

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

Field Work Centre தவணைப் பரீட்சை, நவம்பர்- 2016

Term Examination, November - 2016

தரம் :- 13 (201**7**)

இணைந்த கணிதம் *–* I

மூன்று மணித்தியாலங்கள்

சுட்டெண்						
----------	--	--	--	--	--	--

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கண்	ரிதம் I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	- 4001
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத்தா	ர் I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

												பகு	தி	- A	A												
01)	கணி	ிதத்	தெ	நாகு	த்தர	றிவு	க் 3	கோட்	_பா	ட்ன	ப்ப	ЦU	பன்	படு	த்தி	สเ	ல்லா	т п	$\epsilon \in \mathcal{L}$	Z^+	<u></u>	ற்கும்	. 1 D -	$\frac{n^3}{3}$ +	$\frac{2n}{3}$	Ą	,னது
	ஒரு																							3	3		
					•••••																						
					•••••	•••••																	••••				
					•••••	•••••				•••••								•••••			•••••		••••				
		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••		•••••	•••••	••••	•••••		•••••	
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••	•••••	••••••	•••••	•••••
					•••••	•••••								•••••	•••••								••••				
		•••••			•••••	•••••																	••••	•••••			
			•••••		•••••	•••••							••••									•••••	••••	•••••			
	•••••		•••••		•••••																		••••	•••••			
													V//		<u>.</u>	À											
					,																						
																		•••••									
									•••••	/							·····	•••••									
		•••••	•••••						•••••									•••••	•••••					•••••		•••••	
22)									•••••		 //							•••••						········			
02)													<i>y</i> :	= x	c=	6	, :	<i>y</i> =	: <i>x</i>	-	ஆக	ியவ	ເພີເ	ற്വത്	ഖ	ரைப	புகளை
	ஒரே சமல) ச் ச		v	െ	ir G	ıoı.	ıı'ıG) m	и оп	னங்	.	n ou i		T OX	r ac
	ото	JIIOUI	λ	۱۰	ν			සුද									n (di									1 600	
																		•••••									
					•••••	•••••	•••••		•••••	•••••			•••••		•••••			•••••			•••••		••••	•••••			
		•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••		•••••	•••••	••••	•••••		•••••	
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••	•••••	•••••	•••••	•••••
					•••••																						
					•••••								••••	•••••													
			•••••		•••••	•••••	•••••		•••••	•••••	•••••		••••	•••••	•••••				•••••		•••••		••••	•••••			
			•••••		•••••	•••••				•••••			•••••	•••••					•••••		•••••		••••	•••••			
	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••	•••••		•••••	•••••		•••••	•••••	•••••	••••	•••••			•••••

	இன் பெறும						
			•••••				
						•••••	
						•••••	••••••
						••••••	•••••••
						•	
$g(x) = 3x^2 + 5x - 5x$	+7 எனக் செ	கொள்வோம்				த்தையும்	$\frac{1}{g(x)}$
	+7 எனக் செ	கொள்வோம்				த்தையும்	$\frac{1}{g(x)}$
$g(x) = 3x^2 + 5x - 5x$	+7 எனக் செ	கொள்வோம்				த்தையும்	$\frac{1}{g(x)}$
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம்	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		
g(x) = 3x ² + 5x - உயர்வுப் பெறுமா	+ 7 எனக் செ	கொள்வோம் ாண்க.	b. $g(x)$ 9 6	ன் இழிவுப்	பெறுமான		

$\lim_{x\to 0} \frac{\tan x - \sin x}{x^2 \sin 5x}$	$=rac{1}{10}$ எனக் காட்டு	105.			
	••••••	•••••		••••••	
•••••	•••••	•••••			•••••
		OE			
					•••••
வளையி ஒன்றின் இங்கு 0 < θ < 22			$\sec^3 \theta$,		எனத் தரப்பட்டுள்
வளையி ஒன்றின் இங்கு $0<\theta<2x$ சமன்பாடு $\sqrt{2}x-y$	ர ஆகும். மேற்ப	படி ഖளையி	$\sec^3 \theta$,	$y = \tan x$ 6	எனத் தரப்பட்டுள்
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி ഖளையி	$\sec^3 \theta$,	$y = \tan x$ 6	எனத் தரப்பட்டுள்
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி ഖளையி	$\sec^3 \theta$,	$y = \tan x$ 6	எனத் தரப்பட்டுள்
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள்
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	τ ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி
இங்கு $0 < \theta < 2$	ர ஆகும். மேற்ப	படி வளையி _ர நாட்டுக.	Sec ³ θ , $\dot{\theta} = \frac{\pi}{4}$	y = tan x எ இல் வரை	எனத் தரப்பட்டுள் யப்பட்ட தொடலி

