МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Теория информации тема: «Исследование кодов Шеннона-Фано.»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили:

пр. Твердохлеб Виталий Викторович

Лабораторная работа №2

Исследование кодов Шеннона-Фано

Цель работы: исследовать кодирование по методу Шеннона-Фано. Научиться оценивать эффективности кода.

Задание 1. Построить код для сообщения, содержащего строку панграммы «в чащах юга жил бы цитрус? Да, но фальшивый экземпляр!». Для полученного кода рассчитать показатели коэффициента сжатия и дисперсии.

	Вероятность	Этапы						10
Символ		Ι	II	III	IV	V	VI	Код
пробел	0,166666667	1	1	1				111
a	0,092592593		1	0				110
Л	0,05555556		0	1	1			1011
И	0,05555556				0			1010
В	0,037037037			0	1	1		10011
Ы	0,037037037					0		10010
p	0,037037037				0	1		10001
П	0,018518519					0		10000
?	0,018518519			1	1	1		01111
О	0,018518519					0	1	011101
Н	0,018518519						0	011100
M	0,018518519				0	1		01101
К	0,018518519					0	1	011001
й	0,018518519						0	011000
3	0,018518519		1	0	1	1		01011
Ж	0,018518519					0	1	010101
e	0,018518519						0	010100
Γ	0,018518519				0	0	1	010011
б	0,018518519						0	010010
,	0,018518519						1	010001
!	0,018518519						0	010000
Д	0,018518519	1	0	1	1	1		00111
Я	0,018518519					0	1	001101
Ю	0,018518519						0	001100
Э	0,018518519				0		1	001011
Ь	0,018518519						0	00101
Щ	0,018518519					0	1	001001
Ш	0,018518519						0	001000
Ч	0,018518519			0	1	1		00011
Ц	0,018518519					0	1	000101
X	0,018518519						0	000100
ф	0,018518519				0	1	1	000011
У	0,018518519						0	000010
T	0,018518519					0	1	000001
С	0,018518519						0	000000

$$B = 54 \cdot 8 = 432$$

$$B' = 258$$

$$K_{comp} = \frac{B}{B'} = \frac{432}{258} = 1\frac{29}{43}$$

$$l = 4.7778$$

$$\delta = 1.5062$$

Задание 2. Построить код для сообщения, содержащего строку «Victoria nulla est, Quam quae confessos animo quoque subjugat hostes» Для полученного кода рассчитать по-казатели коэффициента сжатия и дисперсии.

Символ	Вероятность	Этапы							Vол.
		Ι	II	III	IV	V	VI	VII	Код
пробел	9	1	1	1					111
u	7		1	0					110
S	7			1					101
О	6		0	0	1				1001
a	6				0				1000
e	5		1	1	1				0111
t	4				0				0110
q	3			0	1				0101
n	3				0				0100
i	3	0	0	1	1	1			00111
m	2					0			00110
1	2				0	1			00101
С	2					0			00100
V	1			0	1 -	1	1		000111
r	1						0		000110
Q	1					0	1		000101
,	1						0		000100
j	1				0	1	1		000011
h	1						0		000010
g f	1					0	1		000001
f	1						0	1	0000001
b	1							0	0000000

$$B = 68 \cdot 8 = 544$$

$$B' = 278$$

```
K_{comp} = \frac{B}{B'} = \frac{544}{278} = 1\frac{133}{139}

l = 4.0882

\delta = 0.5515
```

