

Workshop and International conference on Electronic Structure Theory of Emergent Spin Orbit Driven Phenomenon

Tutorial 4

Calculation of magnetic exchange interactions

Debarghya Dutta

Date: 12.11.2024

Introduction:

Indirect exchange (Super-exchange and double exchange) mechanism explains the long range magnetic ordering while direct exchange interaction is short range.

How to calculate exchange coupling constant?

Structure of NiO

Primitive cell Conventional cell Ni3 Ni1 Ni4 Ni2 Ni2 Ni1 Ni3 Ni1

Structure of conventional cell

```
Ni4 O4
1.000000000000000
4.1760000000000000
     0.0000000000000000
     4.17600000000000000
          0.000000000000000
0.000000000000000
     0.000000000000000
          4.17600000000000002
Ni
\mathbf{O}
Direct
```

Input for spin polarized calculation


```
1 System=bulk NiO
 2 ISTART=0
 3 ICHARG=2
 4 ISMEAR =0
 5 \text{ SIGMA} = 0.05
 6 ENCUT= 500
 7 ISIF=2
 8 IBRION =-1
 9 ISPIN=2
10 MAGMOM= 3 -3 -3 3 4*0
11 NSW=0
12 Prec=Accurate
13 ALGO =Normal
14 \, EDIFF = 0.1E - 05
15 EDIFFG = -0.001
16 LORBIT=11
17 LMAXMIX=4
18 LREAL = Auto
```

```
1 System=bulk NiO
DFT + U
               2 ISTART=0
               3 ICHARG=2
               4 ISMEAR =0
               5 \text{ SIGMA} = 0.05
               6 ENCUT= 500
               7 ISIF=2
               8 IBRION =-1
               9 ISPIN=2
              10 MAGMOM= 3 -3 -3 3 4*0
             11 NSW=0
             12 Prec=Accurate
             13 ALGO =Normal
              14 \, EDIFF = 0.1E - 05
             15 \text{ EDIFFG} = -0.001
              16 LORBIT=11
              17 LMAXMIX=4
              18 LRFAL = Auto
              19 # GGA +U
             20 LDAU= .TRUE.
             21 LDAUTYPE=2
              22 LDAUL=2 0
             23 LDAUU=6.2 0
             24 LDAUJ=0 0
```

Need to change this configuration for various magnetic

configurations

```
25 LDAUPRINT=0
```

Magnetic configurations

Play in VESTA with different spin configurations
Is there any other nondegenerate configurations possible?

Magnetic configurations

1 System=bulk_NiO	
2 ISTART=0	
3 ICHARG=2	
4 ISMEAR =0	
5 SIGMA = 0.05	
6 ENCUT= 400	
7 ISIF=2	
8 IBRION =-1	
9 ISPIN=2	
10 MAGMOM= 3 -3 -3	
11 -3 3 3 -3 3	3
12 NSW=0	
13 EDIFF = 0.1E-06	
14 NELM=180	
15 EDIFFG = -0.001	
16 Prec=Accurate	
17 ALGO =Normal	
18 #IALG0=38	
19 LORBIT=11	
20 LCHARG=.TRUE.	
21 LWAVE=.TRUE.	
22 LREAL= Auto	
23 LDAU= .TRUE.	
24 LDAUTYPE=2	
25 LDAUL=2 0	
26 LDAUU= 6.2 0	

28 LMAXMIX= 4

29 LDAUPRINT=0

Phase	Energy (eV/f.u)	Δ E (meV / f.u.)
FM	-9.34	0
AFM1	-9.35	10
AFM2	-9.45	-110

Ni up spin

Ni down spin

INCAR

Nickle oxide (NiO): Exchange coupling

- ➤ Make a supercell of 2 × 2 × 2 from the conventional cell
- Visualize it on VESTA
- ➤ Supercell contains: 64 atoms

➤ Ni: 32

> 0:32

Number of nearest neighbors (NN) = 12 Number of next nearest neighbors (NNN) = 6

 $2 \times 2 \times 2$ supercell (O atoms are not shown) Reference atom Nearest neighbor atom

