Exploratory code search and snippet suggestion

Article review

Slavnov Konstantin konstantin@sourced.tech July 13, 2017

Introduction

What is the **fastest** way to learn a new library?

New framework investigation ways:

- · Documentation reading;
- · Ask stackoverflow;
- Just start to use it;
- Search code examples;
- · etc

Introduction

What is the **fastest** way to learn a new library?

New framework investigation ways:

- · Documentation reading;
- · Ask stackoverflow:
- Just start to use it;
- · Search code examples;
- · etc

Insights from Searching and Skimming: An Exploratory Study [5].

Ways to solve

Let's build a machine learning assistant!

Approaches:

- · Topic modeling
- · Hierarchical clustering
- · Deep learning way
- · Probabilistic way

Ways to solve

Let's build a machine learning assistant!

Approaches:

- Topic modeling
- · Hierarchical clustering
- · Deep learning way
- · Probabilistic way

Topic modeling

Scheme

- · Get a codebase of library usage
- · Build a hierarchical topic modeling for codebase
- · Show it for user API query
- . ???
- · PROFIT!

Flat topic model. Reminder

- Documents $d \in D$
- Tokens (words) $w \in W$
- Topics $t \in T$
- · Document-token counters n_{dw}

Flat topic model:

$$P_{wd} = \frac{n_{dw}}{\sum_{w' \in W} n_{dw'}} = p(w \mid d) \approx \sum_{t \in T} p(w \mid t) p(t \mid d) = \sum_{t \mid n} \phi_{wt} \theta_{td} = \{\Phi\Theta\}_{wd}$$

or just

$$P \approx \Phi \Theta$$

Flat topic model. Reminder

- Documents $d \in D$
- Tokens (words) $w \in W$
- Topics $t \in T$
- · Document-token counters n_{dw}

Flat topic model:

$$P_{wd} = \frac{n_{dw}}{\sum_{w' \in W} n_{dw'}} = p(w \mid d) \approx \sum_{t \in T} p(w \mid t) p(t \mid d) = \sum_{tin} \phi_{wt} \theta_{td} = \{\Phi\Theta\}_{wd}$$

or just

$$P \approx \Phi \Theta$$

Applying MLE:

$$L(\Psi,\Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_t \psi_{wt} \theta_{td} \longrightarrow \max_{\Psi,\Theta \text{ - stochastic}}$$

EM-algorithm is used for training.

Flat topic model.

BigARTM is good tool for it.

What we can do:

· Add regularisers:

$$L(\Psi,\Theta) + R(\Psi,\Theta) \longrightarrow \max$$

• Add modalities $m \in M$.

$$W = \bigsqcup_{m \in M} W_m$$
 and $\Phi = [\Phi_1 | \cdots | \Phi_n]$

Flat topic model.

BigARTM is good tool for it.

What we can do:

· Add regularisers:

$$L(\Psi,\Theta) + R(\Psi,\Theta) \longrightarrow \mathsf{max}$$

• Add modalities $m \in M$.

$$W = \bigsqcup_{m \in M} W_m$$
 and $\Phi = [\Phi_1 | \cdots | \Phi_n]$

Let's build topic hierarchies.

- · Each level is a topic model.
- Next level is learned with specific regulariser to find parent topics from previous level.

Check out [6, 7]. source{d}

- Learned parent level: topics $\alpha \in A$ with $\Phi' \in \mathbb{R}^{|W| \times |A|}$ and $\Theta' \in \mathbb{R}^{|A| \times |D|}$.
- · To learn:

New level with topics $t \in T$ and $\Phi \in \mathbb{R}^{|W| \times |T|}$ and $\Theta \in \mathbb{R}^{|T| \times |D|}$. Parent-child relations $\Psi_{t\alpha}$ – t is a child of α .

- Learned parent level: topics $\alpha \in A$ with $\Phi' \in \mathbb{R}^{|W| \times |A|}$ and $\Theta' \in \mathbb{R}^{|A| \times |D|}$.
- · To learn:

New level with topics $t \in T$ and $\Phi \in \mathbb{R}^{|W| \times |T|}$ and $\Theta \in \mathbb{R}^{|T| \times |D|}$. Parent-child relations $\Psi_{t\alpha}$ – t is a child of α .

