

Master 1 EMIMEO - Exam of "Basics of active and nonlinear electronics" (M. Campovecchio)

A- Narrow-band power amplifier (2 stages)

Specifications: Output Power $P_{OUT} > 2 W$; Center frequency $f_0 = 10 GHz$; Source resistor $R_G = 10 Ω$ and Load resistors $R_L = 50 Ω$

MMIC technology (0.25 μm GaAs HEMT): Selected transistor 8x75 μm (size T1 of 0.6mm) @ 10GHz

Power density $PD(R_{OPT}) = 1 \text{ W/mm}$; Measured maximum gain @ 10 GHz $G_{MAX(@10GHz)} = 20 \text{ dB} \approx 100$;

Maximum drain current IDSmax = 800 mA/mm; Limits of VDS voltage (VDSmin=1 V and VDSmax=11 V)

Optimum power resistance: $R_{OPT} = 12,5 \Omega.mm$

<u>Linear electrical model</u>: $C_{GS} = 2 \text{ pF/mm}$; $R_{I} = 2 \Omega.\text{mm}$; $R_{DS} = 75 \Omega.\text{mm}$; $C_{DS} = 1 \text{ pF/mm}$

In the problem (C_{GS1} ; C_{DS1} ; Ri_1 ; Ri_{IN1} ; R_{DS1} ; R_{OPT1}) stand for the values of transistor $T1 = 8x75 \mu m = 0.6 \ mm$

- In this problem, the last stage B has to be matched to its optimum power load R_{OPTB}
 while the first stage A has to be matched to its optimum gain load R_{DSA}
- 1) Using scaling rules, calculate the numerical values (C_{GS1} ; C_{DS1} ; Ri_1 ; R_{DS1} ; R_{OPT1} ; R_{IN1}) of T1 @10GHz. The following equation gives the equivalent parallel input resistor : $R_{IN} = \frac{1}{R_I C_{CS}^2 \omega^2}$
- 2) Power gain and power density:
 - G_P(R_{OPT}) is the power gain of a transistor T when it is loaded by its optimum power load (L_{OPT}//R_{OPT}).
 - G_{MAX} = $G_{P}(R_{DS})$ is the maximum power gain of T when it is loaded by its optimum gain load ($L_{OPT}//R_{DS}$).

It can be demonstrated that the power gain $G_P(R_{OPT})$ can be expressed as a function of G_{MAX} by:

$$G_P(R_{OPT}) = 4 \; R_{OPT} \frac{R_{DS}}{[R_{DS} + R_{OPT}]^2} \; G_{MAX} \quad \textit{(not to be demonstrated)}$$

- a) Using the preceding equation, determine the numerical value of $G_P(R_{OPT})$ @ 10GHz when the transistor T1 is matched to its optimum power load.
- b) In the case of maximum gain matching, express the power density $PD(R_{DS})$ as a function of $PD(R_{OPT})$. Calculate its numerical value in W/mm.
- 3) Amplifier sizing:
 - a) <u>Last stage B optimized for maximum power</u>: Using the specifications of output power, determine the number $\mathbf{n_B}$ of transistors T1 / its optimum load resistance $\mathbf{R_{L_B}}$ as a function of $\mathbf{R_{OPT1}}$ / its output power $\mathbf{P_{OUT=P_{OUT_B}}}$ / its gain $\mathbf{G_{P_B}}$ and the inter-stage power $\mathbf{P_{IN_B}=P_{OUT_A}}$).
 - b) <u>First stage A optimized for maximum gain</u>: Determine the number $\mathbf{n_A}$ of transistors T1 / its optimum load resistance $\mathbf{R_{L_A}}$ as a function of $\mathbf{R_{DS1}}$ / its gain $\mathbf{G_{P_A}}$ and the input power $\mathbf{P_{IN}} = \mathbf{P_{IN_A}}$).
- 4) On the amplifier schematic (Fig 1), indicate the numerical values of each stage when the amplifier operates at the maximum output power of the last stage.
- 5) Input and inter-stage matching using scaling rules
 - a) Using questions 1 and 3, calculate the equivalent series input resistances R_{i_A} and R_{i_B} of each stage.
 - b) Using questions 1 and 3, calculate the parallel resistances R_{IN_A} and R_{IN_B} of each stage at 10GHz.
- 6) On Fig. 2, draw the electrical matching circuits (inductors and transformers) of the two-stage amplifier when matched to $R_S=10\Omega$ and $R_L=50\Omega$ and write the expression of matching elements <u>without</u> <u>calculating numerical values</u>. For the sake of simplicity, you can use the notations:

$$L_1 = 1/(C_{GS1} \omega_0^2)$$
 and $L_2 = 1/(C_{DS1} \omega_0^2)$

7) If both stages operate in class-A, calculate the maximum PAE of the amplifier? Why is-it less than 50%?

Name:

Figure 1: Sizing values for the power amplifier

