Section 3. **Monte Carlo Methods**

Bob Carpenter

Columbia University

Part I

Integration

Monte Carlo

Monte Carlo Calculation of π

- · Computing $\pi=3.14\ldots$ via simulation is *the* textbook application of Monte Carlo methods.
- Generate points uniformly at random within the square
- Calculate proportion within circle (x² + y² < 1) and multiply by square's area
 (4) to produce the area of the circle.
- This area is π (radius is 1, so area is $\pi r^2 = \pi$)

Monte Carlo Calculation of π (cont.)

· R code to calcuate π with Monte Carlo simulation:

```
> x <- runif(1e6,-1,1)
> y <- runif(1e6,-1,1)
> prop_in_circle <- sum(x^2 + y^2 < 1) / 1e6
> 4 * prop_in_circle
[1] 3.144032
```

Accuracy of Monte Carlo

- · Monte Carlo is not an approximation!
- · It can be made exact to within any ϵ
- · Monte Carlo draws are i.i.d. by definition
- · Central limit theorem: expected error decreases at rate of

$$\frac{1}{\sqrt{N}}$$

- · 3 decimal places of accuracy with sample size 1e6
- \cdot Need 100 imes larger sample for each digit of accuracy

General Monte Carlo Integration

MC can calculate arbitrary definite integrals,

$$\int_{a}^{b} f(x) \, dx$$

- Let d upper bound f(x) in (a,b); tightness determines computational efficiency
- Then generate random points uniformly in the rectangle bounded by (a,b) and (0,d)
- Multiply proportion of draws (x, y) where y < f(x) by area of rectangle, $d \times (b a)$.
- Can be generalized to multiple dimensions in obvious way

Expectations of Function of R.V.

- · Suppose $f(\theta)$ is a function of random variable vector θ
- · Suppose the density of θ is $p(\theta)$
 - Warning: θ overloaded as random and bound variable
- · Then $f(\theta)$ is also random variable, with expectation

$$\mathbb{E}[f(\theta)] = \int_{\Theta} f(\theta) \ p(\theta) \ d\theta.$$

- where Θ is support of $p(\theta)$ (i.e., $\Theta = \{\theta \mid p(\theta) > 0\}$

Qol as Expectations

- · Most Bayesian quantities of interest (QoI) are expectations over the posterior $p(\theta \mid y)$ of functions $f(\theta)$
- Bayesian parameter estimation: $\hat{ heta}$
 - $-f(\theta) = \theta$
 - $\hat{\theta} = \mathbb{E}[\theta|y]$ minimizes expected square error
- · Bayesian parameter (co)variance estimation: $var[\theta \mid y]$

$$- f(\theta) = (\theta - \hat{\theta})^2$$

- Bayesian event probability: Pr[A | y]
 - $f(\theta) = I(\theta \in A)$

Expectations via Monte Carlo

- · Generate draws $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(M)}$ drawn from $p(\theta)$
- · Monte Carlo Estimator plugs in average for expectation:

$$\mathbb{E}[f(\theta)|y] \approx \frac{1}{M} \sum_{m=1}^{M} f(\theta^{(m)})$$

· Can be made as accurate as desired, because

$$\mathbb{E}[f(\theta)] = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} f(\theta^{(m)})$$

· Reminder: By CLT, error goes down as $1/\sqrt{M}$

Part II

Monte Carlo

Markov Chain

Markov Chain Monte Carlo

· Standard Monte Carlo draws i.i.d. draws

$$\theta^{(1)},\ldots,\theta^{(M)}$$

according to a probability function $p(\theta)$

- Drawing an i.i.d. sample is often impossible when dealing with complex densities like Bayesian posteriors $p(\theta|y)$
- · So we use Markov chain Monte Carlo (MCMC) in these cases and draw $\theta^{(1)}, \dots, \theta^{(M)}$ from a Markov chain

Markov Chains

· A Markov Chain is a sequence of random variables

$$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(M)}$$

such that $\theta^{(m)}$ only depends on $\theta^{(m-1)}$, i.e.,

$$p(\theta^{(m)}|y,\theta^{(1)},\dots,\theta^{(m-1)}) \; = \; p(\theta^{(m)}|y,\theta^{(m-1)})$$

