Assume: $n = 14$ (virtual), $m = 12$ (physical), $P = 64$ (page size)	,	-/	/	-,1								
How many Physical Pages are available? - How many Physical Pages are available?												
• How many Virtual Pages (Page Table Entries) are available? $2^{14}/2^6 = 2^8 = 2^5$												
Tow many virtual Pages (Page Table Entries) are available:												
 For a virtual address, mark bits with VPN or VPO: 												
PPPPPD	0	0	0	0	0							
• For a physical address, mark bits with PPN or PPO:												
PPPPPOO	0	0	0	0								
		Page T	able (fi	rst 16 ei	ntries)							
• Given the virtual address 0x03d4, what are the:	VPN	PPN	valid	VPN	PPN	valid						
0000 0011 1101 0100	0.0	20	7	0.0	12	4						
\circ VPN: $\bigcirc \times \bigcirc \vdash$	0.0	28	1	08	13	1						
\circ VPO: $\bigcirc \times 14$	01	17	0	09	17	1						
	02	33	1	0A	09	1						
o PPN: $\bigcirc \times \bigcirc \cup$	03	02	1	0B		0						
o PPO: () × 11	04		0	0C		0						
o PPO: ○ × 1 →	05	16	1	0D	2D	1						
Physical Address:	06	++	0	0E	11	1						
110101010	07		0	OF	OD	1						
0×354		N-SI				377						
_												

Now we recognize that we must actually use a TLB to access the PPN. Assume the TLB is 4-way set associative with 16 total entries.

For a virtual address, mark bits with Offset, TLB Set Index, or TLB Tag

- Given the virtual address 0x03d4, what are the:
 - o TLB Tag: $\bigcirc \times 3$
 - o TLB Set:
 - o TLB Offset: $\bigcirc \times / 4$

TLB: 4-way, 16 entries, 4 sets

set	tag	PPN	valid	tag	PPN	valid	tag	PPN	valid	tag	PPN	valid
0	03		0	09	0D	1	00	TUEN	0	07	02	1
100	03			Santa and		0			0			0
2	02	4-							0			0
73	07		0	03	(OD)	1	OA	34	1	02	: #1#1	0

- Given the current TLB state (hext page), is the address 0x03d4 in the TLB (yes)no)?
- · What are the: generaled

o PPN: OXOD

o Physical Address: ○×354

o PPO: 0 x 14

Now assume the L1 cache is DM with 16 entries and 4-byte blocks

For a physical address, mark bits with Offset, L1 Set Index, or L1 Tag

 What are the L1 Tag, Set, and Offset associated with the physical address generated above?

o Tag:

o Set: $\bigcirc \times 5$

o Offset:

- Is the memory in cache (yes/no)?
- What value is returned given that memory accesses are to 1-byte words?

0x36

L1 cache: DM, 4-byte block, 16 sets

set	tag	valid	blk0	blk1	blk2	blk3
0	19	1	99	11	23	11
1	15	0				
2	1B	1	0	2	4	8
3	36	0				
4	32	1	43	6D	8F	9
>>5	OD	1	(36)	72	F0	1D
6	31	0	122			
7	16	1	11	C2	DF	3
8	24	1	3A	0	51	89
9	2D	0				
10	2D	1	93	15	DA	3B
11	0B	0				
12	12	0				
13	16	1	4	96	34	15
14	13	1	83	77	1B	D3
15	14	0				