IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 In re Patent Application of
 Date: May 15, 2008

 Applicants: Bednorz et al.
 Docket: YO987-074BZ

 Serial No.: 08/479,810
 Group Art Unit: 1751

 Filed: June 7, 1995
 Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents

United States Patent and Trademark Office

P.O. Box 1450

Alexandria, VA 22313-1450

APPEAL BRIEF PART IX

CFR 37 § 41.37(c) (1) (ix) SECTION 1

VOLUME 4

Part 4

BRIEF ATTACHMENTS P TO Z

Respectfully submitted,

/Daniel P Morris/ Dr. Daniel P. Morris, Esq. Reg. No. 32,053 (914) 945-3217

IBM CORPORATION Intellectual Property Law Dept. P.O. Box 218 Yorktown Heights, New York 10598

BRIEF ATTACHMENT P

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Date: March 1, 2005

Group Art Unit: 1751

Examiner: M. Kopec

Docket: YO987-074BZ

In re Patent Application of

Filed: June 7, 1995

Applicants: Bednorz et al. Serial No.: 08/479.810

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT P

Serial No.: 08/479,810

Page 1 of 5

Docket: YO987-074BZ

LANDOLT-BÖRNSTEIN

ĹΑ

Numerical Data and Functional Relationships in Science and Technology

New Series
Editor in Chief: K.-H. Hellwege

Group III: Crystal and Solid State Physics

Volume 3 Ferro- and Antiferroelectric Substances

by Toshio Mitsui and

R. Abe · Y. Furuhata · K. Gesi · T. Ikeda · K. Kawabe Y. Makita · M. Marutake · E. Nakamura · S. Nomura E. Sawaguchi · Y. Shiozaki · I. Tatsuzaki · K. Toyoda

Editors: K.-H. Hellwege and A. M. Hellwege

Springer-Verlag Berlin · Heidelberg · New York 1969

Sprin

II Data Oxides

1 Perovskite-type oxides

1A Simple perovskite-type oxides

Nr. 1	1A-1 NaNb0), Sodium nic	obate				
a		11. 14	as et al. in 1951 t at at room temp	hat NaNbO ₃ wa erature it is not	as ferroelectric. t ferroelectric b	Cross et al., ut antiferro-	51M2 55C2
ь	phase i	ı v 1	ı ıv ı	III•	11	I	- 1
	state	F	A			P	· 1
	crystal system	monoclinic	orthorhombic	pseudo- tetragonal	tetragonal	cubic	
ľ	space group		Pbma*)-D ¹¹ _{2h}			Pm3m-Oh	a)61W2
	9**	-2	.00 35	54 50	62 6	40 °C	58R3
	P _s [001] in Phase IV: a where a ₀ is t In phase IV axis (see Fig analysis b an sented by a p	51V3 61W2					
2a	Cooling method from a molten mixture of Na ₁ CO ₂ , Nb ₂ O ₅ , and NaF.						51W1
3	Crystal structure: In phase IV, Z = 8. Tab. 1; Fig. 1, 2.						
4	1ab. 1; Fig. 1, \succeq 1. Lattice distortions (thermal expansion): For phase I, II, III, IV: Tab. 2,3; Fig. 3. For phase V, at -160 °C: $a=5.564$ Å ($\cong \sqrt{2} a_0$), $b=5.548$ Å ($\cong \sqrt{2} a_0$), $c=7.812$ Å ($\cong 2 a_0$), $\beta=91^\circ 09^\circ$. Fig. 4.						57]1
5a							54S3
c	Spontaneous Coercive and	6.	55C2				
9a	Birefringen	ce: Fig. 7, 8.					
14a	Domain stru	ucture: See					55C2, 64p1, 62M9, 62W3

b Dynamic properties: Fig. 9, 10.

Tab. 1. NaNbO₁. Fractional coordinates x, y, z of atoms in unit cell at RT. [61W2]

	x	y	z
Na(1)	1	0.250	0
Na(2)	0.769	0.251	1
Nb	0.261	0.257	. 0.125
O(1)	1	0.208	0
O(2)	0.271	0.290	l ł
O(3)	0.010	0.532	0.121
O(4)	0.446	0.972	0.126

According to Ismailzade phase III consists of 4 phases (see Fig. 3). [6114]

Transitions exhibit large temperature hysteresis, and the transition temperatures measured with decreasing temperature are given here.

1a

2

4

• Nt

	II I Oxide	des Perowskit-Ty	ns Tos		
Tab. 2. NaNb	O ₃ . Lattice parameters	at various towns	eratures. [56F1] and [54S3]		
T[°C]	Crystal symmetry	Latt	ice parameters		
20	Monoclinic	a' = c' = 3.914	[54S3]		
390	Pseudotetragonal	$b' = 4 \cdot 3.881 \text{ Å}$ $\beta' = 90^{\circ} 39'$ $a = 2 \cdot 3.920 \text{ Å}$ $c = 4 \cdot 3.926 \text{ Å}$	$b' = 4 \cdot 3.881 \text{ Å}$ $\beta' = 90^{\circ} 40^{\circ}$ $a = 2 \cdot 3.919 \text{ Å}$		
420	Pseudotetragonal	c/a = 2.0032 $a = 2 \cdot 3.924 \text{ Å}$ $c = 4 \cdot 3.924 \text{ Å}$	$c = 4 \cdot 3.927 \text{ Å}$ $c/a = 2.0040$ $a = 2 \cdot 3.921 \text{ Å}$ $c = 4 \cdot 3.927 \text{ Å}$		
560	Tetragonal (changing to simple perovskite-type cell)	$c/a \approx 2.0000$ $a = 2 \cdot 3.933 \text{ Å}$ $c = 4 \cdot 3.940 \text{ Å}$	c/a = 2.0028		
640	Cubic	c/a = 2.0038 a = 3.942 Å			
Tab. 3.	NaNbO ₃ . Lattice par temperatures. [cameters of the st [6314]. See Fig. 3	ibcell at various		
T 5003	Sub	cell parameters			
T [°C]	pseudomonoclin	seudomonoclinic I ($a' = c' > b', \beta' > 90^\circ$)			
18 · · · 20	2 (A) b' [A]	β' -90° a'/l			
100 150 200 250 300 340 350	3.914, 3.917 3.893, 3.919, 3.898, 3.922, 3.902, 3.924, 3.907, 3.925, 3.914, 3.926, 3.917, 3.926, 3.917,	40' 1.007 37 1.006 33 1.005 29 1.005 26 1.004 22 1.003 18 1.002 17 1.002	75, 59.5, 59.7, 59.7, 59.9, 60.6, 0.60.0, 0.60.1, 60.3, 5.60.4		
360 380 400	3.927, 3.920 3.921, 3.928, 3.922, pseudomono	6 1.0020 5 1.0015 4 1.0015	0 60.45		
420 440 460	3.930 3.924 3.932 3.926	3 1.0015 3 1.0015 3 1.0015	60.5 _s 60.60 60.70		
	3.933 ₆ 3.927 ₈ 3.928 ₈ 3.935 3.929 ₈ tetragon:	3 1.0015 ₂ 2 1.0015 2 1.0015	60.7, 60.8, 60.85		
	c[A] a = b[A]	c/a V [Å*]	T		
240 3	3.939	1.0015, 60.80 1.0020 60.85 1.0020, 60.90			
620 3	945. 3.942 1	11 1.0020 61.00 1.0015 61.15 1.0010 61.30 1.0000 61.40			
$T [^{\circ}C] \qquad a_0$	rat rate	[°C] a, [Å]	-		
050 3.9	047, 61.50 7	00 3.949, 20 3.950,	V [Å*] 61.6, 61.6,		

B.I.	1 4 2	KNILO	Potoccium	niobate

1a	Ferroelectricity in	KNbO, was first	discovered by M			49M4
ь	phase	IV IV	III	II	I	
	state	F	F	F	P	J
Ì	crystal system	rhombohedral	orthorhombic	tetragonal	cubic	
	space group		Bmm2*)-C14		Pm3m-Oh	a)63K2
ı	θ	_	10 22	25 4	35 °C	
	$P_{\bullet} \parallel [001]$ in phase $P_{\bullet} \parallel [001]$ in phase $P_{\bullet} \parallel [111]$ in phase $T_{\text{melt}} = 1050 ^{\circ}\text{C}$ $\varrho = 4.590 \cdot 10^{3} \text{kgn}$ $a = 5.697 \text{Å}, b = 3$ Transparent. Light	III (along [110] IV (along [111] n ⁻³ i.971 Å, c = 5.72	of phase I), of phase I).			55R3, 58M3 52L1 67K4
2	Flux method (K,Co Phase diagram of I Pulling method fro Crystal form: squar	KiCO:-Nb:O: sys m the KiCO:-Nb re plate	₂ O ₅ mixture	0		51W1 55R3 58M3
3	Crystal structure:				b. 4, 5; Fig. 11.	
4	Temperature deper	dence of lattice	parameters: Tab.	6; Fig. 12.		
5	Dielectric constant: Fig. 13, 14. $_{\rm x}={\rm C}/({\rm T}-\theta_{\rm p})$, $T=\theta_{\rm Hz}$, where $C=2.42\cdot 10^8$ °K, $\theta_{\rm p}=360$ °C, Nonlinear dielectric properties: $\xi=-1.62\cdot 10^9$ J C $^{-4}$ m 6 , $\zeta=1.79\cdot 10^{16}$ J C $^{-6}$ m 8 . Spontaneous polarization and coercive field: Fig. 15. $P_{\rm p}=26\cdot 10^{-7}$ Cm $^{-4}$ at $T=\theta_{\rm p}$					56T3 56T3 56T3
6	Transition heat, tra	ansition entropy	Tab. 7.			56T3
7	Piezoelectricity: Fi	ig. 16.				-
12	NOR: Tab. 8; Fig.	17 · · · 20.				1

Tab. 4. KNbO₃. Atomic positions in fractional coordinates at RT in phase III. [67K4]

Nb	0, 0, 0
K	$0, \frac{1}{2}, \frac{1}{2} + z_{K}$
O(1)	$0, \frac{1}{2}, z_1$
O(2)	$\frac{1}{4} + x_1, 0, \frac{1}{4} + z_1$
z _K	+0.017
z_1	+0.021
z_z	+0.035 +0.004
¥-	

Tab. 5. KNbO₄. Interatomic distances and bond angles at RT. [67K4]

	•	distance Å	••	٠	angle
Nb-O(1) Nb-O(2) Nb-O(2) K-O(1) K-O(1) K-O(2) K-O(2) (1)-O(2) O(1)-O(2) O(2)-O(2) O(2)-O(2) O(2)-O(2)	(2) (2) (2) (1) (2) (1) (4) (4) (4) (4) (1) (1) (2)	1.991 ± 0.001 1.863 ± 0.007 2.180 ± 0.009 2.837 ± 0.014 2.848 ± 0.001 2.792 ± 0.008 2.873 ± 0.010 2.780 ± 0.012 2.884 ± 0.012 2.884 ± 0.012 2.892 ± 0.024 2.894 ± 0.024 2.894 ± 0.024	O(2) (s) -Nb-O(2) (s) O(2) (f) -Nb-O(2) (f) O(2) (s) -Nb-O(2) (f) O(1) -Nb-O(2) (s) O(1) -Nb-O(2) (f) Nb-O(1) -Nb Nb-O(2) -Nb	(1) (1) (2) (4) (4) (1) (2)	$\begin{array}{c} 97.4 \pm 1.2 \\ 83.4 \pm 1.0 \\ 89.7 \pm 0.5 \\ 92.3 \pm 0.6 \\ 87.5 \pm 0.6 \\ 172.8 \pm 0.7 \\ 168.6 \pm 0.6 \\ \end{array}$

Numbers in this column indicate numbers of equal bonds or angles per formula unit. For the O-Nb-O angles, the letter s or l indicates whether the Nb-O(2) bond involved is short or long.

Tab. 6. KNbO₃. Lattice constants and volume of unit cell at various temperatures. [5453]. a', c': lattice parameters

°C	a' = c'	b Å	b/a	β	V Å*
25 125 185 205 220 230 270 320 375 410 425 450 510	4.0375 4.0374 4.0363 4.0369 a = b 3.9972 3.9978 3.9992 4.0023 4.0048 4.0080 4.0214 4.0225 4.0252	3.9711 3.9797 3.9830 3.9839 6 4.0636 4.0640 4.0647 4.0639 4.0620 4.0567	1.0167 1.0145 1.0134 1.0133 c/a 1.0166 1.0166 1.0164 1.0154 1.0143 1.0122	90° 15' 90° 15' 90° 14'	64.73 64.87 64.89 64.93 64.95 65.01 65.10 65.15 65.18 65.03 65.03 65.03

Tab. 7. KNbO₃. Transition heat and transition entropy per mole. [54Sf]

transition	transition entropy per mole. [54S1]						
Transition	△Q _m cal mol ⁻¹	△S _m cal °K ⁻¹ mol-					
$\begin{matrix} IV \to III \\ III \to II \\ II \to I \end{matrix}$	32 85 190 134	0.12 0.17 0.28					

a' b' β

Nı 1a

2a

3

Tab. 8. KNbO_s. NQR spectrum. [54C1]. The measured frequency ratios intersect the calculated ratios in a straight line at constant $\eta=0.806\pm0.002$. $\eta=$ asymmetry parameter

Crystal structure	f MHz	Meas- ured ratio	Calculated ratio (η = 0.806)	Identifi- cation	e ² q Q/h MHz
northorhombic (20 °C) hombohedral - 196 °C)	3.648 3.030 2.527 2.085 2.674 2.004 1.335	1.204 1.198 1.214 1.335 1.503	1.204 1.196 1.213 $(\eta = 0.0)$ 1.333 1.500	(9/2, 7/2) (3/2, 1/2) (7/2, 5/2) (5/2, 3/2) (9/2, 7/2) (7/2, 5/2) (5/2, 3/2)	23.120 ± 0.09

Nr. 1A-3 NaTaO₂, Sodium tantalate

1a b	It was reported by anomalies of the d phase state	MATTHIAS in 19 ielectric constant IV (F)	49 that NaTaO, its, however, were	s ferroelectric be observed by Sm	low 480 °C. No lolenskii et al.	49M1 57S3
	crystal system	orthorhombic	orthorhombic	4-1		1
- -	space group	Pc2 ₁ n-C ₂	- I I I I I I I I I I I I I I I I I I I	tetragonal	cubic	57K1
	θ a = 5.4941 Å, b = The cubic cell in ph the orthorhombic us Crystal structure: Z Atomic positions: Ta	nit cell and the p		n phase IV. Re cell: Fig. 21.	o °C	57K1 62I4 51V2

Tab. 9. NaTaO₃. Fractional coordinates of atoms in the unit cell. [57Kt]

		[5/1/1]		
Na	$\begin{cases} x: & 0 - 0.01 \\ y: & \frac{\pi}{4} + 0.03 \\ z: & 0 + 0.02 \end{cases}$	$0 + 0.01$ $\frac{1}{4} + 0.03$ $0 - 0.02$	$\frac{1}{2} - 0.01$ $\frac{1}{4} + 0.03$ $\frac{1}{2} - 0.02$	$\frac{1}{2} + 0.01$ $\frac{3}{4} + 0.03$ $\frac{1}{2} + 0.02$
	$ \begin{cases} x: \frac{1}{2} \\ y: 0 \\ z: 0 \end{cases} $	1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ½ ½	0 0 ½
O(1)	$\begin{cases} x: & 0 - 0.02 \\ y: & \frac{1}{4} + 0.01 \\ z: & \frac{1}{2} + 0.02 \end{cases}$	$0 + 0.02$ $\frac{1}{4} + 0.01$ $\frac{1}{4} - 0.02$	$\frac{1}{2} + 0.02$ $\frac{3}{4} + 0.01$ 0 + 0.02	$\frac{1}{2}$ - 0.02 $\frac{1}{4}$ + 0.01 0 - 0.02
O(2)	$\begin{cases} x: & \frac{1}{2} + 0.04 \\ y: & 0 - 0.03 \\ z: & \frac{1}{2} + 0.04 \end{cases}$	$\frac{1}{4} - 0.04$ 0 - 0.03 $\frac{1}{4} + 0.04$	$\frac{3}{4}$ - 0.04 $\frac{1}{2}$ - 0.03 $\frac{3}{4}$ - 0.04	$\frac{3}{4} + 0.04$ $\frac{1}{2} - 0.03$ $\frac{1}{4} - 0.04$
	$\begin{cases} x: & \frac{1}{4} + 0.04 \\ y: & \frac{1}{2} + 0.06 \\ z: & \frac{1}{4} + 0.04 \end{cases}$	$\frac{1}{2} - 0.04$ $\frac{1}{2} + 0.06$ $\frac{3}{4} + 0.04$	$\frac{3}{4} - 0.04$ 0 + 0.06 $\frac{3}{4} - 0.04$	$\frac{3}{4} + 0.04$ 0 + 0.06 $\frac{1}{4} - 0.04$

Tab. 10. NaTaO₃. Temperature dependence of the pseudo-cell parameters. [6214]. For the notations, see Fig. 21

T [°C]	23	100	200	300	400	450	480	500	550	580	600
a' = c' [Å]	3.889	3.893.	3.899	3.907	3.912 ₈	3.916	3.918	3.920	3.923	3.925	3.927
9, [¥]	3.885				3.9102	3.913	3.915 ₈	3.918	3.923	≈3.925 ₂	≈3.927
β - 90°	22'00"		9'00"	6'00"	4'00"	3'30"	2'00"	≈2'00"	1'30"	0,00 "	0,00 .
a'/b'	1.0010	1.0009	1.0009	1.0008	1.0006	1.0006	1.0005	1.0005	1.000	1.000	1.000
V [Å*]	58.80	59.0	59.2 _s	59.5 ₈	59.8 ₅	60.0 ₀	60.1 ₀	60.2 ₀	60.3 ₈	60.4 ₅	60.5 ₈

T [°C]	630	660	680
b = a = c [Å]	3.929	3.931	3.932 ₅
V (ÅS)	60.6	60.7-	60.8

Nr. 1A-4 KTaO₂, Potassium tantalate

Ferroelectric activity was first reported by MATTHIAS in 1949; however, recent)49M1,49M4
studies by Wemple have proved that the ferroelectric transition does not occur, at least above 1.6 °K.b)	b)64W2,65W2
KTaO ₃ is cubic and its space group is Pm3m-O _h .	64W2,65W2 51V2
$T_{\rm mel.}=(1357\pm3)$ °C. $\epsilon=0.97$ °C by gm 2 °C. $\epsilon=0.985$ Å at RT. Thusparent, colorless or pale blue (blue in oxygen-deficient crystals). Cleavage: along (100) planes. Hardness: nearly the same as quartz.	55R2, 56R2 58R1 51V2 64W2
Fix method: KF flux.*) dark small crystals; K_pCO_2 flux.*) large (≈ 10 mm) transparent crystals. Czochralski-Kyropoulos method: large (≈ 10 mm) good quality crystals.	*)62T5,64W2 b)66U1 64W2,65W2 67B7 66W8
Floating technique: planar single crystals. Phase diagram of system K ₁ CO ₃ Ta ₁ O ₅ : Fig. 24. Hydrothermal phase diagram K ₂ O-Ta ₁ O ₅ -H ₄ O at 400 °C:	67M2
Z=1 Crystal structure: cubic perovskite type, (Pm3m-O _b). K at 1a position; Ta at 1b position; 3O at 3c position.	51V1, 51V2
	least above 1.6 °K.") KTaO, is cubic and its space group is Pm3m-Ol. T _{mell} = (1357 ± 3) °C. e = 6.97 · 10 kg m ⁻¹ . c = 3.9885 Å at RT. Total particular of the properties of the proper

57K1 :

49M1 57S3

> 62I4 51V2

> > ____

oure	n S. 221 ff. II 1 Oxide des Perowskit-Typs	
,	TITLE Constituted	51V2, 59B1
.	1 + DT: g = 4 0026 A at 450 C.	50H3
ia	Dielectric constant at low frequencies: earlier studies showed a peak in the order curve;) recent measurements have shown that no peake exists down to 1.6 °K. b) b Fig. 25. $\times = 243$ at RT. $\times = \kappa_0 + C(17 - \theta_0)$ $T > 30$ °K, where $\kappa_0 = 48$, $C = 5.7 \cdot 10^4$ °K, $\Theta_P = 4$ °K. $\times = \kappa_0 + C(17 - \theta_0)$ 0.001 at 200 kHz at RT. Loss tangent: tan δ in 0.001 at 200 kHz at RT. Loss tangent: tan δ in the GHz range; Fig. 26. Q values in the GHz range $19 = 16^{\circ} \cdot \cdot \cdot 10^{\circ}$ (Q values in the GHz range is easily expensely expensel	65W2,64W2 65W2 64W2 64R3 64W2
b	Effects of dc bais on \times at 4.2 °K and at K1. Fig. 2.5. Coefficients in the energy expansion: Coefficients in 1.5-2 at 4.2 °K $E = (4 \pm 1) \cdot 10^9 \text{ V m}^5 \text{ C}^{-3}$ at 295 °K.	65K1 65W2
с	D vs. E curves show no hysteresis character down to 110	64W2
9a	Refractive index in visible region: Fig. 30. Reflectivity in far infrared region and the dispersion: Figs. 31, 32. Reflectivity data were used to obtain transverse optical modes of the lattice vibration Reflectivity data were used to obtain transverse optical modes of the lattice vibration Reflectivity data were used to obtain transverse optical modes of the lattice vibration Reflectivity data were used to obtain transverse optical modes of the lattice vibration Reflectivity data were used to obtain the vibration of the lattice vibration and	63M4, 67P4
	by means of relating modes as a function of temperature. Transverse optical modes as a function of temperature. Transverse optical modes as a function of temperature. The province of the wave number \tilde{r}_{11} for the "ferroelectric mode" is approximately	67P4, 67F2
	The square of time $(T - \theta_0)$ interest of T : $\Re 1_1 \times (T - \theta_0)$ (Additional data are given on the ferroelectric soft mode, see 1A.4-13b) (Additional data are given on the fluorescent spectrum of Eu+ in KTaO ₂ , see Effect of lattice vibration on the fluorescent spectrum of Eu+ in KTaO ₂ , see Effect of a time of the conductivity in the far infrared Imaginary part of the dielectric constant and the conductivity in the far infrared Imaginary 3.4 3.5	6559
	Imaginary plans 3.5. region: Figs. 34, 35. region: Figs. 34, 35. Absorption coefficient α depends on the degree of oxygen reduction in KTaO, Absorption coefficient near the interband absorption degle (about 3.6 eV) for insulating Absorption coefficient near the interband absorption degle (about 3.6 eV) for insulating Absorption coefficient T A O C Fig. 36 (for additional data, see Fig. 2 of reference).	65W2 67B1
	and semiconducting wavelength of light: Fig. 37. Absorption vs. wavelength of light: Fig. 37. Absorption vs. carrier concentration in semiconducting KTaO ₂ : Fig. 38. Absorption vs. carrier concentration in semiconducting KTaO ₂ : Fig. 38.	64W2
	Cr. see $\begin{array}{ll} C_1, see \\ Output (2000) & Output (2000) O$	64G3, 63G3 67F4
١	d Faraday rotation near the band edge: Fig. 46; Tab. 44.	67F2
	 Electric-field-induced Raman effect: Fig. 47. Electric-field-induced Raman effect: Fig. 47. (For the ferroelectric soft mode obtained from the Raman scattering, see Fig. 33). Fluorescence spectrum of Eu+ in KTaO₅: see 	65S9 65W2
1	0 Resistivity of insulating single crystal: \$\rho\$ > 10\tau\$ fm at RT. Most data on the transport properties have been obtained using oxygen-deficit semiconducting KTaO ₂ ficient single crystals as a function of temperature: Fig. Resistivity of oxygen-4 in - m V-1 sec-1 at RT (see also Tab. 13). Hall mobility: \$\rho_1 = \frac{1}{2} \text{ to 10} - \frac{1}{2} \text{ verificate Size}. T > 100\text{ first RY} and RT for several semiconduct Hall resistivity of the semiconduct of th	
	Hall mobility vs. carrier concentration: 18.	66S17 66W5
	Electrical conduction for intrared region; see Fig. 33.	65W2 65W2
	Conductivity in the fail mis-series (see filter) μ or K^{-1} at RT. (Oxygen-deficient R1 as $_3$ sum Seebeck coefficient; μ = 35 · 10 9 m ⁻³). Heffective mass estimated from the Seebeck coefficient: $m^{s} = (0.8 \pm 0.28) \ m_{\phi}$. Photoconductivity vs. h_{θ} shows a peak at $h_{\theta} = 3.58$ eV.	65W2

N SCI SEN SE E & & E CE F | FITTE CIT | III 13b 17

> Tab. mode The soft 1 T[° 120 231 29 46

	1			•		
				_	II	1 Perovs
31 W2	12	esti Nu	= 1/2): P mated cor clear magn	a in KTa xation tim $= (2.340)$ rections). Letic acoust as a function	ic resonan	μ _n (unco ce: the abs
		ES a = ES (D ES	R of Fe ³⁺ = (288 \pm 5 = (30 \pm 1) R Stark e = 12 · 10 ⁻ R of Ni ³⁺	and Gd^{3+} : $g = 1.99$ s) $\cdot 10^{-2}$ m $\cdot 10^{-2}$ m ⁻ ffect for Formula or and the second or and the second or and second or an and second or an analysis of the s	± 0.01 ; at RT (-1 at RT (For at RT (For at RT)	Fe^{3} is on the state of th
	13	Ter The by die For	nperature e square o $(h\nu)^2 = 1$ lectric con r the ferro	dependent dependent f the phon 0 ⁴ A/x, 40 stant. electric sorgies of the	ce of the form on energy or K < T ft mode, se	erroelectric of the ferr < 295 °K; ee also 1A-
57P4	ı	Ba	e related p	etched by or properties: various m		
17F2			Me	ethod		2
		Fa	raday rota	tion		3
		- 1		tance singu	ılarities	3
1	1	En	sorption d ergy at w	ata hich α≈1	06 m-1	1 3
		ski	clotron re n depth, gnetic fiel	sonance of about 30 p d curves.	semicond um; see r	ucting K7 eference p
63G3	1 5	nodes at The wa	various te	Transver emperature er $\tilde{\nu}_{t1}$ (fer perature d	es [67P4]. roelectric	Tab. 12
	1 1	T[°K]	ν̃ _{t1}	$\widetilde{\nu}_{12}$	Ÿ _{t3}	
	.			· 10* m ⁻¹		
1, 66B2 ?		12 126 232	25 58 79	196 198 198	551 551	KTaO ₃ KTaO ₃ KTaO ₃
9		295 463	88 106	199 199	550	
v2			Tab 295	. 13. KT °K and 4. calculat	aO _s (reduce 2 °K for seed from the	ced). Hall ingle cryst ne 4.2 °K l

 W_2

12a	NMR of $^{19}\mathrm{Ta}$ in KTaO,: spin-lattice relaxation time, $T_1 \approx 10^{-3}\mathrm{sec}$ at RT; spin-spin relaxation time, $T_1 \approx 10^{-3}\mathrm{sec}$ at RT; nuclear magnetic moment of $^{19}\mathrm{Ta}$ at $(f=7/2)$: $\rho_{r}=(2.340\pm0.001)~\mu_{n}$ (uncorrected): $(\rho_{r}=(2.35\pm0.01)~\mu_{n}$, after estimated corrections). Nuclear magnetic acoustic resonance: the absorption data were given for $d~m=\pm2$ transition of $^{19}\mathrm{Ta}$ as a function of the angle between magnetic field and sound axis [100].							
ь	ESR of En ¹⁺ and Gn ²⁺ in KTaO ₂ : Tab. 14. ESR of Fe ¹⁺ ; $e = 1.99 \pm 0.01$; $ a = (345 \pm 10) \cdot 10^{-2} \text{m}^{-1}$ at $4.2 ^{\circ}\text{K}$; $a = (288 \pm 5) \cdot 10^{-2} \text{m}^{-1}$ at RT (Fe ²⁺ is on the Ta ¹⁺ site), $a = (30 \pm 1) \cdot 10^{-2} \text{m}^{-1}$ at RT (Fe ²⁺ is on the K1 ²⁺ site), ESR Stark effect for Fe ²⁺ : E_{list} along [100] induces axial splitting term D ($D = 12 \cdot 10^{-2} \text{m}^{-1}$ at E_{list} along [100] induces axial splitting term D ($D = 12 \cdot 10^{-2} \text{m}^{-1}$ at E_{list} along 100 M m ⁻¹ at $4.2 ^{\circ}\text{K}$; $D \propto E_{\text{list}}$). ESR of Ni ²⁺ located on Ta ²⁺ site (low spin state) and on K1 ²⁺ site: see ESR in Mn doped, Co-doped and Cr-doped KTaO ₂ ; see							
13b								
17	Etchant: single crystal is slowly e Band structure and the related p and Tab. 12. Band gap energies determined by	roperties: see references; a	also 1A-4-9a, 9b, 9d, 10,	64W2 67F4, 67B1				
	Method	296 °K	77 °K					
	Faraday rotation	3.77 eV 3.62 eV	3.79 eV 3.65 eV	67B1				
	Electroreflectance singularities	3.80 eV						
	Absorption data Energy at which $\alpha \approx 10^6 \text{ m}^{-1}$	3.75 eV 3.79 eV		65513				
	Cyclotron resonance of semiconducting KTaO ₂ at 70 GHz and 1.4 °K: microwave skin depth, about 30 µm; see reference paper for the microwave absorption vs. magnetic field curves.							

Tab. 12. KTaO₃. (Ca-doped). Singularities observed in elec-

	E_1	E ₂	A 1	A' ₁	A_{2}
		'	[eV]		
KTaO ₃ (100)	3.57	3.80	4.40	4.88	5.50
KTaO, (111)	_	3.77	4.45	4.90	5.4
KTaO, (110)	3.55	3.80	4.47	4.85	5.5

Tab. 13. KTaO₂ (reduced). Hall coefficient $R_{\rm H}$ and Hall mobility $\mu_{\rm H}$ at 295 °K and 4.2 °K for single crystals [65W2]. Carrier concentrations N are calculated from the 4.2 °K Hall coefficient using $R_{\rm H}=-1/Ne$

Sample Nr.	N _{cale} m ⁻³	(295°K)		μ ₁ m² V ⁻¹ (295°K)		
1 2 3 4 5 6	3.5 · 10 ⁵³ 6.0 · 10 ⁵³ 6.6 · 10 ⁵³ 2.4 · 10 ⁵⁴ 7.8 · 10 ⁵⁴ 1.3 · 10 ⁵⁵	20.3 · 10 ⁻⁶ 12.9 · 10 ⁻⁶ 11.5 · 10 ⁻⁶ 3.0 · 10 ⁻⁶ 1.0 · 10 ⁻⁶ 0.62 · 10 ⁻⁶	2.6 · 10-6 0.80 · 10-6	2.7 · 10 ⁻³ 2.9 · 10 ⁻³ 3.1 · 10 ⁻³ 3.0 · 10 ⁻³ 3.0 · 10 ⁻³ 3.1 · 10 ⁻³	2.3 1.9 1.9 1.1 0.53 0.34	

Tab. 14. KTaO₃. Parameters of ESR spectrum of Eu²⁺ and Gd²⁺ ions, doped in single crystals of KTaO₃ [66UI]

Tab. 14. K12	1O ₃ . P	aranı			Ī	(TaO ₃ [6601]			TYPE
							FS		HFS
Para- magnetic	Site	s	æ	GHz	°K	g-factor	b ₄₀ , b ₆₀ 10 ⁻² m ⁻¹	I	A 10 ⁻² m ⁻¹
center				<u> </u>		1.990 ± 0.002	$b_{40} = (\pm)16 \pm 2$	5/2 5/2	$ ^{151}A = 36 \pm 1$
Eu*+	K+	7/2	(8)	9.1	77		$b_{60} = (\pm)1.2 \pm 0.0$		$ 153A = 16 \pm 1$
Gd2+	1	7/2			4.2	1.990 ± 0.002	De0 - 7 0.11 1		
					77	1.990 ± 0.002			
1	1	1	1	1	1	· .			

Nr. 1A-5 CaTiO₃, Calcium titanate (Perovskite)

Nr. 1A-5 Ca	TiO ₅ , Calcium diamete (
7	Tab. 16. CaTiO ₂ . Ion positions. [57K2]
4 Ti in 4(a):	$\frac{1}{2}$, 0, 0; 0, 0, $\frac{1}{2}$; $\frac{1}{2}$, $\frac{1}{2}$, 0; 0, $\frac{1}{2}$, $\frac{1}{2}$.
4 11 22 1(-7)	1 + 2 1 - z: 1 - x, 1, 1 + z; 1
4 Ca in 4(c):	おおお あおお まてのむま
4 000 200 1 (/	$\frac{1}{4}$, 0, 0; 0, 0, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ = x , $\frac{1}{4}$, x ; \overline{x} , $\frac{3}{4}$, \overline{x} ; $\frac{1}{8}$ + x , $\frac{3}{4}$, $\frac{1}{2}$ = x ; $\frac{1}{8}$ = x , $\frac{1}{4}$, $\frac{1}{8}$ + x ; with $x = 0$, $x = 0.030$.
1	0.018
4 O in 4(c):	with $z = \frac{1}{2} - 0.037$, $z = -0.018$.
8 O in 8(d):	$x, y, z; \frac{1}{2} = x, \frac{1}{2} = y, \frac{1}{2} + z;$
8 O III O(G)	$\overline{x}, \overline{y}, \overline{z}; \overline{z} + x, \overline{y}, \overline{z} - z;$
	$\overline{x}, \overline{y}, \overline{z}; \frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} - z;$
	[x, y, z; ± + x, ± + y, z
l	$x, \frac{1}{2} - y, z; \frac{1}{2} - x, y, \frac{1}{2} + z;$
1	$x, \frac{1}{2} - y, z; \frac{1}{2} - x, y, \frac{1}{2} + x,$ with $x = \frac{1}{4} - 0.018$, $y = -0.026$, $z = \frac{1}{4} - 0.018$.
1	With x = 1 - 0.000.5

Tab. 15. KTaO₁, Phonon energies of the soft ferroelectric mode (transverse optical mode) at various tender of the soft ferroelectric mode) at various tender of the soft ferroelectric ferroelectri

0.788 T °K	Phono	n/a). Se n energy [r q [Å ⁻¹] :	meV]
°K	0 1	0.1	0.2
295	10.7	11.5	13.5
230 170	9.7 8.6	10.0	12.5
	7.3 5.7	7.5	10.7
40 28	4.2 3.6	6.0 5.9	10.5
15 10 4	3.0 3.2 3.1	5.3 5.2 5.3	9.8

1a	Specific heat anomal about 1260 °C by N becomes cubic above		h a phase transition was observed in CaTiO ₃ 1946. Gränicher et al. reported that CaTiO	at O ₃ 46N1, 54G1				
ь	phase	11	<u>I</u>	1 1				
1 %	state		P	54G1	ı			
1	crystal system	orthorhombic	cubic	57K2	١			
1 1	space group	Pcmn-Dis		46N1	١			
2	θ $\rho = 4.10 \cdot 10^8 \text{ kg m}$ $T_{\text{melt}} = 1960 ^{\circ}\text{C}$ $a = 5.3670 \text{Å}, b = 1$ The ideal perovski same manner as sh Transparent, color	260 °C 4439 Å at RT. Il becomes pseudo-monoclinic in phase II in β' = 90° 46° at RT. CaCl ₊ +BaCl ₊ , Na ₂ CO ₅ +K ₄ CO ₊	57K2 58L1, 62M3					
12				57K2				
3	Crystal structure: Fig. 55; Tab. 16.		11.		_			
4	11 t stirm	: Fig. 56.	2 10-4 at RT.	62M3				
54	Fig. 57.		$\delta = 3 \cdot 10^{-4} \text{ at RT.}$	46N1				
6:	a Specific heat: Fig Transition heat:	Specific heat: Fig. 58. Transition heat: $\Delta Q = 550 \text{ cal mol}^{-1} \text{ at } \theta_{\text{II-I}}$.						

Nr. 1A-5 CaTiO, continued

; of
ergies trans- arious wave ary is 'ig. '52 V]
13.5
12.5
10.7
10.5
9.8
1, 54G1
71 72 71 73 73 73 72

!6N1

17	Hardness: Mohs 6.5	7 Knoop 98	6	62M3							
	1A-6 SrTiO, Strontius		was first observed by Gränicher in 1956.	56G2							
1a b		II*	was hist observed by Graniches in 1996.	62R1							
P	phase		P								
-	state	(F)	cubic**								
	crystal system	tetragonal									
- 1	space group		Pm3m-Oli								
	Θ $T_{\text{melt}} \cong 2000 \text{ °C.}$ $\varrho = 5.11 \cdot 10^9 \text{ kg m}^{-3}$ $a = 3.905 \text{ Å at RT.}$ Transparent, colorles		0 °K	63f2, 64l1 63f2 64L4							
2a			KF or 50% Na ₂ CO ₂ + 50% K ₂ CO ₃). iO ₂ is given in Figs. 297 and 289 of [6411].	57N1 61G1 64l1							
3	Crystal structure: Z	= 1. Fig. 62.	X-	- 22							
4	Thermal expansion:	Fig. 63.									
5a	Dielectric constant: Expression of κ vs. Curie-Weiss law: $\kappa = M/[(T_1/2) \coth(M - 9 \cdot 10^4)]$	CUT A	$T > 70$ °K, where $C = 7.83 \cdot 10^4$ °K, $\Theta_p = 28$ °K $T < 50$ °K, where $T_0 = 38$ °K, $T_1 = 84$ °K,	61M3 59W2, 62S							
ь		nergy expansion	n at low temperatures:	66C6							
c	Saturation polarizati Remanent polarizati	on: Fig. 77.									
d	Electrocaloric effect. For additional data,		-	64K5, 65H 61H1							
6a	Specific heat: Fig. 8 Specific heat below	0. 1 °K, see		61g1, 66A							
ь	Thermal conductivit For ceramics: see als			58Y1, 60Y 61g1, 66H							
7a	Piezoelectricity (dc l	oias induced pie	ezoelectricity): Figs. 83, 84, 85.								
ь	Electrostriction: Fig										
8a .	Elastic compliances	and stiffnesses	: Tab. 17; Figs. 87, 88, 89.								
9a	a Refractive indices: Tabs. 18, 19; Fig. 90. Reflectivity, absorption coefficient and dielectric constant: (i) Infrared region: Figs. 91 ··· 95. See also Tab. 42. (ii) Visible and ultraviolet region: Figs. 96 ··· 102. See also Tab. 43.										
l b	Quadratic electroon	tic effect: M	$-M_{12} = (0.14 \pm 0.01) \text{ m}^4 \text{ C}^{-2} \text{ at 6328 Å}$	64G3							

In phase II a hysteresis loop is observed,⁸),
 b) but the remanent polarization depends upon the amplitude of the applied field. According to Lytle, phase II consists of three phases.
 618.7 [59W2],
 61.6 [61.4]

^{*} Generally the phase I is believed to be cubic but evidence of pseudo-cubic structure was reported by a few authors [64L4], [66L4], [66L4]

ionrei	n S. 236 ff.	II 1 Oxide des Perowskit-Typs	
	Nr. 1A-6 SrTiO _s continued Faraday rotation: Fig. 103.		67B1
- 1	- ctent Fig 104.	1	66K1
		15.	61g1
	See	07 Om (good quality single crystal) at R1.	61g1
10	Tab. 22. Parietivity, Hall coefficient	ta, see t and Hall mobility of semiconductive samples: Tab. 23;	64F5, 67T6
	For additional data, see Hall mobility for photo-ex	cited electron: see Fig. 115. 112, 113.	66T10
	Photoconductivity, 136.	STIO, by Schooley et al. in 1964.	6455
	Penetration depth of stati	c magnetic field in superconduct	66516
11	Magnetic susceptibility: T	ab. 25.	
11 12a	MAD : Fig 121.		1
Ъ	ECR . Tab. 26; Figs. 122	130.	
1 6	Machaner effect: Figs. 1.	31, 132	
13c			61M3, 64L
14a	of the twin structure is The dc field, however, de	oes not change the twin structure.	
16			66 R6
17	Etching and chemical po Band structure and rela-	olishing: ted properties: The band structure was determined theory, g. 137.	
	Magnetoresistance, Shul The conduction band of transverse and longitud $m_1 = 1.5 m_0 (\pm 15\%)$, π	onikov-deHaas effect. onsists of spheroids along [100] having 3 minima at X_s . Thin all effective electron mass: $n_1=6.0~m_0~(\pm 30\%)$.	67F3
1		Tab. 17. SrTiO ₃ . Elastic constants at RT	
- 1		180. 11. 0	Deference

			Tab. 17.	SrTiO ₃ . E	lastic con	Stanto at a		
	. 1	S ₁₃	c11	c12	c13	Method	Note	Reference
S ₁₁	s ₁₂		1	011 N m-1		composite-	c calculated	58þ5
3.3	-0.74	8.4	3.48	1.01		bar	from s s calculated	63B2
3,729	-0.909	8.091	3.181	1.025	1.236	pulse	from c s calculated	63W1
3.772	0.026	8.233	3.156	1.027 ±0.027	1.215 +0.006	pulse	from c	1
±0.023		±0.040	±0.027	1 ±0.021	1 22		10 S-TiO- # V	. A [65B9]

±0.02	23 ±0.010	±0.040				Tab. 1	9. SrTiO	. n vs. 1 [6	5B9]
	Tab. 18.	SrTiO ₃ . n		°C. [37G1]	<u> </u>	μm	n	λ μm	n
Å		1 A	n 1296	Å 6600	2.3771	0.45	2.537 2.472	1.8 2.0	2.270
45 46 47 48 49 50 5		5500 5600 5700 5800 5900 6600 6600 6600 6400 6400 6400	2.4386 2.4312 2.4245 2.4182 2.4122 2.4069 2.4019 2.3971 2.3928 2.3886 2.3846 2.3807	6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700	2.3737 2.3703 2.3674 2.3645 2.3617 2.3590 2.3564 2.3538 2.3514 2.3490 2.3468	0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4	2.442 2.402 2.363 2.340 2.326 2.315 2.306 2.299 2.287 2.279	2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8	2.258 2.2524 2.2490 2.2395 2.2315 2.2236 2.2143 2.2058 2.1951
1 2	1300 2					1.1			

λ	Π_{ee}	λ	Π_{66}	λ	$\Pi_{21} - \Pi_{11}$	λ	П:1-
Å	10-13 m ² N-1	Å	10-13 m ² N-1	A	10-13 m2 N-1	Å	10-13 m
4200	-3.69	6000	-4.92	4200	9.03	6000	9.95
1300	-3.74	6100	-4.99	4300	9.23	6100	9.94
1400	-3.78	6200	- 5.05	4400	9.03	6200	9.91
1500	-3.99	6300	-5.12	4500	9.26	6300	9.84
4600	-3.965	6400	-5.13	4600	9.12	6400	9.82
4700	-4.13	6500	-5.18	4700	9.12	6500	9.88
4800	-4.09	6600	- 5.22	4800	9.14	6600	9.96
4900	-4.22	6700	-5.29	4900	9.16	6700	9.92
5000	-4.33	6800	-5.52	5000	9.35	6800	9.98
5100	-4.32	6900	- 5.48	5100	9.44	6900	9.99
5200	-4.41	7000	- 5.555	5200	9.61	7000	9.91
5300	-4.51	7100	-5.62	5300	9.54	7100	9.92
5400	-4.59	7200	-5.77	5400	9.68	7200	9.94
5500	-4.575	7300	- 5.73	5500	9.56	7300	9.99
5600	-4.62	7400	-5.78	5600	9.85	7400	10.05
5700	-4.69	7500	- 5.79	5700	9.85	7500	9.90
5800	-4.79	7600	-5.825	5800	9.86	7600	9.92
5900	-4.85	7700	_ 5.98	5900	9.88	7700	10.02

7T6

. 64L4

67F3

58p5 63B2 63W1

> 2.270 2.264 2.258 2.2524 2.2490 2.2395 2.2315 2.2236 2.2143 2.2058 2.1951

Tab. 22. SrTiO_s (single crystal). Effects of electrode material on the apparent conductivity [65C6]. Measurements were made by the two terminal method at T=130 °C, t=24 hours after the application of the field E=100 kV m⁻¹.

Electrode material	σ [Ω ⁻¹ m ⁻¹] after 24 h at 130 °C	Form of σ vs. t curve
Au Ag Sn Cr Cd Al	4.8 · 10 ⁻⁷ 8.8 · 10 ⁻⁸ 8.8 · 10 ⁻⁹ 6.0 · 10 ⁻¹¹ 9.5 · 10 ⁻¹¹ 2.9 · 10 ⁻¹⁰	Fall then rise As for gold Fall followed by slow rise but without saturation Continuous fall tending toward steady value Similar to chromium Similar to chromium (for a field of 400 kV m ⁻¹ behavior is like that of gold)

Tab. 23. SrTiO₄ (single crystal). The 300 °K and 2 °K Hall coefficient $R_{\rm H}$ and Hall mobility $\mu_{\rm H}$ values and the 300 °K electron concentrations for semiconductive single crystals. [6776]. In the first column, (Nb) means Nb-doped samples, the other samples are reduced ones

	300	°K		°K	$n = \frac{1}{2}$				
Sample	R _H 10 ⁻⁶ m ³ C ⁻¹	μ _H 10 ⁻⁴ m ² V ⁻¹ sec ⁻¹	R _H 10 ⁻⁴ m ³ C ⁻¹	10 ⁻¹ m ² V ⁻¹ sec ⁻¹	$n = \frac{eR_{\rm H} (300 \text{ °K})}{\text{m}^{-3}}$				
5 2 3 6 12 9	0.26 0.62 1.8 5.3 14.0 23.0	6.5 5.2 7.2 8.0 8.0 5.8	0.25 0.77 3.9 11.0	1.0 1.8 2.7 3.1	2.4 · 10 ²⁵ 1.0 · 10 ²⁵ 3.5 · 10 ²⁴ 1.2 · 10 ²⁴ 4.5 · 10 ²⁵ 2.7 · 10 ²⁵				
13(Nb) 8(Nb) 10(Nb) 14(Nb) 15(Nb) 11(Nb)	0.22 0.58 3.4 14.0 22.0 44.0	5.5 4.8 6.2 6.7 5.4 6.0	0.22 0.63 3.3 11.0 18.0 33.0	3.3 8.2 12.0 13.0 19.0 22.0	2.8 · 10 ²⁵ 1.1 · 10 ²⁵ 1.8 · 10 ²⁶ 4.5 · 10 ²⁸ 2.8 · 10 ²⁸ 1.4 · 10 ²⁹				

Tab. 24 see page 50

	# #							1	_	_	ГТ	T-	_				_			
	f the lower five differ		ec-1 Far infrared	1.2•)	3.0°) 2.63°)				Liter		58M7	59M4		59D2	58M8		62R3	62R3		1
	= 0 for		1018 sec-1					-	700	THE	٤			FF.			6	Đ	6	1
	Tab. 27. SrTiO ₂ . The frequency of the lowest transverse optic mode at $q=0$ for five different temperatures. [270.4]			1.23 ± 0.03 1.72 ± 0.04	2.73 ± 0.05 3.32 ± 0.07	b) [62S12]		magnetic ions	244	ⁿ A [10 ⁻² m ⁻¹]	$^{69}A = 0$ $^{69}A = 16.2 + 0.3$	$^{10}A = -69.4 \pm 1$								
	ab. 27.	1	'n,	342 342 342 342 342 342 342 342 342 342	296 430	*) [62B2]		d para		7	3/2	5/2				1	1		-	
	leasuring the ributions.	-1 m* at 4.2 °K		+0.928 5.1	-0.919 - +1.719 4.9] (*	Summary of the properties of ESR spectrum in como	FS	2 22 - 4 0	D = 2 + 0.3 r c	5	D = +1.0, E = 0 $D = -0.7, E = 0$	$D = +1/.9 \pm 1.0, E = 0$ $a = -230 \pm 10, E = 0$ $D = +16.1 \pm 0.7, E = 0$	1 1	= -220.8 ± 1.1 = 1.0, E=	- 1				
	sents the contribution from the charge carriers, dxmag is obtained by a donced crystals and subtracting the "pure" diamagnetic and Yan Vinck bor concentration; Tax = degeneract the "pure" diamagnetic and Yan Vinck control of the pure	Xmame or AXmame · 10-7 cm ² g ⁻¹	78 °K -1.00	+0.073	-1.012	-	s of ESR spectra	g-factor	6	(iso		(isotropic)	(isotropic)	(isotropic)	(isotropic)	(isotropic)		2.352 ± 0.001		
	Pure and reduc large carriers; z "pure" diamagn temperature; n	Xmams or dX_n	300 °K		λ -1.016 Δλ ₃ +1.704		of the propertie	J-8	8	1.9788 ± 0.007	1.9780 ± 0.007 1.994 ± 0.001	1.994 ± 0.001 2.004 ± 0.001	2.004 ± 0.001	2.004 ± 0.001	2.004 ± 0.001	2.204 ± 0.001		2.029 ± 0.001		
1,111,111	m the ch cting the generacy	T deg	+		220		ummary	T,	1	80	200	1.9	4.2	11	300	ÌΪ	T	203		
Suscen	ion fro subtra g = de	N at 4.2 °K m-s	101	10	\$201		SrTiO, S	GH,		6	2	6				2 5				
TiO.	ntribut ils and n; Ta	Nat 4	6 - 1024	7.5	5.3 · 1028		6. SrT	×		(2)	3	6				€ €	•		1	
25. Sr	the co			^Ε δ			Tab. 26.	S	1	3/5	3/2	5/2				12	<u> </u>			
Tab.	represents of reduced arrier conce	Sample	28 h, 950 °C hydrogen	(carbon boat)	27 h, 1370 °C hydrogen (carbon boat)			Site		‡.i.ī	+	Tie+				+				
;	Xmarne Xmarne N == ca		28 h, 950	(carbon boat)	27 h, 1370 (carbon		\perp	Para- magnetic center	÷	5	Mn4+	Fes+			Nis+	Ni1+or Nis+				
						Nak	amııı	2/S2m		.aL:				_		_	_			

Ref. Liter-

HFS I a A ... n A . [10-2 m-1]

FS D, E, a[10-2 m-1]

<u>~</u>

Ę,

GHz T

×

											II :	l Pe	erov	ski	ite-	tyı	e c	xides	_					Figures p. 23	ff.
Liter-	ature	62R3				62R3	62R3	62R2		62R2								62R2		62R2	62R1			M1).	
Ref.		•			Ì	-	•		Ī									د		٥	a a			ing. [55	
HFS	$^{0}A_{\parallel}$, $^{0}A_{\perp}[10^{-2}m^{-1}]$										$ ^{171}A_{\parallel} = 530 \pm 20$ $ ^{171}A_{\parallel} = 720 + 5$	178A 1 = 211 ± 5						$ ^{181}A_{\parallel} = 36.2$ $ ^{188}A_{\perp} = 17.6$					_	ξ = (100) η = (100), ζ = [001], (1) is sacribed to a covalent bonding by Mützer. However, Assawano et al. find a negligible contribution of the covalent bonding. (7941). Deviations from spin Hamiltonian (1) is sacribed to a covalent bonding by Mützer. However, Assawano et al. find a negligible contribution of the covalent bonding. (7941). Spectrum side as the contribution of the covalent bonding. (7941). The negligible contribution of the covalent bonding. (7941) is present with zero as parallel to the covalent (100), (100) and (100). Efficient disentative and present on CAT, Pet "1, and CAT" spectra. (1942).	
	1				Ì	Ì					1/2	2/5						5/2 5/2						ntributh	
)-4 m-1]		8														200	6.7 ± 2	1.1 ± 2	1.4 ± 0.5	1.4 ± 0.5	-0.25 ± 0.5	0.5 ± 0.3	nd a negligible co	
FS	D, E, a[10-2 m-1]															FS [10-3 m-1]	orq	106.6 ± 2	105.9 ± 2	-3.2 ± 0.5	-3.24 ± 0.5	-4.8 ± 0.5	-5.7 ± 0.2	SENBERO et al. fir	
16	8 T	2.213 ± 0.002	2.202 ± 0.001	2.184 ± 0.001	2.180 ± 0.002	1.118 ± 0.003	-2.472 ± 0.003	2.470 ± 0.005	2.470 ± 0.005	2.780 ± 0.005			2.720 ± 0.005	2.720 ± 0.005	2.70 ± 0.01		P ₂₀	-10 ± 4	0	-362.5±0.5	-362.5 ± 0.5	-233.6 ± 0.5		LER. However, AI +1 levels. NO] and [001]. 4R2].	
g-factor	g.	0.002	2.136 ± 0.001	2.172 ± 0.001	(isotropic)	3.005 ± 0.005	2.609 ± 0.003		2.62 ± 0.01	2.11 ± 0.01	1		2.18 ± 0.01	2.17 ± 0.005	(2.25)		g (isotropic)	1.99 ± 0.001	1.99 ± 0.001	1.992 ± 0.002	1.992 ± 0.002	1.992 ± 0.002	1.992 ± 0.002	ε (100), η = (101), ξ = (101). Positions from put Hamiltonian (7) is sacribed to a covalent bonding by Mützer. However Destination from the track β, and the track β,	
+	,¥	4.2	20	08	203	4.2	4.2	2		2			50		65			2	300	2	4.2	11	300	d to a cova nn between res parallel st*, Eu**, a n. [64K7].	Ę.
	GHz	2	!	•		2	2	16	35	16	35		16	35	35			16		16	12, 18			s ascribe absorptic bserved. d with a Ccl+, F	tra. [665
	S.	2				8	9	:		9	:							<u>®</u>		(8)	:			1]. uantum : tes are o observe essure on arge con	d** spec
	S	1/2				1/2	1/2		_	1/2						Γ		7/2		7/2				ζ = [00 familtor louble q alent si ctra are and pre	De of G
ii	Site	Ti4+				,	,											1		Sr2+				\$= (1001, \$^{*} = (101), \$^{*} = (101). Deviations from the Hamiltonian (1) is searthed to a rowal posterium of the co. a clothely quantum short-plot between the state of the control of	Electric field dependence of Gd** spectra. [6653].
Ports.	magnetic	+¢!N				+897	+sPN		_	Vh3+								Eu2+		Cds+				a) \$ = [100] b) Deviation c) Spectrum d) At least fi e) Three ince f) Effects of f) Figers of g) Fe ⁺ spec	

Nakamura/Sawaguchi

6

 $2.029 \pm 0.001 \mid 2.352 \pm 0.001$

8 8 8

Ti⁴⁺ 1/2 (2) 10

Ni2+or Ni3+

Tab. 24. SrTiO₂ (ceramics containing Ba or Ca in mol%). Superconductive properties of $(Ba_5Sr_{1-2})TiO_2$ and $(Ca_5Sr_{1-2})TiO_2$ $(\delta 7S\delta)$. H_{c1} is the point at which the magnetization curve first deviates from linearity; $H_{c1}(0)$ is the extrapolated value for $T \to 0$ *K. Θ_c = superconducting transition temperature

(Res 1a

ь

2a

5a

* The

cool ** In n [65]

		CHUALION	Θ _c =	superconducti	ng transiti	on temper	ature
% Ba or Ca	N 10 ²⁵ m⊸³	θ _c °K	H _{c1} (0) Oe	% Ba or Ca		Θ,	$H_{c1}(0)$
2.5 (Ba) 2.5 (Sa) 2.5 (Ba) 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	2.7 5.8 6.4 1.7 12.0 23.0 6.0 0.3 6.7 7.0 0.05 34.0 0.5 2.3 15.0	0.18 0.30 0.25 0.10 0.17 0.10 0.52 0.23 0.50 0.29 0.22 0.09 0.22 0.09 0.25 0.27	2.8 2.8	10.0 12.5 2.5 (Ca) 5.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	4.2 4.5 5.0 9.2 74.0 8.7 0.2 0.6 33.0 2.0 0.06 ^b) 9.3 13.0 6.7 0.6	0.25 <0.10 0.32 0.30 <0.06 0.43 <0.06 0.37 <0.07 0.48 <0.06 0.39 0.29 0.50 <0.05	(3.5)*)

Nr. 1A-7 CdTiO, Cadmium titanate

	. In-/ CallO, Ca	dmium tit	anate								
1a	CdTiO ₂ was repo In 1950 Hulm et KII's findings.	50S7, 50H2,									
ь	phase	II	I I	59H4							
	state	(F)*)		1							
	crystal system		orthorhombic ^b)	*)5057							
	space group		Pc2 ₁ n ^b)-C ^a ₁ v	b)57K1							
	θ	222 242									
	Lattice constants	a = 5.34	8 Å, b = 7.615 Å, c = 5.417 Å at PT	5057							
	is the same as in t	the case of	Na Ta O : eas Fig. 24 the pseudo-cubic monoclinic cell	57K1							
2	Flux method (flux	: 40 wt%	NaCl + 40 mtg/ N-DC								
3	. Crystal structure in phase I. Tob. 20. E.										
5a	Dielectric constant: $x = 250$ at RT. $x = C/(T - \Theta_p)$, $C = 4.5 \cdot 10^4$ °K. Effect of E_{s_1} on $x \in Fig. 120$										
ь	Effect of E_{blag} on x: Fig. 139. $z = C/(T - \Theta_p)$, $C = 4.5 \cdot 10^4 ^{\circ}\text{K}$. 5087, 50H2										

Tab.	28. CdTiO ₃ .		(*:	0	Position			Estimated error
atoms in	coordinates of the unit cell.	Cd	y:	0 + 0.006	1	1 + 0.006 1	$\frac{1}{2} - 0.006$	±0.002
1 '	•		(*:	0 + 0.016 $\frac{1}{2} + 0.005$	$0 - 0.016$ $\frac{1}{2} - 0.005$	$\frac{1}{2} - 0.016$	1 + 0.016	±0.002
1		Ti	y:	0 0 — 0.065	1 0 + 0.065	0 + 0.005	0 — 0.005 0	±0.005
		O(1)	$\begin{cases} x: \\ y: \end{cases}$	0 - 0.03	0 + 0.003	$\frac{1}{2} + 0.065$ $\frac{1}{2} + 0.03$	$\frac{1}{2}$ - 0.065 $\frac{1}{2}$ - 0.03	±0.010 ±0.015
			(x:	$\frac{1}{2} + 0.05$ $\frac{1}{4} + 0.05$	$\frac{1}{2} - 0.05$	0 + 0.05	0 - 0.05	±0.025 ±0.015
	,	O(2)	y:	0 - 0.03 1 + 0.06	$\frac{1}{4} - 0.05$ $0 - 0.03$	$\frac{3}{4} - 0.05$ $\frac{1}{2} - 0.03$	$\frac{3}{4} + 0.05$ $\frac{1}{2} - 0.03$	±0.005 ±0.015

 $\frac{3}{4} + 0.06$

 $\frac{1}{4} - 0.05$

± − 0.06

₹ - 0.05

 $\frac{1}{4} - 0.06$

 $\frac{3}{4} + 0.05$

 ± 0.015

 ± 0.005

土0.015

±0.015

 $\frac{1}{2} + 0.07$ 0 + 0.070 + 0.07 $\frac{1}{4} + 0.06$ £ + 0.06 a) This specimen is not spherical, so that the value of $H_{ex}(0)$ quoted is only approximate. $\frac{1}{4} - 0.06$ $\frac{1}{2}$ - 0.06 b) Hall coefficient appeared to be affected by magnetic history of specimen at liquid helium temperature.

 $\frac{1}{4} + 0.05$

 $\frac{1}{2} + 0.07$

Nr. 1A-8 BaTiO, Barium titanate

50H2.

77, 50H2

*stimated error
±0.002
±0.002
±0.005
±0.010
±0.015
±0.025
±0.015
±0.005
±0.015
±0.005
±0.015
±0.015
±0.015
±0.015

±0.015

i7 K1 (Responsible authors for this section are as follows: Ikeda, Nakamura, Nomura, Sawaguchi, Shiozaki and Toyoda, abbreviated as INaNoSaShiTo).

1a	The anomalous dielectric properties of BaTiO, were discovered on ceramic specimens 421 independently by Wannsr and Solomon in 1942, by Goawa in 1944 and by Wut in 1945. The ferroelectric activity of BaTiO, was reported independently by von Hirpez 441 and co-workers in 1944 and by Wut in 1945. Independently by two they was reported independently by two his properties of the control of the											
ь	phase	IV=)	III*)				*)49K2,49R1 b)45M1					
	state	Fa)	F*)	F°)	P ^b)		°)46V1,46W1					
	crystal system	rhombo- hedral*)	ortho- rhombic*)	tetragonal ^b)	cubic ^b)	hexagonal ^d)*	a)55R1					
	space group	R3m-C ₃ *)	Amm2-C14 *)	P4mm-C ₄ b)	Pm3m-Ohb)	C63/mmc-D _{6h} d)						
	P_{\bullet} [001] P_{\bullet} [111] The directic $T_{\text{melt}} = 16$ Tetragonal a = 3.9920 Transparen Hexagonal	18 °C. form (phase \dot{A} , $c = 4.036$ it, light brown	along [100] of (along [110] of (along [111] of (along [111] of (along [111] of (along [11]): $\varrho = 6.02$ 1 Å at 20 °C. 1. 5.735 Å, e_{bex}	phase I). If phase I). If phase I). If with lattice dis	stortions in Fi	g. 140. attice constants)	51W2					
2a	Crystal growth: Flux method (flux KF*) or TiO ₂ -rich melt*)). Pulling method (top-seeded solution growth technique using excess TiO ₂ as the solvent). Melting method (with limited success). Tab. 29; Fig. 141.											
ь	Crystal for For chunky For hexago	-9-										
3	Crystal str Crystal str Crystal str	Crystal structure of phase I: $Z=1$. Tab. 30. Crystal structure of phase II: $Z=1$. Tab. 31. Crystal structure of phase III: $Z=1$. Tab. 31. Crystal structure of phase III: $Z=2$. Tab. 32; Fig. 145, 146; Tab. 33. Crystal structure of phase IV: $Z=1$. Grystal structure of hexaponal form: $Z=6$. Tab. 34, 35; Fig. 147.										
4	Lattice constants of phase I, II, III, and IV: Phase I: a = 3.996 Å at 120 °C. Phase II: a = 3.990 Å, c = 4.0361 Å at 20 °C. Phase III: a = 3.990 Å, b = 5.669 Å, c = 5.682 Å at -10 °C. Phase IV: a = 4.001 Å, a = 89° 51° at -168° C. Thermal expansion: Fig. 148, 149; Tab. 36, 37; Fig. 150. Lattice distortion due to b; Fig. 151.						47M3 51R1 57S2 57J2					
5a												
ь	Non-linear $\xi = -5.5$	dielectric pro	perties: Fig. $\zeta = 1.7 \cdot 10$	166. ¹⁰ J C ⁻⁶ m ⁹ .			53M2					

[•] The transition from the hexagonal form to the cubic one is very sluggish and the hexagonal form can be produced by rapid cooling from above 1460 °C.

In most papers this Curie point has been reported to be about 120 °C, but it seems to be about 130 °C for pure BaTiO,

[65]2].

14a

15

16 17

Tab.

0.0 0.0 0.0 The O(2)

	11 1 Oxide des Perowskit-Typs	
- 1	Nr. 1A-8 BaTiO, continued	
- 1	Coercive field: Fig. 170, 174	
- 1	Effect of p on P _a : Fig. 173.	1
	d Electrocaloric effect: Ein 174	
L	Pyroelectricity: Fig. 175.	1
- 1	Specific heat: Fig. 176, 177.	
- 1	Transition heat, transition entropy: Tab. 38.	
L	b Thermal conductivity: Fig. 178, 179.	
7	a Piezoelectricity: Tab. 39, 40; Fig. 180 ··· 183.	
	b Electrostriction: Fig. 184, 185.	
88		
1	stiffnesses: Tab. 41. See also Tab. 40. E:- 40.	
Η.	Non-linear elastic properties: Fig. 194.	1
9a		
1	Reflection and absorption	1
1	(i) Far-infrared region. Fig. 200, 201; Tab. 42. (ii) Infrared region. Fig. 202, 203, 204. (iii) Visible region. Fig. 205, 204, 204.	1
1	(ii) Visible region. Fig. 202, 203, 204.	ŀ
1	(iv) Ultraviolet region Di, 200, 207.	1
١.		
b		67G1
1	Quadratic electroptic effect: $(M_{11} - M_{12}) = (+0.13 \pm 0.02) \text{ m}^4 \text{ C}^{-2}$ at 408 ··	.
d	Faraday rotation: Fig. 216; Tab. 44.	64G3
e	Non-linear optical	
	(relative values, see Sec. I.C): $d_{18} = 35 \pm 3$, $d_{21} = 37 \pm 3$, $d_{22} = 14 \pm 1$, determined with the Nd-doped CaWO, laser beam. Fig. 217.	1
f	mined with the Nd-doped CaWO ₄ laser beam. Fig. 217. $d_{33} = 37 \pm 3$, $d_{33} = 14 \pm 1$, deter Raman scattering: Fig. 218.	64M2
g	Luminescence: Fig. 219, 220.	
10	Conductivity of as-grown crystals and ceramics: The data vary from sample to sample given here. Fig. 221, 221, 221	·
- 1	depending on the purity and the method of preparation: only representative data are Gonductivity associated and	1
	Conductivity associated with doping or reduction (including PTC (Positive Temperature Coefficient) or resistivity: $d_{\ell}(d,T>0)$: Fig. 226 ··· 230.	l
- 1	ature Coefficient) or resistivity: de/d $T>0$): Fig. 226 \cdots 230. PC (Positive Temper-Reference papers on PTC anomaly: Tab. 45.	1
- 1		1
- 1	2 of additional data, see	5004 635-
	Breakdown strength: Fig. 233, 234. For additional data, see	59S1, 63M1 67G4
		5813, 59F1,
	Photoconductivity and photoemission: Fig. 235, 236. Other transport properties: In a type size 235, 236.	64K3, 64U1
- 1	Other transport properties: In n-type single-domain crystals, the electron mobility is at 26 °C at 10 °C m to	67B2
	In n-type single-domain emetal, it	
	between the carrie and Clystals, the energy separation (44 - 10-1	67B2
- 1 1	In n-type single d-	
13	In a type similared vs. 1. In a type signed continuous of many signed continuous manufactures are sufficient and conductivity of single domain crystals, the density-of-state mass $m^* = (6.5 \pm 2) m_0$. Data are usualable on the Hall coefficient and conductivity of single domain crystals lawing domain or one of the m^2 and of $M = 2.5$ the manufacture of $M = 3.5$ the manufacture of $M $	67B2
1 5	Laving donor concentrations of $N=8.5\cdot 10^{24}\mathrm{m}^{-3}$ and of $N=2.5\cdot 10^{24}\mathrm{m}^{-3}$ and of $N=2.5\cdot 10^{24}\mathrm{m}^{-3}$ and of $N=2.5\cdot 10^{24}\mathrm{m}^{-3}$. Fig. 237.	67B2
- 1	SR: Tab. 46; Fig. 239 ··· 243.	
-1-	fössbauer effect: Fig. 244 ··· 247.	
. 1 -	ulfuse X-ray scattering. To	
b D	biffuse X-ray scattering: Fig. 248, 249, 250. nelastic neutron scattering: Fig. 251.	

14a	Domain structure: Domains have been observed by various methods: polarized light ⁴), X-rays), electron microscope ⁶), etching method ⁶), powder pattern method ⁴), and decoration method ⁴). Fig. 252 ··· 255.	*)48M1, 49F1, 52M3 *)63B13, 64N1, 65C3, 64L1 *)62T1,63B9, 67R4, 64T2, 66R5, 67R2 *)55H2 *)59P1 *)66S8
b	Domain wall motion: Domain wall motion has been observed optically*) and by repeated differential etching. The domain shapes in motion depend on the applied field and temperature. Pig. 256.	*)59M2,60S2 b)63S13 e)63S13
	The wall velocity is proportional to exp $(-\delta/E)$ at relatively low field. $\delta =$ activation field for domain wall motion. Fig. 257 \cdots 267.	58M4, 59M3
15	Surface layer: The first suggestion about the existence of surface layers of BATICO, extals wis made by KASICO on the basis of electron diffraction studies of very many particles of BaTICO, by The dependence of the following quantities on the thickness of the trystals has been observed as evidence of the existence of surface layers: domain wall velocitys, dielectric constants), optical absorption coefficients) and electroluminescence spectral. Pyroelectric current was observed above the Curie point and discussed in connection with surface layers), A few models of surface layers have been proposeds). According to Tanaka and Honjöl), the surface layer, if it exists, seems to be very thin.	*)55K1 *)55K1 *)55M4, 61M2,65C1 4)61S4,62C3 *)60C3 *)58H1, 65B7,66B6 *)56M4, 61F2,59D3, 65C1 1)64T2
16	Radiation damage: Fig. 268, 269.	1

Tab. 29. BaTiO₃. Solubility in KF solution. [54K1]

Energy band structure: Fig. 270.

T	1000	1050	1100	1150	1200	1250	1300	°C
PoTiO	4	6	9	12.5	17	22.5	28.5	mole %

Tab. 30. BaTiO₃. Fractional coordinates of atoms in the unit cell of phase I. [52M2]

٠		x	у	z
•	Ba	0	0	0
	Ti	l i	1 1	4
	0	1 1	1 t	0
		1 1 0	0	1
		0	<u>1</u>	1 1

Tab. 31. BaTiO₃. Shift of atoms in fractional coordinates of phase II from the positions of phase I. [51KI], [55FI], [61E3]

ðz _{Ti}	$\delta z_{\mathrm{O(1)}}$	δz _{O(2)}	Ba B ₁₁ B ₂₅	Ti B ₁₁ B ₃₃	O(1) B ₁₁ B ₈₂	O(2) B ₁₁ B ₂₃ B ₂₃	References
0.014 0.014 0.015 0.012	-0.032 -0.023 -0.024 -0.026	0 -0.014 -0.020 0	0.48 0.273 0.27 0.28 0.27 0.28	0.13 0.152 0.53 0.21 0.46 0.30	0.13 0.334 0.90 0.08 0.90 0.50	0.48 0.267 0.60 0.49 0.07 0.60 0.90 0.90	51K1 55F1 61E3 61E3

The positions of atoms in the unit cell are Ba at (0, 0, 0), Ti at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} + \delta z_{Ti})$, O(1) at $(\frac{1}{2}, \frac{1}{2}, \delta z_{O(1)})$ and O(2) at $(\frac{1}{2}, 0, \frac{1}{2} + \delta z_{O(2)})$.

Tab. 32. atoms in	BaT the	iO _s . unit	Fra cell	OI	pnase	e 111.	ates (2

		unit cen of ph	ase III. [57S2
	x	у	Z
Ba	0	0	0
	0	1	ĭ
Ti	1/2	ō	$\frac{1}{2} + \delta z_{T1}$
041	0	1	δz_{Tl}
O(1)		0	$\frac{1}{2} + \delta z_{O(1)}$
1	0	1	$\delta z_{0(1)}$
O(2)	1	$\frac{1}{2} + \delta y_{0(2)}$	$\frac{1}{4} + \delta z_{0(s)}$
-(-)	ī	$\frac{1}{2} + \delta y_{0(2)}$ $\frac{1}{2} - \delta y_{0(2)}$	$\frac{1}{2} + \delta z_{O(1)}$
- 1	i	$\frac{1}{2} - \delta y_{0(2)}$	$t + \delta z_{0(2)}$
Se 10	31 /	z - 0 yo(z)	$\frac{\pi}{4} + \delta z_{0(z)}$

 $\delta z_{\text{TI}} = +0.010; \delta z_{0(1)} = -0.010; \delta z_{0(2)} = -0.013;$ $\delta y_{0(2)} = +0.003.$

Tab. 33. BaTiO₃. Comparison of atomic shifts in phase III and phase II with respect to different origins. The coordinate of atoms of [55FI] and [57SZ] are used for phase II and III, respectively. [57SZ]

	Orthorhombic	Tetragonal
$\begin{array}{l} \delta z \left\{ \begin{array}{l} \mathrm{Ti} \\ \mathrm{O}(1) \\ \mathrm{O}(2) \end{array} \right. \\ \delta y_{\mathrm{O}(2)} \end{array}$	Ba at (000) +0.06 Å -0.06 Å -0.07 Å ±0.02 Å	+0.06 Å -0.09 Å -0.06 Å
0		

Origin is chosen to give $\delta z_{0(s)} = 0$ +0.13 Å +0.15 Å Ва +0.07 Å +0.09 Å0(1) +0.02 Å -0.03 Å

Tab. 34. BaTiO₂. Fractional coordinates of atoms in the unit cell of hexagonal structure. [48B3] 2Ba(1) at (b),

$$4\text{Ba}(2)$$
 at (b),
 $4\text{Ba}(2)$ at (f), $z = 0.097$,
 $2\text{Ti}(1)$ at (a),
 $4\text{Ti}(2)$ at (f) $z = 0.945$

4Ti(2) at (f), 6O(1) at (h), 12O(2) at (k). z = 0.845x = 0.522x = 0.836, x = 0.076

Tab. 35. BaTiO₂. Interatomic distances of hexagonal structure. [48B3]

in the Ti₂O, group O(1) - O(1) = 2.49 Å

in the shared face. = 3.25 Å

in the same layer but the atoms do not belong to the same shared face. O(2) - O(2) = 2.91 Å

O(1) - O(2) = 2.91 Å

Ti(2) - O(1) = 1.96 ÅTi(2) - O(2) = 2.02 A

in the TiO₄ octahedra

O(2) - O(2) = 2.82 Å

in the same layer. O(2) - O(2) = 2.69 Å

between adjacent layers. Ti(1) - O(2) = 1.95 Å

Tab. 36. BaTiO $_p$ Lattice constants and unit cell Tab. 37. BaTiO $_p$ Linear thermal expansion coefficients along a, b, and c axes. [51RI]

T °C

	<u>*c</u> _	Å	Å	Å	V Å*
I	+ 20 + 4	3.9920 3.9910	3.9920 3.9911	4.0361 4.0357	64.317 64.282
I	θ ₁₁₁₋₁₁ + 4 - 99	4.0185 4.0170	3.9860 3.9750	4.0162 4.0150	64.319 64.093

- 99	4.0170	3.9750	4.0150	64.3
e _{IV-III}				
-160	3.9996	3.9996	3.9997	63.0

Accuracy of measurement below RT was ± 0.0007 Å.

°C	10-6 °C-1	10-4 °C-1	10-4 °C-1
+20 ··· + 4 + 4 ··· - 99 -99 ··· - 160	15.7 4.9 7.8	15.7 28.4 7.8	6.2 -0.9 8.2
Tab. 38. BaTiO.	Transition	h	

Tab. 38. BaTiO, Transition heats and transition entropies

Transition	ΔQ_{m} cal mol-1	△S _m cal mol-1 °K-1	References
$IV \rightarrow III$ $III \rightarrow II$	8 ± 2 14.3 12 22 ± 4 15.5 16 50 ± 5 47 47	0.04 0.07 0.06 0.076 0.054 0.058 0.125 0.12	52S5 52V1 52T1 52S5 52V1 52T1 52S5 52V1 48B1

58.5

Ą\$

75 45

192 10° N m-8

섕 7.0

썒

섕

뜅

10° N C-1

/₃₁

, T.

69

177

150

7.15

-2.7 ď, 62

-2.9-2.4

9.1 8.1 7.7

13.5 mg2

10.9

910 395 , 33 , 33

Ca, 08 Ba, 08 TiOs (ceramics B)*) Ca, 08 Pb, 118 Ba, 08 TiOs

.c ;t is

33]

ace.

n coeffiα_c 0-4 °C-1 6.2 -0.9 8.2

transition

eferences 52S5 52V1 52T1 52S5 52V1 52T1 52S5 52V1 48B

			I .
	ı		
	- 1		
	- 1		
	- 1		
1	1		
	- 1	-	
1	- 1		18.
'.	- 1	1	(32)
7	- 1	- 1	*
_	_	i	-15
_		- 1	2.

	Tab	Tab. 39. BaTiO _s (single crystal and ceramic). Plezoelectric constants and electromechanical coupling factor. [66b1]	iO _s (sing	gle crys	tal and	ceramic	;). Piez	oelectri	ic const	ants an	d elect	romechan	ical cor	t giling f	actor.	[1999]		
	dus	dan	d33	8 18	das 815 831 838	8 88	Ľ		١.		81.9	681	88,9	h.18	h31	, h ₃₈	T	References
]=	10-3 m2 C-1	7	N15 N31 N35 Np	, s1	28,	ď		C m-3			108 N C-1	7		TOTAL CHICAGO
single crystal	392	1 34.5 - 33.3 - 33.3		15.3	132 85.6 15.3 — 23.1 57.6 0.570 0.315 0.560	57.6	0.570	0.315	0.560								88 F	50C2 58B2 59H7
		-103.3	210.0					Ì	Ì	Ì	Ì		Ì				1	121
ceramic	270 260	1 1 2 2 8	161 192	18.8	- 4.7 11.4 0.476 0.208 0.493 0.378 11.6 - 5.2 12.6 0.48 0.212 0.50 0.36 11.4 -	12.6	0.476	0.208	0.493	0.378	11.6	-4.4 -4.35	17.5	11.5	$\begin{vmatrix} 10.3 \\ 11.5 \end{vmatrix} = \begin{vmatrix} 3.5 \\ 3.9 \end{vmatrix} \begin{vmatrix} 14.8 \\ 15.6 \end{vmatrix}$	15.6	223	56B3 64b1

Į.	
at 25 °C, except for	SE
(at 25 °C	all's
constants	
nd elastic	ا
chanical a	-
, piezoelectric, electromech o.seTiOs). [66b1]	_
electric, e	Kas
ic, piezo Ba _{0.88} TiO	Rai
Dielecti	g,s
ommercial). Ce	d.,
nodified, c	d.
nic, plain and	å.
ceramic, 1	
Tab. 40. BaTiO ₂ (cerami	
6.	
Tab.	
	1

_		_									_
	588	1	21.7	22.4	20.79	2.8 4.8	800	70.7	GS T	3	17.1
	S.E.	10-12 m ² N-1	-2.38	-2.45 -2.6	-2.40	-2.64	-2.87	-2.3	25°		22.2
	S.	10	8.47	8.20 8.6	8.00	8.09 9.09	7.63	13	sR _s		-1.9
	4	a.		0.33			,	0.22	S.	10-18 m ⁸ N-1	-2.7
-	4	2		0.48			į	0.30	SPS	10-18	-2.9
	40	ij		0.194				0.113	ags.		7.0
,	4	f		0.48			;	0.30	88°S		9.1
	838			14.1				18.0	Hs.		8.3
	811	10-2 m2 C-1		-5.5		*		5.0 7.3	889		13.5
0.00	818	1		21.0		t			691	C m-#	-3.1
	d ₂₃		130	149	118	123	8	88	613		10.9
	daı	10-13 CN-1	-56	1.58	-41 -38	1 - 53	- 23	132	s.	×B	910
	d_{15}			242					4	G x	1000
	,	ž X	1350	1380	1000	1180	88	600 600	-	Ç.	1300
		Composition	BaTiO,	Ca, 13 Ba, 17 TiO, Ca, 18 Ba, 18 TiO,	(ceramic B)*) Ca.oaBa.aTiOs Dh. Ba.aTiO	Phospan Tio	Cara Physia Bar a TiO	Ca, 13 Pb, 13 Ba, 20 TiOs			C. B. TiO
			INa	NoSa							

159 158 16.7 s) Trade Mark: Clevite Corporation, Cleveland, Ohio, USA. 12.3 Ca. ca Baosa TiOs (ceramics B)*)

Ref. Liter-

HFS A, B [10-2 m-1]

D, E, a, F, b [10-2 m-1]

GHz °K

S

		T		T	T	T-		- CIOWS		yps	,				
		References	50C2 51B1 58B2	56B3 64b1		6661, 58B2 51B1	56B3 64b1 55H5				Liter- ature	1109	6301		(2(121)2)
1		_		1.0		20	200				Ref.	•	5 6		
		rs	RT 25	25		25 RT	2222			c ³	HFS A, B [10-4 m-1]	} ± 0.5	= 78.6 ± 0.5 = 79 ± 0.5	- (77.4 ± 0.6) - (82.3 ± 0.8)	i = -(79.3 ± 0.4)
		266	8.84	22.3	° 688	113.1	44.8 45.65			ped BaTi	A, B [10	$^{66}A_{\parallel} = ^{16}A_{\perp}$	$^{18}A_{\parallel} = 78.6$	(A) = "P" =	(1) - = Fee
	ts. [66b1]	37	12.4	18.3	3	126	57.0 53.02			nters in de	- 5	3 2	3 3, 2	3,8,8	3
	ic constan	ا		22.8	3	54.34	44.48			agnetic ce	1-B		 	E =	
	ics). Elast			11.5		71.0	52	9. 28		ious paran FS	171	8	+ 2)	76 ± 0.94)	t ± 0.74)
	and ceram	1 1		-2.9	-	77.5	99	Tab. 42 ··· 45 see page 58		ers tor var	D, E, a $D = 56 \pm 5$	D = 65 + 5	$a = 14 \pm 5$ $D = +(215 \pm 2)$	$a = +(16.76 \pm 0.94)$ $D = 0$ $a = +(12.11 \pm 0.96)$	1
	rystal S12	10-18 m² N-1	-3.15	-3.0	10° N m-1	140	8	42	1				1	a Da	
	Tab. 41. BaTiO, (single crystal and ceramics). Elastic constants. [66b7] B. SB. sp. sp.	=	-2.61	-2.7	179.0	76.6	3	Tab	the FSP .	GH? T s-factor Facilities for various paramagnetic centers in doped BaTiO.	2.0016 ± 0.0005	2.0023 ± 0.0005	2.009 ± 0.001 2.002 ± 0.001	± 0.001	
	sg.	1	6.76	7.7	178.1	171	0.7		ary of	-	2.00	2.00	2.000	2.002	
	Cab. 41	-	+	\mathcal{H}	-	1=5	18		Sumn	T,	82	300	44 TT	438	1
		-	8.93	\mathcal{H}	164.9	162 146	_		BaTiO,	GH.	9.3		9.3		
	28		8.18 8.7	8	282.6	150			3p. 46.	*	€		6		
	89 E	9.26	8.55	NG.	275.1	150	- -		F	σ	5/2		2/5		
	-	-	+-		-	1555	-			Site	ŧ		Ba*+		
		single crystal	ceramics		single crystal	ceramics				Para- magnetic center	Mn²+				
						DAT-1					-			.	

56

$A_{\parallel} = -(79.3 \pm 0.4) \begin{vmatrix} 000.7777 \\ -41 \end{vmatrix}$
$A_{\alpha} = A_{\alpha}$ $A_{\alpha} = A_{\alpha}$ $A_{\alpha} = A_{\alpha}$
33
E = 0
-
= 0 + (12.11 ± 0.94
a 0 1 1 1 1 1 1 1 1 1
1=
₩ 0.00
2.002
438
3

Liter-	ature	59H5, 62R1	63522)				64532)8)	67Z2		62R1		64T1	6EL3		66521	63512	63S11, 66T2, 67T3
Pof		6	٦	e .													6
HFS	A, B [10-4 m-1]							$^{59}A_{\parallel} = ^{59}A_{\perp}$ $^{59}A_{\parallel} = 109$							$^{106}A = 0 \pm 5$ $^{105}B = 135 \pm 5$	186A < 28 186B = 135 ± 10	
	I						L	7/2		L		L		_	1/2		
	1-1		E=0			E=0			p eo	1.6 ± 1.0	1	-3.7 ± 2.8	-1.8 ± 0.4				
FS	D, E, a, F, b [10-2 m-1]	12	± 20	## 82	± 10	+ 10	± 5 -113 ± 10		9.00	-4.0 ± 1.0	ý	24 ± 0.9	23.3 ± 0.4				
	D, E, a,	$D = 0$ $a = 102 \pm 12$	D = +929 $a = +91 \pm 20$	$D = -530 \pm 10$ $a = +105 \pm 20$	$D = -640 \pm 10$ $E = 0 \pm 1.3$	D = 0 $a = +115 \pm 10$	$D = -23 \pm 5 a - F = +113 \pm 10$		os q	$-293.6 \pm 1.0 + 4.0 \pm 1.0$	1			T g	2.459 ± 0.003	2.51 ± 0.02	1.911
- France	g-ractor	2.003	2.0036 ± 0.002	2.0036 ± 0.002	2.0036 ± 0.002	2.0036 ± 0.002	2.003 ± 0.002	4.347 (isotropic)		1.995 ± 0.003	1.995 ± 0.003	1.992	1.992	8	1.950 ± 0.005	1.935 ± 0.005	1.930
I	Ä	393, 433	300	276	213	77	173	4		300	425	RT	436		4	78	55
	GHz	5 7.5,	10		•	•		6		12, 18		10			10		10
	×	E		,				(3)		8					(3)		(2)
_	ν 	5/2						1/2	İ	7/2				Ĺ	1/2		1/2
	Site	174+						Ti4+		Ba*+		174+			‡.		oxygen
Para-	magnetic	Fes+			,			Co*+		+*P5					Pt3+		Electron

Temperature dependence of D in the terragonal phase is linear. (6174), probled transformation of the $\pm i$, $dm = \pm 2$) are observed. (617), (647). Probled transformation into ($M = \pm 1$, $dm = \pm 2$) are observed. (617), (647). Problem transformation into ($M = \pm 1$, $dm = \pm 2$) are observed. (617), (647). The performance dependence with A = 4, A = 4, A = 4, A = 4. The performance is the dependence of the transformation into (M = 4 + 3), and expected in the transformation into (M = 4 + 3), and expected in the transformation into (M = 4 + 3), and expected in the transformation into (M = 4 + 3), are observed in the transformation into (M = 4 + 3), and expected in the transformation into (M = 4 + 3), are observed in the transformation into (M = 4 + 3), and experimentally phase of M = 4, and experimentally M = 4, and M = 4,

Tab. 42. BaTiO_b, SrTiO_b, TiO_b, KTaO_b, Dispersion parameters calculated from the Kramers-Kronig

Nr. 1A-

b pl

b Ca

3

1a F

st

cr

sţ

Θ

2a Cı

4 T E 5a D au C

c T
7a F
9a E
1F
12b F
14a T

p:

* Phas

 $\kappa' = \kappa_{\infty} + \sum_{i} 4\pi \, \varrho_{i} \, v^{2} \, \frac{v_{i} - .}{(v_{i}^{2} - v^{2})^{2} + \gamma_{i}^{2} \, v^{2}}$ $\kappa^{n} = \sum_{i} 4\pi \varrho_{i} v_{i}^{2} \frac{\gamma_{i} v}{(v_{i}^{2} - v^{2})^{2} + \gamma_{i}^{2} v^{2}}$ BaTiO, Ordinary ray SrTiO, TiO, Ordinary ray KTaO, $\lambda_1; \nu_1$ 20.4: 491 18.4; 544 0.049 ± 0.002 1.56 ± 0.06 $\frac{\gamma_1/\nu_1}{4\pi\varrho_1}$ $\begin{array}{c} 0.059 \pm 0.002 \\ 0.60 \pm 0.03 \end{array}$ 20.0; 500 $\begin{array}{c} 18.2 \pm 0.2; \ 549 \pm 6 \\ 0.043 \pm 0.009 \\ 2.4 \pm 0.5 \end{array}$ 0.044 ± 0.004 2.0 ± 0.2 λ₂; ν₃ 54.8; 183 0.030 ± 0.006 2.2 ± 0.4 $\begin{array}{c} 56.3 \pm 0.5 \, ; \, 178 \pm 2.0 \\ 0.039 \, \pm \, 0.004 \\ 3.6 \, \pm \, 0.4 \end{array}$ γ₂/ν₂ 4π ρ₂ 25.8; 388 49.8; 200.8 $0.058 \pm 0.006 \\ 1.08 \pm 0.1$ 0.055 ± 0.011 7.6 ± 1.5 $^{296~\pm~8;~33.8~\pm~0.9}_{\begin{array}{c} 2.5~\pm~0.1\\ 1830~\pm~70\end{array}}$ λ2; v3 $\begin{array}{c} 114.3 \pm 1.1; 87.7 \pm 0.9 \\ 0.5 \pm 0.1 \\ 311 \pm 62 \end{array}$ γ₃/ν₃ 4π ρ₃ $\begin{array}{c} 54.8 \pm 0.5 \, ; \, 183 \pm 1.8 \\ 0.19 \, \pm 0.01 \\ 81.5 \, \pm 4.1 \end{array}$ 107.5 ± 2.0 ; 93.0 ± 2.0 0.5 ± 0.1 163 ± 33

Resonance wavelength λ_i in 10^{-6} m; resonance frequency ν_i in 10^{9} m⁻¹; width γ_i ; strength $4\pi \rho_i$.

Tab. 43. BaTiO₂, SrTiO₃, TiO₂. Energies of fundamental absorption edges (in eV) at R.T. [65CZ]

		E_0	A_1	A,	A,	В,	B.	TC	1	T -		
	SrTiO, BaTiO, TiO,	3.2 3.2	4.00 3.91	4.86 4.85	5.5	6.52	7.4	9.2	9.9 11.8	12.5	15.3	eV
4.	(E⊥c) BaTiO, S	rTiO.	3.97 KTaO	5.52	377	6.50	7.64	8.53	9.24	12.8 11	14.1	eV eV

Tab. 44. BaTiO_p. SrTiO_p. KTaO_p. KTaO_p. KTaO_p. KTaO_p. KTaO_p. NDo_pgO₁ (KTN), TiO_p. Band gap energies $\hbar \omega_g$ (in eV). [67B1]. See Fig. 46, 103, 216, 430. F_1 , F_2 : different dispersion functions $F_4(\omega | \omega_g)$, see [67B1]

	Sr	riO.	BaTiO.			ons $F_i(\omega/c)$. B), GGC	[U/D
			DaliO3	KT	aO,	KTN	TiO.	T
Faraday rotation	296 °K	77 °K	403 °K	296 °K	77 °K	201		
raiaday rotation			1	270 11	// A	296 °K	296 °K	1
$\hbar \omega_e$ for F_1 Faraday rotation $\hbar \omega_e$ for F_e	3.40	3.43	3.25	3.77	3.79	3.54	3.62	eV
Energy of reflectivity peak or shoulder	3.21	3.26	3.11	3.62	3.65	3.36	3.37	ev ev
Energy of electroreflectance singularity	3.20	-	3.20	-	-	3.70	_	eV
1	- 1	- 1	3.20	3.57 3.80	-	3.60	3.00	eV
ω _g from absorption data Energy at which absorption coefficient α ≈ 10 ⁴ cm ⁻¹	3.40	-		3.75	-	-	3.30	eV eV
coemcient a ≈ 10° cm ⁻¹	3.37	-	3.26	3.79	_	3.45	3.18	ev ev

Tab. 45. BaTiO₃ (reduced or doped). List of reference papers on PTC anomaly

	List of reference papers on PTC anomaly							
Materials (dopants)	References	Materials (dopants)	References					
Single crystal BaTiO ₂ : reduced BaTiO ₂ : Nb	57H1, 63K3, 64I4, 64G4, 65M1, 65U2 64B11	Ceramics BaTiO,: Ce BaTiO,: Ce BaTiO,: Ge BaTiO,: Gs BaTiO,: Gs BaTiO,: Sh BaTiO,: Sh BaTiO,: Sh BaTiO,: Sh BaTiO,: Sh BaTiO,: Sr Ba	63H5, 65U2 59S1, 63T3, 64J1, 63T3 63G5 63U2 65A3 61H5, 65A3 59S1, 61T1, 63T3 61S1 61S1 61S1					

58

1a	Ferroelectric activity was reported independently by Shirane et al. and by Smolenskii in 1950.				50S4 50S6	
ь	phase	- 1	IIIb)*	II•)	I ^a)	•)5156
ľ	state			F°)	Pa)	b)55K3
	crystal system			tetragonal ^c)	cubica)	°)46M2
	space group			P4mm-C _{4v}	Pm3m-Oh	
1	θ		-1	00b) 49	00°) °C	
	a = 3.904, Å,	c = 4.1	152, Å a	t RT (in phase I	I).	46M2
2a	Crystal growth	: KF	flux met	hod; PbCl, flux	method.	58K1, 52N2
ь	Crystal form:	Fig. 27	1.			
3	Crystal structure: Positional parameters: Tab. 47, 48. Projection of crystal structure: Fig. 272, 273.					
4	Thermal expansion: Fig. 274 ··· 280. Dependence of lattice parameters on hydrostatic pressure: Fig. 281.					
5a	Dielectric constants: Fig. 282. Small dielectric anomaly was observed at about -100 and -150 °C. Curie-Weiss constant: $C = 1.1 \cdot 10^5$ °K (single crystal).					56K2 62B4
6a	Specific heat:	Fig. 2	83.			
	i II	-ĭ				
	∆Q _m 1	150	cal mol	-1		51S7
	AS _m	1.6	cal °K~	1 mol-1		51S7
С	Thermal conductivity: Fig. 284.					
7a	Piezoelectric properties: Tab. 49.					
9a	Birefringence: Infrared absor Frequencies o	rotion:	Fig. 28	5, 287. es: Tab. 50.		
12b	ESR: Tab. 51					
14a	Domain struc	tures v	vere obs	erved by polarize	ed light.	52N2, 58K

Tab. 47. PbTiO₃. Positional parameters of atoms at RT. [56S5]

16 Radiation damage: Fig. 288.

ronig

1±6

0 ± 2.0 h 4π ε₁.

(in eV). : [67B1]

2 eV
7 eV
6 eV
0 eV
0 eV
0 eV
0 eV

eΨ

	x	у	
Pb	0	0	0
Ti	· l	1 1	0.540
O(1)	į.	1	0.112
O(2)	1	Ō	0.612
	0	1	0.612

Tab. 48. PbTiO₂, Bond lengths in Å at RT (phase II) and at 490 °C (phase I) [56S5]. O(1)₊ represents the O(1) ion closer to, O(1)₋ that further away from Ti. Similarly O(2)₊ is closer to Pb

phase	II (at RT)	I (at 490 °C)
Ti-O(1)+	1.78	1.89
Ti-O(1)_ Ti-O(2) Pb-O(1)	2.38 1.98 2.80	2.80
Pb-O(2)+ Pb-O(2)-	2.53 3.20	2.00

Phase transition II-III was reported to occur only if the cooling rate is extremely slow. [55K3]

Tab. 49. PbTiO₃ (modified ceramics). Electromechanical constants at RT. [68UI]

Additive	PbNb _{4/8} O ₃ 5.0 mol%	BiZn _{1/2} Ti _{1/3} O ₃ 5.0 mol%	Bi _{2/3} Zn _{1/3} Nb _{2/3} O ₃ 5.0 mol%	
a : :/a	3.915 4.104 1.049	3.904 4.148 1.062	3.911 4.133 1.057	Å Å
oorosity	7.19 0.105	7.68 0.036	7.12 0.10	10³ kg m⁻³
	466	524	494	°C
I.	226	195 147	244 203	
31	10 37	3.9 37	7.4 47	10-12 C N-1 10-12 C N-1
3	5.2 16	3.0 28	4.1 28	10-8 m ² C-1 10-3 m ² C-1
	1.2 1.1	1.2 0.95	1.1 1.1	10-11 m ² N-1 10-11 m ² N-1
S ₁₁	-336 71	54 74	326 76	TI-14
	0.068 0.23	0.40 0.031 0.32	0.36 0.052 0.35	

Nr. 1

Nr. 1

9

Nr. 1a

2a

Tab. 50. PbTiO₂. Wave numbers in 10² m⁻¹ and symmetries of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4]

(Ti-O stretch)	(Ti-O ₃ torsion)	(O-Ti-O bend)	(cation-TiO,	
530 (Eu, A1)	400 (B ₁ , E _u)	220 (E _u , A ₁) 172	83 (E _u , A ₁)	

Tab. 51. PbTiO₃. g-factors at RT. [64G1]

Tab. 31. Philos. g-factors at RT. [64G1]							
Paramagnetic center	Site	s	H	GHz	°K	g-fac	tor
Fe3+						gı	£ 1
	Ti4+	1/2*	(2)	8.8	RT	2.009 ± 0.005	5.0-
The spectrum up	to 300 °C	and d	own to	- 120	00 311	1 2.005 ± 0.005	5.97 ± 0.02

The spectrum up to 300 °C and down to -120 °C did not show any fundamental change.

Nr. 1A-10 CaZrO₂ Calcium zirconate

	1	A few physical properties of CaZrO, were studied in comparison with those of some perovskite-type ferroelectrics.	
	ı	The crystal was reported to be a statuted in comparison with those of some	
	_	The crystal was reported to be orthorhombic with the cell dimensions $a = 5.587 \text{ Å}$, $b = 8.008 \text{ Å}$, $c = 5.758 \text{ Å}$ at RT.	1
	4	Linear thornal	55C1
1		θ = 4.95 · 10 kg m ⁻³	65B10
1	9	Infrared absorption: Fig. 289, 290; Tab. 52.	05B10
- 1		Tol. 50 0 0 0 0	

Tab. 52. CaZrO, Wave numbers in 10^{1} m $^{-1}$ and symmetry of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65 $P\bar{q}$]

	uata at K			
(Zr-O stretch)	(Zr-O ₃ torsion)	(O-Zr-O bend)	(cation-ZrO ₃	
515 (B ₁ , B ₂ , A ₁)	340 (B ₁ , B ₂ , A ₂) (377) (418)	228 (B ₁ , B ₂ , A ₁) 186		
S Spin is 4 (64C t)				

The ficticious spin is

[64G1].

Nr. 1A-11 SrZrO₃, Strontium zirconate

- 1	Nr.	1A-11 StZrO ₃ , Strontium Zicomin	
1	-	A few physical properties of SrZrO ₃ were studied in comparison with those of some	
١	1	A few physical properties. Perovskite-type ferroelectrics. The crystal was reported to be pseudo-cubic with a' = 4.099 Å at RT. The crystal was reported to be pseudo-cubic with a' = 4.099 Å at RT.	57R2
١			65B10
-		1 ~ = 9 34 · 10 - °C - Detween 520 C and 100	65610
		$a = 5.00 \cdot 10^{8} \text{ kg m}^{-3}$	

9 Infrared absorption: Fig. 291, 292; Tab. 53.

Tab. 53. SrZrO₂. Wave numbers in $10^{\rm t}$ m⁻¹ and symmetry of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4]

(Zr-O stretch)	\tilde{v}_2 (Zr-O ₃ torsion)	ν̃ ₃ (O-Zr-O bend)	(cation-ZrO ₃) lattice mode)
522 (B ₁ , B ₂ , A ₁)	325 (B ₁ , B ₂ , A ₂) (357) (379)	240 (B ₁ , B ₂ , A ₁)	143 (B ₁ , B ₂ , A ₁)

Nr. 1A-12 BaZrOp Barium zirconate

iO₃ ode)

- 1	Nr.	1A-12 BaZrO _p Barium Zucomite	
		A few properties of BaZrO, were reported in comparison with those of some perovskite- type ferroelectrics. The crystal was reported to be cubic with the cell dimensions	57R2
	4	a = 4.192 A at RT. Linear thermal expansion: a = 5.64 · 10 ⁻⁴ °C ⁻¹ between 23 °C and 214 °C; a = 6.54 · 10 ⁻⁴ °C ⁻¹ between 214 °C and 324 °C for ceramics of bulk density	65B10
		$\varrho = 6.73 \cdot 10^9 \text{ kg m}^{-3}$.	

9 Infrared absorption: Fig. 293, 294; Tab. 54.

Tab. 54. BaZrO₁. Wave numbers in 10⁴ m⁻¹ and symmetries of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4]

(Zr-O stretch)	ν̃ ₂ (Zr-O ₃ torsion)	(O-Zr-O bend)	(cation-ZrO ₃) lattice mode)
505 (F ₁₄)	- (F _{2u})	210 (F _{1u})	115 (F ₁₄)

Nr. 1A-13 PbZrO3, Lead zirconate

1a	pendently by Ros (001) projection of	crystal structure wer	ed with a phase transition was reported inde- SKH in 1950. Antiparallel ionic shifts on the re found by SAMAGUCH et al. in 1951. In the resis loops were discovered by SHIRANE et al. id double hysteresis loops were observed.	50R1, 50S7 51S3 51S8
ь.	phase	11•)	I*)	b)51S8
	state	Ab)	Pa)	e)51S3
1	crystal system	orthorhombice)	cubic ^c)	,,,,,,
	space group	Pba2-C _{zv} °)	Pm3m-Oh °)	
	phase I becomes I	11.74 Å, $c = 8.20$ Å pseudo-tetragonal in plated with the ortho	at RT (in phase II). The cubic unit cell in phase II. The pseudo-tetragonal cell constants brhombic cell constants a , b and c : $a = \sqrt{2}a^{\prime}$, 4.15 Å, $c^{\prime} = 4.10$ Å at RT. Relation between bic cells: Fig. 295.	1
	the pseudo-tetrag	gonal and official	Dic Cents. 1 49. 27.	55J2
120	Crystal growth:	PbCl ₂ flux method.		

Nr. 14.13 PbZrO, continued Z = 8 (in phase II). The crystal is polar along the c axis and antipolar along the a axis in phase II. Fig. 295 shows schematically the shifts of Pb ions. Positional parameters and shifts from ideal perovskite positions: Tab. 55. Projection of ZrO _c Fig. 296, 297, 298. Bond distances between Zr and O: Fig. 299. Thermal expansion: Fig. 300 ··· 303. a _w ⊆ −0.05 · 10 ⁻⁴ gK ⁻¹ and a _w ⊆ 2.80 · 10 ⁻⁴ gK ⁻¹ in phase II; a _w ⊆ 1.10 · 10 ⁻⁴ gK ⁻¹ in phase II;	51S3, 57J4 51S3 57J4
Thermal expansion: Fig. 300 ··· 303.	
$\alpha_{e'} \cong 1.10 \cdot 10^{-4} \text{ K}^{-1}$ and $\alpha_{e'} \cong 2.80 \cdot 10^{-4} \text{ K}^{-1}$ in phase II; $\alpha_{e'} \cong 1.10 \cdot 10^{-4} \text{ K}^{-1}$ in phase I, where $\alpha_{e'}$ and $\alpha_{e'}$ are the linear thermal expansion coefficients along the pseudo-tetragonal a' and c' axes, respectively.	5251
Dielectric constants: Fig. 304. $C = 1.36 \cdot 10^6$ °K (determined with ceramics). Effect of pressure: Fig. 305. $(d \Theta_B/d P)_{P=0} = (4.1 \pm 0.2) \cdot 10^{-3}$ °K N^{-1} m ⁴ .	50R1
Critical field: Fig. 306.	66R2
Specific heat: Fig. 307. For the transition II-I: $4Q_m = 440$ cal mol-1: $4S_m = 0.00$	
Thermal conductivity: Fig. 308	52S2
Elastic compliances: Fig. 309	
Birefringence: Fig. 310	
E	for the transition $\Pi: I: Q_m = 440$ cal mol ⁻¹ ; $\Delta S_m = 0.88$ cal ${}^*K^{-1}$ mol ⁻¹ . hermal conductivity: Fig. 308. Lastic compliances: Fig. 309. Riefringence: Fig. 310. Infrared absorption: Fig. 311, 312; Tab. 56. adiation damage: Fig. 313.

Tab. 55. PbZrO₃ (ceramics). Atomic coordinates and shifts from ideal perovskite positions at RT. [57]4]

3

11 12c 17

					aovante p
Atom	x	у	z	Wyckoff notation	Total shift Å
Pb' Pb"	0.706 0.706	0.127 0.127	0 0.500	4c 4c	0.26 0.26
Zr' Zr"	0.243 0.243	0.124 0.124	0.250 0.250	4c 4c	0.04 0.04
O(1) -	0.270 0.270	0.150 0.100	0.980 0.480	4c 4c	0.35
O(2)*	0.040 0.040	0.270 0.270	0.300 0.750	4c 4c	0.53 0.34
O(3)*	0	0.500 0.500	0.250 0.800	2b 2b	0
O(4)* O(4)*	0	0	0.250 0.800	2a 2a	0.41 0

Tab. 56. PbZrO_{*}. Wave numbers in 10⁸ m⁻¹ and symmetries of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4]

	7		1001 4
(Zr-O stretch)	(Zr-O ₃ torsion)	(O-Zr-O bend)	(cation-ZrO ₂ lattice mode)
508 (E _u , A ₁)	290 (B ₁ , E _n)	221 (E _u , A ₁)	80 (E _u , A _s)
			34

Nr. 1A-14 PbHfO, Lead hafnate

1a b	state crystal system	naly associated with a iferroelectricity was dis	phase transition cussed by Shir. II tetragonal	was observed, ANE et al. in 19 I P cubic	and the possi-	53S3 53S3
2	Θ Lattice constants	for the pseudo-tetrago	nal phase: $a' = a'$	215 °C 4.136 Å, c'/a' =	0.991 at RT.	53S3

	Dielectric cons						5353
N.	$C = 9.5 \cdot 10^4$ ° 1A-15 BiFeO ₃ , F						1 7737
1a	In 1960*) it w PbTiO ₃ -BiFeO atures. The Co solid solution*) Disagreement, therefore reser- ferroelectric.	as pointed that Bill urie point however, vation is n	d out on t FeO ₃ could was estima exists am ecessary in	have a ferroelec- ted to be about a ong many expen- deciding whether	y studies of the tric Curie point : 850 °C from stud rimental data ru r BiFeO, is ferro	at high temp lies of the sa eported so i electric or a	b)61F3, 62F
	Antiferromagn ments at about			eO ₃ was observe	d by direct mag	gnetic measu	re- 0)62S10, 63R1,65I2
ь	phase		IV	111	II	I	
	state	(A) or (F), A _{magn}	(A) or (F), Pmagn	(A) or (F), P _{magn}	(P), P _{magn}	
1	crystal system	rho	nbohedral	rhombohedral	rhombohedral	cubic (possibly)
	space group	R	3m-C5**				
	Θ		3	i70 ≈5	75 8	50	c
	$a = (3.962 \pm 0.000)$ Further referen	0.001) Å, a	= 89°31' vailable on	± 3' at RT. unit cell paramet	ters.		64T6 60V2, 60F6 60Z2
	tric space grou	pR3m.T	he crystal igonal pyra	structure can be mids: Fig. 316: 1	elongs to the nor regarded as con Fab. 57.	sisting of all	er-
	ric space grounating FeO, ar According to symmetric space The space ground satisfy the	ip R3m. To id BiO ₃ tri the electrice group F ip R3m will condition structure o	he crystal igonal pyra on diffract 3m at RT as, however s for the ex f BiFeO ₃ w	structure can be mids: Fig. 316; ion study, BiFe Atomic coording, r, rejected by SM istence of weak	regarded as con Fab. 57. O ₃ belongs to 1 nates: Tab. 58. OLENSKII et al.,	the non-cent because it d	oes 64S9 63K5
4	tric space grounating FeO ₃ are According to symmetric space from not satisfy the The magnetics experiments. Unit cell parar	pp R3m. Tod BiO ₃ trithe electrice group Fam we condition thructure of Fig. 317, 3 meters: Fig.	he crystal igonal pyra on diffract R3m at RT as, however f BiFeO ₃ with 18.	structure can be mids: Fig. 316; 7ion study, BiFe Atomic coordir, rejected by Smistence of weak is as proved to be G	regarded as con Fab. 57. O, belongs to to nates: Tab. 58. IOLENSKII et al., ferromagnetism.	the non-cent because it d	oes 64S9 63K5
4 5a	tric space grounating FeO ₃ ar According to symmetric spa. The space grounot satisfy the The magnetic sexperiments. Unit cell parar Dielectric cons	pp R3m. T and BiO ₃ tri- the electric ce group I up R3m w. condition structure o Fig. 317, 3 meters: Fig.	he crystal igonal pyra on diffract 3m at RT as, however is for the ex f BiFeO ₃ w 18. g. 319, 320.	structure can be mids: Fig. 316; fion study, BiFe. Atomic coordir, rejected by SM istence of weak that proved to be G. See also.	regarded as con Fab. 57. O, belongs to to nates: Tab. 58. IOLENSKII et al., ferromagnetism.	the non-cent because it d	cer- cro- 64T6 oes 64S9 ion 63K5
5a	tric space grounating FeO ₃ at According to symmetric span. The space grounot satisfy the The magnetics experiments. Unit cell parar Dielectric cons No reliable dat are available. Magnetic susce	p R3m. T nd BiO ₃ tr. the electrice group I ip R3m w. condition. tructure of Fig. 317, 3 neters: Fig. tant: Fig. ta on the d	he crystal igonal pyra igonal pyra son diffract R3m at RT as, however 18 if BiFeO ₃ w 18. 3 319, 320. 321, 322, 3 ielectric cor	structure can be mids: Fig. 316; 'ion study, BiFe. Atomic coordin, rejected by SM istence of weak as proved to be G See also 23. sstant in the high	regarded as con Fab. 57. O ₃ belongs to the states: Tab. 58. In the states of the sta	the non-cent because it d stron diffract gion near 850	cer- ro- oes 6459 63K5 66R8, 64T5
5a 11 12c	tric space grou nating FeO, at According to symmetric spa The space gro not satisfy the The magnetic s experiments. Unit cell parar Dielectric cons No reliable dat are available. Magnetic susce At RT, no spo Mössbauer effe	up R3m. T id BiO ₃ tr the electron group F ip R3m w. condition condition structure of Fig. 317, 3 meters: Fig. tant: Fig. tant: Fig. ta on the desptibility: intaneous rect: Fig. 32	he crystal igonal pyra- gon diffract 3m at RT as, however is for the ex f BiFeO ₈ w: 18. 3. 319, 320. 321, 322, 3 ielectric co: Fig. 324. nagnetic m 25, 326.	structure can be mids: Fig. 316; fon study, Big. 316; fon study, Big. 416; Atomic coordir, rejected by Sw. istence of weak is proved to be G. See also 23. astant in the high oment was obser	regarded as con Tab. 57. O ₃ belongs to 1 ates: Tab. 58. Inters. Tab. 58. INTERSKII et al., ferromagnetism. i-type by the neu a temperature reg	the non-cent because it d atron diffract gion near 850	cer- ro- 64T6 oes 64S9 63K5 66R8, 64T5 °C
5a 11	tric space grou nating FeO ₃ at According to Symmetric spa. The space ground satisfy the The magnetic experiments. Unit cell param. Dielectric cons. No reliable dat are available. Magnetic susce At RT, no spo. Mössbauer effe. Calculations of made on the b	up R3m. To did BiO ₄ trace did BiO ₄ trace de group F and trace group F and	he crystal gonal pyragonal pyragon diffract R3m at RT as, however for the ext for the ext fall gold gold gold gold gold gold gold go	structure can be mids: Fig. 316; ion study, BiFe Atomic coordir, rejected by SM istence of west as proved to be G See also 23. sstant in the high oment was obserfields and their g	regarded as con Tab. 57. O ₃ belongs to 4 nates: Tab. 58. Inotenskii et al., derromagnetism. i-type by the neu	the non-cent because it d atron diffract gion near 850	cer- ro- 64T6 oes 64S9 63K5 66R8, 64T5 °C
5a 11 12c	tric space grounating FeO ₂ at According to According to symmetric span The space grounds at the space grounds at the space grounds at the space grounds are available. Magnetic susce At RT, no spo Mössbauer effe Calculations of	up R3m. To do BiO, structure or or Fig. 317, 3 meters: Fig. tant: Fig. tant: Fig. tant: Fig. tant: Fig. 32 t the internal case of an eco., validational case of an eco., validation of Alexandre (e.g., validation).	the crystal igonal pyra- gional pyra- son diffract (3m at RT as, however is for the ex f BiFeO, w. 18. 3. 319, 320. 321, 322, 3 ielectric co. Fig. 324. nagnetic m 25, 326. including the pro- tion of the	structure can be mids: Fig. 316; ion study, BiFe Atomic coordir, rejected by SM istence of west as proved to be G See also 23. sstant in the high oment was obserfields and their g	regarded as con Tab. 57. O ₃ belongs to 1 ates: Tab. 58. Inters. Tab. 58. INTERSKII et al., ferromagnetism. i-type by the neu a temperature reg	the non-cent because it d atron diffract gion near 850 up to 22 kG	certor of 476 oce of 475 oce
5a 11 12c	tric space grou nating FeO ₃ at According to symmetric spa. The space ground satisfy the The magnetic sexperiments. Unit cell parar Dielectric cons. No reliable datare available. Magnetic successful at the sexperiment of the sexperiment o	up R3m. To do BiO, structure or or Fig. 317, 3 meters: Fig. tant: Fig. tant: Fig. tant: Fig. tant: Fig. 32 t the internal case of an eco., validational case of an eco., validation of Alexandre (e.g., validation).	he crystal gonal pyraon diffract 33m at RT. as, however s for the ext BiFeO ₃ w. 18. 3. 319, 320, 321, 322, 3 ielectric correctionic mode not concerned to the	structure can be mids: Fig. 316; ion study, BiFe Atomic coordin, rejected by San sistence of weak as proved to be G See also 23. sastant in the high oment was obser fields and their g l.	regarded as con fab. 57. O ₂ belongs to it antes: Tab. 58. O(LENSKII et al., lerromagnetismtype by the neu a temperature reg ved in the fields radients in BiFe	the non-cent because it d atron diffract gion near 850 up to 22 kG	certor of 476 oce of 475 oce

153 353

7J4,

[57J4]

vibration

1b

3 4 5a

1a

6

Nr. 1a

1a	Ferroelectric beh	avior in KIC	a was repo	rted by HERLACI	H in 1961.		61H3
b	phase	V*)	IVa)	IIIa)	IIa)	I*)	*)61H3
	state		F*)	Fa)	Fa)	Pa)	- /
	crystal system			trigonalb)*		trigonal*)	b)60S5
	Θ	-190) -18, -	-10a)** 70	(a) 21		- 10039
	$T_{\text{mell}} = 560 ^{\circ}\text{C}.$ $\varrho = 3.979^{\circ}) \cdot 10^{\circ}$ 1) A different val $a = (4.410 \pm 0.00)$ $a = 8.921 \text{Å}, b = \text{triclinic system}.$ Transparent	ue, 3.802, is	also given 9,41° at R = 8.885 Å,	in the same refer Γ , adopting trigo $\alpha \cong \beta \cong \gamma \cong 90$	ence. nal system. '° ± 30' at	RT, adopting	66H17 08g1 60S5 65F3
2a	Hydrothermal me Growth from the perature: Fig. 328	ethod: Fig. 3: supersaturat	27. ed solution	with 10 · · · 14%	HIO, at a	constant tem-	61H3 27m1
3	Z = 1 in phase II $Z = 8$ in phase II	I, adopting t I, adopting t	rigonal sys riclinic sys	tem.			61H3 65F3
4	Lattice deformation $\alpha = 89^{\circ} 20' - 0.0$	on: a = [4.4 9 (T - 220)	4 + 0.0002 in phase I	(T - 220) Å,			61H3
ia	Dielectric constant						
С	Spontaneous polar	ization: Fig.	331.				66H17 61H3
a	Absorption edge: I	Fig. 332.					67V2
a .						,	0,,,

1a	Ferroelectricity 1959.	in (K _{1/2} Bi _{1/2})Ti(os was found by	SMOLENSKII and AGRA	NOVSKAYA in
b	phase	III	J . II	l I	5956
4	state	(F)	(A)	P	
	crystal system	tetragonal	pseudo-cubic	cubic	6215
ı	space group			Pm3m-Ol	(41)
	$\Theta = (3.913 \pm 0.0)$		70 410,38 93 ± 0.003) Å at	0*) °C RT.	*)6056
	Crystal structure				6215
	Lattice distortion Thermal expansion	1: Fig. 334. on: Fig. 335.			6215
a	Dielectric constar	nt: Fig. 336.			

