

DESIGN AND ANALYSIS OF ALGORITHMS

The Knapsack Problem

Reetinder Sidhu

Department of Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

The Knapsack Problem

Reetinder Sidhu

Department of Computer Science and Engineering

UNIT 5: Limitations of Algorithmic Power and Coping with the Limitations

- Dynamic Programming
 - Computing a Binomial Coefficient
 - The Knapsack Problem
 - Memory Functions
 - Warshall's and Floyd's Algorithms
- Limitations of Algorithmic Power
 - Lower-Bound Arguments
 - Decision Trees
 - P, NP, and NP-Complete, NP-Hard Problems
- Coping with the Limitations
 - Backtracking
 - Branch-and-Bound. Architecture (microprocessor instruction set)

Concepts covered

- The Knapsack Problem
 - Introduction
 - Recurrence
 - Example

Problem Definition

- Given
 - integer weights: w_1 w_2 ... w_n values: v_1 v_2 ... v_n
 - knapsack of capacity W (integer W > 0)
- ullet Find the most valuable subset of items such that sum of their weights does not exceed W

Kanpsack Recurrence

- To design a dynamic programming algorithm, we need to derive a recurrence relation that expresses a solution to an instance of the knapsack problem in terms of solutions to its smaller subinstances
- Consider the smaller knapsack problem where number of items is i ($i \le n$) and the knapsack capacity id i (i < W)
- Then

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

$$F(i,j) = egin{cases} ext{max}(F(i-1,j), & v_i + F(i-1,j-w_i)) & ext{if } j-w_i \geq 0 \ F(i-1,j) & ext{if } j-w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j-w_i \geq 0 \ F(i-1,j) & \text{if } j-w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12

	capacity <i>j</i>				
i	1	2	3	4	5
1					
2					
3					
4					

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12

		ca	pacit	y <i>j</i>	
i	1	2	3	4	5
1	0				
2					
3					
4					

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12

		ca	pacit	y <i>j</i>	
i	1	2	3	4	5
1	0	12			
2					
3					
4					

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j-w_i \geq 0 \ F(i-1,j) & \text{if } j-w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12

		ca	pacit	y j	
i	1	2	3	4	5
1	0	12	12		
2					
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12

		ca	pacit	y <i>j</i>	
i	1	2	3	4	5
1	0	12	12	12	
2					
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12

		ca	pacit	y j	
i	1	2	3	4	5
1	0	12	12	12	12
2					
3					
4					

$$F(i,j) = egin{cases} ext{max}(F(i-1,j), & v_i + F(i-1,j-w_i)) & ext{if } j-w_i \geq 0 \ F(i-1,j) & ext{if } j-w_i < 0 \end{cases}$$

item i	weight w _i	value v_i
1	2	12
2	1	10

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of c	apacit	y 6?		

		ca	pacit	y j	
i	1	2	3	4	5
1	0	12	12	12	12
2					
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10

		ca	pacit	y <i>j</i>	
i	1	2	3	4	5
1	0	12	12	12	12
2	10				
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10

		ca	pacit	уj	
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12			
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10

		ca	pacit	y j	
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22		
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10

		ca	pacit	y j	
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of o	apacit	y 6?		

		ca	pacit	y J	
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3					
4					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of c	apacit	y 6?		

		capacity <i>j</i>							
i	1	2	3	4	5				
1	0	12	12	12	12				
2	10	12	22	22	22				
3	10								
1									

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j-w_i \geq 0 \ F(i-1,j) & \text{if } j-w_i < 0 \end{cases}$$

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of c	apacit	y 6?		

	capacity <i>j</i>							
i	1	2	3	4	5			
1	0	12	12	12	12			
2	10	12	22	22	22			
3	10	12						
1								

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of c	apacit	y 6?		

	capacity <i>j</i>							
i	1	2	3	4	5			
1	0	12	12	12	12			
2	10	12	22	22	22			
3	10	12	22					

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of c	apacit	y 6?		

		capacity <i>j</i>					
i	1	2	3	4	5		
1	0	12	12	12	12		
2	10	12	22	22	22		
3	10	12	22	30			
4							

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20

What	is	the	maximum	value	that	can	be
stored	l in	a kn	apsack of c	apacit	y 6?		

		capacity <i>j</i>				
i	1	2	3	4	5	
1	0	12	12	12	12	
2	10	12	22	22	22	
3	10	12	22	30	32	
1						

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

What	is	the	maximum	value	that	can	be
stored	in	a kn	apsack of c	apacit	y 6?		

		capacity <i>j</i>				
i	1	2	3	4	5	
1	0	12	12	12	12	
2	10	12	22	22	22	
3	10	12	22	30	32	
1						

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

		ca	pacit	y <i>j</i>	
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10				

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

	capacity <i>j</i>				
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10	15			

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

	capacity <i>j</i>				
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10	15	25		

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight w _i	value v_i
1	2	12
2	1	10
3	3	20
4	2	15

	capacity <i>j</i>				
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10	15	25	30	

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item <i>i</i>	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

	capacity <i>j</i>				
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10	15	25	30	37

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item <i>i</i>	weight w _i	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

What is the maximum value that can be stored in a knapsack of capacity 6?

	capacity <i>j</i>				
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10	15	25	30	37

Given above 6 items, maximum value that can be stored in a knapsack of capacity 5 is **37**

THE KNAPSACK PROBLEM Complexity

- Space complexity: $\Theta(nW)$
- Time complexity: $\Theta(nW)$
- Time to compose optimal solution: O(n)

Think About It

Think About It

 Write pseudocode of the bottom-up dynamic programming algorithm for the knapsack problem

Think About It

- Write pseudocode of the bottom-up dynamic programming algorithm for the knapsack problem
- True or False:
 - A sequence of values in a row of the dynamic programming table for the knapsack problem is always nondecreasing?

Think About It

- Write pseudocode of the bottom-up dynamic programming algorithm for the knapsack problem
- True or False:
 - A sequence of values in a row of the dynamic programming table for the knapsack problem is always nondecreasing?
 - A sequence of values in a column of the dynamic programming table for the knapsack problem is always nondecreasing?