# Monopolist With Unknown Demand

a2010020 足立幸大

2024年10月10日

# 1 問題設定

A monopolist faces demand  $y = f(x, \omega) = \phi_0(x) + \omega$  where  $x \in \mathbb{X}$  is the price chosen and  $\omega$  is a mean-zero shock with distribution  $p \in \Delta(\Omega)$ .

- $\bullet$  The monopolist observes sales y, but not the shock.
- No signals in this game.
- Payoff function is  $\pi(x,y) = xy$  (so no costs).
- The monopolist's uncertainty about p and f is described by a parametric model  $f_{\theta}, p_{\theta}$ , where  $y = f_{\theta}(x, \omega) = a bx + \omega$  is the subjective demand function,  $\theta = (a, b) \in \Theta$  is a parameter vector, and
- $\omega \sim N(0,1)$  (i.e.,  $p_{\theta}$  is a standard normal for all  $\theta \in \Theta$ ).
- Let  $\sigma = (\sigma_x)_{x \in \mathbb{X}}$  denote a strategy, where  $\sigma_x$  is the Probability of choosing  $x \in \mathbb{X}$ .
- Denote objective distribution function by  $Q_0(\cdot \mid x)$  which is a normal density with mean  $\phi_0(x)$  and unit variance.
- Subjective Distribution function  $Q_{\theta}(\cdot \mid x)$  is a normal density with mean  $\phi_{\theta}(x) = a bx$  and unit variance. So

$$K(\sigma, \theta) = \sum_{x \in \mathbb{X}} \sigma_x \frac{1}{2} \left( \phi_0(x) - \phi_\theta(x) \right)^2$$

For concreteness,

- Let  $\mathbb{X} = \{2, 10\}, \phi_0(2) = 34$ , and  $\phi_0(10) = 2$ .
- Assume  $\Theta = [33, 40] \times [3, 3.5].$
- Notice that perfect is  $\phi_{\theta^0}(x) = \phi_0(x)$  for all  $x \in \mathbb{X}$  then implies  $\theta^0 = (a^0, b^0) = (42, 4) \notin \Theta$  and so misspecified.

### 1.1 条件を確認

wKLD

$$K(\sigma, \theta) = \sum_{x \in \mathbb{X}} \sigma_x \frac{1}{2} (\phi_0(x) - \phi_\theta(x))^2$$
$$= \frac{1}{2} \{ \sigma_2 (34 - a + 2b)^2 + \sigma_{10} (2 - a + 10b)^2 \}$$

F.O.C of a

$$\frac{\partial K(\sigma, \theta)}{\partial a} = \sum_{x \in \mathbb{X}} \sigma_x \left( \phi_0(x) - \phi_\theta(x) \right)$$
$$= \sigma_2 \left( 34 - a + 2b \right) + \sigma_{10} \left( 2 - a + 10b \right)$$

F.O.C of b

$$\begin{split} \frac{\partial K(\sigma, \theta)}{\partial b} &= \sum_{x \in \mathbb{X}} \sigma_x \left( \phi_0(x) - \phi_\theta(x) \right) x \\ &= \sigma_2 \left( 34 - a + 2b \right) \cdot 2 + \sigma_{10} \left( 2 - a + 10b \right) \cdot 10 \end{split}$$

indifferent payoff (Line) Remember  $\phi_{\theta}(x) = a - bx$  To find parameters that give indifferent payoff:

$$\phi_{\theta}(2) \times 2 = 2a - 4b = \phi_{\theta}(10) \times 10 = 10a - 100b$$
  
 $\rightarrow a = 12b$ 



 $\boxtimes$  1 Monopolist with misspecified demand function. Left panel: The parameter value that minimizes the wKLD function given strategy  $\hat{\sigma}$  is  $\theta_{\hat{\sigma}}$ . Right panel:  $\sigma^*$  is a Berk-Nash equilibrium ( $\sigma^*$  is optimal given  $\theta_{\sigma^*}$  because  $\theta_{\sigma^*}$  lies on the indifference line—and  $\theta_{\sigma^*}$  minimizes the wKLD function given  $\sigma^*$ ).

