International Rectifier

IRF3710SPbF IRF3710LPbF

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

G

 $V_{DSS} = 100V$

 $R_{DS(on)} = 23m\Omega$

 $I_{D} = 57A$

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D^2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D^2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. The through-hole version (IRF3710L) is available for low-profile applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V⑦	57	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V⑦	40	A
I _{DM}	Pulsed Drain Current ①⑦	180	
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current①	28	Α
E _{AR}	Repetitive Avalanche Energy①	20	mJ
dv/dt	Peak Diode Recovery dv/dt 30	5.8	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		_°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted,steady-state)**		40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	-						
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.13		V/°C	Reference to 25°C, I _D = 1mA⑦	
R _{DS(on)}	Static Drain-to-Source On-Resistance			23	mΩ	V _{GS} = 10V, I _D =28A ④	
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
9fs	Forward Transconductance	32			S	V _{DS} = 25V, I _D = 28A⊕⑦	
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V	
צצטי	Dialii-to-Source Leakage Current			250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$	
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100	lia	V _{GS} = -20V	
Qg	Total Gate Charge			130		I _D = 28A	
Q _{gs}	Gate-to-Source Charge			26	nC	$V_{DS} = 80V$	
Q_{gd}	Gate-to-Drain ("Miller") Charge			43		V _{GS} = 10V, See Fig. 6 and 13⑦	
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 50V$	
t _r	Rise Time		58		ns	$I_D = 28A$	
t _{d(off)}	Turn-Off Delay Time		45		115	$R_G = 2.5\Omega$	
t _f	Fall Time		47			V _{GS} = 10V, See Fig. 10 ⊕ ⑦	
1	Internal Drain Inductance		15			Between lead,	
L _D	Internal Drain Inductance		4.5			6mm (0.25in.)	
			7.5		nH	from package	
L _S	Internal Source Inductance		7.5			and center of die contact	
C _{iss}	Input Capacitance		3130			$V_{GS} = 0V$	
C _{oss}	Output Capacitance		410			$V_{DS} = 25V$	
C _{rss}	Reverse Transfer Capacitance		72		pF	f = 1.0MHz, See Fig. 5	
E _{AS}	Single Pulse Avalanche Energy27		1060 ଓ	280⑥	mJ	$I_{AS} = 28A, L = 0.70mH$	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current		57		MOSFET symbol		
	(Body Diode)	5		57	Α	showing the	
I _{SM}	Pulsed Source Current			230	, ,	integral reverse	
	(Body Diode)①	(Body Diode)①				p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 28A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		140	220	ns	$T_J = 25^{\circ}C, I_F = 28A$	
Q _{rr}	Reverse Recovery Charge		670	1010	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\label{eq:tau} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{$
- $\label{eq:continuity} \begin{tabular}{ll} $\leq 28A,\ di/dt \leq 380A/\mu s,\ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 175^{\circ}C. \end{tabular}$
- $\ \, \mbox{ } \mbox$
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- 6 This is a calculated value limited to $T_J = 175^{\circ}C$.
- ① Uses IRF3710 data and test conditions.
- **When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTNOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- A THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E. L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY. 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7, CONTROLLING DIMENSION: INCH.
- B, OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS				Ŋ	
M B	MILLIMETERS		INCHES		Ö	LEAD ASSIGNMENTS
0 L	MIN.	MAX.	MIN.	MAX.	Ë	
Α	4.06	4.83	.160	.190		HEXFET
A1	0.00	0.254	.000	.010		1,- GATE
b	0,51	0.99	,020	.039		2, 4,- DRAIN
ь1	0.51	0.89	.020	.035	5	3 SOURCE
b2	1.14	1.78	.045	.070		
b3	1,14	1,73	.045	.068	5	
С	0.38	0.74	.015	.029		IGBTs, CoPACK
c1	0.38	0.58	.015	.023	5	1 GATE
c2	1,14	1,65	.045	.065		2. 4.— COLLECTOR
D	8.38	9.65	.330	.380	3	3 EMITTER
D1	6,86	-	.270		4	
Ε	9,65	10,67	.380	.420	3,4	
ΕÍ	6.22	-	.245		4	
e	2,54	BSC	.100	BSC		DIODES
н	14.61	15.88	.575	.625		1 ANODE *
L	1,78	2.79	.070	.110		2, 4 CATHODE 3 ANODE
L1	-	1,65	-	.066	4	3 ANUDE
L2	1.27	1.78	-	.070		
L3	0.25	BSC	.010	BSC	1	PART DEPENDENT
L4	4,78	5.28	.188	.208	1	

D²Pak (TO-263AB) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5 DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.
- 6. CONTROLLING DIMENSION: INCH.
- 7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

S Y M	DIMENSIONS							
B	MILLIM	ETERS	INC	INCHES				
L	MIN. MAX.		MIN.	MAX.	NO TES			
Α	4,06	4.83	.160	,190				
A1	2.03	3.02	.080	,119				
b	0,51	0.99	.020	.039				
ь1	0.51	0.89	.020	.035	5			
b2	1,14	1.78	.045	.070				
ь3	1,14	1.73	.045	.068	5			
С	0.38	0.74	.015	.029				
c1	0.38	0.58	.015	.023	5			
c2	1.14	1.65	.045	.065				
D	8.38	9.65	.330	.380	3			
D1	6.86	-	.270	-	4			
Ε	9.65	10.67	.380	.420	3,4			
Εf	6.22	-	.245		4			
е	2.54	BSC	.100	BSC				
L	13.46	14.10	.530	.555				
L1	-	1.65	-	.065	4			
L2	3.56	3.71	.140	.146				

LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1,- GATE 2.- DRAIN 3,- SOURCE 4,- DRAIN

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

TO-262 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak Tape & Reel Information Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Ø 60.00 (2.362) MIN.

30.40 (1.197)

MAX

4

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.