- **Lemma.** Let S be a linearly independent subset of a vector space V over \mathbb{F} , and let x be an element of V that is not in S. Then $S \cup \{x\}$ is linearly dependent if and only if $x \in \operatorname{span} S$.
- *Proof.* By definition of linear dependence, if $S \cup \{x\}$ is linearly dependent, then

$$\exists (x_1, x_2, \dots, x_n \in (S \cup \{x\}), \ a_1, a_2, \dots, a_n \in \mathbb{F}, \prod_{i=1}^n a_1 a_2 \cdot \dots \cdot a_n \neq 0) : \sum_{i=1}^n a_i x_i = 0.$$

- Since S is linearly independent, one of x_i is equal to x. Without loss of generality assume that $x_1 = x$.
- Thus, $x = a_1^{-1}(-a_2x_2 \cdots a_nx_n)$. Hence, x is a linear combination of vectors in S and thus
- $x \in \operatorname{span}(S)$.

10

- Conversely, suppose that $x \in \text{span}(S)$. Then, by the definition of span,
- $\exists (x_1, x_2, \dots, x_n \in S, \ a_1, a_2, \dots, a_n \in \mathbb{F}) : x = \sum_{i=1}^n a_i x_i$. Thus, $-x + \sum_{i=1}^n a_i x_i = 0$. Since all x_i and x are distinct, $\{x_1, \dots, x_n, x\} = S \cup \{x\}$ is linearly dependent.
- **Theorem.** Let V be a vector space with a finite number of elements q, defined over \mathbb{Z}_p , where p is prime $(p \in \mathbb{P})$. Then $\exists (m \in \mathbb{Z}^+) : q = p^m$.
- *Proof.* If V=0, then 0 is a basis for V. Since q=1 and $\forall (p\in\mathbb{P}): p^0=1=q$, then the statement holds in case V=0.
- Otherwise, there exists a non-zero element x_1 . Note that $\{x_1\}$ is a linearly independent subset of V, since x_1 is non-zero and $ax_1 = 0 \ \exists (a \in \mathbb{Z}_p)$ if and only if a = 0.
- If there are any other elements in V, continue picking elements $x_2, \ldots, x_k \in V$ such that
- $S := \{x_1, x_2, \dots, x_k\}$ is linearly independent.
- Since V has a finite number of elements, this procedure eventually terminates.
- Take $x \in V$. If $x \in S$, then $x \in \text{span}(S)$. If $x \notin S$, then by construction of $S, S \cup \{x\}$ is linearly
- dependent. But then by the Lemma, $x \in \text{span}(S)$. Thus, all the elements of V are in S.
- On the other hand, since V is closed under addition and scalar multiplication, span $(S) \subseteq V$.
- Hence, S is a basis of V and is finite.
- Suppose that $\#(S) = m \in \mathbb{Z}^+$. Proceed to count the number of all the possible linear combinations of
- elements in S.

28

- Since there are p possible values for each scalar, these scalars can be combined in p^m ways. But the set of
- all the linear combinations is span by definition, and since V = span(S) = q, then $q = p^m$. 27