2022 年普通电子带专毕业生综合能力考试

电子信息工程 (0201)

注意事项:

- 1. 请自觉遵守考试纪律,不得翻书,不得上网查阅资料,只允许使用 MATLAB。
- 2. 请持72小时内2次核酸检测(间隔大于24小时)、毕业证书、学位证书入场参加考试。
- 2 末津券井二十期 22 小期 老津財间 200 分钟 港分 400 分

	33 小趣。考试的问 30 、Captain。命题范围:	10 分钟,俩分 400 分。 北雷村电专电子信息工程	程专业所有主干科目
一、不定项选择题:本 合题意。	题包括 10 小题,每小题	54分,共计40分 。每小	、题只有一个或两个选项符
1. 己知 [x] _补 = 16H,	若 $[x+y]$ _补 = C2H,贝	リ[y] _补 为 <u>▲</u> 。	
A. D8H	B. ACH	С. 54Н	D. 28H
2. 下列说法中正确的	 为是。		
A. 每一个幂级数	x在其收敛圆周上处处收	又敛	
B. 每一个幂级数	双的和函数在收敛圆内可	丁能有奇点	
C. 每一个在 z ₀ i	车续的函数一定可以在	z_0 的领域内展开成 Taylo	or 级数
D. 无穷远点 ∞ 🛭	总是复变函数的奇点		
3. 测得放大状态下台	晶体管三个电极电位分别	引为4V、4.3V和8V,	则该管子类型是。
A. NPN 型硅管	B. NPN 型锗管	C. PNP 型硅管	D. PNP 型锗管
信号 $u_{\rm i}(t)=0.15$	•	-	双大倍数 <i>A</i> _{uf} = 20dB,输入 医 ±12 V。下列关于该放大
A. 仅产生非线性	上 失真	B. 仅产生线性失真	
C. 没有失真		D. 既产生线性失真	真,又产生非线性失真
5. 下列说法中正确的	的是 <u> </u>		

- - A. 时序电路是依靠触发信号触发的电路,组合电路是不依靠触发信号触发的电路,同步 电路触发信号由同一个时钟驱动,异步电路触发信号使用不同时钟驱动
 - B. 异或门当反相器使用时,把多余输入端接低电平
 - C. 寄存器一般是边沿触发的, 仅在时钟的边沿改变状态; 锁存器一般指电平触发的 触发 器,特点是当控制端有效的时候,输入端的变化会随时传递到输出端
 - D. 可编程的只读存储器使用电进行编程,用紫外线可以擦除原来的信息

XDU 电子信息工程 (0201) 试题 第 1 页 (共 10 页)

6. 下列逻辑符号、门电路名称、晶体管电路匹配的是 ▲ 。

- 7. 若 $H(z) = \frac{2z}{(z+0.5)(z-0.2)}$ 为某非因果、非稳定离散系统的系统函数,则其可能的收敛域为_____。
 - A. |z| > 0.2
- B. |z| > 0.5
- C. |z| < 0.2
- D. |z| > 0
- 8. 离散 Hadamard 变换是____ 变换, 4 阶 Walsh 变换核矩阵为____。

- 9. 某天线辐射的平面波沿着 $+\hat{z}$ 方向传播,其电场的单位复矢量为 $\hat{e} = \hat{x}\cos\gamma + \hat{y}\sin\gamma \cdot e^{j\delta}$ 。当 $\delta = \underline{\quad }$ 时,天线呈线极化特性;当 $\cos\gamma = \sin\gamma$, $\delta = \underline{\quad }$ 时,天线呈左旋圆极化特性。 $(n \in \mathbb{Z})$
 - A. $n\pi$, $2n\pi + \frac{\pi}{2}$

