# MAT 2377 Probability and Statistics for Engineers

**Chapter 3 Continuous Distributions** 

P. Boily (uOttawa)

Winter 2021

#### **Contents**

- 3.1 Continuous Random Variables (p.3)
  - Area Under the Curve (p.5)
  - Probability Density Functions (p.6)
- 3.2 Expectation of a Continuous Random Variable (p.17)
  - Mean and Variance (p.24)
- 3.3 Normal Distributions (p.25)
  - Standard Normal Random Variable (p.28)
  - Normal Random Variable (p.29)
- 3.4 Exponential Distributions (p.38)
  - Properties (p.40)

- 3.5 Gamma Distributions (p.43)
- 3.6 Joint Distributions (p.46)
- 3.7 Normal Approximation of the Binomial Distribution (p.59)
  - Normal Approximation with Continuity Correction (p.60)
  - Computing Binomial Probabilities (p.62)

Appendix – Summary (p.64)

### 3.1 - Continuous Random Variables

How do we approach probabilities where there are **uncountably infinitely many outcomes**, such as one might encounter if X represents the height of an individual in the population, for instance (e.g., the outcomes reside in a continuous interval on the real line)?

What's the probability that a randomly selected person is 6 feet tall?

In the discrete case, the probability mass function  $f_X(x) = P(X = x)$  was the main object of interest. In the continuous case, the analogous role is played by the **probability density function** (p.d.f.), still denoted by  $f_X(x)$ , but

$$f_X(x) \neq P(X = x).$$

The (cumulative) distribution function (c.d.f.) of any such random variable X is still defined by

$$F_X(x) = P(X \le x) \,,$$

viewed as a function of a real variable x; but  $P(X \le x)$  is not simply computed by adding a few terms of the form  $P(X = x_i)$ . Note that

$$\lim_{x \to -\infty} F_X(x) = 0 \quad \text{and} \quad \lim_{x \to +\infty} F_X(x) = 1.$$

We can describe the **distribution** of the random variable X via the following relationship between  $f_X(x)$  and  $F_X(x)$ :

$$f_X(x) = \frac{d}{dx} F_X(x).$$

#### **Area Under a Curve**

For any a < b, we have

$$\{X \le b\} = \{X \le a\} \cup \{a < X \le b\},\$$

so that

$$P(X \le a) + P(a < X \le b) = P(X \le b)$$

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$

$$= F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

## **Probability Density Functions**

The **probability density function** (p.d.f.) of a continuous random variable X is an **integrable** function  $f_X: X(\mathcal{S}) \to \mathbb{R}$  such that

- $f_X(x) > 0$  for all  $x \in X(\mathcal{S})$  and  $\lim_{x \to \pm \infty} f_X(x) = 0$ ;
- for any event  $A = (a, b) = \{X | a < X < b\}$ ,

$$P(A) = P((a,b)) = \int_{a}^{b} f_X(x) dx;$$

• for any x,

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt;$$

• for any x,

$$P(x > X) = 1 - P(X \le x) = 1 - F_X(x) = 1 - \int_{-\infty}^{x} f_X(t) dt;$$

• for any a, b,

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b)$$
$$= F_X(b) - F_X(a) = \int_a^b f(x) \, dx.$$

#### **Examples:**

1. Assume that X has the following p.d.f.

$$f_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ x/2 & \text{if } 0 \le x \le 2 \\ 0 & \text{if } x > 2 \end{cases}$$
 (note that  $\int_0^2 f(x) \, dx = 1$ ).

The corresponding c.d.f. is given by:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

$$= \begin{cases} 0 & \text{if } x < 0 \\ 1/2 \cdot \int_0^x t dt = 1/2 \cdot [t^2/2]_0^x = x^2/4 & \text{if } 0 < x < 2 \\ 1 & \text{if } x \ge 2 \end{cases}$$





P.Boily (uOttawa); based on course notes by R.Kulik

2. What is the probability of the event  $A = \{X | 0.5 < X < 1.5\}$ ?

**Solution:** we need to evaluate

$$P(A) = P(0.5 < X < 1.5) = F_X(1.5) - F_X(0.5) = \frac{(1.5)^2}{4} - \frac{(0.5)^2}{4} = \frac{1}{2}.$$

3. What is the probability of the event  $B = \{X | X = 1\}$ ?

**Solution:** we need to evaluate

$$P(B) = P(X = 1) = P(1 \le X \le 1) = F_X(1) - F_X(1) = 0.$$

This is unexpected: even though  $f_X(1) = 0.5 \neq 0$ , P(X = 1) = 0! The probability that a continuous random variable X take on any particular single value is nil.





4. Assume that, for some  $\lambda > 0$ , X has the following p.d.f.:

$$f_X(x) = \begin{cases} \lambda \exp(-\lambda x) & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases} \quad \text{(is } \int_{-\infty}^{\infty} f(x) \, dx = 1?\text{)}$$

What is the probability that X > 10.2?

