Recherche opérationnelle: Travaux Dirigés 2 ENSA-Safi

19 février 2022

1. Conférence

Dans une administration, ou voudrait programmer 4 conférences auxquelles participent 7 responsables de service. Chaque responsable peut participer à plusieurs conférences comme l'indique le tableau suivant :

Tableau des conférences

participant	Les Conférences	Participant	Les conférences
R1	C1,C2,C3	R4	C1,C3
R2	C2,C4	R6	C1,C3
R3	C2,C4	R7	C2,C4
R4	C1,C2		

- ${f 1.1})$ Donner les conférences qui ${f ne}$ peuvent pas avoir lieu au même moment ?
- 1.2) Maintenant donner celle qui peuvent se réaliser en parallèle.

2. Atelier

Dans un atelier, 5 ouvriers peuvent effectuer de 1 a 4 tâches selon le tableau suivant :

Tableau 2 – Distribution des tachés

Ouvrier	Tâches	
1	1,2	
2	2,4	
3	2,3	
4	2,3	
5	3,4	

- **2.1**) Représenter les possibilités d'affectation des ouvriers aux différentes tâches par un graphe ?
- **2.2**) Donner le graphe permettant a chaque ouvrier d'effectuer toute les tâches.

2 ENSA-Safi

3. Traçage

Soit le schéma suivant :

Est-il possible de tracer une courbe, sans lever le crayon, qui passe une seule fois par chacun des 16 segments du schéma?

4. Organisation tables

Six personnes se retrouvent pour un repas de mariage, le graphe ci-dessus précise les incompatibilités d'humeur entre ces personnes ¹.

Proposer un plant de table (la table est ronde) en évitant de placer cote a cote deux personnes incompatibles.

5. Matrice d'adjacence

Soit le graphe suivant :

^{1.} une arête reliant deux personnes indique qu'elles ne se supportent pas

3 ENSA-Safi

- 5.1) Donner la matrice d'adjacence de ce graphe.
- **5.2**) Donner sa matrice **d'incidence**.
- 5.3) Donner la représentation de graphe par une liste d'adjacence.

6. Nombre chromatique

Soit le graphe suivant :

- **6.1**) Donner un encadrement du nombre chromatique.
- **6.2**) Montrer que le graphe est biparti. Déduisez alors sont nombre chromatique.
- **6.3**) Appliquer l'algorithme de *Welsh et Powell*, en cas d'egalite on taite les sommets selon leur nombre.

7. Package networkx

Soit le graphe suivant :

4 ENSA-Safi

7.1) Terminer le tutoriel du packetage networkx

https://networkx.org/documentation/stable/tutorial.html

- 7.2) Définissez ce graphe dans networkx.
- 7.3) Extraire la matrice d'adjacence de ce graphe.
- 7.4) Pour chaque sommet, afficher les sommets adjacents.
- **7.5**) Chercher une fonction pour afficher ce graphe.
- 7.6) Chercher une méthode pour colorier ce graphe.
- **7.7**) Coder une fonction welsh_powell qui calcule le nombre chromatique d'un graphe.