Закон Ома для полной цепи

- 1. Запишите единицу измерения силы тока в СИ.
- 1) Ом; 2) Ампер; 3) Джоуль; 4) Вольт; 5) Кулон.
- 2. По какой формуле можно определить силу тока.

1)
$$I = U \cdot R$$
; 2) $I = \frac{R}{U}$; 3) $I = q \cdot \Delta t$; 4) $I = \frac{q}{\Delta t}$; 5) $I = \frac{\Delta t}{q}$.

3. На рисунке представлена схема электрической цепи. Изменятся ли сила тока в цепи и ЭДС источника тока, если удалить из цепи один из резисторов?

- **4.** В цепь включен источник постоянного тока с ЭДС $\epsilon=4$ В и внутренним сопротивлением r=2 Ом и резистор сопротивлением R=14 Ом. Определите силу тока I в цепи.
- **5.** К аккумулятору с внутренним сопротивлением r=0.6 Ом подключен резистор сопротивлением R=2 Ом. Определите ЭДС ϵ аккумулятора, если сила тока в цепи I=1.2 А.
- **6.** Определите внутреннее сопротивление r источника тока c ЭДС ϵ = 1,2 B, если при внешнем сопротивлении R = 5 Ом сила тока в цепи I = 0,2 A.
- 7. В цепь включен источник тока с ЭДС $\epsilon=2$ В и внутренним сопротивлением r=2,4 Ом и резистор сопротивлением R=10 Ом. Определите мощность тока во внешней цепи.
- **8.** К источнику тока с ЭДС ϵ = 24 В и внутренним сопротивлением r = 1 Ом подключен резистор сопротивлением R. Чему равно сопротивление R, если сила тока в цепи I = 2 A?
- **9.** К источнику тока с ЭДС ϵ = 14 В и внутренним сопротивлением r = 1 Ом подключены два резистора R_1 = 4 Ом и R_2 = 2 Ом. Определите напряжение U_1 на первом резисторе, если резисторы соединены последовательно.
- **10.** К источнику тока с ЭДС равным $\epsilon = 4$ В и внутренним сопротивлением r = 0,4 Ом подключены два резистора $R_1 = 2$ Ом и $R_2 = 8$ Ом. Определите напряжение на зажимах источника тока, если резисторы соединены параллельно.
- **11.** К источнику тока с ЭДС $\varepsilon = 6.0$ В и внутренним сопротивлением r = 1.5 Ом подключен резистор. Коэффициент полезного действия источника тока $\eta = 75$ %. Чему равна сила тока I в цепи?
- **12.** К источнику тока с ЭДС $\epsilon = 20$ В подключены два резистора $R_1 = 1$ Ом и $R_2 = 4$ Ом, соединенные параллельно. Определите внутреннее сопротивление источника тока r, если сила тока, проходящего по первому резистору, $I_1 = 4$ А.
- **13.** К источнику тока с ЭДС $\epsilon=4,5$ В и внутренним сопротивлением r=1,5 Ом подключены два резистора сопротивлениями $R_1=4$ Ом и $R_2=12$ Ом, соединенные параллельно. Найти мощность P_1 , выделяемую первым проводником.

- **14.** Резистор, сопротивление которого R = 4,0 Ом, подключен к источнику тока. Определите силу тока короткого замыкания источника тока, если напряжение на резисторе U = 1 B, а ЭДС источника тока $\varepsilon = 1,2$ B.
- **15.** К зажимам батареи с внутренним сопротивлением r=0.4 Ом подключен нагреватель, потребляющий мощность P=100 Вт. Определите ЭДС батареи, если нагреватель рассчитан на прохождение тока силой I=10 А.
- **16.** К источнику с ЭДС ϵ = 20 В и внутренним сопротивлением r = 0,25 Ом подключили резистор. Определите КПД η источника, если сила тока в цепи I = 8 A?
- **17.** КПД источника тока с ЭДС $\varepsilon = 100$ В, к которому подключили внешнее сопротивление R = 10 Ом, равен $\eta = 25$ %. Определите мощность $P_{\text{вн}}$, выделяющуюся на внешнем сопротивлении.
- **18.** При подключении спирали нагревательного элемента к источнику тока через нее проходит электрический ток, сила которого I=0,6 А. Определите коэффициент полезного действия η источника тока, ЭДС которого $\varepsilon=36$ В, если работа электрического тока на внешнем участке цепи, совершенная за промежуток времени t=5 мин, составляет $A_{\text{полезн}}=5,2$ кДж.
- **19.** При подключении спирали нагревательного элемента к источнику тока через нее проходит электрический ток, сила которого I=0,6 А. Определите коэффициент полезного действия η источника тока, если сопротивление спирали R=40 Ом, а работа сторонних сил источника, за промежуток времени t=6 мин, составляет $A_{\rm cr}=6,9$ кДж.
- **20.** При подключении спирали нагревательного элемента к источнику тока через нее проходит электрический ток, сила которого I=0,6 А. Определите мощность, развиваемую сторонними силами источника тока, если сопротивление спирали R=35 Ом, а коэффициент его полезного действия источника тока $\eta=90$ %.($P_{cr}=14$ BT)
- **21.** ЭДС батареи аккумуляторов $\epsilon = 12$ В, сила тока короткого замыкания $I_{\kappa} = 5$ А. Какую наибольшую полезную мощность P_{max} , которую может дать эта батарея? ϵ, r
- **22.** Источник постоянного тока с ЭДС ϵ и внутренним сопротивлением r=0,6 Ом подсоединён к параллельно соединенным резисторам $R_1=4$ Ом и $R_2=6$ Ом и конденсатору. Определите ЭДС ϵ источника, если энергия электрического поля конденсатора равна W=25 мкДж, а его ёмкость C=2 мкФ.
- **23.** Источник тока при коротком замыкании дает силу тока $I_K = 1,5$ А. Если источник замкнуть на внешнее сопротивление R = 4 Ом, то мощность тока во внешней цепи будет равна P = 1 Вт. Найти ЭДС и внутреннее сопротивление г источника тока.

