國立中興大學資訊工程學系 資訊專題競賽報告

基於強化學習的智能風扇及應用

Smart Fan Based on Reinforcement Learning and Its Applications

專題題目說明、價值與貢獻自評(限100字內):

本專題藉由強化學習當中的Q-learning來訓練風扇,讓風扇可以不斷地進行自我學習和優化,達到能根據使用者的體溫自動調整風速,最終能讓使用者維持在最合適的溫度,並提高舒適度。

專題隊員:

姓名	E-mail	負責項目說明	專題內貢獻度(%)	
施昶宇	chang001124gmail.com	蒐集資料、實作	50%	
陳政鴻	Angel65020765@gmail.com	蒐集資料、實作	50%	

【說明】上述表格之專題內貢獻度累計需等於100%。

拈	道	粉	摇	饀	沭	及	饀	評	•
1 F	-	<i>4</i> 3	4.A	TAI	2/10	/X	TA I	5	•

指導教授簽名:

中 華 民 國 年 月 日

國立中與大學 資訊科學與工程學系 專題

基於強化學習的智能風扇及應用
Smart Fan Based on Reinforcement Learning and Its Applications

指導教授:黃德成

組員:施昶宇、陳政鴻

目錄

圖	目	〕錄	III
表	目	】錄	V
_	`	摘要	1
_	`	專題研究動機與目的	1
三	`	專題重要貢獻	1
四	`	團隊合作方式	2
五	`	設計原理、研究方法與步驟	3
		5.1 機器學習原理	3
		5.2 Q-learning 原理	4
		5.3 藉由 PWM 控制風扇轉速	5
		5.4 選擇強化學習— Q-learning	6
		5.5 設計主要的訓練演算法	7
六	`	· 系統實現與實驗	8
		6.1 硬體方面	8
		6.1.1 Arduino Mega2560	8
		6.1.2 ESP8266	9
		6.1.3 L298N	10
		6.1.4 DS18B20	11

6.2 風扇和	各個模組的實際接線圖	12
6.3 軟體方	面	13
6.3.1	使用者登入	13
6.3.2	ESP8266 連上 WIFI、TCP 連線	13
6.3.3	連線資料庫取得資料	13
6.3.4	用 q-learning 開始訓練	14
6.3.5	訓練結果更新資料庫	14
6.3.6	整體流程圖	14
6.4 實驗設	計1	15
七、效能評估與成	成果	16
八、結論		17
九、參考文獻		18

圖目錄

圖	5.1	3
圖	5.2	4
圖	5.3	4
圖	5.4	5
圖	5.5	5
圖	5.6	7
圖	6.1	8
圖	6.2	9
圖	6.3	9
圖	6.4	10
圖	6.5	11
圖	6.6	12
圖	6.7	12
圖	6.8	13
圖	6.9	13
圖	6.10	14
圖	6.11	15
圖	7.1	16

圖	7.2	16
圖	7.3	17
圖	7.4	17

表目錄

表	4.1	2
表	5.1	6
表	6.1	.10
表	6.2	.11

一、摘要

一般市面上的風扇只能固定轉速,並且沒有考慮人體溫度,缺乏便利和舒適性,為了解決這個問題,我們使用 Q-Learning 結合電風扇,實現出個人化的電扇,並利用 ESP8266 將風扇連上 WIFI,建立與資料庫的連線,將 q_table 上傳至資料庫儲存,讓下一位使用者登入時,能夠從資料庫存取自己的 q_table,經過長時間的訓練之後,能夠 根據使用者狀態自動調整到最佳的狀態。

關鍵詞: Reinforcement learning、智能風扇、ESP8266、資料庫。

二、專題研究動機與目的

電風扇是日常生活必備的家電,但是市面上大多僅考慮環境溫度而沒有考慮使用者體溫的風扇。夏天在冷氣房時,一般風扇只能固定風速,剛開始覺得很熱,但因熟睡後風速不變,體溫下降,經常因為冷醒才把電扇關掉,十分缺乏便利和舒適性。因此我們希望能設計一個能根據人體溫度自動調整風速的電扇,來讓使用者能維持在最舒適的溫度。

三、專題重要貢獻

本次專題實作之風扇,利用 q-learning 找到每個溫度下的最適風速,並且將 q-table 上傳資料庫,使用者登入後,就能藉由 ESP8266 連線 wifi 從資料庫中下載相應的 q-table,達到個人化風扇的效果。

