浙江工业大学 2013 / 2014 (2) 学年 期终复习卷2

— 、	选	择	颙	答	案
•	~=	JT	~~	- ш	\sim

- 1、将 CuSO₄水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作 封闭体系的是
 - (a) 绝热箱中所有物质 (b) 两个铜电极;
 - (c) 蓄电池和铜电极
- (d) CuSO₄水溶液。
- 2、当热力学第一定律写成 d $U=\delta Q-p$ dV时,它适用于
- (a).理想气体的可逆过程 (b). 封闭体系的任一过程 (c). 封闭体系只做体积功过程 (d). 封闭体系的定压过程
- 3、1mol 理想气体经历可逆绝热过程,功的计算式有下列几种,其中哪一个是错误的
 - (a) $C_v(T_2-T_1)$
- (b) $C_p(T_2-T_1)$
- (c) $(P_1V_1-P_2V_2)/(r-1)$ (d) $R(T_1-T_2)/(r-1)$
- 4、将某理想气体从温度 T_1 加热到 T_2 。若此变化为非恒压过程,则其焓变 ΔH 应为何值?

 - (a) $\Delta H = 0$ (b) $\Delta H = C_p(T_2 T_1)$
 - (c) Δ*H* 不存在
- (d) ΔH等于其它值
- 5、下述说法哪一个正确?
 - (a) 热是体系中微观粒子平均平动能的量度
 - (b) 温度是体系所储存热量的量度
 - (c) 温度是体系中微观粒子平均能量的量度
 - (d) 温度是体系中微观粒子平均平动能的量度
- 6、在一个绝热的刚性容器中发生一个气相反应,使系统的温度从 T_1 升高到 T_2 ,压力从 p_1 增 大到 p_2 ,则

 - (a) Q>0, W>0, $\Delta U>0$ (b) Q>0, W=0, $\Delta U>0$

 - (c) Q = 0, W = 0, $\Delta U > 0$ (d) Q = 0, W = 0, $\Delta U = 0$
- 7、关于基尔霍夫定律适用的条件,确切地说是
 - (a) 等容条件下的化学反应过程
 - (b) 等压条件下的化学反应过程
 - (c) 等压或等容且不做非体积功的化学反应过程
 - (d) 纯物质在不同温度下的可逆相变过程和等压反应过程

