Coin Betting Algorithms for Learning-Rate Free Optimization

Presented by: Harsh Trivedi, Advised by: Professor Francesco Orabona

Motivation

- For optimization of non-smooth functions:
 - Fixed learning rate is not a good choice!
 - Optimal worst case is $O(1/\sqrt{t})$
 - In practice, we have to initialize at η_0/\sqrt{t}
 - For this the convergence become:

•

$$f(x_T) - f(x^*) \le O\left(\frac{1}{\sqrt{T}}\left(\frac{||x^*||^2}{\eta_0} + \eta_0\right)\right)$$

- $\eta_0^* = ||x^*||$, Optimal convergence: $O(\frac{||x^*||}{\sqrt{T}})$
- We don't know $||x^*||!$ How to reach optimal? Trial and error!
- $\eta_0 = 0.1 \Rightarrow 0.01$ can cost (worst case) 10X epochs!
- So, main motivations of coin betting algorithms:
 - Remove the need of tuning η_0 .
 - Remove humans from loop (No Tuning!)
 - Yet have provably optimal worst case convergence!

'Considered" State of the Art: Ada-something?

- Somewhat better option:
 - Use adaptive algorithms like Adagrad and Adam
 - Take account the observed gradients to adapt the learning rate.
 - Yet, have to start with something!
 - Yet, convergence heavily depends on what you start with!

- Just 1 order change makes them almost flat.
- Adagrad / Adam algorithms dont solve the problems by far.

Coin Betting Game for 1D function is as following:

- ullet Algorithm starts with some initial wealth (eg. wealth₀ = 1\$)
- Algorithm decides a **fraction of wealth to bet** (eg. 50%, $\beta_t = 0.5$)
- And decide the sign of (sub)-gradient to bet on.
- ullet Algorithm **observes** the **sub-gradient** at x_t
- If sign of gradient is as predicted,
 - Algorithm wins bet money back (eg. new wealth is 1.5 \$)
- If sign of gradient is not as predicted,
 - Algorithm looses bet money (eg. new wealth is 0.5 \$)
- Finally, $x_{t+1} = \beta_t$ wealth_t

Goal of betting strategy is to gain as much wealth as possible

- Key thing that algorithm is doing:
 - Decide a betting fraction (β_t) based on past gradient observations.
- If we have a betting strategy that guarantees:

$$\mathsf{winnings}_{\mathcal{T}} \geq H(\sum_{i}^{\mathcal{T}} g_t)$$

then,

$$f(\frac{\sum_{t}^{T} x_t}{T}) - f(x^*) \le \frac{H^*(x^*) + 1}{T}$$

- If we use a particular betting strategy (eg. KT Estimator), then, $H^*(x^*)$ becomes $O(\sqrt{T}||x^*||)$ and optimal worst case convergence achieved: $O(\frac{||x^*||}{\sqrt{T}})$.
- It turns out that the strategy works in n-dimensional or hilbert spaces as well.

Versions of Cocob

- Based on the betting strategy we use, we can have different coin betting algorithms for learning-rate free optimization
 - Cocob
 - KT Estimator to decide betting fraction.
 - Cocob-Backprop
 - KT Estimator but tweaked to handle grad sparsity for DL.
 - Cocob-ONS
 - Poses betting fraction selection itself as online problem and solves by Online Newton Step.

Key things done in this project

- Implemented Cocob-ONS
- Verified its behavior on convex functions
- Compared it with Cocob-Backprop and other optimizers across 3 large scale DL tasks
 - MNIST classification
 - Cifar classification
 - PTB Lang modeling
 - Convex function: f(x) = |x 10|
- And based on empirical observations,
 - Worked out 4 more versions of Cocob-ONS
 - One of which, seems to work better tuned Adam on most DL tasks

Variants of Cocob-ONS based on empirical observations

- CocobOns
 - Default Cocob-ONS
- Cocobons-weight-init
 - Initial wealth is initialized based on initial weights.
- Cocobons-grad-init
 - Initial wealth is initialized based on initial gradients
- Cocobons-adapt
 - Initial wealth is dynamically adapted based on observed gradients
- Cocobons-accum
 - Bet fraction accumulation instead of hard thresholding
- 2-4 motivated by dimension specific wealth initialization (seemingly imp for DL), 5 is motivated by visual behavior on 1D function

On convex problem, cocob-ons seems to converge better than cocob-backprop.

On non-convex problems, ${\bf cocob\text{-}backprop}$ seems to converge better than ${\bf cocob\text{-}ons}$.

cocob-backprop has negligible effect of initial wealth. But not true for cocob-ons.

Different wealth initializations for CocobONS. Cocob-Ons-Adapt works best

Did the better wealth initialization scheme help? Most of the times, yes.

CocobONS-Accum works better than best tuned CocobOns on these tasks

CocobONS-Accum works better tuned-Adam in 2 of 3 tasks

Sumary of Observations

- On convex problem, Cocob-Ons seems to be better than cocob-backprop
- On non-convex problems, Cocob-Backprop seems to be better than Cocob-Ons.
- Unlike Cocob-Backprop, Cocob-Ons has non-negligible effect of initial wealth
- Cocob-Ons-Adapt works best among all 3 wealth initialization schemes
- Cocob-Ons-Adapt works similar to tuned vanilla Cocob-Ons
- CocobONS-Accum works better than tuned vanilla Cocob-Ons
- CocobONS-Accum works better than tuned Adam in 2/3 cases

Questions?

Hope I have left some time...

References

- Cutkosky, Ashok, and Francesco Orabona. "Black-Box Reductions for Parameter-free Online Learning in Banach Spaces." arXiv preprint arXiv:1802.06293 (2018).
- Orabona, Francesco, and Tatiana Tommasi. "Training Deep Networks without Learning Rates Through Coin Betting." Advances in Neural Information Processing Systems. 2017.
- Hazan, Elad, Amit Agarwal, and Satyen Kale. "Logarithmic regret algorithms for online convex optimization." Machine Learning 69.2-3 (2007): 169-192.
- Orabona, Francesco, and Dvid Pl. "Parameter-Free Convex Learning through Coin Betting." Workshop on Automatic Machine Learning. 2016.