b. Solve
$$(D^2 - 6DD' + 5D'^2)z = e^x \sinh y + xy$$

29. a. Find the Fourier series to represent $(x-x^2)$ in the interval $(-\pi,\pi)$. Deduce the value of $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \dots \infty$

b. Find the Fourier series as far as the second harmonic to represent the function given by the following data.

	х	0	1	2	3	4	5	
1	f(x)	9	18	24	28	26	20	

30. a. A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in its equilibrium position. If it is set vibrating by giving each of its points a velocity $\mu x(l-x)$, find y(x,t).

b. Find the solution of the equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ that satisfies the conditions (i) u(0, t) = 0

(ii)
$$u(l, t) = 0$$
 for $t > 0$ and (iii) $u(x, 0) = \begin{cases} x, & 0 \le x < l/2 \\ l - x, & l/2 < x < l \end{cases}$

31. a. Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} dx$.

- b. Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2+9)(x^2+16)}$ using transforms techniques.
- 32. a.i. Find $Z \left[\cos^3 t \right]$
 - ii. Find the inverse Z-transform of $\frac{3z}{(z-1)(z-2)}$ using residues.

b. Solve the difference equation $y(n+2)-7y(n+1)+12y(n)=2^n$ where y(0)=0, y(1)=0 by using Z-transform.

	1	:	1	1]		1	1		
Reg. No.										

B.Tech. DEGREE EXAMINATION. NOVEMBER 2019 Third Semester

18MAB201T - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2018 – 2019 onwards)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet. (ii)

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

- 1. The general integral of z = xp + yq is
 - (A) $\phi(x+y, y+z)=0$

(C) $\phi\left(\frac{x}{v}, \frac{y}{z}\right) = 0$

- 2. The solution of pq = x is
 - $z = \frac{x^2}{2} + ay + c$

(C) z = x + y + 1

- 3. The complementary function of $(D^3 3D^2D^1)z = 0$
 - (A) $z = f_1(y-x) + f_2(y-2x) + f_3(y+2x)$ (B) $z = f_1(y) + f_2(y) + f_3(y+3x)$ (C) $z = f_1(y) + f_2(y) + f_3(y-3x)$ (D) $z = f_1(y) + xf_2(y) + f_3(y+3x)$
- 4. The particular integral of $(D^2)z = x^3y$ is

(B) x^3y

(C) x^4v^2

- 5. The constant a_0 of the Fourier series for the function f(x) = x is $0 \le x \le 2\pi$
 - (A) π

(C) 3π

- (D) 0
- 6. If f(x) is an even function in $(-\pi, \pi)$ then the value of b_n in the Fourier series expansion of f(x) is
 - $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$

(C) 0

Page 1 of 4

7. The value of fourier series of f(x) in $0 < x < 2\pi$ at x = 0 is

(A)
$$f(0)$$

(B)
$$f(2\pi)$$

(D)
$$f(0)+f(2\pi)$$

8. For half-range cosine series of $f(x) = \cos x$ in $(0, \pi)$ the value of a_0 is

$$(A)$$
 4

(B)
$$2/\pi$$

(C)
$$4/\pi$$

9. The proper solution of
$$u_t = \alpha^2 u_{xx}$$
 is

(A)
$$u = (Ax + B)C$$

(B)
$$u = (A\cos \lambda x + B\sin \lambda x)e^{-\alpha^2\lambda^2t}$$

(C)
$$u = \left(Ae^{\lambda x} + Be^{-\lambda x}\right)e^{\alpha^2 \lambda^2 t}$$

(D)
$$u = (At + B)$$

10. The one dimensional heat equation in steady state is

(A)
$$\frac{\partial u}{\partial t} = 0$$

(B)
$$\frac{\partial^2 u}{\partial x^2} = 0$$

$$\frac{(C)}{\partial t^2} = 0$$

(D)
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$$

11. One dimensional heat equation is used to find

(A) Density

- (B) Time
- (C) Temperature distribution
- (D) Displacement

12. How many initial and boundary conditions are required to solve wave equation

(A) Two

(B) Three

(C) Five

(D) Four

13. Under Fourier cosine transform $f(x) = \frac{1}{\sqrt{x}}$ is

- (A) Self-reciprocal function (C) Cosine function
- (B) Inverse function (D) Complex function
- 14. $F[f(x-a)] = \text{where } F\{f(x)\} = F(s)$
 - (A) $e^{ias}F(a)$

(B) $e^{ias}F(x)$

(C) $e^{ias}F(s)$

(D) $e^{iax}F(a)$

15. F[f(x)*g(x)] =

(A) F(s)+G(s)

(B) F(s)G(s)

(C) F(s)-G(s)

(D) F(s)G(s)

16. If $F(s) = F\{f(x)\}$ then $\int_{-\infty}^{\infty} |f(x)|^2 dx$

(A)
$$\int_{-\infty}^{\infty} |F(s)|^2 ds$$

(B)
$$\int_{-\infty}^{\infty} |F(x)|^2 dx$$

(C)
$$\int_{0}^{\infty} \left| F(x) \right|^{2} dx$$

(D)
$$\int_{0}^{\infty} \left| F(s) \right|^{2} ds$$

17. What is Z(6)

(A) $\frac{z}{z-1}$

18. What is Z-transform of na^n ?

19. Find $Z^{-1} \left[\frac{z}{z-a} \right]$

(A) a^{n+1}

(B) a^{n-1}

(C) a^n

(D) a

20. Poles of $\phi(z) = \frac{z''}{(z-3)(z-4)}$

(A) z = 3,0

(B) z = 3,4

(C) z = 4.0

(D) z = 0

 $PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Find the solution of $px^2 + qy^2 = z^2$.
- 22. Form a partial differential equation by eliminating arbitrary constants a and b from $(x-a)^2 + (y-b)^2 + z^2 = c^2$.
- 23. Find the half range sine series for f(x) = x(l-x) in (0,l).
- 24. Find the Fourier sine transform of $f(x) = e^{-4x}$.
- 25. State various possible solutions of one dimensional heat equation.
- 26. Find Z[1/n].
- 27. Find $Z^{-1} \left| \frac{z^2}{(z-a)(z-b)} \right|$

 $PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Solve by finding SI (i) $z = px + qy + 2\sqrt{pq}$ (ii) Solve: $\frac{y^2z}{x}p + xzq = y^2$.

(OR)