STA237 Notes

Contents

1	Inti	Introduction				
	1.1	Basic Definitions				
	1.2	Properties of Events				
		1.2.1 Axioms				
	1.3	Tools for Counting Sample Points				
2	Cor	aditional Probability				
		2.0.1 Multiplication Rule				
	2.1	Independent Events				
	2.2	Partitions				
		2.2.1 The Law of Total Probability				
	2.3	Bayes' Theorem				
3	Rar	ndom Variables				
		3.0.1 Result				
	3.1	Expected Values of Random Variables				
		3.1.1 Variance of Random Variables				
		3.1.2 Results				
	3.2	Distribution Function				
	0.2	Distribution Lunction				
4	Exe	ercises				
	4.1	Probability				
	4.2	Conditional Probability				
	4.3	Random Variables				

1 Introduction

1.1 Basic Definitions

- 1. Scientific Question A question created by an experimenter.
- 2. Experiment A task to collect information in order to answer a scientific question.
- 3. Sample Space (Ω) The set of all possible outcomes or results of an experiment. For example, $\Omega = \{H, T\}$ is the sample space of tossing a coin.
- 4. Subsets of the sample space are called events.

 Events all use typical set operations (complements, union, intersection, etc.).

1.2 Properties of Events

- 1. We call events A, B mutually exclusive if A, B have no outcomes in common. That is, $A \cap B = \emptyset$
- 2. **Demorgan's Law** For any two events A, B, we have $(A \cup B)^c = A^c \cap B^c$, and $(A \cap B)^c = A^c \cup B^c$.
- 3. A **Probability Function** (P) on a finite sample space Ω assigns to each event in A in Ω a number P(A) in [0,1] such that:
 - (a) $P(\Omega) = 1$, and
 - (b) $P(A \cup B) = P(A) + P(B)$, if A, B are disjoint. The number P(A) is the probability for which A occurs.

Suppose we had two events A, B, and $P(A) \cap P(B) \neq \emptyset$. We have:

- (a) Elements of ONLY A: $A \cap B^c$
- (b) Elements of A AND B: $A \cap B$
- (c) Elements of ONLY $B: B \cap A^c$

Then:

- (a) $P(A) = P(A \cap B^c) + P(A \cap B)$
- (b) $P(B) = P(B \cap A^C) + P(A \cap B)$
- (c) $P(A \cup B) = P(A \cap B^c) + P(A \cap B) + P(B \cap A^c)$ Then: $P(A \cup B) = P(A) - P(A \cap B) + P(A \cap B) + P(B) - P(A \cap B)$ $= P(A) + P(B) - P(A \cap B)$

Therefore, we have $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

We know that $P(A) \subseteq P(\Omega)$, and the complement A^c is mutually exclusive. $P(\Omega) = 1$, and thus:

$$P(\Omega) = 1 = P(A^c) + P(A)$$

Therefore: $P(A^c) = 1 - P(A)$.

4. A and B are **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

1.2.1 Axioms

Suppose Ω is a sample space associated with an experiment. To every event A in Ω , we assign a number P(A) (called the probability of A), so that the following axioms hold:

- 1. Axiom 1: $P(A) \ge 0$
- 2. Axiom 2: P(S) = 1
- 3. Axiom 3: If $A_1, A_2, ..., A_n$ form a sequence of pairwise mutually exclusive events in Ω (that is, $A_i \cap A_j = \emptyset$ if $i \neq j$), then

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^{n} P(A_i)$$

1.3 Tools for Counting Sample Points

With m elements $a_1, a_2, ..., a_m$, and $b_1, b_2, ..., b_n$, it is possible to form $mn = m \times n$ pairs containing one element from each group.

An ordered arrangement of r distinct objects is called a **permutation**. The number of ways of ordering n distinct objects taken r at a time will be designated by the symbol P_r^n . That is:

$$P_r^n = n(n-1)(n-2)...(n-(r+1)) = \frac{n!}{(n-r)!}$$

The number of unordered subsets of size r chosen (without replacement from n available objects is:

$$\binom{n}{r} = \frac{P_r^n}{r!} = \frac{n!}{r!(n-r)!}$$

Sometimes it is denoted as C_r^n .

