Spiking Neural P System Models as Formal Framework Models

Ren Tristan A. de la Cruz

December 14, 2020

1 Background

2 Preliminaries

The following sets will be commonly used throughout the document: $\mathbb{N} = \{0, 1, 2, 3, ...\}$, $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\infty\}$, $[1..n] = \{1, ..., n\}$, $2^{[1..n]} = \mathcal{P}([1..n])$ (power set of [1..n]).

Let V be a set of symbols called an *alphabet*. A *string* or *word* over V is a sequence of symbols from V. The *empty string* ϵ is a string without symbols, an empty sequence. A *string language* over V is a set of strings over V. The set of all strings over V is denoted by V^* .

A multiset over V is a function of the form $m:V\to\mathbb{N}_{\infty}$ while a finite multiset over V is a function of the form $m:V\to\mathbb{N}$. If m is a multiset over V and $a\in V$, m(a) denotes the number of occurrences of symbol a in multiset m. If $V=\{v_1,...,v_k\}$ and m is a finite multiset over V, m can be represented by the string $v_1^{m(v_1)}\cdots v_k^{m(v_k)}$. The size of a multiset m over V is $|m|=\sum_{v\in V}m(v)$. An empty multiset \emptyset is any multiset of size 0. A multiset language over V is a set of multisets over V. The set of all multisets over V is denoted by V° .

Let $V = \{v_1, ..., v_k\}$, m be the multiset $v_1^{m(v_1)} \cdots v_k^{m(v_k)}$ and n be the multiset $v_1^{n(v_1)} \cdots v_k^{n(v_k)}$. $m \subseteq n$ if and only if for all $v \in V$ $m(v) \le n(v)$. m + n is the multiset $v_1^{m(v_1) + n(v_1)} \cdots v_k^{m(v_k) + n(v_k)}$. If $m \subseteq n$, n - m is the multiset $v_1^{n(v_1) - m(v_1)} \cdots v_k^{n(v_k) - m(v_k)}$

The set of *n*-vectors whose components are finite multisets over V is denoted by $V^{\circ n}$. Let $X = (x_1, ..., x_n), Y = (y_1, ..., y_n) \in V^{\circ n}$. $X \subseteq Y$ if and only if $x_i \subseteq y_i$ for $1 \le i \le n$. $X + Y = (x_1 + y_1, ..., x_n + y_n)$. If $X \subseteq Y$, $Y - X = (y_1 - x_1, ..., y_n - x_n)$. Aside from denoting the empty multiset, \emptyset will also denote a vector of empty multisets. i.e. $\emptyset = (\emptyset, ..., \emptyset)$. If the context is not clear, we will specify if \emptyset means an empty multiset or a vector of empty multisets.

A family of languages is a set of languages. It can either be a family of string languages or a family of multiset languages. The notations \mathscr{F} and \mathscr{F}° will be used for a family of string languages and a family of multiset languages, respectively. The notation $\mathscr{F}(V)$ will be used for a family of string languages over alphabet V while $\mathscr{F}(V)^{\circ}$ will be used for a family of multiset languages over alphabet V. For example, REG is the set regular string languages, REG(V) is the set of regular string languages over V, REG° is the set of regular multiset languages, and $REG(V)^{\circ}$ is the set of regular multiset languages over V.

3 Formal Framework for Spiking Neural P Systems

Definition 1. [Configuration] An *n*-degree configuration $C = (u_1, ..., u_n)$ over alphabet V is an *n*-vector of multisets over V. A configuration C is called a *finite configuration* if all the components are finite multisets.

A configuration is referred to as a *full configuration* if we specifically want to specify that the configuration can contain infinite multisets.

Definition 2. [Interaction Rule] An *n*-degree interaction rule over alphabet V is the construct $(X \to Y; K)$ where $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$ are *n*-vectors of multisets over V and $K = (k_1, ..., k_n)$ is an *n*-vector of multiset languages.

$$[x_1]_1 \cdots [x_n]_n \to [y_1]_1 \cdots [y_n]_n \; ; \; [k_1]_1 \cdots [k_n]_n$$

The multiset languages $k_1, ..., k_n$ are called *control languages*.

$$(1, x_1) \cdots (n, x_n) \to (1, y_1) \cdots (n, y_n) ; (1, k_1) \cdots (n, k_n)$$

if x_i or y_i is \emptyset the term (i, x_i) and (i, y_i) can be removed if x_i (or y_i) is empty, the term $[x_i]_i$ (or $[y_i]_i$) can be removed.

Definition 3. [Rule Eligibility] Let $C = (u_1, ..., u_n)$ be an n-degree configuration over V and $r = ((x_1, ..., x_n) \rightarrow (y_1, ..., y_n); (k_1, ..., k_n))$ be an n-degree rule over V, rule r is eligible with respect to configuration C if the following conditions hold: (1) for all $x_i, x_i \subseteq u_i$ and (2) for all $u_i, u_i \in k_i$.

