Warm-up: Recursive Least Squares Regression
Kalman Filter
Nonlinear State Space Models
Particle Filtering

Time Series Analysis

4. State space models and Kalman filtering

Andrew Lesniewski

Baruch College New York

Fall 2023

Outline

- Warm-up: Recursive Least Squares Regression
- 2 Kalman Filter
- Nonlinear State Space Models
- 4 Particle Filtering

OLS regression

 As a motivation for the reminder of this lecture, we consider the standard linear model

$$Y = X^{\mathrm{T}}\beta + \varepsilon, \tag{1}$$

where $Y \in \mathbb{R}$, $X \in \mathbb{R}^k$, and $\varepsilon \in \mathbb{R}$ is noise.

Particle Filtering

- This includes the model with an intercept as a special case in which the first component of X is assumed to be 1.
- Given n observations x₁,..., x_n and y₁,..., y_n of X and Y, respectively, the ordinary least square least (OLS) regression leads to the following estimated value of the coefficient β:

$$\widehat{\beta}_n = (\mathcal{X}_n^{\mathrm{T}} \mathcal{X}_n)^{-1} \mathcal{X}_n^{\mathrm{T}} \mathcal{Y}_n.$$
 (2)

OLS regression

• The matrices \mathcal{X} and \mathcal{Y} above are defined as

Particle Filtering

$$\mathcal{X} = \begin{pmatrix} X_{1}^{\mathsf{T}} \\ \vdots \\ X_{n}^{\mathsf{T}} \end{pmatrix} \in \mathrm{Mat}_{n,k}(\mathbb{R}) \tag{3}$$

and

$$\mathcal{Y}_n = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \tag{4}$$

respectively.

Particle Filtering

- Suppose now that X and Y consists of a streaming set of data, and each new observation leads to an updated value of the estimated β.
- For large data sets it may be suboptimal to redo the entire calculation above after a new observation arrives in order to find the updated value.
- Namely, this calculation may lead to both large memory and large storage requirements.
- Instead, we shall derive a recursive algorithm that stores the last calculated value of the estimated β , and updates it to incorporate the impact of the latest observation.
- To this end, we introduce the notation:

$$P_n = (\mathcal{X}_n^{\mathrm{T}} \mathcal{X}_n)^{-1},$$

$$B_n = \mathcal{X}_n^{\mathrm{T}} \mathcal{Y}_n,$$
(5)

and rewrite (2) as

$$\widehat{\beta}_n = P_n B_n. \tag{6}$$

Nonlinear State Space Models
Particle Filtering

Recursive least squares regression

Using (3) and (4), we can write

$$\mathcal{X}_{n+1} = \begin{pmatrix} \mathcal{X}_n \\ \mathbf{x}_{n+1}^T \end{pmatrix},$$
$$\mathcal{Y}_{n+1} = \begin{pmatrix} \mathcal{Y}_n \\ \mathbf{y}_{n+1} \end{pmatrix}.$$

• Therefore, P_n and B_n obey the following recursive relations:

$$P_{n+1}^{-1} = P_n^{-1} + x_{n+1} x_{n+1}^{T},$$

 $B_{n+1} = B_n + x_{n+1} y_{n+1}.$

We shall now invoke the matrix inversion formula:

Particle Filtering

$$(A+BD)^{-1} = A^{-1} - A^{-1}B(I+DA^{-1}B)^{-1}DA^{-1}, (7)$$

valid for a square invertible matrix A, and matrices B and D such that the operations above are defined.

Proof:

$$(A + BD)(A^{-1} - A^{-1}B(I + DA^{-1}B)^{-1}DA^{-1})$$

$$= I - B(I + DA^{-1}B)^{-1}DA^{-1} + BDA^{-1} - BDA^{-1}B(I + DA^{-1}B)^{-1}DA^{-1}$$

$$= I - B\left((I + DA^{-1}B)^{-1} - I + DA^{-1}B(I + DA^{-1}B)^{-1}\right)DA^{-1}$$

$$= I.$$

This yields the following relation:

$$\begin{split} P_{n+1} &= P_n - P_n x_{n+1} (1 + x_{n+1}^{\mathrm{T}} P_n x_{n+1})^{-1} x_{n+1}^{\mathrm{T}} P_n \\ &= P_n - K_{n+1} x_{n+1}^{\mathrm{T}} P_n. \end{split}$$

where we have introduced the notation

$$K_{n+1} = P_n x_{n+1} (1 + x_{n+1}^{T} P_n x_{n+1})^{-1}.$$

Now, define the a priori error

$$\widehat{\varepsilon}_{n+1} = y_{n+1} - x_{n+1}^{\mathrm{T}} \widehat{\beta}_n.$$

• Then the recursion for B_n can be recast as

$$B_{n+1} = B_n + x_{n+1} x_{n+1}^{\mathrm{T}} \widehat{\beta}_n + x_{n+1} \widehat{\varepsilon}_{n+1}.$$

Using (6), we see that

$$\begin{split} P_{n+1}^{-1}\widehat{\beta}_{n+1} &= P_n^{-1}\widehat{\beta}_n + x_{n+1}x_{n+1}^{\mathbb{T}}\widehat{\beta}_n + x_{n+1}\widehat{\varepsilon}_{n+1} \\ &= (P_n^{-1} + x_{n+1}x_{n+1}^{\mathbb{T}})\widehat{\beta}_n + x_{n+1}\widehat{\varepsilon}_{n+1} \\ &= P_{n+1}^{-1}\widehat{\beta}_n + x_{n+1}\widehat{\varepsilon}_{n+1}. \end{split}$$

Particle Filtering

In other words,

$$\widehat{\beta}_{n+1} = \widehat{\beta}_n + P_{n+1} x_{n+1} \widehat{\varepsilon}_{n+1}.$$

