Assignment 1 - Theory Part

19 (19)	
	Mandeep Singh 200312488 CS340
	Assignment #1
	Problem 1:
	Solution:
	2/N, 37, JN', N, NloglogN, NlogN, Nlog(N2), N/ogN, N'1.5, N2, N2/ogN, N3, 2N/2, 2N
	Nlog(N) and Nlog(N2) grow at the
	Same rate:
	=7 N/og N2 = 2Nlog N = O(N/og N) #
	=> N/oglogN = N/og2N

11 (16)	
0	
	Problem3:
ai)	O(N)
	OCN2)
C.	OCN3)
) O(N ²)
e:	$N \cdot N^2 \cdot N^2 = N^5 \Rightarrow O(N^5)$
	$) O(N^2) \cdot O(N^2) = O(N^4)$
	Problem 4:
	N
	ci) 100 - > 0.5ms 100 - 500
	x2 (linear) 0.5ms to
	t - 500 x 0,5ms = 2.5ms
	500
b	
	100
	J \$ 300 109 500 01 5ms ±
	500>?
	t = 500 log 500 x 0.5mg
	1 22722
	t=3,3737 mg
	t = 3.4ms
	house from
(c)	$\frac{700^{2}-500^{2}}{0.5ms} = \frac{500^{2}}{t} = \frac{500^{2}}{100^{2}} \times 0.5ms = \frac{12.5ms}{12.5ms}$
	U, m > C 100
4	1008 Ga3 - 40 150 3 10 50 5 1/20 1
d	$\frac{100^8}{0.5ms} = \frac{500^3}{t} = 7 + \frac{500}{100} \times 0.5ms = 62.5ms$

Problem 5: 100 = 0.5ms = 7 N = 60 x10 ms 100 N 60 x10 ms 0.5ms N=12 000000 b) 100 log 100 - 0.5 ms -7/Nlog N = 60 x103 ms x 100 log 100

Nlog N = 60 x103 ms x 100 log 100 log(N2) = 24 000 000 N2 = e24 000 000 c) $\frac{100^2}{N^2} = 0.5 \text{ms} = 7 N = \frac{60 \times 10^3 \text{ms}}{6.5 \text{ms}} \times \frac{100^2}{100^2} = 7 N = 34641$ $\frac{100^{3} - 0.5 \text{ms}}{N^{3}} = \frac{7}{N} = \frac{100^{3} - 100^{3}}{100^{3} + 100^{3}} = \frac{100^{3}}{N^{2}} = \frac{100^{3}}{100^{3}} = \frac{10$

Problem 6:	
a) If we implement In as follows.	
FCN)=F(N-1) + FCN-1) +hen the	lifferent calls corresponds
to a binary tree. The complexity	would be exponential.
O(2'n).	
Il a il a inde a fal E asi	
However, if we implemented Fr as:	
F(N)= power(17N-1), 2), we a	only have OCN).
	/ 11.000
b) $F_n = a^{2^{(n-1)}}$	
We can attempt to prove this by	induction
$F_{1}=2^{2(n-1)}=2^{2(1-1)}=2=2$	
$f = \lambda = \lambda^{\alpha} = \lambda = \lambda$	
$F_{2} = 2^{2(2-1)} = 2^{2} = 4$ de	1 nu = k
$F_{k} = 2^{2(k-1)} = F_{n} : \int F_{n} = 2^{2(n-1)} / \frac{1}{n}$	#
This will have a run-time of OCloglogN) #);
OCloglogN) #	
<u> </u>	
,	

	Problem 7:	
	Troblem 7.	
0.7	Similer (*tree1, *tree2) {	
(1)	Similer (" Creet, # Creex) [
	While (tree] = NULL & & Gree 2 != NULL) {	
	if (tree 1 -> node == tree 2 -> node) {	
	Similar (treel -> left, tree2> left);	
	Similar (treel-> right tree>> right)	
	Z Z	
	3 7	
	ξ	
b) Tree traversal => O(N)	
		•