Compress Then Test: Powerful Kernel Testing in Near-linear Time

Mackey⁴

Kernel two-sample testing

- $\mathbb{X}_n = (X_i)_{1 < i < n}$ i.i.d. sample of \mathbb{P} , $\mathbb{Y}_n = (Y_i)_{1 < i < n}$ i.i.d. sample of \mathbb{Q} .
- Null hypothesis: $\mathcal{H}_0: \mathbb{P} = \mathbb{Q}$
- Non-parametric form via kernel maximum mean discrepancy (MMD)

$$\mathcal{H}_0: \mathrm{MMD}^2_{\mathbf{k}}(\mathbb{P}, \mathbb{Q}) \stackrel{\Delta}{=} \mathbb{E}_{X, X' \sim \mathbb{P}} \mathbf{k}(X, X') + \mathbb{E}_{Y, Y' \sim \mathbb{P}} \mathbf{k}(Y, Y') - 2\mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbf{k}(X, Y) = 0$$

with Test statistic:
$$\Delta(\mathbb{X}_n, \mathbb{Y}_n) = \begin{cases} 0 & \text{if } \mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \mathbb{Y}_n) < t_{\alpha} \text{ (accept } \mathscr{H}_0) \\ 1 & \text{if } \mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \mathbb{Y}_n) \geq t_{\alpha} \text{ (reject } \mathscr{H}_0) \end{cases}$$

Prior MMD strategies are slow

• Computing MMD takes $O(n^2)$ time

$$MMD_{\mathbf{k}}^{2}(\mathbb{X}_{n}, \mathbb{Y}_{n}) = \frac{\sum_{i,i'=1}^{n} \mathbf{k}(X_{i}, X_{i'})}{n^{2}} + \frac{\sum_{j,j'=1}^{n} \mathbf{k}(Y_{j}, Y_{j'})}{n^{2}} - \frac{2\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{k}(X_{i}, Y_{j})}{n^{2}}$$

- Can we speed up the test while
 - A. respecting Type I error: reject null rarely when $\mathbb{P}=\mathbb{Q}$, and
 - B. keeping our test powerful: reject null often when $\mathbb{P} \neq \mathbb{Q}$?
- Prior speedup strategies sacrifice power!

Speed up testing by compressing

• Compress \mathbb{X}_n to $\hat{\mathbb{X}}_m$ of size $m = \sqrt{n}$ with small $\mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \hat{\mathbb{X}}_m)$

Compress Then Test (CTT)

- 1. Run KT-Compress to get $\mathbb{X}_n \to \hat{\mathbb{X}}_m \& \mathbb{Y}_n \to \hat{\mathbb{Y}}_m$ with $m = 2^{\mathfrak{g}} \sqrt{n}$
- 2. Use $\mathrm{MMD}^2_{\mathbf{k}}(\hat{\mathbb{X}}_m, \hat{\mathbb{Y}}_m)$ instead of $\mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \mathbb{Y}_n)$
- 3. Compute threshold t_{α} via cheap permutations: Group data into $s \ll \sqrt{n}$ bins, sample \mathscr{B} permutations of [s], and permute the s bins

CTT runtime: $\tilde{O}(n) + O(s^2B)$ if $\mathfrak{g} = \log \log n$

Original test runtime: $O(n^2B)$

Total computation time (s)

Compress (the Data and) Then Test

- 1. Turns quadratic time tests to near-linear time tests
- 2. Provides up to 200x speed-up (1 hour \rightarrow 20 sec)
- 3. Maintains level <u>and</u> power provably
- 4. Works with kernel approximations (Low-rank CTT)
- 5. Applies for kernel selection (Aggregated CTT)

CTT guarantees

A. Exact Type 1 error:

If
$$\mathrm{MMD}_{\mathbf{k}}(\mathbb{P},\mathbb{Q})=0$$
, then $\mathrm{Pr}[\Delta(\mathbb{X}_n,\mathbb{Y}_n)=1]=\alpha$

B. Power:

If $\mathrm{MMD}_{\mathbf{k}}(\mathbb{P},\mathbb{Q}) \geq \mathrm{Separation}(\beta)$, then $\mathrm{Pr}[\Delta(\mathbb{X}_n,\mathbb{Y}_n)=1] \geq 1-\beta$

- B = Number of blocks used in Block MMD test
- ℓ = Number of ordered index pairs in Incomplete MMD test
- $\delta =$ Failure probability for CTT guarantees
- $\mathbf{k}' = \text{auxiliary kernel used by KT-Compress & } \mathbf{k}(x, y) = \int \mathbf{k}_{rt}(x, z) \mathbf{k}_{rt}(z, y) dz$

CTT's dominance in time-power tradeoff on Gaussian data and EMNIST data Downsampled EMNIST ($p_{even} = 0.49$, $n = 4^9$) Gaussian (mean separation = 0.012, $n = 4^9$) % 0.2 Total computation time (s)

Compress Then Test: Powerful Kernel Testing in Near-linear Time

Mackey⁴

Kernel two-sample testing

- $\mathbb{X}_n = (X_i)_{1 \le i \le n}$ i.i.d. sample of \mathbb{P} , $\mathbb{Y}_n = (Y_i)_{1 \le i \le n}$ i.i.d. sample of \mathbb{Q} .
- Null hypothesis: $\mathcal{H}_0: \mathbb{P} = \mathbb{Q}$
- Non-parametric form via kernel maximum mean discrepancy (MMD)

$$\mathcal{H}_0: \mathrm{MMD}^2_{\mathbf{k}}(\mathbb{P}, \mathbb{Q}) \stackrel{\Delta}{=} \mathbb{E}_{X, X' \sim \mathbb{P}} \mathbf{k}(X, X') + \mathbb{E}_{Y, Y' \sim \mathbb{P}} \mathbf{k}(Y, Y') - \mathbb{E}_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbf{k}(X, Y) = 0$$

with Test statistic:
$$\Delta(\mathbb{X}_n, \mathbb{Y}_n) = \begin{cases} 0 & \text{if } \mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \mathbb{Y}_n) < t_{\alpha} \text{ (accept } \mathscr{H}_0) \\ 1 & \text{if } \mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \mathbb{Y}_n) \geq t_{\alpha} \text{ (reject } \mathscr{H}_0) \end{cases}$$

Prior MMD strategies are slow

• Computing MMD takes $O(n^2)$ time

$$MMD_{\mathbf{k}}^{2}(\mathbb{X}_{n}, \mathbb{Y}_{n}) = \frac{\sum_{i,i'=1}^{n} \mathbf{k}(X_{i}, X_{i'})}{n^{2}} + \frac{\sum_{j,j'=1}^{n} \mathbf{k}(Y_{j}, Y_{j'})}{n^{2}} - \frac{2\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{k}(X_{i}, Y_{j})}{n^{2}}$$

- Can we speed up the test while
 - A. respecting Type I error: reject null rarely when $\mathbb{P}=\mathbb{Q}$, and
 - B. keeping our test powerful: reject null often when $\mathbb{P} \neq \mathbb{Q}$?
- Prior speedup strategies sacrifice power!

Speed up testing by compressing

ullet Compress \mathbb{X}_n to $\hat{\mathbb{X}}_m$ of size $m \ll n$ with small $\mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n,\hat{\mathbb{X}}_m)$

Compress Then Test (CTT)

- 1. Run KT-Compress to get $\mathbb{X}_n \to \hat{\mathbb{X}}_m \& \mathbb{Y}_n \to \hat{\mathbb{Y}}_m$ with $m=2^{\mathfrak{g}}\sqrt{n}$
- 2. Use $\mathrm{MMD}^2_{\mathbf{k}}(\hat{\mathbb{X}}_m, \hat{\mathbb{Y}}_m)$ instead of $\mathrm{MMD}^2_{\mathbf{k}}(\mathbb{X}_n, \mathbb{Y}_n)$
- 3. Compute threshold t_{α} via cheap permutations: Group data into $s \ll m$ bins, sample \mathscr{B} permutations of [s], and permute the s bins

Total runtime: $\tilde{O}(4^{\mathfrak{g}}n) = \tilde{O}(n)$ if $\mathfrak{g} = \log \log n$

Compress (the Data and) Then Test

- 1. Turns quadratic time tests to near-linear time tests
- 2. Provides up to 200x speed-up (1 hour \rightarrow 20 sec)
- 3. Maintains level <u>and</u> power provably
- 4. Works with kernel approximations (Low-rank CTT)
- 5. Applies for kernel selection (Aggregated CTT)

CTT guarantees

A. Exact Type 1 error:

If
$$\mathrm{MMD}_{\mathbf{k}}(\mathbb{P},\mathbb{Q})=0$$
, then $\mathrm{Pr}[\Delta(\mathbb{X}_n,\mathbb{Y}_n)=1]=\alpha$

B. Power:

If $\mathrm{MMD}_{\mathbf{k}}(\mathbb{P},\mathbb{Q}) \geq \mathrm{Separation}(\beta)$, then $\mathrm{Pr}[\Delta(\mathbb{X}_n,\mathbb{Y}_n)=1] \geq 1-\beta$

- $B={
 m Number\ of\ blocks\ used\ in\ Block\ MMD\ test}$
- ℓ = Number of ordered index pairs in Incomplete MMD test
- $\delta =$ Failure probability for CTT guarantees
- $\mathbf{k}' = \text{auxiliary kernel used by KT-Compress & } \mathbf{k}(x, y) = \int \mathbf{k}_{\text{rt}}(x, z) \mathbf{k}_{\text{rt}}(z, y) dz$

CTT's dominance in time-power tradeoff on Gaussian data and EMNIST data Gaussian (mean separation = 0.012, n = 49) B = 49 O.8 Gaussian (mean separation = 0.012, n = 49) Downsampled EMNIST (peven = 0.49, n = 49) B = 49 O.8 Gaussian (mean separation = 0.012, n = 49) B = 49 O.8 W-Incomp. A-Block II A-Block

- 1. Compress \mathbb{X}_m , \mathbb{Y}_m to $\hat{\mathbb{X}}_m$, $\hat{\mathbb{Y}}_m$ each of size $2^{\mathfrak{g}}\sqrt{m}$ using KT-Compress: $\tilde{O}(4^{\mathfrak{g}}m)$ time
- 2. Use $\mathrm{MMD}^2_{\mathbf{k}}(\hat{\mathbb{X}}_m, \hat{\mathbb{Y}}_m)$ as the test statistic: $\tilde{O}(4^{\mathfrak{g}}m)$ time

Total runtime: $\tilde{O}(m)$ if $\mathfrak{g} = \log \log m$

Visual comparison on $\mathbb{P}^* = 8$ iid input points 8 output points Standard thinning

