$$\frac{dP}{dz} = -gg \Rightarrow \frac{dP}{dz} = \frac{P}{RT}g$$

we assume the temperature changes linearly with height as follows Tato-Bz where To=sea level temperature.

 $B = lapse rate \left[\frac{dT}{dz}\right]$ Z = elevation above

Integrate the equation

$$\int_{Pa}^{P} dP = \frac{-9}{R} \int_{0}^{Z} \frac{1}{T_0 - B_Z} dZ$$

atmospheric pressure @ sea level

$$\Rightarrow |n(p)|_{Pa}^{P} = \frac{-g}{R} \left[-\frac{|n(T_0 - B^2)|^2}{B} \right]_0^2$$

$$\Rightarrow \ln \frac{P}{Pa} = \frac{9}{RB} \left[\ln \left(\frac{T_0 - Bz}{T_0} \right) \right]$$

$$\Rightarrow \frac{P}{P_{\Delta}} = \left(1 - \frac{Bz}{T_0}\right)^{9/RB}$$

To find the elevation where $P_a = 0.5$, rearrange the equation; $Z = \frac{T_0}{B} \left(1 - 0.5^{\frac{88}{9}}\right) = \frac{288.15}{0.00645} \left(1 - 0.5^{\frac{9}{9.81}}\right) = 5477 \text{ m}$

Temperature increases from 20°C -> 45° over 3000 m descent Lapse rate is 0.008333 k/m (8)

At the surface, Pa=100 000 Pa To=293.15 h

At
$$Z = -3000 \text{ m}$$

 $P = 100\,000 \left(1 - \frac{(0.008333 \times -3000)}{293.15}\right)^{\frac{9.81}{287 \times 0.008333}} = 139889 \text{ Pa}$

For the first case, the weight of the pister is equal to the hydrostatic force of the mercury in the tube. Pa acts on both bodies, so can be ignored (gauge pressures)

$$W = F_i$$

 $W = P_{Hg} h A$

For the second case, the weight of the pister, plus the ferce on the pister are equal to the hydrostatic force due to the column of Mercury.

$$W + F = F_2$$

$$\Rightarrow F = F_2 - W = F_2 - F_1 = p_g HA - p_g h$$

$$\Rightarrow F = p_g TD^2 (H-h)$$

$$F = p_9 \frac{\pi D^2}{4} (H-h) = 13540 \times 9.81 \times (\frac{200-25}{1000}) \times \frac{\pi 0.05^2}{4} = 45.6 \text{ N}$$

The pressure on the left side (main tank) is equal to the hydrostatic pressure plus the air pressure. The pressure on the right side (tube) is equal to the hydrostatic pressure of the water column. Atmospheric pressure is the same on the water column in the tube as the reference pressure for the gauge, hence it can be ignored.

$$H = \frac{P + ggh_1}{gg} = \frac{10000 + 1000 \times 9.81 \times 1}{1000 \times 9.81} = 2.02m$$

Equating pressures on each arm of manameter $P_1 + g_w g(d+L) = P_2 + g_w gd + ger gL$

 $P_2 - P_1 = g_{\omega}g(d+L) - g_{\omega}gd - g_{cr}gL$ $P_2 - P_1 = g_{\omega}gL - g_{cr}gL = gL(g_{\omega} - g_{cr})$

 $P_2 - P_1 = (1000 - 1595) \times 9.81 \times 0.0102 = -59.54 Pa$

This states that the pressure Pz is less than Pi, as expected from the manameter.

The The The water is applied to the water in that tube will drop by distance L, whilst the kerosene in the left tube will increase in height by distance L.

