EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Feb 9 2021

Randomized Linear Algebra Lecture 9: High-dimensional Problems, Least-norm Solutions and Randomized Methods

Faster Least Squares Optimization: Random Projection

Left-sketching

Form SA and Sb where $S \in \mathbb{R}^{m \times n}$ is a random projection matrix

► Solve the smaller problem

$$\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

using any classical method.

Direct method complexity md²

Gaussian Sketch

▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

Unbiased $\mathbb{E}\left[\tilde{x}\right] = x_{LS}$ since $\tilde{x} = x_{LS} + \underbrace{(A^T S^T S A)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$

Gaussian Sketch

$$f(x) = \|Ax - b\|_{\nu}^{2}$$

$$f(x) =$$

▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- Unbiased $\mathbb{E}\left[\tilde{x}\right] = x_{LS}$ since $\tilde{x} = x_{LS} + \underbrace{\left(A^T S^T S A\right)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$
- Variance

$$\mathbb{E} \|A(\tilde{x} - x_{LS})\|_2^2 = f(x_{LS}) \frac{d}{m - d - 1}$$
 valid for $m > d + 1$ where $f(x) = \|Ax - b\|_2^2$

Gaussian Sketch

▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- Unbiased $\mathbb{E}\left[\tilde{x}\right] = x_{LS}$ since $\tilde{x} = x_{LS} + \underbrace{(A^T S^T S A)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$
- Variance

$$\mathbb{E} \|A(\tilde{x} - x_{LS})\|_2^2 = f(x_{LS}) \frac{d}{m - d - 1}$$
 valid for $m > d + 1$ where $f(x) = \|Ax - b\|_2^2$

- Function value $f(\tilde{x}) = ||A\tilde{x} b||_2^2 = ||A(\tilde{x} x_{LS})||_2^2 + ||Ax_{LS} b||_2^2$

Variance Reduction by Averaging

Let
$$S_1,...,S_r$$
 be $\tilde{\vec{x}}_i imes i.i.d.$ Gaussian. $\mathbb{E}[S_i^T S_i] = I$ $\tilde{x}_i = \arg\min_{x \in \mathbb{R}^d} \|S_i Ax - S_i b\|_2^2$

Variance Reduction by Averaging

let $\tilde{x} = \frac{1}{r} \sum_{i=1}^{r} x_i$

▶ Unbiased $\mathbb{E}\left[\tilde{x}\right] = x_{LS}$

 \triangleright Variance is reduced by $\frac{1}{r}$

 $\mathbb{E} \|A(\tilde{x} - x_{LS})\|_{2}^{2} = f(x_{LS}) \frac{1}{r} \frac{d}{m-d-1}$

 $\mathbb{E} f(\tilde{x}) - f(x_{LS}) = f(x_{LS}) \frac{1}{r} \frac{d}{m-d-1}$

 $f(x_i) \leq f(x_i) \leq f(x_i) \cdot \left(1 + \frac{d}{d}\right)$

eraging
$$f(x) = ||Ax - b||^2 = ||A(x - xu) - b||^2$$

 $\tilde{x}_i = \arg\min_{x \in \mathbb{R}^d} \|S_i Ax - S_i b\|_2^2$

= || A(x-xe) || 2+ || 16 || 122

$$0 = 4 \times L_{S} + 10$$

▶ Let $S_1, ..., S_r$ be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$

High-dimensional Least Squares Problems

High-dimensional Least Squares Problems

where
$$\frac{1}{2} \|x\|_{2}^{2} + \frac{1}{2} \left(\frac{1}{4}x - \frac{1}{4}\right) = \frac{1}{2} \|\frac{1}{4}x\|_{2}^{2} - \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} - \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} - \frac{1}{4} \frac{1}{$$

- $ightharpoonup A \in \mathbb{R}^{n \times d}$ where d > n
 - no unique solution

Minimum norm solution and SVD

$$x_{\min-norm} = \arg\min_{Ax=b} \|x\|_2^2$$

Random projection to reduce dimension: Right Sketch

$$x_{\min-norm} = \arg\min_{Ax=b} ||x||_2^2$$

 $lackbox{We can right multiply A and form AS where <math>S \in \mathbb{R}^{d \times m}$ and solve}$

