$\sqrt{3}$ is Irrational Proof

Claudiu Rediu

15-08-2019

Proposition. $\sqrt{3}$ is irrational.

Proof. Suppose $\sqrt{3}$ is rational, such that

$$\sqrt{3} = \frac{a}{b} \ \forall a, b \in \mathbb{Z}.$$

If we square the fraction, we get $3=\frac{a^2}{b^2}$. Without loss of generality, we can suppose that a^2 is even and b^2 odd. We do this because 3 would result from a fraction with integers of the same type. We set $a^2=2k$ and $b^2=2j+1$ $\forall k,j\in\mathbb{Z}$.

$$3 = \frac{2k}{2j+1}$$

$$6j+3 = 2k$$

$$3j + \frac{3}{2} = k \implies k \notin \mathbb{Z}.$$

$$(1)$$

Then $3 = \frac{a^2}{b^2}$ and $3 \neq \frac{a^2}{b^2}$ for $\forall a, b \in \mathbb{Z}$. From this we can conclude that $\sqrt{3}$ is irrational.