Математический анализ

Храбров Александр Игоревич

21 сентября 2022 г.

Содержание

1. Теория меры			1	
	1.1	Система множеств	2	
	1.2	Объем и мера	6	
	1.3	Продолжение мер	9	
	1.4	Мера Лебега	13	

1. Теория меры

1.1. Система множеств

Полезные обозначения: $A \sqcup B$ - объединение A и B, такие что $A \cap B = \emptyset$

Определение 1.1. Набор мн-в дизъюнктный, если мн-ва попарно не пересекаются: $\bigsqcup_{\alpha \in I} A_{\alpha}$

Определение 1.2. E – мн-во; если $E = \bigsqcup_{\alpha \in I} E_{\alpha}$ – разбиение мн-ва E.

Напоминание:

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap X \setminus A_{\alpha}$$

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup X \setminus A_{\alpha}$$

Определение 1.3. \mathcal{A} – система подмн-в X: $A \subset 2^X$

- 1. (δ_0) : если $\forall A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- 2. (σ_0) : если $\forall A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$
- 3. (δ) : если $A_n \in \mathcal{A}, \ \forall n \implies \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$
- 4. (σ): если $A_n \in \mathcal{A}, \ \forall n \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Определение 1.4. \mathcal{A} – симметрическая система мн-в, если $\forall A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$.

Утверждение 1.1. Если \mathcal{A} – симм., то $(\delta_0) \Leftrightarrow (\sigma_0)$ и $(\delta) \Leftrightarrow (\sigma)$.

Доказательство.
$$A_{\alpha \in I} \mathcal{A} \Leftrightarrow X \setminus A_{\alpha} \in \mathcal{A} \implies \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha} \in \mathcal{A}$$

Определение 1.5. \mathcal{A} – алгебра мн-в, если \mathcal{A} – симметр., $\emptyset \in \mathcal{A}$ и $\forall A, B \in \mathcal{A} : A \cup B \in \mathcal{A}$ (по утв. 1.1 $(\delta_0) \Leftrightarrow (\sigma_0)$; смотри опр. алгебры).

Свойства. алгебры мн-в:

- 1. $\varnothing, X \in \mathcal{A}$
- 2. Если $A_1, \ldots, A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k \in \mathcal{A} \wedge \bigcap_{k=1}^n A_k \in \mathcal{A}$
- 3. Если $A,B\in\mathcal{A},$ то $A\cap(X\setminus B)=A\setminus B\in\mathcal{A}$

Определение 1.6. \mathcal{A} - σ -алгебра мн-в, если \mathcal{A} - симм., $\emptyset \in \mathcal{A}$ и свойство (σ) выполнено (т.е. есть замкнутость по объединению любого числа множетсв; в силу симметричности по утв. 1.1 получаем (σ) \Leftrightarrow (δ)).

Замечание. σ -алгебра \Longrightarrow алгебра.

Пример. 1. 2^X - σ -алгебра.

- 2. $X = \mathbb{R}^2$, \mathcal{A} всевозможные огр. подмн-ва. \mathbb{R}^2 и их дополнения. (\mathcal{A} алгебра, но не σ -алгебра). **Rem**: огр. множество - в метрич. пр-ве это множетсво ограниченного диаметра (d(x, y) := ||x-y||), т.е. $\sup\{d(x, y) \mid x, y \in X\}$ - ограничен.
- 3. \mathcal{A} алгебра (σ -алгебра) подмн-в X и $Y \subset X$. $\mathcal{A}_Y := \{A \cap Y : A \in \mathcal{A}\}$ индуцированная алгебра (σ -алгебра).

- 4. Пусть \mathcal{A}_{α} алгебры (σ -алгебры), тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ алгебра (σ -алгебра).
- 5. $A,B\subset X$ ниже перечислено, что есть в алгебре, содержащей A,B: $\varnothing,X,A,B,A\cup B,A\cap B,A\setminus B,B\setminus A,X\setminus A,X\setminus B,X\setminus (A\cup B),X\setminus (A\cap B),A\bigtriangleup B,X\setminus (A\bigtriangleup B),X\setminus (A\setminus B),X\setminus (B\setminus A).$

Теорема 1.2. Пусть ϵ – семейство подмн-в в X, тогда существует наименьшая по включению σ -алгебра (алгебра) \mathcal{A} , такая что $\epsilon \subset \mathcal{A}$.

Доказательство. \mathcal{A}_{α} – всевозможные σ -алгебры $\supset \epsilon$. Такие есть, так как 2^X подходит.

 $\mathcal{A} := \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} \supset \epsilon$. Теперь проверим, что \mathcal{A} – наим. по вкл. $\mathcal{A} \subset A_{\alpha} \ \forall \alpha \in I$.

Определение 1.7. 1. Такая σ -алгебра – борелевская оболочка ϵ – ($\mathcal{B}(\epsilon)$).

