

Logistic Regression

- Idea:
- Naïve Bayes allows computing P(Y|X) by learning P(Y) and P(X|Y)

Why not learn P(Y|X) directly?

- Consider learning f: $X \rightarrow Y$, where
 - X is a vector of real-valued features, < X₁ ... X_n>
 - Y is boolean
 - o assume all X_i are conditionally independent given Y
 - \bigcirc model P(X_i | Y = y_k) as Gaussian N(μ_{ik} , σ_i)
 - o model P(Y) as Bernoulli (π)
- What does that imply about the form of P(Y|X)?

$$P(Y = 1|X = < X_1, ...X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Derive form for P(Y|X) for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$= \frac{1}{1 + \exp((\ln \frac{1 - \pi}{\pi}) + \sum_{i} \ln \frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)})}$$

$$P(X \mid y_{k}) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^{2}}{2\sigma_{ik}^{2}}}$$

$$\sum_{i} \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}}X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right)$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_{0} + \sum_{i=1}^{n} w_{i}X_{i})}$$

Very convenient!

implies

$$P(Y = 0|X = < X_1, ...X_n >) =$$

implies

$$\frac{P(Y=0|X)}{P(Y=1|X)} =$$

implies
$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} =$$

Very convenient!

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = \langle X_1, ...X_n \rangle) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{1}{P(Y=0|X)} = exp(w_0 + \sum_i w_i X_i)$$

linear classification rule!

Logistic function

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Logistic regression more generally

• Logistic regression in more general case, where $y \in \{y_1 \dots y_R\}$: learn R-1 sets of weights

for k < R

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

for k=R

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Training Logistic Regression: MCLE

- we have L training examples: $\{\langle X^1, Y^1 \rangle, \dots \langle X^L, Y^L \rangle\}$
- maximum likelihood estimate for parameters W

$$W_{MLE} = \arg \max_{W} P(\langle X^{1}, Y^{1} \rangle \dots \langle X^{L}, Y^{L} \rangle | W)$$

= $\arg \max_{W} \prod_{l} P(\langle X^{l}, Y^{l} \rangle | W)$

maximum <u>conditional</u> likelihood estimate

Training Logistic Regression: MCLE

 Choose parameters W=<w₀, ... w_n> to maximize conditional likelihood of training data

where
$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- Training data D = $\{\langle X^1, Y^1 \rangle, \dots \langle X^L, Y^L \rangle\}$
- Data likelihood = $\prod_{l} P(X^{l}, Y^{l}|W)$
- Data conditional likelihood = $\prod_{l} P(Y^{l}|X^{l}, W)$

$$W_{MCLE} = \arg \max_{W} \prod_{l} P(Y^{l}|W, X^{l})$$

Expressing Conditional Log Likelihood

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W) = \sum_{l} \ln P(Y^{l}|X^{l}, W)$$

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})}$$

$$P(Y = 1|X, W) = \frac{exp(w_{0} + \sum_{i} w_{i}X_{i})}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})}$$

$$l(W) = \sum_{l} Y^{l} \ln P(Y^{l} = 1 | X^{l}, W) + (1 - Y^{l}) \ln P(Y^{l} = 0 | X^{l}, W)$$

$$= \sum_{l} Y^{l} \ln \frac{P(Y^{l} = 1 | X^{l}, W)}{P(Y^{l} = 0 | X^{l}, W)} + \ln P(Y^{l} = 0 | X^{l}, W)$$

$$= \sum_{l} Y^{l} (w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} X_{i}^{l}))$$

Maximizing Conditional Log Likelihood

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W)$$

$$= \sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

Good news: l(W) is concave function of W

Bad news: no closed-form solution to maximize l(W)

Gradient Descent

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Maximize Conditional Log Likelihood: Gradient Ascent

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W)$$

$$= \sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

$$\frac{\partial l(W)}{\partial w_i} = \sum_{l} X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))$$

Gradient ascent algorithm: iterate until change < ε

$$w_i \leftarrow w_i + \underbrace{\hat{\eta}}_l \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))$$

That's all for M(C)LE. How about MAP?

