

Two Approaches

Optimization:

Smooth, convex-concave

- SP-Mirror Prox Requires: - projections on
 - **projections** on

Convergence:

Non-smooth, convex

- Mirror Descent requires: projections on
 - subgradients of

Convergence:

$$\min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} f(\Gamma) \equiv \min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \max_{\kappa \in \mathcal{B}_F} \langle \Gamma, \kappa \rangle$$

We give $O(n \log n)$ algorithm for our decomposable functions

Optimization:

Two Approaches

 $\min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} f(\Gamma) \equiv \min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \max_{\kappa \in \mathscr{B}_F} \langle \Gamma, \kappa \rangle$

- Non-smooth, convex
- Mirror Descent requires:
 - projections on $\Pi(\mathbf{a}, \mathbf{b})$
 - subgradients of f
- Convergence: $O(\frac{1}{\sqrt{t}})$

Sinkhorn-Knopp Algo.

Edmonds Algo.

- Smooth, convex-concave
- SP-Mirror Prox Requires:
 - projections on $\Pi(\mathbf{a}, \mathbf{b})$
 - projections on \mathscr{B}_F

We give $O(n \log n)$ algorithm for our decomposable functions

• Convergence: $O(\frac{1}{t})$

Structured OT Application: Domain Adaptation