Chemical and Inventory Management System SoFab Inks Team 3

Hilton Benson, Blake Hourigan, CJ Johnstone, Maggie Jackey

November 29, 2024

Contents

1	Intr	oductio	on/Executive Summary	5						
	1.1	Introdu	cing SoFab Inks	5						
	1.2	SoFab I	Inks Inventory Management Problem	5						
2	Sys	tem De	scription	5						
	2.1	Needs Assessment/System Requirements								
	2.2	Initial S	System Specification	7						
		2.2.1	Selecting a Database	7						
		2.2.2	Selecting an Interface	8						
		2.2.3	A Language for Custom Software	9						
	2.3	Final Specifications								
	2.4	System	Diagrams	12						
	2.5	Hardware Overview Diagram								
	2.6	Software Overview Diagram								
	2.7	Econon	nical, Technical, and Time Constraints	12						
		2.7.1	Economic Constraints	12						
		2.7.2	Technical Constraints	13						
		2.7.3	Time Constraints	14						
3	Det	ailed In	nplementation	14						
	3.1	Hardwa	are Detailed Implementation	15						
		3.1.1	A Home for A Database	15						
		3.1.2	A Barcode Scanning Interface	15						
	3.2	Softwar	re Detailed Implementation	16						
		3.2.1	A Home Development Server	16						

	3.2.2	Docker-Compose	17			
	3.2.3	PostgreSQL	19			
	3.2.4	PgAdmin4	20			
	3.2.5	Budibase	23			
	3.2.6	Python Database Insertion/Label Generation	24			
	3.2.7	Deployment to SoFab Labs	26			
4	Test/Eval	uation Experimental Procedure and Analysis of Re-	26			
5	Societal I	mpact of Project/Legal and Ethical Considerations	26			
6	Contribution of Project to Society/Expected Effects					
7	Engineering Standards, Constraints, and Security					
8	Conclusio	ns	27			
9	Recomme	ndations for Future Work	27			
Re	eferences		27			
Appendices						
A	Customer	Contact Information	28			
В	Data Shee	ets	28			
\mathbf{C}	Additiona	d Drawings and Diagrams	28			
D	Source Co	ode	28			
E.	Evnorimo	ntal and for Simulation Test Results	26			

F	Software Installation Instructions	28
\mathbf{G}	User Manual	28
н	Quotes, Including Ordering Information	28
T	White Paners	28

1 Introduction/Executive Summary

1.1 Introducing SoFab Inks

SoFab Inks is a chemical manufacturing startup that was spun-out from the University of Louisville, Conn Center for Renewable Energy Research with support from the US DoE. SoFab inks focuses on accelerating the commercialization of Perovskite Solar Cells through the development and manufacturing of functionalized inks that improve cell efficiency, reduce module cost, and enable scalable manufacturing. [1]

1.2 SoFab Inks Inventory Management Problem

SoFab Inks is doing important work in the field of solar cell technology, helping to drive humanity towards a cleaner, more energy abundant future. The problem, however, is that the team currently faces issues with managing inventory. These challenges prevent SoFab's talented team from working on the most important aspects of their work. These challenges include expending valuable energy on menial tasks like locating inventory, managing a growing number of shipments manually, scouring inventory entries found across several Google Sheets or handwritten labels to pinpoint important product information, and more.

To aid SoFab in these challenges, this semester Team 3 was tasked with developing a more efficient method of managing inventory items. To accomplish this, the team employed various existing software solutions, including database software, CRUD¹ user interface software, and solutions to containerize this software together into one package. The team also developed custom software to provide features not available in the existing software solutions.

CAC 3. Communicate effectively in a variety of professional contexts

2 System Description

The following sections describe the specifications that were formulated as a result of communication between Team 3 and the SoFab Inks team.

¹Database term for Create, Read, Update, Delete.

2.1 Needs Assessment/System Requirements

Following assignment to this project, the team assembled and met virtually with the SoFab Inks team for brief self-introductions, an overview of the current issues facing SoFab, and to gain an initial insight of what the SoFab team was looking for in a solution to these issues.

The SoFab team described the current state of inventory management at the company which included problems such as shipments arriving to incorrect customers, an inability to pinpoint important information about products as they progressed through the manufacturing process, and difficult to track remaining volumes of chemical products. In these discussions, SoFab also emphasized the importance of a solution begin *simple and easy-to-use*. As the team is primarily constructed of chemical engineers or business people, technology was not a strength.

