Мера Хаусдорфа

Размерность Хаусдорфа

Пусть мы находимся в \mathbb{R}^n и $E \subset \mathbb{R}^n$.

Утв. 1. Пусть $0 < \alpha < \beta \le n$ и $H^{\alpha}(E) < \infty$, тогда $H^{\beta}(E) = 0$.

 \square Возьмем $\delta > 0$ и посмотрим как устроена $H^{\beta}_{\delta}(E)$. Пусть $E \subset \bigcup_{i} F_{i}$, diam $F_{i} \leq \delta$, тогда:

$$H_{\delta}^{\beta}(E) \leq \sum_{j} (\operatorname{diam} F_{j})^{\beta} = \sum_{j} (\operatorname{diam} F_{j})^{\alpha} \cdot (\operatorname{diam} F_{j})^{\beta-\alpha} \leq \delta^{\beta-\alpha} \cdot \sum_{j} (\operatorname{diam} F_{j})^{\alpha} \Rightarrow$$

$$\Rightarrow \frac{1}{\delta^{\beta-\alpha}} H_{\delta}^{\beta}(E) \leq \sum_{j} (\operatorname{diam} F_{j})^{\alpha} \Rightarrow H_{\delta}^{\beta}(E) \leq \delta^{\beta-\alpha} H_{\delta}^{\alpha}(E)$$

где последнее верно в силу произвольности F_i . По построению верно:

$$H^{\alpha}_{\delta}(E) \leq H^{\alpha}(E) \Rightarrow H^{\beta}_{\delta}(E) \leq \delta^{\beta-\alpha} \cdot H^{\alpha}(E) = \delta^{\beta-\alpha} \cdot c \xrightarrow[\delta \to 0]{} 0 \Rightarrow H^{\beta}(E) = \lim_{\delta \to 0+} H^{\beta}_{\delta}(E) = 0$$

Опр: 1. Пусть $E \subset \mathbb{R}^n$, тогда число:

$$\dim_H E = \inf\{\alpha \ge 0 \colon H^{\alpha}(E) = 0\}$$

где в случае, когда таких α нет, то полагаем по определению:

$$\dim_H E = n$$

называется размерностью Хаусдорфа.

Rm: 1. Как только мы сталкиваемся с ситуацией, что $0 < H^{\beta}(E) < \infty$, то мы сразу делаем два вывода:

- 1) $H^{\alpha}(E) = 0, \forall \alpha > \beta$, следует сразу из утверждения выше;
- 2) $H^{\alpha}(E) = \infty$, $\forall \alpha < \beta$, если $H^{\alpha}(E) \neq \infty$, то $H^{\beta}(E) = 0 \Rightarrow$ противоречие;

Таким образом, если как-то удалось проверить, что $0 < H^{\beta}(E) < \infty$, то мы сразу знаем, что: $\beta = \dim_H E$. Естественно считать, что если удалось β -мерной мерой Хаусдорфа померить нетривиальное множество, то у него должна быть размерность β .

В самом определении размерности не требуется, чтобы при значении равному точной нижней грани, H^{α} была ненулевой мерой. При всех больших размерностях: $H^{\alpha}(E) = 0$, а при всех меньших не 0. Может ли при меньших быть конечное значение?

Rm: 2. Пусть $\beta = \dim_H E$, тогда:

1)
$$\forall \alpha > \beta, \ H^{\alpha}(E) = 0$$

Это следует сразу из определения и утверждения выше: β это точная нижняя грань \Rightarrow сколь угодно близко к β встречаются $\widetilde{\alpha}$, где $H^{\widetilde{\alpha}}(E)=0$, а мы знаем, что для всех больших значение меры тоже 0. Только из определения такой вывод сделать нельзя, поскольку оно говорит лишь про точную нижнюю грань.

Рис. 1: $H^{\alpha}(E) = 0$ при $\alpha > \beta$.

