МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский

Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет Кафедра общей физики

Направление «Радиофизика»

ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ

(Практика по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности)

Руководитель практики Выполнил студент 3-го курса бакалавриата к. ф-м. н. Караев В. Ю. Понур К.А.

Введение

Работы по изучению рассеяния радиоволн на взволнованной морской поверхности ведутся уже более полувека. В результате исследований были достигнуты значительные успехи в понимании природы рассеяния, что позволило перейти к применению радиофизических дистанционных методов для решения прикладных задач, например, для измерения скорости и направления приповерхностного ветра, высоты значительного волнения, температуры воды, диагностики разливов нефти и др. Несмотря на успехи, в настоящее время существующая измерительная аппаратура не всегда позволяет получить достаточно полное представление о состоянии приповерхностного слоя океана, поэтому постоянно разрабатываются новые радиолокационные системы.

Вместе с тем, для решения таких задач, как проверка качества диагностики состояния поверхности океана существующими радиолокаторами, тестирование и разработка алгоритмов восстановления океанографической информации, а также оценка возможностей новых радиолокаторов, вполне естественным является применение более экономных по времени и средствам методов, в частности численного моделирования. Однако, при моделировании одномерной морской поверхности, как правило, используется сумма большого числа гармоник, что приводит к значительным затратам машинного времени.

В связи с этим возникает необходимость в минимизации числа гармоник в спектре моделируемой морской поверхности при сохранении необходимой точности при решении различных задач. Здесь возникает ряд вопросов об оптимальном разбиении частотной плоскости на участки и выборе оптимального положения дискретных спектральных компонент в пределах этих участков. Поиску ответов на некоторые из этих вопросов и посвящена данная работа.

1. Основные понятия

Рассмотрим ряд общих понятий, описывающих возвышения взволнованной морской поверхности в рамках теории случайных пространственно-временных полей. Представим возвышения поверхности в виде суммы гармонических бегущих волн с независимыми фазами:

$$\xi(\vec{r},t) = \iint_{\infty} d\dot{\zeta}(k) \exp\left\{i(\vec{k}\,\vec{r} - \omega_k t)\right\},\tag{1}$$

где физический смысл будет иметь реальная часть поля $\xi(\vec{r},t)$:

$$\zeta(\vec{r},t) = \operatorname{Re} \iint_{\infty} d\dot{\zeta}(k) \exp\left\{i(\vec{k}\,\vec{r} - \omega_k t)\right\},$$

где $\mathrm{d}\dot{\zeta}$ – комплексная амплитуда гармоники с волновым числом \overrightarrow{k} и временной частотой ω_k , связанной с \overrightarrow{k} дисперсионным соотношением $\omega_k = \sqrt{gk}$, $\overrightarrow{k} = \overrightarrow{x_0}k_x + \overrightarrow{y_0}k_y$, $\rho = \overrightarrow{x_0}x + \overrightarrow{y_0}y$,

 x_0, y_0 – орты декартовой системы координат, k = |k| – пространственная частота, t – время, $g = 9.81 \, \frac{\text{м}}{c^2}$ – ускорение свободного падения.

По определению, корреляционная функция поля $\xi(\vec{r},t)$ равна

$$M_{\xi}(\vec{r_1}, \vec{r_2}, t_1, t_2) = \langle \xi(\vec{r_1}, t_1) \xi^*(\vec{r_2}, t_2) \rangle$$

Также полезно ввести вторую корреляционную функцию

$$\widetilde{M}_{\xi}(\overrightarrow{r_1}, \overrightarrow{r_2}, t_1, t_2) = \langle \xi(\overrightarrow{r}_1, t_1) \xi(\overrightarrow{r}_2, t_2) \rangle,$$

которая отличается от первой функции корреляции M_{ξ} только тем, что значение случайного поля $\xi(\overrightarrow{r}_2,t_2)$ в неё входит без комплексного сопряжения.

