CMSC 141 AUTOMATA AND LANGUAGE THEORY CONTEXT-FREE LANGUAGES

Mark Froilan B. Tandoc

October 15, 2014

SIMPLIFYING CONTEXT FREE GRAMMARS

- Chomsky Normal Form
 - $V \rightarrow (T + VV)$
- Greibach Normal Form
 - V → TV*
- ▶ Elimination of unit productions $(V \to W)$, and empty productions $(V \to \varepsilon)$ except for the start state

A context-free grammar in Chomsky Normal Form (CNF) have rules of the form:

$$A \rightarrow BC$$

 $A \rightarrow a$

where a is any terminal and A, B, C are any variables - except that B and C may not be the start variable. Also, only the start variable (say S), can have the rule $S \to \varepsilon$

Convert the grammar to CNF

Convert the grammar to CNF

$$\begin{array}{ccc} S & \rightarrow ASA \mid aB \\ A & \rightarrow B \mid S \end{array}$$

$$B \rightarrow b \mid \varepsilon$$

Add a new start variable (say S_0) and have the rule $S_0 \to S$ where S is the original start state

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

Add a new start variable (say S_0) and have the rule $S_0 \rightarrow S$ where S is the original start state

$$\begin{array}{ll} S_0 & \rightarrow S \\ S & \rightarrow ASA \mid aB \\ A & \rightarrow B \mid S \\ B & \rightarrow b \mid \varepsilon \end{array}$$

Remove the ε rules. $B \to \varepsilon$

$$\begin{array}{ll} S_0 & \rightarrow S \\ S & \rightarrow ASA \mid aB \\ A & \rightarrow B \mid S \\ B & \rightarrow b \mid \varepsilon \end{array}$$

Remove the ε rules. $B \to \varepsilon$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \varepsilon$
 $B \rightarrow b$

Remove the ε rules. $A \to \varepsilon$

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a

A \rightarrow B \mid S \mid \varepsilon

B \rightarrow b
```

Remove the ε rules. $A \to \varepsilon$

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $S \rightarrow S$

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $S \rightarrow S$

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $S_0 \rightarrow S$

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $S_0 \rightarrow S$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $A \rightarrow B$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $A \rightarrow B$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow S \mid b

B \rightarrow b
```

Remove unit rules. $A \rightarrow S$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow S \mid b

B \rightarrow b
```

Remove unit rules. $A \rightarrow S$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

Convert the remaining rules into proper form by adding additional variables and rules

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

Convert the remaining rules into proper form by adding additional variables and rules

```
S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS

S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS

A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS

A_1 \rightarrow SA

U \rightarrow a

B \rightarrow b
```

Convert to CNF

```
S \rightarrow ab
S \rightarrow aSb
```

CNF

```
S \rightarrow AB \mid XB
X \rightarrow AY
Y \rightarrow AB \mid XB
A \rightarrow a
B \rightarrow b
```

GREIBACH NORMAL FORM

A context-free grammar in Greibach Normal Form (GNF) have rules of the form:

$$V \rightarrow TV^*$$

where V can be any variable and T can be any terminal. Only the start variable (say S), can have the rule $S \to \varepsilon$

Greibach Normal Form

Convert the grammar to GNF

$$S \rightarrow a \mid S + S$$

GNF

$$egin{array}{ll} S &
ightarrow a \ S &
ightarrow a PS & ext{(this makes} + ext{right-associative)} \ P &
ightarrow + & ext{.} \end{array}$$

When in GNF, an input string of length n can always be derived in n steps

Equivalence of PDAs and CFGs

THEOREM

Every CFG can be converted into an equivalent PDA, and vice versa

Note that we are referring to non-deterministic PDA (NPDA) because deterministic PDA are weaker than NPDA

CFG TO NPDA

Idea:

- Use a single state q, with stack alphabet $\Gamma = V \cup T$, and the PDA is accepting by empty stack
- Initial stack symbol is the start variable
- For every terminal symbol a in Σ , add the transition $\delta(q, a, a) = (q, pop)$
- ▶ For every empty production $A \rightarrow \varepsilon$, add the transition $\delta(q, \varepsilon, A) = (q, pop)$
- ► For every rule $A \to B_1 B_2 \dots B_n$, add the transition $\delta(q, \varepsilon, A) = (q, \{pop; pushB_n; pushB_{n-1}; \dots; pushB_1\})$

CFG TO NPDA

$$S \to \varepsilon \mid aSb \Longrightarrow L(G) = \{a^nb^n : n \ge 0\}$$

Stack alphabet: $\Gamma = \{S, a, b\}$ Initial stack symbol: S

 ε , S, {pop, push b, push S, push a}

CFG TO NPDA

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- ▶ J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- ► E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials