P1 Chapter 2: Quadratics

Solving Quadratics

Solving Quadratic Equations

$$x^2 + 5x = 6$$

There are three ways of solving a quadratic equation. One is by *completing the square*, which we'll do later. What are the other two ways?

By factorisation

 $x^{2} + 5x - 6 = 0$ (x + 6)(x - 1) = 0x = -6, x = 1 Put in form. $ax^2 + bx + c = 0$ with 0 on one side

Factorise. If the product of two things is 0, at least one must be 0.

Using the quadratic formula.

If
$$ax^2 + bx + c = 0$$
 then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x^{2} + 5x - 6 = 0$$

$$a = 1, b = 5, c = -6$$

$$x = \frac{-5 \pm \sqrt{25 + 24}}{2}$$

$$= \frac{-5 \pm 7}{2}$$

$$= 1 \text{ or } -6$$

1 :: Solving Quadratic Equations

Solving without factorising

If the subject only appears once however, it might be easier not to expand out/factorise:

$$(x-1)^2 = 5$$

 $x-1 = \pm \sqrt{5}$
If you can't see why the \pm is required, think about the solutions to: $x^2 = 4$.
 $x = 1 + \sqrt{5}$
So $x = \pm 2$.

Quadratics 'in disguise'

When we have an expression like say $x^2 + 3x - 2$, we say it is "quadratic in x". In trigonometry you will have to solve equations like $(\sin x)^2 + 3\sin x + 2$. We say that the expression is "quadratic in $\sin x$ ".

Either use a suitable substitution so that you have a 'normal' quadratic, or go straight for the factorisation if you're feeling more confident (recommended!).

Solve
$$x - 6\sqrt{x} + 8 = 0$$

Let $y = \sqrt{x}$, then:
 $y^2 - 6y + 8 = 0$
 $(y - 2)(y - 4) = 0$
 $y = 2, y = 4 \rightarrow \sqrt{x} = 2, \sqrt{x} = 4$
 $x = 4 \text{ or } x = 16$
 $(\sqrt{x} - 2)(\sqrt{x} - 4) = 0$
 $\sqrt{x} = 2 \text{ or } \sqrt{x} = 4$
 $x = 4 \text{ or } x = 16$

Test Your Understanding

Solve $(x + 3)^2 = x + 5$ using factorisation.

?

Solve $(2x + 1)^2 = 5$

Solve $\sqrt{x+3} = x-3$

7

Solve $2x + \sqrt{x} - 1 = 0$

?

Calculator method:

The 'equation' mode on your calculator will solve quadratics in the form $ax^2 + bx + c = 0$. When you're asked for the 'order', use 2 (we'll see why later).

Test Your Understanding

Solve $(x + 3)^2 = x + 5$ using factorisation.

$$x^{2} + 6x + 9 = x + 5$$

$$x^{2} + 5x + 4 = 0$$

$$(x + 4)(x + 1) = 0$$

$$x = -4 \text{ or } x = -1$$

Solve
$$\sqrt{x+3} = x-3$$

Squaring both sides:

$$x + 3 = (x - 3)^{2}$$

$$x + 3 = x^{2} - 6x + 9$$

$$x^{2} - 7x + 6 = 0$$

$$(x - 6)(x - 1) = 0$$

$$x = 1 \text{ or } x = 6$$

However, squaring both sides of an equation **can generate false solutions**. e.g. If x = -2, squaring gives $x^2 = 4$, which falsely creates the extra solution x = 2! We therefore need to check by substituting into the original equation, where we find only x = 6 works.

Solve $(2x + 1)^2 = 5$

$$2x + 1 = \pm\sqrt{5}$$
$$2x = -1 \pm\sqrt{5}$$
$$x = -\frac{1}{2} \pm \frac{1}{2}\sqrt{5}$$

4 Solve $2x + \sqrt{x} - 1 = 0$

$$(2\sqrt{x} - 1)(\sqrt{x} + 1) = 0$$

$$\sqrt{x} = \frac{1}{2} \text{ or } \sqrt{x} = -1$$

$$x = \frac{1}{4}$$

The latter gives no solution because the square root of a number can't give a negative number.