2 Conditional Probability

Conditional probability is the likelihood of an event occurring based on the occurrence of a previous event. That is, for two events R, L, the conditional probability of R given L is P(R|L). It is denoted by:

$$P(A|C) = \frac{P(A \cap C)}{P(C)},$$

provided P(C) > 0.

Note that $P(R|L) + P(R^c|L) = 1$:

$$P(R|L) + P(R^c|L) = \frac{P(A \cap C)}{P(C)} + \frac{P(A^c \cap C)}{P(C)}$$

$$= \frac{P(C)}{P(C)}$$
Since $P(A), P(A^c)$ are mutually exclusive, the union of the intersections is $P(A)$

For example, suppose we had the following events:

1. L: Born in a long month (31 days) $L = \{Jan, Mar, May, Jul, Aug, Oct, Dec\};$

2. R: Born in a month with letter r $R = \{Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec\}$

This means that the conditional probability of R given L is:

$$P(R|L) = \frac{1/3}{7/12}$$
$$= \frac{4}{7}$$

2.0.1 Multiplication Rule

For any events A, C:

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$
$$P(A \cap C) = P(A|C) \cdot P(C)$$

2.1 Independent Events

Events A, C are **independent** if and only if the probability of A is the same when we know that C has occurred. That is:

$$P(A|C) = P(A)$$

Then:

$$\frac{P(A \cap C)}{P(C)} = P(A)$$

$$P(A \cap C) = P(A) \cdot P(C)$$

2.2 Partitions

For some positive integer k, let the sets $B_1, B_2, ..., B_k$ be such that:

- 1. $\Omega = B_1 \cup B_2 \cup \ldots \cup B_k$
- 2. $B_i \cap B_j = \emptyset$, for $1 \neq j$.

Then, the collection of sets $\{B_1, B_2, ..., B_k\}$ is said to be a partition of Ω .

2.2.1 The Law of Total Probability

Suppose that $\{B_1, B_2, ..., B_k\}$ is a partitions of Ω such that $P(B_i) > 0$ for i = 1, 2, ..., k. Then, for any event A:

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_k)P(B_k)$$
$$= \sum_{i=1}^{k} P(A|B_i)P(B_i)$$

2.3 Bayes' Theorem

Suppose that $\{B_1, B_2, ..., B_k\}$ is a partition of Ω such that $P(B_i) > 0$, for i = 1, 2, ..., k. Then, for any event A:

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}$$

3 Random Variables

Discrete Variables are variables whose values can be measured by counting.

For example, a course mark: 0, 1, 2, ..., 100

Continuous Variables are impossible to count and can never properly be counted.

For example, time or weighs: 25 years, 10, months, ...

Categorical Variables take on a finite number of possible values, assigning units of observation to particular groups on the basis of qualitative properties.

For some event with sample space Ω taking multiple parameters $(e.g., \Omega = \{\sigma_1, \sigma_2\} : \sigma \in \{1, 2\})$, we can calculate the total outcome, i.e., the value of the function $X : \Omega \to \mathbb{R}$, given by:

$$X(\sigma_1, \sigma_2) = \sigma_1 + \sigma_2 \text{ for } (\sigma_1, \sigma_2) \in \Omega$$

We denote the event that the function S attains the value k by:

$${X = k} = {(\sigma_1, \sigma_2) \in \Omega : X(\sigma_1, \sigma_2) = k}$$

We call X the **random variable**.

 $X: \Omega \to \mathbb{R}$ is a **discrete random variable** if it takes on a finite number of values $a_1, a_2, ..., a_n$, **or** an infinite number of values $a_1, a_2, ...$

The probability that X takes on the value x, P(X = x) is the sum of probabilities of all sample points in Ω that are assigned to the value x (i.e., P(x) = P(X = x)). We sometimes denote this as p(x).

Then, the probability distribution of a discrete variable X can be represented by a formula, a table, or a graph that provides P(X = x) for all x.

3.0.1 Result

For any discrete probability distribution, the following must be true:

- 1. $0 \le p(x) \le 1$ for all x
- 2. $\sum_{x} p(x) = 1$, where the summation is over all values of x with non-zero probability.

3.1 Expected Values of Random Variables

Let X be a discrete random variable with the probability function p(x). Then, the expected value of X, E(X), is defined as:

$$E(X) = \sum_{x} x P(x),$$

where P(x) = P(X - x). Note that $E(x) = \mu = \sum_{x} x P(x)$.