07)	$y = x^2$, y=	$= 2 - x^2$	ஆகிய	இரு	ഖബെഥ	பிகளையும்	ඉ ශූ	Вர 6	வரிப்படத்தி	ல் வ	ரைக.	இரு
	வளையி	ிகளாலுப <u>்</u>	ம் உள்ள	டக்கப்பட்ட	_ பிரே	தேசத்தின்	பரப்பள	$\frac{8}{3}$ 6	சதுர	அலகுகள்	எனக்	காட்டு	க.
									•••••			•••••	
									•••••				
									•••••			•••••	
		•••••	•••••										
											•••••		
	•••••	•••••									•••••		
											•••••	•••••	
								<u></u>					
08)										னும் புள்ள கப்பக்க 1			
	எனும் பு எனக் க		ாலருநது	5 அலகு	தூர்	ததுல உ	ள்ளன். 🛆 1	PQK 6	от Ц	ரப்பளவு 1	∠ சது	ர அல	குகள
										<u> </u>			
		•••••			<u>)</u>						•••••	••••••	
									•••••			•••••	
									•••••				
									•••••				
									•••••				

	_	<u> </u>		_	0 0		G)ക ശക	11 00011	2011			ரையப்படு	.الڪريا،دد
												(a,0)	ஆகும்.	இவ்
உச்சிக்கு	எதிரான	பக்கத்	த்தின்	சமன்	பாடு	2x +	a = 0) என	க் கோ	ரட்டுக.				
			•••••	•••••	••••••	•••••		•••••	•••••	•••••				•••••
				•••••								•••••		
														•••••
							/							
	•••••		•••••											
$0 < x < \frac{1}{2}$	π இற்கு	சமன்ட	பாடு, ம	cos 22	x + si	n 2 <i>x</i>	= cos	x + s	in <i>x</i>	ஐத் த	 நீர்க்க.			••••••
0) 0 < x <	π இற்கு	சமன்ட	பாடு, (cos 22	x + si	n 2 <i>x</i>	= cos	x + s	in <i>x</i>	 ஐத் த	தீர்க்க.			
0) 0 < x <	<u>π</u> இற்கு	சமன்ட	பாடு, (cos 22	x + si	n 2 <i>x</i>	= cos	x + s	in <i>x</i>	ஐத் <u>த</u>	நீர்க்க.			
0) 0 < x <	<u>π</u> இற்கு						= cos							
0) 0 < x <	<u>π</u> இற்கு		лгடு,											

Field Work Centre தவணைப் பரீட்சை, நவம்பர்- 2016

Term Examination, November - 2016

தரம் :- 13 (2017)

