

Obsah

1	O to	omto Ctesteru 3
	1.1	Úvod
	1.2	Bezpečnost
	1.3	Licence
		1.3.1 Dostatečné licenční upozornění
	1.4	Rozdíly ke k-verzi
	1.5	Zdrojový kód
	1.6	Podporovaná hardware
	1.7	Podporovaní hardwardwerové možnosti
		1.7.1 Obsluha
		1.7.2 Vylepšení
		1.7.3 Doplňkové zkoušky a měření
	1.8	Upravení firmware
2	Har	dware 6
	2.1	Hardwarové možnosti
	2.2	A samozřejmě softwarové možnosti
	2.3	Dostupné jazyky
	2.4	Konfigurace
	2.5	Sběrnice & rozhraní
		2.5.1 I2C/SPI
		2.5.2 Serielní TTL Interface
		2.5.3 One Wire
	2.6	LCD moduly
		2.6.1 HD44780
		2.6.2 ILI9163
		2.6.3 ILI9341/ILI9342
		2.6.4 ILI9481 & ILI9486
		2.6.5 PCD8544
		2.6.6 PCF8814
		2.6.7 SH1106
		2.6.8 SSD1306
		2.6.9 ST7036
		2.6.10 ST7565R
		2.6.11 ST7735
		2.6.12 ST7920
		2.6.13 STE2007/HX1230
		2.6.14 VT100 Terminal
	2.7	Tlačítka a ovládání
	_,,	2.7.1 Testovací tlačítko
		2.7.2 Rotační kodér (Hardwarová možnost)
		2.7.3 (Vice/méně tlačítek)
		2.7.4 Dotyková obrazovka (Hardwarová možnost)
		2 200 mora obtazorna (Haramatova inozinoso)

		2.7.5	Komunikace s PC
		2.7.6	Seriový výstup
		2.7.7	Automatisierung
		2.7.8	Výstup přes VT100
3	Obs	luha	17
		3.0.1	Zapnutí
		3.0.2	Hledání komponentů
		3.0.3	Monitorování baterie
		3.0.4	Vypínání,
		3.0.5	Výběrové menu
	3.1	Popis :	možností
		3.1.1	PWM-Generátor
		3.1.2	Jednoduchý PWM
		3.1.3	Rozšířený PWM
		3.1.4	Obdélníkový signální generátor
		3.1.5	Zjištění Zenerového napětí (hardwarová úprava)
		3.1.6	měření ESR (ekvivalentního sériového odporu)
		3.1.7	Unikající proud kondenzátoru
		3.1.8	R/C/L Monitory
		3.1.9	C Monitor
		3.1.10	Čítač kmitočtů (hardwarová úprava)
		3.1.11	Jednoduchý čítač
			Rozšířený čítač
			Počitadlo událostí (s hardwarovou úpravou)
			Rotační kodér
			Kontrast
			Detektor/Dekodér pro IR dálkové ovládání
			Test optických spojek
		3.1.19	Test servopohonů pro modely
		3.1.20	OneWire skenování
			Snímač teploty DS18B20
			DHTxx senzory
			Autotest
			Samočinné nastavení
			Uschovat/Použít
			Ukázat hodnoty
		3.1.27	Font
		3.1.28	Vypnout
		3.1.29	Konec
_	_		
4	Deta	aily měì	
		4.0.1	Odpory
		4.0.2	Kondenzátory
		4.0.3	tlumivky
		4.0.4	Vybití součástek
		4.0.5	ADC převzorkování
		4.0.6	Zobrazení výsledků
		4.0.7	Dodatečné pokyny
		4.0.8	Pomoc
		4.0.9	Změny firmwaru

5	Dálk	ové ov	ládání	31
	5.1		y dálkového ovládání	31
		5.1.1	ERR	31
		5.1.2	OK	31
		5.1.3	N/A	31
	5.2		ommandos	31
	J	5.2.1	VER	31
		5.2.1	OFF	31
	5.3	•	ommandos	31
	0.0	5.3.1	PROBE	31
		5.3.2	COMP	31
		5.3.2	MSG	31
		5.3.4	QTY	31
		5.3.4	NEXT	31
		5.3.6	TYPE	31
				$\frac{31}{32}$
		5.3.7		$\frac{32}{32}$
		5.3.8	MHINT	$\frac{32}{32}$
		5.3.9	PIN	
			R	32
		5.3.11	C	32
			L	32
			ESR	32
			<u>I_l</u>	33
			V_F	33
			V_F2	33
			C_D	33
			I_R	33
			R_BE	33
			h_FE	33
			h_FE_r	33
			V_BE	33
			I_CEO	33
			V_th	33
			C_GS	33
			R_DS	33
			V_GS_off	33
		5.3.28	I_DSS	33
			C_GE	33
		5.3.30	V_GT	34
		5.3.31	V_T	34
		5.3.32	R_BB	34
_	_			
6	_	gramov		35
	6.1	Makefi		35
		6.1.1	MCU typ	35
		6.1.2	Taktová frekvence MCU	35
		6.1.3	Typ oscilátoru	35
		6.1.4	Avrdude typ MCU	36
		6.1.5	Avrdude ISP programátor	36
	6.2	config.		37
		6.2.1	Hardwarová obsluha	37
		6.2.2	Možnosti softwaru	39
		6.2.3	uživatelské rozhraní	41
		6.2.4	Správa napájení	42
		6.2.5	Nastavení a kompenzace měření	43

		6.2.6	1 0 0	14
		6.2.7	Busse	15
	6.3	Config	_328.h	16
		6.3.1	LCD moduly	16
		6.3.2	· ·	16
		6.3.3		18
	6.4			19
	0.4	6.4.1		19
			<i>U</i>	
		6.4.2	1 1	19
		6.4.3		51
	6.5	_	_	52
		6.5.1		52
		6.5.2	Rozložení portů a pinů	52
		6.5.3	Busse	54
_			_	
7	kolel	kce nas		55
		7.0.1	" I =	55
		7.0.2		56
		7.0.3	/	57
		7.0.4	GM328 !pozor! né GM328A	59
		7.0.5	Fish8840 TFT	59
		7.0.6	Multifunktionstester TC-1	59
		7.0.7	Hiland M644	31
		7.0.8		32
		7.0.9		33
		7.0.10	O .	34
		1.0.10	Tirdumo Willott Zapojem	, 1
8	Prog	ramova	ání testeru Componentů 6	55
	8.1		•	35
	8.2	0		35
		8.2.1		35
		8.2.2	1 0	36
		8.2.3		36
				36
		8.2.4	U	
		8.2.5		66
		8.2.6	1	67
		8.2.7		67
	8.3	Přelože	ení Firmware	68
9	Post	up verz	rí	59
•	9.1	-		59
	9.2			70
	9.2			70
	9.4			70
	9.5			71
	9.6			71
	9.7			71
	9.8	v1.34m	n 2018-10	72
	9.9	v1.33m	12018-05	72
	9.10	v1.32m	n 2018-02	72
	9.11	v1.31m	n 2017-12	73
				73
				73
				73
				73
	σ . ± 0	v 1.4/11	. #∪±1 ∨#	·

9.16	v1.26m	2016-12						 		 								74
9.17	v1.25m	2016-09						 		 								74
9.18	v1.24m	2016-08								 								74
9.19	v1.23m	2016-07																74
9.20	v1.22m	2016-03								 								75
9.21	v1.21m	2016-01								 								75
9.22	v1.20m	2015-12																75
9.23	v1.19m	2015-11																75
		2015-07																75
9.25	v1.17m	2015-02																76
		2014-09																76
		2014-09																76
9.28	v1.14m	2014-08																76
		2014-07																76
		2014-03																76
		2014-03																76
		2013-10																77
		2013-07																77
		2013-07																77
		2013-06																77
9.36	v1.06m	2013-03																77
		2012-11																78
		2012-11																78
9.39	v1.03m	2012-11																78
		2012-11																78
		2012-10																78
9.42	v1.00m	2012-09																78
0.43	v0.00m	2012-09																78

Kapitola 1

O tomto Ctesteru

1.1. Úvod

Transistor Tester je založen na projektu Markuse Frejka [1] a [2] s pokračováním Karl-Heinze Kübbelerem [3] a [4].

Componenten tester je alternativní firmware pro současný testovací obvod Karl-Heinze a nabízí některé změny uživatelského rozhraní a postupy měření a testování.

Zatímco firmware Karl-Heinze je oficiální verze a podporuje starší typy MCU ATmega, slouží tato verse k vyzkoušení a testování nových nápadů.

Je omezena na ATmegas s minimálně 32kB Flash.

Primární jazyky pro tuto versi jsou angličtina a němčina, ale lze snadno doplnit další jazyky.

Poznámka: Proveď vlastní nastavení u zcela nových testerů nebo firmwaru aktualizace. Nebo při použití jiných měřicích kabelů.

1.2. Bezpečnost

Component Tester není multimetr!

Je to jednoduchý tester komponentů, který dokáže měřit různé věci.

Vstupy nejsou chráněny a budou poškozeny napětím nad 5V.

Nepoužívej tester pro obvody v provozu, ale pouze pro jednotlivé komponenty! U kondenzátorů se ujisti, že jsou vybité **před zapnutím** testeru.

Používáš na vlastní nebezpečí!

1.3. Licence

Autor původní verze má pouze dvě licenční podmínky.

Za prvé je projekt otevřený zdrojový kód,

a za druhé by měli komerční uživatelé kontaktovat autora.

Bohužel, ani Karl-Heinz, ani já jsme se dosud k autorovi nedostali.

K vyřešení problému s nedostačující "open source" licencí, jsem 1.1.2016 vybral standardní licenci pro otevřený zdroj, poté co měl původní autor dost času oznámit svá přání k licenci.

Vzhledem k tomu že tato verze firmwaru je zcela nová verze, který zabírá jen několik nápadů původního firmwaru, ale nesdílí žádný kód, by to mělo být odůvodněno.

Licencováno v rámci EUPL V.1.1

1.3.1. Dostatečné licenční upozornění

Názvy produktů nebo společností mohou být registrované ochranné známky příslušných vlastníků.

1.4. Rozdíly ke k-verzi

Karl-Heinz napsal k testeru opravdu dobrou dokumentaci.

Určitě si ji přečti! Proto popisuji pouze hlavní rozdíly k firmwaru k:

- uživatelské rozhraní

Nepropadej v panice! ;-)

- + Dotykový displej
- + Automatizace (příkazy pro dálkové ovládání)
- Adaptivní funkce vybíjení Měření odporu
 - + další metoda pro odpory <10 ohmů (místo měření ESR)
- Měření kapacity + od 5pF
 - + další metoda pro kondenzátory mezi $4.7\mu F$ a $47\mu F$
 - + další metoda korekce / kompenzace
- Žádný SamplingADC () pro velmi nízké kapacity nebo indukčnosti
- diody
 - + Logika rozpoznávání
- bipolární tranzistory
 - + V _f je interpolováno pro praktické zkušební proudy
 - + Detekce germaniových tranzistorů s vyšším svodovým proudem
 - + Detekce Schottkyho tranzistorů

JFET

- + Detekce JFET s velmi nízkými I DSS
- TRIAC
 - + Detekce MT1 a MT2
- detektor / dekodér pro IR dálkové ovladače
- IR dálkové ovládání
- Test optokoplerů
- Test serva na výrobu modelů
- OneWire (DS18B20)
- Řada sensorů (DHTxx)
- Počítadlo událostí
- Strukturovaný zdrojový kód
- A další, na které nemůžu myslet.

Další podrobnosti najdeš v následujících sekcích.

1.5. Zdrojový kód

První m-firmware byla založena na zdrojovém kódu od Karla Heinze. Hodně bylo vymazáno, komentáře, proměnné přejmenovány, restrukturalizované funkce, velké funkce rozděleny na několik malých a více. Pak jsem pokračoval ve vývoji m-firmwaru jako nezávislou verzi. Existují jednoduché rámce pro displej a přišly k tomu i nové rozhraní.

Doufám, že zdrojový kód je snadno čitelný a srozumitelný.

Aktuální firmware najdeš na následujících webech:

- https://www.mikrocontroller.net/svnbrowser/transistortester/Software/Markus. [6]
- https://github.com/madires/Transistortester-Warehouse.[7].

1.6. Podporovaná hardware

Firmware běží na všech testerech, které poskytují základní obvody jako u Karl-Heinze Dokumentace je kompatibilní a používá jednu z následujících MCU:

- ATmega 328 config 328.h
- ATmega 324/644/1284 config_644.h
- ATmega 640/1280/2560 config_1280.h

Je možné upravit různá přiřazení pinů. Jako displej je možné používat textové nebo grafické displeje (monochromatické nebo barevné).

Podporované řadiče najdeš v kapitole 2.6 "LCD moduly" od stránky 37.

1.7. Podporovaní hardwardwerové možnosti

1.7.1. Obsluha

- rotační kodér
- další klíče (více / méně)
- Dotyková obrazovka
- sériové rozhraní (TTL, RS232, sériový adaptér USB)

1.7.2. Vylepšení

- externí referenční napětí 2.5V
- pevný nastavovací kondenzátor
- ochranné relé pro vybíjení kondenzátorů

1.7.3. Doplňkové zkoušky a měření

- Zenerův test / měření externího napětí <50V
- jednoduchý čítač kmitočtu
- čítač rozšířené frekvence
- s předzesilovačem a křemenným oscilátorem pro nízké a vysoké frekvence
- pevný IR-RC přijímač

1.8. Upravení firmware

Nejprve bys měl upravit **Makefile** viz kapitola 6.1 na stránce 35 a zde upravit nastavení MCU model, frekvenci, typ oscilátoru a nastavení programovacího adaptéru.

V **config.h** viz kapitolu 6.2 od stránky 37 můžeš nastavit možnosti operace a nabídky, Zde si vybereš hardwarové a softwarové možnosti, jazyk provozu a v případě potřeby změň výchozí hodnoty.

A nakonec v **config_<MCU>.h** globální konfiguraci MCU například přiřazení pinů a zobrazení které se líší v závislosti na vestavěném MCU. Detaily v kapitole 6.5 od stránky 52. Soubory config<MCU>.h platí pro náslaedující MCU:

- ATmega 328 config 328.h
- ATmega 324/644/1284 config_644.h
- ATmega 640/1280/2560 config 1280.h

V kapitole 7, "Kolekce nastavení" najdeš, od stránky 37, nastavení pro různé verze testerů. Pokud tam tvůj tester není, pošli tvé nastavení e-mailem autorovi [8] pro pomoc ostatním uživatelům.

Všechna nastavení a hodnoty jsou vysvětleny v samotném souboru,

Jak Firmware přeložit se dozvíš v oddílu 8.3 na straně 68.

Kapitola 2

Hardware

2.1. Hardwarové možnosti

- další klávesy nebo možnosti vstupu
- Rotační kodér
- Více / méně tlačítek
- Dotyková obrazovka
- Externí referenční napětí 2.5V
- Ochranné relé pro vybití kondenzátoru
- Měření zenerových diod (převodník DC-DC)
- Čítač kmitočtů (jednoduchá a rozšířená verze)
- Čítač událostí
- Test IR dálkového ovládání (pevný IR přijímací modul)
- Pevný kondenzátor pro samočinné nastavení kompenzace napětí
- Sběrnice SPI (bit-bang a hardware)
- Sběrnice I2C (bit-bang a hardware)
- TTL Serial (Bit-Bang and Hardware)
- OneWire Bus (Bit-Bang)

Externí referenční napětí 2,5 V by mělo být použito, pouze pokud je to faktor 10 přesnější než regulátor napětí. Jinak by to výsledky spíše zhoršilo, než by se zlepšilo. Pokud máš MCP1702 s typickou přesností 0,4% jako regulátor napětí opravdu nepotřebuješ další referenční napětí.

2.2. A samozřejmě softwarové možnosti

- PWM generátor (2 varianty)
- Měření indukčnosti
- ESR měření a ESR v obvodu
- Test rotačních kodérů
- Generátor čtvercové vlny (vyžaduje další tlačítka)
- Test dálkového ovládání IR (modul IR přijímače na testovacích pinech)
- IR dálkové ovládání (IR LED s tranzistorem ovladačem)
- Test optočlenů
- Test serva pro výrobu modelů (potřebuje další klávesy, displej> 2 řádky)
- OneWire-Detekce
- Detekce UJT
- Test těsnosti kondenzátoru
- Monitorování R/L/C
- Teplotní senzor DS18B20
- Řada senzorů DHTxx k měření teploty a vlhkosti
- Barevné kódování zkušebních pinů (vyžaduje barevné zobrazení)
- Výstup nalezených komponent paralelně přes TTL seriál, například na PC
- Příkazy pro dálkové ovládání pomocí TTL seriálu.
- Výstup reverzního hFE (C&E obráceny) pro bipolární tranzistory

- . .

z těch nabídek vyber podle svých představ a omezených zdrojů MCU, RAM, EEPROM a flash paměti.

2.3. Dostupné jazyky

- dánština (z adresy glenndk@mikrocontroller.net) potřebuje malé změny písma.

němčinaangličtina

- italština (od Gino_09@EEVblog)

- polština (od Szpila)

- ruština (od indman@EEVblog)

- Znaková sada s azbukou založená na systému Windows 1251

- ruština 2 (od hapless@EEVblog)

- Znaková sada s azbukou založená na systému Windows 1251

- španělština (od pepe10000@EEVblog)

- čeština (od Kapa)

- Znaková sada založená na systému ISO 8859-1

- čeština 2 (od Bohu)

- Znaková sada založená na systému ISO 8859-2

Pokud dáváš přednost čárce místo desetinné tečky, existuje předvolba (Standart: Punkt).

2.4. Konfigurace

Tvoje MCU a programátor se nastavují v Makefile ... kapitola 6.1 od strany 35.

Tvé možnosti si můžeš vybrat v config.h . . . kapitola 6.2 od strany 37.

Specifická nastavení, jako jsou přiřazení pinů a zobrazení, se liší v závislosti od MCU v souborech:

- ATmega 328 v config_328.h - ATmega 324/644/1284 v config_644.h - ATmega 640/1280/2560 v config_1280.h

Detaily si můžeš přečíst v ...

kapitole 6.5 od strany 52.

Pokud bude firmware příliš velký, zkus znovu méně důležité možnosti vypnout.

2.5. Sběrnice & rozhraní

2.5.1. I2C/SPI Některé LCD moduly a další komponenty vyžadují na MCU I2C nebo SPI rozhraní. Firmware má proto ovladače pro oba systémy. Pro podporu různých obvodů mají ovladače sběrnic jeden Bit-Bang a jeden hardwarový režim. V režimu Bit-Bang mohou jakýkoli IO Piny používat stejný port, zatímco hardwarový režim používá pevně předepsané MCU Piny Busu. Nevýhodou Bit-Bang režimu je jeho pomalá rychlost. Hardwarový režim je hodně rychlejší. Ten rozdíl můžeš lehce pozorovat u barevných LCD modulů s vysokým rozlišením.

Pro testery s ATmega 328 je téměř vždy vyžadován Bit-Bang režim kvůli zapojení. ATmega 324/644/1284 má více I/O pinů, kromě toho dovoluje změněné zapojení používat pevné kolíky sběrnice pro hardwarový režim.

Protože je SPI nebo I2C primárně používán LCD modulem, najdeš oba v sekci pro moduly LCD v config<MCU>.h stránka 37 je můžeš přímo konfigurovat. Alternativně můžeš I2C nebo SPI v config.h na stránce 45 aktivovat a porty & piny v config<MCU>.h upravit. (Hledej I2C PORT stránka 54 nebo SPI PORT) na stránce 54.

2.5.2. Serielní TTL Interface Tester může mít také volitelné sériové rozhraní TTL. Používá se tato pro komunikaci s PC, mělo by to být kombinováno s USB na TTL převodníkem nebo s modulem ovladače RS-232. Firmware může použít UART MCU nebo softwarový UART (bit-bang). TTL rozhraní se aktivuje v config.h viz sekci "Buse"na straně 45 a Porty& Piny jsou definovány v config<MCU>.h (hledej SERIAL_PORT stránka 54).

Nevýhodou UART softwaru je, že TX signál není neustále "vysoký", když je rozhraní v klidu. To je způsobeno použitou metodou k ovládání Portových Pinů. Přepsání tohoto ovládání by výrazně zvýšilo obsah firmware. Zdá se, že tento problém nemá žádný účinek na většinu USB na TTL převodníků. V případu, že bys měl přesto potíže, můžeš zkusit pull-up odpor (10-100k) na TX pinu k udržení "vysoké" úrovně signálu v klidovém režimu.

Výchozí nastavení sériového rozhraní je 9600 8N1:

- 9600 bps
- 8 datových bitů

- žádná parita
- 1 stop bit
- žádná kontrola toku

2.5.3. One Wire Další podporovaný bus je OneWire, který má buď zkušební kolíky (ONEWIRE_PROBES) nebo pevný pin MCU (ONEWIRE_IO_PIN), na staně 45. Ovladač je určen pro standardní rychlost sběrnice a klienty s externím napájením.

Zapojení zkušebních pinů:

sample # 1: Gnd

sample # 2: DQ (data)

sample # 3: Vcc (proud omezený odporem 680 Ω)

Je zapotřebí externí pull-up odpor $4.7~\mathrm{k}\Omega$ mezi DQ a Vcc!

Funkce, které vyžadují přesně jednoho klienta na sběrnici, mohou volitelně používat ROM Výstupní kód klienta (ONEWIRE_READ_ROM). V případě chyby CRC nebo pokud je na sběrnici připojeno více klientů, je výstup "-". Je li kompletní ROM kód nula, došlo k chybě čtení. Jinak první část ROM kóduje rodinu produktů a druhá část sériové číslo.

2.6. LCD moduly

V současné době jsou podporovány následující LCD moduly nebo ovladače:

- HD44780	(textové zobrazení, 2–4 řádky po 16–20 znakech)	s. 9
- ILI9163	(grafický barevný displej 128x160)	s. 9
- ILI9341/ILI9342	(grafický barevný displej 240x320 nebo 320x240)	s. 9
- ILI9481	(grafický barevný displej 320x480, nezkoušený)	s. 10
- ILI9486	(grafický barevný displej 320x480, částečně zkoušený)	s. 10
- PCD8544	(grafické zobrazení 84x48)	s. 11
- PCF8814	(grafické zobrazení 96x65)	s. 11
- SH1106	(grafické zobrazení 128x64)	s. 11
- SSD1306	(grafické zobrazení 128x64)	s. 12
- ST7036	(textové zobrazení, 3 řádky po 16 znacích)	s. 12
-ST7565R	(grafické zobrazení 128x64)	s. 13
- ST7735	(grafický barevný displej 128x160)	s. 13
- ST7920	(grafické zobrazení až 256x64)	s. 13
- STE2007 / HX1230	(grafické zobrazení 96x68)	s. 15
- Terminál VT100		s. 14

Věnuj pozornost napájecímu napětí a logické úrovni modulu displeje! Použij Převaděč úrovně, pokud je to nutné. Jednoduchý řadič úrovně s odpory v sérii s využitím interních omezovacích diod displeje Řadiče může fungovat, ale pouze pro pomalé busy, jako je Bit-Bang SPI.

Doporučuji tedy používat integrované obvody převodníku napětí.

Pokud displej, navzdory správnému zapojení nic nezobrazuje, zkus změnit kontrast v (config_<MCU>.h) viz 52.

Pokud chceš ušetřit IO piny, můžeš u většiny modulů LCD /CS a /RES signály pevně zapojit prostřednictvím pullup/down odporů a odpovídající IO piny vykomentovat, pokud na sběrnici visí pouze LCD modul.

Grafické displeje mají obvykle možnosti nastavení orientace Výstup, např. Otoč obrázek o 90°, otoč jej vodorovně nebo také vertikálně. To umožňuje přizpůsobení obrazu příslušnému testerovi. Pro grafické barevné displeje jsou k dispozici další nastavení. V normálním barevném režimu lze použít několik barev, které lze změnit pomocí souboru color.h.

Dvoubarevný režim se aktivuje komentováním LCD_COLOR.

Barva písma je potom BARVA PEN a barva pozadí je BARVA BACKGROUND.

Pokud jsou primární barvy RGB červené a modré zaměněny, můžeš použít LCD_BGR k změnění příslušných barevných kanálů. U některých displejů je pořadí dílčích pixelů RGB obrácené a ovladač o něm nic neví.

Poznámka k ATmega 328: Pokud je k PD2/PD3 připojen rotační kodér, připoj /CS od LCD modulu s PD5 a nastav LCD_CS v config_328.h (pouze pro grafické LCD moduly).

V opačném případě by rotační kodér pokazil datovou sběrnici a vedl k nesprávným výdajům.

2.6.1. HD44780 zapojený v 4-bytovém režimu.

Modul	config- <mcu>.h</mcu>	328 75,6%	644 37,9%	1280 13,1%	odkaz
DB4	LCD_DB4	PD0	PB4	PB0	
DB5	LCD_DB5	PD1	PB5	PB1	
DB6	LCD_DB6	PD2	PB6	PB2	
DB7	LCD_DB7	PD3	PB7	PB3	
RS	LCD_RS	PD4	PB2	PB4	
R/W	LCD_RW	Gnd	Gnd	Gnd	
Е	LCD_EN1	PD5	PB3	PB5	

Tabulka 2.1. Zapojení HD44780 v paralelním režimu.

Tento LCD modul lze také použít s I2C adaptérem PCF8574. Za tímto účelem musí být aktivován I2C a kromě toho je požadována adresa adaptéru.

Modul	config- <mcu>.h</mcu>	328 76,5% 644 38,2% 1280 9,8%	odkaz
DB4	LCD_DB4	PCF8574_P4	
DB5	LCD_DB5	PCF8574_P5	
DB6	LCD_DB6	PCF8574_P6	
DB7	LCD_DB7	PCF8574_P7	
RS	LCD_RS	PCF8574_P0	
R/W	LCD_RW	PCF8574_P1	
E	LCD_EN1	PCF8574_P2	
LED	LCD_LED	PCF8574_P3	

Tabulka 2.2. Zapojení LCD-Modulu s PCF8574.

2.6.2. ILI9163 zapojený jako 4-drátový-SPI.

Modul	config- <mcu>.h</mcu>	328 87,4%	644 43,8%	1280 11,2%	odkaz
/RESX	LCD_RES	PD4	PB2	PB4	možnost
/CSK	LCD_CS	PD5	PB4	PB5	možnost
D/CX	LCD_DC	PD3	PB3	PB7	
SCL	LCD_SCL	PD2	PB7	PB1	SPI Clock
SDIO	LCD_SDA	PD1	PB5	PB2	SPI MOSI

Tabulka 2.3. ILI9163 zapojení.

Pro správné zobrazení budeš možná muset použít nastavení X/Y otočení. V případě potřeby můžeš také posunout směr X. Je-li LCD_LATE_ON aktivován, začíná tester s vymazaným displejem, což vede ke krátkému zpoždění při zapnutí. Jinak se při zapnutí zobrazí krátce náhodné pixely.

2.6.3. ILI9341/ILI9342 je možné použit přes SPI nebo 8-bit-Paralel.

Modul	config- <mcu>.h</mcu>	$328 \mid 87,4\%$	644 51,7%	1280 13,2%	odkaz					
RES	LCD_RES	PD4	PB2	PB4	možnost					
CS	LCD_CS	PD5	PB4	PB5	možnost					
DC	LCD_DC	PD3	PB3	PB7						
SCK	LCD_SCK	PD2	PB7	PB1	SPI Clock					
SDI	LCD_SDI	PD1	PB5	PB2	SPI MOSI					
SDO	LCD_SDO	-	PB6	PB3	nur ILI9341*					
	* zatím nepoužité									

Tabulka 2.4. 4-Line-SPI zapojení ILI9341/ILI9342.

Modul	config- <mcu>.h</mcu>	328	644	1280 13,1%	odkaz
LCD_RST	LCD_RES			PC0	možnost
LCD_CS	LCD_CS			PC1	možnost
LCD_RS	LCD_DC			PC2	
LCD_WR	LCD_WR			PC3	
LCD_RD	LCD_RD			PC4	
LCD_D0	LCD_DB0			PL0	LCD_PORT2 Pin #0
LCD_D1	LCD_DB1			PL1	LCD_PORT2 Pin #1
LCD_D2	LCD_DB2			PL2	LCD_PORT2 Pin #2
LCD_D3	LCD_DB3			PL3	LCD_PORT2 Pin #3
LCD_D4	LCD_DB4			PL4	LCD_PORT2 Pin #4
LCD_D5	LCD_DB5			PL5	LCD_PORT2 Pin #5
LCD_D6	LCD_DB6			PL6	LCD_PORT2 Pin #6
LCD_D7	LCD_DB7			PL7	LCD_PORT2 Pin #7

Tabulka 2.5. 8-bit-Paralelní zapojení ILI9341/ILI9342.

