

<110> Bowdish, Katherine S.
Frederickson, Shana
Renshaw, Mark
Orencia, Cecilia

<120> RATIONALLY DESIGNED ANTIBODIES

<130> 1087-2 CIP III

<140> US 10/737,290
<141> 2003-12-15

<150> US 10/452,590
<151> 2003-06-02

<150> US 10/307,724
<151> 2002-12-02

<150> US 10/006,593
<151> 2001-12-05

<150> US 60/251,448
<151> 2000-12-05

<150> US 60/288,889
<151> 2001-05-04

<150> US 60/294,068
<151> 2001-05-29

<160> 193

<170> PatentIn version 3.2

<210> 1
<211> 14
<212> PRT
<213> artificial sequence

<220>
<223> TPO/mimetic peptide

<400> 1

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10

<210> 2
<211> 15
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 2

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Pro
1 5 10 15

<210> 3

<211> 18

<212> PRT

<213> artificial sequence

<220>

<223> EPO mimetic peptide

<400> 3

Asp Tyr His Cys Arg Met Gly Pro Leu Thr Trp Val Cys Lys Pro Leu
1 5 10 15

Gly Gly

<210> 4

<211> 16

<212> PRT

<213> human

<400> 4

Gly Asp Thr Ile Phe Gly Val Thr Met Gly Tyr Tyr Ala Met Asp Val
1 5 10 15

<210> 5

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 5

tatcgcgatt gcagttggcac tggc

24

<210> 6

<211> 59

<212> DNA

<213> artificial sequence

<220>

<223> primer

```

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 6
gccagccatt gccgcagcgt cggcccttca atynnnnntc tcgcacaata atatatggc      59

<210> 7
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 7
ccgacgctgc ggcaatggct ggcgccgcgc gcgnnyynt gggccaagg gaccaccgt      59

<210> 8
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 8
tcaaaatcac cggaaccaga gc      22

<210> 9
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

```

```

<220>
<221> misc_feature
<222> (33)..(33)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g or t

<400> 9
gccagccatt gccgcagcgt cgccccttca atngggngtc tcgcacaata atatatggc      59

<210> 10
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (39)..(39)
<223> n is a, c, g or t

<400> 10
ccgacgctgc ggcaatggct ggccgcgcgc gcggggngnt gggccaagg gaccaccgt      59

<210> 11
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (33)..(33)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g or t

```

<400> 11	gccagccatt gccgcagcgt cggcccttca atnccncctc tcgcacaata atatatggc	59
<210> 12		
<211> 59		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (36)..(36)		
<223> n is a, c, g or t		
<220>		
<221> misc_feature		
<222> (39)..(39)		
<223> n is a, c, g or t		
<400> 12		
ccgacgctgc ggcaatggct ggccgcgcgc gcggggngnt ggggccaagg gaccaccgt		59
<210> 13		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 13		
gctgcccaac cagccatggc c		21
<210> 14		
<211> 60		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (34)..(35)		
<223> n is a, c, g or t		
<220>		
<221> misc_feature		
<222> (37)..(38)		
<223> n is a, c, g or t		

```

<400> 14
ccaaccctgc gccagtggt ggctgctcgc gctnnknnka gagtcaccat taccgcggac      60

<210> 15
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 15
agcgttagtcc ggaacgtcgt acgg                                24

<210> 16
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 16
agccagccac tggcgcaggg ttgggccttc gatmnnmnna cagtagtaca ctgcaaaatc      60

<210> 17
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)

```

```

<223> n is a, c, g or t

<400> 17
ccaaccctgc gccagtggt ggctgctcgc gctnnknnkt tcggccaagg gaccaaggta      60

<210> 18
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 18
ggccatggct ggttgggcag c                                21

<210> 19
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 19
agccagccac tggcgcgagg ttgggccttc gatmnnmnna tagatgagga gcctggagc      60

<210> 20
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature

```

```

<222>  (37)..(38)
<223>  n is a, c, g or t

<400>  20
ccaaccctgc gccagtggt ggctgctcgc gctnnknnkg gcatcccaga caggttcagt      60

<210>  21
<211>  63
<212>  DNA
<213>  artificial sequence

<220>
<223>  primer

<220>
<221>  misc_feature
<222>  (26)..(27)
<223>  n is a, c, g or t

<220>
<221>  misc_feature
<222>  (38)..(39)
<223>  n is a, c, g or t

<220>
<221>  misc_feature
<222>  (41)..(42)
<223>  n is a, c, g or t

<400>  21
cacccaggc agtgggccca tgcgmnnatg atagtcnnm nntctcgac aataatata      60
ggc                                         63

<210>  22
<211>  63
<212>  DNA
<213>  artificial sequence

<220>
<223>  primer

<220>
<221>  misc_feature
<222>  (25)..(26)
<223>  n is a, c, g or t

<220>
<221>  misc_feature
<222>  (37)..(38)
<223>  n is a, c, g or t

<220>

```

```

<221> misc_feature
<222> (40)..(41)
<223> n is a, c, g or t

<400> 22
cgcatggcc cactgacctg ggtgnnkaaa ccactgnkn nktggggcca agggaccacg      60
gtc                                         63

<210> 23
<211> 63
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (26)..(27)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (41)..(42)
<223> n is a, c, g or t

<400> 23
cacccaggc agtggggcca tgcgmnatg atagtcnnnm nnacagtgt acactgcaaa      60
atc                                         63

<210> 24
<211> 63
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (25)..(26)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)

```

<223> n is a, c, g or t

<220>

<221> misc_feature

<222> (40)..(41)

<223> n is a, c, g or t

<400> 24

cgcacggcc cactgacctg ggtgnnkaaa ccactgnkn nkttcggcca agggaccaag

60

gtg

63

<210> 25

<211> 18

<212> PRT

<213> artificial sequence

<220>

<223> TPO mimetic with flanking amino acids

<400> 25

Pro Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Gly Gly

<210> 26

<211> 54

<212> DNA

<213> artificial sequence

<220>

<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 26

ccgcccattg aagggccgac gctgcggcaa tggctggcg cgcgcgcg agg

54

<210> 27

<211> 18

<212> PRT

<213> artificial sequence

<220>

<223> TPO mimetic with flanking amino acids

<400> 27

Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Gly Gly

<210> 28
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 28
gggggtattg aagggccgac gctgcggcaa tggctggcgg cgcgccggg cgga 54

<210> 29
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 29

Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Gly Gly

<210> 30
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 30
ggcggtattg aagggccgac gctgcggcaa tggctggcgg cgcgccggg aggc 54

<210> 31
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 31

Trp Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala

1

5

10

15

Pro Val

<210> 32
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 32
tggctgattg aaggccgac gctgcggcaa tggctggcgg cgcgccgccc tgtc 54

<210> 33
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 33

Met Ile Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Val Gly

<210> 34
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 34
atgataattg aaggccgac gctgcggcaa tggctggcgg cgcgccggt tggc 54

<210> 35
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 35

Val Val Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 36

<211> 54

<212> DNA

<213> artificial sequence

<220>

<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 36

tggtaattg aaggccgac gctgcggcaa tggctggcgg cgcgccgc ttg 54

<210> 37

<211> 18

<212> PRT

<213> artificial sequence

<220>

<223> TPO mimetic with flanking amino acids

<400> 37

Gly Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Asp

<210> 38

<211> 54

<212> DNA

<213> artificial sequence

<220>

<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 38

ggccgattt aaggccgac gctgcggcaa tggctggcgg cgcgccgc ttg 54

<210> 39

<211> 18

<212> PRT

<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 39

Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 40
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 40 ttgccaattg aaggccgac gctgcggcaa tggctggcgg cgcgccgccc tgtt 54

<210> 41
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 41

Ser Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Ile

<210> 42
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 42 tcactgattt aaggccgac gctgcggcaa tggctggcgg cgcgccgccc catc 54

<210> 43
<211> 18

<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 43

Thr Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 44
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 44
acaatgattg aaggccgac gctgcggcaa tggctggcgg cgcgccgcgc 54
ttt

<210> 45
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 45

Thr Thr Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 46
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 46
acgacaattg aaggccgac gctgcggcaa tggctggcgg cgcgccgcgc 54
ttt

<210> 47
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 47

Thr Arg Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Cys Ser

<210> 48
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 48
acacggattg aaggccgac gctgcggcaa tggctggcgg cgcgcgcgtg cagc 54

<210> 49
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 49

Gln Thr Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Asp

<210> 50
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 50	cagacaattg aagggccgac gctgcggcaa tggctggcgg cgcgccgcgc tcac	54
<210> 51		
<211> 60		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (35)..(36)		
<223> n is a, c, g or t		
<220>		
<221> misc_feature		
<222> (38)..(39)		
<223> n is a, c, g or t		
<400> 51	agccagccac tggcgcaggg ttgggccttc gatmnnmnnt cccatccact caagccttg	60
<210> 52		
<211> 270		
<212> DNA		
<213> artificial sequence		
<220>		
<223> portion of vector		
<400> 52	actagtccga aaccgtctac cccaccgggc tcttctgcg gtggccgcac cgcccgctcg	60
gaggaaaaag tgaaaacctt gaaagcttag aactccgagc tggcgccac tgccaaatcg	120	
ctgcgcgaac aggtggcaca gctgaaacag aaagttatga accatggcgg ttgtgcttagt	180	
ggccaggccg gccagcacca tcaccatcac catggccat acccgtaacga cgttccggac	240	
tacgcttctt aggagggtgg tggctcttag	270	
<210> 53		
<211> 81		
<212> PRT		
<213> artificial sequence		
<220>		
<223> portion of polypeptide encoded by Seq. 52		
<400> 53		

