C&A

Chap. II Permutation and Combination

Yuchun Ma(马昱春)
myc@tsinghua.edu.cn

Generating Permutations

High complexity!

Waste of memory!

<u>3</u> 2 <u>3</u> 1 <u>3</u>

- Can we start from the simple thing first?

 The permutation of (1) Induction
 - The permutation of {1}

1

- The permutation of {1 2}2 1 2

1 2

2 1

– The permutation of $\{1\ 2\ 3\}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{2}$

1 2 3 3 2 1

1 3 2 2 3 1

3 1 2 2 1 3

Generate the permutations of {1,2,...n} based on the permutations of {1,2,...,n-1}

123132

213

[**Eg**]For alphabet {1,2,3}, smaller digits are in the left, so the permutations in lexicographic order are:

123,132,213,231,312,321.

A permutation could be regarded as a string, the string could have **prefix** and **suffix**.

The so called <u>next permutation</u> of this one means that there's no more <u>other permutations</u> among this and the next.

This means that this one and next one should have a **common prefix** which is as long as possible, and the changes are limited to **suffixes** as short as possible.

Generating Permutations

单选题 1分 What is the next permutation for sequence "46739521" with lexicographical order 46791235 46751238 46751239 46759321 4

What is the next permutation for sequence "35418762" with lexicographical order?

- A 35428761
- в 35421678
- 35421678
- 35421679

Lexicographic Order

- **[Eg]**Calculate the next permutation of 839647521
- 1 Find the first decrease point from right to left: 4

• 2. Exchange Find the smallest number larger than 4 in the suffix 83964 21

- 3. Overturn the suffix **83965**1247
- The next permutation is: 839651247

Thinking question: How many permutations are before "839647521" in lexicographical order?

Thinking question: How many permutations are before "839647521" in lexicographical order?

$$7\times8! + 2\times7! + 6\times6! + 4\times5! + 2\times4! + 3\times3! + 2\times2! + 1\times1! = 297191$$

Generating r-combinations

- Lexicographic order (dictionary order)
 - "abz" precedes "acb" in the dictionary
 - 129 precedes 132 in the lexicographic order
- Let A and B be two r-combinations of the set {1, 2, ..., n}.
 - A precedes B in the lexicographic order provided the smallest integer which is in their union $A \cup B$ but not in their intersection $A \cap B$ is in A.
 - 5-combinations of $\{1, 2, ..., 8\}$, $A = \{2,3,4,7,8\}$, $B = \{2, 3, 5, 6, 7\}$.
 - Then the smallest element which is in one but not both of the sets is 4.
 - Hence A precedes B in the lexicographic order.

A theorem

- Consider 5-combinations of {1,2,...,9}. What 5-combination immediately follows 12389?
 12456
- Let $a_1 a_2 ... a_r \neq (n-r+1)(n-r+2)...n$ be an r-combination of $\{1, 2, ..., n\}$.
- Let k be the largest integer such that $a_k < n$ and $a_k + 1$ is different from each of $a_1, a_2, ...a_r$.
- Then the r-combination which is the immediate successor of $a_1a_2...a_r$ in the lexicographic ordering is
- $a_1...a_{k-1}(a_k+1)(a_k+2)...(a_k+r-k+1)$.

Consider 5-combinations of {1,2,...,9}. What 5-combination immediately before 34579?

- A 34569
- B 34578
- 34568
- 34597

Algorithm for generating the r-combinations

Begin with the r-combination $a_1a_2...a_r=12...r$. while $a_1a_2...a_r \neq (n-r+1)(n-r+2)...n$, do

- 1) determine the largest integer k such that $a_k+1 \le n$ and a_k+1 is not one of $a_1, a_2, ...a_r$.
- 2) replace $a_1a_2...a_r$ with the r-combination

$$a_1 a_2 \dots a_{k-1} (a_k+1)(a_k+2) \dots (a_k+r-k+1).$$

Generate the 4-combinations of $S = \{1,2,3,4,5,6\}$.

1234;	1245;	1345;	1456;	2356;
1235;	1246;	1346;	2345;	2456;
1236;	1256;	1356;	2346;	3456.

Generating Permutations

High complexity!

Waste of memory!

<u>3</u> 2 <u>3</u> 1 <u>3</u>

- Can we start from the simple thing first?

