

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYMB002 Mathematics Business Examination 2017-18

Examination Session

Time Allowed

Semester Two

2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 45 marks.

SECTION B Answer 4 questions ONLY. This section carries 80 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the examination.
- Show **ALL** workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

Section A Answer ALL questions. This section carries 45 marks.

Question A1

Line l_1 has equation 3x - 2y - 18 = 0 and line l_2 has equation 2x + 5y + 7 = 0.

Find the coordinates of the point where lines l_1 and l_2 meet.

[4]

Question A2

A box holds 16 plain chocolates and 9 milk chocolates. Two chocolates are removed, one after the other and with no replacement.

Find the probability that the two chocolates removed are **either** both plain **or** both milk.

[4]

Question A3

A quadratic equation is defined as $3x^2 - 5x + 3 = 0$.

Find the discriminant and hence state the number of real roots, giving a reason for your answer.

[3]

Question A4

The coefficient of the term in x^2 in the expansion of $(p + 8px)^5$, where $p \neq 0$, is 20.

Find the value of p.

[3]

Question A5

Figure 1 shows the acute-angled triangle ABC with AB = 3.7 cm, AC = x cm and angle A = 65° . The area of triangle ABC is 5 cm².

Find the value of x. Give your answer to **2** significant figures.

In this question, 1 mark will be given for the correct use of significant figures.

[3]

[4]

Question A6

Solve the equation $4^x - 17(4^{0.5x}) + 16 = 0$. [4]

Question A7

Evaluate

$$\int_{1}^{2} (\frac{1}{x} + 2)^2 dx.$$

All working must be shown. An answer, even the correct one, will receive no marks if this working is not seen.

Question A8

Events A and B are such that p(A) = 0.55 and p(B) = 0.8.

Events *A* and *B* are independent.

Find
$$p(A' \cap B)$$
. [3]

Question A9

The table below shows the numbers of watches sold in a shop over three weeks.

Week	Number of watches sold	3-point moving average
1	3p - 1	
2	2p + 1	p + 15
3	4p - 3	

Find the value of p. [3]

Question A10

A machine produces bolts which have a mean length of 120 mm and standard deviation 5 mm.

The lengths can be assumed to follow a Normal distribution.

Find the percentage of bolts whose lengths lie between 116 mm and 124 mm. [5]

Question A11

A student invests £1200 for 3 years. There are two schemes, X and Y, under which she can invest the money.

Under scheme X, simple interest is paid at a rate of 3.2% per year.

Under scheme Y, compound interest is paid at a rate of 3% per year.

Which scheme gives more interest, and by how much?

All working must be shown.

[5]

Question A12

Use the substitution $u = x^3 - 6$ to find

$$\int 36x^2(x^3 - 6)^5 \ dx.$$

All working must be shown.

[4]

Section B Answer <u>4</u> questions ONLY. This section carries 80 marks.

Question B1

a)	Find the equation of the line which passes through the points with coordinates $(-8, 3)$ and $(6, -4)$.	[2]
b)	Solve the inequality $(x-2)(x+3) > 24$. Show all working.	[5]
c)	When $5x^3 - kx + 3$ is divided by $(x + 2)$, the remainder is 10 less than the remainder when $2x^2 + 3kx - 3$ is divided by $(x - 3)$.	
	Use the Remainder Theorem to find the value of k .	[4]
d)	An arithmetic series has first term -60 . The 77^{th} term is equal to the sum of the first 20 terms.	
	Find the common difference.	[4]
e)	A geometric series is defined as 375, 150, 60,	
	i. Which is the first term to fall below 0.0001?	[4]
	ii. Find the sum to infinity.	[1]

Question B2 is on the next page.

a) i. Some fish were introduced into a pond and the number of fish, *N*, after *t* years from when the fish were first introduced is given by the formula

$$N = 50e^{kt}$$

where k is a constant.

How many fish were first introduced into the pond?

[1]

ii. After 7 years, there were 100 fish.

Show that k is approximately 0.1

[3]

iii. Find the value of $\frac{dN}{dt}$ when t = 12.

[3]

b) Solve the equation

$$2\log_2 x - \log_2(2x+6) = 1 \ (x > 0).$$

All working must be shown. An answer, even the correct one, will receive no marks if this working is not seen.

