ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИРАКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Д.В. БУША»

Арбузолитейный факультет

Специальность «Фундаментальный исламизм и физическая софистика»

Кафедра общей демократии

Дипломная работа

ВОССТАНОВЛЕНИЕ АРХИТЕКТУРЫ РАЗРУШЕННЫХ ГОРОДОВ ПО МНОГОБАХЧЕВЫМ ДЫННЫМ ПОЛЯМ МЕТОДОМ ВСЕОБЩЕГО ГОЛОСОВАНИЯ

«К защите допущен»:	
Зав. кафедрой общей демократии, профессор, д.фм.н.	Иванов И.И.
Научный руководитель, профессор, в.н.с. ЁКЛ ЭМЭН, д.фм.н.	Петров П.П.
Рецензент, зав. лаб. ЖЗ ИКЛ, д.фм.н.	Сидоров С.С.
Консультант по технике безопасности, ассистент	
каф. софистики	Рейсфейдер Р.Р.
Дипломник	Ватманн В.В.

Содержание

Глава I.	Введение	3
Глава II.	Основные определения	4
Глава III.	Формулы	4
3.1. Ан	алитический функтор для h-species	4
3.2. Де	котигорификация аналитического функтора (Фробениусова	
xap	рактеристика / Цикленный индекс)	5
3.3. Ци	кленный индекс композиции	7

Глава I. Введение

Гипероктаэдральные или кубические комбинаторные виды — развите идеи комбинаторных типов (species). Мы будем обозначать их h-species для краткости. ТООО:добавить введение (видимо взять часть из Bergeron)

План: Изложить теорию для species, параллельно строить ее для h-species species — сложение умножение — аналитический функтор — композиция аналитических функторов — композиция species — декатегорификация аналитического функтора — примеры

Глава II. Основные определения

species HSet h-species аналитический функтор

Глава III. Формулы

3.1. Аналитический функтор для h-species

Аналитический функтор \mathcal{F} соответствующий species F является продуктивной конструкцией, позволяющей определить композиционное произведение species. Вводить его можно разными способами, мы ограничимся универсальным свойством и явной конструкцией (TODO: дописать и возможно добавить определение Дурова). Аналитический функтор является левым расширением по Кану функтора F относительно i.

Эта диаграмма не коммутативна, а почти коммутативна. Иммется в виду, что из F существует естественное преобразование в $i \circ \mathcal{F}$. Это естественное преобразование обозначим κ . Универсальность заключаеться в том, что для любого функтора $M \colon Set \to Set$ и морфизма функторов $\eta \colon F \to i \circ M$ этот морфизм пропускаеться через \mathcal{F} при помощи κ .

Явная формула для аналитического функтора. Для доказательства см (TODO)

$$\mathcal{F} = \sum_{n} F[n] \times A^{n} / S_{n} \tag{3.1}$$

Хочется построить аналог аналитического функтора для h-species

$$\mathcal{F} = \sum_{n} F[\bar{n}] \times A^{\bar{n}}/B_n \tag{3.2}$$

Где $A^{\bar{n}}$ задает отображение, сохраняющее инволюцию.

TODO:Здесь нужно добавить проверук универсальности картинки

3.2. Декотигорификация аналитического функтора (Фробениусова характеристика / Цикленный индекс)

3.2.1. Случай обычных species

Напомним ситуацию с обычными species. Надо устроить морфизм из моноидальной категории (категории с тензорным произведением) в какую-нибудь алгебру функций. Мы вводим весовую функцию таким образом что орбита раскрашенной структуры под действием S_n имеет один и тот же вес. После этого можно задать вопрос о коэфициенте при мономе, отвечающем весу. Это будет число орбит с заданной весовой функцией. По Лемме Бернсайда это то же самое, что и усредненное число неподвижных точек по всем элементам группы. Чтобы раскрашенная структура была неподвижна под действием перестановки σ нужно, чтобы во-первых она была неподвижна как не раскрашенная структура, а во-вторых расскраска должна переходить в себя. В качестве весовой функции выбираем моном возникающий в произведении переменных отвечающим цветам. Например расскраске в которой 2 первых цвета и 1 второй соответсвует моном $x_1^2x_2$. Тогда первое условие дает нам сомножитель $\chi(\sigma)$, где характер это характер соответствующего перестановочного представления с базисом из структур. Второе условие требует покраски каждого цикла в один и тот же цвет. Итоговая формула называеться фробениусовой характеристикой / цикленным индексом. Она считает количество неподвижных раскрашенных структур в среднем.

$$\mathcal{Z}_F = \sum_{\lambda \vdash n} \chi(\sigma_\lambda) \frac{\phi^\lambda}{z_\lambda} \tag{3.3}$$

Где χ — характер (перестановочного) представления заданного F, σ — перестановка цикленного типа λ , $\phi^{\lambda} = (x_1^{\lambda_1} + x_2^{\lambda_1} + x_3^{\lambda_1} + \dots)(x_1^{\lambda_2} + x_2^{\lambda_2} + x_3^{\lambda_2} + \dots)(x_1^{\lambda_3} + x_2^{\lambda_3} + x_3^{\lambda_3} + \dots) \dots, z_{\lambda}$ — индекс класса сопряженности σ . Появляется она из следующих соображений: в числителе стоит симметрическая функция считающая все неподвижные раскраски. Цвета это x_1, x_2, x_3, \dots

3.2.2. Случай h-species

Попробуем построить аналогичную конструкцию для h-species. Прежде всего отметим, что расскраска, элемент $A^{\bar{n}}$, это отображение, сохраняющее инволюцию. Значит элементы n и -n должны отображаться либо в один и тот же элемент A (который инволюцией переводиться в себя), либо в пару элементов сопряженных инволюцией. Будем называть первый случай моно-цветом, второй — бицветом.

Допустим, что мы придумали весовую функцию, отправляющую каждую расскрашенную структуру в моном и любая орбита отправляеться в один моном. Применив Лемму Бернсайда переходим к подсчету неподвижных точек. Циклы в каждом элементе H_n бывают двух типов: длинные — каждая грань входит в цикл вместе со своей противоположной гранью и короткие — пара граней лежит в симметричных, различных циклах. Пусть λ^1 — цикленный тип коротких перестановок, λ^2 — цикленный тип длинных перестановок. Утверждение: неподвижные раскрашенные структуры, это в точности те у которых длинный цикл соответсвует моноцвету, а пара симметричных коротких может быть покрашена либо в моноцвет, либо в бицвет.

Это можно выразить такой формулой:

$$\mathcal{Z}_F = \sum_{\lambda^1 + \lambda^2 \vdash n} \chi(\sigma_{\lambda^1 \lambda^2}) \frac{\phi_{x,y}^{\lambda^1} \phi_x^{\lambda^2}}{z_{\lambda^1 \lambda^2}}$$
(3.4)

Здесь нижний индекс ϕ означает переменные по которым берется степенная сумма. Например $\phi_{x,y}^2=(x_1^2+x_2^2+x_3^2+\cdots+y_1^2+y_2^2+y_3^2+\dots)$. Переменные x_i перечисляют моноцвета, y_i — бицвета.

ТООО:Здесь еще можно сказать что-то про инволюцию на этих функциях, поскольку мы все—таки декатегорифицировали не предпучки, а чуть более сложную штуку — пучки с инволюцией.

3.3. Цикленный индекс композиции

3.3.1. Случай обычных species

Аналитический функтор позволяет дать определние композиционного произведения двух структур. Рассмотрим два species F и G. По ним можно построить аналитические функторы \mathcal{F} и \mathcal{G} . Композиция этих функторов снова будет анлитическим функтором $\mathcal{F} \circ \mathcal{G}$. Доказательство его аналитичности можно найти в [TODO: где или взять доказательство Дурова]. Species который соответсвует цикленному индексу $\mathcal{F} \circ \mathcal{G}$ и будет называться $F \circ G$. У этого определения есть простая, наглядная комбинаторная интерпретация: каждую точку структуры F раздуваем(красим) в структуру типа G. Чудесный факт заключается в том, что в декатегорификации композиция соответсвует простой формуле подстановке. Сейчас мы ее напишем и приведем набросок доказательства. Цикленный индекс записан относительно базиса кольца симметрических функций $\phi^1, \phi^2, \phi^3, \dots$

$$\mathcal{Z}_{F \circ G}(\phi^{1}, \phi^{2}, \phi^{3}, \dots) = \mathcal{Z}_{F}(\mathcal{Z}_{G}(\phi^{1}, \phi^{2}, \phi^{3}, \dots), \mathcal{Z}_{G}(\phi^{2}, \phi^{4}, \phi^{6}, \dots), \mathcal{Z}_{G}(\phi^{3}, \phi^{6}, \phi^{9}, \dots), \dots)$$
(3.5)

В композиции двух аналитических функторов получается, что цвета в которые мы красим структуру F это структуры типа G. То есть $\mathcal{Z}_{F\circ G}=\mathcal{Z}_F(\phi_g^1,\phi_g^2,\phi_g^3,\ldots)$, где $\phi_g^i=(g_1^i+g_2^i+g_3^i+\ldots)$, где g_i — перечисление всех структур типа G. Нужно раскрыть переменные g_i — написать их относительно начальных цветов. Формулу $\phi_g^i=\mathcal{Z}_G(\phi^i,\phi^{2i},\phi^{3i},\ldots)$ легко понять в переменных x_1,x_2,x_3,\ldots Мы должны покрасить i кусков в одну и ту же G-структуру. Значит каждый цвет x_j заменяется на x_j^i .

3.3.2. Случай h-species