Sprawozdanie laboratorium 4

Część I: DHCP

Ćwiczenie polega na stworzeniu i konfiguracji topologii podobnej do pokazanej na rysunku poniżej..

4. Weryfikacja poprawności wykonanych konfiguracji.

a. Na komputerach PC1 oraz PC2 wykonaj polecenie ipconfig /all . Wynik działania tego polecenia dla jednego z PC prosze umieścić w sprawozdaniu.

PC1:

```
C:\Users\student>ipconfig /all
Konfiguracja IP systemu Windows
    Lab3-08
                                                          Hybrydowy
Nie
Nie
                                                           pollub.pl
Karta Ethernet LAN:
    Sufiks DNS konkretnego połączenia :
                                                           Kontroler Marvell Yukon 88E8056 PCI-E Gig
Opis.
abit Ethernet Controller
Adres fizyczny.......
DHCP włączone
Autokonfiguracja włączona
Adres IPv6 połączenia lokalnego.
                                                           00-26-18-8B-A3-D0
                                                           Tak
Tak
                                                           fe80::48e3:23d8:dfce:7ebe%11(Preferowane)
                                                          : 192.168.10.11(Preferowane)
255.255.255.0
7 listopada 2017 19:16:48
8 listopada 2017 19:16:48
192.168.10.1
192.168.10.1
301999640
00-01-00-01-1F-96-2A-50-00-26-18-8B-AA-2A
    Adres IPv4. . . .
Maska podsieci. . .
Dzierżawa uzyskana.
    Serwery DNS . . . . .
NetBIOS przez Tcpip
                                                           192.168.11.5
Włączony
```

PC2:

```
C:\Users\student>ipconfig /all
Konfiguracja IP systemu Windows
   Sufiks podstawowej domeny DNS . . :
   : Hybrydowy
Karta Ethernet LAN:
   Sufiks DNS konkretnego połączenia:
                            . . . . . . : Kontroler Marvell Yukon 88E8056 PCI-E Gig
abit Ethernet Controller
                                ....: 00-26-18-8B-A4-F4
   Adres IPv6 polaczenia lokalnego . : fe80::6c53:3567:819a:2dc3%11(Preferowane)

      Dzierżawa wygasa.
      : 8 listopada

      Brama domyślna.
      : 192.168.11.1

      Serwer DHCP
      : 192.168.11.1

      Identyfikator IAID DHCPv6
      : 301999640

   Serwer DHCP . . . . . . . . . . . . . . . . . . 192.168.11.1
Identyfikator IAID DHCPv6 . . . . : 301999640
Identyfikator DUID klienta DHCPv6 : 00-01-00-01-1D-A6-B0-2F-00-26-18-8B-AA-BB
   Serwery DNS . . . . . . . . . : 192.168.
NetBIOS przez Tcpip . . . . . : Włączony
                                  . . . . : 192.168.11.5
```

b. Na konsoli routera R1 wykonaj polecenie show ip dhcp binding . Pozwala ono na stwierdzenie obecnie istniejących powiązań interfejs klienta - adres IP (dzierżaw adresów).

```
Router>show ip dhcp binding
Bindings from all pools not associated with VRF:
IP address
                    Client-ID/
                                             Lease expiration
                                                                      Type
                    Hardware address/
                    User name
                                             Nov 08 2017 05:42 PM
192.168.10.11
                    0100.2618.8ba3.d0
                                                                      Automatic
192.168.11.11
                    0100.2618.8ba4.f4
                                             Nov 08 2017 05:45 PM
                                                                      Automatic
```

c. Na konsoli routera wykonaj polecenie show ip dhcp pool

```
Router>show ip dhcp pool
Pool R1Fa0 :
Utilization mark (high/low)
                                : 100 / 0
Subnet size (first/next)
                                : 254
Total addresses
Leased addresses
Pending event
 1 subnet is currently in the pool :
Current index
                 IP address range
                                                          Leased addresses
                      192.168.10.1
192.168.10.12
                                       - 192.168.10.254
Pool R1Fa1 :
Utilization mark (high/low)
                                : 100 / 0
                                : 0 / 0
Subnet size (first/next)
                                : 254
 Total addresses
 Leased addresses
 Pending event
                                : none
 1 subnet is currently in the pool :
                     IP address range
                                                          Leased addresses
 Current index
 192.168.11.12
                     192.168.11.1
                                       - 192.168.11.254
```

d. Do rozwiązywania problemów dotyczących działania serwera DHCP można używać polecenia debug ip dhcp server events. Użycie tego polecenia spowoduje wyświetlenie informacji o tym, czy serwer okresowo sprawdza wygaśnięcia dzierżawy adresów. Wyświetlone zostaną także procesy związane z adresami zwracanymi oraz przypisywanymi. W sprawozdaniu proszę umieścić wynik działania tego polecenia.

```
DHCP server event debugging is on.
Router#
*Nov 7 17:57:43.219: DHCPD: Sending notification of TERMINATION:
*Nov 7 17:57:43.219: DHCPD: address 192.168.10.11 mask 255.255.255.0
*Nov 7 17:57:43.219: DHCPD: reason flags: RELEASE
*Nov 7 17:57:43.219: DHCPD: htype 1 chaddr 0026.188b.a3d0
*Nov 7 17:57:43.219: DHCPD: lease time remaining (secs) = 86372
*Nov 7 17:57:43.219: DHCPD: returned 192.168.10.11 to address pool R1Fa0.
*Nov 7 17:57:45.827: DHCPD: Sending notification of DISCOVER:
*Nov 7 17:57:45.827: DHCPD: htype 1 chaddr 0026.188b.a3d0
*Nov 7 17:57:45.827: DHCPD: remote id 020a0000c0a80a0100000000
*Nov 7 17:57:45.827: DHCPD: circuit id 00000000
      7 17:57:45.827: DHCPD: Seeing if there is an internally specified pool cla
*Nov
ss:
*Nov 7 17:57:45.827: DHCPD: htype 1 chaddr 0026.188b.a3d0
*Nov 7 17:57:45.827: DHCPD: remote id 020a0000c0a80a010000000
*Nov 7 17:57:45.827: DHCPD: circuit id 00000000
*Nov 7 17:57:45.827: DHCPD: client requests 192.168.10.11.
*Nov 7 17:57:45.827: DHCPD: Allocated binding 2244E100
*Nov 7 17:57:45.827: DHCPD: Adding binding to radix tree (192.168.10.11)
*Nov 7 17:57:45.827: DHCPD: Adding binding to hash tree
*Nov 7 17:57:45.827: DHCPD: assigned IP address 192.168.10.11 to client 0100.26
18.8ba3.d0.
*Nov 7 17:57:47.827: DHCPD: Sending notification of DISCOVER:
*Nov 7 17:57:47.827: DHCPD: htype 1 chaddr 0026.188b.a3d0
*Nov 7 17:57:47.827: DHCPD: remote id 020a0000c0a80a0100000000
      7 17:57:47.827: DHCPD: circuit id 00000000
*Nov
      7 17:57:47.827: DHCPD: Seeing if there is an internally specified pool cla
*Nov
ss:
*Nov 7 17:57:47.827: DHCPD: htype 1 chaddr 0026.188b.a3d0
*Nov 7 17:57:47.827: DHCPD: remote id 020a0000c0a80a0100000000
*Nov 7 17:57:47.827: DHCPD: circuit id 00000000
*Nov 7 17:57:47.827: DHCPD: Sending notification of ASSIGNMENT:
      7 17:57:47.827: DHCPD: address 192.168.10.11 mask 255.255.255.0
*Nov
     7 17:57:47.827: DHCPD: htype 1 chaddr 0026.188b.a3d0 7 17:57:47.827: DHCPD: lease time remaining (secs) = 86400
```

e. Aby sprawdzić, czy komunikaty są odbierane lub wysyłane przez router, należy użyć polecenia show ip dhcp server statistics. Użycie tego polecenia spowoduje wyświetlenie informacji o liczbie wysłanych i odebranych komunikatów DHCP. Prosze podać w sprawozdaniu odpowiedź jaką uzyskano za pomocą tego polecenia. Jednocześnie prosze zaznaczyć komunikaty DHCP, jakie są w nim widoczne. Czy ich kolejność wystąpienia jest zgodna z oczekiwaniami teoretycznymi i czy statystyki są kompletne (czy statystyki zawierają wszystkie komunikaty)? Odpowiedź proszę b. krótko uzasadnić.

Router#show ip dhcp	server statistics
Memory usage	58449
Address pools	2
Database agents	0
Automatic bindings	2
Manual bindings	0
Expired bindings	0
Malformed messages	0
Secure arp entries	0
Message	Received
BOOTREQUEST	0
DHCPDISCOVER	12
DHCPREQUEST	5
DHCPDECLINE	0
DHCPRELEASE	2
DHCPINFORM	7
Message	Sent
BOOTREPLY	0
DHCPOFFER	4
DHCPACK	12
DHCPNAK_	0

Statystyki są w formie tabeli więc nie są ułożone w kolejności faktycznej komunikacji. 12 razy szukano serwera, ale tylko 4 razy odpowiedział. Różnica 8 wynika z włączonego ale nie skonfigurowanego jeszcze serwera dhcp.

Część II: IPv6

2. Konfiguracja ręczna adresów IPv6 na routerze.

c. Należy wydać polecenie show ipv6 interface g0/0 (zamiast g0/0 proszę wpisać właściwą nazwę wykorzystanych interfejsów routera). Przykładowy wynik działania polecenia przedstawiony jest poniżej. Proszę zwrócić uwagę na to do jakich grup multicastowych został przyłaczony każdy z interfejsów. W sprawozdaniu umieść wynik działania tego polecenia dla jednego z interfejsów Ethernet routera R1 i podaj co oznaczają poszczególne, obecne w listingu, grupy multicastowe.

```
Router#show ipv6 interface FastEthernet 0/0
FastEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::260:3EFF:FE37:701
  No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
   FF02::1
   FF02::1:FF00:1
   FF02::1:FF37:701
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ICMP unreachables are sent
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
```

<u>FF02::1</u> adres wszystkich węzłów z zakresu lokalnego dla łącza <u>FF02::1:FF00:1, FF02::1:FF37:701</u> - adresy węzłów używanych do wykrywania sąsiadów

d. W celu uzyskania zgodności pomiędzy adresem typu link-local a adresem można ręcznie przypisać do każdego z interfejsów Ethernet routera R1 adres link-local. Wyjaśnij dlaczego można obu interfejsom przypisać ten sam adres typu link-local tj. FE80::1.

Adres link-local jest wykorzystywany do stworzenia pojedynczego połączenia. Na różnych interfejsach takie same adresy nie spowodują żadnego konfliktu, gdzie przekazad pakiet. Więc *obu interfejsom można przypisać ten sam adres typu link-local*

e. Wydaj ponownie polecenie show ipv6 interface dla każdego z interfejsów Ethernet routera R1. Czy przypisanie do grup multicastowych uległo zmianie w stosunku do punktu e. Jeśli tak to proszę podać co się zmieniło i powód tej zmiany (na przykładzie wybranego interfejsu).

```
Router#show ipv6 interface
FastEthernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::1
 No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
   FF02::1
   FF02::1:FF00:1
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
  ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
FastEthernet0/1 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
 No Virtual link-local address(es):
 Global unicast address(es):
   2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
  Joined group address(es):
   FF02::1
   FF02::1:FF00:1
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
```

Zmienił się link-local adres oraz znikneła Grupa FF02::1:FF37:701.