**Solution**: the corresponding c.d.f. is given by:

$$F_X(x;\lambda) = P_\lambda(X \le x) = \int_{-\infty}^x f_X(t) dt = \begin{cases} 0 & \text{if } x < 0 \\ \lambda \int_0^x \exp(-\lambda t) dt & \text{if } x \ge 0 \end{cases}$$
$$= \begin{cases} 0 & \text{if } x < 0 \\ [-\exp(-\lambda t)]_0^x = 1 - \exp(-\lambda x) & \text{if } x \ge 0 \end{cases}$$

Then

$$P_{\lambda}(X > 10.2) = 1 - F_X(10.2; \lambda) = 1 - [1 - \exp(-10.2\lambda)] = \exp(-10.2\lambda)$$

is a function of the **distribution parameter**  $\lambda$  itself:

| $\lambda$ | $P_{\lambda}(X > 10.2)$          |
|-----------|----------------------------------|
| 0.002     | 0.9798                           |
| 0.02      | 0.8155                           |
| 0.2       | 0.1300                           |
| 2         | $1.38 \times 10^{-9}$            |
| 20        | $2.54 \times 10^{-89}$           |
| 200       | 0 (for all intents and purposes) |







$$\lambda = 0.2$$
,  $P_{0.2}(X > 10.2) \approx 0.1300$ 





$$\lambda = 2$$
,  $P_2(X > 10.2) \approx 1.38 \times 10^{-9}$ 

## 3.2 - Expectation of a Continuous Random Variable

For a continuous random variable X with p.d.f.  $f_X(x)$ , the **expectation** of X is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

In a similar way to the discrete case, for any function h(X), we have

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Note that the expectation need not exist!

#### **Examples:**

1. Find the expected value of X in the example 1, above.

**Solution:** we need to evaluate

$$E[X] = \int_{-\infty}^{\infty} x f_X(X) dx = \int_0^2 x f_X(x) dx = \int_0^2 x \cdot x/2 dx$$
$$= \int_0^2 \frac{x^2}{2} dx = \left[\frac{x^3}{6}\right]_{x=0}^{x=2} = \frac{4}{3}.$$

2. What about  $X^2$ ?

**Solution:** we have  $E[X^2] = \int_0^2 \frac{x^3}{2} dx = 2$ .

3. Compute the expectation of the random variable X with p.d.f.

$$f_X(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

**Solution:** let's verify that  $f_X(x)$  is indeed a p.d.f.:

$$\int_{-\infty}^{\infty} f_X(x) \, dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \frac{1}{\pi} \left[ \arctan(x) \right]_{-\infty}^{\infty} = \frac{1}{\pi} \left[ \frac{\pi}{2} - \frac{-\pi}{2} \right] = 1.$$

We can also easily see that

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt = \frac{1}{\pi} \int_{-\infty}^x \frac{1}{1+t^2} dt = \frac{1}{\pi} \arctan(x) + \frac{1}{2}.$$









In particular,  $P(X \le 3) = F_X(3) = \frac{1}{\pi}\arctan(3) + \frac{1}{2} \approx 0.8976$ , say.

The expectation of X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{-\infty}^{\infty} \frac{x}{\pi (1 + x^2)} dx.$$

If this improper integral exists, then it needs to be equal, among other things, **both** to

$$\underbrace{\int_{-\infty}^{0} \frac{x}{\pi(1+x^2)} \, dx + \int_{0}^{\infty} \frac{x}{\pi(1+x^2)} \, dx}_{\text{candidate 1}} \quad \text{and to} \quad \underbrace{\lim_{a \to \infty} \int_{-a}^{a} \frac{x}{\pi(1+x^2)} \, dx}_{\text{candidate 2}}.$$

It is straightforward to find an antiderivative of  $\frac{x}{\pi(1+x^2)}$ .

Set  $u=1+x^2$ . Then du=2xdx and  $xdx=\frac{du}{2}$ , and we obtain

$$\int \frac{x}{\pi(1+x^2)} dx = \frac{1}{2\pi} \int u \, du = \frac{1}{2\pi} \ln|u| = \frac{1}{2\pi} \ln(1+x^2).$$

The candidate 2 integral reduces to

$$\lim_{a \to \infty} \left[ \frac{\ln(1+x^2)}{2\pi} \right]_{-a}^a = \lim_{a \to \infty} \left[ \frac{\ln(1+a^2)}{2\pi} - \frac{\ln(1+(-a)^2)}{2\pi} \right] = \lim_{a \to \infty} 0 = 0;$$

while the candidate 1 integral reduces to

$$\left[\frac{\ln(1+x^2)}{2\pi}\right]_{-\infty}^{0} + \left[\frac{\ln(1+x^2)}{2\pi}\right]_{0}^{\infty} = 0 - (\infty) + \infty - 0 = \infty - \infty$$

which is **undefined**. Thus E[X] does not exist (or is undefined).

