表 6 SystemInformation-SIB1

	程序	訊息流	預期輸出
1	O-DU 發送 SIB1。	UE ←O-DU/O- CU	查證 SIB1 子載波間隔之 subCarrierSpacingCommon 及指示 SIB1 之 ssb-subcarrierOffset 是否存在。 UE 已接收具組態設定週期之 SIB1,且 SIB1 包含依 3GPP 規範[28]之 IE。

6.2.7 Systeminformation-SIB2

測試目的

本測試案例之目的為查證 O-DU 對 SIB2 的廣播。

參考要求

有關詳細要求,參照[25]之 8.1.3。

初始條件

以下為本測試之先決條件。

- (a)細胞設置成功。
- (b)O-CU於 F1 設置回應中發送 SIB2 及 SIB3,且 F1 設置成功。
- (c)O-RU 連線至 O-DU。
- (d)MIB 及 SIB1 廣播成功。

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境中必要之測試工具:
 - (1) 測試支援 NR 之 UE 模擬器。
 - (2) 5G 核心或核心模擬器是用於終止 UE(模擬器)NAS 協定,並支援 NGAP、HTTP2 及 PFCP 之協定。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。
- (c) 組態:
 - (1) 有關測試設置之詳細資訊,參照 A.1。
 - (2) 有關 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
 - (3) 有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。

測試程序

表 7 說明 SystemInformation-SIB2 之測試程序。

	程序	訊息流	預期輸出
1	UE 接收源自 O-DU 之 SIB2 廣播。	UE ←O-D U/O-CU	查證 O-DU 依自 SIB1 解碼之排程資訊向 UE 廣播 SIB2。 依 3GPP 規範[28]之 6.3.1 查證所有強制性 IE。

6.2.8 Systeminformation-SIB3

測試目的

本測試案例之目的為查證 O-DU 對 SIB3 的廣播。

參考要求

有關詳細要求,參照[25]之 8.1.3。

初始條件

以下為本測試之先決條件。

- (a) 細胞設置成功。
- (b) O-CU 於 F1 設置回應中發送 SIB2 及 SIB3, 且 F1 設置成功。
- (c) O-RU 連線至 O-DU。
- (d) MIB 及 SIB1 廣播成功。

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境中必要之測試工具:
 - (1) 測試支援 NR 之 UE 模擬器。
 - (2) 5G 核心或核心模擬器是用於終止 UE(模擬器)NAS 協定,並支援 NGAP、HTTP2 及 PFCP 之協定。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。

(c) 組態:

- (1) 有關測試設置之詳細資訊,參照 A.1。
- (2) 有關 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
- (3) 有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。

測試程序

表 8 說明 SystemInformation-SIB3 之測試程序。

	程序	訊息流	預期輸出
1	UE 接收源自 O-DU 之 SIB3 廣播。	UE ← O-DU/O-CU	查證 O-DU 依自 SIB1 解碼之排程資訊向 UE 廣播 SIB3。 依 3GPP 規範[28]之 6.3.1 查證所有強制性 IE。

6.2.9 PDU 會談建立程序

測試目的

此測試案例之目的為查證端點對端點環境中 UE PDU 會談的建立程序。此案例說明成功建立 PDU 會談後,將指派 PDU IP 予 UE。

參考要求

有關詳細要求,參照[25]之 2.2 及 9.2.2。

初始條件

以下為本測試之先決條件。

- (a) 細胞設置成功。
- (b) O-DU 與 O-CU 間之 F1AP 連線成功。
- (c) UE 已解碼 MIB 及 SIB1。
- (d) RACH 程序成功。
- (e) RRC 設置成功。
- (f) 註冊成功

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境中必要之測試工具:
 - (1) 測試可支援 NR 之 UE 模擬器。
 - (2) 5G 核心或核心模擬器是用於終止 UE(模擬器)NAS 協定,並支援 NGAP、HTTP2 及 PFCP 之協定。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。

(c) 組態:

- (1)有關測試設置之詳細資訊,參照 A.1。
- (2)有關 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
- (3)有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。
- (4)有關 RACH 測試剖繪檔之詳細資訊,參照 B.6。

測試程序

表 9 說明 PDU 會談建立程序之測試程序。

表 9 PDU 會談建立

	程序	訊息流	預期輸出
	UE 發送帶有 PDU 會談		查證 O-DU 接收 UL 資訊傳送訊息,其中包含做為 NAS 訊息之 PDU 會談建立請求。
			查證 O-DU 向 O-CU 發送 UL RRC 訊息傳送,其中包含RRC 容器之 PDU 會談建立請求。
1	ID 之 PDU 會談建立請 求(參照 3GPP 規範[29] 之 8.3.1)。	UE → O- DU/O-CU	依 O-RAN.WG5.C.1[26]之 6.1.2.3 的 F1-C IE 處理,查證 UL RRC 訊息傳送之所有強制性 IE。
	,		查證 O-CU 向 AMF 發送上行 NAS 傳輸,其中 NAS PDU 做為 PDU 會談向 AMF 建立請求。
			依 3GPP 規範[27]之 9.2.5.3 查證所有強制性 IE。
			查證 O-CU 接收源自 AMF 之 PDU 會談資源設置請求, 其中 NAS-PDU 做為 PDU 會談建立接受。
			依 3GPP 規範[27]之 9.2.1.1 查證所有強制性 IE。
	UE 接收 RRC 重組態及 PDU session establishment accept。		查證 O-CU 向 O-DU 發送 UE 全景設置請求,以建立 DRB。
		UE ← O- DU/O-CU	依[26]之 6.1.1.3 的 F1-C IE 處理,查證 UE 全景設置請求 之所有強制性 IE。
2			查證成功建立 DRB 後,O-DU 向 O-CU 發送 UE 全景設置回應。
			依[26]之 6.1.1.3 的 F1-C IE 處理,查證 UE 全景設置請求 之所有強制性 IE。
			查證 O-CU 向 O-DU 發送 DL RRC 訊息傳送,其中 RRC 容器具 RRC 重組態。
			依[26]之 6.1.2.3 中 F1-C IE 處理,查證 DL RRC 訊息傳送 之所有強制性 IE。
			查證 O-DU 向 UE 發送 RRC reconfiguration,其中包含做為 NAS 酬載之 PDU 會談建立接受。
			查證 O-DU 自 UE 接收 RRC 重組態完成。
	UE 發送 RRC 重組態完		查證 O-DU 向 O-CU 發送 UL RRC 訊息傳送,其中 RRC 容器之 RRC 重組態完成。
3	成 UE sends RRC reconfiguration complete.	UE≯O- DU/O-CU	依[26]之 6.1.2.3 中 F1-C IE 處理,查證 UL RRC 訊息傳送 之所有強制性 IE。
			查證 O-CU 透過 NG 介面向 AMF 發送 PDU 會談資源設置回應。
			依 3GPP 規範[27]之 9.2.1.2 查證所有強制性 IE。

6.2.10 PDU 多方會談修正

測試目的

此測試案例之目的為查證端點對端點環境中的網路啟始 PDU 修正程序。此測試案例為藉由新增 1 個 5QI 3 之 GBR 流(Flow)及 1 個 5QI 6 之非 GBR 流,以說明網路啟

