

Tipos de ISP

Los que invierten en cables submarinos son de capa 1 y capa 2 generalmente.

NOTA: No es que cada ISP esta registrado a una capa.

Hay ISPs que llegan a tu casa (ultima milla, que llegan a usuarios finales) que son capa 3. Estos proveedores de capa 3, le compran internet a los proveedores de capa 2 (AT&T, Level3). Finalmente esta la capa 1 (zona de libre omision), que son los grandes proveedores de internet que conectan a los proveedores de capa 2. Los de capa 1 solo tienen una gigante capacidad de procesamiento que son las mas grandes de internet (despues de todo los switches y routers son CPU y RAM).

Peering

- Significa libre de acuerdo
- Es la interconexión física voluntaria de dos o mas proveedores de Internet.
- Se puede hacer en forma privada (LAN-to-LAN, Fibra Oscura)

Fibra oscura: una fibra que se tira solo para conectar entre ISP.

- En forma publica, a través de un IXP
- Reduce gastos del ISP para su conexión a Internet

Estos ISP level 3 le terminan pagando menos a los ISP level 2.

IXP: internet exchange provider. Yo soy un proveedor de internet en argentina, hice un cableado en cordoba. Hay otro ISP que hizo un cableado en mendoza. Ambos ISP quieren conectarse entre si. En un principio, estos ISP capa 3 usan a los ISP capa 2 para conectarse entre si.

Tal vez estos ISP detectan que hay mucho trafico entre mendoza y cordoba, entonces es muy caro que todo el trafico tenga que pasar primero por un capa 2 (porque sale en dolares muy caro). Aca aparece el concepto de peering, que es basicamente tirar un cable entre estos dos ISP (entre los datacenter de cada ISP). Basicamente yo como ISP me estoy conectando con mi ISP competidor, pero a el tambien le conviene conectarse conmigo.

Cuando vos sos un ISP tu "carrier" es el que esta en una capa arriba tuyo

ISPs

 ISPs consumen su Internet de upstream están geográficamente cerca.

ISPs – Acuerdo de pares

Dos ISPs generan conexión para evitar uso de upstream

Fibertel

En este caso, se muestra que fibertel y movistar estan conectados por peering, entonces no necesitan para pasar por un carrier para conectarse entre si. Movistar

Las empresas se pueden conectar a varios IXP, y no siempre que usen un IXP sacan las conexiones de peering que habian tirado antes, es importante la redundancia.

- Los acuerdos de pares no son escalables
- Aparece la figura de IXP, que concentran más cantidad de ISP y empresas.

Fibertel

Se puede pensar a un IXP como un "concentrador de conexiones". Si yo soy un ISP y quiero hacer peering con muchos otros ISP, en vez de tirar un cable para cada ISP. cada empresa tira su propio cable al IXP.

Entonces, el IXP empieza teniendo una topologia estrella, que conecta a varios ISP LOCALES entre si.

NAP/IXPs

- NAP: Network Access Point
- IXP: Internet Exchange Point
 - Produce el intercambio de tráfico entre las redes de diversas entidades (operadores, proveedores de acceso, organismos de gobierno, entidades académicas, etc.)

ELIXP tiene su sistema autonomo.

IXP - Beneficios

Disminución de costos

Porque el ISP no le paga ese trafico al carrier.

De todas formas, este costo no es directo. La conexion al carrier, el ISP la paga por Terabit por segundo, pero mientras menos ocupado esten esos cables mejor (asi puedo tener mas clientes)

Disminución de latencia

Porque no hay que pasar por un carrier

Desarrollo de contenido local

Por ejemplo: netflix en argentina puede poner contenido que este solo disponible para los ISPs locales. Si yo dejo mi contenido en mis servidores de EEUU, voy a tener mas latencia para los usuarios de argentina. Lo que haria netflix en este caso es poner un servidor donde estan los IXP locales.

Mejora confiabilidad y redundancia de la red.

Porque los ISPs pueden estar conectados entre si de muchas formas distintas.

