Review

- CNN: Conv layer and pooling layer, sparsity of connections, parameter sharing
- AlexNet [2012]: Pioneering work but complex architecture
- VGG [2015]: A deeper NN with <u>unified architecture</u> but heavy computation
- **Inception [2015]**: A deeper NN with <u>Inception module</u> (all-in-one!) including bottleneck layer to go deeper efficiently
- **ResNet [2016]**: A super deep NN with skip connection to train deep NN robustly

Review

Lightweight CNN for 2D Obejct Classification

Lecture 3

Hyung-Sin Kim

We've already seen that using bottleneck layer reduces computation of a convolutional layer

Today we will learn **MobileNet** that uses another technique for reducing computation and memory of a convolutional layer

Depth-wise Separable Convolution –

MobileNet [arxiv'17] – Motivation

 Again, a standard conv layer requires heavy computation when # of channels for the input (or output) is large

MobileNet [arxiv'17] – Depthwise Convolution

Standard convolution

Depthwise convolution

MobileNet [arxiv'17] – Depthwise Convolution

Standard convolution

Depthwise convolution

Can control
height/width,
but **NOT**# of channels

How about # of channels then?

Don't worry.
We have 1x1 Conv layer which is useful for channel control

MobileNet [arxiv'17] — Depthwise Separable Conv

Standard convolution

• Depthwise separable convolution

MobileNet [arxiv'17] – Parameter Reduction

Standard convolution

34.0k << 294.9k (8.7x reduction)

28x28x128

56x56x128

of parameters

(3x3x1)x128 = 1.2k

of parameters

(1x1x128)x256 = 32.8k

28x28x256

MobileNet [arxiv'17] – Computation Reduction

Standard convolution

34.6M << **231.2M** (6.7x reduction)

MobileNet [arxiv'17] – Computation Reduction

- Standard convolution
 - # of multiplications = $(D_F \times D_F \times C_{in}) \times (D_{out} \times D_{out}) \times C_{out}$

- Depthwise separable convolution
 - # of multiplications = $(D_F \times D_F \times 1) \times (D_{out} \times D_{out}) \times C_{in} + (1 \times 1 \times C_{in}) \times (D_{out} \times D_{out}) \times C_{out}$

- Gain
 - $\frac{1}{C_{\text{out}}} + \frac{1}{D_F^2}$

MobileNet [arxiv'17] – Computation Efficiency

NxN Conv vs. 1x1 Conv

96.7% of multiplications are for 1x1 Conv!

Remember! 1x1 Conv is more computationally efficient than f x f Conv

MobileNet [arxiv'17] — The Whole Architecture

A 28-layer but lightweight DNN

Table 1. MobileNet Body Architecture

Type / Stride	Filter Shape	Input Size			
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$			
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$			
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$			
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$			
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$			
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$			
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$			
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$			
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$			
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$			
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$			
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$			
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$			
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$			
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$			
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$			
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$			
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$			
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$			
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$			
FC / s1	1024×1000	$1 \times 1 \times 1024$			
Softmax / s1	Classifier	$1 \times 1 \times 1000$			

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

Only 1% accuracy loss

Huge reduction of parameters and computation

[The tables are from AG. Howard et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications."]

MobileNet [arxiv'17] – Make it Even Lighter

- Width multiplier Reduce # of channels
 - * # of multiplications = $(D_F \times D_F \times 1) \times (D_{out} \times D_{out}) \times \alpha C_{in} + (1 \times 1 \times \alpha C_{in}) \times (D_{out} \times D_{out}) \times \alpha C_{out}$
 - Reduce computation α^2 times

Table 6. MobileNet Width Multiplier

Width Multiplier	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
0.75 MobileNet-224	68.4%	325	2.6
0.5 MobileNet-224	63.7%	149	1.3
0.25 MobileNet-224	50.6%	41	0.5

