Image Features

CSE 576, Spring 2005

About me

- Ph. D., Carnegie Mellon, 1988
- Researcher, Cambridge Research Lab at DEC, 1990-1995
- Senior Researcher, Interactive
 Visual Media Group, Microsoft, 1995-
- Research interests:
 - computer vision (stereo, motion), computer graphics (image-based rendering), data-parallel programming

Today's lecture

- What is computer vision?
- Scale-space and pyramids
- What are good features?
- Feature detection
- Feature descriptors
- (Next lecture: feature matching)
- Project 1description and demo [lan Simon]

What is Computer Vision?

What is Computer Vision?

- Image Understanding (AI, behavior)
- A sensor modality for robotics
- Computer emulation of human vision
- Inverse of Computer Graphics

Intersection of Vision and Graphics

Computer Vision [Trucco&Verri'98]

Figure 1.7 The book at a glance: method classes (white boxes), results (grey boxes), their interdependence, and where to find the various topics in this book.

Image-Based Modeling

Applications

- Geometric reconstruction: modeling, forensics, special effects (ILM, RealVis,2D3)
- Image and video editing (Avid, Adobe)
- Webcasting and Indexing Digital Video (Virage)
- Scientific / medical applications (GE)

Applications

- Tracking and surveillance (Sarnoff)
- Fingerprint recognition (Digital Persona)
- Biometrics / iris scans (Iridian Technologies)
- Vehicle safety (MobilEye)
- Drowning people (VisionIQ Inc)
- Optical motion capture (Vicon)

Image Morphing

Panoramic Mosaics

3D Shape Reconstruction

Debevec, Taylor, and Malik, SIGGRAPH 1996

Face Modeling

View Morphing

Morph between pair of images using epipolar geometry [Seitz & Dyer, SIGGRAPH'96]

Virtualized RealityTM

Takeo Kanade, CMU

collect video from 50+ stream

reconstruct 3D model sequences

http://www.cs.cmu.edu/afs/cs/project/VirtualizedR/www/VirtualizedR.html

Virtualized RealityTM

Takeo Kanade, CMU

generate new video

 steerable version used for SuperBowl XXV "eye vision" system

Edge detection and editing

Elder, J. H. and R. M. Goldberg. "Image Editing in the Contour Domain," Proc. IEEE: Computer Vision and Pattern Recognition, pp. 374-381, June, 1998.

Image Enhancement

High dynamic range photography [Debevec et al.'97; Mitsunaga & Nayar'99]

combine several different exposures together

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to — sec. The sun is directly behind the rightmost stained glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

Today's lecture

- What is computer vision?
- Scale-space and pyramids
- What are good features?
- Feature detection
- Feature descriptors
- (Next lecture: feature matching)
- Project 1description and demo [lan Simon]

Image Pyramids

Image Pyramids

Pyramid Creation

"Gaussian" Pyramid "Laplacian" Pyramid

 Created from Gaussian pyramid by subtraction
 L_I = G_I – expand(G_{I+1})

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Pyramids

Advantages of pyramids

- Faster than Fourier transform
- Avoids "ringing" artifacts

Many applications

- small images faster to process
- good for multiresolution processing
- compression
- progressive transmission

Known as "MIP-maps" in graphics community Precursor to wavelets

Wavelets also have these advantages

Pyramid Blending

3/31/2005

CSE 576: Computer Vision

original

smoothed (5x5 Gaussian)

smoothed – original (scaled by 4, offset +128)

hy does this work?

Scale space (Witkin 83)

Scale space: insights

As the scale is increased

- edge position can change
- edges can disappear
- new edges are not created

Today's lecture

- What is computer vision?
- Scale-space and pyramids
- What are good features?
- Feature detection
- Feature descriptors
- (Next lecture: feature matching)
- Project 1description and demo [lan Simon]

These slides adapted from:

Matching with Invariant Features

Darya Frolova, Denis Simakov
The Weizmann Institute of Science
March 2004

and...

Real-time Object Recognition using Invariant Local Image Features

David Lowe
Computer Science Department
University of British Columbia
NIPS 2003 Tutorial

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Advantages of local features

Locality: features are local, so robust to occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be matched to a large database of objects

Quantity: many features can be generated for even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

More motivation...

Feature points are used also for:

- Image alignment (homography, fundamental matrix)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Harris corner detector

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

The Basic Idea

We should easily recognize the point by looking through a small window

Shifting a window in *any direction* should give *a large* change in intensity

3/31/2005

Harris Detector: Basic Idea

"flat" region: no change in all directions "edge":
no change along
the edge direction

"corner": significant change in all directions

Change of intensity for the shift [u,v]:

For small shifts [u,v] we have a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u \\ v \end{bmatrix}$$

$$\lambda_1, \lambda_2$$
 – eigenvalues of M

Ellipse E(u,v) = const

direction of the

direction of the slowest change

Classification of image points using eigenvalues of *M*:

 λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions "Flat" region

 λ_1 and λ_2 are small; E is almost constant in all directions

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04 - 0.06)

 λ_2

- *R* depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Harris Detector

The Algorithm:

- Find points with large corner response function R
 (R > threshold)
- Take the points of local maxima of R

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

Harris Detector: Summary

Average intensity change in direction [*u*,*v*] can be expressed as a bilinear form:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u \\ v \end{bmatrix}$$

Describe a point in terms of eigenvalues of M:

measure of corner response

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2 \right)^2$$

A good (corner) point should have a *large intensity change* in *all directions*, i.e. *R* should be large positive

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓ Intensity scale: $I \rightarrow a I$

x (image coordinate)

But: non-invariant to *image scale*!

All points will be classified as edges

Corner!

Quality of Harris detector for different scale

changes

Repeatability rate:

correspondences # possible correspondences

C.Schmid et.al. "Evaluation of Interest Point Detectors". IJCV 2000

Models of Image Change

Geometry

Rotation

Affine (scale dependent on direction)
 valid for: orthographic camera, locally planar object

Photometry

• Affine intensity change $(I \rightarrow a I + b)$

Rotation Invariant Detection

Harris Corner Detector

C.Schmid et.al. "Evaluation of Interest Point Detectors". IJCV 2000

Consider regions (e.g. circles) of different sizes around a point

Regions of corresponding sizes will look the same in both images

62

The problem: how do we choose corresponding circles *independently* in each image?

Scale invariance

Requires a method to repeatably select points in location and scale:

The only reasonable scale-space kernel is a Gaussian (Koenderink, 1984; Lindeberg, 1994)

An efficient choice is to detect peaks in the difference of Gaussian pyramid (Burt & Adelson, 1983; Crowley & Parker, 1984 – but examining more scales)

Difference-of-Gaussian with constant ratio of scales is a close approximation to Lindeberg's scale-normalized Laplacian (can be shown from the heat diffusion equation)

Solution:

 Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 For a point in one image, we can consider it as a function of region size (circle radius)

Common approach:

Take a local maximum of this function

Observation: region size, for which the maximum is achieved, should be *invariant* to image scale.

Important: this scale invariant region size is found in each image independently!

A "good" function for scale detection: has one stable sharp peak

• For usual images: a good function would be a one which responds to contrast (sharp local intensity change)

Functions for determining scale

f = Kernel * Image

Kernels:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

where Gaussian

 $G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$

Note: both kernels are invariant to scale and rotation

3/31/20

SE 370. Computer Vision

68

Scale space: one octave at a time

Key point localization

Detect maxima and minima of difference-of-Gaussian in scale space

Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown & Lowe, 2002)

Taylor expansion around point:

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

Offset of extremum (use finite differences for derivatives):

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

Sampling frequency for scale

More points are found as sampling frequency increases, but accuracy of matching decreases after 3 scales/octave

Eliminating unstable keypoints

Discard points with DOG value below threshold (low contrast)

However, points along edges may have high contrast in one direction but low in another

Compute principal curvatures from eigenvalues of 2x2 Hessian matrix, and limit ratio (Harris approach):

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \qquad \text{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta, \qquad \frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$$

Harris-Laplacian¹

Find local maximum of:

 Harris corner detector in space (image coordinates)

Laplacian in scale

• SIFT (Lowe)²
Find local maximum
of:

Difference of Gaussians in space and scale

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 200

Experimental evaluation of detectors

w.r.t. scale change

Repeatability rate:

correspondences # possible correspondences

Scale Invariant Detection: Summary

- Given: two images of the same scene with a large scale difference between them
- Goal: find the same interest points independently in each image
- Solution: search for *maxima* of suitable functions in *scale* and in *space* (over the image)

Methods:

- 1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris' measure of corner response over the image
- 2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

Affine Invariant Detection

Above we considered:

Similarity transform (rotation + uniform scale)

Now we go on to:
 Affine transform (rotation + non-uniform scale)

Affine invariant descriptors

... skip these slides (see handouts and on-line class notes) ...

