Recommended parameter values

Mart-Jan Schelhaas ¹						
Mait-Jan Schemas						
¹ Alterra, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, the Netherlands						
Published: 17 June 2016						
Disclaimer: views expressed are those of the author(s) only and do not necessarily represent those of the European Forest Institute.						
© European Forest Institute 2016						
© European Forest Histitute 2010						

Table of contents

1.	Introduction	. 2
2.	Parameters for matrix initialisation.	. 2
	Parameters for modelling regrowth after thinnings and regeneration	
	Parameters for estimating soil carbon stocks	
	prences	

This document is based on a description previously published in:

Schelhaas, M.-J., Eggers, J., Lindner, M., Nabuurs, G.J., Päivinen, R., Schuck, A., Verkerk, P.J., Werf, D.C. van der, Zudin, S. (2007). Model documentation for the European Forest Information Scenario model (EFISCEN 3.1.3). Alterra report 1559 and EFI technical report 26. Alterra and European Forest Institute, Wageningen and Joensuu, p. 118.

1. Introduction

This document provides recommended parameter values to initialise and/or run EFISCEN 4.1. The parameters are described in detail by Schelhaas et al. (2007).

2. Parameters for matrix initialisation

To initialise EFISCEN with forest inventory data, a user needs to specify the parameter r, which is the correlation between volume per hectare and ln(age) for a forest type (see Schelhaas et al. 2007, page 27). Recommended parameter values are given in Table 1.

Table 1: Recommended values for parameter r in different situations (Attebring et al. 1989).

Species	All forests	Separate classes	site	Forests stocked	well	Separate site classes and forests well stocked
Spruce, beech	0.55	0.6		0.65		0.7
Pine, oak	0.45	0.5		0.55		0.6
Others	0.5	0.55		0.6		0.65

3. Parameters for modelling regrowth after thinnings and regeneration

To model regrowth after thinnings and regeneration, a user needs to specify a young forest coefficient (see Schelhaas et al. 2007, page 31), a growth boost and a thinning history (see Schelhaas et al. 2007, page 30). Recommended parameter values are given in Table 2.

Table 2: Recommended parameter values for the young forest coefficient and thinning parameters (Schelhaas et al. 2007)

	Young forest coefficient - slow growing broadleaves	Young forest coefficient -fast growing broadleaves (birch, willow, alder)	Young forest coefficient -Conifers	Thinning history	Regrowth	
Alpic	0.4	0.8	0.7	0.2	0.5	Austria
Aipic	0.4	0.8	0.7	0.2	0.5	Switzerland
A 41 a 4 i a	0.5	0.9	0.8	0.1	0.5	United Kingdom
Atlantic	0.5	0.9	0.8	0.1	0.5	Ireland
	0.3	0.7	0.6	0.2	0.4	Estonia
Baltic	0.3	0.7	0.6	0.2	0.4	Latvia
	0.3	0.7	0.6	0.2	0.4	Lithuania
	0.4	0.8	0.7	0.2	0.4	Czech Republic
	0.4	0.8	0.7	0.2	0.4	Germany
Central	0.4	0.8	0.7	0.2	0.4	Denmark
	0.4	0.8	0.7	0.2	0.4	Poland
	0.4	0.8	0.7	0.2	0.4	Slovak Republic
	0.3	0.7	0.6	0.1	0.3	Bulgaria
Med. East	0.3	0.7	0.6	0.1	0.3	Greece
	0.3	0.7	0.6	0.1	0.3	Turkey
	0.3	0.7	0.6	0.1	0.3	Albania
	0.3	0.7	0.6	0.1	0.3	Bosnia-Herzegovina
	0.3	0.7	0.6	0.1	0.3	Croatia
Med. Middle	0.3	0.7	0.6	0.1	0.3	Italy
whate	0.3	0.7	0.6	0.1	0.3	Macedonia
	0.3	0.7	0.6	0.1	0.3	Slovenia
	0.3	0.7	0.6	0.1	0.3	Serbia
M - 1 3774	0.3	0.7	0.6	0.1	0.3	Spain
Med. West	0.3	0.7	0.6	0.1	0.3	Portugal
	0.3	0.7	0.6	0.3	0.4	Finland
Northern	0.3	0.7	0.6	0.3	0.4	Norway
	0.3	0.7	0.6	0.3	0.4	Sweden
D	0.4	0.8	0.7	0.2	0.4	Hungary
Pannonic	0.4	0.8	0.7	0.2	0.4	Romania
Sub-	0.5	0.9	0.8	0.2	0.4	Belgium Luxembourg
Atlantic	0.5	0.9	0.8	0.2	0.4	France
	0.5	0.9	0.8	0.2	0.4	Netherlands