3.1.1 Variance of Random Variables

If X is a random variable with mean $E(X) = \mu$, then the variance of a random variable X is the expected value of $(X - \mu)^2$. That is:

$$\sigma^2 = V(X) = E[(-\mu)^2]$$

The standard deviation of X is the positive square root of V(X), or σ .

3.1.2 Results

1. Let X be a discrete random variable with probability function p(x), and let c be a constant. Then,

$$E(c) = \sum_{x} c \sum_{x} P(x)$$
$$= c \cdot 1$$
$$= c$$

Therefore, E(c) = c.

2. Note that for the variance:

(a)

$$V(c) = E((c - \mu)^2)$$
$$= E((c - c)^2)$$
$$= 0$$

(b)

$$V(cX) = c^{2}V(X)$$
$$V(aX + b) = a^{2}V(X)$$

3. Let X be a discrete random variable with probability function p(x), g(x) be a function of X, and let c be a constant. Then:

$$E(cx) = cE(x)$$

$$= E[ax + b]$$

$$= aE(x) + b$$

Therefore, E[cg(X)] = cE(g(X)).

4. Let X be a discrete random variable with probability function p(x), and $g_1(X), g_2(X), ..., g_k(X)$ be k functions of X. Then:

$$E[g_1(X) + g_2(X) + ... + g_k(X)] = E[g_1(X)] + E[g_2(X)] + ... + E[g_k(X)]$$

3.2 Distribution Function

The distribution function F of a random variable X is the function $F: \mathbb{R} \to [0,1]$, defined by:

$$F(a) = P(X \le a)$$
 for $-\infty < a < \infty$

article [utf8]inputenc amsmath amsfonts amsthm amssymb graphicx [margin=1in]geometry float xcolor color hyperref fancyvrb listings

STA237 Exercises

Contents

4 Exercises

4.1 Probability

- 1. Suppose $P(A) = 0.5, P(A \cap B) = 0.2, \text{ and } P(A \cup B) = 0.7.$ Find:
 - (a) P(B)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$0.7 = 0.5 + P(B) - 0.2$$
$$0.7 = 0.3 + P(B)$$
$$P(B) = 0.4$$

(b) P(exactly one of two events occurs)

This means the probability of no elements from the intersection. Let this area be P(O).

$$P(A \cup B) = P(O) + P(A \cap B)$$

 $0.7 = P(O) + 0.2$
 $P(O) = 0.5$

(c) P(neither event occurs)

This means the probability of no elements in A, B. Call this probability P(X).

$$P(X) = P(\Omega) - P(A \cup B)$$
$$= 1 - 0.7$$
$$= 0.3$$

2. Suppose we throw a coin two times. The sample space for this experiment is:

$$\Omega = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$$

If it is a fair coin, then all four outcomes have equal possibilities:

$$P((H,H)) = P((H,T)) = P((T,H)) = P((T,T)) = \frac{1}{4}$$

What is the probability of getting at least one tail?

Looking at the sample space, the probability is $\frac{3}{4}$.

Alternatively, we can solve as follows, where RP represents the required probability:

$$P(\Omega) = RP + P(HH)$$

$$1 = RP + P(HH)$$

$$= RP + P(H)P(H)$$
Since it is independent.
$$= RP + \frac{1}{2} \cdot \frac{1}{2}$$

$$1 = RP + \frac{1}{4}$$

$$RP = \frac{3}{4}$$

Suppose we wanted to throw three coins, what would happen to the sample space?

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

Then, there are $2 \cdot 2 \cdot 2 = 2^3$ possibilities (to keep on with this pattern, flipping a coin 6 times would have 2^6 possibilities, and so on).

What is the probability of at least one head appearing in a 3-coin toss?

$$P(X) = 1 - P(TTT)$$

$$= 1 - P(T)P(T)P(T)$$

$$= 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= 1 - \frac{1}{8}$$

$$= \frac{7}{8}$$

3. A survey of students in a class was asked about their birth order (1 = oldest/only child), and which college of the university they were enrolled in.

Birth Order	1 or Only	2 or More	Total
Arts	Science	34	23
57		'	
Agriculture	52	41	93
Human Ecology	15	28	43
Other	12	17	30
Total	113	110	223

Suppose we selected a random student from this class.

- (a) What is the probability we select a Human Ecology student? P(Human Ecology) = $\frac{43}{223}$
- (b) What is the probability we select a first-born student? P(First Born) = $\frac{113}{223}$
- (c) What is the probability that the student is a first-born and a Human Ecology student? $P(C) = P(A \cap B) = \frac{15}{223}$
- (d) What is the probability that the student is a first born or a Human Ecology student?

$$P(D) = P(A \cup B)$$

$$= P(A) + P(B) - P(\cap B)$$

$$= \frac{43}{223} + \frac{113}{223} - \frac{15}{223}$$

$$= \frac{141}{223}$$

- 4. A sample space consists of 5 simple events, E_1, E_2, E_3, E_4, E_5 .
 - (a) If $P(E_1) = P(E_2) = 0.15$, $P(E_3) = 0.4$, and $P(E_4) = 2P(E_5)$, find the probabilities of E_4 and E_5 .

$$1 = 0.15 + 0.15 + 0.4 + 2P(E_5) + 2P(E_5)$$
$$0.3 = 3P(E_5)$$
$$P(E_5) = 0.1$$

Then:

$$P(E_4) = 2(0.1)$$

= 0.2

5. If A, B are events, $B \subset A$, P(A) = 0.6 and P(B) = 0.2, then find $P(A \cap B^c)$. To visualize:

$$P(A) = P(A \cap B^c) + P(B)0.6$$
 = $P(A \cap B^c) + 0.2$
 $P(AcapB^c) = 0.4$

6. An experiment involves tossing a pair of dice and observing the numbers on the upper faces. Find the number of sample points in Ω and the sample space for the experiment The sample points are $\Omega_{\{m,n\}} = \{1,2,3,4,5,6\}$.

The sample space is taking the cross product of the sample points (i.e., $\Omega_1 \times \Omega_2$). Then:

$$\Omega\{(1,1),(1,2),...,(6,6)\}$$

There is a $m \cdot n = 6 \cdot 6 = 36$ chance for a single probability.

7. The names of three employees are randomly drawn without replacement from a bowl containing the names of 30 employees of a small company. The person whose names is drawn first receives \$100, and the individuals whose names are drawn second and third receive \$50 and \$25, respectively. How many samples are associated with this experiment? There are 30 employees and 3 people are picked. So, r = 3, n = 30. Hence:

$$\begin{split} \Omega &= P_3^{30} \\ &= \frac{30!}{(30-3)!} \\ &= \frac{30!}{27!} \end{split}$$

8. Find the number of ways of selecting two applicants out of five. Here, n=5, r=2.

$${5 \choose 2} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2!3!}$$

$$= \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$$

$$= 10$$

4.2 Conditional Probability

1. Let $N = R^c$ be the event 'born in a month without r', and L is the event 'born in a long month'. What is the conditional probability P(N|L)?

$$P(R^c|L) = \frac{3}{7}$$

Note that $P(R|L) + P(R^c|L) = \frac{4}{7} + \frac{3}{7} = 1$.

2. A survey asked: 'Are you currently in a relationship?', and 'Are you involved in club sports?'. The survey found that 33% were in a relationship, and 25% were involved in sport. 11% said yes to both. Suppose you meet a student who is on a sports team. What is the probability they are also in a relationship?

Let A be students in a relationship, and B be students in a club sport.

$$P(A) = 0.33, P(B) = 0.25, P(A \cap B) = 0.11.$$
 We have:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{0.11}{0.25}$$
$$= 0.44$$

We know that $P(A|B) \neq P(A)$, A and B must be dependent events.

- 3. A bowl contains 6 red and 4 blue balls, A child selects two balls at random. What is the probability at least one of them is red?

