Heat transfer in laser based additive manufacturing

Jifu Tan, PhD

Northern Illinois University

August 16, 2023

Acknowledgement

Figure: Sponsors and Partners

Videos

molten pool experiments

flow-3d simulation

In engineer's eyes

Fig. 1. Physical phenomena during selective beam melting.

Thermal model: Heat Transfer of a moving laser

Figure: Temperature distribution

Governing equation

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

$$= \alpha \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial v^2} + \frac{\partial^2 T}{\partial z^2} \right]$$
(2)

$$= \alpha \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right] \tag{2}$$

T temperature in Kelvin, α thermal diffusivity in m^2/s , x, y, z are Cartesian coordinates.

2D case

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T = \alpha \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right]$$
 (3)

In general, you can ${\bf NOT}$ find a close form solution to the above equation, but We can approximate the solution using numerical methods, see slide 9

Assumptions

2D, infinite and semi-infinite solids, insulated at the infinite boundary

2D analytical solution

$$T - T_0 = \frac{q}{2\pi kR} \exp\left[\frac{-v(x - vt + R)}{2\alpha}\right]$$
 (4)

 T_0 initial temperature, q is the heat flux $(J/(s \cdot m^2))$, k is the heat conductivity of metal $(J/(s \cdot m \cdot Kelvin))$, $R = \sqrt{(x-vt)^2 + y^2}$, v is the heat source moving velocity (m/s), α is the thermal diffusivity

Exercise: calculate and plot temperature for a laser

$$T - T_0 = \frac{q}{2\pi kR} \exp\left[\frac{-v(x - vt + R)}{2\alpha}\right]$$
(5)

$$\alpha = \frac{k}{\rho c_p} \tag{6}$$

Parameters	Value	Units
T_0	300	K(Kelvin)
q	840	w/m^2
k	35	w/m/K
V	1	m/s
c_p	800	J/kg/K
ρ	7600	kg/m^3

Figure: Exercise example solution

Table: physical parameters for a metal

Finite difference unsteady heat transfer: explicit method

Consider a 2D heat conduction

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \tag{7}$$

Figure: Illustration of an uniform grid

The righ hand side of Eqn.(7) can be discretized using a central difference method

$$\begin{split} \frac{\partial^2 T}{\partial x^2} &= \frac{T_{i-1,j}^t - 2T_{i,j}^t + T_{i+1,j}^t}{\Delta x^2}, \\ \frac{\partial^2 T}{\partial y^2} &= \frac{T_{i,j-1}^t - 2T_{i,j}^t + T_{i,j+1}^t}{\Delta y^2} \end{split}$$

The left hand side has two options, forward difference (explicit method) or backward difference (implicit method), which will be discussed in the next two slides.

Explicit method

Forward difference in time,

$$\frac{\partial T}{\partial t} = \frac{T_{i,j}^{t+1} - T_{i,j}^t}{\Delta t} \tag{8}$$

Explicit Method

$$\underbrace{\frac{T_{i,j}^{t+1} - T_{i,j}^{t}}{\Delta t}}_{\text{forward difference}} = \alpha \left(\frac{T_{i-1,j}^{t} - 2T_{i,j}^{t} + T_{i+1,j}^{t}}{\Delta x^{2}} + \frac{T_{i,j-1}^{t} - 2T_{i,j}^{t} + T_{i,j+1}^{t}}{\Delta y^{2}} \right)$$
(9)

Assuming $\Delta x = \Delta y = h$

$$T_{i,j}^{t+1} = T_{i,j}^t + \frac{\alpha \Delta t}{h^2} (T_{i-1,j}^t + T_{i+1,j}^t + T_{i,j-1}^t + T_{i,j+1}^t - 4T_{i,j}^t)$$

Stability requirement: $\Delta t \leq \frac{h^2}{2\alpha}$

Implicit method

Backward difference in time,

$$\frac{\partial T}{\partial t} = \frac{T_{i,j}^t - T_{i,j}^{t-1}}{\Delta t} \tag{10}$$

Implicit method

$$\underbrace{\frac{T_{i,j}^t - T_{i,j}^{t-1}}{\Delta t}}_{= \alpha \left(\frac{T_{i-1,j}^t - 2T_{i,j}^t + T_{i+1,j}^t}{\Delta x^2} + \frac{T_{i,j-1}^t - 2T_{i,j}^t + T_{i,j+1}^t}{\Delta y^2}\right)$$
(11)

backward difference

Assuming $\Delta x = \Delta y = h$, and define $k = \frac{\alpha \Delta t}{h^2}$

$$T_{i,j}^{t} = T_{i,j}^{t-1} + \frac{\alpha \Delta t}{h^2} \left(T_{i-1,j}^{t} + T_{i+1,j}^{t} + T_{i,j-1}^{t} + T_{i,j+1}^{t} - 4T_{i,j}^{t} \right)$$
(12)

$$T_{i,j}^{t} = \frac{1}{1+4k} \left(T_{i,j}^{t-1} + k \left(T_{i-1,j}^{t} + T_{i+1,j}^{t} + T_{i,j-1}^{t} + T_{i,j+1}^{t} \right)$$
 (13)

Eqn.(13) can be solved using Gauss-Sidel iterative method.

Stability requirement: unconditionally stable, Δt can take any arbitray size

□ ト 4 個 ト 4 重 ト 4 重 ト 重 の 9 (で)