Definition 4. [Applicability of a Multiset of Rules] Let R' be a multiset of n-degree rules over V and $C = (u_1, ..., u_n)$ be an n-degree configuration over V, R' is applicable to configuration C if the following conditions hold: (1) each rule $(X_j \to Y_j; K_j) \in R'$ is eligible with respect to configuration C and (2)

$$X = \left(\sum_{(X_j \to Y_j; K_j) \in R'} X_j\right) \subseteq C.$$

Definition 5. [Application of a Multiset of Rules] If R' is multiset of rules applicable to configuration $C = (u_1, ..., u_n)$, applying R' to configuration C means producing a new configuration C' which is defined as:

$$C' = Apply(R', C) = C - \left(\sum_{(X_i \to Y_i; K_i) \in R'} X_j\right) + \left(\sum_{(X_i \to Y_i; K_i) \in R'} Y_j\right).$$

The application function Apply(R', C)

Definition 6. [Network of Cells] A \mathscr{F} -controlled network of cells of degree n is the construct

$$\Pi = (n, V, W, c_{in}, c_{out}, R)$$

where

- *n* is the number of cells;
- V is a finite alphabet;
- $W = (w_1, ..., w_n)$ is the *initial configuration* and $w_i \in V^{\circ}$ is the multiset associated with cell i.
- $c_{in} \subseteq \{1, ..., n\}$ is the set of *input cells*.
- $c_{out} \subseteq \{1, ..., n\}$ is the set of output cells.
- R is the set of interactive rules.

 $Applicable(\Pi, C)$ is the set of multiset of rules (rules from R) applicable to configuration C.

Definition 7. [Network of Cells with Environment] An \mathscr{F} -controlled network of cells with environment of degree n is the construct:

$$\Pi_{inf} = (\Pi, Inf) = ((n, V, W, c_{in}, c_{out}, R), Inf)$$

- The first component Π_{inf} is as defined in Definition 6.
- $Inf = (inf_1, ..., inf_n)$ where $inf_i \subseteq V$ is a set of symbols occurring infinitely often in cell i.

Definition 8. [Derivation Mode] A derivation mode δ is a restriction of the set of applicable rules. For an \mathscr{F} -controlled network of cells Π and configuration C, $Appl(\Pi, C, \delta) \subseteq Appl(\Pi, C)$ denotes the set of multisets of rules in Π applicable to configuration C according to derivation mode δ .

Definition 9. [Network of Cells Working in δ Derivation Mode] An \mathscr{F} -controlled n-degree network of cells working in δ derivation mode is the construct:

$$\Pi' = (\Pi, \delta) = ((n, V, W, c_{in}, c_{out}, R), \delta)$$

- The first component Π_{inf} is as defined in Definition 6.
- δ is the derivation mode used.

 $Applicable(\Pi, R', \delta)$

 $NC(n,V,\mathcal{F},\delta)$ is the set of n-degree \mathcal{F} -controlled network of cells using alphabet V and working in δ derivation mode.

Definition 10. [Computation of a Network of Cells] A computation of a network of cell $\Pi' = ((n, V, W, c_{in}, c_{out}, R), \delta)$ is sequence a $C_0, C_1, C_2, ...$ with the following properties:

- $C_0 = W$
- $C_{i+1} = Apply(\Pi', R', C_i)$ where $R' \in Applicable(\Pi, C_i, \delta)$.

Definition 11. [Input Function] An input function for a system $\Pi' = ((n, v, W, c_{in}, c_{out}, R), \delta), \Pi' \in NC(n, V, \mathscr{F}, \delta)$, is a function of the form $Input(\Pi') : \mathbb{N} \to V^{\circ n}$ and fulfills that condition that for all $i \notin c_{in}$ the *i*-th component of resulting input vector from $V^{\circ n}$ is an empty multiset.

Definition 12. [Computation of a Network of Cells]

- $C_0 = W + Input(\Pi')(0)$
- $C_{i+1} = Apply(\Pi', C_i, R') + Input(\Pi')(i+1)$ where $R' \in Appl(\Pi, C_i, \delta)$.

Definition 13. [Output Function]

4 Spiking Neural P System Models as Formal Framework Network of Cells

4.1 Spiking Neural P System

Definition 14. [Spiking Neural P System] A spiking neural P system of degree n the construct:

$$\Pi = (O, \sigma_1, ..., \sigma_n, syn, i_o)$$

- $O = \{a\}$ is the singleton alphabet of the system. Symbol a is called a *spike*.
- $\sigma_1, ..., \sigma_n$ are neurons of the form
 - $-\sigma_i = (n_i, R_i)$ for $1 \le i \le n$.
 - $-n_i \in \mathbb{N}$ is initial number of spikes in neuron i.
 - $-R_i$ is a finite set of rules of the following two forms:
 - * Spiking Rule: $E/a^c \to a; d$ where E is regular expression over $O, d \in \mathbb{N}, c \in \mathbb{N} \setminus \{0\}$.
 - * Forgetting Rule: $a^s \to \lambda$ where $s \in \mathbb{N} \setminus \{0\}$ and $\{a^s\} \cap L^{\circ}(E) = \emptyset$ for all E that are regular expressions of a spiking rules in the same neuron.
- $syn \subseteq [1..n] \times [1..n]$ is the set of synapses where $(i,i) \notin syn$ for all $i \in [1..n]$.
- $i_o \in [1..n]$ specifies the output neuron.

SNP System' Spiking Rule:

$$[a^c]_i \to [a]_{j_1} \cdots [a]_{j_k}; [L^{\circ}(E)]_i$$

SNP System's Forgetting Rule

$$[a^c]_i \to \emptyset; [L^{\circ}(E)]_i$$

SNP Systems with Extended Spiking Rule

$$[a^c]_i \to [a^p]_{j_1} \cdots [a^p]_{j_k}; [L^{\circ}(E)]_i$$

SNP Systems with Weights

$$[a^c]_i \to [a^{w_{j_1}}]_{j_1} \cdots [a^{w_{j_k}}]_{j_k}; [L^{\circ}(E)]_i$$

SNP Systems with Extended Rules and Weights

$$[a^c]_i \to [a^{p \cdot w_{j_1}}]_{i_1} \cdots [a^{p \cdot w_{j_k}}]_{i_k}; [L^{\circ}(E)]_i$$

References