Physik Anwendung für Informatik / Felix Tran, Joshua Beny Hürzeler / 1

1 Grundlagen

1.1 Trigometrie

$\sin\left(\alpha\right) = \frac{G}{H}$
$\cos(\alpha) = \frac{A}{H}$
$\tan(\alpha) = \frac{G}{A} = \frac{\sin(\alpha)}{\cos(\alpha)}$

		0°	30°	45°	60°	90°
$\sin(a)$	γ)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\epsilon)$	γ)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(a)$	χ)	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

1.2 Vektorrechnung

Länge des Vektors: $|\vec{u}| = \sqrt{u_x^2 + u_y^2 + u_z^2}$

1.3 Ableitungen

Funktion	Ableitung
x^a	$a \cdot x^{a-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos(2)^x}$

1.3.1 Physikalische Grossen				
Geschwindigkeit	v	-	m/s	
Beschleunigung	a	ı	m/s^2	
Federkonstante	D	1	N/m	
Frequenz	f	Hertz	1/s	
Kraft	F	Newton	$\mathrm{kg}\cdot m/s^2$	
Energie	E	Joule	$N\cdot m$	
Arbeit = Δ Energie	W	Joule	$J = N \cdot m$	
Leistung = Arbeit pro Zeit	P	Watt	J/s	

^{* 4.19} Joule = 1 Cal, 1 Joule = 1 Watt/s => $3.6 \cdot 10^6 J = 1 \text{ kWh}$

1.3.2 Basisgrössen

Länge	l	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s

1.3.3 Abhängigkeit Weg Geschwindigkeit und Beschleunigung über die Zeit

Wegfunktion	s(t)
Geschwindigkeitsfunktion	$v(t) = \dot{s}(t)$
Beschleunigungsfunktion	$a(t) = \dot{v}(t) = \ddot{s}(t)$

1.3.4 Konstanten

Fallbeschleunigung	g	$9.80665m/s^2$
Lichtgeschwindigkeit	c	$2.99792458 \cdot 10^8 m/s$
Gravitationskon- stante	G	$\frac{6.673 \cdot 10^{-11} N \cdot }{m^2/{\rm kg}^2}$

Konservative Kraft: Die Kraft ist konservativ, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reell wertige Funktion einer Variable eine Stammfunktion besitzt. Das Hook'schen Gesetz beschreibt eine konservative Kraft, da sie Hook schen Gesetz describer eine Konstrukt van Gesetz describer und da -F(x) als reellwymax = ertige Funktion einer Variable eine Stammfunktion besitzt

Mittlere Geschwindigkeit: $\bar{v} = \frac{\Delta v}{\Delta c}$ Mittlere Beschleunigung: $\bar{a} = \frac{\Delta v}{\Delta t}$ Gleichförmige Bewegung: $s = s_0 + v \cdot ta \Rightarrow \frac{s}{r} = t$ Geradlinige Bewegung: $\Delta s = \bar{v}\Delta t$

Gleichmässig beschleunigte Bewegung:

$$\begin{split} s &= s_0 + v_0 \cdot t + \frac{1}{2}at^2 \\ v &= v_0 + at \\ v^2 &= v_0^2 + 2a(s-s_0) \Rightarrow \text{wenn } v_0 = 0 \Rightarrow s = \frac{v^2}{2a} \\ \bar{v} &= \frac{v_1 + v_2}{2} \\ t &= \frac{v}{a} = \frac{v_0 - v}{a} \end{split}$$

[2.1 Gleichförmige Kreisbewegung (ω = konst.)				
Umlaufzeit:	T	[T] = s		
Frequenz:	$f = \frac{1}{T}$	$[f] = s^{-1} = \operatorname{Hz}$		
Winkelkoordinate:	$\varphi = \frac{\overline{b}}{r}$	$[\varphi] = \operatorname{rad} = \frac{m}{m}$		
Winkel- geschwindigkeit:	$\omega = \Delta \frac{\varphi}{\Delta} t$	$[\omega] = \frac{\mathrm{rad}}{s}$		
gesenwindigken.	$=2\frac{\pi}{T}=2\pi f$			

Bahngeschwindigkeit: Zentripetalbeschleunigung: Tangentialgeschwindigkeit: Radialbeschleunigung/ Zentripetalbeschleunigung: Tangentialbeschleunigung:

Kreisbewegung Funktion:

