Estudiante: Danny Sebastián Díaz Padilla

Taller

Relative Error

Runtimes (ms)

Model	Relative Error	Standard Deviation	Gains	Total Time	Training Time (1,000 Rows)
Generalized Linear Model	5.1%	± 0.4%	?	254 ms	425 ms
Deep Learning	4.9%	± 0.7%	?	596 ms	2 s
Decision Tree 🗳 🗳	1.4%	± 0.3%	?	136 ms	8 ms

Model	Relative Error	Standard Deviation	Gains	Total Time	Training Time (1,000 Rows)
Random Forest	1.1%	± 0.2%	?	697 ms	100 ms
Gradient Boosted Trees	1.3%	± 0.5%	?	13 s	3 s
Support Vector Machine	15.1%	± 0.6%	?	406 ms	92 ms

Importar data de casas en venta de una Inmobiliaria

house_sqft - superficie de la casa
num_of_bedrooms - Número de habitaciones
num_of_bathrooms - Número de baños
year_built - El año en que se construyó la casa
tax_assessed_value - Valor de acceso fiscal de la casa
last_sold_price - Último precio de venta de la casa
rate_per_sqfoot - Tasa por pie cuadrado.
home_type - (value apartment, townhouse or single family home)
school_rating_1to10 - Calificación de la escuela que le corresponde al lugar

Identificar los algoritmos con mejor resultados

El modelo con mayor velocidad al otorgar un score y en general es el Árbol de decisiones con solo un 1.4% de error.

El mejor modelo en cuestión de predicción es "Random Forest" con una menor desviación que el árbol de decisiones pero se demora 5.125 (o mejor dicho 697/136) veces más al entrenar y 12.5 (o mejor dicho 100/8) veces más al otorgar scores.

Predecir 10 distintos escenarios de venta de casas con distintos algoritmos

A. Algoritmo: Generalized Linear Model

Factores:

Escenarios:

1. Con número promedio de datos.

Generalized Linear Model - Simulator

2. Con bajo número de cuartos

Generalized Linear Model - Simulator

3. Con alto número de cuartos

Generalized Linear Model - Simulator

4. Con bajo número de baños

Generalized Linear Model - Simulator

5. Con alto número de baños

Generalized Linear Model - Simulator

6. Con una superficie pequeña

Generalized Linear Model - Simulator

7. Con una superficie enorme

Generalized Linear Model - Simulator

8. Casa antigua

Generalized Linear Model - Simulator

9. Casa moderna

Generalized Linear Model - Simulator

10. Con alta superficie, bajo número de cuartos pero construida recientemente

Generalized Linear Model - Simulator

B. Algoritmo: Deep Learning

Factores:

Important Factors for Prediction

Escenarios:

1. Con número promedio de datos

Deep Learning - Simulator

2. Con bajo número de cuartos

Deep Learning - Simulator

3. Con alto número de cuartos

Deep Learning - Simulator

4. Con bajo número de baños

Deep Learning - Simulator

5. Con alto número de baños

Deep Learning - Simulator

6. Con poca superficie

Deep Learning - Simulator

7. Con gran superficie

Deep Learning - Simulator

8. Casa antigua

Deep Learning - Simulator

9. Casa moderna

Deep Learning - Simulator

10. Casa con pocos cuartos, construida actualmente y con gran superficie

Deep Learning - Simulator

C. Algoritmo: Decision Tree

Factores:

Important Factors for Prediction

Escenarios:

1. Con número promedio de datos

Decision Tree - Simulator

2. Con bajo número de cuartos

Decision Tree - Simulator

3. Con alto número de cuartos

Decision Tree - Simulator

4. Con bajo número de baños

Decision Tree - Simulator

5. Con alto número de baños

Decision Tree - Simulator

6. Con poca superficie

Decision Tree - Simulator

7. Con gran superficie

Decision Tree - Simulator

8. Casa antigua

Decision Tree - Simulator

9. Casa moderna

Decision Tree - Simulator

10. Casa con pocos cuartos, construida actualmente y con gran superficie

Decision Tree - Simulator

D. Algoritmo: Random Forest

Factores:

Important Factors for Prediction

Escenarios:

1. Con número promedio de datos

Random Forest - Simulator

2. Con bajo número de cuartos

Random Forest - Simulator

3. Con alto número de cuartos

Random Forest - Simulator

4. Con bajo número de baños

Random Forest - Simulator

5. Con alto número de baños

Random Forest - Simulator

6. Con poca superficie

Random Forest - Simulator

7. Con gran superficie

Random Forest - Simulator

8. Casa antigua

Random Forest - Simulator

9. Casa moderna

Random Forest - Simulator

10. Casa con pocos cuartos, construida actualmente y con gran superficie

Random Forest - Simulator

E. Algoritmo: Gradient Boosted Trees

Factores:

Important Factors for Prediction

Escenarios:

1. Con número promedio de datos

Gradient Boosted Trees - Simulator

2. Con bajo número de cuartos

Gradient Boosted Trees - Simulator

3. Con alto número de cuartos

Gradient Boosted Trees - Simulator

4. Con bajo número de baños

Gradient Boosted Trees - Simulator

5. Con alto número de baños

Gradient Boosted Trees - Simulator

6. Con poca superficie

Gradient Boosted Trees - Simulator

7. Con gran superficie

Gradient Boosted Trees - Simulator

8. Casa antigua

Gradient Boosted Trees - Simulator

9. Casa moderna

Gradient Boosted Trees - Simulator

10. Casa con pocos cuartos, construida actualmente y con gran superficie

Gradient Boosted Trees - Simulator

F. Algoritmo: Support Vector Machine

Factores:

Important Factors for Prediction

Escenarios:

1. Con número promedio de datos

Support Vector Machine - Simulator

2. Con bajo número de cuartos

Support Vector Machine - Simulator

3. Con alto número de cuartos

Support Vector Machine - Simulator

4. Con bajo número de baños

Support Vector Machine - Simulator

5. Con alto número de baños

Support Vector Machine - Simulator

6. Con poca superficie

Support Vector Machine - Simulator

7. Con gran superficie

Support Vector Machine - Simulator

8. Casa antigua

Support Vector Machine - Simulator

9. Casa moderna

Support Vector Machine - Simulator

10. Casa con pocos cuartos, construida actualmente y con gran superficie

Support Vector Machine - Simulator

