CLAIMS

What is claimed is:

- 1 1. In the fabrication of a three dimensional memory where memory
 2 cells are formed at the intersection of generally parallel, spaced-apart rail3 stacks disposed at a plurality of rail-stack levels, an improvement wherein
 4 the depth of etching in at least two etching steps used to form the rail5 stacks in two adjacent rail-stack levels is approximately equal.
- 2. The improvement defined by claim 1, wherein each of the two etching steps etches a plurality of layers used to form the rail-stacks at one level of rail-stacks, and additionally partially etches rail-stacks in an underlying adjacent level of rail-stacks so as to form pillar structures in the underlying adjacent level of rail-stacks.
- The improvement defined by claim 2, wherein the pillar structures
 comprise N- regions of silicon.
- The improvement defined by claim 3, wherein the N- regions
 associated with diodes in the memory cells.
- The improvement defined by claim 4, wherein the memory cells
 include an antifuse regions.
- 1 6. The improvement defined by claim 2, wherein the pillar structures are associated with diodes in the memory cells.
- 7. The improvement defined by claim 6, wherein the memory cells include antifuse regions.

1	8.	A three dimensional memory array comprising:
2		a plurality of memory level pairs;
3		each memory level pair including a plurality of memory cells
4	dispo	sed on a first and second level;
5		the memory cells on the first level being coupled to first lines and
6	comn	non lines; and
7		the memory cells on the second level being coupled to second lines
8	and t	he common lines.
1	9.	The array defined by claim 8, wherein each memory cell comprises
2	a dio	de and a breached antifuse layer when programmed.
1	10.	The array defined by claim 9, wherein the first lines are disposed
2	abov	e the common lines and the second lines are disposed below the
3	comi	non lines.
1	11.	A memory disposed above a substrate comprising:
2		a plurality of memory levels organized as first alternate levels
3	disp	osed between second alternate levels;
4		a plurality of two terminal memory cells incorporated into each of
5	the l	evels;
6		one terminal of the cells in each of the first alternate levels and each
7	of th	e second alternate levels being coupled to first lines shared by the
8	cells	in each pair of first and second alternate levels;
9		the other terminal of the cells in each of the first alternate levels
10	bein	g coupled to second lines; and
11		the other terminal of the cells in each of the second alternate levels
12	bein	g coupled to third lines.

- 1 12. The memory defined by claim 11, wherein each cell comprises,
- when programmed, a diode and an antifuse layer.
- 1 13. The memory defined by claim 12, wherein the diodes comprise an
- N- region and a P+ region.
- 1 14. The memory defined by claim 13, wherein the N- regions in the
- diodes in at least one of the first and second alternate levels has a smaller
- 3 cross-section than the P+ region.
- 1 15. The memory defined by claim 12, wherein the antifuse layer
- 2 comprises silicon dioxide.
- 1 16. The memory defined by claim 14, wherein the antifuse layer
- 2 comprises silicon dioxide.
- 1 17. The memory defined by claim 13, wherein the diodes include
- polysilicon layers.
- 1 18. The memory defined by claim 17, wherein the polysilicon layers
- 2 include an N- layer and a P+ layer.
- 1 19. The memory defined by claim 18, wherein the first, second, and
- 2 third lines comprise a silicide.
- 1 20. The memory defined by claim 19, wherein the silicide comprises
- 2 titanium silicide.

	21.	The memory defined by claim 20, wherein the shared first lines
2	conta	ct the P+ layers.
1	22.	A memory disposed above a substrate comprising:
2		a plurality of memory levels organized as first alternate levels
3	dispo	sed between second alternate levels;
4		a plurality of two terminal memory cells incorporated into each of
5	the le	evels;
6		one terminal of the cells in each of the first alternate levels and each
7	of the	e second alternate levels being coupled to first lines shared by the
8	cells	in each pair of first and second alternate levels;
9		the other terminal of the cells in each of the first alternate levels
0	being	g coupled to second lines;
1		the other terminal of the cells in each of the second alternate levels
2	bein	g coupled to third lines; and
.3		an oxide layer disposed between each of the pair of first and second
.4	alter	nate levels.
1	23.	The memory defined by claim 21, wherein each cell comprises,
2	whe	n programmed, a diode and a breached antifuse layer.
1	24.	The memory defined by claim 23, wherein at least some of the
2	diod	les comprise two regions, one having a smaller cross-section than the
3	othe	er.

1	25.	A memory disposed above a substrate comprising:
2		a plurality of memory levels, each level having a plurality of two
3	termi	nal memory cells;
4		each of the memory cells comprising a diode and a breached
5	antifu	ise layer, when programmed;
6		one terminal of the cells in first alternate levels and second
7	alterr	ate levels of the memory levels being coupled to first lines, shared
8	by the	e cells;
9		the other terminal of the cells in the first alternate levels being
10	coup	led to second lines in each of the first alternate levels; and
11		the other terminal of the cells in the second alternate levels being
12	coup	led to third lines in each of the second levels,
13		such that cells in paired first and second alternate levels are
14	coup	led to shared first line and one of the second and third lines.
1	26.	The memory defined by claim 25, wherein at least some of the
2	diode	es have two regions one of which has a smaller cross-section than the
3	other	
1	27.	In a three-dimensional memory array, two adjacent memory levels
2	com	prising:
3		a first plurality of parallel, spaced-apart rail-stacks;
4		a second plurality of parallel, spaced-apart rail-stacks
5	perp	endicular to the first rail stacks disposed above the first rail-stacks;