四、團隊合作方式

表 4.1 是我們團隊的合作方式,分為三個階段,前期主要以查詢資料,決定方向為主,中期完成硬體的配置,以及軟體實作,後其統整所有資料及製作實驗數據。

表 4.1 團隊合作方式

	1. 決定專題題目
前期	2. 閱讀相關論文
	3. 蒐集相關資料
	1. 完成 q-learning 的設計
中期	2. 完成硬體的配置
	3. 實現登入頁面、將風扇連上資料庫
	1. 評估數據
後期	2. 調整參數
	3. 撰寫報告

五、設計原理、研究方法與步驟

5.1 機器學習原理

機器學習是一門開發演算法和統計模型的科學,旨在讓電腦從大量的數據中學習並自主地進行預測、分類、集群等任務,而不需要明確的程序或規則。主要分成三大類,監督式學習、非監督式學習和強化學習三種類型,如圖 5.1。

本次專題主要利用其中的強化學習,在強化學習中,agent 通過觀察環境的狀態, 進行行動,並根據環境的反饋學習最佳行動策略。強化學習不需要正確的輸出輸入, 而是強調如何基於環境而行動,以取得最大化的預期利益,十分符合我們專題所需, 圖 5.2 為題例說明。

圖 5.2 強化學習主要流程[11]

5.2 Q-learning 原理

Q-learning 中會需要一個代理人(Agent),用來表示在不同環境下做出決定的角色,而我們需要決定角色面對到的狀態(State),和定義面對此狀態所做出的動作 (Action),最後每個 state 和 action 對應到的即為 Q 值,Q 值越大 Agent 越容易以其 action 做為下一步的動作,圖 5.3 為 Q-learning 演算法。

