Technische Universität Darmstadt

Telekooperation 1: Exercise WS15/16

Michael Stein, MSc.

michael.stein@tk.informatik.tu-darmstadt.de

Jens Heuschkel, MSc.

<u>jens.heuschkel@tk.informatik.tu-darmstadt.de</u>

Copyrighted material – for TUD student use only

TK1 – EXERCISE 28.1.2016

- Solution 8th Exercise
- 9th Theory Exercise
- 5th Programming Exercise

- Mention (at least) two criteria for the correctness in distributed systems.
- Explain the criteria in one to two sentences and describe (at least) one example of the realization of the criterion.

Safety

- Properties are kept throughout computation and are always true
- Ensure that a "bad thing" cannot happen, e.g. a deadlock

Liveness

- Guarantees progress computation
- Ensure that a "good thing" must happen, e.g. termination

A client *C* wants to synchronize with a timeserver *S* in the intranet (assume an ideal minimum transmission delay of zero milliseconds). The runtime behavior of its messages (round-trip time) and the resulting timestamp of *S* are both stored by *C* in the following table:

Round-trip (ms)	Time (HH:MM:SS)
20	15:38:24.765
18	15:38:36.580
22	15:38:49.698

Refer to the algorithm by Christian to answer the following questions:

- a) Which entry in the depicted table should C select to set its local clock?
- b) How accurate is the time estimate of C in relation to S?
- c) Which time should C set to its local clock?

General Situation

Assumptions: only roundtrip time is known, m and m' take the same amount of transmission time and no processing time.

2.a:

C sets local time to: 15:38:36.580 + 0.009s = 15:38:36.589

(18 ms/2 = 9 ms = 0.009 s)

28.01.2016

2.c:

2.d: Only the precision of the estimation changes to ± 5 ms [roundtrip/2 - min = 18ms/2 - 4ms (cf. Coulouris)]

10.2.d: ±5 ms.

Cf. lecture:

• Delay: $d_i = t + t' = T_{i-2} - T_{i-3} + T_i - T_{i-1}$

• Offset: $o_i = \frac{1}{2} (T_{i-2} - T_{i-3} + T_{i-1} - T_i)$

• Accuracy of offset o is estimated by upper and lower bounds:

$$o_i - d_i/2 \le o \le o_i + d_i/2$$

Values:

 $T_{i-3} = 15:32:56.210$

 $T_{i-2} = 15:32:56.400$

 $T_{i-1} = 15:32:56.690$

 $T_i = 15:32:56.960$

 $=> o_i = (15:32:56.400 - 15:32:56.210 + 15:32:56.690 - 15:32:56.960)/2 = -0,040 s$

 $=> d_i = (15:32:56.400 - 15:32:56.210 + 15:32:56.960 - 15:32:56.690) = 0,460 s$

=> -0.040 s - 0.460 s/2 < 0 < -0.040 s + 0.460 s/2