## Dy betras algorithm

|                 | Parent            | Dust    |
|-----------------|-------------------|---------|
| Heap            | S -> NIL          | S-70    |
| S → D , O       | د <b>ح</b> د غ    | C>1     |
| a-9d, 7         | A -> S            | A >7    |
| b -9d, 15, 13   | B -> 8, A         | B-13    |
| C > d,1         | F-> WB, H         | D 714   |
| d -90,14        | 10 -> A           | 9-16    |
| f -> d,31,27,21 | $G \rightarrow D$ | H -> 18 |
| h > d , 18      | H->D              | F -721  |
| g -> d, 16      | T-> X, I          | I -> 23 |
| b > 27,24       | エッチ               | T-> 24  |
| i > 2 123       |                   | ,       |
|                 |                   |         |



Floyd Warshall D5 (4,6) = mm { D4 (4,6), D4 (4,5) + D4 (5,6) } = min { D, 7+83 " min { b, 15} = 15 Bunt path of ( Array, 12, 12, 11, 9) concat 611 P(M, 12,12,6,9) cc 1211 p(M, 12,12, 12,9) + 1/ P(M, 12,12, 7,9) 511P(M, B, 12, 5,9) 211P (n/12 (12,2/9)-

6-12-7-75-72

## Poums

| 1 |      |
|---|------|
| n | ر له |
| - |      |



## Kouskals

```
singetten: EAG, EBG, {C}-........EN)
          Ed,A}
 AD - 5
          {A,D,G3
 AG-5
          {A,D,G,EY
 AE -5
        (both in same set
  D E - 5
  DF-5 {A,D,G,E,F)~
          (X)
 eg - 5
 eF -6
         {A,D,G,E,F} {C,S}
 BK -10 { A, D, G, E, F} {c, s} {B, K}
 cs -10
 LM -10 {A,D,G,e,F}{C,S}{B,K}{L,M}
 HIN - 15 {A,D,G, E, F} {C,S} {B,K} {L,M} {H,N}
 CK -20 {A,D,G,E,F]{C,S,B,K}{L,M}{M,N}
SH - 25 {A,D,G,E,F} {C,S,B,K,H,N} {L,M}
HIL-26 {A,D,G,E, P3 &C,S,B,K,H,N,L,M)
BM -27
CF-30 V {A,D,G,E,F,C,S,B,K,H,N, 4M4
MN - 30 (8)
```

## Ford - Fulkerson



5. (10 points) Please circle, put a big check-mark, or say "YES" in the correct box (no need to explain, there is exactly one correct answer for each question.)

| 1)  | If a decision problem X is in $\mathcal{NPC}$ , then the worst case time complexity of every published deterministic algorithm that affirms (i.e. solves) X is "at least polynomial", i.e. $T^W(n) = \Omega(n^k)$ for every integer $k$ .                                                                                                                           | TRUE be             | known to be          | open question |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|---------------|
| 2)  | If a decision problem X is in $\mathcal{NPC}$ , and if in the future someone publishes a new deterministic algorithm G that affirms (i.e. solves) it and G runs in polynomial time, i.e $T_G^W(n) = \mathcal{O}(n^k)$ for a particular integer $k$ , then this proves that $\mathcal{P} = \mathcal{NP}$ .                                                           | know to be          | known to be          | open question |
| 3)  | If a decision problem X is in $\mathcal{NPC}$ , and if in the future someone publishes a new deterministic algorithm G that affirms (i.e. solves) it and G runs in polynomial time, i.e $T_G^W(n) = \mathcal{O}(n^k)$ for a particular integer $k$ , then every $\mathcal{NPC}$ problem can be affirmed (i.e. solved) in polynomial time.                           | known be            | known to be          | open question |
| 4)  | If a decision problem X is in $\mathcal{NP}$ , and if in the future someone publishes a new non-deterministic algorithm G that affirms (i.e. solves) it and G runs in polynomial time, i.e $T_G^W(n) = \mathcal{O}(n^k)$ for a particular integer $k$ , then this proves that $\mathcal{P} = \mathcal{NP}$ .                                                        | known to be<br>TRUE | known to be          | open question |
| 5)  | If a decision problem X is in $\mathcal{NPC}$ , and if in the future someone publishes a new non-deterministic algorithm G that affirms (i.e. solves) it and G runs in polynomial time, i.e $T_G^W(n) = \mathcal{O}(n^k)$ for a particular integer $k$ , then this proves that $\mathcal{P} = \mathcal{NPC}$ .                                                      | known to be<br>TRUE | known to be          | open question |
| 6)  | If a decision problem X is in $\mathcal{NPC}$ , and if in the future someone publishes a new non-deterministic algorithm G that affirms (i.e. solves) it in polynomial time, i.e $T_G^W(n) = \mathcal{O}(n^k)$ for a particular integer $k$ , then every $\mathcal{NPC}$ problem can be affirmed (i.e. solved) by a non-deterministic algorithm in polynomial time. | known to be         | known to be<br>FALSE | open question |
| 7)  | Suppose there is a decision problem $X \in \mathcal{NP}$ and there is a decision problem $Y \in \mathcal{NP}$ , and that $X \propto Y$ , then this proves that $Y \in \mathcal{NPC}$                                                                                                                                                                                | known to be         | known to be          | open question |
| 8)  | Suppose there is a decision problem $X \in \mathcal{NP}$ and that $X \propto Y$ for all $Y \in \mathcal{NP}$ , then this proves that $X \in \mathcal{P}$                                                                                                                                                                                                            | known to be         | known to be<br>FALSE | open question |
| 9)  | Suppose there is a decision problem $X \in \mathcal{NP}$ and that $X \propto Y$ for all $Y \in \mathcal{NP}$ , then this proves that $X \in \mathcal{NPC}$                                                                                                                                                                                                          | known to be         | KNOWE to be          | open question |
| 10) | Suppose there is a decision problem $Y \in \mathcal{NPC}$ and that $X \propto Y$ for all $X \in \mathcal{NP}$ , then this proves that $Y \in \mathcal{NPC}$                                                                                                                                                                                                         | known to be         | known to be          | open question |