Берём точку ещё ближе к β и так далее, в итоге получаем 0 на всем промежутке $(\beta, +\infty)$;

2) $\forall \alpha < \beta, H^{\alpha}(E) = \infty$

Если $H^{\alpha}(E) < \infty$, то между α и β были бы нули и β не было бы точной нижней гранью \Rightarrow противоречие;

3) Как устроена $H^{\beta}(E)$ мы не знаем, может быть всё что угодно: может быть конечное число, может быть 0, может быть ∞ ;

Пример: Возьмем k-мерную плоскость $\Pi_k \subset \mathbb{R}^n$, возьмем H^k и множество E на плоскости положительной конечной меры Лебега: $0 < \lambda(E) < \infty$, тогда: $H^k = \lambda_{\Pi_k}$ и верно:

$$0 < \lambda(E) < \infty \Leftrightarrow 0 < H^k(E) < \infty \Rightarrow \dim_H E = k$$

Составим из этих множеств счётную цепочку на этой плоскости так, чтобы:

$$H^k(\cup_n E_n) = \infty$$

При этом будет верно:

$$\forall \alpha > k, H^{\alpha}(\cup_n E_n) = 0$$

Аналогично, можно устроить так, что:

$$\dim_H E = k, H^k(E) = 0$$

См. задачу в листке: придумать множество $E \subset \mathbb{R}$ так, чтобы $\dim_H E = 1$, но при этом $H^1(E) = 0$. Для этого можно построить множества E_n у которых:

$$0 < H^{1 - \frac{1}{n}}(E_n) < \infty$$

И объединение таких E_n и будет искомым множеством $E: \cup_n E_n = E$. Основная задача состоит в том, как такие множества построить.

Итог: Когда мы говорим, что какое-то множество имеет размерность Хаусдорфа k, то с точки зрения меры Хаусдорфа конкретно про это множество мы ничего сказать не можем, но это говорит нам про меру Хаусдорфа любой большей размерности (что она нулевая) и про меру Хаусдорфа любой меньшей размерности, что она бесконечна. В этом и заключается некоторый способ определить размерность множества через меру Хаусдорфа, но фактически - через покрытия.

Таким образом, опять используется та же идея, что и в мере Хаусдорфа. Например, как объяснить, что кривая линия это одномерный объект? Это объясняется через покрытие кривой шарами радиуса ε : ищется минимальное возможное покрытие, считается количество шаров и это количество должно себя вести примерно как длина этой кривой, умноженной на ε : $N_{\varepsilon} \sim 2L \cdot \varepsilon$.

Как можно понять: одномерный это объект или нет? Количество шаров - это величина порядка ε асимптотически. Если бы объект был бы двумерным, то количество шаров, которые мы использовали бы в покрытии было бы порядка ε^2 : $N_{\varepsilon} \sim c \cdot \varepsilon^2$.

Рис. 2: Размерность Хаусдорфа через покрытия.

Возникает идея определить непрерывную шкалу размерностей, а именно будем говорить, что у нас размерность α , если:

$$N_{\varepsilon} \sim c \cdot \varepsilon^{\alpha}$$

Это достаточно эвристическое объяснение, строгое приводится с помощью меры Хаусдорфа. Тем не менее, это довольно естественная идея, что когда мы покрываем объект, то количество элементов покрытия связано с размерностью этого множества.

Размерность множества Кантора

Напомним шаги построения множества Кантора, пусть у нас есть единичный отрезок. На первом шаге отрезок делится на три части, часть посередине удаляется. Получаем два отрезка: Δ_{11} и Δ_{12} , их объединение:

$$Z_1 = \Delta_{11} \cup \Delta_{12}$$

На следующем шаге, на каждом из оставшихся отрезков повторяется процедура с шага первого: выбрасываются середины и мы получаем уже четыре отрезка: $\Delta_{21}, \Delta_{22}, \Delta_{23}, \Delta_{24}$:

$$Z_2 = \Delta_{21} \cup \Delta_{22} \cup \Delta_{23} \cup \Delta_{24}$$

И так далее, получаем: $Z_n = \bigcup_k \Delta_{nk}$. Множеством Кантора является пересечение Z_n : $C = \bigcap_n Z_n$. Хотим найти его размерность Хаусдорфа. Попробуем сначала оценить её сверху $H^{\alpha}(C)$, где α - неизвестно:

$$\forall \delta > 0, \ C \subset \bigcup_{j} F_{j}, \ \operatorname{diam} F_{j} \leq \delta \Rightarrow H_{\delta}^{\alpha}(C) \leq \sum_{j} (\operatorname{diam} F_{j})^{\alpha}$$

Возьмем в качестве F_j отрезки Δ_{nk} для достаточно большого n:

$$|\Delta_{nk}| = \frac{1}{3^n}, \ N_{\Delta_{nk}} = 2^n \Rightarrow \sum_j (\operatorname{diam} F_j)^\alpha = N \cdot (|\Delta_{nk}|)^\alpha = 2^n \cdot \left(\frac{1}{3^n}\right)^\alpha = \left(\frac{2}{3^\alpha}\right)^n$$

