MATH 8510, Abstract Algebra I

Fall 2016

Exercises 5-1

Shuai Wei

Collaborator: Xiaoyuan Liu

Exercise 1. Let G be a group.

(a) (3.1.36) Prove that if G/Z(G) is cyclic, then G is abelian. (See the hint in the text.)

Proof. At first, we show $Z(G) \subseteq G$.

We already know $Z(G) \leq G$.

Besies, since $\forall g \in G, z \in Z(G), gz = zg$ by the definition of Z(G),

$$gzg^{-1} = zgg^{-1} = z \in Z(G), \forall g \in G, z \in Z(G)$$

Thus,

$$Z(G) \subseteq G$$
.

Next we show every element of G can be written in the form $x^a z$ for some integer $a \in Z$ and some element $z \in Z(G)$.

Since G/Z(G) is cyclic, there exist $x \in G$ such that $G/Z(G) = \langle xZ(G) \rangle$.

 $\forall g \in G, gZ(G) \in G/Z(G)$, so there exists some $n \in \mathbb{Z}$ such that

$$gZ(G) = (xZ(G))^n = x^n Z(G)$$

using $Z(G) \subseteq G$.

Then

$$(x^n)^{-1}g \in Z(G).$$

So there exists $z \in Z(G)$ such that

$$(x^n)^{-1}g = z$$

Thus,

$$g = x^n z$$

At last, we have $\forall g, h \in G$, there exists $m, n \in Z, y, z \in Z(G)$ such that

$$g = x^m y$$
, and $h = x^n z$,

and we have

$$gh = x^m y x^n z$$

$$= x^m x^n y z$$

$$= x^{m+n} z y$$

$$= x^{n+m} z y$$

$$= z x^{n+m} y$$

$$= z x^n x^m y$$

$$= x^n z x^m y$$

$$= hg$$

since $y, z \in Z(G)$.

So G is abelian.

(b) (3.2.4) Prove that if |G| = pq where p and q are (not necessarily distinct) primes, then either G is abelian or $Z(G) = \{e\}.$

Proof. We first show that if H is a group and |H| = p, where p is a prime, then G is cyclic.

Let $x \in H$ and $x \neq 1$, then $|x| \neq 1$ and $|x| \mid |H|$.

So |x| = p and then $\langle x \rangle = H$.

Thus, H is cyclic.

Since $Z(G) \leq G$, $Z(G) \mid |G|$.

Given |G| = pq and p, q are primes, we have |Z(G)| = 1 or p, q or pq.

- (i) If |Z(G)| = 1, then $Z(G) = \{e\}$.
- (ii) If |Z(G)| = pq, we know $Z(G) \le G$ and then Z(G) = G. So $\forall h \in Z(G)$, we have $h \in G$ arbitrary and

$$hg=gh, \forall g\in G.$$

by the definition of Z(G).

Thus G is abelian.

(iii) If |Z(G)| = p, we have

$$|G/Z(G)| = \frac{|G|}{|Z(G)|} = q.$$

Since q is a prime, G/Z(G) is cyclic by the previous proof.

Thus, G is abelian according to problem (a).

(iv) If |Z(G)| = q, follow the similar process as (iii), we have G is abelian. In summary, if |G| = pq where p, q are primes, then either G is abelian or $Z(G) = \{e\}.$

Exercise 2 (Bonus, 3.2.9). Prove Cauchy's Theorem: If G is a finite group and p is a prime number such that $p \mid |G|$, then there is an element $x \in G$ such that |x|=p. (Note that the text includes an outline of a proof in Exercise 3.2.9.)

Proof. Let

$$S = \{(x_1, x_2, ... x_p) | x_i \in G \text{ and } x_1 x_2 ... x_p = 1\}.$$

(1) At first, we show $|S| = |G|^{p-1}$.

Let $s = (x_1, x_2, \dots x_p) \in S$ and $x_i, i = 1, 2, \dots p-1$ be any element of G, then $x_p = x_{p-1}^{-1} x_{p-2}^{-1} ... x_1^{-1}.$

Namely, x_i , i = 1, 2, ...p - 1 has |G| choices each, and then x_p only has one. So $|S| = |G|^{p-1}$.

Define a relation \sim on S by letting $\alpha \sim \beta$ if β is a cyclic permutation of α .

(2) Then we show a cyclic permutation of an element of S is again an element

 $\forall s = (x_1, x_2, ... x_p) \in S$, we have $x_1 x_2 ... x_p = 1$. Define

$$\pi: S \to S$$
 $(x_1, x_2, ...x_p) \mapsto (x_p, x_1, ...x_{p-1})$

Then we define π as circular shift operation.

Since
$$(x_1, x_2, ...x_p) \in G$$
, $x_1x_2...x_p = 1$.
So $x_px_1x_2...x_{p-1}x_px_p^{-1} = x_p1x_p^{-1}$.

So
$$x_p x_1 x_2 ... x_{p-1} x_p x_p^{-1} = x_p 1 x_p^{-1}$$
.