2. $X = \mathbb{R}^n$; такая σ -алгебра, натянутая на все открытые мн-ва – борелевская σ -алгебра (\mathcal{B}^n) .

Замечание. $\underbrace{\mathcal{B}^n}_{\text{континуальное}}
eq \underbrace{2^{\mathbb{R}^n}}_{\text{больше континуального}}$

Определение 1.8. R – кольцо, если $\forall A, B \in R \implies A \cup B, A \cap B, A \setminus B \in R$.

Замечание. Кольцо $+ (X \in R) \implies$ алгебра.

Определение 1.9. *P* – полукольцо, если

- 1. $\varnothing \in P$
- $2. \ \forall A, B \in P \implies A \cap B \in P$
- 3. $\forall A, B \in P \implies \exists Q_1, Q_2, \dots, Q_n \in P$, такие что $A \setminus B = \bigsqcup_{k=1}^n Q_k$.

Пример. $X = \mathbb{R}, P = \{(a, b] : a, b \in X\}$ – полукольцо.

Clorcolo 2;

$$\frac{A \cap g}{(mm)} \Rightarrow A \cap G \in S$$

$$(3 = : A (3 = : B)$$

Closoch 3:

Лемма.
$$\bigcup_{n=1}^{N} A_n = \bigsqcup_{n=1}^{N} A_n \setminus \left(\bigcup_{k=1}^{n-1} A_k\right).$$

Доказательство. \supset : Дизъюнктивность $B_n \subset A_n$ и при m > n $B_m \cap A_n = \varnothing \implies B_n \cap B_m = \varnothing$. \subset : Пусть $x \in \bigcup_{n=1}^N A_n$. Возьмем наим. m, такой что $x \in A_m \implies x \in B_m \implies x \in \bigcup_{n=1}^N B_n$. \square

Теорема 1.3. $P, P_1, P_2, \dots \mathcal{P}$. Тогда

1.
$$P \setminus \bigcup_{k=1}^n P_k = \bigcup_{j=1}^m Q_j$$
, где $Q_j \in \mathcal{P}$ – полукольцо.

2.
$$\bigcup_{k=1}^{n} P_k = \bigcup_{k=1}^{n} \bigcup_{j=1}^{m_k} Q_{kj}$$
, где $Q_{kj} \in \mathcal{P}$ и $Q_{kj} \subset P_k$.

Доказательство. 1. индукция по n. База – опр. полукольца. Переход $(n \to n+1)$:

$$P \setminus \bigcup_{k=1}^{n+1} P_k = (P \setminus \bigcup_{k=1}^n P_k) \setminus P_{k+1} = \bigsqcup_{j=1}^m \left(\underbrace{Q_j \setminus P_{n+1}}_{\bigcup_{i=1}^{l_j} Q_{ji}} \right)$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} \left(\underbrace{P_k \setminus \bigcup_{j=1}^{k-1} P_j}_{Q_{kj}} \right)$$

Замечание. В (2) можно писать $n = \infty$.

Определение 1.10. \mathcal{P} – полукольцо подмн-ва X.

 \mathcal{Q} — полукольцо подмн-ва Y.

 $\mathcal{P} \times \mathcal{Q} := \{P \times Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – декартово произведение полуколец.

Теорема 1.4. Декартово произведение полуколец – полукольцо.

Доказательство.

$$(P\times Q)\cap (P'\times Q')=(P\cap P')\times (Q\cap Q')$$

$$(P\times Q)\setminus (P'\times Q')=(P\setminus P')\times Q\sqcup (P\cap P')\times (Q\setminus Q')$$

Замечание. Остальные структуры не сохр. при декартовом произведении: $2^X \times 2^Y$ — полукольцо.

Определение 1.11. Замкнутый параллелепипед $a, b \in \mathbb{R}^m$.

$$[a, b] = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_m, b_m]$$

Открытый параллелепипед:

$$(a,b) = (a_1,b_1) \times (a_2,b_2) \times \cdots \times (a_m,b_m)$$

Ячейка:

$$(a,b] = (a_1,b_1] \times (a_2,b_2] \times \cdots \times (a_m,b_m]$$

Теорема 1.5. Непустая ячейка – перечисление убыв. посл. открытых паралл. / объединение возраст. послед. замкн.

Доказательство. $P_n := (a_1, b_1 + \frac{1}{n}) \times \cdots \times (a_m, b_m + \frac{1}{n})$

$$P_n \supset P_{n+1}$$
 и $\bigcap_{n=1}^{\infty} P_n = (a, b]$

$$Q_n := \left[a_1 + \frac{1}{n}, b_1\right] \times \cdots \times \left[a_m + \frac{1}{n}, b_m\right]$$

$$Q_n \subset Q_{n+1}$$
 и $\bigcup_{n=1}^{\infty} Q_n = (a, b]$

Обозначения: \mathcal{P}^m – сем-во ячеек из \mathbb{R}^m .

 \mathcal{P}_Q^m – сем-во ячеек из \mathbb{R}^m с рациональными координатами вершин.