The company also made it clear that the ability to generate item labels for internal tracking of should be a priority. These labels would allow members of their team to easily scan a barcode to view the details of an item. Finally, it was also made clear that the company also desired the ability to generate shipment labels for their products as well. These labels would differ slightly from their internal tracking label counterparts with the inclusion of chemical hazard information. This information would be included as a way to reduce harm for customers handling SoFab's chemicals upon receipt.

After this initial discussion, Team 3 began to brainstorm potential solutions to the problems presented. Immediately, 3 main pieces of software jumped out at the team as critical pieces to what would be the final product.

- 1. A Database System In order to move the company away from the usage of Google Sheets and toward a more efficient, safe and redundant, user-friendly solution, Team 3 knew it would be necessary to select an existing database software solution. While the team was unsure of what specific solution would be chosen, it was sure that one of these solutions would be required.
- 2. A User-Friendly Database Interface While a database solution would be an incredible improvement on its own, it would be useless to the SoFab team if there were not a simple and easy way to interact with the underlying data. Again, the team was unsure of what specific solution would be chosen, but a few requirements from discussions with SoFab were clear.
 - Clean, Simple, Easy-to-Use As previously discussed, SoFab was clear that a simple and easy-to-use solution was of paramount importance for the day-to-day usage of the product.

- Free and Open-Source While this requirement was not mentioned in the initial discussions with SoFab, this requirement jumped out as important to Team 3 because this would help to avoid incurring additional costs beyond the development cost that SoFab had already paid.
- 3. Software to Generate Internal and Shipment Labels After discussing the need for barcode and label generation software, the team found that it would likely be necessary to build custom software to meet the needs of the client. The requirements were quite specific, and would not be available in any existing commercial product. These requirements certainly would not be made available in any free and open-source software.

2.2 Initial System Specification

Following the identification of the 3 main categories of software that would comprise the solution to SoFab's inventory management problems, Team 3 dove into research of each individual component to identify optimal selections.

2.2.1 Selecting a Database

Firstly, it was important for Team 3 to become familiar with existing solutions that were **free and open-source**. This required conducting research on computer-science related websites and forums, and more general forums like Reddit. While a site like Reddit may not always be the most reliable source of information, it could provide a general sense of what people feel about particular software and how easy it is work with.

Many databases fulfilling the free and open-source requirement were identified, including: PostgreSQL, MySQL, MariaDB, and SQLite. As many options were available to select from, it was important to look beyond this requirement and investigate technical specificaitions of these solutions. During this time it was discovered that **PostgreSQL** had several technical benefits over more popular rivals. PostgreSQL boasts of being a fully **ACID** compliant database system. With features such as Write-Ahead Logging, which writes transactions to a log file to avoid pushing a full table(s) every time a transaction is committed, Multi-version Concurrency Control which the PostgreSQL documentation describes as

"This means that while querying a database each transaction sees a snapshot of data (a database version) as it was some time ago, regardless of the current state of the underlying data. This protects the transaction from viewing inconsistent data that could be caused by (other) concurrent transaction updates on the same data rows, providing transaction isolation for each database session." [2]

Furthermore, PostgreSQL utilizes its Write-Ahead Log to implement Point-in-Time Recovery without the need of complete backup. Additionally, since the Write-Ahead Log contains all transactions since the previous system backup, one can return to the exact state of **any** point in time between the most recent backup version and the current version. Team 3 felt that these benefits would be incredibly beneficial for SoFab's new database, which would be the central hub containing the whereabouts and remaining inventory of their lab. This database would also contain important product information which if lost or damaged could have severe consequences for their business.

Beyond technical considerations, ease of use was of great consideration when selecting a database, and luckily, PostgreSQL benefits from being very easy-to-use. PostgreSQL has an additional software called $\bf PgAdmin4$, a project led by a core developer of PostgreSQL! This software integrates very well with $\bf PSQL^2$ This software provides a GUI that allows developers to interact with the database, run queries, add and edit tables, view ERDs 3 for tables, and much more. This would simplify team members development tasks significantly and enable faster production.

For the reasons stated above, PostgreSQL was selected as the database software of choice for this project.

2.2.2 Selecting an Interface

While PostgreSQL would be a great choice to build a database for SoFab inks, this software alone - as stated previously - would be useless to the SoFab team by itself. Team 3 needed to produce a user interface that was simple, user-friendly, and would be capable of fulfilling all of SoFab's functional requirements. Team 3 scoured the internet, searching for a solution that would fulfil these requirements. Eventually, the open-source software Budibase was found. Upon investigation into Budibase, it was discovered that this software could be self-hosted, and if self-hosted, was *free-to-use*. This immediately fulfilled two requirements, so the team installed the software locally and began to interact with it to determine if it could fill the user-friendliness and functional requirements discussed previously.

