Case: Golub data

Background

The Golub data set contains Gene expression values from 3051 genes taken from tumors sampled from 38 leukemia patients. Twenty-seven of the patients were diagnosed with *acute lymphoblastic leukemia* (ALL) and the remaining eleven patients with *acute myeloid leukemia* (AML).

We will investigate which gene expressions that significantly differ between the two tumor populations. This data set is well-known in bioinformatics and is often used for classification studies.

Variables

variable name	description
golub	gene expression values

As we are not interested in the actual genes, data is stored as a raw matrix with 3051 rows and 38 columns. Columns 1-27 are tumors from ALL patients, and columns 28-38 are tumors for AML patients.

Exercise

We consider the null hypotheses

```
\begin{split} H_1: \mu_{\text{AML},1} &= \mu_{\text{ALL},1} \\ H_2: \mu_{\text{AML},2} &= \mu_{\text{ALL},2} \\ &\vdots \\ H_{3051}: 1\mu_{\text{AML},3051} &= \mu_{\text{ALL},3051} \end{split}
```

where $\mu_{a,i} = E[\text{gene expression of gene } i \text{ for group } a].$

• Use par(mfrow = c(1,2)) to make R split the plot window into two panes. Randomly select a few genes, make a boxplot of gene expressions for AML and ALL tomurs in the left and right windows, respectively.

One can discuss which test to use, here we will use a standard t-test.

- If there were no differences between the two populations, what is the expected number of rejected hypotheses on a 5% significance level?
- Perform a standard t-test for each of the hypotheses.
- Sort the p-values and plot them from smallest to largest. Look at shape of the curve. Is there evidence for difference between ALL and AML tumors? (Hint: if there were no difference between the populations, how would the p-values behave?)
- Adjust the p-values using the Benjamini-Hochberg method.
- Report the number of rejected hypotheses on 10%, 5%, 1% and 0.1% significance levels, before and after adjustment. Store these numbers into a table in a text document.

Inspiration:

```
# To get the p-value from a t-test:
t.test([...], [...], var.equal = TRUE)$p.value

# Split the plot window into two panes:
par(mfrow = c(1,2))

plot([...]) # Left pane
plot([...]) # right pane

par(mfrow = c(1,1)) # Only one pane

# Sample m numbers from 1:n:
sample(n, m)

# Adjust p values
?p.adjust # Help page
```