Simulation Lecture 17 - Output Analysis for Terminating Simulations

Burak Büke

School of Mathematics University of Edinburgh

- Terminating Simulation: Definite start and end time/conditions
- Customer arrivals to a bank
 - System starts at 9am with no customers
 - System ends around 6pm
- Project Management
 - Starts with the first activity
 - Ends with the final activity

- Terminating Simulation: Definite start and end time/conditions
- Customer arrivals to a bank
 - System starts at 9am with no customers
 - System ends around 6pm
- Project Management
 - Starts with the first activity
 - Ends with the final activity

- Terminating Simulation: Definite start and end time/conditions
- Customer arrivals to a bank
 - System starts at 9am with no customers
 - System ends around 6pm
- Project Management
 - Starts with the first activity
 - Ends with the final activity

- Consider estimating average cycle time (time spent in the system)
- Run the system once⇒ Estimate average cycle time
 - Random quantity
 - How can we assess the quality of the estimate?

- Consider estimating average cycle time (time spent in the system)
- Run the system once⇒ Estimate average cycle time
 - Random quantity
 - How can we assess the quality of the estimate?

- Consider estimating average cycle time (time spent in the system)
- Run the system once⇒ Estimate average cycle time
 - Random quantity
 - How can we assess the quality of the estimate?

Central Limit Theorem

Theorem 1

Central Limit Theorem. Let X_1, X_2, \cdots be independent and identically distributed (i.i.d.) random variables with expected value μ and variance σ^2 . Then

$$\frac{\frac{\sum_{i=1}^{n} X_i}{n} - \mu}{\sigma/\sqrt{n}}$$

approaches to a standard normal random variable.

• Suppose we run a single replication (single day)

$$X_1, X_2, X_3, \dots, X_n \Rightarrow \bar{X}, S^2$$

- Can we build a confidence interval based on these?
- NOT INDEPENDENT!!!

• Suppose we run a single replication (single day)

$$X_1, X_2, X_3, \dots, X_n \Rightarrow \bar{X}, S^2$$

- Can we build a confidence interval based on these?
- NOT INDEPENDENT!!!

• Suppose we run a single replication (single day)

$$X_1, X_2, X_3, \ldots, X_n \Rightarrow \bar{X}, S^2$$

- Can we build a confidence interval based on these?
- NOT INDEPENDENT!!!

• Run m (independent) replications

$$X_{1}^{1}, X_{2}^{1}, \dots, X_{n_{1}}^{1} \Rightarrow \bar{X}_{1}$$
 $X_{1}^{2}, X_{2}^{2}, \dots, X_{n_{2}}^{2} \Rightarrow \bar{X}_{2}$
 \vdots
 $X_{1}^{m}, X_{2}^{m}, \dots, X_{n_{m}}^{m} \Rightarrow \bar{X}_{m}$

- $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_m$ are indepedent
- Find the sample mean and variance of these

$$\bar{X} = \frac{\sum_{i=1}^{m} \bar{X}_i}{m}, S^2 = \frac{\sum_{i=1}^{m} (\bar{X}_i - \bar{X})^2}{m-1}$$

• Build $(1-\alpha) \times 100$ confidence interval as

$$[\bar{X} - t_{m-1,1-\alpha/2} \frac{S}{\sqrt{m}}, \bar{X} + t_{m-1,1-\alpha/2} \frac{S}{\sqrt{m}}]$$

• Run m (independent) replications

$$X_{1}^{1}, X_{2}^{1}, \dots, X_{n_{1}}^{1} \Rightarrow \bar{X}_{1}$$
 $X_{1}^{2}, X_{2}^{2}, \dots, X_{n_{2}}^{2} \Rightarrow \bar{X}_{2}$
 \vdots
 $X_{1}^{m}, X_{2}^{m}, \dots, X_{n_{m}}^{m} \Rightarrow \bar{X}_{m}$

- $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_m$ are indepedent
- Find the sample mean and variance of these

$$\bar{X} = \frac{\sum_{i=1}^{m} \bar{X}_i}{m}, S^2 = \frac{\sum_{i=1}^{m} (\bar{X}_i - \bar{X})^2}{m-1}$$

• Build $(1 - \alpha) \times 100$ confidence interval as

$$[\bar{X} - t_{m-1,1-\alpha/2} \frac{S}{\sqrt{m}}, \bar{X} + t_{m-1,1-\alpha/2} \frac{S}{\sqrt{m}}]$$

• Run m (independent) replications

$$X_{1}^{1}, X_{2}^{1}, \dots, X_{n_{1}}^{1} \Rightarrow \bar{X}_{1}$$
 $X_{1}^{2}, X_{2}^{2}, \dots, X_{n_{2}}^{2} \Rightarrow \bar{X}_{2}$
 \vdots
 $X_{1}^{m}, X_{2}^{m}, \dots, X_{n_{m}}^{m} \Rightarrow \bar{X}_{m}$

