ZAVRŠNI ISPIT IZ ANALOGNE I MJEŠOVITE OBRADBE SIGNALA 2011/12

1. Za NP filtar s karakteristikom 2. stupnja po Chebyshevu s maksimalnom valovitošću u području propuštanja 1.2dB i graničnom frekvencijom 10 kHz odrediti izraze za amplitudno-frekvencijsku i fazno-frekvencijsku karakteristiku. Kao granična frekvencija se uzima najviša frekvencija na kojoj amplitudno-frekvencijska karakteristika poprima vrijednost minimuma iz područja propuštanja. Skicirati amplitudno-frekvencijsku i fazno-frekvencijsku karakteristiku te označiti karakteristične točke. Odrediti iznos faze i amplitude (u dB) signala na izlazu filtra ako na ulazu djeluje signal frekvencije f_0 =15kHz; u(t)= 10·sin($\omega_0 t$ +45°). (6 bodova)

Riešenie:

a) Najprije treba izračunati prijenosnu funkciju filtra 2. reda aproksimacije po Chebyshevu s maksimalnom valovitošću u području propuštanja 1.5dB. Normalizirani polovi:

Maksimalna valovitost u području propuštanja: $a_H = 20 \log \frac{1}{\sqrt{1+c^2}} [dB]$

Parametar
$$\varepsilon$$
: $\varepsilon = \sqrt{10^{-a_H [dB]/10} - 1}$

$$\Phi_2 = \frac{1}{N} \ln \left(\frac{1}{\varepsilon} + \sqrt{1 + \frac{1}{\varepsilon^2}} \right)$$

$$s_k = -\sinh(\Phi_2) \cdot \sin\left(\frac{2k-1}{2N}\pi\right) + j\cosh(\Phi_2) \cdot \cos\left(\frac{2k-1}{2N}\pi\right); \qquad k = 1, ..., N$$

Uz uvrštene vrijednosti: N=2, $a_H=-1.2$ dB slijedi:

$$\varepsilon = \sqrt{10^{1.2/10} - 1} = 0.564142$$

$$\Phi_2 = \frac{1}{2} \ln \left(\frac{1}{0.564142} + \sqrt{1 + \frac{1}{0.564142^2}} \right) = 0.668529$$

polovi su na elipsi u lijevoj poluravnini:

polovi su na elipsi u lijevoj poluravnini:

$$s_1 = -\sinh(\Phi_2)\sin(\frac{1}{4}\pi) + j\cosh(\Phi_2)\cos(\frac{1}{4}\pi) = -0.508729 + j \cdot 0.871094$$

(1 bod)

$$H(s) = k \cdot \frac{\left(-0.508729 + j0.871094\right)\left(-0.461089 - j0.871094\right)}{\left(s + 0.508729 - j0.871094\right)\left(s + 0.508729 + j0.871094\right)}$$

b) Normalizirana prijenosna funkcija glasi:
$$H(s) = k \cdot \frac{s_1 s_2}{(s - s_1)(s - s_2)}$$
,
 $H(s) = k \cdot \frac{(-0.508729 + j0.871094)(-0.461089 - j0.871094)}{(s + 0.508729 - j0.871094)(s + 0.508729 + j0.871094)}$
 $= k \cdot \frac{(0.508729)^2 + (0.871094)^2}{(s + 0.508729)^2 + (0.871094)^2} = k \cdot \frac{1.01761}{s^2 + 1.01746s + 1.01761} = k \cdot \frac{\omega_{NP}^2}{s^2 + \frac{\omega_{NP}}{q_{NP}}s + \omega_{NP}^2}$ (1 bod)

c) Zato jer smo izračunali parnu prijenosnu funkciju treba podesiti d.c.-pojačanje k=H(0) (pojačanje na frekvenciji nula) jednako maksimalnoj valovitosti $k = 10^{a_H[dB]/20}$. Slijede parametri:

1

$$k = 10^{-1.2/20} = 0.870964; \text{ ili } k = \frac{1}{\sqrt{1 + \varepsilon^2}} = 0.870964;$$

$$\omega_{NP} = \sqrt{1.01761} = 1.00877;$$

$$\frac{\omega_{NP}}{q_{NP}} = 1.01746 \Rightarrow q_{NP} = \frac{1.00877}{1.01746} = 0.991458$$
(1 bod)

d) Konačno je normalizirana prijenosna funkcija:

$$H(s) = 0.870964 \cdot \frac{1.01761}{s^2 + 1.01746s + 1.01761} = \frac{0.886301}{s^2 + 1.01746s + 1.01761}$$

