PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10047100 A

(43) Date of publication of application: 17.02.98

(51) Int. CI

F02D 29/00

B60K 41/06

F02D 41/04

F16H 61/04

// F16H 59:24

(21) Application number: 08200593

(22) Date of filing: 30.07.96

(71) Applicant:

TOYOTA MOTOR CORP

(72) Inventor:

NOZAKI YOSHINOBU **IWATSUKI KUNIHIRO**

(54) CONTROL DEVICE FOR VEHICLE HAVING **ENGINE AND AUTOMATIC TRANSMISSION**

(57) Abstract:

PROBLEM TO BE SOLVED: To suitably suppress a shift shock, in a vehicle to temporarily increase an engine output during down shift at a deceleration period.

SOLUTION: An engine output increase width vdcst1 is decided based on actual vehicle deceleration ANO from a preset relation by an engine output increase width deciding means 158. An engine output is increased by the engine output increase width vdcsi1 during 4-3 down shift period under deceleration running, decided by the engine output increase width deciding means 158 by an engine output increase means 160. As a result, even when a car speed at a period when a friction engaging device for a 4 \rightarrow 3 down shift is operated is uneven due to the change of actual deceleration of a vehicle, at a timing at which the friction engagement device for a $4 \rightarrow 3$ down shift is operated, an increase amount of an engine output is a proper value to bring a power transmission system into a weak drive state, whereby a shift shock is suitably prevented from occurring.

COPYRIGHT: (C)1998, JPO 自由安全 -150 安连群电手象 エンジン出力上 異義学出力手段 最高時間 計算手段 エンジン他力 上昇幅決定手段 東京建設度 第全手限 人世力四座建筑 此集出手数 空道表了 規定手給

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-47100

(43)公開日 平成10年(1998) 2月17日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
F02D 29/00			F02D 2	9/00		Н
B60K 41/06			B60K 4	1/06		
F02D 41/04	301		F02D 4	1/04	301	. G
F16H 61/04			F16H 6	1/04		
#F16H 59:24						
			審查請求	未蘭求	請求項の数3	OL (全 14 頁)
(21)出顯番号	特願平8-200593		(71)出顧人	0000032	:07	
				トヨタ目	自動車株式会社	<u>.</u>
(22)出願日	平成8年(1996)7月	30日		要知県豊	と 田市トヨタ町	1 番地
			(72)発明者	野崎・	持信	
			İ	爱知県盟	2田市トヨタ町	1番地 トヨタ自動
				車株式会	社内	
			(72)発明者	岩月 非	移裕	
				爱知県豊	2田市トヨタ町	1番地 トヨタ自動
				車株式会	社内	
			(74)代理人	弁理士	池田 治幸	(外2名)

(54) 【発明の名称】 エンジンおよび自動変速機を備えた車両の制御装置

(57)【要約】

【課題】 減速走行中のダウン変速時にエンジン出力が一時的に増大させられる車両において、変速ショックを 好適に抑制することができる車両の制御装置を提供する。

【解決手段】 エンジン出力上昇幅決定手段158により、予め設定された関係から実際の車両減速度△NOに基づいてエンジン出力上昇幅vdcst1が決定され、エンジン出力上昇手段160により、上記エンジン出力上昇幅決定手段158により決定されたエンジン出力上昇幅決定手段158により決定されたエンジン出力上昇幅 vdcst1だけエンジンの出力が減速走行中の4→3ダウン変速期間において上昇させられる。この結果、車両の実際の減速度の変化によって4→3ダウン変速のための摩擦係合装置が作動する時期の車速がばらついても、上記4→3ダウン変速のための摩擦係合装置が作動するタイミングでは上記エンジン出力の増大量が動力伝達系を弱駆動状態とするための適切な値となるので、変速ショックが好適に防止される。

【特許請求の範囲】

【請求項1】 アクセルペダル操作とは独立して出力制御可能なエンジンと、複数の変速段が選択的に成立させられる自動変速機とを備えた車両において、減速走行中のダウン変速期間においてエンジンの出力を一時的に上昇させるための制御装置であって、

予め設定された関係から実際の車両減速度に基づいて前 記エンジン出力上昇幅を決定するエンジン出力上昇幅決 定手段と、

該エンジン出力上昇幅決定手段により決定されたエンジ 10 ン出力上昇幅だけ前記エンジンの出力を上昇させるエン ジン出力上昇手段とを含むことを特徴とするエンジンお よび自動変速機を備えた車両の制御装置。

【請求項2】 予め設定された関係から実際の車両減速度に基づいて、前記エンジン出力を一時的に上昇させる指令を出力させる出力判断基準値を決定する指令出力判断基準値決定手段と、

前記自動変速機のダウン変速判断よりも上記指令出力判断基準値だけ早期に、前記エンジン出力を一時的に上昇させる指令を出力するエンジン出力上昇指令出力手段とを含む、請求項1のエンジンおよび自動変速機を備えた車両の制御装置。

【請求項3】 前記エンジン出力上昇指令出力手段により前記エンジン出力を一時的に上昇させる指令が出力されてからの経過時間を計数する経過時間計数手段と、前記エンジン出力上昇幅だけエンジン出力が上昇させられている状態では、該経過時間計数手段により計数された経過時間が予め設定された判断基準時間を越えると、前記ダウン変速を判断するダウン変速判断手段とを含む、請求項2のエンジンおよび自動変速機を備えた車両の制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、エンジンおよび自動変速機を備えた車両の制御装置に関し、特に、減速走行中のダウン変速期間において一時的にエンジン出力を上昇させる技術に関するものである。

[0002]

【従来の技術】アクセルペダル操作とは独立して出力制御可能なエンジンと、車両の走行状態に応じて変速ギヤ段が自動的に選択される自動変速機とを備えた車両において、アクセルペダルが非操作とされているような車両の減速走行中にダウン変速が行われる場合には、そのダウン変速と並行してエンジン出力を増大させることによりエンジンブレーキ力を減殺し、ダウン変速時の変速ショックを緩和して走行感を向上させるようにした車両の走行制御装置が提案されている。たとえば、特開昭63-284039号公報に記載された装置がそれである。【0003】

【発明が解決しようとする課題】ところで、上記のよう

な従来の装置では、ダウン変速期間内にエンジン出力を増大させる装置として、アイドル回転制御に用いるISC弁が用いられているが、エンジン出力増大信号が出力されてから実際のエンジン出力増大させられるまでの遅れ時間を考慮してエンジン出力増大量が決定されていないことから、減速が継続するダウン変速期間内においてダウン変速を達成するための摩擦係合装置が作動する時期には必ずしも適切なエンジン出力増大量とはならず、変速ショックが充分に解消され得ない場合があっ

