PNAS www.pnas.org

1 2	
3	Supplementary Information for
4	Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling
5	tubeworm Lamellibrachia luymesi (Siboglinidae, Annelida)
6 7 8 9 10 11 12 13	Yuanning Li,*, Michael G. Tassia, Damien S. Waits, Viktoria E. Bogantes, Kyle T. David, Kenneth M. Halanych Corresponding authors: Yuanning Li, Kenneth M. Halanych Email: yuanning.li@yale.edu ; ken@auburn.edu
14	This PDF file includes:
15 16 17 18 19	Supplementary text Figs. S1 to S8 Tables S1 to S10
20 21	Other supplementary materials for this manuscript include the following:
22 23 24 25 26 27 28 29	Dataset S1

31

33

37

41

47

51

52

53

54

55

56

57

58

59

60

61

62

63

66

67

68

69

70

71

72

73

74

75

Supplementary Information Text

32 SI Methods

Proteomics characterization.

34 Proteomic analysis of Lamellibrachia luymesi trunk/trophosome tissue was performed by 35 Proteomics & Metabolomics Facility at Colorado State University. Here we restate the protocol 36 provided by Colorado State University. 50 µg total protein was aliquoted from each sample and processed for in-solution trypsin digestion as previously described (1). A total of 0.5ug of 38 peptides were then purified and concentrated using an on-line enrichment column (Waters 39 Symmetry Trap C18 100Å, 5µm, 180 µm ID x 20mm column). Subsequent chromatographic 40 separation was performed on a reverse phase nanospray column (Waters, Peptide BEH C18; 1.7µm, 75 µm ID x 150mm column, 45°C) using a 90 minute gradient: 5%-30% buffer B over 85 42 minutes followed by 30%-45%B over 5 minutes (0.1% formic acid in ACN) at a flow rate of 350 43 nanoliters/min. Peptides were eluted directly into the mass spectrometer (Orbitrap Velos Pro, 44 Thermo Scientific) equipped with a Nanospray Flex ion source (Thermo Scientific) and spectra 45 were collected over a m/z range of 400–2000 under positive mode ionization. Ions with charge 46 state +2 or +3 were accepted for MS/MS using a dynamic exclusion limit of 2 MS/MS spectra of a given m/z value for 30 s (exclusion duration of 90 s). The instrument was operated in FT mode 48 for MS detection (resolution of 60,000) and ion trap mode for MS/MS detection with a 49 normalized collision energy set to 35%. Compound lists of the resulting spectra were generated 50 using Xcalibur 3.0 software (Thermo Scientific) with a S/N threshold of 1.5 and 1 scan/group.

Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by ProteoWizard MsConvert v3.0. Spectra from all samples were searched using Mascot (Matrix Science, London, UK; version 2.6.0) against gene models of *Lamellibrachia* host and symbiont genomes (derived from (2)) assuming the digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 0.80 Da and a parent ion tolerance of 20 PPM. Oxidation of methionine and carbamidomethyl of cysteine were specified in Mascot as variable modifications. Search results from all samples were imported and combined using the probabilistic protein identification algorithms (3) implemented in the Scaffold software (version Scaffold 4.8.4. Proteome Software Inc., Portland, OR) (4). Protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least 1 identified peptide. Protein probabilities were assigned by the Protein Prophet algorithm (5). Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony.

64 65

Manual annotation of gene families with potential interest.

We manually annotated some gene families of interest including hemoglobin gene families, genes related to amino acid synthesize, immunity function and longevity. Hbs and linker sequences (Fig. S4) of interest were obtained from L. luymesigenome and assembled siboglinid transcriptomes derived from previous studies (6, 7)via diamond BLASTP (evalue cutoff 1E-5) by using bait Hb and linker bait sequences acquired from RiftiaHbs (downloaded from SwissProt Database). Sequences with best hits to target proteins were annotated for protein domain architecture using the Pfam databases included in InterProscan. After manual removal of redundant and incorrect sequences (e.g., sequences are too short or lack of globin domain), we used MAFFT 7.2.15 (8)to align Hb amino acid sequences. Maximum likelihood analyses were performed in IQTree v1.5 (9) under the best-fitting models for associated partition schemes

