Assessment Schedule – 2020

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	st = (2+3i)(3+ki) = 6+2ki+9i+3ki ² = (6-3k)+(2k+9)i = 21-i $k = -5$	Correct solution.		
(b)	$x^{2} + 4rx + r = 0$ $(4r)^{2} - 4 \times 1 \times r = 0$ $16r^{2} - 4r = 0$ $4r(4r - 1) = 0$ $r = 0 \text{ or } r = \frac{1}{4}$	Correct solution.		
(c)	$2\sqrt{x} - 5 = \sqrt{4x - g}$ $4x - 20\sqrt{x} + 25 = 4x - g$ $25 + g = 20\sqrt{x}$ $x = \left(\frac{25 + g}{20}\right)^2$	Correct squaring of both sides.	Correct solution.	
(d)	$\frac{k+ki}{1-i} + \frac{2k}{1+i} = \frac{(k+ki)(1+i)+2k(1-i)}{(1-i)(1+i)}$ $= \frac{k+ki+ki+ki^2+2k-2ki}{2}$ $= \frac{2k}{2} = k$	Correct expansion with common denominator (line 2).	Correct solution.	

		_	·	
(e)	$\frac{1+T^2}{2T} = \frac{1 + \left(\frac{a-bi}{a+bi}\right)^2}{2\left(\frac{a-bi}{a+bi}\right)}$			Correct solution.
	$=\frac{\left(\frac{a+bi}{a+bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2}{\frac{2(a-bi)}{(a+bi)}}$	This line, or equivalent.		
	$= \frac{\left(a+b\mathrm{i}\right)^2 + \left(a-b\mathrm{i}\right)^2}{\left(a+b\mathrm{i}\right)^2} \times \frac{\left(a+b\mathrm{i}\right)}{2\left(a-b\mathrm{i}\right)}$			
	$= \frac{(a+bi)^{2} + (a-bi)^{2}}{(a+bi) \times 2(a-bi)}$ $= \frac{a^{2} + 2abi + b^{2}i^{2} + a^{2} - 2abi + b^{2}i^{2}}{2(a^{2} + abi - abi - b^{2}i^{2})}$		This line, or equivalent.	
	$2(a^{2} + ab_{1} - ab_{1} - b^{2})^{2}$ $= \frac{2(a^{2} - b^{2})}{2(a^{2} + b^{2})}$ $= \frac{(a^{2} - b^{2})}{(a^{2} + b^{2})}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$2 \times 2^{3} + q \times 2^{2} - 17 \times 2 - 10 = 0$ $16 + 4q - 34 - 10 = 0$ $q = 7$	Correct solution.		
(b)	5+3ki = 13 $25+9k^2 = 169$ $9k^2 = 144$ $k^2 = 16$ $k = \pm 4$	Correct solutions (both required). Can be done by inspection.		
(c)	$2z^{3} - 15z^{2} + bz - 30 = 0$ $z = 3 + i \text{ a solution} \Rightarrow z = 3 - i \text{ a solution}$ $(z - 3 - i)(z - 3 + i) = z^{2} - 6z + 10$ $2z^{3} - 15z^{2} + bz - 30 = (2z - 3)(z^{2} - 6z + 10)$ Other solution is $z = \frac{3}{2}$ and $b = 38$.	Other TWO solutions found. OR b found.	Other TWO solutions found. AND b found.	
(d)	$u = p + pi v = -q + qi$ $\frac{u}{v} = \frac{p + pi}{-q + qi} \times \frac{-q - qi}{-q - qi}$ $= \frac{-pq - pqi - pqi - pqi^2}{2q^2}$ $= \frac{-2pqi}{2q^2} = \frac{-pi}{q}$ $\arg\left(\frac{u}{v}\right) = \frac{-\pi}{2}$ OR $\arg(u) = \frac{\pi}{4} \arg(v) = \frac{3\pi}{4}$ $\arg\left(\frac{u}{v}\right) = \frac{\pi}{4} - \frac{3\pi}{4} = \frac{-\pi}{2}$	3rd line with i^2 substituted. OR Correct $arg(u)$ and $arg(v)$.	Accept other correct expressions of argument.	
(e)	$ z+i ^2 + z-i ^2 = 10 \text{Let } z = x+yi$ $ x+yi+i ^2 + x+yi-i ^2 = 10$ $x^2 + (y+1)^2 + x^2 + (y-1)^2 = 10$ $2x^2 + y^2 + 2y + 1 + y^2 - 2y + 1 = 10$ $2x^2 + 2y^2 = 8$ $x^2 + y^2 = 4$		Correct expanded expression (line 4).	Correct solution.