However, from the definition of K_{n+1},

$$P_{n+1}x_{n+1}=K_{n+1},$$

and so

$$\widehat{\beta}_{n+1} = \widehat{\beta}_n + K_{n+1}\widehat{\varepsilon}_{n+1}.$$

- The algorithm can be summarized as follows.
- Initialize $\widehat{\beta}_0$ (e.g. $\widehat{\beta}_0=0$), and P_0 (e.g. $P_0=\mu I$), and iterate:

Particle Filtering

$$\widehat{\varepsilon}_{n+1} = y_{n+1} - x_{n+1}^{T} \widehat{\beta}_{n},
K_{n+1} = P_{n} x_{n+1} (1 + x_{n+1}^{T} P_{n} x_{n+1})^{-1},
P_{n+1} = P_{n} - K_{n+1} x_{n+1}^{T} P_{n},
\widehat{\beta}_{n+1} = \widehat{\beta}_{n} + K_{n+1} \widehat{\varepsilon}_{n+1}.$$
(8)

• As n increases, $\widehat{\beta}_n$ converges to the "true" $\widehat{\beta}$, regardless of the initial values $\widehat{\beta}_0$ and P_0 .

Particle Filtering

- Note that
 - (i) we no longer have to store the (potentially large) matrices \mathcal{X}_n and \mathcal{Y}_n ,
 - (ii) the computationally expensive operation of inverting the matrix $\mathcal{X}_n \mathcal{X}_n^{\mathrm{T}}$ is replaced with a small number of simpler operations.
- One can also introduce a learning rate $0 < \lambda < 1$ so that the older observations are "forgotten" exponentially fast.
- We now move on to the main topic of these notes, the Kalman filter and its generalizations.

- A state space model (SSM) is a time series model in which the time series Y_t is interpreted as the result of a noisy observation of a stochastic process X_t.
- The values of the variables X_t and Y_t can be continuous (scalar or vector) or discrete
- Graphically, an SSM is represented as follows:

- SSMs belong to the realm of Bayesian inference, and they have been successfully applied in many fields to solve a broad range of problems.
- Our discussion of SSMs follows the book [2].

 It is usually assumed that the state process X_t is Markovian, i.e. X_t depends on the history only through X_{t-1}, and Y_t depends only on X_t:

$$X_t \sim p(X_t|X_{t-1}),$$

$$Y_t \sim p(Y_t|X_t).$$
(10)

- The most well studied SSM is the Kalman filter, for which the processes above are linear and and the sources of randomness are Gaussian.
- Namely, a linear state space model has the form:

$$X_{t+1} = GX_t + \varepsilon_{t+1},$$

$$Y_t = HX_t + \eta_t.$$
(11)

- Here, the state vector $X_t \in \mathbb{R}^r$ is possibly unobservable and it can be observed only through the observation vector $Y_t \in \mathbb{R}^n$.
- The matrices $G \in \operatorname{Mat}_r(\mathbb{R})$ and $H \in \operatorname{Mat}_{n,r}(\mathbb{R})$ are assumed to be known.
- For example, their values may be given by (economic) theory, or they may have been obtained through MLE estimation.
- In fact, the matrices G and H may depend deterministically on time, i.e. G and H
 may be replaced by known matrices G_t and H_t, respectively.
- We also assume that the distribution of the initial value X₁ is known and Gaussian.

• The vectors of residuals $\varepsilon_t \in \mathbb{R}^r$ and $\eta_t \in \mathbb{R}^n$ satisfy

$$E(\varepsilon_l \varepsilon_s^{\mathsf{T}}) = \delta_{ls} Q,$$

$$E(\eta_l \eta_s^{\mathsf{T}}) = \delta_{ls} R,$$
(12)

where δ_{ts} denotes Kronecker's delta, and where Q and R are known positive definite (covariance) matrices.

- We also assume that the components of ε_t and η_s are independent of each other for all t and s.
- The matrices Q and R may depend deterministically on time.
- The first of the equations in (11) is called the state equation, while the second one is referred to as the observation equation.

Inference for state space models

- Let T denote the time horizon.
- Our broad goal is to make inference about the states X_t based on a set of observations Y₁,..., Y_t.
- Three questions are of particular interest:
 - (i) Filtering: t < T. What can we infer about the current state of the system based on all available observations?
 - (ii) Smoothing: t = T. What can be inferred about the system based on the information contained in the entire data sample? In particular, how can we back fill missing observations?
 - (iii) Forecasting: t > T. What is the optimal prediction of a future observation and / or a future state of the system?

- In principle, any inference for this model can be done using the standard methods of multivariate statistics.
- However, these methods require storing large amounts of data and inverting tn × tn matrices.
- Notice that, as new data arrive, the storage requirements and matrix dimensionality increase.
- This is frequently computationally intractable and impractical.
- Instead, the Kalman filter relies on a recursive approach which does not require significant storage resources and involves inverting n x n matrices only.
- We will go through a detailed derivation of this recursion.

- The purpose of filtering is to update the knowledge of the system each time a new observation is made.
- We define the one period predictor μ_{t+1}, when the observation Y_t is made, and its covariance P_{t+1};

$$\mu_{t+1} = \mathsf{E}(X_{t+1}|Y_{1:t}), P_{t+1} = \mathsf{Var}(X_{t+1}|Y_{1:t}),$$
(13)

as well as the *filtered estimator* $\mu_{t|t}$ and its covariance $P_{t|t}$:

$$\mu_{t|t} = \mathsf{E}(X_t|Y_{1:t}),
P_{t|t} = \mathsf{Var}(X_t|Y_{1:t}).$$
(14)

Our objective is to compute these quantities recursively.

