Lecture 5

Simplification using Boolean Algebra:

Using Boolean Algebra techniques, simplify the following expressions:

Page | 1

i.
$$AB + A(B+C) + B(B+C)$$

Solution:

$$AB+A(B+C)+B(B+C)$$

= AB+AB+AC+ BB+BC [applying distributive law]

$$= AB+AB+AC+B+BC$$
 [: $BB=B$]

$$= AB+AC+B+BC$$
 [: $AB+AB=AB$]

$$= AB + AC + B$$
 [::B+BC=B]

$$=B+AC$$
 [::AB+B=B]

Ans: B+AC

ii.
$$[A\overline{B}(C+BD)+\overline{AB}]C$$

Solution:

$$[A\overline{B}(C+BD)+\overline{AB}]C$$

=
$$(A\overline{B}C + A\overline{B}BD + \overline{AB})C$$
 [applying distributive law]

$$= (A\overline{B}C + A.0.D + \overline{A}\overline{B})C \ [\because B\overline{B} = 0]$$

$$= (A\overline{B}C + 0 + \overline{A}\overline{B})C$$

$$= (A\overline{B}C + \overline{A}\overline{B})C$$

$$= A\overline{B}CC + \overline{AB}C$$
 [applying distributive law]

$$= A\overline{B}C + \overline{A}\overline{B}C$$
 $[\because CC = C]$

$$= \overline{B}C(A + \overline{A})$$

$$= \overline{B}C.1 \qquad \left[: A + \overline{A} = 1 \right]$$

 $=\overline{B}C$

Ans: $\overline{B}C$

*See this type of examples from book.

SYEDA SHABNAM HASAN CSE.AUST

Boolean Functions:

A Boolean function is an expression formed with binary variables, the two binary operators OR and AND, the unary operator NOT, parentheses, and equal sign.

For a given value of the variables, the function can be either 0 or 1.

Page | 2

Example: *i. Implement* $F_2 = x + y'z$ with basic gates.

Figure: Implementation of Boolean function $F_2 = x + y'z$ with basic gates

ii. Implement
$$F_3 = x'y'z + x'yz + xy'$$

Figure: Implementation of Boolean function $F_3 = x'y'z + x'yz + xy'$

SYEDA SHABNAM HASAN CSE,AUST

iii. Implement $F_4 = xy' + x'z$

Page | 3

Figure: Implementation of Boolean function $F_4 = x y' + x' z$

Truth table:

	Input			Output	
χ	y	z	F_2	F_3	F_4
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	0	0

SYEDA SHABNAM HASAN CSE,AUST