Maximální roční průtoky X_j řeky N ve Spojeném Království v [m³s⁻¹] *(modif.)*

1982	120
1983	93
1984	190
1985	92
1986	156
1987	78
1988	61
1989	165
1990	72
1991	157
1992	137
1993	87
1994	266
1995	91
1996	95
1997	151
1998	174
1999	180
2000	63
2001	214
2002	88
2003	151
2004	79
2005	258
2006	80
2007	93
2008	110
2009	86
2010	305
2011	149
2012	87
2013	255
2014	138
2015	103
2016	115
2017	80
2018	247

Základní analýza dat

Odhad pravděpodobnosti, že v 2019 bude max. průtok vyšší než 230 m³s⁻¹ (distribution-free nerovnosti, neparametricky, parametricky).

Odhad pravděpodobnosti, že v 2019 bude max. průtok vyšší než 310 m³s⁻¹ (distribution-free nerovnosti, neparametricky, parametricky).

Odhad pravděpodobnosti, že v roce 2019 bude max. průtok nižší než 50 m³s⁻¹ (velmi suchý rok), resp. 70 m³s⁻¹ (poměrně suchý rok).

Jaká je min. hladina h, taková, že pravděpodobnost, že max. roční průtok překročí v roce 2019 tuto hladinu h, bude menší než 0.1, 0.01, resp. 0.001? (tedy hladiny $h_{0.1}$, $h_{0.01}$, $h_{0.001}$ pro 10-letou, 100-letou a 1000-letou povodeň).

Odhad pravděpodobnosti, že max. průtok v roce 2019 bude větší než všechny předchozí max. průtoky doposud zaznamenané (rekord v 2019).

Předpokládejme, že město M poblíž řeky N disponuje protipovodňovou zábranou schopnou zadržet max. průtok řeky u=230 m³s⁻¹ a že v roce 2019 opravdu dojde k povodni překračující tuto zábranu u. Jaká je pravděpodobnost, že tato zábrana bude překročena o více než 50 m³s⁻¹?

Protokol max 6-8 stránek.

Varianty zkoušení:

- a) pouze zkouška (příklad + teorie)
- b) pouze protokol (avšak inovativní s vlastním přínosem)
- c) protokol (běžný nebo částečný) + zkouška (teorie)