## Selvkjørende bil ved hjelp av End-to-end learning









Ferdy Wessing Fahd Boujmai Julian Aaserud

## Oppgavebeskrivelse

- Bruke Keras pakken samt andre pakker, det gitte rammeverket og bygge en CNN med egendefinert arkitektur til å lage en autonom bil.
- Bruke Udacity simulatoren til å generere treningsdata.
- Trene det nevrale nettverket på den innsamledet dataen
- Videoopptak av bilen som navigerer seg gjennom banen
- Rapportere resultatet

## Mål med prosjektet

- Lage et nettverk basert på Dave-II arkitekturen som lar oss trene en bil på en vei og kjøre den på en annen vei, eller samme vei baklengs.
- Den ønskede oppførselen til bilen er at den skal:
  - o holde seg så mye som mulig i midten av veien
  - Korrigere seg selv når den avviker fra midten
  - Kjøre stødig uten unødvendig svinging
- Eksperimentere med forskjellige arkitekturer og hyperparametre for å forbedre ytelsen

#### Relevant Litteratur

- om Dave-2 nettverket:
  - https://devblogs.nvidia.com/deep-learning-self-driving-cars/
  - https://arxiv.org/pdf/1604.07316.pd
- Bildeklassifisering hvordan designe nettverket:
  - https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neur
    al-networks.pdf
- Implementere CNNs i Keras
  - https://github.com/keras-team/keras/blob/master/examples/mnist\_cnn.py
- Bruk av Udacity simulatoren til dyp læring:
  - https://towardsdatascience.com/introduction-to-udacity-self-driving-car-simulator-4d78 198d301d

## Tidligere arbeid

#### Nvidia sitt **Dave-2** nettverk





## Tidligere arbeid



master skrevet ved NTNU av Anna Kastet og Ragnhild Cecilie Neset

• Forbedret evne til å detektere "dårlig kjøring"

| Layer type      | Kernels@Kernel size | Stride size | Output size              | Activation |
|-----------------|---------------------|-------------|--------------------------|------------|
| Input           | E                   | 8           | $3 \times 200 \times 60$ | i i        |
| Conv2D          | 24@5×5              | $2\times2$  | $31 \times 98 \times 24$ | ReLU       |
| Conv2D          | 36@5×5              | 2×2         | $14 \times 47 \times 36$ | ReLU       |
| Conv2D          | 48@5×5              | 2×2         | $5 \times 22 \times 48$  | ReLU       |
| Conv2D          | 64@3×3              | $1\times1$  | $3 \times 20 \times 64$  | ReLU       |
| Conv2D          | 64@3×3              | $1\times1$  | $2 \times 18 \times 64$  | ReLU       |
| Flatten         |                     | -           | 1152                     | -          |
| Fully Connected |                     | ·C.         | 100                      | ReLU       |
| Fully Connected | -                   | 9           | 50                       | ReLU       |
| Fully Connected | -                   | -           | 10                       | ReLU       |
| Fully Connected | 2                   | 안           | 1                        | Linear     |

#### Datasett

- Vi bruker simulatoren til å generere et datasett med bilder fra de tre kameraene foran på bilen. Disse bildene parres opp med tilsvarende registrert styrevinkel.
- Dataen blir så brukt til trening og validering av modellen.
- Alle tre bilder er fra samme øyeblikk, og med én tilsvarende styrevinkel.
  I dette tilfellet 0.3



- midt-kameraet inneholder for mye data med en styrevinkel på 0
  - å bruke dette resulterer i et bias for å kjøre rett frem
- Et nettverk som velger å alltid kjøre rett frem vil ha veldig lite loss på datasettet



- Løsning: vi fjerner 70% av dataen med styrevinkel lik null.
- Ønsker fremdeles en stor mengde "rett frem" data for å unngå unødvendig svinging.
- Potensielt problem: Kjøring med et tastatur kan medføre et dårlig datasett.
  - Har som vane å gi enten null pådrag på styring eller max pådrag på styring.
  - Mulig at et ratt eller spillkontroller hadde gitt mer jevn endring i pådrag til styrevinkel.



