2 df

```
1 import pandas as pd
2 from sklearn.preprocessing import OneHotEncoder
3 import seaborn as sb
4 from sklearn.model_selection import train_test_split
5 import matplotlib.pyplot as plt
6 import seaborn as sns
7 from sklearn.neighbors import KNeighborsClassifier
8 from sklearn.svm import SVC
9 from sklearn.metrics import recall_score, confusion_matrix, precision_score, f1_score, accuracy_score, classification_report
10 from sklearn.linear_model import LogisticRegression
11 from sklearn.neural_network import MLPClassifier
12 from xgboost import XGBClassifier
13 from sklearn.ensemble import RandomForestClassifier
14 from sklearn import metrics
```

	CustomerID	Name	Age	Gender	Location	Subscription_Length_Months	Monthly_Bill	То
0	1	Customer_1	63	Male	Los Angeles	17	73.36	
1	2	Customer_2	62	Female	New York	1	48.76	
2	3	Customer_3	24	Female	Los Angeles	5	85.47	
3	4	Customer_4	36	Female	Miami	3	97.94	
4	5	Customer_5	46	Female	Miami	19	58.14	

99995	99996	Customer_99996	33	Male	Houston	23	55.13	
99996	99997	Customer_99997	62	Female	New York	19	61.65	
99997	99998	Customer_99998	64	Male	Chicago	17	96.11	
99998	99999	Customer_99999	51	Female	New York	20	49.25	
99999	100000	Customer_100000	27	Female	Los Angeles	19	76.57	

```
1 #Changing into One hot encoding
2 df = pd.get_dummies(df, columns = ['Location', 'Gender'])
3 print(df)
```

1 df = pd.read_excel("/content/customer_churn_large_dataset.xlsx")

	CustomerID	Name	_	Subscr	iption_Length_	Mon		\
0	1	_	63				17	
1	2	Customer_2					1	
2	3	Customer_3					5	
3	4	Customer_4					3	
4	5	Customer_5	46				19	
		• • •						
99995		Customer_99996					23	
99996		Customer_99997					19	
99997		Customer_99998					17	
99998		Customer_99999					20	
99999	100000 (Customer_100000	27				19	
		Total_Usage_GB			cation_Chicago	\		
0	73.36	236	6		0			
1	48.76	172	6		0			
2	85.47	460	6		0			
3	97.94	297	1	L	0			
4	58.14	266	6	3	0			
99995	55.13	226	1	L	0			
99996	61.65	351	6	9	0			
99997	96.11	251	1	L	1			
99998	49.25	434	1	L	0			
99999	76.57	173	1	L	0			
	Location Hous	ston Location Lo	ns Ange	ales	Location Miami	\		
0		0	- Ange	1	0	\		
1		0		0	0			
2		0		1	0			
3		0		0	1			
4		0		0	1			
~		~		0	_			

99995

99996

0

0 0

0

0

99997	0		0	
99998	0		0	
99999	0		1	
	Location_New York	Gender_Female	Gender_Male	
0	0	0	1	
1	1	1	0	
2	0	1	0	
3	0	1	0	
4	0	1	0	
99995	0	0	1	
99996	1	1	0	
99997	0	0	1	
99998	1	1	0	
99999	0	1	0	
,,,,,	V	_	0	

[100000 rows x 14 columns]

1 #Finding correlation between all the columns

2 df.corr()

<ipython-input-81-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 df.corr()

	CustomerID	Age	Subscription_Length_Months	Monthly_Bill	Total_Usage
CustomerID	1.000000	-0.001085	0.005444	0.001265	-0.004
Age	-0.001085	1.000000	0.003382	0.001110	0.001
Subscription_Length_Months	0.005444	0.003382	1.000000	-0.005294	-0.002
Monthly_Bill	0.001265	0.001110	-0.005294	1.000000	0.003
Total_Usage_GB	-0.004025	0.001927	-0.002203	0.003187	1.000
Churn	-0.004586	0.001559	0.002328	-0.000211	-0.002
Location_Chicago	-0.000666	0.006068	0.002187	-0.005772	-0.000
Location_Houston	-0.001390	0.001795	-0.001842	0.001856	-0.002
Location_Los Angeles	0.002501	-0.004971	-0.001234	0.003444	-0.001
Location_Miami	0.001617	0.001079	0.005508	-0.002521	0.001
Location_New York	-0.002069	-0.003982	-0.004630	0.002992	0.002
Gender_Female	0.000131	-0.000832	-0.000320	-0.002239	0.001
Gender_Male	-0.000131	0.000832	0.000320	0.002239	-0.001

1 #To give brief about the dataset

2 df.describe()

