

# PopKAT Default Pharmacokinetic Models

# **Structures and Parameters**

Frederic Y. Bois INERIS, Verneuil en Halatte, France

Enhancing the reliability, efficiency, and usability of Bayesian population PBPK modeling (Grant number: 1U01FD005838-01)

# **Table of Contents**

| Summary                                                                           | 2        |
|-----------------------------------------------------------------------------------|----------|
| Introduction                                                                      | 3        |
| Units                                                                             | 3        |
| Absorption models                                                                 | 3        |
| First-order absorption                                                            | 3        |
| Advanced dissolution and absorption model (openCAT)                               |          |
| Distribution and elimination models                                               | 19       |
| One-compartment model                                                             | 19       |
| Two-compartment model                                                             | 19<br>20 |
| PBPK model                                                                        | 21<br>23 |
| Annex 1 – GNU MCSim codes                                                         | 29       |
| Two-compartment, first order absorption model  PBPK, first order absorption model |          |
| Two-compartment, openCAT absorption model (v3)                                    | 38       |
| PBPK openCAT absorption model                                                     | 57       |

# **Summary**

This report describes four pharmacokinetic models which have been implemented in the *GNU MCSim* language used by PopKat. Users may modify those models as they wish to suit their needs.

## Introduction

Four models have been implemented in PopKat. They result from the combination of either a minimal distribution models or a fully physiologically-based pharmacokinetic (PBPK) distribution model with either a simple linear absorption model or a physiological advanced dissolution and absorption model (openCAT) (see Figure 1). The various models' equations and parameters are given next.



**Figure 1**: The four model combinations implemented so far in *PopKat*.

## **Units**

In all following models, time is in hours, lengths are in dm, surface areas in dm<sup>2</sup>, volumes are in liters (dm<sup>3</sup>), masses of substances (quantities) in micromoles, and concentrations of substances in microM. For convenience with published parametric sub-models, there are some exceptions for specific parameters (for example the galenic powder density parameter is in g/ml).

# **Absorption models**

# First-order absorption

In this case, oral dosing is modeled as an input rate proportional at any time to the dose remaining to be absorbed (*i.e.*, the dose remaining in the gut lumen at time *t*):

$$Rate of input = K_a \cdot Q_{lumen}$$
 (1)

The rate of input at time t has dimension of quantity per time ( $\mu$ mol / h),  $K_a$  is the absorption rate constant (1/h), and  $Q_{lumen}$  is the quantity in the gut lumen at time t (in  $\mu$ mol).

 $Q_{lumen}$  needs to be modeled separately. Oral infusion can be modeled as a constant. For bolus dosing,  $Q_{lumen}$  should decrease exponentially with time, at rate  $K_a$ . PopKat offers the input function PerExp to model that case (see GNU MCSim documentation http://www.gnu.org/software/mcsim). PerExp function is parameterized by four arguments: the ingested dose (Dose, in  $\mu$ mol), the period of the exposure / no exposure cycle (Period, in h), an absorption lag-time (Lag, in h) and the absorption rate constant ( $K_a$ , in 1/h). You can, for example, simulate a  $100~\mu$ mol oral dosing, once per day, with an absorption lag of half an hour and an absorption rate of 1 per hour, by setting the corresponding parameters to the needed value (see the model file and example input file provided with the software). More complex cases can be simulated, but that requires the development of specific equations, at the user's hand.

The parameters of this simple absorption model have null default values.

## Advanced dissolution and absorption model (openCAT)

This gastro-intestinal tract model has six segments (stomach, duodenum, jejunum, ileum, cecum and colon), plus a liver compartment (Figure 2). Blood comes in from arteries and goes out to the liver portal vein. The liver has its own arterial blood supply and can then be linked to different distribution models, such as a two-compartment model, or a PBPK model. In any case, part of the quantity leaving the liver is recirculated to the gut walls.

Each gastro-intestinal tract segment has a lumen compartment, an epithelial layer compartment, and a underlying tissular (wall) compartment. The equations governing drug fate in each compartment and segment of the transit model are given below, together with the drug release and dissolution sub-models implemented in the version 3 and later of that model. The parameter scaling equations are given next. The openCAT model is for now only coupled to the two-compartment model.



**Figure 2:** Schematic representation of the *PopKat* advanced compartmental absorption and transit model (openCAT). Input blood flow irrigates the gut segment walls. The double arrows indicate the possibility for active influx and efflux transport. The openCAT model is here linked to a minimal PBPK model (in fact liver coupled to the two-compartment model).

#### Main differential equations

The differential equation for the quantity of drug in the liver is the sum of terms for blood transport, active transporter influx from blood, active transporter efflux from liver tissue and metabolism:

$$\frac{\partial Q_{liver}}{\partial t} = R_{in} + F_{liver} \cdot C_{input} - (F_{portal} + F_{liver}) \cdot C_{blood, liver} 
+ \frac{V_{max, inf_{liver}} \cdot C_{u_{blood, liver}}}{K_{m, inf} + C_{u_{blood, liver}}} - \frac{V_{max, eff_{liver}} \cdot C_{u_{liver}}}{K_{m, eff} + C_{u_{liver}}}$$

$$- \frac{V_{max, met_{liver}} \cdot C_{u_{liver}}}{K_{m, met} \cdot f_{u_{liver}, vitro}} + C_{u_{liver}}$$
(2)

where  $R_{in}$ , whose formula is given below, is the rate of input from the gut walls via the portal blood flow  $(F_{portal})$ ;  $F_{liver}$  is the direct arterial flow to the liver;  $C_{input}$  is the input (arterial) blood drug concentration;  $C_{blood,liver}$  is the blood concentration at the liver exit;  $V_{max,infliver}$  is the Michaelis-Menten maximum rate of active drug transport from blood into liver tissue;  $C_{ublood,liver}$  is the concentration of unbound drug in blood at the liver exit;  $K_{m,inf}$  is the Michaelis-Menten constant for active transport into tissues (influx) (assumed to be the same for all tissues);  $V_{max,effliver}$  is the Michaelis-Menten maximum rate of active drug transport from liver tissue to blood;  $C_{uliver}$  is the concentration of unbound drug in liver tissue;  $K_{m,eff}$  is the Michaelis-Menten constant for active transport out of

tissues (efflux) (assumed to be the same for all tissues);  $V_{max,met_{liver}}$  is the Michaelis-Menten maximum rate of metabolism in liver;  $K_{m,met}$  is the Michaelis-Menten constant for metabolism (assumed to be the same for all tissues); and  $f_{u_{liver,vitro}}$  is the fraction of drug unbound in the *in vitro* system used to estimate liver metabolism and available for metabolism.

 $C_{blood,liver}$  is given by:

$$C_{blood,liver} = \frac{C_{u_{blood,liver}}}{f_{u_{blood}}} \tag{3}$$

where  $f_{u_{blood}}$  is the fraction of drug unbound in blood (computed as  $f_{u_{plasma}}$ , fraction unbound in blood plasma, divided by the blood over plasma concentration ratio  $r_{BP}$ ).

 $C_{ublood,liver}$  is given by:

$$C_{u_{blood,liver}} = \frac{C_{u_{liver}}}{K_{puu_{liver}}} \tag{4}$$

where  $K_{puu_{liver}}$  is the equilibrium ratio (partition coefficient) of unbound drug concentration in liver over unbound concentration in blood.

 $C_{uliver}$  is given by:

$$C_{u_{liver}} = f_{u_{liver}} \cdot C_{liver} \tag{5}$$

where  $f_{uliver}$  is the fraction of drug unbound in liver tissue, and  $C_{liver}$  is the total liver concentration ( $Q_{liver}$  divided by  $V_{liver}$ ).

Note that the apparent liver over blood partition coefficient,  $PC_{liver}$ , is given by:

$$PC_{liver} = \frac{K_{puu_{liver}} f_{u_{blood}}}{f_{u_{liver}}}$$
 (6)

Finally,  $R_{in}$  is given by:

$$R_{in} = \sum_{i \in O} F_i \cdot C_{blood,wall_i} \tag{7}$$

where the summation is taken over the set O of gut segments ( $O = \{stomach, duodenum, jejunum, ileum, cecum, colon\}$ ),  $F_i$  is the blood flow perfusing segment i,  $C_{blood,wall_i}$  is the drug blood concentration at the exit of segment i wall. Note that the sum of the flows  $F_i$  is equal to  $F_{portal}$ .

Similarly to liver,  $C_{blood,wall_i}$  is given by:

$$C_{blood,wall_i} = \frac{C_{u_{blood,wall_i}}}{f_{u...}} \tag{8}$$

 $C_{ublood,wall_i}$  is given by:

$$C_{u_{blood,wall_i}} = \frac{C_{u_{wall_i}}}{K_{nuu}} \tag{9}$$

where  $K_{puu_i}$  is the equilibrium ratio (partition coefficient) of unbound drug concentration in segment i wall over unbound concentration in blood.

 $C_{u_{wall_i}}$  is given by:

$$C_{u_{wall}} = f_{u_i} \cdot C_{wall_i} \tag{10}$$

where  $f_{u_i}$  is the fraction of drug unbound in segment i tissues (same value assumed for wall and epithelium), and  $C_{wall_i}$  is the total segment i wall drug concentration ( $Q_{wall_i}$  divided by  $V_{wall_i}$ ).

The differential equations governing drug quantity in gut walls for the various segments are:

$$\frac{\partial Q_{wall_i}}{\partial t} = F_i \left( C_{input} - C_{blood,wall_i} \right) + K_{a_i} \left( C_{u_{epit_i}} - K_{E/At} \cdot C_{u_{wall_i}} \right)$$
(11)

where  $C_{input}$  is the (arterial) blood concentration in input of segment i,  $K_{a_i}$  is the absorption flow in segment i,  $C_{u_{epithi}}$  is the free drug concentration in the epithelium of segment i, and  $K_{E/At}$  is the wall to epithelium excretion over absorption ratio.

 $C_{u_{epith_i}}$  is given by:

$$C_{u_{epith,}} = f_{u_i} \cdot C_{epith_i} \tag{12}$$

where  $C_{epith_i}$  is the total segment i epithelium drug concentration ( $Q_{epith_i}$  divided by  $V_{epith_i}$ ).

For the drug quantities in epithelia,  $Q_{epith_i}$ , the differential equations are:

$$\frac{\partial Q_{epith_{i}}}{\partial t} = K_{a_{i}} \left( C_{diss_{i}} - K_{E/Ae} \cdot C_{u_{epith_{i}}} \right) - K_{a_{i}} \left( C_{u_{epith_{i}}} - K_{E/At} \cdot C_{u_{wall_{i}}} \right) 
+ \frac{V_{max,inf_{i}} \cdot C_{diss_{i}}}{K_{m,inf} + C_{diss_{i}}} - \frac{V_{max,eff_{i}} \cdot C_{u_{epith_{i}}}}{K_{m,eff} + C_{u_{epith_{i}}}} 
- \frac{V_{max,met_{i}} \cdot C_{u_{epith_{i}}}}{K_{m,met} \cdot f_{u_{i,vitro}} + C_{u_{epith_{i}}}}$$
(13)

where  $C_{diss_i}$  is the dissolved drug concentration in the lumen of segment i;  $K_{E/Ae}$  is the epithelium to lumen excretion over absorption ratio in i;  $V_{max,inf_i}$  is the Michaelis-Menten maximum rate of active drug transport from lumen into epithelium in segment i;  $K_{m,inf}$  is the Michaelis-Menten constant for active transport into tissues (influx) (assumed to be the same for all tissues);  $V_{max,eff_i}$  is the Michaelis-Menten maximum rate of active drug transport from epithelium tissue to lumen in segment i;  $K_{m,eff}$  is the Michaelis-Menten constant for active transport out of tissues (efflux) (assumed to be the same for all tissues);  $V_{max,met_i}$  is the Michaelis-Menten maximum rate of metabolism in epithelium i;  $K_{m,met}$  is the Michaelis-Menten constant for metabolism (assumed to be the same for all tissues); and  $f_{u_i,vitro}$  is the fraction of drug unbound in the  $in\ vitro$  system used to estimate epithelium i metabolic parameters.

# **Drug dissolution equations**

For the dissolved drug quantities in lumina,  $Q_{diss_i}$ , the differential equations are:

$$\frac{\partial Q_{diss_{i}}}{\partial t} = R_{X} - K_{t_{i}} \cdot C_{diss_{i}} - K_{a_{i}} \left( C_{diss_{i}} - K_{E/Ae} \cdot C_{u_{epith_{i}}} \right) + K_{diss_{i}} \left( t \right) \cdot Q_{undiss_{i}} - K_{precip} \cdot Q_{diss_{i}} - \frac{V_{max, inf_{i}} \cdot C_{diss_{i}}}{K_{m, inf} + C_{diss_{i}}} + \frac{V_{max, eff_{i}} \cdot C_{u_{epith_{i}}}}{K_{m, eff} + C_{u_{enith_{i}}}} \right)$$
(14)

where  $R_X$  is the *dissolved* drug release rate in the stomach (see below), for the other gut segments  $R_X$  is zero;  $K_{t_i}$  is the intestinal transit rate in i;  $K_{diss_i}(t)$  is the instantaneous drug dissolution rate in i (see next paragraph), and  $K_{precip}$  is the drug precipitation rate constant (assumed to be same in all gut segments).

The instantaneous dissolution rate constants,  $K_{diss}(t)$  in 1/hours, are computed at any time as:

$$K_{diss_i}(t) = K_{diss}(C_{sat_i} - C_{diss_i})$$
 (15)

where  $K_{diss}$  is the drug baseline dissolution rate constant (in 1/microM/hours), and  $C_{sat_i}$  is the saturation concentration in segment i (see below).

For the undissolved drug quantities in lumina,  $Q_{undiss_i}$ , the differential equations are:

$$\frac{\partial Q_{undiss_i}}{\partial t} = R'_X - K_{t_i} \cdot C_{undiss_i} - K_{diss_i}(t) \cdot Q_{undiss_i} + K_{precip} \cdot Q_{diss_i}$$
(16)

In the stomach,  $R'_X$  is the *undissolved* drug release rate (see below). For the other g.i. tract segments,  $R'_X$  is zero.

The dissolved and undissolved drug quantities excreted in the feces are given by:

$$\frac{\partial Q_{diss_{fees}}}{\partial t} = K_{t_{colon}} \cdot C_{diss_{colon}}$$
 (17)

$$\frac{\partial Q_{undiss_{feces}}}{\partial t} = K_{t_{colon}} \cdot C_{undiss_{colon}}$$
(18)

# **Drug Release models**

Drug release in the stomach can take various forms. First, the drug can be released in a dissolved or undissolved form (which may then equilibrate according to equations 14 and 16). Next, the release can be immediate or delayed. Those four cases are triggered by four flags and are mutually exclusive.

#### Release in dissolved form

*Immediate release*: This case is triggered by setting the variable  $G_{immediated}$  to 1. If so, rate  $R_X$  is equal to the oral administration rate  $D_{rate}$  (a model input, in micromoles / hours). Rate  $R'_X$  for the undissolved form is set to zero

in this case. A bolus administration can be simulated by giving  $D_{rate}$  a high value for a short time, or by setting it to zero and setting the initial value of the state variable  $Q_{diss_{stomach}}$  to the bolus dose prescribed.

**Delayed release:** This case is triggered by setting the variable  $G_{delayedd}$  to 1. If so,  $R_X$ , is currently modeled by a Weibull function:

$$R_X = Dose \frac{k}{\lambda} \left( \frac{t - \tau}{\lambda} \right)^{k-1} e^{-\left( \frac{t - \tau}{\lambda} \right)^k}$$
 (19)

The oral bolus dose, *Dose*, must be given as a model input, together with the Weibull slope k, scale  $\lambda$  and lag time  $\tau$ .

An alternative form would be a first order delayed release (using it would require a small change in the model equations). In that case, we would have:

$$R_{X} = K_{release} \cdot Q_{remain} \tag{20}$$

which would require the following differential equation for the quantity  $Q_{remain}$  remaining to be released to the stomach at time t:

$$\frac{\partial Q_{remain}}{\partial t} = D_{rate} - R_X \tag{21}$$

#### Release in undissolved form

Immediate release: This case is triggered by setting the variable  $G_{immediateu}$  to 1. If so, rate  $R'_X$  is equal to the oral administration rate  $D_{rate}$  (a model input, in micromoles / hours), and rate  $R_X$  for the dissolved form is set to zero. A bolus administration can be simulated by giving  $D_{rate}$  a high value for a short time, or by setting it to zero and setting the initial value of the state variable  $Q_{undiss_{stomach}}$  to the bolus dose prescribed

**Delayed release:** This case is triggered by setting the variable  $G_{delayed_u}$  to 1. If so,  $R'_X$  is modeled by the same Weibull function as in equation 19 above, and rate  $R_X$  for the dissolved form is set to zero.

