Sub sucesiones

Det:
Sea X, una sucesión de números reales

(on siderenos la condena de enteros

positivos:

1, 21, 21, 3 < ... < 1, < ...

entonces la succesión $y = (x_n)^{2D}$ es una subsuccesión de x,

 $\chi = \left(\frac{1}{0}\right)^{\infty} = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots\right)$

y = 2x

 $V = (\frac{1}{2}) \frac{1}{4} \frac{1}{6} \dots$

l es una subsucesión de X.

Zx = x2x

 $2 = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots)$

Z es una subsucesión de X (también de Y)

Teales que converge a X EIR, entonces cualquier subsucesión X' de X converge a X

Den: Suporganos x = (xn) que converge a xEIR

0267 =7 026° <1. Ax (Xn) es acotuda b^ > b^+1 + n & N. As! by es decreviente. Entones (Xn) Converge. Consideranos (a Subsucesãos $\left(y_{n}\right)_{n=1}^{\infty} \qquad y_{n} = \chi_{2n} = b^{2n} dc \chi$ que tembién es convergate. $\lim_{n\to\infty} b^n = \chi = \lim_{n\to\infty} b^{2n}$ $X = \lim_{n \to \infty} b^{2n} = \lim_{n \to \infty} (b^{n})^{2} = \lim_{n \to \infty} b^{n}$ $= \frac{1}{\chi} = \frac{\chi^2}{\chi} = \frac{\chi^$ 0 < b° <1 entonies X \(\frac{1}{2} \).
As! X = 0.

Priferios de divergencia

Una Sucesión Se dice divergente si No existe el limite.

Una Sucesión X = (Xn) de números reales es divergente si ocurre una de las siguientes proposiciones:

There dos sucesiones que son Subsucesiones Convergentes a diferentes números Yealcs.

2 × no es acatuda.

Sea $X = (X_n)$ $\chi_n = \begin{cases} 2 & \text{sines pur} \\ 2 & \text{sines input} \end{cases}$

 $\chi' = (\chi_{2n})^{2n} = (2, 2, ..., 2, ...)$

 $\chi'' = (\chi_{2n-1})_{n=1}^{\infty} = (0,0,...,0,...)$

X'->2 entonces X x"->0. es divergente

Teorena: L'heorem de la subsucervés monétona J.

l'toda bresión dentro de ella trene una " nonótona."
Si X = (Xn) rs una sucesión de números
reales, entones existe una subsucesión de
X rondform.
/\ (\var(\var(\var(\var(\var(\var(\var(\var
Jen : Dada una sucesión X = (Xm), diremos que Xm es un pico pico de la sucesión X s:
dirency as X =s un esco
Oi(a dr la Sucesión X Si
7.50
Xm 7 X 1 4 n 7 m.
, W , (/
F.:
O Si una Sucesión es decreciente
entonue long les términes
entonces todos los términos de la Sucesión son picos.
J = 10 555.0 J 56.05 4
O Si una Suceria a exerciate
O Si una Sucesión es creciente no huy Picos.
1003
$ \bigcirc $
Proximo mantes entregan taller prepararal.
vioried an juiller proparation