MATHEMATICS 1LS3 TEST 2

Day Class	E. Clements
Duration of Examination: 60 minutes	
McMaster University, 14 February 2012	
FIRST NAME (please print):Sol NS	
FAMILY NAME (please print):	
Student No.:	

THIS TEST HAS 8 PAGES AND 6 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You need to show work to receive full credit.

Problem	Points	Mark
1	6	
2	7	
3	6	
4	7	
5	6	
6	8	
TOTAL	40	

1. The dynamics of caffeine absorption and replacement can be described by the discrete time dynamical system

$$c_{t+1} = 0.87c_t + d$$

where c_t denotes the amount of caffeine (in mg) present in your body at time t (in hours) and d is the amount of caffeine taken every hour. Suppose that the initial amount of caffeine is $c_0 = 50$ mg and every hour you consume a small coffee (60 mg of caffeine).

(a) [1] Determine the equilibrium amount of caffeine.

$$d = 60 \implies c_{t+1} = 0.87c_t + 60$$

$$c^* = 0.87c^* + 60$$

$$C^* = \frac{60}{0.13} = 461.5 \text{ mg}$$

(b) [3] Graph the updating function and the diagonal. Cobweb for 5 steps starting from $c_0 = 50$ mg. Describe what happens to the amount of caffeine in your body over the next 5 hours.

The amount of caffeine in your body will increase over the next 5 hours.

(c) [2] Roughly (no calculations required!) plot the solution points you found in part (b). Label the axes.

2. Consider the model for bacterial population growth given by $b_{t+1} = \frac{12}{1 + 0.01b_t}b_t$, where b_t represents the number of bacteria in a culture at time t, in hours.

(a) [2] How do the dynamics of this system differ from the dynamics of the system $b_{t+1} = rb_t$, where r is a constant?

In this model, the pu capita production rate is inversely proportional to population size (as by increases, $r(b_4)$ decreases). In the model $b_{4+1} = rb_4$, the per capital production rate is constant (in does not depend on population size, b_4).

(b) [3] If a culture is found to contain 500 bacteria, what was the size of the population one hour ago?

in verse:
$$b_{t+1} = \frac{12b_t}{1+0.01b_t}$$

$$(1+0.01b_t)b_{t+1} = 12b_t$$

$$b_{t+1} + 0.01b_t(b_{t+1}) = 12b_t$$

$$0.01b_t(b_{t+1}) - 12b_t = -b_{t+1}$$

$$b_t(0.01b_{t+1} - 12) = -b_{t+1}$$

$$b_t = -\frac{b_{t+1}}{0.01b_{t+1} - 12}$$

(c) [2] Below is the graph of the updating function and the diagonal for $b_{t+1} = \frac{12}{1 + 0.01b_t}b_t$.

Starting from $b_0 = 500$, cobweb several steps. Describe what happens to this population over time.

The population will in nease rapidly at first but then slow down as it approaches the equilibrium.

Name:	
Student No.:	

3. (a) [2] In your own words, explain what is meant by the expression $\lim_{x\to a} f(x) = L$. If f(x) is continuous at x = a, what must the value of L be?

means that the values of the function approach L lum f(x)=L

as x approaches a from either side of a (but x 7a). We can make f(x) as close as wid like to L by choosing x sufficiently close to a.

If f(x) is continuous at x=a, then lim f(x)=f(a) and so L must equal f(a).

(b) [3] Sketch a possible graph of a function f(x) that satisfies all of the following conditions:

 $\lim_{x \to 0^{-}} f(x) = 2, \lim_{x \to 0^{+}} f(x) = -1, \ f(0) \text{ is not defined}, \ f(2) = -1, \text{ and } \lim_{x \to 2^{-}} f(x) = 1.$

(c) [1] At what x-values is the function in part (b) discontinuous? What types of discontinuities does it have there?

I has a jump discontinuity at X=0 and a removable discontinuity at X=2.

