Методичка по лабораторной работе «Исследование линейных свойств двухполюсников и четырёхполюсников»

Автор

23 марта 2024

Теоретическая часть

Гармонические сигналы

Гармоническим сигнал — сигнал, изменяющийся с течением времени по закону косинуса или синуса (по гармоническому закону), но ввиду соотношения

$$\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

нет особой разницы в выборе между косинусом и синусом, хотя в большинстве случаев используется косинус.

Пусть имеется гармонический сигнал:

$$A(t) = A_0 \cdot \cos(\omega t + \varphi)$$

С целью облегчения расчётов, такие сигналы представляются в комплексной форме так, чтобы исходный сигнал в точности равнялся действительной части комплексного сигнала. Если представить исходный сигнал в виде:

$$A(t) = A_0 \cdot cos(\omega t + \varphi) + i \cdot A_0 \cdot sin(\omega t + \varphi)$$

то используя формулу Эйлера $(e^{i\varphi}=\cos(\varphi)+i\cdot\sin(\varphi))$ получаем представление исходного сигнала в виде:

$$A(t) = A_0 \cdot e^{i(\omega t + \varphi)}$$

Преобразуем сигнал, выделив в нём части, зависящие и независящие от времени, т.е.

$$A(t) = A_0 \cdot e^{i(\omega t + \varphi)} = A_0 \cdot e^{i\varphi} \cdot e^{i(\omega t)} = \hat{A} \cdot e^{i(\omega t)}$$

где $\hat{A} = A_0 \cdot e^{i\varphi}$ называют комплексной амплитудой сигнала. Таким образом, по определению, комплексная амплитуда не зависит от времени, т.е. просто некоторое комплексное число.

Стоит отметить, что модуль A_0 комплексной амплитуды $\hat{A} = A_0 \cdot e^{i\varphi}$ соответствует амплитуде исходного сигнала, а аргумент комплексной амплитуды φ соответствует сдвигу фазы исходного сигнала.

Отметим свойства комплексных амплитуд при некоторых преобразованиях над сигналами:

1. Сложение сигналов:

Пусть имеется два гармонических сигнала одной и той же частоты $A(t) = \hat{A} \cdot e^{i(\omega t)}$ и $B(t) = \hat{B} \cdot e^{i(\omega t)}$. При сложении эти сигналов получаем сигнал:

$$C(t) = A(t) + B(t) = \hat{A} \cdot e^{i(\omega t)} + \hat{B} \cdot e^{i(\omega t)} = (\hat{A} + \hat{B}) \cdot e^{i(\omega t)} = \hat{C} \cdot e^{i(\omega t)}$$

где $\hat{C} = \hat{A} + \hat{B}$ — комплексная амплитуда суммарного сигнала.

Т.е. суммой двух гармонических сигналов одной и той же частоты является гармонический сигнал той же частоты и комплексной амплитуды, равной сумме комплексных амплитуд исходных сигналов.

Заметим, что если суммируемые сигналы имеют разную частоту, то комплексная амплитуда суммарного сигнала будет зависеть от времени, что противоречит её определению.

2. Увеличение амплитуды сигнала:

Пусть имеется сигнал $A(t) = \hat{A} \cdot e^{i(\omega t)}$. При умножении этого сигнала на некоторое действительное число k получится сигнал:

$$B(t) = k \cdot A(t) = k \cdot \hat{A} \cdot e^{i(\omega t)} = \hat{B} \cdot e^{i(\omega t)}$$

где $\hat{B} = k \cdot \hat{A}$ — комплексная амплитуда увеличенного сигнала.

Т.е. при увеличении гармонического сигнала в некоторое число раз, его комплексная амплитуда также увеличится в это же количество раз.

Само собой разумеется, что увеличенный сигнал будет гармоническим той же частоты.

3. Сдвиг сигнала по фазе:

Пусть имеется сигнал $A(t)=\hat{A}\cdot e^{i(\omega t)}$. При умножении этого сигнала на некоторое комплексное число $e^{i\psi}$ (по модулю равное единице) получится сигнал:

$$B(t) = e^{i\psi} \cdot A(t) = e^{i\psi} \cdot A_0 \cdot e^{i\varphi} \cdot e^{i(\omega t)} = A_0 \cdot e^{i(\psi + \varphi)} \cdot e^{i(\omega t)} = \hat{A}' \cdot e^{i(\omega t)}$$

где $\hat{A}' = A_0 \cdot e^{i(\varphi + \psi)}$ — комплексная амплитуда сдвинутого по фазе сигнала.