2.2 Schiefer Wurf

$$\begin{aligned} \textbf{Bewegungsgleichung:} \ \vec{r}(t) &= \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{g}t^2 \\ \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} &= \begin{pmatrix} 0 \\ y_0 \end{pmatrix} + v_0 \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} \cdot t + \frac{1}{2} \begin{pmatrix} 0 \\ -g \end{pmatrix} t^2 \end{aligned}$$

3 Messen und Messfehler

Systematische Fehler: z.B. messen mit falsch kalibriertem Messgerät Berechnet sich der Wert einer Grösse z aus Messwerten der Grössen x und y.

$$z = f(x, y)$$

und wurden die Messgrössen x und y mit einem Fehler von Δx bzw. Δy bestimmt, so ist der Wert von z nur ungenau bestimmt. Für den prognostizierten Wert und den prognostizierten Messfehler gilt

$$\begin{split} z &= z_0 \pm \Delta z \\ z_0 &= f(x_0, y_0) \\ \Delta z &= \left| \frac{\partial}{\partial x} f(x_0, y_0) \right| \cdot \Delta x + \left| \frac{\partial}{\partial y} f(x_0, y_0) \right| \cdot \Delta y \end{split}$$

sofern die Grössen x und y, z.B. auf Grund von fehler- 4 Kraft haften Messinstrumenten, systematisch falsch bestimmt wur- Kraft den. Die Fehlerabschätzung durch systematische Fehler ist z eine «worst-case»-Abschätzung Statistische Fehler: bei mehrfach messen unterschiedliche Ergebnisse

⇒ mehrmals mässen und Mittelwert nehmen verkleinert den Fehler Fehlerfortpflanzung für normalverteilte Fehler. Berech- Hook`sches Gesetz net sich der Wert einer Grösse z aus Messwerten der Grössen x und y gemäss

$$z=f(x,y)$$

und wurden die Messgrössen x und y durch Mehrfachmessung (x n-fach gemessen, y m-fach gemessen) und ohne systematischen Fehler bestimmt, so darf von statistisch normalverteilten Fehlern ausgegangen werden. In diesem Fall errechnet sich die Standardunsicherheit der Messwerte von x und y gemäss

$$\begin{split} \Delta x &= \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n \left(x_i - \bar{x}\right)^2} = \frac{\sigma_x}{\sqrt{n}} \\ \Delta y &= \sqrt{\frac{1}{m(m-1)} \sum_{i=1}^m \left(y_i - \bar{y}\right)^2} = \frac{\sigma_y}{\sqrt{m}} \\ \sigma &= \text{Standardabweichung} \\ \bar{x} &= \frac{1}{n} \sum_{i=n}^n x_i = \text{Mittelwert} \end{split}$$

$$x = \bar{x} \pm \Delta x$$
$$y = \bar{y} \pm \Delta y$$

Ausserdem ist der prognostizierte Wert und der statistische Fehler von z durch folgende Formeln berechenbar

$$z = z \pm \Delta z$$

$$\bar{z} = f(\bar{x}, \bar{y})$$

$$\Delta z = \sqrt{\left(\frac{\partial}{\partial x} f(x_0, y_0) \cdot \Delta x\right)^2 + \left(\frac{\partial}{\partial y} f(x_0, y_0) \cdot \Delta y\right)^2}$$

Beispiel Systematischer Fehler: Ein Gewicht unbekannter Masse wird auf einer schiefen Ebene mit dem Neigungswinkel α platziert, auf der es reibungsfrei gleiten kann. Die Hangabtriebskraft und der Neigungswinkel α werden experimentell bestimmt. Die Werte sind $\alpha=(30^{\circ}\pm 2^{\circ}), F_{H}=$ × $(10\pm 0.3)N.$ Aus Tabelle $g=(9.81\pm 0.03)$

$$\begin{split} F_H &= mg \cdot \sin(\alpha) \Rightarrow m = \frac{F_H}{g \cdot \sin(\alpha)} \\ m &= \frac{10N}{9.81 m/s^2 \cdot \sin(30^\circ)} = 2.0387 \end{split}$$

Partielle Ableitungen:

Es gilt also

$$\begin{split} \frac{\partial}{\partial g} \bigg(\frac{F_H}{g \cdot \sin(\alpha)} \bigg)) &= -\frac{F_H}{g^2 \cdot \sin(\alpha)} \\ \frac{\partial}{\partial \alpha} \bigg(\frac{F_H}{g \cdot \sin(\alpha)} \bigg)) &= -\frac{F_H \cdot \cos(\alpha)}{g \cdot \sin^{2^\circ}(F_H)} \\ \Delta m &= \left| -\frac{F_H}{g^2 \cdot \sin(\alpha)} \cdot \Delta g \right| + \left| -\frac{F_H \cdot \cos(\alpha)}{g \cdot \sin^2(F_H)} \cdot \Delta \alpha \right| \\ &+ \left| \frac{1}{g \cdot \sin(\alpha)} \cdot \Delta F_H \right| = 0.191 \text{kg} \\ m &= (2.04 \pm 0.19) \text{kg} \end{split}$$

Achtung $\Delta \alpha$ muss in Bogenmass sein!

Gradmass in Bogenmass $x = \frac{\alpha}{180} \cdot \pi$

Bogenmass in Gradmass $\alpha = \frac{x}{2} \cdot 180$

Gewichtskraft Federkraft

Zentripetalkraft Schiefe Ebene

$\vec{F}_{\rm res} = m\vec{a}$ $\begin{aligned} F_G &= mg \\ F_F &= Dy \quad D = \text{Federkonst.} \end{aligned}$ $y = |l - l_0|$

 $\Delta F = D \cdot \Delta y$ $F_Z = \frac{mv^2}{r}$ $F_C = mg$

Normalkraft: $F_N = mq \cdot \cos(\alpha)$

Hangabtriebskraft: $F_H = mq \cdot \sin(\alpha)$

Haftreibungskraft: $F_{HR} = \mu \cdot F_N$

4.1 Kraft Statik

In der Statik beewegen sich die Objekte nicht. Dort gilt also:

X)
$$F_s \cdot \cos(18^\circ) - \mu \cdot F_N - F_G \cdot \sin(35^\circ) = 0$$

Ein Gewicht der Masse m=10kg wird entsprechend der obigen Skizze durch Seile an einer Wand befestigt. Welche Kräfte wirken im linken und rechten Seil?

1. Methode:

$$\frac{F_L}{\sqrt{3^2+4^2}} \binom{-3}{4} + \frac{F_R}{\sqrt{8^2+6^2}} \binom{8}{6} + mg \binom{0}{-1} = 0$$

2. Methode

$$F_L\begin{pmatrix} -\cos(\alpha) \\ \sin(\alpha) \end{pmatrix} + F_R\begin{pmatrix} \cos(\beta) \\ \sin(\beta) \end{pmatrix} + mg\begin{pmatrix} 0 \\ -1 \end{pmatrix} = 0$$

5 Energie E

Kinetische Energie

$$E_k = \frac{1}{2}mv^2$$

Potenzielle Energie

$$E_n = mgh$$

Spannenergie einer Feder

$$E_F = \frac{1}{2}Dy^2$$

Energieerhaltungssatz

$$E_{\text{tot}} = \sum_{i} E_{i} = \text{konst.}$$

 $E_{\rm tot}$: Gesamtenergie im abgeschlossenen System E_i : Teilenergie

Energieerhaltung potenzielle Energie => Feder: $mq(h+y) = \frac{1}{2}Dy^2$

6 Arbeit W

Beziehung zwischen Arbeit und Energie:

 $\Delta E = W_{\mathrm{AB}} \ \Delta E$: Energieänderung eines offenen Systems W_{AB} : Arbeit, einer äusseren Kraft an diesem Fluchtgeschwindigkeit

$$W = F_s s$$

$$W = F \cdot s \cdot \cos(\alpha) = \vec{F} \cdot \vec{s}$$

Arbeit auf der scheifen Ebene mit Reibung: $W = (\sin(\alpha) + \mu_B \cdot \cos(\alpha)) \cdot F_C \cdot s$

7 Leistung P

mittlere Leistung
$$\bar{P} = \frac{W_{\mathrm{AB}}}{\Delta t} = \frac{\Delta E}{\Delta t}$$

momentane Leistung

$$\frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

 $\eta = \frac{W_2}{W_1} = \frac{P_2}{P_1}$ Wirkungsgrad

 W_1P_1 :
aufgenommene
Leistung bzw. Ar
9 Fadenpendel W_2P_2 : nutzbare Leistung bzw. Ar-

