

EXTRACT BY MASK

TRATAMENTO SHP NDVI

1-

A PRIMEIRA ETÁPA APÓS A LIMPEZA E O MAPEAMENTO DAS ERVAS É A CRIAÇÃO DE 4 NOVAS COLUNAS:

- **OBS_IMG** = Nomenclatura da IMG: type(STRING)
- DATA_IMG = Data da IMG: type(DATE)
- IDADE_IMG = Idade da imagem em relação ao plantio ou ao último corte: type(INT)
- **CLASSE**= Nome da IMG + Características de idade: *type(STRING)*

IDADE_IMG =

Se NMRO_CORTE == 1, será utilizada a data do plantio para o cálculo: (DATA_IMG - DT_PLANTIO) / 30

Se **NMRO_CORTE** > 1, será utilizada a data do Último corte para o cálculo: (**DATA_IMG** - **DT_ULT_COR**) / 30

*É melhor utilizar o NMRO_CORTE do que o DESC_CANA pois pode ocorrer a presença de Bisadas

CLASSE =

Se **DESC_CANA** == "CANA PLANTA", então, CLASSE = **OBS_IMG**+"_CP"

Se **DESC_CANA** == "BISADA", então, CLASSE = **OBS_IMG**+"_BIS"

Se **DESC_CANA** == "SOQUEIRA", e **IDADE_IMG** > média, **EX:MÉDIA 10** então, **CLASSE** = **OBS_IMG**+"_SOQ_MA10"

Se **DESC_CANA** == "SOQUEIRA", e **IDADE_IMG** <= média, **EX:MÉDIA 10** então, **CLASSE** = **OBS_IMG**+"_SOQ_MEI10"

SHAPE IDADE

2-

Para a segunda etapa foi preciso separar classes de polígonos a partir da coluna **CLASSE**, ou seja, em um exemplo onde existem CLASSES de Soqueira com média maior e menor que 10 e canas de primeiro corte (Cana Planta), serão criados três arquivos shapefile puxando o nome que esta armazenado na coluna **CLASSE**.

1 KB 2.254 KB 1 KB 5 KB 1 KB
1 KB 5 KB
5 KB
1 KB
1.116 KB
19 KB
4 KB
1 KB
2.379 KB
1 KB
6 KB
1 KB
860 KB
19 KB
5 KB
1 KB
9.171 KB
1 KB
19 KB
1 KB
3.651 KB
0 KB
19 KB
16 KB

Esses arquivos serão armazenados na pasta IDADE, respeitando a hierarquia de pastas:

 $X: \label{thm:local_conditions} X: \label{thm:local_conditio$

BUFFER

3-

Após a extração dos polígonos IDADES, realizou-se um buffer de 50m em cada poligono. Foi necessário realizar um dissolve por ele mesmo, gerando valor para apenas um poligono.

Os shapes ganham a nomenclatura BUF_ antes do nome; **BUF_RGB_S2A_20240617**...

Esses arquivos serão armazenados na pasta IDADE, respeitando a hierarquia de pastas

EXTRACT BY MASK

4-

A quarta etapa será o recorte da imagem NDVI.

Utilizou-se o shape BUFFER (criado anteriormente) como máscara para a IMAGEM NDVI, gerando arquivos Rasters.

Os rasters ganham a nomenclatura EXT_ antes do nome adquirido na CLASSE, **EXT_RGB_S2A_20240617...**

EXT_RGB_S2A_20240617T132241_4328_SOQ_MEI10

Após o Recorte, será preciso remover a mascara de fundo (fundo preto)

Esses arquivos serão armazenados na pasta EXTRACT, respeitando a hierarquia de pastas:

RESAMPLE

5-

A função RESAMPLE tem o objetivo de suavizar o Raster.

O EXTRACT realizado no passo 4 utiliza o NDVI composto por bandas do satélite Sentinel 2, ou seja, possui Pixels no valor de 10mX10m. O objetivo do RESAMPLE é quebrar esses pixels para 2,5mX2,5m, no intuito de suavizar a imagem.

Os rasters ganham a nomenclatura RES_ antes do nome adquirido na CLASSE, RES_RGB_S2A_20240617...

Esses arquivos serão armazenados na pasta RES, respeitando a hierarquia de pastas: