数学I

(全 問 必 答)

第1問 (配点 25)

〔1〕 x は正の実数で、 $x^2 + \frac{4}{x^2} = 9$ を満たすとする。このとき

$$\left(x+\frac{2}{x}\right)^2=\boxed{71}$$

であるから, $x + \frac{2}{x} = \sqrt{\boxed{r1}}$ である。 さらに

$$x^{3} + \frac{8}{x^{3}} = \left(x + \frac{2}{x}\right)\left(x^{2} + \frac{4}{x^{2}} - \boxed{\cancel{\cancel{0}}}\right)$$
$$= \boxed{\boxed{\cancel{\bot}}\sqrt{\cancel{/}\cancel{/}\cancel{/}\cancel{/}\cancel{/}\cancel{/}\cancel{/}\cancel{/}}}$$

である。また

$$x^4 + \frac{16}{x^4} = \boxed{ = 2}$$

である。

また,
$$\left(x-\frac{2}{x}\right)^2 = \boxed{7}$$
 である。 $x-\frac{2}{x} < 0$ のときは $x-\frac{2}{x} = -\sqrt{\boxed{r}}$ であり,したがって,このとき

$$x = \frac{\sqrt{\boxed{\texttt{j}}} - \sqrt{\boxed{\texttt{j}}}}{\boxed{\texttt{Z}}}$$

である。

[2] 実数xに関する2つの条件p, qを

$$p: x = 1$$
$$q: x^2 = 1$$

とする。また、条件p, q の否定をそれぞれp, q で表す。

(1) 次の セ , ソ , タ , チ に当てはまるものを,下 の **②**~**③**のうちから一つずつ選べ。ただし,同じものを繰り返し選んでもよい。

qはpであるための f v 。 ar pはqであるための f y 。 (pまたはar q)はqであるための f y 。 (ar pかつq)はqであるための f F 。

- 必要条件だが十分条件でない
- 1 十分条件だが必要条件でない
- 2 必要十分条件である
- ③ 必要条件でも十分条件でもない

(2) 実数 x に関する条件 r を

r: x > 0

3つの命題

A: $\lceil (p \not h) \supset q \rangle \Longrightarrow r \rfloor$

 $B: \lceil q \Longrightarrow r \rfloor$

 $C: [\bar{q} \Longrightarrow \bar{p}]$

の真偽について正しいものは ツ である。

- A は真、B は真、C は真
- A は真、B は真、C は偽
- ② A は真、B は偽、C は真
- 3 A は真、B は偽、C は偽
- A は偽, B は真, C は真
- **⑤** A は偽, B は真, C は偽
- **⑥** A は偽, B は偽, C は真
- **⑦** A は偽, B は偽, C は偽

第2問 (配点 25)

aは定数とする。

(1)
$$f(x) = (x - 3a^2 - 5a)^2 - (3a^2 - 4)^2$$
 とおく。このとき

である。したがって、2次関数y=f(x)のグラフが原点を通るのは、aの値が小さい方から

$$a = -\frac{\boxed{\mathtt{I}}}{\boxed{\mathtt{J}}}, \quad -\frac{\boxed{\mathtt{J}}}{\boxed{\mathtt{F}}}, \quad \boxed{\mathtt{D}}$$

のときである。

(2) $g(x) = x^2 - 2(3a^2 + 5a)x + 18a^4 + 30a^3 + 49a^2 + 16$ とおく。 2 次関数 y = g(x) のグラフの頂点は

る。次に、
$$t=a^2$$
とおくと、頂点の y 座標は

$$\boxed{\hspace{0.1cm}}$$
 $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$

$$\Big(oxedsymbol{eta}oldsymbol{z}t+oxedsymbol{ar{\lambda}}\Big)^2$$

と変形できる。 頂点の y 座標が 10000 以下になる a の値の範囲は

$$\boxed{ / N \sqrt{ E }} \leq a \leq \boxed{7 } \sqrt{ }$$

である。

数学I

第3間 (配点 30)

 $\triangle ABC$ において、 $AB = \sqrt{3} - 1$ 、 $BC = \sqrt{3} + 1$ 、 $\angle ABC = 60^{\circ}$ とする。

