Tema 1.- INTRODUCCIÓN

1.1. ANTECEDENTES Y OBJETO

- Antecedentes en la combustión
- Máquinas de vapor: Savery (1697) y Newcomen (1712)
- Sistematización: mediados del XIX, Carnot, Clausius, Rankine y Kelvin
- Primer libro escrito por Rankine en 1859

- Nivel MICROscópico
 - Comportamiento individual de las partículas
 - Interacciones moleculares
 - Termodinámica Estadística: Facultades de Ciencias
- Nivel MACROscópico
 - Comportamiento global
 - Interacciones entre sistemas
 - Termodinámica Clásica (Ingeniería Termodinámica): Escuelas de Ingeniería

1.2. SISTEMAS TERMODINÁMICOS

- Sistema: porción del Universo limitada por una frontera
- Frontera o superficie de control:
 - Fija/móvil
 - Real/imaginaria
 - Permeable/impermeable
 - Adiabática/Diaterma
- Sistema:
 - Cerrado -> Aislado
 - Abierto

Universo: ejemplo de sistema aislado: $\begin{cases} \Delta E_u = 0 \\ \Delta S_u \ge 0 \end{cases} \Leftrightarrow \Delta \Phi_u \le 0$

1.3. FORMAS DE ENERGÍA

1.4. PROPIEDADES TERMODINÁMICAS

- Propiedad termodinámica: magnitud macroscópica cuyo valor NO depende de la historia previa. Su variación depende sólo del estado final y del inicial, no de cómo se haya llegado de uno a otro.
- Tipos:
 - Intensivas (específicas)
 - Extensivas

$$n = \frac{m}{M} \qquad v = \frac{V}{m} \qquad \overline{v} = \frac{V}{r}$$

$$\overline{v} = vM$$

1.5. ESTADO Y EQUILIBRIO

- Estado: condición física de un sistema determinada por sus variables de estado
- Variables de estado: cierto número de propiedades que definen el estado de un sistema
- Funciones de estado: resto de propiedades que quedan determinadas a partir de las variables de estado
- Equilibrio:
 - mecánico
 - térmico
 - químico
 - de fases

1.6. PROCESOS Y CICLOS

- Proceso: Paso de un estado a otro
- Tipos:
 - una propiedad se mantiene constante (isocórico, isotermo, ...)
 - relación conocida entre propiedades (politrópico, ...)
 - cuasiestático
 - NO estático

Fig. I.2.- Proceso cuasiestático seguido en el ejemplo I-1.

Fig. I.3.- Proceso no estático (1-1') seguido en el ejemplo I-2.

1.7. POSTULADO DE ESTADO

- Un sistema SIMPLE COMPRESIBLE queda determinado por 2 propiedades intensivas (específicas) INDEPENDIENTES . Si el sistema no es simple se ha de añadir una propiedad por cada forma de energía macroscópica considerada.
- Sistema SIMPLE: no se consideran formas de energía macroscópicas

Fig. I.4.- Variables de estado en diferentes sistemas: (a) 2 variables de estado para el gas; (b) 2 para el gas y 1 para el pistón; (c) 2 para el gas, 1 para el pistón y 1 para la energía elástica del muelle

1.8. VARIABLES DE ESTADO HABITUALES: p,v,T

1.8.1. Volumen específico

• El inverso de la densidad

1.8.2. Presión

- Representa la magnitud de la fuerza que un fluido ejerce sobre la normal a una superficie, por unidad de la misma
- Para fluidos en reposo (hidrostática): $\Delta p = -\rho g \Delta z$

$$1 \text{ Pa} = 1 \text{ N/m}^2$$

1 bar =
$$10^5$$
 Pa = 100 kPa ; 1 atm = $101,325$ kPa

"curiosidad": 1 kJ = 1 kPa \cdot m³

1 mca = 1 m
$$\cdot$$
 1000 kg/m³ \cdot 9,81 N/kg = 9,81 kPa \Leftrightarrow 1 bar = 10,2 mca

1 kg (kp)/cm² = 1 kp · 9,81 N/kp ·
$$10^4$$
 cm²/m² = 98100 Pa = 0,981 bar ≈ 1 bar

1 psi (lb-f/in²) = 1 lb-f · 4,4482 N/lb-f · 1 in²/25,4² mm² · 10⁶ mm²/ m² = 6894,7 Pa
$$\approx$$
 0,07 bar

- Presión absoluta
- Presión manométrica (por encima del ambiente)
- Presión de vacío (por debajo del ambiente)

• Variación hidrostática en

líquidos frente a gases

Fig. I.6.- Deducción de la ecuación de un manómetro en U.

Fig. I.7.- Diferentes presiones en un recipiente: (a) presión manométrica; (b) presión atmosférica; (c) presión de vacío.

1.8.3. Temperatura

Principio 0: fundamenta el uso del termómetro

Fig. I.8.- Paradoja para mostrar la no evidencia del Principio Cero.

Escalas termométricas

$$0 = aL_0 + b$$

$$T = aL + b$$

$$100 = aL_{100} + b$$

Escala del termómetro de gas a volumen constante

$$T = a p + b$$

A muy baja presión todos los gases verifican:

$$\underbrace{T + 273,15}_{\theta} = a \ p \Leftrightarrow \frac{\theta}{\theta_h} = \lim_{p_h \to 0} \left(\frac{p}{p_h}\right)$$

$$0^{\circ}C + 273,15 = \theta_h = 273,15 K$$

$$\theta[K] = T[^{\circ}C] + 273,15$$

El termómetro de gas a volumen constante basa su comportamiento en la ley de los gases ideales, válida a muy bajas presiones

$$\overline{R}' = \frac{p_h V}{n \theta_h} \qquad \qquad \lim_{p_h \to 0} \left(\frac{p_h V}{n \theta_h} \right) = \underbrace{8,314 \,\text{kJ/kmol} - \text{K}}_{\overline{R}}$$

Ejemplo: Realizar el problema 1.1

Escalas británicas

$$T[{}^{\circ}F] - 32 = 1.8T[{}^{\circ}C]$$

$$1^{\circ}C = 1.8^{\circ}F$$

$$T[{}^{\mathrm{o}}R] = T[{}^{\mathrm{o}}F] + 459,67$$

$$1^{\circ} R = 1^{\circ} F$$

$$T[K] = T[^{\circ}C] + 273,15$$

$$1K = 1^{\circ}C$$

$$T[^{\circ}R]=1.8T[K]$$

$$1K = 1,8^{\circ}R$$