SA405 - AMP Lesson #4

Practice Problem #4

Each hour, an average of 900 cars enter a network at node 1 and seek to travel to node 6. The time it takes a car to traverse each arc is shown in Table ??. Table ?? indicates the maximum number of cars that can pass by any point on the arc during a one-hour period. If no number is listed in the table, then you can assume that the road does not exist. Formulate this problem as a mathematical programming model that minimizes the total time required for all cars to travel from node 1 to node 6.

Node	1	2	3	4	5	6
1	_	800	600	_	_	_
2	_	_	_	600	100	_
3	_	_	_	300	400	_
4	_	_	_	_	600	400
5	_	_	_	_	_	600
6	_	_	_	_	_	_

Table 1: Road Capacities

Node	1	2	3	4	5	6
1	_	10	50	_	_	_
2	_	_	_	30	70	_
3	_	_	_	10	60	_
4	_	_	_	_	30	60
5	_	_	_	_	_	30
6	_	_	_	_	_	_

Table 2: Travel Times between Locations

1 Network Representation:

Draw a network representation below. Clearly label each arc as you see appropriate.

2 Concrete Model:

Formulate the problem above as a **concrete** mathematical programming model to minimize the total cost. Clearly define and describe all decision variables, constraints, and the objective.

3 Parameterized Model:

Formulate the problem above as a **parameterized** mathematical programming model to minimize the total cost. Clearly define and describe all sets, parameters, and decision variables.