Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

Дисциплина: Линейная алгебра и аналитическая геометрия

Расчётно-графическая работа

Аналитическая геометрия Вариант №5

Выполнили:

Васильев Александр Р3132

Глотов Егор Р3132

Волков Григорий Р3132

Мальков Павел Р3132

Гуменник Пётр Р3133

Проверила:

Филимонова Арина Николаевна

г. Санкт-Петербург 2022 год

Задание 1

Dagarus 2

1) 242+544 -342-34+54-2=0

T.k I_210 u $I_3=0$ => kpubar - napa nepecekaronyukar npieurono T.k I_210 - veremparanere renkuur

Eur up-nue ragaem verimpaubrijo koubijo, mo $\mathbb{T}_{s}=\mathbb{F}^{'}\overline{\mathbb{I}}_{2}$ noue reperioca, morga ranorium bug up-nue tygem maisium $\mathbb{A}^{"}x^{"^{2}}+\mathbb{C}^{"}y^{"^{2}}=-\frac{\mathbb{I}^{s}}{\mathbb{I}_{2}}$ \mathbb{T}_{k} $\mathbb{T}_{s}=0$ => kpubai pacnagiemus

$$\begin{cases} A' + C' = -1 \\ A' C' = -12,25 \\ A' C' = 0 \end{cases} \begin{cases} C' = -1 - A' \\ A' C' = -12,25 \\ F' = 0 \end{cases} \begin{cases} C' = \frac{5\sqrt{5}}{2} - 1 \\ A' C' = -12,25 \\ F' = 0 \end{cases}$$

$$\chi^{12}\left(\frac{1}{2}-\frac{5\sqrt{2}}{2}\right)+\chi^{12}\left(\frac{5\sqrt{2}}{2}-\frac{1}{2}\right)=0$$

Проверши на шетод инвариантов

On pegenumeus palen 0 => memog unbapuanmob ne nog kagus

O Engui memog

$$\sqrt{20}$$
 $\sqrt{1}$ = 5

Cocnabuu wampury neperoga:

$$\begin{cases} X = \cos \phi X' - \sin \phi Y' \\ Y = \sin \phi X' - \sin \phi Y' \end{cases}$$

$$\begin{cases} X = x' \frac{1}{15} - y' \frac{2}{15} \\ Y = \frac{1}{15}(x' - 2y') \end{cases}$$

$$\begin{cases} X = x' \frac{2}{15} + y' \frac{1}{15} \\ Y = \frac{1}{15}(2x' + y') \end{cases}$$

 $\frac{2}{4 \left(\frac{1}{12} \left(x_1 - 5 x_1^2 \right) \right)_5} - 4 \left(\frac{1}{12} \left(x_1 - 5 x_1^2 \right) \right) \frac{2}{12} \left(\frac{2}{12} \left(x_1 + x_1^2 \right) \right)_7 + \left(\frac{1}{12} \left(x_1 + x_1^2 \right) \right)_5 - 5 \left(\frac{1}{12} \left(x_1 - 5 x_1^2 \right) \right) - 14 \left(\frac{1}{12} \left(x_1 + x_1^2 \right) \right)_7 + 5 \left$

P= 1-000 d

Решение

Шаг 1

Итак, по условию мы имеем окружность eq1 с центром в точке 0 и радиусом R=3. А также хорды, параллельные оси ординат.

Шаг 2

Введем такой эллипс E_1 , что его диаметр по оси абсцисс будет равен диаметру окружности eq1, а по оси ординат будет составлять $\frac{1}{3}$ от диаметра окружности eq1 – 2. Таким образом, для каждой хорды AB, CD, EF, GH и IJ должно быть по две точки пересечения с E_1 , таких, что каждая из них будет делить хорду в отношении 1:2.

Например, возьмем частный случай хорды — диаметр eq1. Точки пересечения с E_1 будут иметь координаты: (0,1) и (0,-1)

1). И каждая из них будет делить диаметр в отношении $\frac{2}{4} = 1:2$.

Шаг 3

Составим уравнение такого эллипса.

Стандартный вид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Где а – радиус по оси X, b – радиус по оси Y. Таким образом, получим уравнение: $\frac{x^2}{9} + y^2 = 1$

Шаг 4 Изобразим множество по уравнению:

