Discrete Fundamental Theorem of Surfaces

Yuanzhen Wang, Beibei Liu and Yiying Tong

Motivation

- Local rigid motion invariant representations
 - Geometry processing, shape analysis
 - Shape deformation
 - Thin shell simulation

Differential Invariants

1D Curve embedded in 3D

First derivative : length

Second derivative : curvature

Third derivative: torsion

2D surface embedded in 3D

First derivatives: length (first fundamental form)

Second derivatives:curvatures (second fundamental form)

Fundamental Theorem of Surfaces

$$I_{\alpha\beta} = \langle \mathbf{x}_{,\alpha}, \mathbf{x}_{,\beta} \rangle$$

$$I_{\alpha\beta} = \langle \mathbf{x}_{,\alpha\beta}, \mathbf{N} \rangle$$

$$u^{2}$$

$$\mathbf{x}(u^{1}, u^{2}) = \langle \mathbf{x}_{,\alpha\beta}, \mathbf{x}_{,\overline{u}^{1},\overline{u}^{2}} \rangle \partial \mathbf{x}_{,\alpha\beta} \partial \mathbf{x}_$$

Fundamental Theorem of Surfaces

$$\mathbf{x}_{,\alpha\beta} = \Gamma^{1}_{\alpha\beta}\mathbf{x}_{,1} + \Gamma^{2}_{\alpha\beta}\mathbf{x}_{,2} + II_{\alpha\beta}\mathbf{N}$$

$$\mathbf{x}_{,\alpha\beta} = \Gamma^{\gamma}_{\alpha\beta}\mathbf{x}_{,\gamma} + II_{\alpha\beta}\mathbf{N}$$

Fundamental Theorem of Surfaces

$$\mathbf{x}_{,\alpha\beta} = \Gamma^{\gamma}_{\alpha\beta} \mathbf{x}_{,\gamma} + II_{\alpha\beta} \mathbf{N}$$

Gauss's surface equations

$$0 = \mathbf{x}_{,lphaeta\gamma} - \mathbf{x}_{,lpha\gammaeta}$$

$$= (R_{lpha\gammaeta}^{ au} - (II_{\gamma}^{ au}II_{lphaeta} - II_{eta}^{ au}II_{lpha\gamma}))\mathbf{x}_{, au} + (\nabla_{\gamma}II_{lphaeta} - \nabla_{eta}II_{lpha\gamma})\mathbf{N}$$

$$= \mathbf{II}_{\mathbf{x}} \mathbf{Gauss's} \mathbf{Fountion}$$

$$= \mathbf{II}_{\mathbf{x}} \mathbf{Mainardi} \mathbf{Codazzi}$$

Gauss's Equation

Mainardi-Codazzi
Equations

Linear Rotation-Invariant Coords.

one-ring of a vertex

[LSLCO05] LIPMAN, Y., SORKINE, O., LEVIN, D., COHEN-OR, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. (SIGGRAPH) 2005

Separate Frames & Coordinates

Insensitive to translational constraints

The bump plane model from [BS08] BOTSCH M., SORKINE O.: On linear variational surface deformation methods. 2008

Lift of an Immersion

Piecing together line segments or triangles

- Planar curve lifted to 3D
 - Introducing intermediate variables: frame is the 3rd dimension.

Lift of a Surface Patch (3D to 6D)

$$f = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{N})$$

$$F = \begin{pmatrix} f & \mathbf{x} \\ 0 & 1 \end{pmatrix}$$

Local Surface Description

$$\Omega = F^{-1}dF$$

$$= \begin{pmatrix} f^T df & f^T d\mathbf{x} \\ 0 & 0 \end{pmatrix}$$

Modified Surface Equations

$$\Omega = F^{-1}dF = \begin{pmatrix} f^T df & f^T d\mathbf{x} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{\Omega}_R & \mathbf{\Omega}_X \\ \mathbf{\omega}_1^2 & \mathbf{0} & -\mathbf{\omega}_2^3 \\ \mathbf{\omega}_1^3 & \mathbf{\omega}_2^3 & \mathbf{0} \\ \mathbf{\omega}_1^3 & \mathbf{\omega}_2^3 & \mathbf{0} \\ \mathbf{\omega}_1^3 & \mathbf{\omega}_2^3 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \end{pmatrix}$$

$$d\mathbf{x} = f \ \mathbf{\Omega}_X = \boldsymbol{\omega}^1 \mathbf{b}_1 + \boldsymbol{\omega}^2 \mathbf{b}_2$$

$$df = f \ \mathbf{\Omega}_R = f \begin{pmatrix} \mathbf{0} & -\mathbf{\omega}_1^2 & -\mathbf{\omega}_1^3 \\ \mathbf{\omega}_1^2 & \mathbf{0} & -\mathbf{\omega}_2^3 \\ \mathbf{\omega}_1^3 & \mathbf{\omega}_2^3 & \mathbf{0} \end{pmatrix}$$

Position Equation

• Local Frame $(\mathbf{b}_1, \mathbf{b}_2)$

$$\mathbf{x}_n - \mathbf{x}_m = a_{mn,T}^1 \mathbf{b}_1 + a_{mn,T}^2 \mathbf{b}_2$$

- derived from 1st fund. forms
 - edge lengths

Frame Equations

Transition rotation

$$f_j - f_i = f_i R_{ij} - f_i$$

- Based on 1st and 2nd fund. Forms
 - dihedral angles

Discrete Surface Equations

Frame Equation across each edge

$$\forall e_{ij} \in E, \ f_j - f_i R_{ij} = 0$$

• Position equation along each (half-)edge

$$\mathbf{x}_n - \mathbf{x}_m - (a_{mn,T}^1 \mathbf{b}_{1,T} + a_{mn,T}^2 \mathbf{b}_{2,T}) = 0$$

Local discrete fundamental theorem of surfaces

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

• Local discrete fundamental theorem of surfaces

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

• Local discrete fundamental theorem of surfaces

Discrete Fundamental Theorems

$$\Pi_{i \in 0, \dots, n-1} R_{i, (i+1) \bmod n} - Id = 0$$

- Local discrete fundamental theorem of surfaces
 - Discrete integrability condition:

$$\Pi_{i \in 0,...,n-1} R_{i,(i+1) \bmod n} - Id = 0$$

- Alignment of normal
 - The Codazzi equations
- Alignment of tangents
 - Gauss's equation

Global Version

Global discrete fundamental theorem of surfaces

Closed mesh with genus g

- (i) local integrability condition (omit 2 vertices)
- (ii) global compatibility of rotation
- (iii) global compatibility of translation

Application

- Surface Reconstruction
- Mesh Deformation
- Quasi-isometric Parameterization
- Implementation: minimize

$$\int_{M} \|dF - F\Omega\|^2 \quad \Omega = F^{-1}dF$$

[LSLCO05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-ORD.: Linear rotation-invariant coordinates for meshes. 2005 [BS08] BOTSCH M., SORKINE O.: On linear variational surface deformation methods. 2008

- Distortion
 - edge length
- Distortion
 - dihedral angles

[LSLCO05]

Conclusion

- Discrete fundamental theorem of surfaces
 - -I: edge lengths
 - -II: dihedral angles
- A simple sparse linear system
 - from an arbitrary set of I and II
- Deformation with position & orientation constraints
- Limitations: nonlinear integrability condition, orthonormality requirements, self-intersection.

Thank you!

Questions?

 Acknowledgements: NSF IIS-0953-96, CCF-0936830, CCF-0811313, and CMMI-0757123

Sketch of the Proof

Uniquely determined frames for faces

Uniquely determined positions for vertices