

考研数学笔记

Weary Bird 2025 年 8 月 19 日

相见欢•林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年8月19日

目录

第一章	事件与概率论	1
1.1	事件的关系、运算与概率的性质	1
1.2	三大概型的计算	4
1.3	三大概率公式的计算	5
1.4	事件独立的判定	7
第二章	一维随机变量	9
2.1	分布函数的判定与计算	9
2.2	概率密度的判定与计算	11
2.3	关于八大分布	13
2.4	求一维连续型随机变量函数的分布	19
第三章	二维随机变量	22
3.1	联合分布函数的计算	22
3.2	二维离散型随机变量分布的计算	23
3.3	二维连续型随机变量分布的计算	24
3.4	关于二维正态分布	27
3.5	求二维离散型随机变量函数的分布	30
3.6	求二维连续型随机变量函数的分布	31
3.7	求一离散一连续随机变量函数的分布	34
第四章	数字特征	36
4.1	期望与方差的计算	36
4.2	协方差的计算	42

4.3	相关系数的计算	44
4.4	相关与独立的判定	45
第五章	大数定律与中心极限定理	48
第六章	统计初步	51
6.1	求统计量的抽样分布	51
6.2	求统计量的数字特征	53
第七章	参数估计	55
7.1	求矩估计与最大似然估计	55
7.2	估计量的评价标准	57
7.3	区间估计与假设检验	59

第一章 事件与概率论

1.1 事件的关系、运算与概率的性质

1. 事件: 样本点的集合

2. 事件的关系 (3+1): 包含, 互斥, 对立+独立

3. 事件的运算 (3 个): 交, 并, 补

事件的运算律

(1) 交換律 $A \cup B = B \cup A, AB = BA$

(2) 结合律 $A \cup (B \cup C) = (A \cup B) \cup A, A(BC) = (AB)C$

(3) 分配律 $A \cup (BC) = (A \cup B)(A \cup C), A(B \cup C) = (AB) \cup (AC)$

(4) 摩根律 $\overline{A \cup B} = \overline{A}\overline{B}, \overline{(AB)} = \overline{A} \cup \overline{B}$

(5) 吸收律 $A \cup (AB) = A, A(A \cup B) = A$

1. 设 A, B 为随机事件, 且 $P(A) = P(B) = \frac{1}{2}, P(A \cup B) = 1$, 则

$$(A) \ A \cup B = \Omega \quad (B) \ AB = \varnothing \quad (C) \ P(\bar{A} \cup \bar{B}) = 1 \quad (D) \ P(A - B) = 0$$

Solution

由加法公式 $P(A \cup B) = P(A) + P(B) - P(AB) \implies P(AB) = 0$

注意由概率并不能推断事件, 所以 (A)(B) 均不正确

对于 (C) 选项 $P(\bar{A} \cup \bar{B}) = 1 - P(\overline{AB}) = 1$ 正确

对于 (D) 选项, 由减法公式 $P(A - B) = P(A) - P(AB) = \frac{1}{2}$

总结

- (1) 必然事件发生的概率为 1, 但概率为一的事件不一定是必然事件
- (2) 不可能事件发生的概率为 0, 但概率为零的事件不一定是不可能事件 这两个结论考虑连续型随机变量即可
- 2. (2020, 数一、三) 设 A, B, C 为随机事件, 且 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{12}$, 则 A, B, C 只有一个事件发生的概率为

$$(A) \frac{3}{4} \quad (B) \frac{2}{3} \quad (C) \frac{1}{2} \quad (D) \frac{5}{12}$$

Solution

这种题一般考虑 Venn 图, 比用公式展开简单很多

则只有一个事件发生的概率为 $(\frac{1}{4} - \frac{1}{12}) \times 2 + \frac{1}{4} - 2 \times \frac{1}{12} = \frac{5}{12}$

3. 设随机事件 A, B 满足 $AB = \bar{A}\bar{B}$, 且 0 < P(A) < 1, 0 < P(B) < 1, 则 $P(A|\bar{B}) + P(B|\bar{A}) = 1$

Solution

根据结论, 有 A, B 互斥, 则 $P(A|\bar{B}) = P(B|\bar{A}) = 1$

Corollary

若 $AB = \bar{A}\bar{B}$, 则 A, B 必然对立

证明.

$$AB = \bar{A}\bar{B}$$

$$\iff AB \cup \bar{A}B = \bar{A}\bar{B} \cup \bar{A}B$$

$$\iff (A \cup \bar{A})B = \bar{A}(\bar{B} \cup B)$$

$$\iff B = \bar{A}$$

4. 设随机事件 A, B, C 两两独立, 满足 $ABC = \emptyset$, 且 P(A) = P(B) = P(C), A, B, C 至少有一个发生的概率为 $\frac{9}{16}$, 则 P(A) =

Solution

由题意有 $P(A \cup B \cup C) = \frac{9}{16}$, 由加法公式与独立性有

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A)P(B)$$
$$- P(A)P(C) - P(B)P(C) - P(A)P(B)P(C)$$

由
$$P(A) = P(B) = P(C)$$
, 上式化为 $3P(A) - 3P(A)^2 = \frac{9}{16} \implies P(A) = \frac{1}{4}$ 或 $P(A) = \frac{3}{4}$, 显然 $P(A) \neq \frac{3}{4} > P(A \cup B \cup C)$, 故 $P(A) = \frac{1}{4}$

5. 设 A, B 为随机事件, 且 $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$, 则 P(A|B) + P(B|A) 的最大值为 _____, 最小值为 _____.

Solution

关于概率的不等式基于如下事实,对于任意一个概率其值均位于 [0,1] 之间,事件 AB 的和事件不可能小于单独 A,B 发生概率之和,事件 AB 的积事件不可能大于任意一个事件单独发生的概率.

$$P(A)+P(B)-1 <= P(AB) \leq \min\left(P(A),P(B)\right) \leq P(A)+P(B) \leq P(A \cup B)$$

1.2 三大概型的计算

三大概率模型

- 1. 经典概型 有限个等可能的样本点, 排列组合问题
- 2. 几何概型 使用几何参数度量概率, 比如说长度, 面积, 体积等
- 3. 伯努利概型 独立重复试验每次成功的概率为 p, 不成功的概率为 (1-p)
- 6. (2016, 数三) 设袋中有红、白、黑球各1个, 从中有放回地取球, 每次取1个, 直到三种颜色的球都取到为止, 则取球次数恰好为4的概率为

Solution

(古典概型)

$$\frac{\binom{3}{1}\binom{2}{1}\binom{2}{3}}{3^4} = \frac{2}{9}$$

首先从3个颜色中选择一个为第四次抽的颜色,再从剩下两个颜色中选择一个为出现两次的颜色,在选择该颜色抽出的次序.

7. 在区间 (0,a) 中随机地取两个数,则两数之积小于 $\frac{a^2}{4}$ 的概率为

Solution

(几何概型)

$$\frac{\frac{a}{4} \cdot a + \int_{\frac{a}{4}}^{a} \frac{a^{2}}{4x} dx}{a^{2}} = \frac{1}{4} + \frac{1}{2} \ln 2$$

8. 设独立重复的试验每次成功的概率为p,则第5次成功之前至82次失败的概率为

Solution

失败零次 $-p^5$, 失败一次 $-\binom{1}{5}p^4(1-p)p$, 失败两次 $-\binom{2}{6}p^4(1-p)^2p$ 故第 5 次成功之前至多 2 次失败的概率为

$$p^{5} + {1 \choose 5} p^{4} (1-p)p + {2 \choose 6} p^{4} (1-p)^{2} p$$

1.3 三大概率公式的计算

Remark

三大概率公式

1. 条件概率公式 $P(A \mid B) = \frac{P(AB)}{P(B)}$ 推论 $P(AB) = P(B)P(A \mid B), P(A_1A_2...A_n) = P(A_1)P(A_2 \mid P(A_1))P(A_3|P(A_1A_2))...$

2. 全概率公式
$$P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)$$

3. 贝叶斯公式
$$P(B_j \mid A) = \frac{P(B_j)P(A \mid B_j)}{\sum_{i=1}^{n} P(B_i)P(A \mid B_i)}$$

若称 $P(B_j)$ 为 B_j 的先验概率, 称 $P(B_j \mid A)$ 为 B_j 的后验概率. 则贝叶斯公式专门用于计算后验概率的公式.

9. 设 A, B 为随机事件, 且 $P(A \cup B) = 0.6, P(B|\bar{A}) = 0.2, 则 P(A) =$

Solution

$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.6, P(B \mid \bar{A}) = \frac{P(B) - P(AB)}{1 - P(A)} = 0.2$$

联立有

$$\frac{0.6 - P(A)}{1 - P(A)} = 0.2$$

,则 P(A) = 0.5

10. (2018, 数一) 设随机事件 A 与 B 相互独立, A 与 C 相互独立, 满足 $BC = \emptyset$, 且

$$P(A) = P(B) = \frac{1}{2}, \quad P(AC|AB \cup C) = \frac{1}{4},$$

则 $P(C) = ____$.

Solution

$$P(AC|AB \cup C) = \frac{P(AC)}{P(AB \cup C)}$$
$$= \frac{P(A)P(C)}{P(AB) + P(C)}$$
$$= \frac{\frac{1}{2}P(C)}{\frac{1}{4} + P(C)} = \frac{1}{4}$$

则 $P(C) = \frac{1}{4}$

- 11. (2003, 数一) 设甲、乙两箱装有同种产品, 其中甲箱装有 3 件合格品和 3 件次品, 乙箱装有 3 件合格品。从甲箱中任取 3 件产品放入乙箱,
 - (1) 求乙箱中次品件数 X 的数学期望;
 - (2) 求从乙箱中任取一件产品是次品的概率.

Solution

(作为小题来考还可以)

方法一: 用概率

12. (1) 对于数字特征的题目, 先求概率分布再说, 由于 $P(X = k) = \frac{C_3^k C_3^{3-k}}{C_6^3}$

则所求数学期望 $EX = \frac{9}{20} + 2 \times \frac{9}{20} + \frac{3}{20} = \frac{3}{2}$

(2)

$$\begin{split} P(A) &= \sum_{k=0}^{3} P(X=k) P(A \mid x=k) \\ &= \frac{1}{20} \times 0 + \frac{9}{20} \times \frac{1}{6} + \frac{9}{20} \times \frac{2}{6} + \frac{1}{20} \times \frac{3}{6} \\ &= \frac{1}{4} \end{split}$$

法二:超几何分布

(1)
$$X \sim H(N, M, n), N = 6, M = 3, n = 3, \text{ } M = \frac{nM}{N} = \frac{3}{2}$$

(2)

$$P(A) = \sum_{k=0}^{3} P(X = k)P(A \mid x = k)$$

$$= \sum_{k=0}^{3} P(X = k)\frac{k}{6}$$

$$= \frac{1}{6}\sum_{k=0}^{3} P(X = k)k$$

$$= \frac{1}{6}EX$$

$$= \frac{1}{4}$$

1.4 事件独立的判定

Remark

(事件独立的充要条件)

$$P(AB) = P(A)P(B)$$

 $\iff P(A \mid B) = P(A)$
 $\iff P(A \mid \bar{B}) = P(A) \iff P(A \mid B) = P(A \mid \bar{B}) \quad (0 < P(B) < 1)$
 $\iff A = \bar{B}, \ \vec{\otimes} \bar{A} = \bar{B}, \ \vec{\otimes} \bar{A} = \bar{B} = \bar{B} = \bar{B}$
 $\iff P(A \mid B) + P(\bar{A} \mid \bar{B}) = 1, \quad 0 < P(B) < 1$

- 12. 设 A, B 为随机事件, 且 0 < P(A) < 1, 则
 - (A) 若 $A \supset B$, 则 A, B 一定不相互独立
 - (B) 若 $B \supset A$, 则 A, B 一定不相互独立
 - (C) 若 $AB = \emptyset$, 则 A, B 一定不相互独立
 - (D) 若 $A = \overline{B}$, 则 A, B 一定不相互独立

Solution

- (A)(B)(C) 考虑 Ø 则都不对
- (D) 由于 A 不是必然事件, 则 B 不是不可能事件, 则 0 < P(A) < 1, 0 < P(B) < 1,根据下面的总结 A, B 一定不独立

总结

- (1) 概率为 0 或 1 的事件与任意事件独立 特别的,不可能事件与必然事件与任意事件独立
- (2) 设 0 < P(A) < 1, 0 < P(B) < 1,
- A, B 互不相容, 则 A, B 一定不独立
- A, B 独立,则 A, B 一定不互不相容
- 13. 设 A, B, C 为随机事件, $A \to B$ 相互独立, 且 P(C) = 0, 则 $\bar{A}, \bar{B}, \bar{C}$
 - (A)相互独立
- (B)两两独立, 但不一定相互独立
- (C)不一定两两独立 (D)一定不两两独立

Solution

由 P(C) = 0 知 A, B, C 相互独立, 则 $\bar{A}\bar{B}\bar{C}$ 也相互独立.