Теорема 1.6. $\mathcal{P}^m, \mathcal{P}_Q^m$ – полукольца.

Доказательство. $\mathcal{P}^m = \mathcal{P}^{m-1} \times \mathcal{P}^1$

$$\mathcal{P}_Q^m = \mathcal{P}_Q^{m-1} imes \mathcal{P}_Q^1$$

Теорема 1.7. $G \neq \emptyset$ – открытое множество в \mathbb{R}^m . Тогда его можно представить как не более чем счетное дизъюнктивное объелинение ячеек, замыкание каждой из которых содержится в G (можно считать, что ячейки с рациональными координатными вершинами).

Доказательство. R_x – ячейка, $Cl(R_x)$ $\subset G$, $x \in R_x$, получаем, что $G = \bigcup_{x \in G} R_x$.

Выкинем повторы: $G = \bigcup_{n=1}^{\infty} R_{x_n} = \bigsqcup_{n=1}^{\infty} \bigsqcup_{j=1}^{m_n} Q_{nj}$

Следствие. $\mathcal{B}(\mathcal{P}_Q^m) = \mathcal{B}^m$.

Доказательство. 1. $\mathcal{P}^m\supset\mathcal{P}_Q^m\implies\mathcal{B}(\mathcal{P}^m)\supset\mathcal{B}(\mathcal{P}_Q^m)$

$$(a,b] \in \mathcal{B}^m \implies \mathcal{P}^m \subset \mathcal{B}^m \implies \mathcal{B}(\mathcal{P}^m) \subset \mathcal{B}^m$$
 G – открытое $\implies G \in \mathcal{B}(\mathcal{P}_Q^m) \implies \mathcal{B}(\mathcal{P}_Q^m) \supset \mathcal{B}^m$

1.2. Объем и мера

Определение **1.12.** \mathcal{P} – полукольцо. μ : \mathcal{P} → $[0, +\infty]$. μ – объем, если

- 1. $\mu(\emptyset) = 0$
- 2. Если $P_1, P_2, \dots, P_n \in \mathcal{P}$ и $\bigsqcup_{k=1}^n P_k \in \mathcal{P}$, то $\mu(\bigsqcup_{k=1}^n P_k) = \sum_{k=1}^n \mu P_k$

Определение 1.13. μ – мера, если

- 1. $\mu(\emptyset) = 0$
- 2. Если $P_1, P_2, \dots \in \mathcal{P}$ и $\bigsqcup_{k=1}^{\infty} P_k \in \mathcal{P}$, то μ $\left(\bigsqcup_{k=1}^{\infty} P_k\right) = \sum_{k=1}^{\infty} \mu P_k$

Упражнение. μ – мера. Если $\mu \not\equiv +\infty$, то условия $\mu\varnothing = 0$ выполнено автоматически.

Пример. 1. \mathcal{P}^1 , $\mu(a,b] := b - a$ – длина (упр. доказать, что объем и мера).

- 2. $g: \mathcal{R} \to \mathcal{R}$ нестрого монотонная
 - (a) $\mu_q(a,b] := g(b) g(a)$ (упр. доказать, что объем).
- 3. \mathcal{P}^m (m-мерные ячейки), $\mu(a,b] := (b_1-a_1)(b_2-a_2)\dots(b_m-a_m), \ a:=(a_1,\ ...,\ a_m), \ b:=(b_1,\ ...,\ b_m)$ классический объем.
- 4. $\mathcal{P} = 2^X$, $x_0 \in X$, $a \ge 0$

$$\mu A := \begin{cases} a, & if \ x_0 \in A \\ 0, & otherwise \end{cases}$$
 (1)

 μ - mepa.

5. P – огр. мн-ва и их дополнения.

$$\mu A := \begin{cases} 1, & \text{if } x_0 \in A \\ 0, & \text{otherwise} \end{cases}$$
 (2)

 μ - объем, но не мера.

Теорема 1.8. μ - объем на полукольце \mathcal{P}

- 1. Монотонность: $\mathcal{P} \ni P \subset \tilde{P} \in \mathcal{P} \implies \mu P \leq \mu \tilde{P}$
- 2. (a) Усиленная монотонность: $P_1, P_2, \dots P_n, P \in \mathcal{P}$. $\bigsqcup_{k=1}^n P_k \subset P \implies \sum_{k=1}^n \mu P_k \leq \mu P$
 - (b) Пункт (a), но $n = \infty$

3. Полуаддитивность: $P, P_1, P_2, \dots P_n \in \mathcal{P}$ и $P \subset \bigcup_{k=1}^n P_k$, тогда $\mu P \leq \sum_{k=1}^n \mu P_k$

Доказательство. 1. Очев типо.