### Miscellaneous equations

Miscellaneous equations are used to compute various quantities of eventual interest. The quantities absorbed in each gut segment are computed by integration of the following differential:

$$\frac{\partial Q_{abs_i}}{\partial t} = K_{a_i} \left( C_{diss_i} - K_{E/Ae} \cdot C_{u_{epith_i}} \right) + \frac{V_{max, inf_i} \cdot C_{diss_i}}{K_{m, inf} + C_{diss_i}} - \frac{V_{max, eff_i} \cdot C_{u_{epith_i}}}{K_{m, eff} + C_{u_{enith_i}}}$$
(22)

The quantity metabolized in each gut segment is computed by integration of the following differential:

$$\frac{\partial Q_{met_i}}{\partial t} = \frac{V_{max, met_i} \cdot C_{u_{epith_i}}}{K_{m, met} \cdot f_{u_{i, min}} + C_{u_{mith}}}$$
(23)

The quantity reaching the portal vein at time  $t\left(Q_{abs_{portal}}\right)$  has the following differential:

$$\frac{\partial Q_{abs_{portel}}}{\partial t} = R_{in} \tag{24}$$

see equation 7 for the definition of  $R_{in}$ .

The instantaneous apparent rate of gut absorption is:

$$K_a = \frac{Q_{abs_{portol}}}{\sum_{i \in O} Q_{diss_i}}$$
 (25)

The major mass balance checking equations are:

$$Q_{diss} = \sum_{i \in O} Q_{diss_i} \tag{26}$$

$$Q_{epith} = \sum_{i \in O} Q_{epith_i} \tag{27}$$

$$Q_{wall} = \sum_{i \in O} Q_{wall_i} \tag{28}$$

$$Q_{abs} = \sum_{i \in O} Q_{abs_i} \tag{29}$$

$$Q_{elim_{gut}} = \sum_{i \in Q} Q_{met_i} + Q_{diss_{feces}} + Q_{undiss_{feces}}$$
(30)

#### Parameters and their scaling

Many of the parameters used in the above equations are scaled prior to simulation, in order to simplify input and to automatically model correlations between parameters. We give here the corresponding equations. The list of primary physiological parameters (the value of which the user may set to any value for a particular simulation) is recapitulated in Table 1, together with their units and default values. The drug-specific parameters are listed in Table 2.

The volumes (in liters) of gut tissues (wall) in the various gut segments are computed as:

$$V_{wall_s} = f_{Bw_s} \cdot B_m \tag{31}$$

 $B_m$  is the body mass (kg) and  $f_{Bw_i}$  is the fraction of body mass corresponding to tissue segment i (see Table 1) (tissue densities are assumed to be equal to 1 throughout).

Total blood flow (cardiac output, in L/h) is assumed to depend on  $B_m$ :

$$F_{total} = sc_{F_{total}} \cdot B_m^{0.75} \tag{32}$$

The blood flows (L/h) to the various gut segments are given by:

$$F_i = f_{E} \cdot F_{total} \tag{33}$$

The fraction,  $f_{F_i}$ , of cardiac output flowing to tissue segment i is given in Table 1.

Liver portal blood flow is simply:

$$F_{portal} = \sum_{i \in O} F_i \tag{34}$$

The epithelial volume for each segment is given by:

$$V_{epith.} = S_i \cdot H_{epith} \tag{35}$$

The gut epithelial thickness,  $H_{epith}$  (in dm), is given in Table 1. The epithelial surface area,  $S_i$  (in dm<sup>2</sup>), for each segment is given by:

$$S_i = 2\pi R_i L_i \tag{36}$$

The radius,  $(R_i$ , in dm), and length  $(L_i$ , in dm), for each segment is given in Table 1.

The luminal volume for each segment *i* is given by:

$$V_{lumen_i} = f_{Bl_i} \cdot B_m \tag{37}$$

The fraction of body mass corresponding to each lumen segment i ( $f_{Bl_i}$ ) is given in Table 1.

The intestinal transit rates per segment are computed as:

$$K_{t_{i}} = \log(2) \frac{V_{lumen_{i}}}{T_{1/2,}}$$
 (38)

The transit half lives in each segment i ( $T_{1/2}$ , in h) is given in Table 1.

The Michaelis-Menten maximum rate of metabolism in segment i ( $V_{max,met_i}$  in micromol/h), or in liver ( $V_{max,met_liver}$ ) is scaled from the value measured in vitro, for example, using:

$$V_{max,met_i} = 60 \times 1000 \cdot V_{max_v} \cdot \mu_{p_i} \cdot V_{epith_i}$$
(39)

where  $V_{max_v}$  is the *in vitro* measured value (in micromol/min/mg of microsomal proteins), and  $\mu_{p_i}$  is the microsomal abundance in *i* (in mg/g of tissue).

Similarly, for liver:

$$V_{max,met_{liver}} = 60 \times 1000 \cdot V_{max_v} \cdot \mu_{p_{liver}} \cdot V_{liver}$$
 (40)

The *in vivo* Michaelis-Menten constant for metabolism in gut ( $_{Km,met}$ ) is simply the value measured *in vitro*:

$$K_{m,met} = K_m \tag{41}$$

According to Agoram *et al.* (2001. Advanced Drug Delivery Reviews 50:S41-S67) the baseline dissolution rate constant,  $K_{diss}$  (in 1/microM/hours) is computed as:

$$K_{diss} = 1080 \times MM \times \frac{Diffusivity}{D_a. R_a. H_{diff}}$$
 (42)

where MM is the drug molecular mass, Diffusivity is the drug diffusion coefficient,  $D_g$  is the galenic powder density (in g/ml) (see Table 2),  $R_g$  is the galenic powder radius (in micrometers) (see Table 2), and  $H_{diff}$  is the diffusion layer thickness (in micrometers).  $H_{diff}$  is equal to  $R_g$  if  $R_g$  is between 5 and 30 micrometers. Otherwise, it is set to the nearest bound (5 or 30 micrometers) (Arav  $et\ al.\ 2012$ , Drug Development and Industrial Pharmacy, 38:940-951).

The drug diffusion coefficient (in cm<sup>2</sup>/second) at infinite dilution is estimated as a function of its molal volume (in ml/g) by the empirical equation (from Wilke & Chang, 1955, AIChE. Journal, 1:264-270):

Diffusivity = 
$$1.09 \times 10^{-4} \times M_{vol}^{-0.6}$$
 (43)

The drug molal volume has to be provided by the user.

 $C_{sat_i}$  depends on the acidic / basic character of the drug of interest (coded by the  $AB_{type}$  flag parameter) and on the pH of the  $i^{th}$  gut segment (Henderson-Hasselbach equations):

- If the drug is neutral ( $AB_{type} = 0$ )

$$C_{sat_i} = Solubility$$
 (44)

- If the drug is a base  $(AB_{type} = 1)$ 

$$C_{sat_i} = Solubility \times \left(1 + 10^{pK_b - pH_i}\right)$$
 (45)

- If the drug is an acid  $(AB_{type} = 2)$ 

$$C_{sat_i} = Solubility \times \left(1 + 10^{pH_i - pK_o}\right) \tag{46}$$

- If the drug is an ampholyte ( $AB_{type} = 3$ ):

$$C_{sat_i} = Solubility \times \left(1 + 10^{pK_b - pH_i} + 10^{pH_i - pK_a}\right)$$
 (47)

The drug *Solubility* parameter is listed in Table 2.

Finally, epithelial permeability in gut segment *i* is given by:

$$K_{a_i} = P_{eff} \cdot SA_i \cdot f_{abs_i} \tag{48}$$

where  $P_{eff}$  is the effective permeability of gut epithelia (see Table 2),  $SA_i$  the epithelial surface area of i (calculated from the lengths and radii given in Table 1), and  $f_{abs_i}$  a 0 or 1 flag parameter turning absorption on or off in segment i (see Table 2).

**Table 1:** Physiological parameters of the advanced compartmental absorption and transit model.

| Parameters                                   | Symbols                              | Units                 | Default<br>values | References |
|----------------------------------------------|--------------------------------------|-----------------------|-------------------|------------|
| Body mass                                    | $B_m$                                | kg                    | 70                |            |
| Cardiac output scaling coefficient           | $\mathit{SC}_{F_{total}}$            | L.kg <sup>-0.75</sup> | 15                |            |
| Fractions of cardiac output going to tissues |                                      |                       |                   | [1]        |
| stomach                                      | $f_{F_{stom}}$                       | -                     | 0.024             |            |
| duodenum                                     | $f_{F_{duod}}$                       | -                     | 0.016             |            |
| jejunum                                      | $f_{F_{jeju}}$                       | -                     | 0.056             |            |
| ileum                                        | $f_{F_{ileum}}$                      | -                     | 0.033             |            |
| cecum                                        | $f_{F_{cecum}}$                      | -                     | 0.006             |            |
| colon                                        | $f_{F_{colon}}$                      | -                     | 0.038             |            |
| Tissue fractions of body mass                |                                      |                       |                   | [1]        |
| stomach                                      | $f_{Bw_{stom}}$                      | -                     | 0.0021            |            |
| duodenum                                     | $f_{Bw_{duod}}$                      | -                     | 0.0003            |            |
| jejunum                                      | $f_{{\scriptscriptstyle Bw}_{jeju}}$ | -                     | 0.0009            |            |
| ileum                                        | $f_{Bw_{ileum}}$                     | -                     | 0.0006            |            |
| cecum                                        | $f_{\mathit{Bw}_{\mathit{cecum}}}$   | -                     | 0.0005            |            |
| colon                                        | $f_{Bw_{colon}}$                     | -                     | 0.0048            |            |
| Lumina as fractions of body mass             |                                      |                       |                   | [1]        |
| stomach                                      | $f_{Bl_{stom}}$                      | -                     | 0.0036            |            |
| duodenum                                     | $f_{Bl_{duod}}$                      | -                     | 0.0003            |            |
| jejunum                                      | $f_{Bl_{jeju}}$                      | -                     | 0.0023            |            |
| ileum                                        | $f_{Bl_{ileum}}$                     | -                     | 0.0032            |            |
| cecum                                        | $f_{Bl_{cecum}}$                     | -                     | 0.0001            |            |
| colon                                        | $f_{Bl_{colon}}$                     | -                     | 0.0051            |            |
| Lengths of gut segments                      | 20.0.1                               |                       |                   |            |
| stomach                                      | $L_{\scriptscriptstyle stom}$        | dm                    | 2.83              | [2]        |
| duodenum                                     | $L_{\scriptscriptstyle duod}$        | dm                    | 1.41              | [2]        |

| Parameters                           | Symbols                          | Units            | Default<br>values | References |
|--------------------------------------|----------------------------------|------------------|-------------------|------------|
| jejunum                              | $L_{ m 	extit{jeju}}$            | dm               | 11.68             | [2]        |
| ileum                                | $L_{_{ileum}}^{_{jos}}$          | dm               | 17.52             | [2]        |
| cecum                                | $L_{{\scriptscriptstyle cecum}}$ | dm               | 1.7               | [1]        |
| colon                                | $L_{colon}$                      | dm               | 11                | [3]        |
| Radii of gut segments                |                                  |                  |                   |            |
| stomach                              | $R_{_{stom}}$                    | dm               | 0.967             | [2]        |
| duodenum                             | $R_{duod}$                       | dm               | 0.153             | [2]        |
| jejunum                              | $R_{ m _{\it jeju}}$             | dm               | 0.137             | [2]        |
| ileum                                | $R_{\it ileum}^{\it j}$          | dm               | 0.098             | [2]        |
| cecum                                | $R_{cecum}$                      | dm               | 0.35              | [1]        |
| colon                                | $R_{colon}$                      | dm               | 0.25              | [1]        |
| Transit half-lives in lumina (hours) | colon                            |                  |                   | [1]        |
| stomach                              | $T_{1/2_{stom}}$                 | h                | 0.25              |            |
| duodenum                             | $T_{1/2_{duod}}$                 | h                | 0.25              |            |
| jejunum                              | $T_{1/2_{jeju}}$                 | h                | 1.02              |            |
| ileum                                | $T_{1/2_{ileum}}$                | h                | 2.04              |            |
| cecum                                | $T_{1/2_{cecum}}$                | h                | 4.55              |            |
| colon                                | $T_{1/2_{colon}}$                | h                | 13.5              |            |
| pH of luminal contents               | 201011                           |                  |                   | [1]        |
| stomach                              | $pH_{\scriptscriptstyle stom}$   | -                | 1.7               |            |
| duodenum                             | $pH_{duod}$                      | -                | 6                 |            |
| jejunum                              | $pH_{_{jeju}}$                   | -                | 6.5               |            |
| ileum                                | $pH_{\scriptscriptstyle ileum}$  | -                | 7.4               |            |
| cecum                                | $pH_{\scriptscriptstyle cecum}$  | -                | 5.9               |            |
| colon                                | $pH_{colon}$                     | -                | 7                 |            |
| Microsomal proteins                  | *****                            |                  |                   |            |
| liver                                | $\mu_{P_{liver}}$                | mg / g of tissue | 45                | [4]        |
| stomach                              | $\mu_{P_{stom}}$                 | mg / g of tissue | 0                 |            |
| duodenum                             | $\mu_{P_{duod}}$                 | mg / g of tissue | 18                | [5]        |
| jejunum                              | $\mu_{P_{jeju}}$                 | mg / g of tissue | 25                | [5]        |
| ileum                                | $\mu_{P_{ileum}}$                | mg / g of tissue | 24                | [5]        |
| cecum                                | $\mu_{P_{cecum}}$                | mg / g of tissue | 0                 |            |
| colon                                | $\mu_{P_{colon}}$                | mg / g of tissue | 0                 |            |
| Gut epithelium thickness             | $H_{epith}$                      | dm               | 0.000525          |            |

<sup>[1]:</sup> Perdaems et al. Clinical Pharmacokinetics 2010; 49:239-258.

<sup>[2]:</sup> Ando *et al*. Drug Metabolism and Disposition 2015; 43:590–602.

<sup>[3]:</sup> Valentin. Annals of the ICRP 2002; 32:1-277.

<sup>[4]:</sup> Houston et al. Toxicology in Vitro 2012; 26:1265-1271.

<sup>[5]:</sup> Paine *et al*. The Journal of Pharmacology and Experimental Therapeutics 1997; 283:1552-1562.

**Table 2:** Drug-specific parameters of the advanced compartmental absorption and transit model.

| Parameters                                     | Symbols                             | Units    | Default values |
|------------------------------------------------|-------------------------------------|----------|----------------|
| Molecular mass                                 | M                                   | g/mol    | 0              |
| Acido-basic type                               | $AB_{type}$                         | -        | 0              |
| Basic dissociation constant                    | $pK_{_b}$                           | -        | 0              |
| Acid dissociation constant                     | $pK_a$                              | -        | 0              |
| Absorption switches                            |                                     |          |                |
| stomach                                        | $f_{abs_{stom}}$                    | -        | 0              |
| duodenum                                       | $f_{abs_{duod}}$                    | -        | 0              |
| jejunum                                        | $f_{abs_{jeju}}$                    | -        | 0              |
| ileum                                          | $f_{abs_{ileum}}$                   | -        | 0              |
| cecum                                          | $f_{abs_{cecum}}$                   | -        | 0              |
| colon                                          | $f_{abs_{colon}}$                   | -        | 0              |
| Dosage form switches (mutually exclusive)      | 1 400000011                         |          |                |
| immediate release, dissolved                   | $G_{immediated}$                    | -        | 1              |
| immediate release, undissolved                 | $G_{immediate_{u}}$                 | -        | 0              |
| delayed release, dissolved                     | $G_{delayed_d}$                     | -        | 0              |
| delayed release, undissolved                   | $G_{delayed_u}$                     | -        | 0              |
| Weibull delayed release parameters             |                                     |          |                |
| Slope                                          | $\boldsymbol{k}$                    | -        | 1              |
| Scale                                          | λ                                   | h        | 1              |
| Lag                                            | τ                                   | . h      | 0              |
| Galenic radius                                 | $R_g$                               | microm   | 25             |
| Powder density                                 | $D_g$                               | g/ml     | 1.2            |
| Intrinsic water solubility                     | Solubility                          | microg/L | 0<br>100       |
| Solubility factor for bases                    | $SF_A$                              | -        | 50             |
| Solubility factor for bases Precipitation rate | $SF_B$                              | -<br>1/h | 0              |
| Excretion over absorption rate constant ratios | $K_{precip}$                        | 1/11     | U              |
| between lumen and epithelium                   | $K_{E/\!Ae}$                        | _        | 0              |
| between epithelium and tissue                  | $K_{E/Ae}$                          | -        | 0              |
| Effective permeability of gut epithelia        | $P_{\it eff}$                       | dm/h     | 0              |
| Unbound tissue / unbound blood part. coeffs    | - 611                               | CIII/II  | Ŭ              |
| stomach                                        | $K_{\mathit{puu}_{\mathit{stom}}}$  | -        | 1              |
| duodenum                                       | $K_{puu_{duod}}$                    | -        | 1              |
| jejunum                                        | $K_{puu_{jeju}}$                    | _        | 1              |
| ileum                                          | $K_{puu_{ileum}}$                   | -        | 1              |
| cecum                                          | $K_{\mathit{puu}_{\mathit{cecum}}}$ | _        | 1              |
| colon                                          | $K_{puu_{colon}}$                   | _        | 1              |
| liver                                          |                                     | _        | 1              |
| Fractions unbound in tissues                   | $K_{puu_{liver}}$                   | -        | 1              |
| stomach                                        | f                                   | _        | 1              |
| duodenum                                       | fu <sub>stom</sub><br>f             | -        | 1              |
|                                                | f <sub>u<sub>duod</sub><br/>f</sub> | -        |                |
| jejunum<br>:loum                               | f <sub>ujeju</sub>                  | -        | 1              |
| ileum                                          | f <sub>uileum</sub>                 | -        | 1              |
| cecum                                          | f <sub>ucecum</sub>                 | -        | 1              |