It was found that Budibase functions in a manner similar to that of website builders like "Wix" or "Squarespace". An architect has the ability to connect to an existing database, then can select from existing templates based on the

²PSQL is short for PostgreSQL.

³ERD stands for entity relationship diagrams.

type of project at hand, and even use templates for types of pages to use. The architect can select between form-type templates where the user can edit or insert information about a row in a database table, or table-type templates where the user can view large amounts of data at a glance.

Additionally, one can drag and drop pre-made components from the sidebar, and arrange them as they see fit. These components can connect to any data source in the database. Data sources include standard database tables and even custom queries to provide maximum customizability.

While using a builder software like Budibase reduces the complexity in creating CRUD apps, they can pose a challenge in that all documentation and instructions for using the software provided strictly by Budibase themselves. The self-hosted Budibase community is not very large, so if an issue arises, an architect may be left to themselves to resolve it if that issue is not covered in the existing documentation.

Thankfully, however, the Budibase team has prioritized documentation, with instructions on how to use their many available components in various ways. They have created a page dedicated to the use of their platform, self-hosting instructions and guidance, component use, connecting the service to the database software in use, and much more. [3] The team also provides many instructional videos and how-tos on their website and on their company YouTube page. [4]

2.2.3 A Language for Custom Software

After selections were made for database and user-interface software, discussions were held on the topic of how the final major piece of the software stack - the custom label printing interface - would be constructed. Team 3 understood So-Fab's requirement for this deliverable - that the software create printable labels to place on their inventory - but Team 3 imposed additional requirements that would support the team to fulfill the company's requirement. These requirements were identified as follows.

- 1. Familiarity The most important requirement that was identified by Team 3 during these discussions was familiarity among team members with various programming languages. Due to semester imposed time constraints, it would be important to hit the ground running, without additional challenges of learning an unfamiliar programming language. A consensus was reached that team members all had prior experience with *Python*. This prior experience, paired with the languages intuitive syntax made Python an attractive choice with regard to this requirement.
- 2. Community Support/Libraries Another important requirement concerning the selection of an optimal programming language to develop

this new software was community support and library availability. Once again, *Python* was identified as a language with great strength in this aspect. Python is known for its extensive library support, with over 589,000 projects in the 'pypi' Python package repositories. [5] Packages were identified that would allow Team 3 to easily generate barcodes, generate PDF outputs, and read from PostgreSQL databases. These features attributed to the appeal of Python for the development of this deliverable.

3. Reliability/Durability - The two requirements previously discussed were found to be great strengths of the Python language. However, an additional consideration for selection for this custom software was the durability of the language. A reasonable argument could be made that the responsibility of ensuring reliability and durability of code lies with the programmer, and not the language that a programmer may employ. However, humans have proven to be much less reliable than machines in many domains with defined rules.

Recent developments in the programming domain such as the Rust language have built this fact of reality into the fabric of the language. These such languages provide memory safety by default, meaning that the programmer must have advanced knowledge of the language before performing potentially dangerous programmatic actions. Rust also provides an excellent ecosystem of tools such as 'Cargo' which both manages project dependencies and provides an easy method to run and test written code. Rust offers many benefits that Team 3 believed could be incredibly beneficial for a project that would need to be consistent and reliable day-to-day at SoFab Inks.

4. **Speed/Efficiency** - A final major consideration in choosing a programming language was the speed that the chosen language would provide after development. Performance is *always* an important consideration, but this was especially true with Team 3's plan to install many pieces of software on one machine on final deployment. On this point, Rust again was found to have great advantages. Compared to Python, Rust is far more efficient, as it is a compiled language. This means that at program run-time, no 'interpretation' of the code is required. This essentially shifts much of the heavy computational lifting to the code 'compilation' process, allowing the program to execute more efficiently at run-time.

Upon reviewing the major points of consideration, Team 3 decided that Familiarity and Comunity Support/Library availability were critical attributes in the lanuage selection process. While a language such as Rust provided significany boosts in execution time and Reliability, both of which would be beneficial to the end user, it was decided that the team had too little familiarity with this language. Learning a new language as a team would increase the complexity of the project too greatly, and endanger Team 3's ability to produce a satisfactory product on-time. It was for these reasons that Team 3 decided to

select Python as the language of choice for the development of this additional software, pending approval by the SoFab team during the next meeting.

