Einführung in die Programmierung II Such- und Sortierverfahren: Baumstrukturen

Tobias Joschko

27. April 2022

Themenüberblick - Bäume

Bäume

Binäre Suchbäume

Balancierte Bäume

Heaps

Speicherung von Bäumen

Themenüberblick - Bäume

Bäume

Binäre Suchbäume

Balancierte Bäume

Heaps

Speicherung von Bäumen

Wiederholung: Binäre Suche

- + Halbierung des Suchraums in jedem Schritt
- Liste muss sortiert sein
- Nachträgliches Sortieren ist keine Option (zu langsam)

Wiederholung: Binäre Suche

- + Halbierung des Suchraums in jedem Schritt
- Liste muss sortiert sein
- Nachträgliches Sortieren ist keine Option (zu langsam)

Idee: Elemente direkt an der richtigen Stelle einfügen.

- ► Bei Arrays zwei Möglichkeiten:
 - 1. Richtige Stelle suchen und dann Elemente verschieben.
 - 2. Vertauschungen wie z.B. bei Insertionsort.
- Bei verketteten Listen kann direkt eingefügt werden.

Gesucht: Datenstruktur für effizientes Einfügen von Elementen

- ► Kein Verschieben von Elementen
- ► Suchraum sollte mit jedem Schritt halbiert werden.

Gesucht: Datenstruktur für effizientes Einfügen von Elementen

- ► Kein Verschieben von Elementen
- Suchraum sollte mit jedem Schritt halbiert werden.

Idee:

- Pointerstruktur wie bei verketteten Listen.
- Jedes Element hat zwei Nachfolger:
 - 1. kleinere Elemente
 - 2. größere Elemente
- ▶ i.W. immer noch eine verkettete Liste
 - Struktur reflektiert das Verhalten der Suche.

Definition (Graph)

Ein Graph ist ein Tupel (V, E) mit folgenden Eigenschaften:

- ▶ *V* ist eine Menge von Knoten.
- ▶ $E \subseteq V \times V$ ist eine Menge von Kanten.

Definition (Graph)

Ein Graph ist ein Tupel (V, E) mit folgenden Eigenschaften:

- ▶ *V* ist eine Menge von Knoten.
- ▶ $E \subseteq V \times V$ ist eine Menge von Kanten.

Intuition:

- Knoten sind zu ordnende Objekte (Datensätze).
- Kanten sind Verweise zwischen den Knoten (meist Pointer).
- Unterscheidung: gerichtete und ungerichtete Graphen
 - ▶ Bei ungerichteten Graphen haben Kanten keine Richtung.
 - Zu jeder Kante gibt es eine Kante in die Rückrichtung.

Definition (Baum)

Ein Baum ist ein gerichteter Graph mit folgenden Eigenschaften:

- ▶ Jedes Element hat höchstens einen Vorgänger.
- Es gibt genau ein Element ohne Vorgänger (die Wurzel).

Definition (Baum)

Ein Baum ist ein gerichteter Graph mit folgenden Eigenschaften:

- Jedes Element hat höchstens einen Vorgänger.
- Es gibt genau ein Element ohne Vorgänger (die Wurzel).

Anders ausgedrückt:

"Ein Baum ist ein zusammenhängender gerichteter azyklischer Graph, bei dem jedes Element höchstens einen Vorgänger hat."

Definition (Baum)

Ein Baum ist ein gerichteter Graph mit folgenden Eigenschaften:

- Jedes Element hat höchstens einen Vorgänger.
- Es gibt genau ein Element ohne Vorgänger (die Wurzel).

Anders ausgedrückt:

"Ein Baum ist ein zusammenhängender gerichteter azyklischer Graph, bei dem jedes Element höchstens einen Vorgänger hat."

Definition (Binärbaum)

Ein Binärbaum ist ein Baum, bei dem jedes Element höchstens zwei Nachfolger hat.

Sprechweise

- Nachfolger eines Knotens heißen Kinder.
- Ein Knoten ohne Kinder ist ein Blatt.
- Kinder werden meist in linke und rechte Kinder unterteilt.
- Ein Kind eines Knotes ist die Wurzel eines Teilbaums.