Pro Lys Pro Ser Thr Pro Pro Gly Ser Ser Cys Gly Gly Arg Ile Ala
1 5 10 15

Arg Leu Glu Glu Lys Val Lys Thr Leu Lys Ala Gln Asn Ser Glu Leu
20 25 30

Ala Ser Thr Ala Asn Met Leu Arg Glu Gln Val Ala Gln Leu Lys Gln
35 40 45

Lys Val Met Asn His Gly Gly Cys Ala Ser Gly Gln Ala Gly Gln His
50 55 60

His His His His Gly Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
65 70 75 80

Ser

<210> 54
<211> 699
<212> DNA
<213> human

<400> 54
gaggtgcagc tgctcgagca gtctggggct gaggtgaaga agcctgggtc ctcggtaag 60
gtctcctgca gggcttctgg aggcacccttc aacaattatg ccatcagctg ggtgcgacag 120
gccctggac aagggcttga gtggatggga gggatcttcc ctttccgtaa tacagcaaag 180
tacgcacaac acttccaggg cagagtacc attaccgcgg acgaatccac gggcacagcc 240
tacatggagc tgagcagcct gagatcttag gacacggcca tatattatttgcgagaggg 300
gatacgattt ttggagtgac catggatac tacgctatgg acgtctgggg ccaagggacc 360
acggtcaccg tctccgcagc ctccaccaag ggcccatcggttcccccttcc 420
tccaagagca cctctgggg cacagcggcc ctgggctgcc tggtaagga ctacttcccc 480
gaaccggta cggtgtcgta gaactcaggc gccctgacca gcggcgtgca caccttcccc 540
gctgtcctac agtcctcagg actctactcc ctcagcagcg tggtgaccgt gcccctcc 600
agcttggca cccagaccta catctgcaac gtgaatcaca agcccagcaa caccaaggta 660
gacaagaaag ttgagccaa atcttgtgac aaaactagt 699

<210> 55
<211> 646

<212> DNA
<213> human

<400> 55
gagctcacgc agtctccagg caccctgtct ttgtctccag gggaaagagc caccctctcc 60
tgcaaggcca gtcacagtgt tagcagggcc tacttagcct ggtaccagca gaaacctggc 120
caggctcca ggctccat ctatggtaca tccagcaggg ccactggcat cccagacagg 180
ttcagtggca gtgggtctgg gacagacttc actctcacca tcagcagact ggagcctgaa 240
gattttcgag tgtactactg tcagcagtat ggtggctcac cgtggttcgg ccaagggacc 300
aaggtggaac tcaaacaac tgtggctgca ccatctgtct tcataccc gccatctgat 360
gagcagttga aatctggaac tgccctgtt gtgtgcctgc tgaataactt ctatcccaga 420
gaggccaaag tacagtggaa ggtggataac gccctccaat cgggtaactc ccaggagagt 480
gtcacagagc aggacagcaa ggacagcacc tacagcctca gcagcaccct gacgctgagc 540
aaagcagact acgagaaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc 600
ttgccccgtca caaagagctt caacagggga gagtgttagt tctaga 646

<210> 56
<211> 28
<212> PRT
<213> artificial sequence

<220>
<223> portion of artificial heavy chain variable region

<220>
<221> misc_feature
<222> (6)..(7)
<223> Xaa is any of 14 amino acids

<220>
<221> misc_feature
<222> (22)..(23)
<223> Xaa is any of 14 amino acids encoded by the triplet NNY which eliminates all stops

<400> 56

Tyr Tyr Cys Ala Arg Xaa Xaa Ile Glu Gly Pro Thr Leu Arg Gln Trp
1 5 10 15

Leu Ala Ala Arg Ala Xaa Xaa Trp Gly Gln Gly Thr
20 25

```

<210> 57
<211> 84
<212> DNA
<213> artificial sequence

<220>
<223> nucleotides encoding artificial CDR3

<220>
<221> misc_feature
<222> (16)..(17)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (64)..(65)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (67)..(68)
<223> n is a, c, g or t

<400> 57
tattattgtg cgagannrnn rattgaaggg ccgacgctgc ggcaatggct ggcgccgcgc      60
gcgnnynt ggggccaagg gacc                                         84

<210> 58
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 58
ccaaccctgc gccagtggct ggctgctcgc gctnnknnkt ggtaccagca gaaacctggc      60

```

```

<210> 59
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 59
agccagccac tggcgcaggg ttgggccttc gatmnnmnng caggagaggg tggctcttc      60

<210> 60
<211> 5149
<212> DNA
<213> artificial sequence

<220>
<223> vector

<400> 60
ggaaattgt aagcgttaat atttgttaa aattcgcgtt aaattttgt taaatcagct      60
catttttaa ccaataggcc gaaatcggca aaatccctta taaatcaaaa gaatagaccg      120
agatagggtt gagtgtgtt ccagttgg acaagagtcc actattaag aacgtggact      180
ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac      240
cctaatacag tttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga      300
ccccccgatt tagagcttga cggggaaagc cggcgaacgt ggcgagaaag gaagggaga      360
aagcgaaagg agcgggcgct agggcgctgg caagtgttagc ggtcacgctg cgcgtAACCA      420
ccacacccgc cgcgcttaat gcgcgcgtac agggcgctgc aggtggcact tttcgggaa      480
atgtgcgcgg aacccttatt tgtttatttt tctaaataca ttcaaataatg tatccgtca      540
tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc      600
aacatTTCCG tgtcgccctt attccctttt ttgcggcatt ttgccttcct gttttgctc      660
acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt      720

```

acatcgaact ggatctcaac agcggttaaga tccttgagag ttttcgcccc gaagaacgtt	780
ttccaatgat gagcaacttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg	840
ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg gttgagttact	900
caccagtac agaaaagcat ctacggatg gcatgacagt aagagaatta tgcatgtctg	960
ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga	1020
aggagctaacc cgctttttg cacaacatgg gggatcatgt aactcgcctt gatcggttggg	1080
aaccggagct gaatgaagcc ataccaaactg acgagctgta caccacgatg cctgttagcaa	1140
tggcaacaac gttgcgc当地 ctattaactg gcgaactact tactctagct tcccgcaac	1200
aattaataga ctggatggag gcggataaaag ttgcaggacc acttctgcgc tcggcccttc	1260
cggctggctg gtttattgct gataaatctg gagccggtaa gcgtgggtct cgccgtatca	1320
ttgcagcaact gggccagat ggttaagccct cccgtatcgt agttatctac acgacgggaa	1380
gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta	1440
agcattggta actgtcagac caagttact catataact ttagattgat ttaaaacttc	1500
attttaatt taaaaggatc taggtgaaga tcctttga taatctcatg accaaaatcc	1560
cttaacgtga gtttcgttc cactgagcgt cagacccgt agaaaagatc aaaggatctt	1620
cttgagatcc ttttttctg cgcgtaatct gctgcttgca aaaaaaaaaa ccaccgctac	1680
cagcggtggt ttgtttgccg gatcaagagc taccaactct tttccgaag gtaactggct	1740
tcagcagagc gcagatacca aatactgtcc ttcttagtgcgta gccgtatgta ggccaccact	1800
tcaagaactc tgttagcacccg cctacataacc tcgctctgct aatcctgtta ccagtggctg	1860
ctgccagtgg cgataagtgcg tgtcttacccg ggttgactc aagacgatag ttaccggata	1920
aggcgcagcg gtcgggctga acgggggggtt cgtcacaca gcccagctt gaggcaacga	1980
cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttccgaag	2040
ggagaaaaggc ggacaggtat ccggtaagcg gcagggtcg aacaggagag cgacgaggg	2100
agcttccagg gggaaacgcc tggttatctt atagtcctgt cgggtttcgc cacctctgac	2160
ttgagcgtcg atttttgtga tgctcgtaag gggggcggag cctatggaaa aacgccagca	2220
acgcggcctt tttacgttcc ctggcctttt gctggccttt tgctcacatg ttcttcctg	2280
cgttatcccc tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc	2340
gccgcagccg aacgaccgag cgacgagcgt cagtgagcga ggaagcggaa gagcgc当地	2400
tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt	2460

ttcccgactg	gaaagcgggc	agtgagcgca	acgcaattaa	tgtgagttag	ctca	catt	2520							
aggcacc	cca	ggctt	acac	ttatgcttc	cg	gctcg	tat	gtgtgga	att	tgagcg	2580			
gataacaatt	gaattcagga	ggaatttaaa	atgaaaaaga	cagctatcgc	gatt	gcagtg	2640							
gcactggctg	gtt	tcgtac	cgtggcccag	gcggccg	gagc	tcggccatgg	ctgg	ttgggc	2700					
agcag	gagtaat	aacaatccag	cg	gctgccgt	agg	caatagg	tattt	catta	tgact	gtctc	2760			
cttggcgact	agct	tagttt	aa	attcgtaa	tca	atgg	tca	t	agct	gtttcc	tgtgtgaaat	2820		
tgttatccgc	tcacaattcc	acacaacata	cg	agccggaa	gcataa	agg	tg	taa	agg	cctgg	2880			
gg	tgcc	taat	gagt	gagcta	act	cacatta	att	gcgttgc	gct	cactg	cc	cgcttccag	2940	
tcgggaaacc	tg	tcgtgtt	ta	aatgatgg	t	gatgg	tgat	gg	ctag	ttt	gtc	cacaagat	3000	
ttgggctcaa	ctt	tctgtc	ca	cac	ttgg	tg	tg	ctgg	gtt	gatt	ca	ttgcagat	3060	
taggtctggg	tg	cccc	aa	gag	ct	ggagg	gc	ac	gg	tca	cc	ggat	agat	3120
cctgaggact	gt	agg	ac	ag	cg	ggaa	agg	tg	tc	ac	gccc	gg	ctgagttc	3180
cacgacaccg	tc	gccc	gg	ttc	gg	ggaa	ag	tg	tt	gac	cc	gg	ctgt	3240
cccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3300
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3360
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3420
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3480
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3540
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3600
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3660
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3720
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3780
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3840
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3900
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3960
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	4020
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	4080
ccccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	4140