た。すなわち、上記従来の装置では、減速走行中の車速 (自動変速機の出力軸回転速度) およびダウン変速後の 自動変速機の変速比からダウン変速後の自動変速機の入 力軸回転速度N、を予測し、ダウン変速期間内のエンジン出力の増大量たとえばISC弁の操作量がその入力軸 回転速度N、を得るための大きさとなるように算出され るのであるが、そのISC弁の操作量の演算時期が同一 車速で行われても、路面傾斜或いはブレーキ操作状態に 対応する減速の程度に関連してダウン変速のために摩擦 係合装置が実際に作動する時期の車速がばらつくので、 上記ダウン変速のための摩擦係合装置が作動するタイミ

上記タワン変速のための摩擦係合装置が作動するタイミングでは上記エンジン出力の増大量が必ずしも適切な値 とはならない場合があったのである。

【0004】本発明は以上の事情を背景として為されたもので、その目的とするところは、減速走行中のダウン変速時にエンジン出力が一時的に増大させられる車両において、変速ショックを好適に抑制することができる車両の制御装置を提供することにある。

[0005]

【課題を解決するための手段】かかる目的を達成するための本発明の要旨とするところは、アクセルペダル操作とは独立して出力制御可能なエンジン、或いはアイドル回転速度が制御されるエンジンと、複数の変速段が選択的に成立させられる自動変速機とを備えた車両において、減速走行中のダウン変速期間においてエンジンの出力を一時的に上昇させるための制御装置であって、

(a) 予め設定された関係から実際の車両減速度に基づいて前記エンジン出力上昇幅を決定するエンジン出力上昇幅決定手段と、(b) そのエンジン出力上昇幅決定手段により決定されたエンジン出力上昇幅だけ前記エンジンの出力を上昇させるエンジン出力上昇手段とを、含むことにある。

[0006]

40

【発明の効果】このようにすれば、エンジン出力上昇幅 決定手段により、予め設定された関係から実際の車両減 速度に基づいてエンジン出力上昇幅が決定され、エンジン出力上昇手段により、上記エンジン出力上昇幅決定手 段により決定されたエンジン出力上昇幅だけ前記エンジンの出力が減速走行中のダウン変速期間において上昇させられる。この結果、車両の実際の減速度の変化によってダウン変速のための摩擦係合装置が作動する時期の車 速がばらついても、上記ダウン変速のための摩擦係合装 置が作動するタイミングでは上記エンジン出力の増大量 が動力伝達系を弱駆動状態とするための適切な値となる ので、変速ショックが好適に防止される。

[0007]

【発明の他の態様】ここで、好適には、(c)予め設定 された関係から実際の車両減速度に基づいて前記エンジ ン出力を一時的に上昇させる指令を出力させる出力判断 基準値を決定する指令出力判断基準値決定手段と

(d) 前記自動変速機のダウン変速判断値よりも上記指 令出力判断基準値だけ早期に、前記エンジン出力を一時 的に上昇させる指令を出力するエンジン出力上昇指令出 力手段とが、さらに含まれる。このようにすれば、指令 出力判断基準値決定手段により、予め設定された関係か ら実際の車両減速度に基づいて前記エンジン出力を一時 的に上昇させる指令の出力判断基準値が決定され、エン ジン出力上昇指令出力手段により、前記自動変速機のダ ウン変速判断値よりも上記指令出力判断基準値だけ早期 に、前記エンジン出力を一時的に上昇させる指令が出力 されることから、車両の実際の減速度の変化によってダ ウン変速のための摩擦係合装置が作動する時期の車速が ばらついても、上記ダウン変速のための摩擦係合装置が 作動するタイミングでは上記エンジン出力の増大量が動 力伝達系を弱駆動状態とするための適切な値となるの で、変速ショックが好適に防止される。

【0008】また、前記エンジン出力上昇幅決定手段に おいて用いられる予め設定された関係は、車両の減速度 が小さい程前記エンジン出力上昇幅を増大させるもので ある。このようにすれば、車両の減速度が小さい程、ダ ウン変速判断からそのダウン変速のための摩擦係合装置 が作動する時期までの車速の低下幅が小さく車速が高い ので、そのダウン変速のための摩擦係合装置が作動する タイミングではエンジン出力が動力伝達系を弱駆動状態 とするための適切な値とされる。

【0009】また、好適には、前記車両は、エンジンと 自動変速機との間に流体式伝動装置を備えたものであ り、前記エンジン出力上昇幅決定手段は、予め設定され た関係から流体式伝動装置の入力軸と出力軸の回転速度 比(入力軸回転速度/出力軸回転速度)に基づいて前記 エンジン出力上昇幅を決定するものでもあり、上記エン ジン出力上昇幅決定手段において用いられる関係は、減 速走行時のダウン変速期間において動力伝達系を弱駆動 状態とするために、上記回転速度比が小さい程前記エン ジン出力上昇幅を増大させるものである。このようにす れば、流体式伝動装置の入力軸と出力軸との回転速度が 相互に接近する走行状態となるほど、エンジンブレーキ 作用が小さい状態であって、ダウン変速判断からそのダ ウン変速のための摩擦係合装置が作動する時期までの車 速の低下幅が小さく車速が高いので、そのダウン変速の

出力が動力伝達系を弱駆動状態とするための適切な値と される。

【0010】また、好適には、前記エンジン出力上昇幅 決定手段は、予め設定された関係から前記自動変速機の 作動油の温度に基づいて前記エンジン出力上昇幅を決定 するものである。そのエンジン出力上昇幅決定手段にお いて用いられる予め設定された関係は、減速走行時のダ ウン変速期間において動力伝達系を弱駆動状態とするた めに、上記作動油の温度が低くなるほど、前記エンジン 出力上昇幅を増大させるものである。ダウン変速を達成 するに際して解放側の油圧式摩擦係合装置からの作動油 の流出時間が作動油の温度低下によって増大することに よりダウン変速時間が遅れる傾向となると同時に流体伝 動装置の伝動損失が増大してエンジンの回転速度が低下 する傾向となるが、上記のようにすれば、作動油の温度 低下に関連してエンジン出力上昇幅が増大させられるこ とにより、滅速走行時のダウン変速期間において好適な 弱駆動状態とされる。

【0011】また、好適には、前記自動変速機のダウン 変速を判断するための前記ダウン変速判断値は、予め記 憶された変速線図から実際のエンジン負荷および車速に 基づいて決定される変速点車速であり、前記エンジン出 力を一時的に上昇させる指令の出力判断基準値は、上記 変速点車速に加算すべき車速値であり、前記指令出力判 断基準値決定手段は、予め記憶された関係から実際の減 速度に基づいて上記出力判断基準値を決定するものであ る。この関係は、車両の減速度が大きくなるほど上記変 速点車速に加算すべき車速値すなわち出力判断基準値を 増大させるものである。