Themenüberblick – Bäume

Bäume

Binäre Suchbäume

Balancierte Bäume

Heaps

Speicherung von Bäumen

Definition (Binärer Suchbaum)

Ein binärer Suchbaum ist ein Binärbaum, für den gilt:

- Jedem Knoten ist ein Schlüssel zugeordnet.
 - ► Auf den Schlüsseln ist eine totale Ordnung definiert.
 - D.h. man kann sie vergleichen.
- Für jeden Knoten gilt die In-Order-Eigenschaft:
 - Die Elemente des linken Teilbaums sind kleiner.
 - Die Elemente des rechten Teilbaums sind größer.

Definition (Binärer Suchbaum)

Ein binärer Suchbaum ist ein Binärbaum, für den gilt:

- Jedem Knoten ist ein Schlüssel zugeordnet.
 - ► Auf den Schlüsseln ist eine totale Ordnung definiert.
 - D.h. man kann sie vergleichen.
- Für jeden Knoten gilt die In-Order-Eigenschaft:
 - Die Elemente des linken Teilbaums sind kleiner.
 - Die Elemente des rechten Teilbaums sind größer.

Motivation

- Oft als Wörterbücher verwendet.
 - ► Suche nach einem Schlüssel liefert dazugehörigen Wert.
- Stichwörter in Programmiersprachen:
 - Map, assoziatives Array, Dictionary, Key-Value-Paare

Suchen von Elementen

Ansatz: Wie bei der binären Suche.

- Steige bei der Suche in den Baum hinab.
- ► Gehe jeweils nach links oder rechts, wenn der gesuchte Wert kleiner oder größer als der aktuelle Knoten ist.
- Ergebnis ist der Wert zum gesuchten Schlüssel.

Suchen von Elementen

Ansatz: Wie bei der binären Suche.

- Steige bei der Suche in den Baum hinab.
- ► Gehe jeweils nach links oder rechts, wenn der gesuchte Wert kleiner oder größer als der aktuelle Knoten ist.
- Ergebnis ist der Wert zum gesuchten Schlüssel.

Algorithmus:

- 1. Starte bei Wurzel.
- 2. Falls aktueller Knoten leer: NICHT GEFUNDEN.
- 3. Vergleiche gesuchten Wert mit Wert des aktuellen Knotens:
 - Falls gleich: **GEFUNDEN**.
 - Falls kleiner: Fahre bei linkem Teilbaum fort.
 - Falls größer: Fahre bei rechtem Teilbaum fort.

Anzeige der Elemente im Baum

- ▶ Ein Baum ist der Vorstellung nach immer noch eine Liste.
- ▶ In welcher Reihenfolge werden die Elemente angezeigt?

Anzeige der Elemente im Baum

- ▶ Ein Baum ist der Vorstellung nach immer noch eine Liste.
- ▶ In welcher Reihenfolge werden die Elemente angezeigt?
- Anzeige in natürlicher Sortierung: In-Order-Durchlauf.
 - Rekursiver Abstieg in den Baum.
 - Die Wurzel wird zwischen den Knoten des linken und des rechten Teilbaumes angezeigt.

Anzeige der Elemente im Baum

- ▶ Ein Baum ist der Vorstellung nach immer noch eine Liste.
- In welcher Reihenfolge werden die Elemente angezeigt?
- Anzeige in natürlicher Sortierung: In-Order-Durchlauf.
 - Rekursiver Abstieg in den Baum.
 - ▶ Die Wurzel wird zwischen den Knoten des linken und des rechten Teilbaumes angezeigt.
- Alternativen: Pre- oder Post-Order-Durchlauf.
 - Die Wurzel wird vor bzw. nach den Knoten des linken und des rechten Teilbaumes angezeigt.

Einfügen von Elementen

Ansatz: Fast wie bei der Suche.

► Steige in den Baum ab, bis der Knoten als linkes oder rechtes Kind angehängt werden kann.

Einfügen von Elementen

Ansatz: Fast wie bei der Suche.

► Steige in den Baum ab, bis der Knoten als linkes oder rechtes Kind angehängt werden kann.

Algorithmus:

- 1. Starte bei Wurzel.
- 2. Falls aktueller Knoten leer, füge neuen Datensatz hier ein.
- 3. Vergleiche neuen Wert mit Wert des aktuellen Knotens:
 - Falls kleiner: Fahre bei linkem Teilbaum fort.
 - Falls größer: Fahre bei rechtem Teilbaum fort.