24. Источник тока питает электрическую цепь с резисторами $R_1=7$ Ом, $R_2=4$ Ом, $R_3=3$ Ом. ЭДС источника тока $\epsilon=3,85$ В, его внутреннее сопротивление r=1 Ом. Емкость конденсатора C=2 мк Φ . Чему равен заряд q на обкладках конденсатора?

25. Электрическая цепь состоит из источника постоянного тока с ЭДС $\epsilon=120~B$ и внутренним сопротивлением r=2~Oм, конденсатора ёмкостью C=0,6~мк Φ и двух резисторов (см. рис.). Определите заряд конденсатора q, если сопротивления резисторов $R_1=R_2=5~O$ м.

26. Электроёмкость конденсатора (см. рис.) равна C = 5 мкФ. Внутреннее сопротивление источника r = 10 Ом, ЭДС $\varepsilon = 30$ В, сопротивления резисторов $R_1 = 20$ Ом, $R_2 = 40$ Ом. Найдите энергию W электрического поля конденсатора.

- **27.** Электрическая плитка включена в цепь генератора с ЭДС ϵ = 220 В и внутренним сопротивлением r=5 Ом. Амперметр, включенный последовательно с плиткой, показывает силу тока I=4 А. Определите КПД η плитки, если на ней за промежуток времени $\Delta \tau = 20$ мин можно вскипятить V=2 л воды (c=4200 Дж/(кг ·°C)), начальная температура воды $t_0=10$ °C. Плотность воды $\rho=1000$ кг/м³.
- **28.** Источник тока питает электрическую цепь с резисторами $R_1 = 14$ Ом, $R_2 = 12$ Ом, $R_3 = 10$ Ом, $R_4 = 16$ Ом. ЭДС источника тока $\epsilon = 50$ В, его внутреннее сопротивление $\epsilon = 0.9$ Ом. Емкость конденсатора $\epsilon = 0.9$ См. Чему равен заряд q на обкладках конденсатора?

29. В цепи изображенной на рисунке ЭДС источника $\varepsilon=12$ В его внутреннее сопротивление r=1 Ом, сопротивления резисторов $R_1=3$ Ом, $R_2=3$ Ом, электроемкость конденсатора C=2 мкФ. Вначале ключ К замкнут и в цепи протекает постоянный ток. Какое количество теплоты Q выделится в цепи после размыкания ключа?

Ответы

4. I = 0.25 A
5. E = 3.12 B
6. r = 1 Om
7. $P_{BH} = 0.26$ Bt
8. R = 11 Om
9. $U_1 = 8$ B
10. U = 3.2 B
11. I = 1.05 A
12. r = 3.2 Om
13. $P_1 = 2.25$ Bt
14. $I_{R.3} = 1.5$ A
15. $\epsilon = 14$ B
16. $\eta = 90$ %
17. $P_{BH} = 62.5$ Bt
18. $\eta = 80$ %.
19. $\eta = 75$ %
20. $P_{CT} = 14$ Bt
21. $P_{max} = 15$ Bt
22. $\epsilon = 6.25$ B
23. r = 2 Om; $\epsilon = 3$ B
24. q = 4.9 MKK π 25. q = 30 MKK π 26. W = 1.44 MДж
27. $\eta = 79$ %
28. q = 182 MKK π 29. Q = 9 MKДж