0/ 扣例	件水工,	若某过程	EDJ AA=	r_R , r	TIMI VCH	少余什及	Ē			
(a)等温、	可逆过程		(b) 4	等容、	可逆过	程			
(с)等温等	萨压、可逆	过程	(d) 4	等温等	容、可:	逆过程			
0 可從	机的粉束	医为 η ,冷	λγ ε μ π ός ν	、	₩₩₩₽	lilin #i	1 በ ሰ⁄ተ ₩	佐港豆		
		<u>~</u> ∕3 1(, 1₹ β ⟨1				. ሥህ <u>ነ</u> ጥ	1 17 1730	但俩处		
		β >1				· 、等于	· 、大于	- 1		
						司运转,	当工作	乍物质为	气体时,	热机效率
		上工作物质			当					
		(1								
(c) 小变	((d) 尤法	判断						
11、熵多	ጅΔ S 是:									
(1) 不可;	逆过程热液	温商之和							
(2) 可逆	过程热温i	商之和							
(3) 与过程	程无关的	状态函数	的改变	值					
(4) 与过程	和女子的	米	的改革	盾					
`	1) -JA21	性り大い	八心凶纵	リンレスン	- III⊾					
		住有大的。	八心四头	плох	- IH.					
以上正确	角的是	性有大的。 , 2			- 1H .					
以上正确	角的是	, 2		2, 3	. IE.					
以上正硕 12、理想 性? (a)	角的是 (a) 1, (c) 2 想气体从	, 2 状态 Ι 绍 (b) Δ	(b) (d) 经自由膨原	2, 3 4		可用哪	『个 热力]学判据	来判断证	亥过程的自然
以上正硕 12、理想 性? (a)	角的是 (a) 1, (c) 2 想气体从	, 2 状态 I 绍	(b) (d) 经自由膨原	2, 3 4		可用哪	『个 热力]学判据	来判断证	亥过程的 自复
以上正硕 12、理想 性? (a) 4 (c) 4	角的是 (a) 1, (c) 2 想气体从 Δ <i>H</i> Δ <i>S</i>	, 2 状态 Ι 绍 (b) Δ	(b) (d) 经自由膨原 G U	2,3 4 怅到状	态 ΙΙ,]学判据	来判断证	亥过程的 自复
以上正硕 12、理 性? (a), (c), 13、根据	角的是 (a) 1, (c) 2 想气体从 Δ <i>H</i> Δ <i>S</i> 居熵的统	, 2 状态 Ι 绍 (b) Δ (d) Δ	(b) (d) 至自由膨原 <i>G</i> <i>U</i> 以判断下	2,3 4 怅到状	态 Ⅱ, 是中何者				来判断证	亥过程的 自2
以上正硕 12、理想 性? (a) 4 (c) 4 13、根据	角的是 (a) 1, (c) 2 思气体从 Δ <i>H</i> Δ <i>S</i> 居熵蒸气	, 2 状态 Ι 绍 (b) Δ (d) Δ 计意义可!	(b) (d) 经自由膨原 G U 以判断下	2,3 4 怅到状	态 Ⅱ, 是中何者 (b) 石	f的熵值 i灰石分	፲增大? ↑解生成		来判断证	亥过程的 自复
以上正确 12、理想 性? (a) (c) 4 13、根据 (a) (c)	角的 1, (c) 2 思 ΔH ΔS 的蒸烯 K ΔS 的蒸烧 K ΔS 系统	, 2 状态 I 组 (b) Δ (d) Δ 计意义可! 冷却成聚乙!	(b) (d) 全自由膨原 G U 以判断下	2, 3 4 怅到状 列过郡	态 II, 是中何者 (b) 石 (d) 玛	f的熵值 「灰石分 里想气体	I增大? ↑解生成 体绝热可	式石灰 「逆膨胀		
以上正确 12、理想 性? (a), (c), 13、根据 (a) (c)	角的是 1, (c) 2 思	, 2 状态 I 组 (b) Δ (d) Δ 计意义可! 冷却聚乙! 合成聚乙! (子理想气	(b) (d) (d) 至自由膨展 G U 以判断下	2, 3 4 K到状 列过精 E带有?	态 Ⅱ, 些中何者 (b) 理 (d) 理 舌塞的 ⁴	产的熵值 下灰石分 里想气体 气缸中,	重增大? ↑解生成 本绝热可 温度↓	で石灰 「逆膨胀 是 300K	,压力为	亥过程的自ģ 1013250Pa <u>†</u> 程的△ <i>S</i> 是
