SODIUM-RICH Modern studies relating to con		KITE STUDIES	LEGEND: DFT DEF. EXP. PB DEF.	DFT NEB DFT AIMD PB NEB PB MD
		===		_
PAPER Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites WANG, 2015	FOCUS Developing a facile and timesaving synthetic route; improving conductivity of antiperovskite via alio- and isovalent doping	MATERIALS $Na_3OCl_{1-x}Br_x \ (x = 0 - 1)$ $Na_3OBr_{1-x}I_x \ (x = 0 - 1)$ $Na_{2.9}M_{0.05}OBr_{0.6}I_{0.4} \ (M = Ca, Sr)$ $Na_3OX \ (X = CI, Br, I)$	SYNTHESIS/MODEL Solid-state reaction + heating @ 350 °C for 3h CASTEP for NEB	CONCLUSIONS Facile, timesaving route successful; alio- and isovalent doping is a promising mean of increasing conductivity: NSOBI in the mS/cm range @ 200 °C
Sodium ion transport mechanisms in antiperovskite electrolytes Na $_3$ OBr and Na $_4$ OI $_2$: an in situ neutron diffraction study	Understanding the sodium transport pathway in bulk and layered antiperovskites, via neutron diffraction and maximum entropy method	Na ₃ OBr Na ₄ Ol ₂ Na ₃ OBr Na ₄ Ol ₂	Solid-state reaction + heating @ 400 °C for 4h CASTEP for NEB	Main sodium transport pathway between nearest sodium ions in Na ₆ O octahedra (both cubic and layered); in layered I ⁻ ions act as bridges between octahedra
Experimental and computational evaluation of a sodium-rich antiperovskite for solid state electrolytes NGUYEN, 2016	Increase ionic conductivity in antiperovskites via a post-processing method, spark plasma sintering (SPS)	Na ₃ OBr Na ₃ OBr	Solid-state reaction + heating @ 450 °C for 24h, then SPS VASP for DEFECTS	SPS reduces interfacial impedance and activation energy, but conductivity in 10 ⁻⁷ S/cm range, due to lack of defects
A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antiperovskite as solid state electrolytes for sodium ion batteries WAN, 2018	Improving understanding of defects in antiperovskites an improving conductivity in these materials via aliovalent doping with alkaline earth ions	Na ₃ OCl Na ₃ OCl Na ₃ M _{1/∞} OCl (M = Mg, Ca, Sr, Ba) Na _{2.875} OCl Na _{2.75} Ca _{0.125} OCl	VASP for DEFECTS, NEB and AIMD	NaCl Schottky is most favourable; alkaline earth doping increases activation energy of vacancy hops, but also increases defect concentration, so overall it can affect conductivity positively
Theoretical design of a double- antiperovskite Na ₆ SOI ₂ as a super- fast ion conductor for solid Na [†] ion batteries YU, 2018	Exploration of a sodium double antiperovskite as a solid state electrolyte, observing stability, conductivity and and compatibility with electrodes	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	VASP for DEFECTS and AIMD	Off-stoichiometric double- antiperovskites are predicted with low activation barriers and ultra- fast conductivity around 10 ms/cm; stability was also good
Composititon screening of lithium- and sodium-rich anti-perovskites for fast-conducting solid electrolytes DAWSON, 2018	Investigation of defect formation energies and sodium ion transport capabilities in Li/Na antiperovskites with alkalimixing and isovalent doping of the halides	Na _{3-x} Li _x OX (x = 1, 2; X = Cl, Br) Na ₃ OCl _{1-x} Br _x (x = 0, 0.5, 1) Na _{3-x} Li _x OX (x = 1, 2; X = Cl, Br) Na ₃ OCl _{1-x} Br _x (x = 0, 0.5, 1) Na _{3-x} Li _x OX (x = 1, 2; X = Cl, Br) Na ₃ OCl _{1-x} Br _x (x = 0, 0.5, 1)	GULP for DEFECTS and NEB LAMMPS for MD	Schottky MCl defect are favourable; mixed Li\Na systems do not provide enhanced conductivity; mixing halides could be used to finetune activation energies; max conductivity was still only around 5 mS/cm at 500K
