ADA lecture notes

Analysis and design of algorithms

These are the notes for analysis and design of algorithms course. The professor says it'll be an interesting course, let's see about that. I am using Obsidian and this is an amazing markdown editor! It has a lot of community plugins. Anyways, study now... xD

Here is a somewhat detailed overview.

- 1. ADA/Lecture 1: Introduction to the course and grading.
- 2. ADA/Lecture 2: Mastering Master Theorem
- 3. ADA/Lecture 3: DAC
- 4. ADA/Lecture 4: DAC continued
- 5. ADA/Lecture 5 : Last DAC
- 6. ADA/Lecture 6: Dynamic programming 1
- 7. ADA/Lecture 7: Knapsack problem
- 8. ADA/Lecture 8 : Sequence alignment
- 9. ADA/Lecture 9: Matrix chains
- 10. ADA/Lecture 10: Watashiwa Greed
- 11. ADA/Lecture 11: Graph coloring problem (Lecture sched)
- 12. ADA/Lecture 12: Greedy 3
- 13. ADA/Lecture 13: Graph Algorithms 1 Undirected DFS

Lecture->1

It's like DSA version 2 (in terms of management). Here's the link for previous year: ADA2020, ADA2022. Solutions and questions in this course are made by the instructor and hence making it public is not a good idea. So, these notes with stick around the lectures and maybe sometimes touching things but WILL NOT quote.

Evaluation

• Quizzes: 15% (n-1)

• Homework Assignments (Theory): 15% (group of two)

• Programming Assignments: 10% (Foobar, No lab hours, Individual)

• Midsem: 30%

• Endsem: 30% Both theory

Multiplying large integers

Input : Two n-digit numbers A and B Output: Product $A \times B$ Primitive Ops: Add/Multiply two single digit integers (recall digital circuits adder)

• Classical pen-paper approach:

- At max 2n operations per partial product, since n, we have $2n^2$
- Summation of them, $2n^2$
- Net $4n^2$
- Doing it differently: (Main idea: $\frac{n}{2}$ digits for each a, b, c, d)

$$-\begin{array}{c} \stackrel{a}{\cancel{5678}} \stackrel{b}{\cancel{8}} \times \stackrel{c}{\cancel{1234}} \stackrel{d}{\cancel{34}}$$

- 1. Compute a.c = 672
- 2. Compute b.d = 2652
- 3. Compute (a + b)(c + d) = 6164
- 4. Compute 3. 2. 1. = 2840
- 5. Put it all $\overline{\text{together } 6720000 + 2652 + 284000}$ (Notice the padding)
- 6. Do it all recursively
- Here's the recursive implementation, where $A=10^{\frac{n}{2}}\cdot a+b, B=10^{\frac{n}{2}}\cdot c+d$ and $A\times B=10^nac+10^{\frac{n}{2}}(ad+bc)+bd$
 - 1. Recursively compute a.c
 - 2. Recursively compute b.d
 - 3. Recursively compute $(a+b)\cdot(c+d)$ (Karatsuba method, otherwise 4 recursive calls)
 - 4. Compute 3.-2.-1 for each call
 - 5. Pad and add!

Lecture->2

Analysis: The recurrence method

T(n)= Runtime of Algorithm 1 for multiplying two n-digit numbers Base Case : n=1, T(n)=c: Multiplying two single digit numbers Recurrence (for n>1): Express T(n) as the runtime of recursive calls + additional work which maybe done in that call.

Recursively compute each ac, bd, bc, ad, work in this step

$$T(n) = \overbrace{4T\left(\frac{n}{2}\right)}^{\text{computing ac,bd,bc,bd}} + \overbrace{c_1 \cdot n}^{\text{Adding 4 n/2 (+padded) digit no.s}} \\ T(1) = \underbrace{c}_{\text{Base case}}$$

Karatsuba's Algorithm (more like optimization) $(a + b \text{ may have } \frac{n}{2} + 1 \text{ digits})$

$$T(n) = \overbrace{3T\left(\frac{n}{2}\right)}^{\text{n/2+1 but ignore}} + \underbrace{C(c_2 + c_3) \cdot n}^{\text{Adding a+b, multiplying each other}}$$

$$T(1) = \underbrace{C}_{\text{Base case}}$$

Master Method / Master Theorem

A 'Black-box' method to solve many common recurrences in Algorithm design (especially DAC)

Assumption: All the recursive calls are made on subproblems of equal size. (If not, use the proof we will do now)

