KLAUSUR Informationstechnik

Sommersemester 2014

Prüfungsfach: Informationstechnik

Studiengang: Wirtschaftsinformatik, Softwaretechnik

Semestergruppe: WKB 1, SWB 1

Fachnummer: 1051002

Erlaubte Hilfsmittel: keine

Zeit: 90 min.

Wichtiger Hinweis für die Bearbeitung der Aufgaben:

Schreiben Sie bitte Ihre Lösungen möglichst auf die Aufgabenblätter. Sollte der vorgesehene Platz nicht reichen, verwenden Sie bitte jeweils die Rückseite.

Viel Erfolg wünscht Ihnen.

Reiner Marchthaler und Hans-Gerhard Groß

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

1 Kombinatorische Schaltung

1.1 KV-Diagramm (15 Punkte)

Gegeben ist eine kombinatorische Schaltung. Diese wird durch eine Funktionstabelle (siehe Tabelle 1) beschrieben.

	d	c	b	a	Y	$\overline{\mathbf{Y}}$
0	0	0	0	0	X	
1	0	0	0	1	0	
2	0	0	1	0	1	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	1	0	X	
7	0	1	1	1	1	
8	1	0	0	0	X	
9	1	0	0	1	0	
10	1	0	1	0	X	
11	1	0	1	1	0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	0	

Tabelle 1: Funktionstabelle

1. Bestimmen Sie die DMF des Signals \mathbf{Y} mit Hilfe des KV-Diagramms und die Funktionslänge \mathbf{l}_{DMF} .

$\mathbf{Y}_{\mathbf{DMF}} =$		
$\mathbf{l_{DMF}} =$		

2. Bestimmen Sie die KMF des Signals Y mit Hilfe des KV-Diagramms und die Funktionslänge \mathbf{l}_{KMF} .

$Y_{KMF} =$		
lume —		

3. Welche der beiden Minimalfunktionen benötigt einen geringeren Schaltungsaufwand?

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2 Zahlendarstellung

2.1 Festkommadarstellung

(15 Punkte)

Füllen Sie bitte nachfolgende Tabelle vollständig aus:

		Zahlenwerte (Dezimalzahlen)			
Binärwerte	Hex	Betragszahl	Ganze Zahl	Ganze Zahl	Ganze Zahl
(8 Bit)	Werte	(dualcodiert)	(Betrag-Vorzeichen)	(2-er Komplement)	(Dual-Offset-Code)
1001 0010					
	00				
		128			
			-127		
				127	
					-93

Tabelle 2: Umrechnung von Festkommazahlen

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2.2 Zahlendarstellung nach IEEE 754

(10 Punkte)

Wandeln Sie die Dezimalzahl (-6.25) $_{10}$ in eine Gleitkommazahl in einfacher Genauigkeit nach IEEE 754 um.

Hinweis:

In der Codierung einer Gleitkommazahl nach IEEE 754 in einfacher Genauigkeit gilt:

- Das Bit 31 (MSB) kennzeichnet das Vorzeichen.
- Die nächsten 8 Bit 30...23 geben den Exponenten an (Offsetdarstellung um 127).
- Die nächsten 23 Bit 22...0 geben die normalisierte Mantisse ohne die Vorkomma-Eins an.

Platz für Berechnung:

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2.3	Blockcodes	(15 Punkte
4.5	Diocheoues	(13 I ulliku

Das Nachrichten-Codewort $\mathbf{X} = [\mathbf{101}]$ soll zu einem Empfänger übertragen werden. Um Datenmanipulation zu verhindern werden mit Hilfe der Generatormatrix

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

weitere Kontrollbits hinzugefügt.

/ie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?	Wie lautet das mit Hilfe der Generatormatrix G gezeugte Codewort Y ?				
$ar{g}$ ie viele Kontrollstellen wurden durch die Generatormatrix ${f G}$ hinzugefügt?					
$ar{v}$ ie viele Kontrollstellen wurden durch die Generatormatrix ${f G}$ hinzugefügt?					
$^\prime$ ie viele Kontrollstellen wurden durch die Generatormatrix ${f G}$ hinzugefügt?					
$ar{g}$ ie viele Kontrollstellen wurden durch die Generatormatrix ${f G}$ hinzugefügt?					
$ar{G}$ ie viele Kontrollstellen wurden durch die Generatormatrix $f G$ hinzugefügt?					
ie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?					
vie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?					
7ie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?					
/ie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?					
7ie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?					
/ie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?					
	Wie viele Kontrollstellen wurden durch die Generatormatrix G hinzugefügt?				

Der Code der durch die Generatormatrix **G** beschrieben wird hat eine Hammingdistanz von **h** = **4**. Wie viele Einzelbitfehler können sicher erkannt werden? Wie viele Einzelbitfehler können sicher korrigiert werden?

