Monetary Policy & Anchored Expectations An Endogenous Gain Learning Model

Laura Gáti

Boston College

VMACS

April 29, 2021

Varying responsivenes f long-run expectations

$$\Delta \bar{\pi}_t^i = \beta_0^w + \beta_1^w f_{t|t-1}^i + \epsilon_t^i \tag{1}$$

 $\bar{\pi}_t^i$: 10-year-ahead inflation expectation of SPF forecaster i $f_{t|t-1}^i$: 1-year-ahead inflation forecast error of SPF forecaster i

This paper

1. A model of unanchored expectations:

 \hookrightarrow sensitivity of long-run expectations to short-run fluctuations

This paper

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations

- 2. Analyze monetary policy
 - \hookrightarrow analytically and numerically using novel model disciplined by data

This paper

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations
- 2. A ze monetary policy
 - \hookrightarrow analytically and numerically using novel model disciplined by data
- 3. Key takeaway: optimal monetary policy
 - · anchors expectations to inflation target
 - responds aggressively to movements in long-runcepectations

NK model with long-run inflation expectations

• New Keynesian core: standard IS and Phillips curves

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n})$$
 (2)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T)$$
 (3)

Observables: (π, x, i) inflation, output gap, interest rate Exogenous states: (r^n, u) natural rate and cost-push shock

NK model with long-run inflation expectations

• New Keynesian core: standard IS and Phillips curves

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n})$$

$$\pi_t = \kappa x_t + \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T)$$
 (3)

Observables: (π, x, i) inflation, output gap, interest rate Exogenous states: (r^n, u) natural rate and cost-push shock

• Novelty of the paper: inflation expectations process

$$\hat{\mathbb{E}}_t \pi_{t+1} = \bar{\pi}_t + \mathbb{E}_t \, \pi_{t-1} \tag{4}$$

 \mathbb{E} : rational (model-consistent) expectations

 $\hat{\mathbb{E}}$: nonrational expectations \rightarrow long-run inflation expectations $\bar{\pi}$

Evolution of long-run inflation expectations

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t f_{t|t-1} \tag{5}$$

$$f_{t|t-1} = \pi_t - \hat{\mathbb{E}}_{t-1}\pi_t$$

 $k_t \in (0,1)$ learning gain

Evolution of long-run inflation expectations

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t f_{t|t-1}$$
 (5)

$$f_{t|t-1} = \pi_t - \hat{\mathbb{E}}_{t-1}\pi_t$$

 $k_t \in (0,1)$ learning gain

Endogenous gain as metric for unanchoring

$$k_t = \mathbf{g}(f_{t|t-1}) \tag{6}$$

 $\mathbf{g}(f_{t|t-1})$ continuous, smooth, convex

Optimal policy - responding to unanchoring

5 bp movement in $\bar{\pi} \rightarrow$ 250 bp movement in i

Optimal policy - responding to unanchoring

5 bp movement in $\bar{\pi} \rightarrow 250$ bp movement in *i*

Mode: 0.3 bp movement in $\bar{\pi}$

Unanchoring amplifies shocks

Figure: Impulse responses after a cost-push shock when policy follows a Taylor rule

Conclusion

First theory of monetary policy for potentially unanchored expectations

Model-based notion of unanchoring

Sensitivity of long-run expectations to short-run fluctuations

Optimal monetary policy

• Anchors expectations by responding aggressively to long-run expectations

Thank you!

 $Questions? \rightarrow gati@bc.edu$

Long-run expectations: responsive to short-run conditions?

Individual-level Survey of Professional Forecasters (SPF): for 1991-Q4 onward, estimate rolling regression

$$\Delta \bar{\pi}_t = \beta_0 + \beta_1^w f_{t|t-1} + \epsilon_t \tag{7}$$

 $\bar{\pi}_t$ 10-year ahead inflation expectation

 $f_{t|t-1} \equiv \pi_t - \mathbb{E}_{t-1} \, \pi_t$ individual one-year-ahead forecast error w indexes windows of 20 quarters

Time-varying responsiveness

$$\Delta \bar{\pi}_t = \beta_0 + \beta_1^w f_{t|t-1} + \epsilon_t \tag{1}$$

Figure: Time series of $\hat{\beta}_1^w$

Breakeven inflation

Figure: Market-based inflation expectations, various horizons, %

Correcting the TIPS from liquidity risk

Figure: Market-based inflation expectations, 10 year, %

Robustness checks

$$\Delta \bar{\pi}_t = \beta_0 + \beta_1^w \pi_t + \epsilon_t \tag{1}$$

Figure: Time series of $\hat{\beta}_1^w$

Robustness checks - PCE core

$$\Delta \bar{\pi}_t = \beta_0^w + \beta_1^w f_{t|t-1} + \epsilon_t \tag{1}$$

Figure: Time series of $\hat{\beta}_1^w$

Robustness checks - controlling for inflation levels

$$\Delta \bar{\pi}_t = \beta_0^w + \beta_1^w f_{t|t-1} + \beta_2^w \pi_t + \epsilon_t \tag{1}$$

