

Plane Sweep

- Implementation

Junhui DENG

deng@tsinghua.edu.cn

Beach Line

- ❖ The BL can be represented as a dictionary
- ❖ An important fact for the construction is that

 we do not need to explicitly store the parabolic arcs along a BL
- ❖ Actually for each parabolic arc along the current BL, we store the site that gives rise to this arc
- \clubsuit Note that a site may appear multiple (up to O(n)) times on the BL
- But as we mentioned earlier,

the total length of the BL will never exceed 2n - 1 = 0(n)

Breakpoints

- \clubsuit There is a breakpoint between each consecutive pair of sites $\boxed{p_i}$ and $\boxed{p_j}$
- ❖ Although breakpoints move as a function of the sweepline, observe that we can compute the exact location of the breakpoint as a linear function of
 - p_i , p_j , and
 - the position (y-coordinate) of the current sweepline
- ❖ Thus as with the BL, we can store all breakpoints implicitly
- ❖ Rather, they are computed only when needed //a constant time for each

Operations

- ❖ The important operations that we need to support on the BL are:
 - given a fixed location of the sweepline (at a given moment),

 determine the arc of the BL that intersects a given vertical ray
 - compute predecessors and successors on the BL
 - insert an new arc p_i with a given arc p_j , thus splitting the arc for p_j into two and creating 3 arcs for p_j , p_i and p_j
 - delete an arc from the BL
- ❖ Using dictionary structures again,
 each of the above operations can be done in O(logn) time

Event Queue

- ❖ The event queue is a PQ with the ability both to insert and delete events
 - The event with the |largest| y-coordinate can be extracted
 - For each site we store its y-coordinate in the queue
 - For each consecutive tripe (p_i, p_j, p_k) on the BL, compute their circumcircle
 - If the lower endpoint of the circle lies below the sweepline, then a circle event, whose y-coordinate is the y-coordinate of the bottom point of the circumcircle, will be created and inserted into the queue, and
 - When an arc vanishes, all circle events involving it will be deleted

Event Queue

- ❖ To do this, we assign
 - for each circle event,
 - a cross link back to the triple of sites that generated it, and
 - for each consecutive triple of sites
 - a cross link to the event that it generated in the PQ
- **❖** Observe that
 - each event involves (1) processing time
 plus a constant number of accesses to the various data structures
 - each of these accesses takes $O(\log n)$ time, and the data structure are always of size O(n)

Complexity

- ❖ Now we can conclude that ...
- ❖ Fortune's algorithm constructs the VD for n sites in the plane

in O(nlogn) time

using O(n) space