Trường Đại học Khoa học Tự nhiên Đại học Quốc gia TP.HCM

Thực Tập Cơ Sở Kỹ Thuật Hạt Nhân

Bài 3: XÁC ĐỊNH TỐC ĐỘ ĐẾM VÀ SAI SỐ

Nguyễn Minh Đăng MSSV: 20230022

1 Báo Cáo Thực Hành

1.1 Dụng cụ

Nguồn:

- $Ra 226 (9\mu Ci)$
- $Ra 226 (5\mu Ci)$

Hệ đếm Geiger Muller: ống đếm Geiger Muller, bộ biến đổi xung và bộ đếm xung. Thời gian đo: 60 giây

1.2 Bảng số liệu

Times (s)	Np	N Ra-226 (9 μ Ci)	N Ra-226 (5 μ Ci)	$(N_{pi} - \bar{Np})^2$	$(N_i - \bar{N})^2 9\mu \mathrm{Ci}$	$(N_i - \bar{N})^2 5\mu \mathrm{Ci}$
60	45	77601	12361	70.56	785704.96	17187.21
60	47	74171	12361	108.16	6469900.96	17187.21
60	37	73842	12518	0.16	8251830.76	670.81
60	47	78747	12408	108.16	4130649.76	7072.81
60	30	77936	12537	43.56	1491817.96	2016.01
60	27	79565	12561	92.16	8124780.16	4747.21
60	43	75992	12518	40.96	522150.76	670.81
60	30	77404	12591	43.56	475272.36	9781.21
60	31	76581	12522	31.36	17848.96	894.01
60	29	75307	12544	57.76	1981337.76	2693.61
ТВ	36.60	76714.60	12492.10	59.64	3225129.44	6292.09

1.3 Trình bày tốc độ đếm trung bình của phông và nguồn

Ta có công thức xác định số đếm trung bình của phông

$$\bar{N}_p = \frac{1}{k} \sum_{i=1}^k N_{pi} = \frac{1}{10} \sum_{i=1}^{10} N_{pi} = 36.60 \text{ (counts/60s)}$$

Đặt N_{Ra-9} là số đếm thật của nguồn Ra-226 $(9\mu Ci)$

$$\bar{N}_{Ra(9\mu Ci)} = \frac{1}{k} \sum_{i=1}^{k} N_i = \frac{1}{10} \sum_{i=1}^{10} N_{totRa(9\mu Ci)} - N_{pi} = 76714.60 - 36.60 = 76678.00 \text{ (counts/60s)}$$

Đặt N_{Ra-5} là số đếm thật của nguồn Ra-226 $(5\mu Ci)$

$$\bar{N}_{Ra(5\mu Ci)} = \frac{1}{k} \sum_{i=1}^{k} N_i = \frac{1}{10} \sum_{i=1}^{10} N_{totRa(5\mu Ci)} - N_{pi} = 12492.10 - 36.60 = 12455.50 \text{ (counts/60s)}$$

1.4 Trình bày kết quả sai số theo các công thức (3.6), (3.7) và (3.8)

Sai số của phông: $\Delta \bar{n}_p$. Nguồn Ra-226 $(9\mu Ci)$: $\Delta \bar{n}_{Ra-9}$. Và nguồn Ra-226 $(5\mu Ci)$: $\Delta \bar{n}_{Ra-5}$

$$\Delta \bar{n}_p = \frac{\Delta \bar{N}_p}{t} = \frac{\sqrt{\frac{\sum_{i=1}^k (N_{pi} - \bar{N}_p)^2}{k(k-1)}}}{t} = \frac{\sqrt{\frac{59.64 \times 10}{10(10-1)}}}{60} = 0.04 \text{ (counts/s)}$$

$$\Delta \bar{n}_{Ra(9\mu Ci)} = \frac{\Delta \bar{N}_{Ra(9\mu Ci)}}{t} = \frac{\sqrt{\frac{\sum_{i=1}^{k} (N_i - \bar{N}_{Ra(9\mu Ci)})^2}{k(k-1)}}}{t} = \frac{\sqrt{\frac{3225129.44 \times 10}{10(10-1)}}}{60} = 9.98 \text{ (counts/s)}$$

$$\Delta \bar{n}_{Ra(5\mu Ci)} = \frac{\Delta \bar{N}_{Ra(5\mu Ci)}}{t} = \frac{\sqrt{\frac{\sum_{i=1}^{k} (N_{Ra(5\mu Ci)} - \bar{N}_{Ra(5\mu Ci)})^2}{k(k-1)}}}{t} = \frac{\sqrt{\frac{6292.09 \times 10}{10(10-1)}}}{60} = 0.44 \text{ (counts/s)}$$

1.5 Trình bày kết quả tốc độ đếm thật của nguồn theo công thức (3.9)

Tốc độ đếm thật của nguồn Ra-226 $(9\mu Ci)$

$$\bar{n}_{Ra(9\mu Ci)} = \bar{n} - \bar{n}_p \pm \Delta \bar{n}_{Ra(9\mu Ci)} = \frac{\bar{N}_{Ra(9\mu Ci)} - \bar{N}_p}{t} \pm \Delta \bar{n}_{Ra(9\mu Ci)}$$

$$\rightarrow \bar{n}_{Ra(9\mu Ci)} = \frac{76714.60 - 36.60}{60} \pm 9.98 = 1277.97 \pm 9.98 \text{ (counts/s)}$$

Tốc độ đếm thật của nguồn Ra-226 $(5\mu Ci)$

$$\bar{n}_{Ra(5\mu Ci)} = \bar{n} - \bar{n}_p \pm \Delta \bar{n}_{Ra(5\mu Ci)} = \frac{\bar{N}_{Ra(5\mu Ci)} - \bar{N}_p}{t} \pm \Delta \bar{n}_{Ra(5\mu Ci)}$$

$$\rightarrow \bar{n}_{Ra(5\mu Ci)} = \frac{12492.10 - 36.60}{60} \pm 0.44 = 207.59 \pm 0.44 \text{ (counts/s)}$$