tgcaaaactg aacatcgatc	aaaaccctgg cactgcgccg	aaatatggca tccgtggtat	4200
cccgactctg ctgctgttca	aaaacggtga agtggcggca	accaaagtgg gtgcacttgt	4260
ctaaaggta gttgaaagag	ttcctcgacg ctaacctggc	gtacccgtac gacgttccgg	4320
actacggttc tactagtcg	aaaccgtcta ccccaccggg	ctttcctgc ggtggccgca	4380
tcgcccgtct ggagaaaaaa	gtgaaaaccc tgaaagctca	gaactccgag ctggcgtcca	4440
ctgccaacat gctgcgcgaa	caggtggcac agctgaaaca	gaaagttatg aaccatggcg	4500
gttgtgttag tggccaggcc	ggccagcacc atcaccatca	ccatggcgca taccgtacg	4560
acgttccgga ctacgcttct	taggagggtg gtggctctga	gggtggcggt tctgagggtg	4620
gcggctctga gggaggcggt	tccggtggtg gctctggttc	cggtgatttt gattatgaaa	4680
agatggcaaa cgctaataag	ggggctatga ccgaaaatgc	cgatgaaaac gcgctacagt	4740
ctgacgctaa aggcaaactt	gattctgtcg ctactgatta	cggtgctgct atcgatggtt	4800
tcattggta cgtttccggc	cttgctaattg gtaatggtgc	tactggtgat tttgctggct	4860
ctaattccca aatggctcaa	gtcggtgacg gtgataattc	acctttaatg aataatttcc	4920
gtcaatattt acttccctc	cctcaatcgg ttgaatgtcg	ccctttgtc ttagcgctg	4980
gtaaaccata tgaattttct	attgattgtg acaaataaaa	cttattccgt ggtgtcttg	5040
cgtttcttt atatgttgcc	acctttatgt atgtatttc	tacgtttgct aacatactgc	5100
gtaataagga gtcttaagct	agctaattaa tttaagcggc	cgcagatct	5149

<210> 61
 <211> 18
 <212> PRT
 <213> artificial sequence

 <220>
 <223> TPO mimetic with flanking amino acids

 <400> 61

Asn Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
 1 5 10 15

Arg Gly

<210> 62
 <211> 41
 <212> DNA
 <213> artificial sequence

```

<220>
<223> primer

<400> 62
taggatgcgg ccgcacaggt cttttttttt tttttttttt t 41

<210> 63
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 63
ccatgttaggc tgtgcccgta gatt 24

<210> 64
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 64
ccacgggcac agcctacatg gagc 24

<210> 65
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic peptide flanking sequence

<400> 65
ttgccaattt aaggggccgac gctgcggcaa tggctggcg cgcgccgccc ttgtt 54

<210> 66
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic peptide with flanking sequence

<400> 66

Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

```

Pro Val

<210> 67
<211> 472
<212> PRT
<213> artificial sequence

<220>
<223> Humanized antibody heavy chain

<400> 67

Met Lys Trp Ser Trp Val Ile Leu Phe Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
20 25 30

Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe
35 40 45

Ser Asn Tyr Trp Ile Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
50 55 60

Glu Trp Met Gly Glu Ile Leu Pro Gly Ser Gly Ser Thr Glu Tyr Thr
65 70 75 80

Glu Asn Phe Lys Asp Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser
85 90 95

Thr Val Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val
100 105 110

Tyr Tyr Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp
115 120 125

Leu Ala Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Leu Val Thr Val
130 135 140

Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys
145 150 155 160

Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys
165 170 175

Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu
180 185 190

Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
195 200 205

Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr
210 215 220

Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val
225 230 235 240

Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
245 250 255

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
260 265 270

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
275 280 285

Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val
290 295 300

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
305 310 315 320

Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
325 330 335

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly
340 345 350

Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
355 360 365

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
370 375 380

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
385 390 395 400

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
405 410 415

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
420 425 430

Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe
435 440 445

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
450 455 460

Ser Leu Ser Leu Ser Leu Gly Lys
465 470

<210> 68
<211> 1419
<212> DNA
<213> artificial sequence

<220>

<223> nucleic acid encoding humanized antibody heavy chain

<400> 68
atgaagtgga gctgggttat tctcttcctc ctgtcagtaa ctgccggcgt ccactccaa 60
gtccaactgg tgcaatccgg cgccgaggtc aagaagccag gggcctcagt caaagtgtcc
tgtaaagcta gcggctataat ttttctaattattgatttc aatgggtgcg tcagcccc 120
gggcaggggcc tggaatggat gggtagatc ttaccggct ctggtagcac cgaatatacc
aaaaatttta aagaccgtgt tactatgacg cgtgacactt cgactagtagtac agtatacatg 180
gagctctcca gcctgcgatc ggaggacacg gccgtctatt attgcgcgcg tttgccaatt
gaaggggccga cgctgcggca atggctggcg gcgcgcgcgc ctgtttgggg tcaaggaacc 240
ctggtcactg tctcgagcgc ctccaccaag ggcccatccg tcttccccct ggcccctgc
tccaggagca cctccgagag cacagccgc ctgggtgcc tggtaagga ctactcccc 300
gaaccgggtga cggtgtcgtg gaactcagggc gccctgacca gcggcgtgca cacctcccc 360
gctgtcctac agtcctcagg actctactcc ctcagcagcg tggtgaccgt gccctccagc
aacttcggca cccagaccta cacctgcaac gttagatcaca agcccagcaa caccaaggtg 420
gacaagacag ttgagcgcaa atgttgtgtc gagtgccac cgtgcccagc accacctgtg
gcaggaccgt cagtcttcct ctcccccca aaacccaagg acaccctcat gatctcccg 480
840

accctgagg tcacgtgcgt ggtggtggac gtgagccagg aagaccccga ggtccagttc 900
aactggtacg tggatggcgt ggaggtgcat aatgccaaga caaagcccg gggaggcag 960
ttcaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaac 1020
ggcaaggagt acaagtgc aa ggtctccaac aaaggcctcc cgtcctccat cgagaaaacc 1080
atctccaaag ccaaaggca gccccgagag ccacaggtgt acaccctgcc cccatcccag 1140
gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggc tt ctaccccagc 1200
gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct 1260
cccggtctgg actccgacgg ctccttcttc ctctacagca ggctaaccgt ggacaagagc 1320
agg tggcagg agggaatgt ct tctcatgc tccgtgatgc atgaggctct gcacaaccac 1380
tacacacaga aggcctctc cctgtctctg gtaaatga 1419

<210> 69
<211> 236
<212> PRT
<213> artificial sequence

<220>
<223> Humanized antibody light chain

<400> 69

Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1 5 10 15

Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gly Ala Ser
35 40 45

Glu Asn Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60

Ala Pro Lys Leu Leu Ile Tyr Gly Ala Thr Asn Leu Ala Asp Gly Val
65 70 75 80

Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
85 90 95

Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Asn

100 105 110

Val Leu Asn Thr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
115 120 125

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 70
<211> 711
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding humanized antibody light chain

<400> 70
atggacatga gggccccgc tcagtcctg gggctcctgc tactctggct ccgagggtgcc 60
agatgtgata tccagatgac ccagtccccg tcctccctgt ccgcctctgt gggcgatagg 120
gtcaccatca cctgcggcgc cagcgaaaac atctatggcg cgctgaactg gtatcaacag 180
aaacccggga aagctccgaa gcttctgatt tacggtgcg acaaacctggc agatggagtc 240
ccttctcgct tctctggatc cggtccggaa acggatttca ctctgaccat cagcagtctg 300
cagcctgaag acttcgctac gtattactgt cagaacgttt taaatactcc gttgactttc 360
ggacagggtta ccaagggtgga aataaaaacga actgtggctg caccatctgt cttcatcttc 420

ccgccccatctg atgaggcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 480
ttcttatccca gagaggccaa agtacagtgg aaggtggata acgcccctcca atcgggtaac 540
tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600
ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 660
cagggcctga gctcgcccgta cacaaggagc ttcaacaggg gagagtgtta g 711

<210> 71
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> EPO mimetic with random flanking amino acids

<220>
<221> MISC_FEATURE
<222> (1)..(2)
<223> Xaa is any amino acid

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is any amino acid

<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> Xaa is any amino acid

<220>
<221> MISC_FEATURE
<222> (21)..(22)
<223> Xaa is any amino acid

<400> 71

Xaa Xaa Asp Tyr His Xaa Arg Met Gly Pro Leu Thr Trp Val Xaa Lys
1 5 10 15

Pro Leu Gly Gly Xaa Xaa
20

<210> 72
<211> 21
<212> DNA
<213> artificial sequence

<220>

<223> primer		
<400> 72		21
taggatgcgg ccgcacaggt c		
<210> 73		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 73		39
cacgcgcaca acacgtctag aracatccag atgacccag		
<210> 74		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 74		39
cacgcgcaca acacgtctag agmcatccag ttgacccag		
<210> 75		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 75		39
cacgcgcaca acacgtctag agccatccrg atgacccag		
<210> 76		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 76		39
cacgcgcaca acacgtctag agtcatctgg atgacccag		
<210> 77		
<211> 39		
<212> DNA		

<213> artificial sequence		
<220>		
<223> primer		
<400> 77		39
cacgcgcaca acacgtctag agatattgtg atgacccag		
<210> 78		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 78		39
cacgcgcaca acacgtctag agatrttgg atgactcag		
<210> 79		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 79		39
cacgcgcaca acacgtctag agaaattgtg ttgacrcag		
<210> 80		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 80		39
cacgcgcaca acacgtctag agaaatagtg atgacgcag		
<210> 81		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 81		39
cacgcgcaca acacgtctag agaaattgtg atgacacag		

