Dark matter in left-right symmetric standard model

triplet scalar dark matter portal

Diego Restrepo

June 27, 2017

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:1703.08148 (PRD) In collaboration with C. Arbeláez (UFSM)& M. Hirsch (IFIC)

Table of Contents

- 1. Dark matter and unification
- 2. Left-Right symmetric realization
- 3. Triplets

Dark matter and unification

Unification: SO(10)

```
u_L
u_L
```

$$\Rightarrow \mathcal{L}_{SM} \supset h\, \mathbf{16}_{\textit{F}} \times \mathbf{16}_{\textit{F}} \times \mathbf{10}_{\textit{S}} + \text{h.c}$$

Not-susy $SO(10) \rightarrow SU(5) \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times Z_{2}$

Standard Model: Z ₂ -even	New Z ₂ -odd particles
Fermions: 16 _F	$10_F, 45_F, \cdots$
Scalars: 10 _{<i>H</i>} , 45 _{<i>H</i>} · · ·	16 _H , ⋅ ⋅ ⋅

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

Not-susy $SO(10) \rightarrow SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$

Standard Model: Z ₂ -even	New Z ₂ -odd particles
Fermions: 16 _F	$10_F, 45_F, \cdots$
Scalars: 10 _{<i>H</i>} , 45 _{<i>H</i>} ⋯	16 _{<i>H</i>} , ⋅ ⋅ ⋅

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

	fermions	scalars
$SU(2)_L \times U(1)_Y$	even $SO(10)$	odd $SO(10)$
representation	representations	representations
10	45, 54, 126, 210	16, 144
$2_{\pm 1/2}$	10, 120, 126, 210, 210'	16, 144
3_0	45, 54, 210	144

 $SU(3)_C: 3(T), 6, 8(\Lambda)$

$$m_{3_0} = 2.7 \text{ TeV}, \qquad m_{\Lambda} \sim 10^{10} \text{ TeV}, \qquad m_{GUT} \sim 10^{16} \text{ GeV}.$$

arXiv:0912.1545 (Frigerio-Hambye)

Not-susy $SO(10) \rightarrow SU(5) \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times Z_{2}$

Standard Model: Z ₂ -even	New Z ₂ -odd particles
Fermions: 16 _F	$10_F, 45_F, \cdots$
Scalars: 10 _{<i>H</i>} , 45 _{<i>H</i>} · · ·	16 _{<i>H</i>} , ⋅ ⋅ ⋅

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve

gauge coupling unification

	fermions	scalars
$SU(2)_L \times U(1)_Y$	even $SO(10)$	odd $SO(10)$
representation	representations	representations
1_0	45, 54, 126, 210	16, 144
$(2_{\pm 1/2})$	10, 120, 126, 210, 210'	16, 144
3_0	45, 54, 210	144

 $SU(3)_{C}: 3(T), 6, 8(\mathring{\Lambda})$

Split-SUSY like

arXiv:1509.06313 (C. Arbelaez, R. Longas, D.R, O. Zapata)

Not-susy $SO(10) \rightarrow SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$

Standard Model: Z ₂ -even	New Z ₂ -odd particles
Fermions: 16 _F	$10_F, 45_F, \cdots$
Scalars: 10 _H , 45 _H · · ·	16 _{<i>H</i>} , · · ·

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

Partial Split-SUSY-like spectrum: bino-higgsino-wino

Not-susy $SO(10) \rightarrow SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$

Standard Model: Z ₂ -even	New Z ₂ -odd particles
Fermions: 16 _F	10 _F , 45 _F , · · ·
Scalars: 10 _H , 45 _H ⋅ ⋅ ⋅	16 _{<i>H</i>} , ⋅ ⋅ ⋅

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

	fermions	scalars
$SU(2)_L \times U(1)_Y$	even $SO(10)$	odd $SO(10)$
representation	representations	representations
1_0	45, 54, 126, 210	16, 144
$(2_{\pm 1/2})(2_{1/2}^{S})$	10, 120, 126, 210, 210'	16, 144
3_0	45, 54_210	144
211(2)	1500 06313	