Löschen eines Elements

Ansatz: Suche den zu löschenden Wert und "überbrücke" Pointer darauf ähnlich wie bei einer verketteten Liste.

▶ Problem: Der gelöschte Knoten könnte zwei Kinder haben.

Löschen eines Elements

Ansatz: Suche den zu löschenden Wert und "überbrücke" Pointer darauf ähnlich wie bei einer verketteten Liste.

- ▶ Problem: Der gelöschte Knoten könnte zwei Kinder haben.
- ► Einfache Lösung: Lösche den gesamten Teilbaum und füge die Kinder nacheinander wieder ein.

Löschen eines Elements

Ansatz: Suche den zu löschenden Wert und "überbrücke" Pointer darauf ähnlich wie bei einer verketteten Liste.

- ▶ Problem: Der gelöschte Knoten könnte zwei Kinder haben.
- ► Einfache Lösung: Lösche den gesamten Teilbaum und füge die Kinder nacheinander wieder ein.
- Besser: Suche In-Order-Nachfolger des gelöschten Knotens und setze diesen stattdessen ein.

Aufgaben:

- 1. Entwerfen Sie eine Datenstruktur für Knoten eines binären Suchbaumes.
 - ▶ Überlegen Sie sich geeignete Typen für Schlüssel und Wert.
 - ▶ Überlegen Sie sich, wie Sie am besten den leeren Knoten repräsentieren.
- 2. Entwerfen Sie eine Datenstruktur für den binären Suchbaum.
- Formulieren Sie Funktionen zum Auffinden, Einfügen und Löschen eines Elements sowie für den In-Order-Durchlauf als C-Code.

Themenüberblick – Bäume

Bäume

Binäre Suchbäume

Balancierte Bäume

Heaps

Speicherung von Bäumen

Zusammenfassung: Eigenschaften von Suchbäumen

- Datenstruktur zum effizienten Speichern von Listen.
- geordnete Speicherung von Werten:
 - Linker Teilbaum enthält kleinere Werte als die Wurzel.
 - Rechter Teilbaum enthält größere Werte als die Wurzel.
- Neue Werte werden direkt an der richtigen Stelle eingefügt.
- Dadurch schnelles Suchen, Einfügen und Löschen von Werten.

Zusammenfassung: Eigenschaften von Suchbäumen

- Datenstruktur zum effizienten Speichern von Listen.
- geordnete Speicherung von Werten:
 - Linker Teilbaum enthält kleinere Werte als die Wurzel.
 - Rechter Teilbaum enthält größere Werte als die Wurzel.
- Neue Werte werden direkt an der richtigen Stelle eingefügt.
- Dadurch schnelles Suchen, Einfügen und Löschen von Werten.

Problem: Bäume können aus der Balance geraten.

- ▶ Neue Elemente werden ggf. nur auf einer Seite angehängt.
- Der Baum wird zu einer einfach verketteten Liste.
- Man spricht von einem entarteten Baum.

Definition (Tiefe eines Knotens in einem Baum)

Die Tiefe eines Knotens ist die Länge des Pfades bis zur Wurzel.

- Die Wurzel hat Tiefe 0.
- ▶ Die Kinder der Wurzel haben Tiefe 1.
- **.** . . .

Definition (Tiefe eines Knotens in einem Baum)

Die Tiefe eines Knotens ist die Länge des Pfades bis zur Wurzel.

- Die Wurzel hat Tiefe 0.
- ▶ Die Kinder der Wurzel haben Tiefe 1.
- **.**..

Definition (Höhe eines Baumes)

Die Höhe eines Baumes ist die maximale Länge eines Pfades von der Wurzel bis zu einem Blatt.

alternativ: Die Höhe ist die maximale Tiefe eines Knotens.

Definition (Balancierter Baum)

Ein Baum ist balanciert, wenn für jeden Knoten gilt, dass sich die Höhe des linken und rechten Teilbaumes höchstens um ein bestimmtes Verhältnis unterscheiden.

Definition (Balancierter Baum)

Ein Baum ist balanciert, wenn für jeden Knoten gilt, dass sich die Höhe des linken und rechten Teilbaumes höchstens um ein bestimmtes Verhältnis unterscheiden.

▶ Dafür muss der Baum ggf. nach Einfügen oder Löschen eines Elements reorganisiert werden.