#### Mean and Variance of a Continuous Random Variable

In a similar way to the discrete case, the **mean** of X is defined to be  $\mathrm{E}[X]$ , and the **variance** and **standard deviation** of X are, as before,

$$Var[X] \stackrel{\text{def}}{=} E\left[(X - E(X))^2\right] \stackrel{\text{comp. formula}}{=} E[X^2] - E^2[X],$$
  
$$SD[X] = \sqrt{Var[X]}.$$

As in the discrete case, if X,Y are continuous random variables, and  $a,b\in\mathbb{R}$ ,

$$E[aY + bX] = aE[Y] + bE[X]$$

$$Var[a + bX] = b^{2}Var[X]$$

$$SD[a + bX] = |b|SD[X]$$

### 3.3 - Normal Distributions

A **very** important example of continuous distributions is that of the special probability distribution function

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \,.$$

The corresponding cumulative distribution function is denoted by

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(t) dt.$$

A random variable Z with this c.d.f. is said to have a **standard normal** distribution, and we write  $Z \sim \mathcal{N}(0,1)$ .

#### **Normal density**





#### Standard Normal Random Variables

The expectation and variance of  $Z \sim \mathcal{N}(0,1)$  are

$$E[Z] = \int_{-\infty}^{\infty} z \, \phi(z) \, dz = \int_{-\infty}^{\infty} z \, \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \, dz = 0,$$

$$Var[Z] = \int_{-\infty}^{\infty} z^2 \, \phi(z) \, dz = 1, \quad SD[Z] = \sqrt{Var[Z]} = \sqrt{1} = 1.$$

Other quantities of interest include:

$$\Phi(0) = P(Z \le 0) = \frac{1}{2}, \ \Phi(-\infty) = 0, \ \Phi(\infty) = 1,$$
 
$$\Phi(1) = P(Z \le 1) = \mathbf{pnorm(1)} \approx 0.8413, etc.$$

#### **General Normal Random Variables**

Let  $\sigma > 0$  and  $\mu \in \mathbb{R}$ . If  $Z \sim \mathcal{N}(0,1)$  and  $X = \mu + \sigma Z$ , then

$$\frac{X - \mu}{\sigma} = Z \sim \mathcal{N}(0, 1).$$

However, the c.d.f. of X is given by

$$F_X(x) = P(X \le x) = P(\mu + \sigma Z \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$$
$$= \Phi\left(\frac{x - \mu}{\sigma}\right).$$

The p.d.f. of X is then

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right)$$

Any random variable X with this c.d.f./p.d.f. must satisfy

$$E[X] = \mu + \sigma E[Z] = \mu, \quad Var[X] = \sigma^2 Var[Z] = \sigma^2 \implies SD[X] = \sigma$$

and is said to be **normal with mean**  $\mu$  **and variance**  $\sigma^2$ , denoted by  $X \sim \mathcal{N}(\mu, \sigma^2)$ .

Every general normal X can be obtained by a linear transformation of the standard normal Z!

Table 1. Normal Distribution Function Lower tail of the standard normal distribution is tabulated



| z    | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05                  | 0.06     | 0.07      | 0.08                 | 0.0 |
|------|--------|--------|--------|--------|--------|-----------------------|----------|-----------|----------------------|-----|
|      |        |        |        |        |        |                       |          |           |                      |     |
| 0.00 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199                | 0.5239   | 0.5279    | 0.5319               | 3.0 |
| 0.10 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596                | 0.5636   | 0.5675    | 0.5714               | 3.0 |
| 0.20 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987                | 0.6026   | 0.6064    | 0.6103               | 0.6 |
| 0.30 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368                | 0.6406   | 0.6443    | 0.6480               | 0.6 |
| 0.40 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736                | 0.6772   | 0.6808    | 0.6844               | 0.6 |
| 0.50 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088                | 0.7123   | 0.7157    | 0.7190               | 0.7 |
| 0.60 | 0.7258 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422                | 0.7454   | 0.7486    | 0.7517               | 0.7 |
| 0.70 | 0.7580 | 0.7612 | 0.7642 | 0.7673 | 0.7703 | 0.7734                | 0.7764   | 0.7793    | 0.7823               | 0.7 |
| 0.80 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023                | 0.8051   | 0.8079    | 0.8106               | 3.0 |
| 0.90 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289                | 0.8315   | 0.8340    | 0.8365               | 3.0 |
|      |        |        |        |        |        |                       |          |           |                      |     |
| 1.00 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531                | 0.8554   | 0.8577    | 0.8599               | 3.0 |
| 1.10 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749                | 0.8770   | 0.8790    | 0.8810               | 3.0 |
| 1.20 | 0.8849 | 0.8869 | 0.8888 | 0.8906 | 0.8925 | 0.8943                | 0.8962   | 0.8980    | 0.8997               | 9.0 |
| 1.30 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115                | 0.9131   | 0.9147    | 0.9162               | 9.0 |
| 1.40 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265                | 0.9279   | 0.9292    | 0.9306               | 9.0 |
| 1.50 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394                | 0.9406   | 0.9418    | 0.9430               | 9.0 |
| 1.60 | 0.9452 | 0.9463 | 0.9474 | 0.9485 | 0.9495 | 0.9505                | 0.9515   | 0.9525    | 0.9535               | 9.0 |
| 1.70 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599                | 0.9608   | 0.9616    | 0.9625               | 9.0 |
| 1.80 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678                | 0.9686   | 0.9693    | 0.9700               | 9.0 |
| 1.90 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744                | 0.9750   | 0.9756    | 0.9761               | 9.0 |
|      |        |        |        |        |        |                       |          |           |                      |     |
| 2.00 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798                | 0.9803   | 0.9808    | 0.9812               | 0.6 |
| 2.10 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842                | 0.9846   | 0.9850    | 0.9854               | 0.6 |
| ممما | 0.0004 | 0.000  | 0.0000 | 0.00   | 0.00   | L 0 00 <del>0</del> 0 | L 0 0004 | 1 0 000 4 | L 0 000 <del>-</del> | 100 |

