ECE216: Digital Electronics Laboratory

Exp 4: Understanding the combinational logic by implementing the boolean function using decoder

Table of Content

	Task	Title	Page No.							
1	Experiment 1	Understanding the combinational logic by implementing the	1							
	_	boolean function using basic logic gates								
	Experiment 2	To design and analyze the circuit for Full adder and Full	6							
		subtractor using Logic Gates.								
	Practical work	Practical work evaluation based on Experiment 1 and	9							
	evaluation 1	Experiment 2.								
1/	Experiment 3	Understanding the combinational logic by implementing the	12							
		boolean function using multiplexer								
<u> </u>	Experiment 4 7	Understanding the combinational logic by implementing the	16							
-/		boolean function using decoder								
	Practical work	Practical work evaluation based on Experiment 3 and	20							
	evaluation 2	Experiment 4.								
	Project evaluation 1	Design and Implementation of application-based projects-1	23							

Experiment 5	Understanding the sequential logic by implementing the flip flop with the help of logic gates	26		
Experiment 6	Understanding the sequential logic by implementing the counter with flip flop.	28		
Practical work	Practical work evaluation based on Experiment 5 and	31		
evaluation 3	Experiment 6.			
Experiment 7	To visualize the output of decade counter on seven segment	34		
	display			
Experiment 8	To implement and simulate combinational and sequential	37		
	circuit using DSCH/Proteus.			
Practical work	Practical work evaluation based on Experiment 7 and	41		
evaluation 4	Experiment 8.			
Project evaluation 2	Design and Implementation of application-based projects-2	44		

Derodle is a device which ton to suit decount the 100 Athur 101 100 B Y Athur 101 100 Y Athur 101 100 Y Athur 101 Nosols Mod input 1:2 7=1 MSB - 44

- 45 40 Active / 6

- 45 40 Active / 6 n=2 2:4 3:8 n = 3 6 wate: All to obs an active low 4:16 n=4 G: Now many Variobs function can be implemed A! Nois men n! 2n decode

Experiment 4

1. Aim: To design a circuit to implement Boolean functions using Decoders.

Apparatus required: IC 74138 7404, 7432 7400,7408 7410 and LEDs.

2. Learning Objectives: This experiment enables a student to learn:

How to realize functionality of a 3-to-8-line active low Decoder viz. 74138 IC. That is on setting the two-active low and one active high enable inputs to proper level, one can verify that one and only one of the eight active low outputs is asserted based on the values assigned to three select input.

3. Theory: IC 74138 works as a 3-to-8 active low decoder, based on the values assigned to three select inputs of the three enable inputs, G1 must be made high value while G2A and G2B must be low. The eight active low inputs (Y0 to Y7) correspond to eight max terms (M0 to M7) or in other words, component of the corresponding min terms m0-m7. For example, Y0 = component of C B A = C+B+A.

	Inp	uts			Outputo							
ENA	SELECT			Outputs								
G1	G2'	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	(H)	X	X	<u>X</u>	ιH	Н	Н	Н	Н	Н	Н	H
	X	<u>X</u>	X X	X	Н	Н	Н	Н	Н	Н	Н	Η,
H		<u>L</u>	L	<u>L</u>		Н	н	Н	Н	Н	Н	Н
H	L	L	L	<u>H</u>	Н		H	H	Н	Н	Н	H
 H	L	L	Ħ	L	H	H		H	H	H	H	H
H	L	L	H	Н	H	H	H		H	H	H	H
H	L	Н	L	L	H	H	H	H		H	H	H
Н	L	Н	L	Н	H	H	H	H	Н		H	H
Н	L	Н	H	L	H	H	H	H	H	H		<u>H</u>
LH.	L_L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	

Understanding the combinational logic by implementing the boolean function using decoder

 $\overline{ABB}C+\overline{AB}=\sum_{m}m(1,2,3,7)$

Implement the following Broken un. usig 3:8 decode y = TM(0,15) = 2m(2,3,4,6,7)

9mplent the follown, fur.

11.12) Y= TM (0,2,5,6,7)