Random projection to reduce dimension: Right Sketch

$$x_{\min-norm} = \arg\min_{Ax=b} ||x||_2^2$$

 $lackbox{We can right multiply A and form AS where <math>S \in \mathbb{R}^{d imes m}$ and solve$

$$\arg\min_{ASz=b} \|z\|_2^2$$

► How do we use $z \in \mathbb{R}^m$?

$$x_{\text{min-norm}} = \arg\min_{Ax=b} \frac{\|x\|_2^2}{f(x)}$$
 approximation $\tilde{x} = S\tilde{z}$ where $\tilde{z} := \arg\min_{ASz=b} \|z\|_2^2$

Feasible estimate for
$$x$$
: $A\widetilde{x} = AS\widetilde{z}$
= b

$$x_{\text{min-norm}} = \arg\min_{Ax=b} \frac{\|x\|_2^2}{f(x)}$$

$$\begin{bmatrix} X_{i} \\ \hat{X}_{i} \end{bmatrix} = S_{z} = \begin{bmatrix} s_{i} \\ s_{i} \end{bmatrix}_{z}$$

approximation
$$\tilde{x} = S\tilde{z}$$
 where $\tilde{z} := \arg\min_{ASz=b} \|z\|_2^2$

- ▶ Let S be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$
- ► Is \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = {}^{?}x_{\text{min-norm}}$

$$\underbrace{x_{\min\text{-norm}}} = \arg\min_{Ax=b} \underbrace{\|x\|_2^2}_{f(x)}$$

approximation
$$\tilde{x} = S\tilde{z}$$
 where $\tilde{z} := \arg\min_{ASz=b} \|z\|_2^2$

- Let S be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$
- ▶ Is \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = ^{?} x_{\text{min-norm}}$
- Yes, conditioned on SA

$$\tilde{x} \sim N(x_{\text{min-norm}}, V_{\bullet}V_{\bullet}^T b^T (AS^T SA^T)^{-1}b)$$

- $V_1V_1^T$ is the projection onto the null space of A
- ▶ error $\tilde{x} x_{\text{min-norm}} \in \text{Null}(A)$

$$A\tilde{\chi} = b$$

$$A(x-\widehat{x})=C$$

$$A(x-\overline{x})=0$$

 $x-\overline{x} \in Nall(A)$

$$x_{\text{min-norm}} = \arg\min_{Ax=b} \frac{\|x\|_2^2}{f(x)}$$

LIND_ reed

at least

m≥n

approximation
$$\tilde{x} = S\tilde{z}$$

where
$$\tilde{z} := \arg\min_{ASz=b} \|z\|_2^2$$

$$(As)^{\dagger} b = \tilde{S}A (As \tilde{S}A^{\dagger})^{\dagger} b$$

m>ntl

- ► Let S be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$
- ls \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = x_{\text{min-norm}}$
- Yes, conditioned on SA

$$\tilde{x} \sim N(x_{\text{min-norm}}, VV^Tb^T(AS^TSA^T)^{-1}b)$$

- $\triangleright VV^T$ is the projection onto the null space of A
- ightharpoonup error $\tilde{x} x_{\text{min-norm}} \in \text{Null}(A)$
- $\blacktriangleright \text{ Using } \mathbb{E}(AS^TSA^T)^{-1} = (AA^T)_{m-n-1}^{m}$

$$\mathbb{E}\|\tilde{x} - x_{\min-norm}\|_2^2 = \frac{d-n}{m-n-1}f(x_{\min-norm}) = \frac{d-n}{m-n-1}\|x_{\min-norm}\|_2^2$$

Left Sketch vs Right Sketch Summary

- ▶ Both are unbiased using Gaussian projections
- \triangleright A is $n \times d$
- ► Left sketch *n* > *d*

$$ilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

Variance:
$$\mathbb{E}\|A(\tilde{x}-x_{LS})\|_2^2=f(x_{LS})\frac{d}{m-d-1}$$
 polarist Subspace Right sketch $d>n$

Right sketch d > n

$$\tilde{x} = S\tilde{z} \quad \text{where } \tilde{z} := \arg\min_{\substack{ASz = b}} \|z\|_2^2$$
 Variance: $\mathbb{E}\|\tilde{x} - x_{\text{min-norm}}\|_2^2 = f(x_{\text{min-norm}}) \frac{\overline{d-n}}{m-n-1}$ Variance: $\|\tilde{x} - x_{\text{min-norm}}\|_2^2 = f(x_{\text{min-norm}}) \frac{\overline{d-n}}{m-n-1}$

Back to Left Sketch: Which sketching matrices are good?

