

DÍODOS

CAPÍTULO 3

(SEDRA & SMITH)

Considerações gerais

- O díodo constitui o elemento de circuito não-linear mais simples.
- Tal como uma resistência, o díodo tem dois terminais; contudo, ao contrário da resistência que tem uma relação linear entre a corrente que a percorre e a tensão aos seus terminais, o díodo tem uma característica i-v não-linear.
- ■Das muitas aplicações dos díodos, o seu uso no projecto de rectificadores (que convertem corrente alternada em corrente contínua) é a mais comum.

- Será estudado o princípio de funcionamento físico da junção pn. Além de ser um díodo, a junção pn é a base de muitos outros dispositivos de estado sólido, incluindo o transístor bipolar de junção, que será estudado no capítulo 4.
- **■**Começa-se o estudo dos díodos, considerando-o um elemento ideal, a fim de apreendermos a essência do seu funcionamento.

O DÍODO IDEAL

O díodo ideal pode ser considerado o mais básico elemento não linear.

O DÍODO IDEAL

■Da descrição anterior deve concluir-se que, quando o díodo está em condução, o circuito externo deve ser projectado para limitar a corrente do díodo, e quando está em corte, para limitar a tensão inversa do díodo. A fig. 2 mostra dois circuitos que ilustram este ponto.

NOTA:

Como, certamente, já se tornou evidente, a característica i-v do díodo ideal é altamente não linear, pois consiste de dois segmentos de recta perpendiculares entre si. Uma curva não linear que consiste de segmentos de recta diz-se que é de segmentos (tramos) lineares.

O DÍODO IDEAL

APLICAÇÃO SIMPLES

DÍODO RECTIFICADOR

Uma aplicação fundamental do díodo, que faz uso da sua característica não linear, é o circuito rectificador. Admitamos que o díodo é ideal e que a tensão de entrada v_i é uma sinusóide (ver fig.3b).

(d)

Fig. 3

(c)

O DÍODO IDEAL

APLICAÇÃO SIMPLES

DÍODO RECTIFICADOR

VO 4

EXEMPLO

Para o circuito da figura 3a, represente a característica de transferência v_o versus v_L.

Resposta

 \blacksquare Para o circuito da figura 3a, represente a forma de onda para v_D .

Resposta

O DÍODO IDEAL

APLICAÇÃO SIMPLES

DÍODO RECTIFICADOR

EXERCÍCIO (CONT.)

Para o circuito da figura 3a, determine o valor de pico da corrente i_D assumindo $v_I = 10 \text{ V e R} = 1 \text{k}\Omega$. Determine, também, a componente dc de v_o .

Resposta:

10 mA; 3.18 V.

EXEMPLO

A figura 4 ilustra um circuito para carregar uma bateria de 12 V. Se v_s é uma sinusóide com 24 V de valor de pico, determine (a) a fracção de cada ciclo em que o díodo conduz. (b) determine o valor de pico da corrente e (c) a tensão máxima de polarização inversa que surge aos terminais do díodo.

O DÍODO IDEAL

APLICAÇÃO SIMPLES

DÍODO RECTIFICADOR

EXEMPLO (CONT.)

b)
$$I_D = \frac{24-12}{100} = 0.12 A$$

$$v_{Dr} = 24 + 12 = 36$$

O DÍODO IDEAL

► APLICAÇÃO SIMPLES

PORTAS LÓGICAS COM DÍODOS

● Pode-se usar díodos e resistências para implementar funções lógicas digitais. As fig. 5(a-b) mostram duas portas lógicas com díodos.

Discussão

Para ver como estes circuitos funcionam, consideremos um sistema de lógica positiva em que valores da tensão próximos de zero correspondem ao valor lógico 0 e valores da tensão próximos de +5 V correspondem ao valor lógico 1.