以上正确 12、理想 性? (a) / (c) / 13、根据 (c) / 14、1mc 压力突然	角的是 1, (c) 2 思	, 2 状态 I 绍 (b) Δ (d) Δ ⁱ 计意 义可! 冷 成聚乙烷 合 成聚乙烷 (子理想气 02650 Pa,	(b) (d) (d) 至自由膨展 G U 以判断下	2, 3 4 K到状 可过 有 在 20	态 Ⅱ, 些中何者 (b) 理 (d) 理 舌塞的 ⁴	产的熵值 下灰石分 里想气体 气缸中,	重增大? ↑解生成 本绝热可 温度↓	で石灰 「逆膨胀 是 300K	,压力为	ı 1013250Pa
以上正确 12、理想 性? (a) (c) 4 13、根据 (c) 1 14、1mc 压力突然	角的 (a) 1, (c) 2	, 2 状态 I 绍 (b) Δ (d) Δ ⁱ 计意 义可! 冷 成聚乙烷 合 成聚乙烷 (子理想气 02650 Pa,	(b) (d) (d) E自由膨射 (C) W 以)	2,3 4 K到状 可 E带在 20 = 0	态 Ⅱ, 些中何者 (b) 理 (d) 理 舌塞的 ⁴	产的熵值 下灰石分 里想气体 气缸中,	重增大? ↑解生成 本绝热可 温度↓	で石灰 「逆膨胀 是 300K	,压力为	ı 1013250Pa
以上正确 12、理想 性? (a) 4 (c) 4 13、根据 (c) 1 14、1mc 压力突然 (Mal 1, al K al K al K al C l	, 2 状态 I 绍 (b) Δ (d) Δ ⁱ	(b) (d) (d) 全自由膨射 (C) (D) 料 (M) 数 (M) 数 (M) Δ (M) (M) Δ (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)	2,3 4 料到过带在 20 = ≥	态 II, 中何者 (b) 理 舌塞的 ⁴)2650Pa	的熵值 下灰石分 型想气体 气缸中,	重增大? ★绝热可 基上。 基上。 基本。	话石灰 「逆膨胀 是 300K。 绝热膨胀	,压力为	,1013250Pa 辻程的△ <i>S</i> 是
以上正确 12、理想 性? (a) 4 (c) 4 13、根据 (c) 1 14、1mc 压力突然 (Mal 1, al K al K al K al C l	, 2 状态 I 绍 (b) Δ (d) Δ ⁱ	(b) (d) (d) 全自由膨射 (C) (D) 料 (M) 数 (M) 数 (M) Δ (M) (M) Δ (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)	2,3 4 料到过带在 20 = ≥	态 II, 中何者 (b) 理 舌塞的 ⁴)2650Pa	的熵值 下灰石分 型想气体 气缸中,	重增大? ★绝热可 基上。 基上。 基本。	话石灰 「逆膨胀 是 300K。 绝热膨胀	,压力为	ı 1013250Pa
以上正确 12、理想 (c) 相 13、(c) 和 14、1mc (c) 和 15、为 15、为	角(a) 1, (c) 切 (c) 付 (c) 体 (c) 体 (c) (c) (c) (c) <td>, 2 状态 I 绍 (b) Δ (d) Δⁱ</td> <td>(b) (d) (d) 自由 (b) (d) (d) (d) (d) (e) (f)</td> <td>2,3 4 4 到 过 带在 0 0 压</td> <td>态 II, 中何 在 相 (d) 理 2650Pa</td> <td>的 婚 信 的 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不</td> <td>重增大? ★绝热可 基上。 基上。 基本。</td> <td>t石灰 「逆膨胀 是 300K 绝热膨胀 体系熵3</td> <td>,压力为</td> <td>,1013250Pa 辻程的△<i>S</i> 是</td>	, 2 状态 I 绍 (b) Δ (d) Δ ⁱ	(b) (d) (d) 自由 (b) (d) (d) (d) (d) (e) (f)	2,3 4 4 到 过 带在 0 0 压	态 II, 中何 在 相 (d) 理 2650Pa	的 婚 信 的 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不	重增大? ★绝热可 基上。 基上。 基本。	t石灰 「逆膨胀 是 300K 绝热膨胀 体系熵3	,压力为	,1013250Pa 辻程的△ <i>S</i> 是

