INF01046 - Fundamentos de Processamento Imagens

Aula 09 - Filtros no domínio espacial - Cont

Horacio E. Fortunato

Instituto de Informática Universidade Federal de Rio Grande do Sul Porto Alegre - RS

hefortunato@inf.ufrgs.br

Link do curso: http://www.inf.ufrgs.br/~hefortunato/cursos/INF01046 Adaptado de slides do Prof.Manuel Menezes de Oliveira Neto (INF-UFRGS)

16 de setembro de 2009

(UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 1 / 24

Filtros de aguçamento no domínio espacial

- Utilizados para
 - Resaltar detalhes finos
 - Realçar detalhes borrados por erro ou na aquisição
- Campos de aplicação:
 - Impressão eletrônica
 - realce de imagens médicas
 - Pre-pro cessamento em sistemas de inspeção industrial
 - Guía automática de sistemas militares

o E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 3 / 24

Filtros de aguçamento por derivadas

Filtros de aguçamento por derivadas

Processamento Digital de Imagens - Nesta disciplina

INF01046 - Fundamentos de Processame 16 de setembro de 2009 2 / 24

spaços de Cores nagens em Alta Faixa Dinâmica

Filtros de aguçamento por derivadas

- A média dos vizinhos de um pixel tende a borrar os detalhes e consiste na "integral" da imagem na região vizinha do pixel.
- Pode esperar-se que o aguçamento dos detalhes esteja relacionado com as "derivadas da imagem" em cada pixel.
- Na prática, é utilizado o conceito de derivadas para construir filtros de aguçamento

.inf

o E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 4 / 24

Filtros de aguçamento por derivadas

Filtros de aguçamento por derivadas

Filtros de aguçamento por derivadas

Imagem extraída do livro: Digital image processing 2 ed. Gonzales e woods

acio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 9 / 24

Derivadas de 1ª Ordem

- Derivadas de funções discretas são obtidas por meio de diferenças finitas
- As derivadas parciais de 1a ordem são obtidas como

$$\frac{\partial f(x,y)}{\partial x} = \frac{f(x+1,y) - f(x,y)}{h} = f(x+1,y) - f(x,y)$$

$$\frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$$

o E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 11 / 24

Filtros de aguçamento por derivadas - Comparação

- Derivada primeira: melhor para deteção de bordas
 - bordas mais largas
 - maior resposta a degraus
- Derivada segunda: melhor para realce de imagens (detalhes finos)
 - melhor resposta a detalhes finos
 - resposta dupla a degraus
 - melhor resposta a linhas que a degraus

ato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 13 / 24

Filtros de aguçamento por derivadas - Laplaciano

• As direções diagonais também podem ser incorporadas de maneira análoga, resultando em

$$\begin{split} \nabla^2 f(x,y) = & \left[f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) \right] + \\ & \left[f(x+1,y+1) + f(x-1,y-1) + f(x+1,y-1) + f(x-1,y+1) \right] \\ & - 8f(x,y) \end{split}$$

Implementado pelos kernels

1	1	1	
1	-8	1	(
1	1	1	

ou

-1	-1	-1
-1	8	-1
-1	-1	-1

.ın£

Valores da 1ª e 2^{da} Derivadas

- Zero em regiões com valores constantes
 - Regiões de baixas freqüências
- Diferente de zero em pontos de transição bruscas
 - Locais de altas freqüências
- Quando os tons variam de modo constante (rampa)
 - 1ª derivada diferente de zero
 - 2^{da} derivada igual a zero
- 1ª e 2^{da} derivadas podem ser utilizadas para detecção de bordas
- A 2^{da} derivada é mais utilizada

nato (UFRGS) INFO1046 - Fundamentos de Processame 16 de setembro de 2009 10 / 24

Derivadas de 2ª Ordem

As derivadas de 2ª ordem são então obtidas como

$$\begin{split} \frac{\partial^2 f(x,y)}{\partial x^2} &= \frac{\frac{\mathcal{G}(x,y)}{\partial x} - \frac{\mathcal{G}(x-1,y)}{\partial x}}{h} = \frac{(f(x+1,y) - f(x,y)) - (f(x,y) - f(x-1,y))}{h^2} \\ &= f(x+1,y) + f(x-1,y) - 2f(x,y) \end{aligned} \tag{1}$$

$$\frac{\partial^2 f(x,y)}{\partial x^2} = f(x,y+1) + f(x,y-1) - 2f(x,y) \tag{2}$$

ato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 12 / 24

Filtros de aguçamento por derivadas - Laplaciano

Operador isotrópico para detecção de arestas

$$\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

Substituindo-se (1) e (2) na expressão acima tem-se:

$$\nabla^2 f(x, y) = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] - 4f(x, y)$$

