HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model

Masum Shah Junayed, Arezoo Sadeghzadeh, Md Baharul Islam, Lai-Kuan Wong, Tarkan Aydin

20th June, 2022

Introduction

Depth Estimation:

3D scene understanding from a single 2D image

Autonomous Driving

Virtual/Augmented Reality

Robotics

3D Reconstruction

Object Detection

Single RGB Image

Depth Map

Background

Depth Sensors

- Accurate depth measurement
- Inefficient in sunlight, nearby absorbing materials, and reflective surfaces
- Laborious and time-consuming
- Only available to a few high-end products

Stereo Images

- Lighter, robust, and compact
- Emitting no signal
- Challenging camera setting and alignment
- Unavailability of stereo datasets

Monocular Images

- Available to many phones
- Availability of large-scale datasets
- Limited field of view

360° Depth

Omnidirectional monocular depth estimation

Providing full perception of the surroundings for a safe navigation

Motivation

HiMODE: CNN+Transformer

CNN-based Methods: successful estimation around the equator but significant distortions in the poles due to limited receptive field

Transformer-based Methods: inferior performance with small-scale datasets,
still cannot deal with the data loss of the ground-truth,
recovering the small objects details is challenging

Challenges

HiMODE architecture overview.

Decreasing computation cost

Experimental Setup and Datasets

1413 Images

Stanford3D Dataset

PanoSUNCG Dataset

25000 Images

Training Details

Matterport3D Dataset

- PyTorch
- Intel Core i9-10850K CPU with a 3.60GHz processor, 64GB RAM, and NVIDIA GeForce RTX 2070 GPU.
- Two T-blocks, 128 hidden nodes, one selfattention, one cross-attention, and one MHSA
- Adam optimizer with a batch size of 4 and 55 epochs
- Learning rates of 0.00001 and 0.0003 for the real-world and synthetic data.

10800 Images

Quantitative Results

				D 1 40 E	D) (07)	C 4.0.	S 4 0 × 2	C 4 0 = 2
Datasets	Approaches	Abs-Rel	Sq-Rel	RMSE	RMSElog	δ <1.25	$\delta < 1.25^2$	$\delta < 1.25^{3}$
	Omnidepth [39]	0.1009	0.0522	0.3835	0.1434	0.9114	0.9855	0.9958
3D	SvSyn [38]	0.1003	0.0492	0.3614	0.1478	0.9296	0.9822	0.9949
Stanford3D	Bifuse [30]	0.1214	0.1019	0.5396	0.1862	0.8568	0.9599	0.9880
nfc	HoHoNet [25]	0.0901	0.0593	0.4132	0.1511	0.9047	0.9762	0.9933
Sta	NLDPT [36]	0.0649	0.0240	0.2776	0.993	0.9665	0.9948	0.9983
	HiMODE	0.0532	0.0207	0.2619	0.0821	0.9711	0.9965	0.9989
	Omnidepth [39]	0.1136	0.0691	0.4438	0.1591	0.8795	0.9795	0.9950
Matterport3D	SvSyn [38]	0.1063	0.0599	0.4062	0.1569	0.8984	0.9773	0.9974
por	Bifuse [30]	0.139	0.1359	0.6277	0.2079	0.8381	0.9444	0.9815
ter	HoHoNet [25]	0.0671	0.0417	0.3416	0.1270	0.9415	0.9838	0.9942
J at	NLDPT [36]	0.0700	0.0287	0.3032	0.1051	0.9599	0.9938	0.9982
_	HiMODE	0.0658	0.0245	0.3067	0.0959	0.9608	0.9940	0.9985
-	Omnidepth [39]	0.1450	0.1052	0.5684	0.1884	0.8105	0.9761	0.9941
CG	SvSyn [38]	0.1867	0.1715	0.6965	0.2380	0.7222	0.9427	0.9840
) E	Bifuse [30]	0.2203	0.2693	0.8869	0.2864	0.6719	0.8846	0.9660
Soil	HoHoNet [25]	0.0827	0.0633	0.3863	0.1508	0.9266	0.9765	0.9908
PanoSunCG	NLDPT [36]	0.0715	0.0361	0.3421	0.1042	0.9625	0.9950	0.9989
	HiMODE	0.0682	0.0356	0.3378	0.1048	0.9688	0.9951	0.9992
			_					

Quantitative performance comparison of the proposed HiMODE with the state-of-the-art methods

Approaches	Threshold	Recall	Precision	F1-Score
	0.25	0.435	0.489	0.454
Laina et al. [16]	0.50	0.422	0.536	0.463
	1.00	0.479	0.670	0.548
	0.25	0.400	0.516	0.436
Xu et al. [16]	0.50	0.363	0.600	0.439
	1.00	0.407	0.794	0.525
	0.25	0.583	0.320	0.402
Fu et al. [33]	0.50	0.473	0.316	0.412
	1.00	0.512	0.483	0.485
	0.25	0.508	0.644	0.562
Hu et al. [10]	0.50	0.505	0.668	0.568
	1.00	0.540	0.759	0.623
	0.25	0.518	0.652	0.570
Yang et al. [34]	0.50	0.510	0.685	0.576
	1.00	0.544	0.774	0.631
	0.25	0.598	0.703	0.634
HiMODE	0.50	0.569	0.720	0.605
	1.00	0.641	0.815	0.656

Performance comparison on edge pixels recovery for MDE on NYU Depth V2 dataset (non-panoramic images)

Qualitative Results

Ablation Study

		Errors				Accuracy			
Datasets	Backbones	Abs-Rel	Sq-Rel	RMSE	RMSElog	δ	δ^2	δ^3	
	ResNet34 [12]	0.1128	0.0635	0.3665	0.1873	0.9149	0.9884	0.9880	
d3I	ResNet50 [12]	0.0509	0.0682	0.3177	0.1185	0.9349	0.9906	0.9923	
for	DenseNet [14]	0.1045	0.0624	0.3358	0.1621	0.9076	0.9839	0.9889	
Stanford3D	HardNet [5]	0.0789	0.0352	0.3041	0.1215	0.9234	0.9947	0.9992	
S	Proposed	0.0532	0.0207	0.2619	0.0821	0.9711	0.9965	0.9989	
Q	ResNet34 [12]	0.1078	0.1139	0.4587	0.1786	0.8946	0.9792	0.9800	
Matterport3D	ResNet50 [12]	0.1014	0.0856	0.4189	0.1251	0.9257	0.9755	0.9945	
rpc	DenseNet [14]	0.0935	0.0472	0.3548	0.1547	0.9138	0.9668	0.9829	
atte	HardNet [5]	0.07 <u>69</u>	0.0244	0.3628	0.1174	0.9415	0.9831	0.9902	
Ž	Proposed	0.0658	0.0245	0.3067	0.0959	0.9608	0.9940	0.9985	
Ö	ResNet34 [12]	0.1353	0.1471	0.4823	0.2379	0.9183	0.9947	0.9926	
l C	ResNet50 [12]	0.1094	0.1043	0.3847	0.2149	0.9524	0.9918	0.9989	
Su	DenseNet [14]	0.0949	0.0987	0.4283	0.1958	0.9245	0.9909	0.9895	
PanoSunCG	HardNet [5]	0.0726	0. <u>05</u> 57	0.3985	0.1305	0.9693	0.9897	0.9877	
P	Proposed	0.0682	0.0356	0.3378	0.1048	0.9688	0.9951	0.9992	

Datasets	SRB	Attention	Abs-Rel	Sq-Rel	RMSE	RMSElog	δ	δ^2	δ^3
	✓	SCA	0.0532	0.0207	0.2619	0.0821	0.9711	0.9965	0.9989
Stanford3D	×	SCA	0.0698	0.0395	0.2846	0.1028	0.9574	0.9898	0.9787
	✓	MHSA	0.0746	0.0590	0.3548	0.1529	0.9358	0.9748	0.9695
	✓	SCA	0.0658	0.0245	0.3067	0.0959	0.9608	0.9940	0.9985
Matterport3D	×	SCA	0.0514	0.0358	0.3108	0.1073	0.9480	0.9799	0.9891
	√	MHSA	0.0629	0.0854	0.4098	0.1889	0.9466	0.9709	0.9770
	✓	SCA	0.0682	0.0356	0.3378	0.1048	0.9688	0.9951	0.9992
PanoSunCG	×	SCA	0.0540	0.0541	0.3586	0.1038	0.9555	0.9869	0.9902
	✓	MHSA	0.0640	0.0849	0.3928	0.1044	0.9497	0.9672	0.9816

Computation Cost

	SDB	RB TEB SCA MHSA		TDB Computation Cost		Accuracy			
\perp	SKD			STP	#Parm	δ	δ^2	δ^3	
1	✓	✓	×	✓	79.67M	0.9711	0.9965	0.9989	
2	✓	×	√	√	84.59M	0.9358	0.9748	0.9695	
3	×	✓	×	✓	88.47M	0.9574	0.9898	0.9787	
4	✓	✓	×	×	<u>81.37M</u>	0.9623	0.9746	0.9877	
5	×	×	√	✓	93.59M	0.9398	0.9655	0.9629	
6	×	✓	×	×	95.36M	0.9238	0.9481	0.9642	

Results of the ablation study on different modules in terms of computation cost and accuracy (on Stanford3D dataset). Bold and underlined numbers indicate the first and s econd best results.

3D structure Reconstruction

Conclusion

CNN+Transformer

Novel Backbone

Novel Transformer

SOTA

To capitalize on the strengths of CNN-based feature extractors and the power of Transformers for monocular omnidirectional depth estimation

The high-level features near the edges were extracted by using a pyramid-based CNN as the backbone, with the HNet block inside.

Further improvement was achieved by applying self and cross attention along with the spatial-temporal patches and the spatial residual block.

It not only achieved the state-of-the art performance on three datasets, but also was capable to recover the lost data in the ground-truth depth map.