O circuito da fig. 5(a) tem três entradas, v_A , v_B e v_C . É fácil ver que díodos ligados a entradas de +5 V conduzirão, impondo, assim, para v_Y um valor igual a +5 V. Esta tensão positiva na saída manterá os díodos cuja tensão de entrada é baixa (cerca de 0 V) em corte. Assim, a saída será 1 se uma ou mais entradas forem 1 e, portanto, o circuito implementa a função lógica OR, que em notação booleana se exprime por,

$$Y = A + B + C$$

O DÍODO IDEAL → APLICAÇÃO SIMPLES → PORTAS LÓGICAS COM DÍODOS (CONT.)

Analogamente, o circuito da fig. 5(b), como facilmente se mostra, implementa a função lógica AND,

O DÍODO IDEAL → APLICAÇÃO SIMPLES → EXEMPLOS

■ Assumindo que os diodos são ideais, encontre os valores de I e V nos circuitos da figura 6.

O DÍODO IDEAL → APLICAÇÃO SIMPLES

EXEMPLOS

Procedimento a adoptar: (1) assumir um comportamento plausível; (2) proceder com a análise; (3) verificar se a solução obtida é plausível.

+10 V $\downarrow I_{D2}$ $\downarrow I_{D2}$

≥ 5 kΩ

(a)

-10 V

1ª suposição: D1 e D2 estão em condução

$$V_B = 0 \text{ e V} = 0$$

$$I_{D2} = \frac{10 - 0}{10k} = 1 \text{ mA}$$

Aplicando, agora, a lei dos nós a B, vem

Conclusão: D1 está em condução, conforme assumido originalmente, e o resultado final é I = 1mA e V = 0V.

O DÍODO IDEAL → APLICAÇÃO SIMPLES → EXEMPLOS (CONT.)

Adoptando o mesmo procedimento para a figura 6b

 \rightarrow 1^a suposição: D₁ e D₂ estão em condução.

Aplicando, agora, a lei dos nós a B, vem:

$$I + 2m = \frac{0 - (-10)}{10k}$$

$$I = -1 \text{ mA.}$$
impossível

A suposição inicial está incorreta.

Nova suposição: D₁ está ao corte e D₂ está em condução

$$I_{D2} = \frac{10 - (-10)}{15k} = 1,33 \, mA$$
 Correcta

Tensão no nó B: $V_B = -10 + 10 \times 1,33 = +3,3V$

O DÍODO IDEAL → APLICAÇÃO SIMPLES

EXEMPLOS (CONT.)

■ Determine os valores de *I* e *V* nos circuitos a seguir.

(e)

Solução:

- a) 2 mA, 0 V; b) 0 mA; 5 V; c) 0 mA, 5 V
- d) 2 mA, 0 V; e) 3 mA, + 3V; f) 4 mA, +1 V

O DÍODO REAL →

Características terminais dos díodos de junção

CONSIDERAÇÕES GERAIS

● O estudo seguinte refere-se às características dos díodos reais - especificamente, díodos de junção de semicondutor, feitos de silício. Os processos físicos que explicam as características terminais dos díodos e o nome "díodo de junção", serão estudados no final do capítulo.

Característica i-v de um díodo de junção de silício.

O DÍODO REAL →

Características terminais dos díodos de junção

Característica i-v de um díodo de junção de silício.

A figura 7 representa a mesma característica da fig. 6 com algumas escalas expandidas e outras comprimidas para pôr em evidência alguns pormenores.

Três regiões distintas:

- 1. A região de polarização directa, determinada por v > 0
- 2. A região de polarização inversa, determinada por v < 0 mas $> -V_{ZK}$
- 3. A região de rotura, determinada por $v < -V_{ZK}$

O DÍODO REAL --- Características terminais dos díodos de junção

- - ♦ A tensão terminal v é positiva.
 - ♦ Nesta região, a relação i x v pode ser aproximada por:

$$\longrightarrow i = I_s \left(e^{v/nV_T} - 1 \right)$$

- $I_s \rightarrow$ corrente de saturação inversa (ou corrente de escala: corrente directamente proporcional à secção transversal da área do díodo).
- I_s é uma constante para um dado díodo a uma dada temperatura.
- Para díodos de pequenos sinais (aplicações de baixa potência): $I_S \approx 10^{-15} \text{ A}$
- I_s : varia fortemente em função da temperatura. (I_s duplica de valor a cada aumento de 5°C na temperatura, aproximadamente).
- V_T : tensão térmica (constante): $V_T = \frac{\kappa T}{q}$
- **●** K: constante de Boltzmann = 1,38×10⁻²³ J/K
- T: temperatura absoluta em Kelvin = 273 + temperatura em °C.
- q: carga do electrão = $1,60 \times 10^{-19}$ C