【0012】また、好適には、前記エンジン出力上昇指 令出力手段は、実際の車速が上記変速点車速と出力判断 基準値との加算値を下回ったと判定したときに、前記エ ンジン出力上昇幅だけ前記エンジン出力上昇手段にエン ジンの出力を上昇させると同時に、前記ダウン変速の完 了が判定されると、そのエンジン出力上昇幅だけのエン ジンの出力を停止させる。このようにすれば、エンジン 出力増加操作の応答遅れ分だけ先立ってエンジン出力上 昇指令が出されるとともに、必要且つ充分な期間だけエ ンジンの出力上昇が行われる利点がある。

【0013】また、好適には、(e)前記エンジン出力 上昇指令出力手段により前記エンジン出力を一時的に上 昇させる指令が出力されてからの経過時間、すなわち実 際の車速が上記変速点車速と出力判断基準値との加算値 を下回ったときからの経過時間を計数する経過時間計数 手段と、(f)前記エンジン出力上昇手段によって前記 エンジン出力上昇幅だけエンジン出力が上昇させられて いる状態では、その経過時間計数手段により計数された 経過時間が予め設定された判断基準時間を越えると、前 記ダウン変速を判断するダウン変速判断手段とが備えら ための摩擦係合装置が作動するタイミングではエンジン 50 れる。このようにすれば、減速走行のダウン変速に先立

って前記エンジン出力上昇手段により前記エンジン出力 上昇幅だけエンジン出力が上昇させられている状態で は、車速が上記ダウン変速のための変速点車速よりも低 下し難いためにダウン変速できないという不都合が解消 される。

[0014]

【発明の好適な実施の態様】以下、本発明の一実施例を 図面に基づいて詳細に説明する。

【0015】図1において、ガソリンエンジン10の燃 焼室12内には、エアクリーナ14, エアフローメータ 16、吸気通路18、スロットル弁20、バイパス通路 22, サージタンク24、インテークマニホルド26. および吸気弁28を介して空気が吸入されるとともに、 その空気には、インテークマニホルド26に設けられた 燃料噴射弁30から噴射される燃料ガスが混合されるよ うになっている。エアフローメータ16は吸入空気量を 測定するもので、その吸入空気量を表す信号をエンジン 制御用コンピュータ32に出力する。スロットル弁20 はエンジン10に吸入される空気量を連続的に変化させ るもので、スロットル制御用コンピュータ35から供給 されるスロットル制御信号DTHに従ってスロットル弁 開度θが制御されるようになっているとともに、そのス ロットル弁20にはスロットルボジションセンサ36が 設けられて、スロットル弁開度 θ を表すスロットル弁開 度信号S θ をエンジン制御用コンピュータ32、トラン スミッション制御用コンピュータ34、およびスロット ル制御用コンピュータ35に出力する。

【0016】上記バイパス通路22はスロットル弁20 と並列に配設されているとともに、そのバイバス通路2 2にはアイドル回転数制御弁38が設けられており、エ ンジン制御用コンピュータ32によってアイドル回転数 制御弁38の開度が制御されることにより、スロットル 弁20をバイパスして流れる空気量が調整されてアイド ル時のエンジン回転数が制御される。燃料噴射弁30 も、エンジン制御用コンピュータ32によってその噴射 タイミングや噴射量が制御される。なお、上記エアフロ ーメータ16の上流側には吸入空気の温度を測定する吸 気温センサ40が設けられ、その吸気温を表す信号をエ ンジン制御用コンピュータ32に出力する。

【0017】エンジン10は、吸気弁28、排気弁4 2, ピストン44, および点火プラグ46を備えて構成 されており、点火プラグ46は、エンジン制御用コンピ ュータ32によって制御されるイグナイタ48からディ ストリビュータ50を介して供給される高電圧によって 点火火花を発生し、燃焼室12内の混合ガスを爆発させ てピストン44を上下動させることによりクランク軸を 回転させる。吸気弁28および排気弁42は、クランク 軸の回転に同期して回転駆動されるカムシャフトにより 開閉されるようになっているとともに、エンジン制御用

ルブタイミング機構により、カムシャフトとクランク軸 との回転位相が変更されて開閉タイミングが調整される ようになっている。そして、燃焼室12内で燃焼した排 気ガスは、排気弁42からエキゾーストマニホルド5 4、排気通路56、触媒装置58を経て大気に排出され る。

【0018】エンジン10にはエンジン冷却水温を測定 する水温センサ60が設けられており、そのエンジン冷 却水温を表す信号をエンジン制御用コンピュータ32に 出力するようになっているとともに、エキゾーストマニ ホルド54には排気ガス中の酸素濃度を検出する酸素セ ンサ62が設けられており、その酸素濃度を表す信号を エンジン制御用コンピュータ32に出力する。また、デ ィストリビュータ50にはクランク軸の回転に同期して パルスを発生する回転角センサが設けられており、その パルス信号すなわちエンジン回転速度NEを表すエンジ ン回転速度信号SNEをエンジン制御用コンピュータ3 2 およびトランスミッション制御用コンピュータ34 に 出力する。さらに、図示しないアクセルペダルの操作量 Acを検出するアクセル操作量センサ76が設けられて おり、そのアクセルペダルの操作量Acを表す信号SA cをエンジン制御用コンピュータ32、トランスミッシ ョン制御用コンピュータ34、およびスロットル制御用 コンピュータ35へ出力する。

【0019】上記エンジン制御用コンピュータ32.ト ランスミッション制御用コンピュータ34、スロットル 制御用コンピュータ35は、何れもCPU、RAM、R OM, 入出力インタフェース回路, A/Dコンバータ等 を備えて構成されており、RAMの一時記憶機能を利用 しつつROMに予め記憶されたプログラムに従って信号 処理を実行することにより、種々の制御を行う。たとえ ば、上記エンジン制御用コンピュータ32は、エンジン 10の燃焼制御、フューエルカット制御、アイドル回転 制御などを実行する。トランスミッション制御用コンピ ュータ34は、たとえば図2に示す変速線図から自動変 速機78のギヤ段を自動的に切り換える変速制御を行 う。スロットル制御用コンピュータ35は、予め設定さ れた関係から実際のアクセルペダルの操作量Acに対応 した大きさのスロットル弁開度を決定し、そのスロット ル弁開度が得られるようにスロットル弁20を図示しな いスロットルアクチュエータを用いて駆動する。

