Deep learning appliqué à la reconaissance visuelle d'espèces marines

Ou comment ne pas confondre un poisson rouge avec ce magnifique Mola-mola

Le problème

- Étudier la répartition des espèces vivant dans l'océan, de façon non-destructive et plus automatisée
- Équiper les sous-marins autonomes
- Réduire considérablement les coûts

Les aspects difficiles de ce problème

- Complexité des fonds sous-marins
- Diversité des espèces
- Espèces se ressemblant, d'autres très distinctes

Image du dataset "Labeled Fishes in the Wild"

Pourquoi le deep learning

- Difficulté des algorithmes conventionels
 - Se basent sur des régularités ici difficiles à trouver
- Besoin de recherche de caractéristiques complexes
 - Justifie le deep learning

Problème traité

Données du data-set "Fish Recognition Ground-Truth".

Dascyllus reticulatus	Chromis chrysura	Amphiprion clarkii
Classe C1	Classe C2	Classe C3
12 111 exemples	3 593 exemples	4 049 exemples

- Trois classes
- ullet Diverses tailles autour de 100 imes 100 pixels
- Aléatoire : succès d'environ 33%

Séparation des données

	Entraînement	Validation	Test
Dascyllus reticulatus	4000	100	200
Chromis chrysura	3293	100	200
Amphiprion clarkii	3749	100	200
Total	11042	300	600

Fonctionnement d'un réseau de neurones artificiel

Un réseau de neurones est une manière de représenter un certain type de fonctions non-linéaires.

Fonctionnement d'un neurone

Fonctions d'activation (σ)

Fonction sigmoïde

$$y=rac{1}{1+e^{-z}}$$

| 1

$$y = \max(0, z)$$

Tangente hyperbolique

$$y = tanh(z)$$

Weak ReLU

$$y = \max(\epsilon z, z)$$

Couche de neurones simple

Couche dense de neurones d'indice l

Représentation matricielle d'une couche de neurones

Variables apprises : W^l et B^l

$$Z^l = W^l imes A^l + B^l$$

$$Z^l = egin{pmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,n} \ w_{2,1} & w_{2,2} & \cdots & w_{2,n} \ dots & dots & \ddots & dots \ w_{p,1} & w_{p,2} & \cdots & w_{p,n} \end{pmatrix} imes egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix} + egin{pmatrix} b_1 \ b_2 \ dots \ b_p \end{pmatrix}$$

Réseau de neurones complet

$$Y^0$$
 $Y^1 = \sigma(W^1 imes Y^0 + B^1)$ \vdots $Y^L = \sigma(W^L imes Y^{L-1} + B^L)$

Apprentissage d'un réseau de neurones

- Processus itératif de minimisation d'une fonction de coût
- Données d'entraînement, validation et test
- Apprentissage sur un mini-batch

Fonction de coût L_2

Sur un mini-batch de taille m, on note y_i la sortie du réseau de neurones avec pour entrée x_i , et \hat{y}_i la sortie attendue pour cette entrée.

$$C = rac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)^2$$

Descente de gradient

$$W = W - \lambda \frac{\partial C}{\partial W}$$
 $B = B - \lambda \frac{\partial C}{\partial B}$

Classification avec un réseau dense

Succès	epochs	λ	mini-batch
96.83%	60	0.02	40

	C1	C2	С3
Bien classés	189/200	193/200	199/200
Faux positifs	8	8	3
Faux C1	_	7	1
Faux C2	8	_	0
Faux C3	3	0	_

Rendre le réseau plus efficace

Insuffisance des techniques initiales. On va utiliser :

- Momentum based gradient descent
- Couches "softmax" et fonction de coût "log-likelihood"
- Batch normalization
- Convolutions

Momentum based gradient descent

Inspirée de la physique : balle dans un creux.

$$M_W = M_W - \lambda rac{\partial C}{\partial W}$$
 $W = W + M_W$

Softmax

Représenter une distribution de probabilité pour un classifieur. Utile car on veut classifier les espèces.

$$y_j^L = rac{e^{y_j^L}}{\sum_i e^{z_i^L}}$$

Fonction de coût log-likelihood

$$C = -rac{1}{m}\sum_{i=1}^m \log(y_{i_0}^L)$$

Avec
$$i_0/\hat{y}_{i_0}=1$$
 , et $orall j
eq i_0, \; \hat{y}_j=0$.

Résultats avec ces améliorations

Succès	epochs	λ	mini-batch
97.50%	60	0.04	40

	C1	C2	C3
Bien classés	199/200	191/200	195/200
Faux positifs	14	1	0
Faux C1	_	9	5
Faux C2	1	_	0
Faux C3	0	0	_

Normalisation des entrées

$$\mu = rac{1}{n}\sum_{i=1}^n X^{(i)} \quad ext{ et } \quad \sigma = \sqrt{rac{1}{n}\sum_{i=1}^n (X^{(i)}-\mu)^2}$$

Avec le carré élément par élément (au sens du produit de Hadamard).

$$X' = \frac{X - \mu}{\sigma}$$

Normalisation des activations

- μ et σ calculés sur un batch
- ullet lpha et eta paramètres appris par le réseau, $\gamma \in]0;1[$ fixe

$$\hat{\mu} = \gamma \hat{\mu} + (1-\gamma)\hat{\mu} \quad ext{ et } \quad \hat{\sigma} = \gamma \hat{\sigma} + (1-\gamma)\hat{\sigma}$$
 $a_{ ext{norm}} = lpha rac{a-\hat{\mu}}{\hat{\sigma}} + eta$

Améliration en normalisant les activations

Succès	epochs	λ	mini-batch
99.33%	60	0.04	40

	C1	C2	C3
Bien classés	198/200	198/200	200/200
Faux positifs	2	2	O
Faux C1	_	2	O
Faux C2	2	_	0
Faux C3	0	0	_

Convolution

Adapté au traitement d'une image :

- Traitement local
- Similaire sur toute l'image

Filtre sur plusieurs channels

Les filtres de convolution 2D sont des matrices 3D.

Max-pool layer

Réduire le nombre d'informations en ne sélectionnant que les plus importantes.

Convolutional network

Résultats avec un ConvNet

Succès	epochs	λ	mini-batch
99.50%	60	0.06	40

	C1	C2	C3
Bien classés	199/200	198/200	200/200
Faux positifs	2	0	1
Faux C1	-	2	0
Faux C2	0	_	O
Faux C3	1	0	_

Architecture finale