Pro správné zobrazení budeš možná muset použít nastavení X/Y otočení. A nezapomeň na správné rozlišení X a Y. Nastavení (ILI9341 je 240x320 a ILI9342 je 320x240). Některé moduly displeje mají deaktivovanou rozšířenou sadu instrukcí ILI9341 (pin EXTC je zapnutý Masse), a výstup je pak často jen vágní. Toho lze opravit s LCD_EXT_CMD_OFF.

Vzhledem k vysokému počtu pixelů je výstup přes SPI trochu pomalý. Vymazání celého displeje trvá s Bit-Bang SPI asi 3 sekundy při 8MHz taktu MCU.

Lepší je použití hardwarového SPI nebo paralelní sběrnice.

2.6.4. ILI9481 & ILI9486 (částečně zkoušen) 8-Bit nebo 16-Bit-Paralel.

Modul	config- <mcu>.h</mcu>	328	644 51,6%	1280 13,2%	odkaz
LCD_RST	LCD_RES		PC4	PC0	možnost
LCD_CS	LCD_CS		PC3	PC1	možnost
LCD_RS	LCD_DC		PC2	PC2	
LCD_WR	LCD_WR		PC1	PC3	
LCD_RD	LCD_RD		PC0	PC4	
LCD_D0	LCD_DB0		PB0	PL0	LCD_PORT2 Pin #0
LCD_D1	LCD_DB1		PB1	PL1	LCD_PORT2 Pin #1
LCD_D2	LCD_DB2		PB2	PL2	LCD_PORT2 Pin #2
LCD_D3	LCD_DB3		PB3	PL3	LCD_PORT2 Pin #3
LCD_D4	LCD_DB4		PB4	PL4	LCD_PORT2 Pin #4
LCD_D5	LCD_DB5		PB5	PL5	LCD_PORT2 Pin #5
LCD_D6	LCD_DB6		PB6	PL6	LCD_PORT2 Pin #6
LCD_D7	LCD_DB7		PB7	PL7	LCD_PORT2 Pin #7

Tabulka 2.6. ILI9481/ILI9486 8-Bit-Paralel

Modul	config- <mcu>.h</mcu>	328	644	1280	odkaz
LCD_D8	LCD_DB8				LCD_PORT3 Pin #0
LCD_D9	LCD_DB9				LCD_PORT3 Pin #1
LCD_D10	LCD_DB10				LCD_PORT3 Pin #2
LCD_D11	LCD_DB11				LCD_PORT3 Pin #3
LCD_D12	LCD_DB12				LCD_PORT3 Pin #4
LCD_D13	LCD_DB13				LCD_PORT3 Pin #5
LCD_D14	LCD_DB14				LCD_PORT3 Pin #6
LCD_D15	LCD_DB15			PC7	LCD_PORT3 Pin #7

Tabulka 2.7. dodatečné zapojení pro 16-Bit-Paralel.

2.6.5. PCD8544 je řízen pomocí SPI.

Modul	config- <mcu>.h</mcu>	$328 \mid 82,5\%$	644 39,1%	1280 10,0%	odkaz
/RES	LCD_RES	PD4	PB2	PB4	možnost
/SCE	LCD_SCE	PD5	PB4	PB5	možnost
D/C	LCD_DC	PD3	PB3	PB7	
SCLK	LCD_SCLK	PD2	PB7	PB1	SPI Clock
SDIN	LCD_SDIN	PD1	PB5	PB2	SPI MOSI

Tabulka 2.8. Přiřazení pinů pro PCD8544.

Protože displej má pouze 84 bodů ve směru X, max. 14 znaků na řádek pro znakovou sadu 6x8. Takže mohou být až dva znaky "neviditelné". Pokud to vadí, můžeš zkrátit texty ve variables.h.

2.6.6. PCF8814 je obvykle řízen 3-vodičovým SPI.

Modul	config- <mcu>.h</mcu>	328 82,6%	644 41,3%	1280 10,6%	odkaz
/RES	LCD_RES	PD4	PB2	PB4	
/CS	LCD_CS	PD5	PB4	PB5	možnost
SCLK	LCD_SCLK	PD2	PB7	PB1	SPI Clock
SDIN	LCD_SDIN	PD1	PB5	PB2	SPI MOSI

Tabulka 2.9. Přiřazení pinů pro PCD8814.

V případě potřeby lze výstup upravit pomocí nastavení Y-Flip a ten MX-Pin (X-Flip) od PCF8814 pomocí (Pull-Up/Down) otočit.

2.6.7. SH1106 je řízen 3-řádkovým SPI, 4-řádkovým SPI nebo I2C. 3-řádkové SPI vyžaduje Bit-Bang režim a SPI_9 musí být povolen.

Modul	config- <mcu>.h</mcu>	328 83,0%	644 41,6%	1280 10,7%	odkaz
/RES	LCD_RESET	PD4	PB2	PB4	možnost
/CS	LCD_CS	PD5	PB4	PB5	možnost
A0	LCD_A0	PD3	PB3	PB7	
SCL (D0)	LCD_SCL	PD2	PB7	PB1	SPI Clock
SI (D1)	LCD_SI	PD1	PB5	PB2	SPI MOSI

Tabulka 2.10. Přiřazení pinů pro SH1106 4-řádkové-SPI.

Modul	config- <mcu>.h</mcu>	328 83,2%	644 41,6%	1280 10,7%	odkaz
/RES	LCD_RESET	PD4	PB2	PB4	možnost
/CS	LCD_CS	PD5	PB4	PB5	možnost
A0		Gnd			
SCL (D0)	LCD_SCL	PD2	PB7	PB1	SPI Clock
SI (D1)	LCD_SI	PD1	PB5	PB2	SPI MOSI

Tabulka 2.11. Přiřazení pinů pro SH1106 3-řádkové-SPI (jen Bit-Bang).

Modul	config- <mcu>.h</mcu>	328 84,0%	644 41,9%	1280 10,7%	odkaz
/RES	LCD_RESET	PD4	PB2	PB0	možnost
/CS		Gnd			
SCL (D0)	I2C_SCL	PD1	PC0	PD0	
SDA (D1)	I2C_SDA	PD0	PC1	PD1	
SA0	Gnd(0x3c)				3.3V (0x3d)

Tabulka 2.12. Přiřazení pinů pro SH1106 v I2C.

Pomocí X/Y-Flip nastavení můžeš změnit orientaci displeje.

U mnoha zobrazovacích modulů SH1106 musí být X-posunutí nastaveno na 2.

2.6.8. SSD1306 je řízen 3-řádkovým SPI, 4-řádkovým SPI nebo I2C.

3-řádkové SPI vyžaduje Bit-Bang režim a SPI_9 musí být povolen.

Modul	config- <mcu>.h</mcu>	328 83,1%	644 41,6%	1280 10,7%	odkaz
/RES	LCD_RES	PD4	PB2	PB4	možnost
/CS	LCD_CS	PD5	PB4	PB5	možnost
DC	LCD_DC	PD3	PB3	PB7	
SCLK (D0)	LCD_SCLK	PD2	PB7	PB1	SPI Clock
SDIN (D1)	LCD_SDIN	PD1	PB5	PB2	SPI MOSI

Tabulka 2.13. Přiřazení pinů pro SSD1306 4-řádkové-SPI.

Modul	config- <mcu>.h</mcu>	328 83,2%	644 41,6%	1280 10,7%	odkaz
/RES	LCD_RES	PD4	PB2	PB4	možnost
/CS	LCD_CS	PD5	PB4	PB5	možnost
SCLK (D0)	LCD_SCLK	PD2	PB7	PB1	SPI Clock
SDIN (D1)	LCD_SDIN	PD1	PB5	PB2	SPI MOSI

Tabulka 2.14. Přiřazení pinů pro SSD1306 3-řádkové-SPI (jen Bit-Bang).

Modul	config- <mcu>.h</mcu>	328 84,1%	644 42,0%	1280 10,7%	odkaz
/RES	LCD_RES	PD4	PB2	PB0	možnost
/SCL (D0)	I2C_SCL	PD1	PC0	PD0	možnost
SDA (D1&2)	I2C_SDA	PD1	PC1	PB0	
SA0 (D/C)	Gnd (0x3c)				3.3V (0x3d)

Tabulka 2.15. Přiřazení pinů pro SSD1306 I2C.

Pomocí X/Y-Flip nastavení můžeš změnit orientaci displeje.

2.6.9. ST7036 (nevyzkoušen) je adresován přes 4-bitové-Paralelní nebo 4-bit SPI.

Modul	config- <mcu>.h</mcu>	328 76,2%	644 38,1%	1280 9,8%	odkaz
DB4	LCD_DB4	PD0	PB4	PB0	
DB5	LCD_DB5	PD1	PB5	PB1	
DB6	LCD_DB6	PD2	PB6	PB2	
DB7	LCD_DB7	PD3	PB7	PB3	
RS	LCD_RS	PD4	PB2	PB4	
R/W	LCD_RW	Gnd	???	???	možnost
E	LCD_EN	PD5	PB3	PB5	
XRESET		Vcc	???	???	možnost

Tabulka 2.16. Přiřazení pinů pro 4-bitový-paralelní ST7036.

Modul	config- <mcu>.h</mcu>	$328 \mid 76,1\%$	644 38,1%	$1280 \mid 9,8\%$	odkaz
XRESET	LCD_RESET	PD4	PB2	PB4	možnost
CSB	LCD_CS	PD5	PB4	PB5	možnost
RS	LCD_RS	PD3	PB3	PB7	
SCL (DB6)	LCD_SCL	PD2	PB7	PB1	SPI Clock
SI (DB7)	LCD_SI	PD1	PB5	PB2	SPI MOSI

Tabulka 2.17. Přiřazení pinů pro 4-drátový-SPI od ST7036.

ST7036
i hovoří I2C, ale (zatím) není podporován. Zvláštní Funkce ST7036 je p
in pro aktivaci rozšířené sady instrukcí (Pin EXT), který je zapnut pro většinu modulů. Měl by být vypnout, musíš nastavení LCD_EXTENDED_CMD a LCD_CONTRAST vykomentovat.

2.6.10. ST7565R je řízen 4/5-řádkovým-SPI.

Modul	config- <mcu>.h</mcu>	328 83,2%	644 41,7%	1280 10,7%	odkaz
/RES	LCD_RESET	PD0	PB2	PB4	možnost
/CS1	LCD_CS	PD5	PB4	PB5	možnost
A0	LCD_A0	PD1	PB3	PB7	
SCL (DB6)	LCD_SCL	PD2	PB7	PB1	SPI Clock
SI (DB7)	LCD_SI	PD3	PB5	PB2	SPI MOSI

Tabulka 2.18. Přiřazení pinů pro 4/5-řádkový-SPI k ST7565R.

Pro správné zobrazení musíš možná použít nastavení X/Y-Flip a experimentovat s X-Offset.

2.6.11. ST7735 ovládaný 4-drátovým-SPI.

Modul	config- <mcu>.h</mcu>	328 95,7%	644 47,9%	1280 12,2%	odkaz
/RESX	LCD_RES	PD4	PB2	PB4	možnost
/CSK	LCD_CS	PD5	PB4	PB5	možnost
D/CX	LCD_DC	PD3	PB3	PB7	
SCL	LCD_SCL	PD2	PB7	PB1	SPI Clock
SDIO	LCD_SDA	PD1	PB5	PB2	SPI MOSI

Tabulka 2.19. Přizaření pinů od ST7735.

Pro správné zobrazení budeš možná muset s X/Y-Flip nastavením experimentovat. Když je aktivována LCD_LATE_ON, startuje tester s vymazaným displejem, což má za následek krátké zpoždění při zapnutí. V opačném případě je po zapnutí krátce vidět náhodné pixely.

2.6.12. ST7920 lze ovládat ve 4-bitovém-paralelním-Modu nebo s SPI.

Modul	config- <mcu>.h</mcu>	328 83,5%	644 xx,x%	1280 xx,x%	odkaz
/XRESET	LCD_RES	PD4	PB2	PB4	možnost
/CS	LCD_CS	PD5	PB4	PB5	možnost
SCLK	LCD_SCLK	PD2	PB7	PB1	SPI Clock
SDIN	LCD_SDIN	PD1	PB5	PB2	SPI MOSI

Tabulka 2.20. Přiřazení pinů pro SPI s ST7920.

Modul	config- <mcu>.h</mcu>	328 83,8%	644 41,8%	1280 10,7%	odkaz
/XRESET	LCD_RESET	Vcc	Vcc	Vcc	
Е	LCD_EN	PD5	PB3	PB5	
RS	LCD_RS	PD4	PB2	PB4	
RW	LCD_RW	Gnd	Gnd	Gnd	
D4	LCD_DB4	PD0	PB4	PB0	
D5	LCD_DB5	PD1	PB5	PB1	
D6	LCD_DB6	PD2	PB6	PB2	
D7	LCD_DB67	PD3	PB7	PB3	

Tabulka 2.21. Přiřazení pinů pro 4-bitové-paralelní rozhraní ST7920.

Z důvodu špatného designu modelu ST7920 lze používat pouze písma se šířkou 8 pixelů. K zpracování vodorovného adresování v 16 ti bitových krocích jsem musel nastavit vyrovnávací paměť obrazovky pro znaky.

2.6.13. STE2007/HX1230 Typické 3-drátové-SPI ovládání pro STE2007.

Modul	config- <mcu>.h</mcu>	328 82,5%	644 41,3%	1280 10,6%	odkaz
/RES	LCD_RES	PD4	PB2	PB4	možnost
/CS	LCD_CS	PD5	PB4	PB5	možnost
SCLK	LCD_SCLK	PD2	PB7	PB1	
SDIN	LCD_SDIN	PD1	PB5	PB2	

Tabulka 2.22. Přiřazení pinů pro SPI s ST7920.

V případě potřeby můžeš výstup otočit pomocí X/Y-Flip nastavení.

2.6.14. VT100 Terminal Ovladač VT100 nahrazuje LCD modul a kompletní výstup je realisován přes sériový terminál VT100. Konfigurační sekce v VT100 aktivuje automaticky také sériové rozhraní. Vezmi prosím na vědomí, že VT100 ovladač ostatní možnosti, které by mohly ovlivnit výstup, deaktivuje.

2.7. Tlačítka a ovládání

Tester je primárně ovládán testovacím tlačítkem, ale umožňuje další možnosti ovládání, které usnadňují provoz nebo které jsou pro některé funkce nutné.

2.7.1. Testovací tlačítko zapíná tester a slouží k obsluze.

Tester rozlišuje mezi:

- 1. **krátkým stisknutím**, které se obvykle používá k pokračování funkce nebo k výběru další položky nabídky,
- 2. dlouhým zmáčknutím (> 0,3s), které provádí kontextovou akci a
- 3. dvojitým stisknutím, které akci ukončí.

Pokud tester očekává stisknutí klávesy pro pokračování v aktuální akci, je to označeno kurzorem v pravé dolní části modulu LCD.

Statický kurzor signalizuje, že následuje více informací

a blikající kurzor znamená, že hledání komponentů pokračuje.

U nabídek a některých dalších funkcí se kurzor nezobrazí, protože očekávaný postup by měl zde být jasný.

2.7.2. Rotační kodér (Hardwarová možnost) S rotačním kodérem operace dostává další funkce, závislé na kontextu.

Podrobnosti jsou vysvětleny v následujících částech.

Některé funkce umožňují větší změny díky rychlosti otáčení nebo skoky hodnot.

Čtecí algoritmus bere v úvahu počet pulzů Gray kódu na krok (ENCODER_PULSES) a také počet kroků k plné 360° otáčce.

S hodnotou (ENCODER_steps) můžeš provést jemné nastavení detekce rychlosti otáčení. Obě hodnoty najdeš na straně 37. Vyšší hodnota zpomaluje rychlost otáčení, nízká hodnota ji zvyšuje. Pokud je směr otáčení obráceně, změň definici pinů pro A a B v config<MCU>.h.

Detekce rychlosti otáčení měří dobu dvou kroků. Proto bys měl s kodérem udělat alespoň dva kroky pro střední rychlost. Pro vyšší rychlost to jsou tři kroky.

Jediný krok vede vždy k nejnižší rychlosti.

2.7.3. (Vice/méně tlačítek). Pokud dáváš přednost klávesám před rotačním kodérem, můžeš alternativně také použít dvě tlačítka viz na straně 37. Tlačítka jsou stejně připojené jako otočný kodér (pull-up odpory, logická úroveň nízká při aktivaci).

Pro zrychlení rychlosti, podobné jako při otáčení rotačního kodéru, jednoduše stiskni dlouze tlačítko. Čím déle, tím je vyšší zrychlení.

2.7.4. Dotyková obrazovka (Hardwarová možnost) Řadiče ST7565 nebo SSD1306 se obvykle připojují s 4-vodičovým SPI rozhraním. Další možnost vstupu je dotyková obrazovka. K tomuto účelu by měl být LCD modul dostatečně velký a podporovat alespoň 8 řádků textu s 16 znaky nebo více. Abychom ušetřili cenný prostor na LCD, nepoužíváme k dotyku ikony. Místo toho jsou vlevo a vpravo neviditelné pruhy (každý 3 znaky široký), nahoře a dole (2 řádky vysoké) a jedna oblast uprostřed.

Pruhy nalevo a nahoře jsou pro "méně" nebo "výběr nahoru", pruhy vpravo a dole pro "více" nebo "výběr dolů". Takže stejné funkce jako u otočného kodéru.

Dlouhý dotyk urychluje změny některých funkcí, podobně rychlosti otáčení rotačního kodéru.

Oblast uprostřed je softwarová verze testovacího tlačítka, **nelze** jí ale použít např. v testu Zenerových diod pro napájení externím proudem.

Pro použití dotykové obrazovky je nutná kalibrace.

Pokud ještě nejsou v paměti EEPROM uloženy hodnoty nastavení, spustí se automaticky po zapnutí testeru. Kromě toho ji můžeš také spustit z hlavní nabídky. Postup je celkem jednoduchý.

Pokud vidíš (na barevných LCD žlutou *) hvězdičku, stiskni ji. Tester pak odstraní hvězdičku a zobrazí nativní x/y polohu po každém dotyku. První nastavovací bod je vpravo nahoře, druhý vlevo dole. V závislosti na výsledku tester opakuje srovnání až třikrát. Pokud máš problémy s kalibrací, například podivné x/y pozice, zkontroluj orientaci dotykové obrazovky.

Levá horní část je považována za nulový bod.

Kalibraci můžeš kdykoliv přerušit testovacím tlačítkem.

Řadič má spínače pro otočení a zaměnění orientace:

* Vpravo nahoře je první nulový bod				
X	у	upravit hodnotu nastavení s:		
nízká	nízká	TOUCH_FLIP_X		
nízká	vysoká	TOUCH_FLIP_X & TOUCH_FLIP_Y		
vysoká	nízká	v pořádku		
vysoká	vysoká	TOUCH_FLIP_Y		
Po úspěšné úpravě kalibrace nezapomeň,				
uložit hodnoty offsetu (Hlavní nabídka: Uložit).				

Tabulka 2.23. Kalibrace x/y-hodnot.

Podporované ovladače dotykové obrazovky: - ADS7843/XPT2046. Konfiguraci najdeš pod oddílem pro LCD moduly v config<MCU>.h (aktuálně pouze v config_644.h, protože 328 nemá dostatečně množství IO-pinů).

2.7.5. Komunikace s PC Tester používá ke komunikaci s PC sériové TTL rozhraní. Toto může být jednosměrné připojení (pouze odeslat) k sériovému připojení vydání nalezených součástí, nebo dokonce obousměrné k automatizaci. V obou případech musí být aktivováno sériové rozhraní.

(Viz "Busses"v config_MCU.h strana 45).

Zvláštní znaky jsou nahrazeny standardními znaky, např. je z Ω (Ohm) R.

Konverzní tabulka:

Poznámky:

- 9600 8N1
- nový řádek je <CR><LF>
- **2.7.6. Seriový výstup** Tester také poskytuje detekované komponenty prostřednictvím sériového rozhraní pokud je povoleno (viz UI_SERIAL_COPY v sekci "různá nastavení"na straně 41 v config.h).

K tomu postačuje jednoduchý terminálový program na PC.

Výstup sleduje výstup na LCD displeji, ale pouze pro nalezené komponenty.

Neexistuje žádný výstup z nabídek a funkcí přes sériové rozhraní, s výjimkou výsledků testu optočlenů.

2.7.7. Automatisierung Automatizace umožňuje dálkové ovládání testeru pomocí příkazů přes obousměrné sériové připojení.

Povolíš-li tuto funkci, viz UI_SERIAL_COMMANDS v sekci "různá nastavení", stránka 41 v config.h. tak se mírně mění chování testeru.

Automatizace vynucuje automatický režim, a tester po zapnutí **nehledá** komponentu. Příkazové rozhraní je velmi jednoduché. Pošleš příkaz a tester odpoví.

Komunikace je založena na textových řádcích ASCII a příkazy rozlišují velká a malá písmena.

Každý příkazový řádek je zakončen (novým řádkem) <CR> <LF> nebo <LF>.

Tester přijímá příkazy pouze během čekání po zapnutí uživatelem, po výstupu komponenty nebo provedení funkce menu.

Řádky odpovědí končí $\langle CR \rangle \langle LF \rangle$ (novým řádkem).

Seznam příkazů a jejich popis je v oddílu "Příkazy pro dálkové ovládání" 5 od stránky 31.

2.7.8. Výstup přes VT100 Namísto LCD displeje můžeš dosáhnout kompletní výstup přes VT100 terminál (viz 2.6 v sekci LCD moduly na stránce 14). Aby nedocházelo k nejasnostem v rozvržení výstupu, jsou další možnosti sériového rozhraní deaktivované.

Kapitola 3

Obsluha

3.0.1. Zapnutí Dlouhým stisknutím při zapnutí se aktivuje režim automatického přidržování. V tomto režimu čeká tester na krátké stisknutí tlačítka k pokračování testování.

Jinak běží tester v nepřetržitém režimu. Výběr můžeš s (UI_AUTOHOLD) v config.h obrátit. Po zapnutí se krátce zobrazí verze firmwaru.

S velmi dlouhým stiskem tlačítka (2s) při zapnutí, se vrátí tester na uložené standardní hodnoty.

- To může být výhodné, když je např. kontrast LCD modulu tak nastaven, že nic nevidíš.

Pokud tester zjistí problém s uloženými hodnotami nastavení (problém s EEPROM), zobrazuje chybu kontrolního součtu a místo toho používá také výchozí hodnoty.

U testeru s vypínačem aktivuj POWER_SWITCH_MANUAL v config.c. V tomto případě to nemůže udělat tester sám.

3.0.2. Hledání komponentů Po zapnutí tester automaticky vyhledá komponenty.

V nepřetržitém režimu tester opakuje hledání po krátké čekací době.

Pokud není, několikrát za sebou, nalezeno žádné zařízení, tester se sám vypne.

V Auto Hold režimu (signalizováno kurzorem) provede tester jednu operaci a čeká, před zahájením dalšího vyhledávání, na stisknutí tlačítka nebo otočení rotačního kodéru doprava.

Čekací přestávka a automatické vypnutí v nepřetržitém režimu mohou být změněny prostřednictvím CYCLE DELAY (strana 39) a CYCLE MAX (strana 41) v config.h.

Režim automatického přidržování POWER_OFF_TIMEOUT (strana 42) má volitelné automatické vypnutí, které je aktivní pouze při vyhledávání komponent a výstupu.

V obou režimech můžete vyvolat hlavní nabídku (viz níže).

3.0.3. Monitorování baterie je možné nastavit podle tvých představ na stránce 42. Každý cyklus hledání součástek začíná zobrazením napětí baterie a jejího stavu (ok, slabý, prázdný). Při poklesu pod její prahové napětí tester vypne. Baterie je kontrolovaná i během provozu.

Výchozí konfigurace monitorování baterie je navržena pro 9V baterii, ale lze ji přizpůsobit v sekci "power management" v config.h na jakékoli jiné napájení.

Monitorování baterií může být deaktivováno pomocí BAT_NONE, přímé měření baterie menšího napětí než 5V, lze konfigurovat pomocí BAT_DIRECT, nebo nepřímé měření pomocí děliče napětí (definovaného BAT_R1 a BAT_R2).

Ačkoli některé testery podporují volitelné externí napájení, neumožňují jeho sledování.

V tomto případě můžeš podle BAT_EXT_UNMONITORED problémy s automatikou, při nízkém stavu napětí, vypnout.

Při externím napájení je stav baterie nastaven na "ext" (externí).

Mezní hodnoty pro slabou a prázdnou baterii se nastavují pomocí BAT_WEAK a BAT_LOW, zatímco BAT_OFFSET definuje ztrátu napětí v okruhu, např. ochranná dioda s obrácenou polaritou a PNP tranzistor pro přepínání napájení.

- **3.0.4. Vypínání,** když při zobrazení výsledku posledního hledání součásti, stiskneš dlouze tlačítko, ukáže tester krátce "sbohem" nebo "Ciao!" a vypne se. Po dobu stisknutí zůstane však stále zapnutý. To je příčinou konstrukce obvodové části napájecího zdroje.
- **3.0.5. Výběrové menu** docílíš krátkým dvojitým stisknutím testovacího tlačítka po výstupu posledního výsledku. (Možná budeš muset na začátku trochu cvičit. ;-)

Máš-li rotační kodér, spustí se menu otočením vlevo.

S aktivováním UI_SHORT_CIRCUIT_MENU (na stránce 41), lze také aktivovat starou metodu (zkratování tří zkušebních pinů).

V nabídce vybereš další položku krátkým stisknutím. Dlouhým stisknutím ji zvolíš.

U dvouřádkového LCD modulu je vpravo dole zobrazena navigační pomůcka. Šipka "> ", pokud náslaedují další body, nebo "<" u posledního bodu. Jdeš-li dále, dostaneš se na začátek.

Pro LCD modul s více než 2 řádky je vybraný bod označen "*".

Pokud máš rotační kodér, dosáhneš jeho otáčením předchozí nebo následující bod. I zde dochází k přetečení, tzn. od posledního k prvnímu bod.

Na rozdíl od předešle, zde vybírá položku **krátký stisk** tlačítka.

Některé body/doplňky ukazují krátce na začátku rozložení použitých testovacích pinů.

Informace se zobrazí na několik sekund, ale můžeš ji krátkým stiskem tlačítka přeskočit.

Funkce, které generují signály, vysílají jejich signál standardně na pinu # 2.

Přitom budou piny # 1 a # 3 uzemněny.

Je tvůj tester nakonfigurován pro výstup signálu na svém vlastním výstupu (OC1B) nebudou zkušební piny použity.

3.1. Popis možností

3.1.1. PWM-Generátor dělá přesně to, co čekáš :-) Za předpokladu, že před přeložením firmwaru vybereš buď PWN generátor s jednoduchým nebo s rozšířeným ovládáním, který vyžaduje rotační kodér a větší display.

Rozložení testovacích pinů:

Pin # 2: výstup (přes 680Ω odpor k omezení proudu)

Pin # 1 a # 3: uzemněny

3.1.2. Jednoduchý PWM Nejprve musíš z daného seznamu vybrat možnou frekvenci. Krátké zmáčknutí volí další frekvenci, dlouhým stisknutím jí spustíš, stejně jako u volby menu. S rotačním kodérem spouštíš krátkým stisknutím.

Pracovní cyklus začíná na 50 % a lze jej měnit v krocích po 5 %.

Krátký stisk pro +5 % a dlouhý pro -5 %.

Chceš-li program ukončit, stiskni dvakrát za sebou zkušební tlačítko.

Pokud je k dispozici rotační kodér, můžeš být pracovní cyklus měnit v krocích po 1 %.

3.1.3. Rozšířený PWM Krátkým stiskem klávesy se zde přepíná mezi frekvenčním a pracovním cyklem. Vybraná hodnota je označena hvězdičkou.

Točením rotačního kodéru vpravo zvolenou hodnotu zvyšuješ, doleva jí snižuješ.

Dlouhý stisk tlačítka zde obnoví výchozí hodnoty (frekvence: 1 kHz, pracovní cyklus: 50 %).

Dvojím stisknutím tlačítka PWM generátor ukončíš.

3.1.4. Obdélníkový signální generátor vydává signál s čtvercovou vlnou s proměnnou frekvencí až do 1/4 MCU taktu (2MHz při 8MHz taktu). Počáteční frekvence je 1 kHz a pomocí otočného kodéru se nechá měnit. Stupeň změny určuje rotační rychlost, tzn. pomalé otáčení způsobí malé změny a rychlé otáčení velké.

Protože je generování signálu založeno na interní PWM funkci MCU, není možné generovat libovolné frekvence, ale pouze v krocích. Pro nízké frekvence je velikost kroku je poměrně malá, pouze při vysokých frekvencích se stává významnou.

Dlouhé stisknutí tlačítka vrátí frekvenci na 1 kHz a dvojité stisknutí ukončí generátor. Rozložení testovacích pinů:

Pin # 2: výstup (přes 680Ω odpor k omezení proudu)

Pin # 1 a # 3: uzemněny

Poznámka: Nutný Rotační enkodér nebo jiná volba ovládání!