Через первую и вторую функции корреляции $M_{\xi}(\vec{r_1},\vec{r_2},t_1,t_2)$ и $\widetilde{M}_{\xi}(\vec{r_1},\vec{r_2},t_1,t_2)$ можно выразить корреляционные функции вещественной и мнимой частей комплексного поля $\xi=\zeta+i\eta$:

$$\widetilde{M}_{\zeta}(\overrightarrow{r_1}, \overrightarrow{r_2}, t_1, t_2) = \langle \zeta(\overrightarrow{r_1}, t_1) \zeta(\overrightarrow{r_2}, t_2) \rangle$$

$$\widetilde{M}_{\eta}(\overrightarrow{r_1}, \overrightarrow{r_2}, t_1, t_2) = \langle \eta(\overrightarrow{r_1}, t_1) \eta(\overrightarrow{r_2}, t_2) \rangle$$

$$(2)$$

а также их взаимную корреляцию:

$$\widetilde{M}_{\zeta\xi}(\overrightarrow{r_1},\overrightarrow{r_2},t_1,t_2) = \widetilde{M}_{\zeta\eta}(\overrightarrow{r_1},\overrightarrow{r_2},t_1,t_2) = \langle \zeta(\overrightarrow{r}_1,t_1)\eta(\overrightarrow{r}_2,t_2) \rangle.$$

Очевидно, что справедливы следующие равенства:

$$M_{\xi} = M_{\zeta} + M_{\eta} - iM_{\zeta\eta} + iM_{\eta\zeta},$$

$$\widetilde{M}_{\xi} = M_{\zeta} - M_{\eta} + iM_{\zeta\eta} + iM_{\eta\zeta},$$
(3)

Из (3) получаем выражение для M_{ζ} :

$$M_{\zeta}(\vec{r_1}, \vec{r_2}, t_1, t_2) = \frac{1}{2} \operatorname{Re} \left[M_{\xi}(\vec{r_1}, \vec{r_2}, t_1, t_2) + \widetilde{M}_{\xi}(\vec{r_1}, \vec{r_2}, t_1, t_2) \right]$$

В соответствии с (1):

$$M_{\zeta}(\vec{r_1}, \vec{r_2}, t_1, t_2) = \frac{1}{2} \operatorname{Re} \iint_{(\infty)} \langle d\dot{\zeta}(\vec{k}_1) d\dot{\zeta}(\vec{k}_2) \rangle \exp \left\{ i(\vec{k}_1 \vec{r} - \omega_1 t_1 + \vec{k}_2 \vec{r} - \omega_1 t_2) \right\} + \left\{ d\dot{\zeta}(\vec{k}_1) d\dot{\zeta}^*(\vec{k}_2) \rangle \exp \left\{ i(\vec{k}_1 \vec{r} - \omega_1 t_1 - \vec{k}_2 \vec{r} + \omega_1 t_2) \right\}$$

Для статически однородного и стационарного в широком смысле поля выполняется соотношение:

$$M_{\zeta}(\vec{r}_1, \vec{r}_2, t_1, t_2) = M_{\zeta}(\vec{\rho} = \vec{r}_2 - \vec{r}_1, \tau = t_2 - t_1)$$

Чтобы это соотношение было справедливым в нашей задаче, необходимо потребовать выполнение условий

$$\frac{1}{2}\langle\mathrm{d}\dot{\zeta}(\overrightarrow{k}_1)\,\mathrm{d}\dot{\zeta}(\overrightarrow{k}_2)\rangle = 0 \quad \text{ if } \quad \frac{1}{2}\langle\mathrm{d}\dot{\zeta}(\overrightarrow{k}_1)\,\mathrm{d}\dot{\zeta}^*(\overrightarrow{k}_2)\rangle = \tilde{S}(\overrightarrow{k}_1)\delta(\overrightarrow{k}_2-\overrightarrow{k}_1)\,\mathrm{d}\overrightarrow{k}_1\,\mathrm{d}\overrightarrow{k}_2\,.$$

где $\tilde{S}(\overrightarrow{k})$ – волновой спектр морской поверхности, $\delta(\overrightarrow{k}_2-\overrightarrow{k}_1)$ – дельта-функция. Подставляя эти условия в (2), получим:

$$M_{\zeta}(\rho,\tau) = \iint_{\infty} S(\vec{k}) \cos(\vec{k} \vec{\rho} - \omega_k \tau) d\vec{k}.$$
 (4)