Committee State of the second

6	a t	hird plurality of parallel, spaced-apart rail-stacks perpendicular
7	to the sec	ond rail-stacks disposed above the second rail-stacks, the first,
8	second, a	nd third rail-stacks being of approximately the same height;
9	the	e first rail-stacks and a first portion of a second rail-stacks
10	defining	first cells in one of the two levels and the third rail-stacks and a
11	second p	ortion of the second rail-stacks defining second cells in the other
12	level of the	he memory, and
13	th	e third rail-stacks including conductors shared by the first and
14	second co	ells.
1	28. Th	ne array of claim 27, wherein each cell comprises a diode and a
2	breached	antifuse layer, when programmed.
1	29. Tl	ne array of claim 28, wherein each diode includes a P+N- junction.
1	30. TI	ne array of claim 29, wherein the antifuse layer of the cells
2	comprise	es silicon dioxide.
1	31. A	process for fabricating two memory levels in a memory array
2	compris	ing:
3	fc	orming a first conductive layer;
4	d	epositing a first semiconductor layer over the first conductive
5	layer, th	e first semiconductive layer being doped with a first conductivity
6	type dop	pant;
7	e	tching the first conductive layer and the first semiconductor layer
8	into a pl	urality of first parallel, spaced-apart rail-stacks;
9	fi	lling the space between the first rail-stacks with a first insulator;

10	planarizing the first upper surface of the first rail-stacks and the
11	first insulator;
12	forming a first antifuse layer over the planarized first upper
13	surface;
14	depositing a second semiconductor layer doped with a second
15	conductivity type dopant over the first antifuse layer;
16	forming a second conductive layer over the second semiconductor
17	layer;
18	depositing a third semiconductor layer doped with a second
19	conductivity type dopant over the second conductive layer;
20	etching the second semiconductor layer, second conductive layer,
21	and third semiconductor layer into a plurality of second parallel, spaced-
22	apart rail-stacks;
23	filling the space between the second rail-stacks with a second
24	insulator;
25	planarizing the second upper surface of the second insulator and
26	the second rail-stacks;
27	forming a second antifuse layer on the planarized second upper
28	surface;
29	depositing a fourth semiconductor layer doped with a first
30	conductivity type dopant over the second antifuse layer;
31	forming a third conductive layer;
32	etching the third semiconductor layer and third conductive layer to
33	form third parallel, spaced-apart rail-stacks;
34	filling the space between the third rail-stacks with a third insulator.

1	32.	The process defined by claim 31, wherein the first, second, third,
2	and fo	urth semiconductor layers comprise polysilicon layers.

- 1 33. The process defined by claim 31, wherein the first conductivity type is N type, and the second conductivity type is P type.
- The process defined by claim 33, wherein the N type polysilicon layers are doped to a concentration level of N-, and the P type polysilicon layers are doped to a concentration level of P+.
- 1 35. The process defined by claim 31, wherein the first and second antifuse layers comprise silicon dioxide.
- 36. The process defined by claim 31, wherein the first, second, and
 third rail-stacks have approximately the same height.
- The process defined by claim 31, wherein the first, second, and
 third conductive layers comprise a silicide.
- 1 38. The process defined by claim 37, wherein silicon is deposited on a metal layer to form the silicide.
- 39. A process for fabricating two memory levels in a memory array
 comprising:
- 3 forming a first conductive layer;
- depositing a first semiconductor layer over the first conductive

 layer, the first semiconductive layer being doped with a first conductivity

 type dopant;

7	etching the first conductive layer and the first semiconductor layer
8	into a plurality of first parallel, spaced-apart rail-stacks;
9	filling the space between the first rail-stacks with a first insulator;
.0	planerizing the first upper surface of the first rail-stacks and the
1	first insulator;
12	forming a first antifuse layer over the planarized first upper
13	surface;
14	depositing a second semiconductor layer doped with a second
15	conductivity type dopant over the first antifuse layer;
16	forming a second conductive layer over the second semiconductor
17	layer;
18	depositing a third semiconductor layer doped with a second
19	conductivity type dopant over the second conductive layer;
20	depositing a fourth semiconductor layer doped with a first
21	conductivity type dopant over the third semiconductor layer;
22	etching the second semiconductor layer, second conductive layer,
23	third semiconductor layer and fourth semiconductor layer into a plurality
24	of second parallel, spaced-apart rail-stacks and an etched fourth
25	semiconductor layer;
26	filling the space between the second rail-stacks and the etched
27	fourth semiconductor layer with a second insulator;
28	planerizing the second upper surface of the second insulator and
29	the etched fourth semiconductor layer;
30	forming a second antifuse layer on the planarized second upper
31	surface;

52	forming a third conductive layer;
33	etching the third conductive layer and etched fourth semiconductor
34	layer to form third parallel, spaced-apart rail-stacks;
35	filling the space between the third rail-stacks with a third insulator.
1	40. The process defined by claim 39, wherein the first, second, third,
2	and fourth semiconductor layers comprise polysilicon layers.