NATIONAL TAIWAN UNIVERSITY, GRADUATE INSTITUTE OF BIOMEDICAL ENGINEERING AND BIOINFORMATICS

BEBI5009: Mathematical Modeling of System Biology Homework 4

Yi Hsiao R04945027

November 30, 2016

Consider the reaction network

$$A \xrightarrow{k_1} B + C$$
$$B + C \xrightarrow{k_{-1}} A$$

- a) Suppose that the system starts with two molecules of A, one molecule of B, and no molecules of C, that is $(N_A, N_B, N_C) = (2, 1, 0)$. Determine the set of possible states the system can adopt and write the chemical master equation that describes the corresponding probability distribution.
- b) Take $k_1 = 1$ ($time^{-1}$) and $k_{-1} = 1$ ($time^{-1}$), and solve for the steady-state probability distribution.
- c) Simulate sample paths of N_A , N_B , and N_C using stochastic simulation algorithm (SSA). Set the initial condition of N_A , N_B , and N_C =(2,1,0) or (10, 5, 0) or (100, 50, 0)

$$R1: A \rightarrow B + C$$
 propensity: $k_1 N_A$
 $R2: B + C \rightarrow A$ propensity: $k_{-1} N_B N_C$

Note1: To calculate the waiting time, you will need to generate values of a random variable distributed according to an exponential distribution. You could simply generate a random variable U drawn from the uniform distribution on the unit interval (0, 1), and T=-ln(U)/ λ will be an exponential random variable, where λ is the rate parameter of the exponential distribution. In this example, λ would be the sum of the reaction propensities.

Another way to generate exponential random number is to use Matlab function exprnd(μ), where μ is the mean of the exponential distribution μ =1/ λ .

Note2: You might need to change the value of k_1 and k_{-1} for different initial conditions due to the volume changes. Use $(k_1, k_{-1}) = (1,1)$, (1, 1/5) and (1, 1/50) $(time^{-1})$ for I.C.= (2,1,0), (10,5,0), and (100,50,0).

- d) Set the initial condition of N_A , N_B , and N_C =(2, 1, 0). Analyzed the statistics of your ensemble, and compare to the steady state probability distribution in (b)
- e) Write down a deterministic model for the chemical reaction following the mass action law. Simulate the concentration changes of A, B C with the parameter $k_1 = 1(s^{-1})$ and $k_{-1} = 1$ ($mM^{-1}s^{-1}$). Set initial concentrations [A],[B],[C] as 2,1, and 0mM. Compare simulation results in (c)