This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Generate Collection Print

L4: Entry 15 of 18

File: JPAB

Sep 17, 1992

PUB-NO: JP404261019A

DOCUMENT-IDENTIFIER: JP 04261019 A

TITLE: METAL THIN FILM TAPER ETCHING METHOD AND HIGH FILM TRANSISTOR STRUCTURE

PUBN-DATE: September 17, 1992

INVENTOR-INFORMATION:

NAME COUNTRY

MAEJIMA, TARO HAYAMA, MASAHIRO

ASSIGNEE-INFORMATION:

NAME COUNTRY

MITSUBISHI ELECTRIC CORP

APPL-NO: JP03015293

APPL-DATE: February 6, 1991

US-CL-CURRENT: 438/FOR.492

INT-CL (IPC): H01L 21/306; H01L 29/784

ABSTRACT:

PURPOSE: To improve the uniformity of taper etching in a substrate and improve angle controllability at a 20 degree or below taper angle.

CONSTITUTION: A metal surface is made hydrophilic before resist application. A chromium metal thin film is available as a TFT gate electrode material, and the taper angle of the etching end surface of a chromium gate electrode is set to be 80 degree or below. Hereby, the uniformity of the taper angle in a substrate is improved and the control of the taper angle at 20 or lower can be performed stably to improve the yield of a TFT wiring and a transistor.

COPYRIGHT: (C) 1992, JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-261019

(43)公開日 平成4年(1992)9月17日

(51) Int.Cl.⁵ FΙ 識別記号 庁内整理番号 技術表示箇所 H 0 1 L 21/306 Q 7342-4M F 7342-4M 29/784 9056-4M H01L 29/78 311 G 審査請求 未請求 請求項の数2(全 4 頁) (71)出願人 000006013 (21)出願番号 特願平3-15293 三菱電機株式会社 (22)出願日 平成3年(1991)2月6日 東京都千代田区丸の内二丁目2番3号 (72)発明者 前島 太郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料研究所内 (72)発明者 羽山 昌宏 尼崎市塚口本町8丁目1番1号 三菱電機

(54) 【発明の名称】 金属薄膜のテーパーエッチング方法及び薄膜トランジスタ構造

(57)【要約】 (修正有)

【目的】 基板内のテーパーエッチングの均一性の向上 及びテーパ角20度以下での角度制御性を向上させる。

【構成】 レジスト強布前に金属表面を親水性にする。 TFTのゲート電極材料として、クロム金属薄膜を用い、そのクロムゲート電極のエッチング端面のテーパー 角を80度以下にした。

【効果】 基板内のテーパー角の均一性が向上し、20 度以下でのテーパー角の制御を安定に行うことが可能と なり、TFT配線及びトランジスタの歩留まりが向上し た。

株式会社材料研究所内 (74)代理人 弁理士 高田 守 (外1名) 1

【特許請求の範囲】

【請求項1】 平面状基板に金属薄膜を堆積し、該基板 にフェノールノボラック樹脂を主鎖とするフォトレジス トを所定の形状にパターニングし、ポストペークを施し た後、該金属薄膜をウエットエッチングし所定の形状に 金属薄膜をテーパエッチングする工程において、フォト レジスト塗布前に該金属薄膜表面全体を親水化面にする ことを特徴とする金属薄膜のテーパーエッチング方法。

【請求項2】 TFTのゲート電極材料としてクロム金 属薄膜を用い、そのクロムゲート電極のエッチング端面 10 のテーパー角を80度以下にしたことを特徴とする薄膜 トランジスタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ウエット法による金属 薄膜のテーパーエッチング方法に関するものであり、特 に金属配線のテーパー角の均一性と制御性を高めたエッ チング方法と、該テーバー形状のゲート電極を有する薄 膜トランジスタの構造に関するものである。

[0002]

【従来の技術】従来の金属薄膜のエッチング方法につい て述べる。図1に示したフローチャートのように、まず 金属薄膜にフェノールノボラック樹脂を主鎖とするフォ トレジストを用いて通常の写真製版の技術により所定の 形状にパターニングする。次に特開平1-86524号 公報に示されたテーパーエッチング液を用いてシャワー 法、スプレー法、パドル法など既知の方法でウエットエ ッチングする。

【0003】次に金属薄膜のテーパー角制御方法につい て示されたクロム薄膜での従来のテーパー角制御方法で ある。図において、イ~二はエッチング液温度を示し、 図の横軸はエッチング液中での硝酸濃度を示しており、 図の縦軸は形成された金属配線のエッチング端面での基 板とのなすテーパー角度を示している。

【0004】従来のTFTの構造は、図5に示すように ゲート電極の端面が垂直ないしほば垂直に近い形状をし ている。あるいはテーパー形状のゲート電極を形成する 時には、ドライエッチング技術を用いてモリブデン、タ ンタル等の金属を加工していた。

[0005]

【発明が解決しようとする課題】従来の金属薄膜のテー パーエッチングは以上のように構成されているので、金 属薄膜の膜厚を変更したとき、あるいは任意の角度にテ ーパー角度を設定したいときには、エッチング液中の硝 酸濃度やエッチング液温度を変更しなければならない等 の問題があった。また、金属薄膜表面は堆積後の経時変 化によって不均一な状態になっているため、テーパー角 度が基板内で不均一に形成される等の問題点があった。 さらにテーパー角度を20度以下に設定しようとする 50 ール等の発生をなくすことができる。

