Introduction to Digital Logic EECS/CSE 31L

Final Assignment Design Report Designing a Processor

Prepared by: Derek Yang Student ID: 63118832

EECS Department
Henry Samueli School of Engineering
University of California, Irvine

December, 13, 2014

1 BLOCK Description

This 32-bit processor is designed to accept a 32-bit instructional code and performs a series of operations depending on the information of the instruction. The instruction code is divided into 6 parts. The first bit is the bit that determines whether an immediate value or another target register will be used to perform the specified operation. The next 6 bits determine the source register address being used as the first operand of the code. The next 6 bits determine the destination register address where the result will be stored in the register. The next 4 bits is the opcode for the entire system. There are 15 opcode choices from 0000 to 1011. The next 6 bits determine the second register being used in the operation. Depending on whether the first bit is 1 or 0, the second register can be combined with the next 9 bit immediate value to become a 15 bit immediate value that will be used with the source register. If the first bit is 0 then the remaining last 9 bits of the code will just be immediate values.

2 Input/Output Port Description

Port Name	Port Type	Port Size	Description
clk	IN	1	Clock signal for the circuit
inst	IN	32	The 32-bit instruction code, the Opcode
great	OUT	1	Signal if the first number is greater than the other
less	OUT	1	Signal if the first number is less than the other
equal	OUT	1	Signal if both the first and other number are equal
carry	OUT	1	The carry out bit
over_flow	OUT	1	Signal for overflow in calculations

3 Design Schematic

4 Waveforms

