Notes on Beck's Distributive Laws

L. Ze Wong

University of Washington, Seattle

2017

WARNING!

The notation in this set of notes differs from Beck's paper in the following key ways:

- ▶ Beck writes composites in the opposite direction: *GF* means applying *G* first, then *F*. We will use *GF* to mean *F* then *G* .
- 'Triple' = 'monad', 'cotriple' = 'comonad'
- 'Tripleable' = 'monadic', i.e. equivalent to the adjunction involving the category of algebras over monad.

Motivation 1: Multiplication over Addition

Let S be the free monoid monad, T the free abelian group monad.

'Multiplication distributes over addition' means we have a map:

$$STX o TSX$$
 e.g. $(a+b)(c+d) \mapsto ac+ad+bc+bd$

where $X = \{a, b, c, \dots\}$, say.

Further, TS is the free ring monad.

Motivation 2: Tensoring monoids

Let A, B be monoids in a *braided* monoidal category $(\mathcal{V}, \otimes, 1)$.

Then $A \otimes B$ is also a monoid, with multiplication

$$A \otimes B \otimes A \otimes B \xrightarrow{A \otimes tw \otimes B} A \otimes A \otimes B \otimes B \xrightarrow{m_A \otimes m_b} A \otimes B$$

where $tw: B \otimes A \rightarrow A \otimes B$ is given by the braiding.

Monads in a 2-category

Fix a 2-category **K**. A monad in **K** consists of:

- ▶ 0-cell X
- ▶ 1-cell S : X → X
- ▶ 2-cells $\eta^{S}: 1_{\mathbf{X}} \Rightarrow S$ and $\mu^{S}: SS \Rightarrow S$

such that

i.e. a monad is a monoid in the monoidal category (End(X), \circ , 1_X), for some 0-cell X.

Distributive Law

A distributive law of S over T is a 2-cell $\ell: ST \Rightarrow TS$

such that:

Characterization of Distributive Laws

Characterization

Theorem (Beck 1969, Street 1972, Cheng 2011)

The following are equivalent:

- 1. Distributive laws $\ell: ST \Rightarrow TS$,
- 2. Multiplications $m: TSTS \Rightarrow TS$ s.t. $(TS, \eta^T \eta^S, m)$ is monad satisfying the *middle unitary law*, and

$$S \stackrel{\eta^T S}{\Longrightarrow} TS \stackrel{T\eta^S}{\longleftarrow} T$$

are monad morphisms.

- 3. Liftings of the monad T to a monad \tilde{T} over \mathbf{X}^S ,
- 4. Extensions of the monad S to a monad \tilde{S} over X_T ,
- 5. Certain elements of Mnd (Mnd(K)).

The composite monad

Given $\ell: ST \Rightarrow TS$, define $m: TSTS \Rightarrow TS$ to be

To get back ℓ , do:

The composite monad

The middle unitary law holds:

and $T\eta^S: T \Rightarrow TS$ is a monad morphism:

Similarly, $\eta^T S : S \Rightarrow TS$ is a monad morphism.

Liftings and Extensions

A *lift* of T to the EM object \mathbf{X}^{S} is a monad \tilde{T} :

An extension of S to the Kleisli object X_T is a monad \tilde{S} :

Kleisli objects in K are EM objects in K^{op} , so proofs for liftings hold for extensions too, by duality.

Liftings and Extensions

Universal property¹ of **X**^S:

$$\left\{ \text{ Functors } \tilde{G}: \mathbf{Y} \to \mathbf{X}^{S} \right\} \qquad \cong \qquad \left\{ \begin{array}{c} \text{Functors } G: \mathbf{Y} \to \mathbf{X} \\ \text{with } S\text{-action } \sigma: SG \Rightarrow G \end{array} \right\}$$

Let $\mathbf{Y} = \mathbf{X}^S$, $G = TU^S$, $\tilde{T} = \tilde{G}$. Need S-action $STU^S \Rightarrow TU^S$. Given by distributive law and canonical action of S on U^S :

¹In fact, this is an equivalence of categories

Liftings and Extensions

Conversely, a lifting \tilde{T} means we have invertible 2-cells:

Lets us define a distributive law:

This works for lifts over any adjunction that gives S!

Monads in Mnd(K)

Let $(\mathbf{X},T), (\mathbf{Y},T')$ be monads in \mathbf{K} . A monad opfunctor $(F,\phi): (\mathbf{X},T) \to (\mathbf{Y},T')$ consists of $F: \mathbf{X} \to \mathbf{Y}$ and $\phi: FT \Rightarrow T'F$

such that

and

Monads in Mnd(K)

A monad functor transformation is a 2-cell $\sigma: F \Rightarrow F'$ such that

These form a 2-category $\mathbf{Mnd}^*(\mathbf{K})$.

