MATH 906: Modélisation et diagnostic

Partiel: durée 1h30.

Mercredi 3 novembre 2010.

Exercice 1 (Formule de Lorentz). La formule de Lorentz donne le poids (en kg) « idéal » d'un adulte en fonction de sa taille (en cm) :

- pour une femme : poids = $0, 6 \times \text{taille} 40$;
- pour un homme : poids = $0.75 \times \text{taille} 62.5$.

Le tableau suivant donne le poids en kg noté y et la taille en cm notée x sur un échantillon de dix femmes adultes :

Taille en cm notée x	169	166	157	181	158	165	167	156	168	165
Poids en kg notée y	67	58	56	64	53	52	56	49	55	65

1. Calculer

- (a) La moyenne et la variance du caractère x sur l'échantillon observé;
- (b) La moyenne et la variance du caractère y sur l'échantillon observé;
- (c) La covariance des variables x et y sur l'échantillon observé.
- 2. On considère le modèle $y_i = \beta_1 + \beta_2 x_i + u_i$, i = 1, ..., 10, où les u_i sont indépendantes et identiquement distribuées suivant la loi gaussienne centrée de variance σ^2 .
 - (a) Calculer les coefficients $\hat{\beta}_1$ et $\hat{\beta}_2$ de la régression linéaire de y par rapport à x.
 - (b) Préciser la valeur de l'estimateur $\hat{\sigma}^2$ de σ^2 .
 - (c) Donner un intervalle de confiance à 5% pour β_2 .

Rappel. Si X suit la loi gaussienne centrée réduite $\mathbb{P}(|X|>1,96)\simeq 5\%$, si Y suit la loi de Student à 8 degrés de liberté $\mathbb{P}(|Y|>2,31)\simeq 5\%$.

- (d) Au niveau 5%, le facteur 0,6 de la formule de Lorentz vous semble-t-il correct?
- (e) Donner un intervalle de confiance à 95% pour le poids d'une femme mesurant 160 centimètres.

Exercice 2. On utilise le modèle de régression linéaire multiple

$$Y = \beta_1 + \beta_2 X + \beta_3 Z + U, \quad U \leadsto \mathcal{N}(0, \sigma^2 I_n).$$

On observe : $||Y - \bar{y}\mathbf{1}||^2 = 1680, 8$, $||\hat{Y} - \bar{y}\mathbf{1}||^2 = 1504, 4$ et $\hat{\sigma}^2 = 19, 6$.

- 1. Quel est le coefficient de détermination \mathbb{R}^2 du modèle?
- 2. Tester l'hypothèse $H_0: \beta_2 = \beta_3 = 0$ contre l'hypothèse alternative.

Exercice 3. On considère la régression linéaire multiple

$$Y_i = \beta_1 + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + U_i, \quad i = 1, \dots, n,$$

où les U_i sont i.i.d. suivant la loi $\mathcal{N}(0, \sigma^2)$.

Les résultats numériques sont les suivants : $\|\hat{u}\|^2 = 24$,

$${}^{t}XX = 100 \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 4 & -2 \\ 0 & -2 & 4 & -2 \end{pmatrix}, \quad \left({}^{t}XX\right)^{-1} = \frac{1}{600} \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 5 & 4 & 3 \\ 0 & 4 & 5 & 3 \\ 0 & 3 & 3 & 3 \end{pmatrix}, \quad {}^{t}XY = \begin{pmatrix} 250 \\ -200 \\ 400 \\ 200 \end{pmatrix}.$$

- 1. Quel est le nombre d'observations n?
- 2. Donner les valeurs des estimateurs $\hat{\beta}$ et $\hat{\sigma}^2$.
- 3. (a) Donner un intervalle de confiance à 95% pour chacun des β_i .
 - (b) Tester l'hypothèse $\beta_2 = 1$ contre $\beta_2 \neq 1$.
- 4. (a) Donner une région de confiance à 95% pour le couple (β_1, β_3) .
 - (b) Tester l'hypothèse $4\beta_1 3\beta_2 = 3$ contre l'hypothèse alternative au niveau 5%.