Montag, 26. Juni 2023

Time - Discrete Correlation Functions
and LSI - Systems
Linear-Stiff - Invariant

$$\times (4)$$
 $\times (4)$ $\times (4)$ $\times (4)$

$$\int_{XY}^{f}(m) = \times (-m) \times Y(m)$$

$$= \times (-m) \times (-m) \times (-m)$$

$$= \times (-m) \times \times (-m) \times h(m)$$

$$= \int_{XX}^{E}(m) \times h(m)$$

Example:
$$\times (n) \xrightarrow{\text{Man}} \text{Man}$$
 $\times (n) \text{Man} \xrightarrow{\text{Man}} \text{Man}$
 $\times (n) \text{Man} \text{Man}$

Wid attenuation and delay has our system?

maximum at 0

=
$$a \cdot P_{xx}(m-h_0)$$

maximum at h_0

At position h_0 : $P_{xy}(h_0) = a \cdot P_{xx}(a)$

= $a \cdot P_{xy}(h_0) = a \cdot P_{xx}(a)$

Example: $x(h) = \delta(h_1 + \delta(h_1))$
 $y(h) = \frac{1}{2} \cdot \delta(h_1) + \frac{1}{2} \cdot \delta(h_2)$
 $y(h) = \frac{1}{2} \cdot \delta(h_1) + \frac{1}{2} \cdot \delta(h_2)$
 $y(h) = \frac{1}{2} \cdot \frac{1}{2}$

$$X(k) \stackrel{!}{=} Y(k)$$

$$X_{a}(k) \cdot H(k) = X(k) = Y(k)$$

$$H(k) = a \cdot \text{rect}(x)$$

$$2 \cdot a \stackrel{!}{=} \frac{1}{3}$$

$$= 3 = \frac{1}{6}$$
after Filtery: $2\Delta(x_{1}) \cdot \frac{1}{6} = \frac{1}{3}\Delta(x_{2})$

$$(5) a)$$

$$H(k) = 2\cos(3\pi k) + 2$$

$$3\pi k = 2\pi k + 6$$

$$3\pi k =$$