#### **Examples:**

- 1. Assume that Z represents the standard normal random variable. Evaluate the following probabilities:
  - a)  $P(Z \le 0.5) = 0.6915$
  - b) P(Z < -0.3) = 0.3821
  - c)  $P(Z > 0.5) = 1 P(Z \le 0.5) = 1 0.6915 = 0.3085$ ,
  - d) P(0.1 < Z < 0.3) = P(Z < 0.3) P(Z < 0.1) = 0.6179 0.5398 = 0.0781,
  - e) P(-1.2 < Z < 0.3) = P(Z < 0.3) P(Z < -1.2) = 0.5028.

2. Suppose that the waiting time (in minutes) for a coffee at 9am is normally distributed with mean 5 and standard deviation 0.5. What is the probability that one such waiting time is at most 6 minutes?

**Solution:** let X denote the waiting time; then  $X \sim \mathcal{N}(5, 0.5^2)$  and the **standardised random variable** is a standard normal:

$$Z = \frac{X - 5}{0.5} \sim \mathcal{N}(0, 1)$$
.

The desired probability is

$$\begin{split} P\left(X \leq 6\right) &= P\left(\frac{X - 5}{0.5} \leq \frac{6 - 5}{0.5}\right) = P\left(Z \leq \frac{6 - 5}{0.5}\right) = \Phi\left(\frac{6 - 5}{0.5}\right) \\ &= \Phi(2) = P(Z \leq 2) \approx 0.9772 \text{ (reading from the table)}. \end{split}$$

3. Suppose that bottles of beer are filled in such a way that the actual volume of the liquid in them (in mL) varies randomly according to a normal distribution with  $\mu=376.1$  and  $\sigma=0.4$ . What is the probability that the volume in any randomly selected bottle is less than 375mL?

**Solution:** let X denote the volume of the liquid in the bottle; then

$$X \sim \mathcal{N}(376.1, 0.4^2) \quad \text{and so} \quad Z = \frac{X - 376.1}{0.4} \sim \mathcal{N}(0, 1) \,. \label{eq:solution}$$

The desired probability is

$$P(X < 375) = P\left(\frac{X - 376.1}{0.4} < \frac{375 - 376.1}{0.4}\right) = P\left(Z < \frac{-1.1}{0.4}\right)$$
$$= P(Z \le -2.75) = \Phi(-2.75) \approx 0.003.$$

4. If  $Z \sim \mathcal{N}(0,1)$ , for which values a, b and c do we have

- a)  $P(Z \le a) = 0.95$ ;
- b)  $P(|Z| \le b) = P(-b \le Z \le b) = 0.99;$
- c)  $P(|Z| \ge c) = 0.01$ .

#### **Solution:**

a) From the table we see that

$$P(Z \le 1.64) \approx 0.9495$$
 and  $P(Z \le 1.65) \approx 0.9505$ .

Clearly we must have 1.64 < a < 1.65; a linear interpolation provides a decent guess at  $a \approx 1.645$ , although this level of precision is usually not necessary. It is often sufficient to simply present the initial interval estimate.

### b) Note that

$$P(-b \le Z \le b) = P(Z \le b) - P(Z < -b)$$

However the p.d.f.  $\phi(z)$  is symmetric about z=0, which means that

$$P(Z < -b) = P(Z > b) = 1 - P(Z \le b),$$

and so that

$$P(-b \le Z \le b) = P(Z \le b) - [1 - P(Z \le b)] = 2P(Z \le b) - 1$$

In the question,  $P(-b \le Z \le b) = 0.99$ , so that

$$2P(Z \le b) - 1 = 0.99 \implies P(Z \le b) = \frac{1 + 0.99}{2} = 0.995;$$

#### Consulting the table we see that

$$P(Z \le 2.57) \approx 0.9949$$
 and  $P(Z \le 2.58) \approx 0.9951$ ;

linear interpolation suggests taking  $b \approx 2.575$ .

c) Note that  $\{|Z| \ge c\} = \{|Z| < c\}^c$ , so we need to find c such that

$$P(|Z| < c) = 1 - P(|Z| \ge c) = 0.99.$$

But this is equivalent to

$$P(-c < Z < c) = P(-c \le Z \le c) = 0.99$$

since  $|x| < y \Leftrightarrow -y < x < y$ , and P(Z = c) = 0 for all c. This problem was solved in the preceding example; take  $c \approx 2.575$ .

## 3.4 – Exponential Distributions

Assume that cars arrive according to a **Poisson process with rate**  $\lambda$ , i.e. the number of cars arriving within a fixed unit time period is a Poisson random variable with parameter  $\lambda$ .

Over a period of time x, we would expect the number of arrivals N to follow a Poisson process with parameter  $\lambda x$ . Let X be the wait time to the first car arrival. Then

$$P(X > x) = 1 - P(X \le x) = P(N = 0) = \exp(-\lambda x).$$

We say that X follows a **exponential distribution**  $Exp(\lambda)$ , and

$$F_X(x) = \left\{ \begin{array}{ll} 0 & \text{for } x < 0 \\ 1 - e^{-\lambda x} & \text{for } 0 \leq x \end{array} \right. \quad \text{and} \quad f_X(x) = \left\{ \begin{array}{ll} 0 & \text{for } x \leq 0 \\ \lambda e^{-\lambda x} & \text{for } 0 \leq x \end{array} \right.$$



## CDF for Exponential P(X < 0.5) when lambda = 4





If  $X \sim \text{Exp}(4)$ , then  $P(X < 0.5) = F_X(0.5) = 1 - e^{-4(0.5)} \approx 0.865$ .

# **Properties of Exponential Random Variables**

• 
$$\mu = \mathrm{E}[X] = 1/\lambda$$
;

$$\bullet \sigma^2 = \operatorname{Var}[X] = 1/\lambda^2;$$

Memory-Less Property:

$$P(X > s + t \mid X > t) = P(X > s),$$

•  $Exp(\lambda)$  is the continuous analogue to the **geometric** distribution Geo(p).

**Example:** the lifetime of a certain type of light bulb has an exponential distribution with mean 100 hours (i.e.  $\lambda = 1/100$ ).

1. What is the probability that a light bulb will last at least 100 hours?

**Solution:**  $X \sim \text{Exp}(1/100)$ , so

$$P(X > 100) = 1 - P(X \le 100) = \exp(-100/100) = e^{-1} \approx 0.3679.$$

2. Given that a light bulb has already been burning for 100 hours, what is the probability that it will last at least 100 hours more?

**Solution:** we are interested in evaluating P(X > 200|X > 100). By the memory-less property,

$$P(X > 200|X > 100) = P(X > 200 - 100) = P(X > 100) \approx 0.3679.$$

3. The manufacturer wants to guarantee that their light bulbs will last at least t hours. What should t be in order to ensure that 90% of the light bulbs will last longer than t hours?

**Solution:** we need to find t such that P(X > t) = 0.9. In other words, we are looking for t such that

$$0.9 = P(X > t) = 1 - P(X \le t) = 1 - F_X(t) = e^{-0.01t},$$

that is

$$\ln 0.9 = -0.01t \implies t = -100 \ln 0.9 \approx 10.53605$$
 hours.

## 3.5 - Gamma Distributions

Assume that cars arrive according to a Poisson process with rate  $\lambda$ . Recall that if X is the time to the first car arrival, then  $X \sim \mathsf{Exp}(\lambda)$ .

If Y is the wait time to the rth arrival, then Y follows a **Gamma distribution** with parameters  $\lambda$  and r,  $Y \sim \Gamma(\lambda, r)$ , for which the p.d.f. is

$$f_Y(y) = \begin{cases} 0 & \text{for } y < 0\\ \frac{y^{r-1}}{(r-1)!} \lambda^r e^{-\lambda y} & \text{for } 0 \le y \end{cases}$$

 $F_Y(y)$  cannot be expressed with elementary functions. We also have

$$\mu = \mathrm{E}[Y] = \frac{r}{\lambda}$$
 and  $\sigma^2 = \mathrm{Var}[Y] = \frac{r}{\lambda^2}$ .

#### **Examples:**

1. Suppose that an average of 30 customers per hour arrive at a shop in accordance with a Poisson process, that is to say,  $\lambda=1/2$  customers arrive on average every minute. What is the probability that the shopkeeper will wait more than 5 minutes before both of the first two customers arrive?