O DÍODO REAL -

Características terminais dos díodos de junção

Característica i-v de um díodo de junção de silício.

$$i = I_{x} \left(e^{v/nV_{T}} - 1 \right)$$

A região de polarização directa,

- À temperatura ambiente (20°C) o valor de V_⊤ é 25,2 mV.
- ${\color{red} \blacksquare}$ Em cálculos aproximados, tomaremos ${\color{red} V_{\scriptscriptstyle T}}\cong 25~\text{mV}$ à temperatura ambiente.
- A constante n tem um valor entre 1 e 2, dependendo do material e da estrutura física do díodo.
- Díodos realizados pelo processo normal de fabrico de circuitos integrados têm n= 1 em condições normais de funcionamento.
- Díodos discretos, normalmente têm n = 2.
- Em geral assume-se n =1, quando nada é especificado em contrário.
- Para correntes directas de valor apreciável, especificamente para i >> I_s:

$$|i \cong I_s e^{v/nV_T} \implies v \cong nV_T \ln \frac{i}{I_s}$$

O DÍODO REAL

Características terminais dos díodos de junção

Característica i-v de um díodo de junção de silício.

- A região de polarização directa,
- lacktriangle Considere-se a relação $i imes v: egin{array}{c} m{i} \cong m{I}_{_{\mathbf{c}}} \ e^{v/nV_T} \end{array}$

$$i \cong I_s e^{v/nV_T}$$

ou

$$v \cong nV_T \ln \frac{i}{I_s}$$

■ Calcule-se a corrente I₁ correspondente a uma tensão V₁:

$$I_1 = I_s e^{V_1/nV_T}$$

Analogamente, se a tensão for V₂, a corrente do díodo I₂ será:

$$I_2 = I_s e^{V_2/nV_T}$$

Estas duas equações podem ser combinadas, resultando:

$$\frac{I_2}{I_1} = e^{(V_2 - V_1)/nV_T}$$

ou
$$V_2 - V_1 = nV_T \ln \left(\frac{I_2}{I_1}\right)$$
 ou na forma de logaritmo base 10

$$V_2 - V_1 = 2.3 \, n \, V_T \log \left(\frac{I_2}{I_1} \right)$$

O DÍODO REAL -

Características terminais dos díodos de junção

■ Característica i-v de um díodo de junção de silício.

→ A região de polarização directa,

$$V_2 - V_1 = 2.3 \, n \, V_T \log \left(\frac{I_2}{I_1}\right)$$

- **■** Esta equação estabelece, simplesmente, que para uma variação de uma década (factor de 10) na corrente, a queda de tensão no díodo varia de $2.3nV_T$, que é, aproximadamente, 60 mV para n = 1 e 120 mV para n = 2.
- Isto sugere que a relação i-v do díodo é mais adequadamente representada em papel semilogarítmico.
- \blacksquare Usando o eixo vertical, linear, para v, e o horizontal, logarítmico, para i, obtém-se uma recta com a inclinação 2.3nV $_{\tau}$ por década de corrente.
- ♣ A simples observação da característica i-v na região directa (fig. 7) revela que a corrente tem um valor desprezável para v menor do que cerca de 0.5 V. Este valor é, usualmente, referido como tensão limiar de condução.

O DÍODO REAL -

Características terminais dos díodos de junção

- Característica i-v de um díodo de junção de silício.
 A região de polarização directa,
- Díodo directamente polarizado em "condução total":queda de tensão entre 0.6 e 0.8V, aproximadamente.
- É usual utilizar 0.7V em modelos de díodos (de silício).
- \blacksquare Díodos com diferentes correntes nominais de operação (ou seja, com áreas diferentes e, consequentemente, I_S diferentes), exibem esta queda de 0.7V.