Nr. 1B1-ii (Na_{1/2}Bi_{1/2})TiO₃, Sodium bismuth titanate

ı	1a	Ferroelectricity in (No. Bi. VIII)	
ľ	. 1	Ferroelectricity in (Na _{1/2} Bi _{1/2})TiO ₃ was found by Smolenskii and Agranovskaya in 1959.	
I			5956
ı			
ı	•• V	arious crystal systems have been proposed: trigonal [60S5], triclinic [65F3]. 10 °C on heating, -18 °C on cooling.	
L		on incatally, all Con cooling.	

6

		•		typo omaco	
1b	phase	III	II	I	1
	state	F	(A)	P	
	crystal system	rhombohedral	pseudo-cubic	cubic	6215
	space group			Pm3m-Ol	1
	0	≈21	00=) 3	20 °C	*)6056
l	-	002) Å, $\alpha = 89^{\circ}$,,,,,,,
3	Crystal structur				6215
4	Thermal expans				
5a	Dielectric consta				
С		larization and co	ercive field : $P_{\mathbf{s}}$ $pprox$	≈ 8.0 · 10 ⁻² C m ⁻² ;	60S6
Nr.	1В2-і Рь(Мg _{1/2} W	1/2)O ₃			
1a	Antiferroelectric in 1959.	properties of Pb	(Mg _{1/2} W _{1/2})O ₃ we	ere discovered by Smolenskii	et al. 5957
ь	phase	II	I		
Î	state	A	P		
	crystal system	orthorhombic	cubic		62Z1
1	space group	C222,-D5			
1	9	3	8 °C		
- 1					
	a = 22.74 A, b = Orthorhombic u	= 22.79 Å, c = 1 nit cell: see Fig.	339.		
2a	Crystal growth:	Crystal growth	of Pb(Mg _{1/2} W _{1/2}	O _s was reported by MYL'NI	KOVA. 60M2
3	Crystal structur Z = 64 (molecul	e: Pb(Mg _{1/2} W _{1/2}) lar unit: Pb ₂ MgV	O ₃ has the struc VO ₆).	ture of perovskite type. Fig. 3	339. <i>62Z1</i>
4	Lattice distortion Thermal expans	n associated with ion: Fig. 340.	h the phase tran	sition.	62Z1
5a	Dielectric consta d $\Theta_b/dp = -5.8$	ants: Fig. 341, 34 34 · 10 ⁸ °K N ⁻¹ m	12, 343. *.		
6	Specific heat: F Transition heat	ig. 344. (II → I): ΔQ _m =	= 276 cal mol-1.		66S28
8a	Elastic compliar Ultrasound abso	nce: Fig. 345. orption: Fig. 346	, 347.		
Nr.	1B2-ii Pb(Cd _{1/2} W	′ _{1/2})O ₃			
1a	Synthesis of Pb	(Cd _{1/2} W _{1/2})O ₄ wa	s reported by Br	SLYAEV et al. in 1963.	63B3
ь	phase	II	ı ı		
-	state	(A)	P		
	crystal system	monoclinic	cubic		
	Θ O		00 °C		65F4
	a = (4.156 ± 0. Roginskaya an		74 ± 0.002) Å, β eported that ano	= 91° 9′ ± 5′ at RT. ther transition exists at 120	
3				g ordered location of the octa	
_	voids of the per	ovskite lattice, v	vere observed.	D /4 1000 1000 11 110 0000	65F4
4	Lattice distortion	on: Fig. 348, 349			
5a	Dielectric const	ant: Fig. 350.			1
			Nomu	ra	

56

5956

4 10 11

Nr. 1

2a

9a 11 12b

b phase	of Ph/Mn., W., 10. "				
	of Pb(Mn _{1/2} W _{1/2})O ₃ w	I I	y Venevrsev et al.		64V3
state	(A), Pmagn	P, Pmagn			
crystal syste		cubic			1
Θ	42				65R5
	$b = 4.033 \text{ Å}, \beta = 90$	° 12' at RT.			
	nstant: Fig. 351.				65R5
10 Electrical co	nductivity: $\sigma = 8 \cdot 10$)-8 Ω-1 m-1.			-
11 Magnetic sus	ceptibility: see Fig. 3	51.			65R5
					i
Nr. 1B2-iv Pb(Co ₁ ,	/ ₀ ₩./ ₄)Ω.				
et al.	d ferroelectric properti	es in Pb(Co _{1/2}	W _{1/2})O ₃ were discover	ed by Filip'ev	1
b phase	IV	III	11	1	63F1 65B8
state	F, F _{magn} (weak)	F, Pmagn	A, P _{magn}	P, Pmagn	*)66K6
crystal system			orthorhombic	cubic	b)64F4
)a) 8	33 · · · 103 293	,b) °K	-
a = 4.008 Å a	t 298 °K.		305		1
2a Crystal growth	: Flux method with	РьО.			-
Crystal structu	re: A superstructure v	was observed	which was some 1 / 1		65B8
	= $2a$ for phase I and $1(\beta/2)$ for II, where a ,				64F4
	= $2a$ for phase I and $1(\beta/2)$ for II, where a ,	with the part b and β are th			64F4
$\begin{array}{c c} \text{parameter } A = \\ \text{and } C = 2a \text{ sir} \\ \text{lattice.} \\ \hline \\ I & A = \\ \hline \end{array}$	lattice page 8.017 Å at 298 °K	with the part b and β are the arameters	rameters $A = 2 \cos(i)$ e parameters of the pe		64F4
phase I	= 2a for phase I and 1 (β/2) for II, where a, lattice pa = 8.017 Å at 298 °K = 5.669 Å, B = 7.956	with the part b and β are the arameters	rameters $A = 2 \cos(i)$ e parameters of the pe		
phase I $A = 1$ II $A = 1$ Lattice distortic	= 2a for phase I and 1 (β/2) for II, where a, 1 lattice pa = 8.017 Å at 298 °K = 5.669 Å, B = 7.956 on: Fig. 352.	with the part b and β are the arameters $A, C = 5.689$	rameters $A = 2 \cos(i)$ e parameters of the pe		64F4
phase I If $A = I$ Lattice distortic Dielectric const	= 2a for phase I and n(B/2) for II, where a, lattice pr = 8.017 Å at 298 °K = 5.669 Å, B = 7.956 on: Fig. 353, 354, 35	with the part b and β are the arameters $A, C = 5.689$	rameters $A = 2 \cos(i)$ e parameters of the pe		
and $C = 2a$ sir lattice. phase I	= 2a for phase I and (β/2) for II, where a, (with the part b and β are the arameters $\dot{A}, C = 5.689$ 5.	rameters $A = 2\cos K$ e parameters of the pe		
and $C = 2a$ sir lattice. phase I	= 2a for phase I and n(B/2) for II, where a, lattice pr = 8.017 Å at 298 °K = 5.669 Å, B = 7.956 on: Fig. 353, 354, 35	with the part b and β are the arameters $\dot{A}, C = 5.689$ 5.	rameters $A = 2\cos K$ e parameters of the pe		
and C = 2a sir lattice. phase I A = Lattice distortic Dielectric const Polarization: Fi Magnetic suscep	= 24 for phase I and (6/2) for II, where a, (6/2) for II, where a, (7/2) for II, where a, (8/2) for II, where a, (8/2) for II, where a, (8/2) for II, II, II, II, II, II, II, II, II, II	with the part b and β are the arameters $\dot{A}, C = 5.689$ 5.	rameters $A = 2\cos K$ e parameters of the pe		
$\begin{array}{c c} \text{phase} \\ \text{and } C = 2a \text{ sir} \\ \text{lattice.} \\ \text{phase} \\ \text{I} \\ \text{I} \\ A = \\ \text{Lattice distortic} \\ \text{Dielectric const} \\ \text{Polarization: Fi} \\ \text{Magnetic suscep} \\ \end{array}$	= 24 for phase I and (6/2) for II, where a, (6/2) for II, where a, (7/2) for II, where a, (8/2) for II, where a, (8/2) for II, where a, (8/2) for II, II, II, II, II, II, II, II, II, II	with the part b and β are the arameters $\dot{A}, C = 5.689$ 5.	rameters $A = 2 \cos (R)$ e parameters of the pe		
and deed A = and d	= 24 for phase I and (6/2) for II, where a, (6/2) for II, where a, (7/2) for II, where a, (8/2) for II, where a, (8/2) for II, where a, (8/2) for II, II, II, II, II, II, II, II, II, II	with the part b and β are the arameters A, $C = 5.689$ 5.	rameters $A = 2 \cos(\mu)$ e parameters of the pe Å at 258 °K	one with the (2), B = 2b, rovskite sub-	64F4
sand C = 2 a sir and C = 2 a sir and C = 2 a sir lattice. phase	= 24 for phase I and (6/2) for II, where a, (6/2) for II, where a, (7/2) for II, where a, (8/2) for II, where a, (8/2) for II, where a, (8/2) for II, II, II, II, II, II, II, II, II, II	with the part b and β are the arameters A, $C = 5.689$ 5.	rameters $A = 2 \cos(\mu)$ e parameters of the pe Å at 258 °K	one with the (2), B = 2b, rovskite sub-	
and de et a - a - and de et a - and et a - an	= 24 for phase I and (h/h/2) for II, where a, (h/h/2) for S. 669 Å, B = 7.956. on: Fig. 352. ant: Fig. 353, 354, 35 g. 356, 353, 354, 35 g. 356. tibility and magnetiz. e _{1/h})O ₅ to Mn _{1/h} Re _{1/h} O ₅ was r III	with the parameters $A, C = 5.689$ ation: Fig. 35	rameters $A = 2 \cos(i - i - i)$ e parameters of the pe Å at 258 °K 57, 358. ENEVTSEV et al. I	one with the (2), B = 2b, rovskite sub-	64F4
and other A = an	= 24 for phase I and (b/2) for II, where a, (b/2) for II, where a, (b/2) for II, where a, (color) at 298 °K = 5.669 Å, B = 7.956. on: Fig. 352. ant: Fig. 353, 354, 35 g. 356. tibility and magnetiz c _{1/2})O ₅ was r III (A), F _{mare} (A)	with the parameters $A, C = 5.689$ ation: Fig. 35	rameters $A = 2 \cos t$, e parameters of the pe Å at 258 °K	ofte with Fig. 18 = 2e, TOVSkite sub-	64F4 64V3
and C ex 2 a sir lattice. phase I A = I H A	= 24 for phase I and (b/2) for II, where a, (b/2) for II, where a, (b/2) for II, where a, (color) at 298 °K = 5.669 Å, B = 7.956. on: Fig. 352. ant: Fig. 353, 354, 35 g. 356. tibility and magnetiz c _{1/2})O ₅ was r III (A), F _{mare} (A)	with the paid and β are the arameters A, C = 5.689 5. ation: Fig. 35 reported by V II D, Pmagn noclinic	rameters $A = 2 \cos(\mu - 2 \cos k)$ de parameters of the pr A at 258 °K Fr. 358. ENEVTSEV et al. I P. P	ofte with Fig. 18 = 2e, 120, B = 2e, rovskite sub-	64F4

4	Lattice distortic	on: Fig. 359.			65R5
0	Electrical condu	ictivity: $\sigma = 1$	10 ⁻¹ Ω ⁻¹ m ⁻¹ .		65R5
Nr.	The linear temp and the appearir ferromagnetic p sign of the indi Re ⁶⁺ ions. How moments agree	ng of the spontan roperties in this rect exchange in wever, the mag with the experi nteraction betwe ncies.	nce of χ_{magn}^{-1} with eous moment at 1 compound, which teraction proposed itudes of the 1 mental values of	Fig. 360. a positive value of $\Theta_{\rm PMMIR}=85$ °K, any indicate the presence of h is in agreement with the positive ed by Goodenouse for Mn*+ and calculated theoretical spontaneous nly on the assumption of an anti-ted in an ordered fashion over the	65R5
1a	Ferroelectricity	in Pb(Sc,/aNb,/a	O. was discover	ed by Smolenskii et al. in 1959.	5959
ь	phase	l II	I	•	
	state	F	P		5959
	crystal system	tetragonal*) (possibly)	cubic		
	Θ	9	0 °C		*)60I3
		001) Å, c = (4.0			
3	Crystal structur	e: In the powde	er patterns, addi	tional to the principal lines of the bserved indicating a doubling of the	5913
5a	Dielectric consta	ant: Fig. 361.			
c	Spontaneous po	larization: P. *	3 6 . 10-1 cm-1	4.40.00	5959
_	1B3-ii Pb(Mn _{1/2} N A synthesis of I TSEV et al.	Nb _{1/2})O ₃		structure was reported by VENEV-	64V3
la	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/2} N	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃	with perovskite	structure was reported by Venev-	64V3
1a	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/2} N	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃	with perovskite		
la Nr. 1a	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/2} N	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃ in Pb(Fe _{1/2} Nb _{1/2})	with perovskite	structure was reported by Venev- red by Smolenskii et al. in 1958.	64V3
la Nr. 1a	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/2} N Ferroelectricity phase	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃ in Pb(Fe _{1/2} Nb _{1/2})	with perovskite	structure was reported by Venev- red by Smolenskii et al. in 1958.	64V3 58S4
la Nr. 1a	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/x} N Ferroelectricity phase state	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₅ in Pb(Fe _{1/2} Nb _{1/2}) III F, Amagn	with perovskite a)O ₃ was discove II F, Pmagn	structure was reported by Venev- red by Smolenskii et al. in 1958. I P. Pman	64V3 58S4 62B7
la Nr. 1a	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/x} N Ferroelectricity phase state crystal system	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃ IIb _{1/2})O ₄ III F, A _{maga} rhombohedral	with perovskite a)O ₃ was discove II F, P _{magn} rhombohedral	structure was reported by Venev- red by Smolenskii et al. in 1958. I P, Pmage cubic	64V3 58S4 62B7
la Nr. 1a	A synthesis of I TSEV et al. 1B3-iii Pb(Fc _{1/4} N Ferroelectricity phase state crystal system space group 0	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃ IIb _{1/2})O ₄ III F, A _{maga} rhombohedral	with perovskite a)O ₃ was discove II F, P _{magn} rhombohedral	structure was reported by Venev- red by Smolenskii et al. in 1958. I P. P. P. C. Cubic Pm3m-Oh	64V3 58S4 62B7 64S8
Nr. 1a b	A synthesis of I TSEV et al. 1B3-iii Pb(Fe _{1/h} N Ferroelectricity phase state crystal system space group θ $a=4.014$ Å, α Crystal growth:	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃ Iib _{1/2})O ₃ Iib _{1/2})O ₃ Ii Pb(Fe _{1/2} Nb _{1/2}) III F, A _{maga} rhombohedral III = 89.92° at RT. Flux method wi	with perovskite a)O ₂ was discove II F, P _{msm} rhombohedral 43 3 tth PbO.	red by Smolenskii et al. in 1958. I P, Pmage cubic Fm3m-Oh 87 °K	64V3 58S4 62B7 62B10 62B7
Nr. 1a b	A synthesis of I rsev et al. 183-iii Pb(Fe _{1/t})N Ferroelectricity phase state crystal system space group θ $a = 4.014 \text{ Å}, \alpha$ Crystal growth: Crystal structur ordering in the nound in the n	Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₅ in Pb(Fe _{1/2} Nb _{1/2}) III F, Amaga rhombohedraI - 89.92° at RT. Flux method wi re: Disordered p octahedral Signature Fet*ion was fo	with perovskite II F, Pmsen rhombohedral 43 3 ith PbO. erovskite; X-ray of perovskite is n experiments	structure was reported by Venev- red by Smolenskii et al. in 1958. I P. P. P. C. Cubic Pm3m-Oh	64V3 58S4 62B7 64S8
1a Nr. 1a b	A synthesis of I rssv et al. 1B3-iii Pb(Fe _{I/I} A) Ferroelectricity phase state crystal system space group θ $a=4.014 \text{Å}$, α Crystal growth: Crystal structur ordering in the moment of the culation of the culation of the	Pb(h _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Pb(Mn _{1/2} Nb _{1/2})O ₃ Ib _{1/2})O ₃ In Pb(Fe _{1/2} Nb _{1/2} III F, Amaga rhombohedraI = 89.92° at RT. Flux method wire: Disordered give octahedral site seutron diffraction Fe ²⁺ ion was fountenaity of the (c. Fig. 362. Fig. 762.	with perovskite II F, Pmsen rhombohedral 43 3 ith PbO. erovskite; X-ray of perovskite is n experiments	red by Smolenskii et al. in 1958. I P. Panse cubic Pm3m-Oh 87 *K studies have not shown any jonic returner. The magnetic peak was the KK. The effective magnetic 10.15 // w. at 78 *K from the Col. 15 // w. at 78 *K from t	64V3 58S4 62B7 64S8 62B10 62B7 64S8
1a Nr. 1a b	A synthesis of I rsev et al. 183-iii Pb(Fe _{I/I} A) Ferroelectricity phase state crystal system space group θ α = 4.014 Å, α Crystal growth: Crystal growth: Crystal synthesis in the moment of the imment of the culation of the imment at 0 °F Dielectric const.	Pb(Mn _{1/2} ND _{2/2})O ₃ Pb(Mn _{1/2} ND _{2/2})O ₃ Ib _{1/2})O ₄ in Pb(Fe _{1/2} ND _{2/2}) in Pb(Fe _{1/2} ND _{2/2}) Fhombohedral = 89.92° at RT. Flux method wire: Disordered protabedral sites entron diffraction diffraction intensity of the (c. Fig. 362. ion: Fig. 363. ion: Fig. 364.	with perovskite a)O ₂ was discove II F, P _{mean} rhombohedral 43 3 ith PbO. erovskite; X-ray of perovskite s experiments of perovskite s 111) reflection, v	red by Smolenskii et al. in 1958. I P. Panse cubic Pm3m-Oh 87 *K studies have not shown any jonic returner. The magnetic peak was the KK. The effective magnetic 10.15 // w. at 78 *K from the Col. 15 // w. at 78 *K from t	64V3 58S4 62B7 64S8 62B10 62B7 64S8
1a Nr. 1a b 2a 3	A synthesis of I rssv et al. 183-iii Pb(Fe _{II} A) Ferroelectricity phase state crystal system space group θ $\alpha = 4.014 \text{Å}$, α Crystal growth: Crystal synthetic ordering in the noment of the imment of the imment of the imment at 0.75 beloctric const. Optical absorpt Magnetic suscepture $\Delta \theta = 0.014 \text{M}$ m m m m m m m m m m m m m m m m m m m	bl _{1/2})O ₃ cb(Mn _{1/2} Nb _{1/2})O ₃ cb(Mn _{1/2} Nb _{1/2})O ₄ in Pb(Fe _{1/2} Nb _{1/2}) in F, Amsen rhombohedral it = 89.92° at RT. Flux method were: Disordered proctahedral sites extrem diffraction that intensity of the (C. Fig. 362. ant: Fig. 363.	with perovskite a)O ₂ was discove II F, P _{mean} rhombohedral 43 3 ith PbO. erovskite; X-ray of perovskite s experiments of perovskite s 111) reflection, v	red by Smolenskii et al. in 1958. I P. Panse cubic Pm3m-Oh 87 *K studies have not shown any jonic returner. The magnetic peak was the KK. The effective magnetic 10.15 // w. at 78 *K from the Col. 15 // w. at 78 *K from t	64V3 58S4 62B7 64S8 62B10 62B7 64S8
1a Nr. 1a b	A synthesis of I rssv et al. 183-iii Pb(Fe _{1/h} N Ferroelectricity phase state crystal system space group 6 a = 4.014 Å, α Crystal growth: Crystal structur ordering in the moment at 0 *f moment at 0 the culation of the culation of the culation of the culation of the system moment at 0 *f Dielectric const Optical absorpt Magnetic suscept surface = 5.4 μg for 5.4 μg for 5.5 μg for 5	Pb(Mn _{1/2} ND _{2/2})O ₃ Pb(Mn _{1/2} ND _{2/2})O ₃ Ib _{1/2})O ₄ in Pb(Fe _{1/2} ND _{2/2}) in Pb(Fe _{1/2} ND _{2/2}) Fhombohedral = 89.92° at RT. Flux method wire: Disordered protabedral sites entron diffraction diffraction intensity of the (c. Fig. 362. ion: Fig. 363. ion: Fig. 364.	with perovskite II F. Pmsen rhombohedral 43 3 ith PbO. erovskite; X-ray of perovskite; X-mexperiments: und to be (a) 111) reflection, v 5.	red by Smolenskii et al. in 1958. I P. Panse cubic Pm3m-Oh 87 *K studies have not shown any jonic returner. The magnetic peak was the KK. The effective magnetic 10.15 // w. at 78 *K from the Col. 15 // w. at 78 *K from t	64V3 58S4 62B7 64S8 62B10 62B7 64S8 65D6

1b

1a

5a

1a

Nr. 1a

_			II I Oxide	des Perowskit-Typs	
I	Nr. 1B3-iv Pb(Co	P _{1/2} Nb _{1/2})O ₃			
1	a A synthesis of Pb(Co _{1/2} Nb _{1/2})O ₃ with perovskite structure was reported by Venev-				
1					64V3 65R5
١.,					(0)1()
-	r. 1B3-v Pb(Ni,				
1a	5 mol % Bac	a)O _s with perovsl).	ite structur	e was synthesized by the addition of	65S17
N	r. 1B3-vi Pb(In _{1/}	2Nb _{1/2})O ₃			
1a	 Dielectric anomaly in Pb(In_{1/2}Nb_{1/2})O₃ was found by Kupriyanov and Fesenko 1965. 				
ь		l II	ı I	January Maria Laserko II	65K9
	state	(F)	P	-	
	crystal system	monoclinic	cubic	-	
	Θ	(possibly)		-	65K9
	a = 4.11 Å at		00 °C		
5a	Dielectric cons	stant: Fig. 369.			
					1
Nr.	1B3-vii Pb(Yb ₁				
1a	Antiferroelectric properties in Pb(Yb _{1/2} Nb _{1/2})O ₃ were reported by Filip'ev et al. in 1963.				
b	phase	l n	1		63F1
	state	AF	P		65K9
- 1	crystal system	monoclinic	cubic		65K9
- 1	0	300, 3	10a) °C		*)64T4
-	$A = 4.108 \text{ A}, b = 4.107 \text{ A}, b = 90^{\circ} 27' \text{ at RTs}$				
_	Crystal structure: Superstructure lines, corresponding to ordering of Yb ³⁺ and Nb ⁵ ions were found.				(47)
	Lattice distortion: Fig. 370. Thermal expansion: Fig. 371.				64T4
a	Dielectric const	ant: Fig. 372.			
				0.15	
Vr. 1	B3-viii Pb(Ho _{1/i}	2Nb _{1/2})O ₃			
a	Dielectric anoma	aly in Pb(Ho1/2Nb	1/2)O, was for	and by Kupriyanov and Fesenco.	
-		n	I	TOTALIANOV AND PESENCO.	65K9
-	state	(A)	P		
_	crystal system	monoclinic	cubic	- 1	
	θ 240 °C				65K9
+	$a=4.160$ Å, $b=4.106$ Å, $\beta=90^{\circ}$ 30' at RT. Dielectric constant: Fig. 373.				
	cuic consta	ш.: r1g. 3/3.			
_	33-ix Pb(Lu _{1/2} Ni				
s	Dielectric anomaly in ${\rm Pb}({\rm Lu}_{1/2}{\rm Nb}_{1/2}){\rm O}_3$ was found by Smolenskii and Agranov-skaya in 1958.				5853

1b					
	phase	II	I		
	state	(A)	P		-
	crystal system	monoclinic	cubic		
	Θ	2	70 °C		65K9
	a = 4.152 Å, b	= 4.093 Å, β = 9	00° 30' at RT.		
4	Thermal expans	sion: Fig. 374.			-
5a	Dielectric const	ant: Fig. 375.			l
Nr.	1B3-x Pb(Sc _{1/3} Ta	ı _{1/2})O ₃			
1a	Ferroelectricity	in Pb(Sc,/2Ta,/2)	O, was discussed	by Smolenskii et al. in 1959.	5959
ь	phase	l II	I	•	
	state	F	P		5959
		tetragonala)			*) COT 2
	crystal system	(possibly)	cubic		*)5913
ļ	θ	2	6 °C		1
	$a = (4.072 \pm 0)$.001) Å, $c = (4.0)$	72 ± 0.001) Å at	RTa).	
3	Crystal structur in Pb(Sc _{1/2} Ta _{1/} greater than in	e: The large num)O ₃ indicates the Pb(Sc _{1/2} Nb _{1/2})O ₃	nber of superstrue at the degree of	cture lines and their great intensity ordering of Sc ³⁺ and Ta ⁵⁺ ions is	5913
5a	See 1B3-i-3. Dielectric const				3913
	5 mol% SrO.), with perovski	te structure wa	s synthesized by the addition of	65\$17
			te structure wa	s synthesized by the addition of	65517
Nr.	1B3-xii Pb(Fe _{1/2}	Γa _{1/2})Ο ₃			
_	1B3-xii Pb(Fe _{1/2}	Γa _{1/2})Ο ₃ in Pb(Fe _{1/2} Τa _{1/2})	O ₃ was discovere	ed by Smolenskii et al. in 1959.	65S17 59S7
_	1B3-xii Pb(Fe _{1/2}	Γa _{1/2})Ο ₃	O ₃ was discovere		
1a	1B3-xii Pb(Fe _{1/2}	Γa _{1/2})Ο ₃ in Pb(Fe _{1/2} Τa _{1/2})	O ₃ was discovere	ed by Smolenskii et al. in 1959.	5957
1a	1B3-xii Pb(Fe _{1/2} Ferroelectricity phase	Γa _{1/2})Ο, in Pb(Fe _{1/2} Ta _{1/2})	O ₃ was discovere	ed by Smolenskii et al. in 1959.	59S7 68N1
1a	1B3-xii Pb(Fe _{1/2} Ferroelectricity phase state	ra _{1/2})O, in Pb(Fe _{1/2} Ta _{1/2}) III F, A _{mage}	O ₃ was discovered II	ed by Smolenskii et al. in 1959. I P. P _{mara}	5957
1a	1B3-xii Pb(Fe _{1/2} Ferroelectricity phase state crystal system	in Pb(Fe _{1/2} Ta _{1/2}) III F, A _{maga} rhombohedral	O ₃ was discovered II	ed by SMOLENSKII et al. in 1959. I PP, Pman cubic Pm3m-Ok	59S7 68N1
1a	1B3-xii Pb(Fe _{1/2} Ferroelectricity phase state crystal system space group θ P _a [111] (pro a = (4.007 ± 0.000)	Fa _{1/2})O ₃ in Pb(Fe _{1/2} Ta _{1/2}) III F, A _{maga} rhombohedral	O ₃ was discovered II F. P _{maga} rhombohedrala) 133a) 243, 2	ed by SMOLENSKII et al. in 1959. I PP, Pman cubic Pm3m-Ok	59S7 68N1
1a b	1B3-xii Pb(Fe _{1/t} Ferroelectricity phase state crystal system space group θ P _s [111] (pro a = (4.007 ± 0 black (dark ore	Ta _{1/a})O ₃ in Pb(Fe _{1/1} Ta _{1/a}) III F, A _{maga} rhombohedral 143, bably) .001) Å at RT. nge for thethod w	O ₃ was discovered II F, P _{magn} rhombohedral ^a) 133 ^a) 243, 2 ples).	ed by SMOLENSKII et al. in 1959. I PP, Pman cubic Pm3m-Ok	59S7 68N1 *)65S17
1a b	B3-xii Pb(Fe _{1/2} Ferroelectricity phase state crystal system space group θ P, (111) (pro a = (4.007 ± 6 black (dark ora Crystal growth 1200 °C, crystal	Ta _{1/a})O ₃ in Pb(Fe _{1/1} Ta _{1/a}) III F, A _{maga} rhombohedral 143, bably) .001) Å at RT. nge for thethod w	O ₃ was discovered II F. P _{mata} rhombohedral ^a) 133 ^a) 243, 2 ples).	ad by SMOLENSKII et al. in 1959. I P. P _{mare} cubic Pm3m-O½ 2334) *K	59S7 68N1 *)65S17
1a b	B3-xii Pb(Fe _{1/2} Ferroelectricity phase state crystal system space group θ P, (111) (pro a = (4.007 ± 6 black (dark ora Crystal growth 1200 °C, crystal	ra _{1/2})O ₃ in Pb(Fe _{1/2} Ta _{1/2} III F, A _{magn} rhombohedral 143, abily), 1001) Å at RT. nge for thin sam Flux method w	O ₅ was discovered III F. P _{mago} rhombohedral*) 133*) 243, 2 ples). th PbO. When a having both pyrerovskite.	ad by SMOLENSKII et al. in 1959. I P. P _{mare} cubic Pm3m-O½ 2334) *K	59S7 68N1 *)65S17
1a b	B3-xii Pb(Fe _{i/s} Ferroelectricity phase state crystal system space group θ P _* [111] (pro a = (4.007 ± c black (dark ors Crystal growth 1200 °C, crysts Crystal structu phase	ra _{1/2})O ₃ in Pb(Fe _{1/2} Ta _{1/2} III F, A _{mag} rhombohedral 143, bably)001) Å at RT. nge for thin sam Flux method will sare obtained are considered per certain samples are obtained are considered per considered p	O ₃ was discovere II F, P _{magn} rhombohedral ^a) 133 ^a) 243, 2 ples). th PbO. When an aving both pyrerovskite.	ad by SMOLENSKII et al. in 1959. I P. P _{mare} cubic Pm3m-O½ 2334) *K	59S7 68N1 *)65S17
1a b	1B3-xii Pb(Fe _{t/i} Ferroelectricity phase state crystal system space group θ	in Pb(Fe _{1/1} Ta _{1/2} III F, A _{maga} rhombohedral 143, bably) and A at RT. nge for thin sam Flux method wis are obtained if	II F, P _{mare} rhombohedral ^a) 133 ^a) 243, 2 ples). th PbO. When a having both pyrovskite. mits A at RT.	ad by SMOLENSKII et al. in 1959. I P. P _{mare} cubic Pm3m-O½ 2334) *K	59S7 68N1 *)65S17
1a b	1B3-xii Pb(Fe _{1/i} Ferroelectricity phase state crystal system space group P [111] (pre a = (4.007 c c ystal crystal system 1200 °C, crysta crystal structu phase I a = II a = II a = a =	ra _{1/2})O ₃ in Pb(Fe _{1/2} Ta _{1/2}) III F. A _{mara} rhombohedral 143, bably) 1001) Å at RT. nge for thin sam Flux method w is are obtained re: Disordered pt lattice cond.	O ₃ was discovered III F. P _{mare} rhombohed ral*) 133*) 243, 2 ples). th PbO. When having both pyrucyskite. unts Å at RT. Å at 90 °K	ad by SMOLENSKII et al. in 1959. I P. P _{mare} cubic Pm3m-O½ 2334) *K	59S7 68N1 *)65S17
1a b	1B3-xii Pb(Fe _{t/i} Ferroelectricity phase state crystal system space group θ P _c [111] (pro a = (4.007 ± C t c c c c c c c c c c c c c c c c c c	ra _{1/2})O ₃ in Pb(Fe _{1/2} Ta _{1/2}) F, A _{maga} rhombohedral 143, bably), 143, bably), 143, bably), 144, bably a RT. nge for thin sam Flux method w ls are obtained by lattice construction (4.007 ± 0.001) (4.006 ± 0.001) (4.006 ± 0.001)	II F, P _{mate} rhombohedral ^a) 133 ^a) 243, 2 ples). th PbO. When a maying both pyrerovskite. mats Å at RT. Ä at 90 °K	ad by SMOLENSKII et al. in 1959. I P. P _{mare} cubic Pm3m-O½ 2334) *K	59S7 68N1 *)65S17 68N1 65S17

IT4

K9

5K9

7a

14a

Nr. 1a

2a

Nr. 1b Nr. 1a

1a	A synthesis of and Venevisi	Pb(Co _{1/2} Ta _{1/2})O ₃	with perovskite	structure was reported by Shvorne ed by the addition of 1 mol% La ₂ (VA
Nr.	. 1B3-xiv Pb(Yb ₁	/2Ta _{1/2})O ₂	-na mas stabiliz	ed by the addition of 1 mol% La ₂ (D ₈ . 65S17
1a			T- 10		
ь	phase	II	141/2/O3 was rep	orted by Isupov and Kranik in 196	4. 6416
	state		I		
	crystal system	(A)	F		
	erystal system	monoclinic	cubic		1
	1 -	280), 285a) °C		*)65K9
4	Thermal expan	= 4.108 Å, β =	90° 30' at RT.		
5a	Dielectric const	ant: Fig. 301.			
Nr.	1B3-xv Pb(Lu _{1/2} ?	Γa _{1/2})Ο ₂			
1a	Dielectric anom	aly in Pb(Lu.	Ta .)O was far	und by Smolenskii and Agranov	
.		, (1/2	201/2/03 was 10	und by Smolenskii and Agranov	5853
ь	phase	II	1		7007
- -	state	(A)	P		1
-	crystal system	monoclinic	cubic		65K9
	Θ		80 °C		OJAY
_	a = 4.153 Å, b =	= 4.107 Å, $\beta = 9$	90° 30' at RT.		
1	Lattice distortio Thermal expansi	n: Fig. 383.			
	Dielectric consta				
		-			1
	B3-xvi Pb(Fe _{1/2} W				
a	A synthesis of P	b(Fe _{1/2} W _{1/2})O ₃ v	vith perovskite :	structure was reported by VENEV-	
					64V3
1	of this composition	on.	irmed the prese	nce of the spinel phase in a sample	
					65R5
	B3-xvii Pb(Li _{1/4} N				
	Following compos	site perovskite c	ompounds conta	ining Pb were synthesized:	
۱ ۱			4Mn1/4Nb1/2)O3	B Hore by mencarzed.	
1		√2 x D(ZΠ ₁ /	4.14.101/2/03	Pb(Co _{1/4} Mn _{1/4} W _{1/6})O ₆	64V3
1 1	Pb(Mg, Mn, Nb.	/2)O ₂ Pb(Cd ₁ /	Mn1/4Nb1/2)O.	Pb(Co _{1/4} Mn _{1/4} W _{1/2})O ₃ Pb(Ni _{1/4} Mn _{1/4} W _{1/2})O ₂	65V3
1 1	Pb(Mg _{1/4} Mn _{1/4} Nb ₁ Pb(Co _{1/4} Mn _{1/4} Nb ₁ /	/2)O ₂ Pb(Cd _{1/} 2)O ₃ Pb(Mg _{1/}	4Mn _{1/4} Nb _{1/2})O ₂	Pb(Ni _{1/4} Mn _{1/4} W _{1/2})O ₂ Pb(Cd _{1/4} Mn _{1/4} W _{1/2})O ₃	
1 1 1	Pb(Mg _{1/4} Mn _{1/4} Nb ₁ Pb(Co _{1/4} Mn _{1/4} Nb _{1/} Pb(Ni _{1/4} Mn _{1/4} Nb _{1/}	/2)O ₂ Pb(Cd _{1/} 2)O ₃ Pb(Mg _{1/2})O ₂ Pb(Mg _{1/2})O ₃ Pb(Mg _{1/2})O ₃	Mn1/4Nb1/2)O.	Pb(Ni _{1/4} Mn _{1/4} W _{1/2})O ₄	
1 1 1	Pb(Mg _{1/4} Mn _{1/4} Nb ₁ Pb(Co _{1/4} Mn _{1/4} Nb ₁ /	/2)O ₂ Pb(Cd _{1/} 2)O ₃ Pb(Mg _{1/2})O ₂ Pb(Mg _{1/2})O ₃ Pb(Mg _{1/2})O ₃	4Mn _{1/4} Nb _{1/2})O ₂	Pb(Ni _{1/4} Mn _{1/4} W _{1/2})O ₂ Pb(Cd _{1/4} Mn _{1/4} W _{1/2})O ₃	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pb(Mg _{1/4} Mn _{1/4} Nb ₁ Pb(Co _{1/4} Mn _{1/4} Nb ₁ / Pb(Ni _{1/4} Mn _{1/4} Nb _{1/} Pb(Ni _{1/4} Mn _{1/4} Nb _{1/}	(a)O ₂ Pb(Cd ₁ / ₂)O ₂ Pb(Cd ₁ / ₂)O ₃ Pb(Mg _{1,1})O ₂ Pb(Mg _{1,1} / ₂)O ₃	¹ 4Mn _{1/4} Nb _{1/2})O ₂ ¹ 4Mn _{1/4} Ta _{1/2})O ₂ ¹ 4Mn _{1/4} W _{1/2})O ₂	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	
r. 1B	Pb(Mg _{1/4} Mn _{1/4} Nb ₁ Pb(Co _{1/4} Mn _{1/4} Nb ₁ / Pb(Ni _{1/4} Mn _{1/4} Nb _{1/} Pb(Ni _{1/4} Mn _{1/4} Nb _{1/}	Pb(Mg _{1/3} Nb _{2/3})	4Mn _{1/4} Nb _{1/2})O ₂ 4Mn _{1/4} Ta _{1/2})O ₂ 4Mn _{1/4} W _{1/2})O ₂ 4Mn _{1/4} W _{1/2})O ₂	Pb(Ni _{1/4} Mn _{1/4} W _{1/2})O ₂ Pb(Cd _{1/4} Mn _{1/4} W _{1/2})O ₃	
r. 1B	Pb(Mg _{1/4} Mn _{1/4} Nb ₁) Pb(Co _{1/4} Mn _{1/4} Nb ₁) Pb(Co _{1/4} Mn _{1/4} Nb ₁) Pb(Ni _{1/4} Mn _{1/4} Nb ₁) 44-1 Pb(Mg _{1/2} Nb ₂ Ferroelectricity in KAYA in 1958. hase	Pb(Mg _{1/3} Nb _{2/3}) Pb(Mg _{1/3} Nb _{2/3})	4Mn _{1/4} Nb _{1/2})O ₂ t ₄ Mn _{1/4} Ta _{1/2})O ₂ t ₄ Mn _{1/4} W _{1/2})O ₂ t ₄ Mn _{1/4} W _{1/2})O ₂	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	65V3
r. 1B	Pb(Mg _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Ni _{J/4} Mn _{J/4} Nb _J) 44-1 Pb(Mg _{J/2} Nb _Z Ferroelectricity in KAYA in 1958. hase	December Per	4Mn _{1/4} Nb _{1/2})O ₂ 16Mn _{1/4} Ta _{1/2})O ₂ 16Mn _{1/4} Ta _{1/2})O ₂ 16Mn _{1/4} W _{1/2})O ₂	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	65V3
r. 1B	Pb(Mg _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Ni _{J/4} Mn _{J/4} Nb _J) 44-1 Pb(Mg _{J/2} Nb _Z Ferroelectricity in KAYA in 1958. hase tate rystal system	Pb(Mg _{1/3} Nb _{3/3}) II F Ct	4Mn _{1/4} Nb _{1/2})O ₂ 4Mn _{1/4} Ta _{1/2})O ₂ 4Mn _{1/4} Ta _{1/2})O ₂ 4Mn _{1/4} W _{1/2})O ₂	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	65V3
I I I I I I I I I I I I I I I I I I I	Pb(Mg _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Ni _{J/4} Mn _{J/4} Nb _J) 44-1 Pb(Mg _{J/2} Nb _Z Ferroelectricity in KAYA in 1958. hase	2 2 2 10(2H ₂) 2 2 2 10(2H ₂) 2 2 2 2 2 2 2 2 2 2 2 2 2	aMn _{1/4} Nb _{1/2})O ₂ _{1/4} Mn _{1/4} Ta _{1/2})O ₂ _{1/4} Mn _{1/4} Ta _{1/2})O ₂ ₂ ₃ Mn _{1/4} W _{1/2})O ₂ D ₃ was discovered I P abic 3m-O ₃	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	65V3
I I I I I I I I I I I I I I I I I I I	Pb(Mg _{3/4} Mn _{1/4} Nb ₁) Pb(Co _{1/4} Mn _{1/4} Nb ₂) Pb(Ci _{1/4} Mn _{1/4} Nb ₂) Pb(Ni _{1/4} Mn _{1/4} Nb ₂) 4-1 Pb(Mg _{3/4} Nb ₂) 4-1 Pb(Mg _{3/4} Nb ₂) Ferroelectricity in KAYA in 1958. hase tate rystal system face group	Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Mg _{1/2} Ph(AMn _{J/4} Nn _{J/2})O ₂ A _{I/4} Mn _{J/4} Ta _{J/2})O ₂ A _{I/4} Mn _{J/4} Ta _{J/2})O ₂ A _{I/4} Mn _{J/4} W _{J/2})O ₂ D ₃ was discovered by the discovered b	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	65V3 58S3, 59S6
I I I I I I I I I I I I I I I I I I I	Pb(Mg _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Co _{J/4} Mn _{J/4} Nb _J) Pb(Ni _{J/4} Mn _{J/4} Nb _J) 44-1 Pb(Mg _{J/2} Nb _Z Ferroelectricity in KAYA in 1958. hase tate rystal system	Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Ca _{1/2} Ph(Mg _{1/2} Ph(AMn _{J/4} Nn _{J/2})O ₂ A _{I/4} Mn _{J/4} Ta _{J/2})O ₂ A _{I/4} Mn _{J/4} Ta _{J/2})O ₂ A _{I/4} Mn _{J/4} W _{J/2})O ₂ D ₃ was discovered by the discovered b	$\begin{array}{l} {\rm Pb}({\rm Ni}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_z \\ {\rm Pb}({\rm Cd}_{1/4}{\rm Mn}_{1/4}{\rm W}_{1/2}){\rm O}_3 \\ {\rm Pb}({\rm Sc}_{1/4}{\rm Cr}_{1/4}{\rm Nb}_{1/2}){\rm O}_3 \end{array}$	58S3, 59S6

			II 1 Perovskite-type oxides F	igures p. 28
2a	Crystal growth: Kyropoulos me	Flux metho	d (using PbO).	59M5 67B18
3	Crystal structur	e: Disordere	d perovskite.	61B5
4	Thermal expans	ion: Fig. 386	i.	
5a	Dielectric const	ant: Fig. 387	, 388, 389.	
b	Nonlinear diele where $\Theta_p = 26$	tric properti	es: $E = [(T - \Theta_p) (\epsilon_0 C)^{-1}] P + \xi P^3 + \zeta P^5 + \cdots, 7 \pm 1.0) \cdot 10^5 ^{\circ}\text{K}$, and $\xi \cong 5.6 \cdot 10^8 \text{V m}^6 \text{C}^{-3}$.	67B9
c	Spontaneous po	larization an	d coercive field: Fig. 390.	
7a	Piezoelectricity	Fig. 391.		
9a	Birefringence: I	t was found	for 6328 Å at 299 °K. that the crystals Pb(Mg _{1/2} Nb _{2/2})O ₂ behave like optically d electric field causes double refraction. Fig. 392.	67B9
e	Quadratic electron 6328 Å at 29	rooptic effect 19 °K.	t: $M_{11} - M_{12} = +0.015 \mathrm{m^4C^{-2}}, M_{44} = +0.008 \mathrm{m^4C^{-2}}$	67B9
4a	Domain structu 20 · 10 ⁻⁴ m).	re: Clear do	mains were observed only in very thin wafers (e.g.,	61B5
Nr.	1B4-ii Pb(Zn _{1/2} N	p ^{5/2})O²		
1a	Ferroelectric Pt in 1960.	(Zn _{1/3} Nb _{2/3})C	$D_{\mathbf{z}}$ crystal was synthesized by Bokov and Myl'nikova	60B7
ь	phase	II	I	
	state	F	P	
	crystal system		cubic	
	θ $a = 4.04 \text{ Å at R}$ light yellow.		40 °C	60B7
2a	Crystal growth: solution by was	Flux method ning in acetic	with PbO. The crystals were separated from the matrix acid at RT for a long time.	60B7
5a.	Dielectric consta	nt: Fig. 393.		-
	1B4-iii Pb(Cd _{1/8} N			
1Ъ	Dielectric anom:	aly in Pb(Cd	Nb _{2/2})O ₃ was reported by Venevtsev et al. in 1966.	65T5, 661
Nr.	1B4-iv Pb(Co _{1/3} N	b _{2/3})O ₃		
1a	Ferroelectricity	in Pb(Co _{1/8} N	b _{2/3})O ₃ was found by Bokov and MyL'NIKOVA in 1960.	60B7
b	phase	II	I	
	state	F	P	
	crystal system		cubic	60B7
	space group		Pm3m-Oh	
	Θ	_	98 °C	
	a = 4.04 Å at R brown.	T.		1
2a	Crystal growth:	Flux method	l with PbO.	60B7

53, 5956

B5, 60S7 57B9 7B18

Nr. 1a b

Nr.

5a 10 11

> Nr. 1a

2a 5a 11

12b
1C
Nr.
1b
5a
6a
7a

-	Nr. 1B4-v Pb(Ni _{1/} 1a Ferroelectrici		Nb _{2/3})O ₃ was discovered by S			
		8	241/-3 was discovered by 3	MOLENSKII and AGRANOV-	5853, 595	
	b phase state	II	I		111,550	
ı		F	P			
1	crystal system	1	cubic		1	
ı	space group		Pm3m-Ob		61B5, 60S	
	a = 4.03 Å at yellowish gree	RT. a - 85	53 °K 5 · 10° kg m ⁻³ .			
2:	a Crystal growth	: Flux metho	l with DLO		59M5	
3	Crystal structu				59M5	
4	Thermal expan				59M5	
5a					61B5	
9a			397, 398.			
ya	Birefringence:	Fig. 399.				
	r. 1B4-vi Pb(Mg _{1/3}					
1a		in Pb(Mg _{1/2} 7	a _{2/3})O ₃ was found by Bokov a	nd Myr'nikova in 1960	CODY	
ь	phase	II	I	2212 NIKOVA III 1900.	60B7	
	state	F	P			
	crystal system		cubic	-		
	space group		Pm3m-Ob		60B7	
	Θ	-	8 °C		OUB /	
_	a = 4.02 Å at R light yellow.					
2a —	Crystal growth:				60B7	
3_	Crystal structure	: Disordered	perovskite.		60B7	
ia	Dielectric consta				60B7	
Vr.	1B4-vii Pb(Co _{1/3} T					
ь	phase	II I	3)O3 was found by Bokov and	MYL'NIKOVA in 1960.	60B7	
-	state	F	P		a.	
ŀ	crystal system					
1	space group		cubic		10B7	
ŀ	θ	-14	Pm3m-Ok			
	a = 4.01 Å at RT brown.					
	Crystal growth: Flux method with PbO.					
1	Crystal growth: F	lux method w	ystal structure: Disordered perovskite.			
					0B7 0B7	

Nr.	1B4-viii Pb(Ni _{1/3}	Ta _{2/3})O ₃					
1a	Ferroelectricity	in Ph/Ni . Ta	ι IO. was fo	und b	y Bokov and Myl'nikova in 1960.	60B7	
ь	phase	II I I	I		, 201101 4110 1110 1110 1110 1110		
	state	F	P				
			cubic			60B7	
i	crystal system					00B7	
	space group		Pm3m-Oh			1	
	Θ .	-18	30 °C				
- 1	a = 4.01 Å at R green.	tT.				1	
2a	Crystal growth:	Flux method.				60B7	
3	Crystal structure		perovskite.			60B7	
5a	Dielectric consta						
Nr.	1B5-i Pb(Mn _{2/3} W						
			line in DLOG	. 11/	10 were reported by Poctacy ava		
1a	Dielectric and m et al. in 1965.	agnetic anoma	mes in PD(Mi	12/3 W 1	1/2)O3 were reported by Roginskaya	65R5	
ь	phase	III	II		I		
	state	(A), (A _{magn})	(A), P _p		P. Pmagn		
	crystal system	(), (magn)	monocl		cubic	65R5	
	O Crystal system		203		73 °K		
		4014 }				-	
5a.	$a = c = 4.098 \text{ Å}, b = 4.014 \text{ Å}, \beta = 90^{\circ} 23^{\circ} \text{ at RT}.$ Dielectric constant: Fig. 403.						
10		$\sigma = 2 \cdot 10^{11} \Omega^{-1} \mathrm{m}^{-1}$.					
11	Magnetic susceptibility: see Fig. 403.						
1	$\Theta_{p \text{magn}} = -75$	°K.	Ü				
Nr.	1B5-ii Pb(Fe _{2/3} W				7		
1a	Ferroelectricity			cover	ed by Smolenskii et al. in 1959.	5957	
b	phase	III	II		I		
П	state	F, Amagn	P, Amagn	P, 1	P _{magn}	-	
	crystal system		cubic	CI	ibic	62B7	
	θ	178	3 36	3	°K		
	a = 4.02 Å at B	eT.			4	65 R5	
2a	Flux method (P	bO).				62B7	
5a	Dielectric consta	ant: Fig. 404.					
11	Magnetic susceptibility: see Fig. 404. Magnetization is a linear function of the magnetic field intensity up to 8000 Oe. Effective magnetic moment: $4.2 \mu_B$.						
12b		out moment: 4	. ω μ _B .			62B7	
	Solid solutions 1C-a1 NaNbO ₃ -I	•	ite-type ox	ides a	s end members		
1ъ	Phase diagram: Lattice paramet	Fig. 406, 407, ters: Fig. 409.	408.				
5a	Dielectric consta Polarization and	ant: Fig. 410; I coercive field	see Tab. 60. I: Fig. 411.				
6a	Transition energ						
7a	Electromechanical properties: Fig. 412 · · · 417; Tab. 60.						

Nr. Nr.

Tab

Pol

Sing

Nt.

Nr.

Figuren S. 287 ff.		И 1 С	oxide d	es Perowski	t-Typs	
Tab. 59. (Na _{1-x} K _x)Nb	O _s . Transi 54S3]	tion energ	gy ⊿Q _m	. Tab. 60.	(Na _{0.5} K _{0.5})NbO ₃ (ce ectromechanical cons	ramics). Electric and
	wer phase change	Upper char	phase nge	Dielectric Dissipati	constant (100 kHz)	290 ≈4.0%
0.10 (NaNbO ₂) 20	cal/mole cal/mole	190 cal 60 cal 50 cal	/mole	Density of Poisson's Coupling Frequency Mechanics Young's r Piezoelect Piezoelect	ratio (assumed) factor k_p y constant $f_R r$ al Q_{mee} (radial) nodulus E ric constant $-d_{31}$ ric constant d_{31}^{*}	25 - 10° kg m ⁻³ 0.27 0.34 ··· 0.39 1.67 kHz m 130 1.04 · 10 ¹¹ N m ⁻² 32 · 10 ⁻¹² C N ⁻¹ 12.6 · 10 ⁻² m C -1 31.5 · 10 ⁻³ m C -1 0.51
Nr. 1C-a2 NaNbO ₃ -Na		Lat	ase diag tice pa	ram: Fig. 41 rameters: Fig	8. 3. 419.	
	-	4 The	rmal e	pansion: Fig	. 420.	
	_	5a Die	lectric o	onstant: Fig	. 421.	
	9	a Bire	fringen	ce: Fig. 422.		
Nr. 1C-a3 NaNbO ₃ -NaS		a Curi	e temp	erature: Fig.	423.	
Nr. 1C-a4 KNbO3-KTaC), 1	Pha:	se diagr	am: Fig. 424	425	
	5	a Diel	ectric p	roperties: Fi	426 427	
	_	Of:	ee lab	. 61.		
	6	Ther	mal pro	perties: Fig.	428; Tab. 61.	
	,	See :	IC-a5 fo	or optical pro	perties of K(Ta _{0.55} N	00.45)Os (KTN).
	Tab. 61. 1 point, $A: A \cap B_p$	K(Nb _{1-x} 7 constant) P ² + · ·	$(a_x)O_3$. in the P_{calc} :	P_s calculate	eat, Θ_f : Curie free energy = d for $T = \Theta_f$.	
		L d mol-1	Θ _t °K	10 ⁵ °K−1	P _{calc} 10 ⁻² C m ⁻²	
	0.06		679	2.6	27	
	0.12 10) + 2	656 623	2.7 2.85	17.7 7.9	1
	0.18 4	.0 ± 2	591	3.05	5.1	1
Vr. 1C-a5 K(Ta _{0.35} Nb _{0.65})	O ₃ (KTN)					- 1
or general properties of I	NbO ₃ -KT	aO ₃ see 1	C-a4.			1
	9ь		oreflect	ance: Fig. 42	9.	
	d	Farad:	ay rota	tion: Fig. 43). See also Tab. 44.	1
Ir. 1C-a6 CaTiO _s -SrTiO ₃	1b	Phase	diagrar	n: Fig. 431, 4 leters: Fig. 4	132 422	
	-5a	Dielec	tric con	stant: Fig. 4	34.	
	c	Sponta	neous 1	olarization:	33, 436. Tia 427	ı
t. 1C-a7 CaTiO _s -BaTiO _s	1b	Phase	diagran	: Fig 438 4	30 440	
	5a	Lattice	param	eters: Fig. 44	11.	
	6b	Thomas	ric cons	tant: Fig. 44	2, 443.	
	7a	Electro	mechan	ctivity: Fig	444.	
Sstimated values.	,	2.0000	mechar	icai property	: Tab. 62. See Fig. 1	183 and Tab. 40.

Tab. 62. (Ba_{1-x}Ca_x)TiO₃ (ceramics, pure BaTiO₃ base). d₃₁ and d₃₃ at RT. [57B4]

x 10	kg m-3	θx 10° kg m−°	10 ⁻¹² CN ⁻¹	10 ⁻¹² CN ⁻¹	$-d_{33}/d_{31}$	Porosity $(1 - (\varrho/\varrho_X))$
0	5.85	6.017	-97.5	229	2.35	0.028
0.05	5.70	5.85	-66.6	167	2.51	0.026
0.07	5.68	5.80	-58.0	150	2.58	0.021
0.09	5.65	5.74	-52.1	139	2.67	0.016

Nr. 1C-a8 CaTiO,-PbTiO,

1b | Curie temperature: Fig. 445. Lattice parameter: Fig. 446.

Nr. 1C-a9 SrTiO₃-BaTiO₃

 1b Phase diagram: Fig. 447 ··· 450. Lattice parameter: Fig. 451; see Fig. 448.
 5a Dielectric constant: Fig. 452.

Microwave dielectric loss: Tab. 63.

6a Specific heat: Fig. 453.

10b Conductivity associated with doping: Fig. 454, 455, 456.

Tab. 63. $(Ba_{1-x}Sr_x)TiO_x$. Dielectric loss: α , β , γ at 20 GHz. [62R4]. $(T - \Theta_p) \tan \delta = \alpha + \beta T + \gamma T^2$.

San	ple	Heat treatment	Grain size	θ _p °K	°K	β·104	γ·10 ⁶ (°K)-1
Polycristalline	SrTiO ₃	Hot pressed and fired in air at 900 °C for 10 h	1	37	0.33	7.7	4.3
		Refired at 1200 °C in air for 10 h	3	. 37	0.26	5.5	4.7
		Refired at 1400 °C in air for 10 h		37	0.17	4.4	4.2
		Refired at 1500 °C in O ₂ for 6 h	30	37	0.08	4.5	3.7
	Ba _{0.8} Sr _{0.8} TiO ₃	Hot pressed and fired in O _e at 1500 °C for 10 h		105	0.6	9	2.5
	Ba _{0.5} Sr _{0.5} TiO ₃	Hot pressed and fired in O, at 1500 °C for 10 h	30	218	2.0	(9)a)	(2.5)
	Ba _{0.7} Sr _{0.2} TiO ₃	Ceramic fired to 1375 °C in air for 1 h	8	280	2.2	(9)	(2.5)
	Ba _{0.8} Sr _{0.2} TiO ₃	Ceramic fired to 1300 °C in air for 1 h	8	324	1.6	(9)	(2.5)
Single crystal	SrTiO,	None	∞	37	0	6.53	2.54
	SrTiO ₃ +0.1% Gd ³⁺	None	00	37	0.033	(6.53)	(2.54)
	SrTiO ₃ + 0.03% Fe ³⁺	None	~	37	0.043	(6.53)	(2.54)

Nr. 1C-a10 SrTiO₃-PbTiO₃

1b | Curie temperature: Fig. 457. Lattice parameter: Fig. 458.

5a Dielectric constant: Fig. 459. Curie constant: Fig. 460.

a Transition heat: Fig. 461.

Nr. 1C-a11 BaTiO,-PbTiO,

ab. 40.

1b | Phase diagram: Fig. 462. Lattice parameter: Fig. 463.

5a Dielectric constant: Fig. 464.

6a Specific heat: Fig. 465. Transition heat: Fig. 466.

7 Electromechanical properties: see 1A-8.
16 Radiation damage: Fig. 467.

4) Values in parentheses indicate that these values were assumed in order to determine α .

Nr.

Nr.

Nr.

Nr.

Pb(elec

2

4

	xyps
Nr. 1C-a12 CaZrO ₃ -BaZrO ₃	1b Lattice parameter: Fig. 468.
Nr. 1C-a13 CaZrO ₃ -PbZrO ₃	1b Phase diagram: Fig. 469.
	4 Thermal expansion: Fig. 470.
	5a Dielectric constant: Fig. 471.
Nr. 1C-a14 SrZrO ₃ -PbZrO ₃	1b Phase diagram: Fig. 472, 473. Lattice parameter: Fig. 474.
	4 Thermal expansion: Fig. 475, 476, 477; Tab. 64.
	5a Dielectric constant: Fig. 478, 479.
	c Polarization: Fig. 480.
	6a Specific heat: Fig. 481. Transition heat: Tab. 65.

Tab. 64. PbZrO₂, $\{Pb_{h,85}Sr_{6,96}\}ZrO_2$, and $\{Pb_{h,885}Ba_{6,99}\}ZrO_2$. $\Delta V/V$. ΔV : anomalous volume change at the transition point. [54S2]

Composition		[10-4]
	Lowest phase	Intermediate phase
PbZrO ₃	-41 at 230 °C	-
(Pb _{0.925} Ba _{0.075})ZrO ₃ (Pb _{0.95} Sr _{0.05})ZrO ₃	-43 at 150 °C	+24 at 190 °C
(0.16 D10.05) 21 O3	-30 at 210 °C	-20 at 230 °C

Tab. 65. PbZrO₃, (Pb_{0.95}Sr_{0.05})ZrO₃, and (Pb_{0.955}Ba_{0.075})ZrO₃. ΔQ_{m} . [52S2]

Composition	ΔQ _m [c Lower transition]	al mol ⁻¹] Upper transition
PbZrO ₃ (Pb _{0.925} Ba _{0.075})ZrO ₃ (Pb _{0.95} Sr _{0.05})ZrO ₃	190 180	440 230 230

Nr. 1C-a15 BaZrO ₃ -PbZrO ₃	1b Phase diagram: Fig. 482. Lattice parameter: Fig. 483.	
	4 Thermal expansion: Fig. 484.	
* .	5a Dielectric constant: Fig. 485 ··· 488.	
	c Coercive field: Fig. 489.	
1	8 Elastic properties: Fig. 490.	
Nr. 1C-a16 CaHiO3-PbHiO3	1b Phase diagram: Fig. 491.	
1	5a Dielectric constant: Fig. 492.	
Nr. 1C-a17 SrHiO ₃ -PbHiO ₃	1b Phase diagram: Fig. 493.	
	5a Dielectric constant: Fig. 494.	
Nr. 1C-a18 BaHiO ₃ -PbHiO ₃	1b Phase diagram: Fig. 495.	
Nr. 1C-a19 CaSnO ₃ -SrSnO ₃	1b Lattice parameter: Fig. 496.	÷ .
Nr. 1C-a20 BaSnO ₃ -SrSnO ₃	1b Lattice parameter: see Fig. 496.	ı
Nr. 1C-a21 BaSnO ₃ -PbO:SnO ₂	1b Phase diagram: Fig. 497.	i
	5a Dielectric constant: Fig. 498.	
Nr. 1C-a22 CaTiO ₃ -CaZrO ₃	1b Lattice parameter: Fig. 499.	

Nr.	1C-a23 BaTiO ₃ -BaZrO ₃	1b	Phase diagram: Fig. 500. Lattice parameter: Fig. 501.	
		2a	Phase diagram: Fig. 502.	
		5a	Dielectric constant: Fig. 503.	
		8a	Elastic property: Fig. 504	
Nr.	1C-a24 BaTiO ₃ -BaHfO ₃	1ь	Phase diagram: Fig. 505. Lattice parameter: Fig. 506.	
		5a	Dielectric constant: Fig. 507.	
	10 of Potto Boto	1b	Phase diagram: Fig. 508. See also	5912
INF.	1C-a25 BaTiO ₃ -BaSnO ₃	-10 2a	Phase diagram: Fig. 509.	
		4	Thermal expansion: Fig. 510.	
			Dielectric constant: Fig. 511.	
Nr.	1C-a26 BaTiO ₃ -BaUO ₃	1ь ј	Lattice parameter: Fig. 512.	
Ph/	$1C-a27 \text{ PbTiO}_3-\text{PbZrO}_3$ $2T_xTi_{1-x}O_3 \text{ with } x = 0.5 \cdots$. 0.6-	for electromechanical properties of these very imp	1
	ric materials, see 1C-a28.	0.0,		ortant piezo
1a	ric materials, see 1C-a28.	ic oha	se transitions in the PbTiO ₃ -PbZrO ₃ system were	52S6, 52S4, 52S3
1a b	Ferro- and antiferroelectr	ic pha NE, S nperat	use transitions in the PbTiO ₂ -PbZrO ₃ system were UZUKI and TAKEDA. Ture: Fig. 513.	52S6, 52S4, 52S3
	Ferro- and antiferroelectr revealed in 1952 by Shira Phase diagram at high ter Phase diagram: Fig. 514,	ic pha NE, S nperat	use transitions in the PbTiO ₂ -PbZrO ₃ system were UZUKI and TAKEDA. Ture: Fig. 513.	5256, 5254,
ь	Ferro- and antiferroelectr revealed in 1952 by Shira. Phase diagram at high ter Phase diagram: Fig. 514, Lattice parameter: Fig. 51	ic pha NE, S nperat 515. 6, 517	use transitions in the PbTiO ₂ -PbZrO ₃ system were UZUKI and TAKEDA. ure: Fig. 513. . 519.	52S6, 52S4, 52S3 62I1, 64F6,
b 2	Ferro- and antiferroelectr revealed in 1952 by Shira Phase diagram at high ter Phase diagram: Fig. 514, Lattice parameter: Fig. 51 Flux method:	ic pha NE, S nperat 515. 6, 517 8a, b,	se transitions in the PbTiO ₂ -PbZrO ₃ system were crown and TAKEDA. cure: Fig. 513. . 519. 1, 522.	52S6, 52S4, 52S3 62I1, 64F6,
b 2 4	Ferro- and antiferroelectr revealed in 1952 by Shirka Phase diagram at high ter phase diagram: Fig. 51. Lattice parameter: Fig. 51 Flux method: Lattice distortion: Fig. 51 Thermal expansion: Fig. 5	ic pha NE, S nperat 515. 6, 517 8a, b, 520, 52	use transitions in the PbTiO ₂ -PbZrO ₂ system were UZUKI and TAKEDA. ure: Fig. 513.	52S6, 52S4, 52S3 62I1, 64F6,
b 2 4 5a	ric materials, see 10-26. Ferro- and antiferroelectr revealed in 1952 by Sinra Phase diagram at high ter Phase diagram: Fig. 514. Lattice parameter: Fig. 51 Thermal expansion: Fig. 51 Thermal expansion: Fig. 5 Dielectric constant: Fig. 5 Spontaneous polarization.	ic pha NE, S nperat 515. 6, 517 8a, b, 520, 52 23 ··· Fig. 9	use transitions in the PbTiO ₂ -PbZrO ₂ system were UZUKI and TAKEDA. ure: Fig. 513.	52S6, 52S4, 52S3 62I1, 64F6,
b 2 4 5a c	ric materials, see it-a.cs. Ferro- and antiferroelectr revealed in 1952 by Sursa Phase diagram at high ter Phase diagram: Fig. 514, Lattice parameter: Fig. 51 Flux method: Lattice distortion: Fig. 51 Thermal expansion: Fig. 5 Dielectric constant: Fig. 5 Spontaneous polarization: Critical field: Fig. 528. Specific heat: Fig. 529.	ic pha NE, S nperat 515. 6, 517 8a, b, 620, 52 23 ··· Fig. 9	ure: Fig. 513. 519. 11, 522. 526.	52S6, 52S4, 52S3 62I1, 64F6,
2 4 5a c	ric materials, see 10-26. Ferro- and antiferroelectrevealed in 1952 by SHERA Phase diagram: Fig. 514. Lattice parameter: Fig. 515 Flux method: Lattice distortion: Fig. 51 Thermal expansion: Fig. 5 Dielectric constant: Fig. 5 Spontaneous polarization: critical field: Fig. 525 Specific heat: Fig. 529, 53 Transition energy: Tab. 6	ic pha NE, S nperat 515. 6, 517 8a, b, 520, 52 23 ··· Fig. !	ure: Fig. 513. 519. 11, 522. 526.	52S6, 52S4, 52S3 62I1, 64F6,
2 4 5a c 6	ric materials, see 10-26. Ferro- and antiferroelectrevealed in 1952 by SHER Phase diagram at high ter Phase diagram: Fig. 514. Lattice parameter: Fig. 51 Flux method: Lattice distortion: Fig. 51 Thermal expansion: Fig. 5 Dielectric constant: Fig. 5 Spontaneous polarization: Critical field: Fig. 528. Specific heat: Fig. 529, 52 Transition energy: Tab. 6 Electromechanical propert	ic pha NE, S nperat 515. 6, 517 8a, b, 620, 52 23 ··· Fig. 9 0. 6. ties: se	ure: Fig. 513. 519. 11, 522. 526.	52S6, 52S4, 52S3 62I1, 64F6,

ge at

Tab. 66. Pb(Zr-Ti)O₂. Transition energy and entropy. [33SI]. x: atomic percent of PbTiO₂: $d\theta/dx$: shift of the transition temperature with x: $dS(d\theta/dx)$: it may be assumed that the free energy should decrease with the rate of $dS(d\theta/dx)$ with increasing x.

-	Kind of the phase change	°C	△Q _m cal mol ⁻¹	△S _m cal mol ⁻¹ °K ⁻¹	d θ/d *	d S (d Θ/d x)
•	$A_{\alpha} \rightarrow P_{\alpha}$ $A_{\alpha} \rightarrow A_{\beta}$ $A_{\beta} \rightarrow P_{\alpha}$ $A_{\alpha} \rightarrow F_{\alpha}$ $F_{\alpha} \rightarrow P_{\alpha}$	230 > T > 225 225 230 240 217	400 110 290 250 40	0.8 0.22 0.58 - 0.51 0.08	-16 - 4 -19 + 1.0	(-5.8) -3.5 -2.3 - +0.5

Tat

Pb(Pb(Pb₀ Pb_o Pbo. Pb_o Pbo. Pbo. Pbo. Pb₀ Pbo. Pb₀ Pbo. Pb₀ Pb_o Pb₀ Pb₀ Pb₀ Pbo. Pb₀ Pb_{0.}

Tab.

None 0.1 N 0.5 N 0.8 N 1.0 N 1.2 N 1.7 N 2.0 N 0.5 L 1.0 T 1

							- OAI	uc uc		OWS	Kit-1 y	os					
	Nr. For	1C-a28 general	Pb(Zr,	Ti _{1-x})	O, (æ : PbTiO	= 0.5 ·	·· 0.6, le	ad zir	cona	te-tit	anate)					_	-
	1a	JAFFE Pb(Zr	, Rотн	, and l	MARZU S in 1	LLO di		the e	excel	lent j	piezoele of this	ectric perfo substance	rmances develor	of led	54J1		_
	5a						d Fig. 5.							_			
	7) 8)						eramics)		0, 54	Fig	. 534	· 538; Tab	. 68 7	72;			_
	10	Electri	ical con eakdow	ductiv	ity: se	e								-	63G1,	61514	-
	Ta				[x =	0.48	. 0 601 /	corom	اممنا	T21.		chanical co		-			
1	Zr/I	y I	T		1	T-	1	Ceram	ucsj.	Lie	ctrome	chanical co	nstants	at R	T. [60	<i>B3</i>]	ı
	ator	n k _n ,	k_{p}	k ₁₅	k33	×₁,	×S11	×33	١,	×s bs	≈s calc						
1	48/5		0.289	0.408	0.435	663	3 551	666	+	40	537						
1	50/5	0.230 0.313	0.397	0.504	0.546	855	631	846	1 5	85	585						I
1	54/4	0.280	0.470	0.701	0.626	990	504	730 450		99 53	389 268						I
1	56/44 58/42	0.254	0.450 0.428	0.657	0.619	751		423 397	1 2	46	258						١
L	60/40	0.238	0.400	0.625	0.585	672		376		43 40	246 245						I
I						T	1		$\overline{}$		т				_		ı
I		s ₁₁	sin	SE 33	s_{ss}^{D}	S#4	S.D.	S00		S F2	s D	SB,	s_{13}^{D}	Der			ı
ı							<u>L</u>	<u> </u>	L				~13	e	y		l
l	10 ⁻¹² m ² N ⁻¹ 10										10	3		l			
t	kgm									kgm	-3		l				
Į.	50/50	12.4	11.7	13.3	8.83 9.35	28.3 32.8	23.6 24.5	28.3 32.9	1=	3.35 4.06	-3.66 -4.7	6 -3.21 2 -4.22	-2.40	7.5			ı
l:	52/48 54/46	13.8	12.4 10.7	17.1 14.8	9.35	48.2 45.0	25.0	38.4	1 -	4.07	-5.3	3 -5.80	-2.60 -2.56	7.5			l
1 :	56/44 58/42	11.0	10.2	14.0	8.65	39.8	22.9 22.6	29.9 28.4	1=	3.33	-4.24 -4.01		-2.68	7.62	2	ı	
	50/40	10.5 10.4	9.85 9.75	12.8 12.05	8.10 7.92	37.7 36.9	21.9	27.1	1 -	3.07	-3.75	-4.12	-2.57 -2.33	7.59			
H		<u> </u>				30.7	22.3	26.7	1 -:	2.96	-3.55	-3.72	-2.17	7.60			
		831	gas	g 15		-g ₃₁	d ₃₁	,	,	Ι.		$s_{53}^D + s_{11}^D$	_				
l				0.13	0.53	531	⁴³¹	d ₃₃	d ₁₅	la:	$-d_{31}$	-2s ₁₃				- 1	
		l	10-	m² C-	1			10-1	• • •			10-12	-				
_	0/50			,				10-1	. C I	-1		m2 N-1				- 1	
5	8/52 0/50	- 7.3 - 9.3	18.7	28.4		6.0 2.4	43.0	110	166	1	153	24.1	-			- 1	
	2/48 4/46	-14.5	34.5	47.2	49	9.0		173 223	251 494		243 316	26.2 26.9				- 1	
5	6/44	-15.1 -14.5	38.1		5	2.3		152 142	440	1	212	25.1					
5	8/42 0/40	-13.9 -13.3	36.7	48.8	50	0.6	48.9	129	357 325		196 178	24.0 22.6				- 1	
_	5/40	-15.5	35.2	49.3	48	3.5	44.2	117	293	1	161	22.0				- 1	
					$_{P}$								-				
	- 1	Q_{mech}	Q_E		-	c_{33}^D	- sE	_	s_{12}^D	_	- SE	$-s_{13}^{D}$					
		% meeta	tan	5))-2	1020	s E	S			B 5 B	Vspsp 1325p				- 1	
_	_					Nm-2	"	1			33-11	7 033 011					
48	/52 /50	1170	380			14.0	0.310	0.3	49	: 0	296	0.250	•			- 1	
52	/48	950 860	370 360	2 3		13.5 13.4	0.328	0.4	04	0.	329	0.249				- 1	
54 56	/46 /44	680 490	300) 4	2.5	14.8	0.288	0.4	96	0.	376 380	0.238 0.273					
58	42	500	190 200	4		15.3 15.8	0.293	0.3	94	0.	373	0.274					
60,	/40	600	210			15.6	0.292	0.3			355	0.261 0.247				- 1	
			-														

78

Tab. 68. $(Pb_{1-x}Sr_x)$ $(Zr_{1-y}Ti_y)O_3$ and $(Pb_{1-x}Ca_x)$ $(Zr_{1-y}Ti_y)O_3$ (modified ceramics). Effects of Ca and Sr on electromechanical properties. [59K4]

			24 hours after poling							
Intended composition	e _a 10³ kg m⁻³	at 1 kHz	x at 1 kHz	tan δ % at 1 kHz	k _p	$d_{31} \\ 10^{-12} \\ \text{CN}^{-1}$	β ₃₁ 10 ⁻³ m ² C ⁻¹	(s ₁₁) ⁻¹ 10 ¹⁰ N m ⁻²	°C °C	
Pb(Zr _{0.53} Ti _{0.47})O ₃	7.40	736	544	0.5	0.48	71	14.7	7.67	385	
Pb(Zr _{0,53} Ti _{0,47})O ₂	7.39	707	542	0.4	0.47	69	14.4	7.76		
Pb _{0.99} Ca _{0.01} (Zr _{0.53} Ti _{0.47})O ₃	7.42	729	624	0.5	0.49	77	13.9	7.89		
Pb _{0,99} Sr _{0,01} (Zr _{0,53} Ti _{0,47})O ₃	7.42	755	584	0.6	0.49	75 -	14.5	7.68		
Pbo.ssCao.os(Zro.ssTio.47)O3	7.26	832	973	0.5	0.44	88	10.2	7.62		
Pb _{0.66} Sr _{0.06} (Zr _{0.65} Ti _{0.47})O ₃	7.47	920	1002	0.4	0.50	101	11.4	7.65	360	
Pbo. et Cao. et (Zro. 53 Tio. 47)Oa	6.86	794	888	0.4	0.32	60	7.6	7.85		
Pbo. 225 Sro. 075 (Zro. 53 Tio. 47) O.	7.29	942	1094	0.3	0.50	103	10.6	7.94		
Pba sa Sra 10 (Zra 53 Tio 47)O3	7.22	997	1129	0.3	0.49	103	10.3	7.95	290	
Pbo. 875 Sro. 125 (Zro. 47 Tio. 53) O3	7.09	609	663	0.3	0.28	40	6.8	9.91		
Pb _{0.875} Sr _{0.125} (Zr _{0.50} Ti _{0.50})O ₂	7.11	813	880	0.3	0.33	57	7.3	9.05		
Pbo. 875 Sro. 125 (Zro. 53 Tio. 48) Oa	7.10	973	1149	0.3	0.44	91	9.0	8.32		
Pbo 875 Sro 125 (Zro 53 Tio 47) O2	7.14	1076	1237	0.4	0.47	100	9.1	8.06	265	
Pbo 875 Sro 125 (Zro 54 Tio 46) O3	7.16	1095	1325	0.6	0.51	119	10.1	7.51	,	
Pb _{0.875} Sr _{0.125} (Zr _{0.56} Ti _{0.44})O ₃	7.14	1105	1210	0.4	0.51	116	10.8	7.31		
Pbo. 575 Sro. 125 (Zro. 59 Tio. 41) O3	7.17	919	585	0.4	0.45	66	12.7	8.39		
Pbo.ss Sro.15(Zro 53Tio.47)O3	6.90	1106	1260	0.5	0.43	97	8.7	7.68	242	
$Pb_{0,80}Sr_{0,20}(Zr_{0,80}Ti_{0,80})O_3$	6.56	941	970	0.6	0.29	56	6.5	8.11		
Pb _{0.80} Sr _{0.20} (Zr _{0.53} Ti _{0.47})O ₃	6.48	1212	1257	0.5	0.34	86	7.8	7.05		
Pb _{0.80} Sr _{0.20} (Zr _{0.54} Ti _{0.46})O ₃	6.36	1182	1341	0.8	0.35	91	7.7	6.18		
Pbo.soSro.20(Zro.55Tio.45)O3	6.36	1200	1337	0.8	0.34	86	7.3	6.42		
Pbo.soSro.20(Zro.46Tio.44)Oa	6.35	1107	1113	0.7	0.35	81	8.2	6.50		

51S14 B3]

Tab. 69. $Pb(Zr-Ti)O_3$ (ceramics, modified). Electromechanical properties of $Pb(Zr_{0.54}Ti_{0.64})O_3$ with five-valent additives. [59K5]. $f_R \cdot r$: radial frequency constant

		Before	poling		2	4 hours	after poli	ing		
Addition wt. %	e _a 10³ kg m⁻³	at 1 kHz	tan ð % at 1 kHz	at 1 kHz	tan ô % at 1 kHz	k_{p}	f _R · r Hz · m	d ₃₁ 10 ⁻¹³ CN ⁻¹	Qmech	.C Θt
None None 0.1 Nb ₂ O ₅ 0.5 Nb ₂ O ₅ 0.8 Nb ₂ O ₅	7.41 7.29 7.26 6.96 7.36	707 706 598 732 965	0.3 0.4 0.3 2.1 1.6	537 513 508 790 1166	0.4 0.5 0.4 2.0 1.5	0.49 0.50 0.38 0.46 0.48	1641 1687 1643 1443 1606	71 69 54 94 105		390 387
1.0 Nb ₂ O ₅ 1.0 Nb ₂ O ₅ 1.2 Nb ₂ O ₅ 1.4 Nb ₃ O ₅ 1.7 Nb ₂ O.	7.36 7.60 7.34 7.37 7.39	1064 1055 1011 1057 1058	1.8 2.2 2.0 2.2 2.0	1308 1242 1167 1218 1218	1.6 2.2 1.7 1.9 1.8	0.53 0.54 0.48 0.50 0.47	1563 1538 1614 1584 1594	126 125 104 113 105	61 70 69	361
2.0 Nb ₂ O ₅ 0.5 Nb ₂ O ₆ 0.5 La ₂ O ₃	7.37 7.39	1074 1169	2.1 2.1	1202 1377	2.0 2.0	0.50 0.57	1550 1491	115 146	48	344 369
1.0 Ta ₂ O ₃ 1.0 Ta ₂ O ₃ 2.0 Ta ₂ O	7.31 7.22 7.49	989 918 1062	1.5 2.0 2.2	1187 1121 1230	1.5 2.1 2.1	0.49 0.50 0.50	1563 1525 1547	111 114 115	61	368
2.0 Ta ₂ O ₄ 2.5 Ta ₂ O ₄ 5.0 Ta ₂ O ₄	7.40 7.23 6.75	1077 959 995	1.8 2.7 2.5	1275 1112 1052	1.8 2.4 2.6	0.48 0.36 0.33	1581 1518 1508	111 82 76	28	364

Tab. 70. Pb[Zr-Ti]O₃ (ceramics, modified). Electromechanical properties of Pb[Zr_{0,M}Ti_{0,40})O₃ with three-valent additives. [59K5]. $f_R \cdot r$: radial frequency constant

			, , , K		- moque	icy coms	carre		
Addition	ea.	Before	poling		24 h	ours aft	er poling		
wt. %	10 ³ kgm ⁻³	at 1 kHz	tan 8 % at 1 kHz	at 1 kHz	tan 8 % at 1 kHz	k _p	f _R ·γ Hz·m	d ₃₁ 10 ⁻¹³ CN ⁻¹	.C θt
None None 1.0 Y. Q. 1.0 Y. Q. 1.1 O Y. Q. 1.1 O Y. Q. 1.0 Na, Q. 1	7.41 7.29 7.26 7.46 7.47 7.43 7.37 7.41 7.20 7.35 6.75 6.45 6.44 7.19 7.50	707 706 796 1187 1139 1111 1101 1122 1296 1375 1362 790 686 942 1288 1255	0.3 0.4 0.9 1.9 2.2 1.6 1.9 2.2 2.6 2.1 2.2 0.4 0.7 1.4 1.8 2.4	537 513 841 1483 1387 1395 1354 1341 1545 1792 1776 870 735 1100 1682 1532	0.4 0.5 1.0 2.0 2.1 1.8 1.8 2.2 2.3 1.7 1.9 0.6 0.9 1.5 1.8 2.4	0.49 0.50 0.34 0.53 0.52 0.49 0.48 0.50 0.51 0.49 0.42 0.37 0.42 0.37	1641 1687 1547 1510 1522 1511 1499 1545 1528 1505 1419 1407 1516 1550	71 69 66 138 130 123 119 125 132 147 136 88 78 109 139 128	390 387 374 339 348

Tab. 71. Electromechanical properties of Pb(Zr_{1-z} Ti_z)O_z (ceramics), modified with additives of 1 wt% Nb. [59K5]. $f_R \cdot r$: radial frequency constant

	e _s	Before	poling		24	hours a	fter polis	ng	
Base composition	10 ³ kg m ⁻³	at 1 kHz	tan δ % at 1 kHz	at 1 kHz	tan 8 % at 1 kHz	k _p	f _R · r Hz·m	d ₃₁ 10 ⁻¹² CN ⁻¹	Q_{mech}
Pb(Zr _{0.50} Ti _{0.50})O ₃	7.38	879	1.5	1041	1.2	0.42	1696	82	81
$Pb(Zr_{0.51}Ti_{0.49})O_3$	7.31	975	1.6	1188	1.3	0.45	1642	97	73
Pb(Zr _{0,52} Ti _{0,45})O ₃	7.39	985	1.5	1200	1.4	0.45	1640	97	
Pb(Zr _{0.33} Ti _{0.47})O ₃	7.43	1092	1.8	1371	1.4	0.53	1547	130	76
Pb(Zro.54Tio.46)O3	7.44	1051	1.8	1296	1.7	0.54			61
Pb(Zr _{0.55} Ti _{0.45})O ₃	7.40	955	2.4	973			1549	128	62
Pb(Zr _{0.56} Ti _{0.44})O ₃	7.38	818	2.4		2.0	0.56	1524	117	55
Pb(Zr _{0.57} Ti _{0.43})O ₃				745	2.5	0.53	1601	93	56
Db (7- 7:	7.41	750	3.0	684	2.5	0.50	1636	82	60
Pb(Zr _{0.58} Ti _{0.42})O ₃	7.41	713	3.0	630	2.8	0.49	1676	75	62

Tab. 72. Electromechanical properties of $(Pb_{0.98}Sr_{5.94})$ $(Zr_{0.34}Ti_{0.69})O_5$ (ceramics) with Nb_1O_6 or Ta_1O_8 . [39K5]. $f_R \cdot r$: radial frequency constant

Addition	e _s	Before	poling		24 ho	urs after	poling	ng				
wt. %	10 ³ kg m ⁻³	at 1 kHz	tan δ % at 1 kHz	at 1 kHz	tan ð % at 1 kHz	k _p	f _R · γ Hz·m	$d_{31} \\ 10^{-12} \\ \text{CN}^{-1}$	Θ ₁			
1.0 Nb ₂ O ₅ 2.0 Nb ₂ O ₅ 3.0 Nb ₂ O ₅ 2.0 Ta ₂ O ₅	7.34 7.22 6.63 7.33	1291 1380 1125 1343	2.0 2.4 2.1 2.3	1609 1662 1301 1695	2.0 2.1 2.1 2.0	0.56 0.47 0.36 0.54	1512 1562 1550 1517	153 127 91 151	300			

				11	I P	erov	skite-type	e oxides	_			Figure	s p. 315 f
	h ₁₅	10° N C-1	21.9 19.7 15.2 11.3	23.4	sps		-2.68 -2.10 -2.98 -3.05	-2.6	688		33.4 30.6 22.6 23.5	36.0	
	833		38.1 26.1 24.8 19.7 17.0	24.5	Sis		-4.97 -5.31 -7.22 -8.45	-3.1 -4.6	70		43.7 51.8 39.7 42.2	41.3	
	831	10-4 m2 C-1	-15.1 -11.1 -11.4 - 9.11 - 7.9 - 6.6	-16.2 -10.5	s _{fe}		- 5.42 - 7.77 - 7.71 - 7.27 - 7.27	-3.2	277		22.2 25.6 21.1 23.0	35.4	
[6661]	815	1	50.3 39.4 38.2 26.8	49.5	Sis	m ² N ⁻¹	-3.33 -4.05 -5.74 -3.45	-3.0	cl ₁₃		61.2 60.9 65.2 72.2	82.4 73.0	
s at RT.	633		9.0 15.1 15.8 23.3	9.7	sgs	10-12 m	9.0 7.90 8.99	8.05 7.65 8.9	c ₁₈		68.1 74.3 75.2 84.1	84.0 74.2	
Electromechanical constants at RT.	631	C m-2	-1.86 -5.2 -5.4 -6.55	-2.15	5,65		14.8 15.5 18.8 20.7	9.35 13.9 13.9	cps	10° N m-2	69.3 83.9 82.8 82.8	86.2 85.4	
omechanica	616		9.8 12.7 12.3 17.0	9.3	sR.		10.7 10.9 14.05	10.1	c.B.		67.9 77.8 75.4 79.5	85.1 76.2	
	d ₃₃		152 289 374 593 195	153 215	SE		11.6 16.5 16.5 16.5	10.7	c.p.		148 159 147 157	177	
PZT (commercial modified ceramics).	daı	10-12 C N-1	- 60.2 -123 -171 -274 - 77	- 61 - 95	4	ď	0.58 0.60 0.65 30	0.52	C.83		113 111 117	163	
ial modifie	d_{13}	-	440 496 584 741	368	4	, as	0.626 0.70 0.752 0.752	0.975	c ₁₁		136 145 126 130	169	
(commerci	s,	g g	260 635 830 1470	235	4	II w	0.334 0.344 0.388	0.145 0.306 0.295	c.F.		135 139 121 126	168	
	۲.	2	450 1300 3400 1100 500	1000	1	×18	0.701 0.71 0.685 0.675	0.377	588	-	29.9 7.27 44.3 7.6 8.6	24.0 24.0 29.8 29.6	
Tab. 73.	9	ei K	504 730 916 1700 441	420	h33	1C-1	39.2 26.8 21.5 18.0	19.9	ds.	10-12 m ² N-1	22.9 19.3 25.2 23.7	24.2	
	1	II X	990 1475 1730 3130	840	, h ₃₁	10° N	- 8.1 - 9.2 - 7.3 - 5.05	- 2.6 -10.4	SE	1	45.0 39.0 47.5 43.5	39.5	
		Substance	PZT-2 PZT-4 PZT-5A PZT-5H PZT-6A	PZT-7A PZT-8			PZT-2 PZT-4 PZT-5A PZT-5H	PZT-0A PZT-7A PZT-7A PZT-8			PZT-2 PZT-4 PZT-5A PZT-5H	PZI-6B PZT-7A PZT-8	

idels Dr.

·ith

% Nb.

 Q_{mech}

r Ta₂O₅.

θr °C

Ikeda

iouren.	c	216 C	

II 1 Oxide des Perowskit-Typs

N

Νt

Nr

Nr. 1C-a29 PbTiO ₅ -PbHfO ₅	1b Phase diagram: Fig. 555, 556
Nr. 1C-230 PbTiO ₃ -PbO: SnC	
	5a Dielectric constant: Fig. 558.
Nr. 1C-231 PbZrO ₃ -PbHiO ₃	1b Phase diagram: Fig. 559.
Nr. 1C-a32 PbZrO ₃ -PbO: SnO	2 1b Phase diagram: Fig. 560. Lattice parameter: Fig. 561.
	4 Thermal expansion: Fig. 562, 563.
	5a Dielectric constant: Fig. 564a, b.
Nr. 1C-a33 LaFeO ₃ -BiFeO ₃	1b Phase diagram: Fig. 565. Lattice parameter: Fig. 566a, b.
	5a Dielectric constant: Fig. 567.
	11 Magnetization: see Fig. 565.
Nr. 1C-b1 NaNbO3-KTaO3	1b Phase diagram: Fig. 568. Lattice parameter: Fig. 569.
	4 Thermal expansion: Fig. 570.
	5a Dielectric constant: Fig. 571.
Nr. 1C-b2 NaNbO ₃ -KSbO ₃	1a Curie temperature: see Fig. 423.
Nr. 1C-b3 BaTiO ₃ -PbZrO ₃	4 Thermal expansion: Fig. 572.
	5a Dielectric constant: Fig. 573.
Nr. 1C-b4 BaTiO ₃ -PbO: SnO ₂	
	1b Phase diagram: Fig. 574. 5a Dielectric constant: Fig. 575.
	22 Diaconte constant: Fig. 5/5.
Nr. 1C-b5 PbTiO ₃ -CaZrO ₃	1b Phase diagram: Fig. 576. Lattice parameter: Fig. 577.
	5a Dielectric constant: Fig. 578.
Nr. 1C-b6 PbTiO ₃ -CaSnO ₃	1b Phase diagram: see Fig. 576. Lattice parameter: Fig. 579.
	5a Dielectric constant: Fig. 580.
Nr. 1C-b7 PbTiO ₃ -SrZrO ₃	1b Phase diagram: Fig. 581. Lattice parameter: Fig. 582a, b.
	5a Dielectric constant: Fig. 583.
Nr. 1C-b8 PbTiO ₃ -SrSnO ₃	1b Phase diagram: Fig. 584. Lattice parameter: Fig. 585a, b.
	5a Dielectric constant: Fig. 586.
ir. 1C-b9 PbTiO _s -BaZrO _s	1b Phase diagram: Fig. 587
ir. 1C-b9 PbTiO _s -BaZrOs	

	II 1 Perovskite-type oxides	Figures p. 32
Tab. 74. (1 -	x)PbTiO ₃ - x BaZrO ₃ (ceramics). k_p and d_{33} at RT. [1]	63B15]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0.25 29 0.16 40 [185 ··· 40]	
	0.30 27 0.23 50	
	0.35 39 0.30 110 110	
	$ \begin{array}{c cccc} 0.40 & 30 & 0.17 & 45 \\ \hline [120 \cdots 40] & 0.17 & 45 \end{array} $	
Nr. 1C-b10 PbTiO ₃ -BaSnO ₃	1b Phase diagram: Fig. 590. Lattice parameter: Fig. 591a, b.	
Nr. 1C-b11 LaAlO ₃ -BiFeO ₃	1b Phase diagram: Fig. 592. Lattice parameter: Fig. 593.	
	5a Dielectric constant: Fig. 594.	*
Nr. 1C-b12 LaCrO ₃ -BiFeO ₃	1b Phase diagram: Fig. 595. Lattice parameter: Fig. 596a, b.	
	4 Thermal expansion: Fig. 597.	
	11 Spontaneous magnetization: see Fig. 595.	
Nr. 1C-c1 NaNbO ₃ -CaTiO ₃	1b Phase diagram: Fig. 598. 5a Dielectric constant: Fig. 599.	
Nr. 1C-c2 NaNbO ₃ -BaTiO ₃	1b Phase diagram: Fig. 600.	
Nr. 1C-c3 NaNbO3-PbTiO3	1b Transition temperature: Fig. 601. 5a Dielectric constant: Fig. 602.	1
1	, ====================================	
Nr. 1C-c4 NaNbO ₃ -PbZrO ₃	1b Phase diagram: Fig. 603.	
	5a Dielectric constant: Fig. 604a, b.	X .
Nr. 1C-c5 KNbO3-BaTiO3	1b Phase diagram: Fig. 605. Lattice parameter: Fig. 606.	
	5a Dielectric constant: Fig. 607a, b, c.	
N. 40		
Nr. 1C-c6 KNbO3-PbTiO3	1b Phase diagram: Fig. 608. Lattice parameter: Fig. 609.	
	5a Dielectric constant: Fig. 610a, b.	
Nr. 1C-c7 SrTiO ₃ -BiFeO ₃	1b Phase diagram: Fig. 611. Lattice parameter: Fig. 612.	
	5a Relaxation phenomena are observed in the ran	ge II [65F1]
Nr. 1C-c8 BaTiO ₃ -LaAlO ₃	1b Lattice parameter and Curie temperature: Tab	

6*

Nr. Nr. Nr.

Nr. Nr.

Nr.

Nr. Nr. Nr.

Nr

Nr

	Tab. 75		3-LaAlO3.	Lattice	parameter	s and Θ_f .	[5814]	
	Concer mo BaTiO ₃	tration 1% LaAlO ₃	a À	, c	c/a	V ų	°C ⊕t	
	100.0 99.0 97.5 95.0 92.5 90.0 87.5 85.0 75.0	1.0 2.5 5.0 7.5 10.0 12.5 15.0 25.0 100.0	3.9956 3.9951 3.9949 4.0050 4.0011 3.9984 3.9950 3.9906 3.9800 3.7950	4.0352 4.0345 4.0293 — — — — — —	1.0100 1.0098 1.0086 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	64.42 64.39 64.30 64.24 64.05 63.92 63.76 63.55 63.04 54.65	+120 + 87 + 46 - 14 - 85 - 133 	
Nr. 1C-c9 BaTiO,	-BiFeO ₂		11, 1 12 F	Véel tempe Pig. 613.	rature and	magnetic	resonance	line width:
Nr. 1C-c10 PbTiC	3-LaAIO3			attice par	ram: Fig. (ameter: Fi onstant: F	g. 615.		
Nr. 1C-c11 PbTiO			1b T	ransition t	emperatur imeters: F	es:Fig 61	17.	
Nr. 1C-c12 PbTiO	-LaFeO ₃			attice para	am: Fig. 6 meter: Fig	. 620.		
Nr. 1C-c13 PbTiO,	BiF-O				nstant: Fi			
To T				ttice para	m: Fig. 62 meter: Fig	. 623a, b.		
					ansion: Fi			
Nr. 1C-c14 PbZrO _a	BiFeO ₃		La	ttice parai	m: Fig. 62 neter: Fig	. 627.		
Nr. 1C-c15 SrSnO ₃ -1	BiFeO ₃		1b Ph	ase diagra	nstant: Fig m: Fig. 62 osorption:	9.		
Nr. 1C-c16 SrFeO ₃ -I	-		1a Un	it cell volu	me: Fig. 6	31.		
Nr. 1C-d1 SrTiO3-Sr			1b Pha	se diagrar	n: Fig. 633	3.		
Nr. 1C-d2 BaTiO ₂ -B			2b Pha	se diagran	n: Fig. 634	i.		
Nr. 1C-d3 BaTiO ₃ -(I	(_{1/2} Bi _{1/2})T	iO ₃	1b Curi Late	ie tempera tice param	ture: Fig. eters: Fig.	635. 636.		
Nr. 1C-d4 PbTiO ₃ -(I	Na _{1/2} Bi _{1/2})	_	1b Pha 5a Diel	se diagram	and latti	ce parame	ters: Fig.	637.
Nr. 1C-d5 PbTiO _s -(E	1/2Bi _{1/2})Ti	iO ₃			ture and la		meters: F	ig. 639.
Nr. 1C-d6 PbTiO _s -(L	i _{1/2} La _{1/2})T				ture and la			
			Ikada	Nomusa				

Nr. 1C-d7 PbTiO ₃ -(Na _{1/3} La _{1/2})TiO ₃	1b Curie temperature and lattice parameters: Fig. 641.
Nr. 1C-d8 PbTiO ₃ -(Li _{1/2} Ce _{1/2})TiO ₃	1b Lattice parameters: Fig. 642.
Nr. 1C-d9 PbTiO ₅ -(Li _{1/2} Nd _{1/3})TiO ₅	1b Lattice parameters: Fig. 643.
Nr. 1C-d10 PbTiO ₃ -Pb(Mg _{1/2} W _{1/2})O ₃	1b Phase diagram: Fig. 644. Lattice parameters: Fig. 645.
Nr. 1C-d11 PbTiO ₃ -Pb(Fe _{1/2} Ta _{1/2})O ₃	1b Curie temperature: Fig. 646.
Nr. 1C-d12 PbTiO ₃ -Pb(Sc _{1/2} Nb _{1/2})O ₃	1b Curie temperature: Fig. 647.
Nr. 1C-d13 PbTiO ₃ -Pb(Mn _{1/2} Nb _{1/2})O ₃	1b Transition temperature: Fig. 648. Lattice parameters: Fig. 649.
Nr. 1C-d14 PbZrO ₃ -Pb(Sc _{1/2} Nb _{1/2})O ₃	1b Curie temperature: see Fig. 647.
Nr. 1C-d15 PbZrO ₃ -Pb(Fe _{1/2} Ta _{1/2})O ₃	1b Curie temperature: Fig. 650.
Nr. 1C-d16 PbZrO ₃ -(Na _{1/2} Bi _{1/2})ZrO ₃	1b Phase diagram: Fig. 651.
	4 Lattice distortion: Fig. 652.
	5a Dielectric constant: Fig. 653.
Nr. 1C-d17 PbZrO ₃ -(K _{1/2} Bi _{1/3})ZrO ₃	Phase diagram: Fig. 654. Lattice parameters: Tab. 76.
	4 Lattice distortion: Fig. 655.
	5a Dielectric constants: Fig. 656.

Tab. 76. (1-x)PbZrO₃ $-x(K_{1/5}Bi_{1/5})$ ZrO₅. Lattice constants at RT [62B10]

0 0.10 0.20 0.30 0.40 0.50	5.884 5.882 5.877 5.876 4.151 4.152	11.768 11.764 11.755 11.751 —	8.220 8.227 8.237 8.248 —	orthorhombic orthorhombic orthorhombic orthorhombic cubic cubic	
Nr. 1C-d18 PbHfO ₃ -Pb(Sc _{1/2} Nb _{1,}	/2)O ₃	1b	Curie	temperature: see Fig. 647.	
Nr. 1C-d19 Pb(Mg _{1/2} W _{1/2})O ₃ -Pb(Mg _{1/2} Nb _{2/}	3)O ₃ 1b	Phase	diagram: Fig. 657.	-31
Nr. 1C-d20 (Na _{1/8} Bi _{1/8})TiO ₃ -(K _{1/8}	Bi _{1/2})TiO ₃	1b	Curie Lattic	temperature: see Fig. 635. ee parameters: see Fig. 636.	Θ
Nr. 1C-d21 PbZrO ₃ -(Na _{1/2} Bi _{1/2})T	iO ₃	1b	Phase Lattic	diagram: Fig. 658. e parameters: Fig. 659.	
Nr. 1C-d22 BiFeO ₃ -Sr(Sn _{1/3} Mn _{2/3})O ₃	11		diagram: Fig. 660. e parameters: Fig. 661.	
		120	Mössb	auer effect: see [65M8]	
Nr. 1C-d23 BiFeO ₂ -Pb(Fe _{1/2} Nb ₁₁	₂)O ₃	11	Lattic	e parameters: Fig. 662.	
1		5	Dielec	etric constant: Fig. 663.	
		11	Magn Néel t Fig. 6	etic susceptibility: Fig. 664. emperature and spontaneous 65.	magnetization:

F	iguren S. 3	37 ff.			II 1 Ox	ide des	Pero	wskit-Ty	rps			
1	Nr. 1C-e1 NaNbO ₃ -LiNbO ₃					1b Phase diagram: Fig. 666. 5a Dielectric constant: Fig. 667.						
N	Nr. 1C-e2 N	IaNbO	-NaVC),			D	ielectric o	constant	Fig. 66		
N	ir. 1C-e3 N	aNbO,	-CaNb,	O.		1b 5a	Pl	nase diag	ram: Fig	. 669.).	
N	ir. 1C-e4 N	aNbO ₃	-CdNb,	ο,		1b	Pi La	nase diag attice par	ram: Fig ameter:	. 671, 67 Fig. 673.	2.	
						7a		electric c ezoelectri				77.
Та	ab. 77. (1 –	- x)Na	NbO ₃ —	(x/2)CdN	Nb ₂ O ₆ [56 par	iL2]. r: e Fig. 6	capa	citance r				: Θ _f , Θ co
	Composition	Fir T °C	ing con	atmos- phere	× _{RT}	,	.c	×max	ec ec	<i>C</i> · 10⁴ °C	e _p °C	e 10° kg n
	0.02 0.05 0.10 0.15 0.20 0.25 0.30	1250 1250 1250 1250 1250 1250 1250	1 1 1 1 1 1 1 2	CdO CdO CdO CdO CdO CdO CdO	230 500 1000 1400 2300 3500 2700	1200 130 40 20 10	200 60 75 50 20 5	4000 4100 8500 10000 15000	375	12 12 18 24 14 20 20	345 345 275 260 250 230 205	3.9 4.2 4.3 4.3 4.4 4.5 4.6
	Ü		Tab. 78	. (1 – *)	NaNbO ₃	- (x/2)	CdN	b₂O₅ (cer	amics) [6	2K4]		
	x		0.05	0.10	0.15	0.2	20	0.25	0.30	T		_
l	e		4.2	4.3	4.3	4.3	3	4.4	4.2	10° k	g m-3	_
	$\frac{f_{\rm R} \cdot 2r}{}$		3.0	3.0	3.0	3.1	5	3.36	3.25	103 H	z m	_
	s ₁₁	- -	11.9	11.6	. 11.6	10.5		9.0	10.1	10-12	m² N-	_
	tan ô		0.01	0.01	0.02	0.0	1	0.01	0.03			_
Nr.	× at Θ _f 1C-e5 NaN		Nb ₂ O ₆	4.1	8.5	16 1b	Phas	13 e diagran	11 a: Fig. 6	76		
								ce paran ctric con				
Nr. 1	IC-e6 NaN	bO₃-PŁ	Nb ₂ O ₆			7a :	Elect		nical pro	perties: 1	Fig. 679	, 680, 681
							Latti	ce param romechar	eter: Fig	. 683.	?i= (0)	
Nr. 1	C-e7 CdTie	O ₃ -LiN	bO ₃ , С	dTiO ₁ -Li	ГаОз			tric cons			rig. 684	h.
Nr. 10	C-e8 SrTiO	3-Bi ₂ O	·3TiO	2				e parame			_	
Nr. 10	C-e9 BaTiC	a-BaN	b₂O₄					tric cons diagram			88.	
								_				

Nr.

Nr.

Nr. Nr.

Nr.

Nr. 1C-e10 BaTiO ₃ -BaTa ₂ O ₆	1b Lattice parameter: Fig. 690.
	5a Dielectric constant: Fig. 691.
Nr. 1C-e11 BaTiO ₂ -A ₂ B ₂ O ₇	1b Curie temperature: Fig. 692.
	5a Dielectric constant: Fig. 693 ··· 697.
Nr. 1C-e12 PbZrO ₅ -PbNb ₂ O ₆	
For the solid solution with PbNb2O6 as an end n	
	1b Phase diagram: Fig. 698. 4 Thermal expansion: Fig. 699.
	5 Dielectric constant: Fig. 700.
	5 Dielectric constant: Fig. 700.
Nr. 1C-e13 PbZrO ₃ -PbTa ₂ O ₆	1b Phase diagram: Fig. 701.
141. 1C-e13 FB21O3-FB112O6	4 Thermal expansion: see Fig. 699.
	5 Dielectric constant: Fig. 702.
	5 Dielectric constant. Fig. 702.
Nr. 1C-f1 CaTiO ₃ -SrTiO ₃ -BaTiO ₃	1b Phase diagram: Fig. 703.
	1
Nr. 1C-f2 CaTiO ₃ -BaTiO ₂ -PbTiO ₃	1b Phase diagram: Fig. 704, 705.
	Curie temperature: Fig. 706.
,	7a Electromechanical properties: see Nr. 1A-8, 7a.
Nr. 1C-i3 PbTiO ₃ -PbZrO ₃ -PbO:SnO ₂	1b Phase diagram: Fig. 707.
	8b Elastic properties: Fig. 708, 709.
Nr. 1C-f4 PbTiO ₃ -PbHfO ₃ -PbO:SnO ₂	1b Phase diagram: Fig. 710.
	·
Nr. 1C-f5 PbTiO ₃ -PbZrO ₃ -LaFeO ₃	1b Phase diagram: Fig. 711. Lattice parameters: Fig. 712.
	Saturd Parameters Fig. 120
Nr. 1C-f6 PbTiO ₂ -PbZrO ₃ -BiFeO ₃	1b Phase diagram: Fig. 713.
	Lattice parameters: Fig. 714.
	•
Nr. 1C-f7 PbTiO ₃ -PbZrO ₃ -Pb(Mg _{1/2} Nb _{2/2})O ₂	1b Phase diagram: Fig. 715.
*	Lattice parameters: Fig. 716.
	7a Electromechanical property: Fig. 717, 718.
N. 10 M PUTTO PUTTO PLUE - NIL 10	1b Lattice parameters: Fig. 719.
Nr. 1C-i8 PbTiO ₃ -PbZrO ₃ -Pb(Fe _{1/2} Nb _{1/2})O ₃	1b Lattice parameters: Fig. 719. Curie temperature: Fig. 720.
	7a Electromechanical property: Fig. 721.
Nr. 1C-f9 PbTiO ₃ -PbZrO ₃ -ABO ₃	1b Phase diagram: Fig. 722.
Nr. 1C-f10 PbTiO ₃ -SrTiO ₃ -LaMnO ₃	1b Curie temperature: Fig. 723.
Nt. 1C-f11 PbTiO ₃ -LaMnO ₃ -LaMeO ₃ (Me = Fe	Co Ni Cr)
TO III TO IIO3-LAMINO3-LAMEO3 (Me = Fe	1b Transition temperatures: Fig. 724.
	5a Dielectric constant: Fig. 725.
	11 Magnetic susceptibility: see Fig. 725.
	Magnetization: Fig. 726.

Nr. 1C-f12 BaTiO ₃ -SrTiO ₃ -LaYO ₃ -LaInO ₃	1b Phase diagram: Fig. 727.
Nr. 1C-f13 CaSnO ₃ -SrSnO ₃ -BaSnO ₃	1b Phase diagram: Fig. 728.
Nr. 1C-f14 (Na-K)(Nb-Ta)O ₃	1b Phase diagram: Fig. 729.
Nr. 1C-f15 (Ca-Ba)(Ti-Zr)O ₃	1b Phase diagram: Fig. 730.
Nr. 1C-f16 (Sr-Pb)(Ti-Zr)O ₃	1b Phase diagram: Fig. 731. Lattice parameter: Fig. 732. Transition temperature: Fig. 733.
Nr. 1C-f17 (Ba-Pb)(Ti-Zr)O;	5a Dielectric constant: Fig. 734, 735. 1b Phase diagram: Fig. 736. Lattice parameter: Fig. 737. Transition temperature: Fig. 738.
	7a Electromechanical properties: Fig. 739, 740.
ir. 1C-f18 (Ba-Pb)(Ti-Sn)O ₃	1b Phase diagram: Fig. 741, 742. Lattice parameter: Fig. 743. Transition temperature: Fig. 744.
r. 1C-f19 BaTiO ₃ -PbTiO ₃ -BaNb ₂ O ₆ -PbNb ₂ O ₆	1b Phase diagram: Fig. 745. Lattice parameter: Fig. 746.

12c 14a 17 Tab

W W O O O O O

3 I 3A Nr. 1a

2A Pure compound

Nr. 2A-1 WO₃, Tungsten trioxide

1a	by Ogaw Matthias	alous diele a) in 1948 b) in 1949.	tric prop Possibi	erties of c lity of fe	eramic spec roelectricity	imens of W	O ₃ were d as pointe	iscovered d out by	*)48N1,48N
ь	phase	VII	VI	v	l IV	l III	111	1 I	b)49M2
	state	F*)							*)49M2
	crystal system	mono- clinic*b)	tri- clinic ^b)	mono- clinic ^e)	ortho- rhombicb)	tetra- gonal ^d)	tetra- gonal ^b)	tetra- gonal ^b)	*)60T1 *)60T2
П	space group			P2 ₁ /n ^c) -C _{2h}		P4/nmmd) -D _{4b}		0 /	*)52K1 *)56S1
2a	a = 7.30 Å Transparer	· 103 kg m-	$A, c \approx 7.6$ reen.		90° 54' at 30) °C.			21 J 1 04S 1 60T 1
ь		m: Plate-lik		thod.					51U1, 56T2 59S3
3	Crystal str phase Z	VII VI		Tab. 79; IV III		I		-	60T1
4	Lattice dist	tortion: Tab pansion: Fi	. 80. g. 750 ···	754		5.2			
ia	Dielectric c	onstant: x : dielectric m	= 100 ··· :	300 at liqu	id air temp e carried ou	erature. t at and abo	ve room te	empera-	49M2
c	Dielectric b	veteronio la -	ak 1		iquid air tei				66T4

This index consists of two parts: part A is for pure compounds (including complex compounds such as Pb(Co_{1/2}Nb_{1/2})O₂ or Na_{0.5}Bi_{4.5}Ti₄O₁₅) and part B is for solid solutions.

V A: In the 1st column the substances are ordered according to the alphabetically arranged gross When their names (e.g. Rochelle salt) and/or their abbreviated names (e.g. TGS) are widely used, they are also included in this column. In the gross formula the numbers of the elements are determined by simple addition.

