МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа 1.1

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта

Авторы: Ирина Веретененко Б06-804

1 Введение

Цели работы:

- Прокалибровать барабан монохроматора по спектру неоновой лампы
- Снять зависимость фототока от потенциала катода для 6-8 длин волн в диапазоне 540-700нм
- Определить постоянную Планка и и оценить работу выхода материала катода

В работе используются: электрическая лампа накаливания, конденсор, призменный монохроматор УМ-2, фотоэлемент Ф-25, мудьтиметр GDM-8145, цифровой вольтметр B7-78, усилитель постоянного тока

1.1 Теория

• Фотоэффект - испускание электронов фотокатодом, облучаемым светом.

Фотон с энергией $\hbar\omega$ выбивает электрон из поверхности металла и сообщает электрону кинетическую энергию. Согласно закону сохранения энергии:

$$\hbar\omega = W + E_{\text{max}} \tag{1}$$

где W - работа выхода электрона из катода, $E_{\rm max}$ - максимальная кинетическая энергия электрона после выхода из фотокатода

Реальный энергетический спектр вылетевших из фотокатода электронов непрерывный от нуля до $E_{\rm max}$. Эта непрервность объясняется появлением в металлах зоны проводимости очень близко расположенных энергетических уровней потенциальной ямы атома, в которой находится электрон, заполненной согласно принципу Паули. Максимальная энергия такой зоны называется энергией Ферми, и она определяет минимальную энергию, необходимую для выбивания электрона из металла. Наглядно это можно увидеть на рис. 1 Если энергия кванта света больше работы выхода, то фотоэффект может происходить и

Рис. 1: Схема выбивания электронов из металла. E_F - энергия Ферми, W - работа выхода

с более низкого уровня потенциальной ямы, поэтому выходящие из металла электроны будут иметь разброс по энергии

В полупроводниках по сравнению с металлами появляются две зоны, в которых могут находится электроны в потенциальной ямы: нижняя валентная зона и возбужденная зона проводимости. В диапазоне между ними электроны находится не могут, поэтому этот диапазон называется запрещенной зоной.

Тогда работа выхода $W = \Delta + \chi$

Rem: Электроны могут выбиваться не только с поврхности катода, но и из глубины (толщины фоточувствительного слоя). Эти электроны растрачивают часть своей энергии на рассеяние на атомах вещества, и, как следствие, обладают на выходе из катода меньшей энергией.

Рис. 2: Схема выбивания электронов в полупроводниках, Δ - ширина запрещенной зоны, E_c - дно зоны проводимости, E_{ν} - верх валентной зоны

Рис. 3: Установка Столетова для наблюдения фотоэффекта

- Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подаётся **задерживающий** (V < 0) или **ускоряющий** (V > 0) потенциал (рис.3).
 - При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 4): все испущенные электроны попадают на анод.
 - При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод.
 - При некотором значении $V = -V_0$ (**потенциал запирания**) даже наиболее быстрые фотоэлектроны не могут достичь анода.

$$E_{\text{max}} = eV_0$$

Подставляя это соотношение в равенство (1), мы получаем **уравнение Эйнштейна для** фотоэффекта:

$$eV_0 = \hbar\omega - W \tag{2}$$

Рис. 4: Зависимость фототока от напряжения на аноде

• Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю. Для простейшей геометрии: плоский катод, освещаемый светом, и параллельный ему анод

$$\sqrt{I} \propto (V_0 - V), V \to V_0 \tag{3}$$

Вывод формулы:

— Рассмотрим некоторое замедляющее напряжение между катодом и анодом $V \approx V_0$, $V < V_0$ (по модулю). При заданном напряжении на анод будут попадать электроны в некотором диапазоне скоростей $\nu_{min} \leq \nu \leq \nu_{max}$. Это связано с тем, что выбитые из катода электроны могут двигаться под углом к оси z (нормали к катоду и аноду). Пусть θ - угол между вектором скорости электрона и осью z. Тогда

$$rac{m
u_{min}^2}{2}=eV=rac{m
u^2cos^2(heta)}{2}=rac{m
u_{max}^2cos^2(heta_{max})}{2},$$
 где $rac{m
u_{max}^2}{2}=eV_0$

— При $V \approx V_0$ выполняется $\nu_{min} \approx \nu_{max}$, поэтому углы разлета $\theta << 1$. Для

$$cos^{2}(\theta) = 1 - \theta^{2} = \frac{2eV}{m\nu^{2}} \Rightarrow \theta^{2} = 1 - \frac{2eV}{m\nu^{2}} \Rightarrow \theta_{max}^{2} = 1 - \frac{2eV}{m\nu_{max}^{2}} = 1 - \frac{V}{V_{0}}$$

