1. Linear Regression Model

Objective: Predict CO₂ emissions using time as the sole feature.

Data Loading and Preprocessing

python

Copy code

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from sklearn.preprocessing import MinMaxScaler

import numpy as np

import matplotlib.pyplot as plt

Load the dataset

data =

pd.read_csv('C:/Users/subas/OneDrive/Desktop/MFC/cleaned_monthly_sectoral_data set.csv')

Convert 'Date' column to datetime

data['Date'] = pd.to_datetime(data['Date'])

Convert 'Date' to numerical values (ordinal)

data['DateOrdinal'] = data['Date'].map(pd.Timestamp.toordinal)

- Data Loading: The dataset is read into a pandas DataFrame.
- **Date Conversion**: The 'Date' column is converted to datetime format to ensure proper handling.
- Ordinal Encoding: Dates are transformed into ordinal numbers (number of days since a fixed date) to serve as numerical features for the regression model.

Feature Selection and Normalization

```
python
Copy code
# Extract features and target variable
X = data[['DateOrdinal']]
y = data['Total Energy Electric Power Sector CO2 Emissions'].values.reshape(-1, 1)
# Normalize the target variable
scaler = MinMaxScaler()
y_normalized = scaler.fit_transform(y)
```

- Feature Extraction: 'DateOrdinal' is used as the independent variable.
- Target Variable: CO₂ emissions are the dependent variable.
- Normalization: The target variable is scaled to the [0, 1] range using MinMaxScaler to facilitate model training.

Data Splitting and Model Training

```
python
Copy code
# Split the data
X_train, X_test, y_train_normalized, y_test_normalized = train_test_split(
    X, y_normalized, test_size=0.15, random_state=42
)
# Train the model
model = LinearRegression()
model.fit(X_train, y_train_normalized)
```

- **Data Splitting**: The dataset is divided into training and testing sets (85% training, 15% testing).
- Model Training: A linear regression model is trained on the training data.

Prediction and Evaluation

python

```
Copy code
# Predict
y_pred_normalized = model.predict(X_test)
# Metrics
mse = mean_squared_error(y_test_normalized, y_pred_normalized)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_test_normalized, y_pred_normalized)
r2 = r2_score(y_test_normalized, y_pred_normalized)
# Results
results_df = pd.DataFrame({
  'Metric': ['RMSE', 'MAE', 'MSE', 'R-squared'],
  'Value': [rmse, mae, mse, r2]
})
       Prediction: The model predicts CO<sub>2</sub> emissions on the test set.
       Evaluation Metrics:
```

- - MSE: Measures the average squared difference between actual and predicted values.
 - o **RMSE**: Square root of MSE, providing error in the same units as the target variable.
 - o **MAE**: Average absolute difference between actual and predicted values.
 - o **R-squared**: Proportion of variance in the dependent variable predictable from the independent variable.

Visualization

```
python
Copy code
# Merge X_test with corresponding dates
X_test_with_dates = X_test.copy()
```

```
X_test_with_dates['Date'] =
X_test_with_dates['DateOrdinal'].map(pd.Timestamp.fromordinal)
# Sort by Date for better plotting
X_test_with_dates['Actual'] = y_test_normalized
X_test_with_dates['Predicted'] = y_pred_normalized
X_test_with_dates.sort_values('Date', inplace=True)
# Plot
plt.figure(figsize=(10, 6))
plt.plot(X_test_with_dates['Date'], X_test_with_dates['Actual'], label='Actual
(Normalized)', color='blue')
plt.plot(X_test_with_dates['Date'], X_test_with_dates['Predicted'], label='Predicted
(Normalized)', color='red')
plt.xlabel('Date')
plt.ylabel('Normalized CO2 Emissions')
plt.title('Linear Regression Predictions vs Actual (Normalized)')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# Print results
print(results_df)
```

- **Data Preparation**: The test set is augmented with actual and predicted values for plotting.
- Plotting: A line plot compares actual and predicted normalized CO₂ emissions over time.

2. LightGBM Model

Objective: Utilize multiple features to predict CO₂ emissions using a gradient boosting framework.

