

Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

Kirsten P. Duffy – University of Toledo

Benjamin B. Choi – NASA Glenn Research Center

Andrew J. Provenza – NASA Glenn Research Center

James B. Min – NASA Glenn Research Center

Nicholas Kray – GE Aviation

Background

GEAviation.com

- High performance fan blades
 - High excitation levels
 - Vibratory stresses → fatigue
- Incorporate damping into blades
 - Piezoelectric materials
 - Passive damping – e.g. shunt circuit
 - Active vibration control
 - Spin testing with active control
 - Surface-mounted sensors and actuators
 - Control 1st bending vibration
 - Possibility of embedding into blades
 - Protect from airflow and debris
 - Future testing

Piezoelectric Damping Research

- Basic Research
 - Chopra (2002) – survey of smart structures
 - Hagood and von Flotow (1991) – analysis of piezoelectric damping
 - Lesieurte (1998) – types of passive damping shunt circuits
- Turbomachinery Application
 - Cross and Lewis (2002) – smart materials for future engines
 - Cross and Fleeter (2002) – stator blade damping with passive shunt circuit
 - Remington et al. (2003) – stator blade actuation for noise control
 - Watanabe et al. (2008) – blade flutter control in a linear transonic cascade
 - Struzik and Wang, Yu and Wang (2007,2009) – piezoelectric circuits for mistuning and damping
 - Hohl et al. (2009) – bladed disk model with shunt circuits – analysis and testing
 - Kauffman and Lesieurte (2010) – frequency-switching for resonance avoidance
- Implementation
 - Hilbert et al. (2001) – patent for shunted piezoelectric damping of blades
 - Duffy et al. (2009) – piezoelectric plate damping under rotation
 - Siemann et al. (2009) – piezoelectric actuation of compressor blades under rotation
 - Bachmann et al. (2010) – pre-compressing piezoelectric elements to reduce centrifugal tensile stress
 - Duffy et al. (2012) – effects of embedding on composite strength

Piezoelectric Vibration Control

- K = “generalized electromechanical coupling”
- Damping is proportional to K^2
- K^2 = energy converted by the piezoelectric material into electrical energy divided by the system modal strain energy
- Centrifugal effects:
 - Centrifugal stiffening may increase resonance frequency, decreasing K
 - Modal stress contours will also change with rotational speed, affecting K
 - Tensile stress in the piezoelectric material due to spinning

$$K^2 = \frac{f_{oc}^2 - f_{sc}^2}{f_{oc}^2}$$

Test Configuration

- Two actuators
- One sensor
- Located at high modal strain location for 1B mode
- Expected centrifugal strain at max speed of 5000 RPM is 300×10^{-6} m/m

Test Articles

Blade Material	Type	Description
Polymer matrix fiber composite	HexPly 8551-7 with IM 7 carbon fibers	Epoxy resin with unidirectional carbon fibers, ply stack-up
Piezoelectric Materials	Type	Description
Flexible, macro-fiber composite, d_{31} -type, 300mm (0.012") thick PZT-5A (Navy Type-II PZT)	Smart-Material Corp. Sensor: M-0714-P2 Qty:1	14.0 mm x 7.0 mm (0.55" x 0.28") 6.5nF nominal capacitance -600x10 ⁻⁶ free strain -85N (-19 lbf) blocking force
	Smart-Material Corp. Actuators: M-2814-P2 Qty: 2	14.0 mm x 28.0 mm (0.55" x 1.10") 25.7nF nominal capacitance -700x10 ⁻⁶ free strain -85 N (-19 lbf) blocking force

GENx Subscale Composite Fan Blade

Piezoelectric Actuator

Dynamic Spin Rig Facility

- Two blades place opposite each other in dovetail fixtures
- Vacuum
- Excitation provided by magnetic bearings to the rotor
- Slip ring
- 0- 5000 RPM for this test
- Instrumentation
 - Piezoelectric sensor on each blade
 - Two piezoelectric actuators on each blade
 - Endevco model 25A accelerometer on blade fixture
- Equipment
 - Data Physics SignalCalc Mobilyzer provided excitation voltage, also measured response from sensors
 - dSPACE control system
 - Midé Piezoelectric amplifiers

Dynamic Spin Rig Facility

Spin Test

- Piezoelectric Sensor
 - Measure response to magnetic bearing excitation – no control
- Piezoelectric Actuator
 - Measure response to piezoelectric actuator excitation – no control
- Open Loop Control
 - Magnetic bearing excitation
 - Piezoelectric actuator at same frequency as excitation, phase chosen to reduce blade response
- Closed Loop Control
 - Based on a tuned RLC circuit (Choi 2008)
 - Implemented in dSPACE control code
 - Amplified signal (from amplifier and within control code)

Passive RLC Shunt Circuit

- Closed-loop control based on RLC circuit
- Capacitance C
 - Piezoelectric material property
- Inductance L
 - Sets the electric circuit frequency
- Resistance R
 - Dissipates energy → damping
 - Sets the bandwidth

Closed-Loop Control System

Blade Resonance Frequency/Damping

Generalized Electromechanical Coupling

Piezoelectric Patch as Sensor

- Piezoelectric sensor – voltage output proportional to strain
- Average strain over sensor area

- Excitation provided by magnetic bearings
- Strain measured by piezoelectric sensor
- Strain should be proportional to K

Piezoelectric Patch as Actuator

- Piezoelectric excitation levels much lower than magnetic bearing excitation levels (60 microstrain versus 250 microstrain)

- Excitation provided by piezoelectric actuator
- Strain measured by piezoelectric sensor
- Strain should be proportional to K

Open Loop Vibration Control

Closed Loop Control

Reduced Response from Single Actuator

Damping from Closed Loop Control

- Control system is simulated RLC circuit with amplification
- $R = 2500\Omega$, bandwidth ~ 4 Hz
- L changes with blade frequency
- Low excitation level – voltage to actuators below max allowable

Conclusions

- Spin test conclusions
 - Successful demonstration of open and closed loop control of blade vibration over a rotational speed range
 - Up to 1% damping at 0 RPM, 0.5% damping at 5000 RPM
 - Piezoelectric patches operated as designed under centrifugal and vibrational load
 - Damping shown to be proportional to K^2
- Maximize K to maximize damping
 - Effect of target resonance mode
 - K is proportional to piezoelectric material elastic modulus and thickness (to first order)
 - K is proportional to material electromechanical coupling, k
 - Single crystal material
 - d_{33} versus d_{31} type actuators
 - Optimize coverage area

Complementary Research at NASA GRC

- Composites with embedded piezoelectric materials – component strength and fatigue properties
 - Material coupon testing (Duffy 2012)
- Subscale composite fan blades with embedded piezoelectric sensors and actuators
 - Blades currently being fabricated – vibration testing
- Piezoelectric material property variation with temperature
 - New material compositions
- Power transmission to piezoelectric actuators from the stationary frame
 - Collaboration with Mesa Systems Co. to develop inductive power transmission device

Acknowledgments

- NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project
- Space Act Agreement – NASA Glenn Research Center and GE Aviation
- Thanks to Jeff Kauffman (Penn State University) and Carlos Morrison (NASA Glenn) for their assistance during testing