ParsEvalMPI: comparison of gene structure annotations in parallel

Daniel S. Standage

Bioinformatics and Computational Biology

May 3, 2011

Gene prediction (annotation)

Input

String representing DNA sequence

Output

Regions (coordinates) of sequence that correspond to genes and their structural components

Comparing annotations

ParsEval

written in Perl

ParsEval

- written in Perl
- external dependencies (platform-specific)

ParsEval

- written in Perl
- external dependencies (platform-specific)
- significant memory demands

ParsEval

- written in Perl
- external dependencies (platform-specific)
- significant memory demands
- serial execution: run time in minutes to hours

ParsEvalMPI

• written in C

ParsEvalMPI

- written in C
- external dependencies (cross-platform)

ParsEvalMPI

- written in C
- external dependencies (cross-platform)
- reduced memory demands

ParsEvalMPI

- written in C
- external dependencies (cross-platform)
- reduced memory demands
- parallel execution: run time in ...

delegation

- delegation
- local analysis

- delegation
- local analysis
- global analysis

1 all data on all processors

- 1 all data on all processors
- even distribution of DNA

- all data on all processors
- 2 even distribution of DNA
- even distribution of genes

Local analysis

• Global analysis

- Local analysis
 - generate local model vector
- Global analysis

- Local analysis
 - generate local model vector
 - send local vector to global vector on root processor
- Global analysis

- Local analysis
 - generate local model vector
 - send local vector to global vector on root processor
 - analyze local vector, print scores
- Global analysis

- Local analysis
 - generate local model vector
 - send local vector to global vector on root processor
 - analyze local vector, print scores
- Global analysis
 - receive local vectors from each processor

- Local analysis
 - generate local model vector
 - send local vector to global vector on root processor
 - analyze local vector, print scores
- Global analysis
 - receive local vectors from each processor
 - analyze combined global vector, print scores

Scalability

Scalability

- Good
 - native data types
 - static arrays

- Good
 - native data types
 - static arrays
- Bad
 - pointers, dynamic arrays
 - dynamic data structures

- Good
 - native data types
 - static arrays
- Bad
 - pointers, dynamic arrays
 - dynamic data structures
- Ugly
 - copying data

• Excellent data distribution, load balancing

- Excellent data distribution, load balancing
- Very poor scaling properties

- Excellent data distribution, load balancing
- Very poor scaling properties
 - maximum scaling factor of 2?!?!

- Excellent data distribution, load balancing
- Very poor scaling properties
 - maximum scaling factor of 2?!?!
 - perhaps try OpenMP

- Excellent data distribution, load balancing
- Very poor scaling properties
 - maximum scaling factor of 2?!?!
 - perhaps try OpenMP
- Significant improvement