B. $2n\pi$, $2n\pi - \frac{\pi}{2}$

C. $2n\pi + \frac{\pi}{2}$, $2n\pi$

- D. $2n\pi \frac{\pi}{2}$, $n\pi$
- 10. 下列各组信号中可用如图检波电路实现检波的是___。

- A. $u_1 = 2U_{\rm m}\cos\Omega t\cos\omega_{\rm c}t$, $u_2 = U_{\rm m}\cos\omega_{\rm c}t$
- B. $u_1 = 0.01 U_{\rm m} \cos (\omega_{\rm c} + \Omega) t$, $u_2 = U_{\rm m} \cos \omega_{\rm c} t$
- C. $u_1 = 0.01 U_{\rm m} \cos \left(\omega_{\rm c} t + k_{\rm p} u_{\Omega}\right)$, $u_2 = U_{\rm m} \cos \omega_{\rm c} t$
- D. $u_1 = 0.01U_{\rm m} \sin \left[\omega_{\rm c}t + \Delta\omega_{\rm m} \int^t f(t)dt + k_0 \Delta\omega_{\rm m} f(t)\right], \ u_2 = U_{\rm m} \cos \left[\omega_{\rm c}t + \Delta\omega_{\rm m} \int^t f(t)dt\right]$

_	1후 chi PE	ᆂᄪᄼᅸᇸᇬᆚᄪ	ᆖᇿᄪᄼᇧ	44 N Zo /\
<u> </u>	琪父赳:	本题包括 10 小题,	母小拟6分。	共计60分。

- 11. 在 Smith 圆图中, 电压波腹点在 extstyle extstyl
- 12. 设计算机计算一次复数乘法需要 5 μ s,一次复数加法需要 1 μ s,则在此计算机上计算 1024 点的基 2FFT 需要_______ 级蝶形运算,总的运算时间是_______ μ s。
- 13. 证明方程 $1-x-\sin x=0$ 在 [0,1] 中有且只有 1 个根,用二分法求误差不大于 $\frac{1}{2}\times 10^{-3}$ 的根需要迭代 ______ 次。
- 14. 调频信号 $u_{\text{FM}} = U_{\text{sm}} \cos(\omega_{\text{c}} t + m_{\text{f}} \sin \Omega t)$,用下图所示电路扩展线性频偏,方框 I 的名称为 人 本 ; 当本振信号 u_l 的频率 $\omega_l = 11\omega_{\text{c}}$ 时,输出电压 $u_{\text{o}} = U_{\text{om}} \cos(-\Delta_{\text{c}})$ 。

- 15. 窄带标准正态噪声电压通过平方律包络检波并归一化后,进行 4 次独立采样,视频积累后加法器输出噪声电压服从 ▲ ,其均值为 ▲ ,方差为 ▲ 。
- 16. 若一均匀平面电磁波在良导体银中传播,若电磁波的波长为 7.3514 × 10^{-6} m,银的电导率 $\sigma = 6.15 \times 10^7$ S/m,则银的集肤深度为_____,表面电阻为_____。(保留三位有效数字)
- 17. 设有平稳随机过程 X(t)。已知其均值 $m_X(t) = 1$,自相关函数 $R_X(\tau) = 1 + e^{-2|\tau|}$,随机变量 $Y = \int_0^1 X(t) \, \mathrm{d}t$ 的方差为___。
- 18. 若工作在 12 GHz 的直播卫星正馈抛物面天线的口径直径为 540 mm, 当此抛物面的口径利用率为 75% 时,该抛物面天线的方向系数为 ▲ 。(保留四位有效数字)
- 19. 在低海拔处,使用"三分之四地球模型"时,可假设雷达波束是直线传播而不考虑折射,已知雷达架设高度 $h_{\rm r}$ 和目标高度 $h_{\rm t}$,则雷达的直视距离 $R_{\rm s}$ 为_____。(标注单位)
- 20. 设一条无线链路采用视距传播方式通信,其收发天线的架设高度都等于 40 m,若不考虑大气折射率的影响,其最远通信距离为 ▲ 。(标注单位)

