Data Mining in Action

Лекция 2.

Supervised learning: линейные модели

Напоминание: часто используемые методы

Градиентный бустинг

Случайный лес

Линейные модели

Обсуждаем сегодня: линейные модели

- I. Линейная классификация и оптимизационная задача в ней
- II. Как настраиваются коэффициенты: SGD
- III. Как бороться с переобучением: регуляризация
- IV. Стандартные линейные классификаторы
- V. О линейных моделях в регрессии

I. Линейная классификация

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Признаки (1/0):

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Признаки (1/0):

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Признаки (1/0):

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Порог для решающего правила: +1 Если сумма больше – выходим :)

Более серьезный пример: дать ли кредит

Работоспособный возраст

Имеет счет в вашем банке

Много просрочек по другим кредитам

Просрочек нет, а кредиты есть

Скоринговые карты

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ	
Возраст заемщика	До 35 лет	
	От 35 до 45 лет	
	От 45 и старше	
Образова- ние	Высшее	
	Среднее специальное	
	Среднее	
Состоит ли в браке	Да	
	Нет	
Наличие кредита в прошлом	Да	
	Нет	
Стаж работы	До 1 года	
	От 1 до 3 лет	
	От 3 до 6 лет	
	Свыше 6 лет	
Наличие автомобиля	Да	
	Нет	

Скоринговые карты

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ	СКОРИНГ- БАЛЛ
Возраст заемщика	До 35 лет	7,60
	От 35 до 45 лет	29,68
	От 45 и старше	35,87
Образова- ние	Высшее	29,82
	Среднее специальное	20,85
	Среднее	22,71
Состоит ли в браке	Да	29,46
	Нет	9,38
Наличие кредита в прошлом	Да	40,55
	Нет	13,91
Стаж работы	До 1 года	15,00
	От 1 до 3 лет	18,14
	От 3 до 6 лет	19,85
	Свыше 6 лет	23,74
Наличие автомобиля	Да	51,69
	Нет	15,93

Подбор весов признаков и порога

Почему нельзя продолжать также:

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Подбор весов признаков и порога

Почему нельзя продолжать также:

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Решение — автоматизируем подбор параметров: придумаем функцию от параметров, которую надо минимизировать, и используем методы численной оптимизации

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_d x_d$$

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_d x_d = w_0 + \langle w, x \rangle$$

Геометрическая интерпретация: разделяем классы плоскостью

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

Если добавляем $x_{(0)} = 1$, то:

$$\frac{f(x) = w_0 + \langle w, x \rangle}{f(x) = \langle w, x \rangle}$$

Как выглядит код: применение модели

```
import numpy as np

def f(x):
    return np.dot(w, x) + w0

def a(x):
    return 1 if f(x) > 0 else 0
```

Отступ (margin)

Отступом алгоритма $a(x) = sign\{f(x)\}$ на объекте x_i называется величина

$$M_i = y_i f(x_i)$$

 $(y_i$ - класс, к которому относится x_i)

