

The Waisman Laboratory for Brain Imaging and Behavior

Topology for Image Analysis

Moo K. Chung
Department of Biostatistics and Medical Informatics
Waisman Laboratory for Brain Imaging and Behavior
University of Wisconsin-Madison

www.stat.wisc.edu/~mchung

Spectral geometry

Segmentation

Trees

Clustering

TDA

Tubular structures

Persistent homology

Topological constraints

Topology correction

Why we need topology in image segmentation?

Image segmentation is a topological operation of making an image into multiple disjoint regions. The goal of segmentation is to simplify and/or change the representation of an image (functional data) into discrete states.

A stroke patient with dysphagia in a diffusion tensor image

Stroke patients with dysphagia

Group 0: patients who got improved after one month (n1=58)

Group 1: patients who didn't get better (n2=23)

Question: How we discriminate the groups?

Two sample test without smoothing

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n1+n2-2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{j=1}^{n_2} (x_j - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

$$s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_i - \bar{x}_1)^2 + \sum_{i=1}$$

Two sample test with smoothing

Euler characteristics

How do we really check if topological defects in images are corrected without seeing images?

Head and neck CT image

Mandible Hyoid **Greater Cornu** Hyoid Body Hyoid Body

Semiautomatic histogram thresholding in ANALYZE package

→ Automatic pipeline using ANTS-based template matching

Topology correction in segmentation

Chung et al. 2015 Medical Image Analysis. 22:63-70

Volume rendering of a mandible from CT Holes and handles in binary volume

By checking the Euler characteristic of the binary volume of a mandible, holes in the binary volume can be detected. This process is necessary to make the mandible binary volume to be topologically equivalent to a solid sphere.

Genus = the number of holes in a surface or an object.

Matt Black

Euler characteristic with convex polyhedrons

Polyhedroneis a solid object with polygonal faces, edges and nodes.

$$EC = N - E + F$$

= 4 - 4 + 1
= 1

If there is no face

$$EC = N - E$$
$$= 4 - 4$$
$$= 0$$

$$EC = N - E + F-V$$

= 4 - 6 + 4 - 1
= 1

If there is no volume

$$EC = N - E + F$$

= 4 - 6 + 4
= 2

Question: Check if we have EC = #dimension - #hole EC is an approximate measure of data dimension!

Computing Euler characteristic of 3D objects

Sphere
$$EC = N - E + F$$

= $8 - 12 + 6$
= 2

Solid ball

$$EC = N - E + F - V$$

 $= 8 - 12 + 6 - 1$
 $= 1$

Computing Euler characteristic by parts

Cover an object with polyhedrons

$$EC = N - E + F$$

= 4 - 4 + 1
= 1

$$EC = N - E + F$$
 $= 6 - 7 + 2$
 $= 1$

$$EC = N - E + F$$

= 4 - 5 + 2
= 1

$$EC = N - E + F$$
 $= 7 - 8 + 2$
 $= 1$

Computing Euler characteristic by parts

Cover an object with polyhedrons

Incorrect computation

$$EC = N - E + F$$

=8 - 8 + 1

$$EC = N - E + F$$

= $(8+4) - (8+6) + (1+1)$

$$EC = N - E + F$$

= 8 - (8+2) + (1+1)

$$EC = N - E + F$$

= $(8+2)-(8+4)$
+ $(1+1)$

Iterative computation (online) of Euler characterist

Question: Given binary image, write an iterative algorithm

Computing Euler characteristic in 3D image

Partition search region into voxels.

EC = # vertices - # edges + # faces - # volume

Euler characteristic: most widely used topological invariant

For an object with n-handles, EC = 2-2n

Question: prove the statement

Expected Euler characteristic/Betti numbers

Random field, stochastic process

$$P\Big(\sup_{x\in\mathbb{M}}T(x)>h\Big)$$

$$A_h = \{x \in \mathbb{M} : T(x) > h\}$$

$$P\Big(\sup_{x\in\mathbb{M}} T(x) > h\Big) = \mathbb{E}\chi(A_h)$$

$$\chi(A_h) = \sum_{j} (-1)^j \beta_j(A_h)$$

Milor 1963 Morse theory Adler, 1994 The geometry of random fields Worsley et al., 1996 Human Brain Mapping

