Cálculo Diferencial

Juan Cribillero Aching

Abril 2, 2024

Contenido

- 1 Funciones
 - Funciones pares, impares y periódicas
 - Funciones inyectivas, sobreyectivas y biyectivas
 - Imagen inversa
 - Función inversa
 - Funciones monótonas
- 2 Ejercicios
- 3 Referencias

- 1 Funciones
 - Funciones pares, impares y periódicas
 - Funciones inyectivas, sobreyectivas y biyectivas
 - Imagen inversa
 - Función inversa
 - Funciones monótonas
- 2 Ejercicios
- 3 Referencias

Definición (Función par)

Una función f, real de variable real, se denomina función par si f(-x) = f(x) para todo $x \in \text{Dom}(f)$.

- Esto implica que el dominio de una función par es simétrico respecto del origen.
- La gráfica de una función par es simétrico respecto del eje *Y*.

Funciones pares, impares y periódicas

Ejemplo

Las siguientes funciones son pares:

- $f(x) = ax^2 + b, x \in \mathbb{R}, a \neq 0 \text{ y } b \in \mathbb{R}.$
- $f(x) = \cos x, \ \forall x \in \mathbb{R}.$

Ejemplo

Demuestre que: Si $f,g:\mathbb{R}\to\mathbb{R}$ son funciones pares, entonces $f\pm g$ es función par en su dominio.

Resolución: Tenemos:
$$f(-x) = f(x)$$
, $\forall x \in \mathrm{Dom}(f)$ y $g(-x) = g(x)$, $\forall x \in \mathrm{Dom}(g)$. Luego, $\forall x \in \mathrm{Dom}(f) \cap \mathrm{Dom}(g)$:
$$(f \pm g)(-x) = f(-x) \pm g(-x)$$

$$(f \pm g)(-x) = f(x) \pm g(x)$$

$$(f \pm g)(-x) = (f \pm g)(x)$$

Por lo tanto, $f \pm g$ es función par.

Definición (Función impar)

Una función f, real de variable real, se denomina función impar si f(-x)=-f(x) para todo $x\in {\rm Dom}(f).$

- Esto implica que el dominio de una función impar es simétrico respecto del origen.
- La gráfica de una función impar es simétrico respecto del origen.

Funciones pares, impares y periódicas

Ejemplo

Las siguientes funciones son impares:

- $f(x) = ax^3, \ x \in \mathbb{R}, \ a \neq 0.$
- $f(x) = \operatorname{sen} x, \ \forall x \in \mathbb{R}.$

Ejemplo

Demuestre que: Si $f,g:\mathbb{R}\to\mathbb{R}$ son funciones impares, entonces $f\pm g$ es función impar en su dominio.

Resolución: Tenemos:
$$f(-x) = f(x)$$
, $\forall x \in \mathrm{Dom}(f)$ y $g(-x) = g(x)$, $\forall x \in \mathrm{Dom}(g)$. Luego, $\forall x \in \mathrm{Dom}(f) \cap \mathrm{Dom}(g)$:

$$(f \pm g)(-x) = f(-x) \pm g(-x)$$

 $(f \pm g)(-x) = (-f(x)) \pm (-g(x))$
 $(f \pm g)(-x) = -(f \pm g)(x)$

Por lo tanto, $f\pm g$ es función impar.

Funciones pares, impares y periódicas

Ejercicio

Sean las funciones $f,g:\mathbb{R}\to\mathbb{R}$. Determine el valor de verdad de cada una de las siguientes proposiciones.

- I. Si f es par y g es impar, entonces $f \circ g$ es par en su dominio.
- II. Si f es impar y g es par, entonces $f \circ g$ es par en su dominio.

Funciones pares, impares y periódicas

Ejercicio

Fijado un entero $k \geq 0$, sea $f_k \colon \mathbb{R} \to \mathbb{R}$ definida por $f_k(x) = ax^k$. Determine el valor de verdad de cada una de las siguientes proposiciones.

- I. Si k es par, entonces f_k es una función par.
- II. Si k es impar, entonces f_k es una función impar.

Definición (Función periódica)

Sea $A\subset\mathbb{R},\ f:A\to\mathbb{R}$ con $\mathrm{Dom}(f)=A.$ La función f es periódica de periodo $T\neq 0$ si para todo $x\in A$, se cumple que $x+T\in A$ y

$$f(x+T) = f(x)$$

El número T se denomina periodo de la función f. Si existe un valor mínimo de T>0 con esta propiedad, se denomina a T periodo fundamental para f.