Navedenu prijenosnu funkciju možemo denormalizirati frekvencijskom transformacijom:

$$s \to \frac{s}{\omega_g}$$
,

gdje je $\omega_g = 2\pi f_g = 2\pi \cdot 10 \text{kHz} = 62831.9 \text{ [rad/s]}$ zadana granična frekvencija. Dobivamo denormaliziranu prijenosnu funkciju:

$$H(s) = \frac{0.886301}{\left(\frac{s}{\omega_g}\right)^2 + \frac{s}{\omega_g} \cdot 1.01746 + 1.01761} = \frac{0.886301 \cdot \omega_g^2}{s^2 + s \cdot \omega_g \cdot 1.01746 + 1.01761 \cdot \omega_g^2}$$

U H(s) uvrstimo $s=j\omega$, odakle slijedi:

$$H(j\omega) = \frac{0.886301}{\left(\frac{j\omega}{\omega_g}\right)^2 + \frac{j\omega}{\omega_g} \cdot 1.01746 + 1.01761} = \frac{0.886301}{1.01761 - \left(\frac{\omega}{\omega_g}\right)^2 + j \cdot \frac{\omega}{\omega_g} 1.01746}$$

Izraz je oblika $H(j\omega) = \frac{N(j\omega)}{D(j\omega)}$, gdje je N oznaka za brojnik, a D za nazivnik.

Nećemo proširivati izraz tako da nazivnik bude realan nego ćemo odmah izračunati a-f i f-f karakteristike.

Amplitudno-frekvencijska karakteristika

$$|H(j\omega)| = \frac{|N(j\omega)|}{|D(j\omega)|} = \frac{0.886301}{\sqrt{\left[1.01761 - \left(\frac{\omega}{\omega_g}\right)^2\right]^2 + \left[\frac{\omega}{\omega_g}1.01746\right]^2}}$$

Fazno-frekvencijska karakteristika:

$$\varphi(\omega) = \arctan \frac{\operatorname{Im}[N(j\omega)]}{\operatorname{Re}[N(j\omega)]} - \arctan \frac{\operatorname{Im}[D(j\omega)]}{\operatorname{Re}[D(j\omega)]} = 0 - \arctan \frac{\frac{\omega}{\omega_g} 1.01746}{1.01761 - \left(\frac{\omega}{\omega_g}\right)^2}$$
(1 bod)

e) Uvrstimo u zadatku zadane vrijednosti: granična frekvencija filtra $\omega_g=2\pi f_g=2\pi\cdot 10000$ rad/s, frekvencija generatora ulaznog signala $\omega=2\pi\cdot 15000=94247.8$ rad/s, $U_0=10$, $\varphi_0=45^\circ$ $\Rightarrow \omega/\omega_g=15000/10000=1.5$.

Dakle, na frekvenciji generatora od 15kHz jesu:

$$H(94247.8) = |H(j94247.8)| = \frac{0.886301}{\sqrt{[1.01761 - (1.5)^2]^2 + [1.5 \cdot 1.01746]^2}} = 0.451816$$

odn. $\alpha(94247.8) = 20\log[H(94247.8)] = 20\log(0.451816) = -6.90076$ dB.

Da bismo bili sigurni da li je točan fazni kut (odnosno da li je u ispravnom kvadrantu) preporučljivo je nacrtati položaj fazora $H(j\omega)$ na zadanoj frekvenciji u kompleksnoj ravnini. Dobili smo

$$H(j94247.8) = \frac{0.886301}{1.01761 - 1.5^{2} + j \cdot 1.5 \cdot 1.01746} = -0.283851 - j \cdot 0.35152$$

$$\frac{0.886301}{1.01761 - 1.5^{2} + j \cdot 1.5 \cdot 1.01746} = -0.283851 - j \cdot 0.35152$$

$$\frac{0.283851}{0.283851}$$

$$\frac{0.283851}{0.35152}$$

$$\frac{0.99247.8}{0.35152}$$

$$\frac{0.99247.8}{0.35152}$$

Očigledno je kut u III kvadrantu i dobivena vrijednost 51.0792° pomoću arctan nije odgovarajuća, a pošto želimo vrijednosti faze u intervalu od –180° do 180° tada oduzimamo od dobivenog kuta –180°.

$$\varphi(94247.8) = -\arctan\frac{1.5 \cdot 1.01746}{1.01761 - 1.5^2} = 51.0792^{\circ} - 180^{\circ} = -128.921^{\circ} \text{ (1 bod)}$$

