

Aula 25 de maio 2022

Superfícies Líquidas

- 1) Tensão superficial
- 2) Ângulos de contacto3) Adsorção
- 4) Micelas e tensioactivos
- 5) Métodos experimentais de análise

Superfícies Líquidas

- 1) Tensão superficial
- 2) Ângulos de contacto3) Adsorção
- 4) Micelas e tensioactivos
- 5) Métodos experimentais de análise

Sistemas finamente dispersos

Área de interface

0,01 m²

10-100 m²

Líquido / Gás

Espumas e aerossóis

líquidos

Líquido /Líquido

Emulsões

Líquido / Sólido

Dispersões, géis

Sólido / Gás

Espumas e aerossóis

sólidos

Sólido / Sólido

Compósitos

Fase dispersa	Dispersante	Designação	Exemplos
Gás	Sólido	espuma sólida	Pedra-pomes, esferovite, zeólitos
Gás	Líquido	espuma	extintores
Líquido	Sólido	emulsão sólida	manteiga
Líquido	Líquido	emulsão	leite, molhos
Líquido	Gás	aerossol	nuvens, spray
Sólido	Sólido	dispersão sólida	madeira, osso
Sólido	Líquido	suspensão ou sol	tintas, cola
Sólido	Gás	aerossol	smog, fumo

Micelas e tensioativos

Para C > CMC, o soluto acumula-se em micelas

Micelas e tensioativos

Evolução de concentrações à superfície e no interior da solução

Formação de micelas, temperatura e CMC

 Há uma temperatura mínima (temperature micelar crítica ou ponto de Krafft) abaixo da qual não se formam micelas – o tensioativo permanece na fase sólida e não passa para a fase aquosa

CMC varia com a temperatura

Plot of γ versus log₁₀ c for the dodecyl ether of hexaethylene oxide 1) 15°C, (2) 25°C, and (3) 35°C. [J. M. Corkill, J. F. Goodman, and R. H. ewill, *Trans. Faraday Soc.*, 57:1927 (1961).]

Frequentemente observa-se uma variação em U, com CMC a diminuir e depois aumentar, quando T aumenta. Esta variação pode ser relacionada com a entalpia e a entropia do sistema.

SDS ou SLS

- Sodium dodecyl sulfate ou sodium lauryl sulfate tensioativo aniónico com o grupo sulfato como "cabeça" polar $CH_3(CH_2)_{11}SO_4^-Na^+$
- um dos tensioativos mais utilizados em produtos de limpeza, produzido a partir de óleo de palma ou de côco;

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Sodium_laurylsulfonate_V.1.svg/798px-Sodium_laurylsulfonate_V.1.svg.png

Micelas e tensioativos

A formação de micelas depende criticamente do tamanho da cadeia alquilo n é o nº de moléculas que formam uma micela

Tensioactivo	CMC / M	T/°C	n
C ₆ H ₁₃ SO ₄ Na	0,42	25	17
C ₇ H ₁₅ SO ₄ Na	0,22	25	22
C ₁₂ H ₂₅ SO ₄ Na	8,2x10 ⁻³	25	64
C ₁₄ H ₂₉ SO ₄ Na	2,05x10 ⁻³	40	80

Tipo de tensioactivos

Aniónico

Dodecilsulfato de sódio

Catiónico

Brometo de hexadeciltrimetilamónio (CTAB16)

Não-iónico

Deciltetroxietilenoglicol

Zwitteriónico

lecitina

aniónicos

cationicos

não iónicos

zwitteriónicos

Micela invertida

Micelas e tensioactivos

Micela

Micela cilíndrica

Auto-organização Molecular (self assembling)

Micelas e tensioactivos

Vesículas unilaminares

Vesículas multilaminares

Micelas e tensioactivos

Lipossomas multilamelares (MLV)

Lipossoma unilamelar (SUV)

Métodos experimentais

Ascensão e depressão capilar Anel de du Nouy Placa de Wilhelmy Gota suspensa, séssil, dinâmica

Muitas propriedades físicas mudam drasticamente a sua evolução com a concentração do soluto quando se utrapassa a CMC

Micelas e tensioactivos

Métodos experimentais

Propriedade Método

Tensão interfacial Tensiometria, análise de gota

Ângulo de contacto Tensiometria, análise de gota

Forças de superfície Balança de filme fino, AFM

Morfologia das camadas AFM, SEM, TEM

de superfície

Composição química FTIR

Tamanho e forma de Dispersão de luz

partícula