *
y(3, nxt) * y(3, nxt) / (2# * (r2 ^ 4.5)) - (3# * J2 * mu * (re ^ 2#) * (r2 ^ 2.5) - 15# * J2 * mu * (re ^ 2#) *
y(3, nxt) * y(3, nxt) * r3) / (2# * (r2 ^ 5))
             'off diagonal terms in lower left 3X3
            a(4, 2) = (3# * mu * y(1, nxt) * y(2, nxt) * r1) / (r2 ^ 3#) - (105# * J2 * mu * (re ^ 2#) * y(3, nxt) * y(3, nx
nxt) * y(1, nxt) * y(2, nxt) * (r2 ^ 2.5)) / (2# * (r2 ^ 7#)) + (15# * J2 * mu * (re ^ 2#) * y(1, nxt) * y(2, nxt)
* r3) / (2# * (r2 ^ 5#))
            a(5, 1) = a(4, 2)
            a(4, 3) = (3# * mu * y(1, nxt) * y(3, nxt) * r1) / (r2 ^ 3#) + (30# * J2 * mu * (re ^ 2#) * y(1, nxt) * y(3, nxt
nxt) * (r2 ^ 3.5) - 105# * J2 * mu * (re ^ 2#) * y(1, nxt) * y(3, nxt) * y(3, nxt) * y(3, nxt) * (r2 ^ 2.5)) / (2#
* (r2 ^7#)) + (15# * J2 * mu * (re ^2#) * y(1, nxt) * y(3, nxt) * r3) / (2# * (r2 ^5#))
            a(6, 1) = a(4, 3)
            a(5, 3) = (3* mu * y(2, nxt) * y(3, nxt) * r1) / (r2^3*) + (30* J2 mu * (re^2*) * y(2, nxt) * y(3, nxt) * r1) / (r2^3*) + (30* J2 mu * (re^2*) * y(2, nxt) * y(3, nxt) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2^3*) + (30* J2 mu * (re^3*) * r1) / (r2*) + (30* J2 mu * (re^3*) * r1) / (r2*) + (30* J2 mu * (re^3*) * r1) / (r2*) + (30* J2 mu * (re^3*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * (re*) * r1) / (r2*) + (30* J2 mu * 
nxt) * (r2^3.5) - 105# * J2 * mu * <math>(re^2#) * y(2, nxt) * y(3, nxt) * y(3, nxt) * y(3, nxt) * (r2^2.5)) / (2#) / (2#) / (2#) / (2*)
* (r2 ^7#)) + (15# * J2 * mu * (re ^2#) * y(2, nxt) * y(3, nxt) * r3) / (2# * (r2 ^5#))
             a(6, 2) = a(5, 3)
```

```
'a matrix now calculated
'now calculate phi dot = a * phi and put into last
'32 slots of f matrix

For ii = 1 To 6
For jj = 1 To 6
ipos = 6 * ii + jj
f(ipos, nxt) = 0#
For kk = 1 To 6
jpos = 6 * jj + kk
f(ipos, nxt) = f(ipos, nxt) + a(ii, kk) * y(jpos, nxt)
Next
Next
Next
Next
End Sub
```

Observations Relation Processor

```
Sub Obser(nxt)
 'Observation relation processing
 'Calculates predicted observation zpred,
 'H Matrix H, and Q inverse matrix q1.
 'Public q1(4, 4) As Double
 'Public zpred(4) As Double
 'Public hm(4, 12) As Double
 'Declare local variables
 'Dim tob As Double 'Time of observation
 ' O inverse matrix
 Sigmagps = 1 \text{ 'm}
 Sigmarange = 3 'cm
 q1(1, 1) = (1 / ((Sigmarange / 637813500)^2))'DU^2
 q1(1, 2) = 0
 q1(1, 3) = 0
 q1(1, 4) = 0
 q1(1, 5) = 0
 q1(1, 6) = 0
 q1(1,7) = 0
 q1(2, 1) = 0
 q1(2, 2) = (1 / ((Sigmagps / 6378135)^2)) 'DU^2
 q1(2, 3) = 0
 q1(2, 4) = 0
 q1(2, 5) = 0
 q1(2, 6) = 0
 q1(2, 7) = 0
 q1(3, 1) = 0
 q1(3, 2) = 0
 q1(3, 3) = (1 / ((Sigmagps / 6378135)^2))'DU^2
 q1(3, 4) = 0
 q1(3, 5) = 0
 q1(3, 6) = 0
 q1(3, 7) = 0
 q1(4, 1) = 0
 q1(4, 2) = 0
 q1(4, 3) = 0
 q1(4, 4) = (1 / ((Sigmagps / 6378135)^2))'DU^2
 q1(4, 5) = 0
 q1(4, 6) = 0
 q1(4,7) = 0
 q1(5, 1) = 0
 q1(5, 2) = 0
 q1(5, 3) = 0
 q1(5, 4) = 0
 q1(5, 5) = (1 / ((Sigmagps / 6378135)^2)) 'DU^2
```

