Number Theory MATH3431 UNSW

Jeremy Le

2024T1

Definitions: Purple, Theorems: Blue, Properties/Lemmas: Green

Contents

The Set of All Integers
Ring
Divisibility in Commutative Rings
Ideals
ophantine Equations and Congruences
Congruences
Arithmetic Functions
roduction to Groups
Fields
Units of a Ring
Groups
Group Isomorphism
Wilson's Theorem
J

1 The Ring of Integers

1.1 The Set of All Integers

Divisor Let a and b be integers. We say that a is a divisor of b if there exists an integer k such that b = ka. If a is a divisor not equal to b we call it a proper divisor.

Divisibility Properties Let $a, b, c \in \mathbb{Z}$. Then

- a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
- b) $a \mid a$.
- c) If $a \mid b$ and $b \mid a$ then $b = \pm a$.
- d) If $a \mid b$ and $a \mid c$ then $a \mid (xb + yc)$ for any $x, y \in \mathbb{Z}$.

Euclid's Theorem There are infinitely many primes in \mathbb{Z} .

1.2 Ring

Ring A ring consist of a non-empty set R together with two operations defined on elements of R, addition (+) and multiplication (denoted by juxtaposition, or sometimes by \star or \times) where all the following properties hold:

- 1. Closure under addition: if $a, b \in R$ then $a + b \in R$.
- 2. Commutativity of addition: for all $a, b \in R, a + b = b + a$.
- 3. Associativity of addition: for all $a, b, c \in R, (a + b) + c = a + (b + c)$.
- 4. Zero element: There is an element 0 of R such that if $a \in R$ then a + 0 = a/a
- 5. Negatives. $\forall a \in R$ there is $-a \in R$ such that a + (-a) = 0.
- 6. Closure under multiplication: if $a, b \in R$ then $ab \in R$.
- 7. Associativity of multiplication: $\forall a, b, c \in R, (ab)c = a(bc)$.
- 8. Distributive laws: for all $a, b, c \in R, a(b+c) = ab + ac$ and (a+b)c = ac + bc.

Subtraction For any a, b in a ring R, we define a - b = a + (-b)

Ring Properities Let R be a ring and $a,b,c\in R$. Then the following hold:

- 1. if a + b = a + c then b = c;
- 2. 0 is unique and 0a = a0 = 0;
- 3. for each a, -a is unique;
- 4. a b = 0 if and only if a = b;

- 5. -(ab) = (-a)b = a(-b);
- 6. ab ac = a(b c) and ac bc = (a b)c.

Commutative Ring A commutative ring is a ring R in which multiplication is commutative, that is, ab = ba for all $a, b \in R$.

Identity Element An identity element in the ring R is an element, usually denoted by 1, with the property that 1a = a1 = a for all $a \in R$. Sometimes we are more explicit and call 1 the multiplicative identity.

Divisors of Zero In a ring R, if a and b are non-zero elements such that ab = 0, then a and b are called divisors of zero.

Integral Domain An integral domain is a commutative ring with identity in which there are no divisors of zero. Explicitly, an integral domain is a non-empty set R together with operations of addition and multiplication, such that the ring axioms (1) - (8) hold as well as the following:

- 9. Commutativity of multiplication. If $a, b \in R$ then ab = ba.
- 10. Identity element. There exists an element 1 of R such that if $a \in R$ then 1a = a.
- 11. No divisors of zero. For all $a, b \in R$, if ab = 0 then either a = 0 or b = 0.

Cancellation Law for Integral Domains Let R be an integral domain and $a, b, c \in R$ and suppose $a \neq 0$. If ab = ac then b = c.

1.3 Divisibility in Commutative Rings

Divisors in Rings Let α, β be elements in a commutative ring R. We say that α is a divisor of β , denoted by $\alpha \mid \beta$, if there exists an element κ of R usch that $\beta = \kappa \alpha$.

Unit of Rings Let R be a commutative ring with identity. An element of R having a multiplicative increase is called a unit of R.

Associates, Irreducibles and Primes

- Elements a and b of an integral domain R are called associates if a = ub, for some unit u of R.
- An element ρ of the integral domain R is said to be irreducible if it has the property

$$\forall \alpha, \beta \in R$$
, if $\rho = \alpha \beta$ then α or β is a unit.

• A non-zero, non-unit element ρ of the integral domain R is said to be prime if it has the property

$$\forall \alpha, \beta \in R, \text{ if } \rho \mid \alpha\beta \text{ then } \rho \mid \alpha \text{ or } \rho \mid \beta.$$

Primes are Irreducible In an integral domain every prime is irreducible.

Greatest Common Divisor Let a, b be integers, not both zero. Then a positive integer g is the greatest common divisor of a and b if and only if g is a common divisor and every common divisor is a factor of g.

