Chapter 3: Curve Fitting & Interpolation

Lecture 1: Least-Squares Regression

Facebook's ad revenue:

2020: \$84.5 billion*

2019: \$69.4 billion*

2018: \$55.0 billion

2017: \$39.9 billion

2016: \$26.9 billion

2015: \$17.1 billion

2014: \$11.5 billion

2013: \$6.9 billion

2012: \$4.3 billion

2011: \$3.2 billion

2010: \$1.9 billion

2009: \$764 million

Source: Jon Erlichman Twitter

Motivation

Question: Estimate the

Giant's revenue next year

Motivation

- Data often given for discrete values
- Estimates at points between the discrete values
 Experimental data:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

The relationship between *x* and *y* is not known

Find a function y=f(x) that best fits the data. Use this f(x) to forecast about other values

Curve Fitting

Given a set of tabulated data, find a curve or a function that <u>best represents the data</u>.

Given:

- 1. The tabulated data
- 2. The **form** of the function
- 3. The curve fitting criteria
- ☐ Find the <u>unknown</u> coefficients of the function

Selection of the Functions

Linear
$$f(x) = a + bx$$

Quadratic $f(x) = a + bx + cx^2$
Polynomial $f(x) = \sum_{k=0}^{n} a_k x^k$
General $f(x) = \sum_{k=0}^{m} a_k g_k(x)$
 $g_k(x)$ are known.

Decide on the Criterion

1. Least Squares Regression:

minimize
$$\Phi = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

2. Exact Matching (Interpolation):

$$y_i = f(x_i)$$

Least Squares Regression

Linear Regression

□ Fitting a straight line to a set of paired observations:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$$

$$y=a+bx+e$$

Linear

$$f(x) = a + bx$$

a-intercept

b-slope

e-error, or residual, between the model and the observations.

Determine the Unknowns

We want to find a and b to minimize:

$$\Phi(a,b) = \sum_{i=1}^{n} (a + bx_i - y_i)^2$$

How do we obtain a and b to minimize: $\Phi(a,b)$?

Determine the Unknowns

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = 0$$

Determining the Unknowns

$$\frac{\partial \Phi(a,b)}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i)x_i = 0$$

Normal Equations

$$\frac{\partial \Phi(a,b)}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i)x_i = 0$$

$$n a + \left(\sum_{i=1}^{n} x_i\right) b = \left(\sum_{i=1}^{n} y_i\right)$$
$$\left(\sum_{i=1}^{n} x_i\right) a + \left(\sum_{i=1}^{n} x_i^2\right) b = \left(\sum_{i=1}^{n} x_i \ y_i\right)$$

These equations are called Normal Equations

Example 1

According to a research by a group of biologists, the chirping rate y (chirps/min) of crickets of a certain species appears to be related to temperature x (°F).

X	50	55	60	65	70	75	80	85	90	95
У	22	45	82	95	110	145	183	202	216	238

Question: What is the chirping rate at 100°F?

Plot data

Solution

 $n a + \left(\sum_{k=1}^{n} x_k\right) b = \left(\sum_{k=1}^{n} y_k\right)$

Normal equations:

$$\left(\sum_{k=1}^{n} x_k\right) a + \left(\sum_{k=1}^{n} x_k^2\right) b = \left(\sum_{k=1}^{n} x_k y_k\right)$$

$$10a + 725b = 1338$$

$$725a + 54625b = 107105$$

$$\Rightarrow a = -221.2, b = 4.897$$

$$y = -221.2 + 4.897x$$

$$y(100) = 268$$

Exercise

The profits y of a company (in millions USD) during the past seven years x are given in the following table

X	1	2	3	4	5	6	7
У	2.2	2.5	3.0	3.4	3.8	4.3	4.8

- a) Plot the data points
- b) Find the least-squares line that best fit the data. Plot the line with the data points
- Use the least-squares line found in part b) to estimate the profit in the 8^{th} year $\left(\frac{n}{\sum_{r}}\right)_{h}$

$$n a + \left(\sum_{k=1}^{n} x_k\right) b = \left(\sum_{k=1}^{n} y_k\right)$$
$$\left(\sum_{k=1}^{n} x_k\right) a + \left(\sum_{k=1}^{n} x_k^2\right) b = \left(\sum_{k=1}^{n-1} x_k y_k\right)$$