Calculator method:

The 'equation' mode on your calculator will solve quadratics in the form $ax^2 + bx + c = 0$. When you're asked for the 'order', use 2 (we'll see why later).

Exercise 2.1

Pearson Pure Mathematics Year 1/AS Page 7

1 (i) Use the substitution $\sqrt{x} = y$ (where $y \ge 0$) to find the real root of the equation

$$x + 3\sqrt{x} - \frac{1}{2} = 0$$
.

(ii) Find all real roots of the following equations:

(a)
$$x + 10\sqrt{x+2} - 22 = 0$$
;

(b)
$$x^2 - 4x + \sqrt{2x^2 - 8x - 3} - 9 = 0$$
.

? ii(a)

? ii(b)

? i

Exercise 2.1

Pearson Pure Mathematics Year 1/AS Page 7

1 (i) Use the substitution $\sqrt{x} = y$ (where $y \ge 0$) to find the real root of the equation

$$x + 3\sqrt{x} - \frac{1}{2} = 0$$
.

(ii) Find all real roots of the following equations:

(a)
$$x + 10\sqrt{x+2} - 22 = 0$$
;

(b)
$$x^2 - 4x + \sqrt{2x^2 - 8x - 3} - 9 = 0$$
.

(ii)(a) Use
$$y = \sqrt{x+2}$$
, thus $x = y^2 - 2$ $\rightarrow y^2 - 2 + 10y - 22 = 0$... $\rightarrow x = 2$ (ii)(b): $x = 2 \pm \sqrt{10}$

$$y^{2} + 3y - \frac{1}{2} = 0$$

$$2y^{2} + 6y - 1 = 0$$

$$y = \frac{-6 \pm \sqrt{36 + 8}}{4}$$

$$\sqrt{x} = -\frac{3}{2} \pm \frac{\sqrt{11}}{2}$$
Since $\sqrt{x} > 0$:
$$\sqrt{x} = -\frac{3}{2} + \frac{\sqrt{11}}{2}$$

$$x = 5 - \frac{3}{2}\sqrt{11}$$

Exercise 1.1

Pearson Pure Mathematics Year 1/AS Pages 1

Homework Exercise

1 Solve the following equations using factorisation:

$$\mathbf{a} \ x^2 + 3x + 2 = 0$$

b
$$x^2 + 5x + 4 = 0$$

a
$$x^2 + 3x + 2 = 0$$
 b $x^2 + 5x + 4 = 0$ **c** $x^2 + 7x + 10 = 0$ **d** $x^2 - x - 6 = 0$

d
$$x^2 - x - 6 = 0$$

$$e^{-}x^2 - 8x + 15 = 0$$

$$x^2 - 9x + 20 = 0$$

$$\mathbf{g} x^2 - 5x - 6 = 0$$

e
$$x^2 - 8x + 15 = 0$$
 f $x^2 - 9x + 20 = 0$ **g** $x^2 - 5x - 6 = 0$ **h** $x^2 - 4x - 12 = 0$

2 Solve the following equations using factorisation:

$$\mathbf{a} \quad x^2 = 4x$$

b
$$x^2 = 25x$$

c
$$3x^2 = 6x$$

a
$$x^2 = 4x$$
 b $x^2 = 25x$ **c** $3x^2 = 6x$ **d** $5x^2 = 30x$

$$e 2x^2 + 7x + 3 = 0$$

$$\mathbf{f} \ 6x^2 - 7x - 3 = 0$$

$$\mathbf{g} = 6x^2 - 5x - 6 = 0$$

e
$$2x^2 + 7x + 3 = 0$$
 f $6x^2 - 7x - 3 = 0$ **g** $6x^2 - 5x - 6 = 0$ **h** $4x^2 - 16x + 15 = 0$

