Machine Learning Introduction

Indian Institute of Information Technology Sri City, Chittoor

Welcome to Machine Learning Class

Today's Agenda

- Course plan
 - Pre-requisite
 - Topics
 - Textbooks/References
 - Evaluation components
 - Honor code
- Introduction to machine learning
 - What is ML?
 - When do we use ML?
 - Applications
 - Relation with AI and DL
 - Relation with other fields
 - Different machine learning paradigms

Pre-requisite

- Probability
 - Distribution, random variable, expectation, conditional probability, variance, density
- Linear algebra
 - Matrix multiplication
 - Eigen vector
- Basic programming
 - Python (First Priority)
 - Matlab/C/C++ (Second Priority)

Topics

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
- Reinforcement Learning
- Semi-supervised Learning

Textbooks/References

- 1. "Pattern Classification" by R. O. Duda, P. E. Hart and D. G. Stork.
- 2. "An Introduction to Statistical Learning" by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani.
- 3. "Pattern Recognition and Machine Learning" by Christopher M. Bishop.
- 4. "Introduction to Machine Learning" by Ethem Alpaydin.
- 5. "Pattern Recognition: An Algorithmic Approach" by M. Narasimha Murty, V. Susheela Devi.
- 6. "Machine learning" by Tom Mitchell.

Evaluation Components

• Mid-Exam: 20%

• End-Exam: 30%

Assignments: 30%

Scheduled Quiz: 10%

Class Participation: 10%

Honor Code

Do's

- Write down the code independently
- Submit the assignment within the deadline
- Read the books/references for detail description of the topics

Don'ts

 copy, refer to, or look at any official or unofficial previous years' solutions in preparing the answers

Introduction to ML

- What is ML?
- Terminologies used in ML
- When do we use ML?
- Applications
- Relation with AI and DL
- Relation with other fields
- Different machine learning paradigms

What is ML?

- Machine learning (ML) is the study of computer algorithms that improve automatically through experience.
- Machine-learning algorithms use statistics to find patterns in massive amounts of data.

 Traditionally, software engineering combined human created rules with data to create answers to a problem. Instead, machine learning uses data and answers to discover the rules behind a problem — F. Chollet, Deep Learning with Python

What is ML?

Traditional Programming

Machine Learning

Terminologies used in ML

- ML systems learn how to make inference from the input data samples to produce useful predictions on un-seen (test) data.
- Input data:
 - labelled examples: A labelled example includes feature(s) and the label. {features, label}: (x, y)For e.g.:

Features:	Label
Normal RBC, Normal HgB	Healthy
Low RBC, Low HgB	Anaemic

- unlabelled examples: An unlabelled example contains features but not the label. {features, ?}: (x, ?)
 - For e.g.:

Features:

Housing type: 4BHK,

Price: 40,000

Housing type: 4BHK,

Price: 15,000

Housing type: 2BHK,

Price: 25,000

Housing type: 2BHK,

Price: 8,000

Terminologies used in ML

- Machine Learning Model:
 - A ML model defines the relationship between the features and label.
 - For e.g.: An anaemia diagnostic model might associate certain features strongly with "anaemic" or "healthy", and predict the labels based on the association rules it inferred.

- Two Phases of ML model development
 - Training means creating or learning the model.
 - **Testing/Inference** means applying the trained model to unlabelled examples.

When do we use ML?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

Applications

- Hand-written digit recognition
- Speech recognition
- Face detection
- Object classification
- Email spam detection
- Computational biology
- Autonomous cars
- Computer-aided diagnosis

Hand-written Digit Recognition

Images are 28 x 28 pixels

Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$ Learn a classifier $f(\mathbf{x})$ such that,

$$f: \mathbf{x} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Speech Recognition

Face Detection

Object Classification

Email Spam Detection

Computational Biology

x y

AVITGACERDLQCG
KGTCCAVSLWIKSV
RVCTPVGTSGEDCH
PASHKIPFSGQRMH
HTCPCAPNLACVQT
SPKKFKCLSK

Protein Structure and Disulfide Bridges

Regression task: given sequence predict 3D structure

Protein: 1IMT

Autonomous Cars

- Nevada made it legal for autonomous cars to drive on roads in June 2011
- As of 2013, four states (Nevada, Florida, California, and Michigan) have legalized autonomous cars

Penn's Autonomous Car → (Ben Franklin Racing Team)

Computer-aided Diagnosis

Relation with AI and DL

Relation with Other Fields

Different Machine Learning Paradigms

Thank You: Question?