EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

25 de janeiro de 2018

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores) A f.e.m. da fonte no circuito da figura é 10 u(t), em volt, onde u(t) é a função degrau unitário. Encontre as expressões da voltagem e da corrente no indutor, em função do tempo.



2. (4 valores) Uma esfera metálica encontra-se próxima de outra peça metálica formada por um cilindro e duas semiesferas, como mostra a figura. Ambos objetos estão isolados de qualquer outro condutor. A esfera tem carga positiva  $(Q_1 > 0)$  e a peça cilíndrica está completamente descarregada ( $Q_2 = 0$ ). Arbitrando que o potencial da peça cilíndrica é zero, então o potencial da esfera é 80 V. Faça um diagrama, na sua folha de exame, mostrando as duas peças, a distribuição de cargas, as linhas de campo nas duas peças e à sua volta, e as superfícies equipotenciais de -5 V, 5 V e 75 V.



**PERGUNTAS**. Avalia-se unicamente a **letra** que apareça na caixa de "Resposta". **Cotação**: certas, 0.8 valores, erradas, -0.2, em branco ou ilegível, 0.

3. Em coordenadas cartesianas, a expressão do campo elétrico numa 6. Calcule a impedância complexa equivalente entre os pontos 1 e região do espaço é:

 $a x^2 y \cos(2z) \hat{i} + 2 x^3 \cos(2z) \hat{j} - 4 x^3 y \sin(2z) \hat{k}$ Determine o valor da constante a.

- (A) 3
- $(\mathbf{C})$  4
- $(\mathbf{E})$  2

- **(B)** 6
- **(D)** 1

Resposta:

- **4.** Num condensador ligado a uma fonte ideal com f.e.m.  $\varepsilon$  a energia eletrostática armazenada é U. Se  $\varepsilon$  for aumentada até  $2\varepsilon$ , a energia passará a ser:
  - (A) a mesma U
- (C) U/4
- $(\mathbf{E}) 4U$

- **(B)** 2 *U*
- **(D)** U/2

**Resposta:** 

- **5.** O campo magnético numa região do espaço é  $3\hat{i} + 4\hat{j} + 2\hat{k}$ (unidades SI). Determine o módulo do binário magnético numa espira triangular, com vértices na origem e nos pontos (5.6, 0, 0) e (0, 4.3, 0) (unidades SI), percorrida por uma corrente de 1 A.
  - (A) 53.8 N·m
- (C) 77.1 N·m
- (E) 64.8 N·m

- (**B**) 43.4 N·m
- (**D**) 60.2 N·m

Resposta:

(C) 0.779 + i 1.842

7. Quando a tensão num dispositivo, em função do tempo, é  $V(t) = 3\cos(80t + 0.9)$ , a expressão da corrente é I(t) = $1.5\cos(80t + 0.5)$  (unidades SI). Determine o valor da impedância desse dispositivo.

2, para tensão/corrente alternada com frequência angular  $\omega$ .

(A) 0.461 - i 0.195

Resposta:

- **(D)** 1.842 i 0.779
- **(B)** 0.461 + i 0.195
- **(E)** 1.842 + i 0.779

Resposta:

