

Computer Vision

Image formation

School of Electronic & Electrical Engineering

Sungkyunkwan University

Hyunjin Park

Geometric Camera Models

Factors in image formation

Geometry

Relationship between points in the 3D world and their images

Radiometry

- Relationship between the amount of light radiating from a surface and the amount of incident at its image
- Measurement of optical radiation (ultraviolet, visible and infrared)

Photometry

- Ways of measuring the intensity of light
- Measurement of light that is detectable by human eye

Digitization

Ways of converting continuous signals to digital approximations

Basic: Geometric primitives

2D points

•
$$\mathbf{x} = (x, y) \in \mathbb{R}^2$$

2D lines

•
$$\overline{x} \cdot \overline{l} = ax + by + c = 0$$

•
$$\bar{l} = (a, b, c)$$

3D points

•
$$\overline{x} = (\overline{x}, \overline{y}, \overline{z}, \overline{w})$$

3D planes

•
$$\overline{x} \cdot \overline{m} = ax + by + cz + d = 0$$

•
$$\bar{\boldsymbol{m}} = (a, b, c, d)$$

3D lines

•
$$r = (1 - \lambda)p + \lambda q$$

Basic: Transformations

변환	동차 행렬 İ	설명
공()	$T(t_y, t_x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_y & t_x & 1 \end{pmatrix}$	<i>y</i> 방향으로 <i>t_y, x</i> 방향으로 <i>t_x</i> 만큼 이동
회전	$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$	원점을 중심으로 시계방향으로 <i>0</i> 만큼 회전
크기	$S(s_y, s_x) = \begin{pmatrix} s_y & 0 & 0 \\ 0 & s_x & 0 \\ 0 & 0 & 1 \end{pmatrix}$	y방향으로 s,, x방향으로 s,만큼 확대
기울임	$Sh_{y}(h_{y}) = \begin{pmatrix} 1 & 0 & 0 \\ h_{y} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, Sh_{x}(h_{x}) = \begin{pmatrix} 1 & h_{x} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	Sh_y : y 방향으로 h_y 만큼 기울임 Sh_x : x 방향으로 h_x 만큼 기울임

Basic: Transformations

2D transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t\end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c} \boldsymbol{R} & t\end{array}\right]_{2\times 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$	4	angles	\Diamond
affine	$\left[\begin{array}{c}A\end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

3D transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} I \mid t \end{bmatrix}_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c} \boldsymbol{R} & t\end{array}\right]_{3\times4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{3 \times 4}$	7	angles	\Diamond
affine	$\begin{bmatrix} A \end{bmatrix}_{3\times4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes4}$	15	straight lines	

Pinhole camera model

- Pinhole camera
 - A simple model to approximate imaging process, perspective projection

Pinhole camera model

- Pinhole camera
 - Box with a small hole in it
 - Only one ray from any given point can enter the camera
 - When 3D world is projected to 2D, image is inverted

Distant objects are smaller

Distant objects are smaller

Parallel lines intersect in the image: Vanishing points

Parallel lines intersect in the image: Vanishing points

Perspective equations

3D world is mapped to 2D image

$$(x, y, z) \rightarrow \left(f'\frac{x}{z}, f'\frac{y}{z}\right)$$

Scene point → Image coordinates

Perspective equations

3D world is mapped to 2D image

$$\overline{OP'} = \lambda \overline{OP} \Leftrightarrow y' = \lambda y \Leftrightarrow \lambda = \frac{x'}{x} = \frac{y'}{y} = \frac{z'}{z}$$
$$z' = \lambda z$$

$$(x', y') = \left(f'\frac{x}{z}, f'\frac{y}{z}\right)$$
i.e., $P' = \left(f'\frac{x}{z}, f'\frac{y}{z}, f'\right)$

i.e.,
$$P' = \left(f'\frac{x}{z}, f'\frac{y}{z}, f'\right)$$

Homogeneous coordinates

$$(x', y') = \left(f'\frac{x}{z}, f'\frac{y}{z}\right)$$

i.e., $P' = \left(f'\frac{x}{z}, f'\frac{y}{z}, f'\right)$

i.e.,
$$P' = \left(f'\frac{x}{z}, f'\frac{y}{z}, f'\right)$$

- Is this a linear transformation?
 - NO!
 - It is a non-linear transformation because it was divided by z