(1) $AC = \sqrt{ 7 }$ であるから、 $\triangle ABC$ の外接円の半径は $\sqrt{ 1 }$ であり

$$\sin \angle BAC = \frac{\sqrt{ \dot{ } \dot{ } \dot{ } } + \sqrt{ \bar{ } \bar{ } \bar{ } }}{ \bar{ } \bar{ } \bar{ } }$$

である。ただし、 ウ , エ の解答の順序は問わない。

(2) 辺AC上に点Dを、 \triangle ABD の面積が $\frac{\sqrt{2}}{6}$ になるようにとるとき

(3) 点 C から直線 AB に下ろした垂線と直線 AB との交点を E とすると、

$$CE = \frac{\sqrt{\boxed{\flat} + \boxed{\lambda}}}{\boxed{t}} cbsh{\delta}$$

$$\cos \angle ACE = \frac{\sqrt{y} + \sqrt{g}}{f}$$

である。ただし、 ソ , タ の解答の順序は問わない。

$$\cos \angle ACB = \frac{\sqrt{y} + \sqrt{\overline{\tau}}}{|F|}$$

したがって

である。

第4問 (配点 20)

スキージャンプは、飛距離および空中姿勢の美しさを競う競技である。選手は斜面を滑り降り、斜面の端から空中に飛び出す。飛距離 D(単位は m)から得点 Xが決まり、空中姿勢から得点 Yが決まる。ある大会における 58 回のジャンプについて考える。

(1) 得点 X, 得点 Y および飛び出すときの速度 V(単位は km/h) について、図 1 の 3 つの散布図を得た。

図 1

(出典:国際スキー連盟のWebページにより作成)

次の ア , イ , ウ に当てはまるものを,下の**0~6**のうちから一つずつ選べ。ただし、解答の順序は問わない。

図1から読み取れることとして正しいものは, **ア**, **イ**, **ウ** である。

- **⑥** $X \ge V$ の間の相関は、 $X \ge Y$ の間の相関より強い。
- ① $X \geq Y$ の間には正の相関がある。
- ② Vが最大のジャンプは、Xも最大である。
- ③ V が最大のジャンプは、Y も最大である。
- **4** Y が最小のジャンプは、X は最小ではない。
- **⑤** X が 80 以上のジャンプは、すべて V が 93 以上である。
- **⑥** Yが55以上かつVが94以上のジャンプはない。

(2)	得点 X は.	飛距離 D から次の計算式によって算出される。	
(4)	17 m M	パに降りがり外が引発込によって発出される。	3

次の エ , オ , カ にそれぞれ当てはまるものを,下の**②**~ **⑥**のうちから一つずつ選べ。ただし,同じものを繰り返し選んでもよい。

- •Xの分散は、Dの分散の \Box 倍になる。
- ・ X と Y の共分散は、 D と Y の共分散の オ 倍である。 ただし、 共分散は、 2 つの変量のそれぞれにおいて平均値からの偏差を求め、 偏差の積の平均値として定義される。
- 0 125
- (1) 1.80
- **②** 1
- **3** 1.80

- **4** 3. 24
- **(5)** 3.60
- **6** 60.0

(数学 I 第 4 問は 16 ページに続く。)

(3) 58 回のジャンプは 29 名の選手が 2 回ずつ行ったものである。 1 回目の X+Y(得点 X と得点 Y の和) の値に対するヒストグラムと 2 回目の X+Y の値に対するヒストグラムは図 2 の A, B のうちのいずれかである。また, 1 回目の X+Y の値に対する箱ひげ図と 2 回目の X+Y の値に対する箱ひげ図は図 3 の a, b のうちのいずれかである。ただし, 1 回目の X+Y の最小値は108.0 であった。

(出典:国際スキー連盟のWebページにより作成)

(出典:国際スキー連盟のWebページにより作成)

次の キ に当てはまるものを、下の表の 0~3のうちから一つ選べ。

1回目のX+Yの値について、ヒストグラムおよび箱ひげ図の組合せとして正しいものは、 $\begin{tabular}{c} \bot \\ \end{tabular}$ である。

	0	0	2	3
ヒストグラム	A	A	В	В
箱ひげ図	a	b	a	b

次の $\boxed{}$ に当てはまるものを、下の $\boxed{}$ $\boxed{}$ のうちから一つ選べ。

図3から読み取れることとして正しいものは, クである。

- \bigcirc 1回目のX+Yの四分位範囲は、2回目のX+Yの四分位範囲より大きい。
- ① 1回目のX + Yの中央値は、2回目のX + Yの中央値より大きい。
- ② 1回目のX + Yの最大値は、2回目のX + Yの最大値より小さい。
- ③ 1回目のX+Yの最小値は,2回目のX+Yの最小値より小さい。

