Khôlle de Mathématiques $n^{\circ}:1$

Programme: Logique et raisonnements.

Date: 19/09/2023 Colleuse: Victoria Callet

Sujet 1.

- \star Exercice 1. Transcrire l'énoncé suivant en assertion logique puis en donner sa négation : "La somme de deux éléments d'un ensemble E appartient encore à E."
- * Exercice 2. Soit $n \in \mathbb{Z}$. Montrer que le produit n(n+1)(n+2) est divisible par 3.
- **Exercice 3.** Montrer que pour tout $n \in \mathbb{N}^*$, $2^n > n$.
- \star Exercice 4. Soient a, b et c des réels. Donner la condition pour que la somme suivante soit bien définie, puis la calculer :

$$\frac{a}{(a-b)(a-c)} + \frac{b}{(b-a)(b-c)} + \frac{c}{(c-a)(c-b)}$$

* Exercice 5. Étudier le sens de variation de la fonction f définie sur \mathbb{R} par $f: x \mapsto x^2 e^{-x} - 1$.

Sujet 2.

- * Exercice 1. Donner la négation de l'assertion suivante : $\forall y \in F, \exists x \in E \text{ tel que } y = f(x).$
- \star Exercice 2. Soit $n \in \mathbb{N}$.
 - 1. Montrer que si n^2 est pair, alors n est pair.
 - 2. En déduire que $\sqrt{2}$ est irrationnel.
- * Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et pour tout $n\in\mathbb{N},\ u_{n+1}=2u_n-1$. Montrer que $\forall n\in\mathbb{N},\ u_n=2^n+1$.
- \star Exercice 4. Résoudre dans \mathbb{R} l'inégalité suivante : $\frac{x}{x-1} \ge \frac{3x-4}{(x-1)(x-2)}$.
- * Exercice 5. Soient A, B et C des parties d'un ensemble E. Montrer que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Sujet 3.

- * Exercice 1. Donner la négation de l'assertion suivante : $\exists M \in \mathbb{R}$, tel que $\forall x \in R, f(x) \leq M$.
- **Exercice 2.** Soit $n \in \mathbb{N}$. Montre que si n^2 est impair, alors n est impair.
- * Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N},\ u_{n+1}=\frac{2u_n-1}{u_n+4}$. Montrer que

$$\forall n \in \mathbb{N}, \quad u_n = -\frac{n}{n+3}.$$

- * Exercice 4.
 - 1. Déterminer les racines du polynôme suivant : $P = X^3 13X + 12$.
 - 2. Étudier le signe de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \mapsto x^3 13x + 12$.
- * Exercice 5. Soient A, B et C des parties d'un ensemble E. Montrer que si $A \cup B = B \cap C$, alors $A \subset B \subset C$.

Sujet 1.

- * Exercice 1. Démontrer que pour tout entier relatif n, le quotient $\frac{n(n^2+1)}{n}$ est un entier.
- **Exercice 2.** Soient A, B et C des parties d'un ensemble E. Montrer que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- *** Exercice 3.** Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1,\,u_1=2$ et

$$\forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + 6u_n.$$

Montrer que pour tout $n \in \mathbb{N}$, on a $u_n = 2 \times 3^n + (-2)^n$.

★ Exercice 4. Résoudre dans ℝ l'inégalité suivante :

$$\frac{x}{x-1} \ge \frac{3x-4}{(x-1)(x-2)}.$$

Sujet 2.

- **Exercice 1.** Démontrer que pour tout réel $x \in [-1, 1], x^2 \le 1$.
- * Exercice 2. Donner les éléments de l'ensemble $\mathcal{P}(\mathcal{P}(\{1,2\}))$.
- * Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=u_1=-1$ et

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \quad u_n = 5u_{n-1} - 6u_{n-2}.$$

Montrer que pour tout $n \in \mathbb{N}$, on a $u_n = 3^n - 2^{n+1}$.

* Exercice 4.

- 1. Déterminer les racines du polynôme suivant : $P = X^3 13X + 12$.
- 2. Étudier le signe de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \mapsto x^3 13x + 12$.

Sujet 3.

- \star Exercice 1. Démontrer que pour tout entier relatif n, le produit n(n+1)(n+2) est divisible par 3.
- * Exercice 2. Soient A, B et C des parties d'un ensemble E. Montrer que si $A \cup B = B \cap C$, alors $A \subset B \subset C$.
- * Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=u_1=1$ et

$$\forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n.$$

Montrer que pour tout $n \in \mathbb{N}$, on a $1 \le u_n \le n^2$.

