САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Дисциплина: Архитектура ЭВМ

Отчет

по домашней работе №3

«Кэш-память»

Выполнил(а): Белозоров Денис Сергеевич

Номер ИСУ: 334876

студ. гр. М3139

Санкт-Петербург

2021

Цель работы: решение задач по теме «кэш-память».

Инструментарий и требования к работе: <при наличии в Т3>.

Вариант	ФИО	Первая задача	Вторая задача
4	Белозоров Денис Сергеевич	5	6

Теоретическая часть

Задача 5.

look throught - запросы сначала попадают в кэш, и только в случае, когда в нем не найдено небходимых данных, попадают в основную память.

Двухуровневый кэш - содержит два уровня L1 и L2, запросы сначала попадают в L1, потом в L2.

В нашем случае имеется двухуровневый look throught кэш, то есть запрос сначала попадет в L1, если данные не найдены, то в L2, и если данные снова не найдены то в памяти.

Коэффициент промахов - процент ненахождения нужных данных в кэше, обозначим за с1 и с2 для L1 и L2 соответственно.

Тогда вычисление AMAT (среднего времени обращения к памяти) происходит следующим образом:

AMAT = t1 + c1 * (t2 + c2 * m), где t1, t2 - время отклика L1, L2; m - время отклика памяти.

Задача 6.

Кэш с ассоциативностью N - кэш разбит на блоки по N кэш-линий, такая модификация позволяет быстрее искать нужный адрес.

Тогда число блоков = размер кэша / (длина кэш-линий * N)

Разрядность адресов памяти - минимальное число бит, необходимое для представления всех байт памяти.

Причем по адресу легко определить его блок - просто возьмем модуль от числа блоков, для этого достаточно посмотреть на первые log2(число блоков) бит адреса. Соответственно, если мы знаем, в каком блоке лежит кэш-линия, то можем не хранить соответствующие первые биты в теге адреса.

Так же, поскольку кэш-линия хранит сразу последовательный кусок байт, причем так, что кэш-линии не пересекаются, log2(длина кэш-линии) бит в теге адреса тоже можно не хранить.

Практическая часть

Задача 5.

Условие:

Имеется система с двухуровневым look through кэшем. Время отклика L1 и L2 равно 1 и 8 тактов соответственно. Штраф за промах из L2 в основную память равен 18 тактов. Коэффициент промахов для L2 в 2 раза меньше, чем для L1. Среднее время обращения к памяти (АМАТ) равно 2 тактам.

Необходимо определить коэффициенты промахов для L1 и L2.

Решение:

$$t1, t2 = 1, 8$$
 тактов
$$m = 18$$
 тактов - доступ к памяти
$$c1 = ?, c2 = 0.5 * c1$$

$$AMAT = 2$$

Подставим АМАТ

$$2 = 1 + c1 * (8 + 0.5 * c1 * 18)$$

 $9c1^2 + 8c1 - 1 = 0$
 $c1 = -1$ - не подходит, $c1 = 1/9$

Отсюда **ответ:** c1 = 1/9, c2 = 1/18

Задача 6

Условие:

Имеется кэш с ассоциативностью 4 и размером 8 КБ. Размер кэш-линии составляет 128 байт. Размер основной памяти 1 МБ.

Необходимо определить размер тега адреса.

Решение:

Число блоков, полученных ассоциативностью = 8*1024/4*128=2*8=16 блоков.

Разрядность адреса памяти - 1 мб = 1024^2 байт = 2^2 байт, соответственно разрядность - 20 бит.

Вычтем log2(размер кэш-линии)

$$20 - \log 2(128) = 13$$

Вычтем log2(число блоков)

$$13 - \log 2(16) = 9.$$

Ответ: тег адреса занимает 9 бит.