

eupay

Day 35 機器學習

Regression vs. Classification

楊証琨

知識地圖 機器學習- 模型選擇 - Regression vs. Classification

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

前處理 Processing 探索式 數據分析 Exploratory Data Analysis 特徵 工程 Feature Engineering

模型 選擇 Model selection

參數調整 Fine-tuning

集成 Ensemble

非監督式學習 Unsupervised Learning

分群 Clustering

降維 Dimension Reduction

模型選擇 Model selection

概論

驗證基礎

預測類型

評估指標

基礎模型 Basic Model

線性回歸 Linear Regression

邏輯斯回歸 Logistic Regression

套索算法 LASSO

嶺回歸 Ridge Regression

樹狀模型 Tree based Model

決策樹 Decision Tree

隨機森林 Logistic Regression

梯度提升機 Gradient Boosting Machine

本日知識點目標

- 了解機器學習中迴歸與分類的差異
- 迴歸問題與分類問題的定義
- 一什麼是多分類問題?多標籤問題?

回歸 vs. 分類

- 機器學習的監督式學習中主要分為回歸問題與分類問題。
- 回歸代表預測的目標值為實數 (-∞ 至 ∞)
- 分類代表預測的目標值為類別 (0 或 1)

回歸問題可轉換

- 回歸問題是可以轉化為分類問題
 - · 模型原本是直接預測身高 (cm)
 - · 可更改為預測是否高於中位數 (yes or no)
 - · 或是預測多個類別,如矮、中等、高

可根據專案的需求自行變化目標定義

二元分類 (binary-class) vs. 多元分類 (Multi-class)

● 二元分類,顧名思義就是目標的類別僅有兩個。像是詐騙分析(許騙用戶 vs. 正常用戶)、瑕疵偵測(瑕疵 vs. 正常)

多元分類則是目標類別有兩種以上。如手寫數字辨識有 10 個類別 (0~9),影像競賽 ImageNet 更是有高達 1,000 個類別需要分類

Multi-class vs. Multi-label

- 當每個樣本都只能歸在一個類別,我們稱之為多分類 (Multi-class) 問題;而一個樣本如果可以同時有多個類別,則稱為多標籤 (Multi-label)。
- 了解專案的目標是甚麼樣的分類問題並選用適當的模型訓練。

圖片來源: medium

請跳出PDF至官網Sample Code&作業開始解題