【0020】自動変速機78は、例えば図3に示すよう にトルクコンバータ110, 第1変速機112, および 第2変速機114を備えて構成されている。トルクコン バータ110のポンプ翼車は前記エンジン10のクラン ク軸 1 1 8 に連結されており、タービン翼車は入力軸 1 20を介して第1変速機112のキャリヤ122に連結 されている。第1変速機112は、サンギヤ124、リ ングギヤ126、およびキャリヤ122に回転可能に配 コンピュータ32によって制御される図示しない可変バ 50 設されてサンギヤ124、リングギヤ126と噛み合わ

されているプラネタリギヤ128から成る遊星歯車装置を含んで構成されており、サンギヤ124とキャリヤ122との間にはクラッチC。および一方向クラッチF。が並列に設けられ、サンギヤ124とハウジング130との間にはブレーキB。が設けられている。

【0021】第2変速機114は、スリーブ軸129の 両端に設けられたサンギヤ131、132、一対のリン グギヤ134, 136、キャリヤ138、142にそれ ぞれ回転可能に配設されてサンギヤ131, 132およ びリングギヤ134、136と噛み合わされているブラ ネタリギヤ140,144から成る一対の遊星歯車装置 を含んで構成されており、リングギヤ134と前記第1 変速機112のリングギヤ126との間にはクラッチC 」が設けられ、スリーブ軸129とリングギヤ126と の間にはクラッチC、が設けられ、スリーブ軸129と ハウジング130との間にはブレーキB、と、直列に配 設された一方向クラッチF、およびブレーキB、とが並 列に設けられ、キャリヤ142とハウジング130との 間にはブレーキB、および一方向クラッチF、が並列に 設けられている。また、キャリヤ138およびリングギ ヤ136は出力軸146に一体的に連結されており、そ の出力軸146は差動歯車装置等を介して駆動輪に連結 されている。

【0022】上記クラッチC。~C、およびブレーキB 。~B,(以下、特に区別しない場合にはクラッチC、 ブレーキBという) は、多板式のクラッチやバンドブレ ーキなど油圧アクチュエータによって係合制御される油 圧式摩擦係合装置であり、その油圧アクチュエータに は、油圧制御回路150から作動油が供給されるように なっている。油圧制御回路150は多数の切換バルブ等 を備えており、トランスミッション制御用コンピュータ 34からの信号に従ってソレノイドS1、S2、および S3の励磁、非励磁がそれぞれ切り換えられることによ り、油圧回路が切り換えられて上記クラッチCおよびブ レーキBが選択的に係合制御され、図4に示されている ように前進4段のうちの何れかの変速段が成立させられ る。かかる図4 におけるソレノイドの欄の「○」EDは励 磁を意味し、クラッチおよびブレーキの欄の「○」印は 係合を意味する。シフトポジションの「D」、「2」、 「L」は運転席のシフトレバーの操作レンジであり、

「D」レンジでは1stからO/Dまでの4段で変速制御が行われ、「2」レンジでは1stから3rdまでの3段で変速制御が行われ、「L」レンジでは1stおよび2ndの2段で変速制御が行われる。変速比(入力軸120の回転速度/出力軸146の回転速度)は、1stで最も大きく、2nd、3rd、O/Dとなるに従って小さくなり、3rdの変速比は1.0である。また、「D」レンジにおける4→3ダウン変速は、パワーオフ(減速)走行では、ブレーキB。が解放され且つクラッチC。が係合させられることにより実行されるが、パワ

ーオン (加速) 走行では、ブレーキB。が解放され且つ一方向クラッチF。が係合させられることにより実行される。なお、図示は省略するが、シフトレバーが「R」レンジへ操作されると、油圧制御回路 I 5 0 のマニュアルシフトバルブが切り換えられて後進変速段が成立させ

【0023】前記自動変速機78には、一対の入力軸回転速度センサ80および出力軸回転速度センサ80は第1変速機112のサンギヤ124の回転速度すなわちクラッチC。のハウジングの回転速度Ncoを検出するもので、出力軸回転速度センサ82は出力軸146の回転速度Nco、NOを表す回転速度信号SNco、SNOをトランスミッション制御用コンピュータ34に出力する。また、油圧制御回路150にはシフト操作位置検出スイッチ84が配設されており、シフトレバー操作によって切り換えられるマニュアルシフトバルブの位置から前記「D」、

「L」、「R」等のシフトレンジを検出して、そのシフトレンジを表すシフトレンジ信号SRをトランスミッション制御用コンピュータ34に出力する。油圧制御回路150にはまた、作動油の油温THOを検出する油温センサ86が設けられ、その油温THOを表す油温信号STHOをトランスミッション制御用コンピュータ34に出力するようになっている。

【0024】なお、各制御用コンピュータ32、34、35間では、通信回線を介して必要な情報が相互に授受されるようになっており、前記スロットル弁開度信号S NE、アクセル操作量信号SAcは、少なくとも何れかの制御用コンピュータ32、34、または35に供給されるようになっておれば良い。また、例えばステアリングホイールの操舵角、路面の勾配、排気温度など、自動車の運転状態を表す他の種々の信号を取り込んで、エンジン制御や自動変速機78の変速制御、スロットル制御に利用することも可能である。

【0025】そして、上記エンジン制御用コンピュータ32は、前記吸入空気量やスロットル弁開度 θ , エンジン回転速度NE, エンジン10の冷却水温度, 吸入空気温度, 排気通路56内の酸素濃度, アクセル操作量Acなどに応じて、例えば必要なエンジン出力を確保しつつ燃費や有害排出ガスを低減するように予め定められたデータマップや演算式などに基づいて、前記燃料噴射弁30による燃料ガスの噴射量や噴射タイミング、イグナイタ48による点火時期を制御する。また、エンジン制御用コンピュータ32は、減速走行中或いは停止中などアクセルペダルの操作量Acが零である状態には、予め設定された関係から実際のエンジン10の冷却水温度,補機の作動状態に基づいて目標アイドル回転速度を決定

チC。が係合させられることにより実行されるが、パワ 50 し、実際のエンジン回転速度NEがその目標アイドル回

転速度と一致するようにアイドル回転数制御弁38の開 度を調節する。

【0026】また、トランスミッション制御用コンピュ ータ34は、たとえば図2に示す予め記憶された変速線 図から実際のエンジン負荷に対応したスロットル弁開度 θ或いはアクセル操作量A c と自動変速機 7 8 の出力軸 回転速度NOすなわち車速Vとに基づいて変速判断を行 い、その判断された変速を実現するための変速出力をソ レノイドS, 、S, 、およびS, に対して出力してそれ らの励磁、非励磁をそれぞれ切り換えることにより自動 変速機78の変速段を切換制御する。