- determined by Modelfinder implemented in IQTree with ultrafast bootstrapping of 1000
- 77 replicates.
- 78 Discovery of SODs and immunity-related genes largely follows the same workflow as used for
- 79 Hbs. For immunity genes, targeted genes were additionally processed through the
- 80 Extract_Homologs2 script used in (10) (available at
- 81 https://github.com/mtassia/Homolog identification). We examined major signaling components
- of the TLR signaling pathway, as well as RLRs, NFkB-associated proteins and interferon-
- 83 regulatory factors. We only included identification of TLR and RIGs signaling components in the
- 84 manuscript as other immunity related genes did not clearly reveal any evolutionary patterns of
- interest across lophotrochozoans (Table S9). Importantly, the Extract Homologs2 script
- 86 identifies unique protein sequences within an amino acid dataset that fall within user-defined
- 87 domain architecture criteria (Table S10). Due to this stringency, the pipeline only identifies the
- 88 complement of unique proteins for any target family encoded in a genome. Full amino acid
- 89 sequences for TLRs were placed in a phylogenetic context using the bioinformatic workflow
- 90 delineated above for Hbs.
- 91 Searches for genes related to amino acids synthesis from Lamellibrachia, Lamellibrachia
- 92 symbionts, and Capitella teleta genomes were performed by using the KEGG2 KAAS genome
- annotation web server and then visualized by the KEGG Mapper Reconstruct Pathway. A
- 94 BLASTp search of protein sequences from the genome annotation were queried against the
- 95 Swiss-Prot database was used to search and supplement for proteins that were missing in the
- 96 visualized KEGG pathway.
- 97 The results of gene alignments, tree files mentioned above were available at the Github
- 98 Repository (https://github.com/yzl0084/Lamellibrachia-genome).

100 References

- 101 1. Schauer KL, Freund DM, Prenni JE, Curthoys NP (2013) Proteomic profiling and pathway
- analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.
- 103 American Journal of Physiology-Renal Physiology 305(5):F628–F640.
- 104 2. Li Y, Liles MR, Halanych KM (2018) Endosymbiont genomes yield clues of tubeworm success.
- 105 *ISME J* 12(11):2785.
- 106 3. Keller A, Nesvizhskii Al, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the
- 107 accuracy of peptide identifications made by MS/MS and database search. Anal Chem
- 108 74(20):5383–5392.
- 109 4. Searle BC, Turner M, Nesvizhskii AI (2008) Improving sensitivity by probabilistically combining
- results from multiple MS/MS search methodologies. J Proteome Res 7(1):245–253.
- 111 5. Nesvizhskii Al, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins
- by tandem mass spectrometry. *Anal Chem* 75(17):4646–4658.
- 113 6. Li Y, et al. (2017) Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative
- performance of different reconstruction methods. *Zool Scr* 46(2):200–213.
- 115 7. Waits DS, Santos SR, Thornhill DJ, Li Y, Halanych KM (2016) Evolution of Sulfur Binding by
- Hemoglobin in Siboglinidae (Annelida) with Special Reference to Bone-Eating Worms, Osedax.
- 117 J Mol Evol 82(4-5):219–229.

- 118 8. <u>Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7:</u> improvements in performance and usability. *Mol Biol Evol* 30(4):772–780.
- 120 9. <u>Chernomor O, von Haeseler A, Minh BQ (2016) Terrace Aware Data Structure for</u> 121 Phylogenomic Inference from Supermatrices. *Syst Biol* 65(6):997–1008.
- 122 10. <u>Tassia MG, Whelan NV, Halanych KM (2017) Toll-like receptor pathway evolution in</u> 123 <u>deuterostomes. *Proceedings of the National Academy of Sciences* 114(27):7055–7060.</u>

GenomeScope Profile
len:646,236,226bp uniq:64.5% het:0.597% kcov:17 err:0.0941% dup:0.984% k:21

Figure S1. Estimation of genome size, repetitive content and level of heterozygosity from 100 million Illumina paired-end reads.

138 139

140

Figure S2. History from major superfamilies of transposable elements in the *Lamellibrachia* genome. Kiruma distances are arranged from value 0 representing recent TE copies to 40 for ancient TE insertions.

Figure S3. Siboglinid hemoglobin maximum-likelihood tree reconstructed with IQtree with midpoint rooting with 1000 ultrafast bootstraps using LG model. Bootstrap support values are shown at the relevant node. GenBank accession numbers are listed on the terminal nodes.

Figure S4. Hemoglobin gene diversity in *Lamellibrachia luymesi*. (Partial alignment of sampled siboglinid Hb subunit A1, A2, B1, B2 sequences. Red arrows indicate positions contain free cysteines or cysteine residues in HB B2 chains, and B1/A2 chains, respectively.

