Optimization

Lusine Poghosyan

YSU

November 25, 2020

Determine whether the matrix

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 10 & 2 \\ 0 & 2 & 5 \end{pmatrix};$$

is positive definite (semidefinite), negative definite (semidefinite) or indefinite by using only definition.

Determine whether the matrix *A* is positive definite (semidefinite), negative definite (semidefinite) or indefinite if

$$A = \begin{pmatrix} -1 & 3 & -2 \\ 3 & -9 & -4 \\ -2 & -4 & -5 \end{pmatrix}.$$

Check whether f is convex (strictly convex), concave (strictly concave) on Ω if

$$f(x_1, x_2, x_3) = e^{x_1 x_2} + x_3^2, \quad \Omega = \mathbb{R}^3.$$

Find all stationary points of *f* and check if these points are local maximum, minimum or saddle points for that function:

a.
$$f(x_1, x_2, x_3) = x_1^2 - 4x_1x_2 + 5x_2^2 + x_3^4 - 4x_3^3$$
;

b.
$$f(x_1, x_2) = e^{x_1 x_2}$$
.

Find the minimizers of f in Ω if

a.

$$f(x_1, x_2) = e^{(x_1-1)^4} + x_2^4, \quad \Omega = \mathbb{R}^2.$$

b.

$$f(x_1, x_2) = x_1^6 + x_2^6 + 2x_1^2 + 4x_2^2 - x_1x_2, \quad \Omega = \mathbb{R}^2;$$

Let $f(x) = e^{(2-x)^2} + 4x$. Our aim is to find the global minimizer x^* of f over [0,8].

- **a.** Show that f(x) is unimodal in [0,8].
- **b.** Calculate x_2 approximation of the minimum point using the Golden Section (Ratio) Search Method with $\gamma = 1/4$.
- **c.** Calculate x_2 approximation of the minimum point using the Bisection Method.

Find the limit and the rate of convergence to that limit for the following sequences:

a.
$$x_n = \frac{1}{n2^n}$$
;

b.
$$x_n = \frac{5.6^{3^n} + 1}{6^{3^n}}$$
.

Solve the problem

minimize
$$f(x)$$

subject to
$$x \in \Omega$$
,

i.e., find the global minimum points of f(x) on Ω , if

- **a.** $f(x) = x^2$, $\Omega = (1, 2)$;
- **b.** $f(x) = -x^2 + x + 10$, $\Omega = [-1, 1]$;
- **c.** $f(x) = \frac{x+1}{x^2+3}$, $\Omega = [0, +\infty)$.