

Elektromagnetska polja

MATERIJALI U ELEKTRIČNOM POLJU

- Proširujemo studij električnog polja na makroskopsko ponašanje materijala
- Koristimo jednostavne klasične modele
 - Materijali:
 - · Atomi, subatomske čestice
 - Pozitivno i negativno nabijene
- Materijali → dodatni izvori EM polja
- U zakone statičkog električnog polja za slobodni prostor uvodimo dodatne gustoće izvora svojstvene materijalu

2.3.2007

EMP - Materijali u električnom polju

Odziv materijala na električno polje

- Vodiči
 - Elektroni su makroskopski pokretni
 - Metali → slobodni elektroni →dobri vodiči
- Poluvodiči
 - Elektroni u vanjskoj ljusci su makroskopski pokretni kad svladaju energetsku barijeru
 - Tijek negativnih (elektroni) i pozitivnih (šupljine) naboja
- Izolatori
 - Vezani elektroni
 - Polarizacija

2.3.2007

EMP - Materijali u električnom polju

3

Metalni vodiči u el. polju

- Sila na slobodni elektron: $\vec{F} = -e\vec{E}$
- Brzina strujanja: $\vec{v} = \mu \vec{E}$
- Gustoća naboja: $\rho_s = -Ne$
- Gustoća struje: $\vec{J}_s = \rho_s \vec{v} = -Ne \vec{\nu} = -Ne \mu \vec{E} = \kappa \vec{E}$
 - N koncentracija elektrona (broj elektrona u jedinici volumena)
 - K električna provodnost
 - Ohmov zakon u elementarnom obliku

2.3.2007

EMP - Materijali u električnom polju

Georg S. Ohm (1789-1854)

- · Njemački fizičar
- Eksperimentalno otkrio linearnu vezu napona, struje i otpora
- "profesor koji propovijeda takvu herezu ne smije podučavati znanost"
 Pruski ministar obrazovanja 1830.

2.3.2007

EMP - Materijali u električnom polju 5

Dodatni postulat:

- Električno polje u vodiču je određeno jednadžbama u slobodnom prostoru kojima dodajemo dvije nove gustoće izvora:
 - Gustoću provodnih struja: $\vec{J}_s = \kappa \vec{E}$
 - Gustoću slobodnih naboja: P_s
- Jednadžba kontinuiteta: $\nabla \cdot \vec{J}_s + \frac{\partial \rho_s}{\partial t} = 0$
- Slijedi: $\frac{\partial \rho_s}{\partial t} + \frac{\kappa}{\varepsilon_o} \rho_s = 0 \implies \rho_s = \rho_{s0} e^{-\frac{\kappa}{\varepsilon_0} t} = \rho_{s0} e^{-\frac{t}{\tau}}$
- Bakar: τ≈10⁻¹⁹ s, destilirana voda: τ≈10⁻⁶ s, kremen: τ≈10⁶ s – konstanta relaksacije

2.3.2007

EMP - Materijali u električnom polju

• Unutar vodiča naboj eksponencijalno iščezava

- Budući da naboj mora ostati očuvan pojavljuje se plošni naboj
- Električno polje unutar vodiča

$$\nabla \cdot \vec{E} = \frac{\rho_s}{\varepsilon_0} = 0 \implies \vec{E} = 0$$

2.3.2007

EMP - Materijali u električnom polju

7

1. Odredite električno polje jednoliko nabijene metalne kugle primjenom Gaussovog zakona.

2.3.2007

EMP - Materijali u električnom poliu

2. Odredite električno polje jednoliko nabijenog metalnog valjka primjenom Gaussovog zakona.

2. 3.2007 EMP - Materijali u električnom polju

· Definiramo polarizaciju:

$$\vec{P}(\vec{r}) = \lim_{\substack{\Delta V \to 0 \\ \text{oko } \vec{r}}} \frac{\sum_{\Delta V} \vec{p}_i}{\Delta V} = \frac{d\vec{p}}{dV} \implies d\vec{p} = \vec{P} dV$$

- Elementarni cilindar
 - Jednoliko polariziran
 - Plošne gustoće naboja + σ_p i σ_p
 - Dipolni moment: $\vec{p} = q\vec{l} = \sigma_p S\vec{l}$
 - Polarizacija:

$$P = \frac{p}{V} = \frac{\sigma_p Sl}{S\cos\theta l} \implies \sigma_p = P\cos\theta = \vec{P} \cdot \vec{n}$$

2.3.2007

EMP - Materijali u električnom polju

15

- · Nejednoliko polarizirano tijelo
 - Promatramo volumen V unutar tijela
 - Gustoća polariziranih naboja u V
 - Pri polarizaciji se dešava interno pomicanje vezanog naboja

- Naboj koji izlazi iz volumena V je: $Q_{izl} = \oiint \vec{P} \cdot \vec{n} \, dS$
- Tijelo ostaje električki neutralno pa vrijedi:

$$Q_{pol} = \iiint\limits_{V} \rho_{p} dV = -Q_{izl} = - \oiint\limits_{S} \vec{P} \cdot \vec{n} dS \quad \Rightarrow \quad \rho_{p} = - \nabla \cdot \vec{P}$$

