## CSE 40647/60647 Data Science (Fall 2017) Mid-term Exam

Instructor: Meng Jiang

(75 minutes, 100 marks, double sided reference, brief answers)

NetID:

Score:

| <ol> <li>[12] Introduction.</li> <li>Name at least 4 steps in "Data Science Research" or called "Knowledge Discovery from Data" (KDD).</li> </ol> |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer: Any four of the following:                                                                                                                |
| (a) Task/problem definition                                                                                                                       |
| (b) Data cleaning                                                                                                                                 |
| (c) Data integration                                                                                                                              |
| (d) Task-relevant data selection                                                                                                                  |
| (e) Data mining, Machine Learning                                                                                                                 |
| (f) Pattern evaluation                                                                                                                            |

2. [18] Data processing – Measures.

(a) [9] (Distance measures) Given two data objects and four attributes/features, we have feature vectors of the two data objects as (7,4,-2,1) and (4,5,-1,6). Please **calcuate three** specific Minkowski distance measures between the two objects and **give the measures' names**. (Hint:  $4^2 = 16$ ,  $5^2 = 25$ ,  $6^2 = 36$ ,  $7^2 = 49$ ,  $8^2 = 64$ ,  $9^2 = 81$ ,  $10^2 = 100$ )

## **Answer:**

Name:

i. Manhattan Distance (*i.e.*, L-1 norm): 3 + 1 + 1 + 5 = 10. ii. Euclidean Distance (*i.e.*, L-2 norm):  $\sqrt{3^2 + 1^2 + 1^2 + 5^2} = 6$ .

iii. Supremum Distance (i.e., L- $\infty$  norm):  $\max\{3,1,1,5\}=5$ .

(b) [9] (Correlation measures) Give one example wherein **Kulczynski measure** between two variables A and B is *more appropriate* than **Chi-square test**  $\chi^2$ : You are asked to (1) explain your variables A and B, (2) give an equation to define the Kulczynski measure, (3) explain why Kulc measure is more appropriate in this example.

**Answer:**  $Kulc(A, B) = \frac{1}{2}(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)})$ , where s(X) is the support of X. Too many null transactions. Kulczynski is a null-invariant measure.

| 3. |     | Data warehousing, OLAP, and data cube computation. pose the base cuboid of a data cube contains two cells                                                                                                                                                          |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     | $(a_1, a_2, a_3, a_4, a_5, a_6) : 1,$<br>$(a_1, \mathbf{b_2}, a_3, \mathbf{b_4}, a_5, \mathbf{b_6}) : 1.$                                                                                                                                                          |
|    | whe | re $a_i \neq b_i$ for any dimension $i \in \{2, 4, 6\}$ . Assume each dimension contains no concept hierarchy has a single level). (Hint: $2^3 = 8$ , $2^4 = 16$ , $2^5 = 32$ , $2^6 = 64$ )                                                                       |
|    | (a) | [6] How many <b>nonempty cuboids</b> are there in this data cube?                                                                                                                                                                                                  |
|    | (b) | <b>Answer:</b> 64. Since we have 6 dimensions with no concept hierarchy, there are $2^6$ cuboids and all of them should not be empty. $\Box$ [6] How many <b>nonempty closed cells</b> are there in this data cube?                                                |
|    |     | <b>Answer:</b> 3. There are 3 closed cells, including the two base cells and $(a_1, *, a_3, *, a_5, *)$ .                                                                                                                                                          |
|    | (c) | [6] How many <b>nonempty aggregated closed cells</b> are there in this data cube? What are they? <b>Answer:</b> 1. There are 3 closed cells, including the two base cells and $(a_1, *, a_3, *, a_5, *)$ . But only the latter one is an aggregated closed cell.   |
|    | (d) | [6] How many <b>nonempty aggregated cells</b> are there in this data cube?                                                                                                                                                                                         |
|    |     | <b>Answer:</b> 118. For each base cell, there are $2^6-1$ aggregated cells. However, there are $2^3$ cells that are counted twice since there are 3 common dimensions. Therefore, the total number of nonempty aggregated cells is $2 \cdot (2^6-1) - 2^3 = 118$ . |
|    | (e) | [6] If we set <b>minimum support = 2</b> , how many <b>nonempty aggregated cells</b> are there in the corresponding <b>iceberg cube</b> ?                                                                                                                          |
|    |     | <b>Answer:</b> 8. These two base cells have common value in 3 dimensions; therefore, there are $2^3$ nonempty cells with support = 2 and all of them are aggregate cells.                                                                                          |
|    |     |                                                                                                                                                                                                                                                                    |

4. [40] Frequent pattern and association rule mining. A data set shows 100 transactions in 5 days, each being summarized as a set of items associated with the number of transactions. Let *relative mininum support* to be  $min\_sup = 0.5$  and *minimum confidence* to be  $min\_conf = 0.6$ . **Again, here we have 100 transactions, not just 5!!!** 

| date  | items_bought    | number of transactions |
|-------|-----------------|------------------------|
| 10/15 | {a, b, c, m, p} | 15                     |
| 10/16 | {b, e, f, p}    | 35                     |
| 10/18 | {a, c, k, p}    | 15                     |
| 10/20 | {b, e, p}       | 15                     |
| 10/21 | {a, e, g, p}    | 20                     |

(a) [10] List the frequent 1-itemset associated with their absolute counts.

**Answer:** p:100, e:70, b:65, a:50

(b) [10] Draw the first frequent pattern tree (FP-tree) constructed and used in FP-Growth for the dataset. The tree is NOT for any conditional pattern base.

**Answer:** Any other trees will be ok if it is correct.



Figure 1: FP tree.

(c) [10] Present **all** the frequent k-itemsets for the **largest** k. Only list frequent itemsets of the largest size. The number of the largest frequent itemsets can be one, two, or many: Please list all of them.

**Answer:** peb:50

(d) [10] Compute *relative* support and confidence on the following two rules. Are they good **association rules**? (Hint: compare with  $min\_sup$  and  $min\_conf$ .)

i. 
$$pa \rightarrow b$$
, i.e.,  $\{p,a\} \rightarrow \{b\}$ ;  
ii.  $p \rightarrow e$ , i.e.,  $\{p\} \rightarrow \{e\}$ .

**Answer:**  $pa \to b \ (s:15\%,c:30\%)$ , not an association rule;  $p \to e \ (s:70\%,c:70\%)$ , a good association rule.