Compounds containing water of crystallization are, however, listed twice: (1) H and O of the water molecules are included in the gross formula, (2) the water molecules are attached separately to the gross formula. For instance, Rochelle salt is listed in the 1st column as C₄H₄KNaO₄ 4H₂O, C₄H₁₂KNaO₁₀ and also as Rochelle salt, RS, Seignette salt.

Crystals in which H is replaced by D (e.g. KD,PO,) are not listed separately, since data on their properties are presented in the same section as the data on the non-deuterated crystals (e.g.

ev.

13.

1):

ж.

οl.

n. 0.

V B: In the 1st column the gross formula of each end material of a solid solution (e.g. BaTiO, or PbTiO, for the solid solution BaTiO, PbTiO,) is listed in the same manner as in the case of pure compounds. Thus the solid solution BaTiO, PbTiO. can be found in the 2nd column by looking first for either BaO₂Ti or O₂PbTi in the 1st column of Part B. If the solid solution is expressed by the formula such as $(Sb_xBi_{1-x})SI$, the end material can be obtained by putting x equal to either 0 or 1. When solid solutions have abbreviated names (e.g. KTN), these are also included in the 1st column.

Since in general one section corresponds to one substance in this volume, the 3rd column gives the section number and the 4th column gives the first page of the section.

V Index of substances — Substanzenverzeichnis

Dieses Verzeichnis besteht aus zwei Teilen: Teil A enthält die reinen Verbindungen (einschließlich komplexer Verbindungen wie $Pb(Co_{1/2}Nb_{1/2})O_3$ oder $Na_{0.5}Bi_{4.5}Ti_4O_{15})$ und Teil B enthält die Misch-

VA: In der 1. Spalte sind die Substanzen nach der VA: In der 1. Spane sind die Sutstanzen nach de alphabetisch angeordneten Bruttoformel aufge-führt. Wenn ihre Namen (z. B. Seignette-Salz) und nunt, wenn mie rannen (z. b. Segnette-Saiz) unter oder ihre abgekürzten Bezeichnungen (z. B. TGS) häufig gebraucht werden, sind auch sie in dieser Spalte zu finden. In der Bruttoformel ist die Anzahl jedes Elements durch einfache Addition be-

Verbindungen, die Kristallwasser enthalten. sind zweimal aufgeführt: 1. H und O der Wassermoleküle sind in der Bruttoformel enthalten. 2. die Wassermoleküle werden getrennt der Bruttoformel Wassermoiexue weigen getreinit der Brutonomer hinzugefügt (z. B. Seignette-Salz ist in der 1. Spalte aufgeführt als C.H.KNAO, 4H.O. C.H.,KNAO, und auch als Rochelle-Salz, R.S. Seignette-Salz).

Kristalle, in denen H durch D ersetzt ist (z. B. KD₂PO₄), werden nicht gesondert aufgeführt. Daten von ihren Eigenschaften erscheinen in demselben Abschnitt an der gleichen Stelle wie die Daten von den nicht deuterierten Kristallen (z.B. KH₂PO₄). V B: In der 1. Spalte ist die Bruttoformel jeder Endsubstanz einer Mischkristallreihe (z. B. BaTiO oder PbTiO, für die Mischkristallreihe BaTiO,-PbTiO, in derselben Weise aufgeführt wie im Fall von reinen Verbindungen. So kann die Mischkristallreihe BaTiO, PbTiO, in der zweiten Spalte gefunden werden, wenn man zunächst entweder BaO, Ti oder O, PbTi in der ersten Spalte von Teil B sucht. Wenn die Mischkristallreihe durch die Formel (Sb_xBi_{1-x})SI ausgedrückt wird, kann man die Endsubstanz finden, indem man x gleich 0 oder 1 setzt. Wenn Mischkristalle abgekürzte Namen haben (z. B. KTN), sind diese auch in der 1. Spalte

Da in diesem Band jeweils ein Abschnitt einer Substanz entspricht, gibt die 3. Spalte die Ab-schnittsnummer und die 4. Spalte die erste Seite des Abschnitts an.

VA Pure compounds

Gross formula	Chemical formula	,,,	
ADP AgC,H ₂ N ₂ O ₅ Ag,H ₂ IO ₆ Ag,H ₂ IO ₆ AgO ₂ V AGO ₂ Ta AgO ₂ V AICH ₂ NO ₂ S ₂ · 12H ₂ O AICH ₂ N ₃ O ₄ S ₃ · 6H ₂ O AICH ₁ N ₃ O ₄ S ₃ · 6H ₂ O AICH ₁ N ₃ O ₄ S ₃ · 6H ₂ O	NH, H, PO, NH, CH, COOH · AgNO, Ag, H, IO, Ag H, IO, Agno, A	Nr. 13A-7 29A-1 35-22 35-16 35-18 35-20 18A-4 19A-1	Pag 143 193 209 207 207 208 158
AICH ₁₀ NO ₂₀ S ₂ AICH ₁₀ NO ₂₀ S ₂ · 12H ₂ O AICH ₁ N ₂ O ₂ Se ₂ · 6H ₂ O AICH ₁ N ₂ O ₁ Se ₂ AICH ₂₀ NO ₂₀ Se ₂ Ammonium metaphosphate	CH ₂ NH ₂ A(SO ₂) ₂ · 6H ₂ O CH ₃ NH ₂ A(SO ₂) ₂ · 12H ₂ O CH ₃ NH ₂ A(SO ₂) ₂ · 12H ₂ O C(NH ₂) ₂ A(SO ₂) ₂ · 6H ₂ O C(NH ₂) ₂ A(SO ₂) ₃ · 6H ₂ O C(NH ₂) ₂ A(SO ₂) ₃ · 6H ₂ O CH ₂ NH ₃ A(SO ₂) ₃ · 12H ₄ O	19A-1 18A-4 18A-10 19A-5 19A-5 18A-10	161 161 158 161 166 166 161
rsCsH ² Co ⁴	CsH ₂ AsO ₄ KH ₂ AsO ₄	35–14 13A–6 13A–4	205 143 141

V Substanzenverzeichnis

AsH ₆ NO ₄	NH ₄ H ₂ AsO ₄	13A-8	147
AsH ₂ O ₄ Rb Azobenzene	RbH ₂ AsO ₄	13A-5	143
Azoxybenzene	C ₁₂ H ₁₀ N ₂	37–5	216
•	C ₁₂ H ₁₀ N ₂ O	37–6	216
B ₇ BrCd ₃ O ₁₃	Cd ₃ B ₇ O ₁₃ Br	9A-18	120
B ₇ BrCo ₂ O ₁₃ B ₇ BrCr ₃ O ₁₃	Co ₃ B ₇ O ₁₉ Br	9A-14	119
B ₇ BrCu ₃ O ₁₃	Cr ₃ B ₇ O ₁₃ Br	9A-11	118
B ₇ BrFe ₃ O ₁₃	Cu ₃ B ₇ O ₁₃ Br Fe ₃ B ₇ O ₁₃ Br	9A-16	119
B ₇ BrMg ₃ O ₁₃	Mg ₃ B ₇ O ₁₃ Br	9A-13	119
B ₇ BrMn ₈ O ₁₈	Mn ₃ B ₇ O ₁₃ Br	9A-10 9A-12	118 119
B ₇ BrNi ₂ O ₁₂	Ni ₃ B ₇ O ₁₃ Br	9A-15	119
B ₇ BrO ₁₈ Zn ₈	Zn,B,O,Br	9A-17	120
B ₆ Ca ₂ H ₁₀ O ₁₈	Ca ₂ B ₃ O ₁₁ · 5H ₂ O	21A-1	173
B ₆ Ca ₂ O ₁₁ · 5H ₂ O	Ca ₂ B ₄ O ₁₁ · 5H ₄ O	21A-1	173
B,Cd,ClO ₁₃	Cd ₃ B ₃ O ₁₃ Cl	9A-9	118
B,Cd,IO13	Cd ₃ B ₇ O ₁₃ I	9A-25	122
B,CICo,O13	Co ₂ B ₇ O ₁₃ Cl	9A-5	117
B,ClCr ₃ O ₁₃ B,ClCu ₃ O ₁₃	Cr ₃ B ₇ O ₁₃ Cl	9A-2	116
B ₇ ClFe ₃ O ₁₃	Cu ₂ B ₂ O ₁₃ Cl Fe ₃ B ₂ O ₁₃ Cl	9A-7	118
B,CIMg,O13	Mg ₃ B ₇ O ₁₃ Cl	9A-4	117
B ₇ ClMn ₃ O ₁₃	Mn ₃ B ₇ O ₁₃ Cl	9A-1 9A-3	115
B,CINi,O,	Ni ₃ B ₇ O ₁₃ Cl	9A-6	117
B,ClO,Zn,	Zn ₃ B ₇ O ₁₃ Cl	9A-8	117 118
B ₇ Co ₂ IO ₁₂	Co ₃ B ₇ O ₁₃ I	9A-22	121
B ₇ Cr ₃ IO ₁₃	Cr ₂ B ₇ O ₁₂ I	9A-19	120
B,Fe,IO13	Fe ₃ B ₇ O ₁₃ I	9A-21	120
B,IMn,O,	Mn ₃ B ₇ O ₁₃ I	9A-20	120
B,INi,O13	Ni ₃ B ₇ O ₁₃ I	9A-23	121
B,IO ₁₃ Zn ₃	Zn ₃ B ₇ O ₁₃ I	9A-24	121
Ba ₄ Bi ₃ Fe ₂ Nb ₃ O ₃₀ BaBi ₂ Nb ₂ O ₉	Ba ₄ Bi ₂ Fe ₃ Nb ₃ O ₃₀	5C-g1	104
BaBi ₃ NbO ₁₃ Ti ₃	BaBi, Nb,O	7A-7	109
BaBi,O,Ta,	BaBi ₂ Ti ₂ NbO ₁₂ BaBi ₂ Ta ₂ O ₂	7A-12	110
BaBi ₄ O ₁₅ Ti ₄	BaBi, Ti, O ₁₅	7A-8 7A-14	109 111
Ba ₂ Bi ₄ O ₁₃ Ti ₅	Ba ₂ Bi ₄ Ti ₅ O ₁₃	7A-19	112
BaC ₁₈ Ca ₂ H ₃₀ O ₁₃	Ca,Ba(CH,CH,COO),	26A-3	184
Ba ₄ Ce ₂ Nb ₃ Ni ₃ O ₃₀	Ba ₄ Ce ₂ Ni ₂ Nb ₄ O ₂₀	5C-d1	104
$Ba_4Fe_2Gd_2Nb_8O_{20}$	Ba ₄ Gd ₂ Fe ₂ NbO ₂₀	5C-g4	104
Ba ₂ Fe ₃ Nb ₇ Nd ₄ O ₃₀	Ba ₃ Nd ₄ Fe ₃ Nb ₇ O ₃₀	5C-g4 5C-h1	104
Ba Fe Nb Nd O30	Ba,Nd,Fe,Nb,O,0	5C-g2	104
Ba ₃ FeNb ₂ O ₃₀	Ba _e FeNb _e O ₃₀	5C-f1	104
Ba ₃ Fe ₃ Nb ₇ O ₃₀ Sm ₄ Ba ₄ Fe ₃ Nb ₃ O ₃₀ Sm ₂	Ba ₂ Sm ₄ Fe ₃ Nb ₇ O ₃₀	5C-h2	104
Ba ₂ KNb ₅ O ₁₅	Ba ₄ Sm ₂ Fe ₂ Nb ₆ O ₃₀ KBa ₂ Nb ₆ O ₁₅	5C-g3	104
Ba,MgNb, O45	Ba ₉ MgNb ₁₄ O ₄₅	5C-b3 5C-e1	103 104
Ba2NaNb5O15	NaBa ₂ Nb ₅ O ₁₅	5C-b2	104
Ba ₂ Nb ₈ Nd ₄ Ni ₂ O ₃₀	Ba ₂ Nd ₄ Ni ₂ Nb ₃ O ₃₀	5C-c1	104
Ba, Nb, Ni, O, Sm,	Ba ₃ Sm ₄ Ni ₂ Nb ₃ O ₃₀	5C-c2	104
Ba,Nb,O,,Rb	RbBa ₂ Nb ₅ O ₁₅	5C-b5	103
Ba ₃ Nb ₃ O ₅₀ Ti ₂	Ba ₂ Ti ₂ Nb ₂ O ₂₀	5C-j1	104
BaNb _{1.5} O _{5.25} Zr _{0.25}	BaZr _{0.25} Nb _{1.5} O _{5.25}	5C-j3	105
BaO,Ta,	BaTa ₂ O ₃	5A-3	98
BaO ₃ Ti	BaTiO ₁	1A-8	51
BaO ₃ Zr BeC ₃ F ₄ H ₁₇ N ₃ O ₃	BaZrO ₃	1A-12	61
BeC ₃ F ₄ H ₁₇ N ₃ O ₃ BeF ₄ H ₃ N ₂	(NH ₂ CH ₂ COOH) ₂ H ₂ BeF ₄	28A-3	190
BiBrS	(NH ₄) ₃ BeF ₄ BiSBr	14A-2	154
BiBrSe	BiSeBr	10A-7	126 127
		10A-10	
Bi ₂ CaNb ₂ O ₂			
Bi ₂ CaNb ₂ O ₂ Bi ₂ CaO ₂ Ta ₃	CaBi ₂ Nb ₂ O ₃ CaBi ₂ Ta ₂ O ₃	7A-3 7A-4	107 108

V Index of substance

Gross formula	Chemical formula		
BiCIS	BiSCI	Nr.	Page
BiClSe	BiSeCl	10A-6	125
Bi ₂ Fe ₄ Nb ₆ Nd ₄ O ₃₀	Bi ₂ Nd ₄ Fe ₄ Nb ₈ O ₃₀	10A-9	126
BiFeO,	BiFeO,	5C-i2	104
Bi ₅ GaO ₁₅ Ti ₂	BiBi ₄ Ti ₄ GaO ₁₅	1A-15	63
BiIS	BiSI	7A-18	112
BiISe BiK ₂ Nb ₅ O ₁₅	BiSeI	10A-8 10A-11	126
Bi _{1/2} K _{1/2} O ₃ Ti	K ₂ BiNb ₅ O ₁₅	5C-a2	127 102
Bi _{4.5} K _{0.5} O ₁₅ Ti ₄	(K _{1/2} Bi _{1/2})TiO ₂	1B1-i	64
Bi _{1/2} Na _{1/2} O ₃ Ti	K _{0.5} Bi _{4.5} Ti ₄ O ₁₅	7B-4	114
Bi4.5Na0.5O15Ti4	(Na _{1/2} Bi _{1/2})TiŌ ₃ Na _{0.5} Bi _{4.5} Ti ₄ O ₁₅	1B1-ii	64
Bi ₂ Nb ₂ O ₄ Pb	PbBi _s Nb _s O _s	7B-3	114
Bi ₂ NbO ₁₂ PbTi ₃	PbBi ₃ Ti ₂ NbO ₁₂	7A-9	109
Bi ₂ Nb ₂ O ₈ Sr	SrBi ₂ Nb ₂ O ₉	7A-13	110
Bi, NbO, Ti	BiBi, TiNbO.	7A-5	108
Bi ₂ O ₄ PbTa ₂	PbBi ₂ Ta ₂ O ₄	7A-1 7A-10	107
Bi ₄ O ₁₅ PbTi ₄ Bi ₄ O ₁₅ Pb ₂ Ti ₅	PbBi ₄ Ti ₄ O ₁₅	7A-10 7A-15	110
Bi ₂ O ₉ SrTa ₂	Pb ₂ Bi ₄ Ti ₅ O ₁₈	7A-20	111
Bi ₄ O ₁₈ SrTi ₄	SrBi ₂ Ta ₂ O ₃ SrBi ₄ Ti ₄ O ₁₅	7A-6	109
Bi,O1,Sr,Ti,	Sr ₂ Bi ₄ Ti ₅ O ₁₈	7A-16	111
Bi ₂ O ₄ TaTi	BiBi ₂ TiTaO ₂	7A-21	113
Bi ₂ O ₁₁ Ti ₄	Bi ₂ Ti ₄ O ₁₁	7A-2	107
Bi ₄ O ₁₂ Ti ₃	BiBi, Ti, TiO,	7A-22	113
Br ₂ C ₄ H ₁₂ HgN	N(CH ₂) ₄ HgBr ₄	7A-11	110
Br ₂ C ₄ H ₁₂ HgP BrH	P(CH ₂) ₄ HgBr ₃	24A-2 24A-3	179
BrSSb	H · Br	35-12	180
BrSbSe	SbSBr SbSeBr	10A-1	122
	SDSeBi	10A-3	124
C _s CaCl _s H ₂₁ N ₈ O ₈	(CH,NHCH,COOH), · CaCl,	204.4	l l
C ₁₈ Ca ₂ H ₈₀ O ₁₂ Pb	Ca ₂ Pb(CH ₃ CH ₂ COO).	32A-1 26A-2	192
C ₁₆ Ca ₂ H ₂₆ O ₁₈ Sr C ₄ Cl ₄ H ₁₂ HgN	Ca ₂ Sr(CH ₂ CH ₂ COO).	26A-2 26A-1	183 182
C ₄ Cl ₂ H ₁₀ MnN ₂ O ₄ · 2H ₂ O	N(CH ₂) ₄ ·HgCl ₃	24A-1	178
C.Cl.H.MnN.O.		31A-1	192
C ₂ CIH ₄ NO ₄	(NH ₂ CH ₂ COOH) ₂ ·MnCl ₂ ·2H ₂ O CH ₂ CICOONH ₄	31A-1	192
C.Cl.H.NO.	(CH2CICOO)2H · NH	27A-1	184
CrH,NO,S, 12H,O	CH ₂ NH ₂ Cr(SO ₄) ₂ · 12H ₂ O	27A-2	184
CrH,N,O,S, · 6H,O	C(NH ₂) ₈ Cr(SO ₄) ₂ · 6H ₂ O	18A-6 19A-2	160
CrH ₃₀ NO ₂₀ S ₂ CrH ₁₈ N ₂ O ₁₄ S ₂	CH _a NH _a Cr(SO ₄) ₄ · 12H ₄ O	18A-6	164
CrH ₈ N ₈ O ₈ Se ₂ · 6H ₈ O	C(NH ₂) ₃ Cr(SO ₄) ₂ ·6H ₂ O	19A-2	160 164
CrH ₁₈ N ₅ O ₁₄ Se ₂	C(NH ₂) ₂ Cr(SeO ₄) ₂ · 6H ₂ O	19A-6	167
CuH ₂ O ₄ · 4H ₂ O	C(NH ₂) ₃ Cr(SeO ₄) ₂ ·6H ₂ O Cu(HCOO) ₃ ·4H ₂ O	19A-6	167
CuH. O.	Cu(HCOO) ₂ ·4H ₂ O	25A-1	180
FeH, K, N, O,	K ₄ Fe(CN) ₄ · 3H ₄ O	25A-1	180
FeH,NO,S, 12H,O	CH,NH,Fe(SO.). 12H.O	22A-2	174
FeH, NO, S.	CH,NH,Fe(SO ₄),· 12H ₄ O	18A-7 18A-7	160
FeK, N, · 3H, O GaH, NO, S, · 12H, O	K ₄ Fe(CN) ₄ · 3H ₄ O	22A-2	160 174
GaH, N,O,S, · 6H,O	CH,NH,Ga(SO,), 12H,O	18A-5	160
GaH ₁₈ N ₈ O ₁₄ S ₂	C(NH ₂) ₂ Ga(SO ₄) ₂ ·6H ₂ O	19A-3	165
GaH _m NO _m S _e	C(NH ₂) ₂ Ga(SO ₄) ₃ · 6H ₂ O CH ₂ NH ₃ Ga(SO ₄) ₂ · 12H ₂ O	19A-3	165
GaH, N, O, Se, · 6H, O	$C(NH_2)_3Ga(SeO_4)_2 \cdot 12H_2O$ $C(NH_2)_3Ga(SeO_4)_2 \cdot 6H_2O$	18A-5	160
GaH ₁₈ N ₂ O ₁₄ Se ₂	C(NH ₂) ₄ Ga(SeO ₄) ₂ ·6H ₂ O	19A-7	167
H ₁₂ HgI ₂ N	N(CH ₃) ₄ HgI ₃	19A-7	167
H _s K _s MnN _s O _s	K ₄ Mn(CN) ₄ · 3H ₄ O	24A-4	180
H, K, N, O, Os	K ₄ Os(CN) ₄ · 3H ₄ O	22A-1 22A-4	174
H ₆ K ₄ N ₆ O ₃ R _u	K ₄ Ru(CN) ₈ · 3H ₂ O	22A-4 22A-3	176
H ₄ KNaO ₄ · 4H ₂ O H ₁₂ KNaO ₁₀	NakC ₄ H ₄ O ₄ · 4H ₂ O	33A-1	176 193
H _s LiNO _s · H _s O	NaKC, H,O, · 4H,O	33A-1	
	LiNH, C,H,O, H,O		193

Gross formula	Chemical formula	Nr.	Page
C4H10LiNO7	LiNH ₄ · C ₄ H ₄ O ₆ · H ₂ O	34A-1	199
C.H.LiO.TI · H.O	LiTiC ₄ H ₄ O ₆ · H ₂ O	34A-2	199
C ₄ H ₆ LiO ₇ Tl	LiTiC,H,O, · H,O	34A-2	199
C ₄ H ₂ NNaO ₆ · 4H ₂ O	NaNH ₄ C ₄ H ₄ O ₆ · 4H ₂ O	33A-2	197
C ₄ H ₁₆ NNaO ₁₀	NaNH ₄ C ₄ H ₄ O ₆ · 4H ₂ O	33A-2	197
C ₄ H ₁₁ N ₈ O ₇	(NH ₂ CH ₂ COOH) ₂ · HNO ₃	30A-1	191
C ₆ H ₁₇ N ₃ O ₁₀ S	(NH ₂ CH ₂ COOH) ₃ ·H ₂ SO ₄	28A-1	185
CH ₈ NO ₈ S ₂ V · 12H ₂ O	CH2NH3V(SO4)2 · 12H2O	18A-8	161
CH ₆ N ₅ O ₂ S ₅ V · 6H ₂ O	C(NH ₂) ₃ V(SO ₄) ₂ · 6H ₂ O	19A-4	166
CH18N3O14S2V	C(NH ₂) ₂ V(SO ₄) ₂ · 6H ₂ O	19A-4	166
CH ₃₀ NO ₂₀ S ₂ V	CH ₃ NH ₃ V(SO ₄) ₂ ·12H ₂ O	18A-8	161
C ₆ H ₁₇ N ₃ O ₁₀ Se	(NH ₂ CH ₂ COOH) ₃ · H ₂ SeO ₄	28A-2	190
CH ₄ N ₂ S	SC(NH ₂) ₂	23A-1	177
C ₄ H ₄ NaO ₆ Rb · 4H ₂ O	NaRbC ₄ H ₄ O ₅ · 4H ₂ O	33A-3	198
C ₄ H ₁₂ NaO ₁₀ Rb	NaRbC ₄ H ₄ O ₆ · 4H ₂ O	33A-3	198
CH ₆ InNO ₈ S ₂ · 12H ₂ O	CH ₃ NH ₃ In(SO ₄) ₂ · 12H ₂ O	18A-9	161
CH ₃₀ InNO ₂₀ S ₂	CH ₃ NH ₃ In(SO ₄) ₂ ·12H ₂ O	18A-9	161
C ₆ K ₄ MnN ₆ · 3H ₂ O	K ₄ Mn(CN) ₆ · 3H ₂ O	22A-1	174
C ₆ K ₄ N ₆ Os · 3H ₄ O	K ₄ Os(CN) ₆ · 3H ₂ O	22A-4	176
C ₆ K ₄ N ₆ Ru · 3H ₂ O	K ₄ Ru(CN) ₆ · 3H ₂ O	22A-3	176
CaO ₃ Ti	CaTiO ₃	1A-5	44
CaO ₃ Zr	CaZrO ₃	1A-10	60
Cd,H,N,O,,S,	(NH ₄) ₂ Cd ₂ (SO ₄) ₂	16A-1	156
Cd _{1/4} Mn _{1/4} Nb _{1/2} O ₃ Pb	Pb(Cd _{1/4} Mn _{1/4} Nb _{1/2})O ₃	1B3-xvii	70
Cd _{1/4} Mn _{1/4} O ₂ PbW _{1/2}	Pb(Cd _{1/4} Mn _{1/4} W _{1/2})O ₃	1B3-xvii	70
Cd ₂ Nb ₂ O ₇	Cd ₂ Nb ₂ O ₇	6A-1	105
Cd _{1/5} Nb _{2/5} O ₅ Pb	Pb(Cd _{1/2} Nb _{2/3})O ₃	1B4-iii	71
Cd _{1/2} O ₃ PbW _{1/2}	Pb(Cd _{1/2} W _{1/3})O ₃	1B2-ii	65
CdO ₃ Ti	CdTiO ₃	1A-7	50
Cl ₂ CsGe	CsGeCl ₃	35-21	208
CIH	HCi	35-11	202
CIK	KCI	35-28	211
CoCrH ₈ N ₂ O ₆ S ₂ · 12H ₂ O	Co(NH ₂) ₂ HCr(SO ₄) ₂ · 12H ₂ O	18A-11	161
CoCrH ₂₉ N ₂ O ₂₀ S ₂	Co(NH ₂) ₂ HCr(SO ₄) ₂ ·12H ₂ O	18A-11	161
Colemanite	Ca ₂ B ₆ O ₁₁ · 5H ₂ O or CaB ₂ O ₄ (OH) ₃ · H ₂ O	21A-1	173
Co _{1/4} Mn _{1/4} Nb _{1/2} O ₃ Pb	Pb(Co _{1/4} Mn _{1/4} Nb _{1/2})O ₂	1B3-xvii	70
Co _{1/4} Mn _{1/4} O ₃ PbW _{1/2}	Pb(Co _{1/4} Mn _{1/4} W _{1/2})O ₃	1B3-xvii	70
Co _{1/2} Nb _{2/3} O ₂ Pb	Pb(Co _{1/2} Nb _{2/2})O ₃	1B4iv	71
Co _{1/3} Nb _{1/2} O ₃ Pb	Pb(Co _{1/2} Nb _{1/2})O ₂	1B3-iv	- 68
Co _{1/3} O ₃ PbTa _{2/3}	Pb(Co _{1/3} Ta _{2/3})O ₃	1B4-vii	72
Co _{1/2} O ₃ PbTa _{1/2}	Pb(Co _{1/2} Ta _{1/2})O ₃	1B3-xiii	70
Co _{1/2} O ₃ PbW _{1/2}	Pb(Co _{1/2} W _{1/2})O ₃	1B2-iv	66
Cr _{1/4} Nb _{1/2} O ₃ PbSc _{1/4}	Pb(Sc _{1/4} Cr _{1/4} Nb _{1/2})O ₃	1B3-xvii	70
CsH ₂ O ₄ P	CsH ₂ PO ₄	13A-3	141
CsH ₃ O ₆ Se ₂	CsH _a (SeO ₃) ₂	20A-3	172
CsNO ₃	CsNO ₂	12A-3	134
Deoxyribonucleic acid	Deoxyribonucleic acid	35-33	212
DNA	Deoxyribonucleic acid	35-33	212
ErMnO _a	ErMnO ₃	4A-2	95
Eu ₂ Mo ₃ O ₁₂	Eu ₂ (MoO ₄) ₃	35–2	200
F,H,N,P	NH,PF,NH,F	35-24	210
FeH, NO, S, 12H,O	NH Fe(SO ₄) ₂ · 12H ₂ O	18A-1	157
FeH ₂₈ NO ₂₀ S ₂	NH, Fe(SO,), · 12H,O	18A-1	157
Fe4Nb4Nd4O30	Nd Fe Nb O 30	5C-i1	104
Fe ₃ Nb ₇ Nd ₄ O ₃₀ Pb ₂	Pb.Nd.Fe.Nb.O.	5C-h3	104
Fe _{1/2} Nb _{1/2} O ₂ Pb	Pb(Fe _{1/2} Nb _{1/2})O ₃	1B3-iii	67
FeNb,O ₅₀ Sr,	Sr _e FeNb _e O _{so}	5C-f2	104
Fe2Nb6O20Sr4Yb2	Sr. Yb. Fe. Nb. O.	5C-g5	104
Fe _{1/2} O ₃ PbTa _{1/2}	Pb(Fe _{1/2} Ta _{1/2})O ₃	1B3-xii	69
Fe _{1/2} O ₃ PbW _{1/2}	Pb(Fe _{1/2} W _{1/2})O ₃	1B3-xvi	70
Fe _{2/3} O ₃ PbW _{1/3}	Pb(Fe _{2/3} W _{1/3})O ₃	1B5-ii	73

V Index of substance

Page

Court	V Index of substances				
Gross formula GASH	Chemical formula		Nr.	Pa	age
Gd ₃ Mo ₃ O ₁₂ GeTe	C(NH ₂) ₃ Al(SO ₄) ₂ · 6H ₂ O Gd ₂ (MoO ₄) ₃ GeTe		19A-1 35-3 36-1	10	61 00 12
H, IIN, O, H, IIN, O, P, H, IIN, O, S, 12H, O H, IIN, O, S, P, H, IN, O, S, P, IN, O, IN, IN, IN, IN, IN, IN, IN, IN, IN, IN	HI (NH ₁) ₂ H ₁ O ₆ NH ₁ In(SO ₂) ₁ 12H ₂ O NH ₁ In(SO ₂) ₁ 12H ₂ O NH ₂ In(SO ₂) ₂ 12H ₃ O KH ₂ PO ₆ Li(N,H ₂) ₃ SO ₆ LiH ₁ (SeO ₂) ₃ NaNH ₂ SO ₆ 2H ₂ O NaNH ₂ SO ₇ 2H ₂ O NNH ₂ H ₂ PO ₆ (NH ₄) ₃ SO ₆ NH ₄ (SO ₂) ₃ 12H ₂ O NH ₄ (SO ₂) ₃ 12H ₂ O NH ₄ (SO ₂) ₃ 12H ₂ O NH ₄ (SO ₂) ₃ 12H ₂ O NH ₄ (SO ₂) ₃ 12H ₂ O NH ₄ (SO ₂) ₃ 12H ₂ O NH ₄ (SO ₂) ₃ 12H ₃ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₃ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH ₄ (SO ₂) ₄ 12H ₄ O NH		35–13 35–23 18A–3 18A–3 13A–1 135–15 20A–1 17A–1 13A–7 15A–1 14A–1 18A–2 20A–2 20A–2 15A–2 15A–2	200 200 15 15 13 200 16. 15' 14' 155 144 155 169 211 141 155 62 95 68	99 88 44 55 88 77 77 33 44 33 33
IKO ₃ ISSb ISbSe ISbTe In _{1/2} Nb _{1/2} O ₃ Pb	KIO ₃ SbSI SbSeI SbTeI Pb(In _{1/2} Nb _{1/2})O ₃	Ų,	35-29 1A-16 10A-2 10A-4 10A-5 1B3-vi	211 64 122 125 125 68	
K,LaNb,O,3 Ka,Lia,Nb0, Ka,Lia,Nb0,2,Taa,7 KLiO,S KNO, KNO, KNO, KND, KNB,O,S KO,Ta Lecontite Linbo,	KH,PO, K,LANDO,1; K,LANDO,1; K,LLL,NDO,1; K,LLL,NDO,1; K,LSO, KLSO, KLSO, KLSO, KNO, KNO, KNO, KST,NBO,1; KTAO, NANH,SO,1-ZH ₂ O LINDO,		13A-1 5C-a1 5C-k1 5C-k2 35-27 11A-2 12A-1 1A-2 5C-b1 1A-4	134 102 105 105 211 130 131 39 102 41	
Li _{1/4} Nb _{1/4} O ₃ PbW _{1/2} LiO ₃ Ta LuMnO ₃ Lu _{1/2} Nb _{1/2} O ₃ Pb Lu _{1/2} O ₃ PbTa _{1/2}	Pb(Li _{1/4} Nb _{1/4} W _{1/2})O ₃ LiTaO ₃ LuMnO ₃ Pb(Lu _{1/2} Nb _{1/2})O ₃ Pb(Lu _{1/2} Ta _{1/2})O ₃		3A-1 1B3-xvii 3A-2 4A-6 1B3-ix 1B3-xv	89 70 92 97 68 70	
May May May No 1,10 Pb May	CH,NH,Al(SO,), 12H,O PEM(S ₁ ,Mm ₁ ,Nb ₁),O ₂ PEM(S ₁ ,Mm ₁ ,Nb ₁),O ₃ PEM(S ₁ ,Mm ₁ ,Ta ₁ ,p)O ₃ PEM(S ₁ ,Mm ₁ ,Ta ₁ ,p)O ₃ PEM(S ₁ ,Mm ₁ ,Ta ₁ ,p)O ₃ PEM(S ₁ ,Mm ₁ ,Mm ₂),O ₃ PEM(S ₁ ,Mm ₂ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₂ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₁ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₁ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₂ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₂ ,Nm ₂)O ₃ PEM(S ₁ ,Nm ₂ ,Nm ₂)O ₃		18A-4 1B3-xvii 1B3-xvii 1B3-xvii 1B4-i 5C-e2 1B4-vi 1B2-i 1B3-xvii 1B3-xvii 1B3-xvii 1B3-xvii	158 70 70 70 70 70 104 72 65 70 67 70	

Gross formula	Chemical formula	Nr.	Page
MnO ₂	MnO.	35-31	212
Mn _{1/2} O ₃ PbRe _{1/2}	Pb(Mn _{1/2} Re _{1/2})O ₃	1B2-v	66
Mn _{1/2} O ₃ PbTa _{1/2}	Pb(Mn _{1/2} Ta _{1/2})O ₃	1B3-xi	69
Mn _{1/2} O ₃ PbW _{1/2}	Pb(Mn _{1/2} W _{1/2})O ₃	1B2-iii	66
MII1/2O3F DW 1/2	Pb(Mn _{2/3} W _{1/3})O ₃	1B5-i	73
Mn _{2/3} O ₃ PbW _{1/3}		4A-4	96
MnO ₃ Tm	TmMnO ₃	4A-1	94
MnO ₃ Y	YMnO ₃	4A-5	96
MnO ₃ Yb	YbMnO ₃	35-1	200
Mo ₃ O ₁₂ Sm ₂	Sm ₂ (MoO ₄) ₃		
Mo ₃ O ₁₂ Tb ₂	Tb ₂ (MoO ₄) ₃	35-4	201
NNaO.	NaNO.	11A-1	128
NO ₂ Rb	RbNO,	12A-2	133
NaNbO.	NaNbO,	1A-1	37
NaO,Ta	NaTaO,	1A-3	40
	NaVO,	35-19	208
NaO ₃ V	Pb(Ni _{1/2} Nb _{1/2})O ₃	1B3-v	68
Nb _{1/2} Ni _{1/2} O ₃ Pb	Th (N; N; N)	1B4-v	72
Nb _{2/3} Ni _{1/3} O ₃ Pb	Pb(Ni _{1/3} Nb _{2/3})O ₃	5A-1	97
Nb ₂ O ₄ Pb	PbNb ₂ O ₆	6A-2	106
Nb ₂ O,Pb ₂	Pb ₂ Nb ₂ O ₇		67
Nb _{1/2} O ₃ PbSc _{1/2}	Pb(Sc _{1/2} Nb _{1/2})O ₃	1B3-i	68
Nb _{1/2} O ₅ PbYb _{1/2}	Pb(Yb _{1/2} Nb _{1/2})O ₃	1B3-vii	
Nb _{2/3} O ₃ PbZn _{1/3}	Pb(Zn _{1/3} Nb _{2/3})O ₃	1B4-ii	71
Nb ₅ O ₁₅ RbSr ₂	RbSr ₂ Nb ₈ O ₁₈	5C-b4	103
Ni _{1/2} O ₃ PbTa _{2/3}	Pb(Ni _{1/3} Ta _{2/2})O ₃	1B4-viii	73
O ₅ PbSc _{1/2} Ta _{1/2}	Pb(Sc _{1/2} Ta _{1/2})O ₂	1B3-x	69
O _s Pb _s Si	Pb ₄ SiO ₆	35-26	210
	Th.T. O	5A-4	98
O ₆ PbTa ₂	PbTa ₂ O ₄	1B3-xiv	70
O ₅ PbTa _{1/2} Yb _{1/2}	Pb(Yb _{1/3} Ta _{1/2})O ₃	1A-9	59
O ₃ PbTi	PbTiO ₃		210
O ₈ Pb ₃ V ₂	Pb ₂ V ₂ O ₆	35-25	
O ₃ PbZr	PbZrO ₂	1A-13	61
O _* RbTa	RbTaO,	35–17	207
O ₂ Sn	SnO ₂	35-32	212
O.SrTa.	SrTa,O,	5A-2	98
O,Sr,Ta,	Sr,Ta,O,	6A-3	106
O _s SrTi	SrTiO,	1A6	45
O _s SrZr	SrZrO,	1A-11	61
O ₃ SiZi	TiO,	35-30	212
O ₂ Ti O ₃ W	WO ₄	2A-1	88
	T T	37–1	21
p-azoxyanisole	C ₁₄ H ₁₄ N ₂ O ₃		21
p-azoxyphenetole	C16H18N2O3	37-2	
p-butoxybenzoic acid	C ₁₁ H ₁₄ O ₅	37–3	215
Perovskite	CaTiO ₂	1A-5	4
p-methoxycinnamic acid	C10H10O3	37–4	210
Pyrolusite	MnO ₂	35–31	213
Rochelle salt	NaKC,H,O, · 4H,O	33A-1	193
RS	NaKC,H,O, · 4H,O	33A-1	19:
Rutile	TiO ₂	35-30	21:
	1 7	33A-1	19:
Seignette salt	NaKC ₄ H ₄ O ₆ · 4H ₂ O		21
SiV ₃	V _s Si	36-4	
SnTe	SnTe	36–2	21
TGS	(NH,CH,COOH),H,SO,	28A-1	18
Tri-glycine tellurate		28A-4	19

V Index of substances

	VB Solid solutions		-	
Gross formula	Chemical formula		1 27	
ABO,	ABO ₃ -PbTiO ₃ -PbZrO ₃		Nr.	Page
Al ₂ BaO ₄	BaAl,O,-BaLi,F,		1C-f9	87
AlLaO,	LaAlO, BaTiO,		8B-1	115
AlLaO, AlLaO,	LaAlO,-BiFeO.		1C-c8	83
AsH _a NO _a	LaAlO,-PbTiO.		1C-b11	83
AsH ₂ O ₄ TI	NH, H, AsO, -TiH, AsO,		1C-c10	84
AsIS	TIH, ASO, -NH, H, ASO,		13B-3	148
1.010	AsSI-SbSI		13B-3 10B-1	148
BaBi ₂ Nb ₂ O ₄	(Ba DND: Mr. O		1015-1	127
BaBi, Nb.O	(Ba-Pb)Bi ₂ Nb ₂ O ₉ Bi ₂ BaNb ₃ O ₉ -Bi ₃ TiNbO ₉		7B-5	114
BaBi, NbO, Ti.	Bi ₃ BaTi ₂ NbO ₁₂ -Bi ₄ Ti ₃ O ₁₂		7B-1	113
Bar,Li.	BaLi ₂ F ₄ -BaAl ₂ O ₄		7B-2	113
BaFe _{1/2} O ₃ Ta _{1/2}	Ba(Fe _{1/2} Ta _{1/2})O ₃ -BaTiO		8B-1	115
BaHiO.	BaHfO,-BaTiO,		1C-d2	84
BaHfO,	BaHfO _a -PbHfO _a		1C-a24	77
BaNb.O.	BaNb, O, BaTiO.		1C-a18	76
BaNb ₂ O ₆ BaNb ₂ O ₆	BaNb _* O _* -BaZrO.		1C-e9	86
BaNb.O.	BaNb.OCaNb.O.		5C-j2	105
BaNb ₂ O ₄	BaNb,O,-PbNb,O,		5B-1	99
BaNb _a O _a	BaNb ₂ O ₆ -SrNb ₂ O ₆		5B-5 5B-3	100
BaNb ₂ O	BaNb ₂ O ₆ -BaTiO ₃ -PbTiO ₃ -PbNb ₂ O ₆		1C-f19	99
BaNb.O.	(Da-FD-Sr)(Nb-Ta).O		5B-15	88 102
BaNb _s O _s	(Ba-Pb-Ca)(Nb-Ta) ₂ O ₆ BaZr _{0,25} Nb _{1,5} O _{5,25}		5B-15	102
BaO ₂ Sn	BaSnO ₂ -BaTiO ₃		5C-j3	105
BaO, Sn	BaSnO ₂ -PbO: SnO ₂		1C-a25	77
BaO ₂ Sn	BaSnO ₂ -PbTiO ₂		1C-a21	76
BaO ₃ Sn	(Ba-Pb)(Sn-Ti)O.		1C-b10	83
BaO _s Sn	BaSnO,-SrSnO.		1C-f18	88
BaO ₃ Sn	BaSnO,-CaSnO,-SrSnO.		1C-a20	76
BaO ₆ Ta ₂ BaO ₆ Ta ₂	BaTa ₂ O ₆ -BaTiO ₆		1C-f13	88
BaO, Ta,	(Ba-Pb-Ca)(Ta-Nb) ₂ O ₆		1C-e10	87
BaO, Ti	(Ba-Pb-Sr)(Ta-Nb),O		5B-15 5B-15	102
BaO.Ti	BaTiO _s -Ba(Fe _{1/2} Ta _{1/2})O _s		1C-d2	102 84
BaO, Ti	BaTiO ₃ -BaHfO ₃ BaTiO ₃ -BaNb ₂ O ₄		1C-a24	77
BaO,Ti	BaTiO _a -BaSnO _a		1C-e9	86
BaO₃Ti	BaTiO ₃ -BaTa ₂ O ₆		1C-a25	77
BaO, Ti	BaTiO,-BaUO,		1C-e10	87
BaO, Ti	BaTiO,-BaZrO,		1C-a26	77
BaO,Ti BaO,Ti	BaTiO,-BiFeO.		1C-a23	77
BaO,Ti	BaTiO,-Bi,Ti,O,,		1C-c9	84
BaO _s Ti	BaTiO,-CaTiO,		7B-6	114
aO,Ti	BaTiO, Co2Nb2O,		1C-a7	74
aO _a Ti	BaTiO, Co, Ta,O,		1C-e11	87
aO,Ti	BaTiO ₃ -(K _{1/2} Bi _{1/2})TiO ₃	1	1C-e11 1C-d3	87
aO ₃ Ti	BaTiO ₃ -KNbO ₃ BaTiO ₃ -LaAlO ₃	- 1	1C-c5	84 83
aO,Ti	BaTiO ₃ -LaAlO ₃ BaTiO ₃ -Mn ₂ Nb ₂ O ₇	- 1	1C-c8	83
aO ₃ Ti	BaTiO ₃ -Mn ₂ Ta ₂ O ₇	ľ	1C-e11	87
aO,Ti	BaTiO ₃ -NaNbO ₃	- 1	1C-e11	87
aO ₃ Ti	BaTiO ₃ -Ni ₂ Nb ₂ O ₇	1	1C-c2	83
aO _s Ti	BaTiO,-Ni,Ta,O,	- 1	1C-e11	87
aO₃Ti	BaTiO,-PbO:SnO.	- 1	1C-e11	87
aO₃Ti aO₃Ti	BaTiO,-PbTiO,	1	1C-b4	82
aO _s Ti aO _s Ti	BaTiO,-PbZrO.	- 1	1C-a11	75
O,Ti	BaTiO ₃ -SrTiO ₃	- 1	1C-b3	82
	241103-311103			
O ₃ Ti	BaTiO ₃ -CaTiO ₃ -PbTiO ₃ BaTiO ₃ -CaTiO ₃ -PbTiO ₃	- 1	1C-a9 1C-f2	75 87

Page

V Substanzenverzeichnis

Gross formula	Chemical formula	Nr.	Page
BaO ₃ Ti	BaTiO ₃ -LaInO ₃ -LaYO ₅ -SrTiO ₅	1C-f12	88
BaO ₃ Ti	BaTiO ₃ -PbTiO ₃ -BaNb ₂ O ₆ -PbNb ₂ O ₆	1C-f19	88
BaO ₃ Ti	(Ba–Ca) (Ti–Zr)O ₃	1C-f15	88
BaO ₃ Ti	(Ba-Pb)(Ti-Sn)O ₃	1C-f18	88
BaO ₃ Ti	(Ba-Pb) (Ti-Zr)O ₃	1C-f17	88
BaO ₃ U	BaUO ₃ -BaTiO ₃	1C-a26	77
BaO ₃ Zr	BaZrO ₃ -BaNb ₂ O ₃	5C-j2	105
BaO ₃ Zr BaO ₃ Zr	BaZrO ₃ -BaTiO ₃ BaZrO ₃ -CaZrO ₃	1C-a23 1C-a12	77 76
BaO ₃ Zr	BaZrO ₃ -CaZrO ₃ BaZrO ₃ -PbTiO ₃	1C-a12	82
BaO ₂ Zr	BaZrO ₃ -PbZrO ₃	1C-a15	76
BaO _s Zr	(Ba-Ca) (Zr-Ti)O	1C-f15	88
BaO ₃ Zr	(Ba-Pb)(Zr-Ti)O,	1C-f17	88
BaO _z Zr	BaZr _{0.25} Nb _{1.5} O _{5.35}	5C-j3	105
BeF,H,N,	(NH ₄) ₂ BeF ₄ -(NH ₄) ₂ SO ₄	14B-1	154
BiFeO,	BiFeO ₃ -BaTiO ₃	1C-c9	84
BiFeO ₃	BiFeO ₃ -LaAlO ₃	1C-b11	83
BiFeO _a	BiFeO ₃ -LaCrO ₃	1C-b12	83
BiFeO ₃	BiFeO ₃ -LaFeO ₃	1C-a33	82
BiFeO ₃	BiFeO ₃ -Pb(Fe _{1/2} Nb _{1/3})O ₃	1C-d23	85
BiFeO ₃	BiFeO ₃ -PbTiO ₃	1C-c13	84
BiFeO ₃	BiFeO ₃ -PbZrO ₃	1C-c14	84
BiFeO ₃	BiFeO ₃ -SrFeO ₃	1C-c16	84
BiFeO ₃	BiFeO ₃ -Sr(Sn _{1/s} Mn _{2/s})O ₃	1C-d22	85
BiFeO ₃	BiFeO ₃ -SrSnO ₃	1C-c15	84
BiFeO ₃	BiFeO ₃ -SrTiO ₃	1C-c7	83
BiFeO ₃	BiFeO ₅ -PbTiO ₅ -PbZrO ₅	1C-f6 7B-7	87 114
Bi ₅ GaO ₁₅ Ti ₃ BiIS	Bi ₅ Ti ₅ GaO ₁₅ -Bi ₄ PbTi ₄ O ₁₅ BiSI-SbSI	10B-5	128
Bi _{1/2} K _{1/2} O ₃ Ti	(K _{1/2} Bi _{1/2})TiO ₃ -BaTiO ₃	1C-d3	84
Bi _{1/2} K _{1/2} O ₃ Ti	(K _{1/3} Bi _{1/2})TiO ₃ -(Na _{1/2} Bi _{1/3})TiO ₃	1C-d20	85
Bi _{1/2} K _{1/3} O ₃ Ti	(K _{1/2} Bi _{1/2})TiO ₃ -PbTiO ₃	1C-d5	84
Bi _{1/2} K _{1/2} O ₃ Zr	(K _{1/3} Bi _{1/3})ZrO ₃ -PbZrO ₃	1C-d17	85
Bi _{1/2} Na _{1/3} O ₃ Ti	(Na _{1/2} Bi _{1/2})TiO ₃ -(K _{1/2} Bi _{1/2})TiO ₃	1C-d20	85
Bi _{1/2} Na _{1/2} O ₃ Ti	(Na _{1/2} Bi _{1/2})TiO ₃ -PbTiO ₃	1C-d4	84
Bi _{1/2} Na _{1/2} O ₃ Ti	(Na _{1/2} Bi _{1/2})TiO ₃ -PbZrO ₃	1C-d21	85
Bi _{1/2} Na _{1/3} O ₃ Zr	(Na _{1/2} Bi _{1/2})ZrO ₃ -PbZrO ₃	1C-d16	85
BiNbO ₆	Bi(Nb-Ti)O ₆ -PbNb ₂ O ₆	5B-14	102
Bi ₂ Nb ₆ O ₁₆	$Bi_2O_3 \cdot 3Nb_2O_5 - PbNb_2O_6$	5B-13	102
Bi ₂ Nb ₂ O ₉ Pb	Bi ₂ PbNb ₂ O ₉ -Bi ₃ TiNbO ₉	7B-1	113
Bi ₂ Nb ₂ O ₃ Pb	Bi ₂ PbNb ₂ O ₉ -BaBi ₂ Nb ₂ O ₉	7B-5	114
Bi,NbO,2PbTi,	Bi ₃ PbTi ₂ NbO ₁₂ -Bi ₄ Ti ₃ O ₁₂	7B-2	113
Bi ₂ Nb ₂ O ₃ Sr	Bi ₂ SrNb ₂ O ₅ -Bi ₃ TiNbO ₅	7B-1	113
Bi ₃ NbO ₁₂ SrTi ₂	Bi ₃ SrTi ₂ NbO ₁₂ -Bi ₄ Ti ₃ O ₁₂	7B-2 7B-1	113
Bi ₃ NbO ₃ Ti	Bi ₃ TiNbO ₉ -Bi ₃ BaNb ₂ O ₃ Bi TiNbO Bi DiNi O	7B-1 7B-1	113 113
Bi ₃ NbO ₉ Ti Bi ₂ NbO ₉ Ti	Bi ₃ TiNbO ₉ -Bi ₂ PbNb ₂ O ₃ Bi ₃ TiNbO ₉ -Bi ₂ SrNb ₂ O ₃	7B-1 7B-1	113
Bi ₄ O ₁₅ PbTi ₄	Bi ₄ PbTi ₄ O ₁₅ -Bi ₅ Ti ₃ GaO ₁₅	7B-7	114
BiO ₆ Ti	Bi(Ti-Nb)O ₂ -PbNb ₂ O ₃	5B-14	102
Bi ₂ O ₂ Ti ₃	Bi ₂ O ₃ · 3TiO ₃ -PbNb ₂ O ₆	5B-14	102
Bi ₂ O ₂ Ti ₃	Bi ₂ O ₃ · 3TiO ₃ - SrTiO ₃	1C-e8	86
Bi,O,Ti,	Bi ₄ Ti ₃ O ₁₂ -BaTiO ₃	7B-6	114
Bi ₄ O ₁₂ Ti ₃	Bi ₄ Ti ₅ O ₁₃ -Bi ₅ BaTi ₂ NbO ₁₂	7B-2	113
Bi ₄ O ₁₂ Ti ₃	Bi ₄ Ti ₃ O ₁₃ -Bi ₃ PbTi ₂ NbO ₁₂	7B-2	113
Bi ₄ O ₁₂ Ti ₃	Bi ₄ Ti ₅ O ₁₂ -Bi ₅ SrTi ₅ NbO ₁₃	7B-2	113
BrSSb	SbSBr-SbSI	10B-3	127
C ₆ FH ₁₇ N ₃ O ₉ P	(NH ₂ CH ₂ COOH) ₃ · H ₃ FO ₃ F- (NH ₂ CH ₂ COOH) ₂ · H ₃ SO ₄	28B-2	191
C ₆ FeH ₆ K ₄ N ₆ O ₃	K ₄ Fe(CN) ₆ · 3H ₂ O-(NH ₄) ₄ Fe(CN) ₅ · 3H ₂ O	22B-1	176
C ₆ FeH ₆ K ₄ N ₆ O ₅	K ₄ Fe(CN) ₆ · 3H ₂ O-Rb ₄ Fe(CN) ₆ · 3H ₂ O	22B-2	176
C,FeH,K,N,O,	K ₄ Fe(CN) ₆ · 3H ₂ O-Tl ₄ Fe(CN) ₆ · 3H ₂ O	22B-3	177
C ₆ FeH ₁₆ N ₁₉ · 3H ₂ O	(NH ₄) Fe(CN) · 3H ₂ O-K ₄ Fe(CN) · 3H ₂ O	22B-1	176
C ₆ FeH ₂₂ N ₁₀ O ₃	(NH ₄) Fe(CN) · 3H ₂ O-K Fe(CN) · 3H ₂ O	22B-1	176
-0 10-3	(1

V Index of substances

Gross formula	Chemical formula	Nr.	Page
C ₆ FeH ₅ N ₆ O ₃ Rb ₄	Rb ₄ Fe(CN) ₆ · 3H ₂ O-K ₄ Fe(CN) ₆ · 3H ₂ O	22B-2	176
C.FeH.N.O.Tl.	Tl.Fe(CN) · 3H.O-K.Fe(CN) · 3H.O	22B-3	177
C ₈ FeK ₄ N ₆ · 3H ₃ O	K, Fe(CN), · 3H, O-(NH,), Fe(CN), · 3H, O	22B-1	176
C ₆ FeK ₄ N ₆ · 3H ₃ O	K,Fe(CN), · 3H,O-Rb,Fe(CN), · 3H,O	22B-2	176
C For N . 3H O	K ₄ Fe(CN) ₆ · 3H ₄ O-Tl ₄ Fe(CN) ₆ · 3H ₅ O	22B-3	177
C ₆ FeK ₄ N ₆ · 3H ₃ O	Rb ₄ Fe(CN) ₆ · 3H ₂ O-K ₄ Fe(CN) ₆ · 3H ₂ O	22B-2	176
C ₆ FeN ₆ Rb ₄ · 3H ₅ O	Tl ₄ Fe(CN) ₆ · 3H ₂ O-K ₄ Fe(CN) ₆ · 3H ₂ O	22B-3	177
C ₆ FeN ₆ Tl ₄ · 3H ₃ O	NaKC ₄ H ₄ O ₆ · 4H ₃ O-NaNH ₄ C ₄ H ₄ O ₆ · 4H ₃ O	33B-1	198
C4H4KNaO6 · 4H3O	Nake, Ho and National Colors	33B-2	198
C ₄ H ₄ KNaO ₆ · 4H ₂ O	NaKC,H4O6 · 4H4O-NaTIC,H4O6 · 4H4O	33B-1	198
C ₄ H ₁₃ KNaO ₁₆	NaKC, H.O. · 4H.O-NaNH, C, H.O. · 4H.O	33B-2	198
C ₄ H ₁₃ KNaO ₁₆	NaKC, H.O. 4H.O-NaTIC, H.O. 4H.O	33B-1	198
C ₄ H ₆ NNaO ₆ · 4H ₂ O	NaNH,C,H,O, · 4H,O-NaKC,H,O, · 4H,O	33B-1	198
C4H16NNaO16	NaNH ₄ C ₄ H ₄ O ₆ · 4H ₃ O-NaKC ₄ H ₄ O ₆ · 4H ₃ O	JJD-1	1,70
$C_6H_{17}N_3O_{16}S$	(NH ₃ CH ₃ COOH) ₆ · H ₂ SO ₄ -(NH ₂ CH ₂ COOH) ₆ ·	28B-2	191
	· H ₃ PO ₆ F	200-2	121
CaH ₁₇ NaO ₁₀ S	(NH ₂ CH ₂ COOH) ₃ · H ₃ SO ₄ -(NH ₂ CH ₂ COOH) ₃ ·	0070.4	101
	· H ₂ SeO ₄	28B-1	191
C ₆ H ₁₇ N ₃ O ₁₆ Se	(NH ₂ CH ₂ COOH) ₃ · H ₂ SeO ₄ -(NH ₂ CH ₃ COOH) ₃ ·		
-0 1. 5-10	·H,SO,	28B-1	191
C4H4NaO4Tl · 4H2O	NaTIC, H.O. · 4H.O-NaKC, H.O. · 4H.O	33B-2	198
C ₄ H ₁₃ NaO ₁₆ Tl	NaTIC, H,O, · 4H,O-NaKC, H,O, · 4H,O	33B-2	198
CaHfO.	CaHfO,-PbHfO,	1C-a16	76
CaNb ₂ O ₆	CaNb,O,-BaNb,O,	5B-1	99
CaNb ₃ O ₄	CaNb ₂ O ₄ -NaNbO ₃	1C-e3	86
	CaNb ₂ O ₆ -PbNb ₂ O ₆	5B-2	99
CaNb ₃ O ₆	(Ca-Ba-Pb)(Nb-Ta),O	5B-15	102
CaNb ₂ O ₆	Ca,Nb,O,-Cd,Nb,O,	6B-1	106
Ca ₂ Nb ₃ O ₇		1C-b6	82
CaO ₃ Sn	CaSnO ₃ -PbTiO ₃	1C-a19	76
CaO ₃ Sn	CaSnO ₃ -SrSnO ₃	1C-f13	88
CaO ₃ Sn	CaSnO ₃ -SrSnO ₃ -BaSnO ₃	5B-15	102
CaO Ta	(Ca-Ba-Pb)(Ta-Nb) ₃ O ₆	6B-6	106
Ca ₂ O,Ta ₃	Ca,Ta,O,-Sr,Ta,O,	1C-a7	74
CaO ₃ Ti	CaTiO ₃ -BaTiO ₃	1C-a22	76
CaO,Ti	CaTiO ₃ -CaZrO ₃	1C-c1	83
CaO ₆ Ti	CaTiO ₃ -NaNbO ₆	1C-a8	75
CaO ₃ Ti	CaTiO _s -PbTiO _s	1C-a6	74
CaO ₆ Ti	CaTiO ₃ -SrTiO ₃	1C-f2	87
CaO ₃ Ti	CaTiO ₃ -BaTiO ₅ -PbTiO ₅	1C-12 1C-f1	87
CaO ₆ Ti	CaTiO ₃ -BaTiO ₆ -SrTiO ₃		88
CaO ₃ Ti	(Ca-Ba)(Ti-Zr)O ₃	1C-f15	
CaO ₃ Zr	CaZrO ₃ -BaZrO ₃	1C-a12	76
CaO ₃ Zr	CaZrO ₃ -CaTiO ₃	1C-a22	76
CaO ₃ Zr	CaZrO ₃ -PbTiO ₃	1C-b5	82
CaO ₆ Zr	CaZrO ₆ -PbZrO ₃	1C-a13	76
CaO ₃ Zr	(Ca-Ba)(Zr-Ti)O ₆	1C-f15	88
CdNb ₃ O ₄	CdNb ₂ O ₆ -NaNbO ₃	1C-e4	86
CdNb ₂ O ₄	CdNb ₂ O ₆ -PbNb ₂ O ₆	5B-10	101
Cd ₂ Nb ₃ O ₇	CdaNbaO,-CaaNbaO,	6B-1	106
Cd,Nb,O,	Cd.Nb.O,-Cd.Ta.O,	6B-3	106
Cd ₂ Nb ₃ O ₇	Cd ₂ Nb ₂ O ₂ -Mg ₂ Nb ₂ O ₂	6B-4	106
Cd ₂ Nb ₂ O ₇	Cd ₂ Nb ₂ O ₇ -Pb ₃ Nb ₂ O ₇	6B-2	106
	Cd.Ta.O,-Cd.Nb.O,	6B-3	106
Cd ₂ O ₇ Ta ₂	CdTiO ₆ -LiNbO ₃	1C-e7	86
CdO,Ti	CdTiO ₆ -LiTaO ₃	1C-e7	86
CdO _s Ti		1C-d8	85
Ce _{1/3} Li _{1/2} O ₃ Ti	(Li _{1/3} Ce _{1/2})TiO ₆ -PbTiO ₆	1C-f11	87
CoLaO ₆	LaCoO ₃ -PbTiO ₃ -LaMnO ₃	1C-e11	87
Co ₂ Nb ₂ O ₇	Co ₃ Nb ₃ O ₇ -BaTiO ₃	1C-e11	87
Co2O,Ta2	Co ₂ Ta ₂ O ₇ -BaTiO ₆	1C-b12	83
CrLaO ₃	LaCrO ₃ -BiFeO ₃		87
CrLaO ₃	LaCrO ₃ -PbTiO ₃ -LaMnO ₃	1C-f11	134
CsNO ₃	CsNO ₃ -RbNO ₃	12B-4	134
		25.5	201
Eu ₂ Mo ₃ O ₁₃	(Eu-Gd) _s (MoO ₄) _s	35-5	201
Eu ₂ Mo ₃ O ₁₂	(Eu-Tb) ₃ (MoO ₄) ₃	35-6	201

	V Substanzenverzeichnis		
Gross formula	Chemical formula	Nr.	Page
FeLaO ₃ FeLaO ₃ FeLaO ₃ FeLaO ₃ FeLaO ₄ Fe ₁₁ ND ₁₃ O ₅ Pb Fe ₁₁ ND ₁₃ O ₅ Pb Fe ₁₁ ND ₁₃ O ₅ Pb Fe ₁₂ O ₅ PbTa ₁₃ Fe ₁₃ O ₅ PbTa ₁₃ Fe ₁₃ O ₅ FTa ₁₃	LaFoQ-BiFeO, LaFoQ-PDTiO, LaFoQ-PDTiO, LaFoQ-PDTiO,-PLZrO, PD(Fe ₁ / ₂ ND ₁ / ₂ O-BiFeO, PD(Fe ₁ / ₂ ND ₂)O,-BiFeO, PD(Fe ₁ / ₂ ND ₂)O,-PDTiO ₂ -PDZrO ₃ PD(Fe ₁ / ₂ ND ₂)O,-PDTiO ₃ PD(Fe ₁ / ₂ ND ₂)O,-PDTiO ₄ PD(Fe ₁ / ₂ Ta ₁)O,-PDTiO ₅ SrFeO,-BiFeO, SrFeO,-BiFeO, SrFeO ₂ -STrO ₃	1C-a33 1C-c12 1C-f11 1C-f5 1C-d23 1C-f8 1C-d11 1C-d15 1C-c16 1C-d1	82 84 87 87 85 87 85 85 85 84 84
Gd ₁ Mo ₂ O ₁₂ Gd ₁ Mo ₂ O ₁₂ Gd ₂ Mo ₃ O ₁₃ Gd ₂ Mo ₂ O ₁₃ Gd ₂ O ₁₃ W ₃ GeTe	(Gd_Es)_(MoO), (Gd_No)_t(MoO), (Gd_N)_t(MoO), (Gd_Y)_t(MoO), Gd_t(Mo-WoO), Gd_t(W-MoO), Gd_t(W-SoO),	35–5 35–8 35–9 35–7 35–10 35–10 36–3	201 202 202 202 202 202 202 202 214
H, KO, P H, NO, P H, NO, P H, NO, P H, NO, S H, O, PTI HIO, Pb HIO, Pb HIO, Pb HIO, Pb HIO, Pb HIO, Pb HIO, Pb HIO, Pb HIO, Pb HIO, Pb	KH,PO,-NH,H,PO, NH,NO,-KNO, NH,H,PO,-KNO, NH,H,PO,-KH,PO, NH,H,PO,-TH,PO, (NH,),SO,-(NH,),BEF, TH,PO,-NH,H,PO, PBHO,-BAHO, PBHO,-BAHO, PBHO,-PBTO,- PBHO,-	13B-1 12B-1 13B-1 13B-2 14B-1 13B-2 1C-a18 1C-a16 1C-d18 1C-a29 1C-a31 1C-a17	148 134 148 148 154 154 148 76 76 85 82 82 76 87 76
IK IOSb ISSb ISSb ISSb ISSb ISSb ISSb ISSb	KI-KNO, sbOI-SbSI sbOI-SbSI sbSI-AsSI sbSI-BSI sbSI-SbOI sbSI-SbOI sbSI-SbOBr sbSI-SbSBr sbSI-SbSI bSeI-SbSI LainO ₃ -BaTiO ₃ -LaYO ₃ -SrTiO ₃	12B-3 10B-2 10B-1 10B-5 10B-2 10B-3 10B-4 10B-4 1C-f12	134 127 127 128 127 127 128 128 128 88
KNO, KNO, KNO, KNO, KNO, KNO, KNO, KNO,	KNO ₂ -KI KNO ₂ -NH ₄ NO ₄ KNO ₂ -NH ₄ NO ₅ KNO ₂ -RNO ₃ KNDO ₂ -EATO ₃ KNDO ₂ -EATO ₃ KNDO ₂ -KTAO ₃ KNDO ₂ -NANDO ₃ KNDO ₂ -POHO ₃ KNDO ₃ -POHO ₃ (K-Na)(Nb-Ta)O ₃ (K-Na)(Nb-Ta)O ₃ (K-Na)(Nb-Ta)O ₃ K(Nb ₆ , aTa _{8,23})O ₄ (KTN)(KTN) KNDO ₃ -NANDO KTAO ₂ -KNDO ₃ KTAO ₂ -KNDO ₃ KTAO ₂ -KNDO ₃ KTAO ₃ -KNDO ₄ KTAO ₃ -KNDO ₄ KTAO ₃ -KNDO ₄ (K-Na)(Ta _{8,23} Nb _{6,23} O ₃ K(Ta _{8,23} Nb _{6,23} O ₃ K(Ta _{8,33} Nb _{6,23} O ₃	12B-3 12B-1 12B-2 1C-c5 1C-a4 1C-a1 1C-c6 5C-b6 1C-114 5C-k2 1C-a5 1C-b2 1C-b1 1C-b1 1C-b1 1C-a5 1C-b1 1C-a5 1C-b1 1C-a5	134 134 134 134 83 74 73 101 83 103 88 105 74 82 74 88 105 74

V Index of substances

Page

LaFO, LayLi, Color	Gross formula	Chemical formula		Nr.	1 -
Layle Lay	LaFeO.				Page
LaMnO, La	La _{1/2} Li _{1/9} O ₂ Ti	(Li, La, TiO -Phrio			84
LaMnO, LaMnO, LaCo, Phitio, 10-6111 84 LaMnO, LaMnO, LaCo, Phitio, 10-6111 87 LaMnO, LaMnO, LaMnO, Phitio, 10-6111 87 LaMnO, LaMnO, LaMnO, Phitio, 10-6111 87 LaMnO, LaMnO, LaMnO, Phitio, 10-611 87 LaMnO, LaMnO, LaMnO, Phitio, 10-611 87 LaMnO, LaMnO, Phitio, 10-611 87 LaMnO, LaMnO, Phitio, 10-611 87 LaMnO, LaMnO, Phitio, Phitio, 10-61 87 LaNnO, 11-62, 3Nh, 0-7-8110, 10-611 87 LaNnO, 11-62, 3Nh, 0-7-8110, 10-611 87 LaNnO, LaMnO, LaMnO, Phitio, 10-61 88 Linno, Linno, Linno, Phitio, 10-61 88 Linno, Phitio, 10-61 88 Linno, Linno, Linno, Linno, Linno, Linno, Linno, Linno, Phitio, 10-61 88 Linno, Phitio, 10-61 88 Linno, Phiti, Linno, Phitio, Phitio, Linno, Phitio, Phitio, Linno, Phitio, Linno, Phitio, Linno, Phitio, Linno, Phitio, Linno, Phitio, Linno, Phitio, Phitio, Linno, Linno, Phitio, Linno, Phitio, Linno, Phitio, Linno, Phitio, Linno, Phitio, Linno, Linno, Phitio, Linno, Lin	LaMnO.	LaMnO -PhTiO		1C-d6	84
Labido, Linho, Labido, Linho,	LaMnO,	LaMnOLaCoOPhTiO			84
Lahno, La	LaMnO,	LaMnOLaCrOPhTiO.			
LaMido L	LaMnO ₃	LaMnOLaFeOPhTiO.			
Laming, q, q, Ti	LaMnO ₃	LaMnOLaNiOPhTiO.			
La,Nh,Q ₁ La,Q ₁ Nh,Q ₂ PbNh,Q ₃ SB-12 101 La,Q ₂ Nh,Q ₂ PbNh,Q ₃ SB-12 101 La,Q ₃ Nh,Q ₂ PbNh,Q ₃ SB-12 101 La,Q ₃ Nh,Q ₂ PbNh,Q ₃ SB-12 101 La,Q ₃ Nh,Q ₃ La,Q ₃ Nh,Q ₃ Nh,	LaMnO ₃	LaMnOPbTiOSrTiO.			
La, Mo, O ₁₁	La _{1/2} Na _{1/2} O ₃ Ti	(Na, La, La, La)TiOPhTiO.			
LANIO, LANIO, PATIO, LAYO, BATIO, LAINO, PSTIO, LINDO, LINDO, LINDO, CATTO, LINDO, LINDO, LINDO, LINDO, PANBO, LINDO, LINDO, LINDO, LINDO, PANBO, LINDO, LINDO, LINDO, PANBO, LINDO, LINDO, LINDO, PANBO, LINDO, LINDO, PBTIO, LIO, TA LITAO, LINDO, PBTIO, ME, ND, DO, DO, ME, ND, DO,	La ₂ Nb ₆ O ₁₈	La ₂ O ₄ · 3Nb ₄ O ₄ – PbNb ₄ O ₄			
LAYO, =BATIO, -LAIRO, 1C-f12 88		LaNiO,-LaMnO,-PbTiO.			
LINDO, CATTIO, 11C-e7 LINDO, LINDO, LINDO, LITTAO, 3B-1 LINDO, LINDO, LINDO, NANDO, 1C-e1 LINDO, LINDO, NANDO, 1C-e1 LINDO, LINDO, NANDO, 1C-e1 LINDO, LINDO, NANDO, 1C-e1 REAL LIO,TA LITAO, LINDO, PENIO, 1C-e7 REAL REAL REAL REAL REAL REAL REAL REAL		LaYO,-BaTiO,-LaInO,-SrTiO			
LINDO, LINDO, JATAO, 3B-1 94 LINDO, LINDO, JANDADO, 1C-61 84 LINDO, LINDO, PENBLO, 1C, 1C-61 85 LINDO, LINDO, PENBLO, 1C, 1C-62 85 LINDO, LINDO, PENBLO, 1C, 1C-67 86 LINDO, LINDO, PENBLO, 1C-67 86 LINDO, LINDO, PENBLO, 1C-67 86 LINDO, PENBLO, 1C-67 87 LIO, TA 10-67 87 LINDO, PENBLO, PENBLO, 1C-67 87 LIO, TA 10-67 87 LINDO, PENBLO, PENBLO, 1C-67 87 LIO, TA 10-67 87 LINDO, PENBLO, PENBLO, 1C-67 87 LIO, PENBLO, PENBLO, 1C-67 87 LIO, TA 10-67 88 LINDO, PENBLO, PENBLO, 1C-67 87 LIO, TA 10-67 87 LIO,		LiNbO ₂ -CdTiO ₂			
Lindo, Lindo, Nando, 1C-e1 8 Lindo, Lindo, Lindo, Lindo, Lindo, 1C-e1 1 10 Lindo, Lindo, 1C-e1 1 10 Lindo, 1C-e1 10 10 10 10 10 10 10		LiNbO ₃ -LiTaO ₃			
LINDO, LLAK, APONNO, S. ME, APONNO, S.	LINDO,	LiNbO,-NaNbO,			
Lie, Na., (Nb., 1a., 1b., 1b., 1b., 1b., 1b., 1b., 1b., 1b	LINDO ₃	LiNbO ₃ -PbNb ₂ O ₆			
	LINDO,	Li _{0,4} K _{0,6} (Nb _{0,5} Ta _{0,5})O ₅			
Lido_Ta	L1 _{1/2} Nd _{1/2} O ₃ T1	(Li _{1/2} Nd _{1/2})TiO ₂ -PbTiO ₃			
LiO ₃ Ta	LiO ₃ 1a	LiTaO ₃ CdTiO ₃			
	LiO, Ta	LiTaO ₃ -LiNbO ₃			
Ms_1,Nb_1,O_1Pb	LiOsia	Li _{0.4} K _{0.6} (Ta _{0.7} Nb _{0.3})O ₃			
Box		Mg.Nb.OCd.Nb.O.		·	1
Map.O.Ph.Wi.n. Politics.		Pb(Mg, ANDA)O-Pb(Mg, W.)O			
Section Pow. Section Secti	Mg _{1/3} Nb _{2/3} O ₃ Pb		- 1		
Maily, Nby,OpPs	$Mg_{1/2}O_3PbW_{1/2}$	Pb(Mg1/2W1/2)O-Pb(Mg1/Nb.)O	- 1		
Main	Mg _{1/2} O ₃ PbW _{1/2}	Pb(Mg1/2W1/2)O-PbTiO-			
Majha, M	Mn _{1/2} Nb _{1/3} O ₃ Pb	Pb(Mn _{1/2} Nb _{1/2})O ₃ -PbTiO ₄	- 1		
Man, O., Ta., Man, O., Ta., Ta., Ta., Ta., Ta., Ta., Ta., Ta	Mn _{3/3} O ₃ Sn _{1/3} Sr	Sr(Sn _{1/a} Mn _{e/a})O _a -BiFeO _a			
Maj	Mn,Nb,O,	Mn ₂ Nb ₂ O ₇ -BaTiO ₂			
Mo_O_1Th_ CTP_ED_1, MO_O_1, 35-8 201	Mn ₃ O,1a ₂	Mn ₂ Ta ₂ O ₇ -BaTiO ₄	- 1		
Mo,O ₁₁ Th ₃	Mo ₃ Nd ₂ U ₁₂	(Nd-Gd) ₂ (MoO ₄) ₃	- 1		
Mario Mari	Ma O Th	(Tb-Eu) _s (MoO _e) _s			
NO,RB RNO, CNO, RNO, RNO, RNO, RNO, RN RNO, RNO, RN RNO, CNO, RNO, RNO, RNO, RNO, RNO, NANDO, NANDO, CARB, O, NANDO, STOR, O, NANDO, NANDO, CARB, O, NANDO, NANDO, CARB, O, NANDO, NANDO, CARB, O, NANDO, NANDO, CARB, O, NANDO, NANDO, NANDO, CND, O, NANDO, NANDO, NANDO, NANDO, RANDO, NANDO, RANDO, NANDO, RANDO, NANDO, RANDO, NANDO, RANDO, NANDO, RANDO, NANDO, NANDO, RANDO, NANDO,		(Tb-Gd) ₂ (MoO ₄) ₃	- 1		
NO_RB	1	(Y-Gd) ₂ (MoO ₄) ₃	- 1		
Mole		RbNO ₂ -CsNO ₃	- 1	120 4	1 424 1
NANDO, NANDO, BATHO, 10-22 33 38 38 38 38 38 38	NO ₂ Rb	RbNO, KNO,	- 1		
NANDO, NANDO, CANDO, 1C-3 86 NANDO, NANDO, NANDO, CANDO, 1C-3 86 NANDO, NANDO, CANDO, 1C-3 86 NANDO, CANDO, 1C-3 86 NANDO, CANDO, 1C-3 87 NANDO, NANDO, CANDO, 1C-4 86 NANDO, NANDO, CANDO, 1C-4 86 NANDO, NANDO, CANDO, 1C-4 82 NANDO, NANDO, CANDO, 1C-4 82 NANDO, NANDO, CANDO, 1C-4 86 NANDO, NANDO, CANDO, 1C-4 86 NANDO, NANDO, NANDO, NANDO, NANDO, 1C-4 86 NANDO, NANDO, NANDO, NANDO, 1C-4 86 NANDO, NANDO, NANDO, NANDO, 1C-4 86 NANDO, NANDO, NANDO, 1C-4 87 NANDO, 1C-4 87 NANDO, 1C-4 88 NANDO, NANDO, NANDO, NANDO, 1C-4 88 NANDO, NANDO, NANDO, NANDO, 1C-4 83 NANDO, 1C-4 87 NANDO, 1C-4 88 NANDO, 1C-4	NaNbO ₃	NaNbO,-BaTiO.	1		
MANDO, MANDO, CATIO, 1C-el 83 MANDO, MANDO, CATIO, 1C-el 83 MANDO, MANDO, CATIO, 1C-el 83 MANDO, MANDO, 1C-el 83 MANDO, MANDO, MANDO, 1C-el 73 MANDO, MANDO	NanbO ₃	NaNbO ₃ -CaNb ₂ O ₄	- 1	1C-e3	
NANDO, NANDO, CARDO, 10-64 86 NANDO,	NanbO ₃	NaNbO _s -CaTiO _s			
Nanno	NaNbO ₃	NaNbO ₂ -CdNb ₂ O ₆	- 1		
NANDO	No.NILO	NaNbO ₃ -KNbO ₃	- 1		
NANDO,	No.Nh.O	NaNbO ₃ -KSbO ₃			
MANDO	NoNhO	NaNbO ₃ -KTaO ₃	- 1	1C-b1	
NANDO		NaNbO ₃ -LiNbO ₃	- 1		
NANDO	NaNhO	Nando ₃ -NavO ₃	- 1	1C-e2	
Nando_Panido_Panido_Nando_Panido_Nando_Panido_Nando_Panido_Panido_Nando_Panido_Nando_Panido_Nando_Nando_Panido_Nando_Nando_Pacco_Nando_Nando_Nando_Pacco_Nando_Nando_Nando_Pacco_Nando_Nando_Nando_Pacco_Nando_Nando_Nando_Panido_Nando_	NaNhO		- 1	1C-a3	
NaNbo	NaNbO	Nando,-NaTaO,	i i	1C-a2	
Nanbo_ Nanbo_ Polito_ 1	l '	Nandos-Pondsos	11		86
MaNDO, MaNDO, FPEZO, 1C-e4 83 MaNDO, SINDO, MaNDO, SINDO, 1C-e5 86 MaNDO, SINDO, 1C-e5 86 MaNDO, 1C-e5 86 MaNDO, 1C-e5 86 MaNDO, 1C-e5 86 MaO, 1C-e5 MaO,	NaNbO,	NaNbO ₃ -PbTiO ₃	- 1		
Nahlo_s Nahlo_s Srinb_0_s 1C-e5 86 Nalo_s Na-Ki(Nib-Tai)o_s 1C-e1 88 Nalo_s Na-Ki(Nib-Tai)o_s 1C-fi 88 Nalo_s Nalo_s 1C-a3 74 Nalo_s Nalo_s 1C-a3 74 Nalo_s Nalo_s 1C-a2 74 Nalo_s 1C-a3 Nalo_s	NaMbo	NaNbO,-PbZrO.			
NaO, Sb (Na-N)(Nb-1a)() 1C-fl4 88 NaO, Sb NaO, Ta NaBO, ¬NaNbO, 1C-a3 74 NaC, Ta NaTaO, ¬NaNbO, 1C-a2 74 NaC, Ta (Na-K)(Ta-Nb)O, 1C-d1 88 NaO, Ta Na-K)(Ta-Nb)O, 1C-fl4 88 Nb, Ni, Vo NaVO, ¬NaNbO, 1C-fl4 88 Nb, Ni, Vo NaVO, ¬NaNbO, 1C-d2 86 Nb, O, Pb PNb, O, —Ba Nb, O, 1C-d1 87 Nb, O, Pb PNb, O, —Bi, O, 33B, O, 5B-5 100 Nb, O, Pb PNb, O, —Bi, O, 31TO, 5B-13 102 Nb, O, Pb PNb, O, —Bi, O, 31TO, 5B-14 102 Nb, O, Pb PNb, O, —Bi, O, 31TO, 1C-d1 102	NaNhO	NaNbO ₃ -SrNb ₂ O ₆			
NaO,Ta	NoO Sh	(Na-K)(Nb-Ta)O	- 1		
NaO,Ta	NaO To	NaSbO ₃ -NaNbO ₃			
NaO, Y (Na-N)(1a-N)(0, 1C-44 88 Nb,NiLO, NaVO_NaNbO, 1C-e2 86 Nb,O,Pb Nh,Nb,O,Pb 1C-e1 87 Nb,O,Pb PbNb,O,Pb,O,Pb,O,Pb,O,Pb,O,Pb,O,Pb,O,Pb 5B-13 102 Nb,O,Pb PbNb,O,Pb,O,Pb,O,Pb,O,Pb,O,Pb 5B-14 102	NaO Ta				
Nb,Ni,O, Nb,Ni,O, 1C-e2 86 Nb,O,Pb Nb,O,Pb PNb,O,-Bi,O, 3Mb,O, 5B-5 100 Nb,O,Pb PNb,O,-Bi,O, 3Mb,O, 5B-13 102 Nb,O,Pb PNb,O,-Bi,O, 3TO, 5B-13 102 Nb,O,Pb PNb,O,-Bi,O, 3TO, 5B-14 102 Nb,O,Pb PNb,O, PNb,O,Pb PNb,O, Sh,O,Pb PNb,O, Sh,O,Pb PNb,O, Sh,O,Pb Sh,	NaO.V				
Nb ₀ O,Pb	Nb.Ni.O	NavO ₃ -NaNbO ₃	1		
Nb ₁ O ₄ *Db	Nb.O.Ph	NI ₂ ND ₂ O ₇ -BaTiO ₂			
Nb ₂ O ₄ Pb	Nb.O.Ph	PDND ₂ O ₆ -BaNb ₂ O ₆	- 1		
Nb ₂ O ₈ Pb PbNb O Collection 5B-14 102	Nb ₂ O ₂ Pb	PhNb O Bi O arris		5B-13	
FUND _a U ₆ -Canb _a U ₆ 5B-2 99	Nb _a O _a Pb	Phylip O Carl O	İ		
		FUND2O6-CHND3O6	ì	5B-2	99

V Substanzenverzeichnis

	V Substanzenverzeichms		Nr.	Page
Gross formula	Chemical formula		5B-10	101
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -CdNb ₂ O ₆		5B-11	101
	PbNb ₂ O ₆ -KNbO ₂		5B-12	101
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -La ₃ O ₃ ·3Nb ₃ O ₆		5B-11	101
Nb ₂ O ₆ Pb	PhNb ₂ O ₄ -LiNbO ₃		1C-e6,	86
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -NaNbO ₃	1	5B-11	101
Nb ₂ O ₆ Pb		1	5B-9	101
	PbNb ₂ O ₅ -PbO: SnO ₂		5B-6	101
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -PbTa ₂ O ₆	1	5B-7	101
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -PbTiO ₃	1	5B-8,	101
Nb ₂ O ₄ Pb	PbNb ₂ O ₆ -PbZrO ₃		1C-e12	87
Nb ₂ O ₆ Pb	I priore	1	5B-11	101
	PbNb ₂ O ₆ -RbNbO ₃	1	5B-12	101
Nb _* O ₆ Pb	PbNb ₂ O ₆ -Sm ₂ O ₅ · 3Nb ₂ O ₅		5B-4	100
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -SrNb ₂ O ₆	1.0	5B-12	101
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -Y ₂ O ₃ · 3Nb ₂ O ₆			102
Nb,O,Pb		× 1	5B-14	88
Nb ₂ O ₆ Pb	PbNb ₂ O ₆ -Bi(Nb-Ti)O ₆ PbNb ₂ O ₆ -BaNb ₂ O ₆ -BaTiO ₅ -PbTiO ₂	- 1	1C-f19	102
Nb ₂ O ₆ Pb	PhNb ₂ O ₆ -BaNb ₂ O ₆ -Ballog	1	5B-15	102
Nb ₂ O ₆ Pb	(Pb-Ba-Ca)(Nb-Ta),O6		5B-15	
Nb ₂ O ₆ Pb	(Pb-Ba-Sr)(Nb-Ta) ₂ O ₆		6B-2	106
Nb ₂ O ₇ Pb ₂	Pb2Nb2O7-Cd3Nb2O7	1	1C-d18	85
ND ₂ O ₇ I D ₂	Pb(Sc _{1/2} Nb _{1/2})O ₃ -PbHfO ₃	1	1C-d12	85
Nb _{1/2} O ₂ PbSc _{1/2}	Dh/Sc , Nh, (a)Oa-PDIIOa	1	1C-d14	85
Nb _{1/2} O ₂ PbSc _{1/2}	Ph(Sc./aNb./a)Oa-PbZiOs	1	5B-11	101
Nb _{1/2} O ₃ PbSc _{1/3}		4	5B-12	101.
NbO ₃ Rb	Sm ₂ O ₅ · 3Nb ₂ O ₅ - PbNb ₂ O ₆	1	5B-3	99
Nb ₆ O ₁₈ Sm ₂	SrNb,O,-BaNb,O,	1	5C-b6	103
Nb _s O _s Sr	SrNb ₂ O ₆ -KNbO ₃	1	1C-e5	86
Nb ₂ O ₆ Sr	SrNb ₂ O ₆ -NaNbO ₈	1	5B-4	100
Nb ₂ O ₄ Sr	SrNb ₂ O ₆ -PbNb ₂ O ₆	· V	5B-15	102
Nb _s O ₆ Sr	(Sr-Ba-Pb)(Nb-Ta),O6	1		106
Nb ₂ O ₄ Sr	CATA O ST. TO O.		6B-5	87
Nb.O.Sr.	Sr _z Nb ₂ O ₇ -Sr _z Ta ₂ O ₇ Ni _z Ta ₂ O ₇ -BaTiO ₂	- 1	1C-e11 5B-12	101
Ni ₂ O ₇ Ta ₂	Y ₂ O ₃ · 3Nb ₂ O ₅ -PbNb ₂ O ₆	- 1	5B-12	101
Nb ₂ O ₁₈ Y ₂	Y2O3 . 3NO2O5-1 DIVO2O4	i	1Ć-a21	76
	PbO: SnO ₂ -BaSnO ₃	1	1C-b4	82
O _* PbSn	PbO: SnO ₂ -BaTiO ₂	1	5B-9	101
O _s PbSn	PbO:SnO ₂ -PbNb ₂ O ₃	1	1C-a30	82
OaPbSn	PbO: SnO ₂ -PbTiO ₃	ì		82
O _a PbSn	PhO: SnO ₂ -Fb11O ₃	1	1C-a32	87
O ₂ PbSn	PbO:SnO ₃ -PbZrO ₃	1	1C-f4	87
O _a PbSn	PbO: SnO ₃ -PbHiO ₃ -PbTiO ₃	- 1	1C-f3	88
O _a PbSn	PbO:SnO,-PbTiO,-PbZrO,	1	1C-f18	101
O _s PbSn	(Pb-Ba)(Sn-Ti)O ₂	1	5B-6	87
O ₆ PbTa ₂	PbTa ₂ O ₆ -PbNb ₂ O ₆	1	1C-e13	
O _e PbTa ₂	PbTa ₂ O ₆ -PbZrO ₃	1	5B-16	102
O _e PbTa _e	PbTa ₂ O ₆ -SrTa ₂ O ₆	- 1	5B-15	102
O PbTa	(Pb-Ba-Ca)(Ta-Nb),O6	1	5B-15	102
O ₆ PD1a ₂	(Pb-Ba-Sr)(Ta-Nb),O6	- 1	1C-b10	83
O PbTa	PbTiO ₂ -BaSnO ₃		1C-a11	75
O ₂ PbTi	PbTiO,-BaTiO,	l l	1C-b9	82
O ₂ PbTi	PbTiO,-BaZrO,	1	1C-c13	84
O ₂ PbTi	PhTiOs-BiFeOs	1	1C-b6	82
O.PbTi	PbTiO ₃ -CaSnO ₃	1	1C-a8	75
O ₂ PbTi	PbTiO _a -CaTiO _a	1	1C-b5	82
O,PbTi	PbTiO _s -CaZrO _s		1C-d5	84
O.PbTi	PbTiO ₃ -(K _{1/2} Bi _{1/3})TiO ₃			83
O _s PbTi	PD I O KNDO		1C-c6 1C-c10	
OaPbTi	PhTiO3-KNbO3			
O _s PbTi	PbTiO ₃ -LaAlO ₃		1C-c1	- 1 -:
O ₃ PbTi	PbTiO _s -LaFeO _s		1C-c1	
O ₃ PbTi	PhTiO,-LaMnO,		1C-d8	
O PhTi	PbTiO ₃ -(Li _{1/2} Ce _{1/2})TiO ₃		1C-d6	84
O PhTi	PhTiO ₂ -(L1 _{1/2} L2 _{1/2})1103		1C-d9	85
O ₂ PbTi	PhTiO ₂ -(Li _{1/2} Nd _{1/2}) 11O ₃		1C-d4	
O PbTi	PhTiO ₂ -(Na _{1/2} Bi _{1/2})TiO ₃		1C-d7	85
ОъРьТі	PbTiO _s -(Na _{1/2} La _{1/2})TiO ₃			
O _s PbTi				

V Index of substances

Page

Gross formula	Chemical formula	Nr.	Done
O _s PbTi	PbTiO ₃ -NaNbO ₃		Page
O ₃ PbTi	PbTiO ₂ -Pb(Fe _{1/2} Ta _{1/2})O ₂	1C-c3	83
O _s PbTi	Pb1iO,-PbHfO.	1C-d11 1C-a29	85
O ₅ PbTi	PbTiO,-Pb(Mg, (,W, (,)O)	1C-d10	82 85
O ₃ PbTi	PbTiO ₃ -Pb(Mn _{1/2} Nb _{1/2})O ₄	1C-d13	85
O ₃ PbTi	Pb1iO _s -PbNb _s O _s	5B-7	101
O ₂ PbTi O ₃ PbTi	PbTiO,-PbO:SnO,	1C-a30	82
O _s PbTi	PbTiO ₃ -Pb(Sc _{1/2} Nb _{1/2})O ₃	1C-d12	85
O _s PbTi	PbTiO ₃ -PbZrO ₃	1C-a27	77
O _a PbTi	PbTiO ₃ -SrSnO ₃ PbTiO ₃ -SrTiO ₃	1C-b8	82
O.PbTi	PbTiO ₃ -SrZrO ₃	1C-a10	75
O _a PbTi	PbTiO ₃ -ABO ₃ -PbZrO ₃	1C-b7	82
O ₂ PbTi	PbTiO ₃ -BaTiO ₃ -CaTiO ₃	1C-f9	87
O ₃ PbTi	PbTiO ₃ -BiFeO ₃ -PbZrO ₃	1C-f2	87
O _s PbTi	PbTiO,-LaCoO,-LaMnO	1C-f6 1C-f11	87
O ₂ PbTi	PbTiO _s -LaCrO _s -LaMnO _s	1C-f11	87
O ₃ PbTi	PbTiO ₂ -LaFeO ₂ -LaMnO	1C-f11	87
O ₃ PbTi	PbTiO,-LaFeO,-PbZrO.	1C-f5	87 87
O ₂ PbTi	PbTiO _s -LaMnO _s -LaNiO _s	1C-f11	87
O ₂ PbTi	PbTiO _s -LaMnO _s -SrTiO _s	1C-f10	87
O _s PbTi	PbTiO ₃ -Pb(Fe _{1/2} Nb _{1/2})O ₄ -PbZrO ₄	1C-f8	. 87
O ₃ PbTi	PDIIO,-PbHO,-PhO SnO.	1C-f4	87
O,PbTi O,PbTi	PbTiO ₃ -Pb(Mg _{1/5} Nb _{2/5})O ₃ -PbZrO ₃	1C-f7	87
O,PbTi	PDIIO,-PDO: SnO,-PbZrO.	1C-f3	87
O,PbTi	PbTiO,-BaTiO,-BaNb,O,-PbNb,O,	1C-f19	88
O _s PbTi	(Pb-Ba) (Ti-Sn)O	1C-f18	88
O ₃ PbTi	(Pb-Ba)(Ti-Zr)O ₃	1C-f17	88
O ₂ PbTi	Pb(Ti-Zr)O ₃ (Pb-Sr)(Ti-Zr)O ₃	1C-a28	78
O _* PbZr	PbZrO ₃ -BaTiO ₃	1C-f16	88
O ₃ PbZr	PbZrO ₃ -BaZrO ₃	1C-b3	82
O _s PbZr	PbZrO ₃ -BiFeO ₃	1C-a15	76
O ₃ PbZr	PbZrO ₃ -CaZrO ₃	1C-c14	84
O ₂ PbZr	PbZrO ₃ -(K _{1/3} Bi _{1/2})ZrO ₃	1C-a13	76
O ₃ PbZr	PbZrO ₃ -(Na _{1/3} Bi _{1/2})TiO ₃	1C-d17 1C-d21	85 85
O ₃ PbZr	PbZrO ₃ -(Na _{1/2} Bi _{1/2})ZrO ₂	1C-d16	85
O _a PbZr	PbZrO _a -NaNbO _a	1C-c4	83
O ₂ PbZr	PbZrO ₃ -Pb(Fe _{1/3} Ta _{1/3})O ₃	1C-d15	85
O ₃ PbZr O ₄ PbZr	PbZrO _s -PbHfO _s	1C-a31	82
•	PbZrO ₃ -PbNb ₂ O ₆	5B-8,	101
O ₂ PbZr	PbZrO ₃ -PbO:SnO ₃	1C-e12 1C-a32	87 82
O ₃ PbZr O ₃ PbZr	PbZrO ₃ -Pb(Sc _{1/2} Nb _{1/2})O ₃	1C-d14	85
O ₂ PbZr	PbZrO,-PbTa,O	1C-e13	87
O _a PbZr	PbZrO ₃ -PbTiO ₃	1C-a27	77
O ₃ PbZr	PbZrO ₃ -SrZrO ₃	1C-a14	76
O _a PbZr	Pb(Zr-Ti)O ₃ (PZT)	1C-a28	78
O _a PbZr	PbZrO ₃ -ABO ₃ -PbTiO ₃	1C-f9	87
O _z PbZr	PbZrO ₃ -BiFeO ₃ -PbTiO ₃ PbZrO ₃ -LaFeO ₃ -PbTiO ₃	1C-f6	87
O ₃ PbZr	Ph/rO -Ph/Fa . Nh . 10 Ph.Tio	1C-f5	87
O _s PbZr	PbZrO ₃ -Pb(Fe _{1/2} Nb _{1/2})O ₃ -PbTiO ₃ PbZrO ₅ -Pb(Mg _{1/3} Nb _{2/2})O ₃ -PbTiO ₃	1C-f8	87
O _a PbZr	PbZrO ₃ -PbO: SnO ₂ -PbTiO ₂	1C-f7	87
O ₂ PbZr	(Pb-Ba)(Zr-Ti)O ₃	1C-f3	87
O ₂ PbZr	(Pb-Sr)(Zr-Ti)O ₃	1C-f17	88
O ₃ SnSr	SrSnO ₃ -BaSnO ₄	1C-f16	88
O ₂ SnSr	SrSnO ₃ -BiFeO ₃	1C-a20 1C-c15	76
O ₂ SnSr	SrSnO _a -CaSnO _a		84
O ₂ SnSr	SrSnO ₃ -PbTiO ₃	1C-a19 1C-b8	76 82
O _s SnSr	SrSnO _a -BaSnO _a -CaSnO _a	1C-68 1C-f13	82 88
O ₆ SrTa,	SrTa,O,-PbTa,O,		00
O SeTo	5114306-F 514206	1 5B-16	102
O.SrTa. O.Sr ₂ Ta.	(Sr-Ba-Pb)(Ta-Nb) ₂ O ₆ Sr ₂ Ta ₂ O ₇ -Ca ₂ Ta ₂ O ₇	5B-16 5B-15	102 102

V Substanzenverzeichnis

Gross formula	Chemical formula	Nr.	Page
O,Sr,Ta, O,SrTi O,SrZr O,SrZr O,SrZr O,SrZr	Sr,Ta,OSr,Nb,O. SrTiOBatiO. SrTiOBatiO. SrTiOBiFo.) SrTiOBiFo.) SrTiOBiFo.) SrTiOBiO. SrTiOSiO. SrTiOSiO. SrTiOSiO. SrTiOSatiO. SrTiOSatiO. SrTiOBatiO. SrTiOBatiOCatiO. SrTiOBatiOCatiO. SrTiOBatiOLainOLayO. SrTiOBatiOLainOLayO. (Sr-PD)[Ti-zriO. SzziOPbztiO. SzziOPbztiO. SzziOPbztiO. SrTiOSiOBiO. OBiOBiOBiOBiOBiOB	6B-5 1C-a9 1C-c7 1C-e8 1C-a10 1C-d1 1C-d1 1C-d1 1C-d1 1C-d2 1C-d2 1C-d2 1C-d2 1C-d2 1C-d3 1C-d1 1C-d2 1C-d2 1C-d3 1C-d4 1C-d4 1C-d4 1C-d5 1C-d6 1C-d6 1C-d6 1C-d7 1C-d8 1C-d6 1C-d6 1C-d6 1C-d7 1C-d8 1C-d6 1C-d6 1C-d7 1C-d8 1C-d8 1C-d8 1C-d9 1C	106 75 83 86 74 75 84 87 87 88 88 82 76 88

BRIEF ATTACHMENT Q

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Date: March 1, 2005

Group Art Unit: 1751

Examiner: M. Kopec

Docket: YO987-074BZ

In re Patent Application of

Applicants: Bednorz et al.

Serial No.: 08/479,810

Filed: June 7, 1995

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

Commissioner for Patents

P.O. Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTÄCHMENT Q

Serial No.: 08/479,810 Page 1 of 5 Docket: YO987-074BZ

STRUCTURE AND PROPERTIES OF INORGANIC SOLIDS

FRANCIS S. GALASSO United Aircraft Research Laboratories

ILLUSTRATED BY
W. DARBY

PERGAMON PRESS
Oxford - New York - Toronto
Sydney - Brausschweig

Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523 Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Street, Rushcutters Bay, Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto ! Pergamon Press Ltd., Headington Hill Hall. Oxford

Vieweg & Sohn GmbH, Burgplatz I, Braunschweig N.S.W. 2011, Australia

All Rights Reserved. No part of this publication may be reproduced, stoned in a retrieval system, or trensmitted, in any form or by any means, electronic, mechanical, photocopyleg, recording or otherwise, without the policy permission of Pergamon Press Jos. Pergamon Press Inc. Copyright @ 1970

First edition 1970

712 412:

Ser

Library of Congress Catalog Card No. 70-104123

PRINTED IN GREAT BRITAIN BY PAGE BROS. (NORWICH) LTD.

CONTENTS

PREFACE

_

- Crystallography Properties
- 2. COMMON STRUCTURES

12

- Body-centered Cubic, A2
 - Face-centered Cubic, A1
- Close-packed Hexagonal, A3 Structure of Other Elements Alloys (Ordering)

3333388

- Discussion
- 3. THE CSCI TYPE AND RELATED STRUCTURES CsCl. B2
- Cuprite, C3 3.3a. Rutile, C4 3.3b. Trirutile
 - - CaB, D2, BiF, D0,

\$ S S

- Discussion
- THE NAC! TYPE AND RELATED STRUCTURES 4
- NaCl, B1 4.2
 - CaC2, C11 FeS., C2
 - Cu2AlMn, L2, Discussion
- 5. ZnS Type and Related Structures
 - ZnS, Zinc Blende, B3 5.1. Diamond Cubic, A4

22 22 82

CHAPTER 7 PEROVSKITE TYPE AND RELATED STRUCTURES

The gerovalide type structures are formed by ABX,-type compounds where DeA stoom replies some of the X formis in close-garded entitle layers and the B stooms if in the contacted Co₂AA strought school-garded entitle layers and the B stooms if in the contacted Co₃AA structure there are DB stooms in the ReO₂ structure the A strong are missing so that there are DBs in the Gas-packed X strong layers. These close-packed layers are perpendient to the (111) functions (body disposals) in the colic unit cell. Related structures can be built up as close-garded in the colic unit cell. Related structures can be built up as close-garded in the colic unit cell. Related structures can be built up as close-garded in the colic unit cell. Related structures can be built up as close-garded in the colic unit cell. Related structures can be built up as close-garded in the colic unit cell. Related structures can be built up as close-garded in the colic unit cell. Related structures can be built up to all close-garded in the colic unit cell. Related structures can be built up in close-garded in the colic unit cell. Related structures can be built up the colic decounts of packed and colic unit call. The Day and Table 3A.

7.1. Red Lead Oxide, PbO, B10, P4/pmm, Tetragonal

This lead oxide structure can be visualized by starting with an ordered cubic close-packed structure. Lead atoms are placed in the centered positions on the vertiled faces of a unit cell and the toygen atoms in the centered position on the top and portion floses as well as at the cell corners. The cubic

PEROVAKITE TYPE AND RELATED STRUCTURES

cell is clongated in the c direction; the lead atoms are displaced vertically downwards in the front and back faces and upwards in the side faces. This atragement corresponds to placement of the atoms in the following special positions in space goup P4/mm:

2Pb at (2c):
$$0, \frac{1}{2}, z; \frac{1}{2}, 0, \overline{z}$$
 with $z = 0.2385$; 2O at (2a): $0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0$.

In this structure both the lead and ovegan atoms are in fourfold coordination with atoms of the other type. The oxygen atoms are in a tenthodron of lead atoms, while the lead atoms are at the vertex of a square primal with oxygen atoms at the base. In the horizontal oxygen shocks, the atoms are in square planar coordination or roughly cubic packing. This structure is illustrated in Fig. 7.1. Other compounds which adopt this structure are listed in Table 7.1.

162

PEROVSKITE TYPE AND RELATED STRUCTURES

Fig. 7.6 The Sr, Ti, O, structure

The structure of Sr4Ti3O10 is similar but requires a longer c-axis to describe it. The cell sizes are listed in Table 7.6.

spunodu	4		-	7	7	m
Ti-0 Co	Cell size (Å)	ŝ	12.60	20.38	28.1	21.22
eries of Sr-	Cell si	8	3.884	3.90	3.90	4.063
TABLE 7.6. Series of Sr-Ti-O Compounds	bancomo		Sr,TiO.	Sr,Ti,O,	Sr.Ti,Oio	K,Zn,F,

7.7. Bl. Ti, O.: Structure, Fmmm, Orthorhombic

Bi₄Ti₃O₁₂ is one of a series of ferroelectric compounds which can be best described by unit cells of the perovskite structure stacked on one another and separated by bismuth oxygen layers. The structures of Bi₂NbO₂F, Bi₃NbTiO₂ and BaBi₄TiO₁₅ have been characterized, but in this book, only one, A type perovskite unit cells with an oxygen layer on top and one and one-half B type perovskite unit cells on top of the oxygen layer. The top half of the Fig. 7.7a inside the real cell. The actual a and b edges are taken as the face Bi4Ti3O12, will be described. Half the unit cell consists of one and one-half cell is the mirror image of this one. The unit cell just described is shown in diagonals of the small unit cell of the perovskite structure. The layer sequence is shown in Fig. 7.7b. The atomic positions are given below:

									ભાર ભાર નાર નાર્ક ભારે નાર્ક ભારે નાર્ક ભારે ભારે નાર્ક નાર્ક ભારે ભારે નાર્ક ભારે નાર્ક નાર્ક ભારે નાર્ક
0.067	0.211	0.50	0.372	0	0.25	0.436	0.308	0.128	(8)
0	0	0	0	0.25	0.25	0	0	0.25	
0	0	0	0	0.25	0.25	0	0	0.25	0.4.0
Ē	(<u>8</u>	(4P)	(8i)	(%	6	(8)	(8j	(16)	\$ \$ 5.0,0;0,5,0 \$ 5.00 0,000 0
Bi(1)	(2)	Ti(1)	(2)	(1)0	3	<u>©</u>	4	(5)	(4b) 0, 0, 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4;

PERU , SKITE TYPE AND RELATED STRUCTURES

去妻去十二,去妻子一二,去去

Fig. 7.7a The Bi, Ti,O12 structure (one-half the unit cell)

BRIEF ATTACHMENT R

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Date: March 1, 2005 Applicants: Bednorz et al. Docket: YO987-074B7

Serial No.: 08/479,810

Group Art Unit: 1751

Filed: June 7, 1995

Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents P O Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT R

Serial No.: 08/479,810

Page 1 of 5

Docket: YO987-074BZ

Mer Francis

CRYSTAL STRUCTURES

Second Edition

Ralph W. G. Wyckoff, University of Arisona, Tucson, Arisona

VOLUME 4

Miscellaneous Inorganic Compounds, Silicates, and Basic Structural Information

INTERSCIENCE PUBLISHERS

a division of John Wiley & Sons, New York • London • Sydney • Toronto

Copyright © 1951, 1953, 1959, 1960 by Interscience Publishers, Inc. Copyright @ 1968 by John Wiley & Sons, Inc.

ALL RIGHTS RESERVED

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Preface

à

The presentation of data in this volume follows without significant change the pattern established in preceding volumes of this edition. As in Volume V, which was issued earlier, right-hand axes are used in all new drawings.

Since this edition was planned, it has been decided not to enlarge its scope by including intermetallic compounds. Instead, Chapter XIII is and valence. The writer has found that there are many people wishing to understanding the descriptions of structure now standard. Chapter XIII ing the rapidity with which valence theory is developing, its discussion of valence will undoubtedly seem inadequate to chemists concerned with the subject. In the writer's experience, however, there is little middle ground between a cursory statement such as that given here and a treatment, devoted to a very abbreviated statement of basic ideas about symmetry use structural data whose training has not prepared them to read with aims to give this information in as condensed a form as possible. Considerdealing mostly with organic structures, too long and detailed to be appropriate to the present series.

RALPH W. G. WYCKOFF

Library of Congress Catalog Card Number 48-9169 Printed in the United States of America

Ģ.									
Positions and Parameters of the Atoms in PbBi ₅ Nb ₇ O ₁	*	0	0.50	0.50	0	<u>.</u>	*/*	,,	0.50
ameters of the	н	0	0	0	0	<u>.</u> *	·,	<u>,</u>	0
Positions and Par	Position	(40)	(86)	(gc)	(40)	(89)	(98)	(88)	(%)

000 K B B

0 0 0 0 0 0 0 0

0.500 0.200 0.422 9.0 0.25 -0.079

0.079 0.158

with the parameters of Table XI.45.

This structure, like those of Bi,Ti,O11 (IX,f12) and BaBi,Ti,O15 (XI,13) is built up of alternating Bi₂O₂ and perewskite-like layers. The following compounds are isostructural:

Crystal	Go, A.	bs, A.	Co, A
BaBi,Nb,O,	5.533	5.533	25.5
Bi,TaTiO,	5.402	5.436	25.13
Bi,TiNbO,	5.409	5.453	25.1
CaBlaNb,O	5.435	5.485	25.8
CaBi,Ta,O,	5.435	5.488	24.9
SrBi,Nb,O,	5.504	5.504	25.0
SrBi,Ta,O,	5.509	5.509	25.0
KBi,(Nb,O,),* NaBi,(Nb,O),*	5.508	5.506	26.9

"Two molecules per cell.

At elevated temperatures as approaches be and the symmetry of these compounds becomes tetragonal. X1.78

The oxychloride mineral perite, PbBiO₂Cl, is orthorhombic with a tetramolecular unit of the edge lengths:

 $a_0 = 5.627(50) \text{ A.}$; $b_0 = 5.575(20) \text{ A.}$; $c_0 = 12.425(90) \text{ A.}$ Its space group is V_k¹⁷ (Bmmb) with atoms in the positions:

with u = 0.385±(01/41;1/2,1/4,1+1/2) with u = 0.090Pb: (4c) Bi: (4c)

 $\pm (u00; u^{1/2}0; u^{+1/3}0; 1/2; u^{+1/3}, 1/2)$ O. G. (4.6)

ĸ 2 2 ĸ 3 R

26

CHAPTER XI

 $\bar{F}_{\rm E}$, XI,60b (bottom). A packing drawing of the orthorhombic PBHO,CI errucane sem along its $b_{\rm e}$ axia. The lead atoma are black; the bizmuth are heavily outlined and book shaded. The still larger dot and line shaded circles are chlorine; atoms of oxygen Rig. XI,60s (top). The orthorhombic structure of PbBiO.Cl projected along its beaxis

The resulting structure is shown in Figure XI,60. Each lead atom has four oxygen neighbors 2.45 A. away and four more distant chlorine atoms (3.25 and 3.30 A.). The environment of bismuth is similar, with Bi-40 = 2.27 A. and Bi-4Cl = 3.42 and 3.45 A.

The corresponding antimony compound, which occurs as the mineral adorite, PbSbOsCi, is isostructural. For it:

co = 12.20 A. a₀ = 5.59 A.; b₀ = 5.43 A.; The atomic positions and parameters are:

with u = 0.380with u = 0.078with u = 0.756with u = 0.25Sb: (4c) (4c)

Fig. XI,90a (top). The monoclime structure of Zn,FeO, projected along its be axis. Fig. XI,90b (bottom). A packing drawing of the monoclimic structure of Zn,FeO, seen along its be axis. The since are the small, the vellurium the larger black circles. Atoms

BIBLIOGRAPHY TABLE, CHAPTER XI CHAPTER XI

	A VIII THE MAN AND THE PARTY OF	CHANGE LINE AL
Compound	Paragraph	Literature
AgC(ON),	2	1966: K&B
AgCN - ZAgNO,	1	1965: B&D
Ag:-V.O.	•	1965: A
Agr0-4Br0s	*	1965: KM
AlBr, H,8	•	1956: W,P&W
ALO,C	4	1963: J&B
Al,Ta,O,,(F,OH)	۵	1962: B&B
(simpsonite)		2000
(jeremejevite)	a	G.B&B
ALC,N,	80	1963: J&W, 1966: J&W
Al,C,N,	•	1963: J&W
Al _C ,N,	•	1963: J&W 1966: J&W
B,S,Br,	10	1958: 2
BHI	11	1966: H,B&P
BaB,O,	17	1965: B&P
BaBiaNbiO	44	1949: A

BaBi,Ti,O₁,
Ba,TiNb,O₁,
Ba,Bi,O₂,
Bi,Ta,TiO₃ BaB.O, BaBi.Nb.O,

Bi.RO,X.

CaBiOi(OH) CaBiNbiOi CaBirTaiOi CaiBeiO

38: S; 1939: S; 1940: S; 1941: S; S&GH; 1942: S; 1938: S; 1939: S; 1940: S&J; 1943: A; 1952: A

1948: A 1949: A 1949: A; 1960: I

1962: C,C&A 1949: A; 1960: I 1960: I 1966: H&Y 1948: A 1966: I&KM

Ca.Bi,O. Odb.

CeB12Be,Al₄O13 (rhodinite) Ce1Re1Br₁₁ CatUO,Br.

1965: K&P; 1966: E&P 1965: M,K&K 1938: 8; 1966: B&T

1966: H,R&W

Ca,UO,Cl. Ca,RhCl. NH,NO, Ca.(UO.)OCI. CuCN · N.H. CuPb.,8b;B.

1944: Z&B 1964: A&W 1966: C,L&R 1988: H; P,R&W; 1960: E&H

BRIEF ATTACHMENT S

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Date: March 1, 2005 Applicants: Bednorz et al. Docket: YO987-074BZ

Serial No.: 08/479.810

Group Art Unit: 1751

Filed: June 7, 1995

Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir.

In response to the Office Action dated July 28, 2004, please consider the

following:

ATTACHMENT S

Serial No.: 08/479.810 Page 1 of 5 Docket: YO987-074BZ

MODERN OXIDE MATERIALS

Preparation, Properties and Device Applications

Edited by

B. COCKAYNE Royal Radar Establishment, Malvern, England

D. W. JONES
Centre for Materials Science,
University of Birmangham, England

107

ACADEMIC PRESS · London and New York

F. W. Ainger

formed. Both the non-polar high temperature and polar plases can be attent orthorhomic and/or stragonal. It is the single crystal form of the tungstan hornze type fearoalectric compounds which has been primarily studied for both fearoalectric and alectro-optic properties. The first compound of this erystal class reported to be ferroalectric was laid metanicate, Pspihlogo (Goodam, 1953), with both orthonhomic a mad be asse poinr, an asseption to the rule for these compounds. Lead metanichate asse a high Curis temperature, 913°C, and was developed as a plasoalectric carmic for use over a vide temperature range, it is an unusual, material, with low permittivity, moderete piezoelectric activity and very low mechanical Q. This last point is a serious drawbook for many applications but is of considerable use in ultrasonic fine detection where it is do considerable use in ultrasonic flow detection where it halps to suppress the phenomenon known as ringing.

