京大数学理科後期 1999 年度

1 問題1

座標平面上で原点を通る直線と y=x|x+2| のグラフが相異なる 3 点で交わっている. このグラフとこの直線によって囲まれる図形で,この直線より下側にあるものの面積を S_1 ,上側にあるものの面積を S_2 とする。 $S_1:S_2=9:8$ になるとき,この直線の傾きを求めよ,

2 問題 2

 α , β , γ は $\alpha>0$, $\beta>0$, $\gamma>0$, $\alpha+\beta+\gamma=\pi$ を満たすものとする. このとき, $\sin\alpha\sin\beta\sin\gamma$ の最大値を求めよ.

3 問題3

 α を正の定数として、数列 a_n 、 $b_n (n \ge 1)$ を次の式で定める.

$$2a_{n+1} = \alpha \left(3a_n^2 + 2a_nb_n - b_n^2 - a_n + b_n \right)$$

$$2b_{n+1} = \alpha \left(-a_n^2 - 2a_nb_n - b_n^2 - a_n + b_n \right)$$

$$a_1 = b_1 = 1$$

- 1. a_2 , b_2 , a_3 , b_3 , a_4 , b_4 を求めよ.
- $2. \frac{a_{2n+1}}{a_{2n}}$ を求めよ.

4 問題 4

 $\triangle ABC$ は鋭角三角形とする。このとき、各面全てが $\triangle ABC$ と合同な四面体が存在することを示せ。

5 問題5

a, b を整数, u, v を有理数とする. $u+v\sqrt{3}$ が $x^2+ax+b=0$ の解であるならば, u と v は共に整数であることを示せ. ただし $\sqrt{3}$ が無理数であることは使って良い.

6 問題 6

1. f(x) は $a \le x \le b$ で連続な関数とする.このとき

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)a \le c \le b$$

となるcが存在することを示せ、

2. $y=\sin x$ の $0 \le x \le \frac{\pi}{2}$ の部分と y=1 及び y 軸が囲む図形を,y 軸の周りに回転して得られる立体を考える.この立体を y 軸に垂直な n-1 個の平面によって各部分の体積が等しくなるように n 個に分割するとき,y=1 に最も近い平面の y 座標を y_n とする.このとき $\lim_{n\to\infty} n\left(1-y_n\right)$ を求めよ.