Logic Design Course Arithmetic Unit Project

Team 15's Documentation

Tab	ole of contents	.2
	Names	.3
II.	Tasks	.3
III.	Logic Diagrams	.4
IV.	Design Description	.8
V.	Components	.9
VI.	Power	.9
VII.	. Test Cases	.9

I. Names

- Mahmoud Adas

B.N 23

- Khaled Sabry

B.N 21

- Mahmoud Youssri

B.N 24

- Loai Ali

B.N 13

II. Tasks

- Design the Adder/Subtractor
 - All
- Design the Multiplier
 - Loai
 - Mahmoud Adas
- Design the converter
 - Mahmoud Adas
- Design Error Flag
 - Mahmoud Youssri
 - Mahmoud Adas
- Simulate the design in logisim
 - Mahmoud Adas
- Get the tools
 - Mahmoud Youssri
 - Khaled Sabry
- Build Multiplier
 - Mahmoud Youssri
 - Khaled Sabry
 - Mahmoud Adas
- Build Adder/Subtractor
 - Mahmoud Adas
 - Loai
- Build Converters

- Mahmoud Youssri
- Khaled Sabry
- Build Error Flag
 - Mahmoud Youssri
 - Mahmoud Adas
- Test
 - All
- Write documentation
 - Mahmoud Adas

III. Logic Diagrams

Main

Add/Subtraction Unit

Multiplication Unit

Converter In

Converter Out

IV. Design Description

Project is divided into 2 main units: the Add/Sub and the Multiplication Unit

- In Multiplication Unit
 - we ANDed all input bits -except signs- and sent them to a 4-bit adder
 - Ignored Error Flag and Carry-out; it is useless
- In Add/Sub Unit
 - Inputs are converted from magnitude to the 2nd complement (if negative)
 - input B is XORed with the Subtraction selector, to flip them in case of subtraction or pass it otherwise
 - both inputs (after converting) are inserted in 4-bit adder in gates 2:4 leaving the first one for the subtraction selector and ignoring the C-In (always 0)

*we decided that so we can get the C-out. In case we inserted the numbers from 1:3, we would leave the last gate then lose the C-out

- the output then is Converted from the 2nd complement to the magnitude using the Converter-Out (lightweight copy of converter-in)
- Error Flag
 - is the OverFlow ORed with C-out
 E.F = O.F + C-out
- OverFlow
 - happens when both signs are 1 or 0 and the result sign is different than them

$$O.F = \sim (B2 ^A2) . X2$$

- Coverters:
 - · we have two types of converters: Converter-in and Converter-out
 - both of them can convert from magnitude to 2nd complement and viceversa
 - Converter-in prevents -0 from entering to the adder to avoid errors, as adder will handle it as if it was -4.
 - Converter-out is simpler, as there will be no -0 in output to convert, it
 has only two gates to convert from 2nd complement to magnitude
 - Both two inputs A and B are converted.
- Input-Output
 - There is one selector "Subtraction Selector" or S0
 - to add numbers S0=0, to toggle to subtraction S0=1 so B is flipped
 - both Multiplication and Add/Sub Units run at the same time

•Output is 9 leds, only one is for E.F of Add/Sub

This Picture Shows different parts of the AU

- 1- POWER
- 2- MULTIPLICATION UNIT
- **3- CONVERTERS**
- 4- ADD/SUB UNIT
- 5- INPUT

V. Components

- 2 units of 4-Bit Adder sn74s283
- 3 XOR 7486ls
- 2 AND 7408
- 1 NOR 7402
- 1 OR 7432

Total number of IC's is 9
Total Cost (including used and un-used wires + breadboard) is 310 EGP

VI. Power

we used the provided kit to avoid the problems of power

VII. Test Cases

Every time we finish a unit we test it against all possible cases