Definition (Balancierter Baum)

Ein Baum ist balanciert, wenn für jeden Knoten gilt, dass sich die Höhe des linken und rechten Teilbaumes höchstens um ein bestimmtes Verhältnis unterscheiden.

- ▶ Dafür muss der Baum ggf. nach Einfügen oder Löschen eines Elements reorganisiert werden.
- ► Hilfreiches Maß: Balancefaktor bf eines Knotens k.
 - bf(k) ist die Differenz zwischen der Höhe des rechten Teilbaumes und der Höhe des linken Teilbaumes.
 - ▶ bf(k) = h(rechtes Kind) h(linkes Kind)

Aufgabe: Entwerfen Sie Algorithmen, die ...

- 1. ... die Tiefe eines Knotens in einem Baum bestimmen.
- 2. ... die Höhe eines Baumes bestimmen.
- 3. ... den Balancefaktor jedes Knotens ausgeben.

Definition (AVL-Baum)

Ein AVL-Baum ist ein binärer Suchbaum, bei dem der Balancefaktor jedes Knotens im Bereich $\{-1,0,1\}$ liegt.

Definition (AVL-Baum)

Ein AVL-Baum ist ein binärer Suchbaum, bei dem der Balancefaktor jedes Knotens im Bereich $\{-1,0,1\}$ liegt.

Erhaltung der AVL-Eigenschaft

- Beim Einfügen oder Löschen kann die Eigenschaft verloren gehen.
- Der Baum (oder ein Teilbaum) muss rotiert werden.
- Intuitiv: nach rechts Rotieren bedeutet, die Wurzel in den rechten Teilbaum zu verschieben und eine neue Wurzel aus dem linken Teilbaum zu holen.

Rotationsarten (Einfachrotationen)

- Links-Rotation:
 - Wurzel wird in den linken Teilbaum abgesenkt.
 - Rechtes Kind wird die neue Wurzel.
 - Linkes Kind der neuen Wurzel wird zum rechten Kind der alten.

Rotationsarten (Einfachrotationen)

- Links-Rotation:
 - Wurzel wird in den linken Teilbaum abgesenkt.
 - Rechtes Kind wird die neue Wurzel.
 - Linkes Kind der neuen Wurzel wird zum rechten Kind der alten.
- Rechts-Rotation:
 - Wurzel wird in den rechten Teilbaum abgesenkt.
 - Linkes Kind wird die neue Wurzel.
 - Rechtes Kind der neuen Wurzel wird zum linken Kind der alten.

Rotationsarten (Einfachrotationen)

- Links-Rotation:
 - Wurzel wird in den linken Teilbaum abgesenkt.
 - Rechtes Kind wird die neue Wurzel.
 - Linkes Kind der neuen Wurzel wird zum rechten Kind der alten.
- Rechts-Rotation:
 - Wurzel wird in den rechten Teilbaum abgesenkt.
 - Linkes Kind wird die neue Wurzel.
 - Rechtes Kind der neuen Wurzel wird zum linken Kind der alten.

Diese beiden Rotationen stellen die Balance wieder her, wenn das Ungleichgewicht ganz außen im Baum ist.

Ungleichgewichtssituationen

Wir unterscheiden, auf welcher Seite des Baumes das Ungleichgewicht besteht:

Links-Links

- Balancefaktoren der Wurzel und des linken Kindes negativ.
- Balance wird durch Rechtsrotation wieder hergerstellt.

Ungleichgewichtssituationen

Wir unterscheiden, auf welcher Seite des Baumes das Ungleichgewicht besteht:

Links-Links

- Balancefaktoren der Wurzel und des linken Kindes negativ.
- Balance wird durch Rechtsrotation wieder hergerstellt.

Rechts-Rechts

- Balancefaktoren der Wurzel und des rechten Kindes positiv.
- Balance wird durch Linkssrotation wieder hergerstellt.

Ungleichgewichtssituationen

Entsprechend gibt es noch die Situationen *Links-Rechts* und *Rechts-Links*:

Links-Rechts

- Balancefaktor der Wurzel negativ.
- Balancefaktor des linken Kindes positiv.
- Balance wird durch Links-Rechts-Rotation wieder hergerstellt:
 - 1. Linksrotation durch das linke Kind.
 - Rechtsrotation durch die Wurzel.

