การออกแบบระบบ SCADA สำหรับการเฝ้าระวังปัญหา ตรวจสอบ และทำนาย ประสิทธิภาพของสายการผลิตตัวถังรถยนต์

(Designing SCADA Systems to Monitor Fault Alarm and Predict Overall Effectiveness of Body-Line Site)

ความเป็นมาและความสำคัญ

อันเนื่องมาจากในปัจจุบัน แผนก Production Engineering ฝ่ายการดูแล และออกแบบการผลิต ตัวถังรถยนต์ประเภทรถกระบะส่วนบุคคล ของบริษัท มิตซูบิชิ มอเตอร์ส (ประเทศไทย) จำกัด ได้มีการพบ ปัญหาของสายการผลิตที่ซับซ้อน ที่เมื่อมีสถานีหนึ่งเกิดข้อผิดพลาดอันเนื่องจากเครื่องจักร ทีมช่างที่มี หน้าที่เข้าไปซ่อมระบบจะใช้เวลาที่มากในการวิเคราะห์หาปัญหาที่เกิดขึ้น อีกทั้งการรับรู้ว่ามีการเกิดปัญหา จากห้องควบคุมสายการผลิตนั้น มีการใช้เวลาที่ค่อนข้างนาน อันจะทำให้สายการผลิตต้องหยุดชะงัก ด้วย เหตุนี้ ทางทีมผู้จัดทำที่มีประสบการณ์ด้านการเขียน Web Application เป็นทุนเดิม จึงเสนอสร้างระบบเพื่อ ใช้ในการตรวจสอบค่าต่างๆ ในสายการผลิต อาธิเช่น ค่าจากเซนเซอร์ต่างๆภายในแขนกล เวลาที่เครื่องจักร ทำงานในแต่ละสถานีการประกอบ ค่าจากเซนเซอร์ตรวจวัดต่างๆ ที่ติดตั้งอยู่ในแต่ละสถานี ฯลฯ เพื่อใช้ใน การเฝ้าระวัง วิเคราะห์ และทำนายเหตุการ์ณไม่คาดฝันที่อาจเกิดขึ้นกับเครื่องจักร และจะเป็นประโยชน์ใน การทำการดูแลเชิงป้องกัน (Preventive Maintenance) ต่อไปได้

ขอบเขตุของโปรเจค

- 1. การเรียนรู้หลักการทำงานของเครื่องมือวัด เครื่องจักร และระบบ Network ที่ติดตั้งในสายการผลิต ทั้งจาก Maker (Keyence, Fanuc etc.) และทีมวิศวกรพี่เลี้ยง
- 2. การเรียนรู้และเขียน Ladder ของ PLC Mitsubishi ในการส่งออกข้อมูลที่จำเป็นต่อการวิเคราะห์
- 3. การเก็บข้อมูลการทำงานของเครื่องจักร และเซนเซอร์ที่มากพอที่จะนำไปใช้ในการวิเคราะห์ และ ทำนาย ทั้งจาก Data Analysis และการเทรน Neural Network ให้มีประสิทธิภาพ
- 4. การเขียนระบบ Web Application สำหรับการรองรับ และจัดการ Data Stream ที่เกิดจากการ ทำงานของเซนเซอร์
- 5. การทดลองระบบ และการทดสอบค่าผิดพลาด โดยเริ่มจากทดสอบในสเกลระดับสถานีเล็กๆ และจะ ค่อยๆขยายให้ครอบคลุมเรื่อยๆ ภายในระยะเวลาการทำโปรเจค

ขั้นตอนการดำเนินงาน

Schedue		JUN				JUL			AUG				SEP				OCT				NOV				
		W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
study	Overview of industrial Networking																								
	Basic PLC communication & Robot																								
	ZDT,On Site sensor																								
	hands on study at line site																								
	PLC ,Node JS programming																								
	debuging (PLC)																								
	IOT Integration , Train Data																								
	debuging (Integration)																								
Testing	Compatibility test																								
Report & Summary	invesment analysis																								
	summarize report (for MMTH,PE. Body t	eam)																							
	thesis documenting (including error co	rrectio	n from	KMITL)																					
	Powerpoint preparation																								
	Presentation practicing																								

