Tutorial: "Fórmula de Mason"

Carrera: Ingeniería en Sistemas de Información

Asignatura: Teoría de Control

Autor: Ing. Dominga Concepción Aquino
Nivel 4to

En el presente tutorial se explicará paso a paso, cómo se aplica la Fórmula de Mason a un Diagrama de Flujo de Señales dado, para obtener la Función de Transferencia entre dos nodos.

Asignatura: Teoría de Control – Carrera: Ingeniería en Sistemas de Información

Ejercicio Nº 1:

Dado el siguiente **Diagrama de Flujo de Señales**, se desea calcular por la fórmula de Mason la función de transferencia **C(s)/R(s)**, es decir entre el nodo de salida y el nodo de entrada del sistema.

Nota: R(s) es el nodo de entrada, y C(s) es el nodo de salida.

Para **no olvidar** los elementos que constituyen la **Fórmula de Mason**, se construye la siguiente tabla, en donde los Cofactores son los que se calcula por último, ya que primero es necesario contar con el determinante del sistema.

Trayectorias Directas	Cofactores	Lazos Individuales	Lazos Disjuntos tomados de a dos
P ₁ = G ₁ G ₂ G ₃ G ₄ G ₅	Δ1= 1	L ₁ = -G ₂ H ₂	L ₁ L ₄ = G ₂ H ₂ G ₄ H ₄
$P_2 = G_1G_7G_3G_4G_5$	Δ2= 1	L ₂ = -G ₇ H ₂	L ₂ L ₄ = G ₇ H ₂ G ₄ H ₄
P ₃ = G ₆	Δ3= 1 — (-G ₂ H ₂ - G ₇ H ₂ +G ₃ H ₃ -G ₄ H ₄) + (G ₂ H ₂ G ₄ H ₄ + G ₇ H ₂ G ₄ H ₄)	L3= G3H3	L ₁ L ₅ = G ₂ H ₂ G ₅ H ₅
		L4= -G4H4	L ₂ L ₅ = G ₇ H ₂ G ₅ H ₅
		L5= -G5H5	L ₃ L ₅ = -G ₃ H ₃ G ₅ H ₅
		$L_6 = -G_1G_2H_1$	L ₆ L ₄ = G ₁ G ₂ H ₁ G ₄ H ₄
		L7= -G1G7H1	L7L4= G1G7H1G4H4
		L ₈ = G ₂ G ₃ G ₄ G ₅ H ₆	$L_6L_5 = G_1G_2H_1G_5H_5$
		L9= G7G3G4G5H6	L7L5= G1G7H1G5H5
		L ₁₀ = -G ₆ H ₆ G ₂ H ₁	L ₁₀ L ₄ = G ₆ H ₆ G ₂ H ₁ G ₄ H ₄
		L ₁₁ = -G ₆ H ₆ G ₇ H ₁	L ₁₁ L ₄ = G ₆ H ₆ G ₇ H ₁ G ₄ H ₄
		L ₁₂ = -G ₆ H ₅ H ₄ H ₃ H ₁	

El determinante:

 $\Delta = 1 - (-G_2H_2 - G_7H_2 + G_3H_3 - G_4H_4 - G_5H_5 - G_1G_2H_1 - G_1G_7H_1 + G_2G_3G_4G_5H_6 + G_7G_3G_4G_5H_6 - G_6H_6G_2H_1 - G_6H_6G_7H_1 - G_6H_5H_4H_3H_1) + (G_2H_2G_4H_4 + G_7H_2G_4H_4 + G_2H_2G_5H_5 + G_7H_2G_5H_5 - G_3H_3G_5H_5 + G_1G_2H_1G_4H_4 + G_1G_7H_1G_4H_4 + G_1G_7H_1G_5H_5 + G_1G_7H_1G_5H_5 + G_6H_6G_2H_1G_4H_4 + G_1G_7H_1G_4H_4)$

Nota: El Determinante es ÚNICO para todo el sistema.

Existe un cofactor por cada trayectoria directa.

Por ejemplo, para hallar el cofactor Δ_3 se analiza P_3 (la trayectoria directa n° 3) con el determinante del sistema, y solamente quedan los lazos del determinante que no toquen en nada a la trayectoria directa en cuestión (ni en nodo ni en ramas).

