

TEKNOFEST 2020 ROKET YARIŞMASI

YTÜ SİTARE

Atışa Hazırlık Raporu (AHR)

Takım Yapısı

İbrahim ASAR (DANIŞMAN)

Yıldız Teknik Üniversitesi Makine Mühendisliği

Mustafa Asım KURAL (TAKIM LİDERİ)

Yıldız Teknik Üniversitesi Makine Mühendisliği Öğr.Gör. Seyhan ÖZEN (AKADEMİK DANIŞMAN)

Yıldız Teknik Üniversitesi

Aviyonik

Gökşen Ali TORBACIOĞLU

Yıldız Teknik Üniversitesi Elektronik ve Haberleşme Mühendisliği Aviyonik Sorumlusu

Veysel KANTARCILAR

Yıldız Teknik Üniversitesi Makine Mühendisliği Aviyonik Görevlisi

Analiz-Yapısal

Hüseyin TEKİRDAĞ

Yıldız Teknik Üniversitesi Makine Mühendisliği YARDIMCI LİDER Mekanik ve Akış Analizi Sorumlusu

Hüseyin Barış OYMAK

Yıldız Teknik Üniversitesi Makine Mühendisliği Mekanik ve Akış Analizi Görevlisi ve Sponsorluk İşleri Sorumlusu

Safet Rasım HASHİM

Yıldız Teknik Üniversitesi Makine Mühendisliği Mekanik ve Akış Analizi Görevlisi

Kurtarma

Anesa RİZVAN

Yıldız Teknik Üniversitesi Makine Mühendisliği YARDIMCI LİDER Kurtarma Sistemi Sorumlusu

Zeynep YEŞİLDAĞ

Yıldız Teknik Üniversitesi Makine Mühendisliği Kurtarma Sistemi Görevlisi ve Test Sorumlusu

İmalat

Yusuf GÜNDOĞDU

Yıldız Teknik Üniversitesi Makine Mühendisliği İmalat Sorumlusu

Kerem TUĞRAL

Yıldız Teknik Üniversitesi Makine Mühendisliği İmalat Görevlisi

KTR'den Değişimler

Motor Bloğu, KTR'de 10 mm kalınlıkta çelik malzeme olarak öngörülmüştür fakat roket paraşüt kütlelerinin beklenenden hafif olması neticesinde roket kütlesinin dengelenmesi için motor bloğu 10 mm kalınlıkta 2 adet bloğun cıvata ile montajlanması ile 20 mm kalınlıkta hazırlanmıştır.

Karabarut Haznesi, KTR'de montaj alanı karesel bir şekle sahip iken montaj ve imalat avantajları göz önüne alınarak silindirik formda imal edilmiştir.

Kanatçık destek elemanları M2150 motor tasarımı açısından Alüminyum malzemeden 8 mm kalınlıkta öngörülmüştür fakat paraşüt kütlelerinin beklentiden az kütlede olması sonucunda 3 adet destekten 1 tanesi 10 mm kalınlıktaki çelik destek ile değiştirilerek imal edilmiştir.

Faydalı yük, KTR'de 3 adet levhanın birleşimi olarak modellenmiş olup imalat avantajı sebebiyle 5 adet levhanın lazer kesim ile elde edilip kaynaklanması ile birleştirilmiştir. Faydalı yük üzerinde 1 adet olan şok kord geçiş kanalı simetrik olarak 4 adete çıkartılmıştır.

OpenRocket / Roket Tasarımı Genel Görünüm

OpenRocket / Roket Tasarımı Genel Görünüm

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun – Detay

Burun konisinin imalatı için çıkarılan alüminyum model üzerinden camfiber kalıp yapılmıştır. Ardından camfiber kalıp üzerinden karbonfiber burun konimiz hazırlanmıştır.

Kompozit üretimi için el yatırma yöntemi kullanılmıştır.

Burun konisinin içine epoksi eklenerek mapa için M8 cıvata gömülmüştür.

Burun konisi imalatımız %100 tamamlanmıştır.