- Bruker i tillegg ett venstre og høyre kamera for å lære bilen å svinge tilbake til midten
- Gjøres ved å legge til en kompenserende vinkel som styrer den mot midten
- Ønsker å beholde store deler av dataen, da den skal klare å kjøre tilbake mot midten overalt
  - kan gi problemer med for mange verdier som har akkurat de kompenserende vinklene

- Sette sammen venstre, senter og høyre kamera til et datasett
- Datasettet skal fokusere på å holde bilen på midten av veien
- Noe bias mot kjøring rett fram for å unngå slingring



- Fjerner all dataen der bilen kjører rett frem (styrevinkel = 0)
- Viktig at datasettet er balansert, slik at den ikke gjør det betydelig dårligere i svinger en vei
- Ser at datasettet er ganske balansert



#### Data Augmentasjon

- Den eneste data augmentasjonen som brukes er endring av lysstyrke
  - Generaliserer datasettet til forskjellige veier og lys-settinger
  - Gjort ved å konvertere bildene til HSV (Hue, saturation, value) for så å endre value parameteren, som bestemmer lysstyrken
  - Multipliserer den originale verdien med et tilfeldig tall mellom 0.5 og 1.25
  - begrenser verdiene til å være mellom 0 og 255 for å unngå ugyldige verdier for lysstyrke
  - Endres tilbake til BGR-formatet etterpå

## Data Augmentasjon resultater

#### Original:



#### tilfeldige endringer:

















## Hyperparametre

- Bildedimensjoner: = (66, 200, 3)
- Offset til sidekamera: = 0.3
- Læringsrate: = 0.001
- Decay til læringsrate: = 0.01
- Optimaliseringsfunksjon: = Adam
- Tapsfunksjon: = Mean squared error
- Epoker: = 15
- Batch størrelse: = 100
- Trening/validering splitt: = 5%



#### Network Architecture

- Bildet til høyre er DAVE-2 arkitekturen vi har basert nettverket vårt på
  - o Antall parametre: 253,815
  - Trenbare parametre: 253,017
  - o ikke trenbare parametre: 798
- Vi bruker en modifisert variant av denne.
  Vi har:
  - Vi har gruppenormalisering etter hvert lag
  - Dropout
  - Bruker ReLu aktiveringsfunsjon etter hvert konvolusjonslag



#### Midtveisresultatene

- Bilen kjører autonomt i 15 mph
- kjører over halvparten av begge banene
- Klarer ikke alltid broa på bane 1, da den ikke har sett lignende data før
- Kræsjer på bane 2 når den ser en annen vei rett frem mens den er i svingen

#### Arbeid som gjenstår etter midtveisinnlevering

- Teste andre nettverksarkitekturer og data augmentasjoner for å forbedre opptreden
  - Legge til flere konvolusjonslag
  - Eksperimentere med forskjellige størrelser på filter, steglengde og feature map
  - Legge til dropout
  - Eksperimentere med flere og større fully connected lag
  - Eksperimentere med forskjellige optimaliseringsfunksjoner
- Generere en video av opptreden
- Eksperimentere med antall epoker

• Hovedfokus: lage et dypere nettverk som tillater bilen å kjøre raskere og "tryggere".

#### Hovedproblemet med oppgaven

- Loss funksjonen er et dårlig mål på hvor bra kjøringen er
- Har ikke klar nok definisjon av hva vi vil ha av kjøringen
- Må veie flere ting mot hverandre:
  - Hvor god er den til å være midt på veien?
  - O Hvor god er den til å holde seg på veien?
  - Må den kjøre uten å svinge unødvendig?
  - Vil man heller ha en bil som kjører veldig bra mesteparten av tiden, men ikke klarer en sving? eller
    vil man ha en bil som kjører "ok" overalt?

