P-Channel Enhancement-Mode MOS Transistors

TP0610L VP0610L BS250 TP0610T VP0610L

Product Summary

Part Number	V _{(BR)DSS} Min (V)	$r_{DS(on)}$ Max (Ω)	$V_{GS(th)}(V)$	I _D (A)
TP0610L	-60	$10 @ V_{GS} = -10 V$	-1 to -2.4	-0.18
TP0610T	-60	$10 @ V_{GS} = -10 V$	-1 to -2.4	-0.12
VP0610L	-60	$10 @ V_{GS} = -10 V$	-1 to -3.5	-0.18
VP0610L	-60	$10 @ V_{GS} = -10 V$	-1 to -3.5	-0.12
BS250	-45	$14 @ V_{GS} = -10 V$	-1 to -3.5	-0.18

For applications information see AN804.

Features

- High-Side SwitchingLow On-Resistance: 8 Ω
- Low Threshold: -1.9 V
- Fast Switching Speed: 16 ns
- Low Input Capacitance: 15 pF

Benefits

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Switching
- Easily Driven Without Buffer

Applications

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Power Supply, Converter Circuits
- Motor Control

Widtking Code for 10-23

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

Parameter		Symbol	TP0610L	TP0610T	VP0610L	VP0610L	BS250	Unit	
Drain-Source Voltage		V_{DS}	-60	-60	-60	-60	-45	V	
Gate-Source Voltage		V_{GS}	±30	±30	±30	±30	± 25	•	
Continuous Drain Current	$T_A = 25$ °C	I_{D}	-0.18	-0.12	-0.18	-0.12	-0.18		
$(T_{\rm J} = 150^{\circ} \rm C)$	$T_{A} = 100^{\circ}C$		-0.11	-0.07	-0.11	-0.07		A	
Pulsed Drain Current ^a		I_{DM}	-0.8	-0.4	-0.8	-0.4			
Power Dissipation	$T_A = 25$ °C	P_{D}	0.8	0.36	0.8	0.36	0.83	w	
Fower Dissipation	$T_A = 100$ °C		0.32	0.14	0.32	0.14			
Maximum Junction-to-Ambient		R_{thJA}	156	350	156	350	150	°C/W	
Operating Junction & Storage Temperature Range		T_J, T_{stg}	-55 to 150						

Notes

a. Pulse width limited by maximum junction temperature.

Siliconix

Specifications^a

		Test Conditions			Limits						
					TP0610L/T		VP0610L/T		BS250		1
Parameter	Symbol			Typb	Min	Max	Min	Max	Min	Max	Unit
Static						•	•		•		
Drain-Source	V _{(BR)D}	$V_{GS} = 0 \text{ V}, I_{D} = -10 \mu\text{A}$		-70	-60		-60				
Breakdown Voltage	`ss´	$V_{GS} = 0 \text{ V}, I_D = -100 \mu$	A						-45		V
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -1 \text{ mA}$		-1.9	-1	-2.4	-1	-3.5	-1	-3.5	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20$	V			±10		±10			
Gate-Body Leakage	I_{GSS}	$T_{\rm J} = 125^{\circ}{\rm C}$ $V_{\rm DS} = 0 \text{ V}, V_{\rm GS} = \pm 15 \text{ V}$				±50					nA
										±20	
		$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$				-1		-1			
Zero Gate Voltage Drain Current	I_{DSS}	$T_{J} = 1$	125°C			$-20 \\ 0$		$-20 \\ 0$			μΑ
		$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$								-0.5	
	I _{D(on)}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.$		-180	-50						
On-State Drain Current ^c		Vpc = -10 V	L	-750			-60 0				mA
		$V_{DS} = -10 \text{ V}$ $V_{GS} = -10 \text{ V}$	Т				-22 0				
	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ m}$	mA	11		25					
		$V_{GS} = -10 \text{ V}$	L	8		10		10			1
Drain-Source On-Resistance ^c		$I_D = -0.5 \text{ A}$ $T_J = 1$	125°C	15		20		20			Ω
		$V_{GS} = -10 \text{ V}$ $I_{D} = -0.2 \text{ A}$	Т	6.5		10		10		14	
	gfs	$V_{DS} = -10 \text{ V}, I_{D} = -0.5 \text{ A}$	L	125	80		80				
Forward Transconductance ^c		$V_{DS} = -10 \text{ V}$ $I_{D} = -0.1 \text{ A}$	Т	90	60		70				mS
Diode Forward Voltage	V_{SD}	$I_S = -0.5 \text{ A}, V_{GS} = 0 \text{ V}$		-1.1							V
Dynamic				•	•	•	•		•	•	
Input Capacitance	C _{iss}			15		60		60			
Output Capacitance	Coss	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		10		25		25			pF
Reverse Transfer Capacitance	C _{rss}			3		5		5			
Switching ^d											
Turn-On Time	t _{ON}	$V_{DD} = -25 \text{ V}, R_L = 133 \Omega$ $I_D \cong -0.18 \text{ A}, V_{GEN} = -10 \text{ V}$ $R_G = 25 \Omega$		8						10	
	t _{d(on)}			6		10		10			1
	t _r			10		15		15			ns
	t _{OFF}			8						10	115
Turn-Off Time	t _{d(off)}			7		15		15			
	t_{f}			8		20		20			

- a. T_A = 25°C unless otherwise noted.
 b. For DESIGN AID ONLY, not subject to production testing.
 c. Pulse test: PW ≤ 300 μs duty cycle ≤ 2%.
- d. Switching time is essentially independent of operating temperature.

VPDS06

TP0610L/T, VP0610L/T, BS250

Typical Characteristics (25°C Unless Otherwise Noted)

Typical Characteristics (25°C Unless Otherwise Noted) (Cont'd)