```
q1(5, 6) = 0
q1(5, 7) = 0
q1(6, 1) = 0
q1(6, 2) = 0
q1(6, 3) = 0
q1(6, 4) = 0
q1(6, 5) = 0
q1(6, 6) = (1 / ((Sigmagps / 6378135) ^ 2)) 'DU^2
q1(6,7) = 0
q1(7, 1) = 0
q1(7, 2) = 0
q1(7, 3) = 0
q1(7, 4) = 0
q1(7, 5) = 0
q1(7, 6) = 0
q1(7, 7) = (1 / ((Sigmagps / 6378135)^2))'DU^2
'predicted data vector
'Range part
zpred(1) = Sqr((y_1(1, nxt) - y_2(1, nxt)) ^2 + (y_1(2, nxt) - y_2(2, nxt)) ^2 + (y_1(3, nxt) - y_2(3, nxt)) ^2 + (y_1(3, nxt) - y
'GPS position x,y,z for sat1 (y1) and sat2 (y2)
zpred(2) = y1(1, nxt)
zpred(3) = y1(2, nxt)
zpred(4) = y1(3, nxt)
zpred(5) = y2(1, nxt)
zpred(6) = y2(2, nxt)
zpred(7) = y2(3, nxt)
'H Matrix
hm(1, 1) = (y1(1, nxt) - y2(1, nxt)) / zpred(1)
hm(1, 2) = (y1(2, nxt) - y2(2, nxt)) / zpred(1)
hm(1, 3) = (y1(3, nxt) - y2(3, nxt)) / zpred(1)
hm(1, 4) = 0
hm(1, 5) = 0
hm(1, 6) = 0
hm(1, 7) = (y2(1, nxt) - y1(1, nxt)) / zpred(1)
hm(1, 8) = (y2(2, nxt) - y1(2, nxt)) / zpred(1)
hm(1, 9) = (y2(3, nxt) - y1(3, nxt)) / zpred(1)
hm(1, 10) = 0
hm(1, 11) = 0
hm(1, 12) = 0
hm(2, 1) = 1
hm(2, 2) = 0
hm(2, 3) = 0
hm(2, 4) = 0
hm(2, 5) = 0
hm(2, 6) = 0
hm(2, 7) = 0
```

- hm(2, 8) = 0
- hm(2, 9) = 0
- hm(2, 10) = 0
- hm(2, 11) = 0
- hm(2, 12) = 0
- hm(3, 1) = 0
- hm(3, 2) = 1
- hm(3, 3) = 0
- hm(3, 4) = 0
- hm(3, 5) = 0
- hm(3, 6) = 0
- hm(3, 7) = 0
- hm(3, 8) = 0
- hm(3, 9) = 0
- hm(3, 10) = 0
- hm(3, 11) = 0
- hm(3, 12) = 0
- hm(4, 1) = 0
- hm(4, 2) = 0
- hm(4, 3) = 1hm(4, 4) = 0
- hm(4, 5) = 0hm(4, 6) = 0
- hm(4, 7) = 0
- hm(4, 8) = 0
- hm(4, 9) = 0
- hm(4, 10) = 0
- hm(4, 12) = 0
- hm(5, 1) = 0
- hm(5, 2) = 0
- hm(5, 3) = 0
- hm(5, 4) = 0
- hm(5, 5) = 0
- hm(5, 6) = 0
- hm(5, 7) = 1
- hm(5, 8) = 0
- hm(5, 9) = 0
- hm(5, 10) = 0
- hm(5, 11) = 0
- hm(5, 12) = 0
- hm(6, 1) = 0
- hm(6, 2) = 0
- hm(6, 3) = 0
- hm(6, 4) = 0
- hm(6, 5) = 0
- hm(6, 6) = 0
- hm(6, 7) = 0
- hm(6, 8) = 1
- hm(6, 9) = 0
- hm(6, 10) = 0
- hm(6, 11) = 0
- hm(6, 12) = 0hm(7, 1) = 0

hm(7, 2) = 0 hm(7, 3) = 0 hm(7, 4) = 0 hm(7, 5) = 0 hm(7, 6) = 0 hm(7, 7) = 0 hm(7, 8) = 0 hm(7, 9) = 1 hm(7, 10) = 0 hm(7, 12) = 0

End Sub

Random Number Generator

Private Function randg()

'Gaussian pseudo random number generator 'unit variance, zero mean 'Uses central limit theorem with 10 iterates 'emperical constant for sigma

 $\begin{array}{l} r=0 \\ Randomize \ 'Initialize \ random \ number \ generator \\ For \ i=1 \ To \ 10 \\ r=r+Rnd \\ Next \end{array}$

randg = 1 * (r - 5#)

End Function

Bayes Filter

'Non-linear Bayes Algorithm

Public x As Double Public x1 As Double Public x2 As Double Public y(42, 4) As Double Public y1(42, 4) As Double Public y2(42, 4) As Double Public f(42, 4) As Double Public f1(42, 4) As Double Public f2(42, 4) As Double Public errest(42) As Double Public errest1(42) As Double Public errest2(42) As Double Public h As Double Public n As Integer Public mode As Integer Public isw As Integer Public isw1 As Integer Public isw2 As Integer Public jsw As Integer Public jsw1 As Integer Public jsw2 As Integer Public q1(7, 7) As Double Public zpred(7) As Double Public hm(7, 12) As Double

Sub BayesRoutine()

'Observation Storage Buffers Dim dt As Double Dim timeob(3000) As Double Dim allobs(7, 3000) As Double

'time interval for haming
'times of observations
'observations

'Internal Buffers

Dim tmat(7, 12) As Double
Dim z(7) As Double
Dim dx(12) As Double
Dim r(7) As Double
Dim tob As Double
Dim yminus(12) As Double
Dim pminus(12, 12) As Double
Dim yref(12) As Double
Dim htq1(12, 7) As Double
Dim htq1r(12) As Double
Dim pinv(12, 12) As Double
Dim pinv(12, 12) As Double
Dim p(12, 12) As Double
Dim tepoch As Double
Dim phi(12, 12) As Double
Dim phi(12, 12) As Double
Dim phi(12, 12) As Double

'observation matrix T
'current observation
'State Estimate
'residuals vector
'current observation time
 'previous estimate of state vectors
 'previous inverse covariance matrix
'reference vector(equal to previous guess)
'matrix product T transpose Q inverse
'matrix product
'state inverse covariance at epoch
'state covariance at epoch
'initial time of state vector
'phi matrix for both satellites
'phi * p

'Matrix inverter variables

```
Dim pnorm As Double
Dim pmax As Double
Dim toler As Double
Dim pp As Double
Dim xx(12) As Double
Dim irr1(12) As Double
Dim ir As Integer
Dim iss As Integer
Dim id As Integer
Dim ier As Integer
```

```
'READ IN PREVIOUS ESTIMATE
Open "C:\Bayes_in.txt" For Input As #1
Input #1, tepoch
                                           'satellite 1 initial position
Input #1, yminus(1), yminus(2), yminus(3)
                                           'satellite 1 initial velocity
Input #1, yminus(4), yminus(5), yminus(6)
Input #1, yminus(7), yminus(8), yminus(9) 'satellite 2 initial position
Input #1, yminus(10), yminus(11), yminus(12) 'satellite 2 initial velocity
                                 'max allowed iterations
Input #1, maxit
Input #1, reject
                                'residual rejection criteria (# sigmas)
Input #1, nstp
For i = 1 To 12
 For j = 1 To 12
    Input #1, pminus(i, j)
 Next
Next
'FIRST GUESS IS PREVIOUS ESTIMATE
For i = 1 To 12
  yref(i) = yminus(i)
Next
WRITE INPUT TO OUTPUT FILE
Open "C:\Bayes_Output.txt" For Output As #2
Print #2, "Epoch Time:"; Spc(5); tepoch
Print #2, "Previous Estimated State Vector(Sat 1 Position, Velocity; Sat 2 Position, Velocity)"
Print #2, yminus(1); Spc(5); yminus(2); Spc(5); yminus(3)
Print #2, yminus(4); Spc(5); yminus(5); Spc(5); yminus(6)
Print #2, yminus(7); Spc(5); yminus(8); Spc(5); yminus(9)
```

'READ IN OBSERVATIONS

Open "C:\Observations.txt" For Input As #3 Input #3, dt

Print #2, yminus(10); Spc(5); yminus(11); Spc(5); yminus(12) Print #2, "Reject if sigma greater than:"; Spc(5); reject Print #2, "Maximum Iterations:"; Spc(5); maxit

```
iob = 1
Do Until ((EOF(3)) Or (iob = 3000))
 Input #3, timeob(iob), allobs(1, iob)
 Input #3, allobs(2, iob), allobs(3, iob), allobs(4, iob)
 Input #3, allobs(5, iob), allobs(6, iob), allobs(7, iob)
 iob = iob + 1
Loop
'SET LAST PASS FLAG --- LAST ITERATION; AND # OBSERVATIONS
nob = iob - 1
idone = 0
'BEGIN ITERATION LOOP
For iter = 1 To maxit
 'Prepare true data file for later comparison with estimate
 Open "C:\Estimates.txt" For Output As #4
 'REINITIALIZE NUMERICAL INTEGRATION VARIABLES
 t = tepoch
 mode = 1
 n = 42
 'BREAKOUT SATELLITE 1 & 2 FOR CALL TO HAMING
 'ics ARE NEW REFERENCE ORBIT GUESS
 For i = 1 To 6
   y1(i, 1) = yref(i)
  y2(i, 1) = yref(i + 6)
 Next
 For i = 7 To 42
   y1(i, 1) = 0#
  y2(i, 1) = 0#
 Next
 For i = 7 To 42 Step 7
   y1(i, 1) = 1#
  y2(i, 1) = 1#
 Next
 'Timestep setup
 If nstp <= 100 Then
   n1 = nstp
 Else
   n1 = 100
 End If
 n2 = 1 + nstp / n1
 n3 = n1 * n2 'not needed?
 h = dt 'time interval needs to be same as truth model
 x1 = t
```

```
x2 = t
nxt1 = 0
nxt2 = 0
'initialize haming
'setup haming for satellite 1
x = x1
nxt = nxt1
For i = 1 To 42
 For j = 1 To 4
    y(i, j) = y1(i, j)
  Next
Next
Call Haming(nxt)
'Retain settings for satellite 1
x1 = x
For i = 1 To 42
 For j = 1 To 4
    y1(i, j) = y(i, j)
 Next
Next
For i = 1 To 42
 For j = 1 To 4
    f1(i,j) = f(i,j)
 Next
Next
For i = 1 To 42
    errest1(i) = errest(i)
Next
nxt1 = nxt
isw1 = isw
jsw1 = jsw
'setup haming for satellite 2
x = x2
nxt = nxt2
For i = 1 To 42
 For j = 1 To 4
    y(i, j) = y2(i, j)
 Next
Next
Call Haming(nxt)
'Retain settings for satellite 2
x^2 = x
For i = 1 To 42
  For j = 1 To 4
```

y2(i, j) = y(i, j)

Next

```
Next
For i = 1 To 42
 For i = 1 To 4
   f2(i, j) = f(i, j)
 Next
Next
For i = 1 To 42
   errest2(i) = errest(i)
Next
nxt2 = nxt
isw2 = isw
jsw2 = jsw
'INITIALIZE BUFFERS FOR MATRIX PRODUCT ACCUMULATION
'initialize htq1r to pminus*(yminus-yref)
'initialize pinv to pminus
For i = 1 To 12
 htq1r(i) = 0#
 For j = 1 To 12
   pinv(i, j) = pminus(i, j)
   htq1r(i) = htq1r(i) + pminus(i, j) * (yminus(j) - yref(j))
 Next
Next
'PRINT FIRST OR LAST PASS RESIDUAL HEADERS WHEN NECESSARY
If (iter = 1) Then
 Print #2, "First Pass Residuals:"
End If
If (idone = 1) Then
 Print #2, "Last Pass Residuals:"
End If
If ((idone = 1) Or (iter = 1)) Then
 Print #2, "Time TU"; Spc(5); "Range DU"; Spc(5); "Position Data"
End If
'OBSERVATION PROCESSING LOOP
For iob = 1 To nob
                       'extract this observation
 tob = timeob(iob)
 For i = 1 To 7
   z(i) = allobs(i, iob)
 Next
```

'NUMERICALLY INTEGRATE STATE AND PHI TO OB TIME

'Numerical Integration Loop - one timestep per call