 $SU(3)_C: \overline{3(7)}, 6, \overline{8(\Lambda)}$ 1509.0631:

SUSY-like spectrum: bino-higgsino-wino

$$10'_{H}$$
 with fermion DM or, 16_{H} , ... with scalar DM

Dilepton plus transverse missing energy signal

SU(2)_L assignments:

$$\begin{array}{c} \Psi = 1, 2(\Psi), 3(\Sigma)\,, & \Phi = 1, 2\,, \text{ with some substitution}\\ \hline p & \tilde{l}/\tilde{\tau} & \tilde{\chi}_1^0 \\ \hline p & \tilde{l}/\tilde{\tau} & \tilde{\chi}_1^0 \\ \hline l/\tau & \tilde{\chi}_1^0 & \tilde{\chi}_1^0 \end{array}$$

$$\Phi = 1, 2$$
, with $m_{\rm DM} \sim m_h/2$.

Intermediate states and smaller lepton p_T

Smaller cross sections.

Full analysis on flavor space: F. von der Pahlen, G. Palacio, DR, O. Zapata arXiv:1605.01129 [PRD]

The most general SO(10) invariant Lagrangian contains the following Yukawa terms

$$-\mathcal{L} \supset Y10_F45_F10_H + M_{45_F}45_F45_F + M_{10_F}10_F10_F$$

Basis
$$\psi^0 = \begin{pmatrix} N, \Sigma^0, \psi_L^0, \begin{pmatrix} \psi_R^0 \end{pmatrix}^\dagger \end{pmatrix}^T$$

$$\mathcal{M}_{\psi^0} = \begin{pmatrix} \frac{M_N}{0} & 0 & -\mathbf{y} c_\beta \mathbf{v} / \sqrt{2} & \mathbf{y} s_\beta \mathbf{v} / \sqrt{2} \\ -\mathbf{y} c_\beta \mathbf{v} / \sqrt{2} & f c_\beta \mathbf{v} / \sqrt{2} & 0 & -M_D \\ \mathbf{y} s_\beta \mathbf{v} / \sqrt{2} & -f s_\beta \mathbf{v} / \sqrt{2} & 0 & -M_D \\ \mathbf{y} s_\beta \mathbf{v} / \sqrt{2} & -f s_\beta \mathbf{v} / \sqrt{2} & 0 & 0 \end{pmatrix},$$

$$\mathbf{10}_F \to \psi_L, (\psi_R)^\dagger$$

$$\mathbf{45}_F \to \Sigma, \Lambda$$

$$\mathbf{45}_F' \to N$$
arXiv:1511.06495: signals at 100 TeV collider

The most general SO(10) invariant Lagrangian contains the following Yukawa terms

$$-\mathcal{L} \supset Y10_F45_F10_H + M_{45_F}45_F45_F + M_{10_F}10_F10_F$$

$$\begin{aligned} \text{Basis } \boldsymbol{\psi}^0 &= \begin{pmatrix} N, \Sigma^0, \boldsymbol{\psi}_L^0, \begin{pmatrix} \boldsymbol{\psi}_R^0 \end{pmatrix}^\dagger \end{pmatrix}^T \\ \boldsymbol{\mathcal{M}}_{\boldsymbol{\psi}^0} &= \\ \begin{pmatrix} M_N & 0 & -\mathbf{y} c_\beta \mathbf{v}/\sqrt{2} & \mathbf{y} s_\beta \mathbf{v}/\sqrt{2} \\ 0 & M_\Sigma & f c_\beta, \mathbf{v}/\sqrt{2} & -f s_\beta, \mathbf{v}/\sqrt{2} \\ -\mathbf{y} c_\beta \mathbf{v}/\sqrt{2} & f c_\beta, \mathbf{v}/\sqrt{2} & 0 & -M_D \\ \mathbf{y} s_\beta \mathbf{v}/\sqrt{2} & -f s_\beta, \mathbf{v}/\sqrt{2} & -M_D & 0 \end{pmatrix}, \\ \mathbf{10}_F &\to \boldsymbol{\psi}_L, (\boldsymbol{\psi}_R)^\dagger \\ \mathbf{45}_F &\to \boldsymbol{\Sigma}, \boldsymbol{\Lambda} \\ \mathbf{45}_F' &\to \boldsymbol{N} \end{aligned}$$