- We need to find conditions to guarantee approximate optimality
- Let $A = U\Sigma V^T$ SVD in compact form

some deterministic options $S = U^T$ is $d \times n$

$$\triangleright$$
 $S = U^T$ is $d \times n$

$$\triangleright$$
 $S = A^T$

 \triangleright For random S matrices A^TS^TSA needs to be invertible we want it to be close to A^TA

Approximate Matrix Multiplication

Let the approximate product of AB be $C = AS^TSB$

$$\mathbb{P}\left[\|AB - C\|_F > \epsilon \|A\|_F \|B\|_F\right] \le \delta$$

- Follows from JL Moment property
- $S \in \mathbb{R}^{m imes n} \sim rac{1}{\sqrt{m}} imes ext{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = rac{c_1}{\epsilon^2} \log rac{1}{\delta}$
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \underbrace{\mathsf{Fast JL}}_{\mathsf{Fourty}} \mathsf{Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$

Approximate Matrix Multiplication

Let the approximate product of AB be $C = AS^TSB$

$$\mathbb{P}\left[\|AB - C\|_F > \epsilon \|A\|_F \|B\|_F\right] \le \delta$$

- Follows from JL Moment property
- $S \in \mathbb{R}^{m imes n} \sim rac{1}{\sqrt{m}} imes ext{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m=rac{c_1}{\epsilon^2}\lograc{1}{\delta}$
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix}$ (one nonzero per column, which is ± 1 at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- $ightharpoonup S \in \mathbb{R}^{m imes n} \sim rac{1}{\sqrt{m}} imes ext{Fast JL Transform with } m = rac{c_3}{\epsilon} \log rac{1}{\delta}$
- Sparse JL and Fast JL are more efficient
- advantages: doesn't require any knowledge about matrices A and B (oblivious)
- optimal sampling probabilities depend on the column/row norms of A and B

Basic Inequality Method

- ightharpoonup We minimize $\tilde{x} = \arg\min \|S(Ax b)\|_2^2$
- $||x_{LS}|| = ||x_{LS}||^2$ How far is \tilde{x} from $||x_{LS}||^2$ Step 1. Establish two optimality (in)equalities for these
- $||Ax_{LS} b||_2^2 \le ||Ax' b||_2^2 \text{ for any } x', \text{ i.e., } A^T(Ax_{LS} b) = 0$ $||S(A\tilde{x} b)||_2^2 \le ||S(Ax_{LS} b)||_2^2$

Basic Inequality Method $\|SA(\Delta+x_{is})-Sb\|_{2}^{2} \leq \|SAx_{is}-Sb\|_{2}^{2}$ b= Axu +b

 \blacktriangleright How far is \tilde{x} from $x_{l,s}$?

 $\|S(A\tilde{x}-b)\|_2^2 \le \|S(Ax_{IS}-b)\|_2^2$

inequalities in terms of Δ

Step 3. Argue $S^TS \approx I$

 $||SA\Delta||_2^2 \le 2b^{\perp T}(S^TS - I)A\Delta$

ΔATSSAD = ||SAD||2=26+5SAD = 25(SS-I)AΔ

variables

$$\frac{\|SA\Delta + SAX_{cs} - SAX_{cs} - SB^{\dagger}\|_{V}^{2}}{\min \|S(Ax - b)\|_{c}^{2}} \leq \|SAX_{cs} - SAX_{cs} - SB^{\dagger}\|_{V}^{2}$$

 $\triangleright x_{LS}$ minimizes $||Ax - b||_2^2$

• We minimize $\tilde{x} = \arg\min \|S(Ax - b)\|_2^2$

Step 1. Establish two optimality (in)equalities for these

▶ **Step 2**. Define error $\Delta = \tilde{x} - x_{LS}$ and re-write these

 $\|Ax_{LS} - b\|_2^2 \le \|Ax' - b\|_2^2$ for any x', i.e., $A^T(Ax_{LS} - b) = 0$

11SAAll2+ 11SB/12-26 53AA = 11St/12

 $x = \Delta + x_{LC}$

= 1/56/12

Leverage Scores

Questions?