A simple neural network with backpropagation using Python

2019 - 2020

Ando Ki, Ph.D. adki@future-ds.com

Contents

- A simple two-layer neural network
- Creating neural network
- Initialize parameters
- Forward propagation
 - Active function
 - Loss function
- Loss function and backward propagation
- Backward propagation
- Running an example
- All together

- Dealing with Python errors
- Considerations
- A full version
- Standalone training code
- Standalone inference code
- Backpropagation: single-neuron case
- Backpropagation: two-neurons case
- Sequence of layers

A simple two-layer neural network

Creating neural network (1/2)

Simplified version removing biases

import numpy as np
class NeuralNetwork:
 def __init__(self, n_x, n_h, n_y):
 """ n_x: number of input nodes
 n_h: number of hidden nodes
 n_y: number of output nodes"""
 self.W1 = np.random.rand(n_x, n_h)
 self.W2 = np.random.rand(n_h, n_y)
 self.hidden = np.zeros((1,n_h))
 self.output = np.zeros((n_y, 1))
 self.activation = sigmoid

nn = NeuralNetwork(3,4,1)

Forward propagation

- It calculates the predicted output.
 - numpy.dot(a, b)
 - Dot product of two arrays (i.e., matrix multiplication)

$$h = f(W_1 \times x + b_1)$$

$$z = f(W_2 \times h + b_2)$$

$$= f(W_2 \times (f(W_1 \times x + b_1)) + b_2)$$

Activation function

Use one of many activation function sigmoid(z) =s(z)= $\frac{1}{(1+e^{-z})}$

$$\frac{ds(z)}{dz} = \frac{d}{dz} \left[\frac{1}{(1+e^{-z})} \right] = \frac{d}{dz} (1+e^{-z})^{-1} = -(1+e^{-z})^{-2} \times (-e^{-z}) = \underline{s(z)} \times (1-s(z))$$
 import numpy as np from matplotlib import pyplot as plt def sigmoid(z): return 1 / (1 + np.exp(-z)) def dsigmoid(z): return sigmoid(z) * (1 - sigmoid(z))
if __name__ == "__main__": z = np.linspace(-10, 10, 200) plt.grid() plt.plot(z, sigmoid(z))
plt.plot(z, dsigmoid(z))
plt.show()

Activation function

Use one of many activation function

$$\tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{(e^z - e^{-z})}{(e^z + e^{-z})}$$

$$\frac{\partial \tanh(z)}{\partial z} = \frac{(e^z + e^{-z}) \times (e^z + e^{-z}) + (e^z + e^{-z})}{(e^z + e^{-z})}$$
import numpy as np
from matplotlib import pyplot as plt
$$\det \tanh(z): \text{ return np.tanh}(z)$$

$$\det \det \ln(z): \text{ return 1.0 - np.tanh}(z)^{**2}$$
if __name__ == "__main__":
$$z = \text{np.linspace}(-6, 6, 100)$$

$$\text{plt.grid}()$$

$$\text{plt.plot}(z, \tanh(z))$$

$$\text{plt.plot}(z, \det \ln(z))$$

$$\text{plt.show}()$$

Loss function

- Select one of many loss functions.
 - a way to evaluate the "goodness" of our predictions (i.e. how far off are our predictions)
 - → loss: measure the error the prediction

$$SSE = \sum_{i=1}^{n} ((z-y))^2$$

- Sum of Squared Error (SSE)
 - where 'y' for desired value, 'z' for calculated value.

- Our goal in training is to find the best set of weights and biases that minimizes the loss function.
- Calculate the derivative of the loss function with respect to the weights and biases.

Loss function and backpropagation

Loss(y, z) =
$$\sum_{i=1}^{n} (z - y)^2$$
 Where x=input, z=output, y=desired output
$$\frac{\partial Loss(z - y)}{\partial W} = \frac{\partial \sum_{i=1}^{n} (z - y)^2}{\partial W}$$
 $m = W_1x + b_1$
$$= \frac{\partial \sum_{i=1}^{n} (z - y)^2}{\partial z} \times \frac{\partial z}{\partial m} \times \frac{\partial m}{\partial W}$$
 $z = f(W_2h + b_2)$
$$= f(W_2f(W_1x + b_1) + b_2)$$

