

TD 12 : MODÉLISATION COMPUTATIONNELLE H2022

SOLUTIONNAIRE

Directives pour la remise:

- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise est individuelle se fait à la fin de la séance de TD.
- Répondez directement sur ce document Word (docx). Dans l'intérêt de l'équité pour tous les étudiants, vous devez modifier le fichier Word. Modifiez le fichier **EXCLUT** le fait d'intégrer des scans de rédaction manuscrite ou d'y écrire avec un stylet.
- Lorsque vous avez terminé, générez un PDF avec le nom sous le format : *Matricule-TDNuméro.pdf* (exemple : 1234567-TD1.pdf).
- Téléversez votre fichier PDF dans la boîte de remise située dans la Zone TDs de la page <u>Moodle du cours</u>.
- Choisissez la boîte de remise qui correspond à votre section de TD.
- Aucun retard et aucune remise par courriel ne seront acceptés.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Exercice 1. On considère l'alphabet $V = \{a, b\}$ et les langages L_1 et L_2 . $L_1 = \{ab, bb\}$ et $L_2 = \{a, ab, bbc, ca\}$

a. Donnez tous les mots de V^* de longueur inférieure ou égale à 3.

Réponse :

- ✓ Mot de longueur $0: \mathcal{E}$
- ✓ Mots de longueur 1:a,b
- ✓ Mots de longueur 2 : aa, ab, ba, bb
- ✓ Mots de longueur 3 : aaa, aab, aba, abb, baa, bab, bba, bbb

L'ensemble de mots recherchés est : {E, a, b, aa, ab, ba, bb, aaa, aab, aba, aba, baa, bab, bba, bbb}

b. Déterminez L₁,L₂

Réponse :

 $L_1.L_2 = \{aba, abab, abbbc, abca, bba, bbab, bbbbc, bbca\}$

c. Déterminez L₂*

Réponse :

$$L_2^* = \{(a + ab + bbc + ca)^*\}$$

Exercice 2. Soit les grammaires $G_1 = (V_1, T_1, S, P_1)$ et $G_2 = (V_2, T_2, S, P_2)$ où $V_1 = \{a, b, S, A, B\}$, $T_1 = \{a, b\}$, $V_2 = \{a, b, S, U, V\}$, $V_2 = \{a, b\}$. S est l'axiome, P_1 et P_2 les ensembles de règles de production.

$$P_1 = \{S \rightarrow AA \mid B, A \rightarrow aaA \mid aa, B \rightarrow bB \mid b\}$$

 $P_2 = \{S \rightarrow aUV, aU \rightarrow aUb \mid E, V \rightarrow bBa \mid E\}$

a. Quel est le type de la grammaire G_1 ? Justifiez votre réponse.

Réponse : Elle est de type 2.

- Elle n'est pas de type 3 du fait de la présence des productions $S \to AA \mid B$, $A \to aaA \mid aa$ qui ne sont pas de la forme $w_1 \to a \mid aA$ ou de la forme $S \to \mathcal{E}$, a étant un symbole terminal et A un symbole non terminal.
- Elle est de type 2, car tous les symboles à gauche dans les productions de P_1 sont des symboles non terminaux.
- b. Quel est le type de la grammaire G_2 ? Justifiez votre réponse.

Réponse : Elle est de type 1.

- Elle n'est pas de type 3, car aucune production de P_2 n'est de la forme $w_1 \rightarrow a \mid aA$ ou de la forme $S \rightarrow \mathcal{E}$, a étant un symbole terminal et A un symbole non terminal.
- Elle n'est pas de type 2 du fait de la présence de la production $aU \rightarrow aUb \mid \mathcal{E}$ dont la partie gauche n'est pas un non terminal, mais un mot.
- Elle est de type 1, car dans toutes les productions de P_2 , $I(w_1) \le I(w_2)$ ou $w_1 \to \mathcal{E}$.

Exercice 3. Soit le langage $L = \{(a + b)^*ba^*\}$ construit sur l'alphabet $X = \{a, b\}$. Proposez une grammaire G = (V, T, S, P) qui engendre le langage L. Vous devez préciser V, T, et P.

Réponse:

Note : Plusieurs solutions sont possibles. Celle qui est proposée ici n'est qu'une solution parmi tant d'autres.

- G = (V, T, S, P)
- V = {a, b, S, A}
- T = {a, b}
- P est constitué des productions suivantes :

$$S \rightarrow aS \mid bS \mid bA \mid b$$

 $A \rightarrow aA \mid a$

Exercice 4. Soit les grammaires $G = (V_1, T_1, S, P_1)$ où $V = \{a, b, S, A, B\}$,

 $T = \{a, b\}$. **S** est l'axiome, **P** est l'ensembles de règles de production.

$$P = \{S \rightarrow AA \mid ABA \mid B, A \rightarrow aaA \mid aa, B \rightarrow bB \mid b\}$$

Le mot *aaaaabbbbbbaaaa* est-il reconnu par cette grammaire ? Si oui, donnez la dérivation correspondante.

Réponse :

- Dérivation
- $S \rightarrow ABA$
- $S \rightarrow aaABA (car A \rightarrow aaA)$
- $S \rightarrow aaaaABA (car A \rightarrow aaA)$
- $S \rightarrow aaaaaaBA (car A \rightarrow aa)$
- $S \rightarrow aaaaaabBA (car B \rightarrow bB)$
- $S \rightarrow aaaaaabbBA (car B \rightarrow bB)$
- $S \rightarrow aaaaaabbbBA (car B \rightarrow bB)$
- $S \rightarrow aaaaaabbbbBA (car B \rightarrow bB)$
- $S \rightarrow aaaaaabbbbbBA (car B \rightarrow bB)$
- $S \rightarrow aaaaaabbbbbbb (car B \rightarrow b)$
- $S \rightarrow aaaaaabbbbbbbaaA (car A \rightarrow aaA)$
- $S \rightarrow aaaaaabbbbbbaaaa (car A \rightarrow aa)$

Arbre de dérivation

Exercice 5. Déterminisez l'automate suivant. Vous pouvez juste donner la table d'états-transition et préciser les étaux finaux ou acceptants de l'automate déterministe que vous proposez.

Réponse:

■ Table d'états-transition

États	Entrée	
	а	b
0	Ø	{0, 1, 2}
{0, 1, 2}	{0, 1}	{0, 1, 2}
{0, 1}	{0, 1}	{0, 1, 2}

- États finaux : {0}, {0, 1, 2}, {0, 1}.
- Automate

Exercice 6. Déterminisez l'automate suivant. Vous pouvez juste donner la table d'états-transition et préciser les étaux finaux ou acceptants de l'automate déterministe que vous proposez.

Réponse :

■ Table d'états-transition de l'automate déterministe émondé

États	Entrée	
	a	b
{0}	{0, 1}	{0, 2}
{0, 1}	{0, 1, 3}	{0, 1, 2}
{0, 2}	{0, 1, 2}	{0, 2, 3}
{0, 1, 3}	{0, 1, 3}	{0, 1, 2}
{0, 1, 2}	{0, 1, 2, 3}	{0, 1, 2, 3}
{0, 2, 3}	{0, 1, 2}	{0, 2, 3}
{0, 1, 2, 3}	{0, 1, 2, 3}	{0, 1, 2, 3}

- États finaux : {0, 1, 3}, {0, 2, 3} et {0, 1, 2, 3}.
- Automate

