全国大学生测绘学科创新创业智能大赛

测绘程序设计比赛规则

一、比赛说明

1. 比赛形式:参赛小组由 2 人组成,每人配置 1 台电脑。请考生提前准备好硬件设备和网络环境。参加竞赛的 2 名组员并排坐在一起,准备 2 部带摄像头的设备,考场如图 1 所示。考生需身份证反面、学生证放在摄像头可以拍照的桌面,供监考老师查阅。书桌上可以放2-3 页 A4 空白纸张和 2-3 支笔,用于本组成员成果交流的空白 U 盘,除此之外不摆放任何物品(如书籍等)。竞赛过程中选择安静、封闭、整洁的环境,避免无关人员干扰。

图1 比赛考场示意图

2. 竞赛过程中信息交流: 比赛小组用空白 U 盘进行资料交换; 小组成员之间可以小声交流, 比赛过程中不能用 QQ、微信或其他任何通讯工具进行信息交流。

3. 屏幕录制: 打开"KK录像机",开始屏幕录制,严格按照图 2 说明进行设置。

图 2 KK 录像机设置

二、竞赛过程

比赛流程:比赛时间为6小时,比赛开始时,分发《试题册》和测试数据,3个小时后发正式数据。比赛开始后3小时内不得交卷和离开考场,如图3所示。

1. 发放试题: 随机抽选《试题册》将发放在组长 QQ 群 (QQ 群

号: 715771220),组长负责下载试题。

2. 发放正式数据(考试3小时发放在组长群,在此之前不能提交成果)。

3. 要求:

- (1) 考试过程全程保持摄像头开启、全程保持屏幕录像录制, 所有成果文件必须现场生成。
- (2) 竞赛过程中,如果需要上厕所,在腾讯会议室考场向监考 老师留言报告,经监考老师批准后方可。如果需要补充食物,经监考 老师批准后在摄像头监控范围内进食。
- (3) 在竞赛过程中不能浏览了历史项目文件、或者平时训练成果文件。
 - (4)组长除了下载试题册、数据文件、提交成果等竞赛过程必要操作外,不能进行其他的浏览互联网、微信和 QQ 等网络操作组员:不能浏览互联网、微信和 QQ 等网络。

三、计算成果说明

1 输入数据说明:数据文件为文本文件(.txt);图形文件为 JPG 格式(*.jpg)。

2. 计算成果要求

在竞赛成果的任何地方都不得出现参赛编号、学校信息或参赛队员信息。主要成果内容包括:

成果内容包括:源码文件、可执行文件、计算成果(程序正确

性.xls、result.txt、成果图形.jpg)、开发文档。严格按照图 4 进行目录组织和文件命名。

图 4 成果文件组织标准

- (1) 源码文件:保存所编写的程序代码,及其工程等相关文件
- (2)可执行文件;保存可执行文件(.exe)和动态连接库文件(.dl1)。 删除编译和链接等中间过程文件。
- (3) result. txt: 根据《试题册》要求,利用"正式数据. txt"进行计算,将计算过程或结果保存到该文件中。
- (4)程序正确性.xls: 手工填写"程序正确性【模板】.xls"相应字段,用于程序正确性评分。程序正确性【模板】.xls将会在比赛开始时和试题册一起发放,手工修改红色部分,不用编程。
- (5) 成果图形. jpg: 根据《试题册》要求进行的图形绘制,将其保存的图形文件(. jpg)。
- (6) 开发文档:包括程序功能简介、算法设计与流程图、主要函数和变量说明、主要程序运行界面、使用说明等部分。保存为 pdf格式。
- 3. 用户界面要求: 界面风格采用标准 Window 应用程序,包括菜单、工具条、主窗体、状态栏等要素构成。其中菜单包含文件、算法、

