

Modele. Satisfiabilitate. Tautologii

Exemplu

Există o mulțime numărabilă de formule φ a.î. atât φ cât și $\neg \varphi$ sunt satisfiabile.

Dem.: Demonstrăm că mulțimea $V = \{\varphi_n := v_n \mid n \in \mathbb{N}\} \subseteq Form$ satisface condiția din enunț. Fie $n \in \mathbb{N}$. Considerăm interpretările $e_1, e_2 : V \to \{0, 1\}$ definite astfel

$$e_1(v_i) = egin{cases} 1 & ext{dacă } i = n \ ext{arbitrar} & ext{dacă } i \neq n \end{cases}, \quad e_2(v_i) = egin{cases} 0 & ext{dacă } i = n \ ext{arbitrar} & ext{dacă } i \neq n \end{cases}.$$

Atunci

$$e_1^+(\varphi_n) = e_1^+(v_n) = e_1(v_n) = 1,$$

deci $e_1 \vDash \varphi_n$. Pe de altă parte,

$$e_2^+(\neg \varphi_n) = e_2^+(\neg v_n) = \neg e_2^+(v_n) = \neg e_2(v_n) = \neg 0 = 1,$$

deci $e_2 \vDash \neg \varphi_n$.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 1.13.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \ldots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

x_1	<i>X</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	$\mid arphi \mid$
$e_1'(x_1)$	$e_1'(x_2)$		$e_1'(x_k)$	• • •	$e_1^{\prime+}(arphi)$
$e_2'(x_1)$	$e_2'(x_2)$		$e_2'(x_k)$	• • •	$e_2^{\prime+}(arphi)$
:	•	٠	•	• •	
$e_{2^k}'(x_1)$	$e_{2^k}'(x_2)$	• • •	$e_{2^k}'(x_k)$	• • •	$\left \begin{array}{c} e_{2^k}'^+(\varphi) \end{array} \right $

Pentru orice i, $e'_i^+(\varphi)$ se definește similar cu Teorema 1.11.

 φ este tautologie ddacă $e_i^{\prime +}(\varphi) = 1$ pentru orice $i \in \{1, \ldots, 2^k\}$.

Metoda tabelului

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> ₂	$v_1 \wedge v_2$	$v_2 ightarrow (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Tautologii

Definiția 1.16

Fie φ, ψ două formule. Spunem că

- $ightharpoonup \varphi$ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- ightharpoonup arphi si ψ sunt (logic) echivalente dacă $\operatorname{Mod}(\psi) = \operatorname{Mod}(\varphi)$.

 Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea *Form* a formulelor lui *LP*.

Propoziția 1.17

Fie φ, ψ formule. Atunci

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă $(\psi \models \varphi \text{ și } \varphi \models \psi)$ ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercițiu.

Tautologii, consecințe semantice și echivalențe

Propoziția 1.18

Pentru orice formule φ, ψ, χ ,

$$ter \sharp ul \ exclus \qquad \qquad \models \varphi \vee \neg \varphi \qquad \qquad (1)$$

$$modus \ ponens \qquad \varphi \wedge (\varphi \rightarrow \psi) \vDash \psi \qquad \qquad (2)$$

$$afirmarea \ concluziei \qquad \qquad \psi \vDash \varphi \rightarrow \psi \qquad \qquad (3)$$

$$contradic \sharp ia \qquad \qquad \models \neg (\varphi \wedge \neg \varphi) \qquad \qquad (4)$$

$$dubla \ nega \sharp ie \qquad \qquad \varphi \sim \neg \neg \varphi \qquad \qquad (5)$$

$$contrapozi \sharp ia \qquad \varphi \rightarrow \psi \sim \neg \psi \rightarrow \neg \varphi \qquad \qquad (6)$$

$$negarea \ premizei \qquad \qquad \neg \varphi \vDash \varphi \rightarrow \psi \qquad \qquad (7)$$

$$modus \ tollens \qquad \neg \psi \wedge (\varphi \rightarrow \psi) \vDash \neg \varphi \qquad \qquad (8)$$

$$tranzitivitatea \ implica \sharp iei \qquad (\varphi \rightarrow \psi) \wedge (\psi \rightarrow \chi) \vDash \varphi \rightarrow \chi \qquad (9)$$

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan	$\varphi \lor \psi \sim \neg((\neg\varphi) \land (\neg\psi))$	(10)
	$\varphi \wedge \psi \sim \neg((\neg\varphi) \vee (\neg\psi))$	(11)
exportarea și importarea	$\varphi \to (\psi \to \chi) \sim \varphi \land \psi \to \chi$	(12)
idempotența	$\varphi \sim \varphi \wedge \varphi \sim \varphi \vee \varphi$	(13)
slăbirea	$\vDash \varphi \land \psi \to \varphi \qquad \vDash \varphi \to \varphi \lor \psi$	(14)
comutativitatea	$\varphi \wedge \psi \sim \psi \wedge \varphi \qquad \varphi \vee \psi \sim \psi \vee \varphi$	(15)
asociativitatea	$\varphi \wedge (\psi \wedge \chi) \sim (\varphi \wedge \psi) \wedge \chi$	(16)
	$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi$	(17)
absorbția	$\varphi \lor (\varphi \land \psi) \sim \varphi$	(18)
	$\varphi \wedge (\varphi \vee \psi) \sim \varphi$	(19)
distributivitatea	$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$	(20)
	$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$	(21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi)$$
 (22)