3.1.5. Zjištění Zenerového napětí (hardwarová úprava) s pomocí DC-DC převodníku je možné generovat testovací napětí do 50V k testování Zenerových diod. Připojení se provádí pomocí svých vlastních testovacích pinů.

Dokud je testovací tlačítko stisknuto, generuje měnič testovací napětí a zobrazí proudové napětí.

Po uvolnění tlačítka se zobrazí nejmenší naměřené napětí, pokud běžel test dostatečně dlouho pro stabilní zkušební napětí. Tento proces lze libovolně často opakovat. Pokud tvůj tester používá

pouze dělič napětí 10: 1 bez zesilovače měření externího napětí nebo posilovacího měniče běží nepřetržitě. Můžeš aktivovat alternativní režim (ZENER_UNSWITCHED), který periodicky měří napětí bez stisknutí testovacího tlačítka. Zobrazuje li tester v pravém dolním rohu kurzor, můžeš ukončit měření dvojím stisknutím testovacího tlačítka.

Obvod pro Zenerovou diodu:

Pin +: katoda Pin -: anoda

3.1.6. měření ESR (ekvivalentního sériového odporu) může měřit a zobrazovat kondenzátor v obvodu a kromě kapacity měří také ESR pokud v obvodu kondenzátor najde.

Před připojením se přesvědč, že je kondenzátor vybitý!

Měřené hodnoty mohou mít odchylky způsobené paralelními komponenty v obvodu.

Pro zahájení měření krátce stiskni testovací tlačítko.

Chceš-li program ukončit, stiskni dvakrát za sebou zkušební tlačítko.

Obvod pro měření ESR:

Pin #1: + Pin #3: -

3.1.7. Unikající proud kondenzátoru Test svodového proudu nabíjí kondenzátor a zobrazuje proud a napětí na měřicím odporu. Načítání začíná s Rl (680Ω) a přepne na Rh $(470k\Omega)$, jakmile dosáhne tok určitého limitu. Každý zkušební cyklus začíná zobrazením přiřazení zkušebních pinů. Po připojení kondenzátoru začíná ládovaní stisknutím testovacího tlačítka (nebo točením rotačního kodéru doprava).

Další stisknutí ukončí nabíjení a tester vybíjí kondenzátor a zobrazuje zbytkové napětí.

Po dosažení limitu vybití začne tester nový testovací cyklus.

Chceš-li test ukončit, stiskni dvakrát krátce testovací tlačítko.

Poznámka: Věnuj pozornost polaritě Elkos!

Zapojení kondenzátoru:

Pin #1: + Pin #3: -

3.1.8. R/C/L Monitory Monitorové funkce měří neustále pasivní součástky na pinech #1 a #3. Po startu ukazuje tester na pár vteřin obsazení pinů, což je možné stisknutím tlačítka přeskočit.

Mezi měřeními je krátká dvouvteřinová přestávka což je označeno kurzorem vpravo dole. Během pauzy lze monitor dvojitým stiskem testovací klávesy ukončit.

3.1.9. C Monitor C-Monitor měří neustále kapacitu a případně ESR kondenzátoru na pinech #1 a #3.

Mezi měřeními je krátká pauza 2 sekundy, což je označeno kurzorem vpravo dole.

Během pauzy lze monitor dvěma krátkými stisky testovací klávesy ukončit.

Dostupné monitory:

R-monitor (odpor)

C-monitor (kapacita plus volitelně ESR)

L-monitor (indukce)

R/C/L-monitor (odpor plus volitelně L, nebo C plus volitelně ESR)

R/L-monitor (odpor plus volitelně indukce)

3.1.10. Čítač kmitočtů (hardwarová úprava) je k dispozici ve dvou verzích.

Jednoduchý sestává z pasivního vstupu na pinu T0 MCU (F-in).

Rozšířený má kromě vstupní vyrovnávací paměti také dva oscilátory pro testování krystalu (pro nízké a vysoké frekvence) a další frekvenční dělič.

Oba okruhy jsou popsány v dokumentaci Karla-Heinze [5].

3.1.11. Jednoduchý čítač pokud je nainstalován přídavný obvod pro jednoduchý čítač kmitočtu, můžeš zjistit frekvence přibližně od 10 Hz až 1/4 taktu frekvence MCU s rozlišením na 1Hz při frekvencích pod 10 kHz. Frekvence se neustále měří a zobrazuje.

Automatické nastavení rozsahu nastavuje dobu brány na hodnoty mezi 10ms a 1000ms, v závislosti na frekvenci. Měření ukončíš dvojitým stiskem tlačítka.

3.1.12. Rozšířený čítač Počítadlo rozšířené frekvence má další předzesilovač, který povoluje měření vyšších frekvencí.

Teoretické maximum je 1/4 taktu MCU vynásobených prescalerem (16:1 nebo 32:1).

Ovládací signály jsou definovány v config<mcu>.h, a prosím nezapomeň v config.h na výběr správného předzesilovače.

Vstup signálu (vyrovnávací vstup, křemenný oscilátor pro nízké hodnoty frekvence,) nebo (křemenný oscilátor pro vysoké frekvence) změníš pomocí testovacího tlačítka nebo rotačního kodéru.

Počítadlo kmitočtů zastaví dva krátké stisky tlačítka.

3.1.13. Počitadlo událostí (s hardwarovou úpravou) Čítač událostí používá pin T0 (F-in) jako pevný vstup a reaguje na náběžnou hranu signálu. Pin T0 není možné použít současně pro display.

Doporučuje se jednoduchá úprava vstupu.

Čítač je řízen pomocí malého menu, které také hodnoty čítače zobrazí. Položky menu a jejich změna jsou vybírány krátkým stiskem, pomocí otočného kodéru nebo dalších tlačítek.

První položka nabídky je režim počítadla:

- Počítání počítá čas a události
- Čas počítá události za daný čas

Události počítají čas pro daný počet událostí

Druhá položka nabídky "n" je počet událostí. V režimu počítadla "Události" zobrazí hodnotu zastavení, kterou lze změnit. Dlouhým stisknutím nastavíš hodnotu stop na výchozí hodnotu (100). V jiných režimech počítadla je tato položka nabídky blokována.

Další nabídka je "t" časový interval ve vteřinách (výchozí: 60 s). Stejná hra, pouze pro režim času.

Poslední položka nabídky spustí nebo zastaví čítač dlouhým stisknutím tlačítka. V době provozu je počet události a uplynulý čas každou vteřinu a poté co skončí měření aktualizován.

Časový limit je 43200s (12h) a pro události $4*10^9$.

Jakmile je jedna z mezních hodnot překročena, počítadlo se automaticky zastaví.

Limit nebo hodnota zastavení událostí se kontroluje každých 200 ms. Proto pokud hodnota překročí 5 událostí/s, lze tuto hodnotu překročit.

- Spouštěcí výstup můžeš aktivovat s (EVENT_COUNTER_TRIGGER_OUT) k ovládání dalšího zařízení pomocí zkušebních kolíků.

Výstup spouště je během počítání aktivován, tj. náběžná hrana při startu a klesající hrana při zastavení.

Zapojení výstupu:

Pin #1: uzemění

Pin #2: výstup (přes 680Ω odpor k omezení proudu)

Pin #3: uzemění

3.1.14. Rotační kodér testuje rotační enkodéry a určuje rozložení pinů. Tvým úkolem je připojit testovací piny k rotačnímu kodéru (A, B, Common) a točit enkodérem doprava (ve směru hodinových ručiček). Algoritmus vyžaduje pro detekci 4 kroky Grey kódu.

Směr otáčení je pro detekci A a B nutný, protože nesprávný směr by způsobil kroucení pinů. Když je rotační kodér detekován, vydá tester rozložení pinů a čeká (v automatickém režimu) na stisknutí tlačítka nebo (v nepřetržitém režimu) čeká chvíli.

Pro ukončení stiskni během vyhledávání krátce tlačítko testu.

3.1.15. Kontrast je možné, u některých grafických LCD modulů upravit.

Krátké stisknutí hodnotu zvýší, dlouhý stisk ji sníží. Pokud máš k dispozici otočný kodér, lze změnit hodnotu kontrastu točením. K ukončení, stiskni dvakrát za sebou zkušební tlačítko.

3.1.16. Detektor/Dekodér pro IR dálkové ovládání detekuje a dekóduje signály z IR ovladačů a vyžaduje IR přijímací modul, např. ze série TSOP.

Při překladu firmwaru si můžeš vybrat mezi dvěma variantami připojení.

V první variantě je modul připojen k normálním testovacím pinům.

Druhou variantou je pevný modul, který je připojen ke konkrétnímu MCU pinu.

Pokud je známý protokol zjištěn, poskytne tester protokol, adresu (pokud je k dispozici), příkaz a případně hexadecimálně další informace.

Výstupní formát je: <Protokol> <Datová pole>

Pokud je datový paket vadný, ohlásí "?".

Pokud je protokol neznámý, zobrazí tester počet pauz & pulsů a trvání prvního pulzu a první pauzy v jednotkách $50\mu s$: ? <Pulse>: <první impuls> - <první pauza>

Pokud je počet pulzů na různých tlačítkách dálkového ovladače stejný, jedná se s největší pravděpodobností o PDM nebo PWM modulaci.

Měnící se počet pulzů naznačuje bi-fázovou modulaci.

K zastavení stiskni jednou testovací tlačítko.

Podporované protokoly a jejich datová pole:

- JVC <Adresa>: <příkaz>
- Kaseikyo (japonský kód, 48 bitů) < Code Vendor>: < System> < Produkt>: < funkce>
- Matsushita (Panasonic MN6014, C6D6 / 12 bitů) <Code Zařízení>: <Data code>
- Motorola <příkaz>
- NEC (standardní a pokročilé) < Adresa>: < příkaz> R pro opakování sekvence
- Proton / Mitsubishi (M50560) <Adresa>: <příkaz>
- RC-5 (standardní) <Adresa>: <příkaz>
- RC-6 (standardní) <Adresa>: <příkaz>
- Samsung / Toshiba (32 bitů) < Code Zařízení>: < Data code>
- Sharp <Adresa>: <příkaz>
- Sony SIRC (12, 15 a 20 bitů) 12 & 15: <příkaz>: <adresa>

20: <příkaz>: <adresa>: <rozšíření>

Volitelné protokoly (SW_IR_RX_EXTRA):

- IR60 (SDA2008 / MC14497) <příkaz>
- Matsushita (Panasonic MN6014, C5D6 / 11 bitů) < Code Zařízení>: < Data code>
- NEC μ PD1986C <Code dat>
- RECS80 (standardní a pokročilé) <Adresa>: <příkaz>
- RCA <Adresa>: <příkaz>
- Sanyo (LC7461) < Code Zařízení>: < key>
- Thomson <Zařízení>: <funkce>

Nosná frekvence přijímacího modulu TSOP IR nemusí přesně odpovídat dálkovému ovládání.

Ve skutečnosti pouze snižuje rozsah, což pro náš účel ale nepředstavuje problém.

- IR přijímací modul na testovacích pinech

Nejprve připojte IR přijímací modul k IR detektoru dálkového ovládání!

Administrace pro modul TSOP:

Ukázka # 1: uzemnění / Gnd

Sonda # 2: Vs $(680\Omega \text{ omezovač proudu})$

Sonda # 3: Data/Out

Poznámka: Odpor pro omezení proudu nastavuje IR přijímací modul s a předpokládá rozsah napájecího napětí asi 2,5 - 5V.

Pokud máš 5V modul, můžeš na vlastní nebezpečí odpor v config.h deaktivovat. Zkrat však může MCU zničit.

- Pevný IR přijímací modul

U pevného modulu nastav port a data v config<MCU>.h.

3.1.17. IR dálkové ovládání odešle kódy dálkového ovládání, které jsi dříve zadal a používá se k testování IR přijímačů nebo zařízení s IR dálkovým ovládáním.

Tato funkce vyžaduje další možnost vstupu, například např. rotační kodér, displej s více než čtyřmi řádky textu a jednoduchý obvod ovladače pro IR-LED.

Tester vám ukáže protokol, nosnou frekvenci, pracovní cyklus dopravce a několik datových polí.

Krátkým stisknutím testovacího tlačítka přepínáš tam a zpět mezi body.

Vybraný bod je označen znakem "*".

Pomocí otočného enkodéru (nebo jiné možnosti vstupu) měníš nastavení nebo hodnotu bodu. Tester odesílá IR kód tak dlouho, jak je testovací tlačítko stisknuto. A jako obvykle, dvě krátké stisknutí tlačítka funkci zastaví.

Pokud změníš protokol, nastaví se nosná frekvence a pracovní cyklus na výchozí hodnoty příslušného protokolu.

Tyto můžeš ale libovolně změnit.

Nosnou frekvenci lze nastavit na 30 až 56 kHz a pracovní cyklus zapnout na 1/2 (50%), 1/3 (33%) nebo 1/4 (25%).

Datová pole jsou části kódu dálkového ovládání, které můžeš nastavit.

Jsou níže vysvětleny a většinou jde pouze o adresu a příkaz.

Podporované protokoly a jejich datová pole:

- JVC <Adresa: 8> <příkaz: 8>
- Kaseikyo (japonský kód) < Výrobce: 16> < Systém: 4> < Produkt: 8> < Funkce: 8>
- Matsushita (Panasonic, MN6014 12 bitů) <Zařízení: 6> <tlačítko: 6>
- Motorola < Command: 9>
- Norma NEC <Adresa: 8> <příkaz: 8>
- NEC Extended < Adresa: 16)> < příkaz: 8>
- Proton / Mitsubishi (M50560) <Adresa: 8> <příkaz: 8>
- RC-5 standard < Adresa: 5 < příkaz: 6 >
- RC-6 standard, režim 0 <
Adresa: 8> <
příkaz: 8>
- Samsung / Toshiba (32 bitů) <Zařízení: 8> <tlačítko: 8>
- Sharp / Denon < Adresa: 5> < příkaz: 8> < maskování: 1>
- Sony SIRC-12 <Příkaz: 7> <Adresa: 5>
- Sony SIRC-15 < Příkaz: 7> < Adresa: 8>
- Sony SIRC-20 <Příkaz: 7> <Adresa: 5> <Pokročilé: 8>

Volitelné protokoly (SW_IR_RX_EXTRA):

- Thomson <Zařízení: 4> <funkce: 7>

Datová pole jsou oddělena mezerami a jejich syntaxe je: <Název pole>: <počet bitů>

Rozložení testovacích pinů:

```
Pin # 2: výstup (přes 680\Omega odpor k omezení proudu)
```

Pin # 1 a # 3: uzemněny

Signální výstup (testovací pin # 2) má odpor pro omezení proudu a může proto spínat pouze asi 5 mA, což pro typickou IR LED s If 100mA nestačí.

Obrázek 3.1 ukazuje ovladač, který lze pro IR-LED (Vf 1,5V, If 100mA) použít.

Obrázek 3.1. Příklad na 50mA IR ovladač s (Vf 1.5V, If 100mA,)

Poznámka: Pokud se načasování pulsů/pauzy nehodí, použij alternativu metody čekající smyčky SW IR TX ALTDELAY na straně 39.

To je nutné, pokud tvůj C kompilátor, přesto že je nastaven na zachování kódu vloženého v assembleru, optimalizujte.

3.1.18. Test optických spojek kontroluje optočlen a dává V_f LED, hodnotu CTR (také I_f) a t_on a t_off časy (pro tranzistorové typy).

Podporovány jsou standardní NPN tranzistory, NPN Darlington fáze a TRIAC.

Pro CTR měření je MCU I/O pin, po dobu přibližně 3 ms, krátce přetížen.

Datový list udává maximální výstupní proud 20~mA, pin je ale přetížen asi až na 100~mA. Proto je maximální hodnota CTR omezená a hodnoty nad 2000~% by měly být zpracovány s opatrností.

Maximální proud pro LED je 5 mA, což by mělo být zvažováno u typů TRIAC.

Typy relé (MOSFET zády k sobě) jsou rozpoznány jako tranzistor a Hodnota CTR pak nemá smysl. Typy s antiparalelními LED budou ignorovány.

K testování potřebujete jednoduchý adaptér s následujícími třemi testovacími body: typu tranzistoru:

- anoda LED
- Katoda LED a emitoru propojená tranzistorem
- Sběratel z tranzistoru

typu TRIAC:

- anoda LED
- Katoda LED a MT1 připojená pomocí TRIAC
- MT1 od TRIAC

Adaptér můžete libovolně spojit se třemi testovacími piny testeru.

Tester pak automaticky najde přiřazení pinů.

Po spuštění připoj adaptér k testovacím pinům a krátce stiskni tlačítko.

Pokud byla opto-spojka nalezena, zobrazí tester typ a různé informace.

Pokud ji nenajde, zobrazí se na displeji "žádný".

Blikající kurzor označuje, že se při příštím testu očekává stisknutí tlačítka.

Dvě krátké stisknutí ukončí jako obvykle test.

3.1.19. Test servopohonů pro modely Tato funkce generuje PWM signál pro serva pro výrobu modelů, která jsou ovládána s PWM 1–2 ms dlouhými pulsy.

Podporovány jsou typické PWM frekvence 50, 125, 250 a 333 Hz, s nastavitelnou délkou pulsu od 0.5 až do 2.5 ms.

Kromě toho existuje režim rozmítání pro impulzy 1 - 2ms s volitelnou rychlostí.

Šířku pulzu nastavíš pomocí otočného kodéru. Doleva pro kratší pulsy, doprava pro delší.

Dlouhým stisknutím tlačítka se šířka pulzu nastaví na (střední polohu serva), to je na 1,5 ms. Krátkým stiskem tlačítka přepínáš mezi výběrem pulzu a frekvencí. (označené hvězdičkou).

Ve volbě frekvence přepínáš rotačním kodérem mezi kmitočty.

Dlouhé stisknutí zapne nebo vypne "Sweep-mod"

(označený "<->").

Pokud je "Sweep-mod" zapnutý, je délka impulsu nahrazena "Sweep" časem, který lze změnit pomocí otočného kodéru.

Funkci jako obvykle zastaví dvojitý stisk tlačítka.

Rozložení testovacích pinů:

Pin # 2: PWM výstup (přes 680Ω odpor k omezení proudu)

Pin # 1 a # 3: uzemněny

Poznámka: Servo potřebuje svoje napájení.

Výrobce	Pin 1	Pin 2	Pin 3
Airtronics	PWM bílá/černá	Gnd černá	Vcc červená
Futaba	PWM bílá	Vcc červená	Gnd černá
hitec	PWM žlutá	Vcc červená	Gnd černá
JR Radios	PWM Oranžová	Vcc červená	Gnd hnědá

Tabulka 3.1. Rozložení pinů pro typické 3kolíkové servopohony

3.1.20. OneWire skenování zobrazuje ROM-kódy, všech připojených uživatelů.

Informace o nastavení sběrnice OneWire naleznete v části "Sběrnice a rozhraní" na straně 45. Při použití testovacích kolíků tester informuje o zapojení a vyčkávání, dokud není detekován externí pull-up odpor. To lze přeskočit stisknutím tlačítka.

Po každém stisknutí tlačítka tester vyhledá dalšího účastníka sběrnice a vydá jeho ROM-kód (v šestnáctkové soustavě). První část vydání je Rodinný kód a druhá sériové číslo.

Hodnota CRC je vynechána.

U Rodinovského kódu > = 0x80 (nastavený 7bit) se jedná o zákaznický kód, ve kterém jsou ty horní (levé) tři číslice sériového čísla jeho zákaznické ID.

Tester tě informuje, když našel posledního účastníka sběrnice, ale také o CRC chybách i o chybách sběrnice.

V případě posledního účastníka sběrnice nebo chyby sběrnice, můžeš spustit úplně nové skenování stisknutím tlačítka.

Zapojení je na straně 8.

Funkci ukončí, jako obvykle, dvě krátké stisknutí.

3.1.21. Snímač teploty DS18B20 v tomto výběru lze použít tento teplotní OneWire senzor ke čtení teplot.

K nastavení OneWire sběrnice na stránce 45, viz část "Busse".

Při použití testovacích pinů tester informuje o zapojení a čeká dokud není detekován externí pull-up odpor.

To lze přeskočit stisknutím tlačítka.

Po připojení DS18B20, jako jediného klienta na sběrnici, se stisknutím tlačítka začne číst teplota (která může trvat téměř sekundu).

Dlouhým stisknutím tlačítka volíš auto-mód (automatická aktualizace), která je signalizována hvězdičkou "*" v prvním řádku.

Pro ukončení stiskni krátce dvakrát testovací tlačítko.

Připojení zkušebních pinů:

Probe #1: Gnd

Probe #2: DQ (Data)

Probe #3: Vcc (Proud je ohraničen (přes 680Ω odpor)

Kromě toho je nutný $4k7\Omega$ odpor, mezi DQ a Vcc.

3.1.22. DHTxx senzory Pro čtení DHT11, DHT22 a kompatibilních snímačů teploty a vlhkosti. Nejprve tester ukáže, že testovací kolíky jsou připojeny a čeká na externí pull-up odpor. Poté se zobrazí vybraný typ senzoru (Standard: DHT11), který je načten, krátkým stisknutím testovacího tlačítka. Pokud je čtení úspěšné, vydá tester naměřené hodnoty, v případě chyby jen "-". Jedním dlouhým stisknutím změníš typ senzoru a dvě krátké stisknutí tlačítka ukončí funkci. Při změně typu senzoru máš možnost aktivovat automatický režim čtení (každou sekundu). Toto je za názvem senzoru označeno "*". Podporované senzory:

DHT11: DHT11, RHT01

DHT22: DHT22, RHT03, AM2302

DHT21, RHT02, AM2301, HM2301

DHT33, RHT04, AM2303

DHT44, RHT05

Připojení zkušebních pinů:

Probe #1: Gnd Probe #2: Data

Probe #3: Vdd (Proud není ohraničen)

Mezi Data (#2) a Vdd (#3) je vyžadován externí pull-up odpor $4k7\Omega!$

Některé moduly již integrovaly $10k\Omega$ pull-up odpor, který také s kratšími kabely dobře funguje. Poznámka:

Vnitřní 680Ω testovací odpor nelze k omezení proudu použít, kvůli aktuální spotřebě senzoru. Buďte opatrní, zkrat může být poškodit MCU.

3.1.23. Autotest Pokud jsi autotest spustil pomocí nabídky, vyzve tě tester ke zkratování zkušebních pinů a čeká, až je rozpozná.

V případě problémů můžeš čekání stiskem klávesy přerušit.

Autotest provádí každý test 5krát.

Krátké stisknutí tlačítka přeskočí aktuální test a dlouhý stisk tlačítka kompletní test.

V testu # 4 musí být zkrat odstraněn. Tester v tomto kroku tak dlouho čeká.

Kroky testu jsou:

- interní referenční napětí T1 (v mV)
- T2 Srovnání odporů Rl (offset v mV)
- T3 Srovnání Rh odporů (offset v mV)
- T4 Odstraňte zkrat zkušebních pinů/kabelu
- Test těsnosti T5 pro zkušební piny s úrovní Gnd (napětí v mV)
- Test těsnosti T6 pro zkušební piny s úrovní Vcc (napětí v mV)
- **3.1.24. Samočinné nastavení** měří odpor a kapacitu měřicích kabelů, tzn. z desky s obvody, vnitřního zapojení a měřicího kabelu jako součet k určení nulového posunu.

Také je určen vnitřní odpor pinů MCU portů v režimu pull-up a pull-down.

Pokud je srovnání přeskočeno nebo pokud jsou změřené hodnoty nepravděpodobné, převezme tester výchozí hodnoty firmwaru.

Pokud běží všechno hladce, zobrazí se nové hodnoty, které ale **nebudou** automaticky do EEPROMu uloženy. (viz volbu "Uložit").

Během měření kondenzátoru (při normálním vyhledávání součástí) se automaticky stane kompenzace napětí analogového komparátoru, pokut má Kondenzátor hodnotu mezi 100nF a 3.3μ F.

Kromě toho se současně měří offset vnitřní referenční hodnoty napětí.

Před provedením automatického ladění bys měl min. 3krát za sebou změřit filmový kondenzátor s kapacitou mezi 100 nF a $3.3 \mu\text{F}$, aby bylo možné, uvedenou kompenzaci určit.

První měření je obvykle příliš nízké, druhé příliš vysoké a až od třetího měření dosáhneš správnou hodnotu.

To je způsobeno offsetovými kompenzacemi.

V modelech s pevným kondenzátorem pro samo-ladění, je automatické seřízení pro měření kapacity, nahrazeno vlastní funkcí, která během testu provede se vlastní nastavení.

Zde nemusíš žádný filmový kondenzátor měřit.

Pokud se kompenzace kapacity mezi páry testovacích pinů příliš liší, můžeš v config.h přepnout na specifické posuny podle právě zapojených zkušebních kabelů-párů (CAP_MULTIOFFSET). To stejné platí i pro jejích odpor s (xR_MULTIOFFSET) viz stana 43.

Samo-ladění je do značné míry autotestu provozem a obsluhou podobné. Kroky seřízení jsou:
- kompenzace A1 pro interní referenční napětí a analogový komparátor

(pouze s pevným vyrovnávacím kondenzátorem)

- A2 Odolnost zkušebních pinů/kabelů (v 10mOhm)
- A3 Odstranění zkratu zkušebních pinů/kabelů
- vnitřní odpor A4 portových pinů pro Gnd (napětí přes RiL)
- A5 vnitřní odpor pinů portu pro Vcc (napětí přes RiH)
- kapacita testovacích pinů/kabelů A6 (v pF)

Povolené maximální hodnoty:

- zkušební kolík/kabel odpor <1,50 ohmů (dva v sérii)

- Zkušební pin/kabel kapacita <100pF

Poznámka: Pokud se hodnoty odporu zkušebních kolíků příliš liší, je možný kontaktní problém.

Pamatuj: Nastavení není kalibrace!

- Kalibrace je postup pro porovnání výsledků měření se sledovatelnými standardy a odchylky zaznamenat. Účelem je sledovat a odstraňovat časové odchylky.
- Nastavení je postup nastavit měřicího zařízení tak, aby dodržovalo svou danou přesnost a další parametry.
- **3.1.25.** Uschovat/Použít Při vypálení firmwaru se vloží sada předem definovaných výchozích hodnot do EEPROMu.

Po samo nastavení může tato funkce přepsat výchozí hodnoty správnými hodnotami.

Při příštím restartu testeru se tyto hodnoty (profil #1) automaticky načtou a použijí.

Pro usnadnění jsou k dispozici dva profily pro uložení nebo načtení, např. pro dvě různé sady měřicích kabelů.

Myšlenka funkce manuálního ukládání je taková, že když dočasně změníš měřicí kabely a provedeš samočinné nastavení, tak máš po restartu opět hodnoty pro hlavní měřicí kabely. Jinak bys musel své standardní kabely znovu nastavit.

Volitelně můžeš, pomocí (UI_CHOOSE_PROFILE) při zapnutí testeru toto menu ukázat.

- **3.1.26.** Ukázat hodnoty Tato funkce zobrazuje aktuální hodnoty nastavení. Použití externí reference napětí 2.5V je signalizováno "*" po Vcc.
- 3.1.27. Font V tomto oddílu můžeš vidět všechny použité znaky tvého písma.
- **3.1.28. Vypnout** Za předpokladu, že jsi tuto funkci přes SW_POWER_OFF strana 42 aktivoval, můžeš zde tester vypnout.
- 3.1.29. Konec ti umožní opustit nabídku, když jsi do ni náhodou/nechtě vstoupil.

Kapitola 4

Detaily měření

4.0.1. Odpory se měří dvakrát. tj. v obou směrech a hodnoty pak porovnány. Pokud jsou hodnoty příliš odlišné, předpokládá tester, že se jedná o dva odpory a ne o jeden.

V tomto případě se zobrazí dva odpory na stejných pinech ve tvaru "1 - 2 - 1" a dvě hodnoty. Pro odpory menší než 10Ω se provádí další měření s vyšším rozlišením.

Ve výjimečných případech nemůže tester velmi malé odpory detekovat. Nejlépe pak jednoduše opakovat měření.

Pokud je aktivována volitelná kontrola standardních hodnot E (SW_R_E *) na stránce 40, porovná tester další menší a následující větší standardní hodnotu s změřeným odporem při zohlednění tolerance komponenty.

Existují dva výstupní režimy. V textovém režimu dává tester řadu E plus tolerance a vhodné standardní hodnoty. "-" znamená, že žádná hodnota normy nepasuje. V režimu barevného kódu zobrazuje tester série E a barevný kód standardní hodnoty včetně inkoustové pásky pro toleranci. Barvy se mohou, podle použitého displeje lišit Pokud některá barva nesouhlasí, změň jednoduše hodnotu barvy (COLOR_CODE_*) v souboru color.h. Internetové vyhledávání "nástroje RGB565" uvádí mnoho online nástrojů pro výběr hodnot barev RGB565.

4.0.2. Kondenzátory se měří třemi metodami. Velké kondenzátory $> 47\mu F$ používají metodu cyklického nabíjení s 10ms dlouhými pulzy. Středně velké mezi $4.7\mu F$ a $47\mu F$ používají stejnou metodu ale nabíjecí pulsy jsou 1ms dlouhé.

