22234747025

Department of Computer Science

MSc Computer Science - Semester II

MCSC 201: Machine Learning (UPC: 223411201)

16 Aug 2023

Max. marks: 70

Note1: Attempt all questions. All questions carry equal marks.

Note2: Use formal notation for all questions. Follow systematic approach towards the problem and show all intermediate steps neatly for full credit.

- 1. (a) Write the discriminant function based on the likelihood ratio for a two class problem and the corresponding decision rule. Transform it into linear form. (7)
 - (b) Name one algorithm that performs (i) hard partitioning and (ii) soft partitioning. Write the optimization criterion for both algorithms using formal notation. (7)
- 2. (a) Consider a two class problem with the possible actions shown in the following loss matrix.

Action \ Actual Class	C1	C2
α_1 : Choose C1	0	4
α_2 : Choose C2	12	0

Write the optimal decision rule for each action. How is the rule revised if Reject action (α_R) is added with equal cost (=2) for both classes. (10)

(b) Consider three class classification problem, where the classes are pairwise linearly separable. How many classifiers need to be trained? Justify with the help of a neat diagram. (4)

3. (a) Given a Normal variate $X \sim N(\mu, \sigma^2)$, find the MLE for the two parameters. (2+4)

Let X be a training data set in \mathcal{R}^{10} with 1000 instances and Σ be its variance-covariance matrix. Further, w_1, w_2 are the first two principal components. Write down the constraints for maximizing the variance for the third principal component (w_3) with complete notation and reason. (8)

4. (a) Show that the total error of a classifier can be decomposed into two components (Bias and Variance). What do these components indicate about the classifier? (8)

(b) Train a perceptron that implements OR function, and show its geometric interpretation. (6)

5. (a) Consider a two class problem with distribution of two classes and the decision boundaries shown as below. What is the hypothesis class? Justify your answer. (4)

(b) Derive cross-entropy loss for a 2-class classification problem. Given that \mathcal{X} is the training set containing N instances. (10)

Good Luck