Pranjali Palhre ASSIGNMENT 2: DEEP LEARNING. 2019112002. Question 1: Neural Wetworks. I when training a deep neural network with gradient descent, the partial derivatives traversing the network from the final layer to irritial layer, using chain rule, undergo matrix multiplications to compute their derivatives. Due to matrix multiplications, if the derivatives are small, then the gradients will decrease exponentially as we propage through the model which it eventually vanishes, which is vanishing gradient problem. gladient problem. similarly, in exploding gradient problem, if the derivatives are large, then the geodient well increase exponentially as we propagate sown the model until they eventually explode, which might cause model to be surstable some to large charge in model weights. RelV is defined as h=max(0,a). Advantages of using RelV:-1. Reduced likelihood of gradund to vanish: In REIV gradients have a constant value whereas signoids becomes incressingly small as the value of x increases. The constant gradient of ReIVs risult in faster learning. 2. Sparsity: It ravises when a < 0. RelV generates share representations. On the other hand segmoid ralways likely to generate some non-zero values resulting in course representations. 3. Slower runtime: ReW converges faster than sigmoid function.

10. of unjud units = 2. Hidden layer = 1 Hidden units = 2. Output unit = 1. Activation function for hidden units - Janh. Activation function for output unit - sigmoid. Assuming bias terms to be zero. Let xe for the the inputs. we have, , flere x is the input vector, $X = \begin{bmatrix} x_1 \\ n_2 \end{bmatrix}$ of $\begin{bmatrix} w_1^{(1)} \\ w_1^{(1)} \end{bmatrix}$ $Z_{i}^{[1]} = \omega_{i}^{[1]} \chi$

$$Z_{1}^{[1]} = \omega_{1}^{[1]} \times , \text{ flere } \times \text{ is the input vertor}, X = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \notin \omega_{1}^{[1]} \times \omega_{2}^{[1]} \times \omega_{2}^$$

$$\begin{array}{lll}
\vec{z}_{2}^{(2)} &= & \omega_{1}^{(2)} \vec{z}_{1}^{(1)} \\
\vec{z}_{1}^{(2)} &= & \omega_{1}^{(2)} \vec{z}_{1}^{(1)}, & \text{flore } \omega_{1}^{(2)} &= & (\omega_{11}^{(2)}) & & a^{(1)} \\
\vec{z}_{1}^{(2)} &= & \left[\omega_{11}^{(2)} & \omega_{12}^{(2)} \right] \begin{bmatrix} a_{1}^{(1)} \\ a_{2}^{(1)} \end{bmatrix} \\
&= & \omega_{11}^{(2)} a_{1}^{(1)} + \omega_{12}^{(2)} a_{2}^{(1)}. \\
\vec{z}_{1}^{(2)} &= & (z_{1}^{(2)}) &= & \frac{1}{1 + \overline{z}} z_{1}^{(2)}.
\end{array}$$

$$\alpha_{1}^{(2)} = \sigma(z_{1}^{(2)}) = \frac{1}{1 + e^{z_{1}^{(2)}}}.$$

$$\delta \hat{y} = \alpha_{1}^{(2)}.$$

$$(q'(x)) = \frac{1}{1+\bar{e}^{2}} \left[1 - \frac{1}{1+\bar{e}^{2}}\right] = q(x) \left[1 - q(x)\right]$$

For
$$\tanh$$
 activation function, $q(x) : \frac{e^{z} - e^{z}}{e^{z} + e^{z}}$.
 $q'(z) = 1 - \left(\frac{e^{z} - e^{z}}{e^{z} + e^{z}}\right)^{2} = 1 - q(x)$

Cost function:
$$J = \frac{1}{m} \sum_{i=1}^{n} L(\hat{q}_i, y_i)$$
. $L(\hat{q}_i, y_i) = (\hat{q}_i - \hat{q}_i)^2$

Gradient Descent:

$$dW^{(1)} = \frac{\partial J}{\partial w^{(1)}}$$
, $W^{(1)} = w^{(1)} - \lambda dw^{(1)}$, λ is the learning rate.

