Computer Graphics Summary and Outlook

Matthias Teschner

Introduction to Computer Graphics

Rendering

Modeling

Simulation

Homogeneous Notation

Ray Casting

Bézier Curves

Particle Fluids

Rasterization

Two technics to compute what is visible at the sensors

Phong

Phong: light, colors represent the light transport

Piecewise Polynomial Curves

Rendering - Modeling - Simulation

© Spellwork Pictures

Modeling Rendering

Rendering - Modeling - Simulation

© Spellwork Pictures

Animation

Rendering

Rendering - Modeling - Simulation

Johan Idoffsson Chalmers University

Volvo Cars

Simulated and rendered with PreonLab FIFTY2 Technology

Specialization Courses - Topics

		•	
UOr	\mathbf{n}	arına	
$\Gamma \setminus C \mid$	TU $\overline{\zeta}$	-11112	
		ering	

Light: Radiometric Quantities

Material: BRDF

Light / Material: Rendering Equation

Radiosity

Stochastic Raytracing

Simulation

Particle Motion

Elastic Solids

Fluids (Particles and Grids)

Rigid Bodies

Contact

Specialization Courses - Concepts

Rendering

Simulation

Finite Element Modeling

Finite Differences

Monte Carlo Integration

Smoothed Particle Hydrodynamics

Linear Systems

Spatial Data Structures

Real Time Graphics / High Performance Computing

Rendering Equation

$$-L(\boldsymbol{p} \to \boldsymbol{\omega}_o) = L_e(\boldsymbol{p} \to \boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{p}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}_o) L(\boldsymbol{p}' \leftarrow \boldsymbol{\omega}_i) \cos(\boldsymbol{\omega}_i, \boldsymbol{n}_p) d\omega_i$$

- Establishes relations between incident and exitant radiances
- Expresses the steady state of radiances in a scene
- Governs the computation of radiances from all scene points into all directions

Akenine-Möller et al.

Solving the Rendering Equation

Exitant radiances from all scene points into all directions

$$L_e(oldsymbol{p} o oldsymbol{\omega}_o)$$

Cornell box

Particle Simulation

Projects - Theses

Rendering Track

Simulation Track

Simple Raytracer

Simple Fluid Solver

Stochastic Raytracer

Incompressible SPH Solver

Features / Performance / Accuracy

Research

Image Processing

- Slides, recordings, information on
 - https://lmb.informatik.unifreiburg.de/lectures/image_processing/
- First question-and-answer session on
 - Monday, June 14, 10:15

Computer Graphics Summary and Outlook

Matthias Teschner