No solo las ISPs pueden conectarse a un IXP. Por ejemplo, el 99% del trafico de AFIP es de argentina, entonces a ellos les conviene conectarse a un IXP ademas del ISP normal. No necesitan que todo su ancho de banda vaya a fuera del pais (por un carrier). Entonces pueden tener 1Gbps para la red local, y 100Mbps para el ISP level 3. Para "avisar a internet" que se tienen que conectar a mi IP por medio de la IXP, tengo que hacer un SA, pedir una IP publica a la IANA y levantar BGP para que avise esto. De esta forma, los ISP locales aprenden que para llegar a mi SA tienen que pasar por el IXP y no por internet. Las unicas personas que se conectarian a mi por internet (por fuera del IXP) son las que se conectan por otros paises (que seguro van a ser pocas).

Un IXP "no me conecta a internet" (no es un ISP), porque no se conecta a ningun carrier. Si yo me conecto a un IXP que esta conectado a fibertel, y quiero mandar paquetes a un servidor de netflix en USA, fibertel NO me va a rutear esos paquetes (porque les sale plata pasar por el carrier).

Ejemplo de topología de un IXP

- Switch de alta velocidad para interconexión de routers
- Los Router utilizan un EGP (ejemplo BGP)

Los ISP tienen que configurar manualmente en sus routers que si el trafico es local les conviene pasar por el IXP y no por el carrier

- "Cámara Argentina de INTERNET"
- NAP/IXP en Argentina
 - 1989: CABASE inicia sus actividades
 - 1997: 18 miembros fundadores constituyen el NAP CABASE
 - 1998: El NAP comienza sus operaciones
 - 2005: Se establecen parámetros de calidad de servicio
 - 2006: Participación de 44 miembros
 - 2006: El NAP instala el primer Route Server en Argentina
 - 2006: El NAP CABASE lanza conectividad IPv6
 - 2010: Lanzamiento de NAP CABASE Regionales

CABASE

28 IXPs interconectados entre sí formando una gran red

570 miembros interconectados

Dentro de estas empresas conectadas, esta AFIP, los ISP, tal vez Clarin, etc. Todas las empresas que tengan la mayoria de su trafico local.

21 millones de usuarios finales

3 TB capacidad de la red

Mapa IXPs CABASE

93% de las redes Argentinas conectadas

м

CABASE

Algunos miembros

- Fibertel/Cablevision
- Telmex Argentina
- Comsat
- Telecentro
- Velocom
- AFIP
- AT&T
- UTN
- FACEBOOK ARGENTINA S.R.L.
- RIOT GAMES INC.
- etc

Facebook: habiamos dicho que algunos IXP te dan la capacidad de poner contenido

7

Carriers

- Operadores de telecomunicaciones propietarios de las redes troncales de Internet
- Responsables del transporte de datos.
- Proporciona una conexión a Internet de alto nivel.

A nivel nacional el 85.5% de los hogares cuenta con acceso a internet fijo

Fuente: CABASE Internet Index - Septiembre 2023

DISPOSITIVOS

Los dispositivos **más** usuales conectados a internet en el hogar son los smartphones, las **smart tvs** y las computadoras

Mapa **CABASE**

https://www.cabase.or g.ar/wp-content/uploa ds/2022/07/cabase-po ster-interactivo-2022. pdf

Ahi estan todos los IXP. Los verdes estan operativos, y los naranjas no. El ISP de jujuy se conecta por peering a un ISP de bolivia.

RED NACIONAL DE IXPs 2022 PUNTOS DE INTERCAMBIO DE TRÁFICO www.cabase.org.ar

Mapa CABASE

м

CABASE

ASNs de CABASE como ejemplos

IXP Buenos Aires

■ 186 Participantes Hay 186 SA que se rutean al IXP de Bs As.

IPv4: 200.0.17.0 /24 — IPv6: 2001:13c7:6001::/48

ASN: 11058

□ IXP La Plata

22 Participantes

■ IPv4: 200.115.81.0 /24 — IPv6: 2001:13c7:6011::/48

ASN: 52375

IXP Puerto Madryn

11 Participantes

IPv4: 200.115.84.0 /24 — IPv6: 2001:13c7:6014:: /48

ASN: 522294

Descubramos CABASE (ejemplos de trazas)

TraceRoute desde PRIMA a AFIP

En la slide anterior podemos ver que el IXP de Bs As tiene el rango de IPs 200.0.17.0/24.

En el tracert podemos ver que al principio pasamos por Prima (subsidiaria de fibertel), paso por la IXP de Bs As (flecha amarilla), salgo del IXP y llego a AFIP.