三、解答题:本题包括13小题,共计300分。解答应写出文字说明、证明过程或演算步骤。

21. (20分)

用给定元器件:运算放大器、电阻网络、模拟开关 CC4066、二四译码器 74LS139、反相器 74LS04 等搭建电路,实现一程控放大器,其放大倍数: 2、4、6、8 倍可控。

- (1) 给出程控部分的结构原理图,标明引脚连线。
- (2) 画出总体原理框图,并简要说明程控放大器设计流程。

注意:可能用到的引脚功能图表见附录。

22. (18分)

在 8086CPU 工作在最小方式的系统中,利用 Intel 6264 扩展设计 16KB 的 SRAM 电路,分配给 16KB 的 SRAM 存储器电路的起始地址为 30000H。

- (1) 画出此 SRAM 存储器电路与系统总线的连接图(译码电路用 74LS138)。
- (2) 结合字符串操作指令编程给 16KB SRAM 每个字节单元写 55H 数据,写完后检查每个单元是否正确,若全部都正确,置标志 DX=0,否则 DX=-1。

注意:可能用到的引脚功能图表见附录。

23. (42分)

利用给定元件设计不同类型的高通滤波器,并分析滤波器的特性。

【无源滤波器】 用电阻 R、电容 C 设计一阶 RC 无源高通滤波器。

- (1) 画出电路示意图。
- (2) 试求白噪声 X(t) 通过该电路后的功率谱密度 $G_Y(j\omega)$ 、相关函数 $R_Y(\tau)$ 、相关时间 τ_0 、噪声通频带 $\Delta\omega_n$ 。
- (3) 写出该模拟滤波器的系统函数 $H_{a}(s)$, 选用合适的方法将其转换成 IIR 数字滤波器 H(z), 最后画出信号流图。

【有源滤波器】 用运算放大器 A、电阻 R_1, R_2 、电容 C 设计反相输入的一阶高通滤波器。

- (4) 画出电路示意图。
- (5) 求传递函数,并定性画出幅频响应。
- 【数字滤波器】 用矩形窗设计线性相位高通 FIR 滤波器,要求过渡带宽度不超过 $\frac{\pi}{10}$ rad。希望逼近的理想高通滤波器频率响应函数为

$$H_{d}(e^{j\omega}) = \begin{cases} e^{-j\omega\alpha} & \omega_{c} \leq |\omega| \leq \pi, \\ 0 & \not \exists \dot{\Xi}. \end{cases}$$

- (6) 求理想高通滤波器的单位脉冲响应 $h_d(n)$ 。
- (7) 求矩形窗设计的高通 FIR 滤波器的单位脉冲响应 h(n)。说明 α 与 N 的关系,并 说明 N 的取值限制。

XDU 电子信息工程 (0201) 试题 第 4 页 (共 10 页)

24. (14分)

已知如图 1 所示的稳态电路,t = 0 时,开关 S 由 1 打向 2,求 $t \le 0$ 以后的 $u_{zi}(t)$ 和 $u_{zs}(t)$ 。(请使用**变换域**方法解题)

图 1: 题 24 图

25. (20分)

Maxwell 方程,是英国物理学家詹姆斯·克拉克·麦克斯韦在 19 世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程,是经典电磁学的基础方程。

- (1) 写出 Maxwell 方程的积分形式和微分形式,并写出本构关系。
- (2) 写出洛仑兹条件式,利用矢位 A 所满足的波动方程和 Maxwell 方程,试推导电流连续性方程。
- (3) 如果是无源区,推导满足的波动方程。

26. (21分)

MATLAB 是 matrix 和 laboratory 两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

- (1) 简述 fftshift 函数的作用。大致绘出图像分别经过离散傅里叶变换、fftshift 函数的频谱图像,指出直流分量、低频分量、高频分量的位置。
- (2) 根据表 1,阅读二相编码脉冲信号的脉压程序,补全缺失代码。

