

CS 380 - GPU and GPGPU Programming Lecture 25: GPU Texturing, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #10 (until Nov 11)

Read (required):

Interpolation for Polygon Texture Mapping and Shading,
 Paul Heckbert and Henry Moreton

https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous coordinates

Next Lectures

Lecture 26: Tue, Nov 5 (make-up lecture; 14:30 – 15:45)

Lecture 27: Thu, Nov 7: Vulkan tutorial #2

Lecture 28: Mon, Nov 11: 10:00-11:30 (on Zoom)

Lecture 29: Thu, Nov 14: 10:00-11:30 (on Zoom)

Lecture 30: Mon, Nov 18: Quiz #3

GPU Texturing

Texturing: General Approach

Texture Mapping

```
2D (3D) Texture Space
         Texture Transformation
2D Object Parameters
         Parameterization
3D Object Space
         Model Transformation
3D World Space
         Viewing Transformation
3D Camera Space
                                             S
         Projection
                                     y
2D Image Space
                                       X
```

Kurt Akeley, Pat Hanrahan

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

2D Texture Mapping

For each fragment: interpolate the texture coordinates (barycentric)

Or:

Use arbitrary, computed coordinates

Texture-Lookup:

interpolate the texture data (bi-linear)

Or:

Nearest-neighbor for "array lookup"

3D Texture Mapping

For each fragment: interpolate the texture coordinates (barycentric)
Or:

Use arbitrary, computed coordinates

Nearest-neighbor for "array lookup"

Interpolation #1

Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Linear interpolation in 1D:

$$f(\alpha) = (1 - \alpha)v_1 + \alpha v_2$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2$$

 $\alpha_1 + \alpha_2 = 1$

$$f(\alpha) = v_1 + \alpha(v_2 - v_1)$$
$$\alpha = \alpha_2$$

Line segment:

$$\alpha_1, \alpha_2 \geq 0$$

 $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Linear combination (*n*-dim. space):

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Convex combination:

$$\alpha_i \geq 0$$

(restrict to simplex in subspace)

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Re-parameterize to get affine coordinates:

$$lpha_1 v_1 + lpha_2 v_2 + lpha_3 v_3 =$$
 $\tilde{lpha}_1 (v_2 - v_1) + \tilde{lpha}_2 (v_3 - v_1) + v_1$
 $\tilde{lpha}_1 = lpha_2$
 $\tilde{lpha}_2 = lpha_3$

The weights α_i are the (normalized) barycentric coordinates

→ linear attribute interpolation in simplex

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

$$\alpha_i \geq 0$$

attribute interpolation

spatial position interpolation

wikipedia

Projective geometry

- (Real) projective spaces RPⁿ:
 Real projective line RP¹, real projective plane RP², ...
- A point in RPⁿ is a line through the origin (i.e., all the scalar multiples of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP²

Coordinates differing only by a non-zero factor λ map to the same point

(λx , λy , λ) dividing out the λ gives (x, y, 1), corresponding to (x,y) in R^2

Coordinates with last component = 0 map to "points at infinity"

(λx , λy , 0) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x, y, 0)

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$ec{y} = Aec{x} + ec{b}.$$

• With homogeneous coordinates:

$$egin{bmatrix} ec{y} \ 1 \end{bmatrix} = egin{bmatrix} A & ec{b} \ 0 & \dots & 0 \ 1 \end{bmatrix} egin{bmatrix} ec{x} \ 1 \end{bmatrix}$$

- Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the (n+1)-dimensional space for translation

Homogeneous Coordinates (3)

Examples of usage

Projection (e.g., OpenGL projection matrices)

orthographic

perspective

Texture Mapping

```
2D (3D) Texture Space
         Texture Transformation
2D Object Parameters
         Parameterization
3D Object Space
         Model Transformation
3D World Space
         Viewing Transformation
3D Camera Space
                                             S
         Projection
                                     y
2D Image Space
                                       X
```

Kurt Akeley, Pat Hanrahan

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

Texture Mapping Polygons

Forward transformation: linear projective map

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Incorrect attribute interpolation

Linear interpolation

Compute intermediate attribute value

- Along a line: $A = aA_1 + bA_2$, a+b=1
- On a plane: $A = aA_1 + bA_2 + cA_3$, a+b+c=1

Only projected values interpolate linearly in screen space (straight lines project to straight lines)

- x and y are projected (divided by w)
- Attribute values are not naturally projected

Choice for attribute interpolation in screen space

- Interpolate unprojected values
 - Cheap and easy to do, but gives wrong values
 - Sometimes OK for color, but
 - Never acceptable for texture coordinates
- Do it right

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

Perspective Texture Mapping

linear interpolation in object space

$$\frac{ax_1 + bx_2}{aw_1 + bw_2} \neq a \frac{x_1}{w_1} + b \frac{x_2}{w_2}$$
 linear interpolation in screen space

$$a = b_{25} = 0.5$$

Early Perspective Texture Mapping in Games

Ultima Underworld (Looking Glass, 1992)

Markus Hadwiger, KAUST 26

Early Perspective Texture Mapping in Games

DOOM (id Software, 1993)

Early Perspective Texture Mapping in Games

Quake (id Software, 1996)

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

■ Linearly interpolate A_1/w_1 and A_2/w_2

Also interpolate 1/w₁ and 1/w₂

These also interpolate linearly in screen space

Divide interpolants at each sample point to recover A

- \blacksquare (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

Barycentric triangle parameterization:

$$A = \frac{aA_1/w_1 + bA_2/w_2 + cA_3/w_3}{a/w_1 + b/w_2 + c/w_3}$$

$$a + b + c = 1$$

Perspective Texture Mapping

- Solution: interpolate (s/w, t/w, 1/w)
- (s/w) / (1/w) = s etc. at every fragment

Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

- (1) Associate a record containing the n parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading.

Heckbert and Moreton