GCD in Rings Let a, b be elements in a commutative ring R. An element $g \in R$ is a greatest common divisor of a and b in R if $g \mid a, g \mid b$ and every common divisor of a and b is a factor of g.

1.4 Ideals

Ideal Let R be a commutative ring with identity. A subset I of R is called an ideal of R if it has the following three proprties:

- 0 is in I.
- If a, b are in I then a + b is in I.
- If $a \in I$ and $x \in R$ then $ax \in I$.

Smallest Ideal Let R be a commutative ring with identity, and $\{a_1, \ldots, a_n\} \subset R$. Then the set

$$\{r_1a_1 + \dots + r_na_n : r_1, \dots, r_n \in R\}$$

is the smallest ideal of R containing $\{a_1, \ldots, a_n\}$.

Pinrcipal Ideal An ideal I of a ring R is said to be principal if there exists $a \in R$ such that $I = \langle a \rangle = \{ax : x \in R\}.$

Every Ideal is Principal Every ideal in \mathbb{Z} is principal. In particular, if a, b are not both zero then $\langle a, b \rangle = \langle \gcd(a, b) \rangle$.

Principal Ideal Domain A principal ideal domain is an integral domain in which every ideal is principal.

Integral and Principal Ideal Domains Let R be an integral domain.

- a. If R has a division algorithm then R is a principal ideal domain.
- b. If R is a principal ideal domain, then every non-zero element of R which is not a unit has a unique (up to associates and order) factorisation into irreducibles.

Big-Oh and Little-Oh Notations For two functions f(x), $f: \mathbb{R} \to \mathbb{C}$, and g(x), $g: \mathbb{R} \to \mathbb{R}^+$, we say that

• f(x) = O(g(x)) iff $\limsup_{x\to\infty} |f(x)|/g(x) < \infty$ or, alternatively iff there is a constant c>0 such that $|f(x)| \le cg(x)$ for all sufficiently large x.

• f(x) = o(g(x)) iff $\lim_{x\to\infty} |f(x)|/g(x) = 0$ or, alternatively, iff for any $\epsilon > 0$ we have $|f(x)| \le \epsilon g(x)$ for all sufficiently large x.

Prime Number Theorem (PNT) For $x \to \infty$, we have

$$\pi(x) = \frac{x}{\log x} + o\left(\frac{x}{\log x}\right) = (1 + o(1))\frac{x}{\log x}.$$

2 Diophantine Equations and Congruences

2.1 Congruences

Cancelling in Congruences Let a, b, c and m be integers, with $c \neq 0$.

- a) The congruences $cax \equiv cb \pmod{cm}$ and $ax \equiv b \pmod{m}$ have the same solutions.
- b) If gcd(c, m) = 1 then the congruences $cax \equiv cb \pmod{m}$ and $ax \equiv b \pmod{m}$ have the same solutions.

Multiplicative Inverse Let $a \in \mathbb{Z}_m$ and $m \in \mathbb{Z}^+$. If $ax \equiv 1 \pmod{m}$, we call x the multiplicative inverse of a modulo m, or the multiplicative inverse of a in \mathbb{Z}_m .

2.2 Arithmetic Functions

Notation of Factors For any positive integer n we define d(n) to be the number of (positive) factors of n, and $\sigma(n)$ to be the sum of all (positive) factors of n.

Formula for $\mathbf{d}(\mathbf{n})$ If $n \in \mathbb{Z}^+$ has canonical factorisation into prime powers $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$ then

$$d(n) = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_s + 1) = \prod_{k=1}^{s} (\alpha_k + 1)$$

Formula for $\sigma(\mathbf{n})$ If $n \in \mathbb{Z}^+$ has canonical factorisation into prime powers

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s} \text{ then}$$

$$\sigma(n) = (1 + p_1 + p_1^2 + \dots + p_1^{\alpha_1}) \dots (1 + p_s + p_s^2 + \dots + p_s^{\alpha_s})$$

$$= \prod_{k=1}^s \frac{p_k^{a_k+1} - 1}{p_k - 1}$$

Multiplicative Functions Suppose that f is a function with domain \mathbb{Z}^+ . We call f multiplicative if

$$f(mn) = f(m)f(n),$$

whenever gcd(m, n) = 1.

 \mathbf{d}, σ Multiplicative Both d and σ are multiplicative.

Perfect Numbers A number n is called perfect if $\sigma(n) = 2n$.

Euclid-Euler Let n be even. Then n is perfect if and only if there is an integer k > 1 such that $n = 2^{k-1}(2^k - 1)$ and $2^k - 1$ is prime.

3 Introduction to Groups

3.1 Fields

Field A field K is a commutative ring with identity in which every non-zero element has a multiplicative inverse.

No Divisors of Zero in Fields A field contains no divisors of zero.

All fields are Integral Domains A field is an integral domain.

Inverse and GCD An element $n \in \mathbb{Z}_m^*$ has an inverse if and only if gcd(m, n) = 1.

