Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick Facebook AI Research (FAIR)

Presented by Yonggyu Kim 2020.03.19

Unsupervised Feature Learning via Non-Parametric Instance Discrimination

Motivation

- A classifier can automatically <u>dis</u> <u>cover apparent similarity</u> among semantic categories, <u>without se</u> mantic annotation.
- Can we learn a good feature representation that captures appare nt similarity among instances, in stead of classes, by merely asking the feature to be discriminative of individual instances?
- Unsupervised learning setting에서 feature를 학습하고 transfer 함으로써 downstream task의 성능을 높이고자 하는 게 목표

Unsupervised Feature Learning via Non-Parametric Instance Discrimination

Method

Memory Bank = instance dictionary

$$P(i|\mathbf{v}) = \frac{\exp\left(\mathbf{w}_i^T\mathbf{v}\right)}{\sum_{j=1}^n \exp\left(\mathbf{w}_j^T\mathbf{v}\right)} \quad P(i|\mathbf{v}) = \frac{\exp\left(\mathbf{v}_i^T\mathbf{v}/\tau\right)}{\sum_{j=1}^n \exp\left(\mathbf{v}_j^T\mathbf{v}/\tau\right)} \quad \underline{\text{Computational cost}}$$

Negative contrastive estimation(NCE) performs binary classification task that is to <u>discriminate between data samples and noise samples</u>.

Unsupervised Feature Learning via Non-Parametric Instance Discrimination

Memory Bank: instances dictionary

$$P(i|\mathbf{v}) = \frac{\exp(\mathbf{v}^T \mathbf{f}_i/\tau)}{Z_i} \qquad Z_i = \sum_{j=1}^n \exp(\mathbf{v}_j^T \mathbf{f}_i/\tau)$$

Monte Carlo approximation:

Wighte Carlo approximation:
$$Z \simeq Z_i \simeq nE_j \left[\exp(\mathbf{v}_j^T \mathbf{f}_i / \tau) \right] = \frac{n}{m} \sum_{k=1}^m \exp(\mathbf{v}_{j_k}^T \mathbf{f}_i / \tau)$$

Unsupervised Feature Learning via Non-Parametric Instance Discrimination

NCE

Memory Bank: instances dictionary

$$P(i|\mathbf{v}) = rac{\exp(\mathbf{v}^T\mathbf{f}_i/ au)}{Z_i}$$
 Noise distribution : $P_n = 1/n$

$$h(i,\mathbf{v}):=P(D=1|i,\mathbf{v})=\frac{P(i|\mathbf{v})}{P(i|\mathbf{v})+mP_n(i)} \quad \text{Induced by posterior probability}$$

$$J_{NCE}(\boldsymbol{\theta}) = -E_{P_d} \left[\log h(i, \mathbf{v}) \right]$$
$$-m \cdot E_{P_n} \left[\log (1 - h(i, \mathbf{v}')) \right]$$

Consistency problem

Unsupervised learning vs Self-supervised learning

In unsupervised learning, you try to <u>find some 'structure'</u> (clusters, densities, latent representation) in the entire <u>while using their original form.</u>

In self-supervised learning, you try to <u>learn the 'dynamics' of the data at its raw level</u>. Popular self-supervised learning, i.e image colorization uses only the gray-scale (part of the data is withheld) version and try to predict its colors.

Motivation

- 앞서 설명한 논문 : Unsupervised 방식으로 image를 embedding vector로 encoding 하도록 학습
- NLP에서 Unsupervised 방식으로 mask 처리된 단어를 embedding vector로 encoding 하도록 학습
- 왜 vision은 아직 supervised pre-training 을 많이 쓸까?

NLP vs Computer vision

- The reason may stem from differences in their respective signal spaces.

Language tasks have <u>discrete signal spaces(words, sub-word units, etc.)</u> for building tokenized dictionaries.

The raw signal of computer vision is in <u>continuous</u>, <u>high-dimensional</u> <u>space</u> unlike words.

Motivation

- The authors hypothesize that it is desirable to build dictionaries that are :
 - 1. Large
 - 2. Consistent

- A main purpose of unsupervised learning is to <u>pre-train representation</u>
 that can be transferred to downstream tasks by fine-tuning.
- They show that in <u>7 downstream tasks</u> related to detection or segment ation.
- MoCo unsupervised pre-training can surpass its ImageNet supervised c ounter part, in some cases by nontrivial margins.

