Yrðingar

Yrðingar eru setningar sem eru annaðhvort sannar eða ósannar.

Dæmi um yrðingar:

Himininn er blár

$$2 + 2 = 4$$

Dæmi um ekki yrðingar:

Er himinninn blár?

$$x + 2 = 4$$

Helstu tákn

 \neg : ekki, t.d. $\neg p$ ekki p bar sem p er einhver yrðing.

 \wedge : og, t.d. $p \wedge q$: er satt ef p og q eru sönn.

 \vee : eða, t.d. $p\vee q$: er satt er p\$ eða q eða bæði eru sönn.

 \oplus : annaðhvort (en ekki bæði), t.d. $p \oplus q$: er satt ef p er satt eða ef q er satt.

 \to : leiðir til, t.d. $p\to q$: ef per satt, þá hlýtur qað vera satt. (Ef per ósatt getur qverið satt eða ósatt). Sagt ef p þá q.

 \leftrightarrow : Tvíleiðing, t.d. $p \leftrightarrow q$: jafngildir $p \rightarrow q \land q \rightarrow p.$

 \equiv : jafngildir, t.d. $p\equiv p$: pjafngildirp.### Quantifiers $\forall,$ fyrir öll.

 \exists , er til.

∴ "therefore", "ergo". (því, svo, þannig).

Sanntöflur

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \oplus$	q
F	F	Т	F	F	F	
F	${ m T}$	${ m T}$	\mathbf{F}	T	${ m T}$	
Τ	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	
T	Τ	F	${f T}$	${ m T}$	F	

p	q		$p \to q$	$p \leftrightarrow q$	$\lnot(p\oplus q)$	
\mathbf{F}	\mathbf{F}	${ m T}$	Τ	1	${ m T}$	
F	${\rm T}$	${ m T}$	F		${f F}$	
Τ	\mathbf{F}	\mathbf{F}	F		\mathbf{F}	
\mathbf{T}	${\rm T}$	${ m T}$	T	ı	${ m T}$	

Rökfræði reglur

Identity laws

$$p \wedge T \equiv p$$

$$p\vee F\equiv p$$

Domination laws

$$p\vee T\equiv T$$

$$p \wedge F \equiv F$$

Indempotent laws

$$p\vee p\equiv p$$

$$p \wedge p \equiv p$$

Double neagtion law

$$\neg(\neg p) \equiv p$$

Commutative laws

$$p\vee q\equiv q\vee p$$

$$p \wedge q \equiv q \wedge p$$

Associative laws

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

Distributive laws

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

DeMorgans laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Absorption laws

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

Negation laws

$$p \vee \neg p \equiv T$$
$$p \wedge \neg p \equiv F$$

Logical equivalences

$$p \to q \equiv \neg p \lor q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$
$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg(p \to q) \equiv p \vee \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (r \to r) \equiv (p \lor q) \to r$$

$$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Rules of inference

Modus ponens

$$(p \land (p \to q)) \to q$$

Modus tollens

$$(\neg q \land (p \to q)) \to \neg p$$

Hypothetical syllogism

$$((p \to q) \land (q \to r)) \to (p \to r)$$

${\bf Disjunctive\ syllogism}$

$$((p \lor q) \land \neg p) \to q$$

Addition

$$p \to p \vee q$$

Simplification

$$(p \land q) \to p$$

Conjuction

$$((p) \land (q)) \to p \land q$$

Resolution

$$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$$