BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI K K BIRLA GOA CAMPUS

INSTRUCTION DIVISION FIRST SEMESTER 2024-2025 Course Handout (Part II)

Date: 31/07/2024

In addition to part I (General Handout for all courses appended to the time-table), this portion gives further specific details regarding the course.

Course No.: MATH F211

Course Title MATHEMATICS III

Instructor In-charge: MINHAJUL

Instructors: Danumjaya Palla, Anil Kumar, Jajati Keshari Sahoo, Mayank Goel,

Pradeep Boggarapu, Anupama Sharma, Yasmeen Akhtar, Minhajul.

Teaching Assistants: Debendra Prasad Panda, Yogesh Trivedi, Binay Sahu, Vighnesh

Vinod Alavani, Raina Mary Thomas, Ranjit Kumar Sharma.

1. Objective of the Course

The Course offers a comprehensive and advanced exploration of differential equations, primarily emphasizing classical techniques for solving ordinary and partial differential equations. Its primary goal is to equip students with fundamental skills to apply differential equations, Fourier series, and Laplace transforms in a wide range of engineering and scientific disciplines. An integral aspect of the Course involves an in-depth examination of the significance of orthogonal polynomials. This in-depth study gives students valuable insights into effectively tackling complex differential equations in diverse real-world situations.

2. Learning Outcomes

Upon completing this course, students will have achieved the following learning outcomes:

- Proficiently solve first-order separable and linear differential equations and adeptly apply
 these methods to solve real-world problems in various contexts.
- Skillfully solve higher-order constant-coefficient linear differential equations and systems of differential equations, utilizing these techniques to address practical problems encountered in engineering and sciences.
- Attain the ability to derive power series solutions for specific linear ordinary differential equations classes.
- Develop a strong understanding of obtaining Laplace and inverse Laplace transforms and effectively apply these techniques to solve linear differential equations.

3. Text-Book:

G. F. Simmons, *Differential Equations with Applications and Historical Notes*, TMH, 2nd Ed., 1991.

Reference Books:

- i). Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 8th Ed., 2005.
- **ii).** W. E. Boyce and R. C. Diprima, *Elementary Differential Equations and Boundary Value Problems*, John Wiley & Sons, 9th edition, 2013.
- **iii**). Earl A. Coddington, *An Introduction to Ordinary Differential Equations*, Prentice Hall, 2013.
- iv). C. H. Edwards and David E. Penney, *Elementary Differential Equations*, Pearson, 6th Ed. 2008.

4. Course Plan: (Sections/Articles refer to **Text-Book**)

Lecture	Learning	Topic	Sections	Assignments
No.	Objectives	•		(Page No-Problems)
1		First order equations	1-6	Self-Study
	To introduce	-		·
2	classical methods	First order equations	7-10	49- 1, 3-5, 53 -All,
	for solving first-	1		59 -All 61- 1 to 4
	order differential			
	equations (DEs).			
3-4		Second order equations	14, 15	86 -4 to 10, 91-1 to 9
5	To introduce the	Use of a known	16	94 -All
	classical methods to	solution		
6-10	solve second-order	Various methods to	17, 18,	97 -All, 103 -All,
	DEs	solve differential	19	106- All
		equations		
11-12		Higher-order equations	22, 23	127 -1 to 8, 135 -All
		and operator methods		
13-15	To introduce	Systems of equations	54, 55,	420 -1, 2; 426-5 to 9
	systems of		56	433 -1 to 5
1.00	equations	~	21 20	
16-20	m	Series solutions	26 to 30	175 -1, 2, 182 -1 to 7.
21.22	To introduce power			191 -1 to 5, 198 -1 to 5
21-22	series solutions to	Hypergeometric	31	203 -All
	second-order DEs	equation		
	with variable coefficients			
	Coefficients			
23-26	Special Functions in	Legendre polynomials	44, 45	340 -1, 2, 4
23-20	Mathematical	Legendre porynomiais	-17, 1 3	347 -1 to 5
27-30	Physics and Their	Bessel functions	46, 47	356 -1 to 6,
27 30	Applications	Desser ranetions	10, 17	363-1 to 5
31-34	Use the Laplace	Laplace transforms	48, 49,	384 -All, 388 -All,
	transform to solve	piuco transformis	50, 51,	394 -1 to 5, 397 -1 to 8,
	differential		52	410 -2, 3, 4
	equations.		_	
35-38	To introduce the	Fourier series	33, 34,	256 -1 to 6, 263-1 to 5
	Fourier series		35, 36	269 -All, 274 -1 to 7

39	BVPs and Partial	Eigenvalues and Eigen	40	308 -1
	Differential	functions, and PDEs		
	Equations (PDEs)			
40	To introduce	One dim. Wave eqn.	40	
41	classical methods to solve PDEs	One dim. Heat eqn.	41	
42		Laplace Equation and	42-43	
		Sturm Liouville		
		Problems		

5. Evaluation Scheme:

S. No.	Evaluation Component	Weightage (300 marks)	Date and time
1	Mid-Semester Exam (Closed Book)	105 marks	05/10/2024 04:00 PM – 05:30 PM
2	Quizzes (Open Book)	Quiz-1 (75 marks) Quiz-2 (75 marks)	22/09/24 (Sunday) 11:00 AM – 12:00 PM 17/11/24 (Sunday) 11:00 AM – 12:00 PM
3	Comprehensive Exam (Closed Book)	120 marks	07/12/2024 (FN)

- **6. Make-up: There will be no make-up for the Quizzes** as the best one will be chosen out of two Quizzes. Make-up for other evaluation component will be given only in genuine cases of absence.
- **7.** Consultation hour: To be announced in the class.
- **8. Notices:** All notices regarding the MATH F211 course will be posted on the Quanta course page.

Instructor In-charge MATH F211