	CustomerID	Age	Subscription_Length_Months	Monthly_Bill	Total_Usage_GB	
count	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	100000.0
mean	50000.500000	44.027020	12.490100	65.053197	274.393650	0.4
std	28867.657797	15.280283	6.926461	20.230696	130.463063	0.4
min	1.000000	18.000000	1.000000	30.000000	50.000000	0.0
25%	25000.750000	31.000000	6.000000	47.540000	161.000000	0.0
50%	50000.500000	44.000000	12.000000	65.010000	274.000000	0.0
75%	75000.250000	57.000000	19.000000	82.640000	387.000000	1.0
max	100000.000000	70.000000	24.000000	100.000000	500.000000	1.0

```
1 #To find outliners
```

5

² q1 = df['Subscription_Length_Months'].quantile(0.25)

³ q3 = df['Subscription_Length_Months'].quantile(0.75)

⁴ iqr = q3 - q1

 $[\]mathbf{6}\ \mathtt{\#}\ \mathsf{Define}\ \mathsf{the}\ \mathsf{lower}\ \mathsf{and}\ \mathsf{upper}\ \mathsf{bounds}\ \mathsf{for}\ \mathsf{outliers}$

```
7 lower_bound = q1 - 1.5 * iqr
 8 \text{ upper\_bound} = q3 + 1.5 * iqr
10 # Identify the outliers
11 outliers = df[df['Subscription_Length_Months'] < lower_bound] | df[df['Subscription_Length_Months'] > upper_bound]
12
13 # Print the outliers
14 print(outliers)
    Empty DataFrame
    Columns: [Female, Male, Chicago, Houston, Los Angeles, Miami, New York, CustomerID, Name, Age, Subscription_Length_Months, Monthly_Bill,
    Index: []
1 #Finding outliners in Total_Usage_GB
2 q1 = df['Total_Usage_GB'].quantile(0.25)
 3 q3 = df['Total_Usage_GB'].quantile(0.75)
 4 iqr = q3 - q1
6 # Define the lower and upper bounds for outliers
7 lower_bound = q1 - 1.5 * iqr
 8 \text{ upper\_bound} = q3 + 1.5 * iqr
10 # Identify the outliers
11 outliers = df[df['Total_Usage_GB'] < lower_bound] | df[df['Total_Usage_GB'] > upper_bound]
12
13 # Print the outliers
14 print(outliers)
    Empty DataFrame
    Columns: [Female, Male, Chicago, Houston, Los Angeles, Miami, New York, CustomerID, Name, Age, Subscription_Length_Months, Monthly_Bill,
    Index: []
    4
1 sns.pairplot(df, x_vars=['Age', 'Subscription_Length_Months',
 2
          'Monthly_Bill', 'Total_Usage_GB', 'Location_Chicago',
         'Location_Houston', 'Location_Los Angeles', 'Location_Miami',
'Location_New York', 'Gender_Female', 'Gender_Male'], y_vars='Churn', height=5, aspect=0.7, kind='reg')
3
 4
 5 # There is not much relation between the churn and diiferent columns
     <seaborn.axisgrid.PairGrid at 0x7b39de90fb80>
```

```
1 dataplot = sb.heatmap(df.corr(),annot=True )
```

```
<ipython-input-108-bc08916b5934>:1: FutureWarning: The default value of numeric_only in DataFrame.corr
     dataplot = sb.heatmap(df.corr(),annot=True )
                                                                                     - 1.00
                   CustomerID - 1-0.000.D0540013.00040004600060004.00250-D600020001300
                          - 0.75
     Subscription Length Months -.005.003 10.0053002.00230022000800.20055004600.8200
                                                                                      - 0.50
                   Monthly Bill -.00 D30 -D1005 31 0.093 20 902 0 05.80 D90 0-840 0 2250 93.002 20 02
               Total_Usage_GB -0.000400-D90002003210.000800044002100006000300200-D4003
                                                                                      - 0.25
                        Churn - .004.60 D60 92.80 92.002 8 10 00 95. D 96.70 04.80 520 9580 02. D 02
              Location_Chicage -0000670610092005800.44405 1 -0.250.250.250.250.0007000
                                                                                       0.00
1 columns = ['Age', 'Subscription_Length_Months',
        'Monthly_Bill', 'Total_Usage_GB', 'Location_Chicago',
2
3
        'Location_Houston', 'Location_Los Angeles', 'Location_Miami',
        'Location_New York', 'Gender_Female', 'Gender_Male']
Δ
             1 target column name = 'Churn'
                  Gender Male -000.DB08B0CB00-22000.40-201000.70-62000.40-000026-1
1 #Splitting training and test data
2 X_train, X_test, y_train, y_test = train_test_split(df[columns], df[target_column_name], test_size=0.2)
                                ō
                                       1 X train
           Age Subscription_Length_Months Monthly_Bill Total_Usage_GB Location_Chicago Location_Housto
    38964
           29
                                       8
                                                 44 13
                                                                  132
     6892
           20
                                      23
                                                 90.88
                                                                  322
                                                                                     0
    27556
                                                 74.00
                                                                  202
           65
                                       5
    83906
                                       8
                                                 70.74
                                                                   69
                                                                                     0
           23
    24157
                                      22
           19
                                                 87.33
                                                                  211
    73949
           45
                                      18
                                                 32.36
                                                                  402
                                                                                     0
    89128
           58
                                       3
                                                 48.05
                                                                  277
    56975
           68
                                      13
                                                 95.53
                                                                   79
     700
                                      15
                                                 99.20
                                                                  237
                                                                                     0
    30884
           41
                                       11
                                                 39.92
                                                                  485
                                                                                     0
   80000 rows × 11 columns
1 def distplot(feature, frame, color='r'):
     plt.figure(figsize=(8,3))
3
     plt.title("Distribution for {}".format(feature))
     ax = sns.distplot(frame[feature], color= color)
1 num_cols = ["Subscription_Length_Months", 'Monthly_Bill', 'Total_Usage_GB']
2 for feat in num_cols: distplot(feat, df)
```

```
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  ax = sns.distplot(frame[feature], color= color)
```

