Lista Espaços Normados

Para uma matriz $A \in \mathbb{R}^{m \times n}$, denotamos por A^* sua transposta conjugada.

Exercício 1 Prove os exercícios dados em sala de aula.

Exercício 2 Seja $C^2[a,b]$ o espaço das funções contínuas definidas em [a,b] e defina a função $N: C^2[a,b] \to \mathbb{R}_+$ de forma que

$$N(f) = \left(\int_a^b f^2(t) dt\right)^{1/2}.$$

Prove que $(C^2[a,b], N)$ é um espaço normado, mas não é espaço de Banach.

Exercício 3 Para cada matriz $A \in \mathbb{C}^{n \times n}$, defina

$$||A||_{HS} = \sqrt{\operatorname{tr}(AA^*)}.$$

Prove que $\|\cdot\|_{\mathrm{HS}}$ é uma norma e que ela satisfaz, para todo $A,B\in\mathbb{C}^{n\times n},$

$$||AB||_{HS} \le ||A||_{HS} ||B||_{HS}.$$

Exercício 4 Defina o espaço l^{∞} como o espaço das sequências de números reais limitadas, isto é, $x=(x_n)_{n\in\mathbb{N}}\in l^{\infty}\iff \sup_{n\in\mathbb{N}}|x_n|<+\infty.$

- (a) Prove que $(l^{\infty}, \|\cdot\|_{\infty})$, com $\|x\|_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$ para $x \in l^{\infty}$, é um espaço normado completo.
- (b) Prove que esse espaço não é separável, isto é, ele não contém um subconjunto enumerável denso.
- (c) Seja c o espaço de todas as sequências convergentes. Prove que $c \subseteq l^{\infty}$ e que c é fechado. Conclua que $(c, \|\cdot\|_{\infty})$ é um espaço normado completo.

Exercício 5 Seja $I\subseteq\mathbb{R}$ um intervalo não vazio. Seja $\mathcal{L}(I)$ o espaço das funções de Lipschitz definidas em I e defina

$$k(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}.$$

Prove que a função k é bem definida.

(a) Tome $a \in I$ e defina a função

$$N_a(f) = |f(a)| + k(f).$$

Prove que N_a é uma norma em $\mathcal{L}(I)$ e que para $a, b \in I$, N_a e N_b são equivalentes.

- (b) Mostre que $\mathcal{L}(I)$ é completo sob essa norma.
- (c) Mostre que o subespaço das contrações, k(f) < 1, é um conjunto aberto de $\mathcal{L}(I)$.
- (d) Para I compacto, mostre que o conjunto das funções continuamente diferenciáveis definidas em I é um subespaço fechado de $\mathcal{L}(I)$ e que $k(f) = ||f'||_{\infty}$ para f nesse subespaço.

Exercício 6 Mostre que um espaço de Banach de dimensão infinita não pode ter uma base enumerável. *Dica: Use o Teorema da categoria de Baire.*

Exercício 7 Seja X um espaço normado. Uma condição suficiente e necessária para que X tenha dimensão finita é que todo conjunto fechado e limitado em X seja compacto.

Exercício 8 Dê exemplo de um espaço de dimensão infinita e de duas normas definidas nele que não sejam equivalentes.

Exercício 9 Seja $(V, \|\cdot\|)$ um espaço normado de dimensão finita. Todo subespaço de V é fechado com respeito a $\|\cdot\|$.

Exercício 10 Defina $L^{\infty}(A)$ como o espaço das funções μ -mensuráveis limitadas $f: A \to \mathbb{C}$ com a norma supremo $||f||_{\infty} = \sup_{x \in E} |f(x)|$, em que $\mu(E^c) = 0$, isto é, $||f||_{\infty}$ é o menor número c tal que $|f(x)| \le c$ para μ -quase todo $x \in A$.

- (a) Mostre que $L^{\infty}(A)$ é um espaço de Banach.
- (b) Seja $\{f_n\}_{n\in\mathbb{N}}\subseteq L^\infty(\mathbb{R})$ sequência de funções convergente para f em $L^\infty(\mathbb{R})$. Mostre que
 - (i) se $\{f_n\}_{n\in\mathbb{N}}$ são contínuas, então f é contínua.
 - (ii) se $\{f_n\}_{n\in\mathbb{N}}$ são integráveis, então f é integrável em [a,b] e

$$\int_a^b f_n \to \int_a^b f.$$

Exercício 11 Um subconjunto K de um espaço normado X é totalmente limitado se, e somente se, K é limitado e para todo $\epsilon > 0$, existe um subespaço $Y \subseteq X$ de dimensão finita tal que

$$\sup_{x \in K} d(x, Y) \le \epsilon.$$

¹Mais precisamente, o espaço das classes de equivalência dessas funções, em que duas funções são equivalentes se elas são diferentes apenas em um conjunto de medida nula.

