発明の名称: 点発光型発光素子及び集光点発光型発光素子

背景技術

発明の属する技術分野

本発明は発光点が微小領域に限定された点発光型発光素子及び発光した光を集光して微小領域から出力する集光点発光型発光素子に関する。

従来の技術

本出願人は、発光出力の高い青色及び緑色の窒化物半導体発光ダイオードを例えば大型ディスプレイ用の光源として実用化している。この窒化物半導体系発光素子は、例えば、サファイア基板の上に窒化物半導体であるGaN、A1N、InN又はそれらの混晶で構成された半導体多層膜にp型及びn型のオーミック電極を形成して、へき開、RIEエッチング又はダイシング等によりチップ化されて製造される。このように構成された発光素子において、光は発光層のみならず他の半導体層及び基板内部を透過、屈折、反射を繰り返し、基板の断面及び主表面から放出される。

また、近年では、例えば、光ファイバ通信用の光源、電子写真用の光源あるいはバーチャルリアリティー用の光源等のように微小領域に発光点が限定された発 光素子に対する要求が増加していることから、窒化物半導体発光素子においても 発光点が微小領域に制限された特有の素子構造が種々提案されている。

現在、微小光源発光素子として、端面発光型の発光素子が提案されている。この端面発光型発光素子は、基本構造として半導体レーザと同様、発光層をワイドバンドギャップのp型及びn型半導体層で挟んだダブルヘテロ構造が用いられ、例えば、窒化物半導体を端面発光型発光ダイオードでは、AlGaN/GaN/InGaN分離閉じ込め型ヘテロ構造(SCII)が用いられている。

しかしながら、提案されている発光点が微小領域に制限された素子構造では、 発光点を微小領域に制限するために高いパターンニング精度が要求され、高度の フォトリソグラフィー技術を用いる必要がある。そのために、発光点が十分微小 領域に制限された素子を安価に提供することができないという問題点があった。

また、端面発光型発光ダイオードは、スポットサイズの小さい素子は得られる ものの、発光層の端面だけではなく、発光層より基板側に積層されたn型半導体 層の端面からも光が放出されるため、多モードの発光となり、ニアフィールドパ ターンの良好な単一スポットが必要とされる用途には適していないという問題が あった。

発明の要約

そこで、本発明は発光点を十分小さい微小領域に制限することができ、かつ安 価に製造することができる点発光型発光素子とその製造方法を提供することを第 1の目的とする。

また、本発明はニアフィールドパターンが良好な単一スポット光が得られ、発 光効率の高い集光点発光型発光素子を提供することを第2の目的とする。

本発明に係る点発光型発光素子は、上記第1の目的を達成するために、基板上 に、それぞれ半導体からなるn型層、活性層及びp型層が積層されてなるストラ イプリッジを有し、そのストライプリッジの一端面から光を出力する発光素子で あって、

上記ストライプリッジは上記一端面に凸部を有しかつ、発光素子の表面が上記 凸部の先端面を除いて遮光膜により覆われていることを特徴とする。

以上のように構成された本発明に係る点発光型発光素子は、発光素子の表面が 上記凸部の先端面を除いて遮光膜により覆われているので、上記凸部の先端面の みに発光点を制限することができる。

したがって、本発明によれば、上記凸部の先端面のみから光を放射することが でき、その凸部の幅を、形成すべき発光領域に対応させて設定することにより、 極めて微小な発光点を有する発光素子を提供することができる。

また、発光素子の表面が上記凸部の先端面を除いて遮光膜により覆われている ので、上記凸部の先端面以外の部分からの光の漏れを抑えることができ、発光効 率を高くすることができる。

また、本発明に係る点発光型発光素子では、上記n型層、活性層及びp型層を それぞれ、窒化物半導体により構成することができ、これにより、比較的波長の 短い光を発光して出力することができる。

また、本発明に係る点発光型発光素子の製造方法は、第1の目的を達成するた

めに、基板上に複数の素子を形成して各素子ごとに分割することにより点発光型 発光素子を製造する方法であって、

基板上にn型層、活性層及びp型層を積層することと、

上記各素子に対応してそれぞれ、一端面に他の部分より幅の狭いネック部を有 するストライプリッジを形成することと、

少なくとも上記ストライプリッジの一端面と上記ネック部の上面及び両側面に 遮光膜を形成することと、

上記ネック部において上記ストライプリッジの長手方向に直交する方向に素子 を分割することとを含むことを特徴とする。

このように構成された本発明に係る点発光型発光素子の製造方法によれば、発 光点がリッジストライプの先端部分の狭い範囲に制限された発光素子を容易に作 製することができ、極めて微小な発光点を有する発光素子を安価に製造すること ができる。

また、上記第2の目的を達成するために、本発明に係る集光点発光型発光素子は、活性層がその活性層よりバンドギャップの大きいn型半導体層とp型半導体層との間に設けられてなるダブルヘテロ構造の半導体積層構造を有し、上記p型半導体層表面の一部分の発光点から光を出射する面発光型発光素子において、

上記発光点の直下に位置する半導体積層構造の内部に、光を上方に反射又は屈 折させる錐体面を有しかつ、

上記半導体積層構造は上記錐体面を中心として複数の発光領域に分離され、その各発光領域において該発光領域で発光した光を上記錐体面に向かって導波させるように該発光領域より幅の狭いリッジが上記p型半導体層に形成されたことを特徴とする。

以上のように構成された本発明に係る集光点発光型発光素子は、上記各発光領域に導波路が形成されているので、各発光領域で発光された光は導波路により発光点の方向に導波され、錐体面により反射又は屈折されて狭い領域から出力することができ、点光源として利用できる。

