PRNN 2024 - Minor 1

Questions by Prathosh A P

25 April 2024

Instructions: (a) The exam is for 30 + 1 (bonus) marks for 180 minutes. (b) Please refrain from writing a lot of text but answer to the point with appropriate mathematical equations.

1. Estimation and Bayesian Decision theory

- (a) Consider a mixture model for a prior given as follows: $p(\theta) = \sum_k p(z=k)p(\theta|z=k)$ where each conditional $p(\theta|z=k)$ is conjugate to a given likelihood. Prove that the mixture is also a conjugate prior. (2)
- (b) Given a dataset D, any function s of the dataset is called a statistic. A statistic is said to be 'sufficient' for a parameter θ if $p(D|s,\theta)$ is independent of θ . With this definition, Show that a statistic is sufficient for θ if the density $p(D|\theta)$ can be written as the product $P(D|\theta) = g(s,\theta)h(D)$, for some function of h() and g(). (2)
- (c) Suppose we have a binary classification problem with d-dimensional features with Gaussian Class-conditional densities. Find out a sufficient statistic for $P(D|\theta)$ and express a Bayes's classifier in terms of the obtained sufficient statistic (2).

2. Nearest Neighbors and Linear Models

- (a) Suppose we are designing a 1-nearest neighbour based classifier with n datapoints. Show that this rule divides the feature space into Dirichlet tessellation: The partitioning of the space into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other. Hint: Convexity implies, that for any two points x1 and x2 in a polygon, all points on the line linking x1 and x2 must also lie in the same polygon. (2.5)
 - (b) Suppose we have a binary classification problem in d-dimensions and we are interested in a linear classifier of the form $h(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$. The task in this problem is to find the optimal \mathbf{w} , where the optimality is defined as that \mathbf{w} , which minimizes the squared of the difference between the perclass means of the projected data ($\mathbf{w}^t \mathbf{x}$) is the projection). The objective also involves a scaling (multiplication factor) given by the inverse of the sum of the per-class variances of the projected data. Find the expression for such a direction \mathbf{w} . (2.5)

3. SVMs and Kernels

- Show that, irrespective of the dimensionality of the data space, a data set consisting of just two data points, one from each class, is sufficient to determine the location of the maximum-margin hyperplane (1)
- Suppose we have a regression problem with $x_i \in \mathcal{R}^d$ and $y_i \in \mathcal{R}$. Let us define a loss function for regression as the epsilon sensitive loss:

$$L_{\epsilon}(h(\mathbf{x}), \mathbf{y}) = |\mathbf{y} - h(\mathbf{x})|_{\epsilon} = \max(0, |\mathbf{y} - h(\mathbf{x})| - \epsilon)$$

Here x is the input, y is the output, and h is the hypothesis function. Using this notation, let us define a risk function as

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n L_{\epsilon}(h(\mathbf{x}_i), \mathbf{y}_i)$$

where $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, and $C, \epsilon > 0$ are parameters. With this rewrite this problem as a quadratic problem (i.e. quadratic objective with linear constraints), by introducing appropriate slack variables. Write down the corresponding Lagrangian (3)

- Suppose we design a 1 nearest neighbor algorithm in a projected data space $z = \Phi(x)$ embedded with a Kernel $K(\mathbf{x}_i, \mathbf{x}_j)$. Show that this algorithm does not need to know the projection $\Phi(\mathbf{x})$ as long as the Kernel can be computed (1)
 - 4. Neural Networks and Gradient Descent
- (a) Suppose R(w) denotes a scalar-valued Risk function of a vector-valued parameter denoted by w ∈ \mathbb{R}^m . Derive a gradient-based iterative algorithm to minimize $\mathbf{R}(\mathbf{w})$ w.r.t \mathbf{w} and argue (mathematically) its correctness. (2)
- b) Suppose the above optimization problem is constrained such that the 2-norm of the parameter vector is upper bounded by a constant. Rederive the iterative parameter update equation and argue why it can be called 'parameter decay' iterates (1)
- Derive an expression for the dimensions of the lth layer activation in a CNN in terms of the (a) dimensions of the $(l-1)^{th}$ activations, (b) size of the weight matrix, (c) stride size and (iv) per
 - Suppose we have 4 datapoints with binary features as follows: $\{(0,0),(0,1),(1,0),(1,1)\}$ with the respective labels as {0,1,1,0}. Verify whether a 3-layer MLP with all linear layers (without any non-linear activations) can learn to separate the data.
 - 5. Boosting
- (a) Suppose we are interested in building an ensemble of classifiers on a binary classification problem, iteratively as follows: $H_{t+1} = H_t + \alpha h_{t+1}$ where $h_{t+1} = \operatorname{argmin}_h \hat{R}(H_t + \alpha h)$ where \hat{R} is empirical risk With the usual notations, derive a gradient-based iterative algorithm to find h_{t+1} . Hint: Consider gradient descent in the function space (2)
- Suppose we have an exponential loss function $L(\mathbf{y}, h(\mathbf{x})) = \exp(-\mathbf{y}h(\mathbf{x}))$. With this loss function, show that the solution to the optimization problem of finding the next classifier reduces to minimizing the weighted classification error of the training samples (2).
- Derive an update equation for the weight distribution over the training samples, as obtained by the above iterative algorithm (1)
 - 6. Unsupervised Learning
 - Let $\{\mathbf{x_i}\}_{i=1}^N$, $x_i \in R^d$ be the data given. The objective is to cluster these data points into k clusters $(C_1, C_2, ..., C_k)$ with their centroids at $(\mu_1, \mu_2, ..., \mu_k)$. But unlike k-means clustering, we don't want to assign each data point to an exclusive cluster. Instead, we want to model the probability of a data point x_i , being in cluster C_j as $P(C_j|X_i) = \gamma_{ij}$. This can be achieved by solving the following optimization problem:

$$\gamma_{ij}^*, \ \mu_j^* = \underset{\gamma_{ij}, \ \mu_j}{\operatorname{argmin}} \quad \sum_{i=1}^N \sum_{j=1}^k \gamma_{ij}^2 ||x_i - \mu_j||^2$$

s.t
$$\sum_{j=1}^{k} \gamma_{ij} = 1$$
, $\gamma_{ij} \geq 0$, $i = 1, 2, \dots, N, j = 1, 2, \dots, k$

With this, answer the following questions:

- (b) Change the above to an unconstrained optimization problem using Lagrange multipliers. (1) Hint: You can ignore the positivity constraint and check if it is satisfied after solving the problem.
 - (c) Solve for μ_{j}^{*} , γ_{ij}^{*} and the lagrangian multipliers. (3)
- (d) Derive an iterative algorithm to get optimal μ_j, γ_{ij}. (1) Hint: The algorithm will look like a distant cousin of k-means.
- (e) Bonus: How will you quantize the γ_{ij} 's so that it turns out to be the well-known k-means clustering algorithm? (1)