**Solution:** let Y denote the wait time in minutes until the second customer arrives. Then  $Y \sim \Gamma(1/2,2)$  and

$$P(Y > 5) = \int_{5}^{\infty} \frac{y^{2-1}}{(2-1)!} (1/2)^{2} e^{-y/2} dy = \int_{5}^{\infty} \frac{y e^{-y/2}}{4} dy$$
$$= \frac{1}{4} \left[ -2y e^{-y/2} - 4e^{-y/2} \right]_{5}^{\infty} = \frac{7}{2} e^{-5/2} \approx 0.287.$$

2. Telephone calls arrive at a switchboard at a mean rate of  $\lambda=2$  per minute, according to a Poisson process. Let Y be the waiting time until the 5th call arrives. What is the p.d.f., the mean, and the variance of Y?

**Solution:** we have

$$f_Y(y) = \frac{2^5 y^4}{4!} e^{-2y}$$
, for  $0 \le y < \infty$ ,  $\mathrm{E}[Y] = \frac{5}{2}$ ,  $\mathrm{Var}[Y] = \frac{5}{4}$ .

The Gamma distribution can be extended to cases where r>0 is not an integer by replacing (r-1)! by  $\Gamma(r)=\int_0^\infty t^{r-1}e^{-t}\,dt.$ 

The exponential and the  $\chi^2$  distributions (we will discuss that one later) are special cases of  $\Gamma(\lambda,r)$ :  $\operatorname{Exp}(\lambda)=\Gamma(\lambda,1)$  and  $\chi^2(r)=\Gamma(1/2,r)$ .

## 3.6 – Joint Distributions

Let X, Y be two continuous random variables. The **joint probability** distribution function (joint p.d.f.) of X, Y is a function f(x,y) satisfying

- 1.  $f(x,y) \ge 0$ , for all x, y;
- 2.  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx dy = 1$ , and
- 3.  $P(A) = \iint_A f(x,y) dxdy$ , where  $A \subseteq \mathbb{R}^2$ .

Properties for discrete r.v.: replace integrals by sums, cap  $f(x,y) \leq 1$ .

Property 3 implies that P(A) is the volume of the solid over the region A in the xy plane bounded by the surface z=f(x,y).

### **Examples:**

- 1. Roll a pair of unbiased dice. For each of the 36 possible outcomes, let X denote the smaller roll, and Y the larger roll.
  - a) How many outcomes correspond to the event  $A = \{(X = 2, Y = 3)\}$ ? **Solution:** the rolls (3,2) and (2,3) both give rise to event A.
  - b) What is P(A)? Solution: there are 36 possible outcomes, so  $P(A) = \frac{2}{36} \approx 0.0556$ .
  - c) What is the joint p.m.f. of X,Y? **Solution:** there is only one outcome (X=a,Y=a) that gives rise to  $\{X=Y=a\}$ . For every other event  $\{X\neq Y\}$ , two outcomes do

the trick: (X,Y) and (Y,X). The joint p.m.f. is thus

$$f(x,y) = \begin{cases} 1/36 & 1 \le x = y \le 6 \\ 2/36 & 1 \le x < y \le 6 \end{cases}$$

The first property is automatically satisfied, as is the third (by construction). There are only 6 outcomes for which X=Y, all the remaining outcomes (of which there are 15) have X< Y. Thus,

$$\sum_{x=1}^{6} \sum_{y=x}^{6} f(x,y) = 6 \cdot \frac{1}{36} + 15 \cdot \frac{2}{36} = 1.$$



d) Compute P(X=a) and P(Y=b), for  $a,b=1,\ldots,6$ . **Solution:** for every  $a=1,\ldots,6$ , the event  $\{X=a\}$  corresponds to the following union of events:

$${X = a, Y = a} \cup {X = a, Y = a + 1} \cup \dots \cup {X = a, Y = 6}.$$

These events are mutually exclusive, so that

$$P(X = a) = \sum_{y=a}^{6} P(\{X = a, Y = y\}) = \frac{1}{36} + \sum_{y=a+1}^{6} \frac{2}{36}$$
$$= \frac{1}{36} + \frac{2(6-a)}{36}, \quad a = 1, \dots, 6.$$

Similarly, we get  $P(Y=b)=\frac{1}{36}+\frac{2(b-6)}{36}$ ,  $b=1,\ldots,6$ . These **marginal probabilities** can be found in the margins of the p.m.f.

e) Compute P(X=3|Y>3) and  $P(Y\leq 3|X\geq 4)$ . Solution: the notation suggests how to compute these conditional probabilities:

$$P(X = 3|Y > 3) = \frac{P(X = 3 \cap Y > 3)}{P(Y > 3)}$$

The region corresponding to  $P(Y>3)=\frac{27}{36}$  is shaded in red (see next slide); the region corresponding to  $P(X=3)=\frac{7}{36}$  is shaded in blue.