Figure: Time series of $\hat{\beta}_1^w$

Further evidence: disagreement

Figure: Livingston Survey of Firms: Interquartile range of 10-year ahead inflation expectations

Figure: New York Fed Survey of Consumers: Percent of respondents indicating 3-year ahead inflation will be in a particular range

Further evidence: introspection

Figure: PCE core inflation against the Fed's target

Households: standard up to $\hat{\mathbb{E}}$

Maximize lifetime expected utility

$$\hat{\mathbb{E}}_t^i \sum_{T=t}^{\infty} \beta^{T-t} \left[U(C_T^i) - \int_0^1 v(h_T^i(j)) dj \right]$$
 (8)

Budget constraint

$$B_t^i \le (1 + i_{t-1})B_{t-1}^i + \int_0^1 w_t(j)h_t^i(j)dj + \Pi_t^i(j)dj - T_t - P_tC_t^i$$
 (9)

Firms: standard up to $\hat{\mathbb{E}}$

Maximize present value of profits

$$\hat{\mathbb{E}}_{t}^{j} \sum_{T=t}^{\infty} \alpha^{T-t} Q_{t,T} \left[\Pi_{t}^{j}(p_{t}(j)) \right]$$
(10)

subject to demand

$$y_t(j) = Y_t \left(\frac{p_t(j)}{P_t}\right)^{-\theta} \tag{11}$$

Oscillatory dynamics in adaptive learning

Consider a stylized adaptive learning model in two equations:

$$\pi_t = \beta f_t + u_t \tag{12}$$

$$f_t = f_{t-1} + k(\pi_t - f_{t-1}) \tag{13}$$

Solve for the time series of expectations f_t

$$f_t = \underbrace{\frac{1 - k^{-1}}{1 - k^{-1}\beta}}_{\approx 1} f_{t-1} + \frac{k^{-1}}{1 - k^{-1}\beta} u_t \tag{14}$$

Solve for forecast error $f_t \equiv \pi_t - f_{t-1}$:

$$f_t = \underbrace{-\frac{1-\beta}{1-k\beta}}_{\text{lim}_{t-1}=-1} f_{t-1} + \frac{1}{1-k\beta} u_t \tag{15}$$

Functional forms for g in the literature

• Smooth anchoring function (Gobbi et al, 2019)

$$p = h(y_{t-1}) = A + \frac{BCe^{-Dy_{t-1}}}{(Ce^{-Dy_{t-1}} + 1)^2}$$
 (16)

 $p \equiv Prob(\text{liquidity trap regime})$ y_{t-1} output gap

• Kinked anchoring function (Carvalho et al, 2019)

$$k_t = \begin{cases} \frac{1}{t} & \text{when } \theta_t < \bar{\theta} \\ k & \text{otherwise.} \end{cases}$$
 (17)

 θ_t criterion, $\bar{\theta}$ threshold value

Choices for criterion θ_t

• Carvalho et al. (2019)'s criterion

$$\theta_t^{CEMP} = \max |\Sigma^{-1}(\phi_{t-1} - T(\phi_{t-1}))|$$
 (18)

 Σ variance-covariance matrix of shocks $T(\phi)$ mapping from PLM to ALM

CUSUM-criterion

$$\omega_t = \omega_{t-1} + \kappa k_{t-1} (f_{t|t-1} f'_{t|t-1} - \omega_{t-1})$$
(19)

$$\theta_t^{CUSUM} = \theta_{t-1} + \kappa k_{t-1} (f'_{t|t-1} \omega_t^{-1} f_{t|t-1} - \theta_{t-1})$$
 (20)

 ω_t estimated forecast-error variance

General updating algorithm

$$\phi_t = \left(\phi'_{t-1} + k_t R_t^{-1} \begin{bmatrix} 1 \\ s_{t-1} \end{bmatrix} \left(y_t - \phi_{t-1} \begin{bmatrix} 1 \\ s_{t-1} \end{bmatrix} \right)' \right)' \tag{21}$$

$$R_{t} = R_{t-1} + k_{t} \begin{pmatrix} 1 \\ s_{t-1} \end{pmatrix} \begin{bmatrix} 1 & s_{t-1} \end{bmatrix} - R_{t-1}$$
 (22)

Assumptions on $\mathbf{g}(\cdot)$

$$\mathbf{g}_{ff}\geq 0$$

(23)

 $\mathbf{g}(\cdot)$ convex in forecast errors.