We let

$$v_t = Y_t - E(Y_t|Y_{1:t-1})$$
 (15)

denote the *one period prediction error* or *innovation*.

- In Homework Assignment #5 we show that v_t 's are mutually independent.
- Note that

$$v_t = Y_t - E(HX_t + \eta_t | Y_{1:t-1})$$

= $Y_t - H\mu_t$.

• As a consequence, we have, for t = 2, 3, ...,

Particle Filtering

$$E(v_t|Y_{1:t-1}) = E(HX_t + \eta_t - H\mu_t|Y_{1:t-1})$$

= 0. (16)

Now we notice that

$$\begin{aligned} \text{Var}(v_t|Y_{1:t-1}) &= \text{Var}(HX_t + \eta_t - H\mu_t|Y_{1:t-1}) \\ &= \text{Var}(H(X_t - \mu_t)|Y_{1:t-1}) + \text{Var}(\eta_t|Y_{1:t-1}) \\ &= \text{E}(H(X_t - \mu_t)(X_t - \mu_t)^{\text{T}}H^{\text{T}}|Y_{1:t-1}) + \text{E}(\eta_t\eta_t^{\text{T}}|Y_{1:t-1}) \\ &= HP_tH^{\text{T}} + R. \end{aligned}$$

For convenience we denote

$$F_t = \text{Var}(v_t | Y_{1:t-1}),$$
 (17)

and we will assume in the following that the matrix F_t is invertible.

• The result of the calculation above can thus be stated as:

$$F_t = HP_tH^{\mathrm{T}} + R. \tag{18}$$

• This relation allows us to derive a relation between μ_t and $\mu_{t|t}$.

- First, we will establish the following *Lemma*.
- Let X and Y be Gaussian jointly distributed random vectors with

$$\mathsf{E} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix},$$

and

$$\operatorname{Var}\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{XY}^{\top} & \Sigma_{YY} \end{pmatrix}$$

Then

$$\mathsf{E}(X|Y) = \mu_X + \Sigma_{XY} \Sigma_{YY}^{-1} (Y - \mu_Y), \tag{19}$$

and

$$Var(X|Y) = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^{T}.$$
 (20)

Proof: Consider the random variable

$$Z = X - \Sigma_{XY} \Sigma_{YY}^{-1} (Y - \mu_Y).$$

- Since Z is a linear in X and Y, the vector (Y, Z) is Gaussian jointly distributed.
- Furthermore,

$$E(Z) = \mu_X,$$

$$Var(Z) = E((Z - \mu_X)(Z - \mu_X)^{T})$$

$$= \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^{T}.$$

Finally,

$$Cov(Y, Z) = E(Y(Z - \mu_X)^T)$$
= $E(Y(X - \mu_X)^T - Y(Y - \mu_Y)^T \Sigma_{YY}^{-1} \Sigma_{XY}^T)$
= 0.

- This means that Z and Y are independently distributed!
- Consequently, E(Z|Y) = E(Z) and Var(Z|Y) = Var(Z).

Since

$$X = Z + \Sigma_{XY} \Sigma_{YY}^{-1} (Y - \mu_Y),$$

we have

$$\mathsf{E}(X|Y) = \mu_X + \Sigma_{XY}\Sigma_{YY}^{-1}(Y - \mu_Y),$$

which proves (19).

Also, conditioned on Y, X and Z differ by a constant vector, and so

$$\begin{aligned} \text{Var}(X|Y) &= \text{Var}(Z|Y) \\ &= \text{Var}(Z) \\ &= \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^{\text{T}}, \end{aligned}$$

which proves (20). QED

Now, going back to the main calculation, we have

$$\mu_{t|t} = \mathsf{E}(X_t|Y_{1:t})$$

= $\mathsf{E}(X_t|Y_{1:t-1}, v_t),$

and

$$\mu_{t+1} = \mathsf{E}(X_{t+1}|Y_{1:t}) = \mathsf{E}(X_{t+1}|Y_{1:t-1}, v_t).$$

Applying the Lemma to the joint distribution of X_t and v_t conditioned on Y_{t-1} yields

$$\mu_{t|t} = \mathsf{E}(X_t|Y_{1:t-1}) + \mathsf{Cov}(X_t, v_t|Y_{1:t-1})\mathsf{Var}(v_t|Y_{1:t-1})^{-1}v_t. \tag{21}$$

Note that

$$Cov(X_{t}, v_{t}|Y_{1:t-1}) = E(X_{t}(HX_{t} + \eta_{t} - H\mu_{t})^{T}|Y_{1:t-1})$$

$$= E(X_{t}(X_{t} - \mu_{t})^{T}H^{T}|Y_{1:t-1})$$

$$= E((X_{t} - \mu_{t})(X_{t} - \mu_{t})^{T}|Y_{1:t-1})H^{T}$$

$$= P_{t}H^{T},$$
(22)

by the definition (13) of P_t .

This allows us to rewrite equation (21) in the form

$$\mu_{t|t} = \mu_t + P_t H^{\mathrm{T}} F_t^{-1} v_t, \tag{23}$$

where F_t is defined by (17).

Next, we conclude from the Lemma that

$$Var(X_t|Y_{1:t}) = Var(X_t|Y_{1:t-1}, v_t)$$

$$= Var(X_t|Y_{1:t-1}) - Cov(X_t, v_t|Y_{1:t-1}) Var(v_t|Y_{1:t-1})^{-1} Cov(X_t, v_t|Y_{1:t-1})^{T}.$$

From the definition (14) of $P_{t|t}$, this can be stated as the following relation:

$$P_{t|t} = P_t - P_t H^{T} F_t^{-1} H P_t = (I - K_t H) P_t.$$
 (24)

where

$$K_t = P_t H^{\mathrm{T}} F_t^{-1}. \tag{25}$$

- The matrix K_t is referred to as the Kalman gain.
- Now we are ready to establish recursions for μ_t and P_t .

