The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

ST-SSL

Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction

23.10.24

- ➤ 预测的鲁棒性 (Robust) 不足
- ➤ 不考虑空间异质性 (heterogeneity)
- ➤ 无法捕捉时间异质性 (heterogeneity)

- ← 针对数据稀疏、数据尖峰
- ← 容易偏向于交通流量较大的热门区域
- ← 在所有时间段内共享参数空间

(a) Regions with different functions

▶ 针对噪声干扰: 自适应异质性感知<u>数据增广</u>方法 **┤** Ir

Traffic-level

Graph Topology-level

➤ 识别时间和空间异质性: 两个<u>自监督学习任务</u>

空间异质性建模

时间异质性建模

算法实现:问题定义

 \triangleright 空间区域: 城市划分为 $N = I \times J$ 个网格

$$r_n(1 \le n \le N)$$
 $\mathcal{V} = \{r_1, \dots, r_N\}$

 \mathcal{L} 交通流量图 TFG: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{A}, \mathcal{X}_{t-T:t})$ (流入和流出流量) $\mathcal{X}_{t-T:t} \in \mathbb{R}^{T \times N \times 2} = (\mathbf{X}_{t-T}, \dots, \mathbf{X}_{t}).$

▶ 问题描述: 用过去 t 个预测未来 t + 1 个时间步

算法实现:整体结构

算法实现: ST-Encoder

> 时间相关性(TC): 具有门控机制的沿时间维度的<u>一维因果卷积</u> $(B_{t-T_{out}},...,B_{t}) = \mathrm{TC}(X_{t-T},...,X_{t}),$

ightharpoonup 空间(地理)相关性(SC):空间图卷积(ChebNet) $E_t = \mathrm{SC}\left(B_t, A\right)$.

 \triangleright 三明治结构: $TC \rightarrow SC \rightarrow TC$

ightharpoonup 最终输出:时间维度降为1, $oldsymbol{H} \in \mathbb{R}^{N imes D}$

算法实现:由异质性指导的**自适应图增广**

▶ 异质性度量:

• 聚合权重
$$p_{\tau,n} = \boldsymbol{b}_{\tau,n}^{\top} \cdot \boldsymbol{w}_0.$$

$$oldsymbol{u}_n = \sum_{ au = t-T}^t p_{ au,n} \cdot oldsymbol{b}_{ au,n}$$

两个区域之间的异质性

$$q_{m,n} = rac{oldsymbol{u}_m^ op oldsymbol{u}_n}{\|oldsymbol{u}_m\|\|oldsymbol{u}_n\|}.$$

算法实现:数据增广

➤ Traffic-level Augmentation: 用伯努利概率判断是否mask掉数据扰动

$$ho_{ au,n} \sim Bern(1-p_{ au,n})$$

> Graph Topology-level Augmentation:

・ 地理相邻
$$ho_{m,n} \sim Bern(1-q_{m,n})$$

• 地理不相邻 $ho_{m,n} \sim Bern(q_{m,n})$

$$ilde{\mathcal{G}} = (\mathcal{V}, ilde{\mathcal{E}}, ilde{A}, ilde{\mathcal{X}}_{t-T:t})$$

算法实现:空间异质性建模

- ▶ 基于软聚类的区域自监督学习(SSL)任务
 - K个聚类

$$\{c_1,\dots,c_K\}$$
 , $ilde{z}_{n,k}=c_k^ op ilde{h}_n$ $ilde{z}_n=(ilde{z}_{n,1},\dots, ilde{z}_{n,K})$

从原始TFG编码的区域嵌入预测不同城市区域功能的聚类分配。

$$\hat{oldsymbol{z}}_{n,k} = oldsymbol{c}_k^ op oldsymbol{h}_n \qquad \mathcal{L}_s = \sum_{n=1}^N l(h_n, ilde{oldsymbol{z}}_n) = \sum_{n=1}^N \sum_k ilde{oldsymbol{z}}_{n,k} \log rac{\exp{(\hat{oldsymbol{z}}_{n,k}/\gamma)}}{\sum_j \exp{(\hat{oldsymbol{z}}_{n,j}/\gamma)}}$$

算法实现:空间异质性建模

- ▶ 基于软聚类的区域自监督学习(SSL)任务
 - 自监督学习任务

从原始TFG编码的区域嵌入预测不同城市区域功能的聚类分配。

$$\hat{oldsymbol{z}}_{n,k} = oldsymbol{c}_k^ op oldsymbol{h}_n \qquad \mathcal{L}_s = \sum_{n=1}^N l(h_n, ilde{oldsymbol{z}}_n) = \sum_{n=1}^N \sum_k ilde{oldsymbol{z}}_{n,k} \log rac{\exp{(\hat{oldsymbol{z}}_{n,k}/\gamma)}}{\sum_j \exp{(\hat{oldsymbol{z}}_{n,j}/\gamma)}}$$

- ①聚类分配矩阵不能保证每个区域的簇分配总和为1
- ②避免每个区域具有相同分配的平凡解

$$ilde{\mathcal{Z}} = \{ ilde{Z} \in \mathbb{R}_+^{N imes K} | ilde{Z} 1_K = 1_N, ilde{Z} 1_N = rac{N}{K} 1_K \}$$