(External design document) EAC 1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics and CAC 1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions)

2.3 Final Specifications

Little changed with regard to the major required specifications of chosen software over the course of this project. While minor changes were implemented in requirements with regard to specific data tracking points or tracking methods, these could all be accommodated within the existing framework. For this reason the majority of the final technical specifications were set during the meeting that followed Team 3's discussion of initial specifications for the system.

Team 3 met with the SoFab team to discuss the specifications that Team 3 had arrived at as results of the prior discussions. The team wanted to ensure that these specifications aligned with the needs and vision of the company. Team 3 proposed the previously discussed database and user-interface solutions, with brief technical demonstrations showcasing the potential of these pieces of software as solutions to the inventory management problem. SoFab responded positively, with few notes with regard to the technical decisions reached by Team 3.

For these reasons the following selections were made final as software solutions for this project.

- Database System PostgreSQL
- User-Interface/CRUD Frontend Budibase
- Programming Language for Custom Software Python

(finalized internal design document) EAC 1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics and CAC 1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions and CAC 6. Apply computer science theory and software development fundamentals to produce computing-based solutions)

2.4 System Diagrams

Detail all interfaces between the environment and the components EAC 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors)

2.5 Hardware Overview Diagram

CAC 2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline)

2.6 Software Overview Diagram

CAC 2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline)

2.7 Economical, Technical, and Time Constraints

Over the course of this project, several constraints were imposed and revealed to Team 3 that limited the available tools for this project. These constraints fell under three main categories, each of which will be discussed in its respective section below.

2.7.1 Economic Constraints

Firstly, Team 3 experienced economic constraints, financially limiting software solutions available as tools for this project. Team 3 was limited economically primarily due to the identified requirement that utilized software be *free and open-source*. As discussed previously, this requirement was identified to avoid incurring subscription costs charged to SoFab following development of the project solution. This limitation significantly limited the software tools available to Team 3 for development.

Additionally, Team 3 was constrained economically due to the inability to provide development hardware to the SoFab team upon project completion. Unbeknownst to Team 3 early in the semester, hardware that was purchased to facilitate development of the project would be unable to be transferred to the on-site location upon completion. Luckily, the university approved the request

to transfer necessary hard drives containing critical database information upon project completion, but did not approve this request for other hardware necessary for this projects successful completion, such as a barcode scanner or label printer. For this reason the team was economically constrained and encouraged to develop a solution to SoFab's inventory management problem on the smallest budget the team could manage.

Similarly to the previous constraint, meeting this constraint would be important to ensure that SoFab would incur the smallest possible cost upon project completion. Team 3 wanted to deliver a project that contained as much of the desired functionality as possible, while avoiding extra purchases like barcode scanners or product label printers.

The team will expand on the specific solutions implemented to meet project requirements in the face of these constraints, however, the main ways in which economic constraints were addressed follow below.

- 1. Free and Open-Source Software
- 2. Software Implementation of Hardware Features/Creative Use of Existing Hardware

2.7.2 Technical Constraints

The next primary factor which constrained Team 3 during the development of the solution their technical ability and technological constraints. The limitations in technical ability discussed here coincide with time constrains, however technical ability specifically will be discussed in this section. As discussed in Section 2.2, Team 3 was limited technically in that all team members had the most familiarity with one programming language - *Python*. This imposed several technical limitations including reliability and efficiency that were traded for familiarity, ease-of-use, and library availability. The Rust programming language's memory safety features, combined with its status as a compiled language held much in the way of potential benefits for the development of this project. However, due to Team 3's unfamiliarity with the language, these potential benefits became limitations by use of Python, which faces challenges both with reliability and efficiency.

Additionally, Team 3 was consrained technologically by installation hardware. Upon completion, this project's software stack would be installed onto SoFab's main laboratory computer. This software stack would act as a server on the local area network to field requests from mobile devices for ease-of-use and convenience. It was for this reason that Team 3 was obligated to be mindful of resource usage regarding installed software, and aware of the computational cost of adding further software. The installation site would be used for other tasks besides this inventory management system, and therefore the system needed to function efficiently to avoid slowing down other operations and tasks conducted on the lab computer.

Specific action taken to avoid concerns regarding these constraints is discussed in Section 3, however a general outline is provided here.

