# Gestione della Memoria

Sistemi Operativi

Antonino Staiano
Email: antonino.staiano@uniparthenope.it

# Allocazione contigua della memoria

- Ad ogni processo è allocata una singola area contigua in memoria
- Affronta il problema della frammentazione della memoria
  - Applica tecniche di compattazione e riuso della memoria
    - La compattazione richiede un registro di rilocazione
    - Se manca tale registro, anche lo swapping diviene un problema

| Kernel |
|--------|
| A      |
| В      |
| С      |
| D      |
|        |
| (a)    |





## Introduzione

- · Allocazione contigua della memoria
- · Allocazione non contigua della memoria
- Segmentazione
- Paginazione

# Allocazione non contigua della memoria

- Parti dello spazio di indirizzamento di un processo sono distribuite tra aree diverse di memoria
  - Riduce la frammentazione esterna



Figure 11.17 Noncontiguous memory allocation to process P.

• La CPU invia l'indirizzo logico di ogni dato o istruzione usato in P alla MMU

- La MMU usa le info sull'allocazione della tabella per calcolare l'indirizzo fisico
  - indirizzo di memoria effettivo del dato o dell'istruzione
- La procedura per determinare l'indirizzo di memoria effettivo è chiamata traduzione dell'indirizzo



A schematic of address translation in noncontiquous memory allocation.

# Indirizzi Logici e Fisici, Traduzione indirizzi(cont.)

- Un indirizzo logico è l'indirizzo di un'istruzione o dato usato in un processo P
  - L'insieme degli degli indirizzi logici in P costituiscono il suo spazio di indirizzamento loaico
- Un indirizzo fisico è l'indirizzo di memoria dove è memorizzata un'istruzione o un dato
  - L'insieme di indirizzi fisici nel sistema costituiscono il suo spazio di indirizzamento fisico



# Indirizzi Logici e Fisici, Traduzione indirizzi(cont.)

- Un indirizzo logico consiste di due parti: id componente di P che contiene l'indirizzo e id del byte in tale componente di P
  - Visto come una coppia (comp., byte.)
- L'indirizzo fisico è determinato dalla seguente equazione:

Effective memory address of  $(comp_i, byte_i)$ 

- = start address of memory area allocated to *comp*;
  - + byte number of  $byte_i$  within  $comp_i$
- Esempio: P fa riferimento all'area dati di xyz con l'indirizzo logico (P-2, 288)
  - La MMU calcola l'indirizzo fisico effettivo come 307.200 + 288 = 307.488



# Approcci all'allocazione non contigua della memoria

#### Due approcci

#### Paginazione

- I processi consistono di componenti di dimensioni fisse chiamate pagine
- · Elimina la frammentazione esterna
- La dimensione della pagina è definita dallo hardware

#### Segmentazione

- Il programmatore identifica le entità logiche in un programma (un insieme di funzioni, strutture dati, oggetti); ognuna è chiamata segmento
- Semplifica la condivisione di codice, dati e moduli di programma tra i processi
- I segmenti hanno dimensioni diverse guindi il kernel usa tecniche di riuso
  - possibile la frammentazione esterna

#### Approccio ibrido: segmentazione con paginazione

- Facilita la condivisione di codice, dati e moduli tra processi
- Evita la frammentazione esterna
- Possibile la frammentazione interna come nella paginazione

• Le aree di memoria allocate ad un programma devono essere

• Mentre esegue la traduzione per un indirizzo logico (comp<sub>i</sub>, byte<sub>i</sub>), controlla se comp<sub>i</sub> si

• E' generato un interrupt di violazione della protezione se il controllo fallisce • Il controllo dei limiti può essere semplificato con la paginazione

protette dalle interferenza con altri programmi • La MMU esegue questo compito con il controllo dei limiti

trova nel programma e se byte, si trova in comp,

• byte; non può superare la dimensione di una pagina

# Paginazione (cont.)

- La memoria è divisa in aree chiamate frame
  - Numerati a partire da 0
- Un frame ha la stessa dimensione di una pagina
- Il kernel mantiene una lista, chiamata lista dei frame liberi, per tenere traccia dei numeri di frame liberi
- Quando carica un processo, il kernel consulta la lista dei frame liberi e alloca un frame libero a ogni pagina del processo
- Per facilitare la traduzione degli indirizzi, il kernel costruisce una tabella delle pagine (PT) per ciascun processo
  - La PT ha un'entrata per ogni pagina del processo che indica il frame allocato alla pagina
  - Mentre esegue la traduzione per un indirizzo logico (p.,b.), la MMU usa il numero di pagina p<sub>i</sub> per
    - · indicizzare la PT del processo
    - ottenere il numero di frame allocato a pi
    - · calcolare l'indirizzo di memoria effettivo

# Allocazione contigua vs Allocazione non contigua

| Function                | Contiguous allocation                                                                                                                                                                                      | Noncontiguous allocation                                                                                                                                                          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory<br>allocation    | The kernel allocates a single memory area to a process.                                                                                                                                                    | The kernel allocates several memory areas to a process—each memory area holds one component of the process.                                                                       |
| Address<br>translation  | Address translation is not required.                                                                                                                                                                       | Address translation is performed by the MMU during program execution.                                                                                                             |
| Memory<br>fragmentation | External fragmentation<br>arises if first-fit, best-fit, or<br>next-fit allocation is used.<br>Internal fragmentation<br>arises if memory allocation<br>is performed in blocks of a<br>few standard sizes. | In paging, external fragmentation does not occur but internal fragmentation can occur. In segmentation, external fragmentation occurs, but internal fragmentation does not occur. |
| Swapping                | Unless the computer system provides a relocation register, a swapped-in process must be placed in its originally allocated area.                                                                           | Components of a swapped-in process can be placed anywhere in memory.                                                                                                              |

