Fourier analysis

the idea is to use the substitutions
$$n = \lambda^n e^{ik(j\Delta x)}$$

 $n = \lambda^n e^{ik(j\Delta x)}$
 $n = \lambda^n e^{ik(j\Delta x)}$
 $n = \lambda^n e^{ik(j\Delta x)}$
 $n = \lambda^n e^{ik(j\Delta x)}$

for the numerical scheme

$$u_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + \frac{h}{(px)^{2}} \left(u_{j+1}^{n} - \lambda u_{j}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + u_{j}^{n} + u_{j}^{n} + u_{j-1}^{n} + u_{j-1}^{n} \right)$$

$$v_{j}^{n+1} = u_{j}^{n} + u_{j}^{n} + u_{j}^{n} + u_{j}^{n} + u_{j-1}^{n} + u_{j-1$$

We now divide both sides of the above equation by in and eik(jax) and get

$$\lambda = \lambda(k) = 1 + \frac{h}{(\Delta x)^2} \left(e^{ik\Delta x} - \lambda + e^{-ik\Delta x} \right) =$$

$$= 1 + \frac{h}{(\Delta x)^2} \left(\cos(k\Delta x) + i\sin(k\Delta x) - \lambda + \cos(k\Delta x) - i\sin(k\Delta x) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \left(1 - \cos(k\Delta x) \right) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \sin^2(\frac{k\Delta x}{\lambda}) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \sin^2(\frac{k\Delta x}{\lambda}) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \sin^2(\frac{k\Delta x}{\lambda}) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \sin^2(\frac{k\Delta x}{\lambda}) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \sin^2(\frac{k\Delta x}{\lambda}) \right)$$

$$= 1 - \lambda \left(\frac{h}{(\Delta x)^2} \sin^2(\frac{k\Delta x}{\lambda}) \right)$$

Then, for $k=m\pi$, $rac{r}{r}$ (m) = $1-4\frac{h}{(0x)^2} \sin^2(\frac{m\pi\Delta x}{2})$

(11)
$$u_j^n = \sum_{m=-\infty}^{\infty} b_m \underbrace{e^{im\bar{j}\bar{t}}(j\Delta x)}_{bounded} [\lambda(m\bar{j}\bar{t})]^n$$
 to compone with the exact solution of the diffusion equation

Using the method of separation of variables, we get the exact solution

(12)
$$u(x;t) = \sum_{m=1}^{\infty} a_m e^{-[mit]^2 t} \underbrace{\sin(mitx)}_{\text{bounded}}$$
, $a_m = \lambda \int_0^1 u^0(x) \sin(mitx) dx$
for comparison with (11)

To compare (11) and (12), we use the series exponsions for

$$e^{-k^{2}h} = \frac{1-k^{2}h}{2} + \frac{1}{2} \frac{k^{4}h^{2}}{2} - \frac{1}{3!} \frac{k^{6}h^{3}}{2} + \cdots$$

$$Sind = k - \frac{k^{3}}{3!} + \frac{k^{5}}{5!} - \frac{k^{7}}{7!} + \cdots$$

$$Sind = k - \frac{k^{3}}{3!} + \frac{k^{5}}{5!} - \frac{k^{7}}{7!} + \cdots$$

$$= \left[-4 \frac{h}{(\Delta x)^{2}} \left[\frac{k \Delta x}{\lambda} - \frac{1}{3!} \left(\frac{k \Delta x}{2} \right)^{3} + \frac{1}{5!} \left(\frac{k \Delta x}{2} \right)^{5} - \frac{1}{4!} \left(\frac{k \Delta x}{2} \right)^{7} + \dots \right]^{2}$$

$$= \left[-4 \frac{h}{(\Delta x)^{2}} \left[\frac{(k \Delta x)^{2}}{4} - \frac{2(k \Delta x)^{4}}{2 \cdot 3! \cdot 2^{3}} + \dots \right]$$

$$= \left[-k^{2}h + \frac{k^{4}h(\Delta x)^{2}}{12} + \dots \right]$$

Couclusion: we get at least first order accuracy and if $\frac{1}{2}k^4h^2 = \frac{1}{12}k^4h(2x)^2$, that is, $6h = (2x)^2$, then we pet second order accuracy

We concluded before fact if $(DX)^2 \le 2$ then the numerical scheme is convergent. Now, if we take $(DX)^2 > 2$ and KAX = JT (then $D(K) = [-4, \frac{h}{DX}]^2 \le 2$) = $[-4, \frac{h}{DX}]^2 \le 2$ and KAX = JT (then $D(K) = [-4, \frac{h}{DX}]^2 \le 2$) = $[-4, \frac{h}{DX}]^2 \le 2$ = $[-4, \frac{h}{DX}]^2 = [-2, \frac{h}{$

So, the modes [x(k)] n prow 1-cox12 1-

Therefore, the method is stable for $(\Delta x)^2 \leq \frac{1}{2}$ and unstable for $(\Delta x)^2 \geq \frac{1}{2}$.

For steloility, we require that there exists a constant of

Yu Yn mh{a =>[[7(4)]] m < 1/1.