- One common approach is to define priors on W
 - Normal distribution, zero mean, identity covariance
- Helps avoid very large weights and overfitting
- MAP estimate

$$W \leftarrow \arg\max_{W} \text{ In } P(W) \prod_{l} P(Y^{l}|X^{l},W)$$

let's assume Gaussian prior: W ~ N(0, σ)

MLE vs MAP

Maximum conditional likelihood estimate

$$W \leftarrow \arg\max_{W} \ \ln\prod_{l} P(Y^{l}|X^{l},W)$$

$$w_{i} \leftarrow w_{i} + \eta \sum_{l} X_{i}^{l} (Y^{l} - \hat{P}(Y^{l} = 1|X^{l},W))$$

Maximum a posteriori estimate with prior W~N(0,σI)

$$W \leftarrow \arg\max_{W} \ln[P(W) \prod_{l} \hat{P}(Y^{l}|X^{l}, W)]$$

$$w_{i} \leftarrow w_{i} - \eta \lambda w_{i} + \eta \sum_{l} X_{i}^{l} (Y^{l} - \hat{P}(Y^{l} = 1|X^{l}, W))$$

MAP estimates and Regularization

Maximum a posteriori estimate with prior W~N(0,σI)

$$W \leftarrow \arg\max_{W} \ \ln[P(W) \ \prod_{l} P(Y^{l}|X^{l},W)]$$

$$w_{i} \leftarrow w_{i} - \eta \lambda w_{i} + \eta \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1|X^{l},W))$$

called a "<u>regularization</u>" term

- helps reduce overfitting, especially when training data is sparse
- keep weights nearer to zero (if P(W) is zero mean Gaussian prior), or whatever the prior suggests
- used very frequently in Logistic Regression

The Bottom Line

- Consider learning f: X →Y, where
 - \bigcirc X is a vector of real-valued features,< $X_1...X_n$ >
 - Y is boolean
 - assume all X_i are conditionally independent given Y
 - \bigcirc model P(X_i | Y = y_k) as Gaussian N(μ_{ik} , σ_i)
 - model P(Y) as Bernoulli (π)
- Then P(Y|X) is of this form, and we can directly estimate W

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- Furthermore, same holds if the X_i are boolean
 - trying proving that to yourself

Classification Tasks

Diagnosing sickle cell anemia

C

Labels, Y

⇒ Anemic cell Healthy cell

Tax Fraud Detection

Refund	Marital Status	Taxable Income
No	Married	80K

Features, X

Web Classification

Drive to CMU, Rachel's fan, Shop at SH Giant Eagle

Sports
Science
News

Resident
Not resident

Classification

Goal: Construct a **predictor** $f: X \to Y$ to minimize a risk (performance measure) R(f)

Sports Science News

Features, X

Labels, Y

 $R(f) = P(f(X) \neq Y)$

Probability of Error

Classification

$$f^* = \arg\min_f P(f(X) \neq Y)$$

$$P(Y = \bullet | X)$$

$$P(Y = \bullet | X)$$

$$f^*(X) = \begin{cases} \bullet & P(Y = \bullet | X) > P(Y = \bullet | X) \\ \bullet & \text{otherwise} \end{cases}$$

Depends on **unknown** distribution P_{XY}

Classification algorithms

However, we can learn a good prediction rule from training data

$$\{(X_i,Y_i)\}_{i=1}^n \overset{\text{iid}}{\sim} P_{XY}(\text{unknown})$$

Independent and identically distributed

Training data \Longrightarrow $\{(X_i, Y_i)\}_{i=1}^n$

Learning algorithm

 $\widehat{f_n}$ Prediction rule

So far ...

Decision Trees K-Nearest Neighbor Naïve Bayes Logistic Regression

Machine Learning

Support Vector Machines

What is a good Decision Boundary?

- Consider a binary classification task with y = ±1 labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
 - Generative classifiers
 - Logistic regressions ...
- Are all decision boundaries equally good?

Not All Decision Boundaries Are Equal!

- Why we may have such boundaries?
 - **Olrregular distribution**
 - **Imbalanced training sizes**
 - outliners

Classification and Margin

- Parameterzing decision boundary
- Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

Classification and Margin

Parameterzing decision boundary

Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

$w^T x + b = 0$

Margin

$$w^T x_i + b > +c$$
 for all x_i in class 2 $w^T x_i + b < -c$ for all x_i in class 1

Or more compactly:

$$(w^Tx_i+b)y_i>c$$

The margin between any two points

$$m = d^- + d^+ =$$

Maximum Margin Classification

The "minimum" permissible margin is:

$$m = \frac{w^{T}}{\|w\|} \left(x_{i^{*}} - x_{j^{*}} \right) = \frac{2c}{\|w\|}$$

• Here is our Maximum Margin Classification problem:

$$\max_{w} \frac{2c}{\|w\|}$$
s.t $y_{i}(w^{T}x_{i}+b) \ge c, \forall i$

Maximum Margin Classification, con'd.