显示等内容,主窗体包含表格(显示输入数据)、图形(显示相关图形要素)、报告(显示计算成果)等组成部分。

四、竞赛成果提交

将如图 5 成果文件打包成一个压缩文件(zip 格式),文件名: P2022. zip。文件大小控制在 30MB 以内(删除编译、链接等中间过程文件)。由组长通过"全国大学生测绘类竞赛管理平台"(http://ch3. whu. edu. cn/apply/)的"测绘技能竞赛"进行成果提交,如图 5 所示。

比赛成果的时间分是以"上传成果"时间计算的。组长一定要 检查成果是否上传成功,可以通过检查文件大小,或者将上传成果 下载,看看是否能够解压成功。

图 5 成果提交入口

缺省账号信息提示:用户名为组长身份证号码,密码为身份证 号码后 8 位。

五、录屏文件成果提交

- 1. 竞赛成果提交后,再停止屏幕录制。
- 2. 文件命名: 学校名称-参赛选手姓名.mp4
- 3. 视频文件提交: 视频文件生成后, 立即上传到网盘。
- 4. 将网络链接和提取码发送,通过私信发送给比赛监考 QQ 群群主。

主题:测绘程序竞赛录屏文件-学校名称。

内容:

- ① 组长的录屏文件的网盘链接、提取码。
- ② 组员的录屏文件的网盘链接、提取码。

六、无效成果认定

有以下任何情况之一,成果将被认定为无效:

- 1. 缺少竞赛过程录屏文件,或者录屏文件中竞赛过程不完整;
- 2. 竞赛过程中浏览了历史项目文件、或者平时训练成果文件;
- 3. 组长:除了下载试题册、数据文件、提交成果等竞赛过程必要操作外,进行了其他的浏览互联网、微信和 QQ 等网络操作;
- 4. 组员: 进行浏览互联网、微信和 QQ 等网络操作
- 5. 缺少"开发文档. pdf"成果文件;
- 6. 缺少"程序正确性.xls"成果文件。

试题:纵横断面计算

根据给定道路中心线上已知的 N 个关键点和散点数据,绘制 1 条纵断面,2 条横断面,并计算断面面积。如图 1 所示,K0, K1,K2 是道路中心线上的 3 个关键点,过这 3 个点构建纵断面。 M_0 是 K0、 K1 的中心点, M_1 是 K1、K2 的中心点,分别过 M_0 和 M_1 点绘制横断面。

图 1 纵横断面示意图

一、读取数据文件

数据内容和格式如表 1 所示,其中第 1 行参考高程点名和参考高程数字,第 2 行为 3 个关键点的点名,第 3 和第 4 行为 2 测试点。其余行为各点的相关信息,格式为"点名,X分量, Y分量, 高程 H"。

表 1 数据内容和格式说明

数据内容	格式说明
НО, 15. 000	参考高程的点名,参考高程值
K0, K1, K2	点名 1, 点名 2, 点名 3 (三点为道路中心线
A, 3552. 028, 3354. 823	上点,相应坐标见后面数据主体)
B, 3537. 910, 3348. 913	测试点名 (A, B), X (m), Y (m)
K0, 3574. 012, 3358. 300, 22. 922	点名, X (m), Y (m), H (m)
P01, 3570. 355, 3382. 210, 20. 558	
P22, 4536. 141 , 3378. 766 , 19. 502	
K1, 4534. 227 , 3380. 195 , 19. 925	
P41, 3509. 525, 3431. 290, 20. 478	
P42, 3578. 863, 3327. 300, 23. 678	
K2, 3497. 844, 3403. 422, 20. 836	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

二、程序算法

1. 基本算法

1.1 坐标方位角计算

已知两点 $A(x_A,y_A)$, $B(x_B,y_B)$, 则A,B的坐标方位角为:

$$\alpha_{AB} = \operatorname{atan}\left(\frac{\Delta y_{AB}}{\Delta x_{AB}}\right) = \operatorname{atan}\left(\frac{y_B - y_A}{x_B - x_A}\right)$$
 (1)