· Assumption: parent topic is a mixture of children's:

$$p(w \mid a) \approx \sum_{t \in T} p(w \mid t) p(t \mid a)$$
 or just $\Phi' \approx \Phi \Psi$

- Learned parent level: topics $\alpha \in A$ with $\Phi' \in \mathbb{R}^{|W| \times |A|}$ and $\Theta' \in \mathbb{R}^{|A| \times |D|}$.
- · To learn:

New level with topics $t \in T$ and $\Phi \in \mathbb{R}^{|W| \times |T|}$ and $\Theta \in \mathbb{R}^{|T| \times |D|}$. Parent-child relations $\Psi_{ta} - t$ is a child of a.

· Assumption: parent topic is a mixture of children's:

$$p(w \mid a) \approx \sum_{t \in \mathcal{I}} p(w \mid t) p(t \mid a)$$
 or just $\Phi' \approx \Phi \Psi$

• We can just add |A| pseudo documents with n_{wa} counters

- Learned parent level: topics $\alpha \in A$ with $\Phi' \in \mathbb{R}^{|W| \times |A|}$ and $\Theta' \in \mathbb{R}^{|A| \times |D|}$.
- · To learn:

New level with topics $t \in T$ and $\Phi \in \mathbb{R}^{|W| \times |T|}$ and $\Theta \in \mathbb{R}^{|T| \times |D|}$. Parent-child relations $\Psi_{ta} - t$ is a child of α .

· Assumption: parent topic is a mixture of children's:

$$p(w \mid a) \approx \sum_{t \in \mathcal{I}} p(w \mid t) p(t \mid a)$$
 or just $\Phi' \approx \Phi \Psi$

- We can just add |A| pseudo documents with n_{wa} counters
- The same point with Θ regularisation. $\Theta^l \approx \tilde{\Psi}\Theta$ It is like add new modality with tokens corresponding to $\alpha \in A$.

Hierarchy sparsing

The goal: Topics should have small number of parents.

 $p(a \mid t)$ should be sparse.

Similar to LDA regulariser:

$$R(\Psi) = \frac{1}{|A|} \sum_{\alpha} \sum_{t} \ln p(\alpha \mid t) = \frac{1}{|A|} \sum_{\alpha} \sum_{t} \ln \frac{\psi_{t\alpha} \ p(\alpha)}{\sum_{\alpha'} \psi_{t\alpha'} \ p(\alpha')}$$

To apply we need just to update M-step of EM-algorithm.

The same approach for Θ regularisation.

Hierarchical clustering approach

Scheme

- · Get a codebase of library usage
- Somehow get a document representations in \mathbb{R}^d
- · Build a hierarchical clusterization
- · Show it for user API query
- . ???
- PROFIT!

Hierarchical clustering approach

Scheme

- · Get a codebase of library usage
- Somehow get a document representations in \mathbb{R}^d
- · Build a hierarchical clusterization
- · Show it for user API query
- . ???
- PROFIT!

NADE - Neural Autoregressive Distribution Estimator [4].

Based on fact that
$$p(v) = \prod_{d=1}^{D} p(v_d \mid v_{< d})$$

We need to parametrise $p(v_d \mid v_{< d})$.

NADE - Neural Autoregressive Distribution Estimator [4].

Based on fact that
$$p(v) = \prod_{d=1}^{D} p(v_d \mid v_{< d})$$

We need to **parametrise** $p(v_d \mid v_{< d})$.

$$p(v_d \mid v_{< d}) = \operatorname{sigm}(b_d + V_{d,:}h_d)$$

$$h_d = \mathrm{sigm}(c + W_{:, < d} v_{< d}).$$

W, V, b, c - learnable parameters by LME.

NADE – Neural Autoregressive Distribution Estimator [4].

Based on fact that
$$p(v) = \prod_{d=1}^{D} p(v_d \mid v_{< d})$$

We need to **parametrise** $p(v_d \mid v_{< d})$.

$$p(v_d \mid v_{< d}) = \operatorname{sigm}(b_d + V_{d,:}h_d)$$
$$h_d = \operatorname{sigm}(c + W_{:,< d}v_{< d}).$$

W, V, b, c - learnable parameters by LME. Softmax is used for vectors modeling:

$$p(v_d \mid v) = \frac{\exp(b_{w_b} + V_{w_d,:}h_d)}{\sum_{w} \exp(b_w + V_{w,:}h_d)}$$

NADE – Neural Autoregressive Distribution Estimator [4].