<210> 82
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 82
cacgcgcaca acacgtctag agacatcgtg atgaccagg 39

<210> 83
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 83
cacgcgcaca acacgtctag agaaaacgaca ctcacgcag 39

<210> 84
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 84
cacgcgcaca acacgtctag agaaaatttgtg ctgactcag 39

<210> 85
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 85
cacgcgcaca acacgtctag agatgttgtg atgacacag 39

<210> 86
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 86

attaatacga ctcactatacg gg

22

<210> 87
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 87
aattaaccct cactaaaggg

20

<210> 88
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 88
agccagccac tggcgcaggg ttgggccttc gatcgggttc ctgatgagga gctttggrrg

59

<210> 89
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 89
agccagccac tggcgcaggg ttgggccttc gatcgggttt tgaataatga aaatagcag

59

<210> 90
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 90
agccagccac tggcgcaggg ttgggccttc gatcgggttg taaatgagca rcttaggag

59

<210> 91
<211> 59
<212> DNA
<213> artificial sequence

<220>

```

<223> primer

<400> 91
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatgagga gcctgggmg      59

<210> 92
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 92
agccagccac tggcgcaggg ttgggccttc gatcgggtta taaatttaggc gccttggag      59

<210> 93
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 93
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatyagga gctgtggag      59

<210> 94
<211> 58
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 94
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatcagga gcttagga      58

<210> 95
<211> 58
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 95
agccagccac tggcgcaggg ttgggccttc gatcgggttr tagatcagga gcttaggg      58

<210> 96
<211> 58
<212> DNA

```

<213> artificial sequence		
<220>		
<223> primer		
<400> 96		58
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatcaggg acttaggg		
<210> 97		
<211> 58		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 97		58
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatcaggy gcttaggg		
<210> 98		
<211> 59		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 98		59
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtcccctc gaggttcag		
<210> 99		
<211> 59		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 99		59
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gaatcccacc tcgattcag		
<210> 100		
<211> 59		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 100		59
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtccctga ccgattcag		

<210> 101
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 101
ccaaccctgc gccagtggtc ggctgctcgc gctcgtggtg gcataccagg caggttcag 59

<210> 102
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 102
ccaaccctgc gccagtggtc ggctgctcgc gctcgtggtg gtatcccagg caggttcag 59

<210> 103
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 103
ccaaccctgc gccagtggtc ggctgctcgc gctcgtggtg gagtscaga yaggttcag 59

<210> 104
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 104
ccaaccctgc gccagtggtc ggctgctcgc gctcgtggtg gggtaaccwga cagrrttcag 59

<210> 105
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 105

ccaaccctgc gccagtggt ggctgctcgc gtcgtggt gggtccatc aaggttcag	59
<210> 106	
<211> 59	
<212> DNA	
<213> artificial sequence	
<220>	
<223> primer	
<400> 106	
ccaaccctgc gccagtggt ggctgctcgc gtcgtggt gggtccatc tcggttcag	59
<210> 107	
<211> 102	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 107	
aattcaagga gttaattatg aaaaaaaaccc cgattgcgat tgcgggtggcg ctggcgggct	60
ttgcgaccgt ggcccaggcg gcctctagaa tctgcggccg ca	102
<210> 108	
<211> 102	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 108	
ctagtgcggc cgcagattct agaggccgcc tgggccacgg tcgcaaagcc cgccagcgcc	60
accgcaatcg caatcgccgt tttttcata attaactcct tg	102
<210> 109	
<211> 36	
<212> DNA	
<213> artificial sequence	
<220>	
<223> primer	
<400> 109	
ggagtctaga taactgtggc tgcaccatct gtcttc	36
<210> 110	
<211> 37	

<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 110		37
aggagcggcc gcttaacact ctccccgtt gaagctc		
<210> 111		
<211> 4883		
<212> DNA		
<213> artificial sequence		
<220>		
<223> vector		
<400> 111		
gggaaattgt aagcgtaat attttgtaa aattcgcgtt aaattttgt taaatcagct	60	
catttttaa ccaataggcc gaaatcgcca aaatccctta taaatcaaaa gaatagaccg	120	
agatagggtt gagtggtgtt ccagtttgg acaagagtcc actattaaag aacgtggact	180	
ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac	240	
cctaatacag tttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga	300	
ccccccgatt tagagcttga cggggaaagc cggcgaacgt ggcgagaaag gaagggaaga	360	
aagcgaaagg agcgggcgct agggcgctgg caagtgttagc ggtcacgctg cgcttaacca	420	
ccacacccgc cgcttaat gcccgcctac agggcgcgtc aggtggcact ttcggggaa	480	
atgtgcgcgg aacccttatt ttgttatttt tctaaataca ttcaaatatg tatccgctca	540	
ttagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc	600	
aacatttccg tgccctt attcccttt ttgcggcatt ttgccttcct gttttgctc	660	
acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt	720	
acatcgaaact ggatctcaac agcggtaaga tccttgagag tttcgcccc gaagaacgtt	780	
ttccaatgt gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg	840	
ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact	900	
caccagtac agaaaagcat cttacggatg gcatgacagt aagagaattha tgcaigtctg	960	
ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga	1020	
aggagctaac cgctttttg cacaacatgg gggatcatgt aactcgccctt gatcggtgg	1080	
aaccggagct gaatgaagcc ataccaaacg acgagctgta caccacgatg cctgtagcaa	1140	

tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	tcccgcaac	1200
aatataataga	ctggatggag	gcggataaaag	ttgcaggacc	acttctgcgc	tcggcccttc	1260
cggctggctg	gtttatttgct	gataaatctg	gagccggta	gcgtgggtct	cgcgtatca	1320
ttgcagcact	ggggccagat	ggttaagccct	cccgtatcgt	agttatctac	acgacgggga	1380
gtcaggcaac	tatggatgaa	cgaaaatagac	agatcgctga	gataggtgcc	tcactgatta	1440
agcattggta	actgtcagac	caagtttact	catatatact	ttagatttat	ttaaaaacttc	1500
attttaatt	taaaaggatc	taggtgaaga	tccttttga	taatctcatg	accaaaatcc	1560
cttaacgtga	gttttgcgttc	cactgagcgt	cagaccccg	agaaaaagatc	aaaggatctt	1620
ctttagatcc	ttttttctg	cgcgtaatot	gctgcttgca	aacaaaaaaaaa	ccaccgctac	1680
cagcggtggt	ttgtttgccg	gatcaagagc	taccaactct	ttttccgaag	gtaactggct	1740
tcagcagagc	gcagatacca	aatactgtcc	ttcttagtgta	gccgtagttt	ggccaccact	1800
tcaagaactc	tgttagcacccg	cctacataacc	tcgctctgct	aatcctgtta	ccagtggctg	1860
ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	aagacgatag	ttaccggata	1920
aggcgcagcg	gtcgggctga	acgggggggtt	cgtcacaca	gcccagctt	gagcgaacga	1980
cctacaccga	actgagatac	ctacagcgtg	agctatgaga	aagcgcacag	cttcccgaag	2040
ggagaaaggc	ggacaggtat	ccggtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	2100
agcttccagg	gggaaacgcc	tggtatcttt	atagtcctgt	cggtttcgc	cacctctgac	2160
ttgagcgtcg	attttgtga	tgctcgta	ggggcggag	cctatggaaa	aacgccagca	2220
acgcggcctt	tttacggttc	ctggcctttt	gctggccttt	tgctcacatg	ttctttcctg	2280
cgttatcccc	tgattctgtg	gataaccgta	ttaccgcctt	ttagtgagct	gataccgctc	2340
gcccgagccg	aacgaccgag	cgcagcgagt	cagtgagcga	ggaagcggaa	gagcgcacaa	2400
tacgcaaacc	gcctctcccc	gcmcgttggc	cgattcatta	atgcagctgg	cacgacaggt	2460
ttcccgactg	gaaagcgggc	agttagcgca	acgcaattaa	tgtgagttag	ctcactcatt	2520
aggcaccaca	ggctttacac	tttatgcttc	cggtcgat	gttgtgtgga	atttgagcg	2580
gataacaatt	gaattcaagg	agttaattat	aaaaaaaacc	gcgattgcga	ttgcgggtggc	2640
gctggcgggc	tttgcgaccg	tggccaggc	ggcctctaga	taactgtggc	tgcaccatct	2700
gtcttcatct	tcccgccatc	tgttagcgag	ttgaaatctg	gaactgcctc	tgttgtgtgc	2760
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgcctc	2820
caatcgggta	actcccagga	gagtgtcaca	gagcaggaca	gcaaggacag	cacccatcagc	2880