2. (a)
$$P \setminus \bigsqcup_{k=1}^{n} \mu P_k = \bigsqcup_{j=1}^{m} Q_j \implies P = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \implies \mu P = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$$

(b)
$$\bigsqcup_{k=1}^{\infty} P_k \subset P \implies \bigsqcup_{k=1}^{n} P_k \subset P \implies \sum_{k=1}^{n} \mu P_k \to \sum_{k=1}^{\infty} \mu P_k \leq \mu P$$

3.
$$P_k' := P \cap P_k \in \mathcal{P} \ (\mathcal{P} \text{ - полукольцо}), \quad P = \bigcup_{k=1}^n P_k' = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^{m_k} Q_{kj} \implies \sum_{k=1}^n Q_{kj} \in \mathcal{P}_k'$$

$$\implies \mu P = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu Q_{kj} \le \sum_{k=1}^{n} \mu P_k$$
$$\le \mu P_k' \le \mu P_k \text{ (property 2(a).)}$$

Замечание. 1. Если \mathcal{P} – кольцо и $A, B \ (B \subset A) \in \mathcal{P}$, то $A \setminus B \in \mathcal{P}$

$$\mu(A \setminus B) + \mu B = \mu A$$

Если
$$\mu B \neq +\infty$$
, то $\mu(A \setminus B) = \mu A - \mu B$

Теорема 1.9. \mathcal{P} – полукольцо подмн-в X, μ – объем на \mathcal{P}

 \mathcal{Q} – полукольцо подмн-в Y, ν – объем на \mathcal{Q}

$$\lambda(P \times Q) := \mu P \cdot \nu Q$$
, где $0 \cdot +\infty = +\infty \cdot 0 = 0$

Тогда λ – объем на $P \times Q$.

Следствие. Классический объем на ячейках – действительно объем.

Доказательство. Простой случай. $P = \bigsqcup_{k=1}^n P_k, Q = \bigsqcup_{j=1}^m Q_j,$ тогда:

$$P \times Q = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^m P_k \times Q_j$$
, докажем, что
$$\underbrace{\lambda(P \times Q)}_{\sum_{k=1}^n \mu P_k \cdot \sum_{j=1}^m \nu Q_j = \mu P \cdot \nu Q} = \sum_{k=1}^n \sum_{j=1}^m \underbrace{\lambda(P_k \times Q_j)}_{\mu P_k \cdot \nu Q_j}$$

Общий случай.

$$P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$$

$$P = \bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{N} P'_k$$

$$Q = \bigcup_{j=1}^{m} Q_j = \bigsqcup_{j=1}^{M} Q'_j$$

Пример. 1. Классический объем на ячейках λ_m – мера

2. $g: \mathbb{R} \to \mathbb{R}$ нестрого монотонная возрастающая и непрерывна слева во всех точках, тогда $\nu_q(a,b] := g(b) - g(a)$ – мера.

(Rem: $\lim_{x\to a^-} f(x) = f(a)$ – непрерывность слева).

- 3. Считающаяся мера: $\mu A := \# A$ кол-во элементов.
- 4. $T = \{t_1, t_2, \dots\}$ не более чем счетное множетсво, $w_1, w_2, \dots \ge 0$, $\mu A := \sum_{k: t_k \in A} w_k \to \mu$ мера.

Доказательство. 4. $A = \bigsqcup_{n=1}^{\infty} A_n \implies \mu A = \sum_{n=1}^{\infty} \mu A_n$

Обозначения:

- 1. $\sum_{n=1}^{N} \sum_{k: t_k \in A_n} w_k (*)$.
- 2. $\sum_{k: t_k \in A} w_k (**).$
- 3. $\sum_{n=1}^{\infty} \sum_{k: t_k \in A_n} w_k \ (***).$
- 1. $\mu A = \sum_{k: \ t_k \in A} w_k \ (**) \ge \sum_{n=1}^N \sum_{k: \ t_k \in A_n} w_k \ (*) \text{т.к.} \ A_i \cap A_j = \varnothing \ (\forall i, \ j: \ i \ne j),$ то каждое слагаемое w_k не более 1 раза попадет в (*) и $A = \bigsqcup_{n=1}^\infty A_n$.
- 2. $\sum_{n=1}^{\infty} \mu A_n = \sum_{n=1}^{\infty} \sum_{k: t_k \in A_n} w_k \ (***) \ge \sum_{k: t_k \in A}$ нер-во верно, так как мы можем к каждому w_k из (**) найти этот же w_k в (***).

Итого имеем равенство:

$$(**)=(***): \sum_{k:\ t_k\in A} w_k = \sum_{n=1}^\infty \sum_{k:\ t_k\in A_n} w_k \implies \mu A = \sum_{n=1}^\infty \mu A_n,$$
 чтд.

(<u>От автора</u>: если у кого-то лучше расписано данное док-во, сделайте, пожалуйста, PR).

Теорема 1.10. О счетной аддитивности меры μ -объем на полукольце \mathcal{P} . Тогда μ -мера \Leftrightarrow если $P \subset \bigcup_{n=1}^{\infty} P_n \ P, P_n \in \mathcal{P}$, то $\mu \cdot P \leq \sum_{n=1}^{\infty} \mu \cdot P_n$ (счетная полуаддитивность).