两两独立与相互独立

相互独立
$$\begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \\ P(ABC) = P(A)P(B)P(C) \end{cases}$$
 两两独立

第二章 一维随机变量

2.1 分布函数的判定与计算

分布函数的性质

- (1) $0 \le F(x) \le 1, -\infty < x < +\infty, F(-\infty) = 0, F(+\infty) = 1$
- (2) (单调不减) 当 $x_1 < x_2$ 时, $F(x_1) < F(x_2)$
- (3) (右连续) F(x+0) = F(x) 上面三个性质为分布函数的定义, 只要满足上述性质的函数一定是某一个概率分布的分布函数
- (4) $P{a < X \le b} = F(b) F(a)$
- (5) $P{X < x} = F(x 0), P{X = x} = F(x) F(x 0)$

$$P\{a \le x \le b\} = P\{x \le b\} - P\{x < a\} = F(b) - F(a - 0)$$

$$P\{a < x < b\} = P\{x < b\} - P\{x \le a\} = F(b - 0) - F(a)$$

1. 设随机变量 X 的分布函数为 F(x),a,b 为任意常数,则下列一定不是分布函数的是

(A)
$$F(ax + b)$$
 (B) $F(ax^2 + b)$ (C) $F(ax^3 + b)$ (D) $1 - F(-x)$

总结

对于 F(ax+b), $F(ax^3+b)$, ... 只要 a>0 则这些函数都是分布函数

对于 $F(a^2x+b)$, $F(a^4+b)$, ... 都一定不是分布函数

对于
$$G(x) = 1 - F(-x)$$

若 X 是连续性随机变量则是, 否则不是 (F(x) 不满足左连续, 则 G(x) 不满足右连续)

2. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则 X 的分布函数 $F(x) = _____, P\{-2 < X < \frac{1}{4}\} = _____.$

Solution

(方法一变限积分)

$$f(x) = \begin{cases} 1+x, & -1 < x < 0 \\ 1-x, & 0 \le x < 1 \\ 0, & \text{其他情况} \end{cases}$$

根据
$$F(x) = \int_{-\infty}^{x} f(t) dt$$
,有

$$F(x) = \begin{cases} 0, & x \le -1\\ \int_{-1}^{x} (1+t) \, \mathrm{d}t, & -1 < x < 0\\ \int_{-1}^{0} (1+t) \, \mathrm{d}t + \int_{0}^{x} (1-t) \, \mathrm{d}t, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$

$$\begin{cases} 0, & x \le -1\\ x + \frac{x^{2}}{2} + \frac{1}{2}, & -1 < x < 0 \end{cases}$$

$$= \begin{cases} 0, & x \le -1 \\ x + \frac{x^2}{2} + \frac{1}{2}, & -1 < x < 0 \\ x - \frac{x^2}{2} + \frac{1}{2}, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

$$P\{-2 < X < \frac{1}{4}\} = F(\frac{1}{4}) - F(-2)$$
$$= \int_{-2}^{\frac{1}{4}} f(x) dx$$
$$= \frac{23}{32}$$

(方法二定积分)

$$\int f(x)dx = \begin{cases} C_1, & x < -1\\ x + \frac{x^2}{2} + C_2, & -1 \le x < 0\\ x - \frac{x^2}{2} + C_3, & 0 \le x < 1\\ C_4, & x \ge 1 \end{cases}$$

2.2 概率密度的判定与计算

概率密度的性质

- $(1) f(x) \ge 0, -\infty < x + \infty$
- $(2) \int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$

上面两条性质为概率密度的定义,任何满足上面的函数都是某个概率的概率密度函数

- (3) $P\{a < X \le b\} = \int_a^b f(x) dx$ 推广 $P\{a < X \le b\} = P\{a \le X \le b\} = P\{a \le X < b\} = P\{a < X < b\} = \int_a^b f(x) dx$
- (4) 在 f(x) 连续点处有 F'(x) = f(x)
- 3. 设随机变量 X 的概率密度为 f(x),则下列必为概率密度的是

(A)
$$f(-x+1)$$
 (B) $f(2x-1)$ (C) $f(-2x+1)$ (D) $f(\frac{1}{2}x-1)$

Solution

由于 f(x) 已经满足非负性, 故选项的非负性都不需要考虑, 只需要考虑正则性就可以.

(A)
$$\int_{-\infty}^{+\infty} f(-x+1)dx = \int_{-\infty}^{+\infty} f(u)du = 1$$

(B)
$$\int_{-\infty}^{+\infty} f(2x-1)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u)du = \frac{1}{2}$$

(C)
$$\int_{-\infty}^{+\infty} f(-2x+1)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u)du = \frac{1}{2}$$

(D)
$$\int_{-\infty}^{+\infty} f(\frac{1}{2} - 1) dx = 2 \int_{-\infty}^{+\infty} f(u) du = 2$$

总结

f(ax+b) 为概率密度 $\iff |a|=1$

- 4. (2011, 数一、三) 设 $F_1(x)$, $F_2(x)$ 为分布函数, 对应的概率密度 $f_1(x)$, $f_2(x)$ 为连续函数,则下列必为概率密度的是
 - (A) $f_1(x)f_2(x)$ (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$

总结

(1) 线性组合

$$af_1(x) + bf_2(x), a > 0, b > 0$$
 为概率密度 $\iff a + b = 1$

$$aF_1(x) + bF_2(x), a > 0, b > 0$$
 为分布函数 $\iff a + b = 1$

(2) 乘积

 F_1F_2 一定是分布函数

 $f_1 f_2$ 不一定是概率论密度

(3) 混搭

 $f_1F_2 + f_2F_1, 2f_1F_1, 2f_2F_2$ 是概率密度, 其余都不是.

5. (2000, 三) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3}, & x \in [0, 1] \\ \frac{2}{9}, & x \in [3, 6] \\ 0, & \text{其他} \end{cases}$$

若 $P\{X \ge k\} = \frac{2}{3}$, 则 k 的取值范围是 _____.

Solution

如图所示, 当且仅当 $1 \le k \le 3$ 时候 $P(X \ge k) = \frac{2}{3}$

2.3 关于八大分布

八大分布的概率分布与数字特征

(1) 0-1 分布,
$$X \sim B(1,p) \frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$$
, $EX = p, DX = p(1-p)$

(2) 二项分布,
$$X \sim B(n,p)$$

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n, EX = np, DX = np(1-p)$$

(3) 泊松分布,
$$X \sim P(\lambda)$$

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, ..., EX = \lambda, DX = \lambda$$

(4) 几何分布, $X \sim G(p)$

$$P = \{X = k\} = p(1-p)^{k-1}, k = 1, 2, ..., EX = \frac{1}{p}, DX = \frac{1-p}{p^2}$$

(5) 超几何分布, $X \sim H(N, M, n)$ $P = \{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, \dots, \min(n, M), EX = \frac{nM}{N}$

(6) 均匀分布 $X \sim U(a,b)$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \text{ 性} \end{cases}, F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b, EX = \frac{a+b}{2}, DX = \\ 1, & x \ge b \end{cases}$$

(7) 指数分布 $X \sim E(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \lambda > 0 \ F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, EX = \frac{1}{\lambda}, DX = \frac{1}{\lambda^2}$$

(8) 一般正态分布 $X \sim N(\mu, \sigma^2)$, $EX = \mu, DX = \sigma^2$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, F(\mu) = \frac{1}{2}, F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ 标准正态分布 $X \sim N(0,1)$ $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \Phi(0) = \frac{1}{2}, \Phi(-x) = 1 - \Phi(x)$ 正态分布的标准化若 $X \sim N(\mu, \sigma^2)$, 则 $\frac{X-\mu}{\sigma} \sim N(0,1)$.

拓展-负二项分布

在一系列独立重复的伯努利试验 (每次试验只有"成功"或"失败"两种结果, 成功概率为 p) 中, 达到 r 次成功所需的试验总次数 X 服从负二项分布。

$$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \quad k = r, r+1, r+2, \dots, \quad EX = \frac{r}{p}, \quad DX = \frac{r(1-p)}{p^2}$$

6. 设随机变量 X 的概率分布为 $P\{X = k\} = C \frac{\lambda^k}{k!}, k = 1, 2, \dots, 则 <math>C = \underline{\hspace{1cm}}$.

Solution

(方法一: 级数) 由概率的规范性可知 $\sum_{k=1}^{\infty} C \frac{\lambda^k}{k!} = 1$, 由于 $e^x = \sum_{i=0}^{\infty} \frac{x^n}{n!}$, 故 $C(e^{\lambda} - 1) = 1$, 故 $C = \frac{1}{e^{\lambda} - 1}$

方法二: 泊松分布) 考虑泊松分布 $P\{X=k\}=rac{\lambda^k}{k!}e^{-\lambda}, k=0,1,\dots$

7. 设随机变量 X 的概率密度为 $f(x) = Ae^{-\frac{x^2}{2} + Bx}$, 且 EX = DX, 则 $A = ___, B = ___.$

Solution

$$f(x) = Ae^{\frac{B^2}{2}}e^{-\frac{(x-B)^2}{2}} \sim N(1,B^2)$$
,又 $D(x) = E(x)$ 故 $B^2 = 1$,对比正态分布的概率密度函数有 $Ae^{\frac{B^2}{2}} = \frac{1}{\sqrt{2\pi}}$ 故 $A = \frac{e^{-\frac{1}{2}}}{\sqrt{2\pi}}$

总结

形如 $f(x) = Ae^{ax^2+b+c}, a < 0$ 一定可以化成某一个正态分布的概率密度.

8. (2004, 数一、三) 设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$ 。若 $P\{|X| < x\} = \alpha$,则 x 等于

(A)
$$u_{\frac{\alpha}{2}}$$
 (B) $u_{1-\frac{\alpha}{2}}$ (C) $u_{\frac{1-\alpha}{2}}$ (D) $u_{1-\alpha}$

Solution

如图所示,x 右侧的面积为 $\frac{1-\alpha}{2}$ 故 x 是 $\frac{1-\alpha}{2}$ 上侧分位点

9. 设随机变量 $X \sim N(2, \sigma^2)$, 且 $P\{2 < X < 4\} = 0.3$, 则 $P\{X < 0\} = _____$.

Solution

正态分布的基本套路就是遇事不决标准化 $P\{2 < X < 4\} = P\{0 < \frac{X-2}{\sigma} < \frac{2}{\sigma}\} = 0.3$, 故 $P\{X < 0\} = P\{\frac{X-2}{\sigma} < \frac{-2}{\sigma}\} = \frac{1}{2} - 0.3 = 0.2$

10. 设随机变量 $X \sim N(\mu, \sigma^2)(\mu < 0), F(x)$ 为其分布函数, a 为任意常数,则

$$(A) F(a) + F(-a) > 1 \quad (B) F(a) + F(-a) = 1$$

$$(C) F(a) + F(-a) < 1 \quad (D) F(\mu + a) + F(\mu - a) = \frac{1}{2}$$

Solution

这道题是比较隐晦的考察了正态分布的对称性, 具体直接看总结. 但要注意先标准化再套结论!

$$\Phi(a) + \Phi(b) = \begin{cases} 1, & a+b=1 \\ < 1, & a+b < 1 \\ > 1, & a+b > 1 \end{cases}$$

11. 设随机变量 X 与 Y 相互独立, 均服从参数为 1 的指数分布, 则 $P\{1 < \max\{X,Y\} < 2\} = ____.$

Solution

$$\begin{split} P\{1 < \max\{X,Y\} < 2\} &= P\{\max\{X,Y\} < 2\} - P\{\max\{X,Y\} \le 1\} \\ &= P\{X < 2,Y < 2\} - P\{X \le 1,Y \le 1\} \\ &\stackrel{\text{曲独立性}}{=\!=\!=\!=} P\{X < 2\} P\{Y < 2\} - P\{X \le 1\} P\{Y \le 1\} \\ &= (1 - e^{-2\lambda})^2 - (1 - e^{-\lambda})^2 \end{split}$$

12. 设随机变量 X 与 Y 相互独立, 均服从区间 [0,3] 上的均匀分布, 则 $P\{1 < \min\{X,Y\} < 2\} = ____.$

Solution

$$\begin{split} P\{1 < \min\{X,Y\} < 2\} &= P\{\min\{X,Y\} > 1\} - P\{\min\{X,Y\} \geq 2\} \\ &= P\{X > 1\} P\{Y > 1\} - P\{X \geq 2\} P\{Y \geq 2\} \\ &= \frac{1}{3} \end{split}$$