方位角的值与所在象限有关,判定方法如表2所示。

表 2 方位角取值范围判断

Δy_{AB}	Δx_{AB}	坐标方位角
+	+	$lpha_{AB}$
+	-	180° + α_{AB}
-	-	$180^{\circ} + \alpha_{AB}$
-	+	$360^{\circ} + \alpha_{AB}$
>0	0	90°
<0	0	270°

说明: 计算输入文件中的 A, B 两点的坐标方位角。

- (1) 计算结果保存 "result.txt"中。输出格式为 dd. mmssss , 其中 dd 表示度 (dd°), mm 表示分 (mm′), ssss 表示秒 (ss. ss″)。
- (2) 将计算结果保存到"程序正确性.xls"文件中,格式为dd.mmssss。

将结果手工填写在"程序正确性.xls"中,该文件在 "程序正确性【模板】.xls"基础上,手工修改红色部分,不用编程。

序号	输出格式要求	说明
1	*. *****	A,B 两点的坐标方位角

1.2 内插点 P 的高程值的计算方法

采用反距离加权法求内插点 P 的高程, 计算方法为:

(1) 以点 P(x,y) 为圆心,寻找最近的 n 个离散点 $Q_i(x_i,y_i)$,形成点集 Q(在计算过程

中n取5);

(2) 计算 P 到 Q 中每一已知点 Q_i 的距离 d_i ,计算公式为:

$$d_{i} = \sqrt{(x - x_{i})^{2} + (y - y_{i})^{2}}$$
 (2)

(3) 计算 P 点的内插高程

设 $Q_i(x_i, y_i)$ 的高程为 h_i , P 点高程 h 的插值为:

$$h = \frac{\sum_{i=1}^{n} (h_i/d_i)}{\sum_{i=1}^{n} (1/d_i)}$$
 (3)

说明:以 A、B 为内插点,计算各自最近 5 个点(关键点和实测点)的点号、距离、以及内插高程,计算结果保留小数点后 3 位。

(1) 将距离 A、B 最近 5 个点(关键点和实测点)的点号、距离,以及这 2 个点的内插高程,将计算结果保存"result.txt"中。

(2) 将 A、B 点内插高程计算结果填写到"程序正确性. xls"文件中。

序号	输出格式要求	说明
2	*. ***	A 的内插高程
3	*. ***	B的内插高程

1.3 断面面积的计算

已知梯形两点 P_i , P_{i+1} 两点间的平面投影距离为 ΔL_i , 基准高程为 h_0

 P_i , P_{i+1} 的点高程为 h_i , h_{i+1} , 如图 2 所示,则该梯形的面积为:

$$S_{i} = \frac{\left(h_{i} + h_{i+1} - 2h_{0}\right)}{2} \Delta L_{i} \tag{4}$$

将断面的所有梯形进行累和得到最后的总面积

$$S = \Sigma S_i \tag{5}$$

说明:以 HO 为高程参考面,以 A、B 为梯形的两个端点(不考虑中间内插点),计算其梯形面积,将结果输出到计算报告中,计算结果保留小数点后 3 位。

(1) 结果保存"result.txt"中。

(2) 计算结果保存到"程序正确性.xls"文件中。

序号	输出格式要求	说明
4	*. ***	以A、B为梯形的两个端点的梯形面积

2. 道路纵断面计算

以道路中心线上的 n+1 个点关键点 K_0 , K_1 ······ K_n ,形成道路的纵断面。

2.1 计算纵断面的长度

已知 $K_i(x_i,y_i)$, $K_{i+1}(x_{i+1},y_{i+1})$, 可以计算它们之间的距离, 公式为:

$$D_{i} = \sqrt{\left(x_{i+1} - x_{i}\right)^{2} + \left(y_{i+1} - y_{i}\right)^{2}}$$
 (6)

