Basics of Machine Learning

Ismaël Lajaaiti

What is Machine Learning?

Example: Image classification

The algorithm discover the information by itself

Example: Image classification

The algorithm discover the information by itself

Example: Image classification

Example: K-means algorithm

Supervised

Machine Learning

Unsupervised

Reinforcement

Train algorithm with labeled data

The algorithm discover the information by itself

Simulate game-like situations, the algorithm get reward (for 'good moves') and penalties (for 'bad moves')

Example: Image classification

Example: K-means algorithm

Machine Learning

Supervised

Unsupervised

Reinforcement

Train algorithm with labeled data

The algorithm discover the information by itself

Simulate game-like situations, the algorithm get reward (for 'good moves') and penalties (for 'bad moves')

Example: Image classification

Example: K-means algorithm

Example: AlphaGo

Machine Learning

Supervised

Train algorithm with labeled data

Example: Image classification

Unsupervised

The algorithm discover the information by itself

Example: K-means algorithm

Reinforcement

Simulate game-like situations, the algorithm get reward (for 'good moves') and penalties (for 'bad moves')

Example: AlphaGo


```
Example: image classification - Output ∈ {"Orange", "Grapes", ...}
```


Predict quantitative variable

Example: image classification - Output ∈ {"Orange", "Grapes", ...}

Predict quantitative variable

Example: image classification - Output ∈ {"Orange", "Grapes", ...}

Example: Guess the correlation - Predict correlation from scatter plot

Deep neural network

Deep neural network

Stacked hidden layers

1. Define an objective: minimize distance between predicted and expected value

1. Define an objective: minimize distance between predicted and expected value

Loss function

1. Define an objective: minimize distance between predicted and expected value

Loss function

Example: Mean Square Error (MSE) MSE = $\Sigma_{i}(y_{i,pred} - y_{i,true})^{2}$

1. Define an objective: minimize distance between predicted and expected value

Loss function

Example: Mean Square Error (MSE) MSE = $\Sigma_{i}(y_{i,pred} - y_{i,true})^{2}$

2. Optimize network to reach this objective

1. Define an objective: minimize distance between predicted and expected value

Loss function

Example: Mean Square Error (MSE) MSE = $\Sigma_{i}(y_{i,pred} - y_{i,true})^{2}$

2. Optimize network to reach this objective

Compute loss **gradient** vs. weights with **backward propagation**

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

1. Split data set in two subsets: training set & validation set

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

- 1. Split data set in two subsets: training set & validation set
- 2. Track train & validation losses through the training

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

- Split data set in two subsets: training set & validation set
- 2. Track train & validation losses through the training
- Stop the training when validation loss stop to decrease = early stopping

Frameworks (in R)

Google Facebook

Industry-focused

Facebook

Research-focused

Industry-focused

Easier to learn (Keras)

Facebook

Research-focused

Harder to learn

Industry-focused

Easier to learn (Keras)

Requires Python

Facebook

Research-focused

Harder to learn

Does not require Python

Industry-focused

Easier to learn (Keras)

Requires Python

Good documentation

Facebook

Research-focused

Harder to learn

Does not require Python

Poor documentation

TensorFlow

Google

Industry-focused

Easier to learn (Keras)

Requires Python

Good documentation

Torch

Facebook

Research-focused

Harder to learn

Does not require Python

Poor documentation

Examples of use

Machine learning to classify animal species in camera trap images: Applications in ecology

```
Michael A. Tabak<sup>1,2</sup>  | Mohammad S. Norouzzadeh<sup>3</sup> | David W. Wolfson<sup>1</sup> |

Steven J. Sweeney<sup>1</sup> | Kurt C. Vercauteren<sup>4</sup> | Nathan P. Snow<sup>4</sup>  | Joseph M. Halseth<sup>4</sup> |

Paul A. Di Salvo<sup>1</sup> | Jesse S. Lewis<sup>5</sup> | Michael D. White<sup>6</sup> | Ben Teton<sup>6</sup> |

James C. Beasley<sup>7</sup> | Peter E. Schlichting<sup>7</sup> | Raoul K. Boughton<sup>8</sup> | Bethany Wight<sup>8</sup> |

Eric S. Newkirk<sup>9</sup> | Jacob S. Ivan<sup>9</sup> | Eric A. Odell<sup>9</sup> | Ryan K. Brook<sup>10</sup> |

Paul M. Lukacs<sup>11</sup> | Anna K. Moeller<sup>11</sup> | Elizabeth G. Mandeville<sup>2,12</sup> | Jeff Clune<sup>3</sup> |

Ryan S. Miller<sup>1</sup>
```


FIGURE 3 Model recall (the ability of the model to recognize species) increased with the size of the training dataset for that species. Points represent each species or group of species. The line represents the result of generalized additive models relating the two variables (see Appendix S9 for details)

Inferring speciation and extinction rates from phylogenies

Thanks!

Questions