COMSM1302 Overview of Computer Architecture

Lecture 4 – Simple devices

Foundations

• Data representation, logic.

Building blocks

• Transistors, transistor based logic, **simple devices**, storage.

Modules

 Hex modules, memory, simple controller and processor.

Programming

 Assembly, assembler, language, compilation phases, boot-strapping.

Bigger systems

• ARM & Thumb, I/O, protecting shared systems, memory hierarchy, multi-processors, networks.

Wrap-up

 More examples, historical computers, contemporary systems.

Today, we learn to add!

- And also...
 - Subtract
 - Select 1 signal from many
 - Distribute 1 signal to many
- The circuits shown hereafter will be drawn in Logisim.
 - You can download and try yourself.
 - And you will need to in the first lab!

Photo by Joseph A. Carr, 1975

The simplest of binary addition

- How to add two, singledigit binary numbers?
 - Each digit is either 0 or 1
 - There are three possible results
 - 0b00, 0b01, 0b10
 - 0, 1, 2
 - Two inputs
 - A, B
 - Two outputs
 - Sum (S), carry (C)

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

With some Boolean Algebra

- Remember our truth tables for Boolean Algebra...
- Which operations can be used to help us generate S and C?

Α	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Α	В	¬А	АЛВ	AVB	А ⊕ В	$A \rightarrow B$	A≡B
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

The half-adder

- $S = A \oplus B$
- $C = A \wedge B$
- Now let's build it with logic gates.

The half-adder in action

- We can add two bits together.
 - By generating a sum and a carry bit.
- How do we add multiple bits together?

Carry example on the board

The full-adder

C_in	Α	В	S	C_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- $S = A \oplus B \oplus C_{in}$
 - Explanation on board
- C_out =
 (A ∧ B) ∨ (C_in ∧ (A ∨ B))
 - Explanation on board
- Also valid for C_out
 - $(A \land B) \lor (C_{in} \land (A \oplus B))$
 - Why?

The full-adder

- 8 different combinations of input
- Try them yourself!

Now what?

- We can add two bits together.
 - By generating a sum and a carry bit.
- We can add three bits together
 - By accommodating a carry-in as well as our regular two inputs.
- How do we add multiple bits together?

Chaining full-adders

8-bit adder, ripple-carry adder

- Named ripple-carry because a carry signal generated at the LSB (Least Significant Bit... bit 0) of the device can affect the result on any/all more significant bits.
- Does this have any performance implications?

Building blocks

- To recap what we've done:
 - Used Boolean Algebra as building blocks.
 - To build a unit capable of adding two bits.
 - Half-adder
 - Extended it to handle carry-in.
 - Full-adder
 - Chained them together to make an adder of arbitrary size.
 - Ripple-carry adder
- Now we can add anything!
 - Modern processors typically have adders between 8 and 64 bits.
 - Why?

Subtraction

- Subtraction is easy if we think of it as adding one number to a negative number.
- So let's represent this subtraction:

$$1 - 2 = -1$$

• As:

$$1 + -2 = -1$$

- How to negate a number?
 - 2s complement!

Reminder: 2s complement

$$Y = -x_{N-1} \cdot 2^{N-1} + \sum_{i=0}^{N-2} x_i \cdot 2^{i}$$

-128	64	32	16	8	4	2	1	Base 10
0	0	0	0	1	0	1	0	10
1	0	0	0	1	0	1	0	-118

Negating in 2s complement

Flip the bits and add one.

Example on board

- A B = A + (Not(B) + 1)
- We already have all the tools we need for this!
 - NOT gates to flip bits
 - An unused C_in at the beginning of our adder's carry chain.

The adder-subtractor?

- We can build an adder or a subtractor.
- They are very similar.
- Can we build one unit that does both?

Almost...

Adder-subtractor

Choosing a signal

S	A	В	Q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Choosing a signal

- (A ∧ ¬S) ∨ (B ∧ S)
- Consider S = 0

$$-(A \wedge 1) \vee (B \wedge 0)$$

- -AVO
- A
- Consider S = 1
 - $-(A \wedge 0) \vee (B \wedge 1)$
 - -0VB
 - B

S	Α	В	Q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

The multiplexer

- S selects which input to propagate to the output.
- 2-to-1 multiplexer
 - 1 select bit
- N-to-1 multiplexers also possible
 - Log₂(N) select bits
 needed

Ripple-carry adder-subtractor

Demultiplexer

- 1-to-2 demultiplexer
 - Choose which of 2 wires to propagate the input signal onto.
 - Q0 = A \wedge \neg S
 - Q1 = B \wedge S
- Instead of choosing which signal to select, we choose where to send a signal.
- 1-to-N demux has more logic on the select inputs.
 - That logic on its own is useful.
 - Why?

Summary

- Used Boolean Algebra to build four simple devices:
 - Demux, Mux, Adder, Subtractor.
- Combined mux, NOT gate and adder to build adder-subtractor.
- We can do basic arithmetic with a bunch of NAND gates!

Imagine if we could **store** the results of that arithmetic, somehow...

Foundations

• Data representation, logic.

Building blocks

• Transistors, transistor based logic, simple devices, storage.

Modules

 Hex modules, memory, simple controller and processor.

Programming

 Assembly, assembler, language, compilation phases, boot-strapping.

Bigger systems

• ARM & Thumb, I/O, protecting shared systems, memory hierarchy, multi-processors, networks.

Wrap-up

 More examples, historical computers, contemporary systems.