16、在-10℃,p 时,1mol 过冷的水结成冰时,下述表示正确的是

- (a) $\Delta G < 0$, $\Delta S_{\pm} > 0$, $\Delta S_{\pm} > 0$, $\Delta S_{\pm} > 0$
- (b) $\Delta G > 0$, $\Delta S \ll 0$, $\Delta S \approx 0$, $\Delta S \approx 0$
- (c) $\Delta G < 0$, $\Delta S_{4} < 0$, $\Delta S_{5} > 0$, $\Delta S_{7} > 0$
- (d) $\Delta G > 0$, $\Delta S \approx 0$, $\Delta S \approx 0$, $\Delta S \approx 0$
- 17、 $\Delta G=0$ 的过程应满足的条件是
 - (a) 等温等压且非体积功为零的可逆过程
 - (b) 等温等压且非体积功为零的过程
 - (c) 等温等容且非体积功为零的过程
 - (d) 可逆绝热过程
- 18、恒压下纯物质当温度升高时其吉布斯自由能
 - (a) 上升 (b) 下降

 - (c) 不变 (d) 无法确定
- 19、对于不做非体积功的封闭体系,下面关系式中不正确的是

 - (a) $(\partial H/\partial S)_p = T$ (b) $(\partial A/\partial T)_v = -S$

 - (c) $(\partial H/\partial p)_s = V$ (d) $(\partial U/\partial V)_s = p$
- 20、某气体服从状态方程式 $pV_n=RT+bp$ (b 为大于零的常数), 若该气体经等温可逆膨胀, 其热力学能变化(ΔU)为

- (a) $\Delta U > 0$ (b) $\Delta U < 0$ (c) $\Delta U = 0$ (d) 不确定值
- 22、下列各式中哪个是化学势?

 - (a) $\left(\frac{\partial H}{\partial n_{\rm B}}\right)_{T,S,n_{\rm C}}$ (b) $\left(\frac{\partial A}{\partial n_{\rm B}}\right)_{T,p,n_{\rm C}}$ (c) $\left(\frac{\partial G}{\partial n_{\rm B}}\right)_{T,V,n_{\rm C}}$ (d) $\left(\frac{\partial U}{\partial n_{\rm B}}\right)_{S,V,n_{\rm C}}$
- 23、气体热力学标准态为
 - (a) 25℃、100kPa 状态
 - (b) 273.15K, 101325Pa, 理想气体状态
 - (c) 100kPa, 纯理想气体状态
 - (d) 25℃, 100kPa 纯理想气体状态
- 24、饱和溶液中溶质的化学势 μ 与纯溶质的化学势 μ * 的关系式为

