Topological Data Analysis Introducing Persistent Homology

Kejsi Jonuzaj

American University in Bulgaria

December 4, 2020

Outline

- Simplicial Homology
 - n − simplex
 - Δ complex
 - Chain Complex
 - Computing Homology
- Maps of Complexes and Maps on Homology
- Čech and Vietoris-Rips Complex
 - Definition
 - Čech Complex Example
 - Vietoris-Rips Complex Example
- Persistent Homology
 - Persistance
 - Computations

Standard Simplex - n-simplex

A n-simplex is denoted by $[v_0, v_1, ..., v_n]$

Figure 1: 0-simplex, 1-simpex, 2-simplex, 3-simplex

Δ – complex

Figure 2: A simplicial 3-complex

Definition (Chain complex)

Complex of abelian groups.

A chain complex is a sequence of homomorphisms of abelian groups:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0 = 0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} . The equation $\partial_n \partial_{n+1} = 0$ is equivalent to the inclusion $\operatorname{Im} \partial_{n+1} \subset \ker \partial_n$.

where the boundary homomorphisms ∂_n of $[v_0, v_1, ..., v_n]$ is a defined as $\sum_{i}(-1)^{i}[v_{0},...,\hat{v_{i}},...,v_{n}]$ where the '^' symbol denotes the absence of that vertex.

Boundary operator

$$\partial[v_0,v_1]=v_1-v_0$$

$$\partial[v_0, v_1, v_2] = [v_0, v_1] + [v_1, v_2] - [v_0, v_2]$$

Homology of a Chain Complex

Definition (Homology Group)

The n-th homology group of the chain complex is defined as the quotient group

$$H_n = \frac{Z_n}{B_n} = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$$

Elements of Z_n are called cycles and elements of B_n are called boundaries.

Elements of H_n are cosets of Im ∂_{n+1} , called homology classes. Two cycles representing the same homology class are said to be homologous. This means their difference is a boundary.

Computing Homology of S^1 in \mathbb{Z}

Space
$$\mathcal{X} = S^1$$

Figure 3: Triangulation of S^1

We can construct the following chain complex which is a sequence of homomorphisms of abelian groups:

$$0 \xrightarrow{\partial_2 = 0} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0 = 0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} and

$$\begin{vmatrix} C_0 = \langle v_0, v_1, v_2 \rangle \\ C_1 = \langle a, b, c \rangle \\ C_n = \{0\} \quad \forall n \geqslant 2 \end{vmatrix},$$

$$0 \stackrel{\partial_2 = 0}{\longrightarrow} \mathbb{Z}^{\oplus^3} \stackrel{\partial_1}{\longrightarrow} \mathbb{Z}^{\oplus^3} \stackrel{\partial_0 = 0}{\longrightarrow} 0$$

H_0 - # of connected components

The n-th homology group is defined as $H_n = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$.

First, let's compute H_0 :

$$\ker \partial_0 = C_0 = \langle v_0, v_1, v_2 \rangle$$
 since $\partial_0 = 0$.

To calculate Im ∂_1 , let's compute:

$$\partial_{1}(\alpha a + \beta b + \gamma c) = \alpha(v_{1} - v_{0}) + \beta(v_{2} - v_{1}) - \gamma(v_{2} - v_{0}) = (\gamma - \alpha)v_{0} + (\alpha - \beta)v_{1} + (-(\gamma - \alpha) - (\alpha - \beta))v_{2}$$

$$\operatorname{Im} \partial_{1} = \left\{ \left(\begin{array}{c} (\gamma - \alpha) \\ (\alpha - \beta) \\ -(\gamma - \alpha) - (\alpha - \beta) \end{array} \right), \quad \alpha, \beta, \gamma \subseteq \mathbb{Z} \right\} \subseteq \mathbb{Z}^{\oplus^{3}}$$