A number of solid solutions of lead metaniobate have been studied in the polycystalline ocranic form but the only one of any practical afgnificance is (Pb_{2-x}B₄Nb₁₀)0₃0₃0. The optimum plescolectic properties wer found near a phase boundary occurring at x = 2, which separates two ferrosesteric corpromotio phases. Subbarco (1960) found that for y, 2 the polarisation was parallal to the GOD2 (fiffwellon indicating marked influence of the highly phaselable lead form on the polar axis. Compositions around the phase boundary possess a relativaly low temper-ture coefficient of the resonance frequency, high mechanical of and enderwishy strong phasealectric activity with remperature suitable for resonant placealectric deriess requiring frequency withinky with remders them suitable for resonant placealectric deriess requiring frequency retailing frequency withinky with remgerations of the resonance frequency extelling and extensive the suitabling for resonant placealectric deriess requiring frequency extelling when the suitablic was a sequiring

Ferroelectric Ceramic Oxides

More complex compounds exhibiting the tungeten bronze structure were reported by Reth and Fang (1960). Alonger et al. (1970) and Isupov (1964). One of the more interesting compounds, barium gadolithum from nichoste, Baqodirebbojo, was reported to be a farroalactric and ferroanguatic ceremit, but investigations with minitar ceremic aboved that the second phase, barium handfarrite.

LAYER STRUCTURE OXIDES AND COMPLEX COMPOUNDS

A large number of layer structure compounds of general formatal (BL₂), ²(-1, B₂), ²) have been reported (Escalenatif et al. 1011, ²1 Bands of 1927, where A = E, or Ba, Pb, etc., B = Ti, Bi, Ts and x = 2, 3, 4 or S. The structure had been previously investigated by Aurivillian (1998) who described them in terms of alternate (Bi₂), ²5 layers and percewide them in terms of alternate (Bi₂), ²5 layers and percewide them in terms of alternate (Bi₂), ²5 layers and percewide the and include SeBi₂; ²2, ²9 have been found to be ferroalseride and include SeBi₂; ²2, ²9 of (T_c = 589°Q), PhBi₂; ²12, ²9 (T_c = 793°Q), PhBi₂; ²12, ²9 (T_c = 589°Q), Only behamth ritenare Bi₄; ²15, ²9 and PaBi₄; ²13, ²9 (T_c = 589°Q). Only behamth ritenare Bi₄; ²15, ²9 and and investigated in detail in the single crystal form and is finding applications in optical store (Cumbing, 1987) because of its unique fearcelectric-optical switching properties. The correlation of chapter described properties.

More complex compounds and solid solutions are realisable in these layer structure oxides but none have significant practical application.

the common terms with an area of the control of the control of

formed. Both the non-polar high temperature and polar plusses can be either orthonbrankle and/or tetragonal. It is the single caystal form of the tungsten bronze type ferroalectric compounds which has been primarily studied for both ferroal-actric and alectro-optic properties. The first compound of this crystal class reported to be ferroaleutric was lead metaniohete, Poblityloy (Goodman, 1936), with borh orthorhoshic a and b axes polar, an exception to the rule for these compounds. Lead metaniohete has a high Curie temperature, 9813%, and was devaloped as a piezoaleutic cemzei for use over a wide temperature wange. It is an unusual material with low permittivity, moderate piezoalectric activity and very low merchanical Q. This last point is a serious dreabeck for many applications but is of considerable use in ultrasonic flow detection where it habigs to suppress the phenomenon known as ringing.

A number of solid solutions of lead metaniobate have been studied in the polycyptachine ocramic form but the only one of any precition isgnificance is (Pb₂, Ma₂Ma), pb₃. The optimum piezoelacution isgnificance is (Pb₂, Ma₂Ma), pb₃. The optimum piezoelacution properties are found near a phase alectric orthorhophic phases. Subbareo (1980) found that for x, 2 the polarisation was parallel to the colly-faff-forthor indicating marked influence of the highly phaseisable had non the polar axis. Osmopositions aboundary possess a relatively low temper-rune coefficient of the resonance frequency, high mechanical Q and medievathy decreased are temper-rune orefficient of the resonance frequency, high mechanical Q and medievathy decreased activity with renders frequency etablity with temperature.

Ferroelectric Ceramic Oxides

ij

More complex compounds entithting the tungston bronzes structure were reported by Roth and Fang (1960), Aingar et al. (1970) and Isupor (1964). One of the note interesting compounds, haring gadolatium from alcohere, Bas,04;Frabbo,0, was reported to be a ferroelactric and ferrowagnetic corenate, but investigations with similar corenate aboved that the second passe, barkum heardferstie.

C. LAYER STRUCTURE OKIDES AND COMPLEX COMPOUNDS
A Large number of layer structure compounds of general
formula (81,9,12**(L₁), 20;13**) have been reported
[Smoleomiti et al. 1961; Subbarso, 1965); where A = TG, Sr,
Rs, Pr., etc., B = 11; Br, the and x = 2, st, der S. The
structure had been previously investigated by Amritilius
(1949) who described them in terms of alternate (61,6);
Layers and prevorbate talgene of copyen contrablera. Few have
been found to be ferroclateric and include Self-fra,0;
(T_c = 589°K), Pabl-fra,0; (T_c = 709°K), Bibl-fra,1; 10:10 or
Rayll-folg (T_c = 899°K), and plannt tituante Bil-fra,0;
has been investigated in detail in the single crystal form
and is finding spplications in optical strone (Cumins, 1967)
erties. The corresion of other numbers have some interest

More complex compounds and solid solutions are realisable in these layer structure oxides but none have significant practical application.

because of their dielectric properties.

BRIEF ATTACHMENT T

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Date: March 1, 2005

Applicants: Bednorz et al.

Docket: YO987-074BZ

Serial No.: 08/479,810

Group Art Unit: 1751

Filed: June 7, 1995

Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT T

Serial No.: 08/479,810 Page 1 of 5 Docket: YO987-074BZ

LANDOLT-BÖRNSTEIN

Numerical Data and Functional Relationships in Science and Technology

New Series
Editor in Chief: K.-H. Hellwege

Group III: Crystal and Solid State Physics

Volume 3 Ferro- and Antiferroelectric Substances

by Toshio Mitsui and

R. Abe · Y. Furuhata · K. Gesi · T. Ikeda · K. Kawabe Y. Makita · M. Marutake · E. Nakamura · S. Nomura E. Sawaguchi · Y. Shiozaki · I. Tatsuzaki · K. Toyoda

Editors: K.-H. Hellwege and A. M. Hellwege

Springer-Verlag Berlin · Heidelberg · New York 1969

7 Layer-structure oxides

7A Pure compounds of simple type

Nr. 7A-1 Bi₂TiNbO,

1a	Dielectric anom 1960.	aly associated wi	th a phase trans	ition was reported by ISMAILZ	ADE in 60I1
ъ	phase	11	I		
	state		Pa)		*)6011
	crystal system	orthorhombicb)	tetragonal ^b)	•	b)62S17
	space group	Fmm2-C18	I4/mmm-Dy	•	
	6 *	900 · · ·	950 °Cb)		
	$e = 6.4 \cdot 10^{3} \text{ kg}$ a = 5.40 Å, b =	m^{-3} . = 5.44 Å, $c = 25.1$	Å at RT.		62517
4	Temperature de Linear thermal	ependence of latti expansion: Fig. 8	ce parameters:	Fig. 868.	
5a	cause of high c solution system	onstant was not a	trapolation of t dielectric measu	vicinity of the transition poi he Curie temperatures of the trements indicates a transition	solid

Nr. 7A-2 BiaTiTaO,

1a	Phase transition	similar to that	of Bi _s TiNbO _s w	vas reported by Subbarao in 1962.	62517
ь	phase	II	I		1
	state		P		
	crystal system	orthorhombic	tetragonal		
	space group	Fmm2-C18	14/mmm-D ₄₇		
	θ	870	℃		62517
	$e = 8.5 \cdot 10^3 \text{ kg}$ a = 5.39 Å, b/a	m^{-2} . = 1.007, $c = 25$.	1 Å at KT.		
4	Linear thermal	expansion: see Fi	ig. 869.		
5a	Dielectric consta	ant: x ≈ 140 at F	RT.		62517

Nr. 7A-3 CaBiaNbaOa

ь	phase	II	I		
	state		P		
	crystal system	orthorhombic	tetragonal		
	space group	Fmm2-C18	I4/mmm-D17		l
	θ	625	°C		60I1
	$e = 5.0 \cdot 10^{3} \text{ kg}$ a = 5.39 Å, b/a	m^{-8} . = 1.006, $c = 25$.	15 Å at RT.		62517
Ť	Temperature de	pendence of latti	ce parameters: Tab. 10	4.	
ia	Dielectric consta	ant: Fig. 871. ×	≈ 80 at RT.		62S17

1	Tab. 104, Temp				Schientstr				
L	Tab. 104. Temp	100	ndence of	the lattice	parameters	of CaBi	Nb ₂ O, and	CaBi _g Ta _g O	[60I
Г		100	150	200	250	300	350	400	7 %
1 9	1 3.442		5.453	CaBi ₂ 1					
1		_ 1	5.484	-	5.458	-	5.465	1 -	ı A
1 :		_ 1	24.955	-	5.487	-	5.491	1 -	l â
	0/a 1.0075	- 1	1.0056	-	24.990	-	25.035	1 -	I Ä
Ι'	743.5	- 1	746.0	_	1.005 _a 748.5	-	1.0047	' -	1
a			,	CaBi ₂ T		-	751.0	-	Å:
1 6		5.438	- 1	5.444	a ₂ O ₉				
6		5.471	- [5.475	_	5.452	-	5.464	1 1
	/4 1.006	24.980	- 1	25.015		5.479 25.040	1 -	5.482	A
ľ		1.006	- 1	1.005	_	1.005	-	25.060	A
-		743.2	- 1	745.6	_	748.0	-	1.003	١.
2	450	500	550					750.6	A.
			330	575		00	650	700	°C
a b	5.480	5.485	5.488	CaBin					
c	5.496,	5.501,	5.502			- 1	5.502	5.504	ı A
6/	25.070	25.080	25.090	5.50 25.10	3, -	- [5.502	5.504	Ā
v		1.0029	1.002	1.00		-	25.125	25.140	A
•	755.0	756.8	758.0	759,3	15 -	-	1.000	1.000	
a	i			CaBi Ta	_ ' -	. 1	760.7	761.6	Å:
ь	-	5.470	5.473	Cabigia					
ć	-	5.483,	5.484	-		479	5.484	1	Å
8/4	. -	25.070	25.083			479	5.484	-	Å
v	- 1	1.002	1.002	1 =	25.0	000	25.105	- 1	Å
N.T.	74.4	751.9	752.8	-	730.0		1.000 55.0	-	
MI.	7A-4 CaBi Ta	о,						- 1	A*
1a	Dielectric anor in 1960. phase	naly associate	d mist						- 1
ъ	phase) -would	a with a p	nase transit	ion was disc	overed by	ISMAILZAD	E 60I1	$\neg \neg$
-	state	II	1	1				1	- 1
- 1				P				60I1	- 1
- 1	crystal system	orthorhom	hic tot					1	- 1
ļ	space group	Fmm2-C		agonal				1	- 1
	θ			mm-D17				1	- 1
- 1	e = 7.5 · 102 kg	7 m - 3	575 °C					1	- 1
_	- 3.428 A. h/	a - 1 00c	- 24 no 1	-4 Dm				60I1	- 1
<u>.</u>	Temperature de	Dendence of 1	- 24.70 A	at R1.				61511	- 1
ia	Temperature de Dielectric const	ant: Fig P70	acuce para	meter: see	Tab. 104.				\neg
	74 5 0 -	4g. 0/2.							
lz. 7	2 StBI NP.C								- 1
Nz. 7	7A-5 SrBi ₂ Nb ₂ C	alv secociota d							
a	Dielectric anom in 1961.	aly associated	with a ph	ase transitio	n was disco	vered by S	SMOLENSKII	61511	-
a b	Dielectric anom in 1961. phase	aly associated	with a ph	ase transitio	n was disco	vered by S	MOLENSKII		
a	Dielectric anom in 1961. phase state	aly associated		ase transitio	n was disco	vered by S	SMOLENSKII		
a	Dielectric anom in 1961. phase state crystal system	aly associated		P	n was disco	vered by S	SMOLENSKII		
a b	Dielectric anom in 1961. phase state crystal system θ	II orthorhomb	ic tetra	I	n was disco	vered by S	Smolenskii		
a b	Dielectric anom in 1961. phase state crystal system θ	II orthorhombi	ic tetra 420 440*) °C	I P gonal	n was disco	vered by S	SMOLENSKII	61511	0
a b	Dielectric anom in 1961. phase state crystal system θ $e = 6.9 \cdot 10^3 \text{ kg}$ $e = 5.506 \text{ Å}$	II orthorhombi	ic tetra 420 440*) °C	P gonal	n was disco	vered by S	SMOLENSKII		
a b	Dielectric anom in 1961. phase state crystal system θ $\varrho = 6.9 \cdot 10^{\circ} \text{ kg}$ $a = 5.506 \text{ Å, } b/a$ Dielectric	aly associated II orthorhombi m-2s). s = 1.000, c =	ic tetra 420 440*) °C	P gonal t RT.		vered by S	Бмоі. ензкіі	61511 *)62517	
a. b	Dielectric anom in 1961. phase phase state crystal system θ $\theta = 6.9 \cdot 10^3 \text{ kg}$ $a = 5.506 \text{ Å}$, b/a Dielectric construction $\omega = C/(T - \theta_s)$	orthorhombi m-2s). = 1.000, c = unit: Fig. 873.	ic tetra 420 440*) °C 25.05 Å a × ≅ 190 a	P gonal t RT.		vered by S	Smolenskii	61511	0
a. b	Dielectric anom in 1961. phase state crystal system θ $e = 6.9 \cdot 10^3 \text{ kg}$ $e = 5.506 \text{ Å}$	orthorhombi m-2s). = 1.000, c = unit: Fig. 873.	ic tetra 420 440*) °C 25.05 Å a × ≅ 190 a	P gonal t RT.		vered by S	GMOLENSKII	61511 *)62517	

_				16 ares p. 570
Nr	. 7A-6 SrBi ₂ Ta ₂ C) ,		
1a	Ferroelectricity	y in SrBi.Ta.O.	was reported by Smolenskii in 1961.	61511
ь	phase	1 11	1 1	61511
	state	F	P	0,3,,
	crystal system	orthorhombic		1
	0		10 °C	ļ
	$g = 7.5 \cdot 10^{3} \text{ kg}$			61511
		a = 1.000, c = 2	25.00 Å at RT.	62515
5a			r ≅ 180 at RT. °C, θ _p = 190 °C.	62517
С			= 5.8 · 10 ⁻² C m ⁻² at 25 °C.	62517
7a		$nstant: d_{ss} = 2$		62517
Nr.	7A-7 BaBi ₂ Nb ₂	-		1 02577
1a	Dielectric anom in 1961.	aly associated wi	ith a phase transition was discovered by Smolenskii	61511
b	phase	II	I	
	state		P	
	crystal system	orthorhombic	tetragonal	ĺ
	6	210		61511
	8	200	•) °C	a)62S17
	$e = 6.3 \cdot 10^{3} \text{ kg}$ a = 5.554 Å, b/c	m^{-3} . a = 1.000, c = 2	25.60 Å at RT.	62515
5a	Dielectric const.	ant: Fig. 875. *	= 280 at RT.	62517
Nr.	7A-8 BaBi ₂ Ta ₂ O	٠,		
1a	Dielectric anomain 1961.	aly associated wi	th a phase transition was discovered by Smolenskii	61511
ь	phase	11	I	1
	state		P	l
	crystal system	orthorhombic	tetragonal	61511
- 1	θ	110	*) °C	n)62S17
	According to [61	1511] ⊖ is 70 °C.		61511
	$\varrho = 8.4 \cdot 10^8 \text{ kg}$			
_		z = 1.000, c = 2		62515
5a	Dielectric consta	ant: Fig. 876. ×	= 400 at RT.	62517
	7A-9 PbBi _s Nb _s C			
1a	by Smolenskii i	in 1959.	ith a phase transition in PbBi ₂ Nb ₂ O ₅ was reported	5958
ь	phase	II	I	
- 1	state		P	
I.	crystal system	orthorhombic	tetragonal	5958
-	6		°C a) °C	a)61S15
	$e = 7.6 \cdot 10^3 \text{ kg}$ a = 5.488 Å, b/a	m^{-3} . = 1.002, $c = 25$	5.55 Å at RT.	62515
3	Crystal structure			
4			ce parameters: Fig. 878.	
5a	Dielectric consta $\kappa = C/(T - \theta_p)$	nt: Fig. 879. * : C = 1.3 · 10 ^s ° l	= 170 at RT. K, Θ _p = 510 °C.	62517
7a	Piezoelectric con	$stant: d_{23} = 1.5$	· 10-11 C N-1.	62S17

1a	Ferroelectricit	y was reported by Supp	ARAO*) and Smolenskiib) independently in 196	
b	phase	I II I	I SMOLENSKII® independently in 196	I. 9615
	state	F	P -	P)61S
	crystal system	orthorhombic te	tragonal	400
	θ	430 °C		61515
	$e = 9.0 \cdot 10^{8} k_{\rm s}$	g m-3.		61511
5a	a = 5.496 A, b,	a = 1.000, c = 25.40 A	at RT.	62515
	$\kappa = C/(T - \Theta)$	tant: Fig. 880. $x = 180$ b), $C = 3.7 \cdot 10^4$ °C, Θ_p	at RT. = 325 °C.	
7a	Piezoelectric co	nstant: d ₃₃ = 5 · 10-12	C N-1.	62517
Nt.	7A-11 Bi Ti ₂ O ₁₈			62517
1a				
ъ	phase	III Dig II O 12 was repor	ted by Van Ultert et al. in 1961.	61V2
	state	F	I	1
i		monoclinica)*	P .	61V2
	crystal system	(pseudo-orthorhombio	c) tetragonal	*)67C6
	0		675 °C	1
- 1	Unit cell is very	nearly orthorhombic	with the lattice parameters: $a_{crih} = 5.411 \text{ Å}$,	l
- 1	Relations between	or or other than the		1
- 1	Pa lies in a direc	tion tilted at approxim	s: Fig. 881. ately 7° (or less) from the major crystal sur- rthorhombic has a place.	
2a	Crystal growth :	coling method for	ately 7° (or less) from the major crystal sur- rthorhombic $b - c$ plane.	67C6
_			elt consisting of 100 Bi ₂ O ₃ and 5 TiO ₂ (weight	61 V 2
3	Crystal structure			
1	Temperature dep Thermal expansion	endence of lattice para	meter: Fig. 883.	
ia	Dielectric constar	nt: Fig. 885.		
c	P and F . The o	94 007		
-	direction. P. = 1	al. measured P, and J	E by applying a field parallel to the costs	
	According to [670	6], the spontaneous p	E by applying a field parallel to the contained in the parallel to the contained in the pseudo-orthorhombic of the contained in the pseudo-orthorhombic	63T1
_ _	(100) plane and h	as a value larger than	30 · 10-2 C m-2	67C6
-1-	Conductivity: see	$tant: d_{10} = 2.0 \cdot 10^{-n}$	C N-1.	61517
	Domain structure			64P3
	Domains have bee	: see m observed by polarize	d light	64P3
١.	Switching: Fig. 88	8 889	- mgric.	66C7
-	See also Fig. 892,	Tab. 105 and:		66P6
	Twinning structur			64P3
	1-12 BaBi, Ti, Nb			
. 74		associated with a phase t	transition was reported by SUBBARAO in 1961.	61515
7.4	· ·		I	0.015
7.7		II		
. 7A	itate		P	
. 7A	itate		Astronous I	1215
1 I S	state crystal system	pseudo-tetragonal	tetragonal	51S15
1 S C	itate	pseudo-tetragonal 270 °C	tetragonal	51515

	II 7 Layer-structure oxides					Figures p. 37	
1b	phase	1	II	1			
	state			P	- '		
	crystal system	pseudo-	tetragonal	tetragonal	-		
	€ 290 °C						
	a = 3.687 Å, c	3.687 Å, c = 33.55 Å at RT.				61515	
Nr.	7A-14 BaBi ₄ Ti ₄ 0	D ₁₈					
1a	Dielectric anom Subbaraos) and dependently by	aly associa i by Smol Fang et a	ly associated with a phase transition was reported independently by by SMOLENSKII ²) in 1961. Ferroelectric activity was reported in- Fanc et al. in 1961 ^c).				
ь							
-	state		F	P	P		
	crystal system	(or pseud	thorhombic 10-orthorho	mbic) tetrag	onal		
	θ			375 °C 395*) °C			a)61S15
	$e = 5.7 \cdot 10^8 \text{ kg}$ a = 5.461 Å, b/a	m ⁻⁸ . = 1.000,	c = 41.85 Å	at RT.			62515
3	Crystal structur						
5a	Dielectric constr $\kappa = C/(T - \Theta_p)$	int: Fig. 8: C = 2.5	x = 1.5, $x = 150$ at RT. x = 150 at RT. $x = 2.5 \cdot 10^{4}$ °K, $\theta_{p} = 335$ °C.			61515	
7a.	Piezoelectric con	stant: das	= 2.3 · 10-	11 C N−1.			62517
4ъ	Switching: Fig.						
1	Tab. 105. BaBi, Ti,O _{1s} , Ba ₂ Bi,Ti,O _{1s} , Bi,Ti,O _{1s} , BaTiO ₂ (for comparison). Switching parameters in comparison with those of BaTiO ₂ [62F?]. t _s = t _∞ exp(+α/E), t _s = switching time						
		BaTiO ₃ Bi ₄ Ti ₅ O ₁₂ BaBi ₄ Ti ₄ O ₁₅ Ba ₂ Bi ₄ Ti ₅ O ₁₃					
		BaTiO,	Bi ₄ Ti ₅ O ₁₂	BaBi ₄ Ti ₄ O ₁₅	Ba ₂ Bi ₄ Ti ₅ O ₁₃		
	α	BaTiO ₃	Bi ₄ Ti ₃ O ₁₂	23	76	105 V m ⁻¹	
	α ••••	6.1				10 ⁵ V m ⁻¹ μ sec	
Nr.	7A-15 PbBl ₄ Ti ₄ C	6.1 0.4 0 ₁₅	41 10~a	23	76 10 ⁻⁸	μ sec	
1a	7A-15 PbBi ₄ Ti ₄ C	6.1 0.4 0 ₁₅	41 10~a	23 1.5 ase transition was	76	μ sec	61515
	7A-15 PbBl ₄ Ti ₄ C	6.1 0.4 0 ₁₅	41 10~a	23 1.5 asetransition was	76 10 ⁻⁸	μ sec	61515
1a	7A-15 PbBi ₄ Ti ₄ C	6.1 0.4 0 ₁₅ ly associate	41 10-2 ed with a pha	23 1.5 ase transition was	76 10 ⁻⁸	μ sec	61515
1a	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase	6.1 0.4 0 ₁₅	41 10-4 ed with a pha	23 1.5 asetransition was	76 10 ⁻⁸	μ sec	61515
1a	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase state	6.1 0.4 0 ₁₅ ly associate II	41 10-4 ed with a pha	23 1.5 ase transition was I P	76 10 ⁻⁸	μ sec	
1a	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase state crystal system θ $\rho = 6.6 \cdot 10^{-8}$ k	6.1 0.4 0 ₁₅ ly associate II orthorhor (possib	41 10-4 ed with a pha mbic tel 1y) tel	23 1.5 sectransition was I P tragonal	76 10 ⁻⁸	μ sec	61515
1a b	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase state crystal system $ \theta $ $ \varrho = 6.6 \cdot 10^{-8} \text{ k} $ $ a = 5.437 \text{ Å}, b/c $	6.1 0.4 0 ₁₅ lly associate II orthorhor (possib	41 10 ^{-a} ed with a pha mbic ter 570 °C c = 41.35 Å	23 1.5 see transition was I P tragonal	76 10 ⁻⁸	μ sec	61515
1a	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase state crystal system θ $e = 6.6 \cdot 10^{-8} \text{ k}$ $a = 5.437 \text{ Å}, b/e$ Dielectric consta	6.1 0.4 0.4 by associated II orthorhou (possib) g m ⁻⁴ . 5 = 1.000, ant: Fig. 8	41 10 ⁻² ed with a pha mbic ter 570 °C c = 41.35 Å 93. x = 22	23 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	76 10 ⁻⁸	μ sec	61515
1a b	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase state crystal system $ \theta $ $ \varrho = 6.6 \cdot 10^{-8} \text{ k} $ $ a = 5.437 \text{ Å}, b/c $	6.1 0.4 0.4 0.5 by associate 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	41 10 ⁻² ed with a pha mbic ly) 570 °C c = 41.35 Å 33. κ = 22: -10 ⁵ °C, Θ _p	23 1.5 sectransition was I P tragonal at RT. 0 at RT. = 552 °C.	76 10 ⁻⁸	μ sec	61515 62515 61515
1a b 5a 7a	7A-15 PbBi ₄ Ti ₄ C Dielectric anoma phase state crystal system θ $\varrho = 6.6 \cdot 10^{-8} \text{ k}$ $a = 5.437 \text{ Å}$, b/b Dielectric onstx $x = C/(T - \theta_y)$	6.1 0.4 D ₁₅ ly associate II orthorhor (possib g m ⁻³ . s = 1.000, ant: Fig. 8*, C = 1.4 lstant: d ₂₃	41 10 ⁻² ed with a pha mbic ly) 570 °C c = 41.35 Å 33. κ = 22: -10 ⁵ °C, Θ _p	23 1.5 sectransition was I P tragonal at RT. 0 at RT. = 552 °C.	76 10 ⁻⁸	μ sec	61515 62515 61515 62517
1a b 5a 7a	7A-15 PbBi _k Ti _k C Dielectric anoms phase state crystal system θ $q = 6.6 \cdot 10^{-1}$ k $a = 5.437$ Å, b/a Dielectric construction $x = C/(T - \theta_p)$ Piezoelectric cor 7A-16 SrBi _k Ti _k C	6.1 0.4 O ₁₅ O ₁₅ O ₁₅ O ₁₇ Orthorhor (possib) g m ⁻³ . a = 1.000, ant: Fig. 8' ant: d_{23}	41 10^{-4} and with a phe with	23 1.5 see transition was I P tragonal at RT. 0 at RT. 0 tC N-1.	76 10-1 reported by Subb	μ sec	61515 62515 61515 62517
1a b	7A-15 PbBl ₄ Tl ₄ C Dielectric anoms phase state crystal system θ $\theta = 6.6 \cdot 10^{-3} \text{ k}$ $a = 5.437 \text{ Å}, b/\theta$ Dielectric constax $x = C/(T - \theta_p)$ Plezoelectric 0 7A-16 SrBl ₄ Tl ₄ C Dielectric anoms	6.1 0.4 O ₁₅ O ₁₅ O ₁₅ O ₁₇ Orthorhor (possib) g m ⁻³ . a = 1.000, nnt: Fig. 8' stant: d_{23}	41 10^{-4} and with a phe with	23 1.5 see transition was I P tragonal at RT. 0 at RT. 0 tC N-1.	76 10 ⁻⁸	μ sec	62S15 62S15 61S15 62S17 62S17
1a b 5a 7a Nr.	7A-15 PbBi _k Ti _k C Dielectric anoms phase state crystal system θ $q = 6.6 \cdot 10^{-1}$ k $a = 5.437$ Å, b/a Dielectric construction $x = C/(T - \theta_p)$ Piezoelectric cor 7A-16 SrBi _k Ti _k C	6.1 0.4 O ₁₅ O15 O17 O17 O17 O17 O17 O17 O17	41 10^{-4} and with a phe with	23 1.5 asetransition was I P tragonal at RT. 0 at RT. = 552 °C. u C N ⁻¹ .	76 10-1 reported by Subb	μ sec	62S15 62S15 61S15 62S17 62S17
1a b 5a 7a Nr.	7A-15 PbBl ₄ Tl ₄ © Dielectric anoma phase state crystal system θ $\varepsilon = 6.6 \cdot 10^{-1} \text{ k}$ $\alpha = 5.437 \text{ Å}, b/e$ Dielectric construction 7A-16 SrBl ₄ Tl ₄ © Piezoelectric construction 7A-16 SrBl ₄ Tl ₄ ©	6.1 0.4 O ₁₅ O15 O17 O17 O17 O17 O17 O17 O17	$\begin{array}{c c} 41 \\ 10^{-4} \end{array}$ and with a phrimbic term of the phrimbic term o	23 1.5 sectransition was I P rangonal at RT. 0 at RT. 0 tC N ⁻¹ .	76 10-1 reported by Subb	μ sec	62S15 62S15 61S15 62S17 62S17
1a b 5a 7a Nr.	7A-15 PbBl ₄ Tl ₄ © Dielectric anoms phase state crystal system Θ $e = 6.6 \cdot 10^{-1} \text{k}$ $a = 5.437 \text{ Å}$, b/e Dielectric const $x = C/(T - \Theta_p)$ Piezoelectric cor 7A-16 $x = B_4 T T_4 C$ Dielectric anoms phase state	6.1 0.4 0 _{1s} ly associate II orthorhor (possib g m ⁻³ , $a = 1.000$, ant: Fig. 8 ⁴ ustant: d_{33} ly associate II orthorhor	$\begin{array}{c c} 41 \\ 10^{-4} \end{array}$ and with a phrimbic term of the phrimbic term o	23 1.5 sectransition was I P rangonal at RT. 0 at RT. 0 at RT. assetransition was I I P	76 10-1 reported by Subb	μ sec	61515 62515 61515 62517 62517
1a b 5a 7a Nr.	7A-15 PbBL/TL ₄ C Dielectric anoms phase state crystal system θ $e = 6.6 \cdot 10^{-3} \text{ k}$ $a = 5.437 \text{ A}, b/b$ Dielectric anoms $x = C/(T - \theta_p)$ Piezoelectric 7A-16 SrBL/TL ₄ C Dielectric anoms phase state crystal system	6.1 0.4 1) y associate II orthorhor (possib g m ⁻¹ , C = 1.4 strant: d ₁₃ ly associate II orthorhor (possib under the district d ₁₃ is orthorhor (possib)	$\begin{array}{c c} 41 \\ 10^{-3} \end{array}$ ed with a phi- $\begin{array}{c c} \text{mbic} & \text{ter} \\ 570 ^{\circ}\text{C} \\ c = 41.35 \text{ Å} \\ 2.3 ^{\circ} \times 2.3 ^{\circ} \times 10^{\circ} \end{array}$ ed with a phi- $\begin{array}{c c} \text{mbic} & \text{ter} \\ \text{mbic} & \text{ter} \\ \text{530 }^{\circ}\text{C} \end{array}$	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	76 10-1 reported by Subb	μ sec	62515 62515 61515 62517 62517
1a b 5a 7a Nr.	7A-15 PbBLTL6 Dielectric anoms phase state crystal system θ $e = 6.6 \cdot 10^{-3} \text{ k}$ $a = 5.437 \text{ Å}, b/b$ Dielectric anoms $x = C/(T - \theta_p)$ Piezoelectric $x = C/(T - \theta_p)$ Piezoelectric anoms phase state crystal system θ $\theta = 5.2 \cdot 10^3 \text{ kg}$ $\theta = 5.2 \cdot 10^3 \text{ kg}$	6.1 0.4 0.3 1ly associate III orthorhor (possib g m-4. s = 1.000, ant: Fig. 84, c = 1.4 stant: d _m is ly associat II orthorhor (possib m-a. s = 1.000, m.t. Fig. 88, is ly associat in orthorhor (possib	$\begin{array}{c c} 41 \\ \hline 10^{-3} \end{array}$ and with a pho- mbic term of the pho- $c = 41.55 \\ c = 41.55 \\ 33, x = 22.5 \\ c = 2.3 \cdot 10^{-3} $ and with a pho- mbic term of the pho- $c = 40.55 \\ c = 40.95 \\ c = 40.95 \\ c = 40.95 \\ c = 40.85	23 1.5 1.5 sectransition was 1 P pragonal at RT. 5 22 °C. u C N°-1. sectransition was 1 P pragonal	76 10-1 reported by Subb	μ sec	61515 62515 61515 62517 62517 61515 61515

riguren S. 379 ft.	II 7 Oxide mit Schichtstruk	tur			
Nr. 7A-17 CaBi,Ti,Ou					
1a CaBi, Ti,O, was investigate	d by Supparacio 1962				
No dielectric anomaly has b	a CaBi Ti O ₁₈ was investigated by Subbarao in 1962. No dielectric anomaly has been detected.				
e = 4.7 · 10 ³ kg m ⁻³ .	Orthorhombic: a = 5.418 Å. b/a = 1.002 c = 40.75 Å = 1.00				
5a Dielectric constant: Fig. 895	x = 120 at RT				
Nr. 7A-18 Bi _s Ti _s GaO ₁₅			61511		
1a Bi ₈ Ti ₈ GaO ₁₈ was investigate No dielectric anomaly has be	d by Subbarao in 1962.				
b Orthorhombic: a = 5.408 Å	b/a = 1.006, $c = 41.05 Å at RT$		62517		
			62515		
5a Dielectric constant: z = 150	at RT.		62517		
Nr. 7A-19 BagBigTigO18					
1a Ferroelectric activity of Ba. I	Bi ₄ Ti ₅ O ₁₈ was observed by Aurry				
b phase III	I I	ILLIUS in 1962.	62A5		
state F	P		1		
crystal system orthorhomb	ic tetragonal		1		
	325 °C		62A5		
3 Crystal structure: Fig. 896. 7	= 50.37 Å at RT.		6315		
	ab. 106.				
 Temperature dependence of le Dielectric constant: Fig. 898. 	ttice parameter: Fig. 897.				
* = 360, * = 22 at RT.			62.4.5		
c Remanent polarization: Pr = Coercive field: E _e = 1.0 · 10°	2 · 10 - C m - at RT.		62A5		
14b Switching: see Fig. 892; Tab.	105.				
			1		
[624.5]	a ₂ Bi ₄ Ti ₄ O ₁₈ . Fractional coordin . Space group of I4/mmm was s	ates of atoms			
I4/mmm					
4 Th: :	(4)				
4 (Bi, Ba) in 4 (Bi, Ba) in 4 (Bi, Ba) in 4 (Bi, Ba) in 6 2 Ti	1(e): ±0, 0, z:	z = 0.2255 z = 0.0420			
4 (Bi, Ba) in 4 2 Ti in 2	(e): (b): ±0, 0, 1/2	z = 0.1300			
4 Ti in 4 4 Ti in 4	l(e): = -, -, -, -	z = 0.3370			
40 in 4	(c): 0, 1/2, 0; 1/2, 0, 0	z = 0.4185			
40 in 4	(d): 0 1/2 1/4: 1/2 0 1/4				
40 in 4	(e):	z = 0.2962			
40 in 4	(e):	# = 0.3378 # = 0.4593			
80 in 8 80 in 8	(g): ± (0, 1/2, z; 1/2, 0, z)	a = 0.0815			
Nr. 7A-20 Pb2Bi4Ti4O13		z = 0.1630	£,		
1a Ferroelectric activity in Pb.Bi.	Ferroelectric activity in Ph Bi Ti O				
- France II	I I	to in 1962.	62517		
state F	P				
crystal system orthorhombic (possibly)	tetragonal				
0	θ 310 °C				
$g = 6.6 \cdot 10^3 \mathrm{kg m^{-3}}$					
a = 5.461 Å, b/a = 1.000, c = 49.70 Å at RT. 62S15					

8			II 7 Lay	er-stru	cture oxides	,	Figures p. 380fi
5a	Dielectric constant: Fig. 899. x = 400 at RT.						
	$\kappa = C/(T - \Theta_p), C = 4.1 \cdot 10^s \text{°K}, \Theta_p = 280 \text{°C}.$					62517	
C 7-		Spontaneous polarization: $P_a \approx 6 \cdot 10^{-2} \text{ C m}^{-2}$ at 235 °C. Piezoelectric constant: $d_{aa} = 2.5 \cdot 10^{-13} \text{ C N}^{-1}$.					62517
7a	Piezoelectric co	$a_{33} = 2.5$	5 · 10-11 C	N-1.			62517
Nr.	Nr. 7A-21 Sr ₂ Bi ₄ Ti ₅ O ₁₈						
1a	Ferroelectric ac	Ferroelectric activity in Sr ₂ Bi ₄ Ti ₂ O ₁₈ was observed by Subbarao in 1962.					62517
ь	phase	II I					
	state	F	P				
	crystal system	orthorhombic (possibly)	tetrage	onal			
	9	28.	5 °C				62517
	e = 5.3 · 10 kg	m-9					
5a	a = 5.461 Å, b/a						62515
ъ	$\kappa = C/(T - \Theta_{\rm p})$	ant: Fig. 900. z L. C = 0.47 · 10 ⁵	= 280 at *K. Θ_{n} =	£1. 255 ℃	2		62517
c	Spontaneous po						62517
7a	Piezoelectric con	stant: d ₁₂ = 2.5	· 10-12 C	N-1.			62517
Nr.	Nr. 7A-22 Bi ₂ Ti ₄ O ₁₁						
1a	Dielectric anomaly associated with a phase transition was observed in Bi ₂ Ti ₂ O ₁₁ by SUBBARAO in 1962.					62516	
ь	phase	III	II II	1	I		65]4
	crystal system	monoclinic	monocl	inic			1 1
1	space group	C2/c-C*	C2/m-	Cit			1 1
	9	25	O=)	120	04) °C		*)62S16
	$\varrho = (6.12 \pm 0.0)$	2) · 10 ⁸ kg m ⁻² .					65]4
ļ	a = (14.612 ± 0	\dot{a} (14.612 \pm 0.006) Å, \dot{b} = (3.799 \pm 0.004) Å, c = (14.946 \pm 0.006) Å,				65]4	
3	$\beta = (93.13 \pm 0.01)^{\circ}$ at RT. Crystal structure: $Z = 2$ in phase II. $Z = 4$ in phase III. Fig. 901, 902; Tab. 107.						
4	Crystal structure: $Z = 2$ in phase II. $Z = 4$ in phase III. Fig. 901, 902; Tab. 107. 65 J4 Thermal expansion: Fig. 903.					- 77,74	
5a	Dielectric constant: Fig. 904.						
٥	No hysteresis loops could be obtained between 25 °C and 290 °C.				62S16		
	Tab. 107. Bi ₄ Ti ₄ O ₁₁ . Atomic parameters at RT [65]4]						
	Δ-		r				İ
			•		у		
	O(1) O(2)	0.0 0.1828 ±	- 0.0024	0.262		0.250 0.2207 ± 0.0024	1
	O(3) O(4)	0.1408 ± 0.0814 ±	Ŀ 0.0024	0.256	王 0.007	0.0338 ± 0.0024	1
•	O(5)	0.2662	0.0024	0.760 0.747	± 0.007	0.1259 ± 0.0024 0.0880 ± 0.0024	1
	O(6)	0.0546 ±	0.0024	0.770	± 0.007	0.9221 ± 0.0024 0.1406 ± 0.0006	1
	Ti(2)	0.1461	0.0006	0.759	± 0.002	0.0162 ± 0.0006	I
	Bi T	0.3211	0.00015	0.174	7 ± 0.0005	0.1798 ± 0.00015	

Thermal parameter $B=0.33 \text{ Å}^2$ for all atoms. Coordinates and standard deviations in cell fractions.

7R	Complex	compound	 114	1

Nr. 7B-1 $Bi_{8-x}Me_x^4+Ti_{1-x}Nb_{1+x}O_x$ (Me⁸⁺ = Ba, St, Pb) 1b Lattice parameter: Fig. 905. Transition temperature: Fig. 906. 5 Dielectric constant: Fig. 907.

 $Nr. \ 7B\text{-}2 \quad Bi_{4-2}Me_{2}^{2} + Ti_{3-2}Nb_{2}O_{12} \ (Me^{3+} = Ba, \, Sr, \, Pb)$ 1b Lattice parameter: Fig. 908. Transition temperature: Fig. 909. 5 Dielectric constant: Fig. 910.

^{*} The unit cell of phase II has about half the volume of the unit cell of phase III.

	ren S. 382ff.	**	7 Oxide mit Schichtstruktur				
Nr.	7B-3 Na _{0.3} Bi _{4.5}	Ti,O ₁					
1a	Dielectric anor	naly associated w	ith a phase transition was reported by Sun	BARAO in 62S17			
b	phase	l II	I				
	state		P	1			
	crystal system	orthorhombic	tetragonal				
	6	650 ℃					
	$e = 6.3 \cdot 10^{4} \text{ kg}$ $a = 5.427 \text{ Å}, b$	g m ⁻³ . /a = 1.006, c = 4	0.65 Å at RT.	62515			
ia —	Dielectric cons $\varkappa = C/(T - \theta)$	stant: Fig. 911. $x = 200$ at RT. $\theta_{\rm p}$), $C = 0.79 \cdot 10^5$ °K, $\theta_{\rm p} = 610$ °C.					
a	Piezoelectric co	onstant: $d_{88} = 1.0$	· 10-11 C N-1.	62517			
Ir.	7B-4 KasBiasTi	LO.					
a	Dielectric anom	aly associated wi	th a phase transition was reported by Subr	BARAO in 62S17			
ъ	phase	1 II 1	I				
ı	state		P				
	crystal system	orthorhombic	tetragonal	ļ			
	0	550		62517			
	$\varrho = 6.7 \cdot 10^3 \text{ kg}$ $a = 5.440 \text{ Å} b/c$			62515			
a	Dielectric const.	ant: Fig. 912 w	= 140 at RT	02317			
- 1		1 C - 0 74 . 105	T A EIE IC	(0547			
a	$\kappa = C/(T - \Theta_p)$	d_{10} , $C = 0.74 \cdot 10^{5}$ $d_{10} = 1.0$	$^{\circ}$ K, $\theta_{\mathfrak{p}} = 515 ^{\circ}$ C.	62517 62517			
iz.	$\kappa = C/(T - \Theta_p)$ Piezoelectric co	a), $C = 0.74 \cdot 10^{5}$ anstant: $d_{13} = 1.0$ a) $Bi_2Nb_2O_4$ and (P)	K, θ _p = 515 °C. -10-11 C N-1. b _{1-x} Sr _x Bi ₂ Nb ₂ O ₀ 1b Transition to 5 Dielectric con 5	62S17 emperature: Fig. 913. estant: Fig. 914.			
ir.	$\frac{\kappa = C/(T - \Theta_p)}{\text{Piezoelectric co}}$ $7B-5 (Pb_{1-x}Ba_x)$	a), $C = 0.74 \cdot 10^{5}$ enstant: $d_{23} = 1.0$ Bi ₂ Nb ₂ O ₃ and (P) O ₁₃ - xBaTiO ₃	K, θ _p = 515 °C. -10-11 C N-1. b _{1-x} Sr _x Bi ₂ Nb ₂ O ₀ 1b Transition to 5 Dielectric con 5	62S17 emperature: Fig. 913.			
ir. Ir. 1	$\mathbf{x} = C/(T - \Theta_{\mathbf{p}})$ Piezoelectric co: $7B-5 (Pb_{1-x}Ba_{x})$ $7B-6 (1-x)Bi_{4}Ti_{2}$ $7B-7 Bi_{4+x}Pb_{1-x}$ Another formula	a, $C = 0.74 \cdot 10^{4}$ Instant: $d_{13} = 1.0$ (Bi ₂ Nb ₂ O ₄ and (Pi ₂ O ₁₃ - xBaTiO ₃) $Ti_{4-x}Ga_{x}O_{15}$ a for this solid sol		62517 imperature: Fig. 913. instant: Fig. 914. imperature: Fig. 915.			
ir.	$\mathbf{x} = C/(T - \Theta_{\mathbf{p}})$ Piezoelectric co: $7B-5 (Pb_{1-x}Ba_{x})$ $7B-6 (1-x)Bi_{4}Ti_{2}$ $7B-7 Bi_{4-x}Pb_{1-x}$ Another formula erties of this sol	a, $C = 0.74 \cdot 10^{4}$ Instant: $d_{13} = 1.0$ (Bi ₂ Nb ₂ O ₄ and (Pi ₂ O ₁₃ - xBaTiO ₃) $Ti_{4-x}Ga_{x}O_{15}$ a for this solid sol	K, θ _p = 515 °C10 ⁻¹² C N ⁻¹ . b ₁ - \$r _s ⟩Bl _p Nb _p O _s 1b Transition to 5 Dielectric con 5 Transition te	62S17 imperature: Fig. 913. instant: Fig. 914. imperature: Fig. 915.			
ir.	$\mathbf{x} = C/(T - \Theta_{\mathbf{p}})$ Piezoelectric co: $7B-5 (Pb_{1-x}Ba_{x})$ $7B-6 (1-x)Bi_{4}Ti_{2}$ $7B-7 Bi_{4+x}Pb_{1-x}$ Another formula	a, $C = 0.74 \cdot 10^{4}$ Instant: $d_{13} = 1.0$ (Bi ₂ Nb ₂ O ₄ and (Pi ₂ O ₁₃ - xBaTiO ₃) $Ti_{4-x}Ga_{x}O_{15}$ a for this solid sol		62517 imperature: Fig. 913. ustant: Fig. 914. imperature: Fig. 915 Prop-			
ir.	$\mathbf{x} = C/(T - \Theta_{\theta})$ Piezoelectric co: $7B-5$ (Pb _{1-x} Ba _x) $7B-6$ (1-x)Bi ₄ Ti ₂ $7B-7$ Bi _{4+x} Pb _{1-x} Another formula erties of this sol $\mathbf{x} = 0.25$:	a, $C = 0.74 \cdot 10^6$ instant: $d_{13} = 1.0$ Bi ₂ Nb ₂ O ₂ and (P O ₁₂ - xBaTiO ₂ Ti _{4-x} Ga _x O ₁₅ a for this solid solid solid solid solution were s	K, θ _p = 515 °C. -10 ⁻¹ C. N ⁻¹ C. b ₁ -gs ₂)Bi ₈ Nb ₅ O ₈ 1b Transition to 5 Dielectric con 5 Transition to 5 Transition to 10 62517 imperature: Fig. 913. instant: Fig. 914. imperature: Fig. 915.				
ir.	$x = C/(T - \Theta_0)$ Piezoelectric co: 7B-5 (Pb _{1-x} Ba _x) 7B-6 (1-x)Bi ₄ Ti ₂ 7B-7 Bi _{4+x} Pb _{1-x} 7B-7 Bi _{4+x} Pb _{1-x} 7B-7 Bi _{4+x} Pb _{1-x} 8 Solution of this so	a, $C = 0.74 \cdot 10^6$ instant: $d_{13} = 1.0$ Bi ₂ Nb ₂ O ₂ and (P O ₁₂ - xBaTiO ₃ Ti _{4-x} Ga _x O ₁₅ a for this solid solid solid solid solution were s		62517 imperature: Fig. 913. ustant: Fig. 914. imperature: Fig. 915 Prop-			
ir.	$\kappa = C/(T - \theta_p)$ Piezoelectric co: $TB-5$ ($Pb_{1-x}Ba_x$) $TB-6$ ($1-x$) Bi_4Ti_2 $TB-7$ $Bi_{4+x}Pb_{1-x}$ Another formula erties of this sol $x = 0.25$: phase	, C = 0.74 · 10 ⁴ · nstant: d ₁₃ = 1.0)Bi ₃ Nb ₅ O, and (P O ₁₁ - xBaTiO ₃ Ti _{4-x} Ga ₂ O ₁₆ a for this solid sol id solution were s		62517 imperature: Fig. 913. ustant: Fig. 914. imperature: Fig. 915 Prop-			
ir.	$\kappa = C/(T - \theta_g)$ Pieroelectric ov. 7B-5 (Pb _{1-g} Ba _g) 7B-6 (1-x)Bi ₄ Ti ₂ 7B-7 Bi _{4+x} Pb _{1-x} Another formula erties of this sol $x = 0.25$: phase state crystal system θ	, C = 0.74 · 10 ⁴ · nstant: d ₃₂ = 1.0)Bi ₂ Nb ₂ O ₂ and (F O ₁₅ - xBaTiO ₂ Ti _{4-x} Ga ₂ O ₁₆ a for this solid solid solid solution were s II orthorhombig (pseudo-tetrago) al cell parameter:		62517 imperature: Fig. 913. ustant: Fig. 914. imperature: Fig. 915 Prop-			
ir.	$\kappa = C/(T - \theta_g)$ Pieroelectric ov. 7B-5 (Pb _{1-g} Ba _g) 7B-6 (1-x)Bi ₄ Ti ₂ 7B-7 Bi _{4+x} Pb _{1-x} Another formula erties of this sol $x = 0.25$: phase state crystal system θ	, C = 0.74 · 10 ⁴ · nstant: d ₃₂ = 1.0)Bi ₂ Nb ₂ O ₂ and (F O ₁₅ - xBaTiO ₂ Ti _{4-x} Ga ₂ O ₁₆ a for this solid solid solid solution were s II orthorhombig (pseudo-tetrago) al cell parameter:		62517 imperature: Fig. 913. instant: Fig. 914. imperature: Fig. 915 Prop-			
ir.	$\kappa = C(T - \Theta_g)$ Piezoelectric co $TB-5$ (Pb _{1-x} Ba _x), $TB-6$ (1-x)Bi ₄ Ti ₂ $TB-7$ Bi _{4+x} Pb _{1-x} Another formula erties of this sol $x = 0.25$: phase $TA = 0.25$: phase $TA = 0.25$: phase Pseudo-tetragon pielectric consta	, C = 0.74 · 10 ⁴ · nstant: d ₃₂ = 1.0)Bi ₂ Nb ₂ O ₂ and (F O ₁₅ - xBaTiO ₂ Ti _{4-x} Ga ₂ O ₁₆ a for this solid solid solid solution were s II orthorhombig (pseudo-tetrago) al cell parameter:		62517 mperature: Fig. 913. nstant: Fig. 914. mperature: Fig. 915 Prop- 62517			
ir.	$x = C/(T - \theta_g)$ Plezoelectric cor $B-5$ ($Pb_{1-g}Ba_g$) $B-6$ ($1-x$) Bi_4Ti_2 $B-7$ $Bi_{d+x}Pb_{1-g}$ Another formula errites of this sol $x = 0.25$: phase state crystal system θ Pseudo-tetragon Dielectric consta	0 , $C = 0.74 \cdot 10^4$. 0 , $C = 0.74 \cdot 10^4$. 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,		### 62517 ###################################			
Vr. 1	$\kappa = C(T - \Theta_{\theta})$ Piezoelectric co $TB-5$ ($Pb_{1-x}Ba_{x}$) $TB-6$ ($1-x$) Bi_{4} , Ti_{2} $TB-7$ $Bi_{4+x}Pb_{1-x}$ $TB-7$ $Bi_{4+x}Pb_{1-x}$ $TB-7$ $Bi_{4+x}Pb_{1-x}$ $TB-7$ $Bi_{4+x}Pb_{1-x}$ $TB-7$	0 , $C = 0.74 \cdot 10^4$. 0 , $C = 0.74 \cdot 10^4$. 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,		### 62517 ###################################			
Ir. 7	$\kappa = C(I - \theta_g)$ Phesoelectric co $IB-5$ ($IB-5$ ($IB-5$ ($IB-5$ ($IB-5$ ($IB-5$)) $IB-5$ ($IB-5$ ($IB-5$) $IB-5$ ($IB-5$) $IB-7$ ($IB-7$) $IB-7$	J. C = 0.74 · 10 ⁴ · nstant: d ₁₀ = 1.0 Bli ₁ Nb ₁ O ₂ and (P O ₁₁ - xBaTiO ₂ Ti _{1-x} Ga ₂ O ₁₆ a for this solid sol id solid solid solid solution were s II orthorhombic (pseudo-tetrago al cell parameter mt: x = 180 at R		### 62517 ###################################			

BRIEF ATTACHMENT U

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of Applicants: Bednorz et al. Date: March 1, 2005 Docket: YO987-074BZ

Serial No.: 08/479,810

Group Art Unit: 1751

Filed: June 7, 1995

Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT U

Serial No.: 08/479,810

Page 1 of 5

Docket: YO987-074BZ

STRUCTURE, PROPERTIES AND PREPARATION OF PEROVSKITE-TYPE COMPOUNDS

FRANCIS S. GALASSO

INDEX

A48*0.	phase transition 6, 88, 116, 11
THE RESERVE OF THE PARTY OF THE	
Con A Control of the Control of the Control	properation
AgNbO,	single crystal 158
crystellography 18	thin film 154
density 145	The same and the s
phase transition 116.118	NaThO.
	mystallography 18
AgTaO ₂	density 145
crystallography 18	ferroelectricity 88
denistry 165	and the same of th
phase transition -316, 118	melting point 143
Calo,	phase transition 116, 118
THE PARTY OF THE P	preparation, single crystal 168
erystellography 5, 18	BEIO.
density 145	
RIO.	crystallography 13
	density 165
crystellography 5, 18	RbTaO.
density 145	ferroelectricity 88
(ELNa)NbO	THO.
ferroelectricity 95	
	crystellography 5, 18
ENEO.	density 145
crystellography 4, 18	Contract State Statement States No. 19 Sept. 19
density 145	医克里氏性皮肤 医多种氏征 医克里氏试验检尿病
dielectric constant 57	A LOSSES AND ASSESSMENT OF THE PARTY OF THE
ferroelectricity '95	AND THE COURSE OF THE PARTY OF
TOTTOGRADUCTUS, 460	A**B**0.
molting point 143	The second secon
phase transition 87, 116, 117	(Ba,Oa,Er)TiO
preparation, single crystal 265	The state of the s
tran my to appear 100	clectrical conductivity 70
K(Nb,Ta)O	(Ba,Ca,Sr)(Ti,Zr)O,
ferroelectricity 96	dielectric constant 92
optical properties 1	. fecroelectricity 92
preparation, single crystal 168	Control of the contro
The same server, surges drystal 108	
KTMO.	distoctrio constant 93
crystallography 5, 18	piezoelectricity 92
density 145	PA CARLAGO
	(Ba,Ca,Mg)TiO
Introductricity, 88	electrical conductivity 70
melting point 142	BaCeO.
optical properties 133	crystallography 18
phase transition 116, 117	The state of the s
puses magazath 116, 117	donaity 146
preparation, single crystal 165	preparation; thin 5lm 184
NaNbO.	BereD.
crystallography 5, 18	
edensity 145	orystellography 18
A STATE OF THE PARTY OF THE PAR	density 145
disloctric constant 88	Ba(Hf,Ti)O.
Introductrialty 87	disloctric constant 94
melting point 142	
No Telephone Programme Company	ferroelectricity 94
optical properties 134	phase transition 94
EXTENSION ASSESSMENT OF THE PROPERTY OF THE PR	March Services Services Commission Commission
SHOW AND ASSESSED TO THE PARTY OF	The state of the s

Page 142 of 159

Page 143 of 159

Page 144 of 159

Page 145 of 159

Page 146 of 159

Page 147 of 159

Page 148 of 159

Page 149 of 159

Page 150 of 159

| Differ | D

Page 153 of 159

	a di Silana Padiga	
204 ESPER		
Be(Mg_Re_a)O. Be(Zn_Os_jO. Cystallography St crystallography St	Ph(Co_W_i)O; expetitiography 25 density 100 isomorphistic 100	
Ba(Mg, The, JO, Ba(Zan, Ma, JO, expetallography 36 espetallography 35 density 155 density 155 Ba(Mg, U, JO, Ba(Zan, U, JO, expetallography 35 expetallography 35 density 150 Zanety 150	fercologisty 104 phase transition 119 PtoMg, To, 100, protellography 36	Ä
Secretary 135 Secretary 136 Secret	phos transition 119 Property of the Control of the	
density 1-10 density, 100 density, 100 density 1-10 densi	PhOME Wall's crystallography 36 county 108	
crystaliography 35 density 155 density 155 density 156 Ga(Ca_Ro_1)O, Ba(kin_U_a)O, crystallography 35	distriction constants 100 ferroelectricity 100	
crystallography 25 density 155 density 155 density 155 Os(Os., Wall)O. Ba(Ni, Moz.)O. crystallography 25 density 155	STATE OF THE PROPERTY OF THE P	
crystalography 25 density 355	orystalicempty 50 density 166 fr(O _{4,2} Ee _{3,2} O ₅) crystalicempty 16	
Madeling constant Cyclellography 86 40 Ba(Ni_s,U_s, C_s)	density 150 Sr(Os., U., 1O. crystallography 25	
Ball Common Comm	Br(On., W., 10, crystallography 36 decaity 156	
density 165 density 165 Ba(Pb_Mo_1O_1 Ca(Mg_Re_1)O_1 crystallography 36 crystallography 36	Entition of the Control of the Contr	
Country 168 density 168 BRIPTS, 260, 10, Caning, Re. al-U, orystollography 46 density 165 BRIPTS, 00, 10, Caning, Re. al-U, orystollography 25 orystollography 25 orystollography 25 orystollography 25 density 165 Madelume constant Caning, Re. al-U, Statistume constant Caning, Re. al-U,	crystallography 36 density 166 Sr(Co_Mio_C)	
Madelung constant Ca(Mo.,Ro.,1O. 41 coverallography 32 Ba(Gr.,Ro.,1O. density 168	dennity 156 phas transition 119 Br(Co _n (O _n (O _n)O)	
Backraite alO density 155 Corpetallography 35 Ocidia, Re. 10, density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155 Medelung copetant density 155	crystellography 35 Consity 156 Br(Oo_18o_1)O_1 crystellography 36	
Beffr, U., iC. crystallography 3: crystallography 35 density 165 density 165 Pb(Ca, W., iO.	density 160 Madelung constant	
Helbi, ULJO crystalography 35 density, 165 crystalography 35 density, 165 crystalography 36 density, 165 crystalography 37 (crystalography 36 crystalography 37 crystalography	Br(O ₂)O ₄)O ₅ containing the density 18 Br(O ₂ , W ₄)O ₅ containing the property 27	
phose transition 18 density 156	crystallography 37	
		A

Page 155 of 159

Page 156 of 159

BRIEF ATTACHMENT V

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Date: March 1, 2005

Group Art Unit: 1751

Examiner: M. Kopec

Docket: YO987-074BZ

In re Patent Application of

Applicants: Bednorz et al.

Serial No.: 08/479,810

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

Filed: June 7, 1995

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

TEMPERATURE. METHODS FOR THEIR USE AND PREPARATION

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT V

Serial No.: 08/479,810

Page 1 of 5

Docket: YO987-074BZ

Communicated 15 September 1949 by ARNE WESTGREN and ARNE TISELIUS

Mixed bismuth oxides with layer lattices

I. The structure type of CaNb₂Bi₂O₉

By BENGT AURIVILLIUS

With 5 figures in the text

In the course of a comprehensive investigation of mixed bismuth oxides, the system $\mathrm{Bi_2O_3}$ — $\mathrm{TiO_2}$ was studied. At about 40 atomic % of $\mathrm{TiO_2}$ a phase with a body-centered pseudo-tetragonal unit cell with a=3.24 Å and c=32.8 Å was found. X-ray analysis (to be published later) seemed to show that the structure was built up of $\mathrm{Bi_2O_2^{1+}}$ layers paralell to the basal plane, and sheets of composition $\mathrm{Bi_2\Gamma_3O_2^{1+}}$. The atomic arrangement within the $\mathrm{Bi_2\Gamma_3O_2^{1+}}$ sheets seemed to be the same as in structures of the perowakite type and the structure could then be described as consisting of $\mathrm{Bi_2O_2^{1+}}$ layers between which double perowskite layers are inserted.

An attempt was then made to synthesize compounds where the Bi₂O₂²⁺ layers alternate with single perowskite layers. The general formula for such compounds could be expected to be: (MaBi₂)₆R₄O₁₅. In actual fact compounds with this structure could be prepared with Me: Na K Ca Ba Sr Pb R: Ti Nb Ta.

Procedure: Weighed amounts of the appropriate oxides or carbonates were mixed and heated in platinum or gold crucibles to about 1000°C. A number of compounds with the general formula (Bi, Mg,Ng,O₁₈ were prepared. Out of these the following were found to have a body-centered tetragonal or pseudo-tetragonal unit cell. The real unit cells, however, appeared to be face-centered-orthorhombic.

	Orthorhombic description		iption	Pseudo-tetrage description	
Composition	a	ь		a	6
BiaNbTiOa	5.405 5.402 5.435 5.504 5.509 5.533 5.492 5.506 5.47	5.442 5.436 5.435 5.504 5.509 5.533 5.503 5.506 5.47	25.11 25.15 24.87 25.05 25.06 25.55 25.53 25.28	3.836 3.832 3.860 3.892 3.895 3.912 3.887 3.893 3.87	25.11 25.15 24.87 25.05 25.06 26.65 25.63 25.26 26.94

B. AURIVILLIUS, Mixed bismuth oxides with layer latticus

Single crystals were prepared from the PbBi₂Nb₂O₅ and Bi₃NbTiO₅ phases. Weissenberg photographs of 0kl and 1kl (pseudo-tetragonal cell) were taken. In the powder photographs of Bi₃NbTiO₅ (Table 6a) the reflections 110, 211, 215, 220 and 310 were clearly split up. No cleavage was found for the reflections 101, 201, and 30l, (in all cases pseudo-tetragonal indices). From this it was concluded that the structure might be described by means of orthorhombic unit cells, having the same c axes as the pseudo-tetragonal cells. Using and a and b axes equal to the diagonals of the pseudo-tetragonal cells. Using orthorhombic units the Weissenberg photographs register hhl and h, h+2, l. In Table 6a the sin 0 of Bi₂NbTiO₅ are calculated on the assumption of an orthorhombic unit cell.

A few discrepancies occur between the intensities of the spots as found in the Weissenberg photographs (first layer) and in the powder photographs. In the Weissenberg photographs (h,h+2,h), no difference was found between reflections hkl and khl. From the powder photographs it is seen that 0.24 might be < 2.04 and that 3.11 < 1.31 and 3.11 < 1.3 11. The reason might be dependent on the powder.

PhBi₂Nb₂O, phase

The powder photographs of PbBi₂Nb₂O₂ (Table 6b) could be explained as suming a tetragonal cell with a=3.887 Å and c=25.58 Å, but for two lines being split up, which indicated an orthorhombic unit cell with axes a=5.492 b=5.603 and c=25.53 Å. As in Bi₂NbTiO₂, it was thus assumed that the real symmetry is $D_{2n}-mnm$, though nothing in the Weissenberg photographs indicated a lower Laue symmetry than $D_{2n}-4/mnm$. The observed density was 7.91, thus allowing 4 formula units unit cell ($d_{calc}=8.22$).

With the exception of the criterion for face-centering that hkl occurring only with h, k, l all odd or all even, no systematic extinctions were found. This is characteristic of the space groups D_{2k}^{∞} , D_{1}^{l} and C_{2k}^{u} .

Positions of the metal atoms

As the scattering factors for the Pb and the Bi atoms are almost the same it makes no difference in the intensity calculations whether the Pb and the Bi atoms occupy separate positions or are mixed at random. Therefore no difference will be made between Pb and Bi; they will both be denoted by Max.

The intensities of the reflections seemed to depend mainly on the value of k (see Table 1a). It therefore seemed probable that at least the Me and the No atoms are placed along the lines: $\{00, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}\} + 0.0z$. The sum of $\sum I_{001} \cos 2\pi i z$ and $\sum I_{111} \cos 2\pi i z$ will under such conditions represent the

Patterson function along 00z. In Fig. 1a these sums are plotted as functions of z. It is seen from the graph that high maxima occur for z = 0.20 and z = 0.40.

The unit cell of PbBi₂Nb₂O₉ contains 12 Me atoms and 8 Nb atoms.

If the space groups are assumed to be D_{ab}^{ab} , D_{a}^{b} or C_{ab}^{ab} a or b, the only way of placing 12 Me atoms on the lines 00z is in one 4-fold and one 8-fold position. With these assumptions the only 4-fold positions possible are 000 or 00 $\frac{1}{2}$

7

The crysts in the vicinity of maximum tetragonal ind 101, 111, 20 have been der

> > 13

15

17

19

21 23

25 27

29

464

taken.

211, or the

From ans of l cells, Using 1+2,1 of an

and in 18. In reflecmight ght be

o lines = 5.492 at the graphs ity was

ng only This is

e same. and the fore no by Me. lue of ! the Nb sum of ent the

20 and aly way ild posi-or 00 1.

unctions

Table 1 a

Weissenberg Photographs of PbBi₂Nb₂O₅. Cu K_a radiation

The crystals form very thin plates, and therefore considerable absorption occurs. Spots in the vicinity of the lines described by Wextzs (2) will therefore be weakened. The regions of maximum absorption are denoted by dotted lines. In the tables 1,2 and 3 pseudo-tetragonal indices are used, and observed and calculated intensities for the reflections 00,10,111, 20,1 and 21; are given. With orthorhombic description these reflections would have been denoted by: 001,021 or 201,221,131 or 31.

ı	I,	I ₂	1001	I _{obs.}	1201
•					
2	18	1.2	_	VW	VW W
* .	9.0	- 34	m ⁻	m	w
4 6 8 10	0.1	8.4	vvw_	m·	w m
10	25	14	m T	w m+	w
	350	340	vst	m+	m
12	19	0.2	w	-	_
14	86	100	m+	VVW	
16	9.6	4.8	vw	_	_
18	45	31	m	w	w
20	280	230	8¢	m+	w m+
22	22	0.04	_	_	_
24	71	200	m+	no.	m+
26	27	14	w	vvw	vw
28	85	26	w_ m_	w	w
. 30	190	180	m	m	
32	25	8.4	₩ '		
ı	1,	12	I101	I _{obs.} I ₂₁₁	
,	1.7	17			
8 1	20	6.8	m_	vvw	
5	380	870	vet	ort.	
7	18	0.0		st ·	
1 3 5 7 9	12	63	m	. w	
11	3.2	5.8		· <u>-</u> 1	
13	32	23		VVW	
-15	820	280	. w	w	
17	20	0.2			
19	55	160	m+	w+	
21	18	7.8	vvw		
23	61	82	· m	w+	
25	230	170	m+	m	
27	24	1.7	_		
29	85	250	m+		
31	48	23	w		

B. AUBIVILLIUS, Mixed bismuth oxides with layer lattices

Table 1b

Weissenberg Photographs of PbBi₂Nb₂O₉

	1'2 14 4.8 340 0.4 67 3.6 28 280 0.3 150
4 11 m 32 1 1.7 ww 1.4 8 28 m 14 5 320 st 10 30 5 5 10 12 45 w 10 12 45 16 6 1.3 ww 5.8 12 30 12 20 20 st 20 22 25 m 20 2	14 4.8 340 0.4 67 3.6 23 280 0.3 150
0	4.8 340 0.4 67 3.6 28 280 0.3 150
10	67 3.6 28 280 0.3 150
18 0.3 vw 5.8 13 28 vvw 18 15 300 w 20 280 st 230 17 18 22 25 0.4 19 42 w 24 58 m 250 21 14 26 21 w 10 23 66 w 28 85 m 21 25 21 25 210 m	28 280 0.3 150
118 70 m 38 15 300 w 20 280 st 230 17 118 22 25 0.4 19 42 w 24 58 m+ 250 21 14 28 21 w 10 22 68 w 28 85 m 21 25 21 m	280 0.3 150
22 25	150
28 85 m 21 25 210 m	
28 85 m 21 25 210 m	7.8 36
	170
30 240 m 120 27 23 —	2.9
32 17 w 6.8	
101 I' ₁ I _{obs.} I' ₂ 111 I' ₁ I _{obs.}	I'2
1 1.0 m 8.4 2 18 vw 3.0 m 4.0 4 9.0 m	1.2
	34 8.4
5 320 vst 340 6 0.1 m 7 16 0.5 8 25 w	14
9 24 m 67 10 350 m+	340
11 6.8 - 2.0 12 19 -	0.2
18 24 W 24 14 36 VVW	100
15 310 at 280 16 9.6 —	. 4.8 81
	230
91 14 999 7.8 22 22 —	0.0
93 64 m 38 24 71 m	200
25 210 m 170 26 27 vvw	14
27 23 — 2.9 28 85 W 29 81 m+ 220 30 190 m	26 130
	130
201 I' ₁ I _{obs.} I' ₂	
2 12 vw 1.4	
4 10 w 36 4.8	
6 0.5 — 4.8 8 31 w 14	
4 10 w 36	
12	
16 6.8 — 6.8	
20 280 m+ 230 22 25 — 0.4	
24 59 m+ 240	
26 20 vw 11	
28 85 w 21	

Of It Usi sibiliti

The 0.20 s
In the ridirecticourse actual areas slone.

Figure 1a. Patterson function of PhysBisNbsOs along 00 m

Full curve: $\sum I_{00l} \cos 2\pi iz$

280

150 7.8 36

200 14 28

130

 $\sum I_{11l} \cos 2\pi lz$ (orthorhombic indices).

Figure 1 b. Patterson function of BiaNbTiOs along 002

Of 8-fold positions only \pm 00z is possible. It was assumed arbitrarily that 4 Me occupy the position 000.

Using the distances found with the aid of the Patterson function, two possibilities for placing the Nb atoms arose:

1. 8 Nb in ± 00 0.20 4 Me in 000 8 Me in + 00 0.40 2. 8 Nb in ± 00 0.40 4 Me in 000 8 Me in ± 00 0.20

The two curves on the graph were added and the areas under the peaks at 0.20 and 0.40 calculated. The ratio 1.5:1 was found for 0.20/0.40.

In case 1, the ratio was calculated to be 0.91:1 and in case 2, 1.1:1 if the ratio fno/fm was assumed to be 0.46. These figures cannot be compared directly with the observed ratio 1.5:1 since the zero level in figure 1 is of course uncertain. Case 2 agrees slightly better insofar as the peak at 0.20 is actually higher. It seemed, however, that the uncertainty in determining the areas was so large that case I could not be excluded by these measurements alone.

at sτ

8

atc

y =

the

or

wit 0-

are fro

and The

 θ / λ

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices

Case 1

In calculating the structure amplitudes z_{Nb} was varied around 0.20 and z_{ka} around 0.40. The average ratio front was assumed to be 0.46. The intensities: were compared with calculated values of As:

 $A = 10 (\cos 2\pi l z_{Me} + 0.46 \cos 2\pi l z_{Nb} + 0.5) = 10 F/4 f_{Me}$. In this way the

best values for the parameters were found to be:

 $z_{\rm Me}=0.397\pm0.002$ and $z_{\rm Nb}=0.192\pm0.004$. In Table 1a $I_{\rm calo}$ is compared with the observed intensities.

Case 2

z_{ND} was varied about 0.40 and z_{Mo} around 0.20. The best values were found to be $z_{Nb} = 0.412 \pm 0.004$ and $z_{Ma} = 0.202 \pm 0.002$.

The observed and calculated values are compared in Table 1a.

It was found that arrangement 2 accounted slightly better for the experimental data than 1. It must, however, be borne in mind that the intensity ratios of weak spots might be changed through the influence of the oxygen atoms and that this influence was neglected in the calculations. The differences did not seem to be as large as to allow a decision between 1 and 2. It was therefore tried to find possible oxygen positions both for 1 and 2. The results were then compared.

Case 1. Positions of the oxygen atoms

The positions of the metal atoms were assumed to be: (000; 011; 101; 1 1 0) + 000 (4 Me₁) ± 00 0.397 (8 Me₂) ± 00 0.192 (8 Nb). Since all point positions of D_{2h}^{2a} can be described by positions of D_{2}^{7} or C_{2h}^{de} a, only D_{2}^{7} and C_{2h}^{de} a have been considered.

At first only D, will be discussed. If the interatomic distances O-0, Me-0 and Nb-O should not be smaller than 2.5, 2.2 and 1.8 Å oxygen atoms could

only be situated in the following positions:

An attempt was made to find positions for the oxygen atoms giving approximately regular octahedra around Nb, since from known structures containing Nb⁵⁺ and O^{2-} this seemed to be the normal configuration Nb⁵⁺ $- O^{2-}$. The maximum distance of contact Nb-O was assumed to be 2.5 Å.

With these assumptions 8(g) and 8(h) are the only positions where oxygen

atoms in contact with Nb can be situated.

With oxygen atoms in three 8-fold positions 8(h) the distances 0-0 would be too short. It then only remains to consider the case of oxygen atoms in two 8-fold positions 8(g) and two 8 fold positions 8(h). For the oxygen

468

のでは、100mmのでは、100mmのでは、100mmのでは、100mmのできた。

1.20 and z_{Me}

this way the

s were found

the experithe intensity the oxygen the differences d 2. It was The results

; $0\frac{1}{2}\frac{1}{2}$; $\frac{1}{2}0\frac{1}{2}$; ace all point D_2^{y} and C_{20}^{10} a

O-O, Me-O atoms could

3 2 0.122 2 0.311

s giving a pwn structures 1 Nb⁵⁺-O²⁻. Å. where oxygen

O-O would exygen atoms r the oxygen atoms in contact with Nb, reasonable interatomic distances were obtained assuming: 8. O_8 in $8(\rho)$ $z_8 = 0.100$ 8. O_2 in $8(\rho)$ $z_8 = 0.264$ 8. O_4 in 8(h) $z_6 = -0.168$. Even if small adjustments of these parameters are admitted for the remaining 4. 0 there is room only in the position 0.01 (O_1). With these assumptions the distances would be:

It is seen that the positions given might equally well be described by D_{2h}^{2h} or if the pseudo-tetragonal unit cell $(a = 3.89 \ c = 25.53 \ \text{Å})$ is chosen by D_{4h}^{10} .

As $a \sim b$ and the positions of the exygen atoms must be chosen from space considerations, the discussion will be the same for C_{2a}^{2a} as for C_{2a}^{2a} . For C_{2a}^{2a} it is found that the exygen atoms can be only in the planes y = 0 $y = 0.25 \pm 0.09$ $y = \frac{1}{4}$ and $y = 0.75 \pm 0.03$. For y = 0 or $\frac{1}{2}$, z must either be 0 or $\frac{1}{4}$ or lie between the limits 0.049 < |z| < 0.451, otherwise the distance 0-0 will be < 2.5 Å. For y = 2 z = 2, z = 2, such above the values $0, \frac{1}{4}, \frac{1}{4}$ or $\frac{3}{4}$ or lie between the limits 0.049 < |z| < 0.201 0.259 < |z| < 0.451.

In figure 2a sections of the unit cell are made for y=0 and $y=\frac{1}{2}$. Possible regions with space group G_{ab}^{0} are denoted in the figure by shaded areas. For these areas the distances $0-0\geq 2.5$. Mo $-0\geq 2.5$ and Nb $-0\geq 1.8$ Å.

With space group $C^{ab}_{\infty a}$ it thus seems that no basically new atomic positions are obtained, although this symmetry allows the atoms to be slightly shifted from the positions of D^{a}_{ν} .

In Table 1 the intensities have been calculated from the parameters found and compared with the observed ones. (The calc. intensities are denoted by I.). The mode of calculation is shown by the calculation of Ioo. I = A.

A = 10 (0.5 + cos $2\pi l_{2a_0}$ + $(l_{2a_0}l_{ab})$ cos $2\pi l_{2a_0}$ + (l_0l_{ab}) (0.5 + cos $2\pi l_{2a}$ + cos $2\pi l_{2a}$ + 2 cos $2\pi l_{2a}$). Since the ratios $l_{2a_0}l_{2a_0}$ and l_0l_{ab} vary with sin $\theta l l$ they were interpolated from values given in the International Tables (1).

Case 2. Positions of the oxygen atoms

The positions of the metal atoms were assumed to be: $(0.00; \frac{1}{2}, \frac{1}{2}0; 0, \frac{1}{2}, \frac{1}{2}0; 0, \frac{1}{2}) + 0.000$ (4 Me₁) ± 00 0.202 (8 Me₂) ± 00 0.412 (8 Nb).

With D₃ the following positions are available for the oxygen atoms 4 (b) 00 $\frac{1}{2}$

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices

Figure 2 a (see Case 1 in the text.)

The projection of the positions of the Nb, Me₁ and Me₂ atoms on the planes y=0 a y=1 are denoted by black circles, white circles and double circles respectively.

Figure 2 b (see Case 2 in the text.)

It was found that oxygen atoms in the positions 4(c), 4(d) or 16(k) could not be part of an ootshedron around Nb. With O in the remaining positions 4(b), 8(g) and 8(h), octahedra around Nb might be achieved in the following ways: $(1.8 \le Nb-O \le 2.5)$.

With oxygen atoms in three 8-fold positions 8(h), it seemed impossible to find positions for the remaining 12 oxygen atoms giving 0-0 distances $\leq 2.5 h$. With two 8-fold positions 8(h) + 4(b) + one 8-fold position 8(q) the following.

positions were assumed for oxygen atoms in contact with Nb:

4
$$O_1$$
 in 4(b) 8 O_2 in 8(g) $z = 0.324$
8 O_3 in 8(h) $z = 0.088$ 8 O_4 in 8(h) $z = -0.088$.

For the remaining 8 oxygen atoms there was only room in the positions 4(a) and 4(d). (O_5, O_6) .

With the above assumptions the distances would be:

The above positions might be equally well described by D_M^{23} or if a pseudo-tetraconal unit cell is assumed (a = 3.89 c = 25.53) by D_M^{43} .

In Figure 2 sons possible are denoted b positions gives 0-0 be attain

Thus no In Table the calcular as we in which cas well for the I'l and I's, velthough the described by (see for inst 107:109). I PbBiaNbO

Just as for indicate graphs (Tab with axes

The inter the metal a (Fig. 1b) s are made as

> A. 4 Nb 8 Bi'. 8 Bi'l

> > C_2

The area and the ra C₁ and C₂ the observe were consid fulfant, fut, calculated a these calcul agreement

Figure 2b socions are made of the unit cell for y = 0 and $y = \frac{1}{2}$ showing the positions possible for the crygen atoms if the space group C_0 , is assumed. Possible regions in denoted by shaded areas. It was found that only with oxygen atoms situated near the implicant given above, could octahedra of O around all Nb atoms and reasonable distances $\frac{1}{2}$ 0 to stained.

Thus no new arrangements were found when space group Cs, was assumed. In Table 1 the intensities are calculated from the parameters given above. The calculated intensities are denoted by Is. The mode of calculation is the same as was used in case 1. It is seen from the Table that both 1 and 2, m which cases the influence of the oxygen atoms was neglected, account fairly faul Is, where regard was taken to the O atoms, do not differ much either. Although the ratio 211:213 (see Table 1 (pseudo-totragonal indices)) is best elemented by 1', 2' on the whole seamed to satisfy the observed intensities best face for instance the intensity ratios 112:114 116:118 202:204 101:103 and 107:109). No definite conclusions could however be drawn from the study of PhBi,NDO, alone.

BiaNbTiO,

Just as for PbBi₂Nb₂O₂, there was nothing in the Weissenberg photographs to indicate a lower Laue symmetry than D_{4a} -4/mmm. From the powder photographs (Table 6a) it is however seen that the actual unit cell is orthorhombic with axes $\alpha = 5.405$ $\delta = 5.442$ c = 25.11 Å.

The intensities of the spots in the Weissenberg photographs indicate that the metal atoms are probably placed on the lines 00z. The Patterson function (Rg. 1 b) showed high maxima at 0.20 and 0.40. If the same assumptions are made as for PhBlaNb.0, the following arrangements seemed to be possible:

4 (c) 🐔

sudo-

The areas under the peaks at 0.20 and 0.40 were calculated as for PbBi₂Nb₂O₂ and the ratio 0.20/0.40 was found to be 1.4. The calculated ratios for A, B, C₁ and C₂ were 1.0, 1.0, 0.84 and 1.2. The area ratio for C₂ agreed best with the observed one. The differences are however small, so that all alternatives were considered. The intensities were calculated as for PbBi₂Nb₂O₂. The ratios Fighaus, i.e., farm and f_{sur/law} were assumed to be 0.26, 0.57 and 0.34. The calculated and observed intensities for A and B are compared in Table 2. In these calculations the influence of the oxygen atoms was neglected. The best agreement was found for

	z_1	z_2
A	0.198	0.400
В	0.196	0.400

B. AURIVILLIUS, Mixed bismut oxides with layer lattices

Table 2
Weissenberg photographs of Bi₂NbTiO₃.

2 4.0 12	ı	I _A	IB	1003	I _{obs.} I ₁₁₁	1201
4 7.3 22 m st m+ 6 2.3 5.3 w st m+ 8 7.3 22 m w m+ 10 510 440 st st st 12 1.4 2.6 w w w w w 16 0.2 0.0 w m						
6 2.3 5.3	2		12	! -		
10	4	7.3				
10 510 440 st st st st 12 14 15 52 m² v vw vw vw vw vw vw vw vw vw vw vw vw v	6					
12						
14 15 52 m* vw w w 16 0.2 0.0 w vw w w w w w w w w w m <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
16						
18 11 30 m* w vw vw vw rate m² vw rate m² rate m² rate m² rate	14					w
20 500 400 et et m' 22 0.1 0.4 m m m 26 0.5 2.0 w m m m 28 14 31 m m m 30 480 550 m m' 1 I _A I _B I ₁₀₁ I ₂₁₁ 1 4.4 12 et m' 5 5 520 450 vst vst 7 2.6 6.3 m m 11 0.8 1.4 w w 12 9.0 27 1 0.6 0.3 m 16 510 420 et w 17 0.6 0.3 m m 19 20 70 w w 21 1 0.0 0.5 w w 21 1 0.0 0.5 w w 22 1 1 0.0 3.2 m 25 500 380 m' 26 m' 27 0.0 3.2 m 26 m' 27 0.0 3.2 m 28 m' 29 m' 20 m' 21 0.0 3.2 m 20 m' 21 0.0 3.2 m 21 0.0 3.2 m 22 m' 23 12 31 m m 25 500 380 m' 27 0.0 3.2 m	16					_
22	18	11				
24						m-
26						
28 14 31 m m ⁺ m ⁺ 30 490 850 m m ⁺ 1 I _A I _B I ₁₀₁ I ₂₁₁ 1 4.4 12 st m ⁺ 3 5.5 520 450 vst vst 7 2.6 6.3 — — 9 11 0.8 1.4 w w 11 0.8 1.4 st m 12 0.0 st w 12 0.0 st	24					
\$\frac{1}{20}\$ \$\frac{490}{490}\$ \$\frac{350}{350}\$ \$\frac{m}{m}\$ \$\frac{m}{m}\$ \$\frac{1}{211}\$ \$\frac{1}{2}\$ \$\fra						
I		100	250			
1	30	490	300			
\$ 5.8 177 m vw vw t 5.5 520 4550 vst vst vst 7 2.6 6.3 m m m 11 0.8 1.4 w w w 12 15 15 10 420 st w 17 0.6 0.3 19 0.0 21 0.0 0.5 w w 23 12 31 m m m 25 500 880 m^4 m^4 27 0.0 3.2		I	I _B	1101	1217	
\$ 5.8 177 m vw vw t 5.5 520 6.3 vwt vwt vst 7.2 6.6 3.3 m m m 11 0.8 1.4 w w w 15.5 m m 12 9.0 27 vw w 16.5 10.4 250 st w 17.7 0.6 0.3 19.2 0.0 0.5 w w 19.2 1.2 0.0 0.5 w w 19.2 1.2 1.0 0.0 0.5 w w 19.2 1.2 1.0 0.0 0.5 w m 19.2 1.2 1.0 0.0 3.2 19.2 1.0 0.0 3.2		44	1.9	et	m+	
5 520 450 vst vst vst 7 2.6 6.3 m m 11 0.8 1.4 vw w 12 15 10 20 15 10 20 16 10 20 10 21 10 20 70 w w 23 12 31 m m 25 500 380 m* m* m* 27 0.0 3.2 m m* m* 27 0.0 3.2 m m* m* m* 27 0.0 3.2 m m* m* m* 27 0.0 3.2 m m* m* m* m* m* m* m*						
11 0.8 1.4	2	20.0	450	wet		
11 0.8 1.4	5					
11 0.8 1.4				_ m	m	
15 510 420 st w 17 0.6 0.3						
15 510 420 st w 17 0.6 0.3				1		
17 0.6 0.3	13					
10 20 70 w w 21 0.0 0.5 w w 22 12 50 880 m+ m+ m+ 27 0.0 3.2	15				l <u>*</u> !	
21 0.0 0.6 w w 23 12 31 m m 25 500 380 m ⁺ m ⁺ 27 0.0 3.2 —	17			1		
23 12 31 m m 25 500 380 m+ m+ 27 0.0 3.2 -	19					
25 500 380 m+ m+ 27 0.0 3.2 -	21					
27 0.0 3.2						
	27 29	34	120	m		
31 1.4 4.4 m	29					

From Table 2 it is seen that A and B account quite well for the observed intensities.

With A and B, Bi and Ti or Bi and Nb would occupy the same point position. This seemed a priori unlikely and if it was assumed that Bi,NbTO, and PbBi,Nb2O₀ were built up in the same way, arrangements A and B would amply that Pb, Bi and Nb were distributed over one point position, in PbBi,Nb2O₀. Therefore, although arrangements A and B cannot be excluded from intensity discussions alone, they seem very improbable and will not be dealt with in the following.

One half

The following

8 (8 (In Tal

4 Bii In case: 4 O₁ in

Figure 3.

One half of the pseudo-tetragonal unit cell of Bi₈NbTiO₂ (from s≈0.25 to z≈0.75). A denotes the perowekitic layer BiNbTiO₁. C Bi₈O₂ layers and B the unit cell of a hypothetical perowekite structure BiNbc5TiosO₃.

Case Ci

The following positions were assumed: 4 Bi in 000, 8 Bi in ± 00 0.396, 8 NbTi in ± 00 0.192. By the same arguments as used for PbBi₂Nb₂O₉ the following positions were arrived at:

In Table 3 the intensities are calculated from these parameters.

point NbTiO₂

would ?

ion, in scluded

not be

Case C2

4 Bi in 000, 8 Bi in \pm 00 0.200 and 8 NbTi in \pm 00 0.412 were assumed. In case 2' (see PbBi₂Nb₂O₉) the parameters for the oxygen atoms would be 4 O₁ in 00½, 8 O₂ in ± 00 0.324, 4 O₅ in ½½,

4
$$O_6$$
 in $\frac{1}{4}\frac{1}{4}\frac{3}{8}$, 8 O_4 in $\frac{1}{4}\frac{1}{4}z$; $\frac{1}{4}\frac{1}{8}-z$ $z = 0.088$
8 O_8 in $\frac{1}{4}\frac{1}{4}z$; $\frac{1}{4}\frac{1}{8}z$ $z = -0.088$

《《曹文》:"诸君》:"是国籍的"文字都是改造的",是他都是我们是国的文字的是他是是是一个的人的,我们是这种人的对方的的文字的对方的对方,这种人们是一个

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices

Table 3
Weissenberg photographs of Bi₂NbTiO₃

	Zer	o layer		l l	Fire	tlayer	7
100	I _{C'1}	I _{obs.}	I _{O'}	211	I _C	I _{obs.}	10'
4 6 8 10 12 14 16 18 20 22 24 26 28	13 0.5 48 310 46 38 2.6 100 240 112 42 29	m w m st w m+ st m w m m+ st m w m	36 10 18 330 12 59 29 48 240 0.5	1 3 5 7 9 11 13 15 17 19 21 23 25	2.6 35 290 19 27 3.6 52 270 6.8 45 14 110	m+ vw vst m w w w m m m+	22 6.3 300 1.0 55 18 26 270 0.8 90 40 40 40 200
101	190	I _{obs.}	150 I _{C₂}	111	I _{C'1}	I _{obs.}	I _{C'}
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29	2.0 2.9 270 17 29 5.8 4.9 270 5.3 44 16 110 200 4.4 65	et m vst m vst w vsv st m m m m	17 5.3 800 1.2 56 15 28 270 0.6 92 38 46 200 1.2 110 76	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	34 2.9 6.8 62 360 14 29 10 64 250 21 66 32 130	vvw st st w st vw vw st m m+	2.6 - 41 69 22 310 1.0 76 40 16 210 0.0 92 - 61 27 200
201	I _{C',}	I _{obs.}	I _{C'a}		•		
2 4 6 8 10 12 14 16 18 20 22 24 26 28	18 12 0.1 48 300 23 37 2.6 100 240 12 42 29	vw m+ w m+ m m m m m m m m m m m m m m m	2.9 87 16 17 320 5.8 58 31 45 240 0.5 140 45		. *		

In Ti from the second of the s

With D₄₀ - I 4 (000;

Valu

300

26

40

46 200

Ic:

41 69

22

310

40

16 210

> 92 61

27 200

0.0

1.0 76

2.6

0.8 90

270

1.0

ARKIV FÖR KEMI. Bd 1 nr 54

In Table 3 the intensities are calculated with these assumptions. It is seen from the Table that with C₁ the order of the reflections 101:103, 211:213, 202:204 and 107:109 are reversed. The same result was obtained if the influence of the oxygen atoms was neglected. If $z_{\rm Bl}$ and $z_{\rm Beri}$ were varied around 398 and 0.192 so as to give correct ratios for some of these reflections, large historpaneies cocurred for other reflections. With C₂ the intensities turned to be of the right order. There are however a few discrepancies. 00 20 is fertainly stronger than 0018 and 00 30 > 0028, but the calculated ratios seem to be too large. On the whole the agreement is however good.

Thus if the X ray data for only one of PbBi₂Nb₂O₉ or Bi₃NbTiO₉ were insidered, different atomic arrangements appeared to be possible, whereas only seems to explain the observed data both for PbBi₂Nb₂O₉ and Bi₃NbTiO₉. With orthorhombic description the positions will be:

```
Di - mmm
  (000; 011; 101; 110) +
            4 Bi.
                   (Me_1) in 4(a) 000
                             8 (i) ± 00 0.200 (0.202)
                   (Me<sub>2</sub>) in
            8 NbTi (Nb) in 8 (i) \pm 000.412 (0.412)
            4 0,
                             4 (6) 00%
                          in
                             8 (i) 00 0.324 (0.324)
            8 O2
                          in
            8 0
                          in
                             8 (1) 111; 111
           16 O<sub>4</sub>
                          in 16 (1) 112; 112; 112; 112; 112
                                z = 0.088.
```

With pseudo-tetragonal description the positions will be:

```
\begin{array}{c} D_{a}^{H}-I \ 4/mmm \\ (0\ 0\ 0; \ \frac{1}{2}\ \frac{1}{4}\ \frac{1}{2}) \ + \\ 2\ Bi_{1} \ (Me_{1}) \ in \ 2\ (a) \ 0\ 0\ 0 \\ 4\ Bi_{2} \ (Me_{2}) \ in \ 4\ (e) \ \pm 0\ 0\ 0.200\ (0.202) \\ 4\ NDT \ (Nb) \ in \ 4\ (e) \ \pm 0\ 0\ 0.412\ (0.412) \\ 2\ O_{1} \ in \ 2\ (b) \ 0\ \frac{1}{4} \\ 4\ O_{2} \ in \ 4\ (e) \ \pm 0\ 0\ 0.324\ (0.324) \\ 4\ O_{3} \ in \ 4\ (d) \ 0\ \frac{1}{4}\ ; \ \frac{1}{4}\ 0\ \frac{1}{4} \\ 8\ O_{4} \ in \ 8\ (g) \ \pm \left(0\ \frac{1}{4}\ \sigma_{2}\ \frac{1}{4}\ \sigma_{2}\ z \ z = 0.088. \end{array}
```

Table 4
r. t. for different compound

Values of the tolerance factor, t, for different compounds having the CaBi₂Nb₂O₆ structure.

Compound	‡. 100
Bianbtio, Biatatio, CaBianbao, Srbianbao, Srbianbao, Babianbao, Babianbao, Babianbao, Nabianbao, Nabianbao, Nabianbao,	91 91 91 99 99 106 101 91

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices

. Table 5

Powder photographs of CaBi2Nb2O9 and SrBi2Nb2O9. Cr K radiation. Pseudo tetragonal indices.

•	CaBi _s N	b_2O_9		
hkl	I _{obs.}	I_{α}	Iβ	· I,
006		8.4	0.8	0.01
008	m	61	9.6	0.6
114+00 10	(m)	230	230	230
00 12	-	0.5	19	47
00 14	vw	29	46	56 4.0
00 16	vw	2.6 100	0.6 84	13
00 18	w	. 100	94	10
101		1.2	0.5	2.9
108	st	36	1.4	1.4
105	vst	200	200	200
107	w	21 18	0.3 32	7.8 43
109	vvw			0.5
10 11	m+	7.0 79	0.2 19	4.4
10 13 20 10+10 15	(st)	160	160	160
21 11+10 17	(w)	22	0.2	9.0
112	_	26	0.04	4.8
0010+114	(m)	4.4	14	22
116	w	4.4	17	26
118	m	69	13	1.7 200
204+11 10	(st)	200 22	200 0.1	8.4
11 12 11 14	 W	41	61	72
11 11	•			
202	W.	27	0.1	4.4
1110+204	(st)_	3.6	13	20 1.4
206	w	3.2 59	0.04 9.0	0.5
215+208 1015+2010	(st) (st)	220	220	220
20 12	vw	1.4	15	41
20 12	• • •			
211	w ⁻	0.1	2.3	6.3
213	w	38	2.0	1.0
208+215	(st)	210	210	210
217	_	21	0.3 33	7.8 43
219 1017+21 11	vvw (w)	18 4.4	0.01	1.4
10 17+21 11	(*)	4.4	0.01	
	SrBi ₂ N	b.O.		
		3.2	0.1	0.2
006 008	vw	45	11	2.6
114+00 10	(m)	260	260	260
00 12	VW	0.2	16	35
00 14	m	42	. 88	64
00 18	_	0.3	1.4	4.4
00 18	w	83	85	18
00 20	gt	150	160	160

One half tioned in determine 00 0.202. Ca, Sr, Ba KBi₅Nb₄O₁, do not diff

BOC

valid for tl Ca, Sr, Ba a Only 1 β Rando y Only 1

Table 5 (cont.)

(cor	1t.)				
	. hkl	I _{obs.}	I.	Iع	1,
	101	_	0.0	2.0	4.0
	103	VW	24	2.0	0.1
	105	st	230	240	230
	107	_	12	0.01	3.6
	109	w	28	42	49
-	10 11		2.3	0.01	0.8
	10 13	m	61	20	8.4
	20 10+10 15	(at)	190	200	200
800	20+220+10 17	(m)	13	0.01	4.0
poo	10 19	`mi	88	110	120
	112		16	0.3	1.7
	00 10+114	(m)	10	20	26
	116	A.A.	10	22	29
_	118	w	52	14	4.4
	11 10.	st	230	240	230
	11 12	_	18	. 0.0	3.6
	11 14	w	56	74	81
_	11 16		0.1	4.0	8.4
	11 18	m	4.0	10	2.3
			17	0.4	1.4
	202	-	9.0	19	24
	. 204		0.5	0.6	2.3
	206	(w)	43	10	2.3
	β11 14+208 10 15+20 10	(st)	250	260	250
_	β21 13+20 12	(vw)	0.01	12	29
	20 14	(1.17)	42	58	64
	20 14	-	0.2	1.7	4.8
	211	w	0.6	4.8	7.8
	213	w	26	2.6	0.01
	215	st	240	240	240
	. 217		12	0.01	3.6
	219	vw .	27	42	49
-	21 11		1.2	0.4	2.0
	2 1 13	m	59	19	7.8
	20 10+21 15	(et)	190	190	190

One half of the pseudo-tetragonal unit cell is pictured in figure 3. As mentioned in the discussion on PbBi₈Nb₂O₈, it was impossible in this phase to determine how Pb and Bi are distributed over the point positions 0.00 and 00.0202. It therefore seemed of interest to try to determine the positions of Ca, Sr, Ba and K in the compounds CaBi₂Nb₂O₈, StBi₂Nb₂O₈, as BaBi₂Nb₂O₈ and KBi₂Nb₂O₈, as the cell dimensions of the Pb, Ca, Sr, Ba and K compounds do not differ much it was assumed that the parameters of PbBi₂Nb₂O₉ are also valid for the other compounds. There were three extreme ways of distributing Ca, Sr, Ba and K over the positions 000 and 00 0.202:

a Only Bi in 00 202

β Random distribution

y Only Bi in 000.

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices

Table 6 a

Powder photographs of Bi₉NbTiO₉. Cr K radiation.

Orthorhombic indices,

hkl	10 ⁴ sin ² θ _{calc.}	10 ⁶ sin ² θ _{obs.}	I _{obs.}	hkl	10 ⁴ sin ² θ _{calo.}	10 ⁴ sin ² \$\theta_{\text{obs.}}\$	I _{obs.}
				02 14	5856)		1
111	0914	0909	m.	20 14	5878	5874	m l
113	1080	1072	M+	20 14	3676)	5990	vw -
008	1333	1319		189	6128	6129	W I
115	1414	1413	vst.	319	6172	6175	w
020	1774	1767	m+	219	0112	6250	VVW I
200	1796	1790	m	22 12	6569	6573	vvw 1
00 10	2083	2078 .	m	00 18	6747	6747	VW A
204	2129)	2131	w	18 11	6961	6961	
3119	2136∫			040	7097)	1 -302	1 6
		2324	VVW	02 16	7105}	7097	l m
026	2524	2530	m	20 16	7127	1	1 - 1
206	2546	2546	m	042	7180	1	1 . [
119	2580	2585	m	400	7185	7182	m i
		2739	VVW	8240	7357	ł	1 1
028	3107)	3129	₩	8420	7420}	7388	1 w 13
208	. 3129)	1		044	7430	1 .300	1 "
11 11	3413	3415	. 14	22 14	7852	7648	w
	_	3523	₩	046	7847	7836	VW .
220	3570	3576	st	406	7935)	1	1 1
222	3653)	3648	vw	13 13	7960	8005	1
311 13	3654	3020		31 13	8004	8000	w .
02 10	3857	3860	l st	331	8054	ı	
20 10	3879∫	5000		00 20	8330	8330	m
00 14	4082	4089	w	11 19	84111	8409	m
8135	4108∫	1	I	048	8430	9408	""
	_	4236	VW	20 18	8543)	8558	l st
228	4320	4324	w	335	8554	0000	1 **
11 13	4412	4414	W_	240	8887)	8888	l m
131	4462	4454	w	22 16	8901	0000	1 " 1
311	4506	4504	VW	420	8959	8963	m
β11 15	4621	4623	₩	242	8970	1	1 - 1
133	4628	1	1	13 15	9127	9105	at
313	4672)	4676	w	81 15	9171	9156	vst
β22 10	46795		i _	04 10	9180	9189	m
228	4903	4896	w	40 10	9268)	9264	l m
185	4962	4956	st	424	92925	3204	"
315	5006	8008	gt	426	9709	9712	W
11 15	5579	5581	st	339	9720	3/12	"
22 10		5652	st	1	1		

The intensities were calculated for these possibilities by calculations similar to those for $PbBi_2Nb_2O_0$, and compared with the observed ones. See Table 5. It was found that in no case did γ explain the observed intensities. For the St, Ba and K compounds the observed intensities did not permit any decision between α and β . For $CaBi_2Nb_2O_0$, however, only α seemed to give correct intensities. It was therefore concluded that the compounds discussed have the α arrangement.

٠.		_
i.	hkl	10
The second of th	101 103 008 105 110 00 10 114 β109	
1000	116 109 β200 00 12	
	10 11 200 11 10 00 14 10 13 211 208 215	
:	10 15 20 10	

The struct BiNbTiO₂ 3 skite struct view was ϵ was observe would allow t is calculat between the (see Table to be stable

twas calcul

In the calc ionic radii we K⁺ 1.33, Nb⁵⁺ distributed ove

Table 6 b

Powder photographs of PbBi₂Nb₂O₉. Cr K radiation.

Pseudo-tetragonal indices.

hkl	10 ⁴ sin ² θ _{calc.}	10 ⁴ sin ² 0 _{obs.}	I _{obs.}	Akl	10 ⁴ sin ² θ _{calo.}	$10^4 \sin^3 \theta_{\rm obs.}$	I _{obs.}
	0889	0892	vw	11 14	5682	5699	_ m
101	1060	1052	vvw	219	5974	5990	l m
103	1288	1285	VVW	00 18	6520	6529	w
008	1872	1371	vst	00 20	66631	6664	VVW
105	1738	1753	m	10 17	6685	0004	VVW
110 00 10	2012	2019	m	11 16	6889)	6924	_ m
114	2060)			β305	6903		"
B109	2069	2068	VVW	N	6950	6984)	m
	2462	2469	m	220		6976	m l
116	2499	2499	m-	20 14	7419	7485	m
109	2499			21 13	7744	7749	m
8200	2898	2881	m	801	7839	7846	vw
00 12	3026	3028	w	00 20	8049	8052	m
118	3304	3300	vvw	10 19	8133	8131	m+
10 11	3475	3475	st	228	8238)	8268	VW
200 11 10	3470	3755	st	11 18	8258		1 "
	3944	3946	w+	305	8332	8339	in.⊦
00 14 10 13	4269	4270	w+	310	8688	8673)	m+
211	4364	4355	vvw			8690}	m+
208	4763	4770	vvw	21 15	8872	8874	st
215	4847	4850	st	22 10	8962	8980	m
		5416	l st	314	9010)		
10 15	5397	5493	st	, 309	9449	9450	VVW
20 10	5487	1 0490	1 80	<u> </u>			

The structure of Bi₂NbTiO₂ is thus built up of Bi₂O² layers between which BiNbTiO² layers are inserted. The structure may be looked upon as a perowakite structure where perowskite layers are separated by Bi₂O² layers. This view was supported by the fact that in all cases where the above structure was observed the radii of the ions in the layers lying between the Bi₂O² layers would allow for the formation of a perowaltic structure. If the tolerance factor is calculated from the ionic radii of the elements constituting the layers between the Bi₂O² layers, it is found to lie between the limits 0.9 and 1.1 (see Table 4), the same limits within which perowakite structures are found to be stable.

t was calculated from the formula: 1.06 (R_A + R_O) = 0.95 t $\sqrt{2}$ (R_B + R_O). (See (3).) A = (K + Bi)/2 Ca, Sr, Ba sto. B = (Nb + Ti)/2 Th. + Ti/2 Nb. Ta.

In the calculations case a was assumed. For calculating t the following values for the ionic radii were used: $B_s^{3+}1.00$, $B_s^{2+}1.29$, $B_s^{2+}1.20$, $C_s^{3+}1.02$, $P_s^{1+}1.29$, N_s^{4} , 0.67, N_s^{4} , 0.67, N_s^{4} , 0.68, and $O^{4-}1.38$. If, for instance, 1 K + 1 Bi are distributed over one 2-fold position the radius of (K, Bi) was taken as $(r_{\rm K} + r_{\rm Bi})/2$.

474

m

vst

m

imilar

ble 5.

or the

cision

orrect

re the

in t

form

has

alco.

with

little

wate

tinu

knor

not

Ano

solv.

is TE

wate

(Fig

inne Ιn

caps M

met. benz

Т

മിമറ

with

are Aя

thar oua:

be per

48

M

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices

The structure proposed for CaBiaNbaOs reminds one of the structure of beyerite CaBi₂O₂(CO₃)₂ described by Lagerorantz and Sillén (4). The unit cell of beyerite is body-centered tetragonal with a = 3.767 and c = 21.690 Å. The positions of the Ca and the Bi atoms in beyerite are Ca 000 and Bi ±00 019 (space group D_{44}^{11}) as compared with a=3.860 c=24.87, Ca in 000 and Biv in ± 00 0.20 for CaBiaNbaOa.

The "rotating" CO groups in beyerite correspond to octahedral sheets Nb₂O; in CaBi₂Nb₂O. Following the notations given by Lagriculantz and SILLEN (4) the structure described above might also be denoted by X11.

SUMMARY

A series of tetragonal or pseudo-tetragonal phases of general composition (Bi, Me), R4O, a have been investigated.

Me: Na, K, Ca, Sr, Ba, Pb.

R: Nb, Ta, Ti.

The positions of the Me and R atoms were determined from the observed intensities and the positions of the O atoms were deduced from space considerations.

The following structure is proposed:

D23 - F mmm

(000; 011; 1011; 150) +

in 4 (a) 000 4 Bi

in 8 (s) ± 00 0.200 8 Bi 8 NbTi in 8 (4) ± 00 0.412

4 (b) 001 40 in

8 (i) ± 0 0 0.324 in 80

8 (1) 111; 111 8 0 in

in 16 (j) $\frac{1}{4}$ $\frac{1}{4}z$; $\frac{1}{4}$ $\frac{1}{4}z$; $\frac{1}{4}$ $\frac{1}{4}z$; $\frac{1}{4}$ $\frac{1}{4}z$; $\frac{1}{4}$ $\frac{1}{4}z$ z = 0.088.

From intensity calculations it was found that Ca in CaBiaNbaO9 and Sr, Ba and K in the corresponding compounds are probably situated in the position 000. The proposed structure is built up of Bi₂O₂² layers alternating with single perowskite layers. The resemblance to the structure of beyerite is pointed out.

I wish to thank Professor L. G. SILLÉN for valuable discussions concerning this work.

Stockholms Högskola, Institute of Inorganic and Physical Chemistry, June 1949.

REFERENCES. 1. Internationale Tabellen zur Bestimmung von Kristallstrukturen, Berlin 1935. — 2. Wells, A. F. Z. Krist. 96, 451, 1937. — 3. Stillwell, Ch. Crystal Chemistry, New York and London, 1938, p. 272. - 4. Lagercrantz, A. and Sillen, L. G. Arkiv Kemi etc. 25, N:o 20, 1948.

Tryckt den 31 december 1949

Uppsala 1849. Almqvist & Wiksells Boktryckeri AB

BRIEF ATTACHMENT W

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Date: March 1, 2005

Applicants: Bednorz et al. Serial No.: 08/479.810

Docket: YO987-074BZ Group Art Unit: 1751

Filed: June 7, 1995

Examiner: M. Kopec

For NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir:

In response to the Office Action dated July 28, 2004, please consider the

following:

ATTACHMENT W

Serial No.: 08/479,810

Page 1 of 5

Docket: YO987-074BZ

Communicated 15 September 1849 by ARNE WESTGREN and ARNE TREELUS

Mixed bismuth oxides with layer lattices

II. Structure of Bi.Ti.O.

By BENGT AURIVILLIUS

With 5 figures in the text

By means of X ray analysis it has been found that the crystal structures \hat{c}_{0} is number of bismuth oxynhides consist of $\hat{B}_{0}Q_{1}^{2}$ layers alternating with layers of halogen ions (1, 2). In all these cases the symmetry was found to the tetraconal and the lengths of the a axes almost constant ≈ 3.8 Å.

On making an X ray study of the system Bi_2O_3 — TiO_3 a phase (of composition about 40 atomic % TiO_3) was found, the powder photographs of which could be explained by assuming a pseudo-tetragonal cell with a=3.84 and a=32.8 Å. It seemed of interest to make a closer study of this phase since the cell dimensions and composition seemed to indicate a layer lattice with $\operatorname{Bi}_3O_3^*$ layers, but of a type hitherto uninvestigated.

Procedure: Weighed amounts of Bi₂O₃ (puriss) and TiO₂ (puriss) were mixed and heated to about 1100° C for some hours in a weighed platinum crucible. After cooling the crucible was weighed again and the composition calculated by assuming that the loss of weight could be ascribed to the volatility of Bi₂O₃. Powder photographs of various preparations in the system Bi₂O₃—TiO₃ indicated that there is a phase with a body-centered pseudo-betragonal unit-cell with a = 3.841 and c = 32.83 Å at compositions about 40 mole % TiO₂. It was, however, impossible to get samples which were quite free from impurities so the powder photographs always contained a few extra lines.

The lines 211, 221 and 311 were found to be split up. No cleavage was, bowever, found for the lines 101, 201 and 301. This could be explained by assuming a face-centered orthorhombic unit cell with the same c axis as the pseudo-tetragonal cell and with its a and b axes equal to the diagonals (aV_2) ; of the pseudo cell.

The orthorhombic axes will be: a=5.410 b=5.446 c=32.84 Å. The observed density (40 mole % TiO₂) is 7.85. If the composition is assumed to be Bi₄Ti₅O₁₂ (43 mole % TiO₂) and 4 formula unite are assumed per unit cell the calculated density will be 8.04 which agrees fairly well with the observed value.

Single crystals, thin plates, were picked out and Weissenberg photographs (zero layer and first layer) were taken around the 3.84 axes, thus registering h01 and h1l (pseudo cell) or hk1 and h,h+2,l (orthorhombic cell).

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices. II

Though there was nothing in the Weissenberg photographs to indicate lower Laue symmetry than $D_{4a} - 4/m \, m \, m$, it was — as has already been mentioned — found from the powder photographs that the real symmetry was no higher than orthorhombic (Laue symmetry $D_{2a} - m \, m \, m$).

Except for the extinctions following from the face-centering $(h \, k \, l \, \text{courring})$ only for $h, k, l \, \text{all} \, \text{odd} \, \text{or} \, \text{even})$ no systematic extinctions were found, which is characteristic of the space groups C_{2k}^{th} , D_{k}^{th} and D_{2k}^{th} .

Positions of the bismuth atoms

Since the intensities of hkl with h,k,l all odd on one side and the intensities of hkl with h,k,l all even on the other side appeared to vary in the same way with l (see Table 1), it seemed probable that at least the bismuth atoms are situated on the lines: $(000; \frac{1}{12}0; 0: \frac{1}{2}i; \frac{1}{2}0; \frac{1}{2}) + 00z$. The sum of $\sum I_{001} \cos 2\pi lz$ and $\sum I_{111} \cos 2\pi lz$ will under such conditions represent

the Patterson function along 00x. These two sums are pictured in figure $\tau_{\rm s}^2$. It is seen from the graph that high maxims occur at x=0.144, 0.280 and 0.428. If (x_0^2) is not considered, only the following positions on the lines 0.02;

 $\label{eq:Table I} \textit{Table I}$ Weissenberg Photographs of $\text{Bi}_4\text{Ti}_8\text{O}_{12}$. Cu K_α radiation

		Iobs.			Iobs.		
1 Icalc.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	or		Icake.	11	3 1 or 1 3	33
2 4.4 20 6 85 8 180 10 8.4 12 42 12 12 42 12 12 42 20 12 22 260 10 22 22 28 240 30 27 33 24 7.8 38 0.1 40 190 442 110	m rest m st st st m st m st m st m st m st	m w*	1 3 5 7 9 11 13 15 17 19 21 23 27 29 31 33 35 37	130 14 18 390 0.01 26 42 230 4.4 74 300 14 37 0.09 280 0.6 150 170 41 40 36	vst w wst w w w m st m st st m st m st	m	m · · · · · · · · · · · · · · · · · · ·

are possibl 8-fold pos found that that the 1 three possi

If the in

If the tw culated, th these figur the zero le order of m

Figure 1. Patterson function of Bi₄Ti₅O₁₂ along 00 s

Full curve: $\sum I_{001} \cos 2\pi lz$

Dotted curve: $\sum_{l} I_{11l} \cos 2\pi l s$ (orthorhombic indices)

are possible for the Bi atoms: The two 4-fold positions 0.00 and $0.0\frac{1}{2}$ and the 3-fold positions $\pm 0.0z$. Assuming that the unit cell contains 16 Bi it was found that the observed maxima in the graph could be explained by assuming that the 16 Bi atoms are situated in two 8-fold positions $\pm 0.0z$. In this way three possibilities arose:

a.
$$z_1 = 0.215$$
 $z_2 = 0.356$

b.
$$z_1 = 0.072$$
 $z_2 = 0.356$

c.
$$z_1 = 0.072$$
 $z_2 = 0.215$.

If the influence of the Ti and the 0 atoms is neglected the Patterson maxima will have the following relative weights:

	a	ъ	o
0.144	2	1	3
0.280	1	3 -	2
0.428	3	2	1

If the two curves in figure 1 are added and the areas under the peaks calcalated, the ratio of (0.144): (0.280): (0.428) is found to be: 4.4:2.6:1.10. Now, these figures cannot be directly compared with the figures given above, since the zero level in the graph is unknown. It is, however, seen that the observed order of magnitude of the peaks (0.144) (0.280) and (0.428) is the same as

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices. II

that calculated for c. Case c was therefore assumed, and z1 and z2 were varied? around 0.072 and 0.215. The observed intensities were found to agree quits well with those calculated for $z_1 = 0.067 \pm 0.004$ and $z_2 = 0.211 \pm 0.004$. In Table 1 the observed intensities are compared with intensities calculated as follows: $I = A^2$ A = 10 (cos $2\pi l z_1 + \cos 2\pi l z_2$) = 10 F/4 f_{Bi} . In Table 1 the lines of maximum absorption (see (4)) are indicated by dotted lines. It allowance is made for the polarisation factors and the absorption effect (4) it is seen that for h, k, l all odd the observed and calculated intensities agree quite well. For h, k, l all even the calculated ratios of 0016:0018 and 22 16: 22 18 are inversed in comparison with the observed ratios. This might he due to the influence of the Ti and the O atoms.

assumed:

Space .