Figure S5. Partial alignment of sampled siboglinid HB subunit A2 sequences. Red arrows indicate amino acid residues at the interface between pairs of A2 chains with zinc moieties for H2S binding.

Figure S6. Lophotrochozoan SOD maximum-likelihood tree reconstructed with IQtree with midpoint rooting with 1000 ultrafast bootstraps using LG model. Bootstrap support values are shown at the relevant node. GenBank accession numbers are listed on the terminal nodes. GenBank accession numbers are next to the tip names.

Figure S7. Workflow of *Lamellibrachia luymesi* genome assembly. 10X genomics assembly alone provide worse assembly and failed QC compared to Platanus indicated by red X.

Figure S8. Workflow of *Lamellibrachia* genome annotation pepline using Funannotate.

Table S1. Sequencing information of Lamellibrachia luymesi genome.

Tissue	Data Type	Sequencing Chemistry	Total Read Number	Lab Accession	Accession Number	Coverage (X)
Vestimentum	Genomics	10X Genomics	648,546,716	KH-4260- 0006	SRR8519110	141.48
Vestimentum	Genomics	180 bp Paired-end	530,601,282	SL84794	SRR8519115	96.43
Vestimentum	Genomics	180 bp Paired-end	318,356,186	SL115013	SRR8519114	57.86
Vestimentum	Genomics	400 bp Paired-end	237,879,494	SL84795	SRR8519113	43.12
Vestimentum	Genomics	750 bp Paired-end	118,008,914	SL84796	SRR8519112	21.40
Vestimentum	Genomics	3-5 kbp Mate-pair	344,803,888	SL85812	SRR8519119	60.77
Vestimentum	Genomics	5-7 kbp Mate-pair	352,639,094	SL85813	SRR8519118	64.04
Plume	Transcriptome	Paired-end	58,660,044	SL85796	SRR8519117	
Trophosome	Transcriptome	Paired-end	75,640,660	SL85798	SRR8519111	
Vestimentum	Transcriptome	Paired-end	50,537,812	SL85797	SRR8519116	

Table S2.Genome assembly and BUSCO statistics of *Lamellibrachia luymesi* compared to other lophotrochozoan genomes.

Taxon	Species Name	e # contigs	Total length	Largest contig	GC (%)	N50	BUSCO (%)				
Annelida							Complete	Single	Duplicate	Fragment	Missing
Annelida	Lamellibrachia lumysi	11,871	687,711,696	2,117,112	40.16	372,990	95.80	93.00	2.80	2.90	1.30
	Capitella teleta	20,803	333,283,208	1,620,044	40.36	188,402	92.30	87.60	4.70	1.10	6.60
	Hydroides elegans	188,407	1,026,046,400	244,066	35.43	17,725	79.90	53.00	26.90	8.80	11.30
	Helobdella robusta	1,991	235,376,169	13,640,604	32.82	3,060,193	85.30	83.80	1.50	3.70	11.00
Phoronida	Phoronis australis	3,983	498,443,662	4,871,659	39.34	655,058	91.90	89.40	2.50	1.30	6.80
Nemertea	Notospermus geniculatus	11,108	858,599,399	1,576,180	42.85	239,235	91.90	89.40	2.50	1.30	6.80
Mollusca	Crassostrea virginica	10	684,723,884	104,168,038	34.83	75,944,018	90.70	88.10	2.60	0.80	8.50
Mollusca	Crassostrea gigas	7,658	557,717,710	1,964,558	33.42	402,213	90.80	85.70	5.10	0.90	8.30
Mollusca	Bathymodiolus platifrons	65,662	1,658,191,953	2,790,175	34.17	345,477	89.30	88.00	1.30	2.20	8.50
Mollusca	Mytilus galloprovincialis	1,002,334	1,500,149,602	67,529	31.77	3,239	91.20	63.00	28.20	0.90	7.90
Mollusca	Octopus bimaculoides	151,674	2,338,188,782	4,064,693	36.06	485,615	85.80	85.30	0.50	3.40	10.80
Mollusca	Modiolus philippinarum	74,573	2,629,556,424	715,382	33.96	100,386	85.20	82.70	2.50	4.90	9.90
Mollusca	Mizuhopecten yessoensis	82,658	987,568,220	7,498,238	36.52	827,226	89.80	87.80	2.00	1.20	9.00
Mollusca	Lottia gigantea	4,469	359,505,668	9,386,848	33.28	1,870,055	91.30	90.20	1.10	0.90	7.80
Brachiopoda	Lingula anatina	2,677	406,282,338	2,166,018	36.42	460,090	90.20	70.20	20.00	0.90	8.90
Rotifer	Aplysia californica	4,331	927,296,314	6,102,535	40.35	917,541	88.30	87.80	0.50	1.60	10.10

Table S3.Proteomics and genome assemblies used in comparative analyses.

