STA2005S - Regression Assignment

Jing Yeh yhxjin001@myuct.ac.za

Saurav Sathnarayan sthsau001@myuct.ac.za

2024 - 10 - 15

0.1 Part One: Analysis

1 Section 1: Introduction

Air pollution, particularly high levels of particulate matter (PM), is a major environmental and public health issue in South Africa's urban centers. Exposure to elevated PM levels is linked to respiratory diseases and other serious health conditions. Understanding the factors influencing PM concentrations is crucial for developing policies that improve air quality and protect public health. This analysis seeks to identify the key drivers of air pollution in South Africa's cities, focusing on how various urban, environmental, and socioeconomic factors affect particulate matter levels.

Unknown Factors to Investigate:

Traffic Density: How do varying levels of vehicle traffic contribute to PM levels in different areas?

Industrial Activity: What is the impact of industrial activity near monitoring stations on air quality?

Temperature & Humidity: How do changes in weather conditions, like temperature and humidity, influence PM concentrations?

Wind Speed: How does wind speed affect the dispersion or accumulation of particulate matter in urban areas?

Day of the Week & Public Holidays: Do patterns of human activity on weekdays, weekends, and holidays significantly influence pollution levels?

Urban Greenery: How effective are green spaces in reducing air pollution in densely populated areas?

2 Objective

The goal of this analysis is to explore the relationships between PM levels and these explanatory variables. By identifying the most influential factors, we aim to inform urban planning and public health strategies that address air pollution and improve the quality of life in South African cities.

2.1 Section 2 : Data Exploration

density plot
pairwsie plots

continuous_vars <- data_tidy_air_quality[, sapply(data_tidy_air_quality, is.numeric)]
pairs(continuous_vars, main = "Pairwise Scatterplots of Continuous Variables")</pre>

Pairwise Scatterplots of Continuous Variables

categorial variable plots

```
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with 'aes()'.
## i See also 'vignette("ggplot2-in-packages")' for more information.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was ## generated.
```


tabular representation of relationship between categorial variables

```
for (i in 1:(length(categorical_vars)-1)) {
  for (j in (i+1):length(categorical_vars)) {
    cat("Contingency Table for", categorical_vars[i], "and", categorical_vars[j], "\n'
    print(table(data_tidy_air_quality[[categorical_vars[i]]], data_tidy_air_quality[[categorical_vars[i]]]
    cat("\n")
  }
}
## Contingency Table for industrial_activity and day_of_week
##
               Monday Tuesday Wednesday Thursday Friday Saturday Sunday
##
##
     None
                             0
                                        3
                                                  3
                                                         2
                    5
                                                  7
                                                                   9
                             6
                                        4
                                                         6
                                                                           4
##
     Low
##
     Moderate
                    4
                             4
                                       10
                                                  8
                                                         6
                                                                   4
                                                                           3
##
                   11
                             7
                                        9
                                                 5
                                                         8
                                                                  10
                                                                           6
     High
##
## Contingency Table for industrial_activity and holiday
##
               Yes No
##
##
     None
                 5 9
##
     Low
                17 24
##
     Moderate
                 9 30
##
                21 35
     High
##
## Contingency Table for day_of_week and holiday
##
##
                Yes No
##
     Monday
                  1 21
     Tuesday
##
                  1 16
##
     Wednesday
                  3 23
##
     Thursday
                  4 19
##
     Friday
                  3 19
##
     Saturday
                 23
                    0
     Sunday
                 17 0
##
```

visual representation of relationship between categorial variables

industrial_activity

No

comments distribution characterisitcs

0.25

0.00

day_of_week

The distribution of particulate matter levels is generally right-skewed, indicating that a small number of observations have significantly high levels of particulate matter while most observations are clustered at lower levels. The presence of outliers suggests variations in local conditions affecting air quality.

Observed Relationships

- 1. Traffic Density: A positive correlation exists between particulate matter levels and traffic density, suggesting that areas with higher vehicle traffic tend to experience elevated levels of particulate matter.
- 2. Urban Greenery: A negative trend is observed, where higher urban greenery correlates with lower particulate matter, indicating that vegetation may help mitigate air pollution.
- 3. Temperature and Wind Speed: No strong relationship was identified between particulate matter and temperature. However, there is a slight negative correlation with wind speed, indicating that higher wind speeds may help disperse particulate matter.

Potential Collinearity

Some potential collinearity is observed among the explanatory variables, particularly between traffic density and urban greenery. High traffic areas often have less vegetation, leading to a relationship that may confound the analysis. Additionally, temperature and wind speed may also exhibit collinearity, as changes in one could affect the other.

3 Section 3

simple linear regression

```
X <- cbind(1,data_tidy_air_quality$traffic_density)

Y <-data_tidy_air_quality$particulate_matter
bhat <- solve(t(X) %*% X) %*% t(X) %*% Y

Cmat <- solve(t(X) %*% X)

k <- ncol(X)
rss <- t(Y - X %*% bhat) %*% (Y - X %*% bhat)
# Calculate s2 = RSS/(n-k)
s2 <- as.numeric((rss)/148)
s2</pre>
```

[1] 143.5745

```
c_ii <- diag(Cmat)</pre>
std.error <- sqrt(s2 * c_ii)</pre>
std.error
## [1] 20.37801682 0.04065266
mod1<-lm(data_tidy_air_quality$particulate_matter ~ data_tidy_air_quality$traffic_densi</pre>
summary(mod1)
##
## Call:
## lm(formula = data_tidy_air_quality$particulate_matter ~ data_tidy_air_quality$traf
##
       data = data_tidy_air_quality)
##
## Residuals:
      Min
                1Q Median
                                3Q
                                       Max
## -28.332 -7.561 -1.050 6.110 35.243
##
## Coefficients:
                                         Estimate Std. Error t value Pr(>|t|)
##
                                                               0.889
## (Intercept)
                                         18.11537
                                                    20.37802
                                                                       0.3755
## data_tidy_air_quality$traffic_density 0.08400
                                                     0.04065
                                                               2.066
                                                                       0.0406 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 11.98 on 148 degrees of freedom
## Multiple R-squared: 0.02804,
                                   Adjusted R-squared: 0.02147
## F-statistic: 4.269 on 1 and 148 DF, p-value: 0.04055
  hypthesis test
# Summary of ANOVA results
summary(aov(particulate_matter ~ industrial_activity, data = data_tidy_air_quality))
                        Df Sum Sq Mean Sq F value Pr(>F)
##
                         3
                             2182
                                    727.3
                                          5.396 0.0015 **
## industrial_activity
                           19680
                                    134.8
## Residuals
                       146
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
# Calculate F-statistic and p-value manually
group_means <- tapply(data_tidy_air_quality$particulate_matter, data_tidy_air_quality$i
overall_mean <- mean(data_tidy_air_quality$particulate_matter)</pre>
# Calculate SST
SST <- sum((data_tidy_air_quality$particulate_matter - overall_mean)^2)
# Calculate SSB
n <- table(data_tidy_air_quality$industrial_activity)</pre>
SStreatment <- sum(n * (group_means - overall_mean)^2)</pre>
# Calculate SSW
group_means_vector <- unlist(tapply(data_tidy_air_quality$particulate_matter, data_tidy
SSerror <- sum((data_tidy_air_quality$particulate_matter - group_means_vector)^2)
# Calculate degrees of freedom
k <- length(unique(data_tidy_air_quality$industrial_activity))</pre>
N <- nrow(data)</pre>
DFtreatment <- k - 1
DFerror <- 150 - k
# Calculate Mean Squares
MStreatment <- SStreatment / DFtreatment
MSerror <- SSerror / DFerror
# Calculate F-statistic
F_statistic <- MStreatment/MSerror
# Output F-statistic
F_statistic
## [1] 5.395959
# Calculate p-value
p_value <- pf(F_statistic, DFtreatment, DFerror, lower.tail = FALSE)</pre>
p_value
```

[1] 0.001502236

4 Question 4

Table 1: Confidence Interval for each Coefficients

	2.5 %	Estimate	97.5 %
Intercept			
(Intercept)	-21.0568	13.7937	48.6442
Traffic Density			
$traffic_density$	0.0155	0.0799	0.1444
Industrial Activity			
$industrial_activityLow$	-3.1721	2.6589	8.4900
$industrial_activity Moderate$	0.6047	6.4545	12.3043
$industrial_activity High$	-0.2503	5.3652	10.9806
Natural Factors			
temperature	-1.1521	-0.2815	0.5891
humidity	-0.1111	0.1926	0.4962
$wind_speed$	-0.8040	0.0193	0.8426
temperature:humidity	-0.0088	0.0061	0.0209
Day of Week			
$day_of_weekTuesday$	-5.9877	0.0133	6.0142
$day_of_weekWednesday$	-5.3501	0.1565	5.6630
$day_of_weekThursday$	-5.5367	0.1662	5.8690
day_of_weekFriday	-8.0602	-2.4221	3.2161
day_of_weekSaturday	-12.3605	-4.4832	3.3940
$day_of_weekSunday$	-10.2167	-2.0885	6.0396
Holiday			
holidayNo	-6.7151	-0.9961	4.7228
Urban Greenery			
$urban_greenery$	-0.4142	-0.2954	-0.1766