Domain Adaptation

材料三 b06507002 林柏勳 電機四 b05901001 陳世豪 會碩二 r07722005 徐佳揚

1. Introduction & Motivation

領域自適應(Domain Adaptation)是一項機器學習的問題,它應用了遷移學習的技術。其處理的問題如下:我們具有兩個不同但相關的資料領域:源域(source domain)、目標域(target domain)。其中,我們僅有源域上有標記的資料,但是在目標域上卻只有未標記的資料。在本次的課題中,源域為 32*32*3 的實景照片,而目標域為 28*28*1 的手繪圖片。我們希望能訓練出一個模型,在源域跟目標域的預測都達到高準確率。

2. Data Preprocessing/Feature Engineering

由於本次的源域與目標域相差甚大,因此我們希望藉由預處理將兩個領域的特徵變得相近。我們將源域的影像轉為黑白之後,採用 cv2 的 canny edge detection。Canny edge detection 會針對相鄰的元素計算灰階亮度的梯度,當梯度大於一定的閾值時,該點的輸出值就會為正,以得到偵測影像邊緣的效果。由於一般人手繪時均只描繪圖像外框,因此 edge detection 將可以有效拉近源域與目標域的距離。

3. Model Description (At least two different models)

3.1 DANN

在一般的卷積式類神經網路(convolutional neural network, CNN)之中,前半段的 卷積層可以視為抽取特徵,而後半段的全連接層才進行標記分類。若欲分類兩 個以上領域的圖案,且只有其中一者有標記時,feature extractor 將只能針對一 個領域區分出明確的數個特徵,另一個領域則容易無法分成數類。 我們希望抽取 feature 時,可以消除不同領域的基礎差異,而讓每一個類別都擁 有來自兩個不同領域的資料。為此,DANN 除了一般的 label predictor 以外,還 新增了 domain classifier,專門判斷這筆資料來自源域還是目標域。Domain predictor 工作的同時,將該層的梯度以一個負的權重加回 feature extractor,以 讓 feature extractor 逐漸消除兩個領域的差異影響。

我們以 DANN 的方法在這次的課題達成了八成左右的準確率。

我們使用的 feature extractor、label predictor 與 domain classifier 之模型如下。

feature extractor

layer	output
Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	[-1, 64, 32, 32]
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 64, 32, 32]
ReLU(inplace=True)	[-1, 64, 32, 32]
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)	[-1, 64, 16, 16]
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	[-1, 128, 16, 16]
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 128, 16, 16]
ReLU(inplace=True)	[-1, 128, 16, 16]
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)	[-1, 128, 8, 8]
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	[-1, 256, 8, 8]
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 256, 8, 8]
ReLU(inplace=True)	[-1, 256, 8, 8]
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)	[-1, 256, 4, 4]
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	[-1, 256, 4, 4]
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 256, 4, 4]
ReLU(inplace=True)	[-1, 256, 4, 4]
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)	[-1, 256, 2, 2]
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	[-1, 512, 2, 2]

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 512, 2, 2]
ReLU(inplace=True)	[-1, 512, 2, 2]
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)	[-1, 512, 1, 1]

label predictor

1	
layer	output
Linear(in_features=512, out_features=512, bias=True)	[-1, 512]
ReLU(inplace=True)	[-1, 512]
Linear(in_features=512, out_features=512, bias=True)	[-1, 512]
ReLU(inplace=True)	[-1, 512]
Linear(in_features=512, out_features=10, bias=True)	[-1, 10]

domain classifier

layer	output
Linear(in_features=512, out_features=512, bias=True)	[-1, 512]
LeakyReLU(negative_slope=0.2)	[-1, 512]
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 512]
Linear(in_features=512, out_features=512, bias=True)	[-1, 512]
LeakyReLU(negative_slope=0.2)	[-1, 512]
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 512]
Linear(in_features=512, out_features=512, bias=True)	[-1, 512]
LeakyReLU(negative_slope=0.2)	[-1, 512]
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 512]
Linear(in_features=512, out_features=512, bias=True)	[-1, 512]
LeakyReLU(negative_slope=0.2)	[-1, 512]
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	[-1, 512]
Linear(in_features=512, out_features=1, bias=True)	[-1, 1]
Sigmoid()	[-1, 1]

3.2 半監督式學習

為了進一步提升準確率,我們以 DANN 產生數個模型後擷取其預測結果,進行半監督式學習,具體的步驟如下:

- (1) 將各個模型所預測的分類完全相同的資料,視為分類信心較高的資料。
- (2) 以這些資料作為訓練集(training set),其他資料為測試集(testing set),設置一個 CNN 模型進行訓練。