【0027】上記トランスミッション制御用コンピュー タ34はまた、下り坂走行などでアクセル操作量Acが 略零とされたエンジンブレーキ走行或いは減速走行時の ダウンシフトすなわちコーストダウンシフトを行う際 に、変速ショックを抑制しつつ変速時間を短縮するた め、前記スロットル弁開度 θ やISC弁38の開度に関 して上記とは異なる制御を行うようになっている。以 下、このエンジンブレーキ走行時のダウンシフトに関連 する制御について説明する。

【0028】図5は、上記エンジン制御用コンピュータ 32、トランスミッション制御用コンピュータ34など の制御機能の要部を説明する機能ブロック線図である。 図5において、変速制御手段150は、たとえば図2に 示す予め記憶された変速線図から実際のエンジン負荷す なわちスロットル弁開度 θ 或いはアクセル操作量Acと 自動変速機78の出力軸回転速度NOすなわち車速Vと に基づいて変速判断を行い、その判断された変速を実現 するための変速出力をソレノイドS1、S2、およびS 3に対して出力して自動変速機78の変速段を切換制御 する。アイドル回転制御手段152は、減速走行中或い は停止中などアクセルペダルの操作量Acが零である状 態には、予め設定された関係から実際のエンジン10の 冷却水温度、補機の作動状態に基づいて目標アイドル回 転速度を決定し、実際のエンジン回転速度NEがその目 標アイドル回転速度と一致するようにアイドル回転数制 御弁(ISC弁)38の開度 Vょょ。を出力する。

【0029】車両減速度決定手段154は、車両の減速 走行時における路面傾斜或いはブレーキの操作状態に対 応して減速度△NOが異なるので、所定のサンプリング 周期で入力される自動変速機78の出力軸回転速度NO に基づいてその変化率すなわち車両の減速度△NOを逐 次決定する。入出力回転速度比算出手段156は、所定 のサンプリング周期でそれぞれ入力されるトルクコンバ ータ110の入力軸回転速度NEと出力軸回転速度(自 動変速機78の入力軸回転速度すなわちトルクコンバー タ110のタービン回転速度)NTとから、トルクコン バータ110の入出力回転速度比NE/NTを逐次決定

10

とえば図6のデータマップに示す予め設定された関係か ら実際の車両減速度(出力軸回転速度NOの単位時間当 たりの変化量であって正の値) ANOに基づいてエンジ ン出力上昇幅 v dcst1 を決定する。この関係は、減速走 行時のダウン変速期間において動力伝達系を弱駆動状態 とするために、車両減速度 Δ NOが大きくなるほどエン ジン出力上昇幅vdcst1を減少させる特性を備えている ので、上記エンジン出力上昇幅決定手段158は、車両 滅速度△NOが大きくなるほど減少するようにエンジン 出力上昇幅 v dcst1 を決定する。また、上記エンジン出 10 力上昇幅決定手段158は、たとえば図6に示す予め設 定された関係から実際のトルクコンバータ110の入出 カ回転速度比NE/NTに基づいてエンジン出力上昇幅 v dcst1 を決定する。この関係は、入出力回転速度比N E/NTが大きくなるほどエンジン出力上昇幅vdcst1 を減少させる特性、換言すれば入出力回転速度比NE/ NTが小さくなるほどエンジン出力上昇幅 v ccst1 を増 大させる特性を備えているので、上記エンジン出力上昇 幅決定手段158は、入出力回転速度比NE/NTが大 20 きくなるほど減少するように、換言すれば入出力回転速 度比NE/NTが小さくなるほど増大するエンジン出力 上昇幅 v dcst1 を決定する。ここで、上記図6に示す関 係は、減速走行での4→3ダウン変速に際して、少なく ともエンジン10から自動変速機78の出力軸146に 至る動力伝達系を弱駆動状態すなわち僅かな正トルク駆 動状態とする値となるようにエンジン出力上昇幅 v dcst 1を決定するために予め実験的に求められたものであ る。上記弱駆動状態とは、4→3ダウン変速期間内のブ レーキB。解放時においてエンジン回転速度NEがクラ ッチC。のクラッチドラム回転速度NC。或いはクラッ チC,の回転速度よりも所定値たとえば数回転乃至数十 回転だけ上まわることにより、一方向クラッチF。の係 台によるショックが問題にならない大きさである状態を 意味している。

【0031】さらに、上記エンジン出力上昇幅決定手段 158は、たとえば図7のデータマップに示す予め設定 された関係から、油温センサ86により検出された自動 変速機78の実際の作動油温度THOに基づいてエンジ ン出力上昇幅 v dcst2 を決定する。この関係は、作動油 温度THOが上昇するほどエンジン出力上昇幅 v dcst2 を減少させる特性、換言すれば作動油温度THOが低下 するほどエンジン出力上昇幅 v dcst2 を増加させる特性 を備えているので、エンジン出力上昇幅決定手段 158 は、作動油温度THOが上昇するほど減少するように、 換言すれば作動油温度THOが低下するほど増加するよ うにエンジン出力上昇幅vdcst2を決定する。とこで、 上記図7に示す関係は、減速走行での4→3ダウン変速 に際して、ブレーキB。からの作動油の排出時間が長く なり、且つ自動変速機78内の損失が増大してエンジン 【0030】エンジン出力上昇幅決定手段158は、た 50 回転速度NEを低下させる傾向となることに対抗して、

12

動力伝達系を弱駆動状態すなわち僅かな正トルク駆動状態とする値となるようにエンジン出力上昇幅 v dcst2 を決定するために予め実験的に求められたものである。

【0032】エンジン出力上昇手段160は、コーストダウン変速に際しては、上記のエンジン出力上昇幅決定手段158により決定されたエンジン出力上昇幅 v dcst (= v dcst1 + v dcst2)を、アイドル回転制御手段152で決まるアイドル操作量すなわちISC 弁38の開度 v_{isc}に加算することにより、通常のアイドル状態に比較して上記エンジン出力上昇幅 v dcstだけエンジン10の出力量を増加させる。

【0033】指令出力判断基準値決定手段162は、たとえば図8のデータマップに示す予め設定された関係から実際の車両減速度△NOに基づいてエンジン出力を一時的に上昇させる指令を出力させるための出力判断基準値KNOを決定する。この関係は、車両減速度△NOが増加するほど出力判断基準値、KNOも増加する特性を備えているので、上記指令出力判断基準値決定手段162は、車両減速度△NOが増加するほど増加するように出力判断基準値KNOを決定する。

【0034】エンジン出力上昇指令出力手段164は、車両の実際の車速V或いは出力軸回転速度NOが、自動変速機78のダウン変速判断値(車速V或いは出力軸回転速度NOで定められる変速点)に上記出力判断基準値KNOを加えた値を下まわったことに基づいてエンジン出力上昇手段160にエンジン出力を一時的に上昇させる指令を出力することにより、ダウン変速判断よりも上記指令出力判断基準値KNOだけ早期に、エンジン出力を一時的に上昇させる。