Malé kondenzátory běží přes analogový komparátor. Tímto způsobem je optimalizována přesnost měření kapacit.

Změřené hodnoty velkých kondenzátorů vyžadují korekci. Bez korekce by byly hodnoty příliš vysoké. Domnívám se, že to způsobuje měřící metoda, protože analogově-digitální převod po nabití impulzem potřebuje jistý čas ve kterém kondenzátor část nabití, kvůli svodovým proudům, ztratí. Ztráty jsou samozřejmě také, samotným převodem z analogového na digitální. Nabíjení kondenzátoru tedy trvá déle a kapacita se zdá být vyšší. Pozdější měření samovybíjení se to snaží vyrovnat což se jen částečně povede. Korekční faktory CAP_FACTOR_SMALL, CAP_FACTOR_MID a CAP_FACTOR_LARGE jsou v config.h na stánce 43 tak zvolené, aby pasovaly pro většinu testerů. V některých případech však může být změna nutná. Přidána byla logika zabraňující detekci velkých kondenzátorů jako odpory. Odpory menší než 10Ω budou dodatečně zkontrolovány na kapacitu. U kondenzátorů vyšších než 18nF se snaží tester měřit i ESR . Alternativně můžeš ale aktivovat starou metodu měření, která měří až od 180nF.

Protože měření nepoužívá AC s určitou frekvencí, nečekej super přesné výsledky.

Použitá metoda může možní odpovídat měření při 1 kHz.

Pro zkoušku elektrolytických kondenzátorů je měření více než dostatečné.

U filmových kondenzátorů s malými hodnotami mohou nastat různé hodnoty v závislosti od frekvence taktu MCU.

Myslím, že by-to pan Fourier uměl vysvětlit.

Naměřená hodnota kapacity větší než 5 pF (včetně nulového posunu) se považuje za platnou.

Nižší hodnoty jsou příliš nepřesné a mohou být způsobeny třeba jiným umístění měřicích kabelů.

Dalším měřením je svodová proudní ztráta pro kondenzátory vyšší než $4.7 \mu F$.

Hodnota vydá poznámku k označení stavu Elko.

Z mých testů jsou typické hodnoty pro elkos:

- $-470-820\mu F$ $4-7\mu A$
- $-> 1000 \mu F$ 5-7 μA na $1000 \mu F$

Volitelný test pro standardní hodnoty E je také k dispozici pro kondenzátory (SW_C_E_*) stránka 40, ale pouze v textovém režimu, protože existuje příliš mnoho různých barevných kódů pro kondenzátory.

4.0.3. tlumivky Měření indukčnosti není příliš přesné a věci jako např. takt MCU a deska ovlivňují výsledek. Samotné měření je založeno na stanovení času mezi zapnutím elektřiny a dosažením určitého proudu. U velkých tlumivek se provádí měření nízkého proudu, a pro malé tlumivky vysoko proudové měření, které dočasně překračuje proudový limit MCU pinů po dobu až asi 25 mikrosekund. Při vyšetřování efektů MCU taktu jsem našel vzory v odchylkách, které lze použít pro kompenzaci. V závislosti na testeru může být nutné provést úpravu. V souboru inductance.c ve funkci MeasureInductor() je proměnná "Offset"kompenzace.

To je offset pro referenční napětí. Kladná hodnota snižuje indukčnost, a záporná ji zvyšuje. Kompenzace pro měření vysokého proudu je založena na taktu MCU a je rozdělena do tří časových pásem. Pro měření nízkého proudu je aktuálně pouze jednoduchá kompenzace, protože zde by-byly nutné další testy.

Pokud vidíš, ve srovnání se "správným" LCR měřičem, velké rozdíly hodnoty offsetu, můžeš podle něj svůj tester upravit. Pokud chceš zkontrolovat hodnoty E-norm, ativuj přepínač SW L E * v config.h na stránce 41 (pouze textový režim).

Poznámka:

- V případě neočekávaných naměřených hodnot opakuj měření.
- Měření indukce se provádí, jen když je její odpor menší než $2k\Omega$.
- **4.0.4. Vybití součástek** Tester zkouší připojenou součástku před a během měření vybít. Pokud nelze nastavit na předem určenou nulovou hodnotu (CAP_DISCHARGED), zobrazí chybu označující testovací pin a zbytkové napětí.

Jedná se-li zde o baterii, neodpovídá zobrazené napětí, napětí baterie.

Funkce vybíjení není založena na pevném časovém limitu, ale přizpůsobí se automaticky průběhu vybíjení. Tímto způsobem je baterie rychleji detekovaná a velké kondenzátory získávají více času k vybití. Pokud je velký elektrolytický kondenzátor rozpoznán jako baterie, zkus to znovu. V prostředí se spoustou elektrického rušení, může být nulová hodnota CAP_DISCHARGED s 2mV příliš nízká (v případě potřeby uprav na stránce 44). Zobrazené zbytkové napětí pomáhá najít optimální nulovou hodnotu.

4.0.5. ADC převzorkování podporuje variabilní převzorkování (1 - 255).

Výchozí hodnota je 25 vzorků.

Můžeš se pokusit zvýšit přesnost testeru zvýšením hodnoty převzorkování.

Avšak s vyšší hodnotou je nutný delší čas, tzn. měření se zpomalí.

4.0.6. Zobrazení výsledků Některá jména a zkratky byly změněny. Výstup některých komponent byl rozdělen na více stránek, pokud nemá LCD modul dostatek řádků.

U jediné diody je výsledek Vf měření s nízkým zkušebním proudem $(10\mu A)$ zobrazen v závorkách, pokud je hodnota měření pod 250 mV. To ukazuje na germaniovou diodu. Většina datových listů germaniových diod udává pro Vf měřicí proud 0.1 mA.

Bohužel tester tento měřicí proud nepodporuje. Při vyšších proudech je Vf kolem 0,7 V, což ztěžuje rozlišení od křemíkových diod.

Tester ukáže svodový proud I_R pro diodu nebo I_CEO pro bipolární tranzistor pokud je vyšší než 50nA.

Germaniové tranzistory mají svodový proud v rozmezí několika μA až asi $500 \mu A$. Germaniové diody mají obvykle jen málo μA .

U některých součástí se zobrazí hodnota kapacity. Je-li kapacita pod 5pF nebo měření selhalo, je na výstupu 0pF.

Pokud je nalezen (ochuzovací typ) FET se symetrickým odtokem a zdrojem, ukazuje přiřazení pinů "x" místo "D" nebo "S", protože jsou funkčně totožné a nejdou v testeru rozlišit.

V takovém případě vyhledej podrobnosti o přiřazení pinů v datovém listu.

Triakové přiřazení pinů je označeno:

 $G^{"}$, $\Pi^{"}$ a $\Pi^{"}$ ie MT1 a $\Pi^{"}$ ie MT2.

Pro UJT, pokud je detekce aktivovaná, je:

"1" pro B1, "2" pro B2 a "E" pro emitor.

Pokud byla aktivována funkce "Fancy Pinout" (aktivací ikonového souboru v config.h) zobrazí se symbol součástky a jeho položení na zkušebních pinech.

Pokud není na displeji dostatek místa, bude výstup ikony přeskočen.

4.0.7. Dodatečné pokyny

bipolární tranzistory

Malé písmeno za hFE-hodnotou zobrazuje typ zkoušecího prostředí, použitého k měření:

- e: emitorové
- c: kolektorové

Při testu na diody je Vf měřen za prvé s Rh (vysokým zkoušecím proudem) a za druhé s Rl (nízkým zkoušecím proudem). Výchozí funkce pro bipolární tranzistory interpoluje s obou Vf hodnot V_BE závisle na hFE pro virtuální zkoušecí proud. Tím lze získat praxi blízké hodnoty, protože V_BE malého signálového tranzistoru je měřen jiným proudem nežli u výkonového tranzistoru.

U bipolárního tranzistoru s bázovým emitorovým odporem je odpor zobrazen.

Nezapomeň, že má B-E odpor vliv na V_BE i na hFE.

Pokud má tranzistor navíc ochrannou diodu, může být rozpoznán jako tranzistor nebo jako dvě diody, v závislosti na hodnotě odporu báze-emitor.

v druhém případě jsou zobrazeny dvě diody plus odpor s uvedením možného tranzistoru. Bohužel nízký odpor báze-emitor brání jednoznačné detekci jako tranzistor.

Dalším zvláštním případem je bipolární tranzistor s ochrannou diodou umístěnou na stejném substrátu.

Integrovaný PN přechod vytváří parazitní druhý tranzistor. NPN dostane parazitní PNP a naopak.

Pokud je takový tranzistor detekován, je po specifikaci typu označen znakem "+". u šottky-tranzistoru (Schottky-clamped BJT) je schotky-dioda mezi bázi a kolektorem incl. V_f ukázána, pokud je to aktivováno s (SW_SCHOTTKY_BJT) na straně 39. Nezapomeň, že je I_CEO u šottky-tranzistoru zvýšen.

TRIAKY s jsou provozovány ve třech nebo čtyřech režimech, známých také jako kvadranty. Obvykle se některé parametry liší v závislosti na kvadrantu, např. spouštěcí proud I_GT. V některých případech se stává, že zkušební proud Tester je dostatečný pro spuštění TRIACu v jednom kvadrantu, ale ne v jiném. Protože tester potřebuje dva testovací běhy, aby získal rozložení pinů pro MT1 a MT2, nemůže tester v takových případech připojení rozlišit, tím je možné, že jsou označeny obráceně.

Některé TRIAKY mohou být testerem spuštěny, ale mají vysoký udržující proud (I_H), čímž je nelze správně rozpoznat. Pokud je spouštěcí proud je pro tester příliš vysoký, je označen jako odpor.

- **CLD** Test diod detekuje CLD (Current Limiting Diode) jako normální diodu a vydává její aktuální I F jako svodový proud.
 - Všimni si, že jsou u CLD anoda a katoda obráceny oproti normální diodě.
 - Samostatná CLD detekce je obtížná, protože svodový proud germania nebo výkonné Šottkyho diody leží v rozsahu I $\,$ F (od přibližně 33μ A).
 - Pokud má dioda neobvyklý V_f, neobvykle nízký V_f při nízkém proudovém testu (druhá hodnota v závorce) a nelze měřit žádnou kapacitu, pak je to pravděpodobně CLD.

Nepodporované komponenty všechny polovodiče, které vyžadují vysoký řídicí proud, nelze rozpoznat, protože má tester max. asi 7 mA spínací proud. Tester také dodává pouze 5V, což např. nestačí na DIAC s V_BO od 20-200 V.

Zjednání nápravy u některých testerů.

Jestli tvůj tester ukazuje následovný problém, můžeš ho takto zkusit opravit.

-hFE moc vysoký

Problem:

U kolektorového okruhu s Rl jako bázovým odporem je z neznámého důvodu měřeno moc nízké bázové napětí. Tímto vypadá bázový proud také nižší a způsobí vysokou hFE hodnotu.

Postižený tester:

Hiland M644

Náprava:

Aktivuj NO_HFE_C_RL v config.h! Viz na stránce 41.

Známé problémy Úložiště nebo super-kondenzátor, např. Řada Panasonic NF je detekován jako dioda nebo dvě antiparalelní diody.

Měření kapacity nemůže určit použitelnou hodnotu.

- Při použití spínacího zdroje nebo DC-DC převodníku pro napájení, vydá někdy tester omylem Elko kolem $50\mu F$, ačkoli není žádná součástka připojena.
- ESR může pracovat s kondenzátory s 180 220nF v závislosti na MCU taktu variovat.
- Problém s měřením ESR elektrolytických kondenzátorů s nízkým ESR a pevným elektrolytem.
- 4.0.8. Pomoc Nápovědu najdeš na následujících dvou fórech:[10] a[11].
- **4.0.9. Změny firmwaru** Přečti si Kapitolu 9 od stránky 69.

Kapitola 5

Dálkové ovládání

5.1. Příkazy dálkového ovládání

Když tester příkaz přijme, odpoví konkrétními údaji nebo jeden z následujících standardních textů:

- 5.1.1. ERR neznámý příkaz
- není podporován v aktuálním kontextu komponenty
- Přetečení vyrovnávací paměti
- 5.1.2. **OK** příkaz byl proveden

(provedení některých příkazů nějakou dobu trvá)

5.1.3. N/A - Informace/hodnota nejsou k dispozici

Odpovědi s daty nikdy nezačínají žádným z nadstandardních textů aby se vyhnulo možné dvojznačnosti

E 2 Projety menos de c

- 5.2. Basiskommandos
- **5.2.1. VER** vrací verzi firmwaru
- ověření připojení a určení sady příkazů na základě verze příklad odpovědi: "1,33m"
- **5.2.2. OFF** vypne tester
- Tester před vypnutím odpoví "OK"

příklad odpovědi: "OK"<tester se vypne>

- 5.3. Testkommandos
- 5.3.1. PROBE hledá část a přeskočí všechny pauzy pro zadání uživatele
- Tester po ukončení vyhledávání odpoví "OK"

vzorová odpověď: <uplyne nějaký čas pro sondování> "OK"

- 5.3.2. COMP vrací ID typu součásti
- ID viz COMP * in common.h
- Příklad odpovědi pro BJT: "30"
- **5.3.3.** MSG vrací chybovou zprávu
- pouze v případě, že došlo k chybě (COMP: 1)
- Odpověď může záviset na jazyce uživatelského rozhraní

příklad odpověď: "Baterie? 1:1500 mV"

5.3.4. QTY - vrací počet nalezených komponent

příklad odpověď pro BJT: "1"

- **5.3.5. NEXT** vyber druhou komponentu
- pouze pokud byly nalezeny dvě složky (POČET:2) příklad odpověď: "OK"
- 5.3.6. TYPE -dává zpátky součástky
- jen pro BJT, FET a IGBT
- možné typy:
 - NPN NPN (BJT)
 PNP PNP (BJT)
 JFET JFET (FET)
 - MOSFET MOSFET (FET) - N-ch n-Kanal (FET, IGBT)
 - P-ch p-Kanal (FET, IGBT)- enh. typ obohacení (FET, IGBT)
 - dep. typ vyčerpání (FET, IGBT)

```
Příklad odpovědi pro BJT: "NPN"
```

- Ukázková odpověď pro FET (MOSFET): "MOSFET n-ch boost."

5.3.7. HINT - vrací poznámky o zvláštních funkcích

- pouze pro diody, BJT, FET a IGBT
- možné poznámky:
 - NPN možná NPN BJT (dioda)
 PNP možná PNP BJT (dioda)
 - R_BE báze-emitor-odpor (dioda, BJT)
 - BJT+ integrovaná volnoběžná dioda na stejném substrátu

generuje parazitický další BJT (BJT)

- D_FB Body/volnoběžná dioda (BJT, FET, IGBT)
- D_CLAMP Šottky-tranzistor (BJT)

potřebuje aktivované Šotky-tranzistor rozpoznání

- SYM symetrický odtok a zdroj (FET)

Příklad odpovědi pro BJT: "D_FB R_BE"

- Ukázková odpověď: pro FET (MOSFET): "D_FB"

5.3.8. MHINT - vrací poznámky o měření

- pouze pro BJT
- možné poznámky:

 - h_FE_c měření h_FE_c v kolektorovém prostředí

Příklad odpovědi pro BJT: "h FE e"

5.3.9. PIN - vrací přiřazení pinů

-použité identifikátory:

- odpor x = verbunden,- enespojený - kondenzátor $x = \text{spojen}\acute{y}$, - e nespojený A = anoda- dioda C = katoda- enespojený - BJT B = báze,C = kolektor,E = emitor- FET G = gate,S = zdrojD = odtok,
- FET G = gate, S = zdroj, D = odtok, x = odtok/zdroj
- G = gate,- IGBT C = kolektor,E = emitor- SCR G = gate,A = anodaC = katoda- TRIAC G = gate,2 = MT2,1 = MT1- PUT G = gate,A = anoda, C = katoda- UJT E = emitor,2 = B2, 1 = B1
- Format der Antwort:
- <Test-Pin #1 Kennung><Test-Pin #2 Kennung><Test-Pin #3 Kennung>
- Ukázková odpověď pro odpor: "xx-"
- Ukázková odpověď pro diodu: "C-A"
- Ukázková odpověď pro BJT: "EBC"

5.3.10. R - vrací hodnotu odporu

- jen pro odpor (obsahuje také induktivitu)
- ukázková odpověď: "122R"

5.3.11. C - vrací hodnotu kapacity

- jen pro kondenzátor
- ukázková odpověď: "98nF" "462uF"

5.3.12. L - vrací hodnotu induktivity

- jen pro odpor (obsahuje také induktivitu)
- ukázková odpověď: "115uH"

5.3.13. ESR - vrací hodnotu ESR-Wert zurück (Equivalent Series Resistance)

- -vyžaduje povolení měření ESR
- jen pro kondenzátor
- ukázková odpověď: "0.21R"

```
5.3.14. I_l

    vrací I leak zpět (Svodový proud odpovídá samovybíjení)

- jen pro kondenzátor
- ukázková odpověď: "3.25uA"
5.3.15. V_F
                  - vrací V_F zpět (dopředné napětí)
- jen pro diody a PUT
- také pro tělo
-dioda od MOSFET a svodová dioda od BJT nebo IGBT
- ukázková odpověď: "654mV"
5.3.16. V<sub>F2</sub>
                    - vrací V Fě měření nízkého proudu (forward voltage)
- jen pro diody

ukázková odpověď: "387mV"

5.3.17. C_D
                  - vrací C D (kapazitu diody)
- jen pro diody

    ukázková odpověď: "8pF"

5.3.18. I_R
                  - vrací I R zurück (reverse current)
- nur pro diody
- ukázková odpověď: "4.89uA"
5.3.19. R_BE
                    - vrací R BE zurück (Basis-emitor-odpor)
- jen pro diody a BJT
- ukázkové odpovědi: "38.2R" "5171R"
5.3.20. h_FE
                   - vrací h FE zurück (DC-Stromverstärkungsfaktor)
- jen pro BJT

ukázková odpověď: "234"

5.3.21. h_FE_r
                      - vrací obrácený h FE (kolektor a emitor překroucený)
- jen pro BJT
- ukázková odpověď: "23" - vrací h_FE (DC-Aktuální činitel zesílení)
- jen pro BJT
- ukázková odpověď: "234"
5.3.22. V_BE
                   - vrací V BE (Basis-emitor-napětí)
- jen pro BJT
- ukázková odpověď: "657mV"
5.3.23. I_CEO
                     - vrací I CEO (kolektor-emitor-proud, otevřená báse)
- jen pro BJT
- ukázková odpověď: "460.0uA"
5.3.24. V_th
                   - vrací V_th (threshold voltage) prahové napětí
- jen pro FET (MOSFET) und IGBT
- ukázková odpověď: "2959mV"
5.3.25. C_GS
                   - vrací C GS (gate-zdroj-kapacita)
- jen pro FET (MOSFET)
- ukázková odpověď: "3200pF"
5.3.26. R_DS
                   - vrací R DS on (odtok-zdroj-odpor zapnutý)
- jen pro FET (MOSFET)
- ukázková odpověď: "1.20R"
5.3.27. V_GS_off
                         - vrací V_GS_off (Cutoffovo napětí)
- jen pro zchudlý FET
- ukázková odpověď: "-3072mV"
5.3.28. I_DSS
                     - vrací I_DSS (odtok-zdroj-Strom, zkracovaný gate)
- jen pro zchudlý-FET
- ukázková odpověď: "6430\mu\mathrm{A}"
5.3.29. C_GE
                   - vrací C_GE (gate-emitor-kapacita)
```

- jen pro IGBT

- ukázková odpověď: "724pF"

- 5.3.30. V_{GT} $vraci V_{GT}$ (gate-Trigger-napětí)
- jen pro Thyristor und TRIAC
- ukázková odpověď: "865m
V"
- ${\tt 5.3.31.~V_T} \quad \ \ \ {\rm vraci} \ {\rm V_T} \ {\rm zur\"{u}ck} \ ({\rm Offset\text{-}Spannung})$
- jen pro PUT
- ukázková odpověď: "699
m V"
- **5.3.32.** R_BB vrací R_BB (mezibázová rezistence)
- vyžaduje povolení detekce UJT
- jen pro UJT

ukázková odpověď: "4758R"

Kapitola 6

Programový kód

Jak již bylo zmíněno, firmware lze přizpůsobit pro různé testery a další funkce. Existují některá nastavení v souboru Makefile, v config.h a config<MCU>.h. Tato kapitola vysvětluje nastavení. Makefile řídí překlad zdrojového kódu a obsahuje základní věci, jako jsou typy MCU a ISP programátory. V souboru confih.h existují obecná nastavení pro provoz a funkce a soubor config<MCU>.h je zodpovědný za věci na hardwarové úrovni, tedy za moduly LCD a přiřazení pinů.

6.1. Makefile

V Makefile se provádí nastavení nastavením určitých proměnných. K přizpůsobení změň prostě hodnotu nebo řetězec za proměnnou. Pro některé proměnné existuje několik návrhů, které jsou komentovány pomocí symbolu #. Tam, v případě potřeby komentář (# smazat) a nebo komentář k výchozímu nastavení (# vložit).

6.1.1. MCU typ

```
# avr-gcc: MCU model
# - ATmega 328/328P : atmega328
# - ATmega 324P/324PA : atmega324p
# - ATmega 640 : atmega640
# - ATmega 644/644P/644PA : atmega644
# - ATmega 1280 : atmega1280
# - ATmega 1284/1284P : atmega1284
# - ATmega 2560 : atmega2560
MCU = atmega328
```

Výpis 6.1. Předvolba je atmega328

6.1.2. Taktová frekvence MCU

```
# MCU freqency:
# - 1MHz : 1
# - 8MHz : 8
# - 16MHz : 16
# - 20MHz : 20
FREQ = 8
```

Výpis 6.2. Předvolba je 8MHz

6.1.3. Typ oscilátoru

```
# oscillator type
# - internal RC oscillator : RC
# - external full swing crystal : Crystal
# - external low power crystal : LowPower
OSCILLATOR = Crystal
```

Výpis 6.3. Předvolba je Crystal

6.1.4. Avrdude typ MCU

```
# avrdude: part number of MCU

# - ATmega 328 : m328

# - ATmega 328P : m328p

# - ATmega 328PB : m328pb

# - ATmega 324P : m324p

# - ATmega 324PA : m324pa

# - ATmega 640 : m640

# - ATmega 644 : m644

# - ATmega 644P : m644p

# - ATmega 644PA : m644p

# - ATmega 1280 : m1280

# - ATmega 1284 : m1284

# - ATmega 1284P : m1284p

# - ATmega 2560 : m2560

PARTNO = m328p
```

Výpis 6.4. Předvolba je m328p

6.1.5. Avrdude ISP programátor Avrdude potřebuje:

Avrdude jméno programátora, bitový takt a port.

```
# Arduino as ISP
\#PROGRAMMER = stk500v1
\#PORT = /dev/ttyACM0
\# OPTIONS = -b 19200
# Bus Pirate
#PROGRAMMER = buspirate
#PORT = /dev/bus_pirate
\#OPTIONS = -B 10.0
# Diamex ALL-AVR/AVR-Prog
PROGRAMMER = avrispmkII
PORT = usb
OPTIONS = -B 1.0
# Pololu USB AVR Programmer
\#PROGRAMMER = stk500v2
\#PORT = /dev/ttyACM0
\#OPTIONS = -B 1.0
# USBasp
#PROGRAMMER = usbasp
#PORT = usb
\#OPTIONS = -B 20
# USBtinyISP
#PROGRAMMER = usbtiny
#PORT = usb
\#OPTIONS = -B 5.0
# Arduino Uno bootloader via serial/USB
#PROGRAMMER = arduino
\#PORT = /dev/ttyACM0
\# OPTIONS = -D -b 115200
# Arduino Mega2560 bootloader via serial/USB
#PROGRAMMER = wiring
\#PORT = /dev/ttyACM0
\#OPTIONS = -D - b \ 115200
```

Výpis 6.5. Předvolba je Diamex

Pokud není tvůj programátor uvedený, přidej ho do Makefile ručně. Další informace najdeš v příručce Avrdude nebo v online dokumentaci [9].

6.2. config.h

Tento soubor slouží k nastavení provozu a funkcí. Protože se zde jedná o normální soubor se záhlavím C, používají se zde, na rozdíl od "Makefile" známá pravidla komentování v C. Chceš-li něco aktivovat, odstraň znaky "//" na začátku řádku a na deaktivování je zase na začátek řádku vlož. Některá nastavení vyžadují číselnou hodnotu, kterou můžeš případně upravit.

6.2.1. Hardwarová obsluha

Rotační kodér k obsluze

- Standardní Piny: PD2& PD3 (ATmega 328)
- mohou být paralelně použity s LCD modulem
- viz ENCODER_PORT pro portové piny (config-<MCU>.h)//#define HW_ENCODER odkoment

- odkomentuj k aktivaci

počet pulzů Gray kódu na krok nebo aretaci

- Rotační kódovací impuls je kompletní sekvence 4 Gray kódových impulsů
- typické hodnoty: 2 nebo 4, zřídka 1

#define ENCODER_PULSES...4

- Uprav hodnotu podle tvého rotačního kodéru.

počet zarážek nebo kroků

- používá se k záznamu rychlosti otáčení rotačního kodéru
- nemusí přesně odpovídat a umožňuje jemné doladění (vyšší hodnota: pomalejší, nižší hodnota: rychlejší)
- typické hodnoty: 20, 24 nebo 30

#define ENCODER_STEPS...24

- Uprav hodnotu podle tvého rotačního kodéru

Více / méně tlačítek pro ovládání

- Alternativa k rotačnímu kodéru
- viz KEY_PORT pro portové piny (config-<MCU>.h) //#define HW_INCDEC_KEYS

- odkomentuj k aktivaci

referenční napětí 2.5 V pro Vcc test

- Standardní pin:PC4 (ATmega 328)
- mělo by být nejméně 10krát přesnější než regulátor napětí
- viz TP_REF pro port pin (config-<MCU>.h)
- v případě potřeby uprav UREF $_25$ níže podle referenční hodnoty napětí

//#define HW_REF25

- odkomentuj k aktivaci

Typické napětí referenčního napětí 2,5 V (v mV)

- viz katalogový list reference napětí
- nebo změř napětí > = 5,5 číslic DMM #define UREF 25...2495

/ ** - Pokud je třeba změn hodnotu

Ochranná relé pro vybíjení kondenzátorů

- Standardní pin:PC4 (ATmega 328)
- Nízký signál: kratuj zkušební piny

Vysoký signál prostřednictvím externí reference: eliminuj zkrat

//#define HW_DISCHARGE_RELAY * - odkomentuj k aktivaci

měření napětí do 50V DC, měření zenerových diod

- Standardní pin:PC3 (ATmega 328)
- děliče napětí 10:1
- pro zenerovy diody
- DC-DC boostovací převodník ovládaný testovacím tlačítkem
- Viz port TP_BAT pro portový port

//#define HW_ZENER

- odkomentuj k aktivaci

```
Alternativní mód při testu zenerových diod
     - zesilovací převodník nespíná, pokud je DC/DC krokový převodník stále v chodu
     - při měření externího napětí (přepínání bez stupňového převodníku)
     //#define ZENER_UNSWITCHED
                                                                - odkomentuj k aktivaci
Vysoké rozlišení při testu z-diod
     - 10 mV místo 0,1 V
     //#define ZENER HIGH RES
                                                                - odkomentuj k aktivaci
Výstup pevného signálu
     - pokud je pin OC1B MCU zapojen jako vyhrazený výstup signálu namísto
     odporu Rl zkušebního pinu #2
     //#define HW_FIXED_SIGNAL_OUTPUT
                                                               * - odkomentuj k aktivaci
```

Jednoduchý čítač kmitočtů

Standardní pin:T0 (PD4 ATmega 328) přímo jako frekvenční vstup

- počítá až do 1/4 taktu frekvence MCU
- lze ho použít paralelně s LCD modulem

//#define HW_FREQ_COUNTER_BASIC

* - odkomentuj k aktivaci

Rozšířený čítač kmitočtů

- Nízko a vysokofrekvenční krystalový oscilátor a vyrovnávací frekvenční vstup
- Prescaler 1:1 a 16:1 (32:1)
- piny portů nalezneš v části COUNTER PORT (config-<MCU>.h)
- vyžaduje LCD s více než 2 řádky textu
- nastavení předvolebního nastavení obvodu: buď 16:1 nebo 32:1

```
//#define HW_FREQ_COUNTER_EXT
                                                    - odkomentuj k aktivaci
#define FREQ_COUNTER_PRESCALER...16 / * 16:1 * /
                                                                 - volba
//# definuje FREQ_COUNTER_PRESCALER...32 / * 32:1 * /
```

Počítadlo událostí

- Standardní pin: T0 (PD4 ATmega 328)
- používá T0 přímo jako vstup události/pulsu (náběžná hrana)
- Není možný žádný společný provoz s displeji pro T0
- vyžaduje další tlačítka (např. otočný kodér) a displej s více než 5 řádky
- pouze pro MCU takt 8, 16 nebo 20 MHz

