奇偶特性公式

奇数±奇数=偶数; 偶数±偶数=偶数;

偶数±奇数=奇数; 奇数±偶数=奇数。

任意两个数的和如果是奇数, 那么差也是

奇数;如果和是偶数,那么差也是偶数。

任意两个数的和或差是奇数,则两数奇偶相反;

和或差是偶数,则两数奇偶相同。

整除特性公式 (1)

能被2, 4, 8, 5, 25, 125整除的数的特性: 能被2或5整除的数,末一位数字能被2或5整除

能被4或25整除的数,末两位数字能被4或25整除

能被8或125整除的数,末三位数字能被8或125整除

能被3或9整除的数,各位数字和能被3或9整除

心竺公考

整除特性公式 (2)

如果 a: b = m: n (m, n互质) 则a是m的倍数, b是n的倍数 如果 a = (m/n) * b (m, n互质) 则a是m的倍数, b是n的倍数 如果 a: b = m: n (m, n互质) 则 a±b 应该是 m±n 的倍数

乘法与因式分解公式

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$a^2 - b^2 = (a - b)(a + b) +$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2) \downarrow$$

$$\frac{d}{n(n+d)} = \frac{1}{n} - \frac{1}{n+d}$$

等差等比数列公式(1)

定义	$\{a_n\}$ 为 $A \cdot P \Leftrightarrow a_{n+1} - a_n = d$ (常数)	$\{a_n\}$ 为 $G \cdot P \Leftrightarrow \frac{a_{n+1}}{a_n} = q(常数)$
通项公 式	$a_n = a_1 + (n-1) d = a_k + (n-k) d$	$a_n = a_1 q^{n-1} = a_k q^{n-k}$
求和公 式	$s_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d$	$s_n = \begin{cases} na_1 & (q = 1) \\ \frac{a_1(1 - q^n)}{1 - q} = \frac{a_1 - a_n q}{1 - q} & (q \neq 1) \end{cases}$
中项公 式	$A = \frac{a+b}{2}$ 推广: $2a_n = a_{n-m} + a_{n+m}$	$G^2 = ab$ 。推广: $a_n^2 = a_{n-m} \times a_{n+m}$

等差等比数列公式(2)

	1+	若 $\underline{\mathbf{m}}+\mathbf{n}=\mathbf{p}+\mathbf{q}$ 则 $a_m+a_n=a_p+a_q$	若 $\underline{\mathbf{m}}+\underline{\mathbf{n}}=\underline{\mathbf{p}}+\underline{\mathbf{g}}, \ $
性质	24	. $s_{n}, s_{2n} - s_{n}, s_{3n} - s_{2n}$ 成等差数列。	$s_{n}, s_{2n} - s_{n}, s_{3n} - s_{2n}$ 成等比数列。
192/053	3∻	$d = \frac{a_n - a_1}{n - 1} = \frac{a_m - a_n}{m - n} (m \neq n)$	$q^{n-1} = \frac{a_n}{a_1}$, $q^{n-m} = \frac{a_n}{a_m}$ $(m \neq n)$

余数问题

余同取余,和同加和,差同减差,最小公倍加

如果一个被除数的除数不同,余数相同,那么这个数

的通项公式可以表示为几个除数的公倍数加上除数共同的余数。

如果一个被除数的除数不同,除数与余数的和相等,那么这个数

的通项公式可以表示为几个除数的公倍数加上除数与余数的和。

如果一个被除数的除数不同,除数与余数的差相等,那么这个数的

通项公式可以表示为几个除数的公倍数减去除数与余数的差。

溶液问题公式

溶液=溶质+溶剂;

浓度 = 溶质÷溶液;

溶质=溶液×浓度;

溶液=溶质÷浓度

利润问题公式

利润 = 卖出价-成本

利润率=利润 ÷ 成本 ×100%= (卖出价-成本) ÷ 成本 ×100%

卖出价 = 成本 × (1 + 利润率)

成本 = 卖出价 ÷ (1 + 利润率)

商品的定价按照期望的利润来确定时,

定价 = 成本× (1+期望利润的百分数)

工程问题公式

工作总量=工作效率×工作时间

心竺公考

路程问题公式 (1)

路程 = 速度×时间

路程÷时间=速度

路程÷速度=时间

路程问题公式 (2)

'总路程 = 速度和×相遇时间,

相遇问题 (速度和 = 总路程÷相遇时间,

相遇时间 = 总路程÷速度和。

|追及时间=追及路程÷速度差,

追及问题 (追及路程 = 速度差×追及时间,

速度差=追及路程+追及时间。

鸡兔同笼公式

免数=(实际脚数-每只鸡脚数×鸡免数)÷(每只兔子脚数-每只鸡脚数)

鸡数=(每只兔脚数×鸡兔总数-实际数)÷(每只兔子脚数-每只鸡脚数)

日期问题

	判断方法	一共天数	2月
平年	年份不能被4整除	365天	有28天
闰年	年份可以被4整除	366天	有29天

大月与小月

包括月份		共有天数	
大月	一、三、五、七、八、十、十二月	31天	
小月	二、四、六、九、十一月	30天 (2月除外)	

四年一闰、百年不闰、四百年闰、3200年不闰

心性公考

牛吃草问题

草地原有草量= (牛数-每天长草量) * 天数

方阵问题

方阵总人数 = 最外层每边人数的平方

方阵最外一层总人数比内一层总人数多8 (行数 和列数分别大于2)

方阵最外层每边人数 = (方阵最外层总人数÷4) + 1

基期量计算

已知现期量,增长率x%

基期量 = $\frac{现期量}{1+x\%}$

截位直除法, 特殊分数法

基期量计算2

已知现期量,相对基期量增加M倍

基期量 = $\frac{现期量}{1+M}$

截位直除法

心竺公考

基期量计算3

已知现期量,相对基期量的增长量N

基期量 = 现期量 - N

尾数法, 估算法

基期量比较

已知现期量,增长率x%

基期量 = $\frac{现期量}{1+x\%}$

如果现期量差距较大,增长率相差不大,可直接比

较现期量。

路程问题公式(3)

环形运动中,相邻两次相遇所需要的时间

同向而行:时间=周长/(大速度-小速度)

背向而行: 时间=周长 / (大速度 + 小速度)

路程问题公式 (4)

1、甲乙两人分别从 A、B 两点出发,他们迎面相遇次数和路程和之间的关系见下图

欠数和路程和之间的关系见下图:		
迎面相遇次数	路程和	
第一次	1个全程	
第二次	3 个全程	
第三次	5 个全程	
第N次	2N-1 个全程	

从左右两点出发: 第 N 次迎面相遇,路程和=全程*(2N-1)

现期量计算

已知基期量,增长率x%

现期量=基期量+基期量×x%

= 基期量×(1+x%)

特殊分数法, 估算法

现期量计算2

已知基期量,相对基期量增加M倍

现期量 = 基期量 + 基期量 $\times M$

= 基期量×(1+M)

估算法

心竺公考

现期量计算3

已知基期量,增长量N

现期量 = 基期量 + N

尾数法, 估算法

增长量计算

已知基期量与现期量

增长量=现期量-基期量

尾数法

增长量计算2

已知基期量与增长率x%

增长量 = 基期量×x%

特殊分数法

增长量计算3

已知现期量与增长率x%

增长量 =
$$\frac{现期量}{1+x\%} \times x\%$$

分数的近似计算(看大则大,看小则小)

心竺公考

增长量计算4

如果基期量为A, 经N期变为B, 平均增长

量为x
$$x = \frac{B - A}{N}$$

直除法

增长量比较

已知现期量与增长率x%

增长量 =
$$\frac{现期量}{1+x\%} \times x\%$$

现期量大,增长率大的情况下,增长量一定大。

增长率计算

已知基期量与增长量

(1) 截位直除法 (2) 插值法

增长率计算2

已知现期量与基期量

截位直除法

愈心竺公考

增长率计算3

如果基期量为A, 经N期变为B, 平均增长

率为x%
$$x\% = \sqrt[N]{\frac{B}{A}} - 1$$

代入法或公式法

增长率计算4

两期混合增长率:如果第二期与第三期增长率分别为, r_1 与 r_2 那么第三期相对第一期增长率 r_3

$$r_3 = r_1 + r_2 + r_1 r_2$$

增长率计算5

合成增长率:整体分为A、B两个部分,分

别增长a%与b%,整体增长率r%

$$r\% = \frac{A \times a\% + B \times b\%}{A + B}$$

增长率计算6

混合增长率:整体为A,增长率为rA,分为

两个部分B和C,增长率为rB和rC

则r_A介于r_B和r_C之间

混合增长率大小居中

愈心竺公考

增长率比较

已知现期量与增长量比较

增长率 = 现期量基期量

代替增长率进行大小比较

发展速度

已知现期量与基期量

发展速度 = 现期量 = 1+增长率

截位直除法、插值法

追及问题

2、甲乙两人分别从 A、B 两点出发,他们迎面相遇次数和路程和之间的关系见下图:

