

Teorema 1 (Limit fungsi trigonometri)

Untuk setiap bilangan riil c dalam domain fungsi trigonometri yang bersesuaian.

- $\mathbf{0} \lim_{x \to c} \sin(x) = \sin(c),$
- $\lim_{x \to c} \tan(x) = \tan(c),$
- $\lim_{x \to c} \cot(x) = \cot(c),$
- $\lim_{x \to c} \sec(x) = \sec(c),$
- $\mathbf{6} \quad \lim_{x \to c} \csc(x) = \csc(c).$

Hitunglah
$$\lim_{t\to 0} \frac{t^2 \cos t}{1+t}$$
.

$$\lim_{t\to 0}\ \frac{t^2\cos t}{1+t} = \left(\lim_{t\to 0}\ \frac{t^2}{1+t}\right) \left(\lim_{t\to 0}\ \cos t\right) = 0.1 = 0.$$

Teorema 3 (Limit trigonometri khusus)

$$\lim_{t \to 0} \frac{\sin t}{t} = 1,\tag{1}$$

$$\lim_{t \to 0} \frac{1 - \cos t}{t} = 0. \tag{2}$$

Contoh 4

 $\text{Hitunglah } \lim_{x \to 0} \frac{\sin 3x}{x}.$

$$\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} 3 \frac{\sin 3x}{3x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3.1 = 3.$$

Latihan Mandiri .

Hitunglah

- $\mathbf{0} \lim_{x \to 0} \frac{3x \tan x}{\sin x}.$
- $\lim_{\tau \to 0} \frac{\sin^2 3\tau}{2\tau}.$
- $\lim_{\alpha \to 0} \frac{\sin^2 \alpha}{\alpha^2}$
- $\lim_{t \to 0} \frac{\sin(3t) + 4t}{t \sec t}.$

Limit di tak-hingga

$$\lim_{x \to \infty} \frac{x}{1 + x^2} = \dots$$

х	$\frac{x}{1+x^2}$
10	0.099
100	0.010
1000	0.001
10000	0.0001
\downarrow	1
∞	?

Catatan

 $x \to \infty$: nilai x semakin besar dan tanpa batas, ∞ bukan bilangan.

Definisi 1

Misalkan fungsi f terdefinisi di $[c,\infty)$ untuk suatu bilangan c. $\lim_{x\to\infty} f(x) = L$ jika untuk setiap $\varepsilon>0$, ada bilangan M, sedemikian sehingga jika x>M, maka $|f(x)-L|<\varepsilon$.

Definisi 2

Misalkan fungsi f terdefinisi di $[c,\infty)$ untuk suatu bilangan c. $\lim_{x\to -\infty} f(x) = L$ jika untuk setiap $\varepsilon>0$, ada bilangan M, sedemikian sehingga jika x < M, maka $|f(x)-L| < \varepsilon$.

Misalkan k adalah bilangan bulat positif.

Buktikanlah $\lim_{x \to \infty} \frac{1}{x^k} = 0$.

Ambil $\varepsilon > 0$.

 $\mathsf{Pilih}\ M = \sqrt[k]{1/\varepsilon}.$

Jika x > M, maka

$$\left|\frac{1}{x^k} - 0\right| = \frac{1}{x^k} < \frac{1}{M^k} = \varepsilon.$$

Hitunglah
$$\lim_{x \to \infty} \frac{2x^3}{1+x^3}$$
.

$$\lim_{x \to \infty} \frac{2x^3}{1+x^3}$$

$$= \lim_{x \to \infty} \frac{2}{1/x^3+1}$$

$$= \frac{2}{0+1}$$

$$= 2.$$

Limit tak-hingga

$$\lim_{x \to 2^{-}} \frac{1}{x - 2} = \dots, \quad \lim_{x \to 2^{+}} \frac{1}{x - 2} = \dots$$

$$\lim_{x\to 2^-}\frac{1}{x-2}=-\infty \text{ (tidak ada), } \lim_{x\to 2^+}\frac{1}{x-2}=\infty \text{ (tidak ada).}$$

Definisi 5

 $\lim_{x \to c^+} f(x) = \infty \text{ jika untuk setiap bilangan positif } M, \text{ adabilangan } \delta > 0, \text{ sedemikian sehingga jika } 0 < x - c < \delta, \text{ maka } f(x) > M.$

Hitunglah
$$\lim_{x\to 2^+} \frac{x+1}{x^2-5\,x+6}$$
 (jika ada).

