Д.В. Сысоев

ФОРМИРОВАНИЕ ДОСТИЖИМОСТИ В ИССЛЕДОВАНИЯХ ПРОИЗВОДСТВЕННО – ЭКОНОМИЧЕСКИХ СИСТЕМ

Аннотация: Описываются основанные на использовании сетей Петри методы построения пространств достижимости, которые могут быть использованы в структурных исследованиях систем различного предметного назначения

Ключевые слова: структура, теория графов, сети Петри, достижимость

D.V. Sysoev

THE FORMATION OF REACHABILITY IN THE RESEARCH PRODUCTION AND ECONOMIC SYSTEMS

Abstract: Methods of creation of spaces of approachibility which can be used in structural researches of systems of various subject appointment are described based on use of networks of Petri **Keywords:** structure, theory of counts, Petri's networks, approachibility

Свойства производственно - экономических систем (ПЭС) различного предметного назначения в значительной степени определяются составом и взаимоотношениями их элементов. Учет взаимоотношений позволяет выделять ядра конфликта, содружества и безразличия [1], и использовать их для исследования систем [1-5]. Одним из подходов, используемых в структурных исследованиях, является исследование множеств достижимости в графах системы, позволяющие определить области влияния одних элементов системы на другие. Однако традиционные методы теории графов [6] не позволяют получить корректное описание этих множеств, поскольку не учитывают динамику системы.

Ниже описывается подход к описанию множеств достижимости, основанный на использовании методов теории сетей Петри [7], аппарат маркировки которых обеспечивает учет динамики исследуемых ПЭС.

Структурная формализация систем. С точки зрения структурной организации систему формально можно представить тройкой [1,2]

$$\Psi = \{Y, \Omega, A\},\$$

где $Y = \{Y_i, i = 1...N\}$ - множество элементов (подсистем) системы Ψ ; $\Omega = (Y, F)$ - ориентированный граф с множеством вершин γ и множеством дуг $F \subset \gamma \times \gamma$ (дуга $f_{ij} \notin E$ отражает наличие связи элемента γ_i с элементом γ_j); A = < L, R > - алгебра с множеством носителей L и сигнатурой R [8], описывающая механизм функционирования элементов системы Ψ .

С точки зрения функциональной организации систему можно описать множеством глобальных состояний

$$W = \{W^{\omega}, \omega = 1..\eta\}$$
.

При этом в рамках данного исследования примем, что каждое глобальное состояние системы Ψ – это вектор локальных состояний отдельных элементов системы:

$$W^{\omega} = (w_i^{\omega}, i = 1...N)$$
.

С точки зрения информационной организации систему Ψ можно представить как

$$\Psi \subset X \times W \times Y$$
.

где $X = \{x^{\varphi}, \varphi = 1...\Phi\}$ — множество входных параметров системы, $Y = \{y^{\tau}, \tau = 1...T\}$ — множество выходных параметров системы.

Функциональная и информационная организация отдельных элементов в целом повторяет функциональную и информационную структуру ПЭС в целом: каждый элемент системы может быть представлен как

$$Y_i \subset X_i \times W_i \times Y_i$$
,

где $X_i = \{x_i^k, k = 1...\varphi_i\}$ — множество входных параметров элемента γ_i , $Y_i = \{y_i^\delta, \delta = 1...\tau_i\}$ — множество выходных параметров элемента γ_i , $W_i = \{w_i^\omega, \omega = 1...\eta_i\}$ — множество локальных состояний элемента γ_i .

В таком случае, носитель L и сигнатура R алгебры A представляется в виде

$$L = \times_i (X_i \times W_i \times Y_i)$$
, $R = \times_i R_i$

где $R_i: X_i \times W_i \to Y_i$ — функция, которая называется глобальной реакцией элемента γ_i [9], \times_z — символ декартова произведения для всех значений параметра z.