Т.е. при умножении сигнала на комплексное число, модуль которого равен единице, сдвиг сигнала по фазе будет численно равен аргументу комплексного числа.

2+3. Обобщение увеличения амплитуды сигнала и сдвига по фазе:

На что и указывает нумерация, этот пункт является обобщением пунктов 2 и 3 данного списка.

При умножении сигнала на комплексное число, сигнал будет увеличен по амплитуде в модуль этого комплексного числа раз и сдвинут по фазе на аргумент этого комплексного числа.

4. Дифференцирование сигнала по времени:

Пусть имеется гармонический сигнал $A(t) = \hat{A} \cdot e^{i(\omega t)}$. Продифференцируем его по времени. Получится следующий сигнал:

$$B(t) = \frac{d(A(t))}{d(t)} = i\omega \cdot \hat{A} \cdot e^{i(\omega t)} = \hat{B} \cdot e^{i\left(\omega t + \frac{\pi}{2}\right)}$$

где $\hat{B} = \omega \cdot \hat{A}$ — комплексная амплитуда дифференцированного сигнала.

Т.е. при дифференцировании гармонического сигнала получается гармонический сигнал той же частоты, что и исходный, увеличенный в количество раз, численно равное его угловой частоте, и сдвинутый по фазе на $\frac{\pi}{2}$.

4'. Интегрирование сигнала по времени:

При интегрировании сигнала $A(t) = \hat{A} \cdot e^{i(\omega t)}$ получится такой сигнал B(t), что при дифференцировании сигнала B(t) получится сигнал A(t).

Тогда если сигнал B(t) имеет вид:

$$B(t) = \hat{B} \cdot e^{i(\omega t)}$$

то сигнал A(t), полученный путём дифференцирования сигнала B(t), будет иметь вид:

$$A(t) = \omega \cdot \hat{B} \cdot e^{i(\omega t + \frac{\pi}{2})}$$

Из последнего равенства выразим сигнал B(t) через сигнал A(t):

$$A(t) = \hat{A} \cdot e^{i(\omega t)} = \omega \cdot \hat{B} \cdot e^{i(\omega t + \frac{\pi}{2})}$$
$$\frac{1}{\omega} \hat{A} \cdot e^{i(\omega t - \frac{\pi}{2})} = \hat{B} \cdot e^{i(\omega t)} = B(t)$$

Т.е. при интегрировании гармонического сигнала получается гармонический сигнал той же частоты, что и исходный, уменьшенный в количество раз, численно равное его угловой частоте, и сдвинутый по фазе на $-\frac{\pi}{2}$.

На практике, комплексная амплитуда применяется для упрощения расчётов электрических цепей, подключённых к гармоническим источникам.

Двухполюсники и импеданс

Под *двухполюсником* понимается электрическая цепь, имеющая два наружных контакта, с помощью которых она подключается к другим цепям.

Под *линейными элементами* электрической цепи понимаются элементы, ведущие себя линейно, т.е. напряжение на которых является линейной функцией тока. Т.е.

$$U(t) = \alpha \cdot I(t) \Leftrightarrow I(t) = \beta \cdot U(t)$$

где
$$\beta = \frac{1}{\alpha}$$
.

Самыми распространёнными линейными элементами являются:

1. Резисторы

Согласно закону Ома в интегральной форме:

$$U(t) = R \cdot I(t)$$

При $I_2(t) = k \cdot I_1(t)$ напряжение $U_2(t)$ имеет вид:

$$U_2(t) = R \cdot I_2(t) = k \cdot R \cdot I_1(t) = k \cdot U_2(t)$$

2. Конденсаторы

Напряжение и ток на конденсаторе связаны соотношением:

$$I(t) = C \cdot \frac{d(U(t))}{d(t)}$$

При $U_2(t) = k \cdot U_1(t)$ ток $I_2(t)$ имеет вид:

$$I_2(t) = C \cdot \frac{d(U_2(t))}{d(t)} = C \cdot \frac{d(k \cdot U_1(t))}{d(t)} = k \cdot C \cdot \frac{d(U_1(t))}{d(t)} = k \cdot I_1(t)$$

