

镜像核质量关系的对称性

Symmetry between masses of mirror nuclei

Y.Y.Zong Y.M.Zhao

Jan. 2020

1 Introduction

Neutron-proton interaction

Separation energies

1 Introduction

Neutron-proton interaction

Separation energies

Introduction

- Global model
 - Duflo-Zuker model
 - J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23 (1995)
 - Skyrme Hartree-Fock-Bogoliubov theory
 - P. Möller, J. R. Nix, At. Data Nucl. Data Tables 59, 185 (1995)
 - Weizsäcker-Skyrme mass formula
 - N. Wang, M. Liu and X. Z. Wu, Phys. Rev. C 81, 044322 (2010)
 - Spherical relativistic continuum Hartree-Bogoliubov theory
 - X. W. Xia, Y. Lim, et al., At. Data Nucl. Data Tables 121, 1 (2018)

- Local mass formulas
 - Audi-Wasptra method
 - G. Audi, A. H. Wapstra and C. Thibault, Nucl. Phys. A 729, 337 (2003)
 - Garvey-Kelson mass relations
 - G. T. Garvey and I. Kelson, Phys. Rev. Lett. 16, 197 (1966)
 - Mass relation based on neutron-proton interaction
 - G. J. Fu, et al., Phys. Rev. C 82, 034304 (2010)

Introduction

Masses correlation between mirror nuclei

M. Bao, Y. Lu, Y. M. Zhao and A. Arima, Phys. Rev. C 94, 044323 (2016)

• Garvey-Kelson relations for nuclei with N = Z

$$M(N-1,Z+1) + M(N,Z-1) + M(N+1,Z)$$

$$-M(N-1,Z) - M(N,Z+1) - M(N+1,Z-1) = 0$$

Improved Garvey-Kelson mass relations

J. L. Tian, N. Wang, C. Li and J. J. Li, Phys. Rev. C 87, 014313 (2013)

1 Introduction

Neutron-proton interaction

Separation energies

Residual neutron-proton interaction

$$V_{in-jp} = -M(N,Z) + M(N-i,Z) + M(N,Z-j) - M(N-i,Z-j)$$

• For (N - k, Z) and (N, Z - k) pair, we denote

$$\Delta V_{\text{in-jp}}(N-k,Z) = V_{\text{in-jp}}(N-k,Z) - V_{\text{jn-ip}}(N,Z-k) \qquad N = Z$$

• Suppose that the neutron-proton interactions V_{1n-1p} are equal:

$$\Delta V_{\rm 1n-1p}(N-k,Z)=0$$

J. Jänecke, Phys. Rev. C 6, 467 (1972);

Y. H. Zhang, P. Zhang, X. R. Zhang N. Wang, et al., Phys. Rev. C 98, 014319 (2018)

• The RMSD (in keV) and number of $\Delta V_{in-jp}(N-k,Z)$

with ⁴⁴V excluded

k = 1-3 i, j = 1-2	σ_1	N_1	σ_2	N_2	σ_3	N ₃
ΔV_{1n-1p}	43	19	64	16	133	5
ΔV_{2n-1p}	55	18	110	6	868	1
ΔV_{1n-2p}	43	19	76	17	136	5
ΔV_{2n-2p}	73	19	152	6	1071	1

Mass relations based on this work

$$M(N-2,Z) = M(N,Z-2) + M(N-1,Z) - M(N,Z-1)$$

$$+ M(N-2,Z-1) - M(N-1,Z-2)$$

$$M(N-3,Z) = M(N,Z-3) + M(N-1,Z) - M(N,Z-1) + M(N-2,Z-1)$$

$$- M(N-1,Z-2) + M(N-3,Z-2) - M(N-2,Z-3)$$

$$M(N-3,Z) = M(N,Z-3) + M(N-1,Z) - M(N,Z-1)$$

$$+ M(N-3,Z-1) - M(N-1,Z-3)$$

• Mass extrapolation : AME1995 \longrightarrow AME2016 (N \geq 10)

11 proton-rich nuclei

RMSD : **47** keV

$$\sigma = \sqrt{\sigma_{\rm th}^2 + \sum \sigma_{\rm exp}^2}$$

• $m_{
m pred}$ and $\sigma_{
m pred}$

$$m_{pred} = F \frac{m_1}{(\sigma_1)^2} + F \frac{m_2}{(\sigma_2)^2} + F \frac{m_3}{(\sigma_3)^2}$$

$$F = \frac{1}{\frac{1}{(\sigma_1)^2} + \frac{1}{(\sigma_2)^2} + \frac{1}{(\sigma_3)^2}}$$

$$\sigma_{
m pred} = \sqrt{F}$$

Ν	Z	Α	$mass_{pred}^{excess}$	$\sigma_{ m pred}$
27	30	57	-32778	45
28	31	59	-34019	60
29	31	60	-39988	60
29	32	61	-34001	92
30	32	62	-42328	70
30	33	63	-33832	125
31	33	64	-39666	102
31	34	65	-33484	136
32	32	66	-42059	116
32	35	67	-32935	137
33	35	68	-38712	90
33	36	69	-32755	171
34	36	70	-41579	142