இணைந்த கணிதம் $oldsymbol{-}$ ${ m I}$

பகுதி - B

- 11) (a) $ax^2 + bx + c = 0$ $(a, c \neq 0)$ என்னும் இருபடிச் சமன்பாட்டின் மூலங்கள் $\lambda:1$ என்னும் விகிதத்தில் இருப்பின் $ac\ \lambda^2 + (2ac b^2)\lambda + ac = 0$ என நிறுவுக. இதிலிருந்து $49(k-1)x^2 + 49\ kx + 48 = 0$ என்ற சமன்பாட்டின் மூலகங்கள் 3:4 என்னும் விகிதத்தில் இருப்பின் k இன் பெறுமானங்களைக் காண்க.
 - (b) $(p-q-r)x^2+px+q+r=0$ என்னும் இருபடிச் சமன்பாட்டின் மூலங்கள் பொருந்தும் எனின் p=2(q+r) எனக் காட்டுக.
 - (c) $f(x) \equiv 4x^3 + 2x^2 + ax + 1$ எனக் கொள்வோம். f(x) இன் ஒரு காரணி 2x 1 எனின் a இன் பெறுமானத்தைக் காண்க. a இன் இப்பெறுமானத்திற்கு f(x) ஐ $x^2 + 3x 4$ இனால் வகுக்க வரும் மீதியைக் காண்க.
- 12) (a) x இன் எல்லா மெய்ப்பெறுமானங்களிற்கும் $0 < \frac{1}{x^2 5x + 9} \le \frac{4}{11}$ எனக் காட்டுக.
 - (b) a, b, c என்பன நேர்எண்கள் எனத் தரப்படின்
 - i) $\frac{a}{b} + \frac{b}{a} \ge 2$ எனவும்
 - ii) $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq \frac{1}{9}$ எனவும் காட்டுக.
 - (c) y = |x-1| , y = 3|x-5| என்பவற்றின் வரைபுகள் ஒரே வரிப்படத்தில் வரைக. இதிலிருந்து |x-1| > 3|x-5| எனும் சமனிலியைத் திருப்திப்படுத்தும் x இன் பெறுமான வீச்சை எழுதுக.
- 13) (a) $x \neq 1$, 4 இற்கு $f(x) = \frac{x}{(x-1)(x-4)}$ எனக் கொள்வோம். $f_{(x)}^1 = \frac{4-x^2}{(x-1)^2 (x-4)^2}$ எனக் காட்டுக. திரும்பற் புள்ளிகளையும் அணுகுகோடுகளையும் காட்டி y = f(x) இன் வரைபை பரும்படியாக வரைக.
 - (b) 8π நீளமுடைய ஒரு கம்பி இரு துண்டுகளாக வெட்டப்பட்டு ஒரு பகுதி ஒரு செவ்வகம் ஆகவும் மற்றைய பகுதி ஒரு வட்டமாகவும் வளைக்கப்பட்டுள்ளது. செவ்வகத்தின் நீளம் அகலத்தின் இருமடங்காகும். வட்டத்தின் ஆரை r ஆகும். இரண்டினதும் மொத்தப் பரப்பு A எனின்

$$A=rac{\pi}{9}\{(2\pi+9)r^2-16\pi r+32\pi\}$$
 எனக் காட்டுக.

A இழிவாக அமையும் r இன் பெறுமானத்தைக் காண்க

- - (b) பகுதிகளாகத் தொகையிடும் முறையைப் பயன்படுத்தி $\int x^2 \sin x \ dx$ ஐக் காண்க.
 - (c) பகுதிப் பின்னங்களைப் பயன்படுத்தி $\int \frac{1}{(x-1)(x+1)(x^2+4)} \ dx$ ஐக் காண்க.
- 15) (a) சாய்சதுரம் ABCD இன் உச்சிகள் A,C இன் ஆள்கூறுகள் முறையே (-3,-4) , (5,4) ஆகும். மூலைவிட்டம் BD இன் சமன்பாட்டை எழுதுக. மேலும் BC இன் படித்திறன் 2 எனத் தரப்படின் B,D இன் ஆள்கூறுகளை எழுதுக. அத்துடன் சாய்சதுரம் ABCD இன் பரப்பளவு $\frac{64}{3}$ சதுர அலகுகள் எனக் காட்டுக.
 - (b) m ஐ படித்திறனாகக் கொண்ட நேர்கோடு புள்ளி (1,1)னூடு செல்கிறது. இந்நேர்கோடு x,y அச்சுக்களை முறையே A,B எனும் புள்ளிகளில் வெட்டுகிறது. புள்ளி P ஆனது AB மீது AP:PB=1:2 ஆகுமாறுள்ளது. m மாறும் போது P ஆனது 3xy-x-2y=0 எனும் வளையி மீது அசையும் எனக் காட்டுக.
- 16) ℓ ,m என்பன பரமானங்களாக இருக்க $x^2+y^2-a^2+m(y-\ell x)=0$ என்னும் வட்டம் $x^2+y^2=a^2$ எனும் வட்டத்தின் பரிதியை இருகூறாக்குகின்றது எனக் காட்டுக. $3x^2+3y^2-5=0$ எனும் வட்டத்தின் பரிதியை இருகூறிடும் S என்னும் வட்டத்திற்கு புள்ளி $P\left(1,2\right)$ என்னும் வெளிப்புள்ளியிலிருந்து வரையப்படும் தொடலிகள் ஒன்றில் ஒன்று செங்குத்தாகவுள்ளன. S என்ற வட்டத்தின் மையத்தின் ஒழுக்கு $3x^2+3y^2+6x+12y-5=0$ ஆகும் எனக் காட்டுக.
- 17) (a) பின்வரும் திரிகோணகணித சமன்பாடுகளைத் தீர்க்க.
 - i) $\sin 7\theta + \sin \theta = \sin 4\theta$
 - ii) $\cos 2\theta \sin 2\theta = \sqrt{2}\cos 4\theta$
 - (b) வழமையான குறியீட்டுடன் ஒரு முக்கோணி ABC இற்குரிய சைன்விதியை கூறுக. $\Delta \, ABC \quad \text{இன்} \quad A \quad \text{இன்} \quad \text{ஊடாகச்} \quad \text{Θசல்லும்} \quad \text{இடையத்தின் நீளம் } m \quad \text{ஆகவும் இடையம்} \\ AB, AC \quad \text{என்பவற்றுடன் முறையே } \theta \, , \emptyset \quad \text{கோணங்களை அமைப்பதாகவும் இருப்பின்} \\ 2m \left(\sin \theta \sin \theta = a \left(\sin B \sin C\right) \, \, \text{என நிறுவுக. இதிலிருந்து} \\ 2m \sin \frac{\theta \theta}{2} = (b c) \sin \frac{A}{2} \, \, \text{எனக் காட்டுக.}$
 - (c) தீர்க்க :- $\tan^{-1}\left(\frac{1}{2}\right) \tan^{-1}\left(\frac{1}{3}\right) = \sin^{-1}x$