Rings and Fields The ring Z_m is a field if and only if m is prime.

3.2 Units of a Ring

Notation for Set of Units In \mathbb{Z}_m , we denote the set of units by \mathbb{U}_m .

Units in Commutative Rings with Identity Let R be a commutative ring with identity.

- a) 1 is a unit of R
- b) If a and b are units in R, then so is their product ab.
- c) If a is a unit in R then so is a^{-1}

Units are Closed in Commutative Rings with Identity In any commutative ring with identity, the set of all units is closed under multiplication and inverse.

3.3 Groups

Groups A group is a non-empty set G on which an operation \star is defined, such that the following properties hold:

- 1. Closure: if $a, b \in G$ then $a \star b \in G$.
- 2. Associativity: if $a, b, c \in G$ then $(a \star b) \star c = a \star (b \star c)$.

- 3. Identity element: there is an element e of G such that for all $a \in G$ we have $a \star e = e \star a = a$
- 4. Inverses: for each a in G there is an element b of G such that $a \star b = b \star a = e$. This element is usually denoted a^{-1} .

Abelian Groups If the operation is commutative, i.e. $a \star b = b \star a$, for all $a, b \in G$, the group is called commutative, or Abelian.

Properties of Groups In any group G the following properties hold.

- a There is only one identity element in G.
- b Each x in G has only one inverse.
- c If $x, y \in G$ then $(xy)^{-1} = y^{-1}x^{-1}$.
- d If $x, y, z \in G$ and xy = xz then y = z.

3.4 Group Isomorphism

Group Isomorphism Let G and H be groups with operations \star and \bullet respectively. An isomorphism for G to H is a bijective function $\psi: G \to H$ with the property that

$$\psi(a \star b) = \psi(a) \bullet \psi(b)$$
 for all elements $a, b \in G$.

The groups G and H are said to be isomorphic if there exists such a function. We write $G \cong H$ to indicate that G and H are isomorphic.

Identities and Inverses in Isomorphic Groups Suppose that G and H are groups with identities e_G and e_H , respectively. Let $\psi: G \to H$ be a group isomorphism. Then

- 1. $\psi(e_G) = e_H$,
- 2. $\psi(a^{-1}) = (\psi(a))^{-1}$ for all $a \in G$,
- 3. $\psi(a^n) = \psi(a)^n$ for all $n \in \mathbb{Z}$,
- 4. If $\psi: G \to H, \theta: H \to K$ homomorphic then $\theta \circ \psi: G \to K$ is also homomorphic,
- 5. If $\psi:G\to H$ is a isomorphic then $\psi^{-1}:H\to H$ is also isomorphic.

3.5 Wilson's Theorem

Wilson's Theorem Let $p \ge 2$. Then p is prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

4 The Structure of \mathbb{U}_m and \mathbb{Z}_m

4.1 Subgroups and Cyclic Groups

Subgroup Let G be a group, and let H be a subset of G which is itself a group under the same operations as G. Then we say that H is a subgroup of G.

The Subgroup Lemma Let G be a group and H a non-empty subset of G. Then H is a subgroup of G if and only if it is closed under the group operation and inverse.

Cyclic Groups A group G is said to be cyclic if there exists an element $g \in G$ such that $G = \langle g \rangle$, i.e. G is generated by a single element.

Order of a Group and Element The order of a finite group G is the number of elements in G, |G|.

The order of an element g in a group G is the smallest positive integer n (if any) such that $g^n = e$. We write o(g) for the order of the element g.

Distinct Powers of Elements If $g \in G$ has order n, then the elements $e, g, g^2, \dots, g^{n-1}$ are all distinct.

Isomorphic Cyclic Groups Two finite cyclic groups are isomorphic if and only if they have the same order.

Prime Order is Isomorphic is Cycle Group Any group of prime order p is isomorphic to the cyclic group C_p .

Groups of Prime Order are Abelian Any group of prime order is abelian.

All Subsets Closed under Operation are Subgroups Let G be a group with operation \star . If H is a non-empty finite subset of G that is closed under \star , then H is a subgroup of G.

Lagrange's Theorem If G is a finite group and H is a subgroup of G, then |H| is a factor of |G|.

Left Coset Let G be a group and H a subgroup of G. For any $g \in G$ we define the left coset of H by g to be

$$gH = \{gh \mid h \in H\}.$$

If we used additive notation we would write a coset of H as g + H.

Order of Elements in a Group is a Divisor of the Group Suppose G is a group of finite order and $g \in G$. Then $g^{|G|} = e$.

Fermat's Little Theorem If p is a prime and a is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary of Fermat's Little Theorem If p is prime and a is any integer, then $a^p \equiv a \pmod{p}$.

Euler's Theorem Let n be a positive integer, and let a be an integer relatively prime to n. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$