【0035】経過時間計数手段166は、エンジン出力上昇指令出力手段164によりエンジン出力を一時的に上昇させる指令が出力されてからの経過時間Tェ、すなわち実際の車速Vが減速走行ダウン変速の変速点NO。と出力判断基準値KNOとの加算値を下回ったときからの経過時間Tェ、を計数する。ダウン変速判断手段168は、エンジン出力上昇手段160によってエンジン出力上昇幅vdcstだけアイドル出力よりもエンジン出力が上昇させられている状態では、上記経過時間計数手段166により計数された経過時間Tェ、が予め設定された判断基準時間Tェーを越えると、ダウン変速を判断する。

【0036】変速終了判定手段170は、減速走行ダウン変速の終了を、自動変速機78の入力軸回転速度NTと出力軸回転速度NOとの比がダウン変速後の変速比と一致するか否かに基づいて判定する。前記エンジン出力上昇手段160は、その変速終了判定手段170によって減速走行ダウン変速の終了が判定されるまで、エンジン出力の一時的上昇を継続させる。

【0037】図9は、前記エンジン制御用コンピュータ 32、トランスミッション制御用コンピュータ34など の制御作動の要部、すなわちコーストダウン変速制御時 50 のエンジン出力上昇制御を説明するフローチャートである。なお、かかる制御は8~32msec程度のサイクルタイムで繰り返し実行される。また、変速制御手段150 およびアイドル回転制御手段152の作動はよく知られたものであるので、そのフローチャートは省略されている。

【0038】図9のステップ(以下、ステップを省略する)SS1では、エンジン出力上昇制御の開始条件が成立したか否かが判断され、このSS1の判断が肯定される場合は、SS2においてエンジン出力上昇制御の終了条件が成立したか否かが判断される。上記エンジン出力上昇制御の開始条件の成立とは、たとえば、(1)シフトレバーがDレンジへ操作されていること、(2)自動変速機78が第4速ギヤ段であること、(3)出力軸回転速度NOが1500r.p.mよりも高い車速Vであること、

(4) 減速度△N Oが 0 r.p.m 以上の減速走行であることなどがすべて成立することである。また、上記エンジン出力上昇制御の終了条件の成立とは、たとえば、(1) シフトレバーがDレンジへ操作されていないこと、(2) 4→3 ダウン変速が完了したこと、(3) 出力軸回転速度 N Oが 5 0 0 r.p.m よりも低い車速 V であることなどのいずれかが成立することである。

【0039】上記SS1の判断が否定されるか或いはSS2の判断が肯定された場合には、SS3において、エンジン出力上昇幅vdcstの内容に「0」をセットすることにより、通常のアイドル回転制御とする。しかし、上記SS1の判断が肯定され且つSS2の判断が否定された場合には、前記車両減速度決定手段154および入出力回転速度比算出手段156に対応するSS4におい

て、自動変速機78の出力軸回転速度NOに基づいてその変化率すなわち車両の実際の減速度 ΔNOが逐次算出されるとともに、トルクコンバータ110の入力軸回転速度NEと出力軸回転速度(自動変速機78の入力軸回転速度すなわちトルクコンバータ110のタービン回転速度)NTとから、トルクコンバータ110の入出力回転速度比NE/NTが逐次決定される。

【0040】次いで、前記指令出力判断基準値決定手段 162に対応するSS5では、たとえば図8に示す予め 設定された関係から実際の車両減速度 Δ NOに基づいて エンジン出力を一時的に上昇させる指令を出力させるための出力タイミングに対応する出力判断基準値KNOが 決定される。また、前記エンジン出力上昇幅決定手段 158に対応するSS6においては、たとえば図6に示す予め設定された関係から、実際の車両減速度(出力軸回 転速度NOの単位時間当たりの変化量であって正の値) Δ NOおよび実際のトルクコンバータ110の入出力回転速度比NE/NTに基づいて、また、このSS6では、たとえば図7に示す予め設定された関係から、油温センサ86により検出された自動変速機78の実際の作動油温度THOに基づいてエンジン出力上昇幅 v dcst2

が決定される。

【0041】続いて、SS7では、車両の実際の車速Vを示す出力軸回転速度NOが、自動変速機78の4→3 ダウン変速判断値NO。(図2の4→3変速線から実際の出力軸回転速度NOおよびアクセル操作量Acに基づいて決定される4→3変速判断車速)に上記出力判断基準値KNOを加えた値(NO。+KNO)を下まわったか否かが判断される。このSS7の判断が否定された場合は、未だエンジン出力の上昇を開始させる時期ではないのでSS3以下が実行されるが、肯定された場合は、前記経過時間計数手段166に対応するSS8において、図示しないカウンタにより上記SS7の判断が肯定されてからの経過時間すなわちエンジン出力上昇指令出

【0042】次いで、SS9において、エンジン出力上 昇幅 v dcst (= v dcst1 + v dcst2) が算出された後、 SS10において、そのエンジン出力上昇幅 v dcstがア イドル回転制御手段 152で決定された ISC 弁38の 操作開度 v 15c に1回だけ加算されることにより、エン ジン出力が上昇させられる。図 10の t 1 時点はこの状 20 態を示している。本実施例では、上記SS7、SS9、 SS10が前記エンジン出力上昇指令出力手段 164に 対応している。

力からの経過時間丁」の計数が開始される。

【0043】続いて、SS11では、自動変速機78が第4速ギャ段であるか否かが判断される。このSS11の判断が否定された場合は本ルーチンが終了させられるが、肯定された場合はSS12において上記経過時間Tいが予め設定された判断基準時間Tい、を越えたか否が判断される。この判断基準時間Tいは、上記SS7の判断が肯定されてから $4 \rightarrow 3$ ダウン変速が判断されるまでの時間として適切な値が設定されている。この判断基準時間Tい、高い車速となるほど長くなるように予め設定された関係から実際の車速V或いは出力軸回転速度NOに基づいて決定されてもよい。

【0044】当初は上記SS12の判断が否定されるので、本ルーチンが終了させられてSS1以下が繰り返し実行される。しかし、所定の時間が経過して、上記SS12の判断が肯定されると、SS13において4→3ダウン変速が判断されるので、変速制御手段150において4→3ダウン変速が出力されてその変速が実行される。

【0045】このような状態において、 $4 \rightarrow 3$ ダウン変速が進行してブレーキB。の解放とクラッチC。の係合とが同時に行われると同時に、エンジン回転速度NEが上昇させられて出力軸回転速度NOと一致すると、 $4 \rightarrow 3$ ダウン変速の終了と判断されてSS2の判断が肯定されるので、SS3が実行されることによりエンジン出力上昇制御が終了させられる。図1000 は、時点はこの状態を示している。通常 $04 \rightarrow 3$ ダウン変速ではクラッチC。の係合完了によって達成されるので、図1000 点

