DISCLAIMER

This presentation is about a work in progress. Results are preliminary at best. Especially the diagram on the last slide should be treated very cautiously.

Nearby Low-Luminosity QSOs and the M-L Relation of Inactive Galaxies

CPB meeting 2022

2. June 2022

Lukas Steiniger
I. Physikalisches Institut
University of Cologne

Overview

- BH bulge relations
 - → M_{BH} L_{bulge} relation
- Low-Luminosity QSO sample
- Mass Estimator via NIR Emission Lines
- (Preliminary) Results

BH – Bulge Relations

- numerous relations assumed between central SMBH and its host galaxy (or at least the central component),
 e.g. M-σ, M-M, M-L, ...
- unclear role of AGN
 - → might initiate or quench star formation

M_{BH} – L_{bulge} Relation

- relation for inactive galaxies
- Do active galaxies follow the same relation?
 - → If not, which relation and why different?

M_{BH} – L_{bulge} Relation

- active galaxies seem to follow the same relation
- but only two areas well covered:
 - close Seyferts
 - distant, powerful QSOs

Low Luminosity Type-1 QSO Sample

- low luminosity type-1 Quasi Stellar Object (LLQSO) sample
- closest, bright AGN that can be spatially resolved
- in total 99 objects (redshift z ≤ 0.06)
- type-1 objects: narrow and broad emission lines
 - → use broad component to find Broad Line Region (BLR) properties

LLQSOs vs. $M_{BH} - L_{bulge}$ Relation

- paper series about LLQSO sample 2014-2016
- authors compare 16 objects from LLQSO sample with four suggested relations

based on: Busch et al. 2016

LLQSOs vs. $M_{BH} - L_{bulge}$ Relation

LLQSOs deviate from the suggested relations:

- undermassive BHsor
- overluminous bulges
- →evolution via overluminous bulges (?)

based on: Busch et al. 2016

Long-Slit NIR Spectroscopy

- New Technology
 Telescope (NTT) with Son
 OF ISAAC (SOFI)
 mounted
- Long-slit Near-Infrared (NIR) spectroscopy (~ H- & K-band)

BH Mass Estimator

- Kim et al. 2010: BH mass estimator using NIR emission lines (Paschen α & Paschen β)
- find three different estimators, of which one is favored due to stable results and physical parameters

$$\frac{M}{M_{\odot}} = 10^{7.16 \pm 0.04} \left(\frac{L_{\text{Pa}\alpha}}{10^{42} \,\text{erg s}^{-1}} \right)^{0.49 \pm 0.06} \left(\frac{\text{FWHM}_{\text{Pa}\alpha}}{10^3 \,\text{km s}^{-1}} \right)^2$$

Example Spectra

Paα

Bry

Example Paschena Line Fits

Example Spectra II

Bry

M_{BH} – L_{bulge} Relation (Old & New LLQSOs)

