Problem Set E

Smit Rao (1004324135)* Zainab Dar (TUT104) February 14, 2018

3.7.6

- a) $R = (\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y < 1)$. $S = (\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x + y < 1)$.
- b) $\neg R = (\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y \ge 1). \quad \neg S = (\forall y \in \mathbb{R})(\exists x \in \mathbb{R})(x+y \ge 1).$
- c) The statement R is true because for any $x \in \mathbb{R}$, we can fix some $y \in \mathbb{R}$: y = -x to satisfy R. The statement S is false because if $y \in \mathbb{R}$ is fixed, it is possible to find $x \in \mathbb{R}$: x = |y| + 2.

3.7.8

b) Truth table for $P \Rightarrow (P \Rightarrow Q)$:

P	Q	$P \Rightarrow Q$	$P \Rightarrow (P \Rightarrow Q)$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	T
F	F	T	Т

^{*}smit.rao@mail.utoronto.ca

d) Truth table for $(P\Rightarrow Q)\Rightarrow (P\wedge Q)$:

P	Q	$P \Rightarrow Q$	$P \wedge Q$	$(P \Rightarrow Q) \Rightarrow (P \land Q)$
Т	Т	Τ	Т	T
$\mid T \mid$	F	F	F	T
F	Т	T	\mathbf{F}	F
F	F	T	F	F

f) Truth table for $[P \lor (\neg Q)] \Rightarrow [Q \land (\neg P)]$:

P	Q	$\neg P$	$\neg Q$	$P \vee (\neg Q)$	$Q \wedge (\neg P)$	$[P \lor (\neg Q)] \Rightarrow [Q \land (\neg P)]$
T	Т	F	F	${ m T}$	${ m F}$	F
T	F	F	Γ	${ m T}$	${ m F}$	F
F	Т	Τ	F	${ m F}$	${ m T}$	T
F	F	Т	T	${ m T}$	F	F

3.7.10

- a) If $P \vee (Q \Rightarrow (\neg R))$ is false, then P must be false since if it was true, the "or" part of the given statement would evaluate the entire statement to true. Similarly, the statement $Q \Rightarrow (\neg R)$ must also be false by the same logic. Since this is also confirmed to be false, we can deduce that Q and R are both true, because the negation of any implication in the form $A \Rightarrow B$ is $A \wedge \neg B$; if we substitute $A = Q, B = \neg R$, we see that $A \wedge \neg B$ is in fact $Q \wedge R$, meaning that both Q and R are true. Therefore, P is false while Q and R are true.
- b) We are given that $[(P \land Q \lor R] \Rightarrow (R \lor S)$ is *false*. This means its negation is true: $[(P \land Q \lor R] \land (\neg R \land \neg S)]$. From this point we clearly see that to prevent contradiction, R and S are false; meaning that $P \land Q$ must be true, making both P and Q true.

3.7.22

a) The negation of $\alpha = (\exists M \in \mathbb{Z})(\forall x \in \mathbb{R})(x^2 \leq M)$ is $\beta = (\forall M \in \mathbb{Z})(\exists x \in \mathbb{R})(x^2 > M)$. The given statement, α , is false because for any fixed integer, it is always possible to pick x = |M| + 100 in order to demonstrate a contradiction.

- b) The negation of $\alpha = (\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(|x y| = |x| |y|)$ is $\beta = (\forall y \in \mathbb{R})(\exists x \in \mathbb{R})(|x y| \neq |x| |y|)$. The given statement, α , is true since y = 0 satisfies α .
- c) Statement $\alpha = (\forall x \in \mathbb{R})[(x-6)^2 = 4 \implies x = 8], \quad \neg \alpha = (\exists x \in \mathbb{R})[(x-6)^2 = 4 \land x \neq 8]$. The statement α is false, since its hypothesis implies that x = 8, which does not include the alternate solution x = 4. Since one solution for the given equation in α 's hypothesis is not included, this statement (α) must evaluate to false.
- d) Statement $\xi = (\forall x, y \in \mathbb{R})(x^2 y^2 = 9 \implies |x| \ge 3), \quad \neg \xi = (\exists x, y \in \mathbb{R})(x^2 y^2 = 9 \land |x| < 3)$. The statement ξ is true since the term y^2 is always non-negative, and so we have $x^2 y^2 \le x^2$. Since this means that x^2 must also then satisfy $x^2 \ge 9 = x^2 y^2$, this is the case when $|x| \ge 3$ as suggested.
- e) Statement $v = (\forall x \in \mathbb{R})[(x-1)(x-3) = 3 \implies x-1 = 3 \lor x-3 = 3],$ $\neg v = (\exists x \in \mathbb{R})[(x-1)(x-3) = 3 \land x-1 \neq 3 \land x-3 \neq 3].$ Statement v is false since x = 0 can be offered as a counterexample.

3.7.24

a)

b) The statement P is telling us that for any two consecutive integers, their product is $at\ least$ zero. To determine whether this statement is correct, let us consider the following possible cases:

Case 1:
$$x = 0 \lor x - 1 = 0 \implies x(x - 1) = 0$$

Case 2:
$$x \neq 0 \land x - 1 \neq 0 \implies (x > 0 \land x - 1 > 0) \lor (x < 0 \land x - 1 < 0)$$

Notice that in either of the above cases, $x(x-1) \ge 0$. Therefore, P is true.