Assumption (for proof): Both constants c are equal.

$$\begin{array}{ll} T(n) &= aT\left(\frac{n}{b}\right) + c \cdot n^d \\ T(1) &\leq c \end{array}$$

$$a \ge 1, b \ge 1, c, d \ge 0$$

a =Number of recursive calls

b = Shrinkage factor of subproblem size

d =Affects the runtime of the additional work (outside recursion)

Master Theorem (Simpler Version): Prof. says no need to remember

$$T(n) = \begin{cases} \mathcal{O}(n^d \log n), & \text{if } a = b^d \\ \mathcal{O}(n^d), & \text{if } a < b^d \\ \mathcal{O}(n^{\log_b a}), & \text{if } a > b^d \end{cases}$$

Example: Mergesort, $T(n) = 2T(n/2) + c \cdot n$ so a = 2, b = 2, d = 1, so case 1. $T(n) = \mathcal{O}(n \log n)$

Example: Binary search, $T(n) = T(n/2) + c \cdot n^0$, so a = 1, b = 2, d = 0, so case 1. $T(n) = \mathcal{O}(\log n)$

Example: Multiplication algorithm 1, $T(n)=4T(n/2)+c_1n$, so a=4,b=2,d=1, so case 3. $\mathcal{O}(n^{\log_4 2})$

Example: Multiplication algorithm (Karatsuba), $T(n) = 3T(n/2) + c_1 n$, so a = 3, b = 2, d = 1, so case 3. $\mathcal{O}(n^{\log_3 2})$

- The calculator uses Strassen Schonenhage: $\mathcal{O}(n \log n \log \log n)$
- New proposed solution: $\mathcal{O}(n \log n)$

Proof of master theorem (Simpler version)

Assumtions:

- 1. n is a power of b (the shrinkage factor)
- 2. Base case: T(1) = c (same as n^d)

Main technique:

- Recursion Trees (eww)
 - Levels: $\log_b n + 1$
 - Subproblems at level j: a^j
 - Subproblem size at level j: $\frac{n}{b^j}$
 - *Total* work done outside recursive calls at level j: $a^j \cdot \left(\frac{n}{b^j}\right)^d \cdot c = n^d \left(\frac{a}{b^d}\right)^j \cdot c$
 - Should be intuitive from the above equation, Good = a, bad $= b^d$, in the end we just sum it all.
 - So, work is sum of total work across all levels

$$\sum_{j=0}^{\log_b n+1} n^d \left(\frac{a}{b^d}\right)^j \cdot c$$

Lecture->3

Divide and Conquer Algorithms

- 1. Divide (break into several parts)
- 2. Conquer (Solve the smallest solvable)
- 3. Combine (subproblems)

Counting Inversions in an Array

```
Input: 1,3,5,2,4,6
Output: 3
Inversion pairs: (3,2),(5,2),(5,4) {kind of like bubble sort}
Golden Benchmark to get inversions: Sorted array (ascending)
Trivial algorithm = \mathcal{O}(n^2)
Today: \mathcal{O}(n\log n)
Q. Can we output all inversions in same time above? No, total O(n^2) possible invs.
```

- Key Ideas
 - Suppose A is divided in to X and Y (possibly in the middle)
 - An inversion pair (i, j) is:
 - 1. Left inversion: Both (i, j) in X
 - 2. Right inversion : Both (i, j) in Y
 - 3. Split inversion : i in X and j in Y
 - Using recursion get (1), (2) and after you get the results, count split inversions.
 - Here's the pseudo code

```
CountInv(array& A, length n):
    if n==1 return 0
    X = A[1,2,...n/2], Y=A[n/2+1,...,n]
    x = CountInv(X,n/2)
    y = CountInv(Y,n/2)
    x = CountSplitInv(X,n/2)
    return x+y+x
Copy
```

Now, since split inversions wont be affected if we sort each X and Y (along the recursive calls) it'll get easier to count inversions. We will use this to count split inversions while merging. count += (n/2 - i + 1) where i is the iterator of X and we are using the combine/merge function. This takes advantage of sorting.

Lecture->4

Closest pair of points in 2D

Input: A set of points with 2 coordinates

Distance (d) between two points is Euclidean distance in 2D

Output: (a, b) : d(a, b) is minimum

Assumption: All points have x and y coordinates (Non distinct left as exercise)

The 1-D case:

Sort the given points, and linearly traverse. So complexity $\mathcal{O}(n \log n)$

Back to 2D:

 P_x be the set sorted by x-coordinate

 P_y be the set sorted by y-coordinate (independent of other coordinate)

Now we choose the median using P_x. Then we have two sets, Q,R on left and right of the median (assume median on Q).

