

DESIGN AND ANALYSIS OF ALGORITHMS

P, NP, and NP-Complete Problems

Reetinder Sidhu

Department of Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

P, NP, and NP-Complete Problems

Reetinder Sidhu

Department of Computer Science and Engineering

UNIT 5: Limitations of Algorithmic Power and Coping with the Limitations

SPES UNIVERSITY ONLINE

- Dynamic Programming
 - Computing a Binomial Coefficient
 - The Knapsack Problem
 - Memory Functions
 - Warshall's and Floyd's Algorithms
 - Optimal Binary Search Trees
- Limitations of Algorithmic Power
 - Lower-Bound Arguments
 - Decision Trees
 - P, NP, and NP-Complete, NP-Hard Problems
- Coping with the Limitations
 - Backtracking
 - ▶ Branch-and-Bound

Concepts covered

- Decision Trees
 - Smallest of three numbers
 - Sorting
 - Searching

P, NP, AND NP-COMPLETE PROBLEMS Classifying Problem Complexity

- Is the problem tractable, i.e., is there a polynomial-time (O(p(n))) algorithm that solves it?
- Possible answers:
 - yes
 - ▶ no
 - because it's been proved that no algorithm exists at all (e.g., Turing's halting problem)
 - ★ because it's been be proved that any algorithm takes exponential time
- unknown

P, NP, AND NP-COMPLETE PROBLEMS Problem Types: Optimization and Decision

- Optimization problem: find a solution that maximizes or minimizes some objective function
- Decision problem: answer yes/no to a question
- Many problems have decision and optimization versions
- Example: traveling salesman problem
 - optimization: find Hamiltonian cycle of minimum length
 - decision: find Hamiltonian cycle of length $\leq m$
- Decision problems are more convenient for formal investigation of their complexity

Class P

Class P (Polynomial

The class of decision problems that are solvable in O(p(n)) time, where p(n) is a polynomial of problem's input size n

- searching
- element uniqueness
- graph connectivity
- graph acyclicity
- primality testing

Class NP

Class NP (Nondeterministic Polynomial)

class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

- A nondeterministic polynomial algorithm is an abstract two-stage procedure that:
 - generates a random string purported to solve the problem checks
 - whether this solution is correct in polynomial time
- By definition, it solves the problem if it's capable of generating and verifying a solution on one of its tries
- Why this definition?
 - led to development of the rich theory called "computational complexity"

Example: CNF satisfiability

Boolean Satisfiability (CNF)

Is a Boolean expression in its conjunctive normal form (CNF) satisfiable, i.e., are there values of its variables that makes it true?

- This problem is in NP. Nondeterministic algorithm:
 - ► Guess truth assignment
 - Substitute the values into the CNF formula to see if it evaluates to true
- Example: Consider the Boolean expression in CNF form:

$$(a+\overline{b}+\overline{c})(\overline{a}+b)(\overline{a}+\overline{b}+\overline{c})$$

- Can values false and true (or 0 and 1) be assigned to a, b and c such that above expression evaluates to 1?
- a = 1, b = 1, c = 0
- Checking phase: $\Theta(n)$

What problems are in NP?

- Hamiltonian circuit existence
- Partition problem: Is it possible to partition a set of n integers into two disjoint subsets with the same sum?
- Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimization problems. (Few exceptions include: MST, shortest paths)
- All the problems in P can also be solved in this manner (but no guessing is necessary), so we have:

$$P \subseteq NP$$

• Big question:

$$P = NP$$
 ?

NP-Complete Problems

- A decision problem D is NP-complete if it's as hard as any problem in NP, i.e.,
 - \triangleright D is in NP
 - every problem in NP is polynomial-time reducible to D

Cook's theorem (1971): CNF-sat is NP-complete

NP-Complete Problems

 Other NP-complete problems obtained through polynomial- time reductions from a known NP-complete problem

 Examples: TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial nature

P = NP? Dilemma Revisited

- P = NP would imply that every problem in NP, including all NP-complete problems, could be solved in polynomial time
- If a polynomial-time algorithm for just one NP-complete problem is discovered, then every problem in NP can be solved in polynomial time, i.e., P = NP

• Most but not all researchers believe that $P \neq NP$

