

FCC PART 15.407 TEST REPORT Jiangsu SEUIC Technology Co.,Ltd

No23, Wenzhu Road, Yuhuatai District Nanjing, Jiangsu, China

FCC ID: 2AC68-CRUISE1

Report Type: **Product Type:** Original Report Portable Data Collection Terminal Chris . Wang **Test Engineer:** Chris Wang **Report Number:** RKS160913001-00L **Report Date:** 2016-12-19 Jesse-Humf Jesse Huang **Reviewed By:** EMC Manager Bay Area Compliance Laboratories Corp. (Kunshan) Prepared By: No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Report No.: RKS160913001-00L

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC§15.407 , §1.1310& §2.1093 –RF EXPOSURE	9
APPLICABLE STANDARD	
TEST RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.407 (b) (6) §15.207 (a) -AC Power Line Conducted Emissions	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	II
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE Test Procedure	
TEST RESULTS SUMMARY	
Test Data	
§15.205 & §15.209 & §15.407(B) (1),(6),(7) – UNDESIRABLE EMISSION & R	ESTRICTED BANDS15
APPLICABLE STANDARD	15
EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.407(b) (1) (4) -BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	22
FCC §15.407(a) &§15.407(e)–EMISSION BANDWIDTH	25

Bay Area Compliance Laboratories Corp. (Kunshan)

Report No.: RKS160913001-00L

APPLICABLE STANDARD	25
TEST EQUIPMENT LIST AND DETAILS	25
TEST PROCEDURE	25
TEST DATA	26
FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER	30
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	30
Test Procedure	30
TEST DATA	
FCC §15.407(a) (1) (5) - POWER SPECTRAL DENSITY	33
APPLICABLE STANDARD	33
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	34
TEST DATA	34

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Manufacturer	Jiangsu SEUIC Technology Co.,Ltd.
Model	CRUISE 1
Series Model	CRUISE 1-HC
Product	Portable Data Collection Terminal
Dimension	$152\text{mm}(\text{H}) \times 75.9\text{mm}(\text{W}) \times 12.8\text{mm}(\text{T})$
Power input	DC 3.8V From rechargeable battery or DC 5V Adapter

Report No.: RKS160913001-00L

Adapter Adapter 1 Information:Adapter 2 Information:Model: SW-3530Model:FJ-SW1260502000UB

OUTPUT: 5V, 2.5A OUTPUT: 5V, 2000mA

Note: * The difference between tested model and series model was explained in the declaration letter.

Objective

This type approval report is prepared on behalf of Jiangsu SEUIC Technology Co.,Ltd in accordance with Part 2-Subpart J, Part 15-Subparts A, B and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP, Part 15.247 DSS & DTS, Part15.225 DXX and Part 22H24E27 PCE submissions with FCC ID: 2AC68-CRUISE1.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan).

FCC Part 15.407 Page 4 of 37

^{*}All measurement and test data in this report was gathered from production sample serial number: 20160909001 (Assigned by BACL, Kunshan). The EUT was received on 2016-09-09.

Measurement Uncertainty

Item		Uncertainty
AC Power Lines Condu	cted Emissions	±3.26 dB
RF conducted test with	spectrum	±0.9dB
RF Output Power with Power meter		±0.5dB
Radiated emission	30MHz~1GHz	±5.91dB
Radiated emission	Above 1G	±4.92dB
Occupied Bandwidth		±0.5kHz
Temperature		±1.0°C
Humidity		±6%

Report No.: RKS160913001-00L

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.407 Page 5 of 37

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: RKS160913001-00L

For 5150~5250 MHz band, 802.11a. mode Channel 5180MHz, 5200MHz, 5240MHz were tested.

For 5725~5850 MHz band, 802.11a mode Channel 5745MHz, 5785MHz, 5825MHz were tested.

EUT Exercise Software

The software "Labtool" was used for testing, which was provided by manufacturer. The worst condition (maximum power) was setting by the software as following table:

802.11a: Rate 6Mbps, Power level: 9

Equipment Modifications

N/A.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
SEUIC	Headphone	/	/

External I/O Cable

Cable Description	Shielding Type	Length (m)	From Port	To
USB Cable	Un- Shielding	0.8	EUT	Adapter

FCC Part 15.407 Page 6 of 37

Block Diagram of Test Setup

For Radiated Emissions (Below 1 GHz):

For Radiated Emissions (Above 1 GHz):

FCC Part 15.407 Page 7 of 37

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b) & §2.1093	RF Exposure Information	Compliance*
§15.203	Antenna Requirement	Compliance
FCC §15.207&§15.407(b) (6)	AC Power Line Conducted Emissions	Compliance
§15.205 & §15.209 & §15.407(b) (1),(6),(7)	Undesirable Emission & Restricted Bands	Compliance
§15.407(b) (1), (4)	Band Edge	Compliance
§15.407(a), (1),(5),(e)	Emission Bandwidth	Compliance
§15.407(a)(1)&§15.407(a)(3)	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(5)	Power Spectral Density	Compliance

Report No.: RKS160913001-00L

Compliance*: Please refer to SAR report released by BACL, report number: RKS160905050-20.

FCC Part 15.407 Page 8 of 37

FCC§15.407, §1.1310& §2.1093 –RF EXPOSURE

Applicable Standard

According to §15.407 and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RKS160913001-00L

Test Result

Compliance, please refer to the SAR report: RKS160905050-20.

FCC Part 15.407 Page 9 of 37

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RKS160913001-00L

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT have has a PIFA antenna for Wi-Fi, which the antenna gain are 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.407 Page 10 of 37

FCC §15.407 (b) (6) §15.207 (a) -AC Power Line Conducted Emissions

Report No.: RKS160913001-00L

Applicable Standard

FCC §15.207, §15.407(b) (6)

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

FCC Part 15.407 Page 11 of 37

V_C (cord. Reading): corrected voltage amplitude

 V_R : reading voltage amplitude A_c : attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Report No.: RKS160913001-00L

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2015-11-12	2016-11-11
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-10
НР	Current probe	11967A	636	2016-07-04	2017-07-03
FCC	ISN	FCC-TLISN-T8- 02	20376	2016-07-04	2017-07-03
Haojintech	Coaxial Cable	HMR400UF	NN11600	2016-09-08	2017-09-08
Rohde & Schwarz	CE Test software	EMC32	V 09.10.0	/	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	23.5 °C		
Relative Humidity:	55 %		
ATM Pressure:	100.3 kPa		

The testing was performed by Chris Wang on 2016-10-12.

FCC Part 15.407 Page 12 of 37

EUT operation mode: Transmitting (Worst case)

AC 120V/60 Hz, Line

Report No.: RKS160913001-00L

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.175000		40.28	9.000	L1	11.0	14.44	54.72	Compliance
0.175000	54.04		9.000	L1	11.0	10.68	64.72	Compliance
0.435000		28.56	9.000	L1	11.0	18.60	47.16	Compliance
0.435000	42.74		9.000	L1	11.0	14.42	57.16	Compliance
0.535000		35.85	9.000	L1	11.0	10.15	46.00	Compliance
0.535000	44.57		9.000	L1	11.0	11.43	56.00	Compliance
0.640000		31.22	9.000	L1	11.1	14.78	46.00	Compliance
0.640000	43.27		9.000	L1	11.1	12.73	56.00	Compliance
0.900000		29.25	9.000	L1	11.1	16.75	46.00	Compliance
0.900000	40.23		9.000	L1	11.1	15.77	56.00	Compliance
22.020000		39.64	9.000	L1	11.4	10.36	50.00	Compliance
22.020000	44.62		9.000	L1	11.4	15.38	60.00	Compliance