表 1:参数说明

符号	描述	
Te	每个码元的脉冲宽度 (s)	
code	二项编码序列	
Ts	采样周期 (s)	
R0	目标的距离矢量(m)(>Rmin,且在接收窗内)	
۷r	目标的速度矢量 (m/s)	
SNR	目标的信噪比矢量 (dB)	
Rmin	采样的最小距离 (m)	
Rrec	接收距离窗的大小 (m)	
bos	波数	

```
function PCM_comp(Te, code, Ts, R0, Vr, noise, SNR, Rmin, Rrec, bos)
M = round(Te/Ts);
code2 = kron(code, ones(M,1));
c = 3e8;
NR0 = ceil(log2(2 * (Rrec)/c/Ts));
NR1 = 2^NR0;
M2= M * length(code);
t1 = (0: M2 - 1) * Ts;
for k = 1: length (R0)
    NR = %% 第1处 %%
    Ri = 2 * (R0(k) - Vr(k)*t1);
    switch lower(noise)
        case {'true'}
            sp = (0.707 * (randn(1, NR1) + 1i * randn(1, NR1)));
            spt = (10^(SNR(k)/20)) * %% 第2处 %%
        otherwise
            sp = zeros(1, NR1);
            spt = %% 第2处 %%
    end
    sp(NR : NR+M2 - 1) = sp(NR: NR + M2 - 1) + spt;
end
spf= fft(sp, NR1);
Wf_t = fft(code2', NR1);
y = %% 第3处 %%
maiya = %% 第4处 %%
d = (1:NR1)*c*Ts/2+Rmin;
plot(d,maiya); xlabel("距离/m"); ylabel("脉压输出/dB"); grid on;
```

27. (21分)

正弦载波调制器和解调器如图 2(a)、(b) 所示,带限信号 f(t) 和低通滤波器的频谱分别如图 2(c)、(d) 所示,且 f(t) 的最高频率 $\omega_{\rm m}$ 远远小于载波频率 $\omega_{\rm c}$ 。

图 2: 题 27 图

- (1) 若解调器本地载波无相位差,即 $\varphi = 0$,画出如图所示各信号 $s_{DSB}(t)$, $s_p(t)$, $s_d(t)$ 的 频谱图。
- (2) 若解调器本地载波存在相位差,即 $\varphi \neq 0$,会对解调信号 $s_d(t)$ 产生什么样的影响?

28. (12分)

现有一部调频连续波雷达,已知其发射信号为线性调频信号,带宽 B 为 60 MHz ,重频时间 T_r 为 200 μ s 。回波信号经过与发射信号解线调频处理后,得到的零中频信号(实信号),此信号频率 f_b 和雷达相位中心与目标之间的距离 R_t 之间的关系为:

$$f_{\rm b} = \frac{2BR_{\rm t}}{cT_{\rm r}}$$

其中 $c = 3 \times 10^8$ m/s 为光速。信号处理分系统模数转换部分的采样率 $f_s = 100$ MHz,每次回波采样点数为 16384 点,试问:

- (1) 对采集到的信号做 DFT, 频谱序列在第 2048 个点处有一个峰值, 此峰值对应目标距 离雷达相位中心的距离是多少?
- (2) 如果在 3.125 km 处有一静止目标,则其回波信号对应的零中频信号,进行 DFT 处理, 其峰值对应频谱序列的点是多少?

29. (21分)

接收机中内部噪声对检测信号的影响,可以用接收机输入端的信号功率与噪声的功率之比 (输入信噪比)通过接收机后的相对变化来衡量。假如接收机中没有内部噪声,称为"理想接收机",则其输出信噪比与输入信噪比相同。实际接收机总是有内部噪声的,如果内部噪声越大,输出信噪比减小得越多,则说明接收机性能越差。通常用噪声系数和噪声温度来衡量接收机的噪声性能。

