TECHNO INDIA NJR INSTITUTE OF TECHNOLOGY, UDAIPUR

B. TECH 2nd – YEAR (III SEM.) – Mid Term-I

Electrical Machine-I (3EE4-07)

Time: 2 Hr Max. Marks: 70

Note:

- 1) The paper is divided into 2 parts: Part-A and, Part-B
- 2) Part-A contains 10 questions and carries 2 mark each.
- 3) Part-B contains 5 questions. Each question is having two options and carries 10 marks each.

Part- A (20 Marks)

A. Explain Fleming's left-hand rule and its application.	CO1
B. Explain the term flux and flux density.	CO1
C. State and explain Faraday's law of electromagnetic induction.	CO1
D. What is transformer? List the type of transformer.	CO1
E. What is B-H curve of magnetic material?	CO2
F. State the Ampere Law and its application	CO2
G. State the Biot-Savart Law and its application.	CO2
H. Define the self inductance and mutual inductance and coefficient of	CO2
coupling, also give mathematic expressions for the same.	
I. Draw the phasor diagram of transformer at No load.	CO3
J. An electromagnet has a gap of 4 mm and flux density in the gap is 1.3	CO3
Wb/m ² . Determine the ampere turns for the gap.	

Part- B (50 Marks)

1. Explain principle of operation, construction and working of a single-phase	CO1
transformer and its application.	
OR	
1. A rectangular shaped core is made of mild steel plate 15 mm x 20 mm cross	CO1
section. The mean length of magnetic path is 18 cm. The exiciting coil has	
300 turns and current 0.7 A. Calculate:	
I. Magnetising force.	
II Flux density	

- II. Flux density.
- III. Reluctance.
- IV. Flux of magnetic circuit.

Assume relative permeability of mild steel is 940.

2. **A.** Derive an expression of the induced e.m.f. of the transformer. **B.** Derive an expression for the energy stored in a magnetic field.

OR

2. A single phase, 50 Hz core type transformer square cores of 20 cm side, permissible maximum flux density is 1 Wb/m². Calculate the number of turns per limb on the right on the high and low voltage sides for a 300/220 V ratio.

3.	What is an ideal transformer? Draw the phasor diagram of the ideal	CO2
	transformer and explain in detail. Also explain the voltage and current	
	transformation ratio of transformer.	
	OR	
3.	A coil of 100 turns is wound on toroidal magnetic core having a reluctant of	CO2
	10 ⁴ AT per Wb. When the coil current is 5 A and is increasing at the rate of	
	200 A/s, Determine:	
	I. Energy stored in the magnetic circuit.	
	II. Voltage applied across the coil.	
	Assume coil resistance as zero.	
1	Draw and explain hysteresis loop. What is its significance? What is meant by	CO2
4.	saturation and residual magnetism? Show them in diagram.	CO2
4	OR 1 250 : 1 1050 1 4 TI	002
4.	A single phase transformer has 350 primary and 1050 secondary turns. The	CO2
	net cross-section area of a core is 55 cm ² . If the primary winding be	
	connected to a 400 V, 50 Hz single phase supply, Calculate:	
	I. Maximum value of flux density in the core.	
	II. The voltage induced in secondary winding.	
5.	Derive an expression of magnetic field on the axis of a circular current loop.	CO3
	OR	
5.	Two coils having 100 and 150 turns respectively are wound side by side on a	CO3
	closed iron circuit of a section 125 cm ² . If the permeability of iron is 2000,	
	Calculate:	
	I. Self inductance of each coil.	
	II. Mutual inductance between them	
	The EMF induced in the second coil if the current in the first coil changes	
	from 0 to 5 A in 0.2 s.	
_		