纵断面的总长度为 $D = \sum_{i=0}^{1} D_i$

说明:在计算报告中输出纵断面的总长度,计算结果保留小数点后3位。

- (1) 结果保存 "result.txt" 中
- (2) 将计算结果保存到"程序正确性.xls"文件中。

序号	输出格式要求	说明
5	*. ***	纵断面的总长度

2.2 计算内插点的平面坐标

在纵断面上,从起点 K_0 开始,每隔 Δ 内插一点,记为 Z_1 ,形成纵断面上的内插点序列。

当插值点 Z_1 在 K_0 , K_1 直线上,则 Z_1 点的坐标为

$$\begin{cases} x_i = x_0 + L_i \cos(\alpha_{01}) \\ y_i = y_0 + L_i \sin(\alpha_{01}) \end{cases}$$
(7)

其中 α_{01} 为 $K_0(x_0,y_0)$, $K_1(x_1,y_1)$ 的方位角, L_i 是待插值 Z_i 点距 K_0 点的平面投影距离。

当插值点在 K_i 和 K_{i+1} 直线上,则 P_i 点的坐标为

$$\begin{cases} x_i = x_j + (L_i - D_0)\cos(\alpha_{j,j+1}) \\ y_i = y_j + (L_i - D_0)\sin(\alpha_{j,j+1}) \end{cases}$$
(8)

其中 α_{12} 为 K_jK_{j+1} 的坐标方位角, L_i 是待插值 P_i 点和 K_0 点之间沿中心线的平面投影距离, D_0 是 K_i 和 K_0 之间沿中心线的平面投影距离。

根据内插点的平面坐标,依据公式(3)计算其高程。

说明: (1) 在纵断面上,按照 Δ =10m 依次距离依次内插,内插点名依次为 Z1、Z2、……,计算结果保留小数点后 3 位数值.

- (1) 将内插点的点名、坐标、高程保存"result.txt"中。
- (2) 将第5个内插点的计算结果输出"程序正确性.xls"文件中。

序号	输出格式要求	说明
6	*. ***	第5个内插点的x坐标
7	*. ***	第 5 个内插点的 y 坐标
8	*. ***	第5个内插点的高程

2.3 计算纵断面面积

说明:根据(5)的公式,利用2.2中内插点及关键点数据计算纵断面面积,计算结果保留小数点后3位。

- (1) 结果显示在"报告显示"中。
- (2) 结果保存到"程序正确性.xls"文件中。

序号	输出格式要求	说明
9	*. ***	纵断面面积

3. 道路横断面计算

3.1 计算横断面中心点

取 K_i , K_{i+1} 的中心点 $M_i(x_{M_i}, y_{M_i})$ 计算公式为:

$$x_{M_i} = \frac{x_i + x_{i+1}}{2}; y_{M_i} = \frac{y_i + y_{i+1}}{2}$$
 (9)

说明:在计算报告中输出所有横断面中心点的坐标,计算结果保留小数点后3位。

(1) 结果保存"result.txt"中。

(2)将第2中心点坐标输出到"程序正确性.xls"文件中。

序号	输出格式要求	说明
10	*. ***	第2个横断面中心点的坐标 x
11	*. ***	第2个横断面中心点的坐标 y

3.2 计算横断面插值的平面坐标和高程

过横断面中间点 $M_{\rm i}$,分别向直线 K_0,\ldots,K_n 垂直线,两边各延伸 25 米,得到 n 条横断面。

过 M 点的横断面的坐标方位角为 α_{M} 计算公式为:

$$\alpha_{M_i} = \alpha_{i,i+1} + 90^{\circ} \tag{10}$$

过 M 点横断面的内插点 N_i 平面坐标为:

$$\begin{cases} x_{j} = x_{M_{i}} + j\Delta\cos(\alpha_{M}) \\ y_{j} = y_{M_{i}} + j\Delta\sin(\alpha_{M}) \end{cases}$$
 (j= -5, \cdots, -1, 1\cdots, 5) (11)

