Processamento de Imagens Análise de Texturas

Thelmo de Araujo

Semestre 2013-2

Sumário

abc

Análise de Texturas

Esta apresentação baseia-se no Capítulo 8 do livro [?]

Análise de Imagens Digitais,
de Hélio Pedrini e William Robson Schwartz.

As principais medidas da distribuição dos níveis de cinza em imagem com n pixels são:

Média:

$$\mu = \frac{1}{n} \sum_{i=1}^n g_i \,.$$

Variância:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (g_i - \mu)^2.$$

• Simetria:

$$s = \frac{1}{n\sigma^3} \sum_{i=1}^n (g_i - \mu)^3.$$

$$k = \left(\frac{1}{n\sigma^4} \sum_{i=1}^{n} (g_i - \mu)^4\right) - 3.$$

As principais medidas da distribuição dos níveis de cinza em imagem com n pixels são:

Média:

$$\mu = \frac{1}{n} \sum_{i=1}^n g_i \,.$$

Variância:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (g_i - \mu)^2.$$

• Simetria:

$$s = \frac{1}{n\sigma^3} \sum_{i=1}^n (g_i - \mu)^3.$$

$$k = \left(\frac{1}{n\sigma^4} \sum_{i=1}^{n} (g_i - \mu)^4\right) - 3.$$

As principais medidas da distribuição dos níveis de cinza em imagem com n pixels são:

Média:

$$\mu = \frac{1}{n} \sum_{i=1}^n g_i \,.$$

Variância:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (g_i - \mu)^2.$$

Simetria:

$$s = \frac{1}{n\sigma^3} \sum_{i=1}^n (g_i - \mu)^3.$$

$$k = \left(\frac{1}{n\sigma^4} \sum_{i=1}^{n} (g_i - \mu)^4\right) - 3.$$

As principais medidas da distribuição dos níveis de cinza em imagem com n pixels são:

Média:

$$\mu = \frac{1}{n} \sum_{i=1}^n g_i.$$

Variância:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (g_i - \mu)^2.$$

Simetria:

$$s = \frac{1}{n\sigma^3} \sum_{i=1}^n (g_i - \mu)^3.$$

$$k = \left(\frac{1}{n\sigma^4} \sum_{i=1}^{n} (g_i - \mu)^4\right) - 3.$$

As principais medidas da distribuição dos níveis de cinza em imagem com n pixels são:

Média:

$$\mu = \frac{1}{n} \sum_{i=1}^n g_i \,.$$

Variância:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (g_i - \mu)^2.$$

• Simetria:

$$s = \frac{1}{n\sigma^3} \sum_{i=1}^n (g_i - \mu)^3.$$

Curtose:

$$k = \left(\frac{1}{n\sigma^4} \sum_{i=1}^{n} (g_i - \mu)^4\right) - 3.$$

	2		1	
1	2	1		
	1		2	
1	2	3		3
				1

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

3	2	0	1	0
1	2	1	3	0
3	1	0	2	3
1	2	3	0	3
0	0	0	0	1

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

3	2	0	1	0
1	2	1	3	0
3	1	0	2	3
1	2	3	0	3
0	0	0	0	1

	0	1	2	3
0	3	2	1	1
1	2	0	2	1
2	1	1	0	2
0 1 2 3	2	1	1	0

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

3	2	0	1	0
1	2	1	3	0
3	1	0	2	3
1	2	3	0	3
0	0	0	0	1

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.15 0.10 0.05 0.10	0.05	0.05	0.00

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\prod_{\substack{H_g \ p=0 \ q=0}}^{H_g \ H_g}},$$

sendo $H_{
m g}$ o nível de cinza máximo na imagem.

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\sum\limits_{p=0}^{H_g} \sum\limits_{q=0}^{H_g} P(p,q)},$$

sendo $H_{
m g}$ o nível de cinza máximo na imagem.

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\sum_{p=0}^{H_g} \sum_{q=0}^{H_g} P(p,q)},$$

sendo $H_{
m g}$ o nível de cinza máximo na imagem.

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\sum_{p=0}^{H_g} \sum_{q=0}^{H_g} P(p,q)},$$

sendo H_g o nível de cinza máximo na imagem.

