

Andrzej M. Borzyszkowsł

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski PJATK/ Gdańsk

materiały dostępne elektronicznie http://szuflandia.pjwstk.edu.pl/~amb

Poziomy isolacji ANSI/ISO

lacyjne Bazy Danych

_ 2

Poziomy izolacji w/g ANSI/ISO

- Najwyższym poziomem jest założenie, że transakcja jest jedyną wykonywaną w danym momencie, tzn. wiele transakcji musi się uszeregować w kolejności (szeregowalność)
- Może to być zbyt mocne założenie, zbyt ograniczające wydajność bazy danych
- Standard ANSI/ISO wprowadza cztery poziomy izolacji
 - READ UNCOMMITTED
 - READ COMMITTED
 - REPEATABLE READ
 - SERIALIZABLE
- PostgreSQL domyślnie przyjmuje drugi poziom, można ustawić czwarty

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Poziomy izolacji: odczyt na brudno

- Odczyt na brudno (dirty read): odczyt danych jeszcze nie zatwierdzonych przez transakcję piszącą
 - transakcja być może będzie wycofana (ROLLBACK), należy przyjąć, że dane te nigdy nie istniały
- Poziom ANSI/ISO: READ UNCOMMITED
- PostgreSQL: nie dopuszcza do odczytu na brudno
 - gdyby dopuszczał: np. zmiana wartości konta z 100 na 200

czas	transakcja 1	transakcja 2	
0 min	SET konto=200		
1 min		SELECT konto	odczyt 200
2 min	ROLLBACK		
3 min		SELECT konto	odczyt 100

o Andrzej M. Borzyszkowski

acvine Bazv Danvch

4

Poziomy izolacji: odczyt niepowtarzalny

- Odczyt niepowtarzalny (nonrepeatable read): odczyt danych nie dający się powtórzyć w ramach jednej transakcji
 - tzn. pozwolenie, by inna transakcja zmieniła odczytane dane
- Poziom ANSI/ISO: READ COMMITED
- PostgreSQL: domyślnie dopuszcza do odczytu niepowtarzalnego
 - np. wpłata na konto przez każdego z użytkowników
 - czyli możliwa jest niespójna analiza
 - oraz utracona modyfikacja

Odczyt niepowtarzalny, c.d.

Np. wpłata na konto przez każdego z użytkowników

czas	użytkownik 1	użytkownik 2
0 min	BEGIN WORK	BEGIN WORK
1 min	czyta stan konta, wynik 50	
2 min		czyta stan konta, wynik 50
3 min	pisze wartość konta 110	

nie może zmienić stanu konta 4 min

5 min **COMMIT WORK**

(gdyby jeszcze raz czytał, byłaby wartość 110) 6 min

pisze wartość konta 125

7 min **COMMIT WORK**

Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Poziomy izolacji: odczyt widmo

- Odczyt widmo (phantom): odczyt danych nie istniejących wcześniej w danej transakcji
 - tzn. pozwolenie, by inna transakcja wstawiła wiersz do przeczytanej tabeli
- Poziom ANSI/ISO: REPEATABLE READ
- PostgreSQL: domyślnie dopuszcza do odczytu widm

czas	transakcja 1	transakcja 2
0 min	BEGIN	BEGIN

1 min UPDATE towar SET cena=1

2 min INSERT INTO item VALUES ...

3 min **SELECT cena FROM towar**

4 min **COMMIT**

- nowa wartość nie podległa globalnej zmianie w transakcji 1

Poziomy izolacji

Poziom izolacji	odczyt brudny	niepowt.	widmo
UNCOMMITTED	możliwy	możliwy	możliwy
COMMITED	niedopuszcz.	możliwy	możliwy
REPEATABLE	niedopuszcz.	niedopuszcz.	możliwy
SERIALIZABLE	niedopuszcz.	niedopuszcz.	niedopusz

