Econometrics I Homework 1

Eric Schulman

February 10, 2018

1 Part I

2 Part II

a) Below are the results of the regression described in part (a).

Dep. Variable:	lwage	R-squared:	0.233
Model:	OLS	Adj. R-squared:	0.233
Method:	Least Squares	F-statistic:	428.8
Date:	Sat, 10 Feb 2018	Prob (F-statistic):	3.57e-243
Time:	16:31:36	Log-Likelihood:	-3651.2
No. Observations:	4230	AIC:	7310.
Df Residuals:	4226	BIC:	7336.
Df Model:	3		

	coef	std err	t	P> t	[0.025	0.975]	
const	1.1852	0.045	26.488	0.000	1.097	1.273	
educ	0.0904	0.003	33.051	0.000	0.085	0.096	
exp	0.0354	0.003	14.083	0.000	0.030	0.040	
exp_sq	-0.0005	5.03e-05	-9.251	0.000	-0.001	-0.000	
Omnibus:		1562.688	Durbin	-Watsor	1:	1.770	
Prob(Omnibus):		0.000	Jarque	-Bera (J	B): 34	34837.483	
Skew:		-1.229	Prob(J	B):		0.00	
Kurtosis:		16.843	Cond.	No.	4	4.31e+03	

b) Summing the residuals in Python effectively produces 0 with some floating point error. My last program output was -1.56521018368e-10.

Again, they residuals multiplied with X is effectively 0 with some floating point error. $\langle -1.56560986e-10 \quad -1.82083681e-09 \quad -3.00428837e-09 \quad -7.82019924e-08 \rangle$

c) Below are the results of the regression described in part (c).

Dep. Variable:		lwage		R-squared	0.035			
Model:		OLS		Adj. R-sq	uared:	0.035		
M	ethod:		Least Squares		F-statistic	: :	77.07	
Da	ate:		Sat, 10 Feb 2018		Prob (F-s	1.33e-3	33	
Ti	me:		16:31:36		Log-Likeli	-4137.	4	
No	o. Observ	ations:	4230		AIC:	8281.		
Df Residuals:		4227		BIC:	8300.			
Df Model:		2						
		coef	std err	t	P > t	[0.025	0.975]	
_	const	2.3471	0.031	75.594	0.000	2.286	2.408	
exp 0.0344		0.003	12.195	0.000	0.029	0.040		
	exp_sq	-0.0006	5.62e-05	-10.986	0.000	-0.001	-0.001	
Omnibus:		965.638	8 Durbin-Watso		1.692			
Prob(Omnibus):		0.000	Jarque	-Bera (JE	3): 162	45.042		

The average product of the residuals and education is 0.940. Obviously, this is non-zero as education was not included in the regression.

Prob(JB):

Cond. No.

0.00

2.67e+03

d) Below are the results of the regression described in part (d).

-0.633

12.517

Skew:

Kurtosis:

Dep. V	/ariable	:	educ		R-square	d:	0.11	.2
Model:			OLS		Adj. R-so	quared:	0.11	.2
Metho	d:	L	_east Squa	ares	F-statisti	c:	267.	.1
Date:		Sa	t, 10 Feb	2018	Prob (F-s	statistic):	6.00e-	110
Time:			16:31:36	5	Log-Likel	ihood:	-1095	54.
No. Ol	oservati	ons:	4230		AIC:		2.191e	+04
Df Res	iduals:		4227		BIC:		2.193e	+04
Df Mo	del:		2					
		coef	std err	t	P> t	[0.025	0.975]	
C	onst	12.8461	0.156	82.572	0.000	12.541	13.151	
ex	кр	-0.0113	0.014	-0.797	0.425	-0.039	0.016	
ex	kp_sq	-0.0017	0.000	-5.967	0.000	-0.002	-0.001	
	Omnibu	s:	65.618	Durbi	n-Watsor	ı: :	1.674	
F	Prob(Oi	nnibus):	0.000	Jarque	e-Bera (J	B): 9	6.128	
9	Skew:		-0.174	Prob(JB):	1.3	34e-21	

The average product of the new residuals and education is 10.396. One would expect the product to be greater than zero based on the proof below.

$$= y'y - y'\hat{y}$$
$$= (X'\hat{\beta} + \hat{e})'(X'\hat{\beta} + \hat{e}) - (X'\hat{\beta} + \hat{e})'(X'\hat{\beta})$$

Since X and \hat{e} are orthogonal,

$$= (X'\hat{\beta})'(X'\hat{\beta}) + \hat{e}'\hat{e} - (X'\hat{\beta})'(X'\hat{\beta})$$
$$= \hat{e}'\hat{e} > 0$$

Since the matrix has quadratic form.

e) Below are the results form (e). As you can see the coefficients on the residuals are the same.