From the state equation (the first equation in (11)) we have

$$\mu_{t+1} = \mathsf{E}(GX_t + \varepsilon_{t+1} | Y_{1:t}) = G\mathsf{E}(X_t | Y_{1:t}) = G\mu_{t|t}.$$
 (26)

Furthermore,

$$P_{t+1} = \operatorname{Var}(GX_t + \varepsilon_{t+1}|Y_{1:t})$$

= $G\operatorname{Var}(X_t|Y_{1:t})G^{T} + \operatorname{Var}(\varepsilon_{t+1}|Y_{1:t}).$ (27)

Substituting (24) and (25) into (27) we find that

$$P_{t+1} = GP_{t|t}G^{\mathrm{T}} + Q. \tag{28}$$

Relations (26) and (28) are called the prediction step of the Kalman filter.

 Using this notation, we can write the full system of recursive relations for updating from t to t + 1 in the following form:

$$v_{t} = Y_{t} - H\mu_{t},$$

$$F_{t} = HP_{t}H^{T} + R,$$

$$K_{t} = P_{t}H^{T}F_{t}^{-1},$$

$$\mu_{t|t} = \mu_{t} + K_{t}v_{t},$$

$$P_{t|t} = (I - K_{t}H)P_{t},$$

$$\mu_{t+1} = G\mu_{t|t},$$

$$P_{t+1} = GP_{t|t}G^{T} + Q,$$
(29)

for t = 1, 2, ...

- The initial values μ_1 and P_1 are assumed to be known, and consequently, $X_1 \sim N(\mu_1, P_1)$.
- If the matrices G, H, Q, R depend deterministically on t, the formulas above remain valid with G replaced by G_t, etc.

Kalman filter with mean adjustments

It is sometimes necessary to consider a linear SSM with mean adjustments:

$$X_{t+1} = GX_t + C_t + \varepsilon_{t+1},$$

$$Y_t = HX_t + D_t + \eta_t,$$
(30)

where $C_t \in \mathbb{R}^r$ and $D_t \in \mathbb{R}^n$ are deterministic (known).

Following the arguments above, we can derive the following Kalman filter for (30):

$$v_{t} = Y_{t} - H\mu_{t} - D_{t},$$

$$F_{t} = HP_{t}H^{T} + R,$$

$$K_{t} = P_{t}H^{T}F_{t}^{-1},$$

$$\mu_{t|t} = \mu_{t} + K_{t}v_{t},$$

$$P_{t|t} = (I - K_{t}H)P_{t},$$

$$\mu_{t+1} = G\mu_{t|t} + C_{t},$$

$$P_{t+1} = GP_{t|t}G^{T} + Q,$$
(31)

for t = 1, 2, ...

State smoothing

- State smoothing refers to the process of estimation of the values of the states X_1, \ldots, X_T , given the *entire* observation set.
- The objective is thus to (recursively) determine the conditional mean

$$\widehat{X}_t = \mathsf{E}(X_t | Y_{1:T}) \tag{32}$$

and the conditional variance

$$V_t = \operatorname{Var}(X_t | Y_{1:T}). \tag{33}$$

- Since all distributions are normal, $X_t | Y_{1:T} \sim N(\widehat{X}_t, V_t)$.
- As before, we assume that $X_1 \sim N(\mu_1, P_1)$ with known μ_1 and P_1 .

State smoothing

- An analysis, similar to the derivation of the Kalman filter leads to the following result (see [2]) for the derivation).
- The smoothing process consists of two phases:
 - (i) forward sweep of the Kalman filter (29) for t = 1, ..., T,
 - (ii) backward recursion

$$R_{t-1} = H^{T} F_{t}^{-1} v_{t} + L_{t}^{T} r_{t},$$

$$N_{t-1} = H^{T} F_{t}^{-1} H + L_{t}^{T} N_{t} L_{t},$$

$$\widehat{X}_{t} = \mu_{t} + P_{t} R_{t-1},$$

$$V_{t} = P_{t} - P_{t} N_{t-1} P_{t},$$
(34)

where $L_t = G(I - K_t H)$, for t = T, T - 1, ..., with the terminal condition $R_T = 0$ and $N_T = 0$.

 This version of the smoothing algorithm is somewhat unintuitive but computationally efficient.

Forecasting with Kalman filter

- The forecasting problem consists in predicting the values of X_{t+d} and Y_{t+d} given the observations Y_{1:t}.
- As discussed in Lecture Notes #1, the optimal forecasts of the state variable and observation are given by:

$$X_{t+d}^* = \mathsf{E}(X_{t+d}|Y_{1:t}), \tag{35}$$

with variance

$$P_{t+d}^* = \mathsf{E}\big((X_{t+d}^* - X_{t+d})(X_{t+d}^* - X_{t+d})^{\mathrm{T}}|Y_{1:t}\big),\tag{36}$$

and

$$Y_{t+d}^* = \mathsf{E}(Y_{t+d}|Y_{1:t}), \tag{37}$$

with variance

$$V_{t+d}^* = \mathsf{E}\big((Y_{t+d}^* - Y_{t+d})(Y_{t+d}^* - Y_{t+d})^{\mathrm{T}}|Y_{1:t}\big), \tag{38}$$

respectively.

