Home ▶ Electrical Engineering ▶ Engr17-2016F-Tatro ▶ Exams and Quizzes ▶ Exam 3 (Final) - Section 1 - Chapters 9 and 10

Started on	Wednesday, 14 December 2016, 10:11 AM
State	Finished
Completed on	Wednesday, 14 December 2016, 12:11 PM
Time taken	1 hour 59 mins

Grade 95.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

Correct

Question 2

Partially correct

Mark 10.00 out of 15.00

Q2e

Find the three mesh currents.

State your answer in the rectangular form Real + j Imaginary.

$$I_{1} = \boxed{10} \checkmark + j \boxed{0} \checkmark Amps$$

$$I_{2} = \boxed{10.3} \checkmark + j \boxed{0} \checkmark Amps$$

$$I_{3} = \boxed{10.7} \checkmark + j \boxed{0} \checkmark Amps$$

Partially correct

Marks for this submission: 10.00/15.00. Accounting for previous tries, this gives 10.00/15.00.

Question 3

Correct

Mark 15.00 out of 15.00

Q3d

Given $V_{in} = 22 \cos(10,000 t)$

Find the steady state phasor current through the 5 W (Ohm) resistor.

State your answer with the smallest appropriate negative angle.

 I_{5W} (polar form) Magnitude 2.24 \checkmark Phase -90 \checkmark (Degree) Amps

Correct

Correct

Correct

15.00

Question 5

Correct

Mark 10.00 out of 10.00

Q5a

Given $V_{in} = 120 \cos (377 \text{ t}) V_{rms}$ and coefficient of coupling k = 0.9

a) Find the mutual inductance between the two windings.

$$M = 28.5$$
 \checkmark mH (milli H)

b) Find the magnitude of the reflected impedance from the secondary side to the primary (source) side.

$$|\operatorname{Zr}| = 16.25$$
 $\checkmark \Omega (\operatorname{Ohm})$

c) Find the current in the primary side.

State as positive current magnitude and smallest appropriate negative angle.

$$|I_1| = 3.63$$
 Angle $I_1 = -61.5$ (Degree)

Correct

Correct

Mark 10.00 out of 10.00

Q6a

Given: The transformer is ideal.

$$V_{in} = 120 \cos (377 t) V$$

- a) Find the magnitude of the current I_1 . $|I_1| = 53.57$
- b) Find the magnitude of the voltage V_1 . $|V_1| = \begin{bmatrix} 12.86 \\ \end{bmatrix}$

Correct

Marks for this submission: 10.00/10.00.

Question 7

Correct

Mark 10.00 out of 10.00

Q7c

A circuit has the following input voltage with the resulting current:

$$v = 240 \sin (377 \text{ t}) \text{ V}_{\text{rms}}$$

$$i = 13 \cos (377 \text{ t} - 125^\circ) \text{ A}_{rms}$$

- a) Find the average power absorbed by the circuit. $P = \begin{bmatrix} 2555.75 \end{bmatrix} \checkmark W$
- b) Find the reactive power. $Q = \begin{bmatrix} 1789.55 \end{bmatrix}$ VAR
- c) Find the apparent power. |S| = 3120 VA

Correct

Question 8

Correct

Mark 5.00 out of 5.00

Q8f

A circuit has the following input voltage with the resulting current:

$$v = 120 \cos (377 \text{ t} - 45^\circ) \text{ V}_{\text{rms}}$$

$$i = 7 \cos (377 t + 10^{\circ}) A_{rms}$$

- a) Find the power factor of this circuit. pf = 0.573
- b) Is this a lagging or leading power factor?

Correct

Marks for this submission: 5.00/5.00.

Question 9

Correct

Mark 10.00 out of 10.00

Q9d

The periodic triangular current has a peak value of 200 mA (milli Amp).

a) Find the rms value of the current.

$$I_{p,rms} = \boxed{115.47} \qquad \checkmark mA_{rms} (milli A_{rms})$$

b) Find the average power that this current delivers to a 5 k Ω (kilo Ohm) resistor.

$$P_{avg} = 66.67$$
 \checkmark W

Correct