```
For jj = 1 To n2
  ' setup haming for satellite 1
  x = x1
 nxt = nxt1
 isw = isw1
 jsw = jsw1
 For s = 1 To 42
   For t = 1 To 4
     y(s, t) = y1(s, t)
   Next
 Next
 For s = 1 To 42
   For t = 1 To 4
     f(s, t) = f1(s, t)
   Next
 Next
 For s = 1 To 42
   errest(s) = errest1(s)
 Next
 Call Haming(nxt)
  'Retain settings for satellite 1
 x1 = x
 For s = 1 To 42
   For t = 1 To 4
     y1(s, t) = y(s, t)
   Next
 Next
 For s = 1 To 42
   For t = 1 To 4
     f1(s, t) = f(s, t)
   Next
 Next
 For s = 1 To 42
     errest1(s) = errest(s)
 Next
 nxt1 = nxt
 isw1 = isw
 jsw1 = jsw
 'setup haming for satellite 2
 x = x^2
 nxt = nxt2
 isw = isw2
 jsw = jsw2
 For s = 1 To 42
   For t = 1 To 4
     y(s, t) = y2(s, t)
   Next
 Next
 For s = 1 To 42
   For t = 1 To 4
```

```
f(s, t) = f2(s, t)
        Next
       Next
      For s = 1 To 42
         errest(s) = errest2(s)
       Next
       Call Haming(nxt)
       'Retain settings for satellite 2
       x2 = x
       For s = 1 To 42
        For t = 1 To 4
          y2(s, t) = y(s, t)
         Next
       Next
       For s = 1 To 42
         For t = 1 To 4
          f2(s, t) = f(s, t)
         Next
       Next
       For s = 1 To 42
          errest2(s) = errest(s)
       Next
       nxt2 = nxt
       isw2 = isw
      jsw2 = jsw
     Next
     'OBTAIN MATRICES FOR THIS OBSERVATION
     Call Obser(nxt)
     'MATRIX CALCULATIONS --- THIS OBSERVATION
     'Form residual vector, test for rejection
     irej = 0
     For i = 1 To 7
       r(i) = z(i) - zpred(i)
       If (Abs(r(i)) > (reject / Sqr(q1(i, i)))) Then
         irej = 1
       End If
     Next
     'PRINT FIRST PASS & LAST PASS RESIDUALS ONLY
     If ((iter = 1) Or (idone = 1)) Then
       If (irej = 0) Then
         Print #2, tob; Spc(2); r(1); Spc(2); r(2); Spc(2); r(3); Spc(2); r(4); Spc(2); r(5); Spc(2); r(6);
Spc(2); r(7)
         Print #2, " "
       Else
```

```
Print #2, "REJECTED"; Spc(2); tob; Spc(2); r(1); Spc(2); r(2); Spc(2); r(3); Spc(2); r(4); Spc(2);
r(5); Spc(2); r(6); Spc(2); r(7)
         Print #2, " "
       End If
     End If
     IF THIS IS THE LAST PASS, CONVERGENCE ACHIEVED, SKIP MATRIX CALCULATIONS
     'ALSO, IF THIS OBSERVATION WAS REJECTED, CAN SKIP MATRIX CALCULATIONS
     If ((idone <> 1) Or (irej = 0)) Then 'otherwise perform calculations
       'initialize phi matrix(12X12), then extract in normal form
       For i = 1 To 12
         For i = 1 To 12
           phi(i, j) = 0#
         Next
       Next
       'upper left 6X6 portion contains Sat 1 phi matrix
       For i = 1 To 6
         For j = 1 To 6
          phi(i, j) = y1(6 * j + i, nxt)
         Next
       Next
       'lower right 6X6 portion contains Sat 2 phi matrix
       For i = 1 To 6
         For i = 1 To 6
          phi(i + 6, j + 6) = y2(6 * j + i, nxt)
         Next
       Next
       'form matrix product tmat
       For irow = 1 \text{ To } 7
         For jcol = 1 To 12
           tmat(irow, icol) = 0#
          For k = 1 To 12
            tmat(irow, jcol) = tmat(irow, jcol) + hm(irow, k) * phi(k, jcol)
          Next
         Next
       Next
       'form matrix product T transpose Q inverse
       For irow = 1 \text{ To } 12
         For jcol = 1 To 7
          htq1(irow, icol) = 0#
          For k = 1 To 7
            htq1(irow, jcol) = htq1(irow, jcol) + tmat(k, irow) * q1(k, jcol)
```

```
Next
      Next
    Next
    'form product T transpose Q inverse T, adding result to whats already there...
    For i = 1 To 12
      For i = 1 To 12
        For k = 1 To 7
          pinv(i, j) = pinv(i, j) + htq1(i, k) * tmat(k, j)
        Next
      Next
    Next
    'form product T transpose Q inverse r, adding result to whats already there...
    For i = 1 To 12
      For j = 1 To 7
        htq1r(i) = htq1r(i) + htq1(i, j) * r(j)
    Next
    'END OF MATRIX CALCULATIONS FOR THIS OBSERVATION
  End If
  Print #4, x2
  Print #4, y1(1, nxt); Spc(3); y1(2, nxt); Spc(3); y1(3, nxt)
  Print #4, y2(1, nxt); Spc(3); y2(2, nxt); Spc(3); y2(3, nxt)
  'CONTINUE TO LOOP BACK FOR MORE DATA
Next
'IF LAST PASS RESIDUALS HAVE PRINTED, FINISHED WITH ITERATIONS
If (idone = 1) Then
 iter = maxit + 1 'end iteration loop
Else
 'data is processed...improve estimate
   'invert matrix H transpose Q inverse H to find covariance p
   'BEGIN MATRIX INVERTER CODE
   'load identity matrix in p
   For i = 1 To 12
     For i = 1 To 12
       p(i, j) = 0#
     Next
   Next
   For i = 1 To 12
     p(i, i) = 1#
   Next
```

'calculate inverse