Hence, under the applied gauge pressure the elevation difference is

since points I and B are at the same height in the same fluid, they must have equal pressure.

divide by for and g, then solving for HI gives

$$H_1 = \frac{SGu \times H_0}{1 - SGu} = \frac{0.82 \times 20mn}{1 - 0.82} = 91.11mm$$

Now when the pressure is applied to the right hand tube

setting equal and dividing by gw and g gives

$$= \sum_{i=1}^{n} \left(\frac{\Delta P}{S \omega g} + H_{i} - SG_{i}(H_{0} + H_{i}) \right) = \frac{1}{2} \left(\frac{98}{1000 \times 9.81} + \frac{91.11}{1000} - 0.82 \left(\frac{20 + 91.11}{1000} \right) \right)$$

L=5mm

Now H = Ho + 2L = 20mm + 2x5mm = 30mm

$$P_{x}$$
 to $0 \rightarrow P_{x} = P_{1} + g_{w}gh_{1}$
 $0 \leftarrow 2 \rightarrow P_{1} = P_{2} - 5G_{0}g_{w}gh_{3}$
 P_{2} to $P_{y} \rightarrow P_{2} = P_{y} - g_{w}g(h_{1} - h_{2} - h_{3})$

Adding these three equations together gives Px-Py = gwg (hz+h3) - SGo gwg h3

Px-Py = 1000 x9.81 (0.5 + 0.25) - 0.9 x 1000 x9.81 x 0.25 = 5150 Pa

pressure Q (1) = P1 pressure @ equal height as () in the small tube is: P2 + pgh2 + pgh,

Equate pressures at reservoir level:

$$p_1 = p_2 + p_3(h_2 + h_1)$$

we know that he volume of water is constant in whole system, therefore: $\frac{\pi D^2 h_1}{4 h_2} = \frac{\pi d^2 h_2}{4 h_2} = h_1 = h_2 \left(\frac{d}{D}\right)^2 = h_2 \left(\frac{5}{50}\right)^2 = 0.01 h_2$

with hz = 10.09 nm

Total height change = hithz = 10.19mm

 $h_1 = 0.01 \times 10.09 = 0.1009$ mm 7 for standard U-tube $\Delta p = 9g \Delta h \Rightarrow \Delta h = \frac{\Delta t}{9g}$ $\Delta h = \frac{100}{9.81 \times 1000} = 10.19$ mm $\Delta h = \frac{100}{9.81 \times 1000} = 10.19$ mm

The overall deflection/height change is equal!

Pressure at 0 = Pi

pressure at same height in the inclined tube is: $Pz + ggh_2 + ggh_1 \equiv P_2 + gg(h_2 + h_3)$

As these two are the same vertical location in the same fluid, they are equal in pressure.

$$P_1 = P_2 + gg(h_1 + h_2)$$

$$P_1 - P_2 = gg(h_1 + h_2)$$

To eliminate hi from this equation, we recognize that the volume of the liquid in the manameter is constant.

$$\frac{TD^2}{4}h_1 = \frac{TLd^2}{4}L_2 \implies h_1 = L\left(\frac{d}{D}\right)^2$$

Also we know that he = L sino, therefore

$$P_{1}-P_{2} = gg\left[L\left(\frac{d}{D}\right)^{2} + L\sin\theta\right] = ggL\left[\left(\frac{d}{D}\right)^{2} + \sin\theta\right]$$

$$\Rightarrow L = \frac{P_{1}-P_{2}}{gg\left[\left(\frac{d}{D}\right)^{2} + \sin\theta\right]} = \frac{\Delta P}{gg\left[\left(\frac{d}{D}\right)^{2} + \sin\theta\right]}$$

Eqn for liquid deflection dre to AP

For a standard U-tibe manameter, the height due to Δp is given by: $\Delta P = ggh \Rightarrow h = \frac{\Delta P}{gg}$ As we nant a 5:1 increases in L,

$$\frac{L}{h} = 5 = \frac{\Delta P}{39[(\frac{d}{D})^2 + \sin \theta]} = \frac{1}{(\frac{d}{D})^2 + \sin \theta}$$

