ON A PROBLEM OF PÁLFY AND SAXL

WILLIAM DEMEO

1. Introduction

In the paper [1], Péter Pálfy and Jan Saxl pose the following

PROBLEM. Let **A** be a finite algebra with Con $\mathbf{A} \cong M_n$, $n \geqslant 4$. If three nontrivial congruences of **A** pairwise permute, does it follow that every pair of congruences of **A** permute?

These notes collect some notation and facts that might be useful for attacking this problem. Throughout, X denotes a finite set, $\operatorname{Eq}(X)$ denotes the lattice of equivalence relations on X and, for $\alpha \in \operatorname{Eq}(X)$ and $x \in X$, we denote by x/α the equivalence class of α containing x. We often refer to equivalence classes as "blocks," and we denote by $\#\operatorname{Blocks}(\alpha)$ the number of blocks of the equivalence relation α .

For a given $\alpha \in \text{Eq}(X)$ the map $\varphi_{\alpha} : x \mapsto x/\alpha$ is a function from X into the power set $\mathscr{P}(X)$ with kernel $\ker \varphi_{\alpha} = \alpha$. The block-size function $x \mapsto |x/\alpha|$ is a function from X into $\{1, 2, \ldots, |X|\}$.

We will often abuse notation and equate an equivalence relation with the corresponding partition of the set X. For example, we will equate the relation

$$\alpha = \{(0,0), (1,1), (2,2), (3,3), (0,1), (1,0), (2,3), (3,2)\}$$

with the partition [0,1|2,3], and often we resort to writing $\alpha = [0,1|2,3]$.

We say that α has uniform blocks if all blocks of α have the same size; or, equivalently, the block-size function is constant: for all $x, y \in X$, $|x/\alpha| = |y/\alpha|$. We will use $|x/\alpha|$, without specifying a particular $x \in X$, to denote this block size. Thus, when α has uniform blocks, we have $|X| = |x/\alpha| \cdot \# \text{Blocks}(\alpha)$.

We say that two equivalence relations with uniform blocks have *complementary* uniform block structure, or simply *complementary* blocks, if the number of blocks of one is equal to the block size of the other. In other words, if α and β are two equivalence relations on X with uniform block sizes $|x/\alpha|$ and $|x/\beta|$, respectively, then α and β have complementary blocks if and only if $(\forall x)(\forall y)|x/\alpha| \cdot |y/\beta| = |X|$.

Given two equivalence relations α and β on X, the relation

$$\alpha \circ \beta = \{(x, y) \in X^2 : (\exists z) x \alpha z \beta y\}$$

is called the *composition of* α *and* β , and if $\alpha \circ \beta = \beta \circ \alpha$ then α and β are said to permute, or to be permuting equivalence relations. Note that $\alpha \circ \beta \subseteq \alpha \vee \beta$ with equality if and only if α and β permute.

The largest and smallest equivalence relations on X are $1_X = X^2$ and $0_X = \{(x, x) : x \in X\}$, respectively.

 $Date \hbox{: November 13, 2013.}$

2. Basic observations

We say that α and β are *complementary* equivalence relations on X provided $\alpha \vee \beta = 1_X$ and $\alpha \wedge \beta = 0_X$.

Lemma 1. Suppose α and β are complementary equivalence relations on X. Then α and β permute if and only if they have complementary blocks. That is,

$$\alpha \circ \beta = 1_X \iff (\forall x)(\forall y) |x/\alpha| \cdot |y/\alpha| = |X|.$$

Corollary 1. Suppose α_1 , α_2 , α_3 are pairwise complementary equivalence relations on X. Then α_1 , α_2 , α_3 pairwise permute if and only if they all have uniform blocks of size $\sqrt{|X|}$. In other words,

$$(\forall i)(\forall j) (i \neq j \longrightarrow \alpha_i \circ \alpha_j = 1_X) \iff (\forall i)(\forall x) |x/\alpha_i| = \sqrt{|X|}.$$

In this case, we clearly have $|x/\alpha_i| = \#\text{Blocks}(\alpha_i)$.

Proof of Lemma 1. Assume $\alpha \circ \beta = \alpha \vee \beta = 1_X$. Then, for all $x \in X$ we have

