Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 10

- 1. Пусть $z = \frac{3\sqrt{3}}{2} \frac{3i}{2}$. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{2\sqrt{3} 2i}$ имеет аргумент $\frac{41\pi}{42}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-4+9i) + y(-8+3i) = 181 - 96i \\ x(5-7i) + y(-2+11i) = -77 - 148i \end{cases}$$

- 3. Найти корни многочлена $-3x^6+18x^5-129x^4+318x^3-450x^2-1560x+4056$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=1-5i, x_2=2+3i, x_3=-2$.
- 4. Даны 3 комплексных числа: -8-2i, -3-11i, -27-26i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 3$, $z_2 = \frac{3}{2} + \frac{3\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 4 - i| < 1 \\ |arg(z - 1 + 4i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-3, 0, -10), b = (2, -1, 4), c = (-2, 5, 8). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(12,-1,9) и плоскость P:-4x+4y+6z+32=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(11, 14, -10), $M_1(-2, 43, -10)$, $M_2(13, -2, -10)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 8x - 8y - 13z + 237 = 0 \\ -5x + 7y - 2z + 4 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 15y - 11z - 1312 = 0 \\ 18x - 8y + 15z - 886 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.