Scalable Learning of Probabilistic Circuits

Renato Lui Geh

Thesis presented to the Institute of Mathematics and Statistics of the University of São Paulo in partial fulfillment of the requirements for the degree of Master of Science

Program: Computer Science

Advisor: Prof. Denis Deratani Mauá, PhD

This work was supported by CNPq grant #133787/2019-2, CAPES grant #88887.339583/2019-00 and EPECLIN FM-USP.

São Paulo November 1, 2021

Scalable Learning of Probabilistic Circuits

Renato Lui Geh

This is the original version of the thesis prepared by candidate Renato Lui Geh, as submitted to the Examining Committee.

I hereby authorize the total or partial reproduction and publishing of this work for educational ou research purposes, as long as properly cited.

Acknowledgements

Resumo

Renato Lui Geh. **Aprendizado Escalável de Circuitos Probabilísticos**. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

Palavras-chave: Circuitos probabilísticos. Aprendizado de máquina. Modelos probabilísticos.

Abstract

Renato Lui Geh. **Scalable Learning of Probabilistic Circuits**. Thesis (Master's). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2021.

Keywords: Probabilistic circuits. Machine learning. Probabilistic models.

Nomenclature

List of Symbols

 σ Sigmoid function

List of Figures

List of Tables

List of Algorithms

Notation

We use the following notation throughout the work. Random variables are written in upper case (e.g. X, Y) and their values in lower case (e.g. x, y). We identify propositional variables with 0/1-valued random variables, and use them interchangeably. Sets of variables and their joint values are written in boldface (e.g. X, x). Given a Boolean formula f, we write $\langle f \rangle$ to denote its semantics, i.e. the Boolean function represented by f. For Boolean formulas f and g, we write f = g if they are logically equivalent, that is, if $\langle f \rangle = \langle g \rangle$; we abuse notation and write $\phi = f$ to indicate that $\phi = \langle f \rangle$ for a Boolean function ϕ .

Contents

1	Intr	roduction	1
	1.1	Contributions and Dissertation Outline	3
2	Pro	babilistic Circuits	5
	2.1	Distributions as Computational Graphs	5
	2.2	Deciding What to Constraint	5
Aj	pper	ndices	
A 1	nnex	kes	
D.	fere	nces	7

Chapter 1

Introduction

When reasoning about the world, rarely can we find a realistic model that perfectly subsumes all of the needed relationships for flawless prediction. As such, the presence of a reliable uncertainty quantifier in intelligent systems is essential in developing performant yet diagnostible agents. This is made explicitly clear in the case of high-risk settings, such as autonomous vehicles or automated power plant systems, where a wrong prediction could cause disastrous consequences. A well known example in the case of the former is obstacle avoidance: while the agent should be capable of accurately identifying obstructions in its way during normal conditions, so should it be able to identify its own lack of confidence in high uncertainty situations like ones brought by environmental factors, such as severe blizzard or heavy rain. In these situations where predictions are highly unreliable, the safest option might be for the agent to first identify its uncertainty, and second to reach out for human help. Other interesting applications of uncertainty quantification include out-of-distribution detection, which in our previous example could be visualized as the agent identifying a human's driving as abnormally irregular (due to inebriation, infirmity, etc.) and appropriately taking control of the vehicle before a potential accident takes place.

One popular approach to quantifying uncertainty is through probability theory. By abstracting the world as a probability distribution with a finite number of observable random variables that encode a possibly incomplete knowledge of the environment, we are, in theory, able to answer a diverse set of complex queries as long as we have access to the (approximate) true data distribution. Practice is far different from theory, however, as most machine learning models either lie within a very limited range in the tractability spectrum in terms of inference (Vergari, Choi, *et al.*, 2020) or are too simplistic for complex real-world problems. Besides, although the majority of recent advances in deep learning claim some probabilistic meaning from the model's output, they are often uncalibrated distributions, a result of focusing on maximizing predictive accuracy at the expense of predictive uncertainty (Guo *et al.*, 2017; Ovadia *et al.*, 2019; Chernikova *et al.*, 2019), ultimately producing overconfident and peculiar results (Szegedy *et al.*, 2013; Wei *et al.*, 2018; Su *et al.*, 2019; Chernikova *et al.*, 2019). Crucially, mainstream deep models (i.e. standard neural networks) usually optimize a conditional distribution over the to-be-predicted random variables – and are thus often called *discriminative* models – and do

not model the actual joint distribution of the data, limiting inference capabilities and uncertainty estimation.