(3) 將新訓練出來的模型加入(1)之中,重複步驟(1)

在半監督式學習的過程中,我們使用兩種模型。第一個為類似 Resnet18 的模型,第二個為類似 Resnet18 之中的第一個 block 和 linear 部分的模型。這一部分的輸出為兩種模型的 ensemble。藉此,我們進一步達到大約 83%的準確率。

類似 Resnet18 的模型:

Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 28, 28
Looky Pol Li(nogative slope-0.05)	
LeakyReLU(negative_slope=0.05)	-1, 32, 28, 28
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 28, 28
Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 28, 28
LeakyReLU(negative_slope=0.05)	-1, 32, 28, 28
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 28, 28
Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 28, 28
LeakyReLU(negative_slope=0.05)	-1, 32, 28, 28
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 28, 28
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 32, 14, 14
Dropout(p=0.1, inplace=False)	-1, 32, 14, 14
Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 32, 14, 14
LeakyReLU(negative_slope=0.05)	-1, 32, 14, 14
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 14, 14
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 32, 14, 14
LeakyReLU(negative_slope=0.05)	-1, 32, 14, 14
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 14, 14
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 32, 14, 14
LeakyReLU(negative_slope=0.05)	-1, 32, 14, 14
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 14, 14
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 128, 7, 7
Dropout(p=0.1, inplace=False)	-1, 128, 7, 7
Conv2d(128, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 128, 7, 7
LeakyReLU(negative_slope=0.05)	-1, 128, 7, 7
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 128, 7, 7
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 128, 7, 7
LeakyReLU(negative_slope=0.05)	-1, 128, 7, 7
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 128, 7, 7
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 128, 7, 7
LeakyReLU(negative_slope=0.05)	-1, 128, 7, 7

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 128, 7, 7
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 512, 3, 3
Linear(in_features=18432, out_features=512, bias=True)	-1, 512
ReLU()	-1, 512
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 512
Linear(in_features=512, out_features=10, bias=True)	-1, 10

類似 Resnet18 之中的第一個 block 和 linear 部分的模型:

Layer	Output
Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 28, 28
LeakyReLU(negative_slope=0.05)	-1, 32, 28, 28
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 28, 28
Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 28, 28
LeakyReLU(negative_slope=0.05)	-1, 32, 28, 28
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 28, 28
Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 28, 28
LeakyReLU(negative_slope=0.05)	-1, 32, 28, 28
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 28, 28
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 32, 14, 14
Dropout(p=0.1, inplace=False)	-1, 32, 14, 14
Linear(in_features=6272, out_features=512, bias=True)	-1, 512
ReLU()	-1, 512
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 512
Linear(in_features=512, out_features=10, bias=True)	-1, 10

4. Experiment and Discussion

在訓練的過程之中,我們嘗試了多種方法。canny edge detection 的閾值能影響圖片內的梯度要超過多少時才被取為有效的邊緣,而各模型的厚度與深度也都影響到其表現。接著,我們在此介紹試驗過程中曾嘗試調整的數種內容。

4.1 Preprocessing: canny edge detection

預處理時,除了將影像轉換為黑白的之外,canny edge detection 也可以將照片的邊緣取出,使訓練集資料更加接近手繪圖片的特徵。我們參考了 cv2 的 canny 文檔:cv2.Canny(image, threshold1, threshold2)。Canny 算子會計算一個點在圖片的 x 與 y 方向上的亮度梯度並取兩者的方均根,而當梯度的方均根值處於兩個閾值(threshold)之間時,輸出影像的該點才會有數值。Canny 的閾值將影響我們究竟將多銳利的亮度差異取為邊緣。

下表演示了三張在兩種不同的閾值之下所得到的輸出影像。

當園值較低時,圖片之中較次要的顏色變化也會被取為邊緣值,如同上圖中,連放置蜘蛛的框框和狗的毛色變化也會被取為邊界。反過來說,當闆值太低時,有些主要的線條也沒辦法被取為邊界。事實上,每一個類型的圖片,其色彩的對比都不大相同,尤其貓、狗、馬、蜘蛛等動物線條較複雜,其與背景的對比也未必很明顯,或許很難找到一個閾值既能滿足簡單、對比大的圖片,又能滿足細節多、對比小的圖片。

試驗過程之中,我們逐漸發現 canny 的閾值對 DANN 訓練過後的準確率影響極大。即便只改變 canny 閾值而不改變模型架構,準確率也會從四成到八成之間劇烈變化。我們花了許多時間調整、訓練並重複上傳測試,最後找到表現相對較佳的 canny 閾值。