3 Solve the following equations:

$$a 3x^2 + 5x = 2$$

a
$$3x^2 + 5x = 2$$
 b $(2x - 3)^2 = 9$ **c** $(x - 7)^2 = 36$ **d** $2x^2 = 8$ **e** $3x^2 = 5$

$$(x-7)^2 = 36$$

d
$$2x^2 = 8$$

$$e 3x^2 = 5$$

$$f(x-3)^2 = 13$$

$$\mathbf{g} (3x - 1)^2 = 11$$

f
$$(x-3)^2 = 13$$
 g $(3x-1)^2 = 11$ **h** $5x^2 - 10x^2 = -7 + x + x^2$

i
$$6x^2 - 7 = 11x$$

i
$$6x^2 - 7 = 11x$$
 i $4x^2 + 17x = 6x - 2x^2$

4 This shape has an area of 44 m². Find the value of x.

Problem-solving

Divide the shape into two sections:

- 5 Solve the equation $5x + 3 = \sqrt{3x + 7}$.
- 6 Solve the following equations using the quadratic formula. Give your answers exactly, leaving them in surd form where necessary.

$$\mathbf{a} \ x^2 + 3x + 1 = 0$$

b
$$x^2 - 3x - 2 = 0$$

a
$$x^2 + 3x + 1 = 0$$
 b $x^2 - 3x - 2 = 0$ **c** $x^2 + 6x + 6 = 0$ **d** $x^2 - 5x - 2 = 0$

d
$$x^2 - 5x - 2 = 0$$

e
$$3x^2 + 10x - 2 = 0$$
 f $4x^2 - 4x - 1 = 0$ **g** $4x^2 - 7x = 2$ **h** $11x^2 + 2x - 7 = 0$

$$\mathbf{f} \ 4x^2 - 4x - 1 = 0$$

$$\mathbf{g} = 4x^2 - 7x = 2$$

h
$$11x^2 + 2x - 7 = 0$$

Homework Exercise

7 Solve the following equations using the quadratic formula. Give your answers to three significant figures.

$$x^2 + 4x + 2 = 0$$

b
$$x^2 - 8x + 1 = 0$$

$$x^2 + 11x - 9 = 0$$

a
$$x^2 + 4x + 2 = 0$$
 b $x^2 - 8x + 1 = 0$ **c** $x^2 + 11x - 9 = 0$ **d** $x^2 - 7x - 17 = 0$

$$e 5x^2 + 9x - 1 = 0$$

$$\mathbf{f} \quad 2x^2 - 3x - 18 = 0$$

$$g 3x^2 + 8 = 16x$$

e
$$5x^2 + 9x - 1 = 0$$
 f $2x^2 - 3x - 18 = 0$ **g** $3x^2 + 8 = 16x$ **h** $2x^2 + 11x = 5x^2 - 18$

8 For each of the equations below, choose a suitable method and find all of the solutions. Where necessary, give your answers to three significant figures.

a
$$x^2 + 8x + 12 = 0$$
 b $x^2 + 9x - 11 = 0$

b
$$x^2 + 9x - 11 = 0$$

$$x^2 - 9x - 1 = 0$$

c
$$x^2 - 9x - 1 = 0$$
 d $2x^2 + 5x + 2 = 0$

e
$$(2x + 8)^2 = 100$$
 f $6x^2 + 6 = 12x$

$$\mathbf{f} = 6x^2 + 6 = 12x$$

$$\mathbf{g} \ 2x^2 - 11 = 7x$$

g
$$2x^2 - 11 = 7x$$
 h $x = \sqrt{8x - 15}$

Hint You can use any method you are confident with to solve these equations.

9 This trapezium has an area of 50 m². Show that the height of the trapezium is equal to $5(\sqrt{5} - 1)$ m.

Problem-solving

Height must be positive. You will have to discard the negative solution of your quadratic equation.