Forecasting with Kalman filter

• The forecast is straightforward for d = 1:

$$X_{t+1}^* = G\mu_{t|t}, (39)$$

with

$$P_{t+1}^* = GP_{t+1}G^{T} + Q, (40)$$

and

$$Y_{t+1}^* = H\mu_{t+1}, (41)$$

with

$$V_{t+1}^* = HP_{t+1}H^{\mathrm{T}} + R. (42)$$

Forecasting with Kalman filter

• For d > 1 we obtain the recursions:

$$X_{t+d}^* = GX_{t+d-1}^*, (43)$$

with

$$P_{t+d}^* = GP_{t+d-1}^*G^{T} + Q, (44)$$

and

$$Y_{t+d}^* = HX_{t+d}^*, \tag{45}$$

with

$$V_{t+d}^* = HP_{t+d}^*H^{T} + R. (46)$$

MLE estimation of the parameters

- We have left a number of parameters that may have not been specified, namely:
 - (i) the initial values μ_1 and P_1 that enter the probability distribution $N(\mu_1, P_1)$ of the state X_1 ,
 - (ii) the matrices G and H,
 - (iii) the variances Q and R of the disturbances in the state and observation equations, respectively.
- We denote the unspecified model parameters collectively by θ .
- If μ_1 and P_1 are known, the remaining parameters θ can be estimated by means of MLE.

MLE estimation of the parameters

To this end, we consider the joint probability of the observations:

Particle Filtering

$$p(Y_{1:T}|\theta) = \prod_{t=1}^{T} p(Y_t|Y_{1:t-1}), \tag{47}$$

where $p(Y_1|Y_0) = p(Y_1)$.

Hence,

$$-\log \mathcal{L}(\theta|Y_{1:T}) = \frac{1}{2} \sum_{t=1}^{T} \left(\log \det(F_t) + v_t^{\mathrm{T}} F_t^{-1} v_t \right) + const, \tag{48}$$

where v_t denotes the innovation.

MLE estimation of the parameters

- For each t, the value of the log likelihood function is calculated by running the Kalman filter.
- Searching for the minimum of this log likelihood function using an efficient algorithm such as BFGS, we find estimates of θ .
- In the case of unknown μ₁ and P₁, one can use the diffuse log likelihood method, which is discussed in detail in [2].
- Alternatively, one can regard μ_1 and P_1 hyperparameters of the model.

- The recursion relations defining the Kalman filter can be extended to the case of more general state space models.
- Some of these extensions are straightforward (such as adding constant terms to the right hand sides of the state and observation equations in (11)), others are fundamentally more complicated.
- In the remainder of this lecture we summarize these extensions following [2].

In general, a state space model has the form:

where the state and observed variables may be continuous or discrete.

- It is also not required that the distributions of the residuals are Gaussian.
- Such models include linear and non-linear Kalman filters, hidden Markov models, stochastic volatility models, etc.
- As in the case of a linear SSM, the *filtering problem* is to estimate *sequentially* the values of the unobserved states X_t , given the values of the observation process Y_1, \dots, Y_t , for any time step t.

- We assume that the states X_t and the observations Y_t can be modeled in the following form.
- X_1, X_2, \cdots , is a Markov process on \mathbb{R}^n that evolves according to the transition probability density $p(X_t | X_{t-1})$:

$$X_t \mid X_{t-1} \sim p(X_t \mid X_{t-1}).$$
 (50)

• On the other hand, Y_t depends only on the value of the state variable X_t :

$$Y_t \sim p(Y_t \mid X_t). \tag{51}$$

Usually, these two relations are stated in explicit functional form:

$$X_t = G(X_{t-1}, \varepsilon_t),$$

$$Y_t = H(X_t, \eta_t),$$
(52)

where ε_t and η_t are noises.

Stochastic volatility model

An example of a nonlinear SSM is the stochastic volatility model

$$X_{t+1} = a + X_t + \varepsilon_{t+1},$$

$$Y_t = \exp(X_t)\eta_t,$$
(53)

where $X_t, Y_t \in \mathbb{R}$, $a \in \mathbb{R}$, $\varepsilon_t \sim N(0, \alpha^2)$, and $\eta_t \sim N(0, 1)$.

- This model can be thought of as follows:
 - (i) the (hidden) state variable X_t drives the stochastic volatility process $\sigma_t = \exp(X_t)$,
 - (ii) the volatility process is observed through the change $Y_t = F_{t+1} F_t$ in the market observable F_t (such as asset price or forward rate).
- One can view this model as a discretized version of a continuous time stochastic volatility model such as SABR.

- The extended Kalman filter (EKF) consists in approximating a nonlinear SSM by a linear SSM followed by applying the Kalman filter.
- Namely, assume that the state and observation equations are given by

$$X_{t+1} = G(X_t) + \varepsilon_{t+1},$$

$$Y_t = H(X_t) + \eta_t,$$
(54)

respectively, where

- (i) G(x) and H(x) are differentiable functions on \mathbb{R}^r ,
- (ii) the disturbances ε_t and η_t are mutually and serially uncorrelated with mean zero and covariances $Q(X_t)$ and $R(X_t)$, respectively (we do not require that their distributions are Gaussian).
- (iii) X_1 has mean μ_1 and variance P_1 , and is uncorrelated with all noises.