Field Work Centre தவணைப் பரீட்சை, நவம்பர்- 2016

Term Examination, November - 2016

தரம் :- 13 (2017)

இணைந்த கணிதம் *–* II

மூன்று மணித்தியாலங்கள்

சுட்டெண்						
----------	--	--	--	--	--	--

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கணி	தம் II
பகுதி	ഖിത്ന எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	MAT
	4	7 001
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத்தால	ir I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

	பகுதி - А
01)	$2\ m$ நீளமுள்ள ஓர் இலேசான நீட்ட முடியாத இழையின் ஒரு நுனி பாவுகையில் உள்ள ஒரு
	நிலைத்த புள்ளியுடன் இணைக்கப்பட்டிருக்கும் அதே வேளை மற்றைய நுனி $2kg$ திணிவுள்ள
	ஒரு துணிக்கையைக் காவிக் கொண்டு ஒரு நிலைக்குத்துத் தளத்தில் இழை இறுக்கமாக
	இருக்க அலைகிறது. கீழ்முக நிலைக்குத்துடன் இழையின் கோண இடப்பெயர்ச்சி $\frac{\pi}{3}$
	ஆகும்போது துணிக்கையின் வேகம் $3ms^{-1}$ எனின், அக்கணத்தில் இழையில் உள்ள
	இழுவையைக் காண்க. ($g=10\ m\ s^{-2}$)
02)	$rac{m}{2}\ kg$ திணிவுள்ள ஒரு வட்டத்தட்டு, ஓர் ஒப்பமான கிடையான தளத்தின் மீது திசைக்குச்
02)	
	செங்குத்தான திசையில் ஒரு கிடையான கணத்தாக்கை அது பெறும் கணத்தில், கதி $3u$ வுடன்
	இயங்குகின்றது. கணத்தாக்குக்கு உடனடியாகப் பின்னர் வட்டத்தட்டின் கதி $5u$ ஆகும்.
	வட்டத்தட்டுப் பெறும் கணத்தாக்கின் பருமனைக் காண்க.

03)	$E_{\underline{\hspace{1cm}}}$
	$\sqrt{3} a$
	a
	u C C
	$\sqrt{3} a$ D
	60°
	$A \qquad \sqrt{3} a \qquad B$
	ஒரு துணிக்கை P யானது ஒரு நிலைத்த படிக்கட்டின் ஒரு படியின் நுனியில் உள்ள ஒரு
	புள்ளி A யில் இருந்து படியின் நிலைக்குத்துத் தளத்தில் 60° கோணத்தில் $u=2\sqrt{ag}$
	வேகத்தில் எறியப்பட்டு புவியீர்ப்பின் கீழ் இயங்குகின்றது. ஒவ்வொரு படியின் உயரம் $lpha$,
	அகலம் $\sqrt{3}a$ ஆகும். (உருவைப் பார்க்க) துணிக்கை P யானது BC , DE யை அடிக்காது
	எனவும், <i>CD</i> யில் அடிக்கும் எனவும் காட்டுக.
04)	n இற்கு 2 $(n>2)$ ஆன சாய்வு உள்ள ஒரு பாதை வழியே திணிவு M ஐ உடைய ஒரு
04)	
	புகையிரதம் மேல்நோக்கிச் செல்கின்றது. புகையிரதத்தின் வேகம் v யாக இருக்கும்போது
	அதன் ஆர்முடுகல் f ஆகும். இயக்கத்திற்கான மாறாத் தடைவிசை $rac{Mg}{2n}$ எனின், எஞ்சினின்
	பயன்படு வலுவைக் காண்க.

வன்பன் ஒரு நேர்க்க	ாட்டில் உள்ளன எனக்	காட்டுக.
		1600
		ஓர் ஓப்பமான சுவரிலும் தன் முனைகள் தொட்ட
வழுக்கும் தறுவாயிலு		ஏணிக்குமி <mark>டை</mark> யேயான உராய்வுக் குணகம் μ என
வழுக்கும் தறுவாயில	லுள்ளது. நிலத் <mark>துக்கும்</mark>	ஏணிக்குமி <mark>டை</mark> யேயான உராய்வுக் குணகம் μ என
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத் <mark>துக்கும்</mark>	ஏணிக்குமி <mark>டை</mark> யேயான உராய்வுக் குணகம் μ என
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமி <mark>டை</mark> யேயான உராய்வுக் குணகம் μ என
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.
வழுக்கும் தறுவாயில நிலைக்குத்துடன் ஏன	லுள்ளது. நிலத்துக்கும் இ வியின் சாய்வு tan ⁻¹ (ஏணிக்குமிடையேயான உராய்வுக் குணகம் μ எல 2μ) எனக் காட்டுக.

)	மூன்ற	Ш	நிச									•												
	Α,Β,	C ı	பில்	ഉ	ள்ள	ഖി	சை	களின	जं	பருப	றன	கள	(ரி)	றைே	Ш	ВС,	CA,	AB	ส	ன்னு	றும்	Цĕ	க்கங்	களின்
	நீளங்	கு	ளுக்கு	த வ	பிகித	சம	னா	னை	ഖ ദ	எனின	जं ,	ഖിത	ளயு	ளின்	தா	க்கற்	புஎ்	ாளிை	யக்	கா	ा ळां 8	ъ.		
																			•••••		•••••	•••••		
		•••••		•••••					•••••		•••••	•••••							•••••	•••••	•••••	•••••		
		•••••		•••••	•••••				•••••		•••••				•••••			••••••	•••••	•••••	•••••	•••••	•••••	•••••
		••••	•••••	•••••		•••••			•••••		•••••	•••••			•••••		••••••		•••••	•••••	•••••	•••••		••••••
	•••••	•••••	••••••	•••••		•••••	••••••		•••••		•••••	•••••	•••••	••••••	•••••		••••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••
																					•••••	• • • • • • •		
																						•••••		
																						•••••		
																						•••••		
										A											•••••	•••••		
																						•••••		
				•••••																	•••••	•••••		
				•••••												•••••					•••••	•••••	•••••	••••••
																					•••••	•••••	•••••	
		ΔП	ன	இரு	் த	ளங்	களு	க்கு	Q	இடை	.Сш	। ഒ	வக்											 துள்ள சு்கும்
	ஒப்பட	ப் ந	ன ிலா	இரு எ ம	் த றுதா	ளங் க்கட	களு ம் $\frac{W}{2}$	க்கு - sec	⊚	இடை என <i>்</i>	.யே க் ச	ı ன நாட்டு	வக்க தெ.	கப்ப	ட்டு	ள்ளத	Ы. <u>Е</u>	தளத்	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு · sec 5 இ	<i>©</i> ∝ ம்ம,	இடை எனக் றுதா	.யே க் ச	ı ன நாட்டு	வக்க தெ.	கப்ப	ட்டு	ள்ளத	Ы. <u>Е</u>	தளத்	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec	<i>©</i> ∝ ம்ம,	இடை எனக் றுதா	.யே க் ச	ı ன நாட்டு	வக்க தெ.	கப்ப	ட்டு	ள்ளத	Ы. <u>Е</u>	தளத்	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம,	இடை என 8 றுதா	யே க் ச க்க	ı ன நாட்டு மும்,	வக்க தெ. , <i>W</i>	வும்	ட்டு6	ற்பை த	ы. ş	தளத்	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் ருக்கு	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(
	ஒப்பா இடை ∝ வி	மா _யி]ன்	ன ிலா எப்	இரு ஏ ம பெழ	் த றுதா றுமா	ளங் ரக்கம னத்த	களு ம் <u>W</u> நிற்கு	க்கு - sec 5 இ	இ ∝ ம்ம்,	இடை எனக் று <mark>தா</mark>	யே க் க க்க	i ன நாட்டு மும்,	வக்க)க. , <i>W</i>	தப்ப வும் 	ட்டு <i>6</i>	ற்பாச	5 ()	தளத் _.	துக்(