Рассмотрим различные случаи для получившегося выражения под скобками:

$$\frac{2}{3^{\alpha}} > 1 \Rightarrow \alpha < \log_3 2 \Rightarrow \sum_j (\operatorname{diam} F_j)^{\alpha} = \left(\frac{2}{3^{\alpha}}\right)^n \xrightarrow[n \to \infty]{} \infty$$

Таким образом, самые естественные покрытия приводят к ∞ . Это не означает, что мы доказали, что мера бесконечная, но наше покрытие в этом смысле плохо работает, возможно надо как-то по-другому покрывать. Тем не менее это сигнал, что такое α лучше не выбирать. Рассмотрим другой вариант:

$$\frac{2}{3^{\alpha}} < 1 \Rightarrow \alpha > \log_3 2 \Rightarrow \sum_j (\operatorname{diam} F_j)^{\alpha} \xrightarrow[n \to \infty]{} 0 \Rightarrow H^{\alpha}_{\delta}(C) = 0 \Rightarrow H^{\alpha}(C) = 0$$

Получаем: $\dim_H C \leq \log_3 2$. Проверим, что: $\dim_H C = \log_3 2$ и далее считаем, что: $\alpha = \log_3 2$, тогда:

$$\sum_{j} (\operatorname{diam} F_{j})^{\alpha} = 1 \Rightarrow H^{\alpha}(C) \leq 1$$

Таким образом, получили оценку сверху, попробуем получить оценку снизу. Мы знаем, что:

$$\forall x \in C, \ x = \sum_{k=1}^{\infty} \frac{2 \cdot x_k}{3^k}, \ x_k \in \{0, 1\}$$

поскольку Канторовское множество записывается в троичной системе 0 и 2. Рассмотрим функцию:

$$f \colon C \mapsto [0,1], \ x = \sum_{k=1}^{\infty} \frac{2 \cdot x_k}{3^k} \mapsto y = \sum_{k=1}^{\infty} \frac{x_k}{2^k} \Rightarrow (022202\dots) \mapsto (011101\dots)$$

то есть, мы последовательность из $\{0,2\}$ перевели в последовательность из $\{0,1\}$, которую будем трактовать как двоичную запись числа в отрезке [0,1]. Отметим, что такое отображение является сюръекцией (но не биекцией!), поскольку получаются всевозможные последовательности нулей и единиц, а следовательно все возможные двоичные записи точек из [0,1]. Кроме того, это отображение - непрерывное:

$$a, b \in C, \frac{1}{3^{k+1}} \le |a - b| < \frac{1}{3^k} \Rightarrow |f(a) - f(b)| \le \frac{1}{2^k}$$

Это так, посколку правое неравенство для |a-b| означает, что a и b совпадают на первых k цифрах, а значит двоичная запись у f совпадает на первых k цифрах \Rightarrow взять близкие точки из C означает зафиксировать начало троичной записи \Rightarrow зафиксировать начало двоичной записи в образе \Rightarrow отображение непрерывно. Попробуем дать более точную оценку:

$$\left(\frac{1}{3^{k+1}}\right)^{\alpha} \le |a-b|^{\alpha}, \ \alpha = \log_3 2 \Rightarrow \left(\frac{1}{3^{k+1}}\right)^{\alpha} = \frac{1}{2^{k+1}} \Rightarrow \frac{1}{2^k} \le 2 \cdot |a-b|^{\alpha} \Rightarrow$$
$$\Rightarrow |f(a) - f(b)| \le \frac{1}{2^k} \le 2 \cdot |a-b|^{\alpha}$$

Рассмотрим отрезок [0,1], на нем значения функции f принимает значения:

$$f\left(\frac{1}{3}\right) = f(0222\dots) = (0111\dots) = \frac{1}{2}$$

$$f\left(\frac{2}{3}\right) = f(2000\dots) = (1000\dots) = \frac{1}{2}$$

Аналогично в других точках степени $\frac{1}{3}$. При этом: f(0) = 0, f(1) = 1. Если мы доопределим функцию константой между точек, то мы получим лестницу Кантора.

Обычно лестница Кантора строится через определение интервалов, а дальше доопределяем функцию в остальных точках. Здесь же мы сделали всё наоборот - сначала определили функцию в точках Канторовского множества, а потом уже доопределили на интервалах. То есть, мы взяли лестницу Кантора и ограничили на Канторовском множестве \Rightarrow получили f.

Рис. 3: Лестница Кантора.

