LAB-8

陳培殷 國立成功大學 資訊工程系

Outline

- Video preview for 晶片實現 + HDL介紹
- **Lab I--Moore machine (sequential circuit)**

Lab I -- Moore machine (1/3)

- 完成一個Moore machine, 其 I/O 與 state 變化如下:
- 頻率1HZ
- Pause 為1則狀態不變
- Pause 為0則依右邊狀態表為主
- 一開始進行Reset,將目前狀態給S0

目前狀態 (current-state)	下一個狀態 (next-state)		七段顯示器 輸出
	In=0	In=1	(output)
S0	S0	S1	0
S1	S0	S2	1
S2	S3	S4	2
S3	S4	S3	3
S4	S1	S5	4
S5	S2	S5	5

Lab II -- Moore machine (2/3)

- 畫出 FSM、說明運作過程 (輸出結果會根據你目前的狀態來決定, 例如: SO 輸出 0、S1 輸出 1...)
- 以七段顯示器顯示輸出

Input : clock(Clock_50), pause(SW0), reset(RESET_N), in(SW1);

Output : out(HEX00~HEX06)

Lab II -- Moore machine (3/3)

■ 系統架構圖

- module Moore machine (sequential circuit)
 - □ 計算計數器正確的值
- module Seven_Display (combinational circuit)
 - □ 將Moore machine的輸出值轉為output的七段顯示器
- 兩個module之間溝通方式
 - SevenDisplay DIS (.data(tmp), .out(out));

Lab - Hint(1/2)

- 除頻器
 - □ FPGA的時脈頻率為 50 MHz
 - 表示每秒可以執行50×10⁶ 次
 - □ 現假設要求變換頻率為1Hz
 - 表示每秒變換1次
 - □ 但因為時脈頻率無法改變,所以需要透過除頻器將50MHz降為1Hz
- 除頻器實現方式是透過一個計數器,計算經過幾個時脈正(負)緣,當計數到50×10⁶ 即代表經過一秒

Lab - Hint(2/2)

- 除頻器範例:
 - □ 每0.5秒改變一次訊號(div_clk)

```
`define TimeExpire 32'd25000000
    module clk div(clk,rst,div clk);
    input clk,rst;
    output div clk;
    reg div clk;
    reg [31:0] count;
10
    always@(posedge clk)
11 pbegin
12
        if(!rst)
13
        begin
14
            count <= 32'd0;
15
            div clk <= 1'b0;
16
        end
17
        else
18 ₺
        begin
19
             if(count == `TimeExpire)
20 点
            begin
21
                 count <= 32'd0;
22
                 div clk <= ~div clk;</pre>
23
             end
24
            else
25 点
            begin
26
                 count <= count + 32'd1;
27
             end
28
        end
29
    end
30
    endmodule
```

Seven-segment display

Seven-segment display (2/2)

- 0 is on, 1 is off
- dp is useless in DE0-CV board

Ex: out=7'b1000000;

Ex: out=7'b0010010; b=1, e=1

Notice

- wire and reg type define
 - □ always begin ...裡面變數... end , 宣告 reg type
 - □ always begin end 外面變數,宣告 wire type
 - 需搭配 assign 使用
- reg == register
 - □ 在組合電路中使用 reg type, 合成 \rightarrow 線 (net)
 - □ 在循序電路中使用 reg type, 合成 → Flip-flop (register)
- Inferred latch
 - □ 在組合電路中, case、if...else...若沒有寫滿, 合成後會產生latch

Notice

- 請勿命名中文資料夾或數字開頭資料夾
- 請確認 Device family 是否與 FPGA 晶片符合
 - **□** Family: Cyclone / Device: 5CEBA4F23C7
- top module name & project name 需要一致
- 燒錄檔案至 FPGA 前, Double-check Pin Assignment
 - □ 設定錯誤的 Pin, 會導致 FPGA 無法正確執行
- 連接 FPGA 板後,請先確認是否可以正常燒錄與動作
 - □ USB Blaster, 指定到 USB Blaster Driver目標資料夾 C:\altera\16.0\quartus\drivers\usb-blaster

Number Representation

- May be represented using
 - □ Binary, decimal, hexadecimal,
- Format

 - base_format:
 - □ b, d, h,
- Example
 - 4'b1111; 16'd255
 - **23456 (32-bit decimal # by default); 'hc3 (32 bit)**
 - **12'b1111_0000_1010**