ctcagcagca ccctgacgct gagcaaagca gactacgaga aacacaaagt ctacgcctgc	2940
gaagtcaccc atcagggcct gagctcgccc gtcacaaaaga gcttcaacag gggagagtgt	3000
taaggcgccg cactagatat aattaaggag ataaatatga aatatctgt gccgaccgcg	3060
gcggcgggcc tgctgctgct ggcggcgcag ccggcgatgg cgctcgagct gatgagccat	3120
ggaagctgtg tcgcctgcac caggctccoa cggctcggtg tgcggtgcbc ttctggtgtt	3180
cgcgcctac agccgacacg tcgagcttcg tgcccctaga gttgcgcgtc acagcagcct	3240
ccggcgctcc gcgatatac acgtcatcc acatcaatga agtagtgctc cttagacgccc	3300
ccgtggggct ggtggcgccg ttggctgacg agagoggcca cgtagtgttg cgctggctcc	3360
ccgcgcctga gacacccatg acgtctcaca tccgctacga ggtggacgtc tcggccggca	3420
acggcgcagg gagcgtacag agggtgagaa tcctggaggg ccgcaccgag tgtgtgctga	3480
gcaacctgct gggccggacg cgctacacct tcgcccgtccg cgccgcgtatg gctgagccga	3540
gcttcggcgcc ttctggagc gcctggtcgg agcctgtgtc gctgctgacg cctagcgacc	3600
tggacccct catcctgacg ctctccctca tcctcggtt catcctggtg ctgctgaccg	3660
tgctcgcgct gctctccac cgccgggctc tgaagcagaa gatctggcct ggcattccgaa	3720
gcccagagag cgagttgaa ggcctttca ccacccacaa gggtaacttc cagctgtggc	3780
tgtaccagaa ttagtggctgc ctgtggtgaa gcccctgcac ccccttcacg gaggacccac	3840
ctgcttcctt ggaagtcctc tcagagcgct gctggggac gatgcaggca gtggagccgg	3900
ggacagatga tgagggccca tcggcttcc ccctggcacc ctcctccaag agcacctctg	3960
ggggcacacg ggcctgggc tgccctggta aggactactt ccccgaaaccg gtgacgggtgt	4020
cgttggactc aggccctcg accagcggcg tgcacacctt cccggctgtc ctacagtcc	4080
caggactcta ctccctcagc agcgtggta ccgtccccctc cagcagctt ggcacccaga	4140
cctacatctg caacgtaat cacaagccca gcaacaccaa ggtggacaag aaagttgagc	4200
ccaaatctt tgacaaaact agtggccagg ccggccagca ccatcaccat caccatggcg	4260
catacccgta cgacgttccg gactacgctt cttaggaggg tggctgtct gagggtggcg	4320
gttctgaggg tggcggtctt gagggaggcg gttccgggtgg tggctgtgt tccgggtatt	4380
ttgattatga aaagatggca aacgctaata agggggctat gaccgaaaat gccgatgaaa	4440
acgcgctaca gtctgacgct aaaggcaaac ttgattctgt cgctactgt tacgggtgt	4500
ctatcgatgg ttccattggt gacgttccg gccttgctaa tggtaatggt gctactgggt	4560

attttgctgg ctctaattcc caaatggctc aagtcggta cggtgataat tcacccttaa 4620
tgaataattt ccgtcaatat ttaccttccc tccctcaatc ggttgaatgt cgccctttg 4680
tcttagcgc tggtaaacca tatgaatttt ctattgattg tgacaaaata aacttattcc 4740
gtggtgtctt tgcgttctt ttatatgttg ccacctttat gtatgtat tt tctacgtttg 4800
ctaacatact gcgtaataag gagtcttaag ctagctaatt aatthaagcg gccggccgca 4860
gatctgctct ctgaggagga tct 4883

<210> 112
<211> 8
<212> PRT
<213> artificial sequence

<220>
<223> part of mimetic

<400> 112

Gly Pro Thr Leu Arg Gln Trp Leu
1 5

<210> 113
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> artificial CDR2

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa is any amino acid

<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Xaa is any amino acid

<400> 113

Gly Xaa Gly Pro Thr Leu Arg Gln Trp Leu Xaa Tyr Ala Gln Lys Phe
1 5 10 15

Gln Gly

<210> 114

```

<211> 48
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (26)..(27)
<223> n is a, c, g or t

<400> 114
cagccactgg cgcaagggttgcgcagggnncccc tcccatccac tcaagccc 48

<210> 115
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (25)..(26)
<223> n is a, c, g or t

<400> 115
ggcccaaccc tgcccaagggttgctgnntac gcacagaaat tccagggcag agtcaccatt 60

<210> 116
<211> 354
<212> DNA
<213> artificial sequence

<220>
<223> nucleotides encoding variable region of light chain

<400> 116
gacatccaga tgacccagggttc tccatcctcc ctgtctgcat ctgttaggaga cagagtcacc 60
atcacttgcc gggcgagtca gagtattagt agtttgctgg cctggtatca gcagaaacca
ggaaaagctc ctaagctcct gatctataac ccgatcgaag gcccaaccct gcgccagtgg 120
ctggctactc gcgctcgtgg tggggtccca tcaagggttca gcggcagtgg atctgggaca
gatttcactc tcaccatcag cagcctgcag cctgaagatt ttgcaactta ttactgccaa 180
cagtataata gttaccctcc cactttcgcc cctgggacca aagtggatataaaa 240
300
354

```

<210> 117
<211> 233
<212> PRT
<213> human

<400> 117

Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
1 5 10 15

Ser Ser Val Lys Val Ser Cys Arg Ala Ser Gly Gly Thr Phe Asn Asn
20 25 30

Tyr Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
35 40 45

Met Gly Gly Ile Phe Pro Phe Arg Asn Thr Ala Lys Tyr Ala Gln His
50 55 60

Phe Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Gly Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Ile Tyr Tyr
85 90 95

Cys Ala Arg Gly Asp Thr Ile Phe Gly Val Thr Met Gly Tyr Tyr Ala
100 105 110

Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ala Ala Ser
115 120 125

Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr
130 135 140

Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro
145 150 155 160

Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
165 170 175

His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
180 185 190

Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile
195 200 205

Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val
210 215 220

Glu Pro Lys Ser Cys Asp Lys Thr Ser
225 230

<210> 118
<211> 212
<212> PRT
<213> human

<400> 118

Glu Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg
1 5 10 15

Ala Thr Leu Ser Cys Arg Ala Ser His Ser Val Ser Arg Ala Tyr Leu
20 25 30

Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr
35 40 45

Gly Thr Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu
65 70 75 80

Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Gly Ser Pro Trp Phe
85 90 95

Gly Gln Gly Thr Lys Val Glu Leu Lys Arg Thr Val Ala Ala Pro Ser
100 105 110

Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala
115 120 125

Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val
130 135 140

Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser
145 150 155 160

Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr
165 170 175

Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys
180 185 190

Glu Val Thr His Gln Gly Leu Ser Leu Pro Val Thr Lys Ser Phe Asn
195 200 205

Arg Gly Glu Cys
210

<210> 119
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic peptide

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (20)..(21)
<223> Xaa can be any naturally occurring amino acid

<400> 119

Gly Ile Phe Xaa Xaa Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Xaa Xaa Gly
20

<210> 120
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)

```

<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 120
agccagccac tggcgcaggg ttgggccttc gatmnnmnng aagatccctc ccatccactc      60

<210> 121
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 121
ccaaccctgc gccagtggt ggctgctcgc gctnnknnkg gcagagtcac cattaccgcg      60

<210> 122
<211> 215
<212> PRT
<213> artificial sequence

<220>
<223> antibody light chain

<400> 122

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1           5             10            15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20          25            30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35          40            45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser

```

50

55

60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro
85 90 95

Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
100 105 110

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
115 120 125

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
130 135 140

Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser
145 150 155 160

Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
165 170 175

Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val
180 185 190

Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Leu Pro Val Thr Lys
195 200 205

Ser Phe Asn Arg Gly Glu Cys
210 215

<210> 123

<211> 108

<212> PRT

<213> artificial sequence

<220>

<223> antibody light chain variable region

<400> 123

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro
85 90 95

Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 124

<211> 249

<212> PRT

<213> artificial sequence

<220>

<223> antibody heavy chain

<400> 124

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
130 135 140

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
145 150 155 160

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
165 170 175

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
180 185 190

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
195 200 205

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
210 215 220

Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
225 230 235 240

Pro Ala Pro Glu Leu Leu Gly Gly Pro
245

<210> 125

<211> 128

<212> PRT

<213> artificial sequence

<220>

<223> antibody heavy chain variable region

<400> 125

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 126
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (20)..(21)
<223> Xaa can be any naturally occurring amino acid

<400> 126

Gly Ile Phe Xaa Xaa Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Xaa Xaa Gly
20

<210> 127
<211> 22

<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 127

Gly Ile Phe Ser Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Ala Gly Gly
20

<210> 128
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 128

Gly Ile Phe Pro Gln Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Lys His Gly
20

<210> 129
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 129

Gly Ile Phe Pro Asn Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Thr Gly Gly
20

<210> 130
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 130

Gly Ile Phe Lys Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Pro Gly Gly
20

<210> 131
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 131

Gly Ile Phe Pro Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Ala Val Gly
20

<210> 132
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 132

Gly Ile Phe Pro Arg Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Lys Leu Gly
20

<210> 133
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> heavy chain CDR2 clone

<400> 133

Gly Ile Phe Pro Arg Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Lys Leu Gly
20

<210> 134

<211> 22

<212> PRT

<213> artificial sequence

<220>

<223> heavy chain CDR2 clone

<400> 134

Gly Ile Phe Pro Tyr Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
1 5 10 15