Name:		
Student No.:	·	<u> </u>

4. Evaluate each limit, or explain why it does not exist.

(a) [2]
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{4 - x}$$

$$= \lim_{x \to 4} \frac{x - 4}{-(x - 4)(\sqrt{x} + 2)}$$

$$= \lim_{x \to 4} \frac{-1}{\sqrt{x} + 2}$$

$$= \frac{1}{\sqrt{4} + 2}$$

$$= \frac{1}{4}$$

(b) [3]
$$\lim_{x \to \infty} (\ln x - \ln(x - 1))$$

$$= \lim_{x \to \infty} \ln \left(\frac{x}{x-1}\right)$$

$$= \lim_{x \to \infty} \ln \left(\frac{1}{1-\frac{1}{x}}\right)$$

$$= \ln \left(\frac{1}{1-\frac{1}{x}}\right)$$

$$= \ln \left(\frac{1}{1-\frac{1}{x}}\right)$$

$$= \ln \left(\frac{1}{1-\frac{1}{x}}\right)$$

(c) [2]
$$\lim_{x\to\infty} \frac{0.2x^{-5}}{e^{-x}} \left(= \frac{0}{0} \right)$$

$$e^{-\chi} \to 0 \quad \text{fastu than } 0.2\chi^{-5} \to 0$$

$$\Rightarrow \quad \frac{0.2\chi^{-5}}{e^{-\chi}} \to \frac{\#}{0} \to +\infty$$

$$so, \quad \lim_{\chi\to\infty} \frac{0.2\chi^{-5}}{e^{-\chi}} = \infty \quad \left(D, N, E_i \right)$$

Name:_______Student No.: ______

5. Suppose that the absorption of a toxic chemical is modelled by

$$\alpha(c) = \frac{2c}{1 + 10c}$$

where α represents the amount absorbed (in mg) and c represents the concentration of the chemical (in mmol/L).

(a) [1] If the concentration of the chemical changes from 10 mmol/L to 20 mmol/L, what is the average rate of change in the amount absorbed. Remember units!

$$= \frac{d(20) - d(10)}{20 - 10} = \frac{2}{20301} \frac{mg^{(1)}}{mimol/L}$$

$$= \frac{2(20)}{1 + 10(20)} - \frac{2(10)}{1 + 10(10)}$$

(b) [3] Using the limit definition of the derivative, find $\alpha'(c)$. At what rate is the substance absorbed when the concentration is 10mmol/L? Remember units!

$$\alpha'(c) = \lim_{h \to 0} \frac{2(c+h)}{1+10(c+h)} - \frac{2c}{1+10c}$$

$$= \lim_{h \to 0} \frac{2(c+h)(1+10c) - 2c(1+10(c+h))}{(1+10(c+h))(1+10c)} h$$

$$= \lim_{h \to 0} \frac{2k}{(1+10(c+h))(1+10c)} \frac{2k}{k}$$

$$= \frac{2}{(1+10c+h)(1+10c)}$$

$$= \frac{2}{(1+10c)^2}$$

(c) [2] What will happen long-term to the amount your body absorbs if the concentration of this chemical continues to increase steadily?

lim
$$\alpha(c) = \lim_{c \to \infty} \frac{2}{\frac{1}{c} + 10} = \frac{2}{\frac{1}{50} + 10} = \frac{1}{5}$$

Long-term, your body will $\frac{1}{5}$ mg of this chamical.

6. Consider the function
$$f(x) = \begin{cases} (x-1)^2 & \text{if } x < 1 \end{cases}$$

$$1 & \text{if } 1 < x \le 3 \end{cases}$$

$$2x-5 & \text{if } x > 3 \end{cases}$$

(a) [3] Sketch the graph of f.

(b) [2] Where is f not differentiable? Why is f not differentiable there?

f is not differentiable at X=1 because it is discentinuous here and it is not differentiable at X=3 because the graph has a "corner" here.

(c) [3] Sketch the graph of the derivative, f'.

MATH 1LS3 * Test 2 * 14 February 2012	Name: Student No.:
·	

ROUGH WORK