Quiz3

The profits y of a company (in millions USD) during the past seven years x are given in the following table

X	1	2	3	4	5	6	7
y	1.2	1.5	2.0	2.5	3.6	4.6	6.8

- a) Develop a least-squares, a quadratic models that best fit the data. Plot these functions with the data points
- b) Use the least-squares models found in part a) to estimate the profit in the 8th year
- c) Which model in a) is the best one? Why?

Multiple Linear Regression

Example:

Given the following data:

t	0	1	2	3
X	0.1	0.4	0.2	0.2
У	3	2	1	2

Determine a function of two variables:

$$f(x,t) = a + b x + c t$$

That best fits the data with the least sum of the square of errors.

Solution of Multiple Linear Regression

Construct
$$\Phi = \sum_{i=1}^{n} (y_i - f(x_i, t_i))^2$$

Derive the necessary conditions by equating the partial derivatives with respect to the unknown parameters to zero, then solve the equations.

t	0	1	2	3
X	0.1	0.4	0.2	0.2
У	3	2	1	2

Solution of Multiple Linear Regression

$$f(x,t) = a + bx + ct$$
, $\Phi(a,b,c) = \sum_{i=1}^{n} (a + bx_i + ct_i - y_i)^2 \to \min$

Necessary conditions:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 2\sum_{i=1}^{n} (a + bx_i + ct_i - y_i) = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 2\sum_{i=1}^{n} (a + bx_i + ct_i - y_i)x_i = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 2\sum_{i=1}^{n} (a + bx_i + ct_i - y_i)t_i = 0$$

Normal Equations

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} (x_i)^2 + c \sum_{i=1}^{n} (x_i t_i) = \sum_{i=1}^{n} (x_i y_i)$$

$$a \sum_{i=1}^{n} t_i + b \sum_{i=1}^{n} (x_i t_i) + c \sum_{i=1}^{n} (t_i)^2 = \sum_{i=1}^{n} (t_i y_i)$$

Example 2: Multiple Linear Regression

i	1	2	3	4	Sum
t _i	0	1	2	3	6
Xi	0.1	0.4	0.2	0.2	0.9
y _i	3	2	1	2	8
x_i^2	0.01	0.16	0.04	0.04	0.25
$x_i t_i$	0	0.4	0.4	0.6	1.4
$x_i y_i$	0.3	0.8	0.2	0.4	1.7
t _i ²	0	1	4	9	14
t _i y _i	0	2	2	6	10

Example 2: System of Equations

$$4a + 0.9b + 6c = 8$$

 $0.9a + 0.25b + 1.4c = 1.7$
 $6a + 1.4b + 14c = 10$

Solving:

$$a = 2.9574$$
, $b = -1.7021$, $c = -0.38298$
 $f(x,t) = a + bx + ct = 2.9574 - 1.7021 x - 0.38298 t$

Exercise

Develop a multiple least-square model for these data, and use it to estimate y(1/2, -1)

t	-1	1	3	4
X	-2	0	1	3
У	-6	-2	3	6

Normal Equations:

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} (x_i)^2 + c \sum_{i=1}^{n} (x_i t_i) = \sum_{i=1}^{n} (x_i y_i)$$

$$a \sum_{i=1}^{n} t_i + b \sum_{i=1}^{n} (x_i t_i) + c \sum_{i=1}^{n} (t_i)^2 = \sum_{i=1}^{n} (t_i y_i)$$

$$x = (x_1, x_2, ..., x_n), t = (t_1, t_2, ..., t_n)$$

$$y = (y_1, y_2, ..., y_n)$$

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + bx^2 + cxt = xy$$

$$a \sum_{i=1}^{n} t_i + bxt + ct^2 = ty$$

Exercise 2

Develop a multiple least-square model for these data, and use it to estimate y(x=3, t=5)

t	0	1	3	4
X	1	2	3	4
У	2	3	5	8

Normal Equations:

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} (x_i)^2 + c \sum_{i=1}^{n} (x_i t_i) = \sum_{i=1}^{n} (x_i y_i)$$

$$a \sum_{i=1}^{n} t_i + b \sum_{i=1}^{n} (x_i t_i) + c \sum_{i=1}^{n} (t_i)^2 = \sum_{i=1}^{n} (t_i y_i)$$

$$x = (x_1, x_2, ..., x_n), t = (t_1, t_2, ..., t_n)$$

$$y = (y_1, y_2, ..., y_n)$$

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + bx^2 + cxt = xy$$

$$a \sum_{i=1}^{n} t_i + bxt + ct^2 = ty$$

Nonlinear Least Squares Models and Methods

- ■Polynomial Regression
- Fitting with Nonlinear Functions
- Linearization Method

Polynomial Regression

■ The least squares method can be extended to fit the data to a higher-order polynomial

$$f(x) = a + bx + cx^2$$
, $e_i^2 = (f(x_i) - y_i)^2$

Minimize
$$\Phi(a,b,c) = \sum_{i=1}^{n} (a + bx_i + cx_i^2 - y_i)^2$$

Necessary conditions:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 0, \qquad \frac{\partial \Phi(a,b,c)}{\partial b} = 0, \qquad \frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

Equations for Quadratic Regression

Minimize
$$\Phi(a,b,c) = \sum_{i=1}^{n} (a + bx_i + cx_i^2 - y_i)^2$$

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 2\sum_{i=1}^{n} \left(a + bx_i + cx_i^2 - y_i \right) = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 2\sum_{i=1}^{n} \left(a + bx_i + cx_i^2 - y_i\right) x_i = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 2\sum_{i=1}^{n} \left(a + bx_i + cx_i^2 - y_i\right) x_i^2 = 0$$

Normal Equations

$$a n + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i$$

$$a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 + c \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i$$

$$a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i^3 + c \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i$$

Example 3: Polynomial Regression

Fit a second-order polynomial to the following data

Xi	0	1	2	3	4	5	Σ=15
Yi	2.1	7.7	13.6	27.2	40.9	61.1	Σ=152.6
X_i^2	0	1	4	9	16	25	Σ=55
X_i^3	0	1	8	27	64	125	225
X _i ⁴	0	1	16	81	256	625	Σ=979
x _i y _i	0	7.7	27.2	81.6	163.6	305.5	Σ=585.6
$x_i^2 y_i$	0	7.7	54.4	244.8	654.4	1527.5	Σ=2488.8

Example 3: Equations and Solution

$$6a + 15b + 55c = 152.6$$

 $15a + 55b + 225c = 585.6$
 $55a + 225b + 979c = 2488.8$
Solving...
 $a = 2.4786, b = 2.3593, c = 1.8607$
 $f(x) = 2.4786 + 2.3593x + 1.8607x^2$

Justify the best choice

Given two or more functions to fit the data, How do you select the best?

Answer:

Determine the parameters for each function, then compute Φ for each one. The function resulting in smaller Φ (least sum of the squares of the errors) is the best.

$$\Phi = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Example showing that Quadratic is preferable than Linear Regression

Fitting with Nonlinear Functions

Xi	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52
y _i	0.23	-0.23	-1.1	-0.45	0.27	0.1	-0.29	0.24

It is required to find a function of the form, for example:

$$f(x) = a \ln(x) + b \cos(x) + c e^{x}$$

to fit the data.

$$\Phi(a,b,c) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

General
$$f(x) = \sum_{k=0}^{m} a_k g_k(x)$$

 $g_k(x)$ are known.

