

CENTRO DE TECNOLOGIA E URBANISMO DEPARTAMENTO DE ENGENHARIA ELÉTRICA 2ELE047 - Geração, Transmissão e Distribuição

Fluxo de Potência

PROFESSOR: Luis Alfonso Gallego Pareja ALUNOS: Ricardo Tadashi Kobayashi

Relatório apresentado a disciplina de Geração, Transmissão e Distribuição.

Turma: 1000.

Londrina, 16 de dezembro de 2015

Sumário

1	OB.	JETIVOS	•
2	TE	ORIA	4
	2.1	Descrição do problema	4
		2.1.1 Tipos de Barras	4
		2.1.2 Modelo da linha	4
		2.1.3 Potências e perdas	Ę
	2.2	Método de Newton	6
	2.3	Método desacoplado 1	7
	2.4	Método desacoplado 2	8
	2.5	Método desacoplado rápido	8
	2.6	Método DC	Ć
3	ME	TODOLOGIA EXPERIMENTAL	10
4	RE	SULTADOS	11
	4.1	Método de Newton	11
	4.2	Métodos Desacoplado 1 e 2	13
	4.3	Método desacoplado rápido	14
	4.4	Método DC	15
5	DIS	SCUSSÕES E CONCLUSÕES	16
\mathbf{R}	EFE]	RÊNCIAS	17

1 OBJETIVOS

Este trabalho irá expor os resultados da resolução de um problema de fluxo de potência composto por 14 barras, os quais foram obtidos através de algorítimos desenvolvidos no Matlab. Neste caso, foram desenvolvidos cinco algorítimos para a resolução de tal problema: o método de Newton, o método de Newton desacoplado 1, o método de Newton desacoplado 2, o método desacoplado rápido e o método DC. Além de se resolver o problema, será feita uma comparação entre os algorítimos, em termos de precisão e complexidade computacional.

2 TEORIA

Esta seção apresentará os conceitos empregados na execução da atividade relatada.

2.1 Descrição do problema

A figura abaixo representa o sistema elétrico de potência:

Figura 1 - Geração, transmissão e distribuição

O estudo do fluxo de potência na transmissão permite definir as condições de operação dos elementos e fluxo de carga entre linhas. Para isso, a transmissão é representada através de barras, nas quais são ligadas cargas, geradores e outros elementos, e linhas, que ligam duas barras distintas. Neste estudo, admite-se um número n de barras, o que dificulta a análise, exigindo uma modelagem mais genérica.

2.1.1 Tipos de Barras

Neste estudo serão classificadas três tipos de barras:

 $\begin{array}{c|cccc} \textbf{Tipo} & \textbf{Variáveis conhecidas} & \textbf{Variáveis desconhecidas} \\ \hline PQ & P,Q & V,\theta \\ \hline PV & P,V & Q,\theta \\ \hline V\theta & V,\theta & P,Q \\ \hline \end{array}$

Tabela 1 - Tipos de barras

2.1.2 Modelo da linha

No geral, as análises do fluxo de potência usam o modelo π . Tal modelo contempla as resistências, indutâncias e capacitâncias presentes entre duas linhas:

Figura 2 - Modelo π da linha

Onde:

• r_{km} : resistência série;

• x_{km} : reatância indutiva série;

• b_k^{sh} : susceptância shunt;

• z_{km} : impedância série;

• $y_{km} = 1/z_{km}$: admitância série;

• $g_{km} = Re(y_{km})$: condutância série;

• $b_{km} = Im(y_{km})$: susceptância série.

Neste modelo, a admitância nodal é dada por:

$$\begin{cases} Y_{km} = -y_{km} \\ Y_{mk} = -y_{km} \\ Y_{mk} = j \cdot b_k^{sh} + \sum_{k \in \Omega_k} j \cdot b_k^{sh} + y_{km} \end{cases}$$

$$\tag{1}$$

Além disso, a condutâncias e a susceptâncias nodais ficam:

$$\begin{cases}
G_{km} = Re(Y_{km}) \\
B_{km} = Im(Y_{km})
\end{cases}$$
(2)

2.1.3 Potências e perdas

As potências, ativas e reativas nodais são dadas respectivamente por:

$$\begin{cases}
P_k = V_k \cdot \sum_{k \in \Omega_k} V_m \cdot (G_{km} \cdot \cos\theta_{km} + B_{km} \cdot \sin\theta_{km}) \\
Q_k = V_k \cdot \sum_{k \in \Omega_k} V_m \cdot (G_{km} \cdot \cos\theta_{km} - B_{km} \cdot \sin\theta_{km})
\end{cases}$$
(3)