Осуществим аналогичную формализацию для каждого элемента γ_i так же как и в [10], представив его структуру в виде ориентированного графа

$$G_i = (V_i, E_i).$$

Граф $G_i \forall i=1...N$ имеет множество вершин $V_i = \{x_i^k, k=1...\varphi_i\} \cup \{w_i^\omega, \omega=1...\eta_i\} \cup \{y_i^\delta, \delta=1...\tau_i\}$ и множество дуг E_i , где $\{x_i^k, k=1...\varphi_i\} \neq \varnothing$, $\{w_i^\omega, \omega=1...\eta_i\} \neq \varnothing$, $\{y_i^\delta, \delta=1...\tau_i\} \neq \varnothing_i$ — множества входов, состояний и выходов элемента γ_i .

Следует заметить, что при такой структуризации в графе G_i отсутствуют взаимосвязи внутри множеств $\{x_i^k, k=1...\varphi_i\}$, $\{w_i^\omega, \omega=1...\eta_i\}$, $\{y_i^\delta, \delta=1...\tau_i\}$, а также смежные вершины из множеств $\{x_i^k, k=1...\varphi_i\}$ и $\{y_i^\delta, \delta=1...\tau_i\}$. Вершины $\{y_i^\delta, \delta=1...\tau_i\}$ достижимы из вершин $\{x_i^k, k=1...\varphi_i\}$ только через вершины множества состояний $\{w_i^\omega, \omega=1...\eta_i\}$. При этом нахождение элемента в различных состояниях в общем случае инициализирует различный состав входных и выходных вершин.

Графы G_i в полной мере отражают представление о взаимосвязях входов и выходов в отдельных элементах системы Ψ .

Целостность системы Ψ определяется тем, что выходы одних элементов совпадают с входами других элементов. Это может быть описано специальными графами $G_i^\delta = (V_i^\delta, E_i^\delta)$, которые строятся следующим образом:

✓ графы G_i^{δ} строятся для каждого выхода y_i^{δ} каждого элемента γ_i системы Ψ , который тождественен хотя бы одному входу какого либо элемента этой системы;

✓ множество вершин V_i^δ графа G_i^δ составляют указанный выход y_i^δ и тождественные ему входы, а также еще одна вершина π_i^δ , которую будем называть проектором выхода y_i^δ ;

 \checkmark дуги E_i^δ графа G_i^δ направлены от вершины y_i^δ к проектору π_i^δ , а от него ко всем вершинам $V_i^\delta\setminus y_i^\delta$, т. е. входам, которым тождественна вершина y_i^δ .

Графы G_i^{δ} в полной мере отражают представление о взаимосвязях выходов и входов различных элементов системы Ψ .

Вышеизложенное, позволяет, наряду с графом системы $\Omega = (Y,F)$, отображающим укрупненную структуру взаимоотношений элементов ПЭС, рассматривать развернутый граф G = (V,E) с вершинами $V = \{\bigcup_{(i,j)} x_i^k\} \bigcup \{\bigcup_{(i,\omega)} w_i^\omega\} \bigcup \{\bigcup_{(i,\delta)} y_i^\delta\} \bigcup \{\bigcup_{(i,\delta)} \pi_i^\delta\}$ и дугами $E = \{\bigcup_i f_i\} \bigcup \{\bigcup_{(i,\delta)} e_i^\delta\}$ позволяющими описывать взаимоотношение элементов системы Ψ на уровне структурно — параметрического представления множеств входов и выходов.

Важной частью исследований взаимоотношений в ПЭС является исследование достижимости в графе G. Использование традиционного определения достижимости в рассматриваемой случае не корректно. Действительно, в каждый момент времени система находится в одном состоянии и, следовательно, инициализированы в графе G только те вершины w_i^{ω} , которые соответствуют этому состоянию и, следовательно, следует рассматривать только те маршруты достижимости, которые содержат указанные вершины.

Ниже вводится новое понятие достижимости в графах и осуществляется исследование его свойств.

Понятие -достижимости. Обозначим $\mathcal{G}-$ некоторое подмножество вершин графа $\Omega \colon \mathcal{G} \subset V$. Введем ряд определений.

Определение 1. Вершина $\omega_j \in V\mathcal{G}$ –достижима из вершины $\omega_i \in V$ будем обозначать через $\omega_i d_{\mathcal{G}} \omega_j$ или $(\omega_i, \omega_j) \in \vec{d}_{\mathcal{G}}$, если в графе G = (V, E) существует ориентированный путь из ω_i в ω_j не содержащий вершин из множества \mathcal{G} .

Множеством \mathcal{G} — достижимости $D_{\mathcal{G}}(\omega_i)$ вершины ω_i называется множество \mathcal{G} —достижимых из нее вершин: $D_{\mathcal{G}}(\omega_i) = \{\omega_i : \omega_i \vec{d}_{\mathcal{G}} \omega_i\}$.

Множеством \mathcal{G} —достижимости $D_{\mathcal{G}}(V_i)$ множества вершин V_i называется объединение множеств \mathcal{G} — достижимости всех вершин, входящих в $V_i:D_{\mathcal{G}}(V_i)=\bigcup_k\{D_{\mathcal{G}}(\omega_k):\omega_k\in V_i\}$

Определение 2. Вершина $\omega_j \in V\mathcal{G}$ — контрдостижима из вершины $\omega_i \in V$ будем обозначать через $\omega_i \dot{d}_g \omega_j$ или $(\omega_i, \omega_j) \in \dot{d}_g$ если в графе $G^\gamma = (G^\gamma, E^\gamma)$ существует ориентированный путь из ω_j в ω_i , не содержащий вершин из множества \mathcal{G} .

Множеством \mathcal{G} – контрдостижимости $K_{\mathcal{G}}(\omega_i)$ вершины ω_i называется множество \mathcal{G} – контрдостижимых из нее вершин: $K_{\mathcal{G}}(\omega_i) = \{\omega_i : \omega_i \dot{d}_{\mathcal{G}} \omega_i \}$.

Множеством \mathcal{G} — контрдостижимости $K_{\mathcal{G}}(V_i)$ множества вершин V_i называется объединение множеств \mathcal{G} — контрдостижимости всех вершин, входящих в $V_i: K_{\mathcal{G}}(V_i) = \bigcup_k \{K_{\mathcal{G}}(\omega_k): \omega_k \in V_i\}$.

Определение 3. Вершина $\omega_j \in V\mathcal{G}$ — взаимодостижима из вершины $\omega_i \in V$ будем обозначать через $\omega_i \vec{d}_{\mathcal{G}} \omega_j$ или $(\omega_i, \omega_j) \in \vec{d}_{\mathcal{G}}$, если она одновременно \mathcal{G} — достижима и \mathcal{G} — контрдостижима из этой вершины.

Множеством \mathcal{G} — взаимодостижимости $V_{\mathcal{G}}(\omega_i)$ вершины ω_i называется множество \mathcal{G} — взаимодостижимых из нее вершин: $V(\omega_i) = \{\omega_i : \omega_i \vec{d}_{\mathcal{G}} \omega_i\}$.

Множеством \mathcal{G} — взаимодостижимости $V_{\mathcal{G}}(\omega_i)$ множества вершин V_i называется пересечение множеств \mathcal{G} — взаимодостижимости всех вершин, входящих в $V_i:V_{\mathcal{G}}(V_i)=\bigcap_k \{V_{\mathcal{G}}(\omega_k):\omega_k\in V_i\}$.

Определения θ — достижимости, θ — контрдостижимости и θ — взаимодостижимости совпадают с обычными определениями достижимости, контрдостижимости и взаимодостижимости [4] в случае, если θ = 0.