Forward Propagation:

$$z^{(1)} = w^{(1)} x, z_2 = w^{(2)} A^{(1)}$$

 $A^{(1)} = g^{(1)} (z^{(1)}), A^{(2)} = g^{(2)} (z^{(2)})$

Back Propagation.

$$\frac{\partial \dot{x}}{\partial a_{1}^{(2)}} = \frac{\partial}{\partial a} \left[\dot{y} - \dot{a}_{1}^{(2)} \right]^{2} = -2 \left[\dot{y} - \dot{a}_{1}^{(2)} \right].$$

$$a_{1}^{(2)} = \frac{1}{1 + e^{z_{1}(2)}}, \quad \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} = a_{1}^{(2)} \left(1 - a_{1}^{(2)} \right).$$

$$\frac{\partial \mathcal{L}}{\partial a_{1}^{(2)}} = -2\left[y-a_{1}^{(2)}\right] g \frac{\partial a_{1}^{(2)}}{\partial x_{1}^{(2)}} = a_{1}^{(2)}\left(1-a_{1}^{(2)}\right).$$

$$\frac{\partial \mathcal{L}}{\partial \mathcal{L}_{i}^{(2)}} = \frac{\partial \mathcal{L}}{\partial a_{i}^{(2)}} \frac{\partial a_{i}^{(2)}}{\partial \mathcal{L}_{i}^{(2)}} = -2(y-a_{i}^{(2)})a_{i}^{(2)}(1-a_{i}^{(2)}).$$

$$- dz^{[2]} = -2(y-a_1^{[2]})a_1^{[2]}(1-a_1^{[2]}).$$

$$\frac{\partial \mathcal{L}}{\partial w_{11}^{(2)}} = \frac{\partial \mathcal{L}}{\partial z_{1}^{(2)}} - \frac{\partial z_{1}^{(2)}}{\partial w_{11}^{(2)}} = -2(y-a_{1}^{(2)})a_{1}^{(2)}(1-a_{1}^{(2)}), a_{1}^{(2)}$$

$$\frac{\partial \mathcal{L}}{\partial w_{12}^{(2)}} = \frac{\partial \mathcal{L}}{\partial z_{12}^{(2)}} \cdot \frac{\partial z_{1}^{(2)}}{\partial w_{12}^{(2)}} = -2(y-a_{1}^{(2)})a_{1}^{(2)}(1-a_{1}^{(2)}) \cdot a_{2}^{(1)}$$

$$dw_{12}^{[2]} = -2(y-a_1^{[2]}) a_1^{[2]} (1-a_1^{[2]}) a_1^{[1]}$$
 { $dw_{12}^{[2]}$ for $dw_{12}^{[2]}$ are $dw_{12}^{[2]} = -2(y-a_1^{[2]}) a_1^{[2]} (1-a_1^{[2]}) a_2^{[1]}$. { $dw_{12}^{[2]}$ for $dw_{12}^{[2]}$ are $dw_{12}^{[2]} = -2(y-a_1^{[2]}) a_1^{[2]} (1-a_1^{[2]}) a_2^{[1]}$. { $dw_{12}^{[2]}$ for $dw_{12}^{[2]}$ for $dw_{12}^{[2]}$ are $dw_{12}^{[2]} = -2(y-a_1^{[2]}) a_1^{[2]} (1-a_1^{[2]}) a_2^{[1]}$. { $dw_{12}^{[2]}$ for $dw_{12}^{[2]}$ for

$$w_{1}^{[2]} = w_{1}^{[2]} - \lambda dw_{1}^{[2]} = w_{1}^{[2]} + \lambda (2(y - a_{1}^{[2]}) a_{1}^{[2]} (1 - a_{1}^{[2]}) a_{2}^{[1]})$$

$$w_{12}^{[2]} = w_{12}^{[2]} - \lambda dw_{12}^{[2]} = w_{11}^{[2]} + \lambda (2(y - a_{1}^{[2]}) a_{1}^{[2]} (1 - a_{1}^{[2]}) a_{2}^{[1]})$$

$$w_{12}^{[2]} = w_{12}^{[2]} - \lambda dw_{12}^{[2]} = w_{11}^{[2]} + \lambda [2(y - a_{1}^{[2]}) a_{1}^{[2]} (1 - a_{1}^{[2]}) a_{2}^{[1]})$$

$$\frac{\partial \mathcal{L}}{\partial z^{[1]}} = dz^{[1]} = w^{[2]} dz^{[2]} * g^{[1]}(z^{[1]})$$

$$dZ_{1}^{[1]} = \frac{\partial L}{\partial Z_{1}^{[1]}} = \frac{\partial L}{\partial a_{1}^{[2]}} \cdot \frac{\partial a_{1}^{[2]}}{\partial Z_{1}^{[2]}} \cdot \frac{\partial x_{1}^{[2]}}{\partial a_{1}^{[1]}} \cdot \frac{\partial a_{1}^{[1]}}{\partial Z_{1}^{[1]}} \cdot \frac{\partial a_{1}$$