TraceRoute desde Telecentro a AFIP

```
C:\WINDOWS\system32\cmd.exe
Microsoft Windows XP [Versión 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\jcasarini>tracert www.afip.gov.ar
Traza a la dirección www.afip.gov.ar [200.1.116.6]
sobre un máximo de 30 saltos:
       39 ms
  123456
                                 cpe-1.76.55.190.in-addr.arpa [190.55.76.1]
                12 ms
                          5 ms
          ms
                          7 ms
          ms
                11 ms
                 7 ms
                          9 ms
          ms
                                 Tiempo de espera agotado para esta solicitud.
                                 200.1.116.46
       24 ms
                12 ms
                         12 ms
                                www.afip.gov.ar [200.1.116.6]
       12 ms
                10 ms
                         8 ms
Traza completa.
C:\Documents and Settings\jcasarini>_
```

PRIMA y SION son ISPs de Argentina. En este traceroute, podemos ver que el router que tiene SION dentro de CABASE es el que termina en .150

TraceRoute desde PRIMA a SION

```
Símbolo del sistema
C:\Documents and Settings\Santiago>tracert www.sion.com
Traza a la dirección www.sion.com [200.69.46.54]
sobre un máximo de 30 saltos:
                                   192.168.1.1
        2 ms
                 <1 ms
                           <1 ms
  234567
                                   Tiempo de espera agotado para esta solicitud.
                                   200-42-42-82.dup.prima.net.ar [200.42.42.82]
       14 ms
                 15 ms
                           16 ms
                                   200-42-52-201.prima.net.ar [200.42.52.201]
200-42-50-26.prima.net.ar [200.42.50.26]
  8
      220 ms
                203 ms
                          200 ms
  9
       13 ms
                 32 ms
                           12 ms
 10
                                   200.0.17.150
       34 ms
                 19
                           21 ms
                    ms
 11
                                   spc7600.sion.net [200.69.41.3]
                           23 ms
       17 ms
                 15
                    ms
 12
                                   www.sion.com [200.69.46.54]
       18
                           22 ms
          ms
                 14 ms
Traza completa.
C:\Documents and Settings\Santiago>
```

CABASE

TraceRoute desde Telecentro a Fibertel

El router que tiene fibertel en CABASE es el que termina en .141

_ | | X C:\WINDOWS\system32\cmd.exe C:\Documents and Settings\jcasarini>tracert -w 1 190.246.20.41 Fraza a la dirección 41-20-246-190.fibertel.com.ar [190.246.20.41] sobre un máximo de 30 saltos: 192.168.1.1 12345678 <1 ms <1 ms <1 ms 21 ms 8 7 ms cpe-1.76.55.190, in-addr.arpa [190.55.76.1] ms 12 ms ms ms ms 35 ms ms Tiempo de espera agotado para esta solicitud. 9 10 8 ms 8 ms 69-165-89-200.fibertel.com.ar [200.89.165 8 ms 11 ms 1-165-89-200 fibertel.com.ar [200.89.165 ms ms 11 18-165-89-200.fibertel.com.ar [200.89.165.18] ms ms 12 Tiempo de espera agotado para esta solicitud. 41-20-246-190.fibertel.com.ar [190.246.20.41] 13 17 ms 15 ms 16 ms Traza completa. C:\Documents and Settings\jcasarini>_

CABASE

TraceRoute desde PRIMA a TELPIN

TELPIN es un ISP de la costa (villa gessel, etc). En este traceroute en particular, podemos ver que NO pasamos por CABASE (porque TELPIN no esta en CABASE).