The region corresponding to  $P(X=3\cap Y>3)=\frac{6}{36}$  is the intersection of the blue and the red regions, so

$$P(X = 3|Y > 3) = \frac{6/36}{27/36} = \frac{6}{27} \approx 0.2222.$$



P.Boily (uOttawa); based on course notes by R.Kulik

Since  $P(Y \le 3 \cap X \ge 4) = 0$ ,  $P(Y \le 3 | X \ge 4) = 0$ .

f) Are X and Y independent?

**Solution:** why don't we simply use the multiplicative rule to compute  $P(X=3\cap Y>3)=P(X=3)P(Y>3)$ ?

Well, we don't yet know if X and Y are **independent**, that is, we don't know if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 for all allowable  $x, y$ .

As it is,  $P(X=1,Y=1)=\frac{1}{36}$ , but  $P(X=1)P(Y=1)=\frac{11}{36}\cdot\frac{1}{36}$ , so X and Y are **dependent** (this is often the case when the domain of the joint p.d.f./p.m.f. is not rectangular).

- 2. There are 8 similar chips in a bowl: three marked (0,0), two marked (1,0), two marked (0,1) and one marked (1,1). A player selects a chip at random and is given the sum of the two coordinates in dollars.
  - a) What is the joint probability mass function of  $X_1$ , and  $X_2$ ? **Solution:** let  $X_1$  and  $X_2$  represent the coordinates; we have

$$f(x_1, x_2) = \frac{3 - x_1 - x_2}{8}, \quad x_1, x_2 = 0, 1.$$

a) What is the expected pay-off for this game? Solution: the pay-off is simply  $X_1 + X_2$ . The expected pay-off is thus

$$E[X_1 + X_2] = \sum_{x_1=0}^{1} \sum_{x_2=1}^{0} (x_1 + x_2) f(x_1, x_2) = 0 \cdot \frac{3}{8} + 1 \cdot \frac{2}{8} + 1 \cdot \frac{2}{8} + 2 \cdot \frac{1}{8} = 0.75.$$

3. Let X and Y have joint p.d.f.

$$f(x,y) = 2, \quad 0 \le y \le x \le 1.$$

a) What is the support of f(x, y)?

**Solution:** the support is the set  $S = \{(x,y) : 0 \le y \le x \le 1\}$ , a triangle in the xy plane bounded by the x-axis, the line y = 1, and the line y = x. The support is the blue triangle shown below.



b) What is  $P(0 \le X \le 0.5, 0 \le Y \le 0.5)$ ?

**Solution:** we need to evaluate the integral over the shaded area:

$$P(0 \le X \le 0.5, 0 \le Y \le 0.5) = P(0 \le X \le 0.5, 0 \le Y \le X)$$

$$= \int_0^{0.5} \int_0^x 2 \, dy \, dx = \int_0^{0.5} [2y]_{y=0}^{y=x} \, dx$$

$$= \int_0^{0.5} 2x \, dx = 1/4.$$

c) What are the marginal probabilities P(X=x) and P(Y=y)? **Solution:** we get

$$P(X = x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{y=0}^{y=x} 2 \, dy = [2y]_{y=0}^{y=x} = 2x, \quad 0 \le x \le 1$$

and

$$P(Y = y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{x=y}^{x=1} 2 dx$$
$$= [2x]_{x=y}^{x=1} = 2 - 2y, \quad 0 \le y \le 1.$$

d) Compute E[X], E[Y], and  $E[Y^2]$ 

Solution: we have

$$E[X] = \iint_{S} x f(x, y) dA = \int_{0}^{1} \int_{0}^{x} 2x \, dy dx = \int_{0}^{1} [2xy]_{y=0}^{y=x} \, dx$$
$$= \int_{0}^{1} 2x^{2} \, dx = \left[\frac{2}{3}x^{3}\right]_{0}^{1} = \frac{2}{3};$$

$$E[Y] = \iint_{S} yf(x,y) dA = \int_{0}^{1} \int_{y}^{1} 2y \, dx dy = \int_{0}^{1} \left[2xy\right]_{x=y}^{x=1} \, dy$$

$$= \int_{0}^{1} (2y - 2y^{2}) \, dy = \left[y^{2} - \frac{2}{3}y^{3}\right]_{0}^{1} = \frac{1}{3};$$

$$E[Y^{2}] = \iint_{S} y^{2}f(x,y) \, dA = \int_{0}^{1} \int_{y}^{1} 2y^{2} \, dx dy = \int_{0}^{1} \left[2xy^{2}\right]_{x=y}^{x=1} \, dy$$

$$= \int_{0}^{1} (2y - 2y^{3}) \, dy = \left[\frac{2}{3}y^{3} - \frac{1}{2}y^{4}\right]_{0}^{1} = \frac{1}{6}$$

e) Are X and Y independent?

**Solution:** they are not independent as the support of the joint p.d.f. is not rectangular.

## 3.7 - Normal Approximation of the Binomial Distribution

If  $X \sim \mathcal{B}(n,p)$  then we may interpret X as a sum of **independent and** identically distributed random variables

$$X = I_1 + I_2 + \cdots + I_n$$
 where each  $I_i \sim \mathcal{B}(1,p)$ .