始之 PDU 會談的修正。

參考要求

有關詳細要求,參照[25] 之 2.2、7.2 及 9.2.2。

初始條件

以下為本測試之先決條件。

- (a) 細胞設置成功。
- (b) DU 與 O-CU 之間之 F1AP 連線成功。
- (c) UE 已解碼 MIB 及 SIB1。
- (d) RACH 程序成功。
- (e) RRC 設置成功。
- (f) 註冊成功, Follow ON 位元為1。
- (g) UE 啟始 PDU 會談建立程序成功。

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境中必要之測試工具:
 - (1) 測試支援 NR 之 UE 模擬器。
 - (2) 使用支援 N1、N2 及 HTTP 訊息之 5G 核心或 CN 模擬器。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。

(c) 組態:

- (1) 有關測試設置之詳細資訊,參照 A.1。
- (2) MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
- (3) 有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。
- (4) 有關 RACH 測試剖繪檔之詳細資訊,參照 B.6。

	程序	訊息流	預期輸出
			查證 O-CU 接收發送 NGAP PDU Session Resource Modify Request,其中包含 PDU 會談及 5G CN 欲新增資料流之相關資訊。
			NGAP PDU Session Resource Modify Request 宜包含 3GPP 規範[27]之 9.2.1.5 及 9.3.4.3 提到的所有強制性 IE。
			驗查證 O-CU 是否向 O-DU 發送 F1AP UE Context Modification Request。
1	AMF 向 O-CU 發送 NGAP PDU Session Resource	O-CU/O- DU ← AMF	F1AP UEContext Modification Request 宜包含[26]之 6.3.1.1.1 提到的所有強制性 IE。
	Modify Request •		查證 O-DU 向 O-CU 發送 F1AP UE Context Modification Response。
			F1AP UE Context Modification Response 宜包含[26]之 6.3.1.1.1 提到的所有強制性 IE。
			查證 O-CU 向 O-DU 發送 RRC 容器中帶有 RRC reconfiguration 訊息之 F1AP DL RRC Message Transfer Request,且該訊息宜包含[26]之 6.3.1.1.1 提到的所有強制性 IE。
2	UE 接收 RRC 重組態及 5G SM: PDU session Modification Command message。	UE ←O- DU/O-CU	查證 O-DU 向 UE 發送 RRC reconfiguration 重訊息,且 RRC reconfiguration 訊息宜包含 3GPP 規範[28]中提到之所有強制性 IE。
3	UE 發送	UE → O-	查證 O-DU 接收 RRC Reconfiguration Complete 訊息,以 及向 O-CU 發送 F1AP UL RRC 訊息傳送,其中包含 RRC 容器內的 RRC Reconfiguration Complete。
	RRCReconfiguration Complete •	DU/O-CU	依[26]之 6.1.1.3F1-C IE 處理,查證 UL RRC 訊息傳送之所 有強制性 IE。
			查證 AMF 接收 NGAP PDU Session Resource Modify Response。
			NGAP PDU Session Resource Modify Response 宜包含 3GPP 規範[27]之 9.2.1.6 及 9.3.4.3 提到之所有強制性 IE。
4	O-CU 向 AMF 發送 NGAP	O-DU/O-	查證 O-CU 向 O-DU 發送 F1AP UE Context Modification Request。
7	PDU Session Resource Modify Response •	CU→AMF	F1AP UE Context Modification Request 訊息宜包含[26]之6.3.1.1.1 提到之所有強制性 IE。
			查證 O-DU 向 O-CU 發送 F1AP UE Context Modification Response 訊息。
			F1AP UE Context Modification Response 訊息宜包含[26]之6.3.1.1.1 提到之所有強制性 IE。

UE 發送 UL Information Transfer message,其中包 含 NAS 訊息 5GSM: PDU Session Modification Complete。

UE**→**O-DU/O-CU 查證 O-DU 接收到發送 UL Information Transfer,以及向O-CU 發送 UL RRC 訊息。

查證 O-CU 向 AMF 發送 NGAP 上行 NAS Transport,其中 NAS 酬載為 5GSM:PDU PDU Session Modification Complete。

6.2.11 閒置模式呼叫及服務請求程序

測試目的

此測試案例之目的為查證端點對端點環境中的 UE 閒置模式呼叫及服務請求程序。 此測試案例說明 UE 自 RRC-IDLE 狀態轉換成 RRC-CONNECTED 狀態。

参考要求

有關詳細要求,參照[25]之 2.2、7.2 及 9.2.2。

初始條件

以下為本測試之前提條件。

- (a) 細胞設置成功。
- (b) O-DU 與 O-CU 之間之 F1AP 連線成功。
- (c) UE 已解碼 MIB 及 SIB1。
- (d) RACH 程序成功。
- (e) RRC 設置成功。
- (f) 註冊成功。
- (g) UE 進入 RRC-IDLE 狀態。

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境必要之測試工具:
 - (1) 測試可支援 NR 之 UE 模擬器。
 - (2) 5G 核心或核心模擬器為用於終止 UE(模擬器)NAS 協定,並支援 NGAP、HTTP2 及 PFCP 之協定。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。
- (c) 組態:
 - (1) 有關測試設置之詳細資訊,參照 A.1。
 - (2) 有關 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
 - (3) 有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。
 - (4) 有關 RACH 測試剖繪檔之詳細資訊,參照 B.6

測試程序

表 11 說明閒置模式呼叫及服務請求程序之測試步驟

表 11 閒置模式呼叫及服務請求

	程序	訊息流	預期輸出
1	UE 進入 RRC-IDLE 狀態,且於 UPF 接收 DL 資料。	UE ← O- DU/O-CU	查證 O-CU 透過 NG 介面自 AMF 接收 Paging 訊息。 依 3GPP 規範[27]之 9.2.4 查證所有強制性 IE。
2	UE 接收呼叫訊息	UE ←O- DU/O-CU	查證 O-CU 透過 F1 介面向 O-DU 發送 Paging 訊息。 依 3GPP 規範[23]之 9.2.6 查證所有強制性 IE。 查證 O-DU 向 UE 發送 Paging 訊息。 依 3GPP 規範[28]之 6.2.2 查證所有強制性 IE。
3	UE 發送帶有 S-TMSI 之 RRC SETUP REQUEST。	UE → O- DU/O-CU	查證 O-DU 接收 RRC SETUP REQUEST,以及向 O-CU 發送啟始 UL RRC 訊息傳送,其中 RRC 容器包含 RRC SETUP REQUEST 訊息。 依[26]之 6.1.1.3 F1-C IE 處理,查證啟始 UL RRC 訊息傳送之所有強制性 IE。
4	UE 接收 RRCsetup 訊息	UE ←O- DU/O-CU	查證 O-CU 向 O-DU 發送 DL RRC 訊息傳送,其中RRC 容器有 RRC setup 訊息,以建立 SRB1。 依[26]之 6.1.2.3 的 F1-C IE 處理,查證 DL RRC 訊息傳送之所有強制性 IE。 依 O-DU 向 UE 發送 RRC setup 訊息。 依 3GPP 規範[28]之 6.2.2 查證 RRC 設置之所有強制性 IE。
5	UE 透過 SRB1 發送 RRC setup complete 訊息,其中 Service Request 做為 NAS 酬載。	UE → O- DU/O-CU	查證 O-DU 自 UE 接收 RRC setup complete 訊息,其中 Service request 做為 NAS 酬載,以及向 O-CU 發送 UL RRC 訊息傳送,其中 RRC setup complete 且 RRC 容器 中有 Service Request。 依[26]之 6.1.2.3 F1-C IE 處理,查證 UL RRC 訊息傳送 之所有強制性 IE。 查證 O-CU 向 AMF 發送啟始 UE 訊息,其中 NAS 酬載 做為 Service Request。 依 3GPP 規範[27]之 9.2.5.1 查證 Initial UE 訊息之所有強制性 IE。