//# definiere HW_EVENT_COUNTER

- odkomentuj k aktivaci

Spouštěcí výstup pro čítač událostí

- Jako spouštěcí výstup se používá pin #2, piny #1 a #3 jsou Gnd
- nastaví spouštěcí výstup na vysokou hodnotu během počítání

//# definiere EVENT_COUNTER_TRIGGER_OUTR

- odkomentuj k aktivaci

IR detektor/dekodér (prostřednictvím vyhrazeného pinu MCU)

- vyžaduje IR modul přijímače, např. série TSOP
- modul je připojen k pevnému I/O pinu
- viz PIN PORT pro port pin (config-<MCU>.h)
- pro další protokoly aktivuj SW_IR_RX_EXTRA

//#define HW_IR_RECEIVER

- odkomentuj k aktivaci

Pevný kondenzátor pro samonastavení

```
- Viz TP CAP a ADJUST PORT pro piny portů (config-<MCU>.h)
//#define HW ADJUST CAP
                                                      - odkomentuj k aktivaci
```

Paralelní relé kondenzátoru (vzorkovací ADC)

//# define HW_CAP_RELAY

- odkomentuj k aktivaci

snadno použitelný PWM generátor - výstup přes OC1B #define SW PWM SIMPLE * - komentuj k odvolbě PWM generátor s rozšířeným provozem - výstup přes OC1B - vyžaduje další tlačítka a LCD s více než 2 řádky textu //# define SW_PWM_PLUS - odkomentuj k aktivaci Měření indukčnosti * - komentuj k odvolbě #define SW INDUCTOR Měření ESR a měření ESR v obvodu - MCU takt> = 8 MHz nutný * - komentuj k odvolbě #define SW_ESR - Vyber SW_OLD_ESR pro starou metodu měření od 180nF //# define SW OLD ESR - odkomentuj k aktivaci Test rotačních snímačů //# define SW_ENCODER - odkomentuj k aktivaci Generátor obdélníkových vln - vyžaduje další tlačítka nebo otočný kodér #define SW_SQUAREWAVE * - komentuj k odvolbě IR Detector/Decoder (pomocí testovacích pinů) - vyžaduje modul IR přijímače, např. série TSOP - Modul bude připojen k testovacím pinům #define SW_IR_RECEIVER * - komentuj k odvolbě Odpor omezující proud pro IR přijímací modul - pouze pro 5V moduly - Varování: Jakýkoli zkrat může zničit MCU //#define SW_IR_DISABLE_RESISTOR - odkomentuj k aktivaci Další protokoly pro IR detektor/dekodér vzácnější protokoly, které zvyšují využití flash paměti;) //# define SW_IR_RX_EXTRA - odkomentuj k aktivaci IR vysílač pro dálkové ovládání - vyžaduje další tlačítka a zobrazení s více než 4 řádky textu - vyžaduje také IR LED s jednoduchým ovladačem //# define SW_IR_TRANSMITTER - odkomentuj k aktivaci Alternativní zpoždění pro IR dálkový vysílač - v případě, že C kompilátor zkazí výchozí smyčku zpoždění a způsobí nesprávné doby pulsu/pauzy //#define SW_IR_TX_ALTDELAY - odkomentuj k aktivaci Dodatkové protokoly pro IR dálkový vysílač - vzácnější protokoly, které zvyšují využití paměti flash;) //# define SW_IR_TX_EXTRA - odkomentuj k aktivaci Test optických spojek //# define SW_OPTO_COUPLER - odkomentuj k aktivaci Test UJT tranzistorů #define SW UJT * - komentuj k odvolbě Test (Schottky-clamped BJT) #define SW_SCHOTTKY BJT * - komentuj k odvolbě

6.2.2. Možnosti softwaru

```
Test servo
     - vyžaduje další tlačítka a zobrazení s více než 2 řádky textu
     //# define SW_SERVO
                                                                - odkomentuj k aktivaci
Měření teploty s DS18B20
     - aktivujte také ONEWIRE PROBES nebo ONEWIRE IO PIN (viz část "bussy")
     //#define SW DS18B20

    odkomentuj k aktivaci

OneWire RAM-kód číst a zobrazit.

    vyžaduje více než 2 řádky textu

     - aktivuj také ONEWIRE PROBES nebo ONEWIRE IO PIN (viz část "bussy")
     //#define SW ONEWIRE READ ROM
                                                                - odkomentuj k aktivaci
OneWire skenování zobrazuje ROM-kódy, všech připojených uživatelů.
     - vyžaduje více než 2 řádky textu
     - aktivuj také ONEWIRE PROBES nebo ONEWIRE IO PIN (viz část "bussy")
     //#define SW ONEWIRE SCAN
                                                                - odkomentuj k aktivaci
Test unikající proudů kondenzátoru
     - vyžaduje LCD s více než dvěma řádky
     //# define SW_CAP_LEAKAGE

    odkomentuj k aktivaci

Reverzní zobrazení hFE pro BJT

    výměna hFE za kolektor a emitor

     #define SW_REVERSE_HFE
                                                                * - komentuj k odvolbě
R/C/L monitorování na pinech #1 a #3

    monitorování indukcí vyžaduje aktivaci SW INDUCTORS

     - pro ESR musí být SW ESR nebo SW OLD ESR aktivován
     //#define SW MONITOR R
                                    ien R
     //#define SW MONITOR C
                                    jen C plus ESR
     //#define SW MONITOR L
                                    jen L
     //#define SW MONITOR RCL R plus L, nebo C plus ESR
     //#define SW MONITOR RL R plus L
                                                                - aktivuj(jeden||více)
DHT11, DHT22 a kompatibilní senzory vlhkosti a teploty
     //# definiere SW_DHTXX
                                                                - odkomentuj k aktivaci
Diplay Font Test
     # definiere SW FONT TEST
                                                   - zum Deaktivieren auskommentieren
Kontrola Odporu, zda vyhovuje standardní hodnotě řady E
     - vyžaduje display s více než 2 řádky textu

    Režim barevného kódu vyžaduje barevné grafické zobrazení

     //#define SW R E24 5 T
                                    E24 5% tolerance, text
     //\#define SW R E24 5 CC
                                    E24 5% tolerance, color-code
     //#define SW R E24 1 T
                                    E24 1% tolerance, text
     //#define SW_R_E24_1_CC
                                    E24 1% tolerance, color-code
     //#define SW_R_E96_T
                                    E96 1% tolerance, text
     //\#define SW_R_E96_CC
                                    E96 1% tolerance, color-code - aktivuj(jeden||více)
Kontrola kondenzátoru, zda vyhovuje standardní hodnotě řady E
     - vyžaduje display s více než 2 řádky textu
     //#define SW_C_E6_T
                                    E6 20% tolerance, text
     //#define SW C E12 T
                                    E12 10% tolerance, text
                                                                - aktivuj(jeden||více)
Kontrola cívky, zda vyhovuje standardní hodnotě řady E

    vyžaduje displav s více než 2 řádky textu

     - erfordert eine Anzeige mit mehr als 2 Textzeilen
     //#define SW L E6 T
                                    E6 20% tolerance, text
     //#define SW_L_E12_T
                                    E12 10% tolerance, text
                                                                - aktivuj(jeden||více)
```

```
Deaktivace u některých testerů měření hFE se společným kolektorovým obvodem a Rl jako
     bázový odpor
     - Problém:
     Hodnoty hFE jsou příliš vysoké, protože základní napětí je měřeno příliš nízko.
     - ovlivnění testeři:
     Hiland M664 (probíhá řešení)
     //#define NO HFE C RL
                                                                  - odkomentuj k aktivaci
Spouštěcí cykly oscilátoru (po probuzení z úsporného režimu):

    tvpické hodnoty

     - Interní RC oscilátor:....6
     - Křemenný krystal:...... 16384 (také 256 nebo 1024 v závislosti na nastavení pojistky)
     - Rezonátor:........... 16384 (také 256 nebo 1024, v závislosti na nastavení pojistky)
                                        - Změň hodnotu, pokud se nehodí k tvému testeru!
                 Výpis 6.6. změň hodnotu, pokud se neshoduje s testerem!
6.2.3. uživatelské rozhraní
Dostupné jazyky Standard je ISO 8859 -1.
     Volba 2 odpovídá ISO 8859 -2 (s háčky a čárkami.). - Ruština je vždy Windows -1251.
     #define UI_ENGLISH
     //#define UI_CZECH
     //#define UI_CZECH_2
     //#define UI_DANISH
     //#define UI_GERMAN
     //#define UI_ITALIAN
     //#define UI_POLISH
     //#define UI_POLISH_2
     //#define UI_RUSSIAN
     //#define UI_RUSSIAN_2
     //#define UI_SPANISH
                           Výpis 6.7. Zde je zvolena angličtina.
čárka místo tečky k označení desetinných zlomků.
     //# define UI_COMMA
                                                                  - odkomentuj k aktivaci
Teplota ve Fahrenheitu místo Celsia.
     //# define UI FAHRENHEIT
                                                                  - odkomentuj k aktivaci
Hexadecimální hodnoty ukázat velkými písmeny
     //# define UI HEX UPPRCASE
                                                                  - odkomentuj k aktivaci
standart automatický režim - místo nepřetržitého režimu
     //# define UI AUTOHOLD
                                                                  - odkomentuj k aktivaci
Volba menu zkratem všech tří testovacích pinů.
     - staré výchozí chování
     //# define UI SHORT CIRCUIT MENU
                                                                  - odkomentuj k aktivaci
Pokyny místo kurzoru , pokud jsou k dispozici.
     - aktuálně pouze "Nabídka/Test"
     - vyžaduje další tlačítka a displej s dostatečným počtem
     Řádky textu (doporučeno:> = 8 řádků)
     //#define UI KEY HINTS
                                                                  - odkomentuj k aktivaci
Testovací profil zobrazit při zapnutí testeru.
      * - pro testery přídavnými testovacími kabely
     //# define UI SHOOSE PROFILE
                                                                  - odkomentuj k aktivaci
Výstup přes sériové rozhraní TTL
      - aktivuj také SERIAL BITBANG nebo SERIAL HARDWARE (viz část "bussy")
     //# define UI SERIAL COPY
                                                                  - odkomentuj k aktivaci
```

```
Ovládání testeru přes sériové rozhraní TTL
     - aktivuj také SERIAL BITBANG nebo SERIAL HARDWARE a SERIAL RW
     //#define UI SERIA COMMANDS
                                                                - odkomentuj k aktivaci
Maximální čekací doba po testování (v ms)
     - platí pouze pro nepřetržitý režim
     - Čas mezi výstupem výsledku a začátkem nového zkušebního běhu.
     #define CYCLE DELAY ... 3000
                                                           - v případě potřeby změň čas
Maximální počet testovacích běhů bez nalezených komponentů
     - platí pouze pro nepřetržitý režim
     - Po dosažení tohoto počtu se tester vypne.
     #define CYCLE MAX...5
                                                          - v případě potřeby změň číslo
Automatické vypnutí, pokud není po nějakou dobu stisknuto žádné tlačítko.
     * - vztahuje se pouze na režim automatického pozastavení
     //#define POWER OFF TIMEOUT...60

    odkomentuj k aktivaci

Symboly pro neobvyklé 3 pólové komponenty
     - vyžaduje grafický display a Symbol-bitmap
                                                                 * - komentuj k odvolbě
     #define SW SYMBOLS
Barevné kódování zkušebních pinů

    vyžaduje barevný LCD

     - uprav color.h a vyber vhodné barvy
     #define SW PROBE COLORS
                                                                 * - komentuj k odvolbě
Volbu tester vypnout ukázat v menu
     //# define SW_POWER_OFF

    odkomentuj k aktivaci

Zaokrouhlení hodnot pro DS18B20
     - DS18B20 (0.1 °C/F)
     //#define UI ROUND DS18B20
                                                                - odkomentuj k aktivaci
ukládání dat firmwaru (texty, tabulky atd.)
     - Samoladící data se vždy ukládají do EEPROM
     - Písma a symboly jsou vždy ukládány do Flash
     #define DATA_EEPROM
                                  store data in EEPROM
     //#define DATA_FLASH
                                    store data in Flash
                                                                 - zvol jedno
6.2.4. Správa napájení
Typ Vypínače
     - softwarové řešení, (standard), které dokáže vypnout Tester
     - ruční vypínač. Zde se tester samostatně vypnout nemůže
     //#define POWER_SWITCH_SOFT
     #define POWER_SWITCH_MANUAL
                                                                  - komentuj k odvolbě
Monitorovací režim baterie
     - BAT_NONE
                             zcela deaktivuje monitorování baterie
     - BAT DIRECT
                             přímé měření napětí baterie (<5V)
     - BAT DIVIDER
                             Měření pomocí děliče napětí
     //#define BAT_NONE
     //#define BAT DIRECT
     #define BAT DIVIDER
                                                                              -zvoleno
Volitelné externí napájení bez monitorování
     - Někteří testeři podporují další externí napájení, ale kvůli
     zapojení, není dovoleno měřit napětí. To by způsobilo vypnutí, při
     zjištění nízkého napětí. Volba níže zabraňuje vypnutí, když měřené
     napětí klesne pod 0,9 V (způsobeno svodovým proudem diody).
     //#define BAT_EXT_UNMONITORED
                                                                - odkomentuj k aktivaci
```

děliče napětí pro monitorování baterie - BAT R1: horní odpor v Ω - BAT_R2: dolní odpor v Ω ** - v případě potřeby uprav hodnotu #define BAT_R1...10000 #define BAT R2...3300 ** - v případě potřeby uprav hodnotu úbytek napětí způsobený ochranou diodou proti zpětnému napětí - nebo tranzistorem pro správu napájení (v mV) případně jinou částí obvodu v napájení - Vezmi si DMM a změř úbytek napětí! - Schottkyho dioda asi 200 mV/PNP BJT asi 100 mV. ** - v případě potřeby uprav hodnotu #define BAT OFFSET...290 nízké napětí baterie (v mV) - Tester varuje, když je dosaženo BAT WEAK. - Úbytek napětí BAT_OFFSET je zahrnut do výpočtu. ** - v případě potřeby uprav hodnotu #define BAT_WEAK ... 7400 Vypínací napětí baterie (v mV) - Tester se vypne, když je dosaženo BAT_LOW. Úbytek napětí BAT_OFFSET je při výpočtu zohledněn ** - v případě potřeby uprav hodnotu #define BAT LOW...6400 režim spánku pro nižší spotřebu energie #define SAVE POWER * - komentuj k odvolbě 6.2.5. Nastavení a kompenzace měření **ADC** napětí reference na základě Vcc (v mV) #define UREF VCC ... 5001 ** - v případě potřeby uprav hodnotu Ofset interního referenčního napětí (v mV): -100 až 100 - Kompenzuje rozdíly mezi skutečnou a změřenou hodnotou. - ADC má rozlišení přibližně 4,88 mV pro V ref = 5V (Vcc) a 1,07 mV pro $V_ref = 1.1V \text{ (bandgap)}.$ - Přidáno k měřenému napětí referenční hodnoty bandgapu. #define UREF OFFSET...0 ** - v případě potřeby uprav hodnotu přesné hodnoty testovacích odporů - výchozí hodnota pro Rl je 680Ω - Výchozí hodnota pro Rh je 470 k Ω $/ * Rl v\Omega * /$ #define R_LOW...680 ** - v případě potřeby uprav hodnotu $/ * Rh in \Omega * /$ #define R_HIGH...470000** - v případě potřeby uprav hodnotu Offset pro systematické chyby měření odporu pomocí Rh (470k) v Ω Pokud jsou odpory> 20k příliš vysoké nebo příliš nízké, uprav odpovídajícím způsobem ofset. - Výchozí offset je 350Ω ** - v případě potřeby uprav hodnotu #define RH OFFSET...3500 Odpor zkušebních pinů/kabelů (v 0.01Ω) - standardní posun pro stopy a zkušební kabely - Odpor dvou testovacích kolíků připojených ke sérii - za předpokladu, že všechny testovací piny mají stejný/podobný odpor je aktualizováno samoladěním

** - v případě potřeby uprav hodnotu

#define R ZERO...20

```
Odpor pro jednotlivé zkušební páry-kabelů, v případě, že jsou velmi rozdílné
     - je aktualizováno v samoladění
                                                    ** - v případě potřeby uprav hodnotu
     #define R MULTIOFFSET
kapacita testovacích pinů/kabelů (v pF) - standardní offset pro MCU, desku a testovací kabel
     - je aktualizováno v samoladění
     - Příklady kapacit pro různé délky kabelů:
      3pF
              asi 10 \, \mathrm{cm}
      9pF
              asi 30 \, \mathrm{cm}
      15pF
              asi 50cm
     - Maximalní hodnota
     #define C ZERO ... 43
                                                       - v případě potřeby uprav hodnotu
specifická kapacita testovacíh kabelů místo průměrné hodnoty pro všechny testovací piny
     //#define CAP MULTIOFFSET
                                                                  - odkomentuj k aktivaci
Maximální vybíjecí napětí pro kondenzátory (v mV)
     - pod kterým napětím vidíme kondenzátor jako vybitý
     #define CAP _DISCHARGED ... 2
                                                    ** - v případě potřeby uprav hodnotu
Korekční faktory kondenzátorů (v 0,1 %))
     - pozitivní faktor zvyšuje hodnotu kapacity
     - záporný faktor snižuje hodnotu kapacity
     CAP FACTOR SMALL
                                  pro kondenzátory < 4,7 \mu F
     CAP_FACTOR_MID
                                  pro kondenzátory 4.7 - 47 \mu F
                                  pro kondenzátory > 47 \mu F
     CAP FACTOR LARGE
     #define CAP_FACTOR_SMALL . . . . 0
                                                     bez korekce
                                                                     ** - uprav hodnotu
                                                                     ** - uprav hodnotu
     #define CAP_FACTOR_MID
                                                     -4.0 %
     #define CAP_FACTOR_LARGE...-90
                                                     - 9,0 %
                                                                     ** - uprav hodnotu
počet kol ADC pro každé měření
     - Platné hodnoty se pohybují od 1 do 255.
                                                    ** - v případě potřeby uprav hodnotu
     #define ADC \_SAMPLES \dots 25
100nF vyrovnávací kondenzátor AREF
     - používají některé karty MCU
     - prodlouží dobu měření
     - Doporučení: vyměň za 1nF kondenzátor
     #define ADC_LARGE_BUFFER_CAP

    komentuj k odvolbě

6.2.6. R&D - určeno pro vývojáře firmwaru
Aktivace funkce čtení dat modulu displeje
     - Ovladače displeje a nastavení rozhraní to musí podporovat
     //#define LCD READ
                                                                  - odkomentuj k aktivaci
Aktivace funkce čtení ID řadiče displeje
     - ID je zobrazeno na uvítací obrazovce (podle verze firmwaru)
     - vyžaduje funkce čtení displeje (LCD READ)
     - doporučeno: sériový výstup (UI SERIAL)
     //#define SW DISPLAY ID
                                                                  - odkomentuj k aktivaci
Čte registry řadiče displeje a vysílá je sériově přes TTL.
     - vyžaduje funkce čtení displeje (LCD READ) a sériový výstup (UI SERIAL)
     //#define SW_DISPLAY_REG
                                                                  - odkomentuj k aktivaci
```

6.2.7. Busse

```
12C bus může být vyžadován některým hardwarem
     - již bylo možné aktivovat pomocí nastavení zobrazení (config<MCU>.h)
     - pro bit-bang-port a -ins viz I2C_PORT (config<MCU>.h)
     - Hardware I2C (TWI) automaticky používá správné MCU piny
     - K aktivaci bud' I2C BITBANG nebo I2C HARDWARE odkomentovat
     - jeden z Taktů odkomentovat
     //# define I2C _BITBANG
                                         bit-bang I2C
     //\# define I2C _HARDWARE
                                         Hardware MCU TWI
     //# define I2C _STANDARD _MODE 100kHz sběrnicové hodiny
     //# define I2C _FAST _MODE
                                         400kHz sběrnicové hodiny
     //# define I2C RW
                                         povolit podporu čtení (netestováno)
                     - Chceš-li aktivovat, tak buď I2C BITBANG nebo I2C HARDWARE
SPI bus může být vyžadován některým hardwarem
     - již bylo možné aktivovat pomocí nastavení zobrazení (config<MCU>.h)
     - pro bit-bang-port a -ins viz SPI PORT (config<MCU>.h)
     - Hardware SPI automaticky používá správné piny MCU
     //#define SPI BITBANG
                                         bit-bang SPI
     //#define SPI __HARDWARE
                                         Hardware SPI
     //#define SPI RW
                                         Povolit podporu čtení
                    - Chceš-li ho použít, tak buď SPI_BITBANG nebo SPI_HARDWARE
Serial TTL Interface může být již povolena v LCD nastavení (config<MCU>.h)
     - pro bit-bang-port a -ins viz SERIAL PORT (config<MCU>.h).

    Hardware Serial automaticky používá správné piny MCU

     //# definuje SERIAL BITBANG
                                         bit-bang-serial
     //# definuje SERIAL _HARDWARE
                                         Hardware Serial
     //# define SERIAL RW
                                         Povolit podporu čtení
       - Chceš-li povot, odkomentuj buď SERIAL BITBANG nebo SERIAL HARDWARE
OneWire bus * - Informace o vyhrazeném I/O MCU pinu najdeš pod
     ONEWIRE_PORT v (config<MCU>.h).
     // # define ONEWIRE _PROBES
                                         přes testovací piny
     // # define ONEWIRE _IO _PIN
                                         pomocí vyhrazeného I/O pinu
```

* - Povol buď ONEWIRE PROBES, nebo ONEWIRE IO PIN

6.3. Config_328.h

obsahuje nastavení na hardwarově blizké úrovni pro displeje, ovládání a tak dále.

Při překladu firmware je podle v Makefile zvoleným MCU, automaticky integrován vhodný soubor. Pravidla komentování jsou stejné jako v config.h. Kromě "// " pro jednotlivé řádky, se pro blokové komentáře používají "#if 0 ... #endif " . tzn. na začátek vložit "#if 0 " a na konec "#endif " . K použití kódu jednoduše řádky s "#if 0 " a "#endif " odstranit. Místo odstranění stačí vložit před "#if 0 a před #endif " "// ".

6.3.1. LCD moduly

Displeje a jejich nastavení jsou v kapitole 2.6. na stránce 8.

Zde je na příklad display ST765R, u kterého byly #if0 a #endif komentovány pomocí "// ".

Modul ST765R předvolba

```
//#if 0
#define LCD_ST7565R /* display controller ST7565R */
```

Výpis 6.8. Pomocí //#if 0 a #define ST765R . . . je správný modul aktivován

```
//#endif
```

Výpis 6.9. Konec smyčky je také vykomentován "// ".

6.3.2. Rozložení portů a pinů

testovací piny/sondy

- první 3 piny analogového portu musí být použity pro zkušební piny.
- Neměň definici pro TP1, TP2 a TP3!

Výpis 6.10. Piny neměnit.

Pevné předvolby

```
#define TP_ZENER PC3 /* test pin for 10:1 voltage divider */
#define TP_REF PC4 /* test pin for 2.5V reference and relay */
#define TP_BAT PC5 /* test pin for battery (4:1 voltage divider) */
```

Výpis 6.11. Neměnit!

Testovací odpory

- Pro výstup PWM/čtvercových vln přes zkušební pin 2 musí být R RL 2 PB2/OC1B.
- Nesdílej tento port s POWER CTRL nebo TEST BUTTON!

```
#define R_RL_1
                   PB0
                          /* Rl (680R) for test pin #1 */
#define R_RH_1
                   PB1
                          /* Rh (470k) for test pin #1 */
#define R_RL_2
                   PB2
                          /* Rl (680R) for test pin #2 */
#define R_RH_2
                   PB3
                          /* Rh (470k) for test pin #2 */
#define R_RL_3
                   PB4
                          /* Rl (680R) for test pin #3 */
#define R_RH_3
                   PB5
                          /* Rh (470k) for test pin #3 */
```

Výpis 6.12. Při potřebě upravit

Výdej signálu přes OC1B - Prosím neměň!

```
#define SIGNAL_OUT PB2 /* MCU's OC1B pin */
```

Výpis 6.13. Neměnit!

Hlavní vypínač - Nemůže být stejný port jako ADC PORT nebo R PORT.

```
#define POWER_CTRL PD6 /* control pin (1: on / 0: off) */
```

Výpis 6.14. Možné změnit

Testovací tlačítko - Nemůže být stejný port jako ADC PORT nebo R PORT.

```
#define TEST_BUTTON PD7 /* test/start push button (low active) */
```

Výpis 6.15. Možné změnit

Rotační kodér

#define ENCODER_A	PD3	/* rotary encoder A signal */
#define ENCODER_B	PD2	<pre>/* rotary encoder B signal */</pre>

Výpis 6.16. Možné změnit

Tlačítka Vice/méně

#define KEY_INC	PD2	<pre>/* increase push button (low active) */</pre>
#define KEY_DEC	PD3	<pre>/* decrease push button (low active) */</pre>

Výpis 6.17. Možné změnit

Čítač kmitočtů

- Jednoduchá a rozšířená verse
- Vstup musí být pin $\mathrm{PD4}/\mathrm{T0}$

```
#define COUNTER_IN PD4 /* signal input TO */
```

Výpis 6.18. nicht ändern!

IR detektor/dekodér

- pevný modul připojený k vyhrazenému I/O pinu

```
#define IR_DATA PC6 /* data signal */
```

Výpis 6.19. Možné změnit

6.3.3. Busse

SPI - Hardware-SPI používá SCK PB5, MOSI PB3, MISO PB4 a /SS PB2

- Bit-Bang-SPI může být již přes LCD zapnutý

```
#ifndef SPI_PORT
#define SPI_PORT
                   PORTB
                          /* port data register */
#define SPI_DDR
                  DDRB
                          /* port data direction register */
#define SPI_PIN
                  PINB
                          /* port input pins register */
#define SPI_SCK
                  PB5
                          /* pin for SCK */
#define SPI_MOSI
                          /* pin for MOSI */
                  PB3
#define SPI_MIS0
                         /* pin for MISO */
                  PB4
#define SPI_SS
                          /* pin for /SS */
                  PB2
#endif
```

Výpis 6.20. Možné změnit

I2C Hardware-I2C (TWI) používá SDA PC4 a SCL PC5

- Bit-Bang-I2C může být již přes LCD zapnutý

```
#ifndef I2C_PORT
#define I2C_PORT
                  PORTC
                         /* port data register */
#define I2C_DDR
                  DDRC
                         /* port data direction register */
#define I2C_PIN
                  PINC
                         /* port input pins register */
#define I2C_SDA
                  PC4
                         /* pin for SDA */
#define I2C_SCL
                  PC5
                         /* pin for SCL */
#endif
```

Výpis 6.21. Možné změnit

serielní TTL interface

- Hardware-USART0 používá Rx PD0 & Tx PD1

Výpis 6.22. Možné změnit

OneWire - vyhrazený I/O-Pin

```
#define ONEWIRE_PORT PORTC /* port data register */
#define ONEWIRE_DDR DDRC /* port data direction register */
#define ONEWIRE_PIN PINC /* port input pins register */
#define ONEWIRE_DQ PC6 /* DQ (data line) */
```

Výpis 6.23. Možné změnit

6.4. Config_644.h

obsahuje nastavení na hardwarově blizké úrovni pro displeje, ovládání a tak dále.

Při překladu firmware je podle v Makefile zvoleným MCU, automaticky integrován vhodný soubor. Pravidla komentování jsou stejné jako v config.h. Kromě "// " pro jednotlivé řádky, se pro blokové komentáře používají "#if 0 ... #endif " . tzn. na začátek vložit "#if 0 " a na konec "#endif " . K použití kódu jednoduše řádky s "#if 0 " a "#endif " odstranit. Místo odstranění stačí vložit před "#if 0 a před #endif " "// ".

6.4.1. LCD moduly

Displeje a jejich nastavení jsou v kapitole 2.6. na stránce 8.

Zde je na příklad display ILS9446, u kterého byly #if0 a #endif komentovány pomocí "// ".

Modul ILI9481/9486 předvolba

```
//#if 0
//#define LCD_ILI9481 /* display controller ILI9481 */
#define LCD_ILI9486 /* display controller ILI9486 */
```

Výpis 6.24. Pomocí //#if 0 a #define ILI9586 ... je správný modul aktivován

```
//#endif
```

Výpis 6.25. Konec smyčky je také vykomentován "// ".

6.4.2. Rozložení portů a pinů

testovací piny/sondy

- první 3 piny analogového portu musí být použity pro zkušební piny.
- Neměň definici pro TP1, TP2 a TP3!

```
      #define TP1
      PA0
      /* test pin / probe #1 */

      #define TP2
      PA1
      /* test pin / probe #2 */

      #define TP3
      PA2
      /* test pin / probe #3 */
```

Výpis 6.26. Piny neměnit.