| Parameters                                          | Symbols                                          | Units                       | Default values |
|-----------------------------------------------------|--------------------------------------------------|-----------------------------|----------------|
| colon                                               | $f_{u_{colon}}$                                  | -                           | 1              |
| liver                                               | $f_{u_{liver}}$                                  | -                           | 1              |
| Fraction unbound in plasma                          | $f_{u_{plasma}}$                                 | -                           | 1              |
| Blood over plasma concentration ratio               | $r_{BP}$                                         | -                           | 1              |
| Fraction unbound in <i>in vitro</i> metabolic assay |                                                  |                             |                |
| stomach                                             | $f_{u_{stom,vitro}}$                             | -                           | 1              |
| duodenum                                            | $f_{u_{duod,vitro}}$                             | -                           | 1              |
| jejunum                                             | $f_{u_{jeju,vitro}}$                             | -                           | 1              |
| ileum                                               | $f_{u_{ileum,vitro}}$                            | -                           | 1              |
| cecum                                               | $f_{u_{cecum,vitro}}$                            | -                           | 1              |
| colon                                               | $f_{u_{colon,vitro}}$                            | -                           | 1              |
| liver                                               | $f_{u_{liver,vitro}}$                            | -                           | 1              |
| Metabolism <i>Vmax</i> measured <i>in vitro</i>     | $V_{max,v}$                                      | μmol/min/mg microsomal prot | 0              |
| Metabolism <i>Km</i> measured <i>in vitro</i>       | $K_{m,v}$                                        | microM                      | 0              |
| Maximum rates of active influx to tissues           |                                                  |                             |                |
| stomach                                             | $V_{\mathit{max},\mathit{inf}_{\mathit{stom}}}$  | μmol/h                      | 0              |
| duodenum                                            | $V_{\it max,inf_{\it duod}}$                     | μmol/h                      | 0              |
| jejunum                                             | $V_{\mathit{max},\mathit{inf}_{jeju}}$           | μmol/h                      | 0              |
| ileum                                               | $V_{\it max,infileum}$                           | μmol/h                      | 0              |
| cecum                                               | $V_{\it max,inf_{\it cecum}}$                    | μmol/h                      | 0              |
| colon                                               | $V_{	extit{max,inf}_{colon}}$                    | μmol/h                      | 0              |
| liver                                               | $V_{\mathit{max},\mathit{inf}_{\mathit{liver}}}$ | μmol/h                      | 0              |
| Active influx <i>Km</i>                             | $K_{m,inf}$                                      | microM                      | 0              |
| Maximum rates of efflux from tissues                | ,                                                |                             |                |
| stomach                                             | $V_{\it max,eff_{\it stom}}$                     | μmol/h                      | 0              |
| duodenum                                            | $V_{\it max,eff_{\it duod}}$                     | μmol/h                      | 0              |
| jejunum                                             | $V_{\it max,eff_{\it jeju}}$                     | μmol/h                      | 0              |
| ileum                                               | $V_{	extit{max,eff}_{ileum}}$                    | μmol/h                      | 0              |
| cecum                                               | $V_{\it max,eff_{\it cecum}}$                    | μmol/h                      | 0              |
| colon                                               | $V_{max,eff_{colon}}$                            | μmol/h                      | 0              |
| liver                                               | $V_{	extit{max,effliver}}$                       | μmol/h                      | 0              |
| Active efflux <i>Km</i>                             | $K_{m,eff}$                                      | microM                      | 0              |

## Distribution and elimination models

# One-compartment model

This model to do.

# Two-compartment model

This model is a straightforward implementation of the classical two-compartment model with input to and elimination from the central compartment (see Figure 3).



**Figure 3**: Schematic representation of the two-compartment distribution model.

# Main differential equations

The differential equation governing the drug quantity in the central compartment ( $Q_{central}$ ) is:

$$\frac{\partial Q_{central}}{\partial t} = K_a \cdot D_{input} - K_e \cdot Q_{central} - K_{c to p} \cdot Q_{central} + K_{p to c} \cdot Q_{periph}$$
(40)

where  $K_a$  is the absorption rate constant,  $D_{input}$  is the drug quantity remaining to be absorbed at time t,  $K_e$  is the elimination rate constant,  $K_{c to p}$  is the central to peripheral transport rate constant,  $K_{p to c}$  is the peripheral to central transport rate constant, and  $Q_{periph}$  is the drug quantity in the peripheral compartment.

 $D_{input}$  is the computed at any time t as a periodic exponential decay function:

$$Dinput = PerExp (Dose, Period, Tlag, Ka);$$
 (41)

*Dose* is the administered dose (in micromoles), *Period* is the period (in h) of the exposure / no exposure cycle, Tlag is the eventual absorption lag-time (in h), and  $K_a$  the absorption rate constant (1/h). In a given period, input starts at Tlag after the start of the period, with value Dose. It then decays exponentially with rate constant  $K_a$  until the end of the period, at which point it is turned off. To simulate a single dose, an arbitrarily large period (say 1 billion hours) can be used.

The differential equation for  $Q_{periph}$  is:

$$\frac{\partial Q_{periph}}{\partial t} = K_{c to p} \cdot Q_{central} - K_{p to c} \cdot Q_{periph}$$
(42)

The differential equation for the quantity eliminated  $Q_{elim}$  is:

$$\frac{\partial Q_{elim}}{\partial t} = K_e \cdot Q_{central} \tag{43}$$

#### Miscellaneous equations

Two miscellaneous equations are used to compute concentrations in each compartment:

$$C_{central} = \frac{Q_{central}}{V_{central}} \tag{44}$$

$$C_{periph} = \frac{Q_{periph}}{V_{periph}} \tag{45}$$

The following equation computes  $Q_{total}$  for mass balance checking:

$$Q_{total} = Q_{central} + Q_{periph} + Q_{elim}$$
 (46)

# Parameters and parameters' scaling

The model parameters have no specific physiological interpretation and are assigned arbitrary default values. Meaningful values should be set by the user. Rate constants are in 1/h, volumes in L.

#### PBPK model

This model has seven compartments, each with physiological meaning (see Figure 4). Oral dosing is described in the following equations by a first order input from the gut lumen. A version coupling this model to the openCAT model is given in Annex 1.



Figure 4: Schematic representation of the PBPK distribution model.

# Main differential equations

Starting with input to the gut, the differential equation governing the drug quantity in the gut lumen ( $Q_{lumen}$ ) is:

$$\frac{\partial Q_{lumen}}{\partial t} = D_{rate} - K_a \cdot Q_{lumen} \tag{47}$$

where  $D_{rate}$  is the oral dosing rate (a model input, in micromoles / hours), and  $K_a$  is the absorption rate constant (in 1/hr).

The differential equation for the quantity of drug in the gut tissue  $(Q_{gut})$  is:

$$\frac{\partial Q_{gut}}{\partial t} = F_{gut} \cdot \left( C_{blood} - \frac{C_{gut}}{P_{gut}} \right) + K_a \cdot Q_{lumen} - \frac{V_{max_{gut}} \cdot C_{gut}}{K_m \cdot P_{gut} \cdot f_{umet_{gut}}} + C_{gut}$$

$$(48)$$

where  $F_{gut}$  is the blood flow to the gut,  $P_{gut}$  is the gut over blood partition coefficient,  $V_{max_{gut}}$  is the maximum rate of metabolism in the gut,  $K_m$  is Michaelis-Menten coefficient for metabolism.

Correspondingly, the differential for the quantity metabolized in the gut is:

$$\frac{\partial Q_{met_{qut}}}{\partial t} = \frac{V_{max_{qut}} \cdot C_{gut}}{K_{m} \cdot P_{gut} \cdot f_{umet_{gut}}} + C_{gut}$$

$$(49)$$

The differential equation for the quantity of drug in the liver ( $Q_{liver}$ ) is:

$$\frac{\partial Q_{liver}}{\partial t} = F_{liver_{art}} \cdot C_{blood} + F_{gut} \cdot \frac{C_{gut}}{P_{gut}} - F_{liver} \cdot \frac{C_{liver}}{P_{liver}} - \frac{V_{max_{liver}} \cdot C_{liver}}{K_m \cdot P_{liver} \cdot f_{umet_{liver}}} + C_{liver}$$

$$(50)$$

where  $F_{liver_{art}}$  is the arterial blood flow to the liver,  $F_{liver}$  is the sum of  $F_{liver_{art}}$  and  $F_{gut}$ ,  $P_{liver}$  is the liver over blood partition coefficient,  $V_{max_{liver}}$  is the maximum rate of metabolism in the liver, and  $f_{u_{liver}}$  is the fraction unbound in the liver tissue.

The differential for the quantity metabolized in the liver is:

$$\frac{\partial Q_{met_{liver}}}{\partial t} = \frac{V_{max_{liver}} \cdot C_{liver}}{K_m \cdot P_{liver} \cdot f_{umet_{liver}} + C_{liver}}$$
(51)

The differential equation for the quantity of drug in the kidney ( $Q_{kidney}$ ) is:

$$\frac{\partial Q_{kidney}}{\partial t} = F_{kidney} \cdot \left( C_{blood} - \frac{C_{kidney}}{P_{kidney}} \right) - K_{e_{kidney}} \cdot f_{u_{blood}} \cdot \frac{C_{kidney}}{P_{kidney}}$$
(52)

where  $F_{kidney}$  is the blood flow to the kidney,  $P_{kidney}$  is the kidney over blood partition coefficient,  $K_{e_{kidney}}$  is the excretion flow rate to urine, and  $f_{u_{blood}}$  is the fraction unbound in blood (computed as  $f_{u_{plasma}}$  divided by the blood over plasma concentration ratio  $r_{BP}$ ).

The differential for the quantity excreted in urine is:

$$\frac{\partial Q_{urine}}{\partial t} = K_{e_{kidney}} \cdot f_{u_{blood}} \cdot \frac{C_{kidney}}{P_{kidney}}$$
(53)

The differential equations for the quantities of drug in the fat ( $Q_{fat}$ ), poorly perfused tissue ( $Q_{ppt}$ ), and richly perfused tissue ( $Q_{rpt}$ ) are respectively:

$$\frac{\partial Q_{adip}}{\partial t} = F_{adip} \cdot \left( C_{blood} - \frac{C_{adip}}{P_{adip}} \right)$$
 (54)

$$\frac{\partial Q_{ppt}}{\partial t} = F_{ppt} \cdot \left( C_{blood} - \frac{C_{ppt}}{P_{ppt}} \right)$$
 (55)

$$\frac{\partial Q_{rpt}}{\partial t} = F_{rpt} \cdot \left( C_{blood} - \frac{C_{rpt}}{P_{rpt}} \right)$$
 (56)

The differential equations for the quantities of drug in blood ( $Q_{blood}$ ) is:

$$\frac{\partial Q_{blood}}{\partial t} = F_{liver} \cdot \frac{C_{liver}}{P_{liver}} + F_{kidney} \cdot \frac{C_{kidney}}{P_{kidney}} + F_{adip} \cdot \frac{C_{adip}}{P_{adip}} + F_{ppt} \cdot \frac{C_{ppt}}{P_{ppt}} + F_{rpt} \cdot \frac{C_{rpt}}{P_{rpt}} - F_{total} \cdot C_{blood}$$
(57)

# Miscellaneous equations

Miscellaneous equations are used to keep track of several quantities of interest. The total quantities absorbed by the gut  $(Q_{abs_{gut}})$  and reaching the liver via the portal vein  $(Q_{abs_{portal}})$  are computed respectively by integration of the following differentials:

$$\frac{\partial Q_{abs_{gut}}}{\partial t} = K_a \cdot Q_{lumen} \tag{58}$$

$$\frac{\partial Q_{abs_{portal}}}{\partial t} = F_{gut} \cdot \frac{C_{gut}}{P_{gut}}$$
(59)

The integrals (AUCs) of the blood ( $AUC_{blood}$ ) and reaching the liver via the portal vein ( $AUC_{liver}$ ) are computed respectively as:

$$AUC_{blood} = C_{blood} \tag{60}$$

$$AUC_{liver} = C_{liver} \tag{61}$$

The blood plasma concentration ( $C_{plasma}$ ) is:

$$C_{plasma} = \frac{C_{blood}}{r_{RR}} \tag{62}$$

where  $r_{BP}$  is the blood to plasma concentration ratio.

The instantaneous apparent rate of gut absorption:

$$K_a = \frac{Q_{abs_{portal}}}{Q_{lumen}} \tag{63}$$

The following equations compute  $Q_{total}$  for mass balance checking:

$$Q_{elim} = Q_{met_{mur}} + Q_{met_{lowr}} + Q_{urine}$$
 (64)

$$Q_{organs} = Q_{lumen} + Q_{gut} + Q_{liver} + Q_{kidney} + Q_{adip} + Q_{ppt} + Q_{rpt} + Q_{blood}$$
 (65)

$$Q_{total} = Q_{organs} + Q_{elim} (66)$$

# Parameters and parameters' scaling

Many of the parameters used in the above equations are scaled prior to simulation, in order to simplify input and to automatically model correlations between parameters. We give here the corresponding equations. The list of primary physiological parameters (the value of which the user may set to any value for a particular simulation) is

recapitulated in Table 3, together with their units and default values. The drug-specific parameters are listed in Table 4.

Total blood flow (cardiac output, in L/h) is assumed to depend on  $B_m$  (the body mass, in kg):

$$F_{total} = sc_{F...} \cdot B_m^{0.75} \tag{67}$$

For compatibility with the openCAT model, the gut blood flow is computed as:

$$F_{gut} = F_{total} \cdot \sum_{i \in O} f_{F_i}$$
 (68)

where the summation is taken over the set O of gut segments ( $O = \{stomach, duodenum, jejunum, ileum, cecum, colon\}$ ). The fraction,  $f_{F_i}$ , of cardiac output flowing to tissue segment i is given in Table 3.

The arterial blood flow (L/h) to the liver is given by:

$$F_{liver} = f_{F_{total}} ag{69}$$

The total blood flow (L/h) to the liver is:

$$F_{liver} = F_{liver} + F_{gut} \tag{70}$$

The blood flows (L/h) to the kidney, fat, and poorly perfused tissue are respectively:

$$F_{kidney} = f_{F_{kidney}} \cdot F_{total} \tag{71}$$

$$F_{adip} = f_{F_{adip}} \cdot F_{total} \tag{72}$$

$$F_{ppt} = f_{F_{out}} \cdot F_{total} \tag{73}$$

The blood flow to the well perfused tissue is computed as:

$$F_{wpt} = F_{total} - F_{liver} - F_{kidney} - F_{adip} - F_{ppt}$$
 (74)

For compatibility with the openCAT model, the gut lumen volume (in L) is computed as:

$$V_{lumen} = B_m \cdot \sum_{i \in O} f_{Bl_i} \tag{75}$$

The fraction of body mass corresponding to each lumen segment i ( $f_{Bl_i}$ ) is given in Table 3.

Similarly, the gut tissue volume (in L) is computed as:

$$V_{gut} = B_m \cdot \sum_{i \in O} f_{Bw_i} \tag{76}$$

The fraction of body mass corresponding to each gut tissue segment i ( $f_{Bw_i}$ ) is given in Table 3.