Field Work Centre தவணைப் பரீட்சை, நவம்பர்- 2016

Term Examination, November - 2016

தரம் :- 13 (2017)

இணைந்த கணிதம் *–* II

பகுதி - B

கிடையுடன் ∝ சாய்வுள்ள ஒப்பமான தளம் ஒன்றின் அதியுயர் சரிவுக்கோட்டின் வழியே 11) (a) மேலிருந்து கீழாக ஒரு துணிக்கை இயங்குகின்றது. அது தன் பாதையில் AB=BC=sஆக உள்ள அடுத்தடுத்த சம தூரங்களைக் கடக்க முறையே t_1 , t_2 என்னும் நேரங்களை எடுக்கின்றது. A யிலிருந்து C வரையான துணிக்கையின் இயக்கத்துக்கான வேக - நேர ഖത്വെ ഖത്വെട്ട.

வேக - நேர வரைபை உபயோகித்து,

- A,B யில் வேகங்கள் முறையே u , v எனின், u , v யை s , t_1 , $\sin \propto$ ஆகியவற்றின் சார்பில் காண்க.
- ii) இம்முடிவை உபயோகித்து, t_1 , t_2 , s , $\sin \propto$, g ஆகியவற்றுக்கு இடையேயான தொடர்பு ஒன்றைப் பெறுக.
- iii) $\sin \propto = \frac{2s(t_1 t_2)}{g(t_1, t_2(t_1 t_2))}$ என்பதை உய்த்தறிக.
- படத்தில் காட்டப்பட்டுள்ளவாறு நீளமான (b) முக்கோண வடிவில் தளம் ஒன்றில் நடைபாதை காணப்படுகின்றது. காற்றானது *BC* யிற்குச் செங்குத்தான திசையில் சீரான வேகம் u வுடன் வீசுகின்றது. காற்றுத் தொடர்பாக v என்னும் சீரான வேகத்துடன் நடக்கும் ஒரு மனிதன் அப்பாதையைச் சுற்றி வர எடுக்கும் நேரம் T எனின், B யிலிருந்து C, C யிலிருந்து A, A யிலிருந்து B யிற்கு சார்பு வேகக் கோட்பாடுகளைத் தெளிவாக எழுதி, வேக முக்கோணிகளை வரைவதன்

மூலம் , T யை a,u,v ஆகியவற்றின் சார்பில் காண்க.

- a நீளமுடைய ஒரு நீளா இழையின் ஒரு முனை ஒரு நிலையான புள்ளி o விற்குக் கட்டப்பட்டு இழையின் மறுமுனையில் m திணிவுடைய ஒரு துணிக்கை இணைக்கப்பட்டுள்ளது. இழை இறுக்கமாக இருக்க 0 வின் கிடை மட்டத்தில் உள்ள ஒரு புள்ளி A யிலிருந்து மெதுவாக விடப்படுகின்றது. இழை OA வுடன் கோணம் heta வை ஆக்கும் போது துணிக்கையின் ஆர்முடுகல் $g\sqrt{1+3\sin^2\theta}$ எனக் காட்டுக.
 - துணிக்கை 0 வினூடான கிடை மட்டத்தில் உள்ள ஒரு புள்ளி $M\left(OM=\ell\cos heta
 ight)$ இலிருந்து மெதுவாக விழ விடப்படுகின்றது. துணிக்கை \emph{O} விற்கு நிலைக்குத்தாக நேர் கீழே உள்ளபோது அதன் வேகம் $\sqrt{2g\ell(1-\sin^3 heta)}$ எனக் காட்டுக.

துணிக்கை O விற்கு நேர் கீழே உள்ளபோது இழையில் உள்ள இழுவை $mg(3-2\sin^3\theta)$ எனக் காட்டுக.

துணிக்கை 0 வின் மட்டத்திற்கு நேர் கீழே வரும்போது ஓய்விலுள்ள m திணிவுடைய ஒப்பமான துணிக்கை ஒன்றுடன் நேரடியாக மோதுகின்றது. கட்டித் தொங்கவிடப்பட்ட துணிக்கை கீழ்முக நிலைக்குத்துடன் 60° இனூடான மேலெழும்புமெனின், இரு துணிக்கைகளுக்கும் இடையிலான மீளமைவுக் குணகத்தைக் காண்க.

- 13) கிடையுடன் ∝ சாய்வுள்ள M திணிவுள்ள ஓர் ஒப்பமான ஆப்பானது ஒப்பமான கிடைத்தளம் ஒன்றின் மீது ஒரு நிலைக்குத்துத் தளத்தில் ஓய்விலுள்ளது. திணிவு m ஐ உடைய ஒரு துணிக்கை P கிடைத்தளத்தில் இருந்து h உயரம் மட்டுமட்டாக செல்லத்தக்கதாக ஆப்பின் அடியில் இருந்து ஆப்பின் அதியுயர் சரிவுக் கோட்டின் வழியே ஒரு வேகம் v யுடன் எறியப்படுகின்றது.
 - i) ஆப்பு, துணிக்கையில் தாக்கும் விசைகளைத் தெளிவாகக் குறிக்க.
 - ii) ஆப்பு, துணிக்கையின் ஆர்முடுகலைக் குறிக்க.
 - iii) தொகுதி, துணிக்கைக்குப் பொருத்தமான இயக்கச் சமன்பாடுகளை எழுதுவதன் மூலம், ஆப்பின் ஆர்முடுகலையும், துணிக்கையின் ஆப்பு சார்பான ஆர்முடுகலையும் காண்க.
 - iv) துணிக்கையின் எறியல் வேகத்தைக<mark>் காண்க.</mark>
 - v) துணிக்கை ஆப்பின் அடியை அடை<mark>ய</mark> எடுக்கும் நேரத்தைக் காண்க.
 - vi) துணிக்கை ஆப்பின் அடியை அடையும் போது ஆப்பு இயங்கிய தூரம் $\frac{4\,m\,h\,\cot imes}{M+m}$ எனக் காட்டுக.
- 14) (a) கிடைத்தரையிலுள்ள ஒரு புள்ளி O விலிருந்து α கிடைத்தூரத்தில் உள்ள ஒரு நிலைக்குத்துச் சுவரில் நிலத்திலிருந்து ஓர் உயரம் b யில் உள்ள புள்ளி P யை அடிக்குமாறு ஒரு கல் வேகம் v யுடன் θ எறியற் கோணத்தில் எறியப்படுகின்றது. O வினூடான இடை, நிலைக்குத்துக் கோடுகள் முறையே x, y அச்சுகள் எனின்,
 - i) எறியற் பாதையின் சமன்பாடு $y=x an heta-rac{gx^2}{2v^2\cos^2 heta}$ எனக் காட்டுக.
 - ii) $2v^2(a\sin\theta-b\cos\theta)=g~a^2\sec\theta$ என்பதை உய்த்தறிக.
 - iii) $\tan 2\theta = \frac{-a}{b}$ ஆகும்போது v இழிவாகும் எனக் காட்டி, v யின் இழிவுப் பெறுமானம் $g\left(\sqrt{a^2+b^2}+b\right)$ எனக் காட்டுக.
 - (b) சம ஆரையுள்ள A, B, C என்னும் மூன்று சீரான ஒப்பமான கோளங்களின் திணிவுகள் முறையே m, 2 m, 6 m ஆகும். அவை மையமிணை கோடுகள் ஒரு நேர்கோட்டில் அமையுமாறும், A யிற்கும் C யிற்கும் இடையே B இருக்குமாறும் வைக்கப்பட்டு, கோளம் A யிற்கு B யை நோக்கி u என்னும் வேகம் கொடுக்கப்படுகின்றது.
 - $A,\ B$ யிற்கு இடையிலான மீளமைவுக் குணகம் $\frac{2}{3}$ உம் B,C யிற்கு இடையிலான மீளமைவுக் கோணம் e உம் ஆகும்.

- i) முதலாவது மோதுகையின் பின் B யின் வேகம் $\frac{5u}{9}$ எனக் காட்டி, A யின் வேகத்தைக் காண்க.
- ii) B யானது C யை மோதிய பின் B யின் வேகத்தைக் காண்க.
- iii) A,B யிற்கு இடையில் மீண்டும் மோதுகை நடைபெறும் எனத் தரப்பட்டிருக்க, $e>rac{3}{5}$ எனக் காட்டுக.
- (a) முக்கோணி ABC யில் A, B, C என்பவற்றின் தானக்காவிகள் முறையே a,b, c ஆகும். BD = 2DC ஆகுமாறு D, BC யில் உள்ள ஒரு புள்ளி ஆகும். AM = MD ஆகுமாறு M,AD யில் ஒரு புள்ளி ஆகும். 2 CN = 3 CM ஆகுமாறு நீட்டப்பட்ட CM இல் N ஒரு புள்ளி ஆகும். N இன் தானக்காவியைக் காண்க.