Пространства \mathcal{G}^{o} - достижимости в системе Ψ . Исследуем алгебраическую структуру множеств \mathcal{G} — достижимости, \mathcal{G} — контрдостижимости и \mathcal{G} — взаимодостижимости. С этой целью по аналогией с [5, 11] по-

строим последовательность множеств:

 $\checkmark M^{d0} = \{D_g(\omega_i^Y), i = 1...N\}$ — множество областей \mathscr{G} — достижимости всех элементов системы;

✓
$$M^{d1} \subset M^{d0}$$
 – объединение наименьшего покрытия M^{d0} и \varnothing ;

✓ $M^{d^2} \supset M^{d^1}$ — множество всех пересечений и дополнений элементов M^{d^1} между собой и со всеми пересечениями, а также пересечений между собой;

 $\checkmark M^{d3}$ ⊂ M^{d2} — наименьшее покрытие M^{d2} непересекающимися элементами;

✓
$$M^{d4} \supset M^{d3}$$
 – объединение \varnothing и множества всех объединений M^{d3} .

Как известно, поле G(2) — это множество, состоящее из двух элементов — 0 и 1, в котором определены две бинарные операции: « + » — сложение по mod2, « × » — умножение (в традиционном смысле).

Для произвольного графа G операция умножения на коэффициенты из поля G(2) определяются следующим образом:

$$0 \cdot G = \emptyset$$
, $1 \cdot G = G$.

Кольцевая сумма \oplus произвольных графов G_1 и G_2 определяется как $G_1 \oplus G_2 = (G_1 \bigcup G_2) \setminus (G_1 \bigcap G_2)$ [12].

В описанных выше обозначениях верно следующее утверждение, доказательство которого аналогично доказательству теорем 1 и 2 в [5].

Теорема 1.

- M^{d4} векторное пространство по операции \varnothing над полем G(2)
- 2) M^{d^3} базис пространства M^{d^4} .
- 3) Любой ориентированный цикл графа G^{γ} содержится только в одном элементе M^{d3} .

Нетрудно видеть, что утверждение, аналогичное теореме 1 верно и для множеств – \mathcal{G} – контрдостижимости.

Взаимоотношения элементов и \mathcal{G}^{ω} — достижимость. Перейдем к исследованию взаимоотношений элементов системы Ψ в пространстве достижимости.

В каждый момент времени каждый элемент системы, а, следовательно, и ПЭС в целом, находится в одном фиксированном состоянии, которое будем называть активным. С течением времени отдельные элементы могут перейти в другие состояния. Далее рассматривается функционирование системы γ в течение такого интервала времени, что смена активных состояний ни одного элемента не происходит.

Обозначим $W^{\omega} = (w_i^{\omega}, i = 1...N)$ — текущее состояние системы;

 $\mathcal{G}^{\omega} = W \setminus W^{\omega} \subset V$ — множество вершин графа G, соответствующих неактивным состояниям элементов системы Ψ .

Введем ряд определений.

Определение 4. Элемент γ_j системы Ψ достижим в состоянии W^ω (W^ω — достижим) из элемента γ_i , если $Y_j \subset D_{\theta_\omega}(X_i)$.

Определение 5. Элемент γ_j системы Ψ контрдостижим в состоянии W^ω (W^ω – контрдостижим) из элемента γ_i , если $Y_i \subset K_{g_\omega}(X_i)$

Определение 6. Элемент γ_j системы Ψ взаимодостижим в состоянии W^ω (W^ω - взаимодостижим) с элементом γ_i , если $Y_j \subset V_{g_\omega}(X_i)$.

Динамические модели системы. Для построения пространства γ^{ω} - достижимости достаточно разработать механизм построения отдельных элементов этого пространства, т. е. множеств достижимости отдельных элементов системы Ψ . Это может быть осуществлено с помощью методов теории сетей Петри [7].

