Álgebra Linear Avançada - Revisão Espaços Vetoriais

Adriano Moura

Unicamp 2020

Ao entrar na sala virtual, certifique-se que seu microfone e câmera estejam desligados

Vetores - Intuição

Tarefa: Definir de maneira abstrata o conceito de "vetor".

Intuição: "operações com setas"

$$\lambda \times / = /$$
 λ um "escalar" e $+ / = /$

Duas operações "algébricas": soma de setas (resultando em seta) e multiplicação de seta por escalar (resultando em seta).

Mas o que são setas (vetores) e escalares ("números")?

Algumas definições dizem que vetores são objetos "geométricos" com 3 características: magnitude, direção e sentido.

Mas o que significa "magnitude", "direção" e "sentido"?

De fato, vetores podem ser usados para definir (coincidência de) direção, enquanto magnitude e mais ainda sentido só são definíveis quando trabalhamos com conjuntos "especiais" de números.

Operações Binárias

Definição

Uma operação binária * num conjunto A é uma função * : $A \times A \rightarrow A$.

Notação: $*(a,b) \leftrightarrow a*b$.

Possíveis propriedades:

- Associatividade: $(a*b)*c = a*(b*c) \forall a,b,c \in A$.
- 2 Existência de elemento neutro: $\exists e \in A$ satisfazendo $a*e=a=a*e \ \forall \ a \in A$. (necessariamente único)
- 3 Invertibilidade: Para todo $a \in A, \exists b \in A$ tal que a * b = e = b * a. (necessariamente único se * é associativa)

Definição

Um grupo abeliano é um par (A,+) sendo + uma operação binária no conjunto A satisfazendo todas as propriedades acima.

Notação: 0 para o neutro e -a para o inverso de a.

Corpos

Definição

Um corpo é uma terna $(\mathbb{F}, +, \cdot)$ sendo + e \cdot operações binárias no conjunto \mathbb{F} (chamadas soma e multiplicação) satisfazendo:

- (\mathbb{F} , +) é um grupo abeliano (com neutro chamado 0 e -x denotando o inverso de x por +);
- \circ · é associativa, comutativa e ($\mathbb{F} \setminus \{0\}$, ·) é grupo abeliano (com neutro chamado 1 e x^{-1} denotando o inverso de x por ·);
- **3** Distributividade: $(x+y) \cdot z = (x \cdot z) + (y \cdot z) \ \forall \ x, y, z \in \mathbb{F}$

Exemplos: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}.$

Com frequência denotaremos por \mathbb{F}^{\times} o conjunto $\mathbb{F} \setminus \{0\}$.

Corpos serão os conjuntos de "escalares" que consideraremos.

Espaços Vetoriais

Definição

Um espaço vetorial sobre um corpo \mathbb{F} (ou um \mathbb{F} -espaço vetorial) é uma terna $(V, +, \cdot)$ sendo + uma operação binária em V e $\cdot : \mathbb{F} \times V \to V$, $(\lambda, v) \mapsto \lambda \cdot v$, (chamada multiplicação por escalar) satisfazendo:

- (V, +) é um grupo abeliano (com neutro chamado 0 e -v denotando o inverso de v);
- $2 \cdot \text{\'e associativa: } (\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v) \ \forall \ \lambda, \mu \in \mathbb{F}, v \in V;$
- $\textbf{ 0} \text{ Distributividade 1: } (\lambda + \mu) \cdot v = (\lambda \cdot v) + (\mu \cdot v) \ \forall \ \lambda, \mu \in \mathbb{F}, v \in V;$
- $\textbf{0} ext{ Distributividade 2: } \lambda \cdot (v+w) = (\lambda \cdot v) + (\lambda \cdot w) \ \forall \ \lambda \in \mathbb{F}, v, w \in V;$
- **6** Neutralidade do 1 para a mult. por escalar: $1 \cdot v = v \ \forall \ v \in V$.

Exemplo

$$V = \mathbb{F}^n$$
 com as operações $\lambda \cdot (x_1, \dots, x_n) := (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$ e $(x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n)$

Espaços Vetoriais - Mais Exemplos

Fábrica de Exemplos

Dado um \mathbb{F} -espaço vetorial W e um conjunto $I \neq \emptyset$, considere o conjunto $V = \mathcal{F}(I,W)$ das funções de I em W. As seguintes operações completam os dados para que V se torne um \mathbb{F} -espaço vetorial:

$$(f+g)(i) := f(i) + g(i) \quad \text{e} \quad (\lambda \cdot f)(i) := \lambda \cdot (f(i)) \quad \forall \ f,g \in V, i \in I.$$

O exemplo anterior é "recuperado" com $I = \{1, ..., n\}$ e $W = \mathbb{F}$. O conjunto de matrizes $M_{m,n}(\mathbb{F})$ se torna um espaço vetorial com $I = \{1, ..., m\} \times \{1, ..., n\}$ e $W = \mathbb{F}$.