To find the angle 0 of the tube to get the 5:1 increase in L compared to the standard U-tube, rearrange the equation to find 0:

$$5 = \frac{1}{\left(\frac{d}{D}\right)^2 + \sin\theta} \implies \sin\theta = \frac{1}{5} - \left(\frac{d}{D}\right)^2 \implies \theta = \sin^{-1}\left(\frac{1}{5} - \left(\frac{8}{76}\right)^2\right)$$

$$\theta = 11.13^\circ$$

(10) From question (9) the deflection along the inclined tube can be calculated from:

$$L = \frac{\Delta P}{P9((\frac{d}{D})^2 + \sin\theta)} = \frac{350}{|\cos(x9.8)((\frac{8}{96})^2 + \sin(11.13))} = 178.4 \text{ mm}$$

we know that the change in L should be 5 times greater than the vertical height difference. $\Delta h = \frac{178.4}{5} = 35.68 \, \text{mm}$ Match! Let us check with the definition of $\Delta h = h_1 + h_2 = L(\frac{d}{D})^2 + L \sin\theta = 35.68 \, \text{m}$

Now for a standard U-tube manameter, the Δh can be found from $\Delta p = gg\Delta h \implies \Delta h = \frac{\Delta P}{8g} = \frac{350}{1000 \times 9.81} = 35.68 \, \text{mm}$

This shows that the vertical change in height is the same for both the U-tube and Indined-tube manameter, however by indining the 2nd tube in the latter equipment and measuring the variation in water level along the tube, a significantly better resolution can be obtained.

To ensure static equilibrium, the sum of the
harizontal forces must equal zero.
io FH - Foupport = 0 => FH = Foupport
Frupport = 117 720 N - This is the
THIS SOLUTION IS NOT ALWAYS THE CASE SO:) we previously found.
/ (, , , , , , , , , , , , , , , , , ,
EXTENSION
To verify this further, let us look at all the forces and
calculate the moment at the hinge.
so, FH acts at the centre of pressure of the projected plane.
This is calculated from
$Ixx_c + 4c6 = \frac{(\omega x)}{12} + 4c6$
This is calculated from $ y_{cp} = \frac{1}{y_{ceA}} + y_{ce} = \frac{(\omega R^3)}{y_{ceA}} + y_{ce} $ $ \frac{1}{y_{ceA}} + y_{ce} = \frac{(\omega R^3)}{y_{ceA}} + y_{ce} $
$y_{cp} = \frac{4}{1 \times 2 \times 6} + 1 = 1.333 \text{m} \text{from the centre of the}$ circle.
From the origin at the tringe yep = 2-1.333 = 0.6667 m
Now the vertical force is equal to
0.6667m the weight of the water above the
Now the vertical force is equal to 10.6667m the weight of the water above the gate 300
4R For a quarter circle,
3TT I Me Area A = TLR2
4
And the centroid is located at
The force due to the 4R from the circle centre.
weight of the water acts 3TT
through the centroid and is given by:
Fv = 8Ab = gg TR b = 1000x9.81x TX 22 x6=184914 N
4

	The location of this force is at $\frac{4R}{3\pi} = \frac{4\times2}{3\pi}$	=0.04882
	from the circle centre.	
	0.848826m	
	The state of the s	
	So the total force the gate is:	aching on
0.66666	my the gate is:	U
	7/1/1/1/1	
	$F = \sqrt{F_{H}^2 + F_{V}^2} = 219$	9206 N
	acting at 58.5° from	
	Surface/harizental	
	58.5°	
	The total moment acting around the hinge she	uld be
	The total moment acting around the hinge she zero for static equilibrium. Therefore we can	culculate
	the Fupport value:	Carcolano
	The Support Victor	
(M) = (- Fx x x = Fx x 7 + Fsward x K	2 = 0
$m)^{\dagger} = c$	-Fyxx = FnxZ+FsupportxK	2 =0
m) = 0		
m) = 0	Fsupport = (184914 x 0.848826) + (117720	
M) = C		
M) = 0	Fsupport = (184914 x 0.848826) + (117720	
M) = 0		
M) = 0	Fsupport = (184914 x 0.848826) + (117720 2 Fsupport = 117 720 N	x 0.666617)
M) = C	FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)
M) = C	Fsupport = (184914 x 0.848826) + (117720 2 Fsupport = 117 720 N	x 0.666617)
m) = 0	FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)
M) = C	FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)
$M^{\dagger} = C$	FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)
M = C	FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)
M) = C	FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)
m) = (FSUPPORT = (184914 x 0.848826) + (117720 2 FSUPPORT = 117 720 N SAME AS THE HORIZONTAL FURCE	x 0.666617)

Define the hinge of the gate as z=0

The pressure at any point on the gate is equal to the weight of the water above that point, applied over a given area.