6	UE 接收 RRC 重組態,其中 Service Accept 訊息做為 NAS 酬載。	UE ←O- DU/O-CU	查證 O-CU 接收 Initial context setup request 訊息,其中 NAS 酬載做為服務接受。 查證 O-CU 向 O-DU 發送 DL RRC 訊息傳送,其中在 RRC 容器中包含 RRC reconfiguration 及 service accept 訊息。 依[26]之 6.1.2.3 的 F1-C IE 處理,查證 DL RRC 訊息傳送之所有強制性 IE。 查證 O-DU 發送 RRC Reconfiguration 訊息,其中包含 Service accept 訊息做為 NAS 酬載。 依 3GPP 規範[28]之 6.2.2 查證 RRC reconfiguration 訊息 之所有強制性 IE。
7	UE 發送 RRC reconfiguration complete 訊息。	UE→O- DU/O-CU	查證 O-DU 接收 RRC Reconfiguration complete 訊息,以及向 O-CU 發送 UL RRC 訊息傳送,其中 RRC 容器包含 RRC reconfiguration complete。 依[26]之 6.1.2.3 F1-C IE 處理,查證 UL RRC 訊息傳送之所有強制性 IE。查證 O-CU 向 AMF 發送 Initial context setup response 訊息。 依 3GPP 規範[27]之 9.2.2.2 查證 Initial context setup response 訊息之所有強制性 IE。

6.2.12 下行 UDP 資料傳送

測試目的

此測試案例之目的為查證 PDU 會談中 5QI 9 預設流之下行的峰值及平均流通量。

參考要求

有關詳細要求,參照[25]之 2.2。

初始條件

以下為本測試之先決條件。

- (a) 細胞設置成功。
- (b) O-DU 與 O-CU 之間之 F1AP 連線成功。
- (c) UE 已解碼 MIB 及 SIB1。
- (d) RACH 程序成功。
- (e) RRC 設置成功。
- (f) 註冊成功, Follow ON 位元為1。
- (g) 5QI 9 之 UE PDU 會談建立程序成功。

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境中必要之測試工具:
 - (1) 測試可支援 NR 之 UE 模擬器。

- (2) 支援 N1、N2 及 HTTP 訊息所使用之 5G 核心或 CN 模擬器。
- (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。

(c) 組態:

- (1)有關測試設置之詳細資訊,參照 A.1、A.2。
- (2)有關 RACH 測試剖繪檔之詳細資訊,參照 B.6。
- (3)有關 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
- (4)有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。
- (5)有關流通量測試剖繪檔之詳細資訊,參照 B.7。

測試程序

表 12 說明下行連續流通量之測試程序。

表 12 下行連續流通量

	程序	訊息流	預期輸出
1	使用任何訊務量產生器工 具或 IPERF 應用程式於 5QI 9 流之下行中觸發 712 Mbps 之 UDP 資料傳送。	O-CU/O- DU ← UPF	查證 O-CU 接收監督者 NG-U 連線中期望流之 DL UDP 訊務量。 O-CU 將流向對映至監督者 DRB,此將由駐留 O-CU 之 SDAP 協定完成,然後將 UDP 訊務量轉發至 O-DU。 查證 O-DU 接收 UDP 訊務量,且封包未顯著遺失。
2	量測 UE 上之峰值及平均 流通量。	UE ←O - DU/O-CU	對照理論值查證。參照附錄 B.7。

6.2.13 上行 UDP 資料傳送

測試目的

此測試案例之目的是查證 PDU 會談中 5QI 9 預設流之上行的峰值及平均流通量。

參考要求

有關詳細要求,參照[25]之 2.2。

初始條件

以下為本測試之先決條件。

- (a) 細胞設置成功。
- (b) O-DU 與 O-CU 間之 F1AP 連線成功。
- (c) UE 已解碼 MIB 及 SIB1。
- (d) RACH 程序成功。
- (e) RRC 設置成功。
- (f) 註冊成功, Follow ON 位元為1。
- (g) 5QI 9 之 UE PDU 會談建立程序成功。

測試設置及組態

- (a) DUT: 單一 O-DU 及單一 O-CU。
- (b) 此測試情境中必要之測試工具:
 - (1) 測試可支援 NR 之 UE 模擬器。
 - (2) 支援 N1、N2 及 HTTP 訊息所使用之 5G 核心或 CN 模擬器。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。

(c) 組態:

- (1) 有關測試設置之詳細資訊,參照 A.1、A.2。
- (2) 有關 RACH 測試剖繪檔之詳細資訊,參照 B.6。
- (3) 有關 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
- (4) 有關 SIB1 測試剖繪檔之詳細資訊,參照 B.3。
- (5) 有關流通量測試剖繪檔之詳細資訊,參照 B.7。

測試程序

表 13 說明上行連續流通量之測試程序。

表 13 上行連續流通量

	程序	訊息流	預期輸出
1	使用任何訊務量產生器工 具或 IPERF 應用程式於 5QI 9 流的上行中觸發 285 Mbps 之 UDP 資料傳送。	UE→O- DU/O-CU	查證 O-DU 於期望之監督者 DRB 上接收 UL UDP 訊務量,以及使用 GTP-U 使用者平面連線轉發至 O-CU。 O-CU 將 DRB 對映至流對映,此將由駐留 O-CU 之 SDAP 協定完成,然後將 NG-U 通道上之 UDP 訊務量轉發至 UPF。 查證 UPF 接收 UDP 訊務量,且封包未顯著遺失。
2	量測 UE 上之峰值及平均 流通量。	O-DU/O- CU→UPF	對照理論值查證。參照附錄 B.7。

6.2.14 雙向 UDP 資料傳送

測試目的

此測試案例之目的為查證 PDU 會談中 5QI 9 預設流之上下行的峰值及平均流通量。

參考要求

有關詳細要求,參照[25]之 2.2。

初始條件

以下為本測試之先決條件。

- (a) 細胞設置成功。
- (b) O-DU 與 O-CU 間之 F1AP 連線成功。
- (c) UE 已解碼 MIB 及 SIB1。
- (d) RACH 程序成功。
- (e) RRC 設置成功。
- (f) 註冊成功, Follow ON 位元為 1。
- (g) 5QI 9 之 UE PDU 會談建立程序成功。