Estimating form of gain function

Calibrate parameters of New Keynesian core to literature

 Estimate flexible form of expectations process via simulated method of moments
 (Duffie & Singleton 1990, Lee & Ingram 1991, Smith 1993)

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$
 (18)

• Moments: autocovariances of inflation, output gap, federal funds rate and 1-year ahead Survey of Professional Forecasters (SPF) inflation expectations at lags $0,\ldots,4$

Estimated expectations process

$$\bar{\pi}_t - \bar{\pi}_{t-1} = \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$
 (18)

Figure: Changes in long-run inflation expectations as a function of forecast errors

Details on households and firms

Consumption:

$$C_t^i = \left[\int_0^1 c_t^i(j)^{\frac{\theta - 1}{\theta}} dj \right]^{\frac{\sigma}{\theta - 1}}$$
 (24)

 $\theta > 1$: elasticity of substitution between varieties

Aggregate price level:

$$P_t = \left[\int_0^1 p_t(j)^{1-\theta} dj \right]^{\frac{1}{\theta-1}}$$
 (25)

Profits:

$$\Pi_t^j = p_t(j)y_t(j) - w_t(j)f^{-1}(y_t(j)/A_t)$$
(26)

Stochastic discount factor

$$Q_{t,T} = \beta^{T-t} \frac{P_t U_c(C_T)}{P_T U_c(C_t)}$$
(27)

Derivations

Household FOCs

$$\hat{C}_t^i = \hat{\mathbb{E}}_t^i \hat{C}_{t+1}^i - \sigma(\hat{i}_t - \hat{\mathbb{E}}_t^i \hat{\pi}_{t+1})$$
(28)

$$\hat{\mathbb{E}}_t^i \sum_{s=0}^{\infty} \beta^s \hat{C}_t^i = \omega_t^i + \hat{\mathbb{E}}_t^i \sum_{s=0}^{\infty} \beta^s \hat{Y}_t^i$$
(29)

where 'hats' denote log-linear approximation and $\omega_t^i \equiv \frac{(1+i_{t-1})B_{t-1}^i}{P_tY^*}$.

- 1. Solve (28) backward to some date *t*, take expectations at *t*
- 2. Sub in (29)
- 3. Aggregate over households *i*
- \rightarrow Obtain (2)

Actual laws of motion

$$y_{t} = A_{1}f_{a,t} + A_{2}f_{b,t} + A_{3}s_{t}$$

$$s_{t} = hs_{t-1} + \epsilon_{t}$$
(30)

where

$$y_t \equiv \begin{pmatrix} \pi_t \\ x_t \\ i_t \end{pmatrix} \qquad s_t \equiv \begin{pmatrix} r_t^n \\ u_t \end{pmatrix} \tag{32}$$

(30)

and

$$f_{a,t} \equiv \hat{\mathbb{E}}_t \sum_{T-t}^{\infty} (\alpha \beta)^{T-t} y_{T+1} \qquad f_{b,t} \equiv \hat{\mathbb{E}}_t \sum_{T-t}^{\infty} (\beta)^{T-t} y_{T+1}$$
 (33)

Piecewise linear approximation to gain function

$$\mathbf{g}(f_{t|t-1}) = \sum_{i} \gamma_i b_i (f_{t|t-1})$$
(34)

- $b_i(f_{t|t-1})$ = piecewise linear basis
- γ_i = approximating coefficient at node i
- \hookrightarrow Estimate $\hat{\gamma}$ via simulated method of moments

The expectation process over time

Figure: Time series of forecast errors, changes in long-run expectations and gain

Target criterion

Proposition

Let $\mathbf{g}_{z,t} \equiv \frac{\partial \mathbf{g}}{\partial z}$ at t. Then monetary policy optimally brings about the following target relationship between inflation and the output gap

$$\pi_t = -\frac{\lambda_x}{\kappa} x_t$$

RE (discretion): move π_t and x_t to offset cost-push shocks

Target criterion

Proposition

Let $\mathbf{g}_{z,t} \equiv \frac{\partial \mathbf{g}}{\partial z}$ at t. Then monetary policy optimally brings about the following target relationship between inflation and the output gap

$$\pi_t - \Gamma(k) \mathbb{E}_t \sum_{i=1}^{\infty} x_{t+i} = -\frac{\lambda_x}{\kappa} x_t$$

Adaptive learning: can move $\mathbb{E}_t x_{t+i}$ too if k > 0

Target criterion

Proposition

Let $\mathbf{g}_{z,t} \equiv \frac{\partial \mathbf{g}}{\partial z}$ at t. Then monetary policy optimally brings about the following target relationship between inflation and the output gap

$$\pi_t - \Omega\left(k_t + f_{t|t-1}\mathbf{g}_{\pi,t}\right) \left(\mathbb{E}_t \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j} - f_{t+1+j|t+j}\mathbf{g}_{\mathbf{\tilde{E}},\mathbf{t}+\mathbf{j}})\right) = -\frac{\lambda_x}{\kappa} x_t$$

Endogenous gain: ability to move $\mathbb{E}_t x_{t+i}$ depends on present and future degree of unanchoring

Lemma

The discretion and commitment solutions of the Ramsey problem coincide.

