REGULARISIERUNGSVERFAHREN

Katayoun Chaman Ara

Seminar: Nichtlineare Optimierung

Übersicht

- 1. Einleitung
- 2. Moreau-Yosida-Regularisierung
- 3. Proximal-Punkt-Verfahren
- 4. Tikhonov-Regularisierung
- 5. Programmieraufgabe

EINLEITUNG

Beispielproblem

Gegeben sei die nach unten halbstetige konvexe Funktion:

$$f(x) = \begin{cases} x & \text{, falls } x \ge 0\\ \infty & \text{, falls } x < 0 \end{cases}$$

Beispielproblem

Gegeben sei die nach unten halbstetige konvexe Funktion:

$$f(x) = \begin{cases} x & \text{, falls } x \ge 0\\ \infty & \text{, falls } x < 0 \end{cases}$$

⇒ Regularisierungsverfahren, um die Kondition des Optimierungsproblems zu verbessern

```
\min f(x), \text{ für } x \in \mathbb{R}^n
f: \mathbb{R}^n \longrightarrow \mathbb{R} \bigcup \{+\infty\}
f \text{ ist konvex}
```

```
\min f(x), \text{ für } x \in \mathbb{R}^nf: \mathbb{R}^n \longrightarrow \mathbb{R} \bigcup \{+\infty\}
```

- *f* ist konvex
- \bigcirc f ist durchgehend echt

```
\min f(x), \text{ für } x \in \mathbb{R}^nf: \mathbb{R}^n \longrightarrow \mathbb{R} \bigcup \{+\infty\}
```

- *f* ist konvex
- \bigcirc f ist durchgehend echt
- $\bigcirc f$ ist nach unten halbstetig

```
\min f(x), \text{ für } x \in \mathbb{R}^nf: \mathbb{R}^n \longrightarrow \mathbb{R} \bigcup \{+\infty\}
```

- f ist konvex
- \bigcirc f ist durchgehend echt
- $\bigcirc f$ ist nach unten halbstetig
- \Rightarrow Ziel: Stetig, differenzierbares Optimierungsproblem

MOREAU-YOSIDA-

REGULARISIERUNG

Einführung

Definition

$$f_M(x) := \min_{y \in \mathbb{R}^n} \left\{ f(y) + \frac{1}{2\gamma} \|y - x\|^2 \right\}$$

mit einer gegebenen Konstante $\gamma > 0$.

Einführung

Definition

$$f_M(x) := \min_{y \in \mathbb{R}^n} \left\{ f(y) + \frac{1}{2\gamma} \|y - x\|^2 \right\}$$

mit einer gegebenen Konstante $\gamma > 0$.

$$g(x, y) := f(y) + \frac{1}{2\gamma} ||y - x||^2$$

bezeichne die Moreau-Yosida-Funktion.

Beispiel

ZURÜCK ZUM ANFANGSBEISPIEL

$$g(x,y) = \begin{cases} y + \frac{1}{2\gamma}(y-x)^2 & \text{,falls } y \ge 0\\ \infty & \text{, falls } y < 0 \end{cases}$$

Beispiel

ZURÜCK ZUM ANFANGSBEISPIEL

$$g(x,y) = \begin{cases} y + \frac{1}{2\gamma}(y-x)^2 & \text{,falls } y \ge 0\\ \infty & \text{, falls } y < 0 \end{cases}$$

Für festes x nimmt g Minimum im Punkt

$$p(x) = \begin{cases} 0 & \text{, falls } x < \gamma \\ x - \gamma & \text{, falls } x \ge \gamma \end{cases}$$

an.

Beispiel

ZURÜCK ZUM ANFANGSBEISPIEL

$$g(x,y) = \begin{cases} y + \frac{1}{2\gamma}(y-x)^2 & \text{,falls } y \ge 0\\ \infty & \text{, falls } y < 0 \end{cases}$$

Für festes x nimmt g Minimum im Punkt

$$p(x) = \begin{cases} 0 & \text{, falls } x < \gamma \\ x - \gamma & \text{, falls } x \ge \gamma \end{cases}$$

an. Damit ist:

$$f_M(x) = p(x) + \frac{1}{2\gamma}(p(x) - x)^2 = \begin{cases} \frac{1}{2\gamma}x^2 & \text{, falls } x < y \\ x - \frac{\gamma}{2} & \text{, falls } x \ge \gamma \end{cases}$$

○ Für
$$f = f_1 + f_2$$
 gilt: $x^* \in \mathbb{R}^n$ Lösung

$$\Rightarrow \nabla f_2(x^*)^T (x - x^*) + f_1(x) - f_1(x^*) \ge 0$$

○ Für
$$f = f_1 + f_2$$
 gilt: $x^* \in \mathbb{R}^n$ Lösung

$$\Rightarrow \nabla f_2(x^*)^T (x - x^*) + f_1(x) - f_1(x^*) \ge 0$$

○ p(x) eindeutige Lösung ⇒ $||p(x) - p(y)|| \le ||x - y||$, für alle $x, y \in \mathbb{R}^n$

