Gabarito

Álgebra Linear: AD1 - CEDERJ

Mauro Rincon & Márcia Fampa - 2017 Tutores: Gabriel Thomaz e Rodrigo Olimpio

1^a Questão) Solução:

Considere as incógnitas:

X = quantidade de kg do produto X

Y = quantidade de kg do produto Y

Z = quantidade de kg do produto Z

Para montar o sistema relativo ao problema, vamos somar as quantidades de insumo A dos três produtos X, Y, Z e igualar a quantidade total (em gramas) de insumo A utilizada (linha L_1 do sistema). Faremos o mesmo procedimento para o insumo B (linha L_2 do sistema). Então multiplicaremos o preço de cada kg pelo seu respectivo produto e igualaremos ao valor total que a indústria arrecadou (linha L_3 do sistema). Assim temos:

$$\begin{cases} X + 2Y + 4Z &= 1900 \\ X + 3Y + Z &= 2100 \\ 3X + 2Y + Z &= 2600 \end{cases}$$
 (1)

Utilizaremos o Método de Eliminação de Gauss para resolvê-lo. Considere a seguinte matriz aumentada que representa este sistema :

$$\begin{bmatrix}
1 & 2 & 4 & 1900 \\
1 & 3 & 1 & 2100 \\
3 & 2 & 1 & 2600
\end{bmatrix}$$

Fazendo $L_2 \leftarrow L_2 - L_1$ e $L_3 \leftarrow L_3 - 3L_1$ temos

$$\begin{bmatrix} 1 & 2 & 4 & 1900 \\ 0 & 1 & -3 & 200 \\ 0 & -4 & -11 & -3100 \end{bmatrix}.$$

Agora, fazendo $L_3 \leftarrow L_3 + 4L_2$ temos

Assim, temos o seguinte sistema após a eliminação de Gauss:

$$\begin{cases} X + 2Y + 4Z &= 1900 \\ Y - 3Z &= 200 \\ -23Z &= -2300 \end{cases}$$
 (2)

Por L_3 neste sistema, temos que Z = 100.

Substituindo Z em L_2 temos que Y = 500.

Agora, substituindo Y e Z em L_1 , temos que X = 500.

Logo, foram vendidos 500 kg do produto X, 500 kg do produto Y e 100 kg do produto Z.

2^a Questão) Solução:

a)
$$proj_v u = \frac{uv}{||v||^2} v = \frac{(1, -2, 0)(2, 0, 1)}{2^2 + 0^2 + 1^2} (2, 0, 1) = \frac{2}{5} (2, 0, 1) = \left(\frac{4}{5}, 0, \frac{2}{5}\right).$$

b)
$$d(u,v) = \sqrt{(2-1)^2 + (0-(-2))^2 + (1-0)^2} = \sqrt{1+4+1} = \sqrt{6}$$
.

c) Sejam $a, b \in \mathbb{R}$. Consideremos

$$a(1,-2,0)+b(2,0,1)=(a+2b,-2a,b)=(x,y,z)$$

Assim, temos:

$$\begin{cases} a + 2b = x \\ -2a = y \\ b = z \end{cases}$$

Por L_3 temos que b=z e por L_2 temos que $a=\frac{-y}{2}$. Substituindo em L_1 , temos que $x=\frac{-y}{2}+2z$. Logo $[u,v]=\Big\{(x,y,z)\in\mathbb{R}^3|x=\frac{-y}{2}+2z\Big\}$.

d)
$$[u, v] = \left\{ (x, y, z) \in \mathbb{R}^3 | \left(\frac{-y}{2} + 2z, y, z \right) \right\}.$$

 $\left(\frac{-y}{2} + 2z, y, z \right) = y \left(\frac{-1}{2}, 1, 0 \right) + z (2, 0, 1).$

Logo uma base para este subespaço é $B = \left\{ \left(\frac{-1}{2}, 1, 0 \right), (2, 0, 1) \right\}$.

Tome
$$v_1 = \left(\frac{-1}{2}, 1, 0\right), v_2 = (2, 0, 1).$$

Vamos ortogonalizar esta base usando o método de Gram-Schmidt.

Seja
$$w_1 = v_1 = \left(\frac{-1}{2}, 1, 0\right).$$

Temos que $w_2 = v_2 - \left(\frac{v_2'w_1}{w_1w_1}\right)w_1$.