測試設置及組態

(a) DUT: 單一 O-DU 及單一 O-CU。

- (b) 此測試情境中必要之測試工具:
 - (1) 測試可支援 NR 之 UE 模擬器。
 - (2) 支援 N1、N2 及 HTTP 訊息所使用之 5G 核心或 CN 模擬器。
 - (3) 協定分析儀:用於記錄與觀察 F1AP、NGAP、NAS、HTTP2 及 PFCP 之協 定內容。

(c) 組態:

- (1) 對於測試設置之詳細資訊,參照 A.1、A.2。
- (2) 對於 RACH 測試剖繪檔之詳細資訊,參照 B.6。
- (3) 對於 MIB 及 SSB 測試剖繪檔之詳細資訊,參照 B.2。
- (4) 對於 SIB1 測試剖繪檔之詳細資訊,參照 B.3。
- (5) 對於流通量測試剖繪檔之詳細資訊,參照 B.7。

測試程序

表 14 說明雙向連續流通量之測試程序。

表 14 雙向連續流通量

	程序	訊息流	預期輸出
1	使用任何訊務量產生器工 具或 IPERF 應用程式於 5QI 9 流之上行中觸發 285 Mbps 的 UDP 資料傳送。	UE → O- DU/O-CU	查證 O-DU 期望的監督者 DRB 上是否接收到 UL UDP 訊務量,以及使用 GTP-U 使用者平面連接轉發至 O-CU。 O-CU 將 DRB 對映至流對映,此將由駐留 O-CU 之 SDAP 協定完成,然後將 NG-U 通道上之 UDP 訊務量轉發至 UPF。 查證 UPF 接收 UDP 訊務量,且封包未顯著遺失。
2	查證 UPF 之峰值及平均流 通量。	O-DU/O- CU → UPF	對照理論值查證。參照附錄 B.7。
3	使用任何訊務量產生器工 具或 IPERF 應用程式於 5QI 9 流之下行中觸發 712 Mbps 之 UDP 資料傳送。	O-CU/O- DU ← UPF	查證 O-CU 是否接收到監督者 NG-U 連線中期望流之 DL UDP 訊務量。 O-CU 將流對映至監督者 DRB,這將由駐留 O-CU 之 SDAP 協定完成,然後將 UDP 訊務量轉發至 O-DU。 查證 O-DU 是否接收到 UDP 訊務量,且封包未顯著 遺失。
4	量測 UE 上之峰值及平均 流通量。	UE ←O- DU/O-CU	對照理論值來查證。參照附錄 B.7。

7. 資通安全測試要求

7.1 概述

本節依 O-RAN TIFG: Test & Integration Focus Group 公布 End-to-end Test Specification 訂定資通安全之測試要求。

本節描述評估及評鑑無線電接取網路端點對端點 (end-to-end, E2E) 資通安全面向之 測試。一般測試方法及組態宜依[30]相關節次所述。

因整個 O-RAN 系統為待測系統,於端點對端點測試之情境中,可視為 1 組整合的黑 盒子,於此列出之資通安全測試案例歸類如下:

- (a) 3GPP SA3 工作小組要求之 5G 基地臺資通安全保證規範 (gNB security assurance specification),適用於 5G-NR 非獨立組網 (non-standalone, NSA)/獨立組網 (standalone, SA)。
- (b) 其他需特別接入 O-RAN 組件之主要介面或內部功能之資通安全測試案例,皆非本節所涵蓋範圍。

7.2 依 3GPP SA3 之 gNB 安全保證規範要求

從網路架構及功能面向來看,端點對端點 O-RAN 系統 (代測系統, SUT) 等效於 5G 基地臺,因此於端點對端點無線電接取網路 (RAN) 之資通安全評估應依:

- (a) [31]概述之 5G 基地臺特定資通安全要求、威脅及測試案例。
- (b) [30]之 7.1 測試案例。

表 15 說明[31]之 4.2.2 及[30]之 7.1 列出之所有必需測試例。

表 15 5G 基地臺資通安全確保規範 (gNB SCAS) 測試案例總表

測試案例 (O-RAN 參 考 #)	測試案例 (3GPP 參考 #)	測試案例 (第 10-2 部測試 規範參考 #)	測試名稱	說明
7.1.1	4.2.2.1.1	7.3.1	RRC- signalling 完 整性保護	gNB 應支援透過 NG-RAN 空中介面傳送之 RRC- signalling 受完整性保護。
7.1.2	4.2.2.1.2	7.3.2	UE 與 gNB 間 之使用者資料 完整性保護	查證透過 NG-RAN 空中介面傳送之使用者資料封包受完整性保護。
7.1.3	4.2.2.1.4	7.3.3	RRC 完整性檢 查失效	查證 gNB 可正確地處理 RRC 完整性檢查失效。
7.1.4	4.2.2.1.5	7.3.4	UP 完整性檢 查失效	查證 gNB 可正確地處理 UP完整性檢查失效。
7.1.5	4.2.2.1.6	7.3.5	RRC- signalling加 密	查證透過NG-RAN 空中介面傳送介於UE與gNB間之RRC - signalling資料受機密性保護。

7.1.6	4.2.2.1.7	7.3.6	UE 與 gNB 間之使用者資料加密	查證透過 NG-RAN 空中介面傳送之的使用者資料封包受機密性保護。
7.1.7	4.2.2.1.8	7.3.7	UE與gNB間 之使用者資料 重送保護	查 UE 與 gNB 間之使用者 資料支持完整性保護及重送 攻擊保護
7.1.8	4.2.2.1.9	7.3.8	RRC- signalling 重 送保護	查證 UE 與 gNB 間透過 NG-RAN 空中介面傳送之 RRC-signalling 受重送保 護。
7.1.9	4.2.2.1.10	7.3.9	使用者資料加密依 SMF 發送之安全政策	查證使用者資料以 SMF 傳送之安全政策受機密性保護。
7.1.10	4.2.2.1.11	7.3.10	使用者資料完整性依 SMF 發送之安全政策	查證使用者資料以 SMF 傳送之安全政策受完整性保護。
7.1.11	4.2.2.1.12	7.3.11	AS 演算法選擇	gNB 存取層加密及完整性演算 法優先順序。
7.1.12	4.2.2.1.13	7.3.12	gNB 金鑰更新	查證gNB 金鑰(KgNB)更新功能運作正常,查證當達到重複使用資料無線電承載識別碼時,gNB 金鑰 (KgNB) 更新功能運作正常。
7.1.13	4.2.2.1.14	7.3.13	Xn-handovers 之降階攻擊防 護	查證當發生 Xn 交握時預防 降階攻擊之檢查機制。

7.3 資通安全測試項目

整個 O-RAN 系統為待測系統 (SUT),可視為端點對端點測試中整合之黑盒子,參照[32],即 SUT 的內部功能及架構超出範圍。預計所有涉及之 O-RAN 功能及介面均可適當地互相操作,且於終端用戶設備及應用主機或另一個終端用戶設備間,建立端點至端點的通訊鏈路。SUT 內部功能互運性及符合性測試超出本文範圍。SUT 將處於服務模式,並以正常操作狀態運行。