Já as potências entre duas barras podem ser computadas por:

$$\begin{cases}
P_{km} = g_{km} \cdot V_k^2 - V_k \cdot V_m \cdot (g_{km} \cdot \cos\theta_{km} + b_{km} \cdot \sin\theta_{km}) \\
Q_{km} = -(b_{km} + b_{km}^{sh}) \cdot V_k^2 - V_k \cdot V_m \cdot (g_{km} \cdot \sin\theta_{km} - b_{km} \cdot \cos\theta_{km}) \\
P_{mk} = g_{km} \cdot V_m^2 - V_k \cdot V_m \cdot (g_{km} \cdot \cos\theta_{km} - b_{km} \cdot \sin\theta_{km}) \\
Q_{mk} = -(b_{km} + b_{km}^{sh}) \cdot V_m^2 + V_k \cdot V_m \cdot (g_{km} \cdot \sin\theta_{km} + b_{km} \cdot \cos\theta_{km})
\end{cases} (4)$$

Por fim as perdas nas linhas são dadas por:

$$\begin{cases}
Pperdas_{km} = P_{km} + P_{mk} \\
Qperdas_{km} = Q_{km} + Q_{mk}
\end{cases}$$
(5)

2.2 Método de Newton

No método de Newton o problema proposto é resolvido da forma completa de forma numérica utilizando o método de Newton, através da matriz jacobiana:

$$\begin{bmatrix} \Delta \mathbf{P} \\ \Delta \mathbf{Q} \end{bmatrix}^{(i)} = \begin{bmatrix} \mathbf{H} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix}^{(i)} \cdot \begin{bmatrix} \Delta \theta \\ \Delta \mathbf{V} \end{bmatrix}^{(i)}$$
(6)

O sistema descrito anteriormente é calculada para as barras do tipo PQ e PV.

Considera-se para resolução do problema a diferença entre as potências estimadas e as potências calculadas ao longo do processo, a qual também é utilizada como um critério de convergência:

$$\Delta \mathbf{P} = \mathbf{P}_{est} - \mathbf{P}
\Delta \mathbf{Q} = \mathbf{Q}_{est} - \mathbf{Q}$$
(7)

No caso das tensões e ângulos, tem-se:

$$\Delta \mathbf{P} = \mathbf{V}^{(\mathbf{i}+\mathbf{1})} - \mathbf{P}^{(\mathbf{i})}
\Delta \theta = \theta^{(\mathbf{i}+\mathbf{1})} - \mathbf{Q}^{(\mathbf{i})}$$
(8)

Onde o índice (i) representa a iteração do processo.

Os elementos que relacionam as tensões e ângulos com as potências são descritos abaixo:

$$\begin{cases}
H_{kk} = -B_{kk} \cdot V_k^2 - Q_k \\
H_{km} = +V_k \cdot V_m \cdot (G_{km} \cdot sen\theta_{km} - B_{km} \cdot cos\theta_{km}) \\
H_{mk} = -V_k \cdot V_m \cdot (G_{km} \cdot sen\theta_{km} + B_{km} \cdot cos\theta_{km})
\end{cases} \tag{9}$$

$$\begin{cases}
N_{kk} = -V_k^{-1} \cdot (P_k + G_{kk} \cdot V_k^2) \\
N_{km} = +V_k \cdot (G_{km} \cdot \cos\theta_{km} + B_{km} \cdot \sin\theta_{km}) \\
N_{mk} = -V_m \cdot (G_{km} \cdot \cos\theta_{km} - B_{km} \cdot \sin\theta_{km})
\end{cases}$$
(10)

$$\begin{cases}
M_{kk} = -G_{kk} \cdot V_k^2 + P_k \\
M_{km} = -V_k \cdot V_m \cdot (G_{km} \cdot \cos\theta_{km} + B_{km} \cdot \sin\theta_{km}) \\
M_{mk} = -V_m \cdot V_k \cdot (G_{km} \cdot \cos\theta_{km} - B_{km} \cdot \sin\theta_{km})
\end{cases}$$
(11)

$$\begin{cases}
L_{kk} = V_k^{-1} \cdot (Q_k - B_{kk} \cdot V_k^2) \\
L_{km} = +V_k \cdot (G_{km} \cdot \operatorname{sen}\theta_{km} - B_{km} \cdot \cos\theta_{km}) \\
L_{mk} = -V_m \cdot (G_{km} \cdot \operatorname{sen}\theta_{km} + B_{km} \cdot \cos\theta_{km})
\end{cases} \tag{12}$$

Após realizar uma iteração as as tensões e os ângulos devem ser atualizados e é feito um teste de convergência. Caso o resultado ainda não convirja, o Jacobiano deve ser calculado novamente para passar para a próxima iteração.

O processo iterativo continua até que se obtenha um erro mínimo estipulado por:

$$erro > max([\Delta P \ \Delta Q])$$
 (13)

Feito isso, o subsistema 2 é resolvido. Este consiste basicamente em calcular as potências reativas para as barras PV e as potências ativas e reativas para as barras $V\theta$.

2.3 Método desacoplado 1

O método desacoplado 1 tem baseia-se no método de Newton, mas neste caso despreza-se as matrizes \mathbf{M} e \mathbf{N} , sendo possível achar os ângulos e as tensões das barras de forma independente.

$$\begin{bmatrix} \mathbf{\Delta}\mathbf{P}^{(p)} \\ \mathbf{\Delta}\mathbf{Q}^{(q)} \end{bmatrix} = \begin{bmatrix} \mathbf{H}^{(p)} & \mathbf{0} \\ \mathbf{0} & \mathbf{L}^{(q)} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\Delta}\theta^{(p)} \\ \mathbf{\Delta}\mathbf{V}^{(q)} \end{bmatrix}$$
(14)

No caso deste método, as matrizes ${\bf H}$ e ${\bf L}$ são as mesmas do método de Newton, logo elas podem ser consultadas na seção anterior.

Como os métodos desacoplados permitem a solução das variáveis \mathbf{V} e θ de forma independente, o critério de teste da convergência é feito de maneira diferente. Os métodos desacoplados seguem o seguinte algorítimo para a solução do problema:

Figura 3 - Fluxograma para o algorítimo aplicado aos métodos desacoplados

Desta forma, os problemas ativo e reativo podem apresentar velocidades diferentes de convergência. Por isso, as iterações são contadas separadamente pelos contadores p e q.

2.4 Método desacoplado 2

O método desacoplado pode ser alterado dividindo o fluxo líquido de potência pelas tensões:

$$\begin{bmatrix} \mathbf{\Delta}\mathbf{P}/\mathbf{V}^{(p)} \\ \mathbf{\Delta}\mathbf{Q}/\mathbf{V}^{(q)} \end{bmatrix} = \begin{bmatrix} \mathbf{H}'^{(p)} & \mathbf{0} \\ \mathbf{0} & \mathbf{L}'^{(q)} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\Delta}\theta^{(p)} \\ \mathbf{\Delta}\mathbf{V}^{(q)} \end{bmatrix}$$
(15)

Desta forma a matriz de desacoplamento é alterada:

$$\begin{cases}
H'_{kk} = -B_{kk} \cdot V_k - Q_k / V_k \\
H'_{km} = +V_m \cdot (G_{km} \cdot sen\theta_{km} - B_{km} \cdot cos\theta_{km})
\end{cases}$$
(16)

$$\begin{cases}
L'_{kk} = Q_k/V_k - B_{kk} \cdot V_k \\
L'_{km} = +V_m \cdot (G_{km} \cdot sen\theta_{km} - B_{km} \cdot cos\theta_{km})
\end{cases}$$
(17)

2.5 Método desacoplado rápido

Neste método, considera-se mais aproximações, as quais exigem algumas condições a serem satisfeitas:

- Sistema pouco carregado, o que faz com que θ_{km} seja pequeno e que $\cos\theta_{km}$ seja aproximadamente unitário;
- Tensões próximas a 1 pu;
- Relação B_{km}/G_{km} alta.