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)
Take action a, observe r, s'
Q(s,a) \leftarrow Q(s,a) + \alpha \big[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big]
s \leftarrow s';
until s is terminal
```

圖 5.3 Q-learning 演算法[9]

其中的核心公式 Q-function 由圖 5.4 所示,Q(s,a)是在狀態 s 下採取行動 a 的 Q 值, α 是學習率控制了每次更新 Q 值時新信息的貢獻程度。如果學習率太高,更新 Q 值時可能會太過於激進,導致算法無法收斂或收斂緩慢。r 是在狀態 s 下採取行動 a 後收到的, γ 是衰減因子, γ 值越大,未來回報的價值越高,Agent 更加重視未來的回報,將更加注重長期利益,maxQ(s',a')是在狀態 s'下所有可能的行動 a'的最大 Q 值。

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

圖 5.4 Q-function[10]

5.3 藉由 PWM 控制風扇轉速

脈波寬度調變(Pulse Width Modulation)簡單 PWM ,是一種控制脈波工作週期 (duty cycle)來達到控制輸出電壓的一種控制方式。由下方公式可知方波的直流值是與工作週期成正比,因此我們只要改變工作週期,就可以改變輸出的電壓(圖 5.5)進而改變風扇的轉數,在 arduino 中可以設定的週期範圍為 0 到 255。

VDC= Max Vin x Duty Cycle

圖 5.5 輸出電壓對工作週期折線圖

5.4 選擇強化學習— Q-learning

本次專題主要考量人體溫度和風扇轉速的關係,溫度的變化是連續不斷的,而且 對於使用者來說,冷熱的感受是十分主觀的,我們無法事先將資料做標記,因此我們 選強化學習當中的 Q-learning,就由讓風扇探索環境累積經驗,在未來遇到類似經驗 時就能選出最優的決策。

建構 Q-table

我們將 action 從-100 每格遞增 10 到 100,總共 21 格,以及 state 為根據目前體溫和目標溫度的差值以每格 0.2 ℃的差距,從+8.0 ℃到-8.0 ℃,一共 81 格如表 5.1 所示。

表 5.1 風扇之 Q-table

		PWM								
		-100	-90	•••	-10	0	+10	• • •	+90	+100
	+8.0									
溫	+0.4									
	+0.2									
差	0.0									
	-0.2									
	-0.4									
	• • •									
	-8.0									

5.5 設計主要的訓練演算法

- (1)偵測溫度
- (2)查詢 q-table 並選擇最大 q 值的 action
- (3)檢查溫度是否有往目標溫度前進有則加分,反之扣分
- (4)利用圖 5.4 中的公式更新 Q-table

回到(1)繼續訓練直到結束,圖 5.6 為其流程圖

六、系統實現與實驗

6.1 硬體方面:

- Arduino Mega2560
- ESP8266
- L298N
- DS18B20

6.1.1 Arduino Mega2560

於 Arduino 系列開發板的一員(圖 6.1)。它擁有 54 個數字 I/O 引腳 (其中 15 個可作為 PWM 輸出),16 個類比輸入引腳,4 個 UART 串口,16 MHz 的晶體振盪器,256 KB 的 Flash 存儲器,8 KB 的 SRAM和 4 KB 的 EEPROM。它支持 USB 接口和外部電源供應,可通過 USB 接口與電腦連接進行溝通和數據傳輸。應為其儲存空間較大,因此我們使用此來當作風扇和軟體之間的橋樑。

圖 6.1 Arduino mega 2560

6.1.2 ESP8266

此模組能讓上述的 arduino 開發版能連上 wifi, ESP8266 有許多系列,我們是使用 ESP-01s 來讓我們的風扇能跟資料庫連結。ESP-01s 模組具有 8 個引腳,包括 2 個 GPIO、UART 串口通訊口和 ADC (類比數位轉換器)引腳,並且具有內置的WiFi 天線。它可以透過 AT 指令進行控制,支持 STA (station)和 AP (access point)模式,並且可以通過 TCP/IP 協議進行無線通訊。此外,ESP-01s 還具有支持WPA/WPA2 安全協議的加密功能,可保護無線通訊的安全性,圖 6.2、圖 6.3 為其與 arduino 開發板的接腳圖。

Conexion Arduino Mega 2560 + ESP8266

圖 6.2 Arudino 和 ESP01s 的接線圖[13]

圖 6.3 Arudino 和 ESP01s 的實際接線圖

6.1.3 L298N

L298N(圖 6.4)是馬達驅動 模組,可用於控制直流馬達和 步進馬達等負載,電壓範圍為 5V至 35V,它可以通過控制輸 入端的信號控制馬達的轉向和 速度,正好符合我們挑整風扇 轉數的需求。

圖 6.4 L298N

表 6.1 為 L298N 和 Arduino mega 2560 的接線關係,其中 L298N 需要外接 12V 的電源,並將 L298N 上的 GND 接到 Arduino mega 2560 上,使其能夠順利運行。

表 6.1 mega 對 L298N 腳位

Arduino mega 2560	L298N
	12V 外部電源
GND	GND
Pin8(PWM)	IN1
Pin9(PWM)	IN2

6.1.4 DS18B20

它使用 1-Wire(One-Wire)資料傳輸協定,資料傳輸只需一條線即可,需要三個腳位(電源、資料、接地)。此溫度感測元件溫度感測範圍-55°C 到+125°C,而且在 -10°C~85°C 這個範圍內保證 ± 0.5 °C 的精確度,偵測的溫度讀數已在內部校正為攝氏刻度,因此我們選擇此元件來偵測人體的體溫,如圖 6.5。

圖 6.5 DS18B20

表 6.2 mega 對 L298N 腳位

Arduino mega2560	DS18B20
GND	GND
5V	VCC
Pin5	Data

6.2 風扇和各個模組的實際接線圖