| 8. | O coeficiente de tem                                                                                                                                                            | peratura do ferro a                                                 | 20°C, é igual a 0.005. <b>13.</b>                                                                 | Um circuito de corrente als                                                                            | ternada é composto por vária:                                                                                                                                                                                                                                 | s resistên- |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
|    | Duas resistências de ferro têm valores de $1.7~\text{k}\Omega$ e $3.2~\text{k}\Omega$ , quando a temperatura é de $20^{\circ}\text{C}$ . Determine o valor da resistência equi- |                                                                     |                                                                                                   | cias e indutores. Qual dos números complexos na lista poderá ser a impedância equivalente do circuito? |                                                                                                                                                                                                                                                               |             |  |
|    | valente, quando essas duas resistências são ligadas em paralelo e a temperatura aumenta até 65°C.                                                                               |                                                                     | <ul><li>(A) 2.3 + i1.2</li><li>(B) 2.3 - i1.2</li></ul>                                           | <b>(D)</b> $-2.3 - i 1.2$                                                                              |                                                                                                                                                                                                                                                               |             |  |
|    | (A) $1.22 \text{ k}\Omega$                                                                                                                                                      | (C) $1.58 \text{ k}\Omega$                                          | (E) $1.47 \text{ k}\Omega$                                                                        | (C) i1.2                                                                                               | (E) $-2.3 + i 1.2$                                                                                                                                                                                                                                            |             |  |
|    | ( <b>B</b> ) 1.11 kΩ <b>Resposta:</b>                                                                                                                                           |                                                                     |                                                                                                   |                                                                                                        | Resposta:                                                                                                                                                                                                                                                     |             |  |
| 9. | inclinada 30° em rela<br>Calcule o fluxo magn                                                                                                                                   | ação ao plano Oxy,<br>nético através da esp<br>iforme, na direção e | m e 20 cm, encontra-se como mostra a figura. ira, produzido por um sentido do eixo dos <i>y</i> , | são $I_1 = 2 \text{ mA e } I_2 = 1 \text{ m}$                                                          | rrentes indicadas no circuito mA. Arbitrando que o potenetermine o valor do potencial $0.8 \text{ k}\Omega$ $\downarrow \qquad \qquad$ | ncial seja  |  |



- (A)  $0.1 \text{ T} \cdot \text{m}^2$
- (C)  $0.058 \text{ T} \cdot \text{m}^2$
- **(E)**  $0.116 \text{ T} \cdot \text{m}^2$

- **(B)**  $5.8 \text{ T} \cdot \text{m}^2$
- **(D)**  $0.174 \text{ T} \cdot \text{m}^2$

### Resposta:

- **10.** Dentro do paralelepípedo definido por  $0 \le x \le 3, 0 \le y \le 2$ e  $0 \le z \le 4$  (em metros), existe carga elétrica distribuída uniformemente. O fluxo elétrico produzido pelo paralelepípedo, através da esfera com centro na origem e raio igual a 5 m, é igual a 2325 N/(C·m²). Determine a carga volúmica dentro do paralelepípedo, em unidades de nC/m<sup>3</sup>.
  - (A) 2.5697
- (C) 0.3212
- **(E)** 0.1645

- **(B)** 0.8566
- **(D)** 0.571

## Resposta:

- 11. Num sistema de três cargas pontuais,  $q_1 = 4$  nC,  $q_2 = 3$  nC e  $q_3 = 2$  nC, a distância entre as cargas 1 e 2 é 2 cm, entre as cargas 1 e 3 é 2 cm, e entre as cargas 2 e 3 é 3 cm. Calcule a relação entre as forças elétricas produzidas pelas cargas 1 e 2 sobre a carga 3.
  - **(A)** 6
- **(C)** 2
- **(E)** 16/27

- **(B)** 3
- **(D)** 32/27

## Resposta:

12. Quando o sinal de entrada num circuito é  $V_e(t)$  e o sinal de saída é V(t), a função de transferência é:

$$\frac{1}{s+2} + \frac{1}{s+3}$$

 $\frac{\overline{s+2} + \overline{s+3}}{s+3}$  Determine a equação diferencial do circuito.

- (A)  $\ddot{V} + 5\dot{V} + 6V = 2\dot{V}_e + 5V_e$
- **(B)**  $\ddot{V} + 2\dot{V} + 6V = \dot{V}_e + 3V_e$
- (C)  $\dot{V} + 2V = \dot{V}_e + 3V_e$
- **(D)**  $\ddot{V} + 5\dot{V} + 6V = V_e$
- **(E)**  $\ddot{V} + 2\dot{V} + V = \dot{V}_e + 3V_e$

Resposta:

17. Duas pilhas idênticas, cada uma com f.e.m. de 1.5 V e carga total igual a 2.4 A·h, são ligadas em série. Quais são os valores da f.e.m. e da carga disponível do sistema resultante? (observe-se que a energia do sistema deve ser igual à soma das energias das duas pilhas.)