Доказательство. " \leftarrow ": Пусть $P = \bigsqcup_{n=1}^{\infty} P_n$, тогда нажо д-ть, что $\mu P = \sum_{n=1}^{\infty} \mu P_n$: для " \leq " – счетная полуаддитивность, для " \geq " – усиленная монот. объема.

"Э":
$$P'_n:=P\cap P_n\implies P=\bigcup_{n=1}^\infty P'_n\implies P=\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty Q_{nk},$$
 где $Q_{nk}\subset P'_n\implies \mu P=\sum_{n=1}^\infty\sum_{k=1}^m\mu Q_{nk}$ – усиленная монот. объема. $\bigcup_{k=1}^{m_k}Q_{nk}\subset P'_n\subset P_n.$

Следствие. Если μ -мера на σ -алгебре, то счетное объединение мн-в ненулевой меры — мн-во нулевой меры.

Доказательство.
$$\mu A_n = 0 \implies \mu\left(\bigcup_{n=1}^{\infty}\right) \le \sum_{n=1}^{\infty} \mu A_n = 0.$$

Теорема 1.11. о непрерывности меры снизу.

 μ -объем на σ -алгебре \mathcal{A} . Тогда μ -мера \Leftrightarrow если $\mathcal{A} \ni A_n \subset A_{n+1}$, то $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu A_n$ – непр. меры снизу.

Доказательство. " \rightarrow ": $A \ni B_n := A_n \setminus A_{n-1}, \ A_0 = \emptyset$.

$$B_n$$
 – дизъюнктны: $\bigsqcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

$$\mu\left(\bigcup A_n\right) = \mu \bigsqcup B_n = \sum_{n=1}^{\infty} \mu B_n = \lim_{n \to \infty} \sum_{k=1}^n \mu B_k = \lim \mu A_n.$$

"
—": Пусть
$$C = \bigsqcup_{n=1}^{\infty} C_n$$
, надо д-ть, что $\mu C = \sum_{n=1}^{\infty} \mu C_n$.

$$A_n := \bigsqcup_{k=1}^n C_k, \ A_n \subset A_{n+1}, \ \bigcup_{n=1}^\infty A_n = \bigsqcup_{n=1}^\infty C_n$$

$$\underbrace{\mu\left(\bigcup_{n=1}^{\infty} A_n\right)}_{=\mu(\bigcup_{n=1}^{\infty} C_n)} = \lim \mu A_n = \lim \mu\left(\bigcup_{k=1}^n C_k\right) = \lim \sum_{k=1}^n \mu C_k = \sum_{n=1}^{\infty} \mu C_n \qquad \Box$$

Теорема 1.12. о непрерывности меры сверху.

 μ – объем на σ -алгебре \mathcal{A} и $\mu X < +\infty$.

Тогда равносильны:

- 1. *μ* мера
- 2. если $A_n \supset A_{n+1}$, то $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim \mu A_n$
- 3. если $A_n \supset A_{n+1}$ и $\bigcap_{n=1}^{\infty} A_n = \emptyset$, то $\lim \mu A_n = 0$.

Доказательство. (1) \Longrightarrow (2): $A_n \supset A_{n+1} \Longrightarrow B_n := X \setminus A_n \subset X \setminus A_{n+1} =: B_{n+1}$. $\bigcup_{n=1}^{\infty} B_n = X \setminus \bigcap_{n=1}^{\infty} A_n$.

$$\implies \underbrace{\mu\left(\bigcup_{n=1}^{\infty} B_n\right)}_{\mu(X\setminus\bigcap_{n=1}^{\infty} A_n)} = \lim \mu B_n = \lim \mu(X\setminus A_n) = \lim(\mu X - \mu A_n)$$

(3)
$$\Longrightarrow$$
 (1): $C = \bigsqcup_{n=1}^{\infty} C_n$, надо д-ть, что $\mu C = \sum_{n=1}^{\infty} \mu C_n$.

$$A_n:=\bigsqcup_{k=n+1}^\infty C_k,\ A_n\supset A_{n+1}$$
 и $\bigcap_{n=1}^\infty A_n=\varnothing,$ тогда $\lim\mu A_n=0.$

$$C = \bigsqcup_{k=1}^{n} C_k \sqcup A_n \implies \mu C = \sum_{k=1}^{n} \mu C_k + \mu A_n.$$

Следствие. Если μ – мера, то $A_n \supset A_{n+1}$ и для некоторого m $\mu A_m < +\infty$

Доказательство.
$$X := A_n$$

Упражнение. Придумать объем, не являющийся мерой, обладающей св-вом из следствия.

1.3. Продолжение мер

 ${\it Onpedenehue}\,$ 1.14. $\, \nu: 2^X o [0; +\infty] \,$ – субмера, если

- 1. $\nu\varnothing=0$
- 2. монотонность: если $A \subset B$, $\nu A \leq \nu B$
- 3. счетная полуаддитивность: если $A\subset \bigcup_{n=1}^\infty A_n,$ то $\nu A\leq \sum_{n=1}^\infty \nu A_n$

Замечание. 1. счетная полуаддитивность \implies конечная.

2. монотонность (следует из счетной полуаддитивности) $A \subset B, n = 1$.

Определение 1.15. μ - полная мера на σ -алгебре \mathcal{A} , если $A \subset B \in \mathcal{A}$ и $\mu B = 0 \implies A \in \mathcal{A}$.

Замечание. это означает, что $\mu A = 0$.

Определение 1.16. ν – субмера, назовем $E \subset X$ ν -измеримым, если $\forall A \subset X$ $\nu A = \nu(A \cap E) + \nu(A \setminus E)$

Замечание. Достаточен знак ">" (следует из счетной полуаддитивности).

Теорема 1.13. Каратеодори. Пусть ν — субмера. Тогда ν -измеримое мн-во образует σ -алгебру и сужение ν на эту σ -алгебру — полная мера.

Доказательство. Обозначим через $A \nu$ -измеримые мн-ва.

1. Если
$$E=0$$
, то $E\in\mathcal{A}$.

$$\forall A \subset X, \ \nu A \underbrace{\geq}_{\gamma} \nu (A \cap E) + \nu (A \setminus E)$$

$$A \cap E \subset E$$
, $\nu(A \cap E) \leq \nu E = 0 \implies \nu(A \cap E) = 0$, тогда доказали вопросик сверху.

2. A – симметричное семейство мн-в.

$$E \in \mathcal{A} \implies X \setminus E \in \mathcal{A}$$

$$A \cap E = A \setminus (X \setminus X)$$

$$A \setminus E = A \cap (X \setminus E)$$

3. Если E и $F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$

$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \underbrace{\nu(A \cap E) + \nu((A \setminus E) \cap F)}_{\geq \nu(A \cap (E \cup F))} + \underbrace{\nu((A \setminus E) \setminus F)}_{\nu(A \setminus (E \cup F))} \geq \nu(A \cap (E \cup F)) + \underbrace{\nu(A \cap (E \cup F))}_{\nu(A \setminus (E \cup F))}$$

4. A – алгебра.

5.
$$E = \bigsqcup_{n=1}^{\infty} E_n$$
, где $E_n \in \mathcal{A} \underset{\gamma}{\Longrightarrow} E \in \mathcal{A}$.

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) \ge \underbrace{\nu(A \cap \bigsqcup_{k=1}^{n} E_k)}_{\nu(A \cap E_n) + \nu(A \cap \bigsqcup_{k=1}^{n-1} E_k)} + \nu(A \setminus E) \Longrightarrow$$

$$\implies \nu A \ge \sum_{\substack{k=1 \ \geq \nu(\bigcup_{k=1}^{\infty} (A \cap E_k)) = \nu(A \cap E)}}^{\infty} + \nu(A \setminus E) \ge \nu(A \cap E) + \nu(A \setminus E).$$

6. Если
$$E_n \in \mathcal{A}$$
 и $E = \bigcup_{n=1}^{\infty}$, то $E \in \mathcal{A}$.

- 7. $A \sigma$ -алгебра.
- 8. ν мера на \mathcal{A} .

$$E = \bigsqcup_{n=1}^{\infty} E_n \Longrightarrow_{\gamma} \nu E = \sum_{n=1}^{\infty} \nu E_n \text{ (leq уже есть)}.$$

Докажем, что $\nu E \ge \sum_{k=1}^n \nu E_k$. Знаем, что $\nu E \ge \nu(\bigsqcup_{k=1}^n E_k) = \sum_{k=1}^n \nu E_k$

Определение 1.17. μ - мера на полукольце \mathcal{P} , $A \subset X$.

$$\mu^* A := \inf \left\{ \sum_{k=1}^{\infty} \mu P_k : P_k \in \mathcal{P} \land A \subset \bigcup_{k=1}^{\infty} P_k \right\}$$

если покрытия нет, то $+\infty$.

внешняя мера, порожд. μ.

Замечание. 1. Можно считать, что P_k – дизъюнктны

$$A \subset \bigcup_{n=1}^{\infty} P_n = \bigsqcup_{n=1}^{\infty} \bigsqcup_{k=1}^{m_k} Q_{nk}, \ \sum_{n=1}^{\infty} \sum_{k=1}^{n=m_k} \mu Q_{nk} \le \sum_{n=1}^{\infty} \mu P_n$$

2. Если μ задана на σ -алгебре \mathcal{A} , то $\mu^*A = \inf \{ \mu B : B \in \mathcal{A} \land A \subset B \}$

Теорема 1.14. Пусть μ – мера на полукольце \mathcal{P} . Тогда μ^* – субмера, совпадающая с мерой μ на полукольце \mathcal{P} .

Доказательство. 1. $A \in \mathcal{P}$, хотим доказать, что $\mu A = \mu^* A$.