 $-\nu_z = \nu cos(\theta)$. Будем считать, что число электронов со скоростью ν , выбитых с катода в единицу времени $\frac{dn(\nu)}{dt} \approx const$ в диапазоне интересующих нас скоростей $\nu_{min} \approx \nu_{max}$. Сила фототока пропорциональна числу таких электронов, попавших в телесный угол вокруг оси z (угол ϕ - в плоскости, параллельной плоскостям катода и анода) $d\Omega = sin\theta d\theta \int_0^{2\pi} d\phi = 2\pi sin\theta d\theta$. Тогда (с учетом $\sin\theta \approx \theta$)

$$I \sim \int_{\nu_{min}}^{\nu_{max}} \frac{dn(\nu)}{dt} d\nu 2\pi \int_{0}^{\theta_{max}} cos\theta sin\theta d\theta \sim (\nu_{max} - \nu_{min}) \theta_{max}^{2}$$

$$\nu_{min}^{2} = \frac{2eV}{m} \sim V, \nu_{max}^{2} = \frac{2eV_{0}}{m} \sim V_{0}$$

$$I \sim (\sqrt{V_{0}} - \sqrt{V})(1 - \frac{V}{V_{0}}) = \frac{(\sqrt{V_{0}} - \sqrt{V})^{2}(\sqrt{V_{0}} + \sqrt{V})}{V_{0}}$$
 Пусть $dV = V_{0} - V$. Тогда $\sqrt{V} = \sqrt{V_{0} - dV} = \sqrt{V_{0}}\sqrt{1 - \frac{dV}{V_{0}}} = \sqrt{V_{0}}(1 + \frac{dV}{2V_{0}}) = \sqrt{V_{0}} - \frac{dV}{2\sqrt{V_{0}}}$ Значит, $\sqrt{V} + \sqrt{V_{0}} \approx 2\sqrt{V_{0}}, \sqrt{V_{0}} - \sqrt{V} \approx \frac{dV}{2\sqrt{V_{0}}}$

$$I \sim \frac{(dV)^2 V_0}{V_0^2} \sim (V_0 - V)^2 \Rightarrow \sqrt{I} \sim V_0 - V$$

• В ходе данной работы требуется определить постоянную Планка по наклону прямой уравнения Эйнштейна (2):

$$V_0 = \frac{\hbar}{e}\omega - \frac{W}{e} \Rightarrow \frac{dV_0}{d\omega} = \frac{\hbar}{e}$$

Для построения этого графика нужно определить запирающее напряжение при различных энергиях падающего света. Для этого при фиксированной длине волны будем снимать зависимость силы фототока от тормозящего напряжения вблизи запирающего напряжения, и из формулы (3) получим V_0 .

1.2 Экспериментальная установка и методика измерения

Рис. 5: Экспериментальная установка

1.2.1 Установка

Свет от источника S (электрическая лампа накаливания) с помощью конденсора фокусируется на входную щель призменного монохроматора УМ-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента Ф-25. В качестве катода в данном фотоэлементе используется Na2KSb(Cs) покрытие.

Фототок, протекающий в фотоэлементе, мал, особенно при потенциалах, близких к V_0 , и не может быть измерен непосредственно. Для уменьшения погрешности измерений, обусловленных наводками, усилитель фототока смонтирован в одном корпусе с фотоэлементом. Ток измеряется в относительных единицах по шкале цифрового вольтметра B7-78, подключенного к выходу усилителя. Измерение тормозящего потенциала осуществляется с помощью мультиметра GDM-8145, подключённого к фотоэлементу. Точное измерение тормозящего потенциала провести трудно из-за сущетсвования контактной разности потенциалов между проводниками (это связано с разницей работы выхода у разных проводников). Однако, для всей установки эта разность потенциалов - некоторая константа, поэтому она не сможет повлиять на угол наклона графика $V_0(w)$, по которому будет определяться постоянная Планка.

1.2.2 Призменный монохроматор-спектрометр УМ-2

- Входная щель 1 с микрометрическим винтом 9, регулирующим ширину щели;
- Коллиматорный объектив 2 с микрометрическим винтом 8 для смещения объектива относительно щели при фокусировке спектральных линий различных цветов;

- Сложная спектральная призма 3 из трёх склеенных призм П1, П2 (из тяжёлого флинта, с большей дисперсией), П3 (из крона), расположенная на поворотном столике;
- Поворотный столик 6, вращающийся вокруг вертикальной оси при помощи микрометрического винта 7 с отсчётным барабаном;
- Зрительная труба, состоящая из объектива 4 и блока окуляра 5, через который рассматривается изображение щели;
- Массивный корпус 11, предохраняющий прибор от повреждений;
- Оптическая скамья, на которой могут перемещаться рейтеры источика света Π и конденсора K;
- Пульт управления, служащий для накаливания и осветительной системы.

Рис. 6: Схема монохроматора

2 Результаты эксперимента и обработка данных

2.1 Градуировка монохроматора

Проградуируем монохроматор по известному спектру неона. По результатам измерений построим калибровочный график, переводящий показания барабана пектрофотометра x, настроенного на спектральную линию, в соответствующую этой линии длину волны λ . Погрешность $\sigma x = 1^{\circ}$ - цена деления барабана. Фитируем полученный график с учетом погрешности по оси x.

No	\ 1	- · ·	
№линии	λ, A	X, °	
1	7032	2600	
2	6929	2581	
3	6717	2512	
4	6678	2490	
5	6559	2462	
6	6533	2448	
7	6507	2436	
8	6402	2396	
9	6383	2384	
10	6334	2371	
11	6305	2360	
12	6287	2339	
13	6217	2322	
14	6164	2307	
15	6143	2287	
16	6096	2270	
17	6074	2256	
18	6030	2230	
19	5976	2218	
20	5945	2196	
21	5882	2176	
22	5852	2150	
23	5401	1890	
24	5341	1844	
25	5331	1838	

Рис. 7: калибровочный график

2.2 Исследование зависимости фототока от величины запирающего напряжения

- Целью данного пункта является построение графика запирающего напряжения от частоты падающего излучения. Для этого при нескольких длинах волн снимем показания силы фототока от напряжения между катодом и анодом. Как известно из описания экспериментальной установки, в данной работе вместо фототока измеряется величина $U \sim I$ в у.е. по шкале вольтметра. Также известно, что точное значение напряжение между катодом и анодом V измерить трудно из-за возникновения контактной разности потенциалов, поэтому все значения V будут сдвинуты на некоторую константу относительно реальных. Однако, появление этой константы не меняет угол наклона графика, который мы хотим построить, поэтому можно о ней не задумываться.
- Для $x=2000^\circ$ снимем BAX при ускоряющем и замедляющем потенциале, для остальных x только при замедляющем (так как из теории $\sqrt{I} \sim V V_0$ только при $V \approx V_0$). Для

каждого х построим графики $\sqrt{U}(V)$, фитируем их прямой вблизи V_0 и таким образом определим V_0

• Погрешности определения напряжений определяются погрешностью вольтметра GDM-8145 $\sigma V=0.03\%V+0.004,\ \sigma\sqrt{U}=\frac{\sigma U}{2\sqrt{U}}$

Таблица 1: Результаты измерений ВАХ при различных длинах волн света

x°	V, B	U∼I, y.e	\sqrt{U}	$\sigma V, B$	σU ,.	$\sigma \sqrt{U}$
	7,419	0,64	0,800	0,0062	0,0042	0,0026
	3,216	0,64	0,800	0,0050	0,0042	0,0026
	3,091	0,635	0,797	0,0049	0,0042	0,0026
	2,531	0,62	0,787	0,0048	0,0042	0,0027
	2,065	0,605	0,778	0,0046	0,0042	0,0027
	1,52	0,586	0,766	0,0045	0,0042	0,0027
	1,014	0,563	0,750	0,0043	0,0042	0,0028
	0,505	0,527	0,726	0,0042	0,0042	0,0029
	0,004	0,455	0,675	0,0040	0,0041	0,0031
2000	-0,013	0,479	0,692	0,0040	0,0041	0,0030
2000	-0,199	0,393	0,627	0,0041	0,0041	0,0033
	-0,251	0,326	0,571	0,0041	0,0041	0,0036
	-0,308	0,229	0,479	0,0041	0,0041	0,0043
	-0,355	0,152	0,390	0,0041	0,0040	0,0052
	-0,379	0,121	0,348	0,0041	0,0040	0,0058
	-0,425	0,067	0,259	0,0041	0,0040	0,0078
	-0,504	0,01	0,100	0,0042	0,0040	0,0200
	-0,52	0,003	0,055	0,0042	0,0040	0,0365
	-0,29	0,03	0,173	0,0041	0,0040	0,0116
	-0,304	0,02	0,141	0,0041	0,0040	0,0142
2300	-0,313	0,015	0,122	0,0041	0,0040	0,0163
	-0,321	0,01	0,100	0,0041	0,0040	0,0200
	-0,331	0,005	0,071	0,0041	0,0040	0,0283
	-0,341	0,001	0,032	0,0041	0,0040	0,0633
2150	-0,431	0,003	0,055	0,0041	0,0040	0,0365
	-0,424	0,01	0,100	0,0041	0,0040	0,0200
	-0,408	0,02	0,141	0,0041	0,0040	0,0142
	-0,391	0,031	0,176	0,0041	0,0040	0,0114
2450	-0,267	0,001	0,032	0,0041	0,0040	0,0633
	-0,225	0,006	0,077	0,0041	0,0040	0,0258
	-0,204	0,011	0,105	0,0041	0,0040	0,0191
	-0,191	0,017	0,130	0,0041	0,0040	0,0154

• Результаты измерений представлены в таблице 2. Предварительный график BAX при $x=2000^\circ$ в координатах I(V). Вид зависимости согласуется с теоретическим. Из данного графика можно понять, что имеет смысл измерять фототок при запаздывающих напряжениях порядка (-0.5)-(-0.2)B.

