Midterm Skills Exam: Data Wrangling and Analysis

Name: Calingo, Christian Lei S.

Section: CPE22S3

Course: Computational Thinking with Python

Course Code: CPE 311

Importing the dataset

```
pip install ucimlrepo
     Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-packages (0.0.6)
from ucimlrepo import fetch ucirepo
census_income = fetch_ucirepo(id=20)
# data (as pandas dataframes)
X = census_income.data.features
y = census_income.data.targets
print(census_income.metadata)
print(census_income.variables)
     {'uci_id': 20, 'name': 'Census Income', 'repository_url': 'https://archive.ics.uci.edu/dataset/20/census+income', 'data_url': 'https://a
                   name
                                        type
                                                   demographic
     0
                   age Feature
                                      Integer
                                                          Age
     1
              workclass Feature Categorical
                                                        Income
                                                          None
                fnlwgt Feature
                                      Integer
     3
             education Feature Categorical Education Level
         education-num Feature
     4
                                      Integer Education Level
     5
        marital-status Feature Categorical
                                                         0ther
           occupation Feature Categorical
                                                         0ther
     6
     7
          relationship Feature
                                                         Other
                                 Categorical
     8
                   race Feature
                                 Categorical
                                                          Race
     9
                   sex
                         Feature
                                       Binary
     10
          capital-gain Feature
                                      Integer
                                                          None
     11
           capital-loss Feature
                                      Integer
                                                          None
     12 hours-per-week
                                      Integer
                                                          None
                                                         Other
     13
        native-country
                         Feature
                                  Categorical
                                                        Income
     14
                 income
                         Target
                                       Binary
                                               description units missing_values
     0
                                                       N/A None
                                                                            no
     1
        Private, Self-emp-not-inc, Self-emp-inc, Feder...
                                                            None
                                                                            ves
     2
                                                      None
                                                            None
                                                                            no
          Bachelors, Some-college, 11th, HS-grad, Prof-...
     3
                                                            None
                                                                             no
     4
                                                      None None
                                                                             no
         Married-civ-spouse, Divorced, Never-married, S...
                                                            None
                                                                             no
         Tech-support, Craft-repair, Other-service, Sal...
                                                                           yes
         Wife, Own-child, Husband, Not-in-family, Other...
                                                           None
                                                                            no
     8
        White, Asian-Pac-Islander, Amer-Indian-Eskimo,...
                                                           None
                                                                             no
                                             Female, Male.
     10
                                                      None
                                                                             no
     11
                                                      None
                                                           None
                                                                             no
     12
                                                      None
                                                           None
                                                                             no
         United-States, Cambodia, England, Puerto-Rico,...
     13
                                                                            yes
                                              >50K, <=50K.
     14
                                                           None
                                                                             no
```

Displaying the datasets

x

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife
48837	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-family
48838	64	NaN	321403	HS-grad	9	Widowed	NaN	Other-relative
48839	38	Private	374983	Bachelors	13	Married- civ-	Prof- specialty	Husband ▶

 $\overline{\Pi}$ income <=50K 0 1 <=50K 2 <=50K 3 <=50K <=50K 48837 <=50K. 48838 <=50K.

> >50K. 48842 rows × 1 columns

<=50K.

<=50K.

