PP plot against Generalized Extreme Value Distribution

Project ID: No.13

Group ID: No.12

July 18th, 2016

Outline

- Introduction
- Data source
- Procedure
- Procedure
- Procedure
- O Plots

Introduction

PP plot of tail values of daily log-returns of portfolio against Generalized Extreme Value Distribution with a global parameter γ estimated with the block maxima method.

Data source

- The data is the daily closing stock prices of 3 DAX companies, namely **Bayer**, **BMW** and **Siemens**, from 2000-01-01 to 2016-07-11. For each company, there are 4281 observations.
- 3 stocks (**Bayer**, **BMW** and **Siemens**) form an equally-weighted portfolio from the initial dataset.

Remark: All data comes from the YAHOO FINANCE website.

Procedure

1. Construct a portfolio: p = Bayer + Bmw + Siemens

5/8

Procedure

2. Calculate the parameters of the portfolio by using Block Maxima Model.

- Decompose negative returns $\{X_t\}_{t=1}^T$ into k non-overlapping sets.
- Define $\{Z_j\}_{j=1}^k$ where $Z_j = max\{X_{(j-1)n+1}, ..., X_{jn}\}.$
- For $\{Z_j\}_{j=1}^k$, fit generalized extreme value distribution $G_\gamma(\frac{x-\mu}{\sigma})$.
- Get the shape parameter γ , the location parameter μ and the scale parameter σ .

Group ID: No.12

Procedure

- 3.Backtesting with Moving Window Method.
 - Use static windows of size w = 214 scrolling in time t for VaR estimation $\{X_t\}_{t=s-w+1}^s$ for $s=w,\cdots,T$.
 - Plot the PP plot for static windows of size w.

Plots

PP plot, Generalized Extreme Value Distribution

