CODE: 20BST107 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, September, 2023 CHEMISTRY

(Common to CIVIL, EEE & ECE Branches)

Time: 3 Hours

Answer ONE Question from each Unit

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

		All parts of the Question must be answered at one place	
		UNIT-I	
1.	a)	Discuss Ion Exchange Process for softening of hard water with neat sketch.	6M
	b)	Calculate the total ,temporary and permanent hardness for 10,000 ml of water	4M
		containing the following salts $Ca(HCO_3)_2 = 16.2 \text{ mg/L}$; $Mg(HCO_3)_2 = 1.46 \text{ mg/L}$;	
		$CaSO_4 = 13.6 \text{ mg/L}$; $MgSO_4 = 6.0 \text{ mg/L}$; $MgCl_2 = 9.5 \text{ mg/L}$; and $CaCl_2 = 11.1 \text{mg/L}$.	
2	,	(\mathbf{OR})	23.6
2.	a)	Define Break point chlorination.	2M
	b)	Discuss the methods of Treatment of Water for Domestic Purposes.	8M
2	,	<u>UNIT-II</u>	<i>(</i>) <i>(</i>
3.	a)	Write the priciple of NMR spectroscopy. Explain about Coupling Constant.	6M
	b)	Define Fingerprint Region. Explain about chemical shift. (OR)	4M
4.	a)	Write the different types of electronic transitions involved according to UV visible	6M
		spectroscopy.	01.1
	b)	Discuss about the stretching and bending vibrations in IR spectroscopy	4M
		UNIT-III	
5.	a)	Explain Compounding of Plastics with suitable examples.	5M
٥.	b)	Define plastics. Differentiate Thermoplastics from Thermosetting Plastics	5M
	-,	(OR)	
6.	a)	Discuss preparation, properties and engineering uses of Bakelite polymer.	5M
	b)	Define addition and condensation polymerizations with suitable examples.	5M
		<u>UNIT-IV</u>	
7.	a)	Describe the reactions of unimolecular and bimolecular elimination reactions with	4M
		examples.	
	b)	Explain the reaction and mechanism of Claisen Rearrangement	6M
0	,	(OR)	43.6
8.	a)	Explain the reaction of electrophilic addition reactions with suitable example.	4M
	b)	Explain the reaction and mechanism of Pinacol Pinacolone Rearrangement.	6M
		<u>UNIT-V</u>	
9.	a)	Explain the principle and process of galvanizing with neat sketch.	6M
	b)	Write the principle and process of corrosion control by impressed current cathode	4M
		protection with neat diagram (OR)	
10.	a)	Write any six factors influencing corrosion	6M
	b)	Explain mechanism of electrochemical corrosion oxygen absorption type method.	4M
11.	a)	<u>UNIT-VI</u> Explain any six principles of green chemistry.	6M
11.	b)	Differenciate Batteries from Supercapacitors.	4M
	0)	(OR)	1111
12.	a)	Write a note on renewable & non-renewable energy sources	6M

4M

Define photo voltaic cell and photovoltaic effect.

b)

CODE: 20BST106 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, September, 2023 ENGINEERING PHYSICS

(Mechanical Engineering)

