

Homework – Multiple controllers

Chiara Grasselli

LAB. OF NETWORK PROGRAMMABILITY AND AUTOMATION - PROGRAMMABLE NETWORKING (A.Y. 2024/2025)

The goal of this exercise is twofold:

- 1. make you practice, and get confident, with practical sessions seen during previous lab sessions;
- 2. show limitations of the approach, i.e., triggering role requests from the outside of the SDN controller framework (in this case, Ryu)

Here, you are asked to carry out the exercise following all the steps, and to answer all related questions. You will have to provide a report (pdf format) containing answers and screenshots.

Topology: C_0 and C_1 assume different roles for switches

EQUAL controller **MASTER** controller **SLAVE** controller

Topology:

Modify 1switch_3host_ext_cntlr.py to build the topology with 2 switches and 3 hosts required for the assignment

Step 0: start controllers and topology

- 1. Start two simple_switch_13 controllers, together with related REST web servers
- 2. Start Mininet topology

What is the (default) situation?
Provide a screenshot that shows state of each
controller by using the Open vSwitch command suite

Step 1: C₁ requires to be SLAVE for sw1

Set C₁ to act as SLAVE for sw1

Provide the command that allows you to trigger such a change

Step 2: C₀ requires to be MASTER for sw1

Set C₀ to act as MASTER for sw1

Provide the command that allows you to trigger such a change

Step 3: C₁ requires to be MASTER for sw2

Set C₁ to act as MASTER for sw2 Note that, to do this, you will have to compose a proper json file, by indicating correct datapath id and role

- 1. the command that allows you to trigger such a change
- 2. a screenshot of the states of the controllers at the end of this step

Step 4: host₁ ping host₂

Use Mininet to make a ping between host1 and host2

- 1. a screenshot of Mininet CLI of the ping
- 2. the answer to the following questions
 - a. Does ping work?
 - b. Why?
 - c. Support your comments by dumping and taking a screenshot of OpenFlow rules on sw1

Step 5: stop C₀ controller

Stop C₀ controller

Provide answers to these questions:

- 1. Does ping between host1 and host2 still work?
- 2. Why?

Step 6: host1 ping host3

Use Mininet to make a ping between host1 and host3

- 1. a screenshot of Mininet CLI of the ping
- 2. the answer to the following questions
 - a. Does ping work?
 - b. Why?
 - c. Support your comments by dumping and taking a screenshot of OpenFlow rules on sw1 and sw2
- 3. What is the state of each controller? Support your comments providing a screenshot of the state of controllers

Step 7: C₁ requires to be MASTER for sw1

Set C₁ to act as MASTER for sw1

Provide the command that allows you to trigger such a change

Step 8: host1 ping host3

Use Mininet to make a ping between host1 and host3

- 1. a screenshot of Mininet CLI of the ping
- 2. the answer to the following questions
 - a. Does ping work?
 - b. Why?
 - c. Support your comments by dumping and taking a screenshot of OpenFlow rules on sw1 and sw2