README.pt-br.md - Grip http://localhost:6419/

Dados e ciência para a tomada de decisões em águas transfronteiriças na América

README.pt-br.md - Grip

Latina e no Caribe (ALC)

Traducir Español Translate English

Resumo

Este repositório contém a agenda, instruções de instalação e materiais de treinamento para o workshop do Grupo de Trabalho Interagências sobre Água (ISAT), *Capacitação em ferramentas e metodologias cientificamente sólidas para GIRH na Bacia do Prata: Acesso a dados.* Este workshop foi realizado em Buenos Aires em novembro de 2022, e foi organizado em parceria com a Organização dos Estados Americanos (OEA) e o Comité Intergubernamental Coordinador de los Países de la Cuenca del Plata (CIC).

O Índice Analítico

- 1. Agenda de Treinamento
- 2. Instruções de Instalação
- â 2.1. Requisitos
- â 2.2. Instalar Miniconda
- â 2.3. Baixe os materiais de treinamento
- â 2.4. Criar ambiente conda
- â 2.5. Testar a instalação
- â 2.6. Atualizando o software Conda
- 3. Recursos Úteis
- 4. Reconhecimentos

1. Agenda de Treinamento

▼ Clique para ocultar a agenda

Dia 1: Segunda-feira, 14 de Novembro

Apresentações

Hora	Título e tópicos	Tipo
09:00-10:30	Sessão de abertura	Discussão
10:30-11:30	Pausa	
11:00-12:00	Introdução à parceria ISAT	Discussão
12:00-1:00	Almoço	

Sessão 1: Introdução ao Sensoriamento Remoto Hidrológico

Hora	Título e tópicos	Tipo
1:00-2:00	Fundamentos de Sensoriamento Remoto	Apresentação
2:00-3:00	Visão geral do sensoriamento remoto de cobertura do solo	Apresentação
3:00-3:30	Pausa	
3:30-4:30	Acessando e Examinando a Cobertura da Terra	Exercício
4:30-5:00	Discussão de fim de dia	Discussão
5:30-6:15	Recepção de boas-vindas no dia de abertura	Evento

Dia 2: Terça-feira, 15 de Novembro

Sessão 2A: precipitação

Hora	Título e tópicos	Tipo
09:00-09:15	Bem-vindo/Agenda	Discussão
09:15-10:00	Visão geral da missão do GPM	Apresentação
10:00-11:00	Análise e discussão de precipitação	Exercício
11:00-11:30	Pausa	
11:30-12:00	Introdução ao MODIS	Apresentação
12:00-1:00	Acessar & Análise do MODIS NDVI	Exercício

1:00-2:00	Almoço
-----------	--------

Sessão 2B: Umidade do Solo & Evapotranspiração

Hora	Título e tópicos	Tipo
2:00-2:30	Introdução ao SMAP	Apresentação
2:30-3:30	Acesso a dados SMAP & Análise	Exercício
3:30-4:00	Pausa	
4:00-4:30	Introdução ao acesso à evapotranspiração	Apresentação
4:30-5:00	Acessar ET baseado em Landsat	Exercício
5:00-5:30	Perguntas/Discussão de fim de dia	Discussão

Dia 3: Quarta-feira, 16 de Novembro

Sessão 3A: Altura da água / Extensão aérea

Hora	Título e tópicos	Tipo
09:00-09:15	Bem-vindo/Agenda	Discussão
09:15-10:00	Introdução ao MOGWAI	Apresentação
10:00-11:00	Exemplo MOGWAI	Exercício
11:00-11:30	Pausa	
11:30-12:00	Introdução à AWS	Apresentação
12:00-12:30	Perguntas e respostas	Discussão
12:30-1:30	Almoço	

Sessão 3B: Qualidade da Água

Hora	Título e tópicos	Tipo
1:30-2:00	Índice de Saúde de Água Doce (FHI)	Apresentação

