Problem 1

1. **Inductive hypothesis**: At the end of each i^{th} loop, the variable *out* became the sum of all elements of A[1...i].

Base case (i = 0): The induction hypothesis is trivially true.

Induction step: Let the variable out_i be the version of the variable at the end of i^{th} iteration. By the inductive hypothesis, out_i became the sum of all the elements in A[1...i]. At the end of the loop $(i+1)^{th}$, the variable out_{i+1} became $out_i + A[i+1]$, which is the sum of elements in A[1...i+1].

Wrap up: When i = n, the inductive hypothesis implies that the returned variable *out* became the sum of all elements in A.

2. Inductive hypothesis: For every complete binary tree T with height h and number x, the function search() returns "yes" if the tree contains x, and "no" otherwise.

Base case (h = 0): The induction hypothesis is trivially true.

Induction step: Assuming the inductive hypothesis for a non-empty input T_h with height h, consider T_{h+1} with height h+1. The function starts with the root T_{h+1} .

- (a) T_h is not empty, so T_{h+1} is not empty the function won't return "no" at the beginning.
- (b) If $T_{h+1}.val = x$, the function returns "yes".
- (c) If $T_{h+1}.val > x$, the function calls search $(T_{h+1}.l,x)$ where height $(T_{h+1}.l) = h$. By the inductive hypothesis, it returns "yes" if $T_{h+1}.l$ contains x, and "no" otherwise.
- (d) If $T_{h+1}.val < x$, the function calls search $(T_{h+1}.r,x)$ where height $(T_{h+1}.r) = h$. Similarly, it returns "yes" if $T_{h+1}.r$ contains x, and "no" otherwise.

Wrap up: The inductive hypothesis matches exactly the statement we set out to prove.