2015 年全国硕士研究生人学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

- 一、单项选择题(第 1~40 小题,每小题 2 分,共 80 分。下列每题给出的四个选项中,只有一个选项最符合试题要求)
- 1. 已知程序如下:

int S(int n)
{ return (n<=0)?0:s(n-1)+n;}
void main()</pre>

{ cout<< S(1);}

程序运行时使用栈来保存调用过程的信息,自栈底到栈顶保存的信息依次对应的是____。

A. $main() \rightarrow S(1) \rightarrow S(0)$

B. $S(0) \rightarrow S(1) \rightarrow main()$

C. main() \rightarrow S(0) \rightarrow S(1)

- D. $S(1) \rightarrow S(0) \rightarrow main()$
- 2. 先序序列为 a, b, c, d 的不同二叉树的个数是____。
- A 13
- B. 14
- C. 15
- D. 16
- 3. 下列选项给出的是从根分别到达两个叶结点路径上的权值序列,能属于同一棵哈夫曼树的是____。
 - A. 24, 10, 5 和 24, 10, 7

- B. 24, 10, 5和 24, 12, 7
- C. 24, 10, 10 和 24, 14, 11
- D. 24, 10, 5和 24, 14, 6
- 4. 现有一棵无重复关键字的平衡二叉树(AVL 树),对其进行中序遍历可得到一个降序序列。下列关于该平衡二叉树的叙述中,正确的是____。
 - A. 根结点的度一定为 2

- B. 树中最小元素一定是叶结点
- C. 最后插入的元素一定是叶结点
- D. 树中最大元素一定是无左子树
- 5. 设有向图 G = (V, E),顶点集 $V = \{v_0, v_1, v_2, v_3\}$,边集 $E = \{< v_0, v_1>, < v_0, v_2>, < v_0, v_3>, < v_1, v_3>\}$ 。若从顶点 V_0 开始对图进行深度优先遍历,则可能得到的不同遍历序列个数是_____。
 - A. 2

- B. 3
- C. 4
- D. 5
- 6. 求下面带权图的最小(代价)生成树时,可能是克鲁斯卡(Kruskal)算法第 2 次选中但不是普里姆(Prim)算法(从 V_4 开始)第 2 次选中的边是 。
 - A. (V_1, V_3)
- B. (V_1, V_4)
- C. (V_2, V_3)
- D. (V_3, V_4)

7. 下列选项中,不能构成折半查找中关键字比较序列的是

A. 500, 200, 450, 180	B. 500, 450, 200, 180	
C. 180, 500, 200, 450	D. 180, 200, 500, 450)
8. 已知字符串 S 为 "abaabaabacacaabaabcc",	模式串 t 为 "abaabc	"。采用 KMP 算法进行
匹配,第一次出现"失配"($s[i] \neq t[j]$)时, $i = j = 5$,下次开始匹配时,i	和 j 的值分别是。
A. $i = 1, j = 0$ B. $i = 5, j = 0$	C. $i = 5, j = 2$	D. $i = 6, j = 2$
9. 下列排序算法中,元素的移动次数与关键		
A. 直接插入排序 B. 起泡排序	C. 基数排序	D. 快速排序
10. 已知小根堆为 8, 15, 10, 21, 34, 16, 12, 册		
键字之间的比较次数是。		
A. 1 B. 2	C. 3	D. 4
11. 希尔排序的组内排序采用的是。		
A. 直接插入排序 B. 折半插入排序	C. 快速排序	D. 归并排序
12. 计算机硬件能够直接执行的是。		_ , , , , , , , , ,
I. 机器语言程序 II. 汇编语言程序	III. 硬件描述语言	程序
	B. 仅I、II	
* -	D. I. II. III	
13. 由 3 个 "1" 和 5 个 "0" 组成的 8 位二进		小整数是。
A126 B125		
14. 下列有关浮点数加减运算的叙述中,正确		2
I. 对阶操作不会引起阶码上溢或下溢	un1,~C	
II. 右规和尾数舍入都可能引起阶码上溢		
III. 左规时可能引起阶码下溢		
IV. 尾数溢出时,结果不一定溢出		
A. 仅 II、III B. 仅 I、II、IV	C ∜7 I III IV	D I II III IV
15. 假定主存地址为 32 位,按字节编址,主		
大小为 4 个字,每字 32 位,采用回写(Write Bac		
容量的位数至少是。		IX 1 XX HI HI Cacife HIVE
在里の位数主クと。 A. 146k B. 147K	C 148K	D 158K
16. 假定编译器将赋值语句 "x = x + 3;" 转换		
的存储单元地址。若执行该指令的计算机采用页式		
Cache 使用直写(Write Through)方式,则完成该 A. 0 B. 1	16マ功能而安切向土↑ C. 2	
		D. 3
17. 下列存储器中,在工作期间需要周期性品		D ELACII
A. SRAM B. SDRAM 10 甘汁質如使用 4 体态型轮贴 在2 RC		
18. 某计算机使用 4 体交叉编址存储器,假定 2007 2007 2007 2007 2007 2007 2007 200		
序列为 8005, 8006, 8007, 8008, 8001, 8002, 8003,	,8004,8000,则归能	及生切仔件类的地址为
是。	D 0000 III 0007	
	B. 8002 和 8007	
C. 8001 和 8008	D. 8000 和 8004	
19. 下列有关总线定时的叙述中,错误的是	o	
A. 异步通信方式中,全互锁协议最慢		