根据内插点的平面坐标,计算其高程,计算公式见3.2节。

说明: (1) 计算各横断面的坐标方位角,计算结果保留小数点后 6 位; (2) 计算各横断面内插点的坐标、高程, 第 1 个横断面内插点的编号前缀为 "NA",第 2 个前缀为 "NB",第 3 个为 "NC",内插点的序号依次为 "-5, -4...,4,5",例如 "NA-4"、"NC3"。计算结果保留小数点后 3 位。

- (1) 结果保存"result.txt"中。
- (2) 计算 2 个横断面的坐标方位角,以及第 2 个横断面中的 j=3 的内插点的坐标和高程,保存到"程序正确性.xls"文件中。

序号	输出格式要求	说明
12	*. *****	第2个横断面的坐标方位角,以弧度为单位
13	*. ***	第 1 个横断面中的 j=3 的内插点的坐标 x
14	*. ***	第1个横断面中的 j=3 的内插点的坐标 y
15	*. ***	第1个横断面中的 j=3 的内插点的高程
16	*. ***	第2个横断面中的 j=-3 的内插点的坐标 x
17	*. ***	第2个横断面中的 j=-3 的内插点的坐标 y
18	*. ***	第2个横断面中的 j=-3 的内插点的高程

3.3 计算横断面面积

说明:根据(5)公式,计算2个横断面的面积,用于横断面面积的计算点包括横断面中心点和横断面内插点(每个横断面共有11个点)构成的断面,计算结果保留小数点后3位。

(1) 结果保存"result.txt"中。

(2) 将二个横断面面积计算结果保存到"程序正确性.xls"文件中。

序号	输出格式要求	说明
19	*. ***	第1个横断面的面积
20	*. ***	第2个横断面的面积

4.路基土石方量计算

4.1 横断面面积计算

以关键点 K_i 和纵断面上的内插点 Z_j (内插距离 Δ = 10m; 见 2.2节)为中心点,分别向纵断面做垂直线,两边各延伸 <math>5 米,根据公式(5),计算各横断面面积 S_i 。

4.2 路基土石方量计算

$$V_{j,j+1} = \frac{S_j + S_{j+1}}{2} L_{j,j+1}$$
 (12)

式中, S_j 和 S_{j+1} 是相邻两个横断面面积, $L_{j,j+1}$ 是这两个横断面中心点之间的平面距离。

4.3 每段纵断面土石方总量计算

针对每个纵断面 (K_0K_1, K_1K_2, K_2K_3) , 计算土石方总量:

$$V_{k_{i},k_{i+1}} = \sum V_{j,j+1} \tag{13}$$

说明: 计算所有纵断面的土石方总量, 计算结果保留小数点后 3 位。

- (1) 结果保存"result.txt"中。
- (2) 将计算结果保存到"程序正确性.xls"文件中。

序号	输出格式要求	说明
21	*. ***	第1个纵断面的土石方总量
22	*. ***	第2个纵断面的土石方总量

三、成果要求

1. 程序正确性评价

根据"二、程序算法",利用"正式数据"进行计算,填写成果文件"程序正确性.xls",如表 2 所示,该文件将用于程序正确性评分。

说明:该文件在 "程序正确性【模板】.xls"基础上,只需要手工修改红色部分,不要更改模板中的其他内容,不用编程。

表 3 "程序正确性. xls"的文件内容与分值

序号	输出格式要 求	说明	分值
1	*.****	A,B两点的坐标方位角	2
2	*. ***	A 的内插高程	2
3	*. ***	B 的内插高程	2
4	*. ***	以A、B为梯形的两个端点的梯形面积	2
5	*. ***	纵断面的总长度	2
6	*. ***	第 5 个内插点的 x 坐标	2
7	*. ***	第 5 个内插点的 y 坐标	1
8	*. ***	第 5 个内插点的高程	1
9	*. ***	纵断面面积	2
10	*. ***	第2个横断面中心点的坐标 x	1
11	*. ***	第2个横断面中心点的坐标 y	1
12	*. *****	第2个横断面的坐标方位角,以弧度为单位	2
13	*. ***	第1个横断面中的 j=3 的内插点的坐标 x	1
14	*. ***	第1个横断面中的 j=3 的内插点的坐标 y	1
15	*. ***	第1个横断面中的 j=3 的内插点的高程	1
16	*. ***	第2个横断面中的 j=-3 的内插点的坐标 x	1
17	*. ***	第2个横断面中的 j=-3 的内插点的坐标 y	1
18	*. ***	第2个横断面中的 j=-3 的内插点的高程	1
19	*. ***	第1个横断面的面积	1
20	*. ***	第2个横断面的面积	1
21	*. ***	第1个纵断面的土石方总量	1
22	*. ***	第2个纵断面的土石方总量	1

