

QUÍMICA NIVEL MEDIO PRUEBA 2	Nombre
Lunes 20 de mayo de 2002 (tarde) 1 hora	Número

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su nombre, apellido(s) y número de alumno en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: Conteste todas las preguntas de la sección A en los espacios provistos.
- Sección B: Conteste una pregunta de la sección B. Escriba sus respuestas en un cuadernillo de respuestas adicional. Indique el número de cuadernillos utilizados en la casilla de abajo. Escriba su nombre, apellido(s) y número de alumno en la portada de los cuadernillos de respuestas adicionales y adjúntelos a esta prueba usando los cordeles provistos.
- Cuando termine el examen, indique en la casilla de abajo el número de la pregunta de la sección B que ha contestado.

PREGUNTAS CONTESTADAS		EXAMINADOR	LÍDER DE EQUIPO	IBCA
SECCIÓN A	TODAS	/20	/20	/20
SECCIÓN B PREGUNTA		/20	/20	/20
NÚMERO DE CUADERNILLOS ADICIONALES UTILIZADOS		TOTAL /40	TOTAL /40	TOTAL /40

222-168 7 páginas

[3]

SECCIÓN A

Los alumnos deben contestar todas las preguntas utilizando los espacios provistos.

1. En la siguiente tabla encontrará los valores de los radios atómicos e iónicos de los elementos del tercer periodo.

Símbolo del elemento	Na	Mg	Al	Si	P	S	Cl
Radio atómico / 10 ⁻¹² m	186	160	143	117	110	104	99
Radio iónico / 10 ⁻¹² m	98	65	45	42	212	190	181

(a)	Complete la siguien	ite tabla indicando	el número c	de protones y ele	ectrones presentes	en cada
	una de las siguiente	s especies:				

	Número de protones	Número de electrones
Na		
Al ³⁺		
P ³⁻		

iónico del fósforo es a entre el radio iónico

(Esta pregunta continúa en la siguiente página)

(Pregunta .	1: continuació	n

	(d)	El so	odio y el cloro reaccionan con agua.	
		(i)	Escriba una ecuación ajustada que represente la reacción entre el sodio y el agua e indique si la solución resultante es ácida, neutra o alcalina.	[2]
		(ii)	Escriba una ecuación ajustada que represente la reacción entre el cloro y el agua e indique si la solución resultante es ácida, neutra o alcalina.	[2]
2.	En s	olució	on acuosa, el hidróxido de sodio es una base fuerte y el amoníaco es una base débil.	
	(a)		ice la teoría de Brønsted–Lowry para establecer por qué ambas sustancias se clasifican o bases.	[1]
	(b)		soluciones de hidróxido de sodio de concentración 0,1 mol dm ⁻³ y amoníaco de centración 0,1 mol dm ⁻³ tienen distinta conductividad eléctrica.	
		(i)	Indique y explique qué solución tiene mayor conductividad.	[1]
		(ii)	El pH de una solución de amoníaco de concentración 0,1 mol dm ⁻³ es aproximadamente 11. Compare este valor con el pH de una solución de hidróxido de sodio de concentración 0,1 mol dm ⁻³ . Explique su respuesta.	[2]
				[-]

(Esta pregunta continúa en la siguiente página)

Véase al dorso Véase al dorso

(Pregunta 2: continuación)

(0	c)	Escriba la ecuación que representa la reacción del amoníaco con agua y clasifique cada producto como ácido o base de Brønsted–Lowry.	[2
	_	pidió a un estudiante que preparara un poco de sulfato de cobre(II) pentahidratado $SO_4 \cdot SH_2O$) haciendo reaccionar óxido de cobre (II) (CuO) con ácido sulfúrico.	
(2	a)	Calcule la masa molar del sulfato de cobre(II) pentahidratado.	[1]
(ł	b)	Calcule cuántos moles de sulfato de cobre(II) pentahidratado hay en una muestra de 10,0 g.	[1]
(0	c)	Calcule la masa de óxido de cobre(II) necesaria para preparar los 10,0 gramos de muestra.	[1]

[4]

[4]

SECCIÓN B

Conteste **una** pregunta. Escriba sus respuestas en un cuadernillo de respuestas adicional. Escriba su nombre, apellido(s) y número de alumno en la portada de los cuadernillos de respuestas adicionales y adjúntelos a esta prueba usando los cordeles provistos.