В.	异步通信方式中,非互锁协议的可靠性最差				
C.	同步通信方式中,同步时钟信号可由各设备提供				
D.	D. 半同步通信方式中,握手信号的采样由同步时钟控制				
20.	若磁盘转速为 7200rpm, 平均寻道时间为	8ms	s,每个磁道包含 1	1000 个扇区,则访问一	
个扇区的	勺平均存取时间大约是。				
A.	8. 1ms B. 12.2ms	C.	16. 3 ms	D. 20.5ms	
21.	在采用中断 I/O 方式控制打印输出的情况	上下,	CPU 和打印控制	接口中的 I/O 端口之间	
交换的信	言息不可能是。				
A.	打印字符 B. 主存地址	C.	设备状态	D. 控制命令	
22.	内部异常(内中断)可分为故障(fault)。	陷	阱(trap)和终止	(abort)三类。下列有	
关内部员	异常的叙述中,错误的是。		•		
Α.	内部异常的产生与当前执行指令相关				
В.	内部异常的检测由 CPU 内部逻辑实现				
C.	内部异常的响应发生在指令执行过程中				
D.	内部异常处理后返回到发生异常的指令继	续执	1行		
	处理外部中断时,应该由操作系统保存的				
	程序计数器(PC)的内容			容	
	块表(TLB)中的内容				
	假定下列指令已装入指令寄存器,则执行	时不	可能导致 CPU 从	、用户态变为内核态(系	
	内是。				
	DIV R0, R1 ; $(R0)/(R1) \rightarrow R0$			•	
	INT n ; 产生软中断				
	NOT RO ; 寄存器 RO 的内容取				
	MOV R0, addr ; 把地址 addr 处的内			中	
	下列选项中,会导致进程从执行态变为家				
	•		申请内存失败		
	启动 I/O 设备		被高优先级进程		
	若系统 S1 采用死锁避免方法,S2 采用死		於测方法。下列叙述	述中,止确的是。	
_	S1 会限制用户申请资源的顺序,而 S2 不会		· 		
	S1 需要进程运行所需资源总量信息,而 S				
	S1 不会给可能导致死锁的进程分配资源;				
	仅I、II		仅 II、III		
	仅I、III		I、II、III	0 0 0 2 4 0 0 0 4 0	
	,系统为某进程分配了 4 个页框,该进程 E 进程要访问的下一页的页号为 7,依据 LR				
•	.2 B. 3		4	D. 8	
28.	在系统内存中设置磁盘缓冲区的主要目的	匀是_	o		
Α.	减少磁盘 I/O 次数	В.	减少平均寻道时门	间	
C.	提高磁盘数据可靠性	D.	实现设备无关性		
29.	在文件的索引结点中存放直接索引指针	10 1	、 一级和二级索	引指针各 1 个。磁盘块	
大小为:	1KB,每个索引指针占 4 字节。若某文件的	索引	结点已在内存中,	则把该文件偏移量(按	