Funciones pares, impares y periódicas

Ejemplo

La función $f(x) = \sin x$ es periódica de periodo fundamental $T = 2\pi$.

Funciones pares, impares y periódicas

Ejemplo

La función $f(x) = \cos x$ es periódica de periodo fundamental $T = 2\pi$.

Ejemplo

Las funciones trigonométricas en general son periódicas. La función $f(x)=\tan x$ es periódica de periodo fundamental $T=\pi$.

Ejemplo

La función $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x-[\![x]\!]$ es periódica de periodo fundamental T=1.

Definici<u>ón</u>

Dado la función $f \subset A \times B$. La función f es

- **inyectiva** si cada vez que $f(x_1) = f(x_2)$ se tiene necesariamente que $x_1 = x_2$.
- **sobreyectiva** si para todo $y \in B$, existe $x \in A$, tal que y = f(x). Equivalentemente, Ran(f) = B.
- biyectiva si es inyectiva y sobreyectiva a la vez.

Ejemplo

- $f(x) = e^x$ es función inyectiva.
- $f(x) = x^2 + 1$ no es función inyectiva.
- f(x) = ax + b donde $a \neq 0$ y $b \neq 0$ es función biyectiva.

Imagen inversa

Definición (Imagen inversa)

Sean $A\subset\mathbb{R},\ B\subset\mathbb{R}$ y $f:A\to B$ una función. Dado $y\in B$, la imagen inversa de y por f es el conjunto

$$f^{-1}(y) = \{x \in A : y = f(x)\} \subset \text{Dom}(f)$$

Imagen inversa

Observación

- $f^{-1}(y) \neq \emptyset$ si y solo si $y \in \text{Ran}(f)$. Luego, f es sobreyectiva si y solo si para todo $y \in B$, $f^{-1}(y) \neq \emptyset$.
- Para $y \in \text{Ran}(f)$, f invectiva significa que $f^{-1}(y) = \{x\}$ posee un solo punto.

Ejemplo

Sea la función $f(x)=3,\ x\in\mathbb{R}.$ La imagen inversa de f es $f^{-1}(\{3\})=\mathbb{R}.$

Ejemplo

Sea la función $f(x) = x^2$, $x \in \mathbb{R}$. La imagen inversa de f

■ Para
$$x = 0$$
 es $f^{-1}(\{0\}) = \{x \in \mathbb{R}/f(x) = 0\}$
 $f^{-1}(\{0\}) = \{0\}$

■ Para
$$x=4$$
 es $f^{-1}(\{4\})=\{x\in\mathbb{R}/f(x)=4\}$
$$f^{-1}(\{4\})=\{x\in\mathbb{R}/x^2=4\}$$

$$f^{-1}(\{4\})=\{-2,2\}$$

Criterio de la recta horizontal

Si toda recta horizontal interseca a la gráfica de una función f en un sólo punto, entonces f es inyectiva.

■ Función no inyectiva

■ Función inyectiva

Imagen inversa

Observación

El hecho de que para un valor dado de $y \in B$ exista un único valor de x en $f^{-1}(y)$, nos indica que la asignación de tal valor de x a y es una función.

Definición (Función inversa)

Sean $A\subset\mathbb{R}$, $B\subset\mathbb{R}$ y $f:A\to B$ una función. Si f es inyectiva definimos la función inversa de f, $f^*\colon B\to A$, tal que

$$y = f^*(x)$$
 si y solo si $x = f(y)$

Definición (Función inversa)

En forma equivalente:

Si la función $f=\{(x,f(x))/x\in {\rm Dom}(f)\}$ es inyectiva. Se define la función inversa, denotado por f^* , como

$$f^* = \{(f(x), x)/x \in \text{Dom}(f)\}$$

Así,

- $\blacksquare \operatorname{Ran}(f^*) = \operatorname{Dom}(f)$

Ejemplo

La función $y=f(x)=x^3-1$, $x\in\mathbb{R}$ es inyectiva, entonces existe la función f^* , es decir

$$y = f(x) = x^3 - 1$$
$$x = y^3 - 1$$
$$y = f^*(x) = \sqrt[3]{x+1}$$

- $\blacksquare \operatorname{Ran}(f^*) = \mathbb{R}$

Función inversa

Ejemplo

La función $y = \ln x$, $x \in]0, +\infty[$ es inyectiva, entonces existe la función \ln^* , es decir

$$y = \ln x$$
$$x = \exp y$$
$$\ln^* x = \exp x$$

- $\operatorname{Dom}\left(\ln^*\right) = \mathbb{R}$
- $\blacksquare \operatorname{Ran}\left(\ln^*\right) =]0, +\infty[$

•00000000

Definición (Función creciente)

Sea $f: I \to \mathbb{R}$ una función definida en un intervalo. Decimos que f es creciente en I si para todo par $x_1, x_2 \in I$, $x_1 < x_2$ implica $f(x_1) \le f(x_2)$.

Definición (Función estrictamente creciente)

Sea $f:I\to\mathbb{R}$ una función definida en un intervalo. Decimos que f es estrictamente creciente en I si para todo par $x_1, x_2 \in I$, $x_1 < x_2$ implica $f(x_1) < f(x_2)$.

00000000

Ejercicios 00000

Definición (Función decreciente)

Sea $f:I \to \mathbb{R}$ una función definida en un intervalo. Decimos que f es decreciente en I si para todo par $x_1,x_2 \in I$, $x_1 < x_2$ implica $f(x_2) \leq f(x_1)$.

Definición (Función estrictamente decreciente)

Sea $f:I\to\mathbb{R}$ una función definida en un intervalo. Decimos que f es estrictamente decreciente en I si para todo par $x_1,x_2\in I$, $x_1< x_2$ implica $f(x_2)< f(x_1)$.

Definición (Función monótona)

En cualquiera de las cuatro ultimas definiciones, diremos que f es monótona sobre I, siendo estrictamente monótona si es estrictamente creciente o decreciente.

Observación

Algunos autores utilizan los términos no decreciente y creciente en lugar de los respectivos creciente y estrictamente creciente, y del mismo modo para el decrecimiento.

Ejemplo

Los siguientes funciones son monótonas.

- $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x \text{ es estrictamente creciente.}$
- $f:]-\infty, 0] \to \mathbb{R}$, $f(x)=x^2$ es estrictamente decreciente.
- $f:[0,+\infty]\to\mathbb{R}, f(x)=x^2$ es estrictamente creciente.
- Toda función constante es creciente y decreciente a la vez.

Ejemplo

Se muestra la gráfica de la función f.

Ejemplo

Se muestra la gráfica de la función $f(x) = \frac{1}{x}, x \neq 0.$

- \blacksquare f es inyectiva.
- f no es sobreyectiva (sobre \mathbb{R}).
- lacksquare f es decreciente en $]-\infty,0[.$
- f es decreciente en $]0, +\infty[$.

00000000

Ejercicios ၁၀၀၀၀

Funciones monótonas

Relación entre monotonía e inyectividad

- \blacksquare Si f es monótona estricta, implica que f es inyectiva.
- \blacksquare Si f es inyectiva, no implica que f es monótona estricta.

Sesión 01

- 1 Funciones
 - Funciones pares, impares y periódicas
 - Funciones inyectivas, sobreyectivas y biyectivas
 - Imagen inversa
 - Función inversa
 - Funciones monótonas
- 2 Ejercicios
- 3 Referencias

Determine si f es par, impar o ninguna de las dos. Si tiene una calculadora graficadora, utilícela para verificar visualmente su respuesta.

a)
$$f(x) = \frac{x}{x^2 + 1}$$

$$b) f(x) = x|x|$$

c)
$$f(x) = \frac{x^2}{x^4 + 1}$$

d)
$$f(x) = \frac{x}{x+1}$$

e) $f(x) = 1 + 3x^2 - x^4$

e)
$$f(x) = 1 + 3x^2 - x^2$$

f)
$$f(x) = 1 + 3x^3 - x^5$$

Suponga que f es una función inyectiva.

a) Si
$$f(x) = x^5 + x^3 + x$$
, ¿qué es $f^{-1}(3)$?

b) Si
$$f^{-1}(8) = 2$$
, ¿qué es $f(2)$?

Encuentre una fórmula explícita para f^{-1} y utilícela para trazar la gráfica de f^{-1} , f y la recta y=x en la misma pantalla. Para comprobar su trabajo, vea si las gráficas de f y f^{-1} son reflexiones a través de la recta.

a)
$$f(x) = \sqrt{4x+3}$$

b)
$$f(x) = 1 + e^{-x}$$

Sea la función $f(x) = \ln(x + \sqrt{x^2 + 1})$.

- a) Demuestre que f es una función impar.
- b) Encuentre la inversa de f.

Sesión 01

- 1 Funciones
 - Funciones pares, impares y periódicas
 - Funciones inyectivas, sobreyectivas y biyectivas
 - Imagen inversa
 - Función inversa
 - Funciones monótonas
- 2 Ejercicios
- 3 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

