Präsenzaufgabe Blatt 2, Aufgabe 4 B

Michael Hohenstein

13. Mai 2020

Aufgabenstellung

Wiederholen Sie den Begriff des Vektorraums. Dazu gehört der zugrunde liegende Körper als auch die relevanten Verknüpfungen. Diskutieren Sie neben den Standardbeispielen \mathbb{R}^n und \mathbb{C}^n auch einen Funktionenraum als Beispiel für einen Vektorraum. Bringen Sie Licht ins Dunkel des Begriffs Skalarprodukt.

Aufgabenstellung

Wiederholen Sie den Begriff des Vektorraums. Dazu gehört der zugrunde liegende Körper als auch die relevanten Verknüpfungen. Diskutieren Sie neben den Standardbeispielen \mathbb{R}^n und \mathbb{C}^n auch einen Funktionenraum als Beispiel für einen Vektorraum. Bringen Sie Licht ins Dunkel des Begriffs Skalarprodukt.

Vektorraum

Definition

Ein Vektorraum, bzw. ein K-Vektorraum über einen Körper K ist ein Tripel (V, \oplus, \odot) mit dem Körper $(K, +, \cdot)$.

- (+) ist hierbei die Vektoraddition
- ist hierbei die Skalarmultiplikation
- (V, \oplus) muss eine Abelsche Gruppe bilden
- o muss Eigenschaften erfüllen

 (V, \oplus)

Definition

Gruppe:

- ▶ Abgeschlossenheit: $u, v \in V \Rightarrow u \oplus v \in V$
- Assoziativität: $(u \oplus v) \oplus w = u \oplus (v \oplus w)$
- ▶ neutrales Element: $v \in V$: $v \oplus \vec{0} = \vec{0} \oplus v = v$
- ▶ Inverses Element: $\forall v \in V \exists (-v) \in V : v \oplus (-v) = \vec{0}$

Abelsche Gruppe:

► Kommutativ: $v \oplus w = w \oplus v$

· Skalarmultiplikation

Eigenschaften:

- ▶ Abgeschlossenheit: $\forall a \in K, v \in V : a \bigcirc v \in V$
- ▶ Distributivität im Vektorraum: $a \in K, v, w \in V : a \bigcirc (v \oplus w) = a \bigcirc v \oplus a \bigcirc w$
- ▶ Distributivität im Körper: $a, b \in K, v \in V : (a + b) \odot v = a \odot v \oplus b \odot v$
- ▶ Assoziativität / Verträglichkeit mit der Körpermultiplikation: $a, b \in K, v \in V : (a \cdot b) \odot v = a \odot (b \odot v)$
- Sei 1_k das neutrale Element bezüglich der Multiplikation im Körper und somit auch bzgl. der Skalarmultiplikation: $\forall v \in V1_{\iota}\bigcirc v = v$

Körper K

Definition

Körper: $(K, +, \cdot)$

- K ist eine Menge
- ► + und · sind distributive Verknüpfungen auf dieser Menge
- ► (K, +) bilden eine abelsche Gruppe
- ▶ $(K \setminus \{0\}, \cdot)$ bilden eine abelsche Gruppe

$$\mathbb{R}^n$$
 und \mathbb{C}^n

$$\mathbb{R}^{n}: \{(x_{1},...,x_{n}) | x_{1},...,x_{n} \in \mathbb{R}\}$$
$$\mathbb{C}^{n}: \{(z_{1},...,z_{n}) | z_{1},...,z_{n} \in \mathbb{C}\}$$

 \Rightarrow für \mathbb{C}^n analog, nur mit \mathbb{R} , \mathbb{C} oder \mathbb{Q} als zugrundeliegender Körper

Funktionenraum

 \Rightarrow Vektoren sind Funktionen aus dem Funktionenraum (Ganzer Vektor, nicht Komponentenweise)

Menge der stetigen Funktionen:

$$C(\mathbb{R},\mathbb{R}) = \{f : \mathbb{R} \mapsto \mathbb{R} | f \text{stetig} \}$$

Auf Vektorraum bezogen:

$$C(\mathbb{R}^n,\mathbb{R}^n)=:C$$

Funktionenraum: Beispiel

Example

- ► Körper: ℝ
- ► Verknüpfungen: ⊕, ⊙

$$\oplus: C \times C \to C$$

$$(f,g)\mapsto (f\oplus g)(x):=f(x)+g(x)$$

$$\odot$$
 : $\mathbb{R} \times C \rightarrow C$

$$(\alpha, f) \mapsto (\alpha \odot f)(x) := \alpha \cdot f(x)$$

Skalarprodukt

Definition

Ein Skalarprodukt ist eine positiv definite, symmetrische Bilinearform

Linearform

Definition

Abbildung von $\mathbb{R}^n \to \mathbb{R}$, linear und bildet in einen Körper ab

$$\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$$

$$f: V \to W$$
 ist linear : \Leftrightarrow

$$f(v + w) = f(v) + f(w) \forall v, w \in V$$

$$f(\alpha \cdot v) = \alpha \cdot f(v) \forall \alpha \in K, v \in V$$

Bilinearform

Definition

$$f: V \times V \mapsto W$$

Eine Komponente wird festgehalten \Rightarrow Abbildung auf die andere Komponente bezogen linear

Sei *u* fest:

$$f(u, v + w) = f(u, v) + f(u, w) \forall v, w \in V$$

$$f(v + w, u) = f(v, u) + f(w, u) \forall v, w \in V$$

Sei u fest:

$$f(u, \alpha \cdot v) = \alpha \cdot f(u, v) \forall \alpha \in K, v \in V$$

symmetrisch | positiv definit

Definition

Bilinearform: $b: V \times V \mapsto K$

Symmetrisch:

$$b(x,y)=b(y,x)$$

Positiv definit:

$$b(x,x) > 0 \forall x \in V \setminus \{\vec{0}\}$$
$$b(0,0) = 0$$

$$<\cdot,\cdot>$$

$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$$

$$(x_1,...,x_n),(v_1,...,v_n)\mapsto < x,y>:=\sum_{i=1}^n x_i\cdot v_i$$

Beweis.

Sei x fest:

$$< x, v + w > = < x, v > + < x, w >$$

zweite Komponente analog

sei $\alpha \in \mathbb{R}$:

$$\langle x, \alpha \cdot v \rangle = \alpha \langle x, v \rangle$$

 $\langle \alpha \cdot v, x \rangle = \alpha \langle v, x \rangle$