Challenge

Given that x is positive, solve the equation

$$\frac{1}{x} + \frac{1}{x+2} = \frac{28}{195}$$

Hint Write the equation in the form $ax^2 + bx + c = 0$ before using the quadratic formula or factorising.

Homework Answers

1 **a**
$$x = -1$$
 or $x = -2$
c $x = -5$ or $x = -2$

e
$$x = 3 \text{ or } x = 5$$

$$g x = 6 \text{ or } x = -1$$

2 **a**
$$x = 0$$
 or $x = 4$

c
$$x = 0$$
 or $x = 2$

e
$$x = -\frac{1}{2}$$
 or $x = -3$

$$\mathbf{g} \quad x = -\frac{2}{3} \text{ or } x = \frac{3}{2}$$

3 **a**
$$x = \frac{1}{3}$$
 or $x = -2$

c
$$x = 13 \text{ or } x = 1$$

$$e \quad x = \pm \sqrt{\frac{5}{3}}$$

$$\mathbf{g} \quad x = \frac{1 \pm \sqrt{11}}{3}$$

i
$$x = -\frac{1}{2}$$
 or $x = \frac{7}{3}$

4
$$x = 4$$

5
$$x = -1$$
 or $x = -\frac{2}{25}$

b
$$x = -1$$
 or $x = -4$

d
$$x = 3 \text{ or } x = -2$$

$$f x = 4 \text{ or } x = 5$$

h
$$x = 6$$
 or $x = -2$

b
$$x = 0$$
 or $x = 25$

d
$$x = 0 \text{ or } x = 6$$

f
$$x = -\frac{1}{3}$$
 or $x = \frac{3}{2}$

h
$$x = \frac{3}{2}$$
 or $x = \frac{5}{2}$

b
$$x = 3 \text{ or } x = 0$$

d
$$x = 2 \text{ or } x = -2$$

f
$$x = 3 \pm \sqrt{13}$$

h
$$x = 1$$
 or $x = -\frac{7}{6}$

j
$$x = 0$$
 or $x = -\frac{11}{6}$

6 **a**
$$x = \frac{1}{2}(-3 \pm \sqrt{5})$$

$$\mathbf{c} \quad x = -3 \pm \sqrt{3}$$

$$e \quad x = \frac{1}{3}(-5 \pm \sqrt{31})$$

$$g x = 2 \text{ or } x = -\frac{1}{4}$$

7 **a**
$$x = -0.586$$
 or $x = -3.41$ **b** $x = 7.87$ or $x = 0.127$

$$\mathbf{c}$$
 $x = 0.765$ or $x = -11.8$

b $x = \frac{1}{2}(3 \pm \sqrt{17})$

d $x = \frac{1}{2}(5 \pm \sqrt{33})$

 $f = x = \frac{1}{2}(1 \pm \sqrt{2})$

h $x = \frac{1}{11}(-1 \pm \sqrt{78})$

d x = 8.91 or x = -1.91

f x = 3.84 or x = -2.34

h x = 4.89 or x = -1.23

b x = 1.09 or x = -10.1

d $x = -\frac{1}{2}$ or x = -2

h x = 3 or x = 5

 $\mathbf{f} \quad x = 1$

e
$$x = 0.105$$
 or $x = -1.90$

$$\mathbf{g} \quad x = 4.77 \text{ or } x = 0.558$$

8 **a**
$$x = -6$$
 or $x = -2$

$$\mathbf{c}$$
 $x = 9.11 \text{ or } x = -0.110$

e
$$x = 1$$
 or $x = -9$
g $x = 4.68$ or $x = -1.18$

9 Area =
$$\frac{1}{2}(2x)(x + (x+10)) = 50 \text{ m}^2$$

So
$$x^2 + 5x - 25 = 0$$

Using the quadratic formula:

$$x = \frac{1}{2}(-5 \pm 5\sqrt{5})$$

Height =
$$2x = 5 (\sqrt{5} - 1) \text{ m}$$

Challenge

$$x = 13$$