また、本発明に係る集光点発光型発光素子では、上記各発光領域で発生された光が集光されて出力されるので、輝度の高い発光が可能になる。

さらに、本発明に係る集光点発光型発光素子では、光を狭い領域に集光して出 力できるので、ニアフィールドパターンが良好な単一モードのスポット光を実現 できる。

また、本発明に係る集光点発光型発光素子において、上記複数の発光領域は、 上記発光点とその近傍を除く上記半導体積層構造において、隣接する発光領域の 間を上記n型半導体層の途中までエッチングされることにより互いに分離し、そ のエッチングにより露出されたn型半導体層上にそれぞれn電極を形成するよう にして構成することができる。

また、本発明に係る集光点発光型発光素子において、上記錐体面は、上記積層 構造に形成された光の出射方向に頂点を有する錐体空洞により構成することがで きる。

さらに、木発明に係る集光点発光型発光素子において、上記錐体面はまた、上 記積層構造において少なくともn型半導体層に達するように形成された光の出射 方向に向かって広がった錐形状の凹部に上記活性層より屈折率の高い透光性部材 を充填することにより構成することができる。

また、本発明に係る集光点発光型発光素子において、上記錐体面は円錐面であ ることが好ましく、これにより、真円に近いスポット光が得られる。

図面の簡単な説明

図1は、本発明にかかる実施の形態1の窒化物半導体発光素子の構成を示す斜 視図である。

図2は、本発明にかかる実施の形態1の窒化物半導体発光素子の製造工程にに おいて、サファイア基板上に素子を構成する窒化物半導体層を形成した後の斜視 図である。

図3は、本発明にかかる実施の形態1の窒化物半導体発光素子の製造工程にに おいて、リッジストライプ及び各素子領域をエッチングにより形成した後の斜視 図である。

図4は、本発明にかかる実施の形態1の窒化物半導体発光素子の製造工程にに おいて、p電極及びn電極を形成した後の斜視図である。

図5は、本発明にかかる実施の形態1の窒化物半導体発光素子の製造工程にに おいて、pパット電極及びnパット電極を形成した後の斜視図である。

図6は、本発明にかかる実施の形態1の窒化物半導体発光素子の製造工程にに おいて、素子上面を覆うように遮光膜を形成した後の斜視図である。

図7は、本発明にかかる実施の形態1の窒化物半導体発光素子における、リッ ジストライプの先端部分を拡大して示す斜視図である。

図8は、本発明に係る実施の形態2の集光点発光型発光素子の部分平面図であ る。

図9は、図8のA-A'線についての断面図である。

図10は、図8のB-B'線についての断面図である。

図11は、本実施の形態2の集光点発光型発光素子の製造方法において、半導 体積層構造を成長させた後の断面図である。

図12は、本実施の形態2の集光点発光型発光素子の製造方法において、半導 体積層構造に発光領域を形成した後の平面図である。

図13は、本実施の形態2の集光点発光型発光素子の製造方法において、各発 光領域にリッジを形成した後の平面図である。

図14は、本実施の形態2の集光点発光型発光素子の製造方法において、各発 光領域にp電極を形成し、発光領域の間にn電極を形成した後の平面図である。

図15は、本実施の形態2の集光点発光型発光素子の製造方法において、発光 領域を埋めるように絶縁膜113を形成した後の平面図である。

図16は、本実施の形態2の集光点発光型発光素子の製造方法において、全て の発光領域のp電極を接続するpパッド電極を形成した後の平面図である。

図17は、本実施の形態2の集光点発光型発光素子の電極配置を示す平面図で ある。

図18は、本発明に係る変形例の屈折錐体面の構成を示す断面図である。

図19は、本発明に係る変形例の発光領域を示す平面図である。

図20は、本発明に係る変形例の空洞152b(上部が開口したもの)の構成 を示す断面図である。

図21は、上部が閉じた空洞を用いた場合(a)と上部が開口した空洞を用い

た場合(b)の光が出射される様子を示す模式的な断面図である。

発明の実施の形態

以下、図面を参照しながら、本発明に係る実施の形態の点発光型発光素子につ いて説明する。

実施の形態1.

本発明に係る実施の形態1の点発光型発光素子は、窒化物半導体発光素子であ って、図1に示すように、例えば、サファイアからなる基板10上に、バッファ 層11を介して、それぞれ窒化物半導体からなるn型層12、活性層13及びp 型層14が積層されてなりその一端面に凸部21aを有するストライプリッジ2 0 が形成され、その凸部 2 1 a の先端面を除いて実質的に全て遮光膜 3 1 により 覆われていることを特徴とし、以下のように製造される。

まず、図2に示すように、基板10の上に、例えば、低温で成長されたGaN 層からなるバッファ層11、例えば、SiがドープされたGaNからなるn型層 12、例えば、InGaNからなる活性層13、例えば、MgがドープされたG a Nからなるp型層14を順次積層する。

次に、各素子に対応する領域にそれぞれストライプリッジ20を形成しかつ各 素子領域を定義するために以下のように2段階でエッチングをする。

すなわち、第1エッチングでは、ストライプリッジ20を形成する領域に第1 マスクを形成して、第1マスクが形成されていない部分を反応性イオンエッチン グ(RIE)を用いてn型層12の途中までエッチングする。この第1エッチン グのために形成する第1マスクは、ストライプリッジ20の一端面側のへき開面 の前後に対応する部分の幅が他の部分に比較して狭くなるように形成され、これ により、エッチング後にストライプリッジ20の一端面に連続して形成された幅 の狭いネック部21が形成される。

