Case Study #2 - Clique Bait

Introduction

Clique Bait is not like your regular online seafood store - the founder and CEO Keerthi, was also a part of a digital data analytics team and wanted to expand his knowledge into the seafood industry!

In this case study - you are required to support Keerthi's vision and analyse his dataset and come up with creative solutions to calculate funnel fallout rates for the Clique Bait online store.

Available Data

For this case study there is a total of 5 datasets which you will need to combine to solve all of the questions.

Users

Customers who visit the Clique Bait website are tagged via their cookie_id.

user_id	cookie_id	start_date
397	3759ff	2020-03-30 00:00:00
215	863329	2020-01-26 00:00:00
191	eefca9	2020-03-15 00:00:00
89	764796	2020-01-07 00:00:00
127	17ccc5	2020-01-22 00:00:00
81	b0b666	2020-03-01 00:00:00
260	a4f236	2020-01-08 00:00:00
203	d1182f	2020-04-18 00:00:00
23	12dbc8	2020-01-18 00:00:00
375	f61d69	2020-01-03 00:00:00

Events

Customer visits are logged in this **events** table at a **cookie_id** level and the **event_type** and **page_id** values can be used to join onto relevant satellite tables to obtain further information about each event.

The sequence_number is used to order the events within each visit.

visit_id	cookie_id	page_id	event_typ e	sequenc e_numb er	event_time
719fd3	3d83d3	5	1	4	2020-03-02 00:29:09.975502
fb1eb1	c5ff25	5	2	8	2020-01-22 07:59:16.761931
23fe81	1e8c2d	10	1	9	2020-03-21 13:14:11.745667
ad91aa	648115	6	1	3	2020-04-27 16:28:09.824606
5576d7	ac418c	6	1	4	2020-01-18 04:55:10.149236
48308b	c686c1	8	1	5	2020-01-29 06:10:38.702163
46b17 d	78f9b3	7	1	12	2020-02-16 09:45:31.926407
9fd196	ccf057	4	1	5	2020-02-14 08:29:12.922164
edf853	f85454	1	1	1	2020-02-22 12:59:07.652207
3c6716	02e74f	3	2	5	2020-01-31 17:56:20.777383

Event Identifier

The **event_identifier** table shows the types of events which are captured by Clique Bait's digital data systems.

event_type	event_name
1	Page View
2	Add to Cart
3	Purchase
4	Ad Impression
5	Ad Click

Campaign Identifier

This table shows information for the 3 campaigns that Clique Bait has ran on their website so far in 2020.

campaign_id	products	campaign_name	start_date	end_date
1	1-3	BOGOF - Fishing For Compliments	2020-01-01 00:00:00	2020-01-14 00:00:00
2	4-5	25% Off - Living The Lux Life	2020-01-15 00:00:00	2020-01-28 00:00:00
3	6-8	Half Off - Treat Your Shellf(ish)	2020-02-01 00:00:00	2020-03-31 00:00:00

Page Hierarchy

This table lists all of the pages on the Clique Bait website which are tagged and have data passing through from user interaction events.

page_id	page_name	product_category	product_id
1	Home Page	null	null
2	All Products	null	null
3	Salmon	Fish	1
4	Kingfish	Fish	2
5	Tuna	Fish	3
6	Russian Caviar	Luxury	4
7	Black Truffle	Luxury	5
8	Abalone	Shellfish	6
9	Lobster	Shellfish	7
10	Crab	Shellfish	8
11	Oyster	Shellfish	9
12	Checkout	null	null
13	Confirmation	null	null

Interactive SQL Instance

You can use the provided DB Fiddle instance to easily access these example datasets - this interactive session has everything you need to start solving these questions using SQL.

<u>Click here</u> to open a fully functional SQL editor where you can write your own queries to analyse the data.

Case Study Questions

1. Enterprise Relationship Diagram

Using the following DDL schema details to create an ERD for all the Clique Bait datasets.