PostgreSQL domyślnie przyjmuje drugi poziom, można ustawić czwartv

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Relacyjne Bazy Danych

Relacyjne Bazy Danych

Blokady i inne narzędzia zarządzania współbieżnością

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Blokady binarne

- Obiekt X może być zablokowany
 - transakcja ma prawo blokować tylko obiekt nieblokowany
 - może być utworzona kolejka transakcji do blokowania X
 - transakcja może odblokować obiekt, który zablokowała
 - protokół wzajemnego wykluczania co najwyżej jedna transakcja blokuje obiekt
- Blokowanie jeszcze nie gwarantuje szeregowalności przebiegu
 - l1(Y);r1(Y);ul1(Y); l2(X);r2(X);ul2(X); l2(Y);r2(Y);w2(Y);ul2(Y); l1(X);r1(X);w1(X);ul1(X)
- te blokady niczego nie dają, są za wcześnie zwalniane r1(Y);r2(X);r2(Y);w2(Y);r1(X);w1(X) wymaga 1<2<1
 - blokowanie binarne być może blokuje za dużo

Cele i narzędzia zarządzania współbieżnością

- Szeregowalność
 - dopuszczenie współbieżności jest pożądane/konieczne z powodu wydajności
 - sprawdzanie szeregowalności nie jest słuszne
 - przebieg nie jest znany z góry, wynika ze stanu obliczeń
 - raczej należy gwarantować szeregowalność przebiegu transakcji
- · Cel: ten sam wynik zmian w bazie danych
- Narzędzia
 - blokady
 - znaczniki czasu
 - wielowersyjność
 - protokoły optymistyczne

© Andrzej M. Borzyszkowski

Blokady czytania i zapisu

- blokada współdzielona (shared) blokada do odczytu
- blokada wyłączna (exclusive) blokada do zapisu
- Transakcja czytająca dane musi założyć blokadę współdzieloną, wiele transakcji może założyć taką blokadę, nie można jej założyć, jeśli jest już blokada wyłączna
- Transakcja zapisująca dane musi założyć blokadę wyłączną, nie można jej założyć, jeśli jest już założona jakakolwiek blokada

nowa/dotychczasowa	X	S	bral
X	nie	nie	tak
S	nie	tak	tak

· Różne wersje: jedno zwolnienie blokady, zwolnienie blokady zapisu pozostawiając blokadę odczytu, brak możliwości podnoszenia stopnia blokady

© Andrzej M. Borzyszkowski Relacyjne Bazy Danych

Współbieżność vs. blokady

• Niespójna analiza:

czas 0 min	użytkownik 1 blokada czytania konta A wynik 100	użytkownik 2
1 min	Wy 200	próba blokady zapisu A nieudana, trzeba czekać
2 min	blokada czytania konta B wynik 100	
3 min	zwolnienie blokad	
4 min		blokada zapisu konta A i dalszy ciąg transakcji

Współbieżność vs. blokady

• Niespójna analiza w innej kolejności:

czas 0 min	użytkownik 1 blokada czytania konta A wynik 100	użytkownik 2
1 min		blokada zapisu konta B dodaje 50 do konta B
2 min		blokada zapisu konta A nieudana, trzeba czekać
3 min	blokada czytania konta B nieudana, trzeba czekać	

- te transakcje czekają na siebie nawzajem - zakleszczenie

13

Andrzej M. Borzyszkowski

Współbieżność vs. blokady, c.d.

• Utracona modyfikacja:

użytkownik 1	użytkownik 2
blokada czytania konta A	
	blokada czytania konta A
blokada zapisu konta A	
nieudana, trzeba czekać	
	blokada zapisu konta A
	nieudana, trzeba czekać
	blokada czytania konta A blokada zapisu konta A

• znowu zakleszczenie (deadlock)

Zakleszczenie, rozwiązanie 1

- Rozwiązanie 1: timeout
 - system zarządzania bazą danych wycofuje transakcję, która zbyt długo oczekiwała na zwolnienie blokady
 - czy transakcja będzie powtórzona?
 - w PostgreSQl nieautomatycznie, może to zrobić aplikacja działająca w pętli aż do pozytywnego zakończenia transakcji
- Wersje:
 - zero czekania transakcja żądająca niemożliwej blokady jest natychmiast wycofywana
- Problem zagłodzenia
 - nie ma gwarancji, że wycofana transakcja doczeka się wykonania
 - konieczne są metody promocji transakcji wycofywanych

14

© Andrzej M. Borzyszkowski

elacyjne Bazy Danycl

Zakleszczenie, rozwiązanie 2,3

- Rozwiązanie 2: analiza grafu oczekiwań
 - SZBD analizuje graf wzajemnych oczekiwań na zwolnienie blokady i wycofuje jedną z transakcji
 - np. najnowszą, lub najstarszą, lub najmniejszą, lub najmniej ważną, lub
 - problem zagłodzenia jest obecny, ta sama transakcja nie powinna być ciągle wycofywana
- Rozwiązanie 3: wszystkie blokady powinny być zakładane w tej samej kolejności – wówczas nie będzie zakleszczeń

Zakleszczenie, rozwiązanie 4

- Rozwiązanie 4: znaczniki czasu dla transakcji
 - wersja "czekaj albo zgiń": transakcja starsza może czekać, młodsza jest wycofywana i powtórnie wykonana z tym samym znacznikiem
 - wersja "zabij albo czekaj": transakcja starsza powoduje wycofanie młodszej (i wykonanie z tym samym znacznikiem), transakcja młodsza czeka
 - na pewno nie będzie zakleszczenia
 - może dość do zagłodzenia
 - wycofywane są transakcje, które być może nie powodują w ogóle zakleszczenia

18

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Blokowanie dwufazowe (2PL)

- Protokół blokowanie dwufazowego:
 - faza 1: transakcja zakłada potrzebne blokady (rozszerzanie)
 - faza 2: transakcja zwalnia blokady (kurczenie)
- Twierdzenie: jeśli wszystkie transakcje przestrzegają protokołu blokowania dwufazowego, to dowolny przebieg jest szeregowalny
 - ale zwiększa to niebezpieczeństwo zakleszczenia

Blokowanie dwufazowe - wersje

- Blokowanie statyczne transakcja z góry określa swoje blokady
 - jeśli nie może założyć wszystkich, to czeka
 - na pewno nie wystąpi zakleszczenie
 - protokół mało praktyczny, nie zawsze znane są potrzeby
 - transakcja może nigdy nie doczekać się wykonania
- Blokowanie ścisłe transakcja zwalnia blokady zapisu dopiero na końcu
 - blokowanie rygorystyczne transakcja zwalnia wszystkie blokady dopiero na końcu
 - gwarantowany jest przebieg ścisły (szeregowalność, łatwe odtwarzanie)
 - możliwość zakleszczeń

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Danych

20

 blokada czytania wierszy będzie założona jeśli użyje się instrukcji SELECT 1 FROM _____ WHERE _____ zmuszając system do czytania wierszy

 blokada zapisu wierszy będzie założona jeśli użyje się instrukcji SELECT 1 FROM _____ WHERE _____ FOR UPDATE anonsując chęć zapisu w wierszach

PostgreSQL dopuszcza jeszcze instrukcję
 LOCK TABLE _____ nie należy tej możliwości nadużywać, bo ma poważne konsekwencje dla wydajności

• SQL nie daje możliwości blokowania poszczególnych atrybutów

Inne narzędzia rozwiązania problemów współbieżności

- Znaczniki czasu
 - każda transakcja ma swój znacznik czasu
 - każdy obiekt ma zapisany czas ostatniego odczytu i zapisu przez transakcje jeszcze nie zatwierdzone
 - różne algorytmu wycofujące transakcje, które mogłyby zagrozić pojęciu szeregowalności
- Wielowersyjność
 - SZBD utrzymuje wiele wersji bazy danych dla niezatwierdzonych transakcji, odczyty i zapisy dotyczą odpowiednich wersji
- Techniki optymistyczne
 - transakcje są wykonywane bez przeszkód
 - przy zatwierdzaniu transakcji zaczyna się sprawdzanie, czy mogło dojść do naruszenia spójności bazy danych

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski