理解mipi协议 - 与时俱进的专栏 - 博客频道

2015-12-07 12:16 13226人阅读 评论(0) 收藏 举报

∷

分类:

LCD驱动(3)

_

版权声明:本文为博主原创文章,未经博主允许不得转载。

完成mipi信号通道分配后,需要生成与物理层对接的时序、同步信号:

MIPI规定,传输过程中,包内是200mV、包间以及包启动和包结束时是1.2V,两种不同的电压摆幅,需要两组不同的LVDS驱动电路在轮流切换工作;为了传输过程中各数据包之间的安全可靠过渡,从启动到数据开始传输,MIPI定义了比较长的可靠过渡时间,加起来最少也有600多ns;而且规定各个时间参数是可调的,所以需要一定等待时间,需要缓存,我们用寄存器代替FIFO,每通道128Byte。

串行时钟与数据差分传输的过渡时间关系如下:

Figure 21 Switching the Clock Lane between Clock Transmission and Low-Power Mode

Figure 14 High-Speed Data Transmission in Bursts

各个时间参数需要满足以下的要求:

Table 14 Global Operation Timing Parameters

Parameter	Description	Min	Typ	Max	Unit	Notes
T _{CLK-MISS}	Timeout for receiver to detect absence of Clock transitions and disable the Clock Lane HS-RX.			60	ns	1, 6
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of $T_{HS-TRAIL}$ to the beginning of $T_{CLK-TRAIL}$.	60 ns + 52*UI			ns	5
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8			UI	5
T _{CLK} -prepare	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38		95	ns	5
T _{CLK-SETTLE}	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions, starting from the beginning of TCLK-PREPARE.	95		300	ns	6
T _{CLK} -term-en	Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses $V_{\rm L,MAX}$.	Time for Dn to reach V _{TERM-EN}		38	ns	6
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60			ns	5
T _{CLK-PREPARE} + T _{CLK-ZERO}	TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock.	300			ns	5
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{ILMAX} .	Time for Dn to reach V _{TERM-EN}		35 ns + 4*UI		6
T _{EOT}	Transmitted time interval from the start of Ths-TRAIL or TCLK- TRAIL, to the start of the LP-11 state following a HS burst.			105 ns + n*12*UI		3, 5
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100			ns	5

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40 ns + 4*UI		85 ns + 6*UI	ns	5
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145 ns + 10*UI			ns	5
Ths-settle	Time interval during which the HS receiver shall ignore any Data Lane HS transitions, starting from the beginning of T _{HS} .	85 ns + 6*UI		145 ns + 10*UI	ns	6
T _{HS-SKIP}	Time interval during which the HS-RX should ignore any transitions on the Data Lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.	40		55 ns + 4*UI	ns	6
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	max(n*8*UI, 60 ns + n*4*UI)			ns	2, 3, 5
T _{INIT}	See section 5.11.	100			μs	5
T_{LPX}	Transmitted length of any Low-Power state period	50			ns	4, 5
Ratio T _{LPX}	Ratio of $T_{LPX(MASTER)}/T_{LPX(SLAVE)}$ between Master and Slave side	2/3		3/2		
T _{TA-GET}	Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround.	5*T _{LPX}			ns	5
T _{TA-GO}	Time that the transmitter drives the Bridge state (LP-00) before releasing control during a Link Turnaround.	4*T _{LPX}			ns	5
T _{TA-SURE}	Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX}		2*T _{LPX}	ns	5
TWAKEUP	Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit from ULPS.	1			ms	5

Notes

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. If a > b then max(a, b) = a otherwise max(a, b) = b
- 3. Where n = 1 for Forward-direction HS mode and n = 4 for Reverse-direction HS mode
- 4. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.
- 5. Transmitter-specific parameter
- 6. Receiver-specific parameter

UI 的值:

Figure 50 DDR Clock Definition

Table 26 Clock Signal Specification

Clock Parameter	Symbol	Min	Тур	Max	Units	Notes
UI instantaneous	UI _{INST}			12.5	ns	1,2
Notes:	时钟通道的最小值是	:40MHz		1		

- This value corresponds to a minimum 80 Mbps data rate.
- 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.

数据与时钟的相位关系:

根据前面文章:mipi差分信号原理 介绍。

CLKp是高电平,CLKn是低电平的时候,差分信号表现为高电平。

CLKn是高电平,CLKp是低电平的时候,差分信号表现为低电平。

所以结果就可以等效成红线描述的正弦。

从正弦可以看出,data在clk的高电平和低电平都有传输数据。

数据通道进入和退出SLM(即睡眠模式)的控制:

mipi信号传输分为单端和差分传输。例如:

LP-00, LP-01, LP-10, LP-11 (单端)

HS-0, HS-1 (差分)

Ultra-Low Power State entry command: 00011110 是差分传输,读取方法和上面提到的clk是一样的,需要注意的是Dp和Dn如果同时是高电平或同时是低电平的时候是无效数据,这个时候大概对应的是clk正弦的峰值,只有其中一个是高一个是低才是有效的差分数据。

数据通道中各种模式转换的状态图

进入各种状态数据通道需要发送的命令

总结:

对应于同步信号完成并串转换;

- *HS 状态为高速低压差分信号,传输高速连续串行数据;
- *LP 状态为低速低功耗信号,传输控制信号和状态信号;
- *MIPI要求HS 工作在1GHz 的频率下,完成共模信号为0.2v 差模信号为0.2v 的差分信号的传输:
- *LP 传递控制信号,要求高电平为1.2v 低电平为0的电平信号输出;
- *HS 及LP 状态下,输出信号的电学特性要求非常苛刻,具体电学性能的要求可见 附带文档表格。
- *MIPI是双向可选的,可以高速发送,也可以进行高速接收,或收发功能同时具备,我们目前根据需求仅做了发送功能;
- *MIPI的HS模式 (0.2V), 传送图像数据, 速度为80Mbps ~ 1000Mbps;
- *MIPI的LP模式(1.2V),可以用于传送控制命令,最高速度为10Mbps;
- *MIPI规定,任一个MIPI设备必须Escape Mode,此为Low Power Data Trabsmission Mode, LP模式中的一种,此模式下可低速传输图像或其他数据。
- *MIPI规定了Low Power Mode、 Ultra Low Power Mode的电压范围、以及它们之间、它们与HS模式之间的相互切换方式或相关要求;
- *MIPI D-PHY是各个MIPI工作组共用的物理层规范;
- 最后,需要注意一点:
- BTA: bus turn around, 用来host接受外设发送命令或应答信号用的, 如果host DPHY设置了这个,但是lcd不支持的话,就有可能有问题。

顶

1