FCC Part 15.407 Page 13 of 37

AC 120V/60 Hz, Neutral

Report No.: RKS160913001-00L

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.185000		40.67	9.000	N	11.0	13.59	54.26	Compliance
0.185000	54.91		9.000	N	11.0	9.35	64.26	Compliance
0.250000		32.12	9.000	N	11.0	19.64	51.76	Compliance
0.250000	44.82		9.000	N	11.0	16.94	61.76	Compliance
0.310000		30.70	9.000	N	11.0	19.27	49.97	Compliance
0.310000	40.88		9.000	N	11.0	19.09	59.97	Compliance
0.555000		33.77	9.000	N	11.0	12.23	46.00	Compliance
0.555000	45.59		9.000	N	11.0	10.41	56.00	Compliance
0.660000		30.00	9.000	N	11.1	16.00	46.00	Compliance
0.660000	42.94		9.000	N	11.1	13.06	56.00	Compliance
22.330000		38.85	9.000	N	11.4	11.15	50.00	Compliance
22.330000	43.89		9.000	N	11.4	16.11	60.00	Compliance

Note:

- 1) Corr.=LISN VDF (Voltage Division Factor) + Cable Loss
- 2) Corrected Amplitude = Reading + Corr.3) Margin = Limit -Corrected Amplitude

FCC Part 15.407 Page 14 of 37

§15.205 & §15.209 & §15.407(B) (1),(6),(7) – UNDESIRABLE EMISSION & RESTRICTED BANDS

Report No.: RKS160913001-00L

Applicable Standard

FCC §15.407 (b) (1), (6), (7); §15.209; §15.205;

For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27dBm/MHz

For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz. Devices operating in the 5.25–5.35 GHz band that generate emissions in the 5.15–5.25 GHz band must meet all applicable technical requirements for operation in the 5.15–5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of –27 dBm/MHz in the 5.15–5.25 GHz band.

For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of –27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

As per FCC §15.35(d):Unless otherwise specified, on any frenquency or frequencies above 1000MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000MHz shall be performed using a minimum resolution bandwidth of 1MHz.

According to KDB789033 D02 General U-NII Test Procedures New Rules v01r03, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

FCC Part 15.407 Page 15 of 37

Report No.: RKS160913001-00L

EUT Setup

Below 1 G:

Above 1 G:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

FCC Part 15.407 Page 16 of 37

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RKS160913001-00L

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP

Frequency Range	RBW	Video B/W	Duty cycle	Detector
	1MHz	3 MHz	Any	PK
1GHz – 25GHz	1MHz	10 Hz	>98%	A .
	1MHz	1/T	<98%	Ave.

Test Procedure

During the radiated emission test, the adapter was connected to the first AC floor outlet and the other support equipments were connected to the second AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

The Radiated measurements was performed, The EIRP converted to field strength as follows:

According to C63.10-2013, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB Extrapolation result = Corrected Amplitude ($dB\mu V/m$) - distance extrapolation factor (6dB) or Limit line = Specific limits($dB\mu V$) + distance extrapolation factor (6dB)

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Extrapolation result

FCC Part 15.407 Page 17 of 37

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sonoma Instrunent	Amplifier	330	171377	2016-10-21	2017-10-21
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2015-11-12	2016-11-11
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08
ETS	Horn Antenna	3115	6229	2016-01-11	2019-01-10
ETS-LINDGREN	Horn Antenna	3116	00084159	2015-10-18	2018-10-18
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2015-11-12	2016-11-11
Narda	Pre-amplifier	AFS42-00101800	2001270	2016-09-08	2017-09-08
R&S	Auto test Software	EMC32	V 09.10.0	/	/
Haojintech	Coaxial Cable	HMR400UF	NN11600	2016-09-08	2017-09-08
Haojintech	Coaxial Cable	SR	SS11800	2016-09-08	2017-09-08

Report No.: RKS160913001-00L

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, Section 15.205, 15.209 and 15.407</u>.

Test Data

Environmental Conditions

Temperature:	23.5 °C
Relative Humidity:	62 %
ATM Pressure:	99.9 kPa

The testing was performed by Chris Wang on 2016-10-21.

Mode: Transmitting

Note: For above 1GHz, the test distance is 1.5m.