 \star Exercice 4. Soient a, b et c des réels. On pose S la somme définie par

$$S = \frac{a}{(a-b)(a-c)} + \frac{b}{(b-a)(b-c)} + \frac{c}{(c-a)(c-b)}$$

Déterminer une condition sur les réels a, b et c pour laquelle S est bien définie, puis calculer S.

Sujet 1.

- *** Exercice 1.** Démontrer que pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 x + 1$.
- * Exercice 2. Soit f la fonction définie par $f(x) = \sqrt{\frac{4x+1}{x}}$.
 - 1. Donner le domaine de définition de f, puis déterminer ses limites en 0 et $\pm \infty$.
 - 2. Dresser le tableau de variation de f, puis déterminer les asymptotes de f et tracer son graphe.
- \star Exercice 3. Soit A une partie non-vide bornée de \mathbb{R} . On considère la partie B de \mathbb{R} définie par

$$B = \{|x - y| \text{ avec } (x, y) \in A^2\}$$

- 1. Démontrer que B est majorée. On note $\delta(A)$ la borne supérieure de B.
- 2. Démontrer que $\delta(A) \leq \sup(A) \inf(A)$, puis en déduire que $\delta(A) = \sup(A) \inf(A)$.

Sujet 2.

 \star Exercice 1. Soient a et b deux réels strictement positifs. On pose A la partie non vide de $\mathbb R$ définie par

$$A = \left\{ a + \frac{b}{n} \mid n \in \mathbb{N}^* \right\}.$$

A est-elle majorée, minorée? Si oui, déterminer ses bornes supérieures, inférieures.

- * Exercice 2. Démontrer que les courbes d'équation $y = x^2$ et $y = \frac{1}{x}$ admettent une unique tangente commune.
- \star Exercice 3. Soit $x \in \mathbb{R}$.
 - 1. Démontrer que $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor$.
 - 2. Plus généralement, démontrer que pour tout $n \ge 2$, $\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor$.

Sujet 3.

* Exercice 1 Calculer les limites suivantes :

a)
$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x}} + \sqrt{x}$$
 b) $\lim_{x \to 0+} x \exp\left(\frac{1}{x} - 1\right)$

- \star Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T-périodique.
 - 1. Démontrer que pour tout $n \ge 1$ et tout $x \in \mathbb{R}$, f(x + nT) = f(x).
 - 2. On suppose que $\lim_{x\to +\infty} f(x)=l\in \mathbb{R}$. Démontrer que f est constante.
- \star Exercice 3. Soient A et B deux parties non vides de \mathbb{R} . Supposons que

$$\forall a \in A, \ \forall b \in B \ a < b$$

- 1. Démontrer que A est majorée puis que B est minorée.
- 2. Démontrer que sup $A \leq \inf B$.

Sujet 1.

* Exercice 1. Soit $n \ge 1$. Calculer les sommes suivantes :

a)
$$\sum_{k=0}^{n} (k-2)(k+1)$$

$$b) \quad \sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right)$$

* Exercice 2. Démontrer par une étude de fonction l'inégalité suivante :

$$\forall x > -1, \quad (1+x)^x \ge 1.$$

 \star Exercice 3. Soient $n \in \mathbb{N}^*$ et x_1, \ldots, x_n des réels vérifiant

$$\sum_{k=1}^{n} x_k = \sum_{k=1}^{n} x_k^2 = n.$$

Montrer que, pour tout $k \in \{1, ..., n\}$, $x_k = 1$.

Sujet 2.

* Exercice 1. Étudier les limites en 0 des fonctions suivantes :

$$f: x \mapsto \left\lfloor \frac{1}{x} \right\rfloor, \quad g: x \mapsto x \left\lfloor \frac{1}{x} \right\rfloor, \quad h: x \mapsto x^2 \left\lfloor \frac{1}{x} \right\rfloor$$

* Exercice 2. Calculer la somme et le produit suivant :

a)
$$\sum_{k=0}^{n} \frac{1}{(k+2)(k+3)}$$

b)
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$

 \star Exercice 3. Soient n et p des entiers naturels tels que $n \geq p$. Démontrer que

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}.$$

Sujet 3.

Exercice 1. Montrer que pour tout
$$n \in \mathbb{N}^*$$
, on a $\sum_{k=0}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Exercice 2. Calculer la somme suivante :
$$\sum_{k=0}^{n} \binom{n}{k} \cdot k$$

- \star Exercice 3. Soit $x \in \mathbb{R}$.
 - 1. Démontrer que $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor$.
 - 2. Plus généralement, démontrer que pour tout entier $n \geq 2$,

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$