Probabilities of multilocus genotypes in SIB recombinant inbred lines

Kamel Jebreen, Marianyela Petrizzelli, Olivier C. Martin

1 Introduction

Set the working directory where the source functions file exists. You can download it from https://github.com/Kamel20/PMGISRIL.

```
# setwd("the directory")
# source("sibFun.R")
library(eply)
library(Matrix)
library(rlist)
library(rmarkdown)
```

2 Input

This code just needs to provide the locus number and the recombination rates values. For example for L=3

```
L = 3
recRates = c(0.4, 0.2, 0.3)
```

3 The variables names

To gain time we found the variables contribute to the system before.

```
allvar = list.load("allVarTillL=10.rds")
SCHPE = list.load("allContrVarTillL=10.rds")
varNom = allvar[[L]]$symQs
nonSymQs = allvar[[L]]$nonsymQs
scEq = SCHPE[[L]]
```

```
Or you can use their function to create it again

allVar = systemVar(L)

##

## Find the variables that are contributing to this system, please wait ...

## done.

So, the variable names are

varNom = allVar$symQs

and the nonsymmetric variable is

nonSymQs = allVar$nonsymQs
```

and all possible crossover are

```
scEq = allCrossOver(varNom = varNom)
   Find the possible crossover for these variable, please wait ...
## done.
    Find the system AQ = B
4
res = twoWayRILsib(L, varNom, nonSymQs, scEq)
##
   # ===== 3 - Loci ===== #
##
##
## Computing the inhomogeneous equation: done.
##
## Computing the SCHP: 1 >>
                                 2 >>
                                        3 >> 4 >> 5 >>
                                                             6 >>
                                                                    7 >> 8 >>
                                                                                  9 >>
    done.
Hence, the matrix A is
A = res$A
A[1:3,1:2]
##
       000
                                   001
## SQ "4"
                                   "4"
## 000 "2*(0.5)*(1-r12)*(1-r23)-1" "0"
## 001 "2*(0.5)*(1-r12)*(r23)"
                                   "-1"
and, the matrix B is
B = res\$B
B[1:3]
## [1] 1 0 0
To solve this linear system you should evaluate this symbolic matrix
AA = evalMatrix(A = A, recRates = recRates)
## r12 = 0.4
                r23 = 0.2
                               r34 = 0.3
                                             r13 = 0.44
                                                            r24 = 0.38
                                                                           r14 = 0.476
For example,
AA[1:3,1:2]
        [,1] [,2]
## [1,] 4.00
## [2,] -0.52
## [3,] 0.12
Hence,
sol = solve(AA, B)
names(sol) = varNom
sol
          000
                     001
                                002
                                           010
                                                      011
                                                                  012
## 0.03413811 0.01322519 0.01308306 0.01125016 0.02666891 0.01045223
```

```
## 020 021 022 023  
## 0.01164653 0.01027273 0.02641467 0.01048960  
This means,  
## Q(0,0,0) = 0.03413811 , Q(0,0,1) = 0.01322519 , Q(0,0,2) = 0.01308306  
## Q(0,1,0) = 0.01125016 , Q(0,1,1) = 0.02666891 , Q(0,1,2) = 0.01045223  
## Q(0,2,0) = 0.01164653 , Q(0,2,1) = 0.01027273 , Q(0,2,2) = 0.02641467  
## Q(0,2,3) = 0.0104896
```

5 Verification

Note that the sum of all Q's equal to 1

```
QsProbs = rbind(sol, table(nonSymQs))
sum(QsProbs[1,] * QsProbs[2,])
## [1] 1
```

For more detalis see (Jebreen et al., 2019).

Bibliography

Jebreen, K., Petrizzelli, M., and Martin, O. C. (2019). Probabilities of multilocus genotypes in SIB recombinant inbred lines. (Submitted). Statistical Genetics and Methodology, a section of the journal Frontiers in Genetics.