The optimization problem:

$$\max_{w,b} \frac{c}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge c, \quad \forall i$$

- But note that the magnitude of c merely scales w and b, and does not change the classification boundary at all! (why?)
- So we instead work on this cleaner problem:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

The solution to this leads to the famous Support Vector
 Machines --- believed by many to be the best "off-the-shelf" supervised learning algorithm

Support vector machine

A convex quadratic programming problem with linear

constrains:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

- ullet The attained margin is now given by $\overline{\|_{\mathcal{W}}}$
- Only a few of the classification constraints are relevant → support vectors
- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above in its dual form.
 - deeper insight: support vectors, kernels ...
 - more efficient algorithm

Alternative view of logistic regression

Alternative view of logistic regression

Cost of example:

If
$$y=1$$
 (want \blacksquare):

If
$$y=0$$
 (want \blacksquare):

Support vector machine

Logistic regression:

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Support vector machine:

Hypothesis:

Support Vector Machine

SVM Decision Boundary

Whenever

Whenever

Digression to Lagrangian Duality

The Primal Problem

Primal: $\min_{w} f(w)$ s.t. $g_{i}(w) \le 0, i = 1,...,k$ $h_{i}(w) = 0, i = 1,...,l$

The generalized Lagrangian:

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^k \alpha_i g_i(w) + \sum_{i=1}^l \beta_i h_i(w)$$

the α 's ($\alpha \ge 0$) and β 's are called the Lagarangian multipliers

Lemma:

$$\max_{\alpha,\beta,\alpha_i \ge 0} \mathcal{L}(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}$$

A re-written Primal:

$$\min_{w} \max_{\alpha,\beta,\alpha,\geq 0} \mathcal{L}(w,\alpha,\beta)$$

Lagrangian Duality, cont.

Recall the Primal Problem:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\alpha,\beta)$$

The Dual Problem:

$$\max_{\alpha,\beta,\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

Theorem (weak duality):

$$d^* = \max_{\alpha, \beta, \alpha_i \ge 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \le \min_{w} \max_{\alpha, \beta, \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta) = p^*$$

Theorem (strong duality):

Iff there exist a saddle point of $\mathcal{L}(w,\alpha,\beta)$, we have

$$d^* = p^*$$

A sketch of strong and weak duality

 Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

The KKT conditions

 If there exists some saddle point of \(\mathcal{L} \), then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\begin{split} \frac{\partial}{\partial w_i} \mathcal{L}(w,\alpha,\beta) &= 0, \quad i = 1, \dots, k \\ \frac{\partial}{\partial \beta_i} \mathcal{L}(w,\alpha,\beta) &= 0, \quad i = 1, \dots, l \\ \alpha_i g_i(w) &= 0, \quad i = 1, \dots, m \\ g_i(w) &\leq 0, \quad i = 1, \dots, m \end{split} \qquad \text{Complementary slackness} \\ g_i(w) &\leq 0, \quad i = 1, \dots, m \end{split} \qquad \text{Primal feasibility}$$

$$\alpha_i \geq 0, \quad i = 1, \dots, m \qquad \text{Dual feasibility} \end{split}$$

• **Theorem**: If w^* , α^* and β^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

Recall our opt problem:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

This is equivalent to

$$\min_{w,b} \frac{1}{2} w^{T} w$$
s.t
$$1 - y_{i} (w^{T} x_{i} + b) \leq 0, \quad \forall i$$
(*)

Write the Lagrangian:

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{i=1}^m \alpha_i \left[y_i (w^T x_i + b) - 1 \right]$$

• Recall that (*) can be reformulated as $\min_{w,b} \max_{\alpha_i \geq 0} \mathcal{L}(w,b,\alpha)$ Now we solve its **dual problem**: $\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$

The Dual Problem

$$\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$$

We minimize \(\mathcal{L} \) with respect to \(w \) and \(b \) first:

$$\nabla_{w} \mathcal{L}(w,b,\alpha) = w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = 0, \qquad (*)$$

$$\nabla_b \mathcal{L}(w, b, \alpha) = \sum_{i=1}^m \alpha_i y_i = 0, \qquad (**)$$

Note that (*) implies:
$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
 (***)

Plus (***) back to L , and using (**), we have:

$$\mathcal{L}(w,b,\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

The Dual problem, cont.

$$\max_{\alpha} \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

s.t.
$$\alpha_i \ge 0$$
, $i = 1,...,k$

$$\sum_{i=1}^m \alpha_i y_i = 0.$$

- This is, (again,) a quadratic programming problem.
 - A global maximum of α_i can always be found.
 - But what's the big deal??
 - Note two things:
 - 1. w can be recovered by $w = \sum_{i=1}^{m} \alpha_i y_i \mathbf{X}_i$ See next ...
 - 2. The "kernel" $\mathbf{X}_{i}^{T}\mathbf{X}_{j}$ More later ...

