VectorAnalysis_Rpackage

- 1) Package for Vector Analysis contains 7 operations:
 - smallest:

Get minmum element in vector. Input to this function is a vector.

largest:

Get maximum element in vector. Input to this function is a vector.

get_outliers

Return outliers in vector. Input to this function is a vector.

remove_outliers

Return input vector but without outliers. Input to this function is a vector.

min_max_normalize

Normalize input vector according to min max interval.

The input is two vector. First vector is your data that you want to normalize.

The second vector contains two numbers which are your normalization interval.

z_score_normalize:

Normalize input vector accoring to z score.

decimal_normalize:

Normalize input vector accoring to decimal method.

2) Examples:

smallest and largest:

```
> library(vectorAnalysis)
> Dataset=c(150000, 320000, 2500000, 180000, 120000, 85000)
> library(vectorAnalysis)
> Dataset=c(150000, 320000, 2500000, 180000, 120000, 85000)
> smallest(Dataset)
[1] 85000
> largest(Dataset)
[1] 2500000
```

• get_outliers:

Theoritical Background Example:

Car Model	Manufacturing Year	Cylinders	cc	Price (LE)	Maximum Speed (km/hr)	Horse Power	Used/New	Usage Duration (Years)
Toyota	2009		1600	150000	195	1400	New	3
Jeep	2009	6	3700	320000	200	210	New	0
Mercury	MWR09	6	4000	2500000		210		0
Opel	2008	4	1600	180000	192	105	New	10
Mitsubishi	2006	4	-1600		170	106	Used	3
Honda	2009	4	1500	120000	180	92	New	0
Mazda	2003	4	1600	85000	180		Used	6

Find any outliers in field "Price."

Dataset = 150000, 320000, 2500000, 180000, 120000, 85000

Ordered Dataset = 85000, 120000, 150000, 180000, 320000, 2500000

Q2 = (150000 + 180000) / 2 = 165000

Q1 = 120000

Q3 = 320000

IQR = Q3 - Q1 = 200000

Q1 - (1.5)*(IQR) = -180000

Q3 + (1.5)*(IQR) = 620000

As (2500000) > (620000) Hence → 2500000 is an outfiller

Using the Package:

```
> library(vectorAnalysis)
> Dataset=c(150000, 320000, 2500000, 180000, 120000, 85000)
> get_outliers(Dataset)
[1] 2500000
```

remove_outliers:

```
> library(vectorAnalysis)
> Dataset=c(150000, 320000, 2500000, 180000, 120000, 85000)
> remove_outliers(Dataset)
[1] 150000 320000 180000 120000 85000
```

min_max_normalize:

Theoritical Background Example:

Planet	Average Surface Temperature (°C)	Approximate Solar Day (Earth Days)	Approximate Solar Year (Earth Days)	Approximate Diameter (km)	Average Distance to Sun (km)
Mercury	179	58.65	88	4880	58000000
Venus	482	243	225	12102	108000000
Mars	-60	1	687	6792	230000000
Saturn	-153	0.4263	10760	120000	1427000000
Uranus	-218	0.7458	30681	50800	2870000000

$$v' = \left(\left[\frac{v - \min_A}{\max_A - \min_A}\right] \times \left[\text{new_max}_A - \text{new_min}_A\right]\right) + \text{new_min}_A$$

• Approximate Solar Day:

 $max_A = 243$ $min_A = 0.4263$ $new_max_A = 1$ $new_min_A = 0$

• Approximate Solar Year:

 $max_A = 30681$ $min_A = 88$ $new_max_A = 1$ $new_min_A = 0$

• Approximate Diameter:

 $max_A = 120000$ $min_A = 4880$ $new_max_A = 1$ $new_min_A = 0$

Approximate Solar Day (Earth Days)	Approximate Solar Year (Earth Days)	Approximate Diameter (km)
0.24	0	0
1	0.0045	0.063
0.0024	0.020	0.017
0	0.35	1
0.0013	1	0.40

Using the Package:

- > library(vectorAnalysis)
- > Dataset=c(88,225,687,10760,30681)
- > newInterval=c(0,1)
- > min_max_normalize(Dataset,newInterval)
- [1] 0.000000000 0.004478149 0.019579642 0.348837969 1.000000000

• z_score_normalize:

Theoritical Background Example **→** [From the Previous Table in the example]

$$v' = \frac{v - \overline{A}}{\sigma_{\Delta}}$$

$$\overline{A} = \frac{\sum_{i=1}^{n} A}{n}$$

$$\overline{A} = \frac{\sum_{i=1}^{n} A}{n} \qquad \sigma_{A} = \sqrt{\frac{\sum_{i=1}^{n} (A_{i} - \overline{A})^{2}}{n-1}}$$

Approximate Solar Day:

 $\bar{A} = 60.76$

$$\sigma_{A} = 104.92$$

• Approximate Solar Year:

 \overline{A} = 8488.2

$$\sigma_A = 13204.01$$

• Approximate Diameter:

 \overline{A} = 38914.8

$$\sigma_{A} = 49054.14$$

Approximate Solar Day (Earth Days)	Approximate Solar Year (Earth Days)	Approximate Diameter (km)
-0.020	-0.64	-0.69
1.74	-0.63	-0.55
-0.57	-0.59	-0.65
-0.58	0.17	1.65
-0.57	1.68	0.24

Using the Package:

- > library(vectorAnalysis)
- > Dataset=c(88,225,687,10760,30681)
- > z_score_normalize(Dataset)

[1] -0.6361853 -0.6258097 -0.5908203 0.1720537 1.6807616

decimal_normalize:

Theoritical Background Example **→** [From the Previous Table in the example] $v' = v / 10^{i}$

- Approximate Solar Day: j = 3
- Approximate Solar Year: j = 5
- Approximate Diameter: j=6

Approximate Solar Day (Earth Days)	Approximate Solar Year (Earth Days)	Approximate Diameter (km)
0.059	0.00088	0.00488
0.243	0.00225	0.0121
0.001	0.00687	0.00679
0.00042	0.1076	0.12
0.0007	0.30681	0.051

Using the Package:

- > Dataset=c(88,225,687,10760,30681)
- > decimal_normalize(Dataset)

[1] 0.00088 0.00225 0.00687 0.10760 0.30681