Por exemplo

- **■** Díodos de pequenos sinais: 0.7V para i = 1mA
- **■** Diodos de alta potência: 0.7V para i = 1A.

O DÍODO REAL

Características terminais dos díodos de junção

■ Característica i-v de um díodo de junção de silício. A região of característica i-v de um díodo de junção de silício.

A região de polarização directa,

EXEMPLO

■ Um díodo de silício de 1mA possui uma queda de tensão directa de 0,7V para a corrente de 1mA. (a) Avalie a constante de escala de junção I_S no caso de se ter n=1 ou n=2. (b) Determine, também, que constantes de escala seriam aplicáveis para um díodo de 1A do mesmo fabricante que conduz 1A com 0,7V.

Resolução

(a)
$$i \cong I_S e^{v/nV_T} \implies I_S \cong i e^{-v/nV_T}$$

• n = 1:

$$I_{s} = 10^{-3} e^{-700/25} = 6.9 \times 10^{-16} A \approx 10^{-15} A$$

• n = 2:

$$I_s = 10^{-3} e^{-700/50} = 6.3 \times 10^{-10} A \approx 10^{-9} A$$

(b) O díodo conduzindo 1A com 0,7V, corresponde a 1000 díodos de 1mA em paralelo, com uma área de junção 1000 vezes maior $\Rightarrow I_S$ é 1000 vezes maior, 1pA e 1µA para n = 1 e n = 2, respectivamente. \implies valor de n é muito importante!

O DÍODO REAL Características terminais dos díodos de junção

- **Característica i-v de um díodo de junção de silício.** A região de polarização directa,
- \mathbf{I}_S e V_T variam com a temperatura \Rightarrow a característica i-v directa varia, também, com a temperatura.
- Para uma corrente constante no díodo, a queda de tensão aos seus terminais decresce de aproximadamente 2mV para cada aumento de 1°C na temperatura.

■ A variação na tensão no díodo tem sido explorada no projecto de termómetros electrónicos.

O DÍODO REAL

Características terminais dos díodos de junção

■ Característica i-v de um díodo de junção de silício. região de polarização inversa

Entra-se na região de polarização inversa quando a tensão v é negativa.

■ De acordo com

$$i = I_s \left(e^{v/nV_T} - 1 \right)$$

- \blacksquare Se \lor < 0 e é diversas vezes maior do que V_r em amplitude \Rightarrow o termo exponencial da expressão da corrente no díodo torna-se desprezável $\Rightarrow i \approx -I_S$: a corrente de polarização inversa é constante e igual a I.
- \blacksquare Em díodos reais: a corrente inversa $>> I_c$. Por exemplo, um díodo cujo I_c seja da ordem de 10⁻¹⁴ a 10⁻¹⁵ A, pode apresentar uma corrente inversa de 1nA.
- A corrente inversa também aumenta um pouco com o aumento da tensão de polarização inversa.
- \blacksquare Corrente inversa: proporcional à área da junção (assim como I_s).
- Dependência com a temperatura: a corrente inversa duplica para cada aumento de 10°C na temperatura, aproxim. (I_s duplica para cada aumento de 5°C na temperatura).

O DÍODO REAL →

Características terminais dos díodos de junção

■ Característica i-v de um díodo de junção de silício.

região de polarização inversa

EXERCÍCIO 3.9 (SEDRA)

■ O díodo no circuito da figura 9 é um dispositivo de elevada corrente, cuja corrente de polarização inversa é razoavelmente independente da tensão aplicada. Se V = 1V a 20°C, determine o valor de V a 40°C e a 0°C.

Resposta: 4V; 0,25V.

O DÍODO REAL — Características terminais dos díodos de junção

Característica i-v de um díodo de junção de silício.

A terceira região distinta de funcionamento díodo, pode facilmente do que identificada na característica i-v da fig. 7, é a região de rotura. O díodo entra na região tensão rotura auando inversa de ultrapassa um dado valor limite específico de cada díodo particular, chamado tensão de rotura. Trata-se da tensão do "joelho" da curva i-v da fig. 7, e designa-se V_{7K} , em que Z se refere a Zener (cientista que contribuiu para o conhecimento deste efeito) e K é a inicial da palavra inglesa knee - joelho.