Конкретизируем задачу, обратившись к замороженным полям, т.е. к полям, не изменяющихся во времени. Из (4):

$$M_{\zeta}(\rho, \tau) = \iint_{\infty} S(\vec{k}) \cos(\vec{k} \vec{\rho}) d\vec{k}.$$

Будем полагать, что волновой спектр имеет вид функции с разделяющимися переменными:

$$S(\vec{k}) = S_k(k)\Phi_k(\theta), \tag{5}$$

где $k=\sqrt{k_x^2+k_y^2},\, \theta= \operatorname{arctg} k_y/k_x,\,$ причём $\int\limits_{-\pi}^{\pi}\Phi(\theta)\,\mathrm{d}\theta=1.$

Аналогично можно ввести спектр наклонов морской поверхности:

$$M_{\zeta}^{(q)}(\rho) = \iint_{\infty} S_q(\vec{k}) \cos(\vec{k} \vec{\rho}) d\vec{k},$$

где спектр наклонов связан со спектром возвышений соотношением $S_q(\vec{k}) = k^2 S(\vec{k})$.

Практическую реализацию построения модели морской поверхности мы рассмотрим в следующем разделе.

2. Двумерная модель поверхностного волнения

Будем моделировать двумерную поверхность по спектру волнения, предложенному в [2]. Спектр волнения зависит также от скорости ветра и безразмерного разгона. В модели [2] используется скорость ветра U_{10} , измеренная на высота 10 м над уровнем моря Основные формулы приведены в приложении [A]. Безразмерный разгон определет продолжительность воздействия ветра на морскую поверхность.

Для моделирования случайной поверхности $\zeta(\vec{r},t)$ используется её представление в виде суперпозиции плоских волн с различными частотами и случайными фазами ψ_{nm} , бегущих под разными азимутальными углами φ_m [5]:

$$\zeta(\vec{r},t) = \sum_{n=1}^{N} \sum_{m=1}^{M} A_n(k_n) \cdot \Phi_{nm}(k_n, \varphi_m) \cos\left(\omega_n t + \vec{k}_n \vec{r} + \psi_{nm}\right),$$

где ψ_{nm} - случайная фаза, равномерно распределенная в интервале от 0 до 2π . Амплитуда n-й гармоники A_n есть мощность на интервале $\Delta\omega_n$, которая вычисляется по спектру моделируемой поверхности $S_k(k)$:

$$A_n(k_n) = \sqrt{2S_k(k) \cdot \Delta k_n}.$$

Коэффициенты Φ_{nm} задают азимутальное распределение и вычисляются следующим образом:

$$\Phi_{nm}(k_n, \varphi_m) = \sqrt{\Phi_k(k_n, \varphi_m) \cdot \Delta \varphi},$$

где $\Delta \varphi = \frac{2\pi}{M}$ - шаг по азимутальному углу.

Такой подход является одним из самых простых и эффективных, но у него есть существенный недостаток – моделируемая поверхность получается симметричной, хотя реальная поверхность ассиметрична: передний склон волны более крутой и короткий относительной заднего склона. Но задача ассиметричной поверхности пока не решена.

Рис. 1: Спектр высот $S_k(k)$ при фиксирован- Рис. 2: Спектр высот $S_k(k)$ при фиксированном значении $\tilde{x}=20170$ и меняющейся скорости ветра

ном значении скорости ветра U = 10 м/c и меняющемся разгоне

Графики $S_k(k)$ и $\Phi_k(k)$ для наглядности изображены на рис.1-2 и 3 соответственно. И далее k_m - координата пика $S_k(k)$. Стоит заметить, что с ростом скорости ветра число используемых гармоник для получения одинакового качества моделирования возрастает. Критерием выбора оптимального числа гармоник была выбрана близость корреляционных функций высот M и наклонов M_{θ} реального и модельного полей:

$$M_{\zeta}(\rho) = \int S_k(k) \cos(k\rho) \, dk$$

$$\widetilde{M}(\rho) = \sum_{n=1}^{N} \frac{A_n^2}{2} \cos(k_n \rho)$$

$$M_{\theta} = \int k^2 S_k(k) \cos(k\rho) \, dk$$

$$\widetilde{M}_{\theta}(\rho) = \sum_{n=1}^{N} \frac{A_n^2}{2} k_n^2 \cos(k_n \rho)$$

Рис. 3: Угловое распределение $\Phi_k(\varphi)$ в полярных координатах для разных соотношений k/k_m , где k_m - координата пика $S_k(k)$ при фиксированной скорости ветра

Вообще говоря, вместе с практическими моделями для S_k и Φ_k из [A] этого достаточно, чтобы смоделировать поверхностное волнение, но без оптимизации выбора k_n и φ_m счёт достаточно качественной поверхности будет длиться слишком долго. В данной работе вопрос выбора φ_m не рассматривается и при моделировании используется эквидистантный шаг, а вопросом выбора k_n мы и зададимся далее.

3. Реальное и модельное поля уклонов и высот поверхностного волнения

Обратимся сначала к задаче моделирования случайного одномерного поля уклонов взволнованной поверхности.

Пусть реальное случайное поле высот имеет корреляционную функцию

$$M = \langle \zeta(r)\zeta(r+\rho) \rangle,$$

связанную с энергетическим спектром S соотношением, следующим из (4), (5) при $\Phi(\theta) = \delta(\theta)$:

$$M(\rho) = \int_{0}^{\infty} S_k(k) \cos(k\rho) \, \mathrm{d}k \,, \tag{6}$$

Представим модельное поле высот в виде суммы N синусоид с детерминированными амплитудами a_i и случайными фазами φ_i :

$$\zeta(r) = \sum_{i=1}^{N} a_i \sin(k_i r + \varphi_i),$$

Рис. 4: Спектр наклонов $S_{\theta}(k)$ при фиксироскорости ветра

ванном значении $\tilde{x}=20170$ и меняющейся ванном значении скорости ветра $U=10~\mathrm{m/c}$ и меняющемся разгоне

где фаза φ_i равномерно распределена в интервале $[0,2\pi]$. Соответствующая этому полю корреляционная функция имеет вид

$$\widetilde{M}(\rho) = \sum_{i=1}^{N} b_i \cos(k_i \rho),$$

где
$$b_i = \frac{a_i^2}{2}$$
.

Энергетический спектр модельного поля уклонов представляет собой набор дельтафункций, отличных от нуля в узлах k_i . Огибающей спектра является кривая, проходящая через точки с абсциссами k_i и ординатами b_i . Вопросам определения величин b_i и k_i посвящены следующие разделы работы.

Естественным способом размещения k_i будет являться следующий метод: необходимая область разбивается на N участков одинаковой ширины Δk , а узлы располагаются в точках $k_i = i\Delta k, i = 1, 2 \dots N$, т.е. эквидистантно. Амплитуды спектральных составляющих определяются следующим соотношением:

$$b_i = \int_{(i-1)\Delta k}^{i\Delta k} S_k(k) \, \mathrm{d}k$$

При этом, из (6) можно заметить, что сумма всех b_i равна дисперсии реального поля

$$M(0) = \sigma^2 = \int_0^\infty S_k(k) \, \mathrm{d}k$$

Однако, при таком способе моделирования корреляционная функция $\widetilde{M}(\rho)$ является периодической. Для иллюстрации на рис.6 приведены примеры расчёта этой функции для скорости ветра $U=10\frac{\rm M}{\rm c}$ и N=256. Конечно, период этой функции может быть удлинён, но это достигается путём увеличения гармоник. Как видно из рис. 7 даже при неразумно большом числе гармоник период корреляционной функции недостаточно большой, что ставит под сомнение применимость такого метода моделирования.

