CHALMERS – Space, Earth and Environment

RRY100 – Satellite Communications 2024

Homework 1

Deadline 2024-09-13, 07:59

A scientific mission on the Moon sends research data to Earth via a communication link using a parabolic antenna of diameter d=1 m with aperture efficiency of $\eta=0.6$. The transmitter on the Moon has an output power of $P_t=1$ W and uses a frequency of f=2.4 GHz.

Questions:

- 1. Calculate $G_{\rm max}$, the maximum gain of the transmitting antenna on the Moon, and its half-power beam width (HPBW), often also called $\theta_{\rm 3dB}$.
- 2. What is the power flux density F on the Earth surface when the transmitter on the Moon is
 - (a) operating with full output power?
 - (b) with 3 dB output back off (OBO)?

Do these calculations for both the minimum and maximum distance between the Earth and Moon, i.e. $R_{\rm min}=362570~{\rm km}$ and $R_{\rm max}=405410~{\rm km}$.

- 3. Calculate the path loss $L_{\rm path}$ in dB for an average Earth–Moon distance, i.e. R=400000 km. What would the pathloss be if the transmitting frequency was changed from 2.4 GHz to 6.3 GHz?
- 4. Assume that you can achieve a system noise temperature of $T_{\rm sys}=200~{\rm K}$ for a receiving system at $f=2.4~{\rm GHz}$ at a receiving station on Earth and that can build a parabolic reflector with an aperture efficiency of $\eta=0.7$. What is the necessary diameter d of a parabolic reflector at the Earth station in order to achieve a minimum carrier-to-noise-ratio (C/N) of 6 dB for a bandwidth of $B=10~{\rm MHz}$?