FCC Part 15.407 Page 18 of 37

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

30MHz~40GHz(5150-5250 MHz & 5725-5850 MHz)

802.11a Mode: (Worst Case)

802.11a Mode: (Worst Case)										
Frequency	R	eceiver	m	Rx An	tenna	Corrected	Corrected	Extrapolation	Limit	Margin
Frequency	Reading	Detector	Turntable Degree	Height	Polar	Factor	Amplitude	result	Limit	Margin
(MHz)	(dBµV)	(PK/QP/AV)	Degree	(cm)	(H/V)	(dB)	(dBµV/m)	$(dB\mu V/m)$	(dBµV/m)	(dB)
	•		5150-525	50 MHz	band-Lo	w Channel:	180 MHz			
5180.0	99.61	PK	120	150	V	7.80	107.41	101.41	/	/
5180.0	93.68	AV	120	150	V	7.80	101.48	95.48	/	/
5180.0	95.91	PK	66	200	Н	7.80	103.71	97.71	/	/
5180.0	91.59	AV	66	200	Н	7.80	99.39	93.39	/	/
5150.0	36.44	PK	212	150	V	7.75	44.19	38.19	74	29.81
5150.0	32.35	AV	212	150	V	7.75	40.10	34.10	54	13.90
10360.0	35.89	PK	76	150	V	19.67	55.56	49.56	74	18.44
10360.0	29.31	AV	76	150	V	19.67	48.98	42.98	54	5.02
15540.0	32.32	PK	0	200	Н	27.14	59.46	53.46	74	14.54
15540.0	23.20	AV	0	200	Н	27.14	50.34	44.34	54	3.66
6724.0	32.60	PK	310	150	V	13.96	46.56	40.56	74	27.44
6724.0	22.20	AV	310	150	V	13.96	36.16	30.16	54	17.84
256.4	42.39	QP	258	100	Н	-11.97	30.42	/	46	15.58
			5150-525	0 MHz t	and-Mic	ddle Channel	:5200MHz			
5200.0	100.09	PK	151	150	V	7.84	107.93	101.93	/	/
5200.0	94.59	AV	151	150	V	7.84	102.43	96.43	/	/
5200.0	96.39	PK	48	200	Н	7.84	104.23	98.23	/	/
5200.0	92.81	AV	48	200	Н	7.84	100.65	94.65	/	/
10400.0	36.12	PK	145	150	V	19.71	55.83	49.83	74	18.17
10400.0	30.07	AV	145	150	V	19.71	49.78	43.78	54	4.22
15600.0	30.79	PK	12	200	Н	27.24	58.03	52.03	74	15.97
15600.0	22.78	AV	12	200	Н	27.24	50.02	44.02	54	3.98
6724.0	32.37	PK	345	150	V	13.96	46.33	40.33	74	27.67
6724.0	23.89	AV	345	150	V	13.96	37.85	31.85	54	16.15
7450.0	32.60	PK	341	150	Н	16.93	49.53	43.53	74	24.47
7450.0	22.21	AV	341	150	Н	16.93	39.14	33.14	54	14.86
256.4	41.64	QP	240	100	Н	-11.97	29.67	/	46	16.33
			5150-52	50 MHz	band-Hi	gh Channel:	5240MHz			
5240.0	99.08	PK	120	150	V	7.92	107.00	101.00	/	/
5240.0	94.91	AV	120	150	V	7.92	102.83	96.83	/	/
5240.0	96.93	PK	66	200	Н	7.92	104.85	98.85	/	/
5240.0	92.02	AV	66	200	Н	7.92	99.94	93.94	/	/
5350.0	39.98	PK	212	150	V	8.13	48.11	42.11	74	25.89
5350.0	35.31	AV	212	150	V	8.13	43.44	37.44	54	10.56
10480.0	32.56	PK	76	150	V	19.79	52.35	46.35	74	21.65
10480.0	23.27	AV	76	150	V	19.79	43.06	37.06	54	10.94
15720.0	32.51	PK	0	200	Н	27.42	59.93	53.93	74	14.07
15720.0	22.06	AV	0	200	Н	27.42	49.48	43.48	54	4.52
6724.0	32.60	PK	310	150	V	13.96	46.56	40.56	74	27.44
6724.0	22.74	AV	310	150	V	13.96	36.70	30.70	54	17.30
256.4	40.78	QP	258	100	Н	-11.97	28.81	/	46	17.19

