Université Pierre et Marie Curie - Paris VI Faculté de Mathématiques TD no4, Formes Modulaires, le jeudi 11h15-13h15, salle 15/16 101.

Exercice 1. On rappelle que la fonction $\log \eta$ est définie sur le demi-plan de Poincaré par $\log \eta(\tau) := \frac{i\pi\tau}{12} - \sum_{n\geqslant 1} \sigma_{-1}(n)e^{2i\pi\tau}$. Pour toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ avec $c \neq 0$ on pose

$$\Phi_R(A) = (\frac{i\pi}{12})^{-1} \left(\log \eta(A\tau) - \log \eta(\tau) - \frac{1}{4} \log(-(c\tau + d)^2) \right),$$

où le logarithme est la branche réelle sur la demi-droite $\mathbb{R}_{>0}$, l'argument étant pris dans $]-\pi,\pi].$

Lorsque c = 0 on pose $\Phi_R(A) = (\frac{i\pi}{12})^{-1} (\log \eta(A\tau) - \log \eta(\tau))$.

- i. Calculer $\Phi_R(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix})$ et $\Phi_R(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix})$.
- ii. Montrer que Φ_R définit une application $\Phi_R : \mathrm{SL}_2(\mathbb{Z}) \to \mathbb{Z}$.
- iii. Montrer que pour toutes matrices $A, B \in SL_2(\mathbb{Z})$ on a

$$|\Phi_R(AB) - \Phi_R(A) - \Phi_R(B)| \leq 9.$$

- iv. Montrer que le nombre rationnel $u(c,d) = \Phi_R(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) (\frac{a+d}{c})$, noté $u(c,d) = -12\mathrm{sign}(c)s(c,d)$, ne dépend que de la paire c,d. (Indication : on pourra faire le changement de variable $\tau = -\frac{d}{c} + \frac{it}{c}$.).
- v. Montrer que, pour c > 0, d > 0,

$$s(d,c) + s(c,d) = -\frac{1}{4} + \frac{1}{12} \left(\frac{c}{d} + \frac{d}{c} + \frac{1}{cd} \right).$$

vi. En observant que s(c,d) ne dépend que de d modulo c, en déduire un algorithme de calcul de s(d,c).