	$\mu < \mu^* \qquad (d)$)个能确定	Ĕ	
25、对不	同物态的 CO₂(分别	J为 s,l,g	态),恒温压力增加,则化 学 势增	加的趋势是
		_	$d\mu(s) > d\mu(1) > d\mu(g)$	
(c)	$d\mu(1) > d\mu(g) > d\mu(g)$	s) (d	$d\mu(g) > d\mu(s) > d\mu(1)$	
26、下述位	体系中的组分 B,标	准态为假	想状态的是	
	有毫米级单晶颗粒的 型想液态混合物中的组		福合物中组分 B (b) 混合非理(d) 稀溶液に	
	=		其沸点升高了 0.01 K, 则 373.15	K 左右时,水
	度的变化率 d <i>p</i> /d <i>T)</i> 1823.9 Pa·K ⁻¹	(P)	2647.7 Po V ⁻¹	
` '	5471.6 Pa·K	(b)	3647.7 Pa·K ⁻¹ 7295.4 Pa·K ⁻¹	
` '	$= 0.5 \text{ K} \cdot \text{kg} \cdot \text{mol}^{-1})$	(u)	I MIZOIT I WIL	
	到学完第六章相平衡	以后再做)	
			$\widehat{\mathcal{G}}_{\!\scriptscriptstyle m}^{\!\scriptscriptstyle oldsymbol{arphi}}$ 是指参加反应的各物质在下列	哪种情况下反
由能的变化	化 ?			
(a)	化学平衡时	(b)	标准态时	
(c)	浓度不变时	(d)	可逆反应中	
29、化学)	反应 HgO(s) ===Hg(l	$1) + 1/2O_{2}$	g) 达到平衡时, 三种物质的化学	势间存在着下
29、化学》 关系:	反应 HgO(s) ===Hg(i	l)+1/2O ₂ (g) 达到平衡时,三种物质的化学	势间存在着下
关系:				势间存在着下
关系: (a)	反应 $\mathrm{HgO}(\mathrm{s}) ===\mathrm{Hg}(\mathrm{s})$ $\mu (\mathrm{Hg}) \times \left[\mu (\mathrm{O}_2) \right]$ $\mu (\mathrm{Hg}) \times \left[\mu (\mathrm{O}_2) \right]$	$1^{1/2} = \mu$	HgO)	势间存在着下
关系: (a) (b)	μ (Hg)× [μ (O ₂)]	$\int_{1/2}^{1/2} = \mu ($	HgO) HgO)=常数	势间存在着下
关系: (a) (b) (c)	μ (Hg)× $\left[\mu \left(O_2 \right) \right]$ μ (Hg)× $\left[\mu \left(O_2 \right) \right]$	$\int_{1/2}^{1/2} = \mu ($ $\int_{1/2}^{1/2} / \mu ($ $\int_{1/2}^{1/2} / \mu ($ $\int_{1/2}^{1/2} / \mu ($	HgO) HgO)=常数	势间存在着下
关系: (a) (b) (c) (d)	μ (Hg)× [μ (O ₂)] μ (Hg)× [μ (O ₂)] μ (Hg)+1/2 μ (O ₂)= μ (Hg)+ μ (O ₂)=	$\begin{array}{c} 1^{1/2} = \mu (\\ 1^{-1/2} / \mu (\\ 1^{-1/$	HgO) HgO)=常数	势间存在着下
关系: (a) (b) (c) (d) 30、在某	μ (Hg)× [μ (O ₂)] μ (Hg)× [μ (O ₂)] μ (Hg)+1/2 μ (O ₂) μ (Hg)+ μ (O ₂)= 压力下,一个化学反] ^{1/2} = μ (] ^{1/2} / μ () — μ (Hg μ (HgO)	HgO) HgO)=常数 D)=0	势间存在着下
关系: (a) (b) (c) (d) 30、在某人	μ (Hg)× [μ (O ₂)] μ (Hg)× [μ (O ₂)] μ (Hg)+1/2 μ (O ₂) μ (Hg)+ μ (O ₂)= 压力下,一个化学反] ^{1/2} = μ (] ^{1/2} / μ () — μ (Hg μ (HgO)	HgO) $=$ 常数 $D)=0$ $=$ 0, $\Delta_{ m r}S_{ m m}^{\ominus}>0$,表示该反应:	势间存在着下
关系: (a) (b) (c) (d) 30、在某。 (a) (c)	μ (Hg)× [μ (O₂)] μ (Hg)× [μ (O₂)] μ (Hg)+1/2 μ (O₂) μ (Hg)+ μ (O₂)= 压力下,一个化学反 平衡常数 K [⊖] >1 平衡常数 K [⊖] <1] ^{1/2} = μ (] ^{1/2} / μ () — μ (Hg μ (HgO)	$egin{aligned} & & & & & & & & & & & & & & & & & & &$	
关系: (a) (b) (c) (d) 30、在某人 (a) (c)	μ (Hg)× [μ (O₂)] μ (Hg)× [μ (O₂)] μ (Hg)+1/2 μ (O₂) μ (Hg)+ μ (O₂)= 压力下,一个化学反 平衡常数 K ^Θ > 1 平衡常数 K ^Θ < 1] ^{1/2} = μ (] ^{1/2} / μ () – μ (Hg μ (HgO) 应的 Δ _r H	HgO) HgO)=常数 D)= 0 $S_m^{\ominus}=0$, $\Delta_r S_m^{\ominus}>0$,表示该反应: (b) 平衡常数 $K^{\ominus}=1$ (d) 处于化学平衡状态	