Sodium superionic conductors based on clusters FANG, 2019	Improving conductivity via cluster anions, that i , have good tolerance factor ii , create large channels iii , soften the lattice	Na ₃ S(BCl ₄) Na _{2.875} OX (X = Br, BF ₄ , AIH ₄) Na _{2.875} S(BCl ₄) Na _{2.875} S(BCl ₄) _{0.5} l _{0.5}	VASP for NEB and AIMD	Substitution of cluster anions is effective in creating larger channels and softer lattices that lead to conductivities of mS/cm at RT for Na ₃ S(BCl ₄) and Na ₃ S(BCl ₄) _{0.5} l _{0.5}
Rotational cluster anion enabling superionic conductivity in sodiumrich antiperovskite Na 3 OBH 4 SUN, 2019	Attempting synthesis of antiperovskites with best tolerance factor from Na ₃ XY (X = O, S; Y = BH ₄ , BF ₄)	Na₃OBH₄	Solid-state reaction?	The rotation of the tetrahydroborate failitates ion movement hence increasing conductivity significantly
Theoretical tuning of Ruddlesden-Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries YU, 2019	Investigation of a range of sodium-rich Ruddlesen-Popper antiperovskites for solid state electrolyte applications, in terms of conductivity and stability	$\begin{aligned} & \text{Na}_4\text{O}_{1\text{-x}}\text{S}_{\text{x}}\text{Cl}_{1\text{-y}}\text{I}_{\text{y}} \text{ (x = 0, 1; y = 0, 1, 2)} \\ & \text{Na}_4\text{OI}_2 \\ & \text{Na}_4\text{OICI} \\ & \text{Na}_4\text{S}_{0.5}\text{O}_{0.5}\text{I}_2 \\ & \text{Na}_3\text{LiS}_{0.5}\text{O}_{0.5}\text{I}_2 \end{aligned}$	VASP for DEFECTS and AIMD	'Superb' electrolyte Na ₃ LiS _{0.5} O _{0.5} I ₂ with RT conductivity of 6.3 mS/cm; electrolyte is predicted to be compatible with sodium anode both electrochemically and thermodynamically
Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes KIM, 2019	Probing the connection between ionic mobility, thermodynamic stability and symmetry-lowering distortions	Na ₃ OX (X = F, Cl, Br, I) Na ₃ SX (X = F, Cl, Br, I) Na ₃ SeX (X = F, Cl, Br, I)	VASP for NEB	Increasing the degree of distortion (deviating tolerance factor for ideal) leads to lower migration energy, but also lower stability; Na ₃ SI could be the balance
Mechanochemical synthesis and ion transport properties of Na $_3$ OX (X = Cl, Br, I and BH $_4$) andtiperovskite solid electrolytes AHIAVI, 2020	Investigation of synthesis and experimental conductivity of various sodium antiperovskites; test of ball-milling method	Na ₃ OX (X = CI, Br, BH ₄) Na ₃ OX _{0.5} (BH ₄) _{0.5} (X = CI, Br) Na ₃ OCl _{0.33} Br _{0.33} (BH ₄) _{0.33} Na ₃ OX (X = CI, Br, I, BH ₄)	Soli-state reaction with ball- milling + heating @ 200 °C for 13h VASP for AIMD	Ball-milling works well as cheap and effective synthesis; larger (super)halogens lead to lower activation energy with both channel size and polarizability
Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na 3 ONO 2 GAO, 2020 Theoretical study of Na + transport	Attempt at synthesissing and measuring the conductivity of cluster antiperovskite Na ₃ ONO ₂ Exploration of the DeePMD	Na ₃ ONO ₂	Solid-state reaction + heating @ 210 °C for 12h DeePMD for NEB and MD	Rotation of the anion unlocked above 200 °C, at which point activation is 0.385eV and conductivity of 0.37 mS/cm DeePMD produces data with good
in the solid-state electrolyte Na ₃ OBr based on deep potential molecular dynamics LI, 2020	approach for antiperovskites	Na ₃ OBr Na ₃ OBr	DEEL INID TOT INED ATTUINED	consitstency with previous experiments, while provodong a cheaper alternative to ab initi methods

method for antiperovskites FENG, 2020 Superionic conduction in low-dimensional-networked antiperovskites LU, 2020 Investigating the effect of dimensionality on alkali ion connectivity in antiperovskites Ma ₃ OX (X = Br, I) Na ₄ OX ₂ (X = Br, I)	erovskite with dual doping as solid lectrolyte for Na metal solid state atteries	Synthesising and investigating the structure and conductivity of a novel sulfate-based antiperovskite	Na_3SO_4F $Na_{2.98}Mg_{0.01}SO_4F_{0.95}CI_{0.05}$	Ball-milling with alcohol + heating @ 500 °C for 36h	Material is promising with conductivities in the 0.01 mS/cm range when doped with alkaline earth and large halide ions
