Numerical Analysis FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

Singular Value Decomposition

Singular values and singular vectors

For every $m \times n$ matrix A there are orthonormal sets $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_n\}$, and nonnegative numbers s_1, \ldots, s_n such that $Av_i = s_i u_i$ for $1 \le i \le \min(m, n)$.

The s_i are called the singular values of A.

The v_i are called the right singular vectors of A.

The u_i are called the left singular vectors of A.

Arévalo FMN011

Image of the Unit Sphere Under A

- (a) Unit sphere with orthogonal coordinate axes $\{v_1, v_2\}$.
- (b) The image of the unit sphere in the orthogonal basis v_1, v_2 is an ellipsoid with axes s_1u_1, s_2u_2 .

Orthogonal coordinate system $\{u_1, u_2\}$ for which $Av_i = s_i u_i$, $s_1 \ge s_2 \ge 0$.

Eigenvalues of A^TA

Let A be a real $m \times n$ matrix.

 A^TA is symmetric, so its eigenvalues are real.

Suppose λ is an eigenvalue of A^TA with unit eigenvector v.

$$A^{T}Av = \lambda v$$

$$v^{T}A^{T}Av = \lambda v^{T}v$$

$$\lambda = ||Av||_{2}^{2} \ge 0$$

The eigenvalues of A^TA are real and non-negative.

Eigenvectors of A^TA

Let A be a real $m \times n$ matrix.

Suppose $A^TAu = \lambda u$ and $A^TAv = \beta v$ with $\lambda \neq \beta$.

$$v^{T}A^{T}Au = \lambda v^{T}u \Rightarrow (A^{T}Av)^{T}u = \lambda v^{T}u$$
$$\beta v^{T}u = \lambda v^{T}u \Rightarrow v^{T}u = 0$$

The eigenvectors of A^TA are orthogonal.

Singular Values and Singular Vectors

Eigenvalues of A^TA : $\lambda_1 = s_1^2 \ge \lambda_2 = s_2^2 \ge \cdots \ge \lambda_n = s_n^2 \ge 0$ with orthonormal eigenvectors v_1, \ldots, v_n .

Take $s_i \geq 0$.

Define u_i , i = 1, ..., m such that

- If $s_i \neq 0$, $Av_i = s_i u_i$, that is, $u_i = Av_i/s_i$.
- If $s_i = 0$, u_i is any unit vector orthogonal to $u_1, \ldots u_{i-1}$.

We now have

- $\{v_1, \ldots, v_n\}$ is an orthonormal basis of \mathbb{R}^n (right singular vectors)
- $\{u_1, \ldots, u_m\}$ is an orthonormal basis of \mathbb{R}^m (left singular vectors)
- $Av_i = s_i u_i$, with $s_1 \ge \cdots \ge s_n \ge 0$ (s_i are the singular values)

and

- s_1, \ldots, s_n are the nonnegative square roots of the eigenvalues of A^TA
- u_1, \ldots, u_m are orthonormal eigenvectors of AA^T
- v_1, \ldots, v_n are orthonormal eigenvectors of $A^T A$

Singular Value Decomposition

U is the matrix whose columns are the left singular vectors

V is the matrix whose columns are the right singular vectors

S is the diagonal matrix whose elements are the singular values

$$A = USV^T$$

Example: a square diagonal matrix

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2/3 \end{pmatrix} \Rightarrow A^T A = \begin{pmatrix} 9 & 0 \\ 0 & 4/9 \end{pmatrix}$$

Eigenvalues: 9 and 4/9, $\Rightarrow s_1 = 3, s_2 = 2/3$

Right singular vectors: $v_1 = (1,0)$ and $v_2 = (0,1)$

Left singular vectors:
$$u_1 = \frac{1}{3} \begin{pmatrix} 3 & 0 \\ 0 & 2/3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$u_2 = \frac{3}{2}Av_2 = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\left(\begin{array}{cc} 3 & 0 \\ 0 & 2/3 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 3 & 0 \\ 0 & 2/3 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Example: a singular square matrix

$$A = \begin{pmatrix} 3 & 0 \\ 4 & 0 \end{pmatrix} \Rightarrow A^{T}A = \begin{pmatrix} 25 & 0 \\ 0 & 0 \end{pmatrix}$$

$$s_{1} = 5, s_{2} = 0; \ v_{1} = (1, 0), v_{2} = (0, 1); \ u_{1} = (3/5, 4/5), u_{2} = (-4/5, 3/5)$$

$$\begin{pmatrix} 3 & 0 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The unit circle is flattened to the line segment from (-3,-4) to (3,4)

Example: a rectangular matrix

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow A^T A = \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix}$$

$$s_1 = \sqrt{5.3028} = 2.3028, s_2 = \sqrt{1.6972} = 1.3028,$$

$$v_1 = \begin{pmatrix} -0.9571 \\ 0.2898 \end{pmatrix}, v_2 = \begin{pmatrix} -0.2898 \\ -0.9571 \end{pmatrix}$$

$$u_1 = \begin{pmatrix} -0.5415 \\ -0.8313 \\ 0.1258 \end{pmatrix}, u_2 = \begin{pmatrix} 0.5122 \\ -0.4449 \\ -0.7347 \end{pmatrix}$$