- 1. Mindfulness Regarding Existing Lab Hardware
- 2. Implementing Only Critical Software Solutions
- 3. Writing Efficient Python Code

2.7.3 Time Constraints

The main factor which imposed constraints on Team 3 during the Fall 2024 semester was time. The team had approximately 3 months to develop a solution that would satisfy the requirement of the SoFab team, and this meant that Team 3 needed to act fast to develop their product. This deadline itself imposed constraints on the team, such as how often and with what intensity the team needed to act, however it was also the primary factor in imposing technical limitation. Team 3 simply had no time to learn a new programming language comprehensively prior to implementing a solution. This was the driving factor in the selection of a familiar and well-supported programming language such as *Puthon*.

Furthermore, meeting dates with the SoFab team imposed constraints in that signicant progress was expected of the team approximately every 2 weeks, when meetings would occur. After one of these meetings had concluded, the team had 2 weeks to implement early versions of the discussed features to be showcased at the next meeting. This imposed an intensity that Team 3 needed to work with to be prepared for every meeting.

3 Detailed Implementation

The below sections include the specific actions and steps taken by Team 3 to develop the solution to SoFab Inks inventory management problem with project requirements and constraints accounted for.

3.1 Hardware Detailed Implementation

While the solution developed over the course of this project was constructed primarily of software components, some hardware components were required to meet and exceed the requirements of SoFab Inks. The primary hardware components are covered in detail below.

3.1.1 A Home for A Database

As discussed in previous sections, in order to develop software that improved significantly on SoFab team members experience of managing inventory, a database system was required. Once this was decided, the main point of emphasis was how to implement this requirement as safely as possible. Team 3 wanted to ensure with certainty that SoFabs sensitive and irreplaceable company data would be both secure and redundant to a avoid a catastrophic data loss scenario. This requirement however was not without mild cost.

The security of the database was a matter for the software implementation, however, redundancy required multiple storage locations to to ensure multiple independent copies of the database are available at any given time. For this reason Team 3 decided to purchase 2 1 Terabyte solid-state storage drives, intended to each contain separate copies of the database. One of these disks would contain the current working version of the database at all times, while the other drive would contain backups that would be conducted on a daily basis. The team could even write a script in such a way to keep record of each backup instead of overwriting the backup each day with the new copy. This would allow the team to inspect the database at any given point in its history if required.

Furthermore, investing in these drives at the beginning of the project life-cycle improved the experience of the transition to the installation site significantly. Because the team was able to develop the project on the purchased SSDs,⁴ when the project was transferred on-site, the team could simply bring the drive containing the up-to-date software stack, point the lab computer to this disk, and have the project up-and-running.

3.1.2 A Barcode Scanning Interface

An additional piece of hardware needed to meet the full requirements of the SoFab team was a barcode/QR code label scanner that would allow the team to simply scan product to view their corresponding inventory details. While the SoFab team would be unable to keep the scanner that Team 3 purchased

⁴SSD is a computational term for Solid State storage Disk.

for development due to university rules, this product was inexpensive and in SoFab Inks' reasonble price range. The team conducted research into barcode scanning technology to discover what attributes made a good scanner.

Team 3 found that most barcode capable hardware scanners could double as QR code scanners, with little differences in feature sets between available models. For this reason the team sought an affordable wireless model that would allow SoFab to walk around their laboratory and scan products instead of being required to retrieve products first. The implementation of this barcode scanning technology required little beyond purchasing the product. Once received, Team 3 could simply plug the scanner's bundled USB dongle into any computer, scan a barcode or QR code while inside a text field, and the scanner would take care of the rest. This purchase made the development of this feature simple and instantly partially fulfilled a requirement set out by SoFab Inks for their inventory management system.

3.2 Software Detailed Implementation

The vast majority of effort expended by members of Team 3 this semester was in the domain of software. The team worked to utilize a combination of existing and custom-built software to provide an inventory management system that would satisfy requirements laid out by SoFab Inks. The individual pieces of software that played major roles in constructing this solution are discussed at length in the below sections.

3.2.1 A Home Development Server

Due to the nature of the software being developed, Team 3 identified a need to create a centralized server that would allow members to access the software from any location at any time. During the early weeks of development, the team was using existing tools and services to develop a solution such as PostgreSQL and Budibase instead of writing custom code. Development with these services would benefit substantially from running on a centralized server that could be modified by any team member. This would be far more efficient than developing solutions individually and compiling them into one solution at a later time.

An added benefit of creating a centralized server where all development would take place was that this server would closely mimic the conditions of final installation. Upon installation, the software stack would be deployed on a single computer that would serve all clients on a local area network. This experience would allow the members of Team 3 to work with an experience closer to that of an end user. This allowed team members to experience bugs that would appear at the installation site and fix them as they arose.