N, AB யில் இருக்கும் எனக் காட்டுக.

N, AB யைப் பிரிக்கும் விகிதம் யாது?

- (b) ABC என்பது 2a பக்கமுடைய ஒரு சமபக்க முக்கோணி ஆகும். D, E, F என்பன முறையே AB, BC, CA யின் நடுப்புள்ளிகள் ஆகும். \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} , \overrightarrow{AE} , \overrightarrow{BF} , \overrightarrow{CD} வழியே $4\sqrt{3}$, $3\sqrt{3}$, $2\sqrt{3}$, 3, 2, 6 N விசைகள் தாக்குகின்றன.
 - i) விளையுளின் பருமனைக் காண்க.
 - ii) விளையுள் AB யுடன் அமைக்கும் கோணத்தைக் காண்க.
 - iii) விளையுள் FB யிற்குச் சமாந்தரம் எனக் காட்டுக.
 - iv) விளையுள் AB யை வெட்டும் புள்ளியைக் காண்க.
 - v) விளையுளை B யில் தாக்குமாறு செய்வதற்குச் சேர்க்க வேண்டிய இணையைக் காண்க.
- 16) பாரமான, சீரான ஒரு கோல் நிலைக்குத்துத் தளத்தில் இருக்குமாறு A என்னும் முளையின் மேலும் A யிலும் உயர்ந்த மட்டத்தில் இருக்கும் B என்னும் முளையின் கீழும் தொடுகையில் இருக்குமாறு வைக்கப்பட்டுள்ளது. AB = a, கிடையுடன் AB யின் சாய்வுக் கோணம் \propto ஆகும். இரு தொடுகைப் புள்ளிகளிலும் உள்ள உராய்வுக் கோணம் λ ஆகும்.

கோலின் நீளம் x எனவும், A யிற்குக் கீழுள்ள கோலின் நீளம் y எனவும் கொண்டு,

- i) $2y = x a(1 \tan \propto \cot \lambda)$ எனக் காட்டுக.
- ii) $y \le x a$ எனக் காட்டுக.

இதிலிருந்து, கோலின் மிகக் குறைந்த நீளம் $a(1 + \tan \propto \cot \lambda)$ எனக் காட்டுக.

- 17) (a) ஒவ்வொன்றும் நிறை w உம் நீளம் 2a உம் உடைய நான்கு சீரான கோல்கள் ஒரு சாய்சதுரம் ABCD ஐ ஆக்குமாறு அவற்றின் முனைகளில் ஒப்பமாக மூட்டப்பட்டுள்ளன. மூட்டு B உம் AE இன் நடுப்புள்ளியும் ஓர் இலேசான $\sqrt{3}$ a நீளமுடைய கோலினால் இணைக்கப்பட்டுள்ளன. இத்தொகுதி மூட்டு A இலிருந்து தொங்கிக்கொண்டு ஒரு நிலைக்குத்துத் தளத்திலே நாப்பத்தில் உள்ளது. கோல் BC மீது C இல் மறுதாக்கம் BE இற்குச் சமாந்தரம் எனின், இலேசான கோலில் உள்ள உதைப்பு $\frac{7w}{4}$ எனக் காட்டுக.
 - உருவில் இலேசான கோல்களின் சட்டப்படலில் AD,BC(b) காணப்படும் ஆகியன சுவரில் В யிலும் கிடையானவை. நிலைக்குத்துச் யிலும் ஒரு பிணைக்கப்பட்டுள்ளது. மூட்டுகள் A, C ஆகிய ஒவ்வொன்றும் ஒரு சுமை வைக் போவின் குறிப்பீட்டைப் பயன்படுத்தித் தகைப்பு காவுகின்றன. வரிப்படத்தைப் பரும்படியாக வரைந்து, இதிலிருந்து, எல்லாக் கோல்களிலும் உள்ள தகைப்புகளை அவை இழுவைகளா, உதைப்புகளா எனக் கூறிக் காண்க.

இப்போது மூட்டு A யில் உள்ள சுமை W அகற்றப்பட்டுள்ளது. AB, AD ஆகிய கோல்களின் புதிய தகைப்புக்களைக் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

- C.Maths
- Physics
- Chemistry
 - + more