		(Mechanical Engineering)	
Time: 3	Hou	rs Max Marks	s: 60
		Answer ONE Question from each Unit	
		All Questions Carry Equal Marks	
		All parts of the Question must be answered at one place	
		The parts of the Question must be answered at one place	
		<u>UNIT-I</u>	
1.	a)	Show that for a simple harmonic oscillator, mechanical energy remains constant	8M
		and it is proportional to the square of the amplitude.	
	b)	What are the characteristics of Simple Harmonic Oscillator?	2M
		(OR)	
2.	a)	Define Damped and forced oscillations.	2M
	b)	What are forced oscillations? Obtain an expression for the amplitude of forced	8M
	,	oscillator and give the condition for amplitude resonance.	
		1 · · · · · · · · · · · · · · · · · · ·	
		<u>UNIT-II</u>	
3.	a)	Explain the principle of superposition of waves.	2M
	b)	Discuss the phenomenon of thin films and obtain the conditions for maxima and minima.	8M
	0)	(OR)	01.1
4.	a)	A plane transmission grating having 4250 lines per cm is illuminated with sodium light	2M
	u)	normally. In second order spectrum the spectral lines are deviated by 30°. Find the	2111
		wavelength of spectral line.	
	b)	Obtain the condition for primary and secondary maxima in Fraunhofer diffraction due to	8M
	U)	single slit and draw the intensity distribution curve.	OIVI
		single she and draw the intensity distribution curve.	
		UNIT-III	
5.	a)	With suitable diagrams, explain the principle, construction and working of Ruby laser.	8M
٥.	b)	Define the terms (i) life time (ii) metastable state	2M
	U)	(OR)	21 V1
6.	a)	What are the necessary conditions for lasing action?	8M
0.	b)	Write short notes on population inversion	2M
	U)	write short notes on population inversion	21 VI
		UNIT-IV	
7.	a)	Discuss the various advantages of optical fibers.	2M
7.	b)	Describe different types of fibers by their refractive index profile and propagation	21 v 1
	U)	(OR)	OIVI
8.	۵)	Calculate the acceptance angle and numerical aperture of an optical fiber, if the refractive	2M
0.	a)	indices of the core and cladding are 1.56 and 1.49 respectively.	∠1 V1
	b)		OM
	b)	Describe the construction of an optical fiber and give dimensions of various parts.	8M
		IINIT V	
0	۵)	UNIT-V Define accordination number and marking fraction	2M
9.	a)	Define coordination number and packing fraction	
	b)	Describe the seven crystal systems with neat diagrams	8M
10	T11.,	(OR)	101/1
10.	IIIu	strate the SC, BCC and FCC crystal structures.	10M
		TINITY VI	
11.	۵)	UNIT-VI Draw the B-H curve for a ferromagnetic material and identify the retentivity and coercive	8M
11.	a)	field on the curve.	OIVI
	b)		2M
	b)	Find the relative permeability of a ferromagnetic material if a field of strength 220amp/m	Z1 V1
		produces a magnetization of $3300 amp/m$ in it (OR)	
12.	ره	Explain Meissner effect.	4M
12.	-	•	
	b)	How are superconductors classified?	6M

CODE: 20BST105 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B. Tech II Semester Supplementary Examinations, September, 2023

APPLIED PHYSICS

(Common to CE, CSD, AIML & IT Branches)

Time: 3 Hours

Answer ONE Question from each Unit

Max Marks: 60

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1.	a) b)	Outline the phenomenon of Interference in thin films due to reflected light. A parallel beam of light of wavelength $5890A^{\circ}$ is incident on a glass plate (μ = 1.5)	6 M
	0)	such that angle of refraction in to plate is 60° . Calculate the smallest thickness of the plate which will make it appear dark by reflection. (OR)	4 M
2.	a)	What is Diffraction? Explain clearly the differences between Interference and Diffraction.	6 M
	b)	In Newton's Ring's experiment, the diameter of the 5 th ring was 0.3 cm and the diameter of the 25 th ring was 0.8cm. If the radius of curvature of the Plano convex lens is 100 cm. find the wavelength of light used.	4 M
		<u>UNIT-II</u>	
3.	a)	Analyse how laser light is different from ordinary light.	3 M
	b)	Interpret the process of Spontaneous and Stimulated emission of light. Spontaneous emission dominates over Stimulated emission – justify your answer. (OR)	7 M
4.	a)	With a neat diagram explain the construction and working of Ruby Laser.	8 M
	b)	A three level laser emits a light of wavelength 5500A^0 . Calculate the energy of each Photon. (Planck's constant is $6.625 \times 10^{-34} \text{Js}$.	2 M
		<u>UNIT-III</u>	
5.	a)	With a neat diagram, describe the structure of an optical fiber.	5 M
	b)	Memorize the propagation of light through Optical fiber using the concept of Total internal reflection.	5 M
		(OR)	
6.	a)	Illustrate propagation of light through various types of optical fibers.	6 M
	b)	Write the important applications of optical fibers in communication.	4 M
		<u>UNIT-IV</u>	
7.	a)	Interpret wave and particle duality.	4 M
	b)	Explain de-Broglie's hypothesis of matter waves and derive an expression for de-Broglie wavelength of an electron accelerated through a potential V. (OR)	6 M
8.	a)	Formulate time independent Schrodinger wave equation.	6 M
	• (435

b)

an electron in a box of length 1 A^0 .