Faydalı Yük ve Faydalı Yük Bölümü – Detay

- Faydalı yükümüzün malzemesi çelik olup lazer kesimde kesilerek kaynakla birleştirilmiştir. Gövdeye ve iplere hasar vermemesi için taşlanmıştır.
- Faydalı yükün formu üzerine uçuş bilgisayarı yerleştirilebilecek şekilde tasarlanmıştır.
- Faydalı yükün dengede kalması ve motor bloğu ile mesafe oluşturması için iki adet tahta sütun kullanılmıştır. Tahta sütunlar motor bloğu üzerine sabitlenmiştir.
- Faydalı yük imalatımızın %100'ü tamamlanmıştır.

Kurtarma Sistemi Mekanik Görünüm

Ayrılma Sistemi – Detay

- Ayrılma sistemini oluşturan parçalar karabarut haznesi, karabarut desteği ve elektronik desteğidir. Elektronik desteği ve karabarut desteği gövdeye montajlanır ve karabarut haznesinin merkezlemesini sağlar. Uygun toleranslarda açılan deliklere karabarut haznesi geçirilir ve haznenin rijitliğini sağlamak için pim veya cıvata geçirilir.
- Parça malzemeleri alüminyum olarak belirlenmiştir. Destekler lazer kesim ile kesildikten sonra köşeleri taşlanmış ve gereken yerlere diş açılmıştır.
- Karabarut haznesi, karabarut hacmi hesaplanarak derinliği belirlenmiştir ve tornada işlenmiştir. Haznenin arka tarafına ematchin geçebileceği büyüklükte matkapla delik açılmıştır. İçine karabarut yerleştirildikten sonra elektrik bandıyla kapatılır ve montaja hazır hale getirilir.
- Ayrılma sistemimizin imalatı %100 tamamlanmıştır, karabarut ve e-match'ler temin edilmiştir ve test edilmiştir.

Paraşütler – Detay

- Paraşüt kumaşımız ripstop naylondur. Sürüklenme paraşütü mor-beyaz, faydalı yük paraşütü mor-beyaz-kırmızı, ana paraşüt ise kırmızı-beyaz renktedir.
- Uygun ölçüde paraşüt diliminin kalıbı çıkarılan ve kesilen paraşüt kumaşları bağlantı yerlerinden ince bir şeritle beraber zikzak şeklinde dikilmiştir. Dikimi bittikten sonra ise uygun ölçülerde kesilmiş paraşüt ipleri yerlerine kazık bağı ile düğümlenmiştir.
 Diğer tarafından fırdöndüye bağlanan ipler bu şekilde bir araya getirilir ve karışması önlenir. Fırdöndünün diğer ucuna şok kordonu bağlanır. Şok kordonu ise karabinaya bağlanır ve mapayla bağlantısı böylece tamamlanmış olur.
- Yaptığımız deneyler sonucunda paraşüt iplerimiz ana paraşüt için 90 kg'a kadar dayanan diğer paraşütler için ise 67 kg'a kadar dayanan paraşüt ipleri kullanılmıştır.

Aviyonik Sistem Mekanik Görünüm

Aviyonik Sistem – Detay

- Aviyonik sistem daha önceki raporlarda da bahsedildiği üzere PCB yapılarak üretildi. PCB yapılırken çizim programında daha önce tasarlanan devre kartlarının pdf formatında monochromatic baskı görüntüsü alındı. Daha sonra yazıcıdan çıkartılıp bakır plaket üzerine ütülendi. Bu sayede tasarlanan devre bakır plaket üzerine geçirildi. Daha sonra bu devre kartları tuz ruhu ve hidrojen peroksit çözeltisine yatırılarak bakır plaketin üzerindeki istenmeyen kısımların eritilmesi sağlandı ve tasarlanan devre ortaya çıkartıldı. Bu aşamadan sonra devre kartına elemanların yerleştirilmesi için delikler açıldı ve elemanların oturacağı headerlar ve klemensler lehimlendi.
- Aviyonik sistem beş parçadan oluşmaktadır. Bu beş parça ana sistem, yedek sistem, e-match kartı, faydalı yük ve yer istasyonudur. Ana sistem, esas uçuş bilgisayarıdır. Teensy 3.2, LoRa haberleşme modülü(RFM98W), basınç sensörü (BMP180), buzzer ve GPS (NEO6-MV2) bulundurmaktadır. E-match kartı, üzerinde transistörler (BD241C) bulundurmaktadır. Bu sayede e-matchlere istenildiği zaman voltaj verilebilmektedir. Bu kartın amacı e-matchleri hem ana sisteme hem de yedek sisteme bağlamak ve istenildiği zaman e-matchlerin yakılmasını sağlamaktır. Yedek uçuş bilgisayarı; Arduino Nano, MikroSd kart modülü ve ivme sensöründen (GY-551) oluşmaktadır. Bu sistemin amacı ana sistemin kurtarmayı gerçekleştirmemesi halinde devreye girerek e-matchleri doğru zamanda yakmaktır. Faydalı yük; Arduino Nano, LoRa haberleşme modülü, GPS ve BMP180 basınç sensöründen oluşmaktadır. Yer istasyonu, Arduino Nano, LoRa haberleşme modülü ve GPS'den oluşmaktadır. Bu sistemin amacı diğer sistemlerden gelen bilgileri toparlamak ve roketin yere indiği koordinatları takım üyelerine bildirmektir.

Aviyonik Sistem – Detay

- Sponsorumuz Özdisan tarafından Çin'den baskı devreler gelecektir. Bu süreçte geçici olarak kendi ürettiğimiz baskı devreleri kullanmaktayız.
- Baskı devrelerimizin %100'ü tamamlanmıştır.

Kanatçıklar Mekanik Görünüm

Kanatçıklar – Detay

- Kanatçıklarımız PLA'dan üretilmiştir. Kanatçık destekleri 3 adettir ve malzemesi alüminyum olup lazer kesimle kesildikten sonra taşlanarak gövdeye giriş çıkışı kolaylaştırılmış ve gövdeye zarar vermesi önlenmiştir. Desteklere diş açılmıştır ve havşa başlı cıvata ile gövdeye montajlanmıştır.
- Kanatçıklarımızın %80'i tamamlanmıştır. Kanatçıklarımıza dayanım kazandırmak ve sürtünmeden kaynaklı oluşacak ısıya karşı korumak amacıyla cam fiber ile kaplanacaktır. Gerekli formu uygun bir şekilde verebilmek için en ideal yöntem olan vakum torbası yardımıyla kanatçık güçlendirilecektir. 10.08.2020 tarihine kadar bitirilecektir.

31 Temmuz 2020 Cuma

Roket Genel Montaji

Alt Gövde Montajı

- 1)Kanatçıkların montajlı olduğu kanatçık destekleri gövdeye takılır.
- 2)Kanatçık destekleri gövdeye cıvatalanır.
- 3) Motor bloğu gövdenin içine yerleştirilir.
- 4) Motor bloğu gövdenin içine yerleştirilir.
- 5) Motor bloğu matkapla montajlanır.

Roket Genel Montaj Videosu Linki: https://www.youtube.com/watch?v=mzHeWcD9L9Y

Roket Genel Montaji

Üst Gövde Montajı

- 1)İç destekler zaten gövdeye montajlıdır.
- 2)Ana paraşüt üst gövde ile burun konisi arasına konulur.
- 3)Burun konisi gövdeye geçirilir.
- 4)Sürüklenme paraşütü yerine konulur.
- 5)Faydalı yük paraşütü yerine konulur.

Roket Genel Montaj Videosu Linki: https://www.youtube.com/watch?v=mzHeWcD9L9Y

Roket Genel Montaji

Üst Gövde Montajı

- 6)Faydalı yük yerleştirilir.
- 7)Şokkord faydalı yükten geçirilip motor bloğuna bağlanır.
- 8) Elektronik kapağı sökülür.
- 9)Karabarut montajı yapılır.
- 10) Elektronik kapağı montajlanır.
- 11) Motor montajı yapılır.
- 12)İki gövde birleştirilir.

Roket Genel Montaj Videosu Linki: https://www.youtube.com/watch?v=mzHeWcD9L9Y

Roket Genel Montajı / Karabarut Montajı

Karabarut Montajı:

- 1) Elektronik kapağının cıvataları sökülür.
- 2) Daha önceden hazırlanmış karabarut haznesi iki iç destekte de bulunan yuvasına oturtturulur.
- 3) İç desteğin üzerindeki delikten haznenin faturalı kısmına pim veya cıvata yerleştirilir. Bu şekilde zaten sıkı geçen haznenin sağlamlığı arttırılmış olur.
- 4) Elektronik kapağı montajlanır.

