Combustibles et combustion

Exercice 1

Lors d'un essai de brûleur utilisant un combustible hydrocarboné CH_y , on a mesuré par voies indépendantes les teneurs suivantes dans les fumées sèches de combustion :

$$[CO_2]' = 11.85\%, \quad [O_2]' = 5.0\%, \quad [CO]' = 0.00\%.$$

- a) Quelle est la nature du combustible utilisé?
- b) Quel est le coefficient d'excès d'air λ pratiqué pour la combustion?

Exercice 2

On considère un cycle de turbine à gaz simple dont le débit d'air parcourant le compresseur vaut $\dot{m}_{air}=500~[kg/s]$. La température de l'air en sortie de compresseur vaut $t_2=340\,^{o}C$. Pour ne pas endommager les aubages de la turbine, on impose que la température du fluide à la sortie de la chambre de combustion ne dépasse pas $t_3=1100\,^{o}C$. On impose de plus une combustion complète pour éviter de rejetter des imbrulés dans l'atmosphère. Le combustible utilisé dans la chambre de combustion est du méthane dont le pouvoir calorifique inférieur à $0^{o}C$ vaut $PCI=34\,[MJ/m_N^3]$. Le méthane est disponible à la pression de la chambre de combustion et à une température de $t_{CH_4}=25\,^{o}C$.

Les valeurs des chaleurs molaires moyennes sont disponibles dans les tables thermodynamiques ci-jointes.

Pour atteindre cette température de consigne, quel débit de combustible (en m_N^3) doit-on injecter dans la chambre de combustion?

Exercice 3

On brûle du bois contenant 15% d'humidité. Le bois correspond à la formulation :

$$CH_{1.44}O_{0.66}$$

L'analyse des fumées fournit les résultats suivants :

$$[CO_2]' = 0.12$$

$$[O_2]' = 0.085$$

A l'aide du diagramme d'Oswald ($[CO_2]'$, $[O_2]'$), on demande de poser le diagnostic de la combustion et de l'illustrer adéquatement. Quelle est l'influence de l'humidité du bois sur les résultats obtenus lors de l'analyse des fumées?

Exercice 4

Une chaudière bi-combustible brûle du gaz naturel assimilé à du méthane CH_4 et du fuel-oil. On analyse les fumées et on obtient les résultats suivants :

$$[CO_2]' = 0.1322$$

 $[O_2]' = 0.0205$
 $[CO]' = 0.0$

Sachant que l'on brûle $125\,m_N^3/h$ de gaz naturel et que la chaudière produit alors $4.5\,T/h$ de vapeur à $450\,^oC$ ($h_{lv}=2863\,\frac{kJ}{kg_{vapeur}}$) et $45\,bar$ à partir d'eau à $110\,^oC$, on demande :

- Le tonnage horaire de fuel-oil (de composition (C) = 0.8816, (H) = 0.1184) brulé.
- Le coefficient global d'excès d'air.
- Le débit d'air de combustion.
- Le rendement de la chaudière sachant que le PCI du fuel utilisé vaut PCI = 43000kJ/kg.
- De calculer le débit des fumées.
- De déterminer la puissance du ventilateur de tirage de ces fumées si le relèvement de pression du ventilateur est de $500\,Pa$ et si la température des fumées à l'aspiration du ventilateur s'élève à $150^{o}C$. Il s'agit des caractéristiques au point de fonctionnement du ventilateur.

Chaleurs molaires moyennes à pression constante $\underline{c}_p \mid_0^t$ des principaux gaz en $\frac{kJ}{kmole^sC}$.

La chaleur molaire moyenne dans l'intervalle 0...t°C est définie par la relation :

$$\underline{c}_{p} \mid \delta = \frac{1}{t} \int_{0}^{t} \underline{c}_{p} dt$$
.

Gaz	H ₂	N ₂	02	Air	со	CO ₂	H ₂ O	NH ₃	CH4	SO ₂
Mm	2,016	28,016	32,00	28,96	28,01	44,01	18,016	17,03	16,04	64,07
t=0°C 25 100 200 300 400 500	28,62 28,72 28,93 29,07 29,12 29,19 29,25	29,12 29,12 29,14 29,23 29,38 29,60 29,86	29,27 29,31 29,54 29,93 30,40 30,88 31,33	29,07 29,08 29,15 29,30 29,52 29,79 30,09	29,18 29,30 29,52 29,79	35,86 36,49 38,11 40,06 41,75 43,25	33,36 33,46 33,64 34,06 34,52 35,03	35,00 35,26 36,30 37,72 39,24 40,73	45,18	38,85 39,36 40,65 42,33 43,88 45,22
600 700 800 900	29,32 29,41 29,52 29,65 29,79	30,15 30,45 30,75 31,04 31,31	31,76 32,15 32,50	30,41 30,72 31,03 31,32 31,60	30,42 30,75 31,07	44,57 45,75 46,81 47,76 48,62 49,39	35,57 36,14 36,72 37,31 37,89 38,47	42,24 43,76 45,24 46,67 48,05 49,37	47,98 50,67 53,28 55,90 58,33 60,50	46,39 47,35 48,23 48,94 49,61 50,16
1100 1200 1300 1400 1500	29,94 30,11 30,29 30,47 30,65	31,58 31,83 32,07 32,39 32,50	33,39 33,63 33,86 34,08 34,28	31,86 32,11 32,34 32,56 32,77	32,19	50,10 50,74 51,32 51,86 52,35	39,05 39,62 40,18 40,73 41,26	50,62 51,82 52,89 54,02 54,98	62,45 64,17	50,66 51,08 51,62 51,96 52,25
1600 1800 2000 2500	30,83 31,19 31,55 32,38	32,70 33,05 33,37 34,02	34,47 34,83 35,17 35,93	32,97 33,32 33,64 34,31	33,05 33,40 33,71 34,34	52,80 53,60 54,29 55,62	41,78 42,76 43,67 45,65	55,98 57,73 59,29 62,50		52,54 53,05 53,46 54,26