TRASFORMATORE IDEALE

PRINCIPIO DI FUNZIONAMENTO

Il trasformatore è costituito da un anello (nucleo) di materiale ferromagnetico (tipicamente lamine sottili di acciaio al silicio) su cui sono avvolti due avvolgimenti: il "primario", costituito da n_1 spire ed il "secondario" costituito da n_2 spire. Si tratta quindi di un doppio bipolo. Se il primario è alimentato da un generatore di tensione v_1 ("tensione primaria"), in modo tale che il primario sia percorso da una corrente i_1 ("corrente primaria"), e si lascia aperto il secondario, cosicché la corrente i_2 ("corrente secondaria") sia nulla, nell'anello si stabilirà un campo di induzione magnetica (a cui corrisponde il flusso "principale" ϕ

Figura 1. - Schema di principio di un trasformatore monofase

indicato in figura 1)^(#). Si noti che le linee del campo di induzione si concatenano anche con l'avvolgimento secondario, cosicché, se i₁ varia nel tempo, dalla legge di Faraday (o dell'induzione elettromagnetica), sarà indotta ai terminali del secondario una tensione v₂ ("tensione secondaria"). Se il secondario è connesso ad un carico (ad esempio un resistore), circolerà pertanto corrente su di esso. Mediante il trasformatore è quindi possibile trasferire potenza elettrica dall'avvolgimento primario a quello secondario, senza fare ricorso ad alcun collegamento elettrico tra i due avvolgimenti; il trasferimento di potenza avviene invece attraverso il campo magnetico che è presente principalmente nel nucleo del trasformatore e che è in grado di scambiare energia con entrambi i circuiti. Se si suppone che: 1) non vi siano perdite negli avvolgimenti (dette "perdite nel rame"); 2) non si siano perdite nel nucleo ferromagnetico (dette "perdite nel ferro"); 3) tutte le linee del campo di induzione magnetica si concatenino

Se si suppone che: 1) non vi siano perdite negli avvolgimenti (dette "perdite nel rame"); 2) non si siano perdite nel nucleo ferromagnetico (dette "perdite nel ferro"); 3) tutte le linee del campo di induzione magnetica si concatenino ad entrambi gli avvolgimenti, è possibile dedurre il modello del "trasformatore ideale" come segue. Dalla legge di Faraday possiamo determinare le tensioni ai capi degli avvolgimenti primario e secondario come derivate temporali dei flussi concatenati agli avvolgimenti stessi ($v_1 = d\phi_{c1}/dt$, $v_2 = d\phi_{c2}/dt$). Inoltre, grazie all'ipotesi 3) i flussi concatenati sono ottenibili semplicemente moltiplicando i numeri di spire per il flusso principale ($\phi_{c1} = n_1 \phi$, $\phi_{c2} = n_2 \phi$).

Si ottengono quindi le relazioni $v_1 = n_1 \ d\phi/dt$, $v_2 = n_2 \ d\phi/dt$, da cui, effettuando il rapporto membro a membro, otteniamo la relazione tra le tensioni a primario e secondario:

$$\frac{v_1}{v_2} = \frac{n_1}{n_2} \tag{1}$$

Una equazione di accoppiamento magnetico tra primario e secondario si ottiene mediante la legge della circuitazione magnetica (o di Ampére-Maxwell) applicata alla linea d'asse dell'anello di materiale ferromagnetico. Grazie all'ipotesi 3) il campo magnetico nel materiale è trascurabile.

Pertanto; con riferimento ai versi positivi indicati nella figura 1 si ottiene che la somma delle correnti concatenate alla linea è nulla $^{(o)}$: n_1 $i_1 + n_2$ $i_2 = 0$. Si ottiene quindi la relazione tra le correnti a primario e secondario:

$$\frac{i_1}{i_2} = -\frac{n_2}{n_1} \tag{2}$$

Se si definisce il rapporto di trasformazione $K = n_1/n_2$, il trasformatore ideale, il cui simbolo è indicato nella figura 2, risulta definito dalle seguenti caratteristiche:

Figura 2 - Trasformatore ideale e circuito equivalente.