总结

对于 min 和 max 问题基本按照如下思路:

$$P\{a < \min(X_1, X_2, \dots, X_n) < b\}$$

$$= P\{\min(X_1, X_2, \dots, X_n) > a\} - P\{\min(X_1, X_2, \dots, X_n) \ge b\}$$

$$P\{a < \max(X_1, X_2, \dots, X_n) < b\}$$

$$= P\{\max(X_1, X_2, \dots, X_n) < b\} - P\{\min(X_1, X_2, \dots, X_n) \le a\}$$

13. (2013, 数一) 设随机变量 $Y \sim E(1), a > 0$, 则 $P\{Y \le a + 1 | Y > a\} = ____.$

Solution

由指数分布的无记忆性, 有 $P\{Y \le a+1|Y>a\} = P\{0 < Y < 1\} = \int_0^1 e^{-x} dx = 1 - e^{-1}$

- 14. 设随机变量 $X \sim G(p), m, n$ 为正整数, 则 $P\{X > m + n | X > m\}$
 - (A)与 m 无关,与 n 有关,且随 n 的增大而减少
 - (B)与 m 无关,与 n 有关,且随 n 的增大而增大
 - (C) 与 n 无关, 与 m 有关, 且随 m 的增大而减少
 - (D) 与 n 无关, 与 m 有关, 且随 m 的增大而增大

Solution

由几何分布的无记忆性, 有 $P\{X>m+n|X>m\}=P\{X>n\}=\sum_{i=n+1}^{\infty}p(1-p)^{i-1}$, 故随着 n 增大概率反而减少

总结

指数分布与几何分布具有无记忆性

$$\begin{split} X &\sim E(\lambda) \\ P\{x > s + t \mid x > s\} = P\{x > t\} \\ P\{x < s + t \mid x > s\} = P\{0 < x < t\} \\ X &\sim G(p) \\ P\{x > n + m \mid x > m\} = P\{x > t\} \\ P\{x = n + m \mid x = m\} = P\{x = n\} = p(1 - p)^{n - 1} \end{split}$$

求一维连续型随机变量函数的分布

Remark

【方法】

设随机变量 X 的概率密度为 $f_X(x)$, 求 Y = g(X) 的分布.

分布函数法

- (1) 设 Y 的分布函数为 $F_Y(y)$, 则 $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$.
- (2) 求 Y = q(X) 在 X 的正概率密度区间的值域 (α, β) , 讨论 y.

当 $y < \alpha$ 时, $F_Y(y) = 0$;

当
$$\alpha \leq y < \beta$$
 时, $F_Y(y) = \int_{g(x) \leq y} f_X(x) dx$;

当 $y > \beta$ 时, $F_Y(y) = 1$.

(3) 若 Y 为连续型随机变量, 则 Y 的概率密度为 $f_Y(y) = F'_Y(y)$.

公式法

设 y = g(x) 在 X 的正概率密度区间单调, 值域为 (α, β) , 反函数为 x = h(y), 则 Y 的概 率密度为

$$f_Y(y) = \begin{cases} f_X(h(y)) |h'(y)|, \alpha < y < \beta \\ 0, \end{cases}$$

若 y = q(x) 在 X 的正概率密度区间 [a,b] 分段严格单调,则分段运用公式法,然后将概率 密度相加.

- 15. 设随机变量 $X \sim E(\lambda)$, 则 $Y = \min\{X, 2\}$ 的分布函数

 - (A) 为连续函数 (B) 为阶梯函数
 - (C) 至少有两个间断点
- (D) 恰好有一个间断点

Solution

这是一道比较简单的题目,主要是用于演示所谓图像法讨论 y 的具体操作,注意画的 是X - Y 图像

故 $F_Y(y) = \min\{X, 2\} < y$, 当 y < 0 时候 $F_Y(y) = 0, y \ge 2, F_Y(y) = 1$, 当 $0 \le y < 2$ 时候, 有 $\int_0^y f(x) dx = 1 - e^{-\lambda y}$, 综上

$$F_Y = \begin{cases} 0, & y < 0 \\ 1 - e^{-\lambda y}, & 0 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

容易发现 $F(2-0) \neq 1$ 故存在一个跳跃间断点

16. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x^2}{a}, & 0 < x < 3 \\ 0, & 其他 \end{cases}$ $Y = \begin{cases} 2, & X \le 1 \\ X, & 1 < X < 2 \\ 1, & X \ge 2 \end{cases}$

- (a) 求Y的分布函数;
- (b) \bar{x} $P{X ≤ Y}$.

Solution

带参数的概率密度第一步就应该根据正则性把这个参数求出来.

$$\int_0^3 f(x)dx = 1 \implies a = 9$$

然后和上一题一样画 X-Y 图像, 求 $F_Y(y)$, 注意分区域就是.

- 17. (2021, 数一、三) 在区间 (0,2) 上随机取一点, 将该区间分成两段, 较短一段的长度记为 X, 较长一段的长度记为 Y。
 - (a) 求X的概率密度;
 - (b) 求 $Z = \frac{Y}{X}$ 的概率密度;
 - (c) $Rightarrow E\left(\frac{Y}{X}\right)$.

Solution

有题设容易得到 $X \sim U(0,1), Y = 2 - X$

(1) 则
$$f(x) = \begin{cases} 1, & x \in (0,1) \\ 0, & 其他 \end{cases}$$

(2) $Z = \frac{Y}{X} = \frac{2}{X} - 1$, 显然 Z 关于 X 是单调的, 可以用公式法直接求出 $f_Z(z)$, 即

$$f_Z(z) = 1 \cdot \frac{2}{(y+1)^2} = \frac{2}{(y+1)^2}, z \in (1, +\infty)$$

(3) $E(Z) = \int_{1}^{\infty} z f_{Z}(z) dz = 2 \ln 2 - 1$

或者也可以用

$$E(\frac{2}{x} - 1) = \int_0^1 (\frac{2}{x} - 1) dx = 2\ln(2) - 1$$

第三章 二维随机变量

3.1 联合分布函数的计算

联合分布函数的性质

- (1) $0 \le F(x,y) \le 1, -\infty < x < +\infty, F(-\infty,y) = F(x,-\infty) = F(-\infty,-\infty) = 0, F(+\infty,+\infty) = 1$
- (2) F(x,y) 关于 x 和 y 均单调不减
- (2) F(x,y) 关于 x 和 y 均右连续
- (4) $P{a < X \le b, c < Y \le b} = F(b, d) F(b, c) F(a, d) + F(a, c)$
- (5) $F_X(x) = F(x, +\infty), F_Y(y) = F(+\infty, y)$
- 1. 设随机变量 X 与 Y 相互独立, $X \sim B(1,p)$, $Y \sim E(\lambda)$, 则 (X,Y) 的联合分布函数 $F(x,y) = ____$.

Solution

由 X 和 Y 相互独立, 则有 $F_{XY}(x,y) = F_X(x)F_Y(y), f(x,y) = f_X(x)F_Y(x), X$ 的概率 分布如下:

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

则 X 的分布函数为

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

而
$$Y \sim E(\lambda)$$
, 故

$$F_{XY}(x,y) = F_X(x)F_Y(y) = \begin{cases} (1-p)(1-e^{-\lambda y}), & 0 \le x < 1, y > 0 \\ 1-e^{-\lambda y}, & x \ge 1, y > 0 \\ 0, & \sharp \text{ th} \end{cases}$$

3.2 二维离散型随机变量分布的计算

- 2. 设随机变量 X 与 Y 相互独立, 均服从参数为 p 的几何分布。
 - (a) 求在 $X + Y = n(n \ge 2)$ 的条件下,X 的条件概率分布;
 - (b) $\bar{x} P\{X + Y \ge n\} (n \ge 2)$.

Solution

3. (1)

$$P\{X+Y=n\} \xrightarrow{\frac{\square (p) + 2 + 2 + 2}{n}} \sum_{k=1}^{n-1} P\{X=k,Y=n-k\}$$

$$= \frac{2 + 2 + 2}{n} \sum_{k=1}^{n-1} P\{X=k\} P\{Y=n-k\}$$

$$= \sum_{k=1}^{n-1} (1-p)^{k-1} p \cdot (1-p)^{n-k-1} p$$

$$= \sum_{k=1}^{n-1} (1-p)^{n-2} p^2$$

$$= (n-1)(1-p)^{n-2} p^2$$

在X + Y = n的条件下,X的条件概率为

$$P\{X = k \mid X + Y = n\} = \frac{P\{X = k, Y = n - k\}}{P\{X + Y = n\}}$$

$$= \frac{p^2(1-p)^{n-2}}{(n-1)p^2(1-p)^{n-2}}$$

$$= \frac{1}{n-2}$$
 $k = 1, 2 \dots n-1$ 这个范围千万别忘喽!

1,2....

(2)

$$P\{X+Y \ge n\} = P\{X+Y=n\} + P\{X+Y=n+1\} + \dots$$

$$= \sum_{k=n}^{+\infty} P\{X+Y=k\}$$

$$= \sum_{k=n}^{+\infty} (k-1)p^2(1-p)^{k-2}$$

不妨先计算级数 $\sum_{k=n}^{\infty} (k-1)x^{k-2}$

$$\sum_{k=n}^{\infty} (k-1)x^{k-2} = \sum_{k=n}^{\infty} (x^{k-1})'$$

$$= \left(\frac{\sum_{n=k}^{\infty}}{x}\right)'$$

$$= \frac{(n-1)x^{n-2}(1-x) + x^{n-1}}{(1-x)^2}$$

故当 x = 1 - p 的时有

$$P\{X+Y \ge n\} = p^2 \frac{(n-1)(1-p)^{n-2}p + (1-p)^{n-1}}{p^2}$$
$$= (1-p)^{n-2}(np-2p+1)$$

3.3 二维连续型随机变量分布的计算

联合概率密度的性质

- (1) $f(x,y) \ge 0, -\infty < x < +\infty, -\infty < y < +\infty$;
- (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1;$
- (3) $P\{(X,Y) \in D\} = \iint_D f(x,y) \, dx \, dy$;
- (4) 在 f(x,y) 的连续点处有 $\frac{\partial^{2}F(x,y)}{\partial x\partial y}=f(x,y)$.

边缘概率密度

- (1) (X,Y) 关于 X 的边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$
- (2) (X,Y) 关于 Y 的边缘概率密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

条件概率密度

- (1) 在 Y = y 的条件下, X 的条件概率密度 $f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$
- (2) 在 X = x 的条件下, Y 的条件概率密度 $f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$
- 3. (2010, 数一、三) 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, \quad -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

Solution

(方法一正常求) 首先通过规范性求出参数 A

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A e^{-2x^2 + 2xy - y^2} dx dy$$
$$= A \int_{-\infty}^{+\infty} e^{-x^2} dx \int_{-\infty}^{+\infty} e^{-(y-x)^2} dy$$
$$\xrightarrow{\text{Possion } \Re \mathcal{D}} A \pi = 1 \implies A = \frac{1}{\pi}$$

X 的边缘分布函数为

$$\int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} \frac{1}{\pi} e^{-2x^2 + 2xy - y^2} dy$$
$$= \frac{1}{\pi} e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y-x)^2}$$
$$= \frac{1}{\sqrt{\pi}} e^{-x^2}, x \in \mathbf{R}$$

则在 X = x 的条件下,Y 的条件概率为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$
$$= \frac{1}{\sqrt{\pi}}e^{-(y-x)^2}$$

通过二维正态分布) 形如 $f(x,y) = Ae^{ax^2 + bxy + cy^2}$ 的函数如果是概率密度,则其一定是某个二维正态的概率密度函数,故

$$(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$$

通过下一节讲的确定系数的办法, 可以很快的确定

$$(X,Y) \sim N(0,0;\frac{1}{2},1;\frac{\sqrt{2}}{2})$$

故
$$A = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} = \frac{1}{\pi}, f_X(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}$$

- 4. 设随机变量 $X \sim U(0,1)$, 在 X = x(0 < x < 1) 的条件下, 随机变量 $Y \sim U(x,1)$ 。
 - (a) 求 (X,Y) 的联合概率密度;
 - (b) 求 (X,Y) 关于 Y 的边缘概率密度 $f_Y(y)$;
 - (c) $\Re P\{X+Y>1\}$.