尚、ストライプリッジ20の長軸とネック部21の長軸とは一致していること が好ましい。

ここで、ストライプリッジの幅としては、特に限定されないが、好ましくは、 1μm以上100μm以下の範囲とし、より好ましくは、5μm以上50μm以 下の範囲とする。これは、1μm以下であると、エッチングによりストライプリ ッジ20、及びそれよりも幅の狭いネック部21の形成を精度良く実施すること が困難となり、100μm以上のストライプ幅では、活性層内で発生した光が幅 の広いリッジ20内を導波する際、窒化物半導体による光の損失が、大きくなる からである。また、5μm以上であると、エッチングにより精度良くリッジスト ライプ20及びそれよりも幅の狭いネック部21が形成でき、50μm以下であ ることにより、上記光の損失をより低く抑えて、一端面から光を出射させること ができる。ここでは、20μmの幅で形成する。

本発明において、ネック部21の幅としては、特に限定されず、上述したよう に、所望の微小光源となるように、適宜ストライプ幅、特に最後に得られる一端 面の幅を決定すればよい。好ましくは、ネック部21のストライプ幅を、1μm 以上10μm以下の範囲とする。このように範囲を設定した理由は、1μm未満 では、エッチングで精度良くネック部21を形成することが難しくなり、10μ mより大きいと、微小光源として適さない傾向にあるからである。ここでは、ネ ック部 2 1 の幅を 2 ~ 3 μ m の範囲とする。加えて、ネック部 2 1 の長手方向に おける長さについても、本発明では特に限定されず、一端面を得るために劈開す る際に、劈開可能な長さとすれば良く、具体的には、好ましくは1μm以上50 μm以下の範囲、より好ましくは5μm以上30μm以下の範囲に設定する。こ れは、 1μ m以下である場合は上記エッチング精度による問題があり、 5μ m以 上とすることで不良の少ないネック部21でのへき開が可能になる。すなわち、 サファイア基板のように、窒化物半導体と異なる材料を用いた劈開において、劈 開位置がずれる場合があり、ネック部21内で劈開されない劈開不良が5μm未 満では多く発生するおそれがあるが、5 µ m以上とすることでこれを回避できる 。また、50μmより大きくしても劈開不良数を増加させることなく劈開できる が、ウエハ1枚当たりのチップ数を減らすことになり、30μm以下とすること で、良好な劈開、良好な歩留まりを実現でき、しかも一定以上の取り個数を確保 できる。ここでは、例えば、10μmの長さで形成する。

第2エッチングでは、第1エッチングに用いたマスクはそのままにして、素子 を分離するための分離領域を除いて第2マスクを形成して、分離領域の窒化物半 導体層をバッフア層11の途中又は基板10の表面までRIEにより除去する。

このように、2段階のエッチングにより最終的に分離される各素子にそれぞれ 対応し、それぞれストライプリッジ20とネック部21とを有する素子領域が形 成される(図3)。

次に、図4に示すように、ストライプリッジ20のp型層14の上にp型オー ミック電極41を形成し、ストライプリッジ20の一方の側面の外側に露出した n型層の表面にn型オーミック電極43を形成する。

そして、各素子領域のp型オーミック電極41の上面とn型オーミック電極4 3の上面とを除いて、実質的にウエハ全体を覆うようにSiO₂膜を形成する(図示せず)。次に、そのSiO₂膜により開口されたp型オーミック電極41と 接するようにpパッド電極42を形成し、SiO2膜により開口されたn型オー ミック電極43と接するようにnパッド電極44を形成する(図5)。

ここで、図5に示すように、nパッド電極44はn型オーミック電極43に重 なるように形成し、pパッド電極42は、ストライプリッジ20の上面において pオーミック電極と接触しかつその部分からストライプリッジ20の他方の側面 及びその側面の外側に位置するSiO₂膜の上に延在するように形成される。

次に、nパッド電極44とその周辺及びpパッド電極42とその周辺とを覆う ようにマスクを形成して、ウエハ全体にCェ/Au(Cェを薄く形成した後Au を形成したもの)からなる金属膜(遮光膜)を蒸着又はスパッタリング装置を用 いて形成する。このようにして、ストライプリッジ20の一方の側面、ネック部 21の両側面を含むウエハ上のほぼ全面に遮光膜31を形成する。

この状態で、ウエハの上面は、nパッド電極44とその周辺及びpパッド電極 42の周辺のわずかな部分を除いて、nパッド電極44、pパッド電極42及び 遮光膜31のいずれかで覆われていることになる。

ここで、遮光膜31とnパッド電極44及びpパッド電極42とは、nパッド 電極44の周り及びpパッド電極42の周りで電気的に分離されている。

次に、以下のようにして各素子ごとに分割して、分割された後の基板10の側 面に遮光膜31を形成する。

まず、ウエハの上面に遮光膜31を形成したウエハを、感熱シートに電極面(

表面)を対向させて貼り付けて、ウエハの裏面をスクライブする。

ここで、リッジストライプ20の長手方向に垂直なスクライブラインの形成位 置は、ネック部21の中央部でネック部21と直交するように形成する。

次に、スクライブしたウエハ裏面をダイボンドシートに貼り付けた後、感熱シ ートをウエハの表面から剥がす。

そして、ダイボンドシートを等方向にかつ均一に引き伸ばすことにより、個々 の素子チップに分割しかつ隣接するチップ間に間隔を作る。

ここで、この分割後の各チップの凸部21aの先端の端面は、ウエハ上面に遮 光膜31を形成した後に分割されたへき開面であるので、遮光膜は形成されてい ない。

次に、チップ間の間隔が変化しないようにして、10μmの厚さの粘着層を有 する粘着シートの粘着層に各チップの電極面を押しつけて粘着させ、ダイボンド シートをはがす。この段階で、各チップはサファイア基板11の裏面を上にして 、互いに一定の間隔を隔てて粘着シート上に並んだ状態になる。また、各チップ はその電極面が粘着シートの粘着層に比較的大きな力で押しつけられ、粘着シー トにしっかり固定されるとともに、後述の基板裏面及び側面に遮光膜を形成する 工程において各チップの上面、特に、各チップの凸部21aの先端の端面に遮光 膜が形成されないようにマスクする機能も有している。

次に、粘着シート上に、基板裏面を上にして所定の間隔で並んだチップを蒸着 又はスパッタリング装置にセットして、Cr膜(例えば600Å)及びAu膜(例えば2400Å) を順次形成する。このようにして、遮光膜31が基板の裏面 及び側面に形成される。

以上のような工程により、分割された後のチップ状態において、ストライプリ ッジ20の一端面に突出して形成された凸部21aの先端端面を除いて実質的に 全て、遮光性のあるnパッド電極44、pパッド電極42及び遮光膜31のいず れかで覆われた窒化物半導体発光素子を作製することができる。

これにより、ストライプリッジ20の一方の端面において、さらに凸部21a の先端端面の限られた領域から発光させることが可能な点発光型発光素子を提供 できる。

また、本実施の形態1の凸部21aの先端端面から発光させる点発光型発光素 子は、凸部21aの幅を狭く形成することにより、発光点を極めて狭い微小領域 に容易に制限することができる。

すなわち、ストライプリッジの端面に遮光膜を所定のパターンに形成して発光 領域を制限することは困難であるが、木実施の形態1の構成及び製造方法では、 ストライプリッジの端面に連続してストライプリッジより幅の狭いネック部21 を形成して、遮光膜を形成した後にネック部21においてへき開するという独特 の手法を用いることにより、ストライプリッジの発光端面においてさらに発光点 を狭い領域に制限しているので、容易に発光点を微小領域に制限できる。

以上、本発明の実施の形態1について説明したが、本発明は上述の実施の形態 1に限定されるものではなく、以下のように種々の変形が可能であり、かつ種々 の材料を適用することができる。

実施の形態1の変形例.

本発明に用いる基板としては、窒化物半導体と異なる材料よりなる異種基板と しては、例えば、C面、R面、及びA面のいずれかを主面とするサファイア、ス ピネル (MgA1₂O₄) のような絶縁性基板、SiC (6H、4H、3Cを含 む)、ZnS、ZnO、GaAs、Si、及び窒化物半導体と格子整合する酸化 物基板等、窒化物半導体を成長させることが可能で従来から知られており、窒化 物半導体と異なる基板材料を用いることができる。好ましい異種基板としては、 サファイア、スピネルが挙げられる。また、GaN、A1N等の窒化物半導体基 板を用いても良い。

基板上に形成する窒化物半導体としては、III-V族窒化ガリウム系化合物 半導体として知られている材料を用いることができ、例えば、 $In_xAl_yGa_1$ $_{-x-y}$ N (0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq x+y \leq 1)、さらにはIII族元素 にBを加えたり、V属元素のNの一部をAs、Pで置換したInAlGaBN、 InAlGaNP、InAlGaNAsにも適用できる。活性層としてはIn。 $Al_vGa_{1-u-v}N$ (0 < u < 1, 0 \le v < 1, 0 \le u + v < 1) を用いること で良好な発光層が得られる。本発明の窒化物半導体に用いるn型不純物としては

、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素を用 いることができ、好ましくはSi、Ge、Snを、さらに最も好ましくはSiを 用いることで、良好なキャリアを生成することができる。また、p型不純物とし ては、特に限定されないが、Be、Zn、Mn、Cr、Mg、Caなどが挙げら れ、好ましくはMgが用いられる。これにより、n型層、p型層を構成するn型 窒化物半導体、p型窒化物半導体を形成する。

また、本発明におけるストライプリッジ20とネック部21との関係について は、上述したように、リッジストライプ20より幅を狭くして、所望の形状、大 きさの微小光源を得るようにネック部を設けるものであるが、図3等に示した形 状に限定されるものではない。

すなわち、リッジストライプ20、ネック部21は、図3で示すように、幅が ほぼ一定のストライプとして形成しても良いが、ストライプの長手方向の位置に 応じて、幅が異なるようにしたテーパ状としても良い。具体例としては、リッジ ストライプ20を、長手方向において、ネック部21及び一端面側に向かうに従 って、幅が狭くなるテーパ状のストライプとすることで、ストライプリッジ20 からの光をネック部21に集光するようにして、光の取り出し効率を向上させて も良い。これらテーパ処理は、リッジストライプ20の長手方向の全ての領域に わたって、形成されても良く、部分的に、例えば上記例では、ネック部21との 連結部から長手方向にストライプ20の一部に設けるようにしても良い。ネック 部21についても、同様の形状を用いることができる。

更に、本発明のリッジストライプ20について、例えば図3に示すように、リ ッジストライプ20は、n型層12の途中までの深さで設けられているが、本発 明はこれに限らず、活性層よりも上で、すなわち、活性層13に達しない深さで エッチングして、リッジストライプ20を設ける構造でも良い。活性層13より も上にリッジストライプ20を形成すると、活性層13を露出させて大気暴露さ せることによる活性層材料の劣化を抑えた構造とでき、特にストライプ幅が10 μm以下の狭ストライプとする場合に活性層13の劣化を防止する効果が顕著に 表れる。一方で、ネック部21は、一端面を設けて、それを出射面として所望の 微小光源とするため、好ましくは活性層13よりも深くn型層に達する深さで形 成することが好ましい。このように、ネック部21におけるエッチングの深さと リッジストライプ20の両側をそれぞれの機能に応じて変えてもよい。

