



## Até agora ...

- Módulos em Python
- Funções recursivas
- Funções de ordem superior
- Geradores e compreensões de listas
- Escrita e leitura de ficheiros
- Diferentes tipos de ficheiros
- Gráficos

- Nesta aula:
  - Módulo pandas

#### Pandas

- Permite manipular tabelas denominadas por DataFrames
- Permite atribuir nomes a linhas/colunas
- Oferece operações de manipulação e transformação
- Vasto suporte para lidar com dados em falta
- Dois tipos

| Α  | В  | С  | D  | Α  |
|----|----|----|----|----|
| 10 | 50 | 23 | 70 | 34 |

- Séries
- DataFrames

| Índice | Age | Gender | Rating |
|--------|-----|--------|--------|
| Steve  | 32  | Male   | 3.45   |
| Lia    | 28  | Female | 4.6    |
| Steve  | 45  | Male   | 3.9    |
| Katie  | 38  | Female | 2.78   |

#### Pandas

Leitura de ficheiros csv.

```
import pandas as pd

df = pd.read_csv("data.csv")
print(df)
```

Leitura de ficheiros json

```
import pandas as pd

df = pd.read_json("data.json")
print(df)
```

#### Pandas: Ver dados

Aceder a Colunas

```
df['Calories']
```

Linhas e colunas com o loc[] e iloc[]

```
df.loc[df['Calories'] >= 1000]

df.iloc[0:2, 0:2]
```

Modificar valores mediante condições

```
df.loc[df['Calories'] >= 1000, 'Maxpulse']=1000
```

Coluna a modificar



### Pandas: Análise dos dados

Primeiras linhas

Últimas linhas

Mais informação

 Valores Null – Para análise de dados os valores null devem ser limpos. O pandas contém os métodos necessários para manipular valores null

## Pandas: Cleaning

Preencher valores NULL e NaN.

```
df.fillna(130, inplace = True)
```

Inplace= True muda a dataFrame original

```
df["Calories"].fillna(130, inplace = True)
```

Remover as linhas com valores NULL ou NaN

#### **Pandas**

- Medidas estatísticas por colunas ou linhas
  - Mean
  - Median
  - Max
  - Min
  - Std

```
df = pd.read_json("data.json")
mediaCalorias =
df['Calories'].mean()
print(mediaCalorias)
```

- Operações com colunas ou linhas
  - Soma
  - Subtração
  - Divisão
  - Etc.

```
df = pd.read_json("data.json")
diifpulso = df['Maxpulse'] - df['Pulse']
print(diifpulso)
```



## Pandas: Exercício 1

- Preenche os valores NULL da coluna Calories com a média dessa coluna.
- Calcula a mediana, o máximo e o mínimo da coluna Calories.

Mediana: 321.0Maximo: 1860.4

■ Minimo: 50.3

- Qual o Pulse para o máximo das calorias? R. 137
- Qual o desvio padrão da duração? R. 42.3
- Quantas calorias foram gastadas no máximo da duração? R. 1500.2

### Pandas: análise estatística

O pandas permite uma análise estatística direta com o describe

df.describe()

|       | Duration   | Pulse      | Maxpulse   | Calories    |
|-------|------------|------------|------------|-------------|
| count | 169.000000 | 169.000000 | 169.000000 | 169.000000  |
| mean  | 63.846154  | 107.461538 | 134.047337 | 375.800000  |
| std   | 42.299949  | 14.510259  | 16.450434  | 262.383248  |
| min   | 15.000000  | 80.000000  | 100.000000 | 50.300000   |
| 25%   | 45.000000  | 100.000000 | 124.000000 | 253.300000  |
| 50%   | 60.000000  | 105.000000 | 131.000000 | 321.000000  |
| 75%   | 60.000000  | 111.000000 | 141.000000 | 384.000000  |
| max   | 300.000000 | 159.000000 | 184.000000 | 1860.400000 |

# Pandas: correlações

 Para analisar o relacionamento entre variáveis, o pandas permite calcular correlações

df.corr()

|          | Duration  | Pulse     | Maxpulse | Calories |
|----------|-----------|-----------|----------|----------|
| Duration | 1.000000  | -0.155408 | 0.009403 | 0.921539 |
| Pulse    | -0.155408 | 1.000000  | 0.786535 | 0.024960 |
| Maxpulse | 0.009403  | 0.786535  | 1.000000 | 0.202377 |
| Calories | 0.921539  | 0.024960  | 0.202377 | 1.000000 |

# Pandas: gráficos

 O pandas incorpora gráficos que depois podem ser visualizados com recurso ao matplotlib usando o show

```
df.plot()
plt.show()
```

```
df.plot(x = 'Duration', y = 'Calories')
plt.show()
```







# Pandas: gráficos

Para outros tipos de gráfico, acrescentar o kind nos parâmetros: bar, scatter, hist, etc.

df.plot(x = 'Duration', y = 'Calories', kind='bar')





## Pandas: Exercício 2

- Faz o download do ficheiro densidadepop.csv. Utilizando o pandas constrói uma dataframe.
- Verifica as 5 primeiras linhas e analisa os dados. Tem valores NULL?
- Qual a média das densidades em 2001 e 2019? R. 277 e 276
- Qual a região com maior densidade em 2001? E em 2019? R. Amadora
- Calcula a diferença das densidades em cada região de 2001 para 2019. Faz um plot com essa diferença.
- Utilizando gráficos, analisa as densidades em ambos os anos.







Do conhecimento à prática.