4. Esta pregunta se refiere a cuatro compuestos **A**, **B**, **C** y **D**, que se pueden obtener a partir del eteno por medio de las siguientes reacciones. Los cuatro compuestos son líquidos a temperatura ambiente. Se indica la fórmula molecular de cada compuesto. Sobre las flechas se señalan dos de los reactivos necesarios para las reacciones.

$$C_2H_4 \xrightarrow{H_2O} C_2H_6O \xrightarrow{} C_2H_4O \xrightarrow{} C_2H_4O_2 \xrightarrow{C_2H_6O} C_4H_8O_2$$
A B C D

Se agregó magnesio a cada compuesto y el único compuesto capaz de producir un gas fue C.

- (a) Use la información anterior para identificar **cada uno** de los compuestos **A**, **B**, **C** y **D**. Nombre **cada uno** de ellos.
- (b) (i) Indique qué tipo de reacción se produce cuando el compuesto C se convierte en **D** y el catalizador usado. ¿Qué otro producto se forma? [3]
 - (ii) Escriba las fórmulas estructurales de A y C. [2]
 - (iii) Indique un uso de los compuestos del mismo tipo que **D** en la industria alimentaria. [1]
- (c) Identifique qué gas se forma cuando el compuesto C reacciona con magnesio y escriba la ecuación que representa la reacción que se produce. Nombre el otro producto de la reacción. [3]
- (d) Ordene los compuestos **A**, **B** y **C** de forma **creciente** respecto del punto de ebullición (el menor punto de ebullición primero). Justifique su elección refiriéndose a las fuerzas intermoleculares en **cada** caso.
- (e) El compuesto C tiene otro isómero. Nombre y escriba la fórmula estructural de dicho isómero. [2]
- (f) Ninguno de los compuestos **A**, **B**, **C** y **D** tiene isómeros ópticos. Indique qué característica estructural presenta un compuesto que tiene isómeros ópticos. [1]

222-168 Véase al dorso

[2]

[2]

[3]

5. El amoníaco se fabrica a gran escala por medio del proceso Haber. La reacción principal que se produce es:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta H = -92 \text{ kJ mol}^{-1}$.

- (a) Indique **dos** características de una reacción reversible en el equilibrio. [2]
- (b) Esta reacción se describe como *homogénea*. Indique qué se entiende por el término *homogéneo*. [1]
- (c) Escriba la expresión de la constante de equilibrio para la reacción. [2]
- (d) Cuando se mezclan nitrógeno e hidrógeno a temperatura ambiente y presión atmosférica la reacción es muy lenta. En la industria, los valores típicos de temperatura y presión usados son de 450°C y 250 atmósferas.
 - (i) Mencione qué efecto tendrá un aumento de temperatura sobre la velocidad de reacción y el valor de la constante de equilibrio.
 - (ii) Mencione qué efecto tendrá un aumento de presión sobre la velocidad de reacción y el valor de la constante de equilibrio.
 - (iii) Sugiera porqué no se utiliza una presión de 1000 atmósferas. [1]
- (e) Nombre el catalizador usado en el proceso Haber. Indique y explique su efecto sobre el valor de la constante de equilibrio.
- (f) Utilice la teoría de las colisiones para explicar qué efecto tiene el aumento de temperatura sobre la velocidad de reacción entre nitrógeno e hidrógeno. [3]
- (g) Se deja que una mezcla de nitrógeno e hidrógeno a 450°C y 250 atmósferas alcance el equilibrio. Utilice el principio de Le Chatelier para indicar y explicar qué sucede con la posición de equilibrio cuando:
 - (i) se elimina un poco de amoníaco; [2]
 - (ii) se eleva la presión. [2]

6. (a)			elementos sodio y flúor y el compuesto fluoruro de sodio se pueden utilizar para mostrar enexión entre enlace, estructura y propiedades físicas.	
		(i)	Describa el tipo de enlace presente en el sodio metálico y explique por qué el sodio es buen conductor de la electricidad.	[4]
		(ii)	Represente la estructura de Lewis del flúor. Nombre y describa el enlace dentro de las moléculas de flúor líquido y el enlace entre ellas.	[5]
		(iii)	Escriba la estructura electrónica del sodio y del flúor y describa cómo se combinan los átomos para formar fluoruro de sodio.	[4]
		(iv)	Explique por qué el fluoruro de sodio sólo conduce la electricidad cuando se le ha calentado por sobre su punto de fusión.	[1]
	(b)	Repi	resente y nombre la forma de cada una de las siguientes moléculas:	
		(i)	SiH_4	[2]
		(ii)	PH_3	[2]
	(c)		que el ángulo de enlace en el SiH_4 y explique por qué el ángulo de enlace en el PH_3 es or que el del SiH_4 .	[2]