(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年2 月17 日 (17.02.2005)

PCT

(10) 国際公開番号 WO 2005/014179 A1

(51) 国際特許分類7:

B05C 5/00

(21) 国際出願番号:

PCT/JP2004/011233

(22) 国際出願日:

2004年8月5日(05.08.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

Љ

(30) 優先権データ:

2003年8月8日 (08.08.2003)

特願2003-206962 特願2003-206970 特願2003-206958

2003 年8 月8 日 (08.08.2003) JP 2003 年8 月8 日 (08.08.2003) JP

(71) 出願人(米国を除く全ての指定国について): シャープ 株式会社 (SHARP KABUSHIKI KAISHA) [JP/JP]; 〒 5458522 大阪府大阪市阿倍野区長池町 2 2 番 2 2 号 Osaka (JP). コニカミノルタホールディングス株式 会社 (KONICA MINOLTA HOLDINGS, INC.) [JP/JP]; 〒1000005 東京都千代田区丸の内一丁目 6 番 1 号 Tokyo (JP). 独立行政法人産業技術総合研究所 (NA-TIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY) [JP/JP]; 〒1008921東京都千代田区霞が関 1-3-1 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 西尾茂 (NISHIO, Shigeru). 岩下 広信 (IWASHITA, Hironobu). 山本 和 典 (YAMAMOTO, Kazunori). 村田 和広 (MURATA, Kazuhiro).
- (74) 代理人: 原 謙三, 外(HARA, Kenzo et al.); 〒5300041 大阪府大阪市北区天神橋2丁目北2番6号 大和南 森町ビル 原謙三国際特許事務所 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,

/続葉有/

(54) Title: ELECTROSTATIC SUCTION TYPE FLUID DISCHARGE DEVICE, ELECTROSTATIC SUCTION TYPE FLUID DISCHARGE METHOD, AND PLOT PATTERN FORMATION METHOD USING THE SAME

(54) 発明の名称: 静電吸引型流体吐出装置、静電吸引型流体吐出方法、およびそれを用いた描画パターン形成方法

17 CONTROL UNIT

(57) Abstract: An electrostatic suction type fluid discharge device applies a drive voltage from a power source to a space between a nozzle and an insulation substrate so as to supply electric charge to a discharge material supplied into the nozzle and discharges the discharge material from a nozzle hole to the insulation substrate. The nozzle hole has a diameter of $\phi 0.01~\mu$ m to $\phi 25~\mu$ m. The power source is a bipolar pulse voltage inverting to both positive and negative polarities as drive voltage and outputs voltage having frequency of 1 Hz or above.

LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。