Subespaços

Um subconjunto $W \neq \emptyset$ do espaço vetorial V é dito um subespaço se

- $w_1 + w_2 \in W \ \forall \ w_1, w_2 \in W \ (\text{fechamento pela soma});$
- \bullet $\lambda w \in W \ \forall \lambda \in \mathbb{F}, w \in W \ (invariância pela mult. por escalar).$

Subespaços se tornam espaços vetoriais via restrição das operações.

Combinações Lineares (c.l.) e Dependência Linear

Dada família de vetores α , uma c.l. de vetores em α é uma soma $x_1v_1 + \cdots + x_mv_m$ com $m \in \mathbb{Z}_{\geq 0}, \ x_j \in \mathbb{F}, \ v_j \in \alpha$.

O conjunto de tais c.l., denotado por $[\alpha]$, é chamado de o subespaço gerado por α (é o menor subespaço de V contendo α).

Diz-se que α gera V se $V = [\alpha]$.

Diz-se que α é linearmente independente (l.i.) se $v \notin [\alpha \setminus v] \ \forall \ v \in \alpha$ (nenhum vetor de α é combinação linear dos demais).

Caso contrário, α dita linearmente dependente (l.d.).

Diz-se que α é uma base de V se for l.i. e gerar V.

Teorema

Todo espaço vetorial contém uma base e quaisquer duas bases possuem a mesma cardinalidade.

A dimensão de V (dim(V)) é a cardinalidade de suas bases.

A demonstração geral deste teorema não é feita em MA327. Estudar na Seção 5.5 do livro.

Somas de Subespaços

Se $(V_i)_{i\in I}$ é família de subespaços de V, define-se sua soma como o subespaço

 $\sum_{i \in I} V_i := \left[\bigcup_{i \in I} V_i \right].$

Tal soma é dita direta se

$$V_j \bigcap \sum_{i \in I \setminus I_j \setminus I_j} V_i = \{0\}$$
 para todo $j \in I$.

A notação $\bigoplus_{i \in I} V_i$ indica que $\sum_{i \in I} V_i$ é direta.

Proposição

 $\sum\limits_{i\in I}V_i$ é direta se, e somente se, para todo $v\in\sum\limits_{i\in I}V_i,$ existirem únicos $m\in\mathbb{Z}_{\geq 0}, i_j\in I,$ e $v_{i_j}\in V_{i_j}, 1\leq j\leq m,$ t.q. $v=v_{i_1}+\cdots+v_{i_m}.$

Proposição

Sejam $\alpha = (v_i)_{i \in I}$ uma família em V e $V_i = [v_i]$. Então, α é l.i. se, e somente se, $v_i \neq 0 \ \forall i \in I$ e $\sum_{i \in I} V_i$ for direta.

Coordenadas

Dado um vetor $v \in V$, veja que $[v] = \{\lambda v : \lambda \in \mathbb{F}\}$, o que motiva a notação $\mathbb{F}v$ ao invés de [v].

Corolário

Uma família $\alpha = (v_i)_{i \in I}$ é base de V se, e só se, $V = \bigoplus_{i \in I} \mathbb{F}v_i$ e $v_i \neq 0 \ \forall i$.

Neste caso, para cada $v \in V$, existe única família de escalares $(x_i)_{i \in I}$, com $x_i \neq 0$ para finitos valores de I, tal que

$$v = \sum_{i \in I} x_i v_i.$$

Esta família de escalares, denotada por $[v]_{\alpha}$, é dita a família de coordenadas de v com respeito a α .

O escalar x_i é chamado de a coordenada v na direção de v_i com respeito a α .

Se
$$I = \{1, ..., n\}$$
, costuma-se identificar $[v]_{\alpha}$ com a matriz $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$.

Mais Detalhes

Fizemos uma rápida revisão dos conceitos mais importantes da teoria básica espaços vetoriais. Nenhum aspecto computacional prático foi abordado aqui e outros detalhes relevantes não foram mencionados. O aluno deve ler as seguintes seções do texto base (e procurar visões alternativas em outros livros) para suprir essas lacunas:

- Seções 1.4, 1.6 e 1.7 (operações binárias e corpos).
- Capítulo 5 (demais conceitos). Uma comparação com as seções 3.1, 3.2 e 3.3 (GA) deve elucidar várias dúvidas também.

Aconselho visitar os exercícios do Capítulo 5 para diagnosticar seu entendimento. Dificuldade operacional para resolver exercícios é indício de baixa absorção da teoria. A identificação de tal dificuldade reforça a necessidade de revisar a correspondente seção teórica com atenção especial ao manuseio dos conceitos na resolução dos exemplos. Lembre: exemplos são exercícios resolvidos!

Aqueles que estiverem se sentindo confortável com esta parte da teoria devem pôr isso à prova fazendo os seguintes exercício teóricos: 5.2.5, 5.3.4, 5.3.5, 5.4.8, 5.4.18, todos da seção 5.5.