2:00-2:30	Introdução ao Sensoriamento Remoto da Qualidade da Água	Apresentação
2:30-3:00	Pausa	
3:00-4:00	Aplicativos de sensoriamento remoto da qualidade da água	Exercício
4:00-4:30	Perguntas e respostas	Discussão
4:30-5:00	Perguntas/Discussão de fim de dia	Discussão

Dia 4: Quinta-feira, 17 de Novembro

Visita de campo		
Hora	Título e tópicos	Tipo
08:00-12:00	Laboratório e visita de campo da INA	Visita de campo
1:00-2:00	Almoço	

Sessão 4: Introdução à modelagem de superfície terrestre

Hora	Título e tópicos	Tipo
2:00-2:45	Visão geral da assimilação global de dados terrestres (GLDAS)	Apresentação
2:45-3:30	Resumo dos componentes do orçamento de águas superficiais	Apresentação
3:30-4:00	Pausa	
4:00-5:00	Acessar & Análise do escoamento GLDAS	Exercício
5:00-5:30	Perguntas/Discussão de fim de dia	Discussão

Dia 5: Sexta-feira, 18 de Novembro

Sessão 5A: Introdução às estruturas de modelagem

Hora	Título e tópicos	Tipo
09:00-10:30	Sistema de Apoio à Decisão La Plata (SSTD)	Discussão
10:30-11:00	Pausa	
11:00-12:00	Introdução ao SWAT-Online & Acesso NASA	Apresentação
12:00-1:00	Introdução ao Sistema de Modelagem Hidrológica (HEC-HMS) e ao Sistema de Informação de Terras (LIS)	Apresentação
1:00-2:00	Almoço	

Sessão 5B: Debrief & Direções futuras

Hora	Título e tópicos	Tipo
2:00-3:00	Estudo de caso DSS: Lima, Peru	Apresentação
3:00-4:00	Debrief de treinamento (reflexões sobre a semana, instruções para treinamentos futuros)	Discussão
4:00	Fechar	Discussão

2. Instruções de Instalação

2.1. Requisitos

Sistema operacional:

- Windows 8 ou mais recente, 64-bits
- macOS 10.13+
 - o Se você não tiver certeza de qual chip você possui (Intel vs. M1), verifique aqui.
- Mínimo de 5 GB de espaço em disco para baixar e instalar

2.2. Instalar Miniconda

Anaconda é um pacote de código aberto e sistema de gerenciamento de ambiente que é executado no Windows, macOS e Linux. O Conda instala, executa e atualiza rapidamente os pacotes e suas dependências. Ele também cria, salva, carrega e alterna facilmente entre ambientes em seu computador local. Ele foi criado para programas Python, mas pode empacotar e distribuir software para qualquer linguagem. Este treinamento usará uma instalação simplificada chamada *Miniconda*.

 Navegue até a página de instalação e baixe o instalador para seu sistema operacional.

Instaladores do Windows

Instaladores do Mac OS. Para usuários do Mac OS, escolha a opção do instalador pkg.

- 2. Vá para a pasta Downloads e clique duas vezes no instalador para iniciar.
- 3. Leia os termos de licenciamento e clique em I Agree.
- 4. Selecione o Tipo de Instalação. No Windows, é recomendável que você instale o **Just Me**, pois isso não requer direitos de administrador. Para usuários do Mac OS, escolha a opção "Standard Install":

5. Para instalações do Windows, selecione uma pasta de destino para instalar o Miniconda e clique em *Avançar*.

6. Escolha se deseja adicionar o Miniconda à sua variável de ambiente PATH ou registrar o Miniconda como seu Python padrão. Nós **não recomendamos** adicionar o Miniconda à sua variável de ambiente PATH, pois isso pode interferir em outros softwares.