To construct a home server that would host all services required for this project and allow all Team 3 members access, a computer was set-up at a members home and given a static IP. This static IP would allow DNS services and the home router to find a constant path to the services to be accessed. Next, it was time to install all the existing services that would be required to develop the project. This software will be discussed at length in Section 3.2.2. All services were installed and initialized.

Next, a Nginx server running on another computer was configured as a reverse-proxy. A reverse-proxy is a service that acts as an intermediary for servers or services running on a local network. A reverse proxy intakes network requests and forwards them to the server where they are hosted. The benefits that a reverse-proxy offers to users is that only one port is required to be exposed to the internet. This reduces the number of open ports on a network, offering security benefits. Additionally, reverse-proxies can be configured to use HTTPS,⁵ also enhancing the security of data transmission. Finally, reverse-proxies can also provide load balancing services, reducing strain on any one server on the network.

3.2.2 Docker-Compose

Docker - and its supplemental software Docker-Compose and Docker Desktop-played a pivotal role during the development of this project. Docker is a software that allows applications to be packed into 'containers'. This allows these pieces of software to run in isolation from other software, be more easily configured, and be isolated from the host system network which can enhance software security. While Docker containers share similarities with classical virtual machines in that they provide environments that are isolated from the host machine, Docker containers differ in a few major respects that are important to note in this context.

Virtual machines are known for the performance penalty that accompanies their use. This is because virtual machines are tasked with emulating an entire operating system, which is a very complicated and resource intensive task. Docker containers work to alleviate this performance problem by *sharing the host's operating system kernel*. This allows Docker to focus on the application software itself, without the need to emulate existing operating system features.

Expanding on these benefits, Docker-Compose provides the ability to roll multiple Docker containers into one centralized script, where all software to be used for a given project can be managed at once. One can specify version numbers, customize network configurations, assign storage mounts,⁶, allocate

⁵Hypertext Transfer Protocol Secure.

⁶Storage mounts are locations in a computer where files are located.

extra resources, ⁷ and more.

The incredible benefits that this provides when developing an application to be deployed on another system cannot be overstated. What Docker-Compose allowed Team 3 to do over the course of this project is to develop a software stack with versions of software that were compatible with one another. The team installed this software on a Windows 11 machine to mimic the operating system in use at the site of eventual installation, reducing possible complications with system migration. Using these methods, Team 3 could be confident when the time for system migration came, that all software would be compatible and work together smoothly, keeping all existing data intact.

This technology removed a great burden from Team 3, and the effort placed into creating a stable software stack through Docker-Compose was rewarded upon migration to SoFab's laboratory in late November 2024. This will be explained in greater detail in a later section. The software that was integrated into this Docker-Compose stack included the database software PostgreSQL, the database management software PgAdmin4, and database frontend design software Budibase.

Most developers that provide the ability to deploy an application via Docker provide example Docker-Compose scripts defining the critical application configurations and environment variables to deploy the application. This was very beneficial to Team 3 for the development of this software stack, as examples for deploying PostgreSQL, PgAdmin4, and Budibase were found, accelerating deployment. [7] [8] [6]A sample of the final Docker-Compose Script is included below.

```
postgres:
      image: postgres:16
2
      volumes:
3
        - type: bind
          source: "D:/Docker_Data/postgres_data"
          target: /var/lib/postgresql/data
6
        - "5432:5432'
      restart: always
10
      container_name: postgres
      # set shared memory limit when using docker-compose
12
      shm_size: 128mb
      # or set shared memory limit when deploy via swarm stack
13
      environment:
14
        POSTGRES PASSWORD: {POSTGRES PASSWORD}
15
      extra_hosts:
16
        - "--add-host_host.docker.internal:host-gateway"
17
    pgadmin4:
19
```

⁷An example of an extra resource would be allocating GPU resources for a container.

```
image: elestio/pgadmin
20
           restart: always
21
           environment:
22
             PGADMIN_DEFAULT_EMAIL: ${ADMIN_EMAIL}
23
             PGADMIN_DEFAULT_PASSWORD: ${ADMIN_PASSWORD}
             PGADMIN_LISTEN_PORT: 8080
25
           ports:
26
             - "0.0.0.0:8080:8080"
27
           volumes:
28
             - pg_admin_data:/var/lib/pgadmin
29
   volumes:
31
     pg_admin_data:
32
```

3.2.3 PostgreSQL

Once the Docker-Compose script was defined and all software was deployed on the home server machine and exposed to all Team 3 members, application specific configuration began for PostgreSQL. User accounts were created (Figure 1a) for each team member, and credentials were distributed. Team 3 then initialized the database for the project (Figure 1b), and set user privileges. PosgreSQL's user creation tool was utilized to add an additional account 'database dev' which would be given privileges to read, add, create, and delete on the database. These permissions could then be applied recursively to each user account, streamlining the permissions process.