Karabarut video linki: https://www.youtube.com/watch?v=rQdD9wb6IL4

Roket Motoru Montaji

- 1)Kanatçık desteklerinin içerisinden roket motoru geçirilir.
- 2) Motor, motor bloğuna dayanana kadar itilir.
- 3)El ile, anahtar ile veya lokma uçlu tornavida ile motorun cıvatası sıkılır.
- 4)Gövdeler birleştirilir.

Motor cıvatasının sıkılabilmesi için iki gövdenin ayrı olması zorundadır. Videoda da görüldüğü gibi işlem kısa sürede gerçekleştirilmektedir. Kanatçık desteklerinin iç çapı motorun boşluklu geçeceği kadar bırakılmıştır.

Motor Montajı Video Linki: https://w

Atış Hazırlık Videosu

- ☐ Atışa hazırlık videosunu şuradaki linkten ulaşabilirsiniz:
- https://www.youtube.com/watch?v=Do1iSwE1j7o&feature=youtu.be

31 Temmuz 2020 Cuma

Testler 1/5

	Test Adı	Yöntem	Açıklama	Sonuç	Test Linki
Yapısal Analizler	Gövde Basma Testi	Hidrolik pres ile basınç uygulama	Gövde numunesi çekme cihazına bağlanıp kuvvet uygulanarak gövde dayanımı kontrol edildi.	2000 N'a kadar basma kuvvetine dayanmıştır.	https://www.youtube.com/ watch?v=MFw- 9bsdCLY&feature=youtu.be &t=3
apisal A	Fiberglas Çekme Testi	Çekme-Basma cihazı ile çekme	Standart çekme numunesi hazırlanıp kopmaya uğrayana kadar dayandığı kuvvetler kontrol edildi.	154 MPa akma dayanımına sahiptir.	https://www.youtube.com/ watch?v=0iuuKF3rzV8&feat ure=youtu.be&t=100
N.	Fiberglas 3 Noktadan Eğilme Testi	Çekme-Basma cihazı ile 3 noktada eğme	Standart eğme numunesi hazırlanıp plastik deformasyona uğrayana kadar dayandığı kuvvet kontrol edildi.	277 MPa eğilme dayanımına sahiptir.	https://www.youtube.com/watch?v=0iuuKF3rzV8&feature=youtu.be&t=120
Ayrılma Testleri	Burun Konisi Ayrılma Testi	Test düzeneği kurularak tetiklemenin gerçekleştirilmesi	Roketin montajı tamamlanıp test düzeneğine sabitlendikten sonra; barutun yerleştirilmesi, barutun miktarı, elektrikli ateşleyicinin çalışma durumu ve burun konisinin ayrılması test edildi.	Başarılı fakat yanmaz kumaş satın alınacak.	https://www.youtube.com/ watch?v=0iuuKF3rzV8&feat ure=youtu.be&t=20
	Gövdeler Arası Ayrılma Testi	Test düzeneği kurularak tetiklemenin gerçekleştirilmesi	Roketin montajı tamamlanıp test düzeneğine sabitlendikten sonra; barutun yerleştirilmesi, barutun miktarı, elektrikli ateşleyicinin çalışma durumu ve gövdelerin ayrılması test edildi.	Başarılı fakat yanmaz kumaş satın alınacak.	https://www.youtube.com/ watch?v=0iuuKF3rzV8&feat ure=youtu.be&t=2