(C)  $17.8 \mu C$ 

(**D**) 35.6 μC

 $0.5 \text{ k}\Omega$ 

(C) -5.6 V

**(D)** -1.3 V

**15.** Uma carga pontual que se encontra no ponto (x, y, z) = (4, 5, 3)

16. Ligam-se três condensadores como mostra a figura, onde

 $C_1 = 4 \mu F$ ,  $C_2 = 7 \mu F$  e  $C_3 = 9 \mu F$ . Se a diferença de potencial aplicada entre os pontos A e B for 12 V qual será a carga

(C) 14.91

**(D)** 40.0

 $C_1$ 

(distâncias em cm) produz um potencial de 6 kV no ponto (x, y, z) = (2, 6, 2). Calcule o valor da carga em unidades de nC.

(A) -2.7 V

**(B)** -3.2 V

Resposta:

(A) 2.72

**(B)** 16.33

Resposta:

no condensador  $C_3$ ?

 $0.2 \text{ k}\Omega$ 

(E) -4.8 V

**(E)** 13.33

(E) 89.1 μC

(A) 3 V e 2.4 A·h

(A)  $71.3 \mu C$ 

(**B**) 59.4 μC

Resposta:

- (**D**) 3 V e 4.8 A·h
- (**B**) 1.5 V e 4.8 A·h
- (E) 1.5 V e 1.2 A·h
- (C) 3 V e 1.2 A·h

Resposta:

Regente: Jaime Villate

#### Resolução do exame de 25 de janeiro de 2018

**Problema 1**. (a) Pode usar-se unidades SI mas, para simplificar os resultados, usaremos unidades em que a resistência e a impedância são medidas em  $k\Omega$ , a indutância em H, a capacidade em  $\mu F$ , a frequência em kHz, o tempo em ms, a voltagem em V e a corrente em mA.

A impedância de ambas resistências é então 0.5, a impedância do indutor  $0.5\,s$  e a impedância do condensador  $1/(2\,s)$ . A transformada de Laplace da voltagem da fonte é 10/s. A resistência do lado direito está em série com o condensador; como tal, o circuito pode ser simplificado resultando no diagrama que se mostra à direita, onde  $\tilde{I}$  é a transformada da corrente que passa pelo indutor.



As duas impedâncias em paralelo podem ser combinadas numa só. Usando o Maxima, o resultado é:

$$z_{\rm p} = \frac{0.5 \, s \left(0.5 + \frac{1}{2 \, s}\right)}{0.5 \, s + 0.5 + \frac{1}{2 \, s}} = \frac{s^2 + s}{2 \left(s^2 + s + 1\right)}$$



Obtém-se assim o circuito no lado esquerdo. A diferença de potencial no sistema em paralelo,  $\tilde{V}$ , é a mesma diferença de potencial no indutor. A corrente na malha é  $\tilde{I}_{\rm m}$  igual a:

$$\tilde{I}_{\rm m} = \frac{\frac{10}{s}}{0.5 + z_{\rm p}} = \frac{20(s^2 + s + 1)}{2s^3 + 2s^2 + s}$$

A diferença de potencial no indutor é:

$$\tilde{V} = z_{\rm p}\tilde{I}_{\rm m} = \frac{10(s+1)}{2s^2 + 2s + 1}$$

E a corrente no indutor:

$$\tilde{I} = \frac{\tilde{V}}{0.5 \, s} = \frac{20(s+1)}{2 \, s^3 + 2 \, s^2 + s}$$

No domínio do tempo, a voltagem e a corrente no indutor são as transformadas inversas de  $\tilde{V}$  e  $\tilde{I}$ . Usando a função **ilt** do Maxima, o resultado é:

$$V(t) = 5e^{-\frac{t}{2}} \left(\cos\left(\frac{t}{2}\right) + \sin\left(\frac{t}{2}\right)\right) u(t)$$
 
$$I(t) = 20 \left(1 - e^{-\frac{t}{2}} \cos\left(\frac{t}{2}\right)\right) u(t)$$

onde o tempo t é dado em ms, a voltagem V em V e a corrente I em mA.

#### **Problema 2**. Há que ter em conta várias coisas:

- As cargas distribuem-se nas superfícies dos dois condutores. No cilindro são induzidas cargas negativas no extremo mais próximo da esfera e o mesmo número de cargas positivas no extremo mais afastado. Na superfície da esfera há cargas positivas, mais concentradas no extremo próximo do cilindro.
- Não há linhas de campo dentro da esfera nem dentro do cilindro. Há linhas de campo a começar na superfície da esfera e na superfície do cilindro, no extremo onde há carga positiva, e linhas de campo a terminar na superfície do cilindro, no extremo onde há carga negativa.
- Todas as linhas de campo são perpendiculares à superfície do objeto onde começam ou terminam.
- Nenhuma linha de campo pode começar num extremo do cilindro e terminar no outro, porque o potencial é constante no cilindro, enquanto que o potencial onde começa uma linha é sempre maior do que o potencial onde esta termina.
- A equipotencial de 75 V estará próxima da esfera, onde o potencial é 80 V, e as equipotenciais de 5 V e
   −5 V estarão próximas do cilindro, onde o potencial é 0. No entanto, nenhuma dessas equipotenciais pode tocar nenhum dos objetos, porque estes têm valores de potencial diferentes de 75 V, 5 V e −5 V.
- Essas 3 equipotenciais não se podem cruzar entre si, por terem valores de potencial diferentes, e devem ser perpendiculares às linhas de campo elétrico, em todos os pontos onde se cruzam com elas.

O gráfico é aproximadamente o seguinte:



Também pode ser representado visto desde mais longe:



## **Perguntas**

 3. B
 6. A
 9. C
 12. A
 15. B

 4. E
 7. E
 10. B
 13. A
 16. B

 5. D
 8. D
 11. B
 14. B
 17. A

# Critérios de avaliação

# Problema 1

| Uso de unidades compatíveis                                                                                                                                                                  | 0.4        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Cálculo das impedância do indutor e do condensador, em função de s                                                                                                                           | 0.4        |
| • Obtenção da expressão, em função de s, da impedância do sistema em paralelo                                                                                                                | 0.4        |
| Obtenção da expressão, em função de s, da corrente na malha                                                                                                                                  | 0.4        |
| Obtenção da expressão, em função de s, da voltagem no indutor                                                                                                                                | 0.8        |
| Obtenção da expressão, em função de s, da corrente no indutor                                                                                                                                | 0.8        |
| Obtenção da expressão, em função de t, da voltagem no indutor                                                                                                                                | 0.4        |
| Obtenção da expressão, em função de t, da corrente no indutor                                                                                                                                | 0.4        |
| Problema 2                                                                                                                                                                                   |            |
| Representação das cargas nas superfícies dos dois objetos                                                                                                                                    | 0.4        |
| <ul> <li>Representação das cargas induzidas no objeto descarregado (igual número de positivas e n com cargas de sinal oposto ao da carga do objeto carregado mais próximas deste)</li> </ul> | •          |
| • Maior concentração de cargas no objeto carregado no extremo mais próximo do outro objeto                                                                                                   | o0.4       |
| • Linhas de campo a começar ou terminar na superfície de cada objeto e perpendiculares à supe                                                                                                | rfície 0.8 |
| Equipotencial próxima do objeto carregado                                                                                                                                                    | 0.4        |
| Duas equipotenciais próximas do objeto descarregado, contornando-o nos dois lados                                                                                                            | 0.8        |
| • Equipotanciais parpandiculares às linhas de campo                                                                                                                                          | 0.4        |