1. Fix RSA parameters $p=307,\ q=311,\ n=p\cdot q$, public key pk = (247,n), and secret key sk = (55303,n). Use square-and-multiply to sign the message $m\equiv 2\pmod n$.

Need to compute $Sig = md \pmod{n} = 2^{55303} \pmod{95477}$ In binary, 55303 is 11011000000000111I did the calculations vring regument, and get Sig = 81901.

To varify, T compute $sige(mod n) = 81901^{247} (mod 95477)$ and get 2, as expected.

2. Suppose that you see in the public database that a message $m \equiv 2 \pmod{110107021}$ has been signed as

$$(\mathrm{sig},\mathrm{pk}) = (33554432, (8806881, 110107021)).$$

(a) Without computing $\varphi(110107021)$, sign the message

$$m \equiv 6172 \pmod{110107021}$$

as if you are the owner this RSA key. (You are advised to use a computer for this exercise, but it is possible to do by hand).

e=8806881 n=110107021=12want md, where $d=e^{-1}$ (mod $\varphi(n)$) compute with alt: want sig s.t. 6172=sig (mod n)

33554432. factor() = 2²⁵: Use this fact

- => (sig', pt)= (27417578, (8806881, 110117021))

- 3. This question is about ElGamal signatures. Our public setup parameters will be p=37 and g=2.
 - (a) You observe two parties claiming the identity with public key $g^a = 23$. In order to check which party is honest (if any), you ask both parties to sign the message $m \equiv 1 \pmod{36}$. You receive the signatures

$$(r_a, sig_a) = (25, 13)$$

from party A and

$$(r_b, sig_b) = (30, 6)$$

from party B. Check which of these parties is honest.

$$g^{m} (mod p) = 2$$
.

 $farty A: ptr^{a} \cdot r^{niga} (mod p)$

$$= 23^{25} \cdot 25^{13} (mod 37)$$

$$= 2$$
 $farty B: ptr^{s} \cdot r^{nigs} (mod p)$

$$= 23^{30} \cdot 30^{6} (mod 37)$$

$$= 11$$
Thus party A is honest.

(b) An honest party with public key 23 signs message $m_1 = 14 \pmod{36}$ with the signature

$$(r_1, sig_1) = (19, 19)$$

and $m_2 = 4 \pmod{36}$ with the signature

$$(r_2, sig_2) = (19, 29).$$

Sign a message $m_3 = 25 \pmod{36}$ as if you are the person with public key 23.

Note r_=r_, meaning the nonce k was repeated. We compute it as $K = \frac{m_1 - m_2}{siq_1 - siq_2} \pmod{q-1}$ $=\frac{14-4}{19-2.9} \pmod{30}$ Then we can find the secret key a: $\sin_{1} = k^{-1} \left(m_{1} - ar \right) \left(\text{mod } p - 1 \right)$ $\Rightarrow a = -\left(k \cdot \text{sig}_{1} - m_{1} \right) r^{-1} \left(\text{mod } p - 1 \right)$ = - (35.19-14).19-1 (mod 36) = 15. Now we use it to sign our message. sig3= K-1 (m3-ar) (mod p-1) = 35 (25-15.19) (mod 36) We can verify as follows: pk^r . $r = 20 = 2^{19}$. $r = 20^{19}$. $r = 20^{19$

- · 4. You should use SageMath for this question.
 - (a) The command for ' $n \pmod{p}$ ' in SageMath is 'n % p'. By checking all the possible values of $2^a \pmod{31}$, show that 2 does not generate \mathbb{F}_{31}^* as a multiplicative group.

If only generates the number 1,2,4,8,16.

- (b) Find a generator of \mathbb{F}_{31}^* as a multiplicative group.
- (c)* How many possible choices of generator are there for \mathbb{F}_{31}^* ?

I found, through brute force computation, that the generators are: 3, 11, 12, 13, 17, 21, 22, and 24.

5. By implementing Pohlig-Hellman in SageMath, compute a such that $11^a \equiv 8080 \pmod{12289}.$

stipping this one

- 6. You should use SageMath for this question.
 - (a) Let n be the numbers in your UoB username (for example, my UoB username is ul19594, so for me n = 19594), and using the SageMath command

.next_prime()

let p be the smallest prime number > n. Find a generator g of \mathbb{F}_p^* , using SageMath commands. (It is sufficient to write down a generator together with the command that you used to find it).

n= 23068 P= 23071

g = 3command: order = Mod(3, p). multiplicative-order c)

(b) Using the SageMath command

.random_element()

choose a random element h in \mathbb{F}_p^* , and let that be Alice's public key g^a , where g is as in part (a). Use Pohlig-Hellman (aided by SageMath) to find a.

h= 21414