ประโยชน์ที่คาดว่าจะได้รับ

• ด้านผู้จัดทำ

ผู้จัดทำสามารถเข้าใจในศาสตร์ของการผลิตรถยนต์และการทำงานร่วมกันในบริษัท อีกทั้ง ความรู้ในศาสตร์ที่ไม่ใช่ที่ผู้จัดทำไม่ทราบมาก่อน จากทางผู้เชี่ยวชาญในศาสตร์นั้น ๆ เพื่อใช้ในการ ต่อยอดไปใช้ในการวิเคราะห์ และแก้ไขปัญหาในอนาคตต่อไป

• ด้านสถานประกอบการ

สถานประกอบการได้รับระบบที่สามารถเฝ้าระวังเหตุที่ไม่คาดฝันจากกเครื่องจักร ที่อาจทำให้สายการผลิตหยุดชะงัก และลดเวลาการซ่อมบำรุง สิ่งเหล่านี้จะช่วยลดต้นทุนทางเวลาที่ สถานประกอบการอาจสูญเสียไปได้

ระบบที่เกี่ยวข้อง

Hardware

- 1. Mitsubishi Q-series Programmable Logic controller (PLC)
- 2. Fanuc Robotic arm (R-2000iC/210F etc.)
- 3. On-Field Sensors
- 4. I/O Link (สำหรับการเชื่อมต่อและรับค่าจากเซนเซอร์หน้าสายการผลิต)
- 5. Network Hub (สำหรับเป็นตัวกลางเชื่อมต่อระบบหน้าสายการผลิตสู่ส่วนกลาง)
- 6. On-Field Pneumatic Equipment (Actuator, Valve etc.)

Software

- 1. GX Work 3 (ใช้สำหรับเขียนชุดคำสั่ง PLC สำหรับดึงข้อมูลค่าต่างๆ จากเซนเซอร์)
- 2. Node JS (Runtime สำหรับ JavaScript เพื่อสร้าง Server ที่ใช้ในการประมวลผลข้อมูล)
 - 2.1 Express JS (สำหรับการสร้าง Server เพื่อใช้ในการจัดการข้อมูล)
 - 2.2 SQL Database (ใช้เป็นฐานข้อมูลสำหรับการจัดเก็บค่าต่างๆ)
 - 2.3 Axios (สำหรับการรองรับ HTTP Request เพื่อรับส่ง API ระหว่างฝั่ง Server และหน้า Dashboard)
 - 2.4 JWT (Json Web Token) (สำหรับการทำ Validation ของ API ที่จะถูกส่งให้กับระบบ)
 - 2.5 Vue JS (สำหรับการทำ Web Application ส่วนหน้า Dashboard)
 - 2.6 TensorFlow JS (เป็น Library สำหรับการ Train ML model)
- 3. Fanuc ZDT (Zero Downtime) (สำหรับการดึงข้อมูลออกจากแขนกล)

- 4. GStarCAD (สำหรับการศึกษา Layout การปฏิบัติงาน)
- 5. Figma (สำหรับการออกแบบรูปลักษณของหน้า Dashboard)

เนื้อหาวิชาที่เกี่ยวข้อง

- 1. Computer Programming (Computer Science)
- 2. Automotive Engineering (Mechanical Engineering)
- 3. Automatic Control (Mechanical Engineering)
- 4. Manufacturing Processes (Mechanical Engineering)
- 5. Fluid Dynamics (Mechanical Engineering)
- 6. Production Planning and Control (Industrial Engineering)
- 7. Basic Sensors and Measurement (Instrument Engineering)
- 8. Mechanical Drawing (Mechanical Engineering)
- 9. Data Science (Computer Science)
- 10. Computer Networking (Computer Science)

บริษัทที่ร่วมดำเนินงาน

บริษัท มิตซูบิชิ มอเตอร์ส (ประเทศไทย) จำกัด