 The permutation of (1) Induction
 - The permutation of {1}
 - 1
 - The permutation of $\{1\ 2\}^2$ 1 2
 - 1 2
 - 2 1
 - The permutation of $\{1\ 2\ 3\}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{2}$
 - 1 2 3 3 2 1
 - 1 3 2 2 3 1
 - 3 1 2 2 1

Generate the permutations of {1,2,...n} based on the permutations of {1,2,...,n-1}

Generating Permutations

– The permutation of {1 2 3 4}

	1	2	3↔4	3	1	2 ↔4	2	3	1 ↔4
	1	2 ↔4	3	3	1↔4	2	2	3←4	1
	1 →4	2	3	3 4	→ 1	2	2 ←4	3	1
4	1	2 \leftrightarrow	3	4 3	1 \leftrightarrow	2	4 2	3 ↔	1
4	. 1	3	2	4 ↔3	2	1	4 ↔2	1	3
	1 4	- 3	2	3 4	- 2	1	2 4	→ 1	3
	1	3 4	- 2	3	2 4	→1	2	1 4	→ 3
	1 ↔	3	2 4	3 ↔	2	1 4	2	1	3 4

- •Each permutation other than the first one is obtained from the preceding one by switching two adjacent numbers.
 - •Move the largest number 4 between two ends
 - •When the end is met, the largest number 4 will be fixed for a step and the switching of the second largest number 3 makes 4 movable again.

Mobile Integer

- Given an integer *k* we assign a direction to it by writing an arrow above it pointing to the left or to the right. Consider a permutation of {1,2,...,*n*} in which each of the integers is given a direction.
 - The integer k is called mobile if its arrow points to a smaller integer adjacent to it.
 - $\overrightarrow{2}(\cancel{6}(\cancel{3})\overrightarrow{\cancel{1}}(\cancel{5})\overrightarrow{\cancel{4}})$ only 3, 5, and 6 are mobile.
 - Integer 1 can never be mobile since there is no integer smaller than 1.
 - The integer n is always mobile, except in two cases:
 - i) n is the first integer and its arrow points to the left.
 - *ii) n* is the last integer and its arrow points to the right.

$$\rightarrow \leftarrow \leftarrow \rightarrow \rightarrow 3 2 1 \times 4$$

Generating Permutations

The permutation of {1 2 3 4}

1 2 3

Step 0: All mobile

1 2 4 3 Step 1: Choose the largest mobile integer 4

1 4 2 3 Step 2: Switch 4 and 3 as the arrow points to.

1 2 3

Step i: 4 is fixed, the largest mobile integer is 3. After the switch between 3 and 2, switch the direction of the

- 1 3 $4 \rightarrow 2$ arrow above 4(4>3) 1 \rightarrow 3 2 4
- Each permutation other than the first one is obtained from the preceding one by switching two adjacent numbers.
 - Move the largest number 4 between two ends
 - •When the end is met, the largest number 4 will be fixed for a step and the switching of the second largest number 3 makes 4 movable again.

Steinhaus-Johnson-Trotter algorithm

Begin with $1 \ 2 \cdots n$.

While there exists a mobile integer, do

- 1) find the largest mobile integer *m*.
- 2) switch *m* and the adjacent integer its arrow points to.
- 3) switch the direction of all integers p with p>m.

SJT Algorithm

Steinhaus–Johnson–Trotter algorithm

Hugo Steinhaus[1958], H. F. Trotter[1962], S.

M. Johnson[1963]

- Each permutation i generates differs fr permutation by swa elements of the sec
- Equivalently, this a a Hamiltonian path

The Hamiltonian path in the Cayley graph of the symmetric group generated by the Steinhaus-Johnson-Trotter algorithm

Inversions in Permutations

- Let $i_1 i_2 \dots i_n$ be a permutation of the set $\{1,2,\dots,n\}$. The pair (i_k,i_l) is called an inversion if k < l and $i_k > i_l$.
- An inversion in a permutation corresponds to a pair of numbers which are out of their natural order.
- The only permutation of {1,2, ...,n} with no inversions is 1 2 ... n.
- Example: the inversions in (3 2 1) are (3,2),(3,1),(2,1)

The number of inversions

- Let a_j denote the number of inversions. It equals the number of integers which precede j in the permutation but are greater than j; it measures how much j is out of order.
- The sequence of numbers $a_1, a_2, ..., a_n$ is called the inversion sequence of the permutation $i_1 i_2 i_n$
- The number $a_1 + a_2 + ... + a_n$ measures the disorder of a permutation.

