Efficient Revenue Recovery Using Machine Learning

Collection agencies spends millions of dollars sending letters and making phone calls in order to potentially receive payment of some sort from the debtor.

Most of these companies are blindly sending letters and making phone calls to make an effort to retain some form of payment. Can we use machine learning to segment and rank accounts by likelihood of payment using historical successes?

Methodology - OSEMN

Obtain	Scrub	Explore	Model	Interpret
Identify the dataset(s) to use and extract the data into usable format (.csv, json,xml,etc.)	Cleaning the data, delete, and/or fill missing values	Find patterns by using visualizations and charts	Use predictive tools to enhance decision making	Storytelling through data Identify insights
(.65), j5011,81111,616.)	Examine the data and understand every	Extract features	In-depth analytics using machine learning	Visualize findings
	feature,, identify errors, missing values, and corrupt records	Use statistics to identify significant variables	Evaluate and refine model	

Our Data

- DB_Accounts_2012-2015.txt: contains account numbers and account specifics
- DB_Splits.txt: contains payment information
- DB_Entities.txt: contains entity address information
- DB_Purchases.txt: contains account balances purchases and descriptive portfolio information
- uszips.csv: contains zip code based economic data
- 12+ million records & 46 columns

Model - Part I

We used three different algorithms in attempt to identify different clusters or our Classes i.e. "Non-Payer" and "Payer"

Results: The algorithms failed to accurately cluster the classes.

Model - Part II

We used four types of classification algorithms:

- Logistic Regression
- K-Nearest Neighbors
- Support Vector Machine (SVM)
- Random Forest

Results:

 SVM classifier has the best score of 67.5% which means it identified payers from the non-payers better than the other models

Model - Part III

Simple Neural Networks:

- Group of algorithms that certify underlying relationships in a set of data
- Consist of:
 - Input
 - Hidden layer(s) w/ nodes
 - Output

Results:

 Our neural network identified class "Payer" better than our other models ... but, at the cost of increased miss identification of our "Non-payers"

Summary

Our SVM classifier model was the best at identifying our classes.

We are not satisfied with the results, however ...

... we extracted important features which our algorithms used to classify our classes, and created a **scoring system** to **prioritize** and **segment** our accounts.

Scoring System

We used our models' feature importance to **score** our feature values, then we categorized into **Grades** by totaling the scores received per account.

							Unpaid_Count	Total_Paid_Count	Total_Accounts	Percent_Paid
200,0000	score		total_score	Grade		Grade				
features		Account_ID				Α	28245	2014	30259	
Unemply_rate_range_3-4.9%	10.00	10271476	4.51	Dd	Δа	Aa	531296	37832	569128	6.65
Education_college_5-10%	7.58	10271477	16.71	Aaa		Aaa	2150150	120472	2270622	5.31
Labor_force_part_range_65-67.9%	6.28	10271478	12.43	Bb		1000000	70,000,000			
Labor_force_part_range_62-64.9%	5.98		15.00			В	1679590	78254	1757844	4.45
Unemply_rate_range_15-19.9%	5.01	10271479		Aaa	_	Bb	1012650	43971	1056621	4.16
Unemply_rate_range_5-6.9%	4.87	10271480	14.89	В		Bbb	2034583	89647	2124230	4.22
Income_level_35k_to_50k	4.02	10271481	13.01	В		С	1982412	84105	2066517	4.07
Income_level_50k_to_75k		10271482	16.57	Aaa		Cc	1435512	53757	1489269	3.61
		10271483	12.60	Bb		D	558840	19219	578059	3.32
Education_college_10-15%	3.06	10271484	4.34	Dd		Dd	453372	17307	470679	3.68
Labor_force_part_range_53-55.9%	3.00	10271485	16.51			F	290731	9958	300689	3.31
Age_range_65-69	2.57	102/1485	16.51	Aaa		•	250751	5555	300003	0.01

Segment Accounts

Percent_Paid	Total_Accounts	Total_Paid_Count	Unpaid_Count	Income_level	Age_range	Grade .
33.33	3	1	2	0ver_150k	18-21	Aaa
27.42	62	17	45	0ver_150k	25-29	Aaa
21.12	161	34	127	0ver_150k	45-49	Aaa
18.13	1114	202	912	100k_to_150k	25-29	Aaa
17.75	3003	533	2470	100k_to_150k	55-59	Aaa
Percent_Paid	Total_Accounts	Total_Paid_Count	Unpaid_Count	Income_level	Age_range	Grade
50.00	2	1	1	0ver_150k	75-79	Сс
33.33	6	2	4	0ver_150k	40-44	Cc
18.37	49	9	40	Under_20k	75-79	Сс
18.07	83	15	68	Under_20k	70-74	Сс
16.67	6	1	5	20k_to_25k	22-24	Cc
Percent_Pai	Total_Accounts	Total_Paid_Count	Unpaid_Count	Income_level	Age_range	Grade
25.0	16	4	12	0ver_150k	25-29	F
19.0	21	4	17	0ver_150k	45-49	F
15.9	251	40	211	100k_to_150k	25-29	F
15.3	13	2	11	0ver_150k	30-34	F
14.2	7	1	6	100k_to_150k	18-21	F

Next Steps

- Scrape zip code based consumer behavioral data (if possible) and combine with our current features.
- Use sensitive information i.e. ss#, gender, sex and race.
- We would like to create a pipeline from receiving our data, OSEMN process (clean,modeling, ect.), and create a user friendly dashboard that collection agencies can utilize.
- We also would like to compare our scoring system i.e. "likelihood" of payment vs. other scoring systems in the marketplace.

