Transportation Model

Formulating Transportation Problem Using R

Activating all the required packages

```
library("lpSolveAPI")
library("lpSolve")
library("tinytex")
```

Creating a table for better understanding of the data

```
## PlantA 22 14 30 600 100
## PlantB 16 20 24 625 120
## Demand 80 60 70 - -
```

The Objective Function is to Minimize the Transportation cost

$$Z = 622X_{11} + 614X_{12} + 630X_{13} + 0X_{14} + 641X_{21} + 645X_{22} + 649X_{23} + 0X_{24}$$

 $Subject\ to\ the\ following\ constraints$

Supply Constraints
$$X_{11} + X_{12} + X_{13} + X_{14} <= 100$$

$$X_{21} + X_{22} + X_{23} + X_{24} <= 120$$

Demand Constraints

```
X_{11} + X_{21} >= 80

X_{12} + X_{22} >= 60

X_{13} + X_{23} >= 70

X_{14} + X_{24} >= 10
```

Non – Negativity Constraints $X_{ij} >= 0$ Where i = 1,2 and j = 1,2,3,4

```
#Since demand is not equal to supply creating dummy variables
#Creating a matrix for the given objective function
trans.cost \leftarrow matrix(c(622,614,630,0,
                 641,645,649,0), ncol=4, byrow=T)
trans.cost
        [,1] [,2] [,3] [,4]
## [1,] 622 614 630
## [2,] 641 645 649
#Defining the column names and row names
colnames(trans.cost) <- c("Warehouse1", "Warehouse2", "Warehouse3", "Dummy")</pre>
rownames(trans.cost) <- c("PlantA", "PlantB")</pre>
trans.cost
##
          Warehouse1 Warehouse2 Warehouse3 Dummy
## PlantA
                 622
                             614
                                        630
## PlantB
                 641
                             645
                                        649
                                                 0
#Defining the row signs and row values
row.signs <- rep("<=",2)
row.rhs <- c(100, 120)
#Since it's supply function it cannot be greater than the specified units.
#Defining the column signs and column values
col.signs <- rep(">=",4)
col.rhs \leftarrow c(80,60,70,10)
#Since it's demand function it can be greater than the specified units.
#Running the lp.transport function
lptrans.cost <- lp.transport(trans.cost, "min", row.signs,row.rhs,col.signs,col.rhs)</pre>
#Getting the objective value
```

#Getting the objective value
lptrans.cost\$objval

[1] 132790

The minimization value so obtained is \$132,790 which is the minimal combined cost thereby attained from the combined cost of production and shipping the defibrilators.

#Getting the constraints value

lptrans.cost\$solution

80 AEDs in Plant B - Warehouse1

60 AEDs in Plant A - Warehouse2

40 AEDs in Plant A - Warehouse3

30 AEDs in Plant B - Warehouse3 should be produced in each plant and then distributed to each of the three wholesaler warehouses in order to minimize the overall cost of production as well as shipping.

Formulate the dual of the above transportation problem

Since the primal was to minimize the transportation cost the dual of it would be to maximize the value added(VA).

Maximize
$$VA = 80W_1 + 60W_2 + 70W_3 - 100P_A - 120P_B$$

Subject to the following constraints

Total Payments Constraints

$$W_1 - P_A > = 622$$

$$W_2 - P_A > = 614$$

$$W_3 - P_A > = 630$$

$$W_1 - P_B >= 641$$

$$W_2 - P_B > = 645$$

$$W_3 - P_B > = 649$$

Where $W_1 = Warehouse 1$

$$W_2 = Warehouse 2$$

$$W_3 = Warehouse 3$$

$$P_1 = Plant 1$$

$$P_2 = Plant 2$$

Economic Interpretation of the dual

$$W_1 <= 622 + P_A$$

$$W_2 <= 614 + P_A$$

$$W_3 <= 630 + P_A$$

$$W_1 <= 641 + P_B$$

$$W_2 <= 645 + P_B$$

$$W_3 <= 649 + P_B$$

From the above we get to see that $W_1 - P_A >= 622$

that can be exponented as $W_1 >= 622 + P_A$

Here W_1 is considered as the price payments being received at the origin which is nothing else, but the revenue, whereas $P_A + 622$ is the money paid at the origin at P_A

Therefore the equation turns, out to be $MR_1 >= MC_1$.

For a profit maximization, The Marginal Revenue(MR) should be equal to Marginal Costs(MC)

Therefore, $MR_1 = MC_1$

Based on above interpretation, we can conclude that,

Profit maximization takes place if MC is equal to MR.

If MR < MC, in order to meet the Marginal Revenue (MR), we need to decrease the costs at the plants.

If MR > MC, in order to meet the Marginal Revenue (MR), we need to increase the production supply.