Recursion:

- 1. Compute Q_x, Q_y, R_x, R_y
- $2. \ (p_1,q_1) = ClosestPair(Q_x,Q_y)$
- 3. $(p_2, q_2) = ClosestPair(R_x, R_y)$
- 4. Generate the sets Q_x, Q_y, R_x, R_y in $\mathcal{O}(n)$ time [Exercise]
- 5. $(p_3, q_3) = ClosestSplitPair(Q, R)$
- 6. get minimum of all 3

ClosestSplitPair:

- 1. Our search space will be restricted to $\pm \delta$ where $\delta = \min(ClosestPair(Q), ClosestPair(R))$
- 2. Note that this may not return a correct answer if the closest split pair does not lie in our restricted search space.
- 3. Calculations, we'll make it $\mathcal{O}(n)$; now assume the set S is the set of points contained in the predefined region.
- 4. Compute S_y (sorted by y coordinate) in linear time.
- 5. Traverse the list and apply the 1D algorithm but lookahead **seven** points instead of **one**. So complexity $\mathcal{O}(7n) \subseteq \mathcal{O}(n)$.
 - Proof of correctness of seven
 - We use the fact that our search space is restricted by $\pm \delta$ and what is δ
 - Therefore each box below will have at most one point

- And also the box height is restricted by delta.
- bdmtish, drumroll, so, we only need to compare with points which may be in these boxes. Therefore a linear algo.

Lecture->5

The selection problem

```
Input: An array (arbitrary), an integer i
Goal: Get i^{\text{th}} smallest number or i^{\text{th}} order statistic.
```

We'll see a linear time selection algo.

```
Select(A, length n, i)
    base: do something idk
    else:
        1. Choose any element as pivot = p
        2. Partition A around p (just like quicksort)
        3. Let j: position of p now
        4. if j==i then return P
        5. if j>i: recurse: return Select(A[1..j-1],j-1,i)
        6. if j<i: recurse: return Select(A[j+1..n], n-j, i-j)
Сору
```

We will analyze the worst case (i.e. we recurse on the larger subarray)

• $T(n)=c.n+T[\max(n-j,j-1)]$ • Worst case: $c\cdot n+c\cdot (n-1)+c\cdot (n-2)\cdots \in \mathcal{O}(cn^2)$

So... epic algorithm fail.

How to choose a good pivot fast?

Here are two choices

- Median (Best!) : But ...aren't you solving the median problem xD
- [30%-70%] (Good enough)
 - Randomization: Choose pivot as any element uniformly at random
 - Theorem: RSelect works in expected $\mathcal{O}(n)$ time
 - Deterministic pivot selection:
 - * Break array A into buckets of 5 elements (i.e. K = n/5 groups)
 - * Find median of each group = e where |e| = K
 - * pivot p = Median(e)
 - * Let's re-write the algo:

```
DSelect(A,length n, i)
   base: idk
```

else:

- 1. Group A into chunks of 5
- 2. e = set of medians from each
- 3. p = DSelect(e, n/5 = K, K/2)
- 4. ...same as before

Сору

- * Runtime analysis: We have $T(n) = c \cdot n + T(n/5) + T(?)$
 - · Key lemma: Median of e is bigger than (and also smaller than) at least 30% of the set
 - · Proof:

Visualize the array as a 2D grid.

Here, pivot is 9. now, let's generalize.

We have the recurrence $T(n) \le c \cdot n + T(n/5) + T(0.7 \cdot n)$

Lecture->6

We shall begin DP now. Who doesn't like DP;)

First example

Input: A set of balls arranged in a row; each ball has a weight

Output: Pick balls of maximum possible total weight; No two adjacent balls can be picked

E.g. [2,5,6,4,3,5], pick as much as you can but maximize the weight. It's easy to see how a greedy one would fail as always.

Let's try something different, here are some observations:

- 1. If last ball is not part of the optimal solution, then Optimal solution = Optimal solution with the last ball removed from input (strictly smaller than input)
- 2. Iff Last ball is part of the optimal solution so the second last ball cannot be, then Optimal solution = Optimal solution with last 2 balls removed + weight of last ball

Formal recurrence:

Let opt[i]: The optimal solution with balls $\{b_1,b_2,\dots b_i\} \forall i=0,1,2\dots$ (Subproblem definition).

opt[0] = 0, opt[1] = weight(1) (assuming balls are positive, in case of generalizing with negative, just change the base case)

$$opt[i] = \begin{cases} opt[i-1] & case1 \\ opt[i-2] + weight(i) & case2 \end{cases}$$

Trivial proof of case 1 and case 2.