dimensional-networked anti- perovskites LU, 2020 dimensionality on alkali ion connectivity in antiperovskites LU divide head actions with the octable of	roperties of Na-rich anti-perovskite olid electrolytes	· · · · · · · · · · · · · · · · · · ·	Na ₃ OBr _{1-x} l _x (x = 0, 0.3, 0.5, 0.7, 1)	milling + heating @ 250 °C for	Sharp drop in conductivity as temperature is lowered, possibly from change of structural symmetry and Na sites
Hydride-based antiperovskites with Soft anions for stability of Solid-state reaction with SPS- NFB calculations and specific state reactions are specific state and specific state reactions are specific state and specific state reactions are specific state and s	imensional-networked anti- erovskites	dimensionality on alkali ion connectivity in		VASP for AIMD	Reducing the dimensionality of the octahedral networks effectively lowers the Li diffusion barrier, due to the enlarged
soft anionic sublattices as fast alkali ionic conductors cubic structure and softening of phonon mode of octahedral rotation $Na_{2.9}HSe_{0.9}I_{0.1}$ $Na_{3}HCH$ (CH = S, Se, Te)	oft anionic sublattices as fast alkali onic conductors	softening of phonon mode	Na ₃ HCh (Ch = S, Se, Te)	VASP for DEF. (natural) and	NEB calculations showed low activations; after doping conductivity of Na _{2.9} HSe _{0.9} I _{0.1} showed conductivities in the 10 ⁻⁴ S/cm at 100 °C

	ANTIPEROVSI dies relating to structural prope		LEGEND: EXP.	DFT
PAPER	FOCUS	MATERIALS	SYNTHESIS/MODEL	OUTCOMES
New investigations of Na $_3$ NO $_3$ JANSEN, 1977	Discovering the structural properties of Na ₃ ONO ₂	Na ₃ ONO ₂	,	Cubic antiperovskite with a = 4.605 Å
The crystal-structure of kogarkoite, Na ₃ SO ₄ F FANFANI, 1980	Discovering the structural properties of Na₃SO₄F	Na ₃ SO ₄ F	Ş	Monoclinic antiperovskite with a = 18.074, b = 6.958, c = 11.443 \mathring{A}
Na ₃ OCl and Na ₃ OBr, the 1st alkali- metal chalcogenide halides SABROWSKY, 1988	Discovering the structural properties of Na ₃ OCl and Na ₃ OBr	Na ₃ OX (X = Cl, Br)	Sintering between 793 and 892 K	Both structures were cubic antiperovskite, with a = 4.500 and 4.573 Å, for the Cl and Br variant
Na ₄ OI ₂ - A new type of alkali- metal chalcogenide halide SABROWSKY, 1989	Discovering the structural properties of Na ₄ OI ₂	Na ₄ OI ₂	Sintering between 773 and 823 K	Tetragonal antiperovskite with a = 4.677 and c = 26.020 Å
Structure of Na ₃ OCI HIPPLER, 1990	Discovering the structural properties of Na ₃ OCl	Na₃OCl	Sintering between 573 K and 873 K	Cubic antiperovskite with a = 4.496 Å
Crystal-structure of Na ₄ OBr ₂ HIPPLER, 1990	Discovering the structural properties of Na ₄ OBr ₂	Na ₄ OBr ₂	Sintering between 723 K and 773 K	Tetragonal antiperovskite with a = 4.521, c = 14.908 Å
Structure of Na ₄ OI ₂ SABROWSKY, 1990	Discovering the structural properties of Na ₄ OI ₂	Na ₄ OI ₂	Sintering at 830 K	Tetragonal antiperovskite with a = 4.655 and c = 15.940 Å
Na ₃ O(CN) - The 1st alkali-metal chalcogenide pseudohalide HIPPLER, 1990	Discovering the structural properties of Na ₃ O(CN)	Na₃O(CN)	Sintering between 640 K and 770 K	Cubic antiperovskite with a = 4.56 Å
(CN)ONa ₃ , crystal structure and sodium ion conductivity MULLER, 1990	Measuring the structural properties sodium conductivity of Na ₃ O(CN)	Na ₃ O(CN)	?	Above 230°C exceptionally high sodium ion conductivity (10 ⁻² S/cm) from the rotational disorder of the CN ⁻
On the quasi-binary systems NaNO 2/Na 2 O and NaCN/Na 2 O, phase diagrams and sodium ion conductivity of Na 3 O(NO 2) and Na 3 O(CN) JANSEN, 1992	Improving understanding on the temperature-depend phase-transitions and their effect on conductivity in Na ₃ ONO ₂ and Na ₃ OCN	Na ₃ ONO ₂ Na ₃ O(CN)	Ş	Sharp increase in conductivity at 200-250 °C as a consequence of a "melting" of the sodium sublattice or the rotational disorder of complex anions