Na região de rotura, a corrente inversa cresce rapidamente, sendo o aumento da queda de tensão muito pequeno. A rotura do díodo não é normalmente destrutiva, desde que a dissipação de potência no díodo seja mantida pelo circuito exterior dentro de um limite "seguro". Este valor seguro é habitualmente especificado nas folhas de dados do dispositivo. Utilização do díodo em regulação de tensão.

O DÍODO REAL

Análise de circuitos com díodos

Operação na região de polarização directa.

Modelo Exponencial

> Considere-se o circuito da fig. 10, que consiste de uma fonte contínua V_{DD}, uma resistência R e um díodo.

Objectivo: cálculo da corrente I_D e da tensão V_D do díodo.

Se V_{DD} é maior do que 0,5 V

característica i-v dada pela relação exponencial

$$\boldsymbol{I}_{D} = \boldsymbol{I}_{S} \boldsymbol{e}^{V_{D}/nV_{T}} \tag{1}$$

A equação que rege o funcionamento do circuito é obtida aplicando a lei de Kirchhoff à malha:

$$I_D = \frac{V_{DD} - V_D}{R}$$
 (2)

Nota: Admitindo que os parâmetros I_s e n do díodo são conhecidos, as duas incógnitas nas Eqs. (1) e (2) são I_D e V_D . As duas formas alternativas de obter a solução são a análise gráfica e a análise iterativa.

O DÍODO REAL --- Análise de circuitos com díodos

- Operação na região de polarização directa.
- Análise gráfica usando o modelo exponencial

A análise gráfica realiza-se fazendo o traçado das expressões das Eqs. (1) e (2) no plano i-v.

O DÍODO REAL --- Análise de circuitos com díodos

- Operação na região de polarização directa.

Considere-se o circuito da fig. 10, e calcule-se os valores de I_D e V_D , admitindo que $V_{DD}=5~V~e~R=1~k\Omega$. Admita-se também que o díodo tem uma corrente de 1 mA para uma tensão de 0,7 V e que a queda de tensão varia de 0,1 V por cada década de variação da corrente.

- Resolução → 1ª Iteração
- $^{\circ}$ Admitindo que $V_D = 0.7 V$ e usando a Eq. (2), vem para a corrente,

$$I_D = \frac{V_{DD} - V_D}{R} = \frac{5 - 0.7}{1k} = 4.3 \, mA$$

Usa-se, agora, a equação do díodo para obter uma melhor estimativa para $V_{\rm D}$, na forma:

$$V_2 - V_1 = 2.3 \, n \, V_T \log \left(\frac{I_2}{I_1} \right)$$

Para este caso: 2.3 $n V_T = 0.1 V$

O DÍODO REAL --- Análise de circuitos com díodos

- Operação na região de polarização directa.
- Análise iterativa -

EXEMPLO (cont.)

Assim,

$$V_2 = V_1 + 0.1\log \frac{I_2}{I_1}$$

Substituindo $V_1 = 0.7 \text{ V}$, $I_1 = 1 \text{ mA e } I_2 = 4.3 \text{ mA resulta } V_2 = 0.763 \text{ V}$.

2ª Iteração

Procedendo de forma similar:

$$I_D = \frac{5 - 0.763}{1k} = 4.237 \, mA$$

$$V_2 = 0.763 + 0.1\log\left[\frac{4.237}{4.3}\right] = 0.762V$$

Assim, a segunda iteração conduz a $I_D = 4,237$ mA e $V_D = 0,762$ V. Uma vez que estes valores não são muito diferentes dos valores obtidos após a primeira iteração, não se justifica continuar, pelo que a solução será $I_D = 4,237$ mA e $V_D = 0,762$ V.