[4]

c)

Figure 2

Figure 2 shows the acute-angled triangle PQR with PQ = 12 m, PR = 16 m and angle P = 60° .

i. Find QR. Give your answer in the form $4\sqrt{n}$ where n is an integer. [3]

ii. Find angle R. [2]

d) Solve the equation $\tan 2\theta = 1.28$ for $0 \le \theta \le 180^\circ$. [4]

- a) A curve has equation $y = x^4 + 4x^3 + 7$.
 - i. Find the equation of the normal to the curve at the point (1, 12). [4]
 - ii. Show that there are stationary values at x = 0 and x = -3.
 - iii. Confirm that there is a point of inflexion at x = 0 and determine whether there is a maximum or a minimum at x = -3. [4]

b)

Figure 3 shows the curves $y = 5 - x^2$ and $y = \frac{4}{x^2}$.

The curves intersect at P(1, 4) and Q(2, 1).

- Find the area, which is shaded on the diagram, that is bounded by both of the curves.
- ii. Find the equation of the tangent to $y = \frac{4}{x^2}$ at point Q. [3]

The tangent at point Q is parallel to the normal at point R on the curve $y = 5 - x^2$.

iii. Find the coordinates of point *R*. [3]

[4]

a) The times taken for 92 e-mails to be delivered were recorded and the results are shown in the table below.

Time, t, seconds	Frequency
$0 < t \le 10$	26
$10 < t \le 20$	27
$20 < t \le 30$	20
$30 < t \le 40$	11
$40 < t \le 50$	5
$50 < t \le 60$	2
$60 < t \le 70$	1

(You may wish to copy and extend this table to help you answer some of the questions below.)

- i. Estimate the mean. [3]
- ii. Draw a cumulative frequency curve. [4]
- iii. Use your cumulative frequency curve to estimate the median. [1]
- iv. Use your cumulative frequency curve to estimate how many e-mails took between 35 and 45 seconds. [2]
- v. Does this distribution appear to be skewed? Give a reason. [2]
- b) Events K and M are such that $p(K) = \frac{2}{5}$, $p(M) = \frac{3}{4}$ and $p(K \cup M) = \frac{17}{20}$.
 - i. Find $p(K \cap M)$ and p(M|K). [4]
 - ii. Draw a Venn diagram to show this information. [3]
 - iii. Find $p(K \cup M')$. [1]

a) Five pairs of readings were recorded during some trials and the results are shown in the table below.

x	у	x^2	y^2	xy
1	-3			
5	-1			
7	0			
10	5			
12	4			

i. Copy and complete the table.	[3]
---------------------------------	-------

ii. Find
$$s_x$$
, s_y and s_{xy} . All working must be clearly shown. [4]

iv. Describe the correlation between
$$x$$
 and y . [1]

b) In a large forest 70% of the trees are affected by a disease.

A sample of 20 trees is taken.

Find the probability that:

c) A discrete random variable, *X*, has probability distribution as given in the table below.

x	-3	-1	0	1	4	7
p(X = x)	0.12	0.08	p	0.24	0.3	0.06

i. State the value of
$$p$$
. [1]

ii. Find
$$E(X)$$
. [2]

Question B6

a) The equation of a curve is given by $5x^2 + 8xy^3 - 6y^2 = 1$.

Find
$$\frac{dy}{dx}$$
 in terms of x and y .

b) A curve has equation

$$y = \frac{x^2 + 3}{x - 1}$$

Use the Quotient Rule to find $\frac{dy}{dx}$ and hence find the coordinates of the stationary values. [5]

c) Differentiate $ln(\sin x)$.

[2]

d) i. Express $\frac{x+5}{(x-1)(x+2)}$ in the form $\frac{A}{x-1} + \frac{B}{x+2}$ where A and B are

constants to be determined.

[3]

ii. Hence find

$$\int \frac{x+5}{(x-1)(x+2)} \ dx.$$

Give your answer as a single logarithm.

[3]

e) Use integration by parts to find

$$\int 6x \sin x \ dx.$$
 [3]

This is the end of the examination.

Blank Page

Blank Page