端點對端點 KPIs 定義 為終端用戶設備與應用(訊務量)主機,或另一個終端用戶設備

圖 23 端點對端點測試架構

7.3.1 RRC-signalling 完整性保護

(a) 目的

- (1)依[31]之 4.2.2.1.1,並參考[33]之 5.3.3 及[34]之 D.2.2.2。
- (2)查證 UE 與 gNB 透過 NG-RAN 空中介面傳送之 RRC-signalling 受完整性保護。

(b) 先決條件

- (1)gNB 網路產品應連接於模擬或實際網路環境中,可模擬 UE。
- (2)測試者應有權限接取完整性演算法及完整性保護金鑰。
- (3)測試者可通過 NG RAN 空中介面擷取訊息,也可於 UE 處擷取訊息。

(c) 執行步驟

- (1) NIA0 於 UE 與 gNB 上停用。
- (2) gNB 向 UE 發送 AS SMC 訊息, UE 回應 AS SMP。
- (3) 檢查 gNB 於發送 AS SMC 訊息後, UE 進入 CM-Idle 狀態前,發送之任何 RRC 訊息受完整性保護。

(d)預期結果

於 gNB 發送 AS SMC 後,NG RAN 空中介面上之任何 RRC-signalling 均受完整性保護。

7.3.2 UE 與 gNB 間之使用者資料完整性保護

(a) 目的

- (1) 依[31]之 4.2.2.1.2, 並參考[33]之 5.3.3 所述。
- (2) 查證使用者封包於 NG RAN 空中介面上受完整性保護。

(b)先決條件

- (1) gNB 網路產品應連接於模擬/實際網路環境中,可模擬 UE。
- (2) 測試者應啟用使用者平面完整性保護,並確保不使用 NIA0。
- (3) 測試者應了解完整性演算法及完整性保護金鑰。
- (4) 測試者可通過 NG RAN 空中介面擷取訊息,也可於 UE 處擷取訊息。

(c)執行步驟

- (1) NIA0 於 UE 與 gNB 上停用。
- (2) gNB 發送帶有"on"完整性保護指示之 RRCConnectionReconfiguration。.

(3) 於發送 RRCConnectionReconfiguration 後及 UE 進入 CM-Idle 狀態前,檢查 gNB 發送之任何使用者資料受完整性保護。

(d)預期結果

於 gNB 發送 RRCConnectionReconfiguration 後,於 UE -與 gNB 間透過 NG RAN 空中介面發送之任何使用者平面封包均受完整性保護。

7.3.3 RRC 完整性檢查失效

(a) 目的

- (1) 依[31]之 4.2.2.1.4, 並參考[33]之 6.5.1 與[34]之 D.2.2.2。
- (2) 查證 gNB 可正確地處理 RRC 完整性檢查失效。

(b) 先決條件

- (1)使用 UE 之測試環境。
- (2)可模擬 UE。
- (3)於 gNB 上啟用 RRC 完整性保護。

(c) 執行步驟

- (1) UE 於無 MAC-I 之情況下,向 gNB 發送 RRC 訊息。
- (2) UE 向 gNB 發送帶有錯誤 MAC-I 之 RRC 訊息。
- (3) gNB 查證源自 UE 之 RRC 訊息的完整性。

(d) 預期結果

RRC 訊息於執行步驟(1)或執行步驟(3)後被 gNB 捨棄

7.3.4 UP 完整性檢查失效

(a) 目的

- (1) 依[31]之 4.2.2.1.5, 並參考[33]之 6.6.4 所述。
- (2) 若 gNB 或 UE 於完整性保護開始後,收到 1 個完整性檢查失效且 MAC-I 錯誤或遺漏之 PDCP PDU,則該 PDU 應被捨棄。
- (3)查證 gNB 可正確地處理 UP 完整性檢查失效。

(b)先決條件

- (1) 使用 UE 之測試環境。
- (2) 可模擬 UE。
- (3)於 gNB 上啟用 RRC 完整性保護。

(c) 執行步驟

- (1) UE 於無 MAC-I 之情況下,向 gNB 發送 PDCP PDU。
- (2) UE 向 gNB 發送 1 個帶有錯誤 MAC-I 之 PDCP PDU。
- (3) gNB 查證源自 UE 之 PDCP PDU 的完整性。

(d) 預期結果

PDCP PDU 於執行步驟(1)或執行步驟(3)後被 gNB 捨棄。

7.3.5 RRC-signalling 加密

(a) 目的

- (1) 依[31]之 4.2.2.1.6, 並參考[33]之 5.3.2 所述。
- (2) 查證 UE 與 gNB 間透過 NG RAN 空中介面發送之 RRC-signalling 資料受機密性保護。

(b) 測試先決條件

- (1)gNB 網路產品應連接於模擬/實際網路環境中,可模擬 UE。
- (2)測試者應有權限接取 NG RAN 空中介面或可於 UE 處擷取訊息。

(c) 執行程序

- (1)UE 向 AMF 發送 Registraton Request。
- (2)AMF 向 gNB 發送 KgNB 及 UE 安全能力。
- (3)gNB 選擇一種演算法,發送 AS SMC 至 UE。
- (4)gNB 自 UE 接收 AS SMP。

(d) 預期結果

gNB 發送加密之 AS SMC 後,控制平面封包發送至 UE。

7.3.6 UE 與 gNB 間之使用者資料加密

(a) 目的

- (1) 依[31]之 4.2.2.1.7, 並參考[33]之 5.3.2 所述。
- (2) gNB 應於 NG RAN 空中介面上,提供 UE 與 gNB 間使用者資料封包之加密。

(b) 先決條件

- (1)gNB 網路產品應連接於模擬/實際網路環境中,可模擬 UE。
- (2) 測試者應有權限接取 NG RAN 空中介面或可於 UE 擷取訊息。

(c) 執行步驟

- (1) UE 向 SMF 發送 PDU 會談建立請求。
- (2) SMF 向 gNB 發送帶有必需或首選之 UP 加密的 UP 安全政策。
- (3) gNB 發送帶有加密保護指示"on"之 RRCConnectionReconfiguration。
- (4) 於發送 RRCConnectionReconfiguration 後, UE 進入 CM-Idle 狀態前,檢查 gNB 發送之任何使用者資料。

(d) 預期結果

gNB 發送 RRCConnectionReconfiguration 後,發送至 UE 之使用者平面封包受機密性保護。

7.3.7 UE 與 gNB 間之使用者資料重送保護

(a) 目的

- (1)依[31]之 4.2.2.1.8,並參考[33]之 5.3.3 所述。
- (2)gNB 應於 UE 與 gNB 間,提供使用者資料完整性保護及重送保護。

(b) 先決條件

- (1) gNB 網路產品應連接於模擬/實際網路環境中, 可模擬 UE。
- (2) 測試者應有權限接取 NG RAN 空中介面。
- (3) 測試者應啟用 RRC-signalling 封包之使用者平面受完整性保護。