7. Clique em **Instalar**. Se você quiser ver os pacotes que o Miniconda está instalando, clique em Mostrar detalhes.

2.3. Baixe os materiais de treinamento

1. Abra a janela do terminal ("Anaconda Prompt" no Windows, "Terminal" no Mac)

2. Instale o *git* pelo terminal. Isso permite que seu computador baixe os materiais de treinamento hospedados no Github:

conda config --add channels conda-forge
conda install -c conda-forge git

Quando solicitado a continuar, digite "y"

3. Navegue até o diretório de trabalho desejado (por exemplo, "C:\Users \Name\Documents"):

cd Documents

4. Clonar o repositório para o diretório de trabalho:

git clone https://github.com/pcoddo/ISAT-Training-LaPlata.git

2.4. Criar ambiente Conda

Crie um ambiente conda usando o arquivo environment.yml fornecido:

conda env create -f environment.yml

Este ambiente deve instalar todos os softwares e pacotes necessários para o treinamento. Dependendo da velocidade da Internet e do processador, **isso pode levar vários minutos**.

Ativar novo ambiente:

conda activate plata

O terminal agora deve exibir o ambiente ativado:

2.5. Testar a instalação

Verifique se o QGIS foi instalado com sucesso:

qgis

O aplicativo deve abrir em uma nova janela. Feito isso, tente abrir o arquivo de mapa Cuenca-del-Plata_Map.qgz:

2.6. Atualizando o software Conda

Os apresentadores podem fazer atualizações neste repositório à medida que o workshop avança. Para garantir que você tenha a versão mais recente dos materiais, talvez seja necessário atualizar seus arquivos locais com as alterações recentes.

1. Primeiro, certifique-se de que o ambiente "plata" esteja ativado:

conda activate plata

- 2. Em seguida, navegue até a pasta de treinamento (por exemplo, "C:\Users \Name\Documents\ISAT-Training-LaPlata") e baixe os arquivos mais recentes:
- cd Documents
- cd ISAT-Training-LaPlata
- 3. Por fim, baixe os arquivos mais recentes:

git pull

3. Recursos Úteis

README.pt-br.md - Grip http://localhost:6419/

Fontes de dados diretas

- USGS Earth Explorer
 - Landsat
 - Sentinel-2
 - SRTM
- Copernicus Open Access Hub
 - Sentinel-1 Synthetic Aperture Radar (SAR)
 - o Sentinel-2
 - Sentinel-3
 - Sentinel-5P
- NASA EARTHDATA
 - Alaska Satellite Facility, a source for current and historic RADAR data
- GEO on AWS

Visualizadores de dados e Imagens

- NASA Worldview
 - Satellite data
- NOAA View
 - Ocean, land and atmospheric data
- Resource Watch
 - Hundreds of data sets on the state of the planet's resources and citizens
- Global Forest Watch
 - Data, technology and tools tobetter protect forests

Fontes de imagens Comercial

- Google Earth Engine
 - Cloud-based implementation with dozens of available datasets
- Planet
 - High temporal resolution
 - Relatively high spatial resolution
 - Relatively low spectral resolution
- Maxar
 - High resolution RGB and synthetic-aperture radar data.
- Iceye

README.pt-br.md - Grip

o High spatial and temporal resolution synthetic-aperture radar data

http://localhost:6419/

• Airbus

High resolution RGB and synthetic-aperture radar imagery.

Blacksky

- Plan for high temporal resolution
- Relatively high spatial resolution
- Relatively low spectral resolution

Algumas das fontes acima foram extraídas do repositório nicar20-imagery-sources por [Tim Wallace] (https://github.com /timwallace)

4. Reconhecimentos

Esses materiais baseiam-se em treinamentos anteriores desenvolvidos pelo Programa NASA Advanced Remote Sensing Training (ARSET). Agradecimentos especiais ao Dr. Amita Mehta, Dr. Erika Podest, Dr. Ana Prados e o restante da equipe ARSET por fornecer esses materiais! Obrigado também a Aarti Arora por ajudar a desenhar a agenda da reunião.

(Back to top)