Thus, according to the **Central Limit Theorem** (more on this later), for large n, we have

$$\frac{X - np}{\sqrt{np(1-p)}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0,1) \,,$$

i.e. for large n if  $X \stackrel{\mathsf{exact}}{\sim} \mathcal{B}(n,p)$  then  $X \stackrel{\mathsf{approx}}{\sim} \mathcal{N}(np, np(1-p))$ .

# Normal Approximation with Continuity Correction

Let  $X \sim \mathcal{B}(n, p)$ . Recall that E[X] = np and Var[X] = np(1-p).

If n is large, we may approximate X by a normal random variable in the following way:

$$P(X \le x) = P(X < x + 0.5) = P\left(Z < \frac{x - np + 0.5}{\sqrt{np(1 - p)}}\right)$$

and

$$P(X \ge x) = P(X > x - 0.5) = P\left(Z > \frac{x - np - 0.5}{\sqrt{np(1 - p)}}\right).$$

**Example:** suppose  $X \sim \mathcal{B}(36, 0.5)$ . Provide a normal approximation to the probability  $P(X \leq 12)$ . Note: For n = 36 the binomial probabilities are not available in the textbook tables.

**Solution:** since  $E[X] = 36 \times 0.5 = 18$  and  $Var[X] = 36 \times 0.5 \times 0.5 = 9$ ,

$$P(X \le 12) = P\left(\frac{X - 18}{3} \le \frac{12 - 18 + 0.5}{3}\right)$$

$$\stackrel{\text{norm.approx'n}}{\approx} \Phi(-1.83) \stackrel{\text{table}}{\approx} 0.033.$$

Compare this to the R value of pbinom(12, 36, 0.5) = 0.0326.

## **Computing Binomial Probabilities**

We thus have at least 3 ways to compute (or approximate) binomial probabilities:

- Use the exact formula: if  $X \sim \mathcal{B}(n,p)$  then for each  $x=0,1,\ldots,n$ ,  $P(X=x)=\binom{n}{x}p^x(1-p)^{n-x}$ ;
- Use tables: if  $n \le 15$  and p is one of  $0.1, 0.2, \ldots, 0.9$ , then the CDF is in the textbook (must express desired probability in terms of CDF, i.e. in form  $P(X \le x)$  first), i.e.

$$P(X < 3) = P(X \le 2); \qquad P(X = 7) = P(X \le 7) - P(X \le 6);$$
 
$$P(X > 7) = 1 - P(X \le 7); \qquad P(X \ge 5) = 1 - P(X \le 4) \text{ etc.}$$

• Use normal approximation: the suggested "rule of thumb" in the binomial case is: if np and n(1-p) are both  $\geq 5$ , the normal approximation  $X \sim \mathcal{N}(np, np(1-p))$ 

$$P(X \le x) \approx \Phi\left(\frac{x + 0.5 - np}{\sqrt{np(1-p)}}\right)$$

$$P(X \ge x) \approx 1 - \Phi\left(\frac{x - 0.5 - np}{\sqrt{np(1-p)}}\right)$$

for  $x = 0, 1, \dots, n$  should provide a decent approximation.

# **Appendix** – **Summary**

| $\overline{X}$ | Example                                                  | f(x)                                                   | Domain                 | $\mathrm{E}[X]$ | Var[X]               |
|----------------|----------------------------------------------------------|--------------------------------------------------------|------------------------|-----------------|----------------------|
| Uniform        | Select a point at random from $[a,b]$                    | $\frac{1}{b-a}$                                        | $a \le x \le b$        | $\frac{a+b}{2}$ | $\frac{(b-a)^2}{12}$ |
| Normal         | Meas. errors; children heights; breaking strengths, etc. | $\frac{\exp(-(x-\mu)^2/2\sigma^2)}{\sigma\sqrt{2\pi}}$ | $-\infty < x < \infty$ | $\mu$           | $\sigma^2$           |

# **Summary**

| $\overline{X}$ | Example                                                                 | f(x)                                             | Domain             | $\mathrm{E}[X]$     | Var[X]                |
|----------------|-------------------------------------------------------------------------|--------------------------------------------------|--------------------|---------------------|-----------------------|
| Exponential    | Waiting time to                                                         | $\lambda e^{-\lambda x}$                         | $0 \le x < \infty$ | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$ |
|                | first arrival in a                                                      |                                                  |                    |                     | ~                     |
|                | Poisson process                                                         |                                                  |                    |                     |                       |
|                | with rate $\lambda$                                                     |                                                  |                    |                     |                       |
| Gamma          | Waiting time to $r$ th arrival in a Poisson process with rate $\lambda$ | $\frac{x^{r-1}}{(r-1)!}\lambda^r e^{-\lambda x}$ | $0 \le x < \infty$ | $\frac{r}{\lambda}$ | $\frac{r}{\lambda^2}$ |