字节编址)为1234和307400处所在的磁盘块读》	、内存,需访问的磁盘块个数分别是。
A. 1, 2 B. 1, 3	C. 2, 3 D. 2, 4
30. 在请求分页系统中,页面分配策略与页面	
A. 可变分配,全局置换	B. 可变分配,局部置换
C. 固定分配,全局置换	D. 固定分配,局部置换
31. 文件系统用位图法表示磁盘空间的分配性	青况,位图存于磁盘的 32~127 号块中,每个
盘块占 1024 字节, 盘块和块内字节均从 0 开始编	量号。假设要释放的盘块号为 409612,则位图
中要修改的位所在的盘块号和块内字节序号分别是	∄ 。
A. 81, 1 B. 81, 2	
	D),磁道访问请求序列为 130, 42, 180, 15, 199,
当前磁头位于第 58 号磁道并从外侧向内侧移动。	按照 SCAN 调度方法处理完上述请求后,磁
头移过的磁道数是。	
	C. 325 D. 382
33. 通过 POP3 协议接收邮件时,使用的传输	
A. 无连接不可靠的数据传输服务	
C. 有连接不可靠的数据传输服务	
	性行编码的结果如下图所示,编码 1 和编码 2
分别是。	
比特流 0 1 1 0	
编码1	
编码2	
├ ┘	J L- L-
A. NRZ 和曼彻斯特编码	B. NRZ 和差分曼彻斯特编码
C. NRZI 和曼彻斯特编码	D. NRZI 和差分曼彻斯特编码
35. 主机甲通过 128kbps 卫星链路,采用滑翔	动窗口协议向主机乙发送数据,链路单向传播
延迟为 250ms, 帧长为 1000 字节。不考虑确认帧	的开销,为使链路利用率不小于80%,帧序号
的比特数至少是。	
A. 3 . B. 4	C. 7 D. 8
36. 下列关于 CSMA/CD 协议的叙述中,错计	吳的是。
A. 边发送数据帧,边检测是否发生冲突	
B. 适用于无线网络,以实现无线链路共享	
C. 需要根据网络跨距和数据传输速率限定量	
D. 当信号传播延迟趋近 0 时,信道利用率起	
37. 下列关于交换机的叙述中,正确的是	°
A. 以太网交换机本质上是一种多端口网桥	
B. 通过交换机互连的一组工作站构成一个冲	中突域

C. 交换机每个端口所连网络构成一个独立的广播域

38. 某路由器的路由表如下表所示。

D. 以太网交换机可实现采用不同网络层协议的网络互联

目的网络	下一跳	接口
69.96.40.0/23	176.1.1.1	S1
69.96.40.0/25	176.2.2.2	S2
69.96.40.0/27	176.3.3.3	E3
0.0.0.0/0	176.4.4.4	E4

若路由器收到一个目的地址为 169.96.40.5 的 IP 分组, 则转发该 IP 分组的接口是_____

A. S1

B. S2

C. S3

D. S4

39. 主机甲和主机乙新建一个 TCP 连接,甲的拥塞控制初始阈值为 32KB,甲向乙始终以 MSS = 1KB 大小的段发送数据,并一直有数据发送;乙为该连接分配 16KB 接收缓存,并对每个数据段进行确认,忽略段传输延迟。若乙收到的数据全部存入缓存,不被取走,则甲从连接建立成功时刻起,未发送超时的情况下,经过 4 个 RTT 后,甲的发送窗口是_____。

A. 1KB

B. 8KB

C. 16KB

D. 32KB

40. 某浏览器发出的 HTTP 请求报文如下:

GET /index.html HTTP/1.1

Host: www.test.edu.cn

Connection: Close

Cookie: 123456

下列叙述中,错误的是。

- A. 该浏览器请求浏览 index.html
- B. Index.html 存放在 www.test.edu.cn 上
- C. 该浏览器请求使用持续连接
- D. 该浏览器曾经浏览过 www.test.edu.cn
- 二、综合应用题 (第 41~47 小题, 共 70 分)
- 41. (15 分) 用单链表保存 m 个整数,结点的结构为[data][link],且| data| $\leq n(n)$ 为正整数)。 现要求设计一个时间复杂度尽可能高效的算法,对于链表中 data 的绝对值相等的结点,仅保留第一次出现的结点而删除其余绝对值相等的结点。例如,若给定的单链表 HEAD 如下:

则删除结点后的 HEAD 为

要求:

- 1)给出算法的基本设计思想。
- 2) 使用 C 或 C++语言,给出单链表结点的数据类型定义。
- 3) 根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。
- 4) 说明你所设计算法的时间复杂度和空间复杂度。
- 42. (8分)已知含有5个顶点的图G如下图所示。

请回答下列问题:

- 1) 写出图 G 的邻接矩阵 A (行、列下标从 0 开始)。
- 2) 求 A^2 , 矩阵 A^2 中位于 0 行 3 列元素值的含义是什么?
- 3)若已知具有 n ($n \ge 2$) 个顶点的图的邻接矩阵为 B,则 B^m ($2 \le m \le n$) 中非零元素的含义是什么?
- 43. (13 分) 某 16 位计算机的主存按字节编码,存取单位为 16 位; 采用 16 位定长指令字格式; CPU 采用单总线结构,主要部分如下图所示。图中 R0~R3 为通用寄存器; T 为暂存器; SR 为移位寄存器,可实现直送(mov)、左移一位(left)和右移一位(right)3 种操作,控制信号为 SRop,SR 的输出由信号 SRout 控制; ALU 可实现直送 A(mova)、A 加 B(add)、A 减 B(sub)、A 与 B(and)、A 或 B(or)、非 A(not)和 A 加 1(inc)7 种操作,控制信号为 ALUop。