Ala Arg Ala Lys Arg Gly
20

<210> 135

<211> 42

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 135

gacgcgcaca acacggagct cgaaattgtg ctgaccaga gc

42

<210> 136

<211> 44

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 136

agacagttag cggcgatctttt aattttttttt ttttttttttt aaag

44

<210> 137

<211> 36

<212> DNA

<213> artificial sequence

<220>		
<223> primer		
<400> 137		36
gacgcgcaca acacgggcc gagcgtgtt ccgctg		
<210> 138		
<211> 41		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 138		41
agacagttag cgccgactag ttttatcgca gctttcggt t		
<210> 139		
<211> 41		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 139		41
gagccgcacg agcccctcga gcaggtgcag ctggcaga g		
<210> 140		
<211> 35		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 140		35
gcaaagtgtg agggccctt ggtgctcgct ctgct		
<210> 141		
<211> 4793		
<212> DNA		
<213> artificial sequence		
<220>		
<223> expression vector		
<400> 141		60
ggaaattgt aagcgttaat atttgttaa aattcgcgtt aaattttgt taaatcagct		
catttttaa ccaataggcc gaaatcgca aaatcccta taaatcaaaa gaatagaccg		120
agatagggtt gagtgtgtt ccagttgga acaagagtcc actattaaag aacgtggact		180

ccaacgtcaa	agggcgaaaa	accgtctatac	agggcgatgg	cccactacgt	gaaccatcac	240
cctaatacg	ttttttgggg	tcgaggtgcc	gtaaagca	aatcggaac	cctaaaggga	300
ccccccgatt	tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	gaagggaga	360
aagcgaaagg	agcgggcgct	agggcgctgg	caagtgtac	ggtcacgctg	cgcgtAACCA	420
ccacacccgc	cgcgttaat	gcgcgcgtac	agggcgcgtc	aggtggcact	tttcgggaa	480
atgtgcgcgg	aaccctatt	tgtttatTTT	tctaaataca	ttcaaataatg	tatccgctca	540
tgagacaata	accctgataa	atgcttcaat	aatattgaaa	aaggaagagt	atgagtattc	600
aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcot	gttttgctc	660
acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca	cgagtgggtt	720
acatcgaaact	ggatctcaac	agcggtaa	tccttgagag	tttcgcccc	gaagaacgtt	780
ttccaaatgat	gagcactttt	aaagttctgc	tatgtggcgc	ggtattatcc	cgtattgacg	840
ccgggcaaga	gcaactcggt	cgcgcatac	actattctca	aatgacttg	gttgagttact	900
caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	tgcagtgctg	960
ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	ggaggaccga	1020
aggagctaac	cgctttttg	cacaacatgg	gggatcatgt	aactcgccct	gatcggtggg	1080
aaccggagct	aatgaagcc	ataccaaacg	acgagctgta	caccacgatg	cctgttagcaa	1140
tggcaacaac	gttgcgcAAA	ctattaactg	gcgaactact	tactctagct	tccggcaac	1200
aattaataga	ctggatggag	gcggataaag	ttgcaggacc	acttctgcgc	tcggcccttc	1260
cggtggctg	gtttattgct	gataaatctg	gagccggta	gcgtgggtct	cgcgttatca	1320
ttgcagca	ggggccagat	gttaagccct	cccgtatcg	agttatctac	acgacgggga	1380
gtcaggcaac	tatggatgaa	cggaaatagac	agatcgctga	gataggtgcc	tcactgatta	1440
agcattggta	actgtcagac	caagtttact	catatatact	ttagattgat	ttaaaacttc	1500
attttaatt	taaaaggatc	taggtgaaga	tccttttga	taatctcatg	acccaaatcc	1560
cttaacgtga	gttttcgttc	cactgagcgt	cagacccgt	agaaaagatc	aaaggatctt	1620
cttggatcc	ttttttctg	cgcgtaatct	gctgcttgca	aacaaaaaaaaa	ccaccgctac	1680
cagcggtgtt	ttgtttgccg	gatcaagagc	taccaactct	ttttccgaag	gtaactggct	1740
tcagcagagc	gcagatacca	aatactgtcc	ttcttagtga	gccgtagtt	ggccaccact	1800
tcaagaactc	tgttagcaccg	cctacatacc	tcgctctgct	aatcctgtta	ccagtggctg	1860

ctgccagtgg cgataagtcg tgtcttaccg ggttggactc aagacgatacg ttaccggata	1920
aggcgcagcg gtcgggctga acggggggtt cgtgcacaca gcccagctt gagcgaacgaa	1980
cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaa	2040
ggagaaaaggc ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg	2100
agcttccagg gggaaacgccc tggtatcttt atagtcctgt cgggtttcgc cacctctgac	2160
ttgagcgtcg atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgcccagca	2220
acgccccctt tttacggttc ctggcctttt gctggccttt tgctcacatg ttcttcctg	2280
cgttatcccc tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataaccgctc	2340
gccgcagccg aacgaccgag cgccagcgt cagtgagcga ggaagcggaa gagcgcggaa	2400
tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt	2460
ttcccgactg gaaagcgggc agtgagcgcgca acgcaattaa tgtgagttag ctcactcatt	2520
aggcaccctt ggctttacac tttatgcttc cggctcgtat gttgtgtgga attgtgagcg	2580
gataacaatt gaattcagga ggaatttaaa atgaaaaaga cagctatcgc gattgcgtg	2640
gcactggctg gtttcgtac cgtggcccaag gcggccgagc tcgaaattgt gctgaccagg	2700
agcccgggca ccctgagcct gagcccgggc gaacgcgcga ccctgagctg ccgcgcgagc	2760
cagagcgtga gcagcagcta tctggcgtgg tatcagcaga aaccgggcca ggcgcgcgc	2820
ctgctgattt atggcgcgag cagccgcgcg accggcattc cggatcgctt tagcggtac	2880
ggcagcggca ccgattttac cctgaccatt agccgcctgg aaccggaaga ttttgcggtg	2940
tattattgcc agcagtatgg cagcagcccc tggacctttg gccagggcac caaagtggaa	3000
attaaacgca ccgtggcggc accgagcgtg tttattttc cggccagcga tgaacagctg	3060
aaaagcggca ccgcgagcgt ggtgtgcctg ctgaacaact tttatccgcg cgaagcgaaa	3120
gtgcagtggaa aagtggataa cgcgcgtgcag agcggcaaca gccagggaaag cgtgaccgaa	3180
caggatagca aagatagcac ctatagcctg agcagcaccc tgaccctgag caaagcggat	3240
tatgaaaaaac ataaagtgtt tgcgtgcgaa gtgacccatc agggcctgag cctgccggtg	3300
accaaaaagct ttaaccgcgg cgaatgctaa ttcttagataa ttaatttagga ggaatttaaa	3360
atgaaatacc tattgcctac ggcagccgct ggattgttat tactcgctgc ccaaccagcc	3420
atggccctcg agcaggtgca gctggcgtcag agcggcgcgg aagtggaaaa accgggcagc	3480
agcgtgaaag tgagctgcaaa agcgagcggc ggcaccttta gcagctatgc gattagctgg	3540
gtgcgccagg cgccggggcca gggcctggaa tggatggcc agctgattga aggccccgacc	3600

ctgcgccagt	ggctggcggc	gcmcgcgaac	agccgcgtga	ccattaccgc	ggatgaaagc	3660
accagcacccg	cgtatatgga	actgagcagc	ctgcgcagcg	aagataccgc	ggtgtattat	3720
tgccgcgcgc	tgccgattga	aggcccgacc	ctgcgcgcgt	ggctggcggc	gcmcgcgc	3780
gtgtgggccc	agggcaccac	cgtgaccgtg	agcagcgcga	gcaccaaggg	cccgagcgtg	3840
tttccgcctgg	cgcgcagcag	caaaagcacc	agcggcggca	ccgcggcgct	gggctgcctg	3900
gtgaaagatt	atttccgga	accggtgacc	gtgagctgga	acagcggcgc	gctgaccagc	3960
ggcgtgcata	ccttcggc	ggtgctgcag	agcagcggcc	tatatagcct	gagcagcgtg	4020
gtgaccgtgc	cgagcagcag	cctgggcacc	cagacctata	tttgcacgt	gaaccataaa	4080
ccgagcaaca	ccaaagtgg	taaaaaagtg	gaaccgaaaa	gctgcataa	aactagtggc	4140
caggccggcc	agcaccatca	ccatcaccat	ggcgcatacc	cgtacgacgt	tccggactac	4200
gcttcttagg	agggtggtgg	ctctgagggt	ggcggttctg	agggtggcgg	ctctgaggga	4260
ggcggttccg	gtgggtggctc	tgggtccggt	gatttgatt	atgaaaagat	ggcaaacgct	4320
aataaggggg	ctatgaccga	aatgcccgt	gaaaacgcgc	tacagtctga	cgctaaaggc	4380
aaacttgatt	ctgtcgctac	tgattacggt	gctgtatcg	atggttcat	tggtgacgtt	4440
tccggccttg	ctaattgtaa	tggtgctact	ggtgattttg	ctggctctaa	ttcccaaatg	4500
gctcaagtcg	gtgacggtga	taattcacct	ttaatgaata	atttccgtca	atatttacct	4560
tccctccctc	aatcgggtga	atgtcgccct	tttgtctta	gctgtggtaa	accatatgaa	4620
ttttctattg	attgtgacaa	aataaactta	ttccgtggtg	tctttgcgtt	tctttat	4680
gttgccacct	ttatgtatgt	atttctacg	tttgctaaca	tactgcgtaa	taaggagtct	4740
taagctagct	aattaattta	agcggccgca	gatctgctct	ctgaggagga	tct	4793

<210> 142
 <211> 239
 <212> PRT
 <213> artificial sequence

<220>
 <223> recombinant Ab light chain

<400> 142

Met	Lys	Lys	Thr	Ala	Ile	Ala	Ile	Ala	Val	Ala	Leu	Ala	Gly	Phe	Ala	
1																15

Thr Val Ala Gln Ala Ala Glu Leu Glu Ile Val Leu Thr Gln Ser Pro

20

25

30

Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg
35 40 45

Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys
50 55 60

Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala
65 70 75 80

Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
85 90 95

Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr
100 105 110

Cys Gln Gln Tyr Gly Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys
115 120 125

Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
130 135 140

Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
145 150 155 160

Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
165 170 175

Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
180 185 190

Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
195 200 205

Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
210 215 220

Gly Leu Ser Leu Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 143

<211> 282

<212> PRT
<213> artificial sequence

<220>
<223> recombinant Ab heavy chain

<400> 143

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Leu Glu Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala
35 40 45

