Odvození kvadraturních formulí pomocí Lagrangeova polynomu

- **Zadání:** Máme odvodit tříbodovou kvadraturní formuli pro integraci funkce f(x) na intervalu [a, b].
- Postup: Funkci aproximujeme Lagrangeovým polynomem a ten pak zintegrujeme.
- Označíme si $x_1 = a$, $x_3 = b$ a budeme uvažovat ještě jeden bod x_2 uvnitř tohoto intervalu.
- Na intervalu [a, b] aproximujeme funkci f(x) Lagrangeovým interpolačním polynomem druhého stupně

$$f(x) \approx L_2(x) = f_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + f_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + f_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}.$$

• Pro zjednodušení budeme předpokládat že body jsou ekvidistantní, tedy že x_2 je přesně uprostřed mezi x_1 a x_3 . Označíme $h = x_2 - x_1 = x_3 - x_2$ a zavedeme substituci

$$t = \frac{x - x_1}{h}.$$

Máme tedy

$$x - x_1 = t h,$$

 $x - x_2 = x - x_1 + x_1 - x_2 = t h - h = h(t - 1),$
 $x - x_3 = x - x_1 + x_1 - x_3 = t h - 2 h = h(t - 2)$

a Lagrangeův polynom je

$$L_2(x) = f_1 \frac{h(t-1)h(t-2)}{2h^2} + f_2 \frac{hth(t-2)}{-h^2} + f_3 \frac{hth(t-1)}{2h^2}$$
$$= \frac{f_1}{2} (t^2 - 3t + 2) - f_2 (t^2 - 2t) + \frac{f_3}{2} (t^2 - t).$$

• Integrál funkce f(x) z bodu $a=x_1$ do bodu $b=x_3$ nyní aproximujeme integrálem Lagrangeova polynomu:

$$\int_{a}^{b} f(x) dx \approx \int_{x_{1}}^{x_{3}} L_{2}(x) dx = h \int_{0}^{2} L_{2}(t) dt$$

$$= h \left[\frac{f_{1}}{2} \left(\frac{1}{3} t^{3} - \frac{3}{2} t^{2} + 2t \right) - f_{2} \left(\frac{1}{3} t^{3} - t^{2} \right) + \frac{f_{3}}{2} \left(\frac{1}{3} t^{3} - \frac{1}{2} t^{2} \right) \right]_{0}^{2}$$

$$= h \left(\frac{f_{1}}{3} + \frac{4 f_{2}}{3} + \frac{f_{3}}{3} \right).$$

- Tomuto konkrétnímu kvadraturnímu vzorci se říká Simpsonovo pravidlo.
- Stejným způsobem můžeme odvodit integrační formule na libovolném počtu bodů (uzlů).
- \bullet Pokud je interval [a, b] dlouhý, neinterpolujeme polynomem vysokého stupně, ale rozsekáme jej na malé intervaly a v nich integrujeme.