Algebra II

Relación 2

Subgrupos. Generadores. Retículos. Grupos cíclicos

Ejercicio 1. Describir todos los elementos de los grupos alternados A_n , consistentes en las permutaciones pares del S_n correspondiente, para n = 2, n = 3 y n = 4.

Ejercicio 2. Sea $D_n = \langle r, s | s^2 = r^n = 1, sr = r^{n-1}s \rangle$ el grupo diédrico. Demostrar que el subgrupo de D_n generado por los elementos $\{r^j s, r^k s\}$ es todo el grupo D_n siempre que $0 \le j < k < n$ y m.c.d.(k-j,n) = 1.

Ejercicio 3.

1. Demostrar que el subgrupo de $SL_2(\mathbb{Z}_3)$ generado por los elementos

$$i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ j = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$

es isomorfo al grupo cuaternio Q_2 .

2. Demostrar que $SL_2(\mathbb{Z}_3)$ y S_4 son dos grupos de orden 24 que **no** son isomorfos. (**Pista:** Demostrar que S_4 no puede contener a ningún subgrupo isomorfo a Q_2 .)

Ejercicio 4. Razonar que un subconjunto no vacío $X \subseteq G$ de un grupo G es un subgrupo de G si, y sólo si, $X = \langle X \rangle$.

Ejercicio 5. Sean $a, b \in G$ dos elementos de un grupo que conmutan entre sí, esto es, para los que ab = ba, y de manera que sus órdenes son primos relativos, esto es, m.c.d(o(a), o(b)) = 1.

- 1. Razonar que $\langle a \rangle \cap \langle b \rangle = 1$.
- 2. Demostrar que o(ab) = o(a)o(b).

Ejercicio 6. Encontrar un grupo G y elementos $a, b \in G$ tales que sus órdenes sean primos relativos, pero para los que **no** se verifique la igualdad o(ab) = o(a)o(b) del ejercicio anterior.

1

Ejercicio 7. Sea G un grupo y $a, b \in G$ dos elementos de orden finito. ¿Es ab necesariamente de orden finito? (**Pista:** Considerar el grupo $GL_2(\mathbb{Q})$ y los elementos

 $a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ b = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.)$

Ejercicio 8. En el grupo S_3 se considera el conjunto

$$H = \{Id, (1, 2, 3), (1, 3, 2)\}.$$

- 1. Demostrar que H es un subgrupo de S_3 .
- 2. Describir las diferentes clases de S_3 módulo H.

Ejercicio 9.

- 1. Demostrar que si $H \leq G$ es un subgrupo, entonces [G:H] = |G| si, y solo si, $H = \{1\}$, mientras que [G:H] = 1 si, y solo si, H = G.
- 2. Demostrar que si se tienen subgrupos $G_2 \leq G_1 \leq G$, entonces

$$[G:G_2] = [G:G_1][G_1:G_2],$$

3. Demostrar que si se tiene una cadena descendente de subgrupos de la forma

$$G = G_0 \ge G_1 \ge \cdots \ge G_{r-1} \ge G_r$$

entonces

$$[G:G_r] = \prod_{i=0}^{r-1} [G_i:G_{i+1}].$$

4. Demostrar que si se tiene una cadena descendente de subgrupos de la forma

$$G = G_0 \ge G_1 \ge \cdots \ge G_{r-1} \ge G_r = 1$$
,

entonces

$$|G| = \prod_{i=0}^{r-1} [G_i : G_{i+1}].$$

Ejercicio 10. 1. Demostrar que si G es un grupo de orden 4, entonces se tiene que o bien G es cíclico, o bien es isomorfo al grupo de Klein.

2. Demostrar que si G es un grupo de orden 6, entonces se tiene que o bien G es cíclico, o bien es isomorfo al grupo diédrico D_3 .

Ejercicio 11. Describir los retículos de subgrupos de los siguientes grupos: i) el grupo V de Klein; ii) el grupo simétrico S_3 ; iii) el grupo diédrico D_4 ; iv) el grupo cuaternio Q_2 ; v) el grupo alternado A_4 . Ejercicio 12. Describe el retículo de subgrupos del grupo cíclico

$$C_{p^n} = \langle x | x^{p^n} = 1 \rangle,$$

siendo p un número primo. En particular, describe el retículo de subgrupos del grupo cíclico

$$C_8 = \langle x | x^8 = 1 \rangle.$$

Ejercicio 13. Demostrar que un grupo finito $G \neq \{1\}$ carece de subgrupos propios, esto es, que su retículo de subgrupos es

si, y sólo si, $G=C_p$ es un grupo cíclico de orden primo.

Ejercicio 14. Describir los retículos de subgrupos de los grupos cíclicos $C_6 = \langle x | x^6 = 1 \rangle$ y $C_{12} = \langle x | x^{12} = 1 \rangle$.

Ejercicio 15. Se considera el grupo cíclico C_{136} de orden 136, con generador t. ¿Qué relación hay entre los subgrupos $H_1 = \langle t^{48}, t^{72} \rangle$ y $H_2 = \langle t^{46} \rangle$?

Ejercicio 16. Demostrar que el grupo de unidades \mathbb{Z}_7^{\times} es un grupo cíclico.

Ejercicio 17. Sea G un grupo y sea $C_n = \langle x|x^n=1\rangle$ el grupo cíclico de orden n. Demostrar que:

- 1. Si $\theta: C_n \to G$ es un homomorfismo de grupos, con $\theta(x) = g$, entonces $o(g)|n, y \ \theta(x^k) = g^k \ \forall k \in \{0, \dots, n-1\}.$
- 2. Para cada $g \in G$ tal que o(g)|n, existe un único homomorfismo de grupos $\theta_g: C_n \to G$ tal que $\theta_g(x) = g$.
- 3. Si $g \in G$ es tal que o(g)|n, entonces el morfismo θ_g es monomorfismo si, y sólo si, o(g) = n.
- 4. Existe un isomorfismo de grupos

$$U(\mathbb{Z}_n) \cong Aut(C_n),$$

dado por $r \mapsto f_r$ para cada $r = 1, \dots, n$ con mcd(r, n) = 1, donde el automorfismo f_r se define mediante $f_r(x) = x^r$.

En particular, $Aut(C_n)$ es un grupo abeliano de orden $\varphi(n)$.

Ejercicio 18.

- 1. Describir explícitamente el grupo de automorfismos $Aut(C_8)$.
- 2. Demostrar que $Aut(C_8)$ es isomorfo al grupo de Klein.