Dr. Darshan Rathod

Email: darshan.rathod1994@gmail.com Linkedin: www.linkedin.com/in/dev-ddr Mobile: +91-7042958333, +91-9426946052 Website: https://dev-ddr.github.io

EDUCATION

Indian Institute of Science

Bengaluru, India 2018 - 2024

PhD + M.Tech (Res), ICER; GPA: 8.6

Advisors: Prof. Saptarshi Basu, Dr. Pratikash Panda

Thesis title: Design and diagnostics of gas turbine combustor: from high shear injector to full-scale sector of annular combustor

Sardar Vallabhbhai National Institute of Technology

Surat, India 2012 - 2016

Bachelor of Technology - Mechanical Engineering; GPA: 8.7

Professional Experience

Senior Researcher, AI security

Fujitsu Research of India Pvt. Ltd.

Bengaluru, India

Aug 2024 - Present

• Red-teaming Apply various white-box and black-box methods to identify the vulnerabilities in LLMs.

- o Defense development Develop novel strategies to defend against adversarial attacks on LLMs.
- Agentic AI Augment the safety for agentic-AI systems through rigorous red-teaming and defense development.
- Mechanistic Interpretability Understanding how models work internally by examining on various levels from neurons to layers and apply the findings in development of novel defenses.

Indian Institute of Science

Bengaluru, India

PhD in Gas turbine Combustor flow dynamics and combustion instabilities

Aug 2018 - July 2024

- DRDO Project Sole PhD student leading the team of two project-staff in the GTRE, DRDO project on gas turbine combustor research, under the guidance of Prof. Saptarshi Basu and Dr. Pratikash Panda.
- Rig Development Designed and developed a high-pressure (upto 20 bars) and high-mass flow rate (upto 1.5 kg/s) sector rig for gas turbine combustors. The Salient features of rig involves to-the-scale core components of combustor, optical access to primary and exhaust zones, remote rig operation, high-speed data acquisition.
- Experimental Diagnostics Application of advanced diagnostics tools such as high-speed PIV and OH* chemiluminescence for flow and combustion diagnostics in challenging environments of gas turbine combustors.
- Data Analysis Apply advanced data analysis tools like POD, DMD, spectral-POD, recurrence analysis etc. on the experimental data to understand intricate thermo-physical processes undergoing within the combustor.

Honda R & D India Pvt. Ltd.

Gurugram, India

Research Engineer

July 2016 - July 2018

- Emission and Performance optimization Development and testing of IC engine for BS-IV emission norms with optimizing driveability and mileage. Optimizing the fuel supply system considering diverse Indian environment.
- \circ Race Engine optimization Development of race engine specific power (kW/kg) by changing engine parameters like ignition timings, valve timings etc.
- Endurance testings Endurance testing of a specific part or system of vehicle. Specifications testing for new suppliers.
- Benchmarking Characterization of competitors vehicle and engine, Accounting of production errors in development of engine; Market survey for customer feedback on applied vehicle development.

Schneider Electric

Vadodara, India

Intern

May 2015 - June 2015

• Tools storage system Designed and developed tools storage system for improvement in ergonomics of production line staff. The compact Setup could sustain the high loads of tools and parts.

Thermal Power Station

Jamnagar, India

Intorn

December 2015

• Understanding the basic functioning of thermal power plant & various sub sections of plant like boiler, turbine, cooling tower etc.

AI AND DATASCIENCE PROJECTS

- SafeQuant:- As a team, developed a gradient based methods to improve the defense of LLM against adversarial attacks. Methods reduces the ASR from 80~90% to ~10%. Lead the team in integration of the method to Fujitsu's guardrail system to be used in production.
- Agentic AI:- Leading a team, in development of agentic system which could automatically add novel attacks and defences to Fujitsu's guardrail system, reducing significant manual labour involved in the process.
- RL based prompt gen Generating the sequence of prompts in multi-turn conversation which could surreptitiously prompt LLM to generate malicious content.
- Text-to-KG Developed a method which could generate knowledge graph (KG) from text description. This pipeline is later used in generating prompts for Red-teaming approach.

