PEUT-ON ÊTRE CERTAIN DE L'INCERTITUDE?

Projet d'étudiants de 1^{ère} année Nathan Azoulay, Anas Barakat et Adrien Cohen-Olivar Encadrés par Lirida Naviner et You Wang

PAF 15 jours chrono!

1- Problématique

01111000011110110110101...100 Est-ce vraiment une séquence aléatoire?

■ Testeur, Qualité, Aléatoire, PRNG

2-Applications

Simulation Échantillonnage Cryptologie

3- Principe des tests

Séquence Binaire

Tests Statistiques

P-value comparée au seuil critique

Qualité de ' «aléatoirité »

0101|1101

(ALGO 5)

1 – Test de Fréquence

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

 $Pvalue = e^{-\chi(obs)^2/2}$

Distribution χ carré

REGLE DE DECISION

Pvalue < 0.01

=> NON- RANDOM

4- Algorithmes de Tests *

Test de Fréquence

5 - Test à Transformée de Fourier Discrète

Détection de motifs périodiques

7 –Test de détection de motifs redondants sans chevauchement Si correspondance

100101010 motif: 110

Comptage de la redondance

1001010 Sinon

100101010

8 –Test de détection de motifs redondants avec chevauchement Toujours décalage d'un bit

5- Interface graphique (Tkinter)

6- Résultats

Distribution uniforme des P_value sur [0,1] avec 100 tests

7-Conclusion

- Réalisation: implémentation des algorithmes, GUI, codage RC4
- Qualité: fonctionnels
- Pour aller plus loin: génération de nombres