1. Groups

Quick Review of Group Theory

Key definitions

Definition: A group is a set

G

together with a map

$$m:G\times G\to G$$

satisfying the following axioms:

- 1. There is an element $e \in G$ such that m(e, x) = m(x, e) = x for all $x \in G$.
- 2. For all $x, y, z \in G$, we have m(x, m(y, z)) = m(m(x, y), z).
- 3. For all $x \in G$, there is $y \in G$ such that m(x,y) = m(y,x) = e.

We usually just write ab or a + b for m(a, b); and we usually write G, rather than (G, m) when speaking about a group.

One can weaken these axioms in various ways and obtain an equivalent definition.

For any group G and $x \in G$:

- there is only one element e satisfying axiom (1).
- the regrouping in axiom (2) extends to arbitrary many elements, so the product $a_1 a_2 \cdots a_n$ is well defined for any set of elements $a_1, a_2, \ldots, a_n \in G$.
- the inverse y for x required by axiom (3) is unique.

Definition: If G is a group and ab = ba for all $a, b \in G$ then G is called abelian.

Definition: If G is a group and $g \in G$ then the *order* of g is the smallest positive integer n such that $g^n = e$ (or infinity, if no such n exists).

Definition: If G is a group, and H is a nonempty subset of G which is a group when the multiplication of G is restricted to H, then H is called a *subgroup* of G. H is a subgroup if: - for all $a, b \in H$, $ab \in H$, - if $a \in H$, then $a^{-1} \in H$.

Definition: If G and H are groups, and $f: G \to H$ is a function, then f is called a homomorphism if f(ab) = f(a)f(b) for all $a, b \in G$ and and isomorphism if it is a bijective homomorphism. The kernel of a homomorphism f is the subgroup of G consisting of elements g such that f(g) = e. The image of a

homomorphism f is the subgroup of H consisting of elements $h \in H$ such that h = f(g) for some $g \in G$.

Definition: If G is a group and X is a set, then a map $m: G \times X \to X$ is called a (left) action of G on X if m(e, x) = x for all $x \in X$ and m(a, m(b, x)) = m(ab, x) for all $a, b \in G$ and $x \in X$. We usually write ax for m(a, x).

Examples

- 1. The integers, rational numbers, real numbers, and complex numbers are all groups under addition.
- 2. The nonzero rational numbers, real numbers, and complex numbers are all groups under multiplication.
- 3. For n > 0, the set $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n are a group under addition.
- 4. The subset of $\mathbb{Z}/n\mathbb{Z}$ consisting of elements a that are invertible (i.e. such that the congruence $ax \equiv 1 \pmod{n}$ has a solution) form a group under multiplication. This group is called $(\mathbb{Z}/n\mathbb{Z})^{\times}$. If n = p is prime, then $(\mathbb{Z}/p\mathbb{Z})^*$ consists of the p-1 nonzero congruence classes.
- 5. The invertible $n \times n$ matrices $GL_n(F)$ where F is any of $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ form a group under matrix multiplication. These groups come with actions on F^n given by matrix multiplication.
- 6. For any set X, the set of bijective maps $X \to X$ form a group under composition of functions. This group is called the *symmetric group* S(X) on X. If there is a bijection from X to Y, then S(X) and S(Y) are isomorphic. If X =
 - $1, 2, 3, \ldots, n$ then S(X) is usually written S_n and is called the symmetric group on n elements. Notice that S(X) comes with an action on X given by $(f, x) \mapsto f(x)$.
- 7. If X is a regular n-gon in the plane, the group of rigid motions f of the plane such that f(X) = X form a group under composition called the Dihedral group. Dummit and Foote call this group D_{2n} since it has 2n elements, but others call it D_n since it is the symmetries of an n-gon. The elements of D_{2n} consist of

$$\{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$$

and the group law is determined by the rules $r^i r^j = r^{i+j}$ with exponents read modulo n, $s^2 = 1$, and $sr = r^{-1}s$. The group D_{2n} comes with an action on the n vertices of X by $(f, v) \mapsto f(v)$ and on the n sides of v by (f, s) = f(s).

Cyclic Groups

Definition: A group G is cyclic if there is an element $g \in G$ such that the homomorphism

$$\phi_q: \mathbb{Z} \to G$$

defined by $\phi_q(n) = g^n$ is surjective.

Proposition: Let $H \subset \mathbb{Z}$ be a propersubgroup. Then either $H = \{0\}$ or there is a unique n > 0 such that $H = n\mathbb{Z}$.

Corollary: A cyclic group is isomorphic either to \mathbb{Z} or to $\mathbb{Z}/n\mathbb{Z}$ for some integer n > 0.

Properties of order: Let G be a group and $x \in G$.

- 1. If x^a has infinite order for some a, so do all nonzero powers of x.
- 2. If $x^a = e$ and $x^b = e$ then $x^{\gcd(a,b)} = e$.
- 3. If $x^a = e$ then the order of x divides a.
- 4. If x has order a, then x^k has order $a/\gcd(a,k)$.
- 5. If G is cyclic of order n generated by x, then x^a generates G if and only if gcd(a, n) = 1.

Proposition: The subgroups of $G = \mathbb{Z}/n\mathbb{Z}$ are in bijection with the divisors of n. If d is a divisor of n, then the unique subgroup of G of order d is generated by n/d.

Euclid's Algorithm and Congruences

Theorem: Let a and b be nonzero integers. Then there exist integers x and y such that

$$ax + by = d$$

where d is the greatest common divisor of a and b.

Theorem: Let n be a positive integer. The congruence equation

$$ax \equiv b \pmod{n}$$

has solutions if and only if $d = \gcd(a, n)$ divides b. If this condition is satisfied, it has d solutions of the form

$$x_0 + k \frac{n}{d} \quad k = 0, \dots, d - 1$$

where x_0 is a representative for the unique solution to the congruence

$$\frac{a}{d}x_0 \equiv \frac{b}{d} \pmod{\frac{n}{d}}.$$

Remark: Notice that the congruence equation problem is equivalent to finding x and y so that

$$ax + ny = b$$
.