

Chapter 1

Introduction to Chemistry

The Science of Chemistry: Observations, Models, and Systems

- Chemistry is an empirical science and is studied by:
 - Measuring physical properties and observing chemical reactions
 - Creating models to explain observations and organizing collected data

Observations in Science

- Observations are recorded via measurements
 - Accuracy: How close the observed value is to the "true" value
 - Precision: The spread in values obtained from measurements

Observations in Science

- Measurements can have poor precision and poor accuracy
 - Darts are widely scattered and far away from the target

Observations in Science

- Measurements can have good precision and poor accuracy
 - Darts are clustered together but are clustered far from the bull's-eye

Observations in Science)

- Measurements can have good precision and good accuracy
 - Darts are clustered together and close to the target

Numbers and Measurements in Chemistry

- Chemists quantify data, expressing collected data with units and significant figures
 - Units: Designate the type of quantity measured
 - Prefixes: Provide scale to a base unit
 - Significant Figures: Indicate the amount of information that is reliable when discussing a measurement

Units

Property	Unit, with Abbreviation	
Mass	kilogram, kg	
Time	second, s	
Distance	meter, m	
Electric current	ampere, A	
Temperature	Kelvin, K	
Number of particles	mole, mol	
Light intensity	candela, cd	

- Base unit designates the type of quantity being measured
- SI units are the base units of science
- Some units comprise combinations of these base units and are termed derived units
 - $1J = 1 \text{ kg m}^2 \text{ s}^{-2}$

Units

 Prefixes are used with base units to report and understand quantities of any size

Factor	Name	Symbol	Factor	Name	Symbol
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
1018	exa	E	10^{-3}	milli	m
1015	peta	P	10^{-6}	micro	μ
1012	tera	T	10^{-9}	nano	n
109	giga	G	10^{-12}	pico	p
106	mega	M	10^{-15}	femto	f
10 ³	kilo	k	10^{-18}	atto	a
10 ²	hecto	h	10^{-21}	zepto	Z
10^{1}	deka	da	10^{-24}	yocto	у

Prefixes are based on multiples of 10

Temperature

 Temperature is measured using the Fahrenheit, Celsius, and Kelvin temperature scales

Temperature Scale Conversions

$$^{\circ}F = (1.8 \times ^{\circ}C) + 32$$
 $^{\circ}C = (^{\circ}F - 32)/1.8$
 $K = ^{\circ}C + 273.15$
 $^{\circ}C = K - 273.15$

Numbers and Significant Figures

- All digits reported are considered significant except for certain types of zeros
 - Trailing and Leading zeroes are not significant
 - 51,300 m: 3 significant figures
 - 0.043 g: 2 significant figures
 - A zero is significant when it follows a decimal point or when it occurs between other significant figures
 - 4.30 mL: 3 significant figures
 - 304.2 kg: 4 significant figures
 - All numbers are significant when written in correct scientific notation

Numbers and Significant Figures

- Scientific notation is used to easily write very small and very large numbers
 - Numbers written using scientific notation factor out all powers of ten

$$54,000 = 5.4 \times 10^4$$

$$0.000042 = 4.2 \times 10^{-5}$$

Example Problem 1.2

 An alloy contains 1.05% of some impurity. How many significant figures are reported in this value?

3

Numbers and Significant Figures (3 of 4)

- For calculated values, the number of significant figures should be consistent with the data used in the calculation
 - For multiplication and division, the number of significant figures in a result must be the same as the number of significant figures in the factor with the fewest significant figures

$$0.24 \text{ kg} \times 4621 \text{ m} = 1100 \text{ kg m or } 1.1 \times 10^3 \text{ kg m}$$

 For addition and subtraction, the result must have the same number of decimal places as the quantity with the fewest decimal places.

Example Problem 1.3

- Report the result for the indicated arithmetic operations using the correct number of significant figures. Assume all values are measurements and not exact numbers.
 - 4.30×0.31
 - \bullet 4.033 + 88.1
 - $5.6/1.732\times10^4$

Numbers and Significant Figures

- When counting discrete objects, the result has no ambiguity
 - Such measurements use exact numbers
 - They have infinite significant figures
 - Two pennies would be 2.000000...
 - Exactly defined terms, such as metric prefixes, are also considered exact numbers

Ratios in Chemistry Calculations

- Mass Density: Ratio of an object's mass to its volume
 - Temperature and compound specific
 - Allows conversion between mass and volume

$$346 \text{ L} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{0.975 \text{ g}}{1 \text{ mL}} = 3.37 \times 10^5 \text{ g}$$

- Units of measurement can be used to determine how to write the appropriate ratio by "canceling"out
 - This type of reasoning is called dimensional analysis or the factor-label method

Example Problem 1.5

What is the wavelength, in meters, of orange light of wavelength 615 nm?

Example Problem 1.6

 The density of water at 25°C is 0.997 g per mL. A child's swimming pool holds 346 L of water at this temperature. What mass of water is in the pool?

$$M = P. V$$
= 0.997 × 346×/000
$$= 3.44962 \times 10^{5} g$$

