CIE6020/MAT3350 Selected Topics in Information Theory

Lecture 13: Achievability of Channel Coding Theorem

14 March 2019

The Chinese University of Hong Kong, Shenzhen

Achievability

Outline of Achievability Proof

- 1. Generate a random code with rate close to I(X;Y).
- 2. Define a jointly typical decoding algorithm.
- 3. Evaluate the expected P_e of all the codes in the ensemble.
- 4. Last enhance the code so that $\lambda_{\max} < \epsilon$.

Random Code Generation

- Fix p(x) and $\epsilon > 0$.
- Let M be an even integer such that

$$I(X;Y) - \frac{\epsilon}{2} < \frac{\log M}{n} < I(X;Y) - \frac{\epsilon}{4},$$

where $(X,Y) \sim p \cdot W$.

• Generate a codebook $\mathcal C$ of M codewords independently according to the distribution $p(\mathbf x) = \prod_i p(x_i)$. Let

$$\mathcal{C} = \{\mathbf{X}_1, \dots, \mathbf{X}_M\}.$$

- $\mathbf{X}_i \sim p(\mathbf{x})$ are independent
- ullet Assume that both the sender and the receiver know the instance of ${\mathcal C}$ to use.

Jointly Typical Decoding

- ullet The first message \mathbf{X}_1 is transmitted, and the channel output is \mathbf{Y} .
- $(\mathbf{X}_1, \mathbf{Y}) \sim p(\mathbf{x}) W_n(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^n p(x_i) W(y_i|x_i).$
- Jointly typical decoding:
 - The sequence $\mathbf Y$ is decoded to the message k if $(\mathbf X_k,\mathbf Y)\in T^n_{[XY]\delta}$, where δ is a positive quantity to be specified later.
 - If no such message exists or if there is more than one such a message, an error is declared.

Average Error Probability I

- λ_1 is a function of the code C.
- $\bullet \ \ \mathsf{Let} \ E(\mathbf{x}) = \{(\mathbf{x},\mathbf{Y}) \in T^n_{[XY]\delta}\}.$
- We have

$$\mathbb{E}[\lambda_1] = \Pr\{E^c(\mathbf{X}_1) \cup E(\mathbf{X}_2) \cup \dots \cup E(\mathbf{X}_M)\}$$

$$\leq \Pr\{E^c(\mathbf{X}_1)\} + \sum_{k=2}^M \Pr\{E(\mathbf{X}_k)\}.$$

• Since $(\mathbf{X}_1, \mathbf{Y}) \sim \prod_{i=1}^n p(x_i) W(y_i|x_i)$, by the property of (strongly) typical sets, for sufficiently large n,

$$\Pr\{E^c(\mathbf{X}_1)\} = \Pr\{(\mathbf{X}_1, \mathbf{Y}) \notin T^n_{[XY]\delta}\} \le \delta.$$

Average Error Probability II

- For k > 1, \mathbf{X}_k and \mathbf{Y} are independent.
- We have that for k > 1,

$$\Pr\{E(\mathbf{X}_{k})\} = \Pr\left\{ (\mathbf{X}_{k}, \mathbf{Y}) \in T_{[XY]\delta}^{n} \right\}$$

$$= \sum_{(\mathbf{x}, \mathbf{y}) \in T_{[XY]\delta}^{n}} p(\mathbf{x}) p_{\mathbf{Y}}(\mathbf{y})$$

$$\leq 2^{-n(H(X) - \eta_{1})} 2^{-n(H(Y) - \eta_{2})} \left| T_{[XY]\delta}^{n} \right|$$

$$\leq 2^{-n(H(X) - \eta_{1})} 2^{-n(H(Y) - \eta_{2})} 2^{n(H(X, Y) + \eta_{3})}$$

$$= 2^{-n(I(X; Y) - \tau)},$$

where $\tau = \eta_1 + \eta_2 + \eta_3 \rightarrow 0$ as $\delta \rightarrow 0$.

Average Error Probability II

ullet For sufficiently large n

$$\mathbb{E}[\lambda_1] \le \delta + \sum_{k=2}^{M} 2^{-n(I(X;Y)-\tau)}$$
$$\le \delta + M2^{-n(I(X;Y)-\tau)}$$
$$< \delta + 2^{-n(\epsilon/4-\tau)}.$$

- Note that $\tau \to 0$ as $\delta \to 0$.
- Let δ be sufficiently small such that $\delta < \epsilon/3$ and $\tau < \epsilon/4$.
- For n sufficiently large,

$$\mathbb{E}[\lambda_1] < \epsilon/2.$$

7

Existence: Average Error Probability

 Since the error probabilities of all codewords follow the same calculation, we have

$$\mathbb{E}P_e(\mathcal{C}) = \mathbb{E}\frac{1}{M}\sum_i \lambda_i(\mathcal{C}) = \frac{1}{M}\sum_i \mathbb{E}\lambda_i(\mathcal{C}) < \epsilon/2.$$

ullet Therefore, there exits at least one codebook ${\mathbb C}$ such that

$$P_e(\mathbb{C}) < \epsilon/2.$$

Existence: Maximal Error Probability

- Let \mathbb{C}^* be the subset of \mathbb{C} with the best half codewords (in terms of λ_i).
- ullet The maximal error probability of the codewords in \mathbb{C}^* is less than ϵ .
- ullet The rate of \mathbb{C}^* is

$$\frac{1}{n}\log\frac{M}{2} > I(X;Y) - \frac{\epsilon}{2} - \frac{1}{n} > I(X;Y) - \epsilon$$

when n is sufficiently large.