

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently amended): A compound of the formulae:

wherein:

~~R₁ is selected from H, halogen, CF₃, OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, HN(C₁-C₆), N(C₁-C₆)₂, phenyl, O-phenyl, benzyl, O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, NH₂, NO₂, CN, CF₃, or OH;~~
~~or a moiety of the formulae:~~

~~R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, O-phenyl, benzyl, O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, NH₂, NO₂, CN, CF₃, or OH;~~

~~R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, NH-(C₁-C₆ alkyl), N-(C₁-C₆~~

~~alkyl), pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH₂)_nphenyl, and phenyl-O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, (CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl), the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, -CF₃, CO₂H, or -OH;~~

~~n is an integer from 0 to 3;~~

R₂ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, ~~preferably C₄-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₄-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;~~

R₃ is selected from H, -CF₃, -COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

wherein n is independently selected in each appearance as an integer from 0 to 3, ~~preferably 0 to 2, more preferably 0 to 1~~, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, ~~preferably S or O~~;

R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:

a) $-(CH_2)_n\text{-phenyl-O-phenyl}$, $-(CH_2)_n\text{-phenyl-CH}_2\text{-phenyl}$, $-(CH_2)_n\text{-O-phenyl-CH}_2\text{-phenyl}$, $-(CH_2)_n\text{-phenyl-(O-CH}_2\text{-phenyl)}_2$, or a moiety of the formulae:

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is $\text{C}_3\text{-C}_5$ cycloalkyl, phenyl, benzyl, naphthyl, pyridinyl, quinolyl, furyl, thieryl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, $-\text{CF}_3$, $-\text{OH}$, $-\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, $-\text{NH}_2$, $-\text{NO}_2$ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae $(CH_2)_n\text{-A}$, $(CH_2)_n\text{-S-A}$, or $(CH_2)_n\text{-O-A}$, wherein A is the moiety:

wherein

D is H, $\text{C}_1\text{-C}_6$ lower alkyl, $\text{C}_1\text{-C}_6$ lower alkoxy, or $-\text{CF}_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thieryl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-\text{CF}_3$, $-\text{OH}$, $-\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, or $-\text{NO}_2$; or

c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, CF_3 , OH, $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, NH_2 , or NO_2 ; or

d) a moiety of the formula $\text{L}^2\text{-M}^2$, wherein:

L^2 indicates a linking or bridging group of the formulae $(\text{CH}_2)_n$, S, O, SO_2 , $\text{C}(\text{O})$, $(\text{CH}_2)_n\text{-C}(\text{O})$, $(\text{CH}_2)_n\text{-C}(\text{O})(\text{CH}_2)_n$, $(\text{CH}_2)_n\text{-O-(CH}_2)_n$, or $(\text{CH}_2)_n\text{-S-(CH}_2)_n$, $\text{C}(\text{O})\text{C}(\text{O})\text{X}$;
where $\text{X} = \text{O}, \text{N}$

M^2 is selected from the group of $\text{C}_1\text{-C}_6$ lower alkyl, $\text{C}_1\text{-C}_6$ lower alkoxy, $\text{C}_3\text{-C}_{10}$ cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, $\text{C}_1\text{-C}_{10}$ alkyl, preferably $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_{10}$ alkoxy, preferably $\text{C}_1\text{-C}_6$ alkoxy, NO_2 , NH_2 , CN , or CF_3 ; or

i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, $\text{C}_1\text{-C}_{10}$ alkyl, preferably $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_{10}$ alkoxy, preferably $\text{C}_1\text{-C}_6$ alkoxy, NO_2 , NH_2 , CN , or CF_3 ; or

ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, CHO, NO₂, NH₂, CN, CF₃ or OH; or

iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, naphthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, CHO, NO₂, NH₂, CN, CF₃ or OH;

n is an integer from 0 to 3;

R₅ is selected from COOH, C(O)COOH, (CH₂)_nC(O)COOH, (CH₂)_nCOOH,
CH₂-phenyl-C(O)-benzothiazole,
(CH₂)_nCH=CH-COOH,

~~n is an integer from 0 to 3;~~

~~R₈ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,~~

~~n is an integer from 0 to 3;~~

~~R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, C₁-C₆ alkyl, O-C₁-C₆ alkyl, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂;~~

~~n is an integer from 0 to 3;~~

~~R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, C₁-C₆ alkyl, O-C₁-C₆ alkyl, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂,~~

~~n is an integer from 0 to 3;~~

~~R₁₁ is selected from H, C₁-C₆ lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, or~~

~~with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁, shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,~~

~~n is an integer from 0 to 3;~~
or a pharmaceutically acceptable salt thereof.

