Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2021

Subject Code:3140707 D

Subject Name: Computer Organization & Architecture

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	State differences between hardwired control unit and microprogrammed control unit.	03
	(b)	Explain register stack and memory stack.	04
	(c)	Show the contents of registers E, AC, BR, QR and SC during the	07
		process of multiplying 11111 with 10101.	
Q.2	(a)	Write down RTL statements for the fetch and decode operation of basic computer.	03
	(b)	Define pipelining. For arithmetic operation (Ai *Bi + Ci) with a	04
	(0)	stream of seven numbers (i=1 to 7). Specify a pipeline configuration to carry out this task.	VŦ
	(c)	Write a program to evaluate the arithmetic statement: A*B+C*D+E	07
		i. Using an accumulator type computer.	
		ii. Using a stack organized computer.	
		OR	
	(c)	A non-pipeline system takes to process a task. The same task	07
		can be processed in a six segment pipeline with a clock cycle of	
		10ns. Determine the speedup ratio of the pipeline for 100 tasks.	
0.3	(a)	What is the maximum speed up that can be achieved? List down six major characteristics of RISC processors.	03
Q.3	(a) (b)	Explain how (r-1)'s complement is calculated. Calculate 9's	03
	(0)	complement of 546700.	0 4
	(c)	Elaborate CPU-IOP communication.	07
	()	OR	
Q.3	(a)	List and explain major instruction pipeline conflicts.	03
	(b)	Define RTL. Give block diagram and timing diagram of transfer	04
		of R1 to R2 when P=1.	
	(c)	Elaborate content addressable memory (CAM).	07
Q.4	(a)	Explain memory hierarchy in brief.	03
	(b)	Draw and explain flowchart for first pass of assembler.	04
	(c)	Explain using a flowchart how address of control memory is selected in microprogrammed control unit.	07
		OR	
Q.4	(a)	Briefly explain DMA.	03
ν	(b)	Write assembly level program to subtract two given numbers.	04
	(c)	Write the symbolic microprogram routine for the BSA	07
	\-/	instruction. Use the microinstruction format of basic	-
		microprogrammed control unit.	

Q.5	(a)	How many AND gates and Adders will be required to multiply a	03
		5 bit number with a 3 bit number? Also say size of adder (bits).	
		How many bits will be there in the result?	
`	(b)	What do you mean by cache memory? Justify the need of cache	04
		memory in computer systems.	
	(c)	Discuss multistage switching network with neat diagrams.	07
		OR	
Q.5 (a)	(a)	Explain the non-restoring methods for dividing two numbers.	03
	(b)	Discuss source-initiated transfer using handshaking in asynchronous data transfer.	04
(0	(c)	Elaborate cache coherence problem with its solutions.	07