2. 用户界面设计

2.1. 人机交互界面设计与实现

- (1)包括菜单、工具条、表格、图形和文本等功能;
- (2) 功能完善、可正常运行,布局合理,直观美观、人性化;

2.2. 计算报告显示功能

在用户界面提供计算报告显示功能,显示内容为:保存在"result.txt"文件中的内容。

2.3 图形显示功能

在程序用户界面中,编程显示以下内容的图形:

- (1) 关键点 KO, K1······, 和中心点 MO, M1······ (用红色△表示)。
- (2) 实测点(K0、K1、K2除外)平面散点图(用灰色○标识)
- (3) 纵断面上的内插点(用蓝色○标识)。
- (4) 横断面上的内插点 (用绿色 ○标识)。
- (5)分别绘制纵断面和两个横断面的连线图或断面图,以断面上点到断面起点的距离为 X 坐标,点的高程为 Y 坐标分别绘制三幅断面图,绘制颜色自选。

2.4 表格显示功能

在程序用户界面中,编程实现数据表格显示功能,在表格中"程序正确性评价"内容,如表 3 所示(不需要第 4 列,即不用输出"分值"列)。

3. 计算成果输出

3.1 计算报告保存

利用"正式数据.txt"进行计算,生成结果文件"result.txt"。

3.2 图形文件保存

编程将"2.3图形显示功能"的图形保存为: 成果图形.jpg

4. 开发文档

针对程序开发过程,撰写编程开发技术文档,并保存为"开发文档.pdf"文件。

内容包括:

- (1) 程序功能简介;
- (2) 算法设计与流程图;
- (3) 主要函数和变量说明;
- (4) 主要程序运行界面;
- (5) 使用说明。

四、评分规则

评测内容	评分细则说明	
程序正确性 (30 分)	1. 本部分评分根据成果文件"程序正确性"输出结果进行评分,该结果文件是用 "正式数据"计算生成的结果。"正式数据"会在考试开始 3 小时左右分发。 2. 如果本项成绩低于 15 分,不能参评特等奖和一等奖(该参赛队如果是第一个提交成果,其时间不作为最短时间基准,其时间得分为最高和最低分的平均值)。	
	数据读取正确 ⁽ 读"正式数据.txt"文件)(3分)	
和合合物	文本文件保存(输出"计算结果.txt"文件)(3分)	
程序完整 与规范性	图形保存(输出"成果图. jpg"文件)(2分)	
(15分)	程序结构完整、函数与类结构设计清晰(3分)	
(10))	注释规范 (2分)	
	类、函数和变量命名规范(2分)	
	人机交互界面设计良好(4分)	
 程序优化性	表格显示符合要求 (2分)	
(15 分)	报告显示符合要求 (3分)	
	图形显示美观 (3分)	
	容错性、鲁棒性好 (3分)	
	程序功能简介(2分)	
 开发文档	算法设计与流程图 (2分)	
(10分)	主要函数和变量说明(2分)	
(10))	主要程序运行界面 (2分)	
	使用说明(2分)	
完成时间 (30分)	$S = \left(1 - \frac{T_i - T_1}{T_n - T_1} \times 40\%\right) \times 30$	
	(其中 T_1 , T_i , T_n 分别表示第一组,第 i 组和最后一组提交的时间)	