MAE0217 - Estatística Descritiva - Lista 3

Natalia Hitomi Koza¹
Rafael Gonçalves Pereira da Silva²
Ricardo Geraldes Tolesano³
Rubens Kushimizo Rodrigues Xavier⁴
Rubens Gomes Neto⁵
Rubens Santos Andrade Filho⁶
Thamires dos Santos Matos⁷

Junho de 2021

Sumário

aptítulo 4	. 2
Exercício 6	. 2
Exercício 10	. 10
Exercício 11	. 11
Exercício 12	. 11
Exercício 13	. 12
Exercício 25 (versão maio)	. 29
Exercício 25 (versão junho)	. 29
apítulo 5	. 30
Exercício 1	. 30
Exercício 5	. 32
Exercício 9	. 34
Exercício 10	. 52
Evergício 19	5/

 $^{^1}$ Número USP: 10698432

 $^{^2\}mathrm{N\'umero}$ USP: 9009600

 $^{^3}$ Número USP: 10734557

 $^{^4\}mathrm{Número~USP}\colon 8626718$

⁵Número USP: 9318484

⁶Número USP: 10370336

⁷Número USP: 9402940

Captítulo 4

Exercício 6

a)

```
tabela = read.csv("data/coronarias.csv", sep = ";", h=T, dec=",")

tabela$SEXO <- factor(tabela$SEXO, label = c("M", "F"), levels = c(0,1))

col <- na.omit(tabela$COL)

tabela$COL[tabela$COL== '.'] <- NA

col <- na.omit(tabela$COL)

ccol <- as.numeric(col)

qqnorm(ccol, main = 'QQplot COL')
qqline(ccol)</pre>
```

QQplot COL


```
#tirando os NAs
tabela$IMC[tabela$IMC== '.'] <- NA

# complete.cases(tabela$IMC)
# which(complete.cases(tabela$IMC))
# which(!complete.cases(tabela$IMC))

imc <- which(!complete.cases(tabela$IMC))
imc <- which(complete.cases(tabela$IMC))</pre>
```

```
#mundando a variável de inteiro para numérico
imcc <- as.numeric(imc)</pre>
#class(imcc)
summary(imcc)
##
      Min. 1st Qu. Median
                             Mean 3rd Qu.
##
       1.0
           386.2
                    757.5 755.0 1122.8 1501.0
describe(imcc)
##
      vars
                  mean
                           sd median trimmed
                                                mad min max
## X1
         1 1422 754.98 430.72 757.5
                                      755.9 546.34
                                                      1 1501
     range skew kurtosis
## X1 1500 -0.01
                    -1.18 11.42
qqnorm(imcc)
qqline(imcc)
```

Normal Q-Q Plot


```
apt = read.csv("data/coron.csv", sep = ";", h=T, dec=",")
apt[apt == '.'] <- NA</pre>
```

```
# complete.cases(apt)
# which(complete.cases(apt))

na_apt <- which(complete.cases(apt))

na_apt <- which(!complete.cases(apt))

apt_sem_na <- apt[- na_apt, ]

altura <- as.numeric(apt_sem_na$ALTURA.cm.)
#class(altura)

peso <- as.numeric(apt_sem_na$PESO.kg.)
#class(peso)

# Pelo gráfico de boxplot, as variáveis Altura e Peso apresentam outliers
boxplot(altura)</pre>
```


boxplot(peso)

Pelo teste de Shapiro-Wilk, as variáveis Altura e Peso não apresentam distribuição normal shapiro.test(altura)

```
##
## Shapiro-Wilk normality test
##
## data: altura
## W = 0.99342, p-value = 5.962e-06

qqnorm(altura, main = "Altura")
qqline(altura)
```

Altura

shapiro.test(peso)

```
##
## Shapiro-Wilk normality test
##
## data: peso
## W = 0.98135, p-value = 1.323e-12

qqnorm(peso, main = "Peso")
qqline(peso)
```

Peso

Relação lineae entre as variáveis Altura e Peso plot(peso, altura)


```
# Verificando valores previstos e resíduos
mod_reg <- lm(altura ~ peso, apt_sem_na)

par(mfrow=c(1,2))
plot(mod_reg, which=c(1,3))</pre>
```



```
par(mfrow = c(1,1))
# Correlação linear de Pearson
cor.test(peso, altura, method = "pearson")
##
## Pearson's product-moment correlation
## data: peso and altura
## t = 24.719, df = 1420, p-value < 2.2e-16
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5110836 0.5838316
## sample estimates:
##
        cor
## 0.5484947
# Correlação de Spearman
cor.test(peso, altura, method = "spearman")
## Warning in cor.test.default(peso, altura, method =
## "spearman"): Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
## data: peso and altura
## S = 211164251, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
       rho
## 0.559371
 c)
ctg = read.csv2("data/contig.csv", sep = ";", h=T, dec=",", )
glimpse(ctg)
## Rows: 1,500
## Columns: 2
## $ TABAG <chr> "0", "1", "1", ".", "0", "0", "1", "0", "0",~
ctg[ctg== '.'] <- NA
# complete.cases(ctg)
# which(complete.cases(ctg))
# which(!complete.cases(ctg))
```

```
na_ctg <- which(complete.cases(ctg))</pre>
na_ctg <- which(!complete.cases(ctg))</pre>
ctg_sem_na <- ctg[- na_ctg, ]
ctg_sem_na$ARTER <- factor(ctg_sem_na$ARTER, label = c("NENHUMA", "CAROT", "AORT", "CAROT+AORT"), level</pre>
ctg_sem_na$TABAG <- factor(ctg_sem_na$TABAG, label = c("SIM", "NÃO"), levels = c(0,1))
table(ctg_sem_na$TABAG, ctg_sem_na$ARTER)
##
##
         NENHUMA CAROT AORT CAROT+AORT
##
     SIM
             457
                    43
                          27
     NÂO
             736
#Tabela de contigência TABAG e ARTER
tabe <- table(ctg_sem_na$TABAG, ctg_sem_na$ARTER)</pre>
#Teste Qui Quadrado de Pearson
quiqua2 <- chisq.test(tabe)</pre>
## Warning in chisq.test(tabe): Chi-squared approximation may
## be incorrect
#Qui Quadrado esperado
quiqua2$expected
##
          NENHUMA
                                AORT CAROT+AORT
##
                     CAROT
##
     SIM 466.7877 34.43195 24.65015 3.130178
     NÂO 726.2123 53.56805 38.34985
                                      4.869822
#Coeficiente de contigência de Pearson
sqrt((4.878)/(4.878+1352))
## [1] 0.05995846
#Coeficiente de contigência de Tschuprov
sqrt((4.878/1352)/sqrt(3))
```

[1] 0.04564069

Exercício 10

Consideraremos que o estudo realizado se trata de um estudo prospectivo, já que a radiação foi emitida de forma proposital para posteriormente avaliar a presença de micronúcleos nas células. O fator de risco é a dose de radiação, e a variável resposta é o número de células que possuem múltiplos micronúcleos. Portanto, tomaremos o p1 como a probabilidade de uma célula possuir múltiplos micronúcleos dada uma dose específica de radiação. p0 corresponde à probabilidade de uma célula possuir múltiplos micronúcleos para uma dose nula de radiação.

```
library(pander)
celulas <- read_excel('data/numero_celulas.xlsx')</pre>
row0 <- celulas[1, ]
p0 <- row0$freq_celula_micronucleos / row0$n_celulas_examinadas
chance0 <- p0 / (1 - p0)
f <- function(row) {</pre>
  p1 <- row[2] / row[3]
  risco_relativo <- p1 / p0
  chance1 \leftarrow p1 / (1 - p1)
  razao de chance <- chance1 / chance0
  return(c(risco_relativo, razao_de_chance, p1))
}
risk <- apply(celulas, 1, f)</pre>
celulas$p1 <- risk[3, ]</pre>
celulas$risco_relativo <- risk[1, ]</pre>
celulas$razao_de_chance <- risk[2, ]</pre>
pandoc.table(celulas, split.table=500, caption="Risco relativo e razão de chances em relação à dose nul
                               "Frequência de células com múltiplos micronúcleos",
                               "Total de células examinadas",
                               "p1",
                               "Frequência relativa",
                               "Razão de chances"
                               ))
```

Tabela 1: Risco relativo e razão de chances em relação à dose nula para os dados do exercício 10

Dose de radiação gama (cGy)	Frequência de células com múltiplos micronúcleos	Total de células examinadas	p1	Frequência relativa	Razão de chances
0	1	2373	0	1	1
20	6	2662	0	5.35	5.36
50	25	1991	0.01	29.8	30.16
100	47	2047	0.02	54.49	55.74
200	82	2611	0.03	74.53	76.91
300	207	2442	0.08	201.2	219.7
400	254	2398	0.11	251.3	281
500	285	1746	0.16	387.4	462.7

A tabela acima demonstra que tanto o risco relativo quanto a razão de chances aumentam consideravelmente conforme a dose de radiação aumenta. O aumento de 200 para 400 foi muito maior que o aumento de 100 para 200, indicando que doses diferentes de radiação podem ter impactos diferentes.

Os riscos relativos se aproximam de suas respectivas razões de chance, principalmente para valores menores de p1. Esse resultado é previsto pela teoria.

Exercício 11

Seja π_a porcentagem de desistentes do plano de TV da cidade A e π_b a porcentagem da cidade B. Temos que:

$$r_c = \frac{\pi_a}{(1 - \pi_a)} / \frac{\pi_b}{(1 - \pi_b)}$$

 $r_c = \frac{0.14}{0.86} / \frac{0.06}{0.94}$

 $r_c = \frac{0.1316}{0.0516} = 2.55$

Portanto a resposta correta é a alternativa b) $r_c = 2.55$.

Exercício 12

A razão de chances calcula a associação entre eventos, comparando a chance de um evento em diferentes grupos, não a probabilidade do evento entre os grupos. Para o enunciado:

$$\omega = \frac{p_1}{(1 - p_1)} / \frac{p_2}{(1 - p_2)}$$

Se
$$p_1 = 2p_2$$

$$\omega = \frac{2p_2}{(1 - 2p_2)} / \frac{p_2}{(1 - p_2)}$$

 $\omega = \frac{2(1-p_2)}{(1-2p_2)} \neq 2 \text{ para } p_2 = 0$

Logo, temos que razão de chance igual a 2.0 não indica que a probabilidade de um grupo é 2 vezes a do outro.