请回答下列问题。

- 1)图中哪些寄存器是程序员可见的?为何要设置暂存器 T?
- 2) 控制信号 ALUop 和 SRop 的位数至少各是多少?
- 3) 控制信号 SRout 所控制部件的名称或作用是什么?
- 4) 端点①~⑨中,哪些端点须连接到控制部件的输出端?
- 5)为完善单总线数据通路,需要在端点①~⑨中相应的端点之间添加必要的连线。写出 连线的起点和终点,以正确表示数据的流动方向。
 - 6) 为什么二路选择器 MUX 的一个输入端是 2?
 - 44. (10 分) 题 43 中描述的计算机, 其部分指令执行过程的控制信号如题 44 图 a 所示。

题 44 图 a 部分指令控制信号

该机指令格式如题 44 图 b 所示,支持寄存器直接和寄存器间接两种寻址方式,寻址方式 位分别为 0 和 1,通用寄存器 $R0\sim R3$ 的编号分别为 0、1、2 和 3。

题 44 图 b 指令格式

请回答下列问题。

- 1) 该机的指令系统最多可定义多少条指令?
- 2) 若 inc、shl 和 sub 指令的操作码分别为 01H、02H 和 03H,则以下指令对应的机器代码各是什么?

```
inc R1 ; R1 + 1 \rightarrow R1

sh1 R2,R1 ; (R1) << 1 \rightarrow R2

sub R3, (R1),R2 ; ((R1)) - (R2) \rightarrow R3
```

- 3) 假设寄存器 X 的输入和输出控制信号分别为 Xin 和 Xout,其值为 1 表示有效,为 0 表示无效(如 PCout = 1 表示 PC 内容送总线);存储器控制信号为 MEMop,用于控制存储器的读(read) 和写(write)操作。写出题图 a 中标号①~⑧处的控制信号或控制信号的取值。
 - 4) 指令 "sub R1, R3, (R2)" 和 "inc R1"的执行阶段至少各需要多少个时钟周期?
- 45. (9 分) 有 A、B 两人通过信箱进行辩论,每个人都从自己的信箱中取得对方的问题。将答案和向对方提出的新问题组成一个邮件放入对方的邮箱中。假设 A 的信箱最多放 M 个邮件,B 的信箱最多放 N 个邮件。初始时 A 的信箱中有 x 个邮件(0 < x < M),B 储箱中有 y 个(0 < y < N),辩论者每取出一个邮件,邮件数减 1。A 和 B 两人的操作过程描述如下:

CoBegin

CoEnd

当信箱不为空时,辩论者才能从信箱中取邮件,否则需要等待。当信箱不满时,辩论者才能将新邮件放入信箱,否则需要等待。请添加必要的信号量和 P、V(或 wait、signal)操作,以实现上述过程的同步。要求写出完整过程,并说明信号量的含义和初值。

46. (6分)某计算机系统按字节编址,采用二级页表的分页存储管理方式,虚拟地址格式如下所示:

10 位	10 位	12 位
页目录号	页表索引	页内偏移量

请回答下列问题。

- 1) 页和页框的大小各为多少字节? 进程的虚拟地址空间大小为多少页?
- 2) 假定页目录项和页表项均占 4 字节,则进程的页目录和页表共占多少页?要求写出计算过程。
- 3) 若某指令周期内访问的虚拟地址为 0100 0000H 和 0111 2048H,则进行地址转换时共访问多少个二级页表?要求说明理由。
- 47. (9分) 某网络拓扑如下图所示,其中路由器内网接口、DHCP 服务器、WWW 服务器与主机 1 均采用静态 IP 地址配置,相关地址信息见图中标注;主机 $2\sim$ 主机 N 通过 DHCP 服务器动态获取 IP 地址等配置信息。

请回答下列问题。

1) DHCP 服务器可为主机 $2\sim$ 主机 N 动态分配 IP 地址的最大范围是什么? 主机 2 使用 DHCP 协议获取 IP 地址的过程中,发送的封装 DHCP Discover 报文的 IP 分组的源 IP 地址和目

的 IP 地址分别是什么?

- 2)若主机 2 的 ARP 表为空,则该主机访问 Internet 时,发出的第一个以太网帧的目的 MAC 地址是什么? 封装主机 2 发往 Internet 的 IP 分组的以太网帧的目的 MAC 地址是什么?
- 3) 若主机 1 的子网掩码和默认网关分别配置为 255.255.255.0 和 111.123.15.2,则该主机是 否能访问 WWW 服务器? 是否能访问 Internet? 请说明理由。