3. Катушки индуктивности

Ток и напряжение на катушке индуктивности связаны соотношением:

$$U(t) = L \cdot \frac{d(I(t))}{d(t)}$$

При $I_2(t) = k \cdot I_1(t)$ напряжение $U_2(t)$ имеет вид:

$$U_2(t) = L \cdot \frac{d(I_2(t))}{d(t)} = L \cdot \frac{d(k \cdot I_1(t))}{d(t)} = k \cdot L \cdot \frac{d(I_1(t))}{d(t)} = k \cdot U_1(t)$$

При подключении линейных двухполюсников к гармонической э.д.с. в них возникают гармонические напряжения и токи той же частоты, что и частота подключаемой э.д.с.

$$U(t) = U_0 \cdot cos(\omega t - \varphi)$$
 $I(t) = I_0 \cdot cos(\omega t)$

где φ — сдвиг фаз напряжения относительно тока.

Т.к. эти сигналы гармонические, то их можно представить с использованием комплексных амплитуд:

$$U(t) = \hat{U} \cdot e^{i(\omega t)}$$
 $I(t) = \hat{I} \cdot e^{i(\omega t)}$

Импедансом двухполюсника называется отношение комплексной амплитуды напряжения гармонического сигнала к комплексной амплитуде тока, протекающего через двухполюсник.

$$Z = \frac{\hat{U}}{\hat{I}} = \frac{U_0}{I_0} \cdot e^{i\varphi} = \hat{Z} \cdot e^{i\varphi}$$

где \hat{Z} — модуль импеданса, а φ — аргумент импеданса.

Согласно определению, импеданс имеет размерность сопротивления, не зависит от времени и определён только для линейных двухполюсников, подключённых к гармоническим источникам.

Импедансы базовых линейных элементов имеют вид:

1. Импеданс резистора

Из закона Ома в интегральной форме при гармоническом сигнале:

$$U(t) = \hat{U} \cdot e^{i(\omega t)} = R \cdot I(t) = R \cdot \hat{I} \cdot e^{i(\omega t)}$$

T.e. $\hat{U} = R \cdot \hat{I}$, а тогда импеданс резистора:

$$Z_R = \frac{\hat{U}}{\hat{I}} = \frac{R \cdot \hat{I}}{\hat{I}} = R$$

2. Импеданс конденсатора

Ток и напряжение на конденсаторе при гармоническом сигнале связаны соотношением:

$$I(t) = \hat{I} \cdot e^{i(\omega t)} = C \cdot \frac{d(U(t))}{d(t)} = i\omega C \cdot \hat{U} \cdot e^{i(\omega t)}$$

Т.е. $\hat{I} = i\omega C \cdot \hat{U}$, а тогда:

$$Z_C = \frac{\hat{U}}{\hat{I}} = \frac{\hat{U}}{i\omega C \cdot \hat{U}} = \frac{1}{i\omega C} = -i\frac{1}{\omega C}$$

3. Импеданс катушки индуктивности

Напряжение и ток на катушке индуктивности при гармоническом сигнале связаны соотношением:

$$U(t) = \hat{U} \cdot e^{i(\omega t)} = L \cdot \frac{d(I(t))}{d(t)} = i\omega L \cdot \hat{I} \cdot e^{i(\omega t)}$$

T.e. $\hat{U} = i\omega L \cdot \hat{I}$, а тогла:

$$Z_L = \frac{\hat{U}}{\hat{I}} = \frac{i\omega L \cdot \hat{I}}{\hat{I}} = i\omega L$$

Рассмотрим свойства импеданса при последовательном и параллельном подключении линейных двухполюсников при гармоническом напряжении:

1. Последовательное

При последовательном подключении имеем соотношения для напряжений $\hat{U}_{12}=\hat{U}_1+\hat{U}_2$ и $\hat{I}_{12}=\hat{I}_1=\hat{I}_2$ для токов, соответственно. Тогда импеданс имеет вид:

$$Z_{12} = \frac{\hat{U}_{12}}{\hat{I}_{12}} = \frac{\hat{U}_1 + \hat{U}_2}{\hat{I}_{12}} = \frac{\hat{U}_1}{\hat{I}_1} + \frac{\hat{U}_2}{\hat{I}_2} = Z_1 + Z_2$$