```
'find max norm of p
pnorm = 0#
For i = 1 To 12
  For j = 1 To 12
   If (Abs(pinv(i, j)) > pnorm) Then
      pnorm = Abs(pinv(i, j))
   End If
  Next
Next
'set tolerance = 2^(- number of binary digits in mantissa)
toler = 1 ^ -12#
ier = 0
id = 1
For i = 1 To 12
 irr1(i) = 0
Next
Do While (id <= 12)
 ir = 1
 iss = 1
 pmax = 0#
 'find max pivot
 For i = 1 To 12
  If (irr1(i) = 0) Then
    For j = 1 To 12
      pp = Abs(pinv(i, j))
      If ((pp - pmax) > 0) Then
        ir = i
        iss = j
        pmax = pp
      End If
    Next
  End If
Next
'singularity test
'If ((pmax / pnorm) <= toler) Then
' ier = 129
'End If
'forward elimination
irr1(ir) = iss
For i = 1 To 12
  If (i <> ir) Then
    pp = pinv(i, iss) / pinv(ir, iss)
```

```
For j = 1 To 12
         pinv(i, j) = pinv(i, j) - pp * pinv(ir, j)
       Next
       pinv(i, iss) = 0#
       For j = 1 To 12
         p(i, j) = p(i, j) - pp * p(ir, j)
       Next
     End If
   Next
   id = id + 1
  Loop
  'back substitution
  For j = 1 To 12
    For i = 1 To 12
      ir = irr1(i)
      xx(ir) = p(i, j) / pinv(i, ir)
    Next
    For i = 1 To 12
     p(i, j) = xx(i)
    Next
 Next
  'END MATRIX INVERTER CODE
'multiply p by T transpose Q inverse r to get correction to state
For i = 1 To 12
 dx(i) = 0#
 For j = 1 To 12
    dx(i) = dx(i) + p(i, j) * htq1r(j)
 Next
Next
'CHECK CONVERGENCE
ifail = 0
For i = 1 To 12
 If (Abs(dx(i)) < Sqr(Abs(p(i, i)))) Then
    ifail = 1
 End If
Next
'print iteration
Print #2, " "
Print #2, "Iteration:"; Spc(15); iter
Print #2, "State Corrections:"
Print #2, dx(1); Spc(2); dx(2); Spc(2); dx(3); Spc(2); dx(4)
Print #2, dx(5); Spc(2); dx(6); Spc(2); dx(7); Spc(2); dx(8)
Print #2, dx(9); Spc(2); dx(10); Spc(2); dx(11); Spc(2); dx(12)
```

```
'add in state corrections
    For i = 1 To 12
     yref(i) = yref(i) + dx(i)
    Next
    'print current best guess
    Print #2, " "
    Print #2, "Current state vector:"
    Print #2, yref(1); Spc(5); yref(2); Spc(5); yref(3)
    Print #2, yref(4); Spc(5); yref(5); Spc(5); yref(6)
    Print #2, yref(7); Spc(5); yref(8); Spc(5); yref(9)
    Print #2, yref(10); Spc(5); yref(11); Spc(5); yref(12)
    'convergence achieved?
   If (ifail = 0) Then
     idone = 1
   End If
   If (iter = 1) Then 'ensure residuals get computed in the event convergence
     idone = 0
                    'on the first iteration
   End If
   If (idone = 1) Then
     Print #2, " "
     Print #2, "CONVERGENCE ACHIEVED"
   End If
  End If
 Close #4
Next
'Failure to converge....max iterations exceeded
If (idone = 0) Then
  Print #2, " "
 Print #2, "MAXIMUM ITERATION LIMIT EXCEEDED WITHOUT CONVERGENCE"
  Exit Sub
End If
'CONVERGENCE ACHIEVED.....SUCCESS
'Print covariance matrix
Print #2, " "
Print #2, "Covariance Matrix:"
For i = 1 To 12
 For j = 1 To 12
   Print #2, p(i, j)
 Next
Next
'Print state at time of last observation
```

```
Print #2, " "
Print #2, "State at Time:"; Spc(5); x2
Print #2, y1(1, nxt); Spc(3); y1(2, nxt); Spc(3); y1(3, nxt)
Print #2, y1(4, nxt); Spc(3); y1(5, nxt); Spc(3); y1(6, nxt)
Print #2, y2(1, nxt); Spc(3); y2(2, nxt); Spc(3); y2(3, nxt)
Print #2, y2(4, nxt); Spc(3); y2(5, nxt); Spc(3); y2(6, nxt)
'Calculate and print covariance at last observation time
'Extract phi matrix at last observation time
'upper left 6X6 portion contains Sat 1 phi matrix
For i = 1 To 6
  For i = 1 To 6
    phi(i, j) = y1(6 * j + i, nxt)
  Next
Next
'lower right 6X6 portion contains Sat 2 phi matrix
For i = 1 To 6
 For j = 1 To 6
    phi(i + 6, i + 6) = y2(6 * i + i, nxt)
  Next
Next
'Propagate covariance to last observation time phi*p*phi transpose
'matrix product phi*p
For irow = 1 \text{ To } 12
 For jcol = 1 To 12
   phip(irow, jcol) = 0#
   For k = 1 To 12
     phip(irow, jcol) = phip(irow, jcol) + phi(irow, k) * p(k, jcol)
   Next
 Next
Next
'matrix product p(tf) = phi*p*phi transpose
For irow = 1 \text{ To } 12
 For icol = 1 To 12
   p(irow, jcol) = 0#
   For k = 1 To 12
     p(irow, jcol) = p(irow, jcol) + phip(irow, k) * phi(jcol, k)
   Next
 Next
Next
'Print covariance at last observation time
Print #2, " "
```