Pa je izlazni signal:

 $y(t) = 10 \cdot 0.451816 \sin(94247.8t + 45^{\circ} - 128.921^{\circ}) = 4.51816 \cdot \sin(94247.8t - 83.9208^{\circ})$ (1 bod)

2. Zadana je bikvadratna sekcija prikazana slikom i njena prijenosna funkcija $H(s)=U_{iz}(s)/U_g(s)$. a) Usporedbom s odgovarajućim općim oblikom prijenosne funkcije filtra 2. stupnja odrediti parametre k, ω_0 , Q. O kojem se tipu filtra radi (NP, VP, PP ili PB)? b) Ako su zadane normalizirane vrijednosti parametara $\omega_0=1$, $Q=1/\sqrt{2}$ i |k|=1 te ako je $R_2=R_3=1$, izračunati normalizirane vrijednosti otpora R_1 i kapaciteta C_1 i C_2 . c) Prikazati raspored polova i nula u kompleksnoj ravnini. c0 Nacrtati amplitudno-frekvencijsku karakteristiku. (6 bodova)

Rješenje:

a)
$$T(s) = \frac{k \cdot \omega_0^2}{s^2 + \frac{\omega_0}{O} \cdot s + \omega_0^2}$$
 Opći oblik NP

(uobičajeno je kod el. filtara da je pojačanje k zadano s apsolutnom vrijednosti) prepišimo T(s) tako da najvišu potenciju od s u nazivniku množi jedinica

$$T(s) = \frac{U_{iz}(s)}{U_g(s)} = \frac{-\frac{R_2}{R_1} \cdot \frac{R_1}{R_1 R_2 R_3 C_1 C_2}}{s^2 + s \cdot \frac{C_2 R_1 (R_2 + R_3) + C_2 R_2 R_3}{R_1 R_2 R_3 C_1 C_2} + \frac{R_1}{R_1 R_2 R_3 C_1 C_2}}$$

-o kojem se tipu filtra radi (NP, VP, PP ili PB)? \Rightarrow NP (niski propust) -parametri k, ω_0 , Q: (1 bod)

$$\omega_{0} = \frac{1}{\sqrt{R_{2}R_{3}C_{1}C_{2}}} \qquad \frac{\omega_{0}}{Q} = \frac{C_{2}R_{1}(R_{2} + R_{3}) + C_{2}R_{2}R_{3}}{R_{1}R_{2}R_{3}C_{1}C_{2}} = \frac{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}{R_{1}R_{2}R_{3}C_{1}}$$

$$\Rightarrow \qquad Q = \frac{R_{2}R_{3}C_{1}C_{2}}{C_{2}(R_{2} + R_{3}) + C_{2}R_{2}R_{3}/R_{1}} \omega_{0} = \frac{\sqrt{R_{2}R_{3}C_{1}C_{2}}}{C_{2}(R_{2} + R_{3}) + C_{2}R_{2}R_{3}/R_{1}}, \quad k = \frac{R_{2}}{R_{1}}$$

b) ako su zadane vrijednosti parametara $\omega_0=1$, $Q=1/\sqrt{2}$ i k=1 te ako je $R_2=R_3=1$, izračunati normalizirane vrijednosti otpora R_1 i kapaciteta C_1 i C_2 . (2 boda)

$$uz R_{2}=R_{3}=1 \Rightarrow \omega_{0} = \frac{1}{\sqrt{C_{1}C_{2}}} = 1; \Rightarrow C_{1} = \frac{1}{C_{2}} \qquad (*)$$

$$Q = \frac{\sqrt{R_{2}R_{3}C_{1}C_{2}}}{C_{2}(R_{2}+R_{3})+k\cdot C_{2}R_{3}} = \frac{\sqrt{C_{1}C_{2}}}{2C_{2}+k\cdot C_{2}} = \sqrt{\frac{C_{1}}{C_{2}}} \cdot \frac{1}{2+k}; \quad Q = \frac{1}{3} \cdot \sqrt{\frac{C_{1}}{C_{2}}} \Rightarrow \frac{C_{1}}{C_{2}} = 9Q^{2} = \frac{9}{2} \qquad (**)$$

$$k = \frac{R_{2}}{R_{1}} = 1 \Rightarrow R_{1} = R_{2} = 1; (*), (**) \Rightarrow C_{1}^{2} = \frac{9}{2} \Rightarrow C_{1} = \frac{3}{\sqrt{2}}, \quad C_{2} = \frac{\sqrt{2}}{3}; \quad R_{1} = R_{2} = R_{3} = 1.$$

