Physics of Hadrons - physics632

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Specialization: Advanced Experimental Physics
Module No.	physics62a

\overline{Course}	Physics of Hadrons
Course No.	physics632

		Teach	Teaching			
Category	Type	Language hours	\mathbf{CP}	Semester		
Elective	Lecture with exercises	English 3+1	6	ST		

Requirements for Participation:

Preparation: Completed B.Sc. in Physics, with experience in electrodynamics, quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination: Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Understanding the many-body structure of hadrons, understanding structural examinations with electromagnetic probes, introduction into experimental phenomenology

Contents of the Course:

Structure Parameters of baryons and mesons; hadronic, electromagnetic and weak probes; size, form factors and structure functions; quarks, asymptotic freedom, confinement, resonances; symmetries and symmetry breaking, hadron masses;

quark models, meson and baryon spectrum; baryon spectroscopy and exclusive reactions; missing resonances, exotic states

Recommended Literature:

B. Povh, K. Rith C. Scholz, F. Zetsche; Teilchen und Kerne (Springer, Heidelberg 6. Aufl. 2004)

Perkins; Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000)

K. Gottfried, F. Weisskopf; Concepts of Particle Physics (Oxford University Press 1986)