BOLETÍN TEMA 1: INTRODUCCIÓN A LA IO

Ejercicio 1PL_o:

Sea el siguiente problema de programación lineal:

$$Max Z(x) = x_1 + 2x_2$$
s.a.
$$x_1 + x_2 \le 4$$

$$2x_1 + x_2 \le 6$$

$$x_i \ge 0$$

- a) Representa gráficamente la FO y las restricciones
- b) Indica cuál es la región factible
- c) Indica los puntos extremos de la región factible
- d) Obtén el óptimo mediante el método gráfico

Ejercicio 2PL._o:

Sea el siguiente problema de programación lineal:

$$\min Z(x) = 0.5 x_1 + 3x_2$$
s.a.
$$2x_1 + x_2 \le 8$$

$$2x_1 + 3x_2 \ge 6$$

$$x_i \ge 0$$

- a) Representa gráficamente la FO y las restricciones
- b) Indica cuál es la región factible
- c) Indica los puntos extremos de la región factible
- d) Obtén el óptimo mediante el método gráfico
- e) Realizar un análisis de sensibilidad sobre el parámetro b_1 discutiendo los posibles cambios de soluciones

Ejercicio 3PL._o:

Sea el siguiente problema de programación lineal:

$$\min Z(x) = 0.5 x_1 + 3x_2$$
s.a.
$$2x_1 + x_2 \ge 8$$

$$2x_1 + 3x_2 \le 6$$

$$x_j \ge 0$$

- a) Representa gráficamente la FO y las restricciones.
- b) Indica cuál es la región factible
- c) Indica los puntos extremos de la región factible.
- d) Obtén el óptimo mediante el método gráfico

Ejercicio 4PL_o:

Sea el siguiente problema de programación lineal:

$$Max Z(x) = 5x_1 + 6x_2$$

 $s.a.$
 $x_1 + x_2 \ge 2$
 $-x_1 + x_2 \le 2$
 $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 6$
 $x_i \ge 0$

- a) Representa gráficamente la FO y las restricciones.
- b) Indica cuál es la región factible
- c) Indica los puntos extremos de la región factible.
- d) Obtén el óptimo mediante el método gráfico
- e) Indica el intervalo de c_1 para el que el valor de la solución óptima x^* no cambia

Ejercicio 5PL_o:

Obtener la solución del siguiente problema de programación lineal mediante el método gráfico:

$$Max Z(x) = 2x_1 + x_2$$

s.a.
 $-x_1 + x_2 \le 2$
 $x_1 - 2x_2 \le 4$
 $3x_1 + x_2 \ge 6$
 $x_2 \le 3$
 $x_i \ge 0$

Ejercicio 6PL._o:

Obtener la solución del siguiente problema de programación lineal mediante el método gráfico:

$$\max Z(x) = x_1 + x_2$$

s.a.
 $-x_1 + x_2 \le 2$
 $2x_2 \le 4$
 $x_j \ge 0$

Ejercicio 7PL.o:

Sea la siguiente pantalla de resolución de un problema de programación lineal.

	13:27:17		Sunday	February	13	2011		
	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	0	-1,0000	0	-2,6000	at bound	-М	1,6000
2	X2	6,0000	8,0000	48,0000	0	basic	0	М
	Objective	Function	(Max.) =	48,0000				
	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
1	C1	30,0000	<=	30,0000	0	1,6000	10,0000	М
2	C2	24,0000	>=	8,0000	16,0000	0	-М	24,0000

Dicha solución corresponde al siguiente problema de programación lineal:

$$Max Z(x) = -x_1 + 8x_2$$

s.a.
 $x_1 + 5x_2 \le 30$
 $-x_1 + 4x_2 \ge 8$
 $x_i \ge 0$

Se pide:

- a) Si se cambia el valor del segundo coeficiente de la función objetivo de 8 a 10, ¿cambia la solución del problema? Indicar los valores de las variables y de la FO en dicho caso.
- b) Indicar los recursos cuello de botella
- c) Discutir el significado del coste de oportunidad en cada uno de los recursos.
- d) Si el término del segundo recurso es 26. ¿Hay cambio en la solución?