Optimalidad asintótica de mercados de pruebas con influencia social

José Martínez - Rodrigo Montecinos

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas

20 de diciembre de 2023

Table of Contents

Contexto

2 Aplicación

Resultados

Contexto

Mercado de pruebas

Es una dinámica entre consumidores y productores en donde los primeros prueban un producto antes de decidir comprarlo o no.

Supuestos del mercado

- 1. Se ofrecen n productos.
- 2. Los productos se caracterizan con dos valores: El atractivo a_i y la calidad q_i .
- 3. Los consumidores son indistinguibles.
- 4. El orden de los productos influye en la cantidad de productos comprados. Cada posición p del ranking se caracteriza por su visibilidad v_p .
- 5. Comprar un producto o probar otro depende solo del producto que se está probando.

Observación

Con los supuestos anteriores, el mercado de prueba se puede modelar como una cadena de Markov.

Características de la cadena de Markov

- 1. El espacio de estados es E = [n].
- 2. El tiempo es discreto, en cada unidad de tiempo el consumidor toma una decisión.
- 3. La matriz de transición es $P = (p_{ij})_{i,j \in E}$ con p_{ij} la probabilidad de que el consumidor cambie de i a j.
- 4. La distribución inicial $\mu=(\mu_i)_{i\in E}$ se define como la preferencia de los consumidores por cada producto.

Probabilidad de probar el producto i

 $P_i(\sigma, d^t) = \frac{v_{\sigma_i}q_i(a_i + d_i^t)}{\sum_{i=1}^n v_{\sigma_j}(a_i + d_j^t)}, d^t$ es el vector de compras hasta el tiempo t.

Objetivo

Encontrar un ranking $\sigma \in S_n$ que maximice el número esperado de compras $\sum_{i=1}^N P_i(\sigma,d^t)$. El problema es que S_n es muy grande para n pequeño, por lo tanto se utilizará Simulated Aneealing para encontrar σ .

Aplicación

Consideremos E= {Nokia, Samsung, Blackberry, Tecno, Infinix, HTC, Sony, Huawei, Gionee, LG, Microsoft, Panasonic, Sharp, Wiko, ZTE, Apple, Injoo, Motorola, Lenovo, Xiaomi, Other } $\cong [n].$ Se utilizara P y μ obtenidas de [3].

Brands	Probability							
Nokia	0.256							
Samsumg	0.128							
Blackberry	0.197							
Tecno	0.151							
Infinix	0.096							
HTC	0.021							
Sony	0.026							
Huawei	0.014							
Gionee	0.013							
LG	0.019							
Microsoft	0.012							
Panasonic	0.002							
Sharp	0.004							
Wiko	0.008							
ZTE	0.009							
Apple	0.019							
Injoo	0.002							
Motorola	0.005							
Lenovo	0.010							
Xiaomi	0.000							
Other	0.008							

Figura 1: Distribución inicial.

