Geometría Diferencial 2022

Lista 4

25.mayo.2022

1. (La Pseudoesfera)

Consideramos la curva tractriz (ver ejercicio 3 en Lista 01).

- a) Determine la superficie de revolución que se obtiene a partir de la tractriz, y hallar una parametrización alrededor de un punto regular.
- b) Muestre que la curvatura gaussiana de esta superficie en todo punto regular vale K=-1.
- 2. Calcular los símbolos de Christoffel para una superficie de revolución

$$\mathbf{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)), \quad f(v) > 0, u \in (0,2\pi), v \in (a,b).$$

y a partir de estos, calcular la curvatura Gaussiana.

3. Mostrar la ecuación de Gauss: Si S es una superficie con parametrización ortogonal, F=0, entonces

$$K = -\frac{1}{\sqrt{EG}} \left[\frac{\partial}{\partial v} \left(\frac{E_v}{\sqrt{EG}} \right) + \frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{EG}} \right) \right].$$

- 4. a) Pruebe que toda superficie regular compacta S posee un punto elíptico.
 - b) Muestre que toda superficie regular compacta S, con característica $\chi(S) \leq 0$ posee un punto hiperbólico.
- 5. Compruebe que no existe superficie $\mathbf{x}(u,v)$ tal que $E=G=1,\,F=0$ y que $e=1,\,g=-1,\,f=0$.
- 6. Justifique por qué las superficies siguientes no son localmente isométricas dos a dos:
 - a) la esfera S^2 ,
 - b) el cilindro $S^1 \times \mathbb{R}$,
 - c) la silla $z = x^2 y^2$.
- 7. a) Dar la expresión para la ecuación de las geodésicas sobre el toro \mathbb{T}^2 , con la parametrización usual

$$\mathbf{x}(u,v) = (R + r\cos v)\cos u, (R + r\cos v)\sin u, r\sin v, \quad R > r > 0, u, v \in (0,2\pi).$$

b) Considere las curvas $\alpha(t) = \mathbf{x}(a,bt)$ y $\beta(t) = \mathbf{x}(at,b)$, con $a,b \in \mathbb{R}$, $t \in \mathbb{R}$. Determinar para qué valores de a,b estas curvas son geodésicas.

Obs! No son las únicas geodésicas sobre el toro. El siguiente documento ilustra todas las familias de las geodésicas sobre \mathbb{T}^2 http://www.rdrop.com/~half/math/torus/torus.geodesics.pdf

8. (No Entregar) Leer el punto 7, al final de la sección 4.5 del libro de Do Carmo (pp. 283–286). Entender el material, y probar el Teorema del Índice de Poincaré:

La suma de los índices de un campo vectorial diferenciable X con puntos singulares sobre una superficie compacta S, es igual a la característica de Euler de S, esto es

$$\sum_{\mathbf{p} \in S} I(X(\mathbf{p})) = \chi(S).$$