本発明のリッジストライプ20とネック部21との連結部において、例えば図 3に示すように、リッジストライプ20の長手方向にほぼ垂直な面でもって連結 しているが、本発明はこれに限らず、この連結部が長手方向に対して90°より も小さい角度で交差するように、例えば、前記テーパ処理を連結部に施すなどの ような形態を採ることも可能である。こうすることで、リッジストライプ20か らネック部21への光の導波を効率よくすることができ、連結部での反射による 光の損失を抑えて、光取り出し効率を向上させることができる。

さらに、遮光膜31としては、発光素子からの光を遮光できる膜であれば特に 限定されるものではなく、光吸収膜であるTiO、SiOあるい、金属膜である Cr、Ti/Pt、Ti、Ni、Al、Ag、Auを挙げることができ、これら からなる群から選択される少なくとも一種の材料を用いる。また、SiO₂、T iO₂、ZrO₂、ZnO、Al₂O₃、MgO、ポリイミドからなる群の少なく とも一種用いることであり、 $\lambda / 4 n$ (λ は波長、nは材料の屈折率)の膜厚で 積層した誘電体多層膜としても良い。

さらに、本発明は窒化物半導体に限定されるものではない。

以上のように、本発明は、種々の変形及び材料の適用が可能であり、このよう に変形しても実施の形態1で説明した効果が得られる。

実施の形態 2.

次に、図面を参照しながら、本発明に係る実施の形態2の集光点発光型発光素 **孒について説明する。**

本実施の形態2の集光点発光型発光素子は、図8に示すように、それぞれ発光 点150を中心として放射状に形成された複数の発光領域200を備え、各発光 領域200で発光した光はそれぞれ各発光領域200に形成された導波路を介し て上記放射状の中心近傍まで導波されて発光点150から出射される。

本実施の形態2の集光点発光型発光素子において、各発光領域200は、基板 101上にバッファ層102、n型コンタクト層103、n型クラッド層104

、活性層105、p型クラッド層106、p型コンタクト層107が順次積層さ れてなる半導体積層構造を、発光点150を中心として放射状に n型コンタクト 層103が露出するまでエッチングをすることにより形成される(図8~図10) 。

これにより、それぞれ基板101上に形成されたバッファ層102、n型コン タクト層103、n型クラッド層104、活性層105、p型クラッド層106 、p型コンタクト層107が順次積層されてなる半導体積層構造と発光点150 に向かう長手方向を有する複数の発光領域200が放射状に形成され、隣接する 発光領域200の間にはn型コンタクト層103が露出される(図8,図10)

ここで、本実施の形態2において、活性層105は例えばInGaNからなり 、n型クラッド層104及びp型クラッド層106は活性層105よりバンドギ ャップの大きい例えばAIGaNからなり、各発光領域200はダブルヘテロ構 造を有する。本実施の形態2において、活性層105としては多重量子井戸構造 や単一量子井戸構造など種々の構造を用いることができ、n型クラッド層104 及びp型クラッド層106のAlの混晶比は縦方向の光閉じ込め等を考慮してを 適切な値に設定することができる。すなわち、縦方向の光閉じ込めを向上させる ためにはA1の混晶比を高くすればよい。さらに本実施の形態2では、結晶性の 向上させるために、横方向成長等を利用して下地層を形成し、その上にn型クラ ッド層104、活性層105及びp型クラッド層106を成長させるようにする こともできる。

また、本実施の形態2の集光点発光型発光素子の各発光領域200では、p型 半導体層(p型クラッド層106とp型コンタクト層107)において、所定の 幅に中央部が残るようにその両側をp型クラッド層106の途中までエッチング して除去することによりリッジ130が形成され、絶縁膜108の開口部を介し てそのリッジ130の上面(リッジ130におけるp型コンタクト層107の表 面) のみにオーミック接触するp電極111が形成される(図8,図10)。

これにより、リッジ130の直下に位置する活性層の実効屈折率がその両側の 活性層より高くなってリッジ130の直下に発光した光が閉じ込められて、リッ ジ130に沿って光が導波される。

このリッジの幅は光を効果的に導波させるために好ましくは、 $1 \mu m \sim 5 \mu m$ より好ましくは1.5 µm~3 µmの範囲に設定する。

尚、厚み方向の光の閉じ込めは、活性層105が屈折率の小さいn型クラッド 層104及びp型クラッド層106に挟まれることにより実現される。

また、本実施の形態2において、各発光領域200の発光点150と反対側に 位置する他方の端面(例えば、モニター用に利用されるので、以下、モニター側 端面という。)には、導波光を反射させるためのミラー膜が形成されることが好 ましい。このようにモニター側端面にミラー膜を形成すると、その端面で反射さ れた光を発光点150から出力できるので、不用な放射による損失を低減でき、 出射効率を向上させることができる。また、この場合、条件によってはモニター 側端面で反射した光を増幅して発光点から出力することができ、より効果的に出 射できる。このミラー膜は、例えば、SiO2膜とTiO2膜とからなる誘電体 多層膜で構成することができ、この場合、膜厚は $n\lambda/4$ (n=1, 2, 3・・ 、λは誘電対中における光の波長)に設定することが好ましく、良好な反射特 性を得るために2ペア以上積層することが好ましい。さらに、本実施の形態2に おいては、ミラー膜を後述の絶縁膜113と共通の材料で同一工程で一度に形成 することが好ましく、これにより製造工程を簡略化でき製造コストを低減できる

本実施の形態2において、n電極112は隣接する発光領域200の間に露出 されたn型コンタクト層103上にそれぞれ形成される(図8,図10)。

また、本実施の形態2において、発光点150の直下の半導体積層構造内部に は、図9に示すように、出射方向に頂点を有する円錐形状の空洞152が形成さ れ、各発光領域200で発光して導波された光はその空洞152の錐体面153 により上方に反射されて p 電極 1 1 1 の 開口部 (発光点 1 5 0) を介して出力さ れる。

次に、本実施の形態2の集光点発光型発光素子の製造方法について、具体的な 材料を例示しながら説明する。

(マスク151形成工程)

本製造方法ではまず、図11に示すように、基板101上に空洞152を形成 するためのマスク151を形成する。

ここで、本実施の形態2では、基板101として、C面、R面又はA面を主面 とするサファイア、スピネル($MgAl_2O_4$)等の絶縁基板、SiC(6H,4H, 3Cを含む)、Si、Zn、GaAs、GaN等の半導体基板を用いるこ とができるが、窒化物半導体を用いる場合には、窒化物半導体を結晶性良く成長 させることができるサファイア基板又はGaN基板を用いることが好ましい。

また、基板101としては、上に積層される半導体層に比較して0.2以上屈 折率が小さいことが好ましい。

また、マスク151は、後の半導体層を成長させる時に1000℃又はそれ以 上の高温に曝されることから、そのような高温において分解されることがなく、 かつマスク151上には半導体層が成長しない材料を用いて形成する必要が有り 、例えば、 SiO_2 、SiN、W等を用いることができる。

また、マスク151は円形(円柱形状)に形成されることが好ましく、これに より、半導体積層構造中に円錐形状の空洞152を形成することができ、真円に 近いスポット光を形成できる。

また、マスク151の径は、必要な(要求される)スポット径に対応して決定 されるが、良好な単一モードの光を得るためには、マスク径は好ましくは0.5 μ m ~ 20 μ m の範囲、より好ましくは 1 μ m ~ 10 μ m の範囲に設定する。

(半導体層成長工程)

次に、マスクが形成された基板101上に、

例えば、GaNからなる厚さ200Åのバッファ層102、

例えば、 $Siが4.5 imes 10^{18}/cm^3$ ドープされたn型GaNからなる厚さ 4 μ mのn型コンタクト層103a、

例えば、Siが1×10¹⁸/cm³ドープされたAlo.1Gao.9Nからなる 厚さ1μmのn型クラッド層104a、

例えば、In_{0.37}Ga_{0.63}Nからなる厚さ0.09μmの活性層 105a、 例えば、Mgが2×10¹⁸/cm³ドープされたAlo.1Gao.9Nからなる 厚さ0.5μmのp型クラッド層106a、

例えば、Mgが1×10¹⁸/cm³ドープされたp型GaNからなる厚さ15 OAのp型コンタクト層107aを順次成長させる(図11)。

以上の工程により、図11に示すように、マスク151上に円錐形状の空洞1 52を有する半導体積層構造が形成される。

(発光領域形成エッチング)

次に、半導体積層構造上に、プラズマCVD法により、膜厚が 0.5 μmのS iO。膜を形成する。続いて、フォトリソグラフィー技術を用いてマスク51の 中心軸上に頂点を有する複数の扇形のパターンを放射状に形成して、上記SiO 。膜を例えばRIE法でエッチングする。さらに、上記SiO2マスクが形成さ れていない部分をn型コンタクト層103が露出するまで例えばRIE法でエッ チングすることにより、複数(本実施の形態では48個)の扇形の発光領域20 0を形成する(図5)。ここで、発光領域200の扇形の半径と頂点の角度は互 いに同一に設定され、頂点近傍では分離されずに一体化されている。マスクの材 質は上記SiO2の他にSiN等の誘電体膜、レジストマスクを用いても良い。 また、プラズマCVD法の他にマグネトロンスパッタ法、ECR法等で成膜する こともできる。

(リッジ形成)

次に、各発光領域200の上面にそれぞれリッジを形成するためのエッチング マスク(例えば、SiO。)を一定の幅(例えば、2μm幅、0.5μmの膜厚)に形成して、各発光領域においてそのエッチングマスクの両側をp型クラッド 層106の途中までエッチングにより除去することにより、各発光領域200に おいてリッジ130を形成する(図13)。

(p 電極形成)

次に、各発光領域200においてリッジの上面のみを露出させて他の部分を覆 う絶縁層(例えば、膜厚が0.2μm以下の2rO2)8を形成して、図14に 示すように、その上から露出されたリッジの上面のみとオーミック接触するよう にp電極111を形成する。

ここで、p電極111は、p型GaN層と良好なオーミック接触が可能な例え ば、Ni(100Å)/Au(1500Å)を用いて形成される。

(n 電極形成)

次に、隣接する発光領域の間に露出されたn型コンタクト層103の上にn電 極112を形成する(図14)。

ここで、n電極112は、n型GaN層と良好なオーミック接触が可能な例え ば、Ti(100Å)/A1(5000Å)を用いて形成される。

尚、n電極112は、各発光領域の外周端(外側の円弧)から所定の間隔を隔 てた外側(発光点を中心とし扇型の発光領域の半径より若干大きい半径の円の外 側)のn型コンタクト層の上においては全面に形成され(全面電極部)、発光領 域間に形成された複数のm電極112は互いにその全面電極部で電気的に導通さ れる。好ましくはn電極を形成した後、700℃以下の温度でアニールを行う。

また、全面電極部分は、外部回路との接続に用いられる。

(絶縁膜113形成)

次に、p電極111の上面を除いた発光領域及び発光領域の間と外側に露出さ れたn型コンタクト層103を全て覆う絶縁膜113を、各発光領域の間を埋め るように形成する(図10、図15)。

尚、絶縁膜113は、n電極112の全面電極部分の内周及び外周の一部を覆 うように形成する。すなわち、絶縁膜113はn電極112の全面電極部分の主 要な部分を露出させるように形成され、全面電極部分の露出した領域は外部回路 との接続用に用いられる。

本実施の形態2においては、絶縁膜113は各発光領域200の端面のミラー 膜を兼ねるために、低屈折率材質層と高屈折率材質層とを組み合わせた多層膜と し、例えば、(SiO。/TiO。)を2ペア以上で構成した誘電体多層膜とす る。この構成では、ペア数を増やすことで反射率を増加させることができる。絶 縁膜113を構成する多層膜において、上述の例では低屈折率材質としてSiO ₂を用い、高屈折率材質としてTiO。、を用いたが、本発明はこれに限定され るものではなく、以下のような材料を用いてミラー膜を兼ねた多層膜を構成でき る。すなわち、低折率材質膜としてはSiO。以外に、MgF。、Al。O。、S iON、MgO等があり、高屈折率材質としてはTiO2以外に、ZrO2、N b₂O₅、Ta₂O₅、SiN_x、AlN、GaN等があり、これらの組み合わせに

より、発光波長において光の吸収の無い誘電体多層膜を構成できる。

(ロパッド電極形成)

次に、図16に示すように、露出したp電極111を接続するための円形(発 光点を中心とし扇形の発光領域半径にほぼ等しい円)の部分121aとその円形 の部分21aにネック部21cを介して接続されたパッド部121bとからなる pパッド電極121を形成する。 pパッド電極には例えば、Ni (1000Å) /Ti(1000Å)/A1(8000Å)を用いる。

(nパッド電極形成)

次に、n電極112に電気的に接続するボンディング用のnパッド電極122 を露出したn電極112上に形成する。nパッド電極には例えば、Ni(100 `0Å) /Ti(1000Å) /A1(8000Å) を用いる。

以上のようにして、図17に示す電極配置を有する本実施の形態2の集光点発 光型発光素子が製造される。

以上のように構成された実施の形態2の集光点発光型発光素子は、各発光領域 に導波路が形成されているので、各発光領域200で発光された光は導波路によ り発光点の方向に導波され、空洞152の円錐面により反射されてp電極に形成 された開口部である発光点150から出力される。

これにより、各発光領域200で発生された光が発光点150に集められて出 力されるので、輝度の高い発光が可能になる。

また、本実施の形態2の集光点発光型発光素子では、円錐形状の空洞152に より円錐形状の反射面が構成されているので、真円に近いスポット光が得られる

また、本実施の形態2の集光点発光型発光素子では、円形マスク151の径に より極めて小さい円錐形状の空洞152を容易に形成することができ、良好な単 一モードのスポット光を実現できる。

本実施の形態2の集光点発光型発光素子は、窒化ガリウム系化合物半導体素子 を用いて半導体積層構造を構成しているので、黄色、青色、紫色及び紫外光等の 比較的波長の短い領域のスポット光を発光することができる。

実施の形態2の変形例

以上の実施の形態2では、円錐形状の空洞152により円錐形状の反射面を形 成したが、本発明はこれに限られるものではなく、以下のようにして円錐形状の 屈折面を形成して、集光した光を発光点から出力するようにしてもよい。

すなわち、本発明では、図18に示すように、発光点直下の半導体積層構造に おいて、少なくともn型半導体層に達するように光の出射方向に向かって広がっ た錐形状の凹部を形成し、その凹部に活性層より屈折率の高い透光性部材152 a を充填する。

このようにすると、各発光領域において発光して発光点に向かって導波された 光が、凹部の円錐面において半導体層(主に活性層)と屈折率の高い透光性部材 152aとの間の屈折率差によって屈折して、透光性部材152aの中を上方に 進行する。

これにより発光点150を介して上方に出力される。

以上のように構成しても実施の形態2と同様の作用効果が得られる。

また、以上の実施の形態2では、各発光領域を発光点を中心として放射状に導 波路が直線になるように形成したが、本発明はこれに限られるものではなく、図 19に示すように、曲率を持った発光領域201を形成するようにして構成して もよい。

以上のように構成しても実施の形態2と同様な作用効果が得られ、かつ発光領 域の長さを長くできる。

以上実施の形態2の集光点発光型発光素子において、各発光領域はそれぞれ窒 化ガリウム系化合物半導体層からなるn型コンタクト層103、n型クラッド層 104、活性層105、p型クラッド層106、p型コンタクト層107が順次 成長されたダブルヘテロ構造としたが、本発明はこれに限られるものではなく、 少なくとも活性層が該活性層より屈折率の高い(バンドギャップの小さい層)に より挟まれた光を厚さ方向に閉じ込めることができる構造であればよい。

また、n型クラッド層104と活性層105の間及び活性層とp型クラッド層 106の間にそれぞれ、n型、p型光ガイド層が形成されていてもよい。

また、本実施の形態2では、発光領域を扇形に形成したが本発明はこれに限ら れるものではない。

さらに、以上の実施の形態2では、窒化ガリウム系化合物を用いて構成したが 、本発明はこれに限られるものではなく、GaAsやInGaP等の他の半導体 を用いて構成することもできる。

またさらに、以上の実施の形態2では、錐体面を円錐形状に形成したが、本発 明はこれに限られるものではなく、例えば、各発光領域の導波路を導波された光 が上方(面の垂直方向)に屈折又は反射されるように面の垂直方向に対して傾斜 した面をからなる多角錐体面であってもよい。

