Лабораторна робота 4 (Варіант 3)

Вивчення роботи ключових схем на біполярних транзисторах

Мета роботи: з'ясувати принцип роботи ключової схеми на основі біполярного транзистора.

Хід роботи

Стан відсічки:

- У цьому стані транзистор повністю вимкнений, оскільки базовий струм IbI_bIb відсутній або недостатній для відкриття транзистора.
- Це еквівалентно розімкненому ключу. Струм колектора IkI_kIk майже дорівнює нулю, а вихідна напруга UвихU_{\text{вих}}}Uвих наближається до напруги живлення EkE_kEk.
- Транзистор блокує струм, і навантаження залишається практично відключеним.

Стан насичення:

- Транзистор повністю відкритий, коли базовий струм IbI_bIb достатній для створення великого струму колектора IkI kIk.
- Це еквівалентно замкнутому ключу. Вихідна напруга UвихU_{\text{вих}} Uвих дуже мала, майже рівна нулю, оскільки транзистор має низький опір у відкритому стані.
- У цьому режимі транзистор проводить максимальний струм через навантаження, забезпечуючи замкнуте електричне коло.

Перехідні стани (перемикання):

- Під час перемикання між станами відсічки та насичення транзистор короткочасно знаходиться в активному режимі, де споживається найбільша потужність.
- Це може спричинити нагрівання транзистора, тому в схемах з високою частотою перемикання важливо зменшити час переходу або забезпечити ефективне охолодження.

Висновки

Під час виконання лабораторної роботи вивчив принципи роботи ключової схеми на основі біполярного транзистора.