Solution

(1) 在 X = x 的条件下,Y 的条件概率密度为

$$f_Y(y) = \begin{cases} \frac{1}{1-x}, & x \le y \le 1\\ 0, & \sharp \text{ the } \end{cases}$$

故
$$f(x,y) = f_{Y|X}(y \mid x) f_X(x) = \begin{cases} \frac{1}{1-x}, & 0 < x < 1, x < y < 1 \\ 0, & 其他 \end{cases}$$

(2) 通过概率密度求边缘密度的时候, 需要画出 x-y 图, 并且确定要求的那个参数的范围, 比如说这里是 $y \in (0,1)$, 让后再从 [0,1] 上面去做偏积分, 具体如图所示

$$f_Y(y) = \int_{+\infty}^{-\infty} f(x, y) dx = \begin{cases} -\ln(1 - y), & 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

(3) 根据性质 (3) 有 $P{X + Y > 1} = \iint_{x+y<1} f(x,y) dx dy$ 此时 x-y 的可行范围为

原式 =
$$\int_{1/2}^{1} dy \int_{1-y}^{y} \frac{1}{1-x} dx$$

= $\int_{1/2}^{1} [\ln y - \ln(1-y)] dy$
= $[y \ln y - (1-y) \ln(1-y)] \Big|_{1/2}^{1}$
= $\ln 2$

3.4 关于二维正态分布

Remark

二维正态分布的性质 设 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$, 则

- (1) $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 反之不成立(独立的时候反之成立);
- (2) X 与 Y 相互独立 $\Leftrightarrow X 与 Y$ 不相关 $(\rho = 0)$;
- (3) $aX + bY \sim N\left(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2\right)$; 特别地, 若 X 与 Y 相互独立, $X \sim N\left(\mu_1, \sigma_1^2\right), Y \sim N\left(\mu_2, \sigma_2^2\right)$, 则 $aX + bY \sim N\left(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2\right)$;

(4) 若
$$U = aX + bY, V = cX + dY$$
, 即 $\begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$, 则 (U,V) 服从二 维正态分布 $\Leftrightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$.

5. 设二维随机变量 $(X,Y) \sim N(1,2;1,4;-\frac{1}{2})$, 且 $P\{aX+bY\leq 1\}=\frac{1}{2}$, 则 (a,b) 可以为

$$(A) \ \left(\frac{1}{2}, -\frac{1}{4}\right) \quad (B) \ \left(\frac{1}{4}, -\frac{1}{2}\right) \ (C) \ \left(-\frac{1}{4}, \frac{1}{2}\right) \quad (D) \ \left(\frac{1}{2}, \frac{1}{4}\right)$$

Solution

由性质 (3) 可知 $aX + bY \sim N$, 而由正态分布的对称性可知, $\mu = 1 \implies a + 2b = 1$ 故选择 (D)

6. (2020, 数三) 设二维随机变量 $(X,Y) \sim N(0,0;1,4;-\frac{1}{2})$, 则下列随机变量服从标准正态分布且与 X 相互独立的是

$$(A) \frac{\sqrt{5}}{5} (X+Y) \quad (B) \frac{\sqrt{5}}{5} (X-Y) (C) \frac{\sqrt{3}}{3} (X+Y) \quad (D) \frac{\sqrt{3}}{3} (X-Y)$$

Solution

这道题选择出来并不困难, 但要证明其与 X 相互独立还是有点说法的.

第一步, 先求 X + Y 和 X - Y 的标准化

由性质三可知 $X+Y\sim N(0,3), X-Y\sim N(0,7),$ 故 $\frac{\sqrt{3}}{3}(X+Y)\sin N(0,1); \frac{\sqrt{7}}{7}\sim N(0,1);$ 这里其时就已经可以选出答案喽

第二步证明独立性

考虑
$$(X+Y,X) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
,且 $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0$

由性质 (4) 可知,(X+Y,X) 服从二维正态分布, 由性质 (2) 可知, 只需要证明二者的相关系数为 0 即可, 证明二者独立.

7. (2022, 数一) 设随机变量 $X \sim N(0,1)$, 在 X = x 的条件下, 随机变量 $Y \sim N(x,1)$, 则 X 与 Y 的相关系数为

$$(A) \frac{1}{4} \quad (B) \frac{1}{2} \quad (C) \frac{\sqrt{3}}{3} \quad (D) \frac{\sqrt{2}}{2}$$

Solution

(一传统方法计算)

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$$

问题转换为求 EXY, DY, 由题设可知, 在 X = x 的条件下, Y 的概率密度函数为

$$f_{Y|X}(y \mid x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}}$$

故 (X,Y) 的概率密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$$

故y的边缘分布函数为

$$\int_{+\infty}^{-\infty} f(x,y)dx = \frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{4}}$$

即 $Y \sim N(0,2)$, 故 EY = 0, DY = 2 而 EXY 根据方差的定义可以计算

TODO: 计算 EXY

$$EXY = \int_{+\infty}^{-\infty} \int_{+\infty}^{-\infty} xy f(x, y) dx dy = 1$$

故
$$\rho = \frac{\sqrt{2}}{2}$$

(2) 通过二维正态参数的结论直接求出 ρ , 由上述可知 $f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$, 对比二维正态概率密度的公式

$$f(x,y) = \frac{1}{2\sigma_1\sigma_2\sqrt{1-\rho^2}}exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)}{\sigma_2^2}\right]\right\}$$

容易得出 $(X,Y) \sim N(0,0;1,2;\frac{\sqrt{2}}{2})$, 具体如总结所示.

总结

对于形如 $Ae^{-ax^2+bxy+cy^2}$ 的式子, 若其是概率密度, 则必然是某个二维正态的概率密度 (由规范性) 且满足

(1)
$$b^2 = 4\rho^2 a^2 c^2 \implies \rho^2 = \frac{b^2}{4a^2 c^2}$$

(2) rho 的符号与 xy 系数的符号一致

3.5 求二维离散型随机变量函数的分布

8. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1), Y \sim P(\lambda_2),$ 求 Z = X + Y 的概率分布.

Solution

这道题是参数可加性的直接考察, 可以先证明一下

$$\begin{split} P\{Z=n\} &= P\{X+Y=n\} \\ &= \sum_{k=0}^{n} P\{X=k,Y=n-k\} \\ &\stackrel{\underline{\text{4ddt}}}{=} \sum_{k=0}^{n} P\{X=k\} P\{Y=n-k\} \\ &= \sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}} \\ &= e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\ &\stackrel{\underline{\text{LF同乘}k!}}{=} e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{n(n-1)\dots(n-k+1)}{k!} \lambda_{1}^{k} \lambda_{2}^{n-k} \\ &= e^{-(\lambda_{1}+\lambda_{2})} \frac{1}{n!} \sum_{k=0}^{n} C_{n}^{k} \lambda_{1}^{k} \lambda_{2}^{n-k} \\ &\stackrel{\underline{\text{LFG}}}{=} \frac{(\lambda_{1}+\lambda_{2})^{n}}{n!} e^{-(\lambda_{1}+\lambda_{2})} \end{split}$$

参数可加性

当 X,Y 独立的时候

(1)
$$X \sim B(m, p), Y \sim B(n, p) \implies X + Y \sim B(n + m, p)$$

(2)
$$X \sim P(\lambda_1), Y \sim P(\lambda_2) \implies X + Y \sim P(\lambda_1 + \lambda_2)$$

(3)
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2) \implies X + Y \sim (\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(4)
$$X \sim \chi^2(m), Y \sim \chi^2(n), \implies X + Y \sim \chi^2(n+m)$$

(5)
$$X \sim E(\lambda_1), Y \sim E(\lambda_2) \implies \min(X, Y) \sim E(\lambda_1 + \lambda_2)$$

求二维连续型随机变量函数的分布 3.6

Remark

问题描述

设二维随机变量 (X,Y) 的联合概率密度为 f(x,y), 求 Z=q(X,Y) 的概率密度 $f_Z(z)$.

分布函数法

- (1) 设 Z 的分布函数为 $F_Z(z)$, 则 $F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$.
- (2) 求 Z = g(X,Y) 在 (X,Y) 的正概率密度区域的值域 (α,β) , 讨论 z.

$$z < \alpha$$
 时, $F_Z(z) = 0$;

当
$$\alpha \leq z < \beta$$
 时, $F_Z(z) = \iint_{g(x,y) \leq z} f(x,y) dxdy$;
当 $z \geq \beta$ 时, $F_Z(z) = 1$.

(3) Z 的概率密度为 $f_{Z}(z) = F'_{Z}(z)$.

卷积公式

(1) 设
$$Z = aX + bY$$
, 则 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|b|} f\left(x, \frac{z - ax}{b}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|a|} f\left(\frac{z - by}{a}, y\right) dy;$

(3)
$$\ \ \mathcal{Z} = \frac{Y}{X}, \ \mathbb{M} f_{Z}(z) = \int_{-\infty}^{+\infty} |x| f(x, xz) dx;$$

(4) 设
$$Z = \frac{X}{Y}$$
, 则 $f_Z(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy$

9. 设二维随机变量
$$(X,Y)$$
 的联合概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & 其他 \end{cases}$

- (a) (X,Y) 的联合分布函数 F(x,y);
- (b) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
- (c) 条件概率密度 $f_{X|Y}(x|y), f_{Y|X}(y|x)$;

(d)
$$P\left\{Y \le \frac{1}{2} | X \le \frac{1}{2}\right\}, P\left\{Y \le \frac{1}{2} | X = \frac{1}{2}\right\};$$

(e)
$$Z = 2X - Y$$
 的概率密度 $f_Z(z)$.

Solution

(1) 由定义可知 $F(x,y) = \int_{-\infty} x \int_{-\infty} y f(u,v) du dv$, 其中 x,y 的可行域如下图所示, 分为五个部分故

$$F(x,y) = \begin{cases} \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^x \mathrm{d}u, & 0 < x < 1, 0 < y < 2x \\ \int_0^x \mathrm{d}u \int_0^{2u} \mathrm{d}v, & 0 < x < 1, y \ge 2x \\ \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^1 \mathrm{d}u, & x > 1, 0 < y < 2 \end{cases} = \begin{cases} \frac{y^2}{4} - xy, & 0 < x < 1, 0 < y < 2x \\ x^2, & 0 < x < 1, y \ge 2x \\ y - \frac{y^2}{4}, & x > 1, 0 < y < 2 \\ 1, & x \ge 1, y \ge 2x \\ 0, & \not \pm \& \end{cases}$$

(2) 由定义可知

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 2x, & 0 < x < 1; \\ 0, & \text{ 其他} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 1 - \frac{y}{2}, & 0 < y < 2\\ 0, & \sharp \text{ th} \end{cases}$$

(3) 当0 < x < 1在 X = x 的条件下,Y 的条件概率密度为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & 0 < y < 2x \\ 0, & \sharp \text{ th} \end{cases}$$

当0 < y < 2在Y = y的条件下,X的条件概率密度为

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2}{2-y}, & \frac{y}{2} < x < 1\\ 0, & \text{#d} \end{cases}$$

(4) 对于 $P\left\{Y \leq \frac{1}{2} | X \leq \frac{1}{2}\right\}$ 可以采用条件概率公式,

$$P\left\{Y \le \frac{1}{2}|X \le \frac{1}{2}\right\} = \frac{\iint\limits_{y \le \frac{1}{2}, x \le \frac{1}{2}} f(x,y) \mathrm{d}x \mathrm{d}y}{\int_{0}^{\frac{1}{2}} f_X(x) \mathrm{d}x} = \frac{3}{4}$$

而对于 $P\left\{Y \leq \frac{1}{2}|X = \frac{1}{2}\right\}$ 则不能采用条件概率公式, 因为 $P\{X = \frac{1}{2}\} = 0$ 不能做 分母, 此时就体现出来条件概率的用处

$$P\left\{Y \le \frac{1}{2}|X = \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} f_{Y|X}(y \mid x) dy$$

将 $X = \frac{1}{2}$ 带入, 求出该条件概率为 $\frac{1}{2}$

(5) 方法一: 分布函数法

 $F_Z(z) = P\{2X-Y \geq Z\} = \iint\limits_{2x-y \leq z} f(x,y) \mathbf{d}x \mathbf{d}y \text{ , 绘制 } y \geq 2x-z \text{, 讨论截距, 如图所 }$ 示, 其结果如下

$$F_Z(z) = \begin{cases} 0, & z < 0 \\ z - \frac{z^2}{4}, & 0 \le z < 2 \\ 1, & z \ge 2 \end{cases}$$

方法二: 卷积公式

由卷积公式有 $f_Z(z) = -\int_{-\infty}^{+\infty} f(x,2x-z)dx$, 此时把 f(x,y) 中的 y 全部转换为 z 并 确定 z 的取值范围即

$$f(x,2x-z) = \begin{cases} 1, & 0 < x < 1, 0 < 2x-z < 2x \implies , 0 < x < 1, 0 < z < 2x \\ 0, & \not\exists \text{ the } \end{cases}$$

此时再对x进行偏积分即可,绘制x-z图像,首先确认z的范围,再从z上对x进行 积分

如图,最终

$$f_Z(z) = \begin{cases} 1 - \frac{z}{2}, & 0 \le z < 2; \\ 0, & \Box \Box \end{cases}$$

3.7 求一离散一连续随机变量函数的分布

- 10. (2020, 数一) 设随机变量 X_1, X_2, X_3 相互独立, X_1 与 X_2 均服从标准正态分布, X_3 的概率 分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},Y=X_3X_1+(1-X_3)X_2$ 。
 - (1) 求 (X_1, Y) 的联合分布函数 (结果用标准正态分布函数 $\Phi(x)$ 表示);
 - (2) 证明 Y 服从标准正态分布.

Solution

一离散加一连续的基本方法就是"全概率公式+独立性"

(1)

$$\begin{split} F(X_1,Y) &= P\{X \leq x, Y \leq y\} \\ &= P\{X_1 \leq x, X_3 X_1 + (1-X_3) X_2 \leq y\} \\ &\stackrel{\underline{\underline{+}} \text{ 概率公式}}{=\!=\!=\!=\!=} P\{X_1 \leq x, X_2 \leq y, X_3 = 0\} + P\{X_1 \leq x, X_1 \leq y, X_3 = 1\} \\ &\stackrel{\underline{\underline{+}} \text{ theory of the proof of the$$

(2) 方法一, 通过 Y 的分布函数确定

$$F_Y(y) = P\{Y \le y\} = P\{X_3X_1 + (1 - X_3)X_2 \le y\}$$

= (和 (1) 完全一致省去)...
= $\Phi(y)$

方法二,直接求边缘分布函数

$$F_X(x) = P\{X \le x\} = F(X, +\infty)$$

 $F_Y(y) = P\{Y \le y\} = F(+\infty, Y)$
 $F_Y(y) = F(\infty, y) = \frac{1}{2}\Phi(y) + \frac{1}{2}\Phi(y) = \Phi(y)$

故 $Y \sim N(0,1)$

第四章 数字特征

4.1 期望与方差的计算

期望与方差

(1) <u>期望的定义</u>: 设随机变量 X 的概率分布为 $P\{X=x_i\}=p_i, i=1,2,\ldots,$ 则 $EX=\sum_i x_i p_i$

推广: 若
$$Y = g(X)$$
 则 $EY = \sum_{i} g(x_i)p_i$

- (2) 设随机变量 X 的概率密度为 f(x) 则 $EX = \int_{-\infty}^{+\infty} f(x) dx$ 推广: 若 Y = g(X) 则 $EY = \int_{-\infty}^{+\infty} g(x) f(x) dx$
- (3) 设二维随机变量 (X,Y) 的联合概率分布为 $P\{X=x_i,Y=y_j\}=p_{ij},i,j=1,2,\dots$ 则 $EZ=\sum_i\sum_jg(x_i,y_j)p_{ij}$
- (4) 设二维随机变量 (X,Y) 的联合概率密度为 f(x,y),Z=g(X,Y) 则 $EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)\mathrm{d}x\mathrm{d}y$ 特别的 $EX=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)\mathrm{d}x\mathrm{d}y, EY=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)\mathrm{d}x\mathrm{d}y$ 期望的性质
- (1) E(aX + bY + c) = aE(X) + bE(Y) + c
- (2) $EXY = EX \cdot EY \iff X 与 Y 不相关$ 特别的若 X 与 Y 相互独立, 由 EXY = EXEY 方差的定义
- (1) $DX = E(X EX)^2 = EX^2 (EX)^2$ 方差的性质

$$(1) D(aX+c) = a^2 DX$$

- (2) $D(X \pm Y) = DX + DY \pm 2Cov(X, Y)$ 推论 $D(X \pm Y) = D(X) + D(Y) \iff X 与 Y 不相关$ 特别的, 若 X 与 Y 独立, 则有 $D(X \pm Y) = D(X) + D(Y)$
- (3) 若X与Y独立,则 $DXY = DXDY + (EX)^2DY + (EY)^2DX$
- 1. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty, 则 <math>E[\min\{|X|, 1\}] = \underline{\hspace{1cm}}$.

$$\begin{split} E\left[\min\left(|X|,1\right)\right] &= \int_{-\infty}^{+\infty} \min\left(|x|,1\right) f(x) \mathrm{d}x \\ &= 2 \int_{0}^{+\infty} \min\left(|x|,1\right) f(x) \mathrm{d}x \\ &= 2 (\int_{0}^{1} x f(x) \mathrm{d}x + \int_{1}^{+\infty} f(x) \mathrm{d}x) \\ &= \frac{1}{\pi} \ln\left(1 + x^{2}\right) \mid_{0}^{1} + \frac{2}{\pi} \arctan x \mid_{1}^{+\infty} \\ &= \frac{1}{\pi} \ln 2 + \frac{1}{2} \end{split}$$

- 2. (2016, 数三) 设随机变量 X 与 Y 相互独立, $X \sim N(1,2),Y \sim N(1,4)$, 则 D(XY) =
 - (A) 6
- (B) 8
- (C) 14
- (D) 15

Solution

) 通过计算方法做

$$DXY = E(XY)^{2} - (EXY)^{2}$$

$$= EX^{2} \cdot EY^{2} - (EXEY)^{2}$$

$$= [DX + (EX)^{2}][DY + (EY)^{2}] - (EXEY)^{2}$$

$$= 3 \times 5 - 1 = 14$$

(方法二) 用结论

$$DXY = DXDY + (EX)^2DY + (EY)^2DX$$

= 8 + 4 + 2 = 14

3. 设随机变量 X 与 Y 同分布,则 $E\left(\frac{X^2}{X^2+Y^2}\right)=$ ____

Solution

由轮换对称性有

$$E\left(\frac{X^2}{X^2 + Y^2}\right) = E\left(\frac{Y^2}{X^2 + Y^2}\right) = \frac{1}{2}E\left(\frac{X^2 + Y^2}{X^2 + Y^2}\right) = \frac{1}{2}$$

总结

若 X, Y 同分布,则 X, Y 具有相同的 F, f, E, D,上题的推广结论

若
$$X_1, X_2 \dots, X_n$$
同分布,则 $E\left(\frac{X_1^2}{X_1^2 + \dots + X_n^2}\right) = \frac{1}{n}$

4. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1),Y \sim P(\lambda_2)$, 且 $P\{X+Y>0\}=1-e^{-1}$,则 $E(X+Y)^2=$ ____.

Solution

利用参数可加性可知,
$$X+Y \sim P(\lambda_1+\lambda_2)$$
, 由 $P\{X+Y>0\}=1-e^{-1}=1-P\{X=0\}$ $\Longrightarrow \lambda_1+\lambda_2=1$, 则 $E(X+Y)^2=D(X+Y)+(E(X+Y))^2=1+1=2$

5. 设随机变量 X 与 Y 相互独立, $X \sim E(\frac{1}{3})$, $Y \sim E(\frac{1}{6})$, 若 $U = \max\{X,Y\}$, $V = \min\{X,Y\}$, 则 $EU = ____$, $EV = ____$.

Solution

EV 是比较好求的, 由参数可加性有 $V \sim E(\frac{1}{2})$

方法一利用二维概率密度计算:

由 X, Y 独立, 知 $f(x,y) = f_X(x)f_Y(y)$, 则

$$EU = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max(x, y) f(x, y) dx dy = \dots = 7$$

方法二求 U 的概率密度:

由 $U = \max(X, Y)$ 知 $F_U(u) = F_1F_2 \implies f_u = f_1F_2 + F_1f_2$

$$EU = \int_{-\infty}^{+\infty} u f_u \mathrm{d}u = \dots = 7$$

方法三利用性质

$$E(U+V) = E(X+Y) = EX + EY = 3 + 6 = 9$$

$$EV = 2 \implies EU = 7$$

总结

若 $U = \max\{X,Y\}, V = \min\{X,Y\}, 则$ E(U+V) = E(X+Y), E(UV) = E(XY) 独立同分布随机变量的最大值与最小值的分布函数, 由如下结果

$$F_Z z = F_{X_1} F_{X_2} \dots F_{X_n}$$

$$Z = \min (X_1, X_2, \ldots, X_n)$$
,则

$$F_Z z = 1 - [(1 - F_{(X_2)})][(1 - F_{(X_2)})] \dots [(1 - F_{(X_n)})]$$

6. (2017, 数一) 设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布函数, 则 EX =____

Solution

(方法一)
$$f(x) = \frac{1}{2}\phi(x) + \frac{1}{2}\phi(\frac{x-4}{2})$$
, 则 $EX = \int_{-\infty}^{+\infty} f(x) dx = 2$

(方法二) 考虑 $F(X_1) = 0.5\Phi(x), F(X_2) = 0.5\Phi(\frac{x-4}{2}),$ 则由第二章的结论 $aF_1 + bF_2, (a,b > 0, a+b=1)$ 的时候也是分布函数, 故 $EX = \frac{1}{2}EX_1 + \frac{1}{2}EX_2 = 0 + \frac{4}{2} = 2$

7. 设随机变量 $X \sim N(0,1)$, 则 E|X| = ,D|X| = ...

Solution

$$E|X| = \int_{-\infty}^{+\infty} |x|\phi(x)dx$$

$$= 2\int_{0}^{+\infty} x\phi(x)dx$$

$$= \frac{-2}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{x^{2}}{2}} d(-\frac{x^{2}}{2})$$

$$= \sqrt{\frac{2}{\pi}}$$

$$D|X| = E(|X|)^{2} - (E|X|)^{2}$$

$$= EX^{2} - (E|X|)^{2}$$

$$= DX + (EX)^{2} - (E|X|)^{2}$$

$$= 1 - \frac{2}{\pi}$$

总结

(1)
$$X \sim N(0,1),$$
 $$$ $$$ $| E|X| = \sqrt{\frac{2}{\pi}},$ $D|X| = 1 - \frac{2}{\pi}$$$

(2) 若
$$X \sim N(0, \sigma^2)$$
, 则 $E|X| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$

(3) 若
$$X \sim N(\mu, \sigma^2)$$
, 则 $E|X - \mu| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$

8. 设随机变量 X 与 Y 相互独立, 均服从 $N(\mu, \sigma^2)$, 求 $E[\max\{X,Y\}]$, $E[\min\{X,Y\}]$.

Solution

由 X,Y 独立, 有 $X-Y\sim N(0,2\sigma^2)$, $E|X-Y|=\frac{2\sigma}{\sqrt{\pi}}$ 由下述总结, 可知所求期望为

$$E[\max\{X,Y\}] = \frac{1}{2}[E(X) + E(Y) + E|X - Y|] = \mu + \frac{\sigma}{\sqrt{\pi}}$$

$$E[min\{X,Y\}] = \frac{1}{2}[E(X) + E(Y) - E|X - Y|] = \mu - \frac{\sigma}{\sqrt{\pi}}$$

总结

关于最大值最小值函数的拆法

$$\max\{X,Y\} = \frac{X+Y+|X-Y|}{2}$$

$$\min\{X,Y\} = \frac{X+Y-|X-Y|}{2}$$

9. 设独立重复的射击每次命中的概率为p,X表示第n次命中时的射击次数,求EX,DX.

Pascal 分布 (负二项分布), 关键在于分解随机变量, 设 X_i 表示第 i-1 次命中到 i 命中所需要的射击次数, 则有 X_1, X_2, \ldots 之间相互独立, 且 $X_i \sim G(p)$, 对于 $X = X_1 + X_2 \ldots X_n$, 故

$$EX = EX_1 + EX_2 + \dots + EX_n = \frac{n}{p}$$

 $DX = DX_1 + DX_2 + \dots + DX_n = \frac{n(1-p)}{p^2}$

- 10. (2015, 数一、三) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ & , \text{对 } X \text{ 进行独立} \end{cases}$ 的观测, 直到第 2 个大于 3 的观测值出现时停止, 记 Y 为观测次数。
 - (a) 求 Y 的概率分布;
 - (b) 求 EY.

