Klausur "Mathematik II für Informatik/Wirtschaftsinformatik" SS 2015 (Prof. Dr. Thomas Streicher)

1. Aufgabe (12 Punkte)

Geben Sie für jede der folgenden Reihen sämtliche $x \in \mathbb{R}$ an für welche diese jeweils konvergieren.

(a)
$$\sum_{n=0}^{\infty} (-1)^n \cdot x^{n+42}$$

(a)
$$\sum_{n=0}^{\infty} (-1)^n \cdot x^{n+42}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-4)^n}{n} (x-1)^n$ (c) $\sum_{n=1}^{\infty} \left(\sum_{\ell=1}^n \frac{1}{\ell} \cdot x^n \right)$

(c)
$$\sum_{n=1}^{\infty} \left(\sum_{\ell=1}^{n} \frac{1}{\ell} \cdot x^{n} \right)$$

(13 Punkte) 2. Aufgabe

(a) Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, gegeben durch

$$f(x,y) := \begin{cases} 0 & \text{, wenn } x = 0 \\ x \cdot \cos\left(\frac{1}{x}\right) + y & \text{, sonst.} \end{cases}$$

- (a₁) Geben Sie die partiellen Ableitungen von f an für alle Punkte $(x, y) \in \mathbb{R}^2$ mit $x \neq 0$.
- (a₂) Existieren auch die partiellen Ableitungen $\partial_x f(0, y)$ bzw. $\partial_y f(0, y)$, für beliebige $y \in \mathbb{R}$? Wenn ja, geben Sie
- (b) Betrachten Sie die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ mit $g(x,y) = x \cdot y$. Zeigen Sie, dass g kein Extremum auf der Menge $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ besitzt.

3. Aufgabe (10 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$ zweimal differenzierbar und $K \subseteq \mathbb{R}$ eine kompakte Menge. Zeigen Sie, dass f Lipschitz-stetig auf K ist.

4. Aufgabe (15 Punkte)

(a) Sei I ein abgeschlossenes Intervall mit $\pi \in I$. Zeigen Sie, dass das Anfangswertproblem

$$\begin{cases} y'(t) = y(t) \cdot \sin(t), & t \in I \\ y(\pi) = 0, \end{cases}$$

eine eindeutige Lösung besitzt.

Hinweis: Verwenden Sie den Satz von Picard-Lindelöf.

(b) Lösen Sie das Anfangswertproblem

$$\begin{cases} y'(t) = t \cdot (y(t))^2 \\ y(0) = 1, \end{cases}$$

mittels Trennung der Variablen.

(c) Geben Sie ein Fundamentalsystem der Differentialgleichung $y'(t) = A \cdot y(t)$ an, wobei

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hinweis: Es gibt ein kleines $n_0 \in \mathbb{N}$, sodass für alle $n \ge n_0$ die Matrix A^n eine Nullmatrix ist.

5. Aufgabe (Multiple Choice)

Für je Sollte	neiden Sie, welche der folgenden Aussagen wahr und welche falsch sind. Sie müssen Ihre Antwort i de korrekte Antwort wird 1 Punkt vergeben. Es gibt keine Minuspunkte. n Sie eine Antwort korrigieren, kennzeichnen Sie eindeutig , welche Antwort gewertet werden soll. lsche Antwort gewertet.		
(a)	Eine reelle Zahl x kann nicht gleichzeitig ein innerer Punkt sowie ein Randpunkt einer Menge $D \subseteq \mathbb{R}$ sein.	Wahr	Falsch
(b)	Ist $f:[a,b]\to\mathbb{R}$ beschränkt, so ist f integrierbar.		
(c)	Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(0) = 1$. Gilt für jede Nullfolge $(x_n)_{n \in \mathbb{N}}$, dass $\lim_{n \to \infty} f(x_n) = 1$, so ist f stetig in 0.		
(d)	Ist $f:[a,b] \to \mathbb{R}$ differenzierbar, so ist f integrierbar.		
(e)	Seien $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ Funktionen. Weiter definieren wir $u(x) = f(x) + g(x)$ und $v(x) = f(x) - g(x)$. Sind die Funktionen u und v stetig, so sind auch f und g stetig.		
(f)	Besitzt $f:[a,b] \to \mathbb{R}$ kein globales Maximum, so ist f nicht stetig.		
(g)	Ist $f \in C^1(\mathbb{R})$ mit $f'(x) > 0$ für alle $x \in \mathbb{R}$, so gibt es ein $y \in \mathbb{R}$ mit $f(y) > 0$.		
(h)	Ist $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius $r > 0$, so ist f differenzierbar auf $(-r, r)$.		
(i)	Sei $f(x) = x + 2x^2 + 3x^3$, dann ist die Taylorreihe von f , mit Entwicklungspunkt $x_0 = 0$ gegeben durch $\sum_{n=1}^{\infty} n \cdot x^n$.		
(i)	Für $I = [0, 1)$ gilt: $\mathbb{R} \setminus I$ ist abgeschlossen		

(10 Punkte)