Exercício 13

```
sman = read.csv2("data/smansoni-.csv", sep = ";", h=T, dec=",", )
#Smansoni negativo
elied1 <- factor(sman$ELIEDA1, label = c("NÃO", "SIM"), levels = c(0,1))</pre>
elied2 <- factor(sman$ELIEDA2, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
ha <- factor(sman$HA, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
iff <- factor(sman$IF, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
ied <- factor(sman$IED, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
#Tabela HA e Elieda
table(ha, elied1)
        elied1
##
         NÃO SIM
## ha
     NÃO 32 16
##
##
     SIM 1 1
chisq.test(table(ha, elied1))
## Warning in chisq.test(table(ha, elied1)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(ha, elied1)
## X-squared = 1.9637e-32, df = 1, p-value = 1
# Sensibilidade
32/48
## [1] 0.6666667
# Especificidade
1/2
## [1] 0.5
#Falso positivo
## [1] 0.5
```

```
\#Falso\ negativo
16/48
## [1] 0.3333333
#Valor preditivo positivo
## [1] 0.969697
#Valor preditivo negativo
1/17
## [1] 0.05882353
# Acurácia
(32+1)/50
## [1] 0.66
#Table IF e Elieda1
table(iff, elied1)
##
       elied1
## iff NÃO SIM
   NÃO 32 16
    SIM 1 1
chisq.test(table(iff, elied1))
## Warning in chisq.test(table(iff, elied1)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(iff, elied1)
## X-squared = 1.9637e-32, df = 1, p-value = 1
# Sensibilidade
32/48
```

[1] 0.666667

```
\# Especificidade
1/2
## [1] 0.5
#Falso positivo
## [1] 0.5
#Falso negativo
16/48
## [1] 0.3333333
#Valor preditivo positivo
32/33
## [1] 0.969697
#Valor preditivo negativo
1/17
## [1] 0.05882353
# Acurácia
(32+1)/50
## [1] 0.66
#Tabela ed e elieda1
table(ied, elied1)
       elied1
##
## ied NÃO SIM
##
   NÃO 33 15
    SIM 0 2
chisq.test(table(ied, elied1))
## Warning in chisq.test(table(ied, elied1)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(ied, elied1)
## X-squared = 1.5606, df = 1, p-value = 0.2116
```

```
#Sensibilidade
33/48
## [1] 0.6875
{\it \#Especificidade}
2/2
## [1] 1
#Falso positivo
## [1] 0
\#Valor\ Pditivo\ positivo
33/33
## [1] 1
{\it \#Valor\ preditivo\ negativo}
2/17
## [1] 0.1176471
#Acurácia
(33+2)/50
## [1] 0.7
#Tabela IF e elieda2
table(ha, elied2)
        elied2
##
       NÃO SIM
##
    NÃO 44
    SIM 1 1
chisq.test(table(ha, elied2))
## Warning in chisq.test(table(ha, elied2)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(ha, elied2)
## X-squared = 0.52083, df = 1, p-value = 0.4705
```

```
#Sensibilidade
44/48
## [1] 0.9166667
#especificidade
## [1] 0.5
#Falso poditivo
1/2
## [1] 0.5
# falso negativo
4/48
## [1] 0.08333333
#acurácia
(44+1)/50
## [1] 0.9
#tabela if e elieda2
table(iff, elied2)
       elied2
##
## iff NÃO SIM
   NÃO 43 5
##
    SIM 2 0
chisq.test(table(iff, elied2))
## Warning in chisq.test(table(iff, elied2)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
## data: table(iff, elied2)
## X-squared = 2.1856e-31, df = 1, p-value = 1
```

```
#sensibilidade
43/48
## [1] 0.8958333
#especifidade
## [1] 0
#Falso positivo
2/2
## [1] 1
#falso negativo
0/2
## [1] 0
\#valor\ preditivo\ positivo
43/45
## [1] 0.955556
\#valor\ preditivo\ negativo
0/5
## [1] 0
#acurácia
43/50
## [1] 0.86
#tabela de ied e elieda2
table(ied, elied2)
      elied2
##
## ied NÃO SIM
## NÃO 44 4
## SIM 1 1
```

```
chisq.test(table(ied, elied2))
## Warning in chisq.test(table(ied, elied2)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(ied, elied2)
## X-squared = 0.52083, df = 1, p-value = 0.4705
#sensibilidade
44/48
## [1] 0.9166667
\#especificidade
1/2
## [1] 0.5
#falso positivo
## [1] 0.5
#falso negativvo
4/48
## [1] 0.08333333
#valor ppreditivo positivo
44/45
## [1] 0.9777778
#valor preditivo negativo
1/5
## [1] 0.2
#acurácia
45/50
## [1] 0.9
```

```
#Tabela elieda1 e elieda2
table(elied1, elied2)
        elied2
## elied1 NÃO SIM
##
      NÃO 33 O
      SIM 12 5
##
chisq.test(table(elied1, elied2))
## Warning in chisq.test(table(elied1, elied2)): Chi-squared
## approximation may be incorrect
## Pearson's Chi-squared test with Yates' continuity
## correction
## data: table(elied1, elied2)
## X-squared = 7.7639, df = 1, p-value = 0.00533
#Sensibiliddade
33/33
## [1] 1
\#Especificidade
5/17
## [1] 0.2941176
#Falso positivo
12/17
## [1] 0.7058824
#Falso negativo
0/33
## [1] 0
# Valor preditivo positivo
33/45
## [1] 0.7333333
```

```
#valor preditivo negativo
5/5
## [1] 1
#Acurácia
0.733
## [1] 0.733
sman1 = read.csv2("data/smansoni+.csv", sep = ";", h=T, dec=",", )
#Smansoni positivo
elied_1 <- factor(sman1$ELIEDA1, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
elied_2 <- factor(sman1$ELIEDA2, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
ha_ <- factor(sman1$HA, label = c("N\tilde{A}O", "SIM"), levels = c(0,1))
iff_ <- factor(sman1$IF, label = c("NÃO", "SIM"), levels = c(0,1))
ied_ \leftarrow factor(sman1\$IED, label = c("NÃO", "SIM"), levels = c(0,1))
#Tabela ha e elieda1
table(ha_, elied_1)
##
        elied_1
## ha
         NÃO SIM
##
           2 9
     NÃO
           2 37
     SIM
##
chisq.test(table(ha_, elied_1), correct = F)
## Warning in chisq.test(table(ha_, elied_1), correct = F):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(ha_, elied_1)
## X-squared = 1.9864, df = 1, p-value = 0.1587
#sensibilidade
2/11
## [1] 0.1818182
#especificidade
37/39
```

```
## [1] 0.9487179
#falso positivo
2/39
## [1] 0.05128205
#falso negativo
9/11
## [1] 0.8181818
\#valor\ preditivo\ positivo
## [1] 0.5
#valor preditivo negativo
37/46
## [1] 0.8043478
#acurácia
39/50
## [1] 0.78
#tabela if e eliada
table(iff_, elied_1)
       elied_1
##
## iff_ NÃO SIM
    NÃO
##
           2 0
           2 46
    \mathtt{SIM}
chisq.test(table(iff_, elied_1))
## Warning in chisq.test(table(iff_, elied_1)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(iff_, elied_1)
## X-squared = 12.707, df = 1, p-value = 0.0003644
```

```
#sensibilidade
2/2
## [1] 1
#especificidade
46/48
## [1] 0.9583333
#falso positivo
2/48
## [1] 0.04166667
#falso negtivo
0/2
## [1] 0
\#valor\ preditivo\ positivo
2/4
## [1] 0.5
\# valor preditivo negativo
## [1] 1
#acuráciaa
48/50
## [1] 0.96
#tabela ied e elieda11
table(ied_, elied_1)
## elied_1
## ied_ NÃO SIM
## NÃO 4 13
## SIM 0 33
chisq.test(table(ied_, elied_1))
```

```
## Warning in chisq.test(table(ied_, elied_1)): Chi-squared
## approximation may be incorrect
##
   Pearson's Chi-squared test with Yates' continuity
##
  correction
## data: table(ied_, elied_1)
## X-squared = 5.5457, df = 1, p-value = 0.01853
#sensibilidade
4/33
## [1] 0.1212121
\#especificidade
33/33
## [1] 1
#falso positivo
0/33
## [1] 0
#falso negativo
13/17
## [1] 0.7647059
#valor preditivo positivo
4/4
## [1] 1
\#valor\ preditivo\ negativo
33/46
## [1] 0.7173913
#acurácia
37/50
## [1] 0.74
```

```
#tabela elieda1 e elieda2
table(elied_1, elied_2)
         elied_2
## elied_1 NÃO SIM
##
      NÃO 4 0
##
       SIM 2 44
chisq.test(table(ied_, elied_1))
## Warning in chisq.test(table(ied_, elied_1)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
## data: table(ied_, elied_1)
## X-squared = 5.5457, df = 1, p-value = 0.01853
#sensibilidade
4/4
## [1] 1
#especificidade
44/46
## [1] 0.9565217
#falso poitivo
2/46
## [1] 0.04347826
#falso negativo
0/4
## [1] 0
\#valor\ preditivo\ positivo
4/6
## [1] 0.666667
```

```
\#valor\ preditivo\ negativo
44/44
## [1] 1
#acurácia
48/50
## [1] 0.96
#tabela ha e eliada2
table(ha_, elied_2)
      elied_2
##
## ha_ NÃO SIM
    NÃO 2 9
##
    SIM 4 35
chisq.test(table(ha_, elied_2))
## Warning in chisq.test(table(ha_, elied_2)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
## data: table(ha_, elied_2)
## X-squared = 0.03576, df = 1, p-value = 0.85
#sensibilidade
2/11
## [1] 0.1818182
#especificidade
35/39
## [1] 0.8974359
#falso positivo
4/39
## [1] 0.1025641
```

```
#falso negativo
9/11
## [1] 0.8181818
#valor preditivo positivo
## [1] 0.6666667
#valor preditivo negativo
9/44
## [1] 0.2045455
#acurácia
37/50
## [1] 0.74
#tabela if e elieda2
table(iff_, elied_2)
##
      elied_2
## iff_ NÃO SIM
##
   NÃO 2 0
    SIM 4 44
chisq.test(table(iff_, elied_2))
## Warning in chisq.test(table(iff_, elied_2)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity
## correction
##
## data: table(iff_, elied_2)
## X-squared = 7.8303, df = 1, p-value = 0.005138
#sensibilidade
2/2
```

[1] 1

```
\#especificidade
0/2
## [1] 0
#falso positivo
## [1] 0.08333333
#falso negativo
0/2
## [1] 0
#valor preditivo positivo
## [1] 0.3333333
\#valor\ preditivo\ negativo
2/6
## [1] 0.3333333
#valor preditivo negativo
0/44
## [1] 0
#acurácia
46/50
## [1] 0.92
#tabela ied e elieda2
table(ied_, elied_2)
## elied_2
## ied_ NÃO SIM
## NÃO 5 12
##
   SIM 1 32
chisq.test(table(ied_, elied_2))
```

```
## Warning in chisq.test(table(ied_, elied_2)): Chi-squared
## approximation may be incorrect
##
   Pearson's Chi-squared test with Yates' continuity
##
  correction
## data: table(ied_, elied_2)
## X-squared = 5.1076, df = 1, p-value = 0.02382
#sensibilidade
5/17
## [1] 0.2941176
\#especificidade
32/33
## [1] 0.969697
#falso positivo
1/33
## [1] 0.03030303
#falso negativo
12/17
## [1] 0.7058824
#valor preditivo positivo
5/6
## [1] 0.8333333
\#valor\ preditivo\ negativo
32/44
## [1] 0.7272727
#acurácia
37/50
## [1] 0.74
```

Exercício 25 (versão maio)

Prova. Consideremos duas amostras de uma variável X com n unidades amostrais cada,

$$\{x_1, x_2, \dots, x_n, x_{n+1}, x_{n+2}, \dots, x_{2n}\}$$

e suponhamos que as suas médias são iguais, isto é, $\bar{x_1} = \sum_{i=1}^n x_i = \sum_{i=n+1}^{2n} x_i = \bar{x_2} := \bar{x}$.

Da definição (4.9), temos

$$\overline{\mathrm{Var}(X)} = \frac{\sum_{i=1}^k n_i \, \mathrm{Var}_i(X)}{\sum_{i=1}^k n_i}$$

nesse caso, com k = 2 e $n_i = n$, i = 1, 2 (notemos que será usado o estimador viesado para a variância, mas o mesmo poderia ser mostrado se usássemos a n - 1 na formula da variância e $n_i = n - 1$ na definição (4.9)). Com isso, temos que

$$\overline{\text{Var}(X)} = \frac{n \, \text{Var}_1(X) + n \, \text{Var}_2(X)}{2n}$$

$$= \frac{1}{2} \left\{ \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_1)^2 + \frac{1}{n} \sum_{i=n+1}^{2n} (x_i - \bar{x}_2)^2 \right\}$$

$$= \frac{1}{2n} \sum_{i=1}^{2n} (x_i - \bar{x})^2$$

$$= \text{Var}(X)$$

Portanto, $\overline{\mathrm{Var}(X)} = \mathrm{Var}(X)$ quando as médias das duas amostras são iguais.

