File-System Interface

Unit-I'

File Concep

File-System Interface

Unit-IV

Session Objectives

File-System Interface

Unit-I\

File Concer

- To explain the function of file systems
- To describe the interfaces to file systems
- To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory structures
- To explore file-system protection

Session Outcomes

File-System Interface

Unit-I\

File Concer

At the end of this session, participants will be able to

- Discuss File Concepts, Access Methods
- Disk and Directory Structure
- File-System Mounting
- File Sharing Protection

Agenda

File-System Interface

Unit-i

File Concep

Presentation Outline

File-System Interface

Unit-l'

File Concept

File Concept

File-System Interface

Unit-l'

- Contiguous logical address space
- Types:
 - Data
 - numeric
 - character
 - binary
 - Program
- Contents defined by file's creator
 - Many types
 - Consider text file, source file, executable file

File Attributes

File-System Interface

Unit-I

- Name only information kept in human-readable form
- Identifier unique tag (number) identifies file within file system
- □ **Type** needed for systems that support different types
- Location pointer to file location on device
- □ Size current file size
- Protection controls who can do reading, writing, executing
- Time, date, and user identification data for protection, security, and usage monitoring
- Information about files are kept in the directory structure, which is maintained on the disk
- Many variations, including extended file attributes such as file checksum
- Information kept in the directory structure

File Operations

File-System Interface

Unit-I

- File is an abstract data type
- Create
- Write at write pointer location
- Read at read pointer location
- Reposition within file seek
- Delete
- Truncate
- Open(F_i) search the directory structure on disk for entry F_i, and move the content of entry to memory
- □ Close (F_i) move the content of entry F_i in memory to directory structure on disk

Open Files

File-System Interface

Unit-I\

File Concept

Several pieces of data are needed to manage open files:

- Open-file table: tracks open files
- File pointer: pointer to last read/write location, per process that has the file open
- **File-open count**: counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
- Disk location of the file: cache of data access information
- Access rights: per-process access mode information

Open File Locking

File-System Interface

Unit-I\

- Provided by some operating systems and file systems
- **Shared lock** similar to reader lock several processes can acquire concurrently
- Exclusive lock similar to writer lock
- Mediates access to a file
- Mandatory or advisory:
- Mandatory access is denied depending on locks held and requested
- Advisory processes can find status of locks and decide what to do

File Structure

File-System Interface

Unit-I

- None sequence of words, bytes
- Simple record structure
- Lines
- Fixed length
- Variable length
- Who decides:
- Operating system

Sequential-access File

File-System Interface

Unit-I\

Access Methods

File-System Interface

Unit-I

File Concept

Sequential Access

read next
write next
reset
no read after last write
(rewrite)

■ Direct Access – file is fixed length logical records

read n
write n
position to n
read next
write next
rewrite n

n = relative block number

Relative block numbers allow OS to decide where file should be placed

Simulation of Sequential Access on Direct-access File

File-System Interface

Unit-I'

sequential access	implementation for direct access		
reset	<i>cp</i> = 0;		
read next	read cp; cp = cp + 1;		
write next	write cp; cp = cp + 1;		

Directory Structure

File-System Interface

Unit-I\

File Concept

A collection of nodes containing information about all files

Both the directory structure and the files reside on disk

Disk Structure

File-System Interface

Unit-I\

- Disk can be subdivided into partitions
- Disks or partitions can be **RAID** protected against failure
- Disk or partition can be used raw without a file system, or formatted with a file system
- Partitions also known as minidisks, slices
- Entity containing file system known as a volume
- Each volume containing file system also tracks that file system's info in device directory or volume table of contents

A Typical File-system Organization

File-System Interface

Unit-IV

Types of File Systems

File-System Interface

Unit-I\

- But systems frequently have may file systems, some general- and some special- purpose
- Consider Solaris has
 - tmpfs memory-based volatile FS for fast, temporary I/O
 - objfs interface into kernel memory to get kernel symbols for debugging
 - ctfs contract file system for managing daemons
 - lofs loopback file system allows one FS to be accessed in place of another
 - procfs kernel interface to process structures
 - ufs, zfs general purpose file systems

Operations Performed on Directory

File-System Interface

Unit-I

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Directory Organization

File-System Interface

Unit-I\

File Concept

The directory is organized logically to obtain

- Efficiency locating a file quickly
- Naming convenient to users
- Two users can have same name for different files
- The same file can have several different names
- Grouping logical grouping of files by properties, -

Single-Level Directory

File-System Interface

Unit-I

File Concept

A single directory for all users

- Naming problem
- Grouping problem

Two-Level Directory

File-System Interface

Unit-I

File Concept

Two-Level Directory

Separate directory for each user

- Path name
- Can have the same file name for different user
- Efficient searching
- No grouping capability

Tree-Structured Directories

File-System Interface

Unit-I\

Tree-Structured Directories

File-System Interface

Unit-I\

File Concept

Tree-Structured Directories (Cont)

- Absolute or relative path name
- Creating a new file is done in current directory
- Delete a file

rm <file-name>

Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail"

Acyclic-Graph Directories

File-System Interface

Unit-IV

File Concept

Have shared subdirectories and files

File System Mounting

File-System Interface

Unit-I\

File Concept

A file system must be mounted before it can be accessed A unmounted file system is mounted at a mount point

Mount Point

File-System Interface

Unit-I\

File Sharing

File-System Interface

Unit-l'

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method
- In multi-user system
 - User IDs identify users, allowing permissions and protections to be per-user Group IDs allow users to be in groups, permitting group access rights
 - Owner of a file or directory
 - Group of a file or directory

File Sharing – Remote File Systems

File-System Interface

Unit-l'

- Uses networking to allow file system access between systems
- Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
- Semi automatically via the world wide web
- Client-server model allows clients to mount remote file systems from servers
 - Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - CIFS is standard Windows protocol
 - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

File-System Interface

Unit-I\

- All file systems have failure modes
- For example corruption of directory structures or other non-user data, called metadata
- Remote file systems add new failure modes, due to network failure, server failure
- Recovery from failure can involve state information about status of each remote request
- Stateless protocols such as NFS v3 include all information in each request, allowing easy recovery but less security

Protection

File-System Interface

Unit-I\

- File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups

File-System Interface

Unit-I\

File Concept

- Mode of access: read, write, execute
- Three classes of users on Unix / Linux

a) owner access	7	\Rightarrow	111 RWX
b) group access	6	\Rightarrow	110 RWX
c) public access	1	\Rightarrow	001

- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a particular file (say game) or subdirectory, define an appropriate access.

D1404

Summary

File-System Interface

Unit-I

File Concept

Discussed

- File operations
- File structures
- Disk Structures, types of file systems
- Directory organization

Test Your Understanding

File-System Interface

- What is the mount point?
 - a) an empty directory at which the mounted file system will be attached
 - b) a location where every time file systems are mounted
 - c) is the time when the mounting is done
 - d) none of the mentioned
- In distributed file system ———directories are visible from the local machine.
 - a) protected b) local c) private d) remote

- To organise file systems on disk ———
 - a) they are split into one or more partitions
 - b) information about files is added to each partition
 - c) they are made on different storage spaces
 - d) all of the mentioned