O sistema a ser resolvido se torna:

$$\begin{bmatrix} \mathbf{\Delta}\mathbf{Q}/\mathbf{V}^{(q)} \\ \mathbf{\Delta}\mathbf{P}/\mathbf{V}^{(p)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}' & \mathbf{0} \\ \mathbf{0} & \mathbf{B}'' \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\Delta}\theta^{(q)} \\ \mathbf{\Delta}\mathbf{V}^{(p)} \end{bmatrix}$$
(18)

Respeitadas as exigências e desprezando a resistência para o cálculo dos elementos **B**′, os parâmetros do sistemas assumem as características mostradas abaixo. Esta aproximação, no método desacoplado rápido é conhecida como método XB, e possui a melhor velocidade de convergência na grande maioria dos casos.

$$\begin{cases}
B'_{kk} = \sum_{k \in \Omega_k} \frac{1}{x_{km}} \\
B'_{km} = -\frac{1}{x_{km}}
\end{cases}$$
(19)

$$\begin{cases}
B_{kk}'' = -B_{kk} \\
B_{km}'' = -B_{km}
\end{cases}$$
(20)

Nota-se que os valores de \mathbf{B}' e \mathbf{B}'' não mudam ao longo do processo iterativo, o que torna o método menos complexos.

2.6 Método DC

O método DC é baseado no acoplamento $P\theta$, logo ele só leva em conta o fluxo ativo de potência. Neste método, são feitas mais aproximações do que no método desacoplado rápido:

- Ângulos das tensões muito pequenos, ou seja $sen\theta_{km} \approx \theta_{km}$;
- Tensões unitárias em todas as barras 1 pu;
- Resistência série da linha nula, $r_{km}=0$.

Dadas essas aproximações, o problema se resume a:

$$\Delta \mathbf{P} = \mathbf{B}' \cdot \Delta \theta \tag{21}$$

Onde:

$$\begin{cases}
B'_{kk} = \sum_{k \in \Omega_k} \frac{1}{x_{km}} \\
B'_{km} = -\frac{1}{x_{km}}
\end{cases}$$
(22)

3 METODOLOGIA EXPERIMENTAL

Como dito anteriormente, esta atividade teve como objetivo o desenvolvimento de algorítimos capaz de resolver o problema de fluxo de carga. Para testá-los, foi utilizado um problema composto por 14 barras.

As barras do sistema em questão possuem as características apresentadas abaixo. As barras estão enumeradas e classificadas quanto ao seu tipo, sendo o tipo 0 barras PQ, o tipo 2 barras PV e tipo 3 barras $V\theta$. As barras que não possuem tensão controladas tomarão valores unitários (em pu) e os ângulos das tensão serão considerados nulos. Além disso, as potências serão transformadas em pu, sendo a unidade base $100 \, [kVA]$

Tabela 2 - Características das barras

Barra	Tine	Tensão	Potência G	erada [kVA]	Potência demandada [kVA]	
Darra	Tipo	Controlada [pu]	Ativa	Reativa	Ativa	Reativa
1	3	1.060E + 00	2.324E + 02	-1.690E + 01	0.000E + 00	0.000E + 00
2	2	1.045E + 00	4.000E + 01	4.240E + 01	2.170E + 01	1.270E + 01
3	2	1.010E + 00	0.000E + 00	2.340E + 01	9.420E + 01	1.900E + 01
4	0	0.000E + 00	0.000E + 00	0.000E + 00	4.780E + 01	-3.900E + 00
5	0	0.000E + 00	0.000E + 00	0.000E + 00	7.600E + 00	1.600E + 00
6	2	1.070E + 00	0.000E + 00	1.220E + 01	1.120E + 01	7.500E + 00
7	0	0.000E + 00	0.000E + 00	0.000E + 00	0.000E + 00	0.000E + 00
8	2	1.090E + 00	0.000E + 00	1.740E + 01	0.000E + 00	0.000E + 00
9	0	0.000E + 00	0.000E + 00	0.000E + 00	2.950E + 01	1.660E + 01
10	0	0.000E + 00	0.000E + 00	0.000E + 00	9.000E + 00	5.800E + 00
11	0	0.000E + 00	0.000E + 00	0.000E + 00	3.500E + 00	1.800E + 00
12	0	0.000E + 00	0.000E + 00	0.000E + 00	6.100E + 00	1.600E + 00
13	0	0.000E + 00	0.000E + 00	0.000E + 00	1.350E + 01	5.800E + 00
14	0	0.000E + 00	0.000E + 00	0.000E + 00	1.490E + 01	5.000E + 00

Os parâmetros da linha, já expressos em pu, são mostrados na tabela subsequente:

Tabela 3 - Características das linhas

De	Para	$\mathbf{r_{ij}}$	$\mathbf{x_{ij}}$	Bsh_{ij}
1	2	1.938E - 02	5.917E - 02	5.280E - 02
1	5	5.403E - 02	2.230E - 01	4.920E - 02
2	3	4.699E - 02	1.980E - 01	4.380E - 02
2	4	5.811E - 02	1.763E - 01	3.400E - 02
2	5	5.695E - 02	1.739E - 01	3.460E - 02
3	4	6.701E - 02	1.710E - 01	1.280E - 02
4	5	1.335E - 02	4.211E - 02	0.000E + 00
4	7	0.000E + 00	2.091E - 01	0.000E + 00
4	9	0.000E + 00	5.562E - 01	0.000E + 00
5	6	0.000E + 00	2.520E - 01	0.000E + 00
6	11	9.498E - 02	1.989E - 01	0.000E + 00
6	12	1.229E - 01	2.558E - 01	0.000E + 00
6	13	6.615E - 02	1.303E - 01	0.000E + 00
7	8	0.000E + 00	1.762E - 01	0.000E + 00
7	9	0.000E + 00	1.100E - 01	0.000E + 00
9	10	3.181E - 02	8.450E - 02	0.000E + 00
9	14	1.271E - 01	2.704E - 01	0.000E + 00
10	11	8.205E - 02	1.921E - 01	0.000E + 00
12	13	2.209E - 01	1.999E - 01	0.000E + 00
13	14	1.709E - 01	3.480E - 01	0.000E + 00

4 RESULTADOS

Num. Barras	Num. Linhas	Iterações	Tempo
14	20	2	0.001596
30	41	2	0.003391
57	80	2	0.007491
118	186	3	0.031438

Esta seção apresentará os resultados do estudo de fluxo de potência para o sistema de 14 barras adotado neste trabalho considerando uma tolerância de 2E-3.

4.1 Método de Newton

Para o erro proposto foram necessárias 2 iterações para o método de Newton. O ponto de operação do sistema ficou:

 ${\bf Tabela~4}$ - Tensões, ângulos e potências em cada barra

k	$\mathbf{V_{k}}\left[pu \right]$	$\theta_{\mathbf{k}} \left[{}^{o} \right]$	$\mathbf{Pg_k}\left[\mathbf{kW}\right]$	$\mathbf{Q}\mathbf{g}_{\mathbf{k}}\left[\mathbf{k}\mathbf{V}\mathbf{A}\right]$	$\mathrm{Pd}_{\mathbf{k}}\left[\mathbf{k}\mathbf{W}\right]$	$\mathbf{Qd_k}\left[\mathbf{kVA}\right]$
1.000	1.060	0.000	231.125	-29.449	0.000	0.000
2.000	1.045	-4.926	39.399	18.250	21.700	12.700
3.000	1.010	-12.569	-0.223	15.646	94.200	19.000
4.000	1.029	-10.313	-0.063	0.179	47.800	-3.900
5.000	1.036	-8.902	0.086	0.590	7.600	1.600
6.000	1.070	-14.649	1.549	46.996	11.200	7.500
7.000	1.046	-13.322	0.072	0.117	0.000	0.000
8.000	1.090	-13.291	0.346	27.170	0.000	0.000
9.000	1.029	-14.929	0.012	0.050	29.500	16.600
10.000	1.029	-15.161	0.014	0.030	9.000	5.800
11.000	1.045	-15.019	0.036	0.041	3.500	1.800
12.000	1.053	-15.494	0.003	0.004	6.100	1.600
13.000	1.046	-15.520	0.021	0.026	13.500	5.800
14.000	1.018	-16.217	0.012	0.026	14.900	5.000