The ir

culated f

be made

to find r

8 E 4 I

Positions of the Ti atoms

With the formula assumed the unit cell contains 12 Ti atoms. If the space group Cas c is not considered, the only 4-fold positions possible are:

4 (a)
$$x00$$
 or $0y0$ (C_{20}^{18} a or b), 4 (a) 000 4 (b) $00\frac{1}{2}$ (D_{3}^{7} , D_{2h}^{22}),

The positions 000, 111 and 111 seemed very improbable since the distance Bi-Ti would then be only 2.2-2.4 A. For the remaining positions 001, x00 (or 0 y 0) x (or y) must lie within the limits 0.38-0.62, if the minimum distance Bi-Ti is assumed to be 3.0 Å. If the distance Ti-Ti is assumed to be ≥ 3.0 Å, only 4 Ti can be situated in 4-fold positions and the remaining 8 Ti must occupy one 8-fold position. Of 8-fold positions the following seemed to be possible:

By a88 the follov

- 8 (d) $x \cdot 0z$, $x \cdot 0\bar{z}$ (or 0yz, $0y\bar{z}$) C_{2n}^{18} a or b, 8 (g) $\pm 00z$ (D_2^7 , D_{2k}^{28}),
 - 8 (h) \(\frac{1}{2}\)\frac{1}{2}, \(\frac{1}{2}\)\frac{1}{2} z (\(\D^2_2\)\)

Thus there seemed to be two ways of arranging the Ti atoms:

- 1. 4 Ti₁ in $0.0\frac{1}{2}$, 8 Ti₂ in $\frac{1}{4}\frac{1}{4}z$, $\frac{1}{4}\frac{1}{4}-z$ $0.133 \le z \le 0.147$
- 2. 4 Ti, in 0.0 ± 0.00 (or 0.00) $0.38 \le x \le 0.62$ (or $0.32 \le y \le 0.68$) 8 Tie in $\pm 00z \ 0.324 \le z \le 0.398$, $x0z, x0\bar{z}$ (or $0yz, 0y\bar{z}$)

 $0.38 \le x \le 0.62$ (or 0.38 < y < 0.62) $0.102 \le z \le 0.176$

Both for 1 and 2 the parameters are chosen as to make the distances Bi-Ti ≥ 3.0 Å. The region possible for the Ti₂ atoms - assuming arrangement 2 - is shown by the shaded area in figure 2.

By calculating the intensities of 001 for various zn values, it was found that the calculated ratio 0016:0018 (see the discussion on the Bi positions) was best for $z \sim 0.13_0$ or 0.37_0 .

Two region

No cor and octa structures

ARKIV FÖR KEMI, Bd 1 nr 58

The intensities of the spots in the Weissenberg photographs were then calculated for the arrangements 1 and 2 but no decision between 1 and 2 could be made by comparison with the observed intensities. It was therefore tried to find possible arrangements for the O atoms with both 1 and 2.

Case

Space group \mathbf{D}_2^r and the following positions for the metal atoms were assumed:

8 Bi₁ in 8 (g) $z_1=0.067\pm0.004$ 8 Bi₂ in 8 (g) $z_2=0.211\pm0.004$ 4 Ti₁ in 4 (b) 00 ½ 8 Ti₂ in 8 (h) 0.133 $\leq z \leq 0.147$

By assuming that the distances Bi $-0 \ge 2.2$, Ti $-0 \ge 1.8$ and $0-0 \ge 2.5$ Å, the following positions were found possible for the O atoms:

4 (d) 111

4 (c) 111

8 (g)
$$\pm 0.0z$$

0.130 $\leq z \leq 0.148$
0.274 $\leq z \leq 0.445$
16 (k) zyz ; $\bar{x}yz$; $zy\bar{x}z$; $zy\bar{x}z$
 $z \approx 0$
 $z = 0.27$
8 (h) $\pm 1z$; $\pm 1 \pm 1 - z$
0.240
0.183 $\leq z \leq -0.095$

Two regions are possible:

nd

28)

4 (a) 000

$$z = 0.113$$
 (for $z_{Ti} = 0.147$) and $z = 0.165$ (for $z_{Ti} = 0.132$)

No combinations of these positions could be found giving reasonable distances and octahedra around the Ti atoms, as is the case in previously investigated structures containing Ti⁴ and 0³. Arrangement I seemed therefore improbable.

 $0.324 \le z \le 0.398$

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices. II

Case 2

The positions of the metal atoms are assumed to be:

8 Bi₁ in
$$\pm 00z_1$$
 $z_1 = 0.067 \pm 0.004$ 8 Bi₂ in $\pm 00z_2$ $z_2 = 0.211 \pm 0.004$
4 Ti₁ in $00\frac{1}{2}$, $x00$ (or $0y0$) $0.38 \le x$, $y \le 0.62$ 8 Ti₂ in $\pm 00z$,

$$x \cdot 0z; x \cdot 0\bar{z} \text{ (or } 0yz; 0y\bar{z}) \quad 0.38 \le x, y \le 0.62$$

At first only space group D_1^i was considered (T_{i_1} in 00 i_2 and T_{i_2} in \pm 00 i_2). The following positions were found possible for the 0 atoms making the same assumptions as in case 1:

 $0.102 \le z \le 0.176$

4 (a) 000 4 (c)
$$\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

4 (d) $\frac{1}{2}\frac{1}{2}\frac{1}{2}$ 8 (g) \pm 00 z 8 (h) $\frac{1}{2}z$; $\frac{1}{2}\frac{1}{2}\frac{1}{2}-z$
0.130 \leq z \leq 0.148 0 $<$ |z| $<$ 0.040
0.379 \leq z \leq 0.3445 0.095 $<$ |z| $<$ 0.183
0.274 \leq z \leq 0.343

16 (k)
$$xyz$$
; $\bar{x}\bar{y}z$; $x\bar{y}\bar{z}$; $x\bar{y}\bar{z}$; $x\bar{y}\bar{z}$
 $x = 0.25 \pm 0.02$ or $y = 0.25 \pm 0.02$
 $y \sim 0$ $x \sim 0$
 $0.114 < z < 0.163$

It was tried to find positions for the O atoms so that T_{i_1} and T_{i_2} would be surrounded by regular or almost regular octahedra of O atoms with distances $1.8 \le T_{i_1} - 0 \le 2.5$ Å. For O atoms in contact with T_{i_1} , the following point positions are possible: 8 (b) 0 < |z| < 0.040, 8 (g) $0.424 \le z \le 0.445$. With 8 O situated at $\frac{1}{4}$ 0; $\frac{1}{4}$ 14 and 8 O at $\frac{1}{4}$ 00 0.442 regular octahedra of O would surround T_{i_1} . It, therefore, seemed probable that oxygen atoms are situated near these positions.

For oxygen atoms in contact with Ti2, the following positions are possible:

8 (g₁)
$$0.379 \le z_1 \le 0.445$$
 8 (h) $0.095 \le |z| \le 0.183$
8 (g₂) $0.274 \le z_2 \le 0.343$ 16 (k) $0.114 \le z \le 0.163$

With one set of oxygen atoms situated at 8 (h) or 16 (k), every Π_2 atom will be in contact with two oxygen atoms, while if oxygen atoms are situated at 8 (g₁) or 8 (g₂), Π_2 will be in contact with only one oxygen atom. It was

found the 8 (g₁) an tions 8 (l 6 O are 1

With a of oxygen c. Wit (z₁ ≈ 0.10 around Tiposition rangement With d distances was, there The fo. Ti or Ti,

Even i room for The pos as follows

ARKIV FÖR KEMI. Bd 1 nr 58

d.
$$8 O (h) + 8 O (h) + 8 O (g_1) + 8 O (g_2)$$

With a and b no combination of positions could be found, giving octahedra

c. With 8 O in $\frac{1}{2}$ 10; $\frac{1}{4}$ $\frac{1}{2}$, 8 O in 00 0.442 and 24 O in positions 8 (h) $\frac{1}{2}$ ≈ 0.102 $\frac{1}{2}$ ≈ -0.139 $\frac{1}{2}$ ≈ 0.177) so as to form octahedra of oxygen atoms and Ti, and Ti, there was room for the remaining 8 O atoms only in the position \pm 00z z = 0.274 or in the position \pm 00z z = 0.274 or in the positions 4 (c) + 4 (d). With these arangements, however, the distances O — O would be short (≈ 2.4 Å).

With d, positions for the oxygen atoms could be chosen, allowing reasonable distances and giving cotahedra of oxygen atoms around Ti₂. Arrangement d was, therefore, preferred to the arrangements a, b and c.

The following parameters were assumed for oxygen atoms in centact with T_1 , or T_2 :

8
$$O_1$$
 in 8 (h) $z = 0$
8 O_4 in 8 (g) $z = 0.436$
($z_{N_4} = 0.372$)
8 O_5 in 8 (g) $z = 0.308$
8 O_6 in 8 (h) $z = 0.128$
8 O_7 in 8 (h) $z = -0.128$

Even if these parameters are varied considerably around the values given, room for the remaining 8 O is left only in the positions 4 (c) and 4 (d) (0, 0g).

The positions arrived at might also be described with space group $D_{2n}^m - F mmm$ as follows:

atom ituated It was

ald be

follow-

0.445.

dra of

ssible:

004

398

same

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices. II

The distances and coordination will be:

No new combinations were found if the space group D_{2h}^{23} was assumed instead of D_{1}^{3} .

Figure 3 a.

Figure 3 b.

Since $a \approx b$ and the positions of the O atoms must be chosen from space considerations, it does not matter whether space group C_m^{ij} a or b is assumed. C_m^{ij} b was assumed arbitrarily. It was found that cxygen atoms could only be situated in the planes x=0, $x=0.26\pm0.02$, $x=\frac{1}{2}$ and $x=0.75\pm0.02$. Thus the following positions are possible:

4 (a) 0 y 0 8 (b)
$$\frac{1}{2}$$
 y $\frac{1}{2}$; $\frac{1}{4}$ y $\frac{1}{4}$ 8 (c) 0 y z; 0 y \overline{z}
8 (d) x y 0; \overline{x} y 0 16 (e) x y z; \overline{x} y \overline{z} ; \overline{x} y z; x y \overline{z} x $= 0.25 \pm 0.02$ $z = 0.25 \pm 0.02$

ARKIV FÖR KEMI. Bd 1 nr 58

100	Icalo.	Jobs.	201	Icale.	Iobs.
6 8 10 12 14 16 18 20 22 24 26 30 32 34 36 38 40 42	56 61 112 58 450 88 30 19 200 27 120 230 62 140 4.0 93	m m w m m m m m m m m m m m m m m m m m	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38	1.0 12 59 81 12 65 440 64 81 19 200 28 120 62 120 4.0 290 8.0	W M M M M M M M M M M M M M M M M M M M
101	Icalo.	Iobs.	302	Icalc.	Iobs.
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39	52 7.0, 17 470 2.0 23 46 120 23 98 320 52 0.6 270 19 110 140 53 75	vst w w w st m st st st m st m	1 3 5 7 9 11 11 15 17 19 12 1 21 22 23 27 29 31	69 8.0 18 470 22 45 130 21 93 320 36 53 0.8 270	

tracily. ± 0.02 ,

B. AURIVILLIUS, Mixed bismuth oxides with layer lattices. II

Table 2 (cont.)

First Layer

117	Icalc.	Iobs.	317	Icale.	Iobs.
2 4 6 8 10 12 14 16 18 20 22 24 28 30 32 34 36 38 40	1.0 12 64 230 15 67 410 10 115 41 20 20 220 210 47 74 9.0 310 4.0 180	w m m m m m m w w st w st st m st w vst	2 4 6 8 10 12 14 16 18 20 22 24 28 30 32	1.0 12 66 180 14 58 410 16 40 19 220 3.0 98 220 47 67	w w w w w w w w w w w w w w w w w w w
101	Icalo.	Iobs.	217	Icalo.	Iobs.
5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37	17 470 2.0 23 46 120 23 98 320 36 52 0.6 270 110 140 53 75	w vst vvw m m m st m st st st	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37	67 8.0 18 470 2.0 23 46 130 22 96 50 0.8 270 110 140 53	TO THE STATE OF TH

Pow

1 1 0: 0: 2: β0: β0: β2: β2: β2:

The po

ARKIV FÖR KEMI. Bd 1 nr 58

Table 3

powder Photographs of Bi₄Ti₈O₁₈. Cr K radiation, orthorhombic description

008 111	10 ⁴ sin ² θ calo. 0779 0903	10 ⁴ sin ² θobs.	Iobs.	hei	10 ⁴ sin ² θealc.	10 ⁴ sin ² θobs.	Iobs.
111	0779				Dan Franci	BILL FOOD	
111					#000 \		
111		0771	st	11 19	5282 }	5292	m
		0895	m	22 12	5314) 5710 \		
115	1195	1188	VVW	02 18	5735	5734	vvw
	_	1288	m_	20 18	5887		ļ
	-	1336	w	00 22	5900	5892	m
117	1487	1480	vst	13 11	5946	ì	l
		1614	∨w.	22 14	5950	5949	m
00 12	1752-1	1752	im	3 1 11 1 1 21	6255	6267	st
020	1769			11 21 02 20	6635)	020.	i -
200	1794	1790	w		6660	6664	vw
024	1964	1952	vw	20 20	6676	0002	
300 14	1974 \	1974	m-	22 16	7074	7070	VW
204	1989	19/*		040	7165		1
00 14	2384	2384	vst	13 15	7174	7172	m
028	25481		at	400	7215	1	1 -
208	2573	2565	Bt.	31 15	7223	7221	m ⁻
11 13	2947			402	7326	7335	W
8220	2953	2947	m	11 23	7503		1
02 10	2985	Į.	1	22 18	7512	7511	w
β11 15	3003	3005	w	046	7656	1	1
20 10	3010		ı	02 22 20 22	7681	7674	m
00 16	3114	3115	m ⁻		8223	8223	w
02 12	3521)	1	VVW		8494	8495	l w
20 12	3546	3538	VVW	11 25 337	8611	8611	m
220	3562	8567	m		8801	0022	
11 15	3628	3638	m	2 0 24 13 19	8819	8806	l vw
00 18	3941	3942	w	04 12	8826	1 0000	
226	4000	4006	w	240	8888		1
02 14	4153)		1	31 19	8869	8859	w
8137	4159	4171	·st	242	8917	1	1
20 14	4178	4171	. 80		8928	8934	VW
β317	4200		Y	40 12 420	8943		
228	4341	4333	w	2 2 22	9449		1
11 17		4418	vvw	04 14	9458	9458	gt
131	4440	4428	vvw		9537		
811	4482	4490	VVW		9558	9551	m
00 20			₩		9647	9652	VW
02 18		4880	1 **	248	9722	9714	VW
20 16		1		428	9722	9785	W
β22 14		4923	W	13 21	9102	3,00	1
137	5024	5029	m	· #			
317	5074	5078	m	9	1		1

The positions of the Ti atoms are assumed to be:

4 Ti₁ in 4 (a)
$$0.38 \le y_1 \le 0.62$$

8 Ti₂ in 8 (c) $0.38 \le y_3 \le 0.62$ $0.102 \le z_2 \le 0.176$

Figure 4.

One half of the pseudo-tetragonal unit cell of $Bi_4Ti_3O_{1s}$ (from $s\approx 0.25$ to $s\approx 0.76$). A denotes the perowakitic layer $Bi_2Ti_3O_{1s}^*$ ($Bi_4O_{1s}^{**}$) layers and B unit cells of the hypothetical perowakits structure $Bi_1O_{2s}^*$.

In figures 3 a and 3 b sections of one fourth of the unit cell are made for x=0 and x=0.25. (The projections of the positions of the Bi₁, Bi₂ and T1 atoms are denoted by: white circles, double circles and black circles respectively. The same scale is used as for figure 2). Regions where oxygen atoms might be situated are shown by shaded areas. In figure 3 a the positions of the T1 atoms are assumed to be: $0.0\frac{1}{2}$ and 0.9x, 0.

As in the discussion above it was tried to find positions for the O atoms giving an obshedral arrangement around T_{1_1} and T_{2_2} . Only with O atoms situated in the positions 8 (d) $x = \frac{1}{4} y \approx y_1 + \frac{1}{4}$ and 8 (c) $y \approx y_1 \approx 0.068$ would T_{1_2} be surrounded by regular cotachedra (see figure 3). It was therefore assumed that these positions are occupied by oxygan atoms. For coxygen atoms in contact with T_{2_2} , the point positions 8 (c) and 16 (e) are positions. For coxygen atoms in contact with T_{2_2} , the point positions 8 (c) and 16 (e) are positions 8 (c) and 16 (e) T_{2_2} T_{2_2} (e₂). Bear-16 (b), T_{2_2} may be in contact with 2 O (e₂) or 4 O ($y \approx y_2 + \frac{1}{4} z \approx x_2$) (e₃). Bear-

ARKIV FÖR KEMI. Bd 1 nr 58

ing in mind that the unit cell contains 48 O and assuming 16 O to be situated at 8 (e) + 8 (d) given an octahedron around T_{2} , the following arrangements giving 6 O around T_{2} gamed possible:

with b. no combination giving ostahedra of O around Ti_2 could be found. With a., however, arrangements could be found allowing Ti_2 to be surrounded by an almost regular octahedron. The following parameters for oygen atoms in contact with Ti_1 or Ti_2 were assumed:

8 O₁ in 8 (d)
$$x = \frac{1}{4} \quad y = y_1 + \frac{1}{4}$$

8 O₂ in 8 (e) $y = (y_1 + y_2)/2 \quad z = z_2/2$
8 O₃ in 8 (e) $y = y_2 \quad z = 3z_2/2$
16 O₄ in 16 (e) $x = \frac{1}{4} \quad y = z_2 + \frac{1}{4} \quad z = z_2$

For the remaining 8 O there seemed to be room only in the position 8 (b) $y \approx \frac{1}{4}$. It is seen that these positions are basically the same as were arrived at when space group \mathbb{D}^1_2 was assumed, except for possible small shifts in the y direction.

Thus no new arrangement was found by assuming $C_{2\pi}^{ab}$ α or b. In Table 2 (pseudo-tetragonal indices) the intensities, calculated by means of the formula $I = (10~\mathrm{F}/4~\mathrm{fg})^a$, are compared with the observed ones. Since the ratios $f_1/f_{2\pi}$ and $f_2/f_{3\pi}$ vary with sin θ/λ they were interpolated for every reflection from values taken from the International Tables (3). Table 2 shows good agreement between the calculated and observed intensities.

The following structure is thus proposed:

(000;011;101;110)+

8 Bi₁ in 8 (i) $\pm 00z$ z = 0.067

8 Bi₂ in 8 (i) $\pm 00z$ z = 0.211

4 Ti, in 4 (b) 00 1

8 Ti₂ in 8 (i) $\pm 00z$ z = 0.372

8 O₁ in 8 (e) 110; 111

8 O, in 8 (f) 111; 112

8 O_3 in 8 (i) $\pm 00z$ z = 0.436

 $8 O_4$ in $8 (i) \pm 0 O_2$ z = 0.308

16 O₅ in 16 (j) $\frac{1}{4}$ $\frac{1}{4}$ z; $\frac{1}{4}$ $\frac{1}{4}$ z; $\frac{1}{4}$ $\frac{3}{4}$ z z = 0.128

\$2°, \$2°, \$2°, \$2°

. A de-

= 0 and oted by: figure 2). o 3 a the 39 and in

an ootapositions y regular y oxygen are posm; with i). BearB. AURIVITATUS. Mixed bismuth oxides with layer lattices. II

For the pseudo-tetragonal cell the positions will be:

$$(000; 111) +$$

4 Bi₁ in 4 (e)
$$\pm 00z$$
 $z = 0.067$

4 Bi₂ in 4 (e)
$$\pm 00z$$
 $z = 0.211$

4 Ti₂ in 4 (e)
$$\pm 00z$$
 $z = 0.372$

4
$$O_1$$
 in 4 (c) 0 ± 0 ; ± 00

4
$$O_8$$
 in 4 (e) $\pm 00z$ $z = 0.436$

4
$$O_4$$
 in 4 (e) $\pm 00z$ $z = 0.308$

8
$$O_5$$
 in 8 (g) $\pm (0 \pm z; \pm 0 \bar{z})$ $z = 0.128$

concern WO_{3.90}

Ås w

are rat

triplets

taking thin it

axis).

with Cr using I

starting

tion. I

In figure 4 one half of the pseudo-tetragonal unit cell is pictured. The structure consists of Bi₂Q²₁ layers alternating with Bi₂Ti₃Q²₁₅ layers. The avantagements of the atoms within the Bi₂Ti₃Q²₁₅ layers seems to be the same as that found for perowskite structures, and it is easily found by calculation that the geometrical properties of the Bi². Thi* and O²—ions make a perowskite structure possible. Thus the structure might be looked upon as a layer structure where perowskite layers Bi₂Ti₃Q²₁₅— corresponding to a hypothetical perowskite structure BiTiO₃— alternate with Bi₂Q²₂ layers. With the notagiven by Lagerchartz and Sillén (6), the above structure might be denoted by XIII.

I wish to thank Professor L. G. Sillen for valuable discussions concerning this work.

Stockholms Högskola, Institute of Inorganic and Physical Chemistry, 1949.

REFERENCES. I. Bannister, F. A. and Hey, M. H., Miner. Mag. 24 (1933), 48.—
Sillén, I. G., Dissert, Stockholm 1940.— 3. Internationale Tabellen sur Bestimmung
von Kristallstrukturen, Berlin 1935.— 4. Wells, A. F., Z. Krist. 96 (1937), 451.—
5. Lagercrantz, A. and Sillén, L. G., Arlivi f. Komi ste. 25 (1947), 49.

amplite
(1 + cos
The
showin;
observe
networi
b axis i
one for

consiste lowing

1 No

Tryckt den 10 januari 1950

Uppsala 1950. Almqvist & Wiksells Boktryckeri AB

BRIEF ATTACHMENT X

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Date: March 1, 2005

Group Art Unit: 1751

Examiner: M. Kopec

Docket: YO987-074BZ

In re Patent Application of

Applicants: Bednorz et al.

Serial No.: 08/479,810 Filed: June 7, 1995

iled: June 7, 1995

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Sir:

In response to the Office Action dated July 28, 2004, please consider the

following:

ATTACHMENT X

Serial No.: 08/479,810 Page 1 of 5 Docket: YO987-074BZ

ARKIV FÖR KEMI Band 2 nr 37

Communicated 24 May 1950 by ARNE WESTGREN and PERCY QUENSEL

Mixed oxides with layer lattices

III. Structure of BaBi, Ti, O15

By BENGT AURIVILLIUS.

With 4 figures in the text

X ray studies on the compounds $CaBi_2Nb_2O_2$ (1) and $Bi_4^*\Gamma i_2O_{12}$ (2) have shown that the comparatively complicated chamical formulae of these compounds can be explained by simple layer structures being built up from $Bi_2O_1^*$ layers and perowskite layers. The unit cells are pictured schematically in Figs. 1 a and 1c. It was found both for $CaBi_2N^*D_2$ and $Bi_4^*D_2O_1$ that the symmetry was body-centered pseudo-tetragonal and that the length of the a axes had the same value (3.8 Å) while the length of the a axis was 25 Å for $CaBi_2^*Nb_2O_2$ and 33 Å for $Bi_4^*Ti_2O_2^*$. In both structures the heavy atoms form approximately a "substructure" with a smaller body-centered tetragonal cell with a = 3.8 Å and a = 2.6 Å for $CaBi_2Nb_2O_2$ or a = 33/7 Å for $Bi_4^*Ti_2O_2^*$.

The $\mathrm{Bi_2O_3}$ layers and perowskite layers lie perpendicular to the c-axis. Similar layer structures have been found for a number of bismuth oxicompounds (3,45). The common structural element in all these compounds is quadratic $\mathrm{Bi_2O_3}$ layers between which halides or certain radicals are inserted. This explains the fact that the a axes of all these compounds are of about the same length. For a survey see (5).

For the CaBi₂Nb₂O₂ type each perowskite layer has the composition (CaNb₂O₂)_n and the height of the layer is equal to four distances Nb—O or approximately to the height of two E2₁ (perowskite) unit cells (see Fig. 1 a). A compound with a somewhat similar structure has previously been investigated by Lacer-Crantz and Sillér (5). In this structure (see Fig. 1 b), beyerite CaBi₂O₂(CO₃)₂, the point positions corresponding to the positions of the Nb atoms in CaBi₂Nb₂O₂ are occupied by "rotating" CO^{*}₂ groups.

For the Bi₄Ti₅O_{1a} type the perowskite layers have the composition (Bi₈Ti₅O_{1a)}, and the height of the layer is equal to six distances Ti—O or approximately to the height of three E2, unit cells.

The general formula for a compound built up in a way similar to CaBi₂ND₂O₃ but where the height of the perowskite layer enclosed between a pair of Me₂O₃ layers is equal to the height of m E2, cells, will be:

Me₂O₂ (Me'_{m-1} R_m O_{3m+1}). Me, Me': Ca, Sr, Ba Bi (K + Bi)/2 etc.

R: Ti, Nb, Ta (Nb + Ti)/2 etc.

B. AURIVILLIUS, Mixed oxides with layer lattices. III

Fig. 1. Schematical pictures of the structures af a. $CaBi_2Nb_2O_2$ b. $CaBi_2O_1(CO_2)_3$ and c. $Bi_4Nb_2O_2$. The vertical lines indicate the lines 0 0 z and $\frac{1}{2}\pm z$ in the unit cells. A denotes perconditiot (E2;) regions in the structures.

It seemed of interest to investigate whether compounds could be synthesized with m=4. The present investigation shows that structures of the above type with m=4 exist.

Mixtures of Bi₂O₃. BaCO₃ and TiO₂, corresponding to the composition BaBi₄Ti₄O_{1s} were prepared and heated to 1100° C. Single crystals, thin plates were picked out and Weissenberg photographs were taken. These could be interpreted by means of a body-centered tetragonal cell with a=3.86 Å and c=4.17 Å. The strong lines of the powder photographs (taken from preparations heated to 900° C (An crucible) or 1100° C (Pt crucible) were easily identified since they could all be described with the aid of the "sub-lattice" (a=3.86 ¢ = 4.17(9). If the c axis were 9 fold even the weak lines could be explained (Table 3). In this way the cell edges were found to be a=3.864 Å and c=41.76 Å. The observed density was 7.2, which agrees fairly well with the assumption of 2 formula units/unit cell (calculated density 7.49).

The Weissenberg photographs registered $0 \, k \, l \, 1 \, k \, l \, h \, h \, l \, and \, h \, h \, h + 1 \, k \, l \, .$ In the Weissenberg and powder photographs there was nothing to indicate a lower Laue symmetry than $D_{ab}-4/mmm$. Except for the extinctions due to the body-centering, $h \, k \, l$ occurring only for h + k + l = 2n, no systematic extinctions were found, which is characteristic of the space groups \mathbb{C}_{k} , $D_{ab}^{(1)}$ and $D_{ab}^{(1)}$. Fig. 2

Fig. 2. Pattersor

Fig. 3. Three dimmaterial was used the amplitudes are The ver

ARRIV FÖR KEMI. Bd 2 nr 37

Fig. 2. Patterson Harker function of BaBi₄Ti₄O₁₅ along 0 0 s. All observed reflexions were used for this calculation.

O₃)₃ and 1 denotes

thesized ve type

position
1 plates,
ould be
A and
preparaly iden3" (a =
20 ould be
3.864 Å
ell with

1, l. In a lower ne bodyns were Fig. 2

Fig. 3. Three dimensional Fourier cut along 00z for BaBi₂Ti₄O₁₅. The same intensity material was used as for the Patherson Harker analysis pictured in Fig. 2. The signs of the amplitudes are the same as those obtained in the structure factor calculation for Table 2.

The vertical arrows correspond to the 2n values actually assumed.

B. AURIVILLIUS. Mixed oxides with layer lattices. III.

shows the Patterson Harker function along 00z. For all observed reflexions the K^2 values were estimated from: $K^2 \approx I_{\rm obs} \frac{1}{1 + \cos^2 2\theta}$. As expected large

peaks appear at $z \approx 1/9$ 2/9 3/9 and 4/9.

It is interesting to compare the cell dimensions found above with the ones which might be expected if the compound BaBi₂Ti₂O₁, is assumed to have a structure similar to that of CaBi₂Nb₂O₂ but with m=4. In this case the a xis would have about the same value as found. The length of the caxis might be estimated in the following way: The caxis of Bi₂NbTiO₂ (m=2 see (1)): 25.11 Å; the value for Bi₂Ti₃O₁ (m=3 see (2)): is 28.38, the difference in 7.72. If twice this value is added to the caxis of BaBi₂Nb₂O₂ (m=2) the value 41.0 Å is obtained. The value actually found was, as mentioned above, 41.76 Å.

From the composition, cell dimensions, and crystal symmetry it seemed a prior, probable that the structure of BaBi₄Ti₂O₁, was the one we anticipated. Therefore, the parameters were worked out with the aid of the parameters form for

Table 1

Weissenberg photographs of $BaBi_\alpha T_4 O_{15}$. Cu K_α radiation. For zero order photographs the regions of maximum absorption (see Wells (6)) are indicated by dotted lines. The intensities of 10 1, 103 and 105 have been taken from a zero order photograph, those of 1027-1049 from a first order

photograpl	rotated	around	(100).
------------	---------	--------	--------

ı	001	201	221	401	111	311	3 3 1
·	<u> </u>			1	I		1
2	1	- 1	vw	-	_		vw
4 6 8 10 12	l	-	-	=	VW	_	AAM.
6	vw	vvw	vw	- 1	w	_	VVW
8	m	·m	w	-	m	VVW	VVW
10	m	m	w	_	gt	₩	W W
12	w	VVW	vw	-	VVW	_) w
14	w		vvw.		w	_	-
16	st	w	m ⁺	VVW	m	vvw	m
18	vst	m	8t	w	vst	w	st
20	st	w	· w	VVW	w	_	_
22	st m+	vvw	vvw	VVW .	vw	_	VW
24	· w	vvw	vvw	VVW.	vw		w
26	w	VVW .		_	w	vvw	W
28	st	m*	₩ ⁺	m	m	vw	
80	w	w	w '	m m+		vw	
32	w	w w	w		m	w	
34	m	m	m ⁺		200	m	
36	st	st	st	11 12	m ⁺	· ma	
36 38	VVW	1	_		w		
40	st	st	st	1	st	st	l
42	vvw				vw		
44 46	-				- 1		i
46	m	m			st	Y	i
48	w	m			st		
50	₩ ₩* ₩*				m		
52	w ⁺			7			

Bi_sNbTiC to be: 2 The pc 4 Ti in :

 $\begin{array}{l} \frac{1}{2} 0 \left(\frac{1}{2} - z_3 \right) \\ 4 \ 0 \ \text{in} \ \pm z_1 \approx 1/9 \end{array}$

These at same values ones only i be an incorr

The par of the Ba (000 + 00)agreement ± 0.004 , z_4

ARKIV FÖR KEMI. Bd 2 nr 37

lexions

have a the a c axis see (1)) ence is

Table 1 (cont.)
Weissenberg photographs of BaBi₄Ti₄O₁₅. Cu K_{α} radiation.

**	e resember 5	. DITOOOR1	ap		10.	
	ı	101	211	801	821	411
			w	vw	vw	_
	1	m		V		1
	3	VVW	vvw	_	VVW	
	1 3 5 7 9 11	VVW.				
1	7	w	vw	VVW.		
- 1	9	vet	st	m.	m	. * }
	11		Ξ		<u>m</u>	
- 1	13	w_	_		.—	
	15	w ⁺		vvw .	_	
	17	m	VVW	vvw	_	
	19	at .	vw	VVW	vvw	vvw
	21	w.	_	VVW	VVW	vvw
	23	100	_	VVW	vvw	m_
	25	m*	vw	VW	vw	m ⁺
	27	st	m	w	m	
	29	m	vw	VVW	vvw	
	81	m	w	vw	vw	
	33	vw	vvw	VVW	vw	
	35			-		1
	37	m ⁺	m	m		
	89	vw	w	m		
	41	w	w	m w+		
	43	w w+	m			
	45	m	m*			
	47					
	49	st				

above, a priori Thereund for

photodotted

3 3 1

vw vvw vvw w w m st

Bi₃NbTiO₅ and Bi₄Ti₅O₁₂. The positions of the heavy atoms might be expected to be: 2 Ba in 000, 4 Bi in \pm 00 z_1 , 4 Bi in \pm 00 z_2 .

The positions of the Ti and O atoms might be expected to be:

4 Ti in
$$\pm 0.0z_3$$
, 4 Ti in $\pm 0.0z_4$, 2 O in $0.0\frac{1}{2}$, 8 O in $\pm (0\frac{1}{2}(\frac{1}{2}-z_2), \frac{1}{2}0(\frac{1}{2}-z_3))$, 8 O in $\pm (0\frac{1}{2}(\frac{1}{2}-z_4), \frac{1}{2}0(\frac{1}{2}-z_4))$, 4 O in $\pm 0.0(z_3+z_4)/2$
4 O in $\pm 0.0(z_3-(z_4-z_3)/2)$, 4 O in $0\frac{1}{2}\frac{1}{4},\frac{1}{2}0\frac{1}{2}$
 $z_1 \approx 1/9$ $z_2 \approx 2/9$ $z_3 \approx 0.350$ $z_4 \approx 0.450$

These atomic positions would give rise to high peaks in the Patterson-Harker plot at the same values as actually found. The calculated area ratios agree, however, with the observed ones only in as much as the biggest area is found for the peak at 1/9. The reasons might be an incorrect choice of the zero level and errors in the estimation of the intensities.

The parameters were varied around the above values for different positions of the Ba atoms: 2 Ba in 000, 00 z_1 or $00z_2$, 2 Ba equally distributed over $(000+00z_1)$, $(000+00z_2)$, (002_1+00z_2) or $(000+00z_1+00z_1+00z_2)$. The best agreement seemed to be for $z_1=0.106\pm0.001$, $z_2=0.221\pm0.001$, $z_2=0.352\pm0.004$, $z_3=0.452\pm0.004$ with 2 Ba equally distributed over $(000+00z_1+$

B. AURIVILLIUS, Mixed oxides with layer lattices. III

 $T_{able} \ 2$ Weissenberg photographs of $BaBi_4Ti_4O_{15}$. Cu K_a radiation $I_{calo.} = (2.5 \ F/k_{Bl})^3$

ı	Iobs. 101	Icale. 101	Iobs. 2 1 1	Icale. 2 1 1	Iobs. 3 0 1	Icale. 3 0 1
1	m	73	. w	90	vw	94
â	vvw	5.8	vvw	7.3	- vw	8.4
5	vvw	4.8	1 -	5.8] - 1	5.8
7	w	30	vw	21	vvw	82
ė	vet	620	st	610	m	630
ıĭ		13	1 ' =	12		14
13	w 1	25	_	24	1 - 1	24
15	w w	62	_	60	vvw	60
17	m	94 .	VVW	92	VVW	90
19	st	160	vw	170	vvw	170
21	w l	15	-	12	VVW	12
23	w	19		18	vvw	18
25	m ⁺	120	VW	120	VW	120
27	st	820	m	320	w	820
29	m l	45	vw	45	VVW	44
31	m	160	w	160	vw	160
88	l vw	56	vvw	56	VVW	56
85		13	I -	12	- 1	12
87	m ⁺	300	m	300	m	800
39	VW	12	w	13	m	13
41	w	15	w	14		15
43	w*	200	m m+	200		
45	m	180	m ⁺	180		
47	_	18			1	
49 51	st	250 3.6		1		
1	Iobs. 0 0 1	Icale. 0 0 1	Iobs. 111	* Icalc. 111	Jobs. 2 2 1	. Icale. 2 2 1
2				0.5	VW.	0.6
á			· vw	4.8		5.3
6	vw ·	21	w	23	VW	24
8	m	110	m	100		110
10	m l	62	st ·	280	w	98
12	w	12	VVW	6.3	VW	9.6
14	w	14	w	16	VVW	14
16	st	83	m	79	m+	. 81
18	vst	440	vat	480	st	450
20	et.	170	W	36	w	120
22	m,	100	vw	79	VVW	92
24	w	. 81	VW	86	vvw	78
26	w	39	w	36		39
28	st	280	m	240	w	280
30		2.6	= .	ii	w	1.4
32	w	11	m	20	w	12
84	<u>m</u>	140	m	110	m*	140
86	at	240	m ⁺	240	st	240
38	VVW	19	w	35		21
40	at	380	st	280	st	840
42	VVW	11	vw	22	1	
44	1 - 1	8.2	1 -	4.8		
46	m	240	st	230	I	
48	w w+ w+	69 58	st	46	1	
50 52	w ⁺	53 280	m	110	1	

0010 10 1 10 5 10 9 11 0 0016 11 8 0018 11 8 0019 1010 1017 20 0 1019 1118 1118 1120 20 1 20 1 20 1 20 1 20 1 20 1 20 1		hkl
10 1 10 5 10 9 11 0 00 18 11 8 00 18 11 10 10 15 00 20 10 17 20 0 10 19 11 18 20 8 (11 18 20 10 20 10 21 1 1 21 2	[-	
10 5 10 9 11 0 0018 11 8 0018 11 10 1 015 00 20 1 017 2 0 0 1 019 1 1 16 2 0 8 (11 18 1 10 21 2 0 10 (21 1 1 2 1 2		0010
10 5 10 9 11 0 0018 11 8 0018 11 10 1 015 00 20 1 017 2 0 0 1 019 1 1 16 2 0 8 (11 18 1 10 21 2 0 10 (21 1 1 2 1 2	- 1	101
10 9 11 0 0018 11 6 11 8 0018 11 10 1 015 0020 1 017 2 0 0 1 017 2 0 0 1 019 1 118 2 0 8 11 18 1 10 2 0 10 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1	- 1	
11 0 0 0 16 11 8 11 8 1 1 8 1 1 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	- 1	100
0016 11 6 11 8 00 18 1 10 0 18 1 10 1 015 0 0 20 1 0 17 2 0 0 1 0 19 1 1 18 2 0 8 \$ 11 1 18 1 0 21 2 0 10 \$ 21 1 \$ 21 3	- 1	10 9
11 6 11 8 0 0 18 1 1 10 1 0 15 0 0 20 1 0 17 2 0 0 1 0 19 1 1 16 2 0 8 3 11 18 1 0 21 2 0 10 2 2 1 1 2 2 1 3	- 1	11 0
11 8 0018 1110 1015 0020 1017 20 0 1019 1118 20 8 (1118 1021 2010 (21 1 121 3	- 1	
11 8 0018 1110 1015 0020 1017 20 0 1019 1118 20 8 (1118 1021 2010 (21 1 121 3	- 1	116
0018 1110 1015 0020 1017 20 0 1019 1116 20 8 51118 11021 2010 52 1	- 1	118
1 1 10 1 0 15 0 0 20 1 0 17 2 0 0 1 0 19 1 1 16 2 0 8 {11 18 1 10 21 2 0 10 {2 1 1 2 1 3	-	
1015 0020 1017 200 1019 1116 208 {1118 1021 2010 {211}	1	
0 0 20 1 0 17 2 0 0 1 0 19 1 1 16 2 0 8 \$1 1 18 \$1 0 21 2 0 10 \$2 1 1 \$2 1 3	ł	
1 0 17 2 0 0 1 0 19 1 1 1 16 2 0 8 {1 1 1 18 1 0 21 2 0 10 {2 1 1 2 1 3	1	1 0 15
20 0 1019 1116 20 8 {1118 1021 2010 {21 1 21 3	1	0020
20 0 1019 1116 20 8 {1118 1021 2010 {21 1 21 3	1	1017
1 0 19 1 1 16 2 0 8 {1 1 18 1 0 21 2 0 10 {2 1 1 2 1 3	1	200
20 8 {11 18 {10 21 20 10 {21 1 {21 3	1	1010
20 8 {11 18 {10 21 20 10 {21 1 {21 3	1	1111
\$\begin{align*} \begin{align*} 1 & 1 & 18 \\ 1 & 0 & 21 \\ 2 & 0 & 10 \\ \begin{align*} 2 & 1 & 1 \\ 2 & 1 & 3 \\ \end{align*} \end{align*}	1	1110
1021 2010 211 213	1 .	208
	1 1	1 1 18
	Ιt	1021
	1	2010
	1 6	211
	1 19	212
11 20 /2 0 14 (2 1 9		
2 0 14 2 1 9	1 (;	1.90
{2 1 9	1 22	120
(ZI 9	1 (2	U 14
	12	1 8

 $00z_2$). Othseen the thr following M over the po From Tal $\approx I_{221} \approx I_4$ be expected 00z, $\frac{1}{4}z$.

≥ I₃₂₁ ≈ I₄
be expected
00x, ½ z,
for the rows
senberg pho
the observet
more clearly
≥ 30 39. The
the z parame
structure fac
are 222:22
reflexions the
be introduce
the agreemen

calc.

0.6

5.3

1.4

ARKIV FÖR KEMI. Bd 2 nr 37

Table 3

Powder photographs of BaBi₄Ti₄O₁₅ Cr K_z radiation.

hki	10 ⁴ sin ² θ calc.	10 ⁴ sin ² θobs.	Iobs.	hkl	10 ⁴ sin ² θ calc.	10 ⁴ sin ³ θobs.	Iobs.
0010 101 105 109 1109 1110 0016 116 1118 0018 1110 1015 0020 1017 2000 1017		511 00bs. 745 878 1058 1481 1751 1915 2018 2236 2423 2504 2567 2992 3051 3514 3600 3681	Iobs. W m vw st m vvw vw vw vw m m vw w w w w w w w w	2 0 16 1 0 28 2 1 13 0 0 28 2 0 15 1 1 24 1 0 27 2 0 20 2 2 2 2 1 19 3 0 5 1 0 31 2 2 14	sin ² θ cale. 5443 5582 5667 5900 5954 6088 6093 6365 6526 7032 7064 7112 8099 8111 8114 8376		vw w vw m vw broad w broad
2 0 8 {1 1 18 1 0 21	3998 4196 4198	, 3996 4186	m.	2214 30 9 1130 31 0	8507 8521 8531 8802	8520	m .
2010 {21 1 21 3	4269 4403 4418	4265 4402	w vw	8 0 11 3 1 2 (1 0 33	8812 8820 9074	8802	m
\$2 1 7 \$1 1 20 . \$2 0 14 \$2 1 9	4764 4768 4991 5005	4774 5009	w m+	11 0 33 (2 1 25 (1 1 32 (2 2 18	9074 9098 9464 9470	9092 9484	w broad w broad

 $00z_2$). Other distributions of Ba should, however, not be excluded; as will be sean the three dimensional Fourier out along 00z (see Fig. 3) seems to favour the following Me arrangement: 4 Bi $\pm 00z_2$ and (2 Ba + 4 Bi) equally distributed over the positions 000 and $\pm 00z_2$.

From Table 1 it is seen that roughly for the same value of l: $I_{00l} \approx I_{10l} = I_{10l} = I_{11l} \approx I_{12l} =$

If 1 į į 0; 是是写 8 (i) z 8 Mea The 0,-1 03-4 0a-4 05-4

One h I wi Stoc

REF. 499. ---G., Dia N:o 20,

B. AURIVILLIUS, Mixed oxides with layer lattices. III

Fig. 4. One half of the unit cell of $BaBi_4Ti_4O_{15}$. A denotes the perowskitic region and B the Mo_2O_2 layers.

The following structure is therefore proposed: $D_{44}^{17} - I4/mmm$ (000, $\frac{1}{2}\frac{1}{2}\frac{1}{2}$) +

2 Me1 in 2 (a) 000 2 O₁ in 2 (b) 00 ½ 8 Θ_2 in 8 (g) $0\frac{1}{2}z$; $0\frac{1}{2}\bar{z}$; $\frac{1}{2}0z$; $\frac{1}{2}0\bar{z}$ z = 0.0484 Ti_1 in 4 (e) 00z; $00\bar{z}$ z = 0.4524 O₂ in 4 (e) z = 0.402

526

ARKIV FÖR KEMI. Bd 2 nr 37

Ba and Bi equally distributed over all Me positions,

If the structure is described by means of an orthorhombic space group (Din), as used for the structures of BigNivTiO₂ and BigTi₂O₁₂ the positions will be: Din = Fmmm (000; $\frac{1}{4}$ to $\frac{1}{2}\frac{1}{4}$; $\frac{1}{2}\frac{1}{4}$; $\frac{1}{2}\frac{1}{4}$; $\frac{1}{4}$
The distances (A) and coordination will be:

One half of the unit cell is shown in Fig. 4.

I wish to thank Professor L. G. Sillen for valuable discussions on this work.

Stockholms Högskola, Institute of Inorganic and Physical Chemistry. May 1950.

REFERENCES. 1. Anrivillius, B., Arkiv Kemi I (1950) 463.— 2. ——, Ibid. I (1980) 499.— 3. Bannister, F. A. and Hey, M. H., Miner. Mag. 24. (1935) 49.— 4. Sillén, L. G., Dissert., Stockholm 1940.— 5. Lagercrantz, A. and Sillén, L. G., Arkiv Kemi 25 No. 20, 1948.— 6. Wells, A. F., Z. Krist. 96 (1937) 451.

Tryckt den 14 oktober 1950

Uppsala 1950. Almqvist & Wiksells Boktryckeri AB

BRIEF ATTACHMENT Y

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of	Date: March 1, 2005
Applicants: Bednorz et al.	Docket: YO987-074BZ
Serial No.: 08/479,810	Group Art Unit: 1751
Filed: June 7, 1995	Examiner: M. Kopec
For: NEW SUPERCONDUCTIVE COMPOUNDS TEMPERATURE, METHODS FOR THEIR U	
Le South Come Start Start Care	
Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450	
Entra Standard	

FIRST SUPPLEMENTAL AMENDMENT

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT Y

Serial No.: 08/479,810 Page 1 of 5 Docket: YO987-074BZ

ARKIV FÖR KEMI Band 5 nr 4

Communicated 14 May 1952 by ARNE WESTGREY

The structure of Bi, NbO, F and isomorphous compounds

By BENGT AURIVILLIUS

With 1 figure in the text

X-ray studies made previously on the compounds $CaBi_2Nb_2O_9$, $Bi_4Ti_3O_{18}$ and $BaBi_4Ti_2O_{18}$ (1) showed that they have very similar structures. The symmetry is tetragonal or pseudotetragonal, and the structures are each built up of quadratic Bi_2O_1 layers alternating with perovskite layers, the latter having different heights in the three different cases. The generalized formula for the compounds might written Me_2O_1 (Me_{2-1} $R_{2-1}O_{2-1}$), where Me' is the 12 coordinated metal atom in the perovskite layers and R the 6 coordinated atom. The formulae for the above compounds, Bi_2O_3 ($CaNb_2O_3$), Bi_2O_4 (Bi_3), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 (Bi_3O_4), Bi_3O_4 ($Bi_$

The present paper deals with the compounds Bi_2NDO_2F , Bi_2TaO_2F and Bi_2TiO_4F , which correspond to the simplest case, m=1 above, except that some of the O atoms are replaced by F atoms. The formulae of the compounds might thus be written: $Bi_2(O, F)_2ND(O, F)_2$ etc.

Preparation, powder photographs and analyses

B4,NbO,F: When a mixture of BiF, and Nb₈O₂ in the mol ratio 4:1 was heated in air at 800° C for a short time, a few single crystals (very thin plates) were obtained. Powder photographs of this sample indicated a tetragonal unit cell with the same cell dimensions as would be expected for the above general type when m=1. The best conditions for the formation of this phase were then studied by heating 2.5 g mixtures (2BiF₃ + ¹/₄ Nb₅O₂) in air at 640° C, this low temperature being chosen to reduce the volatility of the BiF₃. The reaction times were varied from 5–40 hours, and powder photographs were taken of each product. For reaction times of 7–15 hours the lines of the above tetragonal phase predominated in the powder photographs, the few extra lines were very weak (see Table 1).

The fluorine content was found to vary from 4.0 % (7 hours) to 2.4 % (15 hours), whereas the calculated value for Bi₂NbO₂F is 3.2 %. No variation in the size of the cell with the fluorine content was found, and it therefore seems probable that the composition of the phase is constant and that the observed variation in the F content is due to the presence of small impurities which are not visible in the powder photo-

B. AURIVILLIUS, The structure of Bi₂NbO₅F and isomorphous compounds

 $\begin{array}{c} {\it Table~I} \\ {\it Powder~photographs~of~Bi_3NbO_sF~(sample~with~2.8~\%~F)} \\ {\it Cr~K~radiation~\lambda_{Cr~K_a}} = 2.2909~{\it A} \end{array}$

		Or La ZIZIOU A	
h k l	104 ⋅ sin² θ _{cale}	10 ⁴ · sin ² θ _{obs}	Iobs
103	1319	1332	1
006	1708	1711	st m
110	1784	1795	
112	1974	1989	www.
105	2078	2083	VW
114	2543	2547	
_	2010	2785	yvw
008	3036	3033	
-		3093	vw
116	3492	8490	st
200	3568	3567	st st
202	3758	3754	VW
		3808	vw
1109	4734)		
(00 10	4748	4787	8t
118	4820	4827	w
213	4888	4891	ert.
206	5278	5292	m
215	5647	5658	w
11 10	. 6527	6529	vw
10 11	6631	6630	w
00 12	6830	6841	w
220	7137	7139	w
222	7327	7330	vw '
301	8076	8080	VVW
{219	8303 }	8304	at
120 10	8311 }		8t
303	8456	8456	m
11 12 226	8614	8611	m
(10 1a	8845	8844	m
{310	8908 }	8919	m
312	8921 J 9111		
3.05	9111	9119	vw .
00 14	9297	9195	vw
	0401	9292	VW

graphs. To check that the Bi/Nb ratio had not changed essentially during the heating, a complete analysis was made on one sample (9 hours heating). The following values were obtained as the mean of three analyses: Bi: $68.0\pm0.6\%$, Nb: $14.2\pm0.6\%$, F: $3.7\pm0.2\%$.

The values calculated for BiaNbOsF are:

Bi: 68.5, Nb: 15.2%, F: 3.2%.

From these figures it seems probable that the formula of the compound is Bi. NbO.F.

Bl₂TaO₅F was prepared in exactly the same way as Bi₄NbO₅F. No analysis was made since the powder photographs were similar to those of Bi₄NbO₅F and niobium and tantalum compounds are usually isomorphous.

Fig. 1. C

Bl₂Ti(2:1 (tota photograassuming the same phase are of the mi variation are 7.8 % fluorine a of Bi₂Nb(Bi₈TiO₄F₈

Method with NaOl (3). The di

Bismuti was deterr precipitate as such.

The dime

ARKIV FÖR KEMI. Bd 5 nr 4

Fig. 1. One half of the unit cell of Bi₂NbO₂F. A denotes the region of Nb (O, F)₄ octahedra and B the Bi₂ (O, F)₂ layers.

Bi 2TiO F: Mixtures of bismuth fluoride and titanium oxide in the mol ratio 2:1 (total 2.3 g) were heated in air at 640° for various lengths of thime. The powder photographs obtained from samples heated for 3 or 5 hours could be interpreted by assuming a mixture of BiOF (2) and a phase whose cell dimensions were nearly the same as those of BiaNbOaF. (See Table 2, where the reflexions from the BiOF phase are designated by b and those from the other phase by a). The fluorine contents of the mixed samples were found to be 6.4 % (5 hours) and 8.4 % (3 hours) but no variation of the cell size with the fluorine content was found. The calculated values are 7.8 % for BiOF and 6.7 % for Bi₂TiO₄F₂. From the original Bi/Ti ratio, from the fluorine analysis and from the similarity of the powder photographs with those of BiaNbOsF (Tables 1 and 2), it was concluded that the formula of the phase is Bi.TiO.F.

Methods of analysis: Fluorine. The samples were first decomposed by fusing with NaOH, and were then distilled with HClOs as described by WILLARD and WINTER (3). The distillate was titrated with Th(NO_s), using Na-alizarinsulphonate as indicator.

> Bismuth and Niobium. The samples were brought into solution, and mobium was determined as described in Scott's "Standard Methods" (4). Bismuth was first precipitated as Bi₂S₈, which was then redissolved, converted to Bi₂O₃ and weighed as such.

Unit cells and space group

The dimensions of the unit cells were determined from powder photographs taken with focusing cameras of the Phragmén type (Tables 1 and 2). The radiation used

the heating, wing values 2±0.6%, F:

s Bi, NbO, F.

No analysis NbO F and

B. AURIVILLIUS, The structure of Bi₂NbO₅F and isomorphous compounds

Table 2

Powder photographs of $\mathrm{Bi_2TiO_4F_2}$ (mixed with BiOF) CrK radiation ($4c_{r.K_2}=2.2909$ Å). a denotes the $\mathrm{Bi_2TiO_4F_2}$ phase and b the BiOF phase

				#-2 hwang and	O OTTO DIC	/J.
	hkl	phase	10 ⁴ sin ² θ _{calo}	10¢ sin² θobs	Iobs	
	101			1	1	٦
- 1	101	b	957	941	vvw	- 1
	∫103	1 0	1270	1265	m	- 1
- 1	1002	5	1351	1354	st	- [
- [006	a	1771	1767	1	- [
ſ	110	ā	1816	1767	m	- 1
- 1	110	b	1864	1858	_m	- 1
- 1	112		2013	1999	VV₩	-
	105	a	2138	2132	w+	1
١.	102	ь	2284	2288	vvw	1
-	114	a	2603	2601	m	┪
- 1	117	:	-	3074	VW	i
- 1	112 107	ь	3216	3231	w	Ţ
- 1	116	4	3319	3320	vw	1
- 1	200	6	3587	8600	8t	1
- 1	200	b	3631	3624	et	1
	202	a	8728	3744	w	1
ſ	103	ŭ	3828	3822	w	İ
i		_	3974	3982	w	1
-	204	G	4418	4352 4426	VVW	
1	211	a	4538	4590	VVW	1
!	1	-		4674	w	!
	[109	a	4893)	2012	VVW	İ
-	{113	ъ	4908 }	4904	st	1
-	00 10	4	4919			ì
1	213	a i	4982	4979	st	
i-	1206	ь	5080	5084	w	Ĺ
1	{004	a b	5402 }	5416	m+	ı
	215	a 1	5408 \$ 5769			
1	212	6	6012	5768 6025	m	
	104	ъ	6340 i	6353	m w	
	203	ь	6770)			
1	10 11	a	6779 }	6786	m	
İ	217	a	6860	6869	m	
1	00 12	a	6950	6950	vvw j	
	1220	a .	7084 7262)	7075	.m.	
1	1114	ь	7272	7262	m	
l	§ 220	ь	7455			
	222	a	7459	7456	w ;	
	213	b	7702	7709	m	
	801	-		8049	vw	
	001	4	8210	8210	vw	
	(219	- a	0004	8352	VW	
Ι.	{20 10	6	8524 8550	8524	st	
	303		8613	8603	i	
1	301	ь	8736	8725	m w	
	222	ь	8814 ;	8807	w	
ட	1 1 12	a	8900	8900	m l	

was (be int

The The agrees calcula Zero was no than 1 h+k+
Pow and from

Bi₂N unit ce the marker l'od the Pat sity val here) sh of other position or 000. gave the

No de For B meter. A occupy t was obta

おおけつ いまつきか 大きなない いっぱつ こうせんけい かんというない

idiation

ARKIV FÖR KEMI. Bd 5 nr 4

Table 2 (continued)

hkl phase 10⁴ sin² θ_{calc} 104 sin² θ_{obs} I_{obs} 226 9033 9027 310 9078 9072 204 9136 9186 312 9275 9272 310 9319 9319 105 b 9382 9384 305 9400

was Cr K (λ_{CrE_a} =2.2909 Å). As mentioned above the powder photographs could be interpreted by assuming tetragonal unit cells; the cell dimensions are given below.

•	a (Å)	c (Å)
Bi ₂ NbO ₅ F	3.835	16.63
Bi ₂ TaO ₅ F	3.829	16.64
Bi ₂ TiO ₄ F ₂	3.802	16.33

The errors in these figures are estimated to be ± 0.1 %.

The observed density was 8.0 for Bi_sNDO_sF (preparation with 2.8% F), which agrees fairly well with the assumption of 2 formula units per unit cell, giving a calculated density of 8.26.

Zero and first order Weissenberg photographs around the a axis were taken. There was nothing in the Weissenberg photographs to indicate a Laue symmetry lower that D_{4a} — d_{4mm} . The only extinctions found were that l_{k} , l_{k} were absent for k+k+l odd, which is characteristic of the space groups C_{4a}^{l} , D_{2a}^{l} D_{2a}^{l} and D_{4a}^{l} .

Powder photographs only were taken of the compounds Bi₂TaO₄F and Bi₂TiO₄F₂, and from these it was concluded that these substances are isomorphous with Bi₂MbO₄F.

Positions of the metal atoms

Bi_sNbO_sF. With 2 formula units per unit cell there are 4 Bi and 2 Nb atoms per unit cell. The intensities of the spots in the Weissenberg photographs seemed in the main to depend only on the l values. Thus for l even $l_{e0i} \approx l_{11i} \approx l_{e0i}$ etc. and for l odd: $l_{10i} \approx l_{11i} \approx l_{e0i}$ etc. and for l odd: $l_{10i} \approx l_{11i} \approx l_{e0i}$ etc. and for l odd: $l_{10i} \approx l_{11i} \approx l_{e0i}$ etc. with these intensity values a good approximation of the Patterson-Harker function along 00z could be obtained by using only the intensity values of h0l and h1l. The Patterson-Harker function thus calculated (not given here) showed only one, big, maximum, at z=0.34. This maximum, and the absence of others, could be explained only by assuming that l Bi atoms are situated at the positions l00z with z=0.17 or z=0.33, and the Nb atoms at the positions l00z or 000. Arbitrarily choosing 000 as the position for Nb, trial and error calculations gave the value 0.325 for the Bi parameter.

No determination of zB; was made for BiaTaOaF.

For Bi₂TlO₂F₃ the powder photograph data were used to determine the Bi parameter. Assuming the Ti atoms to be situated at 000 and the O and the F atoms to occupy the same positions as given below for Bi₂NbO₂F, the value $z_{B1} = 0.327 \pm 0.006$ was obtained from trial and error calculations.

B. AURIVILLIUS, The structure of Bi2NbO5F and isomorphous compounds

Weissenberg photographs of Bi,N

			Zero l	ayer			
,	h k		0	2	0	4	0
1 0 2 4 6 8		1calo	Iobs	I _{calo} 170 10 0.04 67	Iobs vst w — w vw	I _{cale} 37 3 0.05 34 6	Iobs w
10		3	vw	2		2	-
12 14 16 18 20		15 10 16 22	st m w m	26 11 10 28	w w m	86	st
	λk	1	0	3	0		
1 1 3 5 7 9		Icalo 7 270 40 1 75	Iohs w vst w — m	I _{calo} 1 42 8 0.2 30	Iobs vw w vw vw	• 00	;
11		18	w	10	vw		
13 15 17 19		3 20 12 14	w w w	3 19	m m		

Positions of the O and the F atoms

The positions of the O and the F atoms could not be distinguished either from the diffraction data, or from space considerations because of the similarity in the reflecting power and ionic radii of 0^{4z} and F. The problem is therefore treated at hough O and F were the same atomic species. In the following, the O and the F atoms are denoted by (O, F) and the discussion relates to Bi_NNbO₂F for which $z_{\rm S}$ could be accurately determined from the Weissenberg photographs.

The pro

The line indicated the agreen

ARKIV FÖR KEMI. Bd 5 nr 4

photograph

NbOsF Cu Karadiation

4	0	
I _{calc} 37	Iobs W	
3 0.05 84 6	VW.	
6 2	VVW.	
86	st :	
		**

either from the arity in the reefore treated as as O and the F

F for which zat

ed by a regular $(0, F) \approx 2.0 \text{ Å}$.

only if 4 (O, F) th $z \approx 0.12$, and listance (O, F)—

is only room for

.	First layer				
E.	λk	. 1	8	31	
ı		Icalo	I_{obs}	Ioalo 36	Io s
0		210	vst .	36	w
2		17	w	4	VVW
0 2 4 6 8		11	w	2	
6		110	m	33	w
8		27	vw	9	vw
10		2	vvw	1	
12		21	'n	20	w
14		14	w	20	w
16		5	w	17	w
18		19	m		
20		58	st		
	h k	0	1	2	1

	hk 01		21		41		
1 1 8		Icalc 7 270	Iobs — vst	Icalo 2 74	I _{obs}	Icalo 1 83	Iobs vvw w
8 5 7		40	m —	13 0.3	<u>w</u>	0.2	
9 11		75 18	vst m	40 12	w vvw	53 51	w
13		8 20	vw m	3 19	v₩		
17		12 14	w	19	m		

The coordination and distances in A will be:

The proposed structure is given in the summary. Calculated and observed intensities for the reflexions in the Weissenberg photographs are given in Table 3. $I_{\rm cab}$ is derived as follows:

$$I_{\text{calc}} = \frac{1 + \cos^2 2\theta}{1600 \cdot \sin 2\theta} \cdot F^s \text{ where } F = \sum f \cos 2\pi (hx + ky + lz).$$

The lines of maximum absorption in the Weissenberg photographs (see 5) are indicated by dotted lines in Table 3. If the absorption effects are taken into account, the agreement between calculated and observed intensities is quite good.

B. AURIVILLIUS, The structure of Bi2NbO5F and isomorphous compounds

Discussion of the structure

Even if the $(O, F)_1$ atoms (see above) are assumed to occupy such a position that the distance Bi-4 $(O, F)_1$ is as small as possible $[z(O, F)_1-0.15, (O, F)_1-2]$, $(O, F)_2-2.5, Di-4 (O, F)_1-2.5,
previo represe

Univ

REF Mineral Ed. 5 (1 edited b (1937) 4

Discussion of the distribution of the O and the F atoms

As seen above, the distance $Bi-4(0, F)_s$ is 2.29 Å for Bi_sNbO_sF . For Bi_sNO_sF , the corresponding distance is calculated to be 2.26 ± 0.06 Å. These distances are very nearly the same as the corresponding distances, Bi-4 O, within the Bi_sO_s layers of other bismuth exicompounds (6). This need not, however, necessarily mean that the Bi_sO_s Fi_s layers (see the figure) are free from F atoms, since compounds with Bi_sO_s Fi_s layers which certainly contain F atoms have not been investigated hitherto, and thus the distances within such layers are unknown.

For the present it seems therefore best to make no special assumptions as to the

distribution of the O and F atoms.

SUMMARY

The crystal structure of Bi₂NbO₆F has been investigated by means of Weissenberg and powder photographs. From powder photographs the compounds Bi₂TaO₆F and Bi₂ThO₆F, where been found to be isomorphous with Bi₂NbO₆F. The following structure is proposed for Bi₂NbO₆F:

 D_{4h}^{17} -I4/mmm

(000, ½ ½ ½) + 2 Nb in 2 (a): 000 4 Bi in 4 (e): ±00z

z = 0.325 + 0.001

 $4 (0, F)_1$ in 4 (c) : 010, 100 $4 (0, F)_2$ in $4 (e) : \pm 00z$

 $z = 0.12 \pm 0.01$

 $4 (0, F)_3 \text{ in } 4 (0) : \pm 00z$ $4 (0, F)_3 \text{ in } 4 (d) : 0 + 1, +0 +$

z=0.12±0.01

The cell dimensions are a=3.835 Å, c=16.63 Å for Bi_sNbO_sF. The positions of the metal atoms were determined from the diffraction data, those of the $(0, \mathbb{F})$ atoms from space considerations. Although it does not seem improbable that O atoms alone occupy the positions $0_{\frac{1}{2}}$, $\frac{1}{2}0_{\frac{1}{2}}$, Bi and O thus forming Bi_sO_s layers as in other bismuth oxicompounds, nothing can be definitely stated as to the distribution of the O and F atoms.

The structure is built up of quadratic $\mathrm{Bi}_4(0,\,\mathbb{F})_2$ layers alternating with octahedral sheets having the composition $\mathrm{Mb}(0,\,\mathbb{F})_4$ (see figure) and the formula might thus be written: $\mathrm{Bi}_4(0,\,\mathbb{F})_2\mathrm{Ab}(0,\,\mathbb{F})_4$. The structure is formally related to a series of

ds

ARKIV FÖR KEMI. Bd 5 nr 4

nreviously investigated structures of general formula Me₂O₂ (Me'_{m-1}R_mO_{3m+1}) and represents the simplest case of this series, i.e. m=1. such a position = 0.15, (O, F),

University of Stockholm, Institute of Inorganic and Physical Chemistry, May 1952.

REFERENCES. 1. Aurivillius, B., Arkiv Kemi 2 (1980) 519.— 2.—, Arkiv Kemi inasal. Geol., 26 B (1945) no 2.— 3. Willard, H. H. and Winter, O. B., Ind. Eng. Chem. Anal. S. d. 5 (1933) 7.— 4. Standard Methods of Chamical Analysis by W. W. Scott, fifthe edition, elised by N. H. Furnan, New York 1925, p. 355 and p. 338.— 5. Wells, A. F., Z. Krist. 96 (1971) 451.— 6. Sillien, L. G., Dissext. Stockholm 1940.

toms.

. For BiaTiO.F. se distances are rithin the BiaO. necessarily mean ince compounds een investigated

3i-4 (O, F), will s efore seems ap

1p of Bi (0, F) Nb (O, F), both at the structure tures", Me,0.X), F), correspond

ptions as to the

of Weissenberg s BiaTaOsF and following struc-

The positions of ie of the (O, F) ole that O atoms Bi₂O₂ layers as to the distribu-

with octahedral ula might thus I to a series of

Tryckt den 24 november 1952

Uppeala 1952. Almqvist & Wiksella Boktryckeri AB

888

The content enclosed with or attached to this notice has been reproduced from that publication by permission of the copyright owner. It may not be further reproduced or publicly displayed without express permission of the copyright owner. Any unauthorized reproduction or use may subject you to financial and other penalties.

R dpmorrisGus.ibm.com/--354936Daniel P. Morris

Copies: 1

RDER ARKIV FOER KEMI VOL 5
FITHOR Aurivillus, B.,

THOR Aurivillus, E

#X

ZAR 1952

SSN 03656128 DDEN BLK_02/17/05_0365-6128_307395

IECKSUM 00090130048007110

LLLING 888

ERVICE REGULAR

NF. # BESG090130048-1

NVTACT Alma Gardner almag@us.ibm.com Phone 914-642-6811 Fax 914-642-6820

PAX*

ipmorris@us.ibm.com

Scan ID

LH. SU

888

Alma Gardner IBM InfoGate

Dept. 40L, L/2C908, MD/238 1133 Westchester Avenue White Plains, NY 10604

?ebruary 17, 2005

ØE YV0939

888 T 3472

For questions about this order contact us at orderhelp@ieonline.com.

BRIEF ATTACHMENT Z

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Date: March 1, 2005

Group Art Unit: 1751

Examiner: M. Kopec

Docket: YO987-074BZ

In re Patent Application of

Applicants: Bednorz et al. Serial No.: 08/479,810

Filed: June 7, 1995

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

Commissioner for Patents P O Box 1450 Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Sir.

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT Z

Docket: YO987-074BZ Serial No.: 08/479,810 Page 1 of 5

Superconductivity

Charles P. Poole, Jr. Horacio A. Farach Richard J. Creswick

Department of Physics and Astronomy University of South Carolina Columbia, South Carolina

This book is printed on acid-free paper. ⊚

Copyright © 1995 by ACADEMIC PRESS

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press

A Division of Harcourt Brace & Company

525 B Street, Suite 1900, San Diego, California 92101-4495

United Kingdom Edition published by

Academic Press Limited

24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Poole, Charles P.

Superconductivity / by Charles P. Poole, Jr., Horacio A. Farach,

Richard J. Creswick.

Includes index.

ISBN 0-12-561455-1. -- ISBN 0-12-561456-X (pbk.)

1. superconductivity. I. Farach, Horacio A. II. Creswick,

Richard J. III. Title.

QC611.92.P66 1995 537.6'23--dc20

94-31853 CIP

PRINTED IN THE UNITED STATES OF AMERICA
97 98 99 00 01 02 QW 9 8 7 6 5 4 3 2

Perovskite and Cuprate Crystallographic Structures

I. INTRODUCTION

Chapter 3 shows that the majority of single-element crystals have highly symmetrical structures, generally fcc or bcc, in which their physical properties are the same along the three crystallographic directions x, y, and z. The NaCl-type and 415 compounds are also cubic. Some compounds do have lower symmetries, showing that superconductivity is compatible with many different types of crystallographic structure, but higher symmetries are certainly more common. In this chapter we will describe the structures of the high-temperature superconductors, almost all of which are tetragonal or orthorhombic.

In Chapter 3, we also gave some examples of the role played by structure in determining the properties of superconductors. The highest transition temperatures in alloys of transition metals are at the boundaries of instability between the boc and hop forms. The NaCl-type compounds have ordered vacancies on one or another lattice site. The magnetic and superconducting properties of the Chevrel phases depend on whether the large magnetic cations (i.e., positive ions) occupy eightfold sites surrounded by chalcogenide ions or whether the small magnetic ions occupy octahedral sites surrounded by Mo

The structures described here are held together by electrons that form ionic or covalent bonds between the atoms. No account is taken of the conduction electrons, which are delocalized over the copper oxide planes and form Cooper pairs responsible for the superconducting properties below T_c. The following chapter will be devoted to explaining the role of these

conduction electrons within the frameworks of the Hubbard model and band theory. Whereas the present chapter describes atom positions in coordinate space, the following chapter relies on a reciprocal lattice elucidation of these same materials.

We begin with a description of perovskite and explain some reasons that personskite undergoes various types of distortions. This prototype exhibits a number of characteristics that are common to the high-temperature superconducting cuprates (see Section V). We will emphasize the structural commonalities of these materials and make frequent comparisons between them. Our earlier work (Poole et al., 1988) and the comprehensive review by Yvon and François (1989) may be consulted for more structural detail on the atom positions, interatomic spacings, site

and thallium high temperature superconductors (Medvedeva et al., 1993).

We assume that all samples are well made and safely stored. Humidity can affect composition, and Garland (1988) found that storage of YBa₂Cu₃O₇₋₈ in 98% humidity exponentially decreased the diamagnetic susceptibility with a time constant of 22 days.

II. PEROVSKITES

Much has been written about the high-temperature superconductors being perovskite types, so we will begin by describing the structure of perovskites. The prototype compound barium titanate, BaTiO₃, exists in three crystallographic forms with the following lattice constants and unit cell volumes (Wyckoff, 1964):

cubic:
$$a = b = c = 4.0118 \text{ Å}$$
 $V = 64.57 \text{ Å}^3$ tetragonal: $a = b = 3.9947$, $c = 4.0336$ $V = 64.37 \text{ Å}^3$ (7.1) orthorhombic: $a = 4.009\sqrt{2} \text{ Å}$, $b = 4.018\sqrt{2} \text{ Å}$, $c = 3.990 \text{ Å}$ $V = 2(64.26) \text{ Å}^3$

symmetries, etc., of these compounds. There have been reports of superconductivity in certain other cuprate structures (e.g., Murphy et al., 1987), but these will not be reported on in this chapter.

There is a related series of layered compounds $\operatorname{Bi}_2\operatorname{O}_2(M_{m-1}R_m\operatorname{O}_{3m+1})$ called Aurivillius (1950, 1951, 1952) phases, with the 12-coordinated $M=\operatorname{Ca}_3\operatorname{Sr}_1\operatorname{Ba}_3\operatorname{Bi}_1\operatorname{Pb}_1\operatorname{Cd}_1\operatorname{La}_3\operatorname{Sm}_1\operatorname{Sc}_2\operatorname{etc}_3\operatorname{and}$ the 6-coordinated transition metal $R=\operatorname{Nb}_1\operatorname{Ti}_3\operatorname{Ta}_3\operatorname{W}_1\operatorname{Fe}_1\operatorname{etc}_1\operatorname{The}\ m=1$ compound $\operatorname{Bi}_2\operatorname{NbO}_6$ belongs to the same tetragonal space group 14/mmm, D_{13}^{12} as the lanthanum, bismuth,

For all three cases the crystallographic axes are mutually perpendicular. We will comment on each case in turn.

A. Cubic Form

Above 201°C barium titanate is cubic and the unit cell contains one formula unit BaTiO₃ with a titanium atom on each apex, a barium atom in the body center, and an oxygen atom on the center of each edge of the cube, as illustrated in Fig. 7.1. This corresponds to the barium atom, titanium atom, and three oxygen atoms being placed in positions with the following x, y, and z coordinates:

E site: Ti F site: O	$(0,0,0) (0,0,\frac{1}{2}); (0,\frac{1}{2},0); (\frac{1}{2},0,0)$	Ti on apex three oxygens centered on edges	(7.2)
C site: Ba	$(\frac{1}{2},\frac{1}{2},\frac{1}{2})$	Ba in center.	

. .

F.

Figure 7.1 Barium titanate (BaTiO₃) perovskite cubic unit cell showing titanium (small black circles) at the vertices and oxygen (large white circles) at the edge-centered positions. Ba, not shown, is at the body center position (Poole et al., 1988, p. 73).

The barium in the center has 12 nearestneighbor oxygens, so we say that it is 12fold coordinated, while the titanium on each apex has 6-fold (octahedral) coordination with the oxygens, as may be seen from the figure. (The notation E for edge, F for face, and C for center is adopted for reasons that will become clear in the discussion which follows.) Throughout this chapter we will assume that the z-axis is oriented vertically, so that the x and y axes lie in the horizontal plane.

Ordinarily, solid-state physics texts place the origin (0,0,0) of the perovskite unit cell at the barium site, with titanium in the center and the oxygens at the centers of the cube faces. Our choice of origin facilitates comparison with the structures of the oxide superconductors.

This structure is best understood in terms of the sizes of the atoms involved. The ionic radii of O^{2-} (1.32 Å) and Ba^{2+} (1.34 Å) are almost the same, as indicated in Table 7.1, and together they form a perfect fcc lattice with the smaller T_1^{4+} ions (0.68 Å) located in octahedral holes surrounded entirely by oxygens. The octahedral holes of a close-packed oxygen lattice have a radius of 0.545 Å; if these holes were empty the lattice constant would be a=3.73 Å, as noted in Fig. 7.2a. Each

titanium pushes the surrounding oxygens outward, as shown in Fig. 7.2b, thereby increasing the lattice constant. When the titanium is replaced by a larger atom, the lattice constant expands further, as indicated by the data in the last column of Table 7.2. When Ba is replaced by the smaller Ca (0.99 Å) and Sr (1.12 Å) ions, by contrast, there is a corresponding decrease in the lattice constant, as indicated by the data in columns 3 and 4, respectively, of Table 7.2. All three alkaline earths, Ca, Sr, and Ba, appear prominently in the structures of 3 high-temperature superconductors.

B. Tetragonal Form

At room temperature barium titanate is tetragonal and the deviation from cubic, (c-a), $\frac{1}{2}(c+a)$, is about 1%. All of the atoms have the same x,y coordinates as in the cubic case, but are shifted along the z-axis relative to each other by ≈ 0.1 Å, producing the puckered arrangement shown in Fig. 7.3. The distortions from the ideal structure are exaggerated in this sketch. The puckering bends the Ti-O-Ti group so that the Ti-O distance increases while the Ti-Ti distance remains almost

Table 7.1 Ionic Radii for Selected

Elements				
Small	Cu ²⁺	0.72 Å	Bi ⁵⁺	0.74 Å
Small-	Cu+	0.96 Å	Y3+	0.94 Å
Medium				
	Bi ³⁺	0.96 Å	Tl ³⁺	0.95 Å
	Ca ²⁺	0.99 Å	Bi ³⁺	0.96 Å
	Nd3+	0.995 Å		
Medium-	Hg ²⁺	1.10 Å		
Large	Sr ²⁺	1.12 Å	La3+	1.14 Å
	Pb ²⁺	1.20 Å	Ag+	1.26 Å
Large	K+	1.33 Å	O2-	1.32 Å
-	Ba ²⁺	1.34 Å	F-	1.33 Å

See Table VI-2 of Poole et al. (1988) for a more extensive list.

Company of the Laboratory

Figure 7.2 Cross section of the perovskite unit cell in the z = 0 plane showing (a) the size of the octaheral hole (shaded) between oxygens (arge circles), and (b) oxygens pushed apart by the transition ions (small circles) in the hole sites. For each case the altice constant is indicated on the right and the oxygen and hole sizes on the left (Poole et al., 1988, p. 77).

Figure 7.3 Perovskite tetragonal unit cell showing puckering of Ti-O layers that are perfectly flat in the cubic cell of Fig. 7.1. The notation of Fig. 7.1 is used (Poole et al., 1988, p. 75).

the same. This has the effect of providing more room for the titanium atoms to fit in their lattice sites. We will see later that a similar puckering distortion occurs in the high-temperature superconductors as a way of providing space for the Cu atoms in the planes.

C. Orthorhombic Form

There are two principal ways in which a tetragonal structure distorts to form an orthorhombic phase. The first, shown at

Fi

Table 7.2 Dependence of Lattice Constants a of Selected Perovskites AMO_3 on Alkaline Earth A and Ionic Radius of Transition Metal Ion $M^{+\circ}$; the Alkaline Earth Ionic Radii are $0.99\,^{\circ}$ (Ca), $1.12\,^{\circ}$ (Sr), and $1.34\,^{\circ}$ (Ba)^a

	m total and an earl	Latti	ce constant	a, Å
Transitional metal	Transitional metal radius, Å	Ca	Sr	Ва
Ti	0.68	3.84	3.91	4.01
Fe	_	_ `	3.87	4.01
Mo	0.70	_	3.98	4.04
Sn	0.71	3.92	4.03	4.12
Zr	0.79	4.02	4.10	4.19
Pb	0.84	_	_	4.27
Ce	0.94	3.85	4.27	4.40
Th	1.02	4.37	4.42	4.80

^a Data from Wyckoff (1964, pp. 391ff).

the top of Fig. 7.4, is for the b-axis to stretch relative to the a-axis, resulting in the formation of a rectangle. The second, shown at the bottom of the figure, is for one diagonal of the ab square to stretch and the other diagonal to compress, resulting in the formation of a rhombus. The two diagonals are perpendicular, rotated by 45° relative to the original axes, and become the a', b' dimensions of the new orthorhombic unit cell, as shown in Fig. 7.5. These a', b' lattice constants are $\approx \sqrt{2}$ times longer than the original constants, so that the volume of the unit cell roughly doubles; thus, it contains exactly twice as many atoms. (The same $\sqrt{2}$ factor appears in Eq. 7.1 in our discussion of the lattice constants for the orthorhombic form of barium titanate)

When barium titanate is cooled below 5°C it undergoes a diagonal- or rhombal-type distortion. The atoms have the same z coordinates (z = 0 or $\frac{1}{2}$) as in the cubic phase, so the distortion occurs entirely in the x, y-plane, with no puckering of the atoms. The deviation from tetragonality, as

Figure 7.4 Rectangular (top) and rhombal (bottom) type distortions of a two-dimensional square unit cell of width a (Poole et al., 1989).

Figure 7.5 Rhombal expansion of monomolecular tetragonal unit cell (small squares, lower right) to bimolecular orthorhombic unit cell (large squares) with new axes 45° relative to the old axes. The atom positions are shown for the z=0 and $z=\frac{1}{2}$ layers (Poole $et\ al., 1988, p. 76).$

given by the percentage of anisotropy,

% ANIS =
$$\frac{100|b-a|}{\frac{1}{2}(b+a)} = 0.22\%$$
, (7.3)

is less than that of most orthorhombic copper oxide superconductors. We see from Fig. 7.5 that in the cubic phase the oxygen atoms in the z = 0 plane are separated by 0.19 Å. The rhombal distortion increases this O-O separation in one direction and decreases it in the other, in the manner indicated in Fig. 7.6a, to produce the Ti nearest-neighbor configuration shown in Fig. 7.6b. This arrangement helps to fit the titanium into its lattice site.

The transformation from tetragonal to orthorhombic is generally of the rhombal type for $(La_{1-x}Sr_x)_2CuO_4$ and of the rectilinear type for $YBa_2Cu_3O_{7-\delta}$.

Figure 7.6 Shift of the oxygens in the a, b-plane around the titanium atom of perovskite from the room-temperature tetragonal (and cubic) configuration (a) to the rhombal configuration (b) of its low-temperature orthorhombic structure.

D. Planar Representation

Another way of picturing the structure of perovskite is to think of the atoms as forming horizontal planes. If we adopt the notation [E F C] to designate the occupation of the E, F, and C sites, the sketches of perovskite presented in Figs. 7.1 and 7.3 follow the scheme

$$z = 1$$
 [TiO₂-] Ti at E, O at two F sites

$$z = \frac{1}{2}$$
 [O-Ba] O at E, Ba at C

$$z = 0$$
 [TiO₂-] Ti at E, O at two F sites.

(7.4)

The planes at the heights z = 0, $\frac{1}{2}$, and 1 can be labeled using this notation. The

usefulness of this labeling scheme will be clarified in Section V.

This completes our treatment of the structure of perovskite. We encountered many features that we will meet again in the analogous superconductor cases, and established notation that will be useful in describing the structure of the cuprates. However, before proceeding we present details about a cubic and a close-to-cubic perovskite superconductor in the following two sections.

III. CUBIC BARIUM POTASSIUM BISMUTH OXIDE

The compound

$$Ba_{1-x}K_xBiO_{3-y}$$

which forms for x > 0.25, crystallizes in the cubic pervoskite structure with a = 4.29 Å(Cava et al., 1988; Jin et al., 1992; Mattheiss et al., 1988). K+ ions replace some of the Ba2+ ions in the C site, and Bi ions occupy the E sites of Eq. (7.2) (Hinks et al., 1988b; Kwei et al., 1989; Pei et al., 1990; Salem-Sugui et al., 1991; Schneemeyer et al., 1988). Some oxygen sites are vacant, as indicated by y. Hinks et al. (1989) and Pei et al. (1990) determined the structural phase diagram (cf. Kuentzler et al., 1991; Zubkus et al., 1991). We should note from Table 7.1 that the potassium (1.33 Å) and barium (1.32 Å) ions are almost the same size, and that Bi5+ (0.74 Å) is close to Ti4+ (0.68 Å). Bismuth represents a mixture of the valence states Bi3+ and Bi5+ which share the Ti4+ site in a proportion that depends on x and y. The larger size (0.96 Å) of the Bi3+ ion causes the lattice constant a to expand 7% beyond its cubic BaTiO₃ value. Oxygen vacancies help to compensate for the larger size of Bi3+.

It is noteworthy that $\mathrm{Ba}_{1-x}\mathrm{K}_x\mathrm{BiO}_{3-y}$ becomes superconducting at a temperature (≈ 40 K for $x \approx 0.4$) that is higher than the T_c of all of the A15 compounds. This compound, which has no copper, has

16.

been widely studied in the quest for clues that would elucidate the mechanism of high-temperature superconductivity. Features of Ba_{1-x}K_xBiO_{3-y}, such as the fact that it contains a variable valence state ion and utilizes oxygen vacancies to achieve charge compensation, reappear in the high-temperature superconducting compounds.

IV. BARIUM LEAD BISMUTH OXIDE

In 1983 Mattheiss and Hamann referred to the 1975 "discovery by Sleight et al. of high-temperature superconductivity" in the compound $BaPb_{1-x}Bi_xO_3$ in the composition range $0.05 \le x \le 0.3$ with T_c up to 13 K. Many consider this system, which disproportionates $2Bi^{4+} \rightarrow Bi^{3+} + Bi^{3+}$ in going from the metallic to the semiconducting state, as a predecessor to the LaSrCuO system.

The metallic compound BaPbO3 is a cubic perovskite with the relatively large lattice constant (Wyckoff, 1964; cf. Nitta et al., 1965; Shannon and Bierstedt, 1970) listed in Table 7.3. At room temperature semiconducting BaBiO, is monoclinic $(a \approx b \approx c/\sqrt{2}, \beta = 90.17^{\circ})$, but close to orthorhombic (Chaillout et al., 1985; Cox and Sleight, 1976, 1979; cf. Federici et al., 1990; Jeon et al., 1990; Shen et al., 1989). These two compounds form a solid solution series BaPb, Bi,O3 involving cubic, tetragonal, orthorhombic, and monoclinic modifications. Superconductivity appears in the tetragonal phase, and the metal-toinsulator transition occurs at the tetragonal-to-orthorhombic phase boundary $x \approx$ 0.35 (Gilbert et al., 1978; Koyama and Ishimaru, 1992; Mattheiss, 1990; Mattheiss and Hamann, 1983; Sleight, 1987; cf. Bansil et al., 1991; Ekino and Akimitsu, 1989a, b; Papaconstantopoulous et al., 1989).

The compound resembles

 $Ba_{1-x}K_xBiO_{3-y}$

with its variable Bi valence states, but it differs in not exhibiting superconductivity in the cubic phase.

V. PEROVSKITE-TYPE SUPERCONDUCTING STRUCTURES

In their first report on high-temperature superconductors Bednorz and Müller (1986) referred to their samples as "metallic, oxygen-deficient ... perovskitelike mixed-valence copper compounds." Subsequent work has confirmed that the new superconductors do indeed possess these characteristics.

In the oxide superconductors Cu²⁺ replaces the Ti4+ of perovskite, and in most cases the TiO2-perovskite layering is retained as a CuO₂ layering with two oxygens per copper. Because of this feature of CuO₂ layers, which is common to all of the high-temperature superconductors, such superconductors exhibit a uniform lattice size in the a, b-plane, as the data in Table 7.3 demonstrate. The compound BaCuO₂ does not occur because the Cu4+ ion does not form, but this valence constraint is overcome by replacement of Ba2+ by a trivalent ion, such as La3+ or Y3+, by a reduction in the oxygen content, or by both. The result is a set of "layers" containing only one oxygen per cation located between each pair of CuO, layers, or none at all. Each high-temperature superconductor has a unique sequence of layers.

We saw from Eq. (7.2) that each atom in perovskite is located in one of three types of sites. In like manner, each atom at the height z in a high-temperature superconductor occupies either an Edge (E) site on the edge (0,0,z), a Face (F) site on the midline of a face ($(0,\frac{1}{2},z)$ or $(\frac{1}{2},0,z)$ or both), or a Centered (C) site centered within the unit cell on the z-axis $(\frac{1}{2},\frac{1}{2},z)$. The site occupancy notation [E F C] is used because many cuprates contain a succession of [Cu O₂ –] and [– O₂ Cu] layers in which the Cu atom switches between edge and centered sites, with the oxygens

Table 7.3 Crystallographic Characteristics of Oxide Superconducting and Related Compounds^a

					Form.						
Compound	Symbol	Symm	Type	Enlarg.	units	a ₀ (Å)	c ₀ (Å)	co/Cu	%Anis	T _c (K)	Comments
BaTiO,	1	O	4	1	-	4.012	4.012	ı	0	ı	$T > 200^{\circ}C$
BaTiO,	1	H	¥		1	3.995	4.03	ı	0	ı	20°C
BaTiO,	1	0	٧	72	7	$4.013\sqrt{2}$	3.990	ı	0.23	ı	T < 5°C
BaPbO,	ī	O	٧	-		4.273	4.273	ı	0	0.4	
BaPba, Bia, O,	1	H	s	12	4	4.286√2	4.304	ı	0	12	
BaBiO,	1	×	¥	ر2)	7	4.355√2	4.335	ı	0.13	1	$\beta = 90.17^{\circ}$
Bank Ko, BiO,	1	U	4	-	-	4.293	4.293	ı	0	30	
La, Cuo,	0201	H	S	1	7	3.81	13.18	6.59	0	35	Sr, doped
La, CuO,	0201	0	s	ζ2 29	4	3.960√2	13.18	6.59	6.85	35	Sr, doped
YBa,Cu,O,	0213	Т	٧	1	1	3.902	11.94	3.98	0	ı	
YBa,Cu,O,	0213	0	Ą	1	-	3.855	11.68	3.89	1.43	35	
Bi, Sr, CaOu, O ₈	2212	Н	S	5√2	70	3.81√2	30.6	7.65	0	84	
Bi, Sr, Ca, Cu, O10	2223	0	s	5/2	70	3.83√2	37	6.17	0.57	110	
Tl, Ba, CuO,	2201	L	s		7	3.83	23.24	11.6	0	6	
TI, Ba, CaCu, O ₈	2212	L	s	1	7	3.85	29.4	7.35	0	110	
Tl, Ba, Ca, Cu, On	2223	۲	S	1	7	3.85	35.88	2.98		125	
TIBa,CuO,	1201		Ą	-	1		5.6	9.5		< 17	
TIBa, CaCu, O,	1212		Ą	1	1		12.7	6.35		91	
TIBa, Ca, Cu, O.	1223		٧	1	-		15.9	5.3		116	
TIBa, Ca, Cu, O,	1234		¥	1	1		19.1	4.78		122	
TIBa, Ca, Cu, O13	1245		¥	1	1		22.3	4.46		< 120	
HgBa2CuO4	1201	Ţ	Ą	1	1	3.86	9.5	9.5		95	
HgBa,CaCu,O,	1212	H	¥	1	-	3.86	12.6	6.3		122	
HgBa ₂ Ca ₂ Cu ₃ O ₈	1223		Ψ.	-		3.86	17.7	5.2		133	

Symbol, symmetry (cubic C, tetragonal T, orthorhombic O, monoclainic MJ, type (aligned A, staggered S); enlargement in a, b-plane (diagonal distortion AZ, superlatine b); formula min sper unit is per americal parameter (b, c₀, c₀, c₀, c₀, c₀, and c₀, per Cu ion); % anisotropy; and transition temperature T_c. For the orthorhombic compounds tabulated values of a, are averages of c₀, and b₀.

Figure 7.7 Types of atom positions in the layers of a high-temperature superconductor structure, using the edge, face, center notation [E F C]. Typical site occupancies are given in the upper right (Poole et al., 1989).

remaining at their face positions. Similar alternations in position take place with Ba, O, and Ca layers, as illustrated in Fig. 7.7.

Hauck et al. (1991) proposed a classification of superconducting oxide structures in terms of the sequence (1) superconducting layers [Cu O₂-] and [-O₂ Cu], (2) insulating layers, such as [Y - -] or [- - Ca], and (3) hole-donating layers, such as [Cu O^b -] or [Bi - O].

The high-temperature superconductor compounds have a horizontal reflection plane (\perp to z) called σ_h at the center of the unit cell and another σ_h reflection plane at the top (and bottom). This means that every plane of atoms in the lower half of the cell at the height z is duplicated in the upper half at the height 1-z. Such atoms, of course, appear twice in the unit cell, while atoms right on the symmetry planes only occur once since they cannot be reflected. Figure 7.8 shows a [Cu O₂ -] plane at a height z reflected to the height 1-z. Note how the puckering preserves the reflection symmetry operation. Superconductors that have this reflection plane, but lack end-centering and body-centering op-

Figure 7.8 Unit cell of YBa₂Cu₃O₇ showing the molecular groupings, reflection plane, and layer types.

erations (see Section VII), are called aligned because all of their copper atoms are of one type; either all on the edge (0,0,z) in E positions or all centered $(\frac{1}{2},\frac{1}{2},z)$ at C sites. In other words, they all lie one above the other on the same vertical lines, as do the Cu ions in Fig. 7.8.

VI. ALIGNED YBa, Cu, O,

The compound YBa₂Cu₃O₇, sometimes called YBaCuO or the 123 compound, in its orthorhombic form is a superconductor below the transition temperature $T_c \approx 92$ K. Figure 7.8 sketches the locations of the atoms, Fig. 7.9 shows the arrangement of the copper oxide planes, Fig. 7.10 provides more details on the unit cell, and Table 7.4 lists the atom positions and unit cell dimensions (Beno et al., 1987; Capponi et al., 1987; Hazen et al., 1987; Jorgensen et al., 1987; Le Page et al., 1987; Siegrist et al., 1987; Yan and Blanchin,

1991; see also Schuller et al., 1987). Considered as a perovskite derivative, it can be looked upon as a stacking of three perovskite units $BaCuO_3$, $YCuO_2$, and $BaCuO_2$, two of them with a missing oxygen, and this explains why c=3a. It is, however, more useful to discuss the compound from the viewpoint of its planar structure.

A. Copper Oxide Planes

We see from Fig. 7.9 that three planes containing Cu and O are sandwiched between two planes containing Ba and O and one plane containing Y. The layering scheme is given on the right side of Fig. 7.8, where the superscript b on O indicates that the oxygen lies along the b-axis, as shown. The atoms are puckered in the two [Cu O₂ -] planes that have the [- - Y] plane between them. The third copper oxide plane [Cu O^b -], often referred to as

Figure 7.9 Layering scheme of orthorhombic YBa₂Cu₃O₇ with the puckering indicated. The layers are perpendicular to the c-axis (Poole et al., 1988, p. 101).

Figure 7.10 Sketches of the superconducting orthorhombic (left) and nonsuperconducting tetragonal (right) YBaCuO unit cells. Thermal vibration ellipsoids are shown for the atoms. In the tetragonal form the oxygen atoms are randomly dispersed over the basal plane sites (Jorgense et al., 1987a, is also see Schiller et al., 1987a); also see Schiller et al., 1987a.

Table 7.4 Normalized Atom Positions in the $YBa_2Cu_3O_7$ Orthorhombic Unit Cell (dimensions a=3.83 Å, b=3.88 Å, and c=11.68 Å)

Layer	Atom	x	у	z
	Cu(1)	0	0	1
[Cu O -]	O(1)	0	$\frac{1}{2}$	1
[O - Ba]	O(4)	0	0	0.8432
(O – Вај	Ba	$\frac{1}{2}$	$\frac{1}{2}$	0.8146
	Cu(2)	0	0	0.6445
[Cu O ₂ -]	O(3)	0	1/2	0.6219
	O(2)	1/2	ō	0.6210
[~ - Y]	Y	$\frac{1}{2}$	$\frac{1}{2}$	1/2
	O(2)	1/2	0	0.3790
[Cu O ₂ -]	O(3)	ō	1/2	0.3781
	Cu(2)	0	ō	0.3555
[O - Ba]	Ba	$\frac{1}{2}$	$\frac{1}{2}$	0.1854
,	O(4)	0	0	0.1568
[Cu O -]	O(1)	0	1/2	0
Cu O -J	Cu(1)	0	0	0

Consecute very

15. 15. "the chains," consists of -Cu-O-Cu-O-chains along the b axis in lines that are perfectly straight because they are in a horizontal reflection plane σ_h ; where no puckering can occur. Note that, according to the figures, the copper atoms are all stacked one above the other on edge (E) sites, as expected for an aligned-type superconductor. Both the copper oxide planes and the chains contribute to the superconducting properties.

B. Copper Coordination

Now that we have described the planar structure of YBaCuO it will be instructive to examine the local environment of each copper ion. The chain copper ion Cu(1) is square planar-coordinated and the two coppers Cu(2) and Cu(3) in the plane exhibit fivefold pyramidal coordination, as indicated in Fig. 7.11. The ellipsoids at the atom positions of Fig. 7.10 provide a measure of the thermal vibrational motion which the atoms experience, since the amplitudes of the atomic vibrations are indicated by the relative size of each of the ellipsoids.

C. Stacking Rules

The atoms arrange themselves in the various planes in such a way as to enable them to stack one above the other in an efficient manner, with very little interference from neighboring atoms. Steric effects prevent large atoms such as Ba (1.34 Å) and O (1.32 Å) from overcrowding a layer or from aligning directly on top of each other in adjacent layers. In many cuprates stacking occurs in accordance with the following two empirical rules:

- Metal ions occupy either edge or centered sites, and in adjacent layers alternate between E and C sites.
- Oxygens are found in any type of site, but they occupy only one type in a particular layer, and in adjacent layers they are on different types of sites.

Figure 7.11 Stacking of pyramid, square-planar, and inverted pyramid groups along the c-axis of orthorhombic YBa₂Cu₃O₇ (adapted from Poole et al., 1988, p. 100).

Minor adjustments to make more room can be brought about by puckering or by distorting from tetragonal to orthorhombic.

D. Crystallographic Phases

The YBa₂Cu₃O₇₋₈ compound comes in tetragonal and orthorhombic varieties, as shown in Fig. 7.10, and it is the latter phase which is ordinarily superconducting. In the tetragonal phase the oxygen sites in the chain layer are about half occupied

in the -C oxy can tha of Inc cau can the goe

VI.

750 ous pour atur thro (Rot is lo phas at at thor

Fractional Site Occupancy

Figure 7 (bottom) the oxygright) for range 0age of th Jorgenser see also I in a random or disordered manner, and in the orthorhombic phase are ordered into -Cu-O— chains along the b direction. The oxygen vacancy along the a direction causes the unit cell to compress slightly so that a < b, and the resulting distortion is of the rectangular type shown in Fig. 7.4a. Increasing the oxygen content so that $\delta < O$ acuses oxygens to begin occupying the vacant sites along a. Superlattice ordering of the chains is responsible for the phase that goes superconducting at δO K.

YBaCuO is prepared by heating in the 750-900°C range in the presence of various concentrations of oxygen. The compound is tetragonal at the highest temperatures, increases its oxygen content through oxygen uptake and diffusion (Rothman et al., 1991) as the temperature is lowered, and undergoes a second-order phase transition of the order-disorder type at about 700°C to the low-temperature orthorhombic phase, as indicated in Fig. 7.12

Figure 7.12 Fractional occupancies of the $(\frac{1}{2},0,0)$ (bottom) and $(0,\frac{1}{2},0)$ (top) sites (scale on lett), and the oxygen content parameter δ (center, scale on right) for quench temperatures of YBaCuO in trange 0-1000°C. The δ parameter curve is the average of the two site-occupancy curves (adapted from Jorgensen et al., 1987; also see Schuller et al., 1987; see also Poole et al., 1988).

(Jorgensen et al., 1987, 1990; Schuller et al., 1987; cf. Bevers and Ahn, 1991: Metzger et al., 1993; Fig. 8). Quenching by rapid cooling from a high temperature can produce at room temperature the tetragonal phase sketched on the right side of Fig. 7.10, and slow annealing favors the orthorhombic phase on the left. Figure 7.12 shows the fractional site occupancy of the oxygens in the chain site $(0, \frac{1}{2}, 0)$ as a function of the temperature in an oxygen atmosphere. A sample stored under sealed conditions exhibited no degradation in structure or change in Te four years later (Sequeira et al., 1992). Ultra-thin films tend to be tetragonal (Streiffer et al., 1991).

E. Charge Distribution

Information on the charge distributions around atoms in conductors can be obtained from knowledge of their energy bands (see description in Chapter 8). This is most easily accomplished by carrying out a Fourier-type mathematical transformation between the reciprocal k_x , k_y , k_z -space (cf. Chapter 8, Section II) in which the energy bands are plotted and the coordinate x, y, z-space, where the charge is distributed. We will present the results obtained for YBa2Cu3O7 in the three vertical symmetry planes (x,z, y,z, and diagonal), all containing the z-axis through the origin, shown shaded in the unit cell of Fig. 7.13.

Contour plots of the charge density of the valence electrons in these planes are sketched in Fig. 7.14. The high density at the Y^{3+} and Ba^{2+} sites and the lack of contours around these sites together indicate that these atoms are almost completely ionized, with charges of +3 and +2, respectively. It also shows that these ions are decoupled from the planes above and below. This accounts for the magnetic isolation of the Y site whereby magnetic ions substituted for yttrium do not interfere with the superconducting properties. In contrast, the contours surrounding the Cu and O ions are not characteristic of an

establishment of the second of

Y,

inį

gro

(Y

Figure 7.13 Three vertical crystallographic planes (x,z_1,y,z_2) , and diagonal) of a tetragonal unit cell of $YBa_2Cu_1O_2$, and standard notation for the four crystallographic directions.

Figure 7.14 Charge density in the three symmetry planes of YBaCuO shown shaded in Fig. 7.13. The x, z, diagonal and the y, z planes are shown from left to right, labeled (100), (110), and (010), respectively. These results are obtained from band structure calculations, as will be explained in the following chapter (Krakuer and Fickett, 1988).

ordinary ionic compound. The short Cu-O bonds in the planes and chains (1.93-1.96 Å) increase the charge overlap. The least overlap appears in the Cu(2)-O(4) vertical bridging bond, which is also fairly long (2.29 Å). The Cu, O charge contours can be represented by a model that assigns charges of +1.62 and -1.69 to Cu and O, respectively, rather than the values of +2.33 and -2.00 expected for a standard ionic model, where the charge +2.33 is an average of +2, +2, and +3 for the three copper ions. Thus the Cu-O bonds are not completely ionic, but partly covalent.

F. YBaCuO Formula

In early work the formula

was used for YBaCuO because the prototype triple pervoskite (YCuO3)(BaCuO3)2 has nine oxygens. Then crystallographers showed that there are eight oxygen sites in the 14-atom YBaCuO unit cell, and the formula YBa₂Cu₃O_{8-δ} came into widespread use. Finally, structure refinements demonstrated that one of the oxygen sites is systematically vacant in the chain layers, so the more appropriate expression YBa2Cu3O7-8 was introduced. It would be preferable to make one more change and use the formula Ba₂YCu₃O_{7-δ} to emphasize that Y is analogous to Ca in the bismuth and thallium compounds, but very few workers in the field do this, so we reluctantly adopt the usual "final" notation. In the Bi-Tl compound notation of Section IX, B, Ba2YCu3O7-8 would be called a 0213 compound. We will follow the usual practice of referring to YBa₂Cu₃O_{7-δ} as the 123 compound.

G. YBa2Cu4O8 and Y2Ba4Cu7O15

These two superconductors are sometimes referred to as the 124 compound and the 247 compound, respectively. They have the property that for each atom at position (x, y, z) there is another identical atom at

Figure 7.15 Crystal structure of YBa₂Cu₄O₈ showing how, as a result of the side-centering symmetry operation, the atoms in adjacent Cu-O chains are staggered along the y direction, with Cu above O and O above Cu (Heyen et al., 1991; modified from Campuzano et al., 1990).

position $(x, y + \frac{1}{2}, z + \frac{1}{2})$. In other words, the structure is side centered. This property prevents the stacking rules of Section C from applying.

The chain layer of YBa₂Cu₃O₇ becomes two adjacent chain layers in YBa₂Cu₄O₈, with the Cu atoms of one chain located directly above or below the O atoms of the other, as shown in Fig. 7.15. (Campuzano et al., 1990; Heyen et al., 19903, 1991; Iqbal, 1992; Kaldis et al., 1989; Marsh et al., 1988; Morris et al., 1989a). The transition temperature remains in the range from 40 K to 80 K when Y is replaced by various rare earths (Morris et al., 1989). The double chains do not exhibit the variable oxygen stoichiometry of the single ones.

The other side-centered compound, Y₂Ba₄Cu₇O₁₅, may be considered according to Torardi, "as an ordered 1:1 intergrowth of the 123 and 124 compounds

$$(YBa_2Cu_3O_7 + YBa_2Cu_4O_8$$

= $Y_2Ba_4Cu_7O_{15})$ "

(Bordel et al., 1988, Gupta and Gupta, 1993). The 123 single chains can vary in their oxygen content, and superconductivity onsets up to 90 K have been observed. This compound has been synthesized with several rare earths substituted for Y (Morris et al., 1989b).

VII. BODY CENTERING

In Section V we discussed aligned-type superconductor structures that possess a horizontal plane of symmetry. Most high-temperature superconductor structures have, besides this σ_h plane, an additional symmetry operation called body centering whereby for every atom with coordinates (x, y, z) there is an identical atom with coordinates as determined from the following operation:

$$x \to x \pm \frac{1}{2}$$
, $x \to y \pm \frac{1}{2}$, $z \to z \pm \frac{1}{2}$ (7.5)

Starting with a plane at the height z this operation forms what is called an image plane at the height $z + \frac{1}{2}$ in which the edge atoms become centered, the centered atoms become edge types, and each face atom moves to another face site. In other words, the body-centering operation acting on a plane at the height z forms a body centered plane, also called an image plane, at the height $z \pm \frac{1}{2}$. The signs in these operations are selected so that the generated points and planes remain within the unit cell. Thus if the initial value of z is greater than $\frac{1}{2}$, the minus sign must be selected, viz., $z \rightarrow z - \frac{1}{2}$. Body centering causes half of the Cu-O planes to be [Cu O2 -], with the copper atoms at edge sites, and the other half to be [- O2 Cu], with the copper atoms at centered sites.

Let us illustrate the symmetry features of abody-centered superconductor by considering the example of $\text{Tl}_2\text{Ba}_2\text{Ca}\text{Cu}_2\text{O}_8$. This compound has an initial plane [Cu O₂ –] with the copper and oxygen atoms at the vertical positions z=0.0540 and 0.0531, respectively, as shown in Fig.

Figure 7.16 Body-centered tetragonal unit cell containing four puckered CuO_2 groups showing how the initial group (bottom) is replicated by reflection in the horizontal reflection plane ($z=\frac{1}{2}$), by the body centering operation, and by both.

7.16. For illustrative purposes the figure is drawn for values of z closer to 0.1. We serror the figure that there is a reflected plane [Cu O₂ -] at the height 1-z, an image (i.e., body centered) plane [- O₂ Cu] of the original plane at the height $\frac{1}{2}+z$, and an image plane [- O₂ Cu] of the reflected plane) at the height $\frac{1}{2}+z$. Figure 7.16 illustrates this situation and indicates how the atoms of the initial plane can be transformed into particular atoms in other planes (see Problem 5). Figure 7.17 shows how the configurations of the

Figure 7.17 Body-centered unit cell divided into four regions by the reflection and body centering operations.

atoms in one-quarter of the unit cell, called the basic subcell, or subcell I, determine their configurations in the other three subcells II, III, and IV through the symmetry operations of reflection and body centering.

VIII. BODY-CENTERED La₂CuO₄ AND Nd₂CuO₄

The body-centered compound M₂CuO₄

has three structural variations in the same crystallographic space group, namely the M=La and M=Nd types, and a third mixed variety (Xiao et al., 1989). Table 7.5 lists the atom positions of the first two types, and Fig. 7.18 presents sketches of the structures of all three. Each will be discussed in turn.

A. Unit Cell Generation of La₂CuO₄ (T Phase)

The structure of the more common La₂CuO₄ variety, often called the T phase,

Table 7.5 Atom Positions in the La₂CuO₄ and Nd₂CuO₄ Structures

	La ₂ CuO	struct	ure			Nd ₂ CuO ₄	Nd ₂ CuO ₄ structure				
Layer	Atom	Atom x y		z	Layer	Atom	x	у	z		
	O(1)	$\frac{1}{2}$	0	1		O(1)	1/2	0	1		
[Cu O ₂ -]	Cu	0	0	1	[Cu O ₂ -]	Cu	ō	0	1		
	O(1)	0	$\frac{1}{2}$	1		O(1)	0	1/2	1		
	La	1/2	1/2	0.862	[Nd]	Nd	1/2	1/2 1/2	0.862		
[O - La]							•				
	O(2)	0	0	0.818		O(3)	0	1/2	34		
					[- O ₂ -]						
	O(2)	$\frac{1}{2}$	1 2	0.682		O(3)	$\frac{1}{2}$	0	3 4		
[La - O]	_										
	La	0	0	0.638	[Nd]	Nd	0	0	0.638		
	O(1)	$\frac{1}{2}$ $\frac{1}{2}$	0	1/2		O(1)	1/2 1/2	0	1/2		
[- O ₂ Cu]	Cu	1/2	1 1 2 0	1 1 2 1 2	[- O ₂ Cu]	Cu	1/2	1/2 1/2 0	1/2 1/2 1/2		
	O(1)	0	1/2	1/2		O(1)	0	1 2	1/2		
	La	0	0	0.362	[Nd]	Nd	0	ō	0.362		
[La - O]											
	O(2)	1/2	1/2	0.318		O(3)	1/2	0	14		
					[- O ₂ -]						
	O(2)	0	0	0.182		O(3)	0	1/2	1/4		
[O - La]											
	La	$\frac{1}{2}$	1/2	0.138	[Nd]	Nd	1/2	$\frac{1}{2}$	0.138		
	O(1)	0	0	0		O(1)	0	1 2	0		
[Cu O ₂ -]	Cu	0	Ó	0	[Cu O ₂ -]	Cu	0	Õ	0		
	O(1)	1/2	0	0		O(1)	1/2	0	0		

Figure 7.18 (a) Regular unit cell (T phase) associated with hole-type (La1-xSrx)2CuO4 superconductors, (b) hybrid unit cell (T* phase) of the hole-type La2-x-yRySrxCuO4 superconductors, and (c) alternate unit cell (T' phase) associated with electron-type (Nd1-xCex)2CuO4 superconductors. The La atoms in the left structure become Nd atoms in the right structure. The upper part of the hybrid cell is T type, and the bottom is T'. The crystallographic space group is the same for all three unit cells (Xiao et al., 1989; see also Oguchi, 1987; Ohbayashi et al., 1987; Poole et al., 1988, p. 83; Tan et al., 1990).

(c) T phase

(b) To phase

can be pictured as a stacking of CuO₄La₂ groups alternately with image (i.e., body centered) La2O4Cu groups along the c direction, as indicated on the left side of Fig. 7.19 (Cavaet et al., 1987; Kinoshita et al., 1992: Longo and Raccah, 1973; Ohbayashi et al., 1987; Onoda et al., 1987; Zolliker et al., 1990). Another way of visualizing the structure is by generating it from the group Cu₄O₂La, comprising the layers [O-La] and 1[Cu O2 -] in subcell I shown on the right side of Fig. 7.19 and also on the left side of Fig. 7.20. (The factor ½ appears because the [Cu O2 -] layer is shared by two subcells.) Subcell II is formed by reflection from subcell I, and subcells III and IV are formed from I and II via the body-centering operation in the manner of Figs. 7.16 and 7.17. Therefore, subcells I and II together contain the group CuO_ALa_2 , and subcells III and IV together contain its image (body centered) counterpart group La_2O_ACu . The BiSrCaCuO and TIBaCaCuO structures to be discussed in Section IX can be generated in the same manner, but with much larger repeat units along the ϵ direction.

B. Lavering Scheme

The La₂CuO₄ layering scheme consists of equally-spaced, flat CuO₂ layers with their oxygens stacked one above the other, the copper ions alternating between the (0,0,0) and $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ sites in adjacent layers, as shown in Fig. 7.21. These planes are body-centered images of each other, and are perfectly flat because they are

Figure 7.19 Structure of La₂CuO₄ (center), showing the formula units (left) and the level labels and subcell types (right). Two choices of unit cell are indicated, the left-side type unit cell based on formula units, and the more common right-side type unit cell based on copper-oxide layers.

Figur left) a tions o in the

Fi

VIII.

Figure 7.20 Layering schemes of the La₂CuO₄ (T, left) and Nd₂CuO₄ (T', right) structures. The locations of the four subcells of the unit cell are indicated in the center column.

reflection planes. Half of the oxygens, O(1), are in the planes, and the other half, O(2), between the planes. The copper is octahedrally coordinated with oxygen, but the distance 1.9 Å from Cu to O(1) in the CuO₂ planes is much less than the vertical distance of 2.4 Å from Cu to the apical oxygen O(2), as indicated in Fig. 7.22. The La is ninefold coordinated to four O(1) oxygens, to four O(2) at $(\frac{1}{2}, \frac{1}{2}, z)$ sites, and to one O(2) at a (0, 0, z) site.