En este caso, pareceria que hay un peering entre estos dos ISP.

```
_ | _ | ×
🖎 Símbolo del sistema
C:\Documents and Settings\Santiago>tracert www.telpin.com.ar
Traza a la dirección www.telpin.com.ar [201.219.64.15]
sobre un máximo de 30 saltos:
                          1 ms 192.168.1.1
                 1 ms
 123456
                                Tiempo de espera agotado para esta solicitud.
                                Tiempo de espera agotado para esta solicitud.
                                 Tiempo de espera agotado para esta solicitud.
        *
                                Tiempo de espera agotado para esta solicitud.
                                133-165-89-200.fibertel.com.ar [200.89.165.133]
       29 ms
                12 ms
                         12 ms
 78
       12 ms
                15 ms
                         18 ms
                                200-42-42-169.dup.prima.net.ar [200.42.42.169]
       15 ms
                12 ms
                         12 ms 200-42-42-109.dup.prima.net.ar [200.42.42.109]
9
10
       37 ms
                21 ms
                         16 ms 121.72.3.200.telecom.net.ar [200.3.72.121]
       17 ms
                17 ms
                         14 ms
                                host25.200-117-124.telecom.net.ar [200.117.124.2
51
11
      13 ms
                14 ms
                         12 ms
                                host18.200-117-124.telecom.net.ar [200.117.124.1
81
12
       49 ms
                28 ms
                         34 ms host114.190-226-170.telecom.net.ar [190.226.170.
1141
13
       45 ms
                39 ms
                         39 ms 201.219.64.193
 14
       31 ms
                32 ms
                         34 ms
                                webserver.telpin.com.ar [201.219.64.15]
Traza completa.
C:\Documents and Settings\Santiago>
```

Sistemas Autónomos Estadísticas

(a nivel mundial)

ISP con más conexiones

BGP Peer Report

Hurricane: ISP capa 1

	IPv4 Adjacencies						
ASN	Name	Count					
AS6939	Hurricane Electric LLC	9,502					
AS49544	i3D.net B.V	9,073					
AS24482	SG.GS	8,122					
AS36236	NetActuate, Inc	7,248					
AS174	Cogent Communications	6,706					
AS3356	Level 3 Parent, LLC	6,585					
AS199524	G-Core Labs S.A.	6,133					
AS39120	Convergenze S.p.A.	5,829					
AS35280	F5 Networks SARL	5,462					
AS1828	Unitas Global LLC	5,255					

IPv6 Adjacencies					
ASN	Name	Count			
AS6939	Hurricane Electric LLC	6,905			
AS49544	i3D.net B.V	6,066			
AS24482	SG.GS	5,742			
AS36236	NetActuate, Inc	5,073			
AS1828	Unitas Global LLC	4,458			
AS199524	G-Core Labs S.A.	4,448			
AS35280	F5 Networks SARL	3,846			
AS39120	Convergenze S.p.A.	3,644			
AS14840	BR.Digital Provider	3,344			
AS47787	EDGOO NETWORKS LLC	3,117			

Fuente: he.net

Cantidad de Sistemas Autónomos por países

Countries with ASNs: 242

Description		ASNs
United States	US	31,499
Brazil	⊗ BR	10,181
China	⇒ CN	6,790
Russian Federation	RU	6,491
India	■ IN	5,858
United Kingdom	GB GB	3,657
Germany	DE DE	3,399
Indonesia	ID ID	3,329
Australia	₩ ∴ AU	3,068
Poland	PL PL	2,722
Canada	I CA	2,430
Ukraine	UA	2,373
France	FR FR	2,198
Bangladesh	BD	1,803
Netherlands	NL NL	1,708
Italy	■ п	1,467
Romania	RO	1,370
Hong Kong	☆ HK	1,347
Spain	ES ES	1,339
Argentina	■ AR	1,301
Japan	● JP	1,281
Korea, Republic of	₩ KR	1,166

De los 1300 SA conectados que tiene argentina, varios son de Telecom, Telefonica, CABASE, etc.

Reporte Argentina

Country Info

Networks: Argentina

.

