Лабораторная работа №1

Методы одномерного поиска

Цель работы

Ознакомиться с методами одномерного поиска, используемыми в многомерных методах минимизации функций п переменных. Сравнить различные алгоритмы по эффективности на тестовых примерах.

Порядок выполнения работы

Разработать ПО, реализующее методы дихотомии и золотого сечения.

Результаты работы программы выводить в виде таблицы, где должны быть отражены границы и длины интервалов на каждой итерации (формат таблице см. ниже).

i	x ₁	х2	$f(x_1)$	$f(x_2)$	a_i	b_i	$b_i - a_i$	$\frac{b_{i-1} - a_{i-1}}{b_i - a_i}$
1								
2								
3								

Провести сравнение методов дихотомии и золотого сечения по числу вычислений функции для достижения заданной точности ε от 10^{-1} до 10^{-7} . Построить график зависимости количества вычислений функции от десятичного логарифма задаваемой точности ε .

Варианты заданий

1.
$$f(x) = (x-1)^2$$
, $x \in [-2,20]$

2.
$$f(x) = (x-2)^2$$
, $x \in [-2,20]$

3.
$$f(x) = (x-3)^2$$
, $x \in [-2,20]$

4.
$$f(x) = (x-4)^2, x \in [-2,20]$$

5.
$$f(x) = (x-5)^2$$
, $x \in [-2,20]$

6.
$$f(x) = (x-6)^2$$
, $x \in [-2,20]$

7.
$$f(x) = (x-7)^2$$
, $x \in [-2,20]$

8.
$$f(x) = (x-8)^2$$
, $x \in [-2,20]$

9.
$$f(x) = (x-9)^2$$
, $x \in [-2,20]$

10.
$$f(x) = (x-10)^2$$
, $x \in [-2,20]$

11.
$$f(x) = (x-11)^2$$
, $x \in [-2,20]$

12.
$$f(x) = (x-12)^2$$
, $x \in [-2,20]$