Геометрически мы склеиваем обратно концы интервалов: $\frac{1}{3}$ и $\frac{2}{3}$ склеились в $\frac{1}{2}$, затем следующие интервалы и так далее. То есть из Канторовского множества склеивается отрезок [0,1]:

$$f(C) = [0, 1] \Rightarrow 1 = H^1([0, 1]) = H^1(f(C))$$

где мера Хаусдорфа от отрезка [0,1] это тоже самое, что и мера Лебега. По аналогии с липшицевыми функциями с прошлой лекции (см. утверждение 3, лекция 14):

$$C \subset \bigcup_{j} F_{j}, \operatorname{diam} F_{j} \leq \delta \Rightarrow f(C) \subset \bigcup_{j} f(F_{j})$$

$$|f(a) - f(b)| \leq 2 \cdot |a - b|^{\alpha} \Rightarrow \operatorname{diam} f(F_{j}) \leq 2 \cdot (\operatorname{diam} F_{j})^{\alpha} \Rightarrow \sum_{j} \operatorname{diam} f(F_{j}) \leq 2 \cdot \sum_{j} (\operatorname{diam} F_{j})^{\alpha} \Rightarrow$$

$$\Rightarrow H^{1}_{2\delta^{\alpha}}(f(C)) \leq 2 \cdot H^{\alpha}_{\delta}(C) \Rightarrow \delta \to 0 \Rightarrow 1 = H^{1}(f(C)) \leq 2 \cdot H^{\alpha}(C) \Rightarrow H^{\alpha}(C) \geq \frac{1}{2} \Rightarrow$$

$$\Rightarrow 0 < H^{\alpha}(C) < \infty, \alpha = \dim_{H} C$$

Упр. 1. Посчитать размерность Хаусдорфа когда мы каждый раз выбрасываем середину с долей γ от всего отрезка, вместо $\frac{1}{3}$ как для множества Кантора, где $0 < \gamma < 1$.

Упр. 2. Берём множество на отрезке [0,1] такое, что в десятичной записи можно обойтись без 7. Найти \dim_H этого множества.

Что-то по теме можно посмотреть в книгах про фракталы, напримр, посмотреть книгу Кириллова, Фракталы.

Rm: 3. Идея с вычислением размерности заключалась в том, что мы выбрали отображение, которое наше сложное множество перевело в множество у которого мы умеем считать меру. И это общий трюк, то есть дальше мы им будем также пользоваться. При этом, чтобы было понятно как связана мера Хаусдорфа до и после отображения нам необходимо, чтобы это отображение каким-то образом позволяло расстояние между образами оценить расстоянием между аргументами, поскольку нужно контроллировать диаметр.

Интеграл Лебега

Дальнейший материал будет разбираться менее детальнее, поскольку для него есть отдельный курс действительного анализа.

Опр: 2. Пусть у нас есть тройка (X, \mathcal{A}, μ) , где μ - σ -аддитивная, конечная, неотрицательная мера. Эта тройка называется измеримым пространством.

Опр: 3. Функция $f: X \to \mathbb{R}$ называется \mathcal{A} -измеримой, если: $\forall c \in \mathbb{R}, \{x: f(x) < c\} \in \mathcal{A}$.

Rm: 4. Можно показать, что это определение равносильно следующему:

$$\forall B \in \mathcal{B}(\mathbb{R}), f^{-1}(B) \in \mathcal{A}$$

Эти моменты обсуждаются на действительном анализе.

Пример: Если $\mathcal{A} = 2^X$, то всякая функция измерима.

Пример: Если $\mathcal{A} = \{\emptyset, X\}$, то измеримы только константы. Пусть:

$$f(x_1) = y_1 \neq y_2 = f(x_2)$$

тогда будет верно:

$$f^{-1}(\{y_1\}) \neq \emptyset \land f^{-1}(\{y_1\}) \neq X$$

Следовательно, получили противоречие.

Упр. 3. Пусть $\mathcal{A} = \{\varnothing, X, A, X \setminus A\}$, где $\varnothing \neq A \neq X$. Найти все измеримые функции.

На практике обычно берутся очень богатые σ -алгебры и ситуация практически неотличима от первого примера. Так, например, происходит по мере Лебега: построить неизмеримую функцию достаточно сложно, нужно для начала построить неизмеримое множество (вспомнить про аксиому выбора).

При этом надо иметь в виду, что измеримость часто используется, например, в теории вероятности, где с помощью неё вводятся ограничения на те или иные отображения, связанные, к примеру, с тем, чтобы утверждать, зависит ли функция от своего поведения на отрезке [0,t] в момент времени s или нет и так далее.