(c) 執行步驟

- (1) 測試者應使用任何網路分析儀,透過 NG RAN 空中介面,擷取 UE 與 gNB 間發送之使用者平面資料。
- (2) 測試者應過濾於 UE 與 gNB 間所發送之使用者平面資料封包。
- (3) 測試者應重送所擷取之使用者平面封包,或使用任何封包製作工具,以建立使用者平面封包,類似所擷取的使用者平面封包,並重送至 gNB。
- (4) 測試者應透過 NG RAN 空中介面擷取,檢查 gNB 是否處理重送之使用者平面 封包,以查看是否由 gNB 接收任何相對應之回應訊息。
- (5) 若沒有由 gNB 接收對重送封包相對應之回應,則測試者應確認,gNB 已丟棄或忽略重送封包,提供重送保護。
- (6) 測試者應由結果中查證,若重送之使用者平面封包不被 gNB 接受,則 NG RAN 空中介面受重送保護。

(d) 預期結果

UE 與 gNB 間透過 NG 空中介面發送之使用者平面封包,受重送保護。

7.3.8 RRC-signalling 重送保護

(a) 目的

- (1) 依[31]之 4.2.2.1.9, 並參考[33]之 5.3.3 所述。
- (2) 查證 UE 與 gNB 間,透過 NG RAN 空中介面之 RRC-signalling 的重送保護。

(b) 先決條件

- (1) gNB 網路產品應連接於模擬/實際網路環境中。
- (2) 測試者應了解完整性演算法及相對應之保護金鑰。
- (3) 測試者應有權限接取 NG RAN 之空中介面。
- (4) 測試者應啟用使用者資料封包之使用者平面受完整性保護。

(c) 執行步驟

- (1) 測試者應使用任何網路分析儀,透過 NG RAN 空中介面,擷取 UE 與 gNB 間所發送之資料。
- (2) 測試者應過濾 RRC 信令封包。
- (3) 測試者應檢查過濾後之 RRC 信令封包的 RRC SQN,並應使用任何封包工具,以產生及所擷取的封包類似於 RRC 信令封包,或測試者應重送所擷取的 RRC 上行封包至 gNB,以透過 gNB 執行重送攻擊。
- (4) 測試者應檢查重送之 RRC 信令封包,是否被 gNB 處理,或透過 NG RAN 空

中介面擷取,查看是否自 gNB 接收任何回應訊息。

(5) 若 gNB 沒有對重送封包發送相對應之回應,則測試者應確認,gNB 已丟棄/忽略重送封包,提供重送保護。

(d) 預期結果

透過 NG RAN 空中介面之 RRC 信令受重送保護。

7.3.9 使用者資料加密依 SMF 發送之安全政策

(a) 目的

- (1) 依[31]之 4.2.2.1.10, 並參考[33]之 5.3.2 所述。
- (2) gNB 應依 SMF 發送之安全政策,啟用使用者資料加密。

(b) 先決條件

- (1) gNB 網路產品應連接於模擬/實際網路環境中,可模擬 UE 及 5GC。
- (2) 測試者應有權限接取 NG RAN 空中介面。
- (3) 測試者應了解 RRC 及 UP 加密演算法及保護金鑰。
- (4) RRC 加密於 gNB 已啟用。

(c) 執行步驟

- (1) 測試者透過發送 PDU 會談建立請求訊息,觸發 PDU 會談建立程序。
- (2) 測試者應觸發 SMF 向 gNB 發送加密保護"需要"或"不需要"之 UP 安全政策。
- (3) 測試者應透過 NG RAN 空中介面,擷取 gNB 與 UE 之 RRC 連接重組態程序,並過濾 gNB 發送至 UE 的 RRC 連接重組態訊息。
- (4) 測試者應解密 RRC 連接重組態訊息,並檢索於解密訊息中,顯示 UP 加密保護指示。
- (5)測試者應查證 gNB 收到之 UP 安全政策,是否與 gNB 於 RRC 連接重組態訊息中,通知 UE 的 UP 加密保護指示相同。
- (6) 測試者應擷取 UE 與 gNB 間發送之 RRC 連接重組態完整訊息。
- (7) 測試者應使用任何網路分析儀, 擷取於 UE 與 gNB 間所發送之使用者平面資料。
- (8) 測試者應檢查擷取之 UP 資料,是否依 UP 安全政策啟用/停用。

(d) 預期結果

- (1) 當接收到之 UP 密碼保護指示設置為"必需"時,擷取的使用者平面資料顯示為 亂碼(即不再是明文),並且依 SMF 發送的 UP 安全政策,使用者平面封 包受機密性保護。
- (2) 當接收之 UP 密碼保護指示設置為"不需要"時, 擷取的使用者平面資料顯示為 明文,且依 SMF 之 UP 安全政策,使用者平面封包未受機密性保護。

7.3.10 使用者資料完整性依 SMF 發送之安全政策

(a) 目的

(1)依[31]之 4.2.2.1.11,並參考[33]之 5.3.2 所述。

(2)gNB 應依 SMF 發送之安全政策,提供使用者資料完整性保護。

(b) 先決條件

- (1) gNB 網路產品應連接於模擬/實際網路環境中,可模擬 UE 及 5GC。
- (2) 測試者應有權限接取 NG RAN 空中介面。
- (3) 測試者應了解完整性演算法及保護金鑰。
- (4)RRC 加密於 gNB 已啟用。

(c) 執行步驟

- (1) 測試者透過發送 PDU 會談建立請求訊息,觸發 PDU 會談建立程序。
- (2) 測試者應觸發 SMF 向 gNB 發送加密保護"需要"或"不需要"之 UP 安全政策。
- (3) 測試者應透過 NG RAN 空中介面, 擷取 gNB 與 UE 之 RRC 連接重組態訊息。
- (4) 測試者應解密 RRC 連接重組態訊息,並檢索於解密訊息中,顯示 UP 完整性保護指
- (5) 測試者應檢查 UP 完整性是啟用/禁用,以查證是否於 gNB 接收之 UP 安全政策 與 gNB 於 RRC 連接重組態訊息中,通知 UE 的 UP 完整性保護指示相同。
- (6)測試者應使用任何網路分析儀, 擷取 UE 與 gNB 間所發送之使用者平面資料。
- (7)測試者應檢查是否使用者平面資料包含訊息鑑別碼。

(d) 預期結果

- (1) 當接收 UP 完整性保護設置為"必需"時,使用者平面資料封包含訊息鑑別碼,依 SMF 發送之安全政策受完整性保護。
- (2)當接收 UP 完整性保護設置為"不需要"時,使用者平面資料封包訊息鑑別碼不存在,並且未依 SMF 發送的安全策略,使用者平面資料未受完整性保護。

7.3.11 AS 演算法選擇

(a) 目的

- (1) 依[31]之 4.2.2.1.12, 並參考[33]之 6.7.3.0 及 5.11.2 所述。
- (2) 服務網路應選擇要使用之演算法,取決於 UE 的 安全能力、目前服務網路個體中,已組態設定允許之安全能力清單。

(b) 先決條件

使用 gNB 之測試環境,已預先組態設定具允許之優先順序安全演算法。

(c)執行步驟

- (1)UE 向 gNB 發送附加請求訊息。
- (2)gNB 接收 S1 全景建立請求訊息。
- (3)gNB 發送 SECURITY MODE COMMAND 訊息。
- (4)UE 回覆 AS SECURITY MODE COMPLETE 訊息。