Method

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature Initialize queue / K=4096, C=128
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
  x_q = aug(x) # a randomly augmented version
  x_k = aug(x) # another randomly augmented version
   q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
   k = k.detach() # no gradient to keys
   # positive logits: Nx1
   l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn.(1)
   labels = zeros(N) # positives are the 0-th
   loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
   loss.backward()
   update (f_q.params)
   # momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
   # update dictionary
   enqueue (queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
```


InfoNCE

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$

Momentum update

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

aug : color jittering, horizontal flip, grayscale

Method

Comparison with existing method

Ablation: contrastive loss mechanisms.

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Ablation: momentum. The table below shows ResNet-50 accuracy with different MoCo momentum values (m in Eqn.(2)) used in pre-training (K = 4096 here):

$momentum\; m$	0	0.9	0.99	0.999	0.9999
accuracy (%)	fail	55.2	57.8	59.0	58.9

Comparison with previous results under the linear classification on ImageNet.

,	1		
method	architecture	#params (M)	accuracy (%)
Exemplar [15]	$R50w3 \times$	211	46.0 [36]
RelativePosition [11]	$R50w2 \times$	94	51.4 [36]
Jigsaw [43]	$R50w2 \times$	94	44.6 [36]
Rotation [17]	$Rv50w4 \times$	86	55.4 [36]
Colorization [62]	R101*	28	39.6 [12]
DeepCluster [3]	VGG [51]	15	48.4 [4]
BigBiGAN [14]	R50	24	56.6
	$Rv50w4 \times$	86	61.3
methods based on cont	rastive learning	follow:	
InstDisc [59]	R50	24	54.0
LocalAgg [64]	R50	24	58.8
CPC v1 [44]	R101*	28	48.7
CPC v2 [33]	R170*wider	303	65.9
CMC [54]	$R50_{L+ab}$	47	64.1 [†]
	$R50w2\times_{L+ab}$	188	68.4 [†]
AMDIM [2]	AMDIM _{small}	194	63.5 [†]
	AMDIM _{large}	626	68.1 [†]
MoCo	R50	24	60.6
	RX50	46	63.9
	$R50w2 \times$	94	65.4
	$R50w4 \times$	375	68.6

PASCAL VOC Object Detection

Ablation: backbones

pre-train	AP ₅₀	AP	AP ₇₅	pre-train	AP ₅₀	AP	AP ₇₅
random init.	58.0	32.8	32.5	random init.	52.5	28.1	26.2
super. IN-1M	81.5	53.6	58.9	super. IN-1M	80.8	52.0	56.5
MoCo IN-1M	81.1 (-0.4)	53.8 (+0.2)	58.6 (-0.3)	MoCo IN-1M	81.4 (+0.6)	55.2 (+3.2)	61.2 (+4.7)
MoCo IG-1B	81.6 (+0.1)	54.8 (+1.2)	60.3 (+1.4)	MoCo IG-1B	82.1 (+1.3)	56.2 (+4.2)	62.3 (+5.8)

⁽a) Faster R-CNN, R50-dilated-C5

(b) Faster R-CNN, R50-C4

Ablation: contrastive loss mechanisms

	R5	0-dilated	-C5	R50-C4			
pre-train	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	
end-to-end	77.8	50.1	53.8	79.7	53.0	57.9	
memory bank	79.6	51.9	56.3	80.3	53.9	58.9	
MoCo	81.1	53.8	58.6	81.4	55.2	61.2	

Ablation: Comparison with previous results

