THE DOLD-KAN CORRESPONDENCE

ARPON RAKSIT

1. Introduction

1.1. **Definition.** A simplicial object in a category \mathcal{C} is a contravariant functor $\Delta \to \mathcal{C}$. We denote the category Fun(Δ^{op} , \mathcal{C}) of simplicial objects in \mathcal{C} by s \mathcal{C} . E.g., s \mathcal{S} et is the category of simplicial sets and s \mathcal{A} b is the category of simplicial abelian groups.

Recall we have a functor Sing : $\operatorname{Top} \to \operatorname{sSet}$, sending $X \mapsto \operatorname{Hom}_{\operatorname{Top}}(|\Delta^{\bullet}|, X)$. Lately we've been talking about Sing for two reasons:

- (1) It's a right adjoint to geometric realisation |-|: sSet \rightarrow Top.
- (2) $\operatorname{Sing}(X)$ is a Kan complex for all $X \in \operatorname{\mathfrak{T}op}$. In this sense, "Kan complexes are like spaces".

But this isn't the first place one sees Sing, probably. Indeed, the singular homology functors are essentially defined by a composition

$$H_n(-; \mathbb{Z}) := \mathfrak{T}op \xrightarrow{\operatorname{Sing}} s\mathfrak{S}et \xrightarrow{\mathbb{Z}} s\mathcal{A}b \xrightarrow{\sum (-1)^i d_i} \mathfrak{C}h \xrightarrow{H_n} \mathcal{A}b.$$

Here \mathbb{Z} denotes the functor which takes free abelian groups level-wise, from which we get the *singular chain complex* by letting the boundary map be given by $\partial := \sum (-1)^i d_i$.

This was just to remind us that we've seen a natural functor $s\mathcal{A}b \to \mathcal{C}h$ relating simplicial abelian groups and chain complexes. We'll look at it a bit more carefully in a second, and develop this relationship much further.

References

- 1. Paul G. Goerss and John F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, 1999.
- 2. Akhil Mathew, The Dold-Kan correspondence, people.fas.harvard.edu/~amathew/doldkan.pdf.
- 3. Emily Riehl, A leisurely introduction to simplicial sets, www.math.harvard.edu/~eriehl/ssets.pdf.

Date: October 21, 2013.