4. Parameters for estimating soil carbon stocks

To estimate soil carbon stocks, a user needs to specify parameters of the soil carbon module for reference conditions (see Schelhaas et al. 2007, page 37). Recommended parameter values are given in Table 3.

Table 3: Parameters of the soil carbon module for the reference conditions for the two different methods to determine temperature sensitivity (Liski et al., 2005).

Parameter Parameter	Value	Value					
Method	Average annual temperature	Temperature sum					
Reference conditions							
T_{ref}	4 °C	1903 °C days					
Dref	-50 mm	-32 mm					
Temperature and drought sensitivity	0.0027	0.000207					
$lpha_1$ $lpha_2$	0.0937 0.00229	0.000387 0.00325					
Humus decreased temperature sensitivity	0.00227	0.00323					
Shum1	0.6	0.6					
Shum1	0.36	0.36					
Invasion rates of woody litter by microbes (year)							
a_{nwl}	1	1					
a_{fwl}	0.5	0.54					
a _{cwl}	0.05	0.053					
Litter composition							
c _{nwlsol} for conifers	0.27	0.27					
c _{nwlcel} for conifers	0.51	0.51					
c_{fwlsol} for conifers	0.03	0.03					
c_{fwlcel} for conifers	0.65	0.65					
c _{cwlsol} for conifers	0.03	0.03					
c _{cwlcel} for conifers	0.69	0.69					
c _{nwlsol} for deciduous trees	0.38	0.38					
c _{nwlcel} for deciduous trees	0.36	0.36					
c_{fwlsol} for deciduous trees	0.03	0.03					
c_{fwlcel} for deciduous trees	0.65	0.65					
c _{cwlsol} for deciduous trees	0.03	0.03					
cwlcel for deciduous trees	0.75	0.75					
Decomposition rates (per year)							
k _{sol} for conifers	0.5	0.48					
k _{sol} for deciduous trees	0.8	0.82					
k _{cel}	0.3	0.3					
k _{lig}	0.15	0.22					
k hum1	0.013	0.012					
khum2	0.0012	0.0012					
Formation of more complex compounds in decomposition (proportion of decomposed mass)							
p_{sol}	0.15	0.2					
p_{cel}	0.15	0.2					
p_{lig}	0.18	0.2					
p _{hum1}	0.18	0.2					

Explanation: nwl - non-woody litter, fwl - fine woody litter, cwl - coarse woody litter, sol - soluble compounds, cel - cellulose, huml - first humus compartment, hum2 - second humus compartment

References

- Attebring, Nilsson and Sallnäs 1989. A model for long-term forecasting of timber yield a description with special reference to the forest study at SUA-IIASA. Systems Analysis Modelling Simulation 6 (3): 171-180.
- Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189(1-2): 168-182.
- Schelhaas, M.-J., Eggers, J., Lindner, M., Nabuurs, G.J., Päivinen, R., Schuck, A., Verkerk, P.J., Werf, D.C.v.d., Zudin, S., 2007. Model documentation for the European Forest Information Scenario model (EFISCEN 3.1.3). Alterra report 1559 and EFI technical report 26. Alterra and European Forest Institute, Wageningen and Joensuu, p. 118.