Exercício 25 (versão junho)

Prova. A estatística 4.1 é

$$\chi^2 = \sum_{i=1}^4 \frac{(o_i - e_i)^2}{e_i}$$

O valor observado é $o_{ij} = n_{ij}$.

Sob a hipótese nula de não associação, temos que

$$p_{ij} = p_{i+}p_{+j}$$

onde $p_{ij} = n_{ij}/n$, $p_{i+} = n_{i+}/n$ e $p_{+j} = n_{+j}/n$.

Com isso, o valor esperado na casela (i, j) é

$$e_{ij} = np_{ij} = np_{i+}p_{+j} = n\left(\frac{n_{i+}}{n}\right)\left(\frac{n_{+j}}{n}\right) = \frac{n_{i+}n_{+j}}{n}$$

Escrevamos a estatítica 4.1 como uma soma dupla, tal qual em uma tabela 2×2 ,

$$\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

Substituindo, o_{ij} e e_{ij} por n_{ij} e $n_{i+}n_{+j}/n$ respectivamente, obtemos

$$\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(n_{ij} - n_{i+} n_{+j} / n\right)^2}{n_{i+} n_{+j} / n}$$

Como na estatística 4.1, mostramos para tabelas 2×2 , mas sem perda de generalidade, o mesmo vale para tabelas $r\times c$,

$$\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - n_{i+} n_{+j} / n)^2}{n_{i+} n_{+j} / n}$$

em que n_{ij} é a frequência absoluta observada na linha i e coluna j e n_{i+} e n_{+j} são, respectivamente, os totais das linhas e colunas.

Capítulo 5

Exercício 1

a) Construa um gráfico de dispersão simbolico para avaliar a relação entre as variáveis altfac, proffac e grupo e comente os resultados.

O gráfico parece evidenciar que os rostos com altura facial alta parecem ter menor profundidade e podem ser classificados com o biotipo facial Braquifacial, assim como aqueles que possuem maior profundidade facial tendem a ter menor altura facial, logo podem ser caracterizados com o biotipo dolicofacial enquanto que aqueles com altura facial proxima de zero apresentam profundidade facial semelhante, portanto apresentam biotipo mesofacial.

b) Construa um gráfico do desenhista para avaliar a relação entre as variáveis nsba, ns, sba e comente os resultados

Observa se uma associação positiva entre
ns e sba, enquanto
nsba parece apresentar nenhuma associação tanto com
ns como sba.

Exercício 5

Tabela com tempo de recuperação de cada participante:

Dose da subs. A	sub. B baixa	sub. B média	sub. B alta
baixa	10,4	8,9	4,8
baixa	12,8	9,1	4,5
baixa	14,6	8,5	4,4
baixa	10,5	9,0	4,6
alta	5,8	8,9	9,1
alta	5,2	9,1	9,3
alta	5,5	8,7	8,7
alta	5,3	9,0	9,4

a-)

Dado o conjunto de dados acima podemos chegar aos seguintes valores de média e desvio padrão por grupo:

```
Grupo 1 (A=baixa; B=baixa):
    média: 12,1
    desv. pad.: 2,0
Grupo 2 (A=baixa; B=média):
```

```
média: 8,9
  desv. pad.: 0,3
Grupo 3 (A=baixa; B=alta):
  média: 4,6
  desv. pad.: 0,2

Grupo 4 (A=alta; B=baixa):
  média: 5,5
  desv. pad.: 0,3
Grupo 1 (A=alta; B=média):
  média: 8,9
  desv. pad.: 0,2
Grupo 1 (A=alta; B=alta):
  média: 9,1
  desv. pad.: 0,3
```

Com isso podemos observar que a combinação que oferece a recuperação mais rápida é a combinação 3, visto que essa apresenta o menor tempo para o desaparecimento dos sintomas com o menor desvio padrão.

b-)

c-)

d-)

```
##
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
                            2.73
                                  3.766 0.068144 .
                    2.73
## doseA
                           10.51 14.471 0.000179 ***
## doseB
                2 21.01
                           63.23 87.095 5.54e-10 ***
               2 126.46
## doseA:doseB
## Residuals
               18
                  13.07
                            0.73
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Exercício 9