Ungleichgewichtssituationen

Entsprechend gibt es noch die Situationen *Links-Rechts* und *Rechts-Links*:

Rechts-Links

- Balancefaktor der Wurzel positiv.
- Balancefaktor des rechten Kindes negativ.
- ▶ Balance wird durch Rechts-Links-Rotation wieder hergerstellt:
 - 1. Rechtsrotation durch das rechte Kind.
 - 2. Linksrotation durch die Wurzel.

- ► Einfügen und Löschen wie bisher.
- Dabei zusätzlich Balancefaktoren berechnen.

- ► Einfügen und Löschen wie bisher.
- Dabei zusätzlich Balancefaktoren berechnen.

- ► Einfügen und Löschen wie bisher.
- Dabei zusätzlich Balancefaktoren berechnen.
- ➤ Sobald ein Knoten mit Balancefaktor −2 gefunden wird, linkes Kind prüfen:
 - ▶ Kind hat Balancefaktor −1: Rechtsrotation
 - Kind hat Balancefaktor +1: Links-Rechts-Rotation

- Einfügen und Löschen wie bisher.
- Dabei zusätzlich Balancefaktoren berechnen.
- ➤ Sobald ein Knoten mit Balancefaktor −2 gefunden wird, linkes Kind prüfen:
 - ▶ Kind hat Balancefaktor −1: Rechtsrotation
 - ▶ Kind hat Balancefaktor +1: Links-Rechts-Rotation
- Sobald ein Knoten mit Balancefaktor +2 gefunden wird, rechtes Kind prüfen:
 - Kind hat Balancefaktor +1: Linksrotation
 - ▶ Kind hat Balancefaktor −1: Rechts-Links-Rotation

Weitere Idee: Abschwächung des AVL-Prinzips

► Keine perfekte, sondern näherungsweise Balancierung.

Weitere Idee: Abschwächung des AVL-Prinzips

- Keine perfekte, sondern näherungsweise Balancierung.
- ▶ Idee: Knoten in rot oder schwarz einfärben.
 - Baum ist balanciert, wenn man nur schwarze Knoten betrachtet.
 - Anzahl der roten Knoten ist begrenzt.

Weitere Idee: Abschwächung des AVL-Prinzips

- Keine perfekte, sondern näherungsweise Balancierung.
- ▶ Idee: Knoten in rot oder schwarz einfärben.
 - ▶ Baum ist balanciert, wenn man nur schwarze Knoten betrachtet.
 - Anzahl der roten Knoten ist begrenzt.
- Vorteil: Es muss nicht jedes Mal neu balanciert werden.

Weitere Idee: Abschwächung des AVL-Prinzips

- Keine perfekte, sondern näherungsweise Balancierung.
- ▶ Idee: Knoten in rot oder schwarz einfärben.
 - Baum ist balanciert, wenn man nur schwarze Knoten betrachtet.
 - Anzahl der roten Knoten ist begrenzt.
- Vorteil: Es muss nicht jedes Mal neu balanciert werden.

Definition (Rot-Schwarz-Bäume)

Ein Rot-Schwarz-Baum ist ein Binärbaum, bei dem jeder Knoten eine Farbe (Rot oder Schwarz) hat.

- Jedes Blatt ist schwarz.
- Ein roter Knoten hat nur schwarze Kinder.
- ▶ Jeder Pfad von einem Knoten zu seinen Blättern hat die gleiche Anzahl schwarzer Knoten.

Optimierung des Suchbaumprinzips: B-Bäume

Bei einem B-Baum kann ein Knoten mehr als zwei Kinder haben und mehr als einen Schlüssel tragen.

- ▶ Trägt der Knoten n Schlüssel, so hat er n + 1 Kinder.
- ► Kind 0 enthält Werte, die kleiner sind als der erste Schlüssel.
- Kind 1 enthält Werte, die zwischen erstem und zweitem Schlüssel liegen usw.

Optimierung des Suchbaumprinzips: B-Bäume

Bei einem B-Baum kann ein Knoten mehr als zwei Kinder haben und mehr als einen Schlüssel tragen.

- ▶ Trägt der Knoten n Schlüssel, so hat er n + 1 Kinder.
- ► Kind 0 enthält Werte, die kleiner sind als der erste Schlüssel.
- Kind 1 enthält Werte, die zwischen erstem und zweitem Schlüssel liegen usw.