Support vectors

• Note the KKT condition --- only a few α_i 's can be nonzero!!

$$\alpha_i g_i(w) = 0, \quad i = 1, \dots, m$$

Call the training data points whose α_i 's are nonzero the support vectors (SV)

Support vector machines

$$w = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

- ullet For testing with a new data z
 - Compute

$$w^{T}z + b = \sum_{i \in SV} \alpha_{i} y_{i} (\mathbf{x}_{i}^{T}z) + b$$

and classify z as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly

Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights {α_i}, and to use support vector machines we need to specify only the inner products (or kernel) between the examples x_i^Tx_i
- We make decisions by comparing each new example z with only the support vectors:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i \left(\mathbf{x}_i^T z\right) + b\right)$$

Non-linearly Separable Problems

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function $\mathbf{w}^T \mathbf{x} + \mathbf{b}$
- ξ_i approximates the number of misclassified samples

Soft Margin Hyperplane

$$\min_{w,b} \frac{1}{2} w^{T} w + C \sum_{i=1}^{m} \xi_{i}$$
s.t
$$y_{i} (w^{T} x_{i} + b) \ge 1 - \xi_{i}, \quad \forall i$$

$$\xi_{i} \ge 0, \quad \forall i$$

- $\bigcirc \xi_i$ are "slack variables" in optimization
- O Note that ξ_i =0 if there is no error for \mathbf{x}_i
- $\bigcirc \xi_i$ is an upper bound of the number of errors
- C: tradeoff parameter between error and margin

The Optimization Problem

The dual of this new constrained optimization problem is

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t.
$$0 \le \alpha_{i} \le C, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_i now
- Once again, a QP solver can be used to find α_i

Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point xi are located
 - \bigcirc Feature space: the space of $\varphi(xi)$ after transformation

Why transform?

- Linear operation in the feature space is equivalent to non-linear operation in input space
- Olassification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of x_1x_2 make the problem linearly separable

The XOR problem

A classic problem is the XOR problem. The training data for this is:

$$\left\{ \left\{ \left[\begin{array}{c} 1.0 \\ -1.0 \end{array} \right], 1 \right\}, \left\{ \left[\begin{array}{c} -1.0 \\ 1.0 \end{array} \right], 1 \right\}, \left\{ \left[\begin{array}{c} 1.0 \\ 1.0 \end{array} \right], -1 \right\}, \left\{ \left[\begin{array}{c} -1.0 \\ -1.0 \end{array} \right], -1 \right\} \right\}$$

This data is clearly not separable with a linear decision boundary. Consider the following mapping:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \boldsymbol{\Phi}(\boldsymbol{x}) = \begin{bmatrix} 1 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \\ \sqrt{2}x_1x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

Each point is now mapped from a 2-dimensional space to a 5-dimensional space. The data is separable in this high dimensional space.

Non-linear Decision Boundary

Transforming the Data

Note: feature space is of higher dimension than the input space in practice

The Kernel Trick

Recall the SVM optimization problem

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

An Example for feature mapping and kernels

- Consider an input x=[x₁,x₂]
- Suppose $\phi(.)$ is given as follows

$$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2$$

An inner product in the feature space is

$$\left\langle \phi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right), \phi \left(\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} \right) \right\rangle =$$

 So, if we define the kernel function as follows, there is no need to carry out φ(.) explicitly

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^2$$

More examples of kernel functions

Linear kernel (we've seen it)

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Polynomial kernel (we just saw an example)

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^p$$

where p = 2, 3, ... To get the feature vectors we concatenate all pth order polynomial terms of the components of x (weighted appropriately)

Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

In this case the feature space consists of functions and results in a nonparametric classifier.

The essence of kernel

- Feature mapping, but "without paying a cost"
 - E.g., polynomial kernel

$$K(x,z) = (x^T z + c)^d$$

- How many dimensions we've got in the new space?
- How many operations it takes to compute K()?
- Kernel design, any principle?
 - K(x,z) can be thought of as a similarity function between x and z
 - This intuition can be well reflected in the following "Gaussian" function (Similarly one can easily come up with other K() in the same spirit)

$$K(x,z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$$