

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

Identification

DTM64397 512Mx72 8GB 1Rx4 PC3-12800R-11-11-C2

Performance range

Clock / Module Speed / CL-t_{RCD} -t_{RP}

800 MHz / PC3-12800 / 11-11-11 667 MHz / PC3-10600 / 10-10-10 667 MHz / PC3-10600 / 9-9-9 533 MHz / PC3-8500 / 8-8-8 533 MHz / PC3-8500 / 7-7-7

400 MHz / PC3-6400 / 6-6-6

Features

240-pin JEDEC-compliant DIMM, 133.35 mm wide by 30 mm high

Operating Voltage: 1.5V ± 0.075

I/O Type: SSTL_15

On-board I2C temperature sensor with integrated serial presencedetect (SPD) EEPROM

Data Transfer Rate: 12.8 Gigabytes/sec

Data Bursts: 8 and burst chop 4 mode

ZQ Calibration for Output Driver and On-Die Termination (ODT)

Programmable ODT / Dynamic ODT during Writes

Programmable CAS Latency: 6, 7, 8, 9, 10, and 11

Bi-Directional Differential Data Strobe signals

SDRAM Addressing (Row/Col/Bank): 16/11/3

Fully RoHS Compliant

* Not used

Description

DTM64397 is a registered 1Gx72 memory module, which conforms to JEDEC's DDR3-1600, PC3-12800 standard. The assembly is a Single-Rank comprised of eighteen 1Gx4 DDR3 SDRAMs. One 2K-bit EEPROM is used for Serial Presence Detect and a combination register/PLL, with Address and Command Parity, is also used.

Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals in a Fly-by topology.

A thermal sensor accurately monitors the DIMM module and can prevent exceeding the maximum operating temperature of 95C.