 ${\bf Tabela~5}$ - Perdas calculadas pelo método de Newton

	_	Potência	ativa [kW]	Potência	reativa [kVA]	Perda ativa [kW]	Perda reativa [kVA]
De	Para	P_{km}	P _{mk}	Q_{km}	Q_{mk}	$P_{km} + P_{mk}$	$\mathbf{Q_{km}} + \mathbf{Q_{mk}}$
1	2	+155.185	-150.981	-22.973	+24.109	+4.204	+1.136
1	5	+75.940	-73.166	-6.476	+7.119	+2.774	+0.643
2	3	+72.340	-70.073	+1.258	-0.956	+2.268	+0.302
2	4	+55.283	-53.638	-9.641	+7.321	+1.645	-2.320
2	5	+41.058	-40.157	-10.176	+5.435	+0.900	-4.741
3	4	-24.351	+24.741	-2.398	+0.734	+0.390	-1.664
4	5	-61.300	+61.775	+3.202	-1.703	+0.475	+1.499
4	7	+27.017	-27.017	-7.796	+9.358	+0.000	+1.562
4	9	+15.316	-15.316	+0.619	+0.616	+0.000	+1.235
5	6	+44.034	-44.034	-11.861	+16.747	+0.000	+4.886
6	11	+8.094	-7.968	+9.330	-9.065	+0.127	+0.265
6	12	+8.049	-7.968	+3.230	-3.062	+0.081	+0.168
6	13	+18.240	-17.988	+10.189	-9.692	+0.252	+0.497
7	8	-0.346	+0.346	-26.075	+27.170	+0.000	+1.095
7	9	+27.436	-27.436	+16.833	-15.792	+0.000	+1.042
9	10	+4.544	-4.537	-1.389	+1.407	+0.007	+0.018
9	14	+8.719	-8.628	+0.015	+0.180	+0.091	+0.194
10	11	-4.449	+4.504	-7.177	+7.306	+0.055	+0.129
12	13	+1.871	-1.860	+1.466	-1.456	+0.011	+0.010
13	14	+6.368	-6.260	+5.374	-5.153	+0.108	+0.221

4.2 Métodos Desacoplado 1 e 2

Os métodos desacoplado 1 e 2 apresentaram o mesmo número de iterações, 7 para o ramo p e 6 para o q. Logo, os resultados serão mostrados somente 1 vez.

 ${\bf Tabela~6}$ - Tensões, ângulos e potências em cada barra

k	$\mathbf{V_{k}}\left[pu \right]$	$\theta_{\mathbf{k}}$ [o]	$\mathbf{Pg_{k}}\left[\mathbf{kW}\right]$	$\mathbf{Qg_{k}}\left[\mathbf{kVA}\right]$	$\mathbf{Pd_k}\left[\mathbf{kW}\right]$	$\mathrm{Qd}_{\mathbf{k}}\left[\mathrm{kVA}\right]$
1.000	1.060	0.000	232.531	-29.372	0.000	0.000
2.000	1.045	-4.952	40.000	18.980	21.700	12.700
3.000	1.010	-12.614	0.000	15.875	94.200	19.000
4.000	1.028	-10.387	0.000	0.004	47.800	-3.900
5.000	1.035	-8.976	0.000	-0.003	7.600	1.600
6.000	1.070	-14.884	-0.001	47.751	11.200	7.500
7.000	1.046	-13.467	0.000	0.000	0.000	0.000
8.000	1.090	-13.467	0.000	27.374	0.000	0.000
9.000	1.029	-15.086	0.000	-0.009	29.500	16.600
10.000	1.028	-15.332	0.000	0.001	9.000	5.800
11.000	1.045	-15.223	0.000	-0.001	3.500	1.800
12.000	1.053	-15.714	0.000	-0.276	6.100	1.600
13.000	1.046	-15.749	0.000	0.280	13.500	5.800
14.000	1.018	-16.407	0.000	-0.001	14.900	5.000

Tabela 7 - Perdas calculadas pelo método de Newton

De	Para	Potência	ativa [kW]	Potência	reativa [kVA]	Perda ativa [kW]	Perda reativa [kVA]
ъе	Para	P_{km}	P_{mk}	$\mathbf{Q_{km}}$	$\mathbf{Q_{mk}}$	$P_{km} + P_{mk}$	$\mathbf{Q_{km}} + \mathbf{Q_{mk}}$
1	2	+155.948	-151.702	-23.152	+24.417	+4.246	+1.265
1	5	+76.583	-73.763	-6.220	+7.064	+2.821	+0.844
2	3	+72.519	-70.241	+1.240	-0.891	+2.279	+0.349
2	4	+55.841	-54.164	-9.445	+7.225	+1.677	-2.220
2	5	+41.642	-40.718	-9.931	+5.267	+0.924	-4.664
3	4	-23.959	+24.337	-2.234	+0.538	+0.378	-1.695
4	5	-61.172	+61.646	+3.428	-1.933	+0.474	+1.495
4	7	+27.623	-27.623	-7.872	+9.503	+0.000	+1.632
4	9	+15.576	-15.576	+0.584	+0.694	+0.000	+1.278
5	6	+45.235	-45.235	-12.001	+17.153	+0.000	+5.152
6	11	+7.875	-7.749	+9.520	-9.255	+0.127	+0.265
6	12	+8.001	-7.920	+3.381	-3.213	+0.081	+0.169
6	13	+18.158	-17.908	+10.196	-9.703	+0.251	+0.493
7	8	-0.000	+0.000	-26.263	+27.374	+0.000	+1.111
7	9	+27.623	-27.623	+16.760	-15.709	+0.000	+1.050
9	10	+4.814	-4.806	-1.505	+1.526	+0.008	+0.020
9	14	+8.885	-8.790	-0.088	+0.290	+0.095	+0.202
10	11	-4.194	+4.249	-7.325	+7.454	+0.055	+0.129
12	13	+1.820	-1.810	+1.336	-1.327	+0.010	+0.009
13	14	+6.218	-6.110	+5.510	-5.291	+0.108	+0.219