- (1) 设两级网络的增益分别为 G_{A1} 和 G_{A2} ,等效噪声温度分别为 T_{e1} 和 T_{e2} ,噪声系数为 F_{1} 和 F_{2} 。给出两级电路网络框图,并推导两级网络噪声系数的级联公式。
- (2) 某雷达发射矩形脉冲宽度 3 μs,接收机采用矩形频率特性匹配滤波,系统组成和参数如图 3,试求接收机总噪声系数。并计算天线噪声温度为 380 K 时的系统噪声温度。(无需修正天线噪声温度)

图 3: 题 29 图

30. (33分)

图像作为信息的重要表现形式,其具有数据量大,带宽宽等特点。有限的存储空间和传输 图像的需求都要求对图像进行压缩。设一幅黑白数字相片有 400 万个像素,每个像素有 8 个灰度级。

- (1) 若用 3 kHz 带宽的信道传输,且信号噪声功率比等于 20dB,试问需要传输多少时间?
- (2) 为了压缩数据,一种方式是使用无损压缩编码。对于给定熵的信源,Huffman编码能得到最小平均码长。若图像序列 8 个灰度级的概率分别为 0.40, 0.18, 0.10, 0.10, 0.07, 0.06, 0.05, 0.04, 画出 Huffman树,写出编码得到的码字,并求平均码长、熵、编码效率、冗余度、压缩比。
- (3) 图像压缩编码中,还常在变换域进行有损压缩。小波 (Wavelet) 变换的基本思想是利用小波变换将原图像转换为小波域上的系数,利用小波变换的能量集中作用,只保留那些能量较大的系数进行编码,就可达到图像压缩的目的。请说明小波变换进行图像压缩的步骤,并绘制小波分解的示意图。

31. (28分)

匹配滤波器是当输入端出现信号与加性白噪声时,使其输出信噪比最大的滤波器,就是一个与输入信号相匹配的最佳滤波器。对接收机而言,匹配滤波器是指其接收机的频率特性与发射信号的频谱特性相匹配。设信号 s(t) 是一个时宽为 T,幅度为 A 的矩形脉冲,其数学表示式为

$$s(t) = \begin{cases} A & |t| \le \frac{T}{2}, \\ 0 & |t| > \frac{T}{2}. \end{cases}$$

现考虑该信号的匹配滤波问题。假定线性时不变滤波器的输入信号为 x(t) = s(t) + n(t),其中,n(t) 是均值为零、功率谱密度为 $P_n(j\omega) = \frac{N_0}{2}$ 的白噪声。

- (1) 求信号 s(t) 的匹配滤波器的系统函数 $H(j\omega)$ 和脉冲响应 h(t);
- (2) 求匹配滤波器的输出信号 $s_0(t)$, 并画出波形;
- (3) 求输出信号的功率信噪比 SNR₀。
- (4) 简述匹配滤波器是否能接受模拟信号。
- (5) 经过信道传输后码元相位带有随机性的信号称为随相信号。对于能量相等、先验概率相等、互不相关的 2FSK 信号及存在带限白噪声的通信系统,假设接收信号码元相位的概率密度服从均匀分布,画出随相信号的相关接收机和匹配滤波接收机,并说明两者是否等价?(无需证明,给出结论即可)

32. (32分)

某一维相扫天线由 12 个阵元组成,要求扫描范围为 ±30°,不出现栅瓣,采用四位数字式铁氧体移相器(22.5°,45°,90°,180°)。数字移相器是由单元移相器级联组成的,每个单元移相器构成数字移相器的一个位。定向耦合器型移相器的原始形式为铁氧体环行器。

- (1) 写出图 4 对应铁氧体环形器的 S 矩阵, 并说明如何得到典型铁氧体隔离器?
- (2) 说明相控阵天线的原理,并给出阵元间距的约束条件。
- (3) 若取 $d = \frac{\lambda}{2}$,计算扫描角为 6° 和 30° 时每个移相器的相移量,并计算扫描角为 30° 时的二进制控制信号。
- (4) 若取 $d = \frac{1}{2}$,计算扫描角为 0°和 ±30°时的半功率波束宽度。

