Quiz 8: Streaming(DGIM) and Web Advertising _ Solution

1) (1pts) Explain and write the definition of the competitive ratio.

Competitive ratio =

min_{all possible inputs I} (|M_{greedy}|/|M_{opt}|)

(what is greedy's <u>worst</u> performance <u>over all possible</u> inputs /)

2) (1pts) Show a case using 4 ads and 4 queries to demonstrate the worst-case scenario in the greedy algorithm.

- 3) (2pts) Using the example below to show that the competitive ratio of the greedy algorithm is 1/2. (You need to use the sets Q and A in your answer)

 (Refer to lecture "Web Advertising" page 32 and 33)
 - ◆ Consider a case: M_{greedy}≠ M_{opt}
 - Consider the set Q of queries matched in M_{opt} but not in M_{greedy}
 - A is the set of ads that are adjacent (linked)
 to a <u>non-matched query</u> in Q, and A is <u>already matched</u> in M_{greedy}
 - If there exists such a non-matched (by Mgreedy) ad adjacent to a non-matched query, then greedy would have matched them
 - ♦ Since ads A are already matched in M_{greedy} then

 (1) $|M_{greedy}| \ge |A|$

- Summary so far:
 - Queries Q matched in Mopt but not in Mgreedy
 - \triangleright (1) $|M_{greedy}| \ge |A|$
- There are at least |Q| such ads in A $(|Q| \le |A|)$ otherwise the optimal algorithm couldn't have matched all gueries in Q

$$ightharpoonup$$
 So: $|Q| \le |A| \le |M_{greedy}|$

- Q': matched in M_{opt} and also in M_{greedy}
 - $ightharpoonup | M_{opt}| = |Q| + |Q'| \text{ and } |Q'| \le |M_{greedy}|$

 - ightarrow $|\mathbf{M}_{opt}| \le |\mathbf{M}_{greedy}| + |\mathbf{Q}|$ > Worst case is when $|\mathbf{Q}|$ is maximum $|\mathbf{Q}| = |\mathbf{A}| = |\mathbf{M}_{greedy}|$
- ► $|M_{opt}| \le 2|M_{greedy}|$ then $|M_{greedy}|/|M_{opt}| \ge \frac{1}{2}$
- ► Competitive Ratio = ½
- Greedy's worst performance over all possible inputs I

- 4) (1pts) Fill up the table below with the Balance algorithm
 - Bidder A1: bid $x_1 = 20$ budget $b_1 = 40$
 - bid $x_2 = 10$ Bidder A2: budget $b_2 = 50$
 - Assume ties are broken in favor of A1

Query q	Assigned to Bidder (A ₁ , A ₂ or No Ad)	Remaining Budget for A ₁	Remaining Budget for A ₂
At start		40	50
1st query q	A2	40	40
2nd query q	A1	20	40
3rd query q	A2	20	30
4th query q	A2	20	20
5th query q	A1	0	20
6th query q	A2	0	10
7 th query q	A2	0	0
8th query q	No Ad	0	0

- 5) (2pts) Show that the storage requirement for the DGIM algorithm is O(log²N) bits (Refer to lecture "streaming" page 99-101)
 - A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(log log N) bits]
 - Timestamp: 0..N-1 (N is the window size)
 - − So log₂N bits
 - Number of 1's: $2^{j} \le N$, $j \le log_2N$
 - So log₂(log₂N) for representing j
 - Can ignore; too small comparing to the timestamp requirement
 - Each bucket requires ≈ O(log₂N)
 - At most 2*j buckets
 - of sizes: 2^j, 2^{j-1}, ..., 1 (at most two for each size)
 - Size of the largest bucket $2^{j} \le N$
 - So $j \le log_2N$ and $2j \le 2log_2N$
 - Total storage: $O(log_2N * log_2N)$ or $O(log^2N)$
- 6) (3pts) Show that the error rate for the DGIM algorithm is <= 50%Suppose # of 1's in the last bucket $b = 2^{j}$

Case 1: estimate < actual value c

- Worst case: all 1's in bucket b are within range
- So estimate missed at most half of 2^j or 2^{j-1}
- $-c > 2^{j}$
 - C has at least one 1 from b, plus at least one of buckets of lower powers: 2^{j-1} + 2^{j-2}... + 1 = 2^j -1; c >= 1 + 2^j -1; missed at most 2^{j-1}
 - $1+2+4+..+2^{r-1}=2^r-1$
- So estimate missed at most 50% of c
- That is, the estimate is at least 50% of c

Case 2: estimate > actual value c

- Worst case: only rightmost bit of b is within range
- And only one bucket for each smaller power
- $-c = 1 + 2^{j-1} + 2^{j-2} + ... + 1 = 2^{j}$
- Estimate = $2^{j-1} + 2^{j-1} + ... + 1 = 2^{j} + 2^{j-1} 1$
- So estimate is no more than 50% greater than c