Student Name: Kim Seang CHY	
Assignment 3	
Subject Code: MAST30027	
Lab Time: Thursday 11:00am	
Lab Tutor: Anubhav Kaphle	

MAST30025 Assingment 3

Kim Seang CHY

998008

Question 1:

#Prequestion

```
X = scan(file="assignment3_prob1.txt", what=double())
length(X)
```

[1] 100

mean(X)

[1] 75.726

a. Derive the posterior distribution of τ .

Since $x_i | \tau \sim N(75, \frac{1}{\tau})$ and $\tau \sim \text{Gamma}(2, 1)$ Let $X = (x_1, \dots, x_{100})$.

The likelihood of $X|\tau$ is given by:

$$f(X|\tau) = \prod_{i=1}^{100} f(x_i|\tau)$$
$$\propto (\tau)^{50} \exp\left[\frac{-\tau}{2} \sum_{i=1}^{100} (x_i - 75)^2\right]$$

Thus $P(\tau|X)$ is given by:

$$P(\tau|X) \propto f(X|\tau)P(\tau)$$

$$\propto (\tau)^{50} \exp\left[\frac{-\tau}{2} \sum_{i=1}^{100} (x_i - 75)^2\right] (\tau) \exp(-\tau)$$

$$\propto (\tau)^{52-1} \exp\left[-\tau (1 + \frac{1}{2} \sum_{i=1}^{100} (x_i - 75)^2)\right]$$

By inspection we can see $\tau | X$ is gamma distribution with $\alpha = 52$ and $\beta = 1 + \frac{1}{2} \sum_{i=1}^{100} (x_i - 75)^2$ or $\tau | X \sim \text{Gamma}(52, 1 + \frac{1}{2} \sum_{i=1}^{100} (x_i - 75)^2)$.

```
#Calculating therotical beta value
beta = 0.5*sum((X-75)^2)+1
beta
```

[1] 1805.65

```
alpha = 2+0.5*length(X)
alpha
```

[1] 52

Thus $\tau | X \sim \text{Gamma}(52, 1805.65)$.

b. Derive the posterior predictive distribution for new score \tilde{x} , $P(\tilde{x}|x_1,\ldots,x_{100})$.

From q1 part a we know $\tau | X \sim \text{Gamma}(52, 1805.65) = \text{Gamma}(\alpha, \beta)$ and $\tilde{x} | \tau \sim \text{N}(75, \frac{1}{\tau})$, where $X = (x_1, \dots, x_{100})$.

$$P(\tilde{x}|x_1, \dots, x_{100}) = \int_0^\infty P(\tilde{x}|\tau) P(\tau|X) d\tau$$

$$= \int_0^\infty \sqrt{\frac{\tau}{2\pi}} \exp\left[\frac{-\tau}{2}(\tilde{x} - 75)^2\right] \frac{\beta^\alpha}{\Gamma(\alpha)} \tau^{\alpha - 1} \exp(-\beta \tau) d\tau$$

$$= \frac{\beta^\alpha}{\Gamma(\alpha)\sqrt{2\pi}} \int_0^\infty \exp\left[-\tau \left(\frac{(\tilde{x} - 75)^2}{2} + \beta\right)\right] \tau^{\frac{2\alpha + 1}{2} - 1} d\tau$$

$$= \frac{\beta^\alpha}{\Gamma(\alpha)\sqrt{2\pi}} \frac{\Gamma(\frac{2\alpha + 1}{2})}{\left[\frac{(\tilde{x} - 75)^2}{2} + \beta\right]^{\frac{2\alpha + 1}{2}}}$$

Using Gamma distribution normalising constant to solve integration.

$$P(\tilde{x}|x_1,\dots,x_{100}) = \frac{\Gamma(\frac{2\alpha+1}{2})}{\Gamma(\frac{\alpha}{2})\sqrt{2\pi\beta}} \left[\frac{(\tilde{x}-75)^2}{2\beta} + 1 \right]^{-\frac{-2\alpha+1}{2}}$$
$$= \frac{\Gamma(\frac{2\alpha+1}{2})}{\Gamma(\frac{2\alpha}{2})\sqrt{2\alpha\pi\frac{\beta}{\alpha}}} \left[\frac{1}{2\alpha} \frac{(\tilde{x}-75)^2}{\frac{\beta}{\alpha}} + 1 \right]^{-\frac{-2\alpha+1}{2}}$$

v=alpha*2

[1] 104

a=75

[1] 75

b=beta/alpha

[1] 34.72404

By inspection we can see the predictive distribution for new $\tilde{x}|(x_1,\ldots,x_{100}) \sim t(104,75,34.72)$, which is a student-t distribution with three parameter of 104, 75, 34.72.

Question 2:

Using the information given we will simulate gamma distribution with parameter $\alpha \geq 1$ and β , as stated below

Let

$$f(x) = \frac{h(x)^{\alpha - 1} e^{-h(x)} h'(x)}{\Gamma(\alpha)}$$

$$d = \alpha - 1/3,$$

$$c = \frac{1}{\sqrt{9d}},$$

$$h(x) = d(1 + cx)^3$$

$$g(x) = d\log((1 + c * x)^3) - d * (1 + c * x)^3 + d$$

Using $f(x) * \Gamma(\alpha) \propto \exp(g(x))$, we can simulate f(x) by simulating $\exp(g(x))$ using the general rejection method with $p(x) = e^{\frac{-x^2}{2}}$ as an envelope with $X \sim N(0,1)$ with either $X \geq \frac{-1}{c}$ or $h(x) \geq 0$.

The algorithm used follow the step below:

- 1. Simulate X from N(0,1).
- 2. If $X \geq \frac{-1}{c}$ return X else start from step 1
- 3. Generate $Y \sim U(0, p(X))$
- 4. If $Y < \exp(g(X))$ return $\frac{\exp(g(X))}{\beta}$ else return to step 1
- 5. Repeat until we get the number of n sample required

```
\#Simulating\ Gamma\ Sample\ with\ alpha=a,\ beta=b,\ number\ of\ required\ sample=n
sim.gamma <- function(a,b,n){</pre>
  gamma.sample = c()
  for (i in 1:n){
    gamma.sample[i] = X.Gamma(a)/b
 return(gamma.sample)
}
#Function to Stimulate X and apply general rejection method to g(x) with p(x) as
#an envelope function. Step 1, 2, 3 and Part of 4
X.Gamma <- function(a){</pre>
  d=a-1/3
  c=1/sqrt(9*d)
  x.sample=c()
  h \leftarrow function(x) d*(1+c*x)^3
  while(TRUE){
    while(TRUE){
      x.point = rnorm(1)
      if (x.point >= -1/c) break
    Y <- runif(1,0,p(x.point))
```

```
if (Y<exp.g(x.point,a)) return(h(x.point))</pre>
  }
}
#Let p(x) = exp(-x^2/2)
p <-function(x){</pre>
  x=exp(-x^2/2)
  return(x)
}
#Define exp(g(x))
exp.g <- function(x,a){</pre>
  d=a-1/3
  c=1/sqrt(9*d)
  q \leftarrow function(x) (1+c*x)^3
  g \leftarrow function(x) d*log(q(x))-d*q(x)+d
  x = \exp(g(x))
  return(x)
}
\#Running the simulation and Plotting qq-plot
g \leftarrow sim.gamma(1.2,3,1000)
plot(qgamma(1:1000/1001, 1.2, 3), sort(g))
abline(0, 1, col="red")
```


Looking at the qq-plot we can see that our simulation are close to the pseudo-random of Gamma(1.2,3) for 1000 samples.