Pin Configuration Pin Description

	Fill Configuration					41				iii bescription
Front Side)				Back Sid	de			Name	Function
1 V _{REFDQ} 31 D	Q25	61 A2	91 D	Q41	121 V _{SS}	151 V _{SS}	181 A1	211 V _{SS}	CB[7:0]	Data Check Bits
2 V _{SS} 32 V	'ss	62 V _{DD}	92 V	ss	122 DQ4	152 DQS12	182 V _{DD}	212 DQS14	DQ[63:0]	Data Bits
3 DQ0 33/E	DQS3	63 CK1*	93 /[OQS5	123 DQ5	153 /DQS12	183 V _{DD}	213 /DQS12	DQS[17:0], /DQS[17:0]	Differential Data Strobes
4 DQ1 34 D	QS3	64 /CK1*	94 D	QS5	124 V _{SS}	154 V _{SS}	184 CK0	214 V _{SS}	CK[1:0], /CK[1:0]	Differential Clock Inputs
5 V _{SS} 35 V	ss	65 V _{DD}	95 V	ss	125 DQS9	155 DQ30	185 /CK0	215 DQ46	CKE[1:0]	Clock Enables
6 /DQS0 36 D	Q26	66 V _{DD}	96 D	Q42	126/DQS9	156 DQ31	186 V _{DD}	216 DQ47	/CAS	Column Address Strobe
7 DQS0 37 D	Q27	67 V _{REFCA}	97 D	Q43	127 V _{SS}	157 V _{SS}	187 /Event	217 V _{SS}	/RAS	Row Address Strobe
8 V _{SS} 38 V	ss	68 P _{AR} _I _N	98 V	ss	128 DQ6	158 CB4	188 A0	218 DQ52	/S[3:0]	Chip Selects
9 DQ2 39 C	:B0	69 VDD	99 D	Q48	129 DQ7	159 CB5	189 V _{DD}	219 DQ53	WE	Write Enable
10 DQ3 40 C	:B1	70 A10/AP	100 D	Q49	130 V _{SS}	160 V _{SS}	190 BA1	220 V _{SS}	A[15:0]	Address Inputs
11 V _{SS} 41 V	ss	71 BA0	101 V	ss	131 DQ12	161 DQS17	191 V _{DD}	221 DQS15	BA[2:0]	Bank Addresses
12 DQ8 42 /E	DQS8	$72 V_{DD}$	102 /E	OQS6	132 DQ13	162/DQS17	192/RAS	222 /DQS15	ODT[1:0]	On Die Termination Inputs
13 DQ9 43 D	QS8	73 /WE	103 D	QS6	133 V _{SS}	163 V _{SS}	193 /S0	223 V _{SS}	SA[2:0]	SPD Address
14 V _{SS} 44 V	'ss	74 /CAS	104 V	ss	134 DQS10	164 CB6	194 V _{DD}	224 DQ54	SCL	SPD Clock Input
15 /DQS1 45 C	:B2	$75 V_{DD}$	105 D	Q50	135 /DQS10	165 CB7	195 ODT0	225 DQ55	SDA	SPD Data Input/Output
16 DQS1 46 C	:B3	76 /S1 *	106 D	Q51	136 V _{SS}	166 V _{SS}	196 A13	226 V _{SS}	/EVENT	Temperature Sensing
17 V _{SS} 47 V	'ss	77 ODT1 *	107 V	ss	137 DQ14	167 NC (TEST)	197 V _{DD}	227 DQ60	/RESET	Reset for register and DRAMs
18 DQ10 48 V	, TT	$78 V_{DD}$	108 D	Q56	138 DQ15	168 /RESET	198/S3, NC*	228 DQ61	PAR_IN	Parity bit for Addr/Ctrl
19 DQ11 49 V	, TT	79 /S2, NC*	109 D	Q57	139 V _{SS}	169 CKE1 *	199 V _{SS}	229 V _{SS}	/ERR_OUT	Error bit for Parity Error
20 V _{SS} 50 C	KE0	80 V _{SS}	110 V	ss	140 DQ20	170 V _{DD}	200 DQ36	230 DQS16	A12/BC	Combination input: Addr12/Burst Chop
21 DQ16 51 V	, DD	81 DQ32	111 /E	OQS7	141 DQ21	171 A15	201 DQ37	231 /DQS16	A10/AP	Combination input: Addr10/Auto-precharge
22 DQ17 52 B	A2	82 DQ33	112 D	QS7	142 V _{SS}	172 A14	202 V _{SS}	232 V _{SS}	V _{SS}	Ground
23 V _{SS} 53 /E	E _{RR} _O _{UT}	83 V _{SS}	113 V	ss	143 DQS11	173 V _{DD}	203 DQS13	233 DQ62	V_{DD}	Power
24 /DQS2 54 V	, DD	84 /DQS4	114 D	Q58	144/DQS11	174 A12/BC	204 /DQS13	234 DQ63	V_{DDSPD}	SPD EEPROM Power
25 DQS2 55 A	.11	85 DQS4	115 D	Q59	145 V _{SS}	175 A9	205 V _{SS}	235 V _{SS}	V_{REFDQ}	Reference Voltage for DQ
26 V _{SS} 56 A	.7	86 V _{SS}	116 V	ss	146 DQ22	176 V _{DD}	206 DQ38	236 V _{DDSPD}	V_{REFCA}	Reference Voltage for CA
27 DQ18 57 V	, DD	87 DQ34	117 S	A0	147 DQ23	177 A8	207 DQ39	237 SA1	V_{TT}	Termination Voltage
28 DQ19 58 A	.5	88 DQ35	118 S	CL	148 V _{SS}	178 A6	208 V _{SS}	238 SDA	NC	No Connection
29 V _{SS} 59 A	4	89 V _{SS}	119 S	A2	149 DQ28	179 V _{DD}	209 DQ44	239 V _{SS}		
30 DQ24 60 V	, DD	90 DQ40	120 V	TT	150 DQ29	180 A3	210 DQ45	240 V _{TT}		

Front view

Notes

Tolerances on all dimensions except where otherwise indicated are $\pm .13$ (.005).

All dimensions are expressed: millimeters [inches]

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

Absolute Maximum Ratings

(Note: Operation at or above Absolute Maximum Ratings can adversely affect module reliability.)

PARAMETER	Symbol	Minimum	Maximum	Unit
Temperature, non-Operating	T _{STORAGE}	-55	100	С
Ambient Temperature, Operating	T _A	0	70	С
DRAM Case Temperature, Operating	T _{CASE}	0	95	С
Voltage on V _{DD} relative to V _{SS}	V_{DD}	-0.4	1.975	V
Voltage on Any Pin relative to V _{SS}	V_{IN}, V_{OUT}	-0.4	1.975	V

Notes:

DRAM Operating Case Temperature above 85C requires 2X refresh.

Recommended DC Operating Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Typical	Maximum	Unit	Note
Power Supply Voltage	V_{DD}	1.425	1.5	1.575	V	
SPD EEPROM Voltage	VDDSPD	3.0	3.3	3.6	V	
I/O Reference Voltage	V_{REFDQ}	0.49 V _{DD}	0.50 V _{DD}	0.51 V _{DD}	V	1
I/O Reference Voltage	V _{REFCA}	0.49 V _{DD}	0.50 V _{DD}	0.51 V _{DD}	V	1

Notes

DC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Logical High (Logic 1)	V _{IH(DC)}	V _{REF} + 0.1	V_{DD}	V
Logical Low (Logic 0)	V _{IL(DC)}	V _{SS}	V _{REF} - 0.1	V

AC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit	
Logical High (Logic 1)	V _{IH(AC)}	V _{REF} + 0.175	-	V	
Logical Low (Logic 0)	V _{IL(AC)}	-	V _{REF} - 0.175	V	

¹⁾ The value of V_{REF} is expected to equal one-half V_{DD} and to track variations in the V_{DD} DC level. Peak-to-peak noise on V_{REF} may not exceed ±1% of its DC value. For Reference $V_{DD}/2 \pm 15$ mV.

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

Differential Input Logic Levels ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Differential Input Logic High	$V_{IH.DIFF}$	+0.200	DC:V _{DD} AC:V _{DD} +0.4	V
Differential Input Logic Low	$V_{IL.DIFF}$	DC:V _{SS} AC:V _{SS} -0.4	-0.200	V
Differential Input Cross Point Voltage relative to VDD/2	V _{IX}	- 0.150	+ 0.150	V

Capacitance (T_A = 25 C, f = 100 MHz)

PARAMETER	Pin	Symbol	Minimum	Maximum	Unit
Input Capacitance, Clock	CK0, /CK0	C _{CK}	1.5	2.5	pF
Input Capacitance, Address	BA[2:0], A[15:0], /RAS, /CAS, /WE	Cı	1.5	2.5	pF
Input Capacitance Control	/S0, CKE0, ODT0	Cı	1.5	2.5	pF
Input/Output Capacitance	DQ[63:0], CB[7:0] DQS[17:0], /DQS[17:0]	C _{IO}	1.5	2.5	pF

DC Characteristics ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

		,			
PARAMETER	Symbol	Minimum	Maximum	Unit	Note
Input Leakage Current	I _{IL}	-18	+18	μA	1,2
(Any input 0 V < VIN < VDD)					
Output Leakage Current	I _{OL}	-10	+10	μΑ	2,3
(0V < VOUT < VDDQ)					

Notes:

- 1) All other pins not under test = 0 V
- 2) Values are shown per pin3) DQ, DQS, DQS and ODT are disabled

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

 I_{DD} Specifications and Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Test Condition	Max Value	Unit
Operating One Bank Active- Precharge Current	I _{DD} 0	Operating current : One bank ACTIVATE-to-PRECHARGE	1540	mA
Operating One Bank Active-Read- Precharge Current	I _{DD} 1	Operating current : One bank ACTIVATE-to-READ-to-PRECHARGE	1720	mA
Precharge Power- Down Current	I _{DD} 2P	Precharge power down current: (Slow exit)	500	mA
Precharge Power- Down Current	I _{DD} 2P	Precharge power down current: (Fast exit)	500	mA
Precharge Quiet Standby Current	I _{DD} 2Q	Precharge quiet standby current	1070	mA
Precharge Standby Current	I _{DD} 2N	Precharge standby current	1070	mA
Active Power-Down Current	I _{DD} 3P	Active power-down current	590	mA
Active Standby Current	I _{DD} 3N	Active standby current	1280	mA
Operating Burst Write Current	I _{DD} 4W	Burst write operating current	2440	mA
Operating Burst Read Current	I _{DD} 4R	Burst read operating current	2310	mA
Burst Refresh Current	I _{DD} 5	Refresh current	3320	mA
Self Refresh Current	I _{DD} 6	Self-refresh temperature current: MAX Tc = 85°C	280	mA
Operating Bank Interleave Read Current	I _{DD} 7	All bank interleaved read current	3720	mA