Pevné předvolby

```
#define TP_ZENER PA3 /* test pin for 10:1 voltage divider */
#define TP_REF PA4 /* test pin for 2.5V reference and relay */
#define TP_BAT PA5 /* test pin for battery (4:1 voltage divider) */
```

Výpis 6.27. Neměnit!

Testovací odpory

- Pro výstup PWM/čtvercových vln přes zkušební pin 2 musí být R_RL_2 PD4/OC1B.
- Nesdílej tento port s POWER_CTRL nebo TEST_BUTTON!

```
#define R_RL_1
                   PD2
                          /* Rl (680R) for test pin #1 */
#define R_RH_1
                   PD3
                          /* Rh (470k) for test pin #1 */
#define R_RL_2
                   PD4
                          /* Rl (680R) for test pin #2 */
#define R_RH_2
                   PD5
                          /* Rh (470k) for test pin #2 */
                          /* Rl (680R) for test pin #3 */
#define R_RL_3
                   PD6
#define R_RH_3
                   PD7
                          /* Rh (470k) for test pin #3 */
```

Výpis 6.28. Při potřebě upravit

Výdej signálu přes OC1B - Prosím neměň!

```
#define SIGNAL_OUT PD4 /* MCU's OC1B pin */
```

Výpis 6.29. Neměnit!

Hlavní vypínač - Nemůže být stejný port jako ADC_PORT nebo R_PORT.

```
#define POWER_CTRL PC6 /* control pin (1: on / 0: off) */
```

Výpis 6.30. Možné změnit

Testovací tlačítko - Nemůže být stejný port jako ADC PORT nebo R PORT.

#define TEST_BUTTON PC7	<pre>/* test/start push button (low active) */</pre>	
-------------------------	--	--

Rotační kodér

Výpis 6.31. Možné změnit

#define ENCODER_A PC3 /* rotary encoder A signal */ #define ENCODER_B PC4 /* rotary encoder B signal */

Výpis 6.32. Možné změnit

Tlačítka Vice/méně

#define KEY_INC PC4 /* increase push button (low active) */
#define KEY_DEC PC3 /* decrease push button (low active) */

Výpis 6.33. Možné změnit

Čítač kmitočtů

- Jednoduchá a rozšířená verse
- Vstup musí být pin $\mathrm{PB0}/\mathrm{T0}$

```
#define COUNTER_IN PB0 /* signal input T0 */
```

Výpis 6.34. nicht ändern!

Ovládání pro rozšířený čítač kmitočtů

```
#define COUNTER_CTRL_CH0 PC1 /* channel addr #0 */
#define COUNTER_CTRL_CH1 PC2 /* channel addr #1 */
```

Výpis 6.35. Možné změnit

IR detektor/dekodér

- pevný modul připojený k vyhrazenému I/O pinu

```
#define IR_DATA PC2 /* data signal */
```

Výpis 6.36. Možné změnit

Pevný kondenzátor pro Samočinné nastavení platí pro 470k odpor

- ADC-Pin je TP_CAP shora
- měl by být filmový kondenzátor mezi 100nF und 1000nF

```
#define ADJUST_RH PC5 /* Rh (470k) for fixed cap */
```

Výpis 6.37. Možné změnit

Paralelní kondenzátorové relé (vzorkovací ADC)

- TP1 a TP3
- Kondenzátor by měl mít mezi 10nF a 27nF

```
#define CAP_RELAY_CTRL PC2 /* control pin */
```

Výpis 6.38. Možné změnit

6.4.3. Busse

SPI - Hardware-SPI používá SCK PB7, MOSI PB5, MISO PB6 a /SS PB4

- Bit-Bang-SPI může být již přes LCD zapnutý

```
#ifndef SPI_PORT
#define SPI_PORT
                   PORTB
                          /* port data register */
#define SPI_DDR
                   DDRB
                          /* port data direction register */
#define SPI_PIN
                   PINB
                          /* port input pins register */
#define SPI_SCK
                   PB7
                          /* pin for SCK */
#define SPI_MOSI
                          /* pin for MOSI */
                  PB5
                          /* pin for MISO */
#define SPI_MIS0
                  PB6
#define SPI_SS
                          /* pin for /SS */
                  PB4
#endif
```

Výpis 6.39. Možné změnit

I2C Hardware-I2C (TWI) používá PC1 a PC0

- Bit-Bang-I2C může být již přes LCD zapnutý

```
#ifndef I2C_PORT
#define I2C_PORT
                  PORTC /* port data register */
#define I2C_DDR
                  DDRC
                         /* port data direction register */
#define I2C_PIN
                  PINC
                         /* port input pins register */
#define I2C_SDA
                  PC1
                         /* pin for SDA */
#define I2C_SCL
                  PC0
                          /* pin for SCL */
#endif
```

Výpis 6.40. Možné změnit

serielní TTL interface

- Hardware-USART0 používá PD0 & PD1, USART1 používá PD2 & PD3

```
#define SERIAL_USART 0  /* use USART0 */
/* for bit-bang TTL serial */
#define SERIAL_PORT PORTD /* port data register */
#define SERIAL_DDR DDRD  /* port data direction register */
#define SERIAL_PIN PIND  /* port input pins register */
#define SERIAL_TX PD1  /* pin for Tx (transmit) */
#define SERIAL_RX PD0  /* pin for Rx (receive) */
#define SERIAL_PCINT 24  /* PCINT# for Rx pin */
```

Výpis 6.41. Možné změnit

OneWire - vyhrazený I/O-Pin

```
#define ONEWIRE_PORT PORTC /* port data register */
#define ONEWIRE_DDR DDRC /* port data direction register */
#define ONEWIRE_PIN PINC /* port input pins register */
#define ONEWIRE_DQ PC2 /* DQ (data line) */
```

Výpis 6.42. Možné změnit

6.5. Config_1280.h

obsahuje nastavení na hardwarově blizké úrovni pro displeje, ovládání a tak dále. Protože přiřazení pinů závisí na MCU typu, existují zde různé soubory s příslušným přiřazením.

Při překladu firmware je podle v Makefile zvoleným MCU, automaticky integrován vhodný soubor. Pravidla komentování jsou stejné jako v config.h. Kromě "// " pro jednotlivé řádky, se pro blokové komentáře používají "#if 0 ... #endif " . tzn. na začátek vložit "#if 0 " a na konec "#endif " . K použití kódu jednoduše řádky s "#if 0 " a "#endif " odstranit. Místo odstranění stačí vložit před "#if 0 a před #endif " "// ".

6.5.1. LCD moduly

Displeje a jejich nastavení jsou v kapitole 2.6. na stránce 8.

Zde je na příklad display ILS9446, u kterého byly $\# \mathrm{i} f 0$ a $\# \mathrm{endif}$ komentovány pomocí "// ".

Modul ILI9481/9486 předvolba

```
//#if 0
//#define LCD_ILI9481 /* display controller ILI9481 */
#define LCD_ILI9486 /* display controller ILI9486 */
```

Výpis 6.43. Pomocí //#if 0 a #define ILI9586 ... je správný modul aktivován

```
//#endif
```

Výpis 6.44. Konec smyčky je také vykomentován "// ".

6.5.2. Rozložení portů a pinů

testovací piny/sondy

- první 3 piny analogového portu musí být použity pro zkušební piny.
- Neměň definici pro TP1, TP2 a TP3!

Výpis 6.45. Piny neměnit.

Pevné možnosti

```
#define TP_ZENER PF3 /* test pin for 10:1 voltage divider */
#define TP_REF PF4 /* test pin for 2.5V reference and relay */
#define TP_BAT PF5 /* test pin for battery (4:1 voltage divider) */
```

Výpis 6.46. Neměnit!

Testovací odpory

- Pro výstup PWM/čtvercových vln přes zkušební pin 2 musí být R RL 2 PB6/OC1B.
- Nesdílej tento port s POWER_CTRL nebo TEST_BUTTON!

```
#define R_RL_1
                   PK0
                          /* Rl (680R) for test pin #1 */
#define R_RH_1
                   PK1
                          /* Rh (470k) for test pin #1 */
                          /* Rl (680R) for test pin #2 */
#define R_RL_2
                   PK2
                          /* Rh (470k) for test pin #2 */
#define R_RH_2
                   PK3
                          /* Rl (680R) for test pin #3 */
#define R_RL_3
                   PK4
#define R_RH_3
                   PK5
                          /* Rh (470k) for test pin #3 */
```

Výpis 6.47. Při potřebě upravit

Výdej signálu přes OC1B - Prosím neměň!

```
#define SIGNAL_OUT PB6 /* MCU's OC1B pin */
```

Výpis 6.48. Neměnit!

Hlavní vypínač - Nemůže být stejný port jako ADC_PORT nebo R_PORT.

```
#define POWER_CTRL PA6 /* control pin (1: on / 0: off) */
```

Výpis 6.49. Možné změnit

Testovací tlačítko - Nemůže být stejný port jako ADC PORT nebo R PORT.

Rotační kodér

Výpis 6.50. Možné změnit

#define ENCODER_A PA3 /* rotary encoder A signal */ #define ENCODER_B PA1 /* rotary encoder B signal */

Výpis 6.51. Možné změnit

Tlačítka Vice/méně

#define KEY_INC PA3 /* increase push button (low active) */
#define KEY_DEC PA1 /* decrease push button (low active) */

Výpis 6.52. Možné změnit

Čítač kmitočtů

- Jednoduchá a rozšířená verse
- Vstup musí být pin PD7/T0

#define COUNTER_IN PD7 /* signal input T0 */

Výpis 6.53. nicht ändern!

Ovládání pro rozšířený čítač kmitočtů

#define COUNTER_CTRL_CH0 PD5 /* channel addr #0 */
#define COUNTER_CTRL_CH1 PD6 /* channel addr #1 */

Výpis 6.54. Možné změnit

IR detektor/dekodér

- pevný modul připojený k vyhrazenému I/O pinu

#define IR_DATA PA0 /* data signal */

Výpis 6.55. Možné změnit

Pevný kondenzátor pro Samočinné nastavení platí pro 470k odpor

- ADC-Pin je TP_CAP shora
- měl by být filmový kondenzátor mezi 100nF und 1000nF

```
#define ADJUST_RH PA5 /* Rh (470k) for fixed cap */
```

Výpis 6.56. Možné změnit

Paralelní kondenzátorové relé (vzorkovací ADC)

- TP1 a TP3
- Kondenzátor by měl mít mezi 10nF a 27nF

#define CAP_RELAY_CTRL PA2 /* control pin */

Výpis 6.57. Možné změnit

6.5.3. Busse

SPI - Hardware-SPI používá SCK PB1, MOSI PB2, MISO PB3 a /SS PB0

- Bit-Bang-SPI může být již přes LCD zapnutý

```
#ifndef SPI_PORT
#define SPI_PORT
                   PORTB
                          /* port data register */
#define SPI_DDR
                   DDRB
                          /* port data direction register */
#define SPI_PIN
                   PINB
                          /* port input pins register */
#define SPI_SCK
                   PB1
                          /* pin for SCK */
                          /* pin for MOSI */
#define SPI_MOSI
                  PB2
                          /* pin for MISO */
#define SPI_MISO
                  PB3
#define SPI_SS
                          /* pin for /SS */
                  PB0
#endif
```

Výpis 6.58. Možné změnit

I2C Hardware-I2C (TWI) používá SDA PD1 a SCL PD0

- Bit-Bang-I2C může být již přes LCD zapnutý

```
#ifndef I2C_PORT
#define I2C_PORT
                  PORTD
                          /* port data register */
#define I2C_DDR
                  DDRD
                          /* port data direction register */
#define I2C_PIN
                  PIND
                          /* port input pins register */
#define I2C_SDA
                  PD1
                         /* pin for SDA */
#define I2C_SCL
                  PD0
                          /* pin for SCL */
#endif
```

Výpis 6.59. Možné změnit

serielní TTL interface

- hardware USART verwendet

USART0: Rx PE0 und Tx PE1 USART2: Rx PH0 und Tx PH1 USART1: Rx PD2 und Tx PD3 USART3: Rx PJ0 und Tx PJ1

```
#define SERIAL_USART 0  /* use USART0 */
/* for bit-bang TTL serial */
#define SERIAL_PORT PORTE /* port data register */
#define SERIAL_DDR DDRE  /* port data direction register */
#define SERIAL_PIN PINE  /* port input pins register */
#define SERIAL_TX PE1  /* pin for Tx (transmit) */
#define SERIAL_RX PE0  /* pin for Rx (receive) */
#define SERIAL_PCINT 8  /* PCINT# for Rx pin */
```

Výpis 6.60. Možné změnit

OneWire - vyhrazený I/O-Pin

```
#define ONEWIRE_PORT PORTA /* port data register */
#define ONEWIRE_DDR DDRA /* port data direction register */
#define ONEWIRE_PIN PINA /* port input pins register */
#define ONEWIRE_DQ PA4 /* DQ (data line) */
```

Výpis 6.61. Možné změnit

Kapitola 7

kolekce nastavení

Zde najdeš nastavení pro různé modely testerů. Pokud jsi dal neuvedený tester do provozu, zašli prosím krátký popis testeru a odpovídající nastavení na e-mail autora [8], aby to pomohlo ostatním uživatelům.

7.0.1. DIY Kit "AY-AT" platí také pro GM_328A

- ATmega328; Barevný LCD modul ST7735 (Bit-Bang-SPI)
- Rotační kodér (PD1 & PD3, paralelně k displeji)
- Externí referenční napětí 2,5 V (TL431)
- Jednoduchý čítač frekvence s vyhrazeným vstupem (PD4)
- Měření vnějšího napětí do 45 V (PC3)
- Nastavení jsou od flywheelz@EEVBlog

Výpis 7.1. HW nastavení

```
#define LCD_ST7735
                              /* graphic display */
#define LCD_GRAPHIC
#define LCD_COLOR
                              /* color display */
#define LCD_SPI
                              /* SPI interface */
#define LCD_PORT
                   PORTD
                              /* port data register */
#define LCD_DDR
                   DDRD
                              /* port data direction register */
#define LCD_RES
                              /* port pin used for /RESX */
                   PD0
#define LCD_CS
                   PD5
                              /* port pin used for /CSX (optional) */
#define LCD_DC
                   PD1
                              /* port pin used for D/CX */
#define LCD_SCL
                   PD2
                              /* port pin used for SCL */
#define LCD_SDA
                   PD3
                              /* port pin used for SDA */
#define LCD_DOTS_X 128
                              /* number of horizontal dots */
#define LCD_DOTS_Y 160
                              /* number of vertical dots */
//#define LCD_OFFSET_X 4
                                /* enable x offset of 2 or 4 dots */
                                /* enable y offset of 1 or 2 dots */
//#define LCD_OFFSET_Y 2
#define LCD_FLIP_X
                              /* enable horizontal flip */
//#define LCD_FLIP_Y
                                /* enable vertical flip */
                              /* switch X and Y (rotate by 90Grad) */
#define LCD_ROTATE
                                /* turn on LCD after clearing it */
//#define LCD_LATE_ON
#define FONT_10X16_HF
                              /* 10x16 font */
#define SYMBOLS_24X24_HF
                              /* 24x24 symbols */
#define SPI_BITBANG
                              /* bit-bang SPI */
#define SPI_PORT
                   LCD_PORT
                              /* SPI port data register */
#define SPI_DDR
                   LCD_DDR
                              /* SPI port data direction register */
#define SPI_SCK
                   LCD_SCL
                              /* port pin used for SCK */
                              /* port pin used for MOSI */
#define SPI_MOSI
                   LCD_SDA
```

Výpis 7.2. LCD modul

Pokud by měl tester začít s prázdným displejem, odstraň komentář před LCD_LATE_ON.

```
#define ENCODER_PORT PORTD /* port data register */
#define ENCODER_DDR DDRD /* port data direction register */
#define ENCODER_PIN PIND /* port input pins register */
#define ENCODER_A PD3 /* rotary encoder A signal */
#define ENCODER_B PD1 /* rotary encoder B signal */
```

Výpis 7.3. Rotační kodér

- Vstup pro čítač kmitočtu je PD4 (T0)
- Korekční kompenzace indukčnosti pro model 20 MHz poskytl indman@EEVBlog
- Uprav sekci režimu vysokého proudu ve funkci MeasureInductor () v induktoru.c

Výpis 7.4. Kompenzace indukčnosti

7.0.2. M12864 DIY Transistor Tester - ATmega328

- ST7565 display s (Bit-Bang-SPI); rotační koder (PD1 & PD3, paralelně k display)
- Externí referenční napětí 2,5 V (TL431)

```
#define HW_ENCODER
#define ENCODER_PULSES 4 /* not confirmed yet, could be also 2 */
#define ENCODER_STEPS 24 /* not confirmed yet */
#define HW_REF25
```

Výpis 7.5. Hardwarové nastavení

```
LCD module:
#define LCD_ST7565R
#define LCD_GRAPHIC
                              /* graphic display */
#define LCD_SPI
                              /* SPI interface */
#define LCD_PORT
                   PORTD
                              /* port data register */
#define LCD_DDR
                   DDRD
                              /* port data direction register */
#define LCD_RESET PD0
                              /* port pin used for /RES */
#define LCD_A0
                   PD1
                              /* port pin used for A0 */
#define LCD_SCL
                   PD2
                              /* port pin used for SCL */
#define LCD_SI
                   PD3
                              /* port pin used for SI (LCD's data input) */
#define LCD_DOTS_X 128
                              /* number of horizontal dots */
#define LCD_DOTS_Y 64
                              /* number of vertical dots */
//#define LCD_OFFSET_X
                               /* enable x offset of 4 dots */
#define LCD_FLIP_Y
                              /* enable vertical flip */
                              /* start line (0-63) */
#define LCD_START_Y 0
                              /* default contrast (0-63) */
#define LCD_CONTRAST 11
#define FONT_8X8_VF
                              /* 8x8 font */
#define SYMB0LS_24X24_VFP
                              /* 24x24 symbols */
#define SPI_BITBANG
                              /* bit-bang SPI */
#define SPI_PORT
                   LCD_PORT
                              /* SPI port data register */
#define SPI_DDR
                   LCD_DDR
                              /* SPI port data direction register */
#define SPI_SCK
                   LCD_SCL
                              /* port pin used for SCK */
#define SPI_MOSI
                   LCD_SI
                              /* port pin used for MOSI */
```

Výpis 7.6. LCD modul

```
#define ENCODER_PORT PORTD /* port data register */
#define ENCODER_DDR DDRD /* port data direction register */
#define ENCODER_PIN PIND /* port input pins register */
#define ENCODER_A PD3 /* rotary encoder A signal */
#define ENCODER_B PD1 /* rotary encoder B signal */
```

Výpis 7.7. Rotační koder

7.0.3. T3/T4 - ATmega328, 8 MHz takt; ST7565 display s (Bit-Bang-SPI) - poskytl tom666@EEVblog

```
#define LCD_ST7565R
#define LCD_GRAPHIC
                              /* graphic display */
#define LCD_SPI
                              /* SPI interface */
#define LCD_PORT
                   PORTD
                              /* port data register */
#define LCD_DDR
                  DDRD
                              /* port data direction register */
#define LCD_RESET
                              /* port pin used for /RES */
                  PD4
                              /* port pin used for A0 */
#define LCD_A0
                   PD3
                              /* port pin used for SCL */
#define LCD_SCL
                   PD2
                              /* port pin used for SI (LCD's data input) */
#define LCD_SI
                  PD1
#define LCD_CS
                   PD5
                              /* port pin used for /CS1 (optional) */
#define LCD_DOTS_X 128
                              /* number of horizontal dots */
                              /* number of vertical dots */
#define LCD_DOTS_Y 64
#define LCD_START_Y 0
                              /* start line (0-63) */
#define LCD_CONTRAST 11
                              /* default contrast (0-63) */
#define FONT_8X8_VF
                              /* 8x8 font */
#define SYMB0LS_24X24_VFP
                              /* 24x24 symbols */
#define SPI_BITBANG
                              /* bit-bang SPI */
#define SPI_PORT
                  LCD_PORT
                              /* SPI port data register */
#define SPI_DDR
                  LCD_DDR
                              /* SPI port data direction register */
#define SPI_SCK
                  LCD_SCL
                              /* port pin used for SCK */
#define SPI_MOSI
                  LCD_SI
                              /* port pin used for MOSI */
```

Výpis 7.8. LCD modul

Existují T4 varianty, které mají jiné nastavení:

Výpis 7.9. LCD modul

a také přestavěný model s otočným koderem, podle Karl-Heinz Kübbeler [4].

(a) Schema z khk knihy

(b) přestavěný T4 s 6x8 ISO8859_2 CZ textem.

Obrázek 7.1. T4 s kodérem a část výběru.

Příklad fungující konfigurace v config.h:

```
Misc settings:
#define HW_ENCODER
#define ENCODER_PULSES 4
#define ENCODER_STEPS 24
#define HW_REF25
#define UREF_25
                   2495
#define HW_FREQ_COUNTER_BASIC
#define HW_EVENT_COUNTER
#define EVENT_COUNTER_TRIGGER_OUT
#define SW_PWM_SIMPLE
#define SW_INDUCTOR
#define SW_ESR
#define SW_DS18B20
#define SW_REVERSE_HFE
#define SW_DHTXX
#define UI_COMMA
#define UI_AUTOHOLD
#define UI_KEY_HINTS
#define POWER_OFF_TIMEOUT 30
#define SW_POWER_OFF
#define UI_ROUND_DS18B20
#define ONEWIRE_PROBES
```

Výpis 7.10. Příklad konfigurace

Obrázky z úpravy:

(a) Nutná přerušení na přední straně

(b) a na zadní straně

Obrázek 7.2. T4 Úprava na kodér a ISP

7.0.4. GM328 !pozor! né GM328A ten je nahoře pod 7.0.1 jako "AY-AT".

- ATmega328, 8 MHz Takt; ST7565 display s (Bit-Bang-SPI)
- Nastavení jsou od rddube@EEVblog

```
#define LCD_ST7565R
#define LCD_GRAPHIC
                              /* graphic display */
                              /* SPI interface */
#define LCD_SPI
#define LCD_PORT
                   PORTD
                              /* port data register */
                              /* port data direction register */
#define LCD_DDR
                   DDRD
#define LCD_RESET
                   PD0
                              /* port pin used for /RES (optional) */
                              /* port pin used for A0 */
#define LCD_A0
                   PD1
                              /* port pin used for SCL */
#define LCD_SCL
                   PD2
                              /* port pin used for SI (LCD's data input) */
#define LCD_SI
                   PD3
                              /* port pin used for /CS1 (optional) */
#define LCD_CS
                   PD5
#define LCD_DOTS_X 128
                              /* number of horizontal dots */
#define LCD_DOTS_Y 64
                              /* number of vertical dots */
                              /* start line (0-63) */
#define LCD_START_Y 0
                              /* default contrast (0-63) */
#define LCD_CONTRAST 11
                              /* 8x8 font */
#define FONT_8X8_VF
#define SYMBOLS_24X24_VFP
                              /* 24x24 symbols */
#define SPI_BITBANG
                              /* bit-bang SPI */
#define SPI_PORT LCD_PORT
                              /* SPI port data register */
#define SPI_DDR
                   LCD\_DDR
                              /* SPI port data direction register */
#define SPI_SCK
                              /* port pin used for SCK */
                   LCD\_SCL
#define SPI_MOSI
                  \mathsf{LCD}_{-}\mathsf{SI}
                              /* port pin used for MOSI */
```

Výpis 7.11. LCD modul

7.0.5. Fish8840 TFT - ATmega328, 8 MHz Takt; ST7565 display s (Bit-Bang-SPI)

- Externí 2,5-V referenční napětí (TL431)
- Poslal indman@EEVBlog/bdk100@vrtp.ru

```
#define LCD_ST7735
#define LCD_GRAPHIC
                             /* graphic display */
#define LCD_COLOR
                             /* color display */
#define LCD_SPI
                             /* SPI interface */
                  P0RTD
#define LCD_PORT
                             /* port data register */
                  DDRD
                             /* port data direction register */
#define LCD_DDR
                             /* port pin used for /RESX (optional) */
                  PD3
#define LCD_RES
//#define LCD_CS
                   PD5
                             /* port pin used for /CSX (optional) */
                  PD2
                             /* port pin used for D/CX */
#define LCD_DC
#define LCD_SCL
                  PD0
                             /* port pin used for SCL */
#define LCD_SDA
                  PD1
                             /* port pin used for SDA */
#define LCD_DOTS_X 128
                             /* number of horizontal dots */
#define LCD_DOTS_Y 156
                             /* number of vertical dots */
#define LCD_OFFSET_X
                             /* enable x offset of 4 dots */
                             /* enable y offset of 2 dots */
#define LCD_OFFSET_Y
                            /* enable horizontal flip */
#define LCD_FLIP_X
                             /* enable vertical flip */
//#define LCD_FLIP_Y
                             /* switch X and Y (rotate by 90Grad) */
#define LCD_ROTATE
                             /* turn on LCD after clearing it */
#define LCD_LATE_ON
#define FONT_10X16_HF
                             /* 10x16 font */
#define SYMBOLS_30X32_HF
                             /* 30x32 symbols */
#define SPI_BITBANG
                             /* bit-bang SPI */
                  LCD_PORT
                             /* SPI port data register */
#define SPI_PORT
#define SPI_DDR
                  LCD_DDR
                             /* SPI port data direction register */
#define SPI_SCK
                  LCD_SCL
                             /* port pin used for SCK */
#define SPI_MOSI
                  LCD_SDA
                             /* port pin used for MOSI */
```

Výpis 7.12. LCD modul

7.0.6. Multifunktionstester TC-1 - ATmega324 (velmi špatné rozložení pinů), - 16-MHz-Takt

- ST7735-Anzeige (Bit-Bang-SPI)
- Externí 2,5-V referenční napětí (TL431)
- pevný IR přijímací modul

- Převodník pro Zenertest
- Pevný kondenzátor pro automatické ladění
- Poháněno Li-Ion 3.7V
- první informace od indman@EEVblog
- Vyzkoušené kopie od jellytot@EEVblog a joystik@EEVblog Poznámky:
- řízení MCU U4 musí být nahrazeno jednoduchým řídicím obvodem (TC1-Mod, viz zdrojové úložiště pro Hardware / Markus / TC1-Mod.kicad.tgz, pohotovostní režim 5μ A proud celkem) nebo přeprogramován upraveným firmwarem (viz https://github.com/atar-axis/tc1-u4).
- Nastavte rozšířený bajt pojistky na 0xfd (detekce zhasnutí).
- Pokud se D2 (usměrňovací dioda pro Zenerovo testovací napětí) zahřeje, vyměňte ji za Schottkyho dioda určená pro zpětné napětí 80 V nebo vyšší, např. SS18.
- Vyměňte C11 a C12 (uzávěry filtrů pro Zenerovo testovací napětí) za 10 nebo $22\mu F$ nízko-ESR elektrolytický uzávěr dimenzovaný na 100 V nebo vyšší kvůli MLCC DC Problém předpojatosti s předpojatostí.
- Na základě použitého modulu LCD možná budete muset místo LCD nastavit LCD_FLIP_X LCD_FLIP_Y.
- TC-1 nemůže poskytovat výstup signálu (PWM/squarewave/atd.) Na sondě # 2. Použití PD4 (OC1B) jako výstup vyhrazeného signálu (přidejte rezistor k omezení proudu) a povolit HW_FIXED_SIGNAL_OUTPUT v config.h.
- Pokud chcete přidat otočný kodér nebo tlačítka pro/snížení, použijte prosím PB5 (displej D/C) a PB6 (displej SDA).
- Čítač kmitočtů můžete získat také pomocí PB0 (T0) jako vstupu a přidání jednoduchá vstupní fáze.
- pájecí můstek PD0 (nevyužitý firmwarem m)

```
#define HW_REF25
#define HW_ZENER
#define HW_IR_RECEIVER
#define HW_ADJUST_CAP
```

Výpis 7.13. Hardwarové nastavení

```
#define BAT_DIRECT
#define BAT_OFFSET 0
#define BAT_WEAK 3600
#define BAT_LOW 3400
```

Výpis 7.14. Různé nastavení

```
#define TP_ZENER PA4  /* test pin with 10:1 voltage divider */
#define TP_REF PA3  /* test pin with 2.5V reference */
#define TP_BAT PA5  /* test pin with 4:1 voltage divider */
#define TP_CAP PA7  /* test pin for self-adjustment cap */
```

Výpis 7.15. Rozložení pinů

```
#define R_PORT
                   PORTC
                          /* port data register */
                   DDRC
                           /* port data direction register */
#define R_DDR
#define R_RL_1
                   PC0
                           /* Rl (680R) for test pin #1 */
                   PC1
#define R_RH_1
                           /* Rh (470k) for test pin #1 */
                   PC2
#define R_RL_2
                           /* Rl (680R) for test pin #2 */
#define R_RH_2
                   PC3
                          /* Rh (470k) for test pin #2 */
#define R_RL_3
                   PC4
                          /* Rl (680R) for test pin #3 */
#define R_RH_3
                   PC5
                           /* Rh (470k) for test pin #3 */
```

Výpis 7.16. Rozložení pinů pro testovací odpory

```
#define POWER_PORT PORTD /* port data register */
#define POWER_DDR DDRD /* port data direction register */
#define POWER_CTRL PD2 /* controls power (1: on / 0: off) */
```

Výpis 7.17. Rozložení pinů u regulace výkonu

```
#define BUTTON_PORT PORTD /* port data register */
#define BUTTON_DDR DDRD /* port data direction register */
#define BUTTON_PIN PIND /* port input pins register */
#define TEST_BUTTON PD1 /* test/start push button (low active) */
```

Výpis 7.18. Rozložení pinů pro testovací tlačítko

```
#define IR_PORT PORTD /* port data register */
#define IR_DDR DDRD /* port data direction register */
#define IR_PIN PIND /* port input pins register */
#define IR_DATA PD3 /* data signal */
```

Výpis 7.19. Rozložení pinů pro pevný IR-Detektor/Decoder

```
#define ADJUST_PORT PORTC /* port data register */
#define ADJUST_DDR DDRC /* port data direction register */
#define ADJUST_RH PC6 /* Rh (470k) for fixed cap */
```

Výpis 7.20. Rozložení pinů pro pevný kondensator autotestu

```
#define LCD_ST7735
#define LCD_COLOR
                              /* color graphic display */
#define LCD_SPI
                              /* SPI interface */
#define LCD_PORT
                   PORTB
                              /* port data register */
#define LCD_DDR
                   DDRB
                              /* port data direction register */
#define LCD_RES
                   PB4
                              /* port pin used for /RESX (optional) */
                              /* port pin used for /CSX (optional) */
//#define LCD_CS
                   PB?
#define LCD_DC
                   PB5
                              /* port pin used for D/CX */
#define LCD_SCL
                   PB7
                             /* port pin used for SCL */
#define LCD_SDA
                   PB6
                             /* port pin used for SDA */
                             /* number of horizontal dots */
#define LCD_DOTS_X 128
                             /* number of vertical dots */
#define LCD_DOTS_Y 160
#define LCD_OFFSET_X 2
                             /* enable x offset of 2 or 4 dots */
#define LCD_OFFSET_Y 1
                             /* enable y offset of 1 or 2 dots */
                              /* enable horizontal flip */
//#define LCD_FLIP_X
#define LCD_FLIP_Y
                              /* enable vertical flip */
#define LCD_ROTATE
                              /* switch X and Y (rotate by 90Grad) */
                              /* turn on LCD after clearing it */
#define LCD_LATE_ON
#define FONT_10X16_HF
                              /* 10x16 font */
#define SYMBOLS_30X32_HF
                              /* 30x32 symbols */
#define SPI_BITBANG
                              /* bit-bang SPI */
#define SPI_PORT
                  LCD_PORT
                              /* SPI port data register */
#define SPI_DDR
                              /* SPI port data direction register */
                   \mathsf{LCD}_\mathsf{DDR}
#define SPI_SCK
                              /* port pin used for SCK */
                   LCD_SCL
#define SPI_MOSI
                              /* port pin used for MOSI */
                   LCD_SDA
```

Výpis 7.21. LCD modul

7.0.7. Hiland M644 - ATmega 644, 8 MHz takt; ST7565 LCD s (Bit-Bang-SPI)

- Rotační kodér (PB7 & PB5, paralelně k displeji)
- Externí 2,5-V referenční napětí (TL431)
- Převodník pro Zenertest
- Roršířený cítač frekvence
- Pevný kondenzator pro autosest
- Nastavení jsou od Horst O. (obelix2007@mikrocontroller.net)

```
#define HW_ENCODER
#define ENCODER_PULSES 4  /* 4 */
#define HW_REF25
#define HW_ZENER
#define HW_FREQ_COUNTER_EXT
#define FREQ_COUNTER_PRESCALER 16 /* 16:1 */
#define HW_ADJUST_CAP
```

Výpis 7.22. Hardwarové nastavení

```
#define NO_HFE_C_RL /* if hFE values too high */
```

Výpis 7.23. Jinak při hFE-C nadměrné výsledky! Aktivuj NO HFE C RL!

```
LCD module:
#define LCD_ST7565R
#define LCD_GRAPHIC
                              /* graphic display */
#define LCD_SPI
                              /* SPI interface */
#define LCD_PORT
                  P0RTB
                             /* port data register */
#define LCD_DDR
                  DDRR
                             /* port data direction register */
#define LCD_RESET PB4
                             /* port pin used for /RES (optional) */
//#define LCD_CS
                   PR2
                             /* port pin used for /CS1 (optional) */
#define LCD_A0
                  PB5
                             /* port pin used for A0 */
                             /* port pin used for SCL */
#define LCD_SCL
                  PB6
                             /* port pin used for SI (LCD's data input) */
#define LCD_SI
                  PB7
#define LCD_DOTS_X 128
                             /* number of horizontal dots */
#define LCD_DOTS_Y 64
                             /* number of vertical dots */
//#define LCD_OFFSET_X
                             /* enable x offset of 4 dots */
//#define LCD_FLIP_X
                             /* enable horizontal flip */
#define LCD_FLIP_Y
                             /* enable vertical flip */
#define LCD_START_Y 0
                             /* start line (0-63) */
#define LCD_CONTRAST 3
                             /* default contrast (0-63) */
#define FONT_8X8_VF
                             /* 8x8 font */
#define SYMBOLS_24X24_VFP
                             /* 24x24 symbols */
#define SPI_BITBANG
                             /* bit-bang SPI */
#define SPI_PORT
                 LCD_PORT
                             /* SPI port data register */
#define SPI_DDR
                  LCD_DDR
                             /* SPI port data direction register */
#define SPI_SCK
                  LCD_SCL
                              /* port pin used for SCK */
#define SPI_MOSI
                  LCD_SI
                              /* port pin used for MOSI */
```

Výpis 7.24. LCD modul

```
#define POWER_PORT PORTB /* port data register */
#define POWER_DDR DDRB /* port data direction register */
#define POWER_CTRL PB1 /* controls power (1: on / 0: off) */
```

Výpis 7.25. Rozložení pinů k regulaci výkonu

```
#define ENCODER_PORT PORTB /* port data register */
#define ENCODER_DDR DDRB /* port data direction register */
#define ENCODER_PIN PINB /* port input pins register */
#define ENCODER_A PB5 /* rotary encoder A signal */
#define ENCODER_B PB7 /* rotary encoder B signal */
```

Výpis 7.26. Rozložení pinů pro rotační kodér)

```
#define KEY_PORT PORTB /* port data register */
#define KEY_DDR DDRB /* port data direction register */
#define KEY_PIN PINB /* port input pins register */
#define KEY_INC PB7 /* increase push button (low active) */
#define KEY_DEC PB5 /* decrease push button (low active) */
```

Výpis 7.27. Rozložení pinů pro směr točení nahoru/dolu

7.0.8. BSide ESR02 (DTU-1701) - ATmega 328, 8MHz takt

- ST7565 display (bit-bang SPI)
- Externí 2,5-V referenční napětí (TL431)
- Nastavení jsou od indman@EEVblog

```
#define HW_REF25
```

Výpis 7.28. Hardwarové nastavení

Výpis 7.29. Rozložení pinů k regulaci výkonu

```
#define LCD_ST7565R
                              /* display controller ST7565R */
#define LCD_GRAPHIC
                              /* graphic display */
#define LCD_SPI
                              /* SPI interface */
#define LCD_PORT
                   PORTD
                              /* port data register */
#define LCD_DDR
                   DDRD
                              /* port data direction register */
                              /* port pin used for /RES (optional) */
#define LCD_RESET
                   PD0
#define LCD_A0
                   PD1
                              /* port pin used for A0 */
#define LCD_SCL
                   PD2
                              /* port pin used for SCL */
                              /* port pin used for SI (LCD's data input) */
#define LCD_SI
                   PD3
#define LCD_DOTS_X 128
                              /* number of horizontal dots */
                              /* number of vertical dots */
#define LCD_DOTS_Y 64
                              /* enable x offset of 4 dots */
#define LCD_OFFSET_X
#define LCD_FLIP_X
                              /* enable horizontal flip */
#define LCD_FLIP_Y
                              /* enable vertical flip */
#define LCD_START_Y 0
                              /* start line (0-63) */
#define LCD_CONTRAST 15
                              /* default contrast (0-63) */
#define FONT_8X8_VF
                              /* 8x8 font */
#define SYMBOLS_24X24_VFP
                              /* 24x24 symbols */
#define SPI_BITBANG
                              /* bit-bang SPI */
#define SPI_PORT
                   LCD_PORT
                              /* SPI port data register */
#define SPI_DDR
                   LCD_DDR
                              /* SPI port data direction register */
#define SPI_SCK
                   LCD_SCL
                              /* port pin used for SCK */
#define SPI_MOSI
                   LCD_SI
                              /* port pin used for MOSI */
```

Výpis 7.30. LCD Modul

7.0.9. Arduino Uno nebo Mega 2560

- Uno: ATmega 328, 16MHz takt

- Mega 2560: ATmega 2560, 16MHz takt
- Stáhni si Arduino pinout diagram, abys viděl mapování mezi Arduino a piny ATmega.
- Zde jsou uvedena pouze základní nastavení

```
#define HW_FIXED_SIGNAL_OUTPUT
```

Výpis 7.31. Hardwarové nastavení

#define UI_AUTOHOLD

Výpis 7.32. Uživatelské rozhraní

```
#define POWER_SWITCH_MANUAL
#define BAT_NONE
```

Výpis 7.33. Rozložení pinů k regulaci výkonu

```
#define ADC_LARGE_BUFFER_CAP
```

Výpis 7.34. Nastavení měření a kompenzace

7.0.10. Arduino MEGA zapojení

Obrázek 7.3. Arduino Mega

Tento obrázek byl použit od: https://duino4projects.com/arduino-mega-pinout-diagram/

Kapitola 8 Programování testeru Componentů

Aby zůstalo všem ostatním kolegům zoufalství a "bezesné nocí", kterými trpěl autor této kapitoly poté, co získal klone tester a bez jakékoli zkušenosti s AVR se rozhodl, ho "naučit česky", ušetřeno, vznikla tato kapitola. Zde získané zkušenosti by měly pomoci všem ostatním naivním, "ochotným … lehkomyslným a nezkušeným"…, ÚSPĚŠNĚ naprogramovat jejich tester.

Tato příležitost je zároveň využita, poděkovat autorovi a vývojáři tranzistorového testeru Karlovi-Heinzy Kübbelerovi viz [3] za jeho obětavost a trpělivost, protože bez jeho pomoci, by následující stránky nebyly napsány.

Aby překlad firmwaru a vypálení do MCU uspělo a současně . . . "nemuselo být "kolo" znovu objeveno", je část následujících stránek převzatá z popisu testeru tranzistoru od Karl-Heinze Kübbelera viz [3].

Tak ještě jednou ... MOC VELKÝ VDĚK.

8.1. Konfigurace testeru

K tomu si přečti kapitolu 1.8 od stránky 5.

8.2. Programování testeru

Programování testeru je řízeno souborem Makefile. Makefile zajišťuje, že přeložená software odpovídá předem zvoleným možnostem.

Výsledkem překladu má příponu souboru .hex a .eep.

Soubory se obvykle nazývají ComponentTester.hex a ComponentTester.eep.

Soubor .hex obsahuje data pro programovou pamět (Flash) procesoru ATmega.

Soubor .eep obsahuje data pro EEPROM ATmega. Oba soubory musí být načteny do správného úložiště.

Navíc musí být u ATmega nakonfigurovány správně pojistky. Pokud používáš Makefile spolu s programem avrdude [9], nepotřebuješ mít žádnou přesnou znalost detailů pojistek.

Pokud si nejsi s nastavením pojistek jistý, nech je na poprvé nastavit standartě a nech tester běžet v tomto režimu. Když používáš 8MHz operační takt je možné, že program běží příliš pomalu, to ale můžeš to opravit později!

Nesprávně nastavené pojistek však mohou zabránit pozdějšímu ISP programování.

8.2.1. Operační system Linux Programování pod Linuxem přináší mnoho výhod, protože tento OS byl vyvinut odborníky, kteří se orientují přáním uživatelů.

Prostředí je navíc k dispozici zdarma a je dokonale udržováno. Další výhodou je zabezpečení samotného operačního systému, hlavně při používání internetu. Jak používání, tak i instalace dnešních vydání je mnohem jednodušší než u konkurenčních operačních systémů.

Tento tutoriál je tak navržen, aby povzbudil všechny "ne" uživatele Linuxu, aby se o tom, naprogramováním svého testeru v Linuxu, přesvědčili.

Jako příklad, je zde použitý Linux Mint v aktuální verzi, která je bezplatně k dispozici na internetu. Instalace je možná na různé způsoby, Linux přinese svého spouštěcího asistenta, který se samostatně předchozí OS respektuje a nakonfiguruje.

8.2.2. Použití s Linuxem jako nově instalovaný operační systém.

Pro ty, kteří neradi píší, nabízí Linux snadný způsob, jak si to ulehčit.

Zkopíruj tuto příručku na USB klíčenku a otevři ji v tvém Linuxu.

Poté přesuň myš na název dokumentu, stiskni levé myší tlačítko a táhni dokument k levému okraji obrazovky, až se zobrazí možný rámeček. Nyní myš uvolni.

Příručka nyní zabere levou polovinu obrazovky.

V dalším kroku se současně stiskni [Ctrl] + [Alt] + [t] k otevření příkazového okna, které již známým způsobem přesuneš, nyní na pravou polovinu obrazovky.

8.2.3. Instalace programových balíčků s připojeným a aktivním internetem, musíš nejprve stáhnout s internetu a nainstalovat programové balíčky:

'binutils-avr', 'avrdude', 'avr-libc' a 'gcc-avr'.

Toho dosáhneš jednoduše, když přejdeš na této stránce k následujícímu textu:

sudo apt-get install avrdude avr-libc binutils-avr gcc-avr

Označ levým myším tlačítkem ten výše jmenovaný text v levém okně,

Přesuň myš na kurzor v pravém příkazovém okně a stiskni prostřední tlačítko myši (kolečko) dále zkráceně [ST]. Tím kopíruješ text mezi okny.

Po potvrzení pomocí [Enter], vyžaduje 'sudo' tvé uživatelské heslo. Na rozdíl od Windows se zde heslo zadává **po slepu** a potvrzuje se klávesou [Enter].

Tím se automaticky nainstalují všechny potřebné softwarové balíčky.

Eventuálně musíš mezitím potvrdit možnou otázku pomocí [J].

Zapamatuj si, že Linux vždy rozlišuje mezi malými a velkými písmeny.

Takže neodpovídej s [j], ale s [J]!

8.2.4. Stáhnutí zdrojů softwaru a dokumentace.

T tomu potřebuješ balíček 'subversion', který dosáhneš pomocí prohlášení:

sudo apt install subversion

a dále po instalaci balíčku s:

svn checkout svn://www.mikrocontroller.net/transistortester

Pokud jsi tento archiv již stáhnul, stáhneš tímto příkazem pouze nové aktualizace.

Soubory jsou nyní v Linuxu [Osobní složka] na (/home/"user") pod názvem "transistortester". Kontrola přítomnosti. Otevři okno terminálu, zadej "ls" a potvrď.

8.2.5. Používání rozhraní ... připravit uživatele (user).

USB zařízení lze zjistit zadáním 'lsusb' v příkazovém okně. Zadej 'lsusb' nejprve bez a potom s připojeným USB programátorem.

Porovnáním výsledků najdeš tvůj USB programátor.

Výsledek lsusb může vypadat takto:

```
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 003: ID 046d:c050 Logitech, Inc. RX 250 Optical Mouse
Bus 002 Device 058: ID 03eb:2104 Atmel Corp. AVR ISP mkII
Bus 002 Device 059: ID 2341:0042 Arduino SA Mega 2560 R3 (CDC ACM)
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub}
```

Zde byl detekován jako zařízení 58 AVR ISP mkII (DIAMEX ALL-AVR). ID 03eb je ID výrobce a ID 2104 je ID produktu.

Tyto dva identifikátory jsou potřebné na zapsáni v souboru /etc/udev/rules.d/90-atmel.rules zadáním:

sudo xed /etc/udev/rules.d/90-atmel.rules

V tomto příkladu se soubor 90-atmel.rules skládá z jednoho řádku:

```
SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104", MODE="0660", GROUP="plugdev"
```

Tato položka umožňuje přístup k zařízení pro členy skupiny 'plugdev'.

Chceš-li použít většinu programátorů, doporučuje se v 90-atmel.rules následující text:

```
# Copy this file to /etc/udev/rules.d/90-atmel.rules
# AVR ISP mkII - DIAMEX ALL-AVR
SUBSYSTEM=="usb", ATTRS {idVendor}=="03eb", ATTS {idProduct}=="2104", MODE="0660",
    GROUP = "plugdev",
# USB ISP-programmer für Atmel AVR
SUBSYSTEM=="usb", ENV {DEVTYPE}=="usb_device", SYSFS {idVendor}=="16c0", MODE="0666",
    SYSFS {idProduct} == "05dc",
# USB asp programmer
ATTRS {idVendor}=="16c0", ATTRS {idProduct}=="05dc", GROUP="plugdev", MODE="0660"
# USBtiny programmer
ATTRS {idVendor}=="1781", ATTRS {idProduct}=="0c9f", GROUP="plugdev", MODE="0660"
# Pololu programmer
SUBSYSTEM=="usb", ATTRS {idVendor}=="1ffb", MODE="0666"
```

Po vytvoření souboru lze tvorbu a obsah kontrolovat pomocí:

less /etc/udev/rules.d/90-atmel.rules

Systém USB zařízení Arduino SA Mega 2560, s 'lsusb' známý jako Device 59, generuje přístup k sériovému zařízení "/dev/ttyACM0" pro členy skupiny "dialout".

8.2.6. Členství ve skupině pro tvé vlastní uživatelské jméno, ve skupinách 'plugdev' i 'dialout' dosáhneš příkazem:

sudo usermod -a -G dialout, plugdev \$USER

Nyní by měl být možný přístup s avrdude k objem zařízení. Můžeš to kontrolovat příkazem: 'id'. Pokud by se vyskytly problémy, můžeš také přistoupit k členství prostřednictvím:

Nabídka menu/Správa systému/Uživatelé a skupiny/<Password>/ zobrazí se okno se dvěma záložkami.

Pokud nyní klikneš na své jméno na kartě uživatelé, uvidíš svůj profil a skupinové přidružení na pravé straně. Pomocí tlačítka <ADD> je nyní možné, přidat nové skupiny.

8.2.7. pracovní prostředí příprava.

Aby se zachoval originál a protože se terminálové okno vždy otevírá v ../home/"user", nabízí se tam přesunout svůj pracovní adresář s názvem **Mytester**.

Nejdříve naviguj v systémové liště se zelenou ikonou (Nemo) složky do /transistortester/Software/Markus/.

Jako druhé klikni pravým tlačítkem na ComponentTester-1.(nejvýší číslo)m.tgz a ve výběru <rozbalte zde> složku dekomprimuj. Nemo zase zavři.

Za třetí označ následující adresář, již známou metodou, a vlož do okna terminálu s [ST]: cd transistortester/Software/Markus/

Po potvrzení a zadání 'ls' se zobrazí všechny složky s příponou.tgz, pouze u jedné složky tato přípona chybí -> naše (právě rozbalená) složka.

Pro následující dva příkazy nejprve **JEN** vlož do terminálového okna **bez** stisknutí [Enter]!: cp -r 'MyT' Mytester/

Označ myší ten nahoře právě rozbalený adresář.

Nyní umísti, pomocí [levé šipky] klávesnice, blikající kurzor za poslední znak textu "MyT" a tyto znaky vymaž. Po odstranění posledního znaku stiskni [ST] na myši. Teprve nyní použij [Enter]. Tím jsi vytvořil pracovní prostředí. Kontrola existence a obsahu je možná pomocí:

diff 'MyT' Mytester/

také zde musí být "MyT" nahrazeno jménem "požadovaného modelu testeru". S posledním výrokem:

ln -s ~/transistortester/Software//Markus/Mytester ~/Mytester vytvoříš odkaz na pracovní adresář.

Od této chvíle se dostaneš lehce do tohoto adresáře pomocí:

[Strg] + [Alt] + [t], cd [Leertaste] My [Tab] [Enter]

a jseš v požadovaném adresáři. S 'ls' můžeš vidět jeho obsah.

Nyní pokračuj v úpravách Makefile pomocí již známého příkazu: xed Ma [Tab] [Enter]

Zde je nejdůležitější přihlásit svůj EXISTUJÍCÍ USB Programátor.

8.3. Přeložení Firmware

Po úpravě makefile, config.h nebo config-<MCU>.h udělej "make" nebo cokoli, co chce tvoje IDE k přeložení firmware.

Výsledkem je vytvoření dvou souborů:

- ComponentTester.hex firmware ve formátu Intel Hex
- ComponentTester.eep EEPROM data ve formátu Intel Hex

Firmware je zapsán do FLASH a EEPROM-data do EEPROM.

Data obsahují dvě sady standardních hodnot nastavení, texty a tabulky.

Pokud chceš jen software aktualizovat a své staré hodnoty nastavení v paměti EEPROM ponechat, můžeš použít přepínač DATA_FLASH v config.h k přesunutí textů a tabulek do firmwaru.

V tomto případě bude **jen** firmware zapsána do FLASH a EEPROM zůstává nezměněn.

Makefile nabízí následující cíle:

clean smazání všech souborů objektů Set

make zkompilovat program

make fuses nastavit bitové pojistky (přes avrdude)

make upload vypálit firmware a EEPROM data (přes avrdude)

make prog_fw vypalovat pouze firmware (přes avrdude) make prog_ee vypálit pouze EEPROM data (přes avrdude)

Nyní zbývá jen radost po dosaženém úspěchu.

Kapitola 9

Postup verzí

9.1. v1.41m 2020-09

- Nový příkaz dálkového ovládání "MHINT"pro informace o měření (aktuálně pouze Typ zku-šebního obvodu pro h_FE).
- Automatický režim (automatická aktualizace) zabudovaný pro DS18B20 (návrh od Obelix2007@EEVblog).
- Další funkce vykládky, která u některých eliminuje problém s ESR Testerclones (uvádí indman@EEVblog). ESR byla příliš vysoká Elko> = 470μ F na testovacích pinech # 1 a # 2, v nástroji ESR, C monitoru a RCL monitoru. A pro Elko> = 4700μ F ve všech režimech. Dotčenými testery jsou Hiland M644 a Varianty TC-1.
- Aktualizované znaky stupně v font_16x26_hf.h a font_16x26_iso8859-2_hf.h (Změny provedené Bohu).
- Ovladač pro řadič OLED SH1106 3vodičový SPI, 4vodičový SPI a I2C; (díky Old-Papa pro zkušební zobrazení).
- Chybějící inicializace signálu / RES pro I2C v ovladači SSD1306 přidán.
- Výstup typu testovacího obvodu pro hFE.
- Změněné zobrazení hexadecimálních hodnot na malá písmena s možností přepnutí na aktivací velkých písmen (UI_HEX_UPPERCASE).
- Možnost funkcí OneWire pro další odečítání a zobrazení Kódy ROM ONEWIRE_READ_ROM, (návrh od indman@EEVblog).
- DQ a Vcc testovací kolíky pro sběrnici OneWire vhodné pro přiřazení pinů senzorům vyměněno (návrh od indman@EEVblog).
- Detekce Schottkyho tranzistorů (SW_SCHOTTKY_BJT).
- Vylepšení detekce typů vyčerpání FET pomocí filtrů pro Schottkyho tranzistory.
- Správa textových řádků optimalizovaná pro vymazání displeye.
- Speciální ovladač displeje pro identifikaci řadičů displeje.
- Monitor R/C/L SW_MONITOR_RCL, (návrh od indman@EEVblog).
- Vyřešen problém se změnou hodnot indukčnosti v monitoru L a R/L (nahlášeno od indman@EEVblog).
- Měření V_GS (vypnuto) pro FET typu vyčerpání (návrh od joshto@EEVblog). Příkazy dálkového ovládání rozšířené o příkaz "V_GS_off".
- ovladač ILI9341 rozšířen o podporu 8bitové paralelní sběrnice. Dále Konfigurační přepínač pro ILI9341 s deaktivovaným vysunutým Přidána sada příkazů LCD_EXT_CMD_OFF, (díky Bohu za zkušební kopii).
- Sada znaků cyrilice 16x26 (FONT_16X26_WIN1251_HF, díky Yuriy_K@VRTP.RU).
- Problém s chybějícím μ (mikro) v několika znakových sadách ISO8859-2 opraven. (nahlášeno indman@EEVblog a Obelix2007@EEVblog).
- Opravené rotace čísel pro ATmega 2560 v Makefile (nahlášeno Bohu).
- Barevný stav baterie pro barevné displeje (návrh od indman@EEVblog).
- Alternativní znaková sada $8\mathrm{x}16$ Win
1251 prostřednictvím aktualizované verze indman@EEV
blog nahrazen.
- Problém s validací malých odporů ve Windows CheckResistor () odstraněn (nahlášeno indman@EEVblog).
- SmallResistor (), MeasureInductance () a GetGateThreshold () pro dílčí podpora ADC_LARGE_BUFFER_CAP aktualizována.
- Chybějící aktualizace referenčního zdroje ADC v MeasureInductance () a přidáno GetGateThreshold ().
- Možnost výběru kalibračního profilu po zapnutí UI_CHOOSE_PROFILE, (návrh Bohu).

- Vlastní monitorovací funkce pro rezistory a indukčnosti SW_MONITOR_R, SW_MONITOR_L, (návrh od indman@EEVblog).
- Španělské texty aktualizovány (díky pepe10000@EEVblog).

9.2. v1.40m 2020-06

- Ovladač pro displeje s ILI9481 nebo ILI9486.
- Logická chyba pro barevné displeje s vypnutou funkcí barev.
- Přidán konfigurační přepínač pro barevné displeje pro výměnu Barevné kanály pro červenou a modrou (LCD-_BGR).
- Vylepšený monitor R / L pro snížení šíření naměřených hodnot. Nepomáhá ve všech případech. (hlášeno indmanem @ EEVblog).
- Problém s funkcí "#ifdef" pro funkce Display_HexByte() a Display_HexDigit() opraveno. (hlášeno AlcidePiR2@EEVBlog).
- Podpora pro ATmega 640/1280/2560.
- Detekce směru otáčení v ReadEncoder() byla obrácena. Správně Směr byl změněn a nastavení v config_<MCU>.h a klonech aktualizováno.
- Opraven problém s inicializací s hardwarovým SPI.
- Alternativní režim pro Zenertest, když je spuštěn převodník posilovače nebo neexistuje vůbec (ZENER_UNSWITCHED, (navrhl indman @ EEVblog).
- Konfigurační přepínač pro 100nF AREF vyrovnávací kondenzátor namísto 1nF (ADC_LARGE_BUFFER_CAP). Vyžadováno pro některé desky MCU.
- Alternativní cyrilická písma 8x16 (FONT 8X16ALT WIN1251 HF)
- a 8x8 (FONT_8X8ALT_WIN1251_VF, díky indmanu@EEVblog).
- Aktualizované ruské texty (díky indmanu@EEVblog).
- Možnost použít jednoduchý vypínač místo standardního softwarového řešení (POWER_SWITCH_MANUAL).
- Přidána Detekce dvou krátkých doteků ve středu v ReadTouchScreen().
- Chyba algoritmu týkající se TOUCH_FLIP_X/TOUCH_FLIP_Y v Touch_CharPos() opraveno (hlášeno Bohu).
- Více ISO8859-2 znakových sad prostřednictvím aktualizovaných verzí od Bohu nahrazeno.
- Možnost otestovat odpory pro standardní hodnoty E (SW_R_E*).

Platí také pro kondenzátory (SW_C_E*) a induktory (SW_L_E*).

9.3. v1.39m 2020-03

- Polské texty podle ISO 8859-2 (díky Jacon).
- Problémy s makrem preprocesoru v SPI.
c a syntaktickými chybami v ADS7843.c opraven (hlášeno Bohu).
- Možnost uložit data firmwaru na flash místo na EEPROM DATA FLASH, (Navrhl Vitaliy).
- Cyrilské znakové sady přejmenované na "win1251" a české znaky- sady nahrazeny znakovými sadami ISO8859-2 (díky Bohu).
- Funkce pro výstup znakové sady pro účely testování (SW_FONT_TEST).
- Test OneWire pro výstup kódů ROM uživatelů sběrnice (SW_ONEWIRE SCAN).
- Možnost přesného offsetu odporu je pár testovacích kabelů. (R_MULTIOFFSET), Navrhl Vitaliy).