- Für $f = f_1 + f_2$ gilt: $x^* \in \mathbb{R}^n$ Lösung $\Rightarrow \nabla f_2(x^*)^T (x - x^*) + f_1(x) - f_1(x^*) \ge 0$
- p(x) eindeutige Lösung ⇒ $||p(x) - p(y)|| \le ||x - y||$, für alle $x, y \in \mathbb{R}^n$
- f_M ist stetig, differenzierbar mit $\nabla f_M(x) = \frac{1}{\gamma}(x p(x))$, für alle $x \in \mathbb{R}^n$

○ Für
$$f = f_1 + f_2$$
 gilt: $x^* \in \mathbb{R}^n$ Lösung

$$\Rightarrow \nabla f_2(x^*)^T (x - x^*) + f_1(x) - f_1(x^*) \ge 0$$

- p(x) eindeutige Lösung ⇒ $||p(x) - p(y)|| \le ||x - y||$, für alle $x, y \in \mathbb{R}^n$
- f_M ist stetig, differenzierbar mit $\nabla f_M(x) = \frac{1}{\gamma}(x p(x))$, für alle $x \in \mathbb{R}^n$

Dann gelten:

 f_M konvex und $f(x^*) = f_M(x)$ in jedem Minimum von f (bzw. f_M)

<u>Beobachtungen</u>

 \bigcirc Zur Auswertung eines Punkts x von f_M muss p(x) berechnet werden

- \bigcirc Zur Auswertung eines Punkts x von f_M muss p(x) berechnet werden
- O Kann zu nicht differenzierbarem Optimierungsproblem führen

- \bigcirc Zur Auswertung eines Punkts x von f_M muss p(x) berechnet werden
- O Kann zu nicht differenzierbarem Optimierungsproblem führen

⇒ Verwendung bei schlecht konditionierten, differenzierbaren Problemen

- \bigcirc Zur Auswertung eines Punkts x von f_M muss p(x) berechnet werden
- O Kann zu nicht differenzierbarem Optimierungsproblem führen

- ⇒ Verwendung bei schlecht konditionierten, differenzierbaren Problemen
- \Rightarrow Verwendung zur Herleitung des Proximal-Punkts p(x)

PROXIMAL-PUNKT-VERFAHREN

Einführung

Algorithmus

- 1. Wähle $x^0 \in dom(f)$, k = 0
- 2. Ist x^k Minimum von $f \longrightarrow STOP$
- 3. Wähle $\gamma_k > 0$. Bestimme x^{k+1} globales Minimum von $f_k(x) = f(x) + \frac{1}{2\gamma_k} \left\| x x^k \right\|^2$
- 4. Setze $k + 1 \longrightarrow k$. Gehe zum Schritt 2)

○
$$(x^k)$$
 und (γ_k) erzeugte Folgen. $s^k := \frac{x^{k-1} - x^k}{\gamma_{k-1}}$
⇒ $s^k \in \partial f(x^k)$

- (x^k) und (γ_k) erzeugte Folgen. $s^k := \frac{x^{k-1} x^k}{\gamma_{k-1}}$ $\Rightarrow s^k \in \partial f(x^k)$
- $\bigcirc \Rightarrow (||s^k||)$ ist monoton fallend

- (x^k) und (γ_k) erzeugte Folgen. $s^k := \frac{x^{k-1} x^k}{\gamma_{k-1}}$ $\Rightarrow s^k \in \partial f(x^k)$
- $\bigcirc \Rightarrow (||s^k||)$ ist monoton fallend

$$(\sigma_k) : \sigma_k := \sum_{j=0}^k \gamma_j$$

$$\Rightarrow f(x^k) - f(x) \le \frac{\|x - x^0\|^2}{2\sigma_{k-1}} - \frac{\|x - x^k\|^2}{2\sigma_{k-1}} - \frac{\sigma_{k-1}}{2} \|s^k\|^2$$

- (x^k) und (γ_k) erzeugte Folgen. $s^k := \frac{x^{k-1} x^k}{\gamma_{k-1}}$ $\Rightarrow s^k \in \partial f(x^k)$
- $\bigcirc \Rightarrow (||s^k||)$ ist monoton fallend

$$(\sigma_k) : \sigma_k := \sum_{j=0}^k \gamma_j$$

$$\Rightarrow f(x^k) - f(x) \le \frac{\|x - x^0\|^2}{2\sigma_{k-1}} - \frac{\|x - x^k\|^2}{2\sigma_{k-1}} - \frac{\sigma_{k-1}}{2} \|s^k\|^2$$

SATZ

Die Lösungmenge $S:=\{x^*\in\mathbb{R}^n|f(x^*)=\inf_{x\in\mathbb{R}^n}f(x)\}$ sei nichtleer und $\sigma_k\longrightarrow\infty$ für $k\longrightarrow\infty$.

Dann konvergiert (x^k) gegen ein Element aus S.

$$\bigcirc \ \gamma = \gamma_k$$
 konstant erfüllt $\sigma_k \longrightarrow \infty$

$$\bigcirc \gamma = \gamma_k$$
 konstant erfüllt $\sigma_k \longrightarrow \infty$

 (x^k) konvergiert unter Voraussetzungen gegen ein Minimum von f (nicht nur: jeder Häufungspunkt von (x_k) ist Minimum von f).