Ser Gly Gly Thr Phe Ser Ser Tyr Ala Ile Ser Trp Val Arg Gln Ala
50 55 60

Pro Gly Gln Gly Leu Glu Trp Met Gly Gln Leu Ile Glu Gly Pro Thr
65 70 75 80

Leu Arg Gln Trp Leu Ala Ala Arg Ala Asn Ser Arg Val Thr Ile Thr
85 90 95

Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg
100 105 110

Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Leu Pro Ile Glu Gly
115 120 125

Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Pro Val Trp Gly Gln
130 135 140

Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
145 150 155 160

Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
165 170 175

Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
180 185 190

Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val

195

200

205

Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
210 215 220

Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
225 230 235 240

Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp
245 250 255

Lys Thr Ser Gly Gln Ala Gly Gln His His His His His His Gly Ala
260 265 270

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser
275 280

<210> 144

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 144

aaaggtgccc ccgctcgctt tgca

24

<210> 145

<211> 42

<212> DNA

<213> artificial sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (13)..(14)

<223> n is a, c, g or t

<220>

<221> misc_feature

<222> (16)..(17)

<223> n is a, c, g or t

<400> 145

ggcggcacct tttnknnkta tgcgattagc tgggtgcgcc ag

42

<210> 146
<211> 42
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 146
ggccgcacct ttaacaacta tgcgattagc tgggtgcgcc ag 42

<210> 147
<211> 128
<212> PRT
<213> artificial sequence

<220>
<223> cloned antibody VH

<400> 147
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 148
<211> 128

<212> PRT
<213> artificial sequence

<220>
<223> cloned antibody VH

<400> 148

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Asn Asn Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 149
<211> 128
<212> PRT
<213> artificial sequence

<220>
<223> cloned antibody VH

<400> 149

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Gly Glu Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 150
<211> 128
<212> PRT
<213> artificial sequence

<220>
<223> cloned antibody VH

<400> 150

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Gln Asp Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 151
<211> 128
<212> PRT
<213> artificial sequence

<220>
<223> cloned antibody VH

<400> 151

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Pro Arg Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg
50 55 60

Ala Asn Ser Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
100 105 110

Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 152
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> flanked TPO mimetic

<400> 152

Gln Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Asn Ser

<210> 153
<211> 871
<212> DNA
<213> human

<400> 153

gcaggattta gggcttggtc tctcagcatc ccacacttgt acagctgatg tggcatctgt 60
gttttcttgc tcatcgtaga tcaggcttg agctgtgaaa taccctgcct catgcataatg 120
caaataacct gaggtcttct gagataaaata tagatatatt ggtgccctga gagcatcaca 180
taacaaccac attcctccctc taaagaagcc cctgggagca cagctcatca ccatggactg 240
gacctggagg ttcctcttg tggtggcagc gctacaggta aggggcttcc tagtcctaag 300
gctgaggaag ggatccttgtt ttagttaaag aggatttat tcacccctgt gtcctctcca 360
caggtgtcca gtcccaggtg cagctggtgc agtctgggc tgaggtgaag aagcctgggt 420
cctcggtgaa ggtctcctgc aaggcttctg gaggcacctt cagcagctat gctatcagct 480
gggtgcgaca ggcccctgga caaggccttg agtggatggg agggatcatc cctatcttg 540
gtacagcaaa ctacgcacag aagttccagg gcagagtcac gattaccgcg gacgaatcca 600
cgagcacagc ctacatggag ctgagcagcc tgagatctga ggacacggcc gtgtattact 660
gtgcgagaga cacagtgtga aaacccacat cctgagagtg tcagaaaccc tgagggagaa 720
ggcagctgtg ccgggctgag gagatgacag ggtttattag gtttaaggct gtttacaaaa 780
tggttatat atttgagaaa aaaagaacag tagaaacaag tacatactcc tctaatttt 840
agataattat tccattcaag agtcgtaata t 871

<210> 154
<211> 20
<212> PRT
<213> human

<400> 154

Tyr Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val
1 5 10 15

Thr Val Ser Ser
20

<210> 155
<211> 711
<212> DNA
<213> human

<400> 155
cagctgctt gcatgtccct cccagccgcc ctgcagtcca gagcccatat caatgcctgg 60
gtcagagctc tggagaagag ctgctcagtt aggaccaga gggaaacctg gaaaccccag 120
cgcagcttct cttcctcctg ctactctggc tcccaggta gggaaacatg ggtatggttt 180
gcatgtcagt gaaaaccctc tcaagtccctg ttacctggca actctgctca gtcaatacaa 240
taattaaagc tcaatataaa gcaataattc tggctttct gggaaagacaa tgggttgat 300
tttagattaca tgggtgactt ttctgtttta tttccaatct cagataaccac cggagaaatt 360
gtgttgcgc agtctccagg caccctgtct ttgtctccag gggaaagagc caccctctcc 420
tgcagggcca gtcagagtgt tagcagcagc tacttagcct ggtaccagca gaaacctggc 480
caggctccca ggctcctcat ctatggtgca tccagcaggg ccactggcat cccagacagg 540
ttcagtggca gtgggtctgg gacagacttc actctcacca tcagcagact ggaggctgaa 600
gattttgcag tgtattactg tcagcagttt ggtagctcac ctccccacagt gattcagtt 660
gaaacaaaaaa cctctgcaag accttcattt tttacttagat tataccagct g 711

<210> 156
<211> 12
<212> PRT
<213> human

<400> 156

Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
1 5 10

<210> 157
<211> 447
<212> DNA
<213> artificial sequence

<220>
<223> recombinant DNA encoding AB VH

<400> 157
atgaaatacc tattgcctac ggcagccgct ggattgttat tactcgctgc ccaaccagcc 60
atggcgcagg tgcatgttgt gcagagcggc gcggaagtga aaaaaggcag cagcgtaaaa 120
gtgagctgca aagcgagcgg cggcaccttt agcagctatg cgatttagctg ggtgcgcag 180
gcgcggggcc agggccttgg aatggatgggc cagctgattt aaggccccgac cctgcgcag 240
tggctggcg cgcgcgcgaa cagccgcgtg accattacccg cggatgaaag caccagcacc 300
gcgtatatgg aactgagcag cctgcgcagc gaagataccg cggatgttatta ttgcgcgcgc 360
ctgccgattt aaggccccgac cctgcgcagc tggctggcg cgcgcgcgccc ggtgtggggc 420
caqqqccacca ccgtqaccgt gagcagc 447

<210> 158

<211> 150

<212> PRT

<213> artificial sequence

<220>

<223> recombinant Ab VH

<400> 158

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly Ala Glu
20 25 30

Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly
35 40 45

Gly Thr Phe Ser Ser Tyr Ala Ile Ser Trp Val Arg Gln Ala Pro Gly
50 55 60

Gln Gly Leu Glu Trp Met Gly Gln Leu Ile Glu Gly Pro Thr Leu Arg
65 70 75 80

Gln Trp Leu Ala Ala Arg Ala Asn Ser Arg Val Thr Ile Thr Ala Asp
85 90 95

Glu Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu
 100 105 110

Asp Thr Ala Val Tyr Tyr Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr
115 120 125

Leu Arg Gln Trp Leu Ala Ala Arg Ala Pro Val Trp Gly Gln Gly Thr
130 135 140

Thr Val Thr Val Ser Ser
145 150

<210> 159
<211> 127
<212> PRT
<213> artificial sequence

<220>
<223> recombinant Ab VH

<400> 159

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Arg Ala Ser Gly Gly Thr Phe Asn Asn Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Phe Pro Phe Arg Asn Thr Ala Lys Tyr Ala Gln His Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Gly Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala
100 105 110

Arg Ala Pro Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ala
115 120 125

<210> 160
<211> 390
<212> DNA

<213> artificial sequence

<220>

<223> recombinant DNA encoding Ab Vk

<400> 160

atgaaatacc tattgcctac ggcagccgct ggattgttat tactcgctgc ccaaccagcc	60
atggcggaaa ttgtgctgac ccagagccc ggcacctga gcctgagccc gggcgaacgc	120
gcgacctga gctgccgcgc gagccagagc gtgagcagca gctatctggc gtggatcag	180
cagaaaccgg gccaggcgcc ggcctgctg atttatggcg cgagcagccg cgccgaccggc	240
attccggatc gcttagcgg cagcggcagc ggcaccgatt ttaccctgac cattagccgc	300
ctgaaaccgg aagattttgc ggtgtattat tgccagcagt atggcagcag cccgtggacc	360
tttggccagg gcaccaaagt ggaaattaaa	390

<210> 161

<211> 130

<212> PRT

<213> artificial sequence

<220>

<223> recombinant Ab Vk

<400> 161

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala			
1	5	10	15

Ala Gln Pro Ala Met Ala Glu Ile Val Leu Thr Gln Ser Pro Gly Thr		
20	25	30

Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser		
35	40	45

Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly		
50	55	60

Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly			
65	70	75	80

Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu		
85	90	95

Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln		
100	105	110

Gln Tyr Gly Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu
115 120 125

Ile Lys
130

<210> 162
<211> 107
<212> PRT
<213> artificial sequence

<220>
<223> recombinant Ab Vκ

<400> 162

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser His Ser Val Ser Arg Ala
20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Gly Thr Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Gly Ser Pro
85 90 95