The volumes (L) of the liver, kidney, fat, blood and well perfused tissue are respectively:

$$V_{liver} = f_{BW_{liver}} \cdot B_m \tag{77}$$

$$V_{kidney} = f_{BW_{kidney}} \cdot B_m \tag{78}$$

$$V_{adip} = f_{BW_{adip}} \cdot B_m \tag{79}$$

$$V_{blood} = f_{BW_{blood}} \cdot B_m \tag{80}$$

$$V_{wpt} = f_{Bw_{mn}} \cdot B_m \tag{81}$$

The volume of the poorly perfused tissue is computed as:

$$V_{ppt} = B_m - V_{gut} - V_{liver} - V_{kidney} - V_{adip} - V_{wpt} - V_{blood}$$
(82)

The Michaelis-Menten maximum rate of metabolism in liver and gut, ( $V_{max_{liver}}$  and  $V_{max_{gut}}$ , in micromol/h) are scaled from *in vitro* values using:

$$V_{max_{liver}} = 60 \times 1000 \cdot V_{max_{v}} \cdot \mu_{p_{liver}} \cdot V_{liver}$$
(83)

$$V_{max_{gut}} = 60 \times 1000 \cdot V_{max_{v}} \cdot \mu_{p_{gut}} \cdot V_{gut}$$
(84)

where  $V_{max_v}$  is the *in vitro* measured value (in micromol/min/mg of microsomal proteins),  $\mu_{p_{liver}}$  I and  $\mu_{p_{gut}}$  are the microsomal abundances in the corresponding organs (in mg/g of tissue).

The *in vivo* Michaelis-Menten constant for metabolism in gut  $(K_m)$  is simply the value measured *in vitro*:

$$K_{m} = K_{m} \tag{85}$$

**Table 3:** Physiological parameters of the PBPK model.

| Parameters                                   | Symbols                            | Units            | Default<br>values | References |
|----------------------------------------------|------------------------------------|------------------|-------------------|------------|
| Body mass                                    | $B_m$                              | kg               | 70                |            |
| Cardiac output scaling coefficient           | $\mathit{SC}_{F_{total}}$          | $L.kg^{-0.75}$   | 15                |            |
| Fractions of cardiac output going to tissues |                                    |                  |                   | [1]        |
| liver (arterial)                             | $f_{F_{liver}}$                    | -                | 0.077             |            |
| kidney                                       | $f_{F_{kidney}}$                   | -                | 0.21              |            |
| fat                                          | $f_{F_{adip}}$                     | -                | 0.06              |            |
| poorly perfused tissues                      | $f_{F_{ppt}}$                      | -                | 0.20              |            |
| stomach                                      | $f_{F_{stom}}$                     | -                | 0.024             |            |
| duodenum                                     | $f_{F_{duod}}$                     | -                | 0.016             |            |
| jejunum                                      | $f_{F_{jeju}}$                     | -                | 0.056             |            |
| ileum                                        | $f_{F_{ileum}}$                    | -                | 0.033             |            |
| cecum                                        | $f_{F_{cecum}}$                    | -                | 0.006             |            |
| colon                                        | $f_{F_{colon}}$                    | _                | 0.038             |            |
| Tissue fractions of body mass                | r colon                            |                  |                   | [1]        |
| liver                                        | $f_{Bw_{liver}}$                   | -                | 0.0243            | 2 3        |
| kidney                                       | $f_{Bw_{kidney}}$                  | -                | 0.0096            |            |
| fat                                          | $f_{Bw_{adip}}$                    | -                | 0.16              |            |
| richly perfused tissues                      | $f_{Bw_{rpt}}$                     | -                | 0.10              |            |
| blood                                        | $f_{Bw_{blood}}$                   | -                | 0.065             |            |
| stomach                                      | $f_{Bw_{stom}}$                    | _                | 0.0021            |            |
| duodenum                                     | $f_{Bw_{duod}}$                    | _                | 0.0003            |            |
| jejunum                                      | $f_{Bw_{jeju}}$                    | _                | 0.0009            |            |
| ileum                                        | $f_{Bw_{ileum}}$                   | _                | 0.0006            |            |
| cecum                                        | $f_{\mathit{Bw}_{\mathit{cecum}}}$ | _                | 0.0005            |            |
| colon                                        | $f_{Bw_{colon}}$                   | _                | 0.0048            |            |
| Lumina as fractions of body mass             | 1 Dwcolon                          |                  |                   | [1]        |
| stomach                                      | $f_{Bl_{stom}}$                    | -                | 0.0036            |            |
| duodenum                                     | $f_{Bl_{duod}}$                    | _                | 0.0003            |            |
| jejunum                                      | $f_{Bl_{jeju}}$                    | -                | 0.0023            |            |
| ileum                                        | $f_{Bl_{ileum}}$                   | -                | 0.0032            |            |
| cecum                                        | $f_{Bl_{cecum}}$                   | -                | 0.0001            |            |
| colon                                        | $f_{Bl_{colon}}$                   | -                | 0.0051            |            |
| Microsomal proteins                          | Dicolon                            |                  |                   |            |
| liver                                        | $\mu_{P_{liver}}$                  | mg / g of tissue | 45                | [2]        |
| gut                                          | $\mu_{P_{gut}}$                    | mg / g of tissue | 6                 | [3]        |

<sup>[1]:</sup> Perdaems et al. Clinical Pharmacokinetics 2010; 49: 239-258.

<sup>[2]:</sup> Houston et al. Toxicology in Vitro 2012; 26: 1265-1271.

<sup>[3]:</sup> Paine et al. The Journal of Pharmacology and Experimental Therapeutics 1997; 283: 1552-1562.

**Table 4:** Drug-specific parameters of the PBPK model.

| Parameters                            | Symbols            | Units                       | Default values |
|---------------------------------------|--------------------|-----------------------------|----------------|
| Molecular mass                        | M                  | g/mol                       | 0              |
| Absorption rate constant              | $K_a$              | 1/hr                        | 0              |
| Absorption lag time                   | $T_{\it lag}$      | hr                          | 0              |
| Renal elimination clearance           | $K_{e_{kidney}}$   | L/h                         | 0              |
| Tissue / blood partition coefficients | J                  |                             |                |
| gut                                   | $P_{\it qut}$      | -                           | 1              |
| liver                                 | $P_{\it liver}$    | -                           | 1              |
| kidney                                | $P_{\it kidney}$   | -                           | 1              |
| fat                                   | $P_{\it adip}$     | -                           | 1              |
| richly perfused tissues               | $P_{\it rpt}$      | -                           | 1              |
| poorly perfused tissues               | $P_{ppt}^{'}$      | -                           | 1              |
| Plasma over blood concentration ratio | $r_{BP}$           | -                           | 1              |
| Fraction unbound in plasma            | $f_{u_{plasma}}$   | -                           | 1              |
| Fraction unbound in metabolic systems | F-22               |                             |                |
| liver                                 | $f_{umet_{liver}}$ | -                           | 1              |
| gut                                   | $f_{umet_{qut}}$   | -                           | 1              |
| Michaelis-Menten <i>Vmax</i>          | $V_{\it maxv}$     | µmol/min/mg microsomal prot | 0              |
| Michaelis-Menten <i>Km</i>            | $K_{mv}$           | microM                      | 0              |

## Annex 1 - GNU MCSim codes

# Two-compartment, first order absorption model

```
# Two-compartment model with first-order absorption rate and
# linear elimination (metabolism or other route of elimination)
# version 1
# Units:
# - time in hours
# - volumes in liters
# - masses of substances in micromoles
# - concentrations of substances in microM
# Frederic Bois - Dec 2016
# -----
States = {Q\_central}, # Quantity in central compartment (micromoles)
                      # ~
         Q_periph,
                                  peripheral compartment
                      # ~ eliminated
         Q_elim};
Outputs = {C_central,
                      # Concentration in central compartment (microM)
         C_periph,
                      # ~
                                      peripheral compartment
         Q_total};  # Total quantity for mass balance
Inputs = {Oral_input};
                      # Drug input in micromoles
# -----
# Parameters
# -----
# Oral input modeling
IngDose = 0.0; # ingested input (micromoles)
Period = 0.0; # period of the exposure/no exposure cycle (h)
Tlag
        = 0.0; # Absorption lagtime (h)
         = 0.0; # Intestinal absorption rate constant (1/h)
Oral_input = PerExp (IngDose, Period, Tlag, Ka);
# Elimination rate constant (1/h)
Ke = 0;
```

```
# Volumes (L)
V_central = 1;
V_periph = 1;
# Transfer rate constants between compartments (1/h)
Kc2p = 0;
Kp2c = 0;
Dynamics {
 dt (Q_elim) = Ke * Q_central;
 dt (Q_periph) = Kc2p * Q_central - Kp2c * Q_periph;
 dt (Q_central) = Ka * Oral_input - dt(Q_elim) - dt(Q_periph);
}
CalcOutputs {
 C_central = Q_central / V_central;
 C_periph = Q_periph / V_periph;
 }
End.
```

# PBPK, first order absorption model

```
# -----
# Six-compartment PBPK model with first-order absorption from the gut.
# No difference between arterial and venous blood, no inhalation.
# Transport to tissues is flow limited.
# version 1.
# Units:
# - time in hours
# - volumes in liters
# - masses of substances in micromoles
# - concentrations of substances in microM
# Frederic Bois - Dec 2016
# -----
                   # Quantity in kidney (micromoles)
States = {Q_kid},
                     # ~
                               richly perfused tissues (viscera)
         Q_rpt,
                     # ~
                                liver
         Q_liver,
                     # ~
         Q_adip,
                               adipose tissue
                     # ~
                               poorly perfused tissues (muscle and skin)
         Q_ppt,
                     # ~
         Q_blood,
                               blood
         Q_gut_lu,
                     # ~
                              gut lumen
                      # ~
         Q_gut,
                                gut
         Q_absorb_gut, # ~
                              absorbed from gut lumen
         Q_absorb_pv,
                      # ~
                              reaching the portal vein
         Q_elim_kid,
                     # ~
                              urine excreted or metabolized in kidney
         Q_met_liver,
                      # ~
                                metabolized in liver
                       # ~
         Q_met_gut,
                                metabolized in gut
                    # Integral of blood concentration
         AUC_blood,
         AUC_liver};
                      # ~
                                  liver ~
                    # Concentration in blood plasma (microM)
Outputs = {C_plasma,
         C_kid,
                      # ~
                                       kidney
         C_rpt,
                       # etc.
         C_liver,
         C_adip,
         C_ppt,
         C_blood,
         C_gut_lu,
         C_gut,
                     # Quantity metabolized or excreted
         Q elim,
                     # ~ in the body (including lumina)
         Q_organ,
                   # ~ in the body and metabolized or excreted
         Q_total,
         Instant_Ka_gi}; # Instantaenous net absorption ratio by g.i. tract
```

```
# -----
# Physiological parameters
# -----
# Body mass (kg)
BDM = 70;
# Total blood flow scaling coefficient to body mass
sc_F_total = 15;
# Fractions of total blood flow going to tissues
f_Flow_adip = 0.06;
f_Flow_kid
              = 0.21;
f_Flow_ppt = 0.20;
f_Flow_liver_art = 0.077;
f_Flow_stom = 0.024;
f_Flow_duod
             = 0.016;
             = 0.056;
f_Flow_jeju
f_Flow_ileon = 0.033;
f_Flow_cecum
               = 0.006;
            = 0.038;
f_Flow_colon
# Tissue fractions of body mass
f_BDM_adip = 0.16;
f_BDM_blood = 0.065;
f_BDM_kid = 0.0096;
f_BDM_rpt = 0.1;
f_BDM_liver = 0.0243;
f_BDM_stom = 0.0021;
f_BDM_duod = 0.0003;
f_BDM_jeju = 0.0009;
f_BDM_ileon = 0.0006;
f_BDM_cecum = 0.0005;
f_BDM_colon = 0.0048;
# Lumina as fractions of body mass
f_BDM_stom_lu = 0.0036;
f_BDM_duod_lu = 0.0003;
f_BDM_jeju_lu = 0.0023;
f_BDM_ileon_lu = 0.0032;
f_BDM_cecum_lu = 0.0001;
f_BDM_colon_lu = 0.0051;
```

# Microsomal proteins (mg / g of tissue)

Inputs = {Oral\_dose\_rate};# in micromoles / hours

```
MicroProt_liver = 45; # Houston 2012
MicroProt_gut = 6; # Paine 1997
#-----
# Susbstance-specific parameters
#-----
# Molecular mass (g/mol)
MM;
# Intestinal absortion rate (1/h)
Kabs_gut;
# Administration lagtime, if needed
Tlag;
# Tissue / blood partition coefficients
PC_adip;
PC_rpt;
PC_ppt;
PC_kid;
PC_liver;
PC_gut;
# Plasma / blood concentration ratio
Ratio_BP = 1;
# Fractions unbound
Fu_plasma = 1.0;
Fu_met_liver = 1.0; # to liver in vitro metabolic system (e.g. microsomes)
Fu_met_gut = 1.0; # to gut
# Michaelis-Menten Vmax (micromol/min/mg microsomal proteins)
Vmax_vitro;
# Michaelis-Menten Km (microM)
Km_vitro;
# Renal elimination clearance (L/h)
Ke_kid;
# Scaled parameters
#-----
```

```
# Blood flows
F_total;
# Volumes
V_adip;
V_blood;
V_kid;
V_liver;
V_rpt;
V_ppt;
V_gut;
# Luminal volumes in gi tract
V_gut_lu;
# Blood flows
Flow_adip;
Flow_kid;
Flow_liver;
Flow_liver_art;
Flow_rpt;
Flow_ppt;
Flow_gut;
# Fraction unbound in blood
Fu_blood;
# In vivo liver and gi tract Vmax
Vmax_vivo_liver;
Vmax_vivo_gut;
# In vivo Km
Km_vivo;
Initialize {
  # Total blood flow
  F_{total} = sc_{total} * pow(BDM, 0.75);
  # Volumes
  V_{adip}
           = BDM * f_BDM_adip;
  V_blood = BDM * f_BDM_blood;
  V_kid
           = BDM * f_BDM_kid;
  V_liver
            = BDM * f_BDM_liver;
            = BDM * f_BDM_rpt;
  V_{rpt}
             = BDM * (f_BDM_stom + f_BDM_duod + f_BDM_jeju + f_BDM_ileon +
  V_{gut}
                      f_BDM_cecum + f_BDM_colon);
```

```
V_ppt = BDM - V_adip - V_blood - V_kid - V_liver - V_rpt - V_gut;
  # Luminal volume
  V_gut_lu = BDM * (f_BDM_stom_lu + f_BDM_duod_lu + f_BDM_jeju_lu +
                    f_BDM_ileon_lu + f_BDM_cecum_lu + f_BDM_colon_lu);
  # Blood flows
 Flow_adip
                = F_total * f_Flow_adip;
 Flow_kid
               = F_total * f_Flow_kid;
                = F_total * f_Flow_ppt;
 Flow_ppt
 Flow_liver_art = F_total * f_Flow_liver_art;
                = F_total * (f_Flow_stom + f_Flow_duod + f_Flow_jeju +
 Flow_gut
                              f_Flow_ileon + f_Flow_cecum + f_Flow_colon);
 Flow_liver = Flow_liver_art + Flow_gut;
 Flow_rpt = F_total - Flow_adip - Flow_kid - Flow_ppt - Flow_liver;
  # Fraction unbound in blood
 Fu_blood = Fu_plasma / Ratio_BP;
  # Metabolic parameters, scaled from in vitro values
 Vmax_vivo_liver = Vmax_vitro * 60 * MicroProt_liver * 1000 * V_liver;
 Vmax_vivo_gut = Vmax_vitro * 60 * MicroProt_gut * 1000 * V_gut;
 Km_vivo = Km_vitro;
} # End of model scaling
Dynamics {
  # Concentrations in compartments
  C_adip = Q_adip / V_adip;
  C_{kid} = Q_{kid} / V_{kid};
  C_rpt = Q_rpt / V_rpt;
 C_ppt = Q_ppt / V_ppt;
  C_liver = Q_liver / V_liver;
  C_gut = Q_gut / V_gut;
  # Blood concentration
  C_blood = Q_blood / V_blood;
  # Blood concentration at compartment exit
  Ctb_kid = C_kid / PC_kid;
  Ctb_liver = C_liver / PC_liver;
  Ctb_rpt = C_rpt / PC_rpt;
```

```
Ctb_ppt = C_ppt / PC_ppt;
Ctb_adip = C_adip / PC_adip;
Ctb_gut = C_gut / PC_gut;
# Concentrations in gut lumen
C_gut_lu = Q_gut_lu / V_gut_lu;
# Transfer from gut lumen to gut tissue
Rate_in = Kabs_gut * Q_gut_lu;
# Transfers from tissues to portal vein
Rate_in_portvein = Flow_gut * Ctb_gut;
# Differential equations
# Quantities absorbed
dt (Q_absorb_gut) = Rate_in;
# Quantity reaching the portal vein
dt (Q_absorb_pv) = Rate_in_portvein;
# Elimination and metabolism
dt (Q_elim_kid) = Ke_kid * Ctb_kid * Fu_blood;
dt (Q_met_liver) = Vmax_vivo_liver * Ctb_liver /
                  (Km_vivo * Fu_met_liver / Fu_blood + Ctb_liver);
dt (Q_met_gut)
                = Vmax_vivo_gut * Ctb_gut /
                   (Km_vivo * Fu_met_gut / Fu_blood + Ctb_gut);
# Distribution
dt (Q_kid) = Flow_kid * (C_blood - Ctb_kid) - dt (Q_elim_kid);
dt (Q_adip) = Flow_adip * (C_blood - Ctb_adip);
dt (Q_ppt) = Flow_ppt * (C_blood - Ctb_ppt);
dt (Q_rpt) = Flow_rpt * (C_blood - Ctb_rpt);
dt (Q_liver) = Flow_liver_art * C_blood + Flow_gut * Ctb_gut -
               Flow_liver * Ctb_liver - dt (Q_met_liver);
dt(Q_blood) = Flow_rpt * Ctb_rpt + Flow_ppt * Ctb_ppt +
               Flow_adip * Ctb_adip + Flow_liver * Ctb_liver +
               Flow_kid * Ctb_kid - F_total * C_blood;
dt(Q_gut_lu) = Oral_dose_rate - Rate_in;
dt(Q_gut) = Flow_gut * (C_blood - Ctb_gut) + Rate_in - dt (Q_met_gut);
```

```
# AUCs
dt(AUC_blood) = C_blood;
dt(AUC_liver) = C_liver;
}
CalcOutputs {
    C_plasma = (C_blood > 0 ? C_blood / Ratio_BP : 1E-10);
# Mass balance checking
    Q_elim = Q_elim_kid + Q_met_liver + Q_met_gut;
    Q_organ = Q_kid + Q_rpt + Q_liver + Q_adip + Q_ppt + Q_blood + Q_gut_lu + Q_gut;
    Q_total = Q_organ + Q_elim;
    Instant_Ka_gi = (Q_gut_lu > 0 ? Q_absorb_pv / Q_gut_lu : 0);
}
End.
```