O DÍODO REAL --- Análise de circuitos com díodos

Operação na região de polarização directa. _____ Modelos simplificados (rectas)

Apesar de a relação exponencial i-v modelo rigoroso ser característica do díodo na região directa, a sua natureza não linear complica a análise dos circuitos com díodos. Pode-se simplificar grandemente a análise se se utilizar relações lineares para descrever as características terminais do díodo. A fig. 12 ilustra uma tentativa neste sentido, onde a curva exponencial é aproximada por duas rectas, a recta A com inclinação nula e a recta B com inclinação 1/ r_D.

O DÍODO REAL --- Análise de circuitos com díodos

Operação na região de polarização directa.
Modelos simplificados

NOTA: Para este díodo em particular, na gama de correntes de 0,1 a 10 mA, as tensões correspondentes ao modelo de rectas lineares diferem das correspondentes ao modelo exponencial em menos de 50 mV. Obviamente, a escolha destas duas rectas não é única; pode obter-se uma aproximação melhor restringindo a gama de correntes para a qual se pretende a aproximação.

modelo de rectas lineares

$$i_{D} = 0, \quad v_{D} \le V_{D0}$$
 $i_{D} = (v_{D} - V_{D0}) / r_{D}, \quad v_{D} \ge V_{D0}$
(3)

Para este exemplo:

$$V_{D0} = 0.65 \text{ V e } r_D = 20 \Omega$$
Valores aproximados

O DÍODO REAL --- Análise de circuitos com díodos

- Operação na região de polarização directa.
 Modelos de rectas lineares
- \blacksquare O modelo de rectas lineares descrito pelas Eqs. (3) pode ser representado pelo circuito equivalente da fig. 13. Note-se que se incluiu um díodo ideal para impor que a corrente i_D flua apenas no sentido directo.

O DÍODO REAL --- Análise de circuitos com díodos

Operação na região de polarização directa.
Modelos de rectas lineares

EXEMPLO 3.5

Repita-se o exemplo 3.4 utilizando o modelo de rectas lineares cujos parâmetros são dados na fig. 12 ($V_{D0} = 0.65 \text{ V}$, $r_{D} = 20 \Omega$). Note-se que as características representadas nesta figura são as do díodo descrito nesse exemplo (1 mA a 0,7 V e 0,1 V/década).

Substituindo o díodo do circuito da fig. 10 pelo modelo equivalente da fig. 13, resulta o circuito da fig. 14, do qual resulta para I_D a seguinte expressão:

$$I_D = \frac{V_{DD} - V_{D0}}{R + r_D}$$
 $I_D = \frac{5 - 0.65}{(1 + 0.02)k} = 4.26 \, mA$

A tensão no díodo é calculada por,

$$V_D = V_{D0} + I_D r_D = 0.65 + 4.26m \times 20 = 0.735 \text{ V}$$

O DÍODO REAL --- Análise de circuitos com díodos

- Operação na região de polarização directa. _____ Modelo de queda de tensão constante
 - Uso de uma recta vertical como aproximação à curva exponencial.
 - ☼ O modelo resultante indica que um díodo em condução exibe uma queda de tensão constante V_D, cujo valor usual é 0.7 V.
 - Note-se que para o díodo em particular, cujas características estão representadas na fig. 15, este modelo prevê a tensão do díodo com um erro de ±0,1 V, para uma gama de correntes de 0,1 a 10 mA.

O DÍODO REAL --- Análise de circuitos com díodos

- Operação na região de polarização directa. _____ Modelo de queda de tensão constante
 - Uso de uma recta vertical como aproximação à curva exponencial.

Esquema equivalente para o modelo de tensão constante

Usando este modelo para resolver o exemplo atrás considerado, obtém-se,

$$I_D = \frac{V_{DD} - 0.7}{R} = \frac{5 - 0.7}{1k} = 4.3 \, mA$$

que não é muito diferente dos valores obtidos com os modelos mais elaborados.

O DÍODO REAL --- Análise de circuitos com díodos

Projecte o circuito mostrado, por forma a proporcional uma tensão de saída de 2.4 V. Assuma que os díodos possuem uma queda de tensão de 0.7 V a 1mA e que $\Delta V=0.1V/d$ écada de variação da corrente.

Solução: R ≅ 760 Ω