Fitting with Nonlinear Functions

$$\Phi(a,b,c) = \sum_{i=1}^{n} (a \ln(x_i) + b \cos(x_i) + c e^{x_i} - y_i)^2$$

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

Normal Equations

$$a\sum_{i=1}^{n}(\ln x_i)^2 + b\sum_{i=1}^{n}(\ln x_i)(\cos x_i) + c\sum_{i=1}^{n}(\ln x_i)(e^{x_i}) = \sum_{i=1}^{n}y_i(\ln x_i)$$

$$a\sum_{i=1}^{n}(\ln x_i)(\cos x_i) + b\sum_{i=1}^{n}(\cos x_i)^2 + c\sum_{i=1}^{n}(\cos x_i)(e^{x_i}) = \sum_{i=1}^{n}y_i(\cos x_i)$$

$$a\sum_{i=1}^{n}(\ln x_i)(e^{x_i}) + b\sum_{i=1}^{n}(\cos x_i)(e^{x_i}) + c\sum_{i=1}^{n}(e^{x_i})^2 = \sum_{i=1}^{n}y_i(e^{x_i})$$

Evaluate the sums and solve the normal equations.

Example 4: Evaluating Sums

							i	 	
xi	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52	∑=11.57
yi	0.23	-0.23	-1.1	-0.45	0.27	0.1	-0.29	0.24	∑=-1.23
(ln xi) ²	2.036	0.1856	0.0026	0.0463	0.3004	0.4874	0.6432	0.8543	∑=4.556
ln(xi) cos(xi)	-1.386	-0.3429	-0.0298	0.0699	-0.0869	-0.2969	-0.4912	-0.7514	∑=-3.316
$ln(xi) * e^{xi}$	-1.814	-0.8252	-0.1326	0.7433	3.0918	5.2104	7.4585	11.487	∑=25.219
yi * ln(xi)	-0.328	0.0991	0.0564	-0.0968	0.1480	0.0698	-0.2326	0.2218	∑=-0.0625
cos(xi) ²	0.943	0.6337	0.3384	0.1055	0.0251	0.1808	0.3751	0.6609	∑=3.26307
$\cos(xi) * e^{xi}$	1.235	1.5249	1.5041	1.1224	-0.8942	-3.1735	-5.696	-10.104	Σ=-14.481
yi*cos(xi)	0.223	-0.1831	-0.6399	-0.1462	-0.0428	-0.0425	0.1776	-0.1951	∑=-0.8485
$(e^{xi})^2$	1.616	3.6693	6.6859	11.941	31.817	55.701	86.488	154.47	∑=352.39
yi * e ^{xi}	0.2924	-0.4406	-2.844	-1.555	1.523	0.7463	-2.697	2.9829	Σ=-1.9923

Example 4: Equations & Solution

$$4.55643 a - 3.31547 b + 25.2192 c = -0.062486$$

 $-3.31547 a + 3.26307 b - 14.4815 c = -0.848514$
 $25.2192 a - 14.4815 b + 352.388 c = -1.992283$

Solving the above equations:

$$a = -0.88815$$
, $b = -1.1074$, $c = 0.012398$ Therefore,

$$f(x) = -0.88815 \ln(x) - 1.1074 \cos(x) + 0.012398 e^{x}$$

Exercise: Price of a product in the last 9 years as:

7.0 6.05 8.9 12.4 12.4 11.6 14.4 19.1 20.8 20.9

$$y = 2e^{0.1t} - 2\sin(0.75t) + 0.3t + 5$$

Using least-squares regression with the following nonlinear model to predict the price for the next year

$$y = ae^{0.1t} + b\sin(0.75t) + ct + 5$$

Linearization Method: Exponential Model

Example: Given data

Xi	1	2	3
y _i	2.4	5	9

Find a function $f(x) = ae^{bx}$ that best fits the data.

$$\Phi(a,b) = \sum_{i=1}^{n} \left(ae^{bx_i} - y_i \right)^2$$

Normal Equations are obtained using:

$$\frac{\partial \Phi}{\partial a} = 2\sum_{i=1}^{n} \left(ae^{bx_i} - y_i \right) e^{bx_i} = 0$$

Difficult to Solve

$$\frac{\partial \Phi}{\partial b} = 2 \sum_{i=1}^{n} \left(a e^{bx_i} - y_i \right) a x_i e^{bx_i} = 0$$

Exponential Model

Find a function $f(x) = ae^{bx}$ that best fits the data. Then $\ln(f(x)) = \ln(a) + b x$