Необходимо иметь в виду, что чтобы сказать, что отображение измеримо, означает во многих случаях ввести серьезное ограничение на это отображение, как во втором примере, где измеримыми функциями могут быть рассматривать только константы.

Теорема 1. (Свойства измеримых функций)

- 1) Если f,g \mathcal{A} -измеримы, тогда: f+g и $f\cdot g$ \mathcal{A} -измеримы;
- 2) Пусть $h\colon\mathbb{R}\to\mathbb{R}$ непрерывная функция, а f \mathcal{A} -измерима, тогда h(f(x)) \mathcal{A} -измерима;
- 3) Если $\forall x, f(x) = \lim_{n \to \infty} f_n(x), f_n$ \mathcal{A} -измеримы, то f \mathcal{A} -измерима;

Упр. 4. Если $h: \mathbb{R} \to \mathbb{R}$ - непрерывная функция, то $\forall B \in \mathcal{B}(\mathbb{R}), h^{-1}(B) \in \mathcal{B}(\mathbb{R}).$

 \square Рассмтрим все множества E, для которых $h^{-1}(E) \in \mathcal{B}(\mathbb{R})$:

$$\mathcal{A} = \{ E \mid h^{-1}(E) \in \mathcal{B}(\mathbb{R}) \}$$

Дальше легко проверяется, что \mathcal{A} это σ -алгебра, а поскольку h - непрерывная, то эта σ -алгебра содержит все открытые множества \Rightarrow поскольку борелевская минимальная, то \mathcal{A} содержит все борелевские множества \Rightarrow проверили, что прообраз борелевского - борелевский.

Rm: 5. Обычно, перед обсуждением измеримости рассматривают две ситуации:

(1) Имеется множество X с σ -алгеброй \mathcal{A} и множество Y без σ -алгебры. Пусть есть отображение: $f: X \to Y$, тогда следующее множество является σ -алгеброй:

$$\mathcal{B} = \{ E \subset Y \colon f^{-1}(E) \in \mathcal{A} \}$$

(2) Имеется множество X без σ -алгебры и множество Y с σ -алгеброй \mathcal{B} . Пусть есть отображение: $f: X \to Y$, тогда следующее множество является σ -алгеброй:

$$\mathcal{A} = \{ f^{-1}(B) \mid B \in \mathcal{B} \}$$

Полезно также доказать, что если имеется отображение $f\colon X\to Y$ и на Y есть некоторое семейство подмножеств S, тогда верно:

$$f^{-1}(\sigma(S)) = \sigma(f^{-1}(S))$$

где $\sigma(S)$ - σ -алгебра порожденная семейством S.

Важный частный случай: Пусть μ - внешняя мера и \mathcal{A}_{μ} - измеримые относительно μ множества. Тогда измеримые относительно \mathcal{A}_{μ} функции называют μ -измеримыми.

Сходимости измеримых функций

Пусть $(X, \mathcal{A}_{\mu}, \mu)$ - ИП, считаем, что μ на X - конечна и далее будем рассматривать μ -измеримые функции. Пусть имеется последовательность f_n и функция f. У нас будет 3 вида сходимостей:

- (I) Равномерная сходимость: $f_n \stackrel{E}{\Longrightarrow} f$;
- (II) Сходимость μ почти всюду (μ п.в.): $f_n \xrightarrow{\mu$ п.в. f, если: $\mu(\{x: f_n(x) \nrightarrow f\}) = 0$;
- (III) Сходимость по мере: $f_n \stackrel{\mu}{\Longrightarrow} f$, если $\forall \delta > 0$, $\mu\left(\left\{x : |f_n(x) f(x)| \ge \delta\right\}\right) \xrightarrow[n \to \infty]{} 0$;

Теорема 2. Пусть μ -конечная мера. Тогда:

- 1) $(I) \Rightarrow (II) \Rightarrow (III);$
- 2) (**Теорема Егорова**): Если $f_n \xrightarrow{\mu \text{ п.в.}} f$, то:

$$\forall \varepsilon > 0, \ \exists X_{\varepsilon} \colon f_n \overset{X_{\varepsilon}}{\Longrightarrow} f \land \mu(X \setminus X_{\varepsilon}) < \varepsilon$$

3) (**Теорема Рисса**): Если $f_n \stackrel{\mu}{\Longrightarrow} f$, то $\exists f_{n_k} \colon f_{n_k} \stackrel{\mu \text{ п.в.}}{\longrightarrow} f$;