Taxon	Species	Genome source	RefSeq assembly accession
Annelida	Lamellibrachia luymsi	This study	SDWI00000000
	Capitella teleta	NCBI	GCA_000328365.1
	Helobdella robusta	NCBI	GCA_000326865.1
Mollusca	Lottia gigantea	NCBI	GCA_000327385.1
	Octopus bimaculoides	NCBI	GCA_001194135.1
	Chlamys farreri	NCBI	
	Bathymodiolus platifrons	NCBI	GCA_002080005.1
	Biomphalaria glabrata	NCBI	
	Mizuhopecten yessoensis	NCBI	GCA_002113885.2
	Modiolus philippinarum	NCBI	GCA_000457365.1
	Patinopecten yessoensis	NCBI	
	Crassostrea gigas	NCBI	GCF_000297895.1
	Crassostrea virginica	NCBI	GCA_002022765.4
Nemertea	Notospermus geniculatus	NCBI	GCA 002633025.1
Phoronida	Phoronis australis	NCBI	GCA 002633005.1
Brachiopoda	Lingula anatina	NCBI	GCA 001039355.2
Flatworm	Schistosoma mansoni	NCBI	GCA_000237925.2
	Schmidtea mediterranea	NCBI	GCA 002600895.1
	Macrostomum lignano	NCBI	GCA_002269645.1
	Echinococcus multilocularis	NCBI	GCA_000469725.3
Rotifera	Aplysia californica	NCBI	GCA_000002075.2
Ecdysozoa	Diphania pulex	NCBI	GCA_000187875.1
	Drosophila melanogaster	NCBI	GCA_000001215.4

Table S4. Repetitive element contained in the *Lamellibrachia luymesi* genome

	Subclass	Number of elements	length occupied (bp)	percentage of sequence
SINEs		56,783	8,181,892	1.19
LINEs		307,497	96,235,311	13.99
	LINE1	1,333	337,473	0.05
	LINE2	51,791	18,267,908	2.66
	L3/CR1	83,528	33,202,610	4.83
LTR elements		70,108	17,360,126	2.52
DNA elements		442,010	101,825,130	14.81
	hAT- Charlie	6,246	1,710,664	0.25
	TcMar- Tigger	4,078	1,496,397	0.22
Unclassified		95,876	17,185,149	2.5
Tot. interspersed repeats			240,787,608	35.01
Small RNA		101	27,655	0
Satellites		813	376,172	0.05
Simple repeats		211,949	13,781,625	2
Low complexity		8,125	682,495	0.1

Table S5.PANTHER gene family annotation of gene families that are under expansion or contraction as identified by CAFE.