In contrast, *generative* models seek to extract information from the joint (in varying capacities), and have lately seen a sharp rise in interest within deep learning. Despite this, most popular models do not admit either exact or tractable querying of key inference scenarios. For instance, although Generative Adversarial Networks (GANs) allow for efficient sampling (Goodfellow *et al.*, 2014), basic queries such as likelihood or marginals are outside of their capabilities. Similarly, Normalizing Flows (NF) also permit access to efficient sampling, with the added feature of computing likelihoods, but are severely limited by the base distribution when it comes to discrete data (Rezende and Mohamed, 2015; Papamakarios *et al.*, 2021) albeit recent works on discretizing NFs have shown empirically good results (Lippe and Gavves, 2021; Ziegler and Rush, 2019). Variational Auto-Encoders (VAEs) are (under certain conditions) a generalization of NFs (Yu, 2020; Gritsenko *et al.*, 2019) with known extensions for categorical data (Rolfe, 2017; Vahdat, Macready, *et al.*, 2018; Vahdat, Andriyash, *et al.*, 2018), but only permit access to sampling and an upperbound on the likelihood, with the latter available only after solving a complex optimization task (Kingma and Welling, 2014).

Despite the impressive achievements of the aforementioned generative models on realistically producing samples consistent with evidence, in none of the previous models are complex queries like structured prediction under partial observations, *maximum a posteriori* (MAP), conditional or marginal probabilities tractable. An obvious alternative would be Probabilistic Graphical Models (PGMs), although they too suffer from intractability when dealing with high treewidth networks (R. Dechter, 1998; Koller and Friedman, 2009), severely limiting expressivity. Instead, we draw our attention to an expressive class of models that subsumes several families of probabilistic models with tractable inference capabilities.

Probabilistic Circuits (PCs) define a superclass of probabilistic models distincly specified by recursive compositions of distributions through graphical formalisms. Vaguely speaking, PCs are computational graphs akin to neural networks, but whose network structure and computational units abide by special constraints. Within these specific conditions span a wide range of subclasses, each establishing a distinct set of restrictions on their structure in order to enable different segments within the tractability spectrum. As an example, Sum-Product Networks (SPNs, Poon and P. Domingos, 2011) are usually loosely defined over a couple of constraints: namely smoothness and decomposability, which in turn enables likelihood, marginal and conditional computations. Arithmetic Circuits (ACs, DARWICHE, 2003) add determinism to the mix, allowing for tractable computation of MAP probabilities. Similarly, Cutset Networks (CNets, RAHMAN et al., 2014) employ the same constraints as ACs, but accept more expressive distributions as part of their computational units. Probabilistic Sentential Decision Diagrams (PSDDs, KISA et al., 2014), Probabilistic Decision Graphs (PDGs, JAEGER, 2004) and And/Or-Graphs (AOGs, Rina DECHTER and MATEESCU, 2007) all require *smoothness* and *determinism*, but also call for a stronger version of decomposability, permitting all queries previously mentioned as well as computation of the Kullback-Leibler divergence and expectation between two circuits (Choi et al., 2020). Usually, PCs represent the joint distribution of the data, although they are sufficiently expressive for generative and discriminative modeling (Khosravi et al., 2019; Rashwan

et al., 2018; Rooshenas and Lowd, 2016; Gens and P. Domingos, 2012; Shao *et al.*, 2020). In this dissertation though, we shall focus on the generative side of PCs.

While inference is usually straightforward, as we shall see in ??, learning the structure of PCs so that they obey the needed structural restrictions requires either careful handcrafted architectures (Poon and P. Domingos, 2011; Cheng et al., 2014; NATH and P. M. Domingos, 2016) or usually involves running costly (in)dependence tests over most (if not all) variables (Gens and P. Domingos, 2013; Jaini et al., 2018; Vergari, Mauro, et al., 2015; DI MAURO et al., 2017), which can become prohibitive in higher dimension data. Alternatively, some learning algorithms resort to structure preserving iterative methods to grow a PC that already initially satisfies desired constraints, adding complexity to the underlying distribution at each iteration (LIANG et al., 2017; DANG et al., 2020). However, these can take several iterations until visible improvement and often take several minutes for each iteration when the circuit is big. Common techniques used in deep learning for generating scalable architectures for neural network also pose a problem, as the nature of the needed structural constraints make for sparse computational graphs. To circumvent these issues, work on scaling PCs to higher dimensions has focused mainly on random architectures, with competitive results (Peharz, Vergari, et al., 2020; Mauro et al., 2021; Geн and Mauá, 2021; Ренагz, Lang, et al., 2020). Apart from the scalability side of random structure generation, usual structure learning algorithms often require grid-search for hyperparameter tuning to achieve top quality performance, which is usually not the case for random algorithms. For the usual data scientist or machine learning practicioner, hyperparameter tuning can become exhaustive, especially if the goal is to analyze and infer from large data, and not to achieve top tier performance on benchmark datasets.

