Implicit User Feedback

Hongning Wang CS@UVa

Explicit relevance feedback

Relevance feedback in real systems

Google used to provide such functions

Vulnerable to spammers

How about using clicks

- Clicked document as relevant, non-clicked as non-relevant
 - Cheap, largely available

Is click reliable?

- Why do we click on the returned document?
 - Title/snippet looks attractive
 - We haven't read the full text content of the document
 - It was ranked higher
 - Belief bias towards ranking
 - We know it is the answer!

Is click reliable?

- Why do not we click on the returned document?
 - Title/snippet has already provided the answer
 - Instant answers, knowledge graph
 - Extra effort of scrolling down the result page
 - The expected loss is larger than skipping the document
 - We did not see it....

Can we trust click as relevance feedback?

Accurately Interpreting Clickthrough Data as Implicit Feedback [Joachims SIGIR'05]

- Eye tracking, click and manual relevance judgment to answer
 - Do users scan the results from top to bottom?
 - How many abstracts do they read before clicking?
 - How does their behavior change, if search results are artificially manipulated?

Which links do users view and click?

Positional bias

Fixations: a spatially stable gaze lasting for approximately 200-300 ms, indicating visual attention

Figure 1: Percentage of times an abstract was viewed/clicked depending on the rank of the result.

Do users scan links from top to bottom?

Need scroll down to view these results

Figure 2: Mean time of arrival (in number of previous fixations) depending on the rank of the result.

View the top two results within the second or third fixation

Which links do users evaluate before clicking?

 The lower the click in the ranking, the more abstracts are viewed above the click

Table 2: Percentage of times the user viewed an abstract at a particular rank before he clicked on a link at a particular rank.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Viewed	Clicked Rank					
Rank	1 2		3	4	5	6
1	90.6%	76.2%	73.9%	60.0%	54.5%	45.5%
2	56.8%	90.5%	82.6%	53.3%	63.6%	54.5%
3	30.2%	47.6%	95.7%	80.0%	81.8%	45.5%
4	17.3%	19.0%	47.8%	93.3%	63.6%	45.5%
5	8.6%	14.3%	21.7%	53.3%	100.0%	72.7%
6	4.3%	4.8%	8.7%	33.3%	18.2%	81.8%

Does relevance influence user decisions?

- Controlled relevance quality
 - Reverse the ranking from search engine
- Users' reactions
 - Scan significantly more abstracts than before
 - Less likely to click on the first result
 - Average clicked rank position drops from 2.66 to
 4.03
 - Average clicks per query drops from 0.8 to 0.64

Are clicks absolute relevance judgments?

Position bias

Focus on position one and two, equally likely to be viewed

"normal"	l_1^-, l_2^-	l_1^+, l_2^-	l_1^-, l_2^+	l_1^+, l_2^+	total
$rel(l_1) > rel(l_2)$	15	_19	1	1	36
$ \operatorname{rel}(l_1) < \operatorname{rel}(l_2) $	11	5	2	2	20
$rel(l_1) = rel(l_2)$	19	9	1	0	29
total	45	33	4	3	85
"swapped"	l_1^-, l_2^-	l_1^+, l_2^-	l_1^-, l_2^+	l_1^+, l_2^+	total
"swapped" $rel(l_1) > rel(l_2)$	l_1^-, l_2^- 11	$l_1^+, l_2^ 15$	l_1^-, l_2^+ 1	$\begin{array}{c c} l_1^+, l_2^+ \\ \hline 1 \end{array}$	total 28
		1 . 2	$1^{-}_{1}, l_{2}^{+}$ 1 7	$ \begin{array}{c c} l_1^+, l_2^+ \\ 1 \\ 2 \end{array} $	
$rel(l_1) > rel(l_2)$	11	15	$ \begin{array}{c c} l_1^-, l_2^+ \\ \hline 1 \\ 7 \\ 3 \end{array} $	1	28

Are clicks relative relevance judgments?

- Clicks as <u>pairwise</u> preference statements
 - Given a ranked list and user clicks

- Click > Skip Above
- Last Click > Skip Above
- Click > Earlier Click
- Last Click > Skip Previous
- Click > Skip Next

Clicks as pairwise preference statements

Accuracy against manual relevance judgment

Explicit Feedback	Abstracts					
Data	Phase I	Phase I Phase II				
Strategy	"normal"	"normal"	"swapped"	"reversed"	all	
Inter-Judge Agreement	89.5	N/A	N/A	N/A	82.5	
Click > Skip Above	80.8 ± 3.6	88.0 ± 9.5	79.6 ± 8.9	83.0 ± 6.7	83.1 ± 4.4	
${\rm Last~Click} > {\rm Skip~Above}$	83.1 ± 3.8	89.7 ± 9.8	77.9 ± 9.9	84.6 ± 6.9	83.8 ± 4.6	
Click > Earlier Click	67.2 ± 12.3	75.0 ± 25.8	36.8 ± 22.9	28.6 ± 27.5	46.9 ± 13.9	
Click > Skip Previous	82.3 ± 7.3	88.9 ± 24.1	80.0 ± 18.0	79.5 ± 15.4	81.6 ± 9.5	
 Click->-No Click-Next -	-84.1 ± 4.9	-75.6 ± 14.5	-66.7 ± 13.1	-79.0 ± 15.7	$-79.4 \pm 8.0 -$	

CS@UVa CS 6501: Information Retrieval 14

How accurately do clicks correspond to explicit judgment of a document?