またさらに、実施の形態2では、一例として特定の半導体積層構造について説 明したが、本願はこれに限られるものではない。

例えば、上述の前記半導体積層構造の他に、マスクが形成された基板101上 に、AIGaNからなる厚さ200Å程度のバッファ層102、ノンドープn型 GaN層、Siが2. 5×10¹⁸/cm³ドープされたn型GaN層をトータル 厚さ 4μ mのn型コンタクト層103、 $In_xGa_{1-x}N$ (0. $1 \le x \le 0$. 1 5) からなり厚さ1000~1500Åのクラック防止層、GaNからなるクラ ッド層、Siドープで(InGaN/GaN)の超格子構造から成る膜厚200 O A以下のn型ガイド層、さらに発光層を(バリア層GaN/活性層InGaN /キャップ層GaN)を6ペアで形成後、ラストバリア層をGaNで形成する。 次に、MgドープA 1_x G a_{1-x} N($0 \le x \le 0$. 35)からなる厚さ100~ 350Åのp型キャップ層、Mgドープで(InGaN/GaN)の超格子構造 から成る膜厚2000Å以下のp型ガイド層、MgがドープされたGaNからな る厚さ6000A以下のp型クラッド層、Mgがドープされたp型GaNからな る厚さ150~200Aのp型コンタクト層を順次成長させた半導体積層構造と してもよい。

また、実施の形態2では、発光点150の下に頂点が閉じた(塞がれた)空洞 152を形成するようにしたが、本発明はこれに限られるものではなく、図20 に示すように、上部において開口した錐形状の空洞152b(錐体面153bを 有する)を用いて構成してもよい。

このように、上部で開口した空洞を用いて構成すると、図21(b)に示すよ うに空洞内に入射された光が空洞内に閉じ込められることなく出射されるので、

閉じた空洞152(図21(a))に比べて効率よく外部に出射できる。

特許請求の範囲

基板上に、それぞれ半導体からなるn型層、活性層及びp型層が積層さ れてなるストライプリッジを有し、そのストライプリッジの一端面から光を出力 する発光素子であって、

上記ストライプリッジは上記一端面に凸部を有しかつ、発光素子の表面が上記 凸部の先端面を除いて遮光膜により覆われていることを特徴とする点発光型発光 素子。

- 上記n型層、活性層及びp型層がそれそれ、窒化物半導体からなる請求 2. の範囲 1 記載の点発光型発光素子。
- 基板上に複数の素子を形成して各素子ごとに分割することにより点発光 型発光素子を製造する方法であって、

基板上にn型層、活性層及びp型層を積層することと、

上記各素子に対応してそれぞれ、一端面に他の部分より幅の狭いネック部を有 するストライプリッジを形成することと、

少なくとも上記ストライプリッジの一端面と上記ネック部の上面及び両側面に 遮光膜を形成することと、

上記ネック部において上記ストライプリッジの長手方向に直交する方向に素子 を分割することとを含むことを特徴とする点発光型発光素子の製造方法。

活性層がその活性層よりバンドギャップの大きいn型半導体層とp型半 導体層との間に設けられてなるダブルヘテロ構造の半導体積層構造を有し、上記 p型半導体層表面の一部分の発光点から光を出射する面発光型発光素子において

上記発光点の直下に位置する半導体積層構造の内部に、光を上方に反射又は屈 折させる錐体面を有しかつ、

上記半導体積層構造は上記錐体面を中心として複数の発光領域に分離され、そ の各発光領域において該発光領域で発光した光を上記錐体面に向かって導波させ るように該発光領域より幅の狭いリッジが上記p型半導体層に形成されたことを 特徴とする集光点発光型発光素子。

上記複数の発光領域は、上記発光点とその近傍を除く上記半導体積層構

造において、隣接する発光領域の間が上記n型半導体層の途中までエッチングさ れることにより互いに分離され、そのエッチングにより露出されたn型半導体層 上にそれぞれれ電極が形成された請求の範囲4記載の集光点発光型発光素子。

- 上記錐体面は、上記積層構造に形成された光の出射方向に頂点を有する 錐体空洞の錐体面により構成されている請求の範囲4記載の集光点発光型発光素 子。
- 上記錐体面は、上記積層構造において少なくともn型半導体層に達する 7. ように形成された光の出射方向に向かって広がった錐形状の凹部に上記活性層よ り屈折率の高い透光性部材が充填されることにより構成されている請求の範囲 4 記載の集光点発光型発光素子。
 - 上記錐体面は円錐面である請求の範囲4記載の集光点発光型発光素子。 8.
- 上記錐体面は、上記積層構造に形成された光の出射方向に頂点を有する 錐体空洞により構成されている請求の範囲5記載の集光点発光型発光素子。
- 上記錐体面は、上記積層構造において少なくともn型半導体層に達す るように形成された光の出射方向に向かって広がった錐形状の凹部に上記活性層 より屈折率の高い透光性部材が充填されることにより構成されている請求の範囲 5記載の集光点発光型発光素子。
 - 上記錐体面は円錐面である請求の範囲5記載の集光点発光型発光素子 11.

【要約書】 発光点を十分小さい微小領域に制限することができ、かつ安価に製造することができる点発光型発光素子を提供するために、基板上に、それぞれ窒化物半導体からなるn型層、活性層及びp型層が積層されてなるストライプリッジを有し、そのストライプリッジの一端面から光を出力する発光素子において、ストライプリッジの一端面に凸部が形成されるようにし、発光素子の表面を凸部の先端面を除いて遮光膜により覆うようにした。