ORCA Project Towards the Accountable Learning-enabled Autonomous Systems.

Is deep learning secure for robots?

Presenter: Han Wu, Dr Wenjie Ruan

Ph.D. Student University of Exeter

Postdoc University of Exeter

Dr. Wenjie Ruan
Senior Lecturer
University of Exeter

Is deep learning secure for robots?

Background

Project 1: Adversarial Driving

Project 2: Adversarial Detection

Background – Robotics

Advances in deep neural networks have opened a new era of robotics, intelligent robots.

(a) Amazon Kiva Robot

(b) Alibaba Quicktron Robot

Intelligent robots possess a more comprehensive **perception** of environments.

(a) Waymo (formerly Google self-driving project)

(b) Tesla Autopilot

Deep Learning for Autonomous Driving

Background – Deep Learning

Deep neural networks are vulnerable to adversarial attacks in various tasks.

Adversarial attacks against image classification

Instead of **minimizing** the loss function, the adversarial attack **maximizes** it.

Adversarial attacks against object detection.

Demo – Adversarial Filter

A fake camera that fools the object detection model.

Overview

Adversarial Driving

Adversarial Detection

Adversarial ROS Driving

Adversarial ROS Detection

Project 1: Adversarial Driving

Project 1: Adversarial Driving^[4]

White-Box Adversarial Attack against Autonomous Driving

Project 1: Adversarial ROS Driving

Project 1: Adversarial ROS Driving

Take the 30x30 part from the 160 x 320 gradient

 Δy

Take the 30x30 part from the 160 x 320 gradient

Forward

3. Update the patch using the gradient

$$\nabla_{\delta} y \rightarrow \nabla_{\delta} J(h_{\theta}(x, \delta), y)$$

[None, x, y, w, h, c, p0, p1, p2]

$$J_1(x, \delta, y_h) = \max(\sigma(c) * \sigma(p0))$$

One Targeted Attack

$$J_2(x, \delta, y_h) = \sigma(c) * \sigma(p0)$$

Multi Targeted Attack

$$J_3(x, \delta, y_h) = \sigma(c) * \sum \sigma(pi)$$

Multi Untargeted Attack

Thank you!

Q&A