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

Bestimmen Sie die Parity-Check-Matrix \mathbf{H}^{T}

$$\underline{\text{Hinweis:}} \qquad \quad \mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Am Empfänger werden nach der ersten Übertragung das Codewort $\mathbf{Z_1} = [1111011]$ und nach der zweiten Übertragung das Codewort $\mathbf{Z_2} = [1011010]$ empfangen. Stellen Sie mit Hilfe der Parity-Check-Matrix $\mathbf{H^T}$ fest, ob die Codewörter verfälscht wurden und begründen Sie Ihre

Stellen Sie mit Hilfe der Parity-Check-Matrix H¹ fest, ob die Codewörter verfälscht Antwort kurz.

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3 Hardware

Die in Abbildung 1 dargestellte 8 Bit-ALU enthält neben einem 8 Bit Addierer, eine 8 Bit-Logik-Einheit, ein 8-faches AND-Gatter sowie einen Block "Status" zur Bildung des Carry-Flags (CF), Overflow-Flags (OF), Zero-Flags (Z) und Negativ-Flags (N).

Abbildung 1: Aufbau 8-Bit ALU

Die Signale haben folgende Bitbreite:

Signalnam	e A	В	X	Y	R	K	AR	C_0	<i>C</i> ₇	C_8	CF	OF	Z	N
Breite in B	t 8	8	8	8	8	4	1	1	1	1	1	1	1	1

Tabelle 3: Bitbreite der Signale

Die gültigen Steuerworte des Steuersignals **K** sind der Tabelle 4 zu entnehmen.

Steuerwort (K)	Ergebnis für Stelle B_i	Logik-Funktion
$(0000) = 0_H$	$B_i = 0$	Kontradiktion
$(0001) = 1_H$	$B_i = 1$	Tautologie
$(0010) = 2_H$	$B_i = X_i$	Identität X
$(0011) = 3_H$	$B_i = Y_i$	Identität Y
$(0100) = 4_H$	$B_i = \overline{X}_i$	Bitweise Invertierung X
$(0101) = 5_H$	$B_i = \overline{Y}_i$	Bitweise Invertierung Y
$(1000) = 8_H$	$B_i = X_i \vee Y_i$	OR
$(1001) = 9_H$	$B_i = X_i \wedge Y_i$	AND

Tabelle 4: Wirkung des Steuersignals (K) auf B_i in Abhängigkeit von X_i und Y_i (i = 0, ..., 7).

Hinweis: AR=0 sperrt das 8-Bit AND-Gatter und AR=1 schaltet X nach A durch!

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3.1 ALU (14 Punkte)

Mit Hilfe der ALU in Abbildung 1 soll die Operation R=(X-1) mit $X=(FF)_{hex}$ durchgeführt werden. Welche Werte müssen die Signale K, AR und C_0 für diese Operation annehmen?

$$K =$$
 $C_0 =$

Führen Sie nun die Operation mit der gegebenen ALU handschriftlich durch und vervollständigen Sie die nachfolgende Tabelle 5.

ibelle 5.		Binärwert interpretiert als
	Binärwerte	Dualcode 2er Kompl.
Operand 1 X=		
Operand 1 A=		
Operand 2 B=		
Übertrag C=		
Ergebnis R=		

Tabelle 5: Schema für die Operation "Dekrementieren" mit Hilfe der gegebenen ALU

Bestimmen Sie die Status-Flags und tragen Sie diese in die Tabelle 6 ein.

CF	OF	Z	N

Tabelle 6: Statuswort der ALU nach der Operation

3.2 Speicher (6 Punkte)

Was ist der Unterschied zwischen einem flankengesteuerten und taktzustandsgesteuerten **D-Flipflop** (1-Bit-Speichern)?

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

4 Offene Fragen

4.1	Hardware-Multiplikation im Rechenwerk	(6 Punkte)
Nen	nnen Sie die drei grundlegenden Arten der Multiplikation im Rechenwerk und nennen Sie kurz ihre Vor- un	nd/oder Nachteile.
4.2	Code Übersetzung	(6 Punkte)
	Code Übersetzung lären Sie kurz was man unter der Backus-Naur-Form (BNF) versteht, und wofür sie verwendet wird.	(6 Punkte)
4.2 Erkl		(6 Punkte)
		(6 Punkte)

Prüfungsfach:	Informationstechnik	Sommersemester 2014	Hochschule Esslingen	
Name, Vorname:		MatNr.:	University of Applied Sciences	

4.3	Code Übersetzung	(7 Punkte)
Erkläı	iren Sie kurz wozu ein Linker verwendet wird, und inwiefern das Betriebssystem fü	r den Linker relevant ist.
4.4	Software Engineering	(6 Punkte)
Erkläı	Software Engineering iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod typische Technik die während der Verifiktion bzw. der Validierung angewandt wird.	
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft
Erkläı	iren Sie den Unterschied zwischen Verifikation und Validierung anhand des V-Mod	ells und nennen Sie jeweils beispielhaft