Click here to access the DB Diagram tool to create the ERD.

```
CREATE TABLE clique_bait.event_identifier (
 "event_type" INTEGER,
 "event_name" VARCHAR(13)
);
CREATE TABLE clique_bait.campaign_identifier (
 "campaign_id" INTEGER,
 "products" VARCHAR(3),
 "campaign_name" VARCHAR(33),
 "start_date" TIMESTAMP,
 "end_date" TIMESTAMP
);
CREATE TABLE clique_bait.page_hierarchy (
 "page_id" INTEGER,
 "page_name" VARCHAR(14),
 "product_category" VARCHAR(9),
 "product_id" INTEGER
);
```

```
CREATE TABLE clique_bait.users (

"user_id" INTEGER,

"cookie_id" VARCHAR(6),

"start_date" TIMESTAMP
);

CREATE TABLE clique_bait.events (

"visit_id" VARCHAR(6),

"cookie_id" VARCHAR(6),

"page_id" INTEGER,

"event_type" INTEGER,

"sequence_number" INTEGER,

"event_time" TIMESTAMP
);
```

2. Digital Analysis

Using the available datasets - answer the following questions using a single query for each one:

- 1. How many users are there?
- 2. How many cookies does each user have on average?
- 3. What is the unique number of visits by all users per month?
- 4. What is the number of events for each event type?
- 5. What is the percentage of visits which have a purchase event?
- 6. What is the percentage of visits which view the checkout page but do not have a purchase event?
- 7. What are the top 3 pages by number of views?
- 8. What is the number of views and cart adds for each product category?
- 9. What are the top 3 products by purchases?

3. Product Funnel Analysis

Using a single SQL query - create a new output table which has the following details:

How many times was each product viewed?

- How many times was each product added to cart?
- How many times was each product added to a cart but not purchased (abandoned)?
- How many times was each product purchased?

Additionally, create another table which further aggregates the data for the above points but this time for each product category instead of individual products.

Use your 2 new output tables - answer the following questions:

- 1. Which product had the most views, cart adds and purchases?
- 2. Which product was most likely to be abandoned?
- 3. Which product had the highest view to purchase percentage?
- 4. What is the average conversion rate from view to cart add?
- 5. What is the average conversion rate from cart add to purchase?

3. Campaigns Analysis

Generate a table that has 1 single row for every unique visit_id record and has the following columns:

- user_id
- visit_id
- visit_start_time: the earliest event_time for each visit
- page_views: count of page views for each visit
- cart_adds: count of product cart add events for each visit
- purchase: 1/0 flag if a purchase event exists for each visit
- campaign_name: map the visit to a campaign if the visit_start_time falls between the start_date and end_date
- impression: count of ad impressions for each visit
- click: count of ad clicks for each visit
- (Optional column) cart_products: a comma separated text value with products added to the cart sorted by the order they were added to the cart (hint: use the sequence_number)

Use the subsequent dataset to generate at least 5 insights for the Clique Bait team - bonus: prepare a single slide of infographic that the team can use for their management reporting sessions, be sure to emphasise the most important points from your findings.

Some ideas you might want to investigate further include:

- Identifying users who have received impressions during each campaign period and comparing each metric with other users who did not have an impression event
- Does clicking on an impression lead to higher purchase rates?
- What is the uplift in purchase rate when comparing users who click on a campaign
 impression versus users who do not receive an impression? What if we compare them with
 users who just an impression but do not click?
- What metrics can you use to quantify the success or failure of each campaign compared to each other?

Conclusion

This case study is based off my many years working with Digital datasets in consumer banking and retail supermarkets - all of the datasets are designed based off real datasets I've come across in challenging problem solving scenarios and the questions reflect similar problems which I worked on.

Campaign analysis is almost everywhere in the data world, especially in marketing, digital, UX and retail industries - and being able to analyse views, clicks and other digital behaviour is a critical skill to have in your toolbelt as a data professional!