In this dissertation, we propose two scalable structural learning algorithms for probabilistic circuits that are especially suited for large data and fast deployment. They both take advantage of random network generation to quickly construct PCs with little to no need for hyperparameters. The first is effective for constructing PCs from binary data with a highly constrained structure, and thus appropriate when complex querying is needed. The second builds less constrained random PCs, but supports both discrete and continuous data.

1.1 Contributions and Dissertation Outline

We organize this dissertation as follows. We begin Chapter 2 by formally defining probabilistic circuits, conducting a review of some of the structural constraints that we might impose on PCs, as well as what we may gain from them in terms of tractability. We then list existing formalisms that may be viewed as instances of PCs, and what their structure entail in terms of inference power. In Chapter 3, we address existing PC structure learning algorithms, and which guarantees in terms of tractability each give. We cover the two new structure learners in Chapter 4, providing empirical results on their performance. The final chapter is dedicated to summarizing our research contributions and pointing to potential future work in learning PCs.

Our contributions in this dissertation address the following research topics.

Scalably learning PCs directly from background knowledge

In GeH and Mauá (2021), we provide a learning algorithm for PSDDs that learns a PC directly from background knowledge in the form of logical constraints. The algorithm samples a structure from a distribution of possible PSDDs that are weakly consistent with the logical formula. How weak consistency is depends on a parameter that trades permission of false statements as non zero probability events with circuit complexity. We provide the algorithm and empirical results in Section 4.??.

Using ensembles to strengthen consistency

The PC sampler given by GeH and Mauá (2021) produces competitive probabilistic models (in terms of likelihood), albeit weak logical models in the sense that it possibly assigns non-zero probability to false variable assignments – as we discuss in Section 4.??, it never assigns zero probability to true statements. By producing many weak models, we not only gain in terms of data fitness, but also consistency: if any one component in the ensemble returns an assignment to be impossible, the whole model should return false.

Random projections to efficiently learn PCs

Usual methods often employ clustering algorithms for constructing convex combinations of computational units. These can take many iterations to converge or require space quadratic in the number of data points. Instead, in Section 4.?? we present linear alternatives based on random projections (FREUND *et al.*, 2008; DASGUPTA and FREUND, 2008).

Chapter 2

Probabilistic Circuits

As we briefly mentioned in the last chapter, Probabilistic Circuits (PCs) are conceptualized as computational graphs under special conditions. In this chapter, Section 2.1 to be more precise, we formally define PCs and give an intuition on their syntax, viewing other probabilistic models through the lenses of the PC framework. In Section 2.2, we describe the special structural constraints that give PCs their inference power over other generative models and state which queries (as far as we know) are enabled from each constraint.

2.1 Distributions as Computational Graphs

In its simplest form, a probabilistic circuit is a single computational unit corresponding to some distribution. Following Graph Theory nomenclature, computational units with no These can range from univariate or multivariate exponential distributions to complex non-parametric models. To simplify notation, when

 \mathcal{N} .

