Problem 3.16. Show that the collection of Turing-recognizable languages is closed under the operation of

Part b. concatenation.

For any two Turing-recognizable languages L_1 and L_2 , let M_1 and M_2 be the **TM**s that recognize them. For a string $w = w_1 w_2 w_3 \cdots w_n$, define split W = (P, S), where $P, S \in \Sigma^*$, and w = PS. In other words, the strings P and S are prefix and suffix of w, such that their concatenation is equivalent to w. We construct a **TM** M' that recognizes the concatenation of L_1 and L_2 :

"On input w:

- 1. Calculate the list of all possible splits $W_1 = (P_1, S_1), W_2 = (P_2, S_2), \cdots W_n = (P_n, S_n)$ of w.
- 2. Let n be the number of splits. Repeat the following for each $i = 1, 2, 3, \cdots$
- 3. Run M_1 on P_j , and M_2 on S_j alternately step by step for i steps, where $1 \le j \le n$.
- 4. If in any computation, both M_1 and M_2 accept, accept. "

Part c. star.

For any Turing-recognizable language L, let M be the **TM** that recognizes it. For any non-empty string $w = w_1 w_2 w_3 \cdots w_n$, define partition $P = (p_1, p_2, \cdots, p_k)$, where $1 \le k \le n$, each $p_i \in \Sigma^*$, and $w = p_1 p_2 \cdots p_k$. We construct a **TM** M' that recognizes L^* :

"On input w:

- 1. If $w = \varepsilon$, accept.
- 2. For non-empty w, generate list of all possible partitions P_1, P_2, P_3, \cdots
- 3. Let n be the number of partitions. Repeat the following for each $i = 1, 2, 3, \cdots$
- 4. Run M on each $p \in P_j$ for i steps, where $1 \le j \le n$.
- 5. If in any computation, M accepts all $p \in P_j$, accept."

Part d. intersection.

For any two Turing-recognizable languages L_1 and L_2 , let M_1 and M_2 be the **TM**s that recognize them. We construct a **TM** M that recognizes the intersection of L_1 and L_2 :

"On input string w:

1. Run M_1 and M_2 alternately on w step by step. If both accept, accept. If either one of M_1 or M_2 halts by rejecting, reject."

If both M_1 and M_2 accepts w, M' accepts w because the accepting TM arrives to its accepting state after a finite number of steps. Note that if M_1 and M_2 reject and both of them do so by looping, then M' will loop.

Part e. homomorphism.

For any Turing-recognizable language L, and a homomorphism¹ f, let M be the **TM** that recognizes L. We construct a **TM** M' that recognizes f(L):

"On input string w:

- 1. Run an enumerator E that enumerates L^2 .
- 2. For each string $s = s_1 s_2 \cdots s_n$ generated by E, if $w = f(s_1) \cdot f(s_2) \cdots f(s_n)$, accept."

¹Problem 1.66, definition of homomorphism.

²Theorem 3.21