```
library(pander)
arvores <- read_excel("data/arvores.xls")</pre>
lista_elementos <- c('Mn', 'Fe', 'Cu', 'Zn', 'Sr', 'Ba', 'Mg', 'Al', 'P', 'S', 'Cl', 'Ca')
especies <- unique(arvores$especie)</pre>
tipovias <- unique(arvores$tipovia)</pre>
combinacoes <- data.frame(expand.grid(especie=especies, tipovia=tipovias, stringsAsFactors = FALSE))</pre>
analisa <- function(combinacao) {</pre>
  #especie <- combinacao[1]</pre>
  #tipovia <- combinacao[2]
  filtrado <- filter(arvores, especie == combinacao[1], tipovia == combinacao[2])</pre>
  elementos <- select(filtrado, all_of(lista_elementos))</pre>
  means <- colMeans(elementos)</pre>
  covariance <- cov(elementos)</pre>
  correlation <- cor(elementos)</pre>
  pandoc.table(means, caption=paste("Vetor de médias dos elementos para espécie", combinacao[1], "e tip
  pandoc.table(covariance, caption=paste("Matriz de covariância dos elementos para espécie", combinacao
  pandoc.table(correlation, caption=paste("Matriz de correlação dos elementos para espécie", combinacao
  return(list(means, covariance, correlation))
result <- apply(combinacoes, 1, analisa)</pre>
```

Tabela 3: Vetor de médias dos elementos para espécie Sibipiruna e tipovia Collector (continued below)

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	P	S
60.32	2028	7.062	118.4	102.2	931.6	760.2	2173	1084	3837

Cl	Ca
93.25	27970

Tabela 5: Matriz de covariância dos elementos para espécie Sibipiruna e tipovia Collector (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	1492	44189	42.65	1764	247.8	17705	3542
${f Fe}$	44189	2594101	1891	61046	4381	1662435	187233
$\mathbf{C}\mathbf{u}$	42.65	1891	4.937	160	36.16	464.7	45.89
${f Zn}$	1764	61046	160	12636	1998	18514	6587
\mathbf{Sr}	247.8	4381	36.16	1998	1536	-3119	370.2
\mathbf{Ba}	17705	1662435	464.7	18514	-3119	1839316	113811

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mg	3542	187233	45.89	6587	370.2	113811	171868
\mathbf{Al}	129295	4867878	434.8	32611	8303	3867659	420584
${f P}$	3042	40794	89.08	8338	2268	-349	13330
\mathbf{S}	36386	1068381	1799	52870	11780	127842	83524
\mathbf{Cl}	191.9	11998	62.41	1682	455.8	-1652	9013
\mathbf{Ca}	-166254	-8821089	-4240	55751	194961	-4707014	-625884

	Al	P	S	Cl	Ca
Mn	129295	3042	36386	191.9	-166254
\mathbf{Fe}	4867878	40794	1068381	11998	-8821089
$\mathbf{C}\mathbf{u}$	434.8	89.08	1799	62.41	-4240
${f Zn}$	32611	8338	52870	1682	55751
\mathbf{Sr}	8303	2268	11780	455.8	194961
\mathbf{Ba}	3867659	-349	127842	-1652	-4707014
$\mathbf{M}\mathbf{g}$	420584	13330	83524	9013	-625884
Al	32665019	23426	2131895	-37374	-16081601
P	23426	56002	168404	2532	468291
\mathbf{S}	2131895	168404	1840885	18979	-3567374
\mathbf{Cl}	-37374	2532	18979	8436	-29848
\mathbf{Ca}	-16081601	468291	-3567374	-29848	87077894

Tabela 7: Matriz de correlação dos elementos para espécie Sibipiruna e tipovia Collector (continued below)

	${ m Mn}$	Fe	Cu	Zn	Sr	Ba
Mn	1	0.7103	0.4969	0.4063	0.1637	0.338
\mathbf{Fe}	0.7103	1	0.5285	0.3372	0.0694	0.7611
$\mathbf{C}\mathbf{u}$	0.4969	0.5285	1	0.6407	0.4152	0.1542
${f Zn}$	0.4063	0.3372	0.6407	1	0.4536	0.1214
\mathbf{Sr}	0.1637	0.0694	0.4152	0.4536	1	-0.05868
\mathbf{Ba}	0.338	0.7611	0.1542	0.1214	-0.05868	1
$\mathbf{M}\mathbf{g}$	0.2212	0.2804	0.04982	0.1413	0.02279	0.2024
Al	0.5856	0.5288	0.03423	0.05076	0.03707	0.499
P	0.3328	0.107	0.1694	0.3134	0.2446	-0.001087
\mathbf{S}	0.6942	0.4889	0.5969	0.3466	0.2215	0.06948
\mathbf{Cl}	0.05408	0.08111	0.3058	0.1629	0.1266	-0.01326
\mathbf{Ca}	-0.4612	-0.5869	-0.2045	0.05315	0.5331	-0.3719

	Mg	Al	P	S	Cl	Ca
Mn	0.2212	0.5856	0.3328	0.6942	0.05408	-0.4612
${f Fe}$	0.2804	0.5288	0.107	0.4889	0.08111	-0.5869
$\mathbf{C}\mathbf{u}$	0.04982	0.03423	0.1694	0.5969	0.3058	-0.2045
${f Zn}$	0.1413	0.05076	0.3134	0.3466	0.1629	0.05315
\mathbf{Sr}	0.02279	0.03707	0.2446	0.2215	0.1266	0.5331
\mathbf{Ba}	0.2024	0.499	-0.001087	0.06948	-0.01326	-0.3719
$\mathbf{M}\mathbf{g}$	1	0.1775	0.1359	0.1485	0.2367	-0.1618
$\overline{\mathbf{Al}}$	0.1775	1	0.01732	0.2749	-0.0712	-0.3015

	${ m Mg}$	Al	P	S	Cl	Ca
P	0.1359	0.01732	1	0.5245	0.1165	0.2121
${f S}$	0.1485	0.2749	0.5245	1	0.1523	-0.2818
\mathbf{Cl}	0.2367	-0.0712	0.1165	0.1523	1	-0.03482
\mathbf{Ca}	-0.1618	-0.3015	0.2121	-0.2818	-0.03482	1

Tabela 9: Vetor de médias dos elementos para espécie Alfeneiro e tipovia Collector

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	P	\mathbf{S}	Cl	Ca
NA	NA	8.244	234.8	81.31	1449	1847	NA	1096	4148	149.7	18138

Tabela 10: Matriz de covariância dos elementos para espécie Alfeneiro e tipovia Collector (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	${ m Mg}$	Al
$\mathbf{M}\mathbf{n}$	NA	NA	NA	NA	NA	NA	NA	NA
\mathbf{Fe}	NA	NA	NA	NA	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	NA	NA	5.809	145.8	17.62	1754	329.8	NA
${f Zn}$	NA	NA	145.8	10545	1120	67234	8534	NA
\mathbf{Sr}	NA	NA	17.62	1120	505.5	4649	-2277	NA
\mathbf{Ba}	NA	NA	1754	67234	4649	1109610	-12031	NA
$\mathbf{M}\mathbf{g}$	NA	NA	329.8	8534	-2277	-12031	321265	NA
Al	NA	NA	NA	NA	NA	NA	NA	NA
${f P}$	NA	NA	-77.08	5497	2329	-25222	-14860	NA
\mathbf{S}	NA	NA	3254	76705	18485	736479	115148	NA
\mathbf{Cl}	NA	NA	10.04	-531.2	-232.2	-23213	22915	NA
\mathbf{Ca}	NA	NA	-7001	-255140	69349	-5040148	-596157	NA

	P	S	Cl	Ca
Mn	NA	NA	NA	NA
\mathbf{Fe}	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	-77.08	3254	10.04	-7001
${f Zn}$	5497	76705	-531.2	-255140
\mathbf{Sr}	2329	18485	-232.2	69349
\mathbf{Ba}	-25222	736479	-23213	-5040148
$\mathbf{M}\mathbf{g}$	-14860	115148	22915	-596157
Al	NA	NA	NA	NA
${f P}$	51575	-2520	-2590	274863
\mathbf{S}	-2520	2568737	18031	-1531724
\mathbf{Cl}	-2590	18031	7162	125821
\mathbf{Ca}	274863	-1531724	125821	57754320

Tabela 12: Matriz de correlação dos elementos para espécie Alfeneiro e tipovia Collector (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al
Mn	1	NA	NA	NA	NA	NA	NA	NA
${f Fe}$	NA	1	NA	NA	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	NA	NA	1	0.5892	0.3252	0.691	0.2414	NA
${f Zn}$	NA	NA	0.5892	1	0.4852	0.6216	0.1466	NA
\mathbf{Sr}	NA	NA	0.3252	0.4852	1	0.1963	-0.1786	NA
Ba	NA	NA	0.691	0.6216	0.1963	1	-0.02015	NA
$\mathbf{M}\mathbf{g}$	NA	NA	0.2414	0.1466	-0.1786	-0.02015	1	NA
$\overline{\mathbf{Al}}$	NA	NA	NA	NA	NA	NA	NA	1
${f P}$	NA	NA	-0.1408	0.2357	0.4562	-0.1054	-0.1154	NA
${f S}$	NA	NA	0.8424	0.4661	0.513	0.4362	0.1268	NA
\mathbf{Cl}	NA	NA	0.04925	-0.06113	-0.122	-0.2604	0.4777	NA
\mathbf{Ca}	NA	NA	-0.3822	-0.3269	0.4059	-0.6296	-0.1384	NA

	Р	S	Cl	Ca
Mn	NA	NA	NA	NA
\mathbf{Fe}	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	-0.1408	0.8424	0.04925	-0.3822
${f Zn}$	0.2357	0.4661	-0.06113	-0.3269
\mathbf{Sr}	0.4562	0.513	-0.122	0.4059
\mathbf{Ba}	-0.1054	0.4362	-0.2604	-0.6296
${f Mg}$	-0.1154	0.1268	0.4777	-0.1384
Al	NA	NA	NA	NA
P	1	-0.006923	-0.1348	0.1593
\mathbf{S}	-0.006923	1	0.1329	-0.1258
\mathbf{Cl}	-0.1348	0.1329	1	0.1956
\mathbf{Ca}	0.1593	-0.1258	0.1956	1

Tabela 14: Vetor de médias dos elementos para espécie Tipuana e tipovia Collector

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
46.45	1547	7.433	139.7	176.9	552.4	2396	1007	996.1	NA	NA	35673

Tabela 15: Matriz de covariância dos elementos para espécie Tipuana e tipovia Collector (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	645.5	22056	23.26	1338	33	7308	-1982
${f Fe}$	22056	1414614	1831	65398	-7909	490936	-77416
$\mathbf{C}\mathbf{u}$	23.26	1831	5.16	150.3	10.9	559.6	-177.4
$\mathbf{Z}\mathbf{n}$	1338	65398	150.3	8229	1356	19340	-27105
\mathbf{Sr}	33	-7909	10.9	1356	7744	-3100	-11556
\mathbf{Ba}	7308	490936	559.6	19340	-3100	225418	-38855
\mathbf{Mg}	-1982	-77416	-177.4	-27105	-11556	-38855	913232

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Al	14346	947419	1164	42414	-6196	351252	-66169
\mathbf{P}	1960	55846	42.32	6118	6311	9898	-56422
\mathbf{S}	NA	NA	NA	NA	NA	NA	NA
\mathbf{Cl}	NA	NA	NA	NA	NA	NA	NA
$\mathbf{C}\mathbf{a}$	-68523	-4611793	-4344	-14811	655375	-1841911	-1829340

	Al	Р	S	Cl	Ca
Mn	14346	1960	NA	NA	-68523
${f Fe}$	947419	55846	NA	NA	-4611793
$\mathbf{C}\mathbf{u}$	1164	42.32	NA	NA	-4344
${f Zn}$	42414	6118	NA	NA	-14811
\mathbf{Sr}	-6196	6311	NA	NA	655375
${f Ba}$	351252	9898	NA	NA	-1841911
$\mathbf{M}\mathbf{g}$	-66169	-56422	NA	NA	-1829340
\mathbf{Al}	764824	52164	NA	NA	-3202537
${f P}$	52164	39858	NA	NA	648619
${f S}$	NA	NA	NA	NA	NA
\mathbf{Cl}	NA	NA	NA	NA	NA
\mathbf{Ca}	-3202537	648619	NA	NA	108377966

Tabela 17: Matriz de correlação dos elementos para espécie Tipuana e tipovia Collector (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba
Mn	1	0.7299	0.4031	0.5807	0.01476	0.6058
\mathbf{Fe}	0.7299	1	0.6776	0.6061	-0.07556	0.8694
$\mathbf{C}\mathbf{u}$	0.4031	0.6776	1	0.7293	0.05452	0.5189
$\mathbf{Z}\mathbf{n}$	0.5807	0.6061	0.7293	1	0.1698	0.449
\mathbf{Sr}	0.01476	-0.07556	0.05452	0.1698	1	-0.07419
\mathbf{Ba}	0.6058	0.8694	0.5189	0.449	-0.07419	1
$\mathbf{M}\mathbf{g}$	-0.08165	-0.06811	-0.0817	-0.3127	-0.1374	-0.08564
\mathbf{Al}	0.6457	0.9108	0.5858	0.5346	-0.08051	0.8459
\mathbf{P}	0.3864	0.2352	0.09332	0.3378	0.3592	0.1044
\mathbf{S}	NA	NA	NA	NA	NA	NA
\mathbf{Cl}	NA	NA	NA	NA	NA	NA
\mathbf{Ca}	-0.2591	-0.3725	-0.1837	-0.01568	0.7154	-0.3727

	${ m Mg}$	Al	P	S	Cl	Ca
Mn	-0.08165	0.6457	0.3864	NA	NA	-0.2591
\mathbf{Fe}	-0.06811	0.9108	0.2352	NA	NA	-0.3725
$\mathbf{C}\mathbf{u}$	-0.0817	0.5858	0.09332	NA	NA	-0.1837