Calculate the energy difference between the ground state and first excited state for

4 M

<u>UNIT-V</u>

9.	a)	Recall the concept of electric field and deduce an expression for electric intensity due to a point charge.	6 M
	b)	A very large sheet of charge has density of 5 μ C/m ² . Determine the electric field at a distance of 25 cm.	4 M
		(OR)	
10.	a)	State and explain Biot-Savart's law.	6 M
	b)	List Maxwell's equations in differential form.	4 M
		<u>UNIT-VI</u>	
11.	a)	At high temperature, an extrinsic semiconductor behaves like an intrinsic one-Give reasons	4 M
	b)	Discuss drift and diffusion currents in Semiconductors.	6 M
		(OR)	
12.	a)	Develop the expression for Hall Coefficient and write its significance.	7 M
	h)	In copper, there are 5 x 10 ²⁸ atoms/m ³ . Find the Hall coefficient	3 M

CODE: 18BST106 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, September, 2023

Applied Physics (Common to CSE, EEE & IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1.	a)	What are the conditions for sustained interference?	4M
	b)	Prove that the diameter of n th dark ring in a Newton's ring set-up is directly proportional to the square root of the ring number. (OR)	8M
2.	a)	Explain the Fraunhofer diffraction at a double slit	8M
	b)	A parallel beam of light is incident normally on a plane grating having 4300 lines/cm. A second order spectral line is found to be deviated through an angle of 30°. Determine the wavelength of the spectral line.	4M
		<u>UNIT-II</u>	
3.	a)	Describe an optical fiber with neat diagram.	4M
	b)	Explain briefly about the classification of optical fibers. (OR)	8M
4.	a)	A step index fibre has a co of refractive index 1.5. If the NA of the fiber is 0.26, calculate the refractive of the cladding material.	4M
	b)	Explain the propagation of light through an optical fiber.	8M
	,		
5	۵)	<u>UNIT-III</u> Explain briefly about wave particle duality. Derive expression for wavelength of	ONA
5.	a)	matter wave.	8M
	b)	State and explain Heisenberg's uncertainty principle.	4M
	,	(OR)	43.5
6.	a)	What is the physical significance of wave function?	4M
	b)	Derive the expression for wave function in case of particle in a box.	8M
		<u>UNIT-IV</u>	
7.	a)	Write a short note on Gauss law.	4M
	b)	Derive the differential form of Maxwell equations in electromagnetism. (OR)	8M
8.	a)	State and explain Biot-Savart law.	4M
	b)	State Ampere's law and derive the expression for magnetic field due to long straight conductor carrying current.	8M
		<u>UNIT-V</u>	
9.	a)	An n-type semiconductor specimen has a Hall coefficient 3.66 x 10^{-11} m ³ /As. The conductivity of the specimen is found to be 112×10^{-15} m ³ /As. Calculate the	4M
		charge carrier density n.	
	b)	What is Hall effect? Derive the expression for Hall coefficient.	8M
10.	٥)	(OR) What is diffusion current? Derive the expression for it.	8M
10.	a) b)	Define the terms conductivity and resistivity.	4M
	U)	1 of 1	+1 V1
		1 VI 1	

CODE: 18BST108 **SET-1**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, September, 2023 CHEMISTRY

(Common to CE, ME, ECE Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1.	a) b)	Discuss the postulates of VSEPR theory Describe dsp ² and sp ³ d ² hybridization with suitable examples (OR)	6M 6M
2.	a) b)	Define ionization potential? Explain factor effecting ionization potential Draw the MO diagrams for O ₂ and CO and explain.	6M 6M
		<u>UNIT-II</u>	
3.	a) b)	Write a note on spin-spin coupling and chemical shifts Enumerate the significance of fingerprint region of IR (OR)	8M 4M
4.	a) b)	Explain the concepts of fluorescence and phosphorescence with Jablonski diagram Give two examples each for auxochrome and chromophores	8M 4M
		<u>UNIT-III</u>	
5.	a) b)	With a neat sketch explain the construction, working and uses of calomel electrode What is electrochemical series? Write its importance. (OR)	8M 4M
6.	a) b)	Outline the mechanism of electrochemical corrosion Discuss how proper design of machine controls corrosion.	6M 6M
		<u>UNIT-IV</u>	
7.	a) b)	Distinguish between SN^1 and SN^2 reactions. Explain the mechanism of E_{CB} mechanism with suitable examples (OR)	8M 4M
8.	a) b)	Discuss addition and condensation polymerization with suitable examples "Ethylene and styrene are bifunctional monomers"- justify.	8M 4M
		<u>UNIT-V</u>	
9.	a) b)	Explain any six principles of green chemistry Explain the construction and working photovoltaic cell. (OR)	6M 6M
10.	a) b)	Elaborate the charging and discharging in lead acid battery. Differentiate between batteries and supercapacitors.	6M 6M