Data Loading and Preprocessing

python

Copy code

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler, MinMaxScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from lightgbm import LGBMRegressor

Load dataset

data =

pd.read_csv('C:/Users/subas/OneDrive/Desktop/MFC/cleaned_monthly_sectoral_data set.csv')

Convert 'Date' to datetime

data['Date'] = pd.to_datetime(data['Date'], format='%Y-%m-%d')

Interpolate missing values linearly

data.interpolate(method='linear', inplace=True)

- Data Loading: The dataset is read into a DataFrame.
- Date Conversion: Ensures the 'Date' column is in datetime format.
- Missing Value Handling: Linear interpolation fills in missing values in the dataset.

Feature Engineering and Normalization

python

```
Copy code
# Define the target column
target_column = 'Total Energy Electric Power Sector CO2 Emissions'
# Separate features and target
features = data.drop(columns=['Date', target_column])
target = data[[target_column]]
# Clean feature column names for LightGBM compatibility
features.columns = features.columns.str.replace(r'[^\w\s]', ", regex=True).str.replace(' ',
'_')
# Normalize features
feature_scaler = StandardScaler()
features_scaled = feature_scaler.fit_transform(features)
# Normalize target (to 0–1 range)
target_scaler = MinMaxScaler()
target_scaled = target_scaler.fit_transform(target)
```

- Feature Selection: Excludes 'Date' and the target column from features.
- **Column Name Cleaning**: Removes special characters and spaces for compatibility with LightGBM.
- Normalization:
 - Features: StandardScaler standardizes features to have zero mean and unit variance.
 - o **Target**: MinMaxScaler scales the target variable to the [0, 1] range.

Data Splitting and Model Training

python

Copy code

```
# Create DataFrames
X = pd.DataFrame(features_scaled, columns=features.columns)
y = pd.Series(target_scaled.flatten(), name=target_column)
# Train/test split (85% train, 15% test)
train_ratio = 0.85
train_size = int(len(X) * train_ratio)
X_train, X_test = X.iloc[:train_size], X.iloc[train_size:]
y_train, y_test = y.iloc[:train_size], y.iloc[train_size:]
# Train LightGBM Regressor
model = LGBMRegressor()
model.fit(X_train, y_train)
Splitting Data:
Rather than using train_test_split, here we split manually by index to preserve the time
series order (important for temporal data like monthly CO<sub>2</sub>).
85% of data is used for training, and the remaining 15% for testing.
Model Training:
LightGBM (Light Gradient Boosting Machine) is a fast, efficient implementation of
gradient boosting.
It's trained using the training features and target.
Model Prediction and Evaluation
python
```

```
Copy code
# Predict and evaluate
y_pred = model.predict(X_test)
# Calculate evaluation metrics
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Display results
results_df = pd.DataFrame({
  'Metric': ['RMSE', 'MAE', 'MSE', 'R-squared'],
  'Value': [rmse, mae, mse, r2]
})
print(results_df)
Predictions: The model outputs normalized predicted CO<sub>2</sub> values.
Evaluation Metrics:
MSE (Mean Squared Error): Penalizes larger errors more than smaller ones.
RMSE (Root Mean Squared Error): Interpretable in the same unit as the target.
MAE (Mean Absolute Error): Average magnitude of prediction error.
R<sup>2</sup> (R-squared): Indicates how well the predictions match actual values. Closer to 1
means better fit.
```

```
Prediction Visualization
python
Copy code
# Prepare date data for plotting
dates = data['Date'].iloc[train_size:].reset_index(drop=True)
# Plot actual vs predicted
plt.figure(figsize=(14, 6))
plt.plot(dates, y_test, label='Actual (Normalized)', color='blue')
plt.plot(dates, y_pred, label='Predicted (Normalized)', color='red')
plt.xlabel('Date')
plt.ylabel('Normalized CO2 Emissions')
plt.title('LightGBM Model Predictions vs Actual')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
Dates for X-axis: Corresponds to the test set period.
Line Plot:
Blue line: Actual normalized CO<sub>2</sub> emissions.
Red line: Model predictions.
```