2. (Canceled).

3. (Currently amended): A compound of Claim 2 1 wherein R_3 is H and ~~R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , n, X, L², M², Z, A, B, C, D, and Y~~ are as defined in Claim 2, or a pharmaceutically acceptable salt thereof.

4. (Currently amended) A compound of Claim 2 1 having the formula:

~~wherein R_1 is benzyloxy, optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, NH₂, NO₂, CN, CF₃, or OH; and R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , n, X, L², M², Z, A, B, C, D, and Y~~ are as defined in Claim 2, or a pharmaceutically acceptable salt thereof.

5. (Currently amended): A compound of Claim 4 2

wherein:

R₄ is selected from halogen, NH₂, O-phenyl, benzyl, O-benzyl, N-benzyl, N-benzyl-O-phenyl, S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, CN, CF₃, or OH; or R₄ is or a moiety of the formulae:

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, O-phenyl, benzyl, O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, CF₃, or OH;

R₇ is selected from (CH₂)_n-COOH, (CH₂)_n-N(C₁-C₆ alkyl)₂, (CH₂)_n-NH(C₁-C₆ alkyl), CF₃, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkoxy, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, O-phenyl, benzyl, O-benzyl, adamantlyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, CF₃, or OH;

n is an integer from 0 to 3;

R₃ is selected from H, CF₃, COOH, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, CHO, halogen, or a moiety of the formulae:

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, NH₂, NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅ cycloalkyl, or the groups of:

a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl(O-CH₂-phenyl)₂, CH₂-phenyl-C(O)-benzothiazole or a moiety of the formulae:

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thieryl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, NH₂, NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

wherein

~~D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or CF₃;~~
~~B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, CF₃, OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, or NO₂; or~~

c) a moiety of the formulae:

~~wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, CF₃, OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, NH₂, or NO₂; or~~

— d) — a moiety of the formula L^2-M^2 , wherein:

— L^2 indicates a linking or bridging group of the formulae $(CH_2)_n-S-$, $S-$, $O-$, SO_2- , $C(O)-$, $(CH_2)_n-C(O)-$, $(CH_2)_n-C(O)-(CH_2)_n-$, $(CH_2)_n-O-(CH_2)_n-$, or $(CH_2)_n-S-(CH_2)_n-$, $C(O)C(O)X$;

where $X = O, N$

— M^2 is selected from the group of C_4-C_6 lower alkyl, C_4-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_4-C_{10} alkyl, preferably C_4-C_6 alkyl, C_4-C_{10} alkoxy, preferably C_4-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

— i) — a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_4-C_{10} alkyl, preferably C_4-C_6 alkyl, C_4-C_{10} alkoxy, preferably C_4-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

— ii) — a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_4-C_{10} alkyl, preferably C_4-C_6 alkyl, C_4-C_{10} alkoxy, preferably C_4-C_6 alkoxy, $-CHO$, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$ or $-OH$; or

— iii) — a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, naphthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_4-C_{10} alkyl, preferably C_4-C_6 alkyl, C_4-C_{10} alkoxy, preferably C_4-C_6 alkoxy, $-CHO$, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$ or $-OH$;

— R_5 is selected from $-COOH$, $-C(O)COOH$, $(CH_2)_n-C(O)COOH$, $(CH_2)_n-COOH$, $CH_2-phenyl-C(O)-benzothiazole$, $(CH_2)_n-CH=CH-COOH$,

n is an integer from 0 to 3;

R_8 is selected from H, COOH , $(\text{CH}_2)_n\text{COOH}$, $(\text{CH}_2)_n\text{C(O)COOH}$, tetrazole, C(O)NH_2 , $(\text{CH}_2)_n\text{C(O)NH}_2$,

n is an integer from 0 to 3;

R_9 is selected from H, halogen, CF_3 , OH, $(\text{CH}_2)_n\text{COOH}$, $(\text{CH}_2)_n\text{C(O)COOH}$, $\text{C}_1\text{--C}_6$ alkyl, $\text{O--C}_1\text{--C}_6$ alkyl, $\text{NH(C}_1\text{--C}_6\text{ alkyl)}$, $\text{N(C}_1\text{--C}_6\text{ alkyl)}_2$;

n is an integer from 0 to 3;