Now, say balls are $b_1, b_2 \dots b_n$, then the optimal solution can either have b_n or not have it at all. If we try both, we have the recursive solution as T(n) =T(n-1) + T(n-2) + c which is the fibonacci/exponential complexity.

We also observe here that in the recursion, the distinct calls are only n (since SelectBalls(n-i)). If we memo(r) is and look up in $\mathcal{O}(1)$, we're done.

Solution 1: Using some recursion with lookup

```
Tab: Array of size n (memoization)
def SelectBalls(b1,b2,b3...bn):
    if Tab[n] is valid return Tab[n] else:
    if n==0, Tab[n] = 0,
    elif n==1, Tab[n] = weight of b1,
    else:
        w1 = SelectBalls(b1,b2,...bn-1)
        w1 = SelectBalls(b1,b2,...bn-2)+weight(bn)
        Tab[n] = max(w1, w2)
Сору
Solution 2: Linear time (bottom up) iterative
```

```
Tab: Array of size n+1
def Selectballs(b1,b2...bn):
```

```
Tab[0] = 0
Tab[1] = b1
for i = 2,3,...n:
    Tab[i] = max(Tab[i-1], Tab[i-2]+weight(bi))
return Tab[n]
Copy
Finn.
```

Lecture->7

Knapsack problem

Input:

- A knapsack of size W > 0 (integer)
- \bullet *n* different indivisible iterms
- item i has weight $w_i > 0$ and value $v_i > 0$ (ints)

Goal: To fill the knapsack (without overloading) to maximise total value.

DP based attempt 1

OPT[i]: optimal solution considering items $\{1, 2, 3 \dots i\}$ and knapsack of size W.

Case 1: item i is not part of the solution OPT[i], so OPT[i] = OPT[i-1]

Case 2: item i is part of the solution OPT[i]

- inclusion of i does not mean that we need to reject i-1.
- But, we also cannot reduce to OPT[i-1], we need to pack as much value as possible in knapsack of size $W-w_i$ and we are not watching this param.

DP based attempt 2

OPT[i,w]: optimal solution considering items $\{1,2,3\dots i\}$ and knapsack of size W

Case 1: item i is not part of the solution OPT[i, w], so OPT[i] = OPT[i-1, w]

Case 2: item i is part of the solution OPT[i], then $OPT[i, w] = OPT[i-1, w-w_i] + v_i$ when $w \ge w_i$.

```
Base case: OPT[0, w] = 0 \ \forall \ w \in [W]
```

So, we can polish this.

Recursive (with memoization)

```
M[i,w]: 2D array of size nxW, initialized to -1 def Knap(i,w):
```

```
if M[i,w] == valid return M[i,w]
if i==0: M[i,w] = 0 #base case
elif wi>w: M[i,w] = Knap(i-1,w)
else M[i,w] = max(Knap(i-1,w), Knap(i-1,w-1)+vi)
return M[i,w]
Copy
```

Dynamic (iterative) Algorithm

```
(Does not use additional stackspace so probably better)

M[i,w]: 2D array of size (n+1)x(W+1), init -1

def Knap(n,W):
   for w = 0 to W: M[0,w] = 0 #base case
   for i = 1 to n:
      for w = 0 to W:
        if wi>w: M[i,w] = M[i-1,w]
        else: max(M[i-1,w], M[i-1,w-1]+vi)
   return M[n,W]

Copy

Runtime O(nW) which is pseudopolynomial
```

Lecture -> 9

This lecture shall be skipped, this is same as assignment 2, Q3 (Robots in the auditorium problem)

Lecture $\rightarrow 10$

Minimizing Weighted Completion Time

A scheduling problem **Input**: Jobs $j_1, j_2 \dots j_n$, each job j_i has length l_i and weight w_i (kind of priority) **Output**: A schedule to minimize $\sum_{i=1}^n w_i \cdot C_i$ where C_i is the completion time of the i^{th} job. Idea: Typical mini max problem (refer SML, LDA/FDA) **Algorithm**: Sort the jobs in descending order of $\frac{w_i}{l_i}$ **Proof**: (Technique: Exchange argument/ WOP) idea:

- Start with the greedy schedule- Call it σ
- Suppose it is not optimal Let $\sigma*$ be another schedule which is optimal
- Arrive at contradiction by producing even better solution

Lecture -> 12

Stable matching (/marriage)

Input: n wizards and n wands. Each wizard has a preference list, Each wand has a preference list. May generalize to m, n (however it is not guaranteed \exists a stable matching).