Report No.: RKS160913001-00L

FCC Part 15.407 Page 19 of 37

_	R	eceiver		Rx An	tenna	Corrected	Corrected	Extrapolation		
Frequency	Reading	Detector	Turntable Degree	Height	Polar	Factor	Amplitude	result	Limit	Margin
(MHz)	(dBµV)	(PK/QP/AV)	Degree	(cm)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
	. ,		5725-58:	. ,	. ,	w Channel:5			,	
5745.0	92.36	PK	120	150	V	9.30	101.66	95.66	/	/
5745.0	87.85	AV	120	150	V	9.30	97.15	91.15	/	/
5745.0	90.25	PK	66	200	Н	9.30	99.55	93.55	/	/
5745.0	85.60	AV	66	200	Н	9.30	94.90	88.90	/	/
5725.0	39.75	PK	212	150	V	9.23	48.98	42.98	74	25.02
5725.0	35.12	AV	212	150	V	9.23	44.35	38.35	54	9.65
11490.0	33.93	PK	76	150	V	21.68	55.61	49.61	74	18.39
11490.0	23.97	AV	76	150	V	21.68	45.65	39.65	54	8.35
17235.0	33.21	PK	0	200	Н	25.96	59.17	53.17	74	14.83
17235.0	22.02	AV	0	200	Н	25.96	47.98	41.98	54	6.02
6650.0	46.96	PK	310	150	V	13.69	60.65	54.65	74	13.35
6650.0	37.05	AV	310	150	V	13.69	50.74	44.74	54	3.26
256.4	42.89	QP	258	100	Н	-11.97	30.92	/	46	15.08
			5725-585	0 MHz ba	and-Mid	dle Channel:	5785MHz			
5785.0	93.64	PK	151	150	V	9.45	103.09	97.09	/	/
5785.0	88.91	AV	151	150	V	9.45	98.36	92.36	/	/
5785.0	90.43	PK	48	200	Н	9.45	99.88	93.88	/	/
5785.0	87.31	AV	48	200	Н	9.45	96.76	90.76	/	/
11570.0	34.02	PK	145	150	V	21.68	55.70	49.70	74	18.30
11570.0	29.26	AV	145	150	V	21.68	50.94	44.94	54	3.06
17355.0	32.59	PK	12	200	Н	27.35	59.94	53.94	74	14.06
17355.0	22.03	AV	12	200	Н	27.35	49.38	43.38	54	4.62
6662.0	32.80	PK	345	150	V	13.73	46.53	40.53	74	27.47
6662.0	26.03	AV	345	150	V	13.73	39.76	33.76	54	14.24
7551.0	34.43	PK	341	150	Н	17.15	51.58	45.58	74	22.42
7551.0	27.71	AV	341	150	Н	17.15	44.86	38.86	54	9.14
256.4	42.25	QP	240	100	Н	-11.97	30.28	/	46	15.72
	T	Ī				gh Channel:5		T	1	
5825.0	90.57	PK	120	150	V	9.59	100.16	94.16	/	/
5825.0	85.99	AV	120	150	V	9.59	95.58	89.58	/	/
5825.0	87.02	PK	66	200	Н	9.59	96.61	90.61	/	/
5825.0	82.53	AV	66	200	Н	9.59	92.12	86.12	/	/
5850.0	39.11	PK	212	150	V	9.68	48.79	42.79	74	25.21
5850.0	35.51	AV	212	150	V	9.68	45.19	39.19	54	8.81
11650.0	33.19	PK	76	150	V	22.13	55.32	49.32	74	18.68
11650.0	22.52	AV	76	150	V	22.13	44.65	38.65	54	9.35
17475.0	32.56	PK	0	200	Н	28.45	61.01	55.01	74	12.99
17475.0	22.48	AV	0	200	Н	28.45	50.93	44.93	54	3.07
6659.0	44.10	PK	310	150	V	13.72	57.82	51.82	74	16.18
6659.0	36.28	AV	310	150	V	13.72	50.00	44.00	54	4.00
256.4	41.03	QP	258	100	Н	-11.97	29.06	/	46	16.94

