CMPE 310 Systems Design and Programming

L6: Chapter 10 – Memory Interface

L6 Objectives

- * Explore Semiconductor memories
- * Three main characteristics of memory devices
- * Memory address decoding

Semiconductor memories

Read

- * Almost all systems contain two basic types:
 - * ROM: Read-only memory
 - * RAM: Read-Write memory
- Three Memory Characteristics:
 - * IC Memory/ Chip Capacity
 - * No. of bits that a chip can store
 - * Memory Organization
 - * 2^x locations, x = no. of address pins
 - * Each location contains y bits; y = no. of data pins
 - * Chip contain 2^x x y bits
 - * Speed
 - * Access time varies → IC technology used

Example

- * If you have a memory chip with 12 address pins and 8 data pins:
 - * Memory organization
 - * Chip capacity
- * If you have a 512K chip with 8 data pins:
 - * Memory organization
 - * Number of address pins

Memory Interface

Memory Chips

- * The number of address pins is related to the number of memory locations.
 - * Common sizes today are 1K to 1G locations.
 - * Therefore, between 10 and 30 address pins are present.
- * The data pins are typically **bi-directional in read-write memories.**
 - * The number of data pins is related to the size of the memory location.
 - * For example, an 8-bit wide (byte-wide) memory device has 8 data pins.
 - * Catalog listing of 1K X 8 indicate a byte addressable 8K bit memory with 10 address pins.

Memory chips

Memory Chips

- * Each memory device has at least one **chip select (CS) or chip enable** (**CE) or select (S) pin** that enables or select the memory device.
 - * This enables read and/or write operations.
 - * If more than one are present, then all must be o in order to perform a read or write.
- * Each memory device has at least one control pin.
 - * ROMs: an output enable (OE) or gate (G) connection is present.
 - * The OE pin enables and disables a set of tristate buffers located in the device and must be active to read data.
 - * RAMs: a read-write (R/ \overline{W}) or write enable (\overline{WE}) and read enable (\overline{OE}) are present.
 - * For dual control pin devices, it must be hold true that both are not o at the same time to read or write data.

Memory Interface

Memory Chips

- * ROM:
 - * Non-volatile memory: Maintains its state when powered down.
 - * There are several forms:
 - * ROM: Factory programmed, cannot be changed. Older style.
 - * PROM: Programmable Read-Only Memory.
 - * Field programmable but only once. Older style.
 - * EPROM: Erasable Programmable Read-Only Memory.
 - * Reprogramming requires up to 20 minutes of high-intensity UV light exposure.
- * Flash (EEPROM): Electrically Erasable Programmable ROM.
 - Also called EAROM (Electrically Alterable ROM) and NOVRAM (NOn-Volatile RAM).
 - * Writing is much slower than a normal RAM.
 - * Used to store setup information, e.g. video card on computer systems.
 - * Can be used to replace EPROM for BIOS ROM memory.

Intel 2716 EPROM

 V_{pp} is used to program the device by applying 25V and pulsing PGM while holding \overline{CS} high

Pin(s)	Function
A ₀ -A ₁₀	Address
PD/PGM	Power down/Program
CS	Chip Select
O ₀ -O ₇	Outputs

Memory Interface

SRAMs

- * Data is available as long as power supplied
 - * Volatile Memory: as data is lost at power down
 - * TI TMS 4016 SRAM (2K X 8):

Pin(s)	Function
A ₀ -A ₁₀	Address
DQ_0 - DQ_7	Data In/Data Out
S (CS)	Chip Select
G (OE)	Read Enable
W (WE)	Write Enable

5

- * Virtually identical to the EPROM with respect to the pinout.
- * However, access time is faster (250ns).
- See the timing diagrams and data sheets in text.
- Modern SRAMs used for caches have access times as low as 10ns.

Memory Interface **SRAMs** * 62256 (32K X 8) RAM * Access Time: 120-150 ns A 14 PIN FUNCTION 27 | A₁₃ | A₈ | A₉ | A₁₁ | OE | CS | IO₇ | IO₆ | IO₅ | IO₄ | IO₃ | 4 | 5 | 6 A_6 25 IO₀- IO₇ Data connections 24 A₅ Chip select 23 Output enable 22 WE Write enable 21 +5V Supply GND Ground 20 10 19 18 IO_0 IO_1 17 12 Other sizes 10_2 16 GND * 8KX8 * 128K X 8 * 256K X 8

DRAM

- * SRAMs are limited in size (up to 1M X 8).
- * DRAMs are available in much larger sizes (up to 4G; 256 x 8, 4G x 1).
- * Requires as little as 70 ns to access data
 - * DRAMs MUST be refreshed (rewritten) every 2 to 4 ms
- * This refresh is performed by a special circuit in the DRAM which refreshes the entire memory.
 - * Refresh also occurs on a normal read or write.
- * The large storage capacity of DRAMs make it impractical to add the required number of address pins.
 - * Instead, the address pins are multiplexed.

TI TMS4464 DRAM

Pin(s)	Function
A ₀ -A ₇	Address
DQ ₀ -DQ	Data In/Data Out
RAS	Row Address Strobe
CAS	Column Address Strobe
G	Output Enable
W	Write Enable

- ▼ Total chip capacity → 256K bits of data.
- * It has **64K** addressable locations which means it needs 16 address inputs, but **it has only 8.**
 - * 16 address bits can be forced into eight address pins in two 8-bit increments
 - The row address (A₀ A₇) are placed on the address pins and strobed into a set of internal latches by RAS
 - * The column address $(A_8 A_{15})$ is then strobed in using CAS

TI TMS4464 DRAM timing diagram

* 16-bit address in the internal latches, which addresses the contents of one of the 4-bit memory locations.

- * Multiplexers used to strobe col and row addresses into the 8 address pins
- * RAS signal strobes the row address into the DRAM and selects which part of the address is applied to the address inputs.

Memory address decoding

- * The processor can usually address a memory space that is much larger than the memory space covered by an individual memory chip.
- * In order to splice a memory device into the address space of the processor, decoding is necessary.
- * For example, the 8088 issues **20-bit addresses for a total of 1MB of memory address space.**
- * However, the BIOS on a 2716 EPROM has only 2KB of memory and 11 address pins.
- * A decoder can be used to decode the additional 9 address pins and allow the EPROM to be placed in any 2KB section of the 1MB address space.

20-bit address decoding

* To determine the address range that a device is mapped into:

- * This 2KB memory segment maps into the **reset location** of the 8086/8088 (FFFF0H).
- * NAND gate decoders are not often used
 - * Large fan-in NAND gates are not efficient
 - Multiple NAND gate IC's might be required to perform such decoding
 - * Rather the 3-to-8 Line Decoder (74LS138) is more common.

3-to-8 line decoder (74LS138)

- * Note that all three Enables ($\overline{G_2A}$, G_2B , and G_1) must be active, e.g. low, low and high, respectively.
- * Each output of the decoder can be attached to an 2764 EPROM (8K X 8).

Memory address decoding

AMD 16L8 PAL decoder

- * Commonly used to decode the memory address, particularly for 32-bit addresses generated by the 80386DX and above.
- * It has 10 fixed inputs (Pins 1-9, 11), two fixed outputs (Pins 12 and 19) and 6 pins that can be **either** (Pins 13-18).
- * AND/NOR device with logic expressions (outputs) with up to 16 ANDed inputs and 7 ORed product terms.
 - * Programmed to decode address lines A_{19} A_{13} onto 8 outputs.

Next Time

- * Memory Interfacing
 - * 8-bit memory interface

STOP

CMPE 310 11