Combo 11 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 Programa de Lógica Matemática

Enuncie el programa de Lógica Matemática dado al final de la guía 8 y explique brevemente con qué definiciones matemáticas se van resolviendo los tres primeros puntos y qué teoremas garantizan la resolución del 4to punto de dicho programa.

El programa de lógica matemática dado es el siguiente:

- 1. Dar un modelo matemático del concepto de fórmula elemental de tipo τ
 - Variables
 - Términos y subtérminos + Unicidad de la lectura de términos + Ocurrencia y reemplazos
 - Fórmulas y subfórmulas + Unicidad de la lectura de fórmulas + Ocurrencias
 - Variables libres + Ocurrencias
- 2. Dar una definición matemática de cuándo una fórmula elemental de tipo τ es verdadera en una estructura de tipo τ para una asignación dada de valores a las variables libres y a los nombres de constantes fijas de la fórmula
 - Asignación + Valor de un término en una estructura para una asignación + Reemplazo ↓^a
 - Relación ⊨
- 3. Dar un modelo matemático del concepto de prueba elemental en una teoría elemental de tipo τ . A estos objetos matemáticos los llamaremos pruebas formales de tipo τ
 - Notación declaratoria de términos y fórmulas
 - Teoría de primer orden
 - Axiomas propios + modelos
 - Reglas (Part, Exist, Evoc, Absur, ConjElim, EquivElim, DisjInt, Conm, ModPon, ConjInt, EquivInt, DisjElim, DivPorCas, Reemp, Trans, Generaliz, Elec)
 - Axiomas lógicos
 - Justificaciones básicas + Justificaciones + Bloques + Concatenaciones balanceadas de justificaciones
 - Pares adecuados + Hipótesis y tesis + Dependencia de constantes en pares adecuados
 - Prueba formal + Teorema
- 4. Intenta probar matemáticamente que nuestro concepto de prueba formal de tipo τ es una correcta modelización matemática de la idea intuitiva de prueba elemental en una teoría elemental de tipo τ
 - Teorema de Corrección: $(\Sigma, \tau) \vdash \varphi$ implica $(\Sigma, \tau) \models \varphi$
 - Teorema de Completitud: $(\Sigma, \tau) \vDash \varphi$ implica $(\Sigma, \tau) \vdash \varphi$