Examples of inversions

- Consider the permutation 31524. It has four inversions, namely (3, 1), (3, 2), (5, 2), (5, 4).
- Inversion records the number of integers which precede j in the permutation but are greater than j
- The inversion sequence of the permutation 31524
 - 1: 3 is larger than 1 and before 1
 - 2: 3 and 5 are larger than 2 and before 2 2
 - 3: no number is before 3
 - 4: 5 is larger than 4 and before 4
 - 5: no number is larger than 5

A theorem

Let b₁, b₂, ..., b_n be a sequence of integers satisfying

$$0 \le b_1 \le n-1, 0 \le b_2 \le n-2, \dots, 0 \le b_{n-1} \le 1, b_n = 0.$$

Then there exists a unique permutation of $\{1, 2, ..., n\}$ whose inversion sequence is $b_1, b_2, ..., b_n$.

With the inversion sequence as 1, 2, 0, 1, 0, how to construct the permutation?

- 5: no number is larger than 5
- 4: 1 larger number before
- 3: no larger number is before 3
- 2: 2 larger numbers before
- 1: 1 larger number before

Algorithm I

- n: write down n.
- n-1: consider b_{n-1} . We are given that $0 \le b_{n-1} \le 1$ If $b_{n-1} = 0$, then n-1 must be placed before n. If $b_{n-1} = 1$, then n-1 must be placed after n.
- n-2: consider b_{n-2} . We are given that $0 \le b_{n-2} \le 2$ If $b_{n-2} = 0$, then n-2 must be placed before the two numbers from step n-1.

If $b_{n-2} = 1$, then n-2 must be placed between the two numbers from step n-1.

If $b_{n-2} = 2$, then n-2 must be placed after the two numbers from step n-1.....

.

 1: We must place 1 after the b_{1st} number in the sequence constructed in step n-1.

Comments on Algorithm I

- The algorithm can determine the unique permutation of {1, 2, ..., n} whose inversion sequence is b₁, b₂, ..., b_n.
- The disadvantage of this algorithm is that the location of each integer in the permutation are not known until the very end; only the relative positions of the integers remain fixed throughout the algorithm.
- The inversion sequence of the permutation 31524 is 1, 2, 0, 1, 0.
 - 1: 3 is larger than 1 and before 1
 1 larger number is before "1"
 - 2: 3 and 5 are larger than 2 and before 2 2 2 larger number is before "2"
 - 3: no number is before 3
 - 4: 5 is larger than 4 and before 4
 - 5: no number is larger than 5

- 0 0 larger number is before "3"
- 1
- 0

Example

- Determine the permutation of {1, 2, 3, 4, 5, 6, 7, 8} whose inversion sequence is 5, 3, 4, 0, 2, 1, 1, 0.
- b₁=5: put 1 in the 6th empty location
- b₂=3: put 2 in the 4th empty location
- b₃=4: put 3 in the 5th empty location
- b₄=0: put 4 in the 1st empty location
- b₅=2: put 5 in the 3rd empty location
- b₆=1: put 6 in the 2nd empty location
- b₇=1: put 7 in the 2nd empty location
- b₈=0: put 8 in the 1st empty location

					1		
			2		1		
			2		1	(3)	
4			2	(1	3	
4		(2	5)	1	3	
4		6	2	5	1	3	(
4		6	2	5	1	3	7
4	(8)	6	2	5	1	3	7

Algorithm II: Inversion Method

- Begin with n empty locations which label 1, 2, ..., n from left to right
- 1: put 1 in location number b_1 +1
- 2: put 2 in the $(b_2 + 1)$ st empty location
- •
- k: (general step) counting from the left we put k in the (b_k +1)st empty location.
- n: put n in the one remaining empty location.

Comments on Algorithm II

- The algorithm can determine the unique permutation of {1, 2, ..., n} whose inversion sequence is b₁, b₂, ..., b_n.
- The advantage of this algorithm is that the location of each integer in the permutation can be determined.
 - Algorithm I: insert the integers one by one
 - Algorithm II: find the locations of the integers one by one.