第一次追上相遇

追上相遇次数	路程差
第一次	1 个全程
第二次	3 个全程
第N次	2N-1 个全程

从左右两点出发: 第 N 次追上相遇,路程差=全程*(2N-1)

流水行船问题

顺水速度 = 船速 + 水速

逆水速度 = 船速 - 水速

船速= (顺水速度+ 逆水速度) ÷2

水速= (顺水速度 - 逆水速度) ÷2

心竺公考

电梯问题

S= (V人+V电梯) *T —— 同向

S= (V人-V电梯) *T — 反向

容斥原理

 $A \cup B = A + B - A \cap B$

 $A \cup B \cup C = A + B + C - A \cap B - A \cap C$

- BC++ACBC

容斥问题

在三集合题型中,假设满足三个条件的元素数量分别是 A、B 和 C,而至少满足三个条件之一的元素的总量为 W。其中,满足一个条件的元素数量为 x,满足两个条件的元素数量为 y,满足三个条件的元素数量为 z,根据下图可以得到以下两个等式:

W=x+y+z

A+B+C=x×1+y×2+z×3

排列组合、概率

$$P_n^r = n(n-1)...(n-r+1) = \frac{n!}{(n-r)!}$$

$$C_n^r = \frac{P_n^r}{r!} = \frac{n!}{r!(n-r)!}$$

$$C_n^r = C_n^{n-r}$$

心竺公考

排列组合、概率

错位排列问题: D1=0, D2=1, D3=2, D4=9,

D5=44, D6=265...

单独概率 = 满足条件的情况数/总的情况数

总体概率 = 满足条件的各种情况概率之和

分步概率 = 满足条件的每步不同概率之积

统筹问题

空瓶换酒:

N个空瓶可以换1瓶饮料,总共有A个空瓶,能

换到的饮料瓶数为: A/(N-1)

N个空瓶可以换1瓶饮料,要喝M瓶饮料,至少

要买的饮料瓶数为A,有: A+A/(N-1) = M

空瓶换酒

A如果出现小数就进1 M如果出现小数就舍去

货物装卸

如果有M辆车和N个工厂

N > M时,所需装卸工的总数就是需要装卸工人

数最多的M个工厂所需的装卸工人数之和

若M≥N时,则把各个点上需要的人加起来即答案

心竺公考

拆数求积

将一个正整数 (≥2) 拆成若干自然数之和,要使这些自然数的乘积尽可能的大那么我们应该这样来拆数:全部拆成若干个3和少量2 (1个2或者2个2) 之和即可

过河问题

M个人过河,船上能载N个人,由于需要一人划船,故共需过河(M-1)/(N-1)次(分子、分母分别减"1"是因为需要1个人划船,如果需要n个人划船就要同时减去n)

几何问题

图形	图例	周长	面积
三角形	sÂ ^b c		$S_{\triangle ABC} = \frac{1}{2}ah$ $S_{\triangle ABC} = \frac{1}{2}absinC = \frac{1}{2}acsinB = \frac{1}{2}bcsinA$
正方形	а	C=4a	S=a ²
长方形	a b	C=2(a+b)	S=ab
梯形	h b		$S = \frac{1}{2} (a+b)h$
平行四边形	<u>∫</u> a		S=ah
圆形	(d)	C=2πr=πd	$S = \pi r^2 = \frac{1}{4} - \pi d^2$
扇形	ne		$S = \frac{n^{\circ}}{360^{\circ}} \pi r^{\circ}$

货物装卸

图形	图例	表面积	体积
长方体	a b	S=2(ab+bc+ac)	V=abc
正方体	a	S=6a²	V=a3
球体		S=4πr²	$V = \frac{4}{3} \cdot \pi r^3$
圆柱体	Ó h	S=2πr²+2πrh	V=Sh=πrh (S 为圆柱底面积)
圆锥体			$V = \frac{1}{3} \text{Sh} = \frac{1}{3} \pi \hat{r} h$ (S 为圆锥底面积)

拆数求积

- 1.n边形 (凸多边形) 内角和为 (n-2) ×180°;
- 2.在三角形中,两边之和大于第三边,两边之差小于第三边;
- 3.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的 n 倍,则其周长变为原来的 n 倍,面积变为原来的 n^2 倍,体积变为原来的 n^3 倍;