Заметим, что граф G является двудольным — множество его вершин разбивается на два множества взаимно несмежных вершин:

$$V^{1} = \{\bigcup_{(i,k)} x_{i}^{k}\} \bigcup \{\bigcup_{(i,\delta)} y_{i}^{\delta}\},$$

$$V^{2} = \{\bigcup_{(i,\omega)} x_{i}^{\omega}\} \bigcup \{\bigcup_{(i,\delta)} \pi_{i}^{\delta}\}.$$

Учитывая это обстоятельство, граф G может быть преобразован в сеть Петри $\xi = (V^1, V^2, \zeta, \zeta)$,

где V^1 — множество позиций, V^2 — множество переходов, ζ — расширенная функция входов, отображающая состояния и проекторы в их входы, а выходы - в соответствующие им состояния и проекторы, ζ — расширенная функция выходов, отображающая состояния и проекторы в их выходы, а входы - в использующие их состояния и проекторы.

Динамика ПЭС, т. е. процесс смены ее состояний в процессе функционирования, задается с помощью маркировок:

✓ выполнение перехода $w_i^\omega \in V^2$ означает инициализацию элемента γ_i в состоянии w_i^ω ;

✓ выполнение перехода $\pi_i^\omega \in V^2$ означает инициализацию проектора π_i^ω ;

✓ маркировка позиции (занесение фишки в позицию) - нахождение данного в результате функционирования элемента системы или проектора.

Однако непосредственно сеть Петри ξ использована быть не может. Для этого ее необходимо преобразовать в другую сеть — ξ_d , которая обладает следующими свойствами:

- ✓ обеспечивает отбор только тех состояний, которые включены во множество W^{ω} ;
- ✓ все переходы имеют в точности один вход: $\forall \omega_i \in V^2 \mid \zeta(\omega_i) \mid = 1$ (для проекторов это выполняется по определению).

Опишем локальную операцию преобразования сети Петри ξ для каждого перехода w_i^ω , соответствующего состоянию элемента системы. Данный переход вместе со смежными позициями может быть представлен в виде, изображенным на рис. 1.

Заменим переход w_i^ω новыми переходами $w_i^{w1}, w_i^{w2}, ..., w_i^{wK}$, где $K = |\zeta(w_i^\omega)| = 1$, так, чтобы выполнялись следующие условия:

- \checkmark у каждого перехода $w_i^{\omega i}$ только одна входная позиция из множества $\zeta(w_i^{\omega})$;
- ✓ каждая позиция множества $\zeta(w_i^\omega)$ только с одним из переходов $w_i^{\omega i}$;
- \checkmark выходы всех переходов $w_i^{\omega i}$ совпадают с выходами перехода w_i^{ω} : $\varsigma(w_i^{\omega i}) = \varsigma(w_i^{\omega})$

Рис. 1. Окрестность перехода сети Петри ξ , ассоциированного с состоянием w_i^ω элемента системы Ψ

Кроме того, для каждого состояния w_i^ω каждого элемента γ_i введем дополнительную входную позицию - индикатор $x(w_i^\omega)$, которая будет входной для всех переходов $w_i^{\omega i}$.

Далее будем помечать те из позиций $x(w_i^{\omega})$, соответствующие состояния для которых включены во множество W^{ω} .

Рис. 2. Преобразованный вид окрестности перехода сети Петри ξ , ассоциированного с состоянием w_i^ω элемента системы Ψ

Построение пространств \mathcal{G}^{ω} – достижимости, \mathcal{G}^{ω} - контрдостижимости, \mathcal{G}^{ω} - взаимодостижимости. Для построения пространств \mathcal{G}^{ω} – достижимости может быть использовано следующее утверждение.