Namely, $x_p x_1 ... x_{p-1} = 1$. So $(x_p, x_1, ... x_{p-1}) \in S$.

Thus, π is well-defined.

Hence, a cyclic permutation of an element of S is again an element of S.

- (3) Next we show \sim is an equivalence relation.
 - Then we have a group $G = \langle \pi \rangle$ acting on the set S.

Thus, it is obvious \sim is an equivalence relation.

(4) Then we show an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with $x^p = 1$.

Assume an equivalence class contains a single element $s = (x_1, x_2, ..., x_p)$ with $x_1x_2...x_p = 1$.

Then $\pi = \pi(s) = \pi^2(s) = \dots = \pi^{p-1}(s)$.

Look at the first element of all the elements $s, \pi(s), ..., \pi^{p-1}(s)$, we have $x_1 = x_2 = ... = x_p$.

Therefore, such a element is of the form s = (x, x, ..., x) with $x^p = 1$.

Assume an equivalence class contains the element which is of the form s = (x, x, ..., x) with $x^p = 1$.

Then it is obvious that $\pi^n(s) = s$ for $1 \le n \le p, n \in \mathbb{Z}$.

Thus, the equivalence only contains the single element s = (x, x, ..., x).

(5) Then we show every equivalence class has order 1 or p. Let $G = \langle \pi \rangle$.

Then |G| = p. The orbits of S under the action of G form a partion of S. Let $s \in S$, then its stabilizer $G_s \leq G$.

So $|G_s| = 1$ or p by Lagrange's theorem.

Let $\mathcal{O}(s)$ denote the orbit containing s.

(a) If $|G_s| = p$, then $G_s = G$.

So s = (g, g, ...g) for some $g \in G$ since s stays the same under all the $\pi, \pi^2, ...\pi^p$ circular shift operations.

By part (d), $\mathcal{O}(s)$ has order 1.

(b) If $|G_s| = 1$, then $G_s = \{e_G\}$.

Assume $|\mathcal{O}(s)| < p$, then there exists some $n \in \mathbb{Z}$ and $1 \le n \le p-1$ such that $s = \pi^n(s)$.

Then $e_G \neq \pi^n \in G_s$, which is contrdicted by $|G_s| = 1$.

So $|\mathcal{O}(s)| = p$ since $|\mathcal{O}(s)| \le p$.

Let k be the number of classes of size 1 and d be the number of classes of size p.

Since S is the disjoint union of its orbits, we have $|S| = |G|^{p-1} = k + pd$.

(6) By part(c), we have $\{(1,1,..,1)\}$ is an equivalence class of size 1, and then $k \ge 1$.

Since S has order divisible by p by part (a), we have $k \geq p \geq 2$.

So there is another element x different from (1, 1, ..., 1) which has order p.

Then by part (d), we have $x \in S$ is of the form (x, x, ..., x) with $x^p = 1$.

Exercise 3 (3.3.7). Let M and N be normal subgroups of G such that G = MN. Prove that $G/(M \cap N) \cong (G/M) \times (G/N)$.

Proof. Define f as

$$f: G \to (G/M) \times (G/N)$$

 $g \mapsto (gM, gN)$

 $\forall g, h \in G$,

$$f(gh) = (ghM, ghN) = (gMhM, gNhN) = (gM, gN)(hM, hN)$$

So f is a homomorphism.

$$\begin{split} g \in \operatorname{Ker}(f) &\Leftrightarrow f(g) = (M,N), \ \forall g \in G \\ &\Leftrightarrow (gM,gN) = (M,N), \ \forall g \in G \\ &\Leftrightarrow gM = M \text{ and } gN = N, \ \forall g \in G \\ &\Leftrightarrow g \in M \text{ and } g \in N, \ \forall g \in G \\ &\Leftrightarrow g \in M \cap N, \ \forall g \in G \end{split}$$

So

$$Ker(f) = M \cap N.$$

Let $(gM, hN) \in (G/M) \times (G/N)$, then there exist $m_1, m_2 \in M$, $n_1, n_2 \in N$ such that $g = m_1 n_1$ and $h = m_2 n_2$ since G = MN. Since $M \subseteq G$ and $N \subseteq G$,

$$(gM, hN) = (m_1 n_1 M, m_2 n_2 N)$$

$$= (n_1 n_1^{-1}) m_1 n_1 M, m_2 n_2 (m_2^{-1} m_2) N)$$

$$= n_1 (n_1^{-1} m_1 n_1) M, (m_2 n_2 m_2^{-1}) N m_2)$$

$$= (n_1 M, N m_2)$$

$$= (n_1 M, m_2 N)$$

$$= (n_1 (n_1^{-1} m_2 n_1) M, m_2 n_1 N)$$

$$= (m_2 n_1 M, m_2 n_1 N)$$

$$= f(m_2 n_1).$$

So f is onto. Namely, $\text{Im}(f) = (G/M) \times (G/N)$. Thus, by the first isomorphism theorem, we have

$$G/(M \cap N) \cong (G/M) \times (G/N).$$