TP N°1

Exercice 1:

Tester le programme suivant et conclure.

```
#include <stdio.h>
#include <conio.h>
void main()
  int
            i = 123, j = -12;
  long int li = 123456;
                              /* long li = 123456 */
  float
            f = 12.345;
  double
            d = 12.345;
  clrscr();
  printf("i=\%d;\n",i);
  printf("i=\%2d;\n",i);
  printf("i=\%5d;\n",i);
  printf("i=\%05d;\n",i);
  printf("i=\%-5d;\n",i);
  printf("i=\%+d;\n",i);
  printf("i=\%5.1d;\n\n",i);
  printf("j=\%d;\n",j);
  printf("j=\%5d;\n",j);
  printf("j=\%-5d;\n",j);
  printf("j=\%06d;\n',n",j);
  printf("li=%ld;\n",li);
  printf("li=%9ld;\n",li);
  printf("li=\%-9ld;\n\n",li);
  printf("f=\% f; \n", f);
  printf("f=\%.0f;\n",f);
  printf("f=\%.2f;\n",f);
  printf("f=%14f;\n",f);
  printf("f=\%9.2f;\n",f);
  printf("f=\%-9.2f;\n",f);
  printf("d=\%f;\n",d);
  getch();
```

Exercice 2:

1) Pour chacune des expressions suivantes dites quelle est la valeur résultante (x étant de type int) :

a-
$$x = -3 + 4 * 5 - 6$$

b-
$$x = 3 + 4 \% 5 - 6$$

c-
$$x = -3 * 4 \% - 6 / 5$$

d-
$$x = (7+6) \% 5/2$$

2) Ecrire un programme qui permet de vérifier les résultats obtenus précédemment.

Exercice 3:

Dans chacune des lignes suivantes donnez les valeurs des variables x,y,z (toutes de type int) après exécution de l'instruction, les valeurs avant étant données en début de ligne.

Avant			Instruction	après		
X	y	Z	instruction	X	у	Z
2	0	0	x *= 3 + 2;			
2	0	0	x *= y = z = 4;			
1	1	0	z = x ++ -1;			
2	1	0	z += -x ++ ++ + y;			
2	1	0	z = x / ++ x;			
3	2	1	$x = x \mid y \& z$;			
3	2	1	$x = x \mid y \& \sim z$;			
3	2	1	$x = x \wedge y \& \sim z$;			
1	-1	0	z = ! x x;			
1	-1	0	$z = \sim x \mid x$;			
1	-1	0	$z = x \wedge x$;			
1	-1	0	x << = 3;			
1	-1	0	y >> = 3;			·

2) Ecrire un programme qui permet de vérifier les résultats obtenus précédemment.