```
Print #2, "Covariance at last observation time:"
Print #2, " "
For i = 1 To 12
For j = 1 To 12
Print #2, p(i, j)
Next
Next
Close #1
Close #2
Close #3
End Sub
```

Appendix C: Selected Raw Data Products

Truth Model Output for Orbit 2

```
initial time:
     8461.2110018206
final time:
     8461.2970036412
initial state vector for satellite 1:
-0.807449485606805
     0.917352165803769
     0.413919205101727
-0.396178531841325
    -0.585459860822974
     0.524732402555635
initial state vector for satellite 2:
-0.835243767960277
     0.873683715226178
     0.451538231365086
-0.368379283527986
    -0.615769355460676
     0.510086148766103
Satellite 1 state vector at tf: 8461.2970036414
-0.808838486343198
     0.912786114275322
     0.421234624201552
-0.393570770973196
    -0.589633865125067
     0.522009673332486
 480.577373282127 257.921262697018 -128.964356675411 -68.3403511238056
-340.401792105648 -87.8013019349703
-205.878643672641 422.620069929954 179.365909051149 -141.790630738411
205.614110369458 -28.9586823055503
 14.3019515555513 -223.654655449614 480.428285208729 -148.633081605652
143.454326037708 -204.81193572584
 303.261544988212 -115.82343649243 24.0568071736197 164.332281736282
112.860621845208 -5.40085740426988
 209.646061983969 353.300685295701 -201.564617994986 -111.067422883437
355.292284057802 48.4275189548983
-76.2559976897607 81.3723624228136 331.080367841402 63.4949512022829
                  188.159442871016
-146.349941978495
Satellite 2 state vector at tf: 8461.2970036414
-0.836249729543309
     0.869145346443746
     0.458380675246369
-0.365932506957397
    -0.619570857669331
     0.507231445003974
 477.132118640815 261.328304488368 -127.150898523712 -53.4514602983594
-344.905007576405 -99.2776966243231
-202.299298106043 426.017193507838
                                    175.187861081162 -146.401900992092
183.954113742627 -18.2612068837798
 16.0629255887217 -227.705314791095
                                     480.002331850661 -160.091524258117
154.096334500806 -198.02322145518
 299.279066920866 -117.702054211957 28.0005693757757 165.176799314882
104.425374448143 -3.60520161721907
```

207.656956898063 360.307857445641 -202.029635125231 -119.431949262868 357.786363536246 54.8965302024613 -72.2826318580823 80.8253005927596 327.704954406332 65.2745017162923 -139.821652578574 184.545186620933

Bayes Output Given Perfect Data Orbit 2

Epoch Time: 8461.2110018206					
	Previous Estimated Stat	ion, Velocity; Sat 2			
	Position, Velocity)				
	-0.807449485606819	0.917352165803733	0.413919205101737		
	-0.396178531841321	-0.585459860822997	0.52473240255562		
	-0.835243767960266	0.873683715226187	0.451538231365091		
	-0.368379283527978	-0.615769355460671	0.510086148766113		
	Reject if sigma greater		00000		
	Maximum Iterations:	20			
	Iteration:	1			
	State Corrections:				
	2.87285732712223E-13	1.00430511833367E-	13 3.28892913792534E-13		
	4.17020449632066E-13				
	1.45704230493225E-13	4.82864976887204E-	13 -2.58341951034324E-13		
	-9.04683211939617E-14				
	-2.9741683800975E-13	-3.74977313758039E-1	3 -1.29744090399336E-13	_	
	4.37082523673406E-13				
	4.570025250754001 15				
	Current state mester.				
	Current state vector:	0.017353165003034	0.413919205102066		
	-0.807449485606532	0.917352165803834			
	-0.396178531840904	-0.585459860822851	0.524732402556103		
	-0.835243767960524	0.873683715226097	0.451538231364794		
	-0.368379283528353	-0.615769355460801	0.510086148765676		
	Iteration:	2			
	State Corrections:				
	-3.28409049240736E-13	-1.1668328394017E-1	3 -3.78347144825244E-13	_	
	4.81703529017439E-13				
	-1.70887778537404E-13	-5.5261827297025E-1	3 2.93831069796362E-13		
	1.04133538781725E-13	3.323232.23.322			
	3.36628729508717E-13	4.29768869635027E-	13 1.5409660132409E-13		
	4.92278896813915E-13	4.25700005050571	13 1.540500015240511 15		
	4.922700900139136-13				
	Q				
	Current state vector:	0.0450504650005545	0 41 201 000 51 01 600		
	-0.80744948560686	0.917352165803717	0.413919205101688		
	-0.396178531841386	-0.585459860823022	0.52473240255555		
	-0.83524376796023	0.873683715226201	0.45153823136513		
	-0.368379283527923	-0.615769355460647	0.510086148766168		
	CONVERGENCE ACHIEVED				
	State at Time: 846	51.2970036414			
		0.912786114275213	0.421234624201559		
		-0.589633865125153	0.522009673332384		
		0.869145346443611			
	-0.836249729543363		0.458380675246549		
	-0.365932506957233 -	-0.619570857669404	0.507231445003982		
	Covariance at last obse	ervation time:			
	3.55961295646376E-15				
	6 041000006000000 16				

3.55961295646376E-15
-6.04190990689082E-16
-4.37635987738259E-16
-2.32321171255428E-14
-1.05559629217239E-14
-2.49451458682546E-14
1.26020620515404E-15

3.42177391073885E-16 -9.96039519924639E-16 9.4770142221766E-14 3.26729638615292E-14 1.10941037008875E-13 -6.04190990677784E-16 3.50167136275538E-15 6.01412685396743E-16 1.21980060330065E-13 4.56747311293194E-14 1.44744104782683E-13 2.52038968393451E-16 1.70688291754669E-15 -8.94265412584334E-16 -7.24067541576481E-14 -2.52654383168722E-14 -7.92728603016871E-14 -4.37635987734037E-16 6.01412685413672E-16 3.31477675142907E-15 1.03307335722966E-13 3.81290712204025E-14 1.16109305619094E-13 -9.60974927933848E-16 -9.53374585847039E-16 1.08971686251968E-15 -1.66621908270316E-14 -5.4136029582959E-15 -2.21708026036415E-14 -2.32321171202714E-14 1.21980060334784E-13 1.03307335716847E-13 5.7911961711063E-11 2.06436997008439E-11 6.66971107426677E-11 9.92062430767437E-14 -6.41362279631304E-14 -2.2596178643069E-14 2.05517465989558E-11 7.19758037363317E-12 2.3590807208132E-11 -1.05559629198485E-14 4.56747311310157E-14 3.81290712182452E-14 2.06436997008516E-11 7.36663782695102E-12 2.37689510121156E-11 3.4389488633077E-14 -2.22372884766814E-14 -7.66166128014696E-15 7.20269010081148E-12 2.52836945902903E-12 8.26144057132013E-12 -2.49451458621858E-14

1.44744104788078E-13 1.16109305612014E-13 6.66971107426435E-11 2.37689510120981E-11 7.68391343936988E-11

71

- 1.15829705179862E-13
- -6.94616796723774E-14
- -2.89669547805619E-14
- 2.35612798565654E-11
- 8.2437194320819E-12
- 2.70667384491708E-11
- 1.26020620516359E-15
- 2.5203896839827E-16
- -9.60974927944771E-16
- 9.92062430742856E-14
- 3.4389488632191E-14
- 1.1582970517707E-13
- 3.52821724473578E-15
- -6.53039948379394E-16
- -3.81110243230369E-16
- -1.58482990273088E-14
- -8.01156122194304E-15
- -1.71521777354177E-14
- 3.42177391077851E-16
- 1.70688291752262E-15
- -9.533745858605E-16
- -6.41362279721556E-14
- -2.22372884798946E-14
- -6.94616796827986E-14
- -6.53039948392177E-16
- 3.61714550896765E-15
- 5.7578552657777TE-16
- 1.0531628321155E-13
- 3.95866553445845E-14
- 1.26184145982678E-13
- -9.96039519920156E-16
- -8.94265412585229E-16
- 1.08971686252128E-15
- -2.25961786398108E-14
- -7.66166127899457E-15
- -2.89669547768184E-14
- -3.8111024321846E-16 5.75785526574117E-16
- 3.2860285548987E-15
- 1.08104205889536E-13 3.99321048521931E-14
- 1.21983408703971E-13
- 9.47701422259559E-14
- -7.24067541577124E-14
- -1.66621908324485E-14
- 2.05517465981921E-11
- 7.20269010053483E-12
- 2.3561279855696E-11
- -1.58482990267038E-14
- 1.05316283215556E-13
- 1.08104205886204E-13
- 6.0292684138035E-11 2.14784131535652E-11
- 6.9404503126605E-11
- 3.26729638630173E-14
- -2.52654383168954E-14
- -5.41360296020299E-15 7.19758037336669E-12
- 2.52836945893248E-12

- 8.24371943177858E-12
- -8.01156122172119E-15
- 3.95866553459834E-14
- 3.99321048510136E-14
- 2.1478413153567E-11
- 7.65987086628976E-12
- 2.47179441019669E-11
- 1.10941037013697E-13
- -7.92728603018071E-14
- -2.21708026099069E-14
- 2.35908072072292E-11
- 8.26144057099322E-12
- 2.70667384481427E-11
- -1.71521777347361E-14
- 1.26184145987293E-13 1.21983408700155E-13
- 6.94045031265938E-11
- 2.4717944101961E-11
- 7.99169220971994E-11

Nodal regression and argument of perigee rotation checks.

Method		Argument of Perigee Rotation
Integated Result	1.82333045601071	0.290799017174425
Non-integrated Result	1.82308895252	0.292121126222

Bibliography

- 1. Bate, Roger R., Donald D. Mueller, and Jerry E. White. <u>Fundamentals of Astrodynamics</u>. New York: Dover Publications, 1971.
- 2. Cantafio, Leopold J. <u>Space-Based Radar Handbook</u>. Norwood MA: Artech House, Inc., 1989.
- 3. Covault, Craig. "Space-Based Radars Drive Advanced Sensor Technologies," Aviation Week & Space Technology, 150: 49-50 (April 5, 1999).
- 4. Filer, Sherrie N. <u>Investigation of the Observability of a Satellite Cluster in a Near Circular Orbit</u>. MS Thesis, AFIT/GA/ENY/89D-2, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.
- 5. Green, G.B. and P.Axelrad. "Space Applications of GPS," <u>Journal of The Institute of Navigation, 36</u>: 239-251 (Fall 1989).
- 6. Hale, Francis J. <u>Introduction to Space Flight</u>. Englewood Cliffs NJ: Prentice Hall, 1994.
- 7. Jacobs, Donald H. <u>Fundamentals of Optical Engineering</u>. New York: McGraw-Hill Book Company, 1943
- 8. Johnson, William T.K. <u>Final Report of the SAR/GPS Task</u>. Jet Propulsion Laboratory and California Institute of Technology, July 1998.
- 9. Johnston, Stephen C. <u>Autonomous Navigation of a Satellite Cluster</u>. MS Thesis, AFIT/GA/ENY/90D-9, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1990.
- 10. Kaplan, Elliot D. <u>Understanding GPS: Principles and Applications</u>. Norwood MA: Artech House, Inc., 1996.
- 11. Scott, William B. "Testbeds Wring Out Technologies," <u>Aviation Week & Space</u> Technology, 150: 52-53 (April 5, 1999).
- 12. Sellers, Jerry J. <u>Understanding Space: An Introduction to Astronautics</u>. New York: McGraw-Hill, 1994.
- 13. "Techsat 21," Web page for Techsat 21 program, n. pag. hhtp://quark.plk.af.mil/vsd/techsat21, 6 October 99.

