CS559: Linear Algebra Practice Problems.

1. Let
$$A = \begin{bmatrix} 3 & -1 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ -1 & -3 & 2 & -4 \end{bmatrix}$$
 and $b = \begin{bmatrix} -2 \\ 3 \\ 6 \end{bmatrix}$. Denote the columns of A by $\boldsymbol{a_1}, \boldsymbol{a_2}, \boldsymbol{a_3}, \boldsymbol{a_4}$. Let

 $W = Span\{a_1, a_2, a_3, a_4\}.$

A. Is b is *W*?

- B. If **b** is in W, then express **b** as a linear combination of the vectors a_1 , a_2 , a_3 , and a_4 .
- 2. Suppose $\{v_1, v_2\}$ is a linearly independent set in R^n . Show that $\{v_1, v_1+v_2\}$ is also linearly independent.
- 3. Define the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ so that

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 \\ 3x_1 - 2x_2 \end{bmatrix} \text{ and } S\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 3x_2 \\ -x_1 + x_2 \end{bmatrix}$$

- A. Is $S \cdot T$ an invertible linear transformation? Explain.
- B. If $T \cdot S$ is invertible, find the formula for $(T \cdot S)^{-1}$ (Hint: use $(AB)^{-1} = B^{-1}A^{-1}$).
- 4. Use the invertible matrix theorem to determine the value(s) of λ for which the matrix

$$A = \begin{bmatrix} 1 & \lambda & 0 \\ 3 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

is NOT invertible.

5. Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 and assume that $\det(A)=2$. Find $\det(-2A)$, $\det(\frac{1}{2}A^{-1})$, $\det((2A)^3)$, and $\det(3A^T)^{-1}$).