Introdução à Inteligência Artificial — Exame 4 de Fevereiro - 2019/20

Exame com consulta. Duração: 2h30m

(I)Paradigma do Espaço de Estados (3.5)

Considera o seguinte puzzle que é uma variação do jogo de damas em que temos n peças pretas a ocupar inicialmente as n casas brancas na linha de baixo do tabuleiro 2n x 2n (ver figura). As peças podem moverse para uma casa adjacente na diagonal ou ficar no mesmo lugar. Notem que as peças apenas se movem nas casas brancas e há 4 casas vizinhas diagonais desde que dentro do tabuleiro. As peças têm de ser movidas para a linha de topo mas na ordem inversa: a peça mais à esquerda inicialmente irá ocupar a posição mais à direita na linha de topo; naturalmente que a peça mais à direita irá ocupar a linha de topo na posição mais à esquerda; a segunda peça mais à esquerda irá ocupar a 2ª posição mais à direita, e vice-versa, etc. Em cada momento, todas as peças movem-se simultaneamente, mas nunca poderemos ter duas peças na mesma casa. Supõe que se pretende formular este problema como uma procura num grafo de estados.

- a) Indica uma representação mínima para os estados.
- b) Qual o estado inicial?
- c) Oual o estado final?
- d) Qual a informação estática mínima que teria de ser representada fora do estado?
- e) Quais os operadores de transição entre estados e os seus custos?
- f) Qual o valor aproximado do número de sucessores de qualquer dos estados (decorrentes das ações)?
- g) Indica uma heurística admissível para este problema. Justifica porque é admissível.
- h) Faz sentido usar as versões em grafo dos algoritmos de procura? Justifica a tua resposta.

(II) Procura num Espaço de Estados (3.5)

- a) Considera o grafo e a função heurística h em baixo, em que o estado inicial é S e o estado final é G. Executa:
 - i) a procura com aprofundamento progressivo em grafo,
 - ii) o custo uniforme em grafo,
 - iii) largura em árvore,

devolvendo o caminho obtido, o custo da solução, a sequência de estados visitados e também a sequência de expandidos. Note que em caso de empate, há preferência primeiro pela ordem alfabética e a seguir a antiguidade.

b) Considerando o grafo em baixo, em que o estado final é G, mas em que infelizmente não se conhecem os valores da heurística h para todos os estados. Arranja valores para h(A) e h(B) de modo a que a função heurística h(x) seja admissível, mas não consistente.

c) Discute se é verdadeira ou falsa a frase seguinte: *A procura em profundidade em árvore encontra sempre o mesmo caminho solução que a procura em profundidade em grafo.* Justifica a tua resposta.

(III) Procura com Adversário (3.5)

a) Considera a seguinte árvore de jogo e executa o algoritmo alfabeta:

b) Para que valores de x é que nunca teremos o corte em a?

c) Para que valores de x é que o valor alfabeta da raiz da árvore é x?

(IV) Problemas de Satisfação de Restrições (3)

Assuma que tens 4 variáveis: A, B, C e D tais que A < B < C < D e B+D=9. O domínio de todas as variáveis é $\{1,2,3,4,5,6\}$.

- a) Desenha o grafo de restrições.
- b) Algum dos arcos é consistente? Se sim, indica qual, senão justifica-o.
- c) Quais os domínios que resultam da aplicação do algoritmo AC-3 que torna o grafo arco-consistente?
- d) Mostra a árvore de procura com retrocesso até ao primeiro retrocesso, assumindo que as variáveis são escolhidas pela ordem alfabética e os valores por ordem crescente. <u>Nota:</u> consideramos que há retrocesso quando uma das variáveis não pode ser afetada.

(V) Aprendizagem Automática (3.5)

1. Considera o seguinte conjunto de dados, constituído por 40 pontos (20 pontos da classe "quadrado" e 20 pontos da classe "bola"):

- a) Desenha as fronteiras de decisão de uma árvore de decisão.
- b) Desenha a árvore de decisão gerada na alínea anterior.
- c) Qual a classe dos seguintes pontos?
 - I. (0,0.4)
 - II. (1,0.9)

- d) Qual a accuracy ao aplicar a técnica leave-one-out a este conjunto de dados? Justifica a tua resposta.
- e) Mostra como poderias escolher os grupos de dados que fariam com que a validação cruzada em 2 grupos estratificados desse uma accuracy nula.
- 2. Considera o algoritmo k-vizinhos mais próximos (k-NN) usando a distância Euclideana no conjunto de dados seguinte.

- a. Qual o accuracy do 1-NN quando se aplica a técnica leave-one-out? Justifica brevemente a tua resposta.
- b. Qual a matriz de confusão quando se testa com o próprio conjunto de treino para k=3?
- c. Entre k=3 ou k=5, qual deles leva a uma maior precisão dos pontos da classe "bola" quando se testa com o próprio conjunto de treino? Qual o respetivo valor da precisão?

(VI) Processos de Decisão de Markov (3)

Considera um Processo de Decisão de Markov representado no seguinte grafo, em que as ações são todas determinísticas (não há incerteza). <u>Justifica todas as tuas respostas.</u>

- a) Considerando que só podes executar uma ação e que tens uma taxa de desconto de 1 (γ =1), qual seria a policy ótima para o estado B?
- b) Qual seria a policy ótima π^* para A se tivesses todo o tempo e $\gamma = 1$?
- c) Qual o valor $V^*(B)$ considerando $\gamma=1$?
- d) Quais as equações de Bellman para $V^*(s)$ com $\gamma=0.3$?
- e) Se tivesses uma taxa de desconto γ de 0.3, qual seria a policy ótima para B?