Analyzing How Protein Interaction Networks Improve Classification Performance in Gene Expression Data Analysis

Adrin Jalali

MPI for Informatics

Data

1. Input: Gene expression data 2. Output: Prognosis (Poor vs. Good), Metastases 3. Goal: Classify and find important genes 4. Issue: Hard to classify due to huge number of features (genes) compared to number of samples ($\sim 22000 \gg 98$) - Laura J. van 't Veer et.al. Nature, (2002)

Yeast protein interaction network. The colour of a node indicates the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal, orange = slow growth, yellow = unknown), A. Barab \tilde{A}_i si, Z. Oltvai, Nature Reviews Genetics, (2004)

Method

SVM modified objective function

$$\min_{\mathbf{w},w_0} \left\{ rac{1}{2} \|\mathbf{w}\|^2 + rac{1}{2}eta \sum_{(j,k)\in E} (w_j-w_k)^2
ight\}$$
 s.t.:

 $orall i \in \{1,\cdots,n\}: (\mathrm{wx}_i + w_0)y_i \geq 1$

2 Dual Problem

$$egin{aligned} \max_{lpha} \left\{ \sum_{i=1}^n lpha_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y_i y_j (\mathbf{x}_i^T \mathbf{L}) (\mathbf{L}^T \mathbf{x}_j)
ight\} \ \mathbf{L} \mathbf{L}^T &= (\mathbf{I} + eta \mathbf{B})^{-1} \ ext{s.t.:} \end{aligned}$$
 s.t.:

 $orall i \in \{1,\cdots,n\}: lpha_i \geq 0$ Laplacian matrix:

B = D - A

Oual to Primal

 $\mathbf{w} = (\mathbf{I} + eta \mathbf{B})^{-1} \sum_{i=1}^n lpha_i y_i \mathbf{x}_i$

Method (cntd.)

- 1. Co-expressed genes tend to be close in the PPI-Network. 2. Exploit this fact to modify the SVM objective function called NICK. Ofer Lavi, et.al., Journal of Computational Biology, (2012)
- Reverse engineer the learned machine to extract important genes after using the network information.
- Solve SVM problem for original and transformed data.
- Calculate w for both models.
- Ocompute for each pair of nodes, for each model: $Score(i,j) = \frac{|w_i| + |w_j|}{2} \times e^{-max(d_G(i,j),1)}$
- Report pairs with highest scores for both trained models.

Blue: random gene, Orange: Signal node being a member of a pathway of signal nodes, Yellow: A lonely signal node - Signal nodes (genes): $f(n) = \begin{cases} N(-\mu,1) & \text{if } n \text{ is in class } 1 \\ N(\mu,1) & \text{if } n \text{ is in class } 2 \end{cases}$ - Random nodes (non-informative genes): f(n) = N(0,1)

Results Easy Medium Hard

Original				
X196	X196	X53	X53	
X233	X233	X39	X39	
X88	X88	X196	X133	
X116	X116	X127	X127	
X197	X197	X127	X148	
X148	X148	X150	X150	
X148	X273	X116	X133	
X160	X160	X96	X96	
X95	X95	X273	X273	
X88	X115	X40	X40	
X53	X8	X53	X164	
X195	X195	X56	X56	

Next.

Transformed				
X196	X196	X233	X233	
X196	X133	X133	X133	
X133	X116	X116	X116	
X95	X95	X240	X240	
X39	X39	X240	X243	
X59	X59	X106	X106	
X243	X243	X106	X168	
X114	X114	X168	X168	
X243	X150	X56	X56	
X39	X47	X298	X298	
X150	X150	X247	X247	
X125	X125	X83	X83	

Original				
X190	X190	X104	X104	
7 120 0	X233	X190	X272	
X277	X277	X88	X88	
X190	X127	X165	X165	
X272	X272	X272	X22	
X106	X106	X165	X96	
X150	X150	X250	X250	
X88	X215	X22	X22	
X51	X51	X28	X28	
X73	X73	X35	X35	
X162	X162	X113	X113	
X112	X112	X277	X102	

Transformed				
X233	X233	X190	X190	
X112	X112	X240	X240	
X190	X272	X240	X243	
X86	X86	X243	X243	
X243	X150	X190	X127	
X150	X150	X272	X272	
X246	X246	X298	X298	
X106	X106	X125	X125	
X35	X35	X125	X82	
X247	X247	X272	X69	
X272	X22	X82	X82	
X100	X100	X257	X257	

Original			
X190	X190	X101	X101
X233	X233	X190	X272
X88	X88	X297	X297
X190	X127	X93	X93
X26	X26	X138	X138
X272	X272	X272	X22
X101	X41	X123	X123
X22	X22	X101	X198
X146	X146	X228	X228
X278	X278	X72	X72
X88	X115	X96	X96
X148	X148	X112	X112

Transformed			
X233	X233	X190	X190
X112	X112	X190	X272
X86	X86	X190	X127
X272	X272	X272	X205
X205	X205	X146	X146
X146	X68	X68	X68
X298	X298	X272	X22
X90	X90	X127	X127
X100	X100	X272	X69
X297	X297	X72	X72
X127	X148	X155	X155
X247	X247	X196	X196

60.6
62.4
5.669e-09
60.1
61.5
1.383e-06
60.6
62.4
5.669e-09

Performance summary of three cases

Estimate gene expression value probability distributions for samples of class A.

- For each sample in class A and B:
 Weight genes according to their distance from means of estimated distributions.
- Extract higher weighted parts of generated network.
- Use a graph kernel for labeled graphs to classify extracted graphs.
- ullet Random Walks (A^k : number of walks of length k)
- Sub-Tree Kernels
- Shortest Paths Kernels (1-shortest path, k-shortest paths)
- ullet Graphlet Kernels (Isomorphism proved for $n=k+1, n\leq 11$)
- ullet Laplacian Matrix Eigenvalues $(\mathsf{Isomorph}(G_1,G_2)\iff \exists P: \ B(G_1)=P^tB(G_2)P),$ number of connected components = number of $\lambda_i=0$

Sample graphs of two classes

References and Acknowledgment

Acknowledgment:

Prof. Dr. Dr. Thomas Lengauer, Dr. Nico Pfeifer, Sarvesh Nimkubh, Nora Speicher, Anna Feldmann. References:

1. van't Veer, Laura J., et al. "Gene expression profiling predicts clinical outcome of breast cancer." nature 415.6871 (2002): 530-536.

2. Lavi, Ofer, Gideon Dror, and Ron Shamir. "Network-induced classification kernels for gene expression profile analysis." Journal of Computational Biology 19.6 (2012): 694-709.

3. Barabási, Albert-László, and Zoltan N. Oltvai. "Network biology: understanding the cell's functional organization." Nature Reviews Genetics 5.2 (2004): 101-113.