Рис. 8: Предварительный график. Полная ВАХ при $x=2000^{\circ}$

• Построим графики в координатах $\sqrt{U}(V)$

Рис. 9: Графики зависимости \sqrt{U} от V при различных длинах волн

• Найдем соответствующие х частоты

$$\lambda = ax^2 + bx + c \Rightarrow \sigma\lambda = \sqrt{(2ax + b)^2 \sigma^2 x + x^4 \sigma^2 a + x^2 \sigma^2 b + \sigma^2 c}$$
$$w = \frac{2\pi c}{\lambda}, \sigma w = \frac{2\pi c \sigma\lambda}{\lambda^2}$$

Из коэффициентов прямых 9 найдем запирающие напряжения, соответствующие w.

$$\sqrt{I} \sim V - V_0, \sqrt{U} = aV + b = a(V + \frac{b}{a}) \Rightarrow V_0 = \frac{b}{a}, \sigma V_0 = V_0 \sqrt{(\frac{\sigma a}{a})^2 + (\frac{\sigma b}{b})^2}$$

X	λ, A	$\sigma\lambda, A$	w, c^{-1}	$\sigma w, c^{-1}$	V0, B	$\sigma V0, B$
2000	5565,08	572,54	$3{,}39E{+}15$	$3{,}48E{+}13$	0,561	0,010
2150	5837,48	613,69	3,23E+15	$3{,}39\mathrm{E}{+}13$	0,463	0,083
2300	6167,56	656,78	$3{,}06\mathrm{E}{+}15$	3,25E+13	0,362	0,022
2450	6555,30	701,80	2,88E+15	$3{,}08E{+}13$	0,280	0,039

• По полученным результатам построим график $V_0(w)$

Рис. 10: График зависимости запирающего напряжения от частоты падающего света

$$eV_0 = \hbar w - W \Rightarrow V_0 = \frac{\hbar}{e}w - \frac{W}{e}$$

$$\hbar = ea, \sigma \hbar = e\sigma a \Rightarrow \boxed{\hbar = (0.93 \pm 0.03)10^{-34} \text{Дж с}}$$

Данный результат неплохо согласуется с теоретическим $\hbar = 1.054 \cdot 10^{-34}$ Дж с. Небольшое отличие могло произойти потому, что при фитировании итогового графика не учитывалась погрешность w, то есть погрешность калибровки барабана монохроматора.

- Красную границу фотоэффекта и работу выхода по имеющимся данным нельзя найти точно: как было сказано выше, запирающее напряжение находится с точностью до некоторой константы, обусловленной контактной разностью потенциалов. Тем не менее, мы можем оценить эти величины по порядку:
 - Красная граница фотоэффекта находится как точка пересечения прямой графика 9 с горизонтальной осью, поэтому

$$w_{red} = \frac{-b}{a}, \sigma w_{red} = w_{red} \sqrt{(\frac{\sigma a}{a})^2 + (\frac{\sigma b}{b})^2} \Rightarrow w_{red} = (2.4 \pm 0.2) 10^{15} c^{-1}$$

Данный результат хорошо согласуется с теоретическим. Для фотокатода $Na_2KSb(Cs)$ из графика чувствительности от длины волны $\lambda_{max}\approx 750nm \Rightarrow w_{min}=\frac{2\pi c}{\lambda}\approx 2.5\cdot 10^{15}c^{-1}$. Таким образом, контактная разность потенциалов не оказала существенного влияния на результат.

- Работа выхода

$$W = -be$$
, $\sigma W = e\sigma b \Rightarrow W = (1.40 \pm 0.07)$ эВ

Данное значение так же согласуется с табличными значениями

3 Выводы

- В ходе работы было с хорошей точностью получено значение постоянной Планка $\hbar=(0.93\pm0.03)10^{-34}$ Дж с, неплохо согласующееся с теоретическим. Небольшое отколение вызвано неучтенной погрешностью калибровки барабана монохроматора.
- Определены значения красной границы фотоэффекта и работы выхода, согласующиеся с табличными значениями. Это позволяет предположить, что контактная разность потенциалов между катодом и анодом была меньше по порядку, чем измеряемые в ходе работы напряжения, и, следовательно, она не оказала существенного влияния на измеренные запирающие напряжения.