"≥": очевидно, так как множество покрывает само себя.
$$\mu^*A = \inf \left\{ \sum_{k=1}^\infty \mu P_k : \bigcup_{k=1}^\infty P_k \supset A \right\}$$
 "≤": $S \subset \bigcup_{k=1}^\infty P_k$ $\Longrightarrow \mu A \leq \inf = \mu^*A$

2. μ^* – субмера, т.е. нужна счетная полуаддитивность.

$$A \subset \bigcup_{n=1}^{\infty} A_n \underset{\gamma}{\Longrightarrow} \mu^* A \leq \sum_{n=1}^{\infty} \mu^* A + \epsilon$$

$$\mu^*A_n=\inf$$
 ..., берем покрытие $A_n\subset\bigcup_{k=1}^\infty P_{nk}$ т.ч. $\sum_{k=1}^\infty \mu P_{nk}<\mu^*A_n+\frac{\epsilon}{2^n}$ $\mu^*A\leq\sum_{n=1}^\infty\sum_{k=1}^\infty \mu P_{nk}<\sum_{n=1}^\infty \mu^*A_n+\epsilon$ и $A\subset\bigcup_{n=1}^\infty A_n\subset\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty P_{nk}$ – устремляем ϵ к нулю.

Определение 1.18. Стандартное продолзение меры μ_0 с полукольца \mathcal{P} . μ_0^* – внешняя мера, порождающая μ_0 – субмера, и сужаем ее на все μ_0^* – измеримые мн-ва.

Получилась полная мера μ на σ -алгебра $\mathcal{A}\supset\mathcal{P}$ и $\mu P=\mu_0 P$ для $P\in\mathcal{P}.$

Обозначение мн-ва из ${\cal A}$ назовем μ -измеримыми.

Теорема 1.15. Это действительно продолжение, то есть $\mathcal{A} \supset \mathcal{P}$.

Доказательство. Надо доказать, что $E \in \mathcal{P} \ \land \ A \subset X, \ \mu_0^*A \geq \mu_0^*(A \setminus E) + \mu_0^*(A \cap E).$

Рассмотрим случаи:

1. $A \in \mathcal{P}$.

$$\mu_0^* A = \mu_0 A, \ \mu_0^* (A \cap E) = \mu_0 (A \cap E)$$

$$A \setminus E = \bigsqcup_{k=1}^{n} Q_k, \ Q_k \in \mathcal{P}$$

$$A = (A \cap E) \sqcup \bigsqcup_{k=1}^{n} Q_k \implies \mu_0^* A = \mu_0 A = \underbrace{\sum_{k=1}^{n} \mu_0 Q_k}_{>\mu_0^*(A \setminus E)} + \underbrace{\mu_0(A \cap E)}_{\mu_0^*(A \cap E)}$$

2. $A \notin \mathcal{P}$.

Если $\mu_0^* A = +\infty$, то все очевидно, поэтому считаем, что оно конечно.

Считаем, что $\mu_0^*A < +\infty$. Возьмем $P_k \in \mathcal{P}$, такое что $A \subset \bigcup_{k=1}^{\infty} P_k$ и $\sum_{k=1}^{\infty} \mu_0 P_k < \mu_0^*A + \epsilon$.

Знаем, что $\mu_0^* P_k \ge \mu_0^* (P_k \setminus E) + \mu_0^* (P_k \cap E)$

$$\mu_0^* A + \epsilon > \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^* (P_k \setminus E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E)$$

$$\ge \mu_0^* (\bigcup_{k=1}^{\infty} (P_k \setminus E)) \ge \mu_0^* (A \setminus E) \ge \mu_0^* (\bigcup_{k=1}^{\infty} (P_k \cap E)) \ge \mu_0^* (A \cap E)$$

Замечание. 1. Дальше мера и ее продолжение обозначаем как μ .

Если $A-\mu$ -измеримое множество, то $\mu A=\inf\{\sum_{k=1}^\infty \mu P_k : A\subset \bigcup_{k=1}^\infty P_k \wedge P_k\in \mathcal{P}\}$

2. Стандартное продолжение, примененое к стандартному продолжению, не дает ничего нового.

Упражнение. Указание. Проверить, что стандартное продолжение порождает ту же врешнюю меру, что и μ .

- 3. Можно ли распространить меру на более широкую σ -алгебру.
- 4.

Определение 1.19. ν – σ -конечная мера на полукольце \mathcal{P} , если $X = \bigcup_{n=1}^{\infty} P_n, \ P_n \in \mathcal{P} \wedge \mu P_n < +\infty.$

Можно ли по-другому продолжить на σ -алгебру μ -измерим. мн-в?

Если μ – σ -конечная мера, то нельзя.

5. Обязательно ли полная мера будет задана на μ -измеримых множествах.

Если μ – σ -конечная мера, то обязательно.