Рис. 6: Корреляционные функции высот и уклонов при эквидистантном расположении узлов. $U=10\frac{\mathrm{M}}{c},\ N=256$

Рис. 7: Корреляционные функции высот и уклонов при эквидистантном расположении узлов. $U=10\frac{\mathrm{M}}{c},~N=10^5$

Чтобы функция $\widetilde{M}(\rho)$ не была периодической, необходимо лишь неэквидистантно расположить узлы k_i на оси частот. Например, можно использовать различные детерминированные способы расположения узлов на оси частот.

Поскольку волновой спектр (см. рис. 1, 4) удобно представим в логарифмическом масштабе, то довольно естественно располагать узлы в логарифмическом масштабе. Графики

зависимости функции корреляции $\widetilde{M}(\rho)$ от переменной ρ изображены на рис.8. Очевидно, что такой способ значительно лучше, чем первый способ. Функция корреляции высот хорошо совпадает с функцией реального поля. Однако, с функцией корреляции наклонов проблем возникает больше, поскольку она быстро принимает шумовой характер.

Рис. 8: Корреляционные функции высот и уклонов при логарифмическом расположении узлов. $U=10\frac{\rm M}{c},~N=256$

Способов выбора узлов по детерминированному закону существует бесконечно много, но наилучшими следует считать те способы, которые обеспечивают наименьший уровень «шума» на «хвосте» корреляционной функции $\widetilde{M}(\rho)$.

3.1. Метод «отбеливания» спектра

Допустим что величины k_i не находятся в дробно-рациональных отношениях друг к другу. В этом случае можно полагать, что сложение гармонических составляющих с частотами k_i и амплитудами b_i при больших ρ происходит «некогерентным» образом. При этом мощность «шума» функции $\widetilde{M}(\rho)$ определяется выражением $\sigma_{noise}^2 = \sum_{i=1}^N \frac{b_i^2}{2}$. В области малых ρ , напротив, гармоники суммируются «когерентно» и соответствующая «мощность» равна $\widetilde{M}^2(0) = \left(\sum_{i=1}^N b_i\right)^2$. Образуем величину

$$Q = \frac{\sigma_{noise}^2}{\widetilde{M}^2(0)},\tag{7}$$

которая характеризует относительную мощность шумов. Минимум этой величины находится путём решения системы уравнений $\frac{\partial Q}{\partial b_i}=0$, для $i=1,2,\ldots,N$. Результатом её решения является $b_1=b_2=\cdots=b_N$. Спектр модельного поля при этом имеет близкий

к белому вид, а выравнивание амплитуд спектральных компонент реального поля $S_k(k)$ сводится к разбиению области определения спектра $[k_{min}, k_{max}]$ на участки Δk_i , интегралы по которым от функции $S_k(k)$ имеют одно и то же значения $b_i = b_0 = \sigma^2/N$.

Заметим теперь, что, рассуждая о способах разбиения интервала частот $[k_{min}, k_{max}]$ на участки Δk_i , мы оставляли нерешенным вопрос о выборе собственно узлов спектра k_i внутри этих участков. Обычно узел k_i ставится у правой границы ячейки Δk_i . При этом, однако, оказывается, что модельная корреляционная функция плохо согласуется с реальной корреляционной функцией в области малых ρ . Для достижения такого согласия следует потребовать сопряжения всех производных (от первого до N-го порядка) функций $\widetilde{M}(\rho)$ и $M(\rho)$ при $\rho=0$. Поскольку $M'_{\rho}(\rho)=\frac{\partial^2 M(\rho)}{\partial \rho^2}$, это условие эквивалентно требованию сопряжения моментов спектров модельного и реального полей, которое записывается в виде

$$\sum_{i=1}^{N} b_i k_i^{2p} = \int_{0}^{\infty} k^{2p} S \, \mathrm{d}k \,,$$

для p = 1, 2, ..., N.

Полученная система N уравнений для N неизвестных k_i не имеет общего решения и потому может анализироваться лишь численно, что тоже связано со значительными сложностями.