Ejemplo: telecom esta conectado a 236 SA

ASN	Name	Adjacencies v4	Routes v4	Adjacencies v6	Routes v6
AS7049	Silica Networks Argentina S.A.	396	1,707	179	121
AS7303	Telecom Argentina S.A.	236	3,176	54	325
AS52361	ARSAT - Empresa Argentina de Soluciones Satelitales S.A.	174	632	28	46
AS22927	Telefonica de Argentina	170	514	41	365
AS11058	CABASE Camara Arg de Base de Datos y Serv en Linea	157	4,288	73	17
AS11014	CPS	139	639	53	16
AS19037	AMX Argentina S.A.	120	1,946	26	877
AS11664	Techtel LMDS Comunicaciones Interactivas S.A.	112	1,990	18	876
AS52444	Pogliotti & Pogliotti Construcciones S.A.	79	292	50	23
AS52376	CABASE Camara Arg de Base de Datos y Serv en Linea	71	17	54	7
AS16814	NSS S.A.	67	729	17	101
AS263812	SONDATECH S.A.S.	65	27	62	20
AS263774	MARANDU COMUNICACIONES SOCIEDAD DEL ESTADO	35	99	10	3
AS20207	Gigared S.A.	34	298	11	29
AS4270	Red de Interconexion Universitaria	32	145	25	36
AS27851	COOPERATIVA ELECTRICA Y DE SERVICIOS PUBLICOS LUJANENSE LIMITADA	27	29	6	Ĺ
AS27988	Servicios y Telecomunicaciones S.A.	26	41	13	4
AS10834	Telefonica de Argentina	25	198	3	;
AS10481	Telecom Argentina S.A.	23	529	6	8
AS52294	CABASE Camara Arg de Base de Datos y Serv en Linea	22	2	9	
AS52374	CABASE Camara Arg de Base de Datos y Serv en Linea	21	2	9	2
AS52308	AGUAS DEL COLORADO SAPEM	21	209	5	2
AS263801	LINKEAR SRL	20	50	6	

BGPview.io

Muestra **Downstream**

BGPview.io

Muestra **Upstream**

AS en Empresas

- Muchas empresas eligen crear su propio Sistema Autónomo
- Para eso deben registrarse en IANA y también adquirir direcciones IP públicas.
- Los ISP pueden vender direcciones IP sin dar conectividad.
- ¿Cuál es el beneficio de hacer esto ?
- Veamos el Ejemplo de Toyota Argentina.

Ejemplo Toyota ARG

- Tiene su propio AS (ASN 28034)
- Su propia red (200.7.15.0/24)
- Dos proveedores
 - TechtelTelecom

Estos datos se pueden sacar de la pagina BGPVIEW, preguntando que conexiones UPSTREAM tiene el AS28034 Cuando una empresa como Toyota empieza a levantar sus servicios, no todo se resuelve con DNS, que puede ser medio inseguro.
Si yo veo el DNS de toyota, podria ver todos los servicios hosteados en esa IP.
Ademas, tambien surgen temas como la ciberseguridad. Ejemplo: yo quiero hacer una regla firewall que solo reciba IPs de Nissan.
Si Nissan no tuviera una IP publica de IANA, al cambiar de ISP, perderian su IP publica, entonces esa regla de firewall se romperia.

Algunos Datos – AS - ARG

Looking Glass Servers

- Son servidores de solo lectura
- Suelen brindar este servicio los ISP
- Brindan (bgp, ping, traceroute) via web
- Brindan conexión por telnet (y ejecución de comandos)

Looking Glass de Cabase

- http://looking.cabase.org.ar/
- Permite elegir el IXP desde donde operar
- Sirve para resolución de problemas

La idea es que yo entro a esta pagina, y quiero probar el ping a Google (8.8.8.8).

Entonces me deja elegir desde que IXP yo quiero hacer el ping.

De esta manera, para que la gente no moleste a CABASE, todos pueden acceder read-only para ver si todo esta funcionando desde cada IXP.

Balanceo de carga y contenidos

Se puede encarar por diferentes niveles/servicios

- A nivel IP
- A nivel DNS
- A nivel servicios (Balanceadores)
- A nivel objetos (CDN)

CDN usa balanceo por DNS, que usa balanceo por IP.

Anycast es que una direccion IP publica exista en mas de un equipo en internet. En este ejemplo estamos tomando la IP 8.8.8.8 (DNS de google), que es de Anycast. Google proporciona un servicio de DNS con una IP facil de acordarse (8.8.8.8), y lo que hacen es poner estos servidores con la misma IP a lo largo de todo el mundo. Tambien se puede balancear a nivel DNS (el mismo dominio devuelve varias IP), pero este caso es

balanceo IP.

- Una dirección IP puede aplicarse a varios servidores.
 - Relación de 1 a muchos

Uno de los servicios principales que usan ANYCAST son los DNS, porque no pueden hacer DNS load balancing por obvios motivos.

Recordar Unicast relación de 1 a 1

En el caso de google, si yo quiero poner mi DNS en argentina, no me conviene hablar con un ISP, me conviene hablar con CABASE.

No está soportado oficialmente por IPv4, si por IPv6

Ventajas

Velocidad de ruteo y baja de latencia.

Porque no hay que cruzar todo el mundo para llegar a determinada IP

- Redundancia.
- Mitigación de DDoS.
- Balanceo de carga.

Otra ventaja es que le permite a una empresa aprovechar mejor su rango de IPs publicas

Porque si de una parte del planeta me hacen DDoS a una IP, mi equipo del otro lado del mundo no se va a ver afectado. El atacante NO puede definir por que ruta va, entonces el servidor que termine atacando terminara dependiendo unicamente de su ubicacion.

Contras

Difícil de implementar

Porque necesitas a los proveedores de internet para que configuren estaticamente las rutas.

- ¿Quienes lo usan?
 - DNS y CDN

Anycast - Topología

Vemos que el Router 1 tiene dos caminos para llegar a destino, PERO son dos servidores distintos que pueden estar en cualquier lugar.
Este funcionamiento está soportado por BGP

Anycast - Topología

Los routers creen que esta es la topología.

Anycast - Ejemplo

Tomemos cómo ejemplo a un de los servidores de DNS gratuitos de Google, que tiene IP 8.8.8.8

Usando esta herramienta: https://tools.keycdn.com/traceroute

Traceroute Test

TRACE ANY IP OR HOSTNAME

IP address or hostname

8.8.8.8

Start: 2021-05-09T14:35:58+0000							
	Loss	Snt	Last	Avg	Best	Wrst	StDev
1. 10.0.10.1	0.0%	4	0.1	0.1	0.1	0.1	0.6
2 62.115.47.24	0.0%	4	0.3	11.0	0.2	43.1	21.4
3. 62.115.116.16	0.0%	4	0.7	0.7	0.7	0.8	0.1
4. 62.115.153.215	0.0%	4	11.5	11.5	11.5	11.7	0.1
5. 209.85.142.69	0.0%	4	0.5	0.6	0.5	0.6	0.6
6 142.250.234.17	0.0%	4	12.0	12.1	12.0	12.3	0.2
7. 8.8.8.8	0.0%	4	11.4	11.4	11.4	11.5	0.0

Amsterdam							
itart: 2021-05-09T14:35:59+000	90						
	Loss	Snt	Last	Avg	Best	Wrst	StDev
1. ???	100.0	4	0.0	0.0	0.0	0.0	0.0
2. 10.82.4.38	0.0%	4	0.4	1.1	0.4	1.8	0.8
3 138.197.250.104	0.0%	4	0.9	1.0	0.8	1.3	0.2
4 138.197.250.94	0.0%	4	0.4	3.2	0.4	11.3	5.4
5 72.14.216.84	0.0%	4	0.6	0.6	0.6	0.8	0.1
6 108.170.227.247	0.0%	4	0.6	0.7	0.6	1.0	0.2
7 209.85.240.31	0.0%	4	0.4	0.5	0.4	0.7	0.1
8. 8.8.8.8	0.0%	4	0.3	0.4	0.3	0.8	0.2

• Tokyo							
Start: 2021-05-09T14:36:03+0000							
	Loss	Snt	Last	Avg	Best	Wrst	StDev
1 139.162.65.2	0.0%	4	0.5	0.6	0.5	0.6	0.0
2 139.162.64.14	0.0%	4	0.4	3.9	0.4	14.2	6.8
3 72.14.196.114	0.0%	4	0.5	1.9	0.5	5.9	2.7
4 108.170.242.161	0.0%	4	0.8	0.8	0.8	0.9	0.0
5 72.14.233.35	0.0%	4	1.8	2.7	1.3	6.4	2.4
6 8.8.8.8	0.0%	4	0.8	0.7	0.7	0.8	0.0

Anycast - en LAN

Se suele armar un cluster de servidores internos usando la misma tecnología de Anycast para la LAN

Anycast - en Argentina

Proyecto RANA (Red Anycast de NIC Argentina) desde 2017 para **servidores DNS** de .AR

Centralizado en Bs As

Distribuido en varios nodos regionales En argentina tenemos ANYCAST para los servidores DNS que resuelven .AR. El grafico muestra que antes, los servidores DNS .ar estaban solo en Bs As. Lo que hicieron ahora fue implementar anycast, poniendo estos servidores DNS con la misma IP publica a lo largo de todo el pais.

Anycast - Seguridad

Util para evitar DDoS

