Nr ćw. 4A	Pracownia z Elektroniki – Fizyka Medyczna		Ocena Wstęp:
Temat ćw.:	Badanie wzmacniacza operacyjnego		Ocena:
Data: 02.03.22	Imię: Krzysztof	Nazwisko: Jagła	Ocena Końcowa:
Data: 09.03.22			

I. Cel ćwiczenia

- a. Określenie parametrów pracy wzmacniacza typu 741 w określonych układach pętli sprzężeń zwrotnych
- b. Określenie charakterystyki częstotliwościowej dla sygnału sinusoidalnego
- c. Badanie charakterystyki dynamicznej dla prądu stałego
- d. Obserwacja różnic dla sterowania wejściem inwersyjnym i nieinwersyjnym

II. Wstęp Teoretyczny

a. Wzmacniacz

Wzmacniacz to urządzenie elektroniczne pozwalające na zwiększenie mocy sygnału na wejściu kosztem energii ze źródła zasilania. Wzmacniacz operacyjny zbudowany jest z pary tranzystorów w układzie wspólnego emitera, zalicza się on do wzmacniaczy różnicowych. Posiada on dwa wejścia połączone z bazami tranzystorów, wejście inwersyjne i wejście nieinwersyjne. Zasilanie takiego wzmacniacza jest realizowane poprzez dwa przeciwne napięcia, o tej samej wartości bezwzględnej. Zasada działania wzmacniacze operacyjnego jest analogiczna do wzmacniacza różnicowego, wzmacnia on różnicę pomiędzy dwoma napięciami wejściowymi, lecz tłumi składową stałą tych napięć. Dzięki takiej zasadzie działania można sterować takim wzmacniaczem w sposób symetryczny, z dwoma napięciami wejściowymi lub w sposób asymetryczny, z jednym napięciem wejściowym, a drugie wejście łączone jest z potencjałem odniesienia. Postęp technologiczny pozwolił otrzymać cały układ scalony w sposób monolityczny, co zapewnia mniejsze różnice w charakterystyce tranzystorów oraz ich sprzężenie temperaturowe.

- b. Cechy charakterystyczne wzmacniaczy operacyjnych:
 - i. Bardzo duże różnicowe wzmocnienie napięciowe
 - ii. Stabilność układu
 - iii. Wykorzystanie sprzężenia zwrotnego
 - iv. Dużego tłumienia wejściowego sygnału symetrycznego
 - v. Małe napięcia dryfu
 - vi. Zdolność do dokonywania prostych oraz skomplikowanych operacji matematycznych na sygnale napięciowym, poprzez różne pętle sprzężenia zwrotnego

Uproszczone schematy i wzory podstawowych zastosowań wzmacniaczy operacyjnych

operacyjnych				
Wzmacniacz odwracający	$\begin{array}{c c} R_{F} \\ V_{I} \\ & R_{F} \end{array}$	$U_0 = -\frac{R_F}{R_I}U_I$		
Wzmacniacz nieodwracający	R_I U_o U_o	$U_0 = \frac{R_I + R_F}{R_I} U_I$ Dla $R_I \rightarrow \infty$ otrzymuje się wtórnik napięciowy		
Wzmacniacz sumujący	$U_{II} \xrightarrow{R_f} U_{O}$	$U_0 = R_F \left(\frac{U_{II}}{R_I} + \frac{U_{I2}}{R_2} + \dots \right)$		
Układ różniczkujący		$U_0 = -R_F C \frac{dU_I}{dt}$		
Układ całkujący	R_F U_b	$U_0 = \frac{1}{R_I C} \int U_I dt$		

Wzmacniacz µA741składa się z:

Wejściowego wzmacniacza różnicującego Stopnia wyjściowego Układów zabezpieczających i pomocniczych Układu polaryzacji Stopnia niesymetrycznego

Literatura W. Głocki "Układy cyfrowe" Henryk Duda - Materiały wykładowe J. Kalisz "Podstawy elektroniki cyfrowej"

Przebieg ćwiczenia

c. Badanie charakterystyki dynamicznej przy wzmocnieniu 20dB

Dane pomiarowe:

Uwe [V]	Uwy [V]
-1	10,03
-0,9	9,02
-0,8	8,01
-0,7	7,01
-0,6	6,02
-0,5	5
-0,4	4,01
-0,3	3
-0,2	2
-0,1	1
0	0
0,1	-1
0,2	-2
0,3	-3,01
0,4	-4,01
0,5	-5,01
0,6	-6,02
0,7	-7,02
0,8	-8,03
0,9	-9,03
1	-10,04

F [Hz]	Uwy [V
20	0,005
30	0,997
40	0,998
50	0,998
60	0,999
70	0,999
80	1
90	1
100	1
200	1,001
300	1,002
400	1,003
500	1,003
600	1,003
700	1,003
800	1,003
900	1,002
1000	1,002
2000	0,994
3000	0,984
4000	0,981
5000	0,971
6000	0,969
7000	0,963
8000	0,96
9000	0,955
10000	0,953
20000	0,922
30000	0,89
40000 50000	0,852 0,821
60000	0,821
70000	
80000	0,745 0,712
90000	0,712
100000	0,646
200000	0,433
300000	0,433
400000	0,421
500000	0,003
600000	0,003
700000	0,014
800000	0
900000	0
1000000	0
1000000	U

d. Badanie charakterystyki częstotliwościowej

$$\begin{aligned} U_{we} &= 0.1 V \\ K_u &= 20 dB \end{aligned}$$

c)

d)

III. Badanie wzmacniacza od wejścia nieinwersyjnego

$K_u = 1 + (R2/R1)$

Wnioski

Celem ćwiczenia było określenie odpowiedzi wzmacniacza operacyjnego na sygnał wejściowy przy różnej konfiguracji pracy

Uzyskane pomiary pomogły określić zachowanie tego wzmacniacza, a powyższe wykresy przebiegów obrazują charakterystykę jego pracy.