# Paginazione

- Nella vista logica, lo spazio degli indirizzi di un processo consiste di un'organizzazione lineare delle pagine
- Ogni pagina contiene s byte, con s potenza di 2
  - Il valore di s è specificato nell'architettura del sistema
- I processi usano indirizzi logici numerici
  - La MMU scompone l'indirizzo logico nella coppia (p<sub>i</sub>, b<sub>i</sub>), con p<sub>i</sub> >=0 e 0<= b<sub>i</sub> < s

### Esempio:

Dimensione pagine 1KB Processo P dimensione 5500 byte Processo R 2500 byte Sample ha indirizzo 5248 = 5 x 1024 + 128 MMU vede l'indirizzo come la coppia (5, 128)





Logical view of processes in paging.

Ogni frame dimensione di **1KB** Memoria **10KB** sample ha indirizzo logico **(5, 128)** 

Esempio: traduzione di indirizzo nella paginazione

- Indirizzi logici a 32 bit
- Dimensione pagina 4KB
  - 12 bit sono adeguati per indirizzare i byte in una pagina
    - 2<sup>12</sup> = 4KB
- Per una memoria di dimensioni di 256 MB,  $I_p$  = 28
- Se alla pagina 130 è allocato il frame 48,
  - $p_i = 130 e q_i = 48$
  - Se b<sub>i</sub> = 600, gli indirizzi logici e fisici sono:

|          | Logic      | cal ad | dress | ;      |     |
|----------|------------|--------|-------|--------|-----|
| <b>—</b> | 20         | -      | •     | 12     | -   |
| 0        | <br>010000 | 0010   | 0010  | 001011 | 000 |



- Notazione per la traduzione degli indirizzi
  - s dimensione di una pagina
  - I<sub>I</sub> lunghezza di un indirizzo logico (cioè, numero di bit)
  - $I_p$  lunghezza di un indirizzo fisico
  - $n_b$  numero di bit usato per rappresentare il numero del byte in un indirizzo logico
  - $n_{p}$  numero di bit usato per rappresentare il numero di pagina in un indirizzo logico
  - $n_{\!f}$  numero di bit usato per rappresentare il numero di frame in un indirizzo fisico
  - La dimensione di una pagina, s, è una potenza di 2
    - $n_b$  è scelto in modo che s =  $2^{nb}$







Indirizzo fisico effettivo

| ₩- | $n_f$ | <del>-≻ </del> 4 | $-n_b$ | → |
|----|-------|------------------|--------|---|
|    | $q_i$ |                  | $b_i$  |   |
| -  |       | $l_{p}$          |        | - |

# Segmentazione

- Un segmento è un'entità logica in un programma
  - Esempio, una funzione, una struttura dati o un oggetto



| Name     | Size  | Addres |
|----------|-------|--------|
| main     | 476   | 23500  |
| database | 20240 | 32012  |
| search   | 378   | 76248  |
| update   | 642   | 91376  |
| stack    | 500   | 54500  |

Figure 11.21 A process Q in segmentation.

- Ogni indirizzo logico usato in Q ha la forma (s<sub>i</sub>, b<sub>i</sub>)
  - s<sub>i</sub> e b<sub>i</sub> sono id di un segmento e un byte nel segmento
- Esempio:
  - Se in **update** c'è l'istruzione **get\_sample** al byte 232
  - (update,get\_sample) ha indirizzo di memoria effettivo: 91376 + 232 = 91608

• La traduzione di un indirizzo logico (**s**<sub>i</sub>,**b**<sub>i</sub>) è fatta in due passi:

- 1. Dall'entrata di **s**<sub>i</sub> nella *tabella dei segmenti* è determinato l'indirizzo della tabella delle pagine
- 2. Il numero del byte **b**<sub>i</sub> è diviso nella coppia (**ps**<sub>i</sub>, **bp**<sub>i</sub>) dove **ps**<sub>i</sub> è il numero di pagina nel segmento s<sub>i</sub> e bp<sub>i</sub> è il numero del byte nella pagina p<sub>i</sub>. Il calcolo dell'indirizzo effettivo è fatto come nella paginazione



Figure 11.22 A process Q in segmentation with paging.

# Segmentazione con paginazione

- Ogni segmento in un programma è paginato separatamente
- Ad ogni segmento è allocato un numero intero di pagine
- Semplifica l'allocazione della memoria e la velocizza
- Evita la frammentazione esterna



Figure 11.22 A process Q in segmentation with paging.

# Riepilogando

- Il compilatore assume un'area specifica disponibile ai programmi e genera i *moduli oggetto*
- Il *linker* esegue la *rilocazione* di un programma ed esegue il *linking* per collegare il programma con le funzioni di libreria
- I programmi auto-rilocanti eseguono una loro rilocazione
- La CPU ha un registro di rilocazione per semplificare la rilocazione
- L'allocazione della memoria può essere statica o dinamica
  - Combinate entrambe nei programmi con stack e heap

# Riepilogando (cont.)

- L'allocazione / de allocazione della memoria può portare alla frammentazione: interna ed esterna
  - Le strategie first-fit, next-fit e best-fit cercano di ridurre la frammentazione
  - Gli allocatori buddy system e potenze di 2 eliminano la frammentazione esterna
  - L'allocazione non contigua riduce la frammentazione esterna
    - Richiede l'uso di un'unità di gestione della memoria (MMU) da parte della CPU