What is claimed is:

10

15

20

25

30

- 1. A microstructured optical fiber component comprising
- a first internal portion exhibiting a first refractive index;
- a plurality of regions exhibiting various, predetermined refractive indicies, the
 plurality of regions arranged to provide predetermined modifications to an optical signal
 passing therethrough

CHARACTERIZED IN THAT

the microstructured optical fiber component is formed to comprise a fiber segment by drawing from a preform of similar pattern and is defined by a pair of endfaces with a height such that the endfaces do not significantly affect the behavior of the light passing therethrough in a direction parallel to the endfaces.

- 2. The microstructured optical fiber of claim 1 wherein the fiber segment comprises at least one aperture formed through the vertical extent thereof, said at least one aperture filled with a gas, liquid or solid.
- 3. The microstructured optical fiber of claim 2 wherein one or more optical elements are disposed within the at least one cylindrical aperture.
 - 4. The microstructured optical fiber of claim 3 wherein a plurality of solid plugs is disposed within at least one aperture.
- 5. The microstructured optical fiber of claim 3 wherein one or more micro-fluidic plugs of material with a known refractive index is inserted in at least one aperture.
 - 6. The microstructured optical fiber of claim 1 wherein one or more microstructures are formed through at least a portion of the vertical extent of the fiber segment.
 - 7. The microstructured optical fiber of claim 6 wherein at least microstructure comprises a plurality of etched cylindrical elements formed to be parallel to the endfaces of the component.
 - 8. The microstructured optical fiber of claim 1 wherein the sidewalls of the fiber segment are tapered from the center region toward the endfaces to alter the lateral behavior of an optical signal passing therethrough.
 - 9. A method of forming a microstructured optical fiber component, the method comprising the steps of:

a) providing an optical fiber preform, said perform composed of a material exhibiting a first refractive index and including one or more internal structural areas exhibiting various, predetermined refractive indicies;

5

10

20

- b) heating and drawing said optical fiber preform to reduce the physical dimensions of said preform, said drawing performed for a time period sufficient to reduce the outer diameter of said preform;
- c) slicing the drawn optical fiber of step b) into fiber segments, each segment used as a microstructured optical fiber component.
- 10. The method as defined in claim 9 wherein in performing step c), the fiber is sliced into segments having a height h in the range of a few microns to several meters
- 11. The method as defined in claim 9 wherein the method further comprises the step of polishing the sidewalls of the preform or fiber segment to form a rectangular component.
- 12. The method as defined in claim 11, wherein the method forms a complex microstructured optical component by performing the additional steps of:

disposing a plurality of polished rectangular components in a predetermined arrangement;

heating and drawing said arranged plurality of rectangular components for a predetermined time to reduce the outer dimension of the arrangement; and

slicing the drawn structure to form a complex-structured microstructure optical component.