Switches and inversions

- Bring the permutation 361245 to 123456 by successive switches of adjacent numbers.
- The inversion sequence is 220110.
 Hence there will be 6 times of switch.

3	6	1	2	4	5
3	1	6	2	4	5
1	3	6	2	4	5
1	3	2	6	4	5
1	2	3	6	4	5
1	2	3	4	6	5
1	2	3	4	5	6

Industrial Support

—Java

```
for(List<String> list : Permutation.of(Arrays.asList("a", "b", "c")))

System.out.println(list);
}

for(List<Integer> list : Combination.of(Arrays.asList(1, 2, 3, 4, 5), 3))

System.out.println(list);
}

MSDN Magazine

Search MSDN Magazine with Bing

Home Topics Issues and Downloads Script Junkie Subscribe Submit an Article

Visual Studio
```

Home Topics Issues and Downloads Script Junkie Subscribe Submit an Article

MSDN Magazine > Issues and Downloads > 2006 > December > Test Run: String Permutations

Test Run

String Permutations

Dr. James McCaffrey

Code download available at:TestRun2006_12.exe(161 KB)

IN-DEPTH

Improved Permutations with the BigInteger Data Type

NEWSLETTERS

The major challenge when working with permutations is that the factorial function gets very, very large very, very quickly. The BigInteger data type was introduced in the .NET Framework 4.0; it enables the writing of effective permutation code.

Visual Studio

WHITEPAPERS

C#/VB

WEBCASTS

.NET

Tweet

PDF BACK ISSUES

By James McCaffrey = 09/04/2012

HOME

Finite Fields and Their Applications

Volume 17, Issue 1, January 2011, Pages 51-67

Ann. Comb. 14 (2010) 3–16 DOI 10.1007/s00026-010-0042-9 Published online February 16, 2010 © Birkhäuser/Springer Basel AG 2010

Annals of Combinatorics

On constructing permutations of finite fields *

Amir Akbary^{a,} [™], Dragos Ghioca^{b, ™}, Qiang Wang^{c, ♣}, ™

a Der b Der Mener

Menemui Matematik (Discovering Mathematics)

C.Sch Vol. 32, No. 2: 51– 56 (2010)

Permutations Generated by Stacks and Deques

Michael Albert¹, Mike Atkinson¹, and Steve Linton²

¹Department of Computer Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand

New Recursive Circular Algorithm

Sharmila Karim¹, Zurni On Khairil Iskandar Othman⁴, a

123 College of Art and S

Hoang Chi Thanh et al

A Two-level Algorithm for Generating Multiset Permutations Tadao Takaoka

Department of Computer Science, University of Canterbury
Christchurch, New Zealand

ISSN:2231-0711 www.iicset.net

231-0711 <u>y.ac.nz</u>

IJCSET |July 2012| Vol 2, Issue 7,1310-1315

rmutations in O(1) time for each memory requirement. There a

From Permutations to Iterative Permutations

Hoang Chi Thanh #1, Nguyen Thi Thuy Loan *2, Nguyen Duy Ham ^3

#Department of Computer Science, VNU University of Science, Hanoi, Vietnam

1 thanhhc@vnu.vn

*Department of Computer Science, College of Broadcasting II, HoChiMinh City, Vietnam ² nguyenthithuyloan@vov.org.vn

^ Department of Computer Science, University of People's Security, HoChiMinh City, Vietnam

3 duyhaman@yahoo.com

Common Permutation generators

```
In C++ standard library, next_permutation,
prev_permutation, could generate permutations in
lexicographic order.
#include <algorithm>
bool next_permutation( iterator start, iterator end );
  bool prev_permutation( iterator start, iterator end );
The next_permutation() function attempts to transform
the given range of elements [start,end) into the next
lexicographically greater permutation of elements. If it
succeeds, it returns true, otherwise, it returns false.
http://www.slyar.com/blog/stl_next_permutation.html
```

Thinking Question

- Find the 2020th permutation with nine numbers of 1-9 in lexicographic order?
- We will post the GOOD HW as post session, if you do not want your HW to be posted, please inform me before Monday (Sep.28) noon.
- OJ Tasks
 - Lexicographic Order and SJT
 - Office Hour
 - Sep.28 after class TA: Kai Su

Thank you!