To construct U we need to complete the basis for \mathbb{R}^3

Take
$$\hat{u}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, orthogonalize, then normalize it:

$$\tilde{u}_3 = \hat{u}_3 - (\hat{u}_3^T u_1) u_1 - (\hat{u}_3^T u_2) u_2 = \begin{pmatrix} 0.4444 \\ -0.2222 \\ 0.4444 \end{pmatrix}$$

$$u_3 = \frac{u_3}{\|u_3\|_2} = \begin{pmatrix} 0.6667 \\ -0.3333 \\ 0.6667 \end{pmatrix}$$

$$A = USV^T$$

$$U = \begin{pmatrix} -0.5415 & 0.5122 & 0.6667 \\ -0.8313 & -0.4449 & -0.3333 \\ 0.1258 & -0.7347 & 0.6667 \end{pmatrix},$$

$$S = \left(\begin{array}{cc} 2.3028 & 0\\ 0 & 1.3028\\ 0 & 0 \end{array}\right),$$

$$V = \begin{pmatrix} -0.9571 & -0.2898 \\ 0.2898 & -0.9571 \end{pmatrix}$$

SVD of Symmetric Matrices

If A is symmetric, then $A^TA = A^2$.

$$Au = \lambda u \Rightarrow A^T A u = \lambda^2 u$$

$$s_i = |\lambda_i|$$
, where $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_m|$

 v_i are the corresponding unit eigenvectors of A

 u_i are

- v_i if $\lambda_i \geq 0$
- $-v_i$ if $\lambda_i < 0$

Rank and SVD

The **rank** of an $m \times n$ matrix is the number of linearly independent rows (or columns)

$$A = USV^T$$

Because U and V are invertible,

rank(A)=rank(S)=number of nonzero elements of S

Determinant and SVD

$$A = USV^T$$

$$U^TU = I$$

$$\det(U^T)\det(U) = 1 \Rightarrow \det(U)^2 = 1 \Rightarrow \det(U) = \pm 1$$

$$V^TV = I$$

$$\det(V^T)\det(V) = 1 \Rightarrow \det(V)^2 = 1 \Rightarrow \det(V) = \pm 1$$

$$\det(A) = \det(U) \det(S) \det(V^T) = \pm \det(S) = \pm s_1 \cdots s_n$$

$$|\det(A)| = s_1 \cdots s_n$$

Inverse and SVD

Suppose A is an $m \times m$ invertible matrix

 $\operatorname{rank}(A) = m$, so S has m nonzero diagonal elements $\Rightarrow S$ is invertible

$$A = USV^{T}$$

$$A^{-1} = (USV^{T})^{-1} = VS^{-1}U^{T}$$

Arévalo FMN011

Low Rank Approximation

A can be written as the sum of rank-1 matrices

$$A = \sum_{i=1}^{r} s_i u_i v_i^T$$

where r is the rank of A, u_i and v_i are the columns of U and V respectively

The best least squares approximation to A of rank $p \leq r$ is provided by retaining the first p terms of the sum

Example: best rank-1 approximation

$$\begin{bmatrix} 7 & -1 \\ 2 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -0.92 & 0.40 & 0.00 \\ -0.28 & -0.65 & 0.70 \\ 0.28 & 0.65 & 0.70 \end{bmatrix} \begin{bmatrix} 7.69 & 0 \\ 0 & 0.92 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.98 & 0.19 \\ -0.19 & 0.98 \end{bmatrix} = \begin{bmatrix} -0.92 \\ -0.28 \\ 0.28 \end{bmatrix} \begin{bmatrix} -0.98 & 0.19 \end{bmatrix} + 0.92 \begin{bmatrix} 0.40 \\ -0.65 \\ 0.65 \end{bmatrix} \begin{bmatrix} -0.19 & 0.98 \end{bmatrix}$$

$$A = \begin{bmatrix} 6.93 & -1.36 \\ 2.11 & -0.41 \\ -2.11 & 0.41 \end{bmatrix} + \begin{bmatrix} 0.07 & 0.36 \\ -0.11 & -0.59 \\ 0.11 & 0.59 \end{bmatrix}$$

$$\left[\begin{array}{ccc} 6.93 & -1.36 \\ 2.11 & -0.41 \\ -2.11 & 0.41 \end{array} \right] \text{ is the best rank-1 approximation to } A$$

Compression

If A is an $n \times n$ matrix, each term in

$$A = \sum_{i=1}^{r} s_i u_i v_i^T$$

requires 2n+1 numbers

If the first singular value is much larger than the rest, most of the information is captured by the first term.

E.g., if n=256, the matrix has 65 536 numbers, but the first term requires only 513 numbers: this saves 99% in space. Keeping the first 8 terms saves 94% (compression ratio 16:1), and keeping the first 32 terms saves 75% (compression ratio 4:1).

Arévalo FMN011

Rank 1 compression

```
xin = imread('hippo1.jpg'); x = double(xin); xc=x-128;
for i=1:56
    for j=1:102
        A=xc(4*(i-1)+1:4*i,3*(j-1)+1:3*j);
        [U,S,V]=svd(A);
        Ac=round(U(:,1)*S(1,1)*V(:,1)');
        xc(4*(i-1)+1:4*i,3*(j-1)+1:3*j)=Ac;
    end
end
xc=xc+128; xc=uint8(xc); imwrite(xc,'hippo5.jpg','jpg')
```

Arévalo FMN011

21

Grayscale picture in a 306×224 grid.

Grayscale picture compressed by rank 1 SVD.

Grayscale picture compressed by rank 3 SVD.