Quantifying Knowledge Wealth in Knowledge Graphs: A Case Study of Wikidata

TBD¹, TBD¹, TBD² and TBD³

¹TBD

 ^{2}TBD

 ^{3}TBD

Abstract

Along with the rapid development of data volumes, the need for machine-readable data is inevitable. As a result, the use of knowledge graph data structures becomes more popular. With its development, quality aspects of a knowledge graph need to be considered, one of which is knowledge wealth: the amount of information contained in a knowledge graph. A high level of knowledge wealth in a knowledge graph may indicate the high quality of a knowledge graph; conversely, a low level of knowledge wealth can be a sign of poor quality of a knowledge graph. However, there is no formal way to define knowledge wealth and how to measure and analyze it. This study proposes a framework to analyze knowledge wealth and the level of knowledge imbalance in the RDF knowledge graph by seeing how the knowledge wealth of an entity class is spread over the knowledge graph using statistical measures and visualization. To evaluate this framework, some use cases were conducted on several classes on Wikidata to detect bias as well as to explore how different definitions of type of wealth impact the magnitude of the Gini coefficient. It is hoped that the results of this study can assist in researching knowledge wealth in the knowledge graph and be used to optimize the efforts of editing and developing knowledge graph projects by the contributors.

Keywords

Knowledge graphs, knowledge wealth, knowledge imbalance analysis

1. Introduction

Our study proposes a formal model of knowledge wealth in the RDF knowledge graph by seeing how the knowledge wealth of an entity class is spread over the knowledge graph using statistical measures and visualization. In addition, a comprehensive analytical framework is also contructed that would give insights about the wealth of a class, the inequality between classes, and similarity of class distributions. To evaluate this framework, some use cases were conducted on several <here change to exact number> classes on Wikidata.

2. Related Work

(Pak FD)

To be decided

tbd@tbd.com (TBD); tbd@tbd.com (TBD); tbd@tbd.com (TBD); tbd@tbd.com (TBD)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

Data Completeness Profiling Wisesa et al. (2019) presented ProWD, a framework and web application tool for profiling the completeness of Wikidata. It is used to provide insight on degree of attribute completeness of a class in Wikidata. The visualization provided in the we dashboard is equipped with single, compare, or multidimensional view to help in analyzing the facet at entity or class level.

Imbalance and Gap in Wikidata - Refo: Gini index

- Nio: gap property Ramadizsa1 et al. (2023) introduced the concept of gap properties that helps to characterize class-level knowledge gaps within knowledge graphs. The framework adapts association rule mining to determine ...

3. Knowledge Wealth Analytics Framework

3.1. Wealth Formal Model

Knowledge graphs follow Resource Description Framework (RDF) as a means of data organization. Without loss of generality of how the form of the URIs is, data is stored in the form of triple (s, p, o); a combination of a subject s, a predicate p, and an object s which can be visualized as nodes and directed-arc diagrams. For example, the statement "William Shakespeare's notable work is Romeo and Juliet" in human-readable URIs is mapped to the triple (WilliamShakespeare, notableWork, RomeoAndJuliet). Likewise, the statement in Wikidata, which uses ID-based URIs, is mapped to (Q692, P800, Q83186).

There are 3 kind of nodes: IRIs, literals, and blank nodes. A triple is in the form of $(s, p, o) \in G) \cap (I \cup B) \times I \times (I \cup B \cup L)$ where I is the node with type IRIs, B is the node with type of blank node, and L is the node with type of literals. In this study, we omit the usage of blank node, as this adds complexity to the analysis and may result in quality issue.

3.1.1. Class

In this study, we re-use the class model defined by Ramadizsa et al. (2023). A class is a group of entities that are the subject of the study. Human, film, and taxon are some examples of class. In general, entity s is an instance of class C is expressed by the triple (s, instanceOf, C). We can get a more narrow class inside the defined class by specifying additional conditions, each consisting of a particular property and value associated with it. Example of such conditions for human class is gender with associated value male, while example for a country would be continent with value Asia. For instance, the class of human with gender male that lived during English Renaissance is queried using (?s, $\{(?s, instanceOf, human), (?s, gender, male), (?s, timePeriod, EnglishRenaissance)\}$).

3.1.2. Entity-Level Wealth: Knowledge Wealth Type and Definition

Let s be any entity in a knowledge graph G. We quantify the wealth of entity s in G as the amount of information about s available in G. Thus, the knowledge wealth of an entity is defined by the number of properties associated/linked to it. For example, the wealth of William

Shakespeare (Q692) in Wikidata counts all triples describing Q692 in Wikidata, including those detailing his family, occupation, image, and so on.

There are several notion on how to calculate the knowledge wealth of an entity: (1) wealth based on the (non-)uniqueness of individual property; (2) wealth based on type of property; and (3) wealth based on the direction of the link. The wealth of s with regard to graph G for each wealth category is denoted by W, formalized and explained as follows.

- (a) Illustration of bag of properties and set of properties
- (b) Illustration of 3 types of property: object, literal, ID
- (c) Illustration of incoming link vs. outgoing link

Figure 1: Three simple graphs

Wealth based on the (non-)uniqueness of individual properties — The first measure of the knowledge wealth of s is bag of properties—the cardinality of set of all triples that has s in their subject position. In this definition, the triples (s, p_1, o_1) and (s, p_1, o_2) account for a wealth of 1 each, thus both have a total of 2. Let $N_{bag}(s, G)$ be a set that comprises all pair of predicate/property and object (p, o) that is connected to s. Then $W_{bag}(s, G)$ is the cardinality of $N_{bag}(s, G)$.

$$N_{bag}(s,G) = \{(p,o)|(s,p,o) \in G\}$$
$$W_{bag}(s,G) = |N_{bag}(s)|$$

Another way of measuring the wealth is by counting the number of distinct properties describing the entity, or set of properties. By this way, we are capturing the variety of information about an entity. In contrast to bag of properties, in set of properties (s,p_1,o_1) and (s,p_1,o_2) would be regarded as the "same" information because of the identical property p_1 , thus they only account for a total wealth of 1. Let $N_{set}(s,G)$ be a set that comprises all predicate/property p that is connected to s. Then $W_{set}(s,G)$ is the cardinality of $N_{set}(s,G)$.

$$N_{set}(s,G) = \{p | \exists o, (s,p,o) \in G\}$$
$$W_{set}(s,G) = |N_{set}(s,G)|$$

By the above definition, the wealth of entity s in Figure 1a is 3 and 2, using bag of properties and set of properties respectively.

Wealth based on type of property Object properties are other entities besides s that is connected with s through a property p. Wealth of s using bag of properties with only considering the object properties is defined as:

$$W_{baa,object}(s,G) = |\{(p,o)|((s,p,o) \in G) \cap (o \in I)\}|$$

Data properties are non-object properties that is connected with s through a property p. Wealth of s using bag of properties with only considering the data properties is defined as:

$$W_{bag,data}(s,G) = |\{(p,o)|((s,p,o) \in G) \cap (o \in L)\}|$$

An external ID is a special type of string that is used to represent an entity in an external source. In Wikidata, an ID is element of subclass of *Wikidata property for an identifier* (Q19847637). Just like any other property, an ID is connected with s through a property p. Let $C_{ID,G}$ be a set comprising ID property in graph G. Wealth of s using bag of properties with only considering the ID properties is defined as:

$$W_{bag,ID}(s,G) = |\{(p,o)|((s,p,o) \in G) \cap (o \in L) \cap (o \in C_{ID,G})\}|$$

Wealth based on the direction of the link In outgoing link type of wealth, the properties that are used in the wealth calculation of an entity s are those obtained from link with outwards direction from that particular entity s; that is where s appears to be the subject in the set of triples in graph G. All types of wealth defined before use the notion of outgoing link.

In incoming link type of wealth, the properties that are used in the wealth calculation of an entity s are those obtained from link with inwards direction to that particular entity s; that is where s appears to be the object in the set of triples in graph G. To illustrate, let $N_{bag}(s)$ be a set that comprises all pair of object and predicate/property (o, P) that is connected to s in incoming direction to s i.e., $N_{bag}(s) = \{(o, p) | (o, p, s) \in G\}$. Then the wealth of s using bag of properties and the view of incoming link is notated as $W_{bag,incoming}(s, G)$, and equal to the cardinality of $N_{bag}(s)$.

$$N_{bag,incoming}(s,G) = \{(o,p)|(o,p,s) \in G\}$$

$$W_{bag,incoming}(s,G) = |N_{bag,incoming}(s,G)|$$

Looking at in Figure 1c, the wealth of entity s is 1 using outgoing link, which is from the triple $(s, p_1, o1)$. Its wealth is also 1 and using incoming link, which comes from the triple $(o2, p_2, s)$.

Each definition above can be used simultaneously. For example, the wealth of entity s using set of properties, calculating object and data but not ID properties, and using the direction of outgoing link is denoted by $W_{set,outgoing,(object \cup data) \cap ID^\complement}(s,G) = |N_{set,outgoing,(object \cup data) \cap ID^\complement}(s,G)|$ with $N_{set,outgoing,(object \cup data) \cap ID^\complement}(s,G) = \{p | \exists o, (s,p,o) \in G, \cap (o \in ((I \cup L) \cap C^\complement_{ID,G})\}$

3.1.3. Class-Level Wealth

Let C be a class that consists of m distinct entities $s_1, s_2, \dots s_m$ in graph G. The wealth of C can be be quantified using its constituent entities. It can be described by several measures, such as entity count, mean and median of its entities' wealth, and percentile of its entities's wealth. To illustrate, let a class C consists of 4 entities s_1, s_2, s_3 , and s_4 from Figure 2. We may say class C has a total wealth of 4 when we look from count of entities.

3.2. Insight Model

Exploratory Data Analysis (EDA): Descriptive Statistics Measures. Descriptive statistics is concerned with the description and summarization of data. It is a summary of a dataset that helps to describe features of data quantitatively (Ross, 2019). To have a general view of wealth distribution of a class, we use the following measures:

- measures of central tendency: mean, median, mode
- measures of frequency: count, cumulative frequency/percentage
- measures of position: quartile, percentile
- measures of dispersion: minimum, maximum, range, interquartile range, standard deviation, coefficient of variation, kurtosis
- measures of symmetry: skewness

Gini Coefficient Gini coefficient is a metric used to measure the economic wealth gaps between countries. A study by Akbar (2020) utilized the Gini coefficient to measure the level of knowledge imbalance in knowledge graphs, particularly Wikidata classes. To calculate the imbalance level of a Wikidata class using Gini coefficient, the researcher started by calculating the number of properties of each entity of that particular class and storing them in an array. The array will then be sorted in descending order, from the smallest to the largest i.e., $y_i \geq y_{i+1} \forall i \in \{1,2,...,n\}$. The Gini coefficient will be calculated from the sorted array using the Gini coefficient formula below.

$$G = 1 - \frac{1}{n^2 \mu} \sum_{i=1}^{n} \sum_{j=1}^{n} Min(y_i, y_j)$$

$$G = 1 + \frac{1}{n} - \frac{1}{n^2 \mu} - (y_1 + 2y_2 + \dots + ny_n)$$

In economics context, n is the size of population of a country, μ is the average income, and y is an array containing data of each country's income. However, in the context of knowledge graph, n is the number of entities in the class, μ is the average knowledge wealth of the entities, and y is an array containing data of each entity's wealth, sorted in descending order.

For example, let's say we have a class that consists of 10 entities. After counting the number of properties of each entities (using the notion of bag of properties for wealth) and sorting them in descending order, we will have an array of y=[10,8,8,7,4,2,2,1,1,1]. The length of the array is n=10 and the average wealth is $\mu=4.4$. Then, apply the Gini coefficient formula and we get $G=1+\frac{1}{10}-\frac{2}{10^2\times 4.4}(1\times 10+2\times 8+...+10\times 1)=0.414$

For another another example, let's say we have another array of 10 entities z=[10,9,9,9,9,9,9,9,9,9,9]. By applying the same formula to z, we get a Gini coefficient value of 0.052.

The Gini coefficient has a value between 0 and 1. The higher the coefficient value, the greater the imbalance level. The value of 0 is achieved when all observed entities have the same amount of wealth. The value of 1 occurs when all income is owned solely by one entity and this phenomenon expresses full inequality.

Lorenz Curve Lorenz curve is a graphical representation of wealth inequality (The Lorenz Curve: What It Tells You About Economic Inequality, 2022). It shows how the wealth is cumulatively distributed, with data points sorted from the poorest to the richest. In Lorenz curve, the horizontal axis represents the fraction of the population, and the vertical axis represents the cumulative wealth. Therefore, if the point (x, y) = (30, 15) lies on the curve, then we can interpret that the bottom 30% of the population account for 15% of the total wealth in that population. The Lorenz curve is usually drawn along with a straight diagonal line with a slope of 1. This straight line represents perfect equality in wealth distribution, i.e., each individual in the observed population has equal wealth. The Lorenz curve itself is drawn below the straight line. The ratio of the area between the Lorenz curve and the straight line of perfect equality to the triangular area below the straight line, is the Gini coefficient.

3.3. Sample Application of Formal and Insight Model

We provide small case in Figure 2 to illustrate how both models can be applied in quantifying knowledge wealth. In this example, we will focus on the notion using bag of properties with outgoing direction of link to quantify the wealth.

Figure 2: Sample knowledge graph G that contains class C with 4 entities

A graph G has a class C, which consists of 4 entities s_1 , s_2 , s_3 , and s_4 . Using bag of properties and outgoing link direction, the walth of entity s_1 , s_2 , s_3 , and s_4 are 3, 3, 6, and 2 respectively. Table 1 shows some statistical summary that describe the wealth of class C.

Table 1: Statistical Summary of Wealth of Class C

Measure	Entity Count	Mean	Median	Mode	Minimum	Maximum	Gini
Value	4	3.5	3	3	2	6	0.21

This table shows some statistical measures to quantify the wealth of class C.

In addition, Lorenz curve for wealth of entities in class C is shown in Figure 3.

Figure 3: Lorenz curve of class C

4. Use Cases and Evaluation

This section will discuss use cases and evaluation of the research. The data used were taken from Wikidata and retrieved using Wikidata Query Service. The data is then processed and analyzed using a Python library that we created.

4.1. Bias in Wikidata

In this subchapter, analysis is conducted to see whether any particular entity group in Wikidata is underrepresented compared to others. There are 2 analysis done: gender bias and western bias.

Gender Bias in Wikidata Gender bias analysis in Wikidata will be performed on 10 Wikidata classes: computer scientist, American singer, American actress/actor, badminton player, businessperson, lawyer, American politician, American writer, American researcher, and American journalist.

To analyze the bias, the first aspect that will be considered is the proportion of each gender in every class. We assume that there are equal numbers of males and females in real-world and this will be the basis to determine if there is any bias in the data. Pearson's chi-square test (goodness-of-fit) is then performed to test the null and alternative hypotheses with significance level of $\alpha=5\%$ as follows:

 H_0 : The proportions of males and females in a particular class are equal to the real-world proportion

 H_1 : The proportions of males and females in a particular class are not equal to the real-world proportion

From Table 2, we can see that there are more male entities than female entities in all of the classes. In terms of entity count, the gender gaps in some classes such as American singer, American actress/actor, badminton player, and American writer, are slim. The gender gaps in some other classes are huge, and it can be observed in the classes of computer scientist, businessperson, lawyer, American politician, journalist, and researcher. This phenomenon can also be easily identified through visualization, as exhibited in Figure 4a, where the histogram of the female subclass is much smaller compared to the male. Looking at the chi-square test result, as p-value is well below the chosen significance level, the null hypothesis is rejected in all classes. Hence, we consider the difference of entity count to be significant and conclude that the proportions of males and females in each Wikidata class are not the same as the assumed real-world proportion of 50%-50%.

However, it is arguable that, for some classes, the gap in entity count between both genders is expected because, in reality, there are more men than women in the workforce, especially in particular fields such as engineering. As a consequence, it is not reasonable if we expect to have an equal number of males and females entities in Wikidata. Therefore, entity count may not be a good measure of bias because of the nature of the data itself. To address this, we need to evaluate other metrics which can quantify the bias on entity-level.

Table 2: Entity Count of 10 Wikidata Classes per Gender Category

Class Name	Entity	Male	Female	%Male	%Female	χ^2	p-value
American actress/actor	38087	21451	16636	0.56	0.44	608.72	2.13e-134
American journalist	17740	12223	5517	0.69	0.31	2534.97	0.0
American politician	92901	83007	9894	0.89	0.11	57539.86	0.0
American researcher	4867	3387	1480	0.70	0.30	747.21	1.63e-164
American singer	15712	9027	6685	0.57	0.43	349.09	6.67e-78
American writer	32573	19113	13460	0.59	0.41	981.07	2.34e-215
Computer scientist	17914	15229	2685	0.85	0.15	8783.74	0.0
Badminton player	25283	13377	11906	0.53	0.47	85.58	2.22e-20
Businessperson	74538	66706	7832	0.89	0.11	46501.76	0.0
Lawyer	91348	80639	10709	0.88	0.12	53533.79	0.0
•							

This table shows the entity count of 10 Wikidata classes per Gender Category. Chi-square test result shows the significance of difference between the entity count of the two genders male and female.

The next metrics to be considered are the measures of central tendency and dispersion to see where the wealth distribution is concentrated and how the data spread.

From Table 3, female entities generally have lower values of measure of central tendency (mean, median, mode). These characteristics can also be observed from the histogram in Figure 4a: female histograms' peak and dense area are located on the left of the male's. The range of property count of females is generally also lower than males. However, there are some classes in which the richest entity is a female. An example for this is the class of American Singer, which is shown by Figure 4b. Though the value of mean, median, and mode of count of properties are lower for female compared to male, the richest entity on that class is a female entity Madonna (Q1744) with bag of property count of 687, with a significant difference with Michael Jackson (Q2831) with bag of property count of 574. We also observed positive values of skewness (skewness > 0) and high kurtosis values (kurtosis > 3) in all classes, denoting the wealth distribution is right skewed and leptokurtic.

Table 3: Measures of Central Tendency of 10 Wikidata Classes per Gender Category

Class Name	Mean (o/m/f)	Median (o/m/f)	Mode (o/m/f)
American actress/actor	38.96/39.85/37.80	29.00/30.00/28.00	19/19/22
American journalist	30.71/32.44/26.89	23.00/25.00/20.00	14/14/14
American politician	19.22/19.33/18.25	15.00/15.00/15.00	13/9/13
American researcher	23.97/25.00/21.63	20.00/21.00/18.00	12/12/12
American singer	42.78/42.99/42.51	31.00/33.00/30.00	18/24/15
American writer	38.86/42.76/33.33	30.00/33.00/26.00	19/22/19
Computer scientist	24.16/24.50/22.28	19.00/19.00/18.00	8/8/8
Badminton player	21.50/21.25/21.78	16.00/16.00/16.00	13/13/13
Businessperson	16.91/16.83/17.61	13.00/13.00/13.00	10/10/9
Lawyer	22.44/22.98/18.37	19.00/19.00/15.00	16/16/12

This table shows the measures of central tendency of 10 Wikidata classes per gender category. Each measure will have 3 values: o (overall), m (male), and f (female).

Table 4: Measures of Dispersion and Symmetry of 10 Wikidata Classes per Gender Category

Class Name	Min (o/m/f)	Max (o/m/f)	Std. Deviation (o/m/f)	Skewness (o/m/f)	Kurtosis (o/m/f)
American actress/actor	4/4/4	687/574/687	33.89/32.75/35.28	4.23/3.54/4.94	30.74/21.59/39.53
American journalist	4/5/4	402/402/353	26.84/28.14/23.23	4.21/4.18/4.15	30.73/30.18/29.38
American politician	4/4/4	476/476/328	14.77/14.77/14.75	6.53/6.55/6.40	97.36/100.39/72.68
American researcher	4/4/4	222/222/171	16.89/18.19/13.17	3.86/3.79/3.45	25.67/23.50/26.78
American singer	4/4/4	687/574/687	39.35/35.33/44.21	4.09/3.16/4.61	29.38/18.24/33.19
American writer	4/4/4	476/476/425	34.12/37.19/28.30	3.56/3.29/4.05	20.51/17.35/27.82
Computer scientist	3/3/3	441/441/168	19.53/20.18/15.24	3.41/3.45/2.20	27.66/27.80/9.33
Badminton player	4/9/4	360/238/360	16.09/15.28/16.96	4.23/3.89/4.48	30.85/22.98/35.97
Businessperson	3/3/3	574/574/429	14.65/14.01/19.27	7.73/7.37/8.15	130.49/128.49/108.21
Lawyer	3/3/3	550/550/328	16.61/16.91/13.47	5.56/5.59/5.23	76.02/76.31/64.39

This table shows the measures of dispersion and symmetry of 10 Wikidata classes per gender category. Each measure will have 3 values: o (overall), m (male), and f (female).

At a glance we saw female classes are poorer compared to the male classes. To test this, we will use t-test and Welch's test. First, we performed F-test to check if the male and female classes have equal variance. The result of F-test is then used to determine the appropriate test to be used in each class. Those with equal variance will use t-test; otherwise Welch's test is used. Then, we performed the tests to verify the null and alternative hypotheses with significance level of $\alpha=5\%$ as follows:

 H_0 : The means of wealth of males and females in a particular class are equal

 H_1 : The means of wealth of males and females in a particular class are not equal

Table 5: F-Test, T-Test, and Welch's Test Result of 10 Wikidata Classes

Class Name	F-Test statistic	F-Test p-value	T-Test statistic	T-Test p-value	Welch's Test statistic	Welch's p-value
American actress/actor	0.86	0.00	5.85	4.97e-09	5.80	6.89e-09
American journalist	1.47	1.00	12.80	2.45e-37	13.75	1.01e-42
American politician	1.00	0.55	6.86	6.90e-12	6.87	6.94e-12
American researcher	1.91	1.00	6.43	1.35e-10	7.28	4.15e-13
American singer	0.64	0.00	0.75	0.45	0.73	0.47
American writer	1.73	1.00	24.80	1.56e-134	25.98	2.96e-147
Computer scientist	1.75	1.00	5.43	5.57e-08	6.60	4.61e-11
Badminton player	0.81	0.00	-2.63	8.46e-03	-2.62	8.86e-03
Businessperson	0.53	0.00	-4.48	7.56e-06	-3.49	4.81e-04
Lawyer	1.58	1.00	27.06	1.16e-160	32.16	8.04e-220

From the test results in Table 5, we rejected the null hypothesis in 9 out of 10 class–American singer being the only exception. 7 out of 9 classes are in favor of male. The other 2 classes,

(a) Histogram and Marginal Distribution Plot of Wealth for Class Computer Scientist

(b) Histogram and Marginal Distribution Plot of Wealth for Class American Singer

Figure 4: Histogram of wealth

American singer and . We concluded that female classes are more likely to have smaller means than male classes.

Here, a new measure is defined: top x% male/female relative to the expectation. The value of expectation of a gender in a class is equal to the percentage of that particular in the class. Top x% male relative to expectation is the ratio of percentage of male entities in the top x% to the expectation. Similarly, top x% female relative to expectation is the ratio of percentage of female entities in the top x% to the expectation.

When the shape of distribution of male and female of a class is the same (in other word, the wealth is distributed equivalently to male and female entities), then the value of top x% relative to expectation should be 1 for both male and female subclasses. A value higher than 1 indicates domination by that particular gender.

From Figure 5 the value of ratio between top x% potion to the expectation in the above tables, we can see that on average, the rich entities are dominated by male. Exceptions are held for 3 classes, that is classes American singer, businessperson, and badminton player. Moreover, as we set bigger portions (higher percentage), the gap of ratio between the two ender in each class decreases i.e. the value of top x% relative to expectation of both genders converge to 1.

(a) Ratio of Class Wealth to Expectation per Cumulative Top Percentage - All Classes Average

Ratio of Class Wealth to Expectation per Cumulative Percentile - All Classes Average

(b) Ratio of Class Wealth to Expectation per Quantile - All Classes Average

Figure 5: Ratio of each gender wealth to expectaion

Western Bias in Wikidata Western bias analysis in Wikidata will be performed on 5 Wikidata classes: computer scientist, singer, memorial, university, and river. For each class, we collect the data for the western portion from 8 countries: Canada, France, Germany, Ireland, Poland, Switzerland, the United Kingdom (UK), and the United State of America (USA). For the non-western portion, we also chose 8 countries: China, Egypt, India, Indonesia, Japan, Morocco, Nigeria, and South Africa.

To analyze the bias, the first aspect that will be considered is the proportion of each regional category in every class. We assume that there are equal numbers of western and non-western and this will be the basis to determine if there is any bias in the data. Pearson's chi-square test (goodness-of-fit) is then performed to test the null and alternative hypotheses with significance level of $\alpha=5\%$ as follows:

 H_0 : The proportions of western and non-western entities in a particular class are equal H_1 : The proportions of western and non-western entities in a particular class are not equal

Table 6: Entity Count of 5 Wikidata Classes per Regional Category

Class Name	Entity	Western	Non- western	%Western	%Non- western	χ^2	p-value
Computer scientist	6063	5446	617	0.90	0.10	3846.15	0.0
Singer	43240	31039	12201	0.72	0.28	8206.99	0.0
Memorial	4011	3836	175	0.96	0.04	3341.54	0.0
University	6124	2398	3726	0.39	0.61	287.98	1.37e-64
River	125567	70059	55508	0.56	0.44	1686.20	0.0

This table shows the entity count of 5 Wikidata classes per regional category. Chi-square test result shows the significance of difference between the entity count of the two genders male and female.

In terms of entity count, Table 6 shows that there are big gaps between the westerners and non-westerners in all of the classes. From Table 7, non-western entities generally have lower values of measure of central tendency (mean, median, mode). The range of property count of non-westerns is generally also lower than the westerns. Positive values of skewness (skewness > 0) and high kurtosis values (kurtosis > 3) in all classes denote the wealth distribution is right skewed and leptokurtic.

Table 7: Measures of Central Tendency of 5 Wikidata Classes per Regional Category

	<u> </u>			
Class Name	Mean (o/w/n)	Median (o/w/n)	Mode (o/w/n)	
Computer scientist	35.00/35.87/27.24	29.00/29.00/22.00	21/15/16	
Singer	34.99/39.14/24.43	25.00/29.00/18.00	15/18/14	
Memorial	11.04/11.04/11.13	9.00/9.00/9.00	9/9/9	
University	23.11/31.61/17.63	17.50/24.00/16.00	6/6/6	
River	7.69/8.55/6.60	7.00/7.00/6.00	7/7/7	

This table shows the measures of central tendency of 5 Wikidata classes per regional category. Each measure will have 3 values: o (overall), w (western), and f (non-western).

Table 8: Measures of Dispersion and Symmetry of 5 Wikidata Classes per Gender Category

Class Name	Min (o/w/n)	Max (o/w/n)	Std. Deviation (o/w/n)	Skewness (o/w/n)	Kurtosis (o/w/n)
Computer scientist	4/4/5	441/441/145	25.15/25.67/18.15	3.02/3.02/2.37	20.90/20.83/8.49
Singer	3/4/3	687/687/379	33.27/36.60/18.94	4.49/4.28/3.15	35.56/31.09/21.59
Memorial	2/3/2	142/142/52	5.89/5.82/7.28	8.50/8.95/2.98	143.57/156.15/12.79
University	2/2/2	234/234/166	20.00/25.88/12.25	2.37/1.65/2.22	10.34/5.33/12.70
River	2/2/2	452/452/148	5.24/6.46/2.68	21.71/19.54/14.67	1152.84/868.56/465.42

This table shows the measures of dispersion and symmetry of 5 Wikidata classes per gender category. Each measure will have 3 values: o (overall), w (western), and f (non-western).

Out of 5 classes, class of memorial is the only class where the null hypothesis is not rejected. In the other 4 classes, we can see a significant difference between the mean of the two reginal categories, which all are in favor of the western.

Table 9: F-Test, T-Test, and Welch's Test Result of 5 Wikidata Classes

Class Name	F-Test statistic	F-Test p-value	T-Test statistic	T-Test p-value	Welch's Test statistic	Welch's p-value
Computer scientist	2.00	1.00	8.13	5.10e-16	10.66	3.64e-25
Singer	3.73	1.00	42.22	0.0	54.59	0.0
Memorial	0.64	0.00	-0.19	0.85	-0.16	0.88
University	4.46	1.00	28.40	8.23e-167	24.73	2.12e-123
River	5.83	1.00	66.91	0.0	72.64	0.0

4.2. Effect of Type of Wealth on Inequality Measure

In this subchapter, analysis is done to see how each wealth type affects the level of inequality of Wikidata classes. There are 2 ways this is done—quantitatively using Gini coefficient and qualitatively using Lorenz curve. The analysis is performed on 8 Wikidata classes, in which 4 of them are human-related class while the other 4 are not.

When looking at the notion of wealth using the characteristics of (non-)uniqueness of individual properties, it is intuitive that the measure of bag of properties will always give higher (or at least, equal) amount of wealth compared to the measure of set. Set of property will have an upper bound of number of unique property, while bag of properties does not have any upper bound. Moreover, using bag of properties, a large number of triples having the same property may inflate the wealth substantially—though this is not necessarily a problem nor an advantage. This characteristics has a direct impact on inequality measure and it is well depicted on the value of Gini coefficient. From Table 10, in all classes, the Gini coefficient using bag of properties is always higher than of set of properties.

(a) Ratio of Class Wealth to Expectation per Cumulative Top Percentage - All Classes Average

Ratio of Class Wealth to Expectation per Cumulative Percentile - All Classes Average

(b) Ratio of Class Wealth to Expectation per Quantile - All Classes Average

Figure 6: Ratio of each regional wealth to expectaion

Using the notion of wealth by type of property, in general the smallest Gini coefficient value is mostly from wealth using object property. The second one is when using literal, while the biggest one always comes when using ID.

Using the notion of wealth by the direction of the link, the Gini coefficient when using incoming link is always higher than using outgoing link. By inspecting the Lorenz curve, we can see that most entities do not have any incoming link, and only the small percentage of entites has some incoming link. Figure 7 shows the comparison of Lorenz curve of knowledge wealth based on the direction of the link from 3 Wikidata classes. The difference between the two is very significant, because in Figure 7a the Lorenz curves are closer to the perfect equality line, meanwhile in Figure 7b the diagonal and the Lorenz curve almost form a right triangle which is very close to maximum inequality.

Table 10: Knowledge Wealth Type on Gini Coefficient

Class Name	Gini Bag	Gini Set	Gini Object	Gini Literal	Gini ID	Gini Outgoing	Gini Incoming
American researcher	0.33	0.31	0.25	0.27	0.44	0.33	0.77
American singer	0.40	0.39	0.20	0.30	0.40	0.40	0.82
Badminton player	0.29	0.14	0.35	0.34	0.42	0.29	0.68
Computer scientist	0.41	0.37	0.40	0.49	0.53	0.41	0.81
Memorial	0.22	0.18	0.36	0.54	0.56	0.22	0.99
Historical painting	0.22	0.14	0.26	0.50	0.50	0.22	0.86
Sci-fi book	0.32	0.22	0.30	0.36	0.60	0.32	0.82
University	0.44	0.41	0.29	0.50	0.53	0.44	0.91

This table shows the comparison of Gini coefficient of 8 Wikidata classes

(b) Lorenz curve of wealth using incoming link

Figure 7: Comparison of Lorenz curve of wealth based on the direction of link

5. Discussion

Generality of Framework The framework that is proposed in this study is applicable to any kind of knowledge graph. However, the library that we built for experimentation is specifically for Wikidata, because the query service, structure, and response is very unique for each knowledge graph. If further experimentation is to be conducted for other knowledge graph, then the library needs to be modified.