Dep. Variable:	у	R-squared:	0.205
Model:	OLS	Adj. R-squared:	0.205
Method:	Least Squares	F-statistic:	1093.
Date:	Sat, 10 Feb 2018	Prob (F-statistic):	2.01e-213
Time:	16:31:36	Log-Likelihood:	-3651.2
No. Observations:	4230	AIC:	7304.
Df Residuals:	4229	BIC:	7311.
Df Model:	1		

		coef	std err	1	t	P> t	[0.025	0.975]	
	x1	0.0904	0.003	33.063		0.000	0.085	0.096	
Omnibus:		1562.688 Dur		urbin-Watson:		1.770			
Prob(Omnibus):		0.000 Ja i		Jar	Jarque-Bera (JB):		34837.483	3	
Skew:		-1.229 Pro		Prob(JB):		0.00			
Kurtosis:		16.84	843 Co i		nd. No.	1.00			

- f) In (c) we calculated $M_{X_1}y$.
 - In (d) we calculated $M_{X_1}X_2$.
 - In (e) we calculated $((M_{X_1}X_2)'M_{X_1}X_2)^{-1}((M_{X_1}X_2)'M_{X_1}y)$.

Adding a column of ι as an intercept we have:

$$([M_{X_1}X_2 \quad \iota]'[M_{X_1}X_2 \quad \iota])^{-1}(([M_{X_1}X_2 \quad \iota])'M_{X_1}y)$$

$$= \begin{bmatrix} (M_{X_1}X_2)'M_{X_1}X_2 & (M_{X_1}X_2)'\iota \\ \iota'M_{X_1}X_2 & \iota'\iota \end{bmatrix}^{-1}(([M_{X_1}X_2 \quad \iota])'M_{X_1}y)$$

 ι should be orthogonal to $M_{X_1}X_2$ as it was included in X_1 so

$$= \begin{bmatrix} (M_{X_1}X_2)'M_{X_1}X_2 & 0\\ 0 & \iota'\iota \end{bmatrix}^{-1} \begin{bmatrix} (M_{X_1}X_2)'M_{X_1}y\\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} ((M_{X_1}X_2)'M_{X_1}X_2)^{-1}((M_{X_1}X_2)'M_{X_1}y)\\ 0 \end{bmatrix}$$

Since, M_{X_1} is idempotent and symmetric, this is equivalent to

$$= \begin{bmatrix} (X_2' M_{X_1} X_2)^{-1} X_2' M_{X_1} y \\ 0 \end{bmatrix}$$

Finally, we proved in lecture that the top term is the coefficient on X_2 = $\begin{bmatrix} \hat{\beta}_2 \\ 0 \end{bmatrix}$

3 Python Code

```
import pandas
import math
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
FNAME = '../cps09mar.dta'
def write_result(model, no):
        result_doc = open('tex/hw2_reg%s.tex'%no,'w+')
        result_doc.write( model.summary().as_latex() )
        result_doc.close()
def main():
        #filter matrix and load it into memory
        df = pandas.read_stata(FNAME)
        X = df[(df.female == 0) & (df.hisp == 1) & (df.race == 1)]
        print X['educ'].count()
        y = X['lwage']
        #part a
        X1 = X.loc[:,('educ','exp')]
        X1['exp_sq'] = X1['exp']**2
        X1 = sm.add\_constant(X1)
        model1 = sm.OLS(y, X1).fit()
        write_result (model1,1)
        #part b
        e1 = model1.resid
        print sum(e1)
        print np.matmul(e1,X1)
        #part c
        X2 = X1.loc[:,('exp','exp_sq')]
        X2 = sm.add\_constant(X2)
        model2 = sm.OLS(y, X2). fit()
        write_result (model2,2)
        #actual test part c
```

```
print np.matmul(e2,X1['educ'])/X1['educ'].count()

#part d
model3 = sm.OLS(X1['educ'],X2).fit()
write_result(model3,3)
e3 = model3.resid
print np.matmul(e3,X1['educ'])/X1['educ'].count()

#part e
model4 = sm.OLS(e2,e3).fit()
write_result(model4,4)

#part f

if __name__ == "__main__":
    main()
```