Perhatikan

$$\lim_{x \to 2^+} \frac{x+1}{x^2 - 5x + 6} = \lim_{x \to 2^+} \frac{x+1}{(x-3)(x-2)} = -\infty.$$

$$\operatorname{Jadi} \lim_{x \to 2^+} \frac{x+1}{x^2 - 5x + 6} \ \operatorname{tidak \ ada}.$$

Garis x=c disebut asimtot vertikal dari grafik fungsi f jika salah satu dari pernyataan berikut benar:

$$\lim_{x\to c^+} \, f(x) = \infty \, \, {\rm atau} \,$$

$$\lim_{x\to c^+}\ f(x)=-\infty\ {\rm atau}$$

$$\lim_{x\to c^-} \ f(x) = \infty \ \text{atau}$$

$$\lim_{x \to c^-} f(x) = -\infty.$$

Catatan

Asimtot vertikal berkaitan dengan penyebut fungsi yang bernilai 0.

Garis y=b disebut asimtot horizontal dari grafik fungsi f jika salah satu dari pernyataan berikut benar:

- $\ \, \lim_{x\to\infty} \ f(x) = b \ {\rm atau} \ \,$
- $\lim_{x \to -\infty} f(x) = b.$

Tentukanlah asimtot vertikal dan asimtot horizontal dari grafik fungsi f dengan $f(x) = \frac{3x}{x+1}$.

Asimtot vertikalnya adalah x=-1 karena

$$\lim_{x\to -1^+} \ \frac{3\,x}{x+1} = -\infty \quad \mathrm{dan} \quad \lim_{x\to -1^-} \ \frac{3\,x}{x+1} = \infty.$$

Asimtot horizontalnya adalah y=3 karena

$$\lim_{x \to \infty} \ \frac{3 \, x}{x+1} = 3 \quad \text{dan} \quad \lim_{x \to -\infty} \ \frac{3 \, x}{x+1} = 3.$$

Garis y=ax+b disebut asimtot miring (oblique asymptote) dari grafik fungsi y=f(x) jika berlaku salah satu berikut.

$$\label{eq:limits} \mathbf{0} \ \lim_{x \to \infty} \left[f(x) - (ax + b) \right] = 0 \ \mathrm{atau}$$

$$\lim_{x \to -\infty} [f(x) - (ax + b)] = 0.$$

Catatan

Ciri fungsi y=f(x) punya asimtot miring adalah f merupakan fungsi rasional dengan derajat fungsi polinomial pembilang > derajat fungsi polinomial penyebut.

Tentukanlah asimtot miring dari
$$y=\frac{3x^3+4x^2-x+1}{x^2+1}.$$

Perhatikan
$$\frac{3x^3 + 4x^2 - x + 1}{x^2 + 1} = 3x + 4 + \frac{4x + 3}{x^2 + 1}$$
. Lebih lanjut,

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 - x + 1}{x^2 + 1} - (3x + 4) = \lim_{x \to \infty} \frac{4x + 3}{x^2 + 1} = 0 \text{ dan}$$

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 - x + 1}{x^2 + 1} - (3x + 4) = \lim_{x \to -\infty} \frac{4x + 3}{x^2 + 1} = 0.$$

Jadi asimtot miringnya adalah garis y = 3x + 4.

Penyelesaian $\lim_{x\to\infty} f(x)$.

- Dalam *Geogebra*: Limit[f(x), infinity]
- Dalam Wolfram Mathematica: Limit[f(x), $x \rightarrow Infinity$]

Latihan Mandiri .

Hitunglah (jika ada)

$$\lim_{x \to \infty} \frac{3x^2}{4 - x^3}$$

$$\lim_{t \to \infty} \frac{\sin^2 t}{t^2 - 5}$$

$$\lim_{x \to \infty} \frac{\sqrt{2x+1}}{x+4}$$

$$\lim_{t \to \pi^+} \frac{t^-}{\sin t}$$

$$\lim_{x \to 0^+} \frac{\llbracket x \rrbracket}{x}$$

$$\lim_{x \to 0^-} \frac{\llbracket x \rrbracket}{x}$$