c) raspored polova i nula u kompleksnoj ravnini: (2 boda)

$$T(s) = \frac{1}{s^2 + \sqrt{2} \cdot s + 1}$$

nule $s_{o1.2} = \infty$ (dvije nule su u neizmjerno)

polovi
$$s^2 + \sqrt{2} \cdot s + 1 = 0$$

$$\Rightarrow$$

polovi
$$s^2 + \sqrt{2} \cdot s + 1 = 0$$
 \Rightarrow $s_{p1,2} = -\frac{\sqrt{2} \pm \sqrt{2-4}}{2} = -\frac{\sqrt{2}}{2} \pm j \frac{\sqrt{2}}{2}$

d) amplitudno-frekvencijska karakteristika: (1bod)

$$T(j\omega) = \frac{1}{-\omega^2 + j\omega \cdot \sqrt{2} + 1}$$
 \Rightarrow

$$|T(j\omega)| = \frac{1}{\sqrt{(1-\omega^2)^2 + (\omega \cdot \sqrt{2})^2}} = \frac{1}{\sqrt{1-2\omega^2 + \omega^4 + 2\omega^2}} = \frac{1}{\sqrt{1+\omega^4}}$$

3. Pomoću bikvadratne sekcije prikazane slikom (dvije sekcije spojene u kaskadu) realizirati VP filtar 4. stupnja po Chebyshevu s maksimalnom valovitošću u području propuštanja 1.0dB i graničnom frekvencijom 1kHz. Kao granična frekvencija se uzima najniža frekvencija na kojoj amplitudno-frekvencijska karakteristika poprima vrijednost minimuma iz područja propuštanja. Izračunati elemente filtra tako da se u realizaciji koriste otpornici $R_1=R_2=R_G=10\text{k}\Omega$ (u obje sekcije u kaskadi). Izrazi koji su potrebni za izračun prikazani su uz filtarsku sekciju. (8 bodova)

$$H(s) = \frac{U_{iz}(s)}{U_g(s)} = -\frac{k \cdot s^2}{s^2 + (\omega_p / q_p)s + \omega_p^2};$$

$$q_p = \frac{\sqrt{R_1 R_2 C_1 C_2}}{(R_1 + R_2)C_2 + R_1 C_1 - \beta R_2 C_2};$$

$$\omega_p = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}; \quad k = \alpha \beta;$$

$$\alpha = \frac{C_{11}}{C_{11} + C_{12}}; \quad C_1 = C_{11} + C_{12}; \quad \beta = 1 + \frac{R_F}{R_G}$$

Rješenje:

a) Najprije izračunajmo VP prijenosnu funkciju.

Podatke o polovima moguće je pročitati iz skripte N. Mijat, "Električni Filtri", tablica 5 na strani 69:

1	ı	Re	Im	Q_p	ω_p	Faktori nazivnika
	1	-0.336870	±0.407329	0.784548	0.528581	$s^2 + 0.673739 \cdot s + 0.279398$
4	+	-0.139536	±0.983379	3.559044	0.993230	$s^2 + 0.279072 \cdot s + 0.986505$

(1 bod)

$$H_{NP}(S) = k \cdot \frac{0.279398}{S^2 + 0.673739 \cdot S + 0.279398} \cdot \frac{0.986505}{S^2 + 0.279072 \cdot S + 0.986505}$$

Zato jer smo izračunali parnu prijenosnu funkciju treba podesiti d.c.-pojačanje k=H(0) (pojačanje na frekvenciji nula) nisko-propusnog prototipa je jednako maksimalnoj valovitosti $k=10^{a_H[dB]/20}$:

$$k = 10^{-1.0/20} = 0.891251$$

$$H_{NP}(S) = 0.891251 \cdot \frac{0.279398}{S^2 + 0.673739 \cdot S + 0.279398} \cdot \frac{0.986505}{S^2 + 0.279072 \cdot S + 0.986505}$$
 (1 bod)