25

Testler 2/5

	Test Adı	Yöntem	Açıklama Sonuç		Test Linki
ï	Paraşüt Açılma Testi	Belirli yükseklikten serbest bırakma	Paraşütler katlanarak ucuna ağırlık bağlandı ve belirli yükseklikten bırakılarak açılma durumu belirlendi.	Paraşüt hava ile teması sonucunda açılmıştır.	https://www.youtube.com/watch?v=0 iuuKF3rzV8&feature=youtu.be&t=78
i Testleri	Paraşüt Yırtılma Testi	El ve göz muayenesi	Paraşüt hızlıca çekilecek ve yırtılma olup olmadığı tespit edilecektir.	Bağlantı noktaları istediğimiz kuvvete dayanmaktadır.	https://www.youtube.com/watch?v= Heqfr2AZQil&feature=youtu.be&t=12
rma Sistemi	Paraşüt Katlama Testi	El ve göz muayenesi	Paraşüt katlanarak gövde içerisine sığma durumu ve çıkma rahatlığı tespit edildi.	Paraşütler roketin gövdesine sığdı.	https://www.youtube.com/watch?v= Heqfr2AZQil&feature=youtu.be&t=30 https://www.youtube.com/watch?v=0 iuuKF3rzV8&feature=youtu.be&t=46
Kurtarma	Paraşüt İpi Dayanım Testi	Çekme testi ile kuvvet uygulama	Paraşüt ipleri çekme makinesinin çenelerine bağlandı ve kopana kadar çekilerek dayanımı tespit edildi.	90 kg'a kadar dayandı.	https://www.youtube.com/watch?v=0 iuuKF3rzV8&feature=youtu.be&t=110
	Paraşüt Bağlama Şeridi Testi	Çekme testi ile kuvvet uygulama	Paraşüt hızlıca çekilecek ve yırtılma olup olmadığı tespit edilecektir.	Bağlantı noktaları istediğimiz kuvvete dayanmaktadır.	https://www.youtube.com/watch?v= Heqfr2AZQil&feature=youtu.be&t=12
	Düğüm Testi	El ve göz muayenesi	Çekme testleri sırasında seçtiğimiz düğümler atıldı sağlamlığı test edildi.	Düğümler kendi kendini sıkmaktadır. Ekstradan dikiş atılacaktır.	https://www.youtube.com/watch?v= Heqfr2AZQil&feature=youtu.be&t=55

(1/11/)

Testler 3/5

	Test Adı	Yöntem	Açıklama	Sonuç	Test Linki	
Genel Testler	Roket Rijitlik Testi	El ve göz muayenesi	Roket el yardımıyla sallanarak, rijitliği kontrol edildi.	Entegrasyon ve shoulder bağlantıları istenilen rijitliği sağlamaktadır.	https://www.youtube.com/watch?v=0 iuuKF3rzV8&feature=youtu.be&t=144	
	Montaj Testi	El ve göz muayenesi	Roket tekrarlı olarak montajlanarak uyumsuzluklar belirlendi.	Montaj kısa sürede gerçekleştirilmiştir.	https://www.youtube.com/watch?v= mzHeWcD9L9Y&feature=youtu.be	
	Ray Butonu Testi	El ve göz muayenesi , askıya alma	Roket ray butonlarından askıya alınarak dayanım durumu kontrol edildi. Roket ray butonlarına sigma profil takılarak lineerliği doğrulandı.	Dayanım ve lineerlik sağlanmıştır.	https://www.youtube.com/watch?v=0 iuuKF3rzV8&feature=youtu.be&t=155	
	Altimeter 2 Montaj Testi	Vidalama işlemi ve kablo bağı	Altimetrenin roket içerisine istenen sürede yerleştirilmesi denenecektir.	Kısa sürede montaj gerçekleştirilmektedir.	https://www.youtube.com/watch?v= Do1iSwE1j7o&feature=youtu.be	

Testler 4/5

Z	Test Adı	Yöntem	Açıklama Sonuç		Test Linki
OMÜNİKASYON Rİ	Barometre Testi	Basınç değiştirilerek alınan verilerin test edilmesi	Kapalı bir kabın içerisine yerleştirilen barometrenin kap basıncının azaltılması ile değişen verileri kontrol edildi.	PCB üzerindeki barometreden düzgün veri alınmıştır	https://www.youtube.com/watch?v= DbP7Ugvfiew&feature=youtu.be&t=3
STLE	GPS Testi	Konum değiştirilerek alınan verilerin diğer kaynaklar ile doğrulanması	GPS verisi konum bilgisi sağlayan kurumların verileri ile karşılaştırılarak farklı ortamlarda test edildi.Verinin kalitesi belirlendi.	Açık alanda 8 uydudan veri gelmiştir.	https://www.youtube.com/watch?v= DbP7Ugvfiew&feature=youtu.be&t=6 1
AVÍYONÍK VE TE	Telemetri Testi	Farklı ortamlarda veri gönderip alarak bağlantı kalitesinin kontrol edilmesi	Açık arazide ve şehir içinde GPS verisi telemetri sistemi ile gönderildi ve alıcıdan okunan veri haritadan kontrol edildi.	Arada bina olmadığı sürece haberleşebilmekteyiz.	https://www.youtube.com/watch?v= 0iuuKF3rzV8&feature=youtu.be&t=32 0
	Yazılım Testi	Sanal parametreler gönderilerek algoritmanın test edilmesi	Yapay (rastgele) veriler gönderilerek algoritmanın bu verilere istenilen tepkiyi verip vermediği kontrol edildi.	Aykırı verileri filtreleyebilmiştir.	https://www.youtube.com/watch?v= D61NIBAaNys&feature=youtu.be