と、図2より制御性の悪い範囲で行わなければならない 等の問題があった。

【0006】さらに従来のTFTにおけるゲート電極端 面形状では、その上に堆積する絶縁膜や金属などのカバ レージ不良を引き起こし易く、耐圧低下や配線の段切れ 等の不良によるTFTアレイの歩留まりの低下を招いて いた。さらにドライエッチ技術を用いたテーパー形状の 形成では、プロセスの簡便性やコストの面で不利な状況 にあった。

[0007]

【課題を解決するための手段】本発明に係る金属薄膜の テーパーエッチング方法は、上記のような問題点を解決 するためになされたもので、レジスト塗布前に金属薄膜 表面上を親水面にし、フェノールノボラック樹脂を主鎖 とするフォトレジストを用いてパターン形成を行い、か つポストベーク温度、時間を調整することによってレジ ストー金属表面の密着力を調整し、硝酸濃度2モル/リ ットル以上のエッチング液を用いてテーパーエッチング を行うことによって、基板内で均一性の良い、更にテー 20 パー角20度以下で制御性の良い金属薄膜のテーパーエ ッチング方法を提供することにある。

【0008】また、テーパー形状を有するゲート電極を 形成することによって、カバレージ性の良い、配線の段 切れがなく、かつ低コストプロセスのTFTを提供する ことにある。

[0009]

【作用】本発明に係る金属薄膜のテーパーエッチング方 法は、まずフェノールノボラック樹脂を主鎖とするフォ トレジストを用いてパターニングし、硝酸濃度2モル/ て述べる。例えば図2は特開平1-86524号公報に *30* リットル以上のエッチング液を用いてエッチングするこ とによって、レジストを剥しながらのテーパーエッチン グは基本的に可能である。ただしこの場合、前記問題点 等によって基板内テーパー角の均一性及び20度以下で の角度制御性が悪くなる。ここでレジストを剥しながら のエッチングは、金属表面の状態に大きく依存している ためなんらかの処理が必要となる。レジスト塗布前の金 属表面全体の親水化処理は、前記金属表面状態を均一化 する目的で行っており、この処理によって基板内のテー パー角の均一化が図られる。

> 40 【0010】一方、テーパー角の制御はレジストの剥が れる速度を制御することで可能であり、これはレジスト 一金属表面の密着力の調整によって行うことができる。 すなわちポストベーク温度、時間の調整によって密着力 の制御を行うわけである。

【0011】次に本発明に係るTFTは、テーパー形状 を有するクロムゲート電極を用いることによって、その 上に堆積する絶縁膜の表面とゲート電極表面の距離を均 一にし、耐圧を向上させ、かつテーパー形状に対するカ パレージ性の良さを生かし金属配線の段切れ、マウスホ 3

[0012]

【実施例】実施例1.

以下、本発明の一実施例について述べる。まずシリコン の困難 基板あるいは角型ガラス基板等に、例えばスパッタ法な ことででクロム、タンタル、アルミニウム、銅、チタンなど 一角のの金属を500~5000点に堆積する。次に薄膜表面 に185、254nmを主波長とする遠紫外線照射を行い、表面を親水化状態にする。前記処理の後、通常の写 真製版技術を用いて厚さ0.5~3μmのフェノールノ ポラック樹脂を主鎖とするフォトレジストを所定の形状 10 ヤート にパターニングする。現像後、ポストベークを120℃ で0~30分行い、その後硝酸濃度2モルノリットル以 上含むクロムエッチング液 (特開平1−86524号公 報)を用いてディップ法、スプレー法、パドル法などの 既知の方法でエッチング端面を得ることができる。 チャープな角度を有するエッチング端面を得ることができる。 チャー

【0013】なおレジスト隆布前の金属表面の親水化処理の方法は、遠紫外線照射に限定されるものではなく、例えばプラズマ照射、陽極酸化等の処理でも同様の効果を得ることが可能である。さらにレジストー金属薄膜の20密着力の調整方法のポストベーク条件の変更に関しては、コンベクションタイプ、ホットプレートタイプどちらの方式でも可能であり、ポストベーク条件のみならず現像後の水洗工程における水洗時間、超純水温度の調整でも同様の効果を得ることが可能である。

[0014]

【発明の効果】以上のように本発明を用いると従来制御の困難であった20度までのテーパー角が任意に形成することが可能となり、表面状態の均一化によってテーパー角の基板内均一性が向上する。また、テーパー形状のクロムゲート電極を形成することによって高耐圧の、配線歩留まりの良いTFTを得ることができる。

【図面の簡単な説明】

【図1】従来のテーパーエッチングプロセスのフローチャート

【図2】従来のテーパーエッチングプロセスでのテーパー角制御方法説明図

【図3】本発明によるテーパーエッチングプロセスでの テーパー角制御方法説明図

【図4】本発明のテーパーエッチングプロセスのフローチャート

【図5】従来のTFTの断面構造図

【図6】本発明によるテーパー形状を有するクロムゲート電極を用いたTFTの断面構造図

20 【符号の説明】

イ~ニ テーパーエッチング液温度

ホ ゲート電極エッジ部

へ ゲート電極

ト ソース・ドレイン電極

チ a-Si/ゲート絶縁膜

[図1]

【図2】

【図3】

