Fuente: Examen Final de Econometría II (2013)

- 3. (30 puntos) El proceso descrito corresponde a un modelo de umbral.
- a) (15 puntos) Es fácil demostrar que

$$\hat{\beta} = \frac{\sum \theta_{\tau} \theta_{\tau - 1}}{\sum \theta_{\tau - 1}^2} \tag{1}$$

$$\hat{\omega}_{\nu}^2 = \frac{\sum \hat{\nu}_{\tau}^2}{T} \tag{2}$$

$$\hat{\phi} = \arg\min_{\phi} \hat{\omega}_{\nu}^{2}(\phi) \tag{3}$$

$$\hat{\omega}_u^2 = \frac{\sum \hat{u}_\tau^2(\hat{\phi})}{T} \tag{4}$$

$$\hat{\omega}_{uv} = \frac{\sum \hat{\nu}_{\tau} \hat{u}_{\tau}(\hat{\phi})}{T} \tag{5}$$

son consistentes. Finalmente, $\hat{\gamma}$ y $\hat{\rho}$ son los estimadores OLS de la regresión de ξ en ξ_{-1} para el valor del umbral estimado.

• b) (15 puntos) La función de impulso-respuesta para θ_{τ} es:

$$\frac{\partial \theta_{\tau + \phi}}{\partial \nu_{\tau}} = \rho^{\phi} \tag{6}$$

Para el caso de ξ , la respuesta dependerá del valor inicial en el que se encuentre θ , del signo del shock y del valor de ϕ . Por ejemplo, si el shock es positivo, $0 > \phi$, tendremos:

$$\frac{\partial \xi_{\tau+\phi}}{\partial \nu_{\tau}} = 0 \tag{7}$$

porque los cambios en θ producidos por ν no modificarán la trayectoria de ξ . En cambio, shocks que cambien la trayectoria de θ de modo tal se modifique la trayectoria de ξ (fruto de la activación de un umbral) tendrán efectos sobre ξ .

Note que la discusión anterior cambiaría de manera importante si permitimos que u y ν covarien contemporaneamente. En ese caso, un shock en ν tendrá efectos sobre u y generará una respuesta (seguramente no lineal en ξ).