Universidade Veiga deAlmeida

Professora: Adriana Nogueira

Curso: Básico das engenharias

Disciplina: Cálculo Vetorial e Geometria Analítica

1^a Lista de exercícios

Exercício 1: Represente os vetores dados abaixo no sistema de coordenadas cartesianas:

(a)
$$\overrightarrow{r} = (4, -2)$$

(b)
$$\vec{s} = (-1, 3)$$

(c)
$$\overrightarrow{t} = 3\overrightarrow{i} + 5\overrightarrow{j}$$

(d)
$$\overrightarrow{u} = -4\overrightarrow{i} - 3\overrightarrow{j}$$

Exercício 2: Dados os vetores $\overrightarrow{u}=3\overrightarrow{i}+2\overrightarrow{j}, \ \overrightarrow{v}=-5\overrightarrow{i}+\overrightarrow{j}$ e $\overrightarrow{w}=\overrightarrow{i}-2\overrightarrow{j}$, determine:

(a)
$$\overrightarrow{p} = 2\overrightarrow{u} + 3\overrightarrow{v}$$

(b)
$$\overrightarrow{q} = \overrightarrow{u} + 5\overrightarrow{v}$$

(c)
$$\overrightarrow{r} = \overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w}$$

(d)
$$\overrightarrow{s} = \overrightarrow{u} - 2\overrightarrow{i} + 7\overrightarrow{j} + \overrightarrow{w}$$
.

Exercício 3: Dados os vetores $\overrightarrow{u} = (2,1)$, $\overrightarrow{v} = (3,-2)$ e $\overrightarrow{w} = (-1,-1)$, determine o vetor \overrightarrow{r} em cada item abaixo:

(a)
$$5\overrightarrow{r} - 2\overrightarrow{v} + \overrightarrow{w} = 3\overrightarrow{u} + 2\overrightarrow{r}$$

(b)
$$2\overrightarrow{r} + 3(\overrightarrow{u} - 3\overrightarrow{w}) = \frac{3}{2}\overrightarrow{r} - 5\overrightarrow{v}$$

Exercício 4: Dados os vetores $\overrightarrow{u} = (2,1)$, $\overrightarrow{v} = (1,-1)$ e $\overrightarrow{w} = (5,7)$, determine os valores de a e b tais que:

$$\overrightarrow{w} = a\overrightarrow{u} + b\overrightarrow{v}$$

Exercício 5: Dados os pontos A = (1,2), B = (3,-2) e C = (1,-1), determine a expressão analítica dos vetores indicados abaixo:

(a)
$$\overrightarrow{u} = \overrightarrow{AB} - 3\overrightarrow{CB}$$

(b)
$$\overrightarrow{v} = \overrightarrow{CB} + 2\overrightarrow{AC}$$

(c)
$$\overrightarrow{w} = 2\overrightarrow{BC} - \overrightarrow{AC} + \overrightarrow{OA}$$

Considere O como a origem do sistema cartesiano.

Exercício 6: Determine a extremidade do segmento orientado AB que representa o vetor $\overrightarrow{u} = (3, -5)$, sabendo que sua origem é A = (-1, 2).

Exercício 7: Verifique se o quadrilátero ABCD com vértices nos pontos $A=(1,1),\ B=(4,2),\ C=(5,4)$ e D=(2,3), é um paralelogramo. Considere o vértice C oposto ao vértice A.

Exercício 8: Dados os pontos A=(1,2), B=(-2,5) e C=(1,1), faça o que é pedido abaixo:

- (a) Calcule os comprimentos dos vetores \overrightarrow{AB} e \overrightarrow{BC} ;
- (b) Calcule a distância entre os pontos $A \in C$;
- (c) Determine o ponto médio entre A e B.

Exercício 9: Determine o versor de cada um dos vetores dados abaixo:

(a)
$$\vec{u} = (1, 5)$$

(b)
$$\vec{u} = (-2, 6)$$

Exercício 10: Dados os vetores $\overrightarrow{u}=(-1,1), \ \overrightarrow{v}=(3,-2)$ e $\overrightarrow{w}=(2,-1),$ calcule:

- (a) $|\overrightarrow{u}|, |\overrightarrow{v}|, |\overrightarrow{w}|$
- (b) $|2\overrightarrow{u} \overrightarrow{v}|$
- (c) $|\overrightarrow{u} + 3\overrightarrow{v}|$

Exercício 11: Dado o vetor $\overrightarrow{u} = (2,5)$, determine o vetor \overrightarrow{v} paralelo a \overrightarrow{u} que tenha:

- (a) mesmo sentido de \overrightarrow{u} e o o triplo do comprimento de \overrightarrow{u} ;
- (b) sentido oposto ao de \overrightarrow{u} e módulo 5;
- (c) sentido oposto ao de \overrightarrow{u} e módulo 8.

Exercício 12: Calcule os valores de a para que o vetor $\overrightarrow{u}=(a,\frac{1}{5})$ seja um versor.

Exercício 13: Calcule o valor de a para que os vetores $\overrightarrow{u} = (2a - 1, 3)$ e $\overrightarrow{v} = (5, 7)$ sejam paralelos.

Exercício 14: Calcule os valores de a de tal forma que o vetor $\overrightarrow{u}=(a,3)$ tenha medida 7.

Exercício 15: Encontre o vetor \overrightarrow{v} paralelo a \overrightarrow{i} , com mesmo sentido de \overrightarrow{i} e tal que $|\overrightarrow{v}|=6$.