Eigenschaften

- Die Anzahl der Schlüssel pro Knoten ist variabel
 - ▶ Meist zwischen *n* und 2*n* für vorgegebene Zahl *n*.
- Alle Blätter haben die gleiche Tiefe.
 - ggf. Zusatzschlüssel in inneren Knoten benutzen.

Optimierung des Suchbaumprinzips: B-Bäume

Bei einem B-Baum kann ein Knoten mehr als zwei Kinder haben und mehr als einen Schlüssel tragen.

- ▶ Trägt der Knoten n Schlüssel, so hat er n+1 Kinder.
- ▶ Kind 0 enthält Werte, die kleiner sind als der erste Schlüssel.
- ► Kind 1 enthält Werte, die zwischen erstem und zweitem Schlüssel liegen usw.

Eigenschaften

- Die Anzahl der Schlüssel pro Knoten ist variabel
 - ▶ Meist zwischen *n* und 2*n* für vorgegebene Zahl *n*.
- ► Alle Blätter haben die gleiche Tiefe.
 - ggf. Zusatzschlüssel in inneren Knoten benutzen.

B-Bäume sind eine typische Datenstruktur in Datenbanken und Dateisystemen.

Themenüberblick – Bäume

Bäume

Binäre Suchbäume

Balancierte Bäume

Heaps

Speicherung von Bäumen

Bisheriger Ansatz: Bäume als Listen

- + Suchbaumeigenschaft garantiert korrekte Sortierung.
- + Balancierungsoperationen für schnellen Zugriff.
- Problem: Selbst AVL-Bäume können noch unnötig hoch werden.

Bisheriger Ansatz: Bäume als Listen

- + Suchbaumeigenschaft garantiert korrekte Sortierung.
- + Balancierungsoperationen für schnellen Zugriff.
- Problem: Selbst AVL-Bäume können noch unnötig hoch werden.

Alternatives Gütekriterium: Vollständigkeit

- Versuche, den Baum möglichst perfekt zu balancieren.
- Verzichte dafür auf korrekte Sortierung.
 - Baum sollte immer noch partiell sortiert sein.

Definition (vollständiger Binärbaum)

Ein vollständiger Binärbaum ist ein Binärbaum, bei dem alle Ebenen voll besetzt sind.

Ausnahme: Die unterste Ebene muss nicht vollständig sein. In diesem Fall sind die Knoten von links durchgehend besetzt.

Definition (vollständiger Binärbaum)

Ein vollständiger Binärbaum ist ein Binärbaum, bei dem alle Ebenen voll besetzt sind.

Ausnahme: Die unterste Ebene muss nicht vollständig sein. In diesem Fall sind die Knoten von links durchgehend besetzt.

Intuition

- Jeder Knoten (außer den Blättern) hat zwei Kinder.
- Vollständige Bäume sind der Idealfall: Perfekt balanciert und minimale Suchtiefe.

Definition (Heap)

Ein Heap ist ein vollständiger Binärbaum, bei dem der Wert jedes Knotens kleiner ist als der seiner Kinder.

Beobachtungen

- ▶ Die Wurzel ist das kleinste Element.
- Der Baum ist partiell sortiert: Beim Absteigen werden die Elemente größer.

Definition (Heap)

Ein Heap ist ein vollständiger Binärbaum, bei dem der Wert jedes Knotens kleiner ist als der seiner Kinder.

Beobachtungen

- Die Wurzel ist das kleinste Element.
- Der Baum ist partiell sortiert: Beim Absteigen werden die Elemente größer.

Alternative Definitionen:

- Ein Heap wie oben definiert heißt min-Heap.
- Max-Heap: Die Wurzel ist größer als ihre Kinder.

Verwendung von Listen:

- ► Oft muss nicht auf alle Elemente einer Liste schnell zugegriffen werden.
 - Aufgabenlisten mit Deadlines
 - Priorisierung von Datenverkehr oder Aufgaben
 - Suchalgorithmen (z.B. in Navigationssystemen)
- Nur das Element mit dem geringsten oder höchsten Wert wird sofort gebraucht.
- Solche Datenstrukturen können effizient mit Heaps implementiert werden.

Definition (Priority Queue)

Eine Priority Queue ist ein abstrakter Listen-Datentyp, bei dem jedem Element eine Priorität zugeordnet wird. Operationen:

- insert fügt ein neues Element ein.
- pop liefert das Element mit der niedrigsten/höchsten Priorität und entfernt es aus der Liste.
- Optional: peek bzw. top liefert das höchste Element, ohne es zu entfernen.