#### Endret pre-prosessering

- hvor mye "rett frem" data skal beholdes?
  - o beholde for mye: bilen begynner å svinge for sent
- skal vi fjerne høyre og venstre kamera også når bilen kjører rett frem?
  - Fører til unødvendig svinging
  - o kan skyldes at datasettet inneholder mest ingen styrevinkel og maksimum styrevinkel
- Beholdt pre-prosesseringen vist tidligere
  - Ga mest stabil kjøring, spesielt ved høyere hastigheter

#### Resultatet

- Bilen på track 2:
  - https://drive.google.com/open?id=17b3JVfsv6h0M5WozTHyzMg4AidyKy9F4
  - Kjører hele banen
- Bilen på track 1:
  - https://drive.google.com/open?id=1BMlbuWKYV\_I4YgLHTouB11nb-oIrwQCP
  - o Kræsjer når den kommer til "ukjente" omgivelser
- Mesteparten av tuning kom av å tilpasse bilen til 20 MPH
  - o ingen "fartsdata" i treningssettet
  - o må være mer aggressiv

# Testing av ulike arkitekturer og data augmentasjon

- Parametere som vi har forsøkt å endre:
  - o styrevinkelen lagt til på venstre og høyre kamera
  - o flere fully-connected lag
  - Endre størrelsen på feature maps i konvolusjonslag
  - Ulike optimizers

#### Offset = 0.4

- Må reagere raskere grunnet høyere fart
- kompenserende vinkel økt fra 0.2 til 0.4
- funket best når all data fra høyre og venstre kamera ble beholdt
  - o vil at den skal gå mot midten uansett hvor den er på banen

#### Ulike arkitekturer

- La til et ekstra fully-connected lag etter konvolusjonslagene
  - o størrelse på 750
  - Setter seg ikke fast der den ser andre veier men kjører likt ellers
    - kan være tilfeldig
  - o er 10 ganger så mange parametre
- Endre feature map størrelse på konvolusjonslagene
  - Endret filterstørrelsen i de to siste lagene til 128 og 256
  - o opplevdes som marginalt bedre

## Optimaliseringsfunksjoner

- SGD med momentum:
  - o klarte ikke å holde seg i midten av banen
- nAdam:
  - Vanskelig å tune tilstrekkelig, 3 parametere som må tunes
- Adam:
  - o fungerer generelt best, ikke like sensitiv for tuning

## Forbedring av datasettet

- Brukte 2 runder rundt banen
  - o mer robust mot dårlig kjøring i datasettet
- Forsøkte å bruke et datasett bestående av begge baner
  - Nettverket klarte ikke lære seg å kjøre
  - o loss-funksjonen virket bra

### Epoker

- Originalt: 15 epoker
- Forsøkte å øke til 25 epoker, i tilfelle den kunne forbedres
  - Mindre generalisert, kjørte dårlig på bane 1
  - overfitting: siden datasettet bestod av mest data med styrevinkel på 0.4 kjørte den svingete
    heller enn å kjøre rett frem
- Ved mindre enn 15 kjørte den ikke like bra
- Resultat: beholdt 15 epoker

#### Konklusjon

- End-to-end læring
  - Vanskelig å "forstå" nettverkets avgjørelser for et menneske
  - o vanskelig å gjøre robust vet aldri når noe i omgivelsene får bilen til å reagere
- Tastatur gir dårlig datasett
  - o Tendens til ingen eller maksimum styrevinkel
  - o bør heller bruke et ratt eller kontroller med analog input
- Dave-2
  - Godt utgangspunkt for selvkjørende biler
  - Vanskelig å gjøre store forbedringer uten å radikalt endre arkitekturen
- Et stort og bra datasett sannsynligvis nøkkelen for å oppnå bedre resultater
  - Kan "kjenne igjen" veiskilt, autovern når det ses mange ganger