^(#) Si dice flusso principale il flusso del campo di induzione magnetica attraverso una sezione normale alla linea d'asse del nucleo di materiale ferromagnetico.

⁽o) Se la permeabilità del materiale ferromagnetico costituente il nucleo fosse finita e costante, si otterrebbe la relazione più generale "la somma delle correnti concatenate alla linea è proporzionale al flusso principale": n_1 $i_1 + n_2$ $i_2 = \mathcal{R}$, ϕ , dove \mathcal{R} , detta "riluttanza del circuito magnetico", dipende esclusivamente dalla permeabilità del materiale e dalla geometria del nucleo (sezione e lunghezza). Tale relazione prende il nome di "Legge di Hopkinson".

Si noti che in figura 2 una coppia di terminali è segnata con un punto, indicando quindi i versi di riferimento positivi delle tensioni e delle correnti per cui le equazioni costitutive (3) sono corrette. In figura 2 è mostrato inoltre uno dei possibili circuiti equivalenti del trasformatore ideale. Si noti anche che, poiché il trasformatore ideale è un componente ideale definito dalle (3), le relazioni tra tensioni e correnti a primario e secondario sono valide per tutte le forme d'onda e per tutte le frequenze (inclusa la continua).

Il trasformatore ideale gode delle due seguenti proprietà fondamentali:

1. Il trasformatore ideale non dissipa né accumula energia. Dalle (3) risulta evidente che la potenza assorbita dal trasformatore ideale è nulla; infatti, con riferimento ai versi di riferimento positivi delle tensioni e delle correnti definiti in figura 2, si ha

$$p(t) = v_1(t)i_1(t) + v_2(t)i_2(t) = (Kv_2(t))\left(-\frac{i_2(t)}{K}\right) + v_2(t)i_2(t) = -v_2(t)i_2(t) + v_2(t)i_2(t) = 0$$

Quindi la somma delle potenze assorbite a primario e secondario è complessivamente nulla, ovvero la potenza assorbita a primario dal trasformatore ideale (p₁ = v₁ i₁) risulta in ogni istante uguale a quella erogata al secondario ($p_2 = -v_2 i_2$). In particolare, con riferimento al regime sinusoidale di frequenza f dalle (3) risulta \underline{V}_1 = $K\underline{V}_2$, \underline{I}_2 = $-K\underline{I}_1$ e quindi la potenza complessa assorbita a primario dal trasformatore ideale $\underline{N}_1 = \underline{V}_1(\underline{I}_1)^*$ risulta uguale a quella erogata al secondario $\underline{N}_2 = -\underline{V}_2(\underline{I}_2)^*$. Il trasformatore ideale cioè non assorbe né potenza attiva né potenza reattiva; risultano però mutati i parametri (tensione e corrente) con cui la energia elettrica viene assorbita a primario ed erogata a secondario: la tensione viene ridotta (od aumentata) di un fattore pari al rapporto di trasformazione del trasformatore K mentre la corrente viene aumentata (o diminuita) dello stesso fattore.

2. Quando a secondario di un trasformatore ideale è collegato un resistore di resistenza R, il primario si comporta come un resistore di resistenza equivalente K²R. Tale equivalenza è illustrata nella figura 3 e prende il nome di "riduzione da secondario a primario". La dimostrazione è immediata: $v_1(t) = K \ v_2(t) = K \ [-R \ i_2(t)] = -KR \ [-K \ i_1(t)] = K^2 \ R \ i_1(t)$

$$v_1(t) = K v_2(t) = K [-R i_2(t)] = -KR [-K i_1(t)] = K^2 R i_1(t)$$

Analogamente, con riferimento al regime sinusoidale di frequenza f dalle (3) risulta anche che quando a secondario di un trasformatore ideale è collegato una impedenza Z, il primario si comporta come una impedenza di valore K²Z.

Figura 3 - Riduzione da secondario a primario.