- $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_m$ are indepedent
- Find the sample mean and variance of these

$$\bar{X} = \frac{\sum_{i=1}^{m} \bar{X}_i}{m}, S^2 = \frac{\sum_{i=1}^{m} (\bar{X}_i - \bar{X})^2}{m-1}.$$

• Build $(1 - \alpha) \times 100$ confidence interval as

$$[\bar{X} - t_{m-1,1-\alpha/2} \frac{S}{\sqrt{m}}, \bar{X} + t_{m-1,1-\alpha/2} \frac{S}{\sqrt{m}}]$$

• Run m (independent) replications

$$X_{1}^{1}, X_{2}^{1}, \dots, X_{n_{1}}^{1} \Rightarrow \bar{X}_{1}$$

 $X_{1}^{2}, X_{2}^{2}, \dots, X_{n_{2}}^{2} \Rightarrow \bar{X}_{2}$
 \vdots
 $X_{1}^{m}, X_{2}^{m}, \dots, X_{n_{m}}^{m} \Rightarrow \bar{X}_{m}$

- $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_m$ are indepedent
- Find the sample mean and variance of these

$$\bar{X} = \frac{\sum_{i=1}^{m} \bar{X}_i}{m}, S^2 = \frac{\sum_{i=1}^{m} (\bar{X}_i - \bar{X})^2}{m-1}.$$

• Build $(1 - \alpha) \times 100$ confidence interval as

$$[\bar{X}-t_{m-1,1-\alpha/2}\frac{S}{\sqrt{m}},\bar{X}+t_{m-1,1-\alpha/2}\frac{S}{\sqrt{m}}]$$

Simulation Example – Project Management

- We are doing a project which is composed of 6 activities.
- All the predecessors of n activity should be completed before starting the activity

Activity	Predecessor(s)	Duration
Α	_	Expon(0.2/day)
В	Α	Expon(0.3/day)
C	Α	Uniform $(1,4)$ days
D	B, C	Uniform $(3,5)$ days
Е	C	Uniform(1, 10)
F	D, E	Expon(1/day)

- How many replications should we run? m = ?
- First determine the precision you wish for the confidence interval
 - We wish to have $[\bar{X}-\epsilon,\bar{X}+\epsilon]$
- If we know σ , we need to set

$$\epsilon = z_{1-\alpha/2} \frac{\sigma}{\sqrt{m}}$$

$$m = \left\lceil \left(\frac{z_{1-\alpha/2} \sigma}{\epsilon} \right)^2 \right\rceil$$

• What if we don't know σ ?

- If we were to have data, we could estimate σ and use t distributions
 - We have not done the replications yet!
- Use a two-stage procedure

- If we were to have data, we could estimate σ and use t distributions
 - We have not done the replications yet!
- Use a two-stage procedure

- If we were to have data, we could estimate σ and use t distributions
 - We have not done the replications yet!
- Use a two-stage procedure

Two-Stage Method

- Run m_0 replications to obtain Y^1, Y_2, \dots, Y^{m_0} .
- 2 Estimate

$$\bar{Y} = \frac{\sum_{i=1}^{m_0} Y^i}{n_0}, S_{m_0}^2 = \frac{\sum_{i=1}^{m_0} (Y^i - \bar{Y})^2}{m_0 - 1}$$

- **3** Let $m = \min\{n : n \ge \frac{t_{n-1,1-\alpha}^2 S_{m_0}^2}{\epsilon^2}\}$.
- Run m "new" replications to obtain X^1, X^2, \ldots, X^m .
- Form

$$\bar{X} = \frac{\sum_{i=1}^{m} X^{i}}{m}$$
, and $s^{2} = \frac{\sum_{i=1}^{m} (X^{i} - \bar{X})^{2}}{m-1}$.

Find the confidence interval as

$$(\bar{X} - \frac{t_{m-1,1-\alpha}s}{\sqrt{m}}, \bar{X} + \frac{t_{m-1,1-\alpha}s}{\sqrt{m}}).$$

Sequential Procedure

- Two stage method does not "guarantee" the desired width!(Why?)
- The following sequential procedure guarantees the desired width:

 - 2 Form

$$\bar{X} = \frac{\sum_{i=1}^{m} X^{i}}{m}$$
, and $s^{2} = \frac{\sum_{i=1}^{m} (X^{i} - \bar{X})^{2}}{m - 1}$.

- **3** If $\frac{t_{m-1,1-\alpha}s}{\sqrt{m}} < \epsilon$ stop and output the confidence interval $[\bar{X} \epsilon, \bar{X} + \epsilon]$.
- Otherwise generate X^{m+1} by performing another replication, set m = m + 1 and go to Step 2.