МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

3BIT

до лабораторної роботи №3: «Напівпровідникові діоди»

Месюра М. С.

РЕФЕРАТ

Звіт до ЛР №2: 38 с., 24 рис., 4 джерела.

ОСЦИЛОГРАФ, ЧОТИРИПОЛЮСНИКИ, МОДЕЛЮВАННЯ, МЕТОД СПІВСТАВЛЕННЯ, МЕТОД ФІГУР ЛІСАЖУ, LTSPICE, RC-ФІЛЬТРИ

Об'єкт досдіження — пасивні лінійні чотириполюсники, перетворення сигналів при проходженні через такі чотириполюсники.

Мета роботи — дослідити зміну параметрів прямокутних імпульсів та гармонічних сигналів при проходженні через пасивні лінійні чотириполюсники, опанувати методи вимірювання амплітудно-частотних та фазо-частотних характеристик пасивних RC-фільтрів та їх перехідних характеристик.

Методи дослідження — в роботі використовуються:

- 1) метод співставлення, тобто одночасного спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів;
- 2) метод фігур Лісажу, який полягає у спостереженні на екрані двоканального осцилографа замкнених кривих, які є результатом накладання двох коливань, що відбуваються у двох взаємно перпендикулярних напрямках (вхідний і вихідний сигнали подаються на пластини горизонтального та вертикального відхилення осцилографа відповідно).

Змодельовано фільтри нижінх, верхніх частот, смуговий, загороджувальний. Використано математичне моделювання. Оброблено отримані результати.

3MICT

Частина 1. Теоретичні відомості.	c
І. Основні означення	4
II. Принцип роботи p-n-переходу	5
Частина 2. Виконання роботи.	
0. Підготовка загальної схеми	
1. Налаштування джерела напруги	6
2. Схема	7
I. Випрямлювальний діод.	
1 Напруга10	
2. BAX	11
II. Стабілітрон.	
1. Напруга	14
2. BAX	
III. Світлодіод.	
1. Напруга	17
2. BAX	
Висновки	25
Джерела	38

Частина 1. Теоретичні відомості.

І. Основні означення.

 $\it Hanisnposidhukosuŭ diod$ — це напівпровідниковий прилад з одним p-n-переходом і двома виводами.

p-n-nepexid — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша — провідність ртипу.

Вольт-амперна характеристика (BAX) dioda — це залежність сили струму I_D через p-n—перехід діода від величини і полярності прикладеної до діода напруги U_D .

Xарактериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму I_D від напруги U_D .

II. Принцип роботи p-n-переходу.

Процеси, які відбуваються в області р-n-переходу, є досить складними, проте основні його властивості можна зрозуміти, розглянувши наступну спрощену модель.

Розглянемо роботу р-п-переходу, утвореного на межі поділу двох середовищ, які являють собою один і той же напівпровідник, в одну з частин якого введені донорні домішки і яка відповідно має провідність п-типу (тобто перше середовище – це матеріал п-типу), а в іншу введені акцепторні домішки і яка має провідність р-типу (друге середовище – матеріал р-типу). Концентрація вільних електронів в матеріалі п-типу набагато більша, ніж концентрація вільних дірок. Тому електрони в матеріалі п-типу називають основними носіями заряду, а дірки – неосновними носіями заряду. В матеріалі р-типу – навпаки: дірки є основними носіями заряду, а електрони - неосновними. Якщо матеріал п-типу привести в контакт з матеріалом р-типу, то почнеться процес дифузії електронів з матеріалу п-типу (де їх концентрація велика) в матеріал р-типу (де їх концентрація мала). Аналогічно, дірки будуть дифундувати з матеріалу р-типу (де їх концентрація велика) в матеріал п-типу (де їх концентрація мала). Зрозуміло, що при двох вищезгаданих процесах матеріал п-типу буде втрачати негативний заряд і набувати позитивного заряду, а матеріал р-типу, навпаки, буде втрачати позитивний заряд і набувати негативного заряду. В результаті в області контакту буде виникати електричне поле, яке буде протидіяти подальшому переходу електронів в р-область та дірок в п-область, і між матеріалом п-типу і матеріалом р-типу виникатиме різниця потенціалів. Ця різниця потенціалів називається **контактною різницею потенціалів** φ_K , а вищезгадане електричне поле – полем р–n-переходу E_{p-n} .

Розглянемо поведінку носіїв заряду після виникнення контактної різниці потенціалів в області р—п-переходу. Для того щоб основні носії заряду (наприклад, електрони з п-області) могли пройти через область контакту, вони повинні подолати потенціальний поріг, зумовлений цією контактною різницею потенціалів. Зрозуміло, що зробити це буде тим важче, чим більшою буде висота порогу. В той же час, неосновні носії (наприклад, дірки з р-області), які опиняються поблизу р—п-переходу, "звалюються" з потенціального порогу в область з іншим типом провідності незалежно від висоти цього порогу! Таким чином, струм, зумовлений переходом через р—п-перехід неосновних носіїв (так званий *струм неосновних носіїв І* $_0$), не залежить від висоти потенціального порогу.

Процес зростання висоти порогу під час дифузії носіїв через р—п-перехід припиниться, коли буде досягнута динамічна рівновага між кількістю переходів через р—п-перехід основних і неосновних носіїв заряду одного й того ж самого знаку (наприклад, електронів), тобто коли *струм основних носіїв заряду* I_{OCH} через р—п-перехід зрівняється зі струмом неосновних носіїв I_0 , який протікає у протилежному напрямку.

Частина 2. Виконання роботи.

- 0. Підготовка загальної схеми.
- 1. Налаштування джерела напруги.

Рис. 1. Параметри джерела напруги

2. Схема.

Рис. 2. Загальна схема (усі ключі розімкнено)

- І. Випрямлювальний діод.
- 1. Напруга.

Замкнемо перший ключ.

Рис. 3. Напруга на діоді

2. BAX.

Рис. 4. ВАХ діода

II. Стабілітрон.

1. Напруга.

Замкнемо другий ключ.

Рис. 5. Напруга на діоді

2. BAX.

Рис. 6. ВАХ діода

III. Світлодіод.

1. Напруга.

Замкнемо третій ключ.

Рис. 7. Напруга на діоді

2. BAX.

Рис. 8. ВАХ діода

Висновок: за допомогою даної лабораторної роботи вдалось дослідити ВАХ діодів. При дослідження використовувалось спільна схема і три типи напівпровідникових діодів: випрямлювальний, стабілізатор та світлодіод. Їхнє почергове підключення регулювалось замкненням відповідного ключа.

Усі покази отримано за допомогою комп'ютерного моделювання у програмі LTspice ® та за допомогою її вбудованих можливостей Waveform Data.

Використані джерела:

Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.

Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. – К.: 2006.- с.