PBG 200A Notes

Sam Fleischer

December 2, 2016

- RAD (restriction site associated DNA) tags basic idea
 - can capture fairly reproducible parts of the genome without any a priori information
 - can roughly control the number of regions
 - radically simplifies genome assembly
 - * drastically reduce complexity of sample
 - * anchoring of sequencing reads at predictable sites
 - two levels of polymorphism
 - * presence/absense of tag
 - * sequence variotion in tag
 - Sticky ends

GAATTC
CTTAAG

↓
GAATT
C

- Experimiental design
 - main tradeoff: # of individuals vs. noumber of markers (for given depth \$)
 - how much depth do you need?
 - length and configuration of reads
 - main cost: RAD adaptor oligos
 - multiplex at an early stage to save money (this vastly simplifies the process)
- Genotyping and Genetic mapping
 - goals:
 - * identify the genes responsible for natural variation
 - * examine distribution of variation in time/space
 - approaches:
 - * marker identification and genotyping of recombinant progeny
 - * direct genotyping by sequencing
 - * individual genotyping vs Bulked Segregant Analysis
 - * Choice of approaches depends on the model, question, and resources.
- Conventional High-throughput genotyping
 - basic strategy
 - * identify genotypable polymorphisms prior to mapping
 - * obtain individual recombinant progeny
 - * genotype them for the polymorphisms of your choice
 - * do conventional QTL mapping

- In principle, does not require any prior resources (maps, genome sequence, organism-specific reasents, etc.)
- Genetic design (how you get recombinant progeny) and genotypic approach (how you genotype) are completely separable

• Polymorphism identification

- source of variable genotypes?
 - * a pair of highly inbred parental strains
 - * a pool of outbred individuals from the wild
 - * anything in between
- type of variable sequences?
 - * complete genome sequences
 - * partial transcriptomes
 - * RAD-tags, reduced representation libraries, etc.
- identification of variable sites and alleles
 - * reference-map reads from each genotype to genome or transcriptome
 - * assemble reads de novo, identify SNPs in assemblies
- How many do you need?
 - * limited by marker density or X-order density?
 - * scale of LD
 - * this determines sequencing strategy
- selecting polymorphisms for genotyping
 - * if sequencing parental lines of cross choose fixed
 - * if sequencing a population panel choose high frequency
 - * find real polymorphisms, not sequencing errors (effect of sequencing depth)
 - * do we want to validate before use?
 - * tech-specific requirements

• genetic design

- controlled lab crosses
 - * identify parental lines that differn in phenotype
 - * cross, get lots of individual F2 or more advanced Xovers
 - * genotype for SNPs known from parental lines
 - * Pros: complete control, easy analysis, non hidden population structure
 - * Cons: high LD, low resolution, have to do crosses
- GWAS in natural populations
 - * collect naturally polymorphic/recombinant genotypes
 - * genotype for random naturally segregative markers
 - * Pros: low LD, high resolution, no lab crosses
 - * Cons: Messy data, false LD (population structure, drift, etc.)
- Hybrid strategy
 - * low-res QTL in lab cross and GWAS in nature: simplifies analysis of GWAS data
- high-throughput genotyping techs
 - SNP chips
 - * largest number of marker loci (millions)
 - * lowest cost per SNP per genotype, high total cost
 - * suitable mainly for big experiments in model species, i.e. medical experiments in humans/mice
 - bead arrays
 - * moderate number of marker loci

- * medium cost per SNP per genotype, medium total cost
- * equally useful in model and non-model species
- mass-spec arrays
 - * relatively small number of loci
 - * cost per SNP per genotype roughly similar to bead arrays
 - * can be used in any organism
 - * useful for progressive genotyping strategies
 - * can be scaled down more easily

• RAD-tag genotyping

- start with some panel of recombinant progeny
- RAD-tag individual progeny with personal barcodes
- sequence them together in a pool (multiplex), assemble them separately
- identify variable sites and call SNP alleles
- sequence same RAD tags from both parents to identify parental haplotypes
- detect recombinants, reconstruct linkage maps, map QTLs
- does not require prior genome
- requires investment in barcodes