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi)$$
 (23)

$$\varphi \wedge \psi \to \chi \sim (\varphi \to \chi) \vee (\psi \to \chi)$$
 (24)

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi)$$
 (25)

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi)$$
 (26)

$$\neg \varphi \sim \varphi \rightarrow \neg \varphi \sim (\varphi \rightarrow \psi) \land (\varphi \rightarrow \neg \psi) \qquad (27)$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi)$$
 (28)

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi$$
 (29)

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi$$
 (30)

$$\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \qquad (31)$$

$$\vDash (\varphi \to \psi) \lor (\varphi \to \neg \psi) \qquad (32)$$

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \qquad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \tag{34}$$

Dem.: Exercițiu.

Exemplu de demonstrație

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

$e^+(arphi)$	$\neg e^+(arphi)$	$e^+(\varphi) \lor \neg e^+(\varphi)$
0	1	1
1	0	1

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 o v_0$ este tautologie și $\neg (v_0 o v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notații

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg(v_0 \to v_0)$ cu \bot și o numim falsul.

- $ightharpoonup \varphi$ este tautologie ddacă $\varphi \sim \top$.
- ightharpoonup arphi este nesatisfiabilă ddacă $arphi \sim \bot$.

Substituția

Definiția 1.19

Pentru orice formule φ, χ, χ' , definim

 $\varphi_{\chi}(\chi')$:= expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_{\chi}(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_{\chi}(\chi')$ este o instanță de substituție a lui φ .

- $ightharpoonup \varphi_{\chi}(\chi')$ este de asemenea formulă.
- ightharpoonup Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie $\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$.

- $ightharpoonup \chi = v_1
 ightharpoonup v_2$, $\chi' = v_4$. $\varphi_{\chi}(\chi') = v_4
 ightharpoonup \neg v_4$
- $ightharpoonup \chi =
 ho_1$, $\chi' = \neg \neg v_2$. $\varphi_{\chi}(\chi') = (\neg \neg v_2 \rightarrow v_2) \rightarrow \neg (\neg \neg v_2 \rightarrow v_2)$
- $\qquad \qquad \chi = v_1 \rightarrow v_2, \; \chi' = v_4 \lor v_1. \qquad \varphi_\chi(\chi') = (v_4 \lor v_1) \rightarrow \neg(v_4 \lor v_1)$

Substituția

Propoziția 1.20

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Propoziția 1.20 poate fi aplicată pentru a arăta că o formulă este tautologie.

Exemplu:

Să se demonstreze că, pentru orice formule φ , ψ , formula $\theta = (\neg \varphi \lor \psi) \lor \neg (\varphi \to \psi)$ este tautologie.

Dem.: Conform (28), $\neg \varphi \lor \psi \sim \varphi \to \psi$. Aplicăm Propoziția 1.20 cu $\chi = \neg \varphi \lor \psi$ și $\chi' = \varphi \to \psi$ pentru a obține că $\theta \sim (\varphi \to \psi) \lor \neg (\varphi \to \psi)$. Pe de altă parte, $(\varphi \to \psi) \lor \neg (\varphi \to \psi)$ este tautologie, din (1). Prin urmare, θ este tautologie.

Propoziția 1.21

Pentru orice formule φ, ψ, χ și orice variabilă $v \in V$,

- $ightharpoonup \varphi \sim \psi$ implică $\varphi_{\mathbf{v}}(\chi) \sim \psi_{\mathbf{v}}(\chi)$.
- Dacă φ este tautologie atunci și $\varphi_v(\chi)$ este tautologie.
- Dacă φ este nesatisfiabilă, atunci și $\varphi_v(\chi)$ este nesatisfiabilă.

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \ldots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \lor \ldots \lor \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

Conjuncții și disjuncții finite

Propoziția 1.22

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, \ldots, n\}$.
- $e^+(\varphi_1 \vee \ldots \vee \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 1.23

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercițiu.

Mulțimi de formule

Fie Γ o mulțime de formule.

Definiția 1.24

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$).

 Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem şi că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

▶ $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Mulțimi de formule

Fie Γ , Δ mulțimi de formule.

Definiția 1.25

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \models \varphi$. Dacă φ nu este consecință semantică a lui Γ , scriem $\Gamma \not\models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 1.26

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \models \Delta$.
- ► Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$.

 Notație: $\Gamma \sim \Delta$.

Proprietăți

Următoarele rezultate colectează diverse proprietăți utile.

Observație

- $\blacktriangleright \psi \vDash \varphi \; \mathsf{ddac} \; \{\psi\} \vDash \varphi \; \mathsf{ddac} \; \{\psi\} \vDash \{\varphi\}.$
- $\psi \sim \varphi$ ddacă $\{\psi\} \sim \{\varphi\}$.

Propoziția 1.27

- ▶ $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare e : $V \rightarrow \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ► $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.