Vortriebskraft

$$F = \frac{P}{v}$$

Reibungskoeffizient

$$\mu = \frac{P}{F_G v}$$

Steigleistung

$$\frac{h}{t} = \frac{P}{F_G + \frac{P}{c}\cot(\alpha)}$$

Welche Wassermenge pro Zeiteinheit fördert eine 4-kW-Pumpe in ein 45 m höher liegendes Reservoir?

$$\frac{dV}{dt} = \frac{P}{\rho qh}$$

Leistung auf der Schiefen Ebene in Abhängigkeit von s und h:

$$W = \left(h + \mu_R \sqrt{s^2 - h^2}\right) mg$$

Umkreisung in geringer Höhe: Gravitationskraft zwischen Satelliten und Erde F_G ist gerade das Gewicht mg des Satelliten, welches es er auch auf der Erde hätte

$$mg = \frac{mv^2}{r}$$

Daraus folgt die Formel für die

Geschwindigkeit	Umlaufzeit
$v = \sqrt{gr}$	$T = 2\pi \sqrt{\frac{r}{g}}$

Geostationär: Geostationär bedeutet, dass der Satellit gleiche Umlaufzeit T wie die Erde hat. (Umlaufzeit Erde = T = $24 \cdot 3600s = 86400s$)

Gravitation:

Physik Anwendung für Informatik / Felix Tran, Joshua Beny Hürzeler / 2

Gravitationskraft zweier Massenpunkte $F_G = G \frac{m_1 m_2}{r^2}$

Potenzielle Energie

$$\overrightarrow{F_G} = -G\frac{m_1m_2}{r^2} \cdot \frac{\overrightarrow{r}}{r}$$

$$E_p = -G\frac{m_1m_2}{r}$$

$$v = \sqrt{\frac{GM_E}{r_E}}$$

Kreisbahngeschwindigkeit

Energie Änderung bei Bahnänderung $\Delta E = \frac{GM_Em}{r} \frac{r'-r}{r'r}$

r' = Radius neue Bahn

potenzielle Energie eines Objekts im Gravitationsfeld eines anderen:

$$E_p = \frac{GM_Em}{r}$$

Die Energie-Erhaltung sagt uns, dass potenzielle Energie gleich kinetische Energie ist. Daraus folgt: $\frac{mv^2}{2} = mgh$

$$= mg(l - l \cdot \cos(\varphi))$$

= $mgl(1 - \cos(\varphi))$

Schwingungsdauer:

Feder
$$T=2\varphi\sqrt{\frac{n}{L}}$$

Mathematisches Pendel $T\approx 2\varphi\sqrt{\frac{l}{L}}$

10 Mehrdimensionale Analysis

Linearisierung:

$$f(x) \underset{x \approx x_0}{\underbrace{\approx}} f'(x_0)(x-x_0) + f(x_0)$$

Häufig mit Funktionen mehrerer Variablen zu tun, die weitere Funktionen beinhalten.

$$f(x,y) = x^{2} \cdot \sin(y)$$
$$x(t) = \sin(t)$$
$$y(t) = t^{3}$$

Partielle Ableitung:

Nach x und y getrennt ableiten.

$$\begin{aligned} \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial x} \big(x^2 \cdot \sin(y) \big) = 2x \cdot \sin(y) \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial y} \big(x^2 \cdot \sin(y) \big) = x^2 \cdot \cos(y) \end{aligned}$$

Totale Ableitung:

x(t) und y(t) in f(x,y) einsetzen und dann ableiten.

$$\begin{split} &\frac{df}{dt}(x(t),y(t)) = \frac{d}{dt} \Big(\sin(t)^2 \cdot \sin(t^3) \Big) \\ &= 2 \sin(t) \cdot \cos(t) \cdot \sin(t^3) + \sin(t)^2 \cdot \cos(t^3) \cdot 3t^2 \end{split}$$

Altenativ mit mehrdimensionale Kettenregel möglich. Bei dieser werden die partiellen Ableitungen mit der Ableitung der Funktion multipliziert und addiert.

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

11 Weiteres

11.1 Taschenrechner

- Menu \rightarrow 3 \rightarrow 1 für solve()
- Menu \rightarrow 3 \rightarrow 7 \rightarrow 1 für Gleichungsystem lösen
- $doc \rightarrow 7 \rightarrow 2$ für Umstellung von Grad auf Rad

11.2 Fundamentum Mathematik und Physik Inhalt

- Trigometrie: Seite 26
- Ableitungen: Seite 60
- Kinematik: Seite 81
- Kräfte: Seite 83 · Energie: Seite 85