Задание 3. Построить консольное приложение, реализующее процесс кодирования по методу Шеннона-Фано (с возможностью расчета коэффициента сжатия и дисперсии).

```
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import java.util.stream.Collectors;
public class Main {
   public static class TableElement {
       char symbol;
       int amount;
       List<Boolean> code;
       public TableElement(char symbol) {
           this.symbol = symbol;
           this.amount = 1;
           this.code = new ArrayList<>();
       }
   }
   public static List<TableElement> schennonFano(String input) {
       List<TableElement> table = new ArrayList<>();
       for (char symbol : input.toCharArray()) {
            Optional<TableElement> result = table.stream().filter((el) -> el.symbol == symbol).findAny();
           if (result.isPresent()) {
                result.get().amount++;
           } else {
               table.add(new TableElement(symbol));
           }
       }
       table.sort(Comparator.comparingInt(o -> o.amount));
       Collections.reverse(table);
       schennonFano(table, 0, table.size());
       return table;
   }
   public static void schennonFano(List<TableElement> table, int beginIndex, int endIndex) {
       if (endIndex - beginIndex <= 1) return;</pre>
       if (endIndex - beginIndex == 2) {
            table.get(beginIndex).code.add(true);
           table.get(beginIndex + 1).code.add(false);
            return;
       }
```

```
int separateIndex = getSeparateIndex(table, beginIndex, endIndex);
    for (int i = beginIndex; i < endIndex; i++) {</pre>
        if (i < beginIndex + separateIndex) {</pre>
            table.get(i).code.add(true);
        } else {
            table.get(i).code.add(false);
        }
    }
    schennonFano(table, beginIndex, separateIndex);
    schennonFano(table, separateIndex, endIndex);
}
private static int getSeparateIndex(List<TableElement> table, int beginIndex, int endIndex) {
    int sum = 0;
    for (int i = beginIndex; i < endIndex; i++) {</pre>
        sum += table.get(i).amount;
    int sumBefore = table.get(beginIndex).amount;
    int sumAfter = sum - sumBefore;
    int separateIndex = beginIndex + 1;
    while (separateIndex < endIndex - 1 && sumAfter - table.get(separateIndex).amount -</pre>
            (sumBefore + table.get(separateIndex).amount) > 0 ) {
        sumAfter -= table.get(separateIndex).amount;
        sumBefore += table.get(separateIndex).amount;
        separateIndex++;
    }
    if (Math.abs(sumBefore - sumAfter) > Math.abs(sumAfter - table.get(separateIndex).amount -
            (sumBefore + table.get(separateIndex).amount))) {
        separateIndex++;
    }
    return separateIndex;
}
public static void main(String[] args) throws IOException {
    System.out.println("Введите сообщение: ");
    String input;
    BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
    input = r.readLine();
    System.out.println();
    List<TableElement> table = schennonFano(input);
    System.out.println("Таблица: ");
    for (TableElement element : table) {
        System.out.print(element.symbol);
        System.out.print(" " + element.amount + " ");
        for (int i = 0; i < element.code.size(); i++) {</pre>
            System.out.print(element.code.get(i) ? "1" : "0");
        System.out.println();
    }
```

```
System.out.println();
    System.out.println("Закодированное сообщение: ");
    String code = input;
    int sum = 0;
    for (TableElement element : table) {
        String elementCode = element.code.stream().map((el) -> el ? "1" : "0").collect(Collectors.joining(""));
        code = code.replace("" + element.symbol, elementCode);
        sum += element.amount;
    }
    System.out.println(code);
    System.out.println();
    int codedLength = code.length();
    int uncodedLength = input.length() * 8;
    System.out.println("Коэффициент сжатия: " + 1.0 * uncodedLength / codedLength);
    System.out.println();
    double midLen = 0;
    for (TableElement element : table) {
        String elementCode = element.code.stream().map((el) -> el ? "1" : "0").collect(Collectors.joining(""));
        midLen += elementCode.length() * (1.0 * element.amount / sum);
    System.out.println("Средняя длина: " + midLen);
    System.out.println();
    double delta = 0;
    for (TableElement element : table) {
        String elementCode = element.code.stream().map((el) -> el ? "1" : "0").collect(Collectors.joining(""));
        delta += (1.0 * element.amount / sum) * (elementCode.length() - midLen) * (elementCode.length() - midLen);
    }
    System.out.println("Дисперсия: " + delta);
}
```

Задание 4. Получить кодовые представления сообщений из пунктов 1 и 2 задания по методу Хаффмана. Сравнить полученные результаты с методом Шеннона-Фано по показателям сжатия и дисперсии. Сделать соответствующие выводы. Результаты выполнения программы для задания 1:

```
Введите сообщение:
в чащах юга жил бы цитрус? Да, но фальшивый экземпляр!

Таблица:
9 111
а 5 110
л 3 1011
и 3 1010
р 2 10111
ы 2 10110
в 2 10011
! 1 10010
я 1 01111
п 1 011111
м 1 011110
```

```
e 1 01111
з 1 011111
к 1 011110
э 1 01111
й 1 011111
ш 1 011110
ь 1 011111
ф 1 011110
o 1 011111
н 1 011110
, 1 01111
Д 1 011111
? 1 011110
c 1 011111
y 1 011110
т 1 011111
ц 1 011110
6 1 01111
ж 1 001111
г 1 001110
ю 1 001111
x 1 001110
щ 1 001111
ч 1 001110
Закодированное сообщение:
1001111100111011000111111100011101110011
10111101101011011111101111101010100111011
001111111101111011110011111011110111100
111111011011111011110010
Коэффициент сжатия: 1.6744186046511629
Средняя длина: 4.7777777777776
Дисперсия: 1.5061728395061729
```

Результаты выполнения программы для задания 2:

```
Введите сообщение:
Victoria nulla est, Quam quae confessos animo quoque subjugat hostes

Таблица:
9 111
5 7 110
u 7 101
a 6 1011
o 6 1010
e 5 0111
t 4 0110
```

```
q 3 0111
n 3 0110
i 3 01111
m 2 01110
1 2 01111
c 2 01110
h 1 011111
g 1 001110
j 1 001111
b 1 001110
f 1 001111
Q 1 001110
, 1 001111
r 1 0011111
V 1 0011110
Закодированное сообщение:
001111001111011100110101000111110111110
1111101101010111110111110111110111110011
000111111100111010110110111011101111011
0110111111011101010011000111101111110110
10101101111011011001111011101010101110111
1010011101011011011101111111010110011001
11110
Коэффициент сжатия: 1.9568345323741008
Средняя длина: 4.088235294117648
Дисперсия: 1.1392733564013837
```

Вывод: в ходе лабораторной работы исследовали кодирование по методу Шеннона-Фано. Научиться оценивать эффективности кода. Выполнили реализацию метода кодирования по методу Шеннона-Фано в виде консольного приложения.