- Resolution multiplier Reduce # of width/height
 - * # of multiplications = $(D_F \times D_F \times 1) \times (\rho D_{out} \times \rho D_{out}) \times \alpha C_{in} + (1 \times 1 \times \alpha C_{in}) \times (\rho D_{out} \times \rho D_{out}) \times \alpha C_{out}$
 - Reduce computation ρ^2 times

Table 7. MobileNet Resolution				
Resolution	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
1.0 MobileNet-224	70.6%	569	4.2	
1.0 MobileNet-192	69.1%	418	4.2	
1.0 MobileNet-160	67.2%	290	4.2	
1.0 MobileNet-128	64.4%	186	4.2	

[The tables are from AG. Howard et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications."]

MobileNet [arxiv'17] – Summary

- Depth-wise separable convolution (2 steps)
 - Depthwise convolution to control height/width
 - 1x1 convolution to control # of channels

Reduce # of parameters and computation significantly

- Most of the computation is from 1x1 convolution, which is even better
- Two multipliers for width and resolution
 - Achieve trade-off between accuracy and computation

How can we combine <u>depthwise separable convolution</u> with <u>residual connection</u>?

MobileNet v2!

MobileNet v2 [CVPR'18]

Residual block in ResNet

• Inverted residual block

[The figure is from M. Sandler et al., "Mobilenetsv2: Inverted residuals and linear bottlenecks."]

Inverted residual block

[The figure is from M. Sandler et al., "Mobilenetsv2: Inverted residuals and linear bottlenecks."]

- Inverted residual block
- **Depthwise** convolution between expansion layers

Let's do that again here to reduce computation overhead!

- Inverted residual block
- Depthwise convolution between expansion layers

ReLu non-linearity can **lose lots of information** (a lot of zeros).

This loss is more significant at a bottleneck layer having **dense** information.

Let's **remove** this part!

- **Inverted** residual block
- **Depthwise** convolution between expansion layers
- Linear bottleneck

ReLu is still needed for **expressiveness** (to do more delicate processing). Also, using it for **expansion layers** does not lose much information.

[The figure is from M. Sandler et al., "Mobilenetsv2: Inverted residuals and linear bottlenecks."]

Linear botleneck

Relu6 in bottleneck

MobileNet v2 [CVPR'18] — The Whole Architecture

MobileNet v2 [CVPR'18] – Performance

- ImageNet classification performance
 - Improve accuracy compared to MobileNet v1
 - Reduce # of parameters and computation compared to MobileNet v1
 - MobileNet v2 (1.4) uses width multiplier 1.4

Network	Top 1	Params	MAdds	CPU
MobileNetV1	70.6	4.2M	575M	113ms
ShuffleNet (1.5)	71.5	3.4M	292M	-
ShuffleNet (x2)	73.7	5.4M	524M	-
NasNet-A	74.0	5.3M	564M	183ms
MobileNetV2	72.0	3.4M	300M	75ms
MobileNetV2 (1.4)	74.7	6.9M	585M	143ms

[The table is from M. Sandler et al., "Mobilenetsv2: Inverted residuals and linear bottlenecks."]

MobileNet v2 [CVPR'18] – Summary

- Short cut between bottleneck layers
 - Since bottlenecks have all the necessary information

- **Depthwise convolution** between expansion layers to reduce computation
- Remove ReLu before a bottleneck layer, making linear bottlenecks
 - To not lose much information

Tired of **handcrafting** model architectures... There are so many options and trials and errors

Let our computer do the architecture search while you are drinking coffee!

MnasNet [CVPR'19]

- Neural architecture search for designing a lightweight CNN
- NAS typically needs reinforcement learning formulation
 - Objective function design
 - Search space design: layer diversity vs. search space size

[The figure is from M. Tan et al., "MnasNet: Platform-Aware Neural Architecture for Mobile."]