Теорема 2. Если выполнить следующие действия:

- 1) пометить позиции $x(w_i^{\omega})$ для всех состояний из множества W^{ω} ;
- 2) пометить произвольную входную позицию того состояния элемента γ_i которое включено в множество W^{ω} ;
 - 3) выполнить все активные переходы;

то те элементы системы Ψ , переходы состояний w_i^{ω} которых будут выполнены, \mathcal{G}^{ω} - достижимы из элемента γ_i .

Во-первых, условием выполнения перехода, соответствующего состоянию является попадание маркера в его входную позицию, что будет осуществляться в соответствии с определением проекторов.

Во-вторых, входные позиции $x(w_i^{\omega})$ тех состояний, которые не содержатся во множестве W^{ω} не могут быть маркированы.

Определение 7. Сеть Петри

$$\xi^* = (V^1, V^2, \zeta, \varsigma),$$

называется инверсная к сети Петри

$$\xi = (V^1, V^2, \zeta, \varsigma).$$

Фактически инверсная сеть отличается от исходной изменением направлений всех дуг на противоположные. Поэтому понятие \mathcal{G}^{ω} - достижимости в обычной сети эквивалентно понятию \mathcal{G}^{ω} - контрдостижимости в инверсной сети. В связи с этим действия, перечисленные в теореме 2 с инверсной сетью Петри \mathcal{E}_d^* позволят построить множество \mathcal{G}^{ω} - контрдостижимости элемента γ_i .

Пересечение множеств \mathcal{G}^{ω} - достижимости и \mathcal{G}^{ω} - контрдостижимости элемента γ_i представляет собой множество \mathcal{G}^{ω} - взаимодостижимости этого элемента. Это множество всегда не пусто, т. к. содержит по крайней мере сам элемент γ_i .

Список использованных источников

- 1. Сысоев В.В. Конфликт. Сотрудничество. Независимость. Системное взаимодействие в структурно-параметрическом взаимодействии. М.: Московская академия экономики и права, 1999. 151 с.
- 2. Сысоев В.В. Приведенные системы и условия возникновения частичного конфликта // Вестник ВГТА.- Воронеж: ВГТА, 2000. № 5. с. 27 35.
- 3. Сысоев В.В. Структурные и алгоритмические модели автоматизированного проектирования производства изделий электронной техники. Воронеж: Воронежский технологический институт, 1993. 207 с.
- 4. Сысоев В.В. Взаимные системные отношения в структурнопараметрическом представлении. // Кибернетика и технологии XXI века. Доклады международной научно-технической конференции. — Воронеж, 2000, с. 134 - 144.
- 5. Сысоев В.В. Исследование конфликтных взаимодействий в процессе синтеза управляющих воздействий / В.В. Сысоев, В.В. Меньших // Кибернетика и технологии XXI века. Доклады международной научнотехнической конференции. Воронеж, 2000, с. 145-151.
- 6. Кристофидес Н. Теория графов. Алгоритмический подход. М.: Мир, 1978. 432 с.
- 7. Питерсон Дж. Теория сетей Петри и моделирование систем. М.: Мир, 1984. 264 с.
- 8. Сысоев Д.В. Модель поиска информации о конкурентах в информационных сетях / Д.В. Сысоев, О.В. Курипта // Вестник Воронежского государственного технического университета. –Воронеж: ВГТУ. 2011. Том 7. -№4. –С. 165-167.
- 9. Месарович М., Такахара Я. Общая теория систем: математические основы. М.: Мир, 1978. 311 с.
 - 10. Шильяк Д.Д. Децентрализованное управление сложными систе-

- мами. М.: Мир, 1994. 576 с.
- 11. Сысоев В.В. Структурные исследования графов систем и их приложения к декомпозиции задачи исследования конфликтов / В.В. Сысоев, В.В. Меньших // Теория конфликта и ее приложения. Материалы I Всероссийской научно-технической конференции. Воронеж: ВГТА, 2000, с. 21-23.
- 12. Свами М., Тхуласираман К. Графы, сети и алгоритмы. М.: Мир, 1984.-455c.