TD 5 solution

Email timothy.hosgood@univ-amu.fr for questions or corrections.

May 4, 2019

Problem 1. Let $f:[a,b] \to \mathbb{R}$ and $g:[b,c] \to \mathbb{R}$ be continuous functions that agree on the overlap (i.e. such that f(b) = g(b). Show that $h:[a,c] \to \mathbb{R}$, defined by

$$h(x) = \begin{cases} f(x) & x \in [a, b] \\ g(x) & x \in [b, c] \end{cases}$$

is continuous.

Solution 1.

We know that h is continuous at every point in $[a,b) \cup (b,c]$; it just remains to show that h is continuous at b. Let $\varepsilon > 0$. Since f is continuous, there exists some $\delta_1 > 0$ such that

$$|b-x| < \delta_1 \implies |f(b) - f(x)| < \varepsilon.$$

Similarly, by continuity of g, there exists some $\delta_2 > 0$ such that

$$|b-x| < \delta_2 \implies |g(b) - g(x)| < \varepsilon.$$

Then, for $\delta = \min\{\delta_1, \delta_2\}$, we have that

$$|h(b) - h(x)| = \begin{cases} |f(b) - f(x)| & x \le b \\ |g(b) - g(x)| & x > b \end{cases}$$

whence, in both cases,

$$|b - x| < \delta \implies |h(b) - h(x)| < \varepsilon.$$

Problem 2. Assume that the temperature T(x) at a point x on a sphere of radius 1 is continuous in space, i.e. a continuous function $T: S^2 \to \mathbb{R}$. Show that there is a point $y \in S^2$ on the surface such that T(y) = T(-y). Hint: consider f(x) = T(x) - T(-x) and compare f(x) with f(-x).

Solution 2. We see that f(-x) = T(-x) - T(x) = -f(x). Looking at what the question is asking, we see that we wish to find some $x_0 \in S^2$ such that $f(x_0) = 0$. But if $f(x_0) \neq 0$ then either $f(x_0) > 0$ or $f(x_0) < 0$. Without loss of generality, assume that $f(x_0) > 0$. Then $f(-x_0) = -f(x_0) < 0$, whence, by your favourite version of the Intermediate Value Theorem, there exists some x_0' 'in between' x_0 and $-x_0$ (for example, restricting f to a function on $[a,b] \subset \mathbb{R}$ by taking a line joining x_0 and $-x_0$) such that $f(x_0') = 0$.

Problem 3. Let $f: \overline{B}(0;1) \to \mathbb{R}$ be a continuous function, where $\overline{B}(0;1) \subset \mathbb{R}^2$ is the closed ball of radius 1, centred at (0,0). Show that f cannot be injective.

Solution 3. Note that $\overline{B}(0;1)$ and \mathbb{R} are not homeomorphic, since, for example, if we remove a point from the former then the resulting space remains connected, which is not true for the latter. Further, $\overline{B}(0;1)$ is compact, and \mathbb{R} is Hausdorff.¹ This means that we can obtain a proof by contradiction using the following corollary.

Theorem. Let $f: X \to Y$ be a continuous *bijection* between topological spaces, with X compact and Y *Hausdorff.* Then f is a homeomorphism.

Proof. See, for example, https://proofwiki.org/wiki/Continuous_Bijection_from_Compact_to_Hausdorff_is_Homeomorphism.

Corollary. Let $f: X \to Y$ be a continuous *injection* between topological spaces, with X *compact* and Y *Hausdorff.* Then f is a homeomorphism from X to f(X).

¹That is, for every $x \neq y \in \mathbb{R}$, there exist **disjoint** open subsets $U, V \subset \mathbb{R}$ such that $x \in U$ and $y \in V$.