

Electronics Systems (938II)

Lecture 3.2
Semiconductor Memories – ROM and PROM

ROM

- ROM = Read-Only Memory
 - However, this gives information only on the supported operation(s)
 - I.e., read-only (not write)
 - It does not give information on the access mode (random or sequential)
 - Typically, this kind of memories supports random access
 - I.e., any arbitrary address can be accessed immediately
 - So, it is also a RAM
 - Please, do not confuse with the computer memory typically called RAM, which is a RAM (from the perspective of access mode), but it is also a RWM (Read-Write Memory)

- Brief reminder of the structure of semiconductor memories
 - WL_i = Word Line
 - BL_i = Bit Line

- Brief reminder of the structure of semiconductor memories
 - WL_i = Word Line
 - BL_i = Bit Line

• In case of ROM, the memory cell can be

• 1 n-MOS transistor

Empty

- Memory cell n-MOS transistor
 - WL_i = Word Line
 - BL_i = Bit Line
 - n-MOS
 - D = Drain
 - G = Gate
 - S = Source

- Memory cell n-MOS transistor
 - WL_i = Word Line
 - BL_i = Bit Line
 - n-MOS
 - D = Drain
 - G = Gate
 - S = Source
 - To complete the architecture ...

- Memory cell n-MOS transistor
 - WL_i = Word Line
 - BL_i = Bit Line
 - n-MOS
 - D = Drain
 - G = Gate
 - S = Source
 - R = Resistor
 - Pull-up resistor: connect BL_i to V_{CC} = high logic level (1)

- Memory cell n-MOS transistor
 - Principle of operation

- Memory cell n-MOS transistor
 - Principle of operation

```
• WL_i = 0

- n-MOS = OFF (open circuit)

- BL_i = 1 (because of pull-up resistor)
```


- Memory cell n-MOS transistor
 - Principle of operation
 - WL_i = 0

 n-MOS = OFF (open circuit)
 BL_i = 1 (because of pull-up resistor)
 - $WL_i = 1$ n-MOS = ON (short circuit)

 BL_j = 0 (ground connection through the n-MOS)

- Memory cell Empty
 - Principle of operation

•
$$WL_i = 0$$

- BL_i = 1 (because of pull-up resistor)

•
$$WL_i = 1$$

- BL_i = 1 (because of pull-up resistor)

- Memory cell Summary
 - Principle of operation

Memory cell	Word Line (WL_i)	Bit Line $(\mathbf{B}L_j)$
With n-MOS	0 (disabled)	1
	1 (enabled)	0
Empty	0 (disabled)	1
	1 (enabled)	1

• Integrating the row and column decoders to complete the architecture

Integrating the row and column decoders to complete the architecture

• Example on a 2x4 ROM

- A = Address (3-bit)
- Q = single-bit output

- Integrating the row and column decoders to complete the architecture
 - Example on a 2x4 ROM
 - A = Address (3-bit)
 - Q = single-bit output
 - Assume cell (x,y)
 - $-WL_X$
 - $-BL_{y}$

- Integrating the row and column decoders to complete the architecture
 - Example on a 2x4 ROM
 - A = Address (3-bit)
 - Q = single-bit output
 - Assume cell (x,y)
 - $-WL_X$
 - $-BL_{y}$
 - Assume to read cell (1,1)

- Integrating the row and column decoders to complete the architecture
 - Example on a 2x4 ROM
 - A = Address (3-bit)
 - Q = single-bit output
 - Assume cell (x,y)
 - $-WL_X$
 - $-BL_{y}$
 - Assume to read cell (0,1)

- Integrating the row and column decoders to complete the architecture
 - Example on a 2x4 ROM
 - A = Address (3-bit)
 - Q = single-bit output
 - Assume cell (x,y)
 - $-WL_X$
 - $-BL_{y}$
 - Assume to read cell (1,3)

- Integrating the row and column decoders to complete the architecture
 - Example on a 2x4 ROM
 - A = Address (3-bit)
 - Q = single-bit output
 - Assume cell (x,y)
 - $-WL_X$
 - $-BL_{y}$
 - Assume to read cell (0,3)

 So, when reading (i.e. enabling corresponding word line and bit line) a memory cell

```
• With (n-MOS) transistor \rightarrow Output = 0
```

Empty (without transistor) → Output = 1

However, also solutions with active-low decoding logic (for column decoder) exist

- Active-low decoding logic (column decoder)
 - Example on a 2x4 ROM

- Active-low decoding logic (column decoder)
 - Example on a 2x4 ROM
 - Assume to read cell (0,3)

When reading a memory cell when column decoder is active-low

• With (n-MOS) transistor \rightarrow Output = 1

• Empty (without transistor) \rightarrow Output = 0

The opposite of the previous case

- Content of memory cells
 - The output (bit) corresponds to the content of memory cells, since that is what is obtained by reading that cell

Memory	nory Bit Line Output (bit) = Content) = Content
cell	$(\mathbf{B}L_j)$	Active-high decoding logic	Active-low decoding logic
With n-MOS	0	0	1
Empty	1	1	0

ROM – Remarks and applications

- The one shown is called also mask-ROM
 - Remember about the photolithographic masks employed in the semiconductor manufacturing process
 - Each memory content corresponds to a different layout (of transistors), or, in other words, to a different integrated circuit
 - Thus, to a different mask to realize that layout (or circuit)

ROM – Remarks and applications

- Photolithographic masks have high costs
 - Only for applications that require high volumes of ROM

- Memory content cannot be modified
 - The modification of just one bit (due to updates or bugs) means wasting the entire chip (and all other chips with the same content)
 - Only for solid applications for which you are largely sure about the content of the memory

PROM

 In the course of technological progress, mask-ROM has evolved into Programmable ROM (PROM)

- Still a ROM, Read-Only Memory
- But whose content is defined after the manufacture (of the integrated circuit)
 - Not during the manufacture like the mask-ROM
- This allowed for a reduction in production costs because ...
 - For mask-ROMs: different memory content → different integrated circuit → different production line (masks, ...)
 - For PROM: always the same integrated circuit → the same production line

PROM

- So, after production the PROM must be "written" to define its content
 - This operation is called Programming
 - From here the name
 - Just one time
 - OTP = One Time Programmable

PROM

- So, after production the PROM must be "written" to define its content
 - This operation is called Programming
 - From here the name
 - Just one time
 - OTP = One Time Programmable
- For this purpose, each memory cell contains a transistor + a fuse
 - The fuse is an electronic component that ...
 - ... by default, is a connection (a short circuit)
 - ... when subjected to a very strong current, it breaks down, breaking the connection (it becomes an open circuit)

Memory cell

- Memory cell
 - Transistor (n-MOS)

- Memory cell
 - Transistor (n-MOS)
 - Fuse

(default)

- Memory cell
 - Transistor (n-MOS)
 - Fuse

(default)

- Memory cell
 - Transistor (n-MOS)
 - Fuse

- Thus, programming means selecting which fuses to break (by injecting a high current)
 - Programmed fuse = broken fuse = open circuit
 - Unprogrammed fuse = default-state fuse = short circuit

- For this purpose, high voltage pulses $(V_{pp} = 10/30 \text{ V})$ must be applied to
 - Gate terminal of n-MOS = Word Line
 - Drain terminal of n-MOS = Bit Line
 - n-MOS is in "high conduction" region = very high current

- By selecting (only) the corresponding Word Line and Bit Line, each memory cell can be programmed (or not) without the risk of accidentally programming cells that should do not
 - A dedicated interface is required

- After programming, the PROM works exactly like the mask-ROM
 - Not programmed cell = cell with transistor $\rightarrow 0$ on BL $\rightarrow 0/1$ on output (Q)
 - Programmed cell \cong empty cell \rightarrow 1 on BL \rightarrow 1/0 on output (Q)

- Example
 - Before programming

- Example
 - After programming

- Example
 - Reading cell (0,2)

PROM – Remarks and applications

- Anti-fuses can be used instead of fuses
 - Opposite of fuse
 - Default (not programmed) = open circuit
 - Programmed (with high current flow) = short circuit
- Early PROMs had reliability problems
 - Incompletely vaporized fuses
 - Floating shrapnel inside the IC package
- Target applications
 - The same as mask-ROMs

Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)