C. Charge Distribution

Figure 7.23 shows contours of constant-valence charge density on a logarithmic scale drawn on the back x, z-plane and on the diagonal plane of the unit cell sketched in Fig. 7.13. These contour plots are obtained from the band structure calculations described in Chapter 8, Section XIV. The high-charge density at the lanthanum site and the low charge density around this site indicate an ionic state

Figure 7.21 CuO₂ layers of the La₂CuO₄ structure showing horizontal displacement of Cu atoms in alternate layers. The layers are perpendicular to the c-axis (Poole et al., 1988, p. 87).

Figure 7.22 Ordering of axially distorted CuO₆ octahedra in La₂CuO₄ (Poole et al., 1988, p. 88).

 $\rm La^{3+}$. The charge density changes in a fairly regular manner around the copper and oxygen atoms, both within the $\rm CuO_2$ planes and perpendicular to these planes, suggestive of covalency in the $\rm Cu-O$ bonding, as is the case with the $\rm YBa_2Cu_3O_7$ compound.

D. Superconducting Structures

The compound La₂CuO₄ is itself an antiferromagnetic insulator and must be doped, generally with an alkaline earth, to exhibit pronounced superconducting prop-

erties. The compounds $(La_{1-x}M_x)_2CuO_4$, with 3% to 15% of M=Sr or Ba replacing La, are orthorhombic at low temperatures and low M contents and are tetragonal otherwise; superconductivity has been found on both sides of this transition. The orthorhombic distortion can be of the rectangular or of the rhombal type, both of which are sketched in Fig. 7.4. The phase diagram of Fig. 7.24 shows the tetragonal, orthorhombic, superconducting, and antiferromagnetically ordered regions for the lanthanum compound (Weber et al., 1989; cf. Goodenough et al., 1993). We see that

.

T. 01

TEMPERATURE (K

Figu La₂ roma Figui data line. regio

Figure 7.23 Contour plots of the charge density of La_2CuO_4 obtained from band structure calculations. The x_1 \times crystallographic plane labeled (100) is shown on the left and the diagonal plane labeled (110) on the right. The contour spacing is on a logarithmic scale (Fickett, 1989).

Figure 7.24 Phase diagram for hole-type La₂, Sr. (20d.₂, indicating insulating (INS), antiferromagnetic (AF), and superconducting (SC) regions. Figure V1-6 of Poole et al. (1983) shows experimental data along the orthorhombic-to-tetragonal transition line. Spin-density waves (SDW) are found in the AF region (Weber et al., 1989).

the orthorhombic phase is insulating at high temperatures, metallic at low temperatures, and superconducting at very low temperatures. Spin-density waves, to be discussed in Chapter 8, Section XIX, occur in the antiferromagnetic region.

E. Nd₂CuO₄ Compound (T' Phase)

The rarer Nd2CuO4 structure (Skantakumar et al., 1989; Sulewski et al., 1990; Tan et al., 1990) given on the right side of Fig. 7.18 and Table 7.5 has all of its atoms in the same positions as the standard La2CuO4 structure, except for the apical O(2) oxygens in the [O-La] and [La-O] layers, which move to form a [- O2 -] layer between [- - La] and [La - -]. These oxygens, now called O(3), have the same x, y coordinate positions as the O(1)oxygens, and are located exactly between the CuO₂ planes with $z = \frac{1}{4}$ or $\frac{3}{4}$. We see from Fig. 7.18 that the CuO6 octahedra have now lost their apical oxygens, causing Cu to become square planar-coordinated CuO4 groups. The Nd is eightfold coordinated to four O(1) and four O(3) atoms, but with slightly different Nd-O distances. The CuO2 planes, however, are identical in the two structures. Superconductors with this Nd2CuO4 structure are of the electron type, in contrast to other high-temperature superconductors, in which the current carriers are holes. In particular, the electron superconductor Nd_{1.85}Ce_{0.15}CuO₄₋₈ with $T_c = 24$ K has been widely studied (Fontcuberta and Fàbrega, 1995, a review chapter; Allen 1990; Alp et al., 1989b; Barlingay et al., 1990; Ekino and Akimitsu, 1989a, b; Lederman et al., 1991; Luke et al., 1990; Lynn et al., 1990; Sugiyama et al., 1991; Tarason et al., 1989a). Other rare earths, such as Pr (Lee et al., 1990) and Sm (Almasan et al., 1992) have replaced Nd.

The difference of structures associated with different signs attached to the current carriers may be understood in terms of the doping process that converts undoped material into a superconductor. Lanthanum and neodymium are both trivalent, and in the undoped compounds they each continue that the undoped compounds they each con-

tribute three electrons to the nearby oxygens,

La
$$\rightarrow$$
 La³⁺ + 3e⁻,
Nd \rightarrow Nd³⁺ + 3e⁻, (7.6)

to produce O^{2-} . To form the superconductors a small amount of La in La $_2$ CuO $_4$ can be replaced with divalent Sr, and some Nd in Nd $_2$ CuO $_4$ can be replaced with tetravalent Ce, corresponding to

$$Sr \rightarrow Sr^{2+} + 2e^{-}$$
 (in La_2CuO_4)
 $Ce \rightarrow Ce^{4+} + 4e^{-}$ (in Nd_2CuO_4). (7.7)

Thus, Sr doping decreases the number of electrons to produce hole-type carriers, while Ce doping increases the electron concentration and the conductivity is electron type.

There are also copper-oxide electron supprendictors with different structures, such as Sr_{1-x}Nd_xCuO₂ (Smith et al., 1991) and TlCa_{1-x}R_xSr₂Cu₂O₁₋₅, where R is a rare earth (Vijayarghavan et al., 1989). Electron- and hole-type superconductivity in the cuprates has been compared (Katti and Risbud, 1992; Medina and Regueiro, 1990).

F. La_{2-x-y} R_xSr_yCuO₄ Compounds (T* Phase)

We have described the T structure of La2CuO4 and the T' structure of Nd2CuO4. The former has O(2) oxygens and the latter O(3) oxygens, which changes the coordinations of the Cu atoms and that of the La and Nd atoms as well. There is a hybrid structure of hole-type superconducting lanthanum cuprates called the T* structure, illustrated in Fig. 7.18b, in which the upper half of the unit cell is the T type with O(2) oxygens and lower half the T' type with O(3) oxygens. These two varieties of halfcells are stacked alternately along the tetragonal c-axis (Akimitsu et al., 1988; Cheong et al., 1989b; Kwei et al., 1990; Tan et al., 1990). Copper, located in the base of an oxygen pyramid, is fivefold-coordinated CuOs. There are two inequivalent rare earth sites; the ninefoldcoordinated site in the T-type halfcell is

preferentially occupied by the larger La and Sr ions, while the smaller rare earths R (i.e., Sm, Eu, Gd, or Tb) prefer the eightfold-coordinated site in the T' half-cell. Tan et al. (1991) give a phase diagram for the concentration ranges over which the T and T* phases are predominant.

IX. BODY-CENTERED BiSrCaCuO AND TIBaCaCuO

Early in 1988 two new superconducting systems with transition temperatures considerably above those attainable with YBaCuO, namely the bismuth- and thallium-based materials, were discovered. These compounds have about the same a and b lattice constants as the yttrium and lanthanum compounds, but with much larger unit cell dimensions along c. We will describe their body-centered structures in terms of their layering schemes. In the late 1940s some related compounds were synthesized by the Swedish chemist Bengt Aurivillius (1950, 1951, 1952).

A. Layering Scheme

The
$$Bi_2Sr_2Ca_nCu_{n+1}O_{6+2n}$$
 and $Tl_2Ba_2Ca_nCu_{n+1}O_{6+2n}$

compounds, where n is an integer, have essentially the same structure and the same layering arrangement (Barry et al., 1989; Siegrist et al., 1988; Torardi et al., 1988a; Yvon and François, 1989), although there are some differences in the detailed atom positions. Here there are groupings of CuO, layers, each separated from the next by Ca layers with no oxygen. The CuO2 groupings are bound together by intervening layers of BiO and SrO for the bismuth compound, and by intervening layers of TIO and BaO for the thallium compound. Figure 7.25 compares the layering scheme of the Tl₂Ba₂Ca_nCu_{n+1}O_{6+2n} compounds with n = 0, 1, 2 with those of the lanthanum and yttrium compounds. We also see from the figure that the groupings of [Cu O2 -] planes and [- O2 Cu] image

that are ing prop A shows the tioned scheme adjacent and cent never ha

sites. Th

at the ce

is also c

(i.e., bc

the c-a

and that staggered Figul sents a 1 the information

Figure 7.25 Layering schemes of various high-temperature superconductors. The CuO_2 plane layers are enclosed in small inner boxes, and the layers that make up a formula unit are enclosed in larger boxes. The Bi-Sr compounds Bi-Sr₂Ca₂Cu_{n+1}O₆₊₂, have the same layering schemes as their Tl-Ba counterparts shown in this figure.

(i.e., body centered) planes repeat along the c-axis. It is these copper-oxide layers that are responsible for the superconducting properties.

A close examination of this figure smentioned in Section VI.C for the layering scheme are satisfied, namely metal ions in adjacent layers alternate between edge (E) and centered (C) sites, and adjacent layers never have oxygens on the same types of sites. The horizontal reflection symmetry at the central point of the cell is evident. It is also clear that YBa₂Cu₃O₇ is aligned and that the other four compounds are staggered.

Figure 7.26 (Torardi et al., 1988a) presents a more graphical representation of the information in Fig. 7.25 by showing the

positions of the atoms in their layers. The symmetry and body centering rules are also evident on this figure. Rao (1991) provided sketches for the six compounds $T_m Ba_2 Ca_n Cu_{n+1} O_x$ similar to those in Fig. 7.26 with the compound containing one (m=1) or two thallium layers (m=2), where n=0,1,2, as in the Torardi et al. figure.

B. Nomenclature

There are always two thalliums and two bariums in the basic formula for $\text{Tl}_2\text{Ba}_2\text{Ca}_n\text{Cu}_{n+1}\text{O}_{6+2n}$, together with n calciums and n+1 coppers. The first three members of this series for n=0,1, and 2 are called the 2201, 2212, and 2223 compounds, respectively, and similarly for their

Figure 7.26 Crystal structures of $\Pi_2 Ba_2 Ca_n Cu_{n+1} O_{n+2n}$ superconducting compounds with n=0,1,2 arranged to display the layering schemes. The $Bi_2 Sr_2 Ca_n Cu_{n+1} O_{n+2n}$ compounds have the same respective structures (Torardi et al., 1988a).

BiSr analogues $Bi_2Sr_2Ca_nCu_{n+1}O_{6+2n}$. Since Y in YBa₂Cu₃O₇ is structurally analogous to Ca in the TI and Bi compounds, it would be more consistent to write $Ba_2YCu_3O_7$ for its formula, as noted in Section V.F. In this spirit $Ba_2YCu_3O_{7-\delta}$ might be called the 0213 compound, and $(La_{1-x}M_x)_2CuO_{4-\delta}$ could be called 2001.

C. Bi-Sr Compounds

Now that the overall structures and interrelationships of the BiSr and TIBa high-temperature superconductors have been made clear in Figs. 7.25 and 7.26 we will comment briefly about each compound. Table 7.3 summarizes the characteristics of these and related compounds.

The first member of the BiSr series, the 2201 compound with n=0, has octahedrally coordinated Cu and $T_{\rm c}\approx 9$ K (Torardi et al., 1988b). The second mem-

ber, Bi₂(Sr, Ca)₃Cu₂O_{8+δ}, is a superconductor with $T_c \approx 90$ K (Subramanian et al., 1988a; Tarascon et al., 1988b). There are two [Cu O2 -] layers separated from each other by the [- - Ca] layer. The spacing from [Cu O2 -] to [- - Ca] is 1.66 Å, which is less than the corresponding spacing of 1.99 Å between the levels [Cu O, -] and [- - Y] of YBaCuO. In both cases the copper ions have a pyramidal oxygen coordination of the type shown in Fig. 7.11. Superlattice structures have been reported along a and b, which means that minor modifications of the unit cells repeat approximately every five lattice spacings, as explained in Sect. IX.E. The third member of the series, Bi2Sr2Ca2Cu3O10, has three CuO, layers separated from each other by [- - Ca] planes and a higher transition temperature, 110 K, when doped with Pb. The two Cu ions have pyramidal coordination, while the third is square planar.

indical Cu-O and La

IX. BOE

D. TI-

cent [I

have h their t 1989; s et al., series, no [transiti second called t Charge-density plots of

indicate the same type of covalency in the Cu-O bonding as with the $YBa_2Cu_3O_7$ and La_2CuO_4 compounds. They also indicate very little bonding between the adjacent [Bi - O] and [O - Bi] layers.

D. TI-Ba Compounds

The TlBa compounds

$$Tl_2Ba_2Ca_nCu_{n+1}O_{6+2n}$$

have higher transition temperatures than their bismuth counterparts (Iqbal et al., 1988); Subramanian et al., 1988b; Torardi et al., 1988a). The first member of the series, namely $Tl_2Ba_2CuO_6$ with n=0, has no [--Ca] layer and a relatively low transition temperature of ≈ 85 K. The second member (n=1), $Tl_2Ba_2CaCu_2O_8$, called the 2212 compound, with $T_c=110$ K

has the same layering scheme as its Bi counterpart, detailed in Figs. 7.25 and 7.26. The [Cu O₂ -] layers are thicker and closer together than the corresponding layers of the bismuth compound (Toby et al., 1990). The third member of the series, Tl₂Ba₂Ca₂Cu₃O₁₀, has three [Cu O₂ -] layers separated from each other by [- - Ca] planes, and the highest transition temperature, 125 K, of this series of thallium compounds. It has the same copper coordination as its BiSr counterpart. The 2212 and 2223 compounds are tetragonal and belong to the same crystallographic space group as La,CuO₄.

We see from the charge-density plot of $\Pi_2B_2CuO_6$ shown in Fig. 7.27 that Ba^{2+} is ionic, Cu exhibits strong covalency, especially in the Cu-O plane, and Tl also appears to have a pronounced covalency. The bonding between the [TI-O] and [O-TI] planes is stronger than that between the [Bi-O] and [O-Bi] planes of Bi-Sr.

Figure 7.27 Contours of constant charge density on a logarithmic scale in two high-symmetry crystallographic planes of Π₂Ba₂CuO₆. Oxygen atoms O(1), O(2), and O(3) are denoted 1, 2, and 3, respectively. The planar Cu–O1 binding is strongest (Hamann and Mattheiss, 1988, see Pickett, 1989).

F. Modulated Structures

The x-ray and neutron-diffraction patterns obtained during crystal structure determinations of the bismuth cuprates Bi2Sr2CanCun+1O6+2n exhibit weak satellite lines with spacings that do not arise from an integral multiple of the unit cell dimensions. These satellites have modulation periods of 21 Å, 19.6 Å, and 20.8 Å, respectively, for the n = 0, 1, and 2 compounds (Li et al., 1989). Since the lattice constant a = 5.41 Å (b = 5.43 Å) for all three compounds, this corresponds to a superlattice with unit cell of dimensions $\approx 3.8a$, b, c, with the repeat unit along the a direction equal to $\approx 3.8a$ for all three compounds. A modulation of 4.7b has also been reported (Kulik et al., 1990). This structural modulation is called incommensurate because the repeat unit is not an integral multiple of a.

Substitutions dramatically change this modulation. The compound

$$Bi_2Sr_2Ca_{1-x}Y_xCu_2O_y$$

has a period that decreases from about 4.8b for x = 0 to the commensurate value 4.0b for x = 1 (Inoue et al., 1989; Tamegai et al., 1989). Replacing Cu by a transition metal (Fe, Mn, or Co) produces nonsuperconducting compounds with a structural modulation that is commensurate with the lattice spacing (Tarascon et al., 1989b). A modulation-free bismuth-lead cuprate superconductor has been prepared (Manivannan et al., 1991). Kistenmacher (1989) examined substitution-induced superstructures in YBa₂(Cu_{1-r}M_r)₃O₇. Superlattices with modulation wavelengths as short as 24 Å have been prepared by employing ultra-thin deposition techniques to interpose insulating planes of PrBa₂Cu₃O₇ between superconducting Cu-O layers of YBa2Cu3O2 (Jakob et al., 1991; Lowndes et al., 1990; Pennycook et al., 1991; Raiagopal and Mahanti, 1991; Triscone et al. 1990). Tanaka and Tsukada (1991) used the Kronig-Penney model (Tanaka and Tsukada, 1989a, b) to calculate the quasiparticle spectrum of superlattices.

F. Aligned TI-Ba Compounds

A series of aligned thallium-based superconducting compounds that have the general formula $\mathrm{TiBa}_2\mathrm{Ca}_n\mathrm{Cu}_{n+1}\mathrm{O}_{5+2n}$ with n varying from 0 to 5 has been reported (Ihara et al., 1988; Rona, 1990). These constitute a series from 1201 to 1245. They have superconducting transition temperatures almost as high as the $\mathrm{Tl}_2\mathrm{Ba}_2\mathrm{Ca}_n\mathrm{Cu}_{n+1}\mathrm{O}_{6+2n}$ compounds. Data on these compounds are listed in Table 73

G. Lead Doping

In recent years a great deal of effort above expended in synthesizing lead-doped superconducting cuprate structures (Itoh and Uchikawa, 1989). Examples involve substituting Pb for Bi (Dou et al., 1989; Zhengping et al., 1990), for Tl (Barry et al., 1989; Mingzhu et al., 1990), or for both Bi and Tl (Iqbal et al., 1990). Different kinds of Pb, Y-containing superconductors have also been prepared (cf. Mattheiss and Hamann, 1989; Ohta and Mackawa, 1990; Tang et al., 1991; Tokiwa et al., 1990, 1991).

X. ALIGNED HgBaCaCuO

The series of compounds

 $HgBa_2Ca_nCu_{n+1}O_{2n+4}$

where n is an integer, are prototypes for the Hg family of superconductors. The first three members of the family, with n=0,1,2, are often referred to as Hg-1201, Hg-1212, and Hg-1223, respectively. They have the structures sketched in Fig. 7-28 (Tokiwa-Yamamoto $et\ al.$, 1993; see also Martin $et\ al.$, 1994; Putilin $et\ al.$, 1991). The lattice constants are a=3.86 Å for all of them, and c=9.5, 12.6, and 15.7 Å for n=0,1,2, respectively. The atom positions of the n=1 compound are listed in Table 7.6 (Hur $et\ al.$, 1994). The figure is drawn

Figure 7.28 Structural models for the series $HgBa_2Ca_nCu_{n+1}O_{2n+4}$. The first three members with n=0,1,2 are shown (parts a, b, and c, respectively) (Tokiwa-Yamamoto et al., 1993).

Table 7.6 Normalized Atom Positions in the Tetragonal Unit Cell of ${\rm HgBa_2Ca_{0.86}Sr_{0.14}Cu_2O_{6+\delta}}^s$

Layer	Atom	x	у	z
[Hg]	Hg	0	0	1
16	O(3)	$\frac{1}{2}$	$\frac{1}{2}$	1
[O - Ba]	O(2)	0	Ō	0.843
(* 20)	Ba	$\frac{1}{2}$	1/2	0.778
	Cu	0	0	0.621
[Cu O ₂ -]	O(1)	0	1/2	0.627
	O(1)	1/2	0	0.627
[Ca]	Ca, Sr	1 1 2 1 2	1/2	1/2
	O(1)	1/2	0	0.373
[Cu O ₂ -]	O(1)	0	1/2	0.373
	Cu	0	0	0.379
[O - Ba]	Ba	1/2	1/2	0.222
	O(2)	0	0	0.157
[Hg]	O(3)	1/2	1/2	0
	Hg	0 .	0	0

^a Unit cell dimensions a=3.8584 Å and c=12.6646 Å, space group is P4/mmm, D_{4h}^1 . The Hg site is 91% occupied and the O(3) site is 11% occupied ($\delta=0.11$). The data are from Hur et al. (1994).

Figure 7.29 Schematic structure of the $HgBa_2CaCu_2O_{6+\delta}$ compound which is also called Hg-1212 (Meng et al., 1993a).

with mercury located in the middle layer of the unit cell, while the table puts Hg at the origin (000) and Ca in the middle $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Figure 7.29 presents the unit cell for the n = 1 compound $HgBa_2CaCu_2O_{6+\delta}$ drawn with Ca in the middle (Meng et al., 1993a). The symbol δ represents a small excess of oxygen located in the center of the top and bottom layers, at positions $\frac{1}{2}\frac{1}{2}0$ and $\frac{1}{2}\frac{1}{2}1$ which are labeled "partial occupancy" in the figure. If this oxygen were included the level symbol would be [Hg - O] instead of [Hg - -]. These Hg compound structures are similar to those of the series TlBa2CanCun+1O2n+4 mentioned above in Section IX.F.

We see from Fig. 7.28 that the copper atm of Hg-1201 is in the center of a stretched octahedron with the planar oxygens O(1) at a distance of 1.94 Å, and the apical oxygens O(2) of the [O - Ba] layer much further away (2.78 Å). For n=1 each copper atom is in the center of the

p

a T

CI

H

19

be

pc al

pa

19

ha

dis

(M

ha

pro

199

tha

Le:

imi

(Iql

Ma

XI.

ster.

HgBa₂CuO₄ HgBa₂CaCu₂O₆ HgBa₂Ca₂Cu₃O₈

Figure 7.30 Layering schemes of three $HgBa_2Ca_nCu_{n+1}O_{2n+4}$ compounds, using the notation of Fig. 7.25.

base of a tetragonal pyramid, and for n=2 the additional CuO_2 layer has Cu atoms which are square planar coordinated. The layering scheme stacking rules of Section VI.C are obeyed by the Hg series of compounds, with metal ions in adjacent layers alternating between edge (E) and centered (C) sites, and oxygen in adjacent layers always at different sites. We see from Table 7.6 that the $[\mathrm{O}-\mathrm{Ba}]$ layer is strongly puckered and the $[\mathrm{Cu}\ \mathrm{O}_2-]$ layer is only slightly puckered.

The relationships between the layering series of compounds and those of the other cuprates may be seen by comparing the sketch of Fig. 7.30 with that of Fig. 7.5. We see that the n=1 compound ${\rm HgBa_2CaCu_2O_6}$ is quite similar in structure to ${\rm YBa_2Cu_3O_7}$ with Ca replacing Y in the center and Hg replacing the chains [Cu O \neg]. More surprising is the similarity between the arrangement of the atoms in the unit cell of each

$$HgBa_2Ca_nCu_{n+1}O_{2n+4}$$

compound and the arrangement of the atoms in the semi-unit cell of the corresponding

$$Tl_2Ba_2Ca_nCu_{n+1}O_{2n+6}$$

1S ty

1e

compound. They are the same except for the replacement of the [TI - O] layer by [Hg - -], and the fact that the thallium compounds are body centered and the Hg ones are aligned.

Supercells involving polytypes with ordered stacking sequences of different phases, such as Hg-1212 and Hg-1223, along the c direction have been reported. The stoichiometry is often

corresponding to equal numbers of the Hg-1212 and Hg-1223 phases (Phillips, 1993; Schilling *et al.*, 1993, 1994).

Detailed structural data have already been reported on various Hg family compounds such as HgBa₂CuO_{4+δ} (Putlin et al., 1993) and the n=1 compound with partial Eu substitution for Ca (Putlin et al., 1991). The compound

$$Pb_{0.7}Hg_{0.3}Sr_{2}Nd_{0.3}Ca_{0.7}Cu_{3}O_{7} \\$$

has Hg in the position (0.065,0,0), slightly displaced from the origin of the unit cell (Martin et al., 1994). Several researchers have reported synthesis and pretreatment procedures (Adachi et al., 1993; Itoh et al., 1993; Isawa 1994a; Meng, 1993b; Paranthaman, 1994; Paranthaman et al., 1993). Lead doping for Hg has been used to improve the superconducting properties (Iqbal et al., 1994; Isawa et al., 1993; Martin et al., 1994).

XI. BUCKMINSTERFULLERENES

The compound C₆₀, called buckminsterfullerene, or fullerene for short, con-

sists of 60 carbon atoms at the vertices of the dotriacontohedron (32-sided figure) that is sketched in Fig. 3.35 and discussed in Chapter 3, Section XVI. The term fullerene is used here for a wider class of compounds C_n with n carbon atoms, each of whose carbon atoms is bonded to three other carbons to form a closed surface. with the system conjugated such that for every resonant structure each carbon has two single bonds and one double bond. The smallest possible compound of this type is tetrahedral C4, which has the three resonant structures shown in Fig. 7.31. Cubic C₈ is a fullerene, and we show in Problem 17 that it has nine resonant structures. Icosahedral C12 is also a fullerene, but octahedral C6 and dodecahedral C20 are not because their carbons are bonded to more than three neighbors. These hypothetical smaller C, compounds have never been synthesized, but the larger ones, such as C₆₀, C₇₀, C₇₆, C₇₈, and C₈₂, have been made and characterized. Some of them have several forms, with different arrangements of polygons. Clusters of buckminsterfullerenes, such as icosahedral (C₆₀)₁₃, have also been studied (T. P. Martin et al., 1993).

There are several interesting geometrical characteristics of fullerenes (Chung and Sternberg, 1993). Since each carbon (vertex) joins three bonds (edges) and each edge has two vertices, the number of edges E in a structure C_n is 50% greater than the number of vertices V. There is a general theorem in topology, called Euler's Theorem, that the number of faces F of a

Figure 7.31 The three resonant structures of the (hypothetical) tetrahedral compound \mathbf{C}_4 .

in

la

01

((

XΙ

th

pl

te

th

bc OΙ Τŧ

al. sit co

polyhedron is given by the formula

$$F = E - V + 2$$
. (7.8)

In a fullerene C_n where n = V three edges meet at each vertex, so we have

$$E = 3V/2,$$
 (7.9)

$$F = \frac{V}{2} + 2. \tag{7.10}$$

It is shown in Problem 16 that

$$E = \frac{1}{2} \sum sF_s \tag{7.11a}$$

$$E = \frac{1}{2} \sum_{s} sF_{s}$$
 (7.11a)
 $V = \frac{1}{3} \sum_{s} sF_{s}$, (7.11b)

where F_s is the number of faces with ssides, and of course,

$$F = \sum_{s} F_{s}. \tag{7.12}$$

Combining Eqs. (7.10)-(7.12) gives the fullerene face formula

$$\sum_{s} (6 - s) F_s = 12. \tag{7.13}$$

This expression does not place any restrictions on the number of hexagons (F,), but it does severely limit the number of other polyhedra. The two smallest hypothetical fullerenes, the tetrahedron and the cube, have no hexagons, and the larger ones consist of 12 pentagons (Fs), from Eq. (7.13), and numerous hexagons. For example, the molecule C_{60} with V = 60 has 12 pentagons and 20 hexagons. Table 7.7 gives the geometric characteristics of the five Platonic solids, the solids generated by truncating all of their vertices, and several other regular polygons, most of which are fullerenes. The fullerenes of current interest are C60 and larger molecules consisting of 12 pentagons and numerous hexagons, such as C70, C76, C78, and C82. Some have several varieties, such as the isomers of C_{28} with the symmetries $C_{2\nu}$, D_3 , and D_{3h} (Diederich and Whetten, 1992).

The outer diameter of the C60 molecule is 7.10 Å and its van der Waals separation is 2.9 Å, so that the nearestneighbor distance (effective diameter) in a

Table 7.7 Characteristics of Several Regular Solids^a

Figure	Vertices	Edges	Faces	Face (polygon) type
Tetrahedron	4	6	4	all equilateral triangles
Octahedron ^b	6	12	8	all equilateral triangles
Cube	8	12	6	all squares
Icosahedron ^b	12	30	20	all equilateral triangles
Dodecahedron				
(pentagonal)	20	30	12	all regular pentagons
Hexadecahedron	28	42	16	12 pentagons, 4 hexagons
Truncated tetrahedron	12	18	8	4 equilateral triangles, 4 hexagons
Truncated octahedron	24	36	14	6 squares, 8 hexagons
Truncated cube	24	36	14	8 equilateral triangles, 6 octagons
Dotriacontohedron				
(truncated icosahedron)	60	90	32	12 regular pentagons, 20 hexagons
Truncated dodecahedron	60	90	32	20 equilateral triangles, 12 decagons
Heptatriacontohedron	70	105	37	12 pentagons (2 regular), 25 hexagons
Tetracontahedron	76	114	40	12 pentagons, 28 hexagons
Hentetracontohedron	78	116	41	12 pentagons, 29 hexagons
Dotetracontohedron	84	126	44	12 pentagons, 32 hexagons
Large Fullerene	n	$\frac{3}{2}n$	$\frac{1}{2}n + 2$	12 pentagons, $\frac{1}{2}n - 10$ hexagons

[&]quot;The first five solids are the Platonic solids, and the seventh to eleventh are truncations of the Platonic solids. When carbons occupy the vertices all correspond to fullerenes except the octahedron and the icosahedron for which $3V \neq 2E$. The smallest compounds in this table have never been synthesized.

b Not a fullerene because the vertices have more than three edges.

solid is 10.0 A. The bonds shared by a five-membered and a six-membered ring are 1.45 Å long, while those between two adiacent six-membered rings are 1.40 Å long. Above 260 K these molecules form a face centered cubic lattice with lattice constant 14.2 Å; below 260 K it is simple cubic with a = 7.10 Å (Fischer et al., 1991; Kasatani et al., 1993; Troullier and Martins, 1992). When Co is doped with alkali metals to form a superconductor it crystallizes into a face centered cubic lattice with larger octahedral and smaller tetrahedral holes for the alkalis. The C60 ions are orientationally disordered in the lattice (Gupta and Gupta, 1993).

XII. SYMMETRIES

Earlier in this chapter we mentioned the significance of the horizontal reflection plane σ_h characteristic of the high-temperature superconductors, and noted that most of these superconductors are body centered. In this section we will point out additional symmetries that are present. Table VI-14 of our earlier work (Poole et al., 1988) lists the point symmetries at the sites of the atoms in a number of these compounds.

In the notation of group theory the tetragonal structure belongs to the point group 4/mmm (this is the newer international notation for what in the older Schönflies notation was written D_{4h}). The unit cell possesses the inversion operation at the center, so when there is an atom at position (x, y, x), there will be another identical atom at position (-x, -y, -z). The international symbol 4/mmm indicates the presence of a fourfold axis of symmetry C, and three mutually perpendicular mirror planes m. The Schönflies notation Dah also specifies the fourfold axis, h signifying a horizontal mirror plane σ_k and D indicating a dihedral group with vertical mirror planes.

We see from Fig. 7.32 that the z-axis is a nourfold (90°) symmetry axis called C_4 , and that perpendicular to it are twofold (180°) symmetry axes along the x and y directions, called C_2 , and also along the diagonal directions (C_2) in the midplane. There are two vertical mirror planes σ_{μ} , two diagonal mirror planes σ_d which are also vertical, and a horizontal mirror plane σ_h . Additional symmetry operations that are not shown are a 180° rotation C_2^z around the z axis,

$$C_2^z = C_4^z C_4^z$$
, (7.14)

Figure 7.32 Symmetry operations of the tetragonal unit cell showing a fourfold rotation axis C_4 , three twofold axes C_2 , and reflection planes of the vertical $\sigma_{zx} = \sigma_c$, horizontal $\sigma_{xy} = \sigma_h$; and diagonal σ_d types.

Figure 7.33 Rotational symmetry operations of an orthorhombic unit cell (a) with rectangular distortion, and (b) with rhombal distortion from an originally tetragonal cell.

and the improper fourfold rotation S_4^z around z that corresponds to C_4^z followed by, or preceded by, σ_h ,

$$S_4^z = C_4^z \sigma_h = \sigma_h C_4^z,$$
 (7.15)

where C_4^z and σ_h commute.

The orthorhombic structure has mnm, D_{2h} symmetry. We see from Fig. 7.33 that both the rectangular and rhombal unit cells, which correspond to Figs. 7.4a and 7.4b, respectively, have three mutually perpendicular twofold axes, and that they also have three mutually perpendicular mirror planes σ , which are not shown. The two cases differ in having their horizontal axes and vertical planes oriented at 45° to each other.

Cubic structures, being much higher in symmetry, have additional symmetry operations, such as fourfold axes C_4^* , C_4^* , and C_4^* along each coordinate direction, threefold axes C_3 along each body diagonal, and numerous other mirror planes. These can be easily seen from an examination of Fig. 7.1. Buckyballs belong to the icosohedral group, which has twofold (C_2) , fivefold (C_5) , and sixfold (C_6) rotation axes, horizontal reflection planes, inversion symmetry, and sixfold (S_4) and tenfold (S_{10}) improper rotations, for a total of 120 individual symmetry operations in all (Cotton, 1963).

XIII. CRYSTAL CHEMISTRY

In Chapter 3 we briefly described the structures of some classical superconductors, and in this chapter we provided a more detailed discussion of the structures of the cuprate superconductors. The question arises of how structure is related to the presence of metallic and superconducting properties.

Villars and Phillips (1988; Phillips, 1989a) proposed to explain the combinations of elements in compounds that are favorable for superconductivity at relatively high temperatures by assigning three metallic coordinates to each atom, namely an electron number N_e , a size r, and an electronegativity X. The electron numbers are given in Table 3.1 for most of the elements, with $N_s = 3$ for all of the rare earths and actinides; several correlations of N, with T, have already been given in Chapter 3. The sizes and electronegativities were determined empirically from a study of some 3,000 binary intermetallic compounds of types AB, AB2, AB3, and A_2B_5 . The resulting values for each atom are listed in Fig. 7.34 together with their electron numbers. These values, although arrived at empirically on the basis of the constraint of self-consistency, do have a spectroscopic basis, and thus are called, respectively, spectroscopic radii and spectroscopic electronegativities.

The metallic coordinates of the atoms can be employed to calculate the three Villars-Phillips (VP) coordinates for each compound, namely (a) average number of valence electrons $N_v = \langle N_c \rangle_{av}$, (b) spectroscopic electronegativity difference ΔR , and (c) spectroscopic radius difference ΔR , where we are using the VP notation. For example, for the compound NbN, with $T_c = 17.3$ K, we have, using the data from Fig. 7.34,

$$N_{\rm v} = \frac{1}{2}(4+5) = 4.5,$$

 $\Delta R = 2.76 - 0.54 = 2.22,$ (7.16)
 $\Delta X = 2.03 - 2.85 = -0.82.$

sit

met

Nы

H 1 2.10° 1.25°																					
Li 1 0.90 1.61	Be 2 1.45 1.06														h	90 1795	C 4 2.37 0.64		3.33	F 7 3.76 5 0.46	
Na 1 0.89 2.65	Mg 2 1.31 2.03														- In	64 .675	Si 4 1.96 1.42	2.33			•
K 1 0.80 3.69	Ca 2 1.17 3.00	Sc 3 1.50 2.75	Ti 4 1.86 2.58	V 5 2.21 2.41	2.0	۱ ۱	Mn 7 2.04 2.22	Fe. 1.6 2.1	7 h.	o 9 72 02	Ni 1 1.76 2.18	1	Cu 11 1.08 2.04	Zn 1.44 1.88	ı lı	70 .70	Ge - 1.99 1.56	2.2	25	28	١ .
Rb 1 0.80 4.10	Sr 2 1.13 3.21	Y 3 1.41 2.94	Zr 4 1.70 2.821	Nb 2.03 2.76	1.9	1	Te 7 218 265	Ru 1.9 2.0	7 1.	39	Pd 1 2.08 2.45	1	Ag 11 1.07 2.375	Cd 1.40 2.21	ı İı	n 3 .63 .05	Sn 4 1.86 1.86	21.	2.3	1 2.7	
Cs 1 0.77 4.31	Ba 2 1.08 3.402	La 3 1.35 3.08	Hf 4 1.73 2.91	Ts : 1.94 2.79	1.79	۱ ا	Re 7 2.06 2.64	0s 1.8 26	s II	47	Pt 10 1.91 2.70	1	Au 11 1.19 2.66	Hg 1.45 2.41	ı lı	11.3 1.69 1.235	Pb - 1.91 2.05	2.1	1 24	26	•
Fr 1 0.70° 4.37°	Ra 2 0.90* 3.53*	Ac 3 1.10° 3.12°			Pr 3	Nd 1.2		m 1	Sen:			Gal		b3	Dy 1.1		10.3	Er3	Tm 3	Yb3	Lu 3
			İ	Th 3	4.48° Pa 3 1.5° 4.96°	3.9 U: 1.7	3 N	р3	4.14° Pu 3 1.3° 4.91°	1		19			36				3.60*	3.59*	3.37*

Figure 7.34 Periodic table listing metallic valences (upper right), sizes (center), and electronegativities (bottom) in the box of each element, according to the Villars-Phillips model (Phillips, 1989a, p. 321).

The VP coordinates for the A15 compound Ge_3Nb with $T_c = 23.2$ K are calculated as follows:

$$N_{\rm v} = \frac{1}{4}(4 + 3 \times 5) = 4.75,$$

 $\Delta R = \frac{1}{2}(1.56 - 2.76) = -0.60, (7.17)$
 $\Delta X = \frac{1}{2}(1.99 - 2.03) = -0.02.$

The text by Phillips (1989a) tabulates the VP coordinates for more than 60 superconductors with $T_{\rm c} > 10$ K and for about 600 additional superconductors with transition temperatures in the range $1 < T_{\rm c} < 10$ K.

When the points for the 600 compounds with lower transition temperatures are plotted on a three-dimensional coordinate system with axes N_{\star} , ΔX_{\star} and ΔR_{\star} , they scatter over a large range of values, but when the points for compounds with $T_c > 10$ K are plotted, they are found to cluster in three regions, called islands, as shown in Fig. 7.35. Island A contains the A15 compounds plus some complex intermetallics, island B consists mainly of the NbN family plus some borides and car-

bides, and island C has closely clustered Chevrel phases, with the high- T_c cuprates on the left. When ternary ferroelectric oxides with Curie temperatures that exceed 500°C are plotted in the same diagram as the superconductors they cluster between the Chevrel group and the cuprates. These ferroelectric oxides are not superconductors, though Phillips (1989a) suggested that doping them with Cu and alkaline earths could produce superconductors with high transition temperatures.

Thus we see that the high transition temperatures of classical superconductors are favored by particular structures and by particular combinations of metallic coordinates for each of these structures. The Villars-Phillips approach provides both structural and atomic criteria for the presence of high T_c.

We have discussed the Phillips approach to a crystal chemistry explanation of the superconductivity of the cuprates. Other researchers have offered alternate, in some cases somewhat related, approaches to understanding the commonali-

Figure 7.35 Regions in the Villars-Phillips configuration space where superconductivity occurs at relatively high temperatures (Phillips, 1989a, p. 324; Villars and Phillips, 1989).

ties of the various high-temperature and classical superconductors (Adrian, 1992; Schneider, 1992; Tajima and Kitazawa, 1990; Whangbo and Torardi, 1991; Torrace, 1992; Yakhmi and Iyer, 1992; Zhang and Sato, 1993).

XIV. COMPARISON WITH CLASSICAL SUPERCONDUCTOR STRUCTURES

Many elements such as copper and lead are face centered cubic, while many other elements, such as niobium, are body centered cubic, with a = 3.30 Å for Nb. The A15 compounds, such as Nb₃Se, are (simple) cubic with lattice constant $a \approx$ 3.63√2 and have parallel chains of Nb atoms 5.14 Å apart. Other types of classical superconductors, such as the Laves and Chevrel phases, are cubic or close to cubic. The new oxide superconductors are tetragonal or orthorhombic close to tetragonal, and they all have $a \approx b \approx 3.85$ Å, which is somewhat greater than the value for the A15 compounds. The third lattice constant c varies with the compound, with the values 13.2 Å for LaSrCuO, 11.7 Å for YBaCuO, and ≈ 23 to 36 Å for the

BiSrCaCuO and TIBaCaCuO compounds. These differences occur because the number of copper-coxygen and other planes per unit cell, as well as the spacings between them, vary from compound to compound due to the diverse arrangements of atoms between the layers. Thus relatively high-symmetry crystal structures are characteristic of many superconductors.

xv. CONCLUSIONS

Almost all the high-temperature oxide superconductors have point symmetry D_{4h} (a = b) or symmetry close to D_{ab} $(a \approx b)$. These superconductors consist of horizontal layers, each of which contains one positive ion and either zero, one, or two oxygens. The copper ions may be coordinated square planar, pyramidal, or octahedral, with some additional distortion. Copper oxide layers are never adjacent to each other, and equivalent layers are never adjacent. The cations alternate sites vertically, as do the oxygens. The copper oxide layers are either flat or slightly puckered, in contrast to the other metal oxide layers, which are generally far from planar. The highest Tc compounds have metal layers PROBLEMS

(e.g., Ca) copper oxi

FURTHER

The Wy 1; 1964, Vol. comprehensi many import A15 compor Tables for \(\lambda\) dale, 1965, symmetries groups. The Nb₃Ge, is \(\text{e}\)

Nb₃Ge, is e. Details given by Bey and Glazer Chapter 6), (1989). Phill son of the earlier work symmetries Billinge et a temperature viewed strue. The m

stoichiomet drashekhar and by Rou supercondu (1991) and The ! Chemical ! reviews of are edited Kroto and

haus et a

thallium co

conductors

viewed by C

and Koelle

Yakhimi (: Chu (1995: PROBLE

1. Show hole atom 1]r₀. the

2. Sho hole ator (e.g., Ca) with no oxygens between the copper oxide planes.

FURTHER READING

The Wyckoff series, Crystal Structures (1963, Vol. 1964; Vol. 2; 1965, Vol. 3; 1968, Vol. 4) provides a comprehensive tabulation of crystal structures, but many important classical superconductors such as the A15 compounds are not included. The International Tables for X-Ray Crystallography (Henry and Lonsdale, 1965, Vol. 1) provide the atom positions and symmetries for all of the crystallographic space groups. The Strukturbericht notation, e.g., A15 for Nb₂Ge, is explained in Pearson's complication (1958).

Details of cuprate crystallographic structures are given by Beyers and Shaw (1989; Yha₂Cu₂O₂), Bargon (1980), Hazen (1990), Poole et al. (1988, Chapter 6), Santoro (1990), and Yvon and François (1989). Phillips (1989a) provides an extensive discussion of the crystal chemistry of the cuprates. Our earlier work (Poole et al., 1988, p. 107) lists the site symmetries in perovskite and cuprate structures. Billinge et al. (1994) reviewed lattice effects in high temperature superconductors, and Zhu (1994) reviewed structural defects in YBa₂Cu₃O₇₋₈.

The microstructure of high temperature superconductors studied by electron microcopy are reviewed by Chen (1990). Gai and Thomas (1992). Gross and Koelle (1994). and Shekhtman (1993). Oxygen stoichtiometry in HTSCs is reviewed by Chandrashekhra et al., (1994). Green and Bagley (1990) and by Routbert and Rotthman (1995). Electron-dioped superconductors are reviewed by Almasan and Maple (1991) and by Fontucherta and Fabrega (1995).

The March 1992 special issue of Accounts of Chemical Research (Vol. 25, No. 3) is devoted to reviews of buckminsterfullerness. Two recent books are edited by Billups and Ciofolini (1993) and by Kroto and Walton (1993), and the review by Dresselhaus et al. (1994) are devoted to fullerenes. The thallium compounds were reviewed by Hermann and Yakhimi (1993) and the mercury superconductors by Chu (1995).

PROBLEMS

- 1. Show that the radius of the octahedral hole in an fcc close-packed lattice of atoms of radius r_0 is equal to $[\sqrt{2} 1]r_0$. What is the radius of the hole if the lattice is formed from oxygen ions?
- 2. Show that the radius of the tetrahedral hole in an fcc close-packed lattice of atoms of radius r_0 is equal to $[(3/2)^{1/2}]$

- -1) r_0 . What is the radius of the hole if the lattice is formed from oxygen ions?
- 3. The "image perovskite" unit cell is generated from the unit cell of Fig. 7.1 by shifting the origin from the point (0,0,0) to the point (\$\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\). Sketch this "image" cell. Show that the planes of atoms in this cell are the image planes related by the body centering operation to those of the original perovskite. This image cell is the one that usually appears to represent perovskite in solid-state physics texts.
- Calculate the distance between the yttrium atom and its nearest-neighbor Ba, Cu, and O atoms in the superconductor YBa₂Cu₃O₂.
- 5. Write down the x, y, z coordinates for the five numbered atoms in the initial plane of Fig. 7.16. Give the explicit symmetry operations, with the proper choice of sign in Eq. (7.5) for each case, that transform these five atoms to their indicated new positions on the other three planes.
- Explain how the international and Schönflies symbols, mmm and D_{2h} respectively, are appropriate for designating the point group for the orthorhombic superconductors.
- 7. What are the symmetry operations of the A15 unit cell of Fig. 3.19?
- 8. The D_{2h} point group consists of eight symmetry operations that leave an orthorhombic cell unchanged, namely an identity operation E that produces no change, three twofold rotations C'₁ along i = x, y, z, three mirror reflection planes σ_{1j}, and an inversion i. Examples of these symmetry operations are

A group has the property that successive application of two symmetry oper-

ations produces a third. Thus, we have, for example,

$$C_2^x \sigma_{xy} = \sigma_{zx}$$

$$C_2^y C_2^x = C_2^z$$

$$iC_2^y = \sigma_{zx}$$

$$\sigma_{zx} \sigma_{yz} = C_2^z.$$

These results have been entered into the following multiplication table for the D_{2h} group. Fill in the remainder of the table. Hint: each element of a group appears in each row and each column of the multiplication table once and only once.

	E	C_2^x	C₹	C_2^z	i	σ_{xy}	σ_{yz}	σ_{zx}
$E \\ C_2^x \\ C_2^y \\ C_2^z \\ i \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{zx}$		C_2^z	σ_{zx}			σ_{zx}	C_2^z	

- 9. Construct the multiplication table for the D_{4h} point group which contains the 16 symmetry elements that leave a tetragonal unit cell unchanged. Which pairs of symmetry elements A and B do not commute, i.e., such that AB≠ BA? Hint: follow the procedures used in Problem 8.
- Draw diagrams analogous to those in Fig. 7.25 for the first two members of the aligned series TIBa₂Ca_nCu_{n+1}O_{5+2n}, where n = 0, 1.

- 11. Draw the analogue of Fig. 7.19 for the Nd₂CuO₄ compound, showing the location of all of the Cu and O atoms. How do Figs. 7.21 and 7.22 differ for Nd₂CuO₄?
- Calculate the Villars-Phillips coordinates for the three superconductors MoP₃, V₃Sn, and NbTi.
- Select one of the compounds (Tl₂Ba₂CuO₆, Bi₂Sr₂CaCu₂O₈, Bi₂Sr₂Ca₂Cu₃O₁₀, Tl₂Ba₂Ca₂Cu₃O₆) and construct a table for it patterned after Tables 7.5 or 7.6.
- Locate a twofold (C₂), fivefold (C₅), and sixfold (C₆) rotation axis, and also a reflection plane σ_h in the buckyball sketch of Fig. 3.35. How many of each type of operation are there?
- 15. We can see by examining Fig. 3.35 that a buckyball has inversion symmetry. Identify a sixfold (S_6) and tenfold (S_{10}) improper rotation axis, where an improper rotation is understood to involve a sequential inversion and a proper rotation. How many S_{10} axes are there?
- Show that the total number of edges E
 in a fullerene is given by

$$E = \frac{1}{2} \sum_{s} s F_{s},$$

and the number of vortices is

$$V = \frac{1}{3} \sum_s s F_s$$
,

- where F_s is the number of faces with s sides.
- Show that the cubic fullerene compound C₈ has nine resonant structures.

In atc rot near Ca

ı.

the

gen Tl³ lend elect bon did are hend

References

- J. Aarts, J. Meiresonne, H. Sprey, W. Maj, and P. Zagwijn, Phys. Rev. B 41, 4739 (1990).
- M. Abbate, M. Sacchi, J. J. Wnuk, L. W. M. Schreurs, Y. S. Wang, R. Lof, and J. C. Fuggle, Phys. Rev. B 42, 7914 (1990).
- M. Abramowitz and I. A. Stegun, Eds., "Handbook of Mathematical Functions," NBS, U.S. Gov. Printing Off., Washington, DC, 1964.
- A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 35, 1442 (1957); Sov. Phys. JETP 5, 1174 (1957).
- D. Achkir, D. Poirier, C. Bourbonnais, G. Quirion, C. Lenoir, P. Batail, and D. Jérome, Phys. Rev. B 47, 11595 (1993)
- J. V. Acrivos, L. Chen, C. M. Burch, P. Metcalf, J. M. Honig, R. S. Liu, and K. K. Singh, Phys. Rev. B, in press.
- S. Adachi, A. Tokiwa-Yamamoto, M. Itoh, K. Isawa, and H. Yamauchi, Physica C 214, 313 (1993).
- F. J. Adrian, Phys. Rev. Lett. 61, 2148 (1988); see also 63, 688, 690 (1989).
- F. J. Adrian, Chem. Eng. News Dec. 21, 24 (1992).
- G. Aeppli, S. M. Hayden, H. A. Mook, Z. Fisk, S.-W. Cheong, D. Rytz, J. P. Remeika, G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 62, 2052 (1989).
- N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 46, 5814 (1992).

- N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, 12345 (1993).
- I. J. R. Aitchison and N. E. Mavromatos, Phys. Rev. B 39, 6544 (1989).
- M. Akera and T. Andu, in "Proc. 8th Int. Conf. on Elect. Prop. of 2-Dimensional Systems," Grenoble, France, 1989.
- H. Akera, A. H. MacDonald, S. M. Girvin, and M. R. Norman, Phys. Rev. Lett. 67, 2375 (1991).
- J. Akimitsu, S. Suzuki, M. Wantanabe, and H. Sawa, Jpn. J. Appl. Phys. 27, L1857 (1988).
- S. Aktas, "A Numerical Study of Magnetic Vortices in High Kappa Superconductors," Ph.D. thesis, University of South Carolina, 1993.
- S. Aktas, C. P. Poole, Jr., and H. A. Farach, J. Phys. Condens. Matter 6, 7373 (1994).
- N. E. Alekseevskii, N. M. Dobrovolskii, D. Ekkert, and V. I. Tsebro, JETP 72, 1145 (1977).
- M. Alexander, H. Romberg, N. Nücker, P. Adelmann, J. Fink, J. T. Markert, M. B. Maple, S. Uchida, H. Takagi, Y. Tokura, A. C. W. P. James, and D. W. Murphy, Phys. Rev. B 43, 333 (1991).
- A. A. Aligia, Phys. Rev. B 39, 6700 (1989).
- K. Allan, A. Campion, J. Zhou, and J. B. Goodenough, Phys. Rev. B 41, 11572 (1990).

- P. B. Allen, Z. Fisk, and A. Migliori, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 5, World Scientific, Singapore, 1989.
- P. B. Allen, in "High-Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 9, Springer-Verlag, Berlin, 1990.
- J. W. Allen, C. G. Olson, M. B. Maple, J.-S. Kang, L. Z. Liu, J.-H. Park, R. O. Anderson, W. P. Ellis, J. T. Market, Y. Dalichaouch, and R. Liu, Phys. Rev. Lett. 64, 595 (1990).
- H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700 (1989).
- H. Alloul, A. Mahajan, H. Casalta, and O. Klein, Phys. Rev. Lett. 70, 1171 (1993).
 C. C. Almasan, J. Estrada, C. P. Poole, Jr., T. Datta,
- C. C. Almasan, J. Estrada, C. P. Poole, Jr., T. Datta, H. A. Farach, D. U. Gubser, S. A. Wolf, and L. E. Toth, Mater. Res. Soc. Symp. Proc. 99, 451 (1987).
- C. C. Almasan and M. B. Maple, in "Chemistry of High Temperature Superconductors" (C. N. R. Rao, Ed.), World Scientific, Singapore, 1991.
- C. C. Almasan, S. H. Han, E. A. Early, B. W. Lee, C. L. Seaman, and M. B. Maple, Phys. Rev. B 45, 1056 (1992).
- E. E. Alp, J. C. Campuzano, G. Jennings, J. Guo, D. E. Ellis, L. Beaulaigue, S. Mini, M. Faiz, Y. Zhou, B. W. Veal, and J. Z. Liu, Phys. Rev. B 40, 9385 (1989).
- A. Amato, C. Geibel, F. N. Gygax, R. H. Heffner, E. Knetsch, D. E. MacLaughlin, C. Schank, A. Schenck, F. Steglich, and M. Weber, Z. Phys. B 86, 159 (1992).
- V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 468 (1963a); 11, 104 (1963b).
 V. Ambegaokar and H. Eckern, Phys. Rev. B 44.
- V. Ambegaokar and U. Eckern, Phys. Rev. B 44, 10358 (1991).
- J. R. Anderson, D. A. Papaconstantopoulis, J. W. McCaffrey, and J. E. Schirber, Phys. Rev. B 7, 5115 (1973).
- P. W. Anderson, Phys. Rev. 112, 1900 (1958).
- P. W. Anderson, Phys. Rev. B 115, 2 (1959).
- P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).
- P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10, 230 (1963).
- P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).
- P. W. Anderson, Science 235, 1196 (1987a), Phys. Rev. Lett. 59, 2497 (1987b).
- P. W. Anderson, in "Frontiers and Borderlines of Many Particle Physics," Int. School of Physics "Enrico Fermi," North-Holland, Varenna, 1987.
- P. W. Anderson and Z. Zou, Phys. Rev. Lett. 60, 132 (1988). (Reprinted in Halley, 1988).
- P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990a); 65, 2306 (1990b).
- P. W. Anderson, Physica C 185-189, 11 (1991).
- P. W. Anderson and R. Schrieffer, Physics Today, June 1991, p. 54.
- P. W. Anderson, Science 256, 1526 (1992).

- P. W. Anderson, "A Career in Theoretical Physics," World Scientific, Singapore, 1994a.
- P. W. Anderson, Amer. Scientist 82, 379 (1994b).
 M. Andersson and Ö. Rapp, Phys. Rev. B 44, 7722 (1991).
- Y. Ando, N. Motohira, K. Kitazawa, J. Takeya, and S. Akita, Jpn. J. Appl. Phys. 30, L1635 (1991a); Phys. Rev. Lett. 67, 2737 (1991b).
- B. Andraka, J. S. Kim, G. R. Stewart, K. D. Carlson, H. H. Wang, and J. M. Williams, Phys. Rev. B 40, 11345 (1989).
- O. A. Anikeenok, M. V. Eremin, R. Sh. Zhdanov, V. V. Naletov, M. P. Rodionova, and M. A. Teplov, JETP Lett. 54, 149 (1991).
- V. I. Anisimov, M. A. Korotin, J. Zaanen, and P. L. Andersen, Phys. Rev. Lett. 68, 345 (1992).
- S. M. Anlage, M. Pambianchi, A. T. Findikoglu, C. Doughty, D.-H. Wu, J. Mao, S.-N. Mao, X. X. Xi, T. Venkatesan, J. L. Peng, and R. L. Greene, Proc. SPIE Conf. on Oxide Superconductivity, Vol. 2158 (D. Pavuna, Ed.), in press, 1994.
- J. F. Annett, N. Goldenfeld, and S. R. Renn, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 9, World Scientific, Singapore, 1990.
- E. J. Ansaldo, C. Niedermayer, H. Glückler, C. E. Stronach, T. M. Riseman, R. S. Cary, D. R. Noakes, X. Obradors, A. Fuetes, J. M. Noawro, P. Gomez, N. Casañ, B. Martinez, F. Perez, J. Rodriguez-Carvajal, and K. Chow, Physica C 183–189, 1213 (1991a).
- E. J. Ansaldo, C. Niedermayer, and C. E. Stronach, Nature 353, 121 (1991b).
- V. P. Antropov, I. I. Mazin, O. K. Andersen, A. I. Liechtenstein, and O. Jepsen, Phys. Rev. B 47, 12373 (1993).
- J. Aponte, H. C. Abache, A. Sa-Neto, and M. Octavio, Phys. Rev. B 39, 2233 (1989).
 B. Arfi, Phys. Rev. B 45, 2352 (1992).
- G. Arfken, "Mathematical Methods for Physicists," 3rd ed., Wiley, New York, 1985.
- T. A. Arias and J. D. Joannopoulos, Phys. Rev. B 39, 4071 (1989).
- D. N. Aristov, S. V. Maleyev, and A. G. Yashenkin, Phys. Rev. B 48, 3527 (1993).
- A. J. Arko, R. S. List, R. J. Bartlett, S.-W. Cheong, Z. Fisk, J. D. Thompson, C. G. Olson, A.-B. Yang, R. Liu, C. Gu, B. W. Veal, J. Z. Liu, A. P. Plaulikas, K. Vandervoort, H. Claus, J. C. Campuzano, J. E. Schirber, and N. D. Shinn, Phys. Rev. B 40, 2268 (1989).
- G. B. Arnold, F. M. Mueller, and J. C. Swihart, Phys. Rev. Lett. 67, 2569 (1991).
- A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. Lett. 62, 965, 2236(E), (1989).
- D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).
- E. Arrigoni, G. Strinati, and C. Castellani, Phys. Rev. B 41, 4838 (1990).

- E. Arrigoni and G. C. Strinati, Phys. Rev. B 44, 7455 (1991).
- K. Asayama, G.-Q. Zheng, Y. Kitaoka, K. Ishida, and
 K. Fujiwara, Physica C 178, 281 (1991).
 N. W. Ashcroft and N. D. Mermin, "Solid State
 - W. Ashcroft and N. D. Mermin, "Solid State Physics," Saunders, Philadelphia, 1976.
- M. Ashida, S. Aoyama, J. Hara, and K. Nagai, Phys. Rev. B 40, 8673 (1989).
 M. Ashida, J. Hara, and K. Nagai, Phys. Rev. B 45,
- N. Ashida, J. Hara, and K. Nagai, Phys. Rev. B 45, 828 (1992).

 J. Ashkenazi, S. E. Barnes, F. Zuo, G. C. Vezzoli, and
- B. M. Klein, Eds., "High Temperature Superconductivity," Plenum, New York, 1991.
- T. R. Askew, R. B. Flippen, K. J. Leary, M. N. Kunchur, J. Mater. Res. 6, 1135 (1991).
- L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela 10, 1104 (1968) [Sov. Phys. Solid State 10, 875 (1968)].
- W. Assmus, M. Herrmann, U. Rauchschwalbe, S. Riegel, W. Lieke, H. Spille, S. Horn, G. Weber, F. Steglich, and G. Cordier, Phys. Rev. Lett. 52, 469 (1984).
- K. S. Athreya, O. B. Hyun, J. E. Ostenson, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 38, 11846 (1988).
- A. Auerbach, "Interacting Electrons and Quantum Magnetism," Springer-Verlag, Berlin, 1994.
- B. Aurivillus, Ark. Kemi 1, 463, 499 (1950).
- B. Aurivillus, Ark. Kemi 2, 519 (1951).
- B. Aurivillus, Ark. Kemi 5, 39 (1952).
- C. Ayache, I. L. Chaplygin, A. I. Kirilyuk, N. M. Kreines, and V. I. Kudinov, Solid State Commun. 81, 41 (1992).
- J. Azoulay, Phys. Rev. B 44, 7018 (1991).
- E. Babic, M. Prester, D. Drobac, Ž. Marohnic, and N. Biškup, Phys. Rev. B 43, 1162 (1991).
- E. Babic, M. Prester, D. Drobac, Ž. Marohnic, P. Nozar, P. Stastny, F. C. Matacotta, and S. Bernik,
- Phys. Rev. B 45, 913 (1992).

 P. K. Babu and J. Ramakrishna, Supercond. Rev. 1, 75 (1992).
- 75 (1992).

 D. C. Baird and B. K. Mukherjee, Phys. Rev. Lett. 21,
- 996 (1968). D. C. Baird and B. K. Mukherjee, Phys. Rev. 3, 1043
- C. K. Bak and N. F. Pedersen, Appl. Phys. Lett. 22,
- C. R. Bak and N. F. Pedersen, Appl. Phys. Lett. 22, 149 (1973).
 O. N. Bakharev, A. V. Dooglav, A. V. Egorov, V. V.
- Naletov, M. P. Rodionova, M. S. Tagirov, and M. A. Teplov, Appl. Magn. Reson. 2, 559 (1991).
- J. Bala and A. M. Oleś, Phys. Rev. B 47, 515 (1993).
 C. J. Ballhausen, "Introduction to Ligand Field Theory," McGraw-Hill, New York, 1962.
- M. Ban, T. Ichiguchi, and T. Onogi, Phys. Rev. B 40, 4419 (1989).
- A. Bansil, P. E. Mijnarends, and L. C. Smedskjaer; Phys. Rev. B 43, 3667 (1991).
- A. Bansil and S. Kaprzyk, Phys. Rev. B 43, 10335 (1991).

- A. Bansil (Ed.), "Proc. Conf. Spectroscopies in Novel Superconductors," J. Phys. Chem. Solids, in press.
 A. Baratoff and G. Binnig, Physica B 188, 1335 (1981)
- B. Barbiellini, P. Genoud, J. Y. Henry, L. Hoffmann, T. Jarlborg, A. A. Manuel, S. Massidda, M. Peter, W. Sadowski, H. J. Scheel, A. Shukla, A. K. Singh, and E. Walker, Phys. Rev. B 43, 7810 (1991).
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- J. Bardeen and M. P. Stephen, Phys. Rev. A 140, 1197 (1965).
- R. Bar-Deroma, J. Felsteiner, R. Brener, J. Ashkenazi, and D. van der Marel, Phys. Rev. B 45, 2361 (1992).
- C. Barlingay, V. Garcia-Vázquez, C. M. Falco, S. Mazumdar, and S. H. Risbud, Phys. Rev. B 41, 4797 (1990).
- A. Barone and G. Paterno, "Physics and Applications of the Josephson Effect," Wiley, New York, 1982.
- S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 41, 6283 (1990).
- S. E. Barrett, J. A. Martindale, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 66, 108 (1991).
- J. C. Barry, Z. Iqbal, B. L. Ramakrishna, H. Eckhardt, F. Reidinger, and R. Sharma, Appl. Phys. Lett. No. 71.70-b (1989).
- S. G. Barsov, A. L. Getalov, V. P. Koptev, L. A. Kuz'min, S. M. Mikirtych'yants, N. A. Tarasov, G. V. Shcherbakov, N. M. Kotov, A. S. Nigmatu-lin, Ya. M. Mukovskii, V. G. Grebinnik, V. N. Duginov, V. A. Zhukov, A. B. Lazarev, V. G. Ol'shevskii, S. N. Shilov, and E. P. Krasnoperov, JETP Lett. 46, 499 (1987).
- K. Bartkowski, R. Horyn, A. J. Zaleski, Z. Bukowski, M. Horobiowski, C. Marucha, J. Rafalowicz, K. Rogacki, A. Stepien-Damm, C. Sulkowski, E. Trojnar, and J. Klamut, Phys. Status Solidi 103, K37 (1987).
- F. E. Bates, Phys. Rev. B 39, 322 (1989).
- B. Batlogg, A. P. Ramirez, R. J. Cava, R. B. van Dover, and E. A. Reitman, Phys. Rev. B 35, 5340 (1987).
- B. Batlogg, R. J. Cava, L. W. Rupp, Jr., A. M. Mujsce, J. J. Krajewski, J. P. Remeika, W. F. Peck, Jr., A. S. Cooper, and G. P. Espinosa, Phys. Rev. Lett. 61, 1670 (1988).
- P. E. Batson, T. M. Shaw, D. Dimos, and P. R. Duncombe, Phys. Rev. B 43, 6236 (1991).
- B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13, 390 (1964).
- G. Baym and C. Pethick, "Landau Fermi-Liquid Theory," Wiley, New York, 1991.
- C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).
- C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
- M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev. 181, 682 (1969).

D

P.

P.

P. ;

H. .

F. E

I. Bo

R. B

(

В

Т

R

PI

R. B

- J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986)
- J. G. Bednorz and K. A. Müller (Eds.), "Earlier and Recent Aspects of Superconductivity," Springer-Verlag, Berlin, 1990.
- C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).
- V. P. Belash, E. Z. Kurmaev, and S. A. Nemnonov, Fiz. Met. Metalloved 37, 659 (1974).
- D. Belitz, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 2, Springer-Verlag, Berlin,
- R. Benedek and H.-B. Schüttler, Phys. Rev. B 41, 1789 (1990).
- L. H. Bennett, Y. Flom, and G. C. Vezzoli, in "Proceedings High Tc Superconductors: Magnetic Interactions, Gaithersburg, MD," World Scientific, Singapore, 1989.
- M. A. Beno, L. Soderholm, D. W. Capone II, D. G. Hinks, J. D. Jorgensen, J. D. Grace, I. K. Schuller, C. U. Segre, and K. Zhang, Appl. Phys. Lett. 51, 57 (1987).
- V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).
- D. D. Berkley, E. F. Skelton, N. E. Moulton, M. S. Osofsky, W. T. Lechter, V. M. Browning, and D. H. Liebenberg, Phys. Rev. B 47, 5524 (1993).
- A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, Phys. Rev. B 48, 4074 (1993).
- R. Berman and D. K. C. MacDonald, Proc. R. Soc. London Ser. A 211, 122 (1952).
- R. Beyers and T. M. Shaw, Solid State Phys. 42, 135 (1989).
- R. Beyers and B. T. Ahn, Annu. Rev. Mater. Sci. 21, 335 (1991).
- A. Bezinge, K. Yvon, and J. Muller, Solid State Commun. 63, 141 (1987).
- R. Bhagavatula, C. Ebner, and C. Jayaprakash, Phys. Rev. B 45, 4774 (1992).
- K. V. Bhagwat and P. Chaddah, Physica C 166, 1 (1990)
- K. V. Bhagwat and P. Chaddah, Physica C 190C, 444
- A. Bharathi, C. S. Sundar, W. Y. Ching, Y. C. Jean, P. H. Hor, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 42, 10199 (1990).
- A. K. Bhatnagar, R. Pan, D. G. Naugle, P. J. Sqattrito, A. Clearfield, Z. Z. Sheng, Q. A. Shams, and A. M. Hermann, Solid State Commun. 73, 53 (1990).
- R. N. Bhatt, Phys. Rev. B 16, 1915 (1977).
- R. N. Bhatt, Phys. Rev. B 17, 2947 (1978).
- A. Bhattacharya and C. S. Wang, Phys. Rev. B. 45, 10826 (1992).
- J. B. Bieri and K. Maki, Phys. Rev. B 42, 4854 (1990).
- B. D. Biggs, M. N. Kunchur, J. J. Lin, S. J. Poon, T. R. Askew, R. B. Flippen, M. A. Subramanian, J. Gopalakrishnan, and A. W. Sleight, Phys. Rev. B 39, 7309 (1989).

- S. J. L. Billinge, G. H. Kwei, and J. D. Thompson, in "Strongly Correlated Electronic Materials" (K. S. Bedell, Ed.) Addison-Wesley, New York, 1994.
- W. E. Billups and M. A. Ciufolini (Eds.), "Buckminster Fullerenes," VCH, New York, 1993.
- K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
- B. Binnig, A. C. Castellano, M. De Santis, P. Rudolf, P. Lagarde, A. M. Frank, and A. Marcelli, Solid State Commun. 63, 1009 (1980).
- M. A. Biondi and M. P. Garfunkel, Phys. Rev. 116, 853 (1959).
- R. J. Birgeneau, C. Y. Chen, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, T. Thio, T. R. Thurston, H. L. Tuller, A. D. Axe, P. Böni, and G. Shirane, Phys. Rev. Lett. 59, 1329 (1987)
- R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, P. J. Picone, T. R. Thurston, G. Shirane, Y. Endoh, M. Sato, K. Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 38, 6614 (1988).
- R. J. Birgeneau and G. Shirane, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 4, World Scientific, Singapore, 1989.
- P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, A. Schenck, M. Weber, D. Cattani, J. Cors, M. Decroux, and Ø. Fischer, Phys. Rev. B 48, 15689 (1993).
- D. Bishop, C. M. Varma, B. Batlogg, E. Bucher, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 53, 1009 (1984).
- H. D. Bist, T. Datta, T. S. Little, J. C. Thigpen, Jr., J. R. Durig, P. R. Broussard, and D. D. Berkley, J. Raman Spectrosc. 22, 639 (1991).
- F. Bitter, Phys. Rev. 38, 1903 (1931).
- B. L. Blackford and R. H. March, Canad. J. Phys. 46, 141 (1968).
- H. A. Blackstead, J. Supercond. 5, 67 (1992).
- H. A. Blackstead, Phys. Rev. B 47, 11411 (1993). E. J. Blagoeva, G. Busiello, L. De Cesare, Y. T. Millev, I. Rabuffo, and D. I. Uzunov, Phys. Rev. B 40, 7357 (1989).
- E. J. Blagoeva, G. Busiello, L. De Cesare, Y. T. Millev, I. Rabuffo, and D. I. Uzunov, Phys. Rev. B 42, 6124 (1990).
- G. Blatter, J. Rhyner, and V. M. Vinokur, Phys. Rev. B 43, 7826 (1991a). G. Blatter, V. B. Geshkenbein, and V. M. Vinokur,
- Phys. Rev. Lett. 66, 3297 (1991b). G. Blatter, B. I. Ivlev, and J. Rhyner, Phys. Rev. Lett.
- 66, 2392 (1991c). G. Blatter, V. B. Geshkenbein, and A. I. Larkin,
- Phys. Rev. Lett. 68, 875 (1992). G. Blatter and B. Ivlev, Phys. Rev. Lett. 70, 2621 (1993).
- G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66,
 - 1125 (1994).

- K. W. Blazey, K. A. Müller, J. G. Bednorz, W. Berlinger, G. Amoretti, E. Buluggiu, A. Vera, and F. C. Matacotta, Phys. Rev. B 36, 7241 (1987).
- J. E. Blendell, C. K. Chiang, D. C. Cranmer, S. W. Freiman, E. R. Fuller, Jr., E. Drescher-Krasicka, W. L. Johnson, H. M. Ledbetter, L. H. Bennett, L. J. Swartzendruber, R. B. Marinenko, R. L. Mykleburst, D. S. Bright, and D. E. Newbury, ACS Symp. Ser. 331, 240 (1987).

B. Blok and H. Monien, Phys. Rev. B 47, 3454 (1993).
 N. Bluzer, Phys. Rev. B 44, 10222 (1991).

- G. S. Boebinger, T. T. M. Palstra, A. Passner, M. J. Rosseinsky, D. W. Murphy, and I. I. Mazin, Phys. Rev. B 46, 5876 (1992).
- M. Boekholt, M. Hoffmann, and G. Güntherodt, Physica C 175C, 127 (1991).
- C. A. Bolle, P. I. Gammel, D. G. Grier, C. A. Murray, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 112 (1991).
- Rev. Lett. 66, 112 (1991).
 J. E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, and A. Tonomura, Phys. Rev. Lett. 70, 2952 (1993).
- P. Böni, J. D. Axe, G. Shirane, R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, and T. R. Thurston, Phys. Rev. B 38, 185 (1988).
- E. Bonjour, R. Calemczuk, J. Y. Henry, and A. F. Khoder, Phys. Rev. B 43, 106 (1991).
- D. A. Bonn, A. H. O'Reilly, J. E. Greedan, C. V. Stager, T. Timusk, K. Kamarás, and D. B. Tanner, Phys. Rev. B 37, 1574 (1988).
 B. P. Bonner, R. Reichlin, S. Martin, H. B. Radousky.
- T. J. Folkerts, and R. N. Shelton, Phys. Rev. B 41, 11576 (1990).
- N. Bontemps, D. Davidov, P. Monod, and R. Even, Phys. Rev. B 43, 11512 (1991).
- P. Boolchand, C. Blue, K. Elgaid, I. Zitkovsky, D. McDaniel, W. Huff, B. Goodman, G. Lemon, D. E. Farrell, and B. S. Chandrasekhar, Phys. Rev. B 38, 11313 (1988).
- P. Boolchand, S. Pradhan, Y. Wu, M. Abdelgadir, W. Huff, D. Farrell, R. Coussement, and D. Mc-Daniel, Phys. Rev. B 45, 921 (1992).
- P. Bordet, C. Chaillout, J. Chenavas, J. L. Hodeau, M. Marezio, J. Karpinski, and E. Kaldis, Nature (London) 334, 596 (1988).
- H. J. Bornemann, D. E. Morris, C. Steinleitner, and
 G. Czjzek, Phys. Rev. B 44, 12567 (1991).
- F. Borsa, A. Rigamonti, M. Corti, J. Ziolo, O. Hyun, and D. R. Torgeson, Phys. Rev. Lett. 68, 698 (1992).
- I. Bose, Phys. Rev. B 43, 13602 (1991).
- R. Böttner, N. Schroeder, E. Dietz, U. Gerhardt, W. Assmus, and J. Kowalewski, Phys. Rev. B 41, 8679 (1990).
- L. Bottyán, B. Molnár, D. L. Nagy, I. S. Szücs, J. Tóth, J. Dengler, G. Ritter, and J. Schober, Phys. Rev. B 38, 11373 (1988).
- R. Boyn, K. Löbe, H.-U. Habermeier, and N. Pruß, Physica C 181C, 75 (1991).

- I. Božovic, K. Char, S. J. B. Yoo, A. Kapitulnik, M. R. Beasley, T. H. Geballe, Z. Z. Wang, S. Hagen, N. P. Ong, D. E. Aspnes, and M. K. Kelly, Phys. Rev. B 38, 5077 (1988).
- I. Božovic, J. H. Kim, J. S. Harris, Jr., and W. Y. Lee, Phys. Rev. B 43, 1169 (1991).
- I. Božovic, J. Supercond. 4, 193 (1991).
- I. Božovic, J. H. Kim, J. S. Harris, Jr., E. S. Hellman, E. H. Hartford, and P. K. Chan, Phys. Rev. B 46, 1182 (1992).
- A. I. Braginski, Physica C 180, 642 (1991).
- B. H. Brandow, J. Solid State Chem. 88, 28 (1990).
- E. H. Brandt, Physica C 162C-164C, 1167 (1989).
- E. H. Brandt, Physica B 165-166, 1129 (1990); Int. Conf. Low Temperature Phys., Brighton, U.K., August 1990.
- E. H. Brandt and A. Sudbø, Physica C 180C, 426 (1991).
- E. H. Brandt, Phys. Rev. Lett. 69, 1105 (1992).
- A. Brass, H. J. Jensen, and A. J. Berlinsky, Phys. Rev. B 39, 102 (1989).
- A. Brass and H. J. Jensen, Phys. Rev. B 39, 9587 (1989).
- D. A. Brawner, A. Schilling, H. R. Ott, R. J. Haug, K. Ploog, and K. von Klitzing, Phys. Rev. Lett. 71, 785 (1993).
- Y. J. M. Brechet, B. Douçot, H. J. Jensen, and A.-C. Shi, Phys. Rev. B 42, 2116 (1990).
- E. Brézin, A. Fujita, and S. Hikami, Phys. Rev. Lett. 65, 1949 (1990).
- G. Briceño, M. F. Crommie, and A. Zettl, Phys. Rev. Lett. 66, 2164 (1991).
- D. Brinkmann and M. Mali, in "NMR Basic Principles and Progress," Vol. 31, Springer-Verlag, Berlin, 1994.
- M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Eds.), "High Temperature Superconductors," Vol. 99, Materials Research Society, Pittsburgh, 1988.
- C. Broholm, G. Aeppli, R. N. Kleiman, D. R. Harshman, D. J. Bishop, E. Bucher, D. Ll. Williams, E. J. Ansaldo, and R. H. Heffner, Phys. Rev. Lett. 65, 2062 (1990).
- N. B. Brookes, A. J. Viescas, P. D. Johnson, J. P. Remeika, A. S. Cooper, and N. V. Smith, Phys. Rev. B 39, 2736 (1989).
- J. S. Brooks, C. C. Agosta, S. J. Klepper, M. Tokumoto, N. Kinoshita, H. Anzai, S₂ Uji, H. Aoki, A. S. Perel, G. J. Athas, and D. A. Howe, Phys. Rev. Lett. 69, 156 (1992).
- S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).
- P. R. Broussard, Phys. Rev. B 43, 2783 (1991).
- P. Brüll, D. Kirchgässner, and P. Liederer, Physica C 182C, 339 (1991).
- T. Brun, M. Grimsditch, K. E. Gray, R. Bhadra, V. Maroni, and C. K. Loong, Phys. Rev. B 35, 8837 (1987).

(1991).

- L. C. Brunel, S. G. Louie, G. Martinez, S. Labdi, and H. Raffy Phys. Rev. Lett. 66, 1346 (1991)
- H. Raffy, Phys. Rev. Lett. 66, 1346 (1991).
 O. Brunner, L. Antognazza, J.-M. Triscone, L. Miéville, and Ø. Fischer, Phys. Rev. Lett. 67, 1354
- R. Brusetti, A. J. Dianoux, P. Gougeon, M. Potel, E. Bonjour, and R. Calemczuk, Phys. Rev. B 41, 6315 (1990).
- W. Buckel, "Superconductivity, Fundamentals and Applications," VCH, Weinheim, Germany, 1991.
- R. C. Budhani, L. Lesyna, D. DiMarzio, H. Wiesmann, and G. P. Williams, Phys. Rev. B 44, 7087 (1991).
- J. I. Budnick, A. Golnik, Ch. Niedermayer, E. Recknagel, M. Rossmanith, A. Weidinger, B. Chamberland, M. Filipkowski, and D. P. Yang, Phys. Lett. A 124, 103 (1987).
- J. I. Budnick, B. Chamberland, D. P. Yang, Ch. Niedermayer, A. Golnik, E. Recknagel, M. Rossmanith, and A. Weidinger, Europhys. Lett. 5, 651 (1988).
- L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 64, 2241 (1973); Sov. Phys. JETP (Engl. Trans.) 37, 1133 (1988).
- L. N. Bulaevskii, O. V. Dolgov, and M. O. Ptitsyn, Phys. Rev. B 38, 11290 (1988).
- L. N. Bulaevskii and M. V. Zyskin, Phys. Rev. B 42, 10230 (1990).
- L. N. Bulaevskii and I. D. Vagner, Phys. Rev. B 43, 8694 (1991).
- L. N. Bulaevskii, Phys. Rev. B 44, 910 (1991).
- L. N. Bulaevskii, M. Ledvij, and V. G. Kogan, Phys. Rev. B 46, 366, 11807 (1992).
- N. Bulut and D. J. Scalapino, Phys. Rev. B 45, 2371 (1992).
- G. Burns, "Solid State Physics," Academic Press, Orlando, FL 1985.
- G. Burns, B. V. Chandrashekhar, F. H. Dacol, M. W. Shafer, and P. Strobel, Solid State Commun. 67, 603 (1988).
- G. Burns, P. Strobel, G. V. Chandrashekhar, F. H. Dacol, F. Holtzberg, and M. W. Shafer, Phys. Rev. B 39, 2245 (1989).
- B 39, 2245 (1989).
 G. Burns and A. M. Glazer, "Space Groups for Solid State Scientists," Academic Press, San Diego,
- 1990.
 G. Burns, "High Temperature Superconductivity: An Introduction." Academic Press. Rooten. 1002
- Introduction," Academic Press, Boston, 1992.

 M. J. Burns, Phys. Rev. B 40, 5473 (1989).
- R. Busch, G. Ries, H. Werthner, G. Kreiselmeyer, and G. Saemann-Ischenko, Phys. Rev. Lett. 69, 522 (1992).
- G. Busiello and D. I. Uzunov, Phys. Rev. B 42, 1018 (1990).
- G. Busiello, L. De Cesare, Y. T. Millev, I. Rabuffo, and D. I. Uzunov, Phys. Rev. B 43, 1150 (1991).
 A. Bussmann-Holder and A. R. Bishop, Phys. Rev. B
- A. Bussmann-Holder a 44, 2853 (1991).
- A. I. Buzdin, Phys. Rev. B 47, 11416 (1993).
- B. Cabrera, C. E. Cunningham, and D. Saroff, Phys. Rev. Lett. 62, 2040 (1989).

- Z.-X. Cai and D. O. Welch, Phys. Rev. B 45, 2385 (1992).
- J. Callaway, "Energy Band Theory," Academic Press, New York, 1964.
- H. B. Callen, "Thermodynamics and an Introduction to Thermostatics," Wiley, New York, 1985.
- P. Calvani, M. Capizzi, S. Lupi, P. Maselli, and E. Agostinelli, Physica C 180C, 116 (1991).
- I. A. Campbell, L. Fruchter, and R. Cabanel, Phys. Rev. Lett. 64, 1561 (1990).
- J. C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, H. Claus, R. S. List, A. J. Arko, and R. L. Bartlett, Phys. Rev. Lett. 64, 2308 (1990).
- J. C. Campuzano, L. C. Smedskjaer, R. S. Benedek, G. Jennings, and A. J. Bansil, Phys. Rev. B 43, 2788 (1991).
- J. J. Capponi, C. Chaillout, A. W. Hewat, P. LeJay, M. Marezio, N. Nguyen, B. Raveau, J. L. Soubeyroux, J. L. Tholence, and R. Tournier, Europhys. Lett. 3, 1301 (1987).
- J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
- J. R. Carbotte and C. Jiang, Phys. Rev. B 48, 4231 (1993).
- M. Cardona, Physica C 185C-189C, 65 (1991).
 G. Carneiro, Phys. Rev. B 45, 2391 (1992).
- P. Carretta and M. Corti, Phys. Rev. Lett. 68, 1236
- (1992). P. Carretta and M. Corti, Phys. Rev. Lett. 68, 1236
- (1992). P. Carretta, M. Corti, A. Rigamonti, R. De Renzi, F.
- Licci, C. Paris, L. Bonoldi, M. Sparpaglione, and L. Zini, Physica C 191C, 97 (1992).
- C. Castellani, M. Grilli, and G. Kotliar, Phys. Rev. B 43, 8000 (1991).
- R. J. Cava, A. Santoro, D. W. Johnson, Jr., and W. W. Rhodes, Phys. Rev. B 35, 6716 (1987).
- R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp, Jr., A. E. White, K. Short, W. F. Pick, and T. Kometani, Nature 332, 814 (1988).
- M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young, Phys. Rev. B 44, 6883 (1991).
- P. Chaddah, K. V. Bhagwat, and G. Raulkumaer, Physica C 159C, 570 (1989).
- P. Chaddah and K. Bhagwat, in "High Temperature Superconductivity" (S. K. Malik and S. S. Shah, Eds.), Nova Science, New York, 1992.
- C. Chaillout, J. P. Remeika, A. Santoro, and M. Marezio, Solid State. Commun. 56, 829 (1985).
- T. K. Chaki and M. Rubinstein, Phys. Rev. B 36, 7259 (1987).

D

B.

Т.

- B. Chakraborty, Phys. Rev. B 43, 378 (1991).
- S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057 (1988).
- S. Chakravarty, B. I. Ivlev, and Y. N. Ovchinnikov, Phys. Rev. B 42, 2143 (1990).
- S. Chakravarty, A. Sudbø, P. W. Anderson, and S. Strong, Science 261, 337 (1993).

- L. P. Chan, D. R. Harshman, K. G. Lynn, S. Massidda, and B. D. Mitzi, Phys. Rev. Lett. 67, 1350 (1991).
- B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
 B. S. Chandrasekhar, in "Superconductivity" (R. D.
- Parks, Ed.), Vol. 1, Chap. 1, Dekker, New York, 1969.
- N. Chandrasekhar, O. T. Valls, and A. M. Goldman, Mod. Phys. Letters 8, 1863 (1994).
- C. L. Chang, A. Kleinhammes, W. G. Moulton, and L. R. Testardi, Phys. Rev. B 41, 11564 (1990).
- M. Charalambous, J. Chaussy, and P. Lejay, Phys. Rev. B 45, 5091 (1992).
 T. Chattopadhyay, P. J. Brown, R. C. Sales, L. A.
- T. Chattopadhyay, P. J. Brown, B. C. Sales, L. A. Boatner, H. A. Mook, and H. Maletta, Phys. Rev. B 40, 2624 (1989).
- P. Chaudhari, R. T. Collins, P. Freitas, R. J. Gambino, J. R. Kirtley, R. H. Koch, R. B. Laibowitz, F. K. LeGoues, T. R. McGuire, T. Penney, Z. Schlesinger, A. P. Segmüller, S. Foner, and E. J. McNiff, Jr., Phys. Rev. B 36, 8903 (1987).
- S. V. Chekalin, V. M. Farztdinov, V. V. Golovlyov, V. S. Letokhov, Yu. E. Lozovik, Yu. A. Matveets, and A. G. Stepanov, Phys. Rev. Lett. 67, 3860 (1991).
- J. Chela-Flores, M. P. Das, and A. G. Saif, Solid State Commun. 65, 77 (1988).
- D.-X. Chen, R. B. Goldfarb, J. Nogués, and K. V.
- Rao, J. Appl. Phys. 63, 980 (1988).
 D.-X. Chen and R. B. Goldfarb, J. Appl. Phys. 66, 2489 (1989).
- G. H. Chen, J. H. Wang, D. N. Zheng, Y. F. Yan, S. L. Jia, Q. S. Yang, Y. M. Ni, and Z. X. Zhao,
- Mod. Phys. Lett. B 3, 295 (1989).

 H. Chen and J. Callaway, Phys. Rev. B 40, 8800
- (1989).
 C. H. Chen, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.),
- Vol. 2, Chap. 4, World Scientific, Singapore, 1990.
 J. H. Chen, Solid State Commun. 75, 557, 563, 567, 573 (1990a); Phys. Rev. B 42, 3952, 3957 (1990b).
- D.-X. Chen, A. Sanchez, J. Nogués, and J. S. Muñoz, Phys. Rev. B 41, 9510 (1990a).
- D.-X. Chen, A. Sanchez, and J. Muñoz, J. Appl. Phys. 67, 3430 (1990b).
 D.-X. Chen, A. Sanchez, T. Puig, L. M. Martinez, and
- J. S. Muñoz, Physica C 168C, 652 (1990c).
 C. Y. Chen, R. J. Birgeneau, M. A. Kastner, N. W.
- C. Y. Chen, R. J. Birgeneau, M. A. Kastner, N. W. Preyer, and T. Thio, Phys. Rev. B 43, 392 (1991).
 D.-X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE
- Trans. Magn. 27, 3601 (1991).

 D.-X. Chen and A. Sanchez, I. Appl. Phys. 70, 5462.
- D.-X. Chen and A. Sanchez, J. Appl. Phys. 70, 5463 (1991).
- C.-C. Chen, S. P. Kelty, and C. M. Lieber, Science 253, 886 (1991).
- B. Chen and J. Dong, Phys. Rev. B 44, 10206 (1991).
- C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. Rudolf, F. Sette, and R. M. Fleming, Phys. Rev. Lett. 68, 2543 (1992).
- T.-P. Chen, Z. X. Zhao, H. D. Yang, E. L. Wolf,

- R. N. Shelton, and P. Klavins, Phys. Rev. 45, 7945 (1992).
- Q. Y. Chen, in "Magnetic Susceptibility of Superconductors and other Spin Systems" (R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds.), Plenum, New York, 1992.
- L. Chengren and D. C. Larbalestier, Cryogenics 27, 171 (1987).
- S.-W. Cheong, S. E. Brown, Z. Fisk, R. S. Kwok, J. D. Thompson, E. Zirngiebl, G. Gruner, D. E. Peterson, G. L. Wells, R. B. Schwarz, and J. R. Cooper, Phys. Rev. B 36, 3913 (1987).
- S.-W. Cheong, M. F. Hundley, J. D. Thompson, and Z. Fisk, Phys. Rev. B 39, 6567 (1989a).
- S.-W. Cheong, Z. Fisk, J. D. Thompson, and R. B. Schwarz, Physica C 159C, 407 (1989b).
- H.-F. Cheung, Y. Gefen, E. K. Riedel, and W.-H. Shih, Phys. Rev. B 37, 6050 (1988).
- X.-F. Chen, M. J. Marone, G. X. Tessema, M. J. Skove, M. V. Nevitt, D. J. Miller, and B. W. Veal, Phys. Rev. B 48, 1254 (1993).
- C. C. Chi and C. Vanneste, Phys. Rev. B 42, 9875 (1990).
- T. R. Chien, T. W. Jing, N. P. Ong, and Z. Z. Wang, Phys. Rev. Lett. 66, 3075 (1991).
- J. H. Cho, F. Borsa, D. C. Johnston, and D. R. Torgeson, Phys. Rev. B 46, 3179 (1992).
- C. H. Choi and P. Muzikar, Phys. Rev. B 39, 11296 (1989); Phys. Rev. B 40, 5144 (1989).
- J. Choi and J. V. José, Phys. Rev. Lett. 62, 320 (1989).
 M. Y. Choi and S. Kim, Phys. Rev. B 44, 10411 (1991).
- M. Y. Choi, C. Lee, and J. Lee, Phys. Rev. B 46, 1489 (1992)
- H. Chou, K. Yamada, J. D. Axe, S. M. Shapiro, G. Shirane, I. Tanaka, K. Yamane, and H. Kojima, Phys. Rev. B 42, 4272 (1990).
- D. B. Chrisey and G. K. Hubler (Eds.), "Pulsed Laser Deposition of Thin Films," Wiley, New York, 1994.
- C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, and Z. J. Huang, Science 235, 567 (1987).
- C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and Y. Q. Wang, Phys. Rev. Lett. 58, 405 (1987).
- C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, J. Bechtold, M. K. Wu, and C. Y. Huang, Mater. Res. Soc. Symp. Proc. 99, 15 (1987).
- C. W. Chu, J. Bechtold, L. Gao, P. H. Hor, Z. J. Huang, R. L. Meng, Y. Y. Sun, Y. Q. Wang, and Y. Y. Xue, Phys. Rev. Lett. 60, 941 (1988).
- C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng, and Y. Y. Xue, Nature 365, 323 (1993b).
- C. W. Chu, J. Superconductivity 7, 1 (1994).
- C. W. Chu, "Unusual High Temperature Superconductors," Proc. Symp. Quantum Theory of Real Materials, Berkeley, California, Aug. 1994, in press.
- E. M. Chudnovsky, Phys. Rev. B 40, 11355 (1989).
- E. M. Chudnovsky, Phys. Rev. Lett. 65, 3060 (1990).

- E. M. Chudnovsky, Phys. Rev. B 43, 7831 (1991). F. Chung and S. Sternberg, Amer. Scientist 81, 56
- (1993).
- L. Civale, A. D. Marwick, M. W. McElfresh, T. K. Worthington, A. P. Malozemoff, F. H. Holtzberg, J. R. Thompson, and M. A. Kirk, Phys. Rev. Lett. 65, 1164 (1990).
- L. Civale, T. K. Worthington, and A. Gupta, Phys. Rev. B 43, 5425 (1991).
- L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, and F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991).
- J. H. Claassen, J. F. Evetts, R. E. Somekh, and Z. H. Barber, Phys. Rev. B 44, 9605 (1991).
- J. Clarke, Phys. Rev. Lett. 28, 1363 (1972). J. Clarke and J. L. Paterson, J. Low Temp. Phys. 15,
- 491 (1974). J. Clayhold, N. P. Ong, P. H. Hor and C. W. Chu,
- Phys. Rev. B 38, 7016 (1988).
- J. R. Clem, Physica C 162-164, 1137 (1989). J. R. Clem and M. W. Coffey, Phys. Rev. B 42, 6209 (1990).
- J. R. Clem, Phys. Rev. B 43, 7837 (1991).
- J. Clem, "A. C. Losses in Type-II Superconductors, Chap. in Magnetic Susceptibility of Superconductors and Other Spin Systems," (R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds.), Plenum, New York, 1992.
- J. R. Clem and Z. Hao, Phys. Rev. B 48, 13774 (1993).
- A. M. Clogston and J. Jaccarino, Phys. Rev. 121, 1357 (1961).
- A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
- M. W. Coffey and J. R. Clem, Phys. Rev. B 44, 6903 (1991).
- M. W. Coffey, Phys. Rev. B 46, 567 (1992).
- M. W. Coffey, Phys. Rev. B 47, 12284 (1993).
- M. W. Coffey, Phys. Rev. B 49, 9774 (1994).
- R. W. Cohen, G. D. Cody, and L. J. Vieland, in Electronic Density of States, NBS Spec. Publ. (U.S.) 323, 767 (1971).
- M. L. Cohen, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 1095. Plenum, New York, 1987.
- M. L. Cohen and D. R. Penn, Phys. Rev. B 42, 8702 (1990).
- R. E. Cohen, Computers in Phys., in press, 1994.
- J. L. Cohn, S. A. Wolf, V. Selvamanickam, and K. Salama, Phys. Rev. Lett. 66, 1098 (1991).
- M. B. Cohn, M. S. Rzchowski, S. P. Benz, and C. J. Lobb, Phys. Rev. B 43, 12823 (1991).
- J. L. Cohn, S. A. Wolf, and T. A. Vanderah, Phys. Rev. B 45, 511 (1992).
- J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 13144 (1992).
- J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 13140, 13144 (1992). B. R. Coles, Cont. Phys. 28, 143 (1987).

- G. Collin and R. Comes, C. R. Acad. Sci. Paris 304, 1159 (1987).
- R. T. Collins, Z. Schlesinger, F. Holtzberg, and C. Feild, Phys. Rev. Lett. 63, 422 (1989).
- R. T. Collins, Z. Schlesinger, G. V. Chandrasehekhar. and M. W. Shafer, Phys. Rev. B 39, 2251 (1989).
- R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chaudhari, and C. Feild, Phys. Rev. B 39, 6571 (1989).
- R. T. Collins, Z. Schlesinger, F. Holtzberg, C. Feild. U. Welp, G. W. Crabtree, J. Z. Liu, and Y. Fang, Phys. Rev. B, 43, 8701 (1991).
- S. J. Collocott, R. Driver, and E. R. Vance, Phys. Rev. B 41, 6329 (1990a).
- S. J. Collocott, N. Savvides, and E. R. Vance, Phys. Rev. B 42, 4794 (1990b).
- S. Collocott, R. Driver, and C. Andrikidis, Phys. Rev. B 45, 945 (1992).
- R. Combescot, Phys. Rev. Lett. 67, 148 (1991a); Phys. Rev. B 42, 7810 (1991b).
- E. Compans and F. Baumann, Jpn. J. Appl. Phys. 26 Suppl. 3, 805 (1987).
- L. D. Cooley, G. Stejic, and D. C. Labalestier, Phys. Rev. B 46, 2964 (1992).
- L. N. Cooper, Phys. Rev. 104, 1189 (1956).
- S. L. Cooper, G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, T. Timusk, A. J. Millis, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 40, 11358 (1989).
- S. L. Cooper, A. L. Kotz, M. A. Karlow, M. V. Klein. W. C. Lee, J. Giapintzakis, and D. M. Ginzberg, Phys. Rev. B 45, 2549 (1992).
- S. L. Cooper, D. Reznik, A. Kotz, M. A. Karlow, R. Liu, M. V. Klein, W. C. Lee, J. Giapintzakis, D. M. Ginsberg, B. W. Veal, and A. P. Paulikas, Phys. Rev. B 47, 8233 (1993).
- S. L. Cooper and K. E. Gray in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 3, World Scientific, Singapore, 1994.
- C. Coretsopoulos, H. C. Lee, E. Ramli, L. Raven, T. B. Rauchfuss, and E. Oldfield, Phys. Rev. B 39, 781 (1989).
- D. L. Cox and M. B. Maple, Phys. Today, Feb. 1995, p. 32.
- L. A. Curtiss and S. W. Tam, J. Mater. Res. 3, 1269
- J. Costa-Quintana, F. López-Aguilar, S. Balle, and R. Salvador, Phys. Rev. B 39, 9675 (1989).
- L. Cota, L. Morales de la Garza, G. Hirata, L. Martínez, E. Orozco, E. Carrillo, A. Mendoza, J. L. Albarrán, J. Fuentes-Maya, J. L. Boldú, J. G. Pérez-Ramírez, R. Pérez, J. Reyes Gasga, M. Avalos, and M. José-Yacamán, J. Mater. Res. 3, 417 (1988).
- R. Côte and A. Griffin, Phys. Rev. B 48, 10404 (1993). F. A. Cotton, "Chemical Applications of Group Theory." Wiley, New York, 1963.
- D. E. Cox and A. W. Sleight, Solid State Commun. 19, 969 (1976).

R M M.

M. M. R. 1

J. E 5 M. / а

A. N Π S.-M. (1

J. C. E. 12 J. C. Fu LA.

(15 L. A. 1 (19 L. L. 1

413 L. L. 1 Phy L. L. C V. (LLD

40,] L. L. Di 314 (E. Dage

Gagl

- D. E. Cox and A. W. Sleight, Acta Cryst. B 35, 1 (1979).
- D. L. Cox and M. B. Maple, Phys. Today, February 1995, p. 32.
- G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. B 36, 4021 (1987).
- M. B. Brodsky, and J. W. Downey, Phys. Rev. B 36, 4021 (1987).
 M. K. Crawford, G. Burns, and F. Holtzberg, Solid State Commun. 70, 557 (1989).
- M. K. Crawford, G. Burns, G. V. Chandrashekhar, F. H. Dacol, W. E. Farneth, E. M. McCarron III, and R. J. Smalley, Phys. Rev. B 41, 8933 (1990a).
- M. K. Crawford, G. Burns, G. V. Chandrashekhar, F. H. Dacol, W. E. Farneth, E. M. McCarron III, and R. J. Smalley, Solid State Commun. 73, 507 (1990b).
- R. J. Creswick, H. A. Farach, C. P. Poole, Jr., "Introduction to Renormalization Group Methods in Physics," Wiley, New York, 1992.
- M. Crisan, Phys. Lett. A 124, 195 (1987).
 M. F. Crommie, A. Zettl, T. W. Barbee, III, and
- M. L. Cohen, Phys. Rev. B 37, 9734 (1988).
 M. F. Crommie, G. Briceño, and A. Zettl, Physica C
- 162C-164C, 1397 (1989). M. F. Crommie and A. Zettl, Phys. Rev. B 43, 408
- (1991).

 R. W. Cross and R. B. Goldfab, Appl. Phys. Lett. 58,
- 415 (1991).
 J. E. Crow and N.-P. Ong, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 7,
- Springer-Verlag, Berlin, 1990.

 M. A. Crusellas, J. Fontcuberta, S. Piñol, T. Grenet,
- and J. Beille, Physica C 180, 313 (1991).
 A. M. Cucolo, R. Di Leo, P. Romano, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 44, 2857 (1991).
- S.-M. Cui and C.-H. Tsai, Phys. Rev. B 44, 12500 (1991).
- J. C. Culbertson, U. Strom, S. A. Wolf, P. Skeath, E. J. West, and W. K. Burns, Phys. Rev. B 39, 12359 (1989).
- J. C. Culbertson, U. Strom, S. A. Wolf, and W. W. Fuller, Phys. Rev. B 44, 9609 (1991).

 L. A. Curtiss and S. W. Tom, J. March. Phys. 2 4660.
- L. A. Curtiss and S. W. Tam, J. Mater. Res. 3, 1269 (1988).
- L. A. Curtiss and S. W. Tam, Phys. Rev. B 41, 1824 (1990).
- L. L. Daemen and J. E. Gubernatis, Phys. Rev. 43, 413, 2625 (1991).
- L. L. Daeman, L. J. Campbell, and V. G. Kogan, Phys. Rev. B 46, 3631 (1992).
- L. L. Daemen, L. J. Campbell, A. Yu Simonov, and V. G. Kogan, Phys. Rev. Lett. 70, 2948 (1993).
- L. L. Daemen and A. W. Overhauser, Phys. Rev. B 40, 10778 (1989).
- L. L. Daemen and J. E. Gubernatis, Phys. Rev. B 45, 314 (1992b).
- E. Dagotto, A. Moreo, R. Joynt, S. Bacci, and E. Gagliano, Phys. Rev. B 41, 2585, (1990).

- E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
 - E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera, Phys. Rev. B 45, 10741 (1992).
- P. Dai, Y. Zhang, and M. P. Sarachik, Phys. Rev. Lett. 67, 136 (1991).
- Y. Dalichaouch, M. B. Maple, J. Y. Chen, T. Kohara, C. Rossel, M. S. Torikachvili, and A. L. Giorgi, Phys. Rev. 41, 1829 (1990a).
- Y. Dalichaouch, B. W. Lee, C. L. Seaman, J. T. Markert, and M. B. Maple, Phys. Rev. Lett. 64, 599 (1990b).
- Y. Dalichaouch, B. W. Lee, S. E. Lambert, M. P. Maple, J. L. Smith, and Z. Fisk, Phys. Rev. B 43, 299 (1991).
- M. Das, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 3, Nova Sci., New York, 1989.
- C. Dasgupta and T. V. Ramakrishnan, Physica C (Amsterdam) 183C, 62 (1991).
- T. Datta, C. P. Poole, Jr., H. A. Farach, C. Almasan, J. Estrada, D. U. Gubser, and S. A. Wolf, Phys. Rev. B 37, 7843 (1988).
- M. Däumling and G. V. Chandrashekhar, Phys. Rev. B 46, 6422 (1992).
- D. Davidov, P. Monod, and N. Bontemps, Phys. Rev. B 45, 8036 (1992).
- M. C. de Andrade, C. C. Almasan, Y. Dalichaouch, and M. B. Maple, Physica C 184C, 378 (1991).
- L. De Cesare, Phys. Rev. B 43, 10555 (1991).
 P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).
- P. G. de Gennes, "Superconductivity of Metals and Alloys," Benjamin, New York, 1966.
- L. Degiorgi, P. Wachter, G. Grüner, S.-M. Huang, J. Wiley, and R. B. Kaner, Phys. Rev. Lett. 69, 2987 (1992)
- L. J. de Jongh, Europ. J. Solid State Inorg. Chem., in press.
- C. Dekker, W. Eidelloth, and R. H. Koch, Phys. Rev. Lett. 68, 3347 (1992).
- O. L. de Lange and V. V. Gridin, Phys. Rev. B 46, 5735 (1992).
- P. Delsing, K. K. Likharev, L. S. Kuzmin, and T. Claeson, Phys. Rev. Lett. 63, 1180, 1861 (1989).
- H. Dersch and G. Blatter, Phys. Rev. B 38, 11391 (1988).
- S. M. DeSoto, C. P. Slichter, H. H. Wang, U. Geiser, and J. M. Williams, Phys. Rev. Lett. 70, 2956 (1993).
- D. S. Dessau, B. O. Wells, Z.-X. Shen, W. E. Spicer, A. J. Arko, R. S. List, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 2160 (1991).
- D. S. Dessau, Z.-X. Shen, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, L. W. Lombardo, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. B 45, 5095 (1992).
- G. Deutscher and P. Chaudhari, Phys. Rev. B 44, 4664 (1991).
- F. Devaux, A. Manthiram, and J. B. Goodenough, Phys. Rev. B 41, 8723 (1990).

- M. J. DeWeert, D. A. Papaconstantopoulos, and W. E. Pickett, Phys. Rev. B 39, 4235 (1989).
- F. W. de Wette, A. D. Kulkarni, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 42, 6707 (1990).
- A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 44, 12026 (1991).
- A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 48, 6695 (1993).
 F. Diederich and R. L. Whetten, Acc. Chem. Res. 25,
- 119 (1992).D. DiMarzio, H. Wiesmann, D. H. Chen, and S. M. Heald, Phys. Rev. B 42, 294 (1990).
- H.-Q. Ding, Phys. Rev. Lett. 68, 1927 (1992). T. R. Dinger, T. K. Worthington, W. J. Gallagher,
- R. Dinger, T. K. Worthington, W. J. Gallagher, and R. L. Sandstrom, Phys. Rev. Lett. 58, 2687 (1987).
- M. I. Dobroliubov and S. Yu. Khlebnikov, Phys. Rev. Lett. 67, 2084 (1991).
- R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, "Solitons and Nonlinear Wave Equations." Academic Press, New York, 1982.
- Doi, K. Sano, and K. Takano, Phys. Rev. B 45, 274 (1992).
- G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Feild, and F. Holtzberg, Phys. Rev. Lett. 62, 827 (1989a).
- (1989a).
 G. J. Dolan, F. Holtzberg, C. Feild, and T. R. Dinger,
 Phys. Rev. Lett. 62, 2184 (1989b).
- S. Doniach, in "Proceedings Los Alamos Symposium, High Temp. Supercond.," p. 406. Addison-Wesley, New York, 1989.
- S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990). G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev.
- Lett. 68, 353 (1992).

 M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys.
- Rev. B 41, 6335 (1990).
 A. T. Dorsey, M. Huang, and M. P. A. Fisher, Phys.
- Rev. B 45, 523 (1992). S. X. Dou, H. K. Liu, A. J. Bourdillon, M. Kviz, N. X.
- Tan, and C. C. Sorrell, Phys. Rev. B 40, 5266 (1989).
- R. A. Doyle, O. L. deLange, and V. V. Gridin, Phys. Rev. B 45, 12580 (1992).
- T. B. Doyle and R. A. Doyle, Phys. Rev. B 47, 8111 (1993).
- P. G. Drazin and R. S. Johnson, "Solitons: An Introduction." Cambridge Univ. Press Cambridge, U.K., 1989.
- L. Dresner, Cryogenics, May, p. 285, 1978.
- M. S. Dresselhaus, G. Dresselhaus, and R. Saito, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 7, World Scientific, Singapore, 1994.
- H. Drulis, Z. G. Xu, J. W. Brill, L. E. De Long, and J.-C. Hou, Phys. Rev. Lett. 44, 4731 (1991).
- Q. Du, M. D. Gunzberger, and J. S. Peterson, Phys. Rev. B 46, 9027 (1992).
- L. Dubeck, P. Lindenfeld, E. A. Lynten, and H. Rohrer, Rev. Mod. Phys. 36, 110 (1964).

- A. Dulčic, R. H. Crepeau, and J. H. Freed, Phys. Rev. B 39, 4249 (1989).
- B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Phys. Rev. B 37, 592 (1988).
- C. Duran, J. Yazyi, F. de la Cruz, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. B 44, 7737 (1991).
- C. H. Eab and I. M. Tang, Phys. Rev. B 40, 4427 (1989).
- D. E. Eastman, Solid State Commun. 7, 1697 (1969).
- C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1985).
 C. Ebner and D. Stroud, Phys. Rev. B 39, 789 (1989).
- U. Eckern and E. B. Sonin, Phys. Rev. B 47, 505 (1993).
- G. L. Eesley, J. Heremans, M. S. Meyer, G. L. Doll, and S. H. Liou, Phys. Rev. Lett. 65, 3445 (1990).
- H. Eikmans and J. E. van Himbergen, Phys. Rev. 44, 6937 (1991).
- R. Eisberg and R. Resnick, "Quantum Physics," Wiley, New York, 1974.
- J. W. Ekin, H. R. Hart, and A. R. Gaddipati, J. Appl. Phys. 68, 2285 (1990).
- J. W. Ekin, K. Salama, and V. Selvamanickam, Appl. Phys. Lett. 59, 360 (1991).
- T. Ekino and J. Akimitsu, Phys. Rev. B 40, 6902, 7364 (1989a).
- T. Ekino and J. Akimitsu, J. Phys. Soc. Jpn. 58, 2135 (1989b).
 T. Ekino and J. Akimitsu, Phys. Rev. B 42, 8049
- (1990). G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960a).
- G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 39, 1437 (1960b).
 B. Ellman, J. Yang, T. F. Rosenbaum, and E. Bucher.
- Phys. Rev. Lett. 64, 1569 (1990). V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987) (re-
- printed in Halley, 1988, p. 227).

 V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547
- (1988).

 J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High
 Resolution Nuclear Magnetic Personnel Steel
- Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon, New York, 1965, Vol. 1. D. Emin, Phys. Rev. B 49, 9157 (1994).
- P. Entel and J. Zielinski, Phys. Rev. B 42, 307 (1990).
- O. Entin-Wohlman and Y. Imry, Phys. Rev. B 40, 6731 (1989).
- L. E. Erickson, Phys. Rev. B 43, 12723 (1991).
- R. Escudero, E. Guarner, and F. Morales, Physica C 162C-164C, 1059 (1989).
- R. Escudero, F. Morales, and E. Guarner, Physica C 166C, 15 (1990).
- D. Estève, J. M. Martinis, C. Urbina, M. H. Devoret, G. Collin, P. Monod, M. Ribault, and A. Revcolevschi, Europhys. Lett. 3, 1237 (1987).
- J. P. Estrera and G. B. Arnold, Phys. Rev. B 39, 2094 (1989).
- L. M. Falicov and C. R. Proetto, Phys. Rev. B 47, 14407 (1993).

J

E.

D D.

D.

D

D.

D. J

N N

R. F. J. F.

H R. Fe Bı

R. Fe Pi D. Fe

L. F. I 45, L. F. I

I. Fel: dra 532

J. C. Rei M. J. F

4. J. F D. Get Rev

M. J. F Clar R. A. F

R. A. Fa ity" Berli

- M. M. Fang, J. E. Ostenson, D. K. Finnemore, D. E. Farrell, and N. P. Bansal, Phys. Rev. B 39, 222 (1989).
- H. A. Farach, E. Quagliata, T. Mzoughi, M. A. Mesa, C. P. Poole, Jr., and R. Creswick, Phys. Rev. B 41, 2046 (1990).
- D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 36, 4025 (1987).
- D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal, and V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988).
- D. E. Farrell, M. M. Fang, and N. P. Bansal, Phys. Rev. B 39, 718 (1989a).
- D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. Jiang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys. Rev. Lett. 63, 782 (1989b).
- D. E. Farrell, R. G. Beck, M. F. Booth, C. J. Allen, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 42, 6758 (1990a).
- D. E. Farrell, C. J. Allen, R. C. Haddon, and S. V. Chichester, Phys. Rev. B 42, 8694 (1990b).
 D. E. Farrell, J. P. Rice, D. M. Ginsherg, and J. Z.
- D. E. Farrell, J. P. Rice, D. M. Ginsberg, and J. Z. Liu, Phys. Rev. Lett. 64, 1573 (1990c).
- D. E. Farrell, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Letts. 67, 1165 (1991).
- D. E. Farrell, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 4, Chap. 2, World Scientific, Singapore, 1994.
 F. Faulunes and R. F. Physics, "Ingapore, 1994.
- E. Faulques and R. E. Russo, in "Applications of Analytical Techniques to the Characterization of Materials" (D. L. Perry, Ed.), p. 59. Plenum, New York, 1991.
- R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991).
 J. F. Federici, B. I. Greene, H. Hartford, and E. S. Hellman, Phys. Rev. B 42, 923 (1990).
- R. Feenstra, D. K. Christen, C. Klabunde, and J. D. Budai, Phys. Rev. B 45, 7555 (1992).
- R. Fehrenbacher, V. B. Geshkenbein, and G. Blatter, Phys. Rev. B 45, 5450 (1992).
- D. Feinberg and C. Villard, Phys. Rev. Lett. 65, 919
- L. F. Feiner, M. Grilli, and C. DiCastro, Phys. Rev. B 45, 10647 (1992).
- L. F. Feiner, Phys. Rev. B 48, 16857 (1993).
- I. Felner, U. Yaron, Y. Yeshurun, G. V. Chandrashekhar, and F. Holtzberg, Phys. Rev. B 40, 5329 (1989).
- J. C. Fernandez, R. Grauer, K. Pinnow, and G. Reinisch, Phys. Rev. B 42, 9987 (1990).
- M. J. Ferrari, M. Johnson, F. C. Wellstood, J. Clarke, D. Mitzi, P. A. Rosenthal, C. B. Eom, T. H. Geballe, A. Kapitulnik, and M. R. Beasley, Phys. Rev. Lett. 64, 72 (1989).
- M. J. Ferrari, F. C. Wellstood, J. J. Kingston, and J. Clarke, Phys. Rev. Lett. 67, 1346 (1991).
- R. A. Ferrell, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 3, Springer-Verlag, Berlin, 1990.

