

TD N°1

(Théorie des lignes de transmission)

Année universitaire : 2019 - 2020 Matière: Hyperfréquences Classes : 2^{ème} année EAN

Enseignant: Saber DAKHLI

Exercice 1:

On considère une ligne sans pertes terminée par une charge d'impédance Z_t comme le montre la figure ci-contre :

- 1) Rappeler les expressions de la tension V(x) et du courant I(x) le long de la ligne en fonction de $\Gamma(x)$.
- 2) Déduire que l'expression du coefficient de réflexion en tension au niveau de la charge $\Gamma_t = \frac{Z_t - Z_C}{Z_t + Z_C}.$ s'écrit:
- $Z_{in} = Z_{C} \frac{e^{j\beta l} + \Gamma_{L} e^{-j\beta l}}{e^{j\beta l} \Gamma_{L} e^{-j\beta l}}$ 3) Vérifier que:
- $Z_{in} = Z_C \frac{Z_t + j Z_C . tg(\beta l)}{Z_C + j Z_t . ta(\beta l)}$ 4) En déduire que :

Exercice 2:

On considère une ligne sans perte d'impédance caractéristique \mathbf{Z}_{C} = 75Ω . Cette ligne est terminée par une charge d'impédance \mathbf{Z}_t ayant un coefficient de réflexion $\mathbf{\Gamma}_t$ tel que $|\Gamma_t|$ = 0.47 et ϕ_t = 143°.

- 1) Déterminer le ROS et l'impédance Z_t.
- 2) Même question pour $|\Gamma_t|=0.6$ et $\Phi_t=123^\circ$.
- 3) On suppose maintenant que l'impédance de charge Z_t=30+j.54. Déterminer le coefficient de réflexion Γ_t et le **ROS**.

Exercice 3:

On considère une antenne d'impédance Z_R =75 Ω reliée à un câble coaxial, considéré sans pertes, d'impédance caractéristique Z_C et de constante de propagation β . Les paramètres primaires de cette ligne de transmission sont tels que :

Inductance : L = 260μH/km, Capacité : C = 46 nF/km.

- 1) Calculer l'impédance caractéristique \mathbf{Z}_{C} et la constante de propagation $\boldsymbol{\beta}$ de la ligne sachant que la longueur d'onde vaut $\boldsymbol{\lambda}$ =5cm.
- 2) Calculer le coefficient de réflexion Γ_t et le rapport d'ondes stationnaires ROS au niveau de l'antenne.
- 3) Cette ligne mesure l=10cm. Donner la valeur de l'impédance Z_{in} à l'entrée de cette ligne.
- 4) Dire si cette ligne est adaptée ou non à son extrémité (au niveau de l'antenne) et à son entrée (au niveau de la source). Expliquer.

Exercice 4:

Sur une ligne sans pertes d'impédance caractéristique $Z_C = 50\Omega$, la longueur d'onde vaut $\lambda=8$ cm. La ligne est chargée par l'impédance $Z_R = (30-55j)\Omega$.

- 1) Déterminer : le rapport d'ondes stationnaires ROS, le coefficient de réflexion Γ_R , l'impédance ramenée à 11 cm de la charge.
- 2) Même question pour : $Z_R = (50+90j)\Omega$.
- 3) Calculer l'impédance d'entrée d'une ligne de longueur I = 35 cm chargée par l'impédance réduite $z_R = (0,5-0,5j)$. On prendra : $\lambda=4,5$ cm.

Bon Travail