Question	Marking Guidance	Mark	Comments
2(a)	Because it is a gas compared with solid carbon	1	Mark independently
	Nitrogen is more disordered/random/chaotic/free to move	1	
2(b)	0 K / –273 C / absolute zero	1	
2(c)	$\Delta G = \Delta H - T \Delta S$	1	Allow $\Delta H = \Delta G - T \Delta S$
			$T\Delta S = \Delta H - \Delta G$
			$\Delta S = (\Delta H - \Delta G)/T$
			Ignore θ in ΔG^{θ}
2(d)	ΔG is less than or equal to zero ($\Delta G \leq 0$)	1	Allow ΔG is less than zero ($\Delta G < 0$)
			Allow ΔG is equal to zero ($\Delta G = 0$)
			Allow ΔG is negative
2(e)	When $\Delta G = 0$ $T = \Delta H / \Delta S$	1	
	$\Delta H = +90.4$	1	Allow $\Delta H = +90$
	$\Delta S = \sum S(\text{products}) - \sum S(\text{reactants})$	1	
	$\Delta S = 211.1 - 205.3/2 - 192.2/2 = 12.35$	1	
	<i>T</i> = (90.4 x 1000)/12.35 = 7320 K /7319.8 <u>K</u>	1	Allow 7230 to 7350 K (Note 7.32 K scores 4 marks)
			Units of temperature essential to score the mark

2(g)	$\Delta H = 1.9 \text{ (kJ mol}^{-1})$ $\Delta S = 2.4 - 5.7 = -3.3 \text{ (J K}^{-1} \text{ mol}^{-1})$ ΔG is always positive	1 1 1	for M1 and M2 allow no units, penalise wrong units This mark can only be scored if ΔH is +ve and ΔS is –ve
2(f)	Activation energy is high	1	Allow chemical explanation of activation energy Allow needs route with lower activation energy Allow catalyst lowers activation energy