Investigating stellar structure through orbital decay

Lawrence Berry, UCL Vincent Van Eylen, Ed Bryant 19/12/2023

[1]

Stellar and planetary composition and structure

• Tools for stellar structure:

Planetary structure?

What is tidal decay?

- 1. A planet exerts a gravitational force on its host star creating a tidal bulge
- The tidal bulge creates a non-Keplerian potential
- If the planet orbits faster than the star spins, it experiences a decelerating torque

$$\dot{a} \propto \frac{1}{Q'_*}$$

Stellar tidal dissipation factor

Depends on **rigidity** and **elastic modulus** of the star

Tidal decay is a consequence of **stellar (and planetary) composition and structure**. Decay rates could tell you something about what the star and planet are made of!

How do we measure tidal decay?

- Indirectly via orbital distributions
- Or: transit timing variations aka TTVs

[7]

Aims of my project

- 1. Let's model all systems for which we have transit observations
- 2. Build an empirical distribution of stellar tidal dissipation factors
- 3. Test stellar structure theory by analysing how other stellar properties relate to the tidal dissipation factors we observe

[8]

Method

• Inputs:

Transit timing en masse

[10]

Model:

$$y_i = T_0 + P_0 E + \frac{1}{2} \frac{dP}{dE} E^2 + \epsilon_i$$

Measured transit time

Reference time

Constant period component

Decay rate per orbit

Measurement

noise

• Fitting procedure:

- Bayesian linear regression
- Parameterise uncertainty in individual transit time measurements

[11]

Example: WASP-12b

Figure 12: Berry

Observations vs theory (442 planets)

Observation ≠ theory: **perhaps something else is going on?**

Empirical distribution of Q'_*

Filtered to:

- Single planet systems
- > 10 transits
- < 1 *ms/epoch* error

Figure 14: Berry

How does Q'_* relate to stellar properties?

Figure 15: Berry

Future work

- Are these relationships real? Are our assumptions okay?
 - Other physical phenomena might be at play
 - e.g. we might accidentally be catching sinusoidal TTVs due to precession
 - Is decay rate constant per epoch?
 - Are mid transit times unbiased and Gaussian?
- Once we gain confidence in the results, let's connect these observations with stellar structure theory
- These techniques can also help inform which planets we should observe in future

Summary

 Measuring tidal decay for a large ensemble of stars provides new opportunities for studying stellar structure

 Initial results suggest a relationship exists between stellar density/ temperature and the size and lag of a star's tidal bulge

• Understanding these relationships better could help determine the

structure of stars!

[16] Copyright www.justoutsidetheboxcartoon.com

Appendix A: which planets should we follow up on?

Figure 19: Berry

Appendix B: tidal decay equations

$$\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t} = -\left(\frac{63}{2}(GM_*^3)^{1/2}\frac{R_p^5}{Q_p'M_p}e^2 + \frac{9}{2}(G/M_*)^{1/2}\frac{R_*^5M_p}{Q_*'}\right)$$

$$\times \left(1 + \frac{57}{4}e^2\right)a^{-13/2}$$

$$\frac{1}{e}\frac{\mathrm{d}e}{\mathrm{d}t} = -\left(\frac{63}{4}(GM_*^3)^{1/2}\frac{R_p^5}{Q_p'M_p} + \frac{225}{16}(G/M_*)^{1/2}\frac{R_*^5M_p}{Q_*'}\right)a^{-13/2}$$

[Goldreich 1963, Jackson 2009]

Appendix C: why is this a hard problem?

- Uncertainty in the transit time measurements is large
 - Fundamental lower limit ~ sampling rate
 - Noisy citizen-science data
 - Inhomogeneous sources
 - Different physical phenomena at play
- Often of the same order as the timing variation we're trying to measure

We're talking about things that vary **milliseconds** per epoch and this scale is in **days**!

But decay compounds with time $TTV \approx \frac{1}{2} \frac{dP}{dE} \frac{t^2}{P_0^2} \sim 300s$ for WASP-12b over 10 years

Figure 20: Berry, using TESS data

Appendix D: Q'_* vs stellar mass

Figure 21: Berry