R_{10} is selected from the group of H, halogen, CF_3 , OH, $(\text{CH}_2)_n\text{COOH}$, $(\text{CH}_2)_n\text{C(O)COOH}$, $\text{C}_1\text{--C}_6$ alkyl, $\text{O--C}_1\text{--C}_6$ alkyl, $\text{NH(C}_1\text{--C}_6\text{ alkyl)}$, $\text{N(C}_1\text{--C}_6\text{ alkyl)}_2$,

n is an integer from 0 to 3;

R₄₄ is selected from H, C₁-C₆ lower alkyl, CF₃, COOH, (CH₂)_n-COOH, (CH₂)_n-C(O)-COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₄₀, and/or R₄₄ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, (CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

6-9. (Canceled).

10. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

11. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-furylmethyl)sulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

12. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{{(4-hydroxy-6-phenyl-2-pyrimidinyl)sulfanyl}methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

13. (Original) A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{{(4-(2-thienyl)-2-pyrimidinyl)sulfanyl}methyl}-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

14. (Original) A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2,4-dibromophenoxy)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

15. (Original) A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(cyclopentylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

16. (Original) A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(propylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

17. (Original) A compound of Claim 1 which is 4-{{2-{{4-(tert-butyl)phenoxy}methyl}-3-chloro-5-[(cyclopentylcarbonyl)amino]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

18. (Original) A compound of Claim 1 which is 4-{{3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-quinolinylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

19. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{{(cyclopropylmethyl)sulfanyl}methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

20. (Canceled).

21. (Original) A compound of Claim 1 which is 4-{{5-[(3-carboxypropanoyl)amino]-3-chloro-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl)methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

22. (Original) A compound of Claim 1 which is 4-[(5-[(3-carboxypropanoyl)amino]-3-chloro-2-[(3-methylbenzyl)sulfanyl]methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

23. (Original) A compound of Claim 1 which is 4-(2-({[4-(tert-butyl)benzyl}sulfanyl)methyl)-5-[(3-carboxypropanoyl)amino]-3-chloro-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

24-27. (Canceled).

28. (Original) A compound of Claim 1 which is 4-(5-{[(benzylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

29-34. (Canceled).

35. (Original) A compound of Claim 1 which is 4-(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

36-37. (Canceled).

38. (Original) A compound of Claim 1 which is 4-(5-{[(benzyloxy)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

39. (Original) A compound of Claim 1 which is 4-(3-chloro-5-[(cyclopentyloxy)carbonyl]amino)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

40-43. (Canceled).

44. (Original) A compound of Claim 1 which is 4-(5-(benzylamino)-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

45. (Original) A compound of Claim 1 which is 4-(*{3-chloro-2-[[(2-naphthylsulfanyl)methyl]-5-[(3-phenoxybenzyl)amino]-1H-indol-1-yl}methyl*)benzoic acid or a pharmaceutically acceptable salt thereof.

46. (Original) A compound of Claim 1 which is 4-(*{3-chloro-5-[(cyclopentylcarbonyl)(methyl)amino]-2-[[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl*)benzoic acid or a pharmaceutically acceptable salt thereof.

47. (Original) A compound of Claim 1 which is 4-(*{5-[acetyl(benzyl)amino]-3-chloro-2-[[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl*)benzoic acid or a pharmaceutically acceptable salt thereof.

48-51. (Canceled).

52. (Original) A compound of Claim 1 which is 4-(*{3-chloro-2-[[(2-naphthylsulfanyl)methyl]-5-[(3-phenylpropanoyl)amino]-1H-indol-1-yl}methyl*)benzoic acid or a pharmaceutically acceptable salt thereof.

53-66. (Canceled).

67. (Original) A compound of Claim 1 which is 4-(*{3-benzoyl-5-(benzyloxy)-2-[[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl*)benzoic acid or a pharmaceutically acceptable salt thereof.

68-94. (Canceled).

95. (Currently amended): A method of inhibiting the phospholipase activity of an enzyme in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a ~~pharmaceutical composition compound~~ of claim 1.

96. (Currently amended): A method of treating an inflammatory response in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a ~~pharmaceutical composition compound~~ of Claim 1.

97. (Original): A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.