Testler 5/5

AVİYONİK VE	EKOMÜNİKASYON TESTLERİ
	NECEK

Test Adı	Yöntem	Açıklama	Sonuç	Test Linki	
Besleme Testi	Multimetre kullanılarak PCB üzerinde ölçüm gerçekleştirilmesi	Multimetre kullanılarak PCB üzerindeki bağlantılarda kısa devre olup olmadığı kontrol edildi.	Voltajlar istenilen düzeyde regüle edilmiştir.	https://www.youtube.com/watch?v= OiuuKF3rzV8&feature=youtu.be&t=18 5	
Titreşim Testi	Titreşimli bir yüzey üzerinde elektronik aksam bağlantılarının kontrolü	Roket içerisinde oluşabilecek titreşimlerin elektronik aksam üzerindeki olası negatif etkileri titreşim sağlayan cihaz üzerine aksamın yerleştirilmesi ile test edildi.	Titreşim gerçekleşirken haberleşme gerçekleştirilebilmiş ve veri alınabilmiştir.	https://www.youtube.com/watch?v= OiuuKF3rzV8&feature=youtu.be&t=27 <u>3</u>	
PCB Çalışma Testi	Sensörlerin uçuş bilgisayarı üzerinde birlikte çalıştırılarak alınan verilerin doğrulanması	GPS, Lora, barometre ve ivmeölçer gibi sensörlerin birlikte çalışması ve hassasiyeti alınan verilerin doğrulanması ile test edildi.	PCB üzerindeki komponentler çalıştırılmıştır.	https://www.youtube.com/watch?v= OiuuKF3rzV8&feature=youtu.be&t=30 6	

Yarışma Alanı Planlaması

Montaj Günü				
1-Yarışma alanına varış	Tüm Takım Üyeleri			
2-Montaj öncesi tanıtım toplantısının yapılması	Tüm Takım Üyeleri			
3-Karabarutun yetkililere teslim edilmesi.	Takım Lideri			
4-Montaj alanına varış, koruyucu kıyafetler giyilerek iş güvenliğinin sağlanması ve montaj aşamasının başlangıcı	Tüm Takım Üyeleri			
5-Ekip üyeleri tarafından parçaların taşınması ve sınıflandırılması	Tüm Takım Üyeleri			
6-Elektronik teçhizatın kablo bağlantılarının kontrol edilmesi ve bilgisayar ile son kontrollerin yapılması	Aviyonik Ekibi			
7-Karabarut desteği, elektronik desteği ve elektronik tahtasının montajı	Yapısal Ekibi			
8-Elektronik teçhizatın roket içerisine yerleştirilmesi ve sabitlenmesi	Kurtarma Ekibi			
9-Motor bloğunun alt gövdeye montajı	Yapısal Ekibi			
10-kanatçık ve kanatçık desteğinin alt gövdeye montajlanması	Yapısal Ekibi			
11-Entegrasyon gövdesinin üst gövdeye bağlantısının yapılması	Yapısal Ekibi			
12-Mapaların bağlanması ve şok kordonu, paraşüt ipleri gibi bağlantıların kurulması	Kurtarma Ekibi			
13-Paraşütlerin katlanıp rokete konulması	Kurtarma Ekibi			
14-Burun konisinin montajlanması	Yapısal Ekibi			
15-Faydalı yükün üst gövde içerisine yerleştirilmesi	Kurtarma Ekibi			
16-Karabarut haznelerinin yerleştirilmesi ve elektronik kapağının montajlanması	Yapısal Ekibi			
17-Verilen motorun roketin içerisine yerleştirilmesi ve alt gövdeye cıvata ile sabitlenmesi	Yapısal Ekibi			
18-Alt ve üst gövdenin birbirleri ile montajlanması	Yapısal Ekibi			
19-Roketin yarın gerçekleşecek olan atış için yetkililere teslim edilmesi	Takım Lideri			