Report No.: RKS160913001-00L

FCC Part 15.407 Page 20 of 37

FCC §15.407(b) (1) (4) -BAND EDGE

Applicable Standard

FCC §15.407 (b) (1), (4);

For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz

Report No.: RKS160913001-00L

For transmitters operating in the 5.725–5.850 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibration or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measuremen instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 1 MHz and VBW to 3MHz of spectrum analyzer. Offset the antenna gain and cable loss.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	SIGNALANALYZER	FSV40	101116	2016-07-04	2017-07-03
SEUIC	RF Cable	N/A	N/A	2016-09-20	2017-09-19

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.407 Page 21 of 37

Test Data

Environmental Conditions

Temperature:	23.5 °C
Relative Humidity:	60 %
ATM Pressure:	99.9 kPa

The testing was performed by Chris Wang on 2016-09-20.

Please refer to the following table and plots.

Test mode	Band (MHz)	Frequency (MHz)	Reading Level (dBm/MHz)	E.I.R.P BAND EDGE (dBm/MHz)	Limits (dBm/MHz)	Result
802.11a	5150-5250	Left	-48.76	-48.76	-27	PASS
		Right	-49.58	-49.58	-27	PASS
	5725-5850	Left	-47.41	-47.41	-27	PASS
	3143-3830	Right	-49.58	-49.58	-27	PASS

Report No.: RKS160913001-00L

Note: E.I.R.P= Reading Level +Antenna Gain (Antenna Gain=0 dBi)

FCC Part 15.407 Page 22 of 37

5150-5250 MHz Band:

FCC Part 15.407

802.11a Band Edge, Left Side

802.11a Band Edge, Right Side

Page 23 of 37

5725-5850 MHz Band:

802.11a Band Edge, Left Side

Report No.: RKS160913001-00L

802.11a Band Edge, Right Side

Date: 20.SEP.2016 11:04:16

FCC Part 15.407 Page 24 of 37

FCC §15.407(a) &§15.407(e)-EMISSION BANDWIDTH

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz Band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Report No.: RKS160913001-00L

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	SIGNALANALYZER	FSV40	101116	2016-07-04	2017-07-03
SEUIC	RF Cable	N/A	N/A	2016-09-20	2017-09-19

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

1. Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

FCC Part 15.407 Page 25 of 37

EUT

Report No.: RKS160913001-00L

Test Data

Environmental Conditions

Temperature:	23.5 °C
Relative Humidity:	60 %
ATM Pressure:	99.9 kPa

The testing was performed by Chris Wang on 2016-09-20.

Test Result: Pass.

Please refer to the following tables and plots.

Test mode	Band	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
	5150-5250 MHz	Low	5180	22.54
802.11a		Middle	5200	22.39
		High	5240	22.64

Test mode	Band	Channel	Frequency (MHz)	6dB Bandwidth (MHz)
		Low	5745	16.41
802.11a	5725-5850 MHz	Middle	5785	16.46
		High	5825	16.41

FCC Part 15.407 Page 26 of 37

5150-5250 MHz Band:

802.11a mode, 26 Bandwidth-5180MHz

802.11a mode, 26 Bandwidth-5200MHz

Date: 20.SEP.2016 11:06:10

FCC Part 15.407 Page 27 of 37

802.11a mode, 26 Bandwidth-5240MHz

5725-5850 MHz Band:

802.11a mode, 6 Bandwidth-5745MHz

FCC Part 15.407 Page 28 of 37

802.11a mode, 6 Bandwidth-5785MHz

Report No.: RKS160913001-00L

802.11a mode, 6 Bandwidth-5825MHz

FCC Part 15.407 Page 29 of 37

FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER

Report No.: RKS160913001-00L

Applicable Standard

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Power Meter	N1912A	MY5000492	2015-11-18	2016-11-17
Agilent	Power Sensor	N1921A	MY54210024	2015-11-18	2016-11-17
Rohde & Schwarz	SIGNALANALYZER	FSV40	101116	2016-07-04	2017-07-03
SEUIC	RF Cable	N/A	N/A	2016-09-20	2017-09-19

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

FCC Part 15.407 Page 30 of 37

Test Data

Environmental Conditions

Temperature:	23.5 °C		
Relative Humidity:	60 %		
ATM Pressure:	99.9 kPa		

The testing was performed by Chris Wang on 2016-09-20.

