1-1	44.	ムロ	\Box	
瓜	毜	狦	号	:

考核对象:信息学院18级

学号 姓名_____

注意: 1. 重修必须注明(重修)

2. 试卷背面为草算区

大连工业大学 2018~2019 学年 第一学期

《高数阶段测验》试卷()共3页第1页

••••	装	订 绉	ŧ					••••••				
	题号		1	.1	四	エ	<u></u>	L	1/	+1	阅卷	复核
	赵与		1		<u>ग</u>	Д.	/\	נ	/\	<u> </u>	总分	总分
	得分											

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

一、填空题: (每小题 3 分, 共 15 分)

1、f(x)在[a,b]上连续是 $\int_a^b f(x)dx$ 存在的______条件。

$$2 \int \frac{\sin \sqrt{x}}{\sqrt{x}} dx = \underline{\qquad}$$

3、设
$$\lim_{x\to +\infty} f(x) = 1$$
, a 为常数,则 $\lim_{x\to +\infty} \int_{x}^{x+a} f(x) dx =$ ______

4.
$$\int_{-5}^{5} \frac{x^3 \sin^2 x}{x^4 + 2x^2 + 1} dx = \underline{\hspace{1cm}}$$

5、
$$\int_{2}^{+\infty} \frac{dx}{x(\ln x)^{k}}$$
, 其中 k 为常数,当 $k > 1$ 时,此积分_____。(填"收敛"或"发散")

二、单选题: (每小题 3 分,共 15 分)

$$1, \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = ($$

- (B) $\pi/2$ (C) π (D) 发散

2、若f(x)连续,则 $d(\int f(x)dx)=($

- (A)f(x) (B)f(x)+C (C)f(x)dx (D)f'(x)dx

3、设
$$I_1 = \int_0^1 e^x dx$$
, $I_2 = \int_0^1 (1+x) dx$ 则 (

- (A) $I_1 < I_2$ (B) $I_1 > I_2$ (C) $I_1 = I_2$ (D) 无法比较

4、若设
$$f(x) = \frac{d}{dx} \int_0^x \sin(t-x) dt$$
,则必有()。

A.
$$f(x) = -\sin x$$

$$C. f(x) = \sin x$$

$$D. f(x) = 1 - \sin x$$

5、若
$$F'(x) = \frac{1}{\sqrt{1-x^2}}$$
, $F(1) = \frac{3}{2}\pi$,则 $F(x)$ 为(

- (A) $\arcsin x$
- (B) $\arcsin x + \frac{\pi}{2}$ (C) $\arccos x + \pi$
- (D) $\arcsin x + \pi$

得分

三、计算题: (每小题 5 分, 共 20 分)

$$1 \cdot \Re \int \frac{x + \arctan x}{1 + x^2} dx$$

$$2、 计算 \int (x^2 + 1)e^x dx$$

试卷编	\square .
瓜分细	一:
	. ·

考核对象: 信息学院 18 级

2. 试卷背面为草算区

大连工业大学 2018~2019 学年 第一学期

《高数阶段测验》试卷()共3页第2页

3、求
$$y = \frac{2}{3}x^{\frac{3}{2}}$$
相应于 $1 \le x \le 2$ 的一段弧的长度。

得分

四、计算题: (每小题 5 分, 共 20 分)

1、求极限
$$\lim_{x\to 0} \frac{\int_0^{x^2} te^t \sin tdt}{x^6 e^x}$$
。

$$2 \cdot \Re \int_{\frac{1}{2}}^{1} e^{\sqrt{2x-1}} dx$$

3、设
$$F(x) = \int_0^{x^2} e^{-t^2} dt$$
, 试求 $F(x)$ 的极值。

4、已知
$$f'(\sin x) = 1 + x$$
, 求 $f(x)$ 。

试	117.	1.	\Box	
	ᆓ	40	=	
LTA	↛	4/1111	4	•
V-V	~	フルリ	J	•

考核对象: 信息学院 18级

2. 试卷背面为草算区

大连工业大学 2018~2019 学年 第一学期

《高数阶段测验》试卷()共3页第3页

五、(5分)设f(x)的一个原函数为 $\frac{\sin x}{x}$,求 $\int x f'(x) dx$ 。

六、(5分) 已知 $f(x) = e^{-x^2}$, 求 $\int_0^1 f'(x)f''(x)dx$

得分

七、(5分)设由方程 $\int_0^y e^{t^2} dt + \int_0^{x^2} \frac{\sin t}{\sqrt{t}} dt = 1$ (x > 0)确定 $y \in x$ 的函数,求 $\frac{dy}{dx}$ 。

得分

八、(5分) 证明: $\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx$

得分

九、 $(10 \, \text{分})$ 计算抛物线 $y^2 = x$ 与直线 x + y = 2 所围图形的面积,以及所围图形绕 y 轴旋转所成的旋转体体积。

试卷编号:

大连工业大学 2018~2019 学年 第一学期《高数阶段测验》试卷()标准答案 共 1 页第 1 页

卷面满分: 100

考核对象: 2018级 信息学院

命题教师:

一、填空题: (每小题 3 分, 共 15 分)

1、充分

$$2\sqrt{2}\cos\sqrt{x}+c$$

3, a

5、收敛

二、单项选择题: (每小题 3 分, 共 15 分)

5、D

三、计算题(每小题5分,共20分)

1.
$$\frac{1}{2}\ln(1+x^2) + \frac{1}{2}(\arctan x)^2 + C$$

2.
$$\int (x^2 + 1)e^x dx = \int (x^2 + 1)d(e^x) = (x^2 + 1)e^x - 2\int xd(e^x) = (x^2 - 2x + 3)e^x + C$$

(5分)

$$3, \frac{2}{3} \left(3^{\frac{3}{2}} - 2^{\frac{3}{2}}\right)$$
 (5 $\%$)

4、 $\frac{1}{4}$ (5分)

四、计算题(每小题5分,共20分)

1、解: 原式 = $\lim_{r \to 0} \frac{\int_0^{x^2} te^t \sin t dt}{r^6} = \lim_{x \to 0} \frac{x^2 e^{x^2} \sin x^2 \cdot 2x}{6r^5}$ (4分) = $\frac{1}{3}$

$$(4分)=\frac{1}{3}$$

2、解: 令 $\sqrt{2x-1} = t$, 则 $x = \frac{t^2+1}{2}$ dx = tdt 原式 = $\int_0^1 te^t dt$ (3分) = $(te^t - e^t)_0^1 = 1$ (5分)

3、解: $(1)F'(x) = 2xe^{-x^4}$ 令F'(x) = 0 得 x = 0 (2分) x < 0时,F'(x) < 0 x > 0时,F'(x) > 0 ∴ F(0) = 0为极小值 (5分)

4. $x(1 + \arcsin x) + \sqrt{1 - x^2} + c$ (5 %)

五、原式= $\int x df(x) = xf(x) - \int f(x) dx = x \left(\frac{\sin x}{x}\right) - \frac{\sin x}{x} + C = \cos x - \frac{2\sin x}{x} + C$ (5分)

六、解: 原式= $\int_0^1 f'(x)df'(x)$ (3分)

$$= \frac{1}{2} f'^2(x) \Big|_0^1 = 2e^{-2} \qquad (5 \, \%)$$

七、解: 两边对 x 求导 $e^{y^2} \cdot \frac{dy}{dx} + \frac{\sin x^2}{x} \cdot 2x = 0$ $\frac{dy}{dx} = -2e^{-y^2} \sin x^2$

八、 证明: $\Leftrightarrow x = \frac{\pi}{2} - t$ (2分)

左边 = $\int_{\frac{\pi}{2}}^{0} \frac{-\cos t}{\cos t + \sin t} dt \qquad (4 \%)$

$$= \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx = \pi \dot{\partial} \qquad (5 \, \dot{\beta})$$

九、解: 联立方程, 得交点坐标(1,1),(4,-2)

$$S = \int_{-2}^{1} (2 - y - y^2) dy = \frac{9}{2}, \quad (5 \%) \quad V_y = \int_{-2}^{1} \pi (2 - y)^2 dy - \int_{-2}^{1} \pi (y^2)^2 dy = \frac{72}{5} \pi \quad (10 \%)$$