1 Introduction

Neutron-proton interaction

Separation energies

Weizsäcker mass formula

$$B(N,Z) = a_{\rm v}A - a_{\rm s}A^{2/3} - a_{\rm c}Z^2A^{-1/3} - a_{\rm a}(N-Z)^2A^{-1} + a_{\rm p}\delta_{\rm pair}A^{-1/2}$$

• The relation between nuclear masses and the Coulomb energy for N = Z

$$M(N-1,Z) - M(N,Z-1) = a_c(A-1)^{2/3} + M_p - M_n$$

Namely
$$\Delta_{\rm m}(N-k,Z) = M(N-k,Z) - M(N,Z-k)$$
$$= a_c \delta_{\rm coul} + k(M_n - M_n)$$

where
$$\delta_{\rm coul} = k(A-k)^{2/3}$$
, $k=1-4$

RMSD values :134, 239, 309, 275 (in keV)

for k = 1, 2, 3, and 4, respectively.

M. Bao, Y. Lu, Y. M. Zhao and A. Arima, Phys. Rev. C 94, 044323 (2016)

$$S_{\rm n}(N,Z) = M(N-1,Z) - M(N,Z) + M_{\rm n};$$

 $S_{\rm p}(N,Z) = M(N,Z-1) - M(N,Z) + M_{\rm p}$

• We next define two quantities, Δ_n and Δ_p :

$$\Delta_{\rm n}(N-k,Z) = S_{\rm n}(N-k,Z) - S_{\rm p}(N,Z-k) + (M_{\rm p}-M_{\rm n});$$

$$\Delta_{\rm p}(N-k,Z) = S_{\rm p}(N-k,Z) - S_{\rm n}(N,Z-k) + (M_{\rm n}-M_{\rm p})$$

Finally, we obtain

$$\Delta_{\rm n}(N-k,Z) = M(N-1-k,Z) - M(N-k,Z) - M(N,Z-1-k) + M(N,Z-k) = a_c \delta_c^n + (M_{\rm p} - M_n);$$

$$\Delta_{\rm p}(N-k,Z) = M(N-k,Z-1) - M(N-k,Z) - M(N-1,Z-k) + M(N,Z-k) = a_c \delta_c^n + (M_{\rm n} - M_{\rm p});$$
where $\delta_c^n = (k+1)(A-k-1)^{\frac{2}{3}} - k(A-k)^{\frac{2}{3}};$ $\delta_c^p = (k-1)(A-k-1)^{\frac{2}{3}} - k(A-k)^{\frac{2}{3}};$

• We rewrite the simple relations in short as

$$\Delta = a_{\rm c} \, \delta_{\rm c} + C$$

Strong linear correlations between Δ and δ_c , independent of k:

Δ _(N≥10)	RMSD	Number	$a_{\rm c}$	С
Δ_{n}	113	46	718	-1833
$\it \Delta_{ m p}$	132	68	702	+1637

Mass relations based on this work

$$M(N - k, Z) = M(N - 1 - k, Z) - M(N, Z - 1 - k)$$

$$+ M(N, Z - k) - a_c \delta_c^n - C$$

$$M(N - k, Z) = M(N - k, Z - 1) - M(N - 1, Z - k)$$

$$+ M(N, Z - k) - a_c \delta_c^p - C$$

• Mass extrapolation : AME2003 \longrightarrow AME2016 (N \geq 10)

13 proton-rich nuclei RMSD : **102** keV (346 keV with $\Delta_{\rm m}$)

• We predict 58 nuclear masses for proton-rich nuclei with N=[10,50], and $(Z-N) \leq 4$

1 Introduction

Neutron-proton interaction

Separation energies

- We report two simple relations of masses between corresponding mirror nuclei for $N \ge 10$.
- The neutron-proton interactions of two mirror nuclei are very close to each other, namely $\Delta V_{in-jp}(N-1,Z)\sim 0$.
- The difference between on-nucleon separation energies of two mirror nuclei, namely $\Delta_n(\Delta_p)$, exhibits strong linear correlations with coulomb correction term.
- These correlations provide a remarkably accurate approach to predict 58 protonrich nuclei.

谢谢!

