

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-260532

(43)公開日 平成6年(1994)9月16日

(51)Int.Cl.
H 01 L 21/60機別記号 廈内整理番号
311 S 6918-4M

F 1

技術表示箇所

審査請求 未請求 請求項の数4 FD (全5頁)

(21)出願番号 特願平5-70958
(22)出願日 平成5年(1993)3月5日(71)出願人 000002185
ソニー株式会社
東京都品川区北品川6丁目7番35号
(72)発明者 石川 夏也
東京都品川区北品川6丁目7番35号 ソニ
ー株式会社内
(74)代理人 弁理士 舟録 団則

(54)【発明の名称】 フリップチップの接続構造

(57)【要約】

【目的】薄型化を損なうことなく放熱効果の高いフリップチップの接続構造を提供すること。
 【構成】フリップチップ1を基板2にバンプ11を介して接続する構造で、フリップチップ1の位置に対応する基板2に穴31を開けて金属32を充填した熱伝導部材3を設け、その一端側をフリップチップ1と接触し、他端側を基板2の裏面側に露出させて放熱面33とした。また、基板2に設けた貫通孔に金属32を充填して熱伝導路を形成し、基板2の裏面側に熱伝導路と接触する放熱用パターンを設け、フリップチップ1に熱伝導用バンプを設けてバッドを介して熱伝導路と接続する。

本発明と説明する概略断面図

【特許請求の範囲】

【請求項1】 配線パターンが設けられた基板の表面にパンプを介してフリップチップを接続する構造において、

前記フリップチップの位置に対応する前記基板には、穴

に金属が充填された熱伝導部材が設けられ、

前記熱伝導部材の一端側が該フリップチップと接触し、かつ、他端側が放熱面として前記基板の裏面側に露出し

ていることを特徴とするフリップチップの接続構造。

【請求項2】 前記基板の裏面側には放熱用パターンが

設けられており、

前記放熱用パターンと前記熱伝導部材の放熱面とが接続

していることを特徴とする請求項1記載のフリップチップの接続構造。

【請求項3】 表面上に配線パターンが設けられた基板

と、前記配線パターンと接続するためのパンプが形成された

フリップチップとを接続する構造であつて、

前記フリップチップの位置に対応する前記基板には、貫

通孔に金属が充填された熱伝導路と、

前記基板の裏面側で前記熱伝導路と熱的に接続される放

熱用パターンとが設けられ、

前記フリップチップには、前記熱伝導路と接続するため

の熱伝導用パンプが設けられていることを特徴とするフ

リップチップの接続構造。

【請求項4】 前記基板の表面には、前記熱伝導路に接

続されるパッドが設けられており、

前記パッドを介して前記熱伝導路と前記熱伝導用パンプ

とが接続していることを特徴とする請求項3記載のフ

リップチップの接続構造。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、所定の配線パターンが形成された基板と、配線パターンと接続するためのパンプが形成されたフリップチップとの接続構造に関するものである。

【0002】

【従来の技術】半導体装置をプリント配線板上に実装するには、半導体装置から延出するリードをプリント配線板のスルーホールに挿入したり、リードとプリント配線板上に形成された配線パターンとを面接触させ、それぞれはんだ付け等により固定している。また、薄型化に対応するために、ペア状の半導体素子にパンプが形成されたフリップチップを基板の表面に実装することも行われている。

【0003】ここで、従来のフリップチップと基板との接続構造を図5の概略断面図に基づいて説明する。すなわち、この接続構造は、ペア状の半導体素子10にはんだ等のパンプ11が形成されたフリップチップ1を、所定の配線パターン2が形成された基板2の表面に実装

するものであり、パンプ11と配線パターン2とを接觸させた状態でリフロー等によりパンプ11を溶融させて接続が成されている。また、フリップチップ1と基板2との間には、半導体素子10やパンプ11の接続部分等の保護のための樹脂4が塗布されている。