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right]$$

Функция потерь

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

$$Q(M) = (1 - M)^2$$
 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

II. Обучение модели: SGD

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$M_i = y_i \langle w, x_i \rangle$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$F(x_k)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \implies \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \Longrightarrow \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^l y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
L(M) = \max\{0, 1 - M\} = (1 - M)_{+}
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
       w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0 \gamma_k = \frac{1}{\alpha + k}
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
                                                           \gamma_k = \frac{1}{\sqrt{\alpha + k}}
\gamma_k = (\alpha + k)^{-\beta}
    for k in range(10000):
         rand index = randint(0, len(X train))
         x = X train[rand index]
         y = y train[rand index]
         step = 0.01
         w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X_train))
                                                       \gamma_k = (\alpha + k)^{-\beta}
        x = X train[rand index]
        y = y train[rand index]
                                                        \gamma_k = \tau \beta_k
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
                                       w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)
        step = 0.01
        w = x * step * y * der loss(x, y)
```

III. Борьба с переобучением: регуляризация

Переобучение в задаче обучения с учителем:

Переобучение в задаче обучения с учителем связано с большими коэффициентами:

Переобучение в задаче обучения с учителем связано с большими коэффициентами:

Идея: добавить ограничение на коэффициенты

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{n=1}^{d} |w_n| \le \tau \\ & \sum_{n=1}^{d} |w_n|^2 \le \tau \end{cases}$$

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{n=1}^{d} |w_n| \leq \tau \\ & \sum_{n=1}^{m} w_n^2 \leq \tau \end{cases}$$
 ℓ 1-регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

Вопрос:

вы заметили, что в регуляризатор не включается вес W_o ?

Различия между $\ell 1$ и $\ell 2$

- Разреженность— $\ell 1$ -регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Различия между $\ell 1$ и $\ell 2$

- Разреженность— $\ell 1$ -регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Различия между $\ell 1$ и $\ell 2$

- Разреженность— $\ell 1$ -регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Упражнение

Выпишете, как поменяется правило обновления весов признаков в линейном классификаторе с помощью SGD при добавлении регуляризатора

IV. Стандартные классификаторы: SVM и логистическая регрессия

Стандартные линейные классификаторы

Классификатор	Функция потерь	Регуляризатор
SVM (Support vector machine, метод опорных векторов)	$L(M) = \max\{0, 1 - M\} = $ $= (1 - M)_{+}$	$\sum_{k=1}^{m} w_k^2$
Логистическая регрессия	$L(M) = \log(1 + e^{-M})$	Обычно $\sum_{k=1}^m w_k^{\ 2} \text{или} \\ \sum_{k=1}^m w_k $

Обязательно ли функция потерь — функция от отступа?

Пример:

$$y_i \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \to \min_{w}$$

$$p_i = \sigma(\langle w, x_i \rangle) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}$$

Обязательно ли функция потерь — функция от отступа?

Пример:

$$y_i \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \to \min_{w}$$

$$p_i = \sigma(\langle w, x_i \rangle) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}$$

Упражнение:

Показать, что это та же оптимизационная задача, что и в логистической регрессии

Общий случай

Линейный классификатор:

$$a(x) = sign(\langle w, x \rangle - w_0)$$

Использующий кусочно-линейную функцию потерь и ℓ 2-регуляризатор:

Линейный классификатор:

$$a(x) = sign(\langle w, x \rangle - w_0)$$

Использующий кусочно-линейную функцию потерь и ℓ 2-регуляризатор:

$$\sum_{i=1}^{l} L(M_i) + \gamma ||w||^2 \to \min_{w}$$

Линейный классификатор:

$$a(x) = sign(\langle w, x \rangle - w_0)$$

Использующий кусочно-линейную функцию потерь и ℓ 2-регуляризатор:

$$\sum_{i=1}^l L(M_i) + \gamma \|w\|^2 o \min_w$$
 квадратичный регуляризатор

Линейный классификатор:

$$a(x) = sign(\langle w, x \rangle - w_0)$$

Использующий кусочно-линейную функцию потерь и ℓ 2-регуляризатор:

кусочно-линейная функция потерь:

$$L(M_i) = \max\{0, 1 - M_i\} = (1 - M_i)_+$$

Построение разделяющей гиперплоскости

Разделяющая полоса

Ключевые моменты

- Метод опорных векторов линейный классификатор с кусочнолинейной функцией потерь (hinge loss) и L2-регуляризатором
- Изначально метод был предложен из соображений максимизации зазора между классами
- Позволяет строить нелинейные разделяющие поверхности (об этом дальше)

Добавление новых признаков

$$\phi: (x_1, x_2) \longrightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$\left(\frac{x_1}{a}\right)^2 + \left(\frac{x_2}{b}\right)^2 = 1 \longrightarrow \frac{z_1}{a^2} + \frac{z_3}{b^2} = 1$$

Добавление новых признаков

$$\phi:(x_1,x_2)\longrightarrow(x_1^2,\sqrt{2}x_1x_2,x_2^2)$$

$$\left(\frac{x_1}{a}\right)^2 + \left(\frac{x_2}{b}\right)^2 = 1 \longrightarrow \frac{z_1}{a^2} + \frac{z_3}{b^2} = 1$$

Спрямляющее пространство

Kernel Trick

$$\begin{array}{l} x \mapsto \phi(x) \\ w \mapsto \phi(w) \end{array} \implies < w, x > \mapsto < \phi(w), \phi(x) >$$

Kernel Trick

$$\begin{array}{l} x \mapsto \phi(x) \\ w \mapsto \phi(w) \end{array} \implies \langle w, x \rangle \mapsto \langle \phi(w), \phi(x) \rangle$$

Можно не делать преобразование признаков явно, а вместо скалярного произведения < w, x > использовать функцию K(w, x), представимую в виде:

$$K(w, x) = \langle \phi(w), \phi(x) \rangle$$

Линейное ядро

Полиномиальное ядро

$$K(w, x) = (\gamma < w, x > +r)^d$$

https://youtu.be/3liCbRZPrZA

Радиальное ядро

$$K(w,x) = e^{-\gamma ||w-x||^2}$$

$$a(x) = \langle w, x \rangle + w_0$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

$$V(w) = \|w\|_{l2}^2 = \sum_{n=1}^{a} w_n^2$$
 $V(w) = \|w\|_{l1} = \sum_{n=1}^{a} |w_n|$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

Гребневая регрессия (Ridge regression):

$$V(w) = ||w||_{l2}^2 = \sum_{n=1}^d w_n^2$$

LASSO (least absolute shrinkage and selection operator):

$$V(w) = ||w||_{l1} = \sum_{n=1}^{\infty} |w_n|$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

А без регуляризатора и с квадратичными потерями получаем привычную нам линейную регрессию

Модель: $y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$

Модель: $y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$

Если добавить $x_{i0} = 1$:

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Если добавить
$$x_{i0} = 1$$
: $y_i \approx \hat{y}_i = \langle w, x_i \rangle$

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Если добавить
$$x_{i0} = 1$$
: $y_i \approx \hat{y}_i = < w, x_i >$

$$y_1 \approx \hat{y}_1 = x_1^T w$$

$$\vdots$$

$$y_i \approx \hat{y}_i = x_i^T w$$

$$\vdots$$

$$y_l \approx \hat{y}_l = x_l^T w$$

Матричная запись

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \dots \\ \widehat{y_l} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \dots \\ x_l^T \end{pmatrix} w$$

$$y \approx \widehat{y} = Fw$$

$$w = \underset{w}{\operatorname{argmin}} \|y - \widehat{y}\|^2$$

Веса признаков

$$\frac{\partial (y - Fw)^2}{\partial w} = 2F^T(y - Fw) = 0$$
$$F^T Fw = F^T y$$

$$w = (F^T F)^{-1} F^T y$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \dots \\ \widehat{y_l} \end{pmatrix} = (F_{(1)} \quad \dots \quad F_{(m)}) w$$

$$y \approx \hat{y} = Fw = w_1 F_{(1)} + \dots + w_m F_{(m)}$$

$$(Fw - y) \perp F_{(k)} \forall k = 1, ..., m$$

$$(Fw - y) \perp F_{(k)} \forall k = 1, ..., m$$

$$F_{(k)}^{T}(Fw - y) = 0 \quad \forall k$$

