Projet DSSP

26/06/25

Garis CLUZEAU

Introduction

Article: Kabsch, W., & Sander, C. (1983)

$$Eelec = q1 * q2 * f\left(\frac{1}{dON} + \frac{1}{dCH} - \frac{1}{dOH} - \frac{1}{dCN}\right)$$

Détection de 8 structures secondaire:

- Hélice:
 - hélice 3₁₀
 - hélice α
 - hélice π
- Brin:
 - Parallèle
 - Anti parallèle

- Coude:
 - Turn
 - Bend
- Coil:

Matériel et Méthode

- > Parse_pdb_residues : Parser un fichier PDB
- > Combine_secondary_structure : Combiner hélice + feuillet + boucle
 - \triangleright **Assign**: Identifier les hélices (α , π , 3-10)
 - > Is_hydrogen_bond : Déterminer si une liaison H existe
 - get_hydrogen_atom_position: Estimer la position de l'atome H
 - distance_atom : Calculer la distance euclidienne
 - Find_beta_bridges: Trouver les ponts H caractéristiques des feuillets β
 - > Is_hydrogen_bond
 - get_hydrogen_atom_position
 - distance_atom
 - > annotate_beta_strands_on_sequence : Annoter les résidus formant des brins β
- > get_prediction_dict : Transformer les prédictions custom en dictionnaire
- > get_dssp_secondary_structure : Utiliser DSSP via MDAnalysis
- compare_structures : Comparer prédiction vs DSSP

Matériel et Méthode

Résultat

	1BL8	1FIN	1NFK	2OCJ	2PTN	2RH1	4EY1	5E7I	1F88
Résidus comparés	388	116	624	776	220	442	102	1272	643
Correspondances exactes MDa	388	105	265	718	192	429	66	1076	629
Précision de la prédiction (%)	100	94.53	42.47	92.53	87.27	97.06	64.71	84.59	97.82

Conclusion

- ➤ Bonne prédiction globale sur un code à 3 lettres
- ➤ Prévoir affichage et la comparaison avec un code à 8 lettres
- > Permettre la visualisation selon la prédiction