Logo

$$w_2 = (2, 0, 1) - \left(\frac{(2, 0, 1)(\frac{-1}{2}, 1, 0)}{(\frac{-1}{2}, 1, 0)(\frac{-1}{2}, 1, 0)}\right) \left(\frac{-1}{2}, 1, 0\right)$$

$$=(2,0,1)-\left(\frac{-4}{5}\left(\frac{-1}{2},1,0\right)\right)=$$

$$= (2,0,1) - \left(\frac{4}{10}, \frac{-4}{5}, 0\right) = \left(\frac{16}{10}, \frac{4}{5}, 1\right) = \left(\frac{8}{5}, \frac{4}{5}, 1\right)$$

Assim, temos que a base ortogonal é $\left\{ \left(\frac{-1}{2},1,0\right), \left(\frac{8}{5},\frac{4}{5},1\right) \right\}$.

e)

Figura 1: Vetor resultante

 3^a Questão) Solução:

a)
$$A^{T} = \begin{bmatrix} 1 & -6 & -2 \\ 9 & 2 & 5 \end{bmatrix}$$
 $2B = \begin{bmatrix} 2 & -2 & 4 \\ -2 & 8 & 2 \end{bmatrix}$

$$A^{T} - 2B = \begin{bmatrix} 1 & -6 & -2 \\ 9 & 2 & 5 \end{bmatrix} - \begin{bmatrix} 2 & -2 & 4 \\ -2 & 8 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -4 & -6 \\ 11 & -6 & 3 \end{bmatrix}$$

b)
$$C = AB = \begin{bmatrix} 1 & 9 \\ -6 & 2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ -1 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1-9 & -1+36 & 2+9 \\ -6-2 & 8+6 & -12+2 \\ -2-5 & 2+20 & -4+5 \end{bmatrix} = \begin{bmatrix} -8 & 35 & 11 \\ -8 & 14 & -10 \\ -7 & 22 & 1 \end{bmatrix}$$

c)
$$C = BA = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 9 \\ -6 & 2 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 1+6-4 & 9-2+10 \\ -1-24-2 & -9+8+5 \end{bmatrix} = \begin{bmatrix} 3 & 17 \\ 27 & 4 \end{bmatrix}$$

4^a Questão) Solução:

Para o conjunto ser L.D., temos que ter uma destas três matrizes dadas como combinação linear das outras duas. Assim, temos para $a, b \in \mathbb{R}$:

$$av_1 + bv_2 = v_3$$

$$a_1 \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + a_2 \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ k_1 & k_2 \end{bmatrix}$$

e portanto temos o sistema

$$\begin{cases} a+b=2\\ b=-1\\ a=k_1\\ -2b=k_2 \end{cases}$$

Substituindo L_2 em L_1 , temos que $a-1=2\Longrightarrow a=3$. Logo, por L_3 e L_4 , encontramos que $k_1=3$ e $k_2=2$.

 5^a Questão) Solução:

A matriz aumentada [A|0] do sistema é dada por

$$[A|0] = \begin{bmatrix} 1 & 2 & -2 & -1 & 0 \\ 2 & 4 & 1 & 1 & 0 \\ 1 & 2 & 3 & 2 & 0 \end{bmatrix}$$

fazendo $L_2 \leftarrow L_2 - 2L_1$ e $L_3 \leftarrow L_3 - L_1$,

$$\begin{bmatrix}
1 & 2 & -2 & -1 & 0 \\
0 & 0 & 5 & 3 & 0 \\
0 & 0 & 5 & 3 & 0
\end{bmatrix}$$

fazendo $L_3 \leftarrow L_3 - L_2$,

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -2 & -1 & 0 \\
0 & 0 & 5 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

Resolvendo o sistema, $x_3=-\frac{3}{5}x_4$ e $x_1=\frac{2}{5}x_4-2x_2$. Assim, o conjunto solução do sistema é:

$$S = \{(x_1, x_2, x_3, x_4); x_3 = -\frac{3}{5}x_4 \text{ e } x_1 = \frac{2}{5}x_4 - 2x_2\}$$

Como x_2 e x_4 são variáveis livres, conclui-se que dim S = 2. Logo, qualquer subconjunto de S com dois vetores LI forma uma base de S. Assim,

$$(x_1, x_2, x_3, x_4) = (\frac{2}{5}x_4 - 2x_2, x_2, -\frac{3}{5}x_4, x_4) = (-2, 1, 0, 0)x_2 + (\frac{2}{5}, 0, -\frac{3}{5}, 1)x_4.$$

Logo, v1=(-2,1,0,0) e $v_2=(\frac{2}{5},0,-\frac{3}{5},1)$ formam uma base para S.