=
$$dz_1^{[2]} W_{12}^{[2]} (1 - a_2^{[1]})$$
, $a_2^{[1]} = \tanh^2(Z_2^{[1]})$

 $\omega_{22}^{[1]} := \omega_{21}^{[1]} - \chi d\omega_{22}^{[1]} = \omega_{22}^{[1]} - \chi d\chi_{2}^{[1]} \cdot \chi_{2}.$ 4. The gradient of less functions with respect to weights less in each layer can be written as, [141] $\frac{\partial \mathcal{L}}{\partial \omega_{ik}}[L] = S_{i}^{[l]} a_{k}^{[l-1]}, \quad S_{i}^{[l]}[L] = \sum_{k=1}^{n} \omega_{ki}^{[l+1]} S_{k}^{[l+1]} (g^{[l]})^{i} (Z_{i}^{[l]})$ $S_{i}^{(L)} = \frac{\partial L(\hat{q}, y)}{\partial Z_{i}(L)}$ $\frac{\partial \mathcal{L}}{\partial b_i}(u)$: $\delta_i[l]$. gradient descent, $wy^{(l)} := wy^{(l)} - \lambda \frac{\partial J}{\partial w_i}^{(l)}, b_i^{(l)} = b_i^{(l)} - \lambda \frac{\partial J}{\partial b_i^{(l)}}.$ Case 1: If we initialize all weights to zero. We have, $z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}$ (In vectorised implementation) of Die will have some values for zero initialization of weights. and therefore same update will be performed for all the weights

 $d\omega_{11}^{(1)} = \frac{\partial \mathcal{L}}{\partial \mathcal{L}_{1}^{(1)}} \frac{\partial \mathcal{L}_{1}^{(1)}}{\partial \omega_{11}} = d\mathcal{L}_{1}^{(1)} \chi_{1}.$

Here dw (1) are averaged over all the training examples.

 $W_{12}^{[1]} := W_{12}^{[1]} - \chi dW_{12}^{[1]} = W_{12}^{[1]} - \chi d\chi_{L}^{[1]} \chi_{2}$

 $w_{11}^{[1]} := w_{21}^{[1]} - x dw_{21}^{[1]} = w_{21}^{[1]} - x dx_{2}^{[1]} \cdot \chi_{1}$

W W[1] = w[1] - xdw[1] = w[1] - xdx[1] x1.

d W[1] = dZ[1] x2.

d will = d Z2 21

 $d \omega_{22}^{[1]} = d Z_2^{[1]} \chi_2$

in a particular which was the equivalent to learning same features by call the neurons/nodes which might cause the network model to saturate.

(ase 2: Random Initialization of weights to 1 in a layer, Now, if we initialize all the weights to 1 in a layer, $\omega_{ij}(l) = 1$, each step of gradient discent, the weights in each layer will be same for all neurons and this network will behave similar to one with having only one hidden unit in each layer which will have limited learning capacity as we also use same activation function for all the neurons in a layer.

Cauz: Random initialization of weights.

Random initialization of weights will help to sourcome the symmetry and no update usue faced when we initialize weights to one & zero respectively.

Question 2: Convolutional Neural Network.
1 Suze of previous layer = Jxk.
Filter size = MXN.
Stride length: S.
Stride length: S. Padding: P.
Let the dimension of the new layer be XXX.
$X = \frac{n_{H} + 2p - f}{S} + 1 = \frac{J + 2P - M}{S} + 1$
Y= K+2P-M+1.
. Lize of resulting convolutional layer will be (J+2P-M+1) x (K+2P-N+1)
2. Max pooling filter size = FXF Strick = S
Input layer dize - JXK.
Let the output layer size le XXX.
$X = J - F_{+} (d Y = K - F_{+} L)$
all all like the control of the cont
In converted to a fully connecting by setting
3. A CNN can the workbut layer to be equal I to no of
number of neuros used in CNN, where the each filter sold is
The size of the Assunsamplea stuff so (8) (8). 3. A CNN can be converted to a fully connecting by setting humber of neurons on output layer to be equal to no of humber of neurons on output layer to be each filter orze is fitters using used in CNN, where the each filter orze is equal to that of input.