Math 411 Spring 2016 Homework #6

Due March 8, Tue in class

- 1. Textbook, 3.A, page 57: 1, 4;
- 2. Let $a \in F$ (where F is a field). Consider the mapping $T: F^{\infty} \to F^{\infty}$ given by

$$T((x_1, x_2, x_3, \ldots)) = (a, x_1, x_2, x_3, \ldots).$$

Show that T is a linear map if and only if a = 0.

3. Let $\mathcal{L}(V,W)$ be the set of all linear maps from the vector space V to the vector space W (over the field F). Show that for any $T \in \mathcal{L}(V,W)$, there exists a linear map $T' \in \mathcal{L}(V,W)$ such that $T+T'=\mathbf{0}$, where $\mathbf{0} \in \mathcal{L}(V,W)$ is the zero map. (*Hint*: for a given $T \in \mathcal{L}(V,W)$, construct a function $T':V \to W$ such that $T+T'=\mathbf{0}$, and show that T' is a linear map, i.e., $T' \in \mathcal{L}(V,W)$.)

More practice problems: Do not submit

- 1. Textbook, 3.A, page 57: 7, 8, 9, 12;
- 2. Show that $\mathcal{L}(V, W)$ satisfies the axioms A1-A3 and M1-M4 of the definition of vector space (A4 has been shown in P.3 above) and thus is a vector space.