(a) Viewing existing users in the PSQL CLI interface.

				st of database			
Name	Owner	Encoding	Locale Provider	Collate	Ctype	ICU Rules	Access privileges
nventory_management	postgres	UTF8	libc	en_US.utf8	en_US.utf8		
ostgres	postgres	UTF8	libc	en_US.utf8	en_US.utf8		
emplate0	postgres	UTF8	libc	en_US.utf8	en_US.utf8		=c/postgres
							postgres=CTc/postgre
emplate1	postgres	UTF8	libc	en_US.utf8	en_US.utf8		=c/postgres
							postgres=CTc/postgre
rows)							

(b) Viewing existing tables in the PSQL CLI interface.

Figure 1

3.2.4 PgAdmin4

With the database initialized, the team could begin work on constructing a relational database in PSQL⁸ that modeled the daily workflow in the SoFab Inks lab. However, Team 3 felt that it would be quite inefficient to develop in the PSQL CLI⁹. Members felt that it would be difficult to grasp the relations in a database and quickly view the attributes of a database with this interface, especially due to the length of time members had gone without working on database systems. Unfamiliarity would lead to frustration and confusion through this method of interaction. For this reason members of the team began to seek out away to interact with a database system with a graphical user interface.

Quickly, members found that there existed a GUI¹⁰ tool build specifically for PSQL called 'PgAdmin4'. Best of all, this software was developed by a core member of the PSQL team! PgAdmin4 boasted features such as graphical management of existing attributes including databse schemas, tables, types, trigger functions, and more. This would allow the team to manage the database visually in a way that would allow members to quickly and easily learn the tools available at their disposal in PSQL. Additionally, this tool allowed for the execution of database queries, giving developers all the power of CLI PSQL in addition to the GUI tools.

⁸PSQL stands for PostgreSQL.

⁹CLI stands for Command Line Interface in a computer terminal

 $^{^{10}{\}rm Graphical}$ User Interface.

PgAdmin4 was deployed in the projects Docker-Compose script and deployed alongside PSQL. Once deployed, user accounts were created and configured to access the PSQL database as these accounts. At this stage Team 3 could begin constructing the database while avoiding the overwhelming nature of a CLI tool to interface with the database system. Examples of the deployed instance after the insertion of tables can be found in Figures 2a, and 2b. More images can be found on PgAdmin4's webpage. [9]

(a) Viewing existing tables in PgAd- (b) Running PostgreSQL queries inside min interface. PgAdmin4.

Figure 2

In regard to the construction of the database, the same general process was followed for three primary forms of inventory in use at the SoFab team's lab. These consisted in 'Product Inventory' which contained information about the company's products, 'General Inventory' which contained general lab items such as beakers and shipping boxes, and 'Chemical Inventory' which the company used as ingredients to their products. SoFab desired to have information about these items at each stage in their life-cycle. While this cycle changed depending on the type of inventory an item originated from, the process of creating tables to accomplish this effect would remain the same.

The general process follows below.

1. Create a Table for the *Item* - A table would be created for the type of

inventory item, containing any static, or, constantly present, information about this type of item. This item would also contain the ID, which would be used to link each row, which represented one item, to related rows in other tables.

2. Create a Table for Each Life Stage - Next, team members would construct tables that represented a stage in a product's life. For example, the 'Product' inventory may have product table containing the ID of this product, chemicals used to create this product, and in what amount, and other related information. Then, for each stage in a manufacturing process, tables could be generated that would track specific information about actions performed on the item at this step. This was an important attribute, as this would give SoFab the ability to easily review the histories of successful batches, and be able to recreate the product as closely as possible.

Similar steps would be followed for other categories of items, tracking information at every step related to an item that was necessary as instructed by SoFab team members.

3. Building Table Relationships - An important last step in the creation of the database is creating links that connect tables together in terms of their relation to one another. This was generally accomplished by linked item IDs to each other via 'foreign keys', that helped the database understand the connections between different tables. A major benefit of this relation creation is that it enables automatic generation of ERD¹¹ diagrams. These diagrams aid developers by visually representing database tables. An example of an ERD for this database can be found in Figure 3.