 We denote by G'_t and H'_t the matrices of first derivatives (Jacobi matrices) of G(X_t) and H(X_t) evaluated at μ_t and μ_{t|t}, respectively:

$$G'_t = \nabla G(X_t)|_{X_t = \mu_{t|t}},$$

$$H'_t = \nabla H(X_t)|_{X_t = \mu_t}.$$

 We now expand the matrix functions G, H, Q and R in Taylor series to the orders indicated:

$$G(X_t) = G(\mu_{t|t}) + G'_t(X_t - \mu_{t|t}) + \dots,$$

$$H(X_t) = H(\mu_t) + H'_t(X_t - \mu_t) + \dots,$$

$$Q(X_t) = Q(\mu_{t|t}) + \dots,$$

$$R(X_t) = R(\mu_t) + \dots,$$

and disregard the higher order terms denoted by

As a result of this approximation we obtain a linear SSM with mean adjustment:

$$X_{t+1} = G'_t X_t + (G(\mu_{t|t}) - G'_t \mu_{t|t}) + \varepsilon_{t+1},$$

$$Y_t = H'_t X_t + (H(\mu_t) - H'_t \mu_t) + \eta_t.$$
(55)

 Applying the Kalman filter formulas to this SSM we obtain the following EKF recursion:

$$v_{t} = Y_{t} - H(\mu_{t}),$$

$$F_{t} = H'_{t}P_{t}H'^{T}_{t} + R(\mu_{t}),$$

$$K_{t} = P_{t}H'^{T}F_{t}^{-1},$$

$$\mu_{t|t} = \mu_{t} + K_{t}v_{t},$$

$$P_{t|t} = (I - K_{t}H'_{t})P_{t},$$

$$\mu_{t+1} = G(\mu_{t|t}),$$

$$P_{t+1} = G'_{t}P_{t|t}G'^{T}_{t} + Q(\mu_{t|t}),$$
(56)

for
$$t = 1, 2, ...$$

- The EKF works well if the functions G and H are weakly nonlinear, for strongly nonlinear models its performance may be poor.
- Other extensions of the Kalman filter have been developed, including the unscented Kalman filter (UKF).
- It is based on a different principle than the EKF: rather than approximating G and H by linear expressions, one matches approximately the first and second moments of a nonlinear function of a Gaussian random variable, see [2] for details.
- Another approach to inference in nonlinear SSMs is via Monte Carlo (MC) techniques particle filters, a.k.a. sequential Monte Carlo.

Particle filtering

- Estimation of complex time series models requires evaluation of complex expected values, often expressed as high dimensional, analytically intractable integrals.
- Particle filters provide a method for calculating such integrals approximately via carefully crafted MC techniques.
- In this approach, a continuous PDF is approximated by a discrete PDF made of weighted outcomes called particles.
- Particle filter algorithms are formulated recursively, very much in the spirit of the Kalman filter.
- They are far reaching generalizations of the Kalman filter to nonlinear, non-Gaussian SSMs
- Since particle filtering is based on MC methods, its performance or accuracy does not much that of the Kalman filter.

- The probability distributions in the following depend on some parameters θ . In order to streamline the notation, we will suppress θ from all the formulas.
- All (Bayesian) inference about X_t is encoded in the posterior PDF $p(X_t \mid Y_{1:t})$.
- The particle filter methodology provides an approximation of these conditional probabilities using the empirical measure associated with a sampling algorithm.
- The objective of a particle filter is to estimate the posterior PDF of the (unobserved) state variables given a time series of observations.
- Distribution properties of the state variable can be captured by the joint smoothing distribution, which is defined as

$$p(X_{1:t} \mid Y_{1:t}) = \frac{p(X_{1:t}, Y_{1:t})}{p(Y_{1:t})}.$$
 (57)

Joint smoothing distribution

We derive the following recursion relation for the joint smoothing distribution:

$$p(X_{1:t} | Y_{1:t}) = \frac{p(Y_t | X_{1:t}, Y_{1:t-1})p(X_{1:t}, Y_{1:t-1})}{p(Y_t, Y_{1:t-1})}$$

$$= \frac{p(Y_t | X_{1:t}, Y_{1:t-1})p(X_t | X_{1:t-1}, Y_{1:t-1})}{p(Y_t | Y_{1:t-1})} p(X_{1:t-1} | Y_{1:t-1})$$

$$= \frac{p(Y_t | X_t)p(X_t | X_{t-1})}{p(Y_t | Y_{1:t-1})} p(X_{1:t-1} | Y_{1:t-1}).$$
(58)

This recursion will be approximated by numerically tractable expressions.

Filtering recursion

- An alternative to working directly with the joint smoothing distribution is to find recursive relations for the one-period predictive and filtering distributions.
- This is analogous to the approach we took when deriving the Kalman filter.
- Assume that the initial distribution $p(X_1)$ is known.
- The one-period prediction distribution is given by

$$p(X_t \mid Y_{1:t-1}) = \int p(X_t \mid X_{t-1}) p(X_{t-1} \mid Y_{1:t-1}) dX_{t-1}.$$
 (59)

Filtering recursion

- The filtering distribution is calculated based on the arrival of the new observation Y_t.
- Namely, applying Bayes' rule, and the fact that Y_t depends on X_t only,

$$\rho(X_t \mid Y_{1:t}) = \frac{\rho(Y_t, X_t \mid Y_{1:t-1})}{\rho(Y_t \mid Y_{1:t-1})}
= \frac{\rho(Y_t \mid X_t, Y_{1:t-1})\rho(X_t \mid Y_{1:t-1})}{\int \rho(Y_t \mid X_t)\rho(X_t \mid Y_{1:t-1})dX_t}
= \frac{\rho(Y_t \mid X_t)\rho(X_t \mid Y_{1:t-1})}{\int \rho(Y_t \mid X_t)\rho(X_t \mid Y_{1:t-1})dX_t}.$$
(60)

Filtering recursion

- The difficulty with this recursion is clear: there is a complicated integral in the denominator, which cannot in general be calculated in closed form.
- In some special cases this can be done: for example, in the case of a linear Gaussian state space model, this integral is Gaussian and can be calculated.
- The recursion above leads then to the Kalman filter.
- Instead of trying to evaluate the integral numerically, we will develop a Monte Carlo based approach for approximately solving recursions (59) and (60).