Наиболее простое решение вопроса о выборе узлов заключается в том, чтобы потребовать выполнения облегченного, по сравнению с предыдущим, условия сопряжения вторых моментов модельного и реального спектров высот:

$$b_i k_i^2 = \int_{\Delta k_i} k^2 S_k(k) \, \mathrm{d}k \,.$$

Из него непосредственно следует правило нахождения узлов k_i . В частности, получаем

$$k_i = \sqrt{\frac{1}{b_0}} \int_{\Delta k_i} k^2 S \, \mathrm{d}k \,. \tag{8}$$

Правило расположения узлов (8) проиллюстрировано на рис.9.

Рис. 9: Расположении узлов по методу «отбеливания» спектра для наклонов и высот соответственно. $U=10\frac{\rm M}{c},\,N=25$

Такой способ выбора узлом, как нетрудно убедиться, обеспечивает сопряжения корреляционных функций реального и модельного полей по второй производной в нуле, или, иначе говоря, равенство дисперсий кривизн этих полей.

Стоит сказать, что весь этот раздел был написан для поля высот $S_k(k)$, но те же рассуждения можно провести и для поля наклонов $S_{\theta}(k)$, которое связано с полем высот соотношением $S_{\theta} = k^2 S_k(k)$. Таким образом, положив

$$S_k(k) \longrightarrow k^2 S_k(k)$$

мы можем получить уравнения для моделирования поля наклонов.

Рис. 10: Корреляционные функции высот и уклонов при расположении узлов по методу «отбеливания» спектра для уклонов. $U=10\frac{\rm M}{c},\,N=256$

Рис. 11: Корреляционные функции высот и уклонов при расположении узлов по методу «отбеливания» спектра для высот. $U=10\frac{\rm M}{c},\,N=256$

На рис. 10 и 11 построены графики зависимости корреляционных функций высот и уклонов для метода «отбеливания» спектра, примененного соответственно для наклонов и высот. Нетрудно заметить, что этот метод лучше предыдущих работает для одной выбранной функции и превосходит в этом логарифмическое расположение, но этот метод дает большую ошибку для другой функции корреляции. Это особенно заметно на рис. 11: поле высот \widetilde{M} хорошо совпадает с реальным полем M, но \widetilde{M}_{θ} очень далека от реальной. Исходя из этого, без какой-либо модификации метода «отбеливания» его нельзя применять для моделирования одновременно уклонов и высот и разумнее использовать логарифмическое разбиение. Модификация же заключается в выборе новой относительной мощности шумов Q (см. (7)) так, чтобы она удовлетворяла одновременно двум функциям корреляции, и её дальнейшая минимизация.

4. Заключение

Рис. 12: Моделирование высот морского волнения. $N=256,\ U_{10}=5$

Рис. 14: Моделирование высот морского волнения. $N=256,\ U_{10}=7$

Рис. 13: Моделирование высот морского волнения. $N=256,\ U_{10}=6$

Рис. 15: Моделирование высот морского волнения. $N=256,\ U_{10}=10$

В задаче о рассеянии электромагнитного СВЧ-поля взволнованной водной поверхностью всё ещё остается много вопросов. В то же время радиолокаторы широко применяются для решения самых разнообразных прикладных задач, например, измерения скорости и направления приповерхностного ветра, высоты значительного волнения, скорости течений и температуры воды. Алгоритмы, которые применяются для обработки данных, далеко не всегда позволяют получить информацию о состоянии приповерхностного слоя с необходимой точностью, а кроме того, существующие задачи радиолокаторы могут измерять далеко не все характеристики поверхности, представляющие интерес.

Обе эти задачи можно решить с помощью численного моделирования. В данной работе рассмотрен метод моделирования поверхности суммой синусоидальных составляющих с детерминированными амплитудами и случайными фазами. Выбор частот осуществлялся

несколькими способами их расположения на частотной оси. Было рассмотрено эквидистантное, логарифмическое и детерминированное распределение гармоник, сделаны выводы о их практической применимости и точности расчётов.

В детерминированном способе частоты располагались внутри участков, имеющих одно и то де постоянное значение интеграла от спектра волнения. Этот метод — метод «отбеливания» спектра — является новым и требует модификации, т.к. в его текущем виде можно «отбелить» лишь один спектр высот или наклонов (см. рис.11, 10). В дальнейшем планируется выбором некой новой величины Q (см.(7)) добиться одновременного «отбеливания» спектра для наклонов и высот морского волнения. Пока это не осуществленно, оптимальным стоит считать логарифмический метод расположения, который уступает методу «отбеливания» для одиночно взятого спектра, но обеспечивает бо́льшую точность при одновременном моделировании высот и наклонов.

На рисунках 12-15 представлены смоделированные поля высот для разных скоростей ветра.

Модель написала на языке Python v3.7 с использованием библиотек NumPy и SciPy, отчёт по практике и презентация к ней оформлены в издательской системе L^AT_EX. Актуальную версию программы можно найти на Github.

А. Приложение

А.1. Модель спектра волнения

Для моделирования волнения используется следующая модель спектра волнения, предложенного в [4]:

$$\begin{cases}
S(\omega) = S_J(\omega), & 0 < \omega \le 1.2 \,\omega_m \\
S(\omega) = \frac{\alpha_2}{\omega^4}, & 1.2 \,\omega_m < \omega \le \alpha_m \omega_m \\
S(\omega) = \frac{\alpha_3}{\omega^5}, & \alpha_m \omega_m < \omega \le \omega_g k \\
S(\omega) = \frac{\alpha_4}{\omega^{2.7}}, & \omega_{gk} < \omega \le \omega_h \\
S(\omega) = \frac{\alpha_5}{\omega^5}, & \omega_h < \omega,
\end{cases} \tag{9}$$

где коэффициенты α_i задаются следующим образом:

$$\begin{cases}
\alpha_2 = S_J(1.2\omega_m) \cdot (1.2\omega_m)^4 \\
\alpha_3 = a_2 \cdot \alpha_m \omega_m \\
\alpha_4 = \frac{\alpha_3}{\omega_{gk}^{2.3}} \\
\alpha_5 = \alpha_4 \cdot \omega_h^{2.3} \\
\alpha_m = f(U_{10}),
\end{cases}$$
(10)

 U_{10} — скорость ветра на высоте 10 метров над уровнем моря, а $S_J(\omega)$ — спектр JONSWAP:

$$S_J(\omega) \sim \frac{g^2}{\omega^5} \exp\left\{-\left(\frac{\omega_m}{\omega}\right)^4\right\} \cdot \gamma^{\exp\left\{-\omega^2\right\}}$$
 (11)

Стоит отметить, что в конечном счете формулы (9),(10),(11) в модели использовались в k-представлении, т.е. был выполнен переход $S(\omega) \to S_k(k)$

А.2. Модель углового распределения

Угловое распределение Φ_{ω} в данной работе описывается следующей формулой:

$$\Phi_k(k,\varphi) = A \cdot \cosh^{-1}\{2B(k)\varphi\}, \quad -\pi \le \varphi \le \pi,$$

где $\varphi = \varphi_m = \varphi_w$, φ_w — генеральное направление распространения волнения, φ_m — текущий азимутальный угол, A— нормировочный коэффициент.

Дисперсионное уравнение в данной работе имеет вид:

$$\omega(k) = \sqrt{gk + a \cdot k^3},$$

Список литературы

- [1] C.М. Рытов, Введение в статистическую радиофизику // Изд. 2-е, перераб. и доп. Москва : Наука, 1976. Ч. 1. Случайные процессы \S 14-18, 38-42
- [2] В.Ю.Караев, М.Б. Каневский, Г.Н. Баландина, Численное моделирование поверхностного волнения и дистанционное зондирование // Препринт №552 ИПФ РАН, 2002, С.1-10.
- [3] B.Л. Beбер, О моделировании случайного профиля морской поверхности // Изв. вузов. Радиофизика. 2017. Т. 60, № 4. С. 346.
- [4] *В.Ю.Караев*, *Г.Н. Баландина* Модифицированный спектр волнения и дистанционное зондирование // Исследование Земли из космоса, 2000, N5, C.1-12.
- [5] *М.С. Лонге-Хиггинс* Статистический анализ случайной движущейся поверхности // в кн.: Ветровые волны, М.: Иностранная наука, 1962, С.112-230