算法实现: 时间异质性建模

$$egin{aligned} v_{t,n} &= w_i \odot h_{t,n} + w_2 \odot ilde{h}_{t,n} \ s_t &= \sigma(rac{1}{N} \sum_{n=1}^N v_{t,n}) \end{aligned}$$

- ▶ positive pairs: 同一时间步的区域级和城市级嵌入
- ➤ negative pairs: 不同时间步的区域级和城市级嵌入

$$\mathcal{L}_t = -(\sum_{n=1}^N \log g(v_{t,n}, s_t) + \sum_{n=1}^N \log \left(1 - g(v_{t',n}, s_t)
ight))$$

算法实现: 训练过程

04 实验部分

RQ1: 与各种基线相比, ST-SSL的整体交通预测性能如何?

RQ2: 设计的不同子模块如何有助于模型性能?

RQ3: ST-SSL在异质空间区域和不同时间段上的表现如何?

RQ4: 增强图和学习表示如何使模型受益?

Data type	Bike	rental	Taxi GPS		
Dataset	NYCBike1	NYCBike2	NYCTaxi	BJTaxi	
Time interval	1 hour	30 min	30 min	30 min	
# regions	16×8	10×20	10×20	32×32	
# taxis/bikes	6.8k+	2.6m+	22m+	34k+	

Table 1: Statistics of Datasets.

实验部分: 对比实验

Dataset	Metric	Type	ARIMA	SVR	ST-ResNet	STGCN	GMAN	AGCRN	STSGCN	STFGNN	ST-SSL
NYCBike1	MAE	In	10.66	7.27	5.53±0.06	5.33±0.02	6.77±3.42	5.17±0.03	5.81±0.04	6.53±0.10	4.94±0.02
		Out	11.33	7.98	5.74±0.07	5.59±0.03	7.17±3.61	5.47±0.03	6.10±0.04	6.79±0.08	5.26±0.02
	MAPE	In	33.05	25.39	25.46±0.20	26.92±0.08	31.72±12.29	25.59±0.22	26.51±0.32	32.14 ± 0.23	23.69±0.11
		Out	35.03	27.42	26.36±0.50	27.69±0.14	34.74±17.04	26.63±0.30	27.56±0.39	32.88±0.19	24.60±0.27
NYCBike2	MAE	In	8.91	12.82	5.63±0.14	5.21±0.02	5.24±0.13	5.18±0.03	5.25±0.03	5.80±0.10	5.04±0.03
		Out	8.70	11.48	5.26±0.08	4.92 ± 0.02	4.97 ± 0.14	4.79±0.04	4.94 ± 0.05	5.51±0.11	4.71±0.02
	MAPE	In	28.86	46.52	32.17±0.85	27.73±0.16	27.38±1.13	27.14±0.14	29.26±0.13	30.73±0.49	22.54±0.10
		Out	28.22	41.91	30.48±0.86	26.83±0.21	26.75±1.14	26.17±0.22	28.02±0.23	29.98±0.46	21.17±0.13
NYCTaxi	MAE	In	20.86	52.16	13.48±0.14	13.12±0.04	15.09±0.61	12.13±0.11	13.69±0.11	16.25±0.38	11.99±0.12
		Out	16.80	41.71	10.78±0.25	10.35±0.03	12.06±0.39	9.87±0.04	10.75±0.17	12.47±0.25	9.78±0.09
	MAPE	In	21.49	65.10	24.83±0.55	21.01±0.18	22.73±1.20	18.78±0.04	22.91±0.44	24.01±0.30	16.38±0.10
		Out	21.23	64.06	24.42±0.52	20.78±0.16	21.97±0.86	18.41±0.21	22.37±0.16	23.28±0.47	16.86±0.23
BJTaxi	MAE	In	21.48	52.77	12.12±0.11	12.34±0.09	13.13±0.43	12.30±0.06	12.72±0.03	13.83±0.04	11.31±0.03
		Out	21.60	52.74	12.16±0.12	12.41±0.08	13.20 ± 0.43	12.38±0.06	12.79±0.03	13.89±0.04	11.40±0.02
	MAPE	In	23.12	65.51	15.50±0.26	16.66±0.21	18.67±0.99	15.61±0.15	17.22±0.17	19.29±0.07	15.03±0.13
		Out	20.67	65.51	15.57±0.26	16.76±0.22	18.84±1.04	15.75±0.15	17.35±0.17	19.41±0.07	15.19±0.15

实验部分: 消融实验

Figure 4: Ablation study of our proposed ST-SSL.

实验部分: 对于异质性的预测性能

(a) Spatial clusters

Type	Time period	Category (id)
y	7:00-10:00	Morning (0)
Workday	10:00-17:00	Regular (1)
Vor	17:00-20:00	Evening (2)
Λ	20:00-7:00	Night (3)
Holiday	9:00-22:00	Day (4)
Hol	22:00-9:00	Night (5)

(c) Temporal categories

(b) Spatial performance

(d) Temporal performance

实验部分: 鲁棒性

Figure 6: Case study on the adaptive graph augmentation.

Figure 7: t-SNE visualization of embeddings on BJTaxi.

谢谢观看

MANY THANKS!

23.10.24