2.3.2007

EMP - Materijali u električnom polju

- Pri pomacima naboja javlja se polarizacijska struja $\vec{\jmath}_p$
- Jednadžba kontinuiteta: $\nabla \cdot \vec{J}_p + \frac{\partial \rho_p}{\partial t} = 0 \implies \vec{J}_p = \frac{\partial \vec{P}}{\partial t}$ Proces polarizacije modeliramo s dva nova izvora: $\rho_p = -\nabla \cdot \vec{P}$ i $\vec{J}_p = \frac{\partial \vec{P}}{\partial t}$

2.3.2007

EMP - Materijali u električnom polju

- Izolatori u EM polju → polarizacija, dodatni izvori polja: ρ_p i \vec{J}_p
- EM polje u materijalu = EM polje u vakuumu + dodatni izvori
- Uvodimo dodatni vektor: gustoća električnog toka \vec{D}
- Unošenje dielektrika u polje \vec{E}_0 uzrokovano s ρ_s djeluje na vezane naboje u dielektriku → induciranje dipola → polarizacija → gustoća vezanih naboja ρ_p

2.3.2007

EMP - Materijali u električnom

 Ukupno polje je superpozicija pa u Gaussov zakon uvodimo dodatni izvor:

$$|\vec{E} = \vec{E}_0 + \vec{E}_p \implies \nabla \cdot \vec{E} = \nabla \cdot \vec{E}_0 + \nabla \cdot \vec{E}_p = \frac{\rho_s}{\varepsilon_0} + \frac{\rho_p}{\varepsilon_0} \implies \nabla \cdot (\varepsilon_0 \vec{E} + \vec{P}) = \rho_s$$

- Uvodimo $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$
- Empirijski pokazano: $\vec{P} = \varepsilon_0 \tilde{\chi}_e \vec{E}$
 - $\tilde{\chi}_e$ tenzor električne susceptibilnosti
 - Najčešće je $\widetilde{\chi}_e$ skalar pa vrijedi $\vec{P} = \varepsilon_0 \chi_e \vec{E}$
 - Odnosno $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon_0 \varepsilon_r \vec{E}$
- · Gaussov zakon u materijalima:

$$\nabla \cdot \vec{D} = \rho_s \implies \iint_S \vec{D} \cdot \vec{n} \, dS = \iiint_V \rho_s dV$$

2.3.2007

EMP - Materijali u električnom polju

19

• Jednadžba:
$$\nabla \times \vec{E} = 0 \implies \oint_c \vec{E} \cdot d\vec{l} = 0$$

ne uključuje izvore polja i ne mijenja se s prisutnošću materijala.

2.3.2007

EMP - Materijali u električnom poliu

Uvjeti na granici

Električno polje na granici dvaju materijala

$$\lim_{b \to 0} \left(\oint_{c} \vec{E} \cdot d\vec{l} \right) = \lim_{b \to 0} \left(a\vec{E}_{1} \cdot \vec{l}_{0} - a\vec{E}_{2} \cdot \vec{l}_{0} + \text{doprinos na } b \right) = \left(\vec{E}_{1} - \vec{E}_{2} \right) \cdot \vec{l}_{0} = 0$$

$$(\vec{E}_1 - \vec{E}_2) \cdot (\vec{n} \times \vec{n}_0) = \vec{n}_0 \cdot [(\vec{E}_1 - \vec{E}_2) \times \vec{n}] = 0 \quad \Rightarrow \quad \vec{n} \times (\vec{E}_2 - \vec{E}_1) = 0$$

2.3.2007

EMP - Materijali u električnom poliu

21

- Uočimo elementarni cilindar na granici:
- Vrijedi: $\iint_S \vec{D} \cdot \vec{n} dS = \iiint_V \rho_S dV$

$$\lim_{h\to 0} \left(\oint_{S} \vec{D} \cdot \vec{n} \, dS \right) = \lim_{h\to 0} \left(P\vec{D}_{2} \cdot \vec{n} - P\vec{D}_{1} \cdot \vec{n} + \text{doprinos plašta} \right) = \vec{n} \cdot \left(\vec{D}_{2} - \vec{D}_{1} \right) P$$

$$\lim_{\substack{h\to 0\\\rho_s\to\infty}} \left(\iiint\limits_V \rho_s dV \right) = \sigma_s P \quad \Rightarrow \quad \vec{n} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma_s$$

2.3.2007

EMP - Materijali u električnom polju

Uvjeti na granici vodič-dielektrik

- Neka je sredstvo 1 vodič nabijen nabojem plošne gustoće σ_s a sredstvo 2 dielektrik s ϵ
- U vodiču nema polja *D*₁=0 pa je:

$$\vec{n}(\vec{D}_2 - \vec{D}_1) = \sigma_s \implies \vec{n}\vec{D}_2 = \sigma_s \implies D_{2n} = \sigma_s \implies E_{2n} = \frac{\sigma_s}{\varepsilon}$$

$$\vec{n} \times (\vec{E}_2 - \overline{E}_1) = 0 \implies \vec{n} \times \vec{E}_2 = 0 \implies E_{2t} = 0$$

 Na površini nabijenog vodiča postoji samo normalna komponenta polja

2.3.2007

EMP - Materijali u električnom polju