$\mathbf{Z}\mathbf{n}$	-0.3127	0.5346	0.3378	NA	NA	-0.01568
\mathbf{Sr}	-0.1374	-0.08051	0.3592	NA	NA	0.7154
\mathbf{Ba}	-0.08564	0.8459	0.1044	NA	NA	-0.3727
$\mathbf{M}\mathbf{g}$	1	-0.07917	-0.2957	NA	NA	-0.1839
Al	-0.07917	1	0.2988	NA	NA	-0.3518
${f P}$	-0.2957	0.2988	1	NA	NA	0.3121

	Mg	Al	Р	S	Cl	Ca
\mathbf{S}	NA	NA	NA	1	NA	NA
\mathbf{Cl}	NA	NA	NA	NA	1	NA
\mathbf{Ca}	-0.1839	-0.3518	0.3121	NA	NA	1

Tabela 19: Vetor de médias dos elementos para espécie Sibipiruna e tipovia Local II

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
71.24	1571	6.017	66.29	91.28	626	1051	1083	1133	3556	103.2	27266

Tabela 20: Matriz de covariância dos elementos para espécie Sibipiruna e tipovia Local II (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	7437	1826	1.657	430.8	-914.6	1624	-6975
\mathbf{Fe}	1826	1482002	1214	41568	178.8	499866	-99729
$\mathbf{C}\mathbf{u}$	1.657	1214	1.6	39.11	12.1	467.2	72
${f Zn}$	430.8	41568	39.11	1842	262	14116	213.8
\mathbf{Sr}	-914.6	178.8	12.1	262	1312	856.3	20598
\mathbf{Ba}	1624	499866	467.2	14116	856.3	264232	-139846
$\mathbf{M}\mathbf{g}$	-6975	-99729	72	213.8	20598	-139846	1224766
\mathbf{Al}	-2103	969558	601.7	22685	-4030	378798	-250241
${f P}$	-2890	91745	126.5	1978	1361	31886	85403
\mathbf{S}	11293	499686	735.8	15987	4826	219567	-157286
\mathbf{Cl}	739.4	-5985	-4.058	-27.85	178.5	-9489	51757
\mathbf{Ca}	-284345	-3029225	-1578	-92833	139918	-1055921	1903551

	Al	Р	S	Cl	Ca
$\mathbf{M}\mathbf{n}$	-2103	-2890	11293	739.4	-284345
\mathbf{Fe}	969558	91745	499686	-5985	-3029225
$\mathbf{C}\mathbf{u}$	601.7	126.5	735.8	-4.058	-1578
$\mathbf{Z}\mathbf{n}$	22685	1978	15987	-27.85	-92833
\mathbf{Sr}	-4030	1361	4826	178.5	139918
\mathbf{Ba}	378798	31886	219567	-9489	-1055921
\mathbf{Mg}	-250241	85403	-157286	51757	1903551
\mathbf{Al}	959572	15741	272144	-12917	-1854730
\mathbf{P}	15741	68471	89853	12288	-131935
\mathbf{S}	272144	89853	902806	586.1	-3152583
\mathbf{Cl}	-12917	12288	586.1	8074	-37185
Ca	-1854730	-131935	-3152583	-37185	48590961

Tabela 22: Matriz de correlação dos elementos para espécie Sibipiruna e tipovia Local II (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba
Mn	1	0.0174	0.01519	0.1164	-0.2928	0.03664
${f Fe}$	0.0174	1	0.7885	0.7956	0.004055	0.7988
$\mathbf{C}\mathbf{u}$	0.01519	0.7885	1	0.7203	0.264	0.7185
${f Zn}$	0.1164	0.7956	0.7203	1	0.1685	0.6398
\mathbf{Sr}	-0.2928	0.004055	0.264	0.1685	1	0.04598
${f Ba}$	0.03664	0.7988	0.7185	0.6398	0.04598	1
$\mathbf{M}\mathbf{g}$	-0.07309	-0.07402	0.05143	0.004502	0.5138	-0.2458
\mathbf{Al}	-0.0249	0.813	0.4855	0.5396	-0.1135	0.7523
${f P}$	-0.1281	0.288	0.3822	0.1761	0.1435	0.2371
${f S}$	0.1378	0.432	0.6121	0.392	0.1402	0.4495
\mathbf{Cl}	0.09542	-0.05471	-0.0357	-0.007222	0.05484	-0.2054
\mathbf{Ca}	-0.473	-0.357	-0.1789	-0.3103	0.5541	-0.2947

	Mg	Al	P	S	Cl	Ca
Mn	-0.07309	-0.0249	-0.1281	0.1378	0.09542	-0.473
\mathbf{Fe}	-0.07402	0.813	0.288	0.432	-0.05471	-0.357
$\mathbf{C}\mathbf{u}$	0.05143	0.4855	0.3822	0.6121	-0.0357	-0.1789
${f Zn}$	0.004502	0.5396	0.1761	0.392	-0.007222	-0.3103
\mathbf{Sr}	0.5138	-0.1135	0.1435	0.1402	0.05484	0.5541
\mathbf{Ba}	-0.2458	0.7523	0.2371	0.4495	-0.2054	-0.2947
$\mathbf{M}\mathbf{g}$	1	-0.2308	0.2949	-0.1496	0.5205	0.2468
\mathbf{Al}	-0.2308	1	0.06141	0.2924	-0.1468	-0.2716
${f P}$	0.2949	0.06141	1	0.3614	0.5226	-0.07233
${f S}$	-0.1496	0.2924	0.3614	1	0.006865	-0.476
\mathbf{Cl}	0.5205	-0.1468	0.5226	0.006865	1	-0.05937
Ca	0.2468	-0.2716	-0.07233	-0.476	-0.05937	1

Tabela 24: Vetor de médias dos elementos para espécie Alfeneiro e tipovia Local II

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	P	\mathbf{S}	Cl	Ca
62.55	2042	6.647	184.4	81.06	872.7	1774	1377	988.6	2646	161	17040

Tabela 25: Matriz de covariância dos elementos para espécie Alfeneiro e tipovia Local II (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	1351	39332	5.564	2417	716.8	26839	2518
\mathbf{Fe}	39332	1258552	334	72349	23833	771072	138732
$\mathbf{C}\mathbf{u}$	5.564	334	0.9289	66.26	6.515	182.7	82.41
${f Zn}$	2417	72349	66.26	9286	940.5	57522	-5889
\mathbf{Sr}	716.8	23833	6.515	940.5	690.9	12039	8135
\mathbf{Ba}	26839	771072	182.7	57522	12039	562277	24.97
$\mathbf{M}\mathbf{g}$	2518	138732	82.41	-5889	8135	24.97	213095

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Al	41823	1253464	379.8	91431	20653	868158	34983
${f P}$	1428	38076	214.9	22978	-1515	66874	-53193
\mathbf{S}	-1674	-83228	216.7	20350	-2062	10868	-66957
\mathbf{Cl}	-1545	-3056	78.17	-1670	1004	-37851	45650
$\mathbf{C}\mathbf{a}$	2243	-542331	630.8	171428	-49067	453787	-1247679

	Al	P	S	Cl	Ca
Mn	41823	1428	-1674	-1545	2243
\mathbf{Fe}	1253464	38076	-83228	-3056	-542331
$\mathbf{C}\mathbf{u}$	379.8	214.9	216.7	78.17	630.8
${f Zn}$	91431	22978	20350	-1670	171428
\mathbf{Sr}	20653	-1515	-2062	1004	-49067
Ba	868158	66874	10868	-37851	453787
$\mathbf{M}\mathbf{g}$	34983	-53193	-66957	45650	-1247679
\mathbf{Al}	1367339	107269	10004	-38291	469324
P	107269	100514	83149	-2093	1041156
${f S}$	10004	83149	157797	-6934	727402
\mathbf{Cl}	-38291	-2093	-6934	21694	-290903
\mathbf{Ca}	469324	1041156	727402	-290903	16345001

Tabela 27: Matriz de correlação dos elementos para espécie Alfeneiro e tipovia Local II (continued below)

	${ m Mn}$	Fe	Cu	Zn	Sr	Ba
Mn	1	0.9537	0.157	0.6823	0.7417	0.9736
\mathbf{Fe}	0.9537	1	0.3089	0.6692	0.8082	0.9166
$\mathbf{C}\mathbf{u}$	0.157	0.3089	1	0.7135	0.2572	0.2528
$\mathbf{Z}\mathbf{n}$	0.6823	0.6692	0.7135	1	0.3713	0.796
\mathbf{Sr}	0.7417	0.8082	0.2572	0.3713	1	0.6108
\mathbf{Ba}	0.9736	0.9166	0.2528	0.796	0.6108	1
$\mathbf{M}\mathbf{g}$	0.1484	0.2679	0.1852	-0.1324	0.6704	7.213e-05
Al	0.9729	0.9555	0.337	0.8114	0.6719	0.9901
\mathbf{P}	0.1226	0.1071	0.7033	0.7521	-0.1818	0.2813
\mathbf{S}	-0.1146	-0.1868	0.566	0.5316	-0.1975	0.03649
\mathbf{Cl}	-0.2854	-0.0185	0.5506	-0.1177	0.2592	-0.3427
\mathbf{Ca}	0.01509	-0.1196	0.1619	0.44	-0.4617	0.1497

	Mg	Al	P	S	Cl	Ca
Mn	0.1484	0.9729	0.1226	-0.1146	-0.2854	0.01509
${f Fe}$	0.2679	0.9555	0.1071	-0.1868	-0.0185	-0.1196
$\mathbf{C}\mathbf{u}$	0.1852	0.337	0.7033	0.566	0.5506	0.1619
${f Zn}$	-0.1324	0.8114	0.7521	0.5316	-0.1177	0.44
\mathbf{Sr}	0.6704	0.6719	-0.1818	-0.1975	0.2592	-0.4617
${f Ba}$	7.213e-05	0.9901	0.2813	0.03649	-0.3427	0.1497
$\mathbf{M}\mathbf{g}$	1	0.06481	-0.3635	-0.3651	0.6714	-0.6685
\mathbf{Al}	0.06481	1	0.2893	0.02154	-0.2223	0.09928
P	-0.3635	0.2893	1	0.6602	-0.04482	0.8123

	Mg	Al	Р	S	Cl	Ca
\mathbf{S}	-0.3651	0.02154	0.6602	1	-0.1185	0.4529
\mathbf{Cl}	0.6714	-0.2223	-0.04482	-0.1185	1	-0.4885
\mathbf{Ca}	-0.6685	0.09928	0.8123	0.4529	-0.4885	1

Tabela 29: Vetor de médias dos elementos para espécie Tipuana e tipovia Local II

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
48.99	696.9	5.234	59.13	128.5	288.8	NA	518	850.9	NA	141.2	NA

Tabela 30: Matriz de covariância dos elementos para espécie Tipuana e tipovia Local II (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al
Mn	2081	10237	11.23	304.7	360.9	2572	NA	4295
\mathbf{Fe}	10237	350787	564.3	18942	13090	112515	NA	190126
$\mathbf{C}\mathbf{u}$	11.23	564.3	1.928	53.54	47.2	188.2	NA	362.6
${f Zn}$	304.7	18942	53.54	1771	1418	6212	NA	11109
\mathbf{Sr}	360.9	13090	47.2	1418	3707	3965	NA	9579
\mathbf{Ba}	2572	112515	188.2	6212	3965	42477	NA	60952
$\mathbf{M}\mathbf{g}$	NA	NA	NA	NA	NA	NA	NA	NA
\mathbf{Al}	4295	190126	362.6	11109	9579	60952	NA	133954
${f P}$	2292	71045	215.4	5754	8818	21458	NA	53585
\mathbf{S}	NA	NA	NA	NA	NA	NA	NA	NA
\mathbf{Cl}	-307.4	33644	129	3525	3630	10215	NA	31536
\mathbf{Ca}	NA	NA	NA	NA	NA	NA	NA	NA

	P	S	Cl	Ca
Mn	2292	NA	-307.4	NA
\mathbf{Fe}	71045	NA	33644	NA
$\mathbf{C}\mathbf{u}$	215.4	NA	129	NA
${f Zn}$	5754	NA	3525	NA
\mathbf{Sr}	8818	NA	3630	NA
\mathbf{Ba}	21458	NA	10215	NA
$\mathbf{M}\mathbf{g}$	NA	NA	NA	NA
Al	53585	NA	31536	NA
\mathbf{P}	45538	NA	15064	NA
\mathbf{S}	NA	NA	NA	NA
\mathbf{Cl}	15064	NA	18891	NA
Ca	NA	NA	NA	NA

Tabela 32: Matriz de correlação dos elementos para espécie Tipuana e tipovia Local II (continued below)

${ m Mn}$	Fe	Cu	Zn	Sr	Ba	Mg	Al
1	0.3788	0.1773	0.1587	0.1299	0.2736	NA	0.2572
0.3788	1	0.6863	0.76	0.363	0.9217	NA	0.8771
0.1773	0.6863	1	0.9164	0.5584	0.6577	NA	0.7137
0.1587	0.76	0.9164	1	0.5535	0.7162	NA	0.7213
0.1299	0.363	0.5584	0.5535	1	0.316	NA	0.4298
0.2736	0.9217	0.6577	0.7162	0.316	1	NA	0.808
NA	NA	NA	NA	NA	NA	1	NA
0.2572	0.8771	0.7137	0.7213	0.4298	0.808	NA	1
0.2354	0.5621	0.7271	0.6408	0.6787	0.4879	NA	0.6861
NA	NA	NA	NA	NA	NA	NA	NA
-0.04903	0.4133	0.676	0.6095	0.4338	0.3606	NA	0.6269
NA	NA	NA	NA	NA	NA	NA	NA