2.2 Deciding What to Constraint

referenced structural constraints in passing

References

- [Cheng et al. 2014] Wei-Chen Cheng, Stanley Кок, Hoai Vu Рнам, Hai Leong Chieu, and Kian Ming A. Chai. "Language modeling with sum-product networks". In: Fifteenth Annual Conference of the International Speech Communication Association. 2014 (cit. on p. 3).
- [Chernikova *et al.* 2019] A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim. "Are self-driving cars secure? evasion attacks against deep neural networks for steering angle prediction". In: *2019 IEEE Security and Privacy Workshops.* 2019, pp. 132–137 (cit. on p. 1).
- [Сної *et al.* 2020] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. "Probabilistic circuits: a unifying framework for tractable probabilistic models". In: (2020). In preparation (cit. on p. 2).
- [Dang *et al.* 2020] Meihua Dang, Antonio Vergari, and Guy Van den Broeck. "Strudel: learning structured-decomposable probabilistic circuits". In: *Proceedings of the 10th International Conference on Probabilistic Graphical Models.* PGM. 2020 (cit. on p. 3).
- [Darwiche 2003] Adnan Darwiche. "A differential approach to inference in bayesian networks". In: *Journal of the ACM* 50.3 (2003), pp. 280–305 (cit. on p. 2).
- [Dasgupta and Freund 2008] Sanjoy Dasgupta and Yoav Freund. "Random projection trees and low dimensional manifolds". In: *Proceedings of the fortieth annual ACM symposium on Theory of computing.* STOC. 2008, pp. 537–546 (cit. on p. 4).
- [R. Dechter 1998] R. Dechter. "Bucket elimination: a unifying framework for probabilistic inference". In: *Learning in Graphical Models*. Ed. by Michael I. Jordan. Dordrecht: Springer Netherlands, 1998, pp. 75–104. ISBN: 978-94-011-5014-9. DOI: 10.1007/978-94-011-5014-9_4. URL: https://doi.org/10.1007/978-94-011-5014-9_4 (cit. on p. 2).
- [Rina Dechter and Mateescu 2007] Rina Dechter and Robert Mateescu. "And/or search spaces for graphical models". In: *Artificial Intelligence* 171.2 (2007), pp. 73–106. ISSN: 0004-3702. DOI: https://doi.org/10.1016/j.artint.2006.11.003. URL: https://www.sciencedirect.com/science/article/pii/S000437020600138X (cit. on p. 2).

- [DI MAURO *et al.* 2017] Nicola DI MAURO, Floriana Esposito, Fabrizio G. Ventola, and Antonio Vergari. "Alternative variable splitting methods to learn sum-product networks". In: *AI*IA 2017 Advances in Artificial Intelligence*. Ed. by Floriana Esposito, Roberto Basili, Stefano Ferilli, and Francesca A. Lisi. Cham: Springer International Publishing, 2017, pp. 334–346. ISBN: 978-3-319-70169-1 (cit. on p. 3).
- [Freund *et al.* 2008] Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. "Learning the structure of manifolds using random projections". In: *Advances in Neural Information Processing Systems*. Vol. 20. NeurIPS. 2008 (cit. on p. 4).
- [Geh and Mauá 2021] Renato Lui Geh and Denis Deratani Mauá. "Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging". In: *Proceedings of The 37th Uncertainty in Artificial Intelligence Conference*. Proceedings of Machine Learning Research. PMLR, 2021 (cit. on pp. 3, 4).
- [Gens and P. Domingos 2012] Robert Gens and Pedro Domingos. "Discriminative learning of sum-product networks". In: *Advances in Neural Information Processing Systems 25*. NIPS, 2012, pp. 3239–3247 (cit. on p. 3).
- [Gens and P. Domingos 2013] Robert Gens and Pedro Domingos. "Learning the structure of sum-product networks". In: *Proceedings of the 30th International Conference on Machine Learning*. ICML. 2013, pp. 873–880 (cit. on p. 3).
- [GOODFELLOW et al. 2014] Ian GOODFELLOW et al. "Generative adversarial nets". In: Advances in Neural Information Processing Systems 27. Ed. by Z. GHAHRAMANI, M. WELLING, C. CORTES, N. D. LAWRENCE, and K. Q. WEINBERGER. Curran Associates, Inc., 2014, pp. 2672–2680. URL: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf (cit. on p. 2).
- [Gritsenko et al. 2019] Alexey A. Gritsenko, Jasper Snoek, and Tim Salimans. "On the relationship between normalising flows and variational- and denoising autoencoders". In: Deep Generative Models for Highly Structured Data, ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net, 2019. URL: https://openreview.net/forum?id=HklKEUUY%5C_E (cit. on p. 2).
- [Guo et al. 2017] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. "On calibration of modern neural networks". In: *Proceedings of the 34th International Conference on Machine Learning-Volume 70.* JMLR. org. 2017, pp. 1321–1330 (cit. on p. 1).
- [Jaeger 2004] Manfred Jaeger. "Probabilistic decision graphs-combining verification and ai techniques for probabilistic inference". In: *Int. J. Uncertain. Fuzziness Knowl.-Based Syst.* 12.1 supp (Jan. 2004), pp. 19–42. ISSN: 0218-4885. DOI: 10. 1142/S0218488504002564. URL: https://doi.org/10.1142/S0218488504002564 (cit. on p. 2).