鎖線に示すようにエンジン回転速度N Eおよびクラッチ C。の係合圧が変化するのに対し、本実施例の減速走行による $4 \rightarrow 3$ ダウン変速では、エンジン出力上昇手段 $1 \leftarrow 1$ 6 0 により動力伝達系が弱駆動状態となるようにエンジン出力上昇が行われることから、図 $1 \leftarrow 1$ 0 の実線に示すようにエンジン回転速度N Eが引き上げられて一方向クラッチF。が係合させられるので、それによって $4 \rightarrow 3$ ダウン変速が速やかに達成される

14

【0046】上述のように本実施例では、エンジン出力上昇幅決定手段158(SS6)により、図6に示す予め設定された関係から実際の車両減速度 Δ NOに基づいてエンジン出力上昇幅vdcst1が決定され、エンジン出力上昇手段160(SS9,SS10,SS13)により、上記エンジン出力上昇幅vdcst1だけエンジンの出力が減速走行中の $4\rightarrow 3$ ダウン変速期間において上昇させられる。この結果、車両の実際の減速度の変化によって $4\rightarrow 3$ ダウン変速のための摩擦係合装置が作動する時期の車速がばらついても、上記 $4\rightarrow 3$ ダウン変速のための摩擦係合装置が作動するタイミングでは上記エンジン出力の増大量が動力伝達系を弱駆動状態とするための適切な値となるので、変速ショックが好適に防止される。

【0047】また、本実施例では、たとえば図8に示す 予め設定された関係から実際の車両減速度△NOに基づいて4→3ダウン変速時にエンジン出力を一時的に上昇 させる指令を出力させる出力判断基準値KNOを決定する指令出力判断基準値決定手段162(SS5)と、自動変速機78のダウン変速判断値NO小よりも上記指令出力判断基準値KNOだけ早期に、エンジン出力を一時的に上昇させる指令を出力するエンジン出力上昇指令出力手段164(SS7)とが、さらに設けられていることから、車両の実際の減速度△NOの変化によって4→3ダウン変速のための摩擦係合装置が作動する時期の車速がばらついても、上記4→3ダウン変速のための摩擦係合装置が作動するタイミングでは上記エンジン出力の 増大量が動力伝達系を弱駆動状態とするための適切な値となるので、変速ショックが好適に防止される。

【0048】また、本実施例では、エンジン出力上昇幅決定手段158(SS6)において用いられる図6の予め設定された関係は、車両の減速度△NOが小さい程前記エンジン出力上昇幅vdcstlを増大させるものであることから、車両の減速度△NOが小さい程、4→3ダウン変速判断からその4→3ダウン変速のための摩擦係合装置が作動する時期までの車速の低下幅が小さく車速が高いので、そのダウン変速のための摩擦係合装置が作動するタイミングではエンジン出力が動力伝達系を弱駆動状態とするための適切な値とされる。

上昇制御が終了させられる。図10のt,時点はこの状 【0049】また、本実施例の車両は、エンジン10と態を示している。通常の4→3ダウン変速ではクラッチ 自動変速機78との間に流体式伝動装置であるトルクコ C。の係合完了によって達成されるので、図10の2点 50 ンバータ110を備えたものであり、前記エンジン出力

上昇幅決定手段158(SS6)は、図6に示す予め設 定された関係からトルクコンバータ110の入力軸と出 力軸の回転速度比(入力軸回転速度NE/出力軸回転速 度NT) に基づいてエンジン出力上昇幅 v dcst1 を決定 するものでもあり、上記図6に示す関係は、減速走行時 の4→3 ダウン変速期間において動力伝達系を弱駆動状 態とするために、上記回転速度比NE/NTが小さい程 前記エンジン出力上昇幅 v dcst1 を増大させるものであ ることから、トルクコンバータ110のの入力軸と出力 軸との回転速度が相互に接近する走行状態となるほど、 エンジンブレーキ作用が小さい状態であって、4→3ダ ウン変速判断からその4→3ダウン変速のための摩擦係 台装置が作動する時期までの車速の低下幅が小さく車速 が高いので、そのダウン変速のための摩擦係合装置が作 動するタイミングではエンジン出力が動力伝達系を弱駆 動状態とするための適切な値とされる。

【0050】また、本実施例では、エンジン出力上昇幅 決定手段158(SS6)は、図7に示す予め設定され た関係から自動変速機78の作動油の温度THOに基づ いてエンジン出力上昇幅 v dcst2 を決定するものであ る。その図7に示す関係は、減速走行時の4→3ダウン 変速期間において動力伝達系を弱駆動状態とするため に、上記作動油の温度THOが低くなるほど、エンジン 出力上昇幅 v dcst2 を増大させるものである。 $4 \rightarrow 3$ ダ ウン変速を達成するに際して解放側の油圧式摩擦係合装 置からの作動油の流出時間が作動油の温度TH〇の低下 によって増大することによりダウン変速時間が遅れる傾 向となると同時に流体伝動装置の伝動損失が増大してエ ンジン10の回転速度NEが低下する傾向となるが、上 記のようにすれば、作動油の温度THOの低下に関連し てエンジン出力上昇幅 v dcst2 が増大させられることに より、減速走行時のダウン変速期間において好適な弱駆 動状態とされる。

【0051】また、本実施例では、変速制御手段150において自動変速機78のダウン変速を判断するためのダウン変速判断値は、たとえば図2に示す予め記憶された変速線図から実際のエンジン負荷(スロットルペダル操作量Ac)および車速(出力軸回転速度NO)に基づいて決定される変速点車速(出力軸回転速度)NO。であり、前記エンジン出力を一時的に上昇させる指令の出力判断基準値KNOは、上記変速点車速NO。に加算すべき車速増加値(出力軸回転速度増加量)であり、前記指令出力判断基準値決定手段162(SS5)は、たとえば図8に示す予め記憶された関係から実際の減速度△NOに基づいて上記出力判断基準値KNOを決定するものであるので、車両の減速度△NOが大きくなるほど上記変速点車速NO。に加算すべき車速増加値すなわち出力判断基準値KNOを増大させるものである。