Next nearest neighbor atom

FM configuration

Number of nearest neighbors (NN) = 12

• Number of next nearest neighbors (NNN) = 6

• J₁: NN exchange & J₂: NNN exchange

• E (FM) = $-6J_1 - 3J_2 + E_0$

magnetiza	cion (x)			
# of ion	S	р	d	tot
1 2 3 4 5 6 7 8	0.011 0.011 0.011 0.011 0.022 0.022 0.022 0.022	0.010 0.010 0.010 0.010 0.167 0.167 0.167	1.764 1.764 1.764 1.764 0.000 0.000 0.000	1.785 1.785 1.785 1.785 0.189 0.189 0.189 0.189
tot	0.131	0.708	7.054	7.893

$$\mu_{Ni}=1.785~\mu_B$$

AFM-1 configuration

J₁: NN exchange & J₂: NNN exchange

magnetization (x)					
# of ion	S	р	d	tot	
1	0.013	0.013	1.769	1.795	
2	-0.013	-0.013	-1.769	-1.795	
3	0.013	0.013	1.769	1.795	
4	-0.013	-0.013	-1.769	-1.795	
5	0.008	0.056	0.000	0.064	
6	-0.008	-0.056	0.000	-0.064	
7	0.008	0.056	0.000	0.064	
8	-0.008	-0.056	0.000	-0.064	
tot	0.000	0.000	0.000	0.000	

$$E (AFM1) = 2J_1 - 3J_2 + E_0$$

4 min (4 core)

AFM-2 configuration

E (AFM2) =
$$3J_2 + E_0$$

magnetiz	ation (x)			
# of ion	S	р	d	tot
1 2 3 4 5 6 7 8 9 10 11 12 13	-0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000	-0.002 0.002 0.002 -0.002 -0.002 -0.002 0.002 -0.002 -0.002 -0.002	1.722 -1.722 -1.722 -1.722 -1.722 -1.722 -1.722 -1.722 -1.722 1.722 -1.722 -1.722	1.720 -1.720 -1.720 1.720 -1.720 1.720 1.720 -1.720 -1.720 1.720 1.720 -1.720
14 15 16 17 18 19 20 21 22 23 24 25 26 27	-0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000	-0.002 0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002	1.722 -1.722 -1.722 -1.722 -1.722 1.722 -1.722 -1.722 -1.722 -1.722 -1.722 -1.722 1.722	1.720 -1.720 -1.720 -1.720 -1.720 1.720 -1.720 -1.720 -1.720 -1.720 -1.720 -1.720 1.720
28 29 30 31 32 33 34 35	0.000 -0.000 0.000 0.000 -0.000 0.000 0.000	0.002 -0.002 0.002 0.002 -0.002 0.000 0.000	-1.722 1.722 -1.722 -1.722 1.722 0.000 0.000 0.000	-1.720 1.720 -1.720 -1.720 1.720 0.000 0.000 0.000

NiO: Exchange parameter (J₁ &J₂ calculation)

$$H = -\sum_{\leq i,j >} \vec{J}_{ij} \vec{S}_i \cdot \vec{S}_j$$

Heisenberg Spin Hamiltonian
$$H = -J_1 \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j - J_2 \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \cdot \vec{S}_j$$

J₁: NN exchange, J₂: NNN exchange

J_{ii} =interatomic exchange interaction constant J_{ii} < 0, FM

 $J_{ii} > 0$, AFM

E (FM) =
$$-6J_1 - 3J_2 + E_0$$

E (AFM1) = $2J_1 - 3J_2 + E_0$
E (AFM2) = $3J_2 + E_0$

$$J_{1} = \frac{1}{8} [E (AFM1) - E (FM)]$$

$$J_{2} = \frac{1}{24} [4 \times E (AFM2) - 3 \times E (AFM1) - E (FM)]$$

Exchange parameters	Cal. value (meV)	Reported value (meV)
J ₁	1.25	1.4
J ₂	-17.9	-19

- $> J_1 > 0$ indicates 1 NN interaction is ferromagnetic
- $\succ J_2 < 0$ indicates 2 NN interaction is antiferromagnetic
- $> \frac{J_2}{J_1} \sim 14$ which means antiferromagnetic interaction dominates over ferromagnetic interaction.