Output: A stable matching

Stability: Unstable when for some matching M there are two candidates who might *cheat* on each other (both side should hold). Stable if no unstable lol.

The algorithm (Gale-Shapely):

From the wiki

Initialize: All wizards $w \in W$ and wands $v \in V$ are unmatched. **Iterate:** while $\exists w, w \to v$ and not tried every wand:

- assign wand if wand is single,
- check stable matching (i.e. check with wand if it's okay) and assign (w' is now unmatched),
- reject (i.e. w remains unmatched)

Observations:

- 1. Each wizard tries a wand in decreasing order of preference
- 2. Each wizard tries each wand at most once.
- 3. Once a wand has a holder, it never becomes free (it just gets a new wizard). However a wizard is dobee, they may become *free*.

Note: If the position of wands and wizards were flipped we may get a different stable matching. (move to bottom of the page)

Termination: Using observation 2, we see that n wizard can try at most n wands. Therefore, by $\mathcal{O}(n^2)$ we shall be done.

Proofs of correctness:

1. Output is a Perfect Matching.

Proof: Suppose GS does not output a perfect matching, then \exists some w who is free. Since we have n wizards as well as wands, \exists some v which is also free. Also implies, v has not been tried, i.e. the algorithm has not terminated.

- 2. Output is a Stable Matching Proof: Suppose w, v is unstable (for the sake of contradiction)
 - Case 1, $w \stackrel{tried}{\rightarrow} v$. This means that $w \rightarrow v'$ which is at a lower priority, however this contradicts obeservation 1.
 - Case 2, $w \stackrel{tried}{\to} v$. However, then v would have already captured w' using observation 3. Even if w came by, w shall be rejected or w gets

the wand preliminarily but later forfeits their ownership.

We might consider the stable roommate problem i.e. pair n people given everyone has a preference list of n-1 remaining candidates. A stable matching may not exist.

In our setting, a stable matching shall always exist as shown above.

Now, size of input is $N = 2n^2 \in \Theta(n^2)$, then in terms of size of the input, our algorithm is just $\mathcal{O}(N)$.

To implement efficiently,

For each wand v, Pref[v], we generate a converse preference list which essentially is $w \mapsto v$, so whenever a wizard is trying a wand, we can fetch their preference in constant time.

Which Stable-Matching does GS find?

Here are a few definitions lol.

- Valid wand: Wand v is a valid wand for wizard w if v can be assigned to w in *some* stable matching.
- Wizard Optimal Matching: A stable matching where *every* wizard gets the best possible valid wand.

Theorem: GS produces a Wizard Optimal Matching. Therefore a unique stable matching.

Proof: Khud karlo

Corollary: GS produces a wand pessimal matching.

Lecture $\rightarrow 13$

• Revision of introductory GT (Tree, path, cycle, components, DS to store graphs)

DFS with timestamp (next lec.)

- Maintain a struct with Time stamp of arrival and departure for each vertex. Initialize to ∞ (disconnected components)
- Arrival time is the first arrival at that vertex
- Departure time is the last we will see that vertex (i.e. all possible subpaths have been explored)
- A DFS tree (formed by n-1 vertices, consider incidence of edge on vertex *only for a connected graph)
- Tree edge (used in DFS) and back edge (useless)
- An illustration

- **Property:** Ancestor relationship (only for *undirected DFS tree*). For a back-edge to exist. If (u, v) is a backedge then either of them must be an ancestor of the other.
 - For a directed graph, there shall be no need of ancestory. lol

```
visited: boolean[]
visited[v] = 0 forall v
arrival: number[]
departure: number[]
time: number = 0

function DFS(v){
    visited[v] = 1;
    arrival[v] = time++;
    for (w: adjlist of v)
        if (!visited[w]) DFS(w);
    departure[v] = time++
}
```

Time complexity arguments:

- We traverse the adjacency list of any vertex exactly once.
- So we see any edge e only once.
- And for initializers we have order $\mathcal{O}(V)$
- Final complexity is $\mathcal{O}(V+E)$, linear time.

ADA/Lecture 14