2. Параллельное

При параллельном подключении имеем соотношения для напряжений $\hat{U}_{12}=\hat{U}_1=\hat{U}_2$ и $\hat{I}_{12}=\hat{I}_1+\hat{I}_2$ для токов, соответственно. Тогда импеданс имеет вид:

$$\frac{1}{Z_{12}} = \frac{\hat{I}_{12}}{\hat{U}_{12}} = \frac{\hat{I}_1 + \hat{I}_2}{\hat{U}_{12}} = \frac{\hat{I}_1}{\hat{U}_1} + \frac{\hat{I}_2}{\hat{U}_2} = \frac{1}{Z_1} + \frac{1}{Z_2}$$

Т.е. при последовательном и параллельном соединении импеданс эквивалентной схемы считается ровно также, как и сопротивление.

Прямое измерение импеданса требует измерения амплитуд гармонических напряжения и тока и измерения сдвига фазы между ними.

Четырёхполюсники

Под *четырёхполюсником* понимается электрическая цепь, имеющая четыре наружных контакта, с помощью которых она подключается к другим цепям. Как правило, имеет смысл одну пару контактов называть входными, а другую выходными.

Важнейшей характеристикой четырехполюсника является его $\kappa o = \phi \phi u u u e u m$ передачи, равный отношению комплексной амплитуды напряжения на выходе к комплексной амплитуде напряжения и входе:

$$K = \frac{\hat{U}_{\text{\tiny BMX.}}}{\hat{U}_{\text{\tiny BX.}}} = \hat{K} \cdot e^{i\varphi}$$

Заметим, что для теоретического расчёта четырёхполюсников, входное напряжение на котором изменяется по гармоническому закону, можно использовать законы Kupx-гофа для переменных (гармонических) токов:

1. Первый закон Кирхгофа:

Сумма токов, входящих в некоторый узел, равна сумме токов, выходящих из узла.

Или просто:

Сумма токов в узле равна нулю.

$$\sum I_i = 0$$

где токи, входящие в узел и выходящие из узла, имеют разные знаки.

Это правило применяется для комплексных представлений гармонических токов.

2. Второй закон Кирхгофа:

Cумма ЭДС в некотором контуре равна сумме падений напряжения в этом контуре.

$$\sum \mathcal{E}_i = \sum U_i$$

Причём ЭДС берутся в их комплексном представлении, а падения напряжения будут представляться в виде произведений комплексного представления тока на элементе на импеданс этого элемента.

Т.е. второй закон Кирхгофа имеет вид:

$$\sum \mathcal{E}_i = \sum Z_i I_i$$

Осциллограф

Пусть на входы x и y осциллографа подаются гармонические сигналы, причём сигнал, подаваемый на y, имеет ту же частоту, что и сигнал, подаваемый на x, но смещён по фазе. Т.е.

$$x = x_0 \cdot cos(\omega t)$$
 $y = y_0 \cdot cos(\omega t + \varphi)$

Слегка преобразуем эти два уравнения

$$\frac{x}{x_0} = \cos(\omega t) \qquad \frac{y}{y_0} = \cos(\omega t + \varphi)$$
$$\left(\frac{x}{x_0}\right)^2 = \cos^2(\omega t) \quad \left(\frac{y}{y_0}\right)^2 = \cos^2(\omega t + \varphi)$$

Преобразуем правое

$$\left(\frac{x}{x_0}\right)^2 = \cos^2(\omega t) \quad \left(\frac{y}{y_0}\right)^2 - 2 \cdot \frac{x}{x_0} \cdot \frac{y}{y_0} \cdot \cos(\varphi) = \sin^2(\varphi)$$

Сложим эти уравнения

$$\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 - 2 \cdot \frac{x}{x_0} \cdot \frac{y}{y_0} \cdot \cos(\varphi) = \sin^2(\varphi)$$

На экране осциллографа это уравнение будет иметь вид рис. 1.