We have:

- (a) $\{R, R\} = \frac{6}{10}, \frac{5}{9}$ (b) $\{R, B\} = \frac{6}{10}, \frac{4}{9}$ (c) $\{B, R\} = \frac{4}{10}, \frac{6}{9}$ (d) $\{B, B\} = \frac{4}{10}, \frac{3}{9}$

Note that P(at least one red) + P(no red) = 1, so:

$$P(one_R) = 1 - P(no_R)$$

$$= 1 - P(BB)$$

$$= 1 - P(B_1 \cap B_2)$$

$$= 1 - P(B_2|B_1)P(B_1)$$

$$= 1 - \frac{3}{9} \cdot \frac{4}{10}$$

$$= 1 - \frac{2}{15}$$

$$= \frac{13}{15}$$

- 4. A recent highway safety study found that in 77% of all accidents, the driver was wearing a seatbelt. Accident reports indicated that 92% of those drivers did not experience serious injury (defined as hospitalization or death), but only 63% of the non-belted were okay.
 - (a) What is the probability that a driver was seriously injured?
 - (b) What is the probability that a driver who was seriously injured was not wearing a seatbelt?

Let B is those that are wearing a seat bet, and NB is for those who did not wear a seat belt. Then, let I represent those who experienced a serious injury.

We have
$$P(B) = 0.77$$
, $P(NB) = 1 - 0.77 = 0.23$, and $P(I^c|B) = 0.92$, $P(I^c|NB) = 0.63$.
Then, $P(I|B) = 0.08$, $P(I|NB) = 0.37$.

[a)]Want to find P(I):

$$P(I) = P(B \cap I) + P(NB \cap I)$$

$$= P(I|B)P(B) + P(I|NB)P(NB)$$

$$= 0.08 \cdot 0.77 + 0.37 \cdot 0.23$$

$$= 0.0616 + 0.0851$$

$$= 0.1467$$

Want to find P(NB|I).

$$P(I|NB) = \frac{P(NB \cap I)}{P(I)}$$

$$= \frac{P(I|NB)P(I)}{0.1467}$$

$$= \frac{0.23 \cdot 0.37}{0.1467}$$

$$= \frac{0.0851}{0.1467}$$

$$= 0.58$$

(b) A student figures he has a 30% chance of being let out of class late. If he leaves class late, there is a 45% chance he will miss the bus. What is the probability that he is let out of class late and misses the bus?

Let L be the chance he leaves class late. Let M be the chance he misses the bus. P(L) = 0.3, P(M|L) = 0.45. We want to find $P(L \cap M)$:

$$P(L \cap M) = P(M|L)P(L)$$
$$= 0.45 \cdot 0.3$$
$$= 0.135$$

- 6. Leah flies from Moncton to Vancouver with a connection in Montreal. The probability her flight leaves on time is 15%. If the flight is on time, the chance her luggage makes the connecting flight in Montreal is 95%. But, if the flight is delayed, the probability the luggage will make it is only 65%.
 - (a) Are the first flight leaving on time and the luggage making the connection independent events? Explain.
 - (b) What is the probability that Leah's luggage arrives in Vancouver with her?

Let F be the chance her flight leaves on time. Let L be the luggage being in the connecting flight. P(F) = 0.15, P(L|F) = 0.95, $P(L|F^{C}) = 0.65$.

[a)] We have P(L|F) = 0.95 and P(L) = 0.695, so they are not equal. Therefore, they are dependent events.

$$P(L) = P(L|F)P(F) + P(L|F^c)P(F^c)$$

$$= 0.95 \cdot 0.15 + 0.65 \cdot 0.85$$

$$= 0.1425 + 0.5525$$

$$= 0.695$$

- (a) The Ontario Lottery association claims your odds of winning a price on an Instant Win Crossword game are 1 in 3.09. This means that any ticket has 32.4% chance of winning a prize. Every Friday, you buy one Crossword game.
 - (a) What is the probability you don't win a prize next Friday?
 - (b) What is the probability you don't win a prize 6 Fridays in a row?
 - (c) If you haven't won a prize for the past 6 Fridays, what is the probability you win a prize on your next game?
 - (d) What is the probability you win on two of your next three games?

Let W be the chance you win a prize. P(W) = 0.324.