(2.1)
$$x/(\alpha \circ \beta) = \coprod_{y \in x/\alpha} y/\beta = X,$$

where \coprod denotes disjoint union. The union is disjoint since $\alpha \wedge \beta = 0_X$. Since the union in (2.1) is all of X, every block of β must appear in the union, so the block x/α has exactly $\#\text{Blocks}(\beta)$ elements. Since x was arbitrary, α has uniform blocks of size $|x/\alpha| = \#\text{Blocks}(\beta)$. Similarly, $x/(\beta \circ \alpha) = \coprod_{y \in x/\beta} y/\alpha = X$, so $|x/\beta| = \#\text{Blocks}(\alpha)$ holds for all $x \in X$. Therefore, for all $x, y \in X$, we have

$$|x/\alpha| \cdot |y/\beta| = |x/\alpha| \cdot \#\text{Blocks}(\alpha) = |X|.$$

To prove the converse, suppose α and β are pairwise complements with complementary blocks. Then $|x/\alpha| \cdot |y/\beta| = |X|$, thus $|y/\beta| = |x/\alpha|^{-1} \cdot |X| = \# \mathrm{Blocks}(\alpha)$ hold for all $x, y \in X$. Therefore, for all $x \in X$, we have

$$|x/(\alpha \circ \beta)| = |\prod_{y \in x/\alpha} y/\beta| = \sum_{y \in x/\alpha} |y/\beta|$$
$$= \sum_{y \in x/\alpha} \#\text{Blocks}(\alpha)$$
$$= |x/\alpha| \#\text{Blocks}(\alpha) = |X|.$$

This proves that $\alpha \circ \beta = 1_X$, as desired.

Proof of Corollary 1. Since α_1 and α_2 permute and are complements, Lemma 1 implies they have complementary blocks, so

(2.2)
$$|x/\alpha_1| = |x/\alpha_2|^{-1} \cdot |X| = \#\text{Blocks}(\alpha_2).$$

(This holds for all $x \in X$. Recall that complementary blocks are always uniform.) Similarly, since α_1 and α_3 permute, we have $|x/\alpha_1| = |x/\alpha_3|^{-1} \cdot |X| = \# \text{Blocks}(\alpha_3)$. Therefore, $\# \text{Blocks}(\alpha_2) = \# \text{Blocks}(\alpha_3)$. Since α_2 and α_3 permute, we have

(2.3)
$$|x/\alpha_2| = |x/\alpha_3|^{-1} \cdot |X| = \#\text{Blocks}(\alpha_3),$$

and the latter is equal to $\#Blocks(\alpha_2)$. Therefore,

$$|X| = |x/\alpha_2| \cdot \# \text{Blocks}(\alpha_2) = |x/\alpha_2| \cdot |x/\alpha_2|.$$

Thus, $|x/\alpha_2| = \sqrt{|X|}$, so by (2.2) and (2.3) we have $|x/\alpha_i| = \sqrt{|X|} = \#\text{Blocks}(\alpha_i)$ for i = 1, 2, 3.

FIGURE 1. The graph defining the relation $\rho(\alpha_1, \alpha_2, \beta)$; that is, $(x, y) \in \rho(\alpha_1, \alpha_2, \beta)$ if and only if there exist $a, b \in X$ satisfying the relations in the diagram.

The converse is obvious, since if α_i and α_j are complementary equivalence relations on X with $|x/\alpha_i| = \sqrt{|X|}$, then $\#\text{Blocks}(\alpha_i) = \sqrt{|X|}$, so $\alpha_i \circ \alpha_j = 1_X$.

From Corollary 1 we see that the Pálfy-Saxl problem can be stated as

PROBLEM. Let **A** be a finite algebra with Con $\mathbf{A} \cong M_n$, $n \geqslant 4$. If three atoms of **A** have Property (2.4) below, does it follow that every atom has Property (2.4)?

(2.4)
$$(\forall x) |x/\alpha| = \sqrt{|X|} = \#\text{Blocks}(\alpha)$$

To prove that the answer is "yes," it will suffice to prove that if $M_n \leq \text{Eq}(X)$ has 3 atoms with Property (2.4) and an atom β with $|x/\beta| < \sqrt{|X|}$, then this M_n is not a congruence lattice.

3. Graphical Compositions

Suppose α_1 , α_2 , and α_3 are pairwise permuting pairwise complements (PPPC) in Eq(X), and let $\beta \in Eq(X)$ be complementary to each α_i , so that

$$L = \{0_X, \alpha_1, \alpha_2, \alpha_3, \beta, 1_X\} \cong M_4.$$

Define the relation $\rho = \rho(\alpha_1, \alpha_2, \beta) \subseteq X \times X$ as follows:

$$x \rho y \longleftrightarrow (\exists (a,b) \in \beta) \ x \alpha_1 \ a \alpha_2 \ y \alpha_1 \ b \alpha_2 \ x.$$

Graphically, $x \rho y$ if and only if there exist $a, b \in X$ satisfying the relations depicted in Figure 1.

It is clear that ρ is reflexive and symmetric but not transitive. Suppose $f \in X^X$ is a unary function that respects each relation $\theta \in \{\alpha_1, \alpha_2, \beta\}$ —that is, $(u, v) \in \theta \longrightarrow (f(u), f(v)) \in \theta$. Then f also respects ρ . (Consider the diagram in Figure 1, and give each vertex u the label f(u).)

