Exerciții Decidabilitate

October 2018

- 1. Fie 3 mulțimi A, B și $C \subseteq N$ despre care știm ca:
 - (a) $A \leq_T B$
 - (b) Multimea B este recursiv-numărabilă
 - (c) Mulțimea C este decidabilă

Ce putem spune sigur despre mulțimea $A \setminus C$ (este decidabilă, semidecidabilă, nedecidabilă)? Justificați.

- 2. Fie predicatele $A, B, C: R \to \{0, 1\}$. Știind că A este decidabil, $A \cup \overline{B}$ este nedecidabil și $C \cup B$ este semidecidabil, ce puteți spune despre predicatul $A \cup C$?
- 3. Ce puteti spune despre decidabilitatea urmatoarei variante a problemei k-PCP? Se dau 2 liste ce conțin fiecare câte n cuvinte formate cu caractere din același alfabet $\Sigma(|\Sigma| > 1)$, $X = < x_1, x_2, ..., x_n >$ și $W = < w_1, w_2, ..., w_n >$ și un numar natural k. Există un șir format din cel mult k indici din mulțimea $\{1..n\}$, care eventual se pot repeta, $i_1, i_2, ..., i_j \ (j \le k)$ astfel încât $x_{i1}x_{i2}...x_{ij} = w_{i1}w_{i2}...w_{ij}$?
- 4. Se consideră $A = \{$ mulțimea cuvintelor din dicționarul unei limbi $\}$. Mulțimea A este numarabilă sau nenumărabilă?
- 5. Se consideră $B = \{\text{roșu, galben, albastru}\}$. Mulțimea $C = \{\text{cuvintele obținute prin concatenarea de oricâte ori a elementelor mulțimii } B \}$ este numărabilă sau nenumărabilă? Justificați răspunsurile.
- 6. Fie multime
a $A=\{x|\exists y,z,t,y\neq z\neq t,a.i.(x,y),(x,z),(x,t)\in B,y=z^2\},$ unde $B\subseteq N\times N$ este recursiv numarabilă. Demonstrati ca
 Aeste recursiv numărabilă.
- 7. Fie A o submulțime infinită din $N \times N$. Se cunoaște programul generator $Q_A \in P_{0,1}$ pentru A, care la fiecare apel returnează un element din A. Arătați că există programul P astfel încât

$$P(x) = \left\{ \begin{array}{l} 1, x \in A \\ \perp, x \notin A \end{array} \right.$$

- 8. Dați un exemplu de mulțime nerecursivă și demonstrați pe scurt că aceasta este într-adevăr nerecursivă.
- 9. Definiți o mulțime recursiv-numărabilă care nu este recursivă și demonstrați că așa este.
- 10. Fie mulțimile $A, B, C \subseteq N$. Știind că:

- (a) $A \cap B = B \cap C = A \cap C = \phi$
- (b) $A \cup B \cup C = N$
- (c) A, B, C sunt mulțimi recursiv-numerabile

demonstrați că A, B, C sunt recursive.

11. Fie problema BIN care testeaza oprirea unui program pe inputuri binare astfel:

Se oprește un program arbitrar P' pe un input arbitrar w' de forma $\{0,1\}*$? Inputul w' e format numai din 1 si 0 (ex: 111, 10, 0, 01010 etc.).

Demonstrati (ne) decidabilitatea probleme
iBIN,prin reducerea Turing a acesteia de la/la o problema cunoscuta.