MA 6011 (Cryptographic Mathematics)

Solve Problems 1-4 **before** the tutorial on Tuesday, 3 November.

In Problems 1–4, the elliptic curve E has equation $y^2 = x^3 + 17$.

Problem 1: Verify that each of the following points lies on E.

$$A = (-2,3)$$
 $B = (-2,-3)$ $C = (-1,4)$ $D = (-1,-4)$
 $F = (2,5)$ $G = (2,-5)$ $H = (4,9)$

Problem 2: Determine the following points and verify that they are indeed on E.

- (i) A + C
- (ii) B+D
- (iii) C + F
- (iv) A + G
- (v) G + H.

Problem 3: Determine 2C, 2F and 2H and verify that they are indeed on E.

Problem 4: Find one point with integer coordinates lying on E other than those seen in Problems 1, 2 and 3.

Use sage to solve the following **before** we meet for the lab on Tuesday, 10 November.

Problem 5: Let E be the elliptic curve $y^2 = x^3 - 3x + 7$.

- (i) Verify that P = (-1, 3) is a point on E.
- (ii) Determine the multiples kP for k = 1, 2, ..., 20.
- (iii) Calculate 2014P.