

AdaCompress:

Adaptive Compression for Online Computer Vision Services

Hongshan Li, Yu Guo, Zhi Wang*, Shutao Xia, Wenwu Zhu*

Tsinghua-Berkeley Shenzhen Institute, Tsinghua University
Graduate School in Shenzhen, Tsinghua University
Department of Computer Science and Technology, Tsinghua University

More images are uploaded to DL services rather than human

{c1: {x: 100, ..., class: 101}, c2: {x: 200, ..., class: 203}, c3: {x: 130, ..., class: 303}}

More images are uploaded to DL services rather than human

{c1: {x: 100, ..., class: 101}, c2: {x: 200, ..., class: 203}, c3: {x: 130, ..., class: 303}}

Increasingly Important

Conventional computer vision application framework

- JPEG etc..
- Fixed compression degree for all images
- Same compression strategy for different service providers

• Is the conventional solution efficient enough?

Is the conventional solution efficient enough?

(1a) Q=75
Face++ prediction = ["donut"]

(1b) Q=55 Face++ prediction = []

• Is the conventional solution efficient enough?

Is the conventional solution efficient enough?

• Is the conventional solution efficient enough?

• Is the conventional solution efficient enough?

Is the conventional solution efficient enough?

• Is the conventional solution efficient enough?

 In some cases, prediction performance does not related to image quality

Related Works

- Relationship between compression and accuracy
 - Severe compression does not always deteriorate the model inference accuracy (Delac et al.)
 - Four types of quality distortions can affect the performance in deep learning inference (Dodge et al.)

Related Works

- Relationship between compression and accuracy
 - Severe compression does not always deteriorate the model inference accuracy (Delac et al.)
 - Four types of quality distortions can affect the performance in deep learning inference (Dodge et al.)
- Dedicated compression for DNNs
 - Train DNNs from the compressed representations of auto-encoder (Robert et al.)
 - Linear JPEG quantization table learned from the dataset (Liu et al.)
 - DNNs inference from block-wise DCT coefficients in JPEG (Baluja et al.)

Pre-knowledge of original model

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

- Reward
 - Δsize Δaccuracy
- States
 - Features of the input images
- Actions
 - 10 discrete compression levels

Performance

Figure 8: Upload size overhead in training and inference phase

- Size overhead in training phase
- Inference phase is longer than training phase

Performance

Figure 8: Upload size overhead in training and inference phase

Figure 9: Average size and relative accuracy on different cloud services

- Size overhead in training phase
- Inference phase is longer than training phase

Insight

- Different compression strategies in different environments

Figure 5: Histogram of RL agent's best compression level selection for different cloud services

Figure 6: Histogram of RL agent's best compression level selection for different scenery image inputs

Insight

- Grad-Cam
- High quality for smooth region

Figure 7: Visualization of the importance map for the RL agent to choose a compression quality

Scenery change

- Scenery change (day to night, sunny to rainy etc.)
- State machine with 3 states
- Occasionally estimate system accuracy
- Retrain when necessary

Figure 3: Diagram of AdaCompress architecture

Figure 4: State switching policy

Figure 10: AdaCompress's reaction upon scenery change

Figure 10: AdaCompress's reaction upon scenery change

Thank You

Source Code:

https://github.com/hosea1008/AdaCompress

