CC0291 - Estatística Não Paramétrica

Primeira Verificação de Aprendizagem - 28/03/2023.

Prof. Maurício

1. (Valor 2 pontos) Qual a distribuição nula de :

```
a. W_s quando m=2 e n=4?
b. T^+ quando n=3?
```

Solução:

Temos que N=2+4=6. Há $\binom{N}{m}=\binom{6}{2}=15$ maneiras distintas de se formar os arranjos. Vamos fazer inicialmente o item **a** no **R**:

```
> m=2; n=4; N=m+n; N;
[1] 6
> choose(N,m)
[1] 15
>
> ####Gerando Mann-Whitney
> u=0:(m*n);u
[1] 0 1 2 3 4 5 6 7 8
> pu=dwilcox(u,m,n)
>
> ####Gerando Wilcoxon.
> win=m*(m+1)/2;wmin
[1] 3
> w=u+wmin;w
[1] 3 4 5 6 7 8 9 10 11
> pw=pu
> tab=cbind(w,pw)
> tab
          рw
[1,]
     3 0.06666667
[2,]
     4 0.06666667
[3,]
     5 0.13333333
[4,]
     6 0.13333333
[5,]
     7 0.20000000
[6,]
     8 0.13333333
[7,]
     9 0.13333333
[8,] 10 0.06666667
```

```
[9,] 11 0.06666667
> require(MASS)
> fractions(tab)
     рw
[1,]
        3 1/15
[2,]
        4 1/15
[3,]
        5 2/15
[4,]
        6 2/15
[5,]
        7 1/5
[6,]
        8 2/15
[7,]
        9 2/15
[8,]
       10 1/15
[9,]
       11 1/15
```

Vamos fazer manualmente:

Veja a tabela a seguir:

ARRANJO	1	2	3	4	5	6	W_s
1	Т	Т					3
2	Т		Т				4
3	Т			Т			5
4	Т				Т		6
5	Т					Т	7
6		Т	Т				5
7		Τ		Т			6
8		Т			Т		7
9		Т				Т	8
10			Т	Т			7
11			Т		Т		8
12			Т			Т	9
13				Т	Т		9
14				Т		Τ	10
15					Т	Т	11

Cada arranjo tem probabilidade $p = \frac{1}{15}$. Assim se explica a função de probabilidade de W_s . Vamos fazer item \mathbf{b} : Seja $V = T^+$ a soma dos postos com sinal +..

 Há $2^n=2^3=8$ arranjos. Assim cada arranjo tem probabilidade $\frac{1}{8}=0,125.$ Veja a tabela a seguir com os sinais possíveis para os postos:

1	2	3	v	
_	_	_	0	
+	_	_	1	
_	+	_	2	
_	_	+	3	
+	+	_	3	
+	_	+	4	
_	+	+	5	
+	+	+	6	

Assim a função de probabilidade de $V=T^+$ é dada por:

\overline{v}	0	1	2	3	4	5	6
P(V=v)	0,125	0,125	$0,\!125$	$0,\!250$	0,125	0,125	0,125

Agora fazendo no \mathbf{R} ;

```
>
> n=3
> vmax=n*(n+1)/2
> vmax
[1] 6
> v=0:(vmax);v
[1] 0 1 2 3 4 5 6
> pv=dsignrank(v,n);pv
[1] 0.125 0.125 0.125 0.250 0.125 0.125 0.125
> sum(pv)
[1] 1
> tab=cbind(v,pv)
> fractions(tab)
   pv
[1,]
       0 1/8
[2,]
       1 1/8
[3,]
       2 1/8
[4,]
       3 1/4
[5,]
       4 1/8
[6,]
       5 1/8
       6 1/8
[7,]
> EV=n*(n+1)/4; EV; sum(v*pv)
[1] 3
[1] 3
> sum((v-EV)^2*pv)
[1] 3.5
> n*(n+1)*(2*n+1)/24
[1] 3.5
>
```