4.2 DANN

訓練 DANN 時,我們調整的內容主要有兩方面,一是訓練次數(epoch),二是 feature extractor、label predictor 與 domain classifier 三者的模型架構。

訓練 DANN 的過程之中,其損失函數(Loss)隨訓練次數降低得相當慢。起初我們只訓練數百個 epoch,並嘗試調整各方面的模型架構,但準確率始終只有四成到五成。嘗試花費數個小時訓練上千個 epoch 之後,我們發現雖然 loss 降低緩慢,但準確率的確仍慢慢提高。我們最後發現大約要訓練 5000~10000 個 epoch, DANN 的準確率才趨於收斂。至此以後,我們每一次訓練 DANN 大約均需耗時六到八個小時。

下圖的訓練曲線,可以看出至少需要 3000 個以上的 epoch 才會使 domain classifier 的 loss 上升許多,也就是此時兩個領域的特徵差異才被消除到足夠的地步。

同時,我們亦嘗試調整 DANN 的各部分架構。Feature extractor 的架構為數層 Convolution layer 組成。由於圖片尺寸小, feature 尚未太複雜,因此我們嘗試了 數層至十幾層 convolution layer 的結構,最後發現大約使用五層左右就能達到不 錯的效果。Label predictor 與 domain classifier 均為 Full connection layer。Label predictor 亦由於圖片特徵簡單,試驗過後發現大約兩三層 512 維度即可達到不 錯的效果。Domain classifier 經過試驗則發現需要五層以上才會有較好的表現。 我們認為 Domain classifier 的架構需要比 Label predictor 大上許多,是因為 DANN 的 feature extractor 以及 domain classifier 會互相對抗。Domain classifier 進行分類的同時,其回傳到 feature extractor 的梯度將會被乘上負值的權重,使 feature extractor 逐步削減兩個領域的差異。我們期待對抗持續一定的訓練次數 (epoch)之後, feature extractor 最終順利消除兩個領域的差異,此時 domain classifier 才會幾乎完全失準。為了達成此目的, feature extractor 與 domain classifier 將需要具有相近的強度。倘若 domain classifier 能力太弱,將會很快就 無法分辨此時的圖片來自哪一個領域,而此時 feature extractor 仍然未順利將兩 個領域的差異消除殆盡;但若 domain classifier 太強, 兩者的對抗將非常難趨於 收斂。

4.3 半監督式學習

調整過 canny 閾值與 DANN 各架構之後,我們得到的準確率的上限大約在八成左右。為了進一步提升準確率,我們採用半監督式學習方法,將各個 DANN 物測結果之中完全相同的測試資料(約七萬張)定為假標記(pseudo label)作為下一次訓練的標記,並設立卷積式類神經網路(CNN)來針對目標域訓練,並將訓練出來的模型之交集再做為下次訓練的標記,如此反覆訓練。我們並結合了資料增強(data augmentation)將圖片隨機裁切、翻轉與正規化等。

我們採用了兩種不同的模型架構,一者類似 Resnet-18 的第一個 block 加上 full connection layer,另一者則為與 Resnet-18 類似的模型,並將此兩項模型數次得出來的結果作投票以得到最終結果。將 DANN 的結果依此方法訓練後,我們最終得到約 83%的準確率。

下圖分別表示了兩種模型的訓練曲線,其中 train 曲線表示經過目標集經過資料 增強與 dropout 的曲線,val 曲線則表示目標集的資料。

5. Conclusion

本次我們欲利用彩色圖片作為源域資料、手繪圖片為目標域資料,建構一個能順利將目標域分別為十類的類神經網路。首先,我們將源域圖片轉為黑白後使用 cv2 的 canny edge detection 以拉近兩個領域的特徵。接著我們以 DANN 的方式建構一組由 feature extractor、label predictor 以及 domain classifier 的類神經網路,在做分類的同時,將 domain classifier 的梯度反向以逐漸消弭兩個領域對於feature extractor 的差異。該方法能達到八成左右的準確率。生成數個模型後,我們將其輸出完全相同的資料定為目標域的假標記,以這些標記進行半監督式學習,並將新輸出的標記與前述模型一同並列,如此反覆進行訓練。藉由此法,我們達到了 83%左右的準確率。

藉由本文提及的 canny edge detection 以及 DANN 與半監督式學習方法,我們能有效處理領域自適應的問題,在由彩色圖片轉移到手繪圖片的分類任務上得到約83%的準確率。

6. References

- [1] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." *Domain Adaptation in Computer Vision Applications*. Springer, Cham, 2017. 189-209.
- [2] Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." arXiv preprint arXiv:1409.7495 (2014).