Group	Number of gain and loss	PANTHER gene family	PANTHER annotation	
OG0000040	+23*	PTHR44025	LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN	
OG0000044	+16*	PTHR12011	G-PROTEIN COUPLED RECEPTOR	
OG0000059	+25*	PTHR11177	CHITINASE	
OG0000062	+20*	PTHR28576	PIGGYBAC TRANSPOSABLE ELEMENT-DERIVED PROTEIN	
OG0000075	+20*	PTHR19325	COMPLEMENT COMPONENT-RELATED SUSHI DOMAIN-CONTAINING	
OG0000091	+27*	PTHR11119	XANTHINE-URACIL / VITAMIN C PERMEASE FAMILY MEMBER	
OG0000118	+30*	PTHR10877	POLYCYSTIN-RELATED	
OG0000124	+9*	PTHR13802	MUCIN 4-RELATED	
OG0000128	+23*	PTHR10131	TNF RECEPTOR ASSOCIATED FACTOR	
OG0000137	+14*	PTHR11908	XANTHINE DEHYDROGENASE	
OG0000146	+18*	PTHR11709	MULTI-COPPER OXIDASE	
OG0000150	+20*	PTHR14647	GALACTOSE-3-O-SULFOTRANSFERASE	
OG0000155	+13*	PTHR23033	BETA1,3-GALACTOSYLTRANSFERASE	
OG0000171	+17*	PTHR10283	SOLUTE CARRIER FAMILY 13 MEMBER	
OG0000180	+16*	PTHR24039	FIBRILLIN	
OG0000183	+21*	PTHR14453	PARP/ZINC FINGER CCCH TYPE DOMAIN CONTAINING PROTEIN	
OG0000184	+35*	PTHR24221	ABC TRANSPORTER	
OG0000198	+27*	PTHR24033	FAMILY NOT NAMED	
OG0000219	+24*	PTHR10579	CALCIUM-ACTIVATED CHLORIDE CHANNEL REGULATOR	
OG0000238	+26*	PTHR11039	NEBULIN	
OG0000242	+11*	PTHR34415	FAMILY NOT NAMED	
OG0000247	+15*	PTHR14453	PARP/ZINC FINGER CCCH TYPE DOMAIN CONTAINING PROTEIN	
OG0000250	+29*	PTHR13800	TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILY M, MEMBER 6	
OG0000262	+16*	PTHR43645	UPF0214 PROTEIN YFEW	
OG0000268	+13*	PTHR43998	FILAMIN	
OG0000277	+13*	PTHR44131	CUB DOMAIN-CONTAINING PROTEIN	
OG0000287	+18*	PTHR44097	PROTEIN SERRATE	
OG0000290	+7*	PTHR10166	VOLTAGE-DEPENDENT CALCIUM CHANNEL SUBUNIT ALPHA-2/DELTA-RELATED	
OG0000293	+26*	PTHR22605	AAA+ ATPASE, CORE DOMAIN-CONTAINING PROTEIN	
OG0000304	+12*	PTHR23097	TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY MEMBER	
OG0000305	+17*	PTHR23232	KRAB DOMAIN C2H2 ZINC FINGER	
OG0000307	+10*	PTHR18966	IONOTROPIC GLUTAMATE RECEPTOR	
OG0000318	+11*	PTHR12622	DELTEX-RELATED	
OG0000322	+17*	PTHR23024	MEMBER OF 'GDXG' FAMILY OF LIPOLYTIC ENZYMES	
OG0000324	+8*	PTHR11106	GANGLIOSIDE INDUCED DIFFERENTIATION ASSOCIATED PROTEIN 2-RELATED	

OG0000337	+24*	PTHR10887	DNA2/NAM7 HELICASE FAMILY
OG0000342	+25*	PTHR16897	CARNOSINE N-METHYLTRANSFERASE
OG0000347	+11*	PTHR10796	PATCHED-RELATED
OG0000357	+10*	PTHR23302	TRANSMEMBRANE CHANNEL-RELATED
OG0000365	+7*	PTHR12042	LACTOSYLCERAMIDE 4-ALPHA-GALACTOSYLTRANSFERASE ALPHA- 1,4- GALACTOSYLTRANSFERASE
OG0000373	+23*	PTHR31649	LD46221P-RELATED
OG0000378	+39*	PTHR13715	RYANODINE RECEPTOR AND IP3 RECEPTOR
OG0000388	+16*	PTHR15600	SACSIN
OG0000398	+13*	PTHR11697	GENERAL TRANSCRIPTION FACTOR 2-RELATED ZINC FINGER PROTEIN
OG0000423	+8*	PTHR44014	FAMILY NOT NAMED
OG0000432	+14*	PTHR14454	GRB2-ASSOCIATED AND REGULATOR OF MAPK PROTEIN
OG0000460	+10*	PTHR43905	CONTACTIN
OG0000465	+11*	PTHR23130	FERRIC-CHELATE REDUCTASE
OG0000468	+15*	PTHR16897	CARNOSINE N-METHYLTRANSFERASE
OG0000477	+10*	PTHR11616	SODIUM/CHLORIDE DEPENDENT TRANSPORTER
OG0000491	+20*	PTHR11046	OLIGORIBONUCLEASE, MITOCHONDRIAL
OG0000500	+12*	PTHR24106	CASPASE RECRUITMENT DOMAIN-CONTAINING PROTEIN 8/NACHT, LRR AND PYD DOMAINS-CONTAINING PROTEIN
OG0000524	+50*	PTHR19277	PENTRAXIN
OG0000555	+9*	PTHR31009	S-ADENOSYL-L-METHIONINE:CARBOXYL METHYLTRANSFERASE FAMILY PROTEIN
OG0000562	+8*	PTHR15698	PHYTANOYL-COA HYDROXYLASE-INTERACTING PROTEIN
OG0000570	+27*	PTHR10697	MAMMALIAN EPENDYMIN-RELATED PROTEIN 1
OG0000578	+21*	PTHR33748	FAMILY NOT NAMED
OG0000586	+14*	PTHR34153	SI:CH211-262H13.3
OG0000592	+41*	PTHR19325	COMPLEMENT COMPONENT-RELATED SUSHI DOMAIN-CONTAINING
OG0000613	+11*	PTHR44854	FIBROCYSTIN-
OG0000617	+20*	PTHR19325	COMPLEMENT COMPONENT-RELATED SUSHI DOMAIN-CONTAINING
OG0000640	+28*	PTHR23145	NUCLEOSOMAL BINDING PROTEIN 1
OG0000656	+9*	PTHR19297	GLYCOSYLTRANSFERASE 14 FAMILY MEMBER
OG0000687	+13*	PTHR24243	G-PROTEIN COUPLED RECEPTOR
OG0000715	+10*	PTHR10796	PATCHED-RELATED
OG0000728	+22*	PTHR45240	ZINC METALLOPROTEINASE NAS
OG0000789	+14*	PTHR10773	DNA-DIRECTED RNA POLYMERASES I, II, AND III SUBUNIT RPABC2
OG0000849	+37*	PTHR12673	FACIOGENITAL DYSPLASIA PROTEIN
OG0000862	+23*	PTHR11514	MYC
OG0000917	+10*	PTHR31569	ZINC FINGER SWIM DOMAIN-CONTAINING PROTEIN
OG0000927	+21*	PTHR44252	CARBONYL REDUCTASE NADPH
OG0000938	+17*	PTHR11360	MONOCARBOXYLATE TRANSPORTER
OG0000943	+39*	PTHR13954	IRE1-RELATED
OG0000987	+10*	PTHR24280	CYTOCHROME P450 20A1

