

Project: AIO Classifier Upgraded Project Presentation

GrID034 Team

Thành viên Team

Hiện tại nhóm có 5 thành viên chính thức

Đàm Nguyên Khánh	Leader
Vũ Thái Sơn	Tech leader
Bùi Đức Xuân	Member
Trịnh Nguyễn Huy Hoàng	Member
Võ Hoàng	Member
Vương Nguyệt Bình	Member

Quản lý team: **Discort**

Các công cụ sử dụng cho AIO Conquer: $\underline{\text{Overleaf}} \mid \underline{\text{GG Colab}} \mid \underline{\text{MS Office}}$

Table of contents

01

Objectives of the project

04

Result

02

Structure of the project

05

Live Demo Feature

03

Upgrade of the project

06

Conclusion

01 Objectives of the project

Vấn đề hiện tại

Data scientists dành 60-70% thời gian cho:

- 1. Data preprocessing & vectorization
- 2. Model testing & comparison
- 3. Code duplication & maintenance

Vấn đề hiện tại

Thiếu công cụ tích hợp:

- 1. Manual workflow từng bước
- 2. Không có GUI thân thiện
- 3. Khó so sánh performance

Mục tiêu AIO Classifier

All-in-One Solution:

- 1. Tự động hóa toàn bộ pipeline
- 2. GUI trực quan với Streamlit
- 3. So sánh nhiều model combinations
- 4. GPU acceleration & caching

Objectives

Our aim

Tự động hóa và dễ quản lý, ứng dụng

The goal

Hệ thống hoạt động trơn tru và mượt mà, phục vụ tốt nhất khi cần.

Structure of the project

GriD034

Cấu trúc Module Dự án AlO Classifier

```
models/
           init .py
                             # Package initialization
                          # Base classes và interfaces
          base/
           - base model.pv
                                # Abstract base class
             interfaces.py
                              # Protocol definitions
                             # Common evaluation metrics
            - metrics.py
          - clustering/
                            # Clustering models
        kmeans model.py #K-Means implementation
         - classification/
                             # Classification models
             knn model.pv
                                # K-Nearest Neighbors
10
             decision tree model.pv
11
             naive bayes model.py
12
             - logistic regression model.py
13
            - linear svc model.py
14
            - svm model.py
15
          ensemble/
                            # Ensemble learning
            - ensemble manager.py
17
            - stacking classifier.py
18
                         # Utility modules
19
         - utils/
             model factory.py #Factory pattern
20
             - model registry.py # Model registration
21
            - validation manager.py
22
          new model trainer.py #Advanced trainer
```

Project structure

Kiến trúc Modular với Factory Pattern – Tổ chức Models theo chức năng và dễ mở rộng.

Core Components

BaseModel Interface

- Standardized fit/predict methods
- GPU management
- Progress tracking

Model Factory

- Dynamic model creation
- Parameter optimization
- Error recovery

Advanced Features

- FAISS KNN acceleration
- Ensemble learning
- Intelligent caching

03 Upgrade of the project

Các nâng cấp

Giao diện

Giao diện Wizard UI Streamlit chuyên nghiệp,có điều hướng, phân tích, chỉnh sửa

Kiến trúc

Chia module rõ ràng

Vectorization

SVD optimization + caching + GPU

KNN Model

FAISS integration (GPU acceleration), Best K = 9 89% -> 90.9% accuracy (Best performer)

Decision Tree

Cost Complexity Pruning 68% -> 77.2% accuracy

Naive Bayes

88.7% accuracy (Fastest)

Các nâng cấp

RAPIDS cuML integration

Ensemble Model

Voting Strategy 88.2% accuracy (Most stable)

Scalability

1K -> 300K samples

Real-time progress tracking và monitoring

Comprehensive error handling, Fallback Machenism

Automation

Tự động sử dụng các bộ phân loại phối hợp với các phương pháp Vectorize để so sánh và cho ra kết quả training

Giao diện Streamlit

Bước 1: Chon Dataset

- Hệ thống cho ngườ dùng tùy chọn files.
- Preview dữ liệu (title, abstract, label, etc.)
- Kiểm tra cấu trúc dataset

Bước 2: Cấu hình & Tiền xử lý

- Chọn cột text (abstract) và label (label)
- Tự động làm sạch văn bản
- Kiểm tra dữ liệu rỗng
- Chuẩn bị cho training

Giao diện Streamlit

Bước 3: Cấu hình Model & Vectorization

- Thiết lập tỷ lệ train/test (80%/20%)
- Cross-Validation: 5 folds
- Hiển thị thông tin 300K samples, 3 cột.
- Xác định cột Text và label

Bước 4: Thực thi & Giám sát Training

- Trình Điều khiển
- Giám sát: Tiến độ training
- · Cache: Quản lý thông tin cache training

Giao diện Streamlit

Bước 5: Phân tích Kết quả & Xuất Báo cáo

- Tổng quan Hiệu suất: Hiển thị bảng so sánh chi tiết các mô hình
- Đánh giá Metrics: Cung cấp các chỉ số F1 Score, Accuracy, Precision, Recall và thời gian huấn luyện cho từng sự kết hợp
- Lựa chọn Phân tích: Cho phép người dùng chọn một mô hình cụ thể từ bảng để xem phân tích chi tiết hơn
- Xuất Báo cáo: Chuẩn bị dữ liệu để xuất báo cáo kết quả

04 Result

Kết quả Training 300K Samples

- Embeddings cho hiệu suất tốt nhất với KNN
- Naive Bayes ổn định với mọi phương pháp vectorization
- K-Means kém hiệu quả (47.9% -75.8%)
- Ensemble Learning đảm bảo tính ổn định cao

PERFORMANCE RANKING

KNN + Embeddings

90.9%

Naive Bayes + TF-IDF

88.7%

Ensemble Learning

88.2%

Kết quả KNN + Embeddings

- KNN + Embeddings phù hợp với các chủ đề khoa học tự nhiên
- physics và cond-mat có ranh giới mờ nhạt, cần feature engineering
- Mô hình đạt hiệu suất cao với thời gian training nhanh.

Best K

- K = 9 với Uniform weighting đạt F1-Score cao nhất: 0.9106
- Uniform ổn định hơn Distance trên hầu hết các giá trị K
 Hiệu suất tăng đến K=9, sau đó
- giảm dần khi K tăng

05 LIVE DEMO FEATURES

Conlusion

GrID034

Kết quả & Hướng phát triển

Thanks!

Do you have any questions?