## Two-compartment, openCAT absorption model (v3)

```
# -----
# Two-compartment PBPK model with openCAT gut model.
# Linear metabolism
# Effective permeability is assumed to be the same for each segment
# of the gi tract
# version 2: drug release and dissolution equations added
# version 3: adding the liver between gut and central (see Huang 2009)
           adding apical influx transport in gut compartments and liver
#
           adding apical efflux ~
#
           adding fractions unbound in gut and liver compartments
# Units:
# - time in hours
# - volumes in liters
# - masses of substances in micromoles
# - concentrations of substances in microM
# Frederic Bois - 2017
# -----
States = {Q_central,  # Quantity in central compartment (micromoles)
         Q_periph,
                                   peripheral compartment
       Q_liver,
                   # ~
                               liver
         # Q_to_release, # ~
                              to release in stomach
         Q_released, # ~
                              released in stomach
                               in stomach lumen (dissolved)
                      # ~
         Q_stom_lu_d,
                       # ~
         Q_duod_lu_d,
                                  duodenum ~
                                 jejunum ~
         Q_jeju_lu_d,
                       # ~
         Q_ileum_lu_d, # ~
                                  ileum ~
         Q_cecum_lu_d, # ~
                                  cecum
                                 colon ~
         Q_colon_lu_d,
                       # ~
                      # ~
                                 stomach lumen (undissolved)
         Q_stom_lu_u,
                                 duodenum ~
         Q_duod_lu_u, # ~
                       # ~
         Q_jeju_lu_u,
                                  jejunum ~
         Q_ileum_lu_u,
                       # ~
                                  ileum
         Q_cecum_lu_u, # ~
                                 cecum
                      # ~
                                  colon
         Q_colon_lu_u,
                                  stomach epithelium
                       # ~
         Q_stom_ep,
         Q_duod_ep,
         Q_jeju_ep,
         Q_ileum_ep,
         Q_cecum_ep,
         Q_colon_ep,
```

```
# ~
           Q_stom_w,
                                          stomach wall
           Q_duod_w,
           Q_jeju_w,
           Q_ileum_w,
           Q_cecum_w,
           Q_colon_w,
           Q_absorb_stom, # ~
                                          absorbed from stomach lumen
           Q_absorb_duod,
           Q_absorb_jeju,
           Q_absorb_ileum,
           Q_absorb_cecum,
           Q_absorb_colon,
                                         reaching the portal vein
           Q_absorb_pv,
                           # ~
           Q_elim_central, # ~
                                          metabolized or excreted from central
           Q_met_stom,
           Q_met_duod,
           Q_met_jeju,
           Q_met_ileum,
           Q_met_cecum,
           Q_met_colon,
           Q_met_liver,
           Q_feces_d,
                           # ~
                                          excreted dissolved
                                                               in feces
           Q_feces_u};
                           # ~
                                          excreted undissolved in feces
Outputs = {C_central,
                            # Concentration in central compartment (microM)
           C_periph,
                            #
                                                peripheral
                            #
                                                stomach lumen (dissolved)
           C_stom_lu_d,
           C_duod_lu_d,
           C_jeju_lu_d,
           C_ileum_lu_d,
           C_cecum_lu_d,
           C_colon_lu_d,
           C_stom_ep,
           C_duod_ep,
           C_jeju_ep,
           C_ileum_ep,
           C_cecum_ep,
           C_colon_ep,
           C_stom_w,
           C_duod_w,
           C_jeju_w,
           C_ileum_w,
           C_cecum_w,
           C_colon_w,
                           # Quantity in g.i. tract lumen (dissolved)
           Q_gi_lu_d,
           Q_gi_lu_u,
                           # ~
                                                           (undissolved)
                           # ~
           Q_gi_ep,
                                                     epithelium
           Q_gi_w,
                           # ~
                                                     wall
```

```
# ~ metabolized in the g.i. tract
          Q_met_gi,
          Q_elim_gi,  # ~ metabolized in or excreted from the g.i. tract
                       # ~ in the body (including lumina)
          Q_organ,
          Q_total,  # ~ in the body and metabolized or excreted
          Release_rate,  # Instantaneous release rate for delayed forms
          Instant_Ka_gi}; # Instantaenous net absorption ratio by g.i. tract
Inputs = {Oral_dose_rate, IV_dose_rate, # immediate dose, in micromoles / h
          PO_dose};
                                      # delayed oral dose, in micromoles
# -----
# Physiological parameters
# -----
# Body mass (kg)
BDM = 70;
# Total blood flow scaling coefficient to body mass
sc_F_total = 15;
# Fractions of total blood flow going to tissues (ref Perdaems 2010)
f_Flow_stom = 0.024;
f_Flow_duod = 0.016;
f_Flow_jeju = 0.056;
f_Flow_ileum = 0.033;
f_Flow_cecum = 0.006;
f_Flow_colon = 0.038;
f_Flow_liver = 0.250;
# Tissue fractions of body mass (ref Perdaems 2010)
f_BDM_stom = 0.0021;
f_BDM_duod = 0.0003;
f_BDM_jeju = 0.0009;
f_BDM_ileum = 0.0006;
f_BDM_cecum = 0.0005;
f_BDM_colon = 0.0048;
f_BDM_liver = 0.0243;
# Lumina as fractions of body mass (ref Perdaems 2010)
f_BDM_stom_lu = 0.0036;
f_BDM_duod_lu = 0.0003;
f BDM jeju lu = 0.0023;
f_BDM_ileum_lu = 0.0032;
f_BDM_cecum_lu = 0.0001;
f_BDM_colon_lu = 0.0051;
```

```
# Lengths of gi tract segments (decimeters, dm)
Length_stom = 2.83; # Ando 2015
Length_duod = 1.41; # Ando 2015
Length_jeju = 11.68; # Ando 2015
Length_ileum = 17.52; # Ando 2015
Length_cecum = 1.7; # Perdaems 2010
Length_colon = 11.0; # ICRP 2002
# Radii of gi tract segments (dm)
Radius_stom = 0.967; # Ando 2015
Radius_duod = 0.153; # Ando 2015
Radius_jeju = 0.137; # mean of the two Ando values
Radius_ileum = 0.098; # mean of the three Ando values
Radius_cecum = 0.35; # Perdaems 2010
Radius_colon = 0.25; # Perdaems 2010
# Transit half-lives in lumina (ref Perdaems 2010) (hours)
T12 \text{ stom lu} = 0.25;
T12_duod_lu = 0.25;
T12_{jeju_lu} = 1.02;
T12_{ileum_lu} = 2.04;
T12_cecum_lu = 4.55;
T12\_colon\_lu = 13.5;
# pH of luminal contents (ref Perdaems 2010)
pH_stom = 1.7;
pH_duod = 6;
pH_jeju = 6.5;
pH_ileum = 7.4;
pH_cecum = 5.9;
pH_colon = 7;
# Microsomal proteins (mg / g of tissue)
MicroProt_stom = 0;
MicroProt_duod = 18;
                        # Paine 1997
MicroProt_jeju = 25; # Paine 1997
MicroProt_ileum = 24;
                        # Paine 1997
MicroProt_cecum = 0.0;
MicroProt_colon
               = 0.0;
MicroProt_liver
                = 45;
                        # Houston 2012
# G.i. tract epithelial thickness (dm)
H_{ep} = 5.25E-4;
#-----
# Substance- and formulation specific parameters
#-----
# Molecular mass (g/mol)
```

```
MM;
# Acido-basic type: 0 = neutral, 1 = base, 2 = acid, 3 = ampholyte
AB_type; # neutral is the default
# Ionization constants
pKb; # basic equilibrium constant
pKa; # acid equilibrium constant
# Solute molal volume at normal boiling point (ml/mole) (about twice MM...)
Mol_vol; # no default value
# Dosage forms: 0/1 switches, mutually exclusive,
# only one on them should be set to 1
G_immediate_d = 1; # immediate release, dissolved (default)
G_immediate_u;
                 # immediate release, undissolved
G delayed d;
                 # delayed release, dissolved
G_delayed_u;
                 # delayed release, undissolved
# Administration lagtime, if needed (to use in an input function)
Tlag;
# Weibull delayed release parameters
Weibull_slope = 1; # avoid division by zero
Weibull_scale = 1; # avoid division by zero
Weibull_lag;
# First order delayed release rate constant
# K_release; # unused, the equation is commented out
# Galenic radius (microm)
G_Radius = 25.0;
# Powder density (g/ml)
G_Density = 1.2;
# Intrinsic water solubility (saturation concentration) (microg/L)
Solubility;
# Precipitation rate (1/h)
K_precip;
# Absorption on(1)/off(0) switches
f_Abs_stom;
f_Abs_duod;
f_Abs_jeju;
f_Abs_ileum;
f_Abs_cecum;
```

```
f_Abs_colon;
# Effective permeability of g.i. tract epithelia
Peff;
# Excretion over absorption rate constant ratios
Ke_over_a_epit; # between lumen and epithelium
Ke_over_a_tiss; # between epithelium and underlying wall tissue
# GI tract apical efflux Vmax
Vmax_eff_stom = 0;
Vmax_eff_duod = 0;
Vmax_eff_jeju = 0;
Vmax_eff_ileum = 0;
Vmax_eff_cecum = 0;
Vmax_eff_colon = 0;
Vmax_eff_liver = 0;
# GI tract apical influx Vmax
Vmax_inf_stom = 0;
Vmax_inf_duod = 0;
Vmax_inf_jeju = 0;
Vmax_inf_ileum = 0;
Vmax_inf_cecum = 0;
Vmax_inf_colon = 0;
Vmax_inf_liver = 0;
# GI tract apical efflux Km
Km_eff = 1;
# GI tract apical influx Km
Km_inf = 1;
# Plasma / blood concentration ratio
Ratio_BP = 1;
# Fractions unbound
Fu_plasma = 1;  # fraction unbound in plasma
Fu_stom = 1;
                # etc.
Fu_duod = 1;
Fu_{jeju} = 1;
Fu_ileum = 1;
Fu_cecum = 1;
Fu_{colon} = 1;
Fu_liver = 1;
Fu_vitro_stom = 1.0; # in stomach in vitro metabolic system (e.g. microsomes)
Fu_vitro_duod = 1.0; # etc.
```

```
Fu_vitro_jeju = 1.0;
Fu_vitro_ileum = 1.0;
Fu_vitro_cecum = 1.0;
Fu_vitro_colon = 1.0;
Fu_vitro_liver = 1.0;
# Unbound tissue / unbound blood partition coefficients
Kpuu_stom = 1;
Kpuu_duod = 1;
Kpuu_jeju = 1;
Kpuu_ileum = 1;
Kpuu_cecum = 1;
Kpuu_colon = 1;
Kpuu_liver = 1;
# Volumes (L)
V central = 1.0;
V_{periph} = 1.0;
# Transfer rate constants between central and peripheral compartments (1/h)
Kc2p;
Kp2c;
# Metabolism Michaelis-Menten Vmax (micromol/min/mg microsomal proteins)
Vmax_met_vitro;
# Metabolism Michaelis-Menten Km (microM)
Km_met_vitro;
# Elimination rate constant from central (1/h)
Kelim;
#-----
# Scaled physiological G.I. tract parameters, computed in Initialize, below
# Blood flows
F_total;
# Volumes (L)
V_stom;
V_duod;
V_jeju;
V_ileum;
V_cecum;
V_colon;
V_liver;
```

```
# Tissue volumes in gi tract
V_stom_w;
V_duod_w;
V_jeju_w;
V_ileum_w;
V_cecum_w;
V_colon_w;
# Luminal volumes in gi tract
V_stom_lu;
V_colon_lu;
V_duod_lu;
V_jeju_lu;
V_ileum_lu;
V_cecum_lu;
# Epithelial volumes in gi tract
V_stom_ep;
V_duod_ep;
V_jeju_ep;
V_ileum_ep;
V_cecum_ep;
V_colon_ep;
# Epithelial surface area in gi tract (dm^2)
SA_stom;
SA_duod;
SA_jeju;
SA_ileum;
SA_cecum;
SA_colon;
# Intestinal transit rates
Kt_stom;
Kt_duod;
Kt_jeju;
Kt_ileum;
Kt_cecum;
Kt_colon;
# Blood flows
Flow_portvein;
Flow_art_liv;
Flow_stom;
Flow_duod;
Flow_jeju;
Flow_ileum;
Flow_cecum;
```

```
Flow_colon;
# GI tract absorption flows
Ka_stom;
Ka_duod;
Ka_jeju;
Ka_ileum;
Ka_cecum;
Ka_colon;
# Fraction unbound in blood
Fu_blood;
# In vivo GI tract and liver Vmax for metabolism
Vmax_met_stom;
Vmax_met_duod;
Vmax_met_jeju;
Vmax_met_ileum;
Vmax_met_cecum;
Vmax_met_colon;
Vmax_met_liver;
# In vivo Km for metabolism
Km met;
# Diffusion layer thickness
Diff_thickness;
# Diffusion coefficient at infinite dilution
Diffusivity;
# Baseline dissolution rate constant (1/microM/hr)
K_diss;
# Saturation concentrations
Csat_stom;
Csat_duod;
Csat_jeju;
Csat_ileum;
Csat_cecum;
Csat_colon;
Initialize {
  # Total blood flow
  F_{total} = sc_F_{total} * pow(BDM, 0.75);
  V_liver = BDM * f_BDM_liver;
```

```
# Volumes of gi tract tissues
V_stom_w = BDM * f_BDM_stom;
V_duod_w = BDM * f_BDM_duod;
V_{jeju_w} = BDM * f_BDM_{jeju};
V_ileum_w = BDM * f_BDM_ileum;
V_cecum_w = BDM * f_BDM_cecum;
V_colon_w = BDM * f_BDM_colon;
# Blood flows
Flow_stom = F_total * f_Flow_stom;
Flow_duod
            = F_total * f_Flow_duod;
Flow_jeju = F_total * f_Flow_jeju;
Flow_ileum = F_total * f_Flow_ileum;
Flow_cecum = F_total * f_Flow_cecum;
Flow_colon
           = F_total * f_Flow_colon;
Flow_portvein = Flow_stom + Flow_duod + Flow_jeju +
               Flow_ileum + Flow_cecum + Flow_colon;
Flow_art_liv = F_total * f_Flow_liver - Flow_portvein;
# Epithelial surface areas
SA_stom = Length_stom * 2 * 3.1416 * Radius_stom;
SA_duod = Length_duod * 2 * 3.1416 * Radius_duod;
SA_jeju = Length_jeju * 2 * 3.1416 * Radius_jeju;
SA_ileum = Length_ileum * 2 * 3.1416 * Radius_ileum;
SA_cecum = Length_cecum * 2 * 3.1416 * Radius_cecum;
SA_colon = Length_colon * 2 * 3.1416 * Radius_colon;
# Luminal volumes
V_stom_lu = f_BDM_stom_lu * BDM;
V_duod_lu = f_BDM_duod_lu * BDM;
V_jeju_lu = f_BDM_jeju_lu * BDM;
V_ileum_lu = f_BDM_ileum_lu * BDM;
V_cecum_lu = f_BDM_cecum_lu * BDM;
V_colon_lu = f_BDM_colon_lu * BDM;
# Intestinal transit rates
Kt_stom = (log(2.0) * V_stom_lu / T12_stom_lu);
Kt_duod = (log(2.0) * V_duod_lu / T12_duod_lu);
Kt_{jeju} = (log(2.0) * V_{jeju_lu} / T12_{jeju_lu});
Kt_ileum = (log(2.0) * V_ileum_lu / T12_ileum_lu);
Kt_cecum = (log(2.0) * V_cecum_lu / T12_cecum_lu);
Kt_colon = (log(2.0) * V_colon_lu / T12_colon_lu);
# Epithelial volumes
V_stom_ep
           = H_ep * SA_stom;
V_duod_ep
           = H_ep * SA_duod;
V_jeju_ep
           = H_ep * SA_jeju;
```

```
V_ileum_ep
           = H_ep * SA_ileum;
V_cecum_ep = H_ep * SA_cecum;
V_colon_ep = H_ep * SA_colon;
# Fraction unbound in blood
Fu_blood = Fu_plasma / Ratio_BP;
# Metabolic parameters, scaled from in vitro values
Vmax_met_stom = Vmax_met_vitro * 60 * MicroProt_stom * V_stom_ep * 1000;
Vmax_met_duod = Vmax_met_vitro * 60 * MicroProt_duod * V_duod_ep * 1000;
Vmax_met_jeju = Vmax_met_vitro * 60 * MicroProt_jeju * V_jeju_ep * 1000;
Vmax_met_ileum = Vmax_met_vitro * 60 * MicroProt_ileum * V_ileum_ep * 1000;
Vmax_met_cecum = Vmax_met_vitro * 60 * MicroProt_cecum * V_cecum_ep * 1000;
Vmax_met_colon = Vmax_met_vitro * 60 * MicroProt_colon * V_colon_ep * 1000;
Vmax_met_liver = Vmax_met_vitro * 60 * MicroProt_liver * V_liver * 1000;
Km met = Km met vitro;
# Diffusion layer thickness (bounded between 5 and 30 microns)
# See Arav, Drug Development and Industrial Pharmacy, 2012; 38:940-951
Diff_thickness = (G_Radius < 5 ? 5 : G_Radius > 30 ? 30 : G_Radius);