植树问题

不封闭型:

两端植树: 棵树 = 段数 + 1 = 路长/间距 + 1

只在一端植树: 棵树 = 段数 = 路长/间距

两端都不植树: 棵树 = 段数 - 1 = 路长/间距 - 1

增长贡献率	(21)已知部分增长量与整体增长量	增长贡献率= 部分增长量 整体增长量	(1) 截位直除法 (2) 插值法
拉动增长	(22)如果 B 是 A 的一部分,B 拉动 A 增长 x%	x%= B的增长量 A的基期量	(1) 截位直除法 (2) 插值法
	(23) 某部分现期量为 A,整体现期量为 B	现期比重 = $\frac{A}{B}$	(1) 截位直除法 (2) 插值法
比重计算	(24)某部分基期量为 A,增长率 a%,整体 基期量为 B,增长率 b%	现期比重= $\frac{A\times(1+a\%)}{B\times(1+b\%)}$	一般先计算 $\frac{d}{B}$,然后根据 a 和 b 的大小 判断大小
2	(25)某部分现期量为 A 增长率 a%,整体现期量 B,增长率 b%	基期比重 = $\frac{A}{B} \times \frac{1 + b\%}{1 + a\%}$	一般先计算 $\frac{A}{B}$,然后根据 a 和 b 的大小 判断大小

比重计算	(26)基期比重一规期比重:某部分现期量为 A 增长率 a%,整体现期量 B,增长率 b%	两期比重差值计算: $现期比重 - 基期比重 = \frac{A}{B} - \frac{A}{B} \times \frac{1 + b\%}{1 + a\%}$ $= \frac{A}{B} (1 - \frac{1 + b\%}{1 + a\%})$ $= \frac{A}{B} \times \frac{a\%}{1 + a\%}$	(1)先根据 a 与 b 的大小判断差值计算 结果是正数还是负数; (2)答案小于 a - b (3)估算法(近似取整估算)
	(27)某部分现期量为 A,整体现期量为 B	现期比重 = $\frac{A}{B}$	相当于分数大小比较,同上述做法
比重比较	(28)基期比重与规期比重比较:某部分规期 量为 A,增长率 a%,整体现期量为 B,增长率 b%	基期比重 = $\frac{A \times (1 + b\%)}{B \times (1 + a\%)}$	当部分增长率大于整体增长率,则规期比重大于基期比重。(方法为"看"增长率)

分子为1的分数与百分数的互化:

$$\frac{1}{2} = 50\%, \quad \frac{1}{3} = 33.3\%, \quad \frac{1}{4} = 25\%, \quad \frac{1}{5} = 20\%, \quad \frac{1}{6} = 16.7\%, \quad \frac{1}{7} = 14.3\%, \quad \frac{1}{8} = 12.5\%, \quad \frac{1}{9} = 11.1\%,$$

$$\frac{1}{11} = 9.1\%, \quad \frac{1}{12} = 8.3\%, \quad \frac{1}{13} = 7.7\%, \quad \frac{1}{14} = 7.1\%, \quad \frac{1}{15} = 6.7\%, \quad \frac{1}{16} = 6.25\%, \quad \frac{1}{17} = 5.9\%,$$

$$\frac{1}{18} = 5.6\%, \quad \frac{1}{19} = 5.3\%, \quad \frac{1}{20} = 5.0\%, \quad \frac{1}{25} = 4.0\%.$$

其他重要分数与百分数的互化:

$$\frac{2}{3} = 66.7\%, \quad \frac{2}{7} = 28.6\%, \quad \frac{3}{7} = 42.9\%, \quad \frac{4}{7} = 57.1\%, \quad \frac{3}{8} = 37.5\%, \quad \frac{5}{8} = 62.5\%, \quad \frac{2}{9} = 22.2\%, \\ \frac{4}{9} = 44.4\%, \quad \frac{5}{9} = 55.6\%, \quad \frac{2}{11} = 18.2\%, \quad \frac{3}{11} = 27.3\%, \quad \frac{4}{11} = 36.4\%.$$

平均数计算	(29)已知 N 个量的值,求平均数	平均數 = $\frac{n_1 + n_2 + \dots + n_N}{N}$	凑整法
直接读数类	(30)方法:读题做标记,辅助工具(直尺)		
综合分析 题	(31)四项基本原则: 题干短原则,不计算原则(时间与材料时间一致),信息易得原则,简单计算原则		