Atmospheric pressur has been ignored as it applies to both the water free surface and the gate

If we look at the hydrostatic force on a strip of arra dz, we get:

We can now calculate the moments around the hinge dM, knowing that counter clockwise moments are positive MD+

$$dM = -ZdF = -zpgw(H-D-Z)dZ = -pgw[(H-D)z-z^2]dZ$$

Integrate over the gate to get the total moment
$$M = -ggW \int_{-D}^{D} [(H-D)z-Z^2]dz = -ggW \left[\frac{H-D}{2}z^2 - \frac{1}{3}z^3\right]_{-D}^{D} = \frac{2}{3}ggWD^3$$

Independent of H

We know that the moments around the hinge must equal zero

 $M_z = 0$

which means that the moment produced by the force FAR must equal the sum of all elemental moments caused by the gate pressure.

where p=ggh

where h=H-y

dA = rdrde y = rsino

$$F_{A} = \frac{1}{R} \iint_{0}^{R} r \sin \theta \, g \, (H - r \sin \theta) \, r \, dr \, d\theta = \frac{gg}{R} \iint_{0}^{R} \left(H r^{2} \sin \theta - r^{3} \sin^{2} \theta \right) dr dr$$

$$= \frac{gg \, H R^{2}}{3} \int_{0}^{T} \sin \theta \, d\theta - \int_{0}^{T} \frac{g \, R^{3}}{4} \int_{0}^{T} \sin^{2} \theta \, d\theta$$

$$= \frac{2gg \, H R^{2}}{3} - \frac{TL \, gg \, R^{3}}{8} = gg \, R^{2} \left(\frac{2}{3} H - \frac{TL \, R}{8} \right)$$

when H=25mR=10m

g = 1000 lg/m3

g= 9.81 m/52

FA = 2x1000x9.81x25xU0) TEx1000x9.81xU0) 12 497 622N

width
$$b=2$$

 $c = 0.25 m^{-1}$
 $D = 2 m$
 $H = 3 m$

when
$$y=D \rightarrow x=\sqrt{\frac{D}{C}}$$

 $P=ggh$

a) Magnitude and line of action of the vertical component of hydrostatic

Fr =
$$\int P dAy$$
 $P = ggh$ where $h = D - y$
 $f = ggh$ where $h = D - y$
 $f = ggh$ where $h = D - y$
 $f = ggh$
 $f = g$

$$FV = \frac{2}{3} 995 \frac{D^{3/2}}{c^{1/2}} = \frac{2}{3} \times 1000 \times 9.81 \times 2 \times \frac{2^{3/2}}{\sqrt{0.25}} = 73992 \text{ N}$$

To find the line of action of this force

$$F_{V} \propto' = \int x \, dF_{V} \implies \chi' = \frac{1}{F_{V}} \int x \, dF_{V} = \frac{1}{F_{V}} \int x \, p \, dA_{y}$$

$$\chi' = \frac{1}{F_{V}} \int_{0}^{\sqrt{P}} x \, g \, g \, (D - cx^{2}) \, b \, dx = \frac{Pgb}{F_{V}} \int_{0}^{\sqrt{P}} \left(Dx - (x^{3}) \, dx = \frac{ggb}{F_{V}} \frac{D^{2}}{F_{V}} \right) \, dx$$

$$\chi' = \frac{1000 \times 9.81 \times 2 \times 2^{2}}{73.992 \times 4 \times 0.25} = 1.061 \, m$$

This could also have been solved by calculating the weight of the water above the gate.