# Diffusion coefficient at infinite dilution (cm2/sec) at 36 degrees Celsius
# in water; 1.09E-4 = 7.4E-8 * 309.15 * sqrt(18) / 0.89; 309.15 is 36 degrees
# Celsius in Kelvin; 18 it the molecular weight of water; 0.89 is water
# viscosity in centopoises. Ref: Wilke, 1955
Diffusivity = 1.09E-4 * pow(Mol_vol, -0.6);
# Baseline dissolution rate constant (1/microM/hr)
K_diss = 1080 * MM * Diffusivity / (G_Density * G_Radius * Diff_thickness);
# Saturation concentrations (according to Henderson-Hasselbach)
# note: AB_type: 0 = neutral, 1 = base, 2 = acid, 3 = ampholyte
Csat_stom = Solubility * (
 AB_{type} == 1 ? 1 + pow(10, pKb - pH_stom) :
 AB_{type} == 2 ? 1 + pow(10, pH_stom - pKa) :
 AB_type == 3 ? 1 + pow(10, pKb - pH_stom) + pow(10, pH_stom - pKa) : 1);
Csat_duod = Solubility * (
 AB_{type} == 1 ? 1 + pow(10, pKb - pH_duod) :
 AB_{type} == 2 ? 1 + pow(10, pH_duod - pKa) :
 AB_type == 3 ? 1 + pow(10, pKb - pH_duod) + pow(10, pH_duod - pKa) : 1);
Csat_jeju = Solubility * (
```

```
AB_{type} == 1 ? 1 + pow(10, pKb - pH_jeju) :
   AB_{type} == 2 ? 1 + pow(10, pH_{jeju} - pKa) :
   AB_{type} == 3 ? 1 + pow(10, pKb - pH_{jeju}) + pow(10, pH_{jeju} - pKa) : 1);
  Csat_ileum = Solubility * (
   AB_{type} == 1 ? 1 + pow(10, pKb - pH_ileum) :
   AB_{type} == 2 ? 1 + pow(10, pH_ileum - pKa) :
   AB_type == 3 ? 1 + pow(10, pKb - pH_ileum) + pow(10, pH_ileum - pKa) : 1);
  Csat_cecum = Solubility * (
   AB_{type} == 1 ? 1 + pow(10, pKb - pH_{cecum}) :
   AB_{type} == 2 ? 1 + pow(10, pH_{cecum} - pKa) :
   AB_type == 3 ? 1 + pow(10, pKb - pH_cecum) + pow(10, pH_cecum - pKa) : 1);
  Csat_colon = Solubility * (
   AB_{type} == 1 ? 1 + pow(10, pKb - pH_colon) :
   AB_{type} == 2 ? 1 + pow(10, pH_colon - pKa) :
   AB_type == 3 ? 1 + pow(10, pKb - pH_colon) + pow(10, pH_colon - pKa) : 1);
  # GI tract absorption flows
  Ka_stom = Peff * SA_stom * f_Abs_stom;
  Ka_duod = Peff * SA_duod * f_Abs_duod;
  Ka_jeju = Peff * SA_jeju * f_Abs_jeju;
  Ka_ileum = Peff * SA_ileum * f_Abs_ileum;
  Ka_cecum = Peff * SA_cecum * f_Abs_cecum;
  Ka_colon = Peff * SA_colon * f_Abs_colon;
} # End of model scaling
Dynamics {
  # Delayed release modeling
  # Weibull delayed release (see TNO intestinal models). This should be
  # doable with a PerExp input...
  Release_rate = PO_dose * Weibull_slope / Weibull_scale *
                 pow((t - Weibull_lag) / Weibull_scale, Weibull_slope - 1) *
                 exp(-pow((t - Weibull_lag) / Weibull_scale, Weibull_slope));
  # First order delayed release, off
```

```
# Release_rate = K_release * Q_to_release;
# Concentrations dissolved in gi tract lumina
C_stom_lu_d = Q_stom_lu_d / V_stom_lu;
C_duod_lu_d = Q_duod_lu_d / V_duod_lu;
C_jeju_lu_d = Q_jeju_lu_d / V_jeju_lu;
C_ileum_lu_d = Q_ileum_lu_d / V_ileum_lu;
C_cecum_lu_d = Q_cecum_lu_d / V_cecum_lu;
C_colon_lu_d = Q_colon_lu_d / V_colon_lu;
# Concentrations undissolved in gi tract lumina
C_stom_lu_u = Q_stom_lu_u / V_stom_lu;
C_duod_lu_u = Q_duod_lu_u / V_duod_lu;
C_jeju_lu_u = Q_jeju_lu_u / V_jeju_lu;
C_ileum_lu_u = Q_ileum_lu_u / V_ileum_lu;
C_cecum_lu_u = Q_cecum_lu_u / V_cecum_lu;
C_colon_lu_u = Q_colon_lu_u / V_colon_lu;
# Concentrations in gi tract epithelia
C_stom_ep = Q_stom_ep / V_stom_ep;
C_duod_ep = Q_duod_ep / V_duod_ep;
C_jeju_ep = Q_jeju_ep / V_jeju_ep;
C_ileum_ep = Q_ileum_ep / V_ileum_ep;
C_cecum_ep = Q_cecum_ep;
C_colon_ep = Q_colon_ep / V_colon_ep;
# Concentrations unbound in gi tract epithelia
Cu_stom_ep = C_stom_ep * Fu_stom;
Cu_duod_ep = C_duod_ep * Fu_duod;
Cu_jeju_ep = C_jeju_ep * Fu_jeju;
Cu_ileum_ep = C_ileum_ep * Fu_ileum;
Cu_cecum_ep = C_cecum_ep * Fu_cecum;
Cu_colon_ep = C_colon_ep * Fu_colon;
# Concentrations in gi tract walls
C_stom_w = Q_stom_w / V_stom_w;
C_duod_w = Q_duod_w / V_duod_w;
C_jeju_w = Q_jeju_w / V_jeju_w;
C_ileum_w = Q_ileum_w / V_ileum_w;
C_cecum_w = Q_cecum_w / V_cecum_w;
C_colon_w = Q_colon_w / V_colon_w;
C_liver = Q_liver / V_liver;
# Concentrations unbound in gi tract walls
Cu_stom_w = C_stom_w * Fu_stom;
Cu_duod_w = C_duod_w * Fu_duod;
Cu_{jeju_w} = C_{jeju_w} * Fu_{jeju};
Cu_ileum_w = C_ileum_w * Fu_ileum;
```

```
Cu_cecum_w = C_cecum_w * Fu_cecum;
Cu_colon_w = C_colon_w * Fu_colon;
# Concentration unbound in liver
Cu_liver = C_liver * Fu_liver;
# Concentrations unbound in blood at gi tract segments exit
Cu_stom_b = Cu_stom_w / Kpuu_stom;
Cu_duod_b = Cu_duod_w / Kpuu_duod;
Cu_jeju_b = Cu_jeju_w / Kpuu_jeju;
Cu_ileum_b = Cu_ileum_w / Kpuu_ileum;
Cu_cecum_b = Cu_cecum_w / Kpuu_cecum;
Cu_colon_b = Cu_colon_w / Kpuu_colon;
# Concentration unbound in blood at liver exit
Cu_liver_b = Cu_liver / Kpuu_liver;
# Concentrations in blood at gi tract segments exit
C_stom_b = Cu_stom_b / Fu_blood;
C_duod_b = Cu_duod_b / Fu_blood;
C_jeju_b = Cu_jeju_b / Fu_blood;
C_ileum_b = Cu_ileum_b / Fu_blood;
C_cecum_b = Cu_cecum_b / Fu_blood;
C_colon_b = Cu_colon_b / Fu_blood;
# Concentration in blood at liver exit
C_liver_b = Cu_liver_b / Fu_blood;
# Concentrations in other body compartments
C_central = Q_central / V_central;
C_periph = Q_periph / V_periph;
# Dissolution rate
stomach_K_diss = K_diss * (Csat_stom - C_stom_lu_d);
duodenum_K_diss = K_diss * (Csat_duod - C_duod_lu_d);
jejunum_K_diss = K_diss * (Csat_jeju - C_jeju_lu_d);
ileon_K_diss = K_diss * (Csat_ileum - C_ileum_lu_d);
cecum_K_diss = K_diss * (Csat_cecum - C_cecum_lu_d);
colon_K_diss = K_diss * (Csat_colon - C_colon_lu_d);
# Dissolution rate in lumina
Rate_stl_diss = stomach_K_diss * Q_stom_lu_u;
Rate_dul_diss = duodenum_K_diss * Q_duod_lu_u;
Rate_jel_diss = jejunum_K_diss * Q_jeju_lu_u;
Rate_ill_diss = ileon_K_diss * Q_ileum_lu_u;
Rate_cel_diss = cecum_K_diss * Q_cecum_lu_u;
Rate_col_diss = colon_K_diss * Q_colon_lu_u;
```

```
# Precipitations rate in lumina
Rate_stl_precip = K_precip * Q_stom_lu_d;
Rate_dul_precip = K_precip * Q_duod_lu_d;
Rate_jel_precip = K_precip * Q_jeju_lu_d;
Rate_ill_precip = K_precip * Q_ileum_lu_d;
Rate_cel_precip = K_precip * Q_cecum_lu_d;
Rate_col_precip = K_precip * Q_colon_lu_d;
# Transfers from lumen to lumen or feces (intestinal transit) (dissolved)
Rate_stl2dul = Kt_stom * C_stom_lu_d;
Rate_dul2jel = Kt_duod * C_duod_lu_d;
Rate_jel2ill = Kt_jeju * C_jeju_lu_d;
Rate_ill2cel = Kt_ileum * C_ileum_lu_d;
Rate_cel2col = Kt_cecum * C_cecum_lu_d;
Rate_col2fel = Kt_colon * C_colon_lu_d;
# Transfers from lumen to lumen or feces (intestinal transit) (undissolved)
Rate_stu2duu = Kt_stom * C_stom_lu_u;
Rate_duu2jeu = Kt_duod * C_duod_lu_u;
Rate_jeu2ilu = Kt_jeju * C_jeju_lu_u;
Rate_ilu2ceu = Kt_ileum * C_ileum_lu_u;
Rate_ceu2cou = Kt_cecum * C_cecum_lu_u;
Rate_cou2feu = Kt_colon * C_colon_lu_u;
# Transfers from lumina to epithelia for dissolved form: pasive, active
# influx and active efflux
Rate_stl2ste = Ka_stom * (C_stom_lu_d - Ke_over_a_epit * Cu_stom_ep) +
               Vmax_inf_stom * C_stom_lu_d / (Km_inf + C_stom_lu_d) -
               Vmax_eff_stom * Cu_stom_ep / (Km_eff + Cu_stom_ep);
Rate_dul2due = Ka_duod * (C_duod_lu_d - Ke_over_a_epit * Cu_duod_ep) +
               Vmax_inf_duod * C_duod_lu_d / (Km_inf + C_duod_lu_d) -
               Vmax_eff_duod * Cu_duod_ep / (Km_eff + Cu_duod_ep);
Rate_jel2jee = Ka_jeju * (C_jeju_lu_d - Ke_over_a_epit * Cu_jeju_ep) +
               Vmax_inf_jeju * C_jeju_lu_d / (Km_inf + C_jeju_lu_d) -
               Vmax_eff_jeju * Cu_jeju_ep / (Km_eff + Cu_jeju_ep);
Rate_ill2ile = Ka_ileum * (C_ileum_lu_d - Ke_over_a_epit * Cu_ileum_ep) +
               Vmax_inf_ileum * C_ileum_lu_d / (Km_inf + C_ileum_lu_d) -
               Vmax_eff_ileum * Cu_ileum_ep / (Km_eff + Cu_ileum_ep);
Rate_cel2cee = Ka_cecum * (C_cecum_lu_d - Ke_over_a_epit * Cu_cecum_ep) +
               Vmax_inf_cecum * C_cecum_lu_d / (Km_inf + C_cecum_lu_d) -
               Vmax_eff_cecum * Cu_cecum_ep / (Km_eff + Cu_cecum_ep);
Rate_col2coe = Ka_colon * (C_colon_lu_d - Ke_over_a_epit * Cu_colon_ep) +
               Vmax_inf_colon * C_colon_lu_d / (Km_inf + C_colon_lu_d) -
               Vmax_eff_colon * Cu_colon_ep / (Km_eff + Cu_colon_ep);
Rate_blo2liv = Vmax_inf_liver * Cu_liver_b / (Km_inf + Cu_liver_b) -
               Vmax_eff_liver * Cu_liver / (Km_eff + Cu_liver);
```

```
# Transfers from epithelia to wall tissues
Rate_ste2stw = Ka_stom * (Cu_stom_ep - Ke_over_a_tiss * Cu_stom_w);
Rate_due2duw = Ka_duod * (Cu_duod_ep - Ke_over_a_tiss * Cu_duod_w);
Rate_jee2jew = Ka_jeju * (Cu_jeju_ep - Ke_over_a_tiss * Cu_jeju_w);
Rate_ile2ilw = Ka_ileum * (Cu_ileum_ep - Ke_over_a_tiss * Cu_ileum_w);
Rate_cee2cew = Ka_cecum * (Cu_cecum_ep - Ke_over_a_tiss * Cu_cecum_w);
Rate_coe2cow = Ka_colon * (Cu_colon_ep - Ke_over_a_tiss * Cu_colon_w);
# Transfers from tissues wall to portal vein
Rate_stw2b = Flow_stom * C_stom_b;
Rate_duw2b = Flow_duod * C_duod_b;
Rate_jew2b = Flow_jeju * C_jeju_b;
Rate_ilw2b = Flow_ileum * C_ileum_b;
Rate_cew2b = Flow_cecum * C_cecum_b;
Rate_cow2b = Flow_colon * C_colon_b;
# Portal rate in
RateIn_portvein = Rate_stw2b + Rate_duw2b + Rate_jew2b +
                  Rate_ilw2b + Rate_cew2b + Rate_cow2b;
# Differential equations
# Quantity released to the stomach in case of delayed release
dt (Q_released) = Release_rate;
# Quantity to be released in the stomac in case of linear delayed release
# dt (Q_to_release) = Oral_dose_rate - Release_rate;
# Quantities absorbed
dt (Q_absorb_stom) = Rate_stl2ste;
dt (Q_absorb_duod) = Rate_dul2due;
dt (Q_absorb_jeju) = Rate_jel2jee;
dt (Q_absorb_ileum) = Rate_ill2ile;
dt (Q_absorb_cecum) = Rate_cel2cee;
dt (Q_absorb_colon) = Rate_col2coe;
# Quantity reaching the portal vein
dt (Q_absorb_pv) = RateIn_portvein;
# Elimination and metabolism
dt (Q_elim_central) = Kelim * Q_central;
dt (Q_met_stom) = Vmax_met_stom * Cu_stom_ep /
                   (Km_met * Fu_vitro_stom + Cu_stom_ep);
dt (Q_met_duod) = Vmax_met_duod * Cu_duod_ep /
                   (Km_met * Fu_vitro_duod + Cu_duod_ep);
```

```
dt (Q_met_jeju) = Vmax_met_jeju * Cu_jeju_ep /
                   (Km_met * Fu_vitro_jeju + Cu_jeju_ep);
dt (Q_met_ileum) = Vmax_met_ileum * Cu_ileum_ep /
                   (Km_met * Fu_vitro_ileum + Cu_ileum_ep);
dt (Q_met_cecum) = Vmax_met_cecum * Cu_cecum_ep /
                   (Km_met * Fu_vitro_cecum + Cu_cecum_ep);
dt (Q_met_colon) = Vmax_met_colon * Cu_colon_ep /
                   (Km_met * Fu_vitro_colon + Cu_colon_ep);
dt (Q_met_liver) = Vmax_met_liver * Cu_liver /
                   (Km_met * Fu_vitro_liver + Cu_liver);
dt (Q_feces_d) = Rate_col2fel;
dt (Q_feces_u) = Rate_cou2feu;
# Distributions
dt(Q_periph) = Kc2p * Q_central - Kp2c * Q_periph;
Q_out_liver = (Flow_portvein + Flow_art_liv) * C_liver_b;
dt(Q_central) = IV_dose_rate + Q_out_liver - Rate_blo2liv -
                (Flow_portvein + Flow_art_liv) * C_central -
                dt(Q_periph) - dt(Q_elim_central);
dt(Q_liver)
             = Flow_art_liv * C_central + RateIn_portvein -
                Q_out_liver + Rate_blo2liv -
                dt(Q_met_liver);
# Stomach
dt(Q_stom_lu_d) = (G_immediate_d > 0.5 ? Oral_dose_rate :
                   (G_delayed_d > 0.5 ? Release_rate : 0.0)) -
                  Rate_stl2dul - Rate_stl2ste +
                  Rate_stl_diss - Rate_stl_precip;
dt(Q_stom_lu_u) = (G_immediate_u > 0.5 ? Oral_dose_rate :
                   (G_delayed_u > 0.5 ? Release_rate : 0.0)) -
                  Rate_stu2duu - Rate_stl_diss + Rate_stl_precip;
dt(Q_stom_ep)
               = Rate_stl2ste - Rate_ste2stw - dt (Q_met_stom);
dt(Q_stom_w)
               = Flow_stom * C_central + Rate_ste2stw - Rate_stw2b;
```

```
# Duodenum
dt(Q_duod_lu_d) = Rate_stl2dul - Rate_dul2jel - Rate_dul2due +
                 Rate_dul_diss - Rate_dul_precip;
dt(Q_duod_lu_u) = Rate_stu2duu - Rate_duu2jeu -
                 Rate_dul_diss + Rate_dul_precip;
dt(Q_duod_ep)
              = Rate_dul2due - Rate_due2duw - dt (Q_met_duod);
dt(Q_duod_w)
              = Flow_duod * C_central + Rate_due2duw - Rate_duw2b;
# Jejunum
dt(Q_jeju_lu_d) = Rate_dul2jel - Rate_jel2ill - Rate_jel2jee +
                  Rate_jel_diss - Rate_jel_precip;
dt(Q_jeju_lu_u) = Rate_duu2jeu - Rate_jeu2ilu -
                 Rate_jel_diss + Rate_jel_precip;
dt(Q_jeju_ep)
              = Rate_jel2jee - Rate_jee2jew - dt (Q_met_jeju);
dt(Q_jeju_w) = Flow_jeju * C_central + Rate_jee2jew - Rate_jew2b;
# Ileum
dt(Q_ileum_lu_d) = Rate_jel2ill - Rate_ill2cel - Rate_ill2ile +
                  Rate_ill_diss - Rate_ill_precip;
dt(Q_ileum_lu_u) = Rate_jeu2ilu - Rate_ilu2ceu -
                  Rate_ill_diss + Rate_ill_precip;
dt(Q_ileum_ep) = Rate_ill2ile - Rate_ile2ilw - dt (Q_met_ileum);
dt(Q_ileum_w) = Flow_ileum * C_central + Rate_ile2ilw - Rate_ilw2b;
# Cecum
dt(Q_cecum_lu_d) = Rate_ill2cel - Rate_cel2col - Rate_cel2cee +
                  Rate_cel_diss - Rate_cel_precip;
dt(Q_cecum_lu_u) = Rate_ilu2ceu - Rate_ceu2cou -
                  Rate_cel_diss + Rate_cel_precip;
dt(Q_cecum_ep) = Rate_cel2cee - Rate_cee2cew - dt (Q_met_cecum);
dt(Q_cecum_w)
              = Flow_cecum * C_central + Rate_cee2cew - Rate_cew2b;
# Colon
dt(Q_colon_lu_d) = Rate_cel2col - dt (Q_feces_d) - Rate_col2coe +
                  Rate_col_diss - Rate_col_precip;
```

```
dt(Q_colon_lu_u) = Rate_ceu2cou - dt (Q_feces_u) -
                    Rate_col_diss + Rate_col_precip;
  dt(Q_colon_ep)
                 = Rate_col2coe - Rate_coe2cow - dt (Q_met_colon);
  dt(Q_colon_w)
                = Flow_colon * C_central + Rate_coe2cow - Rate_cow2b;
}
CalcOutputs {
  # Extra quantities and mass balance checking
  Q_gi_lu_d = Q_stom_lu_d + Q_duod_lu_d + Q_jeju_lu_d + Q_ileum_lu_d +
              Q_cecum_lu_d + Q_colon_lu_d;
  Q_gi_lu_u = Q_stom_lu_u + Q_duod_lu_u + Q_jeju_lu_u + Q_ileum_lu_u +
              Q_cecum_lu_u + Q_colon_lu_u;
  Q_gi_ep = Q_stom_ep + Q_duod_ep + Q_jeju_ep + Q_ileum_ep +
             Q_cecum_ep + Q_colon_ep;
           = Q_stom_w + Q_duod_w + Q_jeju_w + Q_ileum_w +
  Q_gi_w
              Q_cecum_w + Q_colon_w;
  Q_absorb = Q_absorb_stom + Q_absorb_duod +
             Q_absorb_jeju + Q_absorb_ileum +
              Q_absorb_cecum + Q_absorb_colon;
  Q_{met_gi} = Q_{met_stom} + Q_{met_duod} + Q_{met_jeju} +
              Q_met_ileum + Q_met_cecum + Q_met_colon;
  Q_elim_gi = Q_met_gi + Q_feces_d + Q_feces_u;
           = Q_met_liver + Q_elim_central + Q_elim_gi;
  Q_elim
  Q_organ
          = Q_central + Q_periph + Q_liver + Q_gi_lu_d + Q_gi_ep + Q_gi_w;
  Q_total = Q_organ + Q_elim;
  Instant_Ka_gi = (Q_gi_lu_d > 0 ? Q_absorb_pv / Q_gi_lu_d : 0);
}
End.
```