S. Horiuchi, O. Macias, DR, A. Rivera, O. Zapata, 1602.04788 (JCAP)

The most general SO(10) invariant Lagrangian contains the following Yukawa terms

$$-\mathcal{L} \supset Y10_F45_F10_H + M_{45_F}45_F45_F + M_{10_F}10_F10_F$$

$$\begin{aligned} \text{Basis } \boldsymbol{\psi}^0 &= \begin{pmatrix} N, \Sigma^0, \boldsymbol{\psi}_L^0, \begin{pmatrix} \boldsymbol{\psi}_R^0 \end{pmatrix}^\dagger \end{pmatrix}^T \\ \boldsymbol{\mathcal{M}}_{\boldsymbol{\psi}^0} &= \\ \begin{pmatrix} M_N & 0 & -\mathbf{y} c_\beta \mathbf{v}/\sqrt{2} & \mathbf{y} s_\beta \mathbf{v}/\sqrt{2} \\ 0 & M_\Sigma & f c_\beta, \mathbf{v}/\sqrt{2} & -f s_\beta, \mathbf{v}/\sqrt{2} \\ -\mathbf{y} c_\beta \mathbf{v}/\sqrt{2} & f c_\beta, \mathbf{v}/\sqrt{2} & 0 & -M_D \\ \mathbf{y} s_\beta \mathbf{v}/\sqrt{2} & -f s_\beta, \mathbf{v}/\sqrt{2} & -M_D & 0 \end{pmatrix}, \\ \mathbf{10}_F &\to \boldsymbol{\psi}_L, (\boldsymbol{\psi}_R)^\dagger \\ \mathbf{45}_F &\to \boldsymbol{\Sigma}, \boldsymbol{\Lambda} \\ \mathbf{45}_F' &\to \boldsymbol{N} \end{aligned}$$

S. Horiuchi, O. Macias, DR, A. Rivera, O. Zapata, 1602.04788 (JCAP)

The most general SO(10) invariant Lagrangian contains the following Yukawa terms

$$-\mathcal{L} \supset Y10_F45_F10_H + M_{45_F}45_F45_F + M_{10_F}10_F10_F + \mathcal{L}(10_{\Phi}).$$

$$\begin{aligned} \text{Basis } \boldsymbol{\psi}^0 &= \begin{pmatrix} N, \Sigma^0, \boldsymbol{\psi}_L^0, \left(\boldsymbol{\psi}_R^0\right)^\dagger \end{pmatrix}^\mathsf{T} \\ \boldsymbol{\mathcal{M}}_{\boldsymbol{\psi}^0} &= \\ \begin{pmatrix} M_N & 0 & -\mathbf{y} \mathbf{c}_\beta \mathbf{v}/\sqrt{2} & \mathbf{y} \mathbf{s}_\beta \mathbf{v}/\sqrt{2} \\ 0 & M_\Sigma & f \mathbf{c}_\beta \mathbf{v}/\sqrt{2} & -f \mathbf{s}_\beta \mathbf{v}/\sqrt{2} \\ -\mathbf{y} \mathbf{c}_\beta \mathbf{v}/\sqrt{2} & f \mathbf{c}_\beta \mathbf{v}/\sqrt{2} & 0 & -M_D \\ \mathbf{y} \mathbf{s}_\beta \mathbf{v}/\sqrt{2} & -f \mathbf{s}_\beta \mathbf{v}/\sqrt{2} & -M_D & 0 \end{pmatrix}, \\ \mathbf{10}_F &\to \boldsymbol{\psi}_L, \left(\boldsymbol{\psi}_R\right)^\dagger \\ \mathbf{45}_F &\to \boldsymbol{\Sigma}, \boldsymbol{\Lambda} \\ \mathbf{45}_F' &\to \boldsymbol{N} \end{aligned}$$

Split-SUSY: like $M_{\Phi} = 2 \text{ TeV}$

Is the glass half empty or half full?