Na NP normalizirani prototip $H_{NP}(S)$ primijenimo NP-VP transformaciju:

$$S \to \frac{\omega_g}{S}$$
,

gdje je $\omega_{\rm g}$ =2 π ·1000 rad/s granična frekvencija filtra. Stoga je prijenosna funkcija:

$$H_{VP}(s) = 0.891251 \cdot \frac{0.279398}{\left(\frac{\omega_g}{s}\right)^2 + 0.673739 \cdot \left(\frac{\omega_g}{s}\right) + 0.279398} \cdot \frac{0.986505}{\left(\frac{\omega_g}{s}\right)^2 + 0.279072 \cdot \left(\frac{\omega_g}{s}\right) + 0.986505}$$

$$H_{VP}(s) = 0.891251 \cdot \frac{0.279398 \cdot s^2}{\left(\omega_g\right)^2 + 0.673739 \cdot \left(\omega_g\right) s + 0.279398 \cdot s^2} \cdot \frac{0.986505 \cdot s^2}{\left(\omega_g\right)^2 + 0.279072 \cdot \left(\omega_g\right) s + 0.986505 \cdot s^2}$$

$$H_{VP}(s) = 0.891251 \cdot \frac{s^2}{\frac{\omega_g^2}{0.279398} + \frac{0.673739}{0.279398} \cdot \omega_g \cdot s + s^2} \cdot \frac{s^2}{\frac{\omega_g^2}{0.986505} + \frac{0.279072}{0.986505} \cdot \omega_g \cdot s + s^2}$$

$$H_{VP}(s) = 0.891251 \cdot \frac{s^2}{3.579124 \cdot \omega_{\sigma}^2 + 2.4113952 \cdot \omega_{\sigma} \cdot s + s^2} \cdot \frac{s^2}{1.0136796 \cdot \omega_{\sigma}^2 + 0.2828895 \cdot \omega_{\sigma} \cdot s + s^2}$$

b) Slijede parametri sekcija:

1. sekcija

Iz prijenosne funkcije $H_{VP}(s)$ možemo očitati:

$$\omega_{p1} = \sqrt{\frac{\omega_g^2}{0.279398}} = \omega_g \frac{1}{\sqrt{0.279398}} = 2\pi 10^3 \cdot 1.89186 = 11886.9 \text{ rad/s}; (1 \text{ bod})$$

Ako u frekvencijsku transformaciju $S \to \frac{\omega_g}{s}$ uvrstimo $s=j\omega$ (odn. $S=j\Omega$) dobivamo $\Omega = \frac{\omega_g}{\omega}$, gdje su S i

 Ω frekvencijske varijable NP prototipa, tada se vidi da je moguće izračunati i sve karakteristične

frekvencije VP filtra iz izraza
$$\omega = \frac{\omega_g}{\Omega}$$
, pa je $\omega_{p1} = \frac{\omega_g}{\Omega_{p1}} = \frac{2\pi 10^3}{0.528581} = 11886.9 \text{ rad/s}$

(Vrijednost Ω_{p1} =0.528581 smo pročitali iz tablice.)

$$(a_1)_1 = \frac{\omega_{p1}}{q_{p1}} = \frac{0.673739}{0.279398} \omega_g \Rightarrow q_{p1} = \frac{\omega_{p1}}{(a_1)_1} = \frac{\omega_g}{\sqrt{0.279398}} \cdot \frac{0.279398}{0.673739 \cdot \omega_g} = \frac{\sqrt{0.279398}}{0.673739} = 0.784549 ;$$

Dobili smo isti Q-faktor kao u tablici (q_{p1} =0.784549) jer se Q-faktor ne mijenja NP-NP ni NP-VP transformacijom.

Uzmino k_1 =1 za prvu sekciju radi povećanja dinamičkog opsega.

2. sekcija

Frekvencija polova

$$\omega_{p2} = \frac{\omega_g}{\Omega_{p2}} = \frac{2\pi 10^3}{0.993230} = 6326.0 \,\text{lrad/s} \,\,\text{(1 bod)}$$

Q-faktor polova kao u tablici, q_{p2} =3.559044

Uzmino k_2 =0.891251 za drugu sekciju da realiziramo ukupno pojačanje kaskade. (1 bod)

c) U realizaciji koristimo bikvadratnu sekciju s visoko-propusnom karakteristikom i s jednim pojačalom koja je prikazana na slici.

$$\begin{split} q_{p} &= \frac{\sqrt{R_{1}R_{2}C_{1}C_{2}}}{(R_{1}+R_{2})C_{2}+R_{1}C_{1}-\beta R_{2}C_{2}}; \ \omega_{p} = \frac{1}{\sqrt{R_{1}R_{2}C_{1}C_{2}}}; \ C_{1} = C_{11}+C_{12}; \ k = \alpha\beta; \\ \alpha &= \frac{C_{11}}{C_{11}+C_{12}}; \ \beta = 1+\frac{R_{F}}{R_{G}}. \end{split}$$

U proračunu moramo pretpostaviti $R_1=R_2$ (odn. $R_1=R$, $R_2=R$), pa će gornji izrazi poprimiti jednostavniji oblik:

$$q_p = \frac{\sqrt{C_1 C_2}}{C_1 + (2 - \beta)C_2}, \ \omega_p = \frac{1}{R\sqrt{C_1 C_2}}.$$

U slijedećim koracima možemo odabrati bilo koji odnos kapaciteta, ali ćemo radi jednostavnosti proračuna također pretpostaviti $C_1=C_2$ (odn. $C_1=C$, $C_2=C$) jer imamo još jedan neiskorišten stupanj slobode. U tom slučaju formule poprimaju još jednostavniji oblik:

$$q_p = \frac{1}{3 - \beta}, \ \omega_p = \frac{1}{RC} \cdot (1 \text{ bod})$$

Slijedi proračun elemenata filtarskih sekcija (ne koristimo se u izračunu normiranim vrijednostima elemenata, već odmah računamo s denormiranim parametrima i stoga dobivamo denormirane, "prave" vrijednosti elemenata). Koriste se iste formule kao da računamo normirane elemente.)

1. sekcija:

Odaberimo:
$$R=10\cdot 10^3 \Rightarrow C = \frac{1}{\omega_{p1}R} = \frac{1}{11886.9\cdot 10\cdot 10^3} = 8.41263\cdot 10^{-9}$$

$$\beta_1 = 3 - \frac{1}{q_{p1}} = 3 - \frac{1}{0.784548} = 1.72538, \quad R_G = 10\text{k}\Omega \Rightarrow R_F = R_G(\beta_1 - 1) = 7.2538\text{k}\Omega$$

$$\alpha_1 = \frac{k_1}{\beta_1} = \frac{1}{1.72538} = 0.579582$$

$$\alpha = \frac{C_{11}}{C_{11} + C_{12}} = \frac{C_{11}}{C_1} \qquad \Rightarrow C_{11} = \alpha_1 C_1 = 0.579582 \cdot 8.41263 \cdot 10^{-9} = 4.87581 \cdot 10^{-9}$$

$$1 - \alpha = \frac{C_{12}}{C_{11} + C_{12}} = \frac{C_{12}}{C_1} \qquad \Rightarrow C_{12} = (1 - \alpha_1)C_1 = 0.420418 \cdot 8.41263 \cdot 10^{-9} = 3.53682 \cdot 10^{-9}$$

Vrijednosti elemenata: $R_1=R_2=R_G=10\text{k}\Omega$; $R_F=7.254\text{k}\Omega$; $C_{11}=4.876\text{nF}$, $C_{12}=3.537\text{nF}$, $C_2=8.413\text{nF}$. (1 bod)

2. sekcija:

Odaberimo:
$$R=10 \cdot 10^3 \Rightarrow C = \frac{1}{\omega_{p2}R} = \frac{1}{6326.01 \cdot 10 \cdot 10^3} = 15.8077 \cdot 10^{-9}$$

$$\beta_2 = 3 - \frac{1}{q_{p2}} = 3 - \frac{1}{3.559044} = 2.71903 , \quad R_G = 10 \text{k}\Omega \Rightarrow R_F = R_G(\beta_2 - 1) = 17.1903 \text{k}\Omega$$

$$\alpha_2 = \frac{k_2}{\beta_2} = \frac{0.891251}{2.71903} = 0.327783$$

$$C_{11} = \alpha_2 C_1 = 0.327783 \cdot 15.8077 \cdot 10^{-9} = 5.18151 \cdot 10^{-9}$$

$$C_{12} = (1 - \alpha_2)C_1 = 0.672217 \cdot 15.8077 \cdot 10^{-9} = 10.06262 \cdot 10^{-9}$$

Vrijednosti elemenata: $R_1=R_2=R_G=10\text{k}\Omega$; $R_F=17.19\text{k}\Omega$; $C_{11}=5.182\text{nF}$, $C_{12}=10.63\text{nF}$, $C_2=15.81\text{nF}$. (1 bod)

Testiranje dobivenih rješenja moguće je povesti analizom u programu PSpice

A-F karakteristika:

A-F karakteristika odgovara zadanim specifikacijama

Bodovi:

1. zadatak: 6 bodova 2. zadatak: 6 bodova <u>3. zadatak: 8 bodova</u> Ukupno: 20 bodova