# 1.2 (純粋戦略)Case 1: $\sigma = (0,1)$ (i.e. x = 10)

the first-order conditions  $\partial K(\sigma,\theta)/\partial a = \partial K(\sigma,\theta)/\partial b = 0$  imply  $\phi_0(10) = \phi_\theta(10) = a - b10$ , and any  $(a,b) \in \Theta$  on the segment AB in Figure 1 minimizes  $K(\sigma,\cdot)$ . These minimizers, however, lie to the right of the dashed line, where it is not optimal to set a price of 10. Thus,  $\sigma = (0,1)$  is not an equilibrium. [1]

# 1.3 (純粋戦略)Case 2: $\sigma = (1,0)$ (i.e. x=2)

A similar argument establishes that  $\sigma = (1,0)$  is not an equilibrium: If it were, the minimizer would be at D, where it is in fact not optimal to choose a price of 2.

先の記述で判定は可能であるが、もう少しかみ砕いてみる。実際にこのケースで BNE を持つとするとそれは点 D(40,3) のみである。では点 D(40,3) に concerntrate したとき  $\sigma=(1,0)$  は BNE となるのか。 $\sigma=(1,0)$  が BNE となるとき、満たすべき条件は以下の 2 点である。

条件 1  $\{(40,3)\} \in \Theta^*(\sigma_2)$ 

**条件** 2  $\{(40,3)\}$  において x=2 が最適である。

条件1について。

• wKLD= $\frac{1}{2}(34-a+2b)^2$  より a-2b=34 なら  $\Theta^*(\sigma_2)$  に入っている。実際  $\{(40,3)\}$  はこれを満たす。

条件2について。

- $\pi(x,y) = xy$  であり、 $y \sim \mathcal{N}(40 3x, 1)$  と Monopolist は考えている。
- $CCC \mathbb{E}[\pi(x,y)] = x(40-3x) \text{ cbs}$
- こいつの頂点は x = 20/3 であり、x = 10 の方が近い。(x = 10 の方が利得がおおきい。)
- したがって条件 2 は満たさないので  $\sigma = (1,0)$  は BNE でない。

# 1.4 (混合戦略)Case 3: $\sigma = (\sigma_2, \sigma_{10})$

F.O.C of a と F.O.C of b は同時には満たされないが、とりあえずそれぞれの条件を確認しよう。

#### F.O.C of a=0 の時:

- この時 minimizer は segment BC であり、b = 3.5
- b=3.5 を F.O.C of a=0 に代入して整理すると  $-(4\sigma_2+37-a)=0\longleftrightarrow a=4\sigma_2+37$
- $33 \le a \le 40$  および  $0 \le \sigma_2$  より  $\sigma \in [0, 3/4]$

#### F.O.C of b = 0 の時:

- この時 minimizer は segment DC であり、a = 40
- a=40 を F.O.C of b=0 に代入して整理すると  $368\sigma_2-96b\sigma_2-380+100b=0 \longleftrightarrow b=380-368\sigma_2/100-96\sigma_2$
- $3 \le b \le 3.5 \ \text{$\sharp$ $\gimel$ $\mho$ } \sigma_2 \le 1 \ \text{$\sharp$ $b$ } \sigma \in [15/16, 1]$

では $\sigma_2$ で条件分けして考える。

### $\sigma \in [0, 3/4]$ の時

F.O.C of a=0、b=3.5 であるが、これは indifferent payoff line より右側であるので BNE とならない。

### $\sigma \in [3/4, 15/16]$ の時

この時は点 C が最も  $\theta_0$  に近いが indifferent payoff line よりも右側にあるため BNE とならない。

# $\sigma \in [15/16,1]$ の時

このケースでは indifferent payoff line と重なる点があり、それは  $\theta_{\sigma^*}=(40,10/3)$  である。この時  $\sigma^*=(15/16,1/16)$  でこれは BNE である。

# 参考文献

[1] Ignacio Esponda and Demian Pouzo. Berk–nash equilibrium: A framework for modeling agents with misspecified models. *Econometrica*, Vol. 84, No. 3, pp. 1093–1130, 2016.