Рис. 1: Уравнение на экране осциллографа

Т.е. при φ равном 0 и π уравнение вырождается в прямые y=x и y=-x, соответствующие рис. 1.1 и рис. 1.4. При φ равном $\frac{\pi}{2}$ уравнение вырождается в окружность,

соответственно рис. 1.3. При φ в диапазоне от 0 до $\frac{\pi}{2}$ уравнение будет иметь вид «эллипса», изображённого на рис. 1.2, а в диапазоне от $\frac{\pi}{2}$ до π уравнение будет иметь вид, зеркальный данному «эллипсу» относительно оси Oy.

Практическая часть

1. Для двухполюсников рис. 2 рассчитайте теоретические и снимите практические зависимости модуля \hat{K} импеданса и его аргумента φ от частоты ω сигнала.

2.

Практическая часть

Двухполюсники

В данной работе используются двухполюсники, схемы которых представлены на рис. 2.

Рис. 2.1: Схема 1

Рис. 2.2: Схема 2

Рис. 2.3: Схема 3

Рис. 2.4: Схема 4

Здесь $R=R_1=R_2=13$ кОм, C=0,05 мк $\Phi,\,L=0,28$ Гн.

Рис. 2: Двухполюсники

1. Схема 1 (рис. 2.1)

Импеданс данной схемы будет считаться как импеданс резистора и конденсатора при последовательном соединении:

$$Z = Z_R + Z_C = R - i\frac{1}{\omega C}$$

Его модуль:

$$\hat{Z} = \sqrt{R^2 + \left(\frac{1}{\omega^2 C^2}\right)^2}$$

И аргумент:

$$\varphi = arc \ tg\left(\frac{1}{\omega RC}\right)$$

Построим на одном графике теоретическую и практическую зависимости модуля \hat{Z} (рис. $\ref{2}$) и аргумента φ (рис. $\ref{2}$?) импеданса от частоты ν для схемы 1.

2. Схема 2 (рис. 2.2)

Импеданс данной схемы будет считаться как импеданс резистора и катушки индуктивности при последовательном соединении:

$$Z = Z_R + Z_L = R + i\omega L$$

Его модуль:

$$\hat{Z} = \sqrt{R^2 + (\omega L)^2}$$

И аргумент:

$$\varphi = arc \ tg\left(\frac{\omega L}{R}\right)$$

Построим на одном графике теоретическую и практическую зависимости модуля \hat{Z} (рис. ??) и аргумента φ (рис. ??) импеданса от частоты ν для схемы 2.

3. Схема 3 (рис. 2.3)

Импеданс данной схемы будет считаться как импеданс последовательного соединения резистора с параллельным соединением другого резистора и конденсатора:

$$Z = Z_{R1} + \frac{Z_{R2}Z_C}{Z_{R2} + Z_C} = R_1 + \frac{R_2}{1 + (\omega R_2 C)^2} - i\frac{\omega C R_2^2}{1 + (\omega R_2 C)^2}$$

Его модуль:

$$\hat{Z} = \sqrt{\left(R_1 + \frac{R_2}{1 + (\omega R_2 C)^2}\right)^2 + \left(\frac{\omega C R_2^2}{1 + (\omega R_2 C)^2}\right)^2}$$

И аргумент:

$$\varphi = arc \ tg \left(\frac{\omega C R_2^2}{R_1 + R_2 + R_1 \cdot (\omega R_2 C)^2} \right)$$

Построим на одном графике теоретическую и практическую зависимости модуля \hat{Z} (рис. ??) и аргумента φ (рис. ??) импеданса от частоты ν для схемы 3.

4. Схема 4 (рис. 2.4)

Импеданс данной схемы будет считаться как импеданс последовательного соединения резистора с параллельным соединением другого резистора и катушки инлуктивности:

$$Z = Z_{R1} + \frac{Z_{R2}Z_L}{Z_{R2} + Z_L} = R_1 + \frac{R_2 \cdot (\omega L)^2}{R_2^2 + (\omega L)^2} + i\frac{\omega L R_2^2}{R_2^2 + (\omega L)^2}$$

Его модуль:

$$\hat{Z} = \sqrt{\left(R_1 + \frac{R_2 \cdot (\omega L)^2}{R_2^2 + (\omega L)^2}\right)^2 + \left(\frac{\omega L R_2^2}{R_2^2 + (\omega L)^2}\right)^2}$$

И аргумент:

$$\varphi = arc \ tg \left(\frac{\omega L R_2^2}{R_1 R_2^2 + (R_1 + R_2)(\omega L)^2} \right)$$

Построим на одном графике теоретическую и практическую зависимости модуля \hat{Z} (рис. ??) и аргумента φ (рис. ??) импеданса от частоты ν для схемы 4.

Четырёхполюсники

Кроме того, в данной работе предлагается исследовать коэффициент проводимости напряжения K для четырёхполюсников, представленных на рис. 3.

1. Для фазовращателя (рис. 3.1) построим теоретическую и экспериментальную зависимости сдвига фазы φ между входным $U_{\rm Bx}$ и выходным $U_{\rm Bbx}$ сигналами от их частоты ω ($\omega=2\pi\nu$) и сопротивления R.

$$\varphi(\omega) = 2 \cdot arc \ tg(\omega RC)$$

Получаем рис. ??.

2. Для экзотического четырёхполюсника (рис. 3.2) снимем экспериментальную зависимость сдвига фазы φ от частоты ω ($\omega=2\pi\nu$). Выражения для амплитудной и фазовой характеристик данного четырёхполюсника:

$$\begin{split} \hat{K}(\omega) &= \frac{\Omega^3}{\sqrt{(1-6\Omega^2)^2 + \Omega^2(5-\Omega^2)^2}} \\ \varphi(\omega) &= \frac{3\pi}{2} - arc \ tg\left(\frac{\Omega(5-\Omega^2)}{1-6\Omega^2}\right) \end{split}$$

Получим рис. ??.

3. Для четырёхполюсника (рис. 3.3) рассчитаем коэффициент передачи: Рассчитаем импеданс внутреннего двухполюсника данного четырёхполюсника:

$$Z_{RL} = Z_R + Z_L = R + i\omega L \qquad Z_{RC} = Z_R + Z_C = R - i\frac{1}{\omega C}$$

$$Z = \frac{Z_{RC}Z_{RL}}{Z_{RC} + Z_{RL}} = \frac{R^2 + \frac{L}{C} + iR\left(\omega L - \frac{1}{\omega C}\right)}{2R + i\left(\omega L - \frac{1}{\omega C}\right)} = (*)$$

Выделим отдельно действительную и мнимую часть (домножив на сопряжённое к знаменателю):

$$(*) = R \frac{2\left(R^2 + \frac{L}{C}\right) + \left(\omega L - \frac{1}{\omega C}\right)}{4R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} + i \frac{\left(R^2 - \frac{L}{C}\right)\left(\omega L - \frac{1}{\omega C}\right)}{4R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = (\#)$$

По условию $L=\chi R$ и $C=\frac{\chi}{R}$, тогда:

$$\frac{L}{C} = R^2 \qquad 2\left(R^2 + \frac{L}{C}\right) = 4R^2 \qquad R^2 - \frac{L}{C} = 0$$

$$(\#) = R \cdot 1 + i \cdot 0 = R$$

Тогда коэффициент передачи всего четырёхполюсника:

$$K = \frac{Z}{Z+R} = \frac{R}{R+R} = \frac{1}{2}$$

4. Для двойного Т-моста (рис. 3.4) рассчитаем коэффициент передачи и построим теоретическую зависимость.

$$K = \frac{1}{1 + i \frac{8\Omega}{1 - 4\Omega^2}} = \frac{1}{16\Omega^4 + 56\Omega^2 + 1} + i \frac{32\Omega^3 - 8\Omega}{16\Omega^4 + 56\Omega^2 + 1}$$

где $\Omega = \omega CR$.

Тогда модуль коэффициента передачи \hat{K} будет иметь вид:

$$\hat{K} = \sqrt{\frac{1 + (32\Omega^3 - 8\Omega)^2}{(16\Omega^4 + 56\Omega^2 + 1)^2}}$$

А теоретическая зависимость $\hat{K}(\Omega)$ будет иметь вид рис. ??.

Здесь $R=R_1=R_2=130$ кОм, C=0,015 мк $\Phi.$

Рис. 3.1: Фазовращатель

Здесь $R=R_1=R_2=13$ кОм, C=0,05 мкФ. Рис. 3.2: Экзотический четырёхполюсник

Рис. 3.3: Четырёхполюсник

Рис. 3.4: Двойной Т-мост

Рис. 3: Четырёхполюсники