$$= f(W_2f(m) + b_2)$$

$$= f(...)$$

$$= activation function$$

$$= 2(z - y) \times \frac{\partial z}{\partial m} \times x$$

$$= 2(z - y) \times derivative_of_activatio_function \times x$$

https://youtu.be/tleHLnjs5U8

Backward propagation

All together (2/3)

```
def feedforward(self, In):
  """In: input data""
  self.hidden = self.activation(np.dot(In, self.W1))
  self.output = self.activation(np.dot(self.hidden, self.W2))
  return self.output
def backprop(self, In, Out, Desired):
   """In: input data
    Out: the result of forwared propagation
    Desired: desired value
    application of the chain rule to find derivative of the loss function
    with respect to W2 and W1""
  diff = Out - Desired
  d_W2 = np.dot(self.hidden.T, (2*diff*self.activation(Out, True)))
  d_W1 = np.dot(In.T,\
           np.dot(2*diff*self.activation(Out, True), self.W2.T)*self.activation(self.hidden, True))
  # update the weights with the derivative (slope) of the loss function
  self.W1 -= d_W1
  self.W2 -= d_W2
```

15

All together (3/3)

```
_main_
X = np.array([[0,0,1],
         [0,1,1],
         [1,0,1],
         [1,1,1]])
Y = np.array([[0],[1],[1],[0]])
nn = NeuralNetwork(X.shape[1],4,Y.shape[1])
loss_values = []
for i in range(1000):
  z = nn.feedforward(X)
  nn.backprop(X, z, Y)
  loss = lossFunction(z, Y)
  loss_values.append(loss)
print(nn.output)
plt.plot(loss_values)
plt.xlabel("Iterations"); plt.xlim(-10, len(loss_values))
plt.ylabel("Loss")
plt.show()
```


Running 'simple.py' example

- This example shows how to program a simple neural network with backpropaga tion
 - Step 1: (ignore this step if you do not use virtual environment) go to your project directory an d invoke Python virtual environment
 - [user@host] cd \$(PROJECT)/codes/python-projects/backpropagation
 - [user@host] source ~/my_python/bin/activate
 - ► Step 2: see the codes
 - ► Step 3: run
 - [user@host] python simple.py
 - OI
 - [user@host] python3 simple.py

[user@host] cd \$(PROJECT)/codes/python-projects/backpropagation [user@host] source -/my_python/bin/activate (my_python)\$ python simple.py (my_python)\$ deactivate [user@host]

1

Installing matplot on Raspberry Pi

- How to install matplot on Raspberry Pi
 - \$ sudo apt-get update
 - \$ sudo apt-get install python-matplotlib

Dealing with Python errors

- How to install matplot
 - \$ sudo pip install matplotlib
 - When pip incurs error due to version mis-match, do as follows and then do install 'mathplotlib' again.
 - \$ sudo pip install --upgrade pip
 - Or
 - \$ sudo pip2 install --upgrade pip
- How to install python-tk
 - ▶ \$ sudo apt-get install python-tk

19

Considerations

- Initial value issues
 - Determines local or global minima
- Activation function issues
- Error/loss function issues
- Learning rate issues
- Optimizing function issues

- How to save and load trained results, i.e., weights.
- How to separate training and inference steps.
- How to expend multi-layer more than two.

A full version (2/4)

```
def feedforward(self, In):
  """In: input data""
  self.hidden = self.activation(np.dot(In, self.W1))
  self.output = self.activation(np.dot(self.hidden, self.W2))
  return self.output
def backprop(self, In, Out, Desired):
   "In: input data
   Out: the result of forwared propagation
   Desired: desired value
   application of the chain rule to find derivative of the loss function
    with respect to W2 and W1""
  diff = Out - Desired
  d_W2 = np.dot(self.hidden.T, (2*diff*self.activation(Out, True)))
  # update the weights with the derivative (slope) of the loss function
  self.W1 -= d_W1
  self.W2 -= d_W2
```


Backpropagation: single-neuron case (1/2)

- xj: input
- Wj: weight
- b: bias
- g(): activation function
- z: sum of xj*Wj+b
- y: output of activation function
- e: expected value

Loss function

- $L(y,e) = \frac{1}{2} \cdot (y-e)^2$
 - y: output value
 - e: expected value
 - ⇒ ½: make life easy
- variation of Wi causes z to vary,
- variation of z causes g(z) to vary,
- variation of g(z) causes L() to vary.