- [Jaini *et al.* 2018] Priyank Jaini, Amur Ghose, and Pascal Poupart. "Prometheus: directly learning acyclic directed graph structures for sum-product networks". In: *International Conference on Probabilistic Graphical Models.* PGM. 2018, pp. 181–192 (cit. on p. 3).
- [KHOSRAVI *et al.* 2019] Pasha KHOSRAVI, Yitao LIANG, YooJung CHOI, and Guy VAN DEN BROECK. "What to expect of classifiers? reasoning about logistic regression with missing features". In: *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.* International Joint Conferences on Artificial Intelligence Organization, July 2019, pp. 2716–2724. DOI: 10.24963/ijcai. 2019/377. URL: https://doi.org/10.24963/ijcai.2019/377 (cit. on p. 2).
- [Kingma and Welling 2014] Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes". In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014. url: http://arxiv.org/abs/1312.6114 (cit. on p. 2).
- [KISA et al. 2014] Doga KISA, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. "Probabilistic sentential decision diagrams". In: *Knowledge Representation and Reasoning Conference* (2014) (cit. on p. 2).
- [Koller and Friedman 2009] Daphne Koller and Nir Friedman. *Probabilistic Graphical Models: Principles and Techniques Adaptive Computation and Machine Learning*. The MIT Press, 2009. ISBN: 0262013193 (cit. on p. 2).
- [Liang et al. 2017] Yitao Liang, Jessa Bekker, and Guy Van den Broeck. "Learning the structure of probabilistic sentential decision diagrams". In: *Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence*. 2017 (cit. on p. 3).
- [Lippe and Gavves 2021] Phillip Lippe and Efstratios Gavves. "Categorical normalizing flows via continuous transformations". In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL: https://openreview.net/forum?id=-GLNZeVDuik (cit. on p. 2).
- [Mauro et al. 2021] Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa M. A. Basile. "Random probabilistic circuits". In: *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence*. 2021 (cit. on p. 3).
- [NATH and P. M. DOMINGOS 2016] Aniruddh NATH and Pedro M DOMINGOS. "Learning tractable probabilistic models for fault localization". In: *Thirtieth AAAI Conference on Artificial Intelligence*. 2016 (cit. on p. 3).
- [Ovadia et al. 2019] Yaniv Ovadia et al. "Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift". In: *Proceedings of the 33rd International Conference on Neural Information Processing Systems.* 2019 (cit. on p. 1).

- [PAPAMAKARIOS *et al.* 2021] George PAPAMAKARIOS, Eric NALISNICK, Danilo Jimenez REZENDE, Shakir MOHAMED, and Balaji LAKSHMINARAYANAN. "Normalizing flows for probabilistic modeling and inference". In: *Journal of Machine Learning Research* 22.57 (2021), pp. 1–64. URL: http://jmlr.org/papers/v22/19-1028.html (cit. on p. 2).
- [Peharz, Lang, et al. 2020] Robert Peharz, Steven Lang, et al. "Einsum networks: fast and scalable learning of tractable probabilistic circuits". In: *Proceedings of the 37th International Conference on Machine Learning*. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, July 2020, pp. 7563–7574. URL: https://proceedings.mlr.press/v119/peharz20a.html (cit. on p. 3).
- [Peharz, Vergari, et al. 2020] Robert Peharz, Antonio Vergari, et al. "Random sumproduct networks: a simple and effective approach to probabilistic deep learning". In: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference. Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115. Proceedings of Machine Learning Research. PMLR, July 2020, pp. 334–344. URL: https://proceedings.mlr.press/v115/peharz20a.html (cit. on p. 3).
- [Poon and P. Domingos 2011] Hoifung Poon and Pedro Domingos. "Sum-product networks: a new deep architecture". In: *Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence*. 2011, pp. 337–346 (cit. on pp. 2, 3).
- [RAHMAN et al. 2014] Tahrima RAHMAN, Prasanna KOTHALKAR, and Vibhav Gogate. "Cutset networks: a simple, tractable, and scalable approach for improving the accuracy of chow-liu trees". In: *Proceedings of the 2014th European Conference on Machine Learning and Knowledge Discovery in Databases.* 2014, pp. 630–645 (cit. on p. 2).
- [RASHWAN *et al.* 2018] Abdullah RASHWAN, Pascal POUPART, and Chen ZHITANG. "Discriminative training of sum-product networks by extended baum-welch". In: *Proceedings of the Ninth International Conference on Probabilistic Graphical Models.* Vol. 72. Proceedings of Machine Learning Research. 2018, pp. 356–367 (cit. on p. 2).
- [Rezende and Mohamed 2015] Danilo Rezende and Shakir Mohamed. "Variational inference with normalizing flows". In: *Proceedings of the 32nd International Conference on Machine Learning*. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 1530–1538. URL: https://proceedings.mlr.press/v37/rezende15.html (cit. on p. 2).
- [ROLFE 2017] Jason Tyler ROLFE. "Discrete variational autoencoders". In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL: https://openreview.net/forum?id=ryMxXPFex (cit. on p. 2).