3. Konfiguracja routingu statycznego IPv6 na routerze

c. Wydaj ponownie polecenie show ipv6 interface dla każdego z interfejsów Ethernet routera R1. Czy przypisanie do grup multicastowych uległo zmianie w stosunku do punktu 2e. Jeśli tak to proszę podać co się zmieniło i powód tej zmiany (na przykładzie wybranego interfejsu)..

```
FastEthernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::1
 No Virtual link-local address(es):
 Global unicast address(es):
   2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
   FF02::1
   FF02::2
   FF02::1:FF00:1
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 (unspecified)
 ND advertised retransmit interval is 0 (unspecified)
 ND router advertisements are sent every 200 seconds
 ND router advertisements live for 1800 seconds
 ND advertised default router preference is Medium
 Hosts use stateless autoconfig for addresses.
FastEthernet0/1 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
 No Virtual link-local address(es):
 Global unicast address(es):
    2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
```

show ipv6 interface

Ponieważ został uruchomiony routing IPv6, został dodany adres wszystkich routerów z zakresu lokalnego dla łgcza FF02::2.

d. Jeżeli w poprzednim punkcie potwierdziło się, że router R1 należy do grupy multicastowej all-router multicast group tomożna na komputerach PC-A i PC-B odświerzyć konfigurację interfejsów sieciowych. Wyjaśnij dlaczego PC-A i PC-B przypisane zastały: Global Routing Prefix oraz Subnet ID takie same jak skonfigurowano je na R1?

Router i komputery są w tej samej sieci, więc PC-A i PC-B przypisane zastały: Global Routing Prefix oraz Subnet ID takie same jak skonfigurowano je na R1.

4. Konfiguracja adresu statycznego IPv6 na PC.

b. Za pomocą polecenia ipconfig należy sprawdzić konfigurację interfejsów sieciowych na obu komputerach PC. Wynik działania tego polecenia dla PC-A oraz PC-B należy umieścić w sprawozdaniu.

PC1:

PC2:

```
PC>ipv6config

FastEthernet0 Connection:(default port)

Link-local IPv6 Address....: FE80::230:A3FF:FE6D:80D8
IPv6 Address......: 2001:DB8:ACAD:1::3/64
Default Gateway.....: FE80::1
DHCPv6 Client DUID.....: 00-01-00-01-AE-88-8A-63-00-30-A3-6D-80-D8
```

c. Wykorzystaj komend ping do sprawdzenia łączności pomiedzy hostami: PC-A i PC-B.komputerach PC. Czy test ping zakonczył się sukcesem? __Tak__ W sprawozdaniu proszę umieścić zrzut ekranowy działania polecenia ping.

PC1:

```
PC>ping 2001:DB8:ACAD:1::3

Pinging 2001:DB8:ACAD:1::3 with 32 bytes of data:

Reply from 2001:DB8:ACAD:1::3: bytes=32 time=1ms TTL=127

Reply from 2001:DB8:ACAD:1::3: bytes=32 time=0ms TTL=127

Reply from 2001:DB8:ACAD:1::3: bytes=32 time=0ms TTL=127

Reply from 2001:DB8:ACAD:1::3: bytes=32 time=0ms TTL=127
```

PC2:

```
PC>ping 2001:DB8:ACAD:A::3

Pinging 2001:DB8:ACAD:A::3 with 32 bytes of data:

Reply from 2001:DB8:ACAD:A::3: bytes=32 time=0ms TTL=127

Reply from 2001:DB8:ACAD:A::3: bytes=32 time=0ms TTL=127

Reply from 2001:DB8:ACAD:A::3: bytes=32 time=0ms TTL=127

Reply from 2001:DB8:ACAD:A::3: bytes=32 time=0ms TTL=127
```

5. ZADANIA DO SAMODZIELNEGO OPRACOWANIA

5.1. DHCP pozwala na przypisywanie konkretnego adresu IPv4 na podstawie adresu MAC. Jak skonfigurować taki przypadej na serwerze DHCP uruchomionym na routerze Cisco.

Skonfigurować można w następujący sposób:

Router(config)# ip dhcp pool name
Router(dhcp-config)# host address [mask / /prefix-length]
Router(dhcp-config)# client-identifier unique-identifier (opcjonalnie)
Router(dhcp-config)# hardware-address hardware-address type