圖 6.6、圖 6.7 為風扇的實際接線圖

圖 6.6 風扇實際接線圖

圖 6.7 風扇實際接線圖

6.3 軟體方面

6.3.1 使用者登入

使用者可利用 QR code 掃描登入,用戶可註冊新帳號或登入舊有的帳號 如圖 6.8。

圖 6.8 登入畫面

6.3.2 ESP8266 連上 WIFI、TCP 連線

利用 ESP8266 函式庫連到指定的 WIFI, 風扇和伺服器建立 TCP 連線。

6.3.3 連線資料庫取得資料

使用者登入後,系統會抓取之前的 q-table,並將其傳送給風扇,如未登 入過,將初始化新的 table 再傳給風扇,如圖 6.9 所示。

圖 6.9 登入及傳送資料示意圖

6.3.4 用 q-learning 開始訓練

一開始會設定一個基本風速,記錄使用者的感受並改變風速,例如感覺 冷會使風速降低,反之風速增加,當使用者感受到一次冷和一次熱時,利用 二分法,推斷使用者最適溫度落在此區間內,藉由兩個溫度取中間值當目標 溫度開始訓練。

每3秒偵測溫度,從q-table 中選出q值最高的 action,並計算 reward, 計算方式如下:

- ▶ 判斷此 action 是否有使溫度靠近目標溫度,如果是,reward 為此溫度差 乘 10, 不是則為負的。
- ▶ 溫度不變但溫度為目標溫度則 reward 為 20, 反之如果不是目標溫度則 reward 為-20

最後根據 q-function 來更新 q-table。

6.3.5 訓練結果更新資料庫

利用 ESP8266 跟資料庫建立 TCP 連線,將 q-table 傳給資料庫,如圖 6.10 所示。

圖 6.10 Q_table 上傳示意圖

6.3.6 整體流程圖

圖 6.11 為風扇整體架構的流程圖

6.4 實驗設計

將風扇放置於離受試者約 40cm 處,吹向胸口至脖子的位置,檢測溫度變化, 最後根據其測量值來觀看效果,用同樣方式測量一般風扇對溫度的影響,並比較兩 者間的差異。

七、效能評估與成果

圖 7.1 為使用 q-learning 訓練的結果,Y 軸為溫度和 X 軸為訓練次數的關係圖,一開始 epsilon 值較高,會採取較多隨機 action,造成前期溫度較不穩定,隨著訓練次數增加,降低 epsilon 的比率,讓風扇可以根據 q-table 來選擇 action,溫度也因此逐漸朝目標溫度收斂。

圖 7.1 溫度對次數的折線圖,紅線為目標溫度 32.78℃

圖 7.2 為 PWM 值和次數的關係圖,相關係數為-0.16,從圖中可得知 PWM 值隨著訓練次數增加, PWM 值越小,由圖 7.3 可看出呈現負相關。根據圖 7.1,溫度最後會逐漸在目標溫度附近,因此風扇會選擇 PWM 較小的值來穩定溫度。

圖 7.2 PWM 對次數的折線圖,紅線為 PWM 和 times 的線性關係

圖 7.3 PWM 對溫度的點陣圖,紅線為 PWM 和 times 的線性關係

圖 7.4 為一般固定轉速之風扇,隨著次數的增加,體溫逐漸下降,偏離目標溫度

圖 7.4 溫度對次數的折線圖,紅線為目標溫度 32.78℃

八、結論:

有 q-learning 訓練的風扇在一開始訓練時雖然會花較多時間在訓練,但是隨著時間推移,很明顯較一般市售風扇在維持最適溫度有更好的表現。不過因為風扇無法對環境溫度和濕度有太大的影響,因此在不同的室溫和環境下,都可能會影響最適溫度的決定。

九、參考文獻:

[1] Van Otterlo, M. Wiering, M. Reinforcement learning and markov decision processes, Reinforcement Learning, Adaptation, Learning, and Optimization. Vol. 12. pp.3–42,2012.

[2] ITEADLIB_Arduino_WeeESP8266

https://github.com/itead/ITEADLIB_Arduino_WeeESP8266

[3] esp8266 基本測試

http://maker.tn.edu.tw/modules/tad_book3/page.php?tbsn=21&tbdsn=390

[4] ESP8266 WiFi 模組(ESP-01)韌體更新

 $\underline{http://www.twbts.work/2019/05/esp8266-wifi-esp-01.html?m{=}1}$

[5] 溫度感測器 DS18B20

https://shop.mirotek.com.tw/arduino/arduino-adv-1/

[6] 強化學習導論六:時間差分學習(TD Learning)

https://www.getit01.com/p2018020833426502/

[7] Q-Learning Algorithm: From Explanation to Implementation

 $\underline{https://towardsdatascience.com/q-learning-algorithm-from-explanation-to-implementation-cdbeda 2ea 187$

[8] 使用 L298N 模組控制直流馬達

http://coopermaa2nd.blogspot.com/2012/09/1298n.html

[9] Open AI Gym 簡介與 Q learning 演算法實作

https://blog.techbridge.cc/2017/11/04/openai-gym-intro-and-q-learning/

[10] qlearning 基於價值的強化學習算法

https://blog.csdn.net/weixin_26729375/article/details/109070321

[11] 強化學習:入門指南

https://smartauto.ctimes.com.tw/DispArt-tw.asp?O=HK3AT6N81A2ARASTDX

[12] 探討機器學習與深度學習之差異

https://www.wpgdadatong.com/tw/blog/detail/40355

[13] Test Arduino Mega 2560 and ESP8266 (AT Commands) https://pdacontrolen.com/prueba-arduino-mega-2560-y-esp8266/