OG0001012	+19*	PTHR16897	CARNOSINE N-METHYLTRANSFERASE
OG0001096	+11*	PTHR11799	PARAOXONASE
OG0001166	+10*	PTHR16897	HISTAMINE N-METHYLTRANSFERASE
OG0001243	+12*	PTHR11903	PROSTAGLANDIN G/H SYNTHASE
OG0001293	+52*	PTHR23194	PYGOPUS
OG0001377	+10*	PTHR31513	GLYCINE-RICH PROTEIN
OG0001383	+9*	PTHR20956	HEH2P
OG0001422	+41*	PTHR23259	RIDDLE
OG0001533	+24*	PTHR37558	FAMILY NOT NAMED
OG0001594	+10*	PTHR37445	FAMILY NOT NAMED
OG0001671	+22*	PTHR10199	THROMBOSPONDIN
OG0001730	+7*	PTHR24106	NACHT, LRR AND PYD DOMAINS-CONTAINING PROTEIN
OG0001853	+6*	PTHR13627	FUKUTIN RELATED PROTEIN
OG0001862	+10*	PTHR11697	GENERAL TRANSCRIPTION FACTOR 2-RELATED ZINC FINGER PROTEIN
OG0001954	+10*	PTHR15031	CARTILAGE INTERMEDIATE LAYER PROTEIN CLIP
OG0002014	+17*	PTHR12419	OTU DOMAIN CONTAINING PROTEIN
OG0002286	+6*	NONE	NA
OG0002380	+6*	NONE	NA
OG0002381	+22*	PTHR11046	OLIGORIBONUCLEASE, MITOCHONDRIAL
OG0002455	+11*	PTHR35558	FAMILY NOT NAMED
OG0000077	-10*	PTHR14918	PROTEIN SZT2

Table S6.

Key genes of host genes identified as proteins from proteomic analysis.

