A Câmara Secreta

Por Leandro Zatesko, UFFS Sarazil

Timelimit: 3

A cidade de Chapecó, no oeste do estado brasileiro de Santa Catarina, é onde ficam situados a Reitoria da Universidade Federal da Fronteira Sul e um dos 6 *campi* da universidade. No próximo dia 25 de agosto, comemorar-se-ão os 98 anos da cidade, e os vereadores já estão organizando os preparativos da festa. O objetivo desta festa, além da celebração do aniversário da cidade, é arrecadar fundos para a construção da nova Câmara de Vereadores, a qual será uma Câmara Secreta, onde os vereadores poderão votar mais tranquilamente os aumentos da tarifa de ônibus sem serem tão incomodados pelos estudantes.

A Câmara Secreta será um verdadeiro labirinto, isso para que eventuais invasores não consigam sair com tanta facilidade. Mas os arquitetos ainda não estão certos quanto à planta e querem fazer modificações no projeto. Para facilitar o trabalho, eles projetaram toda a planta sobre um *grid* de unidades quadradas, de modo que cada unidade quadrada fosse integralmente parede ou integralmente espaço livre, como na figura abaixo.

	1	2	3	4	5	6
1						
2						
3						
4						

Visando atacar o problema de modo mais restrito, os arquitetos ainda elegeram algumas regiões da planta para estudarem cada região isoladamente. Agora, eles querem saber qual o número de possibilidades que têm para rearranjar as unidades quadradas de parede de cada região apenas dentro da própria região. Por exemplo, para a região destacada na figura acima, há 5 possibilidades, as quais ilustramos na figura abaixo.

Entrada

A primeira linha da entrada informa as dimensões $N \in M$ ($1 \le N$, $M \le 50$) da planta em unidades quadradas, as quais representam respectivamente o número de linhas e o número de colunas do *grid*, e as N linhas seguintes descrevem o *grid*, de modo que unidades quadradas livres são representadas pelo caractere '.' e unidades quadradas de parede pelo caractere '#'. Cada uma das demais linhas da entrada é composta por quatro inteiros x_A , y_A , x_B e y_B ($1 \le x_A < x_B \le N$, $1 \le y_A < y_B \le M$), os quais definem uma região através do ponto superior esquerdo (x_A , y_A) e do ponto inferior direito (x_B , y_B) da região. A entrada termina em fim de arquivo.

Saída

Para cada região descrita na entrada, imprima uma linha contendo unicamente o número de possibilidades que os arquitetos têm para rearranjar as unidades quadradas de parede da região apenas dentro da própria região. Como o número de possibilidades pode ser muito grande, imprima apenas o resto que o número deixa quando dividido por 10⁹ + 7.

Exemplos de Entrada	Exemplos de Saída
4 6	5
##.	0
#.#.	134595
##	
2 2 3 3 3 3 4 6 1 1 4 6	

⁴º Maratona UFFS