Ré pu bli que Islami que de Mau ritanie Ministère d'Etat à l'Education Nationale, à l'Enseignement Su périeur et à la Recherche Scientifique Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2012

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Session Complémentaire رمضان 1433 هـ

Exercice 1 (4 points)

Le plan complexe est muni d'un repère orthonormé $(\mathbf{O}; \mathbf{u}, \mathbf{v})$.

- 1. Pour tout nombre complexe z, on pose : $P(z) = z^3 (4 2i)z^2$ (4 6i)z = 4 8i
 - a) Calculer P(-2i) et déterminer les nombres a et b tels que pour tout z de $\mathbb C$:

$$P(z) = (z+2i)(z^2+az+b)$$

(0,75 pt)(0,75 pt)

- b) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0.
- 2. Soient A, B et C les images des solutions de l'équation P(z) = 0 avec $|z_A| < |z_B| < |z_C|$.
 - a) Placer les points A, B et C.

(0,5 pt)

- b) Calculer l'affixe du point G barycentre du système $\{(O;3),(A;-4),(B;1),(C;2)\}$. Vérifier que Aest le barycentre du système $\{(O;5),(B;-5),(G;2)\}$.
- (0,5 pt)
- c) Déterminer et représenter l'ensemble Γ des points M d'affixe z telle que le nombre $\frac{z-1-i}{z+2i}$ soit imaginaire pur.
 - (0,5 pt)
- 3. Pour tout point M du plan on pose : $\varphi(M) = 3MO^2 4MA^2 + MB^2 + 2MC^2$ et on note Γ_k l'ensemble des points M tels que $\varphi(M) = k$, où k est un réel.
 - a) Discuter suivant les valeurs de k, la nature de Γ_k . (0,5 pt)
 - b) Déterminer et construire Γ_{16} .

(0,5 pt)

Exercice 2 (4 points)

Soit **f** la fonction numérique définie sur $]0;1[\,\cup\,]1;+\infty[$ par: $\mathbf{f}(\mathbf{x})=\frac{1}{\mathbf{x}\cdot\mathbf{h}\cdot\mathbf{x}}$. On désigne par

(C) sa courbe représentative dans un repère orthonormé (O;i,j).

- 1. a) Calculer et interpréter graphiquement : $\lim_{x\to 0^+} f(x)$, $\lim_{x\to 1^-} f(x)$, $\lim_{x\to 1^+} f(x)$, $\lim_{x\to +\infty} f(x)$. (1 pt)
 - b) Dresser le tableau de variation de **f**. (1 pt)
- c) Construire la courbe (C).

(0,5 pt)

2. Pour tout entier nature $n \ge 2$, on pose :

$$U_{n} = \sum_{k=2}^{n} \frac{1}{k \ln k} - \ln(\ln n) = \frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + ... + \frac{1}{n \ln n} - \ln(\ln n).$$

- a) Montrer que tout entier nature $n \ge 2$, $\frac{1}{(n+1)\ln(n+1)} \le \int_{n}^{n+1} f(t)dt \le \frac{1}{n \ln n}$ (0,5 pt)
- b) Montrer que pour tout entier naturel $n \ge 2$, $U_{n+1} U_n = \frac{1}{(n+1)\ln(n+1)} \int_n^{n+1} f(t)dt$. En (0,5 pt)déduire le sens de variation de (U_n).
- c) Montrer que tout entier naturel $n \ge 2$, $U_{n+1} U_n \ge f(n+1) f(n)$. En déduire que (0,25 pt) $U_n \ge -\ln(\ln 2)$.
- d) Déduire de ce qui précède que la suite $(\mathbf{U_n})$ est convergente vers une limite ℓ telle que $-\ln(\ln 2) \le \ell \le \frac{1}{2\ln 2} - \ln(\ln 2).$ (0,25 pt)

Exercice 3 (6 points)

Soit \mathbf{f} la fonction numérique définie sur \mathbb{R} par: $\mathbf{f}(\mathbf{x}) = \frac{2\mathbf{x}^3 - 3\mathbf{x}^2 + 1}{\mathbf{c}^{\mathbf{x}}}$

On désigne par (C) sa courbe représentative dans un repère orthonormé (O;i,j).

1. a) Calculer $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$, $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement.

- (1 pt)
- b) Montrer que la courbe (C) de f admet trois tangentes horizontales dont l'une est au point d'abscisse 1.
- (1 pt)

2.a) Dresser le tableau de variation de **f**.

(0,5 pt)

b) Construire la courbe (C).

(0,5 pt)

3. Pour tout entier nature \mathbf{n} , on pose : $\mathbf{I}_{\mathbf{n}} = \int_{0}^{1} \mathbf{x}^{\mathbf{n}} \mathbf{e}^{-\mathbf{x}} d\mathbf{x}$.

(0,5 pt)

a) Montrer que l'écriture précédente définit bien une suite numérique (\mathbf{I}_n) .

b) Montrer que la suite (I_n) est positive et décroissante. Que peut-on en conclure ?

(0,5 pt)(0,5 pt)

4.a) Calculer I_0 .

- (0,5 pt)
- b) Montrer, en utilisant une intégration par parties, que pour tout \mathbf{n} : $\mathbf{I}_{n+1} = \frac{-1}{2} + (\mathbf{n} + 1)\mathbf{I}_n$.

c) Donner un encadrement du nombre $\, I_n \,$ qui permet de calculer $\, \lim_{n \to \infty} \, I_n \,$. Calculer cette limite.

- (0,5 pt)
- c) Calculer l'aire sous la courbe (C) délimitée par l'axe des abscisses et les droites d'équations respectives x = 0 et x = 1.
- (0,5 pt)

Exercice 4 (6 points)

Dans le plan orienté on considère un carré direct **ABCD** de coté a, (a > 0).

Soient E et F les symétriques respectifs des points C et B par rapport à (AD). Soit G le point tel que le triangle **DBG** soit équilatéral direct. Soient **I** et **J** les milieux respectifs des segments [**DB**] et [**DF**].

- (1 pt)
- 1.a) Faire une figure illustrant les données précédentes que l'on complétera au fur et à mesure. b) Montrer qu'il existe une unique rotation r₁ qui transforme **D**en **G**et **F**en **B**. Préciser l'angle

et le centre de \mathbf{r}_1 .

 Ω sur la figure.

- (1 pt)
- c) Soit la rotation $\mathbf{r_2}$ qui transforme \mathbf{G} en \mathbf{E} et \mathbf{B} en \mathbf{A} . Préciser l'angle et le centre de $\mathbf{r_2}$.
- (0,5 pt)

d) On pose $\mathbf{r} = \mathbf{r}_2 \circ \mathbf{r}_1$. Déterminer $\mathbf{r}(\mathbf{D})$ et $\mathbf{r}(\mathbf{F})$. Caractériser \mathbf{r} .

- (0,75 pt)
- 2. On considère l'homothétie **h** de centre **B** et de rapport $\mathbf{k} = \frac{1}{2}$. On note $\mathbf{s} = \mathbf{h} \circ \mathbf{r}$.
- (0,75 pt)

a) Montrer que s est une similitude directe. Préciser le rapport et un angle de s.

- (0,75 pt)
- b) Soit Ω le centre de s. Montrer que Ω appartient à deux cercles Γ_1 et Γ_2 que l'on déterminera. c) Déterminer deux réels α et β tels que Ω soit le barycentre du système $\{(E,\alpha);(I,\beta)\}$. Placer
- (0,25 pt)
- 3. On considère l'ensemble Γ des points M du plan tels que MA + ME = 2a où a est la longueur du coté du carré ABCD.

a) Montrer que Γ est une ellipse passant par D.

(0.5 pt)(0,25 pt)

b) Préciser les sommets, les longueurs des axes de Γ et calculer son excentricité ${\bf e}$.

c) Déterminer $\Gamma' = \mathbf{s}(\Gamma)$ puis construire Γ et Γ' .

(0,25 pt)

Fin.