Define $z = \alpha + bx$

where $\alpha = \ln(a)$ and $z = \ln(y)$

Instead of minimizing:
$$\Phi(a,b) = \sum_{i=1}^{n} (ae^{bx_i} - y_i)^2$$

Minimize:
$$\Phi(\alpha, b) = \sum_{i=1}^{n} (\alpha + bx_i - z_i)^2$$
 (Easier to solve)

Normal Equations

$$\Phi(\alpha,b) = \sum_{i=1}^{n} (\alpha + b x_i - z_i)^2$$

Normal Equations are obtained using:

$$\frac{\partial \Phi}{\partial \alpha} = 2 \sum_{i=1}^{n} (\alpha + b x_i - z_i) = 0$$

$$\frac{\partial \Phi}{\partial b} = 2\sum_{i=1}^{n} (\alpha + b x_i - z_i) x_i = 0$$

$$\alpha n + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} z_i$$
 and $\alpha \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} (x_i z_i)$

Evaluating Sums and Solving

Xi	1	2	3	Σ=6
y _i	2.4	5	9	
$z_i = ln(y_i)$	0.875469	1.609438	2.197225	Σ=4.68213
X_i^2	1	4	9	Σ=14
$X_i Z_i$	0.875469	3.218876	6.591674	Σ=10.6860

Set
$$z = \ln y$$

Normal Equations for *x* and *z*:

$$3 \alpha + 6 b = 4.68213$$

$$6 \alpha + 14 b = 10.686$$

Solving Equations:

$$\alpha = 0.23897, \ b = 0.66087$$

$$\alpha = \ln(a), \quad a = e^{\alpha}$$

$$a = e^{0.23897} = 1.26994$$

$$f(x) = ae^{bx} = 1.26994 e^{0.66087x}$$

Linearization Method: Other Models

1. Power equation $y = ax^b$

Take logarithm $\log y = \log a + b \log x$

2. Saturation-growth-rate equation $y = \frac{ax}{b+x}$

Inverting it:
$$\frac{1}{y} = \frac{b}{a} \frac{1}{x} + \frac{1}{a}$$

Homework N3. **Deadline**: 5 weeks

Problem 1: The profit (in millions USD) of a company during the past seven years are reported in the following table

Time (years)	1	2	3	4	5	6	7
Profit (millions \$)	1.2	1.5	1.8	2.m	3.8	4.7	6.n

□ Find a best-fit equation to the data trend. Try several possibilities-linear, parabolic, and exponential. Plot all these curves and the data in the same coordinates. Find the best equation to predict the profit in two years.

(m-2)(n-2) is the two last digits of your student ID number

Homework N3: Problem 2

3. Use linear regression to fit these data by a plane

X	1	2	3	3+1/m	4	6
t	1	2	2+1/n	3	4	5
У	5	12	9	4	3	24

Use this plane to estimate f(2,3)

Homework N3: Problem 3

Given the data

X	0	1	3	4
У	1+1/n	2.2	4.5	10+1/m

- Find the Newton divided-difference interpolating polynomial that passes through these data points. Use it to estimate f(2). Plot the curve.
- Find the Lagrange interpolating polynomial that passes through these data points. Use it to estimate f'(2)

(m-2)(n-2) is the two last digits of your student ID number

Homework N3

Problem 4: Fit the data in the following Table with quadratic splines, and cubic splines. Use the result to evaluate the

function at x=1.5

X	0	1	2	3
f(x)	1+1/n	2	4-1/m	12

Problem 5: Reconstruct the function $f(x) = \left[\frac{m+1+x^2}{n+1}\right]^x$ in [-3, 2] by linear splines, quadratic splines, and cubic splines using the values of f(x) at x=-3, -2, -1, 0, and 2. Use these splines to estimate the value f(1), and then find the errors

S. Chapra & R.P. Canale, Numerical Methods for Engineers, McGraw-Hill, 7th ed., 2015:

Pages 575-578

Problems: 20.20, 20.21, 20.25 20.26, 20.32, 20.33