(d) 預期結果

(1) gNB 發起 SECURITY MODE COMMAND 訊息,該訊息包括依排序清單

選擇具最高優先順序之演算法,並包含於 UE EPS 安全能力中。

(2) 查證 AS SECURITY MODE COMPLETE 訊息中之 MAC,並正確選擇及應用 AS 保護演算法。

7.3.12 gNB 金鑰更新

(a) 目的

- (1) 依[31]之 4.2.2.1.13 ,並參考[33]之 6.9.4.1 與[28]之 5.3.1.2。
- (2) 對於 KgNB、KRRC-enc、KRRC-int、KUP-int 及 KUP-enc, 金鑰更新應為可能的, 且當 PDCP COUNT 將重複使用具相同之無線電載送身分時,應由 gNB 發起,並使用相同之 KgNB。
- (3) 網路負責避免重複使用具相同 RB 身分及具相同金鑰的 COUNT,例:由於大量資料之傳送、新 RBs 的發布及建立,以及 RLC-UM 載送的多個終止點變更。為避免此種重複使用,網路可以: 對 RB 建立使用不同的 RB 身分,變更 AS 安全金鑰,或將 RRC_CONNECTED 變更為

RRC IDLE/RRC INACTIVE, 然後轉換為 RRC CONNECTED。.

(b) 先決條件

可模擬 UE、AMF 及 SMF。

(c) 執行步驟

- (1) gNB 向 UE 發送 AS Security Mode Command 訊息。
- (2) UE 以 AS Security Mode Complete 訊息回應。
- (3) 設置 DRB。
- (4) 於一個起作用之無線電連接,多次建立及中斷,而 UE 不會閒置(例:由 UE 進行多次 IMS 呼叫,或由 SMF 及 AMF 請求 PDU 會談修改及啟動),直至 DRB ID 重複使用。

(d) 預期結果

於 DRB ID 重複使用前,gNB 會使用一個新的 KgNB,例:觸發細胞內交握或觸發轉換由 RRC_CONNECTED 至 RRC_IDLE 或 RRC_INACTIVE, 然後回至 RRC_CONNECTED。

7.3.13 Xn-handovers 之降階攻擊防護

(a) 目的

- (1) 依[31]之 4.2.2.1.14, 並參考[33]之 6.7.3.1 與[34]之 D.2.2.6。
- (2) 於 Path-Switch 訊息中,標的 gNB 由來源 gNB 所接收 UE 之 5G 安全能力, 具相對應 PDU 會談 ID 之 UP 安全政策,向 AMF 發送。
- (3) 查證於 X2-handovers.交握中,防止降階攻擊。

(b) 先決條件

具來源 gNB 及目標 gNB 之測試環境,可模擬來源 gNB。

(c) 執行步驟

標的 gNB 向 AMF 發送 path-switch 訊息

(d) 預期結果

UE EPS 安全能力於 path-switch 訊息中。

附錄 A (參考) 測試設置

A.1 測試設置 1 - 使用商用 UE 之端點對端點 OTA 架構

圖 24 測試設置 1 - 使用商用 UE 之端點對端點 OTA 架構

A.2 測試設置 2 - 使用 UE 模擬器之端點對端點 OTA 架構

圖 25 測試設置 2 - 使用 UE 模擬器之端點對端點 OTA 架構

A.3 測試設置 3 - 模擬之 CU 及 CN 架構

圖 26 測試設置 3 - 模擬之 CU 及 CN 架構

A.4 測試設置 4 - 對遠端 O-RU 連接至 O1 及 E2 介面之 O-DU 架構

圖 27 測試設置 4 - 對遠端 O-RU 連接至 O1 及 E2 介面之 O-DU 架構

A.5 測試設置 5 - 對共置 O-RU 及 O-DU 架構之 O1 及 E2 介面

圖 28 測試設置 5 - 對共置 O-RU 及 O-DU 架構之 O1 及 E2 介面

附錄 B (參考) 測試簡述

B.1 測試剖繪 1 - 流通量測試

B.1.1 FTP 設定

TCP 資料傳送取決於以下參數:

- (a) TCP 窗口大小。
- (b) 串流數目 (預設:4個串流)。
- (c) TCP 最大區塊大小 (MSS)。 MSS 為 1452 位元組(1492-位元組 MTU)。

B.1.2 UDP 設定

UDP 資料傳送取決於以下參數:

- (a) 讀取或寫入之緩衝區長度。UDP預設為 1470 字元組。
- (b) UDP 頻寬(bits/sec)。預設為 1 Mbit/sec。

B.2 測試剖繪 1 - MIB 及 SSB

表 16 測試剖繪 1 - MIB 及 SSB

(10)/d [A] [B] (A] (B)						
MIB						
參數(Parameter)	可能值(Possible Values)	建議值(Recommended Values (Phase 1))				
subCarrierSpacingCommon	ENUMERATED {scs15or60, scs30or120},	1				
ssb-SubcarrierOffset	INTEGER (015),	15				
dmrs-TypeA-Position	ENUMERATED {pos2 , pos3} ,	NA				
pdcch-ConfigSIB1	INTEGER (0255),	NA				
> controlResourceSetZero	-	-				
> searchSpaceZero	-	-				
cellBarred	ENUMERATED {barred , notBarred} ,	1				
intraFreqReselection	ENUMERATED {allowed, notAllowed},	0				
	SSB Pattern (time-freq)					
ssb-PositionsInBurst	-	10000000				
ssb-periodicityServingCell	-	ms20				
absoluteFrequencySSB	-	according to				

B.3 測試剖繪 2 - SIB1

表 17 測試剖繪 2 - SIB1

			預設值
			(Default
			Values
			(Proposed))
SI-SchedulingInfo	si-WindowLength	ENUMERATED	s20
SchedulingInfo	si-Periodicity	ENUMERATED	rf16
SI-			
RequestConfig::=	ssb-perRACH-Occasion	ENUMERATED	one

B.4 測試剖繪 3 - PUCCH Support- Short PUCCH Format

表 18 測試剖繪 3 - PUCCH Support- Short PUCCH Format

PUCCH Format0				
format format	0			
initialCyclicShift	0 , 3			
nrofSymbols	1			
startingSymbolIndex	13			
PUCCH Format2				
format format	2			
nrofSymbols	1			
startingSymbolIndex	13			
Number of PRB	3			

B.5 測試剖繪 4-下行資料交付狀態報告

參考 3GPP 規範[35]中 5.5.2.2 定義之 DL DATA DELIVERY STATUS 訊框格式。所有參數均非強制性。對資料無線電承送(Radio Bearer)參數所需之緩衝區大小,需通知 CU。.

