Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto

Sommersemester 2015 10. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Gruppenübung

Aufgabe G1 (Quiz)

Wahr oder falsch?

- (a) Logische Äquivalenz aussagenlogischer Formeln ist eine Äquivalenzrelation.
- (b) Die Folgerungsbeziehung ist eine Ordnungsrelation.
- (c) Die Anzahl der n-stelligen booleschen Funktionen ist gleich dem Index von \equiv auf AL_n .
- (d) Wenn jede Formel einer Menge von aussagenlogischen Formeln $\Phi \subseteq AL$ erfüllbar ist, dann ist auch Φ erfüllbar.

Aufgabe G2 (Exklusiv-Oder, Sheffer-Operator, Peirce-Operator)

Wir führen drei logische Junktoren ein:

- $p \oplus q := (p \vee q) \land \neg (p \land q)$ (exklusives Oder, XOR, Addition modulo 2, entweder-oder),
- $p \mid q := \neg(p \land q)$ (Sheffer-Strich, NAND),
- $p \downarrow q := \neg (p \lor q)$ (Peirce-Pfeil, NOR, weder-noch).

Beweisen Sie, dass $\{|\}$ und $\{\downarrow\}$ vollständige Junktorensysteme sind, $\{1,0,\oplus\}$ aber nicht.

Aufgabe G3 (AL-Kompaktheit)

- (a) Beweisen Sie den Kompaktheitssatz für AL(V) mit abzählbarer Variablenmenge V direkt als Anwendung von Königs Lemma.
- (b) Beweisen Sie Königs Lemma als direkte Anwendung des AL-Kompaktheitssatzes.

Aufgabe G4 (Endlichkeitssatz für Parkettierungen)

Ein Parkettierungs-System $\mathcal{D}=(D,H,V)$ ist gegeben durch eine endliche Menge D von Kacheltypen und zwei Relationen $H,V\subseteq D\times D$, die beschreiben, wann zwei Kacheltypen horizontal bzw. vertikal nebeneinanderpassen, d.h., $(d,e)\in H$ gdw. e rechts neben d passt und $(d,e)\in V$ gdw. e über d passt. Eine gegebene Teilmenge von $\mathbb{Z}\times\mathbb{Z}$ besitzt eine Pakettierung, wenn sie korrekt mit Kacheln belegt werden kann, d.h., benachbarte Kacheln passen in ihrem Typ gemäß H und V zusammen. (Wir gehen davon aus, dass wir unbegrenzt viele Kacheln jeden Typs haben)

Weisen Sie nach, dass für ein endliches Parkettierungs-System $\mathcal{D} = (D, H, V)$ stets äquivalent sind:

- (a) Es existiert eine Parkettierung auf $\mathbb{Z} \times \mathbb{Z}$.
- (b) Es existiert eine Parkettierung auf $\mathbb{N} \times \mathbb{N}$.
- (c) Es existieren Parkettierungen auf $(n \times n)$ -Quadraten für beliebig große $n \in \mathbb{N}$.

Hinweis: Benutzen Sie AL-Variablen p_{dij} für $d \in D, i, j \in \mathbb{Z}$, die besagen dass in Position (i, j) eine Kachel vom Typ d liegt. Die Bedingungen an \mathcal{D} -Parkettierungen lassen sich dann in geeigneter Weise als AL-Formelmengen beschreiben.