Importance sampling

Suppose we are faced with Monte Carlo evaluation of the expected value

$$\mathsf{E}(f(X_{1:t}) \mid Y_{1:t}) = \int f(x_{1:t}) p(x_{1:t} \mid Y_{1:t}) dx_{1:t}. \tag{61}$$

- The straightforward approach would be to generate a number of samples $x_{1:t}^j$, j = 1, ..., N, from the distribution $p(x_{1:t}|Y_{1:t})$, evaluate the integrand $f(x_{1:t}^j)$ on each of these samples, and take the average of these values.
- This approach may prove impractical if the density p(x_{1:t} | Y_{1:t}) is hard to simulate from
- Instead, we use the method of importance sampling (IS).
- We proceed as follows:

Importance sampling

1. Choose a proposal distribution $g(X_{1:t} | Y_{1:t})$, and write

$$\mathsf{E}(f(X_{1:t}) \mid Y_{1:t}) = \int f(x_{1:t}) \, \frac{p(x_{1:t} \mid Y_{1:t})}{g(x_{1:t} \mid Y_{1:t})} \, g(x_{1:t} \mid Y_{1:t}) dx_{1:t}. \tag{62}$$

The proposal distribution should be chosen so that it is easy to sample from it.

2. Draw N samples of paths $x_{1:t}^1, \dots, x_{1:t}^N$ from the proposal distribution, and assign to each of them a weight proportional to the ratio of the target and proposal distributions:

$$w_t^j \propto \frac{p(x_{1:t}^j \mid Y_{1:t})}{g(x_{1:t}^j \mid Y_{1:t})}.$$
 (63)

Importance sampling

3. Given the sample, we define the estimated expected value by

$$\widehat{\mathsf{E}}_{N}(f(X_{1:t}) \mid Y_{1:t}) = \sum_{j=1}^{N} \widehat{w}_{t}^{j} f(x_{1:t}^{j}), \tag{64}$$

where the *importance weights* \widehat{w}_t^j , j = 1, ..., N, are given by

$$\widehat{w}_{t}^{j} = \frac{w_{t}^{j}}{\sum_{j=1}^{N} w_{t}^{j}}.$$
 (65)

- The efficiency of IS depends essentially on how closely the proposal distribution g(X_{1:t} | Y_{1:t}) matches the target distribution.
- One could, for example, settle on a parametric distribution such as Gaussian and fine tune its parameters by minimizing its KL divergence from $p(x_{1:t} | Y_{1:t})$.

- Another serious limitation of IS is that it is computationally very expensive to generate $x_{1,t}^{j}$, and that this cost increases with t.
- To mitigate it, the method of sequential importance sampling (SIS) has been developed.
- In this approach we retain the previously simulated values $x_{1:t-1}^j$ and generate the value of x_t^j only.
- In order to implement this idea, the samples x_{1:t} are simulated from a sequence of conditional distributions rather than a joint proposal distribution.
- The proposal distribution can be factored into two pieces as follows:

$$g(X_{1:t} | Y_{1:t}) = \frac{g(X_{1:t}, Y_{1:t})}{g(Y_{1:t})}$$

$$= \frac{g(X_t | X_{1:t-1}, Y_{1:t})g(X_{1:t-1}, Y_{1:t})}{g(Y_{1:t})}$$

$$= g(X_t | X_{1:t-1}, Y_{1:t})g(X_{1:t-1} | Y_{1:t}).$$

- Once the sample of $X_{1:t-1}$ has been generated from $g(X_{1:t-1} | Y_{1:t-1})$, its value is independent of the observation Y_t , and so $g(X_{1:t-1} | Y_{1:t}) = g(X_{1:t-1} | Y_{1:t-1})$.
- We can thus write the result of the calculation above as the following recursion:

$$g(X_{1:t} \mid Y_{1:t}) = g(X_t \mid X_{1:t-1}, Y_{1:t})g(X_{1:t-1} \mid Y_{1:t-1}).$$
 (66)

- The second factor on the RHS of this equation, $g(X_{1:t-1} | Y_{1:t-1})$, is the proposal distribution built out of the paths that have already been generated in the previous steps.
- A new set of samples x_t^1, \dots, x_t^N is drawn from the first factor $g(X_t | X_{1:t-1}, Y_{1:t})$.
- We then append the newly simulated values x_t^1, \dots, x_t^N to the simulated paths $x_{1:t-1}^1, \dots, x_{1:t-1}^N$ of length t-1.
- We thus obtain simulated paths $x_{1:t}^1, \ldots, x_{1:t}^N$ of length t.

The weights (63) can be computed as follows. Using (58) and (66),

$$\begin{split} w_{t}^{j} &\propto \frac{p(Y_{t} \mid x_{t}^{j})p(x_{t}^{j} \mid x_{t-1}^{j})p(x_{1:t-1}^{j} \mid Y_{1:t-1})}{p(Y_{t} \mid Y_{1:t-1})g(x_{t}^{j} \mid x_{1:t-1}^{j}, Y_{1:t})g(x_{1:t-1}^{j} \mid Y_{1:t-1})} \\ &= \frac{p(Y_{t} \mid x_{t}^{j})p(x_{t}^{j} \mid x_{t-1}^{j})}{p(Y_{t} \mid Y_{1:t-1})g(x_{t}^{j} \mid x_{t-1}^{j}, Y_{1:t})} \times \frac{p(x_{1:t-1}^{j} \mid Y_{1:t-1})}{g(x_{1:t-1}^{j} \mid Y_{1:t-1})} \\ &\propto \frac{p(Y_{t} \mid x_{t}^{j})p(x_{t}^{j} \mid x_{t-1}^{j})}{g(x_{t}^{j} \mid x_{1:t-1}^{j}, Y_{1:t})} w_{t-1}^{j} \\ &= \widetilde{w}_{t} w_{t-1}^{j}, \end{split}$$
(67)

where the factor \widetilde{w}_t is defined by

$$\widetilde{w}_t = \frac{p(Y_t \mid x_t^j) p(x_t^j \mid x_{t-1}^j)}{g(x_t^j \mid x_{t-1}^j, Y_{1:t})}.$$
 (68)

• We initialize this distribution with $w_1^j = 1$.