Lattice dynamics of antiperovskite structure compounds A_3 OX ($A = Na$, K ; $X = CI$, Br)	Exploring the lattice dynamics of antiperovskite structures	Na ₃ OX (X = Cl, Br)	DFT	Elastic moduli constants and dielectric constants
Ab inbitio study of electronic structure, elastic and optical peoperties of anti-perovskite type alkali metal halides RAMANNA, 2013	Exploring elastic and optical properties for antiperovskite structures via both GGA and LDA methods	Na ₃ OX (X = Cl, Br)	CASTEP for DFT	Elastic properties including bulk moduli, shear moduli, Young's moduli, Poisson's ratio, anisotropy factor and Cauchy's pressure
Order-disorder phase transition in the antiperovskite-type structure of synthetic kogarkoite, Na ₃ SO ₄ F AVDONTCEVA, 2015	Improving understanding on the temperature-induced structural transformations in kogarkoite	Na₃SO₄F	Evaporation from aqueous solution at 25 °C	Transofrmation involves complete disordering of the sulfate tetrahedra, antiperovskite octahedral framework intact
Elastic properties of alkali superionic conductor electrolytes from first principles calculations DENG, 2016	Exploring elastic and optical properties for antiperovskite structures	Na ₃ OX (X = Cl, Br)	VASP for DFT	Elastic properties including bulk moduli, shear moduli, Young's moduli, Poisson's ratios and Pough's ratios

Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na ₃ OBr and Na ₄ OI ₂ WANG, 2016	Investigation of structural variability of antiperovskites under high pressures and low temperatures	Na ₃ OBr Na ₄ Ol ₂ Na ₃ OBr Na ₄ Ol ₂	Solid-state reaction + heating @ 350 °C for 3h CASTEP for DFT	Both structures stable up to 23 GPa; negative thermal expansion at very low temperatures; phase stability, symmetry preferences explained qualitatively
Electronic, elastic, lattice dynamic and thermal conductivity properties of Na ₃ OBr LV, 2017	Investigation of various structural properties for the antiperovskite Na ₃ OBr	Na ₃ OBr	CASTEP for DFT	Properties include bulk, shear, and Young's moduli, Poisson's and Pough's ratios; static + hf dielectric constant; thermal conductivity
Computational predictions of stable phase for antiperovskite Na ₃ OCI PHAM, 2018	Investigation of stability of non-cubic phases in antiperovskites, with potentially lower activations	Na₃OCI	VASP for DFT	14 tilted structures energetically more stable than cubic Pm3m, with P2 ₁ /m being most stable; the two phases have similar band gaps
Electronic structure, thermomechanical and phonon properties of inverse perovskite oxide (Na 3 OCI): An ab initio study KHANDY, 2020	Investigation of various structural properties for the antiperovskite Na ₃ OCl	Na ₃ OCI	Wien2K for DFT	Properties include bulk, shear, and Young's moduli, Poisson's and Pough's ratios, anisotropy factor; thermal conductivity
The structural stability, lattice dynamics, electronic, thermophysical, and mechanical properties of inverse perovskites A 3 OX: A comperative first-principles study SATTAR, 2020	Investigation of various structural properties for the antiperovskites Na ₃ OX (X = Cl, Br, I)	Na ₃ OX (X = Cl, Br, l)	Wien2K for DFT	Properties include bulk, shear, and Young's moduli, Poisson's and Pough's ratios, anisotropy factor; thermal conductivity
Synthesis of Antiperovskite Solid Electrolytes: Comparing Li $_3$ SI, Na $_3$ SI, and Ag $_3$ SI	Attempt at synthesising iodide-based antiperovskites for larger channel size and faster conductivity	Na ₃ OI	Solid-state reaction + heating @ up to 600 °C (with a 3 stage profile)	In the case of Na ₃ SI (and Li ₃ SI), the adoption of bcc anion packing in the reactants does not occur below melting point, which makes formation difficult