DATA-INK (Visualization of fastest-growing companies in the US)

Subhalaxmi Rout

2021-02-14

```
# Load libraries
library(ggplot2)
library(stats)
library(DT)
library(dplyr)
library(psych)
library(visdat)
```

Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc

And lets preview this data:

1

Min.

Length:5001

<pre>DT::datatable(head(inc))</pre>									
Show	10 🔻	entries					Search:		
	Rank 🏺	Name	e	Growth_Rate -	Revenue 🏺	Industry 🍦	Employees 🏺	City 🍦	State 🌲
1	1	Fuhu		421.48	117900000	Consumer Products & Services	104	El Segundo	CA
2	2	FederalConfer	rence.com	248.31	49600000	Government Services	51	Dumfries	VA
3	3	The HCI Grou	р	245.45	25500000	Health	132	Jacksonville	FL
4	4	Bridger		233.08	1900000000	Energy	50	Addison	TX
5	5	DataXu		213.37	87000000	Advertising & Marketing	220	Boston	MA
6	6	MileStone Cor Builders	mmunity	179.38	45700000	Real Estate	63	Austin	TX
Showi	ng 1 to 6	of 6 entries					Pi	revious 1	Next
summa	ary(ind	c)							
##	Ra	ank	Name	Gr	cowth_Rate	Reve	enue		

Min. : 0.340

:2.000e+06

Min.

```
1st Qu.:1252
                   Class :character
                                       1st Qu.: 0.770
                                                          1st Qu.:5.100e+06
##
    Median:2502
                   Mode :character
                                                          Median :1.090e+07
                                       Median:
                                                  1.420
##
    Mean
           :2502
                                       Mean
                                                  4.612
                                                          Mean
                                                                  :4.822e+07
                                                          3rd Qu.:2.860e+07
    3rd Qu.:3751
                                                  3.290
##
                                        3rd Qu.:
##
    Max.
           :5000
                                        Max.
                                               :421.480
                                                          Max.
                                                                  :1.010e+10
##
##
      Industry
                          Employees
                                               City
                                                                  State
##
    Length:5001
                        Min.
                               :
                                    1.0
                                           Length:5001
                                                               Length:5001
##
    Class : character
                        1st Qu.:
                                   25.0
                                           Class : character
                                                               Class : character
##
    Mode :character
                        Median :
                                   53.0
                                           Mode :character
                                                               Mode :character
##
                        Mean
                                  232.7
##
                        3rd Qu.: 132.0
##
                               :66803.0
                        Max.
##
                        NA's
                               :12
```

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

Lets have a look on datatypes and structure od data.

```
# Insert your code here, create more chunks as necessary
glimpse(inc)
```

```
## Rows: 5,001
## Columns: 8
                 <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ Rank
                 <chr> "Fuhu", "FederalConference.com", "The HCI Group", "Brid...
## $ Name
## $ Growth Rate <dbl> 421.48, 248.31, 245.45, 233.08, 213.37, 179.38, 174.04,...
                 <dbl> 1.179e+08, 4.960e+07, 2.550e+07, 1.900e+09, 8.700e+07, ...
## $ Revenue
                 <chr> "Consumer Products & Services", "Government Services", ...
## $ Industry
## $ Employees
                 <int> 104, 51, 132, 50, 220, 63, 27, 75, 97, 15, 149, 165, 25...
                 <chr> "El Segundo", "Dumfries", "Jacksonville", "Addison", "B...
## $ City
                 <chr> "CA", "VA", "FL", "TX", "MA", "TX", "TN", "CA", "UT", "...
## $ State
```

State, City, Industry, and Name are in character type. Growth_Rate and Employees have a double type, and Rank has integer type.

Describe() shows summary statistics of data.

DT::datatable(describe(inc))

Revenue looks very big nubmer, devide the revenue by 10^9 , the result will be in billion.

inc\$Revenue <- sapply(inc\$Revenue, function(x) x / 1000000000) DT::datatable(head(inc))</pre>

Show	/ 10 🔽	entries						Search:		
	Rank 🌲		Name	-	Growth_Rate	Revenue 🏺	Industry 🌲	Employees	City 🌲	State
1	1	Fuhu			421.48	0.1179	Consumer Products & Services	104	El Segundo	CA
2	2	Feder	alConference	com	248.31	0.0496	Government Services	51	Dumfries	VA
3	3	The H	CI Group		245.45	0.0255	Health	132	Jacksonville	FL
4	4	Bridge	er		233.08	1.9	Energy	50	Addison	TX
5	5	DataX	íu		213.37	0.087	Advertising & Marketing	220	Boston	MA
6	6	MileSi Builde	one Commun	ity	179.38	0.0457	Real Estate	63	Austin	TX
Show	ring 1 to 6	of 6 ent	ries					Р	revious 1	Next

Top 5 and bottom 5 revenue generated company

Showing 1 to 5 of 5 entries

DT::datatable(inc %>% arrange(desc(Revenue)) %>% head(5))

Show 10 • entries Search:									
	Rank 🏺	Name 🕴	Growth_Rate +	Revenue 🏺	Industry	÷	Employees +	City 🍦	State 🏺
1	4788	CDW	0.41	10.1	Computer Hardware		6800	Vernon Hills	IL
2	3853	ABC Supply	0.73	4.7	Construction		6549	Beloit	WI
3	4936	Coty	0.36	4.6	Consumer Products & Services		10000	New York	NY
4	4997	Dot Foods	0.34	4.5	Food & Beverage		3919	Mt. Sterling	IL
5	4716	Westcon Group	0.44	3.8	IT Services		3000	Tarrytown	NY