- [ROOSHENAS and LOWD 2016] Amirmohammad ROOSHENAS and Daniel LOWD. "Discriminative structure learning of arithmetic circuits". In: *Proceedings of the 19th International Conference on Artificial Intelligence and Statistics.* Ed. by Arthur Gretton and Christian C. Robert. Vol. 51. Proceedings of Machine Learning Research. Cadiz, Spain: PMLR, Sept. 2016, pp. 1506–1514. URL: https://proceedings.mlr.press/v51/rooshenas16.html (cit. on p. 3).
- [Shao *et al.* 2020] Xiaoting Shao *et al.* "Conditional sum-product networks: imposing structure on deep probabilistic architectures". In: *Proceedings of the 10th International Conference on Probabilistic Graphical Models.* Ed. by Manfred Jaeger and Thomas Dyhre Nielsen. Vol. 138. Proceedings of Machine Learning Research. PMLR, Sept. 2020, pp. 401–412. URL: https://proceedings.mlr.press/v138/shao20a. html (cit. on p. 3).
- [Su et al. 2019] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural networks". In: *IEEE Transactions on Evolutionary Computation* 23.5 (2019), pp. 828–841 (cit. on p. 1).
- [Szegedy *et al.* 2013] Christian Szegedy *et al.* "Intriguing properties of neural networks". In: *arXiv preprint arXiv:1312.6199* (2013) (cit. on p. 1).
- [Vahdat, Andriyash, et al. 2018] Arash Vahdat, Evgeny Andriyash, and William Macready. "Dvae#: discrete variational autoencoders with relaxed boltzmann priors". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/file/9f53d83ec0691550f7d2507d57f4f5a2-Paper.pdf (cit. on p. 2).
- [Vahdat, Macready, et al. 2018] Arash Vahdat, William G. Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny Andriyash. "DVAE++: discrete variational autoencoders with overlapping transformations". In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 5042–5051. URL: http://proceedings.mlr.press/v80/vahdat18a.html (cit. on p. 2).
- [Vergari, Choi, et al. 2020] Antonio Vergari, YooJung Choi, Robert Peharz, and Guy Van den Broeck. Probabilistic Circuits: Representations, Inference, Learning and Applications. AAAI Tutorial. 2020 (cit. on p. 1).
- [Vergari, Mauro, *et al.* 2015] Antonio Vergari, Nicola Di Mauro, and Floriana Espositro. "Simplifying, regularizing and strengthening sum-product network structure learning". In: *ECML/PKDD.* 2015 (cit. on p. 3).
- [Wei *et al.* 2018] Wenqi Wei *et al.* "Adversarial examples in deep learning: characterization and divergence". In: *arXiv preprint arXiv:1807.00051* (2018) (cit. on p. 1).
- [Yu 2020] Ronald Yu. A Tutorial on VAEs: From Bayes' Rule to Lossless Compression. 2020. arXiv: 2006.10273 [cs.LG] (cit. on p. 2).

[ZIEGLER and RUSH 2019] Zachary M. ZIEGLER and Alexander M. RUSH. "Latent normalizing flows for discrete sequences". In: *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 7673–7682. URL: http://proceedings.mlr.press/v97/ziegler19a.html (cit. on p. 2).