

- (e) Step 5: Change the values of both the positive & negative dc-supply voltages to +15V and -15V, respective, and modify your circuit as shown in Figure 3.0. Negative feedback is now said to be applied around the Op-Amp, with feedback factor β = R₁/(R₁ + R₂), and the circuit is said to operate as a non-inverting amplifier. Plot the resulting voltage-transfer characteristics on Graph 4.0. Record feedback factor β in Table 1.0. Use your graph to record the Dynamic Range and Voltage Gain also in Table 1.0. (The Dynamic Range is the linear region of the voltage-transfer characteristics.)
- (1) Step 6: This concludes the first 3-hr lab session. Please demonstrate Step 1 to Step 5 to your TA and submit your answers to the prelab assignments and the results collected from Step 1 to Step 5 to your TA at the end of the lab session. (1 mark)

Table 1.0 (0.5 marks) Circuit Conditions	Feedback Factor	Valid Input Range (Dynamic Range) for v _i (t)	Voltage Gain [vo(t)/vi(t)]
Negative feedback [R ₁ =10kΩ & R ₂ =100kΩ]	0.091	-1.25 (D.R<1,25	器=11.4
Negative feedback [R ₁ = 10kΩ & R ₂ =47kΩ]		MARKET STATE	
Negative feedback [R1=inf & R2=0]			

- (g) Step 7: Replace R₂ with a 47kΩ resistor on the Figure 3.0 circuit. Use Graph 4.0 to plot the resulting XY-mode voltage transfer curve. Use your plot to fill-in Table 1.0.
- (h) Step 8: By replacing the resistor R₁ with an open-circuit and the resistor R₂ with a short-circuit, your circuit is now said to operate as a voltage follower. Use Graph 4.0 to plot the resulting voltage-transfer curve, and fill-in the blanks in Table 1.0.
- (i) Step 9: Modify your circuit as shown in Figure 4.0. The circuit is now said to operate as an inverting amplifier. Use Graph 5.0 to plot the resulting voltage-transfer characteristics and fill-in the blanks in Table 2.0.
- (j) Step 10: Replace R₂ with a 47kΩ resistor. Use Graph 5.0 to plot the resulting voltage transfer curve. Use your plot to fill-in the blanks in Table 2.0.
- (k) Step 11: Demonstrate Step 7 to Step 10 to your TA. (1 mark)