This visualization helps us understand temporal prediction performance. **XGBoost**

Regressor - Full Line-by-Line Breakdown

python

Copy code

model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100)

- xgb.XGBRegressor: Initializes an XGBoost regression model.
- objective='reg:squarederror': Specifies loss function (here: squared error for regression).
- n_estimators=100: Use 100 trees in the ensemble (more trees = higher capacity, more time).

python

Copy code

model.fit(X_train, y_train)

• Fits the model on training data. The model learns patterns by boosting weak learners (trees).

python

Copy code

y_pred = model.predict(X_test)

• Uses the trained model to make predictions on the test set.

python

Copy code

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_test, y_pred)
```

r2 = r2_score(y_test, y_pred)

- mse: Mean Squared Error average squared difference between actual and predicted.
- rmse: Root Mean Squared Error square root of MSE (easier to interpret).
- mae: Mean Absolute Error average of absolute differences.
- r2: R-squared measures how well predictions approximate the real data (1 is perfect).

SVM (Support Vector Machine) - Full Line-by-Line Breakdown

python

Copy code

model = SVR(kernel='rbf')

- SVR: Support Vector Regressor version of SVM for regression tasks.
- kernel='rbf': Radial Basis Function kernel allows non-linear separation by projecting to a higher dimension.

python

Copy code

model.fit(X_train, y_train)

 Trains the SVM by trying to find a decision boundary that allows predictions within a margin of error, minimizing violations.

python

Copy code

y_pred = model.predict(X_test)

• Generates predictions for test inputs using the trained SVM model.

python

Copy code

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

mae = mean_absolute_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

• Same evaluation metrics as above to assess prediction quality.

◆ LSTM (Long Short-Term Memory) – Full Deep Learning Breakdown

python

Copy code

 $X_{lstm} = X.values$

y_lstm = y.values

 Converts pandas DataFrame to NumPy arrays. Neural networks require raw array formats.

python

Copy code

 $X_{stm} = X_{stm.reshape}((X_{stm.shape}[0], 1, X_{stm.shape}[1]))$

- Reshapes data into 3D array: (samples, timesteps, features).
- For LSTM, timesteps=1 means we feed in one timestep at a time with multiple features.

python

Copy code

X_train_lstm, X_test_lstm = X_lstm[:train_size], X_lstm[train_size:]

y_train_lstm, y_test_lstm = y_lstm[:train_size], y_lstm[train_size:]

• Splits data chronologically into training and test sets, preserving time series integrity.

Building the LSTM Model

python

Copy code

model = Sequential()

• Sequential: A linear stack of layers — you define them one by one.

python

Copy code

model.add(LSTM(64, activation='relu', input_shape=(X_lstm.shape[1], X_lstm.shape[2])))

- Adds an LSTM layer:
 - o 64: Number of memory cells/units.
 - o activation='relu': Non-linearity to improve learning.

o input_shape=(1, num_features): 1 timestep, with multiple features. python Copy code model.add(Dense(1)) Final output layer: 1 neuron \rightarrow outputs a single value (CO₂ emission prediction). python Copy code model.compile(optimizer='adam', loss='mse') • Compiles model: o optimizer='adam': Adaptive optimizer (adjusts learning rate). loss='mse': Minimizes Mean Squared Error during training. python Copy code model.fit(X_train_lstm, y_train_lstm, epochs=50, batch_size=16, verbose=1) Trains the model: o epochs=50: Model goes through data 50 times. o batch_size=16: Updates weights after every 16 samples. o verbose=1: Prints progress bar during training. LSTM Predictions python Copy code y_pred_lstm = model.predict(X_test_lstm) Predicts outputs from test inputs. python

Copy code

rmse = np.sqrt(mse)

mse = mean_squared_error(y_test_lstm, y_pred_lstm)

mae = mean_absolute_error(y_test_lstm, y_pred_lstm)

r2 = r2_score(y_test_lstm, y_pred_lstm)

• Same evaluation metrics as earlier.