(a) Want to find $P(W^c)$. $P(W^c) = 1 - 0.324 = 0.676$

(b) Want to find $P(W_1^c...W_6^c)$:

$$P(W_1^c...W_6^c) = P(W_1^c) \cdot ... \cdot P(W_2^c)$$

$$= P(W^c)^6$$

$$= 0.676^6$$

$$= 0.0954$$

- (c) Want to find $P((W_1^c...W_6^c)^c)$. So: $P((W_1^c...W_6^c)^c) = 1 0.0954 = 0.9046$.
- (d) Want to find $P(W_1W_2W_3^c)$:

$$P(W_1 W_2 W_3^c) = 0.324 \cdot 0.3424 \cdot 0.676$$
$$= 0.071$$

4.3 Random Variables

1. Suppose we roll two dice. List the outcomes:

(a)
$$\{X = 8\} = \{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}.$$

 $P(X = 8) = \frac{5}{36}$

(b)
$$\{X = 3\} = \{(1, 2), (2, 1)\}.$$

 $P(X = 3) = \frac{2}{36} = \frac{1}{18}$

(c)
$$\{X = 13\} = \{\}$$

 $P(X = 13) = 0$

2. Suppose the death rate in a year is 1 out of 1000 people, and that 2 out of 1000 people suffer some kind of disability. Then, we display the probability model for X = company payout in a table:

Policyholder Outcome	Payout x	P(X = x)
Death	10000	1/1000
Disability	5000	2/1000
Neither	0	

What is P(X=0)?

We have X = 0,5000,10000, and $P(X = 10000) = \frac{1}{1000}$, $P(X = 5000) = \frac{2}{1000}$. We calculate:

$$P(X = 0) = 1 - \frac{1}{1000} - \frac{2}{1000}$$
$$= \frac{997}{1000}$$

3. Take the previous example, and determine E(X), where X is the company payout. Recall: X=0,5000,10000, and $P(X=10000)=\frac{1}{1000},\ P(X=5000)=\frac{2}{1000},\ \text{and}\ P(X=0)=\frac{997}{1000}.$ To calculate E(X):

$$E(X) = (10000 \cdot \frac{1}{1000}) + (5000 \cdot \frac{2}{1000}) + (0 \cdot \frac{997}{1000})$$

$$= 10 + 10$$

$$= 20$$

Next, suppose we wanted to calculate the variance of X. We have:

(a) 10000 - 20 = 9980

(b)
$$5000 - 20 = 4980$$

(c)
$$0 - 20 = -20$$

So, we have:

$$\sigma^{2} = \sum_{x} (x - \mu)^{2} P(x)$$

$$= (9980^{2} \cdot \frac{1}{1000}) + (4980^{2} \cdot \frac{2}{1000}) + ((-20)^{2} \cdot \frac{997}{1000})$$

$$= 149600$$

Then:

$$\begin{split} \sigma &= SD(X) = \sqrt{V(X)} \\ &= \sqrt{149600} \\ &= \$386.78 \end{split}$$

- 4. If E(X) = 10 and V(X) = 3, then:
 - (a) Calculate E(9x + 11).

$$E[9x + 11] = 9E(x) + 11$$
$$= (9 \cdot 10) + 11$$
$$= 90 + 11 = 101$$

(b) Calculate V(9x + 11).

$$V(9x + 11) = 92V(x)$$
$$= 92 \cdot 3$$
$$= 243$$

(c)

$$\sigma^{2} = E(X - \mu)^{2}$$

$$= E(x^{2} - 2\mu x + \mu^{2})$$

$$= E(x^{2}) - 2\mu E(X) + \mu^{2}$$

$$= E(x^{2}) - 2\mu^{2} + \mu^{2}$$

$$= E(x^{2}) - \mu^{2}$$

(d) If E(X) = 10 and $E(X^2) = 160$:

$$\sigma^2 = 160 - 10^2 = 60$$

5. The probability distribution for a random variable Y is given by the following table. Find the mean, variance, and standard deviation of Y.

$$\begin{array}{c|c} y & p(y) \\ \hline 0 & 1/8 \\ 1 & 1/4 \\ 2 & 3/8 \\ 3 & 1/4 \\ \end{array}$$

Then:

$$F(0) = P(Y \le 0)$$
$$= P(Y = 0) = \frac{1}{8}$$

$$F(1) = P(Y \le 1)$$

$$= P(Y = 0) + P(Y = 1)$$

$$= \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$

$$F(2) = P(Y \le 2)$$
$$= \frac{3}{8} + \frac{1}{4} + \frac{1}{8} = \frac{6}{8}$$

$$F(3) = P(Y \le 3)$$
$$= \frac{6}{8} + \frac{1}{4} = 1$$