Issue of Incoming Link Wikidata is an entity-centric knowledge graph which means in the editathon efforts, the subject s is always be the subject of interest and the starting point to be edited by contributors. It is very unlikely that the opposite approach is done, that is, an object (o) is given and a pair subject and property (s,p) is to be searched. Not only from the contributors, the platform itself does not support the later view. This explains the phenomenon that we observed in subsection 4.2 regarding outgoing and incoming link. With existing subject-centric point of view, the number of new outgoing link introduced to the knowledge graph will grow in a much higher rate as opposed to incoming link. As a result, incoming link will be very rare, or even only present in certain entites.

Weight of Property Set of properties might be more suitable if the main concern is the presence of properties, instead of the abundance of information it contains. We will take WilliamShakespeare (Q692) in Wikidata as an example. It is reasonable if property like date of birth (P569) to be treated using set of properties, but for a well-known playwright and poet, we shall expect the property notable work (P800) to incorporate all or most of his well-known works. If only few works registered in G despite he has dozens of works, then we might conclude the entity is poor. For this case, treating the property using the notion of set is not preferable because it will fail to capture the aforementioned poor condition, while blatantly using bag of properties might skew the wealth amount.

Another phenomena that should be considered is that an entity might have several occurrences of the same property, but this property might just be 'trivial'. This is similar to a document having a lot of 'the' or 'a' (stopwords). An entity might have just a single occurrence of a property, but it is a non-trivial one. Perhapse, the property is a highly relevant one for the entity's class. For example, *timePeriod* for *William Shakespeare* will be a highly relevant one for prominent poets. However, the property *sibling* might not be too relevant for Shakespeare's career.

Due to this, the notion of (non-)uniqueness can be extended to a weighted form. The weight is given independently for each property and can be defined in such a way that is most appropriate for the nature of the property. Example of definition for weight are threshold function and inverse of median.

Let w_i be the weight of property p_i in graph G. Let $N_{bag}(S, G, p_i)$ be a set that comprises all pair (o, p_i) , that is, property p_i and an object that is connected to S. Then $W_{weighted}(S, G)$ is the sum of $N_{bag}(S, G, p_i)$ multiplied by the associated weight h_i .

how can we formalize wi to be the function of set(amount of pi in class C in G)??

$$\forall p_i, h_i = f(....)$$

$$N_{bag}(S, G, p_i) = \{(p_i, o) | (S, p_i, o) \in G\}$$

$$W_{weighted}(S, G) = \sum_i |N_{bag}(S, G, p_i)| * h_i$$

Figure 2 shows how the notion of weighted wealth can be calculated. Let's define $h_1 = 1/median$ and $h_2 = 1$. For property p_1 , 1, 2, 2, 4 list all sorted amount of information contributed from p_1 in each individual entity from S_1 to S_4 , from which we get $h_1 = 1$

1/median = 1/2. With the above definition, $W_{weighted}(S1, G) = 2$, $W_{weighted}(S2, G) = 2$, $W_{weighted}(S3, G) = 3.5$, $W_{weighted}(S1, G) = 1.5$.

====> OR (alternative of weighted, or generalized form of Wealth based on the (non-)uniqueness of individual properties)

====> T_i is a multiset $T_i = \dots$ -> isinya list semua kontribusi wealth dari property p_i pada seluruh entity S pada class C di graph G-> keuntungannya disini kita jadi bisa punya fungsi konstan, sehingga bisa catter definisi set, bag, dan weighted secara bersamaan.

Let $S_1, S_2, \ldots S_m$ be m distinct entities in graph G, which all of them collectively create a class C. Let $N_{bag}(S_j, G, p_i)$ be a set that comprises all pair of a particular property p_i and object, (p_i, o) , that is connected to S_j . We define $T_{C,i}$ a multiset consisted of the number of non-unique properties of all entities of C contributed from property p_i , i.e., cardinality of $N_{bag}(S_j, G, p_i)$. Let f be a multivariate function with 2 arguments: $T_{C,i}$ and $N_{bag}(S_j, G, p_i)$. $w_{j,i}$ is the amount of wealth of S_j attributed from property p_i , which is calculated by function f. Then $W(S_j, G)$ is the sum of $w_{j,i}$.

$$\begin{split} N_{bag}(S_{j},G,p_{i}) &= \{(p_{i},o) | (S_{j},p_{i},o) \in G\} \\ T_{C,i} &= \{|N_{bag}(S_{j},G,p_{i})| | S_{j} \in C\} \\ w_{j,i} &= f(T_{C,i},|N_{bag}(S_{j},G,p_{i})|) \\ W(S_{j},G) &= \sum_{i} w_{j,i} \end{split}$$

6. Conclusions

TBD

Acknowledgments

TBD

References