<ipython-input-93-8c8257b32bab>:4: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751


```
1 #Train a KNN classification model with scikit-learn
```

KNN accuracy: 0.5063

Total Usage GB

² knn_model = KNeighborsClassifier(n_neighbors = 11)

³ knn_model.fit(X_train,y_train)

⁴ predicted_y = knn_model.predict(X_test)

⁵ accuracy_knn = knn_model.score(X_test,y_test)

⁶ print("KNN accuracy:",accuracy_knn)

^{1 #}Train a SVC classification model with scikit-learn

² svc_model = SVC(random_state = 1)

```
3 svc_model.fit(X_train,y_train)
 4 predict_y = svc_model.predict(X_test)
 5 accuracy_svc = svc_model.score(X_test,y_test)
 6 print("SVM accuracy is :",accuracy_svc)
 1 print(classification_report(y_test, predict_y))
1 #Train a Random Forest classification model with scikit-learn
 2 model_rf = RandomForestClassifier(n_estimators=500 , oob_score = True, n_jobs = -1,
                                     random_state =50,max_leaf_nodes = 30)
 4 model_rf.fit(X_train, y_train)
 6 # Make predictions
 7 prediction_test = model_rf.predict(X_test)
 8 print (metrics.accuracy_score(y_test, prediction_test))
    0 49965
 1 print(classification_report(y_test, prediction_test))
                   precision
                                recall f1-score
                                                   support
                                                     10080
                0
                        0.50
                                  9.68
                                            0.58
                1
                        0.49
                                  0.32
                                            0.39
                                                      9920
                                            0.50
                                                     20000
        accuracy
        macro avg
                        0.50
                                  0 50
                                            0.48
                                                     20000
     weighted avg
                        0.50
                                  0.50
                                            0.48
                                                     20000
1 #Train a XGB classification model with scikit-learn
 2 model = XGBClassifier()
 3 model.fit(X_train, y_train)
 4 preds = model.predict(X_test)
 5 metrics.accuracy_score(y_test, preds)
     0.50445
 1 #Fine tuning XB Classification model to get better accuracy score
 2 model = XGBClassifier(learning_rate=0.0001,
 3
                        colsample_bytree = 0.4,
4
                         subsample = 0.8,
 5
                         objective='binary:logistic',
 6
                         n_estimators=1000,
 7
                         reg_alpha = 0.3,
 8
                         max_depth=5,
                         gamma=100)
10 model.fit(X_train, y_train)
11 preds = model.predict(X_test)
12 metrics.accuracy_score(y_test, preds)
    0.504
1 #Train a MLP classification model with scikit-learn
 2 mlp_classifier = MLPClassifier(hidden_layer_sizes=(8, 20), activation='relu', solver='adam', max_iter=50000)
 3 mlp_classifier.set_params(alpha=0.0001, batch_size=10, learning_rate_init=0.0001)
 4 mlp classifier.fit(X train, y train)
 5 y_pred = mlp_classifier.predict(X_test)
 6 accuracy = mlp_classifier.score(X_test, y_test)
 8 print('Accuracy:', accuracy)
    Accuracy: 0.50395
 1 #Train a Logistic Regression model with scikit-learn
 2 lr_model = LogisticRegression()
 3 lr_model.fit(X_train,y_train)
 4 accuracy_lr = lr_model.score(X_test,y_test)
 5 print("Logistic Regression accuracy is :",accuracy_lr)
    Logistic Regression accuracy is : 0.5021
 1 ln nood ln model noodict/V toct)
```

- t tr_prea= tr_modet.predict(x_test)
- 2 report = classification_report(y_test,lr_pred)
- 3 print(report)

	precision	recall	f1-score	support
0	0.51 0.50	0.60	0.55 0.45	10080 9920
accuracy macro avg weighted avg	0.50 0.50	0.50 0.50	0.50 0.50 0.50	20000 20000 20000

 $[{]f 1}$ #To improve the accuracy we can use Pytorch Neural Network and can overfit the data ,

^{2 #}but that would be good to only improve the accuracy score but it will give inaccurate result for new data.

^{3 #}Out of all the models implemented KNN Classification works best for the data as it gives highest Accuracy score of 50.63%