Trp Phe Gly Gln Gly Thr Lys Val Glu Leu Lys
100 105

<210> 163
<211> 272
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 163

ccagccatgg	cgcagggtgca	gctgggtcag	agcggcgccgg	aagtaaaaaa	accgggcagc	60
agcgtgaaag	ttagctgcaa	agcgagcggc	ggcacctta	gcagctatgc	gattagctgg	120
gtgcgccagg	cgcgggccca	gggcctggaa	tggatggcg	gcattattcc	gattttggc	180
accgcgaact	atgcgcagaa	atttcagggc	cgcgtgacca	ttaccgcgga	tgaaagcacc	240
agcaccgcgt	atatgaaact	gagcagcctg	cg			272
<210>	164					
<211>	271					
<212>	DNA					
<213>	artificial sequence					
<220>						
<223>	primer					
<400>	164					
gttccagctc	acggtcaccg	gttccggaaa	ataatttc	accaggcagc	ccagcgccgc	60
ggtgccgccc	ctggtgcttt	tgctgctcgg	cgcgcggaa	aacacgctcg	ggccttttgt	120
gctcgcgctg	ctcacggta	cgggtggc	ctggccccac	accggcgccgc	gcccggccag	180
ccactggcgc	agggtcgccc	cttcaatcgg	caggcgcgcg	caataataca	ccgcggtatac	240
ttcgctgcgc	aggctgctca	gttccatata	c			271
<210>	165					
<211>	274					
<212>	DNA					
<213>	artificial sequence					
<220>						
<223>	primer					
<400>	165					
cgagtctaga	ttacggcccg	cccagcgtt	ccggcgccgg	gcacggcgaa	caggtatggg	60
tttatcgca	gttttcggt	tccacttttt	tatccacttt	ggtgttgctc	ggttatgg	120
tcacgttgca	aatataggta	tgggtgccc	ggctgctgt	cggcacggtc	accacgctgc	180
tcaggctata	caggccgt	ctctgcagca	ccgccccaaa	gttatgcacg	ccgctggta	240
gcgcgccc	gttccagctc	acggtcaccg	gttc			274
<210>	166					
<211>	236					
<212>	DNA					
<213>	artificial sequence					
<220>						

<223> primer

<400> 166
 ccagccatgg cgaaattgt gctgacccag agccggca ccctgagcct gagccggc 60
 gaacgcgca ccctgagctg ccgcgcgagc cagagcgtga gcagcagcta tctggcg 120
 tatacggcaga aaccggcca ggcccgcgc ctgctgattt atggcgcgag cagccgcg 180
 accggcattc cgatcgctt tagcggcagc ggcagcggca ccgattttac cctgac 236

<210> 167
 <211> 238
 <212> DNA
 <213> artificial sequence

<220>
 <223> primer

<400> 167
 cttcgcgttc gcgcggataa aagttgttca gcaggcacac cacgctcg 60
 tcagtgttca tcgctcg 120
 ttccacttttgcgttca gaaaaataaa cacgctcg 180
 caccgcaaaa tttccgg 238

<210> 168
 <211> 245
 <212> DNA
 <213> artificial sequence

<220>
 <223> primer

<400> 168
 gtgctgatca ttagcattcg ccgcggtaa agcttttgtt caccggcagg 60
 gatgggtcac ttgcac 120
 gggtgctgct caggctatag gtgctatctt tgctatcctg ttccgtcac 180
 tggccgct ctgcagcgc 240
 agttg 245

<210> 169
 <211> 98
 <212> PRT
 <213> artificial sequence

<220>
 <223> recombinant Ab VH

<400> 169

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 170

<211> 96

<212> PRT

<213> human

<400> 170

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro
85 90 95

<210> 171
<211> 177
<212> PRT
<213> artificial sequence

<220>
<223> recombinant Ab heavy chain

<400> 171

Glu Gly Gly Gly Ser Glu Gly Gly Ser Glu Gly Gly Ser Glu
1 5 10 15

Gly Gly Gly Ser Gly Gly Ser Gly Ser Gly Asp Phe Asp Tyr Glu
20 25 30

Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp Glu
35 40 45

Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala Thr
50 55 60

Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly Leu
65 70 75 80

Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser Gln
85 90 95

Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn Phe
100 105 110

Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro Phe
115 120 125

Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys
130 135 140

Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr
145 150 155 160

Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu
165 170 175

Ser

<210> 172
<211> 17
<212> PRT
<213> human

<400> 172

Cys Phe Gly Arg Lys Met Asp Arg Ile Ser Ser Ser Ser Gly Leu Gly
1 5 10 15

Cys

<210> 173
<211> 39
<212> PRT
<213> human

<400> 173

His Gly Glu Gly Arg Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
20 25 30

Ser Gly Ala Pro Pro Pro Ser
35

<210> 174
<211> 30
<212> PRT
<213> human

<400> 174

His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly
1 5 10 15

Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg
20 25 30

<210> 175
<211> 34

<212> PRT
<213> human

<400> 175

His Ala Asp Gly Ser Phe Ser Asp Glu Met Asn Thr Ile Leu Asp Asn
1 5 10 15

Leu Ala Ala Arg Asp Phe Ile Asn Trp Leu Ile Gln Thr Lys Ile Thr
20 25 30

Asp Arg

<210> 176
<211> 29
<212> PRT
<213> human

<400> 176

His Ser Gln Gly Thr Phe Thr Ser Asp Tyr Ser Lys Tyr Leu Asp Ser
1 5 10 15

Arg Arg Ala Gln Asp Arg Val Gln Trp Leu Met Asn Thr
20 25

<210> 177
<211> 38
<212> PRT
<213> human

<400> 177

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln
1 5 10 15

Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu Gly Lys Arg Tyr Lys
20 25 30

Gln Arg Val Lys Asn Lys
35

<210> 178
<211> 130
<212> PRT
<213> human

<400> 178

Phe Ser Val Gly Leu Glu Thr Tyr Val Thr Ile Pro Asn Met Pro Ile
1 5 10 15

Arg Phe Thr Lys Ile Phe Tyr Asn Gln Gln Asn His Tyr Asp Gly Ser
20 25 30

Thr Gly Lys Phe His Cys Asn Ile Pro Gly Leu Tyr Tyr Phe Ala Tyr
35 40 45

His Ile Thr Val Tyr Met Lys Asp Val Lys Val Ser Leu Phe Lys Lys
50 55 60

Asp Lys Ala Met Leu Phe Thr Tyr Asp Gln Tyr Gln Glu Asn Asn Val
65 70 75 80

Asp Gln Ala Ser Gly Ser Val Leu Leu His Leu Glu Val Gly Asp Gln
85 90 95

Val Trp Leu Gln Val Tyr Gly Glu Gly Glu Arg Asn Gly Leu Tyr Ala
100 105 110

Asp Asn Asp Asn Asp Ser Thr Phe Thr Gly Phe Leu Leu Tyr His Asp
115 120 125

Thr Asn
130

<210> 179
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 179
gctggccaaac cagccatggc c 21

<210> 180
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 180		23
atcaaaaatca ccggaaccag agc		
<210> 181		
<211> 72		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (47)..(48)		
<223> n is a, c, g, or t		
<220>		
<221> misc_feature		
<222> (50)..(51)		
<223> n is a, c, g, or t		
<400> 181		60
ttccaaataaa gaacttacat cactggtaaa ggtcccttca gcatgmnnmn ntctcgac		
ataatatatgc		72
<210> 182		
<211> 72		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (46)..(47)		
<223> n is a, c, g, or t		
<220>		
<221> misc_feature		
<222> (49)..(50)		
<223> n is a, c, g, or t		
<400> 182		60
ggccaagctg ccaaggaatt cattgcttgg ctggtgaaag gccgannknn ktggggccaa		
gggaccacgg tc		72
<210> 183		
<211> 50		
<212> DNA		

<213> artificial sequence		
<220>		
<223> primer		
<400> 183		
cagtatgt a gtttttatt t gaaaggcca agctgccaag gaattcattg		50
<210> 184		
<211> 50		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 184		
caatgaattc ctggcagct tggcattcca aataagaact tacatcactg		50
<210> 185		
<211> 24		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 185		
tatgccatca gctgggtgcg acag		24
<210> 186		
<211> 48		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (23)..(24)		
<223> n is a, c, g, or t		
<220>		
<221> misc_feature		
<222> (26)..(27)		
<223> n is a, c, g, or t		
<400> 186		
tcgcacccag ctgatggcat amnnmnngaa ggtgcctcca gaagccct		48
<210> 187		

<211> 23		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 187		
atcaaaaatca ccggaaccag agc		23
<210> 188		
<211> 65		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (40)..(41)		
<223> n is a, c, g, or t		
<220>		
<221> misc_feature		
<222> (43)..(44)		
<223> n is a, c, g, or t		
<400> 188		
ctctgggctc caatcctgtc catcctgccc ccgaagcamn nmnnntctcgc acaataatat		60
atggc		65
<210> 189		
<211> 65		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<220>		
<221> misc_feature		
<222> (39)..(40)		
<223> n is a, c, g, or t		
<220>		
<221> misc_feature		
<222> (42)..(43)		
<223> n is a, c, g, or t		
<400> 189		
ggatggacag gattggagcc cagagcggac tgggctgttn knnktgggc caagggacca		60

cggtc 65

<210> 190
<211> 65
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (40)..(41)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (43)..(44)
<223> n is a, c, g, or t

<400> 190
ctggaggagc tgatccgtc catttcctc ccaaagcamn nmnnntctcgc acaataatat 60

atggc 65

<210> 191
<211> 65
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (39)..(40)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (42)..(43)
<223> n is a, c, g, or t

<400> 191
agatggaccg gatcagctcc tccagtggcc tgggctgcnn knnktgggc caagggacca 60

cggtc 65

<210> 192
<211> 24
<212> DNA

>

<213> artificial sequence

<220>

<223> primer

<400> 192

tatgccatca gctgggtgcg acag

24

<210> 193

<211> 48

<212> DNA

<213> artificial sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (23)..(24)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (26)..(27)

<223> n is a, c, g, or t

<400> 193

tcgcacccag ctgatggcat amnnmnngaa ggtgcctcca gaagccct

48