	1 0.3788 0.1773 0.1587 0.1299 0.2736 NA 0.2572 0.2354 NA -0.04903	1 0.3788 0.3788 1 0.1773 0.6863 0.1587 0.76 0.1299 0.363 0.2736 0.9217 NA NA 0.2572 0.8771 0.2354 0.5621 NA NA -0.04903 0.4133	1 0.3788 0.1773 0.3788 1 0.6863 0.1773 0.6863 1 0.1587 0.76 0.9164 0.1299 0.363 0.5584 0.2736 0.9217 0.6577 NA NA NA 0.2572 0.8771 0.7137 0.2354 0.5621 0.7271 NA NA NA -0.04903 0.4133 0.676	1 0.3788 0.1773 0.1587 0.3788 1 0.6863 0.76 0.1773 0.6863 1 0.9164 0.1587 0.76 0.9164 1 0.1299 0.363 0.5584 0.5535 0.2736 0.9217 0.6577 0.7162 NA NA NA NA 0.2572 0.8771 0.7137 0.7213 0.2354 0.5621 0.7271 0.6408 NA NA NA NA -0.04903 0.4133 0.676 0.6095	1 0.3788 0.1773 0.1587 0.1299 0.3788 1 0.6863 0.76 0.363 0.1773 0.6863 1 0.9164 0.5584 0.1587 0.76 0.9164 1 0.5535 0.1299 0.363 0.5584 0.5535 1 0.2736 0.9217 0.6577 0.7162 0.316 NA NA NA NA NA 0.2572 0.8771 0.7137 0.7213 0.4298 0.2354 0.5621 0.7271 0.6408 0.6787 NA NA NA NA NA -0.04903 0.4133 0.676 0.6095 0.4338	1 0.3788 0.1773 0.1587 0.1299 0.2736 0.3788 1 0.6863 0.76 0.363 0.9217 0.1773 0.6863 1 0.9164 0.5584 0.6577 0.1587 0.76 0.9164 1 0.5535 0.7162 0.1299 0.363 0.5584 0.5535 1 0.316 0.2736 0.9217 0.6577 0.7162 0.316 1 NA NA NA NA NA NA 0.2572 0.8771 0.7137 0.7213 0.4298 0.808 0.2354 0.5621 0.7271 0.6408 0.6787 0.4879 NA NA NA NA NA NA -0.04903 0.4133 0.676 0.6095 0.4338 0.3606	1 0.3788 0.1773 0.1587 0.1299 0.2736 NA 0.3788 1 0.6863 0.76 0.363 0.9217 NA 0.1773 0.6863 1 0.9164 0.5584 0.6577 NA 0.1587 0.76 0.9164 1 0.5535 0.7162 NA 0.1299 0.363 0.5584 0.5535 1 0.316 NA 0.2736 0.9217 0.6577 0.7162 0.316 1 NA NA NA NA NA NA NA 1 0.2572 0.8771 0.7137 0.7213 0.4298 0.808 NA 0.2354 0.5621 0.7271 0.6408 0.6787 0.4879 NA NA NA NA NA NA NA NA -0.04903 0.4133 0.676 0.6095 0.4338 0.3606 NA

	Р	S	Cl	Ca
$\overline{}$ Mn	0.2354	NA	-0.04903	NA
\mathbf{Fe}	0.5621	NA	0.4133	NA
$\mathbf{C}\mathbf{u}$	0.7271	NA	0.676	NA
${f Zn}$	0.6408	NA	0.6095	NA
\mathbf{Sr}	0.6787	NA	0.4338	NA
${f Ba}$	0.4879	NA	0.3606	NA
$\mathbf{M}\mathbf{g}$	NA	NA	NA	NA
\mathbf{Al}	0.6861	NA	0.6269	NA
${f P}$	1	NA	0.5136	NA
${f S}$	NA	1	NA	NA
\mathbf{Cl}	0.5136	NA	1	NA
\mathbf{Ca}	NA	NA	NA	1

Tabela 34: Vetor de médias dos elementos para espécie Sibipiruna e tipovia Arterial

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
NA	1722	7.069	112.3	112.2	926.2	902.7	1387	1066	3243	76.95	32877

Tabela 35: Matriz de covariância dos elementos para espécie Sibipiruna e tipovia Arterial (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	NA	NA	NA	NA	NA	NA	NA
\mathbf{Fe}	NA	2914672	2575	101253	-3088	1433766	375286
$\mathbf{C}\mathbf{u}$	NA	2575	9.08	153.8	-4.236	1450	478.6
$\mathbf{Z}\mathbf{n}$	NA	101253	153.8	7181	698.6	59946	20053
\mathbf{Sr}	NA	-3088	-4.236	698.6	2410	3799	1349
\mathbf{Ba}	NA	1433766	1450	59946	3799	1206954	224218
$\mathbf{M}\mathbf{g}$	NA	375286	478.6	20053	1349	224218	332025

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Al	NA	2372286	2061	77096	-581.1	1380556	332760
${f P}$	NA	55492	123	3848	1897	21384	-3683
\mathbf{S}	NA	1510342	1682	54377	5137	744682	115400
\mathbf{Cl}	NA	26610	67.48	1408	-172.4	8042	8692
$\mathbf{C}\mathbf{a}$	NA	-11836098	-11196	-382840	242113	-5355037	-2489180

	Al	Р	S	Cl	Ca
$\overline{\mathbf{M}\mathbf{n}}$	NA	NA	NA	NA	NA
${f Fe}$	2372286	55492	1510342	26610	-11836098
$\mathbf{C}\mathbf{u}$	2061	123	1682	67.48	-11196
${f Zn}$	77096	3848	54377	1408	-382840
\mathbf{Sr}	-581.1	1897	5137	-172.4	242113
\mathbf{Ba}	1380556	21384	744682	8042	-5355037
${f Mg}$	332760	-3683	115400	8692	-2489180
\mathbf{Al}	2626791	-35.33	1053622	26445	-10616394
P	-35.33	30114	77725	1106	295940
${f S}$	1053622	77725	1341075	16489	-5286232
\mathbf{Cl}	26445	1106	16489	2700	-193919
\mathbf{Ca}	-10616394	295940	-5286232	-193919	111797417

Tabela 37: Matriz de correlação dos elementos para espécie Sibipiruna e tipovia Arterial (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	1	NA	NA	NA	NA	NA	NA
\mathbf{Fe}	NA	1	0.5005	0.6999	-0.03685	0.7644	0.3815
$\mathbf{C}\mathbf{u}$	NA	0.5005	1	0.6021	-0.02864	0.4381	0.2756
${f Zn}$	NA	0.6999	0.6021	1	0.1679	0.6439	0.4107
\mathbf{Sr}	NA	-0.03685	-0.02864	0.1679	1	0.07044	0.04771
\mathbf{Ba}	NA	0.7644	0.4381	0.6439	0.07044	1	0.3542
$\mathbf{M}\mathbf{g}$	NA	0.3815	0.2756	0.4107	0.04771	0.3542	1
Al	NA	0.8574	0.422	0.5613	-0.007304	0.7753	0.3563
P	NA	0.1873	0.2352	0.2616	0.2227	0.1122	-0.03683
\mathbf{S}	NA	0.7639	0.4821	0.5541	0.09035	0.5853	0.1729
Cl	NA	0.3	0.4309	0.3198	-0.06757	0.1409	0.2903
\mathbf{Ca}	NA	-0.6557	-0.3514	-0.4273	0.4664	-0.461	-0.4086

	Al	P	S	Cl	Ca
Mn	NA	NA	NA	NA	NA
${f Fe}$	0.8574	0.1873	0.7639	0.3	-0.6557
$\mathbf{C}\mathbf{u}$	0.422	0.2352	0.4821	0.4309	-0.3514
${f Zn}$	0.5613	0.2616	0.5541	0.3198	-0.4273
\mathbf{Sr}	-0.007304	0.2227	0.09035	-0.06757	0.4664
Ba	0.7753	0.1122	0.5853	0.1409	-0.461
$\mathbf{M}\mathbf{g}$	0.3563	-0.03683	0.1729	0.2903	-0.4086
\mathbf{Al}	1	-0.0001256	0.5614	0.314	-0.6195
${f P}$	-0.0001256	1	0.3868	0.1226	0.1613

	Al	Р	S	Cl	Ca
\mathbf{S}	0.5614	0.3868	1	0.274	-0.4317
Cl	0.314	0.1226	0.274	1	-0.353
\mathbf{Ca}	-0.6195	0.1613	-0.4317	-0.353	1

Tabela 39: Vetor de médias dos elementos para espécie Alfeneiro e tipovia Arterial

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	P	S	Cl	Ca
73.08	NA	NA	NA	80.74	1678	1550	2029	1015	3591	105	19808

Tabela 40: Matriz de covariância dos elementos para espécie Alfeneiro e tipovia Arterial (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al
Mn	1105	NA	NA	NA	162.8	26113	-792.5	29662
\mathbf{Fe}	NA	NA	NA	NA	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	NA	NA	NA	NA	NA	NA	NA	NA
$\mathbf{Z}\mathbf{n}$	NA	NA	NA	NA	NA	NA	NA	NA
\mathbf{Sr}	162.8	NA	NA	NA	551.7	12626	-1246	9278
\mathbf{Ba}	26113	NA	NA	NA	12626	2662300	90379	1299817
$\mathbf{M}\mathbf{g}$	-792.5	NA	NA	NA	-1246	90379	393930	-178562
\mathbf{Al}	29662	NA	NA	NA	9278	1299817	-178562	4035281
${f P}$	1998	NA	NA	NA	979.7	41846	9720	25375
\mathbf{S}	15726	NA	NA	NA	-799.3	94534	-556.4	144586
\mathbf{Cl}	588.9	NA	NA	NA	-213.4	13505	12287	-20226
Ca	-138338	NA	NA	NA	70993	-3744995	-1619889	-5265948

	P	\mathbf{S}	Cl	Ca
Mn	1998	15726	588.9	-138338
\mathbf{Fe}	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	NA	NA	NA	NA
$\mathbf{Z}\mathbf{n}$	NA	NA	NA	NA
\mathbf{Sr}	979.7	-799.3	-213.4	70993
\mathbf{Ba}	41846	94534	13505	-3744995
$\mathbf{M}\mathbf{g}$	9720	-556.4	12287	-1619889
\mathbf{Al}	25375	144586	-20226	-5265948
${f P}$	37064	-1765	2330	-170427
\mathbf{S}	-1765	1124275	4820	-2773405
Cl	2330	4820	2465	-225878
Ca	-170427	-2773405	-225878	50329420

Tabela 42: Matriz de correlação dos elementos para espécie Alfeneiro e tipovia Arterial (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al
Mn	1	NA	NA	NA	0.2085	0.4815	-0.03799	0.4443
\mathbf{Fe}	NA	1	NA	NA	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	NA	NA	1	NA	NA	NA	NA	NA
$\mathbf{Z}\mathbf{n}$	NA	NA	NA	1	NA	NA	NA	NA
\mathbf{Sr}	0.2085	NA	NA	NA	1	0.3294	-0.08453	0.1966
\mathbf{Ba}	0.4815	NA	NA	NA	0.3294	1	0.08825	0.3966
$\mathbf{M}\mathbf{g}$	-0.03799	NA	NA	NA	-0.08453	0.08825	1	-0.1416
Al	0.4443	NA	NA	NA	0.1966	0.3966	-0.1416	1
P	0.3123	NA	NA	NA	0.2166	0.1332	0.08044	0.06561
\mathbf{S}	0.4462	NA	NA	NA	-0.03209	0.05464	-0.0008361	0.06788
Cl	0.3568	NA	NA	NA	-0.183	0.1667	0.3943	-0.2028
Ca	-0.5867	NA	NA	NA	0.426	-0.3235	-0.3638	-0.3695

	P	S	Cl	Ca
Mn	0.3123	0.4462	0.3568	-0.5867
${f Fe}$	NA	NA	NA	NA
$\mathbf{C}\mathbf{u}$	NA	NA	NA	NA
${f Zn}$	NA	NA	NA	NA
\mathbf{Sr}	0.2166	-0.03209	-0.183	0.426
${f Ba}$	0.1332	0.05464	0.1667	-0.3235
${f Mg}$	0.08044	-0.0008361	0.3943	-0.3638
\mathbf{Al}	0.06561	0.06788	-0.2028	-0.3695
${f P}$	1	-0.008646	0.2437	-0.1248
${f S}$	-0.008646	1	0.09156	-0.3687
\mathbf{Cl}	0.2437	0.09156	1	-0.6412
Ca	-0.1248	-0.3687	-0.6412	1

Tabela 44: Vetor de médias dos elementos para espécie Tipuana e tipovia Arterial

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
NA	2275	8.413	199.4	157.4	973.9	2063	1346	NA	NA	204.5	32601

Tabela 45: Matriz de covariância dos elementos para espécie Tipuana e tipovia Arterial (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	NA	NA	NA	NA	NA	NA	NA
\mathbf{Fe}	NA	1719897	1585	78043	22061	644351	-209041
$\mathbf{C}\mathbf{u}$	NA	1585	6.298	196.9	44.39	590.4	-629.1
${f Zn}$	NA	78043	196.9	12291	2496	29372	-16320
\mathbf{Sr}	NA	22061	44.39	2496	4549	7726	-8564
\mathbf{Ba}	NA	644351	590.4	29372	7726	380195	-90159
\mathbf{Mg}	NA	-209041	-629.1	-16320	-8564	-90159	763261

	${ m Mn}$	Fe	Cu	Zn	Sr	Ba	Mg
Al	NA	1037069	795.7	34470	12021	426379	-155940
P	NA	NA	NA	NA	NA	NA	NA
\mathbf{S}	NA	NA	NA	NA	NA	NA	NA
\mathbf{Cl}	NA	36754	-5.481	1703	2581	31690	34366
\mathbf{Ca}	NA	-3172648	814.9	16884	439972	-1180350	-1073163

	Al	Р	S	Cl	Ca
Mn	NA	NA	NA	NA	NA
\mathbf{Fe}	1037069	NA	NA	36754	-3172648
$\mathbf{C}\mathbf{u}$	795.7	NA	NA	-5.481	814.9
${f Zn}$	34470	NA	NA	1703	16884
\mathbf{Sr}	12021	NA	NA	2581	439972
\mathbf{Ba}	426379	NA	NA	31690	-1180350
$\mathbf{M}\mathbf{g}$	-155940	NA	NA	34366	-1073163
\mathbf{Al}	759919	NA	NA	18430	-2054888
${f P}$	NA	NA	NA	NA	NA
${f S}$	NA	NA	NA	NA	NA
\mathbf{Cl}	18430	NA	NA	40677	176428
\mathbf{Ca}	-2054888	NA	NA	176428	85499701

Tabela 47: Matriz de correlação dos elementos para espécie Tipuana e tipovia Arterial (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	1	NA	NA	NA	NA	NA	NA
\mathbf{Fe}	NA	1	0.4814	0.5368	0.2494	0.7968	-0.1824
$\mathbf{C}\mathbf{u}$	NA	0.4814	1	0.7078	0.2623	0.3815	-0.2869
${f Zn}$	NA	0.5368	0.7078	1	0.3339	0.4297	-0.1685
\mathbf{Sr}	NA	0.2494	0.2623	0.3339	1	0.1858	-0.1453
\mathbf{Ba}	NA	0.7968	0.3815	0.4297	0.1858	1	-0.1674
\mathbf{Mg}	NA	-0.1824	-0.2869	-0.1685	-0.1453	-0.1674	1
Al	NA	0.9071	0.3637	0.3567	0.2045	0.7932	-0.2048
${f P}$	NA	NA	NA	NA	NA	NA	NA
\mathbf{S}	NA	NA	NA	NA	NA	NA	NA
\mathbf{Cl}	NA	0.139	-0.01083	0.07616	0.1897	0.2548	0.195
Ca	NA	-0.2616	0.03511	0.01647	0.7055	-0.207	-0.1328

	Al	Р	S	Cl	Ca
$\mathbf{M}\mathbf{n}$	NA	NA	NA	NA	NA
${f Fe}$	0.9071	NA	NA	0.139	-0.2616
$\mathbf{C}\mathbf{u}$	0.3637	NA	NA	-0.01083	0.03511
${f Zn}$	0.3567	NA	NA	0.07616	0.01647
\mathbf{Sr}	0.2045	NA	NA	0.1897	0.7055
\mathbf{Ba}	0.7932	NA	NA	0.2548	-0.207
$\mathbf{M}\mathbf{g}$	-0.2048	NA	NA	0.195	-0.1328
