let $\Gamma = \psi(x) \cdot \mathcal{U}(\pi) \cdot \neg \psi(w)^{\langle n \rangle}$ if Γ has an interpolant $\hat{A}_0, \ldots, \hat{A}_{n+2}$ then for $i = 0 \dots n$: let $\phi = \hat{A}_{i\perp 1}^{\langle -i \rangle}$ if $\psi(v_i) \not\models \phi$ then remove all pairs (\cdot, v_i) from \triangleright set $\psi(v_i) \leftarrow \psi(v_i) \wedge \phi$

Fig. 6. Procedure to force covering of one vertex by another

let $\pi = (v_0, T_0, v_1) \cdots (v_{n-1}, T_{n-1}, v_n)$ be the unique path from x to v

let x be the nearest common ancestor of y and w

procedure ForceCover $(v, w \in V)$