实验三 电源的等效变换和等效电源定理

姓名: 夏卓 学号: 2020303245

一、实验任务

- (1) 利用戴维南定理把虚线框出部分的电路化简,并验证等效电路的正确性。
- (2) 用直接测量法测量等效电源内阻。
- (3) 从半偏法、开路短路法、二次测量法中选一种方法测内阻,与直接测量法比较。
 - (4) 验证戴维南等效电路的正确性,记录数据,画出曲线,分析结果。

二、实验原理

1、戴维南定理:任何一个线性有源单口网络,对外电路来说,都可以用一个电压源 u₀。和一个电阻 R₀的串联组合来等效代替。其中,电压源的电压等于线性有源单口网络的开路电压 u₀。;电阻R₀为含源单口网络的内阻,也称为输出电阻,数值上等于线性有源单口网络除源后的输入电阻。

2、测量方法:

- (1) 直接测量法:将内电源置零后(电流源开路,电压源短路),直接用 万用表测量电路内阻,此方法适用于电压源内阻很小,恒流源内阻很大的网络。
- (2) 半偏法: 先测开路电压 u_{oo} , 再接入一个电阻 R_L , 调整 R_L 的值,使负载电压变为开路电压的一半,此时 R_L 的阻值即为被测有源单口网络的等效内阻 R_0 的值。

- (3) 开路短路法: 测量有源单口网络的开路电压 u_o和短路电流 I_{sc},则有 R₀=u_o/I_{sc}。注意: 使用此方法时需要保证等效内阻较大, I_{sc}不会超过电源电流额 定值,否则将其输出端口短路可能会烧毁电源、损坏内部元件。
- (4) 二次测量法: 先测开路电压 u_{oc} , 再把已知电阻 R_L 接入端口,测量 u_L ,则有 R_0 =(u_{oc} - u_L)* R_L / u_L 。

三、实验电路方案

四、测试与分析

1. 测试用仪器

仪器名称	数量
直流稳压电源	2
面包板	1
万用表	1
电阻箱	1
LM317 模块	1
51Ω电阻	2
100Ω电阻	5
240Ω电阻	3

510Ω电阻	1
1000Ω电阻	1
导线	若干

2. 测试步骤

- (1) 按电路原理图正确连接电路。
- (2)调节外电阻阻值,分别测出外电阻为 51Ω 、 100Ω 、 240Ω 、 510Ω 、 1000Ω 时外电阻两端的电压与流过的电流,记录数据。
 - (3) 断开外接电阻,将内电源置零,用直接测量法测量等效电源内阻。
- (4) 重新连接好内电路,使用开路短路法测量等效电源电阻与开路电压, 并与直接测量法比较。
- (5) 将电阻箱调至实际测量的电路等效内阻值,并串联一个电压为电路开路电压的电压源得到戴维南等效电路,分别外接阻值为 51Ω 、 100Ω 、 240Ω 、 510Ω 、 1000Ω 的电阻,测量其电压与电流,记录数据。
- (6) 根据实验数据表,分别画出 U-I 关系图线,对两图表进行对比分析, 验证戴维南定理的正确性。

3. 数据记录

(1) 原电路

负载电阻 R/Ω	51	100	240	510	1000
实际电阻 R/Ω	50. 86	97. 55	238. 8	503. 7	979. 8
电压 U ₁ /V	2. 233	3. 562	5. 692	7. 325	8. 325
电流 I ₁ /mA	44. 34	36. 05	23. 74	14. 46	8. 47

(2) 等效电路

负载电阻 R/Ω	51	100	240	510	1000
实际电阻 R/Ω	50. 86	97. 55	238. 8	503. 7	979. 8
电压 U ₂ /V	2. 180	3. 533	5. 586	7. 195	8. 218
电流 I ₂ /mA	42. 74	35. 08	23. 42	14. 25	8. 38

- (3) 直接法测等效电源内阻: 174.42Ω
- (4) 开路短路法测等效电源电阻:

短路电流: 57.53mA 开路电压: 9.805V

故等效电源内阻为 170.43Ω

4. U-I 曲线图

U-I曲线图

5. 计算结果与结论

(1) 电压相对误差:

 $U_1 = |2.233 - 2.180|/2.180*100% = 2.4%$

 $U_2 = |3.562 - 3.533|/3.533*100\% = 0.8\%$

 $U_3 = |5.692 - 5.586| / 5.586 * 100\% = 1.9\%$

 $U_4 = | 7.325 - 7.195 | / 7.195 * 100\% = 1.8\%$

 $U_5 = |8.325 - 8.218| / 8.218 * 100\% = 1.3\%$

(2) 电流相对误差:

 $I_1 = |42.97 - 43.01| / 43.01 * 100 % = 0.09 %$

 $I_2 = |35.63 - 35.72|/35.72*100% = 0.25%$

 $I_3 = |24.50 - 24.60| / 24.60 * 100 % = 0.4 %$

I₄= | 14. 13-14. 21 | /14. 21*100%=0. 56%

 $I_5 = |8.31 - 8.33|/8.33 *100\% = 0.24\%$

由此可知,在误差允许范围内,戴维南等效电路与实际电路对外电路来讲是等效的,即验证了戴维南定理的正确性。

五、分析与结论

各种实验方法测量内阻的优缺点及误差来源:

- 1. 直接测量法在实验时对原电路的改造大, 但相对来说误差较小;
- 2. 半偏法实验过程复杂, 但由于使用参数扫描, 可以控制到需要的精度, 误差最小, 误差主要来源于电表的内阻的影响。
- 3. 开路短路法对原电路改动小,实验步骤简单,但如果单口网络的内阻 很小,短路时易烧坏其内部元件,误差来源于电表内阻的影响。
- 4. 二次测量法同样对原电路改动小,实验步骤简单,误差较小,主要来源于电表内阻的影响。

预习实验四 功率因数的提高

一、功率因数提高的意义

- 1. 当负载功率 P 一定,并且电压 U 给定时,功率因数越大,则电流 I 就越小,从而消耗,从而消耗在传输线上的功率就越小,因此可以减少线路损耗。
- 2. 电流减小,可以使得导线更细一点,从而不仅节约了材料,而且降低了 传输电能的设备和线路的要求。
 - 3. 提高功率因数可以降低无功功率,提高供电设备的利用率。
 - 4. 提高功率因数还可以保证负载端的电压,提高供电质量。

二、功率因数提高的原理

物理角度:因为感性无功功率 Q_L与容性无功功率 Q_c相互补偿,所以若在感性 负载(用电负载多为感性)上并联一个适当的电容,则使负载所需的无功功率部 分或全部由电容补偿,从而减少或消除了由电源供给的无功功率,且不影响负载 有功功率, 达到提高功率因数的目的。

数学角度:由 S²=P²+Q²可知,要使得有功功率 P 增大,在 S 不变的情况下,可使无功功率 Q 减小,即努力减小电路的无功功率,提高有功功率的占比。

三、功率因数提高的方法

提高功率因数主要是通过减小无功功率,降低电流与电压之间的相位差来实现的;如果是电感电路,可以通过并联电容的方法,降低电流与电压之间的相位差;如果是电容电路,可以通过并联电感的方法,降低电流与电压之间的相位差。

四、设计电路

由瓦特表读数可知, 电路功率 P=51.863W, 功率因数为 cos φ=0.35280