Function System	Feature ID	Function
Proteosome	LLUY_028786-T1	PSMA6; 20S proteasome subunit alpha 1 [EC:3.4.25.1]
	LLUY_012964-T1	PSMA2; 20S proteasome subunit alpha 2 [EC:3.4.25.1]
	LLUY_008627-T1	PSMA4; 20S proteasome subunit alpha 3 [EC:3.4.25.1]
	LLUY_027290-T1	PSMA7; 20S proteasome subunit alpha 4 [EC:3.4.25.1]
	LLUY_003537-T1	PSMA5; 20S proteasome subunit alpha 5 [EC:3.4.25.1]
	LLUY_040090-T1	PSMA1; 20S proteasome subunit alpha 6 [EC:3.4.25.1]
	LLUY_012936-T1	PSMA3; 20S proteasome subunit alpha 7 [EC:3.4.25.1]
	LLUY_023805-T1	PSMB3; 20S proteasome subunit beta 1
	LLUY_029937-T1	PSMB3; 20S proteasome subunit beta 3
	LLUY_002855-T1	PSMB2; 20S proteasome subunit beta 4
	LLUY_015520-T1	PSMB5; 20S proteasome subunit beta 5
	LLUY_022140-T1	PSMB1; 20S proteasome subunit beta 6
	LLUY_022807-T1	PSMB4; 20S proteasome subunit beta 7
	LLUY_003098-T1	SMD2, RPN1; 26S proteasome regulatory subunit N1
	LLUY_026382-T1	PSMD7, RPN8; 26S proteasome regulatory subunit N8
	LLUY_017796-T1	EIF3E, INT6; translation initiation factor 3 subunit E
	LLUY_014232-T1	HSPA1s; heat shock 70kDa protein 1/2/6/8
	LLUY_037621-T1	HSP90A, htpG; molecular chaperone HtpG
	LLUY_000099-T1	HSP90A, htpG; molecular chaperone HtpG
	LLUY_000099-T1	RAD23, HR23; UV excision repair protein RAD23
Lysosome	LLUY_033571-T1	cathepsin C [EC:3.4.14.1]
	LLUY_007735-T1, LLUY_007737- T1, LLUY_036642-T1, LLUY_036643-T1	cathepsin B [EC:3.4.22.1]
	LLUY_009810-T1, LLUY_026908- T1	cathepsin L [EC:3.4.22.15]
	LLUY_012982-T1	legumain [EC:3.4.22.34]
	LLUY_007693-T1	cathepsin F [EC:3.4.22.41]
	LLUY_016715-T1	cathepsin D [EC:3.4.23.5]
	LLUY_023349-T2, LLUY_023349- T1	clathrin heavy chain
	LLUY_017989-T1	lysosomal-associated membrane protein 1/2
	LLUY_024617-T1	cathepsin X [EC:3.4.18.1]
	LLUY_002319-T1	lysosomal alpha-mannosidase [EC:3.2.1.24]
	LLUY_004297-T1	lysosomal alpha-glucosidase [EC:3.2.1.20]
	LLUY_005359-T1	saposin
	LLUY_016480-T1	lysosome membrane protein 2
	LLUY_003890-T1	cathepsin A (carboxypeptidase C) [EC:3.4.16.5]
Longevity regulating pathway	LLUY_007262-T1, LLUY_014836- T1, LLUY_014856-T1	SOD2; superoxide dismutase, Fe-Mn family [EC:1.15.1.1]
•	LLUY_018867-T1	SOD1; superoxide dismutase, Cu-Zn family [EC:1.15.1.1]

Table S7.Key genes of symbiont genes identified as proteins from proteomic analysis.

Function System	Feature ID	Length (bp)	Function
rTCA Cycle	Lamellibrachia_symbiont.peg.150	1524	Fumarate hydratase class I, aerobic (EC 4.2.1.2)
	Lamellibrachia_symbiont.peg.2185	1911	2-oxoglutarate oxidoreductase, alpha subunit (EC 1.2.7.3)
	Lamellibrachia_symbiont.peg.2186	954	2-oxoglutarate oxidoreductase, beta subunit (EC 1.2.7.3)
	Lamellibrachia_symbiont.peg.2943	987	Malate dehydrogenase (EC 1.1.1.37)
	Lamellibrachia_symbiont.peg.986	1161	ATP citrate lyase beta chain (EC 4.3.1.8)
	Lamellibrachia_symbiont.peg.987	870	ATP citrate lyase alpha chain (EC 4.3.1.8)
	Lamellibrachia_symbiont.peg.2924	1167	2-oxoglutarate oxidoreductase, alpha subunit (EC 1.2.7.3)
	Lamellibrachia_symbiont.peg.2925	999	2-oxoglutarate oxidoreductase, beta subunit (EC 1.2.7.3)
	Lamellibrachia_symbiont.peg.2926	570	2-oxoglutarate oxidoreductase, gamma subunit (EC 1.2.7.3)
Calvin Cycle	Lamellibrachia_symbiont.peg.2754	1389	Ribulose bisphosphate carboxylase (EC 4.1.1.39)
	Lamellibrachia_symbiont.peg.2757	804	Rubisco activation protein CbbQ
	Lamellibrachia_symbiont.peg.2758	2256	Rubisco activation protein CbbO
Sulfer Oxidataion	Lamellibrachia_symbiont.peg.303	942	Dissimilatory sulfite reductase, beta subunit (EC 1.8.99.3)
Nitrogen Mitobolism	Lamellibrachia_symbiont.peg.724	1602	Respiratory nitrate reductase beta chain (EC 1.7.99.4Denitrifying reductase gene clusters; strate and nitrite ammonification
	Lamellibrachia_symbiont.peg.725	3762	Respiratory nitrate reductase alpha chain (EC 1.7.99.4)
Adhesion-related proteins	Lamellibrachia_symbiont.peg.2820	978	Ankyrin
	Lamellibrachia_symbiont.peg.2856	3813	Fibronectin type III domain protein
Oxidative stress	Lamellibrachia_symbiont.peg.1649	582	Superoxide dismutase [Fe] (EC 1.15.1.1) (FeSOD)
	Lamellibrachia_symbiont.peg.2936	489	Rubrerythrin