- Gradient based prompt gen Developed a method which could generate a prompt from random initial tokens for a target response, through loss propagation to the prompt.
- C1-Terminal Participated in the C1-terminal competition, wherein the task was to develop a code which can compete against other team's code in a game.
- I4AM'24 Robotics Challange Secured 3rd position in the competition, wherein the task was to design a robot given the
- Experimental control sysntem Developed using Tkinter, which can control inlet conditions of combustor remotely at high-mass flow rates and high-pressures. Code integrates various hardware like NI cDAQ-9174, ALICAT mass flow controller, arduino and mobile camera for controlling and data acquisition of experimental parameters.
- Design of smart home system AI controlled system using ESP-8266 was developed which could switch state with voice commands.
- Teaching python Taught Python programming to first year students from Jan-2021 to Dec-2023 at Ramaiah Polytechnic College, Bengaluru India.

Opensource Projects

- Finmetry Developed a pipeline for algorithmic trading strategy backtesting. https://github.com/dev-ddr/finmetry.
- ddr-analysis-tools Developed codes for experimental data analysis using POOD, sPOD, recurrence analysis, Fourier analysis etc. https://github.com/dev-ddr/ddr-analysis-tools.
- ddr-davis-data Developed codes for experimental data analysis using POOD, sPOD, recurrence analysis, Fourier analsis etc. https://github.com/dev-ddr/ddr-analysis-tools.
- ddr-mfc Developed a code to control Alicat mass flow controller. https://github.com/dev-ddr/ddr-mfc.

MECHANICAL PROJECTS

- Design and manufacturing of setup for visualization of wave motion phenomena Two bodies which are in-phase, out-of-phase or in resonance can be demonstrated using the setup.
- Lab plan development Developed an experimental facility at ICER, IISc for conducting challenging experiments remotely in isolation of experimental rig from user and sensitive equipments.

Fellowships & Awards

Fujitsu Grand Award

Fujitsu, Bengaluru, India Jun-2025

As a team, developed a method for improving the safegurding of an LLM

IISc, Bengaluru, India

Awarded the prestigious Prime Minister Research Fellowship

2018-2023

Publications

- Sindhu Padakandla, Sadbhavana Babar, Darshan D
 Rathod, Manohar Kaul. "SafeQuant: LLM Safety Analysis via Quantized Gradient Inspection" NAACL-2025.
 10.18653/v1/2025.naacl-long.127
- Darshan D Rathod, Sonu Kumar, Swetaprovo Chaudhuri, Pratikash Panda, Saptarshi Basu. "Isothermal Flow Field Characterization of a Full-Scale Sector Combustor At Elevated Pressures" ASME. J. Eng. Gas Turbines Power. April 2025; 147(4): 041002. https://doi.org/10.1115/1.4066540
- Darshan Rathod, Pratikash Panda, Saptarshi Basu. "Insights into the dynamics of full-scale sector combustor isothermal flow field" Exp Fluids 66, 24 (2025). https://doi.org/10.1007/s00348-024-03953-3
- Darshan D Rathod, Thirumalaikumaran SK, Sonu Kumar, Pratikash Panda, Saptarshi Basu. "Effect of Flare Angle in a Counter-Rotating Dual Radial Swirler on the Stability of a Swirl-Stabilized Flame", ASME Turbo Expo 2024. https://doi.org/10.1007/s00348-024-03953-3
- Darshan D. Rathod, Samprada S. Kumbhare, Swetaprovo Chaudhuri, Pratikash Panda, Saptarshi Basu and Dalton Maurya. "Design of an optically accessible single cup sector of a full-scale annular gas turbine combustor," AIAA 2023-1062. AIAA SCITECH 2023 Forum. January 2023. https://doi.org/10.2514/6.2023-1062
- Darshan D. Rathod, Pratikash Panda and Saptarshi Basu. Flow diagnostics in real scale sector of modern annular gas turbine combustor at high Pressures. NAPC 2022, IIT Bombay.
- Kumar S., Rathod D., & Basu S. (2022). Experimental investigation of performance of high-shear atomizer with discrete radial-jet fuel nozzle: Mean and dynamic characteristics. Flow, 2, E31. doi:10.1017/flo.2022.25