 $\textbf{Note:} \ \mathsf{Values} \ \mathsf{are} \ \mathsf{subject} \ \mathsf{to} \ \mathsf{change} \ \mathsf{based} \ \mathsf{on} \ \mathsf{DRAM} \ \mathsf{vendor}.$

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

AC Operating Conditions

PARAMETER	Symbol	Min	Max	Unit
Internal read command to first data	t _{AA}	13.125	20	ns
CAS-to-CAS Command Delay	t _{CCD}	4	-	t _{CK}
Clock High Level Width	t _{CH(avg)}	0.47	0.53	t _{CK}
Clock Cycle Time	t _{CK}	1.25	1.875	ns
Clock Low Level Width	t _{CL(avg)}	0.47	0.53	t _{CK}
Data Input Hold Time after DQS Strobe	t _{DH}	45	-	ps
DQ Input Pulse Width	t _{DIPW}	360	-	ps
DQS Output Access Time from Clock	t _{DQSCK}	-225	+225	ps
Write DQS High Level Width	t _{DQSH}	0.45	0.55	t _{CK(avg)}
Write DQS Low Level Width	t _{DQSL}	0.45	0.55	t _{CK(avg)}
DQS-Out Edge to Data-Out Edge Skew	t _{DQSQ}	-	100	ps
Data Input Setup Time Before DQS Strobe	t _{DS}	10	-	ps
DQS Falling Edge from Clock, Hold Time	t _{DSH}	0.2	-	t _{CK(avg)}
DQS Falling Edge to Clock, Setup Time	t _{DSS}	0.2	-	t _{CK(avg)}
Clock Half Period	t _{HP}	minimum of t_{CH} or t_{CL}	-	ns
Address and Command Hold Time after Clock	t _{IH}	140	-	ps
Address and Command Setup Time before Clock	t _{IS}	65	-	ps
Load Mode Command Cycle Time	t _{MRD}	4	-	t _{CK}
DQ-to-DQS Hold	t _{QH}	0.38	-	t _{CK(avg)}
Active-to-Precharge Time	t _{RAS}	35	9*t _{REFI}	ns
Active-to-Active / Auto Refresh Time	t _{RC}	48.125	-	ns
RAS-to-CAS Delay	t _{RCD}	13.125	-	ns
Average Periodic Refresh Interval 0° C ≤ T _{CASE} < 85° C	t _{REFI}	-	7.8	μs
Average Periodic Refresh Interval 0° C < T _{CASE} < 95° C	t _{REFI}	-	3.9	μs
Auto Refresh Row Cycle Time	t _{RFC}	260	-	ns
Row Precharge Time	t _{RP}	13.125	-	ns
Read DQS Preamble Time	t _{RPRE}	0.9	Note-1	t _{CK(avg)}
Read DQS Postamble Time	t _{RPST}	0.3	Note-2	t _{CK(avg)}
Row Active to Row Active Delay	t _{RRD}	Max(4nCK, 6ns)	-	ns
Internal Read to Precharge Command Delay	t _{RTP}	Max(4nCK, 7.5ns)	-	ns
Write DQS Preamble Setup Time	t _{WPRE}	0.9	-	t _{CK(avg)}
Write DQS Postamble Time	t _{WPST}	0.3	-	t _{CK(avg)}
Write Recovery Time	t _{WR}	15	-	ns
Internal Write to Read Command Delay	t _{WTR}	Max(4nCK, 7.5ns)	-	ns

Notes:

- 1.
- The maximum preamble is bound by tLZDQS(min) The maximum postamble is bound by tHZDQS(max)

Serial Presence Detect available upon request.

8GB - 240-Pin 1Rx4 Registered ECC DDR3 DIMM

DATARAM CORPORATION, USA Corporate Headquarters, P.O. Box 7528, Princeton, NJ 08543-7528; Voice: 609-799-0071, Fax: 609-799-6734; www.dataram.com

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.