【0004】

【発明が解決しようとする課題】このようなフリップチップの接続構造において、半導体素子から発生する熱は主として半導体素子の上面から外部に放出されることになるが、半導体素子の大規模化にともない、ここからの放熱だけでは不十分となる。すなわち、半導体素子の発熱量が増えると、外部に放出しきれない熱がフリップチップと基板との間の樹脂に蓄積されてしまい、温度上昇による半導体素子の特性劣化を招くことになる。そこで、半導体素子の上面に放熱板を設けて放熱効果を高めることも考えられるが、放熱板を取り付けることで全体の厚さが増してしまい、薄型化という目的に対して相反することになる。よって、本発明は薄型化を損なうことなく放熱効果の高いフリップチップの接続構造を提供することを目的とする。

【0005】

【課題を解決するための手段】本発明は、このような課題を解決するために成されたフリップチップの接続構造である。すなわち、この接続構造は、配線パターンが設けられた基板にパンプを介してフリップチップを接続するものであり、フリップチップの位置に対応する基板に穴を設け、この穴に金属を充填して熱伝導部材とし、この熱伝導部材の一端側をフリップチップと接触させ、他端側を基板の裏面側に露出させて放熱面としたものである。しかし、フリップチップが接続されていない基板の裏面側に放熱用パターンを設け、この放熱用パターンと熱伝導部材とを接続させた構造でもある。

【0006】また、基板に設けた貫通孔に金属を充填して熱伝導路を形成し、基板の裏面側にこの熱伝導路と接觸する放熱用パターンを設け、さらにフリップチップには、熱伝導路と接続するための熱伝導用パンプを設けた接続構造である。また、このフリップチップが接続される基板の表面に、熱伝導路と接続されるパッドを設け、このパッドを介して熱伝導路と熱伝導用パンプとを接続する構造でもある。

【0007】

【作用】フリップチップの配置位置に対応する基板には、穴に金属が充填された熱伝導部材が設けられ、その一端側がフリップチップに接觸し、また他端側が基板の裏面側に露出して放熱面となっているため、フリップチップから発生した熱がこの熱伝導部材に伝わり、基板の裏面側から外部に放出されることになる。すなわち、フリップチップを構成する半導体素子の上面側と下面側とリップチップがから放熱できることになる。しかし、フリップチップが接続されていない基板の裏面に放熱用パターンを設け、

3 熱伝導部材と接続することでより放熱効果が高まること

になる。
〔0008〕また、基板の貫通孔に金属を充填して設けた熱伝導路と、フリップチップが接続されない基板の裏面に設けた放熱用パターンとを接触させ、この熱伝導路とフリップチップに設けた熱伝導用バンプとを接続すると、半導体素子下面の所望の位置から熱を放出できることになる。さらに、フリップチップの熱伝導用バンプと基板の熱伝導路とをパットを通して接続することで、熱伝導用バンプの高さを他のバンプとはほ等しくできるため、容易で確実な接続ができるようになる。

[0009]

【実施例】以下に、本発明のフリップチップの接続構造の実施例を図に基づいて説明する。図1は、本発明のフリップチップの接続構造を説明する概略断面図である。図1に示すように、この接続構造は、配線パターン21が設けられた基板2の表面に所定高さのバンブ11を介してフリップチップ1を接続するものであり、例えば、半導体素子10に設けられたはんだ等のバンブ11と基板2表面の配線パターン21とをリフロー等により接続して、フリップチップ1を電気的、および機械的に接続している。

【0010】このフリップチップ1が配置される基板2には穴31が設けられており、この穴31に銅やアルミニウム等から成る金属32が充填されて成る熱伝導部材33が配置されている。しかも、この熱伝導部材33の一端側がフリップチップ1を構成する半導体素子10の下面に接触し、他端側が基板2の裏面側に露出して放熱面35となっている。このため、半導体素子10から発生した熱は、半導体素子10の上面から放出されるとともに、図中矢印のように半導体素子10の下面から熱伝導部材33に伝わり、基板2の裏面側の放熱面35から外部に放出されることになる。

