

Computing & Software

Minimizing Inconsistency in Pairwise Comparison Matrices Using Genetic Algorithm

Atiyeh Sayadi, Baran Shajari Department of Computing and Software, McMaster University

Introduction

• Pairwise Comparison:

- Simplifies decision-making by evaluating objects in pairs.
- Results are represented as a comparison matrix.

• Challenge:

- Matrices are based on subjective expert judgments.
- Inconsistencies can arise, reducing decision reliability.

• Objective:

- Apply a genetic algorithm to minimize inconsistencies.
- o Optimize matrices efficiently while preserving expert input.

Pairwise Comparisons and Consistency

• Pairwise Comparison:

- \circ A method to express the relative importance of objects using a comparison matri $A=[a_{ij}]_{n\times n}$
- Properties of the matrix:
 - $a_{ij} > 0$ for all i, j.
 - $a_{ii} = 1$ (diagonal entries are 1).
 - $a_{ij} \cdot a_{ji} = 1$ (reciprocal property).

• Consistency:

A matrix is consistent if: $a_{ij} \cdot a_{jk} = a_{ik}$, $\forall i, j, k$

$$cm_A = \max_{(i,j,k)} \left(\min \left(\left| 1 - \frac{a_{ij}}{a_{ik}.a_{kj}} \right|, \left| 1 - \frac{a_{ik}.a_{kj}}{a_{ij}} \right| \right) \right)$$

Genetic Algorithm Methodology

• Initialization:

- Start with an input matrix A with a size of at least 3×3.
- Generate 999 offspring by introducing random mutations to the matrix elements.

• Mutation Process:

- Randomly select an element a_{ij} $(i \neq j)$ in the matrix, ensuring $a_{ij} > 1$.
- \circ Modify a_{ij} by adding a small random value $x \in [-0.5, 0.5]$: $a'_{ij} = a_{ij} + x$
- \circ Update the corresponding element a_{ij} to satisfy:

$$a'_{ij} \cdot a'_{ji} = 1$$
 or $a'_{ji} = \frac{1}{a'_{ij}}$

• Ensure the updated values remain within the valid range:

$$\left[\frac{1}{7},7\right]$$

• This mutation process introduces variations, allowing the algorithm to explore a wide range of potential solutions.

- Evaluation: Each matrix in the population is evaluated using a fitness function, which measures inconsistency.
- •Selection: The top 50% of matrices with the lowest inconsistency are selected.
- •Elitism: 20% of the top matrices are randomly chosen and passed directly to the next generation to preserve highquality solutions.
- Crossover: The remaining 90% of the next generation are produced by performing crossover on selected parent matrices.
- Direct Transfer: Additionally, 10% of the offspring are passed directly to the next generation to maintain valuable characteristics.
- Mutation: The rest of the population is filled by mutating matrices after crossover, where only one randomly selected element is changed by adding a number from the interval [-0.5, 0.5].

Result

- Figure 1: Rapid fitness improvement is observed for 7×7 matrices in early generations. Progress slows as near-optimal consistency is approached.
- Figure 2: 4×4 matrices achieve consistency efficiently, stabilizing in 3–7 generations. This highlights the algorithm's effectiveness for smaller matrices.
- Figure 3: For 7×7 matrices, most reach consistency after 49–57 generations. Few achieve consistency in earlier generations, reflecting increased complexity.

