A Careful Consideration of the St. Petersburg Paradox

Alexander R. Koen

December 7, 2021

1 The paradox

If heads appears for the first time on turn n, the player is awarded 2^n .

$$EMV = \sum_{n=1}^{\infty} \frac{1}{2^n} 2^n$$
$$= \sum_{n=1}^{\infty} 1$$

The St. Petersburg game's possible winnings are geometrically distributed with $Pr(n) = \frac{1}{2}^n$, where Pr(n) is the probability of $\$2^n$.

2 Simulating for world

Figure 1: Distribution

Winnings ($\$2^n$)	Number of People
1	5022
2	2521
3	1255
4	609
5	314
6	142
7	68
8	34
9	15
10	11
11	5
12	3
13	1
14	0
15	0
16	0
17	0

Table 1: World

3 Lottery

Winnings ($\$2^n$)	Number of People
150,000,000	1:292,291,338

Table 2: Lottery

Hello

Figure 2: Distribution