Homogeneous coordinates

Introduce an extra coordinate representing scale

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Homogeneous image coordinates

Homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow \left(\frac{x}{w}, \frac{y}{w}\right)$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow \left(\frac{x}{w}, \frac{y}{w}\right) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)$$

Homogeneous coordinates

Turn previous expression into homogeneous coordinates

$$(x',y') = \left(f'\frac{x}{z},f'\frac{y}{z}\right)$$

$$\Rightarrow (x', y', 1) = \left(f'\frac{x}{z}, f'\frac{y}{z}, 1\right) = \left(x, y, \frac{z}{f'}\right)$$

Perspective projection matrix

Perspective projection matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f' & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Projection: A matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f' & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f' \end{bmatrix} \Rightarrow \left(f' \frac{x}{z}, f' \frac{y}{z} \right)$$

Weak perspective

- Approximation: Treat magnification as constant
- Assumption: Scene depth << Average distance to camera

$$\begin{cases} x' = -mx \\ y' = -my \end{cases}$$
 , where $m = -\frac{f'}{z_0}$ is the magnification

Weak perspective

The error in image position

$$E = P_{perspective} - P_{weak \ perspective}$$

$$= \frac{f'}{z_0 + \Delta z} {\chi \choose y} - \frac{f'}{z_0} {\chi \choose y}$$

$$=\frac{f'z_0-f'(z_0+\Delta z)}{(z_0+\Delta z)z_0} \begin{pmatrix} x\\ y \end{pmatrix}$$

$$= \frac{f'}{z_0} \cdot \frac{\Delta z}{z_0 + \Delta z} \begin{pmatrix} x \\ y \end{pmatrix}$$

- Factors contribute to the validity of the model
 - Small focal length (f')
 - Small field of view (x/z_0) and y/z_0
 - Small depth variation of the object (Δz)

Weak perspective

Projection matrix for weak perspective projection

$$\begin{cases} x' = -mx = \frac{f'}{z_0}x \\ y = -my = \frac{f'}{z_0}y \end{cases}$$

Homogeneous coordinates

$$(x', y', 1) = \left(\frac{f'}{z_0}x, \frac{f'}{z_0}y, 1\right) = \left(x, y, \frac{z_0}{f'}\right)$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & z_0/f' \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Orthographic projection

- Given camera at constant distance from the scene (m = -1)
- World points projected along rays parallel to optical access

$$\begin{cases} x' = x \\ y' = y \end{cases}$$

Orthographic projection

Projection matrix for orthographic projection

$$\begin{cases} x' = x \\ y' = y \end{cases}$$

Homogeneous coordinates

$$(x', y', 1) = (x, y, 1)$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Pinhole size (aperture)

• How does the size of the aperture affect the image we'd get?

Pinhole size (aperture)

- Pinhole too big
 - Many directions are averaged
 - Blurring the image

- Pinhole too small
 - Diffraction effects blur the image

- LUZ
 OPTICA
 FOTOGRAFIA
 FOTOGRAFIA
- Generally, pinhole cameras are dark
 - Because very small set of rays from a particular point hits the screen

Lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f

Cameras with lenses

- A lens focuses parallel rays onto a single focal point
- Gather more light, while keeping focus
 - Make pinhole perspective projection practical

Human eye

Human eye is a lens

Control amount of light passing through lens

Contains sensor cells, where image is formed

- Fovea
 - Highest concentration of cones

Thin lens

- Thin lens
 - Rays entering parallel on one side go through focus on other, and vice versa
 - In ideal case, all rays from P imaged at P'

Thin lens

Thin lens equation

Any object point satisfying the thin lens equation is in focus

Depth of field

- Depth of field
 - Distance between image planes where blur is tolerable

Aperture

- Aperture
 - Smaller aperture increases the range that the object is approximately in focus

Field of view

- Field of view
 - Angular measure of portion of 3D space seen by the camera

Field of view

Field of view depends on focal length (f)

- As f gets smaller,
 image becomes wider angle
 - More world points project onto finite image plane

- As f gets larger,
 image becomes more telescopic
 - Small part of the world projects onto the finite image plane

Field of view

Size of field of view governed by size of the camera retina

Smaller field of view = Larger focal length

Vignetting

 Tendency for the brightness of the image to fall off towards the edge of the image

Vignetting

• The amount of light (E) hitting a pixel surface area δ_i

$$E = L \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha$$