\mathbf{Al}	1	NA	NA	0.1048	-0.2549
\mathbf{P}	NA	1	NA	NA	NA

	Al	Р	S	Cl	Ca
\mathbf{S}	NA	NA	1	NA	NA
\mathbf{Cl}	0.1048	NA	NA	1	0.0946
\mathbf{Ca}	-0.2549	NA	NA	0.0946	1

Tabela 49: Vetor de médias dos elementos para espécie Sibipiruna e tipovia Local I

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
57.59	1614	7.032	91.93	117.2	NA	1063	1234	1189	3540	120.4	NA

Tabela 50: Matriz de covariância dos elementos para espécie Sibipiruna e tipovia Local I (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al
	10111	10		<u> </u>		Da	1116	
\mathbf{Mn}	508	14795	29.64	544.1	875.5	NA	476.8	11544
\mathbf{Fe}	14795	1063842	2728	41817	18308	NA	49247	739089
$\mathbf{C}\mathbf{u}$	29.64	2728	33.38	261.8	22.16	NA	130.8	1464
${f Zn}$	544.1	41817	261.8	4617	-5.466	NA	9571	24462
\mathbf{Sr}	875.5	18308	22.16	-5.466	25358	NA	29434	5784
\mathbf{Ba}	NA	NA	NA	NA	NA	NA	NA	NA
$\mathbf{M}\mathbf{g}$	476.8	49247	130.8	9571	29434	NA	857217	-3203
\mathbf{Al}	11544	739089	1464	24462	5784	NA	-3203	764797
${f P}$	5362	114017	-3.162	-1387	85902	NA	102047	42666
\mathbf{S}	8967	461906	2232	20438	-58341	NA	-150219	380804
Cl	1346	27684	15.34	276.8	39051	NA	86025	4233
\mathbf{Ca}	NA	NA	NA	NA	NA	NA	NA	NA

	P	S	Cl	Ca
$\overline{ m Mn}$	5362	8967	1346	NA
\mathbf{Fe}	114017	461906	27684	NA
$\mathbf{C}\mathbf{u}$	-3.162	2232	15.34	NA
${f Zn}$	-1387	20438	276.8	NA
\mathbf{Sr}	85902	-58341	39051	NA
\mathbf{Ba}	NA	NA	NA	NA
$\mathbf{M}\mathbf{g}$	102047	-150219	86025	NA
Al	42666	380804	4233	NA
P	372865	-99851	142245	NA
\mathbf{S}	-99851	1320304	-89756	NA
\mathbf{Cl}	142245	-89756	68920	NA
Ca	NA	NA	NA	NA

Tabela 52: Matriz de correlação dos elementos para espécie Sibipiruna e tipovia Local I (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba
Mn	1	0.6364	0.2277	0.3553	0.2439	NA
\mathbf{Fe}	0.6364	1	0.4578	0.5967	0.1115	NA
$\mathbf{C}\mathbf{u}$	0.2277	0.4578	1	0.667	0.02408	NA
${f Zn}$	0.3553	0.5967	0.667	1	-0.0005052	NA
\mathbf{Sr}	0.2439	0.1115	0.02408	-0.0005052	1	NA
\mathbf{Ba}	NA	NA	NA	NA	NA	1
$\mathbf{M}\mathbf{g}$	0.02285	0.05157	0.02445	0.1521	0.1996	NA
Al	0.5857	0.8194	0.2898	0.4117	0.04154	NA
P	0.3896	0.181	-0.0008962	-0.03344	0.8834	NA
${f S}$	0.3462	0.3897	0.3362	0.2618	-0.3188	NA
\mathbf{Cl}	0.2275	0.1022	0.01011	0.01551	0.9341	NA
Ca	NA	NA	NA	NA	NA	NA

	Mg	Al	P	S	Cl	Ca
Mn	0.02285	0.5857	0.3896	0.3462	0.2275	NA
${f Fe}$	0.05157	0.8194	0.181	0.3897	0.1022	NA
$\mathbf{C}\mathbf{u}$	0.02445	0.2898	-0.0008962	0.3362	0.01011	NA
${f Zn}$	0.1521	0.4117	-0.03344	0.2618	0.01551	NA
\mathbf{Sr}	0.1996	0.04154	0.8834	-0.3188	0.9341	NA
Ba	NA	NA	NA	NA	NA	NA
$\mathbf{M}\mathbf{g}$	1	-0.003956	0.1805	-0.1412	0.3539	NA
Al	-0.003956	1	0.0799	0.379	0.01844	NA
${f P}$	0.1805	0.0799	1	-0.1423	0.8873	NA
${f S}$	-0.1412	0.379	-0.1423	1	-0.2975	NA
\mathbf{Cl}	0.3539	0.01844	0.8873	-0.2975	1	NA
\mathbf{Ca}	NA	NA	NA	NA	NA	1

Tabela 54: Vetor de médias dos elementos para espécie Alfeneiro e tipovia Local I

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	Р	S	Cl	Ca
82.74	2794	8.514	256.3	102.7	1466	1557	2162	1135	3565	120.4	18680

Tabela 55: Matriz de covariância dos elementos para espécie Alfeneiro e tipovia Local I (continued below)

	${ m Mn}$	Fe	Cu	Zn	Sr	Ba	Mg
Mn	2653	117936	121.6	6079	1624	70714	6737
\mathbf{Fe}	117936	6469453	5587	269786	73573	4515097	364742
$\mathbf{C}\mathbf{u}$	121.6	5587	9.137	287	99.12	3486	72.58
${f Zn}$	6079	269786	287	20278	4414	148087	7582
\mathbf{Sr}	1624	73573	99.12	4414	4636	27020	-3441
\mathbf{Ba}	70714	4515097	3486	148087	27020	4021885	244448
$\mathbf{M}\mathbf{g}$	6737	364742	72.58	7582	-3441	244448	447532

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Al	91891	5104272	4282	251002	79684	2963848	167515
${f P}$	5522	212112	378.8	14955	13819	83419	-68972
\mathbf{S}	43428	1896742	3146	111104	63615	1038916	-365388
\mathbf{Cl}	425.7	39956	61.82	2423	1334	12840	16002
$\mathbf{C}\mathbf{a}$	-135459	-6800959	-7164	-121925	96863	-5755583	-2683618

	Al	Р	S	Cl	Ca
Mn	91891	5522	43428	425.7	-135459
\mathbf{Fe}	5104272	212112	1896742	39956	-6800959
$\mathbf{C}\mathbf{u}$	4282	378.8	3146	61.82	-7164
$\mathbf{Z}\mathbf{n}$	251002	14955	111104	2423	-121925
\mathbf{Sr}	79684	13819	63615	1334	96863
\mathbf{Ba}	2963848	83419	1038916	12840	-5755583
$\mathbf{M}\mathbf{g}$	167515	-68972	-365388	16002	-2683618
\mathbf{Al}	5648071	146668	1269397	55194	-4872119
${f P}$	146668	74078	307328	-436.8	789701
${f S}$	1269397	307328	1919504	6559	1601729
Cl	55194	-436.8	6559	3812	-44740
Ca	-4872119	789701	1601729	-44740	41537070

Tabela 57: Matriz de correlação dos elementos para espécie Alfeneiro e tipovia Local I (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba	Mg
Mn	1	0.9003	0.7812	0.8289	0.4631	0.6846	0.1955
\mathbf{Fe}	0.9003	1	0.7267	0.7449	0.4248	0.8852	0.2144
$\mathbf{C}\mathbf{u}$	0.7812	0.7267	1	0.6667	0.4816	0.575	0.03589
${f Zn}$	0.8289	0.7449	0.6667	1	0.4552	0.5185	0.07959
\mathbf{Sr}	0.4631	0.4248	0.4816	0.4552	1	0.1979	-0.07554
Ba	0.6846	0.8852	0.575	0.5185	0.1979	1	0.1822
${f Mg}$	0.1955	0.2144	0.03589	0.07959	-0.07554	0.1822	1
\mathbf{Al}	0.7507	0.8444	0.5961	0.7417	0.4924	0.6219	0.1054
${f P}$	0.3939	0.3064	0.4605	0.3859	0.7457	0.1528	-0.3788
${f S}$	0.6086	0.5382	0.7513	0.5631	0.6744	0.3739	-0.3942
Cl	0.1339	0.2544	0.3312	0.2756	0.3173	0.1037	0.3874
\mathbf{Ca}	-0.4081	-0.4149	-0.3678	-0.1328	0.2207	-0.4453	-0.6224

	Al	P	S	Cl	Ca
Mn	0.7507	0.3939	0.6086	0.1339	-0.4081
\mathbf{Fe}	0.8444	0.3064	0.5382	0.2544	-0.4149
$\mathbf{C}\mathbf{u}$	0.5961	0.4605	0.7513	0.3312	-0.3678
${f Zn}$	0.7417	0.3859	0.5631	0.2756	-0.1328
\mathbf{Sr}	0.4924	0.7457	0.6744	0.3173	0.2207
\mathbf{Ba}	0.6219	0.1528	0.3739	0.1037	-0.4453
${f Mg}$	0.1054	-0.3788	-0.3942	0.3874	-0.6224
Al	1	0.2267	0.3855	0.3761	-0.3181
P	0.2267	1	0.815	-0.026	0.4502

	Al	Р	S	Cl	Ca
\mathbf{S}	0.3855	0.815	1	0.07667	0.1794
\mathbf{Cl}	0.3761	-0.026	0.07667	1	-0.1124
\mathbf{Ca}	-0.3181	0.4502	0.1794	-0.1124	1

Tabela 59: Vetor de médias dos elementos para espécie Tipuana e tipovia Local I

Mn	Fe	Cu	Zn	Sr	Ba	Mg	Al	P	S	Cl	Ca
52.67	1065	5.94	100.6	132	472.4	2018	758.5	911.5	3486	143	31130

Tabela 60: Matriz de covariância dos elementos para espécie Tipuana e tipovia Local I (continued below)

	${ m Mn}$	Fe	Cu	Zn	Sr	Ba	Mg
Mn	1303	11889	6.074	652.8	7.078	6028	-1829
\mathbf{Fe}	11889	716927	982	45088	1096	366213	-144800
$\mathbf{C}\mathbf{u}$	6.074	982	2.223	75.85	4.937	603.9	-203.6
${f Zn}$	652.8	45088	75.85	5391	54.77	25386	-9569
\mathbf{Sr}	7.078	1096	4.937	54.77	3263	-2419	23204
\mathbf{Ba}	6028	366213	603.9	25386	-2419	311369	-38433
$\mathbf{M}\mathbf{g}$	-1829	-144800	-203.6	-9569	23204	-38433	765297
\mathbf{Al}	8900	524577	758.3	31623	-862.5	334837	-62426
${f P}$	685.5	71952	175.9	5589	2137	39481	19747
${f S}$	9505	383477	980.2	32363	55884	169467	528670
Cl	-640.8	1876	11.36	-411	2637	-3358	46993
Ca	-39450	-2578466	-2556	-208660	205201	-1406961	1948963

	Al	P	S	Cl	Ca
Mn	8900	685.5	9505	-640.8	-39450
${f Fe}$	524577	71952	383477	1876	-2578466
$\mathbf{C}\mathbf{u}$	758.3	175.9	980.2	11.36	-2556
${f Zn}$	31623	5589	32363	-411	-208660
\mathbf{Sr}	-862.5	2137	55884	2637	205201
\mathbf{Ba}	334837	39481	169467	-3358	-1406961
$\mathbf{M}\mathbf{g}$	-62426	19747	528670	46993	1948963
\mathbf{Al}	460054	59977	305339	4534	-1826556
${f P}$	59977	46500	157430	4124	320286
${f S}$	305339	157430	3663386	84360	3589953
\mathbf{Cl}	4534	4124	84360	11063	169334
Ca	-1826556	320286	3589953	169334	85449533

Tabela 62: Matriz de correlação dos elementos para espécie Tipuana e tipovia Local I (continued below)

	Mn	Fe	Cu	Zn	Sr	Ba
Mn	1	0.3891	0.1129	0.2463	0.003433	0.2993
\mathbf{Fe}	0.3891	1	0.7779	0.7252	0.02266	0.7751
$\mathbf{C}\mathbf{u}$	0.1129	0.7779	1	0.6929	0.05798	0.726
${f Zn}$	0.2463	0.7252	0.6929	1	0.01306	0.6196
\mathbf{Sr}	0.003433	0.02266	0.05798	0.01306	1	-0.0759
Ba	0.2993	0.7751	0.726	0.6196	-0.0759	1
$\mathbf{M}\mathbf{g}$	-0.05794	-0.1955	-0.1561	-0.149	0.4644	-0.07873
\mathbf{Al}	0.3636	0.9134	0.7499	0.635	-0.02226	0.8847
${f P}$	0.08808	0.3941	0.5471	0.353	0.1735	0.3281
\mathbf{S}	0.1376	0.2366	0.3435	0.2303	0.5112	0.1587
Cl	-0.1688	0.02107	0.07242	-0.05322	0.4389	-0.05721
\mathbf{Ca}	-0.1182	-0.3294	-0.1855	-0.3074	0.3886	-0.2728

	Mg	Al	P	S	Cl	Ca
Mn	-0.05794	0.3636	0.08808	0.1376	-0.1688	-0.1182
${f Fe}$	-0.1955	0.9134	0.3941	0.2366	0.02107	-0.3294
$\mathbf{C}\mathbf{u}$	-0.1561	0.7499	0.5471	0.3435	0.07242	-0.1855
${f Zn}$	-0.149	0.635	0.353	0.2303	-0.05322	-0.3074
\mathbf{Sr}	0.4644	-0.02226	0.1735	0.5112	0.4389	0.3886
${f Ba}$	-0.07873	0.8847	0.3281	0.1587	-0.05721	-0.2728
$\mathbf{M}\mathbf{g}$	1	-0.1052	0.1047	0.3157	0.5107	0.241
$\overline{\mathbf{Al}}$	-0.1052	1	0.4101	0.2352	0.06356	-0.2913
${f P}$	0.1047	0.4101	1	0.3814	0.1818	0.1607
${f S}$	0.3157	0.2352	0.3814	1	0.419	0.2029
\mathbf{Cl}	0.5107	0.06356	0.1818	0.419	1	0.1742
\mathbf{Ca}	0.241	-0.2913	0.1607	0.2029	0.1742	1

Exercício 10

Considere os dados do arquivo arvores. Construa gráficos de perfis médios (com barras de desvios padrões) para avaliar o efeito de espécie de árvores e tipo de via na concentração de Fe. Utilize uma ANOVA com dois fatores para avaliar a possível interação e efeitos dos fatores na variável resposta. Traduza os resultados sem utilizar o jargão estatístico.

A seguir o gráfico de perfis médios, com barras de erro padrão (desvio padrão amostral)