Corollary

 $Optimal\ policy\ under\ adaptive\ learning\ is\ time-consistent.$

No commitment - no lagged multipliers

Simplified version of the model: planner chooses $\{\pi_t, x_t, f_t, k_t\}_{t=t_0}^{\infty}$ to minimize

$$\mathcal{L} = \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left\{ \pi_t^2 + \lambda x_t^2 + \varphi_{1,t} (\pi_t - \kappa x_t - \beta f_t + u_t) + \varphi_{2,t} (f_t - f_{t-1} - k_t (\pi_t - f_{t-1})) + \varphi_{3,t} (k_t - \mathbf{g}(\pi_t - f_{t-1})) \right\}$$

$$2\pi_t + 2\frac{\lambda}{\kappa}x_t - \varphi_{2,t}(k_t + \mathbf{g}_{\mathbf{g}}(\pi_t - f_{t-1})) = 0$$
 (35)

$$-2\beta \frac{\lambda}{\kappa} x_t + \varphi_{2,t} - \varphi_{2,t+1} (1 - k_{t+1} - \mathbf{g_f}(\pi_{t+1} - f_t)) = 0$$
 (36)

Target criterion system for anchoring function as changes of the gain

$$\varphi_{6,t} = -cf_{t|t-1}x_{t+1} + \left(1 + \frac{f_{t|t-1}}{f_{t+1|t}}(1 - k_{t+1}) - f_{t|t-1}\mathbf{g}_{\bar{\pi},t}\right)\varphi_{6,t+1} - \frac{f_{t|t-1}}{f_{t+1|t}}(1 - k_{t+1})\varphi_{6,t+2}$$
(37)

$$0 = 2\pi_t + 2\frac{\lambda_x}{\kappa} x_t - \left(\frac{k_t}{f_{t|t-1}} + \mathbf{g}_{\pi,t}\right) \varphi_{6,t} + \frac{k_t}{f_{t|t-1}} \varphi_{6,t+1}$$
(38)

 $\varphi_{6,t}$ Lagrange multiplier on anchoring function

The solution to (38) is given by:

$$\varphi_{6,t} = -2 \, \mathbb{E}_t \sum_{i=0}^{\infty} (\pi_{t+i} + \frac{\lambda_x}{\kappa} x_{t+i}) \prod_{j=0}^{i-1} \frac{\frac{k_{t+j}}{f_{t+j|t+j-1}}}{\frac{k_{t+j}}{f_{t+j|t+j-1}} + \mathbf{g}_{\pi,t+j}}$$
(39)

Optimal Taylor-coefficient on inflation

$$i_t = \psi_\pi \pi_t + \psi_x x_t \tag{40}$$

Optimal Taylor-coefficient on inflation

Figure: Central bank loss as a function of ψ_{π}

Optimal Taylor-coefficient on inflation

$$i_t = \psi_\pi \pi_t + \psi_x x_t \tag{40}$$

Figure: Central bank loss as a function of ψ_{π}

Anchoring-optimal coefficient: $\psi_{\pi}^{A}=1.1$ RE-optimal coefficient: $\psi_{\pi}^{RE}=2.2$

Why less aggressive? Future interest rate expectations

IS curve:

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n})$$

• Current interest rate i_t : one channel of policy

Why less aggressive? Future interest rate expectations

IS curve:

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n})$$

- Current interest rate *i*_t: one channel of policy
- Taylor rule implies interest rate expectation

$$\hat{\mathbb{E}}_t i_{t+k} = \psi_\pi \hat{\mathbb{E}}_t \pi_{t+k} + \psi_x \hat{\mathbb{E}}_t x_{t+k}$$
 (41)

Why less aggressive? Future interest rate expectations

IS curve:

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n})$$

- Current interest rate i_t: one channel of policy
- Taylor rule implies interest rate expectation

$$\hat{\mathbb{E}}_t i_{t+k} = \psi_\pi \hat{\mathbb{E}}_t \pi_{t+k} + \psi_x \hat{\mathbb{E}}_t x_{t+k}$$
(41)

 If private sector understands and believes Taylor rule, expected future interest rates additional channel of policy (Eusepi, Giannoni & Preston 2018)

Respond but not too much

Figure: Impulse responses for unanchored expectations for various values of ψ_π