- · Drawing $\theta^{(1)}, \dots, \theta^{(M)}$ from a Markov chain according to $p(\theta^{(m)} \mid \theta^{(m-1)}, y)$ is more tractable
- · Require marginal of each draw, $p(\theta^{(m)}|y)$, to be equal to true posterior

Applying MCMC

- · Plug in just like ordinary (non-Markov chain) Monte Carlo
- · Adjust standard errors for dependence in Markov chain

MCMC for Posterior Mean

· Standard Bayesian estimator is posterior mean

$$\hat{\theta} = \int_{\Theta} \theta \, p(\theta|y) \, d\theta$$

- Posterior mean minimizes expected square error
- · Estimate is a conditional expectation

$$\hat{\theta} = \mathbb{E}[\theta|y]$$

· Compute by averaging

$$\hat{\theta} \approx \frac{1}{M} \sum_{i=1}^{M} \theta_{i}$$

MCMC for Posterior Variance

· Posterior variance works the same way,

$$\mathbb{E}[(\theta - \mathbb{E}[\theta \mid y])^2 \mid y] = \mathbb{E}[(\theta - \hat{\theta})^2]$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} (\theta^{(m)} - \hat{\theta})^2$$

MCMC for Event Probability

· Event probabilities are also expectations, e.g.,

$$\Pr[\theta_1 > \theta_2] = \mathbb{E}[I[\theta_1 > \theta_2]] = \int_{\Theta} I[\theta_1 > \theta_2] p(\theta|y) d\theta.$$

· Estimation via MCMC just another plug-in:

$$\Pr[\theta_1 > \theta_2] \approx \frac{1}{M} \sum_{m=1}^{M} \mathsf{I}[\theta_1^{(m)} > \theta_2^{(m)}]$$

· Again, can be made as accurate as necessary

MCMC for Quantiles (incl. median)

- · These are not expectations, but still plug in
- · Alternative Bayesian estimator is posterior median
 - Posterior median minimizes expected absolute error
- · Estimate as median draw of $\theta^{(1)}, \ldots, \theta^{(M)}$
 - just sort and take halfway value
 - e.g., Stan shows 50% point (or other quantiles)
- Other quantiles including interval bounds similar
 - estimate with quantile of draws
 - estimation error goes up in tail (based on fewer draws)

Part III

MCMC Algorithms

Random-Walk Metropolis

- · Draw random initial parameter vector $\theta^{(1)}$ (in support)
- For $m \in 2:M$
 - Sample proposal from a (symmetric) jumping distribution, e.g.,

$$\theta^* \sim \text{MultiNormal}(\theta^{(m-1)}, \sigma \mathbf{I})$$

where I is the identity matrix

- Draw $u^{(m)} \sim \text{Uniform}(0,1)$ and set

$$\theta^{(m)} = \begin{cases} \theta^* & \text{if } u^{(m)} < \frac{p(\theta^*|y)}{p(\theta^{(m)}|y)} \\ \theta^{(m-1)} & \text{otherwise} \end{cases}$$

Metropolis and Normalization

· Metropolis only uses posterior in a ratio:

$$\frac{p(\theta^* \mid y)}{p(\theta^{(m)} \mid y)}$$

- This allows the use of unnormalized densities
- · Recall Baves's rule:

$$p(\theta|y) \propto p(y|\theta) p(\theta)$$

- · Thus we only need to evaluate sampling (likelihood) and prior
 - i.e., no need to compute normalizing integral for p(y),

$$\int_{\Theta} p(y|\theta) \, p(\theta) d\theta$$

Metropolis-Hastings

- Generalizes Metropolis to asymmetric proposals
- · Acceptance ratio is

$$\frac{J(\theta^{(m)}|\theta^*) \times p(\theta^*|y)}{J(\theta^*|\theta^{(m-1)}) \times p(\theta^{(m)}|y)}$$

where J is the (potentially asymmetric) proposal density

· i.e.,

probability of being at θ^* and jumping to $\theta^{(m-1)}$ probability of being at $\theta^{(m-1)}$ and jumping to θ^*

Metropolis-Hastings (cont.)