TIKHONOV-REGULARISIERUNG

Einführung

Algorithmus

- 1. Wähle $x^0 \in dom(f)$, k = 0
- 2. Ist x^k Minimum von $f \longrightarrow STOP$
- 3. Wähle $\epsilon_k > 0$. Bestimme x^{k+1} globales Minimum von $f_k(x) = f(x) + \frac{\epsilon_k}{2} ||x||^2$
- 4. Setze $k + 1 \longrightarrow k$. Gehe zum Schritt 2)

 (x^k) und (ϵ_k) erzeugte Folgen. Gilt $\epsilon_k \downarrow 0$ \Rightarrow Jeder Häufungspunkt von (x^k) ist Lösung des Optimierungsproblems

- (x^k) und (ϵ_k) erzeugte Folgen. Gilt $\epsilon_k \downarrow 0$ \Rightarrow Jeder Häufungspunkt von (x^k) ist Lösung des Optimierungsproblems
- Sei $s^k := -\epsilon_{k-1} x^k$ ⇒ $s^k \in \partial f(x^k)$

- (x^k) und (ε_k) erzeugte Folgen. Gilt $\varepsilon_k \downarrow 0$ ⇒ Jeder Häufungspunkt von (x^k) ist Lösung des Optimierungsproblems
- Sei $s^k := -\epsilon_{k-1} x^k$ ⇒ $s^k \in \partial f(x^k)$

SATZ

Die Lösungmenge $S := \{x^* \in \mathbb{R}^n | f(x^*) = \inf_{x \in \mathbb{R}^n} f(x) \}$ sei nichtleer und $\epsilon_k \downarrow 0$.

Dann konvergiert (x^k) gegen das eindeutig bestimmte kleinste Element in S.

 \bigcirc Folge (x^k) kann nicht beschränkt sein, wenn $S = \emptyset$

- \bigcirc Folge (x^k) kann nicht beschränkt sein, wenn $S = \emptyset$
- \bigcirc Wissen a priori gegen welches Element (x^k) aus S konvergiert

- \bigcirc Folge (x^k) kann nicht beschränkt sein, wenn $S = \emptyset$
- \bigcirc Wissen a priori gegen welches Element (x^k) aus S konvergiert
- \bigcirc Kondition der Teilprobleme unter Umständen beliebig schlecht, da $\epsilon_k \downarrow 0$

- \bigcirc Folge (x^k) kann nicht beschränkt sein, wenn $S = \emptyset$
- \bigcirc Wissen a priori gegen welches Element (x^k) aus S konvergiert
- \bigcirc Kondition der Teilprobleme unter Umständen beliebig schlecht, da $\epsilon_k \downarrow 0$

 \Rightarrow Theorie von Tikhonov-Verfahren geht für nichtglatte Probleme durch

- \bigcirc Folge (x^k) kann nicht beschränkt sein, wenn $S = \emptyset$
- \bigcirc Wissen a priori gegen welches Element (x^k) aus S konvergiert
- \bigcirc Kondition der Teilprobleme unter Umständen beliebig schlecht, da $\epsilon_k \downarrow 0$

- \Rightarrow Theorie von Tikhonov-Verfahren geht für nichtglatte Probleme durch
- ⇒ Praktische Bedeutung liegt in glatten, schlecht konditionierten Problemen

 Implementiere das Gradientenverfahren und die Proximal-Punkt- bzw. Tikhonov-Regularisierung zur Lösung der Aufgabe zur optimalen Aufheizung

- Implementiere das Gradientenverfahren und die Proximal-Punkt- bzw. Tikhonov-Regularisierung zur Lösung der Aufgabe zur optimalen Aufheizung
- Als Schrittweitenstrategie soll die exakte Schrittweite verwendet werden

- Implementiere das Gradientenverfahren und die Proximal-Punkt- bzw. Tikhonov-Regularisierung zur Lösung der Aufgabe zur optimalen Aufheizung
- Als Schrittweitenstrategie soll die exakte Schrittweite verwendet werden
- Als Temperaturprofil soll

1.
$$\theta(x) := x^2 (1 - x)^2$$
 und 2. $\theta(x) := \begin{cases} 1 & \text{, } 0.25 \le x \le 0.75 \\ 0 & \text{, sonst} \end{cases}$

- Implementiere das Gradientenverfahren und die Proximal-Punkt- bzw. Tikhonov-Regularisierung zur Lösung der Aufgabe zur optimalen Aufheizung
- Als Schrittweitenstrategie soll die exakte Schrittweite verwendet werden
- Als Temperaturprofil soll

1.
$$\theta(x) := x^2 (1 - x)^2$$
 und 2. $\theta(x) := \begin{cases} 1 & \text{, } 0.25 \le x \le 0.75 \\ 0 & \text{, sonst} \end{cases}$

 \bigcirc Teste für n = 10, 100, 1000

Plots

Plots

Ende

Danke für die Aufmerksamkeit