Tree-level SM-portal could be fully excluded in the near future

- Singlet scalar dark matter
- · Inert doublet model
- Tree-level SM-portal dark matter · · ·

In this talk we explore

Is the glass half empty or half full?

Tree-level SM-portal could be fully excluded in the near future

- Singlet scalar dark matter
- · Inert doublet model
- Tree-level SM-portal dark matter · · ·

In this talk we explore

Recover SM-portals in LR models

Is the glass half empty or half full?

Tree-level SM-portal could be fully excluded in the near future

- Singlet scalar dark matter
- · Inert doublet model
- Tree-level SM-portal dark matter · · ·

In this talk we explore

- Recover SM-portals in LR models
- New portals in LR models

Left-Right symmetric realization

Singlet-doublet fermion dark matter

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Ф	1	(1, 2, 2, 0)	0	10
χ , χ^c	1	(1, 2, 2, 0)	1/2	10
N	1	(1, 1, 1, 0)	1/2	45

Table 1: The relevant part of the field content. Note that, the two fermion doublets χ and χ^c come from an only fermionic LR bidoublet. In the third column the relevant fields are characterized by their $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ quantum numbers while their SO(10) origin is specified in the fourth column.

Unification

m_{LR} (GeV)	$3_c 2_L 2_R 1_{B-L}$	m_G (GeV)
2×10^{3}	$\Phi_{1,2,2,0} + 2\Phi_{1,1,3,-2} + \Psi_{1,1,3,0} + \Phi_{1,1,3,0} + \Phi_{8,1,1,0}$	1.65×10^{16}
:		÷

Table 2: $\Delta_{L,R} = 2\Phi_{1,1,3,-2}$. m_{LR} and m_G are given in GeV.

Triplets

Minimal Left-Right Symmetric Standard Model

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Q	3	$(3,2,1,+\frac{1}{3})$	1/2	16
Q ^c	3	$(\bar{3},1,2,-\frac{1}{3})$	1/2	16
L	3	(1,2,1,-1)	1/2	16
Lc	3	(1,1,2,+1)	1/2	16
Ф	1	(1, 2, 2, 0)	0	10
Δ_R	1	(1,1,3,-2)	0	126

Left-singlet right-triplet DM

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Q	3	$(3,2,1,+\frac{1}{3})$	1/2	16
Q ^c	3	$(\bar{3},1,2,-\frac{1}{3})$	1/2	16
L	3	(1,2,1,-1)	1/2	16
Lc	3	(1,1,2,+1)	1/2	16
Ф	1	(1, 2, 2, 0)	0	10
Δ_R	1	(1,1,3,-2)	0	126
Ψ_{1130}	1	(1, 1, 3, 0)	1/2	45
	ĺ	'		'

Figure 1: Proper relic density scan: $0.5 < v_R/\text{TeV} < 50$

Mixed Left-singlet right-triplet DM

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Q	3	$(3,2,1,+\frac{1}{3})$	1/2	16
Q ^c	3	$(\bar{3},1,2,-\frac{1}{3})$	1/2	16
L	3	(1,2,1,-1)	1/2	16
Lc	3	(1,1,2,+1)	1/2	16
Ф	1	(1, 2, 2, 0)	0	10
Δ_R	1	(1,1,3,-2)	0	126
Ψ ₁₁₃₀	1	(1, 1, 3, 0)	1/2	45
				•

Mixed Left-singlet right-triplet DM

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Q	3	$(3,2,1,+\frac{1}{3})$	1/2	16
Q ^c	3	$(\bar{3},1,2,-\frac{1}{3})$	1/2	16
L	3	(1,2,1,-1)	1/2	16
Lc	3	(1,1,2,+1)	1/2	16
Ф	1	(1, 2, 2, 0)	0	10
Δ_R	1	(1,1,3,-2)	0	126
Ψ ₁₁₃₀	1	(1,1,3,0)	1/2	45
Ψ_{1132}	1	(1,1,3,2)	1/2	126
Ψ_{113-2}	1	(1,1,3,-2)	1/2	126

