Національний Технічний Університет України Київський політехнічний інститут імені Ігоря Сікорського Кафедра автоматизації проектування енергетичних процесів та систем

Чисельні методи

Лабораторна робота №1

Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) прямими методами. Звичайний метод Гауса та метод квадратних коренів.

3міст

1 Теоретичні відомості	2
2 Завдання	
3 Варіанти завдань	
4 Вимоги до звіту	
5 Література	

1 Теоретичні відомості

Будемо розглядати системи вигляду

$$Ax = b, (1)$$

де $A(n \times n)$ - матриця системи, b - вектор правої частини, x - вектор розв'язку.

Метод Гауса.

Метод складається з двох етапів:

- 1) прямого хода методу (приведення системи (1) до еквівалентної системи з трикутною матрицею);
- 2) зворотного ходу (визначення невідомого вектору x).

Існує декілька варіантів методу Гауса.

Схема з вибором головного елемента полягає у наступному:

- 1) Прямий хід.
- 1.1) Відшукати $a_{main} = \max_{i,j} |a_{i,j}|, i,j = 1..n$. Нехай $a_{main} = a_{pq}$. Рядок p називається головним.
- 1.2) Обчислити множники $m=rac{a}{a\over a}, i
 eq p$.
- 1.3) 3 кожного *i*-го неголовного рядка віднімаємо покомпонентно головний рядок, який помножено на m_i :

$$a_{ij} := a_{ij} - m_i a_{pj}$$
, $i \neq p$, $j = 1..n$,

для вектора правої частини:

$$b_i := b_i - m_i b_p.$$

В результаті отримуємо матрицю, де всі елементи стовпця q, крім a_{pq} , дорівнюють нулю. Відкидаючи стовпець q та головний рядок p, і відповідний елемент b_p , отримуємо систему з матрицею A_1 ($(n-1) \times (n-1)$). Якщо n-1 > 1, покладаємо n := n-1, і переходимо до п.1.1, інакше переходимо до п.2.

Примітка: Елементи головного рядка та відповідного елементу b_p потрібно зберігати у окремому масиві, оскільки вони знадобляться в n.2).

- 2) Зворотний хід.
- 2.1) Складаємо систему, еквівалентну вихідній, що складається з головних рядків, які отримувались у п.1. Права частина складається з відповідних елементів b_p . Отримана система має трикутну матрицю. Знаходимо послідовно значення елементів x_i .

Метод квадратного кореня.

Метод використовується для розв'язання СЛАР виду (1), у яких матриця A ϵ симетричною, тобто

$$a_{ij} = a_{ji} \forall i, j$$
.

Метод полягає у наступному:

1) Прямий хід: факторизація A = T'T, де

1.1) Знаходимо елементи t_{ij} матриць-множників.

$$t = \sqrt{\frac{a}{11}}, t = \frac{a}{t_{11}} (j > 1),$$

$$t_{ii} = \sqrt{\frac{a_{ii} - \sum_{k=1}^{i-1} t_{ki}^{2}}{t_{11}}} (1 < i \le n),$$

$$t_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} t_{ki}}{t_{ii}} (i < j),$$

$$t_{ij} = 0 (i > j)$$

1.2) Формуємо замість вихідної системи дві наступні системи:

$$T' v = b$$
, $Tx = v$.

- 2) Зворотний хід.
- 2.1) Послідовно знаходимо:

$$y_{1} = \frac{b_{1}}{t_{11}}, y_{i} = \frac{b_{i} - \sum_{k=1}^{i-1} t_{ki} y_{k}}{t_{ii}} (i > 1),$$

$$x_{n} = \frac{y_{n}}{t_{nn}}, x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} t_{ik} x_{k}}{t_{ii}} (i < n).$$

2 Завдання

Розв'язати систему рівнянь з кількістю значущих цифр m=6. Використати метод Гауса для парних варіантів шляхом зведення матриці до верхньої трикутної побудованої на побічній діагоналі, для непарних - шляхом зведення до діагональної матриці. Вивести всі проміжні результати (матриці A, що

отримані в ході прямого ходу методу Гауса, матрицю зворотного ходу методу Гауса та розв'язок системи. Навести

результат перевірки: вектор нев'язки r = b - Ax, де x - отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m - отриманий у Mathcad розв'язок. Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки:

$$\delta = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (x_k - x_{mk})^2} ,$$

де x - отриманий у програмі розв'язок, x_m - отриманий у Mathcad розв'язок. Зазвичай при використанні для обчислень 4-байтових чисел (тип float y Visual C++) порядок δ :

- у методі Гауса 10^{-4} -10^{-6} ,
- у методі квадратних коренів 10^{-5} – 10^{-7} , бувають і повні співпадання рішень до 6 знаків після коми.

3 Варіанти завдань

Система має вигляд (1).

No	Матриця системи А	Вектор правої частини b
вар.		