This is calculated as:

This acts through the centraid of the water, located at $x_2' = 3 \sqrt{\frac{D}{S}} \sqrt{\frac{D}{S}}$ which equals $x_2' = \frac{3}{8}\sqrt{\frac{2}{0.25}} = 1.061 \,\text{m}$

These values are equal to the values obtained from the pressure integration!

Now to find the horizontal force of the water on the gate we will project the gate onto the y plane and calculate the equivalent pressure at the controid of the projected plane

There of projected plane

There of projected plane

The Paghas bD

centroid is at ho6= 2

 $F_{H} = \int g \frac{D}{2} b D = \int g \frac{D^{2}}{2} b = 1000 \times 9.81 \times \frac{2^{2}}{2} \times 2 = 39246 \text{ N}$

The line of action is the centre of pressure, $h_{CP} = \frac{I_{XX}}{A \cdot h_{CG}} + h_{CG}$ $I_{XX} = \frac{bD^3}{12} = \frac{2x^2}{12}$ $I_{XX} = \frac{4}{12}$ $I_{XX} = \frac{4}{12}$ $h_{CP} = \frac{(4/3)}{2x2 \times 1} + 1 = \frac{4}{3}m$ from the free surface

The position from the tringe is D-hop=2-4=3m

So knowing where the vertical and harizontal forces due to the water act and their magnitude, we can calculate FAME FAV required to keep the gate in equilibrium

-) For hurizontal force at A:

Take moments about the hinge

$$F_{AH} = \frac{F_{V} \cdot x' + F_{H} \cdot (D - h_{CP})}{H} = \frac{73992 \times 1.061 + 39240 \times (2 - \frac{4}{3})}{3} = 34889 N$$

-) For Vertical force at A:

$$F_{AV} \cdot L - F_{V} \cdot \chi' - F_{H} \cdot (D - h_{CP}) = 0$$
 where $L = \sqrt{\frac{H}{c}}$ from eqn $y = cx^{2}$ $L = 3.464$ m

$$F_{AV} = \frac{F_{V} \cdot \chi' + F_{H} \cdot (D - hc_{P})}{L} = \frac{73992 \times 1.061 + 39240 \times (2 - \frac{4}{3})}{3.464} = 30215 \text{ N}$$

Vertical component of hydrostatic Corce

To find h calculate L-y where
$$y = \sqrt{R^2 - x^2}$$

$$F_V = \int P dA_y = \int_0^R g(L - \sqrt{R^2 - x^2}) b dx = ggbR(L - R\frac{T}{4})$$

Ly This can also be found from calculating the weight of the water above the cut out. Practically, this is achieved by calculating the weight of the whole cube, then subtracting the remicircular volume weight from it.

forces.

$$\chi' \cdot F_{V} = \int_{X} dF_{V} \quad \text{where} \quad dF_{V} = fgb \left(L - \sqrt{R^{2} - \chi^{2}} \right) dx$$

$$\chi' = \frac{1}{F_{V}} \int_{0}^{R} \chi \, ggb \left(L - \sqrt{R^{2} - \chi^{2}} \right) dx = \frac{1}{R(L - R\frac{\pi}{4})} \int_{0}^{R} \left(L\chi - \chi \sqrt{R^{2} - \chi^{2}} \right) d\chi$$

$$\chi' = \frac{1}{R(L - R\frac{\pi}{4})} \left[\frac{1}{2} LR^{2} - \frac{1}{3}R^{3} \right] = \frac{R}{L - \frac{\pi}{4}} \left(\frac{L}{2} - \frac{R}{3} \right) = \frac{4}{10 - \frac{4\pi}{4}} \left(\frac{10}{2} - \frac{4}{3} \right)$$

$$\chi' = 2.14 \, \text{m}$$

Buoyancy force FB = 89V

FB = 99 V= 1000 x9. 81x (0.152x0.152x x)=226.7x1

The moment caused by the weight will equal the moment caused by the buoyancy force