There exist an isomorphism Im $\partial_1 \simeq \mathbb{Z}^2$

$$H_0 = rac{\ker \partial_0}{\operatorname{Im} \partial_1} = \mathbb{Z}^3 \left/ \left(egin{array}{c} 1 \ 0 \ -1 \end{array}
ight) \mathbb{Z} \oplus \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight) \mathbb{Z} \simeq \mathbb{Z}$$

4 D > 4 A > 4 B > 4 B > B = 900

H_1 - # of holes

Second, let's compute H_1 :

$$\ker \partial_1 = \left\{ \begin{pmatrix} m \\ m \\ m \end{pmatrix}, m \in \mathbb{Z} = \right\} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mathbb{Z} \simeq \mathbb{Z}$$

Im $\partial_2 = \{0\}$ since $C_2 = \{0\}$

$$H_1 = \frac{\ker \partial_1}{\operatorname{Im} \partial_2} = \frac{\ker \partial_1}{\{0\}} = \ker \partial_1 \simeq \mathbb{Z}$$

Finally, the homology groups of the circle are:

$$H_n^{\Delta}(S^1) \simeq \left\{ egin{array}{ll} \mathbb{Z}, & ext{for } n=0,1 \ 0 & ext{for } n \geqslant 2 \end{array}
ight.$$

Filtered Complex

Maps of Complexes

$$C^0_{ullet} \longrightarrow C^1_{ullet} \longrightarrow C^1_{ullet}$$

Maps of Complexes induce maps on Homology

$$H(C^0_{ullet}) \longrightarrow H(C^1_{ullet}) \longrightarrow H(C^2_{ullet})$$

If \mathcal{X} is a metric space and $r \geq 0$:

Definition

The Čech Complex has vertix set \mathcal{X} and simplex $[v_0, v_1, ..., v_n]$ when

$$\bigcap_{i=0}^n \mathcal{B}(v_i; r/2) \neq \emptyset$$

Definition

The Vietoris Rips Complex has vertix set \mathcal{X} and simplex $[v_0, v_1, ..., v_n]$ when

$$d(v_i, v_j) \leq r \ \forall i, j$$

Relation of Čech and Vietoris-Rips Complex: For each $\epsilon > 0$, there is a chain inclusion maps

$$\mathcal{R}\hookrightarrow\mathcal{C}_{\epsilon\sqrt{2}}\hookrightarrow\mathcal{R}_{\epsilon\sqrt{2}}$$

Čech Complex Example

Vietoris-Rips Complex Example

Figure 4: A sequence of Rips Complex from a point clound data set that represent an annulus

Definition

Given a filtered complex, the i-th complex K^i has associated boundary operators ∂_{k}^{i} , matrices M_{k}^{i} , and groups C_{k}^{i} , Z_{k}^{i} , B_{k}^{i} , and H_{k}^{i} for all $i, k \geq 0$ The p-persistent k-th homology group of K^i is

$$H_k^{i,p} = Z_k^i / (B_k^{i+p} \cap Z_k^i)$$

Example:
$$p = i = k = 1$$
: $H_1^{1,1} = Z_1^1 / (B_2^1 \cap Z_1^1) \mathbb{Z} / (\{0\} \cap \mathbb{Z}) = \mathbb{Z}$

Figure 5: An example of barcode representations of the homology of the sampling of points in an annulus

Figure 6: 10 points on a cicle

Figure 7: Persistent diagram of homology of circle (10 points)

Figure 8: Lifetime diagram of homology of circle (10 points)

Figure 9: Peridicity in Timeseries

References

- A. Zomorodian and G. Carlsson, Computing Persistent Homology, Discrete Comput. Geom., 33, (2005), 249274.
- A. Hatcher, Algebraic Topology, Cambridge University Press, (2002).
- V. de Silva and G. Carlsson. Topological estimation using witness complexes, in SPBG04 Symposium on Point-Based Graphics (2004), 157-166
- Perea, J.A., Harer, J. Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis. Found Comput Math 15, 799838 (2015).
- H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 2003. Ghrist, Robert. (2008). Barcodes: The persistent topology of data. BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY. 45. 10.1090/S0273-0979-07-01191-3.