

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute for Operations Research ETH Zurich HG G21-22

Stephan Artmann stephan.artmann@ifor.math.ethz.ch Christoph Glanzer christoph.glanzer@ifor.math.ethz.ch

Mathematical Optimization — Solution 11

https://moodle-app2.let.ethz.ch/course/view.php?id=3610

Exercise 1: Mixed-integer feasibility with a fixed number of integer variables

Define $P_{MI} := \{ \binom{x}{y} \in \mathbb{Z}^d \times \mathbb{R}^n \mid Ax + By \leq c \}$ and let P be its LP-relaxation. Our goal is to decide whether $P_{MI} \neq \emptyset \Leftrightarrow P \cap (\mathbb{Z}^d \times \mathbb{R}^n) \neq \emptyset$.

Consider $\operatorname{proj}_x P = \{x \in \mathbb{R}^d \mid \exists y \in \mathbb{R}^n \text{ s.t. } Ax + By \leq c\}$. From the lecture, we know that $P = \emptyset \Leftrightarrow \operatorname{proj}_x P = \emptyset$. Additionally, it holds that $P_{MI} = \emptyset \Leftrightarrow (\operatorname{proj}_x P) \cap \mathbb{Z}^d = \emptyset$:

" \Rightarrow :" Follows directly as an element in $(\text{proj}_x P) \cap \mathbb{Z}^d$ would be a contradiction.

" \Leftarrow :" This implies that $\{x \in \mathbb{Z}^d \mid \exists y \in \mathbb{R}^n \text{ s.t. } Ax + By \leq c\} = \emptyset$, which implies that $P_{MI} = \emptyset$.

By applying the IP-feasibility oracle, we can find an $\bar{x} \in (\operatorname{proj}_x P) \cap \mathbb{Z}^d$ if it exists or decide that no such x exists, which is equivalent to $P_{MI} = \emptyset$. If it exists, the existence of \bar{x} implies that there is a corresponding y such that $\binom{\bar{x}}{y} \in P_{MI}$. In order to find such a y, fix the entries of \bar{x} and apply the LP-feasibility oracle to the following LP: $\{y \in \mathbb{R}^n \mid A\bar{x} + By \leq c\} = \{y \in \mathbb{R}^n \mid By \leq c - A\bar{x}\}.$

Exercise 2: Matching and Perfect Matching Polytope

We claim that PM'(G) = PM(G).

Note that in the case where |V| is odd, $PM'(G) = \emptyset = PM(G)$, as $x(E[V]) = x(E) = \frac{|V|}{2} > \frac{|V|-1}{2}$ for PM'(G) and $x(\delta(V)) = x(\emptyset) = 0 < 1$ for PM(G). Thus, we can assume w.l.o.g. that |V| is even.

" \subseteq ": Let $x \in LHS$.

- We know that $2x(E) = \sum_{v \in V} \underbrace{x(\delta(v))}_{\leq 1} \leq |V| = 2x(E) \Rightarrow x(\delta(v)) = 1.$
- Let $S \subseteq V$, |S| odd, $S \neq \emptyset$. Then, $|S^C|$ also has to be odd as $|V| = |S| + |S^C|$ is even. Thus,

$$x(E[S]) + x(E[S^C]) \le \frac{|S| - 1}{2} + \frac{|S^C| - 1}{2} = \frac{|V| - 2}{2} = \frac{|V|}{2} - 1.$$

As furthermore $\delta(S) = E \setminus (E[S] \cup E[S^C])$, it holds that

$$x(\delta(S)) = x(E) - (x(E[S]) + x(E[S^C])) \ge \frac{|V|}{2} - \frac{|V|}{2} + 1 = 1.$$

" \supset ": Let $x \in RHS$.

- $x(\delta(v)) \le 1$ is clearly satisfied for all $v \in V$.
- It holds that $2x(E) = \sum_{v \in V} x(\delta(v)) = |V| \Rightarrow x(E) = \frac{|V|}{2}$.
- Let $S \subseteq V$, |S| odd. Then,

$$|S| = \sum_{v \in S} |\delta(v)| = 2 \sum_{e \in E[S]} x(e) + \sum_{e \in \delta(S)} x(e).$$

Therefore,

$$x(E[S]) = \frac{|S| - x(\delta(S))}{2} \le \frac{|S| - 1}{2},$$

as $x(\delta(S)) > 1$.

Exercise 3: LP Solution and the Normal Cone

We assume that $x^* := \max\{c^{\mathrm{T}}x \mid x \in P\}$ exists and is finite, from which follows that also $y^* := \min\{y^{\mathrm{T}}b \mid y^{\mathrm{T}}A = c^{\mathrm{T}}, \ y \geq 0\}$ exists and is finite. Using complementary slackness, we know that x^* is optimal for the primal problem and y^* is optimal for the dual problem if and only if y_i^* $(A_{i,\cdot}x^* - b_i) = 0$, for all $i \in \{1, \ldots, m\}$. Let I be the constraints where x^* is tight. The previous argument proves that $c \in \mathrm{cone}\left(\{A_{i,\cdot}, \ i \in I\}\right)$ as it gives us a valid combination: We know that $y_i^* = 0$ for $i \notin I$ and therefore, $(y^*)^{\mathrm{T}}A = \sum_{i \in I} y_i^*A_{i,\cdot} = c^{\mathrm{T}}$ and $y^* \geq 0$, from which it follows that $c \in \mathrm{cone}\left(\{A_{i,\cdot}^{\mathrm{T}}, \ i \in I\}\right)$.