## PBPK openCAT absorption model

```
# -----
# Six-compartment PBPK model with openCAT gut model.
# No difference between arterial and venous blood, no inhalation.
# Transport to tissues is flow limited.
# Effective permeability is assumed to be the same for each segment
# of the gi tract
# version 1.
# Units:
# - time in hours
# - volumes in liters
# - masses of substances in micromoles
# - concentrations of substances in microM
# Frederic Bois - Nov 2016
States = {Q\_kid}, # Quantity in kidney (micromoles)
                   # ~
                            richly perfused tissues (viscera)
        Q_rpt,
        Q_liver,
                    # ~
                             liver
                    # ~
        Q_adip,
                             adipose tissue
                    # ~
        Q_ppt,
                             poorly perfused tissues (muscle and skin)
                 # ~
# ~
        Q_blood,
                             blood
                            stomach lumen
        Q_stom_lu,
        Q_duod_lu,
                    # ~
                            duodenum ~
        Q_jeju_lu,
                    # ~
                             jejunum ~
                    # ~
        Q_ileum_lu,
                             ileum
        Q_cecum_lu, # ~
                             cecum
        Q_colon_lu,
                    # ~
                             colon
                   # ~
                         stomach epithelium
        Q_stom_ep,
        Q_duod_ep,
        Q_jeju_ep,
        Q_ileum_ep,
        Q_cecum_ep,
        Q_colon_ep,
                   # ~ stomach wall
        Q_stom_w,
         Q_duod_w,
        Q_jeju_w,
         Q_ileum_w,
        Q_cecum_w,
         Q_colon_w,
         Q_absorb_stom, #~ absorbed from stomach lumen by epithelium
         Q_absorb_duod,
```

```
Q_absorb_jeju,
           Q_absorb_ileum,
           Q_absorb_cecum,
           Q_absorb_colon,
                           # ~
           Q_absorb_pv,
                                     reaching the portal vein
                           # ~
           Q_elim_kid,
                                      urine excreted or metabolized in kidney
           Q_met_liver,
                           # ~
                                      metabolized in liver
           Q_met_stom,
           Q_met_duod,
           Q_met_jeju,
           Q_met_ileum,
           Q_met_cecum,
           Q_met_colon,
           Q_feces,
                           # ~
                                      excreted in feces
           AUC_blood,
                           # Integral of blood concentration
                           # ~
           AUC_liver};
                                         liver ~
Outputs = {C_plasma,
                           # Concentration in blood plasma (microM)
          C_{kid}
                           # ~
                                              kidney
           C_rpt,
           C_liver,
           C_adip,
           C_ppt,
           C_blood,
           C_stom_lu,
           C_duod_lu,
           C_jeju_lu,
           C_ileum_lu,
           C_cecum_lu,
           C_colon_lu,
           C_stom_ep,
           C_duod_ep,
           C_jeju_ep,
           C_ileum_ep,
           C_cecum_ep,
           C_colon_ep,
           C_stom_w,
           C_duod_w,
           C_jeju_w,
           C_ileum_w,
           C_cecum_w,
           C_colon_w,
                           # Quantity in g.i. tract lumen
           Q_gi_lu,
                           # ~
           Q_gi_ep,
                                                     epithelium
                           # ~
           Q_gi_w,
           Q_absorb,
                         # ~ absorbed by the g.i. tract
           Q_elim,
                           # ~ metabolized or excreted
           Q_elim_gi,
                           # ~ metabolized or excreted from the g.i. tract only
```

```
# ~ in the body (including lumina)
          Q_organ,
                         \mbox{\tt\#} ~ in the body and metabolized or excreted
          Q_total,
          Instant_Ka_gi}; # Instantaenous net absorption ratio by g.i. tract
Inputs = {Oral_dose_rate};# in micromoles / hours
# -----
# Physiological parameters
# -----
# Body mass (kg)
BDM = 70;
# Total blood flow scaling coefficient to body mass
sc_F_total = 15;
# Fractions of total blood flow going to tissues (ref Perdaems 2010)
f_Flow_adip = 0.06;
               = 0.21;
f_Flow_kid
f_Flow_ppt = 0.20;
f_Flow_liver_art = 0.077;
f_Flow_stom = 0.024;
f_Flow_duod
               = 0.016;
             = 0.056;
f_Flow_jeju
f_Flow_ileum = 0.033;
f_Flow_cecum
            = 0.006;
f_Flow_colon
             = 0.038;
# Tissue fractions of body mass (ref Perdaems 2010)
f_BDM_adip = 0.16;
f_BDM_blood = 0.065;
f_BDM_kid = 0.0096;
f_BDM_rpt = 0.1;
f_BDM_liver = 0.0243;
f_BDM_stom = 0.0021;
f_BDM_duod = 0.0003;
f_BDM_jeju = 0.0009;
f_BDM_ileum = 0.0006;
f_BDM_cecum = 0.0005;
f_BDM_colon = 0.0048;
# Lumina as fractions of body mass (ref Perdaems 2010)
f_BDM_stom_lu = 0.0036;
f_BDM_duod_lu = 0.0003;
f_BDM_jeju_lu = 0.0023;
f_BDM_ileum_lu = 0.0032;
f_BDM_cecum_lu = 0.0001;
```

```
f_BDM_colon_lu = 0.0051;
# Lengths of gi tract segments (decimeters, dm)
Length_stom = 2.83; # Ando 2015
Length_duod = 1.41; # Ando 2015
Length_jeju = 11.68; # Ando 2015
Length_ileum = 17.52; # Ando 2015
Length_cecum = 1.7; # Perdaems 2010
Length_colon = 11.0; # ICRP 2002
# Radii of gi tract segments (dm)
Radius_stom = 0.967; # Ando 2015
Radius_duod = 0.153; # Ando 2015
Radius_jeju = 0.137; # mean of the two Ando values
Radius_ileum = 0.098; # mean of the three Ando values
Radius_cecum = 0.35; # Perdaems 2010
Radius_colon = 0.25; # Perdaems 2010
# Transit half-lives in lumina (ref Perdaems 2010) (hours)
T12\_stom\_lu = 0.25;
T12_duod_lu = 0.25;
T12_{jeju_lu} = 1.02;
T12_{ileum_lu} = 2.04;
T12_cecum_lu = 4.55;
T12\_colon\_lu = 13.5;
# pH of luminal contents (ref Perdaems 2010) (unused for now)
PH_stom = 1.7;
PH_duod = 6;
PH_{jeju} = 6.5;
PH_{ileum} = 7.4;
PH_cecum = 5.9;
PH_colon = 7;
# Microsomal proteins (mg / g of tissue)
MicroProt liver = 45;
MicroProt_stom = 0;
                        # to check in Houston
MicroProt_duod = 9.45;
MicroProt_jeju = 8.82;
MicroProt_ileum = 1.62;
MicroProt_cecum = 0.0;
MicroProt_colon = 0.0;
# G.i. tract epithelial thickness (dm)
H_{ep} = 5.25E-4;
```

