Edge Intrusion Detection with Distributed Novelty Detection: Design, Implementation and Evaluation

Luís Puhl, Hermes Senger, Guilherme Weigert Cassales Universidade Federal de São Carlos, Brasil Email: {luispuhl, gwcassales}@gmail.com, hermes@ufscar.br

Resumo—The implementation of the Internet of Things (IoT) is sharply increasing the small devices count and variety on edge networks and, following this increase the attack opportunities for hostile agents also increases, putting more pressure on the network administrator's need for tools to detect and react to those threats.

One such tool are the Intrusion Detection Systems (IDS) where the network traffic is captured and analysed raising alarms when a known attack pattern or new pattern is detected. To build an IDS one option for base algorithm are the Data Stream (DS) Novelty Detection (ND) being MINAS one of those.

Furthermore, for a network security tool to operate in the context of edge and IoT it has to comply with processing time, storage space and energy requirements alongside with traditional requirements for stream and network analysis like accuracy and scalability.

This paper addresses the construction details and evaluation of an prototype distributed IDS using MINAS ND algorithm following up the previously defined IDSA-IoT architecture. We discuss the algorithm steps, how it can be deployed in a distributed environment, the impacts on the accuracy of MINAS and evaluate the performance and scalability using a cluster of constrained devices commonly found in IoT scenarios.

We found an increase of 0.0~y processed network flow descriptors per core added to the cluster. Also 0.0~x1% and 0.0~x2% change in F1Score in the tested datasets when stream was unlimited in speed and limited to 0.0~z~MB/s respectively.

Index Terms—novelty detection, intrusion detection, data streams, distributed system, edge computing, internet of things

I. INTRODUCTION

II. IMPLEMENTATION

The original MINAS algorithm has a companion implementation (ref) written in Java using MOA library base algorithms such as K-means and CluStream. Ref employs Java's double, a 64bits number whose precision is not absolutely necessary and, as it is often necessary to shuffle between nodes via network and a small economy could be made with only a float number with 32bits.

The stream format for input and output also of note. Input information needed is the value of the item, this value is a number sequence of length d (referenced as dimension). In addition to the value for evaluation and training purposes the class identifier as single character, optimality an unique item identifier (uid) can be provided. For output information and format the decision isn't so clear as we can't predict future system integrations needs like only novelty alarms

or every item's original value with assigned label so, we have a compromise and put only enough information for the Evaluation Module (where the full information from the testing file or stream can de accessed) meaning the format can be defined as a tuple containing *uid* and assigned label.

Another implementation decision related to the output stream is whether or not to reprocess, and add to the output stream, examples in the unknown buffer after the novelty detection procedure, meaning one item can be classified once as unknown and again with a label. Our tests using this technique had increased true positives when compared to not using it. However this changes the stream operator behavior from a *Map* to a *FlatMap* having duplicate entries on the output stream as previously mentioned. Regardless of choice the classification of the unknown buffer after a model update, using the full model or just the added set of clusters, is done to remove the examples "consumed"in the creation of a new cluster in the internals of the clustering algorithm.

The Evaluation Module was also build following reference techniques like multi-class confusion matrix with label-class association [?] to extract classification quality metrics.

III. EXPERIMENTAL SETUP

The experimental setup is composed of 2 environments and 3 datasets. Kyoto December 2015.

For the experiments, we used the Kyoto 2006+ dataset which contains data collected from 2006 to December 2015. We selected examples from one month, December, 2015. Only the examples of known attack types and known IDS alert code with a minimum of 10,000 occurrences (for significance) were considered. The offline training was performed with 72,000 examples (i.e., 10% of the dataset) using the holdout technique.

		C N	СА
C N		181391 _h	437837_{m}
N 1		0_m	123_{h}
N 2		13_{m}	35_h
N 3		0_m	6_h
N 4		43_{m}	483_{h}
N 5		0_m	52_h
N 6		0_m	164_{h}
N 7	Г	314_{h}	2_m
N 8		97_{m}	939_{h}
N 9		826_{m}	2133_{h}
N 10		13887_{h}	3752_{m}
N 11		142_{m}	349_{h}
N 12	Г	5793_{h}	1121_{m}
N 13		35_h	0_m
N 14		10_m	39_{h}
Unk		3727_{u}	144_u
Metric		Value	Ratio
Total output		653457	114410
Hits		205743	0.314853158
Misses		443843	0.679222963
Unknowns		3871	0.005923879
FNew	-	12.064786	0.0000200.0
MNew		97.910904	
Err		70.811700	
Classes (act)	'	A	l N
Labels (pred))	1.	1,
T			
-		3774	8206
<u>-</u>		$\frac{3774_u}{123_b}$	8206 _u
- 1 10		123_{h}	0_m
10		$\frac{123_h}{2489_m}$	$\frac{0_m}{4066_h}$
10 11		$ \begin{array}{r} 123_h \\ 2489_m \\ 71_m \end{array} $	$ \begin{array}{r} 0_m \\ 4066_h \\ 289_h \end{array} $
10		$ \begin{array}{r} 123_h \\ 2489_m \\ \hline 71_m \\ 26_h \end{array} $	$ \begin{array}{r} 0_m \\ 4066_h \\ 289_h \\ 0_m \end{array} $
10 11 12 2		$ \begin{array}{r} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \end{array} $	$ \begin{array}{r} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \end{array} $
10 11 12		$ \begin{array}{r} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \end{array} $	$ \begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \end{array} $
10 11 12 2 3 4		$ \begin{array}{r} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \end{array} $	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \end{array}$
10 11 12 2 3 4 5		$ \begin{array}{r} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \\ 52_h \end{array} $	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \\ 0_{m} \end{array}$
10 11 12 2 3 4		$ \begin{array}{r} 123_{h} \\ 2489_{m} \\ 71_{m} \\ 26_{h} \\ 145_{h} \\ 368_{h} \\ 8_{h} \\ 52_{h} \\ 165_{h} \end{array} $	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \\ 0_{m} \\ 0_{m} \end{array}$
10 11 12 2 3 4 5 6		$ \begin{array}{c} 123_{h} \\ 2489_{m} \\ 71_{m} \\ 26_{h} \\ 145_{h} \\ 368_{h} \\ 8_{h} \\ 52_{h} \\ 165_{h} \\ 1_{m} \end{array} $	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \\ 0_{m} \\ 0_{m} \\ 229_{h} \end{array}$
10 11 12 2 3 4 5 6 7		$ \begin{array}{r} 123_{h} \\ 2489_{m} \\ 71_{m} \\ 26_{h} \\ 145_{h} \\ 368_{h} \\ 8_{h} \\ 52_{h} \\ 165_{h} \\ 1_{m} \\ 1046_{h} \end{array} $	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \\ 0_{m} \\ 0_{m} \\ 229_{h} \\ 181_{m} \end{array}$
10 11 12 2 3 4 5 6 7 8		$ \begin{array}{c} 123_{h} \\ 2489_{m} \\ 71_{m} \\ 26_{h} \\ 145_{h} \\ 368_{h} \\ 8_{h} \\ 52_{h} \\ 165_{h} \\ 1_{m} \\ 1046_{h} \\ 161_{h} \end{array} $	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \\ 0_{m} \\ 0_{m} \\ 229_{h} \\ 181_{m} \\ 154_{m} \end{array}$
10 11 12 2 3 4 5 6 7 8 9		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \end{array}$	$\begin{array}{c} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \\ 44_m \\ 0_m \\ 0_m \\ 0_m \\ 229_h \\ 181_m \\ 154_m \\ 193030_h \end{array}$
10 11 12 2 3 4 5 6 7 8 9 N		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \\ \hline \end{array}$	$\begin{array}{c} 0_{m} \\ 4066_{h} \\ 289_{h} \\ 0_{m} \\ 79_{m} \\ 44_{m} \\ 0_{m} \\ 0_{m} \\ 0_{m} \\ 229_{h} \\ 181_{m} \\ 154_{m} \end{array}$
10 11 12 2 3 4 5 6 7 8 9 N Metric Total input		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \end{array}$	$\begin{array}{c} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \\ 44_m \\ 0_m \\ 0_m \\ 0_m \\ 229_h \\ 181_m \\ 154_m \\ 193030_h \end{array}$
10 11 12 2 3 4 5 6 7 8 9 N		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \\ \hline $	$\begin{array}{c} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \\ 44_m \\ 0_m \\ 0_m \\ 0_m \\ 229_h \\ 181_m \\ 154_m \\ 193030_h \end{array}$
10 11 12 2 3 4 5 6 7 8 9 N Metric Total input Total output		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \\ \hline \begin{array}{c} \mathbf{Value} \\ 653457 \\ 653457 \\ 199708 \\ \end{array}$	$\begin{array}{c} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \\ 44_m \\ 0_m \\ 0_m \\ 0_m \\ 229_h \\ 181_m \\ 154_m \\ 193030_h \\ \hline \textbf{Ratio} \\ \end{array}$
10 11 12 2 3 4 5 6 7 8 9 N Metric Total input Total output Hits Misses		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 8_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \\ \hline \begin{array}{c} \mathbf{Value} \\ 653457 \\ 653457 \\ 199708 \\ 441769 \\ \end{array}$	$\begin{array}{c} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \\ 44_m \\ 0_m \\ 0_m \\ 229_h \\ 181_m \\ 154_m \\ 193030_h \\ \hline \textbf{Ratio} \\ \\ 0.30561766 \\ 0.67604907 \\ \hline \end{array}$
10 11 12 2 3 4 5 6 7 8 9 N Metric Total input Total output Hits		$\begin{array}{c} 123_h \\ 2489_m \\ 71_m \\ 26_h \\ 145_h \\ 368_h \\ 52_h \\ 165_h \\ 1_m \\ 1046_h \\ 438750_m \\ \hline \begin{array}{c} \mathbf{Value} \\ 653457 \\ 653457 \\ 199708 \\ \end{array}$	$\begin{array}{c} 0_m \\ 4066_h \\ 289_h \\ 0_m \\ 79_m \\ 44_m \\ 0_m \\ 0_m \\ 229_h \\ 181_m \\ 154_m \\ 193030_h \\ \hline \textbf{Ratio} \\ \\ \hline \end{array}$

ACKNOWLEDGMENT

The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Código de Financiamento 001). Hermes Senger also thanks CNPq (Contract 305032/2015-1) and FAPESP (Contract 2018/00452-2, and Contract 2015/24461-2) for their support.