(a) $\mu = \mu^*$ (b) $\mu > \mu^*$

32、	关于化学反应标准摩尔吉布斯自由能变 $\Delta_{r}G_{m}^{\ominus}$ 的理解,在标准条件下,下列正确的是:
	(a) $\Delta_{r}G_{m}^{\ominus}$ 是指有 1 mol 给定反应物完成反应的体系自由能变化
	(b) $\Delta_{_{r}}G_{_{m}}^{\ominus}$ 是指生成 1 mol 给定产物的自由能变化
	(c) $\Delta_{_{r}}G_{_{m}}^{\!\!\!\!\odot}$ 是指反应进度为 1 mol 时反应自由能变化
	(d) $\Delta_{_{\it r}}G_{_{\it m}}^{\ominus}$ 是指反应物和产物的浓度不变,化学势值不变时(即在一无限大的系统),
	反应进度为 1mol 反应时反应自由能变化
33、	对统计系统的分类不正确的是 (a) 晶体属于定域子系统 (b) 气体属于离域子系统 (c) 理想气体、绝对零度的晶体属于独立子系统 (d) 实际气体、液体属于相依粒子系统。
34、	三维平动子的平动能 ε_ι = $6h^2/(8mV^{2/3})$ 能级的简并度为
	(a) 1 (b) 3
	(c) 6 (d) 0
	假设 $\mathbf{I_2}$ 分子的振动能级间隔是 0.43×10^{-20} \mathbf{J} ,则在 298K 时某一振动能级和其较低能级
上分	→子数之比为 (a)1 (b)0.43 (c)0.35 (d)无法计算
36、	对于 0 或 ε_0 这两种不同的零能级选择,其结果是
	(a) q 值不同,影响各能级粒子数
	(b) q 值不同,不影响各能级粒子数
	(c) q 值相同,影响各能级粒子数 (d) q 值相同,不影响各能级粒子数
37、	转动特征温度定义为
	(a) $\Theta_{r} = \frac{8\pi^{2}IK}{h^{2}}$ (b) $\Theta_{r} = \frac{8\pi^{2}I}{h^{2}}$

38、下列说法中错误的是_____

(c) $\Theta_{\rm r} = \frac{h^2}{8\pi^2 I}$ (d) $\Theta_{\rm r} = \frac{h^2}{8\pi^2 I k}$

- (a) 配分函数的析因子性质适用于任何独立粒子系统
- (b) 分子的总简并度等于各运动形式简并度之和
- (c) $\Delta \varepsilon_{\rm n} > \Delta \varepsilon_{\rm e} > \Delta \varepsilon_{\rm v} > \Delta \varepsilon_{\rm r} > \Delta \varepsilon_{\rm t}$
- (d) 因粒子可别与否带来热力学性质计算公式的差别只表现于平动运动形式的贡献项
- 39、理想气体的摩尔统计熵 $S_{\rm m}$ (统计)、摩尔量热熵 $S_{\rm m}$ (量热)、与残余熵 $S_{\rm m}$ (残余)之间的关系近似为_____。
 - (a) S_m (残余)= S_m (统计) $-S_m$ (量热)
 - (b) S_m (残余)= S_m (统计)+ S_m (量热)
 - (c) S_m (量热) = S_m (残余)+ S_m (统计)
 - (d) S_{m} (量热) = S_{m} (残余) $-S_{\text{m}}$ (统计)
- 40、研究统计热力学的基本方法是
 - (a) 力学理论与统计学原理相结合
 - (b) 对配分函数析因子
 - (c) 对微观量求统计平均值
 - (d) 求解微观粒子的运动方程

二、计算题

- 1、计算反应 $H_2(g)+\frac{1}{2}O_2(g)=H_2O(g)$ 在 **800K** 下的标准反应热效应 $\Delta_r H_m^{\ominus}(800\,K)$ 。已 知水蒸汽的标准生成焓 $\Delta_r H_m^{\ominus}(H_2O,g,298\;K)=-241.83\;kJ\;mol^{-1}$,且知 $H_2(g)$ 、 $O_2(g)$ 及 $H_2O(g)$ 的恒压摩尔热容分别为 28.8,29.4,33.6 J mol^{-1} K^{-1} 。
- 2、在 101325 Pa 下,把极小的一块冰投到 100 g -5℃的过冷水中,结果有一定数量的水凝结为冰,而温度变为 0℃。由于过程进行得很快,所以可看作是绝热的。已知冰的熔化焓为 333. 5 J. g $^{-1}$ H,在-5~0℃之间水的比热容为 4. 230 J. K $^{-1}$ 。(1)试确定系统的初、终状态,并求过程的 ΔH 。(2)求析出的冰的数量。
- 3、一个理想热机在始态温度为 T_2 的物体A和温度为 T_1 的低温热源R之间可逆地工作,当A的温度逐步降到 T_1 时,A总共输给热机的热量为 Q_2 ,A的熵变为 ΔS_4 ,试导出低温热源R吸收热量 Q_1 的表达式。