$$(Fw - y) \perp F_{(k)} \forall k = 1, ..., m$$

$$F_{(k)}^{T}(Fw - y) = 0 \quad \forall k$$
$$F^{T}(Fw - y) = 0$$

$$(Fw - y) \perp F_{(k)} \forall k = 1, ..., m$$

$$F_{(k)}^{T}(Fw - y) = 0 \quad \forall k$$

$$F^{T}(Fw - y) = 0$$

$$F^{T}Fw = F^{T}y$$

$$(Fw - y) \perp F_{(k)} \forall k = 1, ..., m$$

$$F_{(k)}^{T}(Fw - y) = 0 \quad \forall k$$

$$F^{T}(Fw - y) = 0$$

$$F^{T}Fw = F^{T}y$$

$$w = (F^{T}F)^{-1}F^{T}y$$

LASSO и гребневая регрессия

Итог

- 1. Линейная классификация и оптимизационная задача в ней
- 2. Как настраиваются коэффициенты: SGD
- 3. Как бороться с переобучением: регуляризация
- 4. Стандартные линейные классификаторы
- 5. О линейных моделях в регрессии

Pros & cons

Преимущества:

- легко реализовывать уже обученную модель
- не многим сложнее реализовывать и ее обучение
- быстро работают
- хорошо работают, когда много признаков
- нормально работают, когда мало данных

Недостатки:

- может быть слишком простым для вашей зависимости у(х)
- будет плохо работать, если забыть/не суметь отмасштабировать признаки

Библиотеки

- libSVM
- liblinear
- sklearn.linear_models
- Vowpal Wabbit (SGD для онлайн-обучения + Hashing Trick)

Упражнение

В реализации линейного классификатора на Python, приведенной в этих слайдах, намеренно допущены небольшие ошибки

Попробуйте их найти (обсудим в начале следующей лекции)

Подсказка:

подумайте о том, как мы обозначаем классы, а также об отличии правила обновления w_0 и w в SGD

Конкурс

Найти ошибку на этой картинке и написать комментарий в соответствующей записи в группе DMIA в ВК

Победитель (первый, кто ответит верно) получит приз

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

what other programmers think I do

what I think I do

>>> from sklearn import svm

what I really do

Конкурс

В самой первой версии мема было:

from scipy import SVM

В опубликованном:

from sklearn import svm

Мы этого не заметили, а когда заметили, решили, что так не получится

Скрыть комментарии

<mark>Дмитрий Волынкин</mark> mport xgboost 10 фев в 16:19. Ответь

Александр Рогачёв

»> from sklearn.svm import SVC

10 фев в 17:40 Ответить

Александр Ничипоренко

Про "from sklearn import svm" - это корректно, из документации

10 фев в 17:45 Ответить

Светлана Погребня

На нижней левой картинке плохо все видно, но это не svm. На других нижних действительно он :)

10 фев в 18:24 Ответить

Александр Кузнецо

сто-нибудь встречал использование svm в prod? По ощущениям, его изучение это дань уважения поколению ученых, посвятивших себя его исследованиям

Конкурс

В опубликованном:

from sklearn import svm

Мы этого не заметили, а когда заметили, решили, что так не получится

Но так можно: мы же можем импортировать весь модуль sklearn.svm

Скрыть комментарии

Дмитрий Волынкин import xgboost 10 фев в 16:19 Ответи

Александр Рогачёв

»> from sklearn.svm import SVC

10 фев в 17:40 Ответить

Александр Ничипоренко

Про "from sklearn import svm" - это корректно, из документации:

10 фев в 17:45 Ответить

Светлана Погребняк

На нижней левой картинке плохо все видно, но это не svm. На других нижних действительно он :)

10 фев в 18:24 Ответиті

Александр Кузнецов

Кто-нибудь встречал использование svm в prod? По ощущениям, его изучение это дань уважения поколению ученых, посвятивших себя его исследованиям

Приз

Скрыть комментарии

Дмитрий Волынкин

import xgboost

10 фев в 16:19 Ответить

Александр Рогачёв

»> from sklearn.svm import SVC

10 фев в 17:40 Ответить

Александр Ничипоренко

Про "from sklearn import svm" - это корректно, из документации:

10 фев в 17:45 Ответить

Светлана Погребняк

На нижней левой картинке плохо все видно, но это не svm. На других нижних действительно он :)

10 фев в 18:24 Ответить

Александр Кузнецов

Кто-нибудь встречал использование svm в prod? По ощущениям, его изучение это дань уважения поколению ученых, посвятивших себя его исследованиям.

Контакты

dmia@applieddatascience.ru

https://t.me/joinchat/B1OlTk74nRV56Dp1TDJGNA

https://goo.gl/forms/1k17ALSW2urgM91m2