表 19 測試剖繪 4 -下行資料交付狀態報告

位元(Bits)						Octets	Number	8 位 ラ		
7	6	5	4	3	2	1	0		er of	位元數
PD	U Ty	pe (=	1)	Highest	Highest	Final Frame	Lost		1	
				Transmitted	Delivered NR	Ind.	Packet			
				NR PDCP	PDCP SN Ind		Report			
				SN Ind						
	Spare			Data rate	Retransmitted	Delivered	Cause		1	
			Ind.	NR PDCP SN	Retransmitted	Report				
				Ind	NR PDCP SN					
						Ind				

資料無線電載送所需緩衝區大小	4
所需資料速率	0 or 4
遺失 NR-U 序列號碼範圍之報告數量	0 or 1
遺失 NR-U 序列號碼範圍之開始	0 or (6* Number of reported
遺失 NR-U 序列號碼範圍之結束	lost NR-U SN ranges)
最高成功交付 NR PDCP 序列號碼	0 or 3
最高傳送 NR PDCP 序列號碼	0 or 3
原因值	0 or 1
成功交付重傳 NR PDCP 序列號碼	0 or 3
重傳 NR PDCP 序列號碼	0 or 3
填充值	0-3

B.6 測試剖繪 5 - RACH 組態

表 20 測試剖繪 5 - RACH 組態

RACH IEs (3GPP)	RACH IEs (Config file)	RACHConfig 1 (Format 0)	RACHConfig (Format C2)	RACHConfig2 (Format B4)
RACH-ConfigDedicated				
RACH-ConfigCommon				
rach-ConfigGeneric				
> prach- ConfigurationIndex	PrachConfigInde x	1		
> msg1-FDM	PrachMsg1Fdm	1		
> msg1-FrequencyStart	PrachMsg1FreqS tartRb	0		
> zeroCorrelationZoneConfig	ZeroCorrelation ZoneConfig	Default		
> preambleReceivedTargetPo wer	preambleReceive dTargetPower	Default		
> preambleTransMax	preambleTransM ax	Default		
> powerRampingStep	powerRampingSt ep	Default		
> ra-ResponseWindow	RaResponseWin dow	sl4		
totalNumberOfRA- Preambles	TotalRaPreamble s	63		
ssb-perRACH-	SsbPerRachOcc	3		
OccasionAndCB- PreamblesPerSSB	TotalCbPreambl esPerSsb	44		
msg1-SubcarrierSpacing	PrachScs	30kHz		
restrictedSetConfig	PrachRestrictSet	unrestrictedSet		

B.7 測試剖繪 6-流通量組態

表 21 測試剖繪 6 -流通量組態

TDD-UL-DL-ConfigCommon				
referenceSubcarrierS ₁	pacing SubcarrierSpacing,	30 kHz		
pattern1	TDD-UL-DL-Pattern,	-		
TDD-U	TDD-UL-DL-Pattern ::=			
dl-UL-TransmissionPeriodicity				
nrofDownlinkSlots	INTEGER (0maxNrofSlots),	3		
nrofDownlinkSymbols	INTEGER (0maxNrofSymbols-1),	10		
nrofUplinkSlots	INTEGER (0maxNrofSlots),	1		
nrofUplinkSymbols	INTEGER (0maxNrofSymbols-1),	2		

時槽組態 (Time slot configuration): DDDSU

頻寬:100 MHz

下行	建議	上行	組態
U	1	U	1
Max RBs	275	Max RBs	275
Number of layers	2	Number of layers	2
Code rate for DL (MCS 28)	5.5547	Code rate for UL (MCS 28)	5.5547
Number of Subcarriers	12	Number of Subcarriers	12
Slot config per sec	400	Slot config per sec	400
Lmax	2	Lmax	2
PDCCH aggregation level	4	PUCCH	1
Number of Res per CCEs	72	Number of Res per CCEs	72
SSB (Res)	48	-	-
DMRS (1 sym)	3300	DMRS (3Sym)	9900
PDCCH Res	1152	PUCCH Res	6600
Over head Res	4500	Over head Res	16500
Number of Total REs	68640	Number of total Res	42240
Available RBs for DL data	64140	Available RBs for UL data	25740
transfer	07170	transfer	23/40
DL Throughput	712.556916	UL Throughput	285.956

參考資料

- [1] O-RAN Open Fronthaul Conformance Test Specification 4.00
- [2] O-RAN.WG1.O-RAN-Architecture-Description-v06.00
- [3] O-RAN Working Group 2; A1 interface: General Aspects and Principles
- [4] O-RAN WG1 Operations and Maintenance Architecture
- [5] Cloud Architecture and Deployment Scenarios for O-RAN Virtualized RAN
- [6] O-RAN Working Group 3; Near-Real-time RAN Intelligent Controller Architecture & E2 General Aspects and Principles
- [7] O-RAN Fronthaul Working Group; Control, User and Synchronization Plane Specification
- [8] O-RAN Alliance Working Group 4; Management Plane Specification
- [9] 3GPP TS 38.401: NG-RAN; Architecture description
- [10] 3GPP TS 38.460: NG-RAN; E1 general aspects and principles
- [11] 3GPP TS 38.470: NG-RAN; F1 general aspects and principles
- [12] 3GPP TS 38.300: NR; NR and NG-RAN Overall Description; Stage 2
- [13] 3GPP TS 36.420: Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 general aspects and principles
- [14] 3GPP TS 38.420: NG-RAN; Xn general aspects and principles
- [15] 3GPP TS 36.141: Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing
- [16] 3GPP TS 38.141-1: NR-FR1-TM1.1 [NR FR1] NR; Base Station (BS) conformance testing Part 1: Conducted conformance testing
- [17] 3GPP TS 38.141-2: NR-FR2-TM1.1 [NR FR2] NR; Base Station (BS) conformance testing Part 2: Radiated conformance testing
- [18] O-RAN WG4 Management Plane Specification version 06.00
- [19] TS 138.104
- [20] O-RAN WG4 Control, User and Synchronization Specification version 06.00
- [21] O-RAN.WG8.IOT
- [22] 3GPP TS 38.472: NG-RAN; F1 signalling transport, (Release 15.7.0)
- [23] 3GPP TS 38.473: NG-RAN; F1 Application Protocol (F1AP), (Release 15.13.0)
- [24] 3GPP TS 38.474: NG-RAN; F1 data transport, (Release 15.3.0)
- [25] O-RAN.WG8.AAD.0-v02.00: Base Station O-DU and O-CU Software Architecture and APIs
- [26] O-RAN.WG5.C.1-v03.00: NR C-plane profile
- [27] 3GPP TS 38.413: NG-RAN; NG Application Protocol (NGAP), (Release 15.11.0)
- [28] 3GPP TS 38.331: Radio Resource Control (RRC) protocol specification, (Release 15.13.0)
- [29] 3GPP TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3, (Release 16.8.0)
- [30] O-RAN End-to-End Test Specification 2.0
- [31] 3GPP TS 33.511: Security Assurance Specification (SCAS) for the next generation Node B (gNodeB) network product class
- [32] O-RAN ALLIANCE, O-RAN End-to-End System Testing Framework
- [33] 3GPP TS 33.501: Security architecture and procedures for 5G System
- [34] 3GPP TR 33.926: Security Assurance Specification (SCAS) threats and critical assets in 3GPP network product classes

[35] TS 38.425: NR user plane protocol,(Release 15.7.0)