Previous

Next

DT::datatable(inc %>% arrange(desc(Revenue)) %>% tail(5))

Show 10 entries Search:									
	Rank 🏺	Name 🍦	Growth_Rate 🏺	Revenue 🏺	Industry		Employees 🏺	City 🍦	State
4997	4409	AMSYS Innovative Solutions	0.53	0.002	IT Services		15	Houston	TX
4998	4574	PeopleG2	0.48	0.002	Business Products & Services		24	Anaheim Hills	CA
4999	4734	Elevation Sports	0.43	0.002	Retail		6	Granger	IN
5000	4858	NetFactor	0.39	0.002	Software		14	Greenwood Village	СО
5001	4993	The PI Company	0.35	0.002	Business Products & Services		6	North Little Rock	AR
Showing 1 to 5 of 5 entries							Pr	evious 1	Next

Above table shows, Computer Hardware industry generate the high revenue and Business Products & Services generates the lowest revenue.

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a 'portrait' oriented screen (ie taller than wide), which should further guide your layout choices.

```
# Answer Question 1 here
inc %>% group_by(State) %>% count() %>%
    ggplot() + aes(x = reorder(State, n) , y = n, fill = n) +
    ggtitle('Number of Companies by State') +
    xlab('State') +
    geom_bar(fill="#276678", stat = "identity") +
    coord_flip() + geom_text(aes(label = n), size = 5, hjust=-0.20) +
    theme(panel.background = element_rect(fill = "white", color = NA),
        plot.title = element_text(hjust = 0.5, size = 25, colour = "#03506f"),
        axis.title.y = element_text(size = 20, colour = "#03506f"),
        axis.title.x=element_blank(),
        axis.ticks.x=element_blank()
)
```

Number of Companies by State

Above viz shows California and Texas has more companies than other states.

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R's complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

From summary() we got to know there are 12 NAs present in Employees column. Use complete.cases() to get the data with out NAs. Below graph shows after apply complete.cases() no missing values present in data.

```
# Answer Question 2 here
inc <- inc[complete.cases(inc),]
visdat::vis_miss(inc)</pre>
```



```
data_NY <- inc %>% filter(State == "NY")

data_NY %>% ggplot() +
   aes(x = reorder(Industry, Employees), y = Employees) +
   geom_boxplot(color = '#03506f') +
   ggtitle('Distribution of Employees by Industry') +
   xlab('Industry') +
   coord_flip() +
   theme(panel.background = element_rect(fill = "white", color = NA),
        plot.title = element_text(hjust = 0.5, size = 25, colour = "#03506f"),
        axis.title.y = element_text(size = 20, colour = "#03506f"),
        axis.title.x=element_blank(),
        axis.text.y = element_text(size = 20)
        )
```

Distribution of Employees by Industry

```
Business Products & Services-
  Consumer Products & Services-
               Travel & Hospitality-
               Human Resources-
                         Software-
                      IT Services
          Environmental Services-
               Financial Services-
                          Security-
                          Energy-
                           Media-
             Telecommunications-
Industry
                           Health-
                Food & Beverage-
                   Manufacturing-
                     Construction-
                        Education-
          Advertising & Marketing-
                      Engineering-
             Computer Hardware-
                        Insurance-
        Logistics & Transportation-
                            Retail-
                      Real Estate-
            Government Services-
                                                                                      20000
                                                                                                              30000
```

Some industies have high outliers due to this visualisation is not clear. Lets exclued outliers above 1200.

```
data_NY %>% ggplot() +
   aes(x = reorder(Industry, Employees), y = Employees) +
   stat_summary(fun.y=median, colour="darkred", geom = "point") +
   geom_boxplot(color = '#03506f') +
   ggtitle('Distribution of Employees by Industry') +
   xlab('Industry') +
   ylim(0,1200) +
   coord_flip() +
   theme(panel.background = element_rect(fill = "white", color = NA),
        plot.title = element_text(hjust = 0.5, size = 20, colour = "#03506f"),
        axis.title.y = element_text(size = 15, colour = "#03506f"),
```

```
axis.title.x=element_blank(),
axis.text.y = element_text(size = 15)
)
```


Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

```
# Answer Question 3 here
#visdat::vis_miss(inc)
inc %>% group_by(Industry) %>%
 mutate(Employee_Revenue = round((Revenue * 1e9) / Employees,0)) %>%
 filter (Employee_Revenue <= 3000000) %>%
  ggplot() + aes(x = reorder(Industry, Employee_Revenue), y = Employee_Revenue) +
 geom_boxplot(color = "#03506f") +
 coord_flip() +
  ggtitle('Distribution of Revenue per Employee by Industry') +
  xlab('Industry') +
  scale_y_continuous(breaks = c(0, 1000000, 2000000, 3000000), label = c("$0M", "$1M", "$2M", "$3M")) +
  theme(panel.background = element_rect(fill = "white", color = NA),
       plot.title = element_text(hjust = 0.5, size = 35, colour = "#03506f"),
       axis.title.y = element_text(size = 25, colour = "#03506f"),
       axis.title.x=element_blank(),
       axis.text.y = element_text(size = 20),
       axis.text.x = element_text(size = 20)
```

Distribution of Revenue per Employee by Industry

The above boxplot shows, Computer Hardware, and Logistics and Transportation generates a high revenue per employee. However, Software and Engineering produce low revenue. (Note: Applied filter on Employee_Revenue less than or eaual to 3M due to large value outlier)