Matematika 1 teorie

0.1 Opakování

0.1.1Značení

* \exists - existuje alespoň jedno

 $^* \ \forall$ - pro každý platí

* N - přirozená čísla

* Z - celá čísla

* Q - racionální čísla (zlomky $\rightarrow \frac{1}{2}...)$

* R - iracionální čísla $(\pi,...)$

0.1.2 Zápis

1)
$$\exists x \in N \forall y \in Z, x^2 = y \parallel 2$$
 $\forall x \in N \exists y \in Z, x^2 = y$

Reálné funkce

Elementární funkce vzniká ze základních elementárních funkcí za pomocí 5 operací

+, -, *, /, skládání

konstantní funkce, mocniná funkce, exponenciální funkce

skládání

základní funkce

$y = \sin x^2$ $f(x) = x^2$

$$g(y) = \sin y$$

$$g(y) = \sin f(x) \Rightarrow y = \sin x^2$$

základní funkce

$$y = \sin^2 x$$

$$\frac{g - \sin x}{f(x) = \sin x}$$

$$g(y) = y^2$$

$$g(y) = f(x)^2 \Rightarrow y = \sin^2 x$$

Neelementární funkce

Absolutní hodnota

$$|x| = x; x > 0$$

$$|x| = 0; x = 0$$

$$|x| = -x; x < 0$$

Elementární funkce

Konstantní funkce

$$y = a$$
$$D_y = R$$

$$H_y = \{a\}$$

Exponenciální funkce

$$y = a^x$$

$$D_u = R$$

$$D_y = R$$

$$H_y = (0; +\infty)$$

Mocniná funkce

$$y = x^a$$

$$D_y = R$$

$$H_y = (0; +\infty)$$

$$H_y = (0; +\infty)$$

Goniometrocké fuknce (sin, cos, tan, coth)

$$\tan x = \frac{\sin x}{\cos x}$$

$$\coth x = \frac{\cos x}{\sin x}$$

10.10.2022

Posloupnost a její limita

Omezenost

$$FN \to R \\ x_n = \frac{2n+1}{3n} \\ 1 \to x_1 = 1 \\ 2 \to x_2 = \frac{5}{6} \\ \vdots \\ x_{10} = \frac{21}{30}$$

 x_n je shora omezená <=> $\exists k \in R \forall n \in N, x_n \leqslant k$

$$k = 2$$
$$\frac{2n+1}{3n} \le 2$$
$$2n+1 \le 6n$$
$$1 \le 4n$$

Posloupnost konvergentní

• vlastní limita $y_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} (y_n) = 0$ 1. $\frac{\infty}{\infty}$

$$\lim \frac{3n-8}{56+2n} = \lim \frac{\frac{3n}{2} - \frac{8}{n}}{\frac{56}{n} + \frac{2n}{n}} \tag{1}$$

$$\lim_{n \to \infty} \frac{3n^2 - 8}{56 + 2n} = \left[\frac{\infty}{\infty}\right] = \lim \frac{\frac{3n^2}{n} - \frac{8}{n}}{\frac{56}{n} + \frac{2n}{n}} = \lim \frac{3n - \frac{8}{n}}{\frac{56}{n} + 2} = \left[\frac{\infty}{2}\right] = \underline{\infty}$$
 (2)

$$\lim \frac{n!}{10^n} \cong 0 \tag{3}$$

$$x_1 = 0.1 \tag{4}$$

$$x_2 = 0.02 (5)$$

$$x_3 = 0.006 (6)$$

$$\lim \left(\sqrt{n^2 + 100} - n\right) \tag{7}$$

Limity

Limity posloupnoustí

$$\begin{split} & \lim_{n \to \infty} \frac{1}{n} = 0 \\ & a \in \mathbb{R} \Rightarrow \left\{ \infty, -\infty, \nexists \right\} \\ & \lim_{n \to \infty} a = a \\ & \lim_{n \to \infty} n = \infty \\ & \lim_{n \to \infty} (-1)^n = \nexists \\ & \lim_{n \to \infty} (-\frac{1}{2})^n = 0 \end{split}$$

Derivace funkcí

definice 1. Funkce f je definovaná v okolí bodu C, který patří do D_f funkce, budeli existovat limita

$$\lim_{x \to c} \frac{f(x) + f(c)}{x - c}$$

, budeme tuto limitu nazývat derivace funkce

definice 2. budeli tato limita rovna ∞ nebo $-\infty$ hovoříme o nevlastní derivaci

vzorec 1.
$$y = k \dots y' = 0$$

vzorec 2.
$$y = x^n \dots y' = n \cdot x^{n-1}$$

vzorec 3.
$$y = a^x \dots y' = a^x \cdot \ln a$$

vzorec 4.
$$y = \sin x \cdot y' = \cos x$$

 $y = \sin x \cdot y' = \cos x$

vzorec 5.
$$y = \log(a) \dots y' = \frac{1}{x}$$

$$\lim_{n \to \infty} \frac{\ln x}{x} = \left[\frac{\infty}{\infty}\right] \doteq 0$$
$$\lim_{n \to \infty} \frac{x}{\sin x} = \left[\frac{0}{0}\right] \doteq 0$$