9.4. v1.38m 2019-12

- Volitelné zaokrouhlení teploty pro DS18B20 (UI_ROUND_DS18B20, (návrh Obelix2007@EEVblog).
- Podpora DHT11, DHT22 a kompatibilních senzorů (SW_DHTXX. (Díky indman@EEVblog a Obelix2007@EEVblog za testování).
- Byly přidány dvě tenké znakové sady s cyrilikou (díky Andrey@EEVblog).
- Výkon bipolárních tranzistorů se změnil tak, že V_BE a hFE jsou nyní také v případě s B-E-odporem ukázané.

Také příkazy pro dálkové ovládání bylo odpovídajícím způsobem upraveno.

- České texty plus několik znakových sad s češtinou, (díky Bohu)
- Funkce pro monitorování R/L a C (SW_MONITOR_RL a SW_MONITOR_C, (navrhl indman@EEVblog).
- Spouštěcí výstup pro počítadlo událostí (doporučeno od Bohu).
- Aktualizované české texty (díky Bohu).
- Měření hFE se společným kolektorovým obvodem a Rl jako základní odpor je možné deaktivovat (NO_HFE_C_RL), aby určití testeři neukazovaly nadměrné výsledky, (hlášeno Obelix2007@EEVblog).
- Možnost výstupu Zenerova napětí ve vysokém rozlišení (ZENER_HIGH_RES, (navrhl Andbro@EEVblog).
- OneWire Probes () byl vylepšen, aby se minimalizovala detekce chyb.
- Aktualizované ruské texty (díky indman@EEVblog).
- Aktualizované španělské texty (díky pepe10000@EEVblog).

9.5. v1.37m 2019-09

- Opravena chyba v DS18B20_Tool(), když je povoleno ONEWIRE_IO_PIN (hlášeno bm-magic).
- Opraven problém se zobrazením chybové zprávy Watchdog na barevných displejích.
- Nová funkce: Počitadlo událostí (HW EVENT COUNTER). (Navrženo od bm-magic).
- Jednoduchý čítač frekvence nyní používá TestKey() pro vstup uživatele. Nyní dvojitý stisk tlačítka (dříve jedno stisknutí tlačítka).
- možnost zobrazit inverzní hFE hodnotu tranzistorů SW_REVERSE_HFE. (Návrh od towe96@EEVblog).
- Příkazy pro dálkové ovládání rozšířeno o příkaz "h FE r".
- Nastavení bitclocku (BITCLOCK) pro avrdude v Makefile. (Návrh bm-magic).
- Problém s detekcí TRIAC v případě příliš vysokého I_GT ve Q3 nebo příliš vysokým I_H opraven. (Problém I_GT hlásil petroid).
- Texty Tester_str, PWM_str, Hertz_str a CTR_str byly přesunuty do jazyka specifických souborů záhlaví. (Doporučeno indman@EEVblog).
- Výstup hodnot frekvence (hertz) změněn na pevný řetězec (dříve "H"jako jednotka pro DisplayValue() plus další "z").
- Možnost usnadnění přístupu (UI_KEY_HINTS). V současné době pouze "Menu/Test". (Návrh Carrascoso@EEVblog).
- Polské texty byly aktualizovány (C szpila@EEVblog).
- Ruské texty (díky indman@EEVblog).
- Španělské texty (díky pepe10000@EEVblog).

9.6. v1.36m 2019-05

Do ovladače ST7565R byla přidána volitelná znaková sada 6x8.

- Volitelná položka nabídky pro vypnutí testeru (SW_POWER_OFF).
- TestKey() a Zener_Tool() byly přidány do monitorování baterie.
- Detekce dvou krátkých stisknutí testovacího tlačítka nainstalovaná do TestKey(), a dvojí funkčnost v několika funkcích odstraněna pro zmenšení velikosti firmwaru.
- Ovladač s ST7036 (4bitové paralelní & 4-vodičové SPI, netestované).
- Vlastní funkce pro napájení a monitorování baterie k lepší integraci s dalšími funkcemi.
- Ovladač s PCF8814 (třířádkový SPI,) (díky Mahmoud Laouar za testování).
- Ovladač s STE2007/HX1230 (3řádkový SPI).
- Opravena chyba ve funkci LCD_Clear ovladače PCD8544. Chybějící cyrilické písmo zadané v ovladači ST7565R (hlášeno Andrey@EEvblog).
- Aktualizace font 8x16 cvrillic vfp.h (díky Andrey@EEVblog).
- Problém s nesprávným znakem ve font_HD44780_cyr.h. byl vyřešen.

9.7. v1.35m 2019-02

- Posun kapacity lze použít namísto předchozího průměru pro všechny testovací piny, nyní také použít kompenzační odchylky specifické pro testovací pin (CAP MULTIOFFSET).
- Opravena definice pinů pro ST7920 ve 4bitovém paralelním režimu v config_644.h (hlášeno

od jakeisprobably@EEVblog).

- Podpora 3-řádkového SPI zabudovaného v ovladači SSD1306.
- Ovladač SPI nyní může také odesílat 9bitová slova (pouze bitbang).
- Problém se zvyšující se odchylkou odporů mezi 7k5 a 19k5 Ω v

CheckResistor() vyřešen (nahlásil Vitaliy).

- Alternativní smyčka zpoždění vestavěná do IR_Send_Pulse \$ (\$), které za

SW IR TX ALTDELAY je aktivován (díky Vitaliy).

- Prošel konfigurační přepínač pro další IR protokoly SW_IR_EXTRA

SW_IR_RX_EXTRA pro přijímač / dekodér a SW_IR_TX_EXTRA pro IR vvsílač vyměněn.

- Problém s chybějícím novým řádkem pro příkazy dálkového ovládání v Display_NextLine() odstraněn.
- Výstup pro SIRC změněn na IR_Decode(), aby byl blíže protokolu (návrh Vitaliy).
- Chyba v IR Send Code() pro SIRC-20 opraven. (hlášeno Vitaliy).
- Aktualizován var russian.h (díky indman@EEVblog).
- Automatické vypnutí pro režim automatického pozastavení (POWER_OFF_TIMEOUT).
- Konfigurace pinu pro testovací tlačítko a ovládání napájení rozdělena (CONTROL PORT -> POWER PORT a BUTTON PORT).
- Několik malých vylepšení.

9.8. v1.34m 2018-10

Zkouška svodového proudu pro kondenzátory.

- Výchozí hodnota pro RH OFFSET byla změněna na 350Ω.
- Opraven problém s chybějící položkou nabídky pro pevný IR přijímací modul.
- polský text (díky Szpila).
- Ovladač pro výstup na terminál VT100.
- Podpora teplotního senzoru DS18B20.
- Ovladač pro sběrnici OneWire.

9.9. v1.33m 2018-05

Opravená orientace symbolu TRIAC ve symbols 32x32 hf.h.

- příkazy pro dálkové ovládání pro automatizaci (přes sériové TTL rozhraní).
- Posun X&Y pro ovladač ST7735 lze nyní změnit.
- Volání nabídky zkratováním testovacích pinů je nyní možné UI_SHORT_CIRCUIT_width).
- Eliminován problém s vybíjecím relé ve spojení s rotačním enkodérem.
- Přidán přepínač konfigurace pro vypnutí režimů spánku MCU.
- Příjem dat pro sériové rozhraní TTL (Bit-Bang & Hardware USART).
- Opravené chyby v sériovém textovém výstupu a sériový výstup pro výsledky testů opto spojky.
- Dánský text (od glenndk@mikrocontroller.net).
- Nastavení korekčních faktorů pro kondenzátory.

9.10. v1.32m 2018-02

Výstup nalezených komponent dodatečně přes sériové rozhraní.

- Serial TTL Interface Driver (Hardware & Bit-Bang).
- Aktualizováno z var_russian.h (díky indmanu@EEVblog).
- Podpora kompenzací X&Y v ovladači ST7735.
- Nastavení monitorování baterie se změnilo. Doplněno o spínač pro vypnutí monitorování baterie a pro nesledovaní externího napájení.
- Přepínač konfigurace pro výběr alternativního provozního režimu, při spuštění (UI AUTOHOLD).
- Filtr germaniových tranzistorů s vysokým únikem v detekční funkci pro FET typu chudoby vylepšen.
- Přidáno grafické pinout v ovladači pro PCD8544. Opravené chyby ve funkci LCD_CharPos() pro otočný výstup s ovladačem PCD8544.
- Funkce grafického pinoutu byly vylepšeny a částečně přesunuty do display.c. V případě potřeby oddělte výstup od pinu.

- Indikátor při použití externí reference napětí (hodnoty čtení).
- Vylepšený IR dekodér a vestavěné volitelné protokoly.
- Další protokoly pro IR dálkové ovládání.

9.11. v1.31m 2017-12

IR dálkové ovládání (vysílač).

- Podpora pevného výstupu signálu přes OC1B, pokud OC1B není pro testovací odpor používán testovacím pinem # 2.
- Nastavení sledování baterie se změnilo vzhledem k podpoře jiných možností napájení.
- Ovladač pro OLED moduly založené na SSD1306.
- Podpora barev pro výběr položek nebo parametrů nabídky.
- Ovladač pro moduly LCD založené na ILI9163.
- Opraven problém v generátoru obdélníků.
- LCD ovladač pro PCD8544 rozšířený o 180° otočený výstup.
- Chyba úprav v servo Check() opravena.

9.12. v1.30m 2017-10

Možnost čárky místo tečky pro desetinná místa.

- Podpora rozšířeného čítače kmitočtů se vstupní vyrovnávací pamětí, LF a RF krystalový oscilátor.
- Malá vylepšení jednoduchého čítače kmitočtů.
- Problém s časem brány v čítači kmitočtů pro kmitočty pod 10 kHz v taktu MCU 20MHz eliminován.
- měření ESR upravené pro kratší nabíjecí impulzy, tzn. ESR lze nyní použít pro kondenzátory od 10nF. Kdo dává přednost staré metodě měření, může tuto alternativu aktivovat.
- Opravena chyba v detekci zkratu testovacích pinů.
- LCD ovladač pro ST7920 rozšířený o 180° otočený výstup.

9.13. v1.29m 2017-07

Podpora dotykových obrazovek a ovladačů pro ADS7843 kompatibilní Controller.

- opravená chyba v nastavení kontrastu pro PCD8544.
- Opravená hloupá chyba v CheckSum().
- Ovladač pro ST7920 založený na 64x128 pixelech LCD modulech.
- Vylepšený SmallResistor() a zlepšená logika detekce v CheckResistor(), aby hodně malé odpory ve spojení s kontaktními odpory testovacích kabelů byly lépe rozpoznávány.
- Řídicí logika a prahová hodnota pro tranzistory Darlingston v Get_hFE_C() změněna, k odstranění problému s některými typy NPN.
- Centrální ovladač SPI. Ovladač a konfigurace LCD modulů odpovídajícím způsobem upraveny.
- Italský text od Gina 09@EEVblog.
- podpora pro HD44780 s cyrilickou znakovou sadou od hapless@EEVblog.

9.14. v1.28m 2017-04

Více méně kláves jako alternativa k rotačnímu kodéru (HW INCDEC KEYS).

- Obnovení standardní frekvence v přidaném generátoru obdélníků.
- Další vylepšení detekce rotační rychlosti kodérů (ENCODER_STEPS). Změny funkcí, které používají rotační rychlost.
- Obnovení výchozích hodnot v přidaném alternativním generátoru PWM.
- Ruský text od indman @ EEVblog (znaková sada 8x16 pouze vodorovně vyrovnána)
- Pevná podpora filmového kondenzátoru pro automatické vyvážení Ofset napětí.
- Potenciální chyba v V_ref offset ve SmallCap() odstraněna.
- Možnost konfigurace pro LCD moduly s displejem ST7735 začínat s prázdným displayem opravena.(Žádné náhodné body).

9.15. v1.27m 2017-02

GetLeakageCurrent() rozšířený o měření vysokého proudu pro CLD. (Díky texaspyro@EEVblog) za několik testovacích diod.

- Opravená chyba v MilliSleep().
- Odstraněn problém s velkou indukčností při detekci diod.
- Kompenzace pro měření indukčnosti v rozsahu mH.
- Podpora pro LCD adaptér založený na PCF8574 v ovladači pro HD44780.
- ovladač pro bit-bang a hardware I2C.
- Zpracování chyb Variabilní Pinout pro HD44780 LCD moduly eliminovány.
- Barevný pinout pro více funkcí menu.
- Modeling Servo Checking.
- Alternativní generátor PWM s proměnnou frekvencí a šířkou impulzu. Vyžaduje Rotační kodér a větší displej.
- Výstup R DS pro MOSFET a Vf vnitřní diody.
- Podpora pevného modulu IR přijímače v IR detektoru/dekodéru.
- Edice byla odstraněna z názvu, protože verze Classic je nyní zastaralá.

9.16. v1.26m 2016-12

Nainstalovaná kompenzace na měření indukčnosti (vyžaduje další práci).

- Přizpůsobený FrequencyCounter() pro podporu ATmega 324/644/1284.
- Vyřešený problém v logice měření indukčnosti. (Poznámka od indman @ EEvblog.)
- Chyba při zpracování referencí napětí pro ATmega 324/644/1284 vyřešena.
- Detekce otáček rotačních kodérů vylepšena pro lehčí ovládání různých hodnot impuls/krok nebo impuls/aretaci.
- Všechny ovladače pro LCD moduly založené na SPI rozšířené o hardwarové SPI.

9.17. v1.25m 2016-09

Spousta změn na podporu ATmega 324/644/1284.

- Správa testovacích rezistorů přepnuta na piny proměnných portů.
- Možnost softwaru pro barevné kódování zkušebních pinů.
- Centralizovaná správa barev.
- Soubor se seznamem nastavení pro různé verze testeru nebo klony.
- Opraven menší problém se symboly 24x24-VP v config.h. (Poznámka od lordstein@EEVblog a hapless@EEVblog).

9.18. v1.24m 2016-08

Měření svodového proudu kondenzátorů větších než $4,7\mu F$.

- Detekce typu bipolárních tranzistorů s diodou na stejném substrátu.
- Měření svodového proudu pro proudy rozšířené do rozsahu nA. Pro diody a bipolární tranzistory jsou indikovány svodové proudy nad 50nA.
- Zobrazení volnoběžných diod v tranzistoru nyní kontroluje správnost diody. (piny a polarita).
- Opravena chyba v zobrazení volnoběžných diod v bipolárních tranzistorech.
- Napsaná funkce pro vyhledávání konkrétní diody a několik dalších funkcí odpovídajícím způsobem upraveny.
- Detekce diod se zlepšila dokonce na germaniové diody s velmi nízkým Vf při nízkých proudech.
- Problém s LCD ClearLine(0) pro ILI9341 a ST7735 vyřešen.
- Zlepšená detekce ochuzovacích FET. Germanium tranzistory s vysokou netěsností jsou odfiltrovány. Také FET s nízkým I_DSS rozpoznány. Měření I_DSS.

9.19. v1.23m 2016-07

Podpora LCD modulů kompatibilních s PCD8544 a ST7735. (Díky hansibull@EEVblog pro zobrazení PCD8544.)

- wait.s přidán 20MHz MCU takt.
- MeasureESR() nyní podporuje jiné taktové frekvence ADC než 125 kHz.
- Detekce PUT (programovatelný unijunkční tranzistor) a vestavěný UJT (Unijunction Transistor).(Díky edavid@EEVblog) za několik UJT k testování).
- Drobné optimalizace pro ILI9341 a ST7565R.
- Opětně opraven problém se znaky většími 8x8 pro ST7565R.

- Pin/RES port pro ILI9341 byl ignorován. Zpoždění hardwarových resetů opraveno.
- Podpora jednotlivých datových linek pro HD44780 LCD moduly.
- Uživatelem definovatelný dělič napětí pro napětí baterie.
- Výdej If pro optočleny rozšířen.
- Testovací piny z menu ESR byly změněny na 1-3 tak, aby byly kompatibilní s k-firmwarem.
- Pro MCU specifické globální nastavení byly vytvořeny jejich vlastní záhlavové soubory.
- Několik malých úprav na podporu ATmega664/1284.
- Aktualizovány české texty. (Díky Kapa).

9.20. v1.22m 2016-03

Test opto-spojek s výstupem V_f LED, CTR a t_on nebo t_off časů (typy s tranzistorovým výstupem). (Díky všem_repair@EEVblog za opto-členy k testování.)

9.21. v1.21m 2016-01

Licence na základě licence EUPL V.1.1

- Optimalizace načítání a ukládání hodnot sladění a podpora vytvoření dvou profilů úprav.
- IR detektor rozšířen o RC-6. Problém s tlačítkem při předčasným odstraněním IR přijímacího modulu eliminován.
- Konfigurační spínač pro vypnutí Vs odporu pro omezení proudu u 5V IR přijímacích modulů.

9.22. v1.20m 2015-12

Implementovaná funkce pro detekci a dekódování IR dálkových ovladačů.

Vyžaduje modul přijímače TSOP IR.

- Změněno MainMenu(), aby se snížilo využití RAM.

9.23. v1.19m 2015-11

Grafický pinout pro 3pinové polovodiče. Zobrazuje ikonu plus zkušební piny.

- Nainstalovaná podpora barev.
- Přímý výstup počtu diod v ShowDiode() při více než 3 diodách byly nalezeny (již ne pomocí Show_Fail()). (Oznámení od hapless@EEVblog)
- LCD_ClearLine() ve všech ovladačích LCD modulů tak rozšířený, aby šlo smazat pouze zbytek řádku k urychlení graficýché LCD. Cílem je nejprve vypsat text a poté odstraňit zbytek řádku namísto prvního odstranění celého řádku a poté vydat text.
- Napsaný ovladač pro LCD moduly založené na ILI9341/ILI9342. (Díky Overtuner@EEVblogfórum za dva LCD moduly pro testování.)
- Opraven problém s $\mu/{\rm micro}$ značkou v souborech fontů. Opravená chyba se znaky většími než 8x8 na LCD_Char() pro ST7565R.
- České texty aktualizovány (díky Kapa).
- Odstraněna malá chyba v MenuTool(), při skoku z posledního na první bod.

9.24. v1.18m 2015-07

Vylepšené MenuTool(), takže bude aktualizován pouze změněný seznam. Jinak bude aktualizován pouze indikátor výběru.

- Opravena chyba ve správě proměnných v config.h.
- Možnost resetování na výchozí hodnoty firmwaru při zapnutí.
- Funkce pro ukládání/čtení optimalizovaných hodnot.
- Ovladač pro grafické moduly ST7565R.
- Jednoduché prostředí navržené pro začlenění více ovladačů LCD. Obecné funkce zobrazení byly přesunuty do display.c. Každý ovladač získá svůj vlastní zdrojový a hlavičkový soubor. Starý ovladač pro HD44780 byl přizpůsoben novému prostředí.
- Uživatelské rozhraní pro flexibilní manipulaci s víceřádkovými LCD moduly přestavěn.
- Byly odstraněny závislosti zdroje na ATmega168 (příliš malé;).
- Operační logika optimalizovaná v MenuTool().
- Byla spuštěna nová verze firmwaru, která podporuje také grafické LCD moduly. Tato verze se nazývá "Trendy Edition". Stará verze firmwaru se nyní nazývá "Classic Edition".

9.25. v1.17m 2015-02

Vylepšení CheckDiode(). Při měření odporu je na zřeteli naměřené Vcc.

Kromě toho, problém detekce rezistorů kolem 2k s volitelným převodníkem DC-DC (HW_ZENER) vyřešen.

- Opravené nesprávné komentáře.
- Vyčistí celočíselných typů dat.

9.26. v1.16m 2014-09

Test rotačních kodérů.

- Několik maličkostí v MeasureInductance() zlepšeno k zvýšení přesnosti.
- ShowAdjust() pro zobrazení absolutních hodnot Vcc a interní referenční hodnoty napětí (návrh Vlastimila Valoucha).
- Několik malých vylepšení.

9.27. v1.15m 2014-09

Rozšíření TestKey() pro detekci dynamické rychlosti otáčení z volitelným rotačním kodérem.

- Realizován generátor signálu s proměnnou frekvencí.
- MeasureInductance() pro vrácení času v ns se změnil a výpočet upraven na MeasureInductor(). (Díky Vlastimilu Valouchovi).

9.28. v1.14m 2014-08

Uživatelské rozhraní pro rotační kodér.

- Upozornění kompilátoru týkající se R_Pin2 v ShowDiode() bylo opraveno (díky Milan Petko). Odpory mezi 1,5k a 3Ω byly detekovány jako dvojité diody. Tolerance detekce odporu v CheckDiode() upravené (díky nessatse).
- ShortCircuit() upraveno tak, aby u vytvoření úmyslného zkratu,bylo možné zrušení.
- Vestavěný čítač kmitočtů (volitelný hardware).

9.29. v1.13m 2014-07

České texty (díky Kapa).

- Přímé měření ESR a PWM generátor vdají použité testovací piny.
- Optimalizované zpracování příkazů předkompilátoru pro možnosti.
- Podpora rotačních enkodérů pro provoz (možnost hardwaru).

9.30. v1.12m 2014-03

Problém s přehlasovanýmy znaky v německých textech vyřešen (díky Andreas Hoebel).

- měření ESR pro kondenzátory $> 0,18\mu F$.
- Výstup modulu LCD optimalizovaný pro ušetření několika bajtů ve flash.

9.31. v1.11m 2014-03

Vylepšená detekce triaků (G a MT1). Display ukazuje MT1 a MT2.

- Výstupní funkce pro přiřazení pinů změněna, kvůli čitelnosti, na formát "123 =".
- Optimalizováno více výstupních funkcí.
- Test bipolárních tranzistorů vylepšen k rozpoznání tranzistorů s ochrannou diodou na stejném substrátu (vytvoří parazitický druhý transistor). Výstup označí tento speciální případ s "+" po specifikaci typu.
- Diodový výstup pro označení možného bipolárního tranzistoru s ochrannou diodou a básis-emitor odporem. Ten je rozpoznán jako dvojitá dioda. Výstup tento speciální případ signalizuje.
- Výstup bipolárních tranzistorů je rozšířen o zobrazení základny-emitoru odporu.

Pokud je nalezen rezistor základního emitoru, bude výstup z hFE a V_BE přeskočen, protože obě hodnoty nemohou být správné,

- Vylepšená detekce integrované diody u ochuzených FET při testu diod.
- Problém zjištění odtoku a zdroje u ochuzených FET odstraněn..
- Detekce symetrických odtoků a zdrojů u FET s vyčerpáním.
- Vth je nyní pro FET P-kanálu negativní.
- Měření V_GT pro tyristory a triaky.

- Kvůli rostoucí velikosti firmwaru existuje generátor PWM pouze pro ATMEGA328.

9.32. v1.10m 2013-10

Nainstalovaná podpora pro externí referenční napětí 2,5 V (volitelný hardware).

- Nainstalovaná podpora pro ochranné relé (vybití kondenzátoru) (Volba hardware).
- Vítací a vypínací text, změněn k usnadnění detekce příliš nízkého napájecího napětí a poklesu napětí přes DC-DC převodník, při zapnutí.
- Zenerova diodová zkouška implementována (hardwarová volba).
- V hlavní nabídce integrovaná možnost konec, při omylném vyvoláním nabídky.
- Podpora 16MHz MCU taktu.

9.33. v1.09m 2013-07

Integrovaná detekce IGBT.

- Přidáno ověření měření MOSFETů.
- HFE měření pro bipolární tranzistory zohledňuje svodový proud během měření v emitorovém obvodu.
- U MOSFETů je zobrazen směr integrované diody.
- Problém s kroucenými vypouštěcími a zdrojovými piny u vylepšených MOSFETů vyřešen.
- Řešení problémů některých IDE s Makefile. Důležité hodnoty nebo nastavení lze také nastavit v config.h.

9.34. v1.08m 2013-07

Protože SmallResistor() neposkytuje pro některé induktory správné vyrovnání hodnoty odporu, byla funkce CheckResistor() zozšířena o detekci problémových případů pro zachování hodnot standardního měření.

- nainstalované měření indukčnosti (pouze pro ATmega328/P)
- Drobné vylepšení zobrazování diod a bipolárních tranzistorů.
- Vestavěné měření svodového proudu.
- Problém s germaniovými tranzistory s vysokým svodovým proudem byl vyřešen. Tyto Byli detekovány jako P-kanál JFET.
- Několik funkcí přejmenováno a komentáře přidány nebo přeformulovány.

9.35. v1.07m 2013-06

Diodový výstup optimalizovaný na Vf zobrazení pro vestavěné nízké proudy.

- Vylepšena detekce diod. Kondenzátory a rezistory budou jasně lépe vyloučeny. Součástí je detekce kondenzátoru, detekovaná dioda je přeskočena, aby se proces vyhledávání zkrátil.
- Opravena chyba přetečení pole v CheckResistor().
- Logika zobrazení kurzoru se zlepšila na přítomnost dalších informací nebo pro zobrazení obnoveného vyhledávání součástí.
- Provoz PWM generátoru se zlepšil, aby se zabránilo neúmyslnému vypnutí (nyní je třeba dvou krátkých stisků kláves).
- Vestavěná obecná funkce nabídky a všechna menu v ní integrována (rozvržení změněno!).
- TestKey() nyní vyt váří pěkný blikající kurzor.

9.36. v1.06m 2013-03

Několik malých vylepšení a trochu uklizení.

- TestKey() funkce rozšířena, takže je uživatel informován o očekávaný vstup.
- TestKey() vylepšená funkce pro krátké stisknutí klávesy.
- Implementován PWM generátor pro generování signálů modulovaných šířkou impulzu s různou frekvencí a libovolným pracovním cyklem.
- Implementace funkce spánku ke snížení spotřeby energie testeru.

Průměrná spotřeba energie se tak sníží na asi polovinu (vyloučeno podsvícení).

- Vylepšena funkce koncového načítání. Pokud se vyprázdnění nezdaří, jsou zobrazeny ovlivněné piny a zbytkové napětí. To by mělo pomoci k zjištění příliš nízké hodnoty pro CAP_DISCHARGED.
- možnost nastavení typů chyb.

9.37. v1.05m 2012-11

- LargeCap_table[] a SmallCap_table[] byly přesunuty z EEPROM do Flash, k snížení EE-PROM požadaveků. Firmware s německými texty spotřebuje více než 512 bajtů ATmega168.

9.38. v1.04m 2012-11

Jednoduchá logika zabudovaná do výstupu diody, takže u antiparalelních diod odpadá měření kapacity.

9.39. v1.03m 2012-11

Detekční problém výkonných diod vyřešen. Diody s únikem byly zjištěny jako odpor.

- Opravena varování kompilátoru týkající se neinicializovaných proměnných. zvětší firmware o 44 bajtů :-(

9.40. v1.02m 2012-11

Horní mez pro odpor zkušebních kabelů 1,00 ohmu v automatickém ladění.

- Funkce autotestu a ladění provedou test na zkrat a poskytují zpětnou vazbu.
- Hlavní nabídka poskytuje zpětnou vazbu o úspěchu/neúspěchu vybrané akce.

9.41. v1.01m 2012-10

Kontrolní součet uložených hodnot seřízení plus ověření.

- Měřicí funkce pro malé odpory (rozlišení: 0,01 Ohm).
- Automatické ladění rozšířené o nulový offset pro odpor zkušebních vodičů.
- CheckResistor() provádí další měření malých odporů (<10 ohmů).
- Přidána funkce pro porovnání škálovaných hodnot.
- Několik funkcí přizpůsobených proměnnému škálování hodnot.

9.42. v1.00m 2012-09

- Jednoduché menu pro výběr autotestu,
- samoladění,
- Uložení hodnot nastavení do EEPROM
- Zobrazení hodnot nastavení.
- hFE se změnil ze 16 na 32 bitů (žádný 65kB limit).

9.43. v0.99m 2012-09

- První publikovaná verze založená na Karl-Heinze.

Literatura

- [1] http://www.mikrocontroller.net/articles/AVR-Transistortester Online Dokumentace Transistortesteru, Online Article, 2009-2011
- [2] Markus Frejek http://www.mikrocontroller.net/topic/131804 Forum od Markuse Frejka, 2009.
- [3] http://www.mikrocontroller.net/articles/AVR_Transistortester Krátký popis vlastností TransistorTesteru od Karla-Heinze K., Online Article, 2012
- [4] http://www.mikrocontroller.net/topic/248078

 Thread od Karl-Heinz K., Thread a Software verze,
 2012
- [5] https://github.com/svn2github/transistortester/blob/master/Doku/ trunk/pdftex/german/ttester.pdf Aktuální návod Transistor Testeru
- [6] https://www.mikrocontroller.net/svnbrowser/transistortester/ Software/Markus Kompletní softwarová sbírka
- [7] https://github.com/madires/Transistortester-Warehouse Kompletní softwarová sbírka i s dokumentací v různých jazycích
- [8] madires@theca-tabellaria.de Autor Mail
- [9] http://www.mikrocontroller.net/articles/AVRDUDE Online Dokumentace avrdude IDE Online Dokument, 2004-2011
- [10] https://www.mikrocontroller.net/topic/248078 Hlavní řeč je němčina, anglicky je ale také ok.
- [11] https://www.eevblog.com/forum/testgear/(dolarováznačka)
 20-lcr-esr-transistor-checker-project/
 Jen anglicky.