48839

48840

48841

Concatenating the 2 datasets

```
import pandas as pd
import numpy as np
data = pd.concat([X, y], axis = 1) #concatenating our data
data
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife
48837	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-family
48838	64	NaN	321403	HS-grad	9	Widowed	NaN	Other-relative
48839	38	Private	374983	Bachelors	13	Married- civ-	Prof- specialty	Husband •

Checking the data types of the column in the dataset

data.dtypes #checking their data types

int64 age workclass object fnlwgt int64 education object education-num int64 marital-status object occupation object relationship object race object sex object capital-gain int64 capital-loss int64 hours-per-week int64 native-country object income object

dtype: object

Let's check the info() of our dataframe

data.info() #checking their info

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48842 entries, 0 to 48841
Data columns (total 15 columns);

Data	columns (total	15 columns):	
#	Column	Non-Null Count	Dtype
0	age	48842 non-null	int64
1	workclass	47879 non-null	object
2	fnlwgt	48842 non-null	int64
3	education	48842 non-null	object
4	education-num	48842 non-null	int64
5	marital-status	48842 non-null	object
6	occupation	47876 non-null	object
7	relationship	48842 non-null	object
8	race	48842 non-null	object
9	sex	48842 non-null	object
10	capital-gain	48842 non-null	int64
11	capital-loss	48842 non-null	int64
12	hours-per-week	48842 non-null	int64
13	native-country	48568 non-null	object
14	income	48842 non-null	object
dtype	es: int64(6), ob	ject(9)	

dtypes: int64(6), obje
memory usage: 5.6+ MB

Let's check the values in one of the columns

As you can see, we have a ? value for the native country, other columns might have ? values as well, we can change those values to Others so that other data will not be wasted

```
replace_nan = {"?" : "Others"}

data.replace(replace_nan, inplace = True) #changing the values of the unidentified
data.fillna('Others', inplace = True)
data
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife
48837	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-family
48838	64	Others	321403	HS-grad	9	Widowed	Others	Other-relative
48839	38	Private	374983	Bachelors	13	Married- civ-	Prof- specialty	Husband •

Now, we wil check if we have replaced it properly

False

income

dtype: bool

```
data.isna().any()
     age
                       False
     workclass
                       False
     fnlwgt
                       False
     education
                       False
     education-num
                       False
     marital-status
                      False
     occupation
                       False
     relationship
                       False
                      False
     race
     sex
                      False
     capital-gain
                      False
     capital-loss
                       False
     hours-per-week
                       False
     native-country
                      False
```

As you can see, each column returned False, therefore, we don't have NaN values anymore

Now, we are going to set the country as its index

```
data.rename(columns = {'native-country' : 'country'}, inplace = True)
data.set_index(data['country'],inplace = True) #setting the country as index
data.drop('country', axis = 1, inplace = True)
data
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationsh
country								
United- States	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-farr
United- States	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husba
United- States	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-fam
United- States	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husba
Cuba	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	W

United- States	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-farr
United- States	64	Others	321403	HS-grad	9	Widowed	Others	Other-relati
United- States	38	Private	374983	Bachelors	13	Married- civ- spouse	Prof- specialty	Husba
United-	11	Drivata	ደ3ደ01	Rachelore	13	Divorced	Adm-	Own-ch ▶

At the income column, we can see that we have 4 unique values:

- (<=50K)
- (<= 50K.)
- (>50K)
- (>50K.)

We are going to remove the decimal after the $\mbox{\rm 'K'}$

```
data['income'].unique() #checking for the unique values of income
    array(['<=50K', '>50K', '<=50K.', '>50K.'], dtype=object)

row_change = {'<=50K.' : '<=50K', #changing the value because of the unecessary .
    '>50K.' : '>50K'}

data = data.replace({'income' : row_change})
data
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationsh
country								
United- States	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-farr
United- States	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husba
United- States	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-farr
United- States	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husba
Cuba	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	W
United- States	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-farr
United- States	64	Others	321403	HS-grad	9	Widowed	Others	Other-relati
United- States	38	Private	374983	Bachelors	13	Married- civ- spouse	Prof- specialty	Husba
United-	11	Drivata	ደ3ደ01	Rachalore	12	Divorced	Adm-	∩wn-ch

After cleaning the Data, we can now perform Data Analysis and Data Exploratory

Let's plot the Marital Status, Relationship, Sex, Race, and Education of our Population to identify their quantity.