(4) 58 回のジャンプでは、斜面上の高さが異なる 3 つの地点がスタート位置として用いられた。これらを「高」、「中」、「低」と表し、スタート位置に応じて得点 X から得点 X' を次のように定める。

スタート位置が「高」のとき、X' = X

スタート位置が「中」のとき、X' = X + 3.8

スタート位置が「低」のとき、X' = X + 7.6

得点XおよびX'について、スタート位置ごとに箱ひげ図を描いたものが図4である。

(出典:国際スキー連盟のWebページにより作成)

次の[ケ ,	コ	と当てはまるものを,	下の0~0のうちから一つず
つ選べ。	ただし.	解答の順	原序は問わない。	

図4に関する記述として正しいものは, ケ , コ である。

- \bigcirc XおよびX' の両方において、スタート位置が高いほど、中央値も大きくなっている。
- ① *X*ではスタート位置が高いほど中央値も大きくなっているのに対し、*X*′ではスタート位置によらず中央値が 66 以上 70 未満の区間に入っている。
- ② どのスタート位置の場合でも、*X* の四分位範囲と *X'* の四分位範囲は等しい。
- ③ *X*および*X*′の両方において、スタート位置が高いほど第1四分位数が大きくなっている。
- **④** XおよびX の両方において、スタート位置が高いほど第3四分位数が大きくなっている。

数 学 I (100点満点)

問題 番号 (配点)	解答記号	正解	配点	問題 番号 (配点)	解答記号	正解	配点
第1問 (25)	アイ	1 3	3		$\sqrt{\overline{r'}}$	$\sqrt{6}$	3
	ウ	2	1		$\sqrt{4}$	$\sqrt{2}$	3
	エ√オカ	7 √1 3	3		$\sqrt{\dot{\mathcal{D}}} + \sqrt{\mathbf{I}}$	$\frac{\sqrt{2}+\sqrt{6}}{4}$ \$\pi tild \frac{\sqrt{6}+\sqrt{2}}{4}	3
	キク	7 3	3		-,	-T	
	ケ	5	2	3	<u>カ√キ – ク</u> ケ	$\frac{2\sqrt{3}-2}{3}$	3
	<u>√コサ − √シ</u> ス	$\frac{\sqrt{13}-\sqrt{5}}{2}$	3		그 毋	2 3	3
	セ	0	1	第3問 (30)	$\frac{\sqrt{y}+z}{z}$	$\frac{\sqrt{3}+3}{2}$	3
	ソ	3	2			2	
	タ	3	2		$\frac{\sqrt{y} + \sqrt{g}}{f}$	$\left rac{\sqrt{2}+\sqrt{6}}{4} ight $ または $\frac{\sqrt{6}+\sqrt{2}}{4}$	3
	チ	1	2		$\sqrt{y} + \sqrt{\overline{r}}$	$\frac{\sqrt{2}+\sqrt{6}}{4}$ \$\pi tild \frac{\sqrt{6}+\sqrt{2}}{4}\$	_
	ツ	2	3		<u>+ + + + + + + + + + + + + + + + + + + </u>	************************************	3
	ア, イ, ウ	4, 6, 4	4		ナニ°	1 5°	3
	- <u>エ</u> , -カ, ク オ, -キ, ケ	$-\frac{4}{3}, -\frac{4}{5}, \frac{1}{2}$	4		ヌ – √ネ	$2-\sqrt{3}$	3
	コ, サ	3, 5	2		ア、イ、ウ	1, 4, 6 (解答の順序は問わない)	6 (各 2)
	シ,スセ,ソタ	9, 24, 16	2		I	4	2
(25)	_ チツ テト	$-\frac{25}{12}$	3	第4問 (20)	オ	3	2
	ナニ	1 6	3		カ	2	2
	ヌ, ネ	3, 4	3		+	0	1
	ノハ√E, フ√へ	$-4\sqrt{2}$, $4\sqrt{2}$	4		ク	1	2
					ケ, コ	1, 2 (解答の順序は問わない)	5