Predicción de Emisiones de CO₂ en Vehículos Pesados

Cargando datos del archivo: vehiculos_procesado.csv

Datos cargados:

	desplazamiento	cilindros	consumo	co2
0	2.5	4	17	522.7647
1	4.2	6	13	683.6154
2	2.5	4	16	555.4375
3	4.2	6	13	683.6154
4	3.8	6	16	555.4375

2. Matriz de Correlación

Matriz de correlación:

	desplazamiento	cilindros	consumo	co2
desplazamiento	1	0.905	-0.7615	0.7999
cilindros	0.905	1	-0.7173	0.751
consumo	-0.7615	-0.7173	1	-0.9589
co2	0.7999	0.751	-0.9589	1

3. División de datos en Entrenamiento y Prueba

Datos de entrenamiento: 28431 muestras

Datos de prueba: 7108 muestras

4. Predicción con Modelos

Modelo Naive Bayes entrenado.

Modelo Random Forest entrenado.

Modelo Regresión Lineal entrenado.

Modelo KNN entrenado.

Nota: Naive Bayes predice categorías ('Bajo', 'Medio', 'Alto') en lugar de valores continuos.

localhost:8501 2/7

5. Validación Cruzada (10 repeticiones)

Validación para Naive Bayes

Naive Bayes (clasificación) - Promedio Accuracy: 0.8596

Validación para Modelos de Regresión

Random Forest - Promedio R²: 0.9887

Regresión Lineal - Promedio R²: 0.9225

KNN - Promedio R2: 0.9840

6. Optimización de Hiperparámetros para Random Forest

Mejores parámetros para Random Forest:

```
"max_depth": NULL

"n_estimators": 150
}
```

Mejor R²: 0.9930

localhost:8501 3/7

7. Dispersión CO₂ Actual vs Predicción

localhost:8501 4/