Implementado pelos kerne

	0	1	0
els	1	-4	1
	0	1	0

0

(UFRGS) INFO1046 - Fundamentos de Processame 16 de setembro de 2009 14 / 24

Filtros de aguçamento - Laplaciano

Origina realce de detalhes soma de original e Laplaciano para facilita a visualizaçã

Filtros de aguçamento - Laplaciano

Imagem extraída do livro: Digital image processing 2 ed., Gonzales e woods

.inf

cio E. Fortunato (UFRGS) INFO1046 - Fundamentos de Processame 16 de setembro de 2009 17 / 24

Filtros de aguçamento - High boost

Imagem extraída do livro: Digital image processing 2 ed., Gonzales e woods

ınf

acio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009

Filtros de aguçamento - Gradiente

	-1	0	0	-1	
	0	1	1	0	
-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Imagem extraída do livro: Digital image processing 2 ed., Gonzales e woods

.ınf

acio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 21 / 24

Filtros de aguçamento - Combinação de técnicas

ınf igem extraída do livro: Digital image processing 2ed, Gonzales e woods. oracio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 23 / 24

Filtros de aguçamento - High boost

- Enfatiza as altas freqüências
- ullet A > 1: Laplaciano + uma versão escalada da imagem original
- Recomendado se a imagem original é mais escura que o desejado

Mascaras para filtros high-boost:

0	-1	0	-1	-1	-1
-1	A + 4	-1	-1	A + 8	-1
0	-1	0	-1	-1	-1

Imagem extraída do livro: Digital image processing 2ed, Gonzales e woods

INF01046 - Fundamentos de Processame 16 de setembro de 2009 18 / 24

ınf

Filtros de aguçamento por derivadas - Gradiente

Gradiente de uma imagem f(x,y) em (x,y)

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \partial f / \partial x \\ \partial f / \partial y \end{bmatrix} \qquad \begin{aligned} \nabla f &= mag(\nabla \mathbf{f}) = \begin{bmatrix} G_x^2 + G_y^2 \end{bmatrix}^{1/2} \\ \Theta &= \arctan(G_x / G_y) \end{aligned}$$

- Gradiente aproximado por diferenças centrais
 - $G_X(x,y) \approx f(x+1, y) f(x-1, y)$
 - $G_{V}(x,y) \approx f(x, y+1) f(x, y-1)$
- Por questões de desempenho

 $\nabla f \approx |G_x| + |G_y|$

Somando-se 127 ao valor de cada pixel, cria efeito de "embossing"

E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 20 / 24

Filtros de aguçamento - Gradiente

Lente de contato

Imagem extraída do livro: Digital image processing 2 ed., Gonzales e woods

ınf

cio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 16 de setembro de 2009 22 / 24

Processamento Digital de Imagens - Tarefas

Tarefas Acumuladas:

- Leia o Capítulo 1 (aula 01) do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)
 Leia o Capítulo 2 (aulas 02, 04) do Gonzalez, R. & Woods 2da Ed. (em Inglês)
 Faça os exercícios do Capítulo 2 do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)
 Leia as seções 31,32, 33 e 34 do Capítulo 3 (aulas 05, 06, 07 e 08) do livro Gonzalez, R. Woods 2da Ed. (em Inglês)
 R. Woods 2da Ed. (em Inglês)
 Faça os exercícios do Capítulo 3, (Problemas 3.1 até 3.24) do livro Gonzalez, R. Woods
- 2da Ed. (em Inglês)

 Estude as seções 1, 2 e 3 do tutorial do MATLAB

http://www.mathworks.com/access/helpdesk/help/pdf doc/matlab/getstart.pdf

Tarefas Novas:

- Leia as seções 3.7 e 3.8 do Capítulo 3 (aula 09) do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)
- Faça os exercicios do Capítulo 3,(Problemas 3.25 até 3.29) do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)

 ${\tt Nota\ Importante:\ No\ livro\ Gonzalez,\ R.\ \&\ Woods\ em\ português\ os\ capítulos\ possuem\ número\ diferente}$

Livro Gonzalez, R. & Woods 2ª Ed. (em Inglês): Gonzalez, R. & Woods, R. Digital Image Processing 2ª Ed. Prentice Hall, 2002.