- General form ensures equilibrium by maintaining detailed balance
- · Like Metropolis, only requires ratios
- · Many algorithms involve a Metropolis-Hastings "correction"
 - Including vanilla HMC and RHMC and ensemble samplers

Detailed Balance & Reversibility

- · Definition is measure theoretic, but applies to densities
 - just like Bayes's rule
- · Assume Markov chain has stationary density p(a)
- · Suppose $\pi(a|b)$ is density of transitioning from b to a
 - use of π to indicates different measure on Θ than p
- · Detailed balance is a reversibility equilibrium condition

$$p(a) \pi(b|a) = p(b) \pi(a|b)$$

Optimal Proposal Scale?

· Proposal scale σ is a free; too low or high is inefficient

- Traceplots show parameter value on y axis, iterations on x
- · Empirical tuning problem; theoretical optima exist for some cases

Roberts and Rosenthal (2001) Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science.

Convergence

- · Imagine releasing a hive of bees in a sealed house
 - they disperse, but eventually reach equilibrium where the same number of bees leave a room as enter it (on average)
 - May take many iterations for Markov chain to reach equilibrium

Convergence: Example

- Four chains with different starting points
 - Left: 50 iterations
 - Center: 1000 iterations
 - Right: Draws from second half of each chain

Gelman et al., Bayesian Data Analysis

Potential Scale Reduction (\hat{R})

- Gelman & Rubin recommend M chains of N draws with diffuse initializations
- Measure that each chain has same posterior mean and variance
- If not, may be stuck in multiple modes or just not converged yet
- · Define statistic \hat{R} of chains s.t. at convergence, $\hat{R} \rightarrow 1$
 - $\hat{R} >> 1$ implies non-convergence
 - $\hat{R} \approx 1$ does not guarantee convergence
 - Only measures marginals

Split \hat{R}

- · Vanilla \hat{R} may not diagnose non-stationarity
 - e.g., a sequence of chains with an increasing parameter
- · Split \hat{R} : Stan splits each chain into first and second half
 - start with M Markov chains of N draws each
 - split each in half to creates 2M chains of N/2 draws
 - then apply \hat{R} to the 2M chains

Calculating \hat{R} Statistic: Between

· Between-sample variance estimate

$$B = \frac{N}{M-1} \sum_{\bullet}^{M} (\bar{\theta}_{m}^{(\bullet)} - \bar{\theta}_{\bullet}^{(\bullet)})^{2},$$

where

$$\bar{\theta}_m^{(\bullet)} = \frac{1}{N} \sum_{-}^{N} \theta_m^{(n)} \quad \text{and} \quad \bar{\theta}_{\bullet}^{(\bullet)} = \frac{1}{M} \sum_{-}^{M} \bar{\theta}_m^{(\bullet)}.$$

Calculating \hat{R} (cont.)

· Within-sample variance estimate:

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2,$$

where

$$s_m^2 = \frac{1}{N-1} \sum_{m=1}^{N} (\theta_m^{(n)} - \bar{\theta}_m^{(\bullet)})^2.$$

Calculating \hat{R} Statistic (cont.)

Variance estimate:

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B.$$

recall that W is within-chain variance and B between-chain

· Potential scale reduction statistic ("R hat")

$$\hat{R} = \sqrt{\frac{\widehat{\mathsf{var}}^+(\theta|y)}{W}}.$$

Correlations in Posterior Draws

- Markov chains typically display autocorrelation in the series of draws $\theta^{(1)}, \dots, \theta^{(m)}$
- · Without i.i.d. draws, central limit theorem does not apply
- · Effective sample size Neff divides out autocorrelation
- $\cdot N_{
 m eff}$ must be estimated from sample
 - Fast Fourier transform computes correlations at all lags
- · Estimation accuracy proportional to

$$\frac{1}{\sqrt{N_{\mathsf{eff}}}}$$

Reducing Posterior Correlation

- · Tuning algorithm parameters to ensure good mixing
- Recall Metropolis traceplots of Roberts and Rosenthal:

- Good jump scale σ produces good mixing and high $N_{
m eff}$

Effective Sample Size

· Autocorrelation at lag t is correlation between subseqs

-
$$(\theta^{(1)},...,\theta^{(N-t)})$$
 and $(\theta^{(1+t)},...,\theta^{(N)})$

- · Suppose chain has density $p(\theta)$ with
 - $\mathbb{E}[\theta] = \mu$ and $Var[\theta] = \sigma^2$
- Autocorrelation ρ_t at lag $t \ge 0$:

$$\rho_t = \frac{1}{\sigma^2} \int_{\Theta} (\theta^{(n)} - \mu) (\theta^{(n+t)} - \mu) \, p(\theta) \, d\theta$$

• Because $p(\theta^{(n)}) = p(\theta^{(n+t)}) = p(\theta)$ at convergence,

$$\rho_t = \frac{1}{\sigma^2} \int_{\Theta} \theta^{(n)} \, \theta^{(n+t)} \, p(\theta) \, d\theta$$

Estimating Autocorrelations

· Effective sample size is defined by

$$N_{\text{eff}} = \frac{N}{\sum_{t=-\infty}^{\infty} \rho_t} = \frac{N}{1 + 2\sum_{t=1}^{\infty} \rho_t}$$

· Estimate in terms of variograms at lag t (calc with FFT),

$$V_t = \frac{1}{M} \sum_{m=1}^{M} \left(\frac{1}{N_m - t} \sum_{n=t+1}^{N_m} \left(\theta_m^{(n)} - \theta_m^{(n-t)} \right)^2 \right)$$

Adjust autocorrelation at lag t using cross-chain variance as

$$\hat{\rho}_t = 1 - \frac{V_t}{2\,\widehat{\mathsf{var}}^+}$$

If not converged, var⁺ overestimates variance

Estimating N_{eff}

- · Let T' be first lag s.t. $\rho_{T'+1} < 0$,
- · Estimate autocorrelation by

$$\hat{N}_{\mathsf{eff}} = \frac{MN}{1 + \sum_{t=1}^{T'} \hat{\rho}_t}.$$

NUTS avoids negative autocorrelations, so first negative autocorrelation estimate is reasonable

 See Charles Geyer (2013) Introduction to MCMC. In Handbook of MCMC. (free online at http://www.mcmchandbook.net/index.html)

Gibbs Sampling

- · Draw random initial parameter vector $\theta^{(1)}$ (in support)
- For $m \in 2:M$
 - For $n \in 1:N$
 - * draw $\theta_n^{(m)}$ according to conditional

$$p(\theta_n|\theta_1^{(m)},\ldots,\theta_{n-1}^{(m)},\theta_{n+1}^{(m-1)},\ldots,\theta_N^{(m-1)},y).$$

- e.g, with $\theta = (\theta_1, \theta_2, \theta_3)$:
 - draw $\theta_1^{(m)}$ according to $p(\theta_1|\theta_2^{(m-1)},\theta_3^{(m-1)},y)$
 - draw $\theta_2^{(m)}$ according to $p(\theta_2|\theta_1^{(m)},\theta_3^{(m-1)},y)$
 - draw $\theta_3^{(m)}$ according to $p(\theta_3|\theta_1^{(m)},\theta_2^{(m)},y)$

Generalized Gibbs

- "Proper" Gibbs requires conditional Monte Carlo draws
 - typically works only for conjugate priors
- In general case, may need to use less efficient conditional draws
 - Slice sampling is a popular general technique that works for discrete or continuous θ_n (IAGS)
 - Adaptive rejection sampling is another alternative (BUGS)
 - Very difficult in more than one or two dimensions

Sampling Efficiency

- · We care only about $N_{\rm eff}$ per second
- · Decompose into
 - 1. Iterations per second
 - Effective sample size per iteration
- Gibbs and Metropolis have high iterations per second (especially Metropolis)
- But they have low effective sample size per iteration (especially Metropolis)
- Both are particular weak when there is high correlation among the parameters in the posterior

Hamiltonian Monte Carlo & NUTS

- · Slower iterations per second than Gibbs or Metropolis
- Much higher effective sample size per iteration for complex posteriors (i.e., high curvature and correlation)
- · Overall, much higher N_{1} ff per second

- Details in the next talk . . .
- · Along with details of how Stan implements HMC and NUTS

The End (Section 3)