#-----

```
# Substance-specific parameters
#-----
# Molecular mass (g/mol)
MM;
# Administration lagtime, if needed
Tlag;
# Absorption on(1)/off(0) switches
f_Abs_stom;
f_Abs_duod;
f_Abs_jeju;
f_Abs_ileum;
f_Abs_cecum;
f_Abs_colon;
# Effective permeability of g.i. tract epithelia
Peff;
# Tissue / blood partition coefficients
PC_adip = 1;
PC_rpt = 1;
PC_ppt = 1;
PC_kid = 1;
PC_liver = 1;
PC_stom = 1;
PC_duod = 1;
PC_{jeju} = 1;
PC_ileum = 1;
PC_{cecum} = 1;
PC_colon = 1;
# Plasma / blood concentration ratio
Ratio_BP = 1;
# Fractions unbound
Fu_plasma = 1.0;
Fu_met_liver = 1.0; # to liver in vitro metabolic system (e.g. microsomes)
Fu_met_stom = 1.0; # to stomach ~
Fu_met_duod = 1.0; # etc.
Fu_met_jeju = 1.0;
Fu_met_ileum = 1.0;
Fu_met_cecum = 1.0;
Fu_met_colon = 1.0;
# Michaelis-Menten Vmax (micromol/min/mg microsomal proteins)
```

```
Vmax_vitro;
# Michaelis-Menten Km (microM)
Km_vitro;
# Renal elimination clearance (L/h)
Ke_kid;
#-----
# Scaled parameters
#-----
# Blood flows
F_total;
f_Flow_portvein;
# Volumes
V_adip;
V_blood;
V_kid;
V_liver;
V_rpt;
V_ppt;
V_stom;
V_duod;
V_jeju;
V_ileum;
V_cecum;
V_colon;
# Tissue volumes in gi tract
V_stom_w;
V_duod_w;
V_jeju_w;
V_ileum_w;
V_cecum_w;
V_colon_w;
# Luminal volumes in gi tract
V_stom_lu;
V_colon_lu;
V_duod_lu;
V_jeju_lu;
V_ileum_lu;
V_cecum_lu;
# Epithelial volumes in gi tract
```

```
V_stom_ep;
V_duod_ep;
V_jeju_ep;
V_ileum_ep;
V_cecum_ep;
V_colon_ep;
# Epithelial surface area in gi tract (dm^2)
SA_stom;
SA_duod;
SA_jeju;
SA_ileum;
SA_cecum;
SA_colon;
# Blood flows
Flow_adip;
Flow_kid;
Flow_liver;
Flow_liver_art;
Flow_rpt;
Flow_ppt;
Flow_portvein;
Flow_stom;
Flow_duod;
Flow_jeju;
Flow_ileum;
Flow_cecum;
Flow_colon;
# GI tract absorption flows
Ka_stom;
Ka_duod;
Ka_jeju;
Ka_ileum;
Ka_cecum;
Ka_colon;
# Fraction unbound in blood
Fu_blood;
# In vivo liver and gi tract Vmax
Vmax_vivo_liver;
Vmax_vivo_stom;
Vmax_vivo_duod;
Vmax_vivo_jeju;
Vmax_vivo_ileum;
Vmax_vivo_cecum;
```

```
Vmax_vivo_colon;
# In vivo Km
Km_vivo;
Initialize {
  # Total blood flow
 F_{total} = sc_{total} * pow(BDM, 0.75);
  # Volumes
  V_adip = BDM * f_BDM_adip;
  V_blood = BDM * f_BDM_blood;
 V_kid = BDM * f_BDM_kid;
 V_liver = BDM * f_BDM_liver;
 V rpt
          = BDM * f_BDM_rpt;
 V_stom_w = BDM * f_BDM_stom;
 V_duod_w = BDM * f_BDM_duod;
 V_{jeju_w} = BDM * f_BDM_{jeju};
 V_ileum_w = BDM * f_BDM_ileum;
 V_cecum_w = BDM * f_BDM_cecum;
 V_colon_w = BDM * f_BDM_colon;
 V_ppt = BDM * (1 - f_BDM_adip - f_BDM_blood - f_BDM_kid -
                    f_BDM_liver - f_BDM_rpt
                    f_BDM_stom - f_BDM_duod - f_BDM_jeju -
                    f_BDM_ileum - f_BDM_cecum - f_BDM_colon);
  # Fraction of total blood flow to portal vein
 f_Flow_portvein = f_Flow_stom + f_Flow_duod + f_Flow_jeju +
                   f_Flow_ileum + f_Flow_cecum + f_Flow_colon;
  # Blood flows
 Flow_adip
                 = F_total * f_Flow_adip;
 Flow_kid
                = F_total * f_Flow_kid;
 Flow_ppt
                = F_total * f_Flow_ppt;
 Flow_liver_art = F_total * f_Flow_liver_art;
 Flow_portvein = F_total * f_Flow_portvein;
 Flow_stom
               = F_total * f_Flow_stom;
              = F_total * f_Flow_duod;
 Flow_duod
 Flow_jeju
                = F_total * f_Flow_jeju;
                = F_total * f_Flow_ileum;
 Flow_ileum
 Flow_cecum
               = F_total * f_Flow_cecum;
              = F_total * f_Flow_colon;
 Flow_colon
 Flow_liver
                = Flow_liver_art + Flow_portvein;
```

```
Flow_rpt = F_total - Flow_adip - Flow_kid - Flow_ppt - Flow_liver;
# Epithelial surface areas
SA_stom = Length_stom * 2 * 3.1416 * Radius_stom;
SA_duod = Length_duod * 2 * 3.1416 * Radius_duod;
SA_jeju = Length_jeju * 2 * 3.1416 * Radius_jeju;
SA_ileum = Length_ileum * 2 * 3.1416 * Radius_ileum;
SA_cecum = Length_cecum * 2 * 3.1416 * Radius_cecum;
SA_colon = Length_colon * 2 * 3.1416 * Radius_colon;
# Luminal volumes
V stom_lu = f_BDM_stom_lu * BDM;
V_duod_lu = f_BDM_duod_lu * BDM;
V_jeju_lu = f_BDM_jeju_lu * BDM;
V_ileum_lu = f_BDM_ileum_lu * BDM;
V_cecum_lu = f_BDM_cecum_lu * BDM;
V_colon_lu = f_BDM_colon_lu * BDM;
# Epithelial volumes
V_stom_ep = H_ep * SA_stom;
V_duod_ep = H_ep * SA_duod;
V_{jeju_ep} = H_{ep} * SA_{jeju};
V_ileum_ep = H_ep * SA_ileum;
V_cecum_ep = H_ep * SA_cecum;
V_colon_ep = H_ep * SA_colon;
# Fraction unbound in blood
Fu_blood = Fu_plasma / Ratio_BP;
# Metabolic parameters, scaled from in vitro values
Vmax_vivo_liver = Vmax_vitro * 60 * MicroProt_liver * V_liver
                                                                * 1000;
Vmax_vivo_stom = Vmax_vitro * 60 * MicroProt_stom * V_stom_ep * 1000;
Vmax_vivo_duod = Vmax_vitro * 60 * MicroProt_duod * V_duod_ep * 1000;
Vmax_vivo_jeju = Vmax_vitro * 60 * MicroProt_jeju * V_jeju_ep * 1000;
Vmax_vivo_ileum = Vmax_vitro * 60 * MicroProt_ileum * V_ileum_ep * 1000;
Vmax_vivo_cecum = Vmax_vitro * 60 * MicroProt_cecum * V_cecum_ep * 1000;
Vmax_vivo_colon = Vmax_vitro * 60 * MicroProt_colon * V_colon_ep * 1000;
Km_vivo = Km_vitro;
# GI tract absorption flows
Ka_stom = Peff * SA_stom * f_Abs_stom;
Ka_duod = Peff * SA_duod * f_Abs_duod;
Ka_jeju = Peff * SA_jeju * f_Abs_jeju;
Ka_ileum = Peff * SA_ileum * f_Abs_ileum;
Ka_cecum = Peff * SA_cecum * f_Abs_cecum;
Ka_colon = Peff * SA_colon * f_Abs_colon;
```

```
} # End of model scaling
Dynamics {
  # Concentrations in compartments
  C_adip = Q_adip / V_adip;
                      / V_kid;
  C_{kid}
         = Q_kid
  C_rpt
         = Q_rpt
                     / V_rpt;
  C_ppt = Q_ppt / V_ppt;
 C_liver = Q_liver / V_liver;
  C_stom_w = Q_stom_w / V_stom_w;
  C_{duod_w} = Q_{duod_w} / V_{duod_w};
  C_jeju_w = Q_jeju_w / V_jeju_w;
  C_ileum_w = Q_ileum_w / V_ileum_w;
  C_cecum_w = Q_cecum_w / V_cecum_w;
  C_colon_w = Q_colon_w / V_colon_w;
  # Blood concentration
  C_blood = Q_blood / V_blood;
  # Blood concentration at compartment exit
  Ctb_kid = C_kid / PC_kid;
  Ctb_liver = C_liver / PC_liver;
  Ctb_rpt = C_rpt / PC_rpt;
  Ctb_ppt = C_ppt
                      / PC_ppt;
  Ctb_adip = C_adip / PC_adip;
  Ctb_stom_w = C_stom_w / PC_stom;
  Ctb_duod_w = C_duod_w / PC_duod;
  Ctb_jeju_w = C_jeju_w / PC_jeju;
  Ctb_ileum_w = C_ileum_w / PC_ileum;
  Ctb_cecum_w = C_cecum_w / PC_cecum;
  Ctb_colon_w = C_colon_w / PC_colon;
  # Concentrations in lumina
  C_stom_lu = Q_stom_lu / V_stom_lu;
  C_duod_lu = Q_duod_lu / V_duod_lu;
  C_jeju_lu = Q_jeju_lu / V_jeju_lu;
  C_ileum_lu = Q_ileum_lu / V_ileum_lu;
  C_cecum_lu = Q_cecum_lu / V_cecum_lu;
  C_colon_lu = Q_colon_lu / V_colon_lu;
  # Concentrations in epithelia
  C_stom_ep = Q_stom_ep / V_stom_ep;
  C_duod_ep = Q_duod_ep / V_duod_ep;
  C_jeju_ep = Q_jeju_ep / V_jeju_ep;
  C_ileum_ep = Q_ileum_ep / V_ileum_ep;
  C_cecum_ep = Q_cecum_ep;
```

```
C_colon_ep = Q_colon_ep / V_colon_ep;
# Transfers from lumen to lumen or feces (intestinal transit)
Rate_stl2dul = (log(2.0) * V_stom_lu / T12_stom_lu) * C_stom_lu;
Rate_dul2jel = (log(2.0) * V_duod_lu / T12_duod_lu) * C_duod_lu;
Rate_jel2il1 = (log(2.0) * V_jeju_lu / T12_jeju_lu) * C_jeju_lu;
Rate_ill2cel = (log(2.0) * V_ileum_lu / T12_ileum_lu) * C_ileum_lu;
Rate_cel2col = (log(2.0) * V_cecum_lu / T12_cecum_lu) * C_cecum_lu;
Rate_col2fel = (log(2.0) * V_colon_lu / T12_colon_lu) * C_colon_lu;
# Transfers from lumina to epithelia
Rate_stl2ste = Ka_stom * (C_stom_lu - C_stom_ep);
Rate_dul2due = Ka_duod * (C_duod_lu - C_duod_ep);
Rate_jel2jee = Ka_jeju * (C_jeju_lu - C_jeju_ep);
Rate_ill2ile = Ka_ileum * (C_ileum_lu - C_ileum_ep);
Rate_cel2cee = Ka_cecum * (C_cecum_lu - C_cecum_ep);
Rate_col2coe = Ka_colon * (C_colon_lu - C_colon_ep);
# Transfers from epithelia to tissues
Rate_ste2stw = Ka_stom * (C_stom_ep - C_stom_w);
Rate_due2duw = Ka_duod * (C_duod_ep - C_duod_w);
Rate_jee2jew = Ka_jeju * (C_jeju_ep - C_jeju_w);
Rate_ile2ilw = Ka_ileum * (C_ileum_ep - C_ileum_w);
Rate_cee2cew = Ka_cecum * (C_cecum_ep - C_cecum_w);
Rate_coe2cow = Ka_colon * (C_colon_ep - C_colon_w);
# Transfers from tissues to portal vein
Rate_stw2pv = Flow_stom * Ctb_stom_w;
Rate_duw2pv = Flow_duod * Ctb_duod_w;
Rate_jew2pv = Flow_jeju * Ctb_jeju_w;
Rate_ilw2pv = Flow_ileum * Ctb_ileum_w;
Rate_cew2pv = Flow_cecum * Ctb_cecum_w;
Rate_cow2pv = Flow_colon * Ctb_colon_w;
# Portal rate in
RateIn portvein = Rate stw2pv + Rate duw2pv + Rate jew2pv +
                  Rate_ilw2pv + Rate_cew2pv + Rate_cow2pv;
Ctb_portvein = RateIn_portvein / Flow_portvein;
# Differential equations
# Quantities absorbed
dt (Q_absorb_stom) = Rate_stl2ste;
dt (Q_absorb_duod) = Rate_dul2due;
dt (Q_absorb_jeju) = Rate_jel2jee;
dt (Q absorb ileum) = Rate ill2ile;
```

```
dt (Q_absorb_cecum) = Rate_cel2cee;
dt (Q_absorb_colon) = Rate_col2coe;
# Quantity reaching the portal vein
dt (Q_absorb_pv) = RateIn_portvein;
# Elimination and metabolism
dt (Q_elim_kid) = Ke_kid * Ctb_kid * Fu_blood;
dt (Q_met_liver) = Vmax_vivo_liver * Ctb_liver /
                   (Km_vivo * Fu_met_liver / Fu_blood + Ctb_liver);
dt (Q_met_stom) = Vmax_vivo_stom * (C_stom_ep / PC_stom) /
                   (Km_vivo * Fu_met_stom / Fu_blood +
                   C_stom_ep / PC_stom);
dt (Q_met_duod) = Vmax_vivo_duod * (C_duod_ep / PC_duod) /
                   (Km_vivo * Fu_met_duod / Fu_blood +
                   C_duod_ep / PC_duod);
dt (Q_met_jeju) = Vmax_vivo_jeju * (C_jeju_ep / PC_jeju) /
                   (Km_vivo * Fu_met_jeju / Fu_blood +
                   C_jeju_ep / PC_jeju);
dt (Q_met_ileum) = Vmax_vivo_ileum * (C_ileum_ep / PC_ileum) /
                   (Km_vivo * Fu_met_ileum / Fu_blood +
                   C_ileum_ep / PC_ileum);
dt (Q_met_cecum) = Vmax_vivo_cecum * (C_cecum_ep / PC_cecum) /
                   (Km_vivo * Fu_met_cecum / Fu_blood +
                   C_cecum_ep / PC_cecum);
dt (Q_met_colon) = Vmax_vivo_colon * (C_colon_ep / PC_colon) /
                   (Km_vivo * Fu_met_colon / Fu_blood +
                   C_colon_ep / PC_colon);
dt (Q_feces) = Rate_col2fel;
# Distributions
dt (Q_kid)
             = Flow_kid * (C_blood - Ctb_kid) - dt (Q_elim_kid);
dt (Q_adip) = Flow_adip * (C_blood - Ctb_adip);
dt (Q_ppt)
           = Flow_ppt * (C_blood - Ctb_ppt);
dt (Q_rpt)
           = Flow_rpt * (C_blood - Ctb_rpt);
```

```
dt (Q_liver) = Flow_liver_art * C_blood + Flow_portvein * Ctb_portvein -
                 Flow_liver * Ctb_liver - dt (Q_met_liver);
  dt(Q_blood)
               = Flow_rpt * Ctb_rpt + Flow_ppt * Ctb_ppt +
                 Flow_adip * Ctb_adip + Flow_liver * Ctb_liver +
                 Flow_kid * Ctb_kid - F_total * C_blood;
  dt(Q_stom_lu) = Oral_dose_rate - Rate_stl2dul - Rate_stl2ste;
  dt(Q_stom_ep) = Rate_stl2ste - Rate_ste2stw - dt (Q_met_stom);
  dt(Q_stom_w) = Flow_stom * C_blood + Rate_ste2stw - Rate_stw2pv;
  dt(Q_duod_lu) = Rate_stl2dul - Rate_dul2jel - Rate_dul2due;
  dt(Q_duod_ep) = Rate_dul2due - Rate_due2duw - dt (Q_met_duod);
  dt(Q_duod_w) = Flow_duod * C_blood + Rate_due2duw - Rate_duw2pv;
  dt(Q_jeju_lu) = Rate_dul2jel - Rate_jel2ill - Rate_jel2jee;
  dt(Q_jeju_ep) = Rate_jel2jee - Rate_jee2jew - dt (Q_met_jeju);
  dt(Q_jeju_w) = Flow_jeju * C_blood + Rate_jee2jew - Rate_jew2pv;
  dt(Q_ileum_lu) = Rate_jel2ill - Rate_ill2cel - Rate_ill2ile;
  dt(Q_ileum_ep) = Rate_ill2ile - Rate_ile2ilw - dt (Q_met_ileum);
  dt(Q_ileum_w) = Flow_ileum * C_blood + Rate_ile2ilw - Rate_ilw2pv;
  dt(Q_cecum_lu) = Rate_ill2cel - Rate_cel2col - Rate_cel2cee;
  dt(Q_cecum_ep) = Rate_cel2cee - Rate_cee2cew - dt (Q_met_cecum);
  dt(Q_cecum_w) = Flow_cecum * C_blood + Rate_cee2cew - Rate_cew2pv;
  dt(Q_colon_lu) = Rate_cel2col - Rate_col2coe - dt (Q_feces);
  dt(Q_colon_ep) = Rate_col2coe - Rate_coe2cow - dt (Q_met_colon);
  dt(Q_colon_w) = Flow_colon * C_blood + Rate_coe2cow - Rate_cow2pv;
  # AUCs
  dt(AUC_blood) = C_blood;
  dt(AUC_liver) = C_liver;
CalcOutputs {
  C_plasma = (C_blood > 0 ? C_blood / Ratio_BP : 1E-10);
  # Mass balance checking
  Q_gi_lu = Q_stom_lu + Q_duod_lu + Q_jeju_lu + Q_ileum_lu +
             Q_cecum_lu + Q_colon_lu;
  Q_gi_ep = Q_stom_ep + Q_duod_ep + Q_jeju_ep + Q_ileum_ep +
```

}

```
Q_cecum_ep + Q_colon_ep;
  Q_{gi_w} = Q_{stom_w} + Q_{duod_w} + Q_{jeju_w} + Q_{ileum_w} +
             Q_cecum_w + Q_colon_w;
  Q_absorb = Q_absorb_stom + Q_absorb_duod +
             Q_absorb_jeju + Q_absorb_ileum +
             Q_absorb_cecum + Q_absorb_colon;
 Q_elim_gi = Q_met_stom + Q_met_duod + Q_met_jeju +
             Q_met_ileum + Q_met_cecum + Q_met_colon + Q_feces;
           = Q_elim_kid + Q_met_liver + Q_elim_gi;
 Q_elim
  Q_organ
          = Q_kid + Q_rpt + Q_liver + Q_adip + Q_ppt +
             Q_blood + Q_gi_lu + Q_gi_ep + Q_gi_w;
 Q_total
          = Q_organ + Q_elim;
 Instant_Ka_gi = (Q_gi_lu > 0 ? Q_absorb_pv / Q_gi_lu : 0);
}
End..
```

70 / 70