 $^{^{11}\}mathrm{Entity}$ Relationship Diagram.

Figure 3: ERDs help developers understand how tables are related.

3.2.5 Budibase

Figure 4: Budibase home page. Global search that searches all types of inventory via QR code or direct ID entry.

Figure 5: Budibase general inventory page. Keep track of general lab items.

Figure 6: Keep track of customer information with Budibase. View customer information or view all orders originating from a customer

3.2.6 Python Database Insertion/Label Generation

```
class App(Tk):
    def __init__(self, controller):
        # initializing the Tk class instance
        super().__init__()

self.title("SoFab_Inventory_Managment_System")

self.style = Style(theme="darkly")
```

```
9
           self.controller = controller
10
           self.controller.set_view(self)
11
12
           self.notebook = ttk.Notebook()
           self.notebook.pack(fill="both", expand=True)
14
           self.notebook.bind("<<NotebookTabChanged>>", self.
15
               on_tab_selection)
16
           # filling the notebook (top tabs) with frames
17
18
           item_type_tables = self.controller.
19
               get_item_type_tables()
```

```
class HazardPrecautionFrame(tk.Frame):
    def __init__(self, parent, controller, warning_dict,
        images=False):
        super().__init__(parent)
```

```
def generate_checkboxes(self, images=False):
1
       self.checkboxes_frame = tk.Frame(self)
2
       self.checkboxes_frame.grid(row=0, column=0)
3
       for item in self.warning_items:
            if images:
                image = Image.open(item[1])
                resized_image = image.resize((100, 100), Image.
                    LANCZOS)
                image = ImageTk.PhotoImage(resized_image)
9
                item = item[0]
10
            else:
11
12
                image = None
            var = tk.BooleanVar()
13
            checkbox = ttk.Checkbutton(
14
                self.checkboxes_frame,
15
                text=item,
16
                image=image,
17
                compound="left",
18
                variable=var,
19
                command=lambda var=var: self.parent.
20
                   update_text_box(),
21
            checkbox.image = image
22
            checkbox.pack(anchor="w", fill="x")
```

3.2.7 Deployment to SoFab Labs

EAC 1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics and EAC 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors, and CAC 6. Apply computer science theory and software development fundamentals to produce computing-based solutions)

4 Test/Evaluation Experimental Procedure and Analysis of Results

EAC 6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions)

5 Societal Impact of Project/Legal and Ethical Considerations

include legal and ethical considerations

CAC 4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles)

6 Contribution of Project to Society/Expected Effects

CAC 4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles)

7 Engineering Standards, Constraints, and Security

EAC 1. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors)

8 Conclusions

9 Recommendations for Future Work

References

- [1] SofaBinks. (n.d.). About SofaBinks. Retrieved November 29, 2024, from https://www.sofabinks.com/about
- [2] PostgreSQL Global Development Group, MVCC: Multi-Version Concurrency Control, PostgreSQL 7.1 Documentation, https://www.postgresql.org/docs/7.1/mvcc.html, Accessed on: November 27, 2024.
- [3] Budibase Team, What is Budibase?, Budibase Documentation, https://docs.budibase.com/docs/what-is-budibase, accessed on: November 28, 2024.
- [4] Budibase, Budibase YouTube Channel, YouTube, https://www.youtube.com/@Budibase, accessed on: November 28, 2024.
- [5] Python Software Foundation, *The Python Package Index (PyPI)*, https://pypi.org/, accessed on: November 29, 2024.
- [6] Budibase, Docker Compose File for Hosting, GitHub Repository, https://raw.githubusercontent.com/Budibase/budibase/master/hosting/docker-compose.yaml, Accessed on: November 27, 2024.
- [7] PostgreSQL Maintainers, PostgreSQL Docker Official Image, Docker Hub, https://hub.docker.com/_/postgres, Accessed on: November 27, 2024.
- [8] Elestio, pgAdmin Docker Image, Docker Hub, https://hub.docker.com/r/elestio/pgadmin, Accessed on: November 27, 2024.
- [9] pgAdmin Development Team, pgAdmin Screenshots, pgAdmin Official Website, https://www.pgadmin.org/screenshots/#4, Accessed on: December 1, 2024.

Appendices

- A Customer Contact Information
- B Data Sheets
- C Additional Drawings and Diagrams
- D Source Code
- E Experimental and/or Simulation Test Results
- F Software Installation Instructions
- G User Manual
- H Quotes, Including Ordering Information
- I White Papers