Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

> Go to next item

1. The function

1/1 point

$$\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
 \mathbf{y}\beta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{y}

is

positive definite

⊘ Correct

Yes, the matrix has only positive eigenvalues and $\beta(\mathbf{x},\mathbf{x})>0$ for all $\mathbf{x}=\mathbf{0}$ and $\beta(\mathbf{x},\mathbf{x})=0 \iff \mathbf{x}=\mathbf{0}$

- symmetric
- **⊘** Correct

Yes:
$$\beta(\mathbf{x}, \mathbf{y}) = \beta(\mathbf{y}, \mathbf{x})$$

- not an inner product
- not bilinear
- not positive definite
- an inner product

It's symmetric, bilinear and positive definite. Therefore, it is a valid inner product.

✓ bilinear

Yes:

- eta is symmetric. Therefore, we only need to show linearity in one argument.
- For any $\lambda \in R$ it holds that $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.
- not symmetric

2. The function

1 / 1 point

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 \mathbf{y}\beta(x, y) = $\mathbf{x}^T \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{y}$

is

✓ bilinear

Correct:

- β is symmetric. Therefore, we only need to show linearity in one argument.
- $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.
- not bilinear
- an inner product
- not an inner product
- **⊘** Correct

Correct: Since β is not positive definite, it cannot be an inner product.

- not symmetric
- positive definite
- symmetric
 - **⊘** Correct

Correct: $\beta(\mathbf{x}, \mathbf{y}) = \beta(\mathbf{y}, \mathbf{x})$

- not positive definite
- Correct With $x = [1, 1]^T$ we get $\beta(\mathbf{x}, \mathbf{x}) = 0$. Therefore β is not positive definite.

3. The function 1/1 point

$$\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$$
 \mathbf{y}\beta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{y}

is

- symmetric
- not symmetric
- Correct Correct: If we take $\mathbf{x} = [1, 1]^T$ and $\mathbf{y} = [2, -1]^T$ then $\beta(\mathbf{x}, \mathbf{y}) = 0$ but $\beta(\mathbf{y}, \mathbf{x}) = 6$. Therefore, β is not symmetric.
- **✓** bilinear
- ✓ Correct
 Correct

	not bilinear
	an inner product
~	not an inner product
(-	Correct Correct: Symmetry is violated.

4. The function 1/1 point

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 \mathbf{y}\beta(x,y) = $\mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{y}$

is

an inner product

⊘ Correct

It is the dot product, which we know already. Therefore, it is also an inner product.

- symmetric
- **⊘** Correct

It is the dot product, which we know already. Therefore, it is symmetric.

- positive definite
- **⊘** Correct

It is the dot product, which we know already. Therefore, it is positive definite.

- not positive definite
- **✓** bilinear
- ✓ Correct

It is the dot product, which we know already. Therefore, it is positive bilinear.

- not an inner product
- not bilinear
- not symmetric
- 5. For any two vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^2$ write a short piece of code that defines a valid inner product.

1/1 point

```
import numpy as np

def dot(a, b):

"""Compute dot product between a and b.

Args:
    a, b: (2,) ndarray as R^2 vectors

Returns:
    a number which is the dot product between a, b

"""

dot_product = np.dot(a,b)
```