Heaps als Priority Queues

- ► Höchstes bzw. niedrigstes Element steht in Wurzel.
- ► Kann ohne jeden Aufwand gefunden werden.
- + Sehr gut als Priority Queue geeignet.

Heaps als Priority Queues

- Höchstes bzw. niedrigstes Element steht in Wurzel.
- Kann ohne jeden Aufwand gefunden werden.
- + Sehr gut als Priority Queue geeignet.

Wie funktionieren insert und pop?

- ▶ Idee: Elemente können ähnlich wie bei Bubblesort durch Vertauschungen auf- und absteigen.
- ▶ insert:
 - 1. Füge neues Element am Ende ein.
 - 2. Lasse Knoten aufsteigen, bis er richtig einsortiert ist.
- pop:
 - 1. Ersetze Wurzel durch letztes Element.
 - 2. Lasse neue Wurzel absinken, bis sie richtig einsortiert ist.

Aufsteigen von Knoten: Die Operation Heapify-Up

```
k := Neuer Knoten
while k < wurzel(k) do
Vertausche k mit wurzel(k)</pre>
```

Wird auch Bubble-Up genannt.

Aufsteigen von Knoten: Die Operation Heapify-Up

```
k := Neuer Knoten
while k < wurzel(k) do
Vertausche k mit wurzel(k)</pre>
```

Wird auch Bubble-Up genannt.

Einsinken von Knoten: Die Operation Heapify-Down

```
k :=Wurzel
while k > eines der Kinder do
Vertausche k mit kleinerem Kind
```

▶ Wird auch Bubble-Down genannt.

Zusammenfassung: Heaps als Priority Queues

- ▶ Niedrigstes/höchstes Element wird sofort gefunden.
- ▶ insert und pop in logarithmischer Zeit möglich.
- ▶ Ähnlich gute Eigenschaften wie Suchbäume.
- + Heap ist immer vollständig.
 - Einfügen und Löschen sogar etwas schneller.
- Kein geordneter Durchlauf durch den Baum möglich.
 - Ungeeignet, wenn Elemente sortiert angezeigt werden sollen.

Heaps als Sortierhilfe

- ► Erinnerung: Selectionsort
 - 1. Suche und entferne kleinstes Element aus alter Liste.
 - 2. Füge Element am Ende in neue Liste ein.
- Optimierung: Speichere alte Liste als Heap.
 - + Schnelleres Auffinden des kleinsten Elements.
- Resultat: Sortierverfahren wird ähnlich schnell wie Quicksort oder Heapsort.

Heapsort

Baue Heap aus Elementen der Liste.

while Heap nicht leer do

Hänge kleinstes Element aus Heap an Liste an.

Entferne kleinstes Element aus Heap.

Themenüberblick – Bäume

Bäume

Binäre Suchbäume

Balancierte Bäume

Heaps

Speicherung von Bäumen

Speicherung von Bäumen

Vollständige Bäume können sehr effizient gespeichert werden.

- Knoten durchnummerieren:
 - Wurzel hat die Nummer 0.
 - ► Hat ein Knoten die Nummer n, so haben seine Kinder 2n + 1 und 2n + 2.

Speicherung von Bäumen

Vollständige Bäume können sehr effizient gespeichert werden.

- Knoten durchnummerieren:
 - Wurzel hat die Nummer 0.
 - ► Hat ein Knoten die Nummer n, so haben seine Kinder 2n + 1 und 2n + 2.
- Ein vollständiger Binärbaum mit n Knoten kann in einem Array der Länge n gespeichert werden.

Speicherung von Bäumen

Vollständige Bäume können sehr effizient gespeichert werden.

- Knoten durchnummerieren:
 - Wurzel hat die Nummer 0.
 - ► Hat ein Knoten die Nummer n, so haben seine Kinder 2n + 1 und 2n + 2.
- Ein vollständiger Binärbaum mit n Knoten kann in einem Array der Länge n gespeichert werden.
- ▶ Dadurch kann z.B. Heapsort in-place sortieren.
 - Achtung: Um den Heap nicht im Array verschieben zu müssen, ist es besser, einen Max-Heap zu verwenden und die Liste vom Ende her aufzubauen.