			AP_{50}	AP	AP ₇	5		
pre-train	RelPos, by [12]	Multi-task [12]	Jigsaw, by [24]	LocalAgg [64]	MoCo	MoCo	Multi-task [12]	MoCo
super. IN-1M	74.2	74.2	70.5	74.6	74.4	42.4	44.3	42.7
unsup. IN-1M	66.8 (-7.4)	70.5 (-3.7)	61.4 (-9.1)	69.1 (-5.5)	74.9 (+0.5)	46.6 (+4.2)	43.9 (-0.4)	50.1 (+7.4)
unsup. IN-14M	-	-	69.2(-1.3)	-	75.2 (+0.8)	46.9 (+4.5)	-	50.2 (+7.5)
unsup. YFCC-100M	-	-	66.6 (-3.9)	-	74.7 (+0.3)	45.9 (+3.5)	-	49.0 (+6.3)
unsup. IG-1B	-	-	-	-	75.6 (+1.2)	47.6 (+5.2)	-	51.7 (+9.0)

pre-train random init.

super. IN-1M

MoCo IN-1M

MoCo IG-1B

COCO Object Detection and Segmentation

pre-train	APbb	AP_{50}^{bb}	AP ₇₅	AP^{mk}	AP_{50}^{mk}	AP ^{mk} ₇₅	AP ^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP ^{mk}	AP_{50}^{mk}	AP ₇₅ ^{mk}
random init.	31.0	49.5	33.2	28.5	46.8	30.4	36.7	56.7	40.0	33.7	53.8	35.9
super. IN-1M	38.9	59.6	42.7	35.4	56.5	38.1	40.6	61.3	44.4	36.8	58.1	39.5
MoCo IN-1M	38.5 (-0.4)	58.9 (-0.7)	42.0 (-0.7)	35.1 (-0.3)	55.9 (-0.6)	37.7 (-0.4)	40.8 (+0.2)	61.6 (+0.3)	44.7 (+0.3)	36.9 (+0.1)	58.4 (+0.3)	39.7 (+0.2)
MoCo IG-1B	38.9 (0.0)	59.4(-0.2)	42.3 (-0.4)	35.4 (0.0)	56.5 (0.0)	37.9 (-0.2)	41.1 (+0.5)	61.8 (+0.5)	45.1 (+0.7)	37.4 (+0.6)	59.1 (+1.0)	40.2 (+0.7)
(a) Mask R-CNN, R50-FPN, 1× schedule						(b) Mask R-CNN, R50-FPN, 2× schedule						

 AP^{bb}

 AP^{bb} AP^{mk} AP_{50}^{mk} AP₇₅ 26.4 44.0 27.8 29.3 46.9 30.8 38.2 58.2 41.2 33.3 54.7 35.2 38.5 (+0.3) 58.3 (+0.1) 41.6 (+0.4) 33.6 (+0.3) 54.8 (+0.1) 35.6 (+0.4)

39.1 (+0.9) 58.7 (+0.5) 42.2 (+1.0) 34.1 (+0.8) 55.4 (+0.7) 36.4 (+1.2)

35.6 54.6 38.2 31.4 51.5 33.5 40.0 59.9 43.1 34.7 56.5 36.9 40.7 (+0.7) 60.5 (+0.6) 44.1 (+1.0) 35.4 (+0.7) 57.3 (+0.8) 37.6 (+0.7) 41.1 (+1.1) 60.7 (+0.8) 44.8 (+1.7) 35.6 (+0.9) 57.4 (+0.9) 38.1 (+1.2)

AP^{mk}

AP₇₅

(c) Mask R-CNN, R50-C4, 1× schedule

(d) Mask R-CNN, R50-C4, 2× schedule

More Downstream Tasks

COCO keypoint detection					COCO dense pose estimation			
pre-train	AP^{kp}	AP_{50}^{kp}	AP_{75}^{kp}	pre-train	AP ^{dp}	$\mathrm{AP_{50}^{dp}}$	AP ^{dp} ₇₅	
random init.	65.9	86.5	71.7	random init.	39.4	78.5	35.1	
super. IN-1M	65.8	86.9	71.9	super. IN-1M	48.3	85.6	50.6	
MoCo IN-1M	66.8 (+1.0)	87.4 (+0.5)	72.5 (+0.6)	MoCo IN-1M	50.1 (+1.8)	86.8 (+1.2)	53.9 (+3.3)	
MoCo IG-1B	66.9 (+1.1)	87.8 (+0.9)	73.0 (+1.1)	MoCo IG-1B	50.6 (+2.3)	87.0 (+1.4)	54.3 (+3.7)	

	LVIS v0.5 instance segmentation					Cityscapes instance seg.		eg. (mIoU)
pre-train	AP^{mk}	$\mathrm{AP_{50}^{mk}}$	AP_{75}^{mk}	pre-train	AP ^{mk}	AP_{50}^{mk}	Cityscapes	VOC
random init.	22.5	34.8	23.8	random init.	25.4	51.1	65.3	39.5
super. IN-1M [†]	24.4	37.8	25.8	super. IN-1M	32.9	59.6	74.6	74.4
MoCo IN-1M	24.1 (-0.3)	37.4 (-0.4)	25.5 (-0.3)	MoCo IN-1M	32.3 (-0.6)	59.3 (-0.3)	75.3 (+0.7)	72.5 (-1.9)
MoCo IG-1B	24.9 (+0.5)	38.2 (+0.4)	26.4 (+0.6)	MoCo IG-1B	32.9 (0.0)	60.3 (+0.7)	75.5 (+0.9)	73.6 (-0.8)