(10012) また、國立民族學研究所（民族誌研究室）

4
は、基板2の裏面側に放熱用パターン5を形成して、熱伝導部材3と接続したものである。すなわち、フリップチップ1と基板2とをバンブ11を介して接続した状態で半導体素子10の下面と熱伝導部材3とが接触しており、基板2の裏面側に広く形成された放熱用パターン5と熱伝導部材3とが接続している。放熱用パターン5は、配線パターン21と同様に形成されるものであり、基板2の裏面に沿って延出されている。このため、半導体素子10から発生した熱は、図中矢印に示すように半導体素子10の下面から熱伝導部材3を介して放熱用パターン5に伝わり、効率良く外部に放出されることになる。

(10013) 次に、図3、図4に基づいて、他のフリップチップの接続構造を説明する。先ず、図3の部分断面図に示す接続構造は、フリップチップ1の位置に対応する基板2に貫通孔22aが設けられ、この貫通孔22aの内に金属32が充填されて成る熱伝導路22が形成されている。熱伝導路22は、フリップチップ1の下方の所望の位置に配置されており、フリップチップ1の設計パターンに応じて設ければよく、また複数箇所に設けてよい。しかも、この熱伝導路22は基板2の裏面側に設けられた放熱用パターン5と接続されている。

(0014) この基板2に接続するフリップチップ1に
は配線パターン21と接続するためのバンブ11の他、
熱伝導路22と接続するための熱伝導用バンブ12
が設けられている。つまり、熱伝導路22に対応する位
置のフリップチップ1に熱伝導用バンブ12が設けられ
ており、接続用のバンブ11を配線パターン21に接続
すると同時に、この熱伝導用バンブ12と熱伝導路22
とを接続する。

30 とを張ねる。
10015)これにより、半導体素子10から発生した熱は、熱伝導用バンブ12を通して熱伝導路22に伝わり、熱伝導路22と接続する放熱用バターン5から外部に放出されることになる。熱伝導路22は細長状のもので形成が容易であり、フリップチップ1のうち特に放熱を要する部分に設けることができる。

40) を要する部分がなく、
10016) また、図4に示す接続構造では、基板2の
表面に熱伝導路22と接続されるパッド23が形成され
ており、このパッド23を介して熱伝導路22と熱伝導
用バンプ12とが接続されるものである。すなまち、こ
のパッド23を配線パターン21と同様に形成すること
で、配線パターン21とパッド23との高さがほぼ等し
くなる。このため、バンプ11による配線パターン21
との接続高さと、熱伝導用バンプ12によるパッド23
との接続高さとを揃えることができ、フリップチップ1
との接続と基板2との接続、およびフリップチップ1と熱
伝導路22との熱的接続を容易に行える。

(10017) また、バッド23を介して熱伝導路22と
熱伝導用バンブ12とを接続しているため、熱伝導用バ
ンブ12との確実な熱的連絡が得られることになる。こ

〔図1〕本発明のフリップチップの接続構造を説明する概略断面図である。

〔図2〕他の例を説明する概略断面図である。

〔図3〕他の接続構造を説明する部分断面図(その1)である。

〔図4〕他の接続構造を説明する部分断面図(その2)である。

〔図5〕従来例を説明する概略断面図である。

〔符号の説明〕

10	フリップチップ
2	基板
3	熱伝導部材
3a	放熱面
4	封止材
5	放熱用パターン
10	半導体素子
12	熱伝導用バンプ
11	バンプ
21	配線パターン
22	熱伝導路
23	パッド
31	穴
32	金属

(図1)

本発明を説明する概略断面図

(図2)

他の例を説明する概略断面図

(図3)

他の構造を説明する部分断面図(その1)

(図4)

他の構造を説明する部分断面図(その2)

(5)

(図5)

説明書に記載する各部の名称