- 4、 C_6H_6 的正常熔点为5 $\mathbb C$,摩尔熔化焓为9916 J. mol^{-1} , $C_{p,m}(l)=126.8$ J. K^{-1} . mol^{-1} , $C_{p,m}(s)=126.6$ J. K^{-1} . mol^{-1} 。求1.01325 MPa下-5 $\mathbb C$ 的过冷 C_6H_6 凝固成-5 $\mathbb C$ 的固态 C_6H_6 的 $W,Q,\Delta U,\Delta H,\Delta S,\Delta A,\Delta G$ 。设凝固过程的体积功可略去不计。
- 5、将 495. 5 K, 600 kPa 的 1 mol № 绝热可逆膨胀到 100 kPa, 试求该过程的 Q, W, ΔU, ΔH, ΔA, ΔG, ΔS, ΔS 隔离. 已知: S_m[⊕](N₂, 495.5K)=191.5 J·K⁻¹·mol⁻¹。设 № 为理想气体。
- 6、压力一直到 101.325 MPa,氮气仍服从下面状态方程: $pV_m=RT+bp$,式中常数 b=3.90×10⁻²dm³•mol⁻¹。试计算在 500 K 下 1 mol N₂(g)从 101.325 kPa 等温压缩到 101.325 MPa 时的 ΔU_m , ΔH_m , ΔS_m , ΔA_m , ΔG_m 。
- 7、人体活动和生理过程是在恒压下做广义电功的过程。问 1mol 葡萄糖最多能供应多少能量来供给人体动作和维持生命之用。已知:

葡萄糖
$$\Delta_C H_{\rm m}^{\odot}(298{\rm K}) = -2808{\rm kJ.mol^{-1}}$$
, $S_{\rm m}^{\odot}(298{\rm K}) = 288.9{\rm J.K^{-1}.mol^{-1}}$;

$$CO_2$$
的 $S_m^{\oplus}(298K) = 213.639J.K^{-1}.mol^{-1}$;

$$H_20$$
 (1) 的 $S_m^{\ominus}(298K) = 69.94J.K^{-1}.mol^{-1}$;

$$0_2$$
的 $S_m^{\ominus}(298K) = 205.029J \cdot K^{-1} \cdot mol^{-1}$ 。

- 8、在 298 K, 1.01325×10⁵ Pa 下,金刚石的摩尔燃烧焓为 395.26 kJ·mol⁻¹,摩尔熵为 2.42 J·K⁻¹·mol⁻¹。石墨的摩尔燃烧焓为 393.38 kJ·mol⁻¹,摩尔熵为 5.690 J·K⁻¹·mol⁻¹。
 - (1) 求在 298 K, 101.325 kPa 下,石墨变为金刚石的 $\Delta_r G_m^{\ominus}$;
- (2) 若金刚石和石墨的密度分别为 3.510×10^3 kg m⁻³ 及 2.260×10^3 kg m⁻³,并设密度不随压力而变化,则在 298 K 下,若使石墨变为金刚石,至少需要多大压力?
- 10、纯金的结晶温度等于 1335.5K。金从含 Pb 的质量分数 0.055 的 Au-Pb 溶液中开始结晶的温度等于 1272.5K。求金的熔化焓。
- 11、100 g 水中溶解若干克 NaCl,在 100 · C 时测定该溶液的蒸气压为 8.29× 10^4 Pa。求 100 · C 时该溶液的渗透压。已知 100 · C 时水的比体积为 1.043 dm 3 · kg $^{-1}$ 。
- 12、吸烟对人体有害,香烟中主要含有尼古丁(Nicotine),系致癌物质。经分析得知其中含

9.3% 的 H, 72% 的 C 和 18.70% 的 N。现将 0.6 g 尼古丁溶于 12.0 g 的水中,所得溶液在 p[©]下的凝固点为 -0.62℃,试确定该物质的分子式(已知水的摩尔质量凝固点降低常数为 1.86 K·kg·mol⁻¹)。