Since we won't be needing them on our Analysis, we will be dropping them except for the Education

```
import matplotlib.pyplot as plt #plotting the marital-status, relationship, sex, and race
import seaborn as sns
fig, ax = plt.subplots(4, figsize = [10,20])
ax[0].set_title('Population of Marital Status')
ax[0].set_xlabel('Population Size')
ax[0].set_ylabel('')
data.groupby('relationship').size().plot(kind='barh', ax = ax[1], color = ('lightseagreen', 'goldenrod')) #plotting the relationship column
ax[1].set_title('Relationship Status of the Population')
ax[1].set_xlabel('Population Size')
ax[1].set_ylabel('')
data.groupby('sex').size().plot(kind='barh', ax = ax[2], color = ('lightseagreen','goldenrod')) #plotting the sex column
ax[2].set_title('Sex of the Population')
ax[2].set_xlabel('Population Size')
ax[2].set_ylabel('')
ax[3].set_title('Race of the Population')
ax[3].set_xlabel('Population Size')
ax[3].set_ylabel('')
fig.tight_layout()
```


Let's now check the graph of our population. However, since United Scales outscales everyone, we are temporarily dropping it.

```
data_popu = data.groupby('country').size().sort_values(ascending = False)
data_popu = data_popu.head()
 data_popu
                               country
                             United-States 43832
                             Mexico
                                                                                                                                            857
                             Others
                             Philippines
                                                                                                                                            295
                             Germany
                             dtype: int64
 data_popu = data.reset_index()
data_popu = data.drop('United-States')
\label{lem:data_popu} $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().sort_values(ascending = True).plot(kind = 'barh', figsize = (20,20)) $$ data_popu.groupby('country').size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size().size(
fig.tight_layout()
```


Most of our Population comes from the United-States, followed by Mexico and Others which is unspecified countries

Let's now drop the unecesarry columns

data.drop(['marital-status', 'relationship', 'race', 'sex'], axis = 1, inplace = True) #dropping the unecessary column for the analysis
data

	age	workclass	fnlwgt	education	education- num	occupation	capital- gain	capital- loss
country								
United- States	39	State-gov	77516	Bachelors	13	Adm- clerical	2174	0
United- States	50	Self-emp- not-inc	83311	Bachelors	13	Exec- managerial	0	0
United- States	38	Private	215646	HS-grad	9	Handlers- cleaners	0	0
United- States	53	Private	234721	11th	7	Handlers- cleaners	0	0
Cuba	28	Private	338409	Bachelors	13	Prof- specialty	0	0
United- States	39	Private	215419	Bachelors	13	Prof- specialty	0	0
4								+

After dropping unecessary columns

We will check how many people earns above or below 50k according to their occupation

```
color_list = ['aqua', 'teal'] #list of colors

data1=data.groupby(['occupation','income']).size() #grouping our data
data1=data1.unstack() #putting it in a dataframe
data1.plot(kind='bar', grid = True, title ='Income based on occupation', color =('crimson','teal')) #plotting the income of our population w
```


Let's identify the work class of our data, let's see how many people does work on a certain work class

<Axes: title={'center': 'Number of workers on difference work class'},
xlabel='workclass'>

Looking at our graph, we can see that there is a lot of people who does work in a Private Sector.

The "Never-Worked" and "Without-pay" have values, it's just that the Private sector outscales them making it look like it doesn't have value. We can check the number of it by calling our data.

data2 #counts of the workclass

workclass	
Federal-gov	1432
Local-gov	3136
Never-worked	10
Others	2799
Private	33906
Self-emp-inc	1695
Self-emp-not-inc	3862
State-gov	1981
Without-pay	21
dtype: int64	

We can also check how many earn above or below 50,000 depending on which class they work for

```
data3 = data.groupby(['workclass','income']).size() #grouping the population according to their workclass and income
data3=data3.unstack() #putting it in a dataframe
data3.plot(kind = 'barh', grid = True, title = 'Income based on Work Class', color = ('lightsalmon', 'yellowgreen')) #graphing the income of
```

<Axes: title={'center': 'Income based on Work Class'}, ylabel='workclass'>

data3 #checking the values of data3

income	<=50K	>50K	
workclass			
Federal-gov	871.0	561.0	
Local-gov	2209.0	927.0	
Never-worked	10.0	NaN	
Others	2534.0	265.0	
Private	26519.0	7387.0	
Self-emp-inc	757.0	938.0	
Self-emp-not-inc	2785.0	1077.0	
State-gov	1451.0	530.0	
Without-pay	19.0	2.0	

Looking at our graph, we can see that majority of our population works in a private sector.