Exercício 12 Seja X um espaço normado e p um funcional sublinear em X. Prove que para todo $x_0 \in X$, existe um funcional linear F em X tal que $F(x_0) = p(x_0)$ e $F(x) \leq p(x), \forall x \in X$.

Exercício 13 Seja Y subespaço próprio fechado do espaço de Banach X e tome $x \in X/Y$. Mostre que existe um funcional linear limitado ϕ com $\|\phi\| \le 1$, $\phi(Y) = \{0\}$ e $\phi(x_0) = d(x_0, Y)$.

Exercício 14 Se $x \in X$ e $x \notin B_r(0)$, existe um hiperplano $\phi^{-1}\alpha$ que os separa, isto é, existe um funcional linear contínuo ϕ e $\alpha \in \mathbb{R}$, tal que $\forall y \in B_r(0)$ e

$$|\phi y| < \alpha < |\phi x|$$
.

Exercício 15 Seja I um intervalo limitado por a < b. Denote l(I) = b - a, o comprimento de I. Para cada $E \subseteq \mathbb{R}$, defina

$$\lambda^*(E) = \inf \left\{ \sum_{k=1}^{\infty} l(I_k) : E \subseteq \bigcup_{i=1}^{\infty} I_k, I_k = (a_k, b_k) \right\}.$$

Considere a σ -álgebra \mathcal{X} definida pelos conjuntos E que satisfazem o critério de Carathéodory, isto é, para todo $A \subseteq \mathbb{R}$,

$$\lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c).$$

A medida de Lebesgue é dada por $\lambda : \mathcal{X} \to \mathbb{R}_+$ tal que $\lambda(E) = \lambda(E^*)$. Se $E \notin \mathcal{X}$, dizemos que E é não Lebesgue-mensurável. Com isso, nasce o seguinte problema: para cada conjunto $E \subseteq \mathbb{R}$ limitado, queremos atribuir um valor $\mu(E)$ que satisfaça:

- (i) $\mu([0,1]) = 1$.
- (ii) Se A e B são isométricos, então $\mu(A) = \mu(B)$.
- (iii) Sejam E_1, \ldots, E_n conjuntos disjuntos. então

$$\mu\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \mu(E_i).$$

Queremos provar que μ existe. Restrinja os conjuntos E para aqueles entre [0,1). Obs.: Se $n=\infty$, é possível mostrar que μ não existe.

(a) Defina X como o espaço de funções limitadas periódicas com período 1 e, para cada $f \in X$,

$$p(x) = \inf_{\alpha_i} \left\{ \sup_{0 \le t \le 1} \frac{1}{n} \sum_{i=1}^n f(t + \alpha_i) \right\}.$$

Mostre que p é funcional sublinear em X.

(b) Prove que existe um funcional linear F em X com F(f) = p(f) e $F(x) \le p(x), \forall x \in X$.

¹Sim, esses conjuntos existem: https://en.wikipedia.org/wiki/Vitali_set

- (c) Prove que para todo $t_0 \in \mathbb{R}$, $F(f(t+t_0)) = F(f(t))$. Dica: Defina $y(t) = f(t+t_0) f(t)$ e prove que $p(y) \le 0$ e $-p(-y) \ge 0$.
- (d) Mostre que $F(f) \ge 0$ se f é função não negativa.
- (e) Mostre que $F(i_1) = 1$, em que $i_1(t) = 1$ para todo t.
- (f) Defina

$$\int f(t) = \frac{1}{2} [F(f) + F(\hat{f})],$$

em que $\hat{f} = f(1-t)$. Mostre que esse operador é linear, satisfaz $\int f(t+t_0) = \int f(t)$, que $\int i_1(t) = 1$ e que $\int f(t) \geq 0$ se f é não negativa. Além disso mostre que

$$\int f(1-t) = \int f(t), \forall f \in X.$$

Com isso, $\int f(t)$ é uma integral de Banach.

(g) Seja k_E a função característica de E e defina

$$\mu(E) = \int k_E(t).$$

Mostre que μ satisfaz as propriedades da medida que gostaríamos.