```
labs(caption="Barra: erro padrão")+
scale_color_viridis_d() +
theme(
   legend.position = 'top',
   plot.caption = element_text(hjust = 0),panel.grid.minor = element_blank()
))
```


Figura 1: Gráfico de perfis médios.

No gráfico de perfis médios, observa-se que, em geral a concentração de Fe diminui com do tipo de via Arterial, passando por Colletor e Local I, até Local II. Nota-se também que a espécie Alfeneiro possui maior concentração para todos os tipos de via, enquanto que Sibipiruna a menor concentração quando o tipo de via é Arterial e a espécie Tipuana, a menor nos demais tipos de via. Além disso, observa-se o não paralelismo entre as linhas, sugerindo indícios de interação entre os fatores.

A seguir, usamos uma ANOVA com dois fatores para avaliar a possível interação e efeitos dos fatores na variável resposta.

```
aov2 = aov(Fe ~ tipovia * especie,dados)
aov2

## Call:
## aov(formula = Fe ~ tipovia * especie, data = dados)
##
## Terms:
```

```
##
                                especie tipovia:especie
                     tipovia
## Sum of Squares
                    52189332
                              81944141
                                               35606564
## Deg. of Freedom
                                      2
                                                      6
##
                   Residuals
## Sum of Squares
                   971510760
## Deg. of Freedom
## Residual standard error: 1416.776
## Estimated effects may be unbalanced
## 2 observations deleted due to missingness
```

aov2 %>% summary()

```
##
                    \mathsf{Df}
                           Sum Sq Mean Sq F value
                                                      Pr(>F)
## tipovia
                         52189332 17396444
                                             8.667 1.30e-05 ***
                      2
                         81944141 40972070
                                            20.412 3.09e-09 ***
## especie
## tipovia:especie
                         35606564
                                   5934427
                                              2.956
                                                    0.00763 **
## Residuals
                   484 971510760
                                   2007254
##
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## 2 observations deleted due to missingness
```

Vemos que os dois fatores e a interação entre os eles são significativos a um nível de 5%.

Portanto, em geral a concentração de Fe diminui com do tipo de via Arterial, passando por Colletor e Local I, até Local II. Nota-se também que a espécie Alfeneiro possui maior concentração para todos os tipos de via, enquanto que Sibipiruna a menor concentração quando o tipo de via é Arterial e a espécie Tipuana, a menor nos demais tipos de via. Além disso, podemos traduzir a interação como: o tipo de via impacta a concentração de Fe diferentemente em cada espécie, em especial para a Tipuana, como podemos ver no gráfico.

Exercício 12

Os dados abaixo reportam-se a uma avaliação do desempenho de um conjunto de 203 estudantes universitários em uma disciplina introdutória de Álgebra e Cálculo. Os estudantes, agrupados segundo os quatro cursos em que estavam matriculados, foram ainda aleatoriamente divididos em dois grupos por curso, a cada um dos quais foi atribuído um de dois professores que lecionaram a mesma matéria. O desempenho de cada aluno foi avaliado por meio da mesma prova.

a) Para valiar a associação entre Professor e Desempenho, calcule a razão de chances em cada estrato.

Para o estrato "Ciências Químicas" temos que a razão de chances é

$$\begin{split} RC &= \frac{\frac{\mathbb{P}(\text{Aprovado}|\text{Curso Ciências Químicas, Professor A})}{\mathbb{P}(\text{Reprovado}|\text{Curso Ciências Químicas, Professor A})}{\frac{\mathbb{P}(\text{Aprovado}|\text{Curso Ciências Químicas, Professor B})}{\mathbb{P}(\text{Reprovado}|\text{Curso Ciências Químicas, Professor B})}\\ &= \frac{\frac{8/(8+11)}{11/(8+11)}}{\frac{11/(11+13)}{13/(11+13)}} = \frac{8\cdot13}{11\cdot11} \approx 0.86 \end{split}$$

Tabela 64: Frequências de aprovação/reprovação de estudantes.

		Desempenho	
Curso	Professor	Aprovado	Reprovado
Ciências Químicas	A	8	11
	В	11	13
Ciências Farmacêuticas	A	10	14
	В	13	9
Ciências Biológicas	A	19	25
	В	20	18
Bioquímica	A	14	2
	В	12	4

De modo análogo, encontramos a razão de chances para os outros estratos

• Ciências Químicas: $rc = \frac{8 \cdot 13}{11 \cdot 11} \approx 0.86$

- Ciências Farmacêuticas: $rc = \frac{10 \cdot 9}{14 \cdot 13} \approx 0.495$

- Ciências Biológicas: $rc = \frac{19 \cdot 18}{25 \cdot 20} \approx 0.684$

• Bioquímica: $rc = \frac{14 \cdot 4}{2 \cdot 12} \approx 2.333$

```
# Ciências Químicas
rc1 = (8*13)/(11*11)

# Ciências Farmacêuticas
rc2 = (10*9)/(13*14)

# Ciências Biológicas
rc3 = (19*18)/(20*25)

# Bioquímica
rc4 = (14*4)/(12*2)

rcs = c(rc1,rc2,rc3,rc4)
rcs
```

[1] 0.8595041 0.4945055 0.6840000 2.3333333

b) Calcule a razão de chances de Mantel-Haenszel correspondente.

Calculemos a razão de chances comum de Mantel-Haenszel, rc_{MH} , descrita na quarta nota do capítulo 5 de Singer e Morettin,

$$rc_{MH} = \sum_{h \in H} w_h rc_h$$

com

$$w_h = \frac{n_{h12}n_{h21}}{n_{h++}} / \sum_{h \in H} \frac{n_{h12}n_{h21}}{n_{h++}}$$

onde $h \in H = \{\text{Ciências Químicas, Ciências Farmacêuticas, Ciências Biológicas, Bioquímica}\}$ são os estratos, n_{h12} é número de alunos no estrato h, professor A e que foram Reprovados; n_{h21} é número de alunos no estrato h, professor B e que foram Aprovados; e n_{h++} é número de alunos no estrato h.

Calculemos os quocientes para cada estrato e em seguida os pesos w_h :

```
# calculemos os quocientes para cada estrato
# Ciências Químicas
q_1 = 11*11/43
# Ciências Farmacêuticas
q_2 = 13*14/46
# Ciências Biológicas
q_3 = 20*25/82
# Bioquímica
q_4 = 12*2/32

q = c(q_1, q_2, q_3, q_4)
# logo os pesos são
w = q/sum(q)
w
```

[1] 0.20663431 0.29053541 0.44775626 0.05507402

Com isso, calculamos

```
rc_mh = sum(w * rcs)
```

 $rc_{MH} \approx 0.756$

c) Expresse suas conclusões de forma não técnica.

Dentre os cursos Ciências Químicas, Ciências Farmacêuticas e Ciências Biológicas a chance do estudante ser aprovado pelo professor A é menor que a chance de ser aprovado pelo professor B. Já no estrato Bioquímica, é o contrário: a chance de ser aprovado pelo professor A é cerca de 2 vezes maior que a chance de ser aprovado pelo professor B.

A razão de chances commum diz que, levando em consideração os diferentes cursos, a chance geral, de um estudante ser aprovado pelo professor A é 24% menor que a chance de ser aprovado pelo professor B. A estatística de Mantel-Haenszel é uma média ponderada das razões de chances de cada curso.

A conclusão que chegamos é de que é mais provável ser aprovado com o professor B, tendo apenas uma excessão que é no curso de bioquímica, onde o professor A apresentou uma taxa de aprovação melhor do que B, mas também nesse curso vemos que a taxa de aprovação de ambos professores é bastante superior aos demais cursos.