1. Intro

Graphs are **discrete** structures consisting of **vertices (nodes)** and **edges** connecting them. Graph theory is an area of discrete mathematics which studies these types of discrete structures.

The **graph** G can be represented as an ordered pair G=(V,E), where V is a set of nodes/vertices and E is a set of edges, lines or connections. A **vertex** (singular of "vertices") is a basic element of a graph, usually drawn as a node or a dot. The set of vertices of G is usually denoted by V(G) or V.

An **edge** is a link between 2 vertices, usually drawn as a line connecting two vertices. The set of edges in a graph G is usually denoted by E(G) or E.

Two vertices are said to be **adjacent** if they are endpoints of the same edge. Two edges are said to be **adjacent** if they share the same vertex. If a vertex v is an endpoint of an edge e, then we say that e and v are **incident**.

A directed graph, also called a digraph, is a graph in which the edges have a direction. This is usually indicated with an arrow on the edge.

1.1. Examples

 v_1 and v_2 are endpoints of the edge e_1 . We say that v_1 and v_2 are **adjacent**. The edges e_1 and e_7 share the same vertex v_1 . We say that e_1 and e_7 are **adjacent**. The vertex v_2 is an endpoint of the edge e_1 . We say that e_1 and v_2 are **incident**.

 v_2 and v_5 are are linked with two edges (e_6 and e_8). e_6 and e_8 are called parallel edges.

 v_1 is linked to itself by e_9 . The edge e_9 is called a loop.

 e_1 is a connection from v_1 to v_2 but not from v_2 to v_1

 e_6 is a connection from v_2 to v_5 whereas e_8 is a connection from v_5 to v_2

2. Concepts

2.1. Walk

A **walk** is a sequence of vertices and edges of a graph were vertices and edges can be repeated. A **walk of length k** in a graph is a succession of k (not necessarily different) edges of the form uv, vw, wx, ..., yz.

 $v_1v_2, v_2v_3, v_3v_2, v_2v_5 = e_1, e_2, e_2, e_6, = v_1v_2v_3v_2v_5$

A walk of length 4 from v₁ to v₅ (passes twice through the edge e₂)

2.2. Trail

A trail is a walk in which no edge is repeated. In a trail, vertices can be repeated but no edge is ever repeated. For example, e1, e2, e3, e6 is a trail:

2.3. Circuit

A circuit is a closed trail. Circuits can have repeated vertices only. For example, e7, e6, e8, e3, e2, e1 is a circuit:

2.4. Path

A path is a trail in which neither vertices nor edges are repeated.

2.5. Cycle

A **cycle** is a closed path, consisting of edges and vertices where a vertex is reachable from itself.

A walk of length 3 from v_1 to v_1 = closed path = cycle

2.6. Eulerian Path

A Eulerian path in a graph is a path that uses each edge precisely once. If such a path exists, the graph is called traversable.

2.7. Hamiltonian Path, Cycle & Graph

A Hamiltonian path (also called a *traceable path*) is a path that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once (except for the starting vertex, which is visited once at the start and once again at the end).

A graph that contains a Hamiltonian cycle is called a **Hamiltonian graph**. Any Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edges.

2.8. Connectivity

An undirected graph is connected if you can get from any node to any other by following a sequence of edges. Or, any two nodes are connected by a path.

A directed graph is **strongly connected** if there is a **directed path** from any node to any other node.

Strongly connected directed graph

2.9. Transitive Close

Given a digraph G, the transitive closure of G is the digraph G^* such that G^* has the same vertices as G. If G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v.

The transitive closure provides reachability information about a digraph.

3. Degree of a Vertex

The degree of a vertex is the number of edges incident on v. A loop contributes **twice** to the degree. An **isolated vertex** has a degree of 0.

In the case of directed graphs, $\operatorname{In-deg}(v)$ is the number of edges for which v is the terminal vertex. Out- $\operatorname{deg}(v)$ is the number of edges for which v is the initial vertex.

And the degree deg(v) is:

$$deg(v) = Out-deg(v) + In-deg(v)$$

A loop contributes twice to the degree as it contributes 1 to both in-degree and out-degree.

 $deg(v_1) = in-deg(v_1) + out-deg(v_1) = 2 + 2 = 4$ $deg(v_2) = in-deg(v_2) + out-deg(v_2) = 1 + 1 = 2$ $deg(v_3) = in-deg(v_3) + out-deg(v_3) = 2 + 2 = 4$ $deg(v_4) = in-deg(v_4) + out-deg(v_4) = 1 + 2 = 3$ $deg(v_5) = in-deg(v_5) + out-deg(v_5) = 1 + 0 = 1$ $deg(v_6) = in-deg(v_6) + out-deg(v_6) = 0 + 0 = 0$

3.1. Degree Sequence

Given an undirected graph G, a **degree sequence** is a **monotonic non-increasing** sequence of the vertex degrees of all the vertices of G. The **sum of the degree sequence** of a graph is always **even**.

The degree sequence of G is: 4,3,3,2,1,1

Sum of the degree sequence = 1+1+2+3+3+4=14

Given a graph G, the sum of the degree sequence of G is twice the number of edges in G.

Number of edges of
$$G = \frac{\text{sum of degree sequences of } G}{2}$$

4. Special Graphs

4.1. Simple Graphs

A simple graph is a graph without loops and parallel edges.

Given a **simple** graph G with n vertices, then the degree of each vertex of G is at most equal to n-1.

4.2. Regular Graphs

A graph is said to be **regular** of degree if all local degrees are the same number. A graph G where all the vertices are of the same degree, r, is called an **r**-regular graph.

Given a $\operatorname{\mathbf{r-regular}}$ graph G with n vertices, then the following is true:

Degree sequence of
$$\ G=r,r,r,...,r$$
 $\ (n\ \ {\rm times})$ Sum of degree sequence of $\ G=r\times n$ Number of edges in $\ G=r\times \frac{n}{2}$

Degree Sequence = 3,3,3,3,3,3

Sum of degree sequence = 3x6=18

Number of edges = 18/2=9

4.3. Special Regular Graphs: Cycles

 C_3 is 2-regular graph with 3 vertices C_4 is 2-regular graph with 4 vertices C_5 is 2-regular graph with 5 vertices

deg seq. of C_3 = 2,2,2 deg seq. of C_4 = 2,2,2,2 deg seq. of C_5 = 2,2,2,2,2

4.4. Complete Graphs

A **complete graph** is a **simple** graph where **every pair of vertices** are **adjacent** (linked with an edge). We represent a complete graph with n vertices using the symbol K_n .

A complete graph with n vertices, k_n , has the following properties:

Every vertex has a degree (n-1)

Sum of degree sequence = n(n-1)

Number of edges $=\frac{n(n-1)}{n}$

There are 5 vertices Degree of each vertex = (5-1) = 4 Sum of deg. Seq. = 5(5-1) = 20 Number of edges = 5(5-1)/2=20/2=10