13、325℃时,Hg的摩尔分数为0.497的铊汞齐,其汞蒸气压力是纯汞的43.3%。以纯液体为参考状态,求Hg在铊汞齐中的活度及活度因子。

14、已知冰和水的热容分别是 37.6 和 75.3 $J.mol^{-1}.K^{-1}$,0 ℃,常压下冰的熔化热为 6020 $J.mol^{-1}$ 。
(1) 求常压、—10 ℃ 时 1 mol 冰变为 l.mol $H_2O(l)$ 的 ΔG (计算时忽略压力对凝聚相焓和熵的影响);(2) —10 ℃时冰和水的饱和蒸汽压之比是多少?

15、15℃时,一定量的蔗糖(蔗糖不挥发)溶于水中形成溶液的蒸气压为 1600Pa,而该温度下纯水的饱和蒸汽压为 1700 Pa 。求

- (1) 该溶液中蔗糖的量分数(摩尔分数)为多少?(视为稀溶液)
- (2) 在纯水中和在上述溶液中,水的化学势相差多少?

16、已知反应: $H_2(g, p^{\bullet},25^{\circ}\mathbb{C}) + 1/2O_2(g, p^{\bullet},25^{\circ}\mathbb{C}) \longrightarrow H_2O(g, p^{\bullet},25^{\circ}\mathbb{C})$ 其 $\Delta_r G_m^{\ominus} = -228.59 \text{ kJ} \cdot \text{mol}^{-1}$, $H_2O(l)$ 在 25℃的标准生成吉布斯自由能 $\Delta_r G_m^{\ominus} = -237.19 \text{ kJ} \cdot \text{mol}^{-1}$,求水在 25℃时饱和蒸气压,可将水蒸气视为理想气体。

17、在工业上,将空气和甲醇的混合气在 550℃, $100\,000$ Pa 通过 Ag 催化剂聚合成甲醛,发现 Ag 逐渐失去其金属光泽并有部分粉碎。试应用下列数据考查是否有 Ag₂O 生成。已知:

$$\Delta_{r}G_{m}^{\ominus}(Ag_{2}O, 298 \text{ K}) = -10.84 \text{ kJ·mol}^{-1}$$

$$\Delta_{r}H_{m}^{\ominus}(Ag_{2}O, 298 \text{ K}) = -30.59 \text{ kJ·mol}^{-1}$$

$$C_{p}^{\ominus},_{m}(Ag) = 26.78 \text{ J·K}^{-1}\cdot\text{mol}^{-1}, C_{p}^{\ominus},_{m}(Ag_{2}O) = 65.69 \text{ J·K}^{-1}\cdot\text{mol}^{-1}$$

$$C_{p}^{\ominus},_{m}(O_{2}) = 29.36 \text{ J·K}^{-1}\cdot\text{mol}^{-1}$$

18、 CO_2 分子有四种简正振动方式,相应的四个振动波数为 $1351~{\rm cm}^{-1}$, $2396~{\rm cm}^{-1}$, $672~{\rm cm}^{-1}$ 。

(1) 求各简正振动的特征温度:

(2) 300 K , CO₂分子以基态为能量零点的振动配分函数

已知 $h = 6.626 \times 10^{-34} \,\text{J} \cdot \text{s}, \ k = 1.38 \times 10^{-23} \,\text{J} \cdot \text{K}^{-1}, \ c = 3 \times 10^8 \,\text{m} \cdot \text{s}^{-1}$ 。

19、计算 $H_2(g)$ 的特征温度 Θ_v 以及在 3000 K 时振动配分函数 q_v 和振动熵 S_v ,已知振动波数 \widetilde{v} 是 440530 $\,\mathrm{m}^{-1}$ 。 $h=6.626\times 10^{-34}\,\mathrm{J\cdot s},\ k=1.38\times 10^{-23}\,\mathrm{J\cdot K^{-1}}$ 。

20、

计算这一过程微观状态数 Ω 的比值 $\Omega_{\mbox{\tiny β}}/\Omega_{\mbox{\tiny h}}$ 。