Fact 1. If $L = \{0_X, \alpha_1, \alpha_2, \alpha_3, \beta, 1_X\} \cong M_4$, then

$$\alpha_1 \cap \rho(\alpha_1, \alpha_2, \beta) = 0_X = \alpha_2 \cap \rho(\alpha_1, \alpha_2, \beta),$$

$$\alpha_1 \cap \rho(\alpha_1, \alpha_3, \beta) = 0_X = \alpha_3 \cap \rho(\alpha_1, \alpha_3, \beta),$$

$$\alpha_2 \cap \rho(\alpha_2, \alpha_3, \beta) = 0_X = \alpha_3 \cap \rho(\alpha_2, \alpha_3, \beta).$$

Proof. Fix $(x,y) \in \alpha_1 \cap \rho(\alpha_1, \alpha_2, \beta)$ and suppose a and b satisfy the diagram in Figure 1. Then $(x,y) \in \alpha_1$ implies $(a,b) \in \alpha_1 \wedge \beta = 0_X$, so a=b. Therefore, $(x,y) \in \alpha_1 \wedge \alpha_2 = 0_X$, so x=y. Proofs of the other identities are similar.

4. Functions Derived from Graphical Compositions

Let $R_{1,2}^{\beta}$ be the relation on $X^2 \times X^2$ defined by

$$(a,b)$$
 $R_{1,2}^{\beta}(x,y) \longleftrightarrow (a,b) \in \beta$ and $x \alpha_1 \ a \alpha_2 \ y \alpha_1 \ b \alpha_2 \ x$.

Define $R_{1,3}^{\beta}$ and $R_{2,3}^{\beta}$ similarly. Graphically, (a,b) $R_{1,2}^{\beta}$ (x,y) holds if and only if the relations in Figure 1 are satisfied.

Lemma 2. Suppose α_i and α_j are complementary equivalence relations on X with uniform blocks of size $\sqrt{|X|}$. Then the relation $R_{i,j}^{\beta}$ restricted to $\beta \times X^2$ is a one-to-one function from β into X^2 .

Proof. First we note that each pair $(a,b) \in \beta$ has at most one image. For if (a,b) $R_{i,j}^{\beta}$ (x,y) and (a,b) $R_{i,j}^{\beta}$ (u,v), then $(x,u) \in \alpha_i \wedge \alpha_j = 0_X$ and $(y,v) \in \alpha_i \wedge \alpha_j = 0_X$, so (x,y) = (u,v).

Next, since both α_i and α_j have $\sqrt{|X|}$ blocks, and since each of these blocks has size $\sqrt{|X|}$, we see that each block of α_i intersects each block of α_j at exactly one point. That is, for all $a,b\in X$, the set $a/\alpha_i\cap b/\alpha_j$ is a singleton. Therefore, to each $(a,b)\in\beta$ there corresponds precisely one $(x,y)\in X^2$ such that (a,b) $R_{i,j}^\beta$ (x,y) holds. Specifically, $\{x\}=a/\alpha_i\cap b/\alpha_j$ and $\{y\}=b/\alpha_i\cap a/\alpha_j$. Thus, $R_{i,j}^\beta$ is a function.

From now on, we let $R_{i,j}^{\beta}((a,b))$ denote the image of (a,b) under $R_{i,j}^{\beta}$; that is, $R_{i,j}^{\beta}((a,b))$ denotes the ordered pair (x,y) satisfying (a,b) $R_{i,j}^{\beta}(x,y)$.

Suppose
$$R_{i,j}^{\beta}((a,b)) = R_{i,j}^{\beta}((c,d))$$
. Then $(a,c) \in \alpha_i \wedge \alpha_j = 0_X$ and $(b,d) \in \alpha_i \wedge \alpha_j = 0_X$, so $(a,b) = (c,d)$. Therefore, $R_{i,j}^{\beta}$ is one-to-one.

If, in addition to the assumptions of Lemma 2, we assume that the image of β under $R_{i,j}^{\beta}$ is contained in β , then $R_{i,j}^{\beta}:\beta\to\beta$ is a bijective involution. That is, $R_{i,j}^{\beta}$ is one-to-one and onto, and $R_{i,j}^{\beta}\circ R_{i,j}^{\beta}$ is the identity map.

To answer the Palfy-Saxl question affirmatively, it seems it would be enough to show that if $L = \{0_X, \alpha_1, \dots, \alpha_{n-1}, \beta, 1_X\} \cong M_n$ is a congruence lattice and if α_1, α_2 , and α_3 are PPPC, and if $R_{i,j}^{\beta}: \beta \to \beta$ for each $i \neq j$ in $\{1, 2, 3\}$, then the congruence relation β contains exactly $|\beta| = |X|^{3/2}$ ordered pairs, and thus has the same block structure as, and permutes with, α_i for $i \in \{1, 2, 3\}$.

References

[1] P. P. Pálfy and J. Saxl. Congruence lattices of finite algebras and factorizations of groups. Comm. Algebra, 18(9):2783–2790, 1990.