# CE30 – Discussion 11

## **Shear Stress in Beams**

Textbook: 13.1

Caglar Tamur

Spring 2024

**Instructor: Shaofan Li** 



#### Announcements

• HW11 Problems from the textbook:

11.11, 12.45, 12.49, 12.88; 13.3, P13.9



### Beams Subjected to Shear and Moment

- In the case of pure bending, we ignored the shear stresses and deformations
- For a general loading case (V+M), we have shear stresses  $au_{\chi y}$  and  $au_{\chi z}$





### Shear Force on the Horizontal Face

Equilibrium of an area element







From the equilibrium, we can get the horizontal shear force per length

$$q = \frac{\Delta H}{\Delta X} = \frac{\mathbf{V}\mathbf{Q}}{\mathbf{I}}$$

q: Shear flow (N/m)

*V* : Vertical shear force

**Q**: First moment of the shaded area wrt n.a.

*I* : Moment of inertia of the entire cross section wrt n.a.

# Shear Stress $au_{xy}$





We can get the average shear stress as

$$au_{ave} = rac{VQ}{It}$$

t: Width of the beam at the cut



# $\tau_{xy}$ in Rectangular Cross Sections

• For narrow, rectangular beams we can use  $\tau_{xy} \approx \tau_{ave}$ 

$$au_{xy} = \frac{VQ}{It}$$

$$t = b$$

 $\boldsymbol{Q}$  of the shaded area A'

*I* of the entire section



Shear varies across the depth; we can find the max value as



$$\tau_{max} = \frac{3V}{2A}$$

### Practice – Similar to HW P13.3

Three full-size  $50 \times 100$ -mm boards are nailed together to form a beam that is subjected to a vertical shear of 1500 N. Knowing that the allowable shearing force in each nail is 400 N, determine the largest longitudinal spacing s that can be used between each pair of nails.



# $\tau_{xy}$ in W-Sections

- Average shear stress  $au_{ave} = rac{VQ}{It}$
- Shear is (almost) entirely carried by the web



• Assuming all shear carried by the web, the max shear becomes

$$au_{max} = rac{V}{A_{we}}$$

### Practice – Similar to HW P13.9

**13.9 through 13.12** For the beam and loading shown, consider section n-n and determine (a) the largest shearing stress in that section, (b) the shearing stress at point a.