Test Mode: Transmitting

Test mode	Band	Channel	Frequency (MHz)	Conducted Average Output Power Reading (dBm)	Corrected Factor 10log(1/x) (dB)	Conducted Average Output Power (dBm)	Limit (dBm)	Result
	5150-	Low	5180	7.77	0.14	7.91	24	PASS
	5250	Middle	5200	7.51	0.14	7.65	24	PASS
802.11a MHz 5725- 5850 MHz	High	5240	7.33	0.14	7.47	24	PASS	
	5725-	Low	5745	6.39	0.18	6.57	30	PASS
		Middle	5785	6.79	0.18	7.97	30	PASS
	MHz	High	5825	6.45	0.18	6.63	30	PASS

Report No.: RKS160913001-00L

Note: x is the duty cycle. For 802.11a (5150-5250 MHz): x=0.969, 802.11a (5725-5850 MHz): x=0.959, Conducted Average Output Power= Reading+ Corrected Factor The reading value is reading from the test software.

FCC Part 15.407 Page 31 of 37

802.11a Mode (5150-5250 MHz) Middle Channel

Date: 20.SEP.2016 19:40:37

802.11a Mode (5725-5850 MHz) Middle Channel

Date: 20.SEP.2016 19:42:43

FCC Part 15.407 Page 32 of 37

FCC §15.407(a) (1) (5) - POWER SPECTRAL DENSITY

Applicable Standard

According to §15.407(a)(1)

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: RKS160913001-00L

- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to $\S15.407(a)(3)$

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

The measurements are base on FCC KDB789033 D02 General U-NII Test Procedures New Rules v01r03:Guidelines for Compliance Testing of Unlicensed National Information Infrastructure(U-NII)Devices section F: Maximum power spectral density(PPSD)

FCC Part 15.407 Page 33 of 37

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	SIGNALANALYZER	FSV40	101116	2016-07-04	2017-07-03
SEUIC	RF Cable	N/A	N/A	2016-09-20	2017-09-19

Report No.: RKS160913001-00L

Test Data

Environmental Conditions

Temperature:	24 °C		
Relative Humidity:	60 %		
ATM Pressure:	99.9 kPa		

The testing was performed by Chris Wang on 2016-09-20.

Test Mode: Transmitting

5150MHz-5250MHz:

Mode	Channel	Frequency	PSD	Limit	Dogul
	Channel MI	MHz	(dBm/MHz)	(dBm/MHz)	Result
802.11a	Low	5180	-3.87	11	PASS
	Middle	5200	-3.69	11	PASS
	High	5240	-3.43	11	PASS

5725MHz-5850MHz:

Mode	Channel	Frequency	PSD	Limit	Result
Mode	Channel	MHz	(dBm/500kHz)	(dBm/500kHz)	Kesuit
802.11a	Low	5745	-5.85	30	PASS
	Middle	5785	-5.65	30	PASS
	High	5825	-5.32	30	PASS

FCC Part 15.407 Page 34 of 37

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

802.11a mode, Power spectral density-5180MHz

Report No.: RKS160913001-00L

802.11a mode, Power spectral density-5200MHz

Date: 20.SEP.2016 19:37:41

FCC Part 15.407 Page 35 of 37

802.11a mode, Power spectral density-5240MHz

Report No.: RKS160913001-00L

Date: 20.SEP.2016 19:38:32

5725-5850 MHz:

802.11a mode, Power spectral density-5745MHz

Date: 20.SEP.2016 19:33:44

FCC Part 15.407 Page 36 of 37

802.11a mode, Power spectral density-5785MHz

Report No.: RKS160913001-00L

802.11a mode, Power spectral density-5825MHz

***** END OF REPORT *****

FCC Part 15.407 Page 37 of 37