Concursul de admitere iulie 2010, Domeniul de licență - Informatică

I. Algebră

- 1. a) Să se arate că $\sqrt{2} + i$ este rădăcină a ecuației $x^4 2x^2 + 9 = 0$ și să se determine și celelalte rădăcini complexe ale ecuației.
- b) Să se arate că $S_n = (\sqrt{2} + i)^n + (\sqrt{2} i)^n$ este număr real pentru orice $n \in \mathbb{N}^*$ și că S_n este număr întreg pentru orice $n \in \mathbb{N}^*$ par.
 - 2. Pentru fiecare număr întreg k considerăm mulţimea $\mathcal{A}_k = \left\{ \left. \left(\begin{array}{cc} x & y \\ ky & x \end{array} \right) \right| x,y \in \mathbf{Z} \right. \right\}$. Să se arate că:
 - a) A_k este inel comutativ cu adunarea și înmulțirea matricelor pentru orice $k \in \mathbb{Z}$;
 - b) există $X, Y \in A_1$ nenule cu XY = 0 (unde 0 este matricea nulă din $M_2(\mathbf{Z})$);
 - c) dacă $X, Y \in A_2$ și XY = 0, atunci X = 0 sau Y = 0.

II. Analiză

- 1. Fie funcţia $f: \mathbf{R} \to \mathbf{R}$ cu $f(x) = x 1 + e^{-x}, \ \forall x \in \mathbf{R}$.
- a) Calculaţi derivata funcţiei f şi $\lim_{x \to -\infty} \frac{f(x)}{f'(x)}$.
- b) Studiaţi monotonia funcţiei f şi arătaţi că $f(x) \ge 0$, pentru orice $x \in \mathbf{R}$.
- c) Definim şirul $(x_n)_{n \in \mathbb{N}}$ cu $x_0 > 0$ şi $x_{n+1} = f(x_n), \forall n \in \mathbb{N}$. Arătaţi că şirul $(x_n)_{n \in \mathbb{N}}$ este convergent şi aflaţi limita sa.
 - $\textbf{2. Fie funcțiile} \ f,g:\mathbf{R}\rightarrow\mathbf{R} \ \text{cu} \ f(x)=\frac{1}{2}\left(x\sqrt{1+x^2}+\ln\left(x+\sqrt{1+x^2}\right)\right) \ \text{și} \ g(x)=\sqrt{1+x^2}, \ \forall \, x\in\mathbf{R}.$
 - a) Să se arate că funcția f este o primitivă a funcției g.
 - b) Să se calculeze $I_1 = \int\limits_0^\pi \sin x \sqrt{1 + \cos^2 x} \, dx$ și $I_2 = \int\limits_0^\pi \cos x \sqrt{2 \cos^2 x} \, dx$.

III. Geometrie

1. Se dă patrulaterul convex ABCD şi M,N mijloacele diagonalelor AC şi respectiv BD. Să se arate că

$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4 \overrightarrow{MN}$$
.

- 2. Pe cercul $\mathcal C$ de centru O şi rază R se consideră două puncte diametral opuse A şi B şi un punct M diferit de A şi de B. Fie N punctul de intersecţie al dreptei AM cu tangenta în B la cercul $\mathcal C$. Să se exprime distanţele NA, NB şi MN în funcţie de R şi de măsura unghiului \widehat{MAB} .
- 3. Să se determine $m \in \mathbf{R}$ pentru care punctele A(2+m,m), B(0,4) şi C(5,3) sunt vârfurile unui triunghi dreptunghic cu ipotenuza BC.
 - 4. Să se rezolve în ${\bf R}$ ecuația $\cos 2x \sqrt{3}\cos x + 1 = 0$.

IV. Informatică

Fie multimea de numere $H = \{2^x \cdot 3^y \cdot 5^z \mid x, y, z \in \mathbf{N}\}$. Să se rezolve următoarele cerinţe într-unul dintre limbajele de programare studiate în liceu (Pascal/C/C++):

- a) Să se scrie o procedură care pentru un număr natural $a \le 32000$ decide dacă a aparţine mulţimii H. Să se determine complexitatea timp a acestei proceduri în funcție de a.
- b) Dându-se un număr natural $n \le 100$, să se afișeze primele n numere ale mulţimii H, în ordine crescătoare. De exemplu, pentru n = 8 trebuie afișate numerele: 1, 2, 3, 4, 5, 6, 8, 9.
 - c) Dați o soluție în timp O(n), liniar în funcție de n, pentru cerința de la punctul b). Justificați.

Notă: Pentru fiecare soluție se vor preciza detaliile algoritmului folosit și ale implementării sub formă de program: variabile, structuri de date, structuri iterative, instrucțiuni condiționale.