Artificial Intelligence - Spring 2017

Homework 5

Issued: May 16th, 2017 Due: May 30th, 2017

Problem 1: Exercises 14.14 a, b, c in AI textbook

Problem 2: Exercises 14.15

Problem 3: Exercises 15.13

Problem 4:

Consider the training data below. X_1 and X_2 are binary-valued features and Y is the label you'd like to classify.

Y	X_1	X_2
+1	0	0
-1	1	0
+1	1	1
+1	0	0
-1	0	1
-1	1	0

(a) Assuming a Naive Bayes model, fill in the quantities learned from the training data in the tables below (no smoothing).

Y	P(Y)
-1	
+1	

X_1	$P(X_1 Y=-1)$	$P(X_1 Y=+1)$
0		
1		

X_2	$P(X_2 Y=-1)$	$P(X_2 Y=+1)$
0		
1		

(b) Fill in the learned quantities below as in (a), but with add-k (Laplace) smoothing, with k=1.

Y	P(Y)
-1	
+1	

X_1	$P(X_1 Y=-1)$	$P(X_1 Y=+1)$
0		
1		

X_2	$P(X_2 Y=-1)$	$P(X_2 Y=+1)$
0		
1		

- (c) Use your model in (b) to calculate $P(Y|X_1 = 0, X_2 = 0)$.
- (d) What does $P(Y|X_1=0,X_2=0)$ approach as $k\to\infty$?

- (e) Circle the feature sets that would enable a linear binary classifier to classify the training data perfectly. I indicates an indicator function; i.e. equal to 1 if and only if the given conditions holds.
 - (i) $\{X_1\}$
 - (ii) $\{X_2\}$
- (iii) $\{X_1, X_2\}$
- (iv) $\{1, X_1, X_2\}$
- (v) $\{1, abs(X_1 X_2)\}$
- (vi) $\{1, X_1, X_2, X_1 + X_2\}$
- (vii) $\{1, X_1, X_2, \max(X_1, X_2)\}$
- (viii) $\{X_1, X_2, I(X_1 = X_2)\}$
- (ix) $\{1, X_1, (X_1X_2)\}$

Problem 5:

Construct a support vector machine that computes the XOR function. Use values of +1 and -1 (instead of 1 and 0) for both inputs and outputs, so that an example looks like ([-1,1],1) or ([-1,-1],-1). Map the input $[x_1,x_2]$ into a space consisting of x_1 and x_1 x_2 . Draw the four input points in this space, and the maximal margin separator. What is the margin? Now draw the separating line back in the original Euclidean input space.