Table S8. *Lamellibrachia luymesi* Hb sequences identified that are highly expressed in the trophosome tissue or as proteins from proteomic data.

HBs	Lamellibrachia luymsei Hbs	Differential expressed	Mass spectrum
A1 Chain	LLUY_034331-T1	*	*
	LLUY_034332-T1	*	*
A2 Chain	LLUY_034333-T1	*	*
B2 Chain	LLUY_029258-T1	X	*
B1 Chain	LLUY_004752-T1	*	*
	LLUY_004753-T1	*	X
	LLUY_005026-T1	Х	X
	LLUY_005027-T1	х	X
	LLUY_005030-T1	*	X
	LLUY_005031-T1	х	x
	LLUY_009666-T1	X	X
	LLUY_009670-T1	Х	Х
	LLUY_009671-T1	*	X
	LLUY_009673-T1	х	X
	LLUY_013447-T1	*	*
	LLUY_013449-T1	*	Х
	LLUY_017246-T1	*	*
	LLUY_017247-T1	*	*
	LLUY_020152-T1	*	Х
	LLUY_026555-T1	Х	Х
	LLUY_026556-T1	*	*
	LLUY_029945-T1	х	х
	LLUY_032994-T1	Х	X
	LLUY_038743-T1	х	x
	LLUY_039230-T1	х	x
	LLUY_040024-T1	х	X
	LLUY_004634-T1	*	X
Linkers	LLUY_002344-T1	*	*
	LLUY_024479-T1	*	x
	LLUY_026441-T1	*	*
	LLUY_026443-T1	*	*

^{*:} Positive; x: negative.

Sequences with putative free-cystenine were colored as red.

Table S9.Number of unique TLR proteins encoded in lophotrochozoan genomes.

Taxon	Species	Number of TLR identified	Number of RLR identified
Annelida	Lamellibrachia luymesi	33	2
	Capitella telata	5	3
	Helobdella robusta	4	3
Mollusca	Bathymodiolus platifrons	61	7
	Crassostrea gigas	61	11
	Modiolus philippinarum	90	2
	Mizuhopecten yessoensis	30	4
	Octopus bimaculoides	5	5
	Patinopecten yessoensis	22	4
	Lottia gigantea	7	3
	Crassostrea virginica	109	8
Nemertea	Notospermus geniculatus	5	4
Phoronida	Phoronis australis	23	3
Brachiopoda	Lingula anatina	46	13
Flatworm	Biomphalaria glabrata	17	6
Rotifera	Aplysia californica	15	2
Vertebrata	Homo sapiens	11	3

Table S10.

Domain requirements for identifying components of TLR pathway.

Protein	Domain Requirements
TLR/TOLL	TIR+LRR(≥3)
MYD88	TIR+DEATH
SARM1	TIR+SAM(2)
DDX58	CARD(2)+Helicase_ATP_binding+Helicase_C_Terminal+Rig1_Regulatory_Domain
DHX58	Helicase_ATP_binding+Helicase_C_Terminal+Rig1_Regulatory_Domain
IFIH1	CARD(2)+Helicase_ATP_binding+Helicase_C_Terminal+Rig1_Regulatory_Domain
TRAF	Zn_Finger+MATH/TRAF or Zn_Finger+WD40_repeats(≥3)
NLR	(x)+NACHT+LRR(≥3)
IKK	Kinase
IKB	ANK(≥3)
NFKB	RHD+ANK(≥3)+DEATH
NEMO	NEMO/Coiled_coil
IRF	Interferon_regulatroy_factor_DNA_binding_domain