- K. Fesser, U. Sum, and H. Büttner, Phys. Rev. B 44, 421 (1991).
- A. L. Fetter and J. D. Walecka, "Quantum Theory of Many Particle Systems." McGraw-Hill, New York, 1971.
- R. P. Feynman, "Lectures on Physics," Vol. 3, Chap. 21. Addison-Wesley, New York, 1965.
- W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. Webb, Phys. Rev. 136, A335 (1964).
- A. T. Fiory, M. Gurvitch, R. J. Cava, and G. P. Espinosa, Phys. Rev. B 36, 7262 (1987).
- A. T. Fiory, G. P. Espinosa, R. M. Fleming, G. S. Grader, M. Gurvitch, A. F. Hebard, R. E. Howard, J. R. Kwo, A. F. J. Lewi, P. M. Mankiewich, S. Martin, C. E. Rice, L. F. Schneemeyer, and A. E. White, International Conference on Electronic Materials, Tokyo, 1988.
 - A. T. Fiory, S. Martin, R. M. Fleming, L. F. Schneemeyer, J. V. Waszczak, A. F. Hebard, and S. A. Sunshine, Physica C 162C-164C, 1195 (1989).
- A. T. Fiory, M. A. Paalanen, R. R. Ruel, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 4805 (1990).
- O. Fischer, Appl. Phys. 16, 1 (1978).
- O. Fischer, in "Earlier and Recent Aspects of Superconductivity" (J. G. Bednorz and K. A. Müller, Eds.), p. 96, Springer, Berlin, 1990.
- P. Fischer, K. Kakurai, M. Steiner, K. N. Clausen, B. Lebech, F. Hulliger, H. R. Ott, P. Brüesch, and P. Unternährer, Physica C 152C, 145 (1988).
- P. Fischer, H. W. Neumüller, B. Roas, H. F. Braun, and G. Saemann-Ischenko, Solid State Commun. 72, 871 (1989).
- J. E. Fischer, P. A. Heiney, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., and A. B. Smith, III, Science 252, 1288 (1991).
- J. E. Fischer, P. A. Heiney, and A. B. Smith, III, Acc. Chem. Res. 25, 97 (1992).
- K. H. Fischer, Physica C 178C, 161 (1991).
- D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373, 386 (1988).
- M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
- R. A. Fisher, S. Kim, B. F. Woodfield, N. E. Phillips, L. Taillefer, K. Hasselbach, J. Flouquet, A. L. Giorgi, and J. L. Smith, Phys. Rev. Lett. 62, 1411 (1989)
- M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
- D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
- R. S. Fishman, Phys. Rev. B 38, 11996 (1988).R. S. Fishman, Phys. Rev. Lett. 63, 89 (1989).
- Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F. Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la Torre, P. Visani, and C. L. Seaman, Phys. Rev. Lett. 67, 3310 (1991).
- M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).

- M. J. DeWeert, D. A. Papaconstantopoulos, and W. E. Pickett, Phys. Rev. B 39, 4235 (1989).
- F. W. de Wette, A. D. Kulkarni, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 42, 6707 (1990).
- A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 44, 12026 (1991).
- A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 48, 6695 (1993). F. Diederich and R. L. Whetten, Acc. Chem. Res. 25,
- 119 (1992). D. DiMarzio, H. Wiesmann, D. H. Chen, and S. M.
- Heald, Phys. Rev. B 42, 294 (1990). H.-Q. Ding, Phys. Rev. Lett. 68, 1927 (1992).
- T. R. Dinger, T. K. Worthington, W. J. Gallagher, and R. L. Sandstrom, Phys. Rev. Lett. 58, 2687
- M. I. Dobroliubov and S. Yu. Khlebnikov, Phys. Rev. Lett. 67, 2084 (1991).
- R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, "Solitons and Nonlinear Wave Equations." Academic Press, New York, 1982.
- I. Doi, K. Sano, and K. Takano, Phys. Rev. B 45, 274 (1992).G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C.
- Feild, and F. Holtzberg, Phys. Rev. Lett. 62, 827 (1989a).
- G. J. Dolan, F. Holtzberg, C. Feild, and T. R. Dinger, Phys. Rev. Lett. 62, 2184 (1989b).
- S. Doniach, in "Proceedings Los Alamos Symposium, High Temp. Supercond.," p. 406. Addison-Wesley, New York, 1989.
- S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990). G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 353 (1992).
- M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys.
- Rev. B 41, 6335 (1990). A. T. Dorsey, M. Huang, and M. P. A. Fisher, Phys. Rev. B 45, 523 (1992).
- S. X. Dou, H. K. Liu, A. J. Bourdillon, M. Kviz, N. X. Tan, and C. C. Sorrell, Phys. Rev. B 40, 5266
- (1989). R. A. Doyle, O. L. deLange, and V. V. Gridin, Phys. Rev. B 45, 12580 (1992).
- T. B. Doyle and R. A. Doyle, Phys. Rev. B 47, 8111 (1993).
- P. G. Drazin and R. S. Johnson, "Solitons: An Introduction." Cambridge Univ. Press Cambridge, U.K., 1989.
- L. Dresner, Cryogenics, May, p. 285, 1978.
- M. S. Dresselhaus, G. Dresselhaus, and R. Saito, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 7, World Scientific, Singapore, 1994.
- H. Drulis, Z. G. Xu, J. W. Brill, L. E. De Long, and J.-C. Hou, Phys. Rev. Lett. 44, 4731 (1991).
- Q. Du, M. D. Gunzberger, and J. S. Peterson, Phys. Rev. B 46, 9027 (1992).
- L. Dubeck, P. Lindenfeld, E. A. Lynten, and H. Rohrer, Rev. Mod. Phys. 36, 110 (1964).

- A. Dulčic, R. H. Crepeau, and J. H. Freed, Phys. Rev. B 39, 4249 (1989).
- B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Phys. Rev. B 37, 592 (1988).
- C. Duran, J. Yazyi, F. de la Cruz, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. B 44, 7737 (1991).
- C. H. Eab and I. M. Tang, Phys. Rev. B 40, 4427 (1989)
- D. E. Eastman, Solid State Commun. 7, 1697 (1969). C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1985).
- C. Ebner and D. Stroud, Phys. Rev. B 39, 789 (1989). U. Eckern and E. B. Sonin, Phys. Rev. B 47, 505
- (1993).G. L. Eesley, J. Heremans, M. S. Meyer, G. L. Doll. and S. H. Liou, Phys. Rev. Lett. 65, 3445 (1990).
- H. Eikmans and J. E. van Himbergen, Phys. Rev. 44, 6937 (1991).
- R. Eisberg and R. Resnick, "Quantum Physics," Wiley, New York, 1974.
- J. W. Ekin, H. R. Hart, and A. R. Gaddipati, J. Appl. Phys. 68, 2285 (1990).
- J. W. Ekin, K. Salama, and V. Selvamanickam, Appl. Phys. Lett. 59, 360 (1991). T. Ekino and J. Akimitsu, Phys. Rev. B 40, 6902, 7364
- (1989a).
- T. Ekino and J. Akimitsu, J. Phys. Soc. Jpn. 58, 2135 (1989b). T. Ekino and J. Akimitsu, Phys. Rev. B 42, 8049
- (1990).
- G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960a). G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 39, 1437 (1960b).
- B. Ellman, J. Yang, T. F. Rosenbaum, and E. Bucher, Phys. Rev. Lett. 64, 1569 (1990).
- V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987) (reprinted in Halley, 1988, p. 227).
- V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988)J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High
- Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon, New York, 1965, Vol. 1.
- D. Emin, Phys. Rev. B 49, 9157 (1994). P. Entel and J. Zielinski, Phys. Rev. B 42, 307 (1990).
- O. Entin-Wohlman and Y. Imry, Phys. Rev. B 40, 6731 (1989).
- L. E. Erickson, Phys. Rev. B 43, 12723 (1991). R. Escudero, E. Guarner, and F. Morales, Physica C
- 162C-164C, 1059 (1989). R. Escudero, F. Morales, and E. Guarner, Physica C 166C, 15 (1990).
- D. Estève, J. M. Martinis, C. Urbina, M. H. Devoret, G. Collin, P. Monod, M. Ribault, and A.
- Revcolevschi, Europhys. Lett. 3, 1237 (1987). J. P. Estrera and G. B. Arnold, Phys. Rev. B 39, 2094
- L. M. Falicov and C. R. Proetto, Phys. Rev. B 47, 14407 (1993).

1

D. D.

E.

R. F J. F R. F

В R. Fe PI D. Fe

(19 L. F. 1

45, L. F. 1 I. Feli

dra 532 J. C.

Rei M. J. F. D. 1

Geh. Rev. M. J. Fe

Clark R. A. Fe ity" (

Berlir

2805 (1988).

- M. M. Fang, J. E. Ostenson, D. K. Finnemore, D. E. Farrell, and N. P. Bansal, Phys. Rev. B 39, 222
- H. A. Farach, E. Quagliata, T. Mzoughi, M. A. Mesa, C. P. Poole, Jr., and R. Creswick, Phys. Rev. B 41, 2046 (1990).
- D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K.
- Finnemore, Phys. Rev. B 36, 4025 (1987). D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal, and V. G. Kogan, Phys. Rev. Lett. 61,
- D. E. Farrell, M. M. Fang, and N. P. Bansal, Phys. Rev. B 39, 718 (1989a).
- D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. Jiang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys. Rev. Lett. 63, 782 (1989b).
- D. E. Farrell, R. G. Beck, M. F. Booth, C. J. Allen, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 42, 6758 (1990a).
- D. E. Farrell, C. J. Allen, R. C. Haddon, and S. V. Chichester, Phys. Rev. B 42, 8694 (1990b).
- D. E. Farrell, J. P. Rice, D. M. Ginsberg, and J. Z. Liu. Phys. Rev. Lett. 64, 1573 (1990c).
- D. E. Farrell, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Letts. 67, 1165 (1991).
- D. E. Farrell, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 4, Chap. 2, World Scientific, Singapore, 1994.
- E. Faulques and R. E. Russo, in "Applications of Analytical Techniques to the Characterization of Materials" (D. L. Perry, Ed.), p. 59. Plenum, New York, 1991.
- R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991). J. F. Federici, B. I. Greene, H. Hartford, and E. S.
- Hellman, Phys. Rev. B 42, 923 (1990). R. Feenstra, D. K. Christen, C. Klabunde, and J. D.
- Budai, Phys. Rev. B 45, 7555 (1992). R. Fehrenbacher, V. B. Geshkenbein, and G. Blatter,
- Phys. Rev. B 45, 5450 (1992). D. Feinberg and C. Villard, Phys. Rev. Lett. 65, 919
- L. F. Feiner, M. Grilli, and C. DiCastro, Phys. Rev. B
- 45, 10647 (1992). L. F. Feiner, Phys. Rev. B 48, 16857 (1993).
- I. Felner, U. Yaron, Y. Yeshurun, G. V. Chandrashekhar, and F. Holtzberg, Phys. Rev. B 40, 5329 (1989).
- J. C. Fernandez, R. Grauer, K. Pinnow, and G. Reinisch, Phys. Rev. B 42, 9987 (1990).
- M. J. Ferrari, M. Johnson, F. C. Wellstood, J. Clarke, D. Mitzi, P. A. Rosenthal, C. B. Eom, T. H. Geballe, A. Kapitulnik, and M. R. Beasley, Phys. Rev. Lett. 64, 72 (1989).
- M. J. Ferrari, F. C. Wellstood, J. J. Kingston, and J. Clarke, Phys. Rev. Lett. 67, 1346 (1991).
- R. A. Ferrell, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 3, Springer-Verlag, Berlin, 1990.

- K. Fesser, U. Sum, and H. Büttner, Phys. Rev. B 44, 421 (1991).
- A. L. Fetter and J. D. Walecka, "Quantum Theory of Many Particle Systems." McGraw-Hill, New York,
- R. P. Feynman, "Lectures on Physics," Vol. 3, Chap. 21. Addison-Wesley, New York, 1965.
- W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. Webb, Phys. Rev. 136, A335 (1964).
- A. T. Fiory, M. Gurvitch, R. J. Cava, and G. P. Espinosa, Phys. Rev. B 36, 7262 (1987).
- A. T. Fiory, G. P. Espinosa, R. M. Fleming, G. S. Grader, M. Gurvitch, A. F. Hebard, R. E. Howard, J. R. Kwo, A. F. J. Levi, P. M. Mankiewich, S. Martin, C. E. Rice, L. F. Schneemeyer, and A. E. White, International Conference on Electronic Materials, Tokyo, 1988.
 - A. T. Fiory, S. Martin, R. M. Fleming, L. F. Schneemeyer, J. V. Waszczak, A. F. Hebard, and S. A. Sunshine, Physica C 162C-164C, 1195 (1989).
- A. T. Fiory, M. A. Paalanen, R. R. Ruel, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 4805 (1990).
- O. Fischer, Appl. Phys. 16, 1 (1978).
- O. Fischer, in "Earlier and Recent Aspects of Superconductivity" (J. G. Bednorz and K. A. Müller, Eds.), p. 96, Springer, Berlin, 1990.
- P. Fischer, K. Kakurai, M. Steiner, K. N. Clausen, B. Lebech, F. Hulliger, H. R. Ott, P. Brüesch, and P. Unternährer, Physica C 152C, 145 (1988).
- P. Fischer, H. W. Neumüller, B. Roas, H. F. Braun, and G. Saemann-Ischenko, Solid State Commun. 72, 871 (1989).
- J. E. Fischer, P. A. Heiney, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., and A. B. Smith, III, Science 252, 1288 (1991).
- J. E. Fischer, P. A. Heiney, and A. B. Smith, III, Acc. Chem. Res. 25, 97 (1992).
- K. H. Fischer, Physica C 178C, 161 (1991).
- D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373, 386 (1988).
- M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
- R. A. Fisher, S. Kim, B. F. Woodfield, N. E. Phillips, L. Taillefer, K. Hasselbach, J. Flouquet, A. L. Giorgi, and J. L. Smith, Phys. Rev. Lett. 62, 1411
- M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
- D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
- R. S. Fishman, Phys. Rev. B 38, 11996 (1988).
- R. S. Fishman, Phys. Rev. Lett. 63, 89 (1989). Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F. Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la Torre, P. Visani, and C. L. Seaman, Phys. Rev. Lett. 67, 3310
- M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).

(1991).

- S. A. FitzGerald, S. G. Kaplan, A. Rosenberg, A. J. Sievers, and R. A. S. McMordie, Phys. Rev. B 45, 10165 (1992).
- R. L. Fleisher, H. R. Hart, Jr., K. W. Lay, and F. E. Luborsky, Phys. Rev. B 40, 2163 (1989).
- R. B. Flippen, Phys. Rev. B 44, 7708 (1991).
- M. Florjanczyk and M. Jaworski, Phys. Rev. B 40, 2128 (1989).
- R. Flükiger and W. Klose, "Landolt-Börnstein, Group III Solid State Physics," Vol. 21, Superconductors. Springer-Verlag, Berlin/New York, 1993.
- M. Foldeaki, M. E. McHenry, and R. C. O'Handley, Phys. Rev. B 39, 2883 (1989).
- W. Folkerts and C. Haas, Phys. Rev. B 41, 6341 (1990).
 S. Foner, E. J. McNiff, Jr., D. Heiman, S.-M. Huang,
- S. Foner, E. J. McNiff, Jr., D. Heiman, S.-M. Huang, and R. B. Kaner, Phys. Rev. B 46, 14936 (1992).
- J. Fonteuberta and L. Fabrega, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 16, Nova Sci., New York, in press.
- A. Forkl, T. Dragon, and H. Kronmüller, J. Appl. Phys. 67, 3047 (1990).
- A. Forkl, H. U. Habermeier, B. Liebold, T. Dragon, and H. Kronmüller, Physica C 180C, 155 (1991).
- M. Forsthuber and G. Hilscher, Phys. Rev. B 45, 7996 (1992).
- N. A. Fortune, K. Murata, K. Ikeda, and T. Takahashi, Phys. Rev. Lett. 68, 2933 (1992).
- C. M. Foster, K. F. Voss, T. W. Hagler, D. Mihailovic, A. S. Heeger, M. M. Eddy, W. L. Olsen, and E. J. Smith, Solid State Commun. 76, 651 (1990).
- H. Frahm, S. Ullah, and A. T. Dorsey, Phys. Rev. 66, 3067 (1991).
- Z. Frait, D. Fraitová, and L. Pust, J. Phys. Colloque C 8, 2235 (1988a); Z. Frait, D. Fraitová, E. Pollert, and L. Pust, Phys. Status Solidi 146, K119 (1988b).
- J. P. Franck, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 4, Chap. 4, World Scientific, Singapore (1994).
- G. Frank, Ch. Ziegler and W. Göpel, Phys. Rev. B 43, 2828 (1991).
 A. Freimuth, C. Hohn, and M. Galffy, Phys. Rev. B
- 44, 10396 (1991).
 T. Freltoft, G. Shirane, S. Mitsuda, J. P. Remeika,
- Frellott, G. Shirane, S. Mitsuda, J. P. Remeika, and A. S. Cooper, Phys. Rev. B 37, 137 (1988).
 T. Freltoft, H. J. Jensen, and P. Minnhagen, Solid
- State Commun. 78, 635 (1991).

 T. A. Friedmann, J. P. Rice, J. Giapintzakis, and
- D. M. Ginsberg, Phys. Rev. B 39, 4258 (1989).
 B. Friedl, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65, 915 (1990).
- T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 42, 6217
- (1990). H. Fröhlich, Phys. Rev. 79, 845 (1950).
- L. Fruchter and I. A. Campbell, Phys. Rev. B 40, 5158 (1989).
- A. Fujimori, S. Takekawa, E. Takayama-Muromachi,

- Y. Uchida, A. Ono, T. Takahashi, Y. Okabe and H. Katayama-Yoshida, Phys. Rev. B 39, 2255 (1989).
- H. Fujishita, M. Sera, and M. Sato, Physica C 175, 165 (1991).
- K. Fujiwara, Y. Kitaoka, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 184, 207 (1991).
- T. Fukami, T. Kamura, A. A. Youssef, Y. Hori, and S. Mase, Physica C 159, 427 (1989).
- T. Fukami, K. Hayashi, T. Yamamoto, T. Nishizaki, Y. Horie, F. Ichikawa, T. Aomine, V. Soares, and L. Rinderer, Physica C 184, 65 (1991a).
- T. Fukami, T. Yamamoto, K. Hayashi, T. Nishizaki, Y. Hori, F. Ichikawa, and T. Aomine, Physica C 185, 2255 (1991b).
- T. A. Fulton, P. L. Gammei, D. J. Bishop, L. N. Dunkleberger, and G. J. Dolan, Phys. Rev. Lett. 63, 1307 (1989).
 - P. Fumagalli and J. Schoenes, Phys. Rev. B 44, 2246 (1991).
- A. Furusaki, H. Takayanagi, and M. Tsukada, Phys. Rev. Lett. 67, 132 (1991).
- A. Furusaki and M. Tsukada, Phys. Rev. B 43, 10164 (1991).
- A. Furusaki and M. Ueda, Phys. Rev. B 45, 10576 (1992).
- A. Furusaki, H. Takayanagi, and M. Tsukada, Phys. Rev. B 45, 10563 (1992).
- M. Furuyama, N. Kobayashi, and Y. Muto, Phys. Rev. B 40, 4344 (1989).
- E. Gagliano and S. Bacci, Phys. Rev. B 42, 8772 (1990).
- P. L. Gai and J. M. Thomas, Supercond. Rev. 1, 1 (1992).
- M. C. Gallagher, J. G. Adler, J. Jung, and J. P. Franck, Phys. Rev. B 37, 7846 (1988).
- W. J. Gallagher, J. Appl. Phys. 63, 4216 (1988).
 C. F. Gallo, L. R. Whitney, and P. J. Walsh, in "Novel Superconductivity" (S. A. Wolf and V. Z.
- Kresin, Eds.), p. 385, Plenum, New York, 1987.C. F. Gallo, L. R. Whitney, and P. J. Walsh, Mater. Res. Soc. Symp. Proc. 99, 165 (1988).
- P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 59, 2592 (1987).

J.

I.

J.

м

M.

D.

M.

- P. L. Gammel, L. F. Schneemeyer, J. K. Waszczak, and A. J. Bishop, Phys. Rev. Lett. 61, 1666 (1988).
- P. L. Gammel, A. Hebard, and D. J. Bishop, Phys. Rev. B 40, 7354 (1989).
- J. T. Gammel, R. J. Donohoe, A. R. Bishop, and B. I. Swanson, Phys. Rev. B 42, 10566 (1990).
- P. L. Gammel, L. F. Schneemeyer, and D. J. Bishop, Phys. Rev. Lett. 66, 953 (1991).
- P. L. Gammel, D. J. Bishop, T. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 68, 3343 (1992).
- F. Gao, G. L. Carr, C. D. Porter, D. B. Tanner, S. Etemad, T. Venkatesan, A. Inam, B. Dutta, X. D. Wu, G. P. Williams, and C. J. Hirschmugl, Phys. Rev. B 43, 10383 (1991).

NCES and: 2255

175. ıa, Y.

ica C und S.

izaki. i, and izaki. ica C

L. N. Lett. 2246

Phys. 10164 10576

Phys. Rev. 8772

. I, 1 J. P.

h. in V. Z. 87. fater.

Kwo. J. V.

czak, 1988). Phys. 1 B. I.

shop,). M.

er, S. X. D. Phys. L. Gao, R. L. Meng, Y. Y. Xue, P. H. Hor and C. W. Chu, Appl. Phys. Lett. 58, 92 (1991).

L. Gao, Z. J. Huang, R. L. Menag, J. G. Lin, F. Chen, L. Beauvais, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Physica C 213, 261 (1993). L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng,

D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, submitted for publication.

M. M. Garland, J. Mater. Res. 3, 830 (1988).

P. Garoche, R. Brusett, D. Jérome, and K. Bechgaard, J. Physique Lett. 43, L147 (1982). L. J. Geerligs, M. Peters, L. E. M. de Groot, A.

Verbruggen, and J. E. Mooij, Phys. Rev. Lett. 63, 326 (1989).

I. I. Geguzin, I. Ya. Nikiforov, and G. I. Alperovitch. Fiz. Tverd. Tela. 15, 931 (1973).

C. Geibel, S. Thies, D. Kaczorowski, A. Mehner, A. Grauel, B. Seidel, U. Ahlheim, R. Helfrich, K. Petersen, C. D. Bredl, and F. Steglich, Z. Phys. B—Cond. Matt. 83, 305 (1991a).

C. Geibel, C. Schank, S. Thies, H. Kitzawa, C. D. Bredl, A. Böhm, M. Rau, A. Grauel, R. Caspary, R. Helfrich, U. Anlheim, G. Weber, and F. Steglich, Z. Phys. B—Cond. Matt. 84, 1 (1991b).

C. Geibel, U. Ahlheim, C. D. Bredl, J. Diehl, A. Grauel, R. Helfrich, H. Kitazawa, R. Köhler, R. Modler, M. Lang, C. Schank, S. Thies, F. Steglich, N. Sato, and T. Komatsubara, Physica C 185, 2651 (1991c).

A. K. Geim, I. V. Grigorieva, and S. V. Dubonos, Phys. Rev. B 46, 324 (1992).

B. Y. Gelfand and B. I. Halperin, Phys. Rev. B 45, 5517 (1992).

A. Gerber, Th. Grenet, M. Cvrot, and J. Beille. Phys. Rev. B 45, 5099 (1992).

W. Gerhäuser, G. Ries, H. W. Neumüller, W. Schmidt, O. Eibl, G. Saemann-Ischenko, and S. Klaumünzer, Phys. Rev. Lett. 68, 879 (1992).

V. B. Geshkenbein, V. M. Vinokur, and R. Fehrenbacher, Phys. Rev. B 43, 3748 (1991).

S. K. Ghatak, A. Mitra, and D. Sen, Phys. Rev. B 45. 951 (1992).

J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Phys. Rev. B 42, 2268 (1990).

I. Giaever and H. R. Zeller, Phys. Rev. Lett. 20, 1504

J. Giapintzakis, W. C. Lee, J. P. Rice, D. M. Ginsberg, I. M. Robertson, R. Wheeler, M. Kirk, and M.-Q. Ruault, Phys. Rev. B 45, 10677 (1992).

M. A. M. Gijs, D. Scholten, Th. van Rooy, and A. M. Gerrits, Phys. Rev. B 41, 11627 (1990a).

M. A. M. Gijs, A. M. Gerrits, and C. W. J. Beenakker, Phys. Rev. B 42, 10789 (1990b).

L. R. Gilbert, R. Messier, and R. Roy, Thin Solid Films 54, 129 (1978).

D. B. Gingold and C. J. Lobb, Phys. Rev. B 42, 8220

M. J. P. Gingras, Phys. Rev. B 45, 7547 (1992).

D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 1, World Scientific, Singapore, 1989.

D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 2, World Scientific, Singapore, 1990.

D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 3, World Scientific, Singapore, 1992. D. M. Ginsberg (Ed.), "Physical Properties of High

Temperature Superconductors," Vol. 4, World Scientific, Singapore, 1994. V. L. Ginzburg and L. Landau, Zh. Eksp. Teor. Fiz.

20, 1064 (1950).

V. L. Ginzburg and D. A. Kirzhnits, "High Temperature Superconductivity," Nauka, Moscow, 1977 [Engl. Transl. Consultants Bureau, New York.

S. L. Ginzburg, V. P. Khavronin, G. Yu. Logvinova, I. D. Luzyanin, J. Herrmann, B. Lippold, H. Börner and H. Schmiedel, Physica C 174, 109 (1991).

J. I. Gittleman and B. Rosenblum, J. Appl. Phys. 39, 2617 (1968).

S. H. Glarum, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 1837 (1990).

N. E. Glass and D. Rogovin, Phys. Rev. B 39, 11327

D. Glatzer, A. Forkl, H. Theuss, H. U. Habermeier, and Kronmüller, Phys. Status Solidi 170, 549 (1992).

L. I. Glazman and A. E. Koshelev, Phys. Rev. B 43. 2835 (1991a); Physica C 173, 180 (1991b).

H. R. Glyde, L. K. Moleko, and P. Findeisen, Phys. Rev. B 45, 2409 (1992).

A. Gold and A. Ghazali, Phys. Rev. B 43, 12952 (1991).

R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Cryogenics 27, 475 (1987a); R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, in "High Temperature Superconductors" (D. U. Grubser and M. Schluter, Eds.), p. 261, Mater. Res. Soc., Pittsburgh (1987b).

D. Goldschmidt, Phys. Rev. B 39, 2372 (1989).

M. J. Goldstein and W. G. Moulton, Phys. Rev. B 40, 8714 (1989). M. Golosovsky, D. Davidov, E. Farber, T. Tsach, and

M. Schieber, Phys. Rev. B 43, 10390 (1991).

M. Golosovsky, Y. Naveh, and D. Davidov, Phys. Rev. B 45, 7495 (1992).

J. B. Goodenough and J.-S. Zhou, Phys. Rev. B 42. 4276 (1990).

J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B 47, 5275 (1993).

L. F. Goodrich, A. N. Srivastava, and T. C. Stauffer, J.

Res. NIST 96, 703 (1991). L. F. Goodrich and A. N. Srivastava, Supercond. Industry Spring, 28 (1992).

L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 36, 1918. [Sov. Phys. JETP 36, 1364] (1959).

L. P. Gor'kov, Sov. Phys. JETP 38, 830 (1973).

- L. P. Gor'kov, Sov. Phys. JETP Lett. 20, 260 (1974).
 U. Gottwick, R. Held, G. Sparn, F. Steglich, H. Rietschel, D. Ewert, B. Renker, W. Bauhofer, S. von Molnar, M. Wilhelm, and H. E. Hoenig, Europhys. Lett. 4, 1183 (1987).
- C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell, and S. Sutton, Nature 326, 855 (1987).
- M. E. Gouvêa, G. M. Wysin, A. R. Bishop, and F. G. Mertens, Phys. Rev. B 39, 11840 (1989).
- G. S. Grader, P. K. Gallagher, and E. M. Gyorgy, Appl. Phys. Lett. 51, 1115 (1987).
- J. E. Gaebner, R. C. Haddon, S. V. Chichester, and S. M. Glarum, Phys. Rev. B 41, 4808 (1990).
- R. Graham, M. Schlautmann, and D. L. Shepelyansky, Phys. Rev. Lett. 67, 255 (1991).
- K. E. Gray, R. T. Kampwirth, and D. E. Farrell, Phys. Rev. B 41, 819 (1990).
- K. E. Gray, D. H. Kim, B. W. Veal, G. T. Seidler, T. F. Rosenbaum, and D. E. Farrell, Phys. Rev. B 45, 10071 (1992).
- K. E. Gray, Appl. Supercond., (D. Shi, Ed.), in press.
 L. H. Green and B. G. Bagley, in "Physical Properties of High Temperature Superconductors"
 (D. M. Ginsberg, Ed.), Vol. 2, Chap. 8, World Scientific, Singapore, 1990.
- R. L. Greene, in "Organic Superconductivity" (V. Z. Kresin and W. A. Little, Eds.), p. 7. Plenum, New
- York, 1990.
 E. Gregory, T. S. Kreilick, J. Wong, A. K. Ghosh, and W. B. Sampson, Cryogenics 27, 178 (1987).
- V. V. Gridin, P. Pernambuco-Wise, C. G. Trendall, W. R. Datars, and J. D. Garrett, Phys. Rev. B 40, 8814 (1989).
- D. G. Grier, C. A. Murray, C. A. Bolle, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 2770 (1991).
- R. Griessen, Phys. Rev. Lett. 64, 1674 (1990).
 M. Grilli, R. Raimondi, C. Castellani, C. DiCastro.
- and G. Kotliar, Phys. Rev. Lett. 67, 259 (1991).
- H. H. Gröbke, Phys. Rev. B 41, 11047 (1990).
- N. Grønbech-Jensen, Phys. Rev. B 45, 7315 (1992).
 N. Grønbech-Jensen, N. F. Pedersen, A. Davidson,
- and R. D. Parmentier, Phys. Rev. B 42, 6035 (1990).
- N. Grønbech-Jensen, S. A. Hattel, and M. R. Samuelsen, Phys. Rev. 45, 12457 (1991).
- R. Gross, P. Chaudhari, M. Kawasaki, and A. Gupta, Phys. Rev. B 42, 10735 (1990a).
- R. Gross, P. Chaudhari, M. Kawasaki, M. B. Ketchen, and A. Gupta, Appl. Phys. Lett. 57, 727 (1990b).
- R. Gross and D. Koelle, Rept. Prog. Phys., 57, 651 (1994).
- D. Y. Gubser and M. Schluter, Eds., "High Temperature Superconductors," Proc. Symp., Spring Meet., Anaheim, CA, Apr. 1987, Mater. Res. Soc., Pittsburgh, 1987.
- S. Guha, D. Peebles, and T. J. Wieting, Phys. Rev. B 43, 13092 (1991).

- F. Guinea and G. Zimanyi, Phys. Rev. B 47, 501 (1993).
- B. Gumhalter and V. Zlatic, Phys. Rev. B 42, 6446 (1990).
- J. Guo, D. E. Ellis, E. E. Alp, and G. L. Goodman, Phys. Rev. B 42, 251 (1990).
- A. Gupta, P. Esquinazi, and H. F. Braun, Physica C 184, 393 (1991).
- R. P. Gupta and M. Gupta, Phys. Rev. B 47, 11635 (1993a); Phys. Rev. B 48, 16068 (1993b).
- A. Gurevich and H. Küpfer, Phys. Rev. B 48, 6477 (1993).
- M. Gurvitch and A. T. Fiory, Phys. Rev. Lett. 59, 1337 (1987a); Appl. Phys. Lett. 51, 1027 (1987b); in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 663, Plenum, New York, 1987c.
- M. Gurvitch, A. T. Fiory, L. F. Schneemeyer, R. J. Cava, G. P. Espinosa, and J. V. Waszczak, Physica C. 153-155, 1369 (1988).
- H. Gutfreund and W. A. Little, in "Highly Conducting One Dimensional Solids" (J. T. Devreese, R. P. Evrard, and V. E. van Doren, Eds.), Chap. 7, Plenum, New York, 1979.
- F. Gygi and M. Schlüter, Phys. Rev. Lett. 65, 1820 (1990a), Phys. Rev. B 41, 822 (1990b); 43, 7609 (1991).
- R. C. Haddon, Acc. Chem. Res. 25, 127 (1992).
 S. J. Hagen, T. W. Jing, Z. Z. Wang, J. Horvath, and N. P. Ong, Phys. Rev. B 37, 7928 (1988).
- S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester and J. H. Kang, Phys. Rev. B 41, 11630 (1990a).
- S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester and J. Talvacchio, Phys. Rev. B 42, 6777 (1900b.)
- (1990b). R. R. Hake, Phys. Rev. 166, 471 (1968).
- K. Hallberg, A. G. Rojo, and C. A. Balseiro, Phys. Rev. B 43, 8005 (1991).
- J. W. Halley, (Ed.), "Theories of High Temperature Superconductivity," Addison Wesley, Reading, MA, 1988.
- B. I. Halperin, Phys. Rev. Lett. 52, 1583, 2390 (1984).
 N. Hamada, S. Massidda, A. J. Freeman, and J. Redinger, Phys. Rev. B 40, 4442 (1989).
- D. R. Hamann and L. F. Mattheiss, Phys. Rev. B 38, 5138 (1988).
- P. D. Hambourger and F. J. Di Salvo, Physica B 99, 173 (1980).
- C. A. Hamilton, Phys. Rev. B 5, 912 (1972).

 P. C. Hammel, M. Takigawa, R. H. Heffner, 7, 1
- P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
- P. C. Hammel, A. P. Reyes, Z. Fisk, M. Takigawa, J. D. Thompson, R. H. Heffner, W.-W. Cheong, and J. E. Schirber, Phys. Rev. B 42, 6781 (1990).
- D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestler, Supercond Sci Technol, J. 12 (1988).
- Larbalestler, Supercond. Sci. Technol. 1, 12 (1988).
 S. Han, L. F. Cohen, and E. L. Wolf, Phys. Rev. B 42, 8682 (1990a).

REI

S. ·

Z. I Z. I

S. F I I T. H

M. F R Z. H

Z. Ha M 28 Z. Ha

J. Har 11; A. B. (19

R. K. tros D. C.

Gar D. R. I G. 1 E. J

39, 8 D. R. H Chic T. P.

Lett. D. R. H: 10684

M. Hase Kimu Physic

T. Hasega Prope ductor World

S. Hasega Igarasl and R.

and R. K. C. Hass

N. Hatakei Rev. B

J. Hauck, Mika, 2

D. B. Havi Rev. Le

R. M. Haze N. L. R Hor, A. 7238 (19

- S. G. Han, Z. V. Vardeny, K. S. Wong, and O. G. Symko, Phys. Rev. Lett. 65, 2708 (1990b).
- Z. P. Han, R. Dupree, D. McK. Paul, A. P. Howes, and L. W. J. Caves, Physica C 181, 355 (1991).
- Z. P. Han, R. Dupree, A. Geneten, R. S. Liu, and P. P. Edwards, Phys. Rev. Lett. 69, 1256 (1992).
- S. H. Han, C. C. Almasan, M. C. de Andrade, Y. Dalichaouch, and M. B. Maple, Phys. Rev. B 46, 14290 (1992).
- T. Hanaguri, T. Fukase, I. Tanaka, and H. Kojima, Phys. Rev. B 48, 9772 (1993).
 M. Hangyo, N. Nagasaki, and S. Nakashima, Phys.
- Rev. B 47, 14595 (1993).

 7. Hao and J. R. Clem. Phys. Rev. Lett. 67, 2271.
- Z. Hao and J. R. Clem, Phys. Rev. Lett. 67, 2371 (1991).
- Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P. Malozemoff, and F. Holtzberg, Phys. Rev. B 43, 2844 (1991).
- Z. Hao and J. R. Clem, Phys. Rev. B 46, 5853 (1992).
 J. Hara, M. Ashida, and K. Nagai, Phys. Rev. B 47, 11263 (1993).
- A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).
- R. K. Harris, "Nuclear Magnetic Resonance Spectroscopy," Halsted, 1986.
- D. C. Harris, S. T. Herbert, D. Stroud, and J. C. Garland, Phys. Rev. Lett. 67, 3606 (1991).
- D. R. Harshman, L. F. Schneemeyer, J. V. Waszczak, G. Aeppli, R. J. Cava, B. Batlogg, L. W. Rupp, E. J. Ansaldo, and D. Ll, Williams, Phys. Rev. B 39, 851 (1989).
- D. R. Harshman, R. N. Kleiman, R. C. Haddon, S. V. Chichester-Hicks, M. L. Kaplan, L. W. Rupp, Jr., T. Pfiz, D. Ll. Williams, D. B. Mitzi, Phys. Rev. Lett. 64, 1293 (1990).
- D. R. Harshman and A. P. Mills, Jr., Phys. Rev. B 45, 10684 (1992).
- M. Hase, I. Terasaki, A. Maeda, K. Uchinokura, T. Kimura, K. Kishio, I. Tanaka, and H. Kojima, Physica C 185-189, 1855 (1991).
- T. Hasegawa, H. Ikuta, and K. Kitazawa, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 7, World Scientific, Singapore, 1992.
- S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, M. Igarashi, T. Kobayashi, M. Naito, A. Tonomura, and R. Aoki, Phys. Rev. B 43, 7631 (1991).
- K. C. Hass, Solid State Phys. 42, 213 (1989).
- N. Hatakenaka, S. Kurihara, and H. Takayanagi, Phys. Rev. B 42, 3987 (1990).
- J. Hauck, S. Denker, H. Hindriks, S. Ipta, and K. Mika, Z. Phys. B 84, 31 (1991).
- D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).
- R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, H. K. Mao, C. G. Hadidiacos, P. H. Hor, A. L. Meng, and C. W. Chu, Phys. Rev. B 35, 7238 (1987).

- R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. Heaney, D. R. Veblen, Z. Z. Sheng, A. El Ali, and A. M. Hermann, Phys. Rev. Lett. 60, 1657 (1988).
- R. M. Hazen, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 3, World Scientific, Singapore, 1990.
- A. F. Hebard, P. L. Gammel, C. E. Rice, and A. F. J. Levi, Phys. Rev. B 40, 5243 (1989).
- A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).
- A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature, 350, 600 (1991).
- A. F. Hebard, in "Proc. R. L. Orbach Symp. Random Magnetism and High T_c Supercond.," World Scientific, Singapore, 1994.
- A. F. Hebard, in "Strongly Correlated Electronic Materials" (K. S. Bedell, Ed.), Addison-Wesley, New York, 1994.
- S. E. Hebboul and J. C. Garland, Phys. Rev. B 43, 13703 (1991).
- P. Hedegård and M. B. Pedersen, Phys. Rev. B 42, 10035 (1990).
- R. H. Heffner, J. L. Smith, J. O. Willis, P. Birrer, C. Baines, F. N. Gygax, B. Hitti, E. Lippelt, H. R. Ott, A. Schenck, E. A. Knetsch, J. A. Mydosh, and D. E. MacLaughlin, Phys. Rev. Lett. 65, 2816 (1990).
- R. Heid, Phys. Rev. B 45, 5052 (1992).
- R. A. Hein, T. L. Francavilla, and D. H. Liebenberg (Eds.), "Magnetic Susceptibility of Superconductors and Other Spin Systems," Plenum, New York, 1991.
- C. S. Hellberg and E. J. Mele, Phys. Rev. B 48, 646 (1993).
- E. S. Hellman, B. Miller, J. M. Rosamilia, E. H. Hartford, and K. W. Baldwin, Phys. Rev. B 44, 9719 (1991).
- F. Hellman and T. H. Geballe, Phys. Rev. B 36, 107 (1987).
- N. F. M. Henry and K. Lonsdale, "International Tables for X-Ray Crystallography," Kynboh, Birmingham, England, 1965.
- J. Heremans, D. T. Morelli, G. W. Smith, and S. C. Strite III, Phys. Rev. B 37, 1604 (1988).
- F. Herman, R. V. Kasowski, and W. Y. Hsu, Phys. Rev. B 36, 6904 (1987).
- A. M. Hermann and J. V. Yakhmi, "Thallium Based High Temperature Superconductors," Dekker, Basel, 1993.
- S. L. Herr, K. Kamarás, D. B. Tanner, S.-W. Cheong, G. R. Stewart, and Z. Fisk, Phys. Rev. B 43, 7847 (1991).
- D. W. Hess, T. A. Tokuyasu, and J. A. Sauls, Phys. Condens. Matt. 1, 8135 (1989).
- H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).

- H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev. Lett. 64, 2711 (1990).
- H. F. Hess, R. B. Robinson, and J. V. Waszczak, Physica B 169, 422 (1991).
- J. D. Hettinger and D. G. Steel, in "High Temperature Superconducting Science" (D. Shi, Ed.), Pergamon, New York, 1994.
- J. M. Hettinger, A. G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn, and E. G. Burkhardt, Phys. Rev. Lett. 62, 2044 (1989).
- R. E. Hetzel, A. Sudbø, and D. Huse, Phys. Rev. Lett. 69, 518 (1992).
- E. T. Heyen, R. Liu, C. Thomsen, R. Kremer, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki, Phys. Rev. B 41, 11058 (1990a).
- E. T. Heyen, S. N. Rashkeev, I. I. Mazin, O. K. Andersen, R. Liu, M. Cardona, and O. Jepsen, Phys. Rev. Lett. 65, 3048 (1990b).
- E. T. Heyen, G. Kliche, W. Kress, W. König, M. Cardona, E. Rampf, J. Prade, U. Schröder, A. D. Kulkarni, F. W. de Wette, S. Piñol, D. McK. Paul, E. Morán, and M. A. Alario-Franco, Solid State Commun. 74, 1299 (1990c).
- E. Heyen, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki, Phys. Rev. B 43, 12958 (1991).
- Y. Hidaka, Y. Enomoto, M. Suzuki, M. Oda, and T. Murakami, Jpn. J. Appl. Phys. 26, L377 (1987).
- S. Hikami and A. I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
- S. Hikami and A. Fujita, Prog. Theor. Phys. 83, 443 (1990a); Phys. Rev. B 41, 6379 (1990b).
- S. Hikami, A. Fujita, and A. Larkin, Phys. Rev. B 44, 10400 (1991).
- M. Hikita, Y. Tajima, A. Katsui, Y. Hidaka, T. Iwata, and S. Tsurumi, Phys. Rev. B 36, 7199 (1987).
- M. Hikita and M. Suzuki, Phys. Rev. B 39, 4756
- G. Hilscher, H. Michor, N. M. Hong, T. Holubar, W. Perthold, M. Vybornov, and P. Rogl, in Int. Conf. Strongly Correlated Electron Systems, Amsterdam, Netherlands, Aug. 1994.
- D. G. Hinks, D. R. Richards, B. Dabrowski, D. T. Marx, and A. W. Mitchell, Nature 335, 419 (1988).
- Marx, and A. W. Mitchell, Nature 335, 419 (1988).
 D. G. Hinks, B. Dabrowski, D. R. Richards, J. D. Jorgensen, S. Pei, and J. F. Zasadzinski, Mat. Res.
- Soc. Symp. Proc. 156, 357 (1989).
 J. E. Hirsch, Phys. Rev. B 31, 4403 (1985a); Phys.
- Rev. Lett. 54, 1317 (1985b). J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).
- T. Hocquet, P. Mathieu, and Y. Simon, Phys. Rev. B 46, 1061 (1992).
- J. A. Hodges, P. Imbert, and G. Jéhanno, Solid State Commun. 64, 1209 (1987).
- U. Hofmann and J. Keller, Z. Phys. B. Cond. Matter 74, 499 (1989).
- C. Hohn, M. Galffy, A. Dascoulidou, A. Freimuth, H. Soltner, and U. Poppe, Z. Phys. B 85, 161 (1991).

- K. Holczer, O. Klein, G. Grüner, J. D. Thompson, F. Deiderich, and R. L. Whetten, Phys. Rev. Lett. 67, 271 (1991).
- T. Holst, J. B. Hansen, N. Grønbech-Jensen, and J. A. Blackburn, Phys. Rev. B 42, 127 (1990).
- T. Holst and J. B. Hansen, Phys. Rev. B 44, 2238 (1991).
- X. Q. Hong and J. E. Hirsch, Phys. Rev. B 46, 14702 (1992).
- T. Honma, K. Yamaya, F. Minami, and S. Takekawa, Physica C 176, 209 (1991).
- B. Hopfengärtner, B. Hensel, and G. Saemann-Ischenko, Phys. Rev. B 44, 741 (1991).
- M. L. Horbach, F. L. J. Vos, and W. van Saarloos, Phys. Rev. B 48, 4061 (1993).
- M. L. Horbach, F. L. J. Vos, and W. van Saarloos, Phys. Rev. B 49, 3539 (1994).
- M. Horvatic, T. Auler, C. Berthier, Y. Berthier, P. Butaud, W. G. Clark, J. A. Gillet, P. Ségransan, and J. Y. Henry, Phys. Rev. B 47, 3461 (1993).
- A. Houghton, R. A. Pelcovits, and A. Sudbø, Phys. Rev. B 40, 6763 (1989); 41, 4785(E) (1990).
- A. P. Howes, R. Dupree, D. McK. Paul, and S. Male, Physica C 185-189, 1137 (1991).
- T. C. Hsu and P. W. Anderson, Physica C 162-164, 1445 (1989).
- Q. Hu and M. Tinkham, Phys. Rev. B 39, 11358 (1989).
- Q. Hu, C. A. Mears, P. L. Richards, and F. L. Lloyd, Phys. Rev. Lett. 64, 2945 (1990).
- G. Y. Hu and R. F. O'Connell, Phys. Rev. B 47, 8823 (1993).
 W. F. Huang, P. J. Ouseph, K. Fang, and Z. J. Xu,
- Solid State Commun. 66, 283 (1988). Z. J. Huang, Y. Y. Xue, P. H. Hor, and C. W. Chu,
- Physica C 176, 195 (1991a). Z. J. Huang, H. H. Fang, Y. Y. Xue, P. H. Hor, C. W.
- Chu, M. L. Norton, and H. Y. Tang, Physica C 180, 331 (1991b).
- M.-Z. Huang, Y.-N. Xu, and W. Y. Ching, Phys. Rev. B 46, 6572 (1992).
 Z. J. Huang, Y. Y. Xue, R. L. Meng, and C. W. Chu,
- Phys. Rev. B 49, 4218 (1994). J. Hubbard, Proc. Royal Soc. London A 276, 238
- (1963).

 J. Hubbard, Proc. Royal Soc. London A 281, 401
- (1964).

 R. P. Huebener, R. T. Kampwirth, and A. Seher, J.
- Low Temp. Phys. 2, 113 (1970).

 R. P. Huebener, "Magnetic Flux Structures in Super-
- conductors," Springer Verlag, Berlin, 1979.
 R. P. Huebener, A. V. Ustinov, and V. K. Kaplunenko,
- Phys. Rev. B 42, 4831 (1990). R. P. Huebener, Physica C 168, 605 (1990).
- H. J. Hug, A. Moser, I. Parashikov, O. Fritz, B. Stiefel, H.-J. Güntherodt, and H. Thomas, Physica, to be published.
- N. H. Hur, H.-G. Lee, J.-H. Park, H.-S. Shin, and I.-S. Yang, Physica C 218, 365 (1993).

ŀ

J. S.

S. J.-}

Т.

S. E (Y. L

M. j P L. k

() I. Iof Z. Iq

"ć (A Z. Iqt

Or Z. Iqt Kh

Mc Z. Iqbi Z. Iqbi

F. . Rei F. Irie

(197 E. D. I

E. D. I Bish

Mas-Rev.

- N. H. Hur, N. H. Kim, S. H. Kim, Y. K. Park, and J. C. Park, Physica C, 231, 227 (1994).
- M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M. Schlüter, Phys. Rev. B 45, 10032 (1992).
- T. L. Hylton and M. R. Beasley, Phys. Rev. B 41, 11669 (1990).
- O. B. Hyun, D. K. Finnemore, L. Schwartzkopf, and J. R. Clem, Phys. Rev. Lett. 58, 599 (1987).
- O. B. Hyun, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 40, 175 (1989).
- M. lansiti, M. Tinkham, A. T. Johnson, W. F. Smith, and C. J. Lobb, Phys. Rev. B 39, 6465 (1989).
- H. Ihara, R. Sugise, K. Hayashi, N. Terada, M. Jo, M. Hirabayashi, A. Negishi, N. Atoda, H. Oyanagi, T. Shimomura, and S. Ohashi, Phys. Rev. B 38, 11952 (1988).
- H. Ihara, M. Hirabayashi, H. Tanino, K. Tokiwa, H. Ozawa, Y. Akahama, and H. Kawamura, Jpn. J. Appl. Phys. 32, L1732 (1993).
- J. Ihm and B. D Yu, Phys. Rev. B 39, 4760 (1989).
- S. Ikegawa, T. Wada, A. Ichinose, T. Yamashita, T. Sakurai, Y. Yaegashi, T. Kaneko, M. Kosuge, H. Yamauchi, and S. Tanaka, Phys. Rev. B 41, 11673 (1990).
- S. Ikegawa, T. Wada, T. Yamashita, H. Yamauchi, and S. Tanaka, Phys. Rev. B 45, 5659 (1992).
- J.-M. Imer, F. Patthey, B. Dardel, W. D. Schneider, Y. Baer, Y. Petroff, and A. Zettl, Phys. Rev. Lett. 62, 336 (1989).
- T. Inabe, H. Ogata, Y. Maruyama, Y. Achiba, S. Suzuki, K. Kikuchi, and I. Ikemoto, Phys. Rev. Lett. 69, 3797 (1992).
- S. E. Inderhees, M. B. Salamon, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 66, 232 (1991).
- Ginsberg, Phys. Rev. Lett. 66, 232 (1991). Y. Inoue, Y. Shichi, F. Munakata, and M. Yamanaka,
- Phys. Rev. B 40, 7307 (1989).
 M. Inui, P. B. Littlewood, and S. N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989).
- L. Ioffe and G. Kotliar, Phys. Rev. B 42, 10348
- (1990).
 I. Ioffe and V. Kalmeyer, Phys. Rev. B 44, 750 (1991).
- Z. Iqbal, J. C. Barry, and B. L. Ramakrishna, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Nova Sci., New York, 1989.
- Z. Iqbal, G. H. Kwei, B. L. Ramakrishna, and E. W. Ong, Physica C 167, 369 (1990).
- Z. Iqbal, R. H. Baughman, B. L. Ramakrishna, S. Khare, N. S. Murthy, H. J. Bornemann, and D. E. Morris, Science 254, 826 (1991).
- Z. Iqbal, Supercond. Rev. 1, 49 (1992).
- Z. Iqbal, T. Datta, D. Kirven, A. Longu, J. C. Barry, F. J. Owens, A. G. Rinzler, D. Yang, and F. Reidinger, Phys. Rev. B 49, 12322 (1994).
- F. Irie and K. Yamafuji, J. Phys. Soc. Jpn. 23, 255 (1976)
- E. D. Isaacs, D. B. McWhan, R. N. Kleiman, D. J. Bishop, G. E. Ice, P. Zschack, B. D. Gaulin, T. E. Mason, J. D. Garrett, and W. J. L. Buyers, Phys. Rev. Lett. 65, 3185 (1990).

- K. Isawa, A. Tokiwa-Yamamoto, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 217, 11 (1993).
- K. Isawa, A. Tokiwa-Yamamoto, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 222, 33 (1994a).
- K. Isawa, T. Higuchi, T. Machi, A. Tokiwa-Yamamoto, S. Adachi, M. Murakami, and H. Yamauchi, Appl. Phys. Lett. 64, 1301 (1994b).
- T. Ishida and R. B. Goldfarb, Phys. Rev. B 41, 8937 (1990).
- T. Ishida, R. B. Goldfarb, S. Okayasu, and Y. Kazumata, Physica C 185–189, 2515 (1991).
- T. Ishiguro and K. Yamaji, "Organic Superconductors," Springer-Verlag, Berlin, 1990.
- A. Isihara, "Statistical Physics," Academic Press, New York, 1971.
- Y. Ishii and J. Ruvalds, Phys. Rev. B 48, 3455 (1993).
 T. Itoh and H. Uchikawa, Phys. Rev. B 39, 4690 (1989).
- M. Itoh, A. Tokiwa-Yamamoto, S. Adachi, and H. Yayauchi, Physica C 212, 271 (1993).
- R. Itti, F. Munakata, K. Ikeda, H. Yamauchi, N. Koshizuka, and S. Tanaka, Phys. Rev. B 43, 6249 (1991).
- Yu. M. Ivanchenko, Phys. Rev. B 48, 15966 (1993).
- B. I. Ivlev and N. B. Kopnin, Phys. Rev. Lett. 64, 1828 (1990).
- B. I. Ivlev, N. B. Kopnin, and M. M. Salomaa, Phys. Rev. B 43, 2896 (1991a).
- B. I. Ivlev, Yu. N. Ovchinnikov, and R. S. Thompson, Phys. Rev. B 44, 7023 (1991b).
- B. I. Ivlev and R. S. Thompson, Phys. Rev. B 45, 875 (1992).
- Y. Iwasa. K. Tanaka, T. Yasuda, T. Koda, and S. Koda, Phys. Rev. Lett. 69, 2284 (1992).
- Y. Iye, T. Tamegai, T. Sakakibara, T. Goto, and N. Miura, Physica C 153-155, 26 (1988).
- Y. Jye, S. Nakamura, T. Tamegai, T. Terashima, K. Yamamoto, and Y. Bundo, "High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing" (D. Christen, J. Narayan, and L. Schneemeyer, Eds.), MRS Symposia Proceedings, No. 169, p. 871. Material Research Soc, Pittsburgh, 1990.
- Y. Iye, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 4, World Scientific, Singapore, 1992.
- J. D. Jackson, "Classical Electrodynamics," Wiley, New York, 1975.
- H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. 40, 182 (1989).
- K. P. Jain and D. K. Ray, Phys. Rev. B 39, 4339 (1989).
- R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver, Phys. Rev. A 140, 1628 (1965).
- G. Jakob, P. Przyslupski, C. Stölzel, C. Tomé-Rose, A. Walkenhorst, M. Schmitt, and H. Adrian, Appl. Phys. Lett. 59(13), 1626 (1991).
- G. M. Japiassú, M. A. Continentino, and A. Troper, Phys. Rev. B 45, 2986 (1992).

- M. Jarrell, H. R. Krishnamurthy, and D. L. Cox, Phys. Rev. B 38, 4584 (1988).
- B. Jeanneret, Ph. Flückiger, J. L. Gavilano, Ch. Leemann, and P. Martinoli, Phys. Rev. B 40, 11374 (1989).
- C. S. Jee, B. Andraka, J. S. Kim, H. Li, M. W. Meisel, and G. R. Stewart, Phys. Rev. B 42, 8630 (1990).
 J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev.
- B 45, 7959 (1992). C. D. Jeffries, Q. H. Lam, Y. Kim, C. M. Kim, A.
- Zettl and M. P. Klein, Phys. Rev. B 39, 11526 (1989).
 H. J. Jensen, A. Brass, An-C. Shi, and A. J. Berlinsky,
- Phys. Rev. B 41, 6394 (1990). H. J. Jensen and P. Minnhagen, Phys. Rev. Lett. 66,
- H. J. Jensen and P. Minnhagen, Phys. Rev. Lett. 50 1630 (1991).
- Y. Jeon, G. Liang, J. Chen, M. Croft, M. W. Ruckman, D. Di Marizo, and M. S. Hegde, Phys. Rev. B 41, 4066 (1990).
- L. Ji, R. H. Sohn, G. C. Spalding, C. J. Lobb, and M. Tinkham, Phys. Rev. B 40, 10936 (1989).
- Y. X. Jia, J. Z. Liu, M. D. Lan, P. Klavins, R. N. Shelton, and H. B. Radousky, Phys. Rev. B 45, 10609 (1992).
- H. Jiang, Y. Huang, H. How, S. Zhang, C. Vittoria, A. Widom, D. B. Chrisey, J. S. Horwitz, and R. Lee, Phys. Rev. Lett. 66, 1785 (1991).
- C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 10670 (1992a).
- (1992a).C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 7368 (1992b).
- W. Jin, C. K. Loong, D. G. Hinks, P. Vashishta, R. K. Kalia, M. H. Degani, D. L. Price, J. D. Jorgensen, and B. Dabrowski, Mat. Res. Soc. Symp. Proc. 209, 895 (1991).
- S. Jin, G. W. Kammlott, S. Nakahara, T. H. Tiefel, and J. Graebner, Science 253, 427 (1991).
- S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988).
- W. Jin, M. H. Dagani, R. K. Kalia, and P. Vashishta, Phys. Rev. B 45, 5535 (1992).
- T. W. Jing and N. P. Ong, Phys. Rev. B 42, 10781 (1990).
- (1990).
 R. Job and M. Rosenberg, Supercond. Sci. Technol.
 5, 7 (1992).
- K. H. Johnson, Phys. Rev. B 42, 4783 (1990).
- M. W. Johnson, D. H. Douglass, and M. F. Bocko, Phys. Rev. B 44, 7726 (1991).
- R. D. Johnson, D.S. Bethune, and C. S. Yannoni, Acc. Chem. Res. 25, 169 (1992).
- C. E. Johnson, H. W. Jiang, K. Holczer, R. B. Kaner, R. L. Whetten, and F. Diederich, Phys. Rev. B 46, 5880 (1992).
- D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, Mat. Res. Bull. 8, 777 (1973).
- D. C. Johnston and J. H. Cho, Phys. Rev. B 42, 8710 (1990).

- Th. Jolicoeur and J. C. LeGuillou, Phys. Rev. B 44, 2403 (1991).
- M. L. Jones, D. W. Shortt, and A. L. Schawlow, Phys. Rev. B 42, 132 (1990).
- J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev. B 36, 3608 (1987a); see also Schuller et al. (1987).
- J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. Crabtree, A. Umezawa, L. J. Nowicki, and A. P. Paulikas, Phys. Rev. B 36, 5731 (1987b).
- J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).
- B. D. Josephson, Phys. Lett. 1, 251 (1962).
 J. Jung, M. A.-K. Mohamed, S. C. Cheng, and J. P.
- Franck, Phys. Rev. B 42, 6181 (1990).
 A. Junod, A. Bezinge, and J. Muller, Physica C 152, 50 (1988).
- A. Junod, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol.
- Chap. 2, World Scientific, Singapore, 1990.
 Junod, D. Sanchez, J.-Y. Genoud, T. Graf, G. Triscone, and J. Muller, Physica C 185-189, 1399
- (1991).
 V. V. Kabanov and O. Yu. Mashtakov, Phys. Rev. B 47, 6060 (1993).
- K. K. Kadish and R. S. Ruoff, (Eds.), "Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials," Electrochemical Society, Pennington, N. J., 1994.
- K. Kadowski, Y. Songliu, and K. Kitazawa, "Lorentz Force Independent Dissipation in HTSC," submitted for publication.
- A. Kadin, Phys. Rev. B 41, 4072 (1990).
 A. Kahan, Phys. Rev. B 43, 2678 (1991).
- A. B. Kaiser, Phys. Rev. B 35, 4677 (1987).
- A. B. Kaiser and C. Uher, Aust. J. Phys. 41, 597 (1988).
- A. B. Kaiser, Phys. Rev. B 37, 5924 (1988).
- A. B. Kaiser and C. Uher, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 7, Nova Sci., New York, 1990.
- A. B. Kaiser and G. Mountjoy, Phys. Rev. B 43, 6266 (1991).
- E. Kaldis, P. Fischer, A. W. Hewat, E. A. Hewat, J. Karpinski, and S. Rusiecki, Physica C 159, 668 (1989).
- C. Kallin, A. J. Berlinsky, and W.-K. Wu, Phys. Rev. B 39, 4267 (1989).
- V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987).
- A. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399 (1990).
- K. Kanoda, H. Mazaki, T. Mizutani, H. Hosoito, and T. Shinjo, Phys. Rev. B 40, 4321 (1989).
- K. Kanoda, K. Akiba, K. Suzuki, T. Takahashi, and G. Saito, Phys. Rev. Lett. 65, 1271 (1990).

Į

K R

۸.

F. O.

P. ;

A. I l A. E {

A. K R. 1 C L C P

ŀ

B Y. B. R Y. B.

- A. Kapitulnik and M. R. Beasley, C. Castellani, and D. DiCastro, Phys. Rev. B 37, 537 (1988).
- D. DiCastro, Phys. Rev. B 37, 537 (1988).
 S. G. Kaplan, T. W. Noh, A. J. Sievers, S.-W. Cheong and Z. Fisk, Phys. Rev. B 40, 5190 (1989).
- V. R. Karasik, N. G. Vasil'ev, and V. G. Ershov, Zh. Eksp. Teor. Fiz. 59, 790 (1970); Sov Phys—JETP 32, 433 (1971).
- K. Karlsson, O. Gunnarsson, and O. Jepsen, Phys. Rev. B 45, 7559 (1992).
- K. Karraï, E. J. Choi, F. Dunmore, S. Liu, H. D. Drew, Q. Li, D. B. Fenner, Y. D. Zhu, and F.-C. Zhang, Phys. Rev. Lett. 69, 152 (1992).
- Zhang, Phys. Rev. Lett. 69, 152 (1992).
 H. Kasatani, H. Terauchi, Y. Hamanaka, and S. Nakashima, Phys. Rev. B 47, 4022 (1993).
- A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P. Milliken, and J. P. Harbison, Phys. Rev. Lett. 67, 3026 (1991).
- R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B 44, 6916 (1991).
- R. Kato, Y. Enomoto, and S. Mackawa, Phys. Rev. B
- 47, 8016 (1993).K. Katti and S. H. Risbud, Phys. Rev. B 45, 10155
- R. L. Kautz and J. M. Martinis, Phys. Rev. B 42, 9903 (1990).
- (1990). M. Kaveh and N. H. Mott, Phys. Rev. Lett. 68, 1904
- (1992). Z. A. Kazei and I. B. Krynetskii, "Landolt-Börnstein,
- Group III," Solid State Physics, Vol. 27, Subvol. 12, Springer, Heidelberg, 1992.

 A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P.
- Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).

 F. J. Kedves, S. Mészáros, K. Vad. G. Halász, B.
- F. J. Kedves, S. Mészáros, K. Vad, G. Halász, B. Keszei, and L. Mihály, Solid State Commun. 63, 991 (1987).
- O. Keller, Phys. Rev. B 43, 10293 (1991).
- P. H. Kes, C. J. van der Beek, M. P. Maley, M. E. McHenry, D. A. Huse, M. J. V. Menken, and A. A. Menovsky, Phys. Rev. Lett. 67, 2383 (1991).
- M. Mehovsky, Phys. Rev. Lett. 07, 2383 (1991).
 B. Khalfin and B. Ya. Shapiro, Phys. Rev. B 46, 5593 (1992).
- A. F. Khoder, M. Couach, and J. L. Jorda, Phys. Rev. B 42, 8714 (1990).
- A. F. Khoder and M. Couach, in "Magnetic Susceptibility of Superconductors and Other Spin Systems" (R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds.), Plenum, New York, 1992.
- A. Khurana, Phys. Rev. B 40, 4316 (1989).
- R. F. Kiefl, J. W. Schneider, A. MacFarlane, K. Chow, T. L. Duty, T. L. Estle, B. Hitti, R. L. Lichti, E. J. Ansaldo, C. Schwab, P. W. Percival, G. Wei, S. Włodek, K. Kojima, W. J. Ronamov, J. P. McCauley, Jr., N. Coustel, J. E. Fischer, and A. B. Smith III, Phys. Rev. Lett. 68, 1347 (1992).
- Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. Lett. 9, 306 (1962).
- Y. B. Kim, C. F. Hempstead, and A. R. Strand, Phys. Rev. 129, 528 (1963).

- Y. B. Kim and M. J. Stephan, in "Superconductivity" (R. D. Parks, Ed.), Vol. 2, p. 1107, Dekker, New York, 1969.
- H. K. Kim and P. S. Riseborough, Phys. Rev. B 42, 7975 (1990).
- D. H. Kim, K. E. Gray, R. T. Kampwirth, K. C. Woo, D. M. McKay, and J. Stein, Phys. Rev. B 41, 11642 (1990)
- D. H. Kim, K. E. Gray, R. T. Kampwirth, and D. M. McKay, Phys. Rev. B 42, 6249 (1990); 43, 2910 (1991a).
- D. H. Kim, D. J. Miller, J. C. Smith, R. A. Holoboff, J. H. Kang, and J. Talvacchio, Phys. Rev. B 44, 7607 (1991b).
- J.-J. Kim, H.-K. Lee, J. Chung, H. J. Shin, H. J. Lee, and J. K. Ku, Phys. Rev. B 43, 2962 (1991).
- D. M. King, Z.-X. Shen, D. S. Dessau, B. O. Wells, W. E. Spicer, A. J. Arko, D. S. Marshall, J. Di-Carlo, A. G. Loeser, C. H. Park, E. R. Ratner, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. Lett. 70, 3159 (1993).
- K. Kinoshita, F. Izumi, T. Yamada, and H. Asano, Phys. Rev. B 45, 5558 (1992).
- J. Kircher, M. K. Kelly, S. Rashkeev, M. Alouani, D. Fuchs, and M. Cardona, Phys. Rev. B 44, 217 (1991).
- D. Kirillov, C. B. Eom, and T. H. Geballe, Phys. Rev. B 43, 3752 (1991).
- W. P. Kirk, P. S. Kobiela, R. N. Tsumura, and R. K. Pandey, Ferroelectrics 92, 151 (1989).
- T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 68, 3232 (1992).
- J. R. Kirtley, R. T. Collins, Z. Schlesinger, W. J. Gallagher, R. L. Sandstrom, T. R. Dinger and D. A. Chance, Phys. Rev. B 35, 8846 (1987).
- J. R. Kirtley, Phys. Rev. 41, 7201 (1990a); Int. J. Mod. Phys. B 4, 201 (1990b).
- L. B. Kiss and P. Svedlindh, IEEE Trans. Electronic Devices, 41, 2112 (1994).
- T. J. Kistenmacher, Phys. Rev. B 39, 12279 (1989).
 Y. Kitaoka, S. Hiramatsu, T. Kohara, K. Asayama, K. Oh-ishi, M. Kikuchi, and N. Kobayashi, Jpn. J. Appl. Phys. 26, L397 (1987a).
- Y. Kitaoka, S. Hiramatsu, K. Ishida, T. Kohara, and K. Asayama, J. Phys. Soc. Jpn. 56, 3024 (1987b).
- Y. Kitaoka, K. Fujiwara, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 179, 107 (1991).
- K. Kitazawa and S. Tajima, in "Some Aspects of Superconductivity," (L. C. Gupta, Ed.), Nova Sci., New York, 1990.
- C. Kittel, "Introduction to Solid State Physics," Wiley, New York, 1976.
- S. Kivelson, Phys. Rev. B 39, 259 (1989).
- Y. S. Kivshar and T. K. Soboleva, Phys. Rev. B 42, 2655 (1990).
- Y. S. Kivshar, B. A. Malomed, Z. Fei, and L. Vázquez, Phys. Rev. B 43, 1098 (1991).
- A. K. Klehe, A. K. Gangopadhyay, J. Diederichs, and J. S. Schilling, Physica C 213, 266 (1992).

- A. K. Klehe, J. S. Schilling, J. L. Wagner, and D. G. Hinks, Physica C 223, 313 (1994).
- B. M. Klein, L. L. Boyer, D. A. Papaconsantopoulos, and L. F. Mattheiss, Phys. Rev. B 18, 6411 (1978).
- B. M. Klein, L. L. Boyer, and D. A. Papaconstantopoulos, Phys. Rev. Lett. 42, 530 (1979).
- U. Klein, Phys. Rev. B 40, 6601 (1989); 41, 4819 D. J. Klein, T. G. Schmalz, M. A. García-Bach, R. Valenti, and T. P. Zivkovic, Phys. Rev. B 43, 719
- (1991).U. Klein and B. Pöttinger, Phys. Rev. B 44, 7704
- L. Kleion and A. Aharony, Phys. Rev. B 45, 9926 (1992).
- R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Phys. Rev. Lett. 68, 2394 (1992). A. Kleinhammes, C. L. Chang, W. G. Moulton, and
- L. R. Testardi, Phys. Rev. B 44, 2313 (1991). A. W. Kleinsasser and T. N. Jackson, Phys. Rev. B 42,
- 8716 (1990). R. A. Klemm and S. H. Liu, Phys. Rev. B 44, 7526
- (1991).
- R. A. Klemm, Phys. Rev. B 47, 14630 (1993).
- R. A. Klemm, "Layered Superconductors," Oxford, NY, in press. P. Knoll, C. Thomsen, M. Cardona, and P. Muru-
- garaj, Phys. Rev. B 42, 4842 (1990). F. Kober, H.-C. Ri, R. Gross, D. Koelle, R. P.
- Huebener, and A. Gupta, Phys. Rev. B 44, 11951 (1991).
- J. Kober, A. Gupta, P. Esquinazi, H. F. Braun, E. H. Brandt, Phys. Rev. Lett. 66, 2507 (1991). R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren,
- A. Gupta, and M. P. A. Fisher, Phys. Rev. Lett. 63, 1511 (1989).
- B. N. Kodess, Ph.D. thesis, Perm State University, Perm. Cited as Ref. 6.130 of Vonsovsky et al. (1982).
- V. G. Kogan, M. M. Fang, and S. Mitra, Phys. Rev. B 38, 11958 (1988).
- V. G. Kogan, Phys. Rev. B 38, 7049 (1988).
- V/G. Kogan and L. J. Campbell, Phys. Rev. Lett. 62, 1552 (1989).
- V. G. Kogan, N. Nakagawa, and S. L. Thiemann, Phys. Rev. B 42, 2631 (1990). S. Kohiki, T. Wada, S. Kawashima, H. Takagi, S.
- Uchida, and S. Tanaka, Phys. Rev. B 38, 7051, 8868 (1988).
- S. Kohiki, S.-I. Hatta, K. Setsune, K. Wasa, Y. Higashi, S. Fukushima, and Y. Gohshi, Appl. Phys. Lett. 56, 298 (1990). S. Koka and K. Shrivastava, Physica B 165-166, 1097
- (1990).
- S. Kolesnik, T. Skoskiewicz, J. Igalson, and Z. Korczak, Phys. Rev. B 45, 10158 (1992).
- T. Komeda, G. D. Waddill, P. J. Benning, and J. H. Weaver, Phys. Rev. B 43, 8713 (1991).

- M. Konczykowski, F. Rullier-Albenque, E. R. Yacoby, A. Shaulov, Y. Yeshurun, and P. Lejay, Phys. Rev. B 44, 7167 (1991).
- J. Konior, Phys. Rev. B 47, 14425 (1993).
- J. Konior, "Some Properties of Narrow Band Systems Coupled to Phonons," submitted for publication,
- R. Konno and K. Ueda, Phys. Rev. B 40, 4329 (1989).
- P. Koorevaar, J. Aarts, P. Berghuis, and P. H. Kes. Phys. Rev. B 42, 1004 (1990).
- Y. Kopelevich, A. Gupta, P. Esquinazi, C.-P. Heidmann, and H. Müller, Physica C 183, 345 (1991). P. Kopietz, Phys. Rev. Lett. 70, 3123 (1993).
- A. E. Koshelev, G. Yu. Logvenov, V. A. Larkin, V. V. Ryazanov, and K. Ya. Soifer, Physica C 177, 129
- A. A. Koshta, Yu. N. Shvachko, A. A. Romanyukha, and V. V. Ustinov, Zh. Eksp. Teor. Fiz. 103, 629
- (1993); Transl. Sov. Phys. JETP 76, 314 (1993). I. Z. Kostadinov, V. G. Hadjiev, J. Tihov, M. Mateev, M. Mikhov, O. Petrov, V. Popov, E. Dinolova, Ts. Zheleva, G. Tyuliev, and V. Kojouharov, Physica
- C 156, 427 (1988). J. M. Kosterlitz and D. Thouless, J. Phys. C 5, L124 (1972); 6, 1181 (1973).
- N. Kosugi, Y. Tokura, H. Takagi and S. Uchida, Phys. Rev. B 41, 131 (1990).
- V. Kovachev, "Energy Dissipation in Superconducting Materials," Clarendon, Oxford (1991).
- Y. Koyama and M. Ishimaru, Phys. Rev. B 45, 9966 (1992)
- H. Krakauer, W. E. Pickett, D. A. Papaconstantopoulos, and L. L. Boyer, Jpn. J. Appl. Phys. 26, Suppl. 26-3. (1987)
- H. Krakauer, W. E. Pickett and R. E. Cohen, J. Supercond. 1, 111 (1988).
- H. Krakauer and W. E. Pickett, Phys. Rev. Lett. 60, 1665 (1988).
- V. M. Krasnov, V. A. Larkin, and V. V. Ryazanov, Physica C 174, 440 (1991).
- V. M. Krasnov, Physica C 190, 357 (1992).
- N. M. Kreines and V. I. Kudinov, Mod. Phys. Lett. B 6, 6 (1992).
- V. Z. Kresin and S. A. Wolf, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 287, Plenum, New York, 1987.
- V. Z. Kresin, and S. A. Wolf, "Fundamentals of Superconductivity," Plenum, New York, 1990.
- V. Z. Kresin and W. A. Little (Eds.), "Organic Superconductivity," Plenum, New York, 1990.
- V. Z. Kresin, H. Morawitz, and S. A. Wolf, "Mechanisms of Conventional and High Te Superconductivity," Oxford Univ. Press, Oxford, 1993.
- A. Krimmel, P. Fischer, B. Roessli, H. Maletta, C. Geibel, C. Schank, A. Grauel, A. Loidl, and F. Steglich, Z. Phys. B 86, 161 (1992).
- G. Kriza, G. Quirion, O. Traetteberg, W. Kang, and D. Jérome, Phys. Rev. Lett. 66, 1922 (1991).

A.

H

RI

E. I L. F 1

H. (٨ M di 10

R. Kı R. (15 M. L.

(19 J. Kul Ma

A. D. and A. D. K and

A. D. K and H. Kun

Phys G. R. K (1980

N. Kum. 5001 M. N. Kı (1991

P. J. Kun J. Y. (Rev 1

S. Kuriha E. Z. Kun S. Shu.

E. Z. Kurı Int. J.

E. Z. Kur Phys. B E. Z. Kun

Phys. 5, H. Kuroda Okawa,

G. Saito A. Kussmau P. M. Te

A. Kussmau Gupta, P

A. L. Kuzem Correlate

- A. Krol, Z. H. Ming, Y. H. Kao, N. Nücker, G. Roth, J. Fink, G. C. Smith, K. T. Park, J. Yu, A. J. Freeman, A. Erband, G. Müller-Vogt, J. Karpinski, E. Kaldis, and K. Schönmann, Phys. Rev. B 45, 2581 (1992).
- H. W. Kroto and D. R. M. Walton, in "The Fullerenes: New Horizons for the Chemistry, Physics, and Astrophysics of Carbon," Cambridge Univ. Press, New York, 1993.
- E. Krüger, Phys. Stat. Sol. B 156, 345 (1989).
- L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer and F. Holtzberg, Phys. Rev. B 39, 2936 (1989).
- H. C. Ku, H. D. Yang, R. W. McCallum, M. A. Noack, P. Klavins, R. N. Shelton, and A. R. Moodenbaugh, in "High Temperature Superconductors" (U. Gubser and M. Schluter, Eds.), p. 177, Mater. Res. Soc., Pittsburgh, 1987.
- R. Kuentzler, C. Hornick, Y. Dossmann, S. Wegner, R. El Farsi, and M. Drillon, Physica C 184, 316 (1991).
- M. L. Kulic and R. Zeyher, Phys. Rev. B 49, 4395 (1994).
- J. Kulik, Y. Y. Xue, Y. Y. Sun, and M. Bonvalot, J. Mater. Res. 5, 1625 (1990).
- A. D. Kulkarni, J. Prade, F. W. de Wette, W. Kress, and U. Schröder, Phys. Rev. B 40, 2642 (1989).
 A. D. Kulkarni, F. W. de Wette, J. Prade, U. Schröder,
- and W. Kress, Phys. Rev. B 41, 6409 (1990).
- A. D. Kulkarni, F. W. de Wette, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 43, 5451 (1991).
- H. Kumakura, M. Uehara, and K. Togano, Appl. Phys. Lett. 51, 1557 (1987).
- G. R. Kumar and P. Chaddah, Phys. Rev. B 39, 4704 (1989).
- N. Kumar and A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992)
- 5001 (1992). M. N. Kunchur and S. J. Poon, Phys. Rev. B 43, 2916
- (1991).
 P. J. Kung, M. P. Maley, M. E. McHenry, J. O. Willis,
 J. Y. Coulter, M. Murakami, and S. Tanaka, Phys.
 Rev. B 46, 6427 (1992).
- S. Kurihara, Phys. Rev. B 39, 6600 (1989).
- E. Z. Kurmaev, V. P. Belash, S. A. Nemnonov, and A. S. Shulakov, Phys. Stat. Solid B 61, 365 (1974).
- E. Z. Kurmaev, V. I. Nefedov, and L. D. Finkelstein, Int. J. Mod. Phys. B 2, 393 (1988).
- E. Z. Kurmaev and L. D. Finkelstein, Int. J. Mod.
- Phys. B 3, 973 (1989).
 E. Z. Kurmaev and L. D. Finkelstein, Int. J. Mod.
- Phys. 5, 1097 (1991).
 H. Kuroda, K. Yakushi, H. Tasima, A. Ugawa, Y. Okawa, A. Kobayashi, R. Kato, H. Kobayashi, and G. Saito, Synth. Metals A 27, 491 (1988).
- A. Kussmaul, J. S. Moodera, G. M. Roesler, Jr., and P. M. Tedrow, Phys. Rev. B 41, 842 (1990).
- A. Kussmaul, J. S. Moodera, P. M. Tedrow, and A. Gupta, Physica C 177, 415 (1991).
- A. L. Kuzemsky, in Int. Conf. Supercond. and Strongly Correlated Electron Systems, Amalfi, Italy, 1993.

- E. Kuzmann, Z. Homonnay, A. Vértes, M. Gál, K. Torkos, B. Csákvári, G. K. Solymos, G. Horváth, J. Bánkuti, I. Kirschner, and L. Korecz, Phys. Rev. B 39, 328 (1989).
- L. S. Kuzmin, P. Delsing, T. Claeson, and K. Likharev, Phys. Rev. Lett. 62, 2539 (1989).
- L. S. Kuzmin, Yu. V. Nazarov, D. B. Haviland, P. Delsing, and T. Claeson, Phys. Rev. Lett. 67, 1161 (1991).
- L. S. Kuzmin and D. Haviland, Phys. Rev. Lett. 67, 2890 (1991).
- M. Kvale and S. E. Hebboul, Phys. Rev. B 43, 3720 (1991).
 G. H. Kwei, J. A. Goldstone, A. C. Lawson, Jr., J. D.
- O. H. Kwei, J. A. Goldstone, A. C. Lawson, Jr., J. D. Thompson, and A. Williams, Phys. Rev. B 39, 7378 (1989).
- G. H. Kwei, R. B. Von Dreele, S.-W. Cheong, Z. Fisk, and J. D. Thompson, Phys. B 41, 1889 (1990).
- W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, Y. Zheng, B. Dabroski, and D. G. Hinks, Phys. Rev. B 40, 9400 (1989).
- W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, and J. Z. Liu, Phys. Rev. Lett. 64, 966 (1990a).
- W. K. Kwok, U. Welp, K. D. Carlson, G. W. Crabtree, K. G. Vandervoort, H. H. Wang, A. M. Kini, J. M. Williams, D. L. Stupka, L. K. Montgomery, and J. E. Thompson, Phys. Rev. B 42, 8686 (1990b).
- H. S. Kwok, J. P. Zheng, and S. Y. Dong, Phys. Rev. B 43, 6270 (1991).
- Y. K. Kwong, K. Lin, M. Park, M. S. Isaacson, and J. M. Parpia, Phys. Rev. B 45, 9850 (1992).
- J. Labbé, Phys. Rev. 158, 647, 655 (1967a).
 J. Labbé, S. Barisic, and J. Friedel, Phys. Rev. Lett.
- 19, 1039 (1967b).

 B. M. Lairean, S. V. Starifford and J. C. D.
- B. M. Lairson, S. K. Streiffer, and J. C. Bravman, Phys. Rev. B 42, 10067 (1990a).
- B. M. Lairson, J. Z. Sun, J. C. Bravman, and T. H. Geballe, Phys. Rev. B 42, 1008 (1990b).
 B. M. Lairson, J. Z. Sun, T. H. Geballe, M. R.
- Beasley, and J. C. Bravman, Phys. Rev. B 43, 10405 (1991).
- R. Lal and S. K. Joshi, Phys. Rev. B 45, 361 (1992).
 Q. H. Lam, Y. Kim, and C. D. Jeffries, Phys. Rev. B 42, 4846 (1990).
- M. D. Lan, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 44, 233 (1991).
- L. D. Landau, Sov. Phys. JETP 3, 920 (1957a); 5, 101 (1957b).
- C. T. Lane, "Superfluid Physics," Chap. 9, McGraw-Hill, New York, 1962.
- M. Lang, N. Toyota, T. Sasaki, and H. Sato, Phys. Rev. Lett. 69, 1443 (1992a); Phys. Rev. B 46, 5822 (1992b).
- J. Langen, M. Veit, M. Galffy, H. D. Jostarndt, A. Erle, S. Blumenröder, H. Schmidt, and E. Zirngiebl, Solid State Commun. 65, 973 (1988).
- D. N. Langenberg, D. J. Scalapino, and B. N. Taylor,
 Sci. Amer. 214, 30 (May 1966).

- W. Lanping, H. Jian, and W. Guowen, Phys. Rev. B 40, 10954 (1989).
- D. C. Larbalestier, M. Daeumling, X. Cai, J. Suentjens, J. McKinnell, D. Hampshire, P. Lee, C. Meingast, T. Willis, H. Muller, R. D. Ray, R. G. Dillenburg, E. E. Hellstrom, and R. Joynt, J. Appl. Phys. 62, 3308 (1987a).
- D. C. Larbalestier, M. Daeumling, P. J. Lee, T. F. Kelly, J. Seuntjens, C. Meingast, X. Cai, J. McKinnell, R. D. Ray, R. G. Dillenburg, and E. E.
- Hellstrom, Cryogenics 27, 411 (1987b). A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 38, 854 (1974).
- A. Larsen, H. D. Jensen, and J. Mygind, Phys. Rev. B 43, 10179 (1991).
- R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988a).
- R. B. Laughlin, Science 242, 525 (1988b).
- W. E. Lawrence and S. Doniach, in "Proc. 12th Int. Conf. Low Temp. Phys. Kyoto, 1970" (E. Kanda, Ed.), p. 361. Keigaku, Tokyo, 1971.
- L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, Y. J. Uemura, J. H. Brewer, T. M. Riseman, C. E. Stronach, G. Saito, H. Yamochi, H. H. Wang, A. M. Kini, K. D. Carlson, and J. M. Williams. Phys. Rev. Lett. 68, 1923 (1992).
- M. A. R. LeBlanc, D. LeBlanc, A. Golebiowski, and G. Fillion, Phys. Rev. Lett. 66, 3309 (1991).
- D. LeBlanc and M. A. R. LeBlanc, Phys. Rev. B 45, 5443 (1992).
- K. Le Dang, J. P. Renard, P. Veillet, E. Vélu, J. P. Burger, J. N. Daou, and Y. Loreaux, Phys. Rev. B 40, 11291 (1989).
- E. Lederman, L. Wu, M. L. denBoer, P. A. van Aken, W. F. Müller, and S. Horn, Phys. Rev. B 44, 2320 (1991).
- T.-K. Lee, J. L. Birman, and S. J. Williamson, Phys. Rev. Lett. 39, 839 (1977a); Phys. Lett. A 64, 89
- (1977b). T.-K. Lee and J. L. Birman, Phys. Rev. B 17, 4931
- (1978).M. Lee, M. Yudkowsky, W. P. Halperin, J. Thiel, S.-J. Hwu, and K. R. Poeppelmeier, Phys. Rev. B 36,
- 2378 (1987). M. Lee, Y.-Q. Song, W. P. Halperin, L. M. Tonge, T. J. Marks, H. O. Marcy, and C. R. Kannewurf,
- Phys. Rev. B 40, 817 (1989). S. J. Lee and J. B. Ketterson, Phys. Rev. Lett. 64,
- 3078 (1990). S.-I. Lee, Y. H. Jeong, K. H. Han, Z. S. Lim, Y. S.
- Song, and Y. W. Park, Phys. Rev. B 41, 2623 (1990).W. C. Lee and D. C. Johnston, Phys. Rev. B 41, 1904
- H. C. Lee, R. S. Newrock, D. B. Mast, S. E. Hebboul, J. C. Garland, and C. J. Lobb, Phys. Rev. 44, 921
- W. C. Lee and D. M. Ginsberg, Phys. Rev. B 44, 2815 (1991).
- W. C. Lee, J. H. Cho, and D. C. Johnston, Phys. Rev. B 43, 457 (1991).

- T. R. Lemberger, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 6, World Scientific, Singapore.
- S. Lenck, S. Wermbter, and L. Tewordt, J. Low Temp. Phys. 80, 269 (1990).
- S. Lenck and J. P. Carbotte, Phys. Rev. B 49, 4176 (1994)
- H. Lengfellner, A. Schnellbögl, J. Betz, W. Prettl, and K. F. Renk, Phys. Rev. B 42, 6264 (1990).
- H. Lengfellner, A. Schnelbögl, J. Betz, K. Renk, and W. Prettl, Appl. Phys. Lett. 60, 1991 (1991a). H. Lengfellner and A. Schnellbögl, Physica C 174. 373 (1991).
- H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, Appl. Phys. Lett. 60. 501 (1992).
- Y. Le Page, T. Siegrist, S. A. Sunshine, L. F. Schneemeyer, D. W. Murphy, S. M. Zahurak, J. V. Waszczak, W. R. McKinnon, J. M. Tarascon, G. W. Hull, and L. H. Greene, Phys. Rev. B 36, 3617
- F. Lera, R. Navarro, C. Rillo, L. A. Angurel, A. Badia, and J. Bartolome, J. Magn. Mag. Mater. 104-107, 615 (1992).
- Ph. Lerch, Ch. Leemann, R. Theron, and P. Martinoli, Phys. Rev. B 41, 11579 (1990).
- J. Lesueur, L. H. Greene, W. Feldmann, and A. Inam, Physica C 191, 325 (1992).
- B. G. Levi, Phys. Today 19 (May 1988), p. 19.
- G. Levin, Phys. Rev. B 47, 14634 (1993).
- L. Levitov, Phys. Rev. Lett. 66, 224 (1991).
- J. A. Lewis, C. E. Platt, M. Wegmann, M. Teepe, J. L. Wagner, and D. G. Hinks, Phys. Rev. B 48, 7739 (1993).
- J. Q. Li, C. Chen, D. Y. Yang, F. H. Li, Y. S. Yao, Z. Y. Ran, W. K. Wang, and Z. X. Zhao, Z. Phys. B. 74, 165 (1989).
- J. Q. Li, X. X. Xi, X. D. Wu, A. Inam, S. Vadlamannati, W. L. McLean, T. Venkatesan, R. Ramesh, D. M. Hwang, J. A. Martinez, and L. Nazar, Phys. Rev. Lett. 64, 3086 (1990).
- Z.-Z. Li and Y. Qiu, Phys. Rev. B 43, 12906 (1991). Y.-H. Li and S. Teitel, Phys. Rev. Lett. 66, 3301 (1991).
- C. Li, M. Pompa, S. D. Longa, and A. Bianconi, Physica C 178, 421 (1991).
- Y .- H. Li and S. Teitel, Phys. Rev. B 45, 5718 (1992). Q. Li, M. Suenaga, T. Hikata, and K. Sato, Phys. Rev. B 46, 5857 (1992).
- Q. Li, M. Suenaga, T. Kimura, and K. Kishio, Phys. Rev. 47, 11384 (1993).
- R. L. Lichti, D. W. Cooke, and C. Boekema, Phys. Rev. B 43, 1154 (1991).
- A. I. Liechtenstein, I. I. Mazin, C. O. Rodriguez, O. Jepsen, O. K. Andersen, and M. Methfessel, Phys. Rev. B 44, 5388 (1991).
- K. K. Likharev, "Dynamics of Josephson Junctions and Circuits," Gordon & Breach, New York, 1986.

RΙ

Z.

S. J. . P.

F.

W. Y. 1

J.-X J.-Z

J.Z

L. L R. L

S J R. I

L. Li C. J. G. Y

R L W L F. Lo

Α P. Lo co F. Lo

19 J. M. 6,

C.-K. D. Da

Y. C.-K. I Ka.

B. anc

C.-K. I De B.

and

- L. Lilly, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 65, 1379 (1990).
- Z. S. Lim, K. H. Han, S.-I. Lee, Y. H. Jeong, S. H. Salk, Y. S. Song, and Y. W. Park, Phys. Rev. B 40, 7310 (1989).
- S.-Y. Lin, L. Lu, H.-M. Duan, B.-H. Ma, and D.-L. Zhang, Int. J. Mod. Phys. B 3, 409 (1989).
- J. J. Lin, Phys. Rev. B 44, 789 (1991).
- P. A. P. Lindberg, I. Lindau, and W. E. Spicer, Phys. Rev. B 40, 6822 (1989).
- F. Lindemann, Phys. Z. 11, 609 (1910).
- A. P. Litvinchuk, C. Thomsen, and M. Cardona, in "Physical Properties of High Temperature Superconductors," Vol. 4, Chap. 6, World Scientific, Singapore, 1994.
- W. A. Little and R. D. Parks, Phys. Rev. Lett. 9, 9 (1962).
- Y. Liu, J. Y. Lee, M. J. Sumner, R. Sooryakumar, and T. R. Lemberger, Phys. Rev. B 42, 10090 (1990).
 J.-X. Liu, J.-C. Wan, A. M. Goldman, Y. C. Chang.
- and P. Z. Jiang, Phys. Rev. Lett. 67, 2195 (1991). J.-Z. Liu, Y. X. Jia, R. N. Shelton, and M. J. Fluss,
- J. Z. Liu, T. X. Jia, R. N. Sieholi, and M. J. Piuss,
 Phys. Rev. Lett. 66, 1354 (1991).
 J. Z. Liu, L. Zhang, M. D. Lan, R. N. Shelton, and M.
- J. Fluss, Phys. Rev. B 46, 9123 (1992).
 L. Liu, J. S. Kouvel, and T. O. Brun, Phys. Rev. B 43,
- 7859 (1991).
 R. Liu, B. W. Veal, A. P. Paulikas, J. W. Downey, H.
 Shi, C. G. Olson, C. Gu, A. J. Arko, and J. J.
- Joyce, Phys. Rev. B 45, 5614 (1992).
 R. Liu, M. V. Klein, P. D. Han, and D. A. Payne.
- Phys. Rev. B 45, 7392 (1992).
 L. Liu, J. S. Kouvel, and T. O. Brun, Phys. Rev. B 45, 3054 (1992).
- C. J. Lobb, Phys. Rev. 36, 3930 (1987).
- G. Yu. Logvenov, V. V. Ryazanov, A. V. Ustinov, and R. P. Huebener, Physica C 175, 179 (1991).
- L. W. Lombardo, D. B. Mitzi, A. Kapitulnik, and A. Leone, Phys. Rev. B 46, 5615 (1992).
- F. London and H. London, Proc. Roy. Soc. (London) A 141, 71 (1935).
- P. London, "Une Conception Nouvelle de la Superconductibilité," Hermann, Paris, 1937.
- F. London, "Superfluids," Wiley, New York, Vol. 1,
- 1950; Vol. 2, 1954, Dover, New York, 1961. J. M. Longo and P. M. Raccah, J. Solid State Chem.
- 6, 526 (1973).
 C.-K. Loong, P. Vashishta, R. K. Kalia, M. H. Degani,
 D. L. Price, D. J. Jorgensen, D. G. Hinks, B. Dabrowski, A. W. Mitchell, D. R. Richards, and
- Y. Zheng, Phys. Rev. Lett. 62, 2628 (1989).
 C.-K. Loong, D. G. Hinks, P. Vashishta, W. Jin, R. K. Kalia, M. H. Degani, D. L. Price, J. D. Jorgensen, B. Dabrowski, A. W. Mitchell, D. R. Richards, and Y. Zheng, Phys. Rev. Lett. 66, 3217 (1991).
- C-K. Loong, P. Vashishta, R. K. Kalia, W. Jin, M. H. Degani, D. G. Hinks, D. L. Price, J. D. Jorgensen, B. Dabrowski, A. W. Mitchell, D. R. Richards, and Y. Zheng, Phys. Rev. B 45, 8052 (1992).

- Y. Lou, X. Lu, G. H. Dai, W. Y. Ching, Y.-N. Xu, M.-Z. Huang, P. K. Tseng, Y. C. Jean, R. L. Meng, P. H. Hor, and C. W. Chu, Phys. Rev. B 46, 2644 (1992).
- A. J. Lowe, S. Regan, and M. A. Howson, Phys. Rev. B 44, 9757 (1991).
- D. H. Lowndes, D. P. Norton, and J. D. Budai, Phys. Rev. Lett. 65, 1160 (1990).
- J. P. Lu, K. Arya, and J. L. Birman, Phys. Rev. B 40, 7372 (1989).
- J.-T. Lue and J. S. Sheng, Phys. Rev. B 47, 5469 (1993).
- G. M. Luke, L. P. Le, B. J. Sternlieb, Y. J. Uemura, J. H. Brewer, R. Kadono, R. F. Kiefi, S. R. Kreitzman, T. M. Riseman, C. E. Stronach, M. R. Davis, S. Uchida, H. Takagi, Y. Tokura, Y. Hidaka, T. Murakami, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, E. A. Early, J. T. Markert, M. B. Maple, and C. L. Seaman, Phys. Rev. B 42, 7981 (1990).
- S. Lupi, P. Calvani, M. Capizzi, P. Maselli, W. Sadowski, and E. Walker, Phys. Rev. B 45, 12470 (1992).
- J. Luzuriaga, M.-O. Andrè, and W. Benoit, Phys. Rev. B 45, 12492 (1992).
- J. W. Lynn, T. W. Clinton, W.-H. Li, R. W. Erwin, J. Z. Liu, K. Vandervoort, and R. N. Shelton, Phys. Rev. Lett. 63, 2606 (1989).
- J. W. Lynn, (Ed.), "High Temperature Superconductivity," Springer-Verlag, Berlin, 1990a.
- J. W. Lynn, "High Temperature Superconductivity," Chap. 8, Springer-Verlag, Berlin, 1990b.
- J. W. Lynn, I. W. Sumarlin, S. Skanthakumar, W.-H. Li, R. N. Shelton, J. L. Peng, Z. Fisk, and S.-W. Cheong, Phys. Rev. B 41, 2569 (1990).
- J. W. Lynn, J. Alloys Compounds 181, 419 (1992).
 E. A. Lynton, "Superconductivity," Methuen, Lon-
- don, 1962.

 D. K. C. MacDonald, "Thermoelectricity, An Introduction To the Principles," Wiley, New York.
- 1962.
 H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano,
 Jpn. J. Appl. Phys. Lett. 27, 209 (1988).
- A. Maeda, T. Shibauchi, N. Kondo, K. Uchinokura, and M. Kobayashi, Phys. Rev. B 46, 14234 (1992).
- Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature 328, 512 (1987).
- G. D. Mahan, Phys. Rev. B 40, 11317 (1989).
- G. D. Mahan, Phys. Rev. B 48, 16557 (1993).
- F. Mahini, F. S. Razavi, and Z. Altounian, Phys. Rev. B 39, 4677 (1989).
- R. Mailfert, R. W. Batterman, and J. J. Hanak, Phys. Lett. A 24, 315 (1967).
- A. Majhofer, L. Mankiewicz, and J. Skalski, Phys. Rev. B 42, 1022 (1990).
- K. Maki, Prog. Theoret. Phys. 39, 897 (1968).
- K. Maki, Phys. Rev. B 43, 1252 (1991); erratum, 43, 13685 (1991).

- H. Maletta, A. P. Malozemoff, D. C. Cronemeyer, C. C. Tsuei, R. L. Greene, J. G. Bednorz, and K. A. Müller, Solid State Commun. 62, 323 (1987).
- M. P. Maley, J. Appl. Phys. 70, 6189 (1991). M. P. Maley, P. J. Kung, J. Y. Coulter, W. L. Carter,
- G. N. Riley, and M. E. McHenry, Phys. Rev. B 45, 7566 (1992).
- M. Mali, D. Brinkmann, L. Pauli, J. Roos, H. Zimmermann, and J. Hulliger, Phys. Lett. A 124, 112
- S. K. Malik, C. V. Tomy, D. T. Adroja, R. Nagarajan, R. Prasad, and N. C. Soni, Solid State Commun. 66(10), 1097 (1988).
- B. A. Malomed, Phys. Rev. 39, 8018 (1989).
- B. A. Malomed, Phys. Rev. B 41, 2616 (1990).
- B. A. Malomed and A. Weber, Phys. Rev. B 44, 875
- B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. B 45, 12435 (1992).
- A. P. Malozemoff, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 3, World Scientific, New York, 1989.
- P. Mandal, A. Poddar, A. N. Das, B. Ghosh and P. Choudhury, Phys. Rev. B 40, 730 (1989).
- V. Manivannan, J. Gopalakrishnan, and C. N. R. Rao, Phys. Rev. B 43, 8686 (1991).
- Y. Maniwa, H. Sato, K. Mizoguchi, and K. Kune, Jpn. J. Appl. Phys. 29, 268 (1990).
- Y. Maniwa, T. Mituhashi, K. Mizoguchi, and K. Kume, Physica C 175, 401 (1991a).
- Y. Maniwa, S. Sato, T. Mituhaski, K. Mizoguchi, and K. Kume, Physica C 185-189, 1761 (1991b). M. B. Maple, J. W. Chen, S. E. Lambert, Z. Fisk, J. L.
- Smith, and H. R. Ott, cited in Stewart (1984).
- M. C. Marchetti and D. R. Nelson, Phys. Rev. B 41, 1910 (1990).
- M. C. Marchetti, Phys. Rev. B 43, 8012 (1991).
- R. Marcon, R. Fastampa, M. Giura, C. Matacotta, Phys. Rev. B 39, 2796 (1989). R. Marcon, E. Silva, R. Fastampa, and M. Giura,
- Phys. Rev. B 46, 3612 (1992). J. Marcus, C. Escribe-Filippini, C. Schlenker, R.
- Buder, J. Devenyi, and P. L. Reydet, Solid State Commun. 63, 129 (1987).
- M. Marder, N. Papanicolaou, and G. C. Psaltakis, Phys. Rev. B 41, 6920 (1990).
- L. Maritato, A. M. Cucolo, R. Vaglio, C. Noce, J. L. Makous, and C. M. Falco, Phys. Rev. B 38, 12917 (1988).
- J. T. Markert, T. W. Noh, S. E. Russek, and R. M. Cotts, Solid State Commun. 63, 847 (1987).
- J. T. Markert, Y. Dalichaouch, and M. B. Maple, in "Physical Properties of High Temperature Super Conductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 6, World Scientific, Singapore, 1989.
- R. S. Markiewicz, Physica C 177, 171 (1991).
- R. S. Markiewicz, Int. J. Mod. Phys. B 5, 2037 (1991).

- P. Marsh, R. M. Fleming, M. L. Mandich, A. M. DeSantolo, J. Kwo, M. Hong, and L. J. Martinez-Miranda, Nature 334, 141 (1988).
- C. D. Marshall, I. M. Fishman, R. C. Dorfman, C. B. Eom, and M. D. Fayer, Phys. Rev. B 45, 10009
- F. Marsiglio and J. E. Hirsch, Phys. Rev. B 44, 11960 (1991).
- F. Marsiglio, Phys. Rev. B 44, 5373 (1991).
- F. Marsiglio, Phys. Rev. B 45, 956 (1992).
- F. Marsiglio and J. E. Hirsch, Phys. Rev. B 49, 1366 (1994).
- S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 60, 2194 (1988).
- S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Copper, Phys. Rev. Lett. 62, 677, (1989); see 63, 582 (1989) for comment by P. C. E. Stamp and a reply by the authors.
- Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 846 (1990).
- S. Martin and A. F. Hebard, Phys. Rev. B 43, 6253 (1991)
- M. Martin, C. Kendziora, L. Mihaly, and R. Lefferts, Phys. Rev. B 46, 5760 (1992).
- M. C. Martin, D. Koller, and L. Mihaly, Phys. Rev. B 47, 14607 (1993).
- T. P. Martin, U. Näher, H. Schaber, and U. Zimmermann, Phys. Rev. Lett. 70, 3079 (1993).
- C. Martin, M. Hervieu, M. Huvé, C. Michel, A. Maignan, G. van Tendeloo, and B. Raveau, Physica C 222, 19 (1994).
- J. A. Martindale, S. E. Barrett, C. A. Klug, K. E. O'Hara, S. M. DeSoto, C. P. Slichter, T. A. Friedmann, and D. M. Ginsberg, Phys. Rev. Lett. 68,
- 702 (1992). J. L. Martins and N. Troullier, Phys. Rev. B 46, 1766 (1992)
- A. Masaki, H. Sato, S.-I. Uchida, K. Kitazawa, S. Tanaka, and K. Inoue, Jpn. J. Appl. Phys. 26, 405
- H. Mathias, W. Moulton, H. K. Ng, S. J. Pan, K. K. Pan, L. H. Peirce, L. R. Testardi, and R. J. Kennedy, Phys. Rev. B 36, 2411 (1987).
- P. Mathieu and Y. Simon, Europhys. Lett. 5, 67 (1988).
- I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, and T. Kawai, Phys. Rev. B 45, 7414 (1992).
- Y. Matsuda, N. P. Ong, Y. F. Yan, J. M. Harris, and J. B. Peterson, Phys. Rev. B 49, 4380 (1994). Y. Matsuda, T. Hirai, S. Komiyama, T. Terashima, Y.
- Bando, K. Iijima, K. Yamamoto, and K. Hirata, Phys. Rev. B 40, 5176 (1989).
- Y. Matsumoto, M. Katada, and T. Nishida, Physica C 185, 1229 (1991).
- T. Matsuura and K. Miyake, Jpn. J. Appl. Phys. 26, L407 (1987).

I F E Ľ E

М W. 1 w ı

T. M G. A 4. N. I. D. M an

W. M 21 K. M sci R. L.

Ch 307 R. L. 1 Y.

216

1366

. F.

nerlaiga C . E.

ried-68, 1766

ı, S. 405 :. K.

t. J. , 67

hita. 7414 and

i, Y. rata,

:a C 26.

- H. Matsuyama, T. Takahashi, H. Katayama-Yoshida, Y. Okabe, H. Takagi, and S. Uchida, Phys. Rev. B 40, 2658 (1989).
- L. F. Mattheiss, Phys. Rev. B 1, 373 (1970). L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227 (1983).
- L. F. Mattheiss, Jpn. J. Appl. Phys. 24(2), 6 (1985). L. F. Mattheiss and D. R. Hamann, Solid State Com-
- mun. 63, 395 (1987). L. F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).
- L. F. Mattheiss, E. M. Gyrogy, and D. W. Johnson.
- Jr., Phys. Rev. B 37, 3745 (1988). L. F. Mattheiss and D. R. Hamann, Phys. Rev. Lett. 60, 2681 (1988).
- L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 39, 4780 (1989).
- L. F. Mattheiss, Phys. Rev. B 42, 359 (1990).
- B. Matthias, Phys. Rev. 92, 874 (1953). B. Matthias, Phys. Rev. 97, 74 (1955).
- D. C. Mattis and M. Molina, Phys. Rev. B 44, 12565 (1991).
- E. Maxwell, Phys. Rev. 78, 477 (1950).
- I. I. Mazin, O. Jepsen, O. K. Andersen, A. I. Liechtenstein, S. N. Rashkeev, and Y. A. Uspenskii, Phys. Rev. B 45, 5103 (1992).
- K. F. McCarty, D. S. Ginley, D. R. Boehme, R. J. Baughman, and B. Morosin, Solid State Commun. 68, 77 (1988).
- K. F. McCarty, B. Morosin, D. S. Ginley, and D. R. Boehme, Physica C 157, 135 (1989).
- K. F. McCarty, J. Z. Liu, R. N. Shelton, and H. B. Radousky, Phys. Rev. B 41, 8792 (1990a); 42, 9973
- K. F. McCarty, H. B. Radousky, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 43, 13751 (1991).
- K. A. McGreer, J.-C. Wan, N. Anand, and A. M. Goldman, Phys. Rev. B 39, 12260 (1989).
- M. E. McHenry, S. Simizu, H. Lessure, M. P. Maley, J. Y. Coulter, I. Tanaka, and H. Kojima, Phys. Rev. B 44, 7614 (1991).
- W. R. McKinnon, J. R. Morton, K. F. Preston, and L. S. Selwyn, Solid State Commun. 65, 855 (1988).
- W. L. McMillan, Phys. Rev. 167, 331 (1968).
- T. McMullen, Phys. Rev. B 41, 877 (1990).
- G. A. Medina and M. D. N. Regueiro, Phys. Rev. B 42, 8073 (1990).
- N. I. Medvedeva, S. A. Turzhevsky, V. A. Gubanov, and A. J. Freeman, Phys. Rev. B 48, 16061 (1993).
- D. Mehl, A. R. Köymen, K. O. Jensen, F. Gotwald, and A. Weiss, Phys. Rev. B 41, 799 (1990).
- W. Meissner and R. Ochsenfeld, Naturwissenschaft 21, 787 (1933).
- K. Mendelssohn, "Cryophysics," Chap. 6, Interscience, New York, 1960.
- R. L. Meng, Y. Y. Sun, J. Kulik, Z. J. Huang, F. Chen, Y. Y. Xue, and C. W. Chu, Physica C 214, 307 (1993a).
- R. L. Meng, L. Beauvais, X. N. Zhang, Z. J. Huang, Y. Y. Sun, Y. Y. Zue, and C. W. Chu, Physica C 216, 21 (1993b).

- M. Merkel, M. Knupfer, M. S. Golden, J. Fink, R. Seemann, and R. L. Johnson, Phys. Rev. B 47, 11470 (1993).
- R. Meservey and B. B. Schwartz, in "Superconductivity" (R. D. Parks, Ed.), Vol. 1, Chap. 3, Dekker, New York, 1969.
- J. Metzger, T. Weber, W. H. Fietz, K. Grube, H. A. Ludwig, T. Wolf, and H. Wühl, Physica C, 214, 371 (1993).
- H. M. Meyer III, D. M. Hill, T. J. Wagener, Y. Gao, J. H. Weaver, D. W. Capone II, and K. C. Goretta, Phys. Rev. B 38, 6500 (1988).
- H. M. Meyer III and J. H. Weaver, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 6, World Scientific, Singapore, 1990.
- P. F. Miceli, J. M. Tarascon, L. H. Greene, P. Barboux, M. Giroud, D. A. Neumann, J. J. Rhyne, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 38, 9209 (1988).
- C. Michel and B. Raveau, Rev. Chim. Miner. 21, 407
- C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost, and B. Raveau, Z. Phys. B. Cond. Matt. 68, 421 (1987).
- R. Micnas, J. Ranninger, and S. Robaszkiewicz, Phys. Rev. B 36, 4051 (1987).
- R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
- A. R. Miedema, J. Phys. (Paris) F3, 1803 (1973).
- A. R. Miedema, J. Phys. (Paris) F4, 120 (1974). F. Mila, Europhys. Lett. 8, 555 (1989).
- F. Mila and T. M. Rice, Physica C 157, 561 (1989).
- S. L. Miller, K. R. Biagi, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 31, 2684 (1985).
- J. H. Miller, Jr., G. H. Gunaratne, J. Huang, and T. D. Golding, Appl. Phys. Lett. 59, 3330 (1991).
- A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).
- A. J. Millis and S. N. Coppersmith, Phys. Rev. B 43, 13770 (1991).
- A. J. Millis and H. Monien, Phys. Rev. B 45, 3059
- L. Mingzhu, T. Weihua, M. Xianren, L. Zheniin, H. Wei, T. Qingyun, R. Yanru, and L. Zhenxing, Phys. Rev. B 41, 2517 (1990).
- P. Minnhagen and P. Olsson, Phys. Rev. Lett. 67, 1039 (1991).
- P. Minnhagen and P. Olsson, Phys. Rev. B 45, 5722
- N. Missert and M. R. Beasley, Phys. Rev. Lett. 63, 672 (1989).
- M. G. Mitch, S. J. Chase, and J. S. Lannin, Phys. Rev. Lett. 68, 883 (1992).
- L. Miu, A. Crisan, S. Popa, V. Sandu, and L. Nistor, J. Supercond. 3, 391 (1990).
- L. Miu, Phys. Rev. B 45, 8142 (1992).
- M. Miyazaki, J. Inoue, and S. Maekawa, Phys. Rev. B 40, 6611 (1989).

- P. Mocaër, L. Tessler, M. Laguës, F. Laher-Lacour, C. Lacour, U. Dai, N. Hess, and G. Deutscher, Physica C 185-189, 2505 (1991).
- M. A. K. Mohamed, J. Jung, and J. P. Franck, Phys. Rev. B 39, 9614 (1989).
- M. A. K. Mohamed, J. Jung, and J. P. Franck, Phys. Rev. B 41, 4286, 6466 (1990).
- M. A.-K. Mohamed and J. Jung, Phys. Rev. B 44, 4512 (1991).
- R. Monaco, Int. J. Infrared. Millimeter Waves II, 533 (1990a); J. Appl. Phys. 68, 679 (1990b).
- H. Monien and A. Zawadowski, Phys. Rev. Lett. 63, 911 (1989).
- H. Monien and A. Zawadowski, Phys. Rev. B 41, 8798 (1990). H. C. Montgomery, J. Appl. Phys. 42, 2971 (1971).
- P. Monthoux and D. Pines, Phys. Rev. B 49, 4261
- J. S. Moodera, R. Meservey, J. E. Tkaczyk, C. X. Hao, G. A. Gibson, and P. M. Tedrow, Phys. Rev. B 37, 619 (1988).
- H. A. Mook, D. McK. Paul, B. C. Sales, L. A. Boatner, and L. Cussen, Phys. Rev. B 38, 12008 (1988).

F. C. Moon, "Superconducting Levitation," Wiley, New York, 1994.

- J. Moreland, A. F. Clark, H. C. Ku, and R. N. Shelton, Cryogenics 27, 227 (1987).
- J. Moreland, J. W. Ekin, L. F. Goodrich, T. E. Capobianco, A. F. Clark, J. Kwo, M. Hong, and S. H. Liou, Phys. Rev. B 35, 8856 (1987).

H. Mori, Phys. Rev. B 43, 5474 (1991).

- D. E. Morris, J. H. Nickel, J. Y. T. Wei, N. G. Asmar, J. S. Scott, U. M. Scheven, C. T. Hultgren, A. G. Markelz, J. E. Post, P. J. Heaney, D. R. Veblen, and R. M. Hazen, Phys. Rev. B 39, 7347 (1988).
- D. E. Morris, N. G. Asmar, J. Y. T. Wei, J. H. Nickel, R. L. Sid, J. S. Scott, and J. E. Post, Phys. Rev. B 40, 11406 (1989).
- D. C. Morse and T. C. Lubensky, Phys. Rev. B 43, 10436 (1991).
- A. Moser, H. J. Hug, O. Fritz, I. Parashikov, H.-J. Güntherodt, and Th. Wolf, J. Vacuum Sci. and Technol., submitted for publication.
- A. Moser, H. J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H.-J. Güntherodt, and P. Chaudhari, Phys. Rev. Lett. 74, 1847 (1995).

M. Mostoller, J. Zhang, A. M. Rao, and P. C. Eklund, Phys. Rev. B 41, 6488 (1990).

- M. Mück, SPIE Symp. Adv. Electronic and Optoelectronic Matter, Los Angeles, California, 1994, submitted for publication.
- H. Mukaida, K. Kawaguchi, M. Nakao, H. Kumakura, D. Dietderich, and K. Togano, Phys. Rev. B 42, 2659 (1990).
- K. A. Müller, M. Takashige, and J. G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987).
- K.-H. Müller, Physica C 159, 717 (1989).
- K.-H. Müller and A. J. Pauza, Physica C 161, 319
- K.-H. Müller, IEE Trans. Magn. March (1991).

