Smart Premium: Insurance Premium Prediction App

Project Overview

SmartPremium is a machine learning project designed to predict insurance premiums for customers based on personal, financial, and policy-related data. The project leverages **XGBoost** and other regression models for accurate prediction and provides a user-friendly **Streamlit web application** for real-time premium estimation.

Problem Statement

Insurance premiums depend on factors such as age, income, health status, occupation, location, and claim history. The goal of this project is to **build an ML model that predicts insurance premiums** accurately based on these customer and policy attributes.

Project Approach

Step 1: Understanding the Data

- Load and inspect the dataset.
- Identify numerical, categorical, and text features.
- Explore missing values, inconsistencies, and skewed distributions.
- Perform EDA using visualizations to understand relationships between features.

Step 2: Data Preprocessing

- Handle missing values (median for numerical, mode for categorical).
- Encode categorical variables using One-Hot Encoding.
- Split dataset into training (80%) and evaluation (20%) sets.
- Apply **scaling** for numerical features to standardize ranges.

Step 3: Model Development

- Regression models used:
 - Linear Regression

- o Decision Tree Regressor
- Random Forest Regressor
- XGBoost Regressor (Best model)
- Evaluate models using RMSE, MAE, R², RMSLE.
- Select **XGBoost** as the final model for deployment.

Step 4: ML Pipeline & MLflow Integration

- Build a **pipeline**: preprocessing \rightarrow training \rightarrow evaluation.
- Track experiments with MLflow:
 - o Log model parameters, metrics, and versions.
 - Store trained model for deployment.

Step 5: Model Deployment with Streamlit

- Develop Streamlit web app with input fields for customer data.
- Integrate **trained XGBoost pipeline** for real-time prediction.
- Deploy on Streamlit Cloud, Heroku, or AWS for accessibility.

Dataset

- Source: Google Drive Link
- Format: CSV
- Size: 2L+ records, 20+ features
- Target Variable: Premium Amount (insurance premium)
- Feature Types: Numerical, Categorical, Text
- Key Features:
 - Age, Gender, Annual Income, Health Score, Previous Claims, Vehicle Age, Credit Score, Insurance Duration
 - Marital Status, Education Level, Occupation, Location, Policy Type, Smoking Status, Exercise Frequency, Property Type

 Data Characteristics: Missing values, skewed distributions, incorrect data types (simulating real-world complexity)

Modeling & Pipeline

- Preprocessing handled using ColumnTransformer:
 - o Numerical: StandardScaler
 - o Categorical: OneHotEncoder with handle_unknown='ignore'
- ML Pipeline integrated **XGBoost** as the final model.
- Model saved using joblib (best_model.pkl).

Streamlit App

- Input features via sliders, number inputs, and dropdowns.
- Real-time prediction output:
- Predicted Insurance Premium: 6.60

Values are scaled based on dataset distribution.

Project Deliverables

- Jupyter Notebook with code, EDA, and results
- ML Pipeline integrated with MLflow
- Trained Model for deployment
- Streamlit Web App code and link

Evaluation Metrics

• RMSE: Root Mean Squared Error

• R² Score: Variance explanation

MAE: Average prediction error

RMSLE: Logarithmic error metric