Asignatura: Teoría de Control – Carrera: Ingeniería en Sistemas de Información

Por tal motivo al analizar la trayectoria G_6 solamente quedan L_1 , L_2 , L_3 y L_4 de los lazos individuales, y también quedan L_1 . L_4 y L_2 . L_4 de los lazos disjuntos tomados de a dos.

Por lo tanto $\Delta_3 = 1 - (-G_2H_2 + G_3H_3 + G_4H_4) + (G_2H_2G_4H_4 + G_7H_2G_4H_4)$ o también se puede dejar expresado de la siguiente forma, $\Delta_3 = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1 + L_2 + L_4)$

La función de transferencia es la siguiente:

$$\frac{C(s)}{R(s)} = \frac{\text{G1G2G3G4G5} + \text{G1G7G3G4G5} + \text{G6}(1 - (-\text{G2H2} - \text{G7H2} + \text{G3H3} - \text{G4H4}) + (\text{G2H2G4H4} + \text{G7H2G4H4}))}{\Delta}$$

Ejercicio Nº 2:

Dado el siguiente **Diagrama de Flujo de Señales**, se desea calcular por la fórmula de Mason la función de transferencia $y_3/R(s)$, es decir entre el nodo mixto y_3 y el nodo de entrada del sistema.

Debido a que y₃ es un nodo mixto se deberá crear una salida en el mismo, la cual se realiza prolongando el nodo con una transmitancia unitaria.

<u>Nota</u>: El determinante se calcula una sola vez, porque es *único* para todo el sistema.

Como el determinante es único no se vuelven a calcular los lazos ya que los mismos no cambian, por tal motivo solamente se recalculan las trayectorias directas y los cofactores.

En este caso aumenta la cantidad de trayectorias directas, ya que aparecen dos caminos directos nuevos que van desde el nodo de entrada hasta el nodo y₃.

Trayectorias Directas	Cofactores	
P ₁ = G ₁ G ₂	$\Delta_1 = 1 - (-G_4H_4-G_5H_5)$	
P ₂ = G ₁ G ₇	$\Delta_2 = 1 - (-G_4H_4-G_5H_5)$	
$P_3 = G_6H_5H_4H_3$	Δ ₃ = 1	
$P_4 = G_6H_6G_2$	$\Delta_4 = 1 - (-G_4H_4)$	
$P_5 = G_6H_6G_7$	$\Delta_5 = 1 - (-G_4H_4)$	

$$\frac{y3}{R(s)} = \frac{G1G2(1 - (-G4H4 - G5H5)) + G1G7(1 - (-G4H4 - G5H5)) + G6H5H4H3 + G6H6G2(1 - (-G4H4)) + G6H6G7(1 - (-G4H4))}{\Lambda}$$

Ejercicio Nº 3:

Dado el siguiente **Diagrama de Flujo de Señales**, se desea calcular por la fórmula de Mason la función de transferencia $C(s)/y_3$, es decir entre el nodo mixto y_3 y el nodo de salida del sistema.

Nota: NO se pueden crear Entradas.

Asignatura: Teoría de Control – Carrera: Ingeniería en Sistemas de Información

En este caso solamente se realiza el cociente entre la función de transferencia de C(s)/R(s) dividido la función de transferencia de $y_3/R(s)$ que se calcularon previamente.

$$\frac{\frac{C(s)}{R(s)}}{\frac{y_3}{R(s)}} = \frac{C(s)}{R(s)} * \frac{R(s)}{y_3} = \frac{C(s)}{y_3}$$

$$\frac{\frac{C(S)}{R(S)}}{\frac{y_3}{R(S)}} = \frac{\frac{G1G2G3G4G5+G1G7G3G4G5+G6(1-(-G2H2-G7H2+G3H3-G4H4)+(G2H2G4H4+G7H2G4H4))}{\Delta}}{\frac{G1G2(1-(-G4H4-G5H5))+G1G7(1-(-G4H4-G5H5))+G6H5H4H3+G6H6G2(1-(-G4H4))+G6H6G7(1-(-G4H4)))}{\Delta}}$$

Como el determinante Δ es único se cancelan, y quedan los numeradores nomás.

$$\frac{C(s)}{y^3} = \frac{G1G2G3G4G5 + G1G7G3G4G5 + G6(1 - (-G2H2 - G7H2 + G3H3 - G4H4) + (G2H2G4H4 + G7H2G4H4))}{G1G2(1 - (-G4H4 - G5H5)) + G1G7(1 - (-G4H4 - G5H5)) + G6H5H4H3 + G6H6G2(1 - (-G4H4)) + G6H6G7(1 - (-G4H4))}$$

Ejercicio Nº 4:

Dado el siguiente **Diagrama de Flujo de Señales**, se desea calcular por la fórmula de Mason la función de transferencia $y_4/R(s)$, es decir entre el nodo mixto y_4 y el nodo de entrada del sistema.

Debido a que y₄ es un nodo mixto se procede de la misma forma que la que se explicó anteriormente en el ejercicio Nº 2.

Trayectorias Directas	Cofactores	
P ₁ = G ₁ G ₂ G ₃	$\Delta_1 = 1 - (-G_5H_5)$	
$P_2 = G_1G_7G_3$	Δ_2 = 1 – (-G ₅ H ₅)	
P ₃ = G ₆ H ₅ H ₄	$\Delta_3 = 1 - (-G_2H_2-G_7H_2)$	
$P_4 = G_6H_6G_2G_3$	Δ ₄ = 1	
$P_5 = G_6H_6G_7G_3$	Δ_5 = 1	

$$\frac{y4}{R(s)} = \frac{\text{G1G2G3}(1 - (-\text{G5H5})) + \text{G1G7G3}(1 - (-\text{G5H5})) + \text{G6H5H4}(1 - (-\text{G2H2} - \text{G7H2})) + \text{G6H6G2G3} + \text{G6H6G7G3}}{\Delta}$$

Ejercicio Nº 5:

Dado el siguiente **Diagrama de Flujo de Señales**, se desea calcular por la fórmula de Mason la función de transferencia y_4/y_3 , es decir entre el nodo mixto y_3 y el nodo mixto y_4 .

En este caso solamente se realiza el cociente entre la función de transferencia de $y_4/R(s)$ dividido la función de transferencia de $y_3/R(s)$ que se calcularon previamente.

Tutorial: "Fórmula de Mason"

Asignatura: Teoría de Control - Carrera: Ingeniería en Sistemas de Información

$$\frac{\frac{y4}{R(s)}}{\frac{y3}{R(s)}} = \frac{y4}{R(s)} * \frac{R(s)}{y3} = \frac{y4}{y3}$$

$$\frac{\frac{y_4}{R(s)}}{\frac{y_3}{R(s)}} = \frac{\frac{\text{G1G2G3}(1 - (-\text{G5H5})) + \text{G1G7G3}(1 - (-\text{G5H5})) + \text{G6H5H4}(1 - (-\text{G2H2} - \text{G7H2})) + \text{G6H6G2G3} + \text{G6H6G7G3}}{\Delta}}{\frac{\text{G1G2}(1 - (-\text{G4H4} - \text{G5H5})) + \text{G1G7}(1 - (-\text{G4H4} - \text{G5H5})) + \text{G6H5H4H3} + \text{G6H6G2}(1 - (-\text{G4H4})) + \text{G6H6G7}(1 - (-\text{G4H4}))}}{\Delta}$$

Como el determinante Δ es único se cancelan, y quedan los numeradores nomás.

$$\frac{y4}{y3} = \frac{\text{G1G2G3}(1 - (-\text{G5H5})) + \text{G1G7G3}(1 - (-\text{G5H5})) + \text{G6H5H4}(1 - (-\text{G2H2} - \text{G7H2})) + \text{G6H6G2G3} + \text{G6H6G7G3}}{\text{G1G2}(1 - (-\text{G4H4} - \text{G5H5})) + \text{G1G7}(1 - (-\text{G4H4} - \text{G5H5})) + \text{G6H5H4H3} + \text{G6H6G2}(1 - (-\text{G4H4})) + \text{G6H6G7}(1 - (-\text{G4H4}))}$$