Betti numbers β_i

of i-dimensional holes/loops

$$\beta_0 = \# \text{ of}$$
connected
components = 3

$$\beta_1$$
 = # of cycles
= 1
 $\chi = 3 - 1 = 2$

Euler characteristic: $\chi = 3 - 1 = 2$

numbers

of i-dimensional holes/loops

$$\beta_0$$
= # of connected components = 3 β_1 = # of 1D holes = 1 β_2 = # of 2D cavities =0

Betti-number representation:

Euler characteristic:

$$\chi = \beta_0 - \beta_1 = 2$$

$$\beta_0 = 1, \beta_1 = 2, \beta_2 = 1$$

(1,2,1,0,0,...

Betti numbers in graphs and networks

$$\beta_0$$
 = 2

$$\beta_1 = 1$$

$$\beta_0 - \beta_1 = 1$$

p - q = 1

$$p = 4$$

$$q = 3$$

$$\beta_0 = 3$$

$$\beta_1 = 0$$

$$p = 4$$

$$n = 4$$

$$q = 1$$

$$p - q = 3$$

How to compute the number of cycles in big network data?

Tree data

Lung blood vessel trees from CT

<u>Chung et al. 2018 EMBC</u> <u>Chung et al. 2019</u>, Mathematics of Shapes and

Sulcal and gyral trees of brain from MRI

White matter surface

Trees on manifold

3D volume projection

Topology of tree

Euler characteristic

Betti numbers

Surface mesh data (2-simplices)

Marching cubes algorithm

Image intensity values are classified into two parts: in & out

The marching cubes algorithm will extract the boundary of binary segmentation

Marching cubes algorithm

Depending on the amount of partial vacuuming, we connect the centers of cubes

Marching cubes algorithm in 3D

Cell consists of 8 voxel values:

- 1. Classify each vertex as inside or outside
- 2. Build an index
- 3. Compute edge list from table[index]
- 4. Determine vertex coordinates

0 0 0 0 0 1 0 0

Marching Cubes

Use the binary labeling of each voxel vertex to create an index

Marching Cubes

All 256 cases can be derived from 1+14=15 base cases due to symmetries

Invented by Carl Crawford (GE's Medical Systems Business Group). Expert on CT reconstruction.

Table

```
Marching cubes in MATLAB
FV =
isosurface(X,Y,Z,V,ISOVALUE)
```

computes isosurface geometry for data V at isosurface value ISOVALUE.

Optional: arrays (X,Y,Z) specify the coordinates at which the data V is given. The struct FV contains the faces and vertices of the isosurface and can be passed directly to the PATCH command.

It is based on simpler version of marching cubes.

Output of isosurface.m Triangle mesh data structure

Basis of most surface rendering tools for 3D computer games: as 3D Max Studio, Maya

Data structure for triangle mesh

```
>>surf =
    vertices: [1282x3 double]
       faces: [2560x3 double]
structured array
>>surf.faces
ans =
>> surf.vertices
                                vertex coordinates
ans =
   75.0000
              93.0000
                         51.5050
   74.5050
              93.0000 52.0000
   75.0000
              92.5050 52.0000
```

• • •

2D surface model of left amygdala using marching cubes algorithm

Euler characteristic for a surface mesh

How to check the topologically defect of a surface?

N - E +F = 2 for a surface topologically equivalent to a sphere. For each triangle, there are three edges. Since two adjacent triangles share the same edge, the total number of edges is E = 3F/2. Hence, we have F=2N-4 for a closed surface.

Advanced topology problems

Hot spots conjecture Chung et al. 2011 MLMI

Disconnected **Blood vessels**

$$K_{\sigma} * f(p) = \frac{\int_{\mathcal{M}} f(p) d\mu(p)}{\mu(\mathcal{M})} + f_1 e^{-\lambda_1 \sigma} \psi_1(p) + R(\sigma, p)$$

Diffusion

Mean signal

Topology term

Topology changing bone fusion

DS: down syndrome

TD: typically developing

<u>Chung et al.</u>

2020

Is it possible to set up a coherent longitudinal growth model for topologically changing structures?

Project: This is nontrivial.

Spherical harmonics (SPHARM) parameterize with respect to a sphere (single connected structure)

How to represent 4 disjoint structures using Hyper-SPHARM basis: Hosseinbor et al. 2015 Medical Image Analysis