XDU 电子信息工程 (0201) 试题 第 8 页 (共 10 页)

图 4: 铁氧体环形器

33. (18分)

当天线架设得很高、天线的方向性很强时,以及在卫星通信和卫星(飞船)间通信中,电磁波的传播接近自由空间传播。自由空间是指电磁波的传播没有任何障碍的空间,例如没有吸收、反射、折射、绕射和散射等。

- (1) 设收发天线均置于自由空间,并远离其它物体。推导理想条件下的 Friis 传输公式。
- (2) 目标收到电磁波的照射,因其散射特性将产生散射回波,用目标散射截面积 (RCS)σ 表征其散射特性。若假定目标可将接收到的回波能量无损耗地辐射出来,推导雷达接 收天线处的回波功率密度。
- (3) 设发射功率 $P_t = 10$ W,发射天线增益 $G_t = 100$,接收天线增益 $G_r = 10$,传播距离为 50 km,电磁波频率为 800 MHz,试求接收功率和传播损耗。

附录:可能用到的引脚功能图表

FUNCTION TABLE INPUTS **CUTPUTS** SELECT **ENABLE** G ΥO Y2 Υ3 В Н н Ļ L н н L L н н t. н н L Н L L = high level, L = low level, X = irrelevant

ENABLE 1 (2) (6) 1Y2

SELECT 1A (2) (6) 1Y2

INPUTS (15) (15) (11) 2Y1

SELECT 2A (14) (10) 2Y2

SELECT 2B (13) (9) 2Y3

logic diagram (positive logic)

(b) 内部逻辑电路与引脚

(a) 功能表

图 5: 双 2-4 译码器 74LS139

N, J, D, NS, or PW Packages 14-Pin PDIP, CDIP, SOIC, SO, or TSSOP Top View

SIG A IN/OUT [1	14] V _{DD}
SIG A OUT/IN [2	13	CONTROL A
SIG B OUT/IN [12	CONTROL D
SIG B IN/OUT [11	SIG D IN/OUT
CONTROL B		10	SIG D OUT/IN
CONTROL C	6	9] SIG C OUT/IN
V _{SS} [7	8	SIG C IN/OUT

(a) 外部功能引脚图

Pin Functions

i iii i dilotiono				
PIN		1/0	DESCRIPTION	
NO.	NAME	1/0	DESCRIPTION	
1	SIG A IN/OUT	I/O	Input/Output for Switch A	
2	SIG A OUT/IN	I/O	Output/Input for Switch A	
3	SIG B OUT/IN	I/O	Output/Input for Switch B	
4	SIG B IN/OUT	I/O	Input/Output for Switch B	
5	CONTROL B	I	Control pin for Switch B	
6	CONTROL C	I	Control pin for Switch C	
7	V _{SS}	_	Low Voltage Power Pin	
8	SIG C IN/OUT	I/O	Input/Output for Switch C	
9	SIG C OUT/IN	I/O	Output/Input for Switch C	
10	SIG D OUT/IN	I/O	Output/Input for Switch D	
11	SIG D IN/OUT	I/O	Input/Output for Switch D	
12	CONTROL D	I	Control Pin for D	
13	CONTROL A	I	Control Pin for A	
14	V _{DD}	_	Power Pin	

(b) 引脚功能

图 6: 模拟开关 CC4066

SN5404 . . . J PACKAGE
SN54LS04, SN54S04 . . . J OR W PACKAGE
SN7404, SN74S04 . . . D, N, OR NS PACKAGE
SN74LS04 . . . D, DB, N, OR NS PACKAGE
(TOP VIEW)

(a) 外部功能引脚图

logic diagram (positive logic)

(b) 内部逻辑电路

图 7:6 反相器 74LS04

图 8: SRAM 芯片 6264

图 9: 3-8 译码器 74LS138