ATIŞ GÜNÜ	
1-Roketin muhafaza edildiği yerden fırlatma alanına taşınması	Kurtarma Ekibi
3-Altimetrenin gövdeye açılan kapakçık sayesinde roketin içerisine yerleştirilmesi ve kapakçığın tekrar kapatılması	Yapısal Ekibi
3-Roketin aviyonik sisteminin atış için aktif hale getirilmesi	Aviyonik Ekibi
4-Fırlatma için yetkililerden onay alınması ve roketin rampaya yüklenmesi	Yapısal Ekibi
5-Ateşleme telinin bağlantısının yapılması ve roketin atışa hazır hale getirilmesi	ROKETSAN
6-Geri sayımın yapılması ve atışın gerçekleştirilmesi	ROKETSAN
7-Atış boyunca roketin yer istasyonu aracılığıyla anlık takibinin yapılması ve gelen verilerin değerlendirilmesi	Aviyonik Ekibi
8-Roketin inişi gerçekleştikten sonra yetkililerin izniyle roketin konum tespitinin yapılması ve kurtarma çalışmasının başlaması	Aviyonik Ekibi
9-Kurtarmanın gerçekleştirilmesi	Ekip Lideri ve 2 Takım Üyesi
10-Başarılı bir şekilde kurtarması gerçekleştirilen roketin inceleme için yetkililere teslim edilmesi	Ekip Lideri ve 2 Takım Üyesi

Yarışma Alanı Planlaması

ACIL DURUM EYLEM PLANI:

Yangın:

Elektromanyetik dalga yayan cisimleri motordaki yüksek enerjili malzemeleri tetiklememesi adına motorun yakınında bulundurulmayacaktır. Motorun doğrudan güneş ışığına maruz kalmamasına özen gösterilecektir. Motor dikkatli, yavaş ve yumuşak hareketlerle montajlanacaktır.

Olası yangın durumunda ivedilikle o bölge boşaltılıp itfaiye ekiplerine haber verilecektir.

Elektrik Çarpması:

Elektrik ile teması önlemek amacıyla sıyırılmış kablolar kullanılmayacak lehimlenen bölgelere devre açıkken temas edilmeyecektir ve plastik eldiven kullanılacaktır. Bütün bağlantılar ayrıca multimetre ile kontrol edilecektir.

El Aletleri Kullanımından Kaynaklanabilecek Yaralanmalar:

Ekip üyelerinden birinin başına bir kaza gelme durumunda en yakın yetkiliye haber verilerek ilk yardım ekibi tarafından müdahale edilecektir.

Acil durumları önlemek amacıyla bütün ekip üyeleri tarafından iş güvenliği kurallarına özen gösterilip önlük, gözlük ve eldiven kullanılacaktır.

Yarışma Alanı Planlaması

RİSK RAPORU

Risk	Olasılık	Şiddet	Çözüm	Son Olasılık	Son Şiddet
Karabarutun beklenmedik anda patlaması	Düşük	Çok Yüksek	Yetkililer tarafından verilen talimatlara uyarak karabarutu her türlü enerjiden uzak tutmak.(Statik elektrik, elektromanyetik dalga yayan cihazlar vb.)	Düşük	Orta
Taşırken kanatçıkların kırılması	Orta	Yüksek	Ayrı köpüklerin içine konulması ve taşınması	Düşük	Orta
Karabarut patlaması sonucu paraşüt ,şokkord ve paraşüt iplerinin yanması	Orta	Çok Yüksek	Paraşüt, paraşüt ipleri ve şok kordun yanmaz kumaşla korunması	Düşük	Düşük
Faydalı yükün gövdeden ayrılmaması	Düşük	Yüksek	Faydalı yükü entegrasyon gövdesi kısmına denk getirerek ayrılma bölgesinde bulunmasını sağladık.	düşük	orta