Solution

不妨令 $p = P\{X > 3\} = \int_3^{+\infty} 2^{-x} \ln 2 dx = \frac{1}{8}$

(1)

$$P{Y = k} = C_{k-1}^{1} p^{2} (1-p)^{k-2}$$
$$= (k-1)(\frac{1}{8})^{2} (\frac{7}{8})^{k-2}, k = 2, 3, \dots$$

(2)

$$EY = \sum_{k=2}^{\infty} kP\{Y = k\}$$

$$= p^2 \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}$$

$$\frac{\text{soft}}{\text{soft}} \dots$$

= 16

也可以用 Pascal 分布的结论直接得出 $EX = \frac{2}{\frac{1}{8}} = 16$

协方差的计算 4.2

第四章 数字特征

协方差的计算 4.2

Remark

协方差

协方差的定义 $Cov(X,Y) = E[(X - EX)(Y - EY)] = E(XY) - EX \cdot EY$ 协方差的性质

- (1) Cov(X,Y) = Cov(Y,X), Cov(X,X) = DX
- (2) Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z)
- 11. 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。若 DX = 4, 正整数 $S \le n, t \le n$, 则

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s}X_{i}, \frac{1}{t}\sum_{j=1}^{t}X_{j}\right) =$$

 $(A) 4 \max\{s, t\}$

 $(B) 4 \min\{s, t\}$

 $(C) \frac{4}{\max\{s,t\}} \qquad (D) \frac{4}{\min\{s,t\}}$

Solution

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s} X_{i}, \frac{1}{t}\sum_{j=1}^{t} X_{j}\right) = \frac{1}{st}[\operatorname{Cov}(X_{1}, X_{1}) + \operatorname{Cov}(X_{1}, X_{2}) + \dots + \operatorname{Cov}(X_{2}, X_{1}) + \dots + \operatorname{Cov}(X_{s}, X_{t})]$$

$$\frac{\operatorname{Cov}(X_{1}, X_{1}) = \operatorname{D}X_{1}, \operatorname{Cov}(X_{1}, X_{j}) = 0}{st} = \frac{\min(s, t)}{st} \cdot \operatorname{D}X$$

$$= \frac{4}{\max(s, t)}$$

来自总体 X 的简单随机样本必然是独立同分布的.

- 12. (2005, 数三) 设 $X_1, X_2, \dots, X_n (n > 2)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, 样本均值 为 \bar{X} 。 记 $Y_i = X_i - \bar{X}, i = 1, 2, \dots, n$ 。
 - (1) 求 Y_i 的方差 $DY_i, i = 1, 2, \dots, n$;
 - (2) 求 Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$;
 - (3) 若 $c(Y_1 + Y_n)^2$ 为 σ^2 的无偏估计量, 求常数 c.

(1) 方法一:

$$DY_i = D(X_i - \bar{X})$$

$$= DX_i + D\bar{X} - 2Cov(X_i, \bar{X})$$

$$= \frac{E\bar{X} = \mu, D\bar{X} = \sigma^2/n}{n} \sigma^2 + \frac{\sigma^2}{n} - 2Cov(X_i, \frac{1}{n} \sum_{i=1}^n X_i)$$

$$= \frac{n-1}{n} \sigma^2$$

方法二:

$$DY_i = D\left(\frac{n-1}{n}X_i - \frac{1}{n}\sum_{i=j}^n X_j(j \neq i)\right)$$
$$= \left(\frac{n-1}{n}\right)^2 \sigma^2 - \frac{n-1}{n^2}\sigma^2$$
$$= \frac{n-1}{n}\sigma^2$$

(2)

$$Cov(Y_1, Y_n) = Cov(X_1, \bar{X}, X_n - \bar{X})$$

$$= Cov(X_1, X_n) - Cov(X_1, \bar{X}) - Cov(X_n - \bar{X}) + D\bar{X}$$

$$= \frac{-\sigma^2}{n}$$

(3) 由无偏性有 $cE(Y_1 + Y_n)^2 = \sigma^2 \implies c = \frac{\sigma^2}{E(Y_1 + Y_n)^2}$

$$E(Y_1 + Y_n)^2 = D(Y_1 + Y_n) + (EY_1EY_n)^2$$

$$= DY_1 + DY_n + 2Cov(Y_1, Y_n) + 0$$

$$= \frac{2(n-2)}{n}\sigma^2$$

故
$$c = \frac{n}{2(n-2)}$$

相关系数的计算 4.3

Remark

相关系数

相关系数的定义 $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$ 相关系数的性质

- (1) $|\rho_{XY}| \leq 1$
- (2) $\rho_{XY} = 0 \iff Cov(X, Y) = 0 \iff EXY = EXEY \iff D(X + Y) = DX + DY$
- (3) $\rho_{XY} = 1 \iff P\{Y = aX + b\} = 1(a > 0); \rho_{XY} = -1 \iff P\{Y = aX + b\} = 0$ 1(a < 0)
- 13. (2016, 数一) 设试验有三个两两互不相容的结果 A_1, A_2, A_3 , 且三个结果发生的概率均为 $rac{1}{3}$ 。将试验独立重复地做两次,X 表示两次试验中 A_1 发生的次数,Y 表示两次试验中 A_2 发生的次数,则X与Y的相关系数为

$$(A) - \frac{1}{2}$$
 $(B) - \frac{1}{3}$ $(C) \frac{1}{3}$ $(D) \frac{1}{2}$

$$(B) - \frac{1}{3}$$

$$(C) \frac{1}{3}$$

$$(D)\frac{1}{2}$$

Solution

(方法一) 由题意有 X,Y 均服从 $B(2,\frac{1}{3})$, 而 $P\{XY=1\}=PX=1,Y=1=C_2^1(\frac{1}{3})^2$, 且 $P\{XY=0\}=\frac{7}{9}$,故 XY 的概率分布如下所示

$$\begin{array}{c|cc} XY & 0 & 1 \\ \hline P & \frac{7}{9} & \frac{2}{9} \end{array}$$

故
$$EXY = \frac{2}{9}$$
, 进而可以求出 $\rho_{XY} = \frac{-\frac{2}{9}}{\frac{4}{9}} = -\frac{1}{2}$

(方法二) 设 Z 为"A3 在两次试验中发生的次数"

由题意有 $Z \sim B(2, \frac{1}{3}), X + Y + Z = 2$ 而 D(X + Y) = DX + DY + 2Cov(X, Y) = $\frac{8}{9} + 2Cov(X,Y)$, 其中 $D(X+Y) = D(2-Z) = DZ = \frac{4}{9}$, 故 $Cov(X,Y) = \frac{-2}{9}$

(方法三)

$$Cov(X,X+Y+Z) = DX + Cov(X,Y) + Cov(X,Z)$$

執換对称性 $\frac{4}{9} + 2Cov(X,Y)$
 $= Cov(X,2) = 0 \implies Cov(X,Y) = -\frac{2}{9}$

- 14. 设随机变量 $X \sim B\left(1, \frac{3}{4}\right), Y \sim B\left(1, \frac{1}{2}\right),$ 且 $\rho_{XY} = \frac{\sqrt{3}}{3}$ 。
 - (a) 求 (X,Y) 的联合概率分布;
 - (b) $R P{Y = 1|X = 1}.$

Solution

这道题比较简单,直接给答案

$$P\{Y = 1 | X = 1\} = \frac{2}{3}$$

4.4 相关与独立的判定

相关与独立性

- (1) 一般来说独立是强于不相关的条件,即独立 ⇒ 不相关
- (2) 对于二维正态分布有 独立 ← 不相关
- (3) 对于 0-1 分布有 独立 ← 不相关

判断是否独立的基本方法

- (1) P(AB) = P(A)P(B), 对于离散型选点, 对于连续型选区间
- (2) 三个充要条件 $\forall (x,y)$ 或 $(i,j)F(x,y)=F_XF_Y, f(x,y)=f_Xf_Y, P(ij)=P_iP_j.$

(3) $\rho_{XY} \neq 0 \implies X, Y$ 不独立

- 15. 设二维随机变量 (X,Y) 服从区域 $D = \{(x,y)|x^2 + y^2 \le a^2\}$ 上的均匀分布,则
 - (A) X 与 Y 不相关, 也不相互独立 (B) X 与 Y 相互独立

- (C) X 与 Y 相关
- (D) X 与 Y 均服从 U(-a,a)

Solution

这道题可以记结论,对于均匀分布若其区域不为 $(a,b)\times(c,d)$ 的矩形,则必然不独立, 其中 $X \in (a,b), Y \in (c,d)$

正常来做的话, 步骤如下

$$f(x,y) = \begin{cases} \frac{1}{\pi a^2}, & (x,y) \in D\\ 0, & (x,y) \notin D \end{cases}$$

$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy \xrightarrow{\text{phit}} 0$$

同理根据对称性可知 EXY = EX = EY = 0, 故 X, Y 一定不相关, 现在求 X, Y 的 边缘分布概率密度,有

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \frac{2}{\pi a^2} \sqrt{a^2 - x^2}, & x \in (-a, a) \\ 0, & x \notin (-a, a) \end{cases}$$

同理可以求出

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \frac{2}{\pi a^2} \sqrt{a^2 - y^2}, & y \in (-a, a) \\ 0, & y \notin (-a, a) \end{cases}$$

显然 $f_Y f_X \neq f(x,y)$ 故 X,Y 不独立.

- 16. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$ 。
 - (a) 求X的期望与方差;
 - (b) 求 X 与 |X| 的协方差, 问 X 与 |X| 是否不相关?
 - (c) 问X与|X|是否相互独立?并说明理由.

(1)

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = 0$$

$$EX^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{0}^{+\infty} x^2 e^{-x} dx = 2$$

$$DX = EX^2 - (EX)^2 = 2$$

(2)

$$E(X|X|) = \int_{-\infty}^{+\infty} |X|Xf(x)\mathrm{d}x = 0 = EXE|X| \implies \rho_{X|X|} = 0, Cov(X, |X|) = 0$$

(3) 设
$$A = \{0 < X < 1\}, B = \{|X| < 1\},$$
故

$$P(AB) = P\{0 < X < 1, |X| < 1\} = P\{0 < X < 1\} = P(A)$$

而 P(B) < 1 是显然的, 故 $P(AB) \neq P(A)P(B)$, 即 X|X| 不独立

第五章 大数定律与中心极限定理

Remark

相关知识

依概率收敛 设 Y_1,Y_2,\dots 是一个随机变量的序列,a 是一个常数,对于任意的给定正数若有 $\lim_{n\to\infty} P\{|Y_n-a|<\epsilon\}=1$,则称该随机变量的序列依概率收敛与 a,记作 $Y_n\stackrel{P}{\to}a$

<u>切比雪夫大数定律</u> 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立, 数学期望 EX_i 和方差 DX_i 都存在, 并且方差有公共上界, 即 $DX_i \leq c, i = 1, 2, \cdots$, 则对任意给定的 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n \mathbf{E} X_i \right| < \varepsilon \right\} = 1.$

<u>伯努利大数定律</u> 设随机变量 X_n 服从参数为 n 和 p 的二项分布, 即 $X_n \sim B(n,p)$, μ_n 是 n 次试验中事件 A 发生的次数 $(n=1,2,\cdots)$, 则对任意 $\varepsilon>0$, 都有 $\lim_{n\to\infty} \mathbf{P}\left\{\left|\frac{\mu_n}{n}-p\right|<\varepsilon\right\}=1$.

 $\frac{\text{ 辛钦大数定律}}{\text{同的期望, 则对任意 } \varepsilon > 0}$,都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| < \varepsilon \right\} = 1.$

主要考法

(1) 切比雪夫不等式

$$P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$$
,或者 $P\{|X - EX| < \epsilon\} > 1 - \frac{DX}{\epsilon^2}$

(2) 大数定理

$$\frac{1}{n} \sum_{i=1}^{n} [X_i] \xrightarrow{P} E[X_i]$$

(3) 中心极限定理

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

(4) 不同定理的成立条件的差别

切比雪夫大数定理要求 X_i 相互独立、均值方差存在、且方差具有公共上界

伯努利大数定理要求 $X_i \sim B(n, p)$

辛钦大数定律要求 X_i 独立同分布,期望存在

列维-林德伯格定理要求 X_i 独立同分布, 且期望方差均存在

棣莫弗-拉普拉斯定理要求 $X_i \sim B(n, p)$

- 1. 设随机变量 $X_1, X_2 ... X_n$ 相互独立, 令 $S_n = X_1 + X_2 + ... + X_n$, 则根据列维-林德伯格 定理, 当 n 充分大的时候 S_n 近似服从正态分布, 则要求 X_1, X_2, \ldots, X_n 满足 ()

 - (A) 有相同的期望与方差 (B) 服从同一离散型分布
 - (C) 服从同一均匀分布
- (D) 服从同一连续型分布

Solution

答案选 C

2. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, $\mu_k = E(X_i^k)(k=1,2,3,4)$ 。由 切比雪夫不等式, 对任意 $\varepsilon > 0$, 有 $P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \mu_{2} \right| \geq \varepsilon \right\} \leq$

$$(A) \frac{\mu_4 - \mu_2^2}{n\varepsilon^2} \quad (B) \frac{\mu_4 - \mu_2^2}{\sqrt{n}\varepsilon^2} \quad (C) \frac{\mu_2 - \mu_1^2}{n\varepsilon^2} \quad (D) \frac{\mu_2 - \mu_1^2}{\sqrt{n}\varepsilon^2}$$

Solution

首先需要确定 $E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})$ 是否等于 μ_{2} 显然, 所以这个式子满足切比雪夫不等式, 故根据切比雪夫不等式有

原式
$$\geq \frac{D(\frac{1}{n}\sum_{i=1}^{n}X_i^2)}{\epsilon^2} = \frac{\mu_4 - \mu_2^2}{n\epsilon^2}$$

3. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, X_i 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于?.

由大数定理有 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \stackrel{P}{\rightarrow} EX_{i}^{2}$, 又期望的定义有

$$EX_i^2 = 2\int_0^1 x^2(1-x)dx = \frac{1}{6}$$

4. (2020, 数一) 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本, $P\{X=0\}=P\{X=1\}=\frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数。利用中心极限定理得 $P\left\{\sum_{i=1}^{100}X_i\leq 55\right\}$ 的近似值为

$$(A) 1 - \Phi(1)$$
 $(B) \Phi(1)$ $(C) 1 - \Phi(0.2)$ $(D) \Phi(0.2)$

Solution

由中心极限定理有 $\sum_{i=1}^{100} X_i \sim N(50, 25)$ 标准化后所求概率为

$$P\{\frac{X-50}{5} \le 1\} \implies \Phi(1)$$

第六章 统计初步

6.1 求统计量的抽样分布

Remark

样本均值与方差

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} nX_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $E\bar{X} = \mu, D\bar{X} = \frac{\sigma^2}{n}, ES^2 = \sigma^2$ 来自同一总体的样本均值与方差是独立的

有偏估计量
$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 其 $ES_n^2 = \frac{n-1}{n} \sigma^2$

统计的三大分布

 χ^2 分布的定义

设随机变量 X_1, X_2, \ldots, X_n 相互独立, 均服从 N(0,1) 称 $\chi^2 = X_1^2 + X_2^2 + \ldots + X_n^2$ 服从自由度为 n 的 χ^2 分布, 记 $\chi^2 \sim \chi^2(n)$, 特别的若 $X \sim N(0,1)$, 则 $\chi^2 \sim \chi^2(1)$ χ^2 分布的性质

- (1) 参数可加性 设 χ_1^2 与 χ_2^2 相互独立,且 $\chi_1^2 \sim \chi^2(n), \chi_2^2 \sim \chi^2(m)$ 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n+m)$
- (2) 设 $\chi^2 \sim \chi^2(n)$ 则 $E\chi^2 = n, D\chi^2 = 2n$

F 分布的定义

设随机变量 X 和 Y 相互独立, 且 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2),$ 称 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 n_1, n_2 的 F 分布, 记作 $F \sim F(n_1, n_2)$

F 分布的性质

(1) 设
$$F \sim F(n_1, n_2)$$
, 则 $\frac{1}{F} \sim F(n_2, n_1)$

(2)
$$F_{1-\alpha}(n_2, n_1) = \frac{1}{F_{\alpha}(n_1, n_2)}$$

t 分布的定义 设随机变量 X 和 Y 相互独立, $X \sim N(0,1), Y \sim \chi^2(n)$, 则称 $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布, 记作 $T \sim t(n)$

t 分布的性质

(1) 设
$$T \sim t(n)$$
,则 $T^2 \sim F(1,n)$, $\frac{1}{T^2} \sim F(n,1)$

(2)
$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

Remark

单正态总体与双正态总体

单正态总体

设 X_1, X_2, \ldots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \bar{X} 与 S^2 分别为样本均值与样本方差,则

(1)
$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
, $\mathbb{P} \bar{X} \sim N(\mu, \sigma^2/n)$

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 即 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$, 且 \bar{X} 与 S^2 相互独立

(3)
$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

双正态总体

设总体 $X \sim N\left(\mu_1, \sigma_1^2\right)$,总体 $Y \sim N\left(\mu_2, \sigma_2^2\right), X_1, X_2, \cdots, X_{n_1}$ 与 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别为来自总体 X 与 Y 的简单随机样本且相互独立,样本均值分别为 \bar{X}, \bar{Y} ,样本方差分别为 S_1^2, S_2^2 ,则

(4)
$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1);$$

(5)
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$
;

(6)
$$\stackrel{}{=}$$
 $\sigma_1^2 = \sigma_2^2$ $\stackrel{}{=}$ $\stackrel{}{=}$ $\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$, $\stackrel{}{=}$ $\stackrel{}{=}$ $\frac{1}{N_1 + n_2 - 2} \cdot \frac{1}{N_1 + n_2 - 2}$.

1. (2013, 数一) 设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$ 。给定 $\alpha(0 < \alpha < 0.5)$,常数 c 满足

$$P\{X > c\} = \alpha, \text{ } MP\{Y > c^2\} =$$

(A)
$$\alpha$$
 (B) $1 - \alpha$ (C) 2α (D) $1 - 2\alpha$

这道题考察的是 t 分布的对称性, 由题有

$$Y = \frac{\chi^2(1)}{\chi^2(n)}$$
 $X = \frac{N(0,1)}{\sqrt{\chi^2(n)/n}}$

则有 $X^2=Y$, 所求概率就变成 $P\{X^2>c^2\}$ 由 t 分布的对称性有 $P\{X^2>c^2\}=2\alpha$

总结

正态分布与t分布具有相似的概率密度图像,F分布与 χ^2 分布也有类似的图像.

2. 设 X_1, X_2, \dots, X_9 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + X_2 + \dots + X_6), Y_2 = \frac{1}{3}(X_7 + X_8 + X_9), S^2 = \frac{1}{2}\sum_{i=7}^{9}(X_i - Y_2)^2$, 求 $\frac{\sqrt{2}(Y_1 - Y_2)}{S}$ 的分布.

Solution

这种题就是一步一步反推, 注意凑题目要求的结果即可

$$Y_1 = \frac{1}{6} \sum_{i=1}^{6} X_i \sim N(\mu, \frac{\sigma^2}{6})$$
 同理 $Y_2 \sim N(\mu, \frac{\sigma^2}{3})$

由
$$Y_1, Y_2$$
 独立, 知道 $Y_1 - Y_2 \sim N(0, \frac{\sigma^2}{2}) \implies \frac{Y_1 - Y_2}{\sigma/\sqrt{2}} \sim N(0, 1)$

又有
$$\frac{2s^2}{\sigma^2} \sim \chi^2(2)$$
, 故

$$\frac{Y_1 - Y_2}{\sqrt{\sigma^2/2}\sqrt{\frac{2s^2}{\sigma^2}/2}} = \frac{\sqrt{2}(Y_1 - Y_2)}{s} \sim t(2)$$

6.2 求统计量的数字特征

3. 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 则

$$E\left[\sum_{i=1}^{n} X_i \cdot \sum_{j=1}^{n} \left(nX_j - \sum_{k=1}^{n} X_k\right)^2\right] =$$

Solution

这道题就是个凑系数化简, 过程省去 原式 = $n^3(n-1)\mu\sigma^2$

- 4. 设 X_1, X_2, \cdots, X_9 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 $\frac{9\bar{X}^2}{S^2}$ 的分布
 - (2) $\vec{X} E[(\bar{X}^2 S^2)^2];$

- (1) 和例题 3 一致, 过程省去 $\frac{9\bar{X}^2}{S^2} \sim F(1,8)$
- (2) 对于这种高幂次的一般都需要考虑用 χ^2 的结论

$$\begin{split} E\left[(\bar{X}^2S^2)^2\right] &= E\bar{X}^4 \cdot ES^4 \\ &= \left[D\bar{X}^2 + (E\bar{X}^2)^2\right] \left[DS^2 + (ES^2)^2\right] \\ &= \frac{5}{107}\sigma^8 \end{split}$$

又
$$\frac{9\bar{X}^2}{\sigma^2} \sim \chi^2(1) \implies D\bar{X}^2 = \frac{2\sigma^4}{81}$$
 同理有 $DS^2 = \frac{\sigma^4}{4}$

第七章 参数估计

7.1 求矩估计与最大似然估计

Remark

矩估计与最大似然估计

矩估计

令
$$EX^k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 或者 $E(X - EX)^k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k, k = 1, 2, \dots$ 得到 $\theta_1, \theta_2 \dots$ 的矩估计量

$$\begin{cases} EX = \bar{X}, & - \uparrow \Rightarrow \\ EX^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 & \text{两个参数} \end{cases}$$

最大似然估计

(1) 对样本点
$$x_1, x_2 \dots, x_n$$
, 似然函数为 $L(\theta)$
$$\begin{cases} \prod_{i=1}^n p(x_i; \theta) \\ \prod_{i=1}^n f(x_i; \theta) \end{cases}$$

(2) 似然函数两端取对数求导

(3) 令
$$\frac{d \ln L(\theta)}{d \theta} = 0$$
 就可以得到 θ 的最大似然估计值

一个关于规范的小提示,如果问估计值用小写字母(样本值),问估计量用大写字母(随机变量)

1. (2002, 数一) 设总体 X 的概率分布为

其中 $0 < \theta < \frac{1}{2}$ 为未知参数, 利用总体 X 的如下样本值 3,1,3,0,3,1,2,3, 求 θ 的矩估计值与最大似然估计值。

Solution

(矩估计) 这道题只有一个参数, 只需要用一阶矩估计 $EX = 2\theta(1-\theta) + 2\theta^2 + 3 - 6\theta = \bar{X}$, 其 中 $\bar{X} = \frac{16}{8} = 2$, 故 θ 的矩估计值 $\hat{\theta} = \frac{1}{4}$

(最大似然估计) 对于样本 3,1,3,0,3,1,2,3,似然估计函数为

$$L(\theta) = 4\theta^{6}(1-\theta)^{2}(1-2\theta)^{4}$$

- 2. (2011, 数一) 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 其中 μ 已 $\mu, \sigma^2 > 0$ 未知, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
 - (2) 求 $E(\hat{\sigma}^2)$ 与 $D(\hat{\sigma}^2)$ 。

Solution

(1) 对于样本 X_1, \ldots, X_n 其最大似然函数为

$$L(\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

注意参数为 σ^2 , 令 $\frac{\mathrm{d} \ln \sigma^2}{\mathrm{d} \sigma^2} = 0$, 有 $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n n(X_i - \mu)^2$

(2) 这种题优先考虑 χ^2 分布的期望与方差结论, 有题 (1) 有

$$\frac{X_i - \mu}{\sigma} \sim N(0, 1) \implies \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$

故
$$E(\hat{\sigma}^2) = \sigma^2, D(\hat{\sigma}^2) = \frac{2\sigma^4}{n}$$

- 3. (2022,数一、三)设 X_1, X_2, \cdots, X_n 为来自期望为 θ 的指数分布总体的简单随机样本, Y_1, Y_2, \cdots, Y_m 为来自期望为 2θ 的指数分布总体的简单随机样本,两个样本相互独立。利用 X_1, X_2, \cdots, X_n 与 Y_1, Y_2, \cdots, Y_m ,
 - (1) 求 θ 的最大似然估计量 $\hat{\theta}$;

(2) 求 $D(\hat{\theta})$ 。

Solution

这是双总体, 但基本上和单总体一致, 不要被唬住了哦!

(1) 由题有 $X \sim E(\frac{1}{\theta}), Y \sim E(\frac{1}{2\theta})$, 故其概率密度分别为

$$f_X(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{2\theta} e^{-\frac{y}{2\theta}}, & y > 0 \\ 0, & x \le 0 \end{cases}$$

则对于样本 X_1, X_2, \ldots, X_n 与 Y_1, Y_2, \ldots, Y_n , 最大似然估计函数为

$$L(\theta) = (\frac{1}{2})^m \theta^{-(m+n)} e^{-\frac{1}{\theta}(\sum_{i=1}^n X_i + \frac{1}{2} \sum_{j=1}^m Y_j)}$$

则令
$$\frac{\mathrm{d}\ln\theta}{\mathrm{d}\theta} = 0$$
, 有 $\hat{\theta} = \frac{1}{n+m} (\sum_{i=1}^{n} X_i + \frac{1}{2} \sum_{j=1}^{m} Y_j)$

(2)

$$D(\hat{\theta}) = (\frac{1}{m+n})^2 D(\sum_{i=1}^n X_i + \frac{1}{2} \sum_{j=1}^m Y_j)$$
$$= \frac{\theta^2}{m+n}$$

7.2 估计量的评价标准

Remark

估计量的评价标准

- (1) (无偏性) 设 $\hat{\theta}$ 为 θ 的估计量, 若 $E\hat{\theta} = \theta$ 则称其为 θ 无偏估计量
- (2) (有效性) 设 $\hat{\theta_1}$, $\hat{\theta_2}$ 为 θ 的无偏估计, 若 $D(\hat{\theta_1}) < D(\hat{\theta_2})$ 则称 $\hat{\theta_1}$ 比 $\hat{\theta_2}$ 更有效
- (3) 设 $\hat{\theta}$ 为 θ 的估计量,若 $\hat{\theta}$ 依概率收敛于 θ ,则称 $\hat{\theta}$ 为 θ
- 一致(相合)估计量
- 一致性的考点在于— $\frac{1}{n}\sum_{\square}\stackrel{P}{\rightarrow}E_{\square}$

4. 设总体 X 的概率密度为

$$f(x) = \begin{cases} 2e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

其中 $\theta > 0$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。

- (1) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (2) 问 $\hat{\theta}$ 是否为 θ 的无偏估计量?并说明理由。

Solution

(1) 对于样本 X_1, X_2, \ldots, X_n 的最大似然估计函数为

$$L(\theta) = \prod_{i=1}^{n} 2e^{-2(x_i - \theta)} = 2^n e^{-\sum_{i=1}^{n} (x_i - \theta)}$$

显然 $L(\theta)$ 关于 θ 是单调递增的,则根据最大似然的定义,应该取使得 $L(\theta)$ 最大的值, 而由题目有 $X_1 > \theta, X_2 > \theta, \ldots$,故 $\hat{\theta} = \min \{X_1, X_2, \ldots, X_n\}$

(2) 由概率密度函数有 $F_X(x) = \int_{-\infty}^x f(t)dt$, 故

$$F_X(x) = \int_{-\infty}^x f(t)dt = \begin{cases} 1 - e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

故 $F_{min} = 1 - [1 - F_X(x)]^n$ 即

$$F_{min} = \begin{cases} 1 - e^{-2n(x-\theta)}, & x > \theta \\ 0, x \le \theta \end{cases}$$

故

$$f_{min} = \begin{cases} 2ne^{-2n(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

由期望的定义有

$$E\hat{\theta} = \int_{\theta}^{+\infty} 2nxe^{-2n(x-\theta)} = \theta + \frac{1}{2n}$$

5. (2010, 数一) 设总体 X 的概率分布为

$$\begin{array}{|c|c|c|c|c|} \hline X & 1 & 2 & 3 \\ \hline P & 1-\theta & \theta-\theta^2 & \theta^2 \\ \hline \end{array}$$

其中参数 $\theta \in (0,1)$ 未知, N_i 表示来自总体 X 的简单随机样本 (样本容量为 n) 中等于 i 的个数 (i=1,2,3) 求常数 a_1,a_2,a_3 使得 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量,并求 T 的方差.

Solution

由题可知 $N_i \sim B(n,p)$, 具体来说有

$$\begin{cases} N_1 \sim B(n, 1 - \theta) \\ N_2 \sim B(n, \theta - \theta^2) \\ N_3 \sim B(n, \theta^2) \end{cases}$$

且有
$$N_1 + N_2 + N_3 = n$$

故 $ET = \sum_{i=1}^{3} a_i EN_i = n \left[a_1 + (a_2 - a_1)\theta + (a_3 - a_2)\theta^2 \right] = \theta$, 只需要令

$$\begin{cases} a_1 = 0 \\ a_2 = \frac{1}{n} \\ a_3 = \frac{1}{n} \end{cases}$$

$$RRT = \frac{1}{n^2}D(n - N_1) = \frac{1}{n^2}DN_1 = \frac{\theta(1 - \theta)}{n}$$

7.3 区间估计与假设检验

区间估计与假设检验

这一节内容很少, 只需要掌握置信度的概念, 假设检验的基本过程与第一类错误/第二类错误的概念即可

1. 置信度与置信区间

设总体 X 的分布函数 $F(x,\theta)$ 含有一个未知参数 $\theta,\theta\in\Theta$ 其中 Θ 是其所有可能取值的集合, 对于给定值 $0<\alpha<1$, 若由来自总体 X 的样本 X_1,X_2,\ldots,X_n 确定了两个

统计量 $\theta_1, \theta_2, \theta_1 \leq \theta_2$ 对于 $\forall \theta \in \Theta$ 都有

$$P\{\hat{\theta_1} < \theta < \hat{\theta_2}\} \ge 1 - \alpha$$

则称区间 (θ_1, θ_2) 为 θ 置信水平为 $1-\alpha$ 的置信区间, $\hat{\theta_1}$, $\hat{\theta_2}$ 分别称置信水平为 $1-\alpha$ 的双侧置信区间的置信下限和置信上限, $1-\alpha$ 称为置信水平或置信度

2. 原假设 H_0 与备择假设 H_1

类型	H_0	H_1
双边检验	$\theta = \theta_0$	$\theta \neq \theta_0$
单边检验-左边	$\theta \ge \theta_0$	$\theta < \theta_0$
单边检验-右边	$\theta \le \theta_0$	$\theta > \theta_0$

3. 假设检验的过程

- (1) 根据题意写出原假设 H_0 和备择假设 H_1
- (2) 选择检验方式,写出检验统计量及其分布
- (3) 根据给定的显著性水平确定拒绝域
- (4) 统计检验统计量的值, 做出推断
- 4. 第一类错误/第二类错误

类型	含义	犯错的概率
第一类错误	原假设 H_0 为真, 但却拒绝 H_0 , 即	$\alpha = P\{拒绝H_0 \mid H_0$ 为真}
第二类错误	原假设 H_0 为假, 但却接受 H_0 , 即	$\beta = p\{接受H_0 \mid H_0不真\}$
	取伪概率	

- (1) 仅控制犯第一类错误的检验称为显著检验, α 为显著性水平
- (2) 当样本容量固定时, α 和 β 中任意一个减少,另一个必然增大;如果要使 α 和 β 同时减少,只能增大样本容量

第八章 补充知识-概率论

补充知识来自于

- (1) 概率论与数理统计 茆诗松
- (2) 做题总结

8.1 配对问题

问题描述: 在一个有 n 个人参加的晚会, 每个人带来一件礼物, 且规定每个人带的礼物都不相同. 晚会期间各人从放在一起的 n 件礼物中随机抽取一件, 问至少有一个人自己抽到自己的礼物的概率是多少?

Solution

(配对问题)

设 A_i 为事件: 第 i 个人自己抽到自己的礼物, $i=1,2,\ldots,n$ 所求概率为

$$P(A_1) = P(A_2) = \dots = P(A_n) = \frac{1}{n}$$

$$P(A_1 A_2) = P(A_1 A_3) = \dots = P(A_{n-1} A_n) = \frac{1}{n(n-1)}$$

$$P(A_1 A_2 A_3) = P(A_1 A_2 A_4) = \dots = P(A_{n-2} A_{n-1} A_n) = \frac{1}{n(n-1)(n-2)}$$

. . .

$$P(A_1 A_2 A_3 \dots A_n) = \frac{1}{n!}$$

再由概率的加法公式(容斥原理)得

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i=1}^{n-1} P(A_i A_{i+1}) + \sum_{i=1}^{n-2} P(A_i A_{i+1} A_{i+2})$$

$$+ \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n)$$

$$= C_n^1 \frac{1}{n} - C_n^2 \frac{1}{n(n-1)} + \ldots + (-1)^{n-1} C_n^n \frac{1}{n!}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} + \ldots + (-1)^{n-1} \frac{1}{n!}$$

当 $n \to \infty$, 上述概率由 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, 则

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - e^{-1} \approx 0.6321$$

8.2 几个概率的不等式

- 1. $P(AB) \ge P(A) + P(B) 1$
- 2. $P(A_1A_2...A_n) \ge P(A_1) + P(A_2) + ... + P(A_n) (n-1)$ (Boole 不等式)
- 3. $|P(AB) P(A)P(B)| \le \frac{1}{4}$

证明. 相关证明如下:

- (2) 采用数学归纳法证明, 对于 n = 2, 即不等式 (1) 已经证明, 不妨假设对于 n = k 个事件, 不等式成立, 即

$$P(A_1 A_2 \dots A_k) \ge P(A_1) + P(A_2) + \dots + P(A_k) - (k-1)$$

考虑 n = k + 1 个事件 $A_1 A_2 \dots A_{k+1}$, 不妨令 $B = A_1 A_2 \dots A_k$, 则

$$P(A_1 A_2 \dots A_k A_{k+1}) = P(B A_{k+1}) \ge P(B) + P(A_{k+1}) - 1 \ge P(A_1) + P(A_2) + \dots + P(A_{k+1}) - (k)$$

由数学归纳法可知,原不等式成立

(3) $\pm P(A) > P(AB), P(B) > P(AB), \mathbb{Q} P(A)P(B) > P(AB)^2, \mathbb{Q}$

$$P(AB) - P(A)P(B) \le P(AB) - P(AB)^2 = P(AB)(1 - P(AB))$$

令
$$x = P(AB)$$
, 则 $f(x) = x(1-x)$, 当 $x = \frac{1}{2}$ 时, 取得 $f(x)_{max} = \frac{1}{4}$ 即
$$P(AB) - P(A)P(B) \le \frac{1}{4}$$

由于 $P(AB) + P(A\overline{B}) = P(A)$, 即 $P(AB) = P(A) - P(A\overline{B})$ 则

$$P(A)P(B) - P(AB) = P(A)P(B) - P(A) + P(A\bar{B}) = P(A\bar{B}) - P(A)P(\bar{B}) \le \frac{1}{4}$$

即

$$P(AB) - P(A)P(B) \ge \frac{1}{4}$$

综上原不等式成立

8.3 轮流射击模型

问题描述: 有两名选手比赛设计, 轮流对同一个目标进行射击, 甲命中目标的概率为 α , 乙命中的概率为 β . 甲先射, 谁先设中谁获胜. 问甲乙两人获胜的概率各是多少?

Solution

(方法一) 记事件 A_i 为第 i 次射中目标, $i=1,2,\ldots$,因为甲先射,所以甲获胜可以表示为

$$A_1 \cup \bar{A_1}\bar{A_2}A_3 \cup \dots$$

由于事件独立,则甲获胜的概率为

$$P(甲 获胜) = \alpha + (1 - \alpha)(1 - \beta)\alpha + (1 - \alpha)^2(1 - \beta)^2\alpha^2 \dots$$
$$= \alpha \sum_{i=0}^{\infty} (1 - \alpha)^i (1 - \beta)^i$$
$$= \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

同理, 乙获胜的概率为

$$P(\mathbf{Z} 获胜) = (1 - \alpha)\beta + (1 - \alpha)(1 - \beta)(1 - \alpha)\beta + \dots$$
$$= \beta(1 - \alpha)\sum_{i=0}^{\infty} (1 - \alpha)^{i}(1 - \beta)^{i}$$
$$= \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

(方法二) 由于射击是独立, 所有有如下条件

$$P(\Psi$$
 获胜 $) = \alpha + (1 - \alpha)(1 - \beta)P(\Psi$ 获胜 $)$

前面失败的情况并不影响后续获胜(无记忆性),则可以直接解出甲获胜的概念

$$P(甲获胜) = \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

$$P(乙获胜) = 1 - P(甲获胜) = \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

8.4 补充: 随机变量的矩

设 (X,Y) 是二维随机变量, 如果 $E(X^kY^l)$ 存在, 则称 $E(X^k)$, (k=1,2...) 为 X 的 k 阶原 点矩; 称 $E(X-EX)^k$, k=(2,3,...) 为 X 的 k 阶中心矩; 称 $E(X^kY^l)$, (k,l=1,2,...) 为 X 与 Y 的 k+l 阶混合原点矩; 称 $E[(X-EX)^k(Y_EY)^l$, (k,l=1,2,...)] 为 X,Y 的 k+l 阶混合中心矩

8.5 Poisson 分布的一个性质,与 Poisson 定理

参考错题-概率论-李正元全书-2(原数例题 1.23)

若 $X \sim P(\lambda)$, 其中的某些部分 (或者优秀, 或者糟糕, 或者其他) 独立的产生, 其产生的概率为 α , 则 Y 表示产生这些特殊事件的次数, 将会服从 $P(\lambda\alpha)$

Poisson 定理, 对于 $X \sim B(n, p)$ 当 n 很大,p 很小的时候, 可以近似的认为 $X \sim P(np)$

8.6 二维随机变量的换元法

设 (X,Y) 的联合概率密度为 $f_{X,Y}(x,y)$ 变化 T 为:

$$\begin{cases} U = g_1(X, Y) \\ V = g_2(X, Y) \end{cases}$$

如果 T 可逆 (即存在逆变化 T^{-1}), 则 (U,V) 的联合概率密度为

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v),y(u,v)) \cdot |J|$$

其中 J 是 Jacobian 行列式即

$$J = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial u} \end{array} \right|$$

例如:

若
$$U = X + Y, V = X - Y, f(x, y) = e^{-(x+y)}, (x, y > 0)$$

$$X = \frac{U+V}{2}, Y = \frac{U-V}{2}, |\mathbf{J}| = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

则 $f(u,v)=e^{-(\frac{u+v}{2}+\frac{u-v}{2})}\cdot\frac{1}{2}=\frac{1}{2}e^{-u}$ 其中 u,v 的范围由变换确定, 例如 u>0 但 v 取决于 x,y 的关系