When $\mathbf{X} = \mathbf{Y}$, T = T', if $(F, \phi) : (\mathbf{X}, T) \to (\mathbf{X}, T)$ is a monad, then F is a monad on \mathbf{X} and ϕ is a distributive law of F over T!

$$\mathsf{i.e.}^2 \; \textbf{Dist}(\textbf{K}) \cong \textbf{Mnd}^*(\textbf{Mnd}^*(\textbf{K}))$$

Also, Mnd* is a monad!

²Can define morphisms between distributive laws such that this is true!

Actions of T, S and TS

From before, have monad morphisms³: $T \xrightarrow{T\eta^S} TS \xleftarrow{\eta^T S} S$

$$T\eta^{S}$$
 = ; $\eta^{T}S$ =

These induce T- and S-actions on U^{TS} , via the action of TS:

In some sense, any TS-action is 'captured' by these two actions!

³Monad opfunctors with $F = 1_X$.

Actions of T, S and TS

Combining T- and S-actions on U^{TS} gives canonical action of TS:

Can then show that the S-action 'distributes over' the T-action:

Let ℓ be a distributive law of S over T. From the characterization theorem, we get monads TS on \mathbf{X} , \tilde{T} on \mathbf{X}^S and \tilde{S} on \mathbf{X}_T .

Theorem (Beck 1969, Cheng 2011)

The category of algebras of TS coincides with that of \tilde{T} .

$$\mathbf{X}^{TS} \cong (\mathbf{X}^S)^{\tilde{T}}$$

Dually, the Kleisli category of TS coincides with that of \tilde{S} .

$$\mathbf{X}_{\mathit{TS}}\cong (\mathbf{X}_{\mathit{T}})_{\tilde{\mathit{S}}}$$

Construct $\Phi: \mathbf{X}^{TS} \to (\mathbf{X}^S)^{\tilde{T}}$ and inverse Φ^{-1} as lifts arising from universal properties of $\mathbf{X}^S, (\mathbf{X}^S)^{\tilde{T}}, \mathbf{X}^{TS}$:

To get Φ^{-1} , need S-action on U^{TS} and \tilde{T} -action on lift of U^{TS} . To get Φ , need TS action on $U^SU^{\tilde{T}}$.

We already have T- and S-actions on U^{TS} .

S-action gives a lift $\widetilde{U^{TS}}: \mathbf{X}^{TS} \to \mathbf{X}^{S}$ of U^{TS} . To get \widetilde{T} -action on $\widetilde{U^{TS}}$, lift⁴ T-action on U^{TS} :

So we have

$$\Phi^{-1}: \boldsymbol{\mathsf{X}}^{TS} o (\boldsymbol{\mathsf{X}}^{S})^{ ilde{T}}$$

⁴Need T-action to be an S-alg. morphism, but this follows from distributivity of S-action over T-action.

To get $\Phi: (\mathbf{X}^S)^{\tilde{T}} \to \mathbf{X}^{TS}$, need *TS*-action on $U^S U^{\tilde{T}}$.

Use canonical actions of S on U^S and \tilde{T} on $U^{\tilde{T}}$:

So $\mathbf{X}^{TS}\cong (\mathbf{X}^S)^{\tilde{T}}$, and in fact,

$$U^{TS}F^{TS} = TS = U^SU^{\tilde{T}}F^{\tilde{T}}F^S$$

Distributivity of Adjoints

Distributivity of adjoints

A distributive law gives rise to a 'distributive square':

where U' is induced by the T-action on U^{TS} . If certain coequalizers exist, U' has a left adjoint⁵.

⁵Think of U' as 'restriction of scalars', and adjoint as 'extension of scalars'

Distributivity of adjoints

Both composites $\mathbf{X}^{TS} \to \mathbf{X}$ are the same: $U^S U^{\tilde{T}} = U^T U'$. Both composites $\mathbf{X}^S \to \mathbf{X}^T$ are the same: $U'F^{\tilde{T}} = F^T U^S$.

This is a distributive adjoint situation, and there is an adjunction:

Distributivity of adjoints

If U' has an adjoint F':

To get distributive law:

Need isomorphisms u, f that are 'dual' to each other. These give rise to e, e'.

But e goes in the 'wrong' direction, so need e to be an isomorphism too, to get e^{-1} .

Thank you!

Questions?

References

- ▶ Jon Beck. Distributive laws. Seminar on triples and categorical homology theory, 119–140. Springer, 1969.
- ► Eugenia Cheng. *Distributive laws for Lawvere theories*. arXiv:1112.3076, 2011.
- Eugenia Cheng. Distributive laws 1-4 (videos).
 https://www.youtube.com/playlist?list=
 PLEC25F0F5AC915192
- ► Ross Street. *The formal theory of monads*. Journal of Pure and Applied Algebra, 2(2):149–168, 1972.