	Nokia	Samoung	Blackberry	Tecno	Infinix	нтс	Sony	Huawei	Gionee	LG	Microsoft	Panasonic	Sharp	Wike	ZTE	Apple	Injee	Motorola	Lenovo	Xiaomi	Other
Nokia	0.156	0.152	0.203	0.141	0.109	0.055	0.016	0.004	0.020	0.008	0.004	0	0.012	0	0.004	0.090	0.008	0	0	0.004	0.016
Samsung	0.211	0.133	0.219	0.086	0.086	0.047	0.008	0.008	0	0.023	0.023	0.016	0	0	0	0.117	0.008	0	0.008	0	0.008
Blackberry	0.076	0.102	0.279	0.010	0.198	0.041	0	0	0.010	0.030	0.061	0.005	0	0	0	0.147	0.020	0	0.020	0	0
Tecno	0.093	0.126	0.086	0.093	0.278	0.040	0.026	0.007	0	0.013	0.060	0	0.013	0	0.007	0.152	0.007	0	0	0	0
Infinix	0.177	0.021	0.177	0.021	0.313	0.021	0.031	0.021	0	0	0.052	0	0	0	0	0.156	0	0	0	0	0.010
нтс	0.048	0.095	0.143	0.143	0.095	0.048	0.048	0.048	0.048	0	0.143	0	0	0	0.048	0.048	0.048	0	0	0	0
Sony	0.038	0.038	0.077	0.038	0.154	0.038	0.269	0	0.038	0.038	0	0.038	0	0	0	0.192	0.038	0	0	0	0
Huanei	0	0	0.214	0	0.214	0.357	0	0.143	0	0	0	0	0	0	0	0	0	0	0	0.071	0
Gionee	0.077	0.077	0	0.231	0.077	0.154	0	0	0	0.154	0.77	0	0	0.077	0	0.077	0	0	0	0	0
LG	0.105	0.053	0.053	0.053	0.158	0.263	0.053	0.053	0	0.053	0	0	0	0	0.053	0.053	0.053	0	0	0	0
Microsoft	0	0.250	0	0	0.083	ō	0	0	0	0.083	0.250	0	0	0	0	0.167	0.083	0	0	0	0.083
Panasonic	0	0	. 0	0	0	0	0.500	0	0	0	0	0.250	0	0	0	0	0	0	0	0	0
Sharp	0	0.250	0	0	0	0	0.500	0	0	0	0	0.250	0	0	0	0	0	0	0	0	0
Wiko	0	0.125	0	0	0.125	0	0	0	0	0	0	0	0	0	0	0.500	0	0	0.125	0.125	0
ZTE	0.222	0.111	0	0	0.222	0.111	0	0.222	0	0	0	0	0	0.111	0	0	0	0	0	0	0
Apple	0	0.211	0.211	0.105	0.105	0	0	0	0	0	0.053	0	0	0	0	0.263	0	0	0	0	0.053
Injoo	0	0	0.500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.500
Motorola	0	0	0	0.200	0.800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lenovo	0.200	0	0.100	0.400	0.100	0	0	0	0.100	0.100	0	0	0	0	0	0	0	0	0	0	0
Xinomi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0.375	0	0	0.125	0.125	0.250	0	0	0	0	0	0	0	0	0	0.125	0	0	0	0	0

Source: From Field Survey (2015)

Figura 2: Matriz de transición.

```
a=[0.09640078 0.00497159 0.05931075 0.07081878 0.04253611 0.08234774 0.02336803 0.00721186 0.07549482 0.02978986 0.02147293 0.06542426 0.09186693 0.0007104 0.04149595 0.06024431 0.06221504 0.0272797 0.02750247 0.03988124 0.06965644] v=[0.07994439 0.07584481 0.07200836 0.06925264 0.06813753 0.06715945 0.06710585 0.06507122 0.06448306 0.06407523 0.06195404 0.05522219 0.0507133 0.04042061 0.02701479 0.02162654 0.01785796 0.01044192 0.00886333 0.00699347 0.00580933] q=[0.09270405 0.08916983 0.08671719 0.0782869 0.07236411 0.06583245 0.05822824 0.05627629 0.04775206 0.04640435 0.04519781 0.04342101 0.04036488 0.03955264 0.03287388 0.03046504 0.02890768 0.0224083 0.02180952 0.00112501 0.00013875]
```

Figura 3: Vectores de atractivo, visibilidad y calidad, respectivamente.

Resultados

Figura 4: Cadena de Markov para T=10 y T=100, respectivamente.

Figura 5: Cadena de Markov para T=1000 y T=100000.

Figura 6: Energia para distintos beta.

Ka Ching Chan, Market share modelling and forecasting using Markov chains and alternative models., 2015.

S. Mutiu, O. Dotun, Application of Markov Chain in Forecasting: A Study of Customers' Brand Loyalty for Mobile Phones, 2015.

J. Fontbona, Apunte simulación estocástica, 2023

Gracias por su atención