Based on fact that
$$p(v) = \prod_{d=1}^{D} p(v_d \mid v_{< d})$$

We need to **parametrise** $p(v_d \mid v_{< d})$.

$$p(v_d \mid v_{< d}) = \operatorname{sigm}(b_d + V_{d,:}h_d)$$
$$h_d = \operatorname{sigm}(c + W_{: < d}v_{< d}).$$

W, V, b, c - learnable parameters by LME. Softmax is used for vectors modeling:

$$p(v_d \mid v) = \frac{\exp(b_{w_b} + V_{w_d,:}h_d)}{\sum_w \exp(b_w + V_{w,:}h_d)}$$

Trains on random permutations of the words in a document.

Document representation is h_T at the final timestep T.

Deep learning way

- · Aim: Generate API sequences for a natural language query [3].
- · Method: RNN encoder-decoder model for API learning.
- · Data: annotated code snippets collected from GitHub.

Deep learning way

Details:

- Run on sequences of API methods only.
- RNN is GRU, Encoder is bidirectional with attention, 1000 hidden units, 120 dimension of word embeddings.
- Beam Search for generation several API sequences to choose

Deep learning way

Details:

- Run on sequences of API methods only.
- RNN is GRU, Encoder is bidirectional with attention, 1000 hidden units, 120 dimension of word embeddings.
- Beam Search for generation several API sequences to choose
- · IDF-based weights for API as a penalty term in loss:

$$loss_{it} = -\log p_{\theta}(y_{it} \mid x_i) - \lambda \log(\frac{N}{n_t})$$

where

i is *i*-th train instance.

t is t-th target word in instance i,

N is the total number of API sequences,

 n_t is the number of sequences where the API t appears.

Task: get meaningful API patterns \mathcal{I} [1, 2].

Idea: Use API patterns \mathcal{I} to define a code probability in database X.

Pattern is interesting code subsequence.

Task: get meaningful API patterns \mathcal{I} [1, 2].

Idea: Use API patterns \mathcal{I} to define a code probability in database X.

Pattern is interesting code subsequence.

Simplified model:

$$p(X, z \mid \mathcal{I}) \sim \prod_{i \in \mathcal{I} \cap X} p_i^{z_i} (1 - p_i)^{1 - z_i}$$

X – code database,

 \mathcal{I} - set of API patterns,

 p_i - API pattern $i \in \mathcal{I}$ probability,

 z_i - indicator of including pattern into code (hidden).

Task: get meaningful API patterns \mathcal{I} [1, 2].

Idea: Use API patterns \mathcal{I} to define a code probability in database X.

Pattern is interesting code **subsequence**.

Simplified model:

$$p(X, z \mid \mathcal{I}) \sim \prod_{i \in \mathcal{I} \cap X} p_i^{z_i} (1 - p_i)^{1 - z_i}$$

X - code database, \mathcal{I} - set of API patterns, p_i - API pattern $i \in \mathcal{I}$ probability, z_i - indicator of including pattern into code (hidden).

Example:

Solver: EM-algorithm.

Iterate:

- 1. Structural-EM (\mathcal{I} update)
 - 1.1 Somehow generate candidate S'
 - 1.2 See if quality increases
- 2. Hard-EM (z and p update)
 - 2.1 Find patterns from \mathcal{I} that was used to sample X with greedy search.

$$z = \arg\max_{z} \log p(z \mid p, \mathcal{I}; X)$$

2.2 Update p_i by averaging z.

Example:

References. Links

- Hierarchical Multimodal Topic Modeling presentation. N. A. Chirkova and K. V. Vorontsov
- 2. BigARTM for Topic Modeling
- 3. Post about DocNADE with implementation
- 4. Probabilistic API Mining code

References. Articles i

[1] J. Fowkes and C. Sutton.

Parameter-free probabilistic api mining across github.

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 254–265. ACM, 2016.

[2] J. Fowkes and C. Sutton.

A subsequence interleaving model for sequential pattern mining. arXiv preprint arXiv:1602.05012, 2016.

[3] X. Gu, H. Zhang, D. Zhang, and S. Kim.

Deep api learning.

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 631-642. ACM, 2016.

[4] H. Larochelle and I. Murray.

The neural autoregressive distribution estimator.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 29-37, 2011.

References. Articles ii

[5] J. Starke, C. Luce, and J. Sillito.

Searching and skimming: An exploratory study.

In Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages 157-166. IEEE, 2009.

[6] K. Vorontsov.

Additive regularization for topic models of text collections.

In Doklady Mathematics, volume 89, pages 301-304. Springer, 2014.

[7] K. Vorontsov and A. Potapenko.

Tutorial on probabilistic topic modeling: Additive regularization for stochastic matrix factorization.

In International Conference on Analysis of Images, Social Networks and Texts_x000D_, pages 29-46. Springer, 2014.