- The densities p(Y_t | X_t) and p(X_t | X_{t-1}) are determined by the state and observation equations (52).
- The only quantity that needs to be computed at each iteration is the ratio of weights \widetilde{w}_t .
- As a result of each iteration, SIS produces N Monte Carlo paths x¹_{1:t},...,x^N_{1:t} along with the *unnormalized* importance weights w¹₁,...,w^N_t.
- These paths are referred to as particles.
- We define the normalized weights by

$$\widehat{\mathbf{w}}_t^j = \frac{\mathbf{w}_t^j}{\sum_{i=1}^N \mathbf{w}_t^i} \,. \tag{69}$$

The joint smoothing PDF is estimated as follows:

$$\widehat{p}(X_{1:t} \mid Y_{1:t}) = \sum_{j=1}^{N} \widehat{w}_{t}^{j} \, \delta(X_{1:t} - X_{1:t}^{j}), \tag{70}$$

where δ denotes Dirac's delta function, and so

$$\widehat{\mathsf{E}}(f(X_{1:t}) \mid Y_{1:t}) = \sum_{j=1}^{N} \widehat{w}_{t}^{j} f(x_{1:t}^{j}). \tag{71}$$

The estimated contribution to the likelihood function at time t is equal to

$$\widehat{p}(Y_t | Y_{1:t-1}) = \sum_{i=1}^{N} \widehat{w}_{t-1}^j \widetilde{w}_t^j.$$
 (72)

- It has been observed that in practice SIS suffers from the weight degeneracy problem.
- This manifests itself in the rapid increase of the variance of the distribution of the importance weights as the number of time steps t increases.
- As t increases, all the probability density gets eventually allocated to a single particle.
- That particle's normalized weight converges to one, while the normalized weights
 of the other particles converge to zero, and the SIS estimator becomes a
 function of a single sample.

- A remedy to this problem is resampling, a process in which a new population of particles is replicated from the existing population in proportion to their normalized importance weights.
- This algorithm is called sequential importance sampling with resampling (SISR).
- A new population of particles is generated by sampling from the existing population:
 - The probability of selecting a particle is proportional to its normalized importance weight.
 - (ii) Once the resampled particles are selected, their weights are set equal (to 1/N). This prevents the weights from degenerating as in SIS.
- We proceed as follows:
- 1. Initialize the filter: draw *N* samples $x_1^j \sim g(X_1)$ and define the weights

$$w_1^j = \frac{p(x_1^j)}{g(x_1^j)}.$$

- 2. For t = 2, ..., T:
 - (i) Generate N samples $x_t^j \sim g(X_t \,|\, x_{t-1}^j,\, Y_{1:t})$ and compute the importance weights

$$w_t^j \propto \frac{p(Y_t \mid x_t^j) \, p(x_t^j \mid x_{t-1}^j)}{g(x_t^j \mid x_{t-1}^j, \, Y_{1:t})} \, w_{t-1}^j.$$

(ii) Normalize the importance weights:

$$\widehat{w}_{t}^{j} = \frac{w_{t}^{j}}{\sum_{j=1}^{N} w_{t}^{j}} \,. \tag{73}$$

- (iii) Resample *N* particles with probabilities $\widehat{w}_t^1, \dots, \widehat{w}_t^N$, and define $w_t^j = 1/N$.
- After every iteration, once the particles have been generated, quantities of interest can be estimated.

The joint smoothing PDF at time t is estimated as follows:

$$\widehat{p}_N(X_{1:t} \mid Y_{1:t}) = \sum_{j=1}^N \widehat{w}_t^j \delta(X_{1:t} - X_{1:t}^j), \tag{74}$$

where the normalized weights are given by (73).

 The estimate of the expected value of a function f(X_{1:t}) of the path X_{1:t} is given by

$$\widehat{\mathsf{E}}_{N}(f(X_{1:t}) \mid Y_{1:t}) = \sum_{j=1}^{N} \widehat{w}_{t}^{j} \delta(X_{1:t} - X_{1:t}^{j}). \tag{75}$$

• The contribution to the likelihood function at time *t* is estimated as follows:

$$\widehat{p}_{N}(Y_{t} \mid Y_{1:t-1}) \approx \int p(Y_{t} \mid X_{t}) p(X_{t} \mid Y_{1:t-1}) dX_{t}$$

$$\approx \frac{1}{N} \sum_{j=1}^{N} \widehat{w}_{t}^{j}.$$
(76)

Bootstrap filter

- The efficacy of the algorithms presented above depends on the choice of the proposal distribution.
- The simplest choice of the proposal distribution is

$$g(X_t \mid X_{t-1}, Y_t) = p(X_t \mid X_{t-1}). \tag{77}$$

This choice is called the *prior kernel*, and the corresponding particle filter is called the *bootstrap filter*.

- The bootsstrap filter resamples by setting the incremental weight ratios equal to $\widetilde{w}_t = p(Y_t | X_t)$.
- The prior kernel is an example of a blind proposal: it does not use the current observation Y_t.
- Despite this, the bootstrap filter performs well in a number of situations.
- Another popular version is the auxiliary particle filter, see [1] and [2].

References

[1] Creal, D.: A survey of sequential Monte Carlo methods for economics and finance, *Economic Reviews*, **31**, 245 - 296 (2012).

[2] Durbin, J., and Koopman, S. J.: *Time Series Analysis by State Space Methods*, Oxford University Press (2012).