- K.-H. Müller, M. Nikolo, and R. Driver, Phys. Rev. B 43, 7976 (1991).
- H. Muller, M. Suenaga, and Y. Yokoyama, J. Appl. Phys. 70, 4409 (1991).
- M. Murakami, H. Fujimoto, S. Gotoh, K. Yamaguchi. N. Koshizuka, and S. Tanaka, Physica C 185-189 321 (1991).
- M. Murakami, in "Studies of High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 9, Nova Sci., New York, 1991.
- D. W. Murphy, S. Sunshine, R. B. van Dover, R. J. Cava, B. Batlogg, S. M. Zahurak, and L. F. Schneemeyer, Phys. Rev. Lett. 58, 1888 (1987).
- P. Muzikar, D. Rainer, and J. A. Sauls, Proc. NATO Adv. Study Inst. Vortices in Superfluids, Cargèse, Corsica (N. Bontemps, Ed.), Kluwer, Dordrecht,
- J. A. Mydosh, Phys. Scripta T19, 260 (1987).
- T. Mzoughi, H. A. Farach, E. Quagliata, M. A. Mesa, C. P. Poole, Jr., and R. Creswick, Phys. Rev. B 46, 1130 (1992).
- N. Nagaosa and P. Lee, Phys. Rev. B 43, 1233 (1991). M. Nagoshi, Y. Fukuda, T. Suzuki, K. Ueki, A. Tokiwa. M. Kikuchi, Y. Syono, and M. Tachiki, Physica C 185, 1051 (1991).
- M. Naito, A. Matsuda, K. Kitazawa, S. Kambe, I. Tanaka, and H. Kojima, Phys. Rev. B 41, 4823
- Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).
- K. Nakao, N. Miura, K. Tatsuhara, H. Takeya, and H. Takei, Phys. Rev. Lett. 63, 97 (1993).
- A. V. Narlikar, Ed., "Studies of High Temperature Superconductors," Nova Sci., New York, 1989.
- K. Nasu, Phys. Rev. B 42, 6076 (1990).
- B. Nathanson, O. Entin-Wohlman, and B. Mühlschlegel, Phys. Rev. B 45, 3499 (1992).
- R. Navarro and L. J. Campbell, Phys. Rev. B 44, 10146 (1991). D. R. Nelson, in "Fundamental Problems in Struc-
- tural Mechanics V" (E. G. D. Cohen, Ed.), North-Holland, Amsterdam, 1980. D. L. Nelson, M. S. Whittingham, and T. F. George,
- Eds., "Chemistry of High-Temperature Superconductors," ACS Symposium Series No. 351, American Chemical Society, Washington, DC, 1987.
- D. R. Nelson and H. S. Seung, Phys. Rev. B 39, 9153
- D. R. Nelson and P. Le Doussal, Phys. Rev. B 42, 10113 (1990). D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68,
- 2398 (1992). E. Nembach, K. Tachikawa, and S. Takano, Philos.
- Mag. 21, 869 (1970). R. Nemetschek, O. V. Misochko, B. Stadlober, and R.
- Hackl, Phys. Rev. B 47, 3450 (1993). S. A. Nemnonov, E. Z. Kurmaev, and V. I. Minin,
- IMF Akad. Nauk. USSR (Kiev) 1, 87 (1969).

1 Б

T R.

T. . F. 1

м D. : D. 1

P. N N. N N. N

h (1 N. Ni in

to 19 B.-H. (15

S. D. i Re

- S. J. Nettel and R. K. MacCrone, Phys. Rev. B 47, 11360 (1993)
- M. V. Nevitt, G. W. Crabtree, and T. E. Klippert, Phys. Rev. B 36, 2398 (1987).
- V. L. Newhouse, in "Superconductivity" (R. D. Parks, Ed.), Vol. 2, p. 1283, Dekker, New York, 1969.
- E. J. Nicol and J. P. Carbotte, Phys. Rev. B 43, 10210 (1991).
- E. J. Nicol and J. P. Carbotte, Phys. Rev. B 47, 8205 (1993).
- Ch. Niedermayer, H. Glückler, A. Golnik, U. Binninger, M. Rauer, E. Recknagel, J. I. Budnick, and A. Weidinger, Phys. Rev. B 47, 3427 (1993).
- L. Niel and J. E. Evetts, Supercond. Sci. Technol. 5, S347 (1992).
 G. Nieva, E. N. Martinez, F. de la Cruz, D. A.
- Esparza, and C. A. D'Ovidio, Phys. Rev. B *36*, 8780 (1987).

 M. Nikolo and R. B. Goldfarb, Phys. Rev. B *39*, 6615
- M. Nikolo and R. B. Goldfarb, Phys. Rev. B 39, 6615 (1989).
- M. Nikolo, W. Kiehl, H. M. Duan, and A. M. Hermann, Phys. Rev. B 45, 5641 (1992).
- H. Ning, H. Duan, P. D. Kirven, A. M. Hermann, and T. Datta, J. Supercond. 5, 503 (1992).
- T. Nishida, M. Katada, and Y. Matsumoto, Physica B 165-167, 1327 (1990a); Jpn. J. Appl. Phys. 29, 259 (1990b).
- H. Nishihara, T. Ohtani, Y. Sano, and Y. Nakamura, Physica C 185-189, 2733 (1991).
- T. Nitta, K. Nagase, S. Hayakawa, and Y. Iida, J. Am. Ceram. Soc. 48, 642 (1965).
- R. K. Nkum and W. R. Datars, Physica C 192, 215 (1992).
- C. Noce and L. Maritato, Phys. Rev. B 40, 734 (1989).
 H. Noel, P. Gougeon, J. Padiou, J. C. Levet, M. Potel,
 O. Laborde, and P. Monceau, Solid State Commun. 63, 915 (1987).
- T. Nojima and T. Fujita, Physica C 178, 140 (1991). F. Nori, E. Abrahams, and G. T. Zimanyi, Phys. Rev.
- B 41, 7277 (1990). M. R. Norman, Phys. Rev. B 42, 6762 (1990).
- D. P. Norton, D. H. Lowndes, S. J. Pennycook, and
 J. D. Budai, Phys. Rev. Lett. 67, 1358 (1991).
- D. L. Novikov, V. A. Gubanov, and A. J. Freeman,
- Physica C 191, 399 (1992).
 P. Nozières and W. F. Vinen, Philos. Mag. 14, 667
- r. Nozieres and W. F. Vinen, Philos. Mag. 14, 667 (1966).
- N. Nücker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, Phys. Rev. B 37, 5158 (1988).
 N. Nücker, H. Romberg, X. X. Xi, J. Fink, B. Gegenheimer, and Z. X. Zhao, Phys. Rev. B 39, 6619 (1989).
- N. Nücker, H. Romberg, M. Alexander, and J. Fink, in "Studies of High Temperature Superconductors" (A. V. Narlika, Ed.), Nova Sci., New York, 1992.
- B.-H. O and J. T. Markert, Phys. Rev. B 47, 8373 (1993).
- S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46, 14928 (1992).

- B. Obst, Phys. Status Solidi B 45, 467 (1971).
- S. P. Obukhov and M. Rubinstein, Phys. Rev. Lett. 65, 1279 (1990).
- Y. Oda, H. Fujita, H. Toyoda, T. Kaneko, T. Kohara, I. Nakada, and K. Asayama, Jpn. J. Appl. Phys. 26, L1660 (1987).
- T. Oguchi, Jpn. J. Appl. Phys. 26, L417 (1987).
- A. Oguri and S. Maekawa, Phys. Rev. B 41, 6977 (1990).
 - I. Ohana, A. Kazeroonian, D. Heiman, M. Dresselhaus, and P. J. Picone, Phys. Rev. B 40, 2255, 2562 (1989).
 - K. Ohbayashi, N. Ogita, M. Udagawa, Y. Aoki, Y. Maeno, and T. Fujita, Jpn. J. Appl. Phys. 26, L423 (1987).
- F. J. Ohkawa, Phys. Rev. B 42, 4163 (1990).
- Y. Ohta and S. Maekawa, Phys. Rev. B 41, 6524 (1990).
- T. Ohtani, Mater. Res. Bull. 24, 343 (1989).
- N. Okazaki, T. Hasegawa, K. Kishio, K. Kitazawa, A. Kishi, Y. Ikeda, M. Takano, K. Oda, H. Kitaguchi, J. Takada, and Y. Miura, Phys. Rev. B 41, 4296 (1990).
- E. Oldfield, C. Coretsopoulos, S. Yang, L. Reven, H. C. Lee, J. Shore, O. H. Han, E. Ramli, and D. Hicks, Phys. Rev. B 40, 6832 (1989).
- O. H. Olsen and M. R. Samuelsen, Phys. Rev. B 43, 10273 (1991).
 N. P. Ong, Z. Z. Wang, J. Clayhold, J. M. Tarascon,
- L. H. Greene, and W. R. McKinnon, Phys. Rev. B 35, 8807 (1987).
- N. P. Ong, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 7, World Scientific, Singapore, 1990.
- N. P. Ong, Phys. Rev. 43, 193 (1991).H. Kamerlingh Onnes, Leiden Commun., 120b, 122b, 124c (1911).
- M. Onoda, S. Shamoto, M. Sato, and S. Hosoya, Jap. J. Appl. Phys. 26, L363 (1987).
- J. Orenstein, G. A. Thomas, A. J. Millis, S. L. Cooper, D. H. Rapkine, T. Timusk, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 42, 6342 (1990).
- T. P. Orlando and K. A. Delin, "Foundations of Applied Superconductivity," Addison-Wesley, Reading, MA, 1991.
- K. Osamura, Ed., "Composite Superconductors," Dekker, New York, 1993.
- J. A. Osborn, Phys. Rev. 67, 351 (1945).
- S. B. Oseroff, D. C. Vier, J. F. Smyth, C. T. Salling, S. Schultz, Y. Dalichaouch, B. W. Lee, M. B. Maple, Z. Fisk, J. D. Thompson, J. L. Smith, and E. Zirngiebl, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 679, Plenum, New York, 1987.
- M. S. Osofsky, H. Rakoto, J. C. Ousset, J. P. Ulmet, J. Leotin, S. Askenazy, D. B. Crisey, J. S. Horwitz, E. F. Skelton, and S. A. Wolf, Physica C 182, 257 (1991).

ES B

pl.

39, iu-

J.

l'O se, ht,

> sa, 46, 1). va,

I. ;23

H.

B. 14,

> ici.), ge,

ri-53 12,

i8,

R.

- J. G. Ossandon, J. R. Thompson, D. K. Christen, B. C. Sales, Y. Sun, and K. W. Lay, Phys. Rev. B 46, 3050 (1992).
- J. G. Ossandon, J. R. Thompson, D. K. Christen, B. C. Sales, H. R. Kerchner, J. O. Thomson, Y. R. Sun, K. W. Lay, and J. E. Tkaczyk, Phys. Rev. B 45, 12534 (1992).
- S. B. Ota, Phys. Rev. B 35, 8730 (1987).
- S. B. Ota, V. S. Sastry, E. Gmelin, P. Murugaraj, and J. Maier, Phys. Rev. B 43, 6147 (1991).
- C. E. Otis and R. W. Dreyfus, Phys. Rev. Lett. 67, 2102 (1991).
- H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 50, 1595 (1983).
- H. R. Ott, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 187, Plenum, New York.
- H. R. Ott, "Ten Years of Superconductivity: 1980-1990," Kluwer, 1993.
- M. Oussena, S. Senoussi, G. Collin, J. M. Broto, H. Rakoto, S. Askenazy, and J. C. Ousset, Phys. Rev. B 36, 4014 (1987).
- Yu. N. Ovchinnikov and B. I. Ivlev, Phys. Rev. B 43, 8024 (1991).
- A. W. Overhauser, Phys. Rev. Lett. 4, 462 (1960).
- A. W. Overhauser, Phys. Rev. 128, 1437 (1962). A. W. Overhauser and L. L. Daemen, Phys. Rev.
- Lett. 62, 1691 (1989).
- F. J. Owens, Physica C 178, 456 (1991).
- F. J. Owens, Physica C 195, 225 (1992). M.-A. Ozaki and K. Machida, Phys. Rev. B 39, 4145
- (1989).
- S. Pagano, B. Ruggiero, and E. Sarnelli, Phys. Rev. B 43, 5364 (1991).
- E. J. Pakulis, Phys. Rev. B 42, 10746 (1990).
- T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh; Coles (1987); Phys. Rev. B 33, 6527 (1988).
- T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and
- J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988). T. T. M. Palstra, B. Batlogg, R. B. Van Dover, L. F.
- Schneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 54, 763 (1989). T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, J. V.
- Waszczak, Phys. Rev. Lett. 64, 3090 (1990).
- T. T. M. Palstra, R. C. Haddon, A. F. Hebard, and J. Zaanen, Phys. Rev. Lett. 68, 1054 (1992).
- T. T. M. Palstra and R. C. Haddon, Solid State Commun., 92, 71 (1994). M. Palumbo, P. Muzikar, and J. A. Sauls, Phys. Rev.
- B 42, 2681 (1990a).
- M. Palumbo, C. H. Choi, and P. Muzikar, Physica B 165-166, 1095 (1990b).
- W. Pan and S. Doniach, Phys. Rev. B 49, 1192 (1994). D. A. Papaconstantopoulos, A. Pasturel, J. P. Julien,
- and F. Cyrot-Lackmann, Phys. Rev. B 40, 8844 (1989).
- M. Paranthaman, J. R. Thompson, Y. R. Sun, and J. Brynestad, Physica C 213, 271 (1993).
- M. Paranthaman, Physica C 222, 7 (1994).

- G. S. Park, C. E. Cunningham, B. Cabrera, and M. E. Huber, Phys. Rev. Lett. 68, 1920 (1992).
- R. D. Parks and W. A. Little, Phys. Rev. 133, A97 (1964).
- R. D. Parks, Ed. "Superconductivity," Vols. 1 and 2
- Y. S. Parmar and J. K. Bhattacharjee, Phys. Rev. B 45, 814 (1992).

Dekker, New York, 1969.

- F. Parmigiani, Z. X. Shen, D. B. Mitzi, I. Lindau. W. E. Spicer, and A. Kapitulnik, Phys. Rev. B 43. 3085 (1991).
- P. C. Pattnaik, C. L. Kane, D. M. Newns, and C. C. Tsuei, Phys. Rev. B 45, 5714 (1992).
- D. McK. Paul, H. A. Mook, A. W. Hewat, B. C. Sales. L. A. Boatner, J. R. Thompson, and M. Mostoller, Phys. Rev. B 37, 2341 (1988).
- D. McK. Paul, H. A. Mook, L. A. Boatner, B. C. Sales, J. O. Ramey, and L. Cussen, Phys. Rev. B 39, 4291 (1989).
- L. Pauling and E. B. Wilson, "Introduction to Quantum Mechanics," McGraw-Hill, New York, 1935. L. M. Paulius, C. C. Almasan, and M. B. Maple, Phys. Rev. B 47, 11627 (1993).
- S. D. Peacor and C. Uher, Phys. Rev. B 39, 11559 (1989)
- S. D. Peacor, R. Richardson, J. Burm, C. Uher, and A. Kaiser, Phys. Rev. B 42, 2684 (1990).
- S. D. Peacor, J. L. Cohn, and C. Uher, Phys. Rev. B 43, 8721 (1991).
- S. D. Peacor, R. A. Richardson, F. Nori, and C. Uher, Phys. Rev. B 44, 9508 (1991).
- W. B. Pearson, "Handbook of Lattice Spacings and Structures of Metals," p. 79, Pergamon, New York.
- M. J. Pechan and J. A. Horvath, Am. J. Phys. 58, 642
- N. F. Pedersen and A. Davidson, Phys. Rev. B 41, 178 (1990).
- S. Pei, J. D. Jorgensen, B. Dabrowski, D. G. Hinks, D. R. Richards, A. W. Mitchell, J. M. Newsam, S. K. Sinha, D. Vaknin, and A. J. Jacobson, Phys. Rev. B 41, 4126 (1990).
- K. E. Peiponen and E. Vartiainen, Phys. Rev. B 44, 8301 (1991).
- M. Pekala, K. Pekala, and A. Pajaczkowska, Phys. Status Solidi B 152, K1 (1989). M. T. Pencarinha, C. P. Poole, Jr., H. A. Farach, and
- O. A. Lopez, J. Phys. Chem. Solids 56, 301 (1995). D. R. Penn and M. L. Cohen, Phys. Rev. B 46, 5466
- (1992). T. Penney, S. von Molnár, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev. B 38, 2918 (1988).
- C. H. Pennington, D. J. Durand, D. B. Zax, C. P. Slichter, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 37, 7944 (1988).
- C. H. Pennington, D. J. Durand, C. P. Slichter, J. P. Rice, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 39, 274, 2902 (1989).

(

F. ;

A. 1 R. I

R. L M. F

B. W (1 T. Ph Fa J. C. 1

J. C. 1 Αc LCE J. C. F

J. M. ing You N. E. F

N. E. F Low T. Pichl

Rev W. E. P los, a W. E. P W. E. P.

Rev. W. E. P. Singh M.-W. Pi

S. W. Pie (1992 C. G. S. 1

W. Pint a (1991)L. Pintsch

Chevri B 40,:

L. Pintsch erties (M. Gin tific, Si S.

В

78

S.

٦d

5).

18

zs.

P.

- C. H. Pennington and C. P. Slichter, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Chap. 5, World Scientific, Singapore, 1990.
- C. H. Pennington and C. P. Slichter, Phys. Rev. Lett. 66, 381 (1991).
- S. J. Pennycook, M. F. Chisholm, D. E. Jesson, D. P. Norton, D. H. Lowndes, R. Feenstra, H. R. Kerchner, and J. O. Thomson, Phys. Rev. Lett. 67, 765 (1991).
- F. Perez, X. Obradors, J. Fontcuberta, M. Vallet, and J. Gonzalez-Calbet, Physica C 185-189, 1843 (1991).
- A. Pérez-González and J. P. Carbotte, Phys. Rev. B 45, 9894 (1992).
- A. Pérez-González, E. J. Nicol, and J. P. Carbotte, Phys. Rev. B 45, 5055 (1992).
- R. L. Peterson and J. W. Ekin, Physica C 157, 325 (1989).
- R. L. Peterson and J. W. Ekin, Phys. Rev. B 42, 8014 (1990).
- M. F. Petras and J. E. Nordman, Phys. Rev. B 39, 6492 (1989).
- B. W. Pfalzgraf and H. Spreckels, J. Phys. C 27, 4359
- T. Pham, M. W. Lee, H. D. Drew, U. Welp, and Y. Fang, Phys. Rev. B 44, 5377 (1991).
- J. C. Phillips, Phys. Rev. B 36, 861 (1987).
- J. C. Phillips, "Physics of High-T_c Superconductors," Academic Press, New York, 1989a.
- J. C. Phillips, Phys. Rev. B 40, 7348, 8774 (1989b).
- J. C. Phillips, Mater. Lett. 18, 106 (1993).

 J. M. Phillips, in "High Temperature Superconduct-
- ing Thin Films" (D. Shi, Ed.), Pergamon, New York, 1994.
- N. E. Phillips, Phys. Rev. 114, 676 (1959).

 N. F. Phillips, R. A. Fisher, and J. F. Gordon.
- N. E. Phillips, R. A. Fisher, and J. E. Gordon, Prog. Low Temp. Phys. 19 (1991).
- T. Pichler, M. Matus, J. Kürti, and H. Kuzmany, Phys. Rev. B 45, 13841 (1992).
- W. E. Pickett, H. Krakauer, D. A. Papaconstantopoulos, and L. L. Boyer, Phys. Rev. B 35, 7252 (1987).
- W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).W. E. Pickett, R. E. Cohen, and H. Krakauer, Phys.
- Rev. B 42, 8764 (1990). W. E. Pickett, H. Krakauer, R. E. Cohen, and D. J.
- Singh, Science 255, 46 (1992).
- M. W. Pieper, Physica C 190, 261 (1992).
- S. W. Pierson and O. T. Valls, Phys. Rev. B 45, 2458 (1992).
- C. G. S. Pillai, Solid State Commun. 80, 277 (1991).
 W. Pint and E. Schachinger, Phys. Rev. B 43, 7664 (1991).
- L. Pintschovius, J. M. Bassat, P. Odier, F. Gervais, G. Chevrier, W. Reichardt, and F. Gompf, Phys. Rev. B 40, 2229 (1989).
- L. Pintschovius and W. Reichardt, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 5, World Scientific, Singapore, 1994.

- A. B. Pippard, Proc. R. Soc. London A 216, 547 (1953).
- M. Pissas, G. Kallias, A. Simopoulos, D. Niarchos, and A. Kostikas, Phys. Rev. B 46, 14119 (1992).
- F. Pistolesi and G. C. Strinati, Phys. Rev. B 49, 6356 (1994).
- B. Plaçais and Y. Simon, Phys. Rev. B 39, 2151 (1989)
- B. B. Plapp and A. W. Hübler, Phys. Rev. Lett. 65, 2302 (1990).
- Poberaj, D. Mihailovic, and S. Bernik, Phys. Rev. B 42, 393 (1990).
- A. Poddar, P. Mandal, K. G. Ray, A. N. Das, B. Ghosh, P. Choudhury, and S. Lahiri, Physica C 159, 226 (1989).
- D. Poilblanc and E. Dagotto, Phys. Rev. B 42, 4861 (1990)
- (1990).
 D. M. Poirier and J. H. Weaver, Phys. Rev. B 47,
- 10959 (1993).C. Politis, V. Buntar, W. Krauss, and A. Gurevich, Europhys. Lett. 17, 175 (1992).
- E. Polturak, G. Koren, D. Cohen, E. Aharoni, and G.
- Deutscher, Phys. Rev. Lett. 67, 3038 (1991). A. Pomar, A. Díaz, M. V. Ramallo, C. Torrón, J. A.
- Veira, and F. Vidal, Physica C 218, 257 (1993). M. Pompa, C. Li, A. Bianconi, A. C. Castellano, S. Dalla Longa, A. M. Flank, P. Lagarde, and D. Udron, Physica C 184, 51 (1991a).
- M. Pompa, P. Castrucci, C. Li, D. Udron, A. M. Flank, P. Lagarde, H. Katayamaa-Yoshida, S. Dalla Longa, and A. Bianconi, Physica C 184, 102 (1991b).
- C P. Poole, Jr., and H. A. Farach, "Relaxation in Magnetic Resonance," Academic Press, New York, 1971.
- York, 1971.

 C. P. Poole, Jr., "Electron Spin Resonance," 2nd ed., Wiley, New York, 1983.
- C. P. Poole, Jr., and H. A. Farach, "Theory of Magnetic Resonance," 2nd ed., Wiley, New York, 1987.
- C. P. Poole, Jr., T. Datta, and H. A. Farach, "Copper
- Oxide Superconductors," Wiley, New York, 1988.
 C. P. Poole, Jr. and H. A. Farach, Magn. Reson.
 Relat. Phenom., Proc. 24th Ampere Congr., Poz-
- nan, p. 601 (1988). C. P. Poole, Jr., T. Datta, and H. A. Farach, J.
- C. P. Poole, Jr., T. Datta, and H. A. Farach, J. Supercond. 2, 369 (1989).
- C. P. Poole, Jr., and H. A. Farach, Eds., "Handbook of Electron Spin Resonance," Amer. Inst. Phys., New York, 1994.
- A. Pöppl, L. Kevan, H. Kimura, and R. N. Schwartz, Phys. Rev. B 46, 8559 (1992).
- A. M. Portis, K. W. Blazely, and F. Waldner, Physica C 153-155, 308 (1988).
- A. M. Portis, "Electrodynamics of High Temperature Superconductors," World Scientific, Singapore, 1993.
- J. Prade, A. D. Kulkarni, and F. W. de Wette, U. Schröder, and W. Kress, Phys. Rev. B 39, 2771 (1989).

- A. K. Pradhan, S. J. Hazell, J. W. Hodby, C. Chen, Y. Hu, and B. M. Wanklyn, Phys. Rev. B 47, 11374
- R. Prange and S. Girvin, Eds., "The Quantum Hall Effect," Springer-Verlag, Heidelberg, 1987.
- K. Prassides, J. Tomkinson, C. Christides, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddon, Na-
- ture 354, 462 (1991). K. Prassides, M. J. Rosseinsky, A. J. Dianoux, and P. Day, J. Phys. Condens. Matter 4, 965 (1992).
- N. W. Preyer, M. A. Kastner, C. Y. Chen, R. J. Birgeneau, and Y. Hidaka, Phys. Rev. B 44, 407
- D. Prost, L. Fruchter, I. A. Campbell, N. Motohira. and M. Konczykowski, Phys. Rev. B 47, 3457 (1993).
- T. Puig, L. M. Martinez, M. T. Aurell, A. Sanchez, D.-X. Chen, and J. S. Muñoz, in "Physics and Materials Science of High-Temperature Superconductivity" (R. Kossowsky, S. Methfessel, and D. Wohlbeben, Eds.), p. 467, Kluwer Academic, Dordrecht, 1990.
- B. Pümpin, H. Keller, W. Kündig, W. Odermatt, B. D. Patterson, J. W. Schneider, H. Simmler, S. Connell, K. A. Müller, J. G. Bednorz, K. W. Blazey, I. Morgenstern, C. Rossel, and I. M. Savic. Z. Phys. B 72, 175 (1988).
- B. Pümpin, H. Keller, W. Kündig, W. Odermatt, I. M. Savic, J. W. Schneider, H. Simmler, P. Zimmermann, E. Kaldis, S. Rusiecki, Y. Maeno, and C. Rossel, Phys. Rev. B 42, 8019 (1990).
- P. Pureur and J. Schaf, Solid State Commun. 78, 723
- S. N. Putilin, I. Bryntse, and E. V. Antipov, Mater. Res. Bull. 26, 1299 (1991).
- S. N. Putilin, E. V. Antipov, E. V. Chmaissem, and M. Marezio, Nature 362, 266 (1993).
- D. S. Pyun and T. R. Lemberger, Phys. Rev. B 44, 7555 (1991).
- K. F. Quader and E. Abrahams, Phys. Rev. B 38, 11977 (1988).
- R. M. Quick, C. Esebbag, and M. de Llano, Phys.
- Rev. B 47, 11512 (1993). M. Rabinowitz and T. McMullen, Chem. Phys. Lett.
- 218, 437 (1994). H. B. Radousky, J. Mater. Res. 7, 1917 (1992).
- R. J. Radtke, K. Levin, H.-B. Shüttler, and M. R. Norman, Phys. Rev. B 48, 653 (1993).
- H. Raffy, S. Labdi, O. Laborde, and P. Monceau, Phys. Rev. Lett. 66, 2515 (1991).
- D. Rainer and J. A. Sauls, in "Proc. 1992 Spring School on Cond. Mat. Phys., Trieste, Italy," World
- Scientific, Singapore, 1994, to be published. D. Rainer and J. A. Sauls, "Proc. 1992 Spring School on Cond. Matter Phys., Trieste, Italy," World Sci-
- entific, Singapore, 1994. A. K. Rajagopal and S. D. Mahanti, Phys. Rev. B 44, 10210 (1991).

- P. F. Rajam, C. K. Subramaniam, S. Kasiviswanathan. and R. Srinivasan, Solid State Commun. 71, 475
- R. Rajput and D. Kumar, Phys. Rev. B 42, 8634 (1990).B. Rakvin, M. Pozek, and A. Dulcic, Solid State
- Commun. 72, 199 (1989). B. Rakvin, T. A. Mahl, A. S. Bhalla, Z. Z. Sheng, and N. S. Dalal, Phys. Rev. B 41, 769 (1990).
 - K. S. Ralls, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 40, 11561 (1989).
- S. Ramakrishnan, R. Kumar, P. L. Paulose, A. K. Grover, and P. Chaddah, Phys. Rev. B 44, 9514 (1991).
- R. Ramakumar, R. Kumar, K. P. Jain, and C. C. Chancey, Phys. Rev. B 48, 6509 (1993). S. Ramasesha and C. N. R. Rao, Phys. Rev. B 44,
- 7046 (1991). A. P. Ramirez, T. Siegrist, T. T. M. Palstra, J. D.
- Garrett, E. Bruck, A. A. Menovsky, and J. A. Mydosh, Phys. Rev.B 44, 5392 (1991). A. P. Ramirez, A. R. Kortan, M. J. Rosseinsky, S. J.
- Duclos, A. M. Mujsce, R. C. Haddon, D. W. Murphy, A. V. Makhija, S. M. Zahurak, and K. B. Lyons, Phys. Rev. Lett. 68, 1058 (1992a).
- A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddan, Phys. Rev. Lett. 69, 1687 (1992b).
- J. Rammer, Phys. Rev. B 36, 5665 (1987). J. Rammer, Europhys. Lett. 5, 77 (1988).
- J. Rammer, Phys. Rev. B 43, 2983 (1991).
- C. N. R. Rao, P. Ganguly, A. K. Raychaudhuri, R. A. Mohan Ram, and K. Sreedhar, Nature 326, 856 (1987).
- K. V. Rao, D.-X. Chen, J. Nogues, C. Politis, C. Gallo, and J. A. Gerber, in "High Temperature Superconductors" (D. U. Gubser and M. Schluter, Eds.), p. 133, Mater. Res. Soc., Pittsburgh, 1987.
- C. N. R. Rao, Philos. Trans. R. Soc. London Ser. A 336, 595 (1991).
- C. N. R. Rao, A. K. Santra, and D. D. Sarma, Phys. Rev. B 45, 10814 (1992).
- U. Rauchschwalbe, F. Steglich, G. R. Stewart, A. L. Giorgi, P. Fulde, and K. Maki, Europhys. Lett. 3, 751 (1987).
- J. Redinger, A. J. Freeman, J. Yu, and S. Massidda, Phys. Lett. A 124, 469 (1987).
- M. Reedyk, T. Timusk, J. S. Xue, and J. Greedan, Phys. Rev. B 45, 7406 (1992a).
- M. Reedyk, C. V. Stager, T. Timusk, J. S. Xue, and J. E. Greedan, Phys. Rev. B 45, 10057 (1992b).
- M. E. Reeves, S. E. Stupp, T. Friedmann, F. Slakey, D. M. Ginsberg, and M. V. Klein, Phys. Rev. B 40, 4573 (1989).
- J. D. Reger, T. A. Tokuyasu, A. P. Young, and M. P. A. Fisher, Phys. Rev. B 44, 7147 (1991).
- M. N. Regueiro, B. Salce, R. Calemczuk, C. Marin,
- and J. Y. Henry, Phys. Rev. B 44, 9727 (1991). W. Rehwald, M. Rayl, R. W. Cohen, and G. D. Cody, Phys. Rev. B 6, 363 (1972).

R

F

H.-

H.-

J. F

J. F P. I

R. /

E. F. E. K

P. S.

B. R F B. V

- G. I. C.O E. R

E J. P. J. P.

(1 J. P.

(1 C. T.

D. S.

- F. Reif, "Fundamentals of Statistical and Thermal Physics," McGraw-Hill, New York, 1965.
- Y. T. Ren, J. Clayhold, F. Chen, Z. J. Huang, X. D. Qiu, Y. Y. Sun, R. L. Meng, Y. Y. Xue, and C. W. Chu, Physica C 217, 6 (1993).
- Y. T. Ren, H. Chang, Q. Xiong, Y. Y. Xue, and C. W. Chu, Physica C, 226, 209 (1994).
- B. Renker, F. Gompf, E. Gering, D. Ewert, H. Rietschel, and A. Dianoux, Z. Phys. B 73, 309 (1988). Ch. Renner, A. D. Kent, Ph. Niedermann, Ø. Fischer,
- and F. Lévy, Phys. Rev. Lett. 67, 1650 (1991). L. Reven, J. Shore, S. Yang, T. Duncan, D. Schwartz,
- J. Chung, and E. Oldfield, Phys. Rev. B 43, 10466
- C. M. Rey and L. R. Testardi, Phys. Rev. B 44, 765
- A. P. Reyes, D. E. MacLaughlin, M. Takigawa, P. C. Hammel, R. H. Heffner, J. D. Thompson, J. E. Crow, A. Kebede, T. Mihalisin, and J. Schwegler, Phys. Rev. B 42, 2688 (1990).
- A. P. Reyes, D.E. MacLaughlin, M. Takigawa, P. C. Hammel, R. H. Heffner, J. D. Thompson, and J. E. Crow, Phys. Rev. B 43, 2989 (1991).
- C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, Phys. Rev. 78, 487 (1950).
- H.-C. Ri, F. Kober, R. Gross, R. P. Huebener, and A. Gupta, Phys. Rev. B 43, 13739 (1991).
- H.-C. Ri, J. Kober, A. Beck, L. Alff, R. Gross, and R. P. Huebener, Phys. Rev. B 47, 12312 (1993).
- J. K. Rice, S. W. McCauley, A. P. Baronavski, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B 47, 6086
- J. P. Rice, N. Rigakis, D. M. Ginsberg, and J. M. Mochel, Phys. Rev. B 46, 11050 (1992).
- P. L. Richards and M. Tinkham, Phys. Rev. 119, 575
- R. A. Richardson, S. D. Peacor, F. Nori, and C. Uher, Phys. Rev. Lett. 67, 3856 (1991).
- C. T. Riecke, Th. Wölkhausen, D. Fay, and L. Tewordt, Phys. Rev. B 39, 278 (1989).
- E. Riedel, Z. Naturforsch A. 190, 1634 (1964). E. K. Riedel, H.-F. Cheung, and Y. Gefen, Phys. Scr.
- T 25, 357 (1989). P. S. Riseborough, Phys. Rev. B 45, 13984 (1992).
- B. Roas, L. Schultz, and G. Saemann-Ischenko, Phys.
- Rev. Lett. 64, 479 (1990). B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581
- (1976).G. I. Rochlin, Am. J. Phys. 43, 335 (1975).
- C. O. Rodriguez, Phys. Rev. B 49, 1200 (1994).
- E. Rodriguez, J. Luzuriaga, C. D'Ovidio, and D. A. Esparza, Phys. Rev. B 42, 10796 (1990).
- J. P. Rodriguez, Phys. Rev. B 36, 168 (1987). J. P. Rodriguez and B. Douçot, Phys. Rev. B 42, 8724
- (1990). J. P. Rodriguez and B. Douçot, Phys. Rev. B 45, 971
- (1992).C. T. Rogers, K. E. Myers, J. N. Eckstein, and I.
- Bozovic, Phys. Rev. Lett. 69, 160 (1992). D. S. Rokhsar, Phys. Rev. Lett. 65, 1506 (1990).

- D. B. Romero, G. L. Carr, D. B. Tanner, L. Forro, D. Mandrus, L. Mihaly, and G. P. Williams, Phys. Rev. B 44, 2818 (1991).
- M. Rona, Phys. Rev. 42, 4183 (1990).
 - A. C. Rose-Innes and E. H. Rhoderick, "Introduction to Superconductivity," Pergamon, Oxford, 1994.
- P. A. Rosenthal, M. R. Beasley, K. Char, M. S. Colclough, and G. Zaharchuk, Appl. Phys. Lett. 59, 3482 (1991).
- J. Rossat-Mignod, P. Burlet, M. J. G. M. Jurgens, J. Y. Henry, and C. Vettier, Physica C 152, 19 (1988).
- M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, and A. V. Makhija, Phys. Rev. Lett. 66, 2830 (1991).
- C. Rossel, Y. Maeno, and I. Morgenstein, Phys. Rev. Lett. 62, 681 (1989a); C. Rossel, Y. Maeno, and F. H. Holtzberg, IBM J. Res. Dev. 33, 328 (1989b).
- C. Rossel, O. Peña, H. Schmitt, and M. Sergent, Physica C 181, 363 (1991).
- S. J. Rothman, J. L. Routbort, U. Welp, and J. E. Baker, Phys. Rev. B 44, 2326 (1991).
- L. D. Rotter, Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Field, U. W. Welp, G. W. Crabtree, J. Z. Liu, Y. Fang, K. G. Vandervoort, and S. Fleshler, Phys. Rev. Lett. 67, 2741 (1991).
- J. L. Routbort and S. J. Rothman, Appl. Phys. Rev., submitted for publication.
- V. A. Rowe and R. P. Huebener, Phys. Rev. 185, 666
- J. M. Rowell and R. C. Dynes, in "Phonons" (M. A. Nusimovici, Ed.), Flammarion, Sciences, Paris, 1972
- G. J. Rozing, P. E. Mijnarends, A. A. Menovsky, and P. F. de Châtel, Phys. Rev. B 43, 9523 (1991).
- A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, Phys. Rev. B 36, 857 (1987); reprinted in "Theories of High Temperature Superconductivity" (J. W. Halley, Ed.), p. 137. Addison-Wesley, Reading, MA, 1988.
- S. Ryu, S. Doniach, G. Deutscher, and A. Kapitulnik, Phys. Rev. Lett. 68, 710 (1992).
- M. S. Rzchowski, L. L. Sohn, and M. Tinkham, Phys. Rev. B 43, 8682 (1991).
- S. Sachdev and Z. Wang, Phys. Rev. B 43, 10229 (1991).
- S. Sachdev, Phys. Rev. B 45, 389 (1992).
- E. Sacher and J. E. Klemberg-Sapieha, Phys. Rev. B 39, 1461 (1989).
- C. A. R. Sá de Melo and S. Doniach, Phys. Rev. B 41, 6633 (1990).
- C. A. R. Sá de Melo, Z. Wang, and S. Doniach, Phys. Rev. Lett. 68, 2078 (1992).
- H. Safar, C. Durán, J. Guimpel, L. Civale, J. Luzuriaga, E. Rodriguez, F. de la Cruz, C. Fainstein, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 40, 7380 (1989).

- H. Safar, H. Pastoriza, F. de la Cruz, D. J. Bishop, L. F. Schneemeyer, and J. Waszczak, Phys. Rev. B 43, 13610 (1991).
- H. Safar, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 68, 2672 (1992).
- H. Safer, P. L. Gammel, D. A. Huse, D. J. Bishop, W. C. Lee, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. Lett. 70, 3800 (1993)
- Phys. Rev. Lett. 70, 3800 (1993).
 L. Sagdahl, S. Gjølmesli, T. Laegreid, K. Fossheim, and W. Assmus, Phys. Rev. B 42, 6797 (1990).
- L. Sagdahl, T. Laegreid, K. Fossheim, M. Murkami, H. Fujimoto, S. Gotoh, K. Yamaguchi, H. Yamauchi, N. Koshizuka, and S. Tanaka, Physica C 172, 495 (1991).
- N. Sahoo, S. Markert, T. P. Das, and K. Nagamine, Phys. Rev. B 41, 220 (1990).
- D. Saint-James and P. D. de Gennes, Phys. Lett. 7, 306 (1963).
- D. Saint-James, E. J. Thomas, and G. Sarma, "Type II Superconductivity," Pergamon, Oxford, 1969.
- K. Saitoh and T. Nishino, Phys. Rev. B 44, 7070 (1991).
- S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).
- K. Salama, Y. H. Zhang, M. Mironova, and D. F. Lee, "Proc. Sixth US-Japan Joint Workshop on High T_c Superconductivity," Houston, Texas, December 1993.
- M. B. Salamon and J. Bardeen, Phys. Rev. Lett. 59, 2615 (1987).
- M. B. Salamon, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 1, Chap. 2, World Scientific, Singapore, 1989.
- Salem-Sugui, Jr., E. E. Alp, S. M. Mini, M. Ramanathan, J. C. Campuzano, G. Jennings, M. Faiz, S. Pei, B. Dabrowski, Y. Zheng, D. R. Richards, and D. G. Hinks, Phys. Rev. B 43, 5511 (1991).
- A. V. Samoilov, A. A. Yurgens, and N. V. Zavaritsky, Phys. Rev. B 46, 6643 (1992).
- B. A. Sanborn, P. B. Allen, and D. A. Papaconstantopoulos, Phys. Rev. B 40, 6037 (1989).
- A. Sanchez and D.-X. Chen, in "Susceptibility of Superconductors and Other Spin Systems" (T. Francavilla, R. A. Hein, and D. Leiberger, Eds.), Plenum, New York, 1991.
- A. Sanchez, D.-X. Chen, J. Muñoz, and Y.-Z. Li, Physica C 175, 33 (1991).
- P. Santhanam and C. C. Chi, Phys. Rev. B 38, 11843 (1988).
- A. Santoro, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 4, Springer-Verlag, Berlin, 1990.
- J. Sapriel, J. Schneck, J. F. Scott, J. C. Tolédano, L. Pierre, J. Chavignon, C. Daguet, J. P. Chaminade, and H. Boyer, Phys. Rev. B 43, 6259 (1991).
- E. Sardella, Phys. Rev. B 45, 3141 (1992).
- D. D. Sarma, P. Sen, C. Carbone, R. Cimino, and W. Gudat, Phys. Rev. B 39 12387 (1989).
- W. M. Saslow, Phys. Rev. B 39, 2710 (1989).

- J. S. Satchell, R. G. Humphreys, N. G. Chew, J. A. Edwards, and M. J. Kane, Nature 334, 331 (1988).
 N. Sato, T. Sakon, N. Takeda, T. Komatsubara, C.
- Geibei, and F. Steglich, J. Phys. Soc. Jpn. 61, 32 (1992).
- S. Satpathy and R. M. Martin, Phys. Rev. B 36, 7269 (1987).
- C. B. Satterthwaite, Phys. Rev. 125, 873 (1962).
- A. Saul and M. Weissmann, Phys. Rev. B 42, 4196 (1990).
- J. A. Sauls, APS Fall Mtg. Symp. Kondo Lattices and Heavy Fermions, to be published.
- D. J. Scalapino, Phys. Reports, to be published.
 J. Schaf, P. Pureur, and J. V. Kunzler, Phys. Rev. B
- 40, 6948 (1989).

 H. J. Scheel in "Adv. in Supercond.," Springer-Verlag.
- Berlin, New York, to be published.
- S. Scheidl and G. Hackenbroich, Phys. Rev. B 46, 14010 (1992).
- A. Schenck, P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, M. Weber, P. Böni, P. Fischer, H. R. Ott, and Z. Fisk, Phys. Rev. Lett. 65, 2454 (1990).
- A. Schenstrom, M.-F. Xu, Y. Hong, D. Bein, M. Levy, B. K. Sarma, S. Adenwalla, Z. Zhao, T. Tokuyasu, D. W. Hess, J. B. Ketterson, J. A. Sauls, and D. G.
- Hinks, Phys. Rev. Lett. 62, 332 (1989).
 A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993).
- A. Schilling, M. Catoni, O. Jeandupeux, J. D. Guo, and H. R. Ott, in "Advances in Superconductivity" (T. Fujita and Y. Shiohara, Eds.), Vol. 6, Springer-Verlag, Berlin, 1994a.
- A. Schilling, O. Jeandupeux, S. Büchi, H. R. Ott, and C. Rossel, Physica C 235, in press (1994b).
- J. E. Schirber, D. L. Overmyer, K. D. Carlsan, J. M. Williams, A. M. Kini, H. H. Wang, H. A. Charlier, B. J. Love, D. M. Watkins, and G. A. Yaconi, Phys. Rev. B 44, 4666 (1991).
- Z. Schlesinger, R. L. Greene, J. G. Bednorz, and K. A. Müller, Phys. Rev. B 35, 5334 (1987).
- Z. Schlesinger, R. T. Collins, J. A. Calise, D. G. Hinks, A. W. Mitchell, Y. Zheng, B. Dabrowski, N. E. Bickers, and D. J. Scalapino, Phys. Rev. B 40, 6862 (1989).
- Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, G. Koren, and A. Gupta, Phys. Rev. B 41, 11237 (1990a).
- Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, S. H. Blanton, U. Welp, G. W. Crabtree, Y. Fang, and J. Z. Liu, Phys. Rev. Lett. 65, 801 (1990b).
 D. Schmeltzer, Phys. Rev. B 49, 6944 (1994).
- A. Schmid, Phys. Kondens. Mat. &, 129 (1968).
- J. M. Schmidt, A. N. Cleland and J. Clarke, Phys. Rev. B 43, 229 (1991).
- P. Schmitt, P. Kummeth, L. Schultz, and G. Saemann-Ischenko, Phys. Rev. Lett. 67, 267 (1991)
- H. Schnack and R. Griessen, Phys. Rev. Lett. 68, 2706 (1992).

L

J. H.

P. .

G.

K. S 6 S. Se N

S. Si Si in S. Se

Pł A. Se Y:

Ph M. Se mu

S. Ser 144 R. D.

R. D. Soc

- L. F. Schneemeyer, J. K. Thomas, T. Siegrist, B. Batlogg, L. W. Rupp, R. L. Opila, R. J. Cava, and D. W. Murphy, Nature 335, 421 (1988).
- T. Schneider, Z. Phys. B 85, 187 (1991).
- T. Schneider, Z. Gedik, and S. Ciraci, Z. Phys. B 83, 313 (1991).
- T. Schneider, Physica C 195, 82 (1992).
- T. Schneider and H. Keller, Phys. Rev. Lett. 69, 3374
- A. J. Schofield and Wheatley, Phys. Rev. B 47, 11607
- K. Schönhammer, Phys. Rev. B 42, 2591 (1990). J. R. Schrieffer, "Theory of Superconductivity," Addi-
- son-Wesley, New York, 1964. J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang, Phys.
- Rev. Lett. 60, 944 (1988).
- E. A. Schuberth, B. Strickler, and K. Andres, Phys. Rev. Lett. 68, 117 (1992). I. K. Schuller, D. G. Hinks, M. A. Beno, S. W.
- Capone II, L. Soderholm, J. P. Locquet, Y. Bruynseraede, C. U. Segre, and K. Zhang, Solid State Commun. 63, 385 (1987).
- L. Schultz, E. Hellstern, and A. Thomä, Europhys. Lett. 3, 921 (1987).
- H. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990). J. Schwartz, S. Nakamae, G. W. Raban, Jr., J. K.
- Heuer, S. Wu, J. L. Wagner, and D. G. Hinks, Phys. Rev. B 48, 9932 (1994). H. Schwenk, F. Gross, C. P. Heidmann, K. Andres, D.
- Schweitzer, and H. Keller, Mol. Cryst. Liq. Cryst. 119, 329 (1985); Phys. Rev. B 31, 3138 (1985).
- P. Seidel, E. Heinz, M. Siegel, F. Schmidl, K. J. Zach, and H.-J. Köhler, in "Proc. 4th Int. Conf. on Superconducting and Quantum Effect Devices and Their Applications," Berlin, June 1991.
- G. T. Seidler, T. F. Rosenbaum, D. L. Heinz, J. W. Downey, A. P. Paulikas, and B. W. Veal, Physica C 183, 333 (1991).
- G. T. Seidler, T. F. Rosenbaum, and B. W. Veal, Phys. Rev. B 45, 10162 (1992).
- K. Semba, T. Ishii, and A. Matsuda, Phys. Rev. Lett. 67, 769 (1991).
- S. Sengupta, C. Dasgupta, H. R. Krishnamurthy, G. I. Menon, and T. V. Ramakrishnan, Phys. Rev. Lett. 67, 3444 (1991).
- S. Sengupta and D. Shi, in "High Temperature Superconducting Materials Science and Engineering," to be published.
- S. Senoussi, M. Oussena, and S. Hadjoudi, J. Appl. Phys. 63, 4176 (1988).
- A. Sequeira, H. Rajagopal, P. V. P. S. S. Sastry, J. V. Yakhmi, R. M. Iyer, and B. A. Dasannacharya, Physica B 180-181, 429 (1992).
- M. Sera, S. Shamoto, and M. Sato, Solid State Commun. 68, 649 (1988).
- S. Sergeenkov and M. Ausloos, Phys. Rev. B 47, 14476 (1993).
- R. D. Shannon and P. E. Bierstedt, J. Am. Ceram. Soc. 58, 635 (1970).

- C. Shao-Chun, Z. Dong-Ming, Z. Dian-Lin, H. M. Duan, and A. M. Hermann, Phys. Rev. B 44, 12571 (1991).
- B. Ya. Shapiro, Phys. Rev. B 48, 16722 (1993). S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
 - R. P. Sharma, L. E. Rehn, and P. M. Baldo, Phys. Rev. B 43, 13711 (1991).
- B. S. Shastry and B. I. Shraiman, Int. J. Mod. Phys. 5,
- T. P. Sheahen, "Introduction to High T. Superconductivity," Plenum, New York, 1994.
- V. Sh. Shekhtman, Ed., The Real Structure of High-T. Superconductors, Springer-Verlag, Berlin, 1993.
- S.-Q. Shen and W. Lu, Phys. Rev. B 48, 1105 (1993). Z.-X. Shen, P. A. P. Lindberg, B. O. Wells, D. S. Dessau, A. Borg, I. Lindau, W. E. Spicer, W. P.
- Ellis, G. H. Kwei, K. C. Ott, J.-S. Kang, and J. W. Allen, Phys. Rev. B 40, 6912 (1989). Z.-X. Shen, R. S. List, D. S. Dessau, F. Parmigiani, A.
- J. Arko, R. Bartlett, B. O. Wells, I. Lindau, and W. E. Spicer, Phys. Rev. B 42, 8081 (1990).
- Z.-X. Shen, W. E. Spicer, D.M. King, D. S. Dessau, and B. O. Wells, Science 267, 343 (1995).
- Z.-Y. Shen, "High Temperature Superconducting Microwave Circuits," Artech House, Norwood, Massachusetts, 1994.
- Z. Z. Sheng, A. M. Hermann, A. El Ali, C. Almasan, J. Estrada, T. Datta, and R. J. Matson, Phys. Rev. Lett. 60, 937 (1988).
- Z. Z. Sheng and A. M. Hermann, Nature 332, 55 (1988).
- D.-N. Sheng, Z.-B. Su, and L. Yu, Phys. Rev. B 42, 8732 (1990).
- D. Shi, M. S. Boley, U. Welp, J. G. Chen, and Y. Liao, Phys. Rev.B 40, 5255 (1989).
- D. Shi, M. Xu, M. M. Fang, J. G. Chen, A. L. Cornelius, and S. G. Lanan, Phys. Rev. B 41, 8833 (1990a).
- D. Shi, M. Xu, A. Umezawa, and R. F. Fox, Phys. Rev. B 42, 2062 (1990b).
- D. Shi, X. S. Ling, M. Xu, M. M. Fang, S. Luo, J. I. Budnick, B. Dabrowski, D. G. Hinks, D. R. Richards, and Y. Zheng, Phys. Rev. B 43, 3684 (1991)
- D. Shi and M. Xu, Phys. Rev. B 44, 4548 (1991).
- D. Shi, Ed., "High Temperature Superconducting Materials Science and Engineering," Elsevier, Oxford, 1994.
- J. S. Shier and D. M. Ginsberg, Phys. Rev. 147, 384
- E. Shimizu and D. Ito, Phys. Rev. B 39, 2921 (1989).
- E. Shimshoni, Y. Gefen, and S. Levit, Phys. Rev. 40, 2147 (1989).
- E. Shimshoni and E. Ben-Jacob, Phys. Rev. B 43, 2705 (1991).
- S. L. Shindé, J. Morrill, D. Goland, D. A. Chance, and T. McGuire, Phys. Rev. B 41, 8838 (1990).
- T. Shinio, T. Mizutani, N. Hosoito, T. Kusuda, T. Takabatake, K. Matsukuma, and H. Fujii, Physica C 159, 869 (1989).

- T. Shinjo and S. Nasu, in "Mechanisms of High Temperature Superconductivity" (H. Kamimura and A. Oshiyama, Eds.), p. 166, Springer Series in Material Science, Springer-Verlag, Heidelberg, 1989.
- G. Shirane, R. J. Birgeneau, Y. Endoh, P. Gehring, M. A. Kastner, K. Kitazawa, H. Kojima, I. Tanaka, T. R. Thurston, and K. Yamada, Phys. Rev. Lett. 63, 330 (1989).
- G. Shirane, J. Als-Nielsen, M. Nielsen, J. M. Tranquada, H. Chou, S. Shamoto, and M. Sato, Phys. Rev. B 41, 6547 (1990).
- K. N. Shrivastava and K. P. Sinha, "Magnetic Superconductors: Model Theories and Experimental Properties of Rare-Earth Compounds," North-Holland, Amsterdam, 1984.
- K. N. Shrivastava, Phys. Rev. B 41, 11168 (1990). J. D. Shore, M. Huang, A. T. Dorsey, and J. P.
- Sethna, Phys. Rev. Lett. 62, 3089 (1989).
- L. Shu-yuan, L. Li, and Z. Dian-lin, H. M. Duan, W. Kiel, and A. M. Hermann, Phys. Rev. B 47, 8324 (1993).
- Yu. N. Shvachko, A. A. Koshta, A. A. Romanyukha, V. V. Ustinov, and A. I. Akimov, Physica C 174, 447 (1991).
- Q. Si and G. Kotliar, Phys. Rev. Lett. 70, 3143 (1993). M. Siegel, F. Schmdl, K. Zach, E. Heinz, J. Borck, W. Michalke, and P. Seidel, Physica C 180, 288 (1991).
- T. Siegrist, S. Sunshine, D. W. Murphy, R. J. Cava, and S. M. Zahurak, Phys. Rev. B 35, 7137 (1987).
- T. Siegrist, S. M. Zahurak, D. W. Murphy, and R. S. Roth, Nature 334, 231 (1988).
- M. Sigrist, T. M. Rice, and K. Ueda, Phys. Rev. Lett. 63, 1727 (1989).
- P. Simon, J. M. Bassat, S. B. Oseroff, Z. Fisk, S.-W. Cheong, A. Wattiaux, and S. Schultz, Phys. Rev. Lett. 48, 4216 (1993).
- R. R. P. Singh, P. A. Fleury, K. B. Lyons, and P. E. Sulewski, Phys. Rev. Lett. 62, 2736 (1989).
- D. Singh, W. E. Pickett, E. C. von Stetten, and S. Berko, Phys. Rev. B 42, 2696 (1990).
- D. J. Singh, Physica C 212, 228 (1993a).
- D. J. Singh, Phys. Rev. B 48, 3571 (1993b).
- D. J. Singh and W. E. Pickett, Phys. Rev. Lett., 73,
- 476 (1994).
- K. Sinha, Ind. J. Phys. 66A, 1 (1992) in K. P. Sinha, "Magnetic Superconductors; Recent Developments," Nova, New York, 1989.
- S. Skanthakumar, H. Zhang, T. W. Clinton, W.-H. Li. J. W. Lynn, Z. Fisk, and S.-W. Cheong, Physica C 160, 124 (1989).
- H. L. Shriver and I. Mertig, Phys. Rev. B 41, 6553 (1990).
- V. Skumryev, R. Puzniak, N. Karpe, H. Zheng-he, M. Pout, H. Medelius, D.-X. Chen, and K. V. Rao, Physica C 152, 315 (1988).
- V. Skumryev, M. R. Koblischka, and H. Kronmüller, Physica C 184, 332 (1991).
- F. Slakey, S. L. Cooper, M. V. Klein, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 39, 2781 (1989).

- F. Slakev, M. V. Klein, J. P. Rice, and D. M. Gins, burg, Phys. Rev. B 43, 3764 (1991).
- A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. 17, 27 (1975).
- A. W. Sleight, Am. Chem. Soc. Symp. Ser. 351, 2 (1987).
- L. C. Smedskjaer, A. Bansil, U. Welp, Y. Fang, and K. G. Bailey, Phys. Rev. B 46, 5868 (1992).
- H. H. A. Smit, M. W. Dirken, R. C. Thiel, and L. J. de Jongh, Solid State Commun. 64, 695 (1987).
- M. G. Smith, A. Manthiram, J. Zhou, J. B. Goodenough, and J. T. Markert, Nature 351, 549 (1991).
- M. G. Smith, J. B. Goodenough, A. Manthiram, R. Taylor, W. Peng, C. Kimball, J. Solid State Chem. 98, 181 (1992).
- R. Sobolewski, L. Shi, T. Gong, W. Xiong, X. Weng, Y. Kostoulas, and P. M. Fauchet, "Proc. High Temperature Supercond. Detectors," 2159, to be published.
- J. O. Sofo, C. A. Balseiro, and H. E. Castillo, Phys. Rev. B 45, 9860 (1992).
- L. L. Sohn, M. S. Rzchowski, J. U. Free, S. P. Benz. M. Tinkham, and C. J. Lobb, Phys. Rev. B 44, 925
- L. L. Sohn, M. S. Rzchowski, J. U. Free, M. Tinkham, and C. J. Lobb, Phys. Rev. 45, 3003 (1992).
- P. R. Solomon and F. A. Otter, Phys. Rev. 164, 608 (1967).
- S. N. Song, Q. Robinson, S.-J. Hwu, D. L. Johnson, K. R. Poeppelmeier, and J. B. Ketterson, Appl. Phys. Lett. 51, 1376 (1987).
- Y. S. Song, H. Park, Y. S. Choi, Y. W. Park, M. S. Jang, H. C. Lee, and S. I. Lee, J. Korean Phys. Soc. 23, 492 (1990).
- Y. Song and J. R. Gaines, J. Phys. Condens. Matter. 3, 7161 (1991).
- Y .- Q. Song, M. Lee, W. P. Halperin, L. M. Tonge, and T. J. Marks, Phys. Rev. B 44, 914 (1991a).
- Y.-Q. Song, M. A. Kennard, M. Lee, K. R. Poeppelmeier, and W. P. Halperin, Phys. Rev. B 44, 7159 (1991ь).
- Y. Song, A. Misra, P. P. Crooker, and J. R. Gaines, Phys. Rev. B 45, 7574 (1992).
- Y.-Q. Song, W. P. Halperin, L. Tonge, T. J. Marks, M. Ledvii, V. G. Kogan, and L. N. Bulaevskii, Phys. Rev. Lett. 70, 3127 (1993).
- J. Spalek and P. Gopalan, J. Phys. France 50, 2869 (1989).
- J. Spalek and J. M. Honig, in "Studies in High Temperature Superconductors" (A. V. Narlikar,
- Ed.), Vol. 8, Chap. 1. Nova Sci., New York (1991). J. Spalek and W. Wojcik, Phys. Rev. B 45, 3799 (1992).
- G. Sparn, J. D. Thompson, R. L. Whetten, S.-M. Huang, R. B. Kaner, F. Diederich, G. Grüner, and K. Holczer, Phys. Rev. Lett. 68, 1228 (1992).
- P. N. Spathis, M. P. Soerensen, and N. Lazarides, Phys. Rev. B 45, 7360 (1992).

u G. G.

S.

E. (Н. J. 1 S. I

A. F S. E F

S. E S G C. K

M. A J. R. Sc M. A.

Go Μı tuı A. Su

(19 M. Su Ph

h

æ.

15

:r.

ii,

59

虳

ır,

L).

99

nd

25

- S. Spielman, J. S. Dodge, L. W. Lombardo, C. B. Eom, M. M. Fejer, T. H. Geballe, and A. Kapitulnik, Phys. Rev. 68, 3472 (1992).
- M. Stadnik, G. Stroink and R. A. Dunlap, Phys. Rev. B 39, 9108 (1989).
- Z. M. Stadnik, G. Stroink, and T. Arakawa, Phys. Rev. B 44, 12552 (1991).
- B. W. Statt and A. Griffin, Phys. Rev. B 48, 619
- T. Staufer, R. Nemetschek, R. Hackl, P. Müller, and H. Veith, Phys. Rev. Lett. 68, 1069 (1992).
- H. Veith, Phys. Rev. Lett. 68, 1069 (1992).
 D. G. Steel and J. M. Graybeal, Phys. Rev. B 45,
- 12643 (1992).
 F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).
- P. Steiner, V. Kinsinger, I. Sander, B. Siegwart, S. Hüfner, and C. Politis, Z. Phys. B Cond. Mat. 67, 100 (2017)
- (1987).
 H. Stephan and B. W. Maxfield, J. Low Temp. Phys. 10, 185 (1973).
- W. Stephan and J. P. Carbotte, Phys. Rev. B 43, 10236 (1991).
- G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
- G. R. Stewart, Z. Fisk, J. O. Willis, and T. J. Smith, Phys. Rev. Lett. B 52, 679 (1984).
- G. R. Stewart, J. O'Rourke, G. W. Crabtree, K. D. Carlson, H. H. Wang, J. M. Williams, F. Gross,
- and K. Andres, Phys. Rev. B 33, 2046 (1986). S. T. Stoddart, H. I. Mutlu, A. K. Geim, and S. J.
- Bending, Phys. Rev. B 47, 5146 (1993).
 E. C. Stoner, Phil. Mag. 36, 803 (1945).
- H. T. C. Stoof, Phys. Rev. B 47, 7979 (1993).
- J. A. Stratton, "Electromagnetic Theory," McGraw Hill, New York, 1941.
- K. Streiffer, B. M. Lairson, C. B. Eom, B. M. Clemens, J. C. Bravman, and T. H. Geballe, Phys.
- Rev. B 43, 13007 (1991).

 A. R. Strnad, C. F. Hempstead, and Y. B. Kim, Phys.
- Rev. Lett. 13, 794 (1964). S. E. Stupp, M. E. Reeves, D. M. Ginsberg, D. G.
- Hinks, B. Dabrowski, and K. G. Vandervoort, Phys. Rev. B 40, 10878 (1989).
- S. E. Stupp, T. A. Friedmann, J. P. Rice, R. A. Schweinfurth, D. J. Van Harlingen, and D. M. Ginsberg, Phys. Rev. B 43, 13073 (1991).
- C. K. Subramanian, M. Paranthaman, and A. B. Kaiser, Physica C 222, 47 (1994).
- M. A. Subramanian, C. C. Torardi, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 239, 1015 (1988a).
- M. A. Subramanian, J. C. Calabrese, C. C. Torardi, J. Gopalakrishnan, T. R. Askew, R. B. Flippen, K. J. Morrissey, U. Chowdhry, and A. W. Sleight, Nature 332, 420 (1988b).
- A. Sudbø and E. H. Brandt, Phys. Rev. B 43, 10482 (1991a); Phys. Rev. Lett. 67, 3176 (1991b).
- M. Suenaga, A. K. Ghosh, Y. Xu, and D. O. Welch, Phys. Rev. Lett. 66, 1777 (1991).

- R. Sugano, T. Onogi, and Y. Murayama, Phys. Rev. B 45, 10789 (1992).
- J. Sugiyama, S. Tokuono, S.-I. Koriyama, H. Yamauchi, and S. Tanaka, Phys. Rev. B 43, 10489 (1991).
- J. Sugiyama, K. Matsuura, M. Kosuge, H. Yamauchi, and S. Tanaka, Phys. Rev. B 45, 9951 (1992).
- S. B. Sulaiman, N. Sahoo, T. P. Das, O. Donzelli, E. Torikai, and K. Nagamine, Phys. Rev. B 44, 7028 (1991).
- S. B. Sulaiman, N. Sahoo, T. P. Das and O. Donzelli, Phys. Rev. B 45, 7383 (1992).
- P. E. Sulewski, A. J. Sievers, R. A. Buhrman, J. M. Tarascon, L. H. Greene, and W. A. Curtin, Phys. Rev. B 35, 8829 (1987).
- P. E. Sulewski, P. A. Fleury, K. B. Lyons, S.-W. Cheong, and Z. Fisk, Phys. Rev. B 41, 225 (1990).
- J. Z. Sun, D. J. Webb, M. Naito, K. Char, M. R. Hahn, J. W. P. Hsu, A. D. Kent, D. B. Mitzi, B. Oh, M. R. Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik, Phys. Rev. Lett. 58, 1574 (1987).
- K. Sun, J. H. Cho, F. C. Chou, W. C. Lee, L. L. Miller, D. C. Johnston, Y. Hidaka and T. Murakami, Phys. Rev. B 43, 239 (1991).
- C. S. Sundar, A. Bharathi, Y. C. Jean, P. H. Hor, R. L. Meng, Z. J. Huang, and C. W. Chu, Phys. Rev. B 42, 426 (1990a).
- C. S. Sundar, A. Bharathi, W. Y. Ching, Y. C. Jean, P. H. Hor, R. L. Meng, Z. J. Huang and C. W. Chu, Phys. Rev. B 42, 2193 (1990b).
- C. S. Sundar, A. Bharathi, W. Y. Ching, Y. C. Jean, P. H. Hor, R. L. Meng, Z. J. Huang, and C. W. Chu, Phys. Rev. B 43, 13019 (1991).
- C. Sürgers, H. v. Löhneysen, and L. Schultz, Phys. Rev. B 40, 8787 (1989).
- Y. Suwa, Y. Tanaka, and M. Tsukada, Phys. Rev. B 39, 9113 (1989).
- M. Suzuki, Y. Enemoto, T. Murakami, and T. Inamura, "Proc. 3rd Meeting Ferroelectric Materials and Their Applications," Kyoto, 1981a.
- M. Suzuki, Y. Enemoto, T. Murakami, and T. Inamura, Jpn. J. Appl. Phys. 20, Suppl. 20-24, 13 (1981b).
- M. Suzuki and M. Hikita, Jpn. J. Appl. Phys. 28, L1368 (1989).
- M. Suzuki and M. Hikita, Phys. Rev. B 41, 9566 (1990).
- M. Suzuki and M. Hikita, Phys. Rev. B 44, 249 (1991).
 S. Suzuki, T. Takahashi, T. Kusunoki, T. Morikawa, S. Sato, H. Katayama-Yoshida, A. Yamanaka, F. Minami, and S. Takekawa, Phys. Rev. B 44, 5381 (1991).
- H. Svensmark and L. M. Falicov, Phys. Rev. B 42, 9957 (1990).
- A. Szasz, J. Hajdu, J. Kojnok, Z. Dankhazi, W. Krasser, T. Trager, and J. Bankuti, J. Supercond. 3, 425 (1990).
- B. Szpunar and V. Smith, Jr., Phys. Rev. B 45, 10616 (1992).

- M. Tachiki and S. Takahashi, Solid State Commun. 70, 291 (1989).
- A. Tagliacozzo, F. Ventriglia, and P. Apell, Phys. Rev. B 40, 10901 (1989).
- L. Taillefer, in "Hyperfine Interactions," to be published.
- S. Tajima, S. Uchida, A. Masaki, H. Takaki, K. Kitazawa, S. Tanaka, and A. Katsui, Phys. Rev. B 32, 6302 (1985).
- S. Tajima, S. Uchida, H. Ishii, H. Takagi, S. Tanaka, U. Kawabe, H. Hasegawa, T. Aita, and T. Ishiba, Mod. Phys. Lett. B 1, 353 (1988).
- Y. Tajima, M. Hikita, T. Ishii, H. Fuke, K. Sugiyama, M. Date, A. Yamagishi, A. Katsui, Y. Hidaka, T. Iwata, and S. Tsurumi, Phys. Rev. B 37, 7956 (1988).
- S. Tajima and K. Kitazawa, in "Some Aspects of Superconductivity" (L. C. Gupta, Ed.) Nova Scientific Publ., New York, 1990.
- J. Takada, T. Terashima, Y. Bando, H. Mazaki, K. Iijima, K. Yamamoto, and K. Hirata, Phys. Rev. B 40, 4478 (1989).
- Y. Takada, Phys. Rev. B 39, 11575 (1989).
- H. Takagi, H. Eisaki, S. Uchida, A. Maeda, S. Tajima, K. Uchinokura, and S. Tanaka, Nature 332, 236 (1988).
- T. Takahashi, H. Matsuyama, H. Katamaya-Yoshida, Y. Okabe, S. Hosoya, K. Seki, H. Fujimoto, M. Sato, and H. Inokuchi, Phys. Rev. B 39, 6636 (1989).
- T. Takahashi, S. Sukuki, T. Morikawa, H. Katayama-Yoshida, S. Hasegawa, H. Inokuchi, K. Seki, K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba, Phys. Rev. Lett. 68, 1232 (1992).
- I. Takeuchi, J. S. Tsai, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 158, 83 (1989).
- M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H. Heffner, Z. Fisk, and K. C. Ott,
- M. Takigawa, J. L. Smith, and W. L. Hults, Phys. Rev. B 44, 7764 (1991).

Phys. Rev. B 43, 247 (1991).

- J. L. Tallon, Proc. 7th Intl. Workshop Critical Currents in "Superconductors, Tyrol, Austria," World Scientific, Singapore, 1994.
- K. Tamasaku, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 69, 1455 (1992).
- T. Tamegai, K. Koga, K. Suzuki, M. Ichihara, F. Sadai, and Y. Iye, Jpn. J. Appl. Phys. Lt. 2, 28, L112 (1989).
- Z. Tan, J. I. Budnick, W. Q. Chen, D. L. Brewe, S.-W. Cheong, A. S. Cooper, and L. W. Rupp, Jr., Phys. Rev. B 42, 4808 (1990).
- Z. Tan, J. I. Budnick, S. Luo, W. Q. Chen, S.-W. Cheong, A. S. Cooper, P. C. Canfield, and Z. Fisk, Phys. Rev. B 44, 7008 (1991).
- Y. Tanaka and M. Tsukada, Phys. Rev. B 40, 4482 (1989a); Solid State Commun. 69, 195, 491 (1989b).
- Y. Tanaka and M. Tsukada, Phys. Rev. B 42, 2066 (1990).

- Y. Tanaka and M. Tsukada, Phys. Rev. B 44, 7578
- S. Tanda, M. Honma, and T. Nakayama, Phys. Rev. B 43, 8725 (1991).
- C. Q. Tang, B. R. Li, and A. Chen, Phys. Rev. B 42, 8078 (1990).
- X. X. Tang, D. E. Morris, and A. P. B. Sinha, Phys. Phys. B 43, 7036 (1901)
- Rev. B 43, 7936 (1991). T. Tani, T. Itoh and S. Tanaka, J. Phys. Soc. Jpn.
- Suppl. A 49, 309 (1980).
 S. Tanigawa, Y. Mizuhara, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Mater. Res. Soc. Symp.
- Proc. 99, 57 (1988).
 D. B. Tanner and T. Timusk, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 5, World Scientific,
- Singapore, 1992.
 H. J. Tao, A. Chang, F. Lu, and E. L. Wolf, Phys. Rev. B 45, 10622 (1992).
- J. M. Tarascon, L. H. Greene, W. R. McKinnon, and G. W. Hull, Phys. Rev. B 35, 7115 (1987a).
- J. M. Tarascon, W. R. McKinnon, L. H. Greene, G. W. Hull, and E. M. Vogel, Phys. Rev. B 36, 226 (1987b).
- J. M. Tarascon, L. H. Greene, W. R. McKinnon, G. W. Hull, and T. H. Geballe, Science 235, 1373 (1987c).
- J. M. Tarascon, P. Barboux, P. F. Miceli, L. H. Greene, D. W. Hull, M. Eibschutz, and S. A. Sunshine, Phys. Rev. B 37, 7458 (1988a).
- J. M. Tarascon, Y. LePage, P. Barboux, B. G. Bagley, L. H. Greene, W. R. McKinnon, G. W. Hull, M. Giroud, and D. M. Hwang, Phys. Rev. 37, 9382 (1988b).
- J. M. Tarascon, E. Wang, L. H. Greene, B. G. Bagley, G. W. Hull, S. M. D'Egidio, P. F. Miceli, Z. Z. Wang, T. W. Jing, J. Clayhold, D. Brawner, and N. P. Ong, Phys. Rev. B 40, 4494 (1989a).
- J. M. Tarascon, Y. LePage, W. R. McKinnon, E. Tselepis, P. Barboux, B. G. Bagley, and R. Ramesh, in "Proc. Mater. Res. Soc. Symp.," San Diego, Apr. 23-28, 1989b.
- V. V. Tatarskii, M. Paranthaman, and A. M. Hermann, Phys. Rev. B 47, 14489 (1993).
- Y. Taur, P. L. Richards, and T. Auracher, Low Temp. Phys. 3, 276 (1974).
- W. M. Temmerman, G. M. Stocks, P. J. Durham, and P. A. Sterne, J. Phys. F 17, L135 (1987).
- M. A. Teplov, O. N. Bakharev, A. V. Dooglav, A. V. Egorov, M. V. Eremin, M. S. Tagirov, A. G. Volodin, and R. Sh. Zhdanov, Physica C 185–189, 1107 (1991).
- 1107 (1991).
 Terasaki, T. Nakahashi, S. Takebayashi, A. Maeda and K. Uchinokura, Physica C 165, 152 (1990a).
- I. Terasaki, S. Tajima, H. Eisaki, H. Takigi, K. Uchinokura, and S. Uchida, Phys. Rev. B 41, 865 (1990b).
- T. Terashima, K. Shimura, Y. Bando, Y. Matsuda, A. Fujiyama, and S. Komiyama, Phys. Rev. Lett. 67, 1362 (1991).

1

;

G.

R. J. 1

J. I

J. F.

S R. J. C. T.

T. S.

D. R cc T. Ti

G N M. Ti M. Ti

(1: M. T Kr

- B. M. Terzijska, R. Wawryk, D. A. Dimitrov, Cz. Marucha, V. T. Kovachev, and J. Rafalowicz, Cryogenics 32, 53 (1992).
- Z. Tesanovic and M. Rasolt, Phys. Rev. B 39, 2718 (1980)
- Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. B 43, 288 (1991).
- Z. Tesanovic, Phys. Rev. B 44, 12635 (1991).
- L. R. Tessler, J. Provost, and A. Maignan, Appl. Phys. Lett. 58, 528 (1991).
- L. Tewordt, S. Wermbter, and Th. Wölkhausen, Phys. Rev. B 40, 6878 (1989).
- L. Tewordt and Th. Wölkhausen, Solid State Commun. 70, 839 (1989).
- T. D. Thanh, A. Koma, and S. Tanaka, Appl. Phys. 22, 205 (1980).
- Theodorakis and Z. Tesanovic, Phys. Rev. B 40, 6659 (1989).
- S. L. Thiemann, Z. Radovic, and V. G. Kogan, Phys. Rev. B 39, 11406 (1989).
- T. Thio, T. R. Thurston, N. W. Preyer, P. J. Picone, M. A. Kastner, H. P. Jenssen, D. R. Gabbe, C. Y. Chen, R. J. Birgeneau, and A. Aharony, Phys. Rev. B 38, 905 (1988).
- G. Thomas, M. Capizzi, J. Orenstein, D. Rapkine, A. Millis, P. Gammel, L. Gammel, L. F. Schneemeyer, and J. Waszczak, in "Proceedings of the International Symposium on the Electronic Structure of High T_c Superconductors," p. 67, (A. Bianconi, Ed.) Pergamon Press, Oxford, 1988.
- R. S. Thompson, Phys. Rev. B 1, 327 (1970).
- J. R. Thompson, J. Brynestad, D. M. Kroeger, Y. C. Kim, S. T. Sekula, D. K. Christen, and E. Specht, Phys. Rev. B 39, 6652 (1989).
- J. R. Thompson, D. K. Christen, H. A. Deeds, Y. C. Kim, J. Brynestad, S. T. Sekula, and J. Budai, Phys. Rev. B 41, 7293 (1990).
- J. R. Thompson, J. G. Ossandon, D. K. Christen, B. C. Chakoumakos, Y. R. Sun, M. Paranthaman, and J. Brynestad, Phys. Rev. B 48, 14031 (1993).
- C. Thomsen and M. Cardona, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 8, World Scientific, Singapore, 1989.
- R. J. Thorn, ACS Symp. Ser. 351, Chap. 3, (1987).
- C. Tien and I. M. Jiang, Phys. Rev. B 40, 229 (1989).
 T. S. Tighe, M. T. Tuominen, J. M. Hergenrother,
- T. S. Tighe, M. T. Tuominen, J. M. Hergenrother and M. Tinkham, Phys. Rev. B 47, 1145 (1993).
- D. R. Tilley and J. Tilley, "Superfluidity and Superconductivity," Hilger, Boston (1986).
- T. Timusk and D. B. Tanner, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 7, World Scientific, New York (1989)
- M. Tinkham, Phys. Rev. Lett. 13, 804 (1964).
- M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 1366 (1972).
- M. Tinkham, "Introduction to Superconductivity," Krieger, FL (1985).

- M. Tinkham and C. J. Lobb, Solid State Phys. 42, 91 (1989).
- J. E. Tkaczyk, R. H. Arendt, M. F. Garbauskas, H. R. Hart, K. W. Lay, and F. E. Luborsky, Phys. Rev. B 45, 12506 (1992).
- J. G. Tobin, C. G. Olson, C. Gu, J. Z. Liu, F. R. Solal, M. J. Fluss, R. H. Howell, J. C. O'Brien, H. B. Radousky, and P. A. Sterne, Phys. Rev. B 45, 5563 (1992).
- B. H. Toby, T. Egami, J. D. Jorgensen, and M. A. Subramanian, Phys. Rev. Lett. 64, 2414 (1990).
- K. Togano, H. Kumakura, K. Fukutomi, and K. Tachikawa, Appl. Phys. Lett. 51, 136 (1987).
- A. Tokiwa, M. Nagoshi, and Y. Syono, Physica C 170, 437 (1990).
- A. Tokiwa, Y. Syono, T. Oku, and M. Nagoshi, Physica C 185–189, 619 (1991).
- A. Tokiwa-Yamamoto, K. Isawa, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 216, 250 (1993).
 A. Tokumitu, K. Miyake, and K. Yamada, Phys. Rev.
- A. Tokumitu, K. Miyake, and K. Yamada, Phys. Rev. B 47, 11988 (1993).
 M. Tokumoto, H. Bando, H. Anzai, G. Saito, K.
 - Murata, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Jpn. 54, 869 (1985).
- T. A. Tokuyasu, D. W. Hess, and J. A. Sauls, Phys. Rev. B 41, 8891 (1990); T. A. Tokuyasu and J. A. Sauls, Physica B 165-166, 347 (1990).
- J. C. Tolédano, A. Litzler, J. Primot, J. Schneck, L. Pierre, D. Morin, and C. Daguet, Phys. Rev. B 42, 436 (1990).
- H. Tolentino, M. Medarde, A. Fontaine, F. Baudelet, E. Dartyge, D. Guay, and G. Tourillon, Phys. Rev. B 45, 8091 (1992).
- I. Tomeno, M. Yoshida, K. Ikeda, K. Tai, K. Takamuku, N. Koshizuka, S. Tanaka, K. Oka, and H. Unoki, Phys. Rev. B 43, 3009 (1991).
- J. Toner, Phys. Rev. Lett. 66, 2523 (1991a).
- J. Toner, Phys. Rev. Lett. 67, 2537 (1991b); see comment by T. Nattermann and I. Lyuksyutov, and reply 68, 3366 (1992).
- C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 240, 631 (1988a).
- C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, E. M. McCarron, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Phys. Rev. B 38, 225 (1988b).
- J. B. Torrance, J. Solid State Chem. 96, 59 (1992).
 J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B 45, 8209 (1992).
- H. Totsuji, Phys. Rev. B 43, 5287 (1991).
- M. Touminen, A. M. Goldman, Y. Z. Chang, and P. Z. Jiang, Phys. Rev. B 42, 412 (1990).
- S. W. Tozer, A. W. Kleinsasser, T. Penney, D. Kaiser, and F. Holtzberg, Phys. Rev. Lett. 59, 1768 (1987).
- J. M. Tranquada, G. Shirane, B. Keimer, S. Shamoto, and M. Sato, Phys. Rev. B 40, 4503 (1989).

- J. M. Tranquada, in "Early and Recent Aspects of Superconductivity" (J. G. Bednorz and K. A. Müller, Eds.), p. 422, Springer-Verlag, Berlin, 1990.
- J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Phys. Rev. B 46, 5561 (1992).
- A. Tressaud, K. Amine, J. P. Chaminade, J. Etourneau, T. M. Duc, and A. Sartre, J. Appl. Phys. 68, 248 (1990).
- J.-M. Triscone, Ø. Fischer, O. Brunner, L. Antognazza, A. D. Kent, and M. G. Karkut, Phys. Rev. Lett. 64, 804 (1990).
- V. N. Trofimov, A. V. Kuznetsov, P. V. Lepeschkin, K. A. Bolschinskov, A. A. Ivanov, and A. A. Mikhailov, Physica C 183, 135 (1991).
- A. Trokiner, R. Mellet, A-M. Pougnet, D. Morin, Y. M. Gao, J. Primot, and J. Schneck, Phys. Rev. B 41, 9570 (1990).
- A. Trokiner, L. LeNoc, J. Schneck, A. M. Pougnet, R. Mellet, J. Primot, H. Savary, Y. M. Gao, and S. Aubry, Phys. Rev. B 44, 2426 (1991).
- N. Troullier and J. L. Martins, Phys. Rev. B 46, 1754 (1992).
- S. A. Trugman, Phys. Rev. Lett. 65, 500 (1990).
- J.-S. Tsai, A. K. Jain, and J. E. Lukens, Phys. Rev. Lett. 51, 316 (1983).
 S.-F. Tsay, S.-Y. Wang, and T. J. W. Yang, Phys. Rev.
- S.-P. 18ay, S.-Y. Wang, and T. J. W. Yang, Phys. Rev. B 43, 13080 (1991).
 C. C. Tsuei, A. Gupta, and G. Koren, Physica C 161,
- 415 (1989).

 M. Touminen, A. M. Goldman, Y. Z. Chang, and P.
- M. Touminen, A. M. Goldman, Y. Z. Chang, and P. Z. Jiang, Phys. Rev. B 42, 412 (1990).
 M. T. Tuominen, J. M. Hergenrother, T. S. Tighe,
- and M. Tinkham, Phys. Rev. B 47, 11599 (1993). I. Tüttö, L. M. Kahn and J. Ruvalds, Phys. Rev. B 20, 952 (1979).
- I. Tüttö and A. Zawadowski, Phys. Rev. B 45, 4842 (1992).
- R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, A. P. Ramirez, and J. C. Tully, Science 253, 884 (1991).
- R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. Murphy, A. P. Ramirez, and R. M. Fleming, Phys. Rev. Lett. 68, 1912 (1992).
 S. Uchida, H. Takani, K. Kitazawa, and S. Tanaka.
- S. Uchida, H. Takagi, K. Kitazawa and S. Tanaka, Jpn. J. Appl. Phys. 26, L1 (1987).
- S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura and S. Tajima, Phys. Rev. B 43, 7942 (1991).
- Y. J. Uemura, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, J. H. Brewer, T. M. Riseman, C. L. Seaman, M. B. Maple, M. Ishikawa, D. G. Hinks, J. D. Jorgensen, G. Saito and H. Yamochi, Phys. Rev. Lett. 66, 2665 (1991).
- A. Ugawa, K. Iwasaki, A. Kawamoto, K. Yakushi, Y. Yamashita, and T. Suzuki, Phys. Rev. B 43, 14718 (1991).
- C. Uher and W.-N. Huang, Phys. Rev. B 40, 2694 (1989).
- C. Uher, J. Supercond. 3, 337 (1990).

- C. Uher, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 3, World Scientific, Singapore, 1992.
- S. Ullah, A. T. Dorsey, and L. J. Buchholtz, Phys. Rev. B 42, 9950 (1990).
- S. Ullah and A. T. Dorsey, Phys. Rev. Lett. 65, 2066 (1990).
- S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991).
- J. S. Urbach, D. B. Mitzi, A. Kapitulnik, J. Y. T. Wei, and D. E. Morris, Phys. Rev. B 39, 12391 (1989).
- A. V. Ustinov, T. Doderer, R. P. Huebener, N. F. Pederson, B. Mayer, and V. A. Oboznov, Phys. Rev. Lett. 69, 1815 (1992).
- P. P. Vaishnava, C. A. Taylor, II, and C. L. Foiles, Phys. Rev. B 41, 4195 (1990).
- J. M. Valles, Jr., R. C. Dynes, and J. P. Garno, Phys. Rev. B 40, 6680 (1989).
- J. M. Valles, Jr., R. C. Dynes, A. M. Cucolo, M. Gurvitch, L. F. Schneemeyer, J. P. Garno, and J. V. Waszczak, Phys. Rev. B 44, 11986 (1991).
- J. van den Berg, C. J. van der Beek, P. H. Kest, J. A. Mydosh, M. J. V. Menken, and A. A. Menovsky, Supercond. Sci. Tech. 1, 249 (1989).
 J. van den Berg, C. J. van der Beek, P. H. Kes, J. A.
- Mydosh, G. J. Nieuwenhuys, and L. J. de Jongh, Solid State Commun. 64, 699 (1987).
- A. M. van den Brink, G. Schön, and L. Geerligs, Phys. Rev. Lett. 67, 3030 (1991).
- D. Van Der Marel, Physica C 165, 35 (1990).
- H. P. van der Meulen, A. de Visser, J. J. M. Franse, T. T. J. M. Berendschot, J. A. A. J. Perenboom, H. van Kempen, A. Lacerda, P. Lejay, and J. Fouquet, Phys. Rev. B 44, 814 (1991).
- H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, and J. E. Mooij, Phys. Rev. Lett. 66, 2531 (1991).
- K. G. Vandervoort, U. Welp, J. E. Kessler, H. Claus, G. W. Crabtree, W. K. Kwok, A. Umezawa, B. W. Veal, J. W. Downey, A. P. Paulikas, and J. Z. Liu, Phys. Rev. B 43, 13042 (1991).
- H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, and J. E. Mooij, Phys. Rev. B 47, 295 (1993).
- R. B. VanDover, E. M. Gyorgy, A. E. White, L. F. Schneemeyer, R. J. Felder, and J. V. Waszczak, Appl. Phys. Lett. 56, 2681 (1990).
- T. Van Duzer and C. W. Turner, "Principles of Superconductive Devices and Circuits," Elsevier, New York (1981).
- A. G. Van Vijfeijkenand and A. K. Niessen, Philips Res. Rep. 20, 505 (1965a); Phys. Lett. 16, 23 (1965b).
- B. J. van Wees, K.-M. H. Lenssen, and C. J. P. M. Harmans, Phys. Rev. B 44, 470 (1991).
- C. M. Varma, S. Schmitt-Rink, and E. Abrahams, in "Theories of High Temperature Superconductivity" (J. W. Halley, Ed.), p. 211, Addison Wesley, Reading, MA, 1988.
- C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

- B. V. Vasiliev, J. Supercond. 4, 271 (1991).
- D. R. Veblen, P. J. Heaney, R. J. Angel, L. W. Finger, R. M. Hazen, C. T. Prewitt, N. L. Ross, C. W. Chu, P. H. Hor, and R. L. Meng, Nature 332, 334 (1988).
- A. J. Vega, W. E. Farneth, E. M. McCarron, and R. K. Bordia, Phys. Rev. B 39, 2322 (1989a).
- A. J. Vega, M. K. Crawford, E. M. McCarron, and W. E. Farneth, Phys. Rev. B 40, 8878 (1989b).
- E. L. Venturini, D. S. Ginley, J. F. Kwak, R. J. Baughman, J. E. Schirber, and B. Morosin, in "High Temperature Superconductors" (D. U. Gubser and M. Schluter, Eds.), p. 97, Mater. Res. Soc., Pittsburgh, 1987.
- R. Vijayaraghavan, A. K. Ganguli, N. Y. Vasanthacharya, M. K. Rajumon, G. U. Kulkarni, G. Sankar, D. D. Sarma, A. K. Sood, N. Chandrabhas, and C. N. R. Rao, Supercond. Sci. Technol. 2, 195 (1989).
- P. Villars and J. C. Phillips, Phys. Rev. B 37, 2345 (1988).
- L. Ya. Vinnikov and I. V. Grigor'eva, JETP Lett. 47, 106 (1988).
- V. M. Vinokur, M. V. Feigel'man, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 65, 259 (1990).
- V. M. Vinokur, M. V. Feigel'man, and V. B. Geshkenbein, Phys. Rev. Lett. 67, 915 (1991).
- A. Virosztek and J. Ruvalds, Phys. Rev. Lett. 67, 1657 (1991).
- V. M. Virosztek and J. Ruvalds, Phys. Rev. B 45, 347 (1992).
- P. Visani, A. C. Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990).
- J. P. Vithayathil, D. E. MacLaughlin, E. Koster, D. Ll. Williams, and E. Bucher, Phys. Rev. B 44, 4705 (1991).
- B. M. Vlcek, M. C. Frischherz, S. Fleshler, U. Welp, J. Z. Liu, J. Downey, K. G. Vandervoort, G. W. Crabtree, M. A. Kirk, J. Giapintzakis, and J. Farmer, Phys. Rev. Lett. 46, 6441 (1992).
- N. V. Volkenshteyn *et al.*, Fiz. Met. Metalloved 45, 1187 (1978).
- A. R. von Hippel, "Dielectrics and Waves," p. 255, MIT Press, Cambridge, MA, 1954.
- S. von Molnár, A. Torresson, D. Kaiser, F. Holtzberg, and T. Penney, Phys. Rev. B 37, 3762 (1988).
- F. von Oppen and E. K. Riedel, Phys. Rev. Lett. 66, 84 (1991).
- S. V. Vonsovsky, Yu. A. Izyumov, and E. Z. Kurmaev, "Superconductivity in Transition Metals," Springer, New York (1982).
- A. Wadas, O. Fritz, H. J. Hug, and H.-J. Güntherodt,
 Z. Phys. B 88, 317 (1992).
- S. F. Wahid and N. K. Jaggi, Physica C 184, 88 (1991).
 D. R. Wake, F. Slakey, M. V. Klein, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 67, 3728 (1991).
- M. Wallin, Phys. Rev. B 41, 6575 (1990).
 R. E. Walstedt and W. W. Warren, Jr., Science 248, 1082 (1990).

- R. E. Walstedt, W. W. Warren, Jr., R. F. Bell, R. J. Cava, G. P. Espinosa, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 9574 (1990).
- R. E. Walstedt, R. F. Bell, and D. B. Mitzi, Phys. Rev. B 44, 7760 (1991).
- R. E. Walstedt, R. F. Bell, L. F. Schneemeyer, J. V. Waszczak, and G. P. Espinosa, Phys. Rev. B 45, 8074 (1992).
- B. L. Walton, B. Rosenblum, and F. Bridges, Phys. Rev. Lett. 32, 1047 (1974).
- Z. Wang, N. Zou, J. Pang, and C. Gong, Solid State Commun. 64, 531 (1987).
- Z. Z. Wang, J. Clayhold, N. P. Ong, J. M. Tarascon, L. H. Greene, W. R. McKinnon, and G. W. Hull, Phys. Rev. 36, 7222 (1987).
- S. J. Wang, S. V. Naidu, S. C. Sharma, D. K. De, D. Y. Jeong, T. D. Black, S. Krichene, J. R. Reynolds, and J. M. Owens, Phys. Rev. B 37, 603 (1988)
- Y. R. Wang, Phys. Rev. B 40, 2698 (1989).
- C-P. S. Wang, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 5, Springer-Verlag, Berlin, 1990.
- Y.-Y. Wang, G. Feng, and A. L. Ritter, Phys. Rev. B 42, 420 (1990).
- T. Wang, K. M. Beauchamp, D. D. Berkley, B. R. Johnson, J.-X. Liu, J. Zhang, and A. M. Goldman, Phys. Rev. B, 43, 8623 (1991).
- Z. Wang, Y. Bang, and G. Kotliar, Phys. Rev. Lett. 67, 2733 (1991).
- Y. Wang, A. M. Rao, J.-G. Zhang, X.-X. Bi, P. C. Eklund, M. S. Dresselhaus, P. P. Nguyen, J. S. Moodera, G. Dresselhaus, H. B. Radousky, R. S. Glass, M. J. Fluss, and J. Z. Liu, Phys. Rev. B 45, 2523 (1992).
- K-A. Wang, Y. Wang, P. Zhou, J. M. Holden, S.-L. Ren, G. T. Hager, H. F. Ni, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 1955 (1992).
- Z. D. Wang and C. S. Ting, Phys. Rev. Lett. 69, 1435 (1992a).
- Z. D. Wang and C. S. Ting, Phys. Rev. 46, 284 (1992b).
- Z. D. Wang and C.-R. Hu, Phys. Rev. B 44, 11918 (1991).
- C. A. Wang, R. L. Wang, H. C. Li, H. R. Yi, C. G. Cui, S. L. Li, X. N. Jing, J. Li, P. Xu, and L. Li, Physica C 191, 52 (1992).
- Z. H. Wang, A. W. P. Fung, G. Dresselhaus, M. S. Dresselhaus, K. A. Wang, P. Zhou, and P. C. Eklund, Phys. Rev. B 47, 15354 (1993).
- N. L. Wang, Y. Chong, C. Y. Wang, D. J. Huang, Z. Q. Mao, L. Z. Cao, and Z. J. Chen, Phys. Rev. B 47, 3347 (1993).
- Y. Watanabe, Z. Z. Wang, S. A. Lyon, D. C. Tsui, N. P. Ong, J. M. Tarascon, and P. Barboux, Phys. Rev. B 40, 6884 (1989).
- Y. Watanabe, D. C. Tsui, J. T. Birmingham, N. P. Ong, and J. M. Tarascon, Phys. Rev. B 43, 3026 (1991).

- K. Watanabe, S. Awaji, N. Kobayashi, H. Yamane, T. Hirai, and Y. Muto, J. Appl. Phys. 69, 1543 (1991).
- J. H. P. Watson, J. Appl. Phys. 39, 3406 (1968). H. L. Watson and R. P. Huebener, Phys. Rev. B 10, 4577 (1974).
- C. H. Watson, D. A. Browne, J.-C. Xu, and R. G. Goodrich, Phys. Rev. B 40, 8885 (1989).
- W. J. Wattamaniuk, J. P. Tidman, and R. F. Frindt, Phys. Rev. Lett. 35, 62 (1975).
- B. D. Weaver, J. M. Pond, D. B. Chrisey, J. S. Horwitz, H. S. Newman, and G. P. Summers, Appl. Phys. Lett. 58, 1563 (1991).
- W. Weber, Phys. Rev. Lett. 58, 1371 (1987).
- W. Weber, Z. Phys. B 70, 323 (1988).
- H. Weber and P. Minnhagen, Phys. Rev. B 38, 8730 (1988).
- W. H. Weber, C. R. Peters, B. M. Wanklyn, C. Chen, and B. E. Watts, Phys. Rev. 38, 917 (1988).
- W. H. Weber, C. R. Peters, and E. M. Logothetis, J. Opt. Soc. Am. B 6, 455 (1989).
- W. H. Weber and G. W. Ford, Phys. Rev. B 40, 6890
- H. Weber and H. J. Jensen, Phys. Rev. B 44, 454 (1991).
- M. Weger, Rev. Mod. Phys. 36, 175 (1964).
- H. Weinstock, IEEE Trans. Magn. 27, 3231 (1991).
- B. O. Wells, Z.-X. Shen, D. S. Dessau, W. E. Spicer, C. G. Olson, D. B. Mitzi, A. Kapitulnik, R. S. List, and A. Arko, Phys. Rev. Lett. 65, 3056 (1990).
- U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Liu, Phys. Rev. Lett. 62, 1908 (1989); Phys. Rev. B 40, 5263 (1989).
- U. Welp, S. Fleshler, W. K. Kwok, J. Downey, Y. Fang, G. W. Crabtree, and J. Z. Liu, Phys. Rev. B 42, 10189 (1990).
- Z. Y. Weng, C. S. Ting, and T. K. Lee, Phys. Rev. B 41, 1990 (1990).
- F. Wenger and S. Östlund, Phys. Rev. B 47, 5977 (1993).
- F. Werfel, G. Dräger, J. A. Leiro, and K. Fischer, Phys. Rev. B 45, 4957 (1992).
- S. Wermbter and L. Tewordt, Phys. Rev. B 44, 9524 (1991): Physica C 183, 365 (1991).
- N. R. Werthamer, Phys. Rev. 132, 2440 (1963). M.-H. Whangbo and C. C. Torardi, Acct. Chem. Res.
- 24, 127 (1991). J. M. Wheatley, T. C. Hsu, and P. W. Anderson, Phys.
- Rev. B 37, 5897 (1988). A. Widom, Y. N. Srivastava, C. Vittoria, H. How, R.
 - Karim, and H. Jiang, Phys. Rev. B 46, 1102 (1992). R. J. Wijngaarden, E. N. van Eenige, J. J. Scholtz,
- and R. Griessen, High Pressure Res. 3, 105 (1990).
- F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982a).
- F. Wilczek, Phys. Rev. Lett. 49, 957 (1982b). N. K. Wilkin and M. A. Moore, Phys. Rev. B 48, 3464
- G. P. Williams, R. C. Budhani, C. J. Hirschmugl, G.
- L. Carr, S. Perkowitz, B. Lou, and T. R. Yang, Phys. Rev. B 41, 4752 (1990).

- P. J. Williams and J. P. Carbotte, Phys. Rev. B 43, 7960 (1991).
- M. N. Wilson, "Superconducting Magnets," Clarendon Press, Oxford, 1983.
- A. Wittlin, L. Genzel, M. Cardona, M. Bauer, W. König, E. Garcia, M. Barahona, and M. V. Cabañas, Phys. Rev. B 37, 652 (1988).
- T. Wittmann and J. Stolze, Phys. Rev. B 48, 3479 (1993).
- S. A. Wolf and V. Z. Kresin, Eds., "Novel Superconductivity," Plenum, New York, 1987.
- Y. Wolfus, Y. Yeshurun, I. Felner, and H. Sompolinsky, Phys. Rev. B 40, 2701; see B 39, 11690 (1989).
- H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994). R. F. Wood and J. F. Cooke, Phys. Rev. B 45, 5585 (1992).
- F. Wooten, "Optical Properties of Solids," p. 244, Academic Press, New York, 1972.
 - R. Wördenweber, Phys. Rev. B 46, 3076 (1992).
 - A. H. Worsham, N. G. Ugras, D. Winkler, D. E. Prober, N. R. Erickson, and P. F. Goldsmith, Phys. Rev. Lett. 67, 3034 (1991).
- T. K. Worthington, W. J. Gallagher, and T. R. Dinger, Phys. Rev. Lett. 59, 1160 (1987).
- W. H. Wright, D. J. Holmgren, T. A. Friedmann, M. P. Maher, B. G. Pazol, and D. M. Ginsberg, J. Low Temp. Phys. 68, 109 (1987).
- M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
- J. Z. Wu, C. S. Ting, and D. Y. Xing, Phys. Rev. B 40, 9296 (1989).
- D.-H. Wu and S. Sridhar, Phys. Rev. Lett. 65, 2074 (1990).
- J. Z. Wu, C. S. Ting, W. K. Chu, and X. X. Yao, Phys. Rev. B 44, 411 (1991a).
- J. Z. Wu, P. Y. Hsieh, A. V. McGuire, D. L. Schmidt, L. T. Wood, Y. Shen, and W. K. Chu, Phys. Rev. B 44, 12643 (1991b).
- Z. Y. Wu, M. Benfatto, and C. R. Natoli, Phys. Rev. B 45, 531 (1992). D. H. Wu, J. Mao, S. N. Mao, J. L. Peng, X. X. Xi, T.
- Venkatesan, R. L. Greene, and S. M. Anlage, Phys. Rev., Lett. 70, 85 (1993).

C

I.

S.

Z

Z.

w

N.

J.-

- R. W. G. Wyckoff, "Crystal Structures," Vol. 1, Wiley, New York, 1963.
- R. W. G. Wyckoff, "Crystal Structures," Vol. 2, Wiley, New York, 1964.
- R. W. G. Wyckoff, "Crystal Structures," Vol. 3, Wiley, New York, 1965.
- R. W. G. Wyckoff, "Crystal Structures," Vol. 4, Wiley, New York, 1968.
- D. G. Xenikos and T. R. Lemberger, Phys. Rev. B 41, 869 (1990).
- T.-K. Xia and D. Stroud, Phys. Rev. B 39, 4792
- W. Xia and P. L. Leath, Phys. Rev. Lett. 63, 1428
- G. Xiao, F. H. Streitz, A. Gavrin, Y. W. Du, and C. L. Chien, Phys. Rev. B 35, 8782 (1987a).

- G. Xiao, F. H. Streitz, A. Gavrin, M. Z. Cieplak, J. Childress, M. Lu, A. Zwicker, and C. L. Chien, Phys. Rev. B 36, 2382 (1987b).
- G. Xiao, M. Z. Cieplak, and C. L. Chien, Phys. Rev. B 40, 4538 (1989).
- D. Y. Xing and M. Liu, Phys. Rev. B 43, 3744 (1991).
 Q. Xiong, Y. Y. Xue, Y. Cao, F. Chen, Y. Y. Sun, J.
- Gibson, L. M. Liu, A. Jacobson, and C. W. Chu, Phys. Rev. Lett., in press (1994). Y. Xu, M. Suenaga, A. R. Moodenbaugh, and D. O.
- Welch, Phys. Rev. B 40, 10882 (1989). Y. Xu, M. Suenaga, Y. Gao, J. E. Crow, and N. D.
- M. Suenaga, Y. Gao, J. E. Crow, and N. D. Spencer, Phys. Rev. B 42, 8756 (1990).
- M. Xu, D. Shi, and R. F. Fox, Phys. Rev. B 42, 10773 (1990).
 Y. Xu and M. Suenaga, Phys. Rev. B 43, 5516 (1991).
- Y.-N. Xu, M.-Z. Huang, and W. Y. Ching, Phys. Rev. B 44, 13171 (1991).
- X-Q. Xu, S. J. Hagen, W. Jiang, J. L. Peng, Z. Y. Li, and R. Greene, Phys. Rev. B 45, 7356 (1992).
 J. V. Yakhmi and R. M. Iyer, in "High Temperature
- Superconductors" (S. K. Malik and S. S. Shah, Eds.), Nova Sci., New York, 1992.
- J. V. Yakhmi, "Chemistry and Physics of Fullerenes," in "Atomic and Molecular Physics," (S. A. Ahmad, Ed.) Narosa Publishing, New Delhi, India, 1994.
- K. Yamada, K. Kakurai, Y. Endoh, T. R. Thurston, M. A. Kaster, R. J. Birgeneau, G. Shirane, Y. Hidaka, and T. Murakami, Phys. Rev. B 40, 4557 (1989).
- K. Yamamoto, H. Mazaki, H. Yasuoka, S. Katsuyama, and K. Kosuge, Phys. Rev. 46, 1122 (1992).
- K. Yamamoto, H. Mazaki, and H. Yasuoka, Phys. Rev. B 47, 915 (1993).
- H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, and K. Kajimura, Phys. Rev. Lett. 70, 3331 (1993).
- Y. Yan and M. G. Blanchin, Phys. Rev. B 43, 13717 (1991).
 K. N. Yang, J. M. Ferreira, B. W. Lee, M. B. Maple,
- W.-H. Li, J. W. Lynn, and R. W. Erwin, Phys. Rev. B 40, 10963 (1989).
- C. Y. Yang, A. R. Moodenbaugh, Y. L. Wang, Y. Xu, S. M. Heald, D. O. Welch, D. A. Fischer, and J. E. Penner-Hahn, Phys. Rev. B 42, 2231 (1990).
- I.-S. Yang, G. Burns, F. H. Dacol, and C. C. Tsuei, Phys. Rev. B 42, 4240 (1990).
 S. Yarlagadda and S. Kurihara, Phys. Rev. B 48,
- 10567 (1993).

 Z. Ye and S. Sachdev, Phys. Rev. B 44, 10173 (1991).

 Z. Ye, H. Umezawa, and R. Teshima, Phys. Rev. B
- 44, 351 (1991).

 W.-J. Yeh, L. Chen, F. Xu, B. Bi, and P. Yang, Phys.
- W.-J. Yeh, L. Chen, F. Xu, B. Bi, and P. Yang, Phys. Rev. B 36, 2414 (1987).
 N.-C. Yeh and C. C. Tsuei, Phys. Rev. B 39, 9708
- (1989); N.-C. Yeh, Phys. Rev. B 40, 4566 (1989). J.-J. Yeh, L. Lindau, J.-Z. Sun, K. Char, M. Missert,
- J.-J. Yeh, L. Lindau, J.-Z. Sun, K. Char, M. Missert, A. Kapitulnik, T. H. Geballe, and M. R. Beasley, Phys. Rev. B 42, 8044 (1990).

- N.-C. Yeh, Phys. Rev. B 42, 4850 (1990). N.-C. Yeh, Phys. Rev. B 43, 523 (1991).
- J.-J. Yeh, Phys. Rev. B 45, 10816 (1992). N.-C. Yeh, W. Jiang, D. S. B.
- N.-C. Yeh, W. Jiang, D. S. Reed, A. Gupta, F. Holtzberg, and A. Kussmaul, Phys. Rev. B 45, 5710 (1992b).
- N.-C. Yeh, D. S. Reed, W. Jinag, U. Kriplani, F. Holtzberg, A. Gupta, B. D. Hunt, R. P. Vasquez, M. C. Foote, and L. Bajuk, Phys. Rev. B 45, 5654 (1992a).
- Y. Yeshurun, A. P. Malozemoff, F. Holtzberg, and T. R. Dinger, Phys. Rev. B 38, 11828 (1988).
- S.-K. Yip, O. F. DeA. Bonfim, and P. Kumar, Phys. Rev. B 41, 11214 (1990).
- F. Yndurain and G. Martínez, Phys. Rev. B 43, 3691 (1991).
- M. Yoshimoto, H. Koinuma, T. Hashimoto, J. Tanaka, S. Tanabe, and N. Soga, Physica C 181, 284 (1991).
- M. Yoshimura, H. Shigekawa, H. Nejoh, G. Saito, Y. Saito, and A. Kawazu, Phys. Rev. B 43, 13590 (1991).
- J. Yu, A. J. Freeman, and S. Massidda, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 367, Plenum, New York, 1987.
- R. C. Yu, M. J. Naughton, X. Yan, P. M. Chaikin, F. Holtzberg, R. L. Greene, J. Stuart, and P. Davies, Phys. Rev. B 37, 7963 (1988).
- G. Yu, C. H. Lee, A. J. Heegar, N. Herron, and E. M. McCarron, Phys. Rev. Lett. 67, 2581 (1990).
- J. Yu, A. J. Freeman, R. Podloucky, P. Herzig, and P. Weinberger, Phys. Rev. B 43, 532 (1991).
- X.-J. Yu and M. Sayer, Phys. Rev. B 44, 2348 (1991).
 R. C. Yu, J. M. Williams, H. H. Wang, J. E. Thompson, A. M. Kini, K. D. Carlson, J. Ren, M.-H. Whangbo, and P. M. Chaikin, Phys. Rev. B 44, 6932 (1991).
- W. Yu, E. B. Harris, S. E. Hebboul, J. C. Garland, and D. Stroud, Phys. Rev. B 45, 12624 (1992).
- B. D. Yu, H. Kim, and J. Ihm, Phys. Rev. B 45, 8007 (1992).
- G. Yu, C. H. Lee, A. J. Heeger, N. Herron, E. M. McCarron, L. Cong, G. C. Spalding, C. A. Nordman, and A. M. Goldman, Phys. Rev. B 45, 4964 (1992).
- R. C. Yu, M. B. Salamon, J. P. Lu, and W. C. Lee, Phys. Rev. Lett. 69, 1431 (1992).
- J. Yuan, L. M. Brown, W. Y. Liang, R. S. Liu, and P. P. Edwards, Phys. Rev. B 43, 8030 (1991).
- B. J. Yuan and J. P. Whitehead, Phys. Rev. B 44, 6943 (1991).
- K. Yvon and M. François, Z. Phys. B 76, 413 (1989).
 A. A. Zakhidov, A. Ugawa, K. Imaeda, K. Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto, S. Suzuki, and Y. Achiba, Solid State Commun. 79, 939 (1991).
- M. Zeh, H.-C. Ri, F. Kober, R. P. Huebener, J. Fischer, R. Gross, H. Müller, T. Sermet, A. V. Ustinov, and H.-G. Wener, Physica C 167, 6 (1990).

- E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino, and M. W. McElfresh, Phys. Rev. Lett. 62, 3093 (1989).
- H. R. Zeller and I. Giaever, Phys. Rev. 181, 789 (1969).
- X. C. Zeng, D. Stroud, and J. S. Chung, Phys. Rev. B 43, 3042 (1991).
- R. Zeyher, Phys. Rev. B 44, 10404 (1991).
- F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
- L. Zhang, M. Ma, and F. C. Zhang, Phys. Rev. B 42, 7894 (1990).
- J.-G. Zhang, X.-X. Bi, E. McRae, P. C. Eklund, B. C. Sales, and M. Mostoller, Phys. Rev. B 43, 5389 (1991a).
- Z. Zhang, C.-C. Chen, and C. M. Lieber, Science 254, 1619 (1991).
- H. Zhang, J. W. Lynn and D. E. Morris, Phys. Rev. B 45, 10022 (1992).
- L. Zhang, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 4978 (1992).
 1. Zhang, J. K. Jain, and V. J. Emery, Phys. Rev. B
- L. Zhang, J. K. Jain, and V. J. Emery, Phys. Rev. B 47, 3368 (1993).
- Z. Zhang and C. M. Lieber, Phys. Rev. B 47, 3423 (1993).
- H. Zhang and H. Sato, Phys. Rev. Lett. 70, 1697 (1993).
- Z. Zhao, L. Chen, Q. Yang, Y. Huang, G. Chen, R. Tang, G. Liu, C. Cui, L. Chen, L. Wang, S. Guo, S. Li, and J. Bi, in "Cooper Oxide Superconductors" (C. P. Poole, Jr., T. Datta, and H. A. Farach, Eds.), p. 274, Wiley, New York, 1987.
- Z. Zhao, F. Behrooze, S. Adenwalla, Y. Guan, J. B. Ketterson, B. K. Sarma, and D. G. Hinks, Phys. Rev. B 43, 13720 (1991).
- B.-R. Zhao, S.-I. Kuroumaru, Y. Horie, E. Yanada, T. Aomine, X.-G. Qiu, Y.-Z. Zhang, Y.-Y. Zhao, P. Xu, L. Li, H. Ohkubo, and S. Mase, Physica C 179, 138 (1991).
- G. L. Zhao and J. Callaway, Phys. Rev. B 49, 6424 (1994).

- C. Zhaojia, Z. Yong, Y. Hongshun, C. Zuyao, Z. Donquin, Q. Yitai, W. Baimei, and Z. Qirui, Solid State Commun. 64, 685 (1987).
- H. Zheng, M. Avignon, and K. H. Bennemann, Phys. Rev. B 49, 9763 (1994).
- X. Zhengping, J. Chunlin, and Z. Lian, J. Supercond. 3, 421 (1990).
- H. Zhou, J. Rammer, P. Schleger, W. N. Hardy, and J. F. Carolan, Phys. Rev. B 43, 7968 (1991).
- P. Zhou, K.-A. Wang, A. M. Rao, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 10838 (1992).
- J. Zhou and S. G. Chen, Phys. Rev. B 47, 8301 (1993).
 D.-M. Zhu, A. C. Anderson, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 40, 841 (1989).
 D.-M. Zhu, A. C. Anderson, T. A. Friedmann, and
- D. M. Ginzberg, Phys. Rev. B 41, 6605 (1990). S. Zhu, D. K. Christen, C. E. Klabunde, J. R. Thomp-
- son, E. C. Jones, R. Feenstra, D. H. Lowndes, and D. P. Norton, Phys. Rev. B 46, 5576 (1992). Y. Zhu in "High Temperature Superconducting Materials Science and Engineering," (D. Shi, Ed.), Pergamon, New York, 1994.
- G. T. Zimanyi and K. S. Bedell, Phys. Rev. B 48, 6575 (1993).
- P. Zolliker, D. E. Cox, J. B. Parise, E. M. McCarron III, and W. E. Farneth, Phys. Rev. B 42, 6332 (1990).
- X. Zotos, P. Prelovšek, and I. Sega, Phys. Rev. B 42, 8445 (1990).
- Z. Zou and P. W. Anderson, Phys. Rev. B 37, 627 (1988); (reprinted in Halley, 1988, p. 163).
- V. E. Zubkus, E. E. Tornau, S. Lapinskas, and P. J. Kundrotas, Phys. Rev. B 43, 13112 (1991).
- F. Zuo, M. B. Salamon, T. Datta, K. Ghiron, H. Duan, and A. M. Hermann, Physica C 176, 541 (1991).
- W. Zwerger, Phys. Rev. B 42, 2566 (1990).

Hars excel of su other sever prese table Parar rame ties, Stand plots lated ature shoul

are ti partic penet tracte phase

ences