$$\Psi_{1132} = \begin{pmatrix} \Psi^{+}/\sqrt{2} & \Psi^{++} \\ \Psi^{0} & -\Psi^{+}/\sqrt{2} \end{pmatrix}, \qquad \bar{\Psi}_{113-2} = \begin{pmatrix} \Psi^{-}/\sqrt{2} & \overline{\Psi}^{0} \\ \Psi^{--} & -\Psi^{-}/\sqrt{2} \end{pmatrix}. \tag{1}$$

$$L \supset M_{11} \operatorname{Tr}(\Psi_{1130}\Psi_{1130}) + M_{23} \operatorname{Tr}(\Psi_{1132}\bar{\Psi}_{113-2}) + \lambda_{13} \operatorname{Tr}(\Delta_R \bar{\Psi}_{113-2}\Psi_{1130}) + \lambda_{12} \operatorname{Tr}(\Delta_R^{\dagger}\Psi_{1132}\Psi_{1130}),$$
 (2)

$$\tan \gamma = \frac{\lambda_{13}}{\lambda_{12}}, \qquad \lambda = \sqrt{\lambda_{12}^2 + \lambda_{13}^2}. \tag{3}$$

Blind spot at

$$M_{23}\sin 2\gamma - M_{\rm DM} = 0 \tag{4}$$

Proper relic density scan

Figure 2: $M_{11} = 50 \text{ TeV } 2.7 < M_{23}/\text{TeV} < 3.1$ (Right: $\tan \gamma > 5$)

14

Figure 3:

Figure 3: Proper relic density scan: v_R : [2,50] TeV, M_{23} : [0.2,50] TeV, M_{11} : 50 TeV, $\tan \gamma = -1$ and $\lambda = 0.14$.

Direct detection cross section

Figure 4: v_R : [2,50] TeV, M_{23} : [0.2,50] TeV, M_{11} : 50 TeV, $\tan \gamma = -1$ and $\lambda = 0.14$.

Unification

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Q	3	$(3,2,1,+\frac{1}{3})$	1/2	16
Q ^c	3	$(\bar{3},1,2,-\frac{1}{3})$	1/2	16
L	3	(1,2,1,-1)	1/2	16
Lc	3	(1,1,2,+1)	1/2	16
Ф	1	(1, 2, 2, 0)	0	10
Δ_R	1	(1,1,3,-2)	0	126
Ψ ₁₁₃₀	1	(1, 1, 3, 0)	1/2	45
Ψ_{1132}	1	(1,1,3,2)	1/2	126
Ψ_{113-2}	1	(1,1,3,-2)	1/2	126

Unification

Field	Multiplicity	$3_c 2_L 2_R 1_{B-L}$	Spin	SO(10) origin
Q	3	$(3,2,1,+\frac{1}{3})$	1/2	16
Q ^c	3	$(\bar{3},1,2,-\frac{1}{3})$	1/2	16
L	3	(1,2,1,-1)	1/2	16
Гc	3	(1,1,2,+1)	1/2	16
Ф	1	(1, 2, 2, 0)	0	10
Δ_R	1	(1,1,3,-2)	0	126
Ψ ₁₁₃₀	1	(1, 1, 3, 0)	1/2	45
Ψ_{1132}	1	(1, 1, 3, 2)	1/2	126
Ψ_{113-2}	1	(1,1,3,-2)	1/2	126
Ψ ₁₃₁₀	1	(1, 3, 1, 0)	1/2	45
Ψ_{8110}	1	(1, 1, 8, 0)	1/2	45
$\Psi_{321\frac{1}{3}}$	1	(3, 2, 1, 1/3)	1/2	16
$\Psi_{321-\frac{1}{3}}$	1	(1,2,3,-1/3)	1/2	16

Unification quality

Conclusions

In addition to accommodate usual simplified dark matter models, Left-right symmetric standard models have additional DM portals:

New Δ_R portal for direct detection of left-singlet right-triplet mixed dark matter, in companion with left-singlets charged and doubly charged fermions.

Next: Search for them in compressed spectra scenarios at the LHC