【0052】また、本実施例では、エンジン出力上昇指 令出力手段164(SS7)は、実際の車速(出力軸回 50

転速度NO)が上記変速点車速NO。, と出力判断基準値 KNOとの加算値(NO、、+KNO)を下回ったと判定 したときに、エンジン出力上昇幅 v dcstだけエンジン出 力上昇手段160にエンジンの出力を上昇させるととも に、SS2において4→3ダウン変速の完了が判断され るまでそのエンジン出力の一時的上昇を持続させるの で、エンジン出力増加操作の応答遅れ分だけ先立ってエ ンジン出力上昇指令が出されるとともに、必要且つ充分 の期間だけエンジンの出力上昇が行われる利点がある。 【0053】また、本実施例では、エンジン出力上昇指 令出力手段164によりエンジン出力を一時的に上昇さ せる指令が出力されてからの経過時間、すなわち実際の 車速(出力軸回転速度NO)が上記変速点車速と出力判 断基準値との加算値(NO。,+KNO)を下回ったとき からの経過時間Tヒኒを計数する経過時間計数手段166 (SS8) と、エンジン出力上昇手段160によってエ ンジン出力上昇幅 v dcstだけエンジン出力が上昇させら れている状態では、上記経過時間計数手段166により 計数された経過時間Tにが予め設定された判断基準時間 Tει 1 を越えると、4→3 ダウン変速を判断するダウン 変速判断手段168とが備えられる。このため、減速走 行の4→3ダウン変速に先立ってエンジン出力上昇手段 160によりエンジン出力上昇幅 v dcstだけエンジン出 力が上昇させられている状態では、車速(出力軸回転速 度NO) が上記4→3 ダウン変速のための変速点車速N ○43よりも低下し難いために4→3ダウン変速できない という不都合が解消される。

【0054】また、本実施例では、4→3ダウン変速に際して弱駆動状態となるように、エンジン出力上昇幅決 定手段158によりエンジン出力上昇幅 v dcstが決定されて速やかに一方向クラッチF。が係合させられることから、その後のクラッチC。の係合タイミングを速めることができるので、たとえば第4速ギヤ段で走行中においてシフトレバーをDレンジから2レンジへ操作することにより4→3ダウン変速を行う場合において、変速指令から変速開始までの時間短縮が可能となる利点がある。

【0055】以上、本発明の一実施例を図面に基づいて 詳細に説明したが、本発明は他の態様で実施することも できる。

【0056】例えば、前述の実施例では、エンジン出力を一時的に上昇させる制御が減速走行での4→3変速について適用された例が説明されていたが、他のダウン変速にも適用される。要するに、アクセルペダル操作量Acが比較的大きなパワーオン走行においては一方向クラッチの係合によりダウン変速が達成されるが、アクセルペダル操作量Acが略零であるパワーオフ走行において摩擦係合装置の係合により達成されるダウン変速であれば差し支えないのである。

ロ 【0057】また、前述の実施例では、エンジン出力上

昇幅 v dcstをアイドル回転制御手段152におけるISC弁38の操作開度 viscに加算することにより、4→3ダウン変速期間においてエンジン出力が一時的に上昇させられていたが、そのアイドル回転制御手段152における目標アイドアル回転速度に上記エンジン出力上昇幅 v dcstが加算されても差し支えない。

【0058】また、前記実施例のたとえば図2では、エンジン負荷を表す値としてアクセルペダル操作量Acが用いられていたが、スロットル弁開度の、吸入空気量Q、燃料噴射量などが用いられても差支えない。

【0059】また、前記実施例ではスロットル弁開度 θ がスロットル制御用コンピュータ35によって制御される車両について説明したが、スロットル弁20がアクセルペダルに機械的に連結されて開閉される車両にも本発明は適用可能である。自動変速機 78の構成や変速段の数についても適宜変更できる。

【0060】また、前記実施例ではエンジン制御用コンピュータ32、トランスミッション制御用コンピュータ34、およびスロットル制御用コンピュータ35が別体に構成されていたが、それ等を単一のコンピュータにて 20構成することも可能である。前記ステップSS1~SS13をエンジン制御用コンピュータ32によって行わせるようにしても良い。

【0061】その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

【図面の簡単な説明】

【図1】本発明の一実施例である変速制御装置を備えた 自動変速機およびエンジン等の構成を説明する図であ る。 *【図2】図1の実施例の自動変速機のギヤ段を制御する ために用いられる変速線図を示す図である。

【図3】図1の自動変速機の構成を説明する図である。

【図4】図3の自動変速機の変速段と、それを成立させるためのソレノイド、クラッチ、およびプレーキの作動 状態との関係を説明する図である。

【図5】図1の制御装置の制御機能の要部を説明する機能ブロック線図である。

【図6】図5において、車両減速度に基づいてエンジン 10 出力上昇幅を決定するために用いられる関係を示す図で ある。

【図7】図5において、自動変速機の作動油温度に基づいてエンジン出力上昇幅を決定するために用いられる関係を示す図である。

【図8】図5において、車両減速度に基づいて指令出力 判断基準値を決定するために用いられる関係を示す図で ある。

【図9】図1の制御装置の制御作動の要部を説明するフローチャートである。

0 【図10】図1の制御装置の作動を説明するタイムチャートである。

【符号の説明】

10:エンジン

78:自動変速機

158:エンジン出力上昇幅決定手段

160:エンジン出力上昇手段

162:指令出力判断基準值決定手段

164:エンジン出力上昇指令出力手段

166:経過時間計数手段

*30 168: ダウン変速判断手段

【図1】

【図6】

Vdcst 1 (%)												
ΔNO	NENT											
(r.p.m./s)	1.0	1.2	1.4	1.6	2.0	2.2						
a1~a2	<i>β</i> 1 =					B 2						
a2~a3				!		<u> </u>						
a3~a4		<i>,</i> — ,	()—-		"							
44~	β ₃ −		_ X	?—		8.						
0≦ ∞, <∞;	2<0.3	C# 4	0≤	B4 <	β_2, β_3	<β,						

【図7】

THO (°C)	-20	0	20	40	60	80
Vdcst 2 (%)	Y1 -				_	72
		0 <u>≤</u> y	ー XX ツュ			

【図2】

[図8]

ANO (r.p.m./s)	#1	a 2	α4
KNO (r.p.m.)	P1 —		- ρ2
	0≤	— 瑞大—— ρ1 <ρ2	

【図3】

【図4】

シ	フトポジション	Co	C,	C ₂	B ₀	В,	B ₂	В3	Fo	F ₁	F ₂	S ₁	S2
Р	パーキング	0										0	
R	リバース	0		0				0				0	
N	ニュートラル	0										0	
	1st	0	0						0		0	0	
D	2nd	0	0				0		0	0		0	0
	3rd	0	0	0			0		0				0
<u> </u>	4th (Q/D)		0	0	0		0						
	161	0	0						0		0	0	-
2	2nd	0	0			0	O		0	0		0	0
	3rd	0	0	0			0		0				0
	1st	0	0					0	0		Ö	0	
	2nd	0	0			0	0		0	0		0	0

【図5】

【図9】

【図10】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.