Feature selection

Distribute points evenly over the image

Adaptive Non-maximal Suppression

Desired: Fixed # of features per image

- Want evenly distributed spatially...
- Search over non-maximal suppression radius [Brown, Szeliski, Winder, CVPR'05]

$$r = 20, n = 283$$

Today's lecture

- What is computer vision?
- Scale-space and pyramids
- What are good features?
- Feature detection
- Feature descriptors
- (Next lecture: feature matching)
- Project 1description and demo [lan Simon]

Point Descriptors

We know how to detect points

Next question:

How to match them?

Point descriptor should be:

- 1. Invariant
- 2. chistingative Vision

Descriptors Invariant to Rotation

Harris corner response measure:

depends only on the eigenvalues of the matrix M

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

3/31/2005

Multi-Scale Oriented Patches

Interest points

- Multi-scale Harris corners
- Orientation from blurred gradient
- Geometrically invariant to similarity transforms

Descriptor vector

- Bias/gain normalized sampling of local patch (8x8)
- Photometrically invariant to affine changes in intensity

Descriptor Vector

Orientation = blurred gradient Similarity Invariant Frame

• Scale-space position (x, y, s) + orientation (θ)

MOPS descriptor vector

8x8 oriented patch

Sampled at 5 x scale

Bias/gain normalisation: $I' = (I - \mu)/\sigma$

Descriptors Invariant to Rotation

<u>Image moments in polar coordinates</u>

$$m_{kl} = \iint r^k e^{-i\theta l} I(r,\theta) dr d\theta$$

Rotation in polar coordinates is translation of the angle:

$$\theta \rightarrow \theta + \theta_0$$

This transformation changes only the phase of the moments, but not its magnitude

Rotation invariant descriptor consists of magnitudes of moments:

Matching is done by comparing vectors $[|m_{kl}|]_{k,l}$

Descriptors Invariant to Rotation

Find local orientation

Dominant direction of gradient

Compute image derivatives relative to this orientation

¹ K.Mikolajozyk, C.Schmid. "Indexing Based Com Socil Vibrovariant Interest Points". ICCV 2001

²D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

Descriptors Invariant to Scale

Use the scale determined by detector to compute descriptor in a normalized frame

For example:

- moments integrated over an adapted window
- derivatives adapted to scale: sI_x

SIFT – Scale Invariant Feature Transform

Descriptor overview:

- Determine scale (by maximizing DoG in scale and in space), local orientation as the dominant gradient direction.
 Use this scale and orientation to make all further computations invariant to scale and rotation.
- Compute gradient orientation histograms of several small windows (128 values for each point)
- Normalize the descriptor to make it invariant to intensity change

3/31/2005

CSE 576: Computer Vision

Select canonical orientation

Create histogram of local gradient directions computed at selected scale

Assign canonical orientation at peak of smoothed histogram

Each key specifies stable 2D coordinates (x, y, scale, orientation)

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

- (a) 233x189 image
- (b) 832 DOG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures

SIFT vector formation

Thresholded image gradients are sampled over 16x16 array of locations in scale space

Create array of orientation histograms

8 orientations x 4x4 histogram array = 128 dimensions

3/31/2005

CSE 576: Computer Vision

SIFT – Scale Invariant Feature Transform¹

Empirically found² to show very good performance, invariant to image rotation, scale, intensity change, and to moderate affine transformations

Scale =
$$2.5$$

Rotation = 45^0

¹ D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004 ² K.Mikolajczyk, C.Schmid. "A Performance Evaluation of Local Descriptors". CVPR 2003

Invariance to Intensity Change

Detectors

 mostly invariant to affine (linear) change in image intensity, because we are searching for maxima

Descriptors

- Some are based on derivatives => invariant to intensity shift
- Some are normalized to tolerate intensity scale
- Generic method: pre-normalize intensity of a region (eliminate shift and scale)

Today's lecture

- What is computer vision?
- Scale-space and pyramids
- What are good features?
- Feature detection
- Feature descriptors
- (Next lecture: feature matching)
- Project 1description and demo [lan Simon]