If we look at the bar of Self-employed-inc., those who earned above 50,000 is greater than for those who earn below it.

Let's identify the educational attainment for each occupation of our population

```
data_4 = data[['education-num', 'occupation']]
data_4.sort_values(by = 'education-num')
```

	education-num	occupation
country		
Mexico	1	Other-service
United-States	1	Exec-managerial
Philippines	1	Priv-house-serv
EI-Salvador	1	Other-service
United-States	1	Adm-clerical
United-States	16	Prof-specialty
Mexico	16	Prof-specialty
United-States	16	Prof-specialty
United-States	16	Exec-managerial
United-States	16	Prof-specialty
48842 rows × 2	columns	
<pre>sns.stripplot(x='occupation', y='education-num', hue='income', data=data) plt.xticks(rotation</pre>		

```
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], 
[Text(0, 0, 'Adm-clerical'),
  Text(1, 0, 'Exec-managerial'),
  Text(2, 0, 'Handlers-cleaners'),
  Text(3, 0, 'Prof-specialty'),
   Text(4, 0, 'Other-service'),
  Text(5, 0, 'Sales'),
  Text(6, 0, 'Craft-repair'),
Text(7, 0, 'Transport-moving'),
  Text(8, 0, 'Farming-fishing'),
  Text(9, 0, 'Machine-op-inspct'),
  Text(10, 0, 'Tech-support'),
  Text(11, 0, 'Others'),
  Text(12, 0, 'Protective-serv'),
                    'Armed-Forces'),
  Text(13, 0,
                    'Priv-house-serv')])
  Text(14, 0,
     16
                                                                                           income
                                                                                               <=50K
                                                                                               >50K o
     14
     12
  education-num
     10
       8
       6
       4
       2
                                                                                  Others
                                     Other-service
                                            Sales
            Adm-clerical
                   Exec-managerial
                         Handlers-cleaners
                               Prof-specialty
                                                   Craft-repair
                                                         Transport-moving
                                                               Farming-fishing
                                                                      Machine-op-inspct
                                                                            Tech-support
                                                                                               Armed-Forces
                                                                                                      Priv-house-serv
                                                                                         Protective-serv
                                                   occupation
```

Let's try plotting the income of our population with accordance to their capital gain and their education attainment level

```
sns.stripplot( #plotting the income of our population based on their educational attainment
x='education-num',
y='capital-gain',
hue='income',
data=data
)
plt.xticks(rotation=90)
```

```
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [Text(0, 0, '1'), Text(1, 0, '2'), Text(2, 0, '3'),
  Text(2, 0, 3),

Text(3, 0, '4'),

Text(4, 0, '5'),

Text(5, 0, '6'),
  Text(6, 0, '7'),
Text(7, 0, '8'),
  Text(8, 0, '9'),
   Text(9, 0, '10'),
  Text(10, 0, '11'),
Text(11, 0, '12'),
  Text(12, 0, '13'),
Text(13, 0, '14'),
Text(14, 0, '15'),
   Text(15, 0, '16')])
/usr/local/lib/python3.10/dist-packages/IPython/core/events.py:89: UserWarning: Creating
   func(*args, **kwargs)
      100000
                        income
                            <=50K
                           >50K
       80000
       60000
 capital-gain
       40000
       20000
                                                             ω
                                                                   6
                                                                         10
                                                                                11
                                                                                     12
                                                                                            13
                                                                                                 14
                                                                                                        15
                                                        education-num
```

Here, we have the average capital-gain and capital-loss of each country

```
data_cap = data[['capital-gain', 'capital-loss', 'hours-per-week']]
data_cap = data_cap.groupby('country').mean()
data_cap.sort_values(by = 'country', ascending = True, inplace = True)
data_cap
```