Теорема 1.16. μ -стандартное продолжение меры с полукольца \mathcal{P} . μ^* – соответствующая внешняя мера, $A \subset X$, $\mu^*A < +\infty$. Тогда $\exists B_{nk} \in \mathcal{P}$, такие что $C_n := \bigcup_{k=1}^{\infty} B_{nk}$, $C := \bigcap_{n=1}^{\infty} C_n$, $C \supset A \land \mu^*A = \mu C$.

Доказательство. $\mu^*A = \inf \{ \sum_{k=1}^{\infty} \mu P_k : A \subset \bigcup_{k=1}^{\infty} P_k \land P_k \in \mathcal{P} \}$, берем покрытие с суммой $< \mu^*A + \frac{1}{n}$.

$$\mu C_n \le \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}, \ C_n = \bigcup_{k=1}^{\infty} B_{nk} \supset A \implies C = \bigcap_{n=1}^{\infty} C_n \supset A.$$

$$\mu^* A \le (\mu^* C = \mu C) \le \mu C_n < \mu^* A + \frac{1}{n}$$

Следствие. μ -стандартное продолжение с полукольца \mathcal{P} . $A - \mu$ -измеримое мн-во и $\mu A < +\infty$. Тогда $A = B \sqcup e$, где $B \in \mathcal{B}(\mathcal{P})$ и $\mu e = 0$.

Доказательство. Берем C $\in \mathcal{B}(\mathcal{P})$ из теоремы. $A \subset C$, и $\mu A = \mu C$.

 $e_1 := C \setminus A$, $\mu e_1 = 0$, теперь подставляем e_1 в теорему:

найдется
$$e_2: e_2 \in \mathcal{B}(\mathcal{P}) \land e_2 \supset e_1 \land \mu e_2 = \mu e_1 = 0 \implies B := C \setminus e_2 \in \mathcal{B}(\mathcal{P}) \implies B \subset A.$$

$$C \setminus e_2 \subset B \subset C, \ \mu C = \mu C - \mu e_2 \leq \nu B \leq \mu C \implies \mu B = \mu A. \ e = A \setminus B \implies \mu e = 0$$

Теорема 1.17. Единственность продолжения μ -стандартное продолжение с полукольца \mathcal{P} на σ -алгебру \mathcal{A} .

 ν – другая мера на \mathcal{A} , совпадающая с μ на \mathcal{P} . Если μ – σ -конечная, то $\mu = \nu$.

Доказательство. Если $A \subset \bigcup_{n=1}^{\infty} P_n$, $P_n \in \mathcal{P}$, то $\sum_{n=1}^{\infty} \mu P_n = \sum_{n=1}^{\infty} \nu P_n \geq \nu A$ (пользуемся счетной полуаддитивностью).

$$\mu A = \inf \{ \sum \mu P_n \} \ge \nu A.$$

Возьмем
$$P \in \mathcal{P}$$
, $A \in \mathcal{A}$: $\mu P = \nu P \implies \nu(P \cap A) + \nu(P \setminus A) \le \mu(P \cap A) + \mu(P \setminus A) = \mu P$

Если $\mu P < +\infty$, то равенство вместо неравенства.

$$\implies \mu(P \cap A) = \nu(P \cap A)$$

$$X = \bigsqcup_{k=1}^{\infty} P_k$$
, т.ч. $\mu P_k < +\infty \implies \mu(P_k \cap A) = \nu(P_k \cap A)$
 $\mu A = \sum_{k=1}^{\infty} \mu(P_k \cap A) = \sum_{k=1}^{\infty} \nu(P_k \cap A) = \nu A$

1.4. Мера Лебега

Теорема 1.18. Классический объем λ_m на полукольце ячеек \mathcal{P}^m – мера.

Доказательство.
$$(a;b] = \bigsqcup_{k=1}^{\infty} (a_k;b_k] \Longrightarrow_{\gamma} \lambda(a;b] \le \sum_{k=1}^{\infty} \lambda(a_k;b_k].$$

$$(a;b]\supset [a';b]\supset (a';b]$$
, T.H. $\lambda(a;b]<\lambda(a';b]+\epsilon$.

$$(a_k; b_k] \subset (a_k; b'_k) \subset (a_k; b'_k], \ \lambda(a_k; b'_k) < \lambda(a_k; b_k) + \frac{\epsilon}{2^k}$$

компакт – $[a';b] \subset \bigcup_{k=1}^{\infty} (a_k;b'_k)$, выбираем конечное подпокрытие.

$$(a',b] \subset [a',b] \subset \sum_{k=1}^n (a_k;b'_k) \subset \bigcup_{k=1}^n (a_k;b'_k).$$

 λ – объем \implies конечная полуаддитивность

$$\lambda(a';b] \le \sum_{k=1}^n \lambda(a_k;b_k') < \sum_{k=1}^n (\lambda(a_k;b_k)) + \frac{\epsilon}{2^k} < \sum_{k=1}^\infty (\lambda[a_k;b_k]) + \frac{\epsilon}{2^k}$$