Accuracy against manual relevance judgment

Explicit Feedback	Pages
Data	Phase II
Strategy	all
Inter-Judge Agreement	86.4
Click > Skip Above	78.2 ± 5.6
Last Click > Skip Above	80.9 ± 5.1
Click > Earlier Click	64.3 ± 15.4
Click > Skip Previous	80.7 ± 9.6
Click ->- No Click -Next	- 67.4 ± -8.2-

What do we get from this user study?

- Clicks are influenced by the relevance of results
 - Biased by the trust over rank positions
- Clicks as relative preference statement is more accurate
 - Several heuristics to generate the preference pairs

How to utilize such preference pairs?

- Pairwise learning to rank algorithms
 - Will be covered later

An eye tracking study of the effect of target rank on web search [Guan CHI'07]

Break down of users' click accuracy

CS@UVa CS 6501: Information Retrieval 18

An eye tracking study of the effect of target rank on web search [Guan CHI'07]

Break down of users' click accuracy

Users failed to recognize the target because they did not read it!

Navigational search

Users did not click because they did not read the results!

Informational search

Predicting clicks: estimating the clickthrough rate for new ads [Richardson WWW'07]

- To maximize ad revenue
 - $-E_{ad}[Revenue] = \sum_{ad} p(click|ad)CPC(ad)$

Estimated click-through rate

Cost per click: basic business model in search engines

- Position-bias is also true in online ads
 - Observed low CTR is not just because of ads' quality, but also their display positions!

Combat position-bias by explicitly modeling it

Being clicked is related to its quality and position

$$-p(click|ad,pos) = p(click|ad,pos,seen)p(seen|pos)$$
$$= \underline{p(click|ad,seen)}p(seen|pos)$$

Calibrated CTR for ads ranking

Discounting factor

$$-p(click = 1|ad, seen = 0) = 0$$

$$-p(click = 1|ad, seen = 1) = \frac{1}{1 + \exp(-w^t f_{ad})}$$

Logistic regression by features of the ad

Parameter estimation

- Discounting factor
 - Approximation: positions being clicked must be seen already
 - $p(seen|pos) \propto \#clicks_at_pos$
- Calibrated CTR
 - Maximum likelihood for w with historic clicks
 - $\widehat{w} = argmax_w \sum_{ad} logp(click|ad, pos)$

Calibrated CTR is more accurate for new ads

 Unfortunately, their evaluation criterion is still based biased clicks in testing set

Click models

- Decompose relevance-driven clicks from position-driven clicks
 - Examine: user reads the displayed result
 - Click: user clicks the displayed result
 - Atomic unit: (query, doc)

CS@UVa

CS 6501: Information Retrieval

Cascade Model [Craswell et al. WSDM'08]

- Sequential browsing assumption
 - At each position decides whether to move on

•
$$p(C_i = 1) = p(R_i = 1) \prod_{j=1}^{i-1} (1 - p(R_j = 1))$$

- Assuming $R_i = 1 \rightarrow C_i = 1$
- Only one click is allowed on each search result page

Kind of "Click > Skip Above"?

User Browsing Model [Dupret et al. SIGIR'08]

Examination depends on distance to the last

rank

More accurate prediction of clicks

Perplexity – randomness of prediction

CS@UVa CS 6501: Information Retrieval 29

Dynamic Bayesian Model [Chapelle et al. WWW'09]

- A cascade model
 - Relevance quality:

Accuracy in predicting CTR

Revisit User Click Behaviors

Content-Aware Click Modeling [Wang et al. WWW'12]

 Encode dependency within user browsing behaviors via descriptive features

Chance to further examine the result documents: e.g., position, # clicks,

Chance to click on an examined and relevant document: e.g., c.g., c.g.,

Relevance quality of a document:

Quality of relevance modeling

Estimated relevance for ranking

(a) P@1 ranking performance under different (b) P@1 ranking performance under different query frequency categories on the random bucket click set

query frequency categories on the normal click set

Understanding user behaviors

Analyzing factors affecting user clicks

f^R age w^R -0.839	authority 0.007	title match 0.098	abs. match 0.167	body match 0.020
$\begin{array}{ccc} f^C & \text{pos} \\ w_{R=0}^C & \text{-1.133} \\ w_{R=1}^C & 0.149 \end{array}$	• •	dis. to last click -0.445 0.415	query length; -3.659 3.707	bias -4.654 4.405
f^{E} pos $w_{R=0}^{E}$ 1.807 $w_{R=1}^{E}$ -1.381	# click -0.418 0.665	dis. to last click 0.684 -3.395	avg cont. sim. 2.947 -2.237	bias 5.325 3.266

CS@UVa CS 6501: Information Retrieval 35

What you should know

- Clicks as implicit relevance feedback
- Position bias
- Heuristics for generating pairwise preferences
- Assumptions and modeling approaches for click models