Representation Theory

Hersh Singh

August 27, 2014

Chapter 1

Representations of Finite Groups

1.1 Definitions

Let G be a finite group, V be a finite dimensional complex vector space. A representation of G on V is a group homomorphism

$$\rho: G \to \mathrm{GL}(V), \tag{1.1}$$

where $\mathrm{GL}(V)$ is the group of automorphisms of V. Even though the "representation" is really the homomorphism, but it is common (especially by physicists) to refer to V itself as the representation.

We say that this map gives V the structure of a G-module. This agrees with the definition of a R-module (R is a ring) that I have studied earlier. An R-module is simply a vector space defined over a ring, instead of a field. So the ring elements act as the scalars. Of course, the description must include a rule for the 'interaction' of the scalars with the vectors. To be a module, the interaction must be linear. In this case, the group homomorphism ρ gives us that rule of interaction between the vectors (elements of V) and the scalars (elements of G). For $g \in G, v \in V$,

$$qv \equiv \rho(q)v \in V$$

A vector space homomorphism $\phi: V \to W$ is a morphism between the two representations V and W if the following diagram commutes:

$$V \xrightarrow{\phi} W$$

$$g \downarrow \qquad \qquad \downarrow g$$

$$V \xrightarrow{\phi} W$$

$$(1.2)$$

That is, $\phi g = g\phi$ for all $g \in G$. This makes the group elements behave like scalars under module homomorphisms. Such morphisms of representations are also called G-linear map or a G intertwiner.

Why is this is a good definition? Seems to be inspired from module homomorphisms. This is natural in some sense - Figure that out.

 $\operatorname{Ker} \phi$, $\operatorname{Im} \phi$, $\operatorname{Coker} \phi = V/\operatorname{Im} \phi$ are also G-modules. This is solely because of the commutativity of the above diagram.

- If $v \in \text{Ker } \phi$, then $\phi(gv) = g\phi(v) = 0$. So gv also $\in \text{Ker } \phi$. \blacksquare .
- If $v \in \text{Im } \phi$, then let $\phi(v) = w$. So $\phi(gv) = g\phi(v) = gw \in W$. So gv also $\in \text{Im } \phi$. \blacksquare .

One of the goals of our study is, given a representation, to develop tools for constructing other, preferably all, representations of the group. Some examples of representations that can be constructed from V and W

 $\bullet\,$ Tensor product $V\otimes W$ via

$$g(v \otimes w) = g(v) \otimes g(w) \tag{1.3}$$

- Tensor power $V^{\otimes n}$ and the exterior power $\Lambda^n(V)$ and the symmetric power $\operatorname{Sym}^n(V)$ are its subrepresentations.
- the dual $V^* = \operatorname{Hom}(V,\mathbb{C})$. This is a little tricky though. The action of G on V^* must be such that it preserves the natural inner product, denoted by $\langle \ , \ \rangle$, between them. This forces us to define the action of g such that

$$\rho^*(v^*) =$$

Chapter 2

General Information

2.1 Resources

Here are some resources that I found useful while preparing these notes

• Representation Theory - A First Course by Fulton, Harris