Let get gradient of y against Wi

- **⊃** L(y,e)=1/2*(y-e)**2
- \Rightarrow y = g(z)
- z=sum(xj*Wj+b)

refer to: https://towardsdatascience.com/back-propagation-the-easy-way-part-1-6a8cde653f65

2

Backpropagation: single-neuron case (2/2)

- gradient of L against Wi (applying chain rule)
 - - L(y,e)=1/2*(y-e)**2
 - \Rightarrow y = g(z)
 - z=sum(xj*Wj+b)

- $\frac{\partial L(y,e)}{\partial y}$ $\frac{d(1/2\cdot(y-e)^2)}{dy} = \frac{d(1/2\cdot(y-e)^2)}{dy} = (y-e)$
- ▶ dg(z)/∂z
 ⇒ derivative of activation function g(z)
- $\frac{\partial \sum (xj \cdot Wj + b)}{\partial Wi}$ $\frac{\partial (x1 \cdot W1 + x2 \cdot W2 + \dots + xn \cdot Wn)}{\partial Wi} = \frac{d(xi \cdot Wi)}{\partial Wi} = xi$

Backpropagation: two-neuron case (1/3)

- x: input
- W: weight
- b: bias
- g(): activation function
- z: sum of x*W+b
- y: output of activation function
- e: expected value

for layer 3

- variation of v causes z3 to vary,
- variation of z3 causes g3(z3) to vary,
- variation of g3(z3) causes L(y,e) to vary

refer to: https://towardsdatascience.com/back-propagation-the-easy-way-part-1-6a8cde653f65

Backpropagation: two-neuron case (2/3) - layer 3

Layer 3

Gradient of L against v

- \Rightarrow b = g(z) = y
- z=sum(xj*Wj+b)
- where v is one of W2

$$\frac{\partial L(y,e)}{\partial b} = \frac{\partial L(y,e)}{\partial y}$$

$$\frac{d(1/2 \cdot (y-e)^2)}{dy} = \frac{d(1/2 \cdot (y-e)^2)}{dy} = (y-e)$$

- - derivative of activation function g(z)

$$\frac{\partial \sum (a \cdot v + b)}{\partial v}$$

$$\frac{\partial v}{\partial v} = \frac{d(a \cdot w) + aa \cdot wa}{dv} = \frac{d(a \cdot v)}{dv} = a$$

$$\frac{\partial L(y,e)}{\partial v} = (y-e) \cdot \frac{\partial g(z)}{\partial z} \cdot a$$
where a is result of previous layer

Backpropagation: two-neuron case (3/3) – layer 2

- for layer 2
 - variation of z² affects g²(z²)
 - variation of g²(z²) affects z³ (note that at this point v is considered fixed)
 - variation of z³ affects g³(z³)
 - ▶ variation of g³(z³) affects £(y, ŷ)

- gradient of L against Wi (applying chain rule)
 - - $\partial z^3/\partial a^2 = \partial (a^2 * v))/\partial a^2 = v$
 - \Rightarrow $\partial a^2/\partial z^2 = \partial g^2(z^2)/\partial z^2 = g^2(z^2)$
 - $\Rightarrow \partial z^2/\partial w_i = x_i$
 - - $\delta^3 = (a^3 y) * g^3'(z^3)$

31

Sequence of layers

For any layer $l \le L$ $\partial \mathcal{L}/\partial w^l = \delta^l * a^{l-1}$ $\partial \mathcal{L}/\partial b^l = \delta^l$

where a^{l-1} is the output of the layer l-1, or if we are at layer 1 it will be the input x.

- For layer L $\delta^L = (a^L - y) * g^{L'}(z^L)$
- For any other layer l < L $\delta^{|} = \delta^{|+1} * w^{|+1} * g^{|}(z^{|})$

㈜퓨쳐디자인시스템 34051 대전광역시 유성구 문지로 193, KAIST 문지캠퍼스, F723호 (042) 864-0211~0212 / contact@future-ds.com / www.future-ds.com

Future Design Systems, Inc.

Faculty Wing F723, KAIST Munji Campus, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Korea +82-042-864-0211~0212 / contact@future-ds.com / www.future-ds.com