Bibliography

- 14. Ward, Captain Michael L.P. <u>Estimated Satellite Cluster Elements in Near Circular Orbit</u>. MS Thesis, AFIT/GA/AA/88D-13, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1988.
- 15. Wiesel, William B. Class handout distributed in MECH 731, Modern Methods of Orbit Determination. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, June 1998.
- 16. ----. Spaceflight Dynamics. New York: McGraw-Hill, 1997.

Vita

Captain Jeffrey S. Davis was born on 14 August 1962 in Sumner, Iowa. He graduated

from Eldora High School in Eldora, Iowa in 1980. He enlisted in the Air Force in 1983.

He graduated from McMurry University in Abilene, Texas with a Bachelor of Science

degree in Mathematics-Computer Science and was accepted to Officer Training School.

He was commissioned on 22 September 1993. After a tour as a Communications Officer

he attended Undergraduate Space and Missile Training at Vandenberg AFB, California.

From there he was assigned to the 5th Space Operations Squadron located at Onizuka AS

in Sunnyvale, California. He supported launch and early orbit operations for the Defense

Satellite Communications System (DSCS) Flight 26 mission and the SKYNET 4D

mission. He also provided Air Force Satellite Control Network (AFSCN) support for

Space Shuttle missions STS-82 and STS-91 as well as numerous Delta II missions. He

departed as a NATO/SKYNET Systems Instructor/Evaluator in August 1998 to attend the

School of Engineering at the Air Force Institute of Technology. Upon graduation, he will

be assigned to Head Quarters Air Force Space Command at Peterson AFB, Colorado.

Permanent Address: 506 N. Washington

Eldora, IA 50627

77

			C A				
REPOR		Form Approved OMB No. 074-0188					
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503							
1. AGENCY USE ONLY (Leave	2. REPORT DATE	3. REPORT TYPE AND DAT					
			E3 COVERED				
blank)	March 2000	Master's Thesis					
4. TITLE AND SUBTITLE		5. FL	INDING NUMBERS				
NAVIGATION OF SATELLITE CL	00	-402					
6. AUTHOR(S)							
Jeffrey S. Davis, Captain, USAF							
7. PERFORMING ORGANIZATION N	AMES(S) AND ADDRESS(S)	8 050	FORMING ORGANIZATION				
	ANES(S) AND ADDRESS(S)		ORT NUMBER				
Air Force Institute of Technology							
Graduate School of Engineering and Ma	anagement (AFTT/EN)	AFII	/GSO/ENY/00M-01				
2950 P Street, Building 640							
WPAFB OH 45433-7765							
9. SPONSORING / MONITORING AC	SENCY NAME(S) AND ADDRESS(E	S) 10. SP(ONSORING / MONITORING				
AFRL/VAAD			ENCY REPORT NUMBER				
Attn: Andrew G. Sparks							
2210 8 th Street							
	(022) 255 0450 DCN, 705 0450						
WPAFB OH 45433-7531 Pho	one: (937) 255-8450 DSN: 785-8450						
11. SUPPLEMENTARY NOTES							
Advisor: Dr. William Wiesel, ENY,	Phone: (937) 255-3636 x4312 DSN: 78	35-3636x4312, William.Wiesel@ai	fit.af.mil				
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	12h DI	STRIBUTION CODE				
128. DISTRIBUTION AVAILABILITY	STATEMENT	125. 61	STRIBUTION CODE				
A disk							
Approved for public release; dist	noution uniimitea.						
ABSTRACT (Maximum 200 Words)							
The relative position determination of a c	luster of satellites in near circular orbit w	as investigated in previous thesis v	vork. The purpose of this thesis is to extend the				
concept to cover absolute position determine	ination. A Bayes filter is used for the esti	mator with dynamics based on the	two-body problem extended to account for J ₂				
perturbations. Measurements consist of co	ombining Global Positioning System (GP	S) data for each satellite and range	data between the satellites. Simulations were				
perturbations. Measurements consist of combining Global Positioning System (GPS) data for each satellite and range data between the satellites. Simulations were conducted investigating the accuracy obtainable when combining the measurements for input into the filter. Performance results consist of comparing the magnitude							
of the true error to the filter covariance as a function of time. True errors are also compared to minimum accuracy requirements for a space-based radar. The filter							
encountered numerical difficulties due to the extreme accuracy requirements and proved unsuccessful in providing usable estimates. The results suggest separating the							
absolute and relative problems.							
absolute and relative provients.							
14. SUBJECT TERMS	15. NUMBER OF PAGES						
Satellite Clusters, Bayes Filter, Global Pos	87						
Satellite Clusters, Dayes Place, Clottal Pos	16. PRICE CODE						
	10. PRICE CODE						
		46.6561					
	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICAT	10N 20. LIMITATION OF ABSTRACT				
OF REPORT	OF THIS PAGE	OF ABSTRACT					
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL				

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102