Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 27. února 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 1:

Měření hustoty

$$T=24,1~^{\circ}\mathrm{C}$$
 $p=101,35~\mathrm{kPa}$ $\varphi=26,6~\%$

1. Úvod

Měříme rozměry a hmotnost dutého válečku. Jeho hustotu spočítáme použitím následujícího vztahu

$$\rho = \frac{m}{V} = \frac{4m}{\pi h(D^2 - d^2)},\tag{1}$$

kde ρ je hustota, mhmotnost, hvýška válečku, Dprůměr a dvnitřní průměr válečku.

2. Postup měření

K měření jsme použili tyto přístroje

- \bullet laboratorní váhy KERN 770 (e=1 * 10^{-4} g, d = 1 * 10^{-3} g) k měření hmotnosti válečku
- posuvné měřítko (nejmenší dílek 0,02 mm) k měření průměru a vnitřního průměru
- mikrometr (nejmenší dílek 0,01 mm) k měření výšky válečku

3. Výsledky měření

3.1. Měření hmotnosti válečku

Hmotnost válečku byla stanovena laboratorními váhami s citlivostí (d = 0.0001 g), a ověřovacím dílkem (e = 0,001 g). Nejistotu měření určíme jako $u_B = \frac{e}{3}$

$$m = 172.9962 (4) g (2)$$

3.2. Měření geometrických rozměrů

Naměřené hodnoty geometrických rozměrů jsou spolu s aritmetickým průměrem a nejistotou uvedeny v tabulce 1.

$$D = (43.98 \pm 0.01) \ mm \tag{3}$$

$$d = (9.30 \pm 0.02) \ mm \tag{4}$$

$$H = (15.40 \pm 0.02) \ mm \tag{5}$$

i	D průměr [mm]	d vnitřní průměr (mm)	H výška [mm]
1	44.01	9.20	15.44
2	44.02	9.22	15.40
3	43.98	9.42	15.30
4	43.96	9.20	15.36
5	43.96	9.30	15.46
6	43.94	9.28	15.48
7	43.96	9.30	15.34
8	43.92	9.30	15.42
9	44.02	9.32	15.44
10	43.98	9.42	15.39
X	43.98	9.30	15.40
u_A	0.01	0.02	0.02
u_B	0.006	0.006	0.003
u_C	0.01	0.02	0.02

Tabulka 1: Naměřené hodnoty

3.3. Stanovení nepřímo měřené veličiny

Hustotu ρ jsme stanovili z přímých měření podle rovnice (1). Nejistota měření ρ byla stanovena pomocí vztahu

$$u(\rho) = \rho \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(h)}{h}\right)^2 + \frac{(2Du(D))^2 + (2du(d))^2}{(D^2 - d^2)^2}}$$
(6)

Výsledek měření se standardní nejistotou

$$\rho = 7741(6) \,\mathrm{kg} \,\mathrm{m}^{-3}$$
.

Výsledek měření s rozšířenou nejistotou

$$\rho = (7740 \pm 30) \text{ kg m}^{-3} \quad (p = 99.73\%, \nu = 9)$$

Relativní rozšířená nejistota je rovna 0.4 %.

4. Závěr

Materiál, ze kterého je váleček vyrobený neznáme, ale vzhled i změřená hustota nejlépe odpovídají tabulkovým hodnotám litin železa (7580-7860) kg $\rm m^{-3}$

Reference

- [1] Bochníček a kol. Fyzikální praktikum 1, návody k ulohám. Brno 2024. Dostupné z https://monoceros.physics.muni.cz/kof/vyuka/fp1_skripta.pdf.
- [2] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.