1-4 (3,81 0,25 1,28 0,75+ α)	(4,21)
$\begin{bmatrix} 2,25 & 1,32 & 4,58 + \alpha & 0,49 \end{bmatrix}$	$\begin{vmatrix} 6,47+\beta \end{vmatrix}$
$5,31$ $6,28+\alpha$ $0,98$ $1,04$	2,38
$9,39+\alpha 2,45 3,35 2,28$	$(10,48+\beta)$
$\alpha = 0.5k, k = N_2$ вар -1 ,	$\beta = 0.5k$, $k = N_2eap - 1$
$5-9(8,30 \ 2,62+\alpha \ 4,10 \ 1,90)$	$(-10,65 + \beta)$
$\begin{vmatrix} 3.92 \\ -2.5 \end{vmatrix} 8.45 8.78 - \alpha 2.46 \begin{vmatrix} 2.46 \\ -2.5 \end{vmatrix}$	12,21
$\begin{vmatrix} 3,77 & 7,21 + \alpha & 8,04 & 2,28 \end{vmatrix}$	15,45 – β
$(2,21 \ 3,65 - \alpha \ 1,69 \ 6,99)$	-8,35
$\alpha = 0.2k, k = N_{2}eap - 5$	$\beta = 0.2k, k = N_2 \epsilon ap - 5$
10 (1,00 0,42 0,54 0,66)	(0,3)
0,42 1,00 0,32 0,44	0,5
0,54 0,32 1,00 0,22	0,7
0,66 0,44 0,22 1,00	(0,9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(6,19+\beta)$
$\begin{vmatrix} 1,12 & 4,20-\alpha & 2,12 & 0,37 & 0,91 \end{vmatrix}$	3,21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 4,28-\beta \\ 6,25 \end{vmatrix}$
$\begin{vmatrix} 1,32 & 0,37 & 1,29 & 4,37 - \alpha & 1,23 & 1 \\ 1,32 & 1,32 & 1,33 & 1 & 1 & 1 \end{vmatrix}$	
$\left(\begin{array}{c cccc} 0,83 & 0,91 & 1,57 & 1,25 & 5,21+\alpha \end{array}\right)$	$(4,95+\beta)$
$\alpha = 0.25k, k = N_2 \epsilon ap - 11$	$\beta = 0.35k, k = N_2 \epsilon ap - 11$
16 (2,12 0,42 1,34 0,88)	(11,172)
0,42 3,95 1,87 0,43	0,115
1,34 1,87 2,98 0,46	0,009
0,88 0,43 0,46 4,44	(9,349)
17 (6.92 1.28 0.79 1.15 - 0.66)	(2,1)
0 92	0,72
1,33 0,16 2,1 5,44 -18	13,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-1,08)
0,98 3,39 1,3 -1,63 0,57	0,84
1,09 - 2,46 6,21 2,1 1,033	2,58
1,345 0,16 2,1 5,33 -12	11,96
1,29 -1,23 -0,767 6 1	(-1,47)

19	(5,5 7,0 6,0 5,5)	(23)
	7,0 10,5 8,0 7,0	32
	6,0 8,0 10,5 9	33
20	(5,5 7 9 10,5)	(31)
20	(6,59 1,28 0,79 1,195 -0,21)	$\left(\begin{array}{cc}2,1\end{array}\right)$
	0,92 3,83 1,3 -1,63 1,02	0,36
	1,15 - 2,46 5,77 2,1 1,483	3,89
	1,285 0,16 2,1 5,77 -18	11,04
	$\begin{bmatrix} 1 & 0.69 & -1.68 & -1.217 & 9 & -6 \end{bmatrix}$	$\begin{bmatrix} -0.27 \end{bmatrix}$
21	(3,81 0,25 1,28 1,75)	(4,21)
	2,25 1,32 5,58 0,49	8,97
	5,31 7,28 0,98 1,04	2,38
	(10,39 2,45 3,35 2,28)	(12,98)
22-	$(5,18 + \alpha 1,12 0,95 1,32 0,83)$	$(6,19+\beta)$
25	$\begin{vmatrix} 1 & 1,12 & 4,28-\alpha & 2,12 & 0,57 & 0,91 \end{vmatrix}$	3,21
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 4,28-\beta \end{vmatrix}$
	$\begin{vmatrix} 1,32 & 0,57 & 1,29 & 4,57-\alpha & 1,25 \end{vmatrix}$	6,25
	$\begin{pmatrix} 0.83 & 0.91 & 1.57 & 1.25 & 5.21+\alpha \end{pmatrix}$	$(4,95+\beta)$
	$\alpha = 0.25k, k = \mathcal{N}_{2} \epsilon ap - 25 $	$\beta = 0.35k, k = \mathcal{N}_{2}eap - 21$

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- вихідну систему рівнянь;
- проміжні результати та кінцевий результат;
- вектор нев'язки;
- копія розв'язку задачі у Mathcad; вектор нев'язки для цього розв'язку;
- порівняння власного розв'язку та розв'язку, отриманого у Mathcad;
- лістинг програми.

5 Література

- 1. Самарский А.А., Гулин А.В. Численные методы. М., Наука, 1989.
- 2. Волков Е.А., Численные методы. М., Наука, 1987.
- 3. Демидович В.П., Марон И.А. Основы вычислительной математики. Наука, 1986.
- 4. Березин И.С., Жидков Н.П. Методы вычислений. Т.1., М., Наука, 1966; Т.2., М., Физматгиз, 1960.
- 5. Кузнецов В.М., Жданова О.Г., Галицька І.Є. Методи розв'язання систем лінійних і нелінійних рівнянь та їх систем. Проблема власних значень. Методичні вказівки до виконання розрахунково-графічної роботи з дисципліни "Числові методи". "Політехніка", НТУУ "КПІ", 2001.