MnasNet [CVPR'19] – Objective Function

• In contrast to previous NAS approaches, it considers not only accuracy but also **latency** to search a lightweight architecture

Latency of model m (not an indirect metric, such as FLOPs, but latency on a real platform) maximize A negative coefficient Latency target Accuracy of model m

MnasNet [CVPR'19] – Search Space

- Divide a model into several blocks that can have different architectures
- Let each block has a variable number of repeated identical layers
- For each block, find the best architecture within a per-block search space
 - Conv options: conv, dw conv, or inverted bottleneck conv
 - Skip options: pooling, residual, or no skip
 - Kernel (filter) size: 3x3 or 5x5
 - Number of layers, output size ...

Balance between layer diversity and total search space

[The figures are from M. Tan et al., "MnasNet: Platform-Aware Neural Architecture for Mobile."]

MnasNet [CVPR'19] – Architecture

- MnasNet uses not only 3x3 but also 5x5 conv
 - In contrast to previous lightweight DNNs that use only 3x3 conv
- Each block ends up having a different architecture
 - Layer diversity

[The figures are from M. Tan et al., "MnasNet: Platform-Aware Neural Architecture for Mobile."]

MnasNet [CVPR'19] – Performance

- Outperform other lightweight models in terms of both latency and accuracy
- Always better than MobileNetV2 regardless of scaling factors

(a) Depth multiplier = 0.35, 0.5, 0.75, 1.0, 1.4, corresponding to points from left to right.

(b) Input size = 96, 128, 160, 192, 224, corresponding to points from left to right.

Inference Latency (ms)

74.0%

70.7%

72%

70

[The figures are from M. Tan et al., "MnasNet: Platform-Aware Neural Architecture for Mobile."]

20

Now we want to take care of how to scale a model efficiently!

EfficientNet

EfficientNet [ICML'19] – Baseline

- Neural architecture search again...
 - **Objective**: FLOPS instead of latency since it does not target a specific hardware
 - **Search space**: Same as MnasNet
- The result (EfficientNet-B0) is similar to MnasNet

Stage	Operator	Resolution	#Channels	#Layers
i	$\hat{\mathcal{F}}_i$	$\hat{H}_i imes \hat{W}_i$	\hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	28×28	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7 imes 7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

[The figures are from M. Tan et al., "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."]

EfficientNet [ICML'19] - Scaling

[The figures are from M. Tan et al., "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."]

EfficientNet [ICML'19] – Performance

- EfficientNet family outperform other DNNs (good baseline and scaling)
- The scaling method works well with other DNNs

Table 3. Scaling Up MobileNets and ResNet.

Model	FLOPS	Top-1 Acc.
Baseline MobileNetV1 (Howard et al., 2017)	0.6B	70.6%
Scale MobileNetV1 by width $(w=2)$ Scale MobileNetV1 by resolution $(r=2)$ compound scale $(d=1.4, w=1.2, r=1.3)$	2.2B 2.2B 2.3B	74.2% 72.7% 75.6 %
Baseline MobileNetV2 (Sandler et al., 2018)	0.3B	72.0%
Scale MobileNetV2 by depth $(d=4)$ Scale MobileNetV2 by width $(w=2)$ Scale MobileNetV2 by resolution $(r=2)$ MobileNetV2 compound scale	1.2B 1.1B 1.2B 1.3B	76.8% 76.4% 74.8% 77.4 %
Baseline ResNet-50 (He et al., 2016)	4.1B	76.0%
Scale ResNet-50 by depth $(d=4)$ Scale ResNet-50 by width $(w=2)$ Scale ResNet-50 by resolution $(r=2)$ ResNet-50 compound scale	16.2B 14.7B 16.4B 16.7B	78.1% 77.7% 77.5% 78.8 %

[The figures are from M. Tan et al., "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."]

MnasNet and EfficientNet – Summary

- Neural architecture search
 - Considering both accuracy and computational cost (latency or FLOPs)
- Hierarchical search space
 - Block-wise search to balance layer diversity and computational cost
- Compound scaling
 - Scale width, depth, resolution all together
- Core ideas of MobileNets still survive!
 - Inverted bottleneck, depthwise separable convolution, linear bottleneck

Thanks!