4.3 Método desacoplado rápido

Para o método desacoplado rápido a convergência ocorreu com p=3 e q=2, o que resultou nos seguintes resultados:

 ${\bf Tabela~8}$ - Tensões, ângulos e potências em cada barra para o método desacoplado rápido

k	$\mathbf{V_{k}}\left[pu \right]$	$\theta_{\mathbf{k}}$ [o]	$\mathbf{Pg_{k}}\left[\mathbf{kW}\right]$	$\mathbf{Qg_{k}}\left[\mathbf{kVA}\right]$	$\mathbf{Pd_k}\left[\mathbf{kW}\right]$	$\mathbf{Qd_k}\left[\mathbf{kVA}\right]$
1.000	1.060	0.000	232.480	-29.375	0.000	0.000
2.000	1.045	-4.950	40.077	18.943	21.700	12.700
3.000	1.010	-12.615	-0.020	15.890	94.200	19.000
4.000	1.028	-10.387	-0.003	-0.035	47.800	-3.900
5.000	1.035	-8.976	0.014	0.147	7.600	1.600
6.000	1.070	-14.884	0.120	47.972	11.200	7.500
7.000	1.046	-13.467	-0.028	-0.006	0.000	0.000
8.000	1.090	-13.464	0.034	27.432	0.000	0.000
9.000	1.028	-15.087	-0.010	-0.063	29.500	16.600
10.000	1.028	-15.333	-0.005	-0.007	9.000	5.800
11.000	1.045	-15.224	-0.027	-0.071	3.500	1.800
12.000	1.053	-15.725	0.036	0.023	6.100	1.600
13.000	1.046	-15.745	-0.102	-0.169	13.500	5.800
14.000	1.018	-16.406	-0.025	-0.057	14.900	5.000

 ${\bf Tabela~9}$ - Perdas calculadas pelo método de Newton

De	Para	Potência	ativa [kW]	Potência	reativa [kVA]	Perda ativa [kW]	Perda reativa [kVA]
ъе	Fara	P_{km}	P_{mk}	Q_{km}	$\mathbf{Q_{mk}}$	$P_{km} + P_{mk}$	$\mathbf{Q_{km}} + \mathbf{Q_{mk}}$
1	2	+155.900	-151.657	-23.141	+24.397	+4.243	+1.257
1	5	+76.579	-73.759	-6.235	+7.077	+2.820	+0.842
2	3	+72.535	-70.255	+1.238	-0.886	+2.280	+0.353
2	4	+55.849	-54.172	-9.440	+7.222	+1.677	-2.218
2	5	+41.650	-40.726	-9.952	+5.289	+0.925	-4.663
3	4	-23.965	+24.343	-2.224	+0.529	+0.378	-1.695
4	5	-61.183	+61.658	+3.326	-1.831	+0.474	+1.495
4	7	+27.629	-27.629	-7.830	+9.461	+0.000	+1.631
4	9	+15.579	-15.579	+0.617	+0.662	+0.000	+1.279
5	6	+45.241	-45.241	-11.988	+17.140	+0.000	+5.152
6	11	+7.913	-7.785	+9.598	-9.329	+0.128	+0.269
6	12	+8.038	-7.957	+3.284	-3.115	+0.081	+0.168
6	13	+18.210	-17.955	+10.450	-9.948	+0.255	+0.502
7	8	-0.034	+0.034	-26.317	+27.432	+0.000	+1.116
7	9	+27.635	-27.635	+16.850	-15.796	+0.000	+1.054
9	10	+4.811	-4.803	-1.501	+1.521	+0.008	+0.020
9	14	+8.894	-8.799	-0.028	+0.230	+0.095	+0.202
10	11	-4.202	+4.258	-7.328	+7.458	+0.055	+0.130
12	13	+1.893	-1.881	+1.539	-1.528	+0.012	+0.011
13	14	+6.234	-6.126	+5.507	-5.287	+0.108	+0.220

4.4 Método DC

Os resultados para o método DC são apresentados abaixo:

 ${\bf Tabela~10}$ - Tensões, ângulos e potências em cada barra para o método DC

k	$\mathbf{V_{k}}\left[pu \right]$	$\theta_{\mathbf{k}}\left[^{o}\right]$	$\mathbf{Pg_{k}}\left[\mathbf{kW}\right]$	$\mathbf{Pd_k}\left[\mathbf{kW}\right]$
1.000	1.060	0.000	219.000	0.000
2.000	1.045	-5.013	40.000	21.700
3.000	1.010	-12.959	0.000	94.200
4.000	1.000	-10.593	-0.000	47.800
5.000	1.000	-9.089	0.000	7.600
6.000	1.070	-15.165	0.000	11.200
7.000	1.000	-14.066	-0.000	0.000
8.000	1.090	-14.066	0.000	0.000
9.000	1.000	-15.892	0.000	29.500
10.000	1.000	-16.192	-0.000	9.000
11.000	1.000	-15.884	0.000	3.500
12.000	1.000	-16.271	-0.000	6.100
13.000	1.000	-16.437	0.000	13.500
14.000	1.000	-17.429	-0.000	14.900

 ${\bf Tabela~11}$ - Perdas calculadas pelo método DC

De	Para	Potênci	a ativa	Perda ativa
ъе	Para	P_{km}	P_{mk}	$P_{km} + P_{mk}$
1	2	+147.881	-147.881	+0.000
1	5	+71.119	-71.119	+0.000
2	3	+70.050	-70.050	+0.000
2	4	+55.226	-55.226	+0.000
2	5	+40.904	-40.904	+0.000
3	4	-24.150	+24.150	+0.000
4	5	-62.340	+62.340	+0.000
4	7	+28.985	-28.985	+0.000
4	9	+16.631	-16.631	+0.000
5	6	+42.084	-42.084	+0.000
6	11	+6.305	-6.305	+0.000
6	12	+7.545	-7.545	+0.000
6	13	+17.034	-17.034	+0.000
7	8	-0.000	+0.000	+0.000
7	9	+28.985	-28.985	+0.000
9	10	+6.195	-6.195	+0.000
9	14	+9.921	-9.921	+0.000
10	11	-2.805	+2.805	+0.000
12	13	+1.445	-1.445	+0.000
13	14	+4.979	-4.979	+0.000

5 DISCUSSÕES E CONCLUSÕES

Ao fim da atividade, foi possível ter uma noção de como estudos de fluxo de potência são realizados. No caso deste trabalho, além de se chegar ao resultado final correto, foi possível comparar os diferentes métodos em termos complexidade e precisão.

Ao longo do trabalho notou-se que o método de Newton converge com um número menor de iterações, porém estas possuem uma complexidade maior se compararmos com outros métodos. Isso ocorre devido ao método de Newton considerar integralmente a matriz jacobiana, o que faz com que o sistema a ser resolvido seja maior e mais complexo. Por outro lado, os métodos desacoplados levam mais iterações para a convergência, mas sua complexidade é menor devido ao fato do sistema ser dividido em dois independentes. No caso do método desacoplado rápido, a complexidade cai ainda mais, pois as matrizes de acoplamento não são calculadas a cada iteração. Apesar disso, a aplicação do método desacoplado rápido exige que algumas condições sejam satisfeitas. Por fim, o método DC possui a mais baixa complexidade computacional, porém também possui o pior desempenho por tornar as tensões nas barras unitárias. No entanto, o método DC é uma boa alternativa quando o interesse reside na avaliação do fluxo de potência ativa.

Deve-se salientar que aproximações introduzidas nos métodos desacoplados levam à uma redução na velocidade de convergência, podendo até levar a não convergência do problema. Assim, é necessário adotar de forma adequada o método de solução para um problema de fluxo de potência.

Referências

- [1] A. J. Monticelli, Fluxo de Carga em Redes de Energia Elétrica. Edgar Blucher, 1 ed., 1983.
- $[2]\,$ C. L. T. Borges, $Análise\ de\ Sistemas\ de\ Potência.\ 2005.$
- [3] C. A. Castro, Fluxo de Carga. Pearson, 5 ed., 2000.