NCEA Level 3 Calculus (91577) 2020 — page 4 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$6k^2 \operatorname{cis}\left(\frac{2\pi}{3}\right)$	Correct solution.		
(b)	$z = 5 - i w = -2 + 3i$ $ z ^2 = 26 w ^2 = 13$ $\therefore z ^2 = 2 w ^2$	Correct solution.		
(c)	$\frac{z\overline{z}}{z+\overline{z}} = \frac{(a+bi)(a-bi)}{a+bi+a-bi}$ $= \frac{a^2+b^2}{2a} \text{ which is real}$	Both numerator and denominator evaluated correctly.	Correct solution with a statement indicating real part only OR imaginary part = 0.	
(d)	$z^{4} = -16k^{8} = 16k^{8}\operatorname{cis}(\pi)$ $z_{1} = 2k^{2}\operatorname{cis}\left(\frac{\pi}{4}\right)$ $z_{2} = 2k^{2}\operatorname{cis}\left(\frac{3\pi}{4}\right)$ $z_{3} = 2k^{2}\operatorname{cis}\left(\frac{-3\pi}{4}\right)$ $z_{4} = 2k^{2}\operatorname{cis}\left(\frac{-\pi}{4}\right)$	z ⁴ written correctly in polar form and one correct solution, OR all arguments correct.	Four correct solutions. Accept equivalents in degrees.	

$ u+v = u-v $ $\Rightarrow (a+c)^2 + (b+d)^2 = (a-c)^2 + (b-d)^2$ $a^2 + 2ac + c^2 + b^2 + 2bd + d^2$ $= a^2 - 2ac + c^2 + b^2 - 2bd + d^2$ $2ac + 2bd = -2ac - 2bd$ $4ac + 4bd = 0$ $ac + bd = 0$ $\frac{u}{v} = \frac{(a+bi)}{(c+di)} \times \frac{(c-di)}{(c-di)}$ $= \frac{ac - adi + bci - bdi^2}{c^2 + d^2}$ $= \frac{ac + bd + (bc - ad)i}{c^2 + d^2}$ But $ac + bd = 0$ But $ac + bd = 0$	(e)	u+v = u-v $u+v = a+bi+c+di$ $= a+c+(b+d)i$	Correct expression for $ u+v = u-v $	Correct simplified expression for $ u+v = u-v $	Correct solution.
$\therefore \frac{u}{c} = \frac{(bc - ad)^{1}}{c}$ which is purely imaginary		$ u-v = a+bi-c-di$ $= a-c+(b-d)i$ $ u+v = u-v $ $\Rightarrow (a+c)^2 + (b+d)^2 = (a-c)^2 + (b-d)^2$ $a^2 + 2ac+c^2 + b^2 + 2bd + d^2$ $= a^2 - 2ac+c^2 + b^2 - 2bd + d^2$ $2ac+2bd = -2ac-2bd$ $4ac+4bd = 0$ $ac+bd = 0$ $\frac{u}{v} = \frac{(a+bi)}{(c+di)} \times \frac{(c-di)}{(c-di)}$ $= \frac{ac-adi+bci-bdi^2}{c^2+d^2}$ $= \frac{ac+bd+(bc-ad)i}{c^2+d^2}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
8 – 0	9 – 14	15 – 20	21 – 24