$$M = -mg\cos\theta \frac{L}{2} + FB\cos\theta \frac{\kappa}{2} = 0$$

$$-670 \times \frac{3.6}{2} + 226.7 \times \stackrel{\sim}{=} = 0 \implies x = 3.26 \text{ m}$$

when the water surface is y= 2.1 m whove the hinge

$$0 = \sin^{-1}\left(\frac{2.1}{3.26}\right) = 40.1^{\circ}$$

$$\theta = \sin^{-1}\left(\frac{2.1}{3.76}\right) = 40.1^{\circ}$$

$$m = \frac{9061 \times 101352}{287} \left(\frac{1}{8.9 + 273} - \frac{1}{71.1 + 273} \right) = 2052 \text{ Ly}$$

The basic equation governing this situation is: - \$\forall p + g\vec{g} = g\vec{a}\$
In components

$$-\frac{\partial P}{\partial x} + ggz = gaz$$

$$-\frac{\partial P}{\partial y} + ggy = gay$$

$$-\frac{\partial P}{\partial z} + ggz = gaz$$

$$ax = 3$$

$$gx = g \sin\theta$$

$$ay = 0$$

$$gy = -g \cos\theta$$

$$gz = 0$$

$$-\frac{\partial P}{\partial x} + gg\sin\theta = g\alpha x$$

$$-\frac{\partial P}{\partial y} - gg\cos\theta = 0$$

$$-\frac{\partial P}{\partial z} = 0$$

So the problem is only a function of x and y: p = p(x,y)The total differential of p = p(x,y) is $dP = \frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy$

At the free surface, pressure is equal to atmosphere, which is a constant and as we are looking at gauge pressure we can make it 0. so to find the slape, rearrange the eqn.

$$0 = \frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy \implies \frac{dy}{dx} = \frac{-(\frac{\partial P}{\partial x})}{(\frac{\partial P}{\partial y})} = \frac{ggsin6 - fax}{ggcos6} = \frac{gsin6 - ax}{gcos6}$$

$$\frac{dy}{dx} = \frac{9.81x sin 30 - 3}{9.81x cos30} = 2224$$

This gives a water surface angle (tani'(0.224)=12.6°) relative to the

To have a water free surface parallel to the x-axis, the slope $\frac{dy}{dx}$ must equal zero

$$\frac{dy}{dz} = 0 = \frac{g\sin\theta - \alpha x}{g\cos\theta} \implies \alpha z = g\sin\theta = 9.81\sin30 = 4.905m$$

so an acceleration of $a_x = 4.905 \frac{m}{s^2}$ would cause the free surface to have a constant y height

$$h_0 = 0.1 \, \text{m}$$
 $H = 0.15 \, \text{m}$
 $R = 0.5 \, \text{m}$

$$Z_5 = h_0 + \frac{w^2}{4g} (2r^2 - R^2)$$

At the outer edge of the container, r=R and $Z_5 = H$ $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} R^2 - R^2 \right) = \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $\Rightarrow w = \sqrt{\frac{(Z_5 - h_0)}{R^2}} = \sqrt{\frac{(0.15 - 0.1) \times 4 \times 9.81}{(0.5)^2}} = \frac{1}{2.8014} = \frac{1}{2.80$

To calculate the pressure at the bottom corner A, it is more convenient to make the axis crisin the free surface at bottom of the depression A 10,00 S

A(R,-25)

The height of the depression is equal to the height of the free (unrotated) surface minus rise of fluid at the edges. (H-h.= 0.15-0.1=0.05m). This comes from: at r=0 $Z_S=h_0-\frac{12^2R^2}{4g}=0.1-\frac{2.8014^2\times0.5^2}{4\times9.81}=0.05m$

So pressure is: $P = 0 + 13400 \times 2.8014^2 \times 0.5^2 - 13400 \times 9.81 \times (-0.05) = 19718 Pq$

This compares to p= 8gz=134cox 9.81 x 0.1 = 13 145 Pa For stationery