Math 141: Section 4.8 Antiderivatives - Notes

Definition: A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

 $\mathbf{Example}\ \mathbf{1}\ \mathrm{Find}$ an antiderivative for each of the following functions:

(a)
$$f(x) = 2x$$

(b)
$$g(x) = \cos x$$

(c)
$$h(x) = \frac{1}{x} + 2e^{2x}$$

Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

Example 2 Find an antiderivative of $f(x) = 3x^2$ that satisfies F(1) = -1.

Example 3 Find the general antiderivative of each of the following functions:

- (a) $f(x) = x^5$
- **(b)** $g(x) = \frac{1}{\sqrt{x}}$
- (c) $h(x) = \sin x$
- **(d)** $k(x) = e^{-3x}$

General Formulas The following table includes a list of general formulas:

Function	General antiderivative	Function	General antiderivative
1. x ⁿ	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8. e ^{kx}	$\frac{1}{k}e^{kx} + C$
2. sin <i>kx</i>	$-\frac{1}{k}\cos kx + C$	9. $\frac{1}{x}$	$ \ln x + C, x \neq 0 $
3. cos kx	$\frac{1}{k}\sin kx + C$	10. $\frac{1}{\sqrt{1-k^2r^2}}$	$\frac{1}{k}\sin^{-1}kx + C$
$1. \sec^2 kx$	$\frac{1}{k} \tan kx + C$	11. $\frac{1}{1+k^2x^2}$	$\frac{1}{k} \tan^{-1} kx + C$
5. $\csc^2 kx$	$-\frac{1}{k}\cot kx + C$	1 1 2 2	$\sec^{-1}kx + C, kx > 1$
sec kx tan kx	$\frac{1}{k}$ sec $kx + C$	12. $\frac{1}{x\sqrt{k^2x^2-1}}$	SCC 1.1 C, 1.1 - 1
. csc kx cot kx	$-\frac{1}{L}\csc kx + C$	13. a^{kx}	$\left(\frac{1}{k \ln a}\right) a^{kx} + C, a > 0, a \neq$

Antiderivative Linearity Rules If a function is being multiplied by a constant or combined with another function, the following rules apply:

Example 4 Find the general antiderivative of

$$f(x) = \frac{3}{\sqrt{x}} + \sin 2x$$

Example 5 - Differential Equations A hot-air balloon ascending at the rate of 12 ft/sec is at a height of 80 ft above the ground when a package is dropped. How long does it take the package to reach the ground?

Indefinite Integrals - Definition: The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by

$$\int f(x)